Алгоритмическое решение одной комбинаторной задачи А. В. Козака - И. Б. Симоненко

Лукин Александр

Южный федеральный университет

Факультет математики, механики и компьютерных наук Кафедра алгебры и дискретной математики

Научный руководитель: к.ф.-м.н., доц. Деундяк В.М.

11.11.2011

Постановка задачи

Были получены следующие результаты:

- доказано существование конечного множества, принадлежащего $\mathfrak{M}(r,R)$ для любых положительных действительных чисел r,R;
- разработан алгоритм построения такого множества;
- доказана геометрическая теорема, обосновывающая корректность этого алгоритма.

Определение полупространства

Определение

Подмножество $\Pi \subset \mathbb{Z}^2$ будем называть **каноническим дискретным полупространством**, если множество Π и его дополнение замкнуты относительно сложения. Сдвиг канонического дискретного полупространства на целочисленный вектор будем называть **дискретным полупространством**.

Определение базового множества

Определение

Пусть $r,\ R$ — положительные действительные числа. Через $\mathfrak{M}(r)$ обозначим семейство подмножеств $M\subset \mathbb{Z}^2$, удовлетворяющих условию: для любой точки $X\in \mathbb{R}^2$ существует дискретное полупространство или пространство П такое, что

$$M \cap B(X,r) = \Pi \cap B(X,r).$$

Семейство множеств $M\in\mathfrak{M}(r)$, для которых выполняется условие

$$M\supset B(0,R)\cap \mathbb{Z}^2,$$

обозначим через $\mathfrak{M}(r,R)$.

Пример базового множества

Геометрическая теорема

Зафиксируем произвольное действительное число r(>1) и точки $S\in\mathbb{Z}^2$; $A,\ B,\ D\in B(S,r)\cap\mathbb{Z}^2$ так, что $B\notin I(S,A)$, точка D симметрична точке B относительно S и выполняется условие:

$$\frac{\pi}{2} \leqslant |\angle \textit{ASB}| < \pi.$$

Положим

$$r' = \frac{r}{\sin \varkappa / 2},$$

где $\varkappa = |\angle ASB|$. Если выполняется условие

$$B(S, r') \cap (\angle DSA_{\mathbb{Z}} \setminus (\vec{l}(S, D) \cup \vec{l}(S, A))) = \emptyset,$$

то для любой точки $X \in \mathbb{R}^2$ существует дискретное полупространство или пространство Π такое, что

$$\angle ASB_{\mathbb{Z}} \cap B(X,r) = \Pi \cap B(X,r).$$

Иллюстрация условия теоремы

Алгоритм

Алгоритм 1.

Вход: $r(>\sqrt{2})$ — фиксированное действительное число.

Bыход: множество $M \in \mathfrak{M}(r)$.

Описание алгоритма.

• Находим число

$$\varkappa = \min\{|\angle PA_0Q| : P, Q(\neq P) \in B_{\mathbb{Z}}(A_0, r)\}.$$

Положим

$$r' = \frac{r}{\sin \varkappa / 2}.$$

Зафиксируем точку $ilde{Q} \in \angle X_0 A_0 Y_0$ так, что выполняется условие

$$|\angle X_0 A_0 \tilde{Q}| = \frac{\pi}{4}.$$

Зафиксируем на луче $\vec{l}(A_0, \tilde{Q})$ бесконечно удалённую целочисленную точку Q.

8/23

Алгоритм

 $oldsymbol{2}$ На луче $ec{l}(A_0,X_0)$ строим отрезок A_0A_1 такой, что

$$|A_0A_1| = [r'] + 1,$$

где [r'] — целая часть числа r'.

③ Положим k=1. Выполняем следующую процедуру до тех пор, пока очередной построенный отрезок A_pA_{p+1} не будет лежать на прямой, параллельной лучу $\vec{I}(A_0,Q)$. В результате получим ломаную $A_0A_1A_2\dots A_pA_{p+1}$.

