```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Import the Excel Package

```
In [2]: pip install xlrd
```

Requirement already satisfied: xlrd in c:\users\captr\anaconda3\lib\site-packages (2.0.1)

Note: you may need to restart the kernel to use updated packages.

Load The Data Set

```
In [3]: data = pd.read_excel("C:\\Users\\captr\\OneDrive\\Desktop\\marketing data.xls")
    data.head()
```

Out[3]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	R
	0	1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	
	1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	
	2	10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	
	3	1386	1967	Graduation	Together	\$32,474.00	1	1	2014-11-05 00:00:00	
	4	5371	1989	Graduation	Single	\$21,474.00	1	0	2014-08-04 00:00:00	

5 rows × 28 columns

Data Inspection

```
In [4]: data.Dt Customer.head()
                          6/16/14
Out[4]:
        1
                          6/15/14
                          5/13/14
         3
              2014-11-05 00:00:00
              2014-08-04 00:00:00
        Name: Dt_Customer, dtype: object
        print(data.columns)
In [5]:
        Index(['ID', 'Year_Birth', 'Education', 'Marital_Status', ' Income ',
                'Kidhome', 'Teenhome', 'Dt_Customer', 'Recency', 'MntWines',
                'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts',
                \verb|'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases', \\
                'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',
                'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
                'AcceptedCmp2', 'Response', 'Complain', 'Country'],
               dtype='object')
In [6]:
         data[' Income '].head()
```

```
$84,835.00
Out[6]:
        1
             $57,091.00
        2
             $67,267.00
        3
             $32,474.00
        4
             $21,474.00
        Name: Income, dtype: object
In [7]:
        data.isnull().sum()
                                 0
        ID
Out[7]:
        Year_Birth
                                 0
        Education
                                 0
        Marital_Status
                                 0
         Income
                                24
                                 0
        Kidhome
        Teenhome
                                 0
        Dt_Customer
                                 0
                                 0
        Recency
        MntWines
                                 0
        MntFruits
                                 0
        MntMeatProducts
                                 0
        MntFishProducts
                                 0
                                 0
        MntSweetProducts
        MntGoldProds
                                 0
        NumDealsPurchases
                                 0
        NumWebPurchases
                                 0
        NumCatalogPurchases
                                 0
        NumStorePurchases
                                 0
        NumWebVisitsMonth
                                 0
        AcceptedCmp3
                                 0
        AcceptedCmp4
                                 0
        AcceptedCmp5
                                 0
                                 0
        AcceptedCmp1
                                 0
        AcceptedCmp2
                                 0
        Response
        Complain
                                 0
                                 0
        Country
        dtype: int64
```

As we can see that the income column has 24 null values so we will fix it

```
In [8]:
    data.columns = data.columns.str.strip()
    data['Income'] = data['Income'].replace('[\$,]', '', regex=True).astype(float)
    income_means = data.groupby(['Education', 'Marital_Status'])['Income'].transform('n
    data['Income'] = data['Income'].fillna(income_means)
In [9]: data.head(30)
```

)25, 11:28					Mark	Marketing Project					
Out[9]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rec	
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14		
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14		
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14		
	3	1386	1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00		
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00		
	5	7348	1958	PhD	Single	71691.0	0	0	3/17/14		
	6	4073	1954	2n Cycle	Married	63564.0	0	0	1/29/14		
	7	1991	1967	Graduation	Together	44931.0	0	1	1/18/14		
	8	4047	1954	PhD	Married	65324.0	0	1	2014-11-01 00:00:00		
	9	9477	1954	PhD	Married	65324.0	0	1	2014-11-01 00:00:00		
	10	2079	1947	2n Cycle	Married	81044.0	0	0	12/27/13		
	11	5642	1979	Master	Together	62499.0	1	0	2013-09-12 00:00:00		
	12	10530	1959	PhD	Widow	67786.0	0	0	2013-07-12 00:00:00		
	13	2964	1981	Graduation	Married	26872.0	0	0	10/16/13		
	14	10311	1969	Graduation	Married	4428.0	0	1	2013-05-10 00:00:00		
	15	837	1977	Graduation	Married	54809.0	1	1	2013-11-09 00:00:00		
	16	10521	1977	Graduation	Married	54809.0	1	1	2013-11-09 00:00:00		
	17	10175	1958	PhD	Divorced	32173.0	0	1	2013-01-08 00:00:00		
	18	1473	1960	2n Cycle	Single	47823.0	0	1	7/23/13		
	19	2795	1958	Master	Single	30523.0	2	1	2013-01-07 00:00:00		
	20	2285	1954	Master	Together	36634.0	0	1	5/28/13		
	21	115	1966	Master	Single	43456.0	0	1	3/26/13		
	22	10470	1979	Master	Married	40662.0	1	0	3/15/13		
	23	4065	1976	PhD	Married	49544.0	1	0	2013-12-02 00:00:00		
	24	10968	1969	Graduation	Single	57731.0	0	1	11/23/12		
	25	5985	1965	Master	Single	33168.0	0	1	10/13/12		
	26	5430	1956	Graduation	Together	54450.0	1	1	9/14/12		
	27	8432	1956	Graduation	Together	54450.0	1	1	9/14/12		

453

1956

PhD

Widow 35340.0

1

1

6/29/14

28

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rec
29	9687	1975	Graduation	Single	73170.0	0	0	5/31/14	

```
data.isnull().sum()
                                 0
         ID
Out[10]:
         Year_Birth
                                 0
         Education
                                 0
         Marital_Status
                                 0
         Income
                                 0
         Kidhome
                                 0
         Teenhome
         Dt_Customer
                                 0
         Recency
         MntWines
                                 0
         MntFruits
                                 0
         MntMeatProducts
         MntFishProducts
                                 0
         MntSweetProducts
         MntGoldProds
         NumDealsPurchases
                                 0
         NumWebPurchases
                                 0
         NumCatalogPurchases
         NumStorePurchases
                                 0
         NumWebVisitsMonth
         AcceptedCmp3
         AcceptedCmp4
                                 0
         AcceptedCmp5
                                 0
         AcceptedCmp1
         AcceptedCmp2
                                 0
                                 0
         Response
         Complain
                                 0
         Country
         dtype: int64
```

Woah!! Problem solved as you can see from above

```
In [11]: type(data.Kidhome)
Out[11]: pandas.core.series.Series
```

Creating variables to represent the total number of children

```
In [12]: data["total_Children"] = data.Kidhome+data.Teenhome
   data.head()
```

Out[12]:	ID Year_Birth Ed		Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rece	
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14	
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14	
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14	
	3	1386	1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00	
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00	

5 rows × 29 columns

Creating variables to represent the age of the customer

```
In [14]: current_age = datetime.now().year
    data['Age'] = current_age - data['Year_Birth']
    data.head()
```

Out[14]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rece
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14	
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14	
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14	
	3	1386	1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00	
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00	

5 rows × 30 columns

Creating variables to represent the total spending of the customer

Out[16]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rece
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14	
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14	
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14	
	3	1386	1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00	
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00	

5 rows × 31 columns

4										•					
In [17]:	da	<pre>data["Total_Spending"]=data.MntWines + data.MntFruits + data.MntMeatProducts + data</pre>													
In [18]:	da	data.head()													
Out[18]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rece					
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14						
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14						
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14						
	3	1386	1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00						
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00						
	5 ro	ows × 3	1 columns												
4										•					

Creating variables to represent the total Purchasing of the customer

Out[19]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Rece
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14	
	1	1	1961	Graduation	Single	57091.0	0	0	6/15/14	
	2	10476	1958	Graduation	Married	1arried 67267.0 0 1		5/13/14		
	3 1386		1967	Graduation	Together	32474.0	1	1	2014-11-05 00:00:00	
	4	5371	1989	Graduation	Single	21474.0	1	0	2014-08-04 00:00:00	

5 rows × 32 columns

Generated box plots and histograms to gain insights into the distributions and identify outliers.

```
In [20]: %matplotlib inline
In [21]: import matplotlib.pyplot as plt

# Selecting only the numeric columns
numeric_columns = data.select_dtypes(include=['float64', 'int64']).columns

for col in numeric_columns:
    plt.figure(figsize=(8, 4))
    plt.hist(data[col], bins=20, alpha=0.5, color='blue', edgecolor='black')
    plt.title(f'Histogram of {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.show()
```


Histogram of Total_Spending

20

Total_Purchases

30

40

10


