Explicit CN Soundness Proof

Dhruv Makwana

June 24, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF SKETCH: Induction over the substitution.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROVE: $C': L': \Phi': R' \vdash (\sigma): (C'': L'': \Phi'': R'')$.

2.2 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. C; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$:(C'; \mathcal{L}' ; Φ' ; \mathcal{R}'). 2. C'; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$. $\langle 1 \rangle 1$. Case: Ty_PVal_Var. $C'; \mathcal{L}'; \Phi' \vdash x \Rightarrow \beta$

 $\langle 2 \rangle 1$. Have $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}'$).

- $\langle 2 \rangle 2$. So $\exists pval. \ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$ by Ty_Subs_Cons_{Comp,Log}.
- $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.

 $\langle 1 \rangle 2$. Case: Ty_TPE_Let.

 $C'; L'; \Phi' \vdash \mathtt{let} ident_or_pattern = pexpr \mathtt{in} tpexpr \Leftarrow y_2:\beta_2. term_2.$

- $\langle 2 \rangle 1$. By induction,
 - 1. C; L; $\Phi \vdash \sigma(pexpr) \Rightarrow y_1 : \beta. \sigma(term_1)$
 - 2. $C, C_1; L, y_1:\beta; \Phi, term_1, \Phi' \vdash \sigma(tpexpr) \Leftarrow y_2:\beta. \sigma(term_2).$
- $\langle 2 \rangle 2$. C; L; $\Phi \vdash \sigma(\text{let } ident_or_pattern = pexpr in tpexpr) \Leftarrow y_2: \beta_2. \sigma(term_2)$ as required.
- $\langle 1 \rangle 3$. Case: Ty_TVal_Log.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \text{done } pval, \overline{spine_elem}_i^i \Leftarrow \exists y:\beta. ret.$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } \overline{spine_elem}_i^i) \Leftarrow \sigma(pval/y, \cdot (ret)).$
- $\langle 2 \rangle 2$. Therefore $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\,\mathit{pval},\,\overline{\mathit{spine_elem}_i}^i) \Leftarrow \exists\, y : \beta.\,\sigma(\mathit{ret}).$
- $\langle 1 \rangle 4$. Case: Ty_Spine_Res.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = res_term, \ \overline{x_i = spine_elem_i}^i :: res \multimap arg \gg res_term/x, \psi; ret$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma(res_term) \Leftarrow \sigma(res)$.
 - 2. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R}_2 \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret)$.
- $\langle 2 \rangle 2$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.

2.3 Identity Extension

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

 $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash (id): (C; \mathcal{L}; \Phi; \mathcal{R}_1)$.

PROOF: By induction on each of C; L; Φ ; R_1 .

 $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$

PROOF: By induction on σ with base case as above.

2.4 Usable Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$: $(\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

2. $\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$. PROOF: Apply identity extension to 1.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, \mathrm{id})(J)$. PROOF: Apply substitution lemma to $\langle 1 \rangle 1$.
- $\langle 1 \rangle 3. \ C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J).$ PROOF: $\mathrm{id}(J) = J.$

3 Progress

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

Assume: $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$.

PROVE: either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

4 Framing

If $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ and h_1, h_2 disjoint then $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

PROOF SKETCH: Induction over the operational rules.

Assume: 1. $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$.

2. h_1, h_2 disjoint.

PROVE: $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

5 Type Preservation

5.1 Ty_Spine_* and Decons_Arg_* construct same substitution and return type

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ and } \overline{x_i = spine_elem_i}^i :: arg \gg \sigma'; ret' \text{ then } \sigma = \sigma' \text{ and } ret = ret'.$

PROOF SKETCH: Induction over arg.

5.2 Type Preservation Statement and Proof

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then $\forall h : \mathcal{R}, e', h' : \mathcal{R}'$. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies \cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$

3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

 $\langle 1 \rangle 1$. Case: Ty_Action_Create.

Let: $pt = mem_{-}ptr \stackrel{\times}{\mapsto}_{\tau} pval$.

 $ret = \sum y_p$:loc.representable $(\tau *, y_p) \land \texttt{alignedI} (mem_int, y_p) \land \exists y : \beta_\tau . y_p \stackrel{\times}{\mapsto}_\tau y \otimes \texttt{I}.$

Assume: 1. $\cdot; \cdot; \cdot; \cdot \vdash \text{create}(mem_int, \tau) \Rightarrow ret$.

