Overview of Software Debugging

Abhik Roychoudhury
National University of Singapore
abhik@comp.nus.edu.sg

In the next 20 minutes

- Tutorial like talk on software debugging from Software Engineering perspective
 - Program Dependencies and Slicing
 - Delta debugging
 - Trace based Fault localization
 - Statistical Fault localization
- Some recent research results
 - Debugging software regressions
 - Large scale experiments embedded Linux Busybox

Dynamic Slicing for Debugging

Debugging workshop, Nov 2013

Dynamic Slicing

Problem with dynamic slicing

- Huge overheads
 - Backwards slicing requires trace storage.
 - Jslice tool for Java
 - Online trace compression & traversal
 - http://jslice.sourceforge.net
- Dynamic Slice is still too large ...
 - ... for human comprehension
 - Interleave computation and comprehension
- Dynamic Slice can also be too small!
 - What do I mean here?

Relevant Slicing

Relevant Slice

Captures statements which affect the output by not getting executed

Statistical Fault localization

Assign scores to program statements based on their occurrence in passing / failing tests. *Correlation equals causation!*

$$Score(s) = \frac{\frac{fail(s)}{allfail}}{\frac{fail(s)}{allfail} + \frac{pass(s)}{allpass}}$$

An example of scoring scheme [Tarantula]

Isolating failure causes a la delta debugging

- How to figure out a minimal cause that 'explains' an error?
- Use a variation on binary search: narrow the difference between passing and failing inputs
 - Can do it on code (old version to new version)
 - On thread schedules

A. Zeller: Why Programs Fail, A Guide to Systematic Debugging

Fault Localization: overview

Debugging workshop, Nov 2013

Comparing executions

```
1. m=...

2. if (m >= 0) {

3. ...

4. lastm = m;

5. }

6. ...
```

Failing run

Successful run

Fault localization

Debugging workshop, Nov 2013

Comparing executions

- 1. if (a)
- 2. i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2;
- 10. printf("%d", k);

Execution run π

- 1. if (a)
- 2. i = i + 1;
- 3. if (b)
- 4. j = j + 1;
- 5. if (c)
- 6. if (d)
- 7. k = k + 1;
- 8. else
- 9. k = k + 2;
- 10. printf("%d", k);

Execution run $\pi 1$

Set of statements

- S = Set of statements executed in π
 - {1,3,5,6,7,10}
- S1 = Set of statements executed in π 1
 - {1,3,4,5,6,9,10}
- If π is faulty and π 1 is OK
 - Bug report = $S S1 = \{7\}$
- Choice of the execution run to compare with is very important.

Trace alignment and differences

Exe	cution F	Alignment				Difference			
Execution Run						,,			
π	π'	π''	π π'		π' π''		$diff(\pi, \pi')$	$diff(\pi', \pi'')$	
11	11	11	!			!			
2^{2}	2^2	2^2							
3^3	3 ³	3^3					•		
44		4^4				i			
$ \begin{array}{r} 2^{2} \\ \hline 3^{3} \\ \hline 4^{4} \\ 5^{5} \end{array} $		5 ⁵		/					
7 ⁶	7^{4}	7^{6}						•	
8 ⁷	8 ⁵								
98	9 ⁶								
		12 ⁷				/			
19	17	18	i			!			
2^{10}	28	29	:						
$\frac{3^{11}}{4^{12}}$	39	3^{10}	!						
4 ¹²	4^{10}	4 ¹¹	i !						
5 ¹³	5 ¹¹	5 ¹²	:						
7^{14}	7^{12}	7^{13}					•	•	
8 ¹⁵				$\overline{}$					
9 ¹⁶									
	12 ¹³	1214	,	/		/			
14 ¹⁷	14^{14}	14 ¹⁵	1						
1 1		2010	•	•	•				

Debugging workshop, Nov 2013

Regression Debugging

Adapting Trace Comparison

Debugging workshop, Nov 2013

How to obtain the new test?

Path condition

Useful to find:

"the set of all inputs which trace a given path"

-> Path condition

 $in \ge 0$

Results

Buggy Prog	Stable program	Time taken	Bug report size
LibPNG v1.0.7 (31164 loc)	LibPNG v1.2.21 (36776 loc)	13 m 34 s	9
TCPflow (patched)	TCPflow (unpatched)	31m	6
Miniweb (2838 loc)	Apache (358379 loc)	14s	5
Savant (8730 loc)	Apache httpd (358379 loc)	9m	46

If we require the alternative input to behave the same in buggy program and reference program (passing test) - the bug report size is 1 in all three cases.

11/20/2013

LibPNG v1.0.7 – v1.2.21

```
Bug we are debugging
                                    Should be
                              if (length > ...)
 if (!(png ptr->mode
                                              pefore tRNS");
        png warni (png ptr, ....s
 else if (length > (png_uint_32)png_ptr->num_palette)
        png_warning(png_ptr, "Incorrect tRNS chunk length");
        png crc finish(png ptr, length);
        return;
Buggy Input
89 50 4e 47 0d 0a 1a 0a 00 00 0d 49 48 44 52 | PNG.....IHDR
00 00 00 5b 00 00 00 45
                      08 03 00 00 01 65 33 5a
                                               |...[...E....e3z|
d6 00 00 02 00 74 52 4e 53 00 00 b1 8f 0b fc 61
                                               | . . . . . tRNS . . . . . . a |
05 00 00 00 04 73 42 49 54 05 05 05 05 4d a5 2d | ....sBIT....M.-|
```

Miniweb-Apache Httpd

Applications

Validated Embedded Linux Busybox

AGAINST

Linux (GNU Core-utils, net –tools)

Busybox distribution is 121 KLOC.
Various errors to be root-caused in tr, arp, top, printf.

ARP bug in busybox

Crash identified as NULL pointer access at crash site hw_type unexpectedly set as NULL at crash site

Experiments on Embedded Linux

Utility	Trace Size	Slice Size	WP terms	WP terms (after elim.)	LOC in BugReport	Time taken
arp	5039 : 4764	56524 : 51448	722 : 434	27:34	1:3	1m30 s
top	1637 : 3921	34523 : 332281	566 : 2501	8:6	2:0	1m28 s
printf	3702 : 3633	27781 : 40403	241 : 414	21:35	1:3	1m20 s
tr	5474 : 138538	85047 : 29375	445 : 280	9:9	1:0	2m28 s

- Each: separated tuple in Columns 2-6 refers to data from embedded Linux and GNU Coreutils in that order
- Trace Size refers to no. of assembly / intermediate level instructions
- Tautology elimination reduces a significant WP analysis overhead
- Bug report size is quite small in each of the cases

Overall Perspective on debugging

- Breakpoints Manual
- "Automated" Debugging
 - Trace comparison, ...
 - Input mutation, ...
 - •
 - Try successful artifacts of the buggy program.
 - Symbolic Methods
 - Replace repeated experimentation with constraint solving.
 - Discover and (partially) infer intended semantics by symbolic analysis of failing trace.

Acknowledgements

- Funding
 - MoE, DRTech Singapore
- Co-authors
 - NUS: Zhenkai Liang, Dawei Qi, Ansuman Banerjee,...
 - MSRI: Kapil Vaswani
 - IBM: Satish Chandra.
- References
 - DARWIN: an approach for debugging evolving programs
 Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, Kapil Vaswani,
 ESEC/FSE '09.
 - Golden implementation driven software debugging Ansuman Banerjee, Abhik Roychoudhury, Johannes A. Harlie, Zhenkai Liang, FSE '10.

