Exposée Sensorik

Yannik Höll Georg Muck Christoph Pooch Gwladys Noutep Tchapda

22.04.2021

EINTEILUNG

MOTIVATION

ORGANISATION & ABLAUF

3 STAND DER TECHNIK

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle avige ion
 - beachten von Hind mis en wie Menschen oder Schlaglöckern
 - ggf erkennen von Fehlem in anderen Bereichen
- akkurate Aufnahme, Verarbeitung und (durch Verarbeitung) sinnvoll Bereitstellung der Sensordaten

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle Navigation
 - beachten von Hinc mis in wie Menschen oder Schlaglöchern
 - ggf erkennen von Ferm in anderen Bereichen
- akkurate Aufnahme, Verarbeitung und (durch Verarbeitung) sinnversenden Bereitstellung der Sensordaten

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle Navigation
 - beachten von Hindernissen wie Menschen oder Schlaglöchern
 - ggf erkennen von Ferm in anderen Bereichen
- akkurate Aufnahmer verarb, ung und (durch Verarbeitung) sinnvelle Bereitstellung de bensordaten

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle Navigation
 - beachten von Hindernissen wie Menschen oder Schlaglöchern
 - ggf erkennen von Fehlern in anderen Bereichen
- akkurate Aufnahmer verarb ung und (durch Verarbeitung) sinnve le Bereitstellung de bensordaten

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle Navigation
 - beachten von Hind mis en wie Menschen oder Schlaglöckern
 - ggf erkennen von Fe n in anderen Bereichen
- akkurate Aufnahme, Verarbeitung und (durch Verarbeitung) sinnvolle Bereitstellung der Sensordaten

- Ziel: Roboter der sinnvoll über Campus fahren soll
 - sinnvolle Navigation
 - beachten von Hindernissen wie Menschen oder Schlaglöchern
 - ggf erkennen von Fe in anderen Bereichen
- akkurate Aufnahme, Verarbeitung und (durch Verarbeitung) sinnvolle Bereitstellung der Sensordaten

- Meeting am Anfang und am Ende der "Arbeitswoche"
- Aufgaben zu geregelt. Z en erledigen
- feste Verbindlichkeite
- Kommunikation via Discord und Datenaustausch via GitHub

- Meeting am Anfang und am Ende der "Arbeitswoche"
- Aufgaben zu geregelten Zeiten erledigen
- feste Verbindlichkeite
- Kommunikation via Discord
 Datenaustausch via GitHub

- Meeting am Anfang und am Ende der "Arbeitswoche"
- Aufgaben zu geregelten Zeiten erledigen
- feste Verbindlichkeiten
- Kommunikation via Discord
 Datenaustausch via GitHub

- Meeting am Anfang und am Ende der "Arbeitswoche"
- Aufgaben zu geregelten Zeiten erledigen
- feste Verbindlichkeiten
- Kommunikation via Discord und Datenaustausch via GitHub

- Vorbereitung (Woche 1 2)
 - Definieren de oblems
 - Recherche soren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - mer sore.
 - oila

 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche soren
 - Sichten Slioti, ken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - mer sore.
 - olio
 - .
 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Sliotiken
 - Erstellen UML-Kla. en agramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - mer sore.
 - oila

 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klanen agramme
 - Festlegung Zugriffsv hren
- Recherche & Planung (Woche 3 6)
 - plio

 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsv hren
- Recherche & Planum (Woo 3 6)
 - me
 - iblic
 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planum (Woo 3 6)
 - plic
 - at fo

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Kla en agramme
 - Festlegung Zugriffsv hren
- Recherche & Planung (Woche 3 6)
 - Grobe Implementierung Sens
 - Testen Bill theken
 - Testen Sensoren
 - Implementierung Datenformate in ROS

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsv hren
- Recherche & Planung (Woche 3 6)
 - Grobe Implementierung Sensoren
 - Testen Bill theken
 - Testen Sensorer
 - Implementierung Daten formate in ROS

