Chapter 8 Section 8

TOPICS

- EVALUATE AN IMPROPER INTEGRAL THAT HAS AN INFINITE LIMIT OF INTEGRATION
- EVALUATE AN IMPROPER INTEGRAL THAT HAS AN INFINITE DISCONTINUITY

TEXT READING ASSIGNMENT FOR 8.8

PAGE 578,579,580,581(OMIT EXAMPLE 5),582,583,584(OMIT SURFACE AREA ONLY)

TEXT HOMEWORK EXCERCISES FOR 8.8

PAGE 585# 5,7,11,15,17,19,23,25,27,29,33,35,39

EVALUATE AN IMPROPER INTEGRAL THAT HAS AN INFINITE LIMIT OF INTEGRATION

In section 4.3, the definite integral of y = f(x) was defined on closed intervals [a,b]. In section 4.4, the fundamental theorem of calculus allowed us to evaluate the definite integral of a continuous function f by simply computing the difference of an antiderivative of f at b and a, respectively.

If a definite integral $\int_a^b f(x)dx$ is either not defined on a <u>closed</u> interval [a,b] or not <u>continuous</u> on [a,b] or both then we say $\int_a^b f(x)dx$ is an *improper integral*. If $\int_a^b f(x)dx$ is finite then we say the improper integral *converges*, otherwise we say the improper integral *diverges*.

Each of the following are examples of improper integrals; Here is an example of how to solve an improper integral.

Worked Example 8.8.1

Improper integrals with infinite limits of integration are defined as follows;

1)
$$\int_{b\to\infty}^{\infty} f(x)dx = \lim_{b\to\infty} \int_{a}^{b} f(x)dx$$
, provided f is continuous on $[a,\infty)$

2)
$$\int_{a}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$
, provided f is continuous on $(-\infty, b]$.

Improper integrals with infinite limits of integration are defined as follows,

1)
$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$
, provided f is continuous on $[a, \infty)$.

2)
$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$
, provided f is continuous on $(-\infty, b]$.

3)
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$
 for any real number c , provided f is continuous on $(-\infty, \infty)$.

Student Exercise: Evaluate the improper integral $\int_{1}^{\infty} \frac{dx}{\sqrt[4]{x}}$.

Student Exercise Solution 8.8.2

Let's take a look at a doubly improper integral: $\int_{-\infty}^{\infty} \frac{2xdx}{x^4 + 1}$.

According to the definition above we must split this up into two separate improper integrals $\int_{-\infty}^{c} \frac{2xdx}{x^4 + 1} + \int_{c}^{\infty} \frac{2xdx}{x^4 + 1}.$

We can choose any c, so let's make things easy and put c = 0. We need an antiderivative for $\frac{2x}{x^4 + 1}$. Let u = 2x so that du = 2xdx and our first integrals becomes,

$$\lim_{a \to -\infty} \int_{x=a}^{x=0} \frac{du}{u^2 + 1} = \lim_{a \to -\infty} \tan^{-1} u \Big|_{x=a}^{x=0} = \lim_{a \to -\infty} \tan^{-1} (x^2) \Big|_{a}^{0} = \lim_{a \to -\infty} \left[\tan^{-1} 0 - \tan^{-1} (a^2) \right] = -\frac{\pi}{2}.$$

Our second integral is done in a similar way,

$$\lim_{b \to \infty} \int_{x=0}^{x=b} \frac{du}{u^2 + 1} = \lim_{b \to \infty} \tan^{-1} u \Big|_{x=0}^{x=b} = \lim_{b \to \infty} \tan^{-1} (x^2) \Big|_{0}^{b} = \lim_{b \to \infty} \left[\tan^{-1} (b^2) - \tan^{-1} 0 \right] = \frac{\pi}{2}.$$

Therefore,
$$\int_{-\infty}^{\infty} \frac{2xdx}{x^4 + 1} = 0.$$

• EVALUATE AN IMPROPER INTEGRAL THAT HAS AN INFINITE DISCONTINUITY

Improper integrals that have infinite discontinuities (vertical asymptotes) are defined as follows;

1)
$$\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx$$
, when f is continuous on $[a,b)$, but has an infinite discontinuity at b .

2)
$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx$$
, when f is continuous on $(a,b]$, but has an infinite discontinuity at a .

3)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
, when f is continuous on [a,b], except at the infinite discontinuity $c \text{ in } (a,b)$.

Worked Example 8.8.3

Student Exercise: Evaluate $\int_{0}^{1} x \ln x dx$. Hint: you will need integration by parts and L'Hopital's Rule.

Student Exercise Solution 8.8.4