Examen du 7 Avril 2021

Une attention particulière sera portée à la clarté de la rédaction, ainsi qu'à la justification précise de chaque résultat obtenu, en faisant appel aux résultats du cours (documents autorisés) sans les redémontrer. Les questions marquées du signe * sont moins guidées, et on pourra donner des réponses non détaillées mais clairement argumentées. On pourra admettre la validité des questions non-traitées pour aborder les suivantes.

Problème 1 : Budget d'échantillonage et estimations optimales

Soit $D \subset \mathbb{R}^d$ un domaine borné et $\mu = dx$ la mesure de Lebesgue. On considère $V = L^2(D) = L^2(D, \mu)$ muni de sa norme usuelle $||v|| = ||v||_{L^2}$. Soit $V_n \subset V$ un espace de dimension n et $\{L_1, \ldots, L_n\}$ une base L^2 -orthonormée de V_n . Pour un tirage de m points $x^1, \ldots, x^m \in D$ indépendants suivant une loi de probabilité σ , c'est à dire de l'échantillon $S = \{x^1, \ldots, x^m\}$ suivant la loi produit $\otimes_{i=1}^m \sigma$, et pour une fonction de poids w donnée, on note

$$\mathbf{G} = \left(\frac{1}{m} \sum_{i=1}^{m} w(x^{i}) L_{j}(x^{i}) L_{k}(x^{i})\right)_{j,k=1,...,n}$$

et $E_{1/2}$ l'évènement $\{\|\mathbf{G} - \mathbf{I}\| \leq \frac{1}{2}\}$, où $\|\mathbf{M}\|$ désigne la norme spectrale d'une matrice \mathbf{M} .

Partie 1. Résultats de base

1. Montrer par un résultat de cours que pour un certain choix de mesure de probabilité σ et de fonction de poids w que l'on précisera, on a

$$m \ge m(n) := \lceil 10n \ln(4n) \rceil \implies \Pr(E_{1/2}^c) \le \frac{1}{2},$$

où $E_{1/2}^c$ est l'évènement complémentaire $\{\|\mathbf{G} - \mathbf{I}\| > \frac{1}{2}\}$. On utilise dans la suite cette mesure de probabilité σ , cette fonction de poids w et cette valeur m = m(n).

2. Soit u une fonction définie sur D que l'on peut mesurer exactement en des points x^i . On pose $y^i = u(x^i)$ et on note u_n l'estimateur des moindres carrés à poids

$$u_n = \operatorname{argmin} \left\{ \frac{1}{m} \sum_{i=1}^m w(x^i) |y^i - v(x^i)|^2 : v \in V_n \right\},$$

lorsque les x^i sont tirés indépendamment suivant la loi σ avec m=m(n). On pose $\tilde{u}_n=u_n$ lorsque $E_{1/2}$ est vérifié et $\tilde{u}_n=0$ lorsque ce n'est pas le cas. En utilisant les résultats du cours donner une estimation de $\mathbb{E}(\|u-\tilde{u}_n\|^2)$ faisant apparaître l'erreur de meilleure approximation $e_n(u)=\min_{v\in V_n}\|u-v\|$ et un terme additionnel.

Partie 2. Estimateur conditionné

On tire à présente un échantillon $S^* = \{x^1, \ldots, x^m\}$ avec m = m(n) suivant la loi produit $\bigotimes_{i=1}^m \sigma$ conditionnée à la réalisation de l'évènement $E_{1/2}$. Pour cela, on tire successivement et indépendamment des échantillons $S_k = \{x_k^1, \ldots, x_k^m\}$ suivant $\bigotimes_{i=1}^m \sigma$ pour $k = 1, 2, \ldots$, que l'on rejette tant que $E_{1/2}$ n'est pas vérifié, et on retient $S^* := S_{k^*}$ pour k^* la première valeur telle que $E_{1/2}$ est vérifié. Cette valeur de k^* est donc aléatoire.

3. Montrer que

$$\Pr(k^* > k) \le 2^{-k},$$

et en déduire que $\mathbb{E}(k^*) \leq 2$.

4. On note u_n^* l'estimateur u_n utilisant les évaluations de u sur l'échantillon $S^* = S_{k^*}$, c'est à dire l'estimateur u_n conditionné à l'évènement $E_{1/2}$. On rappelle que l'espérance d'une variable aléatoire z conditionnée à un évenement E vérifie

$$\Pr(E)\mathbb{E}(z|E) = \mathbb{E}(z\chi_E).$$

Montrer une estimation de la forme

$$\mathbb{E}(\|u - u_n^*\|^2) \le 2(1 + \delta(n))e_n(u)^2,$$

où $e_n(u) = \min_{v \in V_n} ||u - v||$ est l'erreur de meilleure approximation et $\delta(n) \to 0$ quand $n \to \infty$. En quoi cette estimation est meilleure que celle de $\mathbb{E}(||u - \tilde{u}_n||^2)$ obtenue dans la question 2?

5*. La construction de l'estimateur u_n^* nécessite l'évaluation de u aux m points de l'échantillon S^* , mais aussi la construction de tous les échantillons S_k et l'examen des matrices G correspondantes pour $k = 1, \ldots, k^*$ ce qui n'est pas le cas pour l'estimateur \tilde{u}_n . Dans quels type d'applications peut-on affirmer qu'il est néammoins intéressant d'utiliser l'estimateur u_n^* plutôt que \tilde{u}_n ?

Partie 3. Budget d'échantillonage quasi-optimal

On se propose de réduire la taille de l'échantillon S^* à la valeur quasi-optimale $\overline{m} = 2n$ en préservant certaines propriétés de la méthode des moindres carrés quitte à modifier les poids. On rappelle que si $\mathbf{a} = (a_1, \dots, a_n)^T$ est un vecteur colonne de \mathbb{R}^n , on peut lui associer une matrice

$$\mathbf{a}\mathbf{a}^T = (a_j a_k)_{j,k=1,\dots,n},$$

qui est symmétrique positive et de rang 1. On va utiliser le résultat suivant dû à Batson, Spielman et Srivastava : soit $m \geq n$ et soit $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ un ensemble de m vecteurs de \mathbb{R}^n tels que

$$\sum_{i=1}^{m} \mathbf{a}_i \mathbf{a}_i^T = \mathbf{I}.$$

Alors pour tout entier k > 1 il existe des poids $s_i \ge 0$ tels que

$$\#\{i : s_i \neq 0\} \le kn,$$

et

$$\mathbf{I} \leq \sum_{i=1}^{m} s_i \mathbf{a}_i \mathbf{a}_i^T \leq \left(\frac{\sqrt{k}+1}{\sqrt{k}-1}\right)^2 \mathbf{I},$$

au sens de l'ordre des matrices symmétriques : $\mathbf{M}_1 \leq \mathbf{M}_2$ si et seulement si $\langle \mathbf{M}_1 \mathbf{x}, \mathbf{x} \rangle \leq \langle \mathbf{M}_2 \mathbf{x}, \mathbf{x} \rangle$ pour tout $\mathbf{x} \in \mathbb{R}^n$, c'est à dire $\mathbf{M}_2 - \mathbf{M}_1$ est symmétrique positive.

6*. Montrer que ce résultat implique la variante suivante : si $(\mathbf{a}_i)_{i=1,\dots,m}$ est une suite de vecteurs de \mathbb{R}^n tels que

$$\frac{1}{2}\mathbf{I} \le \sum_{i=1}^{m} \mathbf{a}_i \mathbf{a}_i^T \le \frac{3}{2}\mathbf{I},$$

il existe des poids $s_i \geq 0$ tels que

$$\#\{i : s_i \neq 0\} \le 2n$$

et

$$\frac{1}{2}\mathbf{I} \leq \sum_{i=1}^{m} s_i \mathbf{a}_i \mathbf{a}_i^T \leq \frac{3}{2} \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2 \mathbf{I}.$$

Indication : considérer les vecteurs $\tilde{\mathbf{a}}_i = \mathbf{M}^{-1/2} \mathbf{a}_i$ où $\mathbf{M} = \sum_{i=1}^m \mathbf{a}_i \mathbf{a}_i^T$.

7. En notant qu'il existe une certaine valeur $\delta \in]0,1[$ telle que

$$\frac{1+\delta}{1-\delta} = 3\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2,$$

montrer qu'avec des poids renormalisés de la forme $t_i=cs_i$ pour un certain c>0, on a

$$(1 - \delta)\mathbf{I} \le \sum_{i=1}^{m} t_i \mathbf{a}_i \mathbf{a}_i^T \le (1 + \delta)\mathbf{I}.$$

8. On considère l'échantillon $S^* = \{x^1, \dots, x^m\}$ construit dans la question 3, pour lequel l'évènement $E_{1/2}$ est réalisé et on définit les vecteurs

$$\mathbf{a}_i = \left(\frac{w(x^i)}{m}\right)^{1/2} (L_1(x^i), \dots, L_n(x^i))^T \in \mathbb{R}^n.$$

Montrer qu'on a $\frac{1}{2}\mathbf{I} \leq \sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T} \leq \frac{3}{2}\mathbf{I}$.

