Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 8

Abgabe: 25.01.2021, 10 Uhr

Gruppennummer angeben!

Aufgabe 1 (5 Punkte). Zeige, dass die Vektoren

$$v_1 = (0, 1, 1, -2)$$
 $v_3 = (-1, 1, -3, 3)$
 $v_2 = (0, 1, 0, 1)$ $v_4 = (1, 1, 5, -6)$

eine Basis B des \mathbb{R} -Vektorraumes \mathbb{R}^4 bilden und gib die Übergangsmatrix von der kanonischen Basis nach B an.

Aufgabe 2 (3 Punkte).

Zeige, dass jede reguläre quadratische Matrix als Übergangsmatrix betrachtet werden kann. Für welche Basen beispielsweise?

Aufgabe 3 (6 Punkte).

Sei \mathbb{K} ein Körper der Charakteristik 0. Für eine Matrix A aus $\mathcal{M}_{n\times n}(\mathbb{K})$ seien Vektoren v_1,\ldots,v_n in $\mathbb{K}^n\setminus\{0_{\mathbb{K}^n}\}$ derart gegeben, dass $A\cdot v_i=i\cdot v_i$ für jedes $1\leq i\leq n$.

- (a) Zeige, dass $B = \{v_1, \dots, v_n\}$ eine Basis von \mathbb{K}^n ist.
- (b) Gib die Darstellungsmatrix der von A induzierten linearen Abbildung F_A bezüglich der Basis B (sowohl im Definitions- als auch im Bildbereich) an.
- (c) Berechne für jede n-dimensionale Determinantenfunktion D den Wert D(A).

Aufgabe 4 (6 Punkte).

Für zwei k-Tupel \bar{x} und \bar{y} aus einem Körper \mathbb{K} definiere

$$\langle \bar{x}, \bar{y} \rangle = \sum_{i=1}^{k} x_i y_i.$$

Gegeben nun eine $m \times n$ -Matrix $A = (a_{ij})$ über \mathbb{K} , sei A^t die zu A transponierte Matrix mit (ij)-Eintrag den Wert a_{ji} (siehe Definition 3.14 im Skript).

- (a) Zeige, dass $a_{ij} = \langle A \cdot e_i, e'_j \rangle$, wobei $\{e_1, \dots, e_n\}$, bzw. $\{e'_1, \dots, e'_m\}$, die kanonische Basis von \mathbb{K}^n , bzw. \mathbb{K}^m sei.
- (b) Schließe daraus, dass für jede Matrix A die Matrix A^t die einzige $n \times m$ -Matrix derart ist, dass $\langle A \cdot \bar{x}, \bar{y} \rangle = \langle \bar{x}, A^t \cdot \bar{y} \rangle$ für alle \bar{x} aus \mathbb{K}^n und \bar{y} aus \mathbb{K}^m .

Hinweis: Beachte, dass $\langle \bar{x}, \bar{y} \rangle = F_{\bar{x}}(\bar{y}) = F_{\bar{y}}(\bar{x})$ mit der Notation von Aufgabe 1, Blatt 6.

(c) Zeige, dass $(A \cdot B)^t = B^t \cdot A^t$.

Abgabe in ILIAS als eine einzige PDF-Datei einreichen.