- 1 Trabalhar com números fracionários seria dividir a memória principal em um número fracionário de blocos, o que não é a melhor escolha, visto que o tamanho da palavra é um inteiro múltiplo de 2, vindo de 2^(n). Então a melhor escolha seria agrupar as palavras em em 2^(w) número de blocos.
- 2 Dado n=8, $2^{(s)}$ = 32 e $2^{(r)}$ =4 temos :

Sabendo que o sistema possui 32 blocos e que a quantidade de blocos é dada por $2^{(s)}$ temos que s = 5.

utilizando o valor de s na equação $2^{(s)} = 2^{(n)}/2^{(w)}$ temos então que $32 = 256/2^{(w)}$, e por fim encontramos que $2^{(w)} = 8$, logo w = 3. sendo assim, temos a seguinte divisão:

3 - Ao ajustar o valor de k para 1, m = v numa relação de 1:1, onde ficamos com uma linha por conjunto ou seja uma restrição de um bloco por linha, e com isso a memória cache passar a ter um mapeamento direto.

Ao ajustar o valor de v para 1, temos apenas um conjunto e com isso o mapeamento passa a ser apenas associativo.

4 - Atribuindo o mesmo valor para \mathbf{n} e \mathbf{w} teríamos um sistema de um único bloco, onde em um mapeamento direto não teríamos capacidade para armazenar linhas na memória cache, visto que o valor de \mathbf{s} teria que ser 0, como visto na fórmula $2^{(s)} = 2^{(n)}/2^{(w)}$, onde $2^{(s)} = 1$.