Kap. 7: NP-Vollständigkeit

Formalisierung und Codierung von Problemen Komplexitätsklassen P, NP und NPC NP-vollständige Probleme, Reduktionsbeweis Noch mehr NP-vollständige Probleme

NP-Vollständigkeit

- bisher:
 - Probleme analysiert und effiziente Algorithmen / Datenstrukturen entwickelt
- Vorgehen, wenn man keinen effizienten Algorithmus findet:
 - 1. Vermutung: Es gibt einen effizienten Algorithmus
 - Weitersuchen!
 - 2. Vermutung: Es gibt keinen effizienten Algorithmus
 - Nachweis durch eine untere Laufzeitschranke
 - extrem schwierig, gelingt nur sehr selten
 - Nachweis, dass das Problem zu einer Klasse von scheinbar schwer zu lösenden Problemen gehört
 - viel einfacher, gelingt häufig!
- Ziel: Formalismus, mit dem man die Schwierigkeit eines Problems verdeutlichen kann

Schwere und einfache Probleme

1. 2.		schwer! O(E)
	Hamilton-Kreis: einfacher Kreis, der alle Knoten enthält Euler-Tour: Kreis, der alle Kanten enthält	schwer! O(E)
5. 6.	Clique: vollständiger Teilgraph mit k Knoten Inpedependent Set: Teilgraph mit k Knoten ohne Kanten	schwer!
	Färbbarkeit: adjazente Knoten haben unterschiedliche Farben. ■ Färbbar mit zwei Farben? ■ Färbbar mit drei Farben? PARTITION: geg. eine Menge ganzer Zahlen, Lässt sich die Menge in zwei Teilmengen gleicher Summe zerlegen?	O(E) schwer! schwer!

7.1 Formalisierung von 'Problemen'

- Problemtypen:
 - Optimierungsproblem: finde eine gültige Lösung mit einem minimalen Wert bzgl. einer Bewertungsfunktion
 - Entscheidungsproblem: prüfe, ob eine gültige Lösung existiert.
- Sei P ein Optimierungsproblem:
 - E_P = ,Gibt es eine Lösung für P mit Wert ≤ k?' ist das zugehörige Entscheidungsproblem (*k*-Threshold-Problem)
 - Eingabe ist die Eingabe von P und der Wert k
 - Sei A ein Algorithmus für ein k-Threshold-Problem E_P,
 P kann durch die wiederholte Anwendung von A mit binärer Suche gelöst werden
- Im folgenden betrachten wir nur Entscheidungsprobleme.
 - Komplexität von Optimierungsproblemen lassen sich über das zugehörige k-Threshold-Problem bewerten.

Codierung von Problemen

Codierung:

- Abbildung von Objekten in die Menge der Binärstrings {0,1}*
 - Abstraktes Problem: Problem definiert über komplexe Objekte
 - ♦ Konkretes Problem: Funktion f: $\{0,1\}^*$ → $\{0,1\}$
- Codierung bildet ein abstraktes Problem auf ein konkretes Problem ab
- \blacksquare für nicht belegte Eingabecodes x gilt f(x) = 0
- Formale Sprachen:
 - konkretes Entscheidungsproblem f kann als Menge betrachtet werden:

$$L_P = \{ x \in \{0,1\}^* \mid f(x) = 1 \}$$

- Länge der Codierung
 - Ein abstraktes Problem mit Eingabe n lässt sich als ein konkretes Problem mit Eingabelänge $I(n) = O(n^k)$, k konstant, codieren.

Codierung von Problemen

Bsp (Länge der Codierung):
Graph mit n Knoten und m Kanten

Verwende

00: binär 0, 01: binär 1,

10: neues Listenelement 11: neue Liste

- Adj.-Liste zu Knoten i: 11bin(i)10bin(Nachbar 1)10bin(Nachbar 2)...
- Länge I(m,n) der binärcodierten Eingabe
 - ◆2log₂ n pro Knotennummer, bei n Knoten und m Kanten:

$$I(n,m) = n * 2 log_2 n + 2*m*(2 + 2log_2 n) = O(m log n)$$

7.2 Komplexitätsklassen P, NP und NPC

f: {0,1}* → {0,1}* heißt polynomzeit-berechenbar
 g.d.w. ein Algorithmus A zur Berechnung von f existiert mit Laufzeit T_A(n) = O(n^k) für eine Konstante k

Komplexitätsklasse P:

Menge aller konkreten Entscheidungsprobleme $f:\{0,1\}^* \rightarrow \{0,1\}$, die polynomzeit-berechenbar sind.

