DATASCI207-005/007 Applied Machine Learning

Vilena Livinsky, PhD(c)

School of Information, UC Berkeley

Week 4: 09/29/2024 - 09/30/2024

Today's Agenda

- Feature Engineering, Cont.
- Logistic Regression
- Walkthroughs:
 - Feature Engineering, Cont.
 - Logistic Regression w/Gradient Descent

Model Workflow: Data

- Train dataset:
 - to <u>train</u> and <u>optimize</u> our machine learning model
- Test dataset:
 - keep until the very end to evaluate the final model
- Common splits:
 - 60:40, 70:30, or 80:20
 - depends on size of dataset
 - large datasets:
 - Ex.: 90:10 or 99:1

Model Workflow: Data

- To shuffle or not to shuffle?
- Stratify?

• Notebook:

https://github.com/rasbt/stat479-machine-learning-fs19/blob/master/05_preprocessing-and-sklearn/code/05-preprocessing-and-sklearn_notes.ipynb

Model Workflow: Data

- Holdout Cross-Validation
 - performance estimate may be <u>sensitive</u> to how we partition the training dataset into the training and validation data subsets
 - k-fold cross-validation
 - randomly split training dataset into k folds (without replacement)
 - k 1 folds are used for model training
 - 1 fold is used for performance evaluation

Advantages?

- lower variance in the performance estimate
- Consider data set size...

Disadvantages?

- Consider date/time of features (temporal aspect)...
- Efficiency...

Image Ref.: Raschka, S., & Mirjalili, V. (2019). Python Machine Learning, Third Edit.

TensorFlow: General Modeling Steps

Logistic Regression

Gradient Descent

Activation Functions: Sigmoid

Logistic Regression: Binary Classification

 $logit(p) = log \frac{r}{(1-p)}$

- Probabilistic model for binary classification
- Odds

Where p = the probability of a positive event

- Logit
 - inputs in range [0, 1] to values over the entire real number range $R=(-\infty,\infty)$ or $R=\mathbb{R}$
 - can help us express a linear relationship between feature values and the log-odds

$$logit(p(y=1|x)) = w_0x_0 + w_1x_1 + \dots + w_mx_m = \sum_{i=0}^{m} w_ix_i = w^Tx$$

conditional probability that a particular example belongs to class 1 given its features, x

- Logistic sigmoid function
 - input values over the entire real number range to range [0, 1] with intercept at 0.5
 - probability that a certain example belongs to a particular class

Log Loss

- a.k.a.:
 - "logarithmic loss" OR
 - "binary cross-entropy"
- Use:
 - classification problems
 - measures the performance of a classification model by quantifying the difference between predicted probabilities and actual values
 - evaluates how close the predicted probabilities are to the actual binary outcomes (0 or 1)
 - Lower Log Loss: Indicates better model performance. It means the predicted probabilities are closer to the actual outcomes.
 - **Higher Log Loss**: Indicates poorer model performance. It means the predicted probabilities are further from the actual outcomes.

Logistic Regression

Given the output:

$$h(\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

For a binary class problem (0 and 1), we want these probabilities to be:

$$P(y=0|\mathbf{x}) \approx 1$$
 if $y=0$
$$P(y=1|\mathbf{x}) = 1 - P(y=0|\mathbf{x}) \approx 1$$
 if $y=1$

Goal:

Maximize probability

for true label

We compute the posterior as:

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{if } y = 1 \\ 1 - h(\mathbf{x}) & \text{if } y = 0 \end{cases} \longrightarrow P(y|\mathbf{x}) = a^y (1 - a)^{(1 - y)}$$
Where $h(x) = a$

Maximum Likelihood Estimation

$$P\big(y^{[i]},...,y^{[n]}|\mathbf{x}^{[1]},...,\mathbf{x}^{[n]}\big) = \prod_{i=1}^n P\big(y^{[i]}|\mathbf{x}^{[i]}\big)$$

$$L(\mathbf{w}) = P(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$$
Maximize class membership probabilities for all

$$= \prod_{i=1}^{n} P(y^{(i)} \mid x^{(i)}; \mathbf{w}) \qquad \text{examples in train}$$

$$= \prod_{i=1}^{n} \left(\sigma(z^{(i)}) \right)^{y^{(i)}} \left(1 - \sigma(z^{(i)}) \right)^{1 - y^{(i)}}$$

Log-Likelihood "Loss"

$$l(\mathbf{w}) = \log L(\mathbf{w})$$
 maximize the (natural) log

$$= \sum_{i=1}^{n} \left[y^{(i)} \log \left(\sigma(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \sigma(z^{(i)}) \right) \right]$$

$$\mathcal{L}(\mathbf{w}) = 0 \\ l(\mathbf{w}) \qquad \qquad \text{minimize negative log-likelihood} \\ = 0 \\ \sum_{i=1}^{n} \left[y^{(i)} \log \left(\sigma(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \sigma(z^{(i)}) \right) \right]$$

Logistic Regression: Binary Classifier

Gradient Descent

