Knut Sydsæter · Arne Strøm Peter Berck

Economists' Mathematical Manual

Fourth Edition

Economists' Mathematical Manual

Knut Sydsæter \cdot Arne Strøm \cdot Peter Berck

Economists' Mathematical Manual

Fourth Edition

Professor Knut Sydsæter University of Oslo Department of Economics P.O. Box 10955 Blindern NO-0317 Oslo Norway knutsy@econ.uio.no

Professor Peter Berck University of California, Berkeley Department of Agricultural and Resource Economics Berkeley, CA 94720-3310 USA pberck@berkeley.edu Associate Professor Arne Strøm University of Oslo Department of Economics P.O. Box 10955 Blindern NO-0317 Oslo Norway arne.strom@econ.uio.no

ISBN 978-3-540-26088-2 e-ISBN 978-3-540-28518-2 DOI 10.1007/978-3-540-28518-2 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009937018

© Springer-Verlag Berlin Heidelberg 1991, 1993, 1999, 2005, Corrected Second Printing 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface to the fourth edition

The fourth edition is augmented by more than 70 new formulas. In particular, we have included some key concepts and results from trade theory, games of incomplete information and combinatorics. In addition there are scattered additions of new formulas in many chapters.

Again we are indebted to a number of people who has suggested corrections, improvements and new formulas. In particular, we would like to thank Jens-Henrik Madsen, Larry Karp, Harald Goldstein, and Geir Asheim.

In a reference book, errors are particularly destructive. We hope that readers who find our remaining errors will call them to our attention so that we may purge them from future editions.

Oslo and Berkeley, May 2005

Knut Sydsæter, Arne Strøm, Peter Berck

From the preface to the third edition

The practice of economics requires a wide-ranging knowledge of formulas from mathematics, statistics, and mathematical economics. With this volume we hope to present a formulary tailored to the needs of students and working professionals in economics. In addition to a selection of mathematical and statistical formulas often used by economists, this volume contains many purely economic results and theorems. It contains just the formulas and the minimum commentary needed to relearn the mathematics involved. We have endeavored to state theorems at the level of generality economists might find useful. In contrast to the economic maxim, "everything is twice more continuously differentiable than it needs to be", we have usually listed the regularity conditions for theorems to be true. We hope that we have achieved a level of explication that is accurate and useful without being pedantic.

During the work with this book we have had help from a large group of people. It grew out of a collection of mathematical formulas for economists originally compiled by Professor B. Thalberg and used for many years by Scandinavian students and economists. The subsequent editions were much improved by the suggestions and corrections of: G. Asheim, T. Akram, E. Biørn, T. Ellingsen, P. Frenger, I. Frihagen, H. Goldstein, F. Greulich, P. Hammond, U. Hassler, J. Heldal, Aa. Hylland, G. Judge, D. Lund, M. Machina, H. Mehlum, K. Moene, G. Nordén, A. Rødseth, T. Schweder, A. Seierstad, L. Simon, and B. Øksendal.

As for the present third edition, we want to thank in particular, Olav Bjerkholt, Jens-Henrik Madsen, and the translator to Japanese, Tan-no Tadanobu, for very useful suggestions.

Oslo and Berkeley, November 1998

Knut Sydsæter, Arne Strøm, Peter Berck

Contents

1.	Logical operators. Truth tables. Basic concepts of set theory. Cartesian products. Relations. Different types of orderings. Zorn's lemma. Functions. Inverse functions. Finite and countable sets. Mathematical induction.
2.	Equations. Functions of one variable. Complex numbers
3.	Limits. Continuity. Differentiation (one variable)
4.	Partial derivatives
5.	Elasticities. Elasticities of substitution
6.	Systems of equations

7.	Inequalities
	Triangle inequalities. Inequalities for arithmetic, geometric, and harmonic means. Bernoulli's inequality. Inequalities of Hölder, Cauchy–Schwarz, Chebyshev, Minkowski, and Jensen.
8.	Series. Taylor's formula
	Arithmetic and geometric series. Convergence of infinite series. Convergence criteria. Absolute convergence. First- and second-order approximations. Maclaurin and Taylor formulas. Series expansions. Binomial coefficients. Newton's binomial formula. The multinomial formula. Summation formulas. Euler's constant.
9.	Integration
	Indefinite integrals. General and special rules. Definite integrals. Convergence of integrals. The comparison test. Leibniz's formula. The gamma function. Stirling's formula. The beta function. The trapezoid formula. Simpson's formula. Multiple integrals.
10.	Difference equations
	Solutions of linear equations of first, second, and higher order. Backward and forward solutions. Stability for linear systems. Schur's theorem. Matrix formulations. Stability of first-order nonlinear equations.
11.	Differential equations
	Separable, projective, and logistic equations. Linear first-order equations. Bernoulli and Riccati equations. Exact equations. Integrating factors. Local and global existence theorems. Autonomous first-order equations. Stability. General linear equations. Variation of parameters. Second-order linear equations with constant coefficients. Euler's equation. General linear equations with constant coefficients. Stability of linear equations. Routh—Hurwitz's stability conditions. Normal systems. Linear systems. Matrix formulations. Resolvents. Local and global existence and uniqueness theorems. Autonomous systems. Equilibrium points. Integral curves. Local and global (asymptotic) stability. Periodic solutions. The Poincaré—Bendixson theorem. Liapunov theorems. Hyperbolic equilibrium points. Olech's theorem. Liapunov functions. Lotka—Volterra models. A local saddle point theorem. Partial differential equations of the first order. Quasilinear equations. Frobenius's theorem.
12.	Topology in Euclidean space
	Basic concepts of point set topology. Convergence of sequences. Cauchy sequences. Cauchy's convergence criterion. Subsequences. Compact sets. Heine–Borel's theorem. Continuous functions. Relative topology. Uniform continuity. Pointwise and uniform convergence. Correspondences. Lower and upper hemicontinuity. Infimum and supremum. Lim inf and lim sup.

13.	Convexity
	Convex sets. Convex hull. Carathéodory's theorem. Extreme points. Krein–Milman's theorem. Separation theorems. Concave and convex functions. Hessian matrices. Quasiconcave and quasiconvex functions. Bordered Hessians. Pseudoconcave and pseudoconvex functions.
14.	Classical optimization
	Basic definitions. The extreme value theorem. Stationary points. First-order conditions. Saddle points. One-variable results. Inflection points. Second-order conditions. Constrained optimization with equality constraints. Lagrange's method. Value functions and sensitivity. Properties of Lagrange multipliers. Envelope results.
15.	Linear and nonlinear programming
	Basic definitions and results. Duality. Shadow prices. Complementary slackness. Farkas's lemma. Kuhn–Tucker theorems. Saddle point results. Quasiconcave programming. Properties of the value function. An envelope result. Nonnegativity conditions.
16.	Calculus of variations and optimal control theory
	The simplest variational problem. Euler's equation. The Legendre condition. Sufficient conditions. Transversality conditions. Scrap value functions. More general variational problems. Control problems. The maximum principle. Mangasarian's and Arrow's sufficient conditions. Properties of the value function. Free terminal time problems. More general terminal conditions. Scrap value functions. Current value formulations. Linear quadratic problems. Infinite horizon. Mixed constraints. Pure state constraints. Mixed and pure state constraints.
17.	Discrete dynamic optimization
	Dynamic programming. The value function. The fundamental equations. A "control parameter free" formulation. Euler's vector difference equation. Infinite horizon. Discrete optimal control theory.
18.	Vectors in \mathbb{R}^n . Abstract spaces
	Linear dependence and independence. Subspaces. Bases. Scalar products. Norm of a vector. The angle between two vectors. Vector spaces. Metric spaces. Normed vector spaces. Banach spaces. Ascoli's theorem. Schauder's fixed point theorem. Fixed points for contraction mappings. Blackwell's sufficient conditions for a contraction. Inner-product spaces. Hilbert spaces. Cauchy–Schwarz' and Bessel's inequalities. Parseval's formula.

19.	Matrices
20.	
21.	Eigenvalues. Quadratic forms
	Eigenvalues and eigenvectors. Diagonalization. Spectral theory. Jordan decomposition. Schur's lemma. Cayley–Hamilton's theorem. Quadratic forms and criteria for definiteness. Singular value decomposition. Simultaneous diagonalization. Definiteness of quadratic forms subject to linear constraints.
22.	Special matrices. Leontief systems
	Properties of idempotent, orthogonal, and permutation matrices. Nonnegative matrices. Frobenius roots. Decomposable matrices. Dominant diagonal matrices. Leontief systems. Hawkins–Simon conditions.
23.	Kronecker products and the vec operator. Differentiation of vectors and matrices
	Definition and properties of Kronecker products. The vec operator and its properties. Differentiation of vectors and matrices with respect to elements, vectors, and matrices.
24.	Comparative statics
	Equilibrium conditions. Reciprocity relations. Monotone comparative statics. Sublattices of \mathbb{R}^n . Supermodularity. Increasing differences.
25 .	Properties of cost and profit functions
	Cost functions. Conditional factor demand functions. Shephard's lemma. Profit functions. Factor demand functions. Supply functions. Hotelling's lemma. Puu's equation. Elasticities of substitution. Allen–Uzawa's and Morishima's elasticities of substitution. Cobb–Douglas and CES functions. Law of the minimum, Diewert, and translog cost functions.
26.	Consumer theory
	Preference relations. Utility functions. Utility maximization. Indirect utility functions. Consumer demand functions. Roy's identity. Expenditure functions. Hicksian demand functions. Cournot, Engel, and Slutsky elasticities. The Slutsky equation. Equivalent and compensating variations. LES (Stone–Geary), AIDS, and translog indirect utility functions. Laspeyres, Paasche, and general price indices. Fisher's ideal index.

27.	Topics from trade theory						
28.	Topics from finance and growth theory						
29.	Risk and risk aversion theory						
30.	Finance and stochastic calculus						
	Capital asset pricing model. The single consumption β asset pricing equation. The Black–Scholes option pricing model. Sensitivity results. A generalized Black–Scholes model. Put-call parity. Correspondence between American put and call options. American perpetual put options. Stochastic integrals. Itô's formulas. A stochastic control problem. Hamilton–Jacobi–Bellman's equation.						
31.	Non-cooperative game theory						
	An <i>n</i> -person game in strategic form. Nash equilibrium. Mixed strategies. Strictly dominated strategies. Two-person games. Zero-sum games. Symmetric games. Saddle point property of the Nash equilibrium. The classical minimax theorem for two-person zero-sum games. Exchangeability property. Evolutionary game theory. Games of incomplete information. Dominant strategies and Baysesian Nash equilibrium. Pure strategy Bayesian Nash equilibrium.						
32.	Combinatorics						
	Combinatorial results. Inclusion—exclusion principle. Pigeonhole principle.						
33.	Probability and statistics						
	Axioms for probability. Rules for calculating probabilities. Conditional probability. Stochastic independence. Bayes's rule. One-dimensional random variables. Probability density functions. Cumulative distribution functions. Expectation. Mean. Variance. Standard deviation. Central moments. Coefficients of skewness and kurtosis. Chebyshev's and Jensen's inequalities. Moment generating and characteristic functions. Two-dimensional random variables and distributions. Covariance. Cauchy–Schwarz's inequality. Correlation coefficient. Marginal and conditional density functions. Stochastic independence. Conditional expectation and variance. Iterated expectations. Transformations of stochastic variables. Estimators. Bias. Mean square error. Probability limits. Convergence in						

	quadratic mean. Slutsky's theorem. Limiting distribution. Consistency. Testing. Power of a test. Type I and type II errors. Level of significance. Significance probability $(P\text{-value})$. Weak and strong law of large numbers. Central limit theorem.
34.	Probability distributions
	Beta, binomial, binormal, chi-square, exponential, extreme value (Gumbel), F -, gamma, geometric, hypergeometric, Laplace, logistic, lognormal, multinomial, multivariate normal, negative binomial, normal, Pareto, Poisson, Student's t -, uniform, and Weibull distributions.
35.	Method of least squares
	Ordinary least squares. Linear regression. Multiple regression.
	References
	Index

Chapter 1

Set Theory. Relations. Functions

1.1 $x \in A$, $x \notin B$

1.3

1.6

1.2 $A \subset B \iff$ Each element of A is also an element of B.

If S is a set, then the set of all elements x in S with property $\varphi(x)$ is written

$$A = \{x \in S : \varphi(x)\}\$$

If the set S is understood from the context, one often uses a simpler notation:

$$A = \{x : \varphi(x)\}$$

The following logical operators are often used when P and Q are statements:

- $P \wedge Q$ means "P and Q"
- $P \lor Q$ means "P or Q"
- 1.4 $P \Rightarrow Q$ means "if P then Q" (or "P only if Q", or "P implies Q")
 - $P \Leftarrow Q$ means "if Q then P"
 - $P \Leftrightarrow Q$ means "P if and only if Q"
 - $\neg P$ means "not P"

	P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
	T	T	F	T	T	T	T
1.5	T	F	F	F	T	F	F
	F	T	T	F	T	T	F
	F	F	T	F	F	T	T

- P is a sufficient condition for $Q: P \Rightarrow Q$
- Q is a necessary condition for $P: P \Rightarrow Q$
 - P is a necessary and sufficient condition for Q: $P \Leftrightarrow Q$

The element x belongs to the set A, but x does not belong to the set B.

A is a subset of B. Often written $A \subseteq B$.

General notation for the specification of a set. For example, $\{x \in \mathbb{R} : -2 \le x \le 4\} = [-2, 4].$

Logical operators. (Note that "P or Q" means "either P or Q or both".)

Truth table for logical operators. Here T means "true" and F means "false".

Frequently used terminology.

$$A \cup B = \{x : x \in A \lor x \in B\} \ (A \ union \ B)$$
$$A \cap B = \{x : x \in A \land x \in B\} \ (A \ intersection \ B)$$
$$A \setminus B = \{x : x \in A \land x \notin B\} \ (A \ minus \ B)$$

 $A \setminus B = \{x : x \in A \land x \notin B\} \ (A \ minus \ B)$

1.7 $A \triangle B = (A \setminus B) \cup (B \setminus A)$ (symmetric difference) If all the sets in question are contained in some "universal" set Ω , one often writes $\Omega \setminus A$ as $A^c = \{x : x \notin A\}$ (the complement of A)

Basic set operations. $A \setminus B$ is called the difference between A and B. An alternative symbol for A^c is CA.

 $A \cup B$

 $A \cap B$

 $A \setminus B$

 A^{c}

 $A\triangle B$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

$$(A \triangle B) \triangle C = A \triangle (B \triangle C)$$

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Important identities in set theory. The last four identities are called De Morgan's laws.

1.9
$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$$

The Cartesian product of the sets A_1, A_2, \ldots, A_n .

 $R \subset A \times B$ 1.10

1.12

Any subset R of $A \times B$ is called a relation from the set A into the set B.

 $xRy \iff (x,y) \in R$ 1.11 $x \mathbb{R} y \iff (x,y) \notin R$

Alternative notations for a relation and its negation. We say that x is in R-relation to y if $(x,y) \in R$.

• $dom(R) = \{a \in A : (a, b) \in R \text{ for some } b \text{ in } B\}$ $= \{a \in A : aRb \text{ for some } b \text{ in } B\}$

• range $(R) = \{b \in B : (a, b) \in R \text{ for some } a \text{ in } A\}$ $= \{b \in B : aRb \text{ for some } a \text{ in } A\}$

The domain and range of a relation.

1.14 $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$

Let R be a relation from A to B and S a relation from B to C. Then we define the *composition*1.15 $S \circ R$ of R and S as the set of all (a, c) in $A \times C$ such that there is an element b in B with aRb and bSc. $S \circ R$ is a relation from A to C.

A relation R from A to A itself is called a binary relation in A. A binary relation R in A is said to be

- reflexive if aRa for every a in A;
- irreflexive if a R a for every a in A;
- 1.16 complete if aRb or bRa for every a and b in A with $a \neq b$:
 - transitive if aRb and bRc imply aRc;
 - symmetric if aRb implies bRa;
 - antisymmetric if aRb and bRa implies a = b:
 - asymmetric if aRb implies bRa.

A binary relation R in A is called

- a preordering (or a quasi-ordering) if it is reflexive and transitive;
- a *weak ordering* if it is transitive and complete;
- 1.17 a partial ordering if it is reflexive, transitive, and antisymmetric;
 - a *linear* (or *total*) *ordering* if it is reflexive, transitive, antisymmetric, and complete;
 - an *equivalence relation* if it is reflexive, transitive, and symmetric.

Illustration of the domain and range of a relation, R, as defined in (1.12). The shaded set is the qraph of the relation.

The *inverse* relation of a relation R from A to B. R^{-1} is a relation from B to A.

 $S \circ R$ is the composition of the relations R and S.

Special relations.

Special relations. (The terminology is not universal.) Note that a linear ordering is the same as a partial ordering that is also complete.

Order relations are often denoted by symbols like \preccurlyeq , \leq , \ll , etc. The inverse relations are then denoted by \succcurlyeq , \geq , \gg , etc.

- The relation = between real numbers is an equivalence relation.
- The relation ≤ between real numbers is a linear ordering.
- The relation < between real numbers is a weak ordering that is also irreflexive and asymmetric.
- The relation ⊂ between subsets of a given set is a partial ordering.
- The relation x ≤ y (y is at least as good as x) in a set of commodity vectors is usually assumed to be a complete preordering.
 - The relation x ≺ y (y is (strictly) preferred to x) in a set of commodity vectors is usually assumed to be irreflexive, transitive, (and consequently asymmetric).
 - The relation $\mathbf{x} \sim \mathbf{y}$ (\mathbf{x} is *indifferent to* \mathbf{y}) in a set of commodity vectors is usually assumed to be an equivalence relation.

Examples of relations. For the relations $\mathbf{x} \leq \mathbf{y}$, $\mathbf{x} < \mathbf{y}$, and $\mathbf{x} \sim \mathbf{y}$, see Chap. 26.

Let \preccurlyeq be a preordering in a set A. An element g in A is called a *greatest element* for \preccurlyeq in A if $x \preccurlyeq g$ for every x in A. An element m in A is called a *maximal element* for \preccurlyeq in A if $x \in A$ and $m \preccurlyeq x$ implies $x \preccurlyeq m$. A *least element* and a *minimal element* for \preccurlyeq are a greatest element and a maximal element, respectively, for the inverse relation \succcurlyeq of \preccurlyeq .

The definition of a greatest element, a maximal element, a least element, and a minimal element of a preordered set.

If \preccurlyeq is a preordering in A and M is a subset of A, an element b in A is called an *upper bound* 1.20 for M (w.r.t. \preccurlyeq) if $x \preccurlyeq b$ for every x in M. A lower bound for M is an element a in A such that $a \preccurlyeq x$ for all x in M.

Definition of upper and lower bounds.

1.21 If \leq is a preordering in a nonempty set A and if each linearly ordered subset M of A has an upper bound in A, then there exists a maximal element for \leq in A.

Zorn's lemma. (Usually stated for partial orderings, but also valid for preorderings.)

A relation R from A to B is called a function or mapping if for every a in A, there is a unique bin B with aRb. If the function is denoted by f. 1.22 then we write f(a) = b for afb, and the graph of f is defined as:

$$graph(f) = \{(a, b) \in A \times B : f(a) = b\}.$$

A function f from A to B $(f: A \rightarrow B)$ is called

- injective (or one-to-one) if f(x) = f(y) implies x = y;
 - surjective (or onto) if range(f) = B;
- bijective if it is injective and surjective.

If $f: A \to B$ is bijective (i.e. both one-to-one 1.24 and onto), it has an inverse function $q: B \to A$, defined by q(f(u)) = u for all u in A.

B

If f is a function from A to B, and $C \subset A$, $D \subset B$, then we use the notation

- 1.26 • $f(C) = \{ f(x) : x \in C \}$
 - $f^{-1}(D) = \{x \in A : f(x) \in D\}$

If f is a function from A to B, and $S \subset A$, $T \subset A, U \subset B, V \subset B$, then

- $f(S \cup T) = f(S) \cup f(T)$
- $f(S \cap T) \subset f(S) \cap f(T)$ 1.27
 - $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$
 - $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$
 - $f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of natural numbers, and let $\mathbb{N}_n = \{1, 2, 3, \dots, n\}$. Then:

- A set A is *finite* if it is empty, or if there 1.28 exists a one-to-one function from A onto \mathbb{N}_n for some natural number n.
 - A set A is countably infinite if there exists a one-to-one function of A onto \mathbb{N} .

The definition of a function and its graph.

Important concepts related to functions.

Characterization of inverse functions. The inverse function of f is often denoted by f^{-1} .

Illustration of the concept of an inverse function.

f(C) is called the image of A under f, and $f^{-1}(D)$ is called the inverse image of D.

Important facts. The inclusion \subset in $f(S \cap T) \subset f(S) \cap f(T)$ cannot be replaced by =.

A set that is either finite or countably infinite, is often called countable. The set of rational numbers is countably infinite, while the set of real numbers is not countable.

1.25

1.23

Suppose that A(n) is a statement for every natural number n and that

• A(1) is true,

• if the induction hypothesis A(k) is true, then A(k+1) is true for each natural number k.

Then A(n) is true for all natural numbers n.

The principle of mathematical induction.

References

See Halmos (1974), Ellickson (1993), and Hildenbrand (1974).

Chapter 2

Equations. Functions of one variable. Complex numbers

2.1
$$ax^2 + bx + c = 0 \iff x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If x_1 and x_2 are the roots of $x^2 + px + q = 0$, 2.2 then

$$x_1 + x_2 = -p,$$
 $x_1 x_2 = q$

$$2.3 \quad ax^3 + bx^2 + cx + d = 0$$

$$2.4 \quad x^3 + px + q = 0$$

$$x^{3} + px + q = 0$$
 with $\Delta = 4p^{3} + 27q^{2}$ has

- three different real roots if $\Delta < 0$:
- 2.5 three real roots, at least two of which are equal, if $\Delta = 0$;
 - one real and two complex roots if $\Delta > 0$.

The solutions of $x^3 + px + q = 0$ are $x_1 = u + v$, $x_2 = \omega u + \omega^2 v$, and $x_3 = \omega^2 u + \omega v$, where $\omega = -\frac{1}{2} + \frac{i}{2}\sqrt{3}$, and

2.6
$$u = \sqrt[3]{-\frac{q}{2} + \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$$
$$v = \sqrt[3]{-\frac{q}{2} - \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$$

The roots of the general quadratic equation. They are real provided $b^2 \geq 4ac$ (assuming that a, b, and c are real).

Viète's rule.

The general *cubic* equation.

(2.3) reduces to the form (2.4) if x in (2.3) is replaced by x - b/3a.

Classification of the roots of (2.4) (assuming that p and q are real).

Cardano's formulas for the roots of a cubic equation. i is the imaginary unit (see (2.75)) and ω is a complex third root of 1 (see (2.88)). (If complex numbers become involved, the cube roots must be chosen so that 3uv = -p. Don't try to use these formulas unless you have to!)

If x_1 , x_2 , and x_3 are the roots of the equation $x^3 + px^2 + qx + r = 0$, then

2.7
$$x_1 + x_2 + x_3 = -p$$

$$x_1x_2 + x_1x_3 + x_2x_3 = q$$

$$x_1x_2x_3 = -r$$

2.8 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

For the polynomial P(x) in (2.8) there exist constants x_1, x_2, \ldots, x_n (real or complex) such that

$$P(x) = a_n(x - x_1) \cdots (x - x_n)$$

$$x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$$

$$2.10 \quad x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \sum_{i < j} x_i x_j = \frac{a_{n-2}}{a_n}$$

$$x_1 x_2 \cdots x_n = (-1)^n \frac{a_0}{a_n}$$

If $a_{n-1}, \ldots, a_1, a_0$ are all integers, then any integer root of the equation

2.11
$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

must divide a_0 .

Let k be the number of changes of sign in the sequence of coefficients a_n , a_{n-1} , ..., a_1 , a_0 in (2.8). The number of positive real roots of P(x) = 0, counting the multiplicities of the roots, is k or k minus a positive even number. If k = 1, the equation has exactly one positive real root.

The graph of the equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

is

2.12

2.13

- an ellipse, a point or empty if $4AC > B^2$;
- a parabola, a line, two parallel lines, or empty if $4AC = B^2$;
- a hyperbola or two intersecting lines if $4AC < B^2$.

Useful relations.

A polynomial of degree n. $(a_n \neq 0.)$

The fundamental theorem of algebra. x_1, \ldots, x_n are called zeros of P(x) and roots of P(x) = 0.

Relations between the roots and the coefficients of P(x) = 0, where P(x) is defined in (2.8). (Generalizes (2.2) and (2.7).)

Any integer solutions of $x^3 + 6x^2 - x - 6 = 0$ must divide -6. (In this case the roots are ± 1 and -6.)

Descartes's rule of signs.

Classification of *conics*. A, B, C not all 0.

2.14
$$x = x' \cos \theta - y' \sin \theta, \quad y = x' \sin \theta + y' \cos \theta$$

with $\cot 2\theta = (A - C)/B$

2.15
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$2.16 \quad (x - x_0)^2 + (y - y_0)^2 = r^2$$

2.17
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

2.19
$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = \pm 1$$

2.20 Asymptotes for (2.19):

$$y - y_0 = \pm \frac{b}{a}(x - x_0)$$

2.22
$$y - y_0 = a(x - x_0)^2$$
, $a \neq 0$

2.23
$$x - x_0 = a(y - y_0)^2$$
, $a \neq 0$

Transforms the equation in (2.13) into a quadratic equation in x' and y', where the coefficient of x'y' is 0.

The (Euclidean) distance between the points (x_1, y_1) and (x_2, y_2) .

Circle with center at (x_0, y_0) and radius r.

Ellipse with center at (x_0, y_0) and axes parallel to the coordinate axes.

Graphs of (2.16) and (2.17).

Hyperbola with center at (x_0, y_0) and axes parallel to the coordinate axes.

Formulas for asymptotes of the hyperbolas in (2.19).

Hyperbolas with asymptotes, illustrating (2.19) and (2.20), corresponding to + and - in (2.19), respectively. The two hyperbolas have the same asymptotes.

Parabola with vertex (x_0, y_0) and axis parallel to the y-axis.

Parabola with vertex (x_0, y_0) and axis parallel to the x-axis.

2.25

2.26

Parabolas illustrating (2.22) and (2.23) with a > 0.

A function f is

• increasing if

$$x_1 < x_2 \implies f(x_1) \le f(x_2)$$

• strictly increasing if

$$x_1 < x_2 \implies f(x_1) < f(x_2)$$

• decreasing if

$$x_1 < x_2 \implies f(x_1) \ge f(x_2)$$

• strictly decreasing if

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

• even if f(x) = f(-x) for all x

• odd if f(x) = -f(-x) for all x

• symmetric about the line x = a if f(a+x) = f(a-x) for all x

• symmetric about the point (a, 0) if f(a - x) = -f(a + x) for all x

• periodic (with period k) if there exists a number k > 0 such that

$$f(x+k) = f(x)$$
 for all x

Properties of functions.

• If y = f(x) is replaced by y = f(x) + c, the graph is moved upwards by c units if c > 0 (downwards if c is negative).

• If y = f(x) is replaced by y = f(x + c), the graph is moved c units to the left if c > 0 (to the right if c is negative).

• If y = f(x) is replaced by y = cf(x), the graph is stretched vertically if c > 0 (stretched vertically and reflected about the x-axis if c is negative).

• If y = f(x) is replaced by y = f(-x), the graph is reflected about the y-axis.

Shifting the graph of y = f(x).

Graphs of increasing and strictly increasing functions.

2.28

Graphs of decreasing and strictly decreasing functions.

2.29

Graphs of even and odd functions, and of a function symmetric about x = a.

2.30

Graphs of a function symmetric about the point (a,0) and of a function periodic with period k.

y = ax + b is a nonvertical asymptote for the curve y = f(x) if $\lim_{x \to \infty} \left(f(x) - (ax + b) \right) = 0$

2.31

$$\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$$

Definition of a nonvertical asymptote.

2.32

y = ax + b is an asymptote for the curve y = f(x).

2.36

How to find a nonvertical asymptote for the curve y = f(x) as $x \to \infty$:

- Examine $\lim_{x\to\infty} (f(x)/x)$. If the limit does not exist, there is no asymptote as $x\to\infty$.
- 2.33 If $\lim_{x \to \infty} (f(x)/x) = a$, examine the limit $\lim_{x \to \infty} (f(x) ax)$. If this limit does not exist, the curve has no asymptote as $x \to \infty$.
 - If $\lim_{x \to \infty} (f(x) ax) = b$, then y = ax + b is an asymptote for the curve y = f(x) as $x \to \infty$.

To find an approximate root of f(x) = 0, define x_n for $n = 1, 2, \ldots$, by

2.34
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

If x_0 is close to an actual root x^* , the sequence $\{x_n\}$ will usually converge rapidly to that root.

Suppose in (2.34) that $f(x^*) = 0$, $f'(x^*) \neq 0$, and that $f''(x^*)$ exists and is continuous in a neighbourhood of x^* . Then there exists a $\delta > 0$ such that the sequence $\{x_n\}$ in (2.34) converges to x^* when $x_0 \in (x^* - \delta, x^* + \delta)$.

Suppose in (2.34) that f is twice differentiable with $f(x^*) = 0$ and $f'(x^*) \neq 0$. Suppose further that there exist a K > 0 and a $\delta > 0$ such that for all x in $(x^* - \delta, x^* + \delta)$,

2.37
$$\frac{|f(x)f''(x)|}{f'(x)^2} \le K|x - x^*| < 1$$

Then if $x_0 \in (x^* - \delta, x^* + \delta)$, the sequence $\{x_n\}$ in (2.34) converges to x^* and

$$|x_n - x^*| \le (\delta K)^{2^n} / K$$

Method for finding nonvertical asymptotes for a curve y = f(x) as $x \to \infty$. Replacing $x \to \infty$ by $x \to -\infty$ gives a method for finding nonvertical asymptotes as $x \to -\infty$.

Newton's approximation method. (A rule of thumb says that, to obtain an approximation that is correct to n decimal places, use Newton's method until it gives the same n decimal places twice in a row.)

Illustration of Newton's approximation method. The tangent to the graph of f at $(x_n, f(x_n))$ intersects the x-axis at $x = x_{n+1}$.

Sufficient conditions for convergence of Newton's method.

A precise estimation of the accuracy of Newton's method.

2.38
$$y - f(x_1) = f'(x_1)(x - x_1)$$

The equation for the tangent to
$$y = f(x)$$
 at $(x_1, f(x_1))$.

2.39
$$y - f(x_1) = -\frac{1}{f'(x_1)}(x - x_1)$$

The equation for the normal to y = f(x) at $(x_1, f(x_1)).$

The tangent and the normal to y = f(x) at $(x_1, f(x_1)).$

Rules for powers. (r ands are arbitrary real num-

bers, a and b are positive

real numbers.)

(i)
$$a^r \cdot a^s = a^{r+s}$$

(ii)
$$(a^r)^s = a^{rs}$$

$$_{2.41}$$
 (iii) $(ab)^r$

(iv)
$$a^r/a^s = a^{r-s}$$

(i)
$$a^r \cdot a^s = a^{r+s}$$
 (ii) $(a^r)^s = a^{rs}$
(iii) $(ab)^r = a^r b^r$ (iv) $a^r/a^s = a^{r-s}$
(v) $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$ (vi) $a^{-r} = \frac{1}{a^r}$

(vi)
$$a^{-r} = \frac{1}{a^r}$$

•
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828459...$$

Important definitions and results. See (8.23) for another formula for

- $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$
 - $\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} \left(1 + \frac{a_n}{n}\right)^n = e^a$

Definition of the natural logarithm.

 $e^{\ln x} = x$ 2.43

> The graphs of $y = e^x$ and $y = \ln x$ are symmetric about the line y = x.

2.44

Rules for the natural logarithm function. (x and y are positive.)

 $\ln(xy) = \ln x + \ln y; \quad \ln \frac{x}{y} = \ln x - \ln y$ 2.45 $\ln x^p = p \ln x; \quad \ln \frac{1}{x} = -\ln x$

> Definition of the logarithm to the base a.

 $a^{\log_a x} = x \ (a > 0, \ a \neq 1)$ 2.46

2.47
$$\log_a x = \frac{\ln x}{\ln a}; \quad \log_a b \cdot \log_b a = 1$$
$$\log_e x = \ln x; \quad \log_{10} x = \log_{10} e \cdot \ln x$$

Logarithms with different bases.

$$\begin{split} \log_a(xy) &= \log_a x + \log_a y \\ 2.48 \quad \log_a \frac{x}{y} &= \log_a x - \log_a y \\ \log_a x^p &= p \log_a x, \quad \log_a \frac{1}{x} = -\log_a x \end{split}$$

Rules for logarithms. (x and y are positive.)

2.49
$$1^{\circ} = \frac{\pi}{180} \text{ rad}, \quad 1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$$

Relationship between degrees and radians (rad).

Relations between degrees and radians.

270°

Definitions of the basic trigonometric functions. x is the length of the arc, and also the radian measure of the angle.

The graphs of $y = \sin x$ (—) and $y = \cos x$ (---). The functions \sin and \cos are periodic with period 2π : $\sin(x + 2\pi) = \sin x$, $\cos(x + 2\pi) = \cos x$.

2.53
$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

Definition of the *tangent* and *cotangent* functions.

The graphs of $y = \tan x$ (—) and $y = \cot x$ (---). The functions \tan and \cot are periodic with period π : $\tan(x+\pi) = \tan x$, $\cot(x+\pi) = \cot x$.

	x	0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$
	$\sin x$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
2.55	$\cos x$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
	$\tan x$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	*
	$\cot x$	*	$\sqrt{3}$	1	$\frac{1}{3}\sqrt{3}$	0

Special values of the trigonometric functions.

^{*} not defined

	x	$\frac{3\pi}{4} = 135^{\circ}$	$\pi = 180^{\circ}$	$\frac{3\pi}{2} = 270^{\circ}$	$2\pi = 360^{\circ}$
	$\sin x$	$\frac{1}{2}\sqrt{2}$	0	-1	0
2.56	$\cos x$	$-\frac{1}{2}\sqrt{2}$	-1	0	1
	$\tan x$	-1	0	*	0
	$\cot x$	-1	*	0	*

* not defined

$$2.57 \quad \lim_{x \to 0} \frac{\sin ax}{x} = a$$

An important limit.

$$2.58 \quad \sin^2 x + \cos^2 x = 1$$

Trigonometric formulas. (For series expansions of trigonometric functions, see Chapter 8.)

2.59
$$\tan^2 x = \frac{1}{\cos^2 x} - 1$$
, $\cot^2 x = \frac{1}{\sin^2 x} - 1$

$$2.60 \begin{array}{c} \cos(x+y) = \cos x \cos y - \sin x \sin y \\ \cos(x-y) = \cos x \cos y + \sin x \sin y \\ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \sin(x-y) = \sin x \cos y - \cos x \sin y \end{array}$$

2.61
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Trigonometric formulas.

2.62
$$\cos 2x = 2\cos^{2} x - 1 = 1 - 2\sin^{2} x$$
$$\sin 2x = 2\sin x \cos x$$

2.63
$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$
, $\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$

2.64
$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$
$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

2.65
$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$
$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$y = \arcsin x \Leftrightarrow x = \sin y, \ x \in [-1, 1], \ y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$y = \arccos x \Leftrightarrow x = \cos y, \ x \in [-1, 1], \ y \in [0, \pi]$$

$$y = \arctan x \Leftrightarrow x = \tan y, \ x \in \mathbb{R}, \ y \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$y = \operatorname{arccot} x \Leftrightarrow x = \cot y, \ x \in \mathbb{R}, \ y \in (0, \pi)$$

Definitions of the inverse trigonometric functions.

Graphs of the inverse trigonometric functions $y = \arcsin x$ and $y = \arccos x$.

Graphs of the inverse trigonometric functions $y = \arctan x$ and $y = \operatorname{arccot} x$.

2.69 $\operatorname{arcsin} x = \sin^{-1} x, \quad \operatorname{arccos} x = \cos^{-1} x$ $\operatorname{arctan} x = \tan^{-1} x, \quad \operatorname{arccot} x = \cot^{-1} x$

Alternative notation for the inverse trigonometric functions.

$$\arcsin(-x) = -\arcsin x$$

 $\arccos(-x) = \pi - \arccos x$
 $\arctan(-x) = \arctan x$
 $\operatorname{arccot}(-x) = \pi - \operatorname{arccot} x$

 $2.70 \quad \arcsin x + \arccos x = \frac{\pi}{2}$ $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ $\arctan \frac{1}{x} = \frac{\pi}{2} - \arctan x, \quad x > 0$ $\arctan \frac{1}{x} = -\frac{\pi}{2} - \arctan x, \quad x < 0$

Properties of the inverse trigonometric functions.

2.71
$$\sinh x = \frac{e^x - e^{-x}}{2}$$
, $\cosh x = \frac{e^x + e^{-x}}{2}$

Hyperbolic sine and cosine.

2.72

Graphs of the hyperbolic functions $y = \sinh x$ and $y = \cosh x$.

 $\cosh^{2} x - \sinh^{2} x = 1$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$ 2.73 $\cosh 2x = \cosh^{2} x + \sinh^{2} x$ $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$ $\sinh 2x = 2 \sinh x \cosh x$

Properties of hyperbolic functions.

$$y = \operatorname{arsinh} x \iff x = \sinh y$$

$$y = \operatorname{arcosh} x, \ x \ge 1 \iff x = \cosh y, \ y \ge 0$$

$$2.74 \quad \operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$$

$$\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1}), \ x \ge 1$$

Definition of the inverse hyperbolic functions.

Complex numbers

$$2.75$$
 $z = a + ib$, $\bar{z} = a - ib$

A complex number and its conjugate. $a, b \in \mathbb{R}$, and $i^2 = -1$. i is called the *imaginary unit*.

2.76
$$|z| = \sqrt{a^2 + b^2}$$
, $Re(z) = a$, $Im(z) = b$

|z| is the modulus of z = a + ib. Re(z) and Im(z) are the real and imaginary parts of z.

Geometric representation of a complex number and its conjugate.

- (a+ib) + (c+id) = (a+c) + i(b+d)
- (a+ib) (c+id) = (a-c) + i(b-d)
- 78 (a+ib)(c+id) = (ac-bd) + i(ad+bc)
 - $\frac{a+ib}{c+id} = \frac{1}{c^2+d^2} ((ac+bd) + i(bc-ad))$

Addition, subtraction, multiplication, and division of complex numbers.

2.79 $|\bar{z}_1| = |z_1|, \ z_1\bar{z}_1 = |z_1|^2, \ \overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2,$ $|z_1z_2| = |z_1||z_2|, \ |z_1 + z_2| \le |z_1| + |z_2|$

Basic rules. z_1 and z_2 are complex numbers.

2.80 $z = a + ib = r(\cos\theta + i\sin\theta) = re^{i\theta}, \text{ where}$ $r = |z| = \sqrt{a^2 + b^2}, \quad \cos\theta = \frac{a}{r}, \quad \sin\theta = \frac{b}{r}$

2.81

The trigonometric or polar form of a complex number. The angle θ is called the argument of z. See (2.84) for $e^{i\theta}$.

Geometric representation of the trigonometric form of a complex number.

nth roots of a complex

number, $n = 1, 2, \ldots$

If
$$z_k = r_k(\cos\theta_k + i\sin\theta_k)$$
, $k = 1, 2$, then
$$z_1z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$$

$$2.83 \quad (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

$$2.84 \quad \text{If } z = x + iy, \text{ then}$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x(\cos y + i\sin y)$$

$$\ln \text{ particular,}$$

$$e^{iy} = \cos y + i\sin y$$

$$2.85 \quad e^{\pi i} = -1$$

$$2.86 \quad e^{\bar{z}} = e^{\bar{z}}, \quad e^{z+2\pi i} = e^z, \quad e^{z_1+z_2} = e^{z_1}e^{z_2},$$

$$e^{z_1-z_2} = e^{z_1}/e^{z_2}$$

$$2.86 \quad e^{z_1-z_2} = e^{z_1}/e^{z_2}$$

$$2.87 \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\text{If } a = r(\cos\theta + i\sin\theta) \neq 0, \text{ then the equation}$$

$$z^n = a$$

Multiplication and division on trigonometric form.

References

2.88

has exactly n roots, namely

for k = 0, 1, ..., n - 1.

 $z_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney (1998) or Sydsæter and Hammond (2005). For (2.3)–(2.12), see e.g. Turnbull (1952).

Chapter 3

Limits. Continuity. Differentiation (one variable)

f(x) tends to A as a limit as x approaches a, $\lim_{x\to a} f(x) = A$ or $f(x) \to A$ as $x \to a$

3.1 if for every number $\varepsilon > 0$ there exists a number $\delta > 0$ such that

$$|f(x) - A| < \varepsilon$$
 if $x \in D_f$ and $0 < |x - a| < \delta$

If $\lim_{x\to a} f(x) = A$ and $\lim_{x\to a} g(x) = B$, then

- $\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$
- 3.2 $\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$
 - $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$ (if $B \neq 0$)

f is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$, i.e. if $a \in D_f$ and for each number $\varepsilon > 0$ there is a number $\delta > 0$ such that

3.3 $|f(x) - A| < \varepsilon \text{ if } x \in D_f \text{ and } |x - a| < \delta$ $f \text{ is } continuous \text{ on } a \text{ set } S \subset D_f \text{ if } f \text{ is continuous at each point of } S.$

If f and g are continuous at a, then:

- 3.4 $f \pm g$ and $f \cdot g$ are continuous at a.
 - f/g is continuous at a if $g(a) \neq 0$.
- 3.5 If g is continuous at a, and f is continuous at g(a), then f(g(x)) is continuous at a.

Any function built from continuous functions by additions, subtractions, multiplications, divisions, and compositions, is continuous where defined. The definition of a limit of a function of one variable. D_f is the domain of f.

Rules for limits.

Definition of continuity.

Properties of continuous functions.

Continuity of *composite* functions.

A useful result.

f is uniformly continuous on a set S if for each $\varepsilon > 0$ there exists a $\delta > 0$ (depending on ε but NOT on x and y) such that

$$|f(x) - f(y)| < \varepsilon \text{ if } x, y \in S \text{ and } |x - y| < \delta$$

Definition of uniform continuity.

3.8 If f is continuous on a closed bounded interval I, then f is uniformly continuous on I.

Continuous functions on closed bounded intervals are uniformly continuous.

3.9 If f is continuous on an interval I containing a and b, and A lies between f(a) and f(b), then there is at least one ξ between a and b such that $A = f(\xi)$.

The intermediate value theorem.

Illustration of the intermediate value theorem.

3.11
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The definition of the derivative. If the limit exists, f is called differentiable at x.

Other notations for the derivative of y = f(x) include

3.12 include $f'(x) = y' = \frac{dy}{dx} = \frac{df(x)}{dx} = Df(x)$

Other notations for the derivative.

3.13
$$y = f(x) \pm g(x) \Rightarrow y' = f'(x) \pm g'(x)$$

General rules.

3.14
$$y = f(x)g(x) \Rightarrow y' = f'(x)g(x) + f(x)g'(x)$$

3.15
$$y = \frac{f(x)}{g(x)} \Rightarrow y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

3.16
$$y = f(g(x)) \Rightarrow y' = f'(g(x)) \cdot g'(x)$$

The chain rule.

$$3.17 y = f(x)^{g(x)} \Rightarrow$$

$$y' = f(x)^{g(x)} \left(g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right)$$

A useful formula.

If $g = f^{-1}$ is the inverse of a one-to-one function f, and f is differentiable at x with $f'(x) \neq 0$,

3.18 then g is differentiable at f(x), and

$$g'(f(x)) = \frac{1}{f'(x)}$$

 f^{-1} denotes the inverse function of f.

The graphs of f and $g = f^{-1}$ are symmetric with respect to the line y = x. If the slope of the tangent at P is k = f'(x), then the slope g'(f(x)) of the tangent at Q equals 1/k.

3.19

3.20
$$y = c \Rightarrow y' = 0$$
 (c constant)

$$3.21 \quad y = x^a \implies y' = ax^{a-1} \qquad (a \text{ constant})$$

3.22
$$y = \frac{1}{x} \Rightarrow y' = -\frac{1}{x^2}$$

$$3.23 \quad y = \sqrt{x} \implies y' = \frac{1}{2\sqrt{x}}$$

$$3.24 \quad y = e^x \implies y' = e^x$$

$$3.25 \quad y = a^x \Rightarrow y' = a^x \ln a \qquad (a > 0)$$

$$3.26 \quad y = \ln x \implies y' = \frac{1}{x}$$

3.27
$$y = \log_a x \implies y' = \frac{1}{r} \log_a e \quad (a > 0, \ a \neq 1)$$

$$3.28 \quad y = \sin x \implies y' = \cos x$$

$$3.29 \quad y = \cos x \ \Rightarrow \ y' = -\sin x$$

3.30
$$y = \tan x \implies y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

3.31
$$y = \cot x \implies y' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$$

Special rules.

3.41

3.32
$$y = \sin^{-1} x = \arcsin x \implies y' = \frac{1}{\sqrt{1 - x^2}}$$

Special rules.

3.33
$$y = \cos^{-1} x = \arccos x \implies y' = -\frac{1}{\sqrt{1 - x^2}}$$

3.34
$$y = \tan^{-1} x = \arctan x \Rightarrow y' = \frac{1}{1 + x^2}$$

3.35
$$y = \cot^{-1} x = \operatorname{arccot} x \implies y' = -\frac{1}{1 + x^2}$$

$$3.36 \quad y = \sinh x \Rightarrow y' = \cosh x$$

$$3.37 \quad y = \cosh x \implies y' = \sinh x$$

If f is continuous on [a, b] and differentiable on (a, b), then there exists at least one point ξ in (a, b) such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

The $mean\ value\ theorem.$

Illustration of the mean value theorem.

If f and g are continuous on [a, b] and differentiable on (a, b), then there exists at least one point ξ in (a, b) such that

$$[f(b) - f(a)]g'(\xi) = [g(b) - g(a)]f'(\xi)$$

Suppose f and g are differentiable on an interval (α, β) around a, except possibly at a, and suppose that f(x) and g(x) both tend to 0 as x tends to a. If $g'(x) \neq 0$ for all $x \neq a$ in (α, β) and $\lim_{x\to a} f'(x)/g'(x) = L$ (L finite, $L = \infty$ or $L = -\infty$), then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L$$

Cauchy's generalized mean value theorem.

L'Hôpital's rule. The same rule applies for $x \to a^+, x \to a^-, x \to \infty$, or $x \to -\infty$, and also if $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$.

If
$$y = f(x)$$
 and dx is any number,
 $3.42 dy = f'(x) dx$
is the differential of y .

Definition of the differential.

Geometric illustration of the differential.

3.44
$$\Delta y = f(x + dx) - f(x) \approx f'(x) dx$$
 when $|dx|$ is small.

A useful approximation, made more precise in (3.45).

3.45
$$f(x+dx) - f(x) = f'(x) dx + \varepsilon dx$$
 where $\varepsilon \to 0$ as $dx \to 0$

Property of a differentiable function. (If dx is very small, then ε is very small, and εdx is "very, very small".)

$$d(af + bg) = a df + b dg \quad (a \text{ and } b \text{ are constants})$$

$$d(fg) = g df + f dg$$

$$d(f/g) = (g df - f dg)/g^2$$

$$df(u) = f'(u) du$$

x + dx

Rules for differentials. f and g are differentiable, and u is any differentiable function.

References

All formulas are standard and are found in almost any calculus text, e.g. Edwards and Penney (1998), or Sydsæter and Hammond (2005). For uniform continuity, see Rudin (1982).

Chapter 4

4.1

4.2

Partial derivatives

If
$$z = f(x_1, ..., x_n) = f(\mathbf{x})$$
, then
$$\frac{\partial z}{\partial x_i} = \frac{\partial f}{\partial x_i} = f'_i(\mathbf{x}) = D_{x_i} f = D_i f$$

all denote the derivative of $f(x_1, ..., x_n)$ with respect to x_i when all the other variables are held constant.

Definition of the *partial derivative*. (Other notations are also used.)

Geometric interpretation of the partial derivatives of a function of two variables, z = f(x, y): $f'_1(x_0, y_0)$ is the slope of the tangent line l_x and $f'_2(x_0, y_0)$ is the slope of the tangent line l_y .

4.3
$$\frac{\partial^2 z}{\partial x_j \partial x_i} = f_{ij}''(x_1, \dots, x_n) = \frac{\partial}{\partial x_j} f_i'(x_1, \dots, x_n)$$

Second-order partial derivatives of $z = f(x_1, \ldots, x_n)$.

$$4.4 \quad \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad i, j = 1, 2, \dots, n$$

Young's theorem, valid if the two partials are continuous.

 $f(x_1, \ldots, x_n)$ is said to be of class C^k , or simply 4.5 C^k , in the set $S \subset \mathbb{R}^n$ if all partial derivatives of f of order $\leq k$ are continuous in S.

Definition of a C^k function. (For the definition of continuity, see (12.14).)

$$z = F(x, y), \ x = f(t), \ y = g(t) \Rightarrow$$

$$\frac{dz}{dt} = F_1'(x, y) \frac{dx}{dt} + F_2'(x, y) \frac{dy}{dt}$$

A chain rule.

4.7 If
$$z = F(x_1, ..., x_n)$$
 and $x_i = f_i(t_1, ..., t_m)$, $i = 1, ..., n$, then for all $j = 1, ..., m$

$$\frac{\partial z}{\partial t_j} = \sum_{i=1}^n \frac{\partial F(x_1, ..., x_n)}{\partial x_i} \frac{\partial x_i}{\partial t_j}$$

If $z = f(x_1, \ldots, x_n)$ and dx_1, \ldots, dx_n are arbitrary numbers,

4.8
$$dz = \sum_{i=1}^{n} f'_{i}(x_{1}, \dots, x_{n}) dx_{i}$$

is the differential of z.

The chain rule. (General case.)

Definition of the differential.

Geometric illustration of the definition of the differential for functions of two variables. It also illustrates the approximation $\Delta z \approx dz$ in (4.10).

 $\Delta z \approx dz$ when $|dx_1|, \ldots, |dx_n|$ are all small, 4.10 where

$$\Delta z = f(x_1 + dx_1, \dots, x_n + dx_n) - f(x_1, \dots, x_n)$$

A useful approximation, made more precise for differentiable functions in (4.11).

f is differentiable at \mathbf{x} if $f_i'(\mathbf{x})$ all exist and there exist functions $\varepsilon_i = \varepsilon_i(dx_1, \dots, dx_n)$, $i = 1, \dots, n$, that all approach zero as dx_i all approach zero, and such that

$$\Delta z - dz = \varepsilon_1 \, dx_1 + \dots + \varepsilon_n \, dx_n$$

Definition of differentiability.

4.12 If f is a C^1 function, i.e. it has continuous first order partials, then f is differentiable.

An important fact.

 $d(af + bg) = a df + b dg \quad (a \text{ and } b \text{ constants})$ d(fg) = g df + f dg $d(f/g) = (g df - f dg)/g^2$ dF(u) = F'(u) du

Rules for differentials. f and g are differentiable functions of x_1 , ..., x_n , F is a differentiable function of one variable, and u is any differentiable function of x_1, \ldots, x_n .

4.14
$$F(x,y) = c \implies \frac{dy}{dx} = -\frac{F_1'(x,y)}{F_2'(x,y)}$$

Formula for the slope of a level curve for z = F(x, y). For precise assumptions, see (4.17).

4.15

4.17

4.19

The slope of the tangent at P is $\frac{dy}{dx} = -\frac{F_1'(x,y)}{F_2'(x,y)} \,.$

If y = f(x) is a C^2 function satisfying F(x, y) = c, then

4.16
$$f''(x) = -\frac{F_{11}''(F_2')^2 - 2F_{12}''F_1'F_2' + F_{22}''(F_1')^2}{(F_2')^3}$$
$$= \frac{1}{(F_2')^3} \begin{vmatrix} 0 & F_1' & F_2' \\ F_1' & F_{11}'' & F_{12}'' \\ F_2' & F_{12}'' & F_{22}'' \end{vmatrix}$$

A useful result. All partials are evaluated at (x, y).

If F(x, y) is C^k in a set A, (x_0, y_0) is an interior point of A, $F(x_0, y_0) = c$, and $F'_2(x_0, y_0) \neq 0$, then the equation F(x, y) = c defines y as a C^k function of x, $y = \varphi(x)$, in some neighborhood of (x_0, y_0) , and the derivative of y is

The implicit function theorem. (For a more general result, see (6.3).)

$$\frac{dy}{dx} = -\frac{F_1'(x,y)}{F_2'(x,y)}$$

4.18 If
$$F(x_1, x_2, ..., x_n, z) = c$$
 (c constant), then
$$\frac{\partial z}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}, \quad i = 1, 2, ..., n \quad \left(\frac{\partial F}{\partial z} \neq 0\right)$$

A generalization of (4.14).

Homogeneous and homothetic functions

 $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ is homogeneous of degree k in $D \subset \mathbb{R}^n$ if

$$f(tx_1, tx_2, ..., tx_n) = t^k f(x_1, x_2, ..., x_n)$$

for all $t > 0$ and all $\mathbf{x} = (x_1, x_2, ..., x_n)$ in D .

The definition of a homogeneous function. D is a *cone* in the sense that $t\mathbf{x} \in D$ whenever $\mathbf{x} \in D$ and t > 0.

Geometric illustration of a function homogeneous of degree 1. (Only a portion of the graph is shown.)

 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ is homogeneous of degree k in the open cone D if and only if

4.21
$$\sum_{i=1}^{n} x_i f_i'(\mathbf{x}) = k f(\mathbf{x}) \text{ for all } \mathbf{x} \text{ in } D$$

Euler's theorem, valid for C^1 functions.

If $f(\mathbf{x}) = f(x_1, \dots, x_n)$ is homogeneous of degree k in the open cone D, then

4.22 • $\partial f/\partial x_i$ is homogeneous of degree k-1 in D

$$\bullet \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j f_{ij}^{"}(\mathbf{x}) = k(k-1) f(\mathbf{x})$$

Properties of homogeneous functions.

 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ is homothetic in the cone 4.23 D if for all $\mathbf{x}, \mathbf{y} \in D$ and all t > 0, $f(\mathbf{x}) = f(\mathbf{y}) \Rightarrow f(t\mathbf{x}) = f(t\mathbf{y})$

Definition of homothetic function.

4.24

4.25

Geometric illustration of a homothetic function. With $f(\mathbf{u})$ homothetic, if \mathbf{x} and \mathbf{y} are on the same level curve, then so are $t\mathbf{x}$ and $t\mathbf{y}$ (when t > 0).

Let $f(\mathbf{x})$ be a continuous, homothetic function defined in a connected cone D. Assume that fis strictly increasing along each ray in D, i.e. for each $\mathbf{x}_0 \neq \mathbf{0}$ in D, $f(t\mathbf{x}_0)$ is a strictly increasing function of t. Then there exist a homogeneous function g and a strictly increasing function Fsuch that

$$f(\mathbf{x}) = F(g(\mathbf{x}))$$
 for all \mathbf{x} in D

A property of continuous, homothetic functions (which is sometimes taken as the definition of homotheticity). One can assume that g is homogeneous of degree 1.

Gradients, directional derivatives, and tangent planes

4.26
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

The gradient of f at $\mathbf{x} = (x_1, \dots, x_n)$.

4.27
$$f'_{\mathbf{a}}(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{a}) - f(\mathbf{x})}{h}, \quad \|\mathbf{a}\| = 1$$

The directional derivative of f at \mathbf{x} in the direction \mathbf{a} .

4.28
$$f'_{\mathbf{a}}(\mathbf{x}) = \sum_{i=1}^{n} f'_{i}(\mathbf{x}) a_{i} = \nabla f(\mathbf{x}) \cdot \mathbf{a}$$

The relationship between the directional derivative and the gradient.

- $\nabla f(\mathbf{x})$ is orthogonal to the level surface $f(\mathbf{x}) = C$.
- $\nabla f(\mathbf{x})$ points in the direction of maximal increase of f.
 - $\|\nabla f(\mathbf{x})\|$ measures the rate of change of f in the direction of $\nabla f(\mathbf{x})$.

Properties of the gradient.

4.30

4 29

The gradient $\nabla f(x_0, y_0)$ of f(x, y) at (x_0, y_0) .

The tangent plane to the graph of z = f(x, y) at the point $P = (x_0, y_0, z_0)$, with $z_0 = f(x_0, y_0)$, has the equation

Definition of the tangent plane.

 $z-z_0 = f_1'(x_0, y_0)(x-x_0) + f_2'(x_0, y_0)(y-y_0)$

4.32

The graph of a function and its tangent plane.

4 33

The tangent hyperplane to the level surface

 $F(\mathbf{x}) = F(x_1, \dots, x_n) = C$ at the point $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$ has the equation $\nabla F(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) = 0$

Definition of the tangent hyperplane. The vector $\nabla F(\mathbf{x}^0)$ is a normal to the hyperplane.

A vector **p** that satis-

Let f be defined on a convex set $S \subset \mathbb{R}^n$, and let \mathbf{x}^0 be an interior point in S.

• If f is concave, there is at least one vector **p** in \mathbb{R}^n such that

4.34 $f(\mathbf{x}) - f(\mathbf{x}^0) < \mathbf{p} \cdot (\mathbf{x} - \mathbf{x}^0)$ for all \mathbf{x} in S

> • If f is convex, there is at least one vector \mathbf{p} in \mathbb{R}^n such that

$$f(\mathbf{x}) - f(\mathbf{x}^0) \ge \mathbf{p} \cdot (\mathbf{x} - \mathbf{x}^0)$$
 for all \mathbf{x} in S

fies the first inequality is called a *supergradient* for f at \mathbf{x}^0 . A vector satisfying the second inequality is called a *subgradient* for f at \mathbf{x}^0 .

If f is defined on a set $S \subset \mathbb{R}^n$ and \mathbf{x}^0 is an interior point in S at which f is differentiable 4.35 and **p** is a vector that satisfies either inequality in (4.34), then $\mathbf{p} = \nabla f(\mathbf{x}^0)$.

A useful result.

Differentiability for mappings from \mathbb{R}^n to \mathbb{R}^m

A transformation $\mathbf{f} = (f_1, \dots, f_m)$ from a subset A of \mathbb{R}^n into \mathbb{R}^m is differentiable at an interior point \mathbf{x} of A if (and only if) each component function $f_i: A \to \mathbb{R}, i = 1, \dots m$, is differentiable at x. Moreover, we define the derivative of \mathbf{f} at \mathbf{x} by

4.36
$$\mathbf{f}'(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \frac{\partial f_m}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

Generalizes (4.11).

the $m \times n$ matrix whose ith row is $f_i(\mathbf{x}) =$ $\nabla f_i(\mathbf{x})$.

If a transformation **f** from $A \subset \mathbb{R}^n$ into \mathbb{R}^m is 4.37 differentiable at an interior point \mathbf{a} of A, then **f** is continuous at **a**.

Differentiability implies continuity.

4.38 A transformation $\mathbf{f} = (f_1, \dots, f_m)$ from (a subset of) \mathbb{R}^n into \mathbb{R}^m is said to be of class C^k if each of its component functions f_1, \dots, f_m is C^k .

An important definition. (See (4.5).)

4.39 If **f** is a C^1 transformation from an open set $A \subset \mathbb{R}^n$ into \mathbb{R}^m , then **f** is differentiable at every point **x** in A.

 C^1 transformations are differentiable.

Suppose $\mathbf{f}: A \to \mathbb{R}^m$ and $\mathbf{g}: B \to \mathbb{R}^p$ are defined on $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$, with $\mathbf{f}(A) \subset B$, and suppose that \mathbf{f} and \mathbf{g} are differentiable at \mathbf{x} and $\mathbf{f}(\mathbf{x})$, respectively. Then the composite transformation $\mathbf{g} \circ \mathbf{f}: A \to \mathbb{R}^p$ defined by $(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ is differentiable at \mathbf{x} , and

The chain rule.

References

 $(\mathbf{g} \circ \mathbf{f})'(\mathbf{x}) = \mathbf{g}'(\mathbf{f}(\mathbf{x})) \mathbf{f}'(\mathbf{x})$

Most of the formulas are standard and can be found in almost any calculus text, e.g. Edwards and Penney (1998), or Sydsæter and Hammond (2005). For supergradients and differentiability, see e.g. Sydsæter et al. (2005). For properties of homothetic functions, see Simon and Blume (1994), Shephard (1970), and Førsund (1975).

Chapter 5

Elasticities. Elasticities of substitution

5.1 El_x
$$f(x) = \frac{x}{f(x)} f'(x) = \frac{x}{y} \frac{dy}{dx} = \frac{d(\ln y)}{d(\ln x)}$$

 $\operatorname{El}_x f(x)$, the elasticity of y = f(x) w.r.t. x, is approximately the percentage change in f(x)corresponding to a one per cent increase in x.

