392

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
OSSUCCOSCOS GOCCOGATTT TOTOSTOCCT TOATTSTCGC TOAGGATAAC GGCGGTGATG	6 0
CLEGIFYCGG CGCCYIEGCC BBGGGLBCCG GGGCGGC CCCCGGCGGC GCGGGGGGCC	120
TOATCAGCCT GCTGGGCGGC CAAGGCGCCGG GCGGGCCGGC CGGGACCGGC GCGGCCGGC	180
GTGTTGGCGG TGACGGCGGG GCCGGCGGCGCCC CCGGCAACCA GGCCTTCAAC GCAGGTGCCG	240
SCHARGOORS OFFICTRATE ASSCRIBER GERROCKARGS ESCERGEGGG GEORGEGRAA	300
CCDSCSSSSC COSCSSSST CCCGGTCMC	329
(2) INFORMATION FOR SEQ ID NO:164:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 80 Dase pairs (8) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
GCAACGGTGG CAACGGGGG ACCAGCACGA COGTGGGGGT GGCCGGGAGGT AACTGTGGGTG	60
CCGCCGGGGCT GATCGGCAAC	80
(I) INFORMATION FOR SEQ ID NOVLES:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:165:	
GOSCIOTUTO SCACICACAC COCCUCATTO GOCCACOTTO SCCCCCAAT ATCCAGCTCA	60
AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGCTCAGC GCCCAAGGAA	120
TCAAGGTCAT CERCEGCGAC 000CATCGAG GCCGTCGTCG CGCGGCTCGG GCAGGATCCG	180
CCCCGGCGCA CTTCGCGCGC CAAGCGGGCT CATCGCTCCG AACGGCGGCG ATCCTGTGAG	240
CACAACTGAT GGCGCGCAAC GAGATTCGTC CAATTGTCAA GCCGTGTTCG ACCGCAGGGA	300
COSSITATAC STATSTCAAC CTATSTCACT CSCAAGAACC SSCATAACGA TCCCGTGATC	360

(2) INFORMATION FOR SEQ ID NO:166:

COCCGACAGO CCACGAGTOC AAGACCOTTA CA

(ă	SECURNCE	CHARACTERISTICS:

- (A) LENGTH: 535 base pairs
- (8) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

ACCGGGGGGCA	CCOGCOGCAC	COGGTTCSCC	GOTOGCGCCG	accasaccos	CGCGCAGGGC	60
GGTATCAGCG	GTGCCGGCSG	CACCAACGGC	TOTAGTGGCG	CTOGCGGCAC	CGGCGGACAA	120
GGCGGCGCCG	GGGGGGGTGG	coggoccooc	GCCGATAACC	COACCGGCAT	COCCURAÇÃO	160
SGCGGCACCG	GCGGCACCOG	COGAGCOGCC	GGAGCCBGCG	SGCCCCCTGG	CGCCATCGGT	240
ACCOGGGGGCA	ccoacoacac	SCTCGCCAGC	CTCCCTAACC	CCGGGATCGG	CESTACCEGO	300
GOTACOGGTG	grancograg	TGCTGGTGGT	SCAGGTGCGG	CIBCGGCCGC	TESCACCAGO	360
GCTACCGGTG	GCGCCGGGTT	CGCCGGCGGC	SCCGGCGGAG	AAGGCGGACC	CGCCCCCAAC	4.20
agegeteteg	GCGGCACCAA	COGCTCCGGC	accecece	GTGCAGGCGG	CAAGGGCGGGC	480
ACCGCAGGTG	CCGGCGGGTC	COCCOCOCAC	AACCCCACCO	<i>discreater</i>	cacca	535

(2) INFORMATION FOR SEQ ID NO:167:

- (3) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 590 base pairs
 - (8) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

CCCACGTCGC	CUGGGCGATA	COORDICAC	CCACTACTAC	ATCATCCGCA	CCGAGAATCG	60
30030130118	CAACCSCTCC	SOCCOCTOC:	GGTCATCGGA	CATCCCCTGG	CODACCTOAT	120
CCAGCCGAAC	CTGAAGGTGA	TOSTOLACOT	GGGCTACGGC	SACCCGAACT	ACCIOCIACYC	180
CACCACCTAC	GCCGATGTGC	GAACGECSTT	COGCTGTGG	CCGRACGTGC	COCCTCAGOT	240
CATCOCCCAT	GCCCTTGGCCG	CCGGAACACA	AGAAGGCATC	CTTGACTTCA	COCCCGACCT	300
GCAGGGGGTG	TCCGCGCAAC	COCTCACGCT	CCCGCAGATC	CAGCTGCCGC	AACCCGCCGA	360
TCTCCTCGCC	GCGGTGGCCC	CCGCACCGAC	GCCGGCCGAG	GTGGTGAACA	CGCTCGCCAG	420
GATCATCICA	ACCAACTACS	CCGTCCTCCT	GCCCACCOTO	GACATCGCCC	resectate	480
ACCACOCTGC	CGCTGTACAC	CACCCAACTG	TTOGTCAGGC	AACTCGCTGC	CCCLATCTC	540

114

ATCAACOCKA TOKKCTATOO	000000000	ACCOTAGGTT	TAGGCACGAT	CGATAGCSGG	600
COORDITORAA TTOCTCACCC	TUTTOMET	GGCCTCGGAC	ACCUTTCGAA	ACATCGAGGG	\$60
COTOSTOACO TAACOGATTC	CCGACGGCAT				690
(2) INFORMATION FOR S	EQ ID %0:16	\$;			
(i) sequence cna (a) length: (b) type: n (c) strande (d) topolog	407 base p ucleic acid IMESS: sing	%irs			
(xi) SEQUENCS DSS	CRIFTION: S	EQ ID NO:168	š :		
ACESTBACGG CESTACTOSC	GGCGGCCACG	GCGGCAACGG	COGGAATCCC	000000000000000000000000000000000000000	& \$
TGGGCACAGC CGGGGGTGGC	GGCNACGGTG	GCGCCGGCAG	CACOROTACT	GCAGGTOGCS	120
SCTCTSBRBB CACCBBCGGC	GACGGCCXXXA	COGGOGGGGG	TOOCOGCCTG	TTAATGGGCG	180
ccaecaccas caeecycacac	GGCACTORCO	GOGCGGGGGG	TGCCGGTGTC	GACOGTOGCO	240
acaccaacos Gaccaacaaa	9C098 033 CA	ACGGCGGCGC	CUCGGGTCAA	GCCGGCCCTTGC	300
ratreagees esacesexee	00000 MG 000	SCSSCTACGG	CGGCGATGGC	GGTGGCGGCG	360
STRACEGETT CEACEGEACE	ATGGCCDGCC	TEGGTEGTAC	CGGTGGC		407
(2) INFORMATION FOR S	EQ ID 30:16:	9 .4			
(i) sequence cha; (a) length: (b) type: m; (c) strambe; (d) topolog;	468 base pa Cleic acid CNESS: sing	Sirs			
(x1) SEQUENCE DES	CRIPTION: 81	SQ ID NO:189) :		
BATCGGTCAG CGCATCGCCC	TCGGCGGCAA	GCGATTCCGC	CUTCTCACCG	AAGAACATCO	6 0
TRCACRETAC GREACEGACE	AGCCCCCTGC	GCTGCGGCGC	GTCGAACGCC	TCCAGCAGGC	120
ACAGCCAGTC CYTGGCGGCC	TUCUAGGEGA	ACACGTGGGT	GTCACCGGTG	TAGATCGCCG	180
SGATGCCCGC CTCCGCCAAC	GCATTCCSGC	Acadecaeae	GTCTTTGTGA	TGCTCSACGA	240
CACCOCRAT GTCTGCGGCC	ACCACGGGCC	GCCCGGCGAA	GGTGGCCCG	CTGGCTAGTA	300
COCCOCCAC GTCGGCGGCCC	AGGTCGTC30	SCATGTGCCG	OCOCAGCOCT	CCGGCGCGAC	360
ADTODOADA KAAAADOOO	CCCACCTONNO	TCCCGCTGGC	ATATCCCTTTO	CCCTCCTGGG	420
CONTACTORAL COCOCATORC	CCGACHBONT	ACAGGGGGG	Siz Wind World		365

(2) INFORMATION FOR SEQ ID NO:17	898	THEORMATION	FOR	880	$\mathfrak{X}\mathfrak{Y}$	1:OK	70):	:
----------------------------------	-----	-------------	-----	-----	----------------------------	------	----	----	---

138	RECUENCE	THE STATE OF THE S	TSTTES:
S X X	20 CO 303 E 305 T 77	The second secon	رب رمشو باسم شباء الود ويشار بابداد

- (A) LENGTH: 219 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

60	CCACOGCBCI	AGAGAGGCGC	0000000000	TOCCATOSSC	GCGGCCAGGG	GGTGGTAACG
120	CGGTGGCGAC	GCGGTGGTAA	AACGGCGGTA	AAACGGCGAG	CTAACGCCC	GGCCCCAATG
180	GTACACCGAC	AGGCCCCCG	COCCAACOCCC	cascasasc	GCGGCAATGG	0000000000
219			AACGGCGGC	COACGCCGC	GCACCGGCGG	GOCGCCACGG

(2) INFORMATION FOR SEQ ID NO:171:

- (i) sequence characteristics:
 - (A) LENGTH: 494 base pairs
 - (S) TYPE: nucleic actd
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

٠	TAGCTCCGGC	GAGGGGGGGCA	ACCOCCOONA	COGTOGCCAC	GGCGGTGACG	GCGTCGGCGG	60
	CaacagtTCC	OTCACCCAAG	acadeagess	COGTOGCOOC	agcaccaaca	8030032008	120
	CAGCOGCTTT	**************************************	AGGGCGGCTT	CSGCGGCGAC	SSCOGTCAGO	SCSSCCCLA	180
	CSGCGGGGGT	ACCOTOCCA	CCCTGGCCDG	TOOCOOCOGC	AACGGCGGTG	TCGGCCCCCC	240
	GGGGGGGGAC	GGCGTCTTTS	COGGTGCCGG	COGCCAGOGC	GGCCTCGGTG	GGCAGGGGGG	300
	CYMICOCOCC	GGCTCCACCG	CCCCCAACGC	CCGCCTTTOGC	860303636	GTGGCGCAGG	360
	CAACGCCCCG	OCTOBTECCO	AATCCOOCT	GACCATGGAC	AGCCCGGCCA	ACTICSCIGC	420
	CATCUCATCA	GGCGCGTACT	GCCCCCAACA	COTOGAACAT	CACCCGAGTT	AGCGGGGGGG	480
	ATTECTIONT	C4.00					4.54

(2) INFORMATION FOR SEC ID NO:172:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 220 base pairs
 - (S) TYPE: nucleic acid
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear

was to see the second of the s	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
GOGCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	60
TTESCOSCAC CONCOUCAS GETORNACTO OCONTOCCOS ASCONCOSSO SCOSACUOCO	120
COSCOAGOAC AGGTOTAACO GGTGGTACOO GGTTTCGCTGG CGGGGCCAGO GGCGTCGGCG	180
GCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220
(2) INFORMATION FOR SEQ ID NO:173:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 388 hase pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
ATGGCGGCAA CGGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TTCCAACGGC	60
GGGCAGGGTG GYGCCGGCGG CCAAGGCGGC CAAGGCGGCC YVGGCGXXVC AAGCACCACC	120
TOATCOOCCI AGCOGCACCO OGGAAAGCOG ATCCAACAGG CGACGATGCO GCCTTCCTTG	180
CONCUTTINA CIAGNOCANO ATCACCTACO CTRACCCARS CCACOCCATA ACONCOCA	240
AGBCGATGTG TGGBCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC	300
COURTACAA TECCOOQUETO ACCATOMACA OCGEOGOCIAA GIIDOCITGEO ATEGEATEAG	360
GONGSTACTO CZCCCAACAC CTOGAACA	388
(2) INFORMATION FOR SEQ ID NO:174:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GCAAAGGEGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	60
ACEBERRACEA ABBROSCEACE GGCOGCACES GCGCAACEC COSCECEBBC GGCACCAGCT	120
TCACCCAAGG COCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	190
GEGGAAACGG CXXAAACXXX GEAGACAACA CEACCACCGC CGCCGCCXXC ACCACAGGCC	240
GCGACGGCGG GCCGGCGGG GCCGGCGGAA CCGGCGGAAC CGGCGGAACC GCCGGCACCG	300
GCACCOGOGO CCAACAAGGC AACGGCGCA ACGGCGGCAC CGGCAGCAAA GGCGGCACCG	360

117

GCGGCGACGG TBCACTCTCA GGCAGCACCG GTGGTGCCGG	400
(2) INFORMATION FOR SEQ ID NO:175;	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 516 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:	
GGCAACGGCG GCAACGGCGG CATCGCCGGC ATTGGGCGGC AACGGCGTTC CGGGACGGGC	60
AGOGGCAACO OCONOCAACO SCORCANCOG CONCAACOGG OCCAACOCCO GCATOGGCGG	120
CAACAGCGGC ACCGGCAGGG GCGACGGCGG TOCCGGGGGGG AACGGCGGGG CGGCGGGCAC	180
GGGCGGCACC GGCGGCGACG GCGGCCTCAC CGGTACTGGC GGCACCGGCG GCAGCGGTWG	240
CACCOGCOGT GACGGCGGTA ACGGCGGCAA COGAGCAGAT AACACCGCAA ACATGACTGC	300
SCAGGOGGC GGTGACGGTG SCAACGGCGG CGACGGTGGC TTCGGCGGCG GGGCCGGGGC	360
COSCOSCOGT GUTTTAACCO CTGGCCCAA CGGCCACCOGC GGGCAAGGCG GCGCCGGGG	420
CGATGGCGGC AACGGGGCCA TTGGCGGCCCA CGGGCCACTC ACTGACGACC CCGGCGGCAA	480
COGGGGGCACC GGCGGCAACG GCGGCACCGG CGGCACCGGC GGCGCGGGCA TCGGCAGC	538
(2) INFORMATION FOR SEQ ID NO:176:	
(i) SEQUENCE CHARACTERISTICS: (A) LEMOTH: 219 base pairs (B) TYPE: nucleic acid (C) STRAMDEDMESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID MO:176:	
GEGCCEBETGG TGCC2CGGGC CAGCTCTTCA GCGCCGGGAGG CGCGGGGGG GCCGTTGGGG	60-
TTGGCGGCAC COOCGGCCAG GOTGGGGCTG GCGGTGGCGG AGCGGCCGGACGCCC	120
COUCCAGGAC AGGICTAACC GGIGGIACCG GGITCGCTGG CGGGGCCGGGC GGCGICGGCG	180
GCCACGGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC CGGTGGTGCC GGCGGCACC	239
(2) INFORMATION FOR SEQ ID NO:277;	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 985 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

agcagcsta	CCSOTGCGC	COGGTTCGCC	GCCGGCGCCG	GCGGAGAAGG	CSGASCGGGC	60
gocaacaoco	OTOTOGOCOG	CACCAACGGC	TCCGGCGGCG	CCGGCGGTGC	AGGCGGCAAG	120
GGCGGCACCG	GAGGTGCCGG	COCCTCCOGC	GODGACAACC	CCACCGGTGC	TOSTITCECC	180
garaacacca	GCCCCACAGO	TRUCCOCCOCC	000000000	GGGCCGGCGG	GGCGACCGGT	240
ACCGGCGGCA	CCDGCGGCGT	TGTCGGCGCC	accoutages	CAGGCATCSG	CGGGGCCGGC	300
3302303 3 03	GTGACGGCGG	CGATGGGGC	AGCGGTCTCG	SCCTGGGCCT	crcccacrrr	360
SACSGCSGCC	AACCCCCCA	AGGCGGGGCC	GBCGGCAGCG	ccoscoccaa	CONCATCAAC	\$20
oosoccaaca	GGGCCGGCGG	CAACGGCGGC	GACGGCGGGG	acooccaac	CGGTGCCGCX	480
GOTCTCSGCS	ACAACGGCGG	GGTCGGCGGT	GACGGTGGGG	CCGGAGGCGC	COCCOCCAAC	540
GGCGGCAACG	CGGGCGTCGG	CCTGACAGCC	AAGGCCGGCG	ACGGCGGCGC	COCGOGGAAT	500
GGCGGCAACG	obseccecos	CSGTGCTUGC	366 3003555	ACAACAATTT	CAACGCCGGC	560
CAGGGTGGTG	CCSGCGGCCA	AGGCGGCCAA	GGCGGCTTGG	GCGGGGCAAG	CACCACCTGA	720
TOSSCOTAGO	COCACCCOOO	AAAGCCGATC	CAACAGGGGA	CSATCCCSCC	TTCCTTGCCG	780
And Apple 1 a no	assassant.	ACCTACGCTS	ACCCAGGCCA	CGCCATAACG	GCCGCCAAGG	84(
CONTETTAGE	GCTGTGTGCT	AACGGCGTAA	CAGGTCTACA	GCTGGTCGCG	GACCTOCGGG	900
ARTACAATCC	COGGCTGROC	ATGGACAGCG	COCCCAAGTT	CGCTWCCATC	OCATCAGGCO	966
COTACTGCCC	CURACACOTO	GAACA				385

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEWCTH: 2138 base pairs
 - (B) TYPE: nucleic soid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

CGGCACGAGG	ATCGGTACCC	COCGGCATCS	GCAGCTGCCG	ATTCGCCCCG	TTTTCCCACC	60
CGAGGAAAGC	CCCTACCAGA	TOGOGOTOCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTUCAGSA	ACCULUTAGE	TTACCGACGA	TARTOGCTAT	180
ACCACTAACO	AGGATGATCC	GATATGACGC	ACTODOSAGAC	CONGACOGTO	CATCAGCAAC	248

ACATTTTCAA	CAGGGGGAAC	GACGTGGACG	CCCCGATGGC	GGACCCACCG	ACTGATOTOC	300
228272842822	GTGCGAACTC	ACGGCGGCTA	AAAACGCCGC	CCAACAGCTG	STATTOTECE	360
CCCACAACAT	GCGGGAATAC	CTGGCGGCCC	GTOCCAARGA	GCGGCAGCGT	CTCCCCACCT	420
CGCTGCGCAA	CGCGGCCAAG	GCGTATGGCG	AGGTTGATGA	GGAGGCTOCS	ACCOCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATOGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
COGCOGAACT	aaccgatacg	CCSAGGGTGG	CCACGGCCGG	CARDODARDT	TTCATGGATC	600
TCALAGAAGC	GGCNAGGAAG	CTCGAAACGG	GCGACCAAGG	CECATOSTE	GCGCACTTTG	660
CGGATGGGTG	GAACACTTTC	AACCTGACGC	TOCAAGGOGA	CSTCAAGCGG	TTCCGGGGGT	730
TTGACAACTG	GGAAGGCGAT	GCOGCTACCS	CTTGEGAGGE	TTCGCTCGAI	CAACAACESC	780
AATOGATACT	CCACATGCC	AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATOTOS	840
COCAOCTGCA	COTOTOGGCT	AGGCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGCTCG	900
AACGGCTTTA	CGCGGAAAAC	programment.	GCGACCAAAT	TCTCCCGGTG	TACCCONACT	960
ATCAGCAGAG	CTCCGAGAAG	OTGCTGACCG	AATACAACAA	CAAGGCAGCC	CTGGAACCGG	1020
TAANCCOSCC	GAAGCCTECC	COCCCCATCA	AGATTGACCC	GCCCCGCCZ	CCGCAAGAGC	1080
TASTTADDDA	CCCIMMONIC	CTGATGCCSC	COTOTOACOO	CICCOCIOTO	ACTOCCCTTA	1140
CCCGGGATTCCC	AGCCGCACCG	\$7 37777 0030	CTACCCCATC	SCCCGGTOGT	agentectas	1200
::::::::::::::::::::::::::::::::::::::	GGCGCAGCTG	ACCTOCCOCTO	GGCGGGAAGC	COCAGCGCTG	TCGGGCGACG	1260
TOCCOOTCAA	AGCGGGGATOS	CTCCCTCGCC	GTGGAGGCGG	CSGGGTGCCS	TCOCCECTET	1320
TGGGATECGC	GATCGGGGGC	GCCGAATCGG	Tadascecae	TGGCGCTGGT	GACATTGCCG	1380
GCTTAGGCCA	GGGAAGGCCC	000000000	CCGCGCTGGG	COOCCOTOCC	ATGGGAATGC	1,440
CSATGGGTGC	COCCCATCAG	GGACAAGGG	GCGCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500
ACGAGGCGCT	CTACACCGAG	GATCGGGCAT	GGACCGAGGC	COTCATTOOT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTCS	AAGTGAGCAT	CCACCAATTC	GACCOSCATG	reseccessee	1820
GTTGACGCTG	COSGCSCSGT	TTCAGTOSSC	CCTAGACGGG	ACCCTCAATC	AGATGAACAA	1680
cccanacanc	CCCGCCACCG	ACCRACCOGA	GACCOTCGAA	GTGACGATCA	ATOGGCACCA	1740
GTGGCTCACC	<u>aacciacscy</u>	TCCAAGATGG	TTTGCTGAAG	AAGCTGGGTG	CCGAGGCGGT	1800
GCCTCAGCSG	STCAACSAGS	COCTOCACAA	TGCGCAGGCC	SCGCCGTCCG	CUTATAACQA	1860

