Normalization

Databases and Interface Matthew Pike

Overview

- Normalization
 - Data Redundancy
 - Functional Dependencies
 - Normal Forms
- Further reading
 - The Manga Guide to Databases, Chapter 3
 - Database Systems, Chapter 14
 - https://docs.microsoft.com/enus/office/troubleshoot/access/databasenormalization-description

Reminder

Term	(Practical) Definition
Candidate Key	A candidate key is a specific type of field in a relational database that can identify each unique record independently of any other data.
Redundancy	Data redundancy is a condition created within a database in which the same piece of data is held in two separate places.

Motivating Normalization

Normalization

- A database design aid
 - Like ER modelling
 - Examines the relationships between attributes
 - Identify functional dependencies
 - Produce relations with desirable properties

- Normalization
 - Aims to reduce data redundancy
 - Redundancy is found/expressed in functional dependencies
 - Normal forms are defined so that they don't contain specific types of functional dependency

Database Design using Normalization: Possible Approach

- Given some data/attributes we want to produce the tables (and the schemas) for our database
- Possible Approach: start with a Mega Table that contains all data
- This Mega Table is intentionally not the best data structure because there are a lot of redundancies
- To remove redundancies, we first quantify them in terms of functional dependencies.
- Then we remove functional dependencies by splitting appropriately the Mega Table into smaller tables

Purpose of Normalization

- Identify suitable set of relations for an enterprise data requirements:
 - Minimal number of attributes necessary for the entity
 - Attributes with a close logical relationship (FD)
 - Minimal redundancy

- Specify relations with:
 - Required minimum attributes with ease of:
 - Accessibility
 - Maintenance
 - Storage
 - Updates with minimum operations
 - Avoid data inconsistencies
 - Reduction in storage space

1NF

Normalization to 1NF

To convert any relation into 1NF, split any non-atomic values

Unnormalised

Module	Dept	Lecturer	Texts
M1	D1	L1	T1, T2
M2	D1	L1	T1, T3
M3	D2	L2	T4
M4	D2	L3	T1, T5
M5	D2	L4	Т6

Normalization to 1NF

To convert any relation into 1NF, split any non-atomic values

Unnormalised

Module	Dept	Lecturer	Texts
M1	D1	L1	T1, T2
M2	D1	L1	T1, T3
M3	D2	L2	T4
M4	D2	L3	T1, T5
M5	D2	L4	Т6

1NF

Module	Dept	Lecturer	Text
M1	D1	L1	T1
M1	D1	L1	T2
M2	D1	L1	T1
M2	D1	L1	T3
M3	D1	L2	T4
M4	D2	L3	T1
M4	D2	L3	T5
M5	D2	L4	T6

Problems with 1NF

Example 1

1NF

Module	Dept	Lecturer	Text
M1	D1	L1	T1
M1	D1	L1	T2
M2	D1	L1	T1
M2	D1	L1	Т3
M3	D1	L2	T4
M4	D2	L3	T1
M4	D2	L3	T5
M5	D2	L4	T6

INSERT Anomalies

- Can't add a lecturer with no texts
- UPDATE Anomalies
 - To change the lecturer for M1, we will need to update two rows
- DELETE Anomalies
 - If we remove M3, we will remove L2 and T4 as well

Problems with 1NF

Example 2

Unnormalised StaffBranch

staffNo	sName	position	salary	branchNo	bAddress
S100	John	Manager	30000	B005	22 Deer st
S102	Jane	Assistant	12000	B004	16 Heck D
S109	Juli	Supervisor	18000	B004	16 Heck D
S101	Julius	Assistant	9000	B007	Heaven str
S104	Janet	Manger	24000	B004	16 Heck D
S103	Andy	Assistant	9000	B005	22 Deer st

- Redundant data
 - o e.g., details of branch
- Insertion Anomalies
 - E.g., insert details of new staff requires branch
 - Insert new branch with no member of staff
- Deletion Anomalies
 - E.g., delete the last member of staff in a branch
- Update Anomalies
 - e.g., change the address of one branch

