3

第四章 关系

◆ 4.1 关系的定义及其表示
◆ 4.2 关系的运算
◆ 4.3 关系的性质
◆ 4.4 等价关系与偏序关系

4.1 关系的定义及其表示

◆ 4.1.1 有序对与笛卡儿积

◆ 4.1.2 二元关系的定义

◆ 4.1.3 二元关系的表示

有序对定义4.1 由两个元素,如x和y,按照一定的顺序组成的二元组称为**有序对**,记作 <x,y>实例:点的直角坐标 < 3,-4 >
有序对的性质
有序性 <x,y>≠<y,x> (当x≠y时)
<x,y>与<u,v>相等的充分必要条件是
<x,y>=<u,v>⇔x=u ∧ y=v
例1 <2,x+5>=<3y-4,y>, 求x, y.

解 3y-4=2,x+5=y ⇒ y=2,x=-3

笛卡儿积

定义4.2 设A, B为集合,A与B的笛卡儿积记作 $A \times B$, $A \times B = \{ < x,y > | x \in A \land y \in B \}$.

例2 $A = \{0,1\}, B = \{a,b,c\}$ $A \times B = \{ < 0,a >, < 0,b >, < 0,c >, < 1,a >, < 1,b >, < 1,c >\}$ $B \times A = \{ < a,0 >, < b,0 >, < c,0 >, < a,1 >, < b,1 >, < c,1 >\}$ $A = \{\emptyset\}, B = \emptyset$ $P(A) \times A = \{ < \emptyset,\emptyset >, < \{\emptyset\},\emptyset >\}$ $P(A) \times B = \emptyset$

5 6

此处是标题 1

2

4

笛卡儿积的性质 若A或B中有一个为空集,则A×B就是空集. Aר=ØxB=Ø 不适合交換律 A×B*B*XA (A≠B,A≠Ø,B≠Ø) 不适合结合律 (A×B)×C*≠A×(B×C) (A≠Ø,B≠Ø,C≠Ø) 对于并或交运算满足分配律 A×(B∪C)=(A×B)∪(A×C) (B∪C)×A=(B×A)∪(C×A) A×(B∩C)=(A×B)∩(A×C) (B∩C)×A=(B×A)∩(C×A) 若|A|=m,|B|=n,则|A×B|=mn

有序n元组和n阶笛卡尔积

定义4.3

- (1) 由 n 个元素 $x_1, x_2, ..., x_n$ 按照一定的顺序排列构成 有序 n 元组,记作 $< x_1, x_2, ..., x_n >$
- (2) 设A₁,A₂,...,A_n为集合,称 A₁×A₂×...×A_n={<x₁,x₂,...,x_n> | x_i∈A_i, i=1,2,...,n} 为 n 阶笛卡儿积.

实例

(1,1,0)为空间直角坐标, (1,1,0)∈R×R×R

8

二元关系的定义

定义4.4

如果一个集合满足以下条件之一:

- (1) 集合非空,且它的元素都是有序对
- (2) 集合是空集

则称该集合为一个二元关系,简称为关系,记作R. 如 $\langle x,y \rangle \in R$,可记作 xRy; 如果 $\langle x,y \rangle \notin R$,则记作 xRy 和

实例: $R=\{<1,2>,<a,b>\}$, $S=\{<1,2>,a,b\}$. R是二元关系, 当a, b不是有序对时,S不是二元关系 根据上面的记法,可以写1R2, aRb, a, bc等. 实例

例3

- $\begin{aligned} &(1) \ R = \{ < x, y > | \ x, y \in \mathbb{N}, \ x + y < 3 \} \\ &= \{ < 0, 0 >, < 0, 1 >, < 0, 2 >, < 1, 0 >, < 1, 1 >, < 2, 0 > \} \end{aligned}$
- (2) C={<x,y>|x,y∈R,x²+y²=1}, 其中R代表实数集合, C是直角坐标平面上点的横、纵坐标之间的关系, C中的所有的点恰好构成坐标平面上的单位圆.
- (3) *R*={⟨*x*,*y*,*z*⟩ | *x*,*y*,*z*∈R, *x*+2*y*+*z*=3}, *R*代表了空间直角坐标系中的一个平面.

10

9

7

5元关系的实例—数据库实体模型

4	员工号	姓名	年龄	性别	工资	-
	301	张 林	50	男	1600	}
	302	王晓云	43	女	1250	
	303	李鹏宇	47	男	1500	} }
-	304	赵辉	21	男	900	
						ļ

5元组:

<301,张林,50,男,1600>, <302,王晓云,43,女,1250>

从A到B的关系与A上的关系

定义4.5 设A,B为集合, $A\times B$ 的任何子集所定义的二元关系叫做从A 到B 的二元关系,当A=B 时则叫做A上的二元关系

例4 $A=\{0,1\}, B=\{1,2,3\},$ $R_1=\{<0,2>\}, R_2=A\times B, R_3=\emptyset, R_4=\{<0,1>\},$ 从A到B的关系: R_1, R_2, R_3, R_4, A 上的关系 R_3 和 R_4 .