Cacadosco	CACCACCICA	CCGCTGCGTT	ATORNOCATO	TCCCGCGCGA	TGAACGAAGG	1920
aategcctaa	GCCCATTGIT	GCGGTGGTAG	CGACTACGCA	CCGAATGAGC	GCCCCAATGC	1980
GGTCATTCAG	CGCGCCCGAC	ACOCCCTGAG	TACGCATTGT	CARTGUTTUG	ACATOGATOS	2040
GCCGGGTTCG	GAGGGGGGCCA	TAGTCCIGGT	COCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GGTTCGGTTA	CGCTGGTTAA	TTATGACGIC	COTTACCA			2138

(2) INFORMATION FOR SEQ ID NO:179:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

Met Thr Gla Ser Gla Thr Val Thr Val Asp Gla Gla Gla Ile Leu Asa l 10 15

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro The Asp Val 20 25 30

Pro Tle Thr Pro Cys Glu Leo Thr Als Ala Lys Asn Ala Ala Gln Gln 35 40 45

Leu Val Leu Ser Ala Asp Asm Met Arg Glu Tyr Leu Ala Ala Gly Ala 80 80

Lys Glu Arg Glo Arg Leu Als Thr Ser Leu Arg Asn Ala Ala Lys Ala 65 70 75 86

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asp Asp Gly 85 90 95

Glu Gly Thr Val Glo Ala Glo Ser Ala Gly Ala Val Gly Gly Asp Ser 100 105 130

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 115 120 125

Ash Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 140

Gin Gly Ala Ser Leu Ala His Phe Ala Asp Gly Trp Asn Thr She Asn 145 150 158

Lau Thr Lau Gln Gly Asp Val Lys Arg Pha Arg Gly Pha Asp Asn Trp

Glu Gly Asp Ala Ala Thr Ala Cys Glu Ala Ser Leu Asp Oln Gln Arg 180 185 190

Gin Trp Ile Leu His Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gin 195 200 205

Ala Glm Tyr Val Ala Glm Leu His Val Trp Ala Arg Arg Glu His Pro 210 220

Thr Tyr Glu Asp Ile Val Gly Leu Glu Arg Leu Tyr Ala Glu Asa Pro 225 230 235 240

Ser Ala Arg Asp Gln Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg 245 250 255

Ser Glu Lys Val Leu Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro 260 265 370

Val Asn Pro Pro Lym Pro Pro Bro Ala Ile Lym Ilm Asp Pro Pro Pro 278 280 288

Pro Pro Gin Glu Gin Giy Leu ile Pro Gly Phe Leu Met Pro Pro Ser 290 295 300

Asp Gly Ser Gly Val Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met 305 310 315

Val Pro Pro Thr Gly Ser Pro Gly Gly Gly Leu Pro Ala Asp Thr Ala 325 330 835

Ala Gla Leu Thr Ser Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp 340 345 350

val Ala val Lys Ala Ala Ser Leu Gly Gly Gly Gly Gly Gly Gly Val 355 - 360 - 365

Pro Ser Ala Pro Leu Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg 370 380

Pro Ala Sly Ala Sly Asp Ile Ala Sly Leo Sly Gln Sly Arg Ala Gly 385 395 400

Giy Gly Ala Ala Leu Gly Giy Gly Gly Met Gly Met Pro Met Gly Ala 405 416 415

Ala His Gln Gly Gln Gly Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu 425 430

Asp Glu Ala Leu Tyr Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile 435 440 445

Gly Asn Arg Arg Arg Gln Asp Ser Lys Glu Ser Lys 455 450

(2) INFORMATION FOR SEQ ID NO:180:

(i) sequence characteristics:

122

- (A) LEMOTH: 277 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Als Oly Asn Val Thr Ser Als Ser Gly Pro His Arg Phe Gly Ala Pro

Asp Arg Gly Ser Glo Arg Arg Arg Ris Pro Ala Ala Ser Thr Ala

Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly 4.0

The Pro Pro Ser Arg Arg Gla Leu Arg Arg Arg Val Ser Arg Glu Ala 55

The The Arg Arg See Gly Arg Arg Ash His Arg Cys Gly Trp His Pro

Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala

Arg Asp Glo Ser Leu Leu Leu Arg Arg Arg Gly Arg Val Asp Leu Asp

Gly Gly Gly Arg Leu Arg Arg Val Tyr Arg Phe Gln Gly Cys Leu Val

Val Val Phe Gly Gin His Leu Leu Arg Pro Leu Leu Ile Leu Arg Val 130 3.38

His Arg Glu Asn Leu Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro

Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro

His Val Gln Leu Arg Asp Ils Leu Ser Leu Leu Gly His Arg Ser Ala

Gin Phe Gly His Val Glu Tyr Pro Leu Pro Leu Leu Ile Glu Arg Ser 200

Leu Ala Ser Gly Ser Arg Ile Ala Phe Pro Val Val Lys Pro Pro Glu 215

Pro Leu Asp Val Ala Leu Gln Arg Gln Val Glu Ser Val Pro Pro Ile 228 230

Arg bys Val Arg Glu Arg Cys Ala Leu Val Ala Arg Phe Glu Leu Pro 245 250

Cys Arg Phe Phe Gla Ile His Glu Val Gly Phe Thr Gly Arg Gly His 265 270

Pro Arg Arg Ils Gly 275

(2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS;
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

Arg Val Ala Ala Ser Phe Ila Asp Trp Leu Asp Ser Pro Asp Ser Pro 1 10 15

Lou Asp Pro Ser Leu Val Ser Ser Leu Leu Asm Ala Val Ser Cys Siy 20 25 30

Ala Glu Sar Sar Ala Ser Sar Sar Ala Arg Ser Gly Asn Gly Ser Arg 35 43

Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 80 55 60

Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg

Ser Val Ala Pro Arg Ala Clu Phe Cly Thr Arg Leu Ala Ser His Arg

Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Als Ser 100 105 110

Gly Arg Pro Ile Ser Ser Pro Pro Ile Vai Arg Ser Arg Ser Cys Val 115 120 128

Asp Lys Asm Gly Arg Arg Cys Ala Sem Gly Tyr Arg Arg Leu Asm Arg 136 140

Ala Arg Ser Ser Ser Ile Ala Ala Arg Cys Arg Thr Ile Gly Thr Phe 145 150 155

Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro 185 170 175

His Val Thr His Gly Val Ala Pro Gly Val Thr Arg Arg Ile Gly Gly 180 180 185

⁽²⁾ INFORMATION FOR SEQ ID NO:182:

124

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 196 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:
- Gin Glu Arg Pro Gin Met Cys Gln Arg Val Ser Glu Ile Glu Pro Arg 1 15
- The Gla Phe Asa Arg Cys Als Lew Pro His Tyr Trp His The Pro 25 30
- Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro 35 40 45
- Arg Asn Pro Arg Arg Ser Ser Arg Arg Asp Ala Glu Asp Arg Arg Val 50 55
- Ile Phe Ala Ala Thr Leu Val Ala Val Asp Pro Pro Leu Arg Gly Ala 85 70 75 80
 - Oly Oly Olu Ala Asp Gin Leu Ile Asp Leu Gly Val Cys Arg Arg Gln 85 90 95
 - Ala Gly Arg Val Arg Arg Gly Glo Glo Leo His His Arg His 100 105 110
 - Glo Gly Ala Ala Pro Asp Leu Arg Arg Arg Arg Arg His Arg Arg Val 115 120 125
 - Gin Gin His Arg Arg Let Gin Arg Val Arg Gin Let Arg Arg Tyr Val 130 140
 - Glo Thr Ala His His Arg Arg Phe Ala Arg Thr Asp Arg Val Arg His 145 155 156
 - His Val Arg Gly Pro Ser Asn His Arg Arg Arg Val Tyr Arg Gly
 165 170 175
 - Arg His Ser Cly Ala Cly Cly Cys Pro Ala Cly Cly Ala Cly Ser Val 180 185 190

Gly Gly Ser Ala 195

- (2) INFORMATION FOR SEQ ID NO:183:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 311 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

Val Arg Cys Sly Thr Leu Val Pro Val Pro Met Val Slu Phe Leu Thr

Ser Thr Asn Als Pro Ser Leu Pro Ser Als Tyr Als Glu Val Asp Lys 20 25 30

Let Ile Gly Let Pro Ala Gly Thr Ala Lys Arg Trp Ile Ash Gly Tyr 35 40 45

Glu Arg Gly Gly Lys Asp His Pro Pro Ile Leu Arg Val Thr Pro Gly 50 55 60

Als The Pro Trp Val The Trp Gly Glu Phe Val Glu The Arg Met Leu 55 75 90

Ala Glu Tyr Arg Asp Arg Arg Lys Val Pro Ile Val Arg Gln Arg Ala 85 90 95

Als The Glu Giu Leu Arg Als Arg The Asn Leu Arg Tyr Pro Leu Als 100 105 110

His Leu Arg Pro Phe Leu Ser Thr His Glu Arg Asp Leu Thr Met Gly 115 120 128

Gly Glu Glu Ile Gly Leu Pro Asp Als Glu Val Thr Ile Arg Thr Gly 130 140

Gin Ala Lau Leu Gly Asp Ala Arg Tro Leu Ala Sar Lau Val Pro Asn 145 - 150 - 155

Ser Ala Arg Gly Ala Thr Leu Arg Arg Leu Gly Ile Thr Asp Val Ala 168 170 178

Asp Leu Arg Ser Ser Arg Glu Val Ala Arg Arg Gly Pro Gly Arg Val 185 190

Pro Asp Gly Ile Asp Val His Leu Leu Pro Phe Pro Asp Leu Ala Asp 195 206

Asp Asp Ala Asp Asp Ser Ala Pro Mis Glu Thr Ala Phe Lys Arg Leu 210 225 220

Leu Thr Ash Asp Gly Ser Ash Gly Glu Ser Gly Glu Ser Ser Gln Ser 225 230 235

ile Asn Asp Ala Ala Thr Arg Tyr Met Thr Asp Glu Tyr Arg Gln Phe 245 250 255

Pro Thr Arg Ash Gly Ala Gln Arg Ala Leo His Arg Val Val Thr Leo 263 270

Let Ala Ala Gly Arg Fro Val Let Thr His Cys Phe Ala Gly Lys Asp 275 280 285 WO 99/42118 PCT/L/599/83265

Arg Thr Gly Phe Val Val Ala Leu Val Leu Glu Ala Val Gly Leu Asp 390 295 300

126

Arg Asp Val Ile Val Ala Asp 305 310

(2) INFORMATION FOR SEQ ID 90:184:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

CTCCTTCCCGA TTCGGCACGA GCTGAGCAGC CCAAGGGGCC GTTCGGCGAA GTCATCGAGG 80 CATTOGCOGA CSGGCTGGCC GGCAAGGGTA AGCAAATCAA CACCACGCTO AACAGCCTOT 120 COCASSCOTT GAACSCOTTS AATSAGGGCC GCGGCGACTT CTTCGCGGTG GTACGCAGCC 180 TESCSCTATI CETCAACUCS CTACATCAGG ACGACCAACA GTTCGTCGCG TTGAACAAGA 240 ACCTTGCGGA GTTCACCGAC AGGTTGACTC ACTCCGATGC GGACCTGTCG AACGCCATCC 300 AGCANTICON CAGCITOCIC GCCOTCGCOC GCCCTTCTT CCCCAAGAAC CGCCAAGOTGC 360 TGACGCATGA COTCAATAAT CTCOCGACCG TGACCACCAC GTTGCTGCAG CCCGATCCGT 420 THEATWOOTT GEAGACCUTC CTOCACATOT TOCOGACGOT GEOGGGGAAC ATTAACCAGC 480 TTTACCATCC GACACACGGT GGCGTGGTGT CGCTTTCCGC GTTCACGAAT TTCGCCAACC 540 CHATUGACTY CRICTOCAGO TOGATICAGO COSOTAGOCO GOTORGITAY CARGAGICO 800 COBAACTOTO TOCOCAGTAT CTOGCOCCAG TECTCOATOC GATCAAGTTC AACTACTTTC 663 COTTOGGCCT GAACGTGGCC AGCACCCCT CGACACTGCC TAAAGAGATC GCGTACTCCG ASCOCCOTT SCACCOCCC AACOCOTACA AGGACACCAC GGTSCCCGGC ATCTGGGTGC 780 CUBATACOCO GTTOTCACAC COCAACACOC AGCCCOGTTG GGTXOTGCCA CCCGGOATGC 840 AAGGGGTTCA GGTGGGACCG ATCACGCAGG GTTTGCTGAC GCCGGAGTCC CTGGCCGAAC 900 TCATGGGTGG TCCCGATATC GCCCCTCCGT CGTCAGGGCT GCAAACCCCG CCCGGACCCC 960 CHARIGESTA OBACHASTAE CEERSTEE CEERSATEGG TYTACAGGEE CEACAGGTSE 1020 CGATACCACO GCCCCTCTT GGGCCCCACO TAATCCCGGG TCCGGTGCCA CCGGTCTTGG 1080 COCCEATOUT OTTCCCLAGA GATCOCCCOG CAGCGTCOGA AAACTTCGAC TACATOGCC 2340

127

TCTTGTTGCT	STCSCCGGGC	CICCCOACCI	TCCTOTTCCCC	COTTOTCATCT	AGCCCCGCCC	1230
GTGGAACGAT	GGCCGATCGG	CACUTUTTUA	TACCOGCGAT	CACCOGCCTG	GCGTTGATCG	1260
CGGCATTCGT	CGCACATTCG	TOGTACCOCA	CAGAACATCC	GCTCATAGAC	AIGCGCTTST	1320
TCCAGAACCG	AGCGGTCGCG	CAGGCCAACA	TGACGATGAC	GGTGCTCTCC	CTCGGGCTGT	1390
TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TCCAGCAAGT	GTTGCACCAA	TCACCGATGG	1440
TOGOCCOTAA	SCATATCATC	CCACAGGGGC	TCGGTGCCAT	GCTGGCGATG	CCSATCGCCG	1590
CAGCGATGAT	GCACCGACGG	GCACCGGCCA	AGATOGTUCT	GOTTGGGATC	ATGCTGATCG	1560
ciacaaaaii	OWGENCOTTC	GCCTTTWGTG	TCCCGCGGCA	AGCGGACTAC	TIMOSCONTEC	1620
TOCCOACCOO	CCTGGCAATC	ATGGGCATGG	GCATGGGGTTO	CTCCATGATG	CCACTETCCS	1680
GGGGGGCAGT	GCAGACCCTG	GCCCCACATC	AGATUMUTCO	CEGTTCGACG	CTGATCAGCG	1740
TCAACCAGCA	GGTGGGCGGT	TOGATAGAGA	CCCCACTGAT	GTCGGTGCTG	CTCACCTACC	1800
ACTICAATCA	CAGCGAAATC	ATCSCTACTG	CAAAGAAAGT	COCACTSACC	CCAGAGAGTG	1860
903000444603	GGGGGCDGCG	GTTGACCCTTT	CCTCCCTACC	CCCCCAAACC	AACTTCGCGG	1920
TOTTOAACTOCT	GCATGACCTT	TCGCACOCCT	ADGODOTIGT	ATTCCTCATA	acerceses	1380
TAGTGGTCTC	GACGCTGATC	CCCGCGGGCAT	TCCTGCCCAA	ACAGCAGGCT	actcatcgaa	2040
TTESSASSAS	SCIATCUBCA	TOACOTOTO				2072

(2) INFORMATION FOR SEQ ID NO:188;

- (1) SECUENCE CHARACTERISTICS:
 - (A) LENGTH: 1923 base pairs
 - (%) TYPE: nucleic acid
 - (C) STRANDEDWESS: single
 - (D) TOFOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185;

TCACCCCGGA GAAGTCSTTC GTCGACGACC TGGACATCGA CTCGCTGTCS ATGGTCGAGA 50

TCGCCGTGCA GACCGAGGAC AAGTACGGCG TCAAGATCCC CGACGAGGAC CTCGCCGGTC 120

TGCGTACCGT CGGTGACGTT GTCGCCGTACA TCCAGAAGCT CGAGGAAGAA AACCCGGAGGG 180

CSGCTCAGGC GTTGCCCGCG AAGATTGAGT CGGAGAACCC CGATGCGGCA CGAGCAGATC 240

GGTGCGTTTC ACCCACATCG CAAGGTCGAG ACGCCCGTCG TCCTCTTGCA CGCTCAGCCA 300

GGTGGACTGAT CCGCGGACCA CATAGTCGAT GCCACCGTGG CTGACAATTG CGCCGGGTCC 420

:28

GAGTTGGCGG	GGGCCGAATT	GEGGCATTGC	GTCGAAGGCC	AGCOGATCCC	660000000000	480
COGCGTGGCT	GETCTTTTGE	GCCGCCGGAT	GGCCACGACG	AGAACGACGA	TOGCOGCGAT	540
CAACAGCGCC	ACCECLATER	CGACCAGCAG	ATTTCCCACG	CATACCCTCT	CCTACCECTS	800
CCCCCCGGTT	GGTCGATCGG	TOGCATATOG	ATGGCGCCGT	TTAACUTAAC	ACCTTTCCCC	660
0000000000	TCACAACGGG	CGAGTTGTCC	GGCCGGGAAC	CCGCCAGGTC	TOSSCOSOS	720
TCACCCCAGC	TCACTEGTGC	ACCATCCEGG	TOTCGGTGAG	COTGCAACTC	AAACACACTC	780
AACGGCAACG	CTTTCTCAGG	TCACCACCTC	AACCTCGACC	CUCHATCECT	COTACOTTTC	840
GACCGCGCGC	AGGTCGCGAG	TCAGCAGCTT	TGCGCCGGCA	SCTTTCSCCS	TSAAGCCGAC	900
CAGGGCATCG	TAGGTTGCGC	CACCOUTGAC	ATCUTUCTCG	GCGAGGTGGT	COOTCAAGCC	960
GCGATATGAG	CAGGCATCCA	GTGCCAGGTA	GTTGCTGGAG	GTGATGTCCG	CCAAGTAGGC	1020
GTGGACGGCA	acaggggcaa	TACGATGCGG	CUCTUSTAGE	CGGGTCAAGA	CCGAATAGGT	1080
TTOTACACT	GCGTGCGCGA	TCAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CCCCCCCCC	1140
oraccerros	TGCCAGGTCG	CGAATCCGCC	AACCAGCACG	creerarcie	GTGCGATCAC	1200
coccananac	GATCGAGCGT	TTCCCGAACG	ATTTOSTCCG	TCAACXXXX	CAGGGGACGT	1260
TCTGGGGGTTG	COACGAGAAC	CGAGCCTTCC	CCAACCAGTT	CGACACCGGT	capaaccaac	1320
TCRATCTCSA	TERBESSESSES	deseresars	ATCTCCACCT	carcorrece	30002AA0002A	1380
Yaacacicec	GAATCCGCTT	GGGAATCACC	AGACGTCCTG	CGACATCGAT	GOTTOTTCCC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCCTGTC	CTGCGCGGGA	TOTCGGGACG	1500
ATCCCCCTAGC	STATCGAACS	ATTOTTTCCC	AAATGGCTGA	CORRECTION	GGTGCGGGTG	1860
ATGGGTGTCG	ATCCCGGGTT	GACCCGGATGC	GGGCTGTCGC	TCATCGAGAG	TOGGOTTOGT	1620
cocaccica	CCGCGCTGGA	TETEGACETS	GTGCGCACAC	CGTCGGATGC	GGCCTT98CC3	1680
CASCSCCTST	TGGCCATCAG	CGATGCCGTC	GAGCACTOOC	TOGRICACCCA	TCATCCGGAG	1740
GIGGIGGCTA	TCGAACGGGT	GTTCTCTCAG	CTCAACGTGA	CCACGOTGAT	SSSCACCSCS	1800
caccecccc	SCOTGATCSC	ceraceses	GCCAAACSTG	CTCTCGACCT	GCATTTCCAT	1860
ACCCCCAGCG	AGGTCAAGGC	OCCOUTTACT	GGCAACGGTT	CCCCNGACAA	COCTCAGGTC	1920
ACC						1923