Процедура

Процедура.

Вход: натуральное число k, действительное число

- $r'(>\sqrt{2})$, целочисленные точки $A_{k-1},\ A_k.$ Выход: целочисленная точка $A_{k+1}.$
 - Зафиксируем на луче $\vec{I}(A_{k-1},A_k)$ бесконечно удалённую целочисленную точку X_k . Рассмотрим перпендикуляр к прямой $I(A_{k-1},A_k)$ в точке A_k , построенный в полуплоскости $\angle X_k A_k A_{k-1}$. Зафиксируем на этом перпендикуляре бесконечно удалённую точку Y_k . Определим множество

$$\Phi_k := \angle X_k A_k Y_k \cap B_{\mathbb{Z}}(A_k, r').$$

Иллюстрация к алгоритму

Процедура

① Найдём точку G_k , для которой выполняется условие:

$$\gamma := |\angle X_k A_k G_k| = \min\{|\angle X_k A_k P| \mid P \in \Phi_k \setminus A_k X_k\}.$$

0 Для вектора $\overrightarrow{A_kG_k}$ запускаем итерационный процесс:

$$i := 1;$$

$$\overrightarrow{A_k G_k^1} := \overrightarrow{A_k G_k};$$

while $|A_k G_k^i| < r'$ do

$$\begin{split} i &:= i+1; \\ \overrightarrow{A_k} \overrightarrow{G}_k^i &:= \overrightarrow{A_k} \overrightarrow{G}_k^{i-1} + \overrightarrow{A_k} \overrightarrow{G}_k; \end{split}$$

end while.

Конец процедуры

lacktriangledown Пусть \tilde{i} — номер, на котором остановился итерационный процесс. Положим

$$\overrightarrow{A_k}\overrightarrow{A}_{k+1} := 2\overrightarrow{A_k}\overrightarrow{G}_k^i$$
.

Конец процедуры.

① Пусть целочисленная точка M — середина отрезка A_pA_{p+1} . Построим в точке M прямую, перпендикулярную отрезку A_pA_{p+1} и симметрично отразим каждую точку ломаной относительно этой прямой. Получим ломаную $A_0A_1A_2\dots A_pA_{p+1}\dots A_{2p+1}$

Конец алгоритма

- **⑤** Пусть вектор $\overrightarrow{OA}_{2p+1}$ имеет в системе координат xOy координаты (ξ, η) . Сдвинем каждую точку ломаной $A_0A_1A_2\dots A_{2p+1}$ на вектор \overrightarrow{OS} с координатами $(0, -\eta)$.
- ① Симметрично отразим ломаную относительно оси Oy (получим ломаную $A_{-2p+1}A_{-2p}\dots A_{-1}A_0A_1\dots A_{2p}A_{2p+1}$), а затем относительно оси Ox, получим замкнутый многоугольник. Часть дискретной решётки \mathbb{Z}^2 , ограниченная построенным многоугольником и является искомым множеством M.

Конец алгоритма 1.

Иллюстрация к алгоритму

Лемма 1

Лемма 1

Рассмотрим на плоскости \mathbb{R}^2 декартову систему координат xOy и дискретную решётку \mathbb{Z}^2 , порождённую этой системой координат. Пусть $A(\neq O)$ — произвольная целочисленная точка плоскости \mathbb{Z}^2 ; C — целочисленная точка, симметричная точке A относительно точки O; $\vec{l}(O,B)$ — перпендикуляр к прямой l(O,A), построенный в полуплоскости $\angle AOC$, где $B(\neq O)$ — произвольная точка плоскости \mathbb{R}^2 , лежащая на этом перпендикуляре. Тогда для любого действительного числа r>1 каждое из множеств вида

$$(\angle AOB \setminus \vec{I}(O, A)) \cap B_{\mathbb{Z}}(O, r), \ (\angle AOB \setminus \vec{I}(O, B)) \cap B_{\mathbb{Z}}(O, r)$$

содержит хотя бы одну целочисленную точку.

