Chapitre 5. Primitives.

Prérequis de Terminale sur la notion d'intégrale

Pour I intervalle de \mathbb{R} , f continue sur I à valeurs dans \mathbb{R} , et a et b des éléments de I, l'intégrale $\int_a^b f(x) dx$ est "définie" provisoirement de la manière suivante :

• Si a < b, $\int_a^b f(x) dx$ est l'aire algébrique sous la courbe représentative de f:

- Si a = b, $\int_a^a f(x) dx = 0$
- Si a > b, $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

Le nom de la variable d'intégration est muet : $\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(t) \, \mathrm{d}t = \int_a^b f(u) \, \mathrm{d}u = \dots$

Pour une fonction à valeurs dans \mathbb{C} , l'intégrale est définie en passant par les parties réelle et imaginaire : c.f. ch 4.

Il y a quatre propriétés de base pour l'intégrale :

Proposition:

Linéarité

Soient a et b des réels tels que $a \leq b$, et des fonctions f et g continues sur un segment [a,b], à valeurs réelles ou complexes. Pour tout $\lambda \in \mathbb{C}$,

$$\int_a^b (\lambda f(x) + g(x)) dx = \lambda \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Encore valable pour a > b et des fonctions continues sur [b, a].

Proposition:

Positivité

Soient a et b des réels tels que $a \leq b$, et une fonction f continue sur un segment [a, b], à valeurs réelles ou complexes.

Si pour tout
$$x \in [a, b]$$
, $f(x) \ge 0$, alors $\int_a^b f(x) dx \ge 0$.

 \triangle faux si a > b!

Proposition:

Croissance

Soient a et b des réels tels que $a \le b$, et des fonctions f et g continues sur un segment [a, b], à valeurs réelles ou complexes.

Si pour tout
$$x \in [a, b]$$
, $f(x) \le g(x)$, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

 \bigwedge faux si a > b!

Proposition:

• Relation de Chasles

Soient a, b et c des réels tels que $a \le c \le b$, et une fonction f continue sur un segment [a,b], à valeurs réelles ou complexes.

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

C'est encore valable dès que les trois intégrales existent, i.e. f continue sur le segment formé par a et b, sur le segment formé par a et c et par le segment formé par c et b.

2

Nouvel outil pour montrer des inégalités

Avec la propriété de croissance de l'intégrale ; par exemple, partons du fait que : $\forall t \in \mathbb{R}_+, \ 0 \leq \frac{1}{1+t} \leq 1$:

Remarque : justification de l'existence d'une intégrale

Parfois, on vous demandera de justifier qu'une intégrale existe. Il y a deux points fréquemment oubliés :

- Bien dire que la fonction sous l'intégrale est continue...
- et ce, sur tout le segment formé par les deux bornes!

Par exemple, justifions que pour tout $x \in]0,1[\ \cup\]1,+\infty[$, l'intégrale $\int_{r}^{x^2} \frac{\ln(t)}{1-t}\,\mathrm{d}t$ existe :

Généralités sur les primitives, lien primitive-intégrale 1

Définition des primitives

Définition:

Soit D une partie de \mathbb{R} et $f: D \to \mathbb{K}$. On dit que $F:D\to\mathbb{K}$ est une primitive de f sur D si

Exemples:

- La fonction cos est dérivable sur \mathbb{R} , de dérivée sin, donc une primitive de sin sur \mathbb{R} est cos.
- Une primitive de $x \mapsto x$ sur \mathbb{R} est
- À connaître : $f: x \mapsto \ln(|x|)$ est dérivable sur \mathbb{R}^* de dérivée $x \mapsto \frac{1}{x}$.

Autrement dit,

Proposition:

Si F est une primitive de f sur l'intervalle I, alors :

- L'ensemble des primitives de f est l'ensemble des fonctions de la forme $x \mapsto F(x) + C$, avec $C \in \mathbb{K}$ constante.
- Pour tout $x_0 \in I$ et $y_0 \in \mathbb{K}$, il existe une unique primitive F de f sur I telle que $F(x_0) = y_0$.

Démonstration 2

En particulier, losqu'on fixe $x_0 \in I$ et qu'on sait que f a des primitives sur I, alors on peut affirmer qu'il y en a une et une seule qui s'annule en x_0 .

 $\underline{\Lambda}$ Il peut ne pas y avoir de primitives : certaines fonctions définies sur \mathbb{R} n'admettent pas de primitives. ⚠ On ne dit jamais "la" primitive mais "une" primitive. En effet, sur un intervalle : s'il existe une primitive, alors il en existe une infinité et toutes les primitives sont égales à une constante près.

⚠ La proposition n'est plus valable si on n'est pas sur un intervalle.

