## **Critical Points**

Tuesday, 18 March 2025 9:43 au

For a function  $f: \mathbb{R}^n \to \mathbb{R}$ , a point  $\mathbf{a} \in \mathbb{R}^n$  is called a **critical point** if all partial derivatives of f vanish at  $\mathbf{a}$ :

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = 0 \text{ for all } i = 1, 2, \dots, n$$

Let's find the critical points of  $f(x,y) = x^2 + y^2$ .

$$\frac{\partial f}{\partial x} = 2x = 0 \implies x = 0$$

$$\frac{\partial f}{\partial y} = 2y = 0 \implies y = 0$$

$$\frac{\left[y\right]}{\left[y\right]} = \left[0\right]$$

Find the critical points of  $f(x,y) = 3x^2y + 2y^3 - xy$ .

$$\frac{\partial f}{\partial x} = 6xy - y = 0 \Rightarrow y(6x - 1) = 0 \Rightarrow y = 0, 6x - 1 = 0$$

$$\frac{\partial f}{\partial x} = 3x^2 + 6y^2 - \chi = 0$$

$$\frac{\chi_{2}}{3(\frac{1}{6})^{2} + 6y^{2} - \frac{1}{6} = 3}$$

$$\frac{1}{12} - \frac{1}{6} + 6y^{2} = 3$$

$$6y^{2} = y_{12} = 3y^{2} = 72$$

$$y = \pm \sqrt{\frac{1}{72}} = \pm \frac{1}{6\sqrt{2}}$$
  
 $(\frac{1}{6}, \frac{1}{6\sqrt{2}}), (\frac{1}{6}, -\frac{1}{6\sqrt{2}})$ 

Find the critical points of  $f(x,y) = 4x^2 - 2xy + y^2 + 8x - 2y + 5$ .

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \quad 0 \implies 8x + 8 = 2y$$

$$\frac{\partial f}{\partial x} = -2x + 2y - 2 = 0 \quad 0 \implies 2x + 2 = 2y$$

$$\frac{\partial f}{\partial x} = -2x + 2y - 2 = 0 \quad 0 \implies 2x + 2 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2x + 2 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2x + 2 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2x + 2 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2y = 0 \implies 3x + 8 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2y = 0 \implies 3x + 8 = 2y$$

$$\frac{\partial f}{\partial x} = 8x - 2y + 8 = 0 \implies 2y = 0 \implies 3x + 8 = 2y$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{$$

### Saddle Points

Tuesday, 18 March 2025 9:59 am

**Definition:** A critical point **a** of a function  $f: \mathbb{R}^n \to \mathbb{R}$  is a saddle point if:

- Moving from  $\mathbf{a}$  in some direction causes f to increase (so  $\mathbf{a}$  looks like a local minimum in that direction)
- Moving from  $\mathbf{a}$  in some other direction causes f to decrease (so  $\mathbf{a}$  appears to be a local maximum in that direction)

Find Saddle Points of 
$$f(x, y) = x^2 - y^2$$

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

$$f(x,y) = 3x^2y + 2y^3 - xy$$

$$f_x = 6xy - y$$

$$D = f_{xx}f_{yy} - f_{xy}f_{yx}$$

$$f_y = 3x^2 + 6y^2 - x$$

$$f_{XX} = 6y = 6(\frac{1}{6J_2}) = \frac{1}{J_2} + inc.$$
 $f_{XX} = 6y = 6(\frac{1}{6J_2}) = -\frac{1}{J_2} - inc.$ 
 $f_{XX} = 6y = 6(\frac{1}{6J_2}) = -\frac{1}{J_2} - inc.$ 
 $f_{XX} = 6y = 6(\frac{1}{6J_2}) = -\frac{1}{J_2} - inc.$ 

# Deciding the nature of Critical Points

Tuesday, 18 March 2025 10:20 am

| D   | $f_{xx}$ | Point             |
|-----|----------|-------------------|
| > 0 | > 0      | Local Minimum     |
| > 0 | < 0      | Local Maximum     |
| < 0 | -        | Saddle Point      |
| = 0 | _        | Cannot be decided |

$$f(x,y) = 3x^2y + 2y^3 - xy$$

Find the critical points of  $f(x, y) = 2x^2 - 3xy + 2y^2$  and decide their

nature.

$$f_{x} = 4x - 3y = 3$$

$$f_{y} = -3x + 4y = 3$$

$$(0, 0)$$

$$f_{xx} = 4$$

$$f_{y} = -3$$

$$f_{y} = -3$$

$$4x - 3y = 3$$

$$-3x + 44y = 3$$

$$x = \frac{3}{3} =$$

#### Application: Least Squares Regression

Tuesday, 18 March 2025 10:45 am

Suppose we have N data points  $(x_i, y_i)$  and want to find the line y = mx + b that best fits this data in the sense of minimizing the sum of squared errors:



$$E(m, L) = \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$



$$E = \sum_{i=1}^{N} \left[ y_{i} - (mx_{i} + 1) \right]^{2}$$

$$\frac{\partial E}{\partial x} = \sum_{i=1}^{N} 2 \left[ y_{i} - mx_{i} - 1 \right] \left( -x_{i} \right) = -2 \sum_{i=1}^{N} x_{i} \left( y_{i} - mx_{i} - 1 \right) = 0$$

$$\sum_{i=1}^{N} \chi_{i}(y_{i} - mx_{i} - b) = 0 \qquad A$$

$$\sum_{i=1}^{N} \chi_{i}(y_{i} - mx_{i} - b) = 0$$

$$\sum_{i=1}^{N} \chi_{i$$

$$S_1 - mS_2 - bS_3 = 0$$
  
 $S_6 - mS_3 - bN = 0$ 

|    | ×1 | y . \ | Ri gi        | <b>2</b> (. 2 |  |
|----|----|-------|--------------|---------------|--|
|    | 1  | 2     | 2            | 1             |  |
|    | 2  | 2.5   | S            | 4             |  |
|    | ર  | 5     | 15           | 9             |  |
|    | 4  | 6     | 24           | 16            |  |
| 42 | 1. | 15.5  | 46           | \ 30          |  |
|    | S  | 3 54  | , <b>S</b> , | 52            |  |

$$46 - 30m - 10b = 0$$
 $65 - 10m - 46 = 0$ 
 $10m + 10b = 46$ 
 $10m + 4b = 15.5$ 

Let's find the best-fit line for the data points: (1,1), (2,2), (3,2), (4,3), (5,5).

|                      | $\hat{y} = mx + b$                       | m = 0.9<br>b = - 0.1                   |  |
|----------------------|------------------------------------------|----------------------------------------|--|
| 2 2 4 3 12 5 15 13 4 | 2. · · · · · · · · · · · · · · · · · · · | 48 - 55m - 15b = 0 $13 - 15m - 5b = -$ |  |

## Problem 4

Tuesday, 18 March 2025 10:52 am

Use the method of least squares to find the line of best fit y = mx + b for the data points: (0,1), (1,3), (2,2), (3,5), (4,4).