⁽²⁾ INFORMATION FOR SEQ ID NO:186:

(i) SEQUENCE CHARACTERISTICS:

(A) LEMOTH: 1055 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:186:

CTOGOGTGOC	AGTGTCACCG	GCGATATGAC	GTCGGCATTC	AATTTCGCXG	CCCCCCCGGA	60
CCCGTCGCCA	CCCAATCTCC	ACCACCCGGT	CCGTCAATTG	CCGAAGGTCS	CCAAGTGCGT	120
gcccaatgts	GTGCTGGGTT	TCTTGAACGA	AGGCCTGCCG	TATOGGGTGC	CCTACCCCCA	180
AACAACGCCA	OTCCASCAAT	ccaarccccc	GCGCCCGATT	CCCAGCGGCA	TUTGUTAGU	240
CGCCATGCTT	CAGACGTAAC	COTTOGCTAC	STOSAAACOC	GCGCCA600C	COCTGGACCG	300
GCTCATGGCA	GCGAAATTAG	AAAACTD988	ATATTOTCOS	COCCATTOTCA	TACGATUCTU	360
AGTGCTTGGT	GITTCOTOTT	TAGCCATTGA	STETEGRATOT	OTTOAGACCC	TGGCCTGGAA	420
GGGGACAACS	TGCTTTTOCC	TCTTGGTCCC	CCTTTGCCCC	CCGACGCGGT	GGTGGCGAAA	480
COGCCTGACT	COGGAATGCT	CSSCSSGTTG	TCGGTTCCGC	TCACCTGGGG	AUTOSCTOTO	540
CCACCCGATG	ATTATGACCA	CTGGGCGCCT	GCGCCCGGAGG	ACGGCCCCGA	TUTCCATCTC	600
CAGGCGGGCG	AAGGGGCGGA	COCAGAGGCC	\$\$\$###################################	ACGAGTOOGA	TGAGTGGCAG	660
COALECTEDS:	AGTGGGTSSC	CORALACOCT	COCCOLARD	TTGAGGTGCC	ACGGAGTAGC	720
ACCACCTTGA	TTCCGCATTC	#C23G233CC	CCCTAGGAGA	COCCCCCAC	ACTGTCGTTA	780
TTTGACCAGT	CATCOSCOGT	CLL B.	CCGCGGGGGGG	CTATGACAAC	AGTCAATGTG	840
CATTACAACT	TACACCETATT	ASSTCCAGGT	TCAACAAGGA	GACAGGCAAC	ATTOCCAACAC	900
GTTTTATGAC	CAPECDETABE	ÖCGATGCGGG	ACATOGCGGG	CCSTTTTGAG	GTGCACGCCC	960
agacogtoga	GGACGAGGCT	CGCCGGATGT	GGGCGTCCGC	GCAAAACATC	COSCUENCES	1020
CCTCGRCTGG	CATOGCCGAG	GCGACCTCGC	TAGAC			1088

(2) INFORMATION FOR SEQ ID MO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 359 base pairs
 - (B) TYPE: mucleic acid
 - (C) STWANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

TOCOGGOTEA COACOGGGAT CECCGAACCA TOCGAGATCA COTOGGAATU ATECACOTOG	120
CUCAGOTUST CACCCAGOTA COUGCOUTS TOCUACAGOS COTSCATCAS CYTOGITATAS	180
COUTOGOGO CORGOGGIAG GAAGTTUTAG TACTGGCCCA COACCTGGTT ACCGGGACGG	240
GASAASTICA GSSTSAASSI COGCATGICS CCGCCGASSI AGTIGACCCS GAAAACCAGA	308
TOCTOCOGON GOTOCTONOS COCOCOCONO ACOACAAACO COACOCOONOS ATAGOTOAG	359
(2) INFORMATION FOR SEQ ID NO:388:	
(i) SEQUENCE CHAPACTERISTICS; (A) LENGTH: 180 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:	
ARCOGUCCOS TOGOCÁCCOS TOCTOTAROS DETOTOSTIS OTOGOATORA GIGOTEGRAG	60
GATGCATCTT GGCAGATTCC CGCCAGAGCA AAACAGCCGC TAGTCCTACT CCGAGTCGCC	120
COCAAACTTC CTCCCAATAAC TCCCTACCCC GAGCCCCAAA CCCGGTTCC TTCGCTAAGC	180
THURCHARCE ACTIGAGGTE COROCACIOS TERROPICOS GROCGRITOS TERROPOSO	240
TGATCGGTTC GCCGCGCTOO CGCGAATCCG CCGCGGAGCG GCGTGATOTC AACCCAGTGG	300
STOSCOTOGA AGAGGTOCTO TACGAGOTOT CTUUGATUSA GGACTYUTUU	350
(2) INFORMATION FOR SEQ ID NO:189:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 679 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18%:	
Giu Gin Pro Lys Gly Pro Phe Gly Giu Val Ile Giu Ala Phe Ala Asp 1 5 15	
Gly Leu Ala Gly Lys Gly Lys Glz Ile Asn Thr Thr Leu Asn Ser Leu 20 25 30	
Ser Gin Als Leu Asn Ala Leu Asn Glu Gly Arg Gly Asp Phe Phe Ala 35 48 48	
Val Val Arg Sør Len Als Len Phe Val Asn Ala Leu His Gin Asp Asp 80 88 60	

Gin Gin Phe Val Ala Leu Asm Lys Asm Leu Ala Giu Phe Thr Asp Arg 70 Let Thr His Ser Asp Als Asp Let Ser Asn Als Ile Gln Gln Phe Asp Ser Leu Leu Ala Val Ala Arg Pro Phe Phe Ala Lys Asn Arg Slu Val 108 bed Thr His Asp Val Ass Asn Leu Ala Thr Val Thr Thr Leu Leu 120 Gla Pro Asp Pro Leu Asp Gly Leu Glu Thr Val Leu His Ile Phe Pro 135 Thr Leu Ala Ala Asn The Asn Gln Leu Tyr His Pro Thr His Gly Gly 150 3.55 Val Val Ser Leu Ser Ala Phe Thr Ass Phe Ala Ass Pro Met Glu Phe 170 The Cys Ser Ser The Gin Ala Gly Ser Arg Leu Gly Tyr Gin Glu Ser Ala Glu Leu Cys Ala Gln Tyr Leu Ala Pro Val Leu Asp ala Ile Lys 200 Phe Aso Tyr Phe Pro Phe Gly Leu Aso Val Ala Ser Thr Ala Ser Thr 210 Leu Pro Lys Glu Ile Ala Tyr Ser Glu Pro Arg Leu Gln Pro Pro Asm 235 Gly Tyr bys Asp Thr Thr Val Pro Gly Ile Trp Val Pro Asp Thr Pro 248 Let Ser His Arg Ash Thr Gim Bro Gly Trp Val Val Ala Pro Gly Met 250 Cin Gly Val Gin Val Gly Pro Ile Thr Gin Gly Leu Leu Thr Pro Glu Ser Leu Ala Glu Leu Met Gly Gly Pro Asp Ile Ala Pro Pro Ser Ser 290 298 Gly Leu Gln Thr Pro Pro Gly Pro Pro Asn Ala Tyr Asp Glu Tyr Pro 310 Val Leu Pro Pro Ile Gly Leu Glo Ala Pro Glo Val Pro Ile Pro Pro 330 Pro Pro Pro Gly Pro Asp Val Ile Pro Gly Pro Val Pro Pro Val Leu 340 348 Ala Ala Ila Val Pha Pro Arg Asp Arg Pro Ala Ala Ser Glu Asn Phe

388 360 365 Asp Tyr Met Gly Leu Leu Leu Ser Pro Gly Leu Ala Thr Phe Leu Phe Gly Val Ser Ser Ser Pro Ala Arg Gly Thr Met Ala Asp Arg His 385 390 Val Lou Ile Pro Ala Ile Thi Gly Leu Ala Leu Ile Ala Ala Phe Val Als His Ser Trp Tyr Arg Thr Olu His Pro Leu Ile Asp Met Arg Leu 420 428 Phe Gin Asn Ary Ala Val Ala Gin Ala Asn Met Thr Met Thr Val Leu 435 440 Ser Leu Gly Leu Phe Gly Ser Phe Leu Leu Leu Pro Ser Tyr Leu Glo 488 Gln Val Leu His Gln Ser Pro Met Gln Ser Gly Val His Ile Ile Pro 470 475 Gin Gly Lau Gly Ala Met Lau Ala Met Pro Ila Ala Gly Ala Met Met 485 430 Asp Arg Arg Sly Pro Ala Lys Ile Val Leu Val Gly Ile Met Leu Ile SOS Als Ala Gly Leu Gly Thr Phe Als Pho Gly Val Ale Arg Gln Als Asp 520 Tyr Lau Pro Ile Leu Pro Thr Gly Leu Ala Ile Met Gly Met Gly Met Oly Cys Ser Met Met Pro Leu Ser Gly Ala Ala Val Glz Thr Leu Ala 550 5.5.9 Pro His Gln Ile Ala Arg Gly Ser Thr Leu Ile Ser Val Asn Gln Gln \$70 Val Gly Gly Ser Ile Gly Thr Ala Len Met Ser Val Leu Leu Thr Tyr 588 Cln Phe Asn His Ser Clu Tle Ile Ala Thr Ala Lys Lys Val Ala Leu 595 Thr Pro Glu Ser Gly Ala Gly Arg Gly Ala Ala Val Asp Pro Ser Ser 630 Leu Pro Arg Gln Thr Asn Phe Ala Ala Gln Leu Leu His Asp Leu Ser 635 His Als Tyr Als Val Val Phe Val Ile Als Thr Als Len Val Val Ser \$45 650

133

The Lou Ile Pro Ala Ala Phe Leu Pro Lys Glm Glm Ala Ser His Arg 660 665 670

Arg Ala Pro Leu Leu Ser Ala 675

- (2) INFORMATION FOR SEQ ID NO:190:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 120 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

Thr Pro Glu Lys Ser Phe Yal Asp Asp Leu Asp Ile Asp Ser Leu Ser 1 10 15

-- Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile 25 30

Pro Asp Glu Asp Les Ala Gly Les Arg Thr Val Gly Asp Val Val Ala 35 40 45

Tyr Ile Gin Lys Leu Glu Glu Glu Asn Pro Glu Ala Ala Gin Ala Leu 50 55 60

Arg Ala Lys Ile Slu Ser Glo Asn Pto Asp Ala Ala Arg Ala Asp Arg

Cys Vai Sar Pro Thr Sar Gin Ala Arg Asp Ala Arg Arg Pro Leu Ala 85 90 46

Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr 100 105

Thr Arg Arg Asp Pro Arg Glu Arg

- (2) INFORMATION FOR SEQ ID NO:191:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 89 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID 80:191:

Let Ala Cys Glo Cys His Arg Arg Tyr Asp Val Gly Tle Glo Phe Arg 1 10 15

Gly Pro Ala Gly Pro Val Ala Thr Gin Ser Gly Pro Sro Gly Pro Ser

20 28 30

The Ala Glu Gly Arg Glo Val Arg Ala Glo Cys Gly Ala Gly Phe Leu
35 40 45

Giu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 60

Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala 65 75 80

Gly Asp Gly Ser Asp Val Thr Val Gly

(3) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

Als Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala 1 10 19

Val Ala Cys Val Arg Ala Asp Hix Arg Asp Arg Arg Thm Ile Arg Asp 20 25 30

His Leu Ala Met Ile His Leu Ala Gin Leu Val Thr Gin Pro Pro Gly
35 40 45

Gly Val Arg Glo Arg Leu His His Leu Gly lle Ala Val Ala Pro Glo 50 55 60

Pro Gin Glu Val Val Val Leu Ala His His Leu Val Thr Gly Thr Gly

Glu Val Gln Gly Glu Gly Arg His Val Ala Ala Glu Val Val Asp 270

Giu Asn Gìn Tìe Leu Arg Gìn Val Leu Gìy Pro Ala Pro His Asp Lys 100 105 120

Pro Asp Ala Gly Ile Gly Gln 115

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

135

	$(\mathbf{x}\mathbf{i})$	SECURNCE	DESCRIPTION:	028	$\mathfrak{T}\mathfrak{D}$	- NO : 193 :
--	--------------------------	----------	--------------	-----	----------------------------	--------------

Arg Ala Arg Sly His Arg Ser Ser Lys Sly Ser Arg Trp Ser His Glu 1 10 15

Val Leu Glu Gly Cys Ile Leu Ala Asp Ser Arg Gln Ser Lys Thr Ala 20 25 30

Ala Ser Pro Ser Pro Ser Arg Pro Gln Ser Ser Ser Asn Asn Ser Val 35 40 45

Pro Gly Ala Pro Asn Ary Val Ser Phe Ala Lys Leu Ary Glu Pro Leu 50 55 60

Glu Val Pro Gly Leu Leu Asp Val Gln Thr Asp Ser Phe Glu Trp Leu 65 70 75 80

The Gly Ser Pro Arg Trp Arg Glu Ser Ala Ala Glu Arg Gly Asp Val

Asn Pro Val Cly Cly Lea Clu Glu Val Lea Tyr Clu Lea Ser Pro Ile 100 105 110

Glu Asp Pha Ser 113

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

- (A) LEMUTH: 811 base pairs
- (S) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

TROTACOGAS CAATCOCTTO GOTGACAGAT GTGGATGCCG GCGTGGCTGC TGGCGATGGC 80 CTORARACCO COGRECATOR COCCECATOR OF A CARACTOR COCCECATOR CARACTOR COCCECATOR STOCOGCCC CCATCGATCG COTCGCCGAC GAGCGCACT GCACGCACTG TCAACACCAC 180 GCCGGTGTTC CGTTGCCGTT CGAGCTGCA XXAGGTTGCT GCTGACCGGC GCGCCGCCT 240 TCATCGGGTC GCGCGTGGAT GCGGCGTTAC GGGCTGCGGG TCACGACGTG GTGGGCGTCG 300 ACCORDOT GCCCCCCC CACCOCCAA ACCCCCCC CCCCCCCCCC TGCCACCA 360 TODACOTORO COACOCAGO OCOCTOCCO COTTOTTOCO COCTOTAT CTOOTOTOTO ACCAGGOOG CATESTEET GCCGGCGTA ACGCGGGA CGCACCGCT TATGETEE 480 ACAACGATTT CUCCACCACU GTUCTUC COCAGATUTT CUCCUCCUG GTCCCCCTT 540 136

nggractage	GTCGTCGATG	GTGGTTTACG	GGCAGGGGCG	CTATGACTGT	CCCCAGCATG	600
gaccostosa	cocacraces	CGGCGGCGAG	CCCACCTGGA	CAATGGGGTC	TTCGAGCACC	៩៩೮
GTTGCCC0986	GTGCGGCGAG	CONSTONICT	GGCAATTGGT	CGACGAAGAT	0CCCC07778C	720
gcccccccaa	CCTGTACGCG	GCAGCAAGAC	COCOCAGGAG	CACTACGCGC	TUGCUTUGTU	750
ggaarcgaat	GGCGGTTCCG	TOGTOGCOTT	G			811

PCT/US99/03265

(2) INFORMATION FOR SEQ ID NO:195:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 966 base pairs
- (S) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

GTCCCGCGAT	OTOGCCGAGC	ATGACTITCG	GCAACACCGG	CGTAGTAGTC	GAAGATATCO	60
GACTITGTGG	TOCOGOTOGO	GGGATAGAGC	ACCTGTOGGC	GTTGGTCAGC	GTCACCCSTT	120
GCTCGGACGC	CGAACCCRTS	CTTTCAACGT	AGCCTOTCGG	TCACACAAGT	CGCGAGCGTA	180
ACCTCACCOT	CAAATATCGC	GIGGAATTTC	SCCCTTOACTT	recoercies	GACAATCAAG	240
GCATACTCAC	TTACATOCGA	accarrraca	COGOTTCGAT	coccrrcaco	CTOOTGAACG	300
TGCCGGTCAA	COTOTACAGO	SCTACOSCAC	ACCACGACAT	CASSTICCAC	CAGGTGCACG	360
CCARGGACAA	COCACOCATO	COUTACAAGC	CCCTCTGCGA	GGCGTGTGGC	CACCTCCTCC	420
ACTACOSCGA	TCTTGCCCGG	GCCTACGAGT	CCGGCGACGG	CCAAATGGTG	GCGATEACOS	480
ACCACCACAT	COCCACCTTS	CCTGRAGARC	GCAGCCGGGA	STEGACOTAS	TIGGAGTICS	540
resessesse	CCACCTCCAC	CCCATGATOT	TOBACCECAG	CIACTITITE	GAGCCTGATT	500
CGAAGTCGTC	GAAATCSTAT	STUCTECTES	CTAAGACACT	COCCOSAGACC	GACCGGATGG	660
CONTCOTORA	TCCCCCCACC	GUCCOTGAAT	GCAGGAAAA	TAAGAGCCGC	TATCCACAAT	720
ACOTODOCOT	GCTCGGCTAC	CACAAACGGT	AGAACGATCS	AGACATTOOC	CACCTGAACT	780
GCGGCGCTAT	AGAAGCCGCT	CTGCGCGATT	ATCAAACGCA	AAATACSCTT	ACTORTGUCA	840
reseccerce	TCACCCGATG	CSACOTTTTT	GCCACGCTCC	ACCGCCTGCC	GCGCGACCTC	900
aagtgggcat	GCATCCCACC	COTTCCCGGA	AACCGGTTCC	GGCGGGTCGG	CTCATCUCTT	960
CATCCT						966

⁽²⁾ INFORMATION FOR SEQ ID NO:196:

137

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2367 base pairs

(%) TYPE: bucleic acid

(C) STRANDEDMESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

CCGCACCGCC	GUCAATACOG	CCAGCGCCAC	COTTACOSCC	CTTTCCCCCC	TTGECCCCGT	60
recognecer	cccsccscc	COSCOGATOG	ACTITUTEATE	CCCAAAAGTA	CTGGCGTTSC	120
CACCGGAGCC	geografices	CCSTCACCCC	CACCCCCCCC	GACTCCACCG	GCCCACCGA	180
creases	GCCACCGTTG	CCCCCC CTT CC	CGATCAACAT	GCCGCTGGCG	CCACCCTTOC	240
03,0003,0003	ACCOCCTOCC	CECACOSCOC	CGACACCAAG	CGAGCTGCCG	CCGGGAGCCAC	300
CATCACCACC	DOSKODOKT	ACCGCCCAGA	CACCAGCCAC	CGGGTCTTCS	COTECAAADT	360
COCTOCCACC	Accordace	TTACCGCCAA	CCCCACDSSC	ANOUCCOGGG	CCGCCATCCC	420
00000000000	SSCGTTGCCG	CCGTTGCCGC	COTTOCCEAR	CAACAACCCG	ccaecaccac	480
cattaccaec	cacaccaca	GTCCCGCCCGG	COCCOCCEAC	GCCAAGGCCG	craccaccer	540
TGCCGCCATC	ACCACCCTTS	000000000000000000000000000000000000000	CATCGGGTTC	TGCCTCDGGG	TCTSSSCTOT	600
CAAACCTCSC	GATGCCASCG	77702000000	TTCCCCCC000		GCGCCGTCAC	660
CACCGATACC	ACCCCCCCCCC	CCGGCGCCAC	COTTOCCICC	ATCACCGAAT	AGCAACDOGC	728
0300300700	attoccocca	25164455	CCCCACCCTC	GGCCCCGAS	GCGGCACTGG	780
	ACCACTGAAA	cosecocniac	CACCGGTAGA	GGTUUCAGTG	SCUATOTOTA	840
CONDRAGEO	scoroccaes	CCCCCCCTAC	CACCCCCACT	GCCSGCGGCT	ACACCGTCGG	900
Acceptace	SCORONACOS	CCAAAGGGGG	TCGCAATGTC	GCCCTGCGCG	ACTECGCCGT	950
	302300000	CCACCOSCAG	COGCGGTACC	GCCGTCACCA	ccaecaccac	1020
Caragosan	accocacce	accompacad	TGGCACCGTC	accaccaara	ccaccoorcs	1080
GCCTGCCGGC	AGTGCCATGG	caccatatac	CGCCGTCGCC	GCCGGTTTGA	TCACCGATGC	1140
CCGCACACATC	recesserra	restesarae	TGGCGGCGGG	GCCGGGCGTG	SCATTGACCC	1200
cerrreccc	GGCGAGGCCG	acseedeess	TACCACCOGC	GCCGCCATGG	CCGAACAGCC	1260
COOPTECODEC	SCCGTTACCS	CCCSCACCCC	CGATGCCTGC	GGCCACGCTG	gracesecsa	1328
CACCGCCCTT	GCCGCCGTT%	CCCCACAACC	ACCCCCCCTT	CCCACCGGCA	accaccacca	1380