Par exemple, voici deux primitives de $x \mapsto -\frac{1}{r^2} \text{ sur } \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[:$

- $F: x \mapsto \frac{1}{x}$
- $G: x \mapsto$

Pourtant, F et G ne sont pas égales à une constante près : G(x) - F(x) =

Méthode: "primitiver une égalité"

Complétons : pour une fonction $f:]-1,1[\to \mathbb{R}$ dérivable,

$$\forall x \in]-1,1[, f'(x) = \frac{1}{\sqrt{1-x^2}} \iff \iff$$

1.b Primitives usuelles

À partir des dérivées "usuelles", on tire des primitives "usuelles", à parfaitement connaître : c.f. fiche. Exemples:

4

• Déterminer une primitive, sur un intervalle à déterminer, de $f: x \mapsto \frac{\sin x}{\sqrt{5+3\cos x}}$.

Déterminer une primitive, sur un intervalle à déterminer, de tan.

Existence de primitives pour les fonctions continues

Théorème:

(Théorème fondamental de l'analyse) Soit I un intervalle, et $f:I\to\mathbb{K}$ continue. Soit $a \in I$.

Autrement dit,

Conséquence : Toute fonction f continue sur un intervalle I admet des primitives sur I

Exemples:

- ullet Nous avions défini la fonction ln comme ln : \mathbb{R}_+^* \to \mathbb{R} $x \mapsto \int_{1}^{x} \frac{1}{t} dt$ autrement dit:
- Soit $F: x \mapsto \int_0^x e^{-t^2} dt$.

Méthode

Lorsqu'on vous demande de calculer une primitive d'une fonction f continue sur un intervalle :

- Ou bien c'est direct (c.f. fiches primitives usuelles)
- Ou bien on fixe une constante a dans I, et on calcule une intégrale $\int_a^x f(t) dt$ pour tout $x \in I$. Le choix du $a \in I$ importe peu : si on prend un $a \in I$ différent, on aura simplement une constante différente à la fin du calcul. Pour cette raison, on trouve parfois l'écriture $\int_{-\infty}^{\infty} f(t) dt$. On trouve aussi $\int f(x) dx$, à éviter.

5

$\mathbf{2}$ Outils pour calculer une intégrale

Calcul direct à l'aide d'une primitive

En conséquence du théorème fondamental de l'analyse :

Corollaire:

Soit f une fonction continue sur I et a, b des éléments de I. Alors, en notant F une primitive de f sur I,

$$\int_{a}^{b} f(t)dt =$$

Exemples:

$$I_{1} = \int_{a}^{b} e^{2x} dx \text{ où } (a,b) \in \mathbb{R}^{2} \quad I_{2} = \int_{0}^{\pi} \sin t dt \qquad I_{3} = \int_{1}^{e} \frac{\ln x}{x} dx$$

$$I_{4} = \int_{0}^{1} \frac{1}{1+u^{2}} du \qquad I_{5} = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-v^{2}}} dv \quad I_{6} = \int_{0}^{3} \frac{x}{1+x} dx \quad I_{7} = \int_{1}^{2} \frac{1}{x(1+x^{2})} dx$$

Démonstration 4

Retenir la "technique de l'apparition-disparition" dans les derniers exemples qui permet de simplifier beaucoup de situations (cela peut être -1+1, -2+2, -x+x...).

2.b Intégration Par Parties (IPP)

Définition:

Soir $f: D \to \mathbb{K}$.

On dit que f est de classe \mathcal{C}^1 sur D si f est dérivable sur D et si f' est continue sur D.

Exemples:

 $\mathbf{Remarque}: \mathrm{Si}\ f$ est une fonction continue sur un intervalle I alors toute primitive de f sur I est une fonction de classe C^1 sur I. En effet :

Théorème:

Soit I un intervalle, et a, b des éléments de I. Soient f, g de classe \mathcal{C}^1 sur I.

Démonstration 5

Exemples:

- Calculer I = ∫₀¹ te^{2t} dt.
 Les primitives de ln sur ℝ^{*}₊ sont les fonctions de la forme

Les phrases suivantes n'ont pas le même sens et sont insuffisantes :

"Les primitive de la sur \mathbb{R}_+^* sont de la forme $x \mapsto x \ln(x) - x + C$, $C \in \mathbb{R}$ "

"Les fonctions de la forme $x \mapsto x \ln(x) - x + C$, $C \in \mathbb{R}$ sont des primitives de ln sur \mathbb{R}_+^* "

Autres manières de le dire :

L'ensemble des primitives de ln sur \mathbb{R}_+^* est $\{x \mapsto x \ln x - x + C \mid C \in \mathbb{R}\}$

 \bigwedge Ne pas écrire : $\{x \ln x - x + C / C \in \mathbb{R}\}\$

F primitive de ln sur $\mathbb{R}_+^* \iff \exists C \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, F(x) = x \ln(x) - x + C$

 $\underline{\Lambda}$ Ne pas écrire: F primitive de ln sur $\mathbb{R}_+^* \iff F(x) = x \ln(x) - x + C, \ C \in \mathbb{R}$

2.c Changement de variable

Théorème:

Soient I et J des intervalles, $f: I \to \mathbb{R}$ continue, $\varphi: J \to I$ de classe \mathcal{C}^1 , et α, β des éléments de J.

Démonstration 7

Cette formule complète est à connaître, elle sert dans certains exercices.

Sur les calculs d'intégrale ou de primitive, on a des moyens "simples" pour l'appliquer. Pour calculer une intégrale I, on l'identifie soit au membre de gauche de l'égalité, soit au membre de droite de l'égalité.

Exemples:

$$I_1 = \int_0^{\frac{1}{\sqrt{2}}} \frac{t}{1 + 4t^4} dt \quad I_2 = \int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt \quad I_3 = \int_0^1 \sqrt{1 - x^2} dx$$

Démonstration 8

Ainsi, retenir qu'on écrit formellement :

- On pose $x = \varphi(t)$; la fonction φ est de classe \mathcal{C}^1 sur J.
- On a $dx = \varphi'(t) dt$.
- Si $t = \alpha$ alors $x = \varphi(\alpha)$;

Si $t = \beta$ alors $x = \varphi(\beta)$.

Conséquences du changement de variable

Proposition:

Pour f continue et $a \in \mathbb{R}$:

• Si f est paire,

$$\int_{-a}^{a} f(x) \, \mathrm{d}x =$$

• Si f est impaire, $\int_{-a}^{a} f(x) dx =$

$$\int_{-a}^{a} f(x) \, \mathrm{d}x =$$

Démonstration 9

Proposition:

Si f est périodique de période T > 0,

$$\bullet \qquad \int_{a+T}^{b+T} f(x) \, \mathrm{d}x =$$

$$\underbrace{\int_{a}^{a+T} f(x) \, \mathrm{d}x}_{\text{intégrale de } f \text{ sur...}} =$$

Démonstration 10

Exemple: Calculons $\int_0^{2\pi} \cos(3t) \sin(t) dt$

3 Des exemples à savoir traiter

3.a
$$\int_a^b e^{\alpha x} \cos(\omega x), \int_a^b e^{\alpha x} \sin(\omega x)$$

Il y a deux méthodes, à connaître : double intégration par parties ou passage par les complexes (plus rapide).

Exemple:
$$I = \int_0^{\pi} e^{3t} \cos(t) dt$$
.

Démonstration 11

3.b
$$\int_a^b P(x)\cos(\omega x), \ \int_a^b P(x)\sin(\omega x), \ \int_a^b P(x)e^{\omega x} \ \dots \ \text{avec} \ P \ \text{polynôme}$$

On effectue des intégrations par parties successives pour se ramener à un polynôme de degré de plus en plus petit, jusqu'à une constante.

Exemple: Déterminer les primitives de $x \mapsto x^2 \cos(x)$ sur \mathbb{R} .

Démonstration 12

Primitives de quelques fractions rationnelles particulières

Une fraction rationnelle est une expression de la forme $f(x) = \frac{P(x)}{Q(x)}$, avec P et Q des polynômes.

9

Cherchons une primitive F de f (sur I intervalle à préciser), dans quelques cas particuliers :

3.c.i
$$f(x) = \frac{1}{x-a}$$
 avec $a \in \mathbb{R}$

3.c.ii
$$f(x) = \frac{1}{(x-a)^n}$$
 avec $a \in \mathbb{R}$ et $n \in \mathbb{N}^*, n \neq 1$

Exemples:
$$f(x) = \frac{1}{(x-a)^2}$$
:

$$f(x) = \frac{1}{(x-a)^3}$$
:

Plus généralement, si $f(x) = \frac{1}{(x-a)^n}$ avec $n \neq 1$:

3.c.iii

$$f(x) = \frac{1}{ax^2 + bx + c}$$
 avec $a \neq 0$, a , b , c réels

Méthode : il faut déterminer si le polynôme $ax^2 + bx + c$ a des racines réelles ou non. On peut par exemple calculer son discriminant.

- Si $\Delta = 0$, on a une unique racine x_0 , et $f(x) = \frac{cste}{(x-x_0)^2}$, on est ramené au cas précédent.
- Si $\Delta > 0$, on a des racines réelles distinctes x_1 et x_2 , et on est ramené à $f(x) = \frac{cste}{(x-x_1)(x-x_2)}$

On "décompose en éléments simples", i.e. on trouve des constantes a et b telles que :

$$\frac{1}{(x-x_1)(x-x_2)} = \frac{a}{x-x_1} + \frac{b}{x-x_2}$$
 pour tout x différent de x_1 et x_2 .

