Projet 6_Détectez des faux billets

Parcours <u>Data Analyst</u>

Xuefei ZHANG_janvier 2022

Sommaire

- Analyse descriptive
- ACP
- Classification K means
- Modélisation régression logistique
- Cas pratique: test de programme

M0 - Analyse de statistique descriptive

M0 - affichage et nettoyage du jeu de données

```
Data columns (total 7 columns):
# Column
               Non-Null Count Dtype
  is genuine 170 non-null
   diagonal 170 non-null float64
2 height left 170 non-null float64
3 height right 170 non-null float64
4 margin low 170 non-null float64
5 margin up 170 non-null float64
6 length
             170 non-null float64
dtypes: bool(1), float64(6)
memory usage: 8.3 KB
None
Index(['is genuine', 'diagonal', 'height left', 'height right', 'margin low',
    'margin up', 'length'],
   dtype='object')
```

Jeu de données bien propre pour l'analyse

Out[20]:

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.67	103.74	103.70	4.01	2.87	113.29
2	True	171.83	103.76	103.76	4.40	2.88	113.84
3	True	171.80	103.78	103.65	3.73	3.12	113.63
4	True	172.05	103.70	103.75	5.04	2.27	113.55

M0 - Analyse univariée

notesO.groupby(by='is_genuine').mean().transpose()
--

is_genuine	False	True	
diagonal	171.889857	171.9761	
height_left	104.230429	103.9515	
height_right	104.145571	103.7759	
margin_low	5.281571	4.1435	
margin_up	3.334571	3.0555	
length	111.660714	113 2072	

À noter que:

il existe des différences remarquables entre les données de vrais billets et faux billets sur les 5 variables sauf "diagonal", en terme de : **distribution de densité, médiane, moyenne**

M0 - Analyse bivariée

Les individus True et False de classification is_genuine se regroupent en 2 partitions sur tous ces 6 variables (mesures)

M0 - Analyse bivariée

Corrélation entre les variables:

- height_left vs height_right : corrélation 70%
- margin_low vs height_right : 50%
- margin up vs heights : 30%
- length vs heights: 50%
- margin low vs length : 60%

M1 - Analyse de Composantes Principales (PCA)

ACP - Eboulis de valeurs propres

- Les 2 premiers facteurs (le 1er plan factoriel) représentent environ 70% de l'inertie
- Les 4 premiers facteurs (les 2 premiers plans factoriels) représentent environ 90% de l'inertie

ACP - représentation des variables par cercle des corrélations

- le **1er plan** représente globalement bien les 6 variables
- diagonal est quasiment superposé avec F2 au sens positif, et longue flèche => bien représenté par 1er plan factoriel
- sur le 1er et 2ème plan, height_left et height_right se corrèlent bien vu l'angle entre eux
- margin_up flèche longue et petit angle avec F3 au sens négatif => bien représenté par F3 au sens négatif

ACP - Projection des individus par 3 plans factoriels - nuage de points

False

- * variable illustrative: **is_genuine** (False/True)
 - Les individus False et True se distinguent et se groupent en 2 clusters sur le 1er plan factoriel
 - Sur 2ème et 3ème plans, il n'y a pas de clusters clairement formés

ACP - Qualité de représentation des individus

```
In [214]: cos2 = coord**2 print(cos2.shape)

for j in range(p): cos2[:,j] = cos2[:,j]/di

repres= pd.DataFrame({'genuine':notesO.index,'COS2_1':cos2[:,0],'COS2_2':cos2[:,1]}) repres

#comme ça, Les COS² pour les 2 premiers facteurs sont affichés

(170, 6)
```

Out[214]:

	genuine	COS2_1	COS2_2
0	0	0.251929	0.139000
1	1	0.818002	0.050822
2	2	0.784862	0.000466
3	3	0.882856	0.001652
4	4	0.320145	0.009417
165	165	0.800651	0.004703
166	166	0.324059	0.411824
167	167	0.498809	0.083461
168	168	0.156908	0.271800
169	169	0.421817	0.217111

Conformément à la théorie de projection, pour chaque individu, la somme des COS² sur l'ensemble des 6 facteurs est égale à 1.

*COS2_1, COS2_2: Qualité de représentation des 170 individus sur les 2 premiers facteurs (1er plan factoriel)

ACP - Contribution des individus aux facteurs

ctr: permet de déterminer les individus qui pèsent le plus dans la définition de chaque facteur.

```
In [216]: #contributions aux axes

ctr = coord**2

for j in range(p):

ctr[:,j] = ctr[:,j]/(n*eigval[j])

ctr_axes= pd.DataFrame({'genuine': notesO.index,'CTR_1':ctr[:,0],'CTR_2':ctr[:,1]})

# ici on prends axe 1 et 2

ctr_axes.sort_values(by="CTR_1", ascending= False ).head()

# les 5 individus qui contributent le plus aux CTR_1
```