Illustration of Marshall's rule.

Marshall's rule: To find the elasticity of y = f(x) w.r.t. x at the point P in the figure, first draw the tangent to the curve at P. Measure 5.3 the distance A_y from P to the point where the tangent intersects the y-axis, and the distance A_x from P to where the tangent intersects the x-axis. Then $\text{El}_x f(x) = \pm A_y/A_x$.

Marshall's rule. The distances are measured positive. Choose the plus sign if the curve is increasing at P, the minus sign in the opposite case.

- If $|\operatorname{El}_x f(x)| > 1$, then f is elastic at x.
- If $|\operatorname{El}_x f(x)| = 1$, then f is unitary elastic at x.
- If $|\operatorname{El}_x f(x)| < 1$, then f is inelastic at x.
- If $|\operatorname{El}_x f(x)| = 0$, then f is completely inelastic at x.

Terminology used by many economists.

5.5
$$\operatorname{El}_x(f(x)g(x)) = \operatorname{El}_x f(x) + \operatorname{El}_x g(x)$$

5.4

General rules for calculating elasticities.

5.6
$$\operatorname{El}_x\left(\frac{f(x)}{g(x)}\right) = \operatorname{El}_x f(x) - \operatorname{El}_x g(x)$$

5.7
$$\operatorname{El}_{x}(f(x) \pm g(x)) = \frac{f(x)\operatorname{El}_{x} f(x) \pm g(x)\operatorname{El}_{x} g(x)}{f(x) \pm g(x)}$$

General rules for calculating elasticities.

5.8
$$\operatorname{El}_x f(g(x)) = \operatorname{El}_u f(u) \operatorname{El}_x u, \quad u = g(x)$$

If y = f(x) has an inverse function $x = g(y) = f^{-1}(y)$, then, with $y_0 = f(x_0)$,

5.9
$$\operatorname{El}_y x = \frac{y}{x} \frac{dx}{dy}, \quad \text{i.e.} \quad \operatorname{El}_y(g(y_0)) = \frac{1}{\operatorname{El}_x f(x_0)}$$

The elasticity of the inverse function.

5.10
$$\operatorname{El}_x A = 0$$
, $\operatorname{El}_x x^a = a$, $\operatorname{El}_x e^x = x$.
(A and a are constants, $A \neq 0$.)

Special rules for elasticities.

5.11
$$\operatorname{El}_x \sin x = x \cot x$$
, $\operatorname{El}_x \cos x = -x \tan x$

5.12
$$\operatorname{El}_x \tan x = \frac{x}{\sin x \cos x}$$
, $\operatorname{El}_x \cot x = \frac{-x}{\sin x \cos x}$

5.13
$$\operatorname{El}_x \ln x = \frac{1}{\ln x}$$
, $\operatorname{El}_x \log_a x = \frac{1}{\ln x}$

5.14
$$\operatorname{El}_{i} f(\mathbf{x}) = \operatorname{El}_{x_{i}} f(\mathbf{x}) = \frac{x_{i}}{f(\mathbf{x})} \frac{\partial f(\mathbf{x})}{\partial x_{i}}$$

The partial elasticity of $f(\mathbf{x}) = f(x_1, \dots, x_n)$ w.r.t. $x_i, i = 1, \dots, n$.

5.15 If
$$z = F(x_1, \dots, x_n)$$
 and $x_i = f_i(t_1, \dots, t_m)$ for $i = 1, \dots, n$, then for all $j = 1, \dots, m$,
$$\operatorname{El}_{t_j} z = \sum_{i=1}^n \operatorname{El}_i F(x_1, \dots, x_n) \operatorname{El}_{t_j} x_i$$

The chain rule for elasticities.

The directional elasticity of f at \mathbf{x} , in the direction of $\mathbf{x}/\|\mathbf{x}\|$, is 5.16

$$\mathrm{El}_{\mathbf{a}} f(\mathbf{x}) = \frac{\|\mathbf{x}\|}{f(\mathbf{x})} f'_{\mathbf{a}}(\mathbf{x}) = \frac{1}{f(\mathbf{x})} \nabla f(\mathbf{x}) \cdot \mathbf{x}$$

 $\operatorname{El}_{\mathbf{a}} f(\mathbf{x})$ is approximately the percentage change in $f(\mathbf{x})$ corresponding to a one per cent increase in each component of \mathbf{x} . (See (4.27)–(4.28) for $f'_{\mathbf{a}}(\mathbf{x})$.)

5.17
$$\operatorname{El}_{\mathbf{a}} f(\mathbf{x}) = \sum_{i=1}^{n} \operatorname{El}_{i} f(\mathbf{x}), \quad \mathbf{a} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

A useful fact (the *passus* equation).

The marginal rate of substitution (MRS) of y for x is

 R_{yx} is approximately how much one must add of y per unit of x removed to stay on the same level curve for f.

5.18
$$R_{yx} = \frac{f_1'(x,y)}{f_2'(x,y)}, \qquad f(x,y) = c$$

- When f is a utility function, and x and y are goods, R_{yx} is called the marginal rate of substitution (abbreviated MRS).
- When f is a production function and x and y are inputs, R_{yx} is called the *marginal rate of technical substitution* (abbreviated MRTS).

• When f(x, y) = 0 is a production function in implicit form (for given factor inputs), and x and y are two products, R_{yx} is called the marginal rate of product transformation (abbreviated MRPT).

Different special cases of (5.18). See Chapters 25 and 26.

The elasticity of substitution between y and x is

5.20
$$\sigma_{yx} = \operatorname{El}_{R_{yx}}\left(\frac{y}{x}\right) = -\frac{\partial \ln\left(\frac{y}{x}\right)}{\partial \ln\left(\frac{f_2'}{f_1'}\right)}, \quad f(x,y) = c$$

 σ_{yx} is, approximately, the percentage change in the factor ratio y/x corresponding to a one percent change in the marginal rate of substitution, assuming that f is constant.

5.21
$$\sigma_{yx} = \frac{\frac{1}{xf_1'} + \frac{1}{yf_2'}}{-\frac{f_{11}''}{(f_1')^2} + 2\frac{f_{12}''}{f_1'f_2'} - \frac{f_{22}''}{(f_2')^2}}, \quad f(x,y) = c$$

An alternative formula for the elasticity of substitution. Note that $\sigma_{yx} = \sigma_{xy}$.

5.22 If f(x,y) is homogeneous of degree 1, then $\sigma_{yx} = \frac{f_1'f_2'}{f_1''}$

A special case.

5.23
$$h_{ji}(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_i} / \frac{\partial f(\mathbf{x})}{\partial x_j}, \quad i, j = 1, 2, \dots, n$$

The marginal rate of substitution of factor j for factor i.

5.24 If f is a strictly increasing transformation of a homogeneous function, as in (4.25), then the marginal rates of substitution in (5.23) are homogeneous of degree 0.

A useful result.

5.25
$$\sigma_{ij} = -\frac{\partial \ln \left(\frac{x_i}{x_j}\right)}{\partial \ln \left(\frac{f_i'}{f_j'}\right)}, \quad f(x_1, \dots, x_n) = c, \ i \neq j$$

The elasticity of substitution in the n-variable case.

5.26
$$\sigma_{ij} = \frac{\frac{1}{x_i f_i'} + \frac{1}{x_j f_j'}}{-\frac{f_{ii}''}{(f_i')^2} + \frac{2f_{ij}''}{f_i' f_j'} - \frac{f_{jj}''}{(f_j')^2}}, \quad i \neq j$$
The elasticity of substitution, $f(x_1, \dots, x_n) = c$.

References

These formulas will usually not be found in calculus texts. For (5.5)–(5.24), see e.g. Sydsæter and Hammond (2005). For (5.25)–(5.26), see Blackorby and Russell (1989) and Fuss and McFadden (1978). For elasticities of substitution in production theory, see Chapter 25.

Chapter 6

Systems of equations

A general system of equations with n exogenous variables, x_1, \ldots, x_n , and m endogenous variables, y_1, \ldots, y_m .

$$6.2 \quad \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}} = \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_m} \end{pmatrix}$$

The Jacobian matrix of f_1, \ldots, f_m with respect to y_1, \ldots, y_m .

Suppose f_1, \ldots, f_m are C^k functions in a set A in \mathbb{R}^{n+m} , let $(\mathbf{x}^0, \mathbf{y}^0) = (x_1^0, \ldots, x_n^0, y_1^0, \ldots, y_m^0)$ be a solution to (6.1) in the interior of A. Suppose also that the determinant of the Jacobian matrix $\partial \mathbf{f}(\mathbf{x}, \mathbf{y})/\partial \mathbf{y}$ in (6.2) is different from 0 at $(\mathbf{x}^0, \mathbf{y}^0)$. Then (6.1) defines y_1, \ldots, y_m as C^k functions of x_1, \ldots, x_n in some neighborhood of $(\mathbf{x}^0, \mathbf{y}^0)$, and the Jacobian matrix of these functions with respect to \mathbf{x} is

The general implicit function theorem. (It gives sufficient conditions for system (6.1) to define the endogenous variables y_1, \ldots, y_m as differentiable functions of the exogenous variables x_1, \ldots, x_n . (For the case n = m = 1, see (4.17).)

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}}\right)^{-1} \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}$$

6.3

A general system of m equations and n variables.

System (6.4) has k degrees of freedom if there is a set of k of the variables that can be freely chosen such that the remaining n-k variables are uniquely determined when the k variables have been assigned specific values. If the variables are restricted to vary in a set S in \mathbb{R}^n , the system has k degrees of freedom in S.

To find the number of degrees of freedom for a system of equations, count the number, n, of variables and the number, m, of equations. If n > m, there are n - m degrees of freedom in the system. If n < m, there is, in general, no solution of the system.

6.7 If the conditions in (6.3) are satisfied, then system (6.1) has n degrees of freedom.

$$6.8 \quad \mathbf{f'}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

6.9 If $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$ is a solution of (6.4), $m \le n$, and the rank of the Jacobian matrix $\mathbf{f}'(\mathbf{x})$ is equal to m, then system (6.4) has n-m degrees of freedom in some neighborhood of \mathbf{x}^0 .

The functions $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$ are functionally dependent in an open set A in \mathbb{R}^n if there exists a real-valued C^1 function F defined on an open set containing

6.10
$$S = \{(f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) : \mathbf{x} \in A\}$$
 such that

 $F(f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) = 0$ for all \mathbf{x} in A and $\nabla F \neq \mathbf{0}$ in S.

6.11 If $f_1(\mathbf{x}), \dots, f_m(\mathbf{x})$ are functionally dependent in an open set $A \subset \mathbb{R}^n$, then the rank of the Jacobian matrix $\mathbf{f}'(\mathbf{x})$ is less than m for all \mathbf{x} in A.

If the equation system (6.4) has solutions, and if $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$ are functionally dependent, then (6.4) has at least one redundant equation.

Definition of degrees of freedom for a system of equations.

The "counting rule". This is a rough rule which is *not* valid in general.

A precise (local) counting rule.

The Jacobian matrix of f_1, \ldots, f_m with respect to x_1, \ldots, x_n , also denoted by $\partial \mathbf{f}(\mathbf{x})/\partial \mathbf{x}$.

A precise (local) counting rule. (Valid if the functions f_1, \ldots, f_m are C^1 .)

Definition of functional dependence.

A necessary condition for functional dependence.

A sufficient condition for the counting rule to fail.

$$6.13 \quad \det(\mathbf{f}'(\mathbf{x})) = \begin{vmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n} \end{vmatrix}$$

6.14 If $f_1(\mathbf{x}), \dots, f_n(\mathbf{x})$ are functionally dependent, then the determinant $\det(\mathbf{f}'(\mathbf{x})) \equiv 0$.

$$y_1 = f_1(x_1, \dots, x_n)$$
6.15 $\longleftrightarrow \mathbf{y} = \mathbf{f}(\mathbf{x})$

$$y_n = f_n(x_1, \dots, x_n)$$

Suppose the transformation \mathbf{f} in (6.15) is C^1 in a neighborhood of \mathbf{x}^0 and that the Jacobian determinant in (6.13) is not zero at $\mathbf{x} = \mathbf{x}^0$.

6.16 Then there exists a C^1 transformation \mathbf{g} that is locally an inverse of \mathbf{f} , i.e. $\mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in a neighborhood of \mathbf{x}^0 and $\mathbf{f}(\mathbf{g}(\mathbf{y})) = \mathbf{y}$ for all \mathbf{y} in a neighborhood of $\mathbf{y}^0 = \mathbf{f}(\mathbf{x}^0)$.

Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and that there exist positive numbers h and k such that

6.17 $|\det(\mathbf{f}'(\mathbf{x}))| \ge h \text{ and } |\partial f_i(\mathbf{x})/\partial x_j| \le k$ for all \mathbf{x} and all $i, j = 1, \ldots, n$. Then \mathbf{f} has an inverse defined and C^1 on all of \mathbb{R}^n .

Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and that the determinant in (6.13) is $\neq 0$ for all \mathbf{x} . Then $\mathbf{f}(\mathbf{x})$ has an inverse that is C^1 and defined over all of \mathbb{R}^n , if and only if

$$\inf\{\|\mathbf{f}(\mathbf{x})\|: \|\mathbf{x}\| \ge n\} \to \infty \text{ as } n \to \infty.$$

Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and let Ω be the rectangle $\Omega = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$, where \mathbf{a} and \mathbf{b} are given vectors in \mathbb{R}^n . Then \mathbf{f} is one-to-one in Ω if *one* of the following conditions is satisfied for all \mathbf{x} :

- 6.19 satisfied for all \mathbf{x} :
 - The Jacobian matrix f'(x) has only strictly positive principal minors.
 - The Jacobian matrix f'(x) has only strictly negative principal minors.

The Jacobian determinant of f_1, \ldots, f_n with respect to x_1, \ldots, x_n . (See Chapter 20 for determinants.)

A special case of (6.11). The converse is not generally true.

A transformation **f** from \mathbb{R}^n to \mathbb{R}^n .

The existence of a local inverse. (Inverse function theorem. Local version.)

Existence of a *global* inverse. (Hadamard's theorem.)

A global inverse function theorem.

A Gale-Nikaido theorem. (For principal minors, see (20.15).)

6.25

An $n \times n$ matrix **A** (not necessarily symmetric) 6.20 is called *positive quasidefinite* if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for every n-vector $\mathbf{x} \neq \mathbf{0}$.

Definition of a positive quasidefinite matrix.

Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 function and assume that the Jacobian matrix $\mathbf{f}'(\mathbf{x})$ is positive quasidefinite everywhere in a convex set Ω . Then \mathbf{f} is one-to-one in Ω .

A Gale-Nikaido theorem.

6.22 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n \text{ is called a } contraction mapping if there exists a constant } k \text{ in } [0,1) \text{ such that } \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| \le k\|\mathbf{x} - \mathbf{y}\|$

for all \mathbf{x} and \mathbf{v} in \mathbb{R}^n .

Definition of a contraction mapping.

6.23 If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction mapping, then \mathbf{f} has a unique fixed point, i.e. a point \mathbf{x}^* in \mathbb{R}^n such that $\mathbf{f}(\mathbf{x}^*) = \mathbf{x}^*$. For any \mathbf{x}_0 in \mathbb{R}^n we have $\mathbf{x}^* = \lim_{n \to \infty} \mathbf{x}_n$, where $\mathbf{x}_n = \mathbf{f}(\mathbf{x}_{n-1})$ for $n \ge 1$.

The existence of a fixed point for a contraction mapping. (This result can be generalized to complete metric spaces. See (18.26).)

Let S be a nonempty subset of \mathbb{R}^n , and let \mathcal{B} denote the set of all bounded functions from S into \mathbb{R}^m . The *supremum distance* between two functions φ and ψ in \mathcal{B} is defined as

A definition of distance between functions. $(F: S \to \mathbb{R}^m \text{ is called } bounded \text{ on } S \text{ if there exists a positive number } M \text{ such that } \|F(\mathbf{x})\| \leq M \text{ for all } \mathbf{x} \text{ in } S.)$

$$d(\varphi, \psi) = \sup_{\mathbf{x} \in S} \|\varphi(\mathbf{x}) - \psi(\mathbf{x})\|$$

Let S be a nonempty subset of \mathbb{R}^n and let \mathcal{B} be the set of all bounded functions from S into \mathbb{R}^m . Suppose that the function $T: \mathcal{B} \to \mathcal{B}$ is a contraction mapping in the sense that

 $d(T(\varphi), T(\psi)) \leq \beta d(\varphi, \psi)$ for all φ, ψ in \mathcal{B}

Then there exists a unique function φ^* in \mathcal{B} such that $\varphi^* = T(\varphi^*)$.

A contraction mapping theorem for spaces of bounded functions.

6.26 Let K be a nonempty, compact and convex set in \mathbb{R}^n and \mathbf{f} a continuous function mapping K into K. Then \mathbf{f} has a fixed point $\mathbf{x}^* \in K$, i.e. a point \mathbf{x}^* such that $\mathbf{f}(\mathbf{x}^*) = \mathbf{x}^*$.

Brouwer's fixed point theorem.

Illustration of Brouwer's fixed point theorem for n = 1.

Let K be a nonempty compact, convex set in \mathbb{R}^n and \mathbf{f} a correspondence that to each point \mathbf{x} in K associates a nonempty, convex subset $\mathbf{f}(\mathbf{x})$ of K. Suppose that \mathbf{f} has a closed graph, i.e. the set

$$\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2n} : \mathbf{x} \in K \text{ and } \mathbf{y} \in \mathbf{f}(\mathbf{x})\}$$
 is closed in \mathbb{R}^{2n} . Then \mathbf{f} has a fixed point, i.e. a point \mathbf{x}^* in K , such that $\mathbf{x}^* \in \mathbf{f}(\mathbf{x}^*)$.

Kakutani's fixed point theorem. (See (12.27) for the definition of correspondences.)

6.29

6.28

Illustration of Kakutani's fixed point theorem for n = 1.

If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ are two points in \mathbb{R}^n , then the *meet* $\mathbf{x} \wedge \mathbf{y}$ and *join* $\mathbf{x} \vee \mathbf{y}$ 6.30 of \mathbf{x} and \mathbf{y} are points in \mathbb{R}^n defined as follows:

$$\mathbf{x} \wedge \mathbf{y} = (\min\{x_1, y_1\}, \dots, \min\{x_n, y_n\})$$
$$\mathbf{x} \vee \mathbf{y} = (\max\{x_1, y_1\}, \dots, \max\{x_n, y_n\})$$

Definition of the meet and the join of two vectors in \mathbb{R}^n .

6.31 A set S in \mathbb{R}^n is called a *sublattice* of \mathbb{R}^n if the meet and the join of any two points in S are also in S. If S is also a compact set, the S is called a *compact sublattice*.

Definition of a (compact) sublattice of \mathbb{R}^n .

Let S be a nonempty compact sublattice of \mathbb{R}^n . Let $\mathbf{f}: S \to S$ be an increasing function, i.e. if $\mathbf{x}, \mathbf{y} \in S$ and $\mathbf{x} \leq \mathbf{y}$, then $\mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{y})$. Then \mathbf{f} has a fixed point in S, i.e. a point \mathbf{x}^* in S such that $\mathbf{f}(\mathbf{x}^*) = \mathbf{x}^*$.

Tarski's fixed point theorem. (The theorem is not valid for decreasing functions. See (6.33).)

 x^* is a fixed point for the increasing function in the figure to the left. The decreasing function in the other figure has no fixed point.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

The general linear system with m equations and n unknowns.

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{A_b} = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ a_{21} & \cdots & a_{2n} & b_2 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$$

A is the coefficient matrix of (6.34), and A_b is the augmented coefficient matrix.

- System (6.34) has at least one solution if and only if $r(\mathbf{A}) = r(\mathbf{A_b})$.
- 6.36 If $r(\mathbf{A}) = r(\mathbf{A_b}) = k < m$, then system (6.34) has m k superfluous equations.
 - If $r(\mathbf{A}) = r(\mathbf{A_b}) = k < n$, then system (6.34) has n k degrees of freedom.

Main results about linear systems of equations. $r(\mathbf{B})$ denotes the rank of the matrix \mathbf{B} . (See (19.23).)

The general homoge-neous linear equation system with m equations and n unknowns.

- The homogeneous system (6.37) has a non-trivial solution if and only if $r(\mathbf{A}) < n$.
- 6.38 If n=m, then the homogeneous system (6.37) has nontrivial solutions if and only if $|\mathbf{A}| = 0$.

Important results on homogeneous linear systems.

References

For (6.1)–(6.16) and (6.22)–(6.25), see e.g. Rudin (1982), Marsden and Hoffman (1993) or Sydsæter et al. (2005). For (6.17)–(6.21) see Parthasarathy (1983). For Brouwer's and Kakutani's fixed point theorems, see Nikaido (1970) or Scarf (1973). For Tarski's fixed point theorem and related material, see Sundaram (1996). (6.36)–(6.38) are standard results in linear algebra, see e.g. Fraleigh and Beauregard (1995), Lang (1987) or Sydsæter et al. (2005).

Chapter 7

Inequalities

7.1
$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

7.2
$$\frac{n}{\sum_{i=1}^{n} 1/a_i} \le \left(\prod_{i=1}^{n} a_i\right)^{1/n} \le \frac{\sum_{i=1}^{n} a_i}{n}, \quad a_i > 0$$

7.3
$$\frac{2}{1/a_1 + 1/a_2} \le \sqrt{a_1 a_2} \le \frac{a_1 + a_2}{2}$$

7.4
$$(1+x)^n \ge 1 + nx$$
 $(n \in \mathbb{N}, x \ge -1)$

$$7.5 \quad a_1^{\lambda_1} \cdots a_n^{\lambda_n} \le \lambda_1 a_1 + \cdots + \lambda_n a_n$$

7.6
$$a_1^{\lambda} a_2^{1-\lambda} \le \lambda a_1 + (1-\lambda)a_2$$

7.7
$$\sum_{i=1}^{n} |a_i b_i| \le \left[\sum_{i=1}^{n} |a_i|^p \right]^{1/p} \left[\sum_{i=1}^{n} |b_i|^q \right]^{1/q}$$

7.8
$$\left[\sum_{i=1}^{n} |a_i b_i|\right]^2 \le \left[\sum_{i=1}^{n} a_i^2\right] \left[\sum_{i=1}^{n} b_i^2\right]$$

7.9
$$\left[\sum_{i=1}^{n} a_i\right] \left[\sum_{i=1}^{n} b_i\right] \le n \sum_{i=1}^{n} a_i b_i$$

Triangle inequalities. $a, b \in \mathbb{R}$ (or \mathbb{C}).

Harmonic mean \leq geometric mean \leq arithmetic mean. Equalities if and only if $a_1 = \cdots = a_n$.

$$(7.2)$$
 for $n=2$.

Bernoulli's inequality.

Inequality for weighted means. $a_i \geq 0$, $\sum_{i=1}^{n} \lambda_i = 1, \lambda_i \geq 0$.

(7.5) for
$$n = 2$$
, $a_1 \ge 0$, $a_2 \ge 0$, $\lambda \in [0, 1]$.

Hölder's inequality. p, q > 1, 1/p + 1/q = 1.Equality if $|b_i| = c|a_i|^{p-1}$ for a nonnegative constant c.

Cauchy-Schwarz's inequality. (Put
$$p = q = 2$$
 in (7.7) .)

Chebyshev's inequality. $a_1 \ge \cdots \ge a_n,$ $b_1 \ge \cdots \ge b_n.$

7.10
$$\left[\sum_{i=1}^{n} |a_i + b_i|^p \right]^{1/p} \le \left[\sum_{i=1}^{n} |a_i|^p \right]^{1/p} + \left[\sum_{i=1}^{n} |b_i|^p \right]^{1/p}$$

Minkowski's inequality. $p \geq 1$. Equality if $b_i = ca_i$ for a nonnegative constant c.

7.11 If
$$f$$
 is convex, then $f\left[\sum_{i=1}^{n} a_i x_i\right] \leq \sum_{i=1}^{n} a_i f(x_i)$

Jensen's inequality.
$$\sum_{i=1}^{n} a_i = 1, a_i \ge 0,$$

$$i = 1, \dots, n.$$

7.12
$$\left[\sum_{i=1}^{n} |a_i|^q\right]^{1/q} \le \left[\sum_{i=1}^{n} |a_i|^p\right]^{1/p}$$

Another Jensen's in-
equality;
$$0 .$$

7.13
$$\int_{a}^{b} |f(x)g(x)| dx \le \left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} \left[\int_{a}^{b} |g(x)|^{q} dx \right]^{1/q}$$

Hölder's inequality.
$$p > 1$$
, $q > 1$, $1/p + 1/q = 1$. Equality if $|g(x)| = c|f(x)|^{p-1}$ for a nonnegative constant c .

7.14
$$\left[\int_a^b f(x)g(x) \, dx \right]^2 \le \int_a^b (f(x))^2 dx \int_a^b (g(x))^2 dx$$

7.15
$$\left[\int_{a}^{b} |f(x) + g(x)|^{p} dx \right]^{1/p} \leq \left[\int_{a}^{b} |f(x)|^{p} dx \right]^{1/p} + \left[\int_{a}^{b} |g(x)|^{p} dx \right]^{1/p}$$

Minkowski's inequality. $p \ge 1$. Equality if g(x) = cf(x) for a nonnegative constant c.

If f is convex, then

7.16
$$f\left(\int a(x)g(x)\,dx\right) \le \int a(x)f(g(x))\,dx$$

Jensen's inequality. $a(x) \ge 0$, $f(u) \ge 0$, $\int a(x) dx = 1$. f is defined on the range of q.

If f is convex on the interval I and X is a random variable with finite expectation, then

Special case of Jensen's inequality. *E* is the expectation operator.

$$7.17 f(E[X]) \le E[f(X)]$$

If f is strictly convex, the inequality is strict unless X is a constant with probability 1.

An important fact in utility theory. (It follows from (7.17) by putting f = -U.)

If U is concave on the interval I and X is a 7.18 random variable with finite expectation, then $E[U(X)] \leq U(E[X])$

References

Hardy, Littlewood, and Pólya (1952) is still a good reference for inequalities.

Chapter 8

Series. Taylor's formula

8.1
$$\sum_{i=0}^{n-1} (a+id) = na + \frac{n(n-1)d}{2}$$

8.2
$$a + ak + ak^2 + \dots + ak^{n-1} = a \frac{1 - k^n}{1 - k}, \ k \neq 1$$

8.3
$$a + ak + \dots + ak^{n-1} + \dots = \frac{a}{1-k}$$
 if $|k| < 1$

8.4
$$\sum_{n=1}^{\infty} a_n = s$$
 means that $\lim_{n \to \infty} \sum_{k=1}^{n} a_k = s$

8.5
$$\sum_{n=1}^{\infty} a_n$$
 converges $\Rightarrow \lim_{n \to \infty} a_n = 0$

8.6
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \implies \sum_{n=1}^{\infty} a_n$$
 converges

8.7
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \implies \sum_{n=1}^{\infty} a_n$$
 diverges

8.8

If f(x) is a positive-valued, decreasing, and continuous function for $x \geq 1$, and if $a_n = f(n)$ for all integers $n \geq 1$, then the infinite series and the improper integral

$$\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \int_{1}^{\infty} f(x) \, dx$$

either both converge or both diverge.

Sum of the first n terms of an arithmetic series.

Sum of the first n terms of a geometric series.

Sum of an infinite geometric series.

Definition of the convergence of an infinite series. If the series does not converge, it diverges.

A necessary (but NOT sufficient) condition for the convergence of an infinite series.

The ratio test.

The ratio test.

The integral test.

If $0 \le a_n \le b_n$ for all n, then

- 8.9 $\sum a_n$ converges if $\sum b_n$ converges.
 - $\sum b_n$ diverges if $\sum a_n$ diverges.

8.10 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent $\iff p > 1$

8.11 A series $\sum_{n=1}^{\infty} a_n$ is said to converge absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges.

Every absolutely convergent series is conver-8.12 gent, but not all convergent series are absolutely convergent.

8.13 If a series is absolutely convergent, then the sum is independent of the order in which terms are summed. A conditionally convergent series can be made to converge to any number (or even diverge) by suitable rearranging the order of the terms.

- 8.14 $f(x) \approx f(a) + f'(a)(x a)$ (x close to a)
- 8.15 $f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$ (x close to a)

8.16
$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, \quad 0 < \theta < 1$$

8.17
$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$

8.18
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + \frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!}(x-a)^{n+1}, \quad 0 < \theta < 1$$

The comparison test.

An important result.

Definition of absolute convergence. $|a_n|$ denotes the absolute value of a_n .

A convergent series that is not absolutely convergent, is called *conditionally convergent*.

Important results on the convergence of series.

First-order (linear) approximation about x = a.

Second-order (quadratic) approximation about x = a.

Maclaurin's formula. The last term is Lagrange's error term.

The Maclaurin series for f(x), valid for those x for which the error term in (8.16) tends to 0 as n tends to ∞ .

Taylor's formula. The last term is Lagrange's error term.

8.19
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$

The Taylor series for f(x), valid for those x where the error term in (8.18) tends to 0 as n tends to ∞ .

$$8.20 \quad f(x,y) \approx f(a,b) + f_1'(a,b)(x-a) + f_2'(a,b)(y-b) \\ ((x,y) \text{ close to } (a,b))$$

First-order (linear) approximation to f(x, y) about (a, b).

$$f(x,y) \approx 8.21 \quad f(a,b) + f'_1(a,b)(x-a) + f'_2(a,b)(y-b) + \frac{1}{2} [f''_{11}(a,b)(x-a)^2 + 2f''_{12}(a,b)(x-a)(y-b) + f''_{22}(a,b)(y-b)^2]$$

Second-order (quadratic) approximation to f(x, y) about (a, b).

8.22
$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} f'_i(\mathbf{a})(x_i - a_i)$$
$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f''_{ij}(\mathbf{a} + \theta(\mathbf{x} - \mathbf{a}))(x_i - a_i)(x_j - a_j)$$

Taylor's formula of order 2 for functions of n variables, $\theta \in (0,1)$.

8.23
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Valid for all x.

8.24
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Valid if $-1 < x \le 1$.

8.25
$$(1+x)^m = \binom{m}{0} + \binom{m}{1}x + \binom{m}{2}x^2 + \cdots$$

Valid if -1 < x < 1. For the definition of $\binom{m}{k}$, see (8.30).

8.26
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

Valid for all x.

8.27
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

Valid for all x.

8.28
$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots$$

Valid if $|x| \leq 1$.

8.29
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Valid if $|x| \leq 1$.

•
$$\binom{r}{0} = 1$$
, $\binom{r}{-k} = 0$

Binomial coefficients. (r is an arbitrary real number, k is a natural number.)

$$\bullet \quad \binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad (0 \le k \le n)$$

$$\bullet \quad \binom{n}{k} = \binom{n}{n-k} \qquad (n \ge 0)$$

$$8.31 \quad \bullet \quad \binom{r}{k} = \binom{r-1}{k-1} + \binom{r-1}{k}$$

8.31 •
$$\binom{r}{k} = \binom{r-1}{k-1} + \binom{r-1}{k}$$

• $\binom{-r}{k} = (-1)^k \binom{r+k-1}{k}$

•
$$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$$
 $(k \neq 0)$

8.32
$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k}$$

8.33
$$\sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}$$

$$8.34 \quad \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

8.35
$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

8.36
$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} = (a+b)^{n}$$

8.37
$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

8.38
$$\sum_{k=0}^{n} \binom{n}{k} k = n2^{n-1} \qquad (n \ge 0)$$

8.39
$$\sum_{k=0}^{n} \binom{n}{k} k^2 = (n^2 + n)2^{n-2} \qquad (n \ge 0)$$

$$8.40 \quad \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

$$(a_1 + a_2 + \dots + a_m)^n = \sum_{\substack{k_1 + \dots + k_m = n}} \frac{n!}{k_1! \cdots k_m!} a_1^{k_1} \cdots a_m^{k_m}$$

Important properties of the binomial coefficients. n and k are integers, and r is a real number.

m and k are integers.

n is a nonnegative integer.

n is a nonnegative integer.

m and n are nonnegative integers.

Newton's binomial formula.

A special case of (8.36).

The multinomial formula.

8.42
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
 Summation formulas.

8.43
$$1+3+5+\cdots+(2n-1)=n^2$$

8.44
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

8.45
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

8.47
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$$
 A famous result.

8.48
$$\lim_{n\to\infty} \left[\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} \right) - \ln n \right] = \gamma \approx 0.5772 \dots$$
 The constant γ is called Euler's constant.

References

All formulas are standard and are usually found in calculus texts, e.g. Edwards and Penney (1998). For results about binomial coefficients, see a book on probability theory, or e.g. Graham, Knuth, and Patashnik (1989).

Chapter 9

Integration

Indefinite integrals

0.1
$$\int f(x) dx = F(x) + C \iff F'(x) = f(x)$$
 Definition of the *indefinite integral*.

9.2
$$\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx$$
 | Linearity of the integral. a and b are constants.

9.3
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
 Integration by parts.

9.4
$$\int f(x) dx = \int f(g(t))g'(t) dt$$
, $x = g(t)$ Change of variable. (Integration by substitution.)

9.5
$$\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + C, & n \neq -1 \\ \ln|x| + C, & n = -1 \end{cases}$$
 Special integration results.

9.6
$$\int a^x dx = \frac{1}{\ln a} a^x + C$$
, $a > 0$, $a \neq 1$

$$9.7 \qquad \int e^x \, dx = e^x + C$$

$$9.8 \quad \int xe^x \, dx = xe^x - e^x + C$$

9.9
$$\int x^n e^{ax} dx = \frac{x^n}{a} e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, \ a \neq 0$$

9.10
$$\int \log_a x \, dx = x \log_a x - x \log_a e + C, \ a > 0, \ a \neq 1$$

9.11
$$\int \ln x \, dx = x \ln x - x + C$$
 | Special integration results.
9.12 $\int x^n \ln x \, dx = \frac{x^{n+1} \left((n+1) \ln x - 1 \right)}{(n+1)^2} + C$ | $(n \neq -1)$
9.13 $\int \sin x \, dx = -\cos x + C$ | 9.14 $\int \cos x \, dx = \sin x + C$ | 9.15 $\int \tan x \, dx = -\ln |\cos x| + C$ | 9.16 $\int \cot x \, dx = \ln |\sin x| + C$ | 9.17 $\int \frac{1}{\sin x} \, dx = \ln \left| \frac{1 - \cos x}{\sin x} \right| + C$ | 9.18 $\int \frac{1}{\cos x} \, dx = \ln \left| \frac{1 + \sin x}{\cos x} \right| + C$ | 9.19 $\int \frac{1}{\sin^2 x} \, dx = -\cot x + C$ | 9.20 $\int \frac{1}{\cos^2 x} \, dx = \tan x + C$ | 9.21 $\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{2}\sin x \cos x + C$ | 9.22 $\int \cos^2 x \, dx = \frac{1}{2}x + \frac{1}{2}\sin x \cos x + C$ | $\sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$ | $(n \neq 0)$

 $\frac{\cos^{n-1}x\sin x}{x} + \frac{n-1}{x} \int \cos^{n-2}x \, dx$

 $\int \cos^n x \, dx =$

9.25
$$\int e^{\alpha x} \sin \beta x \, dx = \frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\alpha \sin \beta x - \beta \cos \beta x) + C$$

$$(\alpha^2 + \beta^2 \neq 0)$$

9.26
$$\int e^{\alpha x} \cos \beta x \, dx = \frac{e^{\alpha x}}{\alpha^2 + \beta^2} (\beta \sin \beta x + \alpha \cos \beta x) + C$$

$$(\alpha^2 + \beta^2 \neq 0)$$

9.27
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \qquad \left| (a \neq 0) \right|$$

9.28
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$
 $(a \neq 0)$

9.29
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$
 $(a > 0)$

9.30
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

9.31
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C \quad | \quad (a > 0)$$

9.32
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

9.33
$$\int \frac{dx}{ax^2 + 2bx + c} = \frac{1}{2\sqrt{b^2 - ac}} \ln \left| \frac{ax + b - \sqrt{b^2 - ac}}{ax + b + \sqrt{b^2 - ac}} \right| + C \qquad (b^2 > ac, \ a \neq 0)$$

9.34
$$\int \frac{dx}{ax^2 + 2bx + c} = \frac{1}{\sqrt{ac - b^2}} \arctan \frac{ax + b}{\sqrt{ac - b^2}} + C$$

$$(b^2 < ac)$$

9.35
$$\int \frac{dx}{ax^2 + 2bx + c} = \frac{-1}{ax + b} + C$$
 $(b^2 = ac, a \neq 0)$

Definite integrals

9.36
$$\int_{a}^{b} f(x) dx = \Big|_{a}^{b} F(x) = F(b) - F(a)$$
if $F'(x) = f(x)$ for all x in $[a, b]$.

Definition of the definite integral of a function f.

$$\bullet \quad A(x) = \int_{a}^{x} f(t) dt \implies A'(x) = f(x)$$
 9.37

•
$$A(x) = \int_x^b f(t) dt \Rightarrow A'(x) = -f(x)$$

Important facts.

The shaded area is $A(x) = \int_a^x f(t) dt$, and the derivative of the area function A(x) is A'(x) = f(x).

9.39
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
$$\int_{a}^{a} f(x) dx = 0$$
$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

a, b, c, and α are arbitrary real numbers.

9.40
$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du, \quad u = g(x)$$

Change of variable. (Integration by substitution.)

9.41
$$\int_{a}^{b} f(x)g'(x) dx = \Big|_{a}^{b} f(x)g(x) - \int_{a}^{b} f'(x)g(x) dx \Big|_{a}^{b}$$

Integration by parts.

9.42
$$\int_{a}^{\infty} f(x) dx = \lim_{M \to \infty} \int_{a}^{M} f(x) dx$$

If the limit exists, the integral is *convergent*. (In the opposite case, the integral *diverges*.)

9.43
$$\int_{-\infty}^{b} f(x) dx = \lim_{N \to \infty} \int_{-N}^{b} f(x) dx$$

If the limit exists, the integral is *convergent*. (In the opposite case, the integral *diverges*.)

9.45
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$
$$= \lim_{N \to \infty} \int_{-N}^{a} f(x) dx + \lim_{M \to \infty} \int_{a}^{M} f(x) dx$$

9.46
$$\int_a^b f(x) \, dx = \lim_{h \to 0^+} \int_{a+h}^b f(x) \, dx$$

9.47
$$\int_{a}^{b} f(x) dx = \lim_{h \to 0^{+}} \int_{a}^{b-h} f(x) dx$$

9.49
$$|f(x)| \le g(x) \text{ for all } x \ge a \implies \left| \int_a^\infty f(x) \, dx \right| \le \int_a^\infty g(x) \, dx$$

9.50
$$\frac{d}{dx} \int_{a}^{b} f(x,t) dt = \int_{a}^{b} f'_{x}(x,t) dt$$

9.51
$$\frac{d}{dx} \int_{c}^{\infty} f(x,t) dt = \int_{c}^{\infty} f'_{x}(x,t) dt$$

The figures illustrate (9.42) and (9.43). The shaded areas are $\int_a^M f(x) dx$ in the first figure, and $\int_{-N}^b f(x) dx$ in the second.

Both limits on the righthand side must exist. a is an arbitrary number. The integral is then said to converge. (If either of the limits does not exist, the integral diverges.)

The definition of the integral if f is continuous in (a, b].

The definition of the integral if f is continuous in [a, b).

Illustrating definition (9.47). The shaded area is $\int_a^{b-h} f(x) dx$.

Comparison test for integrals. f and g are continuous for $x \geq a$.

"Differentiation under the integral sign". a and b are independent of x.

Valid for x in (a, b) if f(x, t) and $f'_x(x, t)$ are continuous for all $t \ge c$ and all x in (a, b), and $\int_c^\infty f(x, t) dt$ and $\int_c^\infty f'_x(x, t) dt$ converge uniformly on (a, b).

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x,t) dt =$$
9.52
$$f(x,v(x))v'(x) - f(x,u(x))u'(x) + \int_{u(x)}^{v(x)} f'_x(x,t) dt$$

Leibniz's formula.

9.53
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \quad x > 0$$

The gamma function.

9.54

The graph of the gamma function. The minimum value is ≈ 0.8856 at $x \approx 1.4616$.

9.55
$$\Gamma(x+1) = x \Gamma(x)$$
 for all $x > 0$

The functional equation for the gamma function.

9.56 $\Gamma(n) = (n-1)!$ when n is a positive integer.

Follows immediately from the functional equation.

9.57
$$\int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\pi/a} \qquad (a > 0)$$

An important formula.

9.58

According to (9.57) the shaded area is $\sqrt{\pi/a}$.

9.59
$$\int_0^\infty t^k e^{-at^2} dt = \frac{1}{2} a^{-(k+1)/2} \Gamma((k+1)/2)$$

Valid for a > 0, k > -1.

9.60
$$\Gamma(x) = \sqrt{2\pi} \, x^{x-\frac{1}{2}} e^{-x} e^{\theta/12x}, \quad x > 0, \, \theta \in (0,1)$$

Stirling's formula.

9.61
$$B(p,q) = \int_0^1 u^{p-1} (1-u)^{q-1} du, \quad p, q > 0$$

The beta function.

9.62
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

The relationship between the beta function and the gamma function.

9.63
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} [f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n)]$$

The trapezoid formula. $x_i = a + i \frac{b-a}{n},$ $i = 0, \dots, n.$

9.64 If f is C^2 on [a, b] and $|f''(x)| \leq M$ for all x in [a, b], then $M(b - a)^3/12n^2$ is an upper bound on the error of approximation in (9.63).

Trapezoidal error estimate.

9.65
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6n} D, \text{ where } D = f(x_0) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n})$$

Simpson's formula. The points $x_j = a + j \frac{b-a}{2n}$, $j = 0, \dots, 2n$, partition [a, b] into 2n equal subintervals.

9.66 If f is C^4 on [a,b] and $|f^{(4)}(x)| \leq M$ for all x in [a,b], then $M(b-a)^5/180n^4$ is an upper bound on the error of approximation in (9.65).

Simpson's error estimate.

Multiple integrals

9.67
$$\iint_{R} f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Definition of the double integral of f(x,y) over a rectangle $R = [a,b] \times [c,d]$. (The fact that the two iterated integrals are equal for continuous functions, is Fubini's theorem.)

9.68
$$\iint_{\Omega_A} f(x, y) \, dx \, dy = \int_a^b \left(\int_{u(x)}^{v(x)} f(x, y) \, dy \right) dx$$

The double integral of a function f(x, y) over the region Ω_A in figure A.

9.69
$$\iint_{\Omega_B} f(x, y) \, dx \, dy = \int_c^d \left(\int_{p(y)}^{q(y)} f(x, y) \, dx \right) dy$$

The double integral of a function f(x, y) over the region Ω_B in figure B.

В

$$F_{xy}''(x,y) = f(x,y), \quad (x,y) \in [a,b] \times [c,d] \implies$$

$$9.70 \quad \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, dx \right) dy =$$

$$F(b,d) - F(a,d) - F(b,c) + F(a,c)$$

An interesting result. f(x, y) is a continuous function.

9.71
$$\iint_A f(x,y) \, dx \, dy =$$

$$\iint_{A'} f(g(u,v),h(u,v)) |J| \, du \, dv$$

Change of variables in a double integral. x = g(u, v), y = h(u, v) is a one-to-one C^1 transformation of A' onto A, and the Jacobian determinant $J = \partial(g, h)/\partial(u, v)$ does not vanish in A'. f is continuous.

9.72
$$\iint \cdots \int_{\Omega} f(\mathbf{x}) dx_1 \dots dx_{n-1} dx_n = \int_{a_n}^{b_n} (\int_{a_{n-1}}^{b_{n-1}} \cdots (\int_{a_1}^{b_1} f(\mathbf{x}) dx_1) \cdots dx_{n-1}) dx_n$$

The *n*-integral of f over an n-dimensional rectangle Ω . $\mathbf{x} = (x_1, \dots, x_n)$.

9.73
$$\int \cdots \int_{A} f(\mathbf{x}) dx_{1} \dots dx_{n} = \int \cdots \int_{A'} f(g_{1}(\mathbf{u}), \dots, g_{n}(\mathbf{u})) |J| du_{1} \dots du_{n}$$

Change of variables in the *n*-integral. $x_i = g_i(\mathbf{u}), i = 1, ..., n$, is a one-to-one C^1 transformation of A' onto A, and the Jacobian determinant

 $J = \frac{\partial(g_1, \dots, g_n)}{\partial(u_1, \dots, u_n)} \text{ does }$ not vanish in A'. f is continuous.

References

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney (1998). For (9.67)–(9.73), see Marsden and Hoffman (1993), who have a precise treatment of multiple integrals. (Not all the required assumptions are spelled out in the subsection on multiple integrals.)

Chapter 10

Difference equations

10.1
$$x_t = a_t x_{t-1} + b_t, t = 1, 2, \dots$$

10.2
$$x_t = (\prod_{s=1}^t a_s) x_0 + \sum_{k=1}^t (\prod_{s=k+1}^t a_s) b_k$$

10.3
$$x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_k, \quad t = 1, 2, \dots$$

•
$$x_t = Aa^t + \sum_{s=0}^{\infty} a^s b_{t-s}, \quad |a| < 1$$

10.4
• $x_t = Aa^t - \sum_{s=1}^{\infty} \left(\frac{1}{a}\right)^s b_{t+s}, \quad |a| > 1$

$$s=1$$
 (a)

10.5 $x_t = ax_{t-1} + b \Leftrightarrow x_t = a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}$

10.6
$$(*) \quad x_t + a_1(t)x_{t-1} + \dots + a_n(t)x_{t-n} = b_t$$

$$(**) \quad x_t + a_1(t)x_{t-1} + \dots + a_n(t)x_{t-n} = 0$$

If $u_1(t), \ldots, u_n(t)$ are linearly independent solutions of (10.6) (**), u_t^* is some particular solution of (10.6) (*), and C_1, \ldots, C_n are arbitrary constants, then the general solution of (**) is $x_t = C_1 u_1(t) + \cdots + C_n u_n(t)$

and the general solution of
$$(*)$$
 is
$$x_t = C_1 u_1(t) + \cdots + C_n u_n(t) + u_t^*$$

 $\begin{array}{l} {\rm A\ \it first-order\ linear}\\ {\it difference\ equation.} \end{array}$

The solution of (10.1) if we define the "empty" product $\prod_{s=t+1}^{t} a_s$ as 1.

The solution of (10.1) when $a_t = a$, a constant.

The backward and forward solutions of (10.1), respectively, with $a_t = a$, and with A as an arbitrary constant.

Equation (10.1) and its solution when $a_t = a \neq 1, b_t = b.$

(*) is the general linear inhomogeneous difference equation of order n, and (**) is the associated homogeneous equation.

The structure of the solutions of (10.6). (For linear independence, see (11.21).)

For $b \neq 0$, $x_t + ax_{t-1} + bx_{t-2} = 0$ has the solution:

• For $\frac{1}{4}a^2 - b > 0$: $x_t = C_1 m_1^t + C_2 m_2^t$, where $m_{1,2} = -\frac{1}{2}a \pm \sqrt{\frac{1}{4}a^2 - b}$.

• For $\frac{1}{4}a^2 - b = 0$: $x_t = (C_1 + C_2t)(-a/2)^t$.

• For $\frac{1}{4}a^2 - b < 0$: $x_t = Ar^t \cos(\theta t + \omega)$, where $r = \sqrt{b}$ and $\cos \theta = -\frac{a}{2\sqrt{b}}$, $\theta \in [0, \pi]$. The solutions of a homogeneous, linear secondorder difference equation with constant coefficients a and b. C_1 , C_2 , and ω are arbitrary constants.

To find a particular solution of

$$(*) \quad x_t + ax_{t-1} + bx_{t-2} = c_t, \quad b \neq 0$$

use the following trial functions and determine the constants by using the method of undetermined coefficients:

10.9 • If $c_t = c$, try $u_t^* = A$.

• If $c_t = ct + d$, try $u_t^* = At + B$.

• If $c_t = t^n$, try $u_t^* = A_0 + A_1 t + \dots + A_n t^n$.

• If $c_t = c^t$, try $u_t^* = Ac^t$.

• If $c_t = \alpha \sin ct + \beta \cos ct$, try $u_t^* = A \sin ct + B \cos ct$.

If the function c_t is itself a solution of the homogeneous equation, multiply the trial solution by t. If this new trial function also satisfies the homogeneous equation, multiply the trial function by t again. (See Hildebrand (1968), Sec. 1.8 for the general procedure.)

10.10 (*) $x_t + a_1 x_{t-1} + \dots + a_n x_{t-n} = b_t$ (**) $x_t + a_1 x_{t-1} + \dots + a_n x_{t-n} = 0$ Linear difference equations with constant coefficients.

10.11 $m^n + a_1 m^{n-1} + \dots + a_{n-1} m + a_n = 0$

The characteristic equation of (10.10). Its roots are called characteristic roots.

Suppose the characteristic equation (10.11) has n different roots, $\lambda_1, \ldots, \lambda_n$, and define

$$\theta_r = \frac{\lambda_r}{\prod\limits_{\substack{1 \le s \le n \\ s \ne r}} (\lambda_r - \lambda_s)}, \quad r = 1, 2, \dots, n$$

10.12

Then a special solution of (10.10)(*) is given by

$$u_t^* = \sum_{r=1}^n \theta_r \sum_{i=0}^\infty \lambda_r^i b_{t-i}$$

The backward solution of (10.10)(*), valid if $|\lambda_r| < 1$ for $r = 1, \ldots, n$.

To obtain n linearly independent solutions of (10.10) (**): Find all roots of the characteristic equation (10.11). Then:

- A real root m_i with multiplicity 1 gives rise to a solution m_i^t .
- A real root m_j with multiplicity p > 1, gives rise to solutions m_j^t , tm_j^t , ..., $t^{p-1}m_j^t$.
- A pair of complex roots $m_k = \alpha + i\beta$, $\overline{m}_k = \alpha i\beta$ with multiplicity 1, gives rise to the solutions $r^t \cos \theta t$, $r^t \sin \theta t$, where $r = \sqrt{\alpha^2 + \beta^2}$, and $\theta \in [0, \pi]$ satisfies $\cos \theta = \alpha/r$, $\sin \theta = \beta/r$.

10.13

• A pair of complex roots $m_e = \lambda + i\mu$, $\overline{m}_e = \lambda - i\mu$ with multiplicity q > 1 gives rise to the solutions $u, v, tu, tv, \ldots, t^{q-1}u, t^{q-1}v$, with $u = s^t \cos \varphi t, v = s^t \sin \varphi t$, where $s = \sqrt{\lambda^2 + \mu^2}$, and $\varphi \in [0, \pi]$ satisfies $\cos \varphi = \lambda/s$, and $\sin \varphi = \mu/s$.

A general method for finding n linearly independent solutions of (10.10) (**).

The equations in (10.10) are called (globally 10.14 asymptotically) stable if any solution of the homogeneous equation (10.10) (**) approaches 0 as $t \to \infty$.

Definition of stability for a linear equation with constant coefficients.

The equations in (10.10) are stable if and only 10.15 if all the roots of the characteristic equation (10.11) have moduli less than 1.

Stability criterion for (10.10).

$$\left| \begin{array}{c|cccc} 1 & a_n & a_n & a_{n-1} \\ \hline a_n & 1 & 0 & a_n & a_{n-1} \\ \hline a_1 & 1 & 0 & a_n \\ \hline a_n & 0 & 1 & a_1 \\ \hline a_{n-1} & a_n & 0 & 1 \end{array} \right| > 0, \dots,$$

A necessary and sufficient condition for all the roots of (10.11) to have moduli less than 1. (Schur's theorem.)

 $10.16 \quad \begin{vmatrix} 1 & 0 & \dots & 0 & a_n & a_{n-1} & \dots & a_1 \\ a_1 & 1 & \dots & 0 & 0 & a_n & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \dots & 1 & 0 & 0 & \dots & a_n \\ \hline a_n & 0 & \dots & 0 & 1 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & \dots & 0 & 0 & 1 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n & 0 & 0 & \dots & 1 \end{vmatrix} > 0$

10.17 $x_t + a_1 x_{t-1} = b_t$ is stable $\iff |a_1| < 1$

Special case of (10.15) and (10.16).

$$x_t + a_1 x_{t-1} + a_2 x_{t-2} = b_t$$
 is stable

10.18
$$\iff \begin{cases} 1 - a_2 > 0 \\ 1 - a_1 + a_2 > 0 \\ 1 + a_1 + a_2 > 0 \end{cases}$$

Special case of (10.15) and (10.16).

$$x_t + a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} = b_t \text{ is stable}$$

$$\iff \begin{cases} 3 - a_2 > 0 \\ 1 - a_2 + a_1 a_3 - a_3^2 > 0 \\ 1 + a_2 - |a_1 + a_3| > 0 \end{cases}$$

Special case of (10.15) and (10.16).

 $x_t + a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} + a_4 x_{t-4} = b_t$ is stable \iff

10.20
$$\begin{cases} 1 - a_4 > 0 \\ 3 + 3a_4 - a_2 > 0 \\ 1 + a_2 + a_4 - |a_1 + a_3| > 0 \\ (1 - a_4)^2 (1 + a_4 - a_2) > (a_1 - a_3)(a_1 a_4 - a_3) \end{cases}$$

Special case of (10.15) and (10.16).

Linear system of difference equations.

10.22
$$\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t-1) + \mathbf{b}(t), \quad t = 1, 2, \dots$$

Matrix form of (10.21). $\mathbf{x}(t)$ and $\mathbf{b}(t)$ are $n \times 1$, $\mathbf{A}(t) = (a_{ij}(t))$ is $n \times n$.

10.23
$$\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0) + (\mathbf{A}^{t-1} + \mathbf{A}^{t-2} + \dots + \mathbf{A} + \mathbf{I})\mathbf{b}$$

The solution of (10.22) for $\mathbf{A}(t) = \mathbf{A}$, $\mathbf{b}(t) = \mathbf{b}$.

10.24
$$\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t-1) \iff \mathbf{x}(t) = \mathbf{A}^t\mathbf{x}(0)$$

A special case of (10.23) where $\mathbf{b} = \mathbf{0}$, and with $\mathbf{A}^0 = \mathbf{I}$.

If **A** is an $n \times n$ diagonalizable matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then the solution in (10.24) can be written as

10.25 $\mathbf{x}(t) = \mathbf{P} \begin{pmatrix} \lambda_1^t & 0 & \dots & 0 \\ 0 & \lambda_2^t & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^t \end{pmatrix} \mathbf{P}^{-1} \mathbf{x}(0)$

An important result.

where \mathbf{P} is a matrix of corresponding linearly independent eigenvectors of \mathbf{A} .

The difference equation (10.22) with $\mathbf{A}(t) = \mathbf{A}$ 10.26 is called stable if $\mathbf{A}^t \mathbf{x}(0)$ converges to the zero vector for every choice of the vector $\mathbf{x}(0)$.

Definition of *stability* of a linear system.

The difference equation (10.22) with $\mathbf{A}(t) = \mathbf{A}$ 10.27 is stable if and only if all the eigenvalues of A have moduli less than 1.

Characterization of stability of a linear system.

If all eigenvalues of $\mathbf{A} = (a_{ij})_{n \times n}$ have moduli less than 1, then every solution $\mathbf{x}(t)$ of $\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t-1) + \mathbf{b},$ $t = 1, 2, \dots$

The solution of an important equation.

converges to the vector $(\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$.

Stability of first-order nonlinear difference equations

10.29 $x_{t+1} = f(x_t), t = 0, 1, 2, \dots$

10.28

10.31

A general first-order difference equation.

An equilibrium state of the difference equation 10.30 (10.29) is a point x^* such that $f(x^*) = x^*$.

 x^* is a fixed point for f. If $x_0 = x^*$, then $x_t = x^*$ for all t = 0, 1, 2, ...

An equilibrium state x^* of (10.29) is locally asymptotically stable if there exists a $\delta > 0$ such that, if $|x_0 - x^*| < \delta$ then $\lim_{t \to \infty} x_t = x^*$.

An equilibrium state x^* is *unstable* if there is a $\delta > 0$ such that $|f(x) - x^*| > |x - x^*|$ for A solution of (10.29)that starts sufficiently close to a locally asymptotically stable equilibrium x^* converges to x^* . A solution that starts close to an unstable equilibrium x^* will move away from x^* , at least to begin with.

If x^* is an equilibrium state for equation (10.29) and f is C^1 in an open interval around x^* , then

• If $|f'(x^*)| < 1$, then x^* is locally asymptoti-10.32 cally stable.

A simple criterion for local stability. See figure (10.37) (a).

• If $|f'(x^*)| > 1$, then x^* is unstable.

every x with $0 < |x - x^*| < \delta$.

A cycle or periodic solution of $x_{t+1} = f(x_t)$ with minimal period n > 0 is a solution such 10.33 that $x_{t+n} = x_t$ for some t, while $x_{t+k} \neq x_t$ for $k = 1, \ldots, n - 1.$

A cycle will repeat itself indefinitely.

The equation $x_{t+1} = f(x_t)$ admits a cycle of period 2 if and only if there exist points ξ_1 and 10.34 ξ_2 such that $f(\xi_1) = \xi_2$ and $f(\xi_2) = \xi_1$.

 ξ_1 and ξ_2 are fixed points of $F = f \circ f$. See figure (10.37) (b). 10.35 A period 2 cycle for $x_{t+1} = f(x_t)$ alternating between ξ_1 and ξ_2 is locally asymptotically stable if every solution starting close to ξ_1 (or equivalently ξ_2) converges to the cycle.

If f is C^1 and $x_{t+1} = f(x_t)$ admits a period 2

- 10.36 If $|f'(\xi_1)f'(\xi_2)| < 1$, then the cycle is locally asymptotically stable.
 - If $|f'(\xi_1)f'(\xi_2)| > 1$, then the cycle is unstable.

The cycle is locally asymptotically stable if ξ_1 and ξ_2 are locally asymptotically stable equilibria of the equation $y_{t+1} = f(f(y_t))$.

An easy consequence of (10.32). The cycle is *unstable* if ξ_1 or ξ_2 (and then both) is an unstable equilibrium of $y_{t+1} = f(f(y_t))$.

Illustrations of (10.32) and (10.34). In figure (a), the sequence x_0, x_1, x_2, \ldots is a solution of (10.29), converging to the equilibrium x^* . The points $P_i = (x_i, x_{i+1})$ are the corresponding points on the graph of f.

References

cycle $\xi_1, \, \xi_2$ then:

Most of the formulas and results are found in e.g. Goldberg (1961), Gandolfo (1996), and Hildebrand (1968). For (10.19) and (10.20), see Farebrother (1973). For (10.29)–(10.36), see Sydsæter et al. (2005).

Chapter 11

Differential equations

First-order equations

11.1
$$\dot{x}(t) = f(t) \iff x(t) = x(t_0) + \int_{t_0}^t f(\tau) d\tau$$

A simple differential equation and its solution. f(t) is a given function and x(t) is the unknown function.

11.2
$$\frac{dx}{dt} = f(t)g(x) \iff \int \frac{dx}{g(x)} = \int f(t) dt$$
Evaluate the integrals. Solve the resulting implicit equation for $x = x(t)$.

A separable differential equation. If g(a) = 0, $x(t) \equiv a$ is a solution.

11.3
$$\dot{x} = g(x/t)$$
 and $z = x/t \implies t \frac{dz}{dt} = g(z) - z$

A projective differential equation. The substitution z = x/t leads to a separable equation for z.

The equation $\dot{x} = B(x-a)(x-b)$ has the solutions $x \equiv a, \quad x \equiv b, \quad x = a + \frac{b-a}{1-Ce^{B(b-a)t}}$

 $a \neq b$. a = 0 gives the logistic equation. C is a constant.

11.5 •
$$\dot{x} + ax = b$$
 $\Leftrightarrow x = Ce^{-at} + \frac{b}{a}$
• $\dot{x} + ax = b(t) \Leftrightarrow x = e^{-at}(C + \int b(t)e^{at} dt)$

Linear first-order differential equations with constant coefficient $a \neq 0$. C is a constant.

11.6
$$\dot{x} + a(t) x = b(t) \iff$$

$$x = e^{-\int a(t) dt} \left(C + \int e^{\int a(t) dt} b(t) dt \right)$$

General linear first-order differential equation. a(t) and b(t) are given. C is a constant.

11.7
$$\dot{x} + a(t) x = b(t) \iff x(t) = x_0 e^{-\int_{t_0}^t a(\xi) d\xi} + \int_{t_0}^t b(\tau) e^{-\int_{\tau}^t a(\xi) d\xi} d\tau$$

 $\dot{x} + a(t)x = b(t)x^r$ has the solution

11.8
$$x(t) = e^{-A(t)} \left[C + (1-r) \int b(t)e^{(1-r)A(t)} dt \right]^{\frac{1}{1-r}}$$

where $A(t) = \int a(t) dt$.

