

Limits and Continuity

1. Limit [of Function]:

2. Continuity:

3. Limit [of Sequence]:

4. Convergence and Continuity, Correspondance:

Differentiability

1. Differentiablity:

2. Differentiablity and Continuity, Correspondance:
3. Rolle's Theorem:
4. Generalized Rolle's Theorem:
5. Mean Value Theorem:
o Proof.

6. Extreme Value Theorem:

Ahmad Badary

3. Weighted Mean Value Theorem for Integrals:

• Implications:

 $\circ\;$ When $g(x)\equiv 1$, Theorem 1.13 is:

o It gives:

Taylor Polynomials and Series

1. Taylor's Theorem:

$$\circ \ P_n(x)$$
: is called the for about .

$$\circ \;\;$$
 Since the number $\xi(x)$ in the truncation error $R_n(x)$, it is a function of

2. **Polynomials:**

o Taylor's Polynomial: The polynomial definied by

• Maclaurin Polynomial:

- 3. **Series:**
 - Taylor's Series:
 - Maclaurin Series:
- 4. Truncation Error:
 - Refers to:

1.2/

Binary Machine Numbers

1. Representing Real Numbers:

A (binary digit) representation is used for a real number.

- The **first bit** is
- Followed by:
- o and a , called the
- The base for the exponent is

2. Floating-Point Number Form:

				_
つ	Cmallact	Normalized	nocitive.	Million
. T.	Silialiest	wormanzed	DOSILIVE	number:

- When:
- Equivalent to:

4. Largest Normalized positive Number:

- o When:
- o Equivalent to:

5. UnderFlow:

- When numbers occurring in calculations have
- 6. OverFlow:
 - When numbers occurring in calculations have

7. Representing the Zero:

• There are Representations of the number zero:

Decimal Machine Numbers

1. What?

2. (k-digit) Decimal Machine Numbers:

3. Normalized Form:

4. Floating-Point Form of a Decimal Machine Number:

 \circ The floating-point form of y, denoted $f_l(y)$, is obtained by:

5. **Termination:**

There are two common ways of performing this termination:

1.

This produces the floating-point form:

2. : which

This produces the floating-point form:

For rounding, when $d_{k+1} \geq 5$, we

When $d_{k+1} < 5$, we

If we round down, then $\delta_i =$

However, if we round up,

6. **Approximation Errors:**

 The Absolute Error: .
o The Relative Error:
7. Significant Digits:
8. Error in using Floating-Point Repr.:
 Chopping:
The Relative Error =
The Machine Repr. [for k decimial digits] =
•
\Longrightarrow
Bound \Longrightarrow .
 Rounding:
In a similar manner, a bound for the relative error when using k-digit rounding
arithmetic is
Bound \Longrightarrow .
9. Distribution of Numbers:

The number of decimal machine numbers in

for

is

Finite-Digit Arithmetic

1. Values:	1.	Valu	ıes:
------------	----	------	------

x =

y =

2. **Operations:**

3. **Error-producing Calculations:**

o First:

Second:

4. Avoiding Round-Off Error:

First:

Second:

$$\Longrightarrow$$

$$x_1 =$$
,

$$x_2 =$$

Nested Arithmetic

1. What?

Remember that chopping (or rounding) is performed:

0

Polynomials should always be expressed

, becasue,

2. **Why?**

1.3/

Main Idea

1. Algorithm:

Characterizing Algorithms

- 1. Stability:
 - Stable Algorithm:
 - Conditionally Stable Algorithm:
- 2. Error Growth:

- 3. Stability and Error-Growth:
 - Stable Algorithm:
 - UnStable Algorithm:

Rates of Convergence

1. Rate of Convergence:

$$eta_n = ,$$
 for

2. Big-Oh Notation: