Package 'LMest'

January 8, 2025					
Title Generalized Latent Markov Models					
Description Latent Markov models for longitudinal continuous and categorical data. See Bartolucci, Pandolfi, Pennoni (2017) <doi:10.18637 jss.v081.i04="">.</doi:10.18637>					
Version 3.2.5					
Date 2025-01-07					
Author Francesco Bartolucci [aut, cre], Silvia Pandolfi [aut], Fulvia Pennoni [aut], Alessio Farcomeni [ctb], Alessio Serafini [ctb]					
Maintainer Francesco Bartolucci <francesco.bartolucci@unipg.it></francesco.bartolucci@unipg.it>					
Depends R (>= $3.5.0$)					
Imports MASS, MultiLCIRT, stats, mvtnorm, Formula(>= 1.2-3), mix, utils, graphics, diagram(>= 1.6.4), mclust(>= 5.4.6), scatterplot3d(>= 0.3-41), grDevices					
Suggests knitr, rmarkdown, bookdown					
VignetteBuilder knitr					
NeedsCompilation yes					
Repository CRAN					
LazyLoad yes					
Encoding UTF-8					
ByteCompile true					
License GPL (>= 2)					
Date/Publication 2025-01-08 09:20:15 UTC					
Contents					
LMest-package					

2 Contents

bootstrap_lm_basic_cont	
bootstrap_lm_cov_latent	
bootstrap_lm_cov_latent_cont	
data_criminal_sim	. 12
data_drug	. 13
data_employment_sim	. 14
data_heart_sim	. 15
data_long_cont	. 16
data_market_sim	. 16
data_SRHS_long	. 17
decoding	. 18
draw	. 20
draw_lm_basic	. 24
draw_lm_basic_cont	. 26
draw_lm_cov_latent	. 27
draw_lm_cov_latent_cont	. 28
draw_lm_mixed	
est lm basic	
est_lm_basic_cont	
est_lm_cov_latent	
est_lm_cov_latent_cont	
est lm cov manifest	
est_lm_mixed	
est_mc_basic	
est_mc_cov	
LMbasic-class	
LMbasiccont-class	
lmest	
lmestCont	
lmestData	
lmestDecoding	
lmestFormula	
lmestMc	
lmestMixed	
lmestSearch	
LMlatent-class	
LMlatentcont-class	
LMmanifest-class	. 76
LMmanifestcont-class	
LMmixed-class	
long2matrices	
long2wide	
matrices2long	
MCbasic-class	
MCcov-class	
NLSYlong	
plot	
print	
r	. 00

LMest-package	<u> </u>	
I Miest-nackage	1	
Livicsi-package	J	

LMes	t-package	Ove	ervi	ew	, oj	f th	ie I	Pa	ck	ag	e	Ll	Ме	est													
Index																											98
	summary.lmestData			•		•	•			•			•	•	 	•	•	•	•		•	•		•	•	•	96
	summary																										
	search.model.LM .														 					 							94
	se														 					 							92
	RLMSlong																										
	RLMSdat																										
	PSIDlong														 					 							89

Description

The package LMest is a framework for specifying and fitting Latent (or Hidden) Markov (LM) models for the analysis of longitudinal continuous and categorical data. Covariates are also included in the model specification through suitable parameterizations.

Details

Different LM models are estimated through specific functions requiring a data frame in long format. Responses are mainly categorical, the functions referred to continous responses are specified with Cont. When responses are continuos, the (multivariate) Gaussian distribution, conditional to the latent process, is assumed. The functions are the following:

lmest Function to estimate LM models for categorical responses generating the following classes:

- LMbasic-class for the basic LM model without covariates.
- LMmanifest-class for the LM model with covariates in the measurement submodel.
- LMlatent-class for the LM model with covariates in the latent model.

lmestCont Function to estimate LM models for continuous outcomes generating the following classes:

- LMbasiccont-class for the basic LM model for continuous responses without covariates.
- LMlatentcont-class for the LM model for continuous responses with covariates in the latent model.

lmestMixed Function to estimate Mixed LM models for categorical responses with discrete random effects in the latent model generating the following class:

• LMmixed-class for the mixed LM model.

lmestMc Function to estimate Markov Chain models for categorical responses generating the following classes:

- MCbasic-class for the Markov Chain (MC) model without covariates.
- MCcov-class for the MC model with covariates.

4 LMest-package

Maximum likelihood estimation of model parameters is performed through the Expectation-Maximization algorithm, which is implemented by relying on Fortran routines.

Model selection is provided by lmest and lmestCont functions. In addition, function lmestSearch allows us to deal with both model selection and multimodality of the likelihood function. Two main criteria are provided to select the number of latent states: the Akaike Information Criterion and the Bayesian Information Criterion.

Prediction of the latent states is performed by the function lmestDecoding: for local and global decoding (Viterbi algorithm) from the output of functions lmest, lmestCont and lmestMixed.

The package allows us to deal with missing responses, including drop-out and non-monotonic missingness, under the missing-at-random assumption.

Standard errors for the parameter estimates are obtained by the function se through exact computation of the information matrix or by reliable numerical approximations of this matrix.

The print method shows some convergence information, and the summary method shows the estimation results.

The package also provides some real and simulated data sets that are listed using the function data(package = "LMest").

Author(s)

Francesco Bartolucci [aut,cre], Silvia Pandolfi [aut], Fulvia Pennoni [aut], Alessio Farcomeni [ctb], and Alessio Serafini [ctb]

Maintainer: Francesco Bartolucci <francesco.bartolucci@unipg.it>

References

Bartolucci, F., Pandolfi, S. and Pennoni, F. (2017). LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**, 1-38, doi:10.18637/jss.v081.i04.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013). *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2014). Latent Markov models: A review of a general framework for the analysis of longitudinal data with covariates (with discussion). *TEST*, **23**, 433-465.