```
In [23]: numeric_columns = data.select_dtypes(include=['float64', 'int64']).columns
    for col in numeric_columns:
        plt.figure(figsize=(10, 4))
        plt.subplot(1, 2, 1)
        data.boxplot(column=col)
        plt.title(f'Box Plot of {col}')
```

C:\Users\captr\AppData\Local\Temp\ipykernel_13208\2962160218.py:3: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`. plt.figure(figsize=(10, 4))

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Kidhome

Box Plot of MntSweetProducts

Box Plot of MntGoldProds

Box Plot of NumDealsPurchases

Box Plot of NumWebPurchases

Box Plot of NumCatalogPurchases

Box Plot of NumStorePurchases

Box Plot of NumWebVisitsMonth

0.0

Box Plot of Response

Applied ordinal and one-hot encoding based on the various types of categorical variables

```
In [24]:
         import pandas as pd
         from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
In [25]:
         ordinal_columns = ['Education']
         nominal_columns = ['Marital_Status','Country']
In [26]:
         ordinal_encoder = OrdinalEncoder()
         data[ordinal columns] = ordinal encoder.fit transform(data[ordinal columns])
         onehot encoder = OneHotEncoder(sparse=False, drop='first') # drop='first' to avoid
In [27]:
         nominal_encoded = onehot_encoder.fit_transform(data[nominal_columns])
         C:\Users\captr\anaconda3\Lib\site-packages\sklearn\preprocessing\_encoders.py:972:
         FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be
         removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its defaul
         t value.
           warnings.warn(
In [28]:
         nominal encoded df = pd.DataFrame(nominal encoded, columns=onehot encoder.get featu
         data = pd.concat([data, nominal_encoded_df], axis=1)
In [29]:
         data.drop(columns=nominal columns, inplace=True)
         data.head()
In [30]:
```

Out[30]:		ID	Year_Birth	Education	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines
	0	1826	1970	2.0	84835.0	0	0	6/16/14	0	189
	1	1	1961	2.0	57091.0	0	0	6/15/14	0	464
	2	10476	1958	2.0	67267.0	0	1	5/13/14	0	134
	3	1386	1967	2.0	32474.0	1	1	2014-11-05 00:00:00	0	10
	4	5371	1989	2.0	21474.0	1	0	2014-08-04 00:00:00	0	6
	5 r	ows × 4	14 columns							
4										

Generated a heatmap to illustrate the correlation between different pairs of variables

```
import seaborn as sns
import matplotlib.pyplot as plt

# Select only numeric columns for the correlation matrix
numeric_data = data.select_dtypes(include=['float64', 'int64'])

# correlation matrix
correlation_matrix = numeric_data.corr()

# heatmap
plt.figure(figsize=(50, 50))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=plt.title("Correlation Heatmap")
plt.show()
```


Hypothesis Testing

i) Older individuals may not possess the same level of technological proficiency and may, therefore, lean toward traditional in-store shopping preferences

```
import scipy.stats as stats
import statsmodels.api as sm
import statsmodels.formula.api as smf

age_instore_corr, age_instore_pval = stats.spearmanr(data['Age'], data['NumStorePur age_online_corr, age_online_pval = stats.spearmanr(data['Age'], data['NumWebPurchas print(f"Spearman correlation between Age and In-store Purchases: {age_instore_corr: print(f"Spearman correlation between Age and Online Purchases: {age_online_corr:.2f

# Regression analysis for age and shopping preferences
instore_model = smf.ols('NumStorePurchases ~ Age', data=data).fit()
```

```
online_model = smf.ols('NumWebPurchases ~ Age', data=data).fit()
print("\nIn-store Purchases Regression Summary:\n", instore_model.summary())
print("\nOnline Purchases Regression Summary:\n", online_model.summary())
```

Spearman correlation between Age and In-store Purchases: 0.17, p-value: 0.0000 Spearman correlation between Age and Online Purchases: 0.16, p-value: 0.0000

In-store Purchases Regression Summary:

111 30010 10101	nases negr		-	sion Re	esults		
Dep. Variable Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Fr: ons:	Least Squa i, 01 Nov 2 13:21 2	OLS res 024 :28 240 238	F-stat	R-squared:		0.016 0.016 37.44 1.11e-09 -5800.2 1.160e+04 1.162e+04
=======================================	=======			t	P> t	[0.025	0.975]
Intercept Age			12	.048	0.000	3.240 0.024	4.499 0.046
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0. 0.	===== 972 000 718 439		•		1.701 221.533 7.85e-49 266.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Online Purchases Regression Summary:

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ons:	NumWebPurchase OL Least Square Fri, 01 Nov 202 13:21:2 224 223 nonrobus	S s 4 8 0 8	Adj. F-sta Prob	ared: R-squared: tistic: (F-statistic): ikelihood:		0.021 48.09 5.30e-12 -5443.4 1.089e+04 1.090e+04
=========		=======================================	====	=====	=========	======	========
	coef	std err		t	P> t	[0.025	0.975]
'	2.2286 0.0336	0.274 0.005	8. 6.		0.000 0.000	1.692 0.024	
Omnibus:	======	714.58	==== 0	Durbi	n-Watson:	======	1.793
Prob(Omnibus):	;	0.00	0	Jarqu	e-Bera (JB):		4011.906
Skew:		1.39	2	Prob(JB):		0.00
Kurtosis:		8.93	6	Cond.	No.		266.
=========			====	=====	========	======	

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

ii) Customers with children likely experience time constraints, making online shopping a more convenient option.

