Reducing confounding factors in automatic acoustic recognition of individual birds

Dan Stowell

Machine Listening Lab Centre for Digital Music

versus

Machine listening and bird sounds - why?

Machine listening and bird sounds - why?

- Changes in populations, in migration patterns -monitoring is important
- Intrusive vs. passive monitoring —behavioural impact of catching/ringing birds
- Many birds are most easily observed by sound
 - ▶ Manual (volunteer) monitoring common, but not scalable

In this talk...

Classification-based approaches to:

- 0. Bird species recognition
- 1. Bird sound detection (presence/absence)
- 2. Bird individual ID

(By the way: we do more than just classification!)

Species classification of bird sounds

In 2014: feature-learning approach to bird sound recognition

Dataset	Location	Total duration	Num items	Num classes	Labelling
lifeclef	Brazil	77.8 hours (12M frames)	9688	501	singlelabel

Bird species classification: Warblr

'Warblr' app - for Android and iOS

Bird species classification: Warblr

Over 45,000 recordings submitted to our database ($\approx 80/\text{day}$)

Some of our users...

Some of our users...

Part 1: Bird Audio Detection challenge

Many projects need reliable *detection* of bird sounds e.g. in long unattended recordings

But existing methods are not robust, not general-purpose enough, and need lots of manual tweaking/post-processing

Bird Audio Detection challenge

We designed the Bird Audio Detection challenge

Dev set 1: 10k items, crowdsourced audio from around the UK (Warblr phone app)

Dev set 2: 7k items, crowdsourced audio from misc field recordings

Testing set: 10k items, remote monitoring, Chernobyl Exclusion Zone

Bird Audio Detection challenge

- Training/testing sets differ in:
 - location
 - recording eqpt
 - species
 - class balance
 - background sounds
 - time of day
 - ▶ time of year
 - weather
 - **.**..
- How is a classifier meant to work in such mismatched conditions???

Bird Audio Detection challenge: outcomes

- 30 teams submitted
- Strong results (up to 89% AUC)

User	Preview Score ili \$	Final Score _i lı	Classifier	Domain adaptation	Ensembling \$
bulbul	88.9 %	88.7 %	CNN	Pseudo-labelling	Model averaging
cakir	88.3 %	88.5 %	CRNN	no	no (for strongest submission); Model averaging
topel	88.8 %	88.2 %	CNN-DenseNet	Pseudo-labelling	Multi-epoch, Model averaging(geom)
MarioElias	88.5 %	88.1 %	CNN, ExtraTreesRegressor	no	Model averaging (over 2 diverse methods)
adavanne	88.2 %	88.1 %	CRNN	Test mixing	no
Elias	88.0 %	88.0 %	CNN	no	Model averaging
kdrosos	86.1 %	85.8 %			

- Domain adaptation strategies
 - Pseudo-labelling, test mixing
 - Though not always needed

So why do we evaluate using matched conditions?

- ▶ To study the classifier's behaviour
- Sometimes a practical application is in matched conditions
- Pragmatic reasons: only one dataset available; free choice of bootstrap/n-fold crossvalidation
- ...because our algorithms aren't good enough at avoiding confounds?

Machine learning workflow

Machine learning workflow

Part 2: Identifying individual bird ID

Motivation: reduce intrusive monitoring (capturing/tagging/ringing)

Many birds do have individual signature

Data collection:

Data collection:

Data collection:

Bird ID: categorical label.

Is this the "same" task as species classification?

Training set:

Training set:

Testing set:

Training set:

Testing set:

Training set:

Testing set:

Training set: Express Yourself

Training set:

Express Yourself

Testing set:

Like a Prayer

Training set: Express Yourself

Testing set: Like a Prayer

Training set:
_Express Yourself

Testing set: Like a Prayer

Territorial birds: the territory is the 'album'

Data augmentation of the TESTING set (adversarial)

Measure the 'distractability' of the classifier when mismatched silence is added

Measure RMSE in classifier decisions

Data augmentation of the TRAINING set

Each item gets new versions with added silence from each class

Finally we can add a new wastebasket class

NB not using the a/b labels here

Results

Plus silence-test result: 50% AUC

Conclusions

Outdoor bird sound recognition is tricky:

- The sounds (classes) are highly variable
- Many potential confounding factors for black-box ML
- 1. Bird Audio Detection Challenge:
 - Good detection, even in strongly mismatched conditions
 - Adaptation methods useful—though, not always needed?
- 2. Recognising individual bird ID:
 - Strong recognition possible (depending on species)
 - Silence is surprisingly useful for sound recognition!

Generally: make more use of mismatched-condition testing

Thank you

Collaborators:

- Bird Audio Detection Challenge:
 Mike Wood (U of Salford), Yannis Stylianou (U of Crete),
 Hervé Glotin (U of Toulon), IEEE Signal Processing Society
- Recognising individual bird ID: Pavel Linhart (Adam Mickiewicz U / Praha U)

Machine Listening Lab:

