FCC TEST REPORT No. 14/136	March 24, 2014
for 47 CFR Part 15 Subpart C	date of issue

VBar Control 2.4 GHz FHSS Satellite Model name Receiver 2.4 GHz FHSS bidirectional setup and Product description telemetry remote control system FCC ID 2ABXHVBCRX10 Mikado Model Helicopters GmbH, Friedrich-Klausing-Straße 2, 14469 **Applicant** Potsdam, Brandenburg, Germany Mikado Model Helicopters GmbH, Friedrich-Klausing-Straße 2, 14469 Manufacturer Potsdam, Brandenburg, Germany

The results in this report apply only to the samples tested.

Reproduction or copying of this report or its any part may only be made with the prior

written approval of PE TC "Omega"

TESTING CENTER OF PUBLIC ENTERPRISE TESTING CENTER "OMEGA" 29 Vakulenchuk str., Sevastopol, 99053, Crimea, Ukraine, P.O.B.-37

phone: +380 692 53 70 72 fax: +380 692 46 96 79

e-mail: stcomega@stc-omega.biz

bergey Bogach.

Chief TC of PETC "OMEGA"

Table of contents

1 EQUIPMENT UNDER TEST	3
1.1 BASIC DESCRIPTION	3
1.2 TECHNICAL CHARACTERISTICS DECLARED BY MANUFACTURER	
1.3 Рнотоѕ	4
2 GENERAL INFORMATION ABOUT TESTS	5
2.1 TEST PROGRAM AND RESULTS OF THE TESTS	5
2.2 TEST MANNER	
2.3 TEST CONDITIONS AND TEST MODES	6
2.4 TEST EQUIPMENT USED	6
2.5 MEASUREMENT UNCERTAINTY	7
2.6 Photo of test site	7
3 REPORT OF MEASUREMENTS AND EXAMINATIONS.	10
3.1 HOPPING CHANNEL SEPARATION	10
3.2 NUMBER OF HOPPING FREQUENCIES USED	11
3.3 HOPPING CHANNEL BANDWIDTH	
3.4 DWELL TIME OF EACH FREQUENCY	14
3.5 OUTPUT POWER	16
3.6 100 kHz Bandwidth of Frequency Band Edges Measurement	17
3.7 RADIATED EMISSION FROM RECEIVER PART	18
3.8 RADIATED EMISSION FROM TRANSMITTER PART	
3.9 ANTENNA REQUIREMENT	26
3.10 RF EXPOSURE	27

1 EQUIPMENT UNDER TEST

1.1 Basic description

Equipment Category Transceiver	
Test item description	2.4 GHz FHSS Transceiver
Model name	VBar Control 2.4 GHz FHSS Satellite Receiver
Serial numbers	N/A

1.2 Technical characteristics declared by manufacturer

Frequency range 2.400 GHz to 2.4835 GHz

Transmission Adaptive and non-adaptive frequency hopping operation

with "listen before talk" function

Channel Usage 80

Channel Spacing used 1 MHz

Maximum output power +20 dBm (100 mW)

Modulation form FHSS

Modulation type MSK

MSK Deviation 2.182 kHz

Symbol Rate 150 kHz

Maximal Duty Cycle: 20 %

Antenna type $2 \text{ x patch antennas (angle of radiation} > 180^{\circ})$

Antenna gain 2 dBi

Temperature range From minus 5 °C to + 45 °C, non-condensing

Supply voltage from 3.0 V to 5.3 V

1.3 Photos

Figure 1.3.2

Figure 1.3.3

2 GENERAL INFORMATION ABOUT TESTS

2.1 Test program and results of the tests

TC PE TC "OMEGA"

Number of test	FCC rule	Description of test	Result (Pass, Fail, N/A)
1	FCC CFR 47:2008 § 15.247 (a)(1)	Hopping channel separation	Pass
2	FCC CFR 47:2008 § 15.247 (a)(1)(iii)	Number of hopping frequencies used	Pass
3	FCC CFR 47:2008 § 15.247 (a)(1)	Hopping channel bandwidth	Pass
4	FCC CFR 47:2008 § 15.247 (a)(1)(iii)	Dwell time of each frequency	Pass
5	FCC CFR 47:2008 § 15.247 (b)(1)	Output power	Pass
6	FCC CFR 47:2008 § 15.247 (d)	100 kHz Bandwidth of Frequency Band Edges measurement	Pass
7	FCC CFR 47:2008 § 15.209	Radiated Emission	Pass
8	FCC CFR 47:2008 § 15.203	Antenna Requirement	Pass
9	FCC CFR 47:2008 §15.109	Radiated Emission from Receiver Part	Pass
10	FCC CFR 47:2008 § 15.247 (h)(i)	RF exposure	Pass

Tested by:

Laboratory engineer

Boris Trifonov

Laboratory engineer

Vladimir Osaulko

Checked by:

Leading engineer

Bacque of Lacque of My L

Fjodor Shubin

2.2 Test manner

The EUT consists one transceiver and two antennas. For organization of connection was used ancillary transceiver VBar Control 2.4 GHz FHSS Remote Control System.

The test distance of radiated emission from antenna to EUT is 3 m.

Methods of measurement are according to ANSI C63.4-2003.

2.3 Test conditions and test modes

Normal temperature and humidity:

- temperature: from minus 5 °C to + 45 °C (non-condensing);
- relative humidity: from 20 % to 75 %

Normal power source: $U_{nom} = 3.0$ to 5.3 Volt.

The frequencies for the testing

Channel, No.	Frequency, MHz	
0	2401	
40	2441	
80	2481	

2.4 Test equipment used

№	Name	Model	Inventory or serial No.
1.	Spectrum analyzer	FSV40	100821
2.	EMI test receiver	R&S ESU-26	100260
3.	Directional coupler	773D	100101
4.	Attenuator	Agilent 8494B	MY42141168
5.	Attenuator	PE7014-10	101692
6.	Antenna	Schwarzbeck VULB9163	9163244
7.	Antenna	HP11966 model 3115	9903-5701
8.	Antenna	BBHA 9170	9170446
9.	Power supply	Б5-29	12426
10.	Psychrometer	ВИТ-2	B931

All listed above test equipment is calibrated and certified in accordance with established procedure. The equipment has certificates currently in force.

Ancillary equipment

	ary equipment		
№	Name	Model	Serial Number
1.	Servo - mechanism	Savox	N/A
2.	Controller	VBar Flybarless controller	N/A
3.	Transceiver	VBar Control 2.4 GHz FHSS Remote Control System	N/A

2.5 Measurement uncertainty

Parameter	Maximum uncertainty
Output power	± 1.3 dB
Frequency range	± 1×10 ⁻⁵
Spurious emissions	± 2.7 dB
Radiated emission	± 4.7 dB
Time	± 3 %
Temperature	± 1°C
Humidity	± 5 %
DC voltage	± 2 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Measurement uncertainty complies with the requirements of the normative documents and is guaranteed by the test procedures and test equipment.

2.6 Photo of test site

Figure 2.6.1 - Conducted Test

Figure 2.6.2 - Radiated Emission Test (Frequency Range 30 MHz – 1000 MHz)

Figure 2.6.3 - Radiated Emission Test (Frequency Range 1 GHz – 18 GHz)

Figure 2.6.3 - Radiated Emission Test (Frequency Range 18 GHz – 25 GHz)

3 REPORT OF MEASUREMENTS AND EXAMINATIONS.

3.1 Hopping channel separation

3.1.1 Test procedure

- 1) The EUT output was connected to the spectrum analyzer according to test setup layout (3.1.2).
- 2) Set RBW of spectrum analyzer to 100 kHz and VBW to 100 kHz.
- 3) The Hopping channel separation is defined as the channel is separated with the next channel.

3.1.2 Test setup layout

3.1.3 Test result

Temperature: +18 °C Relative humidity: 60 %

Hopping channel separation, MHz	Limit (2/3 of 20dB Bandwidth), kHz	Test Result (Pass, Fail, N/A)
1.0	333	Pass

Remark: frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or **two-thirds** of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

3.1.4 Plot Hopping channel separation

3.2 Number of hopping frequencies used

3.2.1 Test procedure

- 1) The EUT output was connected to the spectrum analyzer according to test setup layout (3.2.2).
- 2) Set RBW of spectrum analyzer to 300 kHz and VBW to 300 kHz.
- 3) The Number of hopping frequencies used is defined as the device has numbers of total channel.

3.2.2 Test setup layout

3.2.3 Test result

Temperature: +18 °C Relative humidity: 46 %

Number of hopping frequencies	Limit	Test Result (Pass, Fail, N/A)
80	15	Pass

Remark: The hopping sequence of a FHSS system is the sequence of the hopping channels used by the equipment. Non-adaptive Frequency Hopping systems shall make use of a hopping sequence(s) that contains at least 15 hopping channels. Adaptive Frequency Hopping systems shall make use of a hopping sequence(s) that is capable of operating over a minimum of 90 % of the band specified in table, from which at any given time a minimum of 20 hopping channels shall be used. Each hopping channel of the hopping sequence shall be occupied at least once during a period not exceeding four times the product of the dwell time per hop and the number of channels.

3.2.4 Plot Number of hopping frequencies

3.3 Hopping channel bandwidth

3.3.1 Test procedure

- 1) The ETU output was connected to the spectrum analyzer via attenuator.
- 2) Set RBW of spectrum analyzer to 100 kHz and VBW to 100 kHz.
- 3) The Hopping channel bandwidth is defined as the frequency range where the power is higher than peak power minus 20 dB.

3.3.2 Test setup layout

3.3.3 Test result

Temperature: +18 °C Relative humidity: 46 %

Channel	Frequency, MHz	Hopping channel bandwidth, kHz	Limit, MHz	Test Result (Pass, Fail, N/A)
0	2401	494.9	1.0	Pass
40	2441	490.6	1.0	Pass
80	2481	494.9	1.0	Pass

Remark: Non-adaptive Frequency Hopping systems shall make use of non-overlapping hopping channels separated by the channel bandwidth as measured at 20 dB below peak power. The hopping channels defined within a hopping sequence shall be at least 1 MHz apart (channel separation).

3.3.4 Plot Channel bandwidth (2401 MHz)

3.3.5 Plot Channel bandwidth (2441 MHz)

3.3.6 Plot Channel bandwidth (2481 MHz)

3.4 Dwell Time of Each Frequency

3.4.1 Test procedure

- 1) The EUT output was connected to the spectrum analyzer according to test setup layout (3.4.2).
- 2) Set RBW of spectrum analyzer to 1 MHz and VBW to 1 MHz.
- 3) Set the center frequency on any frequency would be measured and set the frequency span to zero span.

3.4.2 Test setup layout

3.4.3 Test result

Temperature: +18 °C Relative humidity: 46 %

Channels	Pulse width (ms)	Number of 6 sec	Dwell Time, ms	Limit, s	Test Result (Pass, Fail, N/A)
0	1.812	4	7.25	0.4	Pass
80	1.812	4	9.06	0.4	Pass

Remark:

- 1. Dwell time = pulse width * Number of 6 sec.
- 2. 6 sec = 0.4 sec *15 times (Dwell Time * Minimum number of hopping frequencies)

3.4.4 Plot Pulse width

3.4.5 Plot "Number of 6 sec" (2401 MHz)

3.4.6 Plot "Number of 6 sec" (2481 MHz)

3.5 Output power

3.5.1 Test procedure

- 1) The EUT output was connected to the spectrum analyzer according to test setup layout (3.5.2).
- 2) The center frequency of the spectrum analyzer was set to the fundamental frequency and set RBW to 1 MHz and VBW to 1 MHz.

3.5.2 Test setup layout

3.5.3 Test result

Temperature: +18 °C

Relative humidity: 46 %

Ant. 1

Channel	Frequency, MHz	Measured output power, W	Limit, W	Test Result (Pass, Fail, N/A)
0	2401	0.099	0.125	Pass
40	2441	0.088	0.125	Pass
80	2481	0.089	0.125	Pass

Ant. 2

Channel	Frequency, MHz	Measured output power, W	Limit, W	Test Result (Pass, Fail, N/A)
0	2401	0.096	0.125	Pass
40	2441	0.089	0.125	Pass
80	2481	0.091	0.125	Pass

Remark: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2401-2483.5 MHz band: 0,125 watts.

3.6 100 kHz Bandwidth of Frequency Band Edges Measurement

3.6.1 Test procedure

The transmitter output was connected to the spectrum analyzer via attenuator. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded. The spectrum plots (Peak RBW=VBW=100 kHz) are attached on the following pages.

3.6.2 Test setup layout

3.6.3 Test result

Temperature: +18 °C Relative humidity: 46 %

Frequency, MHz	Measured, dBc	Limit, dBc	Test Result (Pass, Fail, N/A)
2392.67	- 50.28	- 20	Pass
2397.23	- 47.05	- 20	Pass
2399.83	- 43.67	- 20	Pass
2484.55	- 55.91	- 20	Pass
2484.99	- 56.22	- 20	Pass
2485.47	- 56.09	- 20	Pass

Remark: Below -20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth)

3.6.4 Plots Frequency Band Edges

3.7 Radiated Emission from Receiver Part

3.7.1 Test procedure

- 1) The EUT was placed on a turn table top 0.8 m above the floor.
- 2) The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3) The table was rotated 360 degrees to determine the position of the highest radiation.
- 4) The antenna is a broadband antenna and its height is varied between 1 meter and 4 meters above the floor to find the maximum value of the shield strength for both horizontal polarization and vertical polarization of the antenna.
- 5) For each suspected emission, the EUT was arranged to its worst case.
- 6) The test-receiver was set to Peal or Quasi-peak detect function with specified bandwidth with maximum hold mode.
- 7) For testing below 1 GHz, if the emission level of EUT in peak mode was 3 dB lower than the specified limit, the testing stopped and peak values of EUT were noted, otherwise, the emissions were repeating one by one using the quasi-peak method and noted.

3.7.2 Test setup layout

3.7.3 Limit Limit FCC CFR 47:2008 §15.109

Frequency (MHz)	Field Strength (dBµV/m at 3-meter)	Field Strength (µV/m at 3-meter)
30-88	40	100
88-216	43.5	150
216-960	46	200
Above 960	54	500

3.7.4 Test result FCC CFR 47:2008 §15.109 Temperature: +20 °C - +22 °C Relative humidity: 67 % - 72 %

Below 1 GHz

Final Result	· ·				•			
Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polari- zation	Azimuth (deg)	Margin (dB)	Limit (dBuV/ m)
38.640000	8.5	1000.0	120.0	400.0	V	0.0	31.5	40.0
44.400000	8.8	1000.0	120.0	150.0	V	0.0	31.2	40.0
61.960000	9.1	1000.0	120.0	350.0	Н	0.0	30.9	40.0
99.680000	9.3	1000.0	120.0	350.0	Н	0.0	34.7	43.5
157.080000	13.0	1000.0	120.0	100.0	Н	0.0	31.0	43.5
199.520000	21.7	1000.0	120.0	250.0	Н	90.0	22.3	43.5
200.000000	35.3	1000.0	120.0	150.0	Н	0.0	8.7	43.5
203.280000	24.3	1000.0	120.0	200.0	Н	90.0	19.7	43.5
203.840000	24.0	1000.0	120.0	250.0	Н	270.0	20.0	43.5
204.200000	24.9	1000.0	120.0	150.0	Н	0.0	19.1	43.5
206.400000	24.3	1000.0	120.0	100.0	Н	90.0	19.7	43.5
208.000000	24.1	1000.0	120.0	250.0	Н	0.0	19.9	43.5
208.600000	24.0	1000.0	120.0	150.0	Н	270.0	20.0	43.5
210.520000	23.8	1000.0	120.0	100.0	Н	180.0	20.2	43.5
239.480000	34.2	1000.0	120.0	100.0	Н	180.0	11.8	46.0
249.440000	16.3	1000.0	120.0	100.0	Н	0.0	29.7	46.0
359.240000	23.0	1000.0	120.0	150.0	Н	0.0	23.0	46.0
624.000000	27.7	1000.0	120.0	150.0	Н	0.0	18.3	46.0
939.440000	22.4	1000.0	120.0	250.0	V	90.0	23.6	46.0

Above 1 GHz

Frequency (MHz)	Average (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polari- zation	Azimuth (deg)	Margin (dB)	Limit (dBuV/ m)
1307.000000	29.1	500.0	1000.000	100.0	V	0.0	24.9	54.0
1659.000000	30.8	500.0	1000.000	100.0	V	0.0	23.2	54.0
2362.000000	35.0	500.0	1000.000	100.0	V	0.0	19.0	54.0
2548.500000	35.1	500.0	1000.000	100.0	Н	0.0	18.9	54.0
4206.500000	37.0	500.0	1000.000	100.0	V	90.0	17.0	54.0
4877.500000	38.7	500.0	1000.000	100.0	Н	90.0	15.3	54.0
7455.500000	41.4	500.0	1000.000	100.0	V	0.0	12.6	54.0
10041.500000	46.1	500.0	1000.000	100.0	V	180.0	7.9	54.0
13140.500000	49.0	500.0	1000.000	100.0	Н	0.0	5.0	54.0
16376.500000	52.8	500.0	1000.000	100.0	Н	0.0	1.2	54.0
18346.000000	33.8	500.0	1000.0	100.0	V	0.0	20.2	54.0
19006.000000	34.4	500.0	1000.0	100.0	V	0.0	19.6	54.0
19488.000000	34.5	500.0	1000.0	100.0	Н	90.0	19.5	54.0
20467.000000	34.6	500.0	1000.0	100.0	Н	0.0	19.4	54.0
20913.000000	34.5	500.0	1000.0	100.0	V	180.0	19.5	54.0
21810.000000	35.1	500.0	1000.0	100.0	Н	90.0	18.9	54.0
22629.000000	36.3	500.0	1000.0	100.0	Н	0.0	17.7	54.0
23345.000000	38.0	500.0	1000.0	100.0	Н	90.0	16.0	54.0
23841.000000	38.3	500.0	1000.0	100.0	V	90.0	15.7	54.0
24707.000000	38.6	500.0	1000.0	100.0	Н	0.0	15.4	54.0

3.8 Radiated Emission from Transmitter Part

3.8.1 Test procedure

- 1) The EUT was placed on a turn table top 0.8 m above the floor.
- 2) The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3) The table was rotated 360 degrees to determine the position of the highest radiation.
- 4) The antenna is a broadband antenna and its height is varied between 1 meter and 4 meters above the floor to find the maximum value of the shield strength for both horizontal polarization and vertical polarization of the antenna.
- 5) For each suspected emission, the EUT was arranged to its worst case.
- 6) The test-receiver was set to Peal or Quasi-peak detect function with specified bandwidth with maximum hold mode.
- 7) For testing below 1 GHz, if the emission level of EUT in peak mode was 3 dB lower than the specified limit, the testing stopped and peak values of EUT were noted, otherwise, the emissions were repeating one by one using the quasi-peak method and noted.

3.8.2 Test setup layout

3.8.3 Limit Limit FCC CFR 47:2008 §15.209

Frequency (MHz)	Field Strength (dBµV/m at 3-meter)	Field Strength (µV/m at 3-meter)
30-88	40	100
88-216	43.5	150
216-960	46	200
Above 960	54	500

3.8.4 Test result FCC CFR 47:2008 §15.209 Temperature: +20 °C - +22 °C Relative humidity: 67 % - 72 %

Below 1 GHz

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polari- zation	Azimuth (deg)	Margin (dB)	Limit (dBuV/ m)
38.760000	8.5	1000.0	120.0	350.0	V	0.0	31.5	40.0
44.360000	8.8	1000.0	120.0	150.0	Н	0.0	31.2	40.0
63.720000	6.9	1000.0	120.0	150.0	V	0.0	33.1	40.0
119.760000	17.5	1000.0	120.0	400.0	Н	90.0	26.0	43.5
172.760000	23.1	1000.0	120.0	150.0	Н	0.0	20.4	43.5
184.800000	24.6	1000.0	120.0	100.0	Н	180.0	18.9	43.5
189.560000	26.7	1000.0	120.0	100.0	Н	90.0	16.8	43.5
192.920000	26.1	1000.0	120.0	250.0	Н	90.0	17.4	43.5
194.560000	25.5	1000.0	120.0	100.0	Н	180.0	18.0	43.5
196.880000	24.1	1000.0	120.0	250.0	Н	90.0	19.4	43.5
197.400000	26.9	1000.0	120.0	100.0	Н	90.0	16.6	43.5
200.000000	35.8	1000.0	120.0	150.0	Н	0.0	7.7	43.5
201.000000	25.8	1000.0	120.0	100.0	Н	0.0	17.7	43.5
202.880000	24.3	1000.0	120.0	100.0	Н	0.0	19.2	43.5
239.440000	32.6	1000.0	120.0	100.0	Н	180.0	13.4	46.0
247.040000	17.5	1000.0	120.0	200.0	Н	0.0	28.5	46.0
478.960000	27.0	1000.0	120.0	100.0	Н	0.0	19.0	46.0
611.000000	25.6	1000.0	120.0	100.0	V	90.0	20.4	46.0
949.360000	22.7	1000.0	120.0	200.0	Н	0.0	23.3	46.0

Above 1 GHz*

* - Operating frequency range is excluded from the spectrogram

Frequency (MHz)	Peak (PK) (dBuV /m)	Average (AV) (dBuV/ m)	Meas. Time (ms)	Bandw- idth (kHz)	Height (cm)	Polari- zation	Azimuth (deg)	Margin (PK) (dB)	Limit (PK) (dBuV/ m)	Margin (AV) (dB)	Limit (AV) (dBuV /m)
1247.000000	42.1	29.2	500.0	1000.0	100.0	V	0.0	31.9	74.0	26.1	54.0
1757.000000	44.5	31.6	500.0	1000.0	100.0	V	0.0	29.5	74.0	22.9	54.0
2323.000000	57.4	34.7	500.0	1000.0	100.0	V	0.0	16.6	74.0	21.2	54.0
2387.000000	63.9	34.8	500.0	1000.0	100.0	V	90.0	10.1	74.0	19.9	54.0
4203.500000	49.6	37.0	500.0	1000.0	100.0	Н	90.0	24.4	74.0	17.5	54.0
5524.500000	52.4	39.9	500.0	1000.0	100.0	Н	90.0	21.6	74.0	14.5	54.0
7415.500000	54.3	41.6	500.0	1000.0	100.0	V	90.0	19.7	74.0	12.3	54.0
10034.500000	58.4	46.1	500.0	1000.0	100.0	V	90.0	15.6	74.0	7.4	54.0
12875.500000	61.6	49.0	500.0	1000.0	100.0	Н	0.0	12.4	74.0	5.7	54.0
17593.500000	65.5	52.9	500.0	1000.0	100.0	Н	180.0	8.5	74.0	1.7	54.0
18480.000000	46.2	34.0	500.0	1000.0	100.0	Н	0.0	27.8	74.0	20.6	54.0
18783.000000	46.6	34.1	500.0	1000.0	100.0	V	90.0	27.4	74.0	19.3	54.0
19352.000000	46.4	34.2	500.0	1000.0	100.0	Н	90.0	27.6	74.0	19.3	54.0
20132.000000	47.5	34.5	500.0	1000.0	100.0	Н	0.0	26.5	74.0	19.0	54.0
20568.000000	47.9	34.4	500.0	1000.0	100.0	Н	0.0	26.1	74.0	21.1	54.0
21576.000000	47.6	34.8	500.0	1000.0	100.0	Н	0.0	26.4	74.0	18.6	54.0
22170.000000	48.5	35.6	500.0	1000.0	100.0	Н	180.0	25.5	74.0	18.2	54.0
23305.000000	51.2	37.8	500.0	1000.0	100.0	V	270.0	22.8	74.0	16.1	54.0
24164.000000	50.9	38.6	500.0	1000.0	100.0	V	270.0	23.1	74.0	16.1	54.0
24820.000000	51.0	38.6	500.0	1000.0	100.0	V	90.0	23.0	74.0	15.5	54.0

3.9 Antenna Requirement

3.9.1 Test procedure

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.9.2 Test result

The antennas of the VBar Control 2.4 GHz FHSS Satellite Receiver permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

3.10 RF exposure

3.10.1 General

This test was performed to determine the minimum safe distance between the transmitter antenna and human to avoid public exposure in excess of limits for general population (uncontrolled exposure). Specification test limits are given in Table 3.10.1.

Table 3.10.1 — Limits For Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Averaging time (minutes)								
(A) Limits for Occupational/Controlled Exposure											
0.3-3.0	614	1.63	*100	6							
3.0-30	1842/f	4.89/f	*900/f2	6							
30-300	61.4	0.163	1.0	6							
300-1,500	-	-	f/300	6							
1,500-100,000	-	-	5	6							
	(B) Limits for Genera	l Population/Uncontrol	led Exposure								
0.3-1.34	614	1.63	*100	30							
1.34-30	824/f	2.19/f	*180/f ²	30							
30-300	27.5	0.073	0.2	30							
300-1,500	-	-	f/1500	30							
1,500-100,000	-	-	1.0	30							

f = frequency in MHz * = Plane-wave equivalent power density

3.10.2 Test procedure: 47 CRF, §1.1307(b)(1).

3.10.3 Power density calculation for mobile transmitter

The power density at the specified distance was calculated from the following equation:

$$S = \frac{PG}{4\pi R^2},$$

where

 $S = power density (mW/cm^2)$

P =average power input to the antenna over averaging time (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator (numeric)

R = distance to the center of radiation of the antenna (cm)

Power density calculation for duty cycle 20 %:

$$S = \frac{0.2 \times 99 \times 1.58}{4 \times \pi \times 20^2} = 0.0062 \ [mW/cm^2]$$

Enganomari	Maximum	Antenna	EI	RP	Power	I imit	Morgin	
Frequency range, MHz	output power, dBm	gain, dBi	dBm	m mW	density, mW/m ²	Limit, mW/cm ²	Margin, mW/cm ²	Verdict
2.400 - 2.4835	18	2	20	100	0.0062	1.0	0.9938	Pass

The equipment is intended for use at a distance of more than 20 cm from humans.