CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence Assignment Project Exam Help

Lecture 5: Co https://eduassistpro.gitoticom Problems

Add Weakat edu_assist_pro

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcements

- •Project 1:
 - Deadline: Oct 13th, 2020
- •Homework 2:
- Assignment Project Exam Help
- Deadline: Oct 24th, https://eduassistpro.github.io/
- Will be posted today Add WeChat edu_assist_pro

Thanh H. Nguyen 10/13/20

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to co
 - Explicit (provide a list of t https://eduassistpro.github.io//
 - Unary / Binary / N-ary

Add WeChat edu_assist_pro

Assignment Project Exam Hel

- Goals:
 - Here: find any solution
 - Also: find all, find best, etc.

Backtracking Search

Assignment Project Exam Help

https://eduassistpro.github.io/

Improving Backtracking

General-purpose ideas give huge gains in speed

• Filtering: Can we detect mevitable failure early?

Arc consistency

Forward checking

Constraint propagation

https://eduassistpro.github.io/

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Structure: Can we exploit the problem structure?

Example: Map Coloring

Assignment Project Exam Help

https://eduassistpro.github.io/

Example: Map Coloring

- An arc $X \to Y$ is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint
- Enforcing consistency of X_{SS} Signifilter Project of the trail X make $X \to Y$ consistent
- Forward checking: Enforcing https://eduassistpro.github.io/

Example: Map Coloring

- Constraint propagation: enforce arc consistency of entire CSP
 - Maintain a queue of arcs to enforce consistency
- Important: If X losessismunat, Reighbersof Repeat to be rechecked!
 - After enforcing consiste X need to be added back https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Thanh H. Nguyen 10/13/20

Ordering

Assignment Project Exam Help

https://eduassistpro.github.io/

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

Assignment Project Exam Help

https://eduassistpro.github.io/

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules Accetighentemes Projects Fix am Help the remaining variables
 - Note that it may take som https://eduassistpro.github.io/ determine this! (E.g., reru

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Structure

Assignment Project Exam Help

https://eduassistpro.github.io/

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact

Assignment Project Exam Help

 Independent subproblems connected components of chttps://eduassistpro.github.io/

- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - E.g., n = 80, d = 2, c = 20
 - $2^{80} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

Assignment Project Exam Help

https://eduassistpro.github.io/

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dn)

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)
 Assignment Project Exam Help

https://eduassistpro.github.io/

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Assignment Project Exam Help

https://eduassistpro.github.io/

Nearly Tree-Structured CSPs

Assignment Project Exam Help

https://eduassistpro.github.io/

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Cutset Quiz

• Find the smallest cutset for the graph below.

Assignment Project Exam Help

https://eduassistpro.github.io/

Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions Assignment Project Exam Help

Iterative Improvement

Assignment Project Exam Help

https://eduassistpro.github.io/

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs: Assignment Project Exam Help

 To apply to The Project Exam Help

 To apply to The Project Exam Help

 To apply to The Project Exam Help

 The Project Ex
 - Take an assignment with u
 - Operators reassign variable https://eduassistpro.github.io/
 - No fringe! Live on the edge.

 Add WeChat edu_assist_pro
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

Assignment Project Exam Help

https://eduassistpro.github.io/

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

Assignment Project Exam Help

• The same appears to be tr nerated CSP *except* in a narrow range of the ratio https://eduassistpro.github.io/

$$R = \frac{\text{number of constraints}}{\text{number of variables}} dd WeChat edu_assist_pro$$

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints Assignment Project Exam Help
- Basic solution: backtr

https://eduassistpro.github.io/

- Speed-ups:
 - Ordering
 - Filtering
 - Structure
- Iterative min-conflicts is often effective in practice

Local Search

Assignment Project Exam Help

https://eduassistpro.github.io/

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option phtil you can't make it better (no fringe!)

• Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the kest neighboring state am Help
 - If no neighbors better th

https://eduassistpro.github.io/

- What's bad about this approximated assist_pro
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

Assignment Project Exam Help

https://eduassistpro.github.io/

Hill Climbing Quiz

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

Assignment Project Exam Help

https://eduassistpro.github.io/