Exemples: $f(x) = \frac{1}{x^2 - 4x + 3}$; $g(x) = \frac{1}{x(x-1)}$.

Démonstration 13

• Si $\Delta < 0$:

— Un cas particulier : $f(x) = \frac{1}{x^2 + \alpha^2}$ avec $\alpha > 0$

Si on n'est pas dans ce cas particulier, on s'y ramène en mettant $ax^2 + bx + c$ sous forme canonique Méthode:

Factoriser par a, puis de voir les termes $x^2 + \frac{b}{a}x$ comme le début d'une identité remarquable ; On obtient la forme $a(X^2 + cste^2)$, factoriser encore pour avoir $\lambda(Y^2 + 1)$ avec λ este.

Exemples: $f(x) = \frac{1}{x^2 - 2x + 2}$; $g(x) = \frac{1}{x^2 - 4x + 8}$.

3.d Des pistes pour trouver un changement de variable "qui marche"

On souhaite calculer $\int_a^b f(x) dx$.

À maîtriser :

• Si f(x) est un polynôme en cos, sin : on peut linéariser

Exemples: $I_1 = \int_0^{\frac{\pi}{2}} \sin^2 t \, dt$; $I_2 = \int_0^{\pi} \cos^3(x) \sin(x) \, dx$.

Démonstration 15

• Cependant, de façon plus générale avec un polynôme ou une fraction rationnelle en cos, sin, tan, il y a souvent un changement de variable naturel parmi :

$$u = \cos(x)$$
 $u = \sin(x)$ $u = \tan x$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$du = -\sin(x) dx \qquad du = \cos(x) dx \qquad du = \frac{1}{\cos^2 x} dx$$

Par exemple, dans l'intégrale I_2 précédente :

Démonstration 16

Exemple : $I = \int_0^{\frac{\pi}{6}} \frac{1 - \sin(x)}{\cos(x) + \sin(2x)} dx$.

Démonstration 17

Pour aller plus loin:

- Si f(x) ne fait intervenir que des e^x , e^{-x} , e^{2x} ... (pas de x seul ou d'autres fonctions), poser $u = e^x$ (ou $u = e^{-x}$...)
- Si f(x) ne fait intervenir que x et $\sqrt{ax+b}$, poser $u=\sqrt{ax+b}$
- Si f(x) ne fait intervenir que x et $\sqrt{ax^2 + bx + c}$: Exemple vu : $f(x) = \sqrt{1 - x^2}$.
 - On met $ax^2 + bx + c$ sous forme canonique, en voyant $ax^2 + bx$ comme le début d'un carré $a(x + cste)^2$.

On trouvera toujours l'une des trois formes canoniques suivantes :

$$\lambda(1-X^2)$$
 ; $\lambda(1+X^2)$; $\lambda(X^2-1)$ avec $\lambda > 0$

— Selon le cas, on pose $X = \cos u$ ou $X = \sin u$ ou $X = \sin u$ ou $X = \cosh u$ ou $X = \cosh u$... Le but étant d'utiliser la relation $\cos^2 u + \sin^2 u = 1$ ou $\cosh^2 u - \sinh^2 u = 1$ pour obtenir $\sqrt{(truc)^2}$ qui se simplifie...

11

Plan du cours

1	Généralités sur les primitives, lien primitive-intégrale		3
	1.a	Définition des primitives	3
	1.b	Primitives usuelles	4
	1.c	Existence de primitives pour les fonctions continues	5
2	Ou	tils pour calculer une intégrale	5
	2.a	Calcul direct à l'aide d'une primitive	5
	2.b	Intégration Par Parties (IPP)	6
	2.c	Changement de variable	7
	2.d	Conséquences du changement de variable	8
3	De	s exemples à savoir traiter	9
	3.a	$\int_{a}^{b} e^{\alpha x} \cos(\omega x), \int_{a}^{b} e^{\alpha x} \sin(\omega x)$	9
	3.b	$\int_{a}^{b} P(x)\cos(\omega x), \int_{a}^{b} P(x)\sin(\omega x), \int_{a}^{b} P(x)e^{\omega x} \dots \text{ avec } P \text{ polynôme } \dots \dots \dots$	9
	3.c	Primitives de guelques fractions rationnelles particulières	9
		3.c.i $f(x) = \frac{1}{x-a}$ avec $a \in \mathbb{R}$	9
		3.c.ii $f(x) = \frac{1}{(x-a)^n}$ avec $a \in \mathbb{R}$ et $n \in \mathbb{N}^*, n \neq 1$	9
		3.c.iii $f(x) = \frac{1}{ax^2 + bx + c}$ avec $a \neq 0$, a , b , c réels	10
	3 d	Des pistes pour trouver un changement de variable "qui marche"	11