Conjuntos Abertos Introdução a Topologia

Yuri Kosfeld

Abril 2025

Bolas Abertas

O estudo de conjuntos abertos é motivado por querer entender a forma de um espaço metrico olhando para as vizinhanças de todos os pontos desse espaço. Vamos relembrar alguns detalhes importantes sobre distâncias.

Definição (**Distância**). Seja M um conjunto. Uma **distância** em M é uma função $d: M \times M \to [0, \infty)$ que satisfaz as seguintes propriedades:

- 1. d(x,x) = 0 para todo $x \in M$.
- 2. d(x,y) > 0 para todos $x, y \in M$ com $x \neq y$.
- 3. d(x,y) = d(y,x) para todos $x,y \in M$.
- 4. $d(x,z) \le d(x,y) + d(y,z)$ para todos $x, y, z \in M$.

Conseguimos agora então entender a proximidade de dois pontos. Para então formalizar matematicamente essa ideia de vizinhança de um ponto, vamos definir o que é uma **bola aberta**.

Definição (Bola Aberta). Sejam (M, d) um espaço métrico, $x \in M$ e $\varepsilon > 0$. Definimos a bola aberta centrada em x e de raio ε como:

$$B(x,\varepsilon) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

Não é dificil notar que em \mathbb{R} com a distância usual, temos que a bola $B(x,\varepsilon)=(x-\varepsilon,x+\varepsilon)$. Pela definição, segue que $B(x,\varepsilon)=\{y\in\mathbb{R}\mid |x-y|<\varepsilon\}$. Então tomando $y\in B(x,\varepsilon)$ temos $|x-y|<\varepsilon$ e então

$$-\varepsilon < x - y < \varepsilon$$
$$-\varepsilon < y - x < \varepsilon$$
$$x - \varepsilon < y < x + \varepsilon$$
$$\Leftrightarrow y \in (x - \varepsilon, x + \varepsilon)$$

Outro exemplo é a bola em \mathbb{R}^2 , com a distância euclidiana centrada na origem:

$$B((0,0),\varepsilon) = \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} < \varepsilon\} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < \varepsilon^2\}$$

Assim note, que com essa distância, as bolas em \mathbb{R}^2 são discos.

Um resultado interessante é o que acontecem com bolas no espaço produto levando em conta a distância produto. Sejam $(M_1, d_1), \ldots, (M_n, d_n)$ espaços metrico, e defina $M = M_1 \times \cdots \times M_n$ com a distância produto. Vamos mostrar que a bola produto é o produto das bolas, ou seja, $B((x_1, \ldots, x_n), \varepsilon) = B(x_1, \varepsilon) \times \cdots \times B(x_n, \varepsilon)$. Lembre que a distância produto é dada por

$$d_{max}(x,y) = \max\{d_1(x_1,y_1),\ldots,d_n(x_n,y_n)\}\$$

Então segue que se $y \in B((x_1, \dots, x_n), \varepsilon)$, $d_i(x_i, y_i) < \varepsilon \quad \forall i$. Equivalente a dizer que $\forall i \quad y_i \in B(x_i, \varepsilon)$ e então $y \in B(x_1, \varepsilon) \times \dots \times B(x_n, \varepsilon)$. Agora tome $y \in B(x_1, \varepsilon) \times \dots \times B(x_n, \varepsilon)$, note que para cada $i, y_i \in B(x_i, \varepsilon)$. Logo pela definição de bola e da distância produto vale $d(y, x) < \varepsilon$. Donde segue que $y \in B(x, \varepsilon)$.

Podemos então perceber que a bola com a distância produto são quadrados de lado 2ε .

