

Gibbs Phenomenon

By Andy Pan (Qbane), 2016/3/10. (See Gist for revision history.)

This is a test document on MathJax support on various platforms, mainly on printed material.

For large N, the graph of the Nth partial sum of the Fourier series of f on [-L, L] overshoots the graph of the function at a jump discontinuity by approx. 9% of the magnitude of the jump.

(a) Nth Partial Sum

We write out the Nth partial sum of the Fourier series of f(x) and expand its coefficients:

$$egin{aligned} S_N(x) &= a_0 + \sum_{n=1}^N \left[a_n \cos \left(rac{n\pi x}{L}
ight) + b_n \sin \left(rac{n\pi x}{L}
ight)
ight] \ &= rac{1}{2L} \int_{-L}^L f(t) dt \ &+ rac{1}{L} \sum_{n=1}^N \left[\int_{-L}^L f(t) \cos \left(rac{n\pi t}{L}
ight) dt
ight] \cos \left(rac{n\pi x}{L}
ight) \ &+ rac{1}{L} \sum_{n=1}^N \left[\int_{-L}^L f(t) \sin \left(rac{n\pi t}{L}
ight) dt
ight] \sin \left(rac{n\pi x}{L}
ight) \ &= rac{1}{L} \int_{-L}^L f(t) \left\{ rac{1}{2} + \sum_{n=1}^N \cos \left[rac{n\pi (t-x)}{L}
ight]
ight\} dt. \end{aligned}$$

(b) Trigonometric Identity

It can be shown that

$$\sum_{n=1}^N \cos(n\xi) = rac{\sin\left[(N+rac{1}{2})\xi
ight]}{2\sin\left(rac{\xi}{2}
ight)} - rac{1}{2}.$$

Here is a trick: multiply it by $\sin\left(\frac{\xi}{2}\right)$ and try to lead to an identity. It can also be simplified by transforming $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and transforming back to \sin terms. (It would be tricky if you didn't know RHS, though.)

(c) Approximating (a)

For small x, $\sin x \approx x$, and using (b), (a) can be expressed as

$$S_N(x)pprox rac{1}{2L}\!\int_{-L}^L\!f(t)rac{\sin\!\left[rac{\pi}{L}\!(N+rac{1}{2}\!)(t-x)
ight]}{rac{\pi}{2L}\!(t-x)}\!dt.$$

(d) Estimating a Discontinuity

To find out the amount, we use the following function with a jump discontinuity 1 at x=L,

$$f(x) = \left\{ egin{array}{ll} 0 & ext{if } -L < x \leq x_0, \ 1 & ext{if } x_0 < x < L. \end{array}
ight.$$

Inserting it into S_N yields

$$egin{align} S_N(x) &pprox rac{1}{2L} \! \int_{x_0}^L rac{\sin\!\left[rac{\pi}{L}\!(N+rac{1}{2}\!)(t-x)
ight]}{rac{\pi}{2L}\!(t-x)} dt \ &= rac{1}{\pi} \! \int_{(\pi/L)(N+1/2)(x_0-x)}^{(\pi/L)(N+1/2)(L-x)} rac{\sin s}{s} \! ds. \end{split}$$

(e) Putting $N \to \infty$

The integral $\int_0^z \frac{\sin t}{t} dt$ is called the sine integral, denoted as $\mathrm{Si}(z)$.

Computing S_N when $N \to \infty$ diverges to three cases depending on x, in which we are only interested in the case that $x > x_0$, that is $(\pi/L)(N+1/2)(x_0-x) \to -\infty$:

$$egin{aligned} &\lim_{N o\infty} S_N(x) pprox rac{1}{\pi} \!\int_{(\pi/L)(N+1/2)(x_0-x)}^\infty rac{\sin s}{s} \! ds \ &= rac{1}{\pi} \! \left\{ \lim_{z o\infty} \mathrm{Si}(z) - \mathrm{Si}\left[\left(rac{\pi}{L}
ight)\left(N+rac{1}{2}
ight)(x_0-x)
ight]
ight\}, \end{aligned}$$

(f) Evaluating the Sine Integral

Si(z) at infinity can be computed as follows,

$$\lim_{z \to \infty} \operatorname{Si}(z) = \int_0^{\infty} \frac{\sin t}{t} dt$$

$$= \int_0^{\infty} \int_0^{\infty} e^{-st} \frac{\sin t}{t} ds dt$$

$$= \int_0^{\infty} \int_0^{\infty} e^{-st} \frac{\sin t}{t} dt ds$$

$$= \int_0^{\infty} \frac{1}{s^2 + 1} ds$$

$$= \frac{\pi}{2}.$$

 $\mathrm{Si}(z)$ is maximized when $\mathrm{Si}'(z^*)=0$, that is $\frac{\sin z^*}{z^*}=0$, and the minimal x^* satisfying the condition is $z^*=\pi$.

Thus the overshoot is at most

$$\frac{1}{\pi} \left[\frac{\pi}{2} - \operatorname{Si}(\pi) \right] = \frac{1}{2} - \frac{\operatorname{Si}(\pi)}{\pi} \approx 0.0895,$$

which is approximately 9%.

Written with StackEdit.