11.9
$$\dot{x} = P(t) + Q(t) x + R(t) x^2$$

The differential equation

(*)
$$f(t,x) + q(t,x) \dot{x} = 0$$

11.10 is called exact if $f'_x(t,x) = g'_t(t,x)$. The solution x = x(t) is then given implicitly by the equation $\int_{t_0}^t f(\tau,x) d\tau + \int_{x_0}^x g(t_0,\xi) d\xi = C$ for some constant C.

A function $\beta(t,x)$ is an integrating factor for (*) in (11.10) if $\beta(t,x)f(t,x)+\beta(t,x)g(t,x)\dot{x}=0$ is exact.

- 11.11 If $(f'_x g'_t)/g$ is a function of t alone, then $\beta(t) = \exp[\int (f'_x g'_t)/g \, dt]$ is an integrating factor.
 - If $(g'_t f'_x)/f$ is a function of x alone, then $\beta(x) = \exp[\int (g'_t f'_x)/f \, dx]$ is an integrating factor

Consider the initial value problem

$$(*)$$
 $\dot{x} = F(t,x), \quad x(t_0) = x_0$

where F(t,x) and $F'_x(t,x)$ are continuous over the rectangle

$$\Gamma = \{ (t, x) : |t - t_0| \le a, |x - x_0| \le b \}$$

11.12 Define

$$M = \max_{(t,x) \in \Gamma} |F(t,x)|, \quad r = \min \bigl(a,b/M\bigr)$$

Then (*) has a unique solution x(t) on the open interval $(t_0 - r, t_0 + r)$, and $|x(t) - x_0| \le b$ in this interval.

Solution of (11.6) with given initial condition $x(t_0) = x_0$.

Bernoulli's equation and its solution $(r \neq 1)$. C is a constant. (If r = 1, the equation is separable.)

Riccati's equation. Not analytically solvable in general. The substitution x = u + 1/z works if we know a particular solution u = u(t).

An *exact* equation and its solution.

Results which occasionally can be used to solve equation (*) in(11.10).

A (local) existence and uniqueness theorem.

Consider the initial value problem

$$\dot{x} = F(t, x), \qquad x(t_0) = x_0$$

Suppose that F(t,x) and $F'_x(t,x)$ are continuous for all (t,x). Suppose too that there exist continuous functions a(t) and b(t) such that

(*)
$$|F(t,x)| \le a(t)|x| + b(t)$$
 for all (t,x)

Given an arbitrary point (t_0, x_0) , there exists a unique solution x(t) of the initial value problem, defined on $(-\infty, \infty)$.

If (*) is replaced by the condition

$$xF(t,x) \le a(t)|x|^2 + b(t)$$
 for all x and all $t \ge t_0$

then the initial value problem has a unique solution defined on $[t_0, \infty)$.

Global existence and uniqueness.

 $11.14 \quad \dot{x} = F(x)$

An autonomous firstorder differential equation. If F(a) = 0, then ais called an *equilibrium*.

11.15

11.16

If a solution x starts close to a_1 , then x(t) will approach a_1 as t increases. On the other hand, if x starts close to a_2 (but not $at \ a_2$), then x(t) will move away from a_2 as t increases. a_1 is

a locally stable equilibrium state for $\dot{x} = F(x)$, whereas a_2 is unstable.

• F(a) = 0 and $F'(a) < 0 \Rightarrow a$ is a locally asymptotically stable equilibrium.

On stability of equilibrium for (11.14). The precise definitions of stability is given in (11.52).

• F(a) = 0 and $F'(a) > 0 \Rightarrow a$ is an unstable equilibrium.

An interesting result.

If F is a C^1 function, every solution of the autonomous differential equation $\dot{x} = F(x)$ is either constant or strictly monotone on the interval where it is defined.

Suppose that x = x(t) is a solution of

$$\dot{x} = F(x)$$

11.18 where the function F is continuous. Suppose that x(t) tends to a (finite) limit a as t tends to ∞ . Then a must be an equilibrium state for the equation—i.e. F(a) = 0.

A convergent solution converges to an equilibrium

Higher order equations

11.19
$$\frac{d^n x}{dt^n} + a_1(t)\frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t)\frac{dx}{dt} + a_n(t)x = f(t)$$

The general linear nthorder differential equation. When f(t) is not
0, the equation is called
inhomogeneous.

11.20
$$\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t)x = 0$$

The homogeneous equation associated with (11.19).

The functions $u_1(t), \ldots, u_m(t)$ are linearly independent if the equation

11.21
$$C_1 u_1(t) + \dots + C_m u_m(t) = 0$$

holds for all t only if the constants C_1, \ldots, C_m are all 0. The functions are *linearly dependent* if they are not linearly independent.

Definition of linear independence and dependence.

If $u_1(t), \ldots, u_n(t)$ are linearly independent solutions of the homogeneous equation (11.20) and $u^*(t)$ is some particular solution of the non-homogeneous equation (11.19), then the general solution of (11.20) is

11.22
$$x(t) = C_1 u_1(t) + \dots + C_n u_n(t)$$

and the general solution of (11.19) is

$$x(t) = C_1 u_1(t) + \dots + C_n u_n(t) + u^*(t)$$

where C_1, \ldots, C_n are arbitrary constants.

The structure of the solutions of (11.20) and (11.19). (Note that it is not possible, in general, to find analytic expressions for the required n solutions $u_1(t), \ldots, u_n(t)$ of (11.20).)

Method for finding a particular solution of (11.19) if u_1, \ldots, u_n are n linearly independent solutions of (11.20): Solve the system

$$\dot{C}_1(t)u_1 + \dots + \dot{C}_n(t)u_n = 0
\dot{C}_1(t)\dot{u}_1 + \dots + \dot{C}_n(t)\dot{u}_n = 0$$

11.23

11.24

11.25

$$\dot{C}_1(t)u_1^{(n-2)} + \dots + \dot{C}_n(t)u_n^{(n-2)} = 0$$

$$\dot{C}_1(t)u_1^{(n-1)} + \dots + \dot{C}_n(t)u_n^{(n-1)} = b(t)$$

for $\dot{C}_1(t), \ldots, \dot{C}_n(t)$. Integrate to find $C_1(t), \ldots, C_n(t)$. Then one particular solution of (11.19) is $u^*(t) = C_1(t)u_1 + \cdots + C_n(t)u_n$.

 $\ddot{x} + a\dot{x} + bx = 0$ has the general solution:

- If $\frac{1}{4}a^2 b > 0$: $x = C_1e^{r_1t} + C_2e^{r_2t}$ where $r_{1,2} = -\frac{1}{2}a \pm \sqrt{\frac{1}{4}a^2 - b}$.
- If $\frac{1}{4}a^2 b = 0$: $x = (C_1 + C_2t)e^{-at/2}$.
 - If $\frac{1}{4}a^2 b < 0$: $x = Ae^{\alpha t}\cos(\beta t + \omega)$, where $\alpha = -\frac{1}{2}a$, $\beta = \sqrt{b - \frac{1}{4}a^2}$.

 $\ddot{x} + a\dot{x} + bx = f(t), \ b \neq 0$, has a particular solution $u^* = u^*(t)$:

- $\bullet \quad f(t) = A: \quad u^* = A/b$
- f(t) = At + B: $u^* = \frac{A}{b}t + \frac{bB aA}{b^2}$
- $f(t) = At^2 + Bt + C$: $u^* = \frac{A}{b}t^2 + \frac{(bB - 2aA)}{b^2}t + \frac{Cb^2 - (2A + aB)b + 2a^2A}{b^3}$
- $f(t) = pe^{qt}$: $u^* = pe^{qt}/(q^2 + aq + b)$ (if $q^2 + aq + b \neq 0$).

 $t^2\ddot{x} + at\dot{x} + bx = 0$, t > 0, has the general solution:

- If $(a-1)^2 > 4b$: $x = C_1 t^{r_1} + C_2 t^{r_2}$, 11.26 where $r_{1,2} = -\frac{1}{2} \left[(a-1) \pm \sqrt{(a-1)^2 - 4b} \right]$.
 - If $(a-1)^2 = 4b$: $x = (C_1 + C_2 \ln t) t^{(1-a)/2}$.
 - If $(a-1)^2 < 4b$: $x = At^{\lambda} \cos(\mu \ln t + \omega)$, where $\lambda = \frac{1}{2}(1-a)$, $\mu = \frac{1}{2}\sqrt{4b - (a-1)^2}$.

The method of variation of parameters, which always makes it possible to find a particular solution of (11.19), provided one knows the general solution of (11.20). Here $u_j^{(i)} = d^i u_j/dt^i$ is the *i*th derivative of u_j .

The solution of a homogeneous second-order linear differential equation with constant coefficients a and b. C_1 , C_2 , A, and ω are constants.

Particular solutions of $\ddot{x} + a\dot{x} + bx = f(t)$. If $f(t) = pe^{qt}$, $q^2 + aq + b = 0$, and $2q + a \neq 0$, then $u^* = pte^{qt}/(2q + a)$ is a solution. If $f(t) = pe^{qt}$, $q^2 + aq + b = 0$, and 2q + a = 0, then $u^* = \frac{1}{2}pt^2e^{qt}$ is a solution.

The solutions of Euler's equation of order 2. C_1 , C_2 , A, and ω are arbitrary constants.

11.27
$$\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x = f(t)$$

The general linear differential equation of order n with constant coefficients.

11.28
$$\frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x = 0$$

The homogeneous equation associated with (11.27).

11.29
$$r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$$

The characteristic equation associated with (11.27) and (11.28).

To obtain n linearly independent solutions of (11.28): Find all roots of (11.29).

- A real root r_i with multiplicity 1 gives rise to a solution e^{r_it}.
- A real root r_j with multiplicity p > 1 gives rise to the solutions e^{r_jt}, te^{r_jt},..., t^{p-1}e^{r_jt}.
- 11.30 A pair of complex roots $r_k = \alpha + i\beta$, $\bar{r}_k = \alpha i\beta$ with multiplicity 1 gives rise to the solutions $e^{\alpha t} \cos \beta t$ and $e^{\alpha t} \sin \beta t$.
 - A pair of complex roots $r_e = \lambda + i\mu$, $\bar{r}_e = \lambda i\mu$ with multiplicity q > 1, gives rise to the solutions $u, v, tu, tv, \ldots, t^{q-1}u, t^{q-1}v$, where $u = e^{\lambda t} \cos \mu t$ and $v = e^{\lambda t} \sin \mu t$.

General method for finding n linearly independent solutions of (11.28).

11.31
$$x = x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} + \dots + C_n e^{r_n t}$$

The general solution of (11.28) if the roots r_1, \ldots, r_n of (11.29) are all real and different.

Equation (11.28) (or (11.27)) is stable (glob-11.32 ally asymptotically stable) if every solution of (11.28) tends to 0 as $t \to \infty$. Definition of stability for linear equations with constant coefficients.

Equation (11.28) is stable \iff all the roots of the characteristic equation (11.29) have negative real parts.

Stability criterion for (11.28).

11.34 (11.28) is stable $\Rightarrow a_i > 0$ for all i = 1, ..., n

Necessary condition for the stability of (11.28).

11.35
$$\mathbf{A} = \begin{pmatrix} a_1 & a_3 & a_5 & \dots & 0 & 0 \\ a_0 & a_2 & a_4 & \dots & 0 & 0 \\ 0 & a_1 & a_3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1} & 0 \\ 0 & 0 & 0 & \dots & a_{n-2} & a_n \end{pmatrix}$$

11.36
$$(a_1)$$
, $\begin{pmatrix} a_1 & 0 \\ 1 & a_2 \end{pmatrix}$, $\begin{pmatrix} a_1 & a_3 & 0 \\ 1 & a_2 & 0 \\ 0 & a_1 & a_3 \end{pmatrix}$

11.37 (11.28) is stable
$$\iff$$

$$\begin{cases} \text{all leading principal minors of } \mathbf{A} \text{ in (11.35)} \\ \text{(with } a_0 = 1) \text{ are positive.} \end{cases}$$

- $\dot{x} + a_1 x = f(t)$ is stable $\iff a_1 > 0$
- $\ddot{x} + a_1 \dot{x} + a_2 x = f(t)$ is stable \iff $\begin{cases} a_1 > 0 \\ a_2 > 0 \end{cases}$
- $\ddot{x} + a_1\ddot{x} + a_2\dot{x} + a_3x = f(t)$ is stable $\iff a_1 > 0, \ a_3 > 0 \text{ and } a_1a_2 > a_3$

A matrix associated with the coefficients in (11.28) (with $a_0 = 1$). The kth column of this matrix is ... $a_{k+1} a_k a_{k-1} \ldots$, where the element a_k is on the main diagonal. An element a_{k+j} with k+j negative or greater than n, is set to 0.)

The matrix **A** in (11.35) for n = 1, 2, 3, with $a_0 = 1$.

Routh-Hurwitz's stability conditions.

Special cases of (11.37). (It is easily seen that the conditions are equivalent to requiring that the leading principal minors of the matrices in (11.36) are all positive.)

Systems of differential equations

11.39
$$\frac{dx_1}{dt} = f_1(t, x_1, \dots, x_n) \\
\vdots \\
\frac{dx_n}{dt} = f_n(t, x_1, \dots, x_n)$$
 $\iff \dot{\mathbf{x}} = \mathbf{F}(t, \mathbf{x})$

11.41
$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t), \ \mathbf{x}(t_0) = \mathbf{x}^0$$

A normal (nonautonomous) system of differential equations. Here $\mathbf{x} = (x_1, \dots, x_n)$, $\dot{\mathbf{x}} = (\dot{x}_1, \dots, \dot{x}_n)$, and $\mathbf{F} = (f_1, \dots, f_n)$.

A linear system of differential equations.

A matrix formulation of (11.40), with an initial condition. $\mathbf{x}, \dot{\mathbf{x}}$, and $\mathbf{b}(t)$ are column vectors and $\mathbf{A}(t) = (a_{ij}(t))_{n \times n}$.

11.42
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(t_0) = \mathbf{x}^0 \iff \mathbf{x} = e^{\mathbf{A}(t-t_0)}\mathbf{x}^0$$

The solution of (11.41) for $\mathbf{A}(t) = \mathbf{A}$, $\mathbf{b}(t) = \mathbf{0}$. (For matrix exponentials, see (19.30).)

Let $\mathbf{p}_j(t) = (p_{1j}(t), \dots, p_{nj}(t))', \ j = 1, \dots, n$ be n linearly independent solutions of the homogeneous differential equation $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$, with $\mathbf{p}_j(t_0) = \mathbf{e}_j, \ j = 1, \dots, n$, where \mathbf{e}_j is the jth standard unit vector in \mathbb{R}^n . Then the resolvent of the equation is the matrix

The definition of the resolvent of a homogeneous linear differential equation. Note that $\mathbf{P}(t_0, t_0) = \mathbf{I}_n$.

$$\mathbf{P}(t,t_0) = \begin{pmatrix} p_{11}(t) & \dots & p_{1n}(t) \\ \vdots & \ddots & \vdots \\ p_{n1}(t) & \dots & p_{nn}(t) \end{pmatrix}$$

11.44
$$\mathbf{x} = \mathbf{P}(t, t_0)\mathbf{x}^0 + \int_{t_0}^t \mathbf{P}(t, s)\mathbf{b}(s) ds$$

The solution of (11.41).

If $\mathbf{P}(t,s)$ is the resolvent of

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$$

11.45 then $\mathbf{P}(s,t)'$ (the transpose of $\mathbf{P}(s,t)$) is the resolvent of

A useful fact.

$$\dot{\mathbf{z}} = -\mathbf{A}(t)'\mathbf{z}$$

Consider the nth-order differential equation

$$(*) \ \frac{d^n x}{dt^n} = F\left(t, x, \frac{dx}{dt}, \dots, \frac{d^{n-1}x}{dt^{n-1}}\right)$$

By introducing new variables,

$$y_1 = x$$
, $y_2 = \frac{dx}{dt}$, ..., $y_n = \frac{d^{n-1}x}{dt^{n-1}}$

11.46 one can transform (*) into a normal system:

$$\dot{y}_1 = y_2
\dot{y}_2 = y_3
\dots
\dot{y}_{n-1} = y_n
\dot{y}_n = F(t, y_1, y_2, \dots, y_n)$$

Any nth-order differential equation can be transformed into a normal system by introducing new unknowns. (A large class of systems of higher order differential equations can be transformed into a normal system by introducing new unknowns in a similar way.)

Consider the initial value problem

(*)
$$\dot{\mathbf{x}} = \mathbf{F}(t, \mathbf{x}), \quad \mathbf{x}(t_0) = \mathbf{x}^0$$

where $\mathbf{F} = (f_1, \dots, f_n)$ and its first-order partials w.r.t. x_1, \dots, x_n are continuous over the set

11.47
$$\Gamma = \{ (t, \mathbf{x}) : |t - t_0| \le a, \|\mathbf{x} - \mathbf{x}^0\| \le b \}$$

Define

$$M = \max_{(t,\mathbf{x})\in\Gamma} \|\mathbf{F}(t,\mathbf{x})\|, \quad r = \min(a, b/M)$$

Then (*) has a unique solution $\mathbf{x}(t)$ on the open interval $(t_0 - r, t_0 + r)$, and $\|\mathbf{x}(t) - \mathbf{x}^0\| \le b$ in this interval.

Consider the initial value problem

(1)
$$\dot{\mathbf{x}} = \mathbf{F}(t, \mathbf{x}), \quad \mathbf{x}(t_0) = \mathbf{x}^0$$

where $\mathbf{F} = (f_1, \dots, f_n)$ and its first-order partials w.r.t. x_1, \dots, x_n are continuous for all (t, \mathbf{x}) . Assume, moreover, that there exist continuous functions a(t) and b(t) such that

11.48 (2)
$$\|\mathbf{F}(t, \mathbf{x})\| \le a(t)\|\mathbf{x}\| + b(t)$$
 for all (t, \mathbf{x}) or

(3)
$$\mathbf{x} \cdot \mathbf{F}(t, \mathbf{x}) \le a(t) ||\mathbf{x}||^2 + b(t)$$
 for all (t, \mathbf{x})

Then, given any point (t_0, \mathbf{x}^0) , there exists a unique solution $\mathbf{x}(t)$ of (1) defined on $(-\infty, \infty)$.

The inequality (2) is satisfied, in particular, if for all (t, \mathbf{x}) ,

(4)
$$\|\mathbf{F}'_{\mathbf{x}}(t,\mathbf{x})\| \le c(t)$$
 for a continuous $c(t)$

A (local) existence and uniqueness theorem.

A global existence and uniqueness theorem. In (4) any matrix norm for $\mathbf{F}'_{\mathbf{x}}(t,\mathbf{x})$ can be used. (For matrix norms, see (19.26).)

Autonomous systems

11.50
$$\mathbf{a} = (a_1, \dots, a_n)$$
 is an equilibrium point for the system (11.49) if $f_i(\mathbf{a}) = 0, i = 1, \dots, n$.

11.51 If
$$\mathbf{x}(t) = (x_1(t), \dots, x_n(t))$$
 is a solution of the system (11.49) on an interval I , then the set of points $\mathbf{x}(t)$ in \mathbb{R}^n trace out a curve in \mathbb{R}^n called a trajectory (or an orbit) for the system.

An autonomous system of first-order differential equations.

Definition of an equilibrium point for (11.49).

Definition of a trajectory (or an orbit), also called an *integral curve*.

An equilibrium point **a** for (11.49) is (locally) stable if all solutions that start close to **a** stay close to **a**: For every $\varepsilon > 0$ there is a $\delta > 0$ such that if $\|\mathbf{x} - \mathbf{a}\| < \delta$, then there exists a solution $\varphi(t)$ of (11.49), defined for $t \geq 0$, with $\varphi(0) = \mathbf{x}$, that satisfies

11.52 $\|\varphi(t) - \mathbf{a}\| < \varepsilon$ for all t > 0

If **a** is stable and there exists a $\delta' > 0$ such that

$$\|\mathbf{x} - \mathbf{a}\| < \delta' \implies \lim_{t \to \infty} \|\boldsymbol{\varphi}(t) - \mathbf{a}\| = 0$$

then **a** is (locally) asymptotically stable. If **a** is not stable, it is called unstable. Definition of (local) stability and unstability.

Illustrations of stability concepts. The curves with arrows attached are possible trajectories.

If every solution of (11.49), whatever its initial point, converges to a unique equilibrium point **a**, then **a** is globally asymptotically stable.

Global asymptotic stability.

Less technical illustrations of stability concepts.

Suppose $\mathbf{x}(t)$ is a solution of system (11.49) with $\mathbf{F} = (f_1, \dots, f_n)$ a C^1 function, and with $\mathbf{x}(t_0 + T) = \mathbf{x}(t_0)$ for some t_0 and some T > 0. Then $\mathbf{x}(t + T) = \mathbf{x}(t)$ for all t.

If a solution of (11.49) returns to its starting point after a length of time T, then it must be periodic, with period T.

Suppose that a solution (x(t), y(t)) of the sys-

$$\dot{x} = f(x, y), \quad \dot{y} = g(x, y)$$

stays within a compact region of the plane that 11.57 contains no equilibrium point of the system. Its trajectory must then spiral into a closed curve that is itself the trajectory of a periodic solution of the system.

The Poincaré-Bendixson theorem.

A Liapunov theorem. The equilibrium point a is called a sink if all the eigenvalues of A have

negative real parts. (It is called a source if all the eigenvalues of A have

positive real parts.)

Let a be an equilibrium point for (11.49) and

$$\mathbf{A} = \begin{pmatrix} \frac{\partial f_1(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{a})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{a})}{\partial x_1} & \cdots & \frac{\partial f_n(\mathbf{a})}{\partial x_n} \end{pmatrix}$$

11.58

If all the eigenvalues of A have negative real parts, then **a** is (locally) asymptotically stable.

If at least one eigenvalue has a positive real part, then a is unstable.

A necessary and sufficient condition for all the eigenvalues of a real $n \times n$ matrix $\mathbf{A} = (a_{ij})$ to have negative real parts is that the following inequalities hold:

- For n=2: $\operatorname{tr}(\mathbf{A})<0$ and $|\mathbf{A}|>0$

• For
$$n = 3$$
: $\operatorname{tr}(\mathbf{A}) < 0$, $|\mathbf{A}| < 0$, and
$$\begin{vmatrix} a_{22} + a_{33} & -a_{12} & -a_{13} \\ -a_{21} & a_{11} + a_{33} & -a_{23} \\ -a_{31} & -a_{32} & a_{11} + a_{22} \end{vmatrix} < 0$$

Useful characterizations of stable matrices of orders 2 and 3. (An $n \times n$ matrix is often called stable if all its eigenvalues have negative real parts.)

Let (a, b) be an equilibrium point for the system $\dot{x} = f(x, y), \quad \dot{y} = g(x, y)$

and define

11.60
$$\mathbf{A} = \begin{pmatrix} \frac{\partial f(a,b)}{\partial x} & \frac{\partial f(a,b)}{\partial y} \\ \frac{\partial g(a,b)}{\partial x} & \frac{\partial g(a,b)}{\partial y} \end{pmatrix}$$

Then, if $tr(\mathbf{A}) < 0$ and $|\mathbf{A}| > 0$, (a, b) is locally asymptotically stable.

A special case of (11.58). Stability in terms of the signs of the trace and the determinant of \mathbf{A} , valid if n=2.

An equilibrium point **a** for (11.49) is called *hy-*11.61 *perbolic* if the matrix **A** in (11.58) has no eigenvalue with real part zero.

Definition of a hyperbolic equilibrium point.

11.62 A hyperbolic equilibrium point for (11.49) is either unstable or asymptotically stable.

An important result.

Let (a,b) be an equilibrium point for the system $\dot{x}=f(x,y),\quad \dot{y}=g(x,y)$

and define

$$\mathbf{A}(x,y) = \begin{pmatrix} f_1'(x,y) & f_2'(x,y) \\ g_1'(x,y) & g_2'(x,y) \end{pmatrix}$$

Assume that the following three conditions are satisfied:

11.63 (a) $\operatorname{tr}(\mathbf{A}(x,y)) = f_1'(x,y) + g_2'(x,y) < 0$ for all (x,y) in \mathbb{R}^2

(b)
$$|\mathbf{A}(x,y)| = \begin{vmatrix} f_1'(x,y) & f_2'(x,y) \\ g_1'(x,y) & g_2'(x,y) \end{vmatrix} > 0$$

for all (x,y) in \mathbb{R}^2

(c) $f'_1(x,y)g'_2(x,y) \neq 0$ for all (x,y) in \mathbb{R}^2 or $f'_2(x,y)g'_1(x,y) \neq 0$ for all (x,y) in \mathbb{R}^2

Then (a, b) is globally asymptotically stable.

Olech's theorem.

 $V(\mathbf{x}) = V(x_1, \dots, x_n)$ is a Liapunov function for system (11.49) in an open set Ω containing an equilibrium point \mathbf{a} if

11.64 • $V(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{a}$ in Ω , $V(\mathbf{a}) = 0$, and

•
$$\dot{V}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial V(\mathbf{x})}{\partial x_i} \frac{dx_i}{dt} = \sum_{i=1}^{n} \frac{\partial V(\mathbf{x})}{\partial x_i} f_i(\mathbf{x}) \le 0$$

for all $\mathbf{x} \ne \mathbf{a}$ in Ω .

Definition of a *Liapunov* function.

Let **a** be an equilibrium point for (11.49) and suppose there exists a Liapunov function $V(\mathbf{x})$ for the system in an open set Ω containing **a**. Then **a** is a stable equilibrium point. If also

 $\dot{V}(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{a}$ in Ω then \mathbf{a} is locally asymptotically stable.

11.65

A Liapunov theorem.

The modified Lotka-Volterra model

$$\dot{x} = kx - axy - \varepsilon x^2, \qquad \dot{y} = -hy + bxy - \delta y^2$$

has an asymptotically stable equilibrium

$$(x_0, y_0) = \left(\frac{ah + k\delta}{ab + \delta\varepsilon}, \frac{bk - h\varepsilon}{ab + \delta\varepsilon}\right)$$

The function $V(x,y) = H(x,y) - H(x_0,y_0)$, where

$$H(x,y) = b(x - x_0 \ln x) + a(y - y_0 \ln y)$$

is a Liapunov function for the system, with $\dot{V}(x,y) < 0$ except at the equilibrium point.

Let (a, b) be an equilibrium point for the system

$$\dot{x} = f(x, y), \quad \dot{y} = g(x, y)$$

and define **A** as the matrix in (11.60). If $|\mathbf{A}| < 0$, there exist (up to a translation of t) precisely two solutions $(x_1(t), y_1(t))$ and $(x_2(t), y_2(t))$ defined on an interval $[t_0, \infty)$ and converging to (a, b). These solutions converge to (a, b) from opposite directions, and both are tangent to the line through (a, b) parallel to the eigenvector corresponding to the negative eigenvalue. Such an equilibrium is called a $saddle\ point$.

Example of the use of (11.65): x is the number of rabbits, y is the number of foxes. $(a, b, h, k, \delta, \text{ and } \varepsilon \text{ are positive, } bk > h\varepsilon.)$ $\varepsilon = \delta = 0$ gives the classical Lotka–Volterra model with $\dot{V} = 0$ everywhere, and integral curves that are closed curves around the equilibrium point.

A local saddle point theorem. ($|\mathbf{A}| < 0$ if and only if the eigenvalues of \mathbf{A} are real and of opposite signs.) For a global version of this result, see Seierstad and Sydsæter (1987), Sec. 3.10, Theorem 19.)

Partial differential equations

Method for finding solutions of

(*)
$$P(x,y,z)\frac{\partial z}{\partial x} + Q(x,y,z)\frac{\partial z}{\partial y} = R(x,y,z)$$

• Find the solutions of the system

$$\frac{dy}{dx} = \frac{Q}{P}, \quad \frac{dz}{dx} = \frac{R}{P}$$

where x is the independent variable. If the solutions are given by $y = \varphi_1(x, C_1, C_2)$ and $z = \varphi_2(x, C_1, C_2)$, solve for C_1 and C_2 to obtain $C_1 = u(x, y, z)$ and $C_2 = v(x, y, z)$.

• If Φ is an arbitrary C^1 function of two variables, and at least one of the functions u and v contains z, then z = z(x, y) defined implicitly by the equation

$$\Phi(u(x,y,z),v(x,y,z)) = 0,$$

is a solution of (*).

The general quasilinear first-order partial differential equation and a solution method. The method does not, in general, give all the solutions of (*). (See Zachmanoglou and Thoe (1986), Chap. II for more details.)

11.68

11.66

11.67

The following system of partial differential equations

11.69
$$\frac{\partial z(\mathbf{x})}{\partial x_1} = f_1(\mathbf{x}, z(\mathbf{x}))$$

$$\frac{\partial z(\mathbf{x})}{\partial x_2} = f_2(\mathbf{x}, z(\mathbf{x}))$$

$$\vdots$$

$$\frac{\partial z(\mathbf{x})}{\partial x_n} = f_n(\mathbf{x}, z(\mathbf{x}))$$

in the unknown function $z(\mathbf{x}) = z(x_1, \dots, x_n)$, has a solution if and only if the $n \times n$ matrix of first-order partial derivatives of f_1, \dots, f_n w.r.t. x_1, \dots, x_n is symmetric.

Frobenius's theorem. The functions f_1, \ldots, f_n are C^1 .

References

Braun (1993) is a good reference for ordinary differential equations. For (11.10)–(11.18) see e.g. Sydsæter et al. (2005). For (11.35)–(11.38) see Gandolfo (1996) or Sydsæter et al. (2005). Beavis and Dobbs (1990) have most of the qualitative results and also economic applications. For (11.68) see Sneddon (1957) or Zachmanoglou and Thoe (1986). For (11.69) see Hartman (1982). For economic applications of (11.69) see Mas-Colell, Whinston, and Green (1995).

Chapter 12

Topology in Euclidean space

12.1
$$B(\mathbf{a}; r) = \{ \mathbf{x} : ||\mathbf{x} - \mathbf{a}|| < r \}$$
 $(r > 0)$

- A point \mathbf{a} in $S \subset \mathbb{R}^n$ is an *interior point* of S if there exists an n-ball with center at \mathbf{a} , all of whose points belong to S.
- 12.2 A point $\mathbf{b} \in \mathbb{R}^n$ (not necessarily in S) is a boundary point of S if every n-ball with center at \mathbf{b} contains at least one point in S and at least one point not in S.

A set S in \mathbb{R}^n is called

- open if all its points are interior points,
- closed if $\mathbb{R}^n \setminus S$ is open,
 - bounded if there exists a number M such that $\|\mathbf{x}\| \le M$ for all \mathbf{x} in S,
 - compact if it is closed and bounded.
- 12.4 A set S in \mathbb{R}^n is closed if and only if it contains all its boundary points. The set \bar{S} consisting of S and all its boundary points is called the closure of S.
- 12.5 A set S in \mathbb{R}^n is called a *neighborhood* of a point \mathbf{a} in \mathbb{R}^n if \mathbf{a} is an interior point of S.
- A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n converges to \mathbf{x} if for 12.6 every $\varepsilon > 0$ there exists an integer N such that $\|\mathbf{x}_k \mathbf{x}\| < \varepsilon$ for all $k \ge N$.
- A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is a Cauchy sequence if 12.7 for every $\varepsilon > 0$ there exists an integer N such that $\|\mathbf{x}_j \mathbf{x}_k\| < \varepsilon$ for all $j, k \geq N$.

Definition of an *open* n-ball with radius r and center \mathbf{a} in \mathbb{R}^n . ($\| \|$ is defined in (18.13).)

Definition of interior points and boundary points.

Important definitions. $\mathbb{R}^n \setminus S$ = $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \notin S\}.$

A useful characterization of closed sets, and a definition of the closure of a set.

Definition of a neighborhood.

Convergence of a sequence in \mathbb{R}^n . If the sequence does not converge, it *diverges*.

Definition of a Cauchy sequence.

12.15

12.16

12.8 A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n converges if and only if it is a Cauchy sequence.

Cauchy's convergence criterion.

A set S in \mathbb{R}^n is closed if and only if the limit 12.9 $\mathbf{x} = \lim_k \mathbf{x}_k$ of each convergent sequence $\{\mathbf{x}_k\}$ of points in S also lies in S.

Characterization of a closed set.

Let $\{\mathbf{x}_k\}$ be a sequence in \mathbb{R}^n , and let $k_1 < k_2 < 12.10$ $k_3 < \cdots$ be an increasing sequence of integers. Then $\{\mathbf{x}_{k_j}\}_{j=1}^{\infty}$, is called a *subsequence* of $\{\mathbf{x}_k\}$.

Definition of a subsequence.

A set S in \mathbb{R}^n is compact if and only if every sequence of points in S has a subsequence that converges to a point in S.

Characterization of a compact set.

A collection \mathcal{U} of open sets is said to be an *open* covering of the set S if every point of S lies in at least one of the sets from \mathcal{U} . The set S has the finite covering property if whenever \mathcal{U} is an open covering of S, then a finite subcollection of the sets in \mathcal{U} covers S.

A useful concept.

12.13 A set S in \mathbb{R}^n is compact if and only if it has the finite covering property.

The Heine–Borel theorem.

 $f: M \subset \mathbb{R}^n \to \mathbb{R}$ is continuous at \mathbf{a} in M if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(\mathbf{x}) - f(\mathbf{a})| < \varepsilon$

Definition of a continuous function of n variables.

for all \mathbf{x} in M with $\|\mathbf{x} - \mathbf{a}\| < \delta$.

Definition of a continuous vector function of n variables.

The function $\mathbf{f} = (f_1, \dots, f_m) : M \subset \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at a point \mathbf{a} in M if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

 $\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})\| < \varepsilon$ for all \mathbf{x} in M with $\|\mathbf{x} - \mathbf{a}\| < \delta$.

Let $\mathbf{f} = (f_1, \dots, f_m)$ be a function from $M \subset \mathbb{R}^n$ into \mathbb{R}^m , and let \mathbf{a} be a point in M. Then:

- **f** is continuous at **a** if and only if each f_i is continuous at **a** according to definition (12.14).
- **f** is continuous at **a** if and only if $\mathbf{f}(\mathbf{x}_k) \to \mathbf{f}(\mathbf{a})$ for every sequence $\{\mathbf{x}_k\}$ in M that converges to **a**.

Characterizations of a continuous vector function of n variables.

A function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at each 12.17 point \mathbf{x} in \mathbb{R}^n if and only if $\mathbf{f}^{-1}(T)$ is open (closed) for every open (closed) set T in \mathbb{R}^m .

Characterization of a continuous vector function from \mathbb{R}^n to \mathbb{R}^m .

If **f** is a continuous function of \mathbb{R}^n into \mathbb{R}^m and 12.18 M is a compact set in \mathbb{R}^n , then $\mathbf{f}(M)$ is compact.

Continuous functions map compact sets onto compact sets.

Given a set A in \mathbb{R}^n . The relative ball $B^A(\mathbf{a}; r)$ 12.19 with radius r around $\mathbf{a} \in A$ is defined by the formula $B^A(\mathbf{a}; r) = B(\mathbf{a}; r) \cap A$.

Definition of a relative ball.

Relative interior points, relative boundary points, relatively open sets, and relatively closed sets are defined in the same way as the ordinary versions of these concepts, except that \mathbb{R}^n is replaced by a subset A, and balls by relative balls.

Relative topology concepts.

• $U \subset A$ is relatively open in $A \subset \mathbb{R}^n$ if and only if there exists an open set V in \mathbb{R}^n such that $U = V \cap A$.

• $F \subset A$ is relatively closed in $A \subset \mathbb{R}^n$ if and

12.21

12.22

12.23

Characterizations of relatively open and relatively closed subsets of a set $A \subset \mathbb{R}^n$.

only if there exists a closed set H in \mathbb{R}^n such that $F = H \cap A$.

A characterization of continuity that applies to functions whose domain is not the whole of \mathbb{R}^n .

A function **f** from $S \subset \mathbb{R}^n$ to \mathbb{R}^m is continuous if and only if either of the following conditions are satisfied:

• $\mathbf{f}^{-1}(U)$ is relatively open in S for each open

• $\mathbf{f}^{-1}(T)$ is relatively closed in S for each

A function $\mathbf{f}: M \subset \mathbb{R}^n \to \mathbb{R}^m$ is called *uniformly continuous* on the set $S \subset M$ if for each $\varepsilon > 0$ there exists a $\delta > 0$ (depending on ε but NOT on \mathbf{x} and \mathbf{y}) such that

Definition of uniform continuity of a function from \mathbb{R}^n to \mathbb{R}^m .

 $||f(\mathbf{x}) - f(\mathbf{y})|| < \varepsilon$

set U in \mathbb{R}^m .

closed set T in \mathbb{R}^m .

for all \mathbf{x} and \mathbf{y} in S with $\|\mathbf{x} - \mathbf{y}\| < \delta$.

 $\begin{array}{ccc} & \text{If } \mathbf{f}: M \subset \mathbb{R}^n \to \mathbb{R}^m \text{ is continuous and the set} \\ 12.24 & S \subset M \text{ is compact, then } \mathbf{f} \text{ is uniformly continuous on } S. \end{array}$

Continuous functions on compact sets are uniformly continuous.

12.28

Let $\{\mathbf{f}_n\}$ be a sequence of functions defined on a set $S \subset \mathbb{R}^n$ and with range in \mathbb{R}^m . The se-12.25 quence $\{\mathbf{f}_n\}$ is said to *converge pointwise* to a function \mathbf{f} on S, if the sequence $\{\mathbf{f}_n(\mathbf{x})\}$ (in \mathbb{R}^m) converges to $\mathbf{f}(\mathbf{x})$ for each \mathbf{x} in S.

Definition of (pointwise) convergence of a sequence of functions.

A sequence $\{\mathbf{f}_n\}$ of functions defined on a set $S \subset \mathbb{R}^n$ and with range in \mathbb{R}^m , is said to *converge uniformly* to a function \mathbf{f} on S, if for each $\varepsilon > 0$ there is a natural number $N(\varepsilon)$ (depending on ε but NOT on \mathbf{x}) such that

Definition of uniform convergence of a sequence of functions.

$$\|\mathbf{f}_n(\mathbf{x}) - \mathbf{f}(\mathbf{x})\| < \varepsilon$$
 for all $n \ge N(\varepsilon)$ and all \mathbf{x} in S .

A correspondence E from a set A to a

A correspondence F from a set A to a set B is a rule that maps each x in A to a subset F(x) of B. The graph of F is the set

 $graph(F) = \{(a, b) \in A \times B : b \in F(a)\}\$

Definition of a correspondence and its graph.

The correspondence $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ has a closed graph if for every pair of convergent sequences $\{\mathbf{x}_k\}$ in X and $\{\mathbf{y}_k\}$ in \mathbb{R}^m with $\mathbf{y}_k \in \mathbf{F}(\mathbf{x}_k)$ and $\lim_k \mathbf{x}_k = \mathbf{x} \in X$, the limit $\lim_k \mathbf{y}_k$ belongs to $\mathbf{F}(\mathbf{x})$.

Definition of a correspondence with a *closed* graph.

Thus **F** has a closed graph if and only if $\operatorname{graph}(\mathbf{F})$ is a relatively closed subset of the set $X \times \mathbb{R}^m \subset \mathbb{R}^n \times \mathbb{R}^m$.

The correspondence $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is said to be lower hemicontinuous at \mathbf{x}^0 if, for each 12.29 \mathbf{y}^0 in $\mathbf{F}(\mathbf{x}^0)$ and each neighborhood U of \mathbf{y}^0 , there exists a neighborhood N of \mathbf{x}^0 such that $\mathbf{F}(\mathbf{x}) \cap U \neq \emptyset$ for all \mathbf{x} in $N \cap X$.

Definition of lower hemicontinuity of a correspondence.

The correspondence $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is said to be *upper hemicontinuous* at \mathbf{x}^0 if for every open set U that contains $\mathbf{F}(\mathbf{x}^0)$, there exists a neighborhood N of \mathbf{x}^0 such that $\mathbf{F}(\mathbf{x}) \subset U$ for all x in $N \cap X$.

Definition of upper hemicontinuity of a correspondence.

Let $\mathbf{F}: X \subset \mathbb{R}^n \to K \subset \mathbb{R}^m$ be a correspondence where K is compact. Suppose that for every $\mathbf{x} \in X$ the set $\mathbf{F}(\mathbf{x})$ is a closed subset of K. Then \mathbf{F} has a closed graph if and only if \mathbf{F} is upper hemicontinuous.

An interesting result.

Infimum and supremum

- Any non-empty set S of real numbers that is bounded above has a *least upper bound* b^* , i.e. b^* is an upper bound for S and $b^* \leq b$ for every upper bound b of S. b^* is called the *supremum* of S, and we write $b^* = \sup S$.
- Any non-empty set S of real numbers that is bounded below has a *greatest lower bound* a^* , i.e. a^* is a lower bound for S and $a^* \geq a$ for every lower bound a of S. a^* is called the *infimum* of S, and we write $a^* = \inf S$.

The principle of least upper bound and greatest lower bound for sets of real numbers. If S is not bounded above, we write $\sup S = \infty$, and if S is not bounded below, we write $\inf S = -\infty$. One usually defines $\sup \varnothing = -\infty$ and $\inf \varnothing = \infty$.

12.33
$$\inf_{\mathbf{x} \in B} f(\mathbf{x}) = \inf\{f(\mathbf{x}) : \mathbf{x} \in B\}$$
$$\sup_{\mathbf{x} \in B} f(\mathbf{x}) = \sup\{f(\mathbf{x}) : \mathbf{x} \in B\}$$

Definition of infimum and supremum of a real valued function defined on a set B in \mathbb{R}^n .

12.34
$$\inf_{\mathbf{x} \in B} (f(\mathbf{x}) + g(\mathbf{x})) \ge \inf_{\mathbf{x} \in B} f(\mathbf{x}) + \inf_{\mathbf{x} \in B} g(\mathbf{x})$$
$$\sup_{\mathbf{x} \in B} (f(\mathbf{x}) + g(\mathbf{x})) \le \sup_{\mathbf{x} \in B} f(\mathbf{x}) + \sup_{\mathbf{x} \in B} g(\mathbf{x})$$

Results about sup and inf.

12.35
$$\inf_{\mathbf{x} \in B} (\lambda f(\mathbf{x})) = \lambda \inf_{\mathbf{x} \in B} f(\mathbf{x}) \quad \text{if } \lambda > 0 \\ \sup_{\mathbf{x} \in B} (\lambda f(\mathbf{x})) = \lambda \sup_{\mathbf{x} \in B} f(\mathbf{x}) \quad \text{if } \lambda > 0$$

 λ is a real number.

12.36
$$\sup_{\mathbf{x} \in B} (-f(\mathbf{x})) = -\inf_{\mathbf{x} \in B} f(\mathbf{x})$$
$$\inf_{\mathbf{x} \in B} (-f(\mathbf{x})) = -\sup_{\mathbf{x} \in B} f(\mathbf{x})$$

12.37
$$\sup_{(\mathbf{x}, \mathbf{y}) \in A \times B} f(\mathbf{x}, \mathbf{y}) = \sup_{\mathbf{x} \in A} (\sup_{\mathbf{y} \in B} f(\mathbf{x}, \mathbf{y}))$$
$$\begin{cases} A \times B = \\ \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in A \land \mathbf{y} \in B\} \end{cases}$$

$$\frac{\lim_{\mathbf{x} \to \mathbf{x}^{0}} f(\mathbf{x}) =}{\lim_{\mathbf{x} \to \mathbf{x}^{0}} \left(\inf \left\{ f(\mathbf{x}) : 0 < \|\mathbf{x} - \mathbf{x}^{0}\| < r, \ \mathbf{x} \in M \right\} \right)}$$

$$\frac{\lim_{r \to 0} f(\mathbf{x}) =}{\lim_{r \to 0} \left(\sup \left\{ f(\mathbf{x}) : 0 < \|\mathbf{x} - \mathbf{x}^{0}\| < r, \ \mathbf{x} \in M \right\} \right)}$$

Definition of $\frac{\underline{\lim}}{\overline{\lim}} = \liminf \text{ and }$ $\overline{\lim} = \limsup \text{ } f \text{ is defined on } M \subset \mathbb{R}^n \text{ and }$ $\mathbf{x}^0 \text{ is in the closure of }$ $M \setminus \{\mathbf{x}^0\}.$

12.39
$$\frac{\underline{\lim}(f+g) \ge \underline{\lim} f + \underline{\lim} g}{\overline{\lim}(f+g) \le \overline{\lim} f + \overline{\lim} g}$$

The inequalities are valid if the right hand sides are defined.

$$12.40 \quad \underline{\lim} \, f \le \overline{\lim} \, f$$

Results on liminf and lim sup.

12.41
$$\underline{\lim} f = -\overline{\lim}(-f), \overline{\lim} f = -\underline{\lim}(-f)$$

Let f be a real valued function defined on the interval $[t_0, \infty)$. Then we define:

12.42 •
$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} \inf\{f(s) : s \in [t_0, \infty)\}$$

• $\lim_{t \to \infty} f(t) = \lim_{t \to \infty} \sup\{f(s) : s \in [t_0, \infty)\}$

•
$$\overline{\lim}_{t \to \infty} f(t) = \lim_{t \to \infty} \sup\{f(s) : s \in [t_0, \infty)\}$$

Definition of
$$\varliminf_{t\to\infty}$$
 and $\varlimsup_{t\to\infty}$. Formulas (12.39)–(12.41) are still valid.

•
$$\lim_{t \to \infty} f(t) \ge a \Leftrightarrow \begin{cases} \text{For each } \varepsilon > 0 \text{ there is a} \\ t' \text{ such that } f(t) \ge a - \varepsilon \\ \text{for all } t \ge t'. \end{cases}$$

12.43

$$\bullet \ \ \overline{\lim}_{t\to\infty} f(t) \geq a \ \Leftrightarrow \begin{cases} \text{For each } \varepsilon > 0 \text{ and each} \\ t' \text{ there is a } t \geq t' \text{ such} \\ \text{that } f(t) \geq a - \varepsilon \text{ for all} \\ t \geq t'. \end{cases}$$

Basic facts.

References

Bartle (1982), Marsden and Hoffman (1993), and Rudin (1982) are good references for standard topological results. For correspondences and their properties, see Hildenbrand and Kirman (1976) or Hildenbrand (1974).

Chapter 13

Convexity

13.1 A set S in \mathbb{R}^n is convex if $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0, 1] \Rightarrow \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S$

Definition of a convex set. The empty set is, by definition, convex.

13.2

S

The first set is convex, while the second is not convex.

If S and T are convex sets in \mathbb{R}^n , then

- 13.3 $S \cap T = \{ \mathbf{x} : \mathbf{x} \in S \text{ and } \mathbf{x} \in T \}$ is convex
 - $aS + bT = \{a\mathbf{s} + b\mathbf{t} : \mathbf{s} \in S, \ \mathbf{t} \in T\}$ is convex

Properties of convex sets. (a and b are real numbers.)

13.4 Any vector $\mathbf{x} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m$, where $\lambda_i \geq 0$ for $i = 1, \dots, m$ and $\sum_{i=1}^m \lambda_i = 1$, is called a convex combination of the vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ in \mathbb{R}^n .

Definition of a convex combination of vectors.

13.5 $\operatorname{co}(S) = \begin{cases} \text{the set of all convex combinations of} \\ \text{finitely many vectors in } S. \end{cases}$

co(S) is the convex hull of a set S in \mathbb{R}^n .

13.6

If S is the unshaded set, then co(S) includes the shaded parts in addition.

13.7 co(S) is the smallest convex set containing S.

A useful characterization of the convex hull.

13.8 If $S \subset \mathbb{R}^n$ and $\mathbf{x} \in \text{co}(S)$, then \mathbf{x} is a convex combination of at most n+1 points in S.

Carathéodory's theorem.

z is an extreme point of a convex set S if $\mathbf{z} \in S$ and there are no \mathbf{x} and \mathbf{y} in S and λ in (0,1) such that $\mathbf{x} \neq \mathbf{y}$ and $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$.

Definition of an extreme point.

13.13

13.10 Let S be a compact, convex set in \mathbb{R}^n . Then S is the convex hull of its extreme points.

Let S and T be two disjoint non-empty convex sets in \mathbb{R}^n . Then S and T can be separated by a hyperplane, i.e. there exists a non-zero vector

 $\mathbf{a} \cdot \mathbf{x} \leq \mathbf{a} \cdot \mathbf{y}$ for all \mathbf{x} in S and all \mathbf{y} in T

 $Krein-Milman's\ theorem.$

Minkowski's separation theorem. A hyperplane $\{\mathbf{x}: \mathbf{a} \cdot \mathbf{x} = A\}$, with $\mathbf{a} \cdot \mathbf{x} \leq A \leq \mathbf{a} \cdot \mathbf{y}$ for all \mathbf{x} in S and all \mathbf{y} in T, is called separating.

In the first figure S and T are (strictly) separated by H. In the second, S and T cannot be separated by a hyperplane.

A general separation theorem in \mathbb{R}^n .

13.12

a such that

Let S be a convex set in \mathbb{R}^n with interior points and let T be a convex set in \mathbb{R}^n such that no point in $S \cap T$ (if there are any) is an interior point of S. Then S and T can be separated by a hyperplane, i.e. there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that

 $\mathbf{a} \cdot \mathbf{x} \leq \mathbf{a} \cdot \mathbf{y}$ for all \mathbf{x} in S and all \mathbf{y} in T.

Concave and convex functions

 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ defined on a convex set S in \mathbb{R}^n is *concave* on S if

13.14 $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{x}^0) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{x}^0)$ for all \mathbf{x} , \mathbf{x}^0 in S and all λ in (0, 1).

To define a *convex* function, reverse the inequality. Equivalently, f is convex if and only if -f is concave.

13.15

The function $f(\mathbf{x})$ is (strictly) concave. $TR = f(\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}^0) \geq TS = \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{x}^0)$. (TR and TS are the heights of R and S above the \mathbf{x} -plane. The heights are negative if the points are below the \mathbf{x} -plane.)

13.16 $f(\mathbf{x})$ is strictly concave if $f(\mathbf{x})$ is concave and the inequality \geq in (13.14) is strict for $\mathbf{x} \neq \mathbf{x}^0$.

Definition of a strictly concave function. For strict convexity, reverse the inequality.

If $f(\mathbf{x})$, defined on the convex set S in \mathbb{R}^n , is 13.17 concave (convex), then $f(\mathbf{x})$ is continuous at each interior point of S.

On the continuity of concave and convex functions.

- If $f(\mathbf{x})$ and $g(\mathbf{x})$ are concave (convex) and a and b are nonnegative numbers, then $af(\mathbf{x}) + bg(\mathbf{x})$ is concave (convex).
- If $f(\mathbf{x})$ is concave and F(u) is concave and increasing, then $U(\mathbf{x}) = F(f(\mathbf{x}))$ is concave.
- 13.18 If $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b$ and F(u) is concave, then $U(\mathbf{x}) = F(f(\mathbf{x}))$ is concave.
 - If $f(\mathbf{x})$ is convex and F(u) is convex and increasing, then $U(\mathbf{x}) = F(f(\mathbf{x}))$ is convex.
 - If $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b$ and F(u) is convex, then $U(\mathbf{x}) = F(f(\mathbf{x}))$ is convex.

Properties of concave and convex functions.

A C^1 function $f(\mathbf{x})$ is concave on an open, convex set S of \mathbb{R}^n if and only if

13.19
$$f(\mathbf{x}) - f(\mathbf{x}^0) \le \sum_{i=1}^n \frac{\partial f(\mathbf{x}^0)}{\partial x_i} (x_i - x_i^0)$$

 $\quad \text{or, equivalently,} \\$

$$f(\mathbf{x}) - f(\mathbf{x}^0) \le \nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0)$$

for all \mathbf{x} and \mathbf{x}_0 in S.

Concavity for C^1 functions. For convexity, reverse the inequalities.

A C^1 function $f(\mathbf{x})$ is strictly concave on an 13.20 open, convex set S in \mathbb{R}^n if and only if the inequalities in (13.19) are strict for $\mathbf{x} \neq \mathbf{x}^0$.

Strict concavity for C^1 functions. For strict convexity, reverse the inequalities.

A C^1 function f(x) is concave on an open interval I if and only if

13.21
$$f(x) - f(x^0) \le f'(x^0)(x - x^0)$$

for all x and x^0 in I.

One-variable version of (13.19).

Geometric interpretation of (13.21). The C^1 function f is concave if and only if the graph of f is below the tangent at any point. (In the figure, f is actually strictly concave.)

A C^1 function f(x, y) is concave on an open, convex set S in the (x, y)-plane if and only if

13.23
$$f(x,y) - f(x^{0}, y^{0})$$

$$\leq f'_{1}(x^{0}, y^{0})(x - x^{0}) + f'_{2}(x^{0}, y^{0})(y - y^{0})$$
for all $(x, y), (x^{0}, y^{0})$ in S .

Two-variable version of (13.19).

13.24
$$\mathbf{f''}(\mathbf{x}) = \begin{pmatrix} f''_{11}(\mathbf{x}) & f''_{12}(\mathbf{x}) & \dots & f''_{1n}(\mathbf{x}) \\ f''_{21}(\mathbf{x}) & f''_{22}(\mathbf{x}) & \dots & f''_{2n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f''_{n1}(\mathbf{x}) & f''_{n2}(\mathbf{x}) & \dots & f''_{nn}(\mathbf{x}) \end{pmatrix}$$

The Hessian matrix of f at **x**. If f is C^2 , then the Hessian is symmetric.

The principal minors $\Delta_r(\mathbf{x})$ of order r in the Hessian matrix $\mathbf{f}''(\mathbf{x})$ are the determinants of the sub-matrices obtained by deleting n-r arbitrary rows and then deleting the n-r columns having the same numbers.

The principal minors of the Hessian. (See also (20.15).)

A C^2 function $f(\mathbf{x})$ is concave on an open, convex set S in \mathbb{R}^n if and only if for all \mathbf{x} in S and for all Δ_r ,

Concavity for C^2 functions.

$$(-1)^r \Delta_r(\mathbf{x}) \ge 0 \text{ for } r = 1, \dots, n$$

A C^2 function $f(\mathbf{x})$ is convex on an open, convex set S in \mathbb{R}^n if and only if for all \mathbf{x} in S and for all Δ_r ,

Convexity for C^2 functions.

$$\Delta_r(\mathbf{x}) \ge 0 \text{ for } r = 1, \dots, n$$

The leading principal minors of the Hessian matrix of
$$f$$
 at \mathbf{x} , where $r = 1, 2, \dots, n$.

13.28
$$D_r(\mathbf{x}) = \begin{vmatrix} f''_{11}(\mathbf{x}) & f''_{12}(\mathbf{x}) & \dots & f''_{1r}(\mathbf{x}) \\ f''_{21}(\mathbf{x}) & f''_{22}(\mathbf{x}) & \dots & f''_{2r}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f''_{r1}(\mathbf{x}) & f''_{r2}(\mathbf{x}) & \dots & f''_{rr}(\mathbf{x}) \end{vmatrix}$$

A C^2 function $f(\mathbf{x})$ is strictly concave on an 13.29 open, convex set S in \mathbb{R}^n if for all $\mathbf{x} \in S$,

$$(-1)^r D_r(\mathbf{x}) > 0 \text{ for } r = 1, \dots, n$$

Sufficient (but NOT necessary) conditions for strict concavity for C^2 functions.

 $\begin{array}{ll} & \text{A } C^2 \text{ function } f(\mathbf{x}) \text{ is strictly convex on an} \\ 13.30 & \text{open, convex set } S \text{ in } \mathbb{R}^n \text{ if for all } \mathbf{x} \in S, \end{array}$

$$D_r(\mathbf{x}) > 0$$
 for $r = 1, \dots, n$

Sufficient (but NOT necessary) conditions for strict convexity for C^2 functions.

Suppose f(x) is a C^2 function on an open interval I. Then:

- f(x) is concave on $I \Leftrightarrow f''(x) \leq 0$ for all x in I
- 13.31 f(x) is convex on $I \Leftrightarrow f''(x) \ge 0$ for all x in I
 - f''(x) < 0 for all x in $I \Rightarrow f(x)$ is strictly concave on I
 - f''(x) > 0 for all x in $I \Rightarrow f(x)$ is strictly convex on I

One-variable versions of (13.26), (13.27), (13.29), and (13.30). The implication arrows CANNOT be replaced by equivalence arrows. $(f(x) = -x^4)$ is strictly concave, but f''(0) = 0. $f(x) = x^4$ is strictly convex, but f''(0) = 0.

A C^2 function f(x, y) is concave on an open, convex set S in the (x, y)-plane if and only if

13.32
$$f_{11}''(x,y) \le 0, \ f_{22}''(x,y) \le 0 \text{ and }$$

 $f_{11}''(x,y)f_{22}''(x,y) - (f_{12}''(x,y))^2 \ge 0$
for all (x,y) in S .

Two-variable version of (13.26). For convexity of C^2 functions, reverse the first two inequalities.

A C^2 function f(x, y) is strictly concave on an open, convex set S in the (x, y)-plane if (but NOT only if)

13.33
$$f_{11}''(x,y) < 0$$
 and $f_{11}''(x,y)f_{22}''(x,y) - (f_{12}''(x,y))^2 > 0$ for all (x,y) in S .

Two-variable version of (13.29). (Note that the two inequalities imply $f_{22}''(x,y) < 0$.) For strict convexity, reverse the first inequality.

Quasiconcave and quasiconvex functions

 $f(\mathbf{x})$ is quasiconcave on a convex set $S \subset \mathbb{R}^n$ if the (upper) level set

$$P_a = \{ \mathbf{x} \in S : f(\mathbf{x}) \ge a \}$$

13.34

is convex for each real number a.

Definition of a quasiconcave function. (Upper level sets are also called upper contour sets.)

A typical example of a quasiconcave function of two variables, $z = f(x_1, x_2)$.

13.36

An (upper) level set for the function in (13.35), $P_a = \{(x_1, x_2) \in S : f(x_1, x_2) \ge a\}.$

 $f(\mathbf{x})$ is quasiconcave on an open, convex set S in \mathbb{R}^n if and only if

13.37 $f(\mathbf{x}) \ge f(\mathbf{x}^0) \Rightarrow f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{x}^0) \ge f(\mathbf{x}^0)$ for all \mathbf{x} , \mathbf{x}^0 in S and all λ in [0, 1].

Characterization of quasiconcavity.

 $f(\mathbf{x})$ is *strictly quasiconcave* on an open, convex set S in \mathbb{R}^n if

13.38 $f(\mathbf{x}) \ge f(\mathbf{x}^0) \implies f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{x}^0) > f(\mathbf{x}^0)$ for all $\mathbf{x} \ne \mathbf{x}^0$ i S and all λ in (0, 1).

The (most common) definition of strict quasiconcavity.

13.39 $f(\mathbf{x})$ is (strictly) quasiconvex on $S \subset \mathbb{R}^n$ if $-f(\mathbf{x})$ is (strictly) quasiconcave.

Definition of a (strictly) quasiconvex function.

If f_1, \ldots, f_m are concave functions defined on a convex set S in \mathbb{R}^n and g is defined for each \mathbf{x} in S by

13.40 $g(\mathbf{x}) = F(f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$

with $F(u_1, \ldots, u_m)$ quasiconcave and increasing in each variable, then g is quasiconcave.

A useful result.

- (1) $f(\mathbf{x})$ concave $\Rightarrow f(\mathbf{x})$ quasiconcave.
- (2) $f(\mathbf{x})$ convex $\Rightarrow f(\mathbf{x})$ quasiconvex.
- (3) Any increasing or decreasing function of one variable is quasiconcave and quasiconvex.
- (4) A sum of quasiconcave (quasiconvex) functions is not necessarily quasiconcave (quasiconvex).
- (5) If $f(\mathbf{x})$ is quasiconcave (quasiconvex) and F is increasing, then $F(f(\mathbf{x}))$ is quasiconcave (quasiconvex).
 - (6) If $f(\mathbf{x})$ is quasiconcave (quasiconvex) and F is decreasing, then $F(f(\mathbf{x}))$ is quasiconvex (quasiconcave).
 - (7) Let $f(\mathbf{x})$ be a function defined on a convex cone K in \mathbb{R}^n . Suppose that f is quasiconcave and homogeneous of degree q, where $0 < q \le 1$, that $f(\mathbf{0}) = 0$, and that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \ne \mathbf{0}$ in K. Then f is concave.

Basic facts about quasiconcave and quasiconvex functions. (Example of (4): $f(x) = x^3$ and g(x) = -x are both quasiconcave, but $f(x) + g(x) = x^3 - x$ is not.) For a proof of (7), see Sydsæter et al. (2005).

A C^1 function $f(\mathbf{x})$ is quasiconcave on an open, convex set S in \mathbb{R}^n if and only if

 $f(\mathbf{x}) \ge f(\mathbf{x}^0) \Rightarrow \nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) \ge 0$ for all \mathbf{x} and \mathbf{x}^0 in S.