See Also

lmest, lmestCont, lmestMc, lmestMixed, LMmixed-class, LMbasic-class, LMbasic-class, LMbasic-class, LMlatent-class, LMlatent-class, LMmanifest-class

bootstrap 5

bootstrap

Parametric bootstrap

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

Usage

```
bootstrap(est, ...)
## S3 method for class 'LMbasic'
bootstrap(est, B = 100, seed = NULL, ...)
## S3 method for class 'LMbasiccont'
bootstrap(est, B=100, seed = NULL, ...)
## S3 method for class 'LMlatent'
bootstrap(est, B = 100, seed = NULL, ...)
## S3 method for class 'LMlatentcont'
bootstrap(est, B = 100, seed = NULL, ...)
```

Arguments

est	an object obtained from a call to lmest and lmestCont
В	number of bootstrap samples
seed	an integer value with the random number generator state
	further arguments

Value

Average of bootstrap estimates and standard errors for the model parameters in est object.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

```
## Not run:
# LM model for categorical responses with covariates on the latent model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]
# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs</pre>
```

6 bootstrap

```
out1 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              index = c("id","t"),
              data = SRHS,
              k = 3,
              tol = 1e-8,
              start = 1,
              modBasic = 1,
              out_se = TRUE,
              seed = 123)
boot1 <- bootstrap(out1)</pre>
out2 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              latentFormula = ~
              I(gender - 1) +
              I( 0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              paramLatent = "multilogit",
              start = 0)
boot2 <- bootstrap(out2)</pre>
# LM model for continous responses without covariates
data(data_long_cont)
out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
                   index = c("id", "time"),
                   data = data_long_cont,
                   k = 3,
                   modBasic=1,
                   tol=10^-5)
boot3 <- bootstrap(out3)</pre>
# LM model for continous responses with covariates
out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,</pre>
                   latentFormula = \sim X1 + X2,
                   index = c("id", "time"),
                   data = data_long_cont,
                   k = 3,
                   output=TRUE)
boot4 <- bootstrap(out4)</pre>
## End(Not run)
```

bootstrap_lm_basic 7

<pre>bootstrap_lm_basic</pre>	Parametric bootstrap for the basic LM model
-------------------------------	---

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```
bootstrap_lm_basic(piv, Pi, Psi, n, B = 100, start = 0, mod = 0, tol = 10^-6)
```

Arguments

piv	initial probability vector
Pi	probability transition matrices (k x k x TT)
Psi	matrix of conditional response probabilities (mb x k x r)
n	sample size
В	number of bootstrap samples
start	type of starting values ($0 = deterministic$, $1 = random$)
mod	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
tol	tolerance level for convergence

Value

mPsi	average of bootstrap estimates of the conditional response probabilities
mpiv	average of bootstrap estimates of the initial probability vector
mPi	average of bootstrap estimates of the transition probability matrices
sePsi	standard errors for the conditional response probabilities
sepiv	standard errors for the initial probability vector
sePi	standard errors for the transition probability matrices

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```
## Not run:
# Example of drug consumption data
# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
# fit of the Basic LM model
k <- 3
out1 <- est_lm_basic(S, yv, k, mod = 1, out_se = TRUE)
out2 <- bootstrap_lm_basic(out1$piv, out1$Pi, out1$Psi, n, mod = 1, B = 1000)
## End(Not run)</pre>
```

bootstrap_lm_basic_cont

Parametric bootstrap for the basic LM model for continuous outcomes

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```
bootstrap_lm_basic_cont(piv, Pi, Mu, Si, n, B = 100, start = 0, mod = 0, tol = 10^-6)
```

Arguments

piv	initial probability vector
Pi	probability transition matrices (k x k x TT)
Mu	matrix of conditional means for the response variables (r x k)
Si	var-cov matrix common to all states (r x r)
n	sample size
В	number of bootstrap samples
start	type of starting values ($0 = deterministic$, $1 = random$)
mod	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
tol	tolerance level for convergence

Value

mMu	average of bootstrap estimates of the conditional means of the response variables
mSi	average of bootstrap estimates of the var-cov matrix
mpiv	average of bootstrap estimates of the initial probability vector
mPi	average of bootstrap estimates of the transition probability matrices
seMu	standard errors for the conditional means of the response variables
seSi	standard errors for the var-cov matrix
sepiv	standard errors for the initial probability vector
sePi	standard errors for the transition probability matrices

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

bootstrap_lm_cov_latent

Parametric bootstrap for LM models with individual covariates in the latent model

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

Arguments

X1	matrix of covariates affecting the initial probabilities (n x nc1)
X2	array of covariates affecting the transition probabilities (n x TT-1 x nc2)
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Psi	array of conditional response probabilities (mb x k x r)
Ве	parameters affecting the logit for the initial probabilities
Ga	parametes affecting the logit for the transition probabilities
В	number of bootstrap samples
fort	to use fortran routine when possible (FALSE for not use fortran)

Value

mPsi	average of bootstrap estimates of the conditional response probabilities
mBe	average of bootstrap estimates of the parameters affecting the logit for the initial probabilities
mGa	average of bootstrap estimates of the parameters affecting the logit for the transition probabilities
sePsi	standard errors for the conditional response probabilities
seBe	standard errors for the parameters in Be
seGa	standard errors for the parameters in Ga

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

```
## Not run:
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long

TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)</pre>
```

```
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY

# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]

# estimate the model
out1 <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)
out2 <- bootstrap_lm_cov_latent(X1, X2, Psi = out1$Psi, Be = out1$Be, Ga = out1$Ga, B = 1000)
## End(Not run)</pre>
```

bootstrap_lm_cov_latent_cont

Parametric bootstrap for LM models for continuous outcomes with individual covariates in the latent model

Description

Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.

The function is no longer maintained. Please look at bootstrap function.

Usage

```
bootstrap_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, B = 100)
```

Arguments

X1	matrix of covariates affecting the initial probabilities (n x nc1)
X2	array of covariates affecting the transition probabilities (n x TT-1 x nc2)
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Mu	matrix of conditional means for the response variables (r x k)
Si	var-cov matrix common to all states (r x r)
Ве	parameters affecting the logit for the initial probabilities
Ga	parametes affecting the logit for the transition probabilities
В	number of bootstrap samples

12 data_criminal_sim

Value

mMu	average of bootstrap estimates of the conditional means for the response variables
mSi	average of bootstrap estimates of the var-cov matrix
mBe	average of bootstrap estimates of the parameters affecting the logit for the initial probabilities
mGa	average of bootstrap estimates of the parameters affecting the logit for the transition probabilities
seMu	standard errors for the conditional means
seSi	standard errors for the var-cov matrix
seBe	standard errors for the parameters in Be
seGa	standard errors for the parameters in Ga

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

Examples

data_criminal_sim

Criminal dataset

Description

Simulated dataset about crimes committed by a cohort of subjects.

data_drug 13

Usage

```
data(data_criminal_sim)
```

Format

A data frame with 60000 observations on the following 13 variables.

