На правах рукописи *Подпись*

Скурыдина Алия Фиргатовна

Регуляризованные алгоритмы на основе схем Ньютона, Левенберга — Марквардта и нелинейных аналогов α -процессов для решения нелинейных операторных уравнений

01.01.07 – Вычислительная математика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт математики и механики им. Н. Н. Красовского Уральского отделения Российской академии наук.

Научный руководитель:	доктор физико-математических наук,
	доцент Акимова Елена Николаевна
Официальные оппоненты:	доктор физико-математических наук,
	профессор, главный научный сотрудник кафедры Си-
	стемного программирования ФГАОУ ВО «Южно-
	Уральский государственный университет (нацио-
	нальный исследовательский университет)» (г. Челя-
	$ extit{бинск}$),
	Танана Виталий Павлович
	доктор физико-математических наук,
	профессор, профессор кафедры математики физиче-
	ского факультета $\Phi \Gamma FOY\ BO\ «Московский государ-$
	ственный университет имени М. В. Ломоносова»,
	Ягола Анатолий Григорьевич
Ведущая организация:	ФГАОУ ВО «Казанский (Приволжский) федеральный
	университет»
Защита состоится «»	2018 г. в часов на заседании диссертаци
онного совета <i>Д 004.006.04</i> при <i>Ф</i>	РГБУН Институт математики и механики им. Н. Н.
Красовского УрО РАН по адресу:	620990, Екатеринбург, ул. Софьи Ковалевской, 16, акто
вый зал	
С диссертацией можно ознакомить	ься в библиотеке ФГБУН Институт математики и ме
ханики им. Н. Н. Красовского УрС	·
Автореферат разослан «»	
льтореферат разослан «»	2010 1.
Отзывы и замечания по авторефе	рату в двух экземплярах, заверенные печатью, просьба
высылать по вышеуказанному адре	есу на имя ученого секретаря диссертационного совета.

Ученый секретарь диссертационного совета, доктор физ.-мат. наук, с.н.с.

Общая характеристика работы

Актуальность темы исследования. Построение итеративно регуляризованных алгоритмов востребовано для решения широкого круга прикладных некорректно поставленных задач. Так, решение структурных обратных задач гравиметрии и магнитометрии сводится к решению нелинейных интегральных уравнений Урысона первого рода. После дискретизации операторное уравнение сводится к системе нелинейных уравнений с большим числом неизвестных, поэтому есть необходимость в параллелизации алгоритмов для многопроцессорных и многоядерных вычислительных систем с целью уменьшения времени счета.

Цели и задачи диссертационной работы: построить новые методы решения нелинейных операторных уравнений первого рода в гильбертовом пространстве, исследовать их сходимость. Предложить методы решения обратной задачи гравиметрии, использующие особенности физической модели.

Научная новизна. Результаты, полученные в диссертационной работе, являются новыми и состоят в следующем:

в рамках двухэтапного метода построения регуляризующего алгоритма обоснованы сходимость метод Ньютона и нелинейные аналоги альфа-процессов: метод минимальной ошибки (ММО), метод наискорейшего спуска (МНС) и метод минимальных невязок (ММН). Также установлена сходимость модифицированных вариантов методов ММО, МНС, ММН, когда производная оператора вычисляется в начальной точке итераций. Рассмотрены два случая: оператор задачи является монотонным, либо оператор является конечномерным и его производная имеет неотрицательный спектр.

Для решения систем нелинейных интегральных уравнений с ядром оператора структурной обратной задачи гравиметрии для модели двуслойной среды предложен экономичный покомпонентный метод, основанный на методе Ньютона.

Для решения систем нелинейных уравнений структурных обратных задач гравиметрии в многослойной среде предложен метод на основе метода Левенберга – Марквардта — покомпонентный метод типа Левенберга – Марквардта.

Предложена вычислительная оптимизация метода Ньютона и его модифицированного варианта в виде перехода от плотно заполненной матрицы производной оператора к ленточной в силу особенности строения ядер интегральных операторов задач грави- магнитометрии.

Теоретическая и практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для решения нелинейных операторных уравнений. В частности, на практике можно применять для обратных задач теории потенциала, для различных обратных задач фильтрации.

Положения, выносимые на защиту: 1. Сформулированы и доказаны теоремы, устанавливающие сильную фейеровость оператора шага итераций методов:

- метод Ньютона;
- метод минимальной ошибки и его модифицированный вариант;
- метод наискорейшего спуска и его модифицированный вариант;
- метод минимальных невязок и его модифицированный вариант.

