TP547 - Princípios de Simulação de Sistemas de Comunicação (2025/1)

Relatório — Trabalho Final Parte II

- Professor: Dr. Samuel Baraldi Mafra.
- Estudante: Daniel Quiteque.
- Tema de abordagem: Amostragem e Quantização

Artigo Analisado:

"Quantization Noise Analysis of Rounding and Truncation Methods for Sinusoidal Signals"

Autores: Salim Ahmad, Imteyaz Ahmad | Conferência: IEEE BITCON 2024

Resumo do Artigo

O artigo apresenta uma análise do ruído de quantização em sinais senoidais, considerando dois métodos de aproximação: truncamento e arredondamento. O ruído de quantização é um problema na conversão de um sinal analógico para digital, e o artigo em estudo, aborda estes dois métodos chamados Arredondamento (Rounding) e Truncamento (Truncation) para minimizar o erro durante o processo de digitalização. O estudo investiga o comportamento do SQNR (Signal to Quantization Noise Ratio) quando se variam os níveis de quantização de 3 a 16 bits.

Para taxas de quantização selecionadas, variando de 3 bits a 16 bits, o SQNR foi calculado utilizando a fórmula teórica, e então seguiram-se as simulações para determinar o SQNR usando os métodos de Truncamento e Arredondamento.

A metodologia envolveu tanto a implementação em Simulink quanto em Matlab Script, além de comparação com a fórmula teórica de SQNR:

$$SQNRte\'{o}rico = 1.76 + 6.02 * b$$

Onde:

SQNR: Signal – to – Quantization Noise Ratio", ou Relação Sinal – Ruído de Quantização

 $b-\acute{\mathrm{e}}$ o número de bits utilizados no processo de quantização de um conversor ADC.

O artigo pretende contribuir com a compreensão dos impactos práticos das diferentes abordagens de quantização sobre sinais senoidais, fornecendo dados úteis para aplicações em telecomunicações e processamento digital de sinais.

2. Análise Crítica

1. Análise da escrita

A estrutura geral é clara, com introdução, fundamentação, modelagem, análise dos resultados e conclusões. Porêm contém algumas falhas observadas abaixo:

Na escrita:

- Quantization noise is an problem..." em vez de:
- "Quantization noise is a problem..."

No uso incorreto de termos Técnicos:

- <u>"the SQNR error using the formula..."</u> "SQNR error" redundante, pois o termo em si, já representa uma relação sinal-ruido. Melhor seria escrever:
- "the difference between the theoretical SQNR and the simulated SQNR..."

Na coesão e clareza técnica:

A introdução discute quantização em contextos muito avançados (MIMO, sistemas de controle distribuído, compressão de imagens), mas o corpo do artigo trata apenas da quantização de uma senóide simples no domínio do tempo. Isso quebra a linha de pensamento de quem lê. Gera expectativas falsas.

Síntese da avaliação da escrita:

Critério	Avaliação
Redação	Prejudicada por erros gramaticais e sintaxe
Linguagem técnica	Algumas vezes imprecisa
Fluidez e naturalidade	Fraca, com sentenças mal formuladas
Adequação técnica do texto	Razoável, mas com termos mal aplicados

2. <u>Contribuição relevante</u>

O artigo analisado cumpre seu papel como uma introdução prática aos efeitos da quantização sobre sinais senoidais, especialmente para ambientes educacionais. A comparação entre truncamento e arredondamento é pertinente. Porém, a contribuição não é inovadora do ponto de vista científico, pois o tema — análise do ruído de quantização, é amplamente discutida na literatura. Maior relevância para a abordagem prática com a simução.

3. Os equacionamentos

De forma limitada. O artigo apresenta apenas o equacionamento teórico clássico do SQNR, que é conhecido:

$$SQNRte\'orico = 1.76 + 6,02 * b$$

Os métodos aplicados para a quantização, no caso, o cálculo de SQNR para truncamento e arredondamento, são apresentados em termos de pseudo código, mas não formulados matematicamente. Além disso, o pseudocódigo apresentou alguns erros de escrita de algumas variáveis para o Matlab.

Caso os autores incluíssem expressões fechadas para os erros específicos de cada método, seria mais relevante em para um artigo científico.

4. Análise da contribuição dos resultados:

O artigo observa:

- Uma diferença de cerca de 1 dB entre o SQNR por truncamento e por arredondamento. Ou seja, partir de 10 bits, o truncamento gera resultados semelhantes ou aceitáveis, quando comparado ao arredondamento.
- O **SQNR experimental (Simulink)** se aproxima do resultado obtido com o truncamento.
- À medida que o número de bits aumenta, a precisão melhora.
- As afirmações sobre o comportamento relativo de truncamento, arredondamento e teoria estão corretas e compatíveis com os dados e gráficos.
- SQNR arredondamento > SQNR truncamento → OK
- Ambos estão abaixo do teórico → OK.
- O texto afirma que o SQNR obtido pelo Simulink é mais próximo do truncamento. Isso não é consistente em todos os casos, segundo os próprios dados da Tabela 1 e dos gráficos. Portanto, a análise apresentada no artigo faz sentido do ponto de vista técnico, embora a afirmação de que o truncamento se torna "melhor" deva ser interpretada com cautela.

