Upcoming Assignments and Assessments

Homework Assignment #5 is due Friday 2/28

Exam will cover sections up to and including 3.4 (matrix multipercution)

Quizzes #4 and #5 will be administered during this week's recitation * T is a linear transformation \Leftrightarrow (i) T(u+v) = T(u) + T(v)(ii) T(uu) = cT(u)

Linear * Important feet about liveen T(0) =0 Transformations Part II

* All motorx transformations are linear.

Linear Transformations (5)

The standard coordinate vectors in \mathbb{R}^n are the *n* vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \dots, e_{n-1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Linear Transformations (6)

If A is an $m \times n$ matrix with columns v_1, v_2, \dots, v_n then $Ae_i = v_i$ for each $i = 1, 2, \dots, n$

$$\begin{bmatrix} 1 & 1 & 1 \\ v_1 & v_2 & \dots & v_n \\ 1 & 1 & 1 \end{bmatrix} e_i = v_i$$

Multiplication by e_i simply selects A's i^{th} column.

For example,

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & -2 & 4 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 3 & 0 \\ 2 & -2 & 4 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 3 & 0 \\ 2 & -2 & 4 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$$

Definition: The $n \times n$ identity matrix (columns are standard coordinate vectors),

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

Linear Transformations (7)

From linear transformations to matrices

Theorem: Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Let A be the $m \times n$ matrix

$$A = \begin{bmatrix} | & | & | & | \\ T(e_1) & T(e_2) & \dots & T(e_n) \\ | & | & | \end{bmatrix}$$

Then T is a matrix transformation associated with A, that is, T(x) = Ax

Proof: Suppose $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation. Then

T
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = T \left(x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = T(xe_1 + ye_2 + ze_3) = xT(e_1) + yT(e_2) + zT(e_3)$$

$$= \begin{bmatrix} 1 \\ T(e_1) & T(e_2) & T(e_3) \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

A is the **standard matrix** for T

Matrix transformations are the same as linear transformations!

Linear Transformations (8)

Example 4

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x) = 3x. Find the standard matrix A for T.

$$T \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be defined by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5x + y \\ y - x \end{bmatrix}$. Find the standard matrix A for T .

$$A = \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Linear Transformations (9)

T= Reflution over the x-axis

Example 5

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be defined as follows

T(x) = the vector x rotated counterclockwise by the angle θ .

Find the standard matrix for T.

Example 6

Verify that $Id_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation and that its standard matrix

is the identity matrix
$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$Id_{K^n}(u) + Id_{K^n}(v) = u + v$$

$$Id_{K^n}(u) = u = z \cdot Id_{K^n}(v)$$

$$T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Solution. The columns of A are obtained by evaluating T on the standard coordinate vectors e_1, e_2 . In order to compute the entries of $T(e_1)$ and $T(e_2)$, we have to do some trigonometry.

We see from the picture that