### Memformer

A Memory Guided Transformer for Time Series Forecasting

Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, Christian S. Jensen

February 2025

Proceedings of the VLDB Endowment, Volume 18, Issue 2

Presented by Andreas Gottschalk Krath

## 1. Introduction

# 2. Methodology

#### **Instance normalization**

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

H is the historical horizon

 $\mu$  is the mean

 $\sigma$  is the variance

c ensures numerical stability

#### **Instance normalization**

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where  $H$  is the historical horizon

II is the mistorical noriz

 $\mu$  is the mean

 $\sigma$  is the variance

c ensures numerical stability

poral dynamics inherent in time series. Instance normalization is defined as  $\mathbf{H'} = (\mathbf{H} - \mu)/\sqrt{(\sigma^2 + \text{constant})}$ , where  $\mathbf{H'}$  denotes the preprocessed feature,  $\mu$  and  $\sigma$  denote the mean and variance of the sample, respectively, and "constant" is a small positive real number included to ensure numerical stability.

#### **Instance normalization**

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H'=(H-\mu)/\sqrt{(\sigma^2+c)},$$
 where  $H$  is the historical horizon  $\mu$  is the mean  $\sigma$  is the variance  $c$  ensures numerical stability

poral dynamics inherent in time series. Instance normalization is defined as  $\mathbf{H'} = (\mathbf{H} - \mu)/\sqrt{(\sigma^2 + \text{constant})}$ , where  $\mathbf{H'}$  denotes the preprocessed feature,  $\mu$  and  $\sigma$  denote the mean and variance of the sample, respectively, and "constant" is a small positive real number included to ensure numerical stability.

- Mistake in variance?
  - $\bullet$   $\sigma$  is conventional notation for standard deviation
  - $\sigma^2$  is conventional notation for variance

- Explored code to find answer
- data\_provider/data\_loader.py
  - Only place anything related to loading data happens
  - Dataset\_ETT\_hour, Dataset\_ETT\_minute, Dataset\_Custom, Dataset\_Pred

- Explored code to find answer
- data\_provider/data\_loader.py
  - Only place anything related to loading data happens
  - Dataset\_ETT\_hour, Dataset\_ETT\_minute, Dataset\_Custom, Dataset\_Pred

```
from sklearn.preprocessing import StandardScaler
class ...:
    def __read_data__(self):
        self.scalar = StandardScaler()
        if self.scale:
            self.scaler.fit(train_data.values)
            data = self.scaler.transform(df_data.values)
```

- Explored code to find answer
- data\_provider/data\_loader.py
  - Only place anything related to loading data happens
  - Dataset\_ETT\_hour, Dataset\_ETT\_minute, Dataset\_Custom, Dataset\_Pred

```
from sklearn.preprocessing import StandardScaler
class ...:
    def __read_data__(self):
        self.scalar = StandardScaler()
        if self.scale:
            self.scaler.fit(train_data.values)
            data = self.scaler.transform(df_data.values)
```

- They fit on training data
- Normalize entire dataset with  $\mu$  and  $\sigma$  from training data

### What are they actually doing?

Preprocessing

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

H is the historical horizon

$$\mu$$
 is the mean

$$\sigma$$
 is the variance

$$c$$
 ensures numerical stability

StandardScaler

$$z = (x - \mu)/\sigma$$
, where

x is the sample

$$\mu$$
 is the mean

$$\sigma$$
 is the standard deviation

### What are they actually doing?

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

$$H$$
 is the historical horizon  $\mu$  is the mean

$$\sigma$$
 is the variance  $c$  ensures numerical stability

• We know that 
$$\sqrt{\sigma^2} = \sigma$$

### StandardScaler

$$z = (x - \mu)/\sigma$$
, where

$$x$$
 is the sample

$$\mu$$
 is the mean

$$\sigma$$
 is the standard deviation

### What are they actually doing?

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

H is the historical horizon

$$\mu$$
 is the mean

$$\sigma$$
 is the variance

- We know that  $\sqrt{\sigma^2} = \sigma$
- Essentially same formula, except constant

StandardScaler

$$z = (x - \mu)/\sigma$$
, where

x is the sample

$$\mu$$
 is the mean

 $\sigma$  is the standard deviation

### What are they actually doing?

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

$$\mu$$
 is the mean

$$\sigma$$
 is the variance

c ensures numerical stability

• We know that 
$$\sqrt{\sigma^2} = \sigma$$

- Essentially same formula, except constant
- Fit on training data, normalize entire dataset  $\rightarrow$  global normalization

StandardScaler

$$z = (x - \mu)/\sigma$$
, where  $x$  is the sample

• 41

$$\mu$$
 is the mean

 $\sigma$  is the standard deviation

### What are they actually doing?

Preprocessing StandardScaler 
$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}, \text{ where} \qquad z = (x - \mu)/\sigma, \text{ where}$$
  $H$  is the historical horizon  $T$  is the sample  $T$  is the mean  $T$  is the wariance  $T$  is the standard deviation  $T$   $T$  is the standard deviation  $T$  is t

- We know that  $\sqrt{\sigma^2} = \sigma$
- Essentially same formula, except constant
- Fit on training data, normalize entire dataset  $\rightarrow$  global normalization
- None of the stated benefits of instance normalization

#### **Architecture**

Upper part  $\rightarrow$  dynamic correlation

Lower part  $\rightarrow$  normalized data

Output  $\rightarrow$  enriched input features



#### **Normalized Data**

- Normalized as described earlier
  - Not what the paper actually states



#### **Normalized Data**

- Normalized as described earlier
  - Not what the paper actually states

#### **Patches**

- H' is split into p patches
- Stride S
- Size T
- If  $S \geq T$  patches are disjoint
- If S < T patches overlap
  - Common elements for adjacent patches



#### **AME**

- Provides local memory embedding
  - ► These are learnable parameters
- Consistant local memory for patch  $P_i$
- Matrix product of  $E_i \otimes E_i^T$ 
  - Similarity matrix for variables in  $P_i$



#### **AME**

- Provides local memory embedding
  - ► These are learnable parameters
- Consistant local memory for patch  $P_i$
- Matrix product of  $E_i \otimes E_i^T$ 
  - Similarity matrix for variables in  $P_i$

#### ReLU + Softmax

- ReLU eliminates negative values
  - Removes negative correlations
- Softmax scales into influence scores



#### **AME**

- Provides local memory embedding
  - ► These are learnable parameters
- Consistant local memory for patch  $P_i$
- Matrix product of  $E_i \otimes E_i^T$ 
  - Similarity matrix for variables in  $P_i$

#### ReLU + Softmax

- ReLU eliminates negative values
  - Removes negative correlations
- Softmax scales into influence scores

### Graph

- Translates influence scores into graph
- Captures connection between variables
  - Dynamic correlations



#### **Diffusion Convolution**

- Normalized data is adjusted based on connections in graph
- Numeric values "diffuse" into neighbours
  - Not only immediate neighbours
- Spatially relates data based on connections

#### **Gated Recurrent Unit**

- Forwards information from  $P_i$  to  $P_{i+1}$
- Temporally relates data in a sequence

### Output

- Enriched input features
- Spatial → dynamic correlations
- Temporal  $\rightarrow$  GRU



## 3. Results