```
id subject id

sex gender of the subject

time occasion of observation

y1 crime of type 1 (violence against the person)

y2 crime of type 2 (sexual offences)

y3 crime of type 3 (burglary)

y4 crime of type 4 (robbery)

y5 crime of type 5 (theft and handling stolen goods)

y6 crime of type 6 (fraud and forgery)

y7 crime of type 7 (criminal demage)

y8 crime of type 8 (drug offences)

y9 crime of type 9 (motoring offences)

y10 crime of type 10 (other offences)
```

References

Bartolucci, F., Pennoni, F. and Francis, B. (2007), A latent Markov model for detecting patterns of criminal activity, *Journal of the Royal Statistical Society, series A*, **170**, pp. 115-132.

Examples

```
data(data_criminal_sim)
```

data_drug

Dataset about marijuana consumption

Description

Longitudinal dataset derived from the National Youth Survey about marijuana consumption measured by ordinal variables with 3 categories with increasing levels of consumption (1 "never in the past year", 2 "no more than once in a month in the past year", 3 "more than once a month in the past year").

Usage

```
data(data_drug)
```

Format

A data frame with 51 observations on the following 6 variables.

V1 reported drug use at the 1st occasion

V2 reported drug use at the 2nd occasion

V3 reported drug use at the 3rd occasion

V4 reported drug use at the 4th occasion

V5 reported drug use at the 5th occasion

V6 frequency of the response configuration

Source

Elliot, D. S., Huizinga, D. and Menard, S. (1989) *Multiple Problem Youth: Delinquency, Substance Use, and Mental Health Problems.* New York: Springer.

References

Bartolucci, F. (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. *Journal of the Royal Statistical Society, series B*, **68**, 155-178.

Examples

```
data(data_drug)
```

data_employment_sim

Employment dataset

Description

Simulated dataset related to a survey on the employment status of a cohort of graduates.

Usage

```
data(data_employment_sim)
```

Format

A data frame with 585 observations on the following variables:

id subject id.

time occasion of observation.

emp 0 if unemployed, 1 if employed.

area 1 if graduated in the South area, 2 if graduated in the North area.

grade 1 if grade at graduation is low, 2 if it is medium, 3 if it is high.

edu 1 if parents hold a university degree, 0 if not.

data_heart_sim 15

References

Pennoni, F., Pandolfi, S. and Bartolucci, F. (2024), LMest: An R Package for Estimating Generalized Latent Markov Models, *Submitted to the R Journal*, pp. 1-30.

Examples

```
data(data_employment_sim)
```

data_heart_sim

Health dataset

Description

Simulated longitudinal dataset coming from a medical study to assess the health state progression of patients after a certain treatment.

Usage

```
data(data_heart_sim)
```

Format

A data frame referred to 125 units observed at 6 time occasions on the following variables:

```
id subject id
time occasion of observation
sap systolic arterial pressure in mmgh
dap diastolic arterial pressure in mmgh
hr heart rate in bpm
fluid fluid administration in ml/kg/h
gender 1 for male, 2 for females
age age in years
```

References

Pennoni, F., Pandolfi, S. and Bartolucci, F. (2024), LMest: An R Package for Estimating Generalized Latent Markov Models, *Submitted to the R Journal*, pp. 1-30.

```
data(data_heart_sim)
```

16 data_market_sim

data_long_cont

Multivariate Longitudinal Continuous (Gaussian) Data

Description

Simulated multivariate longitudinal continuous dataset assuming that there are 500 subjects in the study whose data are collected at 5 equally-spaced time points.

Usage

```
data(data_long_cont)
```

Format

A data frame with 2500 observations on the following 7 variables.

id subject id.

time occasion of observation.

Y1 a numeric vector for the first longitudinal response.

Y2 a numeric vector for the second longitudinal response.

Y3 a numeric vector for the third longitudinal response.

X1 a numeric vector for the first covariate.

X2 a numeric vector for the second covariate.

Examples

```
data(data_long_cont)
```

data_market_sim

Marketing dataset

Description

Simulated dataset related to customers of four different brands along with the prices of each transaction.

Usage

```
data(data_market_sim)
```

data_SRHS_long 17

Format

A data frame with 200 observations on the following variables:

id subject id.

time occasion of observation.

brand 0 if the customer has purchased the product from brand A, 1 if brand B, 2 if brand C, 3 if brand D.

price 0 if the price of the transaction is in the range [0.1, 10], 1 if it is in (10, 30], 2 if it is in (30, 60], 3 if it is in (30, 100], 4 if it is in (100, 500] (in thousands of Euros).

age age of the customer in years

income income declared by the customer at the time of the first purchase (in thousands of Euros).

References

Pennoni, F., Pandolfi, S. and Bartolucci, F. (2024), LMest: An R Package for Estimating Generalized Latent Markov Models, *Submitted to the R Journal*, pp. 1-30.

Examples

data(data_market_sim)

data_SRHS_long

Self-reported health status dataset

Description

Dataset about self-reported health status derived from the Health and Retirement Study conducted by the University of Michigan.

Usage

```
data(data_SRHS_long)
```

Format

A data frame with 56592 observations on the following 6 variables.

t occasion of observation

id subject id

gender sex of the subject coded as 1 for "male", 2 for "female"

race race coded as 1 for "white", 2 for "black", 3 for "others"

education educational level coded as 1 for "high school", 2 for "general educational diploma", 3 for "high school graduate", 4 for "some college", 5 for "college and above"

age age at the different time occasions

srhs self-reported health status at the different time occasions coded as 1 for "excellent", 2 for "very good", 3 for "good", 4 for "fair", 5 for "poor"

18 decoding

References

Bartolucci, F., Bacci, S. and Pennoni, F. (2014) Longitudinal analysis of the self-reported health status by mixture latent autoregressive models, *Journal of the Royal Statistical Society - series C*, **63**, pp. 267-288

Examples

```
data(data_SRHS_long)
```

A	e	^	\sim	А	i	n	α
u	_	L.	u	u	1	11	2

Perform local and global decoding

Description

Function that performs local and global decoding (Viterbi) from the output of est_lm_basic , $est_lm_cov_latent$, $est_lm_cov_manifest$, and est_lm_mixed .

The function is no longer maintained. Please look at lmestDecoding function

Usage

```
decoding(est, Y, X1 = NULL, X2 = NULL, fort = TRUE)
```

Arguments

est	output from est_lm_basic, est_lm_cov_latent, est_lm_cov_manifest, or est_lm_mixed
Υ	single vector or matrix of responses
X1	matrix of covariates on the initial probabilities (est_lm_cov_latent) or on the responses (est_lm_cov_manifest)
X2	array of covariates on the transition probabilites
fort	to use Fortran routines

Value

U1	matrix of local decoded states corresponding to each row of Y
Ug	matrix of global decoded states corresponding to each row of Y

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

decoding 19

References

Viterbi A. (1967) Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. *IEEE Transactions on Information Theory*, **13**, 260-269.

Juan B., Rabiner L. (1991) Hidden Markov Models for Speech Recognition. *Technometrics*, 33, 251-272.

