Graph Algorithms: Binary tree traversal

Textbook: Chapter 5.3

Tree traversal

- Traversing a tree means to visit all of the nodes of the tree
- There are several systematic ways to do this, including:
 - Preorder root first
 - Inorder root between
 - Postorder root last

Preorder traversal

- 1. Visit the root
- 2. Traverse the left subtree
- 3. Traverse the right subtree

Preorder traversal is: a b c

Inorder traversal

- 1. Traverse the left subtree
- 2. Visit the root
- 3. Traverse the right subtree

Inorder traversal is: b a c

Postorder traversal

- 1. Traverse the left subtree
- 2. Traverse the right subtree
- 3. Visit the root

Postorder traversal is: b c a

Another way to think about it

 Consider this path that meanders past all of the nodes

Preorder traversal

Is when the path passes the LEFT Preorder side of each node

Preorder: A B D E C F G

Inorder traversal

Inorder: D B E A F C G

Postorder traversal

Postorder: D E B F G C A

Pseudocode

```
Algorithm preOrder(Node N)
if N != null
   Print N. value
   preOrder(N.leftChild)
   preOrder(N.rightChild)
                 Algorithm inOrder (Node N)
                 if N != null
                    inOrder(N.leftChild)
                    Print N. value
                    inOrder(N.rightChild)
                                Algorithm postOrder(Node N)
                                 if N != null
                                    postOrder(N.leftChild)
                                    postOrder(N.rightChild)
```

Print N. value

What if I told you

Preorder → A B D E C F G

Inorder → D B E A F C G

Fun facts about pre/in/postorder

- Given pre + in, you can reconstruct the tree
 - (and also determine postorder)
- Given post + in, you can reconstruct the tree
 - (and also determine preorder)
- Given pre + post, you can only sometimes reconstruct the tree
 - For you to ponder: under what condition(s)?

Practice problems

• Chapter 5.3, page 185, questions 5 & 6