Outra bola interessante é a bola da distância induzida. Seja então (M, d) um espaço metrico e $A \subset M$ com a distância induzida. Vamos representar a bola da distância induzida em A por $B_A(x,\varepsilon)$, para um dado $x \in A$ e raio ε . Vamos provar que $B_A(x,\varepsilon) = B(x,\varepsilon) \cap A$. Tome $y \in B_A(x,\varepsilon)$, então $d(x,y) < \varepsilon$, donde segue que $y \in B(x,\varepsilon) \cap A$. Agora tome $y \in B(x,\varepsilon) \cap A$, então $d_A(x,y) < \varepsilon$ e segue que $y \in B_A(x,\varepsilon)$.

Conjuntos Abertos

Primeiro vamos definir alguns objetos para depois entender as suas propriedades e relações.

Definição (Conjunto Aberto). $U \subset M$ é conjunto aberto se $\forall x \in U \ \exists \varepsilon > 0$ tal que $B(x, \varepsilon) \subset U$.

Definição (Vizinhança). U é uma vizinhança de x se U aberto tal que $x \in U$.

Definição (**Topologia**). Seja (M, d) espaço metrico, dizemos que **topologia** é a familia de todos os subconjuntos abertos de M.

$$\mathcal{T} = \{ U \subset M \mid U \not\in aberto \}$$

Um primeiro exemplo simples é que todo intervalo aberto (a,b) em \mathbb{R} é aberto. Para isso basta tomar $\varepsilon \leq \min\{x - a.b - x\}$. Como já vimos anteriormente, $B(x,\varepsilon) = (x - \varepsilon, x + \varepsilon)$, então se $y \in (x - \varepsilon, x + \varepsilon)$ temos $x - \varepsilon < y < x + \varepsilon$, donde segue:

$$y > x - \varepsilon$$
$$y > x - x + a = a$$

 \mathbf{e}

$$y < x + \varepsilon$$
$$y < x - x + b = b$$

Logo $y \in (a, b)$.

Podemos também mostrar que em \mathbb{R} , qualquer conjunto formado por apenas um ponto, não é aberto em \mathbb{R} . Vamos mostrar que x não é aberto em \mathbb{R} . Note que para todo $\varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \setminus \{x\} \neq \emptyset$. Tome então $y \in (x - \varepsilon, x + \varepsilon) \setminus \{x\}$, logo $y \neq x$ e então $y \notin \{x\}$. Assim $B(x, \varepsilon) \subseteq \{x\}$ e não é aberto.

Podemos extender nosso exemplo para o caso de \mathbb{R}^2 . Como vimos, um intervalo aberto de \mathbb{R} é aberto em \mathbb{R} . Tomando então dois invervalos abertos (a,b),(c,d) temos $\varepsilon_1,\varepsilon_2>0$ tais que $B(x,\varepsilon_1)\subset (a,b)$ e $B(y,\varepsilon_2)\subset (c,d)$. Defina então $\varepsilon=\min\{\varepsilon_1,\varepsilon_2\}$ e então, lembrando da propriedade de que uma bola aberta em \mathbb{R}^2 é igual ao produto de duas bolas abertas em \mathbb{R} , segue:

$$B((x,y),\varepsilon) = (x-\varepsilon,x+\varepsilon) \times (y-\varepsilon,y+\varepsilon) \subset (x-\varepsilon_1,x+\varepsilon_1) \times (y-\varepsilon_2,y+\varepsilon_2) \subset (a,b) \times (c,d)$$

Logo é aberto em \mathbb{R}^2 .

Vamos mostrar agora que toda bola aberta é um subconjunto aberto. Tome então $z \in B(x,\varepsilon)$. Precisamos achar um $\varepsilon' > 0$ tal que $B(z,\varepsilon') \subset B(x,\varepsilon)$. Vamos mostar que $\varepsilon' = \varepsilon - d(x,z)$ é suficiente. Tome $y \in B(z,\varepsilon')$, pela desigualdade triangular temos:

$$d(y,x) \le d(y,z) + d(z,x) < \varepsilon' + d(z,x) = \varepsilon - d(z,x) + d(z,x) = \varepsilon$$

Logo $y \in B(x, \varepsilon)$. E então a bola aberta é um conjunto aberto.