EKS Provisioning using Terraform

- We will provision the EKS using Terraform as an Infrasturcture as Code.
- We will deploy it in custom Virtual Private Cloud for isolation.
- We will also deploy RDS MySQL Instance to store the relational data and connect it to EKS.

Prerequisites

- 1. AWS Account with an IAM User with administrative permissions.
- 2. Terraform installed.
- 3. Kubectl installed.

Steps

- 1. Create the **eks-terraform** directory.
- 2. Folders structure for the above-created directory is as follows:

```
eks-terraform

|---.terraform.lock.hcl
|---locals.tf
|---main.tf
|---outputs.tf
|---providers.tf
|---terraform.tfstate
|---terraform.tfstate.backup
|---.terraform
```

We need to only create *providers.tf*, *main.tf*, *outputs.tf*, & *locals.tf* file. Other files are generated while initiating terraform.

- 3. Create a *providers.tf* file inside the above-created directory.
- 4. Inside it, define the following:
 - o terraform
 - required_providers
 - provider
 - aws
- 5. Click code for reference.
- 6. The definition of *providers.tf* file is complete.
- 7. Now, create the *main.tf* file.
- 8. Inside *main.tf* file, we will use the following predefined modules:
 - o vpc
 - o rds
 - eks
- 9. Click code for reference.

- 10. The definition of *main.tf* file is complete.
- 11. Now we will create outputs.tf file.
- 12. Inside it, define the following outputs.
 - DB HOST
 - o bastion-host-ip
- 13. Click code for reference.
- 14. The definition of *outputs.tf* file is complete.
- 15. Now we will create *locals.tf* file.
- 16. Inside it, define the following variables:
 - vpc-properties
 - database-properties
 - bastion-properties
 - eks-properties
- 17. Click code for reference.
- 18. The definition of *locals.tf* file is complete.

Make sure you give the appropriate values to the varibles defined in *locals.tf* file.

Provisioning the Infrastructure

Now we will provision the AWS infrastructure by applying the above-created configuration files.

Ensure AWS CLI is configured with appropriate AWS user credentials with enough permissions.

Steps:

- 1. Open the PowerShell.
- 2. Change the directory to the above-created **eks-terraform** directory using **cd** command.
- 3. Run the terraform fmt -recursive command to format the syntax of the files.
- 4. Run the terraform init command to initialize the terraform.
- 5. Run the terraform validate command to validate the configuration files.
- 6. Run the terraform plan command to plan the resources to be created.
- 7. Run the terraform apply command and if prompted, type yes to provision the infrastructure.
- 8. Run the terraform output command to get the values of defined variables in outputs.tf file.
- 9. Head to the AWS Console, and verify the created resources.

Screenshots of Provisioned Infrastructure

VPC Image

RDS Image

EKS Cluster Image

EKS Node Group Image

EKS Nodes Image

Connect to the EKS Cluster from Powershell

- 1. Open a new Powershell window.
- 2. Run the following command to configure local kubectl with eks cluster:
 - aws eks --region "region-name" update-kubeconfig --name "cluster-name"
 Substitute region-name and cluster-name with the values defined in the above-created locals.tf file
- 3. Now apply the Kubernetes manifest files of the application using the following command:
 - kubect1 apply -f "file-path"
 Substitute file-path with the kubernetes manifest file path.
- 4. To list them all, run kubectl get all.
- 5. If a Load Balancer type Service is present then try accessing the External IP of that service in the browser.

Connection to the RDS database through Bastion Host using MySQL Workbench

- 1. Open MySQL Workbench.
- 2. Click Add Connection.
- 3. Select connection method as Standard TCP/IP over SSH.
- 4. In SSH Hostname, enter *bastion-host-ip:22* where bastion-host-ip is received from the **terraform output** command.
- 5. In SSH Username, enter ec2-user.
- 6. In SSH Key File, select bastion-key.pem file passed in above locals.tf file from your local computer.
- 7. In MySQL Hostname, enter *DB_HOST* where DB_HOST is received from the **terraform output** command.

8. In the Password section, select *Store in Vault*, and enter the password passed in above-created *locals.tf* file.

- 9. Click OK and open the connection.
- 10. Now you can run mysql commands to access databases, and verify the successful connection of *eks-nodes*.

Screenshots of MySQL Workbench

Connection Page

Commands Page

Destroy the provisioned infrastructure

- 1. Firstly, delete all the Kubernetes Deployments using:
 - kubectl delete -f "file-path"

Substitute file-path with the kubernetes manifest file path.

- 2. To destroy infrastructure, change directory to the above-created **eks-terraform** directory using **cd** command.
- 3. Run terraform destroy & if prompted, type yes.
- 4. Infrastructure will be destroyed.