Доказана сильная фейеровость оператора шага итераций данных методов в случае монотонного оператора задачи и в случае конечномерного оператора с производной, имеющей неотрицательный спектр. Доказывается линейная скорость сходимости итерационных процессов.

- 2. Предложена вычислительная оптимизация метода Ньютона в приложении к задачам гравиметрии и магнитометрии для уменьшения объема вычислений. Предложены покомпонентные методы:
 - покомпонентный основанный на методе Ньютона для решения нелинейного интегрального уравнения в задаче гравиметрии в двухслойной среде;

- покомпонентный метод типа Левенберга Марквардта для решения систем нелинейных уравнений структурных обратных задач гравиметрии в многослойной среде.
- 3. Разработан комплекс параллельных программ для многоядерных и графических процессоров с использованием технологий OpenMP, CUDA для решения зада с большим объемом вычилений. Комплекс протестирован на модельных и квазиреальных задачах.

Степень достоверности и апробация результатов. Результаты, полученные в работе над диссертацией, полностью подтверждаются численными экспериментами. Основные результаты по материалам диссертационной работы докладывались на конференциях:

- 1. XIV и XV Уральская молодежная научная школа по геофизике (Пермь, 2013 г., Екатеринбург 2014 г.);
- 2. Международная коференция «Параллельные вычислительные технологии» (Ростов-на-Дону, 2014 г., Екатеринбург, 2015 г., Казань, 2017 г.);
- 3. Международная конференция «Геоинформатика: теоретические и прикладные аспекты» (Киев 2014, 2015, 2016 г.)
- 4. Международная конференция «Актуальные проблемы вычислительной и прикладной математики» (Новосибирск, 2014 г.)
- 5. Международный научный семинар по обратным и некорректно поставленным задачам (Москва, 2015 г.)

Публикации. Материалы диссертации опубликованы в 11 печатных работах, из них 3 статей в рецензируемых научных изданиях [3; 5; 6], 3 рекомендованных ВАК и проиндексированных Scopus [1; 2; 4], 3 статей в сборниках трудов конференций и 2 тезисов докладов.

Личный вклад автора. Подготовка к публикации работ проводилась совместно с соавторами. Все результаты, представленные в данной работе, получены автором лично. Защищаемые положения отражают вклад автора в опуб-

ликованных работах. В работе [6] автору диссертации принадлежат построение методов для решения нелинейных уравнений на основе α -процессов, доказательства сходимости и сильной фейеровости регуляризованного метода Ньютона, сильной фейеровости нелинейных α -процессов для монотонного оператора и оператора, производная которого имеет неотрицательный спектр, результаты численного моделирования. В работах [; 5;] автором проведено численное моделирование для методов ньютоновского типа с разработкой параллельных программ для метода Ньютона и его модифицированного варианта. В статье П автор реализовал параллельный алгоритм линеаризованного метода минимальной ошибки. В работе [4] автором предложена вычислительная оптимизация метода Ньютона и поставлен вычислительный эксперимент, разработаны параллельная программы. В работах [-2] автором предложены методы покомпонентного типа Ньютона и Левенберга – Марквардта, проведены численные эксперименты, написаны параллельные программы для задач с большими сетками. В работе [] автору принадлежат доказательства сходимости модифицированных методов на основе α -процессов в случае монотонного оператора задачи, а также результаты расчетов на ЭВМ.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, 3 глав, заключения и библиографии. Общий объем диссертации ?? страниц, включая 18 рисунков, 14 таблиц. Библиография включает 112 наименований, в том числе 12 публикаций автора.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

В первой главе ...

Содержание первой главы.

Результаты первой главы опубликованы в работе [6].

Во второй главе ...

Содержание второй главы.

Результаты второй главы опубликованы в работе [6].

В третьей главе ...

Содержание третьей главы.

Результаты третьей главы опубликованы в работах [4], [1], [2], [3].

В Заключении

Основные результаты диссертации

1. Для нелинейного уравнения с монотонным оператором доказаны теоремы сходимости для регуляризованного метода Ньютона, построены регуляризованные методы градиентного типа для решения нелинейного уравнения с монотонным оператором — метод минимальной ошибки, метод наискорейшего спуска, метод минимальных невязок, названные нелинейными аналогами α -процессов, доказаны теоремы сходимости для них, доказана сильная фейеровость итерационных процессов.

Для задачи с немонотонным оператором, производная которого имеет неотрицательный спектр, доказаны теоремы сходимости методов Ньютона, нелинейных α -процессов и их модифицированных вариантов.