11

12

从A到B的关系与A上的关系

定义4.5 设A,B为集合, $A \times B$ 的任何子集所定义的二元关系叫做从A 到B 的二元关系,当A=B 时则叫做A上的二元关系

例4 $A=\{0,1\}, B=\{1,2,3\},$ $R_1=\{<0,2>\}, R_2=A\times B, R_3=\varnothing, R_4=\{<0,1>\},$ 从A到B的关系: R_1, R_2, R_3, R_4, A 上的关系 R_3 和 R_4 .

计数.

A = n, $B \models m$, $A \times B \models nm$, $A \times B$ 的子集有 2^{nm} 个. 所以从 $A \ni B \neq 2^{nm}$ 个不同的二元关系. $A \models n$, $A \vdash A \neq 2^{n^2}$ 不同的二元关系.

例如 |A|=3,则 A上有512个不同的二元关系.

13

A上重要关系的实例

设A为任意集合,

Ø是A上的关系,称为空关系

定义 4.6 E_A , I_A 分别称为全域关系与恒等关系,其中 E_A ={< x, $y > | x \in A \land y \in A \}$ = $A \times A$

 $E_A = \{\langle x, y \rangle \mid x \in A \land y \in A\} = A \times A$ $I_A = \{\langle x, x \rangle \mid x \in A\}$

例如, A={1,2}, 则

 $E_A = \{<1,1>,<1,2>,<2,1>,<2,2>\}$

 $I_A = \{<1,1>,<2,2>\}$

14

A上重要关系的实例(续)

小于等于关系 L_A ,整除关系 D_A ,包含关系 $R_{\underline{c}}$ 定义如下:定义4.7

 $L_A=\{\langle x,y\rangle|x,y\in A\land x\le y\},$ 这里 $A\subseteq R$, R为实数集合 $D_B=\{\langle x,y\rangle|x,y\in B\land x$ 整除 $y\}$, $B\subseteq Z^*$, Z^* 为非0整数集 $R_c=\{\langle x,y\rangle|x,y\in A\land x\subseteq y\}$, 这里A是集合族.

例如 A={1,2,3}, B={a,b}, 则

L_A={<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}

 $D_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\}$

 $C=P(B)=\{\emptyset,\{a\},\{b\},\{a,b\}\},$ 则C上的包含关系是 $R_{\subseteq}=\{<\emptyset,\emptyset>,<\emptyset,\{a\}>,<\emptyset,\{b\}>,<\emptyset,\{a,b\}>,<\{a\},\{a\}>,$

<{a},{a,b}>,<{b},{b}>,<{a,b},{a,b}>}

类似的还可以定义大于等于关系,小于关系,大于关系, 真包含关系等等.

15

关系的表示

表示方式:关系的集合表达式、关系矩阵、关系图

定义4.8 关系矩阵 若 $A=\{x_1,x_2,...,x_m\}$, $B=\{y_1,y_2,...,y_n\}$, R是从A到B的关系,R的关系矩阵是布尔矩阵

 $M_R = [r_{ij}]_{m \times n},$ 其中 $r_{ij} = 1 \Leftrightarrow \langle x_i, y_i \rangle \in R.$

定义4.9 关系图 若 $A = \{x_1, x_2, ..., x_m\}$, R是A上的关系,R的关系图是 $G_R = \langle A, R \rangle$,其中A为结点集, R为边集,如果 $\langle x_i, x_i \rangle$ 属于关系R,在图中就有一条从 x_i 到 x_i 的有向边.

注意: 设A,B为有穷集

关系矩阵适合于表示从4到8的关系或者4上的关系

关系图适合于表示A上的关系

.5

16

18

实例

例5 $A=\{a,b,c,d\}$, $R=\{\langle a,a\rangle,\langle a,b\rangle,\langle a,c\rangle,\langle b,a\rangle,\langle d,b\rangle\}$, R的关系矩阵 M_R 和关系图 G_R 如下:

 $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

4.2 关系运算

- ◆ 4.2.1 关系的基本运算
 - 定义域、值域、域、逆、合成
 - 基本运算的性质
- ◆ 4.2.2 关系的幂运算
 - 幂运算的定义
 - 幂运算的方法
 - 幂运算的性质

