STOCHASTIC OPTIMIZATION IN MACHINE LEARNING

CASE STUDIES IN NONLINEAR OPTIMIZATION

F. Bauer S. Chambon R. Halbig S. Heidekrüger J. Heuke July 11, 2015

Technische Universität München

WE'RE NOT RUNNING OUT OF DATA ANYTIME SOON. IT'S MAYBE THE ONLY RESOURCE THAT

GROWS EXPONENTIALLY.

ANDREAS WEIGEND

OUTLINE

- 1. Introduction
- 2. Stochastic Quasi-Newton Method (SQN)
- 3. Proximal Method
- 4. Classification
- 5. Dictionary Learning
- 6. Conclusion

INTRODUCTION

INTRODUCTION: WHAT IS MACHINE LEARNING (ML)?

Implementation of autonomously learning software for:

- · Discovery of patterns and relationships in data
- · Prediction of future events

Examples:

Electroencephalography (EEG)

Section 4

Image Denoising

Section 5

INTRODUCTION: ML AND OPTIMIZATION I

Training a Machine Learning model means finding optimal parameters ω :

$$\omega^* = \operatorname{argmin}_{\omega} F(\omega, X, z)$$

- F: Loss function
- · X: The training data
- · z: Training labels

INTRODUCTION: ML AND OPTIMIZATION II

After we have found ω^* , we can do Prediction on new data points:

$$\hat{z}_i := h(\omega^*, x_i)$$

- · X_i: new data point with unknown label Z_i
- h: hypothesis function of the ML model

INTRODUCTION: CHALLENGES IN MACHINE LEARNING

- Massive amounts of training data
- · Construction of very large models
- · Handling high memory/computational demands

Stochastic Methods

$$F(\omega) := \mathbb{E}\left[f(\omega, \xi)\right]$$

$$F(\omega) := \mathbb{E}[f(\omega, \xi)]$$

• ξ : Random variable; takes the form of an input-output-pair (x_i, z_i)

$$F(\omega) := \mathbb{E}\left[f(\omega, \xi)\right] = \frac{1}{N} \sum_{i=1}^{N} f(\omega, x_i, z_i)$$

- ξ : Random variable; takes the form of an input-output-pair (x_i, z_i)
- f: Partial loss function corresponding to a single data point.

$$F(\omega) := \mathbb{E}\left[f(\omega, \xi)\right] = \frac{1}{N} \sum_{i=1}^{N} f(\omega, x_i, z_i)$$

- ξ : Random variable; takes the form of an input-output-pair (x_i, z_i)
- f: Partial loss function corresponding to a single data point.
- Example loss function: $f(\omega, x_i, z_i) = |z_i \omega^T x_i|$ (Linear Regression)

INTRODUCTION: STOCHASTIC METHODS

Gradient Method

 $\min F(\omega)$

Stochastic Gradient Descent (SGD)

 $\min \mathbb{E}\left[f(\omega, \xi)\right]$

$$\omega^{(k+1)} := \omega^k - \alpha_k \nabla F(\omega^k)$$

Gradient Method

 $\min F(\omega)$

$$\omega^{(k+1)} := \omega^k - \alpha_k \nabla F(\omega^k)$$

Stochastic Gradient Descent (SGD)

$$\min \mathbb{E}\left[f(\omega, \xi)\right]$$

$$\omega^{k+1} := \omega^k - \alpha_k \nabla \hat{F}(\omega^k)$$

with

$$\nabla \hat{F}(\omega^k) := \frac{1}{b} \sum_{i \in \mathcal{S}_k} \nabla f(\omega^k, x_i, z_i)$$

where
$$S_k \subset [N]$$
, $b := |S_k| \ll N$
"Mini Batch"

STOCHASTIC QUASI-NEWTON METHOD (SQN)

Stochastic Gradient Descent

$$\min \mathbb{E}\left[f(\omega, \xi)\right]$$

$$\omega^{k+1} := \omega^k - \alpha_k \nabla \hat{F}(\omega^k)$$

$$\nabla \hat{F}(\omega^k) := \frac{1}{b} \sum_{i \in \mathcal{S}_k} \nabla f(\omega^k, x_i, z_i)$$

Stochastic Newton Method

$$\min \mathbb{E}\left[\mathit{f}(\omega,\xi)\right]$$

Stochastic Gradient Descent

$$\min \mathbb{E}\left[f(\omega,\xi)\right]$$

$$\omega^{k+1} := \omega^k - \alpha_k \nabla \hat{F}(\omega^k)$$

$$\nabla \hat{F}(\omega^k) := \frac{1}{b} \sum_{i \in S_k} \nabla f(\omega^k, x_i, z_i)$$

Stochastic Newton Method

$$\min \mathbb{E}\left[f(\omega,\xi)\right]$$

$$\omega^{k+1} := \omega^k - \alpha_k \nabla^2 \hat{F}(\omega^k)^{-1} \nabla \hat{F}(\omega^k)$$

with

$$\nabla^2 \hat{F}(\omega^k) := \frac{1}{b_H} \sum_{i \in S_{H,t}} \nabla^2 f(\omega^t, X_i, Z_i)$$

where

$$S_{H,t} \subset [N], \quad b_H := |S_{H,t}| \ll N,$$
(t) subsequence of (k)

