Nearest Neighbor Methods

Shusen Wang

K-Nearest Neighbor (KNN)

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

How to classify an test feature vector **x**'?

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

How to classify an test feature vector **x**'?

k-Nearest Neighbor (KNN):

- Find the k nearest neighbors (NN) of \mathbf{x}' .
- Let the *k* NNs vote.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of x'.
- Let the NNs vote.

Question: How to set k?

- Treat k as hyper-parameter.
- Tune k using cross-validation.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to measure similarity?

- Cosine similarity: $sim(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{||\mathbf{x}||_2 ||\mathbf{x}'||_2}$.
- Gaussian kernel: $sim(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{1}{\sigma^2} ||\mathbf{x} \mathbf{x}'||_2^2\right)$.
- Laplacian kernel: $sim(\mathbf{x}, \mathbf{x}') = exp\left(-\frac{1}{\sigma}||\mathbf{x} \mathbf{x}'||_{1}\right)$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to find the k nearest neighbors?

- Naïve algorithm
 - compute all the similarities $sim(\mathbf{x}_1, \mathbf{x}'), \dots, sim(\mathbf{x}_n, \mathbf{x}')$
 - Sort the scores and find the top k.
 - O(nd) time complexity (n: #samples, d: # features).
- Efficient algorithms (to be discussed later).

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to vote?

Option 1: Every neighbor has the same weight.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

k-Nearest Neighbor (KNN) classifier:

- Find the k nearest neighbors of \mathbf{x}' .
- Let the NNs vote.

Question: How to vote?

- Option 1: Every neighbor has the same weight.
- Option 2: Nearer neighbor has higher weight.
 - E.g., weight_i = $sim(\mathbf{x}_i, \mathbf{x}')$

Tasks

Methods

Algorithms

KNN: Naïve Algorithm

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Algorithm: find the k nearest neighbors to \mathbf{x}' .

- Naïve algorithm
 - compute all the similarities $sim(\mathbf{x}_1, \mathbf{x}'), \dots, sim(\mathbf{x}_n, \mathbf{x}')$ and find the top k.
- Training: no training at all.
- Test: for each query, O(nd) time complexity

KNN: Efficient Algorithm

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{N}$.

Question: find your nearest post office (given longitude & latitude).

Question: find your nearest post office (given longitude & latitude).

Data: n = 30,000 post offices' latitude and longitude:

- Post office 1: (lat₁, lon₁)
- Post office 2: (lat₂, lon₂)
- Post office 3: (lat₃, lon₃)
- Post office 4: (lat₄, lon₄)

•

• Post office n: (lat_n, lon_n)

Query: your own latitude and longitude:

• (40.74627, -74.02431)

Question: find your nearest post office (given longitude & latitude).

Data: n = 30,000 post offices' latitude and longitude:

- Post office 1: (lat₁, lon₁)
- Post office 2: (lat₂, lon₂)
- Post office 3: (lat₃, lon₃)
- Post office 4: (lat₄, lon₄)

Query: your own latitude and longitude:

• (40.74627, -74.02431)

Question: Which is your nearest post office?

• Post office n: (lat_n, lon_n)

Training:

 Vector quantization (build landmarks)

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

 Compare your location with all the landmarks and find the nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

 Compare your location with all the landmarks and find the nearest landmarks.

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks.

Test

- Compare your location with all the landmarks and find the nearest landmarks.
- Compare with the postal offices assigned to the landmarks.

KNN: Efficient Algorithms

- Fast algorithms
 - Vector Quantization
 - KD-tree
 - Locality sensitive hashing

- More resources:
 - KNN Search (Wikipedia)

Summary

KNN method for multi-class classification.

- KNN's advantage over Softmax classifier:
 - When #class is huge, Softmax classifier is expensive.
 - E.g., in the face recognition problem, #class can be millions.

Summary

- Training: partition the feature space to regions.
- Prediction (for a test feature vector x'):
 - 1. Find the nearest regions.
 - 2. Retrieve all the training feature vectors in the regions.
 - 3. Compare \mathbf{x}' with the retrieved feature vectors (using similarity score) and return the k nearest.
 - 4. Weighted/unweighted votes by the k nearest neighbors.