Quasiconcavity for C^1 functions.

13.43

13.45

A geometric interpretation of (13.42). Here $\nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) \geq 0$ means that the angle α is acute, i.e. less than 90° .

13.44 $B_r(\mathbf{x}) = \begin{vmatrix} 0 & f_1'(\mathbf{x}) & \dots & f_r'(\mathbf{x}) \\ f_1'(\mathbf{x}) & f_{11}''(\mathbf{x}) & \dots & f_{1r}''(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_r'(\mathbf{x}) & f_{r1}''(\mathbf{x}) & \dots & f_{rr}''(\mathbf{x}) \end{vmatrix}$

A bordered Hessian associated with f at \mathbf{x} .

If $f(\mathbf{x})$ is quasiconcave on an open, convex set S in \mathbb{R}^n , then

 $(-1)^r B_r(\mathbf{x}) \ge 0 \text{ for } r = 1, \dots, n$ for all $\mathbf{x} \in S$.

Necessary conditions for quasiconcavity of C^2 functions.

13 47

13.48

13.51

If $(-1)^r B_r(\mathbf{x}) > 0$ for r = 1, ..., n for all \mathbf{x} 13.46 in an open, convex set S in \mathbb{R}^n , then $f(\mathbf{x})$ is quasiconcave in S.

Sufficient conditions for quasiconcavity of C^2 functions.

If $f(\mathbf{x})$ is quasiconvex on an open, convex set S in \mathbb{R}^n , then

in an open, convex set S in \mathbb{R}^n , then $f(\mathbf{x})$ is

Necessary conditions for quasiconvexity of C^2 functions.

 $B_r(\mathbf{x}) \le 0 \text{ for } r = 1, \dots, n$

quasiconvex in S.

Sufficient conditions for quasiconvexity of C^2 functions.

and for all \mathbf{x} in S. If $B_r(\mathbf{x}) < 0$ for r = 1, ..., n and for all \mathbf{x}

Pseudoconcave and pseudoconvex functions

A C^1 function $f(\mathbf{x})$ defined on a convex set S in \mathbb{R}^n is pseudoconcave at the point \mathbf{x}^0 in S if

13.49 (*) $f(\mathbf{x}) > f(\mathbf{x}^0) \Rightarrow \nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) > 0$ for all \mathbf{x} in S. $f(\mathbf{x})$ is pseudoconcave over S if (*) holds for all \mathbf{x} and \mathbf{x}^0 in S.

Let $f(\mathbf{x})$ be a C^1 function defined on a convex set S in \mathbb{R}^n . Then:

- If f is pseudoconcave on S, then f is quasiconcave on S.
 - If S is open and if $\nabla f(\mathbf{x}) \neq \mathbf{0}$ for all \mathbf{x} in S, then f is pseudoconcave on S if and only if f is quasiconcave on S.

Let S be an open, convex set in \mathbb{R}^n , and let $f: S \to \mathbb{R}$ be a pseudoconcave function. If $\mathbf{x}^0 \in S$ has the property that

 $\nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) \leq 0$ for all \mathbf{x} in S (which is the case if $\nabla f(\mathbf{x}^0) = \mathbf{0}$), then \mathbf{x}^0 is a global maximum point for f in S.

To define pseudoconvex functions, reverse the second inequality in (*). (Compare with the characterization of quasiconcavity in (13.42).)

Important relationships between pseudoconcave and quasiconcave functions.

Shows one reason for introducing the concept of pseudoconcavity.

References

For concave/convex and quasiconcave/quasiconvex functions, see e.g. Simon and Blume (1994) or Sydsæter et al. (2005). For pseudoconcave and pseudoconvex functions, see e.g. Simon and Blume (1994), and their references. For special results on convex sets, see Nikaido (1968) and Takayama (1985). A standard reference for convexity theory is Rockafellar (1970).

Chapter 14

14.3

Classical optimization

 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ has a maximum (minimum) at $\mathbf{x}^* = (x_1^*, \dots, x_n^*) \in S$ if

14.1 $f(\mathbf{x}^*) - f(\mathbf{x}) \ge 0 \ (\le 0)$ for all \mathbf{x} in S \mathbf{x}^* is called a maximum (minimum) point and $f(\mathbf{x}^*)$ is called a maximum (minimum) value.

14.2 \mathbf{x}^* maximizes $f(\mathbf{x})$ over S if and only if \mathbf{x}^* minimizes $-f(\mathbf{x})$ over S.

Suppose $f(\mathbf{x})$ is defined on $S \subset \mathbb{R}^n$ and that F(u) is strictly increasing on the range of f.

14.4 Then \mathbf{x}^* maximizes (minimizes) $f(\mathbf{x})$ on S if and only if \mathbf{x}^* maximizes (minimizes) $F(f(\mathbf{x}))$ on S.

If $f: S \to \mathbb{R}$ is continuous on a closed, bounded set S in \mathbb{R}^n , then there exist maximum and minimum points for f in S.

 $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is a stationary point of $f(\mathbf{x})$ 14.6 if

$$f_1'(\mathbf{x}^*) = 0, \ f_2'(\mathbf{x}^*) = 0, \dots, \ f_n'(\mathbf{x}^*) = 0$$

14.7 Let $f(\mathbf{x})$ be concave (convex) and defined on a convex set S in \mathbb{R}^n , and let \mathbf{x}^* be an interior point of S. Then \mathbf{x}^* maximizes (minimizes) $f(\mathbf{x})$ on S, if and only if \mathbf{x}^* is a stationary point.

Definition of (global) maximum (minimum) of a function of n variables. As collective names, we use *optimal* points and values, or *extreme* points and values.

Used to convert minimization problems to maximization problems.

Illustration of (14.2). x^* maximizes f(x) if and only if x^* minimizes -f(x)

An important fact.

The extreme value theorem (or Weierstrass's theorem).

Definition of stationary points for a differentiable function of n variables.

Maximum (minimum) of a concave (convex) function.

One-variable illustration of (14.7). f is concave, $f'(x^*) = 0$, and x^* is a maximum point.

If $f(\mathbf{x})$ has a maximum or minimum in $S \subset \mathbb{R}^n$, then the maximum/minimum points are found among the following points:

• interior points of S that are stationary

ullet extreme points of f at the boundary of S

 \bullet points in S where f is not differentiable

Where to find (global) maximum or minimum points.

 $f(\mathbf{x})$ has a local maximum (minimum) at \mathbf{x}^* if (*) $f(\mathbf{x}^*) - f(\mathbf{x}) \ge 0 \ (\le 0)$

14.10 for all \mathbf{x} in S sufficiently close to \mathbf{x}^* . More precisely, there exists an n-ball $B(\mathbf{x}^*; r)$ such that (*) holds for all \mathbf{x} in $S \cap B(\mathbf{x}^*; r)$.

Definition of local (or relative) maximum (minimum) points of a function of n variables. A collective name is local extreme points.

If $f(\mathbf{x}) = f(x_1, \dots, x_n)$ has a local maximum (minimum) at an interior point \mathbf{x}^* of S, then \mathbf{x}^* is a stationary point of f.

The first-order conditions for differentiable functions.

A stationary point \mathbf{x}^* of $f(\mathbf{x}) = f(x_1, \dots, x_n)$ is called a *saddle point* if it is neither a local maximum point nor a local minimum point, i.e. if every n-ball $B(\mathbf{x}^*; r)$ contains points \mathbf{x} such that $f(\mathbf{x}) < f(\mathbf{x}^*)$ and other points \mathbf{z} such that $f(\mathbf{z}) > f(\mathbf{x}^*)$.

Definition of a saddle point.

14.13

The points P, Q, and R are all stationary points. P is a maximum point, Q is a local maximum point, whereas R is a saddle point.

Special results for one-variable functions

If f(x) is differentiable in an interval I, then

- $f'(x) > 0 \implies f(x)$ is strictly increasing
- $f'(x) \ge 0 \iff f(x)$ is increasing
- $f'(x) = 0 \iff f(x)$ is constant
- $f'(x) \leq 0 \iff f(x)$ is decreasing
- $f'(x) < 0 \implies f(x)$ is strictly decreasing

Important facts. The implication arrows cannot be reversed. $(f(x) = x^3 \text{ is strictly increasing, but } f'(0) = 0.$ $g(x) = -x^3 \text{ is strictly decreasing, but } g'(0) = 0.)$

• If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point for f.

• If $f'(x) \le 0$ for $x \le c$, and $f'(x) \ge 0$ for $x \ge c$, then x = c is a minimum point for f.

A first-derivative test for (global) max/min. (Often ignored in elementary mathematics for economics texts.)

14.16 y = f(x) y = f(x) $x \to x$ y = f(x) $x \to x$

One-variable illustrations of (14.15). c is a maximum point. d is a minimum point.

14.17 c is an inflection point for f(x) if f''(x) changes sign at c.

Definition of an inflection point for a function of one variable.

14.18

14.19

14.14

An unorthodox illustration of an inflection point. Point P, where the slope is steepest, is an inflection point.

Let f be a function with a continuous second derivative in an interval I, and suppose that c is an interior point of I. Then:

- c is an inflection point for $f \implies f''(c) = 0$
- f''(c) = 0 and f'' changes sign at c $\implies c$ is an inflection point for f

Test for inflection points.

Second-order conditions

If $f(\mathbf{x}) = f(x_1, \dots, x_n)$ has a local maximum (minimum) at \mathbf{x}^* , then

14.20 $\sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}''(\mathbf{x}^*) h_i h_j \le 0 \ (\ge 0)$

for all choices of h_1, \ldots, h_n .

A necessary (secondorder) condition for local maximum (minimum).

If $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is a stationary point of $f(x_1, \dots, x_n)$, and if $D_k(\mathbf{x}^*)$ is the following determinant,

$$D_k(\mathbf{x}^*) = \begin{vmatrix} f''_{11}(\mathbf{x}^*) & f''_{12}(\mathbf{x}^*) & \dots & f''_{1k}(\mathbf{x}^*) \\ f''_{21}(\mathbf{x}^*) & f''_{22}(\mathbf{x}^*) & \dots & f''_{2k}(\mathbf{x}^*) \\ \vdots & \vdots & \ddots & \vdots \\ f''_{k1}(\mathbf{x}^*) & f''_{k2}(\mathbf{x}^*) & \dots & f''_{kk}(\mathbf{x}^*) \end{vmatrix}$$

14.21 then:

14.23

- If $(-1)^k D_k(\mathbf{x}^*) > 0$ for k = 1, ..., n, then \mathbf{x}^* is a local maximum point.
- If $D_k(\mathbf{x}^*) > 0$ for k = 1, ..., n, then \mathbf{x}^* is a local minimum point.
- If $D_n(\mathbf{x}^*) \neq 0$ and neither of the two conditions above is satisfied, then \mathbf{x}^* is a saddle point.

Classification of stationary points of a C^2 function of n variables. Second-order conditions for local maximum/minimum.

 $f'(x^*) = 0$ and $f''(x^*) < 0 \implies$ 14.22 x^* is a local maximum point for f.

 $f'(x^*) = 0$ and $f''(x^*) > 0 \implies$ x^* is a local minimum point for f. One-variable secondorder conditions for local maximum/minimum.

If (x_0, y_0) is a stationary point of f(x, y) and $D = f_{11}''(x_0, y_0) f_{22}''(x_0, y_0) - (f_{12}''(x_0, y_0))^2$, then

- $f_{11}''(x_0, y_0) > 0$ and $D > 0 \Longrightarrow$ (x_0, y_0) is a local minimum point for f.
- $f_{11}''(x_0, y_0) < 0$ and $D > 0 \Longrightarrow$ (x_0, y_0) is a local maximum point for f.
- $D < 0 \implies (x_0, y_0)$ is a saddle point for f.

Two-variable secondorder conditions for local maximum/minimum. (Classification of stationary points of a C^2 function of two variables.)

Optimization with equality constraints

14.24 max (min) f(x,y) subject to g(x,y) = b

The Lagrange problem. Two variables, one constraint.

Lagrange's method. Recipe for solving (14.24):

(1) Introduce the Lagrangian function

$$\mathcal{L}(x,y) = f(x,y) - \lambda(g(x,y) - b)$$

where λ is a constant.

- (2) Differentiate \mathcal{L} with respect to x and y, and equate the partials to 0.
- (3) The two equations in (2), together with the constraint, yield the following three equations:

$$f'_1(x, y) = \lambda g'_1(x, y)$$

$$f'_2(x, y) = \lambda g'_2(x, y)$$

$$g(x, y) = b$$

(4) Solve these three equations for the three unknowns x, y, and λ . In this way you find all possible pairs (x, y) that can solve the problem.

Necessary conditions for the solution of (14.24). Assume that $g_1'(x,y)$ and $g_2'(x,y)$ do not both vanish. For a more precise version, see (14.27). λ is called a Lagrange multiplier.

Suppose (x_0, y_0) satisfies the conditions in (14.25). Then:

- (1) If $\mathcal{L}(x, y)$ is concave, then (x_0, y_0) solves the maximization problem in (14.24).
- (2) If $\mathcal{L}(x, y)$ is convex, then (x_0, y_0) solves the minimization problem in (14.24).

Sufficient conditions for the solution of problem (14.24).

Suppose that f(x,y) and g(x,y) are C^1 in a domain S of the xy-plane, and that (x_0,y_0) is both an interior point of S and a local extreme point for f(x,y) subject to the constraint g(x,y)=b. Suppose further that $g_1'(x_0,y_0)$ and $g_2'(x_0,y_0)$ are not both 0. Then there exists a unique number λ such that the Lagrangian function

$$\mathcal{L}(x,y) = f(x,y) - \lambda \left(g(x,y) - b \right)$$

has a stationary point at (x_0, y_0) .

14.27

14.26

14.25

A precise version of the Lagrange multiplier method. (*Lagrange's theorem*.)

14.32

Consider the problem

local max(min) f(x,y) s.t. g(x,y) = b

where (x_0, y_0) satisfies the first-order conditions in (14.25). Define the bordered Hessian determinant D(x, y) as

14.28
$$D(x,y) = \begin{vmatrix} 0 & g_1' & g_2' \\ g_1' & f_{11}'' - \lambda g_{11}'' & f_{12}'' - \lambda g_{12}'' \\ g_2' & f_{21}'' - \lambda g_{21}'' & f_{22}'' - \lambda g_{22}'' \end{vmatrix}$$

- (1) If $D(x_0, y_0) > 0$, then (x_0, y_0) solves the local maximization problem.
- (2) If $D(x_0, y_0) < 0$, then (x_0, y_0) solves the local minimization problem.

Local sufficient conditions for the Lagrange problem.

14.29 $\max(\min) f(x_1, \dots, x_n) \text{ s.t. } \begin{cases} g_1(x_1, \dots, x_n) = b_1 \\ \dots \\ g_m(x_1, \dots, x_n) = b_m \end{cases}$

The general Lagrange problem. Assume m < n.

Lagrange's method. Recipe for solving (14.29):

(1) Introduce the Lagrangian function

$$\mathcal{L}(\mathbf{x}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j (g_j(\mathbf{x}) - b_j)$$

where $\lambda_1, \ldots, \lambda_m$ are constants.

14.30 (2) Equate the first-order partials of \mathcal{L} to 0:

$$\frac{\partial \mathcal{L}(\mathbf{x})}{\partial x_k} = \frac{\partial f(\mathbf{x})}{\partial x_k} - \sum_{j=1}^m \lambda_j \frac{\partial g_j(\mathbf{x})}{\partial x_k} = 0$$

(3) Solve these n equations together with the m constraints for x_1, \ldots, x_n and $\lambda_1, \ldots, \lambda_m$.

Necessary conditions for the solution of (14.29), with f and g_1, \ldots, g_m as C^1 functions in an open set S in \mathbb{R}^n , and with $\mathbf{x} = (x_1, \ldots, x_n)$. Assume the rank of the Jacobian $(\partial g_j/\partial x_i)_{m\times n}$ to be equal to m. (See (6.8).) $\lambda_1, \ldots, \lambda_m$ are called Lagrange multipliers.

If \mathbf{x}^* is a solution to problem (14.29) and the gradients $\nabla g_1(\mathbf{x}^*)$, ..., $\nabla g_m(\mathbf{x}^*)$ are linearly independent, then there exist unique numbers $\lambda_1, \ldots, \lambda_m$ such that

$$\nabla f(\mathbf{x}^*) = \lambda_1 \nabla g_1(\mathbf{x}^*) + \dots + \lambda_m \nabla g_m(\mathbf{x}^*)$$

An alternative formulation of (14.30).

Suppose $f(\mathbf{x})$ and $g_1(\mathbf{x}), \ldots, g_m(\mathbf{x})$ in (14.29) are defined on an open, convex set S in \mathbb{R}^n . Let $\mathbf{x}^* \in S$ be a stationary point of the Lagrangian and suppose $g_j(\mathbf{x}^*) = b_j, j = 1, \ldots, m$. Then: $\mathcal{L}(\mathbf{x})$ concave $\Rightarrow \mathbf{x}^*$ solves problem (14.29). Sufficient conditions for the solution of problem (14.29). (For the minimization problem, replace " $\mathcal{L}(\mathbf{x})$ concave" by " $\mathcal{L}(\mathbf{x})$ convex".)

14.33
$$B_{r} = \begin{vmatrix} 0 & \cdots & 0 & \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{r}} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & \frac{\partial g_{m}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{r}} \\ \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{1}} & \mathcal{L}_{11}^{"} & \cdots & \mathcal{L}_{1r}^{"} \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{1}}{\partial x_{r}} & \cdots & \frac{\partial g_{m}}{\partial x_{r}} & \mathcal{L}_{r1}^{"} & \cdots & \mathcal{L}_{rr}^{"} \end{vmatrix}$$

A bordered Hessian determinant associated with problem (14.29), $r = 1, \ldots, n$. \mathcal{L} is the Lagrangian defined in (14.30).

Let $f(\mathbf{x})$ and $g_1(\mathbf{x}), \ldots, g_m(\mathbf{x})$ be C^2 functions in an open set S in \mathbb{R}^n , and let $\mathbf{x}^* \in S$ satisfy the necessary conditions for problem (14.29) given in (14.30). Let $B_r(\mathbf{x}^*)$ be the determinant in (14.33) evaluated at \mathbf{x}^* . Then:

- 14.34 If $(-1)^m B_r(\mathbf{x}^*) > 0$ for r = m + 1, ..., n, then \mathbf{x}^* is a local minimum point for problem (14.29).
 - If $(-1)^r B_r(\mathbf{x}^*) > 0$ for r = m + 1, ..., n, then \mathbf{x}^* is a local maximum point for problem (14.29).

Local sufficient conditions for the Lagrange problem.

Value functions and sensitivity

14.35
$$f^*(\mathbf{b}) = \max_{\mathbf{x}} \{ f(\mathbf{x}) : g_j(\mathbf{x}) = b_j, \ j = 1, \dots, m \}$$

$$f^*(\mathbf{b})$$
 is the value function. $\mathbf{b} = (b_1, \dots, b_m)$.

14.36
$$\frac{\partial f^*(\mathbf{b})}{\partial b_i} = \lambda_i(\mathbf{b}), \quad i = 1, \dots, m$$

The $\lambda_i(\mathbf{b})$'s are the unique Lagrange multipliers from (14.31). (For a precise result see Sydsæter et al. (2005), Chap. 3.)

14.37
$$f^*(\mathbf{r}) = \max_{\mathbf{x} \in X} f(\mathbf{x}, \mathbf{r}), \quad X \subset \mathbb{R}^n, \, \mathbf{r} \in A \subset \mathbb{R}^k.$$

The value function of a maximization problem.

If $f(\mathbf{x}, \mathbf{r})$ is continuous on $X \times A$ and X is compact and nonempty, then $f^*(\mathbf{r})$ defined in (14.37) is continuous on A. If the problem in (14.37) has a unique solution $\mathbf{x} = \mathbf{x}(\mathbf{r})$ for each \mathbf{r} in A, then $\mathbf{x}(\mathbf{r})$ is a continuous function of \mathbf{r} .

Continuity of the value function and the maximizer.

Suppose that the problem of maximizing $f(\mathbf{x}, \mathbf{r})$ for \mathbf{x} in a compact set $X \subset \mathbb{R}^n$ has a unique solution $\mathbf{x}(\mathbf{r}^0)$ at $\mathbf{r} = \mathbf{r}^0$, and that $\partial f/\partial r_i$, $i = 1, \ldots, k$, exist and are continuous in a neighborhood of $(\mathbf{x}(\mathbf{r}^0), \mathbf{r}^0)$. Then for $i = 1, \ldots, k$,

$$\frac{\partial f^*(\mathbf{r}^0)}{\partial r_i} = \left[\frac{\partial f(\mathbf{x}, \mathbf{r})}{\partial r_i}\right]_{\substack{\mathbf{x} = \mathbf{x}(\mathbf{r}^0) \\ \mathbf{r} = \mathbf{r}^0}}$$

An envelope theorem.

14.40
$$\max_{\mathbf{x}} f(\mathbf{x}, \mathbf{r})$$
 s.t. $g_j(\mathbf{x}, \mathbf{r}) = 0, j = 1, ..., m$

A Lagrange problem with parameters, $\mathbf{r} = (r_1, \dots, r_k)$.

14.41
$$f^*(\mathbf{r}) = \max\{f(\mathbf{x}, \mathbf{r}) : g_j(\mathbf{x}, \mathbf{r}) = 0, j = 1, \dots, m\}$$

The value function of problem (14.40).

14.42
$$\frac{\partial f^*(\mathbf{r}^0)}{\partial r_i} = \left[\frac{\partial \mathcal{L}(\mathbf{x}, \mathbf{r})}{\partial r_i}\right]_{\substack{\mathbf{x} = \mathbf{x} \\ \mathbf{r} = \mathbf{r}^0}}, \quad i = 1, \dots, k$$

An envelope theorem for (14.40). $\mathcal{L} = f - \sum \lambda_j g_j$ is the Lagrangian. For precise assumptions for the equality to hold, see Sydsæter et al. (2005), Chapter 3.

References

See Simon and Blume (1994), Sydsæter et al. (2005), Intriligator (1971), Luenberger (1984), and Dixit (1990).

Chapter 15

Linear and nonlinear programming

Linear programming

$$\max z = c_1 x_1 + \dots + c_n x_n \text{ subject to}$$

$$a_{11} x_1 + \dots + a_{1n} x_n \le b_1$$

$$15.1 \qquad a_{21} x_1 + \dots + a_{2n} x_n \le b_2$$

$$\dots$$

$$a_{m1} x_1 + \dots + a_{mn} x_n \le b_m$$

$$x_1 \ge 0, \dots, x_n \ge 0$$

15.3
$$\max \mathbf{c}' \mathbf{x} \text{ subject to } \mathbf{A} \mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}$$

 $\min \mathbf{b}' \boldsymbol{\lambda} \text{ subject to } \mathbf{A}' \boldsymbol{\lambda} \geq \mathbf{c}, \ \boldsymbol{\lambda} \geq \mathbf{0}$

If
$$(x_1, \ldots, x_n)$$
 and $(\lambda_1, \ldots, \lambda_m)$ are admissible
15.4 in (15.1) and (15.2), respectively, then
$$b_1\lambda_1 + \cdots + b_m\lambda_m \ge c_1x_1 + \cdots + c_nx_n$$

A linear programming problem. (The primal problem.) $\sum_{j=1}^{n} c_j x_j$ is called the *objective* function. (x_1, \ldots, x_n) is admissible if it satisfies all the m+n constraints.

The dual of (15.1). $\sum_{i=1}^{m} b_i \lambda_i$ is called the objective function. $(\lambda_1, \ldots, \lambda_m)$ is admissible if it satisfies all the n+m constraints.

Matrix formulations of (15.1) and (15.2). $\mathbf{A} = (a_{ij})_{m \times n},$ $\mathbf{x} = (x_j)_{n \times 1},$ $\mathbf{\lambda} = (\lambda_i)_{m \times 1},$ $\mathbf{c} = (c_j)_{n \times 1},$ $\mathbf{b} = (b_i)_{m \times 1}.$

The value of the objective function in the dual is always greater than or equal to the value of the objective function in the primal.

15.9

Suppose (x_1^*, \ldots, x_n^*) and $(\lambda_1^*, \ldots, \lambda_m^*)$ are admissible in (15.1) and (15.2) respectively, and that

15.5 $c_1 x_1^* + \dots + c_n x_n^* = b_1 \lambda_1^* + \dots + b_m \lambda_m^*$ Then (x_1^*, \dots, x_n^*) and $(\lambda_1^*, \dots, \lambda_m^*)$ are optimal in the respective problems.

If either of the problems (15.1) and (15.2) has a finite optimal solution, so has the other, and the corresponding values of the objective functions are equal. If either problem has an "unbounded optimum", then the other problem has no admissible solutions.

Consider problem (15.1). If we change b_i to $b_i + \Delta b_i$ for i = 1, ..., m, and if the associated dual problem still has the same optimal solution, $(\lambda_1^*, ..., \lambda_m^*)$, then the change in the optimal value of the objective function of the primal problem is

$$\Delta z^* = \lambda_1^* \Delta b_1 + \dots + \lambda_m^* \Delta b_m$$

The *i*th optimal dual variable λ_i^* is equal to 15.8 the change in objective function of the primal problem (15.1) when b_i is increased by one unit.

Suppose that the primal problem (15.1) has an optimal solution (x_1^*, \ldots, x_n^*) and that the dual (15.2) has an optimal solution $(\lambda_1^*, \ldots, \lambda_m^*)$. Then for $i = 1, \ldots, n, j = 1, \ldots, m$:

 $(1) x_i^* > 0 \Rightarrow a_{1j}\lambda_1^* + \dots + a_{mj}\lambda_m^* = c_j$

(2)
$$\lambda_i^* > 0 \Rightarrow a_{i1}x_1^* + \dots + a_{in}x_n^* = b_i$$

15.10 Let **A** be an $m \times n$ -matrix and **b** an n-vector. Then there exists a vector **y** with $\mathbf{A}\mathbf{y} \geq \mathbf{0}$ and $\mathbf{b'y} < 0$ if and only if there is no $\mathbf{x} \geq \mathbf{0}$ such that $\mathbf{A'x} = \mathbf{b}$.

An interesting result.

The duality theorem of linear programming.

An important sensitivity result. (The dual problem usually will have the same solution if $|\Delta b_1|, \ldots, |\Delta b_m|$ are sufficiently small.)

Interpretation of λ_i^* as a "shadow price". (A special case of (15.7), with the same qualifications.)

Complementary slackness. ((1): If the optimal variable j in the primal is positive, then restriction j in the dual is an equality at the optimum. (2) has a similar interpretation.)

Farkas's lemma.

Nonlinear programming

15.11 max f(x,y) subject to $g(x,y) \le b$

A nonlinear programming problem.

Recipe for solving problem (15.11):

- (1) Define the Lagrangian function \mathcal{L} by $\mathcal{L}(x,y,\lambda) = f(x,y) \lambda \big(g(x,y) b\big)$ where λ is a Lagrange multiplier associated with the constraint $g(x,y) \leq b$.
- (2) Equate the partial derivatives of $\mathcal{L}(x, y, \lambda)$ w.r.t. x and y to zero:

$$\mathcal{L}'_{1}(x, y, \lambda) = f'_{1}(x, y) - \lambda g'_{1}(x, y) = 0$$

$$\mathcal{L}'_{2}(x, y, \lambda) = f'_{2}(x, y) - \lambda g'_{2}(x, y) = 0$$

(3) Introduce the complementary slackness condition

$$\lambda \ge 0 \ (\lambda = 0 \ \text{if} \ g(x, y) < b)$$

(4) Require (x, y) to satisfy $g(x, y) \leq b$.

15.13
$$\max_{\mathbf{x}} f(\mathbf{x})$$
 subject to
$$\begin{cases} g_1(\mathbf{x}) \leq b_1 \\ \dots \\ g_m(\mathbf{x}) \leq b_m \end{cases}$$

15.12

15.14
$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j (g_j(\mathbf{x}) - b_j)$$

Consider problem (15.13) and assume that f and g_1, \ldots, g_m are C^1 . Suppose that there exist a vector $\lambda = (\lambda_1, \ldots, \lambda_m)$ and an admissible vector $\mathbf{x}^0 = (x_1^0, \ldots, x_n^0)$ such that

15.15 (a)
$$\frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} = 0, \quad i = 1, \dots, n$$

(b) For all j = 1, ..., m,

dition

$$\lambda_j \ge 0 \ (\lambda_j = 0 \text{ if } g_j(\mathbf{x}^0) < b_j)$$

(c) The Lagrangian function $\mathcal{L}(\mathbf{x}, \lambda)$ is a concave function of \mathbf{x} .

Then \mathbf{x}^0 solves problem (15.13).

15.16 (b')
$$\lambda_j \ge 0$$
 and $\lambda_j(g_j(\mathbf{x}^0) - b_j) = 0, \ j = 1, \dots, m$

(15.15) is also valid if we replace (c) by the con-

15.17 (c') $f(\mathbf{x})$ is concave and $\lambda_j g_j(\mathbf{x})$ is quasi-convex for $j = 1, \ldots, m$.

Kuhn-Tucker necessary conditions for solving problem (15.11), made more precise in (15.20). If we find all the pairs (x, y) (together with suitable values of λ) that satisfy all these conditions, then we have all the candidates for the solution of problem. If the Lagrangian is concave in (x, y), then the conditions are sufficient for optimality.

A nonlinear programming problem. A vector $\mathbf{x} = (x_1, \dots, x_n)$ is admissible if it satisfies all the constraints.

The Lagrangian function associated with (15.13). $\lambda = (\lambda_1, \dots, \lambda_m)$ are Lagrange multipliers.

Sufficient conditions.

Alternative formulation of (b) in (15.15).

Alternative sufficient conditions.

15.18 Constraint j in (15.13) is called *active at* \mathbf{x}^0 if $g_j(\mathbf{x}^0) = b_j$.

Definition of an *active* (or *binding*) constraint.

The following condition is often imposed in problem (15.13): The gradients at \mathbf{x}^0 of those g_j -functions whose constraints are active at \mathbf{x}^0 , are linearly independent.

A constraint qualification for problem (15.13).

Suppose that $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$ solves (15.13) and that f and g_1, \dots, g_m are C^1 . Suppose further that the constraint qualification (15.19) is satisfied at \mathbf{x}^0 . Then there exist unique numbers $\lambda_1, \dots, \lambda_m$ such that

Kuhn-Tucker necessary conditions for problem (15.13). (Note that all admissible points where the constraint qualification fails to hold are candidates for optimality.)

(a)
$$\frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} = 0, \quad i = 1, \dots, n$$

(b)
$$\lambda_j \ge 0 \ (\lambda_j = 0 \text{ if } g_j(\mathbf{x}^0) < b_j), \ j = 1, \dots, m$$

15.21 $\begin{aligned} & (\mathbf{x}^0, \boldsymbol{\lambda}^0) \text{ is a } \textit{saddle point } \text{of the Lagrangian} \\ & \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) \text{ if} \\ & \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^0) \leq \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda}^0) \leq \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda}) \\ & \text{for all } \boldsymbol{\lambda} > \mathbf{0} \text{ and all } \mathbf{x}. \end{aligned}$

Definition of a saddle point for problem (15.13).

15.22 If $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})$ has a saddle point $(\mathbf{x}^0, \boldsymbol{\lambda}^0)$, then $(\mathbf{x}^0, \boldsymbol{\lambda}^0)$ solves problem (15.13).

Sufficient conditions for problem (15.13). (No differentiability or concavity conditions are required.)

The following condition is often imposed in pro-15.23 blem (15.13): For some vector $\mathbf{x}' = (x'_1, \dots, x'_n)$, $g_j(\mathbf{x}') < b_j$ for $j = 1, \dots, m$.

The Slater condition (constraint qualification).

Consider problem (15.13), assuming f is concave and g_1, \ldots, g_m are convex. Assume that the Slater condition (15.23) is satisfied. Then a necessary and sufficient condition for \mathbf{x}^0 to solve the problem is that there exist nonnegative numbers $\lambda_1^0, \ldots, \lambda_m^0$ such that $(\mathbf{x}^0, \boldsymbol{\lambda}^0)$ is a saddle point of the Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})$.

A saddle point result for concave programming.

Consider problem (15.13) and assume that f and g_1, \ldots, g_m are C^1 . Suppose that there exist numbers $\lambda_1, \ldots, \lambda_m$ and a vector \mathbf{x}^0 such that

- 15.25
- \mathbf{x}^0 satisfies (a) and (b) in (15.15).
- $\nabla f(\mathbf{x}^0) \neq \mathbf{0}$
- $f(\mathbf{x})$ is quasi-concave and $\lambda_j g_j(\mathbf{x})$ is quasi-convex for $j = 1, \ldots, m$.

Then \mathbf{x}^0 solves problem (15.13).

Sufficient conditions for quasi-concave programming.

- 15.26 $f^*(\mathbf{b}) = \max\{f(\mathbf{x}) : g_j(\mathbf{x}) \le b_j, j = 1, \dots, m\}$
- The value function of (15.13), assuming that the maximum value exists, with $\mathbf{b} = (b_1, \dots, b_m)$.
- (1) $f^*(\mathbf{b})$ is increasing in each variable.
- 15.27 (2) $\partial f^*(\mathbf{b})/\partial b_j = \lambda_j(\mathbf{b}), \quad j = 1, \dots, m$
 - (3) If $f(\mathbf{x})$ is concave and $g_1(\mathbf{x}), \ldots, g_m(\mathbf{x})$ are convex, then $f^*(\mathbf{b})$ is concave.

Properties of the value function.

- 15.28 $\max_{\mathbf{x}} f(\mathbf{x}, \mathbf{r})$ s.t. $g_j(\mathbf{x}, \mathbf{r}) \le 0, \ j = 1, \dots, m$
- A nonlinear programming problem with parameters, $\mathbf{r} \in \mathbb{R}^k$.
- 15.29 $f^*(\mathbf{r}) = \max\{f(\mathbf{x}, \mathbf{r}) : g_j(\mathbf{x}, \mathbf{r}) \le 0, \ j = 1, \dots, m\}$
- The value function of problem (15.28).
- 15.30 $\frac{\partial f^*(\mathbf{r}^*)}{\partial r_i} = \left[\frac{\partial \mathcal{L}(\mathbf{x}, \mathbf{r}, \boldsymbol{\lambda})}{\partial r_i} \right]_{\substack{\mathbf{x} = \mathbf{x}(\mathbf{r}^*) \\ \mathbf{r} = \mathbf{r}^*}}, \quad i = 1, \dots, k$

An envelope theorem for problem (15.28). $\mathcal{L} = f - \sum \lambda_j g_j$ is the Lagrangian. See Sydsæter et al. (2005), Section 3.8 and Clarke (1983) for a precise result.

Nonlinear programming with nonnegativity conditions

- 15.31 $\max_{\mathbf{x}} f(\mathbf{x})$ subject to $\begin{cases} g_1(\mathbf{x}) \leq b_1 \\ \dots \\ g_m(\mathbf{x}) \leq b_m \end{cases}$
- If the nonnegativity constraints are written as $g_{m+i}(\mathbf{x}) = -x_i \leq 0$ for i = 1, ..., n, (15.31) reduces to (15.13).

15.34

Suppose in problem (15.31) that f and g_1, \ldots, g_m are C^1 functions, and that there exist numbers $\lambda_1, \ldots, \lambda_m$, and an admissible vector \mathbf{x}^0 such that:

(a) For all i = 1, ..., n, one has $x_i^0 \ge 0$ and $\frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} \le 0, \qquad x_i^0 \frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} = 0$

(b) For all j = 1, ..., m, $\lambda_i \ge 0 \ (\lambda_i = 0 \text{ if } g_i(\mathbf{x}^0) < b_i)$

(c) The Lagrangian function $\mathcal{L}(\mathbf{x}, \lambda)$ is a concave function of \mathbf{x} .

Then \mathbf{x}^0 solves problem (15.31).

In (15.32), (c) can be replaced by

15.33 (c') $f(\mathbf{x})$ is concave and $\lambda_j g_j(\mathbf{x})$ is quasi-convex for $j = 1, \ldots, m$.

Suppose that $\mathbf{x}^0 = (x_1^0, \dots, x_n^0)$ solves (15.31) and that f and g_1, \dots, g_m are C^1 . Suppose also that the gradients at \mathbf{x}^0 of those g_j (including the functions g_{m+1}, \dots, g_{m+n} defined in the comment to (15.31)) that correspond to constraints that are active at \mathbf{x}^0 , are linearly independent. Then there exist unique numbers $\lambda_1, \dots, \lambda_m$ such that:

(a) For all i = 1, ..., n, $x_i^0 \ge 0$, and $\frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} \le 0, \qquad x_i^0 \frac{\partial \mathcal{L}(\mathbf{x}^0, \boldsymbol{\lambda})}{\partial x_i} = 0$

(b) $\lambda_i \ge 0 \ (\lambda_i = 0 \text{ if } g_i(\mathbf{x}^0) < b_i), j = 1, \dots, m$

Sufficient conditions for problem (15.31). $\lambda = (\lambda_i)_{m \times 1}$. $\mathcal{L}(\mathbf{x}^0, \lambda)$ is defined in (15.14).

Alternative sufficient conditions.

The Kuhn-Tucker necessary conditions for problem (15.31). (Note that all admissible points where the constraint qualification fails to hold, are candidates for optimality.)

References

Gass (1994), Luenberger (1984), Intriligator (1971), Sydsæter and Hammond (2005), Sydsæter et al. (2005), Simon and Blume (1994), Beavis and Dobbs (1990), Dixit (1990), and Clarke (1983).

Chapter 16

Calculus of variations and optimal control theory

Calculus of variations

The simplest problem in the calculus of variations $(t_0, t_1, x^0, \text{ and } x^1 \text{ are fixed numbers})$:

16.1
$$\max \int_{t_0}^{t_1} F(t, x, \dot{x}) dt, \quad x(t_0) = x^0, \quad x(t_1) = x^1$$

 $16.2 \quad \frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) = 0$

$$16.3 \quad \frac{\partial^2 F}{\partial \dot{x} \partial \dot{x}} \cdot \ddot{x} + \frac{\partial^2 F}{\partial x \partial \dot{x}} \cdot \dot{x} + \frac{\partial^2 F}{\partial t \partial \dot{x}} - \frac{\partial F}{\partial x} = 0$$

16.4 $F''_{\dot{x}\dot{x}}(t, x(t), \dot{x}(t)) \leq 0$ for all t in $[t_0, t_1]$

If $F(t, x, \dot{x})$ is concave in (x, \dot{x}) , an admissible function x = x(t) that satisfies the Euler equation, solves problem (16.1).

16.6
$$x(t_1)$$
 free in (16.1) $\Rightarrow \left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} = 0$

F is a C^2 function. The unknown x=x(t) is admissible if it is C^1 and satisfies the two boundary conditions. To handle the minimization problem, replace F by -F.

The Euler equation. A necessary condition for the solution of (16.1).

An alternative form of the Euler equation.

The Legendre condition. A necessary condition for the solution of (16.1).

Sufficient conditions for the solution of (16.1).

Transversality condition. Adding condition (16.5) gives sufficient conditions.

$$x(t_1) \ge x^1 \text{ in } (16.1) \implies$$

$$\left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} \le 0 \ \ (=0 \text{ if } x(t_1) > x^1)$$

Transversality condition. Adding condition (16.5) gives sufficient conditions.

16.8
$$t_1$$
 free in (16.1) $\Rightarrow \left[F - \dot{x} \frac{\partial F}{\partial \dot{x}} \right]_{t=t_1} = 0$

Transversality condition.

$$x(t_1) = g(t_1) \text{ in } (16.1) \Rightarrow$$

$$\left[F + (\dot{g} - \dot{x}) \frac{\partial F}{\partial \dot{x}} \right]_{t=t_1} = 0$$

Transversality condition. g is a given C^1 function.

16.10
$$\max \left[\int_{t_0}^{t_1} F(t, x, \dot{x}) dt + S(x(t_1)) \right], \quad x(t_0) = x^0$$

A variational problem with a C^1 scrap value function, S.

16.11
$$\left[\frac{\partial F}{\partial \dot{x}}\right]_{t=t_1} + S'(x(t_1)) = 0$$

A solution to (16.10) must satisfy (16.2) and this transversality condition.

16.12 If $F(t, x, \dot{x})$ is concave in (x, \dot{x}) and S(x) is concave, then an admissible function satisfying the Euler equation and (16.11) solves problem (16.10).

Sufficient conditions for the solution to (16.10).

16.13
$$\max \int_{t_0}^{t_1} F\left(t, x, \frac{dx}{dt}, \frac{d^2x}{dt^2}, \dots, \frac{d^nx}{dt^n}\right) dt$$

A variational problem with higher order derivatives. (Boundary conditions are unspecified.)

$$16.14 \quad \frac{\partial F}{\partial x} - \frac{d}{dt} \left(\frac{\partial F}{\partial \dot{x}} \right) + \dots + (-1)^n \frac{d^n}{dt^n} \left(\frac{\partial F}{\partial x^{(n)}} \right) = 0$$

The (generalized) Euler equation for (16.13).

16.15
$$\max \iint_R F\left(t, s, x, \frac{\partial x}{\partial t}, \frac{\partial x}{\partial s}\right) dt ds$$

A variational problem in which the unknown x(t,s) is a function of two variables. (Boundary conditions are unspecified.)

$$16.16 \quad \frac{\partial F}{\partial x} - \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial x_t'} \right) - \frac{\partial}{\partial s} \left(\frac{\partial F}{\partial x_s'} \right) = 0$$

The (generalized) Euler equation for (16.15).

Optimal control theory. One state and one control variable

The simplest case. Fixed time interval $[t_0, t_1]$ and free right hand side:

16.17
$$\max \int_{t_0}^{t_1} f(t, x(t), u(t)) dt \quad u(t) \in \mathbb{R},$$

$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x^0, \quad x(t_1) \text{ free}$$

16.18
$$H(t, x, u, p) = f(t, x, u) + pg(t, x, u)$$

Suppose $(x^*(t), u^*(t))$ solves problem (16.17). Then there exists a continuous function p(t) such that for each t in $[t_0, t_1]$,

16.19 (1)
$$H(t, x^*(t), u, p(t)) \leq H(t, x^*(t), u^*(t), p(t))$$
 for all u in \mathbb{R} . In particular, $H'_u(t, x^*(t), u^*(t), p(t)) = 0$

(2) The function p(t) satisfies $\dot{p}(t) = -H_x'(t, x^*(t), u^*(t), p(t)), \quad p(t_1) = 0$

If $(x^*(t), u^*(t))$ satisfies the conditions in 16.20 (16.19) and H(t, x, u, p(t)) is concave in (x, u), then $(x^*(t), u^*(t))$ solves problem (16.17).

16.21
$$\max \int_{t_0}^{t_1} f(t, x(t), u(t)) dt, \quad u(t) \in U \subset \mathbb{R},$$
$$\dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x^0$$
(a) $x(t_1) = x^1$ or (b) $x(t_1) > x^1$

16.22
$$H(t, x, u, p) = p_0 f(t, x, u) + pg(t, x, u)$$

Suppose $(x^*(t), u^*(t))$ solves problem (16.21). Then there exist a continuous function p(t) and a number p_0 such that for all t in $[t_0, t_1]$,

- (1) $p_0 = 0$ or 1 and $(p_0, p(t))$ is never (0, 0).
- 16.23 (2) $H(t, x^*(t), u, p(t)) \le H(t, x^*(t), u^*(t), p(t))$ for all u in U.
 - $(3) \ \dot{p}(t) = -H_x'(t,x^*(t),u^*(t),p(t))$
 - (4) (a') No conditions on $p(t_1)$. (b') $p(t_1) \ge 0$ $(p(t_1) = 0 \text{ if } x^*(t_1) > x^1)$

The pair (x(t), u(t)) is admissible if it satisfies the differential equation, $x(t_0) = x^0$, and u(t) is piecewise continuous. To handle the minimization problem, replace f by -f.

The Hamiltonian associated with (16.17).

The maximum principle. The differential equation for p(t) is not necessarily valid at the discontinuity points of $u^*(t)$. The equation $p(t_1) = 0$ is called a transversality condition.

Mangasarian's sufficient conditions for problem (16.17).

A control problem with terminal conditions and fixed time interval. U is the *control region*. u(t) is piecewise continuous.

The Hamiltonian associated with (16.21).

The maximum principle. The differential equation for p(t) is not necessarily valid at the discontinuity points of $u^*(t)$. (4)(b') is called a transversality condition. (Except in degenerate cases, one can put $p_0 = 1$ and then ignore (1).)

Several state and control variables

$$\max \int_{t_0}^{t_1} f(t, \mathbf{x}(t), \mathbf{u}(t)) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(t_0) = \mathbf{x}^0$$

$$16.24 \quad \mathbf{u}(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$$

$$(a) \quad x_i(t_1) = x_i^1, \quad i = 1, \dots, l$$

$$(b) \quad x_i(t_1) > x_i^1, \quad i = l + 1, \dots, l$$

(b)
$$x_i(t_1) \ge x_i^1$$
, $i = l + 1, ..., q$
(c) $x_i(t_1)$ free, $i = q + 1, ..., n$

(c)
$$x_i(t_1)$$
 free, $i = q + 1, ..., n$

16.25
$$H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}) = p_0 f(t, \mathbf{x}, \mathbf{u}) + \sum_{i=1}^n p_i g_i(t, \mathbf{x}, \mathbf{u})$$

If $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves problem (16.24), there exist a constant p_0 and a continuous function $\mathbf{p}(t) = (p_1(t), \dots, p_n(t)),$ such that for all t in $[t_0, t_1],$

(1) $p_0 = 0$ or 1 and $(p_0, \mathbf{p}(t))$ is never $(0, \mathbf{0})$.

(2) $H(t, \mathbf{x}^*(t), \mathbf{u}, \mathbf{p}(t)) < H(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t))$ 16.26 for all \mathbf{u} in U.

(3)
$$\dot{p}_i(t) = -\partial H^*/\partial x_i, \qquad i = 1, \dots, n$$

(4) (a') No condition on
$$p_i(t_1)$$
, $i = 1, ..., l$
(b') $p_i(t_1) \ge 0$ (= 0 if $x_i^*(t_1) > x_i^1$)
 $i = l + 1, ..., q$
(c') $p_i(t_1) = 0$, $i = q + 1, ..., n$

If $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ satisfies all the conditions in (16.26) for $p_0 = 1$, and $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$ is con-16.27 cave in (\mathbf{x}, \mathbf{u}) , then $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves problem (16.24).

> The condition in (16.27) that $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$ is concave in (\mathbf{x}, \mathbf{u}) , can be replaced by the weaker condition that the maximized Hamiltonian

$$\widehat{H}(t, \mathbf{x}, \mathbf{p}(t)) = \max_{\mathbf{u} \in U} H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$$

is concave in \mathbf{x} .

16.28

16.29
$$V(\mathbf{x}^0, \mathbf{x}^1, t_0, t_1) = \int_{t_0}^{t_1} f(t, \mathbf{x}^*(t), \mathbf{u}^*(t)) dt$$

A standard control problem with fixed time interval. U is the control region, $\mathbf{x}(t) = (x_1(t), \dots, x_n(t)),$ ${\bf g} = (g_1, \ldots, g_n). \ {\bf u}(t) \ {\rm is}$ piecewise continuous.

The Hamiltonian.

The maximum principle. H^* denotes evaluation at $(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t))$. The differential equation for $p_i(t)$ is not necessarily valid at the discontinuity points of ${\bf u}^*(t)$. (4) (b') and (c') are transversality conditions. (Except in degenerate cases, one can put $p_0 = 1$ and then ignore (1).)

Mangasarian's sufficient conditions for problem (16.24).

Arrow's sufficient condition.

The value function of problem (16.24), assuming that the solution is $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ and that $\mathbf{x}^1 = (x_1^1, \dots, x_n^1).$

$$\frac{\partial V}{\partial x_i^0} = p_i(t_0), \quad i = 1, \dots, n$$

$$16.30 \quad \frac{\partial V}{\partial x_i^1} = -p_i(t_1), \quad i = 1, \dots, q$$

$$\frac{\partial V}{\partial t_0} = -H^*(t_0), \quad \frac{\partial V}{\partial t_1} = H^*(t_1)$$

If t_1 is free in problem (16.24) and $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves the corresponding problem on $[t_0, t_1^*]$, then all the conditions in (16.26) are satisfied on $[t_0, t_1^*]$, and in addition

$$H(t_1^*, \mathbf{x}^*(t_1^*), \mathbf{u}^*(t_1^*), \mathbf{p}(t_1^*)) = 0$$

Replace the terminal conditions (a), (b), and (c) in problem (16.24) by

$$R_k(\mathbf{x}(t_1)) = 0, \quad k = 1, 2, \dots, r'_1,$$

 $R_k(\mathbf{x}(t_1)) \ge 0, \quad k = r'_1 + 1, r'_1 + 2, \dots, r_1,$

where R_1, \ldots, R_{r_1} are C^1 functions. If the pair $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is optimal, then the conditions in (16.26) are satisfied, except that (4) is replaced by the condition that there exist numbers a_1, \ldots, a_{r_1} such that

$$p_j(t_1) = \sum_{k=1}^{r_1} a_k \frac{\partial R_k(\mathbf{x}^*(t_1))}{\partial x_j}, \quad j = 1, \dots, n$$

where $a_k \ge 0$ $(a_k = 0 \text{ if } R_k(\mathbf{x}^*(t_1)) > 0)$ for $k = r'_1 + 1, \dots, r_1$, and (1) is replaced by

$$p_0 = 0 \text{ or } 1, (p_0, a_1, \dots, a_{r_1}) \neq (0, 0, \dots, 0)$$

If $\widehat{H}(t, \mathbf{x}, \mathbf{p}(t))$ is concave in \mathbf{x} for $p_0 = 1$ and the sum $\sum_{k=1}^{r_1} a_k R_k(\mathbf{x})$ is quasi-concave in \mathbf{x} , then $(\mathbf{x}^*, \mathbf{u}^*)$ is optimal.

Properties of the value function, assuming
$$V$$
 is differentiable. $H^*(t) = H(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t))$. (For precise assumptions, see Seierstad and Sydsæter (1987), Sec. 3.5.)

Necessary conditions for a free terminal time problem. (Concavity of the Hamiltonian in (\mathbf{x}, \mathbf{u}) is not sufficient for optimality when t_1 is free. See Seierstad and Sydsæter (1987), Sec. 2.9.)

More general terminal conditions. $\widehat{H}(t, \mathbf{x}, \mathbf{p}(t))$ is defined in (16.28).

$$\max \left[\int_{t_0}^{t_1} f(t, \mathbf{x}(t), \mathbf{u}(t)) e^{-rt} dt + S(t_1, \mathbf{x}(t_1)) e^{-rt_1} \right]$$

$$\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(t_0) = \mathbf{x}^0, \quad \mathbf{u}(t) \in U \subset \mathbb{R}^r$$

(a) $x_i(t_1) = x_i^1, \quad i = 1, ..., l$

16.32

(b) $x_i(t_1) \ge x_i^1, \quad i = l + 1, \dots, q$

(c) $x_i(t_1)$ free, i = q + 1, ..., n

A control problem with a scrap value function, $S. t_0$ and t_1 are fixed.

16.34
$$H^c(t, \mathbf{x}, \mathbf{u}, \mathbf{q}) = q_0 f(t, \mathbf{x}, \mathbf{u}) + \sum_{j=1}^n q_j g_j(t, \mathbf{x}, \mathbf{u})$$

The current value Hamiltonian for problem (16.33).

If $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves problem (16.33), there exists a constant q_0 and a continuous function $\mathbf{q}(t) = (q_1(t), \dots, q_n(t))$ such that for all t in $[t_0, t_1]$,

- (1) $q_0 = 0$ or 1 and $(q_0, \mathbf{q}(t))$ is never $(0, \mathbf{0})$.
- (2) $H^c(t, \mathbf{x}^*(t), \mathbf{u}, \mathbf{q}(t)) \leq H^c(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{q}(t))$ for all \mathbf{u} in U.

16.35 (3)
$$\dot{q}_i - rq_i = -\frac{\partial H^c(t, \mathbf{x}^*, \mathbf{u}^*, \mathbf{q})}{\partial x_i}, \quad i = 1, \dots, n$$

(4)

16.37

16.38

- (a') No condition on $q_i(t_1)$, i = 1, ..., l
- (b') $q_i(t_1) \ge q_0 \frac{\partial S^*(t_1, \mathbf{x}^*(t_1))}{\partial x_i}$ (with = if $x_i^*(t_1) > x_i^1$), $i = l+1, \dots, m$ (c') $q_i(t_1) = q_0 \frac{\partial S^*(t_1, \mathbf{x}^*(t_1))}{\partial x_i}$, $i = m+1, \dots, n$

The maximum principle for problem (16.33), current value formulation. The differential equation for $q_i = q_i(t)$ is not necessarily valid at the discontinuity points of $\mathbf{u}^*(t)$. (Except in degenerate cases, one can put $q_0 = 1$ and then ignore (1).)

16.36 If $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ satisfies the conditions in (16.35) for $q_0 = 1$, if $H^c(t, \mathbf{x}, \mathbf{u}, \mathbf{q}(t))$ is concave in (\mathbf{x}, \mathbf{u}) , and if $S(t, \mathbf{x})$ is concave in \mathbf{x} , then the pair $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves the problem.

Sufficient conditions for the solution of (16.33). (Mangasarian.)

The condition in (16.36) that $H^c(t, \mathbf{x}, \mathbf{u}, \mathbf{q}(t))$ is concave in (\mathbf{x}, \mathbf{u}) can be replaced by the weaker condition that the maximized current value Hamiltonian

$$\widehat{H}^c(t, \mathbf{x}, \mathbf{q}(t)) = \max_{\mathbf{u} \in U} H^c(t, \mathbf{x}, \mathbf{u}, \mathbf{q}(t))$$
 is concave in \mathbf{x} .

Arrow's sufficient condition.

If t_1 is free in problem (16.33), and if $(\mathbf{x}^*, \mathbf{u}^*)$ solves the corresponding problem on $[t_0, t_1^*]$, then all the conditions in (16.35) are satisfied on $[t_0, t_1^*]$, and in addition

$$\begin{split} H^c(t_1^*, \mathbf{x}^*(t_1^*), \mathbf{u}^*(t_1^*), \mathbf{q}(t_1^*)) &= \\ q_0 r S(t_1^*, \mathbf{x}^*(t_1^*)) - q_0 \frac{\partial S(t_1^*, \mathbf{x}^*(t_1^*))}{\partial t_1} \end{split}$$

Necessary conditions for problem (16.33) when t_1 is free. (Except in degenerate cases, one can put $q_0 = 1$.)

Linear quadratic problems

$$\min \left[\int_{t_0}^{t_1} (\mathbf{x}' \mathbf{A} \mathbf{x} + \mathbf{u}' \mathbf{B} \mathbf{u}) dt + (\mathbf{x}(t_1))' \mathbf{S} \mathbf{x}(t_1) \right],$$

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{u}, \quad \mathbf{x}(t_0) = \mathbf{x}^0, \quad \mathbf{u} \in \mathbb{R}^r.$$

16.39 The matrices $\mathbf{A} = \mathbf{A}(t)_{n \times n}$ and $\mathbf{S}_{n \times n}$ are symmetric and positive semidefinite, $\mathbf{B} = \mathbf{B}(t)_{r \times r}$ is symmetric and positive definite, $\mathbf{F} = \mathbf{F}(t)_{n \times n}$ and $\mathbf{G} = \mathbf{G}(t)_{n \times r}$.

A linear quadratic control problem. The entries of
$$\mathbf{A}(t)$$
, $\mathbf{B}(t)$, $\mathbf{F}(t)$, and $\mathbf{G}(t)$ are continuous functions of t . $\mathbf{x} = \mathbf{x}(t)$ is $n \times 1$, $\mathbf{u} = \mathbf{u}(t)$ is $r \times 1$.

16.40
$$\dot{\mathbf{R}} = -\mathbf{R}\mathbf{F} - \mathbf{F}'\mathbf{R} + \mathbf{R}\mathbf{G}\mathbf{B}^{-1}\mathbf{G}'\mathbf{R} - \mathbf{A}$$

The *Riccati* equation associated with (16.39).

Suppose $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is admissible in problem (16.39), and let $\mathbf{u}^* = -(\mathbf{B}(t))^{-1}(\mathbf{G}(t))'\mathbf{R}(t)\mathbf{x}^*$, with $\mathbf{R} = \mathbf{R}(t)$ as a symmetric $n \times n$ -matrix with C^1 entries satisfying (16.40) with $\mathbf{R}(t_1) = \mathbf{S}$. Then $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves problem (16.39).

The solution of (16.39).

Infinite horizon

$$\begin{aligned} \max \int_{t_0}^{\infty} f(t,x(t),u(t))e^{-rt}\,dt, \\ 16.42 \quad \dot{x}(t) &= g(t,x(t),u(t)), \quad x(t_0) = x^0, \quad u(t) \in U, \\ \lim_{t \to \infty} x(t) &\geq x^1 \qquad (x^1 \text{ is a fixed number}). \end{aligned}$$

A simple one-variable infinite horizon problem, assuming that the integral converges for all admissible pairs.

16.43 $H^{c}(t, x, u, q) = q_{0}f(t, x, u) + qg(t, x, u)$

The current value Hamiltonian for problem (16.42).

Suppose that, with $q_0 = 1$, an admissible pair $(x^*(t), u^*(t))$ in problem (16.42) satisfies the following conditions for all $t \ge t_0$:

(1) $H^c(t, x^*(t), u, q(t)) \le H^c(t, x^*(t), u^*(t), q(t))$ for all u in U.

16.44 (2) $\dot{q}(t) - rq = -\partial H^c(t, x^*(t), u^*(t), q(t))/\partial x$

(3) $H^c(t, x, u, q(t))$ is concave in (x, u).

(4) $\lim_{t\to\infty} [q(t)e^{-rt}(x(t)-x^*(t))] \ge 0$ for all admissible x(t).

Then $(x^*(t), u^*(t))$ is optimal.

Mangasarian's sufficient conditions. (Conditions (1) and (2) are (essentially) necessary for problem (16.42), but (4) is not. For a discussion of necessary conditions, see e.g. Seierstad and Sydsæter (1987), Sec. 3.7.)

$$\max \int_{t_0}^{\infty} f(t, \mathbf{x}(t), \mathbf{u}(t)) e^{-rt} dt$$

 $\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \ \mathbf{x}(t_0) = \mathbf{x}^0, \ \mathbf{u}(t) \in U \subset \mathbb{R}^r$

- (a) $\lim_{t \to \infty} x_i(t) = x_i^1, \quad i = 1, ..., l$
- (b) $\lim_{t\to\infty} x_i(t) \ge x_i^1$, $i = l+1, \ldots, m$
- (c) $x_i(t)$ free as $t \to \infty$, $i = m + 1, \dots, n$

An infinite horizon problem with several state and control variables. For \varliminf , see (12.42) and (12.43).

$$16.46 \quad D(t) = \int_{t_0}^t (f^* - f)e^{-r\tau} d\tau, \text{ where}$$

$$f^* = f(\tau, \mathbf{x}^*(\tau), \mathbf{u}^*(\tau)), \ f = f(\tau, \mathbf{x}(\tau), \mathbf{u}(\tau))$$

Notation for (16.47). $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is a candidate for optimality, and $(\mathbf{x}(t), \mathbf{u}(t))$ is any admissible pair.

The pair $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is

• sporadically catching up optimal (SCU-optimal) if for every admissible pair $(\mathbf{x}(t), \mathbf{u}(t))$, $\overline{\lim}_{t\to\infty} D(t) \geq 0$

i.e. for every $\varepsilon > 0$ and every T there is some t > T such that $D(t) > -\varepsilon$;

16.47 • catching up optimal (CU-optimal) if for every admissible pair $(\mathbf{x}(t), \mathbf{u}(t))$,

$$\underline{\lim}_{t\to\infty} D(t) \ge 0$$

i.e. for every $\varepsilon > 0$ there exists a T such that $D(t) \ge -\varepsilon$ for all $t \ge T$;

• overtaking optimal (OT-optimal) if for every admissible pair $(\mathbf{x}(t), \mathbf{u}(t))$, there exists a number T such that $D(t) \geq 0$ for all $t \geq T$.

Different optimality criteria for infinite horizon problems. For <u>lim</u> and <u>lim</u>, see (12.42) and (12.43). (SCU-optimality is also called weak optimality, while CU-optimality is then called overtaking optimality.)

 $\begin{array}{ccc} \text{OT-optimality} & \Rightarrow & \text{CU-optimality} \\ & \Rightarrow & \text{SCU-optimality} \end{array}$

Relationship between the optimality criteria.