SQN: PERFORMANCE I

Performance on Logistic Regression, Problem size: 69550×600

Armijo-stepsizes, Further SQN-parameters: L=10, M=5

EEG: Fixed Subset Objective vs. Accessed Data Points

Performance on Logistic Regression, Problem size: 69550×600

SQN: MAIN RESULTS

- · Can be faster than SGD on appropriate Datasets
- Requires tedious, manual tuning of hyperparameters to be efficient!
- Convergence conditions

PROXIMAL METHOD

PROXIMAL METHOD: BASIC THEORY

Problem

$$\min_{x} F(x) := \underbrace{f(x)}_{smooth} + \underbrace{h(x)}_{non-smooth}$$

Proximity Operator

$$\operatorname{prox}_{h}(v) = \underset{x}{\operatorname{argmin}} \left(h(x) + \frac{1}{2} ||x - v||_{2}^{2} \right)$$

Figure 1: Evaluating a proximal operator at various points. N Parikh, S Boyd, Proximal Methods, Foundations and Trends in Optimization 1, 2014

Traditional Proximal Gradient Step:

$$x_{k+1} = \operatorname{prox}_{\lambda_k h}(x_k - \lambda_k \nabla f(x_k))$$

Quasi-Newton Proximal Step:

$$x_{k+1} = \operatorname{prox}_{h}^{B_k}(x_k - B_k^{-1}\nabla f(x_k)),$$

with
$$B_k = \underbrace{D_k}_{diag} + \underbrace{u_k}_{\in \mathbb{R}^n} u_k^T$$
.

A zero-memory approach is used

PROXIMAL METHOD: PERFORMANCE I

$$F(x) = ||Ax - b|| + \lambda ||x||_1$$

$$A \in \mathbb{R}^{1500 \times 3000}, \ b \in \mathbb{R}^{1500}$$

$$A_{ij}, \ b_i \sim \mathcal{N}(0, 1), \ \lambda = 0.1$$

	0SR1	ProxGrad	L-BFGS-B
Iterations	1,822	135,328	1,989
Run-Time	68 s	1,144 s	56 s

$$F(x) = \|Ax - b\| + \lambda \|x\|_1$$

$$A \in \mathbb{R}^{2197 \times 2197}, \ b \in \mathbb{R}^{2197}$$
 A: Discretization of 3D Laplacian
$$\lambda = 1$$

	0SR1	ProxGrad	L-BFGS-B
Iterations	7	18	10
Run-Time	0.037 s	0.004 s	0.022 s

Number of Iterations

High-dimensional data: Extension to stochastic framework

Batch size = 1 Batch size = 50 Batch size = 150 Batch size = 15

Number of Iterations

Number of Iterations

PROXIMAL METHOD: MAIN RESULTS

- · Superior results to standard proximal gradient
- Competitive with other standard methods
- · Extension to stochastic framework possible
- Applicable to large-scale problems

ELECTROENCEPHALOGRAPHY (EEG)

HOW DEEP IS YOUR SLEEP?

SLEEPING PATIENT / 20 NIGHTS OF EEG RECORDINGS

PREDICT NEXT SLOW WAVE

CLASSIFICATION: RESULTS FOR SQN

Batch-size	1000, 1000	500, 500	
Mean Score	0.8	0.8	
Std	0.007	0.006	
Running Time	65 s	31 s	
M	5	5	
L	10	10	

CLASSIFICATION: RESULTS FOR 0SR1

	λ=0.1	λ=0.01	λ =0.1	λ=0.01
Batch-size	100	100	1000	1000
Mean Score	0.8	0.67	0.8	0.8
Std	0.01	0.14	0.01	0.016
Running Time	63 s	45 s	68 s	69 s

DICTIONARY LEARNING

IMAGE DENOISING

CAN WE RECOVER THE IMAGE?

IMAGE IS PARTIALLY DESTROYED

RECONSTRUCT IMAGE

Well-known machine learning model:

$$\min_{D,\alpha} \frac{1}{N} \sum_{i=1}^{N} \| \underbrace{x_i - D\alpha_i}_{\text{a) SQN}} \|_2^2 + \underbrace{\lambda \|\alpha_i\|_1}_{\text{b) Prox}}$$

2-phase optimization problem

- 1. Update "dictionary"
- 2. Induce sparsity
 - ⇒ Example: Reconstruction of partially distorted images

DICTIONARY LEARNING IN IMAGE RECONSTRUCTION I

Figure 2: Noisy image

DICTIONARY LEARNING IN IMAGE RECONSTRUCTION II

Figure 3: Reconstructed image

SUMMARY

- · Large amounts of data
- · Need for stochastic algorithms
- · Second order methods to improve speed
- · For smooth and non-smooth problems
- Good performance of implementation on various problems

S. Becker and I. Fadili.

A quasi-newton proximal splitting method.

In Advances in Neural Information Processing Systems, pages 2618-2626, 2012.

R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer.

A stochastic quasi-newton method for large-scale optimization.

arXiv.org Preprint: arXiv:1401.7020, 2014.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro.

Online learning for matrix factorization and sparse coding.

The Journal of Machine Learning Research, 11:19–60, 2010.

N. Parikh and S. Boyd.

Proximal algorithms.

Foundations and Trends in optimization, 1(3):123–231, 2013.

LOGISTIC REGRESSION

$$f(\omega, x_i, y_i) = -y_i \log(h(\omega, x_i)) - (1 - y_i) \log(1 - h(\omega, x_i))$$
 with
$$h(\omega, x_i) := sigmoid(\omega^T x_i) := \frac{1}{1 + e^{-\omega^T x_i}}$$