Analysis of EEG-based Depression Biomarkers

USING MACHINE LEARNING & NONLINEAR ANALYSIS

MIROSLAV KOVÁŘ SEBASTIÁN BASTERRECH

FJFI

MARCH 16, 2019

PROBLEM STATEMENT AND APPROACH

MDD

■ EEG

- MDD
 - 300 million suffering worldwide

■ EEG

■ MDD

- 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

MDD

- 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

 accessible diagnosis-aid tool

MDD

- ► 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

- accessible diagnosis-aid tool
- ► still not reliable enough!

Research into effective analysis techniques is ongoing...

OUR GOALS

OUR GOALS

 Czech National Institute of Mental Health

- Czech National Institute of Mental Health
- 133 patients

- Czech National Institute of Mental Health
- 133 patients
- EEG recordings
 - ▶ 19 channels
 - ▶ 250 Hz or 1000 Hz
 - ► Various duration

- Czech National Institute of Mental Health
- 133 patients
- EEG recordings
 - ▶ 19 channels
 - ▶ 250 Hz or 1000 Hz
 - ► Various duration
- Metadata
 - ► Depression scores
 - Week o
 - Week 4
 - ► Age, gender, drugs

LABELS

$$Response = \frac{Depression \ score_{Week \ 4}}{Depression \ score_{Week \ 0}}$$

OUR APPROACH

OUR APPROACH

NONLINEAR ANALYSIS APPROACH

NONLINEAR MEASURES

```
LLE
Largest Lyapunov exponent

SE
Sample entropy

CD
Correlation dimension

HD
Higuchi fractal dimension

DFA
Detrended fluctuation analysis

HE
Hurst exponent

LRTC
```

3 | 17

EMBEDDING PARAMETER ESTIMATION

Parameters

- Embedding dimension
- Time delay
- Scaling regions
- **..**

Methods

- Literature review
- Estimation algorithms (FNN, AFN, ADFD, ILD, ...)
- Result analysis

-> automated procedure

9 | 1

RESULTS

Measure	Classifier	Accuracy	
		Mean	Std
LLE, CD	SVM (lin.)	0.74	0.04
LLE, SE	SVM (lin.)	0.75	0.10
LLE, HE	SVM (lin.)	0.73	0.06
LLE, SE, DFA	SVM (lin.)	0.73	0.09
CD, HD	LR	0.73	0.10
LLE	SVM (lin.)	0.72	0.04
CD	SVM (lin.)	0.71	0.05
SE	LR	0.68	0.12
HD	SVM (rbf)	0.67	0.11
DFA	LR	0.67	0.16
HE	LR	0.67	0.17

(a)	Current	DS
- 1	α,	Current	$\nu_{\mathcal{I}}$

Measure	Classifier	Accuracy	
		Mean	Std
LLE, CD	SVM (lin.)	0.75	0.11
LLE, SE	SVM (lin.)	0.75	0.10
LLE	LR	0.71	0.08
CD	LR	0.67	0.09
HD	LR	0.66	0.05
SE	LR	0.66	0.09
DFA	SVM (lin.)	0.64	0.15
HE	SVM (rbf)	0.63	0.09

(b) Response prediction

DEEP LEARNING APPROACH

INPUT REPRESENTATION

11 | 17

ARCHITECTURE DESIGN - SHALLOW

ARCHITECTURE DESIGN - DEEP

13 | 17

RESULTS

Lab.	Freq.	Arch.	Accuracy	
			Mean	Std
DEP	$o-f_{fin}$	SHAL	0.85	0.13
	4 – f _{fin}	SHAL	0.84	0.11
	$o-f_{fin}$	DEEP	0.86	0.01
	4 – f _{fin}	DEEP	0.85	0.02
RES	$o-f_{fin}$	SHAL	0.94	0.02
	4 – f _{fin}	SHAL	0.94	0.03
	$o-f_{fin}$	DEEP	0.88	0.01
	$4-f_{fin}$	DEEP	0.86	0.02

Lab.	Freq.	Arch.	Accuracy	
			Mean	Std
DEP	$o-f_{fin}$	RP	0.63	0.02
	4 – f _{fin}	RP	0.61	0.01
	$o-f_{fin}$	CS	0.59	0.02
	4 – f _{fin}	CS	0.58	0.01
RES	$o-f_{fin}$	RP	0.61	0.03
	4 – f _{fin}	RP	0.65	0.02
	$o-f_{fin}$	CS	0.55	0.02
	4 – f _{fin}	CS	0.63	0.01

(a) Raw data

(b) Image-encoded data

CONCLUSION

 NL measures are potentially effective methods for depression diagnosis and prognosis (despite nonstationarity)

- NL measures are potentially effective methods for depression diagnosis and prognosis (despite nonstationarity)
- 2. LLE, CD and SE seem most discriminative (out of evaluated)

- 1. NL measures are potentially effective methods for depression diagnosis and prognosis (despite nonstationarity)
- 2. LLE, CD and SE seem most discriminative (out of evaluated)
- 3. FBCSP-inspired CNN models seem effective

- NL measures are potentially effective methods for depression diagnosis and prognosis (despite nonstationarity)
- 2. LLE, CD and SE seem most discriminative (out of evaluated)
- 3. FBCSP-inspired CNN models seem effective
- 4. RP and CS do not seem effective data encoding methods for EEG analysis

Limitations

- Binary output
- Most patients in remission

NL approach

- Nonstationarity (windowing?)
- Spatially local
- Temporally global
- Inconclusive surrogate tests
- "Theoretically too ambitious"

DL approach

- Short samples
- Simple models

Future Work

- Implement application to aid treatment
- Generalization to other datasets (sample bias)
- Output depression severity measure
- Ensemble of models combining (neuroimaging) modalities
- Incorporate information about treatment details (drugs,...)

NL approach

- Compare with spatial embedding
- New (spatiotemporal) measures

DL approach

- Model interpretation
- Compare with FBCSP
- Dimensionality reduction techniques

REFERENCES I

GALKA ANDREAS.

TOPICS IN NONLINEAR TIME SERIES ANALYSIS, WITH IMPLICATIONS FOR EEG ANALYSIS, VOLUME 14.

World Scientific, 2000.

HOLGER KANTZ AND THOMAS SCHREIBER.

NONLINEAR TIME SERIES ANALYSIS, VOLUME 7.

Cambridge university press, 2004.

ROBIN TIBOR SCHIRRMEISTER AND JOST TOBIAS SPRINGENBERG.

DEEP LEARNING WITH CONVOLUTIONAL NEURAL NETWORKS FOR EEG DECODING AND VISUALIZATION.

Human brain mapping, 38(11):5391-5420, 2017.

C. J. STAM.

NONLINEAR DYNAMICAL ANALYSIS OF EEG AND MEG: REVIEW OF AN EMERGING FIELD.

Clinical Neurophysiology, 116(10):2266-2301, 2005.

