Skin Rash Diagnosis

Sragvi Tirumala Jaskirti Ghataure Valentin Fauveau Joey Pak

Motivation

- Skin rashes can be a common causes of anxiety for patients.
- There exists a need to help users quickly classify skin conditions.

Objective

Develop an app that accepts a rash image as an input and provides the likelihood whether the rash evinces a skin disease.

- Based on prevalence, the app will be able to predict the following conditions.
 - Skin tumor/mole
 - Psoriasis
 - Atopic Dermatitis
 - Contact Dermatitis
 - Christmas Tree Rash
 - Fungal Infections

Methodology - Overview

PRE PROCESSING

- Filter images to eliminate noise caused by lights or shadows
- Manually segment the area of interest for every image to create a "Ground Truth" of the segmentation.
- Determine the best automatic method to segment the images.
- Divide the data in train/test groups

TRAINING

- Use Convolutional Neural Networks (CNN).
- Add the the classifier the features of Asymmetry, Borders, Color, Texture (ABCT), etc.

TESTING

- Compare the model using only CNN and CNN + ABCT features.
- Development of ROC curves for comparison.

Data Sources

- Medical image data is available from the following sources:
 - https://medicine.uiowa.edu/dermatology/education/clinical-skin-disease-images
 - http://www.dermnet.com/dermatology-pictures-skin-disease-pictures/
 - http://www.dermatlas.net/atlas/index.cfm
 - https://www.dermnetnz.org/topics/amelanotic-melanoma-images/

Challenges

- Images will not be standardized (size, lighting, image quality)
 - Size
 - Color

- ROI segmentation
 - Asymmetry calculation
 - Convexity (borders)