- umgangsprachlich:
 - abstrakte Entscheidungsprobleme f sind in P, g.d.w. es eine Codierung polynomieller Länge gibt und das zugehörige konkrete Entscheidungsproblem ist in P
 - Ein Optimierungsproblem f ist in P, g.d.w. zugehörige k-Threshold-Problem E_f in P ist.
- Polynome sind gegen Verkettung abgeschlossen, d.h. sind f und g Polynome, so ist h: x → f(g(x)) ebenfalls ein Polynom
- Solange die Codierung polynomiell ist, ändert sie nichts an der Tatsache, ob ein abstraktes Problem in P ist oder nicht.

Die Klasse NP

- $f:\{0,1\}^* \rightarrow \{0,1\}$ heißt polynomzeit-verifizierbar, g.d.w.
 - zu jeder Eingabe $x \in \{0,1\}^*$ es existiert ein Zertifikat $y \in \{0,1\}^*$ mit $|y| = O(|x|^k)$
 - es existiert ein Algorithmus A mit A(x,y) = 1 g.d.w. f(x) = 1 und $T_A(n) = O(n^k)$ für ein konstantes k
- umgangssprachlich:
 - Zertifikat stellt die Lösung dar, der Algorithmus A <u>überprüft</u> in polynomieller Zeit, ob die Lösung korrekt ist.
 - Bsp. für Zertifikate:
 - k-Clique: Menge der Knoten, die eine k-Clique bilden
 - ◆3-Färbbarkeit: Funktion, die jedem Graphknoten eine Farbe zuweist

Komplexitätsklasse NP:

- Menge aller konkreten Entscheidungsprobleme f:{0,1}*→ {0,1}, die polynomzeit-verifizierbar sind
- Offensichtlich gilt: $P \subseteq NP$. Gilt P = NP? (vermutlich nicht!)

NP-Vollständigkeit

- Da P ⊆ NP gilt, können wir schwierige Probleme über ihre Zugehörigkeit zu NP nicht identifizieren
- Was sind die schwierigsten Probleme in NP?
- NP-Vollständigkeit:
 - ein konkretes Entscheidungsproblem A ∈ NP heißt NP-vollständig, g.d.w gilt: A ∈ P => P = NP, bzw. P ≠ NP => A \notin P
- Komplexitätsklasse NPC
 - NPC ist die Menge der NP-vollständigen Entscheidungsprobleme
 - Ein Optimierungsproblem f heißt <u>NP-schwer</u>, wenn das zugehörige k-Threshold-Problem E_f NP-vollständig ist.
- Zwei Szenarien sind denkbar:

Polynomzeit-Reduktion

- Seien A,B Entscheidungsprobleme:
- Wie können wir zeigen, dass A mindestens so komplex ist wie B?
 - Suche eine Reduktionsfunktion $r:\{0,1\}^* \rightarrow \{0,1\}^*$ mit den Eigenschaften:
 - $\bullet x \in B \iff r(x) \in A$
 - r kann in polynomieller Zeit berechnet werden
 - Gibt es ein entsprechendes r, so heißt B polynomzeit-reduzierbar auf A, oder B ≤_P A
 - Mit der Funktion r und einen Algorithmus Alg(A) für A kann B wie folgt berechnet werden:

■ Angenommen $A \in P \Rightarrow B \in P$

Nachweis von NP-Vollständigkeit

- Satz: Ein Problem A ist NP-vollständig (A ∈ NPC), g.d.w.
 - 1. A ∈ NP
 - 2. für alle $B \in NP$ gilt: $B \leq_P A$
- Angenommen A ∈ P, dann können wir Problem B mit folgenden Algorithmus Alg(B) lösen:
 - Berechne Reduktionsfunktion r(x)
 - Verwende Algorithmus f
 ür A
 - => Alg(B) hat polynomielle Laufzeit, folglich gilt B ∈ P
 - => Damit gilt für alle B ∈ NP: B ∈ P, also P = NP
- Wie weist man nun NP-Vollständigkeit eines Problems A nach?
 - zeige, dass A ∈ NP gilt
 - wähle ein beliebiges Problem Q ∈ NPC
 - zeige, dass Q ≤_P A gilt (Polynomzeit-Reduktion)
 Q ∈ NPC, also gilt für alle B ∈ NP: B ≤_P Q. mit Q ≤_P A folgt für alle B ∈ NP: B ≤_P A