```
## Not run:
# example for the output from est_lm_basic
data(data_drug)
data_drug <- as.matrix(data_drug)</pre>
S <- data_drug[,1:5]-1</pre>
yv <- data_drug[,6]</pre>
n \leftarrow sum(yv)
# fit the Basic LM model
est <- est_lm_basic(S, yv, k, mod = 1)
# decoding for a single sequence
out1 <- decoding(est, S[1,])</pre>
# decoding for all sequences
out2 <- decoding(est, S)</pre>
# example for the output from est_lm_cov_latent with difflogit parametrization
data(data_SRHS_long)
dataSRHS <- data_SRHS_long[1:1600,]</pre>
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,</pre>
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50,(dataSRHS$age-50)^2/100),
Y= dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]</pre>
X2 <- res$XX[,2:TT,]</pre>
# estimate the model
```

```
est <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, param = "difflogit")
# decoding for a single sequence
out1 <- decoding(est, S[1,,], X1[1,], X2[1,,])
# decoding for all sequences
out2 <- decoding(est, S, X1, X2)
## End(Not run)</pre>
```

draw

Draw simulated sample from a Generalized Latent Markov Model

Description

 $Draw\ a\ sample\ for\ LMest\ objects\ of\ classes:\ LMbasic,\ LMbasiccont,\ LMlatent,\ LMlatentcont,\ and\ LMmixed$

Usage

Arguments

est	object of class LMbasic (LMbasic-class), LMlatent (LMlatent-class), class LMbasiccont (LMbasiccont-class), LMlatentcont (LMlatentcont-class), or LMmixed (LMmixed-class)
n	sample size
format	character string indicating the format of final responses matrix
seed	an integer value with the random number generator state
data	a data frame in long format, with rows corresponding to observations and columns corresponding to covariates, a column corresponding to time occasions and a column containing the unit identifier when est is of class LMlatent or LMlatentcont
index	a character vector with two elements indicating the name of the "id" column as first element and the "time" column as second element when est is of class LMlatent or LMlatentcont

	fort	to use fortran routine when possible (FALSE for not use fortran) when est is of class LMlatent or LMlatent $cont$
	TT	number of time occasions when est is of class LMmixed
		further arguments
Va	lue	
	Υ	matrix of response configurations unit by unit when est is of class LMbasic or LMmixed; array of continuous outcomes (n x TT x r) when est is of class LMbasiccont or LMlatentcont
	S	matrix of distinct response configurations when est is of class LMbasic or LMmixed
	yv	corresponding vector of frequencies when est is of class LMbasic or LMmixed
	piv	vector of initial probabilities of the latent Markov chain when est is of class LMbasic
	Pi	set of transition probabilities matrices (k x k x TT) when est is of class LMbasic
	Psi	array of conditional response probabitlies (mb $x \ k \ x$ r)when est is of class LMbasic
	n	sample size
	TT	number of time occasions
	est	object of class LMbasic, LMlatent, LMbasiccont, LMlatentcont, or LMmixed
	U	matrix containing the sequence of latent states (n x TT) when est is of class LMlatent or LMlatentcont
	Psi	array of conditional response probabilities (mb x k x r) when est is of class LMlatent
	Ве	parameters affecting the logit for the initial probabilities when est is of class LMlatent or LMlatentcont
	Ga	parametes affecting the logit for the transition probabilities when est is of class LMlatent or LMlatentcont
	latentFormula	a symbolic description of the model to be fitted when est is of class LMlatent. Detailed description is given in lmest
	data	a data frame in long format, with rows corresponding to observations and columns corresponding to variables, a column corresponding to time occasions and a column containing the unit identifier when est is of class LMlatent or LMlatentcont
	Mu	array of conditional means for the response variables (r x k) when est is of class LMlatentcont
	Si	var-cov matrix common to all states $(r \ x \ r)$ when est is of class LMlatentcont
	latentFormula	a symbolic description of the model to be fitted. A detailed description is given in ${\tt lmestCont}$

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni

```
# draw a sample for 1000 units and only one response variable when est is of class LMbasic
n <- 1000
TT <- 6
k <- 2
r <- 1 #number of response variables
mb <- 3 #maximum number of response categories
piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9, 0.1, 0.1, 0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,,1] <- 0
Psi \leftarrow matrix(c(0.7,0.2,0.1,0.5,0.4,0.1), mb, k)
Psi <- array(Psi, c(mb, k, r))
est = list(piv=piv, Pi=Pi, Psi=Psi, n=n, TT=TT)
class(est) = "LMbasic"
out <- draw(est)</pre>
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]</pre>
SRHS$srhs <- 5 - SRHS$srhs
est <- lmest(responsesFormula = srhs ~ NULL,
             index = c("id","t"),
             data = SRHS,
             k = 3)
out1 <- draw(est = est, format = "matrices", seed = 4321, n = 100)
# draw a sample for 7074 units and only one response variable when est is of class LMlatent
data(data_SRHS_long)
data_SRHS_long$srhs <- 5 - data_SRHS_long$srhs</pre>
n <- length(unique(data_SRHS_long$id))</pre>
TT <- max(data_SRHS_long$t)</pre>
est <- lmest(responsesFormula = srhs ~ NULL,</pre>
              latentFormula = ~
              I(gender - 1) +
              I(0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
               I(0 + (education == 5)) +
               I(age - 50) + I((age-50)^2/100),
               index = c("id","t"),
               data = data_SRHS_long,
              k = 2,
              paramLatent = "multilogit",
               start = 0
```

```
out <- draw(est = est, data = data_SRHS_long, index = c("id","t"),</pre>
            format = "matrices", seed = 4321)
est1 = list(Psi = est$Psi, Be = est$Be, Ga = est$Ga,
            paramLatent = "multilogit", n=n, TT=TT)
attributes(est1)$latentFormula = ~
              I(gender - 1) +
              I(0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100)
class(est1) = "LMlatent"
out1 <- draw(est = est1, data = data_SRHS_long, index = c("id","t"),</pre>
                      format = "matrices",
                      seed = 4321)
# draw a sample for 1000 units and 3 response variable when est is of class LMbasiccont
n <- 1000
TT <- 5
k <- 2
r <- 3 #number of response variables
piv <- c(0.7, 0.3)
Pi \leftarrow matrix(c(0.9,0.1,0.1,0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,,1] <- 0
Mu \leftarrow matrix(c(-2,-2,0,0,2,2), r, k)
Si <- diag(r)
est = list(piv=piv,Pi=Pi,Mu=Mu,Si=Si,n=n,TT=TT)
class(est) = "LMbasiccont"
out <- draw(est)</pre>
data(data_long_cont)
est <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
                 index = c("id", "time"),
                 data = data_long_cont,
                 k = 3,
                 modBasic = 1,
                 tol = 10^{-5}
out2 <- draw(est = est, n = 100, format = "long", seed = 4321)
# draw a sample for 1000 units and 3 response variable when est is of class LMlatentcont
data(data_long_cont)
est <- lmestCont(responsesFormula = Y1 + Y2 + Y3~ NULL,
                 latentFormula = ~ X1 + X2,
                 index = c("id", "time"),
```

24 draw_lm_basic

