Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle?

		Α	В	С
1	Si ABC est un triangle rectangle en A, alors son hypoténuse est le côté	[AB]	[BC]	[AC]
2	Si ABC est un triangle rectangle en A, alors son aire est égale à	$\frac{AB \times AC}{2}$	$\frac{AB \times BC}{2}$	AB×AC
3	4 ² =	2	16	8
4	0,32 =	0,06	0,9	0,09
5	$3^2 + 5^2 =$	64	16	34
6	L'arrondi au centième de $\frac{25}{9}$ est	2,78	2,77	2,7

Exercice 1 Citer tous les triangles rectangles de la figure ci-contre.

Préciser, dans chaque cas, leur hypoténuse.

Exercice 2 1 Construire un triangle ABC tel que :

a.
$$AB = 3 \text{ cm}$$
. $AC = 4 \text{ cm}$ et $BC = 5 \text{ cm}$.

a. AB = 3 cm, AC = 4 cm et BC = 5 cm. **b.**
$$\widehat{BAC} = 90^{\circ}$$
, AB = 6 cm et AC = 3 cm.

c.
$$\widehat{ACB} = 90^{\circ}$$
, $AC = 5 \text{ cm}$ et $BA = 7 \text{ cm}$. **d.** $\widehat{ABC} = 20^{\circ}$, $\widehat{ACB} = 70^{\circ}$ et $BC = 6 \text{ cm}$.

$$\widehat{ABC} = 20^{\circ}, \widehat{ACB} = 70^{\circ} \text{ et BC} = 6 \text{ cm}.$$

2 Construire un parallélogramme UVRT tel que : $UV = 5.4 \,\mathrm{cm}$, $VR = 7.2 \,\mathrm{cm}$ et $UR = 9 \,\mathrm{cm}$.

Exercice 3 Citer, dans chaque cas, les triangles rectangles de la figure, en précisant leur hypoténuse. On justifiera les réponses.

a.

(DH) hauteur issue de D et H ∈ [EF]

b.

XZ = YT

Exercice 4 1 Déterminer, dans chaque cas, le nombre x pour que l'égalité soit vraie.

a.
$$x + 4 = 18$$
.

b.
$$45 + x = 76$$
.

c.
$$49 = x + 3$$
.

Q Déterminer, dans chaque cas, le nombre **positif** *x* pour que l'égalité soit vraie.

a.
$$x^2 = 25$$
.

b.
$$x^2 = 49$$
.

c.
$$x^2 = 121$$
.

Activité 1 Le théorème de Pythagore

A Conjecturer avec un logiciel de géométrie

1 a. Créer une droite (AB).

Créer la droite perpendiculaire à (AB) passant par A.

Créer un point C sur cette perpendiculaire. Marquer l'angle BAC.

- **b.** Créer les segments [AB], [AC] et [BC]. Afficher les longueurs AB, AC et BC, arrondies au dixième.
- **G.** En utilisant la calculatrice du logiciel, afficher le résultat du calcul de BC 2 et de AB 2 + AC 2 .

2 Déplacer les points B et C. Que remarque-t-on ?

B Conjecturer sans logiciel de géométrie

Construire le triangle ABC rectangle en A tel que :

AB = 3 cm et AC = 4 cm.

b. AC = 5.2 cm et BC = 6.5 cm.

G. AB = 2.4 cm et BC = 4 cm.

d. AB = 4.5 cm et AC = 6 cm.

Mesurer, dans chaque cas, la longueur du côté manquant, puis calculer BC 2 et AB 2 + AC 2 . Que remarque-t-on?

Démontrer

On a disposé huit triangles rectangles identiques au triangle représenté ci-dessous dans deux carrés de côté a + b comme indiqué sur les figures 1 et 2.

- 1 a. Démontrer que le quadrilatère IJKL (figure 1) est un losange.
 - **b.** Démontrer que : $\widehat{LIA} + \widehat{JIB} = 90^{\circ}$.
 - C. En déduire la nature du quadrilatère IJKL.
- Démontrer que les quadrilatères EMNP et NSGR (figure 2) sont des carrés.
- 3 a. Comparer les aires des surfaces vertes des figures 1 et 2.
 - **b.** En déduire que : $a^2 + b^2 = c^2$.

Activités

- - Expliquer pourquoi a, b et c vérifient les inégalités : c > a et c > b.
- Pour conclure
- Si un triangle est rectangle, alors que peut-on dire du carré de la longueur de son hypoténuse? Quel est le plus grand côté d'un triangle rectangle?

Activité 2 Une application du théorème de Pythagore

- 1 a. Construire un triangle DEF tel que : DE = $7.2 \, \text{cm}$, EF = $4 \, \text{cm}$ et FD = $6 \, \text{cm}$.
 - **b.** Quel est le plus grand côté de ce triangle ?
- Calculer DE² puis EF² + FD².
 - **b.** Expliquer pourquoi le triangle DEF n'est pas rectangle.

Pour conclure

Si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés, alors que peut-on dire de ce triangle ?

Activité 3 La réciproque du théorème de Pythagore

⅍ Voir page 300 à 303

- 🚺 Conjecturer avec un logiciel de géométrie
- 1 a. Créer un triangle ABC.
 - **b.** Créer les segments [AB], [AC] et [BC].

Afficher les longueurs AB, AC et BC.

En utilisant la calculatrice du logiciel, afficher le résultat du calcul de $AB^2 + AC^2$ et de BC^2 .

- **2** a. Déplacer les points B et C jusqu'à ce que $AB^2 + AC^2$ soit égal à BC^2 .
 - **b.** Afficher alors la mesure de l'angle \widehat{BAC} . Que remarque-t-on ?

B Conjecturer sans logiciel de géométrie

- 1 Tracer, dans chaque cas, le triangle ABC.
 - AB = 3 cm, AC = 4 cm et BC = 5 cm.
 - **b.** AB = 8 cm, AC = 6 cm et BC = 10 cm.
 - **G.** AB = 7.6 cm, AC = 5.7 cm et BC = 9.5 cm.
 - **d.** AB = 4.8 cm, AC = 6.4 cm et BC = 8 cm.

➤ Une démonstration de cette propriété fait l'objet de l'exercice 52, page 190. Calculer, dans chaque cas, $AB^2 + AC^2$ et BC^2 , puis mesurer l'angle \widehat{BAC} . Que remarque-t-on ?

Pour conclure

On admet que si le carré de la longueur d'un côté d'un triangle est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.