COCCOGTACC	Accoocccc	CCGTTWCCGC	COTTGCCGAT	CAACCCGGCC	GCGCCTCCGC	1440
TOCCOCCOGT	TTUACUUAAC	CCGCCAGCCG	COCCUTTGCC	ACCGTTGCCA	AACAGCAACC	1500
CGCCGGCCGC	GCCAGGCTGC	CCCGGTTSCCG	TCCCCTTCCGC	GCCGTTTCCG	ATCRACGGGC	1960
GCCCCAAAAG	CGCCTCGGTG	GGCGCATTCA	CCGCACCCAG	CAGACTCCGC	TCAACAGCGG	1620
CTICAGTUCT	GGCATACCGA	CCCACCACCC	CASTCAACCC	CTGCACAAAC	TGCTCGTGAA	1680
acoctoccac	CTOTACOCTO	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCS	AACAACCCCG	1740
CAATCUCCUC	CGACACTTCA	WW.GCAGCO3	CAGCCACCAC	TTCCGTCGTC	GGGATCGCCG	1800
CCCCCCATT	accocccc	ACCTOCGAAC	CAATAGTCGA	TAAATCCAAA	GCCGCAGTTC	1860
CCAGCAGCTG	CCCCCTCCCC	ATCACCAAGG	ACACCTOSCA	COTCCGGATA	02TATAT20	1920
COSCACCOTO	DECCAGESS	CCACGTGACC	TITGGTCGCT	adcteacacc	CCTGACTATG	1980
GCOGCGACGG	CCCTCCTTCT	COCCOCTEA	GGCGCGCAGC	TTGTTGCGCC	AGTTCARCAC	2040
3GGAGGACAG	SCCCAGCTTG	OTUTAGACGT	COGTCAAGTC	OGAATGCACG	TTCCGCGCCC	2100
AGATGAATAG	SCGGACGCCG	ATCTCCTTGT	TGCTGAGTGG	CTCACCGACC	AGTAGAGCCA	2160
CTCAAGCTC	TGTCGGTGTC	AACGCGCCCC	AGCCACTTOT	COGGCGTTTC	COTTOCACCOCC	2220
DTTTCTCCSS	CGCGTACTCS	ATCGCCTCAT	CGATOGATAA	CGCAGTTCCT	DDADDORGOT	2289
AACOTEOTAC	CTCSCTGTCA	CCCATGGATT	TTCGAAGGGT	GGCTAGCSAC	GAGTTACAGC	2340
ATESTECCE	CATCCCCAAG	CCCACCC				2367

(2) INFORMATION FOR SEQ ID NO.197:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:197:
- Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val 3 5 10
- Gly Als Gly Gly Cly Thr Gly Ser Pro Val Thr The Glo Thr Ale Ale
- The The Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser 38 40
- Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro 60

Ala Ala Met Ala Glu Glu Pro Gly Val Ala Ala Vel Thr Ala Arg Thr 180 185 190

Pro Asp Ala Cys Gly Ris Ala Gly Ala Ala Asp Thr Ala Val Ala Ala 195 200 205

Val Ala Pro Gin Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala 210 ' 218 220

Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg 225 235 240

Ala Ser Ala Ala Ala Gly Leu Thr Glu Pro Ala Ser Ary Ala Val Ala 245 250 255

Thr Val Ala Lys Glm Glm Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys 260 268 270

Arg Pro Val Sly Ala Val Ser Asp Sin Arg Ala Pro Sin Lys Arg Leu 275 285

Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe 290 295 300

Ser Ala Gly Tie Pro Thr Arg Gly Arg Ser Gln Arg Len Sis Lys Leu 305 310 315 320

Leu Val Lys Arg Cys His Leu Tyr Ala Glu Arg Leu Ils Leu Pro Ser 325 336

Met Gly Fro Glu Gln Pro Arg Asn Arg Arg Arg His Phe Ile Gly Ser 340 345 140

Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg

PCT/US99/03265

Ala His Let Arg Thr Ass Ser Arg 370

(2) INFORMATION FOR ESQ ID MO:198:

(i) SEQUENCE CHARACTERISTICS;

- (A) LENGTH: 2852 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GGCCAAAACG	CCCCGGCGAT	0200000300	GAGGCCGCCT	ACGACCAGAT	GTGGGCCCAG	60
GACTTGGCGG	CCATCTTTGG	CTACCATCC	GGGGCTTCGG	COCCCOTCTC	GGCDTTGACA	120
CCGTTCGGCC	AGGCGCTGCC	GACCOTEGCG	accescoord	CGCTGGTCAG	CGCOGGCCGCG	180
GCTCAGGTGA	CCACGCGGGT	CTTCCGCAAC	CTGGGGTT0G	CORRECTORS	CSAGGSCAAC	240
Grecocaaca	STAATOTOOS	CAACTTCAAT	CTCGGCTCGG	CCAACATCGG	CAACGGCAAC	300
ATCCCCCCC	GCAACATCOO	CACCTCCAAC	ATCGGGTTTC	GCAACGTGGG	TOOTGGGTTG	360
ACCGCAGCGC	TGAACAACAT	COGTTTCOCC	AACACCGGCA	GCAACAACAT	COGGTTTGGC	420
AACACCGGGA	GCAACAACAT	CGGGTTCEGC	AATACCGGAG	ACTOCAACCC	AGGTATCGGG	480
CICACOMMAN	CCGGTTTGTT	COCCTTCCCC	SOCCTURACT	COOCACEGG	CAACATCOOT	540
0767764467	COGCACCOS	COCCTECAAA	ATCGGGAACT	CGGGTACCGG	CAACTCGGGC	600
ATTOOCAACT	COGGCZACAO	CTACAACACC	GGTTTTWACA	ACTOCOSCOA	CUCCAACACU	560
GCCTTCTTCA	TAKOTOTOA	agociacaco	GGCGTCGGCA	ACCCCCCAA	CTACAACACT	720
GGTAGCTACA	ACCCCCCCAA	CAGCLATACC	GGCGGGTTCA	ACATGGGCCA	GTACAACACO	780
OGCTACTTGA	ACAGCGGCAA	CTACAACACC	GGCTTGGCAA	ACTCCGGCAA	TOTELACIET	840
ADTTDDBDDBB	TTACTGGCAA	CTTCAACAAC	GGCTTCTTGT	ACCCCCCCCA	CCACCAAGGC	900
CTVATITICS	GGAGCCCCCC	CTTCTTCAAC	TCGACCAGTG	caccatcatc	GGGATTCTTC	960
AACAGCGGTG	COGGTAGUGC	GTCCOMCTTC	CTGAACTCCG	GTGCCAACAA	TTCTCGCTTC	1020
TICAACTOTT	COTTOGGGGGC	CATCOUTAAC	recosectss	CAAACGCGGG	CSTGCTGGTA	1080
AOTEOGEOTT	TCAACTCGGG	CAACACCUTA	TCGGGTTTGT	TCAACATGAG	CCTGGTGGCC	1140
ATCACAACSC	COGCCTTGAT	CTCCGGCTTC	TTCAACACCO	GAAGCAACAT	OTCOGGATTT	1200

TTCGGTTWCC	CACCAMICIT	CAATCTCGGC	CTCGCAAACC	GGGGCGTCGT	GAACATTCTC	1260
OSCAACOCCA	ACATOXICAA	TTACAACATT	CTCGGCAGCS	GAAACCTCCG	TOACTTCAAC	1320
ATCCTTTOCA	GCGGCAACCT	CGGCAGCCAA	AACATCTTGG	GCAGCGGCAA	COTOGGCAGC	1380
TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCO	STTCCGGAAG	CCTGGGAAAC	1440
TACAACATCO	CATCEGGAAR	CCTCCGGGATC	TACAACATCS	STITTGGAAA	CGTCCGCCSAC	1500
TACAACGTCG	GCTTCGGGAA	cacacacarc	TTCAACCAAG	GCTTTGCCAA	CACCOGCAAC	1360
ARCAACATOG	GGTTCGCCAA	CACCGGCAAC	AACAACATCG	GCATCOSSCT	GTCCCGCGAC	1620
AACCAGCAGG	GCTTCAARAY	TGCTAGCGGC	TOGAACTCGG	GCRCCOSSCAA	CAGCGGCCTG	1680
TTCAATTCGG	GCACCAATAA	CETTGGCATC	TTCAACGCGG	GCACCOGAAA	COTCGGCATC	1740
GCAAACTCOO	AAGGGDDADG	CTGGGGGTATC	GGGAACCCC	GTACCGACAA	TACCOGCATC	1800
CTCAATGCTO	GCAGCTACAA	CACCCCCATC	CTCAACGCCC	GCGACTTCAA	CACGGGGTTC	1860
TACAACACOG	GCAGCTACAA	CACCESCOST	TTCAACUTCS	GTARCACCAA	CACCCGCAAC	1920
TTCLACTTCC	GTGACACCAA	TACCEBCAGG	TATTAACTCCC	GTGACACCAA	CACCOSSCTTC	1980
TECAMICCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATOSCITC	2040
TTGGTGGCGG	CCCATAACCA	GGGCCAGATT	CCCATCGATC	TCTCSSTCAS	CACTCCATTC	2100
ATTITITAA	ACCACCAGAT	GGTCATTRAC	GTACACAACG	TAATEACCTT	034044040	2160
ATTATCACGG	TORCORREC		TTCCCCCCAAA	CONTRACTOR	GAGCGGTTTG	2228
THE THE THE	GCCCGGTCAA	TCTCACCCCA	TCCACGCTGA	CCGTTCCGAC	CATCACCCTC	2286
ESSECTIFED A	GACCGACDOT	######################################	ATCAGCATTG	TCCCTSCTCT	CCACACCCCC	2340
ACCATTACCT	TCCTCAAGAT	CORTECTIAN	CCCGGENTCG	CAAATTTCTAC	CACCAACCCC	2400
TCCTCCCCC.	TOTTCZĄCTC	GGGCACTGGT	GCCACATCTO	COTTOCALAL	CETCGGCCCC	2460
GGCAGTTTAG	gcotciggaa	CACTOCTTTO	AGCAGCGCGA	TAGGGAATTC	SECTITIONS	2520
AACCTCGGCT	CCCTGCAGTC	ÁGGCTGGGCG	AACCTTGGGCA	ACTCCCTATC	ddoctitttc	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	SOCAATOTOT	COGGCCTGAA	CAACATOGGG	2648
ACCARCCTGT	CCOMCGTGTT	CCCCGGTCCG	ACCUUUSACGA	TTTTCAACCC	GGGCCTTGCC	2700
AACCTGGGCC	AUTTGAACAT	CCCCAGCSCS	TCGTGCCGAA	TTCCCCACCA	GTTAGATACO	2760
GTTTCAACAA	TCATATCCDC	07777000000	AGTGCATCAG	ACGAATCGAA	CCCCCCAACO	2820

GTARGOGAAT ARROGGARTE GOGROCTUTG AT

2853

(2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 943 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

Siy Sin Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln 1 10 15

Met Trp Ala Gln Amp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala 20 25 30

Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gin Ala Leu Bro Thr 35 40 45

Val Ala Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gln Val Thr SC 55 60

The Arg Val Phe Arg Asn Leu Sly Leu Ala Asn Val Arg Glu Gly Asn 55 70 75 80

Val Arg Asm Gly Asm Val Arg Asm Phe Asm Leu Gly Ser Ala Asm Ile 85 90 95

Gly Asn Gly Asn Tie Gly Ser Gly Asn Tie Gly Ser Ser Asn Die Gly
100 105 110

Phe Gly Asn Val Gly Pro Gly Leo Thr Ala Ala Leo Asn Asn Ila Gly
115 129 125

Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser

Ash Ash The Gly Phe Gly Ash Thr Gly Ash Gly Ash Arg Gly The Gly 145 150

Let The Gly Ser Gly Let Let Gly Phe Gly Gly Let Asn Ser Gly The

Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly 180 195 190

Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr 198 200 205

Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn 210 215 220

Ser Gly The Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr

225					230					235					240
Gly	5 % I	Tyr	asa	Pro 248	Gly	Asn	ser	asn	Thr 250	gly	Gly	Phe	Asn	Met 255	Gly
Gln	Tyr	Ass	Thr 260	Gly	Tyr	Leu	Asn	3er 265	Gly	Asn	Ţyr	Asn	Thr 270	Gly	Leu
Als	Asz	Ser 275	Gly	Asn	Val	Asn	Thr 280	sly	Als	Phe	île	Thr 285	Gly	Asn	Phe
.Asn	Asn 290	gly	Phe	Leu	īrp	Arg 295	Gly	Asp	Hìs	Gla	aly 300	Veria	Ile	Phe	Gly
Ser 305	Pro	aly	Phe	Phe	Asn 310	Ser	Titt	Ser	Ala	Pro 115	Ser	Ser	gly	Phe	7he 320
Asn	Ser	Gly	Ala	01y 325	Ser	Ala	Ser	Gly	Phe 330	Leu	Asn	Ser	aly	Ala 335	Asn
Asn	Ser	Gly	2he 340	Phe	Asn	Ser	Ser	Ser 345	Oly	Ala	Ile	Gly	Ass 350	Ser	Gly
Læu	Ala	Asn 355	Ala	Gly	Val	Les	Val 360	Ser	Gly	Val	Tie	Asn 365	Ser	Gly	Asn
Thr	Val 370	Ser	Gly	Leu	žhę	Asn 375	Met	Ser	Leu	Val	Ala 380	Ile	Thr	Thr	što
Ala 385	Ceu	Ile	Ser	Gly	2he 390	Phe	Ass	Thr	Gly	9#1 195	Asn	Met	Ser	Gly	Phe 400
Phe	Gly	gly	320	9r0 495	Val	Phe	Asn	Leu	Gly 410	Leu	Ala	Asn	Arg	Gly 415	Val
Val	Asn	Ile	Leu 420	Gly	Asn	Ala	Asn	Ile 425	Gly	Asn	Tyr	Asn	11e 430	Leu	Gly
S#r	Gly	As 5 435	Val	Gly	As p	Phe	Asn 440	Iå#	Leu	Gly	Ser	Gly 445	Asn	Leu	Gly
Ser	Gln 450	nak.	lle	Leu	Gly	907 455	aly	Asn	Val	Gly	Ser 460	Phe	äsn	ĭie	Gly
80T 465	Gly	Asn	Ile	Gly	Val 470	Phe	Ass	Val	Gly	3## 475	Gly	Ser	Leu	Gly	Asn 480
Tyr	Asn	lle	gly	Ser 488	Gly	Asa	Leu	Gly	Tle 490	Tyr	Asn	Ile	Gly	Phe 495	Gly
Asn	Val	Gly	Asp 500	Tyr	Asn	Val	Gly	9h# 50\$	Gly	Asn	Ala	Gly	Asp 510	Phe	As n
Gln	Gly	Phe SIS	Ala	Asn	Thr	Gly	Aan 520	Asn	Asn	ïle	Gly	Phe 529	Ala	ăsn	Thr

Gly	asn 068		Asn	Ile	Gly	Il* 935	@ly	Leu	Ser	Gly	As p \$40	Asn.	Glm	Glm	gly
Phe 545	Asn	lie	Ala	Ser	Gly 950	Trp	Asn	Ser	Gly	Thr 555	Gly	Asn	Ser	Oly	100 560
Phe	Äsn	zer	Gly	Thr 563	Äsn	Ass	Val	Gly	11e 570	Phe	Asn	Ala	Gly	Thr 575	Gly
Asn	Val	Gly	11e 580	Ala	Asn	Ser	Gly	Thr 585	Gly	Asn	Trp	Gly	II# 590	Gly	āsn
Pro	Oly	Thx 395	Asp	Asn	Thr	Gly	Ile 600	Leu	Asn	Ala	Gly	Ser 605	Tyr	Ass	Thr
Gly	Ile 610	Leu	Asn	Ala	Gly	Asp 615	Phe	Asn	The	gly	Phe 5 20	Tyr	asa	Thr	3ly
5er 625	Tyr	Asn	Thr	Sly	01y 630	Phe	Asn	Val	Gly	Asn 635	Thr	Asn	ZZZ.	Gly	Asn 640
Phe	Asn	Val	Gly	Asp 545	Thr	Asn	Thr	Gly	Ser 650	Tyr	Asn	Pro	Gly	Asp 655	Thr
Asn	THE	Gly	95e 860	Phe	Asn	Pro	Gly	Asn 665	Val	Asn	Thr	Gly	Ala 670	Phe	Asp
Thr	Gly	Asp 675	Phe	Asn	Asn	Gly	Phe 680	Leu	Val	Ala	Gly	Asp 885	Asm	Gla	Gly
Gln	Ile 590	Ala	Ile	åøp gøå	Leu	5ex 695	Val	Thr	Thr	Pro	Phe 700	Tle	\$10	Tle	Asn
31u 705	Gln	Met	V&L	Tie	Asp 710	Val	His	Asn	Val	%er 715	The	Phe	äly	Gly	Asn 720
Met	Ile	Thr	Val	Thx 725	Slu	Ala	Ser	THE	Val 730	The	Pro	Gln	Thr	Phe 733	Tyr
Leu	Ser	Sly	566 740	<u>ಅಗಳ</u>	95e	Phe	Gly	Pro 745	Val	Asn	řeu	Ser	Ala 750	ser	Thr
Leu	Thr	V&1 755	Pro	Thr	Il*	Thr	Leu 760	Thr	lie	Gly	Sly	Pro 765	Ibr	Val	Thr
Val	Pro 770	île	Ser	Ile		Gly 775	ĸżĸ	Leu	Glu	Ser	Arg 780	Thr	Ile	The	Phe
Leu 785	Lys	Ile	Asp	Pro	Ala 790	Pro	Gly	Ile	Gly	Asn 795	Ser	Thr	Thr	Asn	910 800
Ser	Ser	Gly	Phe	Phe 805	Äsn	Ser	Sly	Thr	Gly 810	dly	rdT	Ser	Gīy	Phe 815	Gln

	Āsn	Val.	aly	Gly 820	Gly	öer	Ser	Gly	Val 825	TIP	Asn	Ser	Gly	Leu: 830	Sar	ser	
	Ala	Ile	Gly 835	Äsn	Ser	Gly	Phe	31n 840	Asn	Lett	Gly	Ser	Leu 848	Gin	Ser	Gly	
	Trp	Ala 850	Asn	Leu	Gly	Asn	8e: 855	Val	Ser	gly	Phe	The aso	Äsn	Thr	Ser	Thr	
	Val 865	Asn	Leu	Ser	Thr	Pro 870	Ala	asa	Val	Ser	Gly 875	Leu	Asn	Asti	Zie	31y 880	
	70 to 20	Asn	Leu	Ser	31y 885	Val	Phe	Arg	Gly	9r0 890	Thr	Gly	The	Ile	Phe 895	Asn	
	Ala	Gly	leu.	Ala 900	Asn	Leu	Gly	Gin	1.#u 905	Asn	Ile	Gly	Ser	Ala 910	Ser	Cha	
á	Arg	lie	Arg 915	His	Glu	Leu	Asp	Thr 920	Val	Ser	Thr	Ile	li# 925	Ser	Ala	355	
	Cys	61y 930	Şer	sia	Ser	Äsp	Glu 935	Ser	Asn	Pro	Oly	8er 940	Val	Ser	Glu		
(2)	info	emat'	ion :	FOR :	920	ro w	0:20	0 ;									
		(A) (B) (C) (C)) LE) TY) ST) TO	noth Pe:: Rand Polo	rrac : 83 Bucl : EDNE GY:	bas eic ss: line	e pa acid sing ar	irs le	on been	. 2.50							
	(xi)												20.20 V				.00.20
GGAT	CCAT	at c		ATCA	T CA	TEAT	CATT	AC3	TKET	CWA	CATC	atce	eg a	GG.			\$3
(2)	inec	rmat	ION	FOR	SEC	id n	0:20	12.8									
	(1)	(A (8 (C) LE) TY) ST	note Ps : Pand	ARAC : 42 nucl Edne Gy:	bas eid SS:	s pa acid sing	izs ;									
	(x1)	SEC	GENC	e de	scri	PTIO	001) S	ego i	n nc	1)201	i.c						
CCTC	:aatt	CA G	GCCT	TOST	T GC	acca	(CC)	cai	erre.	BAAC	GA						4%
(2)	INFO	rmat	TON	FOR	SEQ	TD N	10 : 2 (32:									
	2 (6) }	(A (B	() L8 () TY () ST	ncth Pe: Rant	iarac I) 31 mucl Edne XV:	. bas eic SS:	e pa acia aina	airs £									

