International Rectifier

IRLML6401PbF

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- 1.8V Gate Rated
- Lead-Free
- RoHS Compliant, Halogen-Free

G 1 3 D

HEXFET® Power MOSFET

 $V_{DSS} = -12V$

 $R_{DS(on)} = 0.05\Omega$

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

		Standard Pa	ıck	
Base Part Number	t Number Package Type	Form	Quantity	Orderable Part Number
IRLML6401TRPbF	Micro3™ (SOT-23)	Tape and Reel	3000	IRLML6401TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-12	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.4	Α
I _{DM}	Pulsed Drain Current ①	-34	
P _D @T _A = 25°C	Power Dissipation	1.3	W
P _D @T _A = 70°C	Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
E _{AS}	Single Pulse Avalanche Energy®	33	mJ
V _{GS}	Gate-to-Source Voltage	± 8.0	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-12			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.007		V/°C	Reference to 25°C, I _D = -1mA
				0.050	Ω	V _{GS} = -4.5V, I _D = -4.3A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.085	12	V _{GS} = -2.5V, I _D = -2.5A ②
				0.125		V _{GS} = -1.8V, I _D = -2.0A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-0.95	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9 fs	Forward Transconductance	8.6			S	$V_{DS} = -10V, I_{D} = -4.3A$
lane	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -12V, V_{GS} = 0V$
I _{DSS}	Diam to Gource Leakage Guiterit			-25	μA	$V_{DS} = -9.6V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	- A	V _{GS} = -8.0V
IGSS	Gate-to-Source Reverse Leakage			100	nA	$V_{GS} = 8.0V$
Qg	Total Gate Charge		10	15		I _D = -4.3A
Q _{gs}	Gate-to-Source Charge		1.4	2.1	nC	$V_{DS} = -10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.6	3.9		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		11		ns	V _{DD} = -6.0V
t _r	Rise Time		32		115	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		250			$R_D = 6.0\Omega$
t _f	Fall Time		210			$R_G = 89\Omega$ ②
C _{iss}	Input Capacitance		830			V _{GS} = 0V
Coss	Output Capacitance		180		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		125			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)			-1.3	A	showing the
I _{SM}	Pulsed Source Current			0.4	^	integral reverse
	(Body Diode) ①			-34		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		22	33	ns	$T_J = 25^{\circ}C, I_F = -1.3A$
Q _{rr}	Reverse RecoveryCharge	I	8.0	12	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Submit Datasheet Feedback

3

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

VGS = -2.5V

30

40

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. **Drain Current**

Fig 14. Typical Threshold Voltage Vs. Junction Temperature

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Qualification information[†]

Qualification level	Consumer (per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	Micro3™ (SOT-23)	MSL1 (per JEDEC J-STD-020D ^{††})			
RoHS compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Revision History

Date	Comment				
Updated data sheet with new IR corporate template.					
4/28/2014	Updated package outline & part marking on page 7.				
4/20/2014	Added Qualification table -Qual level "Consumer" on page 9.				
	Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.				

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

International Rectifier: IRLML6401TRPBF