15.2 代数系统

- 代数系统的定义 构成成分,公理
- 代数系统的分类同类型的代数系统同种的代数系统
- 构造代数系统的方法 子代数 积代数
- 学习要点与基本要求

代数系统的定义

定义 一个代数系统是一个三元组 $V=<A,\Omega,K>$,其中

A是 载体,非空集合, Ω 是非空运算集,

K是代数常数集合, $\emptyset \subseteq K \subseteq A$,如单位元、零元等

$$\Omega = \bigcup_{j=1}^{\infty} \Omega_j$$
, $\Omega_j = \{o_j \mid o_j \to A \perp h_j$ 元运算 $\}$

简记为 V=<A,Ω>

$$\Omega = \bigcup_{j=1}^{\infty} \Omega_j$$
, $\Omega_j = \{o_j \mid o_j \to A \perp h_j \subset \Sigma \}$

简记为 V=<A,o₁, o₂,... o_r>

说明

- $V=\langle A, o_1, o_2, ..., o_r \rangle$ 中的 $o_1, o_2, ..., o_r$ 运算从高元到低元排列
- 无特殊说明,本课程所研究的代数系统是含有有限 个代数运算的系统
- 在不产生误解的情况下,可以不写出代数系统中的 所有成分,如<N,+,0>可以简记为<N,+>或N
- 代数系统的构成:成分+公理

代数系统举例

- $< R-\{0\}, f>, f(x)=1/x$
- < Z, +, $\cdot >$, < Q, +, $\cdot >$, < R, +, $\cdot >$,
- $\langle P(S), \cup, \cap, \oplus, \sim \rangle$, S是一个有限集
- \blacksquare $< M_n(R), +, \cdot>$
- **■** <{0,1}, ∧,∨>
- $< Z_n, \oplus, \otimes >$

$$Z_n = \{0,1, ..., n-1\},$$

$$x \oplus y = (x+y) \mod n$$
,

$$x \otimes y = (x \times y) \mod n$$
,

<A^A, °>

代数系统的分类

- 同类型的:构成成分相同
- 同种的:构成成分与公理都相同
- 构成成分: 运算(包括运算个数,对应运算的元数)
- 公理:交换,结合,幂等,吸收,分配,消去,单位元e,可逆元。
- 例:
- 1. 设<A, o, *>,其中o, *都是二元运算, *可结合, *对o可分配,则<Z,+, ·>, <Z_n,⊕,⊗>, <M_n,+, ·>与 <A, o, *>同种
- 2. 设<S, o', *'>,其中o', *'是二元运算,都是可交换,结合,幂等, o', *'相互分配,满足吸收律,则<*P*(*B*), ∪,∩>, <{0,1},
- ∨, ∧>与 <S, o' *'>同种. <A, o, *> 与<S, o', *' >同类型。

子代数

定义15.11 设 $V = \langle A, o_1, o_2, ..., o_r \rangle$ 是代数系统, $B \subseteq A$,如果 $B \to V$ 中的所有运算封闭(含0元运算在内),则称 $V' = \langle B, o_1, o_2, ..., o_r \rangle$ 为V的子代数,若 $B \subseteq A$,子代数V'称为V的真子代数.

例如: $\langle N, + \rangle$ 是 $\langle Z, + \rangle$, $\langle R, + \rangle$, $\langle Q, + \rangle$ 的子代数.

 $\langle Z, +, 0 \rangle$ 是 $\langle Z, +, 0 \rangle$, $\langle R, +, 0 \rangle$, $\langle Q, +, 0 \rangle$ 的真子代数.

 $< N - \{0\}, +>$ **T E** < Z, +, 0 > **的 F C W**.

说明

- ◆ 子代数和原代数是同类型的代数系统。
 若公理是二元运算性质,子代数与原代数是同种的。
- ◆ 对于任何代数系统,其子代数一定存在。

平凡子代数(定义15.12)

- 最大的子代数: 就是 1/本身。
- 最小的子代数: 如果令V中所有代数常数构成的集合是K,且K对V中所有的运算都是封闭的,则<K, o_1 , o_2 ,... o_r >就构成了V的最小的子代数。
- 平凡子代数: 最大和最小的子代数称为1/的平凡子代数

实例分析

例1 代数系统V=<Z,+,0>,试证 $nZ=\{nz \mid z\in Z\}$ 是V的子代数,n为自然数. +为普通加法运算

证明 任意 nz_1 , $nz_2 \in nZ$,

则 $nz_1+nz_2=n(z_1+z_2)\in nZ$, +运算在nZ上封闭.

 $0=n+0=0+n \in nZ$,零元运算在nZ上封闭.