Suppose $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is SCU-, CU-, or OToptimal in problem (16.45). Then there exist a constant q_0 and a continuous function $\mathbf{q}(t) =$ $(q_1(t), \dots, q_n(t))$ such that for all $t \geq t_0$,

- 16.49 (1) $q_0 = 0$ or 1 and $(q_0, \mathbf{q}(t))$ is never $(0, \mathbf{0})$.
 - (2) $H^c(t, \mathbf{x}^*(t), \mathbf{u}, \mathbf{q}(t)) \leq H^c(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{q}(t))$ for all \mathbf{u} in U.
 - (3) $\dot{q}_i rq_i = -\frac{\partial H^c(t, \mathbf{x}^*, \mathbf{u}^*, \mathbf{q})}{\partial x_i}, \quad i = 1, \dots, n$

The maximum principle. Infinite horizon. (No transversality condition.) The differential equation for $q_i(t)$ is not necessarily valid at the discontinuity points of $\mathbf{u}^*(t)$.

With regard to CU-optimality, conditions (2) and (3) in (16.49) (with $q_0 = 1$) are sufficient for optimality if

16.50

- (1) $H^c(t, \mathbf{x}, \mathbf{u}, \mathbf{q}(t))$ is concave in (\mathbf{x}, \mathbf{u})
- (2) $\underline{\lim}_{t\to\infty} e^{-rt} \mathbf{q}(t) \cdot (\mathbf{x}(t) \mathbf{x}^*(t)) \ge 0$ for all admissible $\mathbf{x}(t)$.

Sufficient conditions for the infinite horizon case.

Condition (16.50) (2) is satisfied if the following conditions are satisfied for all admissible $\mathbf{x}(t)$:

- (1) $\underline{\lim}_{t \to \infty} e^{-rt} q_i(t) (x_i^1 x_i^*(t)) \ge 0, \ i = 1, \dots, m.$
- (2) There exists a constant M such that $|e^{-rt}q_i(t)| \leq M$ for all $t \geq t_0, i = 1, \ldots, m$.
- 16.51 (3) Either there exists a number $t' \geq t_0$ such that $q_i(t) \geq 0$ for all $t \geq t'$, or there exists a number P such that $|x_i(t)| \leq P$ for all $t \geq t_0$ and $\lim_{t \to \infty} q_i(t) \geq 0$, $i = l + 1, \ldots, m$.
 - (4) There exists a number Q such that $|x_i(t)| < Q$ for all $t \geq t_0$, and $\lim_{t \to \infty} q_i(t) = 0$, $i = m+1,\ldots,n$.

Sufficient conditions for (16.50) (2) to hold. See Seierstad and Sydsæter (1987), Section 3.7, Note 16.

Mixed constraints

$$\max \int_{t_0}^{t_1} f(t, \mathbf{x}(t), \mathbf{u}(t)) \, dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(t_0) = \mathbf{x}^0, \quad \mathbf{u}(t) \in \mathbb{R}^r$$

16.52

$$h_k(t, \mathbf{x}(t), \mathbf{u}(t)) \ge 0, \quad k = 1, \dots, s$$

- (a) $x_i(t_1) = x_i^1, \quad i = 1, ..., l$
- (b) $x_i(t_1) \ge x_i^1, \quad i = l + 1, \dots, q$
- (c) $x_i(t_1)$ free, i = q + 1, ..., n

A mixed constraints problem. $\mathbf{x}(t) \in \mathbb{R}^n$. h_1, \ldots, h_s are given functions. (All restrictions on \mathbf{u} must be included in the h_k constraints.)

16.53 $\mathcal{L}(t, \mathbf{x}, \mathbf{u}, \mathbf{p}, \mathbf{q}) = H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}) + \sum_{k=1}^{s} q_k h_k(t, \mathbf{x}, \mathbf{u})$

The Lagrangian associated with (16.52). $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p})$ is the usual Hamiltonian.

Suppose $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is an admissible pair in problem (16.52). Suppose further that there exist functions $\mathbf{p}(t) = (p_1(t), \dots, p_n(t))$ and $\mathbf{q}(t) = (q_1(t), \dots, q_s(t))$, where $\mathbf{p}(t)$ is continuous and $\dot{\mathbf{p}}(t)$ and $\mathbf{q}(t)$ are piecewise continuous, such that the following conditions are satisfied with $p_0 = 1$:

(1)
$$\frac{\partial \mathcal{L}^*}{\partial u_j} = 0,$$
 $j = 1, \dots, r$

(2)
$$q_k(t) \ge 0$$
 $(q_k(t) = 0 \text{ if } h_k(t, \mathbf{x}^*(t), \mathbf{u}^*(t)) > 0),$
 $k = 1, \dots, s$

16.54 (3)
$$\dot{p}_i(t) = -\frac{\partial \mathcal{L}^*}{\partial x_i},$$
 $i = 1, \dots, n$
(4)

(4)

(a') No conditions on
$$p_i(t_1)$$
, $i = 1, ..., l$

(b')
$$p_i(t_1) \ge 0$$
 $(p_i(t_1) = 0 \text{ if } x_i^*(t_1) > x_i^1),$
 $i = l + 1, \dots, m$

(c')
$$p_i(t_1) = 0,$$
 $i = m + 1, ..., n$

(5)
$$H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$$
 is concave in (\mathbf{x}, \mathbf{u})

(6)
$$h_k(t, \mathbf{x}, \mathbf{u})$$
 is quasi-concave in (\mathbf{x}, \mathbf{u}) , $k = 1, \dots, s$

Then $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves the problem.

Mangasarian's sufficient conditions for problem (16.52). \mathcal{L}^* denotes evaluation at $(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t), \mathbf{q}(t)).$ (The standard necessary conditions for optimality involve a constraint qualification that severely restricts the type of functions that can appear in the h_k -constraints. In particular, each constraint active at the optimum must contain at least one of the control variables as an argument. For details, see the references.)

Pure state constraints

$$\max \int_{t_0}^{t_1} f(t, \mathbf{x}(t), \mathbf{u}(t)) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(t_0) = \mathbf{x}^0$$

$$\mathbf{u}(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$$

$$h_k(t, \mathbf{x}(t)) \ge 0, \quad k = 1, \dots, s$$
(a) $x_i(t_1) = x_i^1, \quad i = 1, \dots, l$
(b) $x_i(t_1) \ge x_i^1, \quad i = l+1, \dots, q$
(c) $x_i(t_1)$ free, $i = q+1, \dots, n$

A pure state constraints problem. U is the control region. h_1, \ldots, h_s are given functions.

16.56
$$\mathcal{L}(t, \mathbf{x}, \mathbf{u}, \mathbf{p}, \mathbf{q}) = H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}) + \sum_{k=1}^{s} q_k h_k(t, \mathbf{x})$$

The Lagrangian associated with (16.55). $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p})$ is the usual Hamiltonian.

Suppose $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ is admissible in problem (16.55), and that there exist vector functions $\mathbf{p}(t)$ and $\mathbf{q}(t)$, where $\mathbf{p}(t)$ is continuous and $\dot{\mathbf{p}}(t)$ and $\mathbf{q}(t)$ are piecewise continuous in $[t_0, t_1)$, and numbers β_k , $k = 1, \ldots, s$, such that the following conditions are satisfied with $p_0 = 1$:

- (1) $\mathbf{u} = \mathbf{u}^*(t)$ maximizes $H(t, \mathbf{x}^*(t), \mathbf{u}, \mathbf{p}(t))$ for \mathbf{u} in U.
- (2) $q_k(t) \ge 0$ $(q_k(t) = 0 \text{ if } h_k(t, \mathbf{x}^*(t)) > 0),$ $k = 1, \dots, s$

(3)
$$\dot{p}_i(t) = -\frac{\partial \mathcal{L}^*}{\partial x_i}, \qquad i = 1, \dots, n$$

(4) At t_1 , $p_i(t)$ can have a jump discontinuity, in which case

16.57

$$p_i(t_1^-) - p_i(t_1) = \sum_{k=1}^s \beta_k \frac{\partial h_k(t_1, \mathbf{x}^*(t_1))}{\partial x_i},$$

 $i = 1, \dots,$

- (5) $\beta_k \ge 0 \ (\beta_k = 0 \text{ if } h_k(t_1, \mathbf{x}^*(t_1)) > 0), \\ k = 1, \dots, s$
- (6) (a') No conditions on $p_i(t_1)$, i = 1, ..., l(b') $p_i(t_1) \ge 0$ $(p_i(t_1) = 0 \text{ if } x_i^*(t_1) > x_i^1)$, i = l+1, ..., m(c') $p_i(t_1) = 0$, i = m+1, ..., m
- (7) $\widehat{H}(t, \mathbf{x}, \mathbf{p}(t)) = \max_{\mathbf{u} \in U} H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$ is concave in \mathbf{x} .
- (8) $h_k(t, \mathbf{x})$ is quasi-concave in \mathbf{x} , $k = 1, \dots, s$ Then $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves the problem.

Mangasarian's sufficient conditions for the pure state constraints problem (16.55). $\mathbf{p}(t) =$ $(p_1(t),\ldots,p_n(t))$ and $\mathbf{q}(t) = (q_1(t), \dots, q_s(t)).$ \mathcal{L}^* denotes evaluation at $(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t), \mathbf{q}(t)).$ (The conditions in the theorem are somewhat restrictive. In particular, sometimes one must allow $\mathbf{p}(t)$ to have discontinuities at interior points of $[t_0, t_1]$. For details, see the references.)

Mixed and pure state constraints

$$\max \int_{t_0}^{t_1} f(t, \mathbf{x}(t), \mathbf{u}(t)) dt$$

$$\dot{\mathbf{x}}(t) = \mathbf{g}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{x}(t_0) = \mathbf{x}^0$$

$$\mathbf{u}(t) = (u_1(t), \dots, u_r(t)) \in U \subset \mathbb{R}^r$$

$$16.58 \quad h_k(t, \mathbf{x}(t), \mathbf{u}(t)) \ge 0, \qquad k = 1, \dots, s'$$

$$h_k(t, \mathbf{x}(t), \mathbf{u}(t)) = \bar{h}_k(t, \mathbf{x}(t)) \ge 0, k = s' + 1, \dots, s$$

$$(a) \quad x_i(t_1) = x_i^1, \qquad i = 1, \dots, l$$

$$(b) \quad x_i(t_1) \ge x_i^1, \qquad i = l + 1, \dots, q$$

$$(c) \quad x_i(t_1) \text{ free}, \qquad i = q + 1, \dots, n$$

A mixed and pure state constraints problem.

Let $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ be admissible in problem (16.58). Assume that there exist vector functions $\mathbf{p}(t)$ and $\mathbf{q}(t)$, where $\mathbf{p}(t)$ is continuous and $\dot{\mathbf{p}}(t)$ and $\mathbf{q}(t)$ are piecewise continuous, and also numbers β_k , $k = 1, \ldots, s$, such that the following conditions are satisfied with $p_0 = 1$:

(1)
$$\left(\frac{\partial \mathcal{L}^*}{\partial \mathbf{u}}\right) \cdot (\mathbf{u} - \mathbf{u}^*(t)) \leq 0 \ \text{for all } \mathbf{u} \ \text{i} \ U$$

(2)
$$\dot{p}_i(t) = -\frac{\partial \mathcal{L}^*}{\partial x_i}$$
, $i = 1, \dots, n$

(3)
$$p_i(t_1) - \sum_{k=1}^{s} \beta_k \frac{\partial h_k(t_1, \mathbf{x}^*(t_1), \mathbf{u}^*(t_1))}{\partial x_i}$$

(a') no conditions,
$$i = 1, \ldots, l$$

(a') no conditions,
$$i = 1, ..., l$$

(b') ≥ 0 (= 0 if $x_i^*(t_1) > x_i^1$), $i = l + 1, ..., m$

$$i=l+1,\ldots,m$$

(c') = 0,
$$i = m + 1, \dots, n$$

$$(4) \beta_k = 0, \qquad k = 1, \dots, s'$$

(5)
$$\beta_k \ge 0 \ (\beta_k = 0 \text{ if } \bar{h}_k(t_1, \mathbf{x}^*(t_1)) > 0), \\ k = s' + 1, \dots, s$$

(6)
$$q_k(t) \ge 0 \ (= 0 \text{ if } h_k(t, \mathbf{x}^*(t), \mathbf{u}^*(t)) > 0),$$

(7)
$$h_k(t, \mathbf{x}, \mathbf{u})$$
 is quasi-concave in (\mathbf{x}, \mathbf{u}) , $k = 1, \dots, s$

(8) $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}(t))$ is concave in (\mathbf{x}, \mathbf{u}) .

Then $(\mathbf{x}^*(t), \mathbf{u}^*(t))$ solves the problem.

Mangasarian's sufficient conditions for the mixed and pure state constraints problem (with $\mathbf{p}(t)$ continuous). \mathcal{L} is defined in (16.53), and \mathcal{L}^* denotes evaluation at $(t, \mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t), \mathbf{q}(t)).$ $\mathbf{p}(t) = (p_1(t), \dots, p_n(t)),$ $\mathbf{q}(t) = (q_1(t), \dots, q_s(t)).$ A constraint qualification is not required. but the conditions often fail to hold because $\mathbf{p}(t)$ has discontinuities, in particular at t_1 . See e.g. Seierstad and Sydsæter (1987), Theorem 6.2 for a sufficiency result allowing $\mathbf{p}(t)$ to have discontinuities at interior points of $[t_0, t_1]$ as well.

References

Kamien and Schwartz (1991), Léonard and Long (1992), Beavis and Dobbs (1990), Intriligator (1971), and Sydsæter et al. (2005). For more comprehensive collection of results, see e.g. Seierstad and Sydsæter (1987) or Feichtinger and Hartl (1986) (in German).

Chapter 17

Discrete dynamic optimization

Dynamic programming

17.1
$$\max \sum_{t=0}^{T} f(t, \mathbf{x}_{t}, \mathbf{u}_{t})$$

$$\mathbf{x}_{t+1} = \mathbf{g}(t, \mathbf{x}_{t}, \mathbf{u}_{t}), \quad t = 0, \dots, T - 1$$

$$\mathbf{x}_{0} = \mathbf{x}^{0}, \ \mathbf{x}_{t} \in \mathbb{R}^{n}, \ \mathbf{u}_{t} \in U \subset \mathbb{R}^{r}, \quad t = 0, \dots, T$$

17.2
$$J_s(\mathbf{x}) = \max_{\mathbf{u}_s, \dots, \mathbf{u}_T \in U} \sum_{t=s}^T f(t, \mathbf{x}_t, \mathbf{u}_t), \text{ where}$$
$$\mathbf{x}_{t+1} = \mathbf{g}(t, \mathbf{x}_t, \mathbf{u}_t), \quad t = s, \dots, T-1, \quad \mathbf{x}_s = \mathbf{x}$$

$$J_T(\mathbf{x}) = \max_{\mathbf{u} \in U} f(T, \mathbf{x}, \mathbf{u})$$

17.3
$$J_s(\mathbf{x}) = \max_{\mathbf{u} \in U} \left[f(s, \mathbf{x}, \mathbf{u}) + J_{s+1}(\mathbf{g}(s, \mathbf{x}, \mathbf{u})) \right]$$
for $s = 0, 1, \dots, T - 1$.

A "control parameter free" formulation of the dynamic programming problem:

17.4
$$\max \sum_{t=0}^{T} F(t, \mathbf{x}_t, \mathbf{x}_{t+1})$$
$$\mathbf{x}_{t+1} \in \Gamma_t(\mathbf{x}_t), \quad t = 0, \dots, T, \quad \mathbf{x}_0 \text{ given}$$

17.5
$$J_s(\mathbf{x}) = \max \sum_{t=s}^{T} F(t, \mathbf{x}_t, \mathbf{x}_{t+1}), \text{ where the maximum is taken over all } \mathbf{x}_{t+1} \text{ in } \Gamma_t(\mathbf{x}_t) \text{ for } t = s, \dots, T, \text{ with } \mathbf{x}_s = \mathbf{x}.$$

$$J_{T}(\mathbf{x}) = \max_{\mathbf{y} \in \Gamma_{T}(\mathbf{x})} F(T, \mathbf{x}, \mathbf{y})$$

$$17.6 \quad J_{s}(\mathbf{x}) = \max_{\mathbf{y} \in \Gamma_{s}(\mathbf{x})} \left[F(s, \mathbf{x}, \mathbf{y}) + J_{s+1}(\mathbf{y}) \right]$$
for $s = 0, 1, \dots, T$.

A dynamic programming problem. Here $\mathbf{g} = (g_1, \dots, g_n)$, and \mathbf{x}^0 is a fixed vector in \mathbb{R}^n . U is the control region.

Definition of the value function, $J_s(\mathbf{x})$, of problem (17.1).

The fundamental equations in dynamic programming. (Bellman's equations.)

The set $\Gamma_t(\mathbf{x}_t)$ is often defined in terms of vector inequalities, $\mathbf{G}(t, \mathbf{x}_t) \leq \mathbf{x}_{t+1} \leq \mathbf{H}(t, \mathbf{x}_t)$, for given vector functions \mathbf{G} and \mathbf{H} .

The value function, $J_s(\mathbf{x})$, of problem (17.4).

The fundamental equations for problem (17.4).

If $\{\mathbf{x}_0^*, \dots, \mathbf{x}_{T+1}^*\}$ is an optimal solution of problem (17.4) in which \mathbf{x}_{t+1}^* is an interior point of $\Gamma_t(\mathbf{x}_t^*)$ for all t, and if the correspondence $\mathbf{x} \mapsto \mathbf{C}\Gamma_t(\mathbf{x})$ is upper hemicontinuous, then $\{\mathbf{x}_0^*, \dots, \mathbf{x}_{T+1}^*\}$ satisfies the Euler vector difference equation

 $F_2'(t+1, \mathbf{x}_{t+1}, \mathbf{x}_{t+2}) + F_3'(t, \mathbf{x}_t, \mathbf{x}_{t+1}) = 0$

F is a function of 1+n+n variables, F_2' denotes the n-vector of partial derivatives of F w.r.t. variables no. 2, 3, ..., n+1, and F_3' is the n-vector of partial derivatives of F w.r.t. variables no. n+2, n+3, ..., 2n+1.

Infinite horizon

$$\max_{\mathbf{c}} \sum_{t=0}^{\infty} \alpha^t f(\mathbf{x}_t, \mathbf{u}_t)$$

17.8 $\mathbf{x}_{t+1} = \mathbf{g}(\mathbf{x}_t, \mathbf{u}_t), \quad t = 0, 1, 2, \dots$ $\mathbf{x}_0 = \mathbf{x}^0, \ \mathbf{x}_t \in \mathbb{R}^n, \ \mathbf{u}_t \in U \subset \mathbb{R}^r, \quad t = 0, 1, 2, \dots$

An infinite horizon problem. $\alpha \in (0,1)$ is a constant discount factor.

The sequence $\{(\mathbf{x}_t, \mathbf{u}_t)\}$ is called *admissible* if 17.9 $\mathbf{u}_t \in U$, $\mathbf{x}_0 = \mathbf{x}^0$, and the difference equation in (17.8) is satisfied for all $t = 0, 1, 2, \ldots$

Definition of an *admissible* sequence.

- (B) $M \le f(\mathbf{x}, \mathbf{u}) \le N$
- 17.10 (BB) $f(\mathbf{x}, \mathbf{u}) \ge M$ (BA) $f(\mathbf{x}, \mathbf{u}) \le N$

Boundedness conditions. M and N are given numbers.

- $V(\mathbf{x}, \boldsymbol{\pi}, s, \infty) = \sum_{t=s}^{\infty} \alpha^t f(\mathbf{x}_t, \mathbf{u}_t),$
- 17.11 where $\boldsymbol{\pi} = (\mathbf{u}_s, \mathbf{u}_{s+1}, \ldots)$, with $\mathbf{u}_{s+k} \in U$ for $k = 0, 1, \ldots$, and with $\mathbf{x}_{t+1} = \mathbf{g}(\mathbf{x}_t, \mathbf{u}_t)$ for $t = s, s+1, \ldots$, and with $\mathbf{x}_s = \mathbf{x}$.

The total utility obtained from period s and onwards, given that the state vector is \mathbf{x} at t=s.

- $J_s(\mathbf{x}) = \sup_{\boldsymbol{\pi}} V(\mathbf{x}, \boldsymbol{\pi}, s, \infty)$
- 17.12 where the supremum is taken over all vectors $\boldsymbol{\pi} = (\mathbf{u}_s, \mathbf{u}_{s+1}, \ldots)$ with $\mathbf{u}_{s+k} \in U$, with $(\mathbf{x}_t, \mathbf{u}_t)$ admissible for $t \geq s$, and with $\mathbf{x}_s = \mathbf{x}$.

The value function of problem (17.8).

17.13 $J_s(\mathbf{x}) = \alpha^s J_0(\mathbf{x}), \quad s = 1, 2, \dots$ $J_0(\mathbf{x}) = \sup_{\mathbf{u} \in U} \{ f(\mathbf{x}, \mathbf{u}) + \alpha J_0(\mathbf{g}(\mathbf{x}, \mathbf{u})) \}$

Properties of the value function, assuming that at least one of the boundedness conditions in (17.10) is satisfied.

Discrete optimal control theory

17.14
$$H = f(t, \mathbf{x}, \mathbf{u}) + \mathbf{p} \cdot \mathbf{g}(t, \mathbf{x}, \mathbf{u}), \quad t = 0, \dots, T$$

Suppose $\{(\mathbf{x}_t^*, \mathbf{u}_t^*)\}$ is an optimal sequence for problem (17.1). Then there exist vectors \mathbf{p}_t in \mathbb{R}^n such that for $t = 0, \ldots, T$:

17.15 •
$$H'_{\mathbf{u}}(t, \mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t) \cdot (\mathbf{u} - \mathbf{u}_t^*) \leq 0$$
 for all \mathbf{u} in U

• The vector $\mathbf{p}_t = (p_t^1, \dots, p_t^n)$ is a solution of $\mathbf{p}_{t-1} = H'_{\mathbf{x}}(t, \mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t), \quad t = 1, \dots, T$ with $\mathbf{p}_T = \mathbf{0}$.

(a)
$$x_T^i = \bar{x}^i$$
 for $i = 1, \dots, l$

17.16 (b)
$$x_T^i \ge \bar{x}^i$$
 for $i = l + 1, ..., m$

(c)
$$x_T^i$$
 free for $i = m + 1, \dots, n$

17.17
$$H = \begin{cases} q_0 f(t, \mathbf{x}, \mathbf{u}) + \mathbf{p} \cdot \mathbf{g}(t, \mathbf{x}, \mathbf{u}), & t = 0, \dots, T - 1 \\ f(T, \mathbf{x}, \mathbf{u}), & t = T \end{cases}$$

Suppose $\{(\mathbf{x}_t^*, \mathbf{u}_t^*)\}$ is an optimal sequence for problem (17.1) with terminal conditions (17.16). Then there exist vectors \mathbf{p}_t in \mathbb{R}^n and a number q_0 , with $(q_0, \mathbf{p}_T) \neq (0, \mathbf{0})$ and with $q_0 = 0$ or 1, such that for $t = 0, \ldots, T$:

(1)
$$H'_{\mathbf{u}}(t, \mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t)(\mathbf{u} - \mathbf{u}_t^*) \le 0$$
 for all \mathbf{u} in U

(2)
$$\mathbf{p}_t = (p_t^1, \dots, p_t^n)$$
 is a solution of $p_{t-1}^i = H'_{x^i}(t, \mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t), \quad t = 1, \dots, T-1$

(3)
$$p_{T-1}^i = q_0 \frac{\partial f(T, \mathbf{x}_T^*, \mathbf{u}_T^*)}{\partial x_T^i} + p_T^i$$

where p_T^i satisfies

17.18

17.19

(a') no condition on
$$p_T^i$$
, $i = 1, ..., l$

(b')
$$p_T^i \ge 0 \ (= 0 \text{ if } x_T^{*i} > \bar{x}^i), \quad i = l+1, \dots, m$$

(c') $p_T^i = 0, \quad i = m+1, \dots, n$

Suppose that the sequence $\{(\mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t)\}$ satisfies all the conditions in (17.18) for $q_0 = 1$, and suppose further that $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}_t)$ is concave in (\mathbf{x}, \mathbf{u}) for every $t \geq 0$. Then the sequence $\{(\mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t)\}$ is optimal.

The Hamiltonian $H = H(t, \mathbf{x}, \mathbf{u}, \mathbf{p})$ associated with (17.1), with $\mathbf{p} = (p^1, \dots, p^n)$.

The maximum principle for (17.1). Necessary conditions for optimality. U is convex. (The Hamiltonian is not necessarily maximized by \mathbf{u}_{t}^{*} .)

Terminal conditions for problem (17.1).

The Hamiltonian $H = H(t, \mathbf{x}, \mathbf{u}, \mathbf{p})$ associated with (17.1) with terminal conditions (17.16).

The maximum principle for (17.1) with terminal conditions (17.16). Necessary conditions for optimality. (a'), (b'), or (c') holds when (a), (b), or (c) in (17.16) holds, respectively. U is convex. (Except in degenerate cases, one can put $q_0 = 1$.)

Sufficient conditions for optimality.

Infinite horizon

17.20
$$\max \sum_{t=0}^{\infty} f(t, \mathbf{x}_t, \mathbf{u}_t)$$
$$\mathbf{x}_{t+1} = \mathbf{g}(t, \mathbf{x}_t, \mathbf{u}_t), \quad t = 0, 1, 2, \dots$$
$$\mathbf{x}_0 = \mathbf{x}^0, \quad \mathbf{x}_t \in \mathbb{R}^n, \quad \mathbf{u}_t \in U \subset \mathbb{R}^r, \quad t = 0, 1, 2, \dots$$

It is assumed that the infinite sum converges for every admissible pair.

The sequence $\{(\mathbf{x}_t^*, \mathbf{u}_t^*)\}$ is catching up optimal (CU-optimal) if for every admissible sequence $\{(\mathbf{x}_t, \mathbf{u}_t)\},$

17.21 $\lim_{t \to \infty} D(t) \ge 0$ where $D(t) = \sum_{\tau=0}^{t} (f(\tau, \mathbf{x}_{\tau}^*, \mathbf{u}_{\tau}^*) - f(\tau, \mathbf{x}_{\tau}, \mathbf{u}_{\tau})).$

Definition of "catching up optimality". For $\underline{\lim}$ see (12.42) and (12.43).

Suppose that the sequence $\{(\mathbf{x}_t^*, \mathbf{u}_t^*, \mathbf{p}_t)\}$ satisfies the conditions (1) and (2) in (17.18) with $q_0 = 1$. Suppose further that the Hamiltonian function $H(t, \mathbf{x}, \mathbf{u}, \mathbf{p}_t)$ is concave in (\mathbf{x}, \mathbf{u}) for every t. Then $\{(\mathbf{x}_t^*, \mathbf{u}_t^*)\}$ is CU-optimal provided that the following limit condition is satisfied: For all admissible sequences $\{(\mathbf{x}_t, \mathbf{u}_t)\}$,

Sufficient optimality conditions for an infinite horizon problem with no terminal conditions.

$$\underline{\lim_{t \to \infty}} \, \mathbf{p}_t \cdot (\mathbf{x}_t - \mathbf{x}_t^*) \ge 0$$

References

See Bellman (1957), Stokey, Lucas, and Prescott (1989), and Sydsæter et al. (2005).

Chapter 18

Vectors in \mathbb{R}^n . Abstract spaces

18.1
$$\mathbf{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \dots, \mathbf{a}_m = \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} \quad \begin{vmatrix} m \text{ (column) vectors in } \\ \mathbb{R}^n. \end{vmatrix}$$

If x_1, x_2, \ldots, x_m are real numbers, then

 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_m\mathbf{a}_m$ 18.2 is a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$. Definition of a linear combination of vectors.

The vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ in \mathbb{R}^n are

- linearly dependent if there exist numbers c_1 , c_2, \ldots, c_m , not all zero, such that
- $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \dots + c_m\mathbf{a}_m = \mathbf{0}$ • linearly independent if they are not linearly

Definition of linear dependence and independence.

The vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$ in (18.1) are linearly 18.4 independent if and only if the matrix $(a_{ij})_{n\times m}$ has rank m.

A characterization of linear independence for m vectors in \mathbb{R}^n . (See (19.23) for the definition of rank.)

The vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ in \mathbb{R}^n are linearly independent if and only if

18.5
$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0$$

dependent.

18.3

A characterization of linear independence for nvectors in \mathbb{R}^n . (A special case of (18.4).)

A non-empty subset V of vectors in \mathbb{R}^n is a subspace of \mathbb{R}^n if $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 \in V$ for all \mathbf{a}_1 , \mathbf{a}_2 in 18.6 V and all numbers c_1 , c_2 .

Definition of a subspace.

18.7 If V is a subset of \mathbb{R}^n , then $\mathcal{S}[V]$ is the set of all linear combinations of vectors from V.

A collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_m$ in a subspace V of \mathbb{R}^n is a *basis* for V if the following two conditions are satisfied:

- $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly independent
- $\mathcal{S}[\mathbf{a}_1,\ldots,\mathbf{a}_m]=V$

The dimension dim V, of a subspace V of \mathbb{R}^n is the number of vectors in a basis for V. (Two bases for V always have the same number of vectors.)

Let V be an m-dimensional subspace of \mathbb{R}^n .

- Any collection of m linearly independent vectors in V is a basis for V.
 - Any collection of m vectors in V that spans V is a basis for V.

The inner product of $\mathbf{a} = (a_1, \dots, a_m)$ and $\mathbf{b} = 18.11$ (b_1, \dots, b_m) is the number

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \dots + a_m b_m = \sum_{j=1}^m a_i b_i$$

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

18.12
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

 $(\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = \alpha (\mathbf{a} \cdot \mathbf{b})$

$$\mathbf{a} \cdot \mathbf{a} > 0 \iff \mathbf{a} \neq \mathbf{0}$$

18.13
$$\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

- (a) $\|\mathbf{a}\| > 0$ for $\mathbf{a} \neq \mathbf{0}$ and $\|\mathbf{0}\| = 0$
- 18.14 (b) $\|\alpha \mathbf{a}\| = |\alpha| \|\mathbf{a}\|$

18.15

- (c) $\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$
- $(d) \quad |\mathbf{a} \cdot \mathbf{b}| \le \|\mathbf{a}\| \cdot \|\mathbf{b}\|$

The angle φ between two nonzero vectors **a** and **b** is defined by

$$\cos \varphi = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|}, \qquad 0 \le \varphi \le \pi$$

S[V] is called the *span* of V.

Definition of a basis for a subspace.

Definition of the dimension of a subspace. In particular, $\dim \mathbb{R}^n = n$.

Important facts about subspaces.

Definition of the inner product, also called scalar product or dot product.

Properties of the inner product. α is a scalar (i.e. a real number).

Definition of the (Euclidean) norm (or length) of a vector.

Properties of the norm. $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, α is a scalar. (d) is the *Cauchy-Schwarz inequality*. $\|\mathbf{a} - \mathbf{b}\|$ is the *distance* between \mathbf{a} and \mathbf{b} .

Definition of the angle between two vectors in \mathbb{R}^n . The vectors \mathbf{a} and \mathbf{b} are called *orthogonal* if $\mathbf{a} \cdot \mathbf{b} = 0$.

Vector spaces

A vector space (or linear space) (over \mathbb{R}) is a set V of elements, often called vectors, with two operations, "addition" $(V \times V \to V)$ and "scalar multiplication" $(\mathbb{R} \times V \to V)$, that for all x, y, z in V, and all real numbers α and β satisfy the following axioms:

18.16 (a)
$$(x+y) + z = x + (y+z)$$
, $x+y = y+x$.

- (b) There is an element 0 in V with x + 0 = x.
- (c) For every x in V, the element (-1)x in V has the property x + (-1)x = 0.

(d)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\alpha(\beta x) = (\alpha \beta)x$, $\alpha(x + y) = \alpha x + \alpha y$, $1x = x$.

A set B of vectors in a vector space V is a basis 18.17 for V if the vectors in B are linearly independent, and B spans V, S[B] = V. Definition of a vector space. With obvious modifications, definitions (18.2), (18.3), (18.6), and (18.7), of a linear combination, of linearly dependent and independent sets of vectors, of a subspace, and of the span, carry over to vector spaces.

Definition of a basis of a vector space.

Metric spaces

A metric space is a set M equipped with a distance function $d: M \times M \to \mathbb{R}$, such that the following axioms hold for all x, y, z in M:

18.18 (a) $d(x,y) \ge 0$, and $d(x,y) = 0 \Leftrightarrow x = y$

(b) d(x, y) = d(y, x)

18.19

(c) $d(x,y) \le d(x,z) + d(z,y)$

A sequence $\{x_n\}$ in a metric space is

• convergent with limit x, and we write $\lim_{n\to\infty} x_n = x$ (or $x_n \to x$ as $n \to \infty$), if $d(x_n, x) \to 0$ as $n \to \infty$;

• a Cauchy sequence if for every $\varepsilon > 0$ there exists an integer N such that $d(x_n, x_m) < \varepsilon$ for all $m, n \geq N$.

A subset S of a metric space M is dense in M 18.20 if each point in M is the limit of a sequence of points in S.

A metric space M is

- complete if every Cauchy sequence in M is convergent;
 - separable if there exists a countable subset S of M that is dense in M.

Definition of a metric space. The distance function d is also called a metric on M. (c) is called the triangle inequality.

Important definitions. A sequence that is not convergent is called divergent.

Definition of a dense subset.

Definition of complete and separable metric spaces.

Normed vector spaces. Banach spaces

A normed vector space (over \mathbb{R}) is a vector space V, together with a function $\|\cdot\|: V \to \mathbb{R}$, such that for all x, y in V and all real numbers α ,

18.22

- (a) ||x|| > 0 for $x \neq 0$ and ||0|| = 0
- (b) $\|\alpha x\| = |\alpha| \|x\|$
- (c) $||x + y|| \le ||x|| + ||y||$

• $l^p(n)$: \mathbb{R}^n , with $\|\mathbf{x}\| = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ (p \ge 1)$ (For p = 2 this is the Euclidean norm.)

- $l^{\infty}(n)$: \mathbb{R}^n , with $\|\mathbf{x}\| = \max(|x_1|, \dots, |x_n|)$
- l^p $(p \ge 1)$: the set of all infinite sequences $\mathbf{x} = (x_0, x_1, \ldots)$ of real numbers such that $\sum_{i=1}^{\infty} |x_i|^p$ converges. $\|\mathbf{x}\| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$. For $\mathbf{x} = (x_0, x_1, \ldots)$ and $\mathbf{y} = (y_0, y_1, \ldots)$ in l^p , by definition, $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, \ldots)$ and $\alpha \mathbf{x} = (\alpha x_0, \alpha x_1, \ldots)$.

18.23

- l^{∞} : the set of all bounded infinite sequences $\mathbf{x} = (x_0, x_1, \ldots)$ of real numbers, with $\|\mathbf{x}\| = \sup_i |x_i|$. (Vector operations defined as for l^p .)
- C(X): the set of all bounded, continuous functions $f: X \to \mathbb{R}$, where X is a metric space, and with $||f|| = \sup_{x \in X} |f(x)|$. If f and g are in C(X) and $\alpha \in \mathbb{R}$, then f+g and αf are defined by (f+g)(x) = f(x) + g(x) and $(\alpha f)(x) = \alpha f(x)$.

Let X be compact metric space, and let F be a subset of the Banach space C(X) (see (18.23) that is

18.24

- uniformly bounded, i.e. there exists a number M such that $|f(x)| \leq M$ for all f in F and all x in X,
- equicontinuous, i.e. for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $||x x'|| < \delta$, then $|f(x) f(x')| < \varepsilon$ for all f in F.

Then the closure of F is compact.

With the distance function d(x,y) = ||x-y||, V becomes a metric space. If this metric space is complete, then V is called a $Banach\ space$.

Some standard examples of normed vector spaces, that are also Banach spaces.

Ascoli's theorem. (Together with Schauder's theorem (18.25), this result is useful e.g. in economic dynamics. See Stokey, Lucas, and Prescott (1989).)

18.25 If K is a compact, convex set in a Banach space X, then any continuous function f of K into itself has a fixed point, i.e. there exists a point x^* in K such that $f(x^*) = x^*$.

Schauder's fixed point theorem.

The existence of a fixed

(*) for some k in [0,1),

is called a *contraction*

Let $T:X\to X$ be a mapping of a complete metric space X into itself, and suppose there exists a number k in [0,1) such that

point for a contraction mapping. k is called a modulus of the contraction mapping. (See also (6.23) and (6.25).) A mapping that satisfies

mapping.

- 18.26 (*) $d(Tx, Ty) \le kd(x, y)$ for all x, y in XThen:
 - (a) T has a fixed point x^* , i.e. $T(x^*) = x^*$.
 - (b) $d(T^n x^0, x^*) \le k^n d(x^0, x^*)$ for all x^0 in X and all n = 0, 1, 2, ...

Let C(X) be the Banach space defined in (18.23) and let T be a mapping of C(X) into C(X) satisfying:

- (a) (Monotonicity) If $f, g \in C(X)$ and $f(x) \le g(x)$ for all x in X, then $(Tf)(x) \le (Tg)(x)$ for all $x \in X$.
- (b) (Discounting) There exists some α in (0,1) such that for all f in C(X), all $a \geq 0$, and all x in X,

$$[T(f+a)](x) \le (Tf)(x) + \alpha a$$

Then T is a contraction mapping with modulus α .

Blackwell's sufficient conditions for a contraction. Here (f + a)(x) is defined as f(x) + a.

Inner product spaces. Hilbert spaces

An inner product space (over \mathbb{R}) is a vector space V, together with a function that to each ordered pair of vectors (x, y) in V associates a real number, $\langle x, y \rangle$, such that for all x, y, z in V and all real numbers α ,

18.28

18.27

(a)
$$\langle x, y \rangle = \langle y, x \rangle$$

(b)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

(c)
$$\alpha \langle x, y \rangle = \langle \alpha x, y \rangle = \langle x, \alpha y \rangle$$

(d)
$$\langle x, x \rangle > 0$$
 and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Definition of an inner product space. If we define $||x|| = \sqrt{\langle x, x \rangle}$, then V becomes a normed vector space. If this space is complete, V is called a $Hilbert\ space$.

•
$$l^2(n)$$
, with $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$

• l^2 , with $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$

Examples of Hilbert spaces.

18.30 (a)
$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$
 for all x, y in V
(b) $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$

(a) is the Cauchy—Schwarz inequality. (Equality holds if and only if x and y are linearly dependent.) The equality in (b) shows that the inner product is expressible in terms of the norm.

Important definitions.

- Two vectors x and y in an inner product space V are orthogonal if $\langle x, y \rangle = 0$.
- A set S of vectors in V is called *orthogonal* if $\langle x, y \rangle = 0$ for all $x \neq y$ in S.

18.31

- A set S of vectors in V is called orthonormal if it is orthogonal and ||x|| = 1 for all x in S.
- An orthonormal set S in V is called complete
 if there exists no x in V that is orthogonal
 to all vectors in S.

Let U be an orthonormal set in an inner product space V.

(a) If u_1, \ldots, u_n is any finite collection of distinct elements of U, then

(*)
$$\sum_{i=1}^{n} |(x, u_i)|^2 \le ||x||^2$$
 for all x in V

(b) If V is complete (a Hilbert space) and U is a complete orthonormal subset of V, then (**) $\sum_{u \in U} |(x,u)|^2 = ||x||^2$ for all x in V

(*) is Bessel's inequality, (**) is Parseval's formula.

References

All the results on vectors in \mathbb{R}^n are standard and can be found in any linear algebra text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). For abstract spaces, see Kolmogorov and Fomin (1975), or Royden (1968). For contraction mappings and their application in economic dynamics, see Stokey, Lucas, and Prescott (1989).

Chapter 19

Matrices

19.1
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{m \times n}$$

19.2
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

19.3
$$\operatorname{diag}(a_1, a_2, \dots, a_n) = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

19.5
$$\mathbf{I}_{n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}$$

If $\mathbf{A} = (a_{ij})_{m \times n}$, $\mathbf{B} = (b_{ij})_{m \times n}$, and α is a scalar, we define

19.6
$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}$$
$$\alpha \mathbf{A} = (\alpha a_{ij})_{m \times n}$$
$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B} = (a_{ij} - b_{ij})_{m \times n}$$

Notation for a matrix, where a_{ij} is the element in the ith row and the jth column. The matrix has $order\ m \times n$. If m = n, the matrix is square of order n.

An upper triangular matrix. (All elements below the diagonal are 0.) The transpose of **A** (see (19.11)) is called lower triangular.

A diagonal matrix.

A scalar matrix.

The *unit* or *identity* matrix.

Matrix operations. (The scalars are real or complex numbers.)

$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$$

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$

$$\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$$

$$(a+b)\mathbf{A} = a\mathbf{A} + b\mathbf{A}$$

$$a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B}$$

Properties of matrix operations. $\mathbf{0}$ is the zero (or null) matrix, all of whose elements are zero. a and b are scalars.

If $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{jk})_{n \times p}$, we define the product $\mathbf{C} = \mathbf{AB}$ as the $m \times p$ matrix $\mathbf{C} = (c_{ik})_{m \times p}$ where

The definition of matrix multiplication.

$$c_{ik} = a_{i1}b_{1k} + \dots + a_{ij}b_{jk} + \dots + a_{in}b_{nk}$$

$$\begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & & \vdots \\ b_{j1} & \dots & b_{jk} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1k} & \dots & c_{1p} \\ \vdots & & \vdots & & \vdots \\ c_{i1} & \dots & c_{ik} & \dots & c_{ip} \\ \vdots & & \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} & \dots & c_{mp} \end{pmatrix}$$

$$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

$$19.9 \quad \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$$

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$$

Properties of matrix multiplication.

 $AB \neq BA$ 19.10 $AB = 0 \not\Rightarrow A = 0 \text{ or } B = 0$ $AB = AC \& A \neq 0 \not\Rightarrow B = C$ Important observations about matrix multiplication. **0** is the zero matrix. ≠ should be read: "does not necessarily imply".

19.11
$$\mathbf{A}' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

 \mathbf{A}' , the transpose of $\mathbf{A} = (a_{ij})_{m \times n}$, is the $n \times m$ matrix obtained by interchanging rows and columns in \mathbf{A} .

$$(\mathbf{A}')' = \mathbf{A}$$

$$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

$$(\alpha \mathbf{A})' = \alpha \mathbf{A}'$$

$$(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}' \quad (\text{NOTE the order!})$$

Rules for transposes.

19.13 $\mathbf{B} = \mathbf{A}^{-1} \iff \mathbf{A}\mathbf{B} = \mathbf{I}_n \iff \mathbf{B}\mathbf{A} = \mathbf{I}_n$

The *inverse* of an $n \times n$ matrix **A**. \mathbf{I}_n is the identity matrix.

19.14
$$\mathbf{A}^{-1}$$
 exists $\iff |\mathbf{A}| \neq 0$

A necessary and sufficient condition for a matrix to have an inverse, i.e. to be invertible. $|\mathbf{A}|$ denotes the determinant of the square matrix \mathbf{A} . (See Chapter 20.)

19.15
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \begin{vmatrix} \text{Valid if} \\ |\mathbf{A}| = ad - bc \neq 0. \end{vmatrix}$$

If $\mathbf{A} = (a_{ij})_{n \times n}$ is a square matrix and $|\mathbf{A}| \neq 0$, the unique inverse of **A** is given by

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \operatorname{adj}(\mathbf{A}), \quad \text{where}$$

$$\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & A_{n3} & A_{n4} \end{pmatrix}$$

Here the cofactor, A_{ij} , of the element a_{ij} is given by

$$A_{ij} = (-1)^{i+j} \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & \vdots \\ a_{i1} & \dots & \boxed{a_{ij}} & \dots & a_{in} \\ \vdots & & & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix}$$

The general formula for the inverse of a square matrix. NOTE the order of the indices in the adjoint matrix, $adj(\mathbf{A})$. The matrix $(A_{ij})_{n\times n}$ is called the cofactor matrix, and thus the adjoint is the transpose of the cofactor matrix. In the formula for the cofactor, A_{ij} , the determinant is obtained by deleting the ith row and the *j*th column in $|\mathbf{A}|$.

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} \quad \text{(NOTE the order!)}$$

$$(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$$

$$(c\mathbf{A})^{-1} = c^{-1}\mathbf{A}^{-1}$$

Properties of the inverse. (A and B are invertible $n \times n$ matrices. c is a $scalar \neq 0.$

19.18
$$(\mathbf{I}_m + \mathbf{A}\mathbf{B})^{-1} = \mathbf{I}_m - \mathbf{A}(\mathbf{I}_n + \mathbf{B}\mathbf{A})^{-1}\mathbf{B}$$

A is $m \times n$, **B** is $n \times m$, $|\mathbf{I}_m + \mathbf{AB}| \neq 0.$

$$19.19 \quad {\bf R}^{-1}{\bf A}'({\bf A}{\bf R}^{-1}{\bf A}'+{\bf Q}^{-1})^{-1}=({\bf A}'{\bf Q}{\bf A}+{\bf R})^{-1}{\bf A}'{\bf Q}$$

Matrix inversion pairs. Valid if the inverses

A square matrix \mathbf{A} of order n is called

- symmetric if $\mathbf{A} = \mathbf{A}'$
- skew-symmetric if $\mathbf{A} = -\mathbf{A}'$
- 19.20 $idempotent \text{ if } \mathbf{A}^2 = \mathbf{A}$
 - involutive if $\mathbf{A}^2 = \mathbf{I}_n$
 - orthogonal if $\mathbf{A}'\mathbf{A} = \mathbf{I}_n$
 - singular if $|\mathbf{A}| = 0$, nonsingular if $|\mathbf{A}| \neq 0$

$$19.21 \quad \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

19.22
$$\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$$
$$\operatorname{tr}(c\mathbf{A}) = c \operatorname{tr}(\mathbf{A}) \quad (c \text{ is a scalar})$$
$$\operatorname{tr}(\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{B}\mathbf{A}) \quad (\text{if } \mathbf{A}\mathbf{B} \text{ is a square matrix})$$
$$\operatorname{tr}(\mathbf{A}') = \operatorname{tr}(\mathbf{A})$$

19.23 $r(\mathbf{A}) = \text{maximum number of linearly independent rows in } \mathbf{A} = \text{maximum number of linearly independent columns in } \mathbf{A} = \text{order of the largest nonzero minor of } \mathbf{A}.$

- (1) $r(\mathbf{A}) = r(\mathbf{A}') = r(\mathbf{A}'\mathbf{A}) = r(\mathbf{A}\mathbf{A}')$
- (2) $r(\mathbf{AB}) \le \min(r(\mathbf{A}), r(\mathbf{B}))$
- (3) $r(\mathbf{AB}) = r(\mathbf{B})$ if $|\mathbf{A}| \neq 0$
- (4) $r(\mathbf{C}\mathbf{A}) = r(\mathbf{C})$ if $|\mathbf{A}| \neq 0$
- (5) $r(\mathbf{PAQ}) = r(\mathbf{A})$ if $|\mathbf{P}| \neq 0$, $|\mathbf{Q}| \neq 0$
- (6) $|r(\mathbf{A}) r(\mathbf{B})| < r(\mathbf{A} + \mathbf{B}) < r(\mathbf{A}) + r(\mathbf{B})$
- (7) $r(\mathbf{AB}) \ge r(\mathbf{A}) + r(\mathbf{B}) n$
- (8) $r(\mathbf{AB}) + r(\mathbf{BC}) \le r(\mathbf{B}) + r(\mathbf{ABC})$

19.25 $\mathbf{A}\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0} \iff r(\mathbf{A}) \leq n - 1$

A matrix norm is a function $\|\cdot\|_{\beta}$ that to each square matrix **A** associates a real number $\|\mathbf{A}\|_{\beta}$ such that:

- 19.26 $\|\mathbf{A}\|_{\beta} > 0$ for $\mathbf{A} \neq \mathbf{0}$ and $\|\mathbf{0}\|_{\beta} = 0$
 - $||c\mathbf{A}||_{\beta} = |c| ||\mathbf{A}||_{\beta}$ (c is a scalar)
 - $\|\mathbf{A} + \mathbf{B}\|_{\beta} \le \|\mathbf{A}\|_{\beta} + \|\mathbf{B}\|_{\beta}$
 - $\|\mathbf{A}\mathbf{B}\|_{\beta} \leq \|\mathbf{A}\|_{\beta} \|\mathbf{B}\|_{\beta}$

Some important definitions. |**A**| denotes the determinant of the square matrix **A**. (See Chapter 20.) For properties of idempotent and orthogonal matrices, see Chapter 22.

The trace of $\mathbf{A} = (a_{ij})_{n \times n}$ is the sum of its diagonal elements.

Properties of the trace.

Equivalent definitions of the rank of a matrix. On minors, see (20.15).

Properties of the rank. The orders of the matrices are such that the required operations are defined. In result (7), Sylvester's inequality, **A** is $m \times n$ and **B** is $n \times p$. (8) is called Frobenius's inequality.

A useful result on homogeneous equations. **A** is $m \times n$, **x** is $n \times 1$.

Definition of a matrix norm. (There are an infinite number of such norms, some of which are given in (19.27).)

•
$$\|\mathbf{A}\|_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$$

•
$$\|\mathbf{A}\|_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|$$

- 19.27 $\|\mathbf{A}\|_2 = \sqrt{\lambda}$, where λ is the largest eigenvalue of $\mathbf{A}'\mathbf{A}$.
 - $\bullet \quad \|\mathbf{A}\|_{M} = n \max_{i,j=1,\dots,n} |a_{ij}|$
 - $\|\mathbf{A}\|_T = \left(\sum_{i=1}^n \sum_{i=1}^n |a_{ij}|^2\right)^{1/2}$
- 19.28 λ eigenvalue of $\mathbf{A} = (a_{ij})_{n \times n} \Rightarrow |\lambda| \leq ||\mathbf{A}||_{\beta}$
- 19.29 $\|\mathbf{A}\|_{\beta} < 1 \Rightarrow \mathbf{A}^t \to \mathbf{0} \text{ as } t \to \infty$
- $19.30 \quad e^{\mathbf{A}} = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{A}^n$
- 19.31 $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}$ if $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$ $(e^{\mathbf{A}})^{-1} = e^{-\mathbf{A}}, \quad \frac{d}{dx}(e^{x\mathbf{A}}) = \mathbf{A}e^{x\mathbf{A}}$

Linear transformations

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear* transformation (or function) if

- 19.32 (1) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
 - (2) $T(c\mathbf{x}) = cT(\mathbf{x})$

for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n and for all scalars c.

- If **A** is an $m \times n$ matrix, the function $T_{\mathbf{A}}$: $\mathbb{R}^n \to \mathbb{R}^m \text{ defined by } T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \text{ is a linear transformation.}$
- 19.34 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let \mathbf{A} be the $m \times n$ matrix whose jth column is $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth standard unit vector in \mathbb{R}^n . Then $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

Some matrix norms for $\mathbf{A} = (a_{ij})_{n \times n}$. (For eigenvalues, see Chapter 21.)

The modulus of any eigenvalue of **A** is less than or equal to any matrix norm of **A**.

Sufficient condition for $\mathbf{A}^t \to \mathbf{0}$ as $t \to \infty$. $\|\mathbf{A}\|_{\beta}$ is any matrix norm of \mathbf{A} .

The exponential matrix of a square matrix \mathbf{A} .

Properties of the exponential matrix.

Definition of a linear transformation.

An important fact.

The matrix \mathbf{A} is called the standard matrix representation of T.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $S: \mathbb{R}^m \to \mathbb{R}^k$ be two linear transformations with standard matrix representations A and B, respectively. Then the 19.35 composition $S \circ T$ of the two transformations is a linear transformation with standard matrix representation **BA**.

A basic fact.

Let **A** be an invertible $n \times n$ matrix with associated linear transformation T. The transfor-19.36 mation T^{-1} associated with \mathbf{A}^{-1} is the inverse transformation (function) of T.

A basic fact.

Generalized inverses

An $n \times m$ matrix \mathbf{A}^- is called a generalized in-19.37 *verse* of the $m \times n$ matrix **A** if

$$AA^-A = A$$

A necessary and sufficient condition for the matrix equation Ax = b to have a solution is that $\mathbf{A}\mathbf{A}^{-}\mathbf{b} = \mathbf{b}$. The general solution is then $\mathbf{x} = \mathbf{A}^{-}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{-}\mathbf{A})\mathbf{q}$, where \mathbf{q} is an arbitrary vector of appropriate order.

Definition of a generalized inverse of a matrix. (A is not unique in general.)

An important application of generalized inverses.

If A^- is a generalized inverse of A, then

- AA^- and A^-A are idempotent
- $r(\mathbf{A}) = r(\mathbf{A}^{-}\mathbf{A}) = \operatorname{tr}(\mathbf{A}^{-}\mathbf{A})$ 19.39
 - $(\mathbf{A}^-)'$ is a generalized inverse of \mathbf{A}'
 - **A** is square and nonsingular \Rightarrow $A^- = A^{-1}$

Properties of generalized inverses.

Definition of the Moore-

Penrose inverse. (A^+

exists and is unique.)

An $n \times m$ matrix \mathbf{A}^+ is called the Moore-Penrose inverse of a real $m \times n$ matrix **A** if it satisfies the following four conditions:

- (i) $\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$ (ii) $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$
- (iii) $(\mathbf{A}\mathbf{A}^+)' = \mathbf{A}\mathbf{A}^+$ (iv) $(\mathbf{A}^+\mathbf{A})' = \mathbf{A}^+\mathbf{A}$

An important application of the Moore-Penrose inverse.

A necessary and sufficient condition for the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ to have a solution is 19.41 that $AA^+b = b$. The general solution is then $\mathbf{x} = \mathbf{A}^+ \mathbf{b} + (\mathbf{I} - \mathbf{A}^+ \mathbf{A}) \mathbf{q}$, where \mathbf{q} is an arbitrary vector of appropriate order.

19.38

19.40

• **A** is square and nonsingular \Rightarrow $A^+ = A^{-1}$

•
$$(\mathbf{A}^+)^+ = \mathbf{A}, \ (\mathbf{A}')^+ = (\mathbf{A}^+)'$$

• $A^+ = A$ if A is symmetric and idempotent.

• A^+A and AA^+ are idempotent.

• \mathbf{A} , \mathbf{A}^+ , $\mathbf{A}\mathbf{A}^+$, and $\mathbf{A}^+\mathbf{A}$ have the same rank.

$$\bullet \quad \mathbf{A}'\mathbf{A}\mathbf{A}^+ = \mathbf{A}' = \mathbf{A}^+\mathbf{A}\mathbf{A}'$$

$$\bullet (\mathbf{A}\mathbf{A}^+)^+ = \mathbf{A}\mathbf{A}^+$$

•
$$(\mathbf{A}'\mathbf{A})^+ = \mathbf{A}^+(\mathbf{A}^+)', \ (\mathbf{A}\mathbf{A}')^+ = (\mathbf{A}^+)'\mathbf{A}^+$$

•
$$(\mathbf{A} \otimes \mathbf{B})^+ = \mathbf{A}^+ \otimes \mathbf{B}^+$$

Properties of the Moore-Penrose inverse. (\otimes is the Kronecker product. See Chapter 23.)

Partitioned matrices

$$19.43 \quad \mathbf{P} = \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix}$$

19.44
$$\begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{P}_{11}\mathbf{Q}_{11} + \mathbf{P}_{12}\mathbf{Q}_{21} & \mathbf{P}_{11}\mathbf{Q}_{12} + \mathbf{P}_{12}\mathbf{Q}_{22} \\ \mathbf{P}_{21}\mathbf{Q}_{11} + \mathbf{P}_{22}\mathbf{Q}_{21} & \mathbf{P}_{21}\mathbf{Q}_{12} + \mathbf{P}_{22}\mathbf{Q}_{22} \end{pmatrix}$$

Multiplication of partitioned matrices. (We assume that the multiplications involved are defined.)

A partitioned matrix of

order $(p+q) \times (r+s)$. (\mathbf{P}_{11} is $p \times r$, \mathbf{P}_{12} is $p \times s$, \mathbf{P}_{21} is $q \times r$, \mathbf{P}_{22} is $q \times s$.)

19.45
$$\begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{vmatrix} = |\mathbf{P}_{11}| \cdot |\mathbf{P}_{22} - \mathbf{P}_{21}\mathbf{P}_{11}^{-1}\mathbf{P}_{12}|$$

The determinant of a partitioned $n \times n$ matrix, assuming \mathbf{P}_{11}^{-1} exists.

$$19.46 \quad \begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{vmatrix} = |\mathbf{P}_{22}| \cdot |\mathbf{P}_{11} - \mathbf{P}_{12}\mathbf{P}_{22}^{-1}\mathbf{P}_{21}|$$

The determinant of a partitioned $n \times n$ matrix, assuming \mathbf{P}_{22}^{-1}

19.47
$$\begin{vmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{0} & \mathbf{P}_{22} \end{vmatrix} = |\mathbf{P}_{11}| \cdot |\mathbf{P}_{22}|$$

A special case.

$$\begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix}^{-1} = \\ 19.48 & \begin{pmatrix} \mathbf{P}_{11}^{-1} + \mathbf{P}_{11}^{-1} \mathbf{P}_{12} \boldsymbol{\Delta}^{-1} \mathbf{P}_{21} \mathbf{P}_{11}^{-1} & -\mathbf{P}_{11}^{-1} \mathbf{P}_{12} \boldsymbol{\Delta}^{-1} \\ -\boldsymbol{\Delta}^{-1} \mathbf{P}_{21} \mathbf{P}_{11}^{-1} & \boldsymbol{\Delta}^{-1} \end{pmatrix} & \text{The inverse of a partitioned matrix, assuming } \\ \mathbf{P}_{11}^{-1} \text{ exists.} \end{cases}$$

The inverse of a parti-

where $\Delta = \mathbf{P}_{22} - \mathbf{P}_{21} \mathbf{P}_{11}^{-1} \mathbf{P}_{12}$.

$$\begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix}^{-1} =$$

$$19.49 \quad \begin{pmatrix} \mathbf{\Delta}_{1}^{-1} & -\mathbf{\Delta}_{1}^{-1} \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \\ -\mathbf{P}_{22}^{-1} \mathbf{P}_{21} \mathbf{\Delta}_{1}^{-1} & \mathbf{P}_{22}^{-1} + \mathbf{P}_{22}^{-1} \mathbf{P}_{21} \mathbf{\Delta}_{1}^{-1} \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \end{pmatrix}$$
where $\mathbf{\Delta}_{1} = \mathbf{P}_{11} - \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \mathbf{P}_{21}$.

The inverse of a partitioned matrix, assuming \mathbf{P}_{22}^{-1} exists.

Matrices with complex elements

Let $\mathbf{A} = (a_{ij})$ be a complex matrix (i.e. the elements of \mathbf{A} are complex numbers). Then:

- $\bar{\mathbf{A}} = (\bar{a}_{ij})$ is called the *conjugate* of \mathbf{A} . $(\bar{a}_{ij}$ denotes the complex conjugate of a_{ij} .)
- $\mathbf{A}^* = \bar{\mathbf{A}}' = (\bar{a}_{ji})$ is called the *conjugate* transpose of \mathbf{A} .
- **A** is called *Hermitian* if $\mathbf{A} = \mathbf{A}^*$.
- **A** is called *unitary* if $\mathbf{A}^* = \mathbf{A}^{-1}$.
- **A** is real \iff **A** = $\bar{\mathbf{A}}$.
- 9.51 If **A** is real, then $\mathbf{A} \text{ is Hermitian} \iff \mathbf{A} \text{ is symmetric.}$

Easy consequences of the definitions.

Useful definitions in con-

nection with complex

matrices.

Let ${\bf A}$ and ${\bf B}$ be complex matrices and c a complex number. Then

- $(1) \quad (\mathbf{A}^*)^* = \mathbf{A}$
- (2) $(\mathbf{A} + \mathbf{B})^* = \mathbf{A}^* + \mathbf{B}^*$
- $(3) \quad (c\mathbf{A})^* = \bar{c}\mathbf{A}^*$
- $(4) \quad (\mathbf{AB})^* = \mathbf{B}^* \mathbf{A}^*$

Properties of the conjugate transpose. (2) and (4) are valid if the sum and the product of the matrices are defined.

References

Most of the formulas are standard and can be found in almost any linear algebra text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Sydsæter and Hammond (2005) and Sydsæter et al. (2005). For (19.26)–(19.29), see e.g. Faddeeva (1959). For generalized inverses, see Magnus and Neudecker (1988). A standard reference is Gantmacher (1959).

19.50

19.51

19.52

Determinants

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Definition of a 2×2 determinant.

Geometric interpretation of a 2×2 determinant. The area A is the absolute value of the determinant

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|.$$

$$20.3 \quad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{cases} a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} \\ + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{cases}$$

Definition of a 3 \times 3 determinant.