```
data = data_long_cont,
                  k = 3)
out <- draw(est = est, data = data_long_cont, index = c("id", "time"), format = "matrices",</pre>
            seed = 4321)
est1 <- list(Mu = est$Mu,Si = est$Si,Be = est$Be,Ga = est$Ga,paramLatent="multilogit",n=est$n,
             TT=est$TT)
attributes(est1)$latentFormula = ~ X1 + X2
class(est1) = "LMlatentcont"
out1 <- draw(est = est1, data = data_long_cont,</pre>
                          index = c("id", "time"),
                          fort=TRUE, seed = 4321, format = "matrices")
## End(Not run)
# draw a sample for 1000 units and only one response variable and 5 time occasions
# when est if of class LMmixed
k1 <- 2
k2 <- 3
la <- rep(1/k1, k1)
Piv \leftarrow matrix(1/k2, k2, k1)
Pi \leftarrow array(0, c(k2, k2, k1))
Pi[,,1] <- diag(k2)
Pi[,,2] <- 1/k2
Psi <- cbind(c(0.6,0.3,0.1), c(0.1,0.3,0.6), c(0.3,0.6,0.1))
est <- list(la=la, Piv=Piv, Pi=Pi, Psi=Psi, n=1000,TT=5)
class(est) = "LMmixed"
out <- draw(est = est)
## Not run:
# Example based on criminal data when est if of class LMmixed
data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)
# Estimate mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim,</pre>
                                   response = "y")$responsesFormula
est <- lmestMixed(responsesFormula = responsesFormula,</pre>
                   index = c("id","time"),
                   k1 = 2,
                   k2 = 2,
                   data = data_criminal_sim[data_criminal_sim$sex == 2,])
out <- draw(est = est, n = 100, TT = 6, seed = 4321)
## End(Not run)
```

draw_lm_basic 25

Description

Function that draws samples from the basic LM model with specific parameters.

The function is no longer maintained. Please look at draw.LMbasic function.

Usage

```
draw_lm_basic(piv, Pi, Psi, n)
```

Arguments

piv	vector of initial probabilities of the latent Markov chain
Pi	set of transition probabilities matrices (k x k x TT)
Psi	array of conditional response probabitlies (mb x k x r)
n	sample size

Value

Υ	matrix of response configurations unit by unit
S	matrix of distinct response configurations
yv	corresponding vector of frequencies

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
## Not run:
# draw a sample for 1000 units and only one response variable
n <- 1000
TT <- 6
k <- 2
r <- 1 #number of response variables
mb <- 3 #maximum number of response categories

piv <- c(0.7, 0.3)
Pi <- matrix(c(0.9,0.1,0.1,0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,,1] <- 0
Psi <- matrix(c(0.7,0.2,0.1,0.5,0.4,0.1), mb, k)
Psi <- array(Psi, c(mb, k, r))
out <- draw_lm_basic(piv, Pi, Psi, n = 1000)

## End(Not run)</pre>
```

26 draw_lm_basic_cont

draw_lm_basic_cont

Draw samples from the basic LM model for continuous outcomes

Description

Function that draws samples from the basic LM model for continuous outcomes with specific parameters.

The function is no longer maintained. Please look at draw.LMbasiccont function.

Usage

```
draw_lm_basic_cont(piv, Pi, Mu, Si, n)
```

Arguments

piv	vector of initial probabilities of the latent Markov chain
Pi	set of transition probabilities matrices (k x k x TT)
Mu	matrix of conditional means for the response variables (r x k)
Si	var-cov matrix common to all states (r x r)
n	sample size

Value

Y array of continuous outcomes (n x TT x r)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
## Not run:

# draw a sample for 1000 units and 3 response variable
n <- 1000
TT <- 5
k <- 2
r <- 3 #number of response variables

piv <- c(0.7,0.3)
Pi <- matrix(c(0.9,0.1,0.1,0.9), k, k)
Pi <- array(Pi, c(k, k, TT))
Pi[,,1] <- 0
Mu <- matrix(c(-2,-2,0,0,2,2), r, k)
Si <- diag(r)
out <- draw_lm_basic_cont(piv, Pi, Mu, Si, n)

## End(Not run)</pre>
```

draw_lm_cov_latent 27

draw_lm_cov_latent

Draw samples from LM model with covariaates in the latent model

Description

Function that draws samples from the LM model with individual covariates with specific parameters.

The function is no longer maintained. Please look at draw.LMlatent function.

Usage

```
draw_lm_cov_latent(X1, X2, param = "multilogit", Psi, Be, Ga, fort = TRUE)
```

Arguments

X1	desing matrix for the covariates on the initial probabilities (n x nc1)
X2	desing matrix for the covariates on the transition probabilities (n x TT-1 x nc2)
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Psi	array of conditional response probabilities (mb x k x r)
Ве	parameters affecting the logit for the initial probabilities
Ga	parametes affecting the logit for the transition probabilities
fort	to use fortran routine when possible (FALSE for not use fortran)

Value

Υ	matrix of response configurations unit by unit (n x TT x r)
U	matrix containing the sequence of latent states (n x TT)

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
## Not run:  
# draw a sample for 1000 units, 10 response variable and 2 covariates n <- 1000  
TT <- 5  
k <- 2  
nc <- 2 #number of covariates  
r <- 10 #number of response variables  
mb <- 2 #maximum number of response categories
```

fort <- TRUE

```
Psi <- matrix(c(0.9,0.1,0.1,0.9), mb, k)
Psi <- array(Psi, c(mb, k, r))
Ga <- matrix(c(-log(0.9/0.1), 0.5, 1), (nc+1)*(k-1), k)
Be <- array(c(0,0.5,1), (nc+1)*(k-1))
#Simulate covariates
X1 <- matrix(0, n, nc)</pre>
for(j in 1:nc) X1[,j] <- rnorm(n)</pre>
X2 <- array(0,c(n, TT-1, nc))</pre>
for (t in 1:(TT-1)) for(j in 1:nc){
if(t==1){
X2[,t,j] <- 0.5*X1[,j] + rnorm(n)
}else{
X2[,t,j] <- 0.5 *X2[,t-1,j] + rnorm(n)
}
out <- draw_lm_cov_latent(X1, X2, Psi = Psi, Be = Be, Ga = Ga, fort = fort)</pre>
## End(Not run)
```

draw_lm_cov_latent_cont

Draw samples from LM model for continuous outcomes with covariates in the latent model

Description

Function that draws samples from the LM model for continuous outcomes with individual covariates with specific parameters.

