Álgebra Linear CC—2021/2022 1º Teste A

15/11/2021

LCC

Nas perguntas de escolha múltipla, cada resposta errada desconta 20% do valor da pergunta. Nas perguntas para completar não há descontos..

- 1. Sejam $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ -1 & 0 & 5 \end{bmatrix}$.
 - (a) O elemento (2,2) de 2A(-B) é

(a) 2

$$(b) -10$$

$$(c) -12$$

 $\checkmark(d)$ -6

(b) Sobre a matriz A, podemos afirmar que

(a)
$$A^{-1} = B$$
 (b) $A^{-1} = 2B$

$$\checkmark(c)$$
 não existe A^{-1}

(d) A é simétrica

(c) O vector (2, 1, 1) é solução do sistema

(a)
$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 (b) $Ax = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$ (c) $Ax = 0$ \checkmark (d) $Ax = \begin{bmatrix} 4 \\ 2 \\ 8 \end{bmatrix}$

$$\checkmark(d) \ Ax = \left| \begin{array}{c} 4 \\ 2 \\ 8 \end{array} \right|$$

(d) Se $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3$ é tal que o sistema Ax = b é impossível então

 $\checkmark(a) b_3 \neq 2b_1$

$$(b) b_3 = 2b_1$$

(b)
$$b_3 = 2b_1$$
 (c) $b_1 = b_2 = b_3 = 1$ (d) $b_1 = b_2 = b_3 = 0$

$$(d) b_1 = b_2 = b_3 = 0$$

2. Sejam A, B matrizes de ordem $n \in AB = 0$. Então

(b)
$$A + B = 0$$
 \checkmark

a) A = 0 ou B = 0 (b) A + B = 0 \checkmark (c) det A = 0 ou det B = 0 (d) det A + det B = 0

3. Sejam A, B matrizes invertíveis tais que $[(A^T)^{-1}B]^T = I$. Então

a) A = B

$$\checkmark$$
 (b) $A = B^T$

(c) $A = B^{-1}$

(d) A = -B

4. Seja A uma matriz de ordem n e det A = 1, então det(-2A) =

$$\checkmark$$
 (b) $(-2)^n$

(d) 1

5. Seja $A = \begin{bmatrix} 1 & 2 & -5 \\ -1 & \lambda & 2 \\ 0 & \lambda + 1 & -\lambda - 1 \end{bmatrix}$. Então o conjunto dos valores de λ para os quais A

a) $\mathbb{R} \setminus \{0\}$

(b) $\mathbb{R} \setminus \{0,1\}$ (c) $\mathbb{R} \setminus \{-1,0,1\}$ \checkmark (d) $\mathbb{R} \setminus \{-1,1\}$

6. Se
$$A = \begin{bmatrix} -5 & 3 \\ -5 & 1 \end{bmatrix}$$
, então det $\left(-2\left(\left(A^{T}\right)^{-1}\right)\right) =$

$$\sqrt{a} \frac{2}{5} \qquad \qquad (b) \frac{2}{7} \qquad \qquad (c) \frac{1}{4} \qquad \qquad (d) \frac{2}{9}$$

7. Considere matrizes $n \times n$, A e B, em que A é simétrica e invertível, O matriz nula. Então $[(A^{-1})^T(AB + A^T + O)A] - A =$

8. Se A é uma matriz de ordem n, invertível, tal que $A^2 = I$, então \checkmark (a) $A^{-1} = A$ (b) $A^{-1} = A^2$ (c) $A^{-1} = -A$ (d) $A^{-1} = A^3$

- 9. Seja AB = AC; em que condição B = C?
- (a) A quadrada (b) A triangular (c) A simétrica \checkmark (d) A invertível
- 10. Para a matriz $A=\begin{bmatrix} -1 & 1 & 1\\ 1 & \alpha & 1\\ 0 & -1 & 0 \end{bmatrix}$ assinale qual das seguintes afirmações é verdadeira:

(a) Car(A) = 1 (b) Car(A) = 2 \checkmark (c) Car(A) = 3 (d) Car(A) depende dos valores de α .

11. Sejam
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 e $B = \begin{bmatrix} a & 4c & b \\ -2d & -8f & -2e \\ 3g & 12i & 3h \end{bmatrix}$. Sabendo que $detA = 5$, qual é $detB$?

$$\checkmark$$
 (a) $det(B) = 120$ (b) $det(B) = -120$ (c) $det(B) = 60$ (d) $det(B) = -60$

12. Seja
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
. Então $adjA = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, A^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$.

13. Seja
$$det \begin{vmatrix} 1 & -3 & 1 \\ -1 & 2 & -2 \\ 0 & 5 & x \end{vmatrix} = 0$$
. Então $x = 5$

14. Sejam
$$A = \begin{bmatrix} 1 & \beta & \beta^2 \\ 1 & 1 & 1 \\ 1 & \beta & 1 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1 \\ 1 \\ \beta \end{bmatrix}$, $\beta \in \mathbb{R}$.

- (a) Em cada alínea escreva uma condição em β de modo a obter uma afirmação verdadeira:
- (i) O sistema Ax = b é impossível se e só se $\beta = -1$
- (ii) O sistema Ax = b é possível e indeterminado se e só se $\beta = 1$
- (iii) O sistema Ax = b é possível e determinado se e só se $\beta \neq 1$ e $\beta \neq -1$
- (b) Para $\beta=3$ a solução geral do sistema Ax=b é (1/4,1,-1/4)