2. $\langle \cdot ; \mathtt{create} (mem_int, \tau) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done} \ mem_ptr, pval, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, ... pt \vdash done mem_ptr, pval, pt \Leftarrow ret$

- $\langle 2 \rangle 1. : : : : \vdash mem_ptr \Rightarrow loc$ by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow \text{representable}(\tau *, mem_ptr) \land \text{alignedI}(mem_int, mem_ptr))$ by construction of mem_ptr .
- $\langle 2 \rangle 3. : : : \vdash pval \Rightarrow \beta_{\tau}$ by construction of pval.
- $\langle 2 \rangle 4. : : : : : pt \vdash pt \Leftarrow pt \text{ by Ty_Res_PointsTo}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I and then $\langle 2 \rangle 4 \langle 2 \rangle 1$ with TY_TVAL_{RES,LOG,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 2$. Case: Ty_PE_Call.

Assume: 1. $\cdot; \cdot; \cdot \vdash name(\overline{pval_i}^i) \Rightarrow y:\beta. \ \sigma(term)$.

2. $\langle name(\overline{pval_i}^i) \rangle \longrightarrow \langle \sigma'(tpexpr):(y:\beta', \sigma'(term')) \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \sigma(tpexpr) \Leftarrow y : \beta. \ \sigma(term)$

- $\langle 2 \rangle 1$. $name:pure_arg \equiv \overline{x_i}^i \mapsto tpexpr \in Globals$ by inversion (on either assumption).
- $\langle 2 \rangle 2. \ \ \cdot; \cdot; \cdot; \cdot; \cdot \vdash \overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma \ y:\beta. \ term \land I \ by inversion on 1.$
- $\langle 2 \rangle 3$. $\beta = \beta'$, term = term' and $\sigma = \sigma'$ by induction on $pure_arg$. Follows from lemma 5.1.
- $\langle 2 \rangle 4. \ \cdot; \cdot; \cdot; \cdot \vdash (\sigma) : (\mathcal{C}; \cdot; \Phi; \cdot).$

PROOF: Constructing such a substitution requires $\overline{\cdot;\cdot;\cdot\vdash pval_i\Rightarrow\beta_i}^i$ for each $x_i:\beta_i\in\mathcal{C}$ which can be deduced from $\langle 2\rangle 2$.

- $\langle 2 \rangle$ 5. \mathcal{C}'' ; \cdot ; $\Phi'' \vdash tpexpr \Leftarrow y:\beta''.term''$ where $\overline{x_i}^i :: pure_arg \leadsto \mathcal{C}''$; \cdot ; Φ'' ; $\cdot \mid \Sigma y:\beta''.term'' \land I$ formalises the assumption that all global functions and labels are well-typed.
- $\langle 2 \rangle 6$. C = C'', $\Phi = \Phi''$, $\beta = \beta''$ and term = term''. PROOF: By induction on $pure_arg$.
- $\langle 2 \rangle 7$. Apply usable substitution lemma to $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$ to finish proof.
- $\langle 1 \rangle 3$. Case: Ty_Memop_PtrValidForDeref.

Let: $pt = mem_{-}ptr \stackrel{\checkmark}{\mapsto}_{\tau}$.

 $ret = \Sigma y$:bool. $y = aligned(\tau, mem_ptr) \land pt \otimes I$.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \Rightarrow ret$.

2. $\langle \cdot + \{pt\}; \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathsf{done}\ bool_value, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } bool_value, pt \Leftarrow ret$

- $\langle 2 \rangle 2$. $R = \cdot, ::pt$, by Ty_Res_PointsTo.
- $\langle 2 \rangle 3.\ bool_value = \mathtt{aligned}\left(\tau, mem_ptr\right)$ by construction of bool_value.

- $\langle 2 \rangle 5.$ By TY_TVAL_I, and then $\langle 2 \rangle 2 \langle 2 \rangle 4$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.

6 Typing Judgements

$$\begin{array}{lll} object_value_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj} \, \beta \\ \\ pval_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ \\ res_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash res \equiv res' \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash \mathcal{R} \vdash res_term \Leftarrow res \\ \\ spine_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident:\beta. term \\ \\ tpval_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident:\beta. term \\ \\ tpexpr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident:\beta. term \\ \\ tpexpr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident:\beta. term \\ \\ action_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident:\beta. term \\ \\ action_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident:\beta. term \\ \\ memop_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash mem_action \Rightarrow ret \\ \\ seq_expr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash seq_expr \Rightarrow ret \\ \\ tval_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash tval \Leftarrow ret \\ \\ texpr_jtype & ::= \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash tval \Leftarrow ret \\ \\ \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftrightarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftrightarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftrightarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftrightarrow ret \\ \\ & \mid \quad \mathcal{C}; \mathcal{L}; \Phi \vdash R \vdash texpr \Leftrightarrow ret \\ \\ & \mid \quad$$

7 Opsem Judgements