Лемма 2

Лемма 2

Угол $\angle G_k A_k A_{k-1}$, построенный на шаге II процедуры, принадлежит семейству $\mathfrak{M}(r)$.

Доказательство

Ясно, что выполнено равенство

$$(\angle X_k A_k G_k \setminus (\vec{I}(A_k, X_k) \cup \vec{I}(A_k, G_k))) \cap B_{\mathbb{Z}}(A_k, r') = \emptyset,$$

Положим

$$r'' = \frac{r}{\sin|\angle G_k A_k A_{k-1}|/2}.$$

Из пустоты пересечения угла $\angle X_k A_k G_k$ с дискретным кругом $B_{\mathbb{Z}}(A_k,r')$ и неравенства $r'\geqslant r''$ вытекает равенство:

$$\angle X_k A_k G_k \cap B_{\mathbb{Z}}(A_k, r'') = \varnothing.$$

Лемма 3

Лемма 3

Пусть A_0Q — луч, построенный на шаге 1 алгоритма 1. Тогда после конечного числа итераций процедуры отрезок A_pA_{p+1} , построенный в результате очередной итерации p, будет лежать на луче, параллельном лучу A_0Q .

Доказательство

1) Покажем, что количество итераций p конечно. Очевидно, что на любой итерации i процедуры выполняется неравенство $\gamma_i \geqslant \varkappa$, т. к. целочисленные точки, определяющие приращение γ_i , всегда принадлежат кругу $B(A_i,r')$. Из ограниченности снизу величины приращения следует существование натурального числа p, при котором имеет место неравенство

$$\sum_{i=1}^{p} \gamma_i \geqslant \frac{\pi}{4}.$$

Теорема 1

Теорема 1

Пусть $r(>\sqrt{2})$ — произвольное действительное число, тогда множество M, построенное алгоритмом 1, принадлежит семейству $\mathfrak{M}(r)$.

Алгоритм 2.

Bxoд: множество M^1 , полученное на выходе алгоритма 1; R(>0) — фиксированное действительное число. Bыxoд: множество $M\in\mathfrak{M}(r,R)$. Описание алгоритма.

1 if $B(O,R) \subset M^1$ then множество M^1 — искомое, алгоритм завершён; else переходим к шагу 2.

Алгоритм 2

② Положим p=1. Пусть $A_1^p A_2^p \dots A_k^p$ — граница многоугольника M^p , причём $A_1^p = A_k^p$, и (x_i^p, y_i^p) — координаты точки A_i^p . Запускаем итерационный процесс:

$$i := 0;$$

while i < k do

$$i := i + 1;$$

 $x_i^{p+1} = 2x_i^p;$
 $y_i^{p+1} = 2y_i^p:$

$$A_i^{p+1} = (x_i^{p+1}, y_i^{p+1});$$

end while.

Получаем многоугольник M^{p+1} , ограниченный ломаной $A_1^{p+1}A_2^{p+1}\dots A_k^{p+1}$.

Теорема 2

3 if $B(O,R) \subset M^{p+1}$ then множество M^{p+1} — искомое, алгоритм завершён; else положим p := p+1, переходим к шагу 2.

Конец алгоритма 2.

Из теоремы 2 и алгоритма 2 очевидным образом следует следующая теорема.

Теорема 2

Для любых действительных чисел R>0 и $r>\sqrt{2}$ существует дискретное множество $M\in\mathfrak{M}(r,R).$

Иллюстрация к алгоритму

Литература

Список литературы:

- Козак А. В. Локальный принцип в теории проекционных методов. Докл. АН СССР, 1973, т. 212, № 6, с. 1287–1289.
- Козак А. В., Симоненко И. Б. Проекционные методы решения многомерных дискретных уравнений в свёртках. Сибирский математический журнал, 1980, т. XXI, № 2, с. 119—127.