Geometric interpretation of a 3×3 determinant. The volume of the "box" spanned by the three vectors is the absolute value of the determinant

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

20.5

20.7

If $\mathbf{A} = (a_{ij})_{n \times n}$ is an $n \times n$ matrix, the determinant of \mathbf{A} is the number

 $|\mathbf{A}| = a_{i1}A_{i1} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$ where A_{ij} , the cofactor of the element a_{ij} , is

 $A_{ij} = (-1)^{i+j} \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & \vdots \\ a_{i1} & \dots & \boxed{a_{ij}} & \dots & a_{in} \\ \vdots & & & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix}$

The general definition of a determinant of order n, by cofactor expansion along the ith row. The value of the determinant is independent of the choice of i.

 $a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = |\mathbf{A}|$ $a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0 \quad \text{if } k \neq i$ 20.6 $a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = |\mathbf{A}|$ $a_{1j}A_{1k} + a_{2j}A_{2k} + \dots + a_{nj}A_{nk} = 0 \quad \text{if } k \neq j$

Expanding a determinant by a row or a column in terms of the cofactors of the same row or column, yields the determinant. Expanding by a row or a column in terms of the cofactors of a different row or column, yields 0.

- If all the elements in a row (or column) of **A** are 0, then $|\mathbf{A}| = 0$.
- If two rows (or two columns) of **A** are interchanged, the determinant changes sign but the absolute value remains unchanged.
- If all the elements in a single row (or column) of \mathbf{A} are multiplied by a number c, the determinant is multiplied by c.
- If two of the rows (or columns) of \mathbf{A} are proportional, then $|\mathbf{A}| = 0$.
- The value of |**A**| remains unchanged if a multiple of one row (or one column) is added to another row (or column).
- $|\mathbf{A}'| = |\mathbf{A}|$, where \mathbf{A}' is the transpose of \mathbf{A} .

Important properties of determinants. **A** is a square matrix.

20.8
$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

 $|\mathbf{A} + \mathbf{B}| \neq |\mathbf{A}| + |\mathbf{B}|$ (in general)

Properties of determinants. **A** and **B** are $n \times n$ matrices.

20.9
$$\begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_2^2 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

The Vandermonde determinant for n = 3.

$$20.10 \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

The general Vandermonde determinant.

$$\begin{array}{c|cccc}
 & 1 & a_2 & \dots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \dots & a_n
\end{array}$$

$$= (a_1 - 1)(a_2 - 1) \cdots (a_n - 1) \left[1 + \sum_{i=1}^{n} \frac{1}{a_i - 1} \right]$$

A special determinant. $a_i \neq 1$ for i = 1, ..., n.

A useful determinant $(n \geq 2)$. A_{ji} is found in (20.5).

20.13
$$\begin{vmatrix} \alpha & p_1 & \dots & p_n \\ q_1 & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ q_n & a_{n1} & \dots & a_{nn} \end{vmatrix} = (\alpha - \mathbf{P}' \mathbf{A}^{-1} \mathbf{Q}) |\mathbf{A}|$$

Generalization of (20.12) when \mathbf{A}^{-1} exists. $\mathbf{P}' = (p_1, \dots, p_n),$ $\mathbf{Q}' = (q_1, \dots, q_n).$

$$20.14 \quad |\mathbf{AB} + \mathbf{I}_m| = |\mathbf{BA} + \mathbf{I}_n|$$

20.15

A useful result. **A** is $m \times n$, **B** is $n \times m$.

of a k×k matrix obtained by deleting all but k rows and all but k columns of A.
A principal minor of order k in A is a minor

• A minor of order k in **A** is the determinant

- A principal minor of order k in A is a minor obtained by deleting all but k rows and all except the k columns with the same numbers
- The leading principal minor of order k in
 A is the principal minor obtained by deleting all but the first k rows and the first k columns.

Definitions of minors, principal minors, and leading principal minors of a matrix.

$$20.16 D_k = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix}, k = 1, 2, \dots, n$$

The leading principal minors of $\mathbf{A} = (a_{ij})_{n \times n}$.

If $|\mathbf{A}| = |(a_{ij})_{n \times n}| \neq 0$, then the linear system of n equations and n unknowns,

20.17 has the unique solution

$$x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}, \quad j = 1, 2, \dots, n$$

where

$$|\mathbf{A}_j| = \begin{vmatrix} a_{11} & \dots & a_{1j-1} & b_1 & a_{1j+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2j-1} & b_2 & a_{2j+1} & \dots & a_{2n} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nj-1} & b_n & a_{nj+1} & \dots & a_{nn} \end{vmatrix}$$

Cramer's rule. Note that $|\mathbf{A}_j|$ is obtained by replacing the jth column in $|\mathbf{A}|$ by the vector with components b_1, b_2, \ldots, b_m .

References

Most of the formulas are standard and can be found in almost any linear algebra text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Sydsæter and Hammond (2005). A standard reference is Gantmacher (1959).

Eigenvalues. Quadratic forms

A scalar λ is called an eigenvalue of an $n \times n$ matrix **A** if there exists an n-vector $\mathbf{c} \neq \mathbf{0}$ such that

$$\mathbf{Ac} = \lambda \mathbf{c}$$

The vector \mathbf{c} is called an *eigenvector* of \mathbf{A} .

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

21.3 λ is an eigenvalue of $\mathbf{A} \Leftrightarrow p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = 0$

21.4
$$|\mathbf{A}| = \lambda_1 \cdot \lambda_2 \cdots \lambda_{n-1} \cdot \lambda_n \\ \operatorname{tr}(\mathbf{A}) = a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n$$

21.5 Let f() be a polynomial. If λ is an eigenvalue of \mathbf{A} , then $f(\lambda)$ is an eigenvalue of $f(\mathbf{A})$.

21.6 A square matrix **A** has an inverse if and only if 0 is not an eigenvalue of **A**. If **A** has an inverse and λ is an eigenvalue of **A**, then λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .

- 21.7 All eigenvalues of **A** have moduli (strictly) less than 1 if and only if $\mathbf{A}^t \to \mathbf{0}$ as $t \to \infty$.
- 21.8 **AB** and **BA** have the same eigenvalues.

21.9 If **A** is symmetric and has only real elements, then all eigenvalues of **A** are reals.

Eigenvalues and eigenvectors are also called characteristic roots and characteristic vectors. λ and \mathbf{c} may be complex even if \mathbf{A} is real.

The eigenvalue polynomial (the characteristic polynomial) of $\mathbf{A} = (a_{ij})_{n \times n}$. I is the unit matrix of order n.

A necessary and sufficient condition for λ to be an eigenvalue of **A**.

 $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of **A**.

Eigenvalues for matrix polynomials.

How to find the eigenvalues of the inverse of a square matrix.

An important result.

A and **B** are $n \times n$ matrices.

21.10

Tf

$$p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| =$$
 $(-\lambda)^n + b_{n-1}(-\lambda)^{n-1} + \dots + b_1(-\lambda) + b_0$
is the eigenvalue polynomial of \mathbf{A} , then b_k is the sum of all principal minors of \mathbf{A} of order $n - k$ (there are $\binom{n}{k}$ of them).

Characterization of the coefficients of the eigenvalue polynomial of an $n \times n$ matrix \mathbf{A} . (For principal minors, see (20.15).) $p(\lambda) = 0$ is called the eigenvalue equation or characteristic equation of \mathbf{A} .

21.11
$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = (-\lambda)^2 + b_1(-\lambda) + b_0$$
where $b_1 = a_{11} + a_{22} = \operatorname{tr}(\mathbf{A}), \ b_0 = |\mathbf{A}|$

(21.10) for n = 2. (tr(**A**) is the trace of **A**.)

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = (-\lambda)^3 + b_2(-\lambda)^2 + b_1(-\lambda) + b_0$$

(21.10) for n=3.

21.12 where

$$b_{2} = a_{11} + a_{22} + a_{33} = \text{tr}(\mathbf{A})$$

$$b_{1} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$b_{0} = |\mathbf{A}|$$

A definition.

- 21.13 **A** is diagonalizable \Leftrightarrow $\begin{cases} \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} \text{ for some matrix } \mathbf{P} \text{ and some diagonal matrix } \mathbf{D}. \end{cases}$
- 21.14 **A** and $\mathbf{P}^{-1}\mathbf{AP}$ have the same eigenvalues.
- 21.15 If $\mathbf{A} = (a_{ij})_{n \times n}$ has n distinct eigenvalues, then \mathbf{A} is diagonalizable.

Sufficient (but NOT necessary) condition for **A** to be diagonalizable.

 $\mathbf{A} = (a_{ij})_{n \times n}$ has n linearly independent eigenvectors, $\mathbf{x}_1, \ldots, \mathbf{x}_n$, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, if and only if

21.16
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

A characterization of diagonalizable matrices.

where $\mathbf{P} = (\mathbf{x}_1, \dots, \mathbf{x}_n)_{n \times n}$.

If $\mathbf{A} = (a_{ij})_{n \times n}$ is symmetric, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, there exists an orthogonal matrix **U** such that

21.17

$$\mathbf{U}^{-1}\mathbf{A}\mathbf{U} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

The spectral theorem for symmetric matrices. For orthogonal matrices, see Chapter 22.

If **A** is an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ λ_n (not necessarily distinct), then there exists an invertible $n \times n$ matrix **T** such that

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{pmatrix} \mathbf{J}_{k_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & \mathbf{J}_{k_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{J}_{k_r}(\lambda_r) \end{pmatrix}$$

21.18

21.21

where $k_1 + k_2 + \cdots + k_r = n$ and \mathbf{J}_k is the $k \times k$ matrix

$$\mathbf{J}_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}, \quad \mathbf{J}_1(\lambda) = \lambda$$

The Jordan decomposition theorem.

Let **A** be a complex $n \times n$ matrix. Then there exists a unitary matrix \mathbf{U} such that $\mathbf{U}^{-1}\mathbf{A}\mathbf{U}$ is 21.19 upper triangular.

Schur's lemma. (For unitary matrices, see (19.50).)

Let $\mathbf{A} = (a_{ij})$ be a Hermitian matrix. Then there is a unitary matrix \mathbf{U} such that $\mathbf{U}^{-1}\mathbf{A}\mathbf{U}$ 21.20 is a diagonal matrix. All eigenvalues of A are then real.

The spectral theorem for Hermitian matrices. (For Hermitian matrices, see (19.50).)

Given any matrix $\mathbf{A} = (a_{ij})_{n \times n}$, there is for every $\varepsilon > 0$ a matrix $\mathbf{B}_{\varepsilon} = (b_{ij})_{n \times n}$, with ndistinct eigenvalues, such that

$$\sum_{i,j=1}^{n} |a_{ij} - b_{ij}| < \varepsilon$$

By changing the elements of a matrix only slightly one gets a matrix with distinct eigenvalues.

A square matrix A satisfies its own eigenvalue equation:

The Cayley-Hamilton theorem. The polynomial p() is defined in (21.10).

21.22
$$p(\mathbf{A}) = (-\mathbf{A})^n + b_{n-1}(-\mathbf{A})^{n-1} + \dots + b_1(-\mathbf{A}) + b_0\mathbf{I} = \mathbf{0}$$

21.23
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Rightarrow \mathbf{A}^2 - \operatorname{tr}(\mathbf{A})\mathbf{A} + |\mathbf{A}|\mathbf{I} = \mathbf{0}$$

The Cayley–Hamilton theorem for n = 2. (See (21.11).)

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j =$$

$$21.24 \qquad a_{11} x_1^2 + a_{12} x_1 x_2 + \dots + a_{1n} x_1 x_n + a_{21} x_2 x_1 + a_{22} x_2^2 + \dots + a_{2n} x_2 x_n + \dots + a_{n1} x_n x_1 + a_{n2} x_n x_2 + \dots + a_{nn} x_n^2$$

A quadratic form in n variables x_1, \ldots, x_n . One can assume, without loss of generality, that $a_{ij} = a_{ji}$ for all $i, j = 1, \ldots, n$.

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \mathbf{x}' \mathbf{A} \mathbf{x}, \text{ where}$$

21.25
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ and } \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

A quadratic form in matrix formulation. One can assume, without loss of generality, that **A** is symmetric.

 $\mathbf{x'Ax}$ is PD $\Leftrightarrow \mathbf{x'Ax} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ $\mathbf{x'Ax}$ is PSD $\Leftrightarrow \mathbf{x'Ax} \geq 0$ for all \mathbf{x} 21.26 $\mathbf{x'Ax}$ is ND $\Leftrightarrow \mathbf{x'Ax} < 0$ for all $\mathbf{x} \neq \mathbf{0}$ $\mathbf{x'Ax}$ is NSD $\Leftrightarrow \mathbf{x'Ax} \leq 0$ for all \mathbf{x} $\mathbf{x'Ax}$ is ID $\Leftrightarrow \mathbf{x'Ax}$ is neither PSD nor NSD Definiteness types for quadratic forms ($\mathbf{x}'\mathbf{A}\mathbf{x}$) and symmetric matrices (\mathbf{A}). The five types are: positive definite (PD), positive semidefinite (PSD), negative definite (ND), negative semidefinite (NSD), and indefinite (ID).

21.27
$$\mathbf{x'Ax} \text{ is PD} \Rightarrow a_{ii} > 0 \text{ for } i = 1, \dots, n$$

$$\mathbf{x'Ax} \text{ is PSD} \Rightarrow a_{ii} \geq 0 \text{ for } i = 1, \dots, n$$

$$\mathbf{x'Ax} \text{ is ND} \Rightarrow a_{ii} < 0 \text{ for } i = 1, \dots, n$$

$$\mathbf{x'Ax} \text{ is NSD} \Rightarrow a_{ii} \leq 0 \text{ for } i = 1, \dots, n$$

Let $x_i = 1$ and $x_j = 0$ for $j \neq i$ in (21.24).

 $\mathbf{x'Ax}$ is PD \Leftrightarrow all eigenvalues of \mathbf{A} are > 0 $\mathbf{x'Ax}$ is PSD \Leftrightarrow all eigenvalues of \mathbf{A} are ≥ 0 $\mathbf{x'Ax}$ is ND \Leftrightarrow all eigenvalues of \mathbf{A} are < 0 $\mathbf{x'Ax}$ is NSD \Leftrightarrow all eigenvalues of \mathbf{A} are ≤ 0

A characterization of definite quadratic forms (matrices) in terms of the signs of the eigenvalues.

21.29 **x'Ax** is indefinite (ID) if and only if **A** has at least one positive and one negative eigenvalue.

A characterization of *in-definite* quadratic forms.

 $\mathbf{x'Ax}$ is PD $\Leftrightarrow D_k > 0$ for k = 1, ..., n $\mathbf{x'Ax}$ is ND $\Leftrightarrow (-1)^k D_k > 0$ for k = 1, ..., nwhere the leading principal minors D_k of \mathbf{A} are

$$D_k = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix}, \ k = 1, 2, \dots, n$$

A characterization of definite quadratic forms (matrices) in terms of leading principal minors. Note that replacing > by $\geq will NOT$ give criteria for the semidefinite case. Example: $Q = 0x_1^2 + 0x_1x_2 - x_2^2$.

 $\mathbf{x'Ax}$ is PSD $\Leftrightarrow \Delta_r \geq 0$ for r = 1, ..., n21.31 $\mathbf{x'Ax}$ is NSD $\Leftrightarrow (-1)^r \Delta_r \geq 0$ for r = 1, ..., nFor each r, Δ_r runs through all principal minors of \mathbf{A} of order r. Characterizations of positive and negative semidefinite quadratic forms (matrices) in terms of principal minors. (For principal minors, see (20.15).)

If $\mathbf{A} = (a_{ij})_{n \times n}$ is positive definite and \mathbf{P} is $n \times m$ with $r(\mathbf{P}) = m$, then $\mathbf{P}'\mathbf{AP}$ is positive definite.

Results on positive definite matrices.

- 21.33 If **P** is $n \times m$ and $r(\mathbf{P}) = m$, then $\mathbf{P'P}$ is positive definite and has rank m.
- If **A** is positive definite, there exists a non-singular matrix **P** such that $\mathbf{P}\mathbf{A}\mathbf{P}' = \mathbf{I}$ and $\mathbf{P}'\mathbf{P} = \mathbf{A}^{-1}$.

Let **A** be an $m \times n$ matrix with $r(\mathbf{A}) = k$. Then there exist a unitary $m \times m$ matrix **U**, a unitary $n \times n$ matrix **V**, and a $k \times k$ diagonal matrix **D**, with only strictly positive diagonal elements, such that

$$A = USV^*$$
, where $S = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$

21.35

If k = m = n, then $\mathbf{S} = \mathbf{D}$. If \mathbf{A} is real, \mathbf{U} and \mathbf{V} can be chosen as real, orthogonal matrices.

The singular value decomposition theorem. The diagonal elements of **D** are called singular values for the matrix **A**. Unitary matrices are defined in (19.50), and orthogonal matrices are defined in (22.8).

21.36 Let **A** and **B** be symmetric $n \times n$ matrices. Then there exists an orthogonal matrix **Q** such that both **Q'AQ** and **Q'BQ** are diagonal matrices, if and only if AB = BA.

Simultaneous diagonalization.

21.37

The quadratic form

(*)
$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j, \qquad (a_{ij} = a_{ji})$$

is positive (negative) definite subject to the linear constraints

if Q > 0 (< 0) for all $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$ that satisfy (**).

$$21.38 D_r = \begin{vmatrix} 0 & \cdots & 0 & b_{11} & \cdots & b_{1r} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & b_{m1} & \cdots & b_{mr} \\ b_{11} & \cdots & b_{m1} & a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ b_{1r} & \cdots & b_{mr} & a_{r1} & \cdots & a_{rr} \end{vmatrix}$$

Necessary and sufficient conditions for the quadratic form (*) in (21.37) to be positive definite subject to the constraints (**), assuming that the first m columns of the matrix $(b_{ij})_{m \times n}$ are linearly independent, is that

$$21.39 (-1)^m D_r > 0, r = m+1, \dots, n$$

The corresponding conditions for (*) to be negative definite subject to the constraints (**) is that

$$(-1)^r D_r > 0, \quad r = m + 1, \dots, n$$

The quadratic form $ax^2 + 2bxy + cy^2$ is positive for all $(x, y) \neq (0, 0)$ satisfying the constraint px + qy = 0, if and only if

$$\begin{vmatrix} 21.40 & pa & qg & s, n \text{ a.i.} \\ 0 & p & q \\ p & a & b \\ q & b & c \end{vmatrix} < 0$$

A definition of positive (negative) definiteness subject to linear constraints.

A bordered determinant associated with (21.37), $r = 1, \ldots, n$.

A test for definiteness of quadratic forms subject to linear constraints. (Assuming that the rank of $(b_{ij})_{m \times n}$ is m is not enough, as is shown by the example, $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2$ with the constraint $x_3 = 0$.)

A special case of (21.39), assuming $(p,q) \neq (0,0)$.

References

Most of the formulas can be found in almost any linear algebra text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Horn and Johnson (1985) and Sydsæter et al. (2005). Gantmacher (1959) is a standard reference.

Special matrices. Leontief systems

Idempotent matrices

22.1
$$\mathbf{A} = (a_{ij})_{n \times n}$$
 is idempotent $\iff \mathbf{A}^2 = \mathbf{A}$ Definition of an idempotent matrix.

22.2 **A** is idempotent
$$\iff$$
 I - **A** is idempotent. Properties of idempotent matrices.

22.3 **A** is idempotent
$$\Rightarrow$$
 0 and 1 are the only possible eigenvalues, and **A** is positive semidefinite.

22.4 **A** is idempotent with
$$k$$
 eigenvalues equal to 1 $\Rightarrow r(\mathbf{A}) = \operatorname{tr}(\mathbf{A}) = k$.

22.5 **A** is idempotent and **C** is orthogonal
$$\Rightarrow$$
 C'AC is idempotent.

22.6
$$\mathbf{A}$$
 is idempotent \iff its associated linear transformation is a projection.

22.7
$$\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$
 is idempotent.

An orthogonal matrix is defined in (22.8).

A linear transformation P from \mathbb{R}^n into \mathbb{R}^n is a projection if $P(P(\mathbf{x})) = P(\mathbf{x})$ for all \mathbf{x} in \mathbb{R}^n .

$$| \mathbf{X} \text{ is } n \times m, |\mathbf{X}'\mathbf{X}| \neq 0.$$

Orthogonal matrices

22.8
$$\mathbf{P} = (p_{ij})_{n \times n}$$
 is $orthogonal \iff \mathbf{P'P} = \mathbf{PP'} = \mathbf{I}_n$ Definition of an orthogonal matrix.

22.9
$$\mathbf{P}$$
 is orthogonal \iff the column vectors of \mathbf{P} are mutually orthogonal unit vectors. A property of orthogonal matrices.

22.12

22.18

22.10 \mathbf{P} and \mathbf{Q} are orthogonal $\Rightarrow \mathbf{PQ}$ is orthogonal.

Properties of orthogonal matrices.

22.11 **P** orthogonal \Rightarrow |**P**| = \pm 1, and 1 and -1 are the only possible real eigenvalues.

Orthogonal transformations preserve lengths of vectors.

22.13 If **P** is orthogonal, the angle between **Px** and **Py** equals the angle between **x** and **y**.

P orthogonal \Leftrightarrow $\|\mathbf{P}\mathbf{x}\| = \|\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .

Orthogonal transformations preserve angles.

Permutation matrices

 $\mathbf{P} = (p_{ij})_{n \times n}$ is a permutation matrix if in each 22.14 row and each column of \mathbf{P} there is one element equal to 1 and the rest of the elements are 0.

Definition of a permutation matrix.

22.15 \mathbf{P} is a permutation matrix $\Rightarrow \mathbf{P}$ is nonsingular and orthogonal.

Properties of permutation matrices.

Nonnegative matrices

22.16
$$\mathbf{A} = (a_{ij})_{m \times n} \ge \mathbf{0} \iff a_{ij} \ge 0 \text{ for all } i, j$$
$$\mathbf{A} = (a_{ij})_{m \times n} > \mathbf{0} \iff a_{ij} > 0 \text{ for all } i, j$$

Definitions of nonnegative and positive matrices.

If $\mathbf{A} = (a_{ij})_{n \times n} \geq 0$, \mathbf{A} has at least one nonnegative eigenvalue. The largest nonnegative eigenvalue is called the *Frobenius root* of \mathbf{A} and it is denoted by $\lambda(\mathbf{A})$. \mathbf{A} has a nonnegative eigenvector corresponding to $\lambda(\mathbf{A})$.

Definition of the Frobenius root (or dominant root) of a nonnegative matrix.

- μ is an eigenvalue of $\mathbf{A} \Rightarrow |\mu| \leq \lambda(\mathbf{A})$
- $\mathbf{0} \le \mathbf{A}_1 \le \mathbf{A}_2 \Rightarrow \lambda(\mathbf{A}_1) \le \lambda(\mathbf{A}_2)$
- $\rho > \lambda(\mathbf{A}) \Leftrightarrow (\rho \mathbf{I} \mathbf{A})^{-1}$ exists and is $\geq \mathbf{0}$
 - $\min_{1 \le j \le n} \sum_{i=1}^{n} a_{ij} \le \lambda(\mathbf{A}) \le \max_{1 \le j \le n} \sum_{i=1}^{n} a_{ij}$

Properties of nonnegative matrices. $\lambda(\mathbf{A})$ is the Frobenius root of A.

The matrix $\mathbf{A} = (a_{ij})_{n \times n}$ is decomposable or reducible if by interchanging some rows and the corresponding columns it is possible to transform the matrix \mathbf{A} to

22.19

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{pmatrix}$$

where \mathbf{A}_{11} and \mathbf{A}_{22} are square submatrices.

 $\mathbf{A} = (a_{ij})_{n \times n}$ is decomposable if and only if there exists a permutation matrix \mathbf{P} such that

22.20

22.23

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{pmatrix}$$

where \mathbf{A}_{11} and \mathbf{A}_{22} are square submatrices.

If $\mathbf{A} = (a_{ij})_{n \times n} \geq \mathbf{0}$ is indecomposable, then

- the Frobenius root $\lambda(\mathbf{A})$ is > 0, it is a simple root of the eigenvalue equation, and there exists an associated eigenvector $\mathbf{x} > \mathbf{0}$.
 - If $\mathbf{A}\mathbf{x} = \mu\mathbf{x}$ for some $\mu \geq 0$ and $\mathbf{x} > \mathbf{0}$, then $\mu = \lambda(\mathbf{A})$.

 $\mathbf{A} = (a_{ij})_{n \times n}$ has a dominant diagonal (d.d.) if there exist positive numbers d_1, \ldots, d_n such that

$$d_j|a_{jj}| > \sum_{i \neq j} d_i|a_{ij}|$$
 for $j = 1, \dots, n$

Suppose A has a dominant diagonal. Then:

- $|\mathbf{A}| \neq 0$.
- If the diagonal elements are all positive, then all the eigenvalues of **A** have positive real parts.

Definition of a decomposable square matrix. A matrix that is not decomposable (reducible) is called *indecomposable* (*irreducible*).

A characterization of decomposable matrices.

Properties of indecomposable matrices.

Definition of a dominant diagonal matrix.

Properties of dominant diagonal matrices.

Leontief systems

If $\mathbf{A} = (a_{ij})_{n \times n} \geq \mathbf{0}$ and $\mathbf{c} \geq \mathbf{0}$, then

 $22.24 \mathbf{A}\mathbf{x} + \mathbf{c} = \mathbf{x}$

is called a Leontief system.

22.25 If $\sum_{i=1}^{n} a_{ij} < 1$ for j = 1, ..., n, then the Leontief system has a solution $\mathbf{x} \geq \mathbf{0}$.

Definition of a Leontief system. \mathbf{x} and \mathbf{c} are $n \times 1$ -matrices.

Sufficient condition for a Leontief system to have a nonnegative solution. The Leontief system $\mathbf{A}\mathbf{x} + \mathbf{c} = \mathbf{x}$ has a solution $\mathbf{x} \geq \mathbf{0}$ for every $\mathbf{c} \geq \mathbf{0}$, if and only if one (and hence all) of the following equivalent conditions is satisfied:

- The matrix $(\mathbf{I} \mathbf{A})^{-1}$ exists, is nonnegative, and is equal to $\mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \cdots$.
- $22.26 \quad \bullet \quad \mathbf{A}^m \to \mathbf{0} \text{ as } m \to \infty.$
 - Every eigenvalue of \mathbf{A} has modulus < 1.

$$\bullet \begin{vmatrix}
1 - a_{11} & -a_{12} & \dots & -a_{1k} \\
-a_{21} & 1 - a_{22} & \dots & -a_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{k1} & -a_{k2} & \dots & 1 - a_{kk}
\end{vmatrix} > 0$$
for $k = 1, \dots, n$.

conditions for the Leontief system to have a nonnegative solution. The last conditions are the *Hawkins–Simon conditions*.

Necessary and sufficient

22.27 If $0 \le a_{ii} < 1$ for i = 1, ..., n, and $a_{ij} \ge 0$ for all $i \ne j$, then the system $\mathbf{A}\mathbf{x} + \mathbf{c} = \mathbf{x}$ will have a solution $\mathbf{x} \ge \mathbf{0}$ for every $\mathbf{c} \ge \mathbf{0}$ if and only if $\mathbf{I} - \mathbf{A}$ has a dominant diagonal.

A necessary and sufficient condition for the Leontief system to have a nonnegative solution.

References

For the matrix results see Gantmacher (1959) or Horn and Johnson (1985). For Leontief systems, see Nikaido (1970) and Takayama (1985).

Kronecker products and the vec operator. Differentiation of vectors and matrices

23.1
$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2n}\mathbf{B} \\ \vdots & \vdots & & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{pmatrix}$$

The Kronecker product of $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{p \times q}$. $\mathbf{A} \otimes \mathbf{B}$ is $mp \times nq$. In general, the Kronecker product is not commutative, $\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} =$$

$$23.2 \qquad \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}$$

A special case of (23.1).

23.3
$$\mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C} = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$$

Valid in general.

$$_{23.4}$$
 $(\mathbf{A} + \mathbf{B}) \otimes (\mathbf{C} + \mathbf{D}) =$
 $\mathbf{A} \otimes \mathbf{C} + \mathbf{A} \otimes \mathbf{D} + \mathbf{B} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{D}$

Valid if $\mathbf{A} + \mathbf{B}$ and $\mathbf{C} + \mathbf{D}$ are defined.

$$23.5 \quad (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD}$$

Valid if **AC** and **BD** are defined.

23.6
$$(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$$

Rule for transposing a Kronecker product.

$$23.7 \quad (\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$$

Valid if \mathbf{A}^{-1} and \mathbf{B}^{-1} exist.

23.8
$$\operatorname{tr}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \operatorname{tr}(\mathbf{B})$$

A and **B** are square matrices, not necessarily of the same order.

23.9 $\alpha \otimes \mathbf{A} = \alpha \mathbf{A} = \mathbf{A} \alpha = \mathbf{A} \otimes \alpha$

 α is a 1×1 scalar matrix.

23.10 If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of \mathbf{A} , and if μ_1, \ldots, μ_p are the eigenvalues of \mathbf{B} , then the np eigenvalues of $\mathbf{A} \otimes \mathbf{B}$ are $\lambda_i \mu_j$, $i = 1, \ldots, n$, $j = 1, \ldots, p$.

The eigenvalues of $\mathbf{A} \otimes \mathbf{B}$, where \mathbf{A} is $n \times n$ and \mathbf{B} is $p \times p$.

If \mathbf{x} is an eigenvector of \mathbf{A} , and \mathbf{y} is an eigenvector for \mathbf{B} , then $\mathbf{x} \otimes \mathbf{y}$ is an eigenvector of $\mathbf{A} \otimes \mathbf{B}$.

NOTE: An eigenvector of $\mathbf{A} \otimes \mathbf{B}$ is not necessarily the Kronecker product of an eigenvector of \mathbf{A} and an eigenvector of \mathbf{B} .

23.12 If **A** and **B** are positive (semi-)definite, then $\mathbf{A} \otimes \mathbf{B}$ is positive (semi-)definite.

Follows from (23.10).

 $23.13 \quad |\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^p \cdot |\mathbf{B}|^n$

A is $n \times n$, **B** is $p \times p$.

23.14 $r(\mathbf{A} \otimes \mathbf{B}) = r(\mathbf{A}) r(\mathbf{B})$

The rank of a Kronecker product.

If $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)_{m \times n}$, then $\operatorname{vec}(\mathbf{A}) = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \vdots \end{pmatrix}$

 $vec(\mathbf{A})$ consists of the columns of \mathbf{A} placed below each other.

23.16 $\operatorname{vec}\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \end{pmatrix}$

A special case of (23.15).

23.17 $\operatorname{vec}(\mathbf{A} + \mathbf{B}) = \operatorname{vec}(\mathbf{A}) + \operatorname{vec}(\mathbf{B})$

Valid if $\mathbf{A} + \mathbf{B}$ is defined.

23.18 $\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}' \otimes \mathbf{A}) \operatorname{vec}(\mathbf{B})$

Valid if the product **ABC** is defined.

23.19 $\operatorname{tr}(\mathbf{AB}) = (\operatorname{vec}(\mathbf{A}'))' \operatorname{vec}(\mathbf{B}) = (\operatorname{vec}(\mathbf{B}'))' \operatorname{vec}(\mathbf{A})$

Valid if the operations are defined.

Differentiation of vectors and matrices

If
$$y = f(x_1, ..., x_n) = f(\mathbf{x})$$
, then
$$\frac{\partial y}{\partial \mathbf{x}} = \left(\frac{\partial y}{\partial x_1}, ..., \frac{\partial y}{\partial x_n}\right)$$

$$y_1 = f_1(x_1, \dots, x_n)$$

$$23.21 \qquad \longleftrightarrow \qquad \mathbf{y} = \mathbf{f}(\mathbf{x})$$

$$y_m = f_m(x_1, \dots, x_n)$$

23.22
$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial y_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial y_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial y_m(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

23.23
$$\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x} \partial \mathbf{x}'} = \frac{\partial}{\partial \mathbf{x}} \operatorname{vec} \left[\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right)' \right]$$

$$23.24 \quad \frac{\partial \mathbf{A}(\mathbf{r})}{\partial \mathbf{r}} = \frac{\partial}{\partial \mathbf{r}} \operatorname{vec}(\mathbf{A}(\mathbf{r}))$$

23.25
$$\frac{\partial^2 y}{\partial \mathbf{x} \partial \mathbf{x}'} = \begin{pmatrix} \frac{\partial^2 y}{\partial x_1^2} & \cdots & \frac{\partial^2 y}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 y}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 y}{\partial x_n^2} \end{pmatrix}$$

$$23.26 \quad \frac{\partial}{\partial \mathbf{x}} (\mathbf{a}' \cdot \mathbf{x}) = \mathbf{a}'$$

23.27
$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}' \mathbf{A} \mathbf{x}) = \mathbf{x}' (\mathbf{A} + \mathbf{A}')$$
$$\frac{\partial^2}{\partial \mathbf{x} \partial \mathbf{x}'} (\mathbf{x}' \mathbf{A} \mathbf{x}) = \mathbf{A} + \mathbf{A}'$$

23.28
$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{A}\mathbf{x}) = \mathbf{A}$$

The gradient of $y = f(\mathbf{x})$. (The derivative of a scalar function w.r.t. a vector variable.) An alternative notation for the gradient is $\nabla f(\mathbf{x})$. See (4.26).

A transformation \mathbf{f} from \mathbb{R}^n to \mathbb{R}^m . We let \mathbf{x} and \mathbf{y} be column vectors.

The Jacobian matrix of the transformation in (23.21). (The derivative of a vector function w.r.t. a vector variable.)

For the vec operator, see (23.15).

A general definition of the derivative of a matrix w.r.t. a vector.

A special case of (23.23). $(\partial^2 y/\partial \mathbf{x} \partial \mathbf{x}')$ is the Hessian matrix defined in (13.24).)

a and **x** are $n \times 1$ -vectors.

Differentiation of a quadratic form. **A** is $n \times n$, **x** is $n \times 1$.

A is $m \times n$, **x** is $n \times 1$.

23.29 If
$$\mathbf{y} = \mathbf{A}(\mathbf{r})\mathbf{x}(\mathbf{r})$$
, then
$$\frac{\partial \mathbf{y}}{\partial \mathbf{r}} = (\mathbf{x}' \otimes \mathbf{I}_m) \frac{\partial \mathbf{A}}{\partial \mathbf{r}} + \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{r}}$$
If $y = f(\mathbf{A})$, then
$$\frac{\partial \mathbf{y}}{\partial \mathbf{A}} = \begin{pmatrix} \frac{\partial y}{\partial a_{11}} & \dots & \frac{\partial y}{\partial a_{1n}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial a_{m1}} & \dots & \frac{\partial y}{\partial a_{mn}} \end{pmatrix}$$
Definition of the derivative of a scalar function of an $m \times n$ matrix $\mathbf{A} = (a_{ij})$.

23.31
$$\frac{\partial |\mathbf{A}|}{\partial \mathbf{A}} = (A_{ij}) = |\mathbf{A}|(\mathbf{A}')^{-1}$$

$$\mathbf{A} \text{ is } n \times n. \quad (A_{ij}) \text{ is the matrix of cofactors of } \mathbf{A}. \quad (\text{See } (19.16).) \text{ The last equality holds if } \mathbf{A} \text{ is invertible.}$$
23.32
$$\frac{\partial \operatorname{tr}(\mathbf{A})}{\partial \mathbf{A}} = \mathbf{I}_n, \quad \frac{\partial \operatorname{tr}(\mathbf{A}'\mathbf{A})}{\partial \mathbf{A}} = 2\mathbf{A}$$

$$\mathbf{A} \text{ is } n \times n. \quad \operatorname{tr}(\mathbf{A}) \text{ is the trace of } \mathbf{A}.$$
23.33
$$\frac{\partial a^{ij}}{\partial a_{hk}} = -a^{ih}a^{kj}; \quad i, j, h, k = 1, \dots, n$$

$$\begin{vmatrix} a^{ij} \text{ is the } (i, j) \text{th element of } \mathbf{A}^{-1}.$$

References

The definitions above are common in the economic literature, see Dhrymes (1978). Magnus and Neudecker (1988) and Lütkepohl (1996) develop a more consistent notation and have all the results quoted here and many more.

Comparative statics

 $S_i(\mathbf{p}, \mathbf{a})$ is supply and $D_i(\mathbf{p}, \mathbf{a})$ is demand for good i. $E_i(\mathbf{p}, \mathbf{a})$ is excess supply. $\mathbf{p} = (p_1, \dots, p_n)$ is the price vector, $\mathbf{a} = (a_1, \dots, a_k)$ is a vector of exogenous variables.

24.2
$$E_1(\mathbf{p}, \mathbf{a}) = 0, E_2(\mathbf{p}, \mathbf{a}) = 0, \dots, E_n(\mathbf{p}, \mathbf{a}) = 0$$

Conditions for equilibrium.

24.3
$$E_1(p_1, p_2, a_1, \dots, a_k) = 0$$

 $E_2(p_1, p_2, a_1, \dots, a_k) = 0$

Equilibrium conditions for the two good case.

$$\frac{\partial p_{1}}{\partial a_{j}} = \frac{\frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial a_{j}} - \frac{\partial E_{2}}{\partial p_{2}} \frac{\partial E_{1}}{\partial a_{j}}}{\frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial p_{2}} - \frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial p_{1}}}$$

$$\frac{\partial p_{2}}{\partial a_{j}} = \frac{\frac{\partial E_{2}}{\partial p_{1}} \frac{\partial E_{1}}{\partial a_{j}} - \frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial a_{j}}}{\frac{\partial E_{1}}{\partial p_{1}} \frac{\partial E_{2}}{\partial p_{2}} - \frac{\partial E_{1}}{\partial p_{2}} \frac{\partial E_{2}}{\partial p_{1}}}$$

Comparative statics results for the two good case, j = 1, ..., k.

$$24.5 \quad \begin{pmatrix} \frac{\partial p_1}{\partial a_j} \\ \vdots \\ \frac{\partial p_n}{\partial a_j} \end{pmatrix} = - \begin{pmatrix} \frac{\partial E_1}{\partial p_1} & \cdots & \frac{\partial E_1}{\partial p_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial E_n}{\partial p_1} & \cdots & \frac{\partial E_n}{\partial p_n} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial E_1}{\partial a_j} \\ \vdots \\ \frac{\partial E_n}{\partial a_j} \end{pmatrix}$$

Comparative statics results for the n good case, j = 1, ..., k. See (19.16) for the general formula for the inverse of a square matrix.

Consider the problem

$$\max f(\mathbf{x}, \mathbf{a})$$
 subject to $g(\mathbf{x}, \mathbf{a}) = 0$

where f and g are C^1 functions, and let \mathcal{L} be the associated Lagrangian function, with Lagrange multiplier λ . If $x_i^* = x_i^*(\mathbf{a}), i = 1, \ldots, n$, solves the problem, then for $i, j = 1, \ldots, m$,

$$\sum_{k=1}^n L_{a_ix_k}^{\prime\prime} \frac{\partial x_k^*}{\partial a_j} + g_{a_i}^\prime \frac{\partial \lambda}{\partial a_j} = \sum_{k=1}^n L_{a_jx_k}^{\prime\prime} \frac{\partial x_k^*}{\partial a_i} + g_{a_j}^\prime \frac{\partial \lambda}{\partial a_i}$$

Reciprocity relations. $\mathbf{x} = (x_1, \dots, x_n)$ are the decision variables, $\mathbf{a} = (a_1, \dots, a_m)$ are the parameters. For a systematic use of these relations, see Silberberg (1990).

Monotone comparative statics

A function $F: Z \to \mathbb{R}$, defined on a sublattice Z of \mathbb{R}^m , is called supermodular if

$$F(\mathbf{z}) + F(\mathbf{z}') \le F(\mathbf{z} \wedge \mathbf{z}') + F(\mathbf{z} \vee \mathbf{z}')$$

for all \mathbf{z} and \mathbf{z}' in Z. If the inequality is strict whenever \mathbf{z} and \mathbf{z}' are not comparable under the preordering \leq , then F is called *strictly supermodular*.

Definition of (strict) supermodularity. See (6.30) and (6.31) for the definition of a sublattice and the lattice operations \wedge and \vee .

Let S and P be sublattices of \mathbb{R}^n and \mathbb{R}^l , respectively. A function $f: S \times P \to \mathbb{R}$ is said to satisfy *increasing differences* in (\mathbf{x}, \mathbf{p}) if

24.8
$$\mathbf{x} \ge \mathbf{x}' \text{ and } \mathbf{p} \ge \mathbf{p}' \Rightarrow$$

$$f(\mathbf{x}, \mathbf{p}) - f(\mathbf{x}', \mathbf{p}) \ge f(\mathbf{x}, \mathbf{p}') - f(\mathbf{x}', \mathbf{p}')$$

for all pairs (\mathbf{x}, \mathbf{p}) and $(\mathbf{x}', \mathbf{p}')$ in $S \times P$. If the inequality is strict whenever $\mathbf{x} > \mathbf{x}'$ and $\mathbf{p} > \mathbf{p}'$, then f is said to satisfy *strictly increasing differences in* (\mathbf{x}, \mathbf{p}) .

Definition of (strictly) increasing differences. (The difference $f(\mathbf{x}, \mathbf{p}) - f(\mathbf{x}', \mathbf{p})$ between the values of f evaluated at the larger "action" \mathbf{x} and the lesser "action" \mathbf{x}' is a (strictly) increasing function of the parameter \mathbf{p} .)

Let S and P be sublattices of \mathbb{R}^n and \mathbb{R}^l , respectively. If $f: S \times P \to \mathbb{R}$ is supermodular in (\mathbf{x}, \mathbf{p}) , then

- 24.9 f is supermodular in \mathbf{x} for fixed \mathbf{p} , i.e. for every fixed \mathbf{p} in P, and for all \mathbf{x} and \mathbf{x}' in S, $f(\mathbf{x}, \mathbf{p}) + f(\mathbf{x}', \mathbf{p}) \leq f(\mathbf{x} \wedge \mathbf{x}', \mathbf{p}) + f(\mathbf{x} \vee \mathbf{x}', \mathbf{p});$
 - f satisfies increasing differences in (\mathbf{x}, \mathbf{p}) .

Important facts. Note that $S \times P$ is a sublattice of $\mathbb{R}^n \times \mathbb{R}^l = \mathbb{R}^{n+l}$.

Let X be an open sublattice of \mathbb{R}^m . A C^2 function $F: X \to \mathbb{R}$ is supermodular on X if and only if for all \mathbf{x} in X,

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x}) \ge 0, \quad i, j = 1, \dots, m, \ i \ne j$$

Suppose that the problem

24.10

$$\max F(x, p)$$
 subject to $x \in S \subset \mathbb{R}$

24.11 has at least one solution for each $p \in P \subset \mathbb{R}$. Suppose in addition that F satisfies strictly increasing differences in (x,p). Then the optimal action $x^*(p)$ is increasing in the parameter p. A special result that cannot be extended to the case $S \subset \mathbb{R}^n$ for n > 2.

Suppose in (24.11) that

$$F(x,p) = pf(x) - C(x)$$

with S compact and f and C continuous. Then $\partial^2 F/\partial x \partial p = f'(x)$, so according to (24.10), F is supermodular if and only if f(x) is increasing. Thus f(x) increasing is sufficient to ensure that the optimal action $x^*(p)$ is increasing in p.

An important consequence of (24.10).

Suppose S is a compact sublattice of \mathbb{R}^n and P a sublattice of \mathbb{R}^l and $f: S \times P \to \mathbb{R}$ is a continuous function on S for each fixed \mathbf{p} . Suppose that f satisfies increasing differences in (\mathbf{x}, \mathbf{p}) , and is supermodular in \mathbf{x} for each fixed \mathbf{p} . Let the correspondence Γ from P to S be defined by

$$\Gamma(\mathbf{p}) = \operatorname{argmax} \{ f(\mathbf{x}, \mathbf{p}) : \mathbf{x} \in S \}$$

- For each \mathbf{p} in P, $\Gamma(\mathbf{p})$ is a nonempty compact sublattice of \mathbb{R}^n , and has a greatest element, denoted by $\mathbf{x}^*(\mathbf{p})$.
- $\bullet \ \mathbf{p}_1 > \mathbf{p}_2 \ \Rightarrow \ \mathbf{x}^*(\mathbf{p}_1) \geq \mathbf{x}^*(\mathbf{p}_2)$
- If f satisfies strictly increasing differences in (\mathbf{x}, \mathbf{p}) , then $\mathbf{x}_1 \geq \mathbf{x}_2$ for all \mathbf{x}_1 in $\Gamma(\mathbf{p}_1)$ and all \mathbf{x}_2 in $\Gamma(\mathbf{p}_2)$ whenever $\mathbf{p}_1 > \mathbf{p}_2$.

A main result. For a given \mathbf{p} , argmax $\{f(\mathbf{x}, \mathbf{p}) : \mathbf{x} \in S\}$ is the set of all points \mathbf{x} in S where $f(\mathbf{x}, \mathbf{p})$ attains its maximum value.

References

On comparative statics, see Varian (1992) or Silberberg (1990). On monotone comparative statics, see Sundaram (1996) and Topkis (1998).

Properties of cost and profit functions

25.1
$$C(\mathbf{w}, y) = \min_{\mathbf{x}} \sum_{i=1}^{n} w_i x_i$$
 when $f(\mathbf{x}) = y$

Cost minimization. One output. f is the production function, $\mathbf{w} = (w_1, \dots, w_n)$ are factor prices, y is output and $\mathbf{x} = (x_1, \dots, x_n)$ are factor inputs. $C(\mathbf{w}, y)$ is the cost function.

25.2
$$C(\mathbf{w}, y) = \begin{cases} \text{The minimum cost of producing} \\ y \text{ units of a commodity when factor prices are } \mathbf{w} = (w_1, \dots, w_n). \end{cases}$$

The cost function.

- $C(\mathbf{w}, y)$ is increasing in each w_i .
- $C(\mathbf{w}, y)$ is homogeneous of degree 1 in \mathbf{w} .
 - $C(\mathbf{w}, y)$ is concave in \mathbf{w} .
 - $C(\mathbf{w}, y)$ is continuous in \mathbf{w} for $\mathbf{w} > \mathbf{0}$.

Properties of the cost function.

 $25.4 \quad x_i^*(\mathbf{w},y) = \begin{cases} \text{The cost minimizing choice of the ith input factor as a function of the factor prices \mathbf{w} and the production level y.} \end{cases}$

Conditional factor demand functions. $\mathbf{x}^*(\mathbf{w}, y)$ is the vector \mathbf{x}^* that solves the problem in (25.1).

- $x_i^*(\mathbf{w}, y)$ is decreasing in w_i .
 - $x_i^*(\mathbf{w}, y)$ is homogeneous of degree 0 in \mathbf{w} .

Properties of the conditional factor demand function.

25.6
$$\frac{\partial C(\mathbf{w}, y)}{\partial w_i} = x_i^*(\mathbf{w}, y), \quad i = 1, \dots, n$$

Shephard's lemma.

$$25.7 \quad \left(\frac{\partial^2 C(\mathbf{w},y)}{\partial w_i \partial w_j}\right)_{(n \times n)} = \left(\frac{\partial x_i^*(\mathbf{w},y)}{\partial w_j}\right)_{(n \times n)}$$
 is symmetric and negative semidefinite.

Properties of the $substitution\ matrix$.

25.8
$$\pi(p, \mathbf{w}) = \max_{\mathbf{x}} \left(pf(\mathbf{x}) - \sum_{i=1}^{n} w_i x_i \right)$$

The profit maximizing problem of the firm. p is the price of output. $\pi(p, \mathbf{w})$ is the profit function.

25.9
$$\pi(p, \mathbf{w}) = \begin{cases} \text{The maximum profit as a function} \\ \text{of the factor prices } \mathbf{w} \text{ and the output price } p. \end{cases}$$

The profit function.

25.10
$$\pi(p, \mathbf{w}) \equiv \max_{y} (py - C(\mathbf{w}, y))$$

The profit function in terms of costs and revenue.

- $\pi(p, \mathbf{w})$ is increasing in p.
- $\pi(p, \mathbf{w})$ is homogeneous of degree 1 in (p, \mathbf{w}) .
- 25.11 $\pi(p, \mathbf{w})$ is convex in (p, \mathbf{w}) .
 - $\pi(p, \mathbf{w})$ is continuous in (p, \mathbf{w}) for $\mathbf{w} > \mathbf{0}$, p > 0.

Properties of the profit function.

25.12
$$x_i(p, \mathbf{w}) = \begin{cases} \text{The profit maximizing choice of the } i\text{th input factor as a function of the price of output } p \text{ and the factor prices } \mathbf{w}. \end{cases}$$

The factor demand functions. $\mathbf{x}(p, \mathbf{w})$ is the vector \mathbf{x} that solves the problem in (25.8).

- $x_i(p, \mathbf{w})$ is decreasing in w_i .
- $x_i(p, \mathbf{w})$ is homogeneous of degree 0 in (p, \mathbf{w}) .

 The cross-price effects are symmetric:
- 25.13 The cross-price effects are symmetric: $\frac{\partial x_i(p, \mathbf{w})}{\partial w_i} = \frac{\partial x_j(p, \mathbf{w})}{\partial w_i}, \quad i, j = 1, \dots, n$

Properties of the factor demand functions.

25.14
$$y(p, \mathbf{w}) = \begin{cases} \text{The profit maximizing output as} \\ \text{a function of the price of output } p \\ \text{and the factor prices } \mathbf{w}. \end{cases}$$

The supply function $y(p, \mathbf{w}) = f(\mathbf{x}(p, \mathbf{w}))$ is the y that solves the problem in (25.10).

- $y(p, \mathbf{w})$ is increasing in p.
 - $y(p, \mathbf{w})$ is homogeneous of degree 0 in (p, \mathbf{w}) .

Properties of the supply function.

25.16
$$\frac{\partial \pi(p, \mathbf{w})}{\partial p} = y(p, \mathbf{w})$$
$$\frac{\partial \pi(p, \mathbf{w})}{\partial w_i} = -x_i(p, \mathbf{w}), \quad i = 1, \dots, n$$

 $Hotelling \cite{s}\ lemma.$

25.17
$$\frac{\partial x_j(p, \mathbf{w})}{\partial w_k} = \frac{\partial x_j^*(\mathbf{w}, y)}{\partial w_k} + \frac{\frac{\partial x_j(p, \mathbf{w})}{\partial p} \frac{\partial y(p, \mathbf{w})}{\partial w_k}}{\frac{\partial y(p, \mathbf{w})}{\partial p}}$$

Puu's equation, $j, k = 1, \ldots, n$, shows the substitution and scale effects of an increase in a factor price.

Elasticities of substitution in production theory

25.18
$$\sigma_{yx} = \text{El}_{R_{yx}}\left(\frac{y}{x}\right) = -\frac{\partial \ln\left(\frac{y}{x}\right)}{\partial \ln\left(\frac{p_2}{p_1}\right)}, \quad f(x,y) = c$$

The elasticity of substitution between y and x, assuming factor markets are competitive. (See also (5.20).)

25.19
$$\sigma_{ij} = -\frac{\partial \ln \left(\frac{C_i'(\mathbf{w}, y)}{C_j'(\mathbf{w}, y)} \right)}{\partial \ln \left(\frac{w_i}{w_j} \right)}, \quad i \neq j$$

y, C, and w_k (for $k \neq i, j$) are constants.

The shadow elasticity of substitution between factor i and factor j.

$$25.20 \quad \sigma_{ij} = \frac{-\frac{C_{ii}''}{(C_i')^2} + \frac{2C_{ij}''}{C_i'C_j'} - \frac{C_{jj}''}{(C_j')^2}}{\frac{1}{w_i C_i'} + \frac{1}{w_j C_j'}}, \quad i \neq j$$

An alternative form of (25.19).

25.21
$$A_{ij}(\mathbf{w}, y) = \frac{C(\mathbf{w}, y)C_{ij}^{"}(\mathbf{w}, y)}{C_{i}^{"}(\mathbf{w}, y)C_{j}^{"}(\mathbf{w}, y)}, \quad i \neq j$$

The Allen-Uzawa elasticity of substitution.

25.22
$$A_{ij}(\mathbf{w}, y) = \frac{\varepsilon_{ij}(\mathbf{w}, y)}{S_j(\mathbf{w}, y)}, \quad i \neq j$$

Here $\varepsilon_{ij}(\mathbf{w},y)$ is the (constant-output) crossprice elasticity of demand, and $S_j(\mathbf{w},y) = p_j C_j(\mathbf{w},y)/C(\mathbf{w},y)$ is the share of the jth input in total cost.

25.23
$$M_{ij}(\mathbf{w}, y) = \frac{w_i C_{ij}''(\mathbf{w}, y)}{C_j'(\mathbf{w}, y)} - \frac{w_i C_{ii}''(\mathbf{w}, y)}{C_i'(\mathbf{w}, y)}$$
$$= \varepsilon_{ji}(\mathbf{w}, y) - \varepsilon_{ii}(\mathbf{w}, y), \qquad i \neq j$$

The Morishima elasticity of substitution.

If n > 2, then $M_{ij}(\mathbf{w}, y) = M_{ji}(\mathbf{w}, y)$ for all $i \neq j$ if and only if all the $M_{ij}(\mathbf{w}, y)$ are equal to one and the same constant.

Symmetry of the Morishima elasticity of substitution.

Special functional forms and their properties

The Cobb-Douglas function

$$25.25 \quad y = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

The Cobb-Douglas function, defined for $x_i > 0$, i = 1, ..., n. $a_1, ..., a_n$ are positive constants.

The Cobb-Douglas function in (25.25) is:

- (a) homogeneous of degree $a_1 + \cdots + a_n$,
- 25.26 (b) quasiconcave for all a_1, \ldots, a_n ,
 - (c) concave if $a_1 + \cdots + a_n \leq 1$,
 - (d) strictly concave if $a_1 + \cdots + a_n < 1$.

Properties of the Cobb-Douglas function. $(a_1, \ldots, a_n \text{ are positive constants.})$

25.27
$$x_k^*(\mathbf{w}, y) = \left(\frac{a_k}{w_k}\right) \left(\frac{w_1}{a_1}\right)^{\frac{a_1}{s}} \cdots \left(\frac{w_n}{a_n}\right)^{\frac{a_n}{s}} y^{\frac{1}{s}}$$

Conditional factor demand functions with
$$s = a_1 + \cdots + a_n$$
.

25.28
$$C(\mathbf{w}, y) = s \left(\frac{w_1}{a_1}\right)^{\frac{a_1}{s}} \cdots \left(\frac{w_n}{a_n}\right)^{\frac{a_n}{s}} y^{\frac{1}{s}}$$

The cost function with
$$s = a_1 + \cdots + a_n$$
.

$$25.29 \quad \frac{w_k x_k^*}{C(\mathbf{w}, y)} = \frac{a_k}{a_1 + \dots + a_n}$$

$$25.30 x_k(p, \mathbf{w}) = \frac{a_k}{w_k} (pA)^{\frac{1}{1-s}} \left(\frac{w_1}{a_1}\right)^{\frac{a_1}{s-1}} \cdots \left(\frac{w_n}{a_n}\right)^{\frac{a_n}{s-1}}$$

Factor demand functions with $s = a_1 + \cdots + a_n < 1$.

25.31
$$\pi(p, \mathbf{w}) = (1 - s)(p)^{\frac{1}{1-s}} \prod_{i=1}^{n} \left(\frac{w_i}{a_i}\right)^{-\frac{a_i}{1-s}}$$

The profit function with $s = a_1 + \cdots + a_n < 1$. (If $s = a_1 + \cdots + a_n \ge 1$, there are increasing returns to scale, and the profit maximization problem has no solution.)

The CES (constant elasticity of substitution) function

25.32
$$y = (\delta_1 x_1^{-\rho} + \delta_2 x_2^{-\rho} + \dots + \delta_n x_n^{-\rho})^{-\mu/\rho}$$

The CES function, defined for $x_i > 0$, i = 1,...,n. μ and $\delta_1,...,\delta_n$ are positive, and $\rho \neq 0$. The CES function in (25.32) is:

- (a) homogeneous of degree μ
- 25.33 (b) quasiconcave for $\rho \ge -1$, quasiconvex for $\rho \le -1$
 - (c) concave for $\mu \leq 1$, $\rho \geq -1$
 - (d) convex for $\mu \geq 1$, $\rho \leq -1$

Properties of the CES function.

25.34
$$x_k^*(\mathbf{w}, y) = \frac{y^{\frac{1}{\mu}} w_k^{r-1}}{a_k^r} \left[\left(\frac{w_1}{a_1} \right)^r + \dots + \left(\frac{w_n}{a_n} \right)^r \right]^{\frac{1}{\rho}}$$

Conditional factor demand functions with $r = \rho/(\rho + 1)$ and $a_k = \delta_k^{-1/\rho}$.

25.35
$$C(\mathbf{w}, y) = y^{\frac{1}{\mu}} \left[\left(\frac{w_1}{a_1} \right)^r + \dots + \left(\frac{w_n}{a_n} \right)^r \right]^{\frac{1}{r}}$$

The cost function.

25.36
$$\frac{w_k x_k^*}{C(\mathbf{w}, y)} = \frac{\left(\frac{w_k}{a_k}\right)^r}{\left(\frac{w_1}{a_1}\right)^r + \dots + \left(\frac{w_n}{a_n}\right)^r}$$

Factor shares in total costs.

Law of the minimum

25.37
$$y = \min(a_1 + b_1 x_1, \dots, a_n + b_n x_n)$$

Law of the minimum. When $a_1 = \cdots = a_n = 0$, this is the *Leontief* or fixed coefficient function.

25.38
$$x_k^*(\mathbf{w}, y) = \frac{y - a_k}{b_k}, \quad k = 1, \dots, n$$

Conditional factor demand functions.

25.39
$$C(\mathbf{w}, y) = \left(\frac{y - a_1}{b_1}\right) w_1 + \dots + \left(\frac{y - a_n}{b_n}\right) w_n$$

The cost function.

The Diewert (generalized Leontief) cost function

25.40
$$C(\mathbf{w}, y) = y \sum_{i,j=1}^{n} b_{ij} \sqrt{w_i w_j}$$
 with $b_{ij} = b_{ji}$

The Diewert cost function.

25.41
$$x_k^*(\mathbf{w}, y) = y \sum_{j=1}^n b_{kj} \sqrt{w_k/w_j}$$

Conditional factor demand functions.

The translog cost function

$$\ln C(\mathbf{w}, y) = a_0 + c_1 \ln y + \sum_{i=1}^n a_i \ln w_i$$

$$+ \frac{1}{2} \sum_{i,j=1}^n a_{ij} \ln w_i \ln w_j + \sum_{i=1}^n b_i \ln w_i \ln y$$
Restrictions:
$$\sum_{i=1}^n a_i = 1, \sum_{i=1}^n b_i = 0,$$

$$\sum_{j=1}^n a_{ij} = \sum_{i=1}^n a_{ij} = 0, \qquad i, j = 1, \dots, n$$

The translog cost function. $a_{ij} = a_{ji}$ for all i and j. The restrictions on the coefficients ensure that $C(\mathbf{w}, y)$ is homogeneous of degree 1.

25.43
$$\frac{w_k x_k^*}{C(\mathbf{w}, y)} = a_k + \sum_{j=1}^n a_{kj} \ln w_j + b_i \ln y$$

Factor shares in total costs.

References

Varian (1992) is a basic reference. For a detailed discussion of existence and differentiability assumptions, see Fuss and McFadden (1978). For a discussion of Puu's equation (25.17), see Johansen (1972). For (25.18)–(25.24), see Blackorby and Russell (1989). For special functional forms, see Fuss and McFadden (1978).

Consumer theory

A preference relation \succeq on a set X of commodity vectors $\mathbf{x} = (x_1, \dots, x_n)$ is a complete, reflexive, and transitive binary relation on X with the interpretation

 $\mathbf{x} \succeq \mathbf{y}$ means: \mathbf{x} is at least as good as \mathbf{y}

Relations derived from \succeq :

26.2 • $\mathbf{x} \sim \mathbf{y} \iff \mathbf{x} \succeq \mathbf{y} \text{ and } \mathbf{y} \succeq \mathbf{x}$

26.3

• $\mathbf{x} \succ \mathbf{y} \iff \mathbf{x} \succeq \mathbf{y} \text{ but not } \mathbf{y} \succeq \mathbf{x}$

• A function $u: X \to \mathbb{R}$ is a utility function representing the preference relation \succeq if

$$\mathbf{x} \succeq \mathbf{y} \iff u(\mathbf{x}) \ge u(\mathbf{y})$$

• For any strictly increasing function $f : \mathbb{R} \to \mathbb{R}$, $u^*(\mathbf{x}) = f(u(\mathbf{x}))$ is a new utility function representing the same preferences as $u(\cdot)$.