The function is no longer maintained. Please look at draw.LMlatentcont function.

Usage

```
draw_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, fort = TRUE)
```

Arguments

X1	desing matrix for the covariates on the initial probabilities (n x nc1)
X2	desing matrix for the covariates on the transition probabilities (n x TT-1 x nc2)
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Mu	array of conditional means for the response variables (r x k)
Si	var-cov matrix common to all states (r x r)

Ве	parameters affecting the logit for the initial probabilities
Ga	parametes affecting the logit for the transition probabilities
fort	to use fortran routine when possible (FALSE for not use fortran)

Value

```
Y array of continuous outcomes (n x TT x r)
U matrix containing the sequence of latent states (n x TT)
```

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
## Not run:
# draw a sample for 1000 units, 10 response variable and 2 covariates
n <- 1000
TT <- 5
k <- 2
nc <- 2 #number of covariates
r <- 3 #number of response variables
fort <- TRUE
Mu \leftarrow matrix(c(-2,-2,0,0,2,2), r, k)
Si <- diag(r)
Ga <- matrix(c(-log(0.9/0.1), 0.5, 1), (nc+1)*(k-1), k)
Be <- array(c(0,0.5,1), (nc+1)*(k-1))
#Simulate covariates
X1 <- matrix(0, n, nc)</pre>
for(j in 1:nc) X1[,j] <- rnorm(n)</pre>
X2 \leftarrow array(0, c(n,TT-1,nc))
for (t in 1:(TT-1)) for(j in 1:nc){
if(t==1){
X2[,t,j] \leftarrow 0.5*X1[,j] + rnorm(n)
}else{
X2[,t,j] <- 0.5*X2[,t-1,j] + rnorm(n)
}
out <- draw_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, fort = fort)</pre>
## End(Not run)
```

30 draw_lm_mixed

	-		
draw	l m	mixe	h

Draws samples from the mixed LM model

Description

Function that draws samples from the mixed LM model with specific parameters.

The function is no longer maintained. Please look at draw.LMmixed function.

Usage

```
draw_lm_mixed(la, Piv, Pi, Psi, n, TT)
```

Arguments

la	vector of mass probabilities for the first latent variable
Piv	matrix of initial probabilities of the latent Markov chain (k2 x k1)
Pi	set of transition matrices (k2 x k2 x k1)
Psi	array of conditional response probabitlies (mb x k2 x r)
n	sample size
TT	number of time occasions

Value

Υ	matrix of response configurations unit by unit
S	matrix of distinct response configurations
yv	corresponding vector of frequencies

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
## Not run:
# draw a sample for 1000 units and only one response variable and 5 time occasions
k1 <- 2
k2 <- 3
la <- rep(1/k1,k1)
Piv <- matrix(1/k2,k2,k1)
Pi <- array(0,c(k2,k2,k1))
Pi[,,1] <- diag(k2)
Pi[,,2] <- 1/k2
Psi <- cbind(c(0.6,0.3,0.1),c(0.1,0.3,0.6),c(0.3,0.6,0.1))
out <- draw_lm_mixed(la,Piv,Pi,Psi,n=1000,TT=5)
## End(Not run)</pre>
```

est_lm_basic 31

est_lm_basic	Estimate basic LM model

Description

Main function for estimating the basic LM model.

The function is no longer maintained. Please look at lmest function.

Usage

Arguments

S	array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses)
yv	vector of frequencies of the available configurations
k	number of latent states
start	type of starting values ($0 = \text{deterministic}$, $1 = \text{random}$, $2 = \text{initial values in input}$)
mod	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors
piv	initial value of the initial probability vector (if start=2)
Pi	initial value of the transition probability matrices (k x k x TT) (if start=2)
Psi	initial value of the conditional response probabilities (mb x k x r) (if start=2)

Value

lk	maximum log-likelihood
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices
Psi	estimate of conditional response probabilities
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
lkv	log-likelihood trace at every step
V	array containing the posterior distribution of the latent states for each response configuration and time occasion

32 est_lm_basic

sepiv	standard errors for the initial probabilities
sePi	standard errors for the transition probabilities
sePsi	standard errors for the conditional response probabilities
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

```
## Not run:
# Example of drug consumption data
# load data
data(data_drug)
data_drug <- as.matrix(data_drug)</pre>
S <- data_drug[,1:5]-1</pre>
yv <- data_drug[,6]</pre>
# fit of the Basic LM model
k <- 3
out <- est_lm_basic(S, yv, k, mod = 1)
summary(out)
# Example based on criminal data
# load criminal data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id" , "time" , "sex",</pre>
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"),aggr = T, full = 999)
XX <- out$XX
YY <- out$YY
freq <- out$freq
# fit basic LM model with increasing number of states to select the most suitable
Res0 <- vector("list", 7)</pre>
for(k in 1:7){
    Res0[[k]] \leftarrow est_lm_basic(YY, freq, k, mod = 1, tol = 10^-4)
    save(list <- ls(), file = "example_criminal_temp.RData")</pre>
out1 <- Res0[[6]]
## End(Not run)
```

est_lm_basic_cont 33

	7		
ΔCT	I m	basic	cont
CSL	TIII	Dasic	COLL

Estimate basic LM model for continuous outcomes

Description

Main function for estimating the basic LM model for continuous outcomes.

The function is no longer maintained. Please look at lmestCont function.

Usage

Arguments

Υ	array of continuous outcomes (n x TT x r)
k	number of latent states
start	type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
mod	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to ($TT-1$) partial homog. of that order)
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors
piv	initial value of the initial probability vector (if start=2)
Pi	initial value of the transition probability matrices (k x k x TT) (if start=2)
Mu	initial value of the conditional means (r x k) (if start=2)
Si	initial value of the var-cov matrix common to all states (r x r) (if start=2)

Value

1k	maximum log-likelihood
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices
Mu	estimate of conditional means of the response variables
Si	estimate of var-cov matrix common to all states
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
lkv	log-likelihood trace at every step
V	array containing the posterior distribution of the latent states for each units and
	time occasion
call	command used to call the function

34 est_lm_cov_latent

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

Examples

est_lm_cov_latent

Estimate LM model with covariates in the latent model

Description

Main function for estimating the LM model with covariates in the latent model.

