Quantifying uncertainty of deep neural networks in skin lesion classification

Pieter Van Molle, Tim Verbelen, Cedric De Boom, Bert Vankeirsbilck, Jonas De Vylder, Bart Diricx, Tom Kimpe, Pieter Simoens, Bart Dhoedt

pieter.vanmolle@ugent.be

Deep learning → SOTA in image classification

Can we augment the **dermatologist** workflow?

Skin lesion classification

- ISIC Archive
- At MICCAI: ISIC Challenge

Deep learning → SOTA in image classification

Skin lesion classification

- ISIC Archive
- At MICCAI: ISIC Challenge

Limitations of neural networks

- only a point estimate
- typically overconfident for a single class

Correctly capturing uncertainty is indispensable

Bayesian modelling → introduces uncertainty in deep learning e.g. MC dropout

Can we augment the **dermatologist** workflow?

Bayesian modelling → introduces uncertainty in deep learning e.g. MC dropout

Can we augment the **dermatologist** workflow?

Contribution

Uncertainty metric that leverages MC dropout

- based on the overlap between output distributions
 - models doubt
- bounded between 0 and 1
 - interpretable by a dermatologist

Quantifying uncertainty

$$BC(h_1,h_2) = rac{1}{T} \sum_{i=1}^n \sqrt{h_1}_i h_2$$
i

T := number of forward passes

n := number of histogram bins

 $h_{1i} := \text{number of members in bin } i \text{ for histogram } h_1$

 $h_{2i} := \text{number of members in bin } i \text{ for histogram } h_2$

Results

ExpectationWhen the model is confident, it should perform better

Thank you for your attention

Pieter Van Molle, Tim Verbelen, Cedric De Boom, Bert Vankeirsbilck, Jonas De Vylder, Bart Diricx, Tom Kimpe, Pieter Simoens, Bart Dhoedt

pieter.vanmolle@ugent.be