Out[216]:

	genuine	CTR_1	CTR_2
122	122	0.023758	0.012372
49	49	0.019620	0.007487
29	29	0.018089	0.000038
112	112	0.017950	0.016259
158	158	0.015836	0.002423

Conformément à la théorie, pour chaque axe, la somme des contributions des individus sur cette axe est égale à 1.

```
In [217]: #vérifions la théorie print(np.sum(ctr,axis=0))
[1. 1. 1. 1. 1. 1.]
```

ACP - corrélations des 6 variables avec F1 et F2 (1er plan factoriel)

	id	COR_1	COR_2
0	diagonal	0.123635	0.894863
1	height_left	0.802300	0.389389
2	height_right	0.829835	0.270354
3	margin_low	0.727258	-0.367910
4	margin_up	0.594829	-0.161976
5	length	-0.785209	0.361022

Constatations:

- 4 variables (height_left, height_right, margin_up, margin_low) sont positivement corrélées avec F1 avec des coeff de corrélation élevés (>0.6);
- diagonal n'est pas bien corrélé avec F1, mais bien corrélé avec F2 au sens positif (0.89);
- length négativement corrélé avec F1 à un coeff 0.78

ACP - Qualité de représentation des variables (COS²)

```
In [215]: #cosinus carré des variables sur F1 et F2
cos2var = corvar**2
print(cos2var.shape)
repres_variables = pd.DataFrame({'id':notes.columns,'COS2_1':cos2var[:,0],'COS2_2':cos2var[:,1]})
repres_variables['COS2_1+2'] = repres_variables['COS2_1'] + repres_variables['COS2_2']
repres_variables

(6, 6)
```

Out[215]:

ıd	COS2_1	0032_2	COS2_1+2
diagonal	0.015286	0.800781	0.816066
height_left	0.643685	0.151624	0.795308
height_right	0.688626	0.073091	0.761717
margin_low	0.528904	0.135358	0.664262
margin_up	0.353822	0.026236	0.380058
length	0.616553	0.130337	0.746890
	diagonal height_left height_right margin_low margin_up	diagonal 0.015286 height_left 0.643685 height_right 0.688626 margin_low 0.528904 margin_up 0.353822	diagonal 0.015286 0.800781 height_left 0.643685 0.151624 height_right 0.688626 0.073091 margin_low 0.528904 0.135358 margin_up 0.353822 0.026236

Constatation:

- F1 représente bien 5 variables sauf diagonal
- F2 représente bien diagonal
- F1+F2 (COS2_1+2) représente dans son ensemble bien ces 6 variables

In [224]:

#verification qualité repésentation des variables sur facteurs print(np.sum(cos2var,axis=1))

La somme des COS² sur toutes les composantes sont égales à 1 (la somme des COS² d'une variable sur l'ensemble des 6 facteurs est égale à 1)

[1. 1. 1. 1. 1. 1.]

ACP - Contribution des variables aux axes (CTR)

```
In [128]: #contributions
ctrvar = cos2var

for k in range(p):
ctrvar[:,k] = ctrvar[:,k]/eigval[k]

# ici on n'affiche que pour les deux premiers axes
contri_variables= pd.DataFrame({'id':notes.columns,'CTR_F1':ctrvar[:,0],'CTR_2':ctrvar[:,1]})
contri_variables
```

Out[128]:

Constatation:

- Les 5 variables sauf diagonal contribuent proportionnellement pas mal à F1
- Diagonal contribue 60% à F2

```
In [233]: #verification contributions des variables aux axes print(np.sum(ctrvar,axis=0))
```

print(np.sum(contri_variables,axis=0))

[1. 1. 1. 1. 1. 1.]
id diagonalheight_leftheight_rightmargin_lowmargi...
CTR_1 1.0
CTR 2 1.0

Pour chaque axe, la somme des contributions de tous ces 6 variables sur chaque axe est égale à 1. Ainsi on a [1.1.1.1.1.1] vu qu'on a 6 axes-facteurs.

M2 - Classification des individus: K means

M2 - algorithme de classification K means

In [301]: notesO.head()

Out[301]:

	diagonal	height_left	height_right	margin_low	margin_up	length
is_genuine						
True	171.81	104.86	104.95	4.52	2.89	112.83
True	171.67	103.74	103.70	4.01	2.87	113.29
True	171.83	103.76	103.76	4.40	2.88	113.84
True	171.80	103.78	103.65	3.73	3.12	113.63
True	172.05	103.70	103.75	5.04	2.27	113.55

Pourquoi K-means?