```
import scipy.stats as stats
In [35]:
         import statsmodels.formula.api as smf
         # Step 1: Perform Spearman's correlation test
         children_online_corr, children_online_pval = stats.spearmanr(data["total_Children"]
         print(f"Spearman correlation between Total Children and Online Purchases: {children
         # Step 2: Regression analysis for Total Children and Online Purchases
         online_model = smf.ols('NumWebPurchases ~ total_Children', data=data).fit()
         print("\nOnline Purchases Regression Summary:\n", online_model.summary())
         Spearman correlation between Total Children and Online Purchases: -0.19, p-value:
         0.0000
        Online Purchases Regression Summary:
                                    OLS Regression Results
         ______
        Dep. Variable: NumWebPurchases R-squared:
                                                                              0.021
                                     OLS Adj. R-squared:
                                                                              0.021
        Model:
        Method:
                              Least Squares F-statistic:

      Method:
      Least Squares
      F-statistic:
      40.77

      Date:
      Fri, 01 Nov 2024
      Prob (F-statistic):
      3.39e-12

      Time:
      13:28:41
      Log-Likelihood:
      -5442.9

      No. Observations:
      2240
      AIC:
      1.089e+04

      Df Residuals:
      2238
      BIC:
      1.090e+04

                                                                               48.99
        Df Model:
                                           1
        Covariance Type: nonrobust
         ______
        Intercept 4.5990 0.094 49.107 0.000 4.415 4.783 total_Children -0.5410 0.077 -6.999 0.000 -0.693 -0.389
         ______
                                    739.227 Durbin-Watson:
        Omnibus:
                                                                              1.781
         Prob(Omnibus):
                                      0.000 Jarque-Bera (JB):
                                                                          4161.022
                                      1.446 Prob(JB):
         Skew:
                                                                               0.00
                                       9.019 Cond. No.
         Kurtosis:
                                                                                2.94
         ______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

iii) Sales at physical stores may face the risk of cannibalization by alternative distribution channels.

```
import scipy.stats as stats
import statsmodels.formula.api as smf

# Step 1: Perform Spearman's correlation between store and alternative channels
store_online_corr, store_online_pval = stats.spearmanr(data['NumStorePurchases'], c
store_catalog_corr, store_catalog_pval = stats.spearmanr(data['NumStorePurchases'],
print(f"Spearman correlation between Store and Online Purchases: {store_online_corr
print(f"Spearman correlation between Store and Catalog Purchases: {store_catalog_corr
```

```
cannibalization_model = smf.ols('NumStorePurchases ~ NumWebPurchases + NumCatalogPu
print("\nMultiple Regression Summary for Store Purchases:\n", cannibalization_model
Spearman correlation between Store and Online Purchases: 0.67, p-value: 0.0000
Spearman correlation between Store and Catalog Purchases: 0.71, p-value: 0.0000
Multiple Regression Summary for Store Purchases:
           OLS Regression Results
______
Dep. Variable: NumStorePurchases R-squared:
                                               0.379
                     OLS Adj. R-squared:
Model:
              Least Squares F-statistic:
Method:
                                               681.7
            Fri, 01 Nov 2024 Prob (F-statistic): 6.63e-232
13:30:55 Log-Likelihood: -5285.7
Date:
Time:
No. Observations:
                    2240 AIC:
                                            1.058e+04
Df Residuals:
                    2237 BIC:
                                             1.059e+04
Df Model:
                      2
Covariance Type: nonrobust
______
                coef std err t P>|t| [0.025
0.975]
    .-----
               2.9459
                      0.099
                             29.898
                                    0.000
                                             2.753
Intercept
3.139
NumWebPurchases 0.4184 0.021 19.864 0.000
                                            0.377
0.460
NumCatalogPurchases 0.4264 0.020 21.296 0.000
______
                  157.310 Durbin-Watson:
                                             769.666
Prob(Omnibus):
                   0.000 Jarque-Bera (JB):
                    0.059 Prob(JB):
                                            7.40e-168
Skew:
                    5.869 Cond. No.
______
```

Step 2: Multiple regression analysis to evaluate impact on store sales

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Data Visualisation

Identifying the top-performing products and those with the lowest revenue.

```
import matplotlib.pyplot as plt

# Calculate total revenue for each product
product_revenue = data[['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProduct

# Sort revenues in descending order for clear visualization
product_revenue = product_revenue.sort_values(ascending=False)

# Plot the revenue for each product
plt.figure(figsize=(10, 6))
product_revenue.plot(kind='bar', color='skyblue', edgecolor='black')
plt.title("Total Revenue by Product Category")
plt.xlabel("Product Category")
```

```
plt.ylabel("Total Revenue")
plt.xticks(rotation=45)
plt.show()
```


Examining if there is a correlation between customers' age and the acceptance rate of the last campaign

```
import matplotlib.pyplot as plt
In [47]:
         import scipy.stats as stats
         from datetime import datetime
         data['Age'] = datetime.now().year - data['Year_Birth']
         # Step 1: Calculated acceptance rate by age group
         age_response = data.groupby('Age')['Response'].mean()
         # Step 2: Scatter plotted for visual analysis
         plt.figure(figsize=(10, 6))
         plt.scatter(data['Age'], data['Response'], alpha=0.5, color='blue')
         plt.title("Correlation between Age and Campaign Acceptance")
         plt.xlabel("Age")
         plt.ylabel("Campaign Acceptance (1 = Accepted, 0 = Not Accepted)")
         plt.show()
         # Step 4: Calculate Spearman correlation to measure the relationship
         correlation, p_value = stats.spearmanr(data['Age'], data['Response'])
         print(f"Spearman Correlation between Age and Campaign Acceptance: {correlation:.2f}
         # Interpretation
         if p value < 0.05:</pre>
             print("There is a statistically significant correlation between age and campaig
             print("There is no statistically significant correlation between age and campai
```


Spearman Correlation between Age and Campaign Acceptance: -0.02, p-value: 0.3268 There is no statistically significant correlation between age and campaign acceptance

Determining the country with the highest number of customers who accepted the last campaign

```
In [52]: plt.figure(figsize=(10, 6))
   plt.scatter(data['total_Children'], data['Total_Spending'], alpha=0.5, color='greer
   plt.title("Relationship between Number of Children and Total Expenditure")
   plt.xlabel("Total Number of Children at Home")
   plt.ylabel("Total Expenditure")
   plt.show()
```


Investigating if there is a discernible pattern in the number of children at home and the total expenditure

```
In [55]: correlation, p_value = stats.spearmanr(data['total_Children'], data['Total_Spending
    print(f"Spearman Correlation between Total Children and Total Expenditure: {correla
    if p_value < 0.05:
        print("There is a statistically significant relationship between the number of
    else:
        print("There is no statistically significant relationship between the number of</pre>
```

Spearman Correlation between Total Children and Total Expenditure: -0.48, p-value: 0.0000

There is a statistically significant relationship between the number of children a t home and total expenditure.

Analyzed the educational background of customers who lodged complaints in the last two years

```
import matplotlib.pyplot as plt

complaint_data = data[data['Complain'] == 1]

education_complaints = complaint_data['Education'].value_counts()

plt.figure(figsize=(8, 5))
   education_complaints.plot(kind='bar', color='coral', edgecolor='black')
   plt.title("Educational Background of Customers with Complaints")
   plt.xlabel("Education Level")
   plt.ylabel("Number of Complaints")
   plt.xticks(rotation=45)
   plt.show()
```

Educational Background of Customers with Complaints

Education Background Counts for Complaints:

Education

2.0 14

0.0 4

3.0 2

4.0 1

Name: count, dtype: int64