17

定义4.11 R 的逆 $R^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in R \}$ 定义4.12 R与S的合成 $R \circ S = \{ \langle x, z \rangle \mid \exists y \ (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$ 例2 $R=\{<1,2>,<2,3>,<1,4>,<2,2>\}$ *S*={<1,1>,<1,3>,<2,3>,<3,2>,<3,3>} $R^{-1} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle, \langle 2, 2 \rangle\}$ $R \circ S = \{ <1,3>, <2,2>, <2,3> \}$ $S \circ R = \{ <1,2>, <1,4>, <3,2>, <3,3> \}$

合成运算的矩阵方法 例2 R={<1,2>,<2,3>,<1,4>,<2,2>} S={<1,1>,<1,3>,<2,3>,<3,2>,<3,3>} 利用矩阵方法求合成 $M_{RoS} = M_R M_S$ $R \circ S = \{ <1,3>, <2,2>, <2,3> \}$ $S \circ R = \{ <1,2>, <1,4>, <3,2>, <3,3> \}$

21 22

基本运算的性质 定理4.1 设F是任意的关系,则 (1) $(F^{-1})^{-1}=F$ (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$ 证 (1) 任取<x,y>, 由逆的定义有: $< x, y > \in (F^{-1})^{-1} \Leftrightarrow < y, x > \in F^{-1} \Leftrightarrow < x, y > \in F$ 所以有(F-1)-1=F (2) 任取x, $x \in \text{dom}F^{-1} \Leftrightarrow \exists y (\langle x, y \rangle \in F^{-1})$ $\Leftrightarrow \exists y (\langle y, x \rangle \in F) \Leftrightarrow x \in \operatorname{ran} F$ 所以有domF-1=ranF. 同理可证 $ranF^{-1} = dom F$.

基本运算的性质 (续) 定理4.2 设F, G, H是任意的关系,则 $(1) (F \circ G) \circ H = F \circ (G \circ H)$ (2) $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$ 证 (1) 任取<x,y>, $\langle x, y \rangle \in (F \circ G) \circ H$ $\Leftrightarrow \exists t (\langle x, t \rangle \in F \circ G \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists t (\exists s (\langle x, s \rangle \in F \land \langle s, t \rangle \in G) \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists t \exists s (\langle x, s \rangle \in F \land \langle s, t \rangle \in G \land \langle t, y \rangle \in H)$ $\Leftrightarrow \exists s (\langle x, s \rangle \in F \land \exists t (\langle s, t \rangle \in G \land \langle t, y \rangle \in H))$ $\Leftrightarrow \exists s \ (\langle x, s \rangle \in F \land \langle s, y \rangle \in G \circ H)$ $\Leftrightarrow \langle x, y \rangle \in F \circ (G \circ H)$ 所以 $(F \circ G) \circ H = F \circ (G \circ H)$

23 24

此处是标题 4

20

.5

27 28

29 30

31 32

幂运算的性质(续)(2) 对于任意给定的 m∈N, 施归纳于n.

者n=0,则有
 (R^m)⁰=I_A=R⁰=R^{m×0}
 假设 (R^m)ⁿ=R^{mn},则有
 (R^m)ⁿ⁺¹=(R^m)ⁿ•R^m=(R^{mn})•R^m=R^{mn+m}=R^{m(n+1)}
 所以对一切 m,n∈N 有 (R^m)ⁿ=R^{mn}.

33

幂运算的性质(续)

定理4.6 设R 是A上的关系, 若存在自然数 s, t (s<t) 使得 R^s = R^t , 则

(1) 对任何 k ∈ N 有 R^{s+k} = R^{t+k} (2) 对任何 k, i ∈ N 有 R^{s+kp+i} = R^{s+i} , 其中p = t-s(3) 令S=(R^0 , R^1 ,..., R^{t-1}), 则对于任意的 q ∈ N 有 R^q ∈ S证明 (1) R^{s+k} = R^s ο R^k = R^t ο R^k = R^{t+k} (2) 对 k 山纳、 $\pm k$ = 0, 则有 R^{s+tp+i} = R^{s+i} = R^{s+i} , 其中p = t-s, $R^{s+(k+1)p+i}$ = R^{s+i} , 其中p = t-s, $R^{s+(k+1)p+i}$ = $R^{s+kp+i+p}$ = R^{s+kp+i} o R^p = R^{s+i} ο R^p ο R^p = R^{s+i} ο R^p = R^{s+i} ο R^p = R^{s+i} ο R^p = R^{s+i} ο R^{s+

幂运算的性质(续)

(3)任取 $q \in \mathbb{N}$, $\exists q < t$, 显然有 $R^q \in S$. $\exists q \ge t$, 则存在自然数k 和 i 使得 q = s + kp + i, 其中 $0 \le i \le p - 1$. 于是 $R^q = R^{s + kp + i} = R^{s + i}$ 而 $s + i \le s + p - 1 = s + t - s - 1 = t - 1$ 这就证明了 $R^q \in S$.

35 36

此处是标题 6

34

37