## Problem 1

E) Write out the equation for the line through the point  $(x_0, y_0) \in \mathbb{R}^2$  with slope  $a \in \mathbb{R}$  and compute the intersection of the line with the x-axis. Use this to derive the following iteration-methods: Newton-method, secant-method, and Regula Falsi.

## H) First Programming Assignment

Write a function regulafalsi(f,a,b,tol), which finds the root of a function f in the interval [a,b] with the Regula Falsi. The iteration shall be repeated as long as the difference between two consecutive iteration values is greater than tol (see lecture slides). Then use your Regula-Falsi function to find, with ten digits accuracy, the smallest positive root of the function  $f(x) = 1 + \cos(x) \cosh(x)$ .

Hints:

- First, plot f to find a good initial value.
- The Matlab and Python command to find the absolute value is abs.
- In Matlab, to pass a function as input parameter to another function, write @ before the function name. For example: To find the fixpoint of  $x = \cos(x)$  in the interval [1, 2] with accuracy 0.01 call your function with regulafalsi(@cos,1,2,0.01).

Problem 2 2 Points

- E) The equation  $x = -2 \ln(x)$  has exactly one solution  $x_*$ . This solution lies in the interval (0,1). You can not find it using the fixpoint iteration-method  $x_{k+1} = -2 \ln(x_k)$ . (Why not?) Find an iteration-method which converges to  $x_*$ .
- H) Show that the function  $g: \mathbb{R} \to \mathbb{R}$  with  $g(x) = \frac{1}{2}x^2 12$  has exactly two fixpoints. Are they attracting or repelling fixpoints? Can you find them with the iteration-method  $x_{k+1} = g(x_k)$ ?

Problem 3 6 Points

Let a > 0.

E) Show that the Heron-method

$$x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right), \quad x_0 > 0 \quad (*)$$

is the Newton-method to compute  $\sqrt{a}$ . Show, that this method has quadratic order of convergence.

H a) Show that the iteration-method

$$x_{k+1} = \frac{1}{n} \left( (n-1) x_k + \frac{a}{x_k^{n-1}} \right), \quad x_0 > 0$$

is the Newton-method to compute  $\sqrt[n]{a}$ , assuming the function f(x) is given by  $f(x) = x^n - a$ .

H b) Show that the following iteration-method to compute  $\sqrt{a}$  has order of convergence 3.

$$x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right) - \frac{(x_k^2 - a)^2}{8 x_k^3}, \quad x_0 > 0.$$
 (\*\*)

H c) Using the method (\*\*), how many iterations are necessary to find the number  $\sqrt{5}$  with 15 digits accuracy, if the initial value is  $x_0 = 5$ ? How many iterations are necessary for the same problem, when the Newton-method (\*) is used. (For the computations use Python, Matlab, or a calculator.)

Problem 4 2 Points

Write out the Newton-method to find the root of f and find the next iterated value  $[x_1 \ y_1]^T$  after the start vector  $[x_0 \ y_0]^T = [1 \ 1]^T$ .

$$E) f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} xy + x - y - 1 \\ xy^2 + 5 \end{bmatrix} H) f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x^3 + y - 2 \\ x + \frac{1}{y} \end{bmatrix}.$$

## Second Programming Assignment

Consider a spring in  $\mathbb{R}^2$  which is pivot-mounted at one of its endpoints  $\vec{a} \in \mathbb{R}^2$ . The spring constant is s > 0 and the relaxed length of the spring is  $\ell > 0$ . Let  $\vec{F}(\vec{x})$  be the force the spring exerts on its other endpoint  $\vec{x}$ . According to Hooke's law we have

$$\vec{F}(\vec{x}) = -s(\|\vec{x} - \vec{a}\|_2 - \ell) \frac{\vec{x} - \vec{a}}{\|\vec{x} - \vec{a}\|_2} = s\left(\frac{\ell}{\|\vec{x} - \vec{a}\|_2} - 1\right) (\vec{x} - \vec{a}).$$

Explanation: The force vector  $\vec{F}(\vec{x})$  points along the line between the endpoints of the spring, its absolute value is the spring constant times the difference between relaxed length and stretched length of the spring, i.e.  $\|\vec{F}(\vec{x})\|_2 = s \|\vec{x} - \vec{a}\|_2 - \ell\|$ . When the spring is stretched the force acts in the direction of  $\vec{a}$ . When the spring is compressed the force acts in the opposite direction, away from the point  $\vec{a}$ . See the sketch (left: relaxed spring, middle: stretched spring, right: compressed spring).



The Jacobi matrix of the force function  $\vec{F}$  is given by

$$\vec{F}'(\vec{x}) = s \left( \left( \frac{\ell}{\|\vec{x} - \vec{a}\|_2} - 1 \right) I - \ell \frac{(\vec{x} - \vec{a})(\vec{x} - \vec{a})^\top}{\|\vec{x} - \vec{a}\|_2^3} \right).$$

Notation: I is the identity matrix.  $\vec{x} - \vec{a}$  is a column vector, so  $(\vec{x} - \vec{a})^{\top}$  so is a row vector (transposed). The product  $(\vec{x} - \vec{a})(\vec{x} - \vec{a})^{\top}$  (matrix multiplication) is a quadratic matrix.

Now, lets consider a mass m, whose center is at the position  $\vec{x} \in \mathbb{R}^2$ , which is attached to two springs with spring constants  $s_1, s_2 > 0$  (see the Figure). The springs are fixed at the points  $\vec{a}_1$  and  $\vec{a}_2$ . The relaxed lengths of the springs are  $\ell_1$  and  $\ell_2$ . Three forces act on the mass: the spring forces

$$\vec{F}_k(\vec{x}) = -s_k (|\vec{x} - \vec{a}_k| - \ell_k) \frac{\vec{x} - \vec{a}_k}{|\vec{x} - \vec{a}_k|} = s_k \left( \frac{\ell_k}{|\vec{x} - \vec{a}_k|} - 1 \right) (\vec{x} - \vec{a}_k), \qquad k = 1, 2$$

and the gravitational force

$$\vec{G} = \begin{bmatrix} 0 \\ -g m \end{bmatrix}$$
,  $g = 9.81 \, m/s^2$  (gravitational constant).

So the total force acting on the mass at the point  $\vec{x}$  is given by

$$\vec{F}_{total}(\vec{x}) = \vec{F}_1(\vec{x}) + \vec{F}_2(\vec{x}) + \vec{G}.$$



**Task:** Compute, using the Newton-method, the equilibrium position  $\vec{x}$  of the mass m, i.e. find the position vector  $\vec{x}$  which satisfies  $\vec{F}_{total}(\vec{x}) = \vec{0}$  for the given data.

$$\vec{a}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad \vec{a}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad s_1 = s_2 = 10, \qquad \ell_1 = \ell_1 = 2, \qquad m = 1.$$

As initial condition for the Newton-method, use  $\vec{x}_0 = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$  and (in a second run of your program)  $\vec{x}_0 = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$ . How can you explain that the results are different?