9. En déduire qu'il existe un sous échantillon $\overline{S} \subset S$ de taille 2n, que l'on notera $\{x^1, \ldots, x^{2n}\}$ quitte à re-indexer les x^i , et des poids $w_i \geq 0$ tels que la matrice

$$\overline{\mathbf{G}} = \left(\frac{1}{2n} \sum_{i=1}^{2n} w_i L_j(x^i) L_k(x^i)\right)_{j,k=1,\dots,n},$$

vérifie

$$(1 - \delta)\mathbf{I} \le \overline{\mathbf{G}} \le (1 + \delta)\mathbf{I}.$$

10. On note \overline{u}_n l'estimateur des moindres carrés basé sur l'échantillon \overline{S} et les poids w_i , c'est-à-dire

$$\overline{u}_n = \operatorname{argmin} \left\{ \frac{1}{2n} \sum_{i=1}^{2n} w_i |y^i - v(x^i)|^2 : v \in V_n \right\}.$$

On suppose que u et les fonctions de V_n sont contenues dans $\mathcal{C}(\overline{D})$ et que les fonctions constantes sont contenues dans V_n . Montrer qu'on a

$$||u - \overline{u}_n|| \le Ce_n(u)_{\infty}, \qquad e_n(u)_{\infty} = \min_{v \in V_n} ||u - v||_{L^{\infty}},$$

en précisant la valeur de C par rapport à δ et $|D| = \mu(D)$.

11*. Pourquoi n'est-il pas clair que l'on puisse espérer obtenir une estimation de la forme

$$\mathbb{E}(\|u - \overline{u}_n\|^2) \le Ce_n(u)^2,$$

si on essaie d'adapter les techniques de preuve du cours avec l'échantillon \overline{S} ?

12*. Soit \mathcal{K} une partie compacte de $\mathcal{C}(\overline{D})$. En utilisant le résultat établi dans la question 10, établir pour tout n > 0 l'inégalité

$$r_{2n}(\mathcal{K})_V \le Cd_{n-1}(\mathcal{K})_{L^{\infty}},$$

οù

$$d_{n-1}(\mathcal{K})_{L^{\infty}} = \inf_{\dim(V_{n-1})=n-1} \max_{u \in \mathcal{K}} \min_{v \in V_{n-1}} \|u - v\|_{L^{\infty}},$$

désigne l'épaisseur de Kolmogorov de \mathcal{K} dans l'espace $\mathcal{C}(\overline{D})$ muni de la norme L^{∞} , et où

$$r_n(\mathcal{K})_V := \inf_{x^1, \dots, x^n \in D} \inf_R \sup_{u \in \mathcal{K}} \|u - R(u(x^1), \dots, u(x^n))\|_V,$$

est le nombre de reconstruction optimale défini dans le cours, ipour la norme $||v||_V = ||v||_{L^2}$, et où C est la constante de la question 10.

Problème 2 : Approximation polynomiale en grande dimension

On s'intéresse à l'approximation de fonctions u définies sur $D=[-1,1]^d$ par des polynômes. Pour $\Lambda\subset\mathbb{N}^d$ un ensemble fini de multi-indices on définit l'espace

$$\mathbb{P}_{\Lambda} := \text{vect}\{x \mapsto x^{\nu} : \nu \in \Lambda\},\$$

où
$$x^{\nu} = \prod_{j=1}^{d} x_{j}^{\nu_{j}}$$
 pour $x = (x_{1}, \dots, x_{d})$ et $\nu = (\nu_{1}, \dots, \nu_{d})$.

1. On dit que Λ est un ensemble plein si

$$\nu \in \Lambda \quad \text{et} \quad \tilde{\nu} \leq \nu \implies \tilde{\nu} \in \Lambda,$$

où $\tilde{\nu} \leq \nu$ signifie que $\tilde{\nu}_j \leq \nu_j$ pour tout j = 1, ..., d. Exhiber par un dessin en dimension d = 2 un exemple d'ensemble Λ plein et un exemple d'ensemble Λ qui ne l'est pas. Que signifie être un ensemble plein en dimension d = 1?

2. Montrer que si Λ est un ensemble plein, une base orthonormée de \mathbb{P}_{Λ} pour $L^{2}(D,\mu)$ où μ est la mesure de probabilité uniforme sur D est fournie par les fonctions

$$L_{\nu}(x) = \prod_{j=1}^{d} L_{\nu_j}(x_j), \qquad \nu \in \Lambda,$$

où les fonctions d'une variable $t\mapsto L_k(t)$ sont les polynômes de Legendre de degré k avec la normalisation

$$\int_{-1}^{1} |L_k(t)|^2 \frac{dt}{2} = 1.$$

3. Pour un ensemble plein Λ , on s'intéresse à la fonction de Christoffel de l'espace $V_n = \mathbb{P}_{\Lambda}$, avec $n := \dim(V_n) = \#(\Lambda)$, qui est définie par