7.3 NP-vollständige Probleme

- Satisfiability-Problem (SAT)
 - Eingabe: logischer Ausdruck A in CNF (konjunktiver Normalform)
 - boole'schen Variablen x_i (mögliche Belegung: 0 oder 1)
 - ♦ NOT, AND und OR Operatoren
 - CNF: AND-Verknüpfung von Klauseln; eine Klausel ist eine OR-Verknüpfung von Literalen ((potentiell negierten) Variablen)
 - Ausgabe: 1 g.d.w. es eine Belegung gibt, so dass A wahr(1) ist.
- Beispiel:

$$(x_1 \lor x_2 \lor x_3) \land (x_3 \lor \neg x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_4)$$

Ausgabe: 1 Belegung: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

■ Cook's Theorem: SAT ∈ NPC

Das erste Problem in NPC

- Cook's Beweis (grobe Skizze)
 - 1. Zeige SAT ∈ NP
 - Zertifikat: gültige Belegung für die Variablen
 - Verifikation durch den folgenden Algorithmus A:
 - Sei x eine Eingabe des SAT-Problems (logischer Ausdruck in CNF); y, das zugehörige Zertifikat (Belegung der Variablen)
 - Setze die Variablenbelegung y in den Ausdruck x ein
 - für jede Klausel von x: prüfe, ob die Klausel wahr ist
 - Es gilt |y| = O(|x|) (ein Bit für jede Variable, die in x vorkommt)
 - Algorithmus A hat polynomielle Laufzeit $T_A(n) = O(n)$

Es folgt, SAT ist polynomzeit-verifizierbar und somit SAT ∈ NP

Das erste Problem in NPC

- Cook's Beweis (grobe Skizze)
 - 2. Zeige für ein beliebiges $B \in NP$: $B \leq_P SAT$

Sei $A_B(x,y)$ der Algorithmus zur Polynomzeit-Verifikation von B

- $A_B(x,y)$ benötige T(n) Schritte auf einer RAM
- Die Funktionsweise einer RAM kann auf der Basis logischer Schaltkreise beschrieben werden
- Die Funktionsweise logischer Schaltkreise kann durch boole'sche Formeln beschrieben werden
- Der Zustand einer RAM kann vollständig durch eine boole'sche Formel in CNF beschrieben werden (modeliere Register, Akkumulator, Rechenwerk, Steuerwerk, etc.)
- Aus dem Zustand der RAM zum Zeitpunkt i kann der Zustand zum Zeitpunkt i+1 durch boole'sche Formeln beschrieben werden.
- Eine vollständige Rechnung einer RAM mit t Schritten kann durch eine CNF polynomieller Länge beschrieben werden

Das erste Problem in NPC

Cook's Beweis (Fortsetzung)

- Ist x ∈ B:
 - so existiert ein y mit A_B(x,y)=1, für die Belegung y ist somit C'(y)=1
 => C'(y) ist erfüllbar => r(x)= C'(y) ∈ SAT
- Ist x ∉ B:
 - so gilt für alle y: $A_B(x,y)=0$, für alle Belegungen ist somit $C'(y)=0 \Rightarrow C'(y)$ ist nicht erfüllbar $\Rightarrow r(x)=C'(y) \notin SAT$
- $|r(x)| = O(n^k)$ und r(x) kann aus x in $O(n^k)$ berechnet werden.

NP-vollständige Probleme

3-SAT: Jede Klausel hat maximal 3 Literale

VERTEX-COVER: Knotenmenge V', |V'| ≤ k, jede Kante ist zu mindestens einem Knoten in V' inzident

HAM-Cycle: Gibt es einen einfachen Kreis, der alle Knoten enthält

TSP: Traveling Salesperson Problem (kürzeste Rundtour in einem vollständigen, kantengewichteten Graphen)

CLIQUE = { <G,k> : G ist ein Graph mit einer k-Clique }

Bsp.:

- CLIQUE ist NP-vollständig
 - Beweis Teil 1: Zeige CLIQUE ∈ NP
 - ◆ Zertifikat: $V' \subseteq V$: V' ist eine k-CLIQUE, es gilt |V'| = O(|V|)
 - ◆ Verifikationsalgorithmus A(<G=(V,E),k>, V')

```
if( |V'| ≠ k ) return FALSE
for( each pair v,w ∈ V' )
  if( {v,w} ∉ E ) return FALSE
return TRUE
```


- Beweis Teil 2: Zeige 3-SAT ≤_p CLIQUE
 - Ziel: Wandle Eingabe x des 3-SAT Problems in Eingabe r(x) des CLIQUE-Problems mit x ∈ 3-SAT <=> r(x) ∈ CLIQUE
 - ♦ Eingabe des 3-SAT Problems: 3-CNF: $C_1 \wedge C_2 \wedge C_3 \dots \wedge C_n$ jede Klausel C_i : $I_i^1 \vee I_i^2 \vee I_i^3$ (I_i^j : j-te Literal der i-ten Klausel
 - Funktion r(x): baut aus 3-CNF einen Graph <G=(V,E),k>
 - Knoten V: v^j je ein Knoten pro Literal
 - Kanten E: v_i^r und v_i^s sind adjazent <=>
 - zugehörige Literale gehören zu unterschiedlichen Klauseln, d.h. i ≠ j
 - 2. und zugehörige Literale können gleichzeitig erfüllt werden, d.h. $I_i^r \neq \neg I_i^s$
 - Clique-Größe: Anzahl der Klauseln, d.h. k= n
 - r(x) kann in O(N²) berechnet werden

- Bsp.: Reduktionsfunktion r:
 - 3-CNF: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$
 - Anzahl Klauseln: 3
 - Eingabe für CLIQUE: <G=(V,E), k>, k=3

- Beweis Teil 2 (Fortsetzung):
 - **Zeige** $x \in 3$ -SAT $\Rightarrow r(x) \in CLIQUE$
 - x ist erfüllbar, d.h. in jeder Klausel gibt es mindestens ein erfülltes Literal,
 d.h. ∀ 1 ≤ i ≤ n: ∃ 1 ≤ j ≤ 3 : I_i^j = 1
 - ♦ $V'' = \{ v_i^j \in V \mid I_i^j = 1 \}, V' \subseteq V'' : wähle pro Klausel genau ein Literal$
 - ♦ |V'| = k, V' eine Clique, denn $\forall \{v_i^r, v_i^s\} \subseteq V'$:
 - i ≠ j (pro Klausel wurde nur ein Literal gewählt)
 - 2. $I_i^r = 1$; $I_j^s = 1$ gemäß V", also gilt $I_i^r \neq \neg I_j^s$
 - ♦ Zeige $r(x) \in CLIQUE => x \in 3-SAT$
 - Sei V' eine k-CLIQUE in r(x), L' die zugehörigen Literale
 - L' enthält aus jeder Klausel ein Literal, da |V'|=k und Knoten zu Literalen innerhalb einer Klausel nicht adjazent sind.
 - Alle Literale aus L' können erfüllt werden, da Knoten zu inkonsistenten Literalen nicht adjazent sind.
 - ♦ Setze Variable $x_i = 1$ falls $x_i \in L'$, $x_i = 0$ falls $\neg x_i \in L'$, ansonsten beliebig. Die Belegung erfüllt die 3-CNF x.
 - ♦ Es gilt: r ist polynomzeit-berechenbar und $x \in 3$ -SAT <=> $r(x) \in CLIQUE$, d.h 3-SAT $\leq_p CLIQUE$

- Problem (SUBSET-SUM)
 - geg.: Menge S von Zahlen, Zielwert t
 - Gibt es ein S' \subseteq S mit $\sum_{s \in S'} s = t$
- Bsp.: t=300 S= { 3, 17, 39, 48, 103, 111, 113, 132, 254 }
 S'= { 17, 48, 103, 132 }
 - arithmetisches Problem, Größe der Zahlen muss bei der Komplexitätsanalyse berücksichtigt werden
- Theorem 34.15:

SUBSET-SUM ist NP-vollständig

- Beweis Teil 1: SUBSET-SUM ∈ NP
 - Zertifikat y: Indizes der Elemente in S, die zu S' gehören
 - A(<S,t>, y): addiere die Elemente in S' und vergleiche mit tLaufzeit: O(N)

- Beweis Teil 2: 3-SAT ≤_p SUBSET-SUM
 - ◆Ziel: Wandle Eingabe x des 3-SAT Problems in Eingabe r(x) des SUBSET-SUM Problems, so dass x erfüllbar ist g.d.w. r(x) eine Teilsumme mit Wert t hat.
 - Sei F eine logischer Ausdruck in 3-CNF
 - Entferne alle Klauseln die Variable und ihr Komplement enthalten (sind sowieso immer erfüllt)
 - Entferne alle Variablen, die in keiner Klausel vorkommen (spielen bzgl. der Erfüllbarkeit keine Rolle)
 - ◆ F bestehe aus den Variablen x₁,...,x_n und den Klauseln C₁,...,C_k
 - Reduktionsfunktion r:
 - verwende Zahlen im Zehnersystem mit n+k Stellen
 - die ersten n Stellen repräsentieren Variablen, die folgenden k
 Stellen repräsentieren Klauseln
 - konstruiere je zwei Zahlen v_i, v_i und s_j,s_j für Variablen und Klauseln:

Beweis Teil 2: (Fortsetzung)

- ⋄ v_i: 1 an Stelle x_i, 1 an Stellen aller Klauseln, die x_i enthalten
- \bullet v_i': 1 an Stelle x_i, 1 an Stellen aller Klauseln, die \neg x_i enthalten
- ♦s_i: 1 an Stelle C_i

s_i: 2 an Stelle C_i t:

$$\underbrace{111...1}_{n \text{ mal}}\underbrace{444...4}_{k \text{ mal}}$$

Beispiel: 3-CNF:

$$(x_{1} \lor \neg x_{2} \lor \neg x_{3}) \land C_{1}$$
 $(\neg x_{1} \lor \neg x_{2} \lor \neg x_{3}) \land C_{2}$
 $(\neg x_{1} \lor \neg x_{2} \lor x_{3}) \land C_{3}$
 $(x_{1} \lor x_{2} \lor x_{3})$
 C_{4}

VAR:	x1	x2	x 3	C1	C2	C3	C4
v1	1	0	0	1	0	0	1
v1'	1	0	0	0	1	1	0
v2	0	1	0	0	0	0	1
v2'	0	1	0	1	1	1	0
v3	0	0	1	0	0	1	1
v3'	0	0	1	1	1	0	0
s1	0	0	0	1	0	0	0
s1'	0	0	0	2	0	0	0
s2	0	0	0	0	1	0	0
s2`	0	0	0	0	2	0	0
s3	0	0	0	0	0	1	0
s3 '	0	0	0	0	0	2	0
s4	0	0	0	0	0	0	1
s4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

- Beweis Teil 2: (Fortsetzung)
 - ◆r(x) hat Länge O((n+k)²) und kann in O((n+k)²) Zeit berechnet werden
 - ◆ Zeige x ∈ 3-SAT => r(x) ∈ SUBSET-SUM x ist erfüllbar; sei B eine Belegung, die x erfüllt. Wähle S' = { $v_i \mid x_i = 1$ in B } \cup { v_i ' | $x_i = 0$ in B}, sei $t' = \sum_{s \in S'} s$ t' hat an den ersten n Stellen eine 1, da entweder $v_i \in S'$ oder v_i ' ∈ S'
 - t' hat an den hinteren k Stellen eine 1, 2 oder 3, da jede Klausel erfüllt ist (daher > 0) und jede Klausel max. 3 Literale hat (daher ≤ 3)

Erweitere S' um Variablen s_i und/oder s_i', so dass an den hinteren k Stellen je eine 4 steht.

Offensichtlich gilt
$$\sum_{s \in S'} s = t$$
.

- Beweis Teil 2: (Fortsetzung)
 - ◆ Zeige: $r(x) \in SUBSET-SUM => x \in 3-SAT$ Sei S' die Teilmenge der Zahlen mit $\sum_{s \in S'} s = t$

Um in der Summe an der i-ten Stelle eine 1 zu erhalten, muss gelten: entweder $v_i \in S'$ oder $v_i' \in S'$.

Wähle die Belegung $x_i=1$ falls $v_i \in S'$, $x_i=0$ falls $v_i \in S'$.

Für jede Klausel C_j gilt: die n+j-te Stelle ist 4, da $s_j + s_j' = 3$ gibt es ein v_i oder v_i' mit einer 1 an der n+j-ten Stelle.

Angenommen, es ist ein v_i:

 $x_i = 1$ und kommt in C_i vor, damit ist C_i erfüllt.

Angenommen, es ist ein v_i':

 $x_i = 0$ und $\neg x_i$ kommt in C_j vor, damit ist C_j erfüllt.

♦ Es gilt: r ist polynomzeit-berechenbar und $x \in 3$ -SAT <=> r(x) \in SUBSET-SUM, d.h 3-SAT \leq_p SUBSET-SUM.

- Beispiele aus
 - Garey/Johnson, Computers and Intractability (1979)
- Graphen:
 - Aufteilung in kantendisjunkte Dreiecke
 - Aufteilung in weniger als k kantendisjunkte Bäume
 - Gibt es einen bipartiten Subgraph mit mehr als K Kanten?
 - Gibt es einen planaren Subgraph mit mehr als K Kanten?
 - Enthält ein Graph G einen gegebenen Subgraph H?
 - Gibt es einen Spannbaum, in dem jeder Knotengrad < K ist?
 - Gibt es einen Spannbaum, in dem die Summe über allen paarweisen Distanzen zwischen Knoten < K ist?</p>

Netzwerk-Design

(K-th SHORTEST PATH)

Geg. Graph mit positiven Kantengewichten, Start- und Zielknoten, zwei Zahlen K und B

Gibt es K kantendisjunkte Wege von s nach t, jeder mit Länge < B?

Das Problem ist polynomzeit-reduzierbar, es ist unbekannt, ob es in NP ist.

QUADRATIC ASSIGNMENT

Geg. n Objekte mit paarweisen Abstandskosten c_{ij} , m Slots mit paarweisen Abständen d_{ij}

Gibt es eine Zuordnung f: $\{1,...,n\} \rightarrow \{1,...,m\}$ der Objekte zu den Slots mit $\sum_{\{i,j\}\subset\{1,...,n\}} c_{ij} d_{f(i)f(j)} \leq B$

Mengen und Partitionen

MINIMUM COVER

Geg. eine Sammlung C von Teilmengen über eine endl. Menge S, eine positive Zahl K

Gibt es ein C' \subseteq C mit $|C'| \le K$, die S überdeckt, d.h. $\bigcup_{c \in C'} c = S$

BIN PACKING

Geg. Menge U von Objekten mit positiver Größe, eine positive Behältergröße B, eine positive Zahl K

Gibt es eine Aufteilung von U in \leq K Teilmengen, so dass für jede Teilmenge U_i gilt: $\sum_{u \in U_i} u \leq B$

Zeichenketten

SHORTEST COMMON SUPERSEQUENCE

Geg. eine Menge R von Strings, eine positive Zahl K Gibt es einen String s mit $|s| \le K$, der alle $r \in R$ als Teilsequenz (mit Unterbrechungen) enthält, d.h. $s = w_0 r_0 w_1 r_1 ... w_k r_k w_{k+1}$ mit $r_0 r_1 ... r_k = r$?

SHORTEST COMMON SUPERSTRING

Geg. eine Menge R von Strings, eine positive Zahl K Gibt es einen String s mit $|s| \le K$, der alle $r \in R$ als Teilstring (ohne Unterbrechungen) enthält, d.h. $s=w_0rw_1$?

■ LONGEST COMMON SUBSEQUENCE

Geg. eine Menge R von Strings, eine positive Zahl K Gibt es einen String s mit $|s| \ge K$, der eine Teilsequenz aller Strings in R ist?

Scheduling

MULTIPROCESSOR SCHEDULING

Geg. Anzahl m von Prozessoren, Menge T von Aufgaben, eine positive Bearbeitungsdauer z(t) für jede Aufgabe und eine positive Zahl D (Deadline)

Können die Aufgaben aus T auf die m Prozessoren verteilt werden, so dass alle Aufgaben bis zum Zeitpunkt D bearbeitet sind?

■ TIMETABLE DESIGN (informell)

Gibt es einen gültigen Stundenplan für H Arbeitsperioden, C Handwerker und T Aufgaben

- Packungsprobleme
 - KNAPSACK

Geg. eine Menge U von Objekten mit einer Größe s(u) > 0 und einem Wert v(u) > 0, zwei positive Zahlen B und K

Gibt es eine Teilmenge U' von U mit $\sum_{u \in U'} s(u) \le B$ und $\sum_{u \in U'} v(u) \ge K$

Komplexität von Anwendungsproblemen

- Kompexitätsaussagen erfolgen über Entscheidungsprobleme
- Optimierungsprobleme:
 - k-Threshold-Problem (+ binäre Suche) definiert einen klaren Bezug zu Entscheidungsproblem
 - Komplexitätsaussage hat uneingeschränkte Gültigkeit
- Anwendungsprobleme:
 - Modellierung (Was sind die Freiheitsgrade, Was ist eine Energiefunktion, etc.) definiert ein Optimierungsproblem
 - Komplexitätsaussage hat nur eingeschränkte Gültigkeit "Problem X ist NP-schwer unter einer gegebenen Modellierung"