故nZ是Ⅴ的子代数。

n=0 平凡的真子代数。

n=1 平凡的子代数。

n>1 非平凡的真子代数

积代数的定义

定义 设 $V_1 = \langle A, o_{11}, o_{12}, ..., o_{1r} \rangle = \langle B, o_{21}, o_{22}, ..., o_{2r} \rangle$ 是同类型的代数系统, o_{1i} 和 o_{2i} 是 k_i 元运算,(i=1,2,...,r). V_1 与 V_2 的积代数是

$$V_1 \times V_2 = \langle A \times B, o_1, o_2, ..., o_r \rangle$$

其中 o_i 是 k_i 元运算,i=1,2,...,r,

$$\forall < x_1, y_1 >, < x_2, y_2 >, ..., < x_{ki}, y_{ki} > \in A \times B,$$

$$o_i(< x_1, y_1>,...< x_{ki}, y_{ki}>) = < o_{1i}(x_1,...,x_{ki}), o_{2i}(y_1,...,y_{ki})>$$

 $V = V_1 = V_2$ 的积代数,也称 $V_1 = V_2 = V$ 的因子代数.

积化

积代数举例

例<Z₅,+₅, \times ₅>与<Z₃,+₃, \times ₃>,求积代数<Z₅ \times Z₃, \oplus , \otimes >,并 计算<4,2> \oplus <2,2>和<4,2> \otimes <2,2>的值.

解 $Z_5 \times Z_3 = \{0,1,2,3,4\} \times \{0,1,2\}$,运算⊕、⊗如下:

$$\forall \langle x,y \rangle, \langle u,v \rangle \in \mathbb{Z}_5 \times \mathbb{Z}_3$$

$$< x,y> \oplus < u,v> = < x + 5u,y + 3v>$$

$$\langle x,y \rangle \otimes \langle u,v \rangle = \langle x \times_5 u, y \times_3 v \rangle$$

<4,2>
$$\oplus$$
<2,2>=<4 +₅2,2+₃2>=<1,1>

$$<4,2> \otimes <2,2> = <4 \times _{5}2, 2 \times _{3}2> = <3,1>$$

积代数的性质

- 若 o_{1i} 和 o_{2i} 分别在 V_1 与 V_2 中可交换(可结合或幂等),则 o_i 在V中也<u>可交换</u>(可结合或幂等);
- 若 o_{1i} , o_{1j} 与 o_{2i} , o_{2j} 在 V_1 与 V_2 中分别适合吸收律,则 o_i 与 o_j 在V中也适合<mark>吸收律</mark>;
- 若 $e_{1i}(\theta_{1i}), e_{2i}(\theta_{2i})$ 分别为 V_1 与 V_2 中关于 o_{1i} 和 o_{2i} 运算的单位元(零元),则< e_{1i}, e_{2i} >(< θ_{1i}, θ_{2i} >)为V中关于 o_i 运算的单位元(零元)
- 若 o_{1i} 和 o_{2i} 分别为 V_1 与 V_2 中含单位元的运算, $a \in A,b \in B$ 分别关于 o_{1i} 和 o_{2i} 运算存在逆元 a^{-1} 和 b^{-1} ,则< a^{-1},b^{-1} >是V中<a,b>关于 o_i 运算的逆元.

积代数的单位元为< e_{1i} , e_{2i} >

设 $e_{1i}(\theta_{1i}), e_{2i}(\theta_{2i})$ 分别为 V_1 与 V_2 中关于 o_{1i} 和 o_{2i} 运算的单位元,试证明 $\langle e_{1i}, e_{2i} \rangle (\langle \theta_{1i}, \theta_{2i} \rangle)$ 为V中关于 o_i 运算的单位元.

证明 设 o_{1i} 和 o_{2i} 运算是二元运算,

$$\forall < x_1, y_1 > , < x_2, y_2 > \in V_1 \times V_2,$$

 $< x_1, y_1 > o_i < e_{1i}, e_{2i} > = < x_1 o_{1i} e_{1i}, y_1 o_{2i} e_{2i} > = < x_1, y_1 > = < x_1 o_{2i} e_{2i} > = < x_$

 $<e_{1i}, e_{2i}>o_i< x_1, y_1>=<e_{1i}o_{1i}x_1, e_{2i}o_{2i}y_1>=< x_1, y_1>$

所以 $\langle e_{1i}, e_{2i} \rangle$ 是V的单位元.

如<**Z**₅ \times **Z**₃, \oplus , \otimes >中, \oplus 运算的单位元是<0,0>, \otimes 的单位元是<1,1>

积代数的性质(小结)

(1) 积代数能够保持因子代数的如下性质:

算律:交换律,结合律,幂等律,分配律,吸收律

特异元素: 单位元, 零元, 幂等元, 可逆元素及其逆元

消去律不一定能够保持,反例 $V_1 = \langle Z_2, \otimes \rangle, V_2 = \langle Z_3, \otimes \rangle$,

 θ =<0,0>,如<0,1> \otimes <1,2>=<0,1> \otimes <2,2>,但<1,2> \neq <2,2>

(2) 积代数与因子代数是同类型的

若系统公理不含消去律,积代数与因子代数同种; 若系统公理含消去律,不保证积代数与因子代数同种.

- (3) 积代数可以推广到有限多个同类型的代数系统
- (4) 直积分解是研究代数结构的有效手段
- (5) 笛卡尔积是构造同种离散结构的有效手段

作业

■ 复习要点:

代数系统的构成要素 如何判断运算的封闭性 如何判断二元运算的性质及其特异元素 子代数与积代数的构成及其性质

■ 作业 习题十五, 14, 16