$$k_n(x) = k_{\Lambda}(x) := \sum_{\nu \in \Lambda} |L_{\nu}(x)|^2.$$

On note $K_n = ||k_n||_{L^{\infty}(D)}$. On admet que

$$\max_{t \in [-1,1]} |L_k(t)|^2 = |L_k(1)|^2 = 2k + 1.$$

Dans le cas de la dimension d = 1, montrer que l'on a exactement

$$K_n = n^2.$$

4*. En dimension d > 1, on veut montrer plus généralement que $K_n \leq n^2$ par récurrence sur d. Pour cela on note K la valeur maximale prise par la coordonnée ν_d sur tous les $\nu = (\nu_1, \dots, \nu_d) \in \Lambda$ et on partitionne Λ suivant

$$\Lambda = \bigcup_{k=0}^{K} \widetilde{\Lambda}_k$$

où $\widetilde{\Lambda}_k = \{ \nu \in \Lambda : \nu_d = k \}$ (on pourra faire un dessin en dimension d = 2). En utilisant l'hypothèse de récurrence pour la dimension d - 1, montrer que

$$\sum_{\nu \in \widetilde{\Lambda}_k} |L_{\nu}(x)|^2 \le (2k+1) \# (\widetilde{\Lambda}_k)^2, \qquad x \in D.$$

Puis, en montrant que

$$\#(\Lambda)^2 = \sum_{k=0}^K \left(\#(\widetilde{\Lambda}_k)^2 + 2\left(\sum_{j=0}^{k-1} \#(\widetilde{\Lambda}_j)\right) \#(\widetilde{\Lambda}_k) \right),$$

et que $\#(\widetilde{\Lambda}_k)$ décroit avec k, en déduire l'estimation $K_n \leq n^2$.

5. Soit $\rho = (\rho_j)_{j\geq 1}$ une suite de nombres strictement plus grands que 1. On note $\mathcal{K} = \mathcal{K}(\rho, d)$ la classe de fonctions u définies sur $D = [-1, 1]^d$ et à valeurs dans \mathbb{R} qui admettent un prolongement holomorphe sur un voisinage du polydisque $\{|z_j| \leq \rho_j : j = 1, \ldots, d\}$ et vérifiant $|u(z)| \leq M$ sur ce polydisque. Rappeler brièvement pourquoi lorsque u appartient à cette classe les coefficients de Taylor vérifient des estimations

$$|u_{\nu}| \le M \rho^{-\nu}, \quad u_{\nu} = \frac{1}{\nu!} \partial^{\nu} u(0), \qquad \rho^{-\nu} := \prod_{j=1}^{d} \rho_{j}^{-\nu_{j}}.$$

- **6.** Soit Λ_n l'ensemble des ν correspondant aux n plus grandes valeurs de $\rho^{-\nu}$. Montrer qu'il s'agit d'un ensemble plein.
- 7. On suppose que la suite inverse $b = (b_j)_{j \ge 1}$ avec $b_j = \rho_j^{-1}$ appartient à $\ell^p(\mathbb{N})$ pour une valeur $0 . Montrer que la suite <math>(\rho^{-\nu})_{\nu \in \mathbb{N}^d}$ appartient à $\ell^p(\mathbb{N}^d)$ et que sa norme ℓ^p est bornée par un nombre indépendant de la dimension d.
- **8.** En déduire que pour tout $u \in \mathcal{K}$ et pour tout $n \geq 1$, on a pour $V_n = \mathbb{P}_{\Lambda_n}$ une estimation

$$\min_{v \in V_n} \|u - v\|_{L^{\infty}} \le C n^{-s},$$

où C et s sont indépendants de la dimension d. Que cela signifie-t-il sur l'épaisseur de Kolmogorov $d_n(\mathcal{K})_{L^{\infty}}$? Comment peut-on interprêter cela du point de vue de la malédiction des grandes dimension?

9. On tire m échantillons $x^1, \ldots, x^m \in D$ suivant la mesure de probabilité uniforme et on considère pour $y^i = u(x^i)$ l'estimateur des moindres carrés

$$u_n = \operatorname{argmin} \left\{ \frac{1}{m} \sum_{i=1}^m |y^i - v(x^i)|^2 : v \in V_n \right\},$$

Montrer qu'en prenant $m = \lceil cn^2 \ln(n) \rceil$ pour une constante c bien choisie, et en définissant $\tilde{u}_n = u_n \chi_E$ où E est un évènement que l'on explicitera, on a pour tout $u \in \mathcal{K}$,

$$\mathbb{E}(\|u - \tilde{u}_n\|^2) \le Cn^{-2s},$$

où $||v|| = ||v||_{L^2(D,\mu)}$ et où C et s sont indépendants de la dimension d.

10. Que doit-on faire pour diminuer le budget d'échantillonage et obtenir des résultats du même type?