The function is no longer maintained. Please look at lmest function.

Usage

Arguments

S	array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses)
X1	matrix of covariates affecting the initial probabilities (n x nc1)
X2	array of covariates affecting the transition probabilities (n x TT-1 x nc2)

est_lm_cov_latent 35

yv	vector of frequencies of the available configurations
k	number of latent states
start	type of starting values ($0 = deterministic$, $1 = random$, $2 = initial$ values in input)
tol	tolerance level for checking convergence of the algorithm
maxit	maximum number of iterations of the algorithm
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Psi	intial value of the array of the conditional response probabilities (mb x k x r)
Ве	intial value of the parameters affecting the logit for the initial probabilities (if $start=2$)
Ga	intial value of the parametes affecting the logit for the transition probabilities (if start=2) $$
fort	to use fortran routine when possible (FALSE for not use fortran)
output	to return additional output (V,PI,Piv,Ul)
out_se	to compute the information matrix and standard errors
fixPsi	TRUE if Psi is given in input and is not updated anymore

Value

lk	maximum log-likelihood
Ве	estimated array of the parameters affecting the logit for the initial probabilities
Ga	estimated array of the parameters affecting the logit for the transition probabilities
Piv	estimate of initial probability matrix
PI	estimate of transition probability matrices
Psi	estimate of conditional response probabilities
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
lkv	log-likelihood trace at every step
٧	array containing the posterior distribution of the latent states for each response configuration and time occasion
Ul	matrix containing the predicted sequence of latent states by the local decoding method
sePsi	standard errors for the conditional response matrix
seBe	standard errors for Be
seGa	standard errors for Ga
call	command used to call the function

36 est_lm_cov_latent

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

```
## Not run:
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS = data_SRHS_long
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,</pre>
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
n \leftarrow dim(S)[1]
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]</pre>
X2 <- res$XX[,2:TT,]</pre>
# estimate the model
est2f <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)</pre>
summary(est2f)
# average transition probability matrix
PI \leftarrow round(apply(est2f\$PI[,,,2:TT], c(1,2), mean), 4)
# Transition probability matrix for white females with high educational level
ind1 \leftarrow X1[,1] == 1 & X1[,2] == 0 & X1[,4] == 1)
PI1 <- round(apply(est2f$PI[,,ind1,2:TT], c(1,2), mean), 4)
# Transition probability matrix for non-white male, low educational level
ind2 \leftarrow (X1[,1] == 0 & X1[,2] == 1 & X1[,3] == 0 & X1[,4] == 0)
PI2 \leftarrow round(apply(est2fPI[,,ind2,2:TT], c(1,2), mean), 4)
## End(Not run)
```

```
est_lm_cov_latent_cont
```

Estimate LM model for continuous outcomes with covariates in the latent model

Description

Main function for estimating the LM model for continuous outcomes with covariates in the latent model.

The function is no longer maintained. Please look at lmestCont function.

Usage

Arguments

Υ	array of continuous outcomes (n x TT x r)
X1	matrix of covariates affecting the initial probabilities (n x nc1)
X2	array of covariates affecting the transition probabilities (n x TT-1 x nc2)
yv	vector of frequencies of the available configurations
k	number of latent states
start	type of starting values ($0 = deterministic$, $1 = random$, $2 = initial$ values in input)
tol	tolerance level for checking convergence of the algorithm
maxit	maximum number of iterations of the algorithm
param	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
Mu	initial value of the conditional means (r x k) (if start=2)
Si	initial value of the var-cov matrix common to all states (r x r) (if start=2)
Be	intial value of the parameters affecting the logit for the initial probabilities (if $start=2$)
Ga	intial value of the parametes affecting the logit for the transition probabilities (if $start=2$)
output	to return additional output (V,PI,Piv,Ul)
out_se	to compute the information matrix and standard errors

Value

1k	maximum log-likelihood
Ве	estimated array of the parameters affecting the logit for the initial probabilities
Ga	estimated array of the parameters affecting the logit for the transition probabilities
Mu	estimate of conditional means of the response variables
Si	estimate of var-cov matrix common to all states
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
lkv	log-likelihood trace at every step
Piv	estimate of initial probability matrix
PI	estimate of transition probability matrices
Ul	matrix containing the predicted sequence of latent states by the local decoding method
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

est_lm_cov_manifest 39

Description

Main function for estimating LM model with covariates in the measurement model based on a global logit parameterization.

The function is no longer maintained. Please look at lmest function.

Usage

Arguments

S	array of available configurations (n x TT) with categories starting from 0
X	array (n x TT x nc) of covariates with eventually includes lagged response (nc = number of covariates)
yv	vector of frequencies of the available configurations
k	number of latent states
q	number of support points for the AR(1) process
mod	model ("LM" = Latent Markov with stationary transition, "FM" = finite mixture)
tol	tolerance for the convergence (optional) and tolerance of conditional probability if tol>1 then return
maxit	maximum number of iterations of the algorithm
start	type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
mu	starting value for mu (optional)
al	starting value for al (optional)
be	starting value for be (optional)
si	starting value for si when mod="FM" (optional)
rho	starting value for rho when mod="FM" (optional)
la	starting value for la (optional)
PI	starting value for PI (optional)
output	to return additional output (PRED0, PRED1)
out_se	TRUE for computing information matrix and standard errors

40 est_lm_cov_manifest

Value

mu	vector of cutpoints
al	support points for the latent states
be	estimate of the vector of regression parameters
si	sigma of the $AR(1)$ process (mod = "FM")
rho	parameter vector for AR(1) process (mod = "FM")
la	vector of initial probabilities
PI	transition matrix
lk	maximum log-likelihood
np	number of parameters
aic	value of AIC index
bic	value of BIC index
PRED0	prediction of latent state
PRED1	prediction of the overall latent effect
sebe	standard errors for the regression parameters be
selrho	standard errors for logit type transformation of rho
J1	information matrix
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

Bartolucci, F., Bacci, S. and Pennoni, F. (2014) Longitudinal analysis of the self-reported health status by mixture latent autoregressive models, *Journal of the Royal Statistical Society - series C*, **63**, pp. 267-288

```
## Not run:
# Example based on self-rated health status (SRHS) data

# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
head(dataSRHS)

res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
    dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),</pre>
```

est_lm_mixed 41

```
Y = dataSRHS\$srhs)
X <- res$XX
S <- 5-res$YY
# *** fit stationary LM model
res0 <- vector("list", 10)</pre>
tol <- 10^-6;
for(k in 1:10){
  res0[[k]] <- est_lm_cov_manifest(S, X, k, 1, mod = "LM", tol)</pre>
   save.image("example_SRHS.RData")
# *** fit the mixture latent auto-regressive model
tol <- 0.005
res <- vector("list",4)</pre>
k <- 1
q <- 51
res[[k]] <- est_lm_cov_manifest(S, X, k, q, mod = "FM", tol, output = TRUE)</pre>
for(k in 2:4) res[[k]] <- est_lm_cov_manifest(S, X, k, q = 61, mod = "FM", tol, output = TRUE)</pre>
## End(Not run)
```

est_lm_mixed

Estimate mixed LM model

Description

Main function for estimating the mixed LM model with discrete random effect in the latent model.