- On sait déjà le nombre de clusters à sortir est 2
- K-means est bien liée avec ACP
- Efficacité de méthode K means

In [306]: # Nombre de clusters souhaités

n clust = 2

préparation des données pour le clustering

X = notesO.values

Réduire n'est ici pas nécessaire car les variables sont exprimées dans la même unité #X_scaled = preprocessing.StandardScaler().fit_transform(X)

Centrage et Réduction

std_scale = preprocessing.StandardScaler().fit(X) # centrage
X scaled = std scale.transform(X) # reduction

Clustering par K-means

km = KMeans(n_clusters=n_clust) km.fit(X)

Récupération des clusters attribués à chaque individu clusters = km.labels

Affichage du clustering par projection des individus sur le premier plan factoriel
pca = decomposition.PCA(n_components=n_comp).fit(X_scaled)
X_projected = pca.transform(X_scaled)

^{*} Mais on pourrait aussi employer classification hiérarchique vu le volume d'observations n'est pas grand.

M2 - K means

Projection des individus en 2 clusters

Constatation:

Sur le 1er plan factoriel, les 2 clusters-partitions se distinguent clairement.

Vu que le 1er plan représente environ 70% d'inertie et la plupart des variables (diagonal, length, height_left, height_left, margin_low) y projetent de bonne qualité (COS2), on dirait que cette projection des clusters sur 1er plan a du sens et on pourrait y faire confiance.

M2 - K means Matrice de confusion

Matrice de confusion

col_0	False	True
cluster1	68	1
cluster2	2	99

- 2 faux billets sont classés dans cluster 2 qui représente globalement billets vrais (99/101)
- 1 vrai billet est classé dans cluster 1 qui représente globalement billets faux (68/69)

On sait qu'il existe au total 170 billets dont 100 vrais billets et 70 faux,

donc le taux d'erreur = 3/170 = 1.76%

=> cette K-means clustering qu'on a appliqué est globalement bonne pour ce cas

M3 - Modélisation par régression logistique

Est-il correct de choisir le modèle reg logistique?

Entraînement et test de modèle logistique

Split de jeu de données

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state= 42)

print("Training features/target:", X_train.shape, y_train.shape)

print("Testing features/target:", X_test.shape, y_test.shape)
```

Training features/target: (136, 6) (136,) Testing features/target: (34, 6) (34,)

Entrainement et test

```
logmodel = LogisticRegression(penalty='l2', C=0.1)
logmodel.fit(X_train, y_train) # entrainer logmodel avec train data. méthode fit()

y_pred = logmodel.predict(X_test) #prédire y avec X_test

y_pred_proba = logmodel.predict_proba(X_test)[:,1]
print(y_pred)
print(y_pred_proba)
```

20% de jeu de données (test_size=0.2) sont pour le **test**, autrement dit **80%** pour l'**entraînement** de modèle

Niveau de précision de logmodel

```
print("Accuracy score of logmodel for test data: ",
round(metrics.accuracy_score(y_test, y_pred), 4))

# ici y_test est dataset existant de y pour test, y_pred est le y prédit par logmodel via x_test

Accuracy score of logmodel for test data: 0.9706

> 97%: logmodel est performant
```


AUC =1, ctd. Il y a 100% de chance que logmodel est en mesure de distinguer les individus de classe positive de ceux de classe négative.

[0.06721685 0.93278315]

Optimisation de choix de variables avec RFE

M4 - Cas pratique: test de l'algorithme

M4 - Cas pratique: simulation - test de l'algorithme

```
example = pd.read csv("example.csv")
         example.head()
ut[403]:
             diagonal height left height right margin low margin up length
                                                               3.30 111.42 A 1
              171.76
                          104.01
                                      103.54
                                                    5.21
              171.87
                          104.17
                                      104.13
                                                    6.00
                                                               3.31 112.09 A 2
              172.00
                          104.58
                                      104.29
                                                    4.99
                                                               3.39 111.57 A_3
                                                               3.03 113.20 A_4
               172.49
                          104.55
                                      104.34
                                                    4.44
                                                               3.16 113.33 A 5
              171.65
                                      103.56
                                                    3.77
                          103.63
        from sklearn.linear model import LogisticRegression
         XX = example.drop(['id'], axis=1).values
         XX
ut[404]: array([[171.76, 104.01, 103.54, 5.21, 3.3, 111.42],
             [171.87, 104.17, 104.13, 6, 3.31, 112.09].
             [172., 104.58, 104.29, 4.99, 3.39, 111.57],
             [172.49, 104.55, 104.34, 4.44, 3.03, 113.2],
             [171.65, 103.63, 103.56, 3.77, 3.16, 113.33]])
        probability = selector.predict(XX)
         proba percentage = selector.predict proba(XX)
         print(probability)
         print("False %, True %:")
         print(proba percentage)
         [False False True True]
         False %, True %:
         [[0.71976459 0.28023541]
         [0.85286893 0.14713107]
          [0.78312751 0.21687249]
          [0.30729561 0.69270439]
```

[0.08078442.0.91921558]]

	ID	Genuine	Proba_False	Proba_True
0	A_1	False	0.719765	0.280235
1	A_2	False	0.852869	0.147131
2	A_3	False	0.783128	0.216872
3	A_4	True	0.307296	0.692704
4	A 5	True	0.080784	0.919216

Q & A

MERCI!