

Video

4.6_Binomial_Theorem

POLL

What is the coefficient of x^2 in the expansion of $(x+2)^4$?

- O 12
- O 24
- **48**
- None of the above

Submit

FEEDBACK

The answer is $(4 \text{ choose } 2) * 2^2 = 24$.

1 (Graded)

2/2 points (graded)

• What is the coefficient of x^4 in the expansion of $\left(2x-1\right)^7$?

Explanation

By binomial theorem, the number of terms that contain $(2x)^4$ is $\binom{7}{4}$. Hence, the coefficient of x^4 is $2^4 \times (-1)^3 \times \binom{7}{4} = -560$.

. What is the constant term in the evnansion of $(r=rac{2}{2})^6$?

-160 **✓ Answer:** -160

Explanation

-160

 $\left(x-rac{2}{x}
ight)^6=\left(x^2-2
ight)^6\left(rac{1}{x}
ight)^6$. To find the constant term, we just need to find the coefficient of x^6 in $\left(x^2-2
ight)^6$. The number of terms that contain x^6 is $\binom{6}{3}$, so the coefficient is $1^3 imes (-2)^3 imes \binom{6}{3}=-160$

Submit

You have used 4 of 4 attempts

Answers are displayed within the problem

2 (Graded)

2/2 points (graded)

What is the coefficient of x^2 in the expansion of $(x+2)^4(x+3)^5$?

Explanation

Consider $(x+2)^4(x+3)^5$ as the product of $(x+2)^4$ and $(x+3)^5$, there are 3 ways to get x^2 : (1) multiply the x^2 term in $(x+2)^4$ and the constant term in $(x+3)^5$, (2) multiply the x term in $(x+2)^4$ and the x term in $(x+3)^5$, (3) multiply the constant term in $(x+2)^4$ and the x^2 term in $(x+3)^5$. Hence the result is the sum of these 3 ways $\binom{5}{2}2^43^3+\binom{4}{1}\binom{5}{1}2^33^4+\binom{4}{2}3^52^2=23112$.

Submit

You have used 3 of 4 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

• $A \cap B = \emptyset$

In an earlier section, we solved this question by mapping the sets A and B to ternary sequences. In this section, we ask you to solve it using the binomial theorem.

How many ordered pairs (A,B), where A, B are subsets of $\{1,2,3,4,5\}$ have:

• $A \cup B = \{1, 2, 3, 4, 5\}$

Submit

You have used 0 of 4 attempts

	- (⁹ ₆)		
Submit	You have used 0 of 3 attempts		
Discussion			Hide Discussion
Topic: Topic 4 /	Pascal		Add a Post
	s 🗸	by recent activity 🗸	
Show all posts	→		
	posts in this topic yet.		
There are no p			
There are no p			

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

<u>Accessibility Policy</u>

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>