The function is no longer maintained. Please look at lmestMixed function

Usage

```
est_lm_mixed(S, yv = rep(1,nrow(S)), k1, k2, start = 0, tol = 10^-8, maxit = 1000, out_se = FALSE)
```

Arguments

S	array of available response configurations (n x TT x r) with categories starting from $\boldsymbol{0}$
yv	vector of frequencies of the available configurations
k1	number of latent classes
k2	number of latent states
start	type of starting values ($0 = deterministic$, $1 = random$)
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute standard errors

42 est_lm_mixed

Value

la	estimate of the mass probability vector (distribution of the random effects)
Piv	estimate of initial probabilities
Pi	estimate of transition probability matrices
Psi	estimate of conditional response probabilities
lk	maximum log-likelihood
W	posterior probabilities of the random effect
np	number of free parameters
bic	value of BIC for model selection
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

```
## Not run:
# Example based of criminal data
# load data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id", "time", "sex",</pre>
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"), aggr = T, full = 999)
XX <- out$XX
YY <- out$YY
freq <- out$freq</pre>
n1 <- sum(freq[XX[,1] == 1])</pre>
n2 \leftarrow sum(freq[XX[,1] == 2])
n <- sum(freq)</pre>
\mbox{\tt\#} fit mixed LM model only for females
YY \leftarrow YY[XX[,1] == 2,,]
freq <- freq[XX[,1] == 2]
k1 <- 2
k2 <- 2
res <- est_lm_mixed(YY, freq, k1, k2, tol = 10^-8)
summary(res)
## End(Not run)
```

est_mc_basic 43

est_mc_basic	Estimate basic Markov chain (MC) model	

Description

Main function for estimating the basic MC model.

The function is no longer maintained. Please look at lmestMc function.

Usage

```
est_mc_basic(S, yv, mod = 0, tol = 10^-8, maxit = 1000, out_se = FALSE)
```

Arguments

S	matrix (n x TT) of available configurations of the response variable with categories starting from $\boldsymbol{0}$
yv	vector of frequencies of the available configurations
mod	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors

Value

1k	maximum log-likelihood
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
Fy	estimated marginal distribution of the response variable for each time occasion
sepiv	standard errors for the initial probabilities
sePi	standard errors for the transition probabilities
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

est_mc_cov

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

Examples

```
# Example of drug consumption data

# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]

# fit of the Basic MC model
out <- est_mc_basic(S, yv, mod = 1, out_se = TRUE)
summary(out)</pre>
```

est_mc_cov

Estimate Markov chain (MC) model with covariates

Description

Main function for estimating the MC model with covariates.

The function is no longer maintained. Please look at lmestMc function.

Usage

```
est_mc_cov(S, X1 = NULL, X2 = NULL, yv = rep(1,nrow(S)), start = 0, tol = 10^-8,
    maxit = 1000, out_se = FALSE, output = FALSE, fort = TRUE)
```

Arguments

S	matrix of available configurations of the response variable (n x TT) with categories starting from θ
X1	matrix of covariates affecting the initial probabilities (n x nc1)
X2	array of covariates affecting the transition probabilities (n x TT-1 x nc2)
yv	vector of frequencies of the available configurations
start	type of starting values ($0 = deterministic$, $1 = random$)
tol	tolerance level for checking convergence of the algorithm
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors
output	to return additional output (PI,Piv)
fort	to use fortran routine when possible (FALSE for not use fortran)

est_mc_cov 45

Value

lk	maximum log-likelihood
Be	estimated array of the parameters affecting the logit for the initial probabilities
Ga	estimated array of the parameters affecting the logit for the transition probabilities
np	number of free parameters
aic	value of AIC for model selection
bic	value of BIC for model selection
seBe	standard errors for Be
seGa	standard errors for Ga
Piv	estimate of initial probability matrix
PI	estimate of transition probability matrices
call	command used to call the function

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci

References

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

```
## Not run:
# Example based on criminal data
# load criminal data
data(data_criminal_sim)
#We consider the response variable referring of crime of type 5
out <- long2wide(data_criminal_sim, "id", "time", "sex",</pre>
"y5", aggr = T, full = 999)
XX <- out$XX-1
YY <- out$YY
freq <- out$freq</pre>
TT <- 6
X1 <- as.matrix(XX[,1])</pre>
X2 <- as.matrix(XX[,2:TT])</pre>
# estimate the model
res <- est_mc_cov(S = YY, yv = freq, X1 = X1, X2 = X2, output = TRUE)
summary(res)
```

46 LMbasic-class

```
# Initial probability for female
Piv0 <- round(colMeans(res$Piv[X1 == 0,]), 4)
# Initial probability for male
Piv1 <- round(colMeans(res$Piv[X1 == 1,]), 4)
## End(Not run)</pre>
```

LMbasic-class

Class 'LMbasic'

Description

An S3 class object created by lmest function for basic Latent Markov (LM) model.

Value

lk	maximum log-likelihood at convergence of the EM algorithm
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices (k x k x TT)
Psi	estimate of conditional response probabilities (mb x k x r)
np	number of free parameters
k	optimal number of latent states
aic	value of the Akaike Information Criterion for model selection
bic	value of the Bayesian Information Criterion for model selection
lkv	log-likelihood trace at every step
n	sample size (sum of the weights when weights are provided)
TT	number of time occasions
modBasic	model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT.
sepiv	standard errors for the initial probabilities
sePi	standard errors for the transition probabilities
sePsi	standard errors for the conditional response probabilities
Lk	vector containing the values of the log-likelihood of the LM model with each ${\sf k}$ (latent states)
Bic	vector containing the values of the BIC for each k
Aic	vector containing the values of the AIC for each k
V	array containing the estimated posterior probabilities of the latent states for each response configuration and time occasion

LMbasiccont-class 47

U1	matrix containing the predicted sequence of latent states by the local decoding method
S	array containing the available response configurations
yv	vector of frequencies of the available configurations
Pmarg	matