Inventory Forecasting & Sales Analysis Project

Self-Initiated | Mar 2025

Project Overview

This project simulates a real-world inventory environment using synthetic retail sales data across 1,000 SKUs, 5 product categories, and 10 vendors over 52 weeks. The objective is to analyze sales performance, identify inventory challenges, and build foundational forecasting insights to support inventory planning and replenishment decisions.

■ Dataset Summary

- Data Source: Simulated synthetic data
- Structure: 12 months of weekly SKU-level sales
- Fields: SKU_ID, Category, Vendor, Week, Store_Location, Units_Sold, Unit_Cost, Lead Time Days
- Total Records: 52,000

🢡 Methodology & Analysis

1. Data Cleaning

- Removed missing Units_Sold and Store_Location values
- Standardized data types (e.g., categorical conversion, numeric fields)
- Created Total_Cost field to assist with cost-based analysis
- Exported cleaned dataset for use across tools (Excel, Power BI, SQL)

2. Exploratory Data Analysis (Python)

- Performed using Jupyter Notebooks and Pandas
- Top SKUs identified: SKU_0204, SKU_0593, SKU_0913
- Vendor with highest volume: Vendor_2 (109K+ units, 15-day lead time)
- Visualized stockouts (e.g., SKU_0247 with 7 weeks of zero sales)
- Line, bar, and box plots created using Seaborn and Matplotlib

a. Weekly Average Sales by Category

Line plot analysis reveals consistent demand across all five categories with minor fluctuations, reflecting a fairly stable demand environment for weekly inventory planning.

b. Top 10 Best-Selling SKUs

Horizontal bar chart shows that SKU_0204 led total annual sales, followed closely by other high-volume SKUs. These products should be prioritized in reorder strategies and monitored closely.

c. Stockout Frequency by SKU

Several SKUs, such as SKU_0247 and SKU_0521, had 5+ weeks of zero sales,

suggesting stockout risks or poor demand. These require either better forecasting or strategic phasing out.

d. Vendor Performance Summary

Vendor_2 had the highest total units sold, followed by Vendor_9 and Vendor_1. Vendor performance evaluation helps prioritize partners for reliable replenishment and lead time planning.

e. Weekly Sales Variability by Category

Box plot highlights that most categories have similar sales spread with noticeable outliers. Some categories like Health & Beauty showed higher variability, useful for safety stock considerations.

2. Forecasting (Python)

- Used a 3-week Moving Average for demand forecasting
- Focused on high-selling SKUs like SKU_0204
- Evaluated model performance: MAE = 6.74, RMSE = 8.04
- Insights support short-term planning for top SKUs.

3. Excel Analysis

- Tools used: IF, VLOOKUP, XLOOKUP, Conditional Formatting.
- ABC Analysis: 70% of sales driven by ~700 SKUs

Insight: ABC classification helped prioritize inventory attention. Reorder alerts triggered when Current Inventory < Reorder Point.

• Reorder Dashboard: Flagged SKUs under simulated reorder points

Insight: Dynamic dashboard highlighted SKUs at risk, improving visibility of potential stock gaps. If the **Current_Inventory** is less than **Reorder_Point**, it will trigger the Reorder_Alert by saying "Yes" or "No" and changing the color to Red/Green. This helps in determining when to order the finishing stock before it completely become out of stock and ends up hurting the business.

4. Power BI Dashboard

- **1.** Created interactive charts on:
 - a. SKU-level sales

b. Vendor performance

c. Stockout analysis

- 2. Used slicers for filtering by vendor, category, and week
- 3. Exported dashboard visuals to PDF

Insight: BI dashboard enabled category managers to filter performance by region, vendor, and SKU in real time.

5. SQL Analysis (BigQuery)

- Queried SKU sales and vendor performance in sku_sales_cleaned
- Top SKUs: Same as Python findings

Vendors: Vendor_2, Vendor_9, and Vendor_1 led in volume

Stockouts: SKUs like SKU_0247 had 6+ zero-sales weeks

Weekly trends: Category-level demand fluctuations visible

Insight: SQL queries reinforced Python findings and added drill-downs by vendor and category, supporting data validation.

Skills Demonstrated

- Data Cleaning & Wrangling (Python/Pandas)
- Exploratory Analysis & Visualization (Seaborn/Matplotlib)
- Forecasting (Moving Average)
- Excel Modeling & Dashboarding (ABC, ROP, Loss Estimation)
- Power BI for BI storytelling & filtering
- SQL querying (BigQuery) for business insights

III Key Insights & Business Impact

- ~70% of total sales came from "A" category SKUs
- Vendor_2 is a high performer with optimal lead time (15.28 days)
- Stockouts identified on top SKUs indicates room for alert systems
- 3-week moving average captured short-term demand trends reliably
- SQL & BI visuals supported executive-level reporting

Brijeshkumar Patel Aka Dadaga

bspwave5696@gmail.com

www.linkedin.com/in/brijeshkumarpatel5696