2. Для решения систем нелинейных интегральных уравнений с ядром оператора структурной обратной задачи гравиметрии для модели двухслойной среды предложен покомпонентный метод, основанный на методе Ньютона. Предложена вычислительная оптимизация метода Ньютона и его модифицированного варианта при решении задач с матрицей производной, близкой к ленточной; на примере решения обратной задачи гравиметрии продемонстрирована вычислительная экономичность модификации. Для решения систем нелинейных урав-

нений структурных обратных задач гравиметрии для моделей двухслойной и многослойной сред предложен подход на основе метода Левенберга — Марквардта — покомпонентный метод типа Левенберга — Марквардта.

3. Разработан комплекс параллельных программ, с использованием многоядерных процессоров для всех предложенных методов и с вычислением на графических процессорах (видеокартах) для покомпонентных методов и метода Ньютона и модифицированного варианта.

В дальнейшей научной работе автора предполагается исследование на сходимость покомпонентных методов типа Ньютона и Левенберга – Марквардта.

Основные публикации по теме диссертации

Статьи в изданиях из перечня BAK, SCOPUS

- Akimova E., Skurydina A. A Componentwise Newton Type Method for Solving the Structural Inverse Gravity Problem // XIVth EAGE International Conference
 Geoinformatics: Theoretical and Applied Aspects. — Kiev, Ukraine, 2015.
- 2. Akimova E., Skurydina A. On Solving the Three-Dimensional Structural Gravity
 Problem for the Case of a Multilayered Medium by the Componentwise Levenberg–Ma
 Method // XVth EAGE International Conference Geoinformatics: Theoretical
 and Applied Aspects. Kiev, Ukraine, 2016.
- 3. Skurydina A. F. Regularized Levenberg Marquardt Type Method Applied to the Structural Inverse Gravity Problem in a Multilayer Medium and its Parallel Realization // Вестник Южно-Уральского государственного университета. 2017. Т. 6, № 3. С. 5—15.
- 4. Акимова Е. Н., Скурыдина А. Ф., Мартышко М. П. Оптимизация и распараллеливание методов типа Ньютона для решения структурныхобратных задач гравиметрии и магнитометрии // XIIIth EAGE International Conference Geoinformatics: Theoretical and Applied Aspects. Kiev, Ukraine, 2014.
- 5. Васин В. В., Акимова Е. Н., Миниахметова А. Ф. Итерационные алгоритмы ньютоновского типа и их приложения к обратной задаче гравиметрии // Вестник Южно-Уральского государственного университета. 2013. Т. 6, \mathbb{N} 3. С. 26—37.
- 6. Bacuh B. B., Cкурыдина A. Ф. Двухэтапный метод регуляризации для нелинейных некорректных задач // Труды ИММ УрО РАН. 2017. Т. 23, <math>N = 1. С. 57—74.

Другие публикации

- . Akimova E. N., Miniakhmetova A. F., Misilov V. E. Fast stable parallel algorithms for solving gravimetry and magnetometry inverse problems // International conference "Advanced Mathematics, Computations Applications 2014". 2014.
- . Акимова Е. Н., Мисилов В. Е., Миниахметова А. Ф. Параллельные алгоритмы решения структурной обратной задачи магнитометрии на многопроцессорных вычислительных системах // Труды международной конференции «Параллельные вычислительные технологии (ПАВТ'2014)». 2014.
- . Васин В. В., Скурыдина А. Ф. Регуляризованные модифицированные процессы градиентного типа для нелинейных обратных задач // Тезисы докладов международного научного семинара по обратным и некорректно поставленным задачам. 2015.
- . Градиентные методы решения структурных обратных задач гравиметрии и магнитометрии на суперкомпьютере "Уран" / Е. Н. Акимова [и др.] // Труды международной конференции «Параллельные вычислительные технологии (ПАВТ'2015)». 2015.
- . Mucuлов B. E., Muhuaxметова A. Ф., Дергачев E. А. Решение обратной задачи гравиметрии итерационными методами на суперкомпьютере «Уран» // Труды XIV Уральской молодежной научной школы по геофизике. 2013.

Научное издание

Скурыдина Алия Фиргатовна

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук на тему: Регуляризованные алгоритмы на основе схем Ньютона, Левенберга — Марквардта и нелинейных аналогов α-процессов для решения нелинейных операторных уравнений

Подписано в печать 25.01.2011. Формат 60×90 1/16. Тираж 100 экз. Заказ 256. Санкт-Петербургская издательская фирма «Наука» РАН. 199034, Санкт-Петер-

бург, Менделеевская линия, 1, http://www.naukaspb.spb.ru