Design by Decomposition

Unnormalised StaffBranch staffNo sName branchNo **bAddress** position salary 22 Deer st S100 John Manager B005 30000 S102 12000 B004 16 Heck D Jane Assistant S109 Juli Supervisor 18000 B004 16 Heck D S101 Assistant 9000 B007 Julius Heaven str S104 24000 16 Heck D Janet Manger B004 B005 S103 Andy Assistant 9000 22 Deer st Staff Branch staffNo sName position salary branchNo branchNo **bAddress** Manager S100 John 30000 B005 B005 22 Deer st S102 Jane Assistant 12000 B004 B004 16 Heck D S109 Supervisor B004 Juli 18000 B007 Heaven str S101 Julius Assistant 9000 B007

24000

9000

B004

B005

S104

S103

Janet

Andy

Manger

Assistant

- Decompose Table
 - Table decomposition remove some anomalies
- Maintain Lossless-Join
 - All instances remain
- Preserve dependency
 - Constraints still maintained

First Normal Form

- In most definitions of the relational model
 - All data values should be atomic
 - This means that table entries should be single values, not sets or composite objects
 - Simplifies queries and data comparisons
- A relation is said to be first normal form (1NF) if all data values are atomic

1NF

Module	Dept	Lecturer	Text
M1	D1	L1	T1
M1	D1	L1	T2
M2	D1	L1	T1
M2	D1	L1	T3
M3	D1	L2	T4
M4	D2	L3	T1
M4	D2	L3	T5
M5	D2	L4	T6

- Functional dependencies
 (FD) are the main concept in

 Normalization
- FD is constraints on related attributes

- Describes relationship between attributes
- When there is a FD between attributes the dependency is specified as constraint between the attributes

- If A and B are attributes of relation R
- $A \rightarrow B$
 - Implies B is functionally dependent on A
 - Or A functionally determines
 B, if each value of A is
 associated with exactly
 one value of B

- Identifies relationships between attributes
- A is the determinant of B
- A and B may each have one or more attributes
- When two tuples have the same value of A, they also have the same value of B

Staff

staffNo	sName	position	salary	branchNo
S100	John	Manager	30000	B005
S102	Jane	Assistant	12000	B004
S109	Juli	Supervisor	18000	B004
S101	Julius	Assistant	9000	B007
S104	Janet	Manger	24000	B004
S103	Andy	Assistant	9000	B005

- Find relationship between attributes
- A is the determinant of B
 - staffNo functionally determines position - 1:1
 - Opposite not trueRelationship is 1:many

Staff

staffNo	sName	position	salary	branchNo
S100	John	Manager	30000	B005
S102	Jane	Assistant	12000	B004
S109	Juli	Supervisor	18000	B004
S101	Julius	Assistant	9000	B007
S104	Janet	Manger	24000	B004
S103	Andy	Assistant	9000	B005

- Full functional dependency (FFD)
- If A and B are attributes
 - o B FFD on A
 - (IFF B is FD on A, but not on any proper subset of A)
- Otherwise partially dependent
- Is this a Full or Partial dependency?

1NF

Module	Dept	Lecturer	Text
M1	D1	L1	T1
M1	D1	L1	T2
M2	D1	L1	T1
M2	D1	L1	Т3
M3	D1	L2	T4
M4	D2	L3	T1
M4	D2	L3	T5
M5	D2	L4	T6

- Find Primary key
- Identify all FDs up to this point:

1NF

Module	Dept	Lecturer	Text
M1	D1	L1	T1
M1	D1	L1	T2
M2	D1	L1	T1
M2	D1	L1	Т3
M3	D1	L2	T4
M4	D2	L3	T1
M4	D2	L3	T5
M5	D2	L4	T6

- The Primary Key is {Module, Text} so
- Other FDs are

 - $_{\circ}$ {Module} \rightarrow {Dept}

FD Diagrams

FDs can be represented simply using the headings:

- {Module, Text} is a candidate key, so we put a double box around them
- $\{\text{Lecturer}\} \rightarrow \{\text{Dept}\}$, so we have an arrow from Lecturer to Dept
- {Module} →{Dept} and {Module} →{Lecturer}, so we have {Module} →{Dept, Lecturer}
- Note: Trivial FDs and FDs dependent on an entire candidate key are not included

2NF

Second Normal Form

- Partial FDs:
 - A FD, A → B is a partial FD, if some attribute of A can be removed and the FD still holds
- Formally, there is some proper subset of A, C

 A, such that C → B

- Second normal form:
 - A relation is in second normal form (2NF) if it is in 1NF and no non-key attribute is partially dependent on a candidate key
 - In other words, no C→B
 where C is strict subset of a
 candidate key and B is a non key attribute.
- Candidate Keys are minimal!

Normalising to 2NF

Normalising to 2NF

2NFa

Module	Dept	Lecturer
M1	D1	L1
M2	D1	L1
M3	D1	L2
M4	D2	L3
M5	D2	L4

2NFb

Module	Text
M1	T1
M1	T2
M2	T1
M2	Т3
M3	T4
M4	T1
M4	T5
M5	Т6

Problems Resolved in 2NF

INSERT Anomalies

- We can now add a lecturer without texts
- However, we cannot add a lecturer without teaching a module

UPDATE Anomalies

- We only need to change a single row when changing the lecturer of a module
- However, we need to change 2 rows to update the department for L1

DELETE Anomalies

 If we delete M3 then all information about L2 is lost

2NFb

Module	Text
M1	T1
M1	T2
M2	T1
M2	Т3
M3	Т4
M4	T1
M4	T5
M5	Т6

2NFa

Module	Dept	Lecturer
M1	D1	L1
M2	D1	L1
M3	D1	L2
M4	D2	L3
M5	D2	L4

3NF

2NFa

Module	Dept	Lecturer
M1	D1	L1
M2	D1	L1
M3	D1	L2
M4	D2	L3
M5	D2	L4

- FDs so far?
 - ∘ M->D, L
 - 。 L->D
- Which implies
 - o M->L->D
- Notice that M is a key for the sub-table

Transitive FDs and 3NF

- Transitive FDs:
 - A FD, A → C is a transitive
 FD, if there is some set B
 such that
- A → B and B → C and these are non-trivial FDs
- A→B non-trivial means: B is not a subset of A
- Essentially
 - \circ A \rightarrow B \rightarrow C

- Third normal form
 - A relation is in third normal form (3NF) if it is in 2NF and no non-key attribute is transitively dependent on a candidate key

Normalising to 3NF

Normalising to 3NF

3NFa

Lecturer	Dept
L1	D1
L2	D1
L3	D2
L4	D2

3NFb

Module	Lecturer
M1	L1
M2	L1
M3	L2
M4	L3
M5	L4

2NFb

Module	Text
M1	T1
M1	T2
M2	T1
M2	T3
М3	T4
M4	T1
M4	T5
M5	T6

Problems Resolved in 3NF

- Problems resolved in 3NF
 - INSERT We can now add Lecturers who don't teach any modules
 - UPDATE We need only change a single row to update the department for L1
 - DELETE Ne can delete M3
 while preserving L2

3NFa

Lecturer	Dept
L1	D1
L2	D1
L3	D2
L4	D2

3NFb

Module	Lecturer
M1	L1
M2	L1
M3	L2
M4	L3
M5	L4

Summary

Normalization and Design

- Normalization is related to Database design
 - A database should normally be in 3NF at least
 - If your design leads to a non-3NF database, then you might want to revise it

- When you find you have a non-3NF database
 - Identify the FDs that are causing a problem
 - Think if they will lead to any insert, update, or delete anomalies
 - Try to remove them

Summary

- Normalization
 - Data Redundancy
 - Functional Dependencies
 - Normal Forms
 - First, Second and Third
 Normal Forms

