

Systems Engineering: Design and Development

ENGR 387

Agenda

- Purpose of IBDs
- Diagram Header
- BDD Flashback
- Part Properties
- Default Multiplicities
- Reference Properties
- Connectors
- Ports (Standard or Flow)
- Item Flows
- Nested Part and Reference Properties
- BDD and IBD Comparison Examples
- References

Purpose of IBDs

- Display instances of types that exist in a particular configuration of the Block that you defined in a BDD.
- IBDs provide an internal view of a block's structure by displaying:
 - Elements of Usage owned by the block named in the header of the diagram
 - Mainly the Part Properties, Reference Properties, and sometimes Ports
 - How those elements of usage are connected to each other
 - Displayed by using Connectors
 - The services that are provided and required across the connections
 - Displayed by using Standard Ports
 - The types of matter, energy, or data that flow across those connections
 - Displayed by using Flow Ports and/or Item Flows
- NOTE:
 - IBDs <u>CANNOT</u> display elements of definition (blocks or other)

Diagram Header

- diagramKind = ibd
- modelElementType = block

diagramKind [modelElementType] modelElementName [diagramName]		
ibd [block] modelElementName [diagramName]		

BDD Flashback

- Remember from BDDs that a Block can own 5 kinds of structural features:
 - Features come in two varieties Structural and Behavioral
 - 5 Kinds of structural features (aka **properties**)
 - Part properties
 - Reference properties
 - Value properties
 - Constraint properties
 - Ports
- IBDs generally show three of those 5 kinds of features:
 - Part Properties
 - Reference Properties
 - Ports
- Note: the other two kinds (Value and Constraint Properties) are shown on Parametric Diagrams!

Part Properties

- Graphical Notation:
 - Rectangle with a solid line border
- Namestring:
 - <part name> : <type> [<multiplicity>]
 - Default multiplicity when not shown = 1
- Note: It is an option to display multiplicity either at the end of the namestring or in the upper right-hand corner of the rectangle
- Remember:
 - Part property means a thing (block) that is internal to the block that owns the part property

Default Multiplicities

- Connector IBDs
 - SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

EXAMPLE

Reference Properties

- Graphical Notation:
 - Rectangle with a dashed line border
- Namestring:
 - <reference name> : <type> [<multiplicity>]
 - Default multiplicity when not shown = 1
- Remember:
 - Reference property means a thing (block or actor) that is external to the block that owns the reference property

Connectors

- Graphical Notation:
 - Solid lines between properties
 - May or may not have ports at the end of the lines
- Namestring:
 - <connector name> : <type>
 - name and type are both optional
- Additional info
 - Assembly Connector
 - internal to block / peer to peer
 - Delegation Connector
 - external interface of a block / wholepart relationship

Connectors: Example

- If you choose to 'type' a connector then it must be 'typed by' a matching association (likely created and shown on a BDD).
 - The association must relate the same two blocks that 'type' the two properties at the ends of the connector
 - Remember that an IBD identifies things that <u>do</u> exist vs. a BDD that identifies things that <u>could</u> exist!

Connector of type *PressureSeat*Note: the Connector has no name!

Port (Standard or Flow)

• Purpose:

- Standard Port: used to identify the services that are provided and required across connections
- Flow Port: used to identify matter, energy, or data that could flow
- The language does not require you to show Ports!
 - Only use them based on what you are trying to convey
- Notations:
 - Same as on BDDs
 - If used, they must be compatible and will appear at the end of Connectors
 - Can be located on the border of a Part or Reference Property or on the IBD diagram frame

Item Flows

- Graphical Notation:
 - Solid triangular arrow, with a label, over a connector that joins two flow ports
- Namestring:
 - <item flow name> : <type>
- Represents a type of item (matter, energy, or data) that flows between two connected properties.

Item Flows Cont.

- <type>
 - Item Flows are typed by a block, value type, or signal that exists in your model
 - The type can be more than one item, it can be a comma separated list of acceptable items that flow between properties
 - The type must be compatible with the flow ports at the ends of the connector
 - Atomic Flow Port: The type of item flow is generally equal to types of ports
 - Non-atomic Flow Port: type of item flow equals a flow property with matching type and direction that is included within the flow specification for the non-atomic flow ports
- Why?
 - Why put an item flow on a connector?
 - Without ports on the diagram, it is very useful to show an Item Flow
 - With ports it may still be useful because those ports may be typed by a flow specification that has many allowable things, but you want to convey specific information in that diagram

