SMART INDIA HACKATHON 2024

TITLE PAGE

- Problem Statement ID SIH1658
- Problem Statement Title- Development of a versatile and fast algorithm for the optimal ship routing
- Theme- Transportation and Logistics
- PS Category- Software
- Team ID 28349
- Team Name Human Cyborgs

PROPOSED SOLUTION

- We have developed a Deep Learning Model which has less Time Complexity
- This Model takes real time data through API for weather
- The Web-app consumes a very less space complexity of only 2 GB.
- It's a fast running DL model with ease access to people with zero knowledge of Machine Learning
- It shows the optimal route depending on the type of cargo too
- Depending on the type of cargo, vessel type and distance it displays the fuel requirement
- It displays the coordinates of the route to be followed in case of navigation compass failure

SRO(Ship Route Optimizer)

OBJECTIVES

- Developing a Model which provides a Low fuel Consumption route
- Follow a Zero Carbon Emission Policy
- Main Priority is to provide Comfort & Safety to passengers and crew members
- To provide a solution to the shipping industry which is Sustainable & supports Green Technology
- Access & Implement the evolving weather changes
- Making the travel time least by analyzing the factors like weather, fuel etc.
- Designing an algorithm which is accessible to the public with less time complexity and ease of access.
- Ensuring the route in such a way that it provides **No Vessel Damage** moto.

ADDITIONAL FEATURES

- An external feature is added in case of no network a simple Map color reader is embedded in the algorithm, which will give the result just by reading colors of them MAP
- As its difficult to check software internal calculations manually we have an embedded feature which shows the Results of the Internal Algorithmic Calculation.
- Al Assistance, we have added a ChatBot for navigating through the webapp
- Identifies Ship Traffic in nearby regions

TECHNICAL APPROACH

Stakeholders

ESSO- Indian National Centre for Ocean Information Services

पृथ्वी विज्ञान मंत्रालय Ministry of Earth Sciences

पत्तन, पोत परिवहन एवं जलमार्ग मंत्रालय MINISTRY OF PORTS, SHIPPING AND WATERWAYS

FEASIBILITY AND VIABILITY

Feasibility Analysis:

- Technical Feasibility: Takes up low RAM space
- Financial Feasibility: It's a simple Webapp using API thus, no much costing
- Market Value: The product being developed at low cost and the requirement being more than 90% has a huge market scale.
- The USP of our product makes it stand & Sustain in the market for long

Potential Challenges and Risks:

- Data Availability: The evolving weather data should be available easily for further proceedings
- Network/ Internet: If a problem occurs regarding the signal then a risk occurs
- Google Earth API: At present we don't have a system
 which tracks the location of the client but, if we get
 more support through the Ministry we can acquire the
 real time data through Google Cloud for developers
- Increasing Database: As the database will be increasing we'll require a good backend system for ensuring safe & prompt storage of client data

Strategies for Overcoming Challenges:

- To overcome the problem of data availability regarding weather we can add another
 API of renowned weather forecasting institutions
- The Network problem is already resolved with the help of MAP Color Reader and we plan to add one more such feature too.
- As soon as we get Google Earth API accessing the coordinates would be much easier, though we have already added a link to find the current coordinates of the user
- Database is easily expandable, old data is auto deleted after a certain time period creating more space.

IMPACT AND BENEFITS

Our USP:

- Space complexity of only 2 GB
- Zero carbon emission policy
- Internal Algorithmic Calculation for manual checks which NAVTOR lacks
- Map Colour Reader which helps in emergencies or turbulence
- Ease of access to local public(e.g.- Fishermen)
- Low Cost software
- Graphical Representation of coordinates
- Ship Traffic in nearby Locations

Benefits of the Proposed Solution:

- Less Reliability on anyone for deciding navigational path
- Socially made for good cause for safety of human kind
- Financially at low risk as it stands in a never ending market
- Technically at ease due to simple implementation while performing a complex task
- Environment friendly approach makes our solution a big hit
- Transparency of the webapp ensures smooth usage for the sailor

Potential Impact:

- Shipping Industry: The whole shipping industry relies on Navigation systems, thus this software will definitely create a huge impact for their traversals
- Regulatory Functioning Bodies: The Fishermen, Sailors will have a great solution for deciding their travel routes
- Port In charges: The Port authorities can use this for avoid ocean traffic
- Client: The client being our biggest buyer, will help them to easily navigate through the vast ocean & seas
- **Environmental:** The Environment preserving agencies will have a huge impact because of the zero carbon emission policy

**Our Project is built in such a way that in case of any challenges occur the Team Human Cyborgs can easily identify, resolve and provide a versatile solution to it, thus ensuring assurance and honesty towards the Client

RESEARCH AND REFERENCES

RESEARCH PAPER JOURNAL	NAME OF THE PAPER	NAME OF THE AUTHOR
IEEE Explore	Ship weather routing based on grid system and modified genetic algorithm	Peng Zhou; Hongbo Wang; Zhiying Guan
IEEE Explore	Research on Ship Weather Routing Method Based on Dijkstra Algorithm and Neural Network	Khanh Doan Huu
ELSEVIER	A comprehensive ship weather routing system using CMEMS products and A* algorithm	Manel Grifoll, Clara Bor´en, Marcella Castells-Sanabra
Research Gate	The Ship-Routing Optimization Based on the Three-Dimensional Modified Isochrone Method	Yu-Hsien Lin

References:

- Real Time App:
- 1) NAVTOR
- 2) Polaris
- Took real time problems faced data from Merchant Navy Captain

CONCLUSION: In conclusion, we propose that we meet the requirements of the client and always ready to provide extra features and services to serve the client fully.