DreamFusion: Text-to-3D using 2D Diffusion

Plan

- Refresher
- Goal, problems
- Other approaches
- Function Loss
- DreamFusion Algorithm
- Comparison

Refresher: NeRF

- images to 3D object
- mip-NeRF 360
 - reduce aliasing
 - penalty for filling in empty spaces

Refresher: Diffusion Model

- Forward process (q): image-to-noise
- Reverse process (p): noise-to-image

Goal

• From text to 3D scene

Goal

• From text to 3D scene

DreamFusion

Problems

- Lack of labeled 3D *data* (text to 3D)
- Absence architectures for denoising 3D data

Other approaches

- PointFlow, Text2Shape, Point-Voxel Diffusion use only 3D data
- GANs (PlatonicGAN, HoloGAN, StyleSDF) not universal
- Data Fields bad 3D objects

$$\mathcal{L}_{\text{Diff}}(\phi, x) = \mathbb{E}_{t, \epsilon \sim \mathcal{N}(0, I)}[w(t)||\hat{\epsilon}_{\phi}(x, t) - \epsilon||_{2}^{2}]$$

• $\mathcal{L}_{\text{Diff}}(\phi, x) = \mathbb{E}_{t, \epsilon \sim \mathcal{N}(0, I)}[w(t)||\hat{\epsilon}_{\phi}(x, t) - \epsilon||_2^2]$

$$x = g(\theta) = \mathbf{o}(\theta)$$

- $\mathcal{L}_{\text{Diff}}(\phi, x) = \mathbb{E}_{t, \epsilon \sim \mathcal{N}(0, I)}[w(t)||\hat{\epsilon}_{\phi}(x, t) \epsilon||_2^2]$
- $x = g(\theta) = (\theta)$, x image, θ NeRF parameters
- $\theta^* = \operatorname{argmin}_{\theta} \mathcal{L}_{\text{Diff}}(\phi, x = g(\theta))$

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, x = g(\theta)) = \mathbb{E}_{t, \epsilon}[w(t) \underbrace{(\hat{\epsilon}(x, t) - \epsilon)}_{\text{Noise Residual}}]$$

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, x = g(\theta)) = \mathbb{E}_{t, \epsilon}[w(t) \underbrace{(\hat{\epsilon}(x, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}(x)}{\partial x}}_{\text{U-Net Jacobian}}$$

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, x = g(\theta)) = \mathbb{E}_{t, \epsilon} [w(t) \underbrace{(\hat{\epsilon}(x, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}(x)}{\partial x}}_{\text{U-Net Jacobian Generator Jacobian}} \underbrace{\frac{\partial x}{\partial \theta}}_{\text{U-Net Jacobian Generator Jacobian}}$$

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, x = g(\theta)) = \mathbb{E}_{t, \epsilon} [w(t) \underbrace{(\hat{\epsilon}(x, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}(x)}{\partial \tau}}_{\text{U-Net Jacobian Generator Jacobian}}]$$

Function Loss (Score Distillation Sampling)

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, x = g(\theta)) = \mathbb{E}_{t, \epsilon}[w(t) \underbrace{(\hat{\epsilon}(x, t) - \epsilon)}_{\text{Noise Residual}} \underbrace{\frac{\partial x}{\partial \theta}}_{Generator Jacobian}$$

Choose text prompt: "a DSLR photo of peacock on a surfboard"

- 1. Choose text prompt: "a DSLR photo of peacock on a surfboard"
- 2. NeRF random initialization

- 1. Choose text prompt: "a DSLR photo of peacock on a surfboard"
- 2. NeRF random initialization
- 3. Optimization

- 1. Choose text prompt: "a DSLR photo of peacock on a surfboard"
- 2. NeRF random initialization
- 3. Optimization:
 - a. Random camera position
 - b. Render Image (make photo)
 - c. Add Noise
 - d. Predict Noise (w. Diffusion Model)
 - e. Backpropagate

Random camera and light sampling

- Position (x, y, z)
- Elevation angle: [-10°, 90°]
- Azimut angle: [0°, 360°]
- Focal length: λw , $\lambda \in U(0.7, 1.35)$
- Add view to prompt ("overhead view", "front view", etc.)

Rendering

- Image size 64x64
- Sample random type:

Illuminated color render

textureless render

rendering w/o shading

Rendering

Diffusion Model

- Imagen (diffusion model)
- Images 64x64
- Text embeddings from LLM T5-XXL

"a small cactus wearing a straw hat and neon sunglasses in the Sahara desert."

Imagen

Comparison

	R-Precision ↑							
Method	CLIP B/32 CLIF			B/16 CLIP L/14				
	Color	Geo	Color	Geo	Color	Geo		
GT Images	77.1	33	79.1	20. 3 .	53 5	_		
Dream Fields	68.3	_	74.2	_	_	_		
(reimpl.)	78.6	1.3	(99.9)	(0.8)	82.9	1.4		
CLIP-Mesh	67.8	_	75.8	_	74.5^{\dagger}	_		
DreamFusion	75.1	42.5	77.5	46.6	79.7	58.5		

Comparison

-	R-Precision ↑							
Method	CLIP B/32 CLIP B/16 CLIP L/							
	Color	Geo	Color	Geo	Color	Geo		
GT Images	77.1	10.	79.1	5. 3 .	-	_		
Dream Fields	68.3	_	74.2	-	_	=		
(reimpl.)	78.6	1.3	(99.9)	(0.8)	82.9	1.4		
CLIP-Mesh	67.8	_	75.8	_	74.5^{\dagger}	_		
DreamFusion	75.1	42.5	<i>77.</i> 5	46.6	79.7	58.5		

moat made of ice cream

Disadvantages

- Over smoothed results
- Lack of details
- 3D object painted on flat surface

The End.