Let \succeq be a complete, reflexive, and transitive preference relation that is also *continuous* in the sense that the sets

26.4 $\{\mathbf{x} : \mathbf{x} \succeq \mathbf{x}^0\} \text{ and } \{\mathbf{x} : \mathbf{x}^0 \succeq \mathbf{x}\}$

are both closed for all \mathbf{x}^0 in X. Then \succeq can be represented by a continuous utility function.

Utility maximization subject to a budget constraint:

26.5 $\max_{\mathbf{x}} u(\mathbf{x}) \text{ subject to } \mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{n} p_i x_i = m$

Definition of a preference relation. For binary relations, see (1.16).

 $\mathbf{x} \sim \mathbf{y}$ is read " \mathbf{x} is indifferent to \mathbf{y} ", and $\mathbf{x} \succ \mathbf{y}$ is read " \mathbf{x} is (strictly) preferred to \mathbf{y} ".

A property of utility functions that is invariant under every strictly increasing transformation, is called *ordinal*. *Cardinal* properties are those *not* preserved under strictly increasing transformations.

Existence of a continuous utility function. For properties of relations, see (1.16).

 $\mathbf{x} = (x_1, \dots, x_n)$ is a vector of (quantities of) commodities, $\mathbf{p} = (p_1, \dots, p_n)$ is the price vector, m is income, and u is the utility function.

26.6
$$v(\mathbf{p}, m) = \max_{\mathbf{x}} \{u(\mathbf{x}) : \mathbf{p} \cdot \mathbf{x} = m\}$$

The indirect utility function, $v(\mathbf{p}, m)$, is the maximum utility as a function of the price vector \mathbf{p} and the income m.

- $v(\mathbf{p}, m)$ is decreasing in \mathbf{p} .
- $v(\mathbf{p}, m)$ is increasing in m.
- 26.7 $v(\mathbf{p}, m)$ is homogeneous of degree 0 in (\mathbf{p}, m) .
 - $v(\mathbf{p}, m)$ is quasi-convex in \mathbf{p} .
 - $v(\mathbf{p}, m)$ is continuous in (\mathbf{p}, m) , $\mathbf{p} > \mathbf{0}$, m > 0.

Properties of the indirect utility function.

26.8
$$\omega = \frac{u_1'(\mathbf{x})}{p_1} = \dots = \frac{u_n'(\mathbf{x})}{p_n}$$

First-order conditions for problem (26.5), with ω as the associated Lagrange multiplier.

26.9
$$\omega = \frac{\partial v(\mathbf{p}, m)}{\partial m}$$

 ω is called the marginal utility of money.

26.10 $x_i(\mathbf{p}, m) = \begin{cases} \text{the optimal choice of the } i \text{th commodity as a function of the price vector } \mathbf{p} \text{ and the income } m. \end{cases}$

The consumer demand functions, or Marshallian demand functions, derived from problem (26.5).

26.11 $\mathbf{x}(t\mathbf{p}, tm) = \mathbf{x}(\mathbf{p}, m)$, t is a positive scalar.

The demand functions are homogeneous of degree 0.

26.12
$$x_i(\mathbf{p}, m) = -\frac{\frac{\partial v(\mathbf{p}, m)}{\partial p_i}}{\frac{\partial v(\mathbf{p}, m)}{\partial m}}, \quad i = 1, \dots, n$$

Roy's identity.

26.13
$$e(\mathbf{p}, u) = \min_{\mathbf{x}} \{ \mathbf{p} \cdot \mathbf{x} : u(\mathbf{x}) \ge u \}$$

The expenditure function, $e(\mathbf{p}, u)$, is the minimum expenditure at prices \mathbf{p} for obtaining at least the utility level u.

- $e(\mathbf{p}, u)$ is increasing in \mathbf{p} .
- $e(\mathbf{p}, u)$ is homogeneous of degree 1 in \mathbf{p} .
- $e(\mathbf{p}, u)$ is concave in \mathbf{p} .
- $e(\mathbf{p}, u)$ is continuous in \mathbf{p} for $\mathbf{p} > \mathbf{0}$.

Properties of the expenditure function.

26.15
$$\mathbf{h}(\mathbf{p}, u) = \begin{cases} \text{the expenditure-minimizing bundle elements} \\ \text{dle necessary to achieve utility} \\ \text{level } u \text{ at prices } \mathbf{p}. \end{cases}$$

The Hicksian (or compensated) demand function.
$$\mathbf{h}(\mathbf{p}, u)$$
 is the vector \mathbf{x} that solves the problem $\min\{\mathbf{p} \cdot \mathbf{x} : u(\mathbf{x}) \geq u\}$.

26.16
$$\frac{\partial e(\mathbf{p}, u)}{\partial p_i} = h_i(\mathbf{p}, u)$$
 for $i = 1, \dots, n$

26.17
$$\frac{\partial h_i(\mathbf{p}, u)}{\partial p_j} = \frac{\partial h_j(\mathbf{p}, u)}{\partial p_i}, \quad i, j = 1, \dots, n$$

26.18 The matrix
$$\mathbf{S} = (S_{ij})_{n \times n} = \left(\frac{\partial h_i(\mathbf{p}, u)}{\partial p_j}\right)_{n \times n}$$
 is negative semidefinite.

Follows from (26.16) and the concavity of the expenditure function.

$$26.19 \quad e(\mathbf{p},v(\mathbf{p},m)) = m: \begin{cases} \text{the minimum expenditure} \\ \text{needed to achieve utility} \\ v(\mathbf{p},m) \text{ is } m. \end{cases}$$

Useful identities that are valid except in rather special cases.

26.20
$$v(\mathbf{p}, e(\mathbf{p}, u)) = u : \begin{cases} \text{the maximum utility from income } e(\mathbf{p}, u) \text{ is } u. \end{cases}$$

Marshallian demand at income m is Hicksian demand at utility $v(\mathbf{p}, m)$: 26.21

$$x_i(\mathbf{p}, m) = h_i(\mathbf{p}, v(\mathbf{p}, m))$$

Hicksian demand at utility u is the same as Marshallian demand at income $e(\mathbf{p}, u)$: 26.22

$$h_i(\mathbf{p}, u) = x_i(\mathbf{p}, e(\mathbf{p}, u))$$

•
$$e_{ij} = \text{El}_{p_j} x_i = \frac{p_j}{x_i} \frac{\partial x_i}{\partial p_j}$$
 (Cournot elasticities)

26.23 •
$$E_i = \operatorname{El}_m x_i = \frac{m}{x_i} \frac{\partial x_i}{\partial m}$$
 (Engel elasticities)

•
$$S_{ij} = \text{El}_{p_j} h_i = \frac{p_j}{x_i} \frac{\partial h_i}{\partial p_j}$$
 (Slutsky elasticities)

26.24 •
$$\frac{\partial x_i(\mathbf{p}, m)}{\partial p_j} = \frac{\partial h_i(\mathbf{p}, u)}{\partial p_j} - x_j(\mathbf{p}, m) \frac{\partial x_i(\mathbf{p}, m)}{\partial m}$$
•
$$S_{ij} = e_{ij} + a_j E_i, \quad a_j = p_j x_j / m$$

Two equivalent forms of

the Slutsky equation.

 e_{ij} are the elasticities of demand w.r.t. prices, E_i are the elasticities of de-

mand w.r.t. income, and S_{ij} are the elasticities

of the Hicksian demand

w.r.t. prices.

26.25

The following $\frac{1}{2}n(n+1)+1$ restrictions on the partial derivatives of the demand functions are linearly independent:

(a)
$$\sum_{i=1}^{n} p_i \frac{\partial x_i(\mathbf{p}, m)}{\partial m} = 1$$

(b)
$$\sum_{i=1}^{n} p_j \frac{\partial x_i}{\partial p_j} + m \frac{\partial x_i}{\partial m} = 0, \quad i = 1, \dots, n$$

(c)
$$\frac{\partial x_i}{\partial p_j} + x_j \frac{\partial x_i}{\partial m} = \frac{\partial x_j}{\partial p_i} + x_i \frac{\partial x_j}{\partial m}$$

for $1 \le i < j \le n$

$$EV = e(\mathbf{p}^0, v(\mathbf{p}^1, m^1)) - e(\mathbf{p}^0, v(\mathbf{p}^0, m^0))$$

EV is the difference between the amount of money needed at the old (period 0) prices to reach the new (period 1) utility level, and the amount of money needed at the old prices to reach the old utility level.

$$CV = e(\mathbf{p}^1, v(\mathbf{p}^1, m^1)) - e(\mathbf{p}^1, v(\mathbf{p}^0, m^0))$$

26.27 CV is the difference between the amount of money needed at the new (period 1) prices to reach the new utility level, and the amount of money needed at the new prices to reach the old (period 0) utility level.

- (a) is the budget constraint differentiated with respect to m.
- (b) is the Euler equation (for homogeneous functions) applied to the consumer demand function
- (c) is a consequence of the Slutsky equation and (26.17).

Equivalent variation. \mathbf{p}^0 , m^0 , and \mathbf{p}^1 , m^1 , are prices and income in period 0 and period 1, respectively. $(e(\mathbf{p}^0, v(\mathbf{p}^0, m^0)) = m^0.)$

Compensating variation. \mathbf{p}^0 , m^0 , and \mathbf{p}^1 , m^1 , are prices and income in period 0 and period 1, respectively. $(e(\mathbf{p}^1, v(\mathbf{p}^1, m^1)) = m^1.)$

Special functional forms and their properties

Linear expenditure system (LES)

26.28
$$u(\mathbf{x}) = \prod_{i=1}^{n} (x_i - c_i)^{\beta_i}, \quad \beta_i > 0$$

26.29
$$x_i(\mathbf{p}, m) = c_i + \frac{1}{p_i} \frac{\beta_i}{\beta} \left(m - \sum_{i=1}^n p_i c_i \right)$$

26.30
$$v(\mathbf{p}, m) = \beta^{-\beta} \left(m - \sum_{i=1}^{n} p_i c_i \right)^{\beta} \prod_{i=1}^{n} \left(\frac{\beta_i}{p_i} \right)^{\beta_i}$$

The Stone-Geary utility function. If $c_i = 0$ for all i, $u(\mathbf{x})$ is Cobb-Douglas.

The demand functions. $\beta = \sum_{i=1}^{n} \beta_i$.

The indirect utility function.

26.31
$$e(\mathbf{p}, u) = \sum_{i=1}^{n} p_i c_i + \frac{\beta u^{1/\beta}}{\left[\prod_{i=1}^{n} \left(\frac{\beta_i}{p_i}\right)^{\beta_i}\right]^{1/\beta}}$$

The expenditure function.

Almost ideal demand system (AIDS)

$$\ln(e(\mathbf{p}, u)) = a(\mathbf{p}) + ub(\mathbf{p}), \quad \text{where}$$

$$a(\mathbf{p}) = \alpha_0 + \sum_{i=1}^n \alpha_i \ln p_i + \frac{1}{2} \sum_{i,j=1}^n \gamma_{ij}^* \ln p_i \ln p_j$$

$$26.32 \quad \text{and} \quad b(\mathbf{p}) = \beta_0 \prod_{i=1}^n p_i^{\beta_i}, \quad \text{with restrictions}$$

$$\sum_{i=1}^n \alpha_i = 1, \sum_{i=1}^n \beta_i = 0, \text{ and } \sum_{i=1}^n \gamma_{ij}^* = \sum_{j=1}^n \gamma_{ij}^* = 0.$$

Almost ideal demand system, defined by the logarithm of the expenditure function. The restrictions make $e(\mathbf{p}, u)$ homogeneous of degree 1 in \mathbf{p} .

$$x_{i}(\mathbf{p}, m) = \frac{m}{p_{i}} \left(\alpha_{i} + \sum_{j=1}^{n} \gamma_{ij} \ln p_{j} + \beta_{i} \ln(\frac{m}{P}) \right),$$
where the price index P is given by
$$\sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$$

 $\ln P = \alpha_0 + \sum_{i=1}^n \alpha_i \ln p_i + \frac{1}{2} \sum_{i,j=1}^n \gamma_{ij} \ln p_i \ln p_j$ with $\gamma_{ij} = \frac{1}{2} (\gamma_{ij}^* + \gamma_{ji}^*) = \gamma_{ji}$

The demand functions.

Translog indirect utility function

26.34
$$\ln v(\mathbf{p}, m) = \alpha_0 + \sum_{i=1}^n \alpha_i \ln\left(\frac{p_i}{m}\right) + \frac{1}{2} \sum_{i,j=1}^n \beta_{ij}^* \ln\left(\frac{p_i}{m}\right) \ln\left(\frac{p_j}{m}\right)$$

The translog indirect utility function.

26.35
$$x_i(\mathbf{p}, m) = \frac{m}{p_i} \left(\frac{\alpha_i + \sum_{j=1}^n \beta_{ij} \ln(p_j/m)}{\sum_{i=1}^n \alpha_i + \sum_{i,j=1}^n \beta_{ij}^* \ln(p_i/m)} \right)$$
 where $\beta_{ij} = \frac{1}{2} (\beta_{ij}^* + \beta_{ij}^*)$.

Price indices

Consider a "basket" of n commodities. Define for $i = 1, \ldots, n$,

 $q^{(i)} = \text{number of units of good } i \text{ in the basket}$

 $p_0^{(i)} = \text{price per unit of good } i \text{ in year } 0$

 $p_t^{(i)} = \text{price per unit of good } i \text{ in year } t$

A price index, P, for year t, with year 0 as the base year, is defined as

$$P = \frac{\sum_{i=1}^{n} p_t^{(i)} q^{(i)}}{\sum_{i=1}^{n} p_0^{(i)} q^{(i)}} \cdot 100$$

• If the quantities $q^{(i)}$ in the formula for P are levels of consumption in the base year 0, P is called the *Laspeyres price index*.

• If the quantities $q^{(i)}$ are levels of consumption in the year t, P is called the *Paasche price index*.

 $F = \sqrt{\text{(Laspeyres index)} \cdot \text{(Paasche index)}}$

The most common definition of a price index. P is 100 times the cost of the basket in year t divided by the cost of the basket in year 0. (More generally, a (consumption) price index can be defined as any function $P(p_1, \ldots, p_n)$ of all the prices, homogeneous of degree 1 and increasing in each variable.)

Two important price indices.

Fisher's ideal index.

References

Varian (1992) is a basic reference. For a more advanced treatment, see Mas-Colell, Whinston, and Green (1995). For AIDS, see Deaton and Muellbauer (1980), for translog, see Christensen, Jorgenson, and Lau (1975). See also Phlips (1983).

26.37

26.38

26.36

Topics from trade theory

Standard neoclassical trade model (2 × 2 factor model). Two factors of production, K and L, that are mobile between two output producing sectors A and B. Production functions are neoclassical (i.e. the production set is closed, convex, contains zero, has free disposal, and its intersection with the positive orthant is empty) and exhibit constant returns to scale.

The economy has *in-complete specialization* when both goods are produced.

27.2 Good B is more K intensive than good A if $K_B/L_B > K_A/L_A$ at all factor prices.

No factor intensity reversal (NFIR). K_B denotes use of factor K in producing good B, etc.

When B is more K in-

Stolper-Samuelson's theorem:

tensive, an increase in the price of B leads to an increase in the real return to K and a decrease in the real return to L. With P as the price of output, r the return to K and w the return to L, r/P_A and r/P_B both rise while w/P_A and w/P_B both fall.

In the 2 × 2 factor model with no factor intensity reversal and incomplete specialization, an increase in the relative price of a good results in an increase in the real return to the factor used intensively in producing that good and a fall in the real return to the other factor.

Assumes that the endowment of the other factor does not change and that prices of outputs do not change, e.g. if K increases and B is K intensive, then the output of B will rise and the output of A will fall.

 $Rybczynski's\ theorem:$

In a 2×2 factor model with no factor intensity reversal and incomplete specialization, if the endowment of a factor increases, the output of the good more intensive in that factor will increase while the output of the other good will fall.

27.5

Heckscher-Ohlin-Samuelson model:

Two countries, two traded goods, two non-traded factors of production (K, L). The factors are in fixed supply in the two countries. The two countries have the same constant returns to scale production function for making B and A. Factor markets clear within each country and trade between the two countries clears the markets for the two goods. Each country has a zero balance of payments. Consumers in the two countries have identical homothetic preferences. There is perfect competition and there are no barriers to trade, including tariffs, transactions costs, or transport costs. Both countries' technologies exhibit no factor intensity reversals.

The HOS model.

Heckscher-Ohlin's theorem:

27.6 In the HOS model (27.5) with $K/L > K^*/L^*$ and with B being more K intensive at all factor prices, the home country exports good B.

The quantity version of the H–O model. A * denotes foreign country values and the other country is referred to as the home country.

In the HOS model (27.5) with neither country specialized in the production of just one good, the price of K is the same in both countries and the price of L is the same in both countries.

Factor price equalization.

References

Mas-Colell, Whinston, and Green (1995) or Bhagwati, Panagariya, and Srinivasan (1998).

Topics from finance and growth theory

28.1
$$S_t = S_{t-1} + rS_{t-1} = (1+r)S_{t-1}, \quad t = 1, 2, \dots$$

In an account with interest rate r, an amount S_{t-1} increases after one period to S_t .

The compound amount S_t of a principal S_0 at the end of t periods at the interest rate r compounded at the end of each period is

$$S_t = S_0(1+r)^t$$

Compound interest. (The solution to the difference equation in (28.1).)

The amount S_0 that must be invested at the interest rate r compounded at the end of each period for t periods so that the compound amount will be S_t , is given by

 S_0 is called the *present* value of S_t .

$$S_0 = S_t (1+r)^{-t}$$

Effective annual rate of interest.

When interest is compounded n times a year at regular intervals at the rate of r/n per period, then the effective annual interest is

$$\left(1+\frac{r}{n}\right)^n-1$$

The present value A_t of an annuity of R per period for t periods at the interest rate of r per period. Payments at the end of each period.

28.5
$$A_t = \frac{R}{(1+r)^1} + \frac{R}{(1+r)^2} + \dots + \frac{R}{(1+r)^t}$$
$$= R \frac{1 - (1+r)^{-t}}{r}$$

The present value of an infinite annuity.
First payment after one period.

The present value A of an annuity of R per period for an infinite number of periods at the 28.6 interest rate of r per period, is

$$A = \frac{R}{(1+r)^1} + \frac{R}{(1+r)^2} + \dots = \frac{R}{r}$$

$$28.7 \quad T = \frac{\ln\left(\frac{R}{R - rA}\right)}{\ln(1+r)}$$

28.8
$$S_t = (1+r)S_{t-1} + (y_t - x_t), \quad t = 1, 2, \dots$$

28.9
$$S_t = (1+r)^t S_0 + \sum_{k=1}^t (1+r)^{t-k} (y_k - x_k)$$

28.10
$$S_t = (1 + r_t)S_{t-1} + (y_t - x_t), \quad t = 1, 2, \dots$$

28.11
$$D_k = \frac{1}{\prod_{s=1}^k (1+r_s)}$$

28.12
$$R_k = \frac{D_k}{D_t} = \prod_{s=k+1}^t (1+r_s)$$

28.13
$$S_t = R_0 S_0 + \sum_{k=1}^{t} R_k (y_k - x_k)$$

28.14
$$a_0 + \frac{a_1}{1+r} + \frac{a_2}{(1+r)^2} + \dots + \frac{a_n}{(1+r)^n} = 0$$

28.15 If $a_0 < 0$ and a_1, \ldots, a_n are all ≥ 0 , then (28.14) has a unique solution $1 + r^* > 0$, i.e. a unique internal rate of return $r^* > -1$. The internal rate of return is positive provided $\sum_{i=0}^{n} a_i > 0$.

28.16
$$A_0 = a_0, A_1 = a_0 + a_1, A_2 = a_0 + a_1 + a_2, \dots, A_n = a_0 + a_1 + \dots + a_n$$

The number T of periods needed to pay off a loan of A with periodic payment R and interest rate r per period.

In an account with interest rate r, an amount S_{t-1} increases after one period to S_t , if y_t are the deposits and x_t are the withdrawals in period t.

The solution of equation (28.8)

Generalization of (28.8) to the case with a variable interest rate, r_t .

The discount factor associated with (28.10). (Discounted from period k to period (0.1))

The *interest factor* associated with (28.10).

The solution of (28.10). R_k is defined in (28.12). (Generalizes (28.9).)

r is the internal rate of return of an investment project. Negative a_t represents outlays, positive a_t represents receipts at time t.

Consequence of Descartes's rule of signs (2.12).

The accumulated cash flow associated with (28.14).

If $A_n \neq 0$, and the sequence A_0, A_1, \ldots, A_n 28.17 changes sign only once, then (28.14) has a unique positive internal rate of return.

Norstrøm's rule.

The amount in an account after t years if Kdollars earn continuous compound interest at 28.18 the rate r is

Continuous compound interest.

 Ke^{rt}

The effective annual interest with continuous compounding at the interest rate r is 28.19

Effective rate of interest, with continuous compounding.

 $e^{r} - 1$

28.20

The present value (with continuous compounding) of an amount K due in t years, if the interest

is p% per year.

 $Ke^{-rt}, \quad r = p/100$

The discounted present value at time 0 of a con-

Discounted present value, continuous compounding.

tinuous income stream at the rate K(t) dollars per year over the time interval [0, T], and with continuous compounding at the rate of interest 28.21

 $\int_{0}^{T} K(t)e^{-rt} dt$

The discounted present value at time s, of a continuous income stream at the rate K(t) dollars per year over the time interval [s, T], and with continuous compounding at the rate of interest r, is

Discounted present value, continuous compounding.

 $\int^{T} K(t)e^{-r(t-s)} dt$

Solow's growth model:

• X(t) = F(K(t), L(t))

• $\dot{K}(t) = sX(t)$

• $L(t) = L_0 e^{\lambda t}$

X(t) is national income, K(t) is capital, and L(t)is the labor force at time t. F is a production function. s (the savings rate), λ , and L_0 are positive constants.

If F is homogeneous of degree 1, k(t) = K(t)/L(t)is capital per worker, and f(k) = F(k, 1), then (28.23) reduces to

A simplified version of (28.23).

 $\dot{k} = s f(k) - \lambda k$, k(0) is given

28.24

28.23

28.22

If f(0) = 0, $\lambda/s < f'(0) < \infty$, $f'(k) \to 0$ as $k \to \infty$, and $f''(k) \le 0$ for all $k \ge 0$, then the equation in (28.24) has a unique solution on $[0,\infty)$ for every positive initial value k(0) of k. The equation has a unique positive equilibrium state k^* , defined by $sf(k^*) = \lambda k^*$. This equilibrium is asymptotically stable on $(0,\infty)$. (See the figure below.)

Existence and uniqueness of solutions of Solow's growth model over $[0,\infty)$. (See Example 5.8.8 in Sydsæter et al. (2005).) The existence of k^* follows immediately from the conditions on f.

Phase diagram for (28.24), with the conditions in (28.25) imposed.

Ramsey's growth model: $\max \int_0^T U(C(t))e^{-rt} dt \text{ subject to}$ $28.27 \qquad C(t) = f(K(t)) - \dot{K}(t),$ $K(0) = K_0, \quad K(T) \ge K_1.$

A standard problem in growth theory. U is a utility function, K(t) is the capital stock at time t, f(K) is the production function, C(t) is consumption, r is the discount factor, and T is the planning horizon.

28.28
$$\ddot{K} - f'(K)\dot{K} + \frac{U'(C)}{U''(C)}(r - f'(K)) = 0$$

The Euler equation for problem (28.27).

28.29 $\frac{\dot{C}}{C} = \frac{f'(K) - r}{-\check{w}}$ where $\check{w} = \text{El}_C\,U'(C) = CU''(C)/U'(C)$

Necessary condition for the solution of (28.27). Since \check{w} is usually negative, consumption increases if and only if the marginal productivity of capital exceeds the discount rate.

References

For compound interest formulas, see Goldberg (1961) or Sydsæter and Hammond (2005). For (28.17), see Norstrøm (1972). For growth theory, see Burmeister and Dobell (1970), Blanchard and Fischer (1989), Barro and Sala-i-Martin (1995), or Sydsæter et al. (2005).

Risk and risk aversion theory

29.1
$$R_A = -\frac{u''(y)}{u'(y)}, \qquad R_R = yR_A = -\frac{yu''(y)}{u'(y)}$$

Absolute risk aversion (R_A) and relative risk aversion (R_R) . u(y) is a utility function, y is income, or consumption.

$$P_A = \lambda \Leftrightarrow u(y) = A_1 + A_2 e^{-\lambda y}$$

$$R_R = k \Leftrightarrow u(y) = \begin{cases} A_1 + A_2 \ln y & \text{if } k = 1 \\ A_1 + A_2 y^{1-k} & \text{if } k \neq 1 \end{cases}$$

A characterization of utility functions with constant absolute and relative risk aversion, respectively. A_1 and A_2 are constants, $A_2 \neq 0$.

$$u(y) = y - \frac{1}{2}by^{2} \implies R_{A} = \frac{b}{1 - by}$$

$$u(y) = \frac{1}{b - 1}(a + by)^{1 - \frac{1}{b}} \implies R_{A} = \frac{1}{a + by}$$

Risk aversions for two special utility functions.

$$E[u(y+z+\pi)] = E[u(y)]$$

$$29.4 \quad \pi \approx -\frac{u''(y)}{u'(y)} \frac{\sigma^2}{2} = R_A \frac{\sigma^2}{2}$$

Arrow–Pratt risk premium. π : risk premium. z: mean zero risky prospect. $\sigma^2 = \text{var}[z]$: variance of z. $E[\]$ is expectation. (Expectation and variance are defined in Chapter 33.)

If F and G are cumulative distribution functions (CDF) of random incomes, then F first-degree stochastically dominates G

 $\iff G(Z) \ge F(Z) \text{ for all } Z \text{ in } I.$

Definition of first-degree stochastic dominance. I is a closed interval $[Z_1, Z_2]$. For $Z \leq Z_1$, F(Z) = G(Z) = 0 and for $Z \geq Z_2$, F(Z) = G(Z) = 1.

29.6
$$F \text{ FSD } G \iff \begin{cases} E_F[u(Z)] \ge E_G[u(Z)] \\ \text{for all increasing } u(Z). \end{cases}$$

An important result. FSD means "first-degree stochastically dominates". $E_F[u(Z)]$ is expected utility of income Z when the cumulative distribution function is F(Z). $E_G[u(Z)]$ is defined similarly.

29.7
$$T(Z) = \int_{Z_1}^{Z} (G(z) - F(z)) dz$$

A definition used in (29.8).

Definition of seconddegree stochastic dominance (SSD). $I = [Z_1, Z_2]$. Note that $FSD \Rightarrow SSD$.

29.9
$$F \text{ SSD } G \iff \begin{cases} E_F[u(Z)] \geq E_G[u(Z)] \text{ for all increasing and concave } u(Z). \end{cases}$$

Hadar–Russell's theorem. Every risk averter prefers F to G if and only if F SSD G.

Let F and G be distribution functions for X and Y, respectively, let $I = [Z_1, Z_2]$, and let T(Z) be as defined in (29.7). Then the following statements are equivalent:

• $T(Z_2) = 0$ and $T(Z) \ge 0$ for all Z in I.

• There exists a stochastic variable ε with $E[\varepsilon | X] = 0$ for all X such that Y is distributed as $X + \varepsilon$.

• F and G have the same mean, and every risk averter prefers F to G.

Rothschild-Stiglitz's theorem.

References

See Huang and Litzenberger (1988), Hadar and Russell (1969), and Rothschild and Stiglitz (1970).

Finance and stochastic calculus

Capital asset pricing model:

30.1
$$E[r_i] = r + \beta_i (E[r_m] - r)$$
where $\beta_i = \frac{\operatorname{corr}(r_i, r_m) \sigma_i}{\sigma_m} = \frac{\operatorname{cov}(r_i, r_m)}{\sigma_m^2}$.

Single consumption β asset pricing equation:

30.2
$$E(r_i) = r + \frac{\beta_{ic}}{\beta_{mc}} (E(r_m) - r),$$
 where $\beta_{jc} = \frac{\text{cov}(r_j, d \ln C)}{\text{var}(d \ln C)}, \quad j = i \text{ or } m.$

The Black–Scholes option pricing model. (European or American call option on a stock that pays no dividend):

$$c = c(S, K, t, r, \sigma) = SN(x) - KN(x - \sigma\sqrt{t})e^{-rt},$$
where $x = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^2)t}{\sigma\sqrt{t}},$
and $N(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-z^2/2} dz$ is the cumulative normal distribution function.

- $\partial c/\partial S = N(x) > 0$
- $\partial c/\partial K = -N(x \sigma\sqrt{t})e^{-rt} < 0$

$$_{30.4}$$
 • $\partial c/\partial t = \frac{\sigma}{2\sqrt{t}}SN'(x) + re^{-rt}KN(x - \sigma\sqrt{t}) > 0$

- $\partial c/\partial r = tKN(x \sigma\sqrt{t})e^{-rt} > 0$
- $\partial c/\partial \sigma = SN'(x)\sqrt{t} > 0$

 r_i : rate of return on asset i. $E[r_k]$: the expected value of r_k . r: rate of return on a safe asset. r_m : market rate of return. σ_i : standard deviation of r_i .

C: consumption. r_m : return on an arbitrary portfolio. $d \ln C$ is the stochastic logarithmic differential. (See (30.13).)

c: the value of the option on S at time t. S: underlying stock price, $dS/S = \alpha dt + \sigma dB$, where B is a (standard) Brownian motion, α : drift parameter. σ : volatility (measures the deviation from the mean). t: time left until expiration. r: interest rate. K: strike price.

Useful sensitivity results for the Black–Scholes model. (The corresponding results for the generalized Black–Scholes model (30.5) are given in Haug (1997), Appendix B.)

The generalized Black-Scholes model, which includes the cost-of-carry term b (used to price European call options (c) and put options (p) on assets paying a continuous dividend yield, options on futures, and currency options):

30.5
$$c = SN(x)e^{(b-r)t} - KN(x - \sigma\sqrt{t})e^{-rt},$$
$$p = KN(\sigma\sqrt{t} - x)e^{-rt} - SN(-x)e^{(b-r)t},$$
where
$$x = \frac{\ln(S/K) + (b + \frac{1}{2}\sigma^2)t}{\sigma\sqrt{t}}.$$

30.6
$$p = c - Se^{(b-r)t} + Ke^{-rt}$$

$$30.7 \quad P(S,K,t,r,b,\sigma) = C(K,S,t,r-b,-b,\sigma)$$

The market value of an American perpetual put option when the underlying asset pays no dividend:

30.8
$$h(x) = \begin{cases} \frac{K}{1+\gamma} \left(\frac{x}{c}\right)^{-\gamma} & \text{if } x \ge c, \\ K - x & \text{if } x < c, \end{cases}$$
 where $c = \frac{\gamma K}{1+\gamma}, \ \gamma = \frac{2r}{\sigma^2}.$

$$X_{t} = X_{0} + \int_{0}^{t} u(s, \omega) \, ds + \int_{0}^{t} v(s, \omega) \, dB_{s},$$
where $P[\int_{0}^{t} v(s, \omega)^{2} \, ds < \infty \text{ for all } t \geq 0] = 1,$
and $P[\int_{0}^{t} |u(s, \omega)| \, ds < \infty \text{ for all } t \geq 0] = 1.$
Both u and v are adapted to the filtration $\{\mathcal{F}_{t}\}$, where B_{t} is an \mathcal{F}_{t} -Brownian motion.

$$30.10 \quad dX_t = u \, dt + v \, dB_t$$

$$\text{If } dX_t = u \, dt + v \, dB_t \text{ and } Y_t = g(X_t), \text{ where } g$$
 30.11 is C^2 , then
$$dY_t = \left(g'(X_t)u + \tfrac{1}{2}g''(X_t)v^2\right)dt + g'(X_t)v \, dB_t$$

$$30.12 dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0, dB_t \cdot dB_t = dt$$

b: cost-of-carry rate of holding the underlying security. b=r gives the Black–Scholes model. b=r-q gives the Merton stock option model with continuous dividend yield q. b=0 gives the Black futures option model.

The *put-call parity* for the generalized Black–Scholes model.

A transformation that gives the formula for an American put option, P, in terms of the corresponding call option, C.

x: current price.

c: trigger price.

r: interest rate.

K: exercise price. σ : volatility.

 X_t is by definition a onedimensional stochastic integral.

A differential form of (30.9).

Itô's formula (one-dimensional).

Useful relations.

$$d \ln X_t = \left(\frac{u}{X_t} - \frac{v^2}{2X_t^2}\right) dt + \frac{v}{X_t} dB_t$$

$$de^{X_t} = \left(e^{X_t} u + \frac{1}{2} e^{X_t} v^2\right) dt + e^{X_t} v dB_t$$

Two special cases of (30.11).

$$30.14 \quad \begin{pmatrix} dX_1 \\ \vdots \\ dX_n \end{pmatrix} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} dt + \begin{pmatrix} v_{11} & \dots & v_{1m} \\ \vdots & & \vdots \\ v_{n1} & \dots & v_{nm} \end{pmatrix} \begin{pmatrix} dB_1 \\ \vdots \\ dB_m \end{pmatrix}$$

Vector version of (30.10), where B_1, \ldots, B_m are m independent one-dimensional Brownian motions.

If
$$\mathbf{Y} = (Y_1, \dots, Y_k) = \mathbf{g}(t, \mathbf{X})$$
, where $\mathbf{g} = (g_1, \dots, g_k)$ is C^2 , then for $r = 1, \dots, k$,
$$dY_r = \frac{\partial g_r(t, \mathbf{X})}{\partial t} dt + \sum_{i=1}^n \frac{\partial g_r(t, \mathbf{X})}{\partial x_i} dX_i$$

$$+ \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 g_r(t, \mathbf{X})}{\partial x_i \partial x_j} dX_i dX_j$$

An *n*-dimensional version of *Itô's formula*.

if i = j, 0 if $i \neq j$.

where $dt \cdot dt = dt \cdot dB_i = 0$ and $dB_i \cdot dB_j = dt$

 $J(t,x) = \max_{u} E^{t,x} \left[\int_{t}^{T} e^{-rs} W(s,X_{s},u_{s}) ds \right],$ where T is fixed, $u_{s} \in U$, U is a fixed interval, and $dX_{t} = b(t,X_{t},u_{t}) dt + \sigma(t,X_{t},u_{t}) dB_{t}.$

A stochastic control problem. J is the value function, u_t is the control. $E^{t,x}$ is expectation subject to the initial condition $X_t = x$.

$$30.17 \quad \begin{array}{ll} -J_t'(t,x) = \max_{u \in U} \bigl[W(t,x,u) \\ & + J_x'(t,x) b(t,x,u) + \frac{1}{2} J_{xx}''(t,x) (\sigma(t,x,u))^2 \bigr] \end{array}$$

The Hamilton-Jacobi-Bellman equation. A necessary condition for optimality in (30.16).

References

For (30.1) and (30.2), see Sharpe (1964). For (30.3), see Black and Scholes (1973). For (30.5), and many other option pricing formulas, see Haug (1997), who also gives detailed references to the literature as well as computer codes for option pricing formulas. For (30.8), see Merton (1973). For stochastic calculus and stochastic control theory, see Øksendal (2003), Fleming and Rishel (1975), and Karatzas and Shreve (1991).

Non-cooperative game theory

In an *n*-person game we assign to each player i (i = 1, ..., n) a strategy set S_i and a pure 31.1 strategy payoff function u_i that gives player i utility $u_i(\mathbf{s}) = u_i(s_1, ..., s_n)$ for each strategy profile $\mathbf{s} = (s_1, ..., s_n) \in S = S_1 \times \cdots \times S_n$.

A strategy profile (s_1^*, \ldots, s_n^*) for an *n*-person game is a *pure strategy Nash equilibrium* if for all $i = 1, \ldots, n$ and all s_i in S_i ,

$$u_i(s_1^*, \dots, s_n^*) \ge u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots s_n^*)$$

If for all i = 1, ..., n, the strategy set S_i is a nonempty, compact, and convex subset of \mathbb{R}^m , and $u_i(s_1, ..., s_n)$ is continuous in $S = S_1 \times ... \times S_n$ and quasiconcave in its *i*th variable, then the game has a pure strategy Nash equilibrium.

Consider a finite *n*-person game where S_i is player *i*'s pure strategy set, and let $S = S_1 \times \cdots \times S_n$. Let Ω_i be a set of probability distributions over S_i . An element σ_i of Ω_i (σ_i is then a function $\sigma_i : S_i \to [0,1]$) is called a *mixed strategy* for player *i*, with the interpretation that if *i* plays σ_i , then *i* chooses the pure strategy s_i with probability $\sigma_i(s_i)$.

If the players choose the mixed strategy profile $\sigma = (\sigma_1, \ldots, \sigma_n) \in \Omega_1 \times \cdots \times \Omega_n$, the probability that the pure strategy profile $\mathbf{s} = (s_1, \ldots, s_n)$ occurs is $\sigma_1(s_1) \cdots \sigma_n(s_n)$. The expected payoff to player i is then

$$u_i(\boldsymbol{\sigma}) = \sum_{s \in S} \sigma_1(s_1) \cdots \sigma_n(s_n) u_i(s)$$

31.4

An n-person game in strategic (or normal) form. If all the strategy sets S_i have a finite number of elements, the game is called finite.

Definition of a pure strategy Nash equilibrium for an n-person game.

Sufficient conditions for the existence of a pure strategy Nash equilibrium. (There will usually be several Nash equilibria.)

Definition of a *mixed* strategy for an *n*-person game.

A mixed strategy profile $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ is a 31.5 Nash equilibrium if for all i and every σ_i ,

$$u_i(\boldsymbol{\sigma}^*) \ge u_i(\sigma_1^*, \dots, \sigma_{i-1}^*, \sigma_i, \sigma_{i+1}^*, \dots, \sigma_n^*)$$

Definition of a *mixed* strategy Nash equilibrium for an n-person game.

 σ^* is a Nash equilibrium if and only if the following conditions hold for all $i=1,\ldots,n$:

$$\sigma_i^*(s_i) > 0 \Rightarrow u_i(\boldsymbol{\sigma}^*) = u_i(s_i, \boldsymbol{\sigma}_{-i}^*) \text{ for all } s_i$$

$$31.6 \qquad \sigma_i^*(s_i') = 0 \Rightarrow u_i(\boldsymbol{\sigma}^*) \geq u_i(s_i', \boldsymbol{\sigma}_{-i}^*) \text{ for all } s_i'$$
where $\boldsymbol{\sigma}_{-i}^* = (\sigma_1^*, \dots, \sigma_{i-1}^*, \sigma_{i+1}^*, \dots, \sigma_n^*)$ and we consider s_i and s_i' as degenerate mixed strat-

An equivalent definition of a (mixed strategy) Nash equilibrium.

31.7 Every finite n-person game has a mixed strategy Nash equilibrium.

An important result.

The pure strategy $s_i \in S_i$ of player i is strictly dominated if there exists a mixed strategy σ_i for player i such that for all feasible combinations of the other players' pure strategies, i's payoff from playing strategy s_i is strictly less than i's payoff from playing σ_i :

31.8

31.9

egies.

$$u_i(s_1, \dots, s_{i-1}, s_i, s_{i+1}, \dots, s_n) < u_i(s_1, \dots, s_{i-1}, \sigma_i, s_{i+1}, \dots, s_n)$$

for every $(s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$ that can be constructed from the other players' strategy sets $S_1, \ldots, S_{i-1}, S_{i+1}, \ldots, S_n$.

Definition of strictly dominated strategies.

In an n-person game, the following results hold:

- If iterated elimination of strictly dominated strategies eliminates all but the strategies (s_1^*, \ldots, s_n^*) , then these strategies are the unique Nash equilibrium of the game.
- If the mixed strategy profile $(\sigma_1^*, \ldots, \sigma_n^*)$ is a Nash equilibrium and, for some player i, $\sigma_i^*(s_i) > 0$, then s_i survives iterated elimination of strictly dominated strategies.

Useful results.
Iterated elimination
of strictly dominated
strategies need not result in the elimination
of any strategy. (For a
discussion of iterated
elimination of strictly
dominated strategies, see
the literature.)

A two-person game where the players 1 and 2 have m and n (pure) strategies, respectively, can be represented by the two payoff matrices

31.10
$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$$

 a_{ij} (b_{ij}) is the payoff to player 1 (2) when the players play their pure strategies i and j, respectively. If $\mathbf{A} = -\mathbf{B}$, the game is a zero-sum game. The game is symmetric if $\mathbf{A} = \mathbf{B}'$.

For the two-person game in (31.10) there exists a Nash equilibrium ($\mathbf{p}^*, \mathbf{q}^*$) such that

- 31.11 $\mathbf{p} \cdot \mathbf{A} \mathbf{q}^* \leq \mathbf{p}^* \cdot \mathbf{A} \mathbf{q}^*$ for all \mathbf{p} in Δ_m ,
 - $\mathbf{p}^* \cdot \mathbf{B} \mathbf{q} \leq \mathbf{p}^* \cdot \mathbf{B} \mathbf{q}^*$ for all \mathbf{q} in Δ_n .

The existence of a Nash equilibrium for a twoperson game. Δ_k denotes the simplex in \mathbb{R}^k consisting of all nonnegative vectors whose components sum to one.

In a two-person zero-sum game $(\mathbf{A} = -\mathbf{B})$, the condition for the existence of a Nash equilibrium is equivalent to the condition that $\mathbf{p} \cdot \mathbf{A} \mathbf{q}$ has a saddle point $(\mathbf{p}^*, \mathbf{q}^*)$, i.e., for all \mathbf{p} in Δ_m and all \mathbf{q} in Δ_n ,

$$\mathbf{p} \cdot \mathbf{A} \mathbf{q}^* < \mathbf{p}^* \cdot \mathbf{A} \mathbf{q}^* < \mathbf{p}^* \cdot \mathbf{A} \mathbf{q}$$

31.13

31.15

The saddle point property of the Nash equilibrium for a two-person zero-sum game.

The equilibrium payoff $v = \mathbf{p}^* \cdot \mathbf{A} \mathbf{q}^*$ is called the *value* of the game, and

$$v = \min_{\mathbf{q} \in \Delta_n} \max_{\mathbf{p} \in \Delta_m} \mathbf{p} \cdot \mathbf{A} \mathbf{q} = \max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} \mathbf{p} \cdot \mathbf{A} \mathbf{q}$$

The classical *minimax* theorem for two-person zero-sum games.

Assume that $(\mathbf{p}^*, \mathbf{q}^*)$ and $(\mathbf{p}^{**}, \mathbf{q}^{**})$ are Nash equilibria in the game (31.10). Then $(\mathbf{p}^*, \mathbf{q}^{**})$ and $(\mathbf{p}^{**}, \mathbf{q}^*)$ are also equilibrium strategy profiles.

The rectangular or exchangeability property.

Evolutionary game theory

In the symmetric two-person game of (31.10) with $\mathbf{A} = \mathbf{B}'$, a strategy \mathbf{p}^* is called an *evolutionary stable strategy* if for every $\mathbf{q} \neq \mathbf{p}^*$ there exists an $\bar{\varepsilon} > 0$ such that

$$\mathbf{q} \cdot \mathbf{A}(\varepsilon \mathbf{q} + (1 - \varepsilon)\mathbf{p}^*) < \mathbf{p}^* \cdot \mathbf{A}(\varepsilon \mathbf{q} + (1 - \varepsilon)\mathbf{p}^*)$$
 for all positive $\varepsilon < \bar{\varepsilon}$.

The value of $\bar{\varepsilon}$ may depend on \mathbf{q} . Biological interpretation: All animals are programmed to play \mathbf{p}^* . Any mutation that tries invasion with \mathbf{q} , has strictly lower fitness.

In the setting (31.15) the strategy \mathbf{p}^* is evolutionary stable if and only if

31.16
$$\mathbf{q} \cdot \mathbf{A} \mathbf{p}^* \leq \mathbf{p}^* \cdot \mathbf{A} \mathbf{p}^*$$
 for all \mathbf{q} .

If $\mathbf{q} \neq \mathbf{p}^*$ and $\mathbf{q} \cdot \mathbf{A} \mathbf{p}^* = \mathbf{p}^* \cdot \mathbf{A} \mathbf{p}^*$, then $\mathbf{q} \cdot \mathbf{A} \mathbf{q} < \mathbf{p}^* \cdot \mathbf{A} \mathbf{q}$.

The first condition, (the equilibrium condition), is equivalent to the condition for a Nash equilibrium. The second condition is called a stability condition.

Games of incomplete information

A game of incomplete information assigns to each player $i=1,\ldots,n$ private information $\varphi_i \in \Phi_i$, a strategy set S_i of rules $s_i(\varphi_i)$ and an expected utility function

31.17 $E_{\Phi}[u_i(s_1(\varphi_1), \dots, s_n(\varphi_n), \varphi)]$ (The realization of φ_i is known only to player i while the distribution $F(\Phi)$ is common knowledge, $\Phi = \Phi_1 \times \dots \times \Phi_n$. E_{Φ} is the expectation over $\varphi = (\varphi_1, \dots, \varphi_n)$.)

A strategy profile s^* is a dominant strategy equilibrium if for all i = 1, ..., n,

31.18
$$u_{i}(s_{1}(\varphi_{1}), \dots, s_{i}^{*}(\varphi_{i}), \dots, s_{n}(\varphi_{n}), \varphi) \geq u_{i}(s_{1}(\varphi_{1}), \dots, s_{i}(\varphi_{i}), \dots, s_{n}(\varphi_{n}), \varphi)$$
 for all φ in Φ and all $\mathbf{s} = (s_{1}, \dots, s_{n})$ in $S = S_{1} \times \dots \times S_{n}$.

A strategy profile \mathbf{s}^* is a pure strategy Bayesian Nash equilibrium if for all i = 1, ..., n,

31.19
$$E_{\Phi}[u_1(s_1^*(\varphi_1), \dots, s_i^*(\varphi_i), \dots, s_n^*(\varphi_n), \varphi)]$$

$$\geq E_{\Phi}[u_1(s_1^*(\varphi_1), \dots, s_i(\varphi_i), \dots, s_n^*(\varphi_n), \varphi)]$$
for all s_i in S_i .

Informally, a game of incomplete information is one where some players do not know the payoffs to the others.)

Two common solution concepts are dominant strategy equilibrium and Bayesian Nash equlibrium.

Pure strategy Bayesian Nash equilibrium.

References

Friedman (1986) is a standard reference. See also Gibbons (1992) (the simplest treatment), Kreps (1990), and Fudenberg and Tirole (1991). For evolutionary game theory, see Weibull (1995). For games of incomplete information, see Mas-Colell, Whinston, and Green (1995).

Combinatorics

32.1 The number of ways that n objects can be arranged in order is $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$.

5 persons A, B, C, D, and E can be lined up in 5! = 120 different ways.

The number of possible ordered subsets of k objects from a set of n objects, is

If a lottery has n tickets and k distinct prizes, there are $\frac{n!}{(n-k)!}$ possible lists of prizes.

32.2 $\frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1)$

If a restaurant has 3 different appetizers, 5 main courses, and 4 desserts, then the total number of possible dinners is $3 \cdot 5 \cdot 4 = 60$.

Given a collection S_1, S_2, \ldots, S_n of disjoint sets containing k_1, k_2, \ldots, k_n objects, respectively, there are $k_1 k_2 \cdots k_n$ ways of selecting one object from each set.

In a card game you receive 5 cards out of 52. The number of different hands is $\binom{52}{5} = \frac{52!}{5!47!} = 2598960$.

32.4 A set of n elements has $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ different subsets of k elements.

There are $\frac{12!}{5! \cdot 4! \cdot 3!} = 27720$ different ways that 12 persons can be allocated to three taxis with 5 in the first, 4 in the second, and 3 in the third.

The number of ways of arranging n objects of k different types where there are n_1 objects of type $1, n_2$ objects of type $2, \ldots, n_k$ objects of type k is $\frac{n!}{n_1! \cdot n_2! \cdots n_k!}$.

Let |X| denote the number of elements of a set X. Then

32.6 • $|A \cup B| = |A| + |B| - |A \cap B|$

•
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap B| + |A \cap B \cap C|$$

The inclusion-exclusion principle, special cases.

$$|A_{1} \cup A_{2} \cup \cdots \cup A_{n}| = |A_{1}| + |A_{2}| + \cdots + |A_{n}|$$

$$- |A_{1} \cap A_{2}| - |A_{1} \cap A_{3}| - \cdots - |A_{n-1} \cap A_{n}|$$

$$+ \cdots + (-1)^{n+1} |A_{1} \cap A_{2} \cap \cdots \cap A_{n}|$$

$$= \sum (-1)^{r+1} |A_{j_{1}} \cap A_{j_{2}} \cap \cdots \cap A_{j_{r}}|.$$

The inclusion-exclusion principle.

The sum is taken over all nonempty subsets $\{j_1, j_2, \ldots, j_r\}$ of the index set $\{1, 2, \ldots, n\}$.

If more than k objects are distributed among k boxes (pigeonholes), then some box must contain at least 2 objects. More generally, if at least nk + 1 objects are distributed among k boxes (pigeonholes), then some box must contain at least n + 1 objects.

Dirichlet's pigeonhole principle. (If $16 = 5 \cdot 3 + 1$ socks are distributed among 3 drawers, then at least one drawer must contain at least 6 socks.)

References

See e.g. Anderson (1987) or Charalambides (2002).

Probability and statistics

The probability P(A) of an event $A \subset \Omega$ satisfies the following axioms:

(a)
$$0 \le P(A) \le 1$$

33.1 (b)
$$P(\Omega) = 1$$

(c) If $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Axioms for probability. Ω is the sample space consisting of all possible outcomes. An event is a subset of Ω .

 $A \cup B$ A or B occurs

 $A \cap B$ Both A and Boccur

 $A \setminus B$ A occurs, but B does not

 A^{c} A does not occur

 $A \triangle B$ A or B occurs.but not both

• $P(A^c) = 1 - P(A)$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

33.2
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

• $P(A \setminus B) = P(A) - P(A \cap B)$

•
$$P(A \triangle B) = P(A) + P(B) - 2P(A \cap B)$$

Rules for calculating probabilities.

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ is the conditional prob-33.3 ability that event A will occur given that B has occurred.

Definition of conditional probability, P(B) > 0.

A and B are (stochastically) independent if $P(A \cap B) = P(A)P(B)$ 33.4 If P(B) > 0, this is equivalent to

Definition of (stochastic) independence.

 $P(A \mid B) = P(A)$

33.5
$$P(A_1 \cap A_2 \cap \ldots \cap A_n) =$$
$$P(A_1)P(A_2 \mid A_1) \cdots P(A_n \mid A_1 \cap A_2 \cap \cdots \cap A_{n-1})$$

General multiplication rule for probabilities.

33.6
$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$
$$= \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^c)P(A^c)}$$

Bayes's rule. $(P(B) \neq 0.)$

33.7
$$P(A_i | B) = \frac{P(B | A_i) \cdot P(A_i)}{\sum_{i=1}^{n} P(B | A_j) \cdot P(A_j)}$$

Generalized Bayes's rule. A_1, \ldots, A_n are disjoint, $\sum_{i=1}^n P(A_i) = P(\Omega) = 1$, where $\Omega = \bigcup_{i=1}^n A_i$ is the sample space. B is an arbitrary event.

One-dimensional random variables

•
$$P(X \in A) = \sum_{x \in A} f(x)$$

•
$$P(X \in A) = \int_A f(x) dx$$

•
$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$

33.9
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

33.10
$$E[X] = \sum_{x} x f(x)$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

33.11
$$E[g(X)] = \sum_{x} g(x)f(x)$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

33.12
$$\operatorname{var}[X] = E[(X - E[X])^2]$$

f is the discrete/continuous probability density function for the random (or stochastic) variable X.

F is the cumulative discrete/continuous distribution function. In the continuous case, P(X=x)=0.

Expectation of a random variable X with discrete/continuous probability density function f. $\mu = E[X]$ is called the mean.

Expectation of a function g of a random variable X with discrete/continuous probability density function f.

The variance of a random variable is, by definition, the expected value of its squared deviation from the mean.

33.13
$$\operatorname{var}[X] = E[X^2] - (E[X])^2$$

$$33.14 \quad \sigma = \sqrt{\operatorname{var}[X]}$$

$$33.15 \quad \operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$$

33.16
$$\mu_k = E[(X - \mu)^k]$$

$$33.17 \quad \eta_3 = \frac{\mu_3}{\sigma^3}, \quad \eta_4 = \frac{\mu_4}{\sigma^4} - 3$$

•
$$P(|X| \ge \lambda) \le E[X^2]/\lambda^2$$

•
$$P(|X - \mu| > \lambda) < \sigma^2/\lambda^2$$
, $\lambda > 0$

•
$$P(|X - \mu| \ge k\sigma) \le 1/k^2$$
, $k > 0$

If f is convex on the interval I and X is a random variable with finite expectation, then

$$33.19 f(E[X]) \le E[f(X)]$$

33.18

33.22

If f is strictly convex, the inequality is strict unless X is a constant with probability 1.

•
$$M(t) = E[e^{tX}] = \sum_{x} e^{tx} f(x)$$

33.20
$$\bullet \ M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

33.21 If the moment generating function M(t) defined in (33.20) exists in an open neighborhood of 0, then M(t) uniquely determines the probability distribution function.

•
$$C(t) = E[e^{itX}] = \sum_{x} e^{itx} f(x)$$

•
$$C(t) = E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

Another expression for the variance.

The standard deviation of X.

a and b are real numbers.

The kth central moment about the mean, $\mu = E[X]$.

The coefficient of skewness, η_3 , and the coefficient of kurtosis, η_4 . σ is the standard deviation. For the normal distribution, $\eta_3 = \eta_4 = 0$.

Different versions of Chebyshev's inequality. σ is the standard deviation of X, $\mu = E[X]$ is the mean.

Special case of Jensen's inequality.

Moment generating functions. M(t) does not always exist, but if it does, then

$$M(t) = \sum_{k=0}^{\infty} \frac{E[X^k]}{k!} t^k.$$

An important result.

Characteristic functions. C(t) always exists, and if $E[X^k]$ exists for all k, then $\sum_{i} i^k E[X^k]$

$$C(t) = \sum_{k=0}^{\infty} \frac{i^k E[X^k]}{k!} t^k.$$

33.26

The characteristic function C(t) defined in 33.23 (33.22) uniquely determines the probability distribution function f(x).

An important result.

Two-dimensional random variables

$$\bullet \ P((X,Y) \in A) = \sum_{(x,y) \in A} f(x,y)$$
 33.24

• $P((X,Y) \in A) = \iint_A f(x,y) dx dy$

f(x, y) is the two-dimensional discrete/continuous simultaneous density function for the random variables X and Y.

$$F(x,y) = P(X \le x, Y \le y) =$$

33.25 •
$$\sum_{u \le x} \sum_{v \le y} f(u, v)$$
 (discrete case)

• $\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv$ (continuous case)

F is the simultaneous cumulative discrete/continuous distribution function.

•
$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y)$$

• $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) dx dy$

The expectation of g(X,Y), where X and Y have the simultaneous discrete/continuous density function f.

33.27
$$\operatorname{cov}[X, Y] = E[(X - E[X])(Y - E[Y])]$$

Definition of covariance.

33.28
$$cov[X, Y] = E[XY] - E[X] E[Y]$$

A useful fact.

33.29 If cov[X, Y] = 0, X and Y are uncorrelated.

A definition.

(33.29).

33.30 E[XY] = E[X]E[Y] if X and Y are uncorrelated.

Cauchy-Schwarz's inequality.

 $33.31 \quad (E[XY])^2 \le E[X^2] E[Y^2]$

The converse is not true.

Follows from (33.28) and

33.32 If X and Y are stochastically independent, then cov[X, Y] = 0.

The variance of a sum/ difference of two random variables.

 $33.33 \quad \operatorname{var}[X \pm Y] = \operatorname{var}[X] + \operatorname{var}[Y] \pm 2\operatorname{cov}[X,Y]$

 X_1, \ldots, X_n are random variables and a_1, \ldots, a_n , b are real numbers.

33.34 $E[a_1X_1 + \dots + a_nX_n + b] = a_1E[X_1] + \dots + a_nE[X_n] + b$

$$var \left[\sum_{i=1}^{n} a_i X_i \right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{cov}[X_i, X_j]$$

$$= \sum_{i=1}^{n} a_i^2 \operatorname{var}[X_i] + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_i a_j \operatorname{cov}[X_i, X_j]$$

The variance of a linear combination of random variables.

33.36
$$\operatorname{var}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i^2 \operatorname{var}[X_i]$$

33.38

33.41

Formula (33.35) when X_1, \ldots, X_n are pairwise uncorrelated.

$$33.37 \quad \operatorname{corr}[X,Y] = \frac{\operatorname{cov}[X,Y]}{\sqrt{\operatorname{var}[X]\operatorname{var}[Y]}} \in [-1,1]$$

Definition of the *correlation coefficient* as a normalized covariance.

If f(x, y) is a simultaneous density distribution function for X and Y, then

•
$$f_X(x) = \sum_{y} f(x, y), \ f_Y(y) = \sum_{x} f(x, y)$$

• $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$, $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$

are the $marginal\ densities$ of X and Y, respectively.

Definitions of marginal densities for discrete and continuous distributions.

33.39
$$f(x | y) = \frac{f(x,y)}{f_Y(y)}, \quad f(y | x) = \frac{f(x,y)}{f_X(x)}$$

Definitions of conditional densities.

The random variables X and Y are stochas-33.40 tically independent if $f(x,y) = f_X(x)f_Y(y)$. If $f_Y(y) > 0$, this is equivalent to $f(x | y) = f_X(x)$.

Stochastic independence.

•
$$E[X \mid y] = \sum_{x} x f(x \mid y)$$

•
$$E[X \mid y] = \int_{-\infty}^{\infty} x f(x \mid y) dx$$

•
$$\operatorname{var}[X \mid y] = \sum_{x} (x - E[X \mid y])^2 f(x \mid y)$$

•
$$\operatorname{var}[X \mid y] = \int_{-\infty}^{\infty} (x - E[X \mid y])^2 f(x \mid y) dx$$

Definitions of conditional expectation and conditional variance for discrete and continuous distributions. Note that E[X | y] denotes E[X | Y = y], and var[X | y] denotes var[X | Y = y].

$$33.42 \quad E[Y] = E_X[E[Y \mid X]]$$

Law of iterated expectations. E_X denotes expectation w.r.t. X.

33.43
$$E[XY] = E_X[XE[Y | X]] = E[X\mu_{Y|X}].$$

is equal to the expected product of X and the conditional expectation of Y given X.

The expectation of XY

33.44
$$\sigma_Y^2 = \text{var}[Y] = E_X[\text{var}[Y \mid X]] + \text{var}_X[E[Y \mid X]]$$
$$= E[\sigma_{Y \mid X}^2] + \text{var}[\mu_{Y \mid X}]$$

The variance of Y is equal to the expectation of its conditional variances plus the variance of its conditional expectations.

Let f(x, y) be the density function for a pair (X, Y) of stochastic variables. Suppose that

$$U = \varphi_1(X, Y), \quad V = \varphi_2(X, Y)$$

is a one-to-one C^1 transformation of (X,Y), with the inverse transformation given by

$$X = \psi_1(U, V), \quad Y = \psi_2(U, V)$$

33.45 Then the density function g(u, v) for the pair (U, V) is given by

$$g(u, v) = f(\psi_1(u, v), \psi_2(u, v)) \cdot |J(u, v)|$$
 provided

$$J(u,v) = \begin{vmatrix} \frac{\partial \psi_1(u,v)}{\partial u} & \frac{\partial \psi_1(u,v)}{\partial v} \\ \frac{\partial \psi_2(u,v)}{\partial u} & \frac{\partial \psi_2(u,v)}{\partial v} \end{vmatrix} \neq 0$$

How to find the density function of a transformation of stochastic variables. (The formula generalizes in a straightforward manner to the case with an arbitrary number of stochastic variables. The required regularity conditions are not fully spelled out. See the references.) J(u, v) is the Jacobian determinant.

Statistical inference

33.46 If $E[\hat{\theta}] = \theta$ for all θ in Θ , then $\hat{\theta}$ is called an unbiased estimator of θ .

Definition of an unbiased estimator. Θ is the parameter space.

If $\hat{\theta}$ is not unbiased,

33.47 $b = E[\hat{\theta}] - \theta$ is called the *bias* of $\hat{\theta}$.

Definition of bias.

33.48
$$\operatorname{MSE}(\hat{\theta}) = E[\hat{\theta} - \theta]^2 = \operatorname{var}[\hat{\theta}] + b^2$$

Definition of mean square error, MSE.

33.49 $\lim_{T \to \infty} \hat{\theta}_T = \theta \text{ means that for every } \varepsilon > 0$ $\lim_{T \to \infty} P(|\hat{\theta}_T - \theta| < \varepsilon) = 1$

Definition of a probability limit. The estimator $\hat{\theta}_T$ is a function of T observations.