Nested Parts and Reference Properties

- You can show multiple levels of decomposition on an IBD.
 - Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them.
 - This violates object-oriented rules of encapsulation, but is allowed by SysML
- Dot Notation
 - Dot notation portrays system hierarchy NOT model hierarchy.
 - The rectangle represents the last 'thing' in the string before the colon.
 - Drawbacks: The string "w.rim: TireMountingRim [2]" does not convey:
 - The name of the block that 'types' the part property "w"
 - The multiplicity of the part property "w"

BDD & IBD Comparison (Example #1) OMG SysML v1.2 Spec

hub: Hub

hi:
LugBoltThreadedHole

1 threadedHole

0.1 lugBoltJoints:
0.5
LugBoltJoints:
0.5
LugBoltJoints:
0.5
LugBoltJoints:
0.5
LugBoltJoints:
0.6

0.1

OMG Spec Figure 8.9

Note:

In Figure 8.9 an Internal Block Diagram (IBD) shows how the blocks defined in the Wheel package are used. This ibd is a partial view that focuses on particular parts of interest and omits others from the diagram, such as the "v" InflationValve and "weight" BalanceWeight, which are also parts of a Wheel.

OMG Spec Figure 8.8

BDD & IBD Comparison (Example #1) SysML Distilled (Delligati)

SysML Distilled Figure

References

- Additional information can be obtained by reviewing:
 - SysML Distilled (Delligatti)
 - Chapter 4: Internal Block Diagrams
 - A Practical Guide to SysML (Friedenthal)
 - Chapter 7: Modeling Structure with Blocks
 - The Block section covers both BDDs and IBDs
 - OMG SysML Spec v1.2
 - Section 8: Blocks
 - The Block section covers both BDDs and IBDs
 - Section 9: Ports and Flows

Summary

Review Questions

- What model element can an IBD represent?
 - A. Reference Association
 - B. Part Property
 - C. Block
 - D. Value Type
 - E. Reference Property
 - F. Operation
 - G. Constraint Block
 - H. Connector
 - I. Value Property
 - J. Port

- On an IBD, ___ appear as solid boundary rectangles and ___ appear as dashed boundary rectangles.
 - A. Reference Properties, Reference Associations
 - B. Part Properties, Reference Properties
 - C. Part Properties, Value Types
 - D. Reference Properties, Constraint Blocks

- All solid lines on an IBD are:
 - A. Associations
 - B. Constraints
 - C. Connectors
 - D. Reference Associations
 - E. Sometimes they are Connectors (when they are not typed) and sometimes they are associations (when they are typed)

Using the two partial diagrams, what is *p-bk*?

- A. None of the below options accurately describe p-bk
- B. Two Part Properties of *HybridSUV*
- C. A Connector
- D. An Association
- E. A Flow Property

Based on the diagram shown, what is *i*?

- A. A block of type *InteriorSubsystem*
- B. A reference property of type *InteriorSubsystem* owned by *BodySubsystem*
- C. A constraint block owned by *HybridSUV*
- D. A part property of type *InteriorSubsystem* owned by *BodySubsystem*
- E. A part property owned by *HybridSUV*

What does the above diagram show?

- A. An association between *w* and *t* reference properties
- B. An association between w and t part properties
- C. An association between *rim* and *bead* reference properties
- D. An association between *rim* and *bead* part properties
- E. A Connector between *w* and *t* reference properties
- F. A Connector between *w* and *t* part properties
- G. A Connector between *rim* and *bead* reference properties
- H. A Connector between *rim* and *bead* part properties

What is the multiplicity of *hub*?

- A. 0
- B. :
- C. 0..1
- D. 0..5
- E. 5

Reviewing the partial IBD above, identify all of the statements below that are <u>False</u>?

fi is a part of ice

There must be a Flow Specification called *ICEFuelFitting* that includes a flow property of type *Fuel Port* is an atomic flow port

There must be a flow specification called *Fuel* that includes a flow property of type *ICEFuelFitting fi* is a part of *InternalCombustionEngine*

Port cannot be located on the border of *ice*, it should be on the border of *fi*

T/F An Item Flow is an element of definition?

Answer Key on Next Sheet

Don't peek unless you are ready!!

Sample Question Answer Key

Question	Answer	Justification
Question 1	С	See slides 4 & 5
Question 2	В	See slides 7 & 8
Question 3	С	See slide 9
Question 4	С	See slide 9
Question 5	Е	See slide 7
Question 6	Н	See slides 7, 9, & 14
Question 7	В	See slide 7
Question 8	A,C,D,F	many BDD and IBD concepts combined
Question 9	False	See slide 12