Reprodução dos resultados:

Tabela 1. Resultados da simulação para cada nível de quantização no método de arredondamento e truncamento

Bits	SQNR Teórico (dB)	SQNR Arredondamento (dB)	SQNR Truncamento (dB)
3	19,82	19,24413967	12,46073287
4	25,84	25,67591078	19,13767292
5	31,86	31,8677336	25,49101233
6	37,88	37,94029469	31,66459071
7	43,9	43,97164921	37,8081592
8	49,92	49,78034915	43,92822455
9	55,94	55,42844143	50,03080645
10	61,96	61,77839001	55,99930403
11	67,98	68,20878864	61,90822805
12	74	74,06414578	68,04289786
13	80,02	80,05862503	74,01141152
14	86,04	86,00045517	80,0887409
15	92,06	92,03215508	86,07428971
16	98,08	97,85956161	92,08713382

Figure 9. plot between no. of bits and SQNR (formula), SQNR (experimental), SQNR (Truncation) and SQNR(Rounding)

Para a reprodução do resultado do artigo, recorremos ao pseudocódigo que ele apresenta, que inicialmente Teve alguns erros que são apresentados abaixo e que foram corrigidos:

- 1- Nome da variável step_size: declarou como stepsize na linha de cálculo, mas depois usa step_size nas linhas seguintes. Matlab diferencia maiúsculas de minúsculas, então isso gera erro.
- 2- Erro no cálculo do SQNR com truncamento: Foi usado errorfloor, que não existe. Foi corrigido para error_trun.: (sqnr_trun(j)=10*log10(powersig/errorfloor)

3- Intervalo de tempo está exagerado: Usar t = 0:1/500:4 gera muitos ciclos da senóide. Isso não está errado, mas pode gerar um tempo de simulação maior do que o necessário. Bastaria um ou dois períodos para obter os mesmos resultados:

Código em matlab: 🗉 Código em Matlab

O código em python foi gerado através do código do matlab.

Código em Python: <u>SQNR_Comparacao_metodos</u>

Figura 3. Gráfico entre o número de bits e SQNR (fórmula), SQNR (experimental), SQNR (truncamento) e SQNR (arredondamento)

5. Conclusões:

O artigo confirma corretamente:

- Crescimento do SQNR ≈ 6 dB por bit.
- Arredondamento gera SQNR ≈ +1 dB sobre o truncamento.
- Ambos estão abaixo do teórico (5~6 dB de diferença).

Observações específicas:

- 3 a 6 bits: Simulink → Mais próximo do arredondamento.
- 7 a 9 bits: Simulink → Entre truncamento e arredondamento.
- 10 a 16 bits: Simulink → Levemente mais próximo do truncamento.

Inconsistência observada: Afirma que Simulink ≈ Truncamento → Não é sempre verdade.

Conclusões:

• A proximidade entre Simulink, truncamento e arredondamento varia conforme o número de bits.

Conclusão final:

- O artigo tem uma estrutura formal adequada, mas apresenta sérios problemas de redação, gramática e uso da linguagem técnica, provavelmente por conta de tradução direta ou por não ser escrito por nativos da língua inglesa.
- Está parcialmente bem escrito, mas exigiria uma revisão profissional para publicação em revistas de maior impacto.

Sugestões de Melhorias Técnicas e Científicas

Melhorias de Redação, Clareza e Precisão

- 1- Revisão gramatical completa em inglês, corrigindo erros básicos como:
 - Uso incorreto de artigos ("an problem" \rightarrow "a problem").
 - Estruturas verbais incorretas.
 - Uso inadequado de preposições e conectores.
- 2- Reescrever sentenças longas e mal estruturadas, tornando-as mais objetivas e técnicas, como:

"Computer simulation to quantize on the sinusoidal input signal..."
"The sinusoidal input signal was quantized using computer simulations."

- 3- Adotar terminologia padronizada da área, evitando termos ambíguos como "SQNR error".
- 4- Reduzir repetições desnecessárias e simplificar descrições dos métodos e etapas.

Melhorias Científicas

• Incluir mais modelos matemáticos robusta dos erros de quantização:

- Relacionar os conceitos de quantização não apenas com a senoide, mas também com outros sinais comuns (sinais aleatórios, ruído branco, etc.).
- Explorar mais detalhadamente as distribuições estatísticas do erro de quantização.
- Incluir uma análise de quantização em sinais não determinísticos (por exemplo, ruído, voz ou sinais reais de telecomunicações).

Melhoria na análise de análise dos Resultados

Aplicar análise estatística dos dados simulados, incluindo:
 Desvio padrão do SQNR. | Discussão sobre variabilidade dos resultados.

Sugestões sumarizadas:

Área	Sugestões	
Redação	Revisão gramatical, simplificação de sentenças, termos corretos	
Teoria	Formalizar modelos de erro, discutir viés e distribuições	
Metodologia	Analisar outros sinais, domínio da frequência, mais cenários	
Resultados	Análise estatística, correção da interpretação sobre Simulink	
Conclusões	Evitar generalizações, incluir limitações e sugerir trabalhos futuros	