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - Grobe Implementierung Sensoren
 - Testen Bibliotheken
 - Testen Sensoren
 - Implementierung Da en ormate in ROS

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - Grobe Implementierung Sensoren
 - Testen Bibliotheken
 - Testen Sensoren
 - Implementierung Da en prmate in ROS

- Vorbereitung (Woche 1 2)
 - Definieren des Problems
 - Recherche Sensoren
 - Sichten Bibliotheken
 - Erstellen UML-Klassendiagramme
 - Festlegung Zugriffsverfahren
- Recherche & Planung (Woche 3 6)
 - Grobe Implementierung Sensoren
 - Testen Bibliotheken
 - Testen Sensoren
 - Implementierung Datenformate in ROS

- Verfeinerung (Woche 7 11)
 - Impleme erun, Filterung algoni men
 - Verarbeitung der Leter in das vereinbarte Format
- Integration (Woche 12 14)
 - ius
 - als P

- Verfeinerung (Woche 7 11)
 - Implementierung Filterungsalgorithmen
 - Verarbeitung der Leter in das vereinbarte Format
- Integration (Woche 12
 - ius

- Verfeinerung (Woche 7 11)
 - Implementierung Filterungsalgorithmen
 - Verarbeitung der Daten in das vereinbarte Format
- Integration (Woche 12)

Y. HÖLL, G. Muck, C. Pooch, G. N. Tch

- Verfeinerung (Woche 7 11)
 - Impleme Jerung Filterung algoni, men
 - Verarbeitung der Leter in das vereinbarte Format
- Integration (Woche 12 14)
 - Integration in H ky
 - gegebenenfall Bugs behebe

- Verfeinerung (Woche 7 11)
 - Implementierung Filterungsalgorithmen
 - Verarbeitung der Leter in das vereinbarte Format
- Integration (Woche 12 14)
 - Integration in Husky
 - gegebenenfal Bugs behebe

- Verfeinerung (Woche 7 11)
 - Implementerung Eilterungszigoruhmen
 Verarbeitung der Vererbeitung des Verarbeitung der Vererbeitung des Vererbeitung der Vererbeitung des Vererbeitung
- Integration (Woche 12 14)
 - Integration in Husky
 - gegebenenfalls Bugs beheben

STAND DER TECHNIK

STAND DER TECHNIK - ODOMETRIE

• bereits nativ im System integriert

FIGURE: Auszug Datenblatt LiDAR TiM551

- Reichweite: 10m
- misst zwischen -45° u 1 2°
- sendet Distanz in Grad newallen
- drei Echos

- Reichweite: 10m
- misst zwischen -45° und 225°
- sendet Distanz in Graden vallen
- drei Echos

- Reichweite: 10m
- misst zwischen -45° und 225°
- sendet Distanz in Gradintervallen
- drei Echos

- Reichweite: 10m
- misst zwischen -45° und 225°
- sendet Distanz in Gradintervallen
- drei Echos

Stand der Technik - Ausgabebeispiel

$FIGURE: \ Ausgabe beispiel \ LiDAR \ TiM551$

- arbeitet mit Galileo-Satelliten
- bis zu 72 Satelliten g. ichz "tig
- Treiber f
 ür Linux und Mows verf
 ügbar
- Unterstützt C#/C++/VB

- arbeitet mit Galileo-Satelliten
- bis zu 72 Satelliten gleichzeitig
- Treiber f
 ür Linux und Mows verf
 ügbar
- Unterstützt C#/C F/VB

- arbeitet mit Galileo-Satelliten
- bis zu 72 Satelliten gleichzeitig
- Treiber für Linux und Windows verfügbar
- Unterstützt C#/C +/VB

- arbeitet mit Galileo-Satelliten
- bis zu 72 Satelliten gleichzeitig
- Treiber für Linux und Windows verfügbar
- Unterstützt C#/C++/VB