33.50	If θ_T has mean μ_T and variance σ_T^2 such that the ordinary limits of μ_T and σ_T^2 are θ and 0 respectively, then θ_T converges in mean square to θ , and plim $\hat{\theta}_T = \theta$.	Convergence in quadratic mean (mean square convergence).
33.51	If g is continuous, then $p\lim g(\theta_T) = g(p\lim \theta_T)$	Slutsky's theorem.
33.52	If θ_T and ω_T are random variables with probability limits $\operatorname{plim} \theta_T = \theta$ and $\operatorname{plim} \omega_T = \omega$, then • $\operatorname{plim}(\theta_T + \omega_T) = \theta + \omega$ • $\operatorname{plim}(\theta_T \omega_T) = \theta \omega$ • $\operatorname{plim}(\theta_T / \omega_T) = \theta / \omega$	Rules for probability limits.
33.53	θ_T converges in distribution to a random variable θ with cumulative distribution function F if $\lim_{T\to\infty} F_T(\theta) - F(\theta) = 0$ at all continuity points of $F(\theta)$. This is written: $\theta_T \stackrel{d}{\longrightarrow} \theta$	Limiting distribution.
33.54	If $\theta_T \xrightarrow{d} \theta$ and $\operatorname{plim}(\omega_T) = \omega$, then • $\theta_T \omega_T \xrightarrow{d} \theta \omega$ • If ω_T has a limiting distribution and the limit $\operatorname{plim}(\theta_T - \omega_T) = 0$, then θ_T has the same limiting distribution as ω_T .	Rules for limiting distributions.
33.55	$\hat{\theta}$ is a <i>consistent</i> estimator of θ if θ plim $\hat{\theta}_T = \theta$ for every $\theta \in \Theta$.	Definition of consistency.
33.56	$\hat{\theta}$ is asymptotically unbiased if $\lim_{T \to \infty} E[\hat{\theta}_T] = \theta \text{ for every } \theta \in \Theta.$	Definition of an asymptotically unbiased estimator.
33.57	$\begin{array}{ll} H_0 & \text{Null hypothesis (e.g. } \theta \leq 0). \\ H_1 & \text{Alternate hypothesis (e.g. } \theta > 0). \\ T & \text{Test statistic.} \\ C & \text{Critical region.} \\ \theta & \text{An unknown parameter.} \end{array}$	Definitions for statistical testing.
33.58	A test: Reject H_0 in favor of H_1 if $T \in C$.	A test.
33.59	The power function of a test is $\pi(\theta) = P(\text{reject } H_0 \mid \theta), \ \theta \in \Theta.$	Definition of the <i>power</i> of a test.

To reject H_0 when H_0 is true is called a type I error.

33.60 Not to reject H_0 when H_1 is true is called a type II error.

Type I and II errors.

33.61 α -level of significance: The least α such that $P(\text{type I error}) \leq \alpha$ for all θ satisfying H_0 .

The α -level of significance of a test.

Significance probability (or P-value) is the least 33.62 level of significance that leads to rejection of H_0 , given the data and the test.

An important concept.

Asymptotic results

Let $\{X_i\}$ be a sequence of independent and identically distributed random variables, with finite mean $E[X_i] = \mu$. Let $S_n = X_1 + \cdots + X_n$. Then:

33.63 (1) For every $\varepsilon > 0$,

$$P\left\{\left|\frac{S_n}{n} - \mu\right| < \varepsilon\right\} \to 1 \text{ as } n \to \infty.$$

(2) With probability 1, $\frac{S_n}{n} \to \mu$ as $n \to \infty$.

(1) is the weak law of large numbers. S_n/n is a consistent estimator for μ . (2) is the strong law of large numbers.

Let $\{X_i\}$ be a sequence of independent and identically distributed random variables with finite mean $E[X_i] = \mu$ and finite variance $\operatorname{var}[X_i] = \sigma^2$. Let $S_n = X_1 + \cdots + X_n$. Then the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ tends to the standard normal distribution as $n \to \infty$, i.e.

The central limit theorem.

$$P\left\{\frac{S_n - n\mu}{\sigma\sqrt{n}} \le a\right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$$

as $n \to \infty$.

33.64

References

See Johnson and Bhattacharyya (1996), Larsen and Marx (1986), Griffiths, Carter, and Judge (1993), Rice (1995), and Hogg and Craig (1995).

Probability distributions

$$f(x) = \begin{cases} \frac{x^{p-1}(1-x)^{q-1}}{B(p,q)}, & x \in (0,1), \\ 0 & \text{otherwise,} \end{cases}$$

p > 0, q > 0.

34.1 Mean:
$$E[X] = \frac{p}{p+q}$$
.

Variance:
$$\operatorname{var}[X] = \frac{pq}{(p+q)^2(p+q+1)}$$
.

kth moment:
$$E[X^k] = \frac{B(p+k,q)}{B(p,q)}$$

Beta distribution. B is the beta function defined in (9.61).

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x},$$

 $x = 0, 1, \dots, n; \quad n = 1, 2, \dots; \quad p \in (0, 1).$

34.2 Mean: E[X] = np.

Variance: var[X] = np(1-p).

Moment generating function: $[pe^t + (1-p)]^n$. Characteristic function: $[pe^{it} + (1-p)]^n$.

Binomial distribution. f(x) is the probability for an event to occur exactly x times in n independent observations, when the probability of the event is p at each observation. For $\binom{n}{x}$, see (8.30).

$$f(x,y) = \frac{e^{-Q}}{2\pi\sigma\tau\sqrt{1-\rho^2}}, \text{ where}$$

$$Q = \frac{\left(\frac{x-\mu}{\sigma}\right)^2 - 2\rho\frac{(x-\mu)(y-\eta)}{\sigma\tau} + \left(\frac{y-\eta}{\tau}\right)^2}{2(1-\rho^2)},$$

$$x, y, \mu, \eta \in (-\infty, \infty), \ \sigma > 0, \ \tau > 0, \ |\rho| < 1.$$
Mean: $E[X] = \mu$, $E[Y] = \eta$.

Variance: $var[X] = \sigma^2$, $var[Y] = \tau^2$.

Covariance: $cov[X, Y] = \rho \sigma \tau$.

Binormal distribution. (For moment generating and characteristic functions, see the more general multivariate normal distribution in (34.15).)

$$f(x) = \begin{cases} \frac{x^{\frac{1}{2}\nu - 1}e^{-\frac{1}{2}x}}{2^{\frac{1}{2}\nu}\Gamma(\frac{1}{2}\nu)}, & x > 0\\ 0, & x \le 0 \end{cases}; \quad \nu = 1, 2, \dots$$

34.4 Mean: $E[X] = \nu$

Variance: $var[X] = 2\nu$.

Moment generating function: $(1-2t)^{-\frac{1}{2}\nu}$, $t<\frac{1}{2}$.

Characteristic function: $(1-2it)^{-\frac{1}{2}\nu}$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}; \quad \lambda > 0.$$

Mean: $E[X] = 1/\lambda$. 34.5

Variance: $var[X] = 1/\lambda^2$.

Moment generating function: $\lambda/(\lambda-t)$, $t<\lambda$.

Characteristic function: $\lambda/(\lambda-it)$.

$$f(x) = \frac{1}{\beta}e^{-z}e^{-e^{-z}}, \quad z = \frac{x-\alpha}{\beta}, \quad x \in \mathbb{R}, \quad \beta > 0$$

Mean: $E[X] = \alpha - \beta \Gamma'(1)$. 34.6

Variance: $var[X] = \beta^2 \pi^2/6$

Moment gen. function: $e^{\alpha t}\Gamma(1-\beta t)$, $t<1/\beta$.

Characteristic function: $e^{i\alpha t}\Gamma(1-i\beta t)$.

$$f(x) = \begin{cases} \frac{\nu_1^{\frac{1}{2}\nu_1}\nu_2^{\frac{1}{2}\nu_2}x^{\frac{1}{2}\nu_1 - 1}}{B(\frac{1}{2}\nu_1, \frac{1}{2}\nu_2)(\nu_2 + \nu_1 x)^{\frac{1}{2}(\nu_1 + \nu_2)}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

 $\nu_1, \nu_2 = 1, 2, \dots$

Mean: $E[X] = \nu_2/(\nu_2 - 2)$ for $\nu_2 > 2$

(does not exist for $\nu_2 = 1, 2$). Variance: $var[X] = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}$ for $\nu_2 > 4$

(does not exist for $\nu_2 \leq$

kth moment:

34.7

$$E[X^k] = \frac{\Gamma(\frac{1}{2}\nu_1+k)\Gamma(\frac{1}{2}\nu_2-k)}{\Gamma(\frac{1}{2}\nu_1)\Gamma(\frac{1}{2}\nu_2)} \bigg(\frac{\nu_2}{\nu_1}\bigg)^k, \quad 2k < \nu_2$$

$$f(x) = \begin{cases} \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)}, & x > 0\\ 0, & x \le 0 \end{cases}; \quad n, \ \lambda > 0.$$

34.8Mean: $E[X] = n/\lambda$.

Variance: $var[X] = n/\lambda^2$.

Moment generating function: $[\lambda/(\lambda-t)]^n$, $t < \lambda$.

Characteristic function: $[\lambda/(\lambda-it)]^n$.

Chi-square distribution with ν degrees of freedom. Γ is the gamma function defined in (9.53).

Exponential distribution.

Extreme value (Gumbel) distribution. $\Gamma'(1)$ is the derivative of the gamma function at 1. (See (9.53).) $\Gamma'(1) = -\gamma$, where $\gamma \approx 0.5772$ is Euler's constant, see (8.48).

F-distribution. B is the beta function defined in (9.61). ν_1 , ν_2 are the degrees of freedom for the numerator and denominator, respectively.

Gamma distribution. Γ is the gamma function defined in (9.53). For n = 1 this is the exponential distribution.

$$f(x) = p(1-p)^x; \quad x = 0, 1, 2, \dots, \ p \in (0, 1).$$

Mean: E[X] = (1 - p)/p.

Variance: $var[X] = (1-p)/p^2$. 34.9

Moment generating function:

$$p/[1-(1-p)e^t], \quad t<-\ln(1-p).$$

Characteristic function: $p/[1-(1-p)e^{it}]$.

Geometric distribution.

$$f(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}},$$

34.10 $x = 0, 1, \dots, n; \quad n = 1, 2, \dots, N.$

Mean: E[X] = nM/N.

Variance: var[X] = np(1-p)(N-n)/(N-1),

where p = M/N.

Hypergeometric distribution. Given a collection of N objects, where Mobjects have a certain characteristic and N-Mdo not have it. Pick nobjects at random from the collection. f(x) is then the probability that x objects have the characteristic and n-x do not have it.

$$f(x) = \frac{1}{2\beta} e^{-|x-\alpha|/\beta}; \quad x \in \mathbb{R}, \ \beta > 0$$

Mean: $E[X] = \alpha$.

34.11

Mean: $E[X] = \alpha$. Variance: $var[X] = 2\beta^2$. Moment gen. function: $\frac{e^{\alpha t}}{1 - \beta^2 t^2}$, $|t| < 1/\beta$.

Characteristic function: $\frac{e^{i\alpha t}}{1 + \beta^2 t^2}$.

Laplace distribution.

$$f(x) = \frac{e^{-z}}{\beta(1 + e^{-z})^2}, \quad z = \frac{x - \alpha}{\beta}, \ x \in \mathbb{R}, \ \beta > 0$$

Mean: $E[X] = \alpha$.

34.12 Variance: $var[X] = \pi^2 \beta^2 / 3$.

Moment generating function:

 $e^{\alpha t}\Gamma(1-\beta t)\Gamma(1+\beta t) = \pi \beta t e^{\alpha t} / \sin(\pi \beta t).$

Characteristic function: $i\pi\beta te^{i\alpha t}/\sin(i\pi\beta t)$.

Logistic distribution.

$$f(x) = \begin{cases} \frac{e^{-(\ln x - \mu)^2/2\sigma^2}}{\sigma x \sqrt{2\pi}}, & x > 0 \\ 0, & x \le 0 \end{cases}; \quad \sigma > 0$$

34.13 Mean: $E[X] = e^{\mu + \frac{1}{2}\sigma^2}$.

Variance: $var[X] = e^{2\mu} (e^{2\sigma^2} - e^{\sigma^2}).$

kth moment: $E[X^k] = e^{k\mu + \frac{1}{2}k^2\sigma^2}$.

Lognormal distribution.

$$f(\mathbf{x}) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

$$x_1 + \cdots + x_k = n, \quad p_1 + \cdots + p_k = 1,$$

$$x_j \in \{0, 1, \dots, n\}, \quad p_j \in (0, 1), \quad j = 1, \dots, k.$$

Mean of X_j : $E[X_j] = np_j$.

34.14 Variance of X_j : $\operatorname{var}[X_j] = np_j(1-p_j)$. Covariance: $\operatorname{cov}[X_j, X_r] = -np_jp_r$, $j, r = 1, \dots, n, \ j \neq r$.

> Moment generating function: $\left[\sum_{j=1}^{k} p_j e^{t_j}\right]^n$. Characteristic function: $\left[\sum_{j=1}^{k} p_j e^{it_j}\right]^n$.

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} \sqrt{|\mathbf{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 $\Sigma = (\sigma_{ij})$ is symmetric and positive definite,

 $\mathbf{x} = (x_1, \dots, x_k)', \, \boldsymbol{\mu} = (\mu_1, \dots, \mu_k)'.$

Mean: $E[X_i] = \mu_i$. Variance: $var[X_i] = \sigma_{ii}$.

Covariance: $\operatorname{cov}[X_i, X_j] = \sigma_{ij}$.

Moment generating function: $e^{\mu' \mathbf{t} + \frac{1}{2} \mathbf{t}' \Sigma \mathbf{t}}$. Characteristic function: $e^{-\frac{1}{2} \mathbf{t}' \Sigma \mathbf{t}} e^{i \mathbf{t}' \mu}$.

 $f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r},$

 $x = r, r + 1, \dots; \quad r = 1, 2, \dots; \quad p \in (0, 1).$

34.16 Mean: E[X] = r/p. Variance: $\operatorname{var}[X] = r(1-p)/p^2$. Moment generating function: $p^r(1-(1-p)e^t)^{-r}$. Characteristic function: $p^r(1-(1-p)e^{it})^{-r}$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, \quad x \in \mathbb{R}, \ \sigma > 0.$$

34.17 Mean: $E[X] = \mu$. Variance: $var[X] = \sigma^2$. Moment generating function: $e^{\mu t + \frac{1}{2}\sigma^2 t^2}$. Characteristic function: $e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$.

$$f(x) = \begin{cases} \frac{ca^c}{x^{c+1}}, & x > a \\ 0, & x < a \end{cases}; \quad a > 0, c > 0.$$

34.18 Mean: $E[X] = ac/(c-1), \quad c > 1.$ Variance: $var[X] = a^2c/(c-1)^2(c-2), \quad c > 2.$ kth moment: $E[X^k] = a^kc/c - k. \quad c > k.$

Multinomial distribution. $f(\mathbf{x})$ is the probability for k events A_1, \ldots, A_k to occur exactly x_1, \ldots, x_k times in n independent observations, when the probabilities of the events are p_1, \ldots, p_k .

Multivariate normal distribution. $|\Sigma|$ denotes the determinant of the variance-covariance matrix Σ . $\mathbf{x} = (x_1, \dots, x_k)'$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)'$.

 $\label{eq:negative} Negative\ binomial\ distribution.$

Normal distribution. If $\mu = 0$ and $\sigma = 1$, this is the standard normal distribution.

Pareto distribution.

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}; \quad x = 0, 1, 2, \dots, \quad \lambda > 0.$$

34.19 Mean: $E[X] = \lambda$.

Variance: $var[X] = \lambda$.

Moment generating function: $e^{\lambda(e^t-1)}$.

Characteristic function: $e^{\lambda(e^{it}-1)}$.

$$f(x) = \frac{\Gamma(\frac{1}{2}(\nu+1))}{\sqrt{\nu\pi}\,\Gamma(\frac{1}{2}\nu)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)},$$

 $x \in \mathbb{R}, \quad \nu = 1, 2, \dots$

Mean: E[X] = 0 for $\nu > 1$ (does not exist for $\nu = 1$).

34.20 Variance: $var[X] = \frac{\nu}{\nu - 2}$ for $\nu > 2$

(does not exist for $\nu = 1, 2$). kth moment (exists only for $k < \nu$):

$$E[X^k] = \begin{cases} \frac{\Gamma(\frac{1}{2}(k+1))\Gamma(\frac{1}{2}(\nu-k))}{\sqrt{\pi}\,\Gamma(\frac{1}{2}\nu)} \, \nu^{\frac{1}{2}k}, & k \text{ even,} \\ 0, & k \text{ odd.} \end{cases}$$

 $f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}; \quad \alpha < \beta.$

Mean: $E[X] = \frac{1}{2}(\alpha + \beta)$.

34.21 Variance: $var[X] = \frac{1}{12}(\beta - \alpha)^2$.

Moment generating function: $\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$.

Characteristic function: $\frac{e^{i\beta t} - e^{i\alpha t}}{it(\beta - \alpha)}$.

 $f(x) = \begin{cases} \beta \lambda^{\beta} x^{\beta - 1} e^{-(\lambda x)^{\beta}}, & x > 0 \\ 0, & x \le 0 \end{cases}; \quad \beta, \ \lambda > 0.$

34.22 Mean: $E[X] = \frac{1}{\lambda} \Gamma(1 + \frac{1}{\beta}).$

Variance: $\operatorname{var}[X] = \frac{1}{\lambda^2} \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^2 \right].$

kth moment: $E[X^k] = \frac{1}{\lambda^k} \Gamma(1 + k/\beta).$

Poisson distribution.

Student's t-distribution with ν degrees of freedom.

Uniform distribution.

Weibull distribution. For $\beta = 1$ we get the exponential distribution.

References

See e.g. Evans, Hastings, and Peacock (1993), Johnson, Kotz, and Kemp (1993), Johnson, Kotz, and Balakrishnan (1995), (1997), and Hogg and Craig (1995).

Method of least squares

Ordinary least squares

The straight line y = a + bx that best fits n data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, in the sense that the sum of the squared vertical deviations,

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2,$$
35.1

is minimal, is given by the equation

$$y = a + bx \iff y - \bar{y} = b(x - \bar{x}),$$

where

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \quad a = \bar{y} - b\bar{x}.$$

35.2

The vertical deviations in (35.1) are $e_i = y_i - y_i^*$, where $y_i^* = a + bx_i$, i = 1, ..., n. Then 35.3 $\sum_{i=1}^n e_i = 0$, and $b = r(s_y^2/s_x^2)$, where r is the correlation coefficient for $(x_1, y_1), ..., (x_n, y_n)$. Hence, $b = 0 \iff r = 0$.

In (35.1), the total variation, explained variation, and residual variation in y are defined as

• Total:
$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Explained:
$$SSE = \sum_{i=1}^{n} (y_i^* - \bar{y}^*)^2$$

• Residual:
$$SSR = \sum_i e_i^2 = \sum_i (y_i - y_i^*)^2$$

Then SST = SSE + SSR.

Linear approximation by the *method of least* squares.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Illustration of the method of least squares with one explanatory variable.

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2,$$

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2.$$

The total variation in y is the sum of the explained and the residual variations.

35.5

35.6

The correlation coefficient r satisfies

$$r^2 = SSE/SST$$
,

and $100r^2$ is the percentage of explained variation in y.

 $r^2 = 1 \Leftrightarrow e_i = 0 \text{ for all } i$ $\Leftrightarrow y_i = a + bx_i \text{ (exactly)}$ for all i.

Suppose that the variables x and Y are related by a relation of the form $Y = \alpha + \beta x$, but that observations of Y are subject to random variation. If we observe n pairs (x_i, Y_i) of values of x and Y, $i = 1, \ldots, n$, we can use the formulas in (35.1) to determine least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ of α and β . If we assume that the residuals $\varepsilon_i = y_i - \alpha - \beta x_i$ are independently and normally distributed with zero mean and (unknown) variance σ^2 , and if the x_i have zero mean, i.e. $\bar{x} = (\sum_i x_i)/n = 0$, then

Linear regression with one explanatory variable. If the x_i do not sum to zero, one can estimate the coefficients in the equation $Y = \alpha + \beta(x - \bar{x})$ instead.

- the estimators $\hat{\alpha}$ and $\hat{\beta}$ are unbiased,
- $\operatorname{var}(\hat{\alpha}) = \frac{\sigma^2}{n}$, $\operatorname{var}(\hat{\beta}) = \frac{\sigma^2}{\sum_i x_i^2}$.

Multiple regression

Given n observations (x_{i1}, \ldots, x_{ik}) , $i = 1, \ldots, n$, of k quantities x_1, \ldots, x_k , and n observations y_1, \ldots, y_n of another quantity y. Define

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix},$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{pmatrix}$$

The coefficient vector $\mathbf{b} = (b_0, b_1, \dots, b_k)'$ of the hyperplane $y = b_0 + b_1 x_1 + \dots + b_k x_k$ that best fits the given observations in the sense of minimizing the sum

$$(\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$

of the squared deviations, is given by

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

The method of least squares with k explanatory variables.

 \mathbf{X} is often called the design matrix.

In (35.7), let $y_i^* = b_0 + b_1 x_{i1} + \dots + b_k x_{ik}$. The sum of the deviations $e_i = y_i - y_i^*$ is then $\sum_{i=1}^n e_i = 0$.

Define SST, SSE and SSR as in (35.4). Then 35.8 SST = SSE + SSR and SSR = SST \cdot (1 - R^2), where R^2 = SSE/SST is the coefficient of determination. $R = \sqrt{R^2}$ is the multiple correlation coefficient between y and the explanatory variables x_1, \ldots, x_k .

Suppose that the variables $\mathbf{x} = (x_1, \dots, x_k)$ and Y are related by an equation of the form $Y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = (1, \mathbf{x})\boldsymbol{\beta}$, but that observations of Y are subject to random variation. Given n observations (\mathbf{x}_i, Y_i) of values of \mathbf{x} and Y, $i = 1, \dots, n$, we can use the formulas in (35.7) to determine a least squares estimator $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ of $\boldsymbol{\beta}$. If the residuals $\varepsilon_i = y_i - (1, \mathbf{x}_i)\boldsymbol{\beta}$ are independently distributed with zero mean and (unknown) variance σ^2 , then

- the estimator $\widehat{\beta}$ is unbiased,
- $\operatorname{cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1},$
- $\bullet \ \hat{\sigma}^2 = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{n-k-1} = \frac{\sum_i \hat{\varepsilon}_i^2}{n-k-1},$
- $\widehat{\operatorname{cov}}(\widehat{\boldsymbol{\beta}}) = \widehat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$.

Definition of the coefficient of determination and the multiple correlation coefficient. $100R^2$ is percentage of explained variation in y.

Multiple regression. $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)'$ is the vector of regression coefficients;

 $\mathbf{x}_i = (x_{i1}, \dots, x_{ik})$ is the ith observation of \mathbf{x} ; $\mathbf{Y} = (Y_1, \dots, Y_n)'$ is the vector of observations of Y;

 $\hat{\boldsymbol{\varepsilon}} = (\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n)' = \mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}};$

 $cov(\widehat{\boldsymbol{\beta}}) = (cov(\beta_i, \beta_j))_{ij}$ is the $(n+1) \times (n+1)$ covariance matrix of the vector $\boldsymbol{\beta}$.

If the ε_i are normally distributed, then $\hat{\sigma}^2$ is an unbiased estimator of σ^2 , and $\widehat{\text{cov}}(\hat{\beta})$ is an unbiased estimator of $\widehat{\text{cov}}(\hat{\beta})$.

References

35.9

See e.g. Hogg and Craig (1995) or Rice (1995).

References

- Anderson, I.: Combinatorics of Finite Sets, Clarendon Press (1987).
- Barro, R. J. and X. Sala-i-Martin: Economic Growth, McGraw-Hill (1995).
- Bartle, R. G.: Introduction to Real Analysis, John Wiley & Sons (1982).
- Beavis, B. and I. M. Dobbs: Optimization and Stability Theory for Economic Analysis, Cambridge University Press (1990).
- Bellman, R.: Dynamic Programming, Princeton University Press (1957).
- Bhagwati, J. N., A. Panagariya and T. N. Srinivasan: *Lectures on International Trade*. 2nd ed., MIT Press (1998).
- Black, F. and M. Scholes: "The pricing of options and corporate liabilities", *Journal of Political Economy*, Vol. 81, 637–654 (1973).
- Blackorby, C. and R. R. Russell: "Will the real elasticity of substitution please stand up? (A comparison of the Allen/Uzawa and Morishima elasticities)", American Economic Review, Vol. 79, 882–888 (1989).
- Blanchard, O. and S. Fischer: Lectures on Macroeconomics, MIT Press (1989).
- Braun, M.: Differential Equations and their Applications, 4th ed., Springer (1993).
- Burmeister, E. and A. R. Dobell: *Mathematical Theories of Economic Growth*, Macmillan (1970).
- Charalambides, C. A.: Enumerative Combinatorics, Chapman & Hall/CRC (2002).
- Christensen, L. R., D. Jorgenson and L. J. Lau: "Transcendental logarithmic utility functions", *American Economic Review*, Vol. 65, 367–383 (1975).
- Clarke, F. H.: Optimization and Nonsmooth Analysis. John Wiley & Sons (1983).
- Deaton, A. and J. Muellbauer: *Economics and Consumer Behaviour*, Cambridge University Press (1980).
- Dhrymes, P. J.: Mathematics for Econometrics, Springer (1978).
- Dixit, A. K.: Optimization in Economic Theory, 2nd ed., Oxford University Press (1990).
- Edwards, C. H. and D. E. Penney: Calculus with Analytic Geometry, 5th ed., Prentice-Hall (1998).
- Ellickson, B.: Competitive Equilibrium. Theory and Applications, Cambridge University Press (1993).
- Evans, M., N. Hastings, and B. Peacock: *Statistical Distributions*, 2nd ed., John Wiley & Sons (1993).
- Faddeeva, V. N.: Computational Methods of Linear Algebra, Dover Publications, Inc. (1959).

- Farebrother, R. W.: "Simplified Samuelson conditions for cubic and quartic equations", *The Manchester School of Economic and Social Studies*, Vol. 41, 396–400 (1973).
- Feichtinger, G. and R. F. Hartl: Optimale Kontrolle Ökonomischer Prozesse, Walter de Gruyter (1986).
- Fleming, W. H. and R. W. Rishel: *Deterministic and Stochastic Optimal Control*, Springer (1975).
- Førsund, F.: "The homothetic production function", *The Swedish Journal of Economics*, Vol. 77, 234–244 (1975).
- Fraleigh, J. B. and R. A. Beauregard: Linear Algebra, 3rd ed., Addison-Wesley (1995).
 Friedman, J. W.: Game Theory with Applications to Economics, Oxford University Press (1986).
- Fudenberg, D. and J. Tirole: Game Theory, MIT Press (1991).
- Fuss, M. and D. McFadden (eds.): Production Economics: A Dual Approach to Theory and Applications, Vol. I, North-Holland (1978).
- Gandolfo, G.: Economic Dynamics, 3rd ed., Springer (1996).
- Gantmacher, F. R.: *The Theory of Matrices*, Chelsea Publishing Co. (1959). Reprinted by the American Mathematical Society, AMS Chelsea Publishing (1998).
- Gass, S. I.: Linear Programming. Methods and Applications, 5th ed., McGraw-Hill (1994).
- Gibbons, R.: A Primer in Game Theory, Harvester and Wheatsheaf (1992).
- Goldberg, S.: Introduction to Difference Equations, John Wiley & Sons (1961).
- Graham, R. L., D. E. Knuth and O. Patashnik: Concrete Mathematics, Addison-Wesley (1989).
- Griffiths, W. E., R. Carter Hill and G. G. Judge: Learning and Practicing Econometrics, John Wiley & Sons (1993).
- Hadar, J. and W. R. Russell: "Rules for ordering uncertain prospects", American Economic Review, Vol. 59, 25–34 (1969).
- Halmos, P. R.: Naive Set Theory, Springer (1974).
- Hardy, G. H., J. E. Littlewood, and G. Pólya: *Inequalities*, Cambridge University Press (1952).
- Hartman, P.: Ordinary Differential Equations, Birkhäuser (1982).
- Haug, E. G.: The Complete Guide to Option Pricing Formulas, McGraw-Hill (1997).
- Hildebrand, F. B.: Finite-Difference Equations and Simulations, Prentice-Hall (1968).
- Hildenbrand, W.: Core and Equilibria of a Large Economy, Princeton University Press (1974).
- Hildenbrand, W. and A. P. Kirman: *Introduction to Equilibrium Analysis*, North-Holland (1976).
- Hogg, R. V. and A. T. Craig: Introduction to Mathematical Statistics, 5th ed., Prentice-Hall (1995).
- Horn, R. A. and C. R. Johnson: Matrix Analysis, Cambridge University Press (1985).
- Huang, Chi-fu and R. H. Litzenberger: Foundations for Financial Economics, North-Holland (1988).

- Intriligator, M. D.: Mathematical Optimization and Economic Theory, Prentice-Hall (1971).
- Johansen, L.: Production Functions, North-Holland (1972).
- Johnson, N. L., S. Kotz, and S. Kemp: Univariate Discrete Distributions, 2nd ed., John Wiley & Sons (1993).
- Johnson, N. L., S. Kotz, and N. Balakrishnan: Continuous Univariate Discrete Distributions, John Wiley & Sons (1995).
- Johnson, N. L., S. Kotz, and N. Balakrishnan: Discrete Multivariate Distributions, John Wiley & Sons (1997).
- Johnson, R. A. and G. K. Bhattacharyya: Statistics: Principles and Methods, 3rd ed., John Wiley & Sons (1996).
- Kamien, M. I. and N. I. Schwartz: Dynamic Optimization: the Calculus of Variations and Optimal Control in Economics and Management, 2nd ed., North-Holland (1991).
- Karatzas, I. and S. E. Shreve: *Brownian Motion and Stochastic Calculus*, 2nd ed., Springer (1991).
- Kolmogorov, A. N. and S. V. Fomin: *Introductory Real Analysis*, Dover Publications (1975).
- Kreps, D. M.: A Course in Microeconomic Theory, Princeton University Press (1990).
- Lang, S.: Linear Algebra, 3rd ed., Springer (1987).
- Larsen, R. J. and M. L. Marx: An Introduction to Mathematical Statistics and its Applications, Prentice-Hall (1986).
- Léonard, D. and N. Van Long: Optimal Control Theory and Static Optimization in Economics, Cambridge University Press (1992).
- Luenberger, D. G.: Introduction to Linear and Nonlinear Programming, 2nd ed., Addison-Wesley (1984).
- Lütkepohl, H.: Handbook of Matrices, John Wiley & Sons (1996).
- Magnus, J. R. and H. Neudecker: Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons (1988).
- Marsden, J. E. and M. J. Hoffman: *Elementary Classical Analysis*, 2nd ed., W. H. Freeman and Company (1993).
- Mas-Colell, A., M. D. Whinston, and J. R. Green: *Microeconomic Theory*, Oxford University Press (1995).
- Merton, R. C.: "Theory of rational option pricing", Bell Journal of Economics and Management Science, Vol. 4, 141–183 (1973).
- Nikaido, H.: Convex Structures and Economic Theory, Academic Press (1968).
- Nikaido, H.: Introduction to Sets and Mappings in Modern Economics, North-Holland (1970).
- Norstrøm, C. J.: "A sufficient condition for a unique nonnegative internal rate of return", *Journal of Financial and Quantitative Analysis*, Vol. 7, 1835–1839 (1972).
- Øksendal, B.: Stochastic Differential Equations, an Introduction with Applications, 6th ed., Springer (2003).

- Parthasarathy, T.: On Global Univalence Theorems. Lecture Notes in Mathematics. No. 977, Springer (1983).
- Phlips, L.: Applied Consumption Analysis, North-Holland (1983).
- Rice, J. Mathematical Statistics and Data Analysis, 2nd ed., Duxburry Press (1995).
- Rockafellar, T.: Convex Analysis, Princeton University Press (1970).
- Rothschild, M. and J. Stiglitz: "Increasing risk: (1) A definition", *Journal of Economic Theory*, Vol. 2, 225–243 (1970).
- Royden, H. L.: Real Analysis, 3rd ed., Macmillan (1968).
- Rudin, W.: Principles of Mathematical Analysis, 2nd ed., McGraw-Hill (1982).
- Scarf, H. (with the collaboration of T. Hansen): The Computation of Economic Equilibria. Cowles Foundation Monograph, 24, Yale University Press (1973).
- Seierstad, A. and K. Sydsæter: Optimal Control Theory with Economic Applications, North-Holland (1987).
- Sharpe, W. F.: "Capital asset prices: A theory of market equilibrium under conditions of risk", *Journal of Finance*, Vol. 19, 425–442 (1964).
- Shephard, R. W.: Cost and Production Functions, Princeton University Press (1970).
- Silberberg, E.: The Structure of Economics. A Mathematical Analysis, 2nd ed., McGraw-Hill (1990).
- Simon, C. P. and L. Blume: *Mathematics for Economists*, Norton (1994).
- Sneddon, I. N.: Elements of Partial Differential Equations, McGraw-Hill (1957).
- Stokey, N. L. and R. E. Lucas, with E. C. Prescott: Recursive Methods in Economic Dynamics, Harvard University Press (1989).
- Sundaram, R. K.: A First Course in Optimization Theory, Cambridge University Press (1996).
- Sydsæter, K. and P. J. Hammond: Essential Mathematics for Economic Analysis, FT Prentice Hall (2005).
- Sydsæter, K., P. J. Hammond, A. Seierstad, and Arne Strøm: Further Mathematics for Economic Analysis, 2nd ed., FT Prentice Hall (2005).
- Takayama, A.: Mathematical Economics, 2nd ed., Cambridge University Press (1985).
- Topkis, Donald M.: Supermodularity and Complementarity, Princeton University Press (1998).
- Turnbull, H. W.: Theory of Equations, 5th ed., Oliver & Boyd (1952).
- Varian, H.: *Microeconomic Analysis*, 3rd ed., Norton (1992).
- Weibull, J. W.: Evolutionary Game Theory, MIT Press (1995).
- Zachmanoglou, E. C. and D. W. Thoe: Introduction to Partial Differential Equations with Applications, Dover Publications (1986).

Index

absolute convergence, 50	Dijective function, 5
absolute risk aversion, 181	binary relation, 3
active constraint, 108	antisymmetric, 3
adjoint matrix, 135	asymmetric, 3
Allen–Uzawa's elasticity of substitution,	complete, 3
165	irreflexive, 3
almost ideal demand system (AIDS), 173	reflexive, 3
American options, 183, 184	symmetric, 3
angle (between vectors), 128	transitive, 3
annuity, 177	binding constraint, 108
arcus functions, 16, 17	binomial coefficients, 51, 52
argmax, 161	binomial distribution, 201
arithmetic mean, 47	binomial formula, 52
arithmetic series, 49	binormal distribution, 201
Arrow–Pratt risk premium, 181	Black-Scholes's model, 183
Arrow's sufficient condition, 114, 116	generalized, 184
Ascoli's theorem, 130	Blackwell's sufficient condition for a
asymptotes	contraction, 131
for hyperbolas, 9	bordered Hessian, 95, 103
general definition, 11	boundary point, 83
finding, 12	bounded set, 83
asymptotically unbiased estimator, 199	Brouwer's fixed point theorem, 42, 43
augmented coefficient matrix, 44	
autonomous differential equation, 71	capital asset pricing model, 183
autonomous system of differential equa-	Carathéodory's theorem (for convex sets)
tions, 77	89
	Cardano's formulas, 7
backward solution of a difference equa-	cardinal properties of utility functions,
tion, 63, 64	169
Banach space, 130	Cartesian product, 2
basis for a subspace	catching up optimality (CU-optimality)
in \mathbb{R}^n , 128	continuous time, 118
in a vector space, 129	discrete time, 126
Bayesian equilibrium, 190	Cauchy sequence
Bayes's rule, 194	in metric space, 129
Bellman's equations, 123	in \mathbb{R}^n , 83
Bernoulli's differential equation, 70	Cauchy–Schwarz's inequality, 47, 48, 128,
Bernoulli's inequality, 47	132, 196
Bessel's inequality, 132	Cauchy's convergence criterion, 84
beta distribution, 201	Cauchy's mean value theorem, 24
beta function, 60	Cayley–Hamilton's theorem, 147, 148
bias (of an estimator), 198	central limit theorem, 200

central moments, 195	conjugate, 18
CES function, 166	imaginary part of, 18
chain rule	imaginary unit, 18
for derivatives, 22, 27, 28, 33	modulus of, 18
for elasticities, 36	nth roots of, 19
change of variable(s) (in integrals)	polar form of, 18
one variable, 55, 58	real part of, 18
several variables, 62	trigonometric form of, 18
characteristic equation	composition of two relations, 3
for difference equations, 64	compound interest, 177, 179
for differential equations, 74	concave function, 90
for matrices, 146	conditional convergence, 50
characteristic function, 195	conditional density, 197
characteristic polynomial, 145	conditional expectation, 197
characteristic root (or eigenvalue), 145	conditional factor demand functions, 163
characteristic vector (or eigenvector), 145	conditional probability, 193
Chebyshev's inequality	conditional variance, 197
for sums, 47	cone, 29
in statistics, 195	conics, 8
chi-square distribution, 202	consistent estimator, 199
circle, 9	constraint qualification, 108
C^k -function, 27, 33	consumer demand functions, 170
classification of stationary points, 100	continuity of functions
closed graph (of a correspondence), 86	one variable, 21
closed set, 83, 84	several variables, 84, 85
closure of a set, 83	uniform, 22, 85
Cobb-Douglas function, 166	continuous compound interest, 179
coefficient matrix, 44	contraction mapping
coefficient of determination, 209	in metric space, 131
cofactor, 135, 142	in function space, 42
cofactor expansion of a determinant, 142	in \mathbb{R}^n , 42
combinatorics, 191–192	control region, 113, 123
compact set, 83, 84	convergence
comparative statics, 159, 160	in mean square, 199
comparison test for convergence	in quadratic mean, 199
of integrals, 59	of integrals, 58, 59
of series, 50	of sequences in metric space, 129
compensated demand functions, 171	of sequences in \mathbb{R}^n , 83, 84
compensating variation, 172	of sequences of functions, 86
complement of a set, 2	of series, 49
complementary slackness	uniform, 86
in LP, 106	convex combination, 89
in nonlinear programming, 107	convex function, 90
completely inelastic function, 35	convex hull, 89
complete metric space, 129	convex set, 89
complete orthonormal set, 132	correlation coefficient, 197
complex exponential function, 19	correspondence, 86
complex number, 18	cosine function (cos), 14
argument of, 18	cost function, 163

cost minimization, 163	exact, 70
cotangent function (cot), 14, 15	existence and uniqueness, 70, 71, 77
countable set, 5	first order, 69–72
countably infinite set, 5	higher order, 72–75
counting rule, 40	integrating factor, 70
Cournot elasticities, 171	linear, 69, 70, 72–75
covariance, 196	logistic, 69
covariance matrix, 207	partial, 81–82
Cramer's rule, 144	projective, 69
cubic equation, 7	Riccati, 70, 117
cumulative distribution function, 194, 196	separable, 69
current value Hamiltonian, 116, 117	stable, 71, 74, 75, 78–81
cycle of difference equation, 67	systems, 75-81
· · · · · · · · · · · · · · · · · · ·	difference of sets, 2
decomposable matrix, 153	differentiable function
decreasing function, 10, 99	one variable, 22
definite integral, 58	
definiteness subject to linear constraints,	several variables, 28, 32
150	differential
definiteness types (for quadratic forms	one variable, 25
and matrices), 148	several variables, 28
degrees of freedom for systems of equa-	differentiation of vectors and matrices,
tions, 40	157-158
demand functions, 170, 171	differentiation under the integral sign, 59
de Moivre's formula, 19	dimension (of a subspace), 128
De Morgan's laws, 2	directional derivative, 31
dense subset (metric space), 129	directional elasticity, 36
derivatives	Dirichlet's pigeonhole principle, 192
of a matrix, 157–158	discount factor, 178
of a vector, $157-158$	discounted present value, 179
one variable, 22	discrete optimal control theory, 125
partial, 27	distance
Descartes's rule of signs, 8	in metric space, 129
design matrix, 208	in normed vector space, 130
determinant, 141, 142	in \mathbb{R}^2 , 9
diagonal matrix, 133	$ \inf_{n} \mathbb{R}^n, 128 $
diagonalizable matrix, 146	divergence
Diewert cost function, 167	of integrals, 58, 59
difference equation	of sequences in metric space, 129
backward solution, 63, 64	of sequences in \mathbb{R}^n , 83
first order, 63	of series, 49
forward solution, 63	domain (of a relation), 2
linear, 63–67	dominant diagonal (matrix), 153
nonlinear, 67–68	dominant root (of a matrix), 152
stable, 65–68	dot product, 128
differential equation	double integral, 61, 62
autonomous, 71, 77	dual problem (LP), 105
Bernoulli, 70	duality theorem (in LP), 106
Euler's, 73	dynamic programming, 123

$e \approx 2.718, 13$	exponential distribution, 202
effective rate of interest, 177, 179	exponential function (complex), 19
eigenvalue, 145	exponential matrix, 137
eigenvalue equation, 146	extreme point/value, 97
eigenvalue polynomial, 145	extreme point of a convex set, 89
eigenvector, 145	extreme value (Gumbel) distribution, 202
elastic function, 35	extreme value theorem (or Weierstrass's
elasticities, 35, 36	theorem), 97
elasticity of substitution	,,
Allen–Uzawa's, 165	factor demand functions, 164
Morishima's, 165	factor price equalization, 176
several variables, 37	Farkas's lemma, 106
two variables, 37, 38, 165	F-distribution, 202
ellipse, 8, 9	finite covering property, 84
endogenous variables, 39	finite set, 5
Engel elasticities, 171	first degree stochastic dominance, 181,
envelope theorems, 104, 109	182
equicontinuity, 130	first-derivative test, 99
equilibrium point	first-order approximation, 50, 51
for a market, 159	first-order conditions, 98
for difference equations, 67	Fisher's ideal price index, 174
for differential equations, 77	fixed point theorems
hyperbolic, 80	Brouwer's, 42, 43
equivalence relation, 3	for contraction mappings, 42, 131
equivalent variation, 172	Kakutani's, 43
Euclidean distance, 9	Schauder's, 131
Euler's constant ($\gamma \approx 0.5772$), 53	Tarski's, 43
Euler's difference equation (dynamic	forward solution of a difference equation,
programming), 124	63
Euler's differential equation, 73	Frobenius root (of a matrix), 152
Euler's equation (in the calculus of	Frobenius's inequality, 136
variations), 111	Frobenius's theorem (partial differential
generalized, 112	equations), 82
Euler's formulas (for $\sin z$ and $\cos z$), 19	function, 5
Euler's theorem (on homogeneous	bijective, 5
functions), 30	continuous, 21, 84, 85
European options, 183, 184	decreasing, 10
even function, 10	differentiable, 22, 28, 32
evolutionary game theory, 189	even, 10, 11
evolutionary stable strategy, 189	image of, 5
exact differential equation, 70	increasing, 10
exchangeability property (game theory),	injective, 5
189	inverse, 5
existence and uniqueness theorems for	inverse image of, 5
differential equations, 70, 71, 77	odd, 10, 11
exogenous variables, 39	one-to-one, 5
expectation, 194, 196, 197	onto, 5
expectation, 194, 190, 197 expenditure function, 170	periodic, 10
explained variation, 207, 209	strictly decreasing, 10, 11
capiamed variation, 201, 209	surrous decreasing, 10, 11

strictly increasing, 10, 11	Hölder's inequality, 47, 48
surjective, 5	homogeneous
symmetric, 10, 11	difference equation, 63
uniformly continuous, 22, 85	differential equation, 69, 72, 74
functional dependence, 40, 41	homogeneous function, 29
fundamental equations (in dynamic pro-	homogeneous linear system of equations,
gramming), 123	44
fundamental theorem of algebra, 8	homothetic function, 30
G ,	Hotelling's lemma, 164
Gale–Nikaido theorems, 41, 42	hyperbola, 8, 9
games of incomplete information, 190	hyperbolic equlibrium point, 80
gamma distribution, 202	hyperbolic function, 17
gamma function, 60	hypergeometric distribution, 203
generalized inverse, 138	7 F · O · · · · · · · · · · · · · · · · ·
generalized Leontief cost function, 167	idempotent matrix, 136, 151
geometric distribution, 203	identity matrix, 133
geometric mean, 47	image, 5
geometric series, 49	imaginary part of a complex number, 18
global asymptotic stability	imaginary unit, 18
for difference equations, 65	implicit function theorem, 29, 39
for differential equations, 74, 78	inclusion–exclusion principle, 192
global inverse function theorem, 41	incomplete specialization, 175
global maximum (minimum), 97	increasing differences, 160
gradient, 31, 157	increasing function, 10, 99
graph of a	indecomposable matrix, 153
correspondence, 86	indefinite integral, 55
function, 5	indefinite quadratic forms (matrices), 148
relation, 3	indifference relation, 169
greatest element (for a preordering), 4	indirect utility function, 170
greatest lower bound, 87	induction, 6
Gumbel distribution, 202	inelastic function, 35
Guinor distribution, 202	infimum (inf), 87
Hadamard's theorem, 41	infinite horizon problems
Hadar–Russell's theorem, 182	continuous control theory, 117–119
Hamiltonian	discrete control theory, 126
continuous control theory, 113, 114	dynamic programming, 124
current value, 116, 117	inflection points (test for), 99
discrete control theory, 125	inhomogeneous difference equation,
Hamilton–Jacobi–Bellman's equation, 185	initial value problem, 70
harmonic mean, 47	injective (one-to-one) function, 5
Hawkins–Simon conditions, 154	inner product, 128
Heckscher-Ohlin-Samuelson model, 176	inner product space, 131
Heckscher-Ohlin's theorem, 176	integer zeros of a polynomial, 8
Heine–Borel's theorem, 84	integral
hemicontinuity, 86	comparison test for convergence, 59
Hermitian matrix, 140	convergent, 58–59
Hessian matrix, 92, 157	definite, 58
Hicksian demand functions, 171	divergent, 58–59
Hilbert space, 131	double, 61–62

indefinite, 55 Lagrangian function multiple, 62 control theory, 119, 120 integral curve, 77 static optimization, 101, 102, 107 integral test (for series), 49 Laplace distribution, 203 integrating factor, 70 Laspeyres's price index, 174 integration by parts, 55, 58 law of large numbers, 200 integration by substitution law of the minimum, 167 one variable, 55, 58 leading principal minor, 143 several variables, 62 least element (for a preordering), 4 interest factor, 178 least squares, 207, 208 interior point, 83 least upper bound, 87 intermediate value theorem, 22 Legendre's condition (in the calculus of internal rate of return, 178 variations), 111 intersection of sets, 2 Leibniz's formula, 60 inverse function, 5 length of a vector, 128 derivative of, 23 Leontief function, 167 inverse function theorem Leontief system, 153, 154 global version, 41 level curves (and slopes), 29 local version, 41 level of significance, 200 inverse hyperbolic functions, 17 L'Hôpital's rule, 24 inverse image, 5 Liapunov function, 80 inverse (of a matrix), 134, 135 Liapunov theorems, 79, 80 lim inf and lim sup, 87, 88 inverse relation, 3 inverse trigonometric functions, 16-17 limit, 21 limiting distribution, 199 invertible matrix, 135 rules for, 199 involutive matrix, 136 irreducible matrix, 153 linear approximation, 50, 51 iterated expectations, 198 linear combination (of vectors), 127 Itô's formula, 184, 185 linear difference equation, 63, 64 linear differential equation Jacobian determinant, 41 first-order, 69 Jacobian matrix, 39, 40, 157 n-th order, 72-75Jensen's inequality, 48, 195 linear expenditure system (LES), 172 linear (in-)dependence join (of two vectors), 43 Jordan's decomposition theorem, 147 of functions, 72 of vectors, 127 Kakutani's fixed point theorem, 43 linear ordering, 3 Krein-Milman's theorem, 90 linear programming (LP), 105, 106 Kronecker product, 155 linear quadratic control problem, 117 Kuhn-Tucker's necessary conditions, 107, linear regression, 207 108, 110 linear space, 129 kurtosis coefficient(η_4), 195 linear system of equations, 44 linear transformation, 137 local asymptotic stability Lagrange multipliers, 101, 102, 103, 107 Lagrange problem, 101, 102, 104 difference equations, 67 necessary conditions, 102 differential equations, 78 sufficient conditions, 102, 103 local extreme points, 98 Lagrange's error term, 50 local inverse function theorem, 41 Lagrange's method, 101, 102 local maximum (minimum), 98

local saddle points (differential equa-	Hermitian, 140
tions), 81	idempotent, 136, 151
logarithm, 13, 14	identity, 133
logical operators, 1	indecomposable, 153
logistic differential equation, 69	inverse, 134, 135
logistic distribution, 203	invertible, 135
lognormal distribution, 203	involutive, 136
Lotka–Volterra models, 81	irreducible, 153
lower bound, 4	lower triangular, 133
lower hemicontinuity, 86	Moore–Penrose inverse, 138
lower triangular matrix, 133	nonnegative, 152
l^p spaces, 130, 132	nonsingular, 136
v spaces, 190, 192	norms of, 136, 137
Maclaurin series, 50	null, 134
Maclaurin's formula, 50	order of, 133
Mangasarian's sufficient conditions	orthogonal, 136, 151, 152
current value formulation, 116	partitioned, 139
fixed time interval, 113, 114	permutation, 152
infinite horizon, 117	positive, 152
mixed and pure state constraints, 122	positive quasidefinite, 42
mixed constraints, 120	rank of, 136
pure state constraints, 121	reducible, 153
with scrap value, 116	scalar, 133
mapping, 5	singular, 136
marginal density, 197	skew-symmetric, 136
marginal rate of product transformation	square, 133
(MRPT), 37	stable, 79
marginal rate of substitution (MRS), 36,	symmetric, 136
37	trace of a, 136
marginal rate of technical substitution	transpose of, 134
(MRTS), 37	unit, 133
marginal utility of money, 170	unitary, 140
Marshallian demand function, 170	upper triangular, 133
Marshall's rule (for calculating elastici-	zero, 134
ties), 35	matrix inversion pairs, 135
mathematical induction, 6	matrix norms, 136, 137
matrix, 133	maximal element (for a preordering), 4
adjoint, 135	maximized current value Hamiltonian,
cofactor, 135, 142	116
complex elements, 140	maximized Hamiltonian, 114
conjugate, 140	maximum point/value of a function, 97
conjugate transpose, 140	local, 98
exponential, 137	maximum principle (continuous time)
decomposable, 153	current value formulation, 116
diagonal, 133	fixed time interval, 113, 114
diagonalizable, 146	free terminal time, 115, 116
dominant diagonal, 153	general terminal conditions, 115
exponential, 137	infinite horizon, 118
generalized inverse, 138	scrap value, 116
generanzeu inverse, 100	scrap varue, 110

maximum principle (discrete time), 125	nonlinear programming, 106–110
mean (arithmetic, geometric, harmonic),	Kuhn-Tucker necessary conditions,
47	107, 108, 110
mean (expectation), 194	sufficient conditions, 107, 110
mean square convergence, 199	nonnegative matrix, 152
mean square error (MSE), 198	nonsingular matrix, 136
mean value theorem, 24	norm
meet (of two vectors), 43	of a matrix, 136, 137
method of least squares (multiple regres-	of a vector, 128
sion), 207	normal
metric, 129	to a curve, 13
metric space, 129	to a (hyper)plane, 32
minimal element (for a preordering), 4	normal distribution, 204
minimax theorem (game theory), 189	normal system of differential equations,
minimum point/value of a function, 97	75
local, 98	normed vector space, 130
Minkowski's inequality, 48	Norstrøm's rule, 179
Minkowski's separation theorem, 90	<i>n</i> -person game, 187–190
minor of a matrix, 143	nth root (of a complex number), 19
mixed strategy (profile), 187	null matrix, 134
modulus of a complex number, 18	,
moment generating function, 195	odd function, 10, 11
monotone comparative statics, 160–161	Olech's stability theorem, 80
Moore–Penrose inverse, 138	one-to-one function, 5
Morishima's elasticity of substitution, 165	open covering, 84
multinomial distribution, 204	open <i>n</i> -ball, 83
multinomial formula, 52	open set, 83
multiple correlation coefficient, 209	optimal points/values, 97
multiple integrals, 61–62	orbit, 77
multiple regression, 208	ordering
multivariate normal distribution, 204	linear (total), 3 partial, 3
Nach aguilibrium 187 100	
Nash equilibrium, 187–190	pre- (quasi-), 3 weak, 3
natural logarithm, 13	
n-ball, 83	ordinal properties of utility functions, 169 ordinary least squares, 207
necessary condition, 1 negative binomial distribution, 204	orthogonal matrix, 136, 151, 152
negative definite matrix, 148	orthogonal (orthonormal) set, 132
negative definite matrix, 146 negative definiteness subject to linear	orthogonal transformation, 152
constraints, 150	orthogonal vectors
negative (semi-) definite quadratic forms	=
(matrices), 148	in inner product spaces, 132 in \mathbb{R}^n , 128
neighborhood, 83	overtaking optimality (OT-optimality),
Newton's binomial formula, 52	118
Newton's method (for solving equations),	110
12	Paasche's price index, 174
convergence estimates, 12	parabola, 8, 9
n-integral, 62	Pareto distribution, 204
no factor intensity reversal, 175	Parseval's formula, 132
no ractor intensity reversar, 110	i and van a formula, 102

partial derivatives, 27	quadratic approximation, 50, 51
partial differential equations, 81–82	quadratic form, 148
partial elasticities, 36	quadratic equation, 7
partial ordering, 3	quadratic mean convergence, 199
partitioned matrix, 139	quasiconcave function, 93
passus equation, 36	quasiconcave programming, 109
payoff matrix (game theory), 189	quasiconvex function, 94
periodic function, 10, 11	quasilinear partial differential equation,
periodic solutions	81
of difference equations, 67	quasiordering, 3
of differential equations, 78	
permutation matrix, 152	radians, 14
pigeonhole principle, 192	Ramsey's growth model, 180
Poincaré–Bendixson's theorem, 79	random variables
pointwise convergence, 85	one-dimensional, 194
Poisson distribution, 205	two-dimensional, 196
polynomial, 8	range (of a relation), 2
integer zeros of, 8	rank (of a matrix), 136
positive definite matrix, 148	ratio test (for series), 49
positive definiteness subject to linear	real part of a complex number, 18
constraints, 150	reciprocity relations (comparative
positive matrix, 152	statics), 160
positive quasidefinite matrix, 42	rectangular (exchangeability) property,
positive (semi-) definite quadratic forms	189
(matrices), 148	reducible matrix, 153
power of a test, 199	relation, 2
powers, 13	antisymmetric, 3
preference relation, 4, 169	asymmetric, 3
preordering, 3	binary, 3
present value, 177	complete, 3
price indices, 174	composition of, 3
primal problem (LP), 105	domain of, 2
principal minor, 143	equivalence, 3
principle of least upper and greatest	graph of, 3
lower bound, 87	inverse, 3
principle of mathematical induction, 6	irreflexive, 3
probability (axioms), 193	range of, 2 reflexive, 3
probability density function, 194, 196	symmetric, 3
probability limits, 199	transitive, 3
rules for, 199	relative maximum (minimum), 98
profit function, 164	relative risk aversion, 181
projection, 151	relative topology concepts, 85
projective differential equation, 69	residual variation, 207, 209
pseudoconcave function, 96	resolvent (of a differential equation), 76
pseudoconvex function, 96	Riccati's differential equation, 70, 117
put-call parity, 184	risk aversion, 181
Puu's equation, 165	roots of an equation, 8
P-value (significance probability), 200	Rothschild–Stiglitz's theorem, 182
(o.g probability), 200	

Routh–Hurwitz's stability conditions, 75	slope (of a level curve), 29
Roy's identity, 170	Slutsky elasticities, 171
Rybczynski's theorem, 175	Slutsky's equation (consumer theory), 171
saddle point	Slutsky's theorem, 199
differential equations, 81	Solow's growth model, 179
for $f(\mathbf{x})$, 98	source (equlibrium point), 79
for the Lagrangian, 108	span (of a set of vectors), 128
saddle point property (game theory), 189	spectral theorem (for matrices), 147
scalar matrix, 133	sporadically catching up optimality
scalar product, 128	(SCU-optimality), 118
Schauder's fixed point theorem, 131	stability
Schur's lemma (for complex matrices),	difference equations, 65–68
147	differential equations, 71, 74, 75, 78–80
Schur's theorem, 65	standard deviation, 195
Schwarz's (or Young's) theorem, 27	standard normal distribution, 204
scrap value functions	stationary point, 97
in calculus of variations, 112	statistical testing, 199
in control theory, 115	Stirling's formula, 60
second degree stochastic dominance, 182	stochastic control problem, 185
second-order approximation, 50, 51	stochastic dominance
second-order conditions (static optimi-	first degree, 181, 182
zation), 100, 102	second degree, 182
separable differential equation, 69	stochastic independence, 193, 197
separable metric space, 129	stochastic integral, 184
separating hyperplane, 90	stochastic variables
separation theorems, 90	one-dimensional, 194
set difference, 2	two-dimensional, 196
shadow elasticity of substitution, 165	Stolper-Samuelson's theorem, 175
shadow prices	Stone–Geary's utility function, 172
in LP, 106	strategy profile (game theory), 187
in static optimization, 103	strategy set (game theory), 187
Shephard's lemma, 163	strict concavity/convexity of functions, 93
shifting graphs, 10	strictly decreasing/increasing functions,
significance probability (P-value), 200	10, 11
Simpson's formula, 61	strictly dominated strategy, 188
simultaneous diagonalization (of matri-	strictly increasing differences, 160
ces), 149	strict quasiconcavity (convexity) of func-
sine function (sin), 14	tions, 94
single consumption β asset pricing equa-	strict supermodularity, 160
tion, 183	strong law of large numbers, 200
singular matrix, 136	Student's t-distribution, 205
singular value decomposition (of matri-	subgradient, 32
ces), 149	sublattice, 43
singular values (of a matrix), 149	subsequence, 84
sink (equlibrium point), 79	subset, 1
skewness coefficient (η_3) , 195	subspace (of \mathbb{R}^n), 127
skew-symmetric matrix, 136	substitution matrix, 163
Slater condition, 108	sufficient condition, 1
514101 001141101011, 100	Samoicité Condition, 1

supergradient, 32 uncorrelated random variables, 196 supermodular function, 160 uniform continuity, 22, 85 supply function, 164 uniform convergence, 86 supremum (sup), 87 uniform distribution, 205 uniformly bounded set (in C(X)), 130 supremum distance, 42 union of sets, 2 surjective function, 5 Sylvester's inequality, 136 unitary elastic function, 35 symmetric difference of sets, 2 unitary matrix, 140 unit matrix, 133 symmetric game, 189 universal set, 2 symmetric matrix, 136 unstable equlibrium point, 67, 78 symmetry of graphs, 10 upper bound, 4 upper hemicontinuity, 86 tangent function (tan), 14, 15 tangent (hyper)plane, 31, 32 upper level (contour) set, 93 tangent (to a curve), 13 upper triangular matrix, 133 Tarski's fixed point theorem, 43 utility function 169 Taylor series, 51 indirect, 170 Taylor's formula, 50, 51 utility maximization, 169 t-distribution (Student's), 205 value (of a game), 189 test statistics, 199 value function total ordering, 3 control theory, 114 total variation, 207, 209 discrete dynamic programming, 123, trace (of a matrix), 136 trajectory, 77 static optimization, 103, 104, 109 transformation, 41, 157 Vandermonde's determinant, 142, 143 transformation of stochastic variables, variance, 194, 195, 197 198 variation of parameters, 73 translog cost function, 168 vec-operator, 156 translog indirect utility function, 173 vectors, 127–132 transpose (of a matrix), 134 vector space, 129 transversality conditions in calculus of variations, 111, 112 Viète's rule, 7 volatility, 183 in control theory, 113, 114 trapezoid formula, 61 weak law of large numbers, 200 triangle inequalities weak ordering, 3 in metric space, 129 Weibull distribution, 205 in \mathbb{R} (or \mathbb{C}), 47 Weierstrass's theorem, 97 trigonometric formulas, 15–17 weighted means, inequality, 47 trigonometric functions, 14 truth tables (for logical operators), 1 Young's (or Schwarz's) theorem, 27 2×2 -factor model, 175 two-person game, 189 zeros (of a polynomial), 8 type I and type II errors, 200 zero-sum game, 189 Zorn's lemma, 4 unbiased estimator, 198