146

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
GGATCCTGCA GGCTCGAAAC CACCGAGCGC T	31
(2) INFORMATION FOR SEQ ID NO:203:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:204:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) sequence description: seq id no;204;	
OGATECAGES CTGAGATGAA GACCGATGCC GCT	33
(I) INFORMATION FOR SEQ ID NO:285:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: mucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO.205:	
GGATATOTGO AGAATTOAGG TYTAAAGCCC ATYTGOGA	38
(2) INFORMATION FOR SEQ ID NO:206:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (O) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:706:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION FOR SEQ ID NO:207:	

147

ξ	3	3	ACCEPTED AND A SECOND OF THE PARTY OF THE PA	CHARACTERISTICS	•

- (A) LENTTH: 37 base pairs
- (B) TYPE: nucleic acid
- (C) STRANCEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCGG

37

(2) INFORMATION FOR SEC ID NO:208:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7676 base pairs
- (%) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

TOUCGAATOU GACUCCCT OTAGOGGGG ATTAAGOGGG GCOQOTOTOO TOUTTACGGG 60 CAGCGTGACC SCTACACTTG CCAGCGCCCT AGCGCCGGCT CCTTTCGCTT TCTTCCCTTC 120 CTTTCTCGCC ACGTTCGCCG GCTTTCCCCC TCAACCTCTA AATCGGGCC TCCCTTTAGG 180 OTTOCCATTO BEATTABOTTO AGCACACOO ACOTOCACOO OATTOCOTAS TOTACOCOTOC 240 ACSTAGTGGG CCATCGCCCT GATAGACGGT TYTCGCCCT TYBACGTTGG AGTCCACGTT 300 TTTTAATAGT GGACTCTFGT TCCAAACTGG AACAACTCC AACCCTATCT CGGTCTATTC ATTINITION TARABART SETTATION OFFICE OFFICE WITHOUGHER ATTINITION 420 ACAAAAATTT AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT 480 TEGEGGAAAT STECCEGAA CECETATTS TYTATTTTTE TAAATACATT CAAATATOTA 540 TOCCCOCICATO ANTINATIOT TAGAAAAACT CATOCAGCAT CAANTONAAC TOCKATITAT 600 TCATATCAGG ATTATCAATA CCATATTTTT GAAAAAGCEG TTTCTTAAT GAAGGAGAAA 重要發 ACTIACISAS GLASTICCAT AGGATGOLAA GATIITOOTA TEXSTETSIO ATTICCAACTI 720 STOCAACATO AATACAACCT ATTAATTTOO OOTOSTOAAA AATAAGSTTA TOAAGTGAGA 788 AATCACCATS AGTSACSACT GAATCCSSTS AGAATGGCAA AAGTTTATGC ATTTCTTTCC 840 AGACTTGTTC AACAGGCCAG CCATTACGCT COTCATCAAA ATCACTCGCA TCAACCAAAC 900 COTTATTEAT TEGTGATIGE GEETGAGEGA GACGAAATAC GEGATEGETG TTAAAAGGAC 960 ARTTACAAAC AGGAATCGAA TOCAACCOGO GCAGGAACAC TGCCAGCGCA TCAACAATAT 1020 TYPICACCTCA ATCACCATAT ICTTCTALATA COTOGRAFICO TOTTTTTCCCO GEGATICOCAS 1080

TOOTGAGTAA	CCATECATCA	TCAGGAGTAC	GCATAAAATG	CTTGATGSTC	GGAAGAGGCA	1140
TAAATTCCOT	CAGCCAGTTT	AGTCTVACCA	TOTCATOTGT	AACATCATTG	GCAACGCTAC	1200
CTTTGCCATG	TTTCAGAAAC	AACTCTGGCG	CATOGGGCTT	COCATACAAT	CGATAGATTS	1260
TOGCACCTGA	TTGCCCGACA	TTATCGCGAG	CCCATTTATA	CCCATATAAA	TCAGCATCCA	1320
TGTTGGAATT	TAATCGCGGC	CTAGAGCAAG	ACUTTTOCOG	TTGAATATOG	CTCATAACAC	1380
CCCTTGTATT	ACTUTTTATG	TAAGCAGACA	GTTTTATTGT	TCATGACCAA	AATCCCTTAA	1440
COTTEACTTTTT	COTTCCACTO	ACCUTCAGAC	CCCOTAGAAA	agatcaaagg	ATCTTCTTGA	1500
GATCCTTTTT	TTCTGCGCGT	AATOTOTOO	TTGCRAACRA	AAAAACCACC	GCTACCAGCG	1560
anaannani	TGCCGGATCA	ACACCTACCA	ACICITITEC	CGAAGGTAAC	TOGCTTCAGC	1620
AGAGCGCAGA	TACCAAATAC	Manage Contract of	STGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	1580
AACTCTGTAG	CACCGGGGTAC	ATACCTOSCT	CTGCTAATCC	TOTTACCAGT	GGCTGCTGCC	1740
AGTGGCGATA	AGTCGTGTCT	TACCGGGTTS	GACTTAAGAC	GNTAGTTACC	GGATAAGGCG	1800
CAGCGGTGGG	GCTGAACOGG	OCCUPATION OF	ACACAGCCCA	SCTTGGAGCS	AACGACCTAC	1860
accgaactga	GATACCTACA	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGOGAGA	1920
AAGGCGGACA	GGTATCCCCCT	AAGCOOGCAGG	OTCOMAACAC	GAGAGCGCAC	GAGGGAGCTT	1980
CCAGGGGGAA	ACCCCTOUTA	TCTTTATAGT	COTOTOBUT	TTCCCCACCT	CTCACTTGAG	2040
C01C2%	TOTGATGCTC	GTCAGGGGGG	COGAGCCTAT	GGAAAAACGC	CAGCAACGCG	3300
GOCTTTTTAC	COTTCCTOCC	######################################		ACATOTTCIT	Managarana A	3160
A proportion of 1984 & 1. Solven to remark the St. Steels.	CTCTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	oserescec	7220
AGCCGAACGA	CCCACCOCAG	CCACTCACTO	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	3280
TATTTTCTCC	TTACGCATCT	STÉCESTATT	TOACACCCCA	TATATEGTCC	ACTCTCAGTA	2340
CAATCTGCTC	TGATGCCGCA	TAGTTAAGCC	AGTATACACT	CCGCTATOOC	TACOTGACTS	2400
actcareact	GCGCCCCGAC	ACCCCCCAAC	ACCCCCTGAC	GCGCCCTBAC	GGGCTTGTCT	2460
acreceace	TCCGCTTACA	GACAAGCTGT	GACCGTTTCC	GGGAGCTGCA	TGTGTCAGAG	2520
GWYFFEGACOS	TCATCACCUA	AACGCGCGAG	GCAGCTGCGG	TRANSCTORT	CAGCGTGGTC	2580
OTGAAGCGAT	TCACAGATOT	CIGCCTOTTC	ATCCDCGTCC	agctogttga	officient	2640
AAGCGTTAAT	GTCTGGCTTC	TGATAAAGCG	GGCCATGTTA	ACCCCCCTTT	THE CHART	2700

GETCACTGAT	eccrecarat	AAGGGGGATT	TCTCTTCATC	GOCGTAATGA	TACCCIATGRA	2760
acgagagag	ATGCTCACGA	TACOGRETTAC	TGATGATGAA	CATGCCCGGT	TACTGGAACS	3820
TTOTOAGGGT	AAACAACTGG	CUSTATOGAT	GCGGCGGGAC	CAGAGAAAA	TCACTICAGGG	2880
TCAATGCCAG	CGCTTCGTTA	ATACAGATOT	AGGTGTTCCA	CAGGGTAGCC	AGCAGCATCC	2540
TGCGATGCAG	ATCCGGAACA	TAATGOTGCA	GGGCGCTGAC	TTCCGCGTTT	CCAGACTTTA	3000
CGAAACACGG	AAACCGAAGA	CCATTCATCT	TOTTGCTCAG	OTCGCAGACG	TTTTGCAGCA	3080
SCACTOSCTT	CACCTITCOCT	CGCGTATCGG	TGATTCATTC	TOCTAACCAG	TAAGGCAACC	3120
cccccaecc	Addodddardd	TCAACTACAG	GAGCACGATO	ATTOTOTOLACCC	GTGGGGCCSC	3180
CATGCCGGGG	ATAATGGCCT	<u>actronosee</u>	GAAACGTTTG	GTGGCGGGAC	CAGTGACGAA	3240
GGCTTGAGCG	AGGCGTGCA	AGATTCCCGAA	TACOGCAAGC	GACAGGCCGA	TCATCOTCSC	3300
GCTCCAGCGA	AAGOGGTCCT	COCCGAAAAT	CACCCAGAGC	acmoccosca	CCTGTCCTAC	3360
CASTTGCATG	atanagaaga	CADTCATAAC	TGCGGCGACG	ATACTCATCC	cccccccca	3420
CCSGAAGGAG	CIGACIGGGT	TUAAGGCTCT	CAAGGGCATC	GOTCGAGATC	CCGGTGCCTA	3480
ATGAGTGAGC	TAACTTACAT	TARTTGCGTT	GCGCTCACTG	CCCCCCTTTCC	AGTCGGGAAA	3540
ectateatoc	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	GTTTGCGTAT	3600
TGGGGGGCCAG	9673677777		STUAGACOGG	CAACAGCTGA	TTGCCCCTTCA	3660
22362775666	CTGAGAGAGT	77034003400	GGTCCACGCT	commocaca	AGCAGGCGAA	3720
AATCCTGTTT	GATGGTGGTT	ADDOODDGA	TATAACATGA	amararas	GTATCGTCGT	3780
ATCCCACTAC	CGAGATATCC	GCACCAACGC	GCAGCCCOGA	CTCCCTAATC	GEGCCCATTG	3840
0000000000	CATCTGATCG	TTOGCAACCA	CCATCCCNCT	GGGAACGATS	CCCTCATTCA	3900
GCATTTGCAT	ggtttgttga	AAACCCCCACA	TGGCACTCCA	ancacemice	CSTTCCSCTA	396C
TOGGOTGAAT	TTGATTGCGA	GTGAGATATT	TATGCCAGCC	AGCCAGACGC	AGACGCGCCG	4020
AGACAGAACT	COCCOCTAAT	CODADACTO	CGATTTCCTT	TAACCCAATT	GCGACCAGAT	4080
GCTCCACGCC	CAGTOGCGTA	CCGTCTTCAT	GGGAGAAAAT	AATACTGTTG	ATGESTOTET	4140
GGTCAGAGAC	ATCAAGAAAT	AACGCCGGAA	CATTAGTGCA	COCAGCTTCC	acaccaatge	4200
CATCCTOOTC	ATCCAGCOGA	TAGTTAATUA	TCACCCCACT	GACCCCTTOC	GCGAGAAGAT	4260
TOTGCACCGC	COCTTTACAG	GCTTCGACGC	CGCTTCGTTC	TACCATCGAC	ACCACCACGC	4320
TOGCACCCAS	www.waaaaa	CGAGATTTAA	TCGCCGCGAC	AATTTGCGAC	GGCGCGTGCA	4380

GGGCCAGACT GGAG	KUTOGCA ACCCAATC	GCAACGACTC	TTTGCCCGCC	ASTISTICTO	4440
CCACOCOOTT GOGA	atotaa itteagetee	SECONDOTADO I	TTCCACTTT	raccocarry	4500
TCCCAGAAAC CTCC	CTGGCC DGGTTCACC	CCCCCCCAAAC	GUTCTGATAA	GAGACACCOO	4560
CATACTCTGC GACA	otottati aacottacto	OTTICACATT	CACCACCCTS	AATTGACTCT	4620
CTTC::0003CT CTAT	CATOCC ATACCOCOA	AGGTTTTGCG	CCATTCGATS	GTGTCCGGGA	4680
TOTOGROUST CTCC	CTTATE CCACTCCTOK	ATTAGGAAGC	AGCCCAGTAG	TAGGTTTOAGG	4740
CCSTTSAGCA COSC	CGCCGC AACGAATTGT	GCATGCRAGG	AGATTGCGCC	CAACAGTCCC	4800
aceacarcee deca	TTCCRC CATACCCAC	CCGAAACAAG	CGCTCATGAG	CCCGAAGTGG	4860
CGAGCCCGAT CTTC	CCCAIC GGTGATGTCG	GCGATATAGG	CCCCAGCAAC	CSCACCIGIG	4920
GCGCCGGTEA TGCC	GRECAE GATGESTEES	ADDADATEDE	TOGAGATETE	GATCOCGGGA	4980
AATTAATACO ACTO	actata geggratte:	GAGCGGATAA	CARTTCCCCT	CTAGAAATAA	9040
Similaning Circle	aagaag gagatataca	. TATGGGCCAT	CATCATCATC	ATCACGTGAT	\$100
CGACATCATC GGGA	oroprackoe od oko o	GGAACAGGCG	GCGGCGGAGG	COGTCCASCG	5180
GGCGCGGGAT AGCG	TEGATO ACATODOCO	COCTOSCOTO	ATTGAGCAGG	ACATUGCOGT	5220
GGACAGCGGG GGGA	agatca cotacodeat	CAACCTCGAA	ararcarra	COCOASTAGA	5280
GOCCICAACCO ACCO	GCTCGA AACCACCTAG	COUTTCCCCT	CAAACGGGCC	cossesess	\$340
TACTGTCGCG ACTA	ecces corcoroac	GUTGACGTTG	GCGGAGACCC	GTAGCACGCT	9400
OCTOTACECE CTET	TCAACC TGTGGGGTCC	. Gecollicyc	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT CAGG	GCACCS STYCTGGTGC	CGGGATCCCC	arecceca	CCGGGACGGT	5520
CAACATTGGG GCCT:	CCCACO COTATORSTO	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	8880
GATUAACATS GCSC	IAGCCA DETECTORICA	GCAGGTCAAC	TACAACCTGC	CCGGAGTSAG	3640
CHASCACTTC AASC	TGAACG GAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5700
CTGGGACGAC CCGC	AGATOS CTSCSCTCAA	CCCCGGCGTG	COCOSTODAA	GCACCGCGGT	5760
AGTTCCGCTG CACC	GCTCCC ACCCONTCCC	TUACACCTTC	TTGTTCACCC	AGTACCTGTC	5820
CAAGCAAGAT CCCG	AGGGCT GGGGCAAGTC	GOCCOGCTTC	GGCACCACCG	TOGACTICCC	5880
accouraces care	CUCTOS STOAGAACOS	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCEGGE TGCV	TEGCCT ATATOSECAT	. Crecimenta	GACCAGGCCA	GTCAACGGGG	6000

actobeccac	GCCCAACTAG	GCAATAGCTC	TOGCAATTTC	TTGTTGCCCG	ACCCCCAAAC	6060
CATTCAGGCC	GCGGCGGCTG	CTTCCCATC	GAAAACCCCCG	GCGAACCAGG	CGATTTCGAT	6120
SOCOACOTAD	cccaccccaa	ACGGCTACCC	GATCATCAAC	TACGAGTACG	AADTTOOTEAD	6180
CAACCGGCAA	aaggacgccg	COACCGGGGA	GACCTTGCNG	GCATTYCTGC	ACTOGGGGAT	6240
CACCUACUGC	AACAAGGCCT	CGTTCCTCGA	CCAGGTTCAT	TTCCAGCCSC	TOCCOCCCCC	6300
GGTGGTGAAG	TTGTCTGACG	COTTGATCGC	COTTTAECAR	agcuctoaga	TGAAGACCGA	6360
TOCCOCTACC	CTCGCGCAGG	ACCCAGGTAA	TTTCGAGCGG	ATCTCCGGCG	ACCTGAAAAC	6420
CCAGATCGAC	CAGGTGGAGT	CGACGGCAGG	TTCSTTGCAG	adccaaraac	acoacacaec	6480
3000ACGGCC	GCCCAGGCCG	COGTOGTGCG	CTTCCNAGAA	GCAGCCAATA	AGCAGAAGCA	6940
GGLACTCGAC	GAGATOTOGA	CURATATTUG	TCAGGCCGGC	GTCCAATACT	ADDODGGGGGG	6600
CGAGGAGCAG	CAGCAGGOGC	TOTOCTCGCA	AATGGGCTFT	GTGECCACAA	CBSCCCCCTC	6660
accaccatos	ACCECTECAG	CGCCACCCGC	ACORGOGACA	CCTSTTGCCC	CCCCACCACC	6720
accacaaca	AACACGCCGA	ATGCCCAGCC	GCCCGATCCC	AACGCAGCAC	CTCCGCCGGC	6780
CGACCCGAAC	acaccaccac	CACCTOTCAT	TGCCCCAAAC	GCACCCCAAC	TAGACTTOTO	5840
OGACAACTEG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GGCTGGGTDG	AGTCTGACGC	\$9 00
cacccactic	GACTACGGTT	CAGCACTCCT	CAGCAAAACC	ACCEGGGACC	OSCCATTICC	6960
COGACAGCIG	ccaccaaraa	CCRATGACAC	CCGTATCGTG	Cicaeccasc	TAGACCAAAA	7020
CONTRACTO	AGCGCCGAAG	CCACCGACTC	CAAGGCCGCG	SCCCESTIGG	GCTCGGACAT	7080
CITEARTORD	TATATOCCCT	accesseatae	CCGGATCAAC	CAGGAAACCC	TOTOTOTOTA	7340
000024.0000	GTGTCTGGAA	SCSCGTCSTA	TTACGAAGTC	AAGTTCAGCG	ateccastaa	7200
COCCARCACO	CAGATOTGGA	COGGCCTAAT	coortroca	GCGGCGAACG	CACCGGACGC	7260
088844444	CAGCGCTGGT	TTGTGGTATG	CCTCGGGACC	GCCAACAACC	CGGTGGACAA	7320
agacacaacc	AAGGCGCTGG	CCGAATCGAT	ccoccerrra	gradececae	caccaecacc	7380
GGCACCCCCC	COTTECAGAGE	CCCCCTCCCCC	accadcacca	SCCCCCGGAAG	The second	7440
COCGACGACA	ccgacacccc	AGCGGACCTT	ACCOGGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7550
CCGARAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	· AACCCCTTTGG	7620
GGCCTCTAAA	CONTRACTOR	GGOGTITTTI	gottgaaagga	. GGRACTATRI	. CCINGAT	7676

(2) INFORMATION FOR SEQ ID NO:209:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (S) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

Met Cly Ris His His His His Val Ile Asp Ile Ile Cly Thr Ser 1 5 10 15

Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg 20 25 30

Asp Ser Val Asp Asp Tle Arg Val Ala Arg Val Tle Glu Gin Asp Met
35 40 45

Ala Val Asp Ser Ala Cly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val 50 55 60

Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser 65 70 75 80

Gly Ser Pro Slu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro 85 90 95

Ala Ser Ser Fro Val Thr Leu Ala Slu Thr Gly Ser Thr Leu Leu Tyr 188 118

Pro Leu Phe Asn Lou Trp Gly Pro Ala Pho His Glu Arg Tyr Pro Asn 115 120 125

Val Thr Tie Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Tle Ala Gln 136 140

Ala Ala Ala Gly Thr Val Aso Ile Gly Ala Ser Asp Ala Tyr Leu Ser 185 - 150 - 155 - 160

Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala 165 170 175

Ile Ser Ala Gln Gin Vel Asn Tyr Asn Leu Pro Gly Val Ser Glu Mis 186 186 186

Leu Lys Leu Ash Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile 195 200 205

Lys Thr Trp Asp Asp Pro Gin Ile Ala Ala Leu Asn Pro Gly Val Asn 210 215 220

Leu Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Amp Gly Ser Gly 235 235 240

- Asp Thr Phe Lou Phe Thr Gin Tyr Lou Ser Lys Gin Asp Pro Giu Gly 250 245
- Try Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val 260 268
- pro Gly Ala Leo Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys
- Ala Glo Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp
- Oln Ala Sor Glo Arg Gly Leu Gly Glu Ala Gin Leu Gly Asn Ser Ser 310
- Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Tle Gln Ala Ala Ala Ala
- Gly Phe Ala Ser Lys Thr Pro Ala Asn Sin Ala Ile Ser Met Ile Asp
- May Pro Ala Pro Asp Cly Tyr Pro Ile Ile Asp Tyr Glu Tyr Ala Ile 360
- Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala
- The Leu His Trp Ala Tie Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp 395
- Oln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp 410
- Als Leu Ile Ala Thr Ile Ser Ser Ala Glu Mes Lys Thr Asp Ala Ala 425
- The Leu Ala Gin Glu Ala Gly Ash The Glu Arg Ile Ser Gly Asp Leu 440
- Lys Thr Gin lie Asp Gin Val Glu Ser Thr Ala Gly Ser Leu Gin Gly 480 455
- Gin Trp Arg Gly Ala Ala Gly Thr Ala Ala Gin Ala Ala Val Val Arg
- Pho Gin Glu Ala Ala Asn Lys Gin Lys Gin Glu Leu Asp Giu Ile Ser 490 485
- The Asn Ile Arg Old Ala Cly Val Clo Tye See Arg Ala Asp Glu Clu
- Gin Glm Glm Ala Leu Ser Ser Glm Met Gly Phe Val Pro Thr Thr Ala 520

154

Ala Ser Pro Pro Ser Thr Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro 530 540

Val Ala Pro Pro Pro Pro Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro 545 550 550

Gly Asp Pro Asn Ala Ala Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro 570 875

Pro Pro Val Ile Ala Pro Ass Ala Pro Gin Pro Val Arg Ile Asp Ass 580 585

Pro Val Gly Gly Phe Ser Phe Ala Leu Pro Ala Gly Trp Val Glu Ser 595 600 805

Asp Ala Ala His Phe Asp Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr 610 615 620

Gly Asp Pro Pro Phe Pro Gly Gln Pro Pro Pro Val Ala Asn Asp Thr 628 630 635

Arg The Val beu Gly Arg Leu Asp Gla Lys Leu Tyr Ala Ser Ala Glu 645 650

Ala Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met Gly Glu 663 670

Phe Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr Val Ser 675 680 885

Lew Asp Als Ash Cly Val Ser Gly Ser Als Ser Tyr Tyr Glo Val Lys 590 695 700

Phe Ser Amp Pro Ser Lym Pro Amm Gly Gln Ile Trp Thr Gly Val Ile
705 710 725

Gly Ser Pro Ala Ala Aso Ala Pro Asp Ala Gly Pro Pro Gio Arg Trp 735

Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala 740 750

Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro 765 765

Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala 770 795 796

Gly Glu Val Ala Pro Thr Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu 785 796 795 800

Pro Ala

(2) INFORMATION FOR SEQ ID NO:210:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 454 base pairs (B) TYPE: nucleic scid (C) STRANCEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

araacaacac	racaaccaac	Cagcagagas	ATGTGCATCC	GTTCGCGAAC	CTGATCGCGG	60
TCGACGATGA	GCGCGCCGAA	CCCCCCCACC	ACGRAGAACG	TCAGGAAGCC	GTYCCAGCAGC	120
GCGGTCCGCG	CCCTCACGAA	GCTGACCCCC	TCGCAGATCA	OCAGCACCCC	GGCGATGGCG	180
CCGACTAATG	TOBACCBBCT	GATCCGCCGC	ACGATECECA	CCACCAGCGC	CACCAGGACC	248
ACACCCAACCA	GGGGGGGGGT	GLACCOCCAG	CCGBATCCCT	TOTGACCGAA	CATOCCCTCC	300
COGATOGGGA	TCAGCTGCTT	ACCEACEGEC	GGGTGAACCA	CCAGGCCGTA	CCCINOCTIV	360
TOTTCCACCC	CATGGTTGTT	CAGCACCTGC	CAGGCCTGGC	GGTGCGTAAT	GCTTCTCGTC	420
GAAGATOOOG	GTGCCGGCAT	CEGTCACCGA	accc			454

- (2) INFORMATION FOR SEQ ID NO:211:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 470 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: limear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:

TOCAGAAGTA	COGCOGGATCC	TCGGT08CC0	ACCCCGAACC	GATTEGEEGG	GTCGCCGAAC	80
GCATCGTCGC	CACCAAGAAG	CAAGGCAATG	ACCTCGTCGT	CONCURCTOR	GCCATGGGGG	120
ATACCACCEA	CCACCTOCTO	SATCTSSCTC	ACCAGGTGTG	CCCGGCGCCG	CCGCCTCGGG	180
ACCTGGACAT	GCTGCTTACC	GCCGGTSAAC	GCATCTCGAA	TOCOTTOGOTO	GCCATGGCCA	240
TCGAGTCGCT	CSSCSCSCAT	SCCCGGTCGT	TOACCGGTTC	GCAGGCCGGG	GTGATCACCA	300
CCCCCCACCCCA	COSCARCOCC	COTACTABAA	ACCTCACGCC	seccosors	CHARCEGEEE	360
TTGAGGAAGG	CCCCCCCCCC	TTGGTGGCCG	GATTCCAAGG	GGTCAGCCAG	GACACCAAGG	420
ATGTCACGAC	GTTGGGGCGGC	GGCGGCTCGG	ACACCACOGC	CGTCGCCATG		470

- (2) INFORMATION FOR SEQ ID NO.211:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

GGCCGGCGTA	cccoeccsos	ACAAACAACG	ATCGATTGAT	ATOGATGAGA	GACOGAGGAA	€0
1001000001	TCCCCAGTTVS	ACCGACGAGC	AGCGCGCGGC	CSCGTTGGAG	AAGGCTGCTG	120
CESCACCEES	SCORORAGEA	CACCTTTALEGE	arteccertoaa.	accessors accessors	ACCARCOTTOS	386

CCCAGGTCCT TGCTTGAGGC	CRACGREGEG CTTGCCAAAG	GAGAGCGATG GTGGGCAAGG	AAGTYTTYDGO TCCAGGCGC	Caaaatgaag	GTOTUTGOGC	240 279
(2) INFORMATI	ON FOR SEC	ID MO:213:			
(A (B (C	SEQUENCE CHY) LENGTH: 2)) TYPE: nuc)) STRANDEDM) TOPOLOGY:	la base pai: isic acid ISS: single				
(32)	MOLECULE TO	(PE: Genomia	o dna			
(xi)	SEQUENCE OF	SCRIPTION:	SEQ ID NO:	223 :		
TCCCTCSCCG	ACTCGACGAG GCCGCGGGTG GAGGTCTCTG AAAGTCTCTG	TUCTUACCAA TCATTGGCGA	CATCATCCCCC	CAAGAAGATG	ACACGGTGGA	60 120 180 219
ξ ()	2) INFORMATI	ON FOR SEQ	ID NO:214:			
A) B) C)	SEQUENCE CHA LENGTH: 34 TYPE: sucl STRANDEDNE TOPOLOGY:	2 base paix eic acid SS: single				
(11)	MOLECULE TY	PE: Genomic	: DNA			
(%1)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	114:		
CASCSCOSAC CSSCCGAGGG TCGACCTCGC TGGCCGCGGC	CATOGGOSCO GCCGAAGGCO CGCACCGTAC CGGGGTGACC CGGGAAAAG CCCGAAAAGCG	GAACCCGERC GTGACCCCCC GGCACCGGAG AAGCCCCCGA	CATOGOCOCO TOGOTOGO TOGGTOGO AAGCACOGO	GGCGGCCCAG GCTGGCGTCG CATCCGCAAA GCCGGCCGCC	CCAGCCGGTU GAAAACAACA CAGGATGTGC	60 120 180 240 300 342
i e	: Informati	on for seq	ID W0:215:			
(A) (B) (C)	FEQUENCE CHA LENGTH: SI TYPE: nucl STRANDEDNE TOPOLOGY:	S base pair eic acid SS: singla				
{ <u>\$</u> \$}	MOLECULE TY	PE: Genomic	DNA			
{ % %}	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	:15:		
CCCGGATCGG CCGTCCCCGA	TGTCGCTGCC GCCAGCGCCG	GACATOGGCG ACGCCGAAGG	CCGCGCCCCCC	CCCCCAAGCCC	GGCGAGTTEG GCACCCAGC CCGGCGGCCC AAGCTGGCGT	186

OGGAAAACAA	CATCGACCTC	SCCGGGGGTGA	CCGGCACEGG	ACTOCKTGGT	CCCATOCCA	300
AACAGGATGT	GCTGGCCGCG	GCTGAACAAA	AGAAGCGGGC	GAAAGCACCC	CCCCCTGAG	360
COCTTCATCA	CCCCCCCCAC	CAGCTTGCCC	CAGAAGCEGG	CTTOGACCTC	TTCGCCGGTC	420
				GCGGCCCGAAA		480
COCCAGGAAG	GGCACCCGGA	ACAGGGTCCG	CACCC			515

- (2) INFORMATION FOR SEQ ID NO:216:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 557 base pairs
 - (b) TYPE: mucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:216:

	SCTOCAGATT			ACAGCGCACC	CACCAAGCGC	80
TGACTCAACA	GGCGGGGGAA	CTGATCGGTA	ACCAGCGTCA	ATTGGAGATG	CGACTCAACC	120
	GGACATOGAA	a construction on the section		CCAAGCCCTG	ACECTGGCCG	180
ACCAGGCCAC	CGCCGCCGGA	GACGCTGCCA	AGGCCACCGA	ATACAACAAC	OCCOCCGAGG	240
	CCAGCTGGTG					300
	TAGCGCCGCA					360
		42 434 30 340 500 60 KM C				420
AGGAGCAGGT	CAGCGCATCG	ASSTERDEDETT	TGAGTGAGCT	COCCOCOCCA	GGCAACACGC	480
	CGAGGTGCGC	GACAAGATCG	AGCGTCGCTA	COCCAACGCG	ATCESTTCSS	340
CTGAACTTGC	CGAGAGT					\$57

- (2) INFORMATION FOR SEQ ID NO:217:
- (1) SEQUENCE CEARACTERISTICS:
 - (A) LENGTH: 223 base pairs
 - (B) TYPE: nucleic soid
 - (C) STRANDEDWESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (mi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

CWOOWLVOOL	ALCONCATE.	70000000000000000000000000000000000000	COCCACCOGGT	GCGCGACCGT	GTGATAGGCC	80
AGAGGTGGAC	CIGCGCCGAC	CGACGATOGA	TCSAGGAGTC	AACAGAAATS	SCCTTCTCCG	3.20
COSTADACO	GGCACTCGGT	GAGAGCTTCA	CCGAGGGGAC	GGTTACCCGC	TGGCTCAAAC	180
AGGAAGGCGA	CACGGTCGAA	CTCGACCAGC	CCCTCCTCCA	GGT		223

- (2) INFORMATION FOR SEQ ID NO:218:
- (i) sequence characteristics:
 - (A) LENGTH: 578 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear
- (ii) *OLECTLE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

argargtaca	TCTGCCGGTC	GATGTCGGCG	AACCACGGCA	GCCAACCGGC	GCAGTAGCCG	60
ACCAGGACCA	CCCCATAACC	CCAGTCCCGG	COCACAAACA	TACGCCACCC	CGCGTATUCC	120
AGGACTGGCA	CCGCCAGCCA	CCACATCGCG	GOCGTOCCGA	CCASCATOTO	GGCCTTGACG	180
CACGACTOTO	CGCCGCAGCC	TGCAACSTCT	TGCTGGTCGA	TGGCGTACAG	CACCOGGCCCCC	240
AACGACATGG	GCCAGGTCCA	COGTTTGGAT	TCCCAAGGGT	GGTAGTTGCC	TGCGGAATTC	300
GTCAGGCCCG	CGTGGAAGTG	GAACGCTTTG	GCGGTGTATT	GCCAGAGCGA	GCGCACGGCG	360
TCOGGCAGCG	GAACAACCGA	GITGCGACCG	ACCECTTERC	CGACCECATE	CCGATCGATC	420
GCGGTCTCGG	acccgaacca	COGAGCOTAG	STOSCCAGAT	AGACCOCCAA	CUGGATCAAC	4.80
CCCAGCGCAT	Accordinade	AAGCACTTCA	CCCCCCACTS	TTCCCAGCCA	CGCTCTTTCC	540
ACTTGGTATG	AACGTCDCGC	COCCACGTCA	ACCCCACC			578

(2) INFORMATION FOR SEQ ID NO:219:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 base pairs
 - (B) TYPE; nucleic soid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic ONA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

ACAACGATCG	ATTGATATCG	ATGAGAGACS	CAGCAATCGT	GGCCCTTCCC	CAGTTGACCG	60
ACCAGCAGCG	CGCGGCCGCG	TTGGAGAAGG	CTGCTGCCGC	ACCTCGAGCG	CGAGCAGAGC	120
TCAAGGATCG	GCTCAAGCGT	GGCGGCACCA	ACCTCACCCA	GGTCCTCAAG	GACGCGGAGA	180
gcgatgaagt	CTTGGGCAAA	azgaaggtot	CTGCGCTGCT	TGAGGCCTTG	CCAAAGGTGG	240
GCAAGGTCAA	GCCCCAGGAG	ATTATTACCT	AGCTOXAAAT	TGCGCCCCAC	cccocccc	300
regregeere	GGTGACCGTC	AGCGCAAGGC	CCTGCTGGAA	AAGTTCGGCT	CCGCCTAACC	360
ಂತರಂಭವರ್ಷವ	ACCATGCCCC	CCCCAAAGGCC	7070070000	GTACCCCCCC	atacoossea	420
GAAGCGGCCT	GACAGGGCCA	Comment of French	CAGGCCGAAC	000000000000000000000000000000000000000	GGGGGAACCC	480
GCCC						484

- (2) INFORMATION FOR SEQ ID NO:220:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: \$37 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPCLOGY: linear
- (ii) MOLECIME TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

AGGACTGGCA	COGCCAGCCA	CCACATCGCG	GCCTGCCGA	CCAGCATCTC	GGCCTTGACG	50
CACGACTGTG	CGCCGCAGCC	TOCAACGICT	TUCTUUTCUA	TESCETACAS	CACCGGCGGC	120
AACGACATGG	GCCAGGTCCA	CGGTTTTGGAT	TOCCAAGGGT	GGTAGTTGCC	TGCGGAATTC	180
GTCAGGCCCC	COTOGRAPTO	GAACGCTTTG	GCGGTGTAGT	GCCAGAGCGA	GCGCNCGGCG	240
TOGGGCAGCG	gaacaaccga	GTTGCGACCG	ACCGCTTGA@	CGACCGCATG	CCCATCGATC	300
GOGGTOTEGG	ACGCGAACCA	CGGAGCGTAG	GTGGCCAGAT	AGACCGCGAA	COGGATCAAC	360
CCCAGCGCAT	ACCONOCIOSES	AAGCACGTCA	CGCCGCACTO	TCCCCAGCCA	62626222746	420

159

ACTISCIACI GACTICOCOC COCCACOTCO AACOCCAGOO CCATCOCOCC GAAGAACAGC 480 ACHAAGTACA COCCOHACCA CTTOGTOGCO CRAGCCAATC CCAAGCAGCA CCCCGGC

(2) INFORMATION FOR SEQ ID NO:221:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 135 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

Gly Gly Ala Ala Ala Gly Gln Gln Ser Asp Val His Pro Phe Ala Asn 3.8 lau Tìa Ala Yal Asp Asp Glu Arg Ala Glu Arg Arg Asp Asp Glu Glu 20 Arg Gin Giu Ala Val Gin Gin Arg Gly Pro Arg Gly Asp Glu Ala Asp 40 Pro Val Ala Asp Gin Glo His Pro Gly Asp Gly Ala Asp Gln Cys Arg Pro Ala Asp Pro Pro His Asp Pro His His Gln Arg His Gln Asp His 70 Thr Glm Glm Gly Ala Gly Glu Pro Pro Ala Glu Ser Val Val Thr Glu 34 Asp Oly Leu Pro Asp Arg Asp Glo Leu Leu Thr Asp Arg Arg Val Aso 105 110 His Gin Ala Val Pro Gly Val Val Phe His Pro Met Val Val Gin His

120 Leu Pro Cly Leu Ala Vai Arg 120

115

(2) INFORMATION FOR SEQ ID NO:222:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 156 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: procein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

Gin Lys Tyr Gly Gly Ser Ser Val Als Asp Ala Glu Arg Ile Arg Arg 1 8 Val Ala Olu Arg Ile Val Ala Thr Lys Lys Oln Gly Asn Asp Val Val 23 Val Val Val Ser Ala Met Gly Asp Thr Thr Asp Asp Leu Leu Asp Leu Ala Gin Gin Vai Cys Pro Ala Pro Pro Pro Arg Glu Leu Asp Mes Leu Leu Thr Ala Gly Glu Ary Ile Ser Asn Ala Leu val Ala Mes Ala Ile

- (2) INFORMATION FOR SEQ ID NO:223:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 92 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

 Pro
 Als
 Gly
 Thr
 Asn
 Asn
 Asp
 Arg
 Leu
 Ile
 Ser
 Met
 Arg

 Asp
 Gly
 Gly
 Lie
 Val
 Als
 Leu
 Pro
 Gln
 Leu
 Thr
 Asp
 Glu
 Glu
 Arg
 Ala
 Ala
 Ala
 Arg
 Arg
 Arg
 Ala
 Glu
 Leu
 Arg
 Arg
 Ala
 Arg
 Arg
 Arg
 Gly
 Thr
 Asn
 Leu
 Thr
 Sin
 Leu
 Lys
 Arg
 Arg
 Arg
 Gly
 Thr
 Asn
 Leu
 Thr
 Asn
 Leu
 Thr
 Arg
 Arg

- (2) INFORMATION FOR SEQ ID NO: 224:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 72 amino acids
 - (B) TYPE: amino soid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MCLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

Gly Asp Ala His Asp Ala Gly Glu Ala Ala Val Pro Ala Pro Gln Lys 50 55 60 Val Ser Ala Gly Pro Thr Arg Ile 65 70

- (2) INFORMATION FOR SEQ ID NO:225:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

- (2) INFORMATION FOR SEQ ID NO: 226:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 118 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

65 70 75 80

Glu Asn Asn Ile Asp Leu Ala Gly Val Thr Gly Thr Gly Val Gly Gly

85 90 95

Arg Ile Arg Lys Gln Asp Val Leu Ala Ala Ala Glu Gln Lys Lys Arg

100 105 125

Ala Lys Ala Pro Ala Pro

(2) INFORMATION FOR SEQ ID NO:227:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 185 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDMESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

Asp Pro Lys Vai Glm Ile Glm Glm Ala Ile Glu Glo Ala Glm Arg Thr 7 5 1.0 His Gln Ala Lev Thr Gln Gln Ala Ala Gln Val Ile Gly Asn Gln Arg Gin Leu Glu Met Arg Leu Asn Arg Gin Leu Ala Asp Tle Glu Lys Leu 4.0 Gin Val Asn Val Arg Gin Ala Leu Thr Leu Ala Asp Gin Ala Thr Ala 5.5 Als Gly Asp Als Ais Lys Als Thr Glo Tyr Asn Asn Als Als Glo Als 70 Phe Ala Ala Gln Leu Val Thr Ala Glu Gln Ser Val Glu Asp Leu Lys 35 90 Thr Leu His Asp Gln Ala Leu Ser Ala Ala Ala Gln Ala Lys Lys Ala 1.08 Val Glu Arg Asn Ala Met Val Leu Gln Gln Lys Ile Ala Glu Arg Thr 118 120 Lys Lew Lew Ser Gin Lew Glu Gin Ala Lys Mer Gin Gin Gin Val Ser 235 140 Als Ser Leu Arg Ser Met Ser Glo Leu Ala Ala Pro Gly Asn Thr Pro 155 Ser Lew Asp Glu Val Arg Asp Lys Ile Glu Arg Arg Tyr Ala Asn Ala 165 170 The Sly Ser Ala Clu Leu Ala Glu Ser 180

(2) INFORMATION FOR SEQ ID NO:228:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino scids
 - (B) TYPE: amino acid
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: procein

163

(xi) SECURNCE DESCRIPTION: SEQ ID NO:228:

Val Ser The Ser The Trp Val Pro His Pro Val Arg Asp Arg Val Ile 20 Gly Glm Arg Trp Thr Cys Ala Asp Arg Arg Ser Ile Glu Glu Ser Thr 3.6 Glu Met Ala Phe Ser Val Glr Met Pro Ala Leu Gly Glu Ser Val Thr 40 Glu Gly Thr Val Thr Arg Trp Leu Lys Gln Glu Gly Asp Thr Val Glu 55 Leu Asp Glu Pro Leu Val Glu

(2) INFORMATION FOR SEQ ID NO:229:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 182 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(Ni) SEQUENCE DESCRIPTION: SEQ ID NO:229:

Glu Val Mis Lau Pro Val Asp Val Gly Glu Pro Arg Gin Pro Thr Gly žŎ Ala Val Ala Asp Gin Asp His Arg The Thr Pro Val Pro Ala His Lys 25 His Thr Pro Pro Ary Val Cys Gla Asp Trp His Arg Gla Pro Pro His 40 4.5 Arg Gly Arg Ala Asp Gln His Leu Gly Leu Asp Ala Arg Leu Cys Ala 8.8 Ala Ala Cys Asn Val Leu Leu Val Asp Gly Val Glm His Arg Pro Gln Arg His Cly 9to Cly Pro Arg 9he Cly Phe Pro Arg Val Val Ala 90 Cys Gly lie arg Gln Ala Arg Val Glu Val Glu Arg Phe Gly Gly Val 205 Leu Pro Clu Arg Ala Mis Cly Val Cly Gln Arg Asn Asn Arg Val Ala 3.20 Thr Asp Arg Leu Thr Asp Arg Mer Pro Ile Asp Arg Gly Leu Gly Arg 135 240 Glu Pro Arg Ser Vai Gly Gly Gln lie Asp Arg Glu Arg Asp Gln Pro 150 255 Gln Arg Ile Pro Ala Gly Lys His Val Thr Pro His Cys Ser Gln Pro 165 170 Arg Ser Leu His Leu Val 180

{2} INFORMATION FOR SEQ ID NO:230:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (S) TYPS: amino acid

164

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) sequence description: seq id NO:230:

Asn Asp Arg Leu ile Ser Met Arg Asp Cly Cly Ile Val Ala Leu Pro Gin Leu Thr Asp Glu Gln Arg Ala Ala Ala Leu Glu Lys Ala Ala Ala Ala Arg Arg Ala Arg Ala Glu Leu Lys Asp Arg Leu Lys Arg Gly Gly 40 Thr Asn Leu Thr Gin Val Leu Lys Asp Ala Giu Ser Asp Glu Val Leu Gly Lys Met Lys Val Ser Ala Leu Leu Glu Ala Leu Pro Lys Val Gly 70 Lys Val Lys Ala Gin Glu Ile Met Thr Glu Leu Glu Ile Ala Pro His 90 Pro Ala Ala Phe Val Ala Ser Val Thr Val Ser Ala Arg Pro Cys Trp 105 Lys Ser Ser Als Pro Pro Asn Pro Ala Cly Arg Arg Cys Gly Pro Glu 120 Gly Leu Trp Trp Als Tyr Pro Arg Ile Arg Gly Arg Ser Gly Leu Thr 135 Gly Pro Ala His Asn Ser Gly Arg Thr Pro Arg Trp Gly Gly Thr Arg 145

- (2) INFORMATION FOR SEQ ID NO:231:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 178 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SECURNCE DESCRIPTION: SEC ID 80:231:

Asp Trp His Arg Gin Pro Pro His Arg Gly Arg Ala Asp Gin His Leu 7.0 Gly Lew Asp Ala Arg Lew Cys Ala Ala Ala Cys Asn Val Lew Lew Val Asp Gly Val Gln Ris Arg Pro Gln Arg Ris Gly Pro Gly Pro Arg Phe 40 Gly Phe Pro Arg Val Val Val Ala Cys Gly lie Arg Gln Ala Arg Val 35 Glu Val Glu Arg Phe Gly Gly Val Val Pro Glu Arg Ala His Gly Val 7.5 Gly Gln Arg Asn Asn Arg Val Ala Thr Asp Arg Leu Thr Asp Arg Met 40 Pro Ile Asp Arg Sly Leu Gly Arg Glu Pro Arg Ser Val Gly Gly Gln 3.08 The Asp Arg Glu Arg Asp Gln Pro Cln Arg The Pro Ala Cly Lys His

WO 99/42118 165

		112					120					125			
val		gro	gig	gya	Pro	Gin	Pro	Arg	Ser	ren	Ħis	Leu	VA.	Læu	Thr
	130					135					140				
Set I	ATG	Arg	His	Val	Glu	Arg	Gla	åश्व	His	Arg	Ala	Glu	Glu	Gla	His
145					150					155					160
Glu	Val	Ris	%la		Pro	Leu	Gly	Gly		Sex	Gln	ser	Gln	Ala	Als
				165					170					175	
\$1.0	Arg						٠								

{2} INFORMATION FOR SEQ ID NO:232:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 271 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

ATGCCAAGCC	GGIGCT@AIG	CCCGAGCTCS	GCGAATCGGT	GACCUAGGGG	ACCOTCATTC	€0
STICGCICAA	GAAGATCGGG	CATTCCCTTC	AGGTTGACGA	GCCACTCGTG	GAGGTGTCCA	128
CCGACAAGGT	GGACACCCAG	ATCCCCTCCC	COGTOGCTOG	GGTCTTGGTC	AGTATCAGCG	180
CCGACGAGGA	COCCACGGTG	CCCCTCCGCC	GCGAGTTGGC	CCGGATCGGT	grederaces	240
AGATCGGCCC						271

(2) INFORMATION FOR SEQ ID NO:233:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MCLECULE TYPE: protein
- (X1) SECUENCE DESCRIPTION: SEQ ID NO.233:

Ala Lys Pro Val Leu Met Pro Glu Leu Gly Glu Ser Val Thr Glu Gly <u>*</u> 5 10 Thr Val Tie Arg Trp Leu Lys Lys Ile Sly Asp Ser Val Gin Val Asp 25 Glu Pro Leu Val Glu Val Ser Thr Asp Lys Val Asp Thr Glu Iie Pro 40 Ser Pro Val Ala Gly Val Lew Val Ser Ile Ser Ala Asp Glu Asp Ala 33 Thr Val Pro Val Gly Cly Clu Leu Ala Arg ile Gly Val Ala Ala Glu Ile Gly Ala Ala Pro Ala Pro Lys Pro 88

(2) INFORMATION FOR SEQ ID NO:234:

PCT/US99/83265

4) E)) Lengte) Type:	i: 107 ba sucleic		î ş				
		SDNESS: SY: line						
(11)	Morecur	ä Typs:	Genemic :	DNA				
				eg id no:				
GAGGTAGCTG TUGATATUTG	ATGGCCG GGCACCG	GAG GAGC TIC GITC	actica c	gacosococ Cgaggyca:	CGAACCO TGACGAT	icos s	figodogica	60 107
§ :	I) Infor	MATION F	or seq 11	D NO:235:				
		CHARACT	ERISTICS	2				
(B)	TYPE:	oucleic.	acid					
		edness:						
188	TENENTY (S	GY: line	¥T					
(ii)	MOLECULI	î TYPE: (Benomic :	ONA				
(x1)	SEÇUENC:	i descri	PTION: SI	50 IN NO:	235:			
ATGAAGTTGA	ACTITICS:		waract Go	Gatactes	GTTGTGC	isc c	XXCGC+++C++c	60
the sale of the first of the ball of the	July 10 10 10 10 10 10 10 10 10 10 10 10 10	ing change	MATUUR (Y	Same of the Same of the Same	Section Sectio	Mary B. 14	法的特定权的的 的 X X	20.00
GGCTATTGCC TACCCCGACG	P. 1989 P. T. 1252 C.	and alega	kariit Go	3CGACTTGG	and considerate the second	**************************************	TO BE BEING BOOK OF THE PARTY O	8 80 80
TACTTCGATT	GTGTCAGC	COG COGTY	iadee ai	WCCCCCCC Variables	GGTTTAC	5395 C 800 A	CCACACTTT	240 300
OGTOGOGCAA	TTCCGTC	iga ocago	XXXAAC GC	TOCCTGA	******	Stanto Co	Mark and a finish	339
(2	INFORM	MATION FY	ar seç ii) WO:236:				
			Ristics:					
(A)	LENGTH:	112 am3	no acida					
(選)	TYPE: a	mino aci	.đ					
		DWESS: : Y: linea						
CSup. C	4.44.20.7757	(4) & & & A.	i.K					
(11)	MOLECULS	TYPE: p	rotein					
(% 1)	SEQUENCS	DESCRIP	Tion: se	Q ID WO:	136:			
Met Lys Leu I	Lys Phe S	Ala Arg	Leu Ser	Thr Ala	Ile Leu		Cys Ala 15	
Ala Ala Leu	Val Phe	Pro Ala	Ser Val	Ala Ser	Ala Asp	Pro 3	ro Asp	
Pro His Gln 38	Pro Asp	Met Thr	Lys Gly	Тут Сув		Gly :	Arg Trp	
Gly Phe Gly	S. sa				4.5			
		383			68			
Ser Phe Trp 65 Tyr Phe Asp	His Gln	Try Mec 70	Gin Thr	7:5 She	60 The Gly	Pro (Jin Phe	

PCT/US99/03265

167

95 90 95
Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Gln Pro Amn Ala Pro
100 100 105 110

- (2) INFORMATION FOR SEQ ID NO.237:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRAMDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: COMA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

GTGGCAATGG GGGGGGGGGGG CAGGTGGCGA	COCCATCOTC	AGCTTCCCC AGCTTCCCCC GGCGGCAACC GGCGGCAACC	CTACCAGCGG	AGGCCGCCAG CCCCGCCTCC TGGCAGCAAC	GGCGGCGCCA ATCGGGGTCA CCCAACGGCT	50 120 180 240 300
CAPACHICAG	Œ					371

- (2) INFORMATION FOR SEQ ID NO:238:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 424 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

"""GACTCOTT	TCGACGTCGA ATCGGTCTAG CCCGGGGTTG CCAATGGGGT	CCCTTCTOTT CATCTCOGCC CCGTCATAGC TUTCCTACGC TUTCCTACGC	TGGTCGGCCA AAGGTCTAGC AGGGTTCGCG	TOTTGGCATG TCCATGCGAA GTACCTGTTG AAGGGGTCGG CCGTTCCAGG	APECTGACCC TCGCCSCCCCC CCGACCCACA TCGGCAACAT CGTTTTGGGT	60 120 180 240 300 360 428
CGAC						424

- (2) INFORMATION FOR SEQ ID NO.339:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 317 base pairs
 - (B) TYPE: nucleic acid
 - (C) STEANDEDNESS: mingle
 - (D) TOFOLOGY: linear
- (11) MOLECULE TYPE: COMA

{ X 7}	SEQUENCE	DESCRIPTION:	seç	ïD	NO:239:	
---------------	----------	--------------	-----	----	---------	--

AGGGCGGATG	CGATCGATIGA CGATCCTACT TGGAGTCGCA ACGATATGCG	GTTGAGCCCG GCGCCGTACC GTTGCGCACG	GCCGATTTCG GACCGGCTGC ACCGTCACCG	TCACCGAGGG CTTTCGCCGA CCGAGAGGGG	CAACGATEUT CCACCGTCTA GCCGCCGGAT GCCCATCGAC CGAATCGCTG	60 120 180 240 300 317
------------	---	--	--	--	--	---------------------------------------

- (2) INFORMATION FOR SEQ ID NO:240:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LEMBTE: 422 base pairs
 - (B) TYPE: sucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

TGGCGTATGC (CGAGGAATGG I TGAACTGAAG I GTTCTGGAAG I GGACAGGAAG A GCACTCGGTC I GATGGCGTC) G	COCOGATOS	ATCOCASTOT GGCCCAAAATC GCTTCTCGGC CSATCTGGGT ACCSCAAGAT	GCCGTCGTGC TCGCCCTCAG GAACGCGCCC GTCGATCTTG GGCCTTGLAG	ACCSACACCS TTCACBCTCS GGGGCCTTCCT AACGCCTCGT	COTTERACE GCCCTTAACE TGGCGTCOTC TTTCUGGCAT	60 120 180 240 300 360 420
--	-----------	---	--	---	---	--

- (2) INFORMATION FOR SEQ ID NO:241:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 base pairs
 - (8) TYPE: nucleic soid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

GCGTGCCGCT GAACACCAGC TGGCGTCGTT GCGCCTAGGTC GACCAGGTCG CATCGGGCCT GATCAGCCAG GAGTGGCCGT GCCACTTCCG AGTGTTCCGG CATCGCCTGC ACCTCAGGTT TGCCGCTTTG CCCCGA	CSGOGCGCGCG ATGATGATGC GACGCGTAGG GCGTGCTCCA GCGATGAATG	CGACCATAAG GACTCTOCAG ACAAGTCGAT CGCCAAATGC GGAACCGCAG	GTCGCTAATG CTCGCCGACC CGAATGCATA CTTGATTTCT GATGGCGACA	GEGACCTTGG GTGGCCTCCA AGCTCCGCGT AACGGGTCTG	50 120 150 240 360 360 420 428
--	---	--	--	--	---

- (2) INFORMATION FOR SEQ ID NO:242:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 327 base pairs

169

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CONA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

TCAMAGAMAC GAMGAMGOTT SCCATGAGCA CTGTTGCCGC CTACGCCGCC ATGTCGGGGA CCGAMACCCCT GACCAMGACC ACGATCACCC GTCGCGACCC GGGCCCGCAC GACATGGCGA TCGACATCAA ATTCGCCGGA ATCTGTCGCT CGGACATCCA TACCGTCCAA ACCGAATGGG GGCAACCGAA TTTACCTGTG GTCCCTG	AGTTTA 126 DSGCGA 186 DSGCGA 246	AAAAAGTT ATGTCGGG GACATGGC	ACCCACAGCT CTACGCCGCC GGGCCCGCAC	SCTTTOGGAT CTGTGCGACCC	GCAACGCTAG GCCATGAGCA ACGATCACCC ATCTGTCGCT	CTAGTGAGGC GAAGAAGGTT GACCAAGACC ATTCGCCAGA	TCAAAGAAAC CCGAACCCCT TCGACATCAA
--	--	----------------------------------	--	---------------------------	--	--	--

- (2) INFORMATION FOR SEQ ID NO:243:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LEMSTH: 123 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:

Asp His Gly Gly Pro Ala Thr Asm Pro Gly Ser Gly Ser Arg Gly Gly 10 5 Ala Gly Gly Ser Gly Gly Asn Gly Gly Ala Gly Gly Asn Ala Thr Gly ser Gly Gly Lys Gly Gly Ala Gly Gly Asn Gly Gly Asp Gly Ser Phe Gly Ala Thr Ser Gly Pro Ala Ser Ile Gly Val Thr Gly Ala Pro Gly Gly Asn Gly Gly Lys Gly Gly Ala Gly Gly Ser Asn Pro Asn Gly Ser 78 Gly Gly Asp Gly Gly Lys Gly Gly Asn Gly Gly Ala Gly Gly Asn Gly 90 dly Ser Ile Gly Ala Asn Ser Gly Ile Val Gly Gly Ser Gly Gly Ala 100 105 Gly Gly Ala Gly Gly Ala Gly Gly Asn Gly Ser

(2) INFORMATION FOR SEQ ID NO:244:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: mingle
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: procein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:244;

 Mer
 Als
 Als
 Gly
 Thr
 Thr
 Als
 Ass
 Val
 Glu
 Arg
 Pho
 Ass
 Pro
 Ass
 Pro
 Ass
 Pro
 Ass
 Pro
 Ass
 Pro
 Ass
 Pro
 Als
 Ass
 Pho
 Ass
 Pro
 Als
 Arg
 Arg
 Als
 Ass
 Als
 Als
 Ass
 Arg
 Arg
 Arg
 Als
 Glu
 Pro
 Pro
 Pro
 Pro
 Pro
 Arg
 Arg</th

- (2) INFORMATION FOR SEQ ID NO:245:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acide
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24%:

Ala Tyr Ala Leu Arg Ser Arg Cys Arg Val Asn Ala Pro Glu Ala Ile 1 5 10 15 Ala Ser Leu Pro Arg Asn Gly Ser Ile Thr Ile Ala Val Cys Arg Arg 20 25 30 Ala Pro Thr Pro Pro Ser Asn Val Asn

- (2) INFORMATION FOR SEQ ID NO:246:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:246:

Val Pro Leu Ast Thr Ser Pro Arg Leu Pro Asp Leu Pro Asp Ser Val l 5 10 15
Val Pro Pro Val Ala Ser Leu Leu Ser 15

- (2) INFORMATION FOR SEQ ID 80:247:
- (1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 51 amino acids (B) TYPE: amino acid (C) STRANCEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:

Met Ser Thr Val Ala Ala Tyr Ala Ala Met Ser Ala Thr Glu Pro Lau 3. 8 10 The Lys The The Ile The Arg Arg Asp Pro Gly Pro His Asp Met Ala 28 The Asp The Lys Phe Ala Gly The Cys Arg Ser Asp The His Thr Val 43) Gln Thr Glu Trp Gly Gln Pro Asn Leu Pro Val Val Pro 55

- (2) INFORMATION FOR SEQ ID NO:248:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID MO:248:

SCTTGGAGCC CTGGAGCGAC GGTGTGGGTC TGGGGGTCGA TYCGTTCTCG GCGAAASTCA ACTAAAGACC ACGTTGACAC CCAACCGGCG GCCCGGCATG GGCCGTGGCG GCGTAGAAGC 120 TTTGACCGCG GCGCGAAACG TTCGCTGCTG CGCCCCATGC AGATCGCACA CGCTTGCTTG 180 AACATCGGGT GGAGCCGGTG GTAACGCCAG GCT 213

- (2) INFORMATION FOR SEQ ID NO:249:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 367 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:

CCGAGCTGCT	arresacace	SCCSCTCCG	acaacacaaa	TOGGGGGGGGG	acceaces	60
GOCCCGGTGC	TACCGGCGGG	ACCGGCGGAC	ACGGCGGAGT	CGGCGGCGAC	GGCGGATGGC	120
TGGCACCCCG	COGGGGGGGGG	GOGGCCGGCG	GGCAAGGCGG	GGCAGGTXGT	GCCCGCAGCG	180
ATCCTGGCGC	GTTGGGTGGT	ACCOGCOGGA	CGGGCGGTAC	CGGCGGCGCC	00100009003	240
GCCGTCGCGG	CLCACTOCTC	CTGGGCGCTG	GCGGACAGGG	cocceteooc	GGCGCCGGCT	300
GACAAGGCGG	CACCGGCGGG	GGCCGGCGGA	GATOGCGTTC	TOCOOCCUTCT	CAGTGGCACT	360
12624413634922						3,873

- (2) INFORMATION FOR SEQ ID NO:250;
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 420 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

AAGGCGTGAT	TOGCAAGGCG	ACCGCGCAGC	GGCCCGTAGC	CCCCCCACCCC	COMMERCECC	88
GACCGCAGCG	GCCGGTGTCT					120
CTACTTCGAC	GCCAGCGCCT	TCGTCAAACT	TOTCACCACC	GAGACAGGGA	GCTCGCTWCC	180
GTCCGCTCTA	TGGGACGGCT	GCGACGCCCC	ATTUTCCAAC	CCCCTGGCCT	\$CCCCCaacc	240
COCCOCCGCA	CTCCCTCCAA	COGGCCGCAA	TCACGAGGTA	ACCGAATOCT	2000000000	300
CCCCCAGCCT	GACTGOGAGG	ACTTO:10333C	CGCACCCCCC	CAGTCGAACT	Categorason	360
GTTGAACAGC	ACGCCGGGCA	ASSOSSOTES	ACACATRICCT	TACGCGGAGC	CGACACCOTT	428

- (2) INFORMATION FOR SEQ ID NO:251:
 - (i) sequence characteristics:
 - (A) LEMOTH: 299 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (%1) SEQUENCE DESCRIPTION: SEQ ID 80:251:

CTCTTGTCGG	TOCCATCOOC	GGTACCGGCG	GAACCGGCGG	CAACGCCCGGT	ATTCTTCCCCC	60
903000000	SSCCCGGCGGT	GCCGGCGGGG	TCAGCTTCAG	CACTO TOTAL	dgagerages	125
6030006000	GGCCGGTCGC	CTGTTCACCA	COMMINGTON	CONTRACTOR CONTRACTOR	GGTGGGCAGG	
GTCACACGGG	COGCCCCCCC	GGOGCOSGCO	GREGGGGGGG	4.04.4444.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	Carlo Control Control Control	180
TODGCCCCCC	GRANTON TOP	CONTRACTOR CONTRACTOR	A STATE OF THE STA	24453445353	CONTRACTOR S	240
	Service of the Control of the Contro	manage of the second	manarian is in the second	CACCGGCGGG	CCCGGCGGG	235

- (2) INFORMATION FOR SEQ ID NO:252:
- (i) SEQUENCE CHARACTERISTICS;
 - (A) LEMOTH: 20 amino acide
 - (B) TYPE: amino acid
 - (C) STRANDEDMESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:

Leu Glu Pro Trp Ser Asp Gly Val Gly Leu Gly Val Asp Ser Phe Ser 1 9 10 15 Ala Lys Val Asn 20 173

(2) INFORMATION FOR SEQ ID NO:253:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 121 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MCLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253;

Glu Leu Leu Phe Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly 3.0 The Asp Gly Gly Pro Gly Ala The Gly Gly The Gly Gly His Gly Gly Val Gly Gly Asp Gly Gly Top Leu Ala Pro Gly Gly Ala Gly Gly Ala GLY GLY GLA GLY GLY GLY ALA Arg Ser Asp GLY GLY ALE Lew Cly Gly Thr Gly Gly Thr Gly Gly Thr Gly Gly Ala Gly Gly Ala Gly Gly Arg Gly Thr Leu Leu Leu Gly Ala Gly Gly Gln Gly Leu Gly 90 Gly Ala Gly Gly Glo Gly Gly Thr Gly Gly Gly Arg Arg Arg Trp Arg 1.05 Ser Gly Gly Cys Gln Trp His Trp Trp

- (2) INFORMATION FOR SEQ ID NO: 254:
- E SEQUENCE CHARACTERISTICS:
 - (A) LEMGTH: 34 amino acida
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) WOLECULE TYPE: protein
- (M1) SEQUENCE DESCRIPTION: SEQ ID MO:254: Gly Val He Gly Lys Ala Thr Ala Glo Arg Pro Val Ala Ala Gly Arg 10 Pro Arg Pro Arg Pro Gla Arg Pro Val Ser Asp Arg Val Ser Asp Gla 2.0 ary arg
 - (2) INFORMATION FOR SEQ ID NO:255:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

174

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:

Leu Val Gly Gly Ila Gly Gly Thr Gly Gly Thr Gly Gly Asn Ala Gly Met Leu Ala Gly Ala Ala Gly Ala Gly Gly Ala Gly Gly Phe Ser Phe Ser Thr Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Leu Phe Thr Thr Gly Gly Val Gly Gly Als Gly Gly Gln Gly His Thr Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Leu Phe Gly Ala Gly Gly Met 70 Gly Gly Ala Gly Gly Phe Gly Asp His Gly Thr Leu Gly Thr Gly Gly 85 90 Ala Gly Gly

- (2) INFORMATION FOR SEQ ID NO:256:
- (i) SEQUENCE CHARACTERISTICS;
 - (A) LENGTH: 282 base pairs
 - (S) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.356:

TCCTGTTCGG	CCCCGGCCGCC	GTGGGCGGTG	TTGCCGGTGA	COGNETEGCA	TTOTTEGGCA	ន៍ជ
geaccacass	COCCCCCCCC	GGTGCCGGCG	GGGCCCCTTEG	GCTTTTCAGC	STOSOTYNOCO	120
0000000000	CTRABECTOR	GGATTGGTCC	GGAACAGCCC	TGCCGGGGGG	TEEGGEGGGG	180
Caglaga Maria	CTGGGGGCGAC	GGCGGTGCCCG	0000ccccccc	TGGGGTCGGG	TCCACTACCS	240
GCGGTGCCGG	000000000	GGCAACGCCA	SCCTGCTGGT	ÄÄ		382

- (2) INFORMATION FOR SEQ ID NO:257;
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 415 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:

CGGCACGAGC	CETECTACTE	GTCAACTGAT	SCCCTGATTG	TGACCTTCCC	GGCGCCCGAT	60
CAGIGCITCT	CASGACCGAC	GTAATATTCG	AAAACCAATC	COCCECCEA	GGCGAGGATG	120
AATGCCACAC	COGCOGCCAT	CAGCCACGGG	ACCCACAACC	CGATOCOCCAC	CONTINUESCONICS	180
GAGCCGGACA	ACGCGACCAT	GATEGGEEAC	CAGCTATGCG	GACTGAAGAA	TCCLAGTTCT	243
CCIGCGCCST	CGCTGATTTC	AGCGCCTTCG	TAGTOCTOGG	GCCGGGAATC	TAACCGGCGG	300
COALARCE	GGAAGAAGGT	GGCGACGATC	DDTACCCCAA	CCCCGGTGAG	COCCANCOCA	360

ATGGTGCCAG COCACTCGAC ACCACCGGTG GCGAACATCG AGGTCAACAC GCCGT 425

- (2) INFORMATION FOR SEQ ID NO:258:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 373 base pairs
 - (8) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- ((1) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:

TCACCROSTC	AACGGTTCGT	AACACTGATA	COTATOCTTO	TCAGCGAGCA	GATCAAGTCC	60
AGTCCGACCA	ATCCCACGAG	ATCATOGGCT	AGGCTCACGG	TTTCGCCTGG	GACGAGACGG	128
TATTGAGTTC	TGGCOTTOGA	CCCTCCCTTCC	COTTOOTTCOGA	AGTCTSIACSC	CCCATCAGAA	186
Costtotcaa	TACCAGTCTT	TCCCGGGATAT	GGCCTATTTG	GTGTCGTCGG	GCCBCTCCAC	24.0
COGNICCOTT		GCGCAAGCGC	SCICCACITA	COCCUTOTIC	ACTGCGCGCT	300
GOCGTAGCTG	capacemen	ATCCCTTTCA	ACCTCATCCC	AATTOZOGCA	ATTRICTGAGT	360
ACCTGACGCT	CCI					373

- (2) INFORMATION FOR SEQ ID NO: 159:
- (1) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 423 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDWESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CONA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:289:

GCCAACOSGT GGCCCAGTAC CCACTCGTGC ATGATTGAGGT TCTTGAGGGG AGAGGCCCGC	GACCACGGCG CCGCGGGCCG CGAATTCGAG TTAAACCGCT TTTTTTGCTG	TAGACAGCAG AACTGCAGEG CTCCGTCGAC TAGCAATAAC AAAGGAGGAA	ATCCCTGGAT ACCAAAGCAA AAGCTTGCGG TAGCATAACC CTATATCCGG	COCCCOTTCC COCCACTCCA COTTCCACCCC ATAACCTCCC	GTGTCGTCCG ACGGGGGTGA ACCGGGGTGA TCTAAACGGG GTAGTAGCGA	60 120 180 240 360 420
Charles Sugar and the state of the	and the second of the second of the		GTTGCGCAGC	CICAATEGCG	AATGGACGCG	420 423

- (2) INFORMATION FOR SEQ ID NO:260:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 404 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID 80:260:

\$76

ACTGACCECC GGGTGCCGAC CAGAATGTCG CAGCACCCCC	GTOGTCACAT ACCTCGCGCA CTGCCGAGGC GTGAGGTCAC	GCTGTGCCGC CCGGCAGGCC GCGGCCGATC TTTCGGGCGC CGGTGCTGCG	ACCGATTICS GEGTGCGGTC CCACCGGCTG CATCGTGCCC	GCGAACCEGG GGATCGTGCT ACCAAGCGCT AGCGCACCEGT	GGCCTTCCAG GTAACACAGC CGAGGAGTTTT	60 120 180 240 300 360 404
--	--	--	--	---	---	--

- (2) IMPORMATION FOR SEQ ID MO:261:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 421 base pairs
 - (B) TYPE: musieis acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:

ACCATOGAAC GTGCGACCAC GTGCCTCTGC	COSCOLLOCA CACCACACCA CACCACACCACA CACCACACACA CACCAC	Leconcides Cyllitations Concidence Concidence Concidence	CCSCCTACTT GCACTATTCS GCACCCGCCA CCSGGCCCGSS	CGCAAGACCC ACAACGGCAC GCATCATGGT CAGCCGCGTT TCGTGGCCGA	COUCCAATTS CTTOSATGAC GACCAGCGAC COTGTOSTGC	60 120 180 240 300 380 420
--	---	--	--	--	---	--

- (2) INFORMATION FOR SEQ ID NO:262:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CONA
- (x1) SEQUENCE DESCRIPTION: SEQ ID MO:282:

ACGCCGGCGA CATGGGCTGG GCGTTCGAAC GGCTCAACCG GCACCCCGAC GTGCTCGCGG 420 CTCTGG 426	GACGAGCTGC CCGAAACCCA CGCCAGTACG GCCGATCGGA ATGTCGCGCA ACGGCGGGGA	GCCCCTCAT AACGCCACTA ACACTGTCAT CCCACGTTTT AGGACATTGG	TOCOCCOTOS TOCCCCCTT COACGAGGTC GGCGTTGATG CGACGAACTG	GTCACGCTGG AGCCCGTGGG ATCGAAGCCG CTGCGCAGCA CTCACGCTGC	GCTCGCGCCT GCCGGGCCGA AGCGGGCCGA CTTACGACGA	GGCGGCGCTA CGAGTGGCGG CCCGAACTTC CGGTTCCATC	
---	--	---	---	--	--	--	--

- (2) INFORMATION FOR SEQ ID NO:363:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid

- (C) STRAMDEDNESS; single
- (D) TOPOLOGY: lisear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

ACCATICAAC GTGCGACCAC GTGGCTCTGC GTGCACGCTG GACCACGGCA GGTCACACGCC GGCGGCTCCG	CCGCCCAACC TGAGCCGCCCA GCCCGGGCGC CACCGCGCTCCT CGGCCTTCCT CACGAGTGAA ACGGCAAGCT	CATTITICIO TGCCGCCCGC	COGCOTACTT GLACTATTCS GCACCOSCCA GCCGGCCACA GCAGCCCACA AGCCCCACA	CGCAAGACCC ACAACCGCAC GCATCATBGT CAGCCGCGTT TCGTGGCCGA CCGATTTCAC	GGCCSGTGCA COSCCAATTG CTTCGATGAC GACCAGCGAC GCTGTCCTCC CGCGATCGCC	60 120 180 240 360 420 480 522
---	---	--------------------------	--	--	--	---

- (2) INFORMATION FOR SEQ ID NO:264)
- (i) SECUENCE CEARACTERISTICS:
 - (A) LENGTH: 719 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECILE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264:

ACCCOTOGGO ACCCCOTTC GOCGOCCCA GCCCCTGGGC CCAGACCCCG CGCAAAACCA 66 ACCCGTGGCC TTTAGTGGC GGGGCCCCA CCGTCGTGCT CGTCCTCGTG TTGGGCGCCA 126 ACCCGTGGCC TTTAGTGGC GGGCCCCAAGC CGGTACAGCC GCTTCAGCCG GTTGCGGAGG 196 AGCCGCTTAG CGCCGTACTG CTGAACTCTT CAGAAGTCAA CGCCGTGATG GGCTCGTCGT 346 CCATGCAGCC GGGCCCCCCC TATACCAGCC AGGATCCGC GCCGGTGATG GGCTCGTCGT 346 CCGCCATCAA CGGCTGGAT TCATCCGAGC AGGATCCGG GTATGCCGGC ACCGGCTACA 366 ACCGCCGTCGT CGCCTTTCCG ACCGCCGACA AAGCCCGCGC GTTCGTGCACA ACCGGCTACA 426 ACAAAATGGAA GAACTGCGCA GGCAAGACG TCACCGTCAC GAATAAGGCC AAGACCTACC 540 ACAGGCGCTGA GGGCTGGGAA TCCCAACGCC CGCCGACGAT CACCGGTGATA GACACCCAAG 600 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCCGC CCAGATCGCC GCCAAGATCT 720 GTTGACAAAG TCAACAAGG	2
--	---

- (2) INFORMATION FOR SEQ ID MO:265:
- (i) sequence characteristics:
 - (A) LENGTH: 69 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: coma
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265:

PCT/US99/83265

AGACGTCGTC GAGGCCCCCA TCGCCCGCCC CGAAGCCGTT AACCCCGGCAC TGAACGCGT GGCGTATGC	` 60 69
(2) INFORMATION FOR SEQ ID NO:266:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: S21 base pairs (B) TYPE: Ducleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLETULE TYPE: CDMA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:	
ACTGCACCCO GCAGGCOCCA CCAACGGATC GGGTCAACTA GCACTGCCGG TGGAGRCGCC CCCGCGGTCT GTGCCTTCCC ACGGGGAACT CTTGGGCAGC GCCGCTCCAG AAGGGTTGGA GGGAGAGCGCT GACGACCGGTA TCGACCAGACC GTTCCCGGTC TTCAGCTCCC CCAACTGCC GCCAAGCGGTC GGGCGCATGA GTCCAGTTGA GTGGACTGCC GCCGAGAGAGAGA GCCATCGCGG TGTTCCGGTCA GCCGCTTGGC GCTGTCGTTC CCGATGAGTG GCAGAGAGAGA GCCATCGCGG TGTTCCGGTCA CCGCCCGTAT ATCGGAGTGT CCGCCAATAT TGTGGCCGCC GCCCAACTGC CAGGTCACTG GCCCCAACTGC GTAACCCGGC GGGCACTGGC CCGAGCACCTG GCCCCAACTGC GCCCCAACTGC CCGCCCGCTCG CCGCCAACTTC CCGGCCGCACCTC GCGCCGCACCTC CCGCCCAACTTC CCGGCCGCACCTC CCGCCCAACTTC CCGGCCGCACCTC CCGCCCCCCCC CTCCCCCCCCC CCGCCCCCCCC	120 180 240 300
(2) INFORMATION FOR SEQ ID NO:267; (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 224 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:	
TTOTOGOTOT COTOGOGOTA GGAGCGACTT COCCOGCCGG COCCOGCGCC GGAGCGGGCT TTOCAGGAAC COGTGCCGGC GCCGCCGGCG GGGCGACCAA AGGCCGGATC GATTCGGCCA TCGCCTTGGC CGCGCCTTG TCCACCGGGT TOTTGGCGGT CCCGAGCCAT ACCACAAACC LACUCTGAAG GGGCCGGGG TCCGGTGCGT TCGCCGCGGG CGAC	60 120 180 324
(2) INFORMATION FOR SEQ ID NO. 268:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 821 base pairs (B) TYPE: sucleir acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CONA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:	
GAACTGACT GCCCCGCTCG ATCGGCGGCG GCGGGGTGTC ATAGGTGCGC CGCCAGGCCA	60

CGGGCAATAG GO TGTCCGGTCAG GO CGCCGTGGGG CO CTCCCGCACT CO	4.	GCCGCACOGG CGCGCCGCAG CSCCGCTTCG TGAACAGGTT TGTTTUCCAT CCCGAATTCT	AATCCAGAGC CAACGAGGTG AACCGCCTCT GAGGGCATTC ACCGGCAAGT	CGATCGGCGC TAGAGCACGT GCCTGGCCCT CAGTCGCTCT	120 180 240 300 360 420 480 821
---	--	--	--	--	--

- (2) INFORMATION FOR SEQ ID NO:269:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDWESS: single
 - (D) TOPOLOGY: linear
- (ii) WOLECULE TYPE: CONA-
- (xi) SEQUENCE DESCRIPTION: SEQ ID MO:269:

GTCGTGATAG GCGAACCAGC CGCGAAGGGT	CCGTCGCCCC TTGACGCGTC AGCGTAGCGC TGTTCCCGCC	GCTOGGCATC TCACDCGGGG AGACTCGGCC CTCGAGCTCA CAGCACCTGC	TCAGAACGGT TCGGCGTCTT CCGCCGAGCC GTGAACTTGA	CGAACCTCCG AGTGCACGAC CCGACGAGGC GTTCCAGCAC CCGCGTCGAC	COCAGGAGGA AGTOTODOGG GTGGATOGGO CCAGTOCACO ATESSONOGG	60 120 180 240 360 420 426
--	--	--	--	--	--	--

- (2) INFORMATION FOR SEQ ID NO:270:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CONA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

OCOGACACOO COGACALA	IC GERATOREC	TOGGCCCCCCC	CONTRACTOR STATES	Profesional Control of the Control o	A 35
AGGGCGGCCC CCCCCCCC	The companies of the co		an aire air Africa (Co. 100 (Co. 100 (Co.	SAMPLE SAME COLOR CONTRACTOR	€0
AGGGCGGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	and the second and the second	nuagedeept.	COSCOGRAÇÃO	AADDDDDDDD	120
GGCGGTGGTA CCGGGGGC	IC ACCOCTOCCC	CONTRACTOR	CONTRACTOR OF THE	, more any or any or any or any	
COCCOTOMO WAS TOWN	A CONTROL CONTROL OF THE ACT OF	SONT CONTRACTOR	12 may 3 19 10 10 10 10 10 10	Contraction of the contraction o	180
GCCGGT888C TGATCSSC	en commissibles.	GGCCCCAC			219

- (2) INFORMATION FOR SEQ ID NO:271:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 571 base pairs
 - (B) TYPE: mucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: COMA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

aagatcatcg	acceccaciice	TTAGCATCGC	TECECTOTEC	ATCOTCOCCO	GCGCGGATCA	80
CSGAGGTCCG	GCCTTGTACC	CCACTCCTCG	AACGGTCAGC	ACCACAGTOG	GGTTCTCGGG	1.20
ATCCTTTTCG	ACCITGGCCC	GCAGACGCTO	GACATGCACU	TTCACCACCC	TUCTATEGGE	180
TGGGTGCCGG	TRACCCCATA	CCTGTTCGAG	Cascacatca	CCAGTARACA	CCTGGCGCGG	240
CITACACACAC	AATTOGACCA	ACAGGTCGAA	TTCCAGCTXXT	GTCAACGAGA	TCTGCTCACC	300
GTTGCGAGTG	ACCITIGIGCO	CCCGTACGTC	GATTTCTACS	TOGGOGATGG	ACAGCATCTC	360
OGCOGOTTCO	TOTTOTTGC	GGCGCAGCCG	OGCCCGCACC	COCCCAACCA	GCTCCTT03G	420
CTTGAACGGC	TTCATGATGT	AGTCGTCGGC	GCCCGACTCC	AGACCCAGCA	CCACATCCAC	480
GOTOTCGGTC	TTTGCGGTGA	<i>GCATCACGAT</i>	COGRACACCO	GAATCGGCGC	GCAACACCCG	540
SCACACSTCS	ATGCCGTTCA	TACCOGGGCA	Ã			871

(2) INFORMATION FOR SEQ ID NO:272:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 93 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:272:

- (2) INFORMATION FOR SEQ ID NO:273:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTH: 26 amino acids
 - (8) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:

Met Pro Pro Val Ser Ala Asn Ala Met Val Pro Ala His Ser Thr Pro 1 5 10 18 Pro Val Ala Asn Ile Glu Val Asn Thr Pro 181

20 28

- (2) INFORMATION FOR SEQ ID NO:274:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274;

Lys Pro Asp Arg Pro Ala Ala Thr Val Gly Ser Cys Thr Thr Val Arg 1 5 10 15 Ala Pro Cys Ser Gln Pro Val Thr Thr Ala 20 25

- (2) INFORMATION FOR SEC ID MO:275:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (5) TOPOLOGY: linear
- (ii) WOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

Trp Pro Ala Gly Arg Pro Met Bis Pro Ala Pro Gly Thr Ser Ala Asp 1 5 10 25 25 20

- (2) INFORMATION FOR SEQ ID NO: 176:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LEMOTE: 140 amino scids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS; single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:276;

Val Leu Val Ala Gly Cys Ser Ser Asn Pro Leu Ala Asn Phe Ala Pro li Val Tyr Pro Pro Thr Ile Glu Pro Ala Gln Pro Ala Val Ser Pro Pro Thr Ser Gln Asp Pro Ala Gly Ala Val Arg Pro Leu Ser Gly His Pro Arg Ala Ala Ala Leu Arg