Unit 5

Karnaugh Maps

Logic Circuits (Spring 2022)

Minimum Sum-of-Products

- A sum of product terms is a *minimum* SOP expression
 - It has a minimum number of *terms*
 - It has a minimum number of *literals*, for all those expressions with the same minimum number of terms
- Minimum two-level gate circuit
 - It has a minimum number of gates and gate inputs
 - A minimum SOP ⇒ a minimum 2-level circuit
- How to find a minimum sum-of-products
 - Combine terms by using the uniting theorem XY + XY' = X
 - Eliminate redundant terms by using the consensus theorem or other theorems
 - Eliminate literals by using the theorem X + X'Y = X + Y

5.1 Minimum Forms of Switching Functions

Minimum Sum-of-Products: Example

- Example: $F(a, b, c) = \sum m(0, 1, 2, 5, 6, 7)$
 - Minimum SOP expression: the first case

$$F = a'b'c' + a'b'c + a'bc' + ab'c + abc' + abc$$

$$= a'b' + b'c + bc' + ab$$

Minimum SOP expression: the second case

$$F = a'b'c' + a'b'c + a'bc' + ab'c + abc' + abc$$

$$= a'b' + bc' + ac$$

 Combining terms in a different way may lead to a different minimum expressions

5.1 Minimum Forms of Switching Functions

논리회로 5-3

Karnaugh Map

- Karnaugh map
 - A systematic way of simplifying switching functions
 - Specifies the value of the function for every combination of values of the independent variables
 - Each 1 on the map corresponds to a minterm

5.2 Two- and Three-Variable Karnaugh Maps

- Variable and value
 - The value of a variable A is listed on the top
 - The value of the other B is listed on the side
- Truth table ⇒ Karnaugh map

AB	F
0 0	1
0 1	1
1 0	0
1 1	0

- Properties of Karnaugh map
 - A square represents a minterm
 - Minterms in adjacent squares differ in only one variable
 ⇒ the minterms can be combined
 - Product terms are represented by one or more squares

5.2 Two- and Three-Variable Karnaugh Maps

논리회로

5-5

Three-Variable Karnaugh Map

- Variable and value
 - The value of a variable A is listed on the top
 - The values of the other B and C are listed on the side
- Truth table \Rightarrow Karnaugh map

ABC	F
0 0 0	0
0 0 1	0
010	1
0 1 1	1
100	1
101	0
1 1 0	1
1 1 1	0

5.2 Two- and Three-Variable Karnaugh Maps

Drawing a Karnaugh Map

Locations of minterms

Binary representation

Decimal representation

4

5

7

6

- Minterm ab'c' is adjacent to minterm a'b'c', ab'c, and abc'
- Minterm m_4 is adjacent to minter m_0 , m_5 , and m_6

5.2 Two- and Three-Variable Karnaugh Maps

논리회로 5-7

Drawing a Karnaugh Map

- Mapping minterm and maxterm expressions on Karnaugh map
- Example: $F(a, b, c) = \Sigma m(1, 3, 5) = \Pi M(0, 2, 4, 6, 7)$

5.2 Two- and Three-Variable Karnaugh Maps

논리회로

5-8

Drawing a Karnaugh Map

- Plotting product terms
- Example: *b*, *bc'*, *ac'*

5.2 Two- and Three-Variable Karnaugh Maps

논리회로 5-9

Drawing a Karnaugh Map

- Plotting an expression in algebraic form
- Example: f(a, b, c) = abc' + b'c + a'

5.2 Two- and Three-Variable Karnaugh Maps

Veitch Diagram

- Other forms of Karnaugh maps
- Using different labeling
 - -A = 1 for the half of the map labeled A
 - -A = 0 for the other half

5.7 Other Forms of Karnaugh Maps

논리회로 5-11

Utilizing a Karnaugh Map

- Simplifying an expression
- Example: $F = \sum m(1, 3, 5) = a'c + b'c$

5.2 Two- and Three-Variable Karnaugh Maps

Utilizing a Karnaugh Map

- Simplification based on Karnaugh map
- Example: $F = \Sigma m(0, 1, 2, 5, 6, 7)$

5.2 Two- and Three-Variable Karnaugh Maps

논리회로 5-13

Utilizing a Karnaugh Map

- Consensus theorem
- Example: xy + x'z + yz = xy + x'z

5.2 Two- and Three-Variable Karnaugh Maps

Location of terms

5.3 Four-Variable Karnaugh Maps

논리회로 5-15

Karnaugh Map

Supplementary 논리회로 5-16

- Plotting a four-variable function
- Example: acd + a'b + d'

5.3 Four-Variable Karnaugh Maps

논리회로 5-17

Four-Variable Karnaugh Map

Simplifying a four-variable expression

5.3 Four-Variable Karnaugh Maps

- Simplifying a four-variable expression
- Example: A'C'D' + A'D + B'C + CD + AB'D'

• Minimum sum-of-product expression: A'C' + CD + B'D'

Supplementary

논리회로 5-19

Four-Variable Karnaugh Map

- Expressions with "don't care"
 - "don't care" terms are noted as X's

5.3 Four-Variable Karnaugh Maps

- Application: SOP \Rightarrow POS form
- Example

$$f = x'z' + wyz + w'y'z' + x'y$$

$$f' = y'z + wxz' + w'xy$$

$$f = (y + z')(w' + x' + z)(w + x' + y')$$

5.3 Four-Variable Karnaugh Maps

논리회로 5-21

Prime Implicants

- Implicant
 - A product term of an expression
 - If the product term is equal to 1, the expression is also equal to 1
- Prime implicant
 - An implicant that can not be combined with another implicant
 - The implicant is no longer an implicant if any literal is deleted from it
- Example
 - Prime implicant: ac', a'b'c, a'cd'
 - Non prime implicant: abc', ab'c', a'b'c'd'
- A SOP expression containing a non-prime implicant term cannot be minimum

5.4 Determination of Minimum Expression Using Essential Prime Implicants

Prime Implicants: Example

- All of the prime implicants are generally not needed ⇒The minimum solution may not include all prime implicants
- Example

5.4 Determination of Minimum Expression Using Essential Prime Implicants

논리회로

5-23

Essential Prime Implicant

- Covering minterms
 - Some minterms can be covered by only a single prime implicant

f = BD + B'C + AC

- Essential prime implicant
 - A prime implicant that covers a minterm that any other prime implicant could not cover
 - Essential prime implicants must be included in the minimum SOP

5.4 Determination of Minimum Expression Using Essential Prime Implicants

Essential Prime Implicants: Example

- Example: $F = \Sigma m(0, 1, 2, 4, 5, 7, 11, 15)$
- Prime implicants
 - Essential prime implicants:A'C, A'B'D', ACD

Minimum sum-of-product expression

$$A'C' + A'B'D' + ACD + \begin{cases} A'BD \\ \text{or} \\ BCD \end{cases}$$

5.4 Determination of Minimum Expression Using Essential Prime Implicants

논리회로

5-25

Procedure to Obtain a Minimum SOP

- 1. Choose a minterm (a 1) which has not yet been covered.
- 2. Find all 1's and X's adjacent to that minterm. (Check the *n* adjacent squares on an *n*-variable map.)
- 3. If a single term covers the minterm and all of the adjacent 1's and X's, then that term is an essential prime implicant, so select that term. (Note that "don't-care" terms are treated like 1's in steps 2 and 3 but not in step 1.)
- 4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.
- 5. Find a minimum set of prime implicants which cover the remaining 1's on the map. (If there is more than one such set, choose a set with a minimum number of literals.)

5.4 Determination of Minimum Expression Using Essential Prime Implicants