AUTOTUNING: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel

phrb@ime.usp.br

Journée au Vert POLARIS, March 2018

OUTLINE

- 1. Autotuning
- 2. Applying Design of Experiments to Autotuning
- 3. Looking at Data
- 4. Summary & Perspectives

AUTOTUNING: OPTIMIZING PROGRAM CONFIGURATION

Architectures for HPC

How to write efficient code for each of these?

Autotuning

The process of automatically finding a configuration of a program that optimizes an objective

Configurations

- Program configuration
 - Algorithm, block size, . . .
- · Source code transformation
 - Loop unrolling, tiling, rotation, . . .
- Compiler configuration
 - -02, vectorization, . . .
- ...

Objectives

- Execution time
- Memory & power consumption
- . . .

AUTOTUNING: SEARCH SPACES

Search Spaces

Represent the effect of all possible configurations on the objectives

Can be difficult to explore, with multiple local optima and undefined regions

Mishra's Bird function

AUTOTUNING: SEARCH SPACES

Search Spaces

Represent the effect of all possible configurations on the objectives

Can be difficult to explore, with multiple local optima and undefined regions

Hölder Table function

AUTOTUNING: SEARCH SPACES

Issue 1: Exponential Growth

Simple factors can generate large spaces:

- 30 boolean factors
- 2³⁰ combinations

Issue 2: Geometry

- Discrete or continuous factors
- "Smoothness"
- Interactions between factors

Issue 3: Measurement Time

Time to compile:

- Benchmark GPU applications: 1~10s
- Benchmark FPGA applications: 1~10min
- Industrial FPGA applications: 1~10h

AUTOTUNING: MULTIPLE APPROACHES

Popular Approaches

- Exhaustive
- Meta-Heuristics
- Machine Learning

System	Domain	Approach
ATLAS	Dense Linear Algebra	Exhaustive
INSIEME	Compiler	Genetic Algorithm
Active Harmony	Runtime	Nelder-Mead
ParamILS	Domain-Agnostic	Stochastic Local Search
OPAL	Domain-Agnostic	Direct Search
OpenTuner	Domain-Agnostic	Ensemble
MILEPOST GCC	Compiler	Machine Learning
Apollo	GPU kernels	Decision Trees

Main Issues

- Optimized function is a black-box:
 - Learn nothing about the search space
 - Can't explain why optimizations work
- These approaches assume:
 - A large number of function evaluations
 - Search space "smoothness"
 - Good solutions are reachable

APPLYING DESIGN OF EXPERIMENTS TO AUTOTUNING

Our Approach

Using efficient experimental designs to overcome the issues of exponential growth, geometry, and measurement time

Design Requirements

- Support a large number of factors (Exponential Growth)
- Support continous and discrete factors (Geometry)
- Minimize function evaluations (Measurement Time)

Main Design Candidates

Screening Designs:

- Assume interactions are negligible
- Estimate main effects
- Aim to minimize runs

Mixed-Level Designs:

- Factors have different number of levels
- Many optimality criteria

SCREENING AND MIXED-LEVEL DESIGNS

Screening Designs

Plackett-Burman designs for 2-level factors:

- Orthogonal arrays of strength 2
- Estimate the main effects of n factors with n + 1 runs

Construction:

- For n + 1 multiple of 4
- Identical to a fractional factorial design if
 n + 1 is a power of two

Mixed-Level Designs

Strategy 1: Contractive Replacement

- Find specific sets of k-level columns of a design
- Contract the set into a new factor with more levels
- Maintain orthogonality of the design

Strategy 2: Direct Construction

Directly generate small mixed-level designs by solving Mixed Integer Programming problems

LOOKING AT DATA: GPUS

CUDA Compiler Flags

- Rodinia Benchmark
- 16 factors, few with multiple levels
- 10⁶ combinations
- 1~10s to measure
- Screening Experiment:
 - 16 "2-level" factors
 - 4 "dummy" factors

LOOKING AT DATA: FPGAS

FPGA Compiler Parameters

- CHStone Benchmark
- 141 factors, most with multiple levels
- 10¹²⁸ combinations
- 1~10min to measure
- Multiple objectives
- Search with Meta-Heuristics:
 - Unstructured data difficults analysis
 - We are working on obtaining more data

SUMMARY & PERSPECTIVES

Our Approach

Using efficient experimental designs to overcome the issues of exponential growth, geometry, and measurement time

Main Design Candidates

Screening & Mixed-Level designs

Target Scenario: FPGA Compiler Parameters

- Large search space
- Factors with multiple levels
- Large measurement time

Perspectives

- Short term:
 - Generate small, balanced, orthogonal multi-level designs for large numbers of factors
- Long term:
 - Use such designs to autotune industrial-level FPGA applications
- Longer term:
 - Iteratively drop least significant factors with user input
 - Provide an autotuning shared library to applications

AUTOTUNING: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel

phrb@ime.usp.br

Journée au Vert POLARIS, March 2018