CS460 Assignment 1

Problem 1

Uniform Cost Search (f(n) = g(n)) (Tiebreaker: Alphatecial Value)

1.

Open List	f(n)
${ m S}$	0

Open List	f(n)
A	2
В	6

3.

Open List	f(n)
G	10
В	4
С	6

4.

Open List	f(n)
G	10
С	5

5.

Open List	f(n)
G	8

_	,
G	8

Final Path: S \rightarrow A \rightarrow B \rightarrow C \rightarrow G Cost: 8

A* Search (f(n)=g(n)+h(n)) (Tiebreaker: Alphatecial Value)

On an I ist	f(22)
Open List	f(n)
S	7
~	•

2.

Open List	f(n)
A	2 + 6 = 8
В	6 + 2 = 8

3.

Open List	f(n)
G	10
В	4 + 2 = 6
С	6 + 1 = 7

Open List	f(n)
G	10
С	5 + 1 = 6

5.	$_{2}$ (A)
	8
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	6 $\sqrt{3}$
	$\begin{pmatrix} B \end{pmatrix}_{1} \begin{pmatrix} C \end{pmatrix}_{0}$

Open List	f(n)
G	8

Final Path: S \rightarrow A \rightarrow B \rightarrow C \rightarrow G Cost: 8

Both the algorithms utilized on this graph returned the optimal path from S to G. The tiebreaker was utilized in A^* but not in Uniform Cost Search. Both algorithms expanded to the same number of nodes. The heuristic of A^* seems to be admissible and consistent, which explains to its optimality.

1.

Open List	$g(n) + \epsilon \cdot h(n) = f(n)$
S	$0 + 2 \cdot 8 = 16$

Open List	$g(n) + \epsilon \cdot h(n) = f(n)$
В	$6 + 2 \cdot 7 = 20$
A	$5 + 2 \cdot 1 = 7$

Open List	$g(n) + \epsilon \cdot h(n) = f(n)$
В	$6 + 2 \cdot 7 = 20$
G1	$15 + 2 \cdot 0 = 15$

Final Path: $S \to A \to G$

Cost: 15

2. The strongest bound that can be proven is $g(G) \leq \epsilon \cdot C^*$.

Suppose there is a node n on an optimal path to goal node G^* .

Since h(n) is admissible, $h(n) \leq c(n, G^*)$ where $c(n, G^*)$ is the optimal cost to reach G^* from n, thusly having $g(n) + h(n) \leq g(n) + c^*(n, G) = C^*$.

It would then follow $\epsilon \cdot (g(n) + h(n)) \leq \epsilon \cdot C^*$.

Since a goal node G was already found with a cost of g(G), it must be $\leq g(n) + \epsilon \cdot h(n)$.

Therefore, because $g(n) + \epsilon \cdot h(n) \le \epsilon \cdot (g(n) + h(n)), g(G) \le \epsilon \cdot C^*$.

- 3. i Here, since $\epsilon = 1$, f(n) = g(n) + h(n). Thusly, its equivalent to A*. Guaranteed optimality for path but not necessarily fast in terms of search speed.
 - ii Here, the heuristic is ignored since $\epsilon=0$, so its equivalent to Uniform Cost Search. Similar case to A*.
 - iii Here, the least amount of nodes are expanded to since $\epsilon \to \infty$, so it will have an equivalent or better search speed than the previous cases. However, optimality is not guaranteed.

1. Complete Visibility:

Reduced Visibility (with solution path):

2. Trapezoidal Decomposition (optimal path is dark blue):

3. Generalized Voronoi:

(Estimated Number of Vertices = 43 (sum of all object vertices))

- i. The C-space for the car is $S^2 \times S^1$ since the car moving around the 2D surface of the sphere (S^2) and can also rotate itself along the surface as it does on the ground (S^1) .
- ii. The arms-plus-steering wheel system has $2 \cdot (n-3)$ degrees of freedom since the elbows cannot bend due to the torso and the steering wheel being stationary relative to the car (-1 degree per arm) and the wrists cannot twist around or through the steering wheel (-2 degrees per arm).
- iii. The C-space of the mobile manipulator is $(\mathbb{R}^2 \times T^2) \times T^6$.
 - The mechanism formed by the arm and the open door has 5 degrees of freedom, with 6 degrees of freedom from the arm, 1 from the door, and 2 rotational degrees lost due to the hand being attached to the door.
 - The mechanism formed by the two arms and the open door has 9 degrees of freedom, with 12 degrees of freedom from the two arms, 1 from the door, and the same losses in rotational degrees for the arms as the previous part stated.

i $\,{\cal C}_{free}$ is respresented by the white area in the grid. The CO robot is

ii C_{free} is connected.

iii Collision Free Path from x_1 to x_G :

Path: $x_1 \to x_2 \to x_G$

i
$$J = \frac{A+B+C+D+E}{5}$$
 (approximate coordinates of polygon centroid)

$$T = \begin{bmatrix} 1 & 0 & J_x \\ 0 & 1 & J_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(40^\circ) & -\sin(40^\circ) & 3 \\ \sin(40^\circ) & \cos(40^\circ) & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -J_x \\ 0 & 1 & -J_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$A' = (11.49, 6.76), B' = (11.74, 9.58), C' = (13.91, 10.1), D' = (14.43, 7.93), E' = (13.54, 5.87).$$

- iii Yes, edge FG and GH intersect AB on the transformed rigid body.
- iv The transformation involves transation of (5,4) and a 90° rotation about A.

$$T' = \begin{bmatrix} 1 & 0 & 8 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(90^{\circ}) & -\sin(90^{\circ}) & 5 \\ \sin(90^{\circ}) & \cos(90^{\circ}) & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -8 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$