Efeito Joule

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

- Potência elétrica
- **Efeito Joule**
- Instrumentos de medida
- **Apêndice**

Prof. Flaviano W. Fernandes IFPR-Irati

Transformação de energia elétrica em outro tipo de energia

A definição de potência é a taxa da variação de trabalho τ realizado por determinado aparelho a cada intervalo de tempo.

$$P = \frac{\Delta \tau}{\Delta t}.$$

Sabemos que um aparelho elétrico realiza trabalho τ_{AB} de modo a deslocar a quantidade de carga Δa do terminal A para o terminal B, ou seia.

$$\tau_{AB} = \varepsilon_{A} - \varepsilon_{B},$$

onde ε_{AB} representa a energia potencial nos terminais A e B. Pela definição de diferenca de potencial nesses terminais, temos de maneira equivalente

$$au_{AB} = \Delta q \cdot V_{AB}.$$

Prof. Flaviano W. Fernandes IFPR-Irati

Transformação de energia elétrica em outro tipo de energia

Como trabalho está associado com a variação da energia elétrica ΔE , temos

$$\Delta E = \Delta q \cdot V_{AB}$$
.

Mas
$$P = \frac{\Delta E}{\Delta t}$$
, portanto

$$P = rac{\Delta E}{\Delta t} = rac{\Delta q}{\Delta t} \cdot V_{AB}.$$

Pela definição de corrente temos

$$i=\frac{\Delta q}{\Delta t}.$$

Substituímos na equação acima e obtemos a expressão da potência no circuito.

Potência elétrica de um circuito

$$P = i \cdot V_{AB}$$
.

A unidade de medida de potência no SI é Watt (W).

IFPR-Irati Prof. Flaviano W. Fernandes

Transformação de energia elétrica em energia térmica

A potência desenvolvida em um aparelho, pela passagem de uma corrente elétrica i entre os terminais A e B, é dada por $P=iV_{AB}$. Se entre esses terminais estiver um resistor ôhmico de resistência R, onde vale a Lei de Ohm (V=Ri),

emos

$$P = i \cdot V_{AB},$$
 $P = i \cdot (Ri),$
 $P = Ri^{2}.$

Efeito Joule

O efeito Joule consiste na transformação de energia elétrica em energia térmica em um resistor percorrido por uma corrente elétrica i, segundo a relação

$$P = Ri^2$$
.

Corrente máxima permitida pelo fio. Se a corrente superar esse valor o fio pode derreter por efeito Joule.

Tabela 4

CORRENTE MÁXIMA PARA FIOS DE COBRE DE

DIFERENTES SEÇUES RETAS			
Nº do fio	Seção (mm²)	i _{máx.} (A)	
14	1,5	15	
12	2,5	20	
10	4,0	30	
0	6.0	40	

Prof. Flaviano W. Fernandes IFPR-Irati

Medida de corrente elétrica

O amperímetro é o instrumento usado para medir corrente elétrica:

Para medir a corrente elétrica que atravessa um fio condutor devemos ligar o amperímetro em série com a resistência do circuito, como mostra a figura ao lado;

A resistência interna de um amperímetro deve ser menor quanto possível, para seu valor não seja acrescentada na resistência do circuito.

Medida da diferenca de potencial

O voltímetro é o instrumento usado para medir a ddp entre dois terminais de um circuito; Para medir a ddp devemos ligar o voltímetro em paralelo com a resistência do circuito, como mostra a figura ao lado;

A resistência interna de um voltímetro deve ser maior quanto possível, para que parte da corrente não seja desviada para o aparelho.

Prof. Flaviano W. Fernandes

Potência elétrica

Medida da resistência

Potência elétrica

O ohmímetro é o instrumento usado para medir a resistência elétrica de um resistor: Podemos determinar a resistência R combinando as leituras de um voltímetro e de um amperímetro. Os valores lidos substituímos na Lei de Ohm, $R = \frac{V}{I}$.

Prof. Flaviano W. Fernandes IFPR-Irati

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	P	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências

Potência elétrica

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Todas as figuras ilustrativas não referenciadas no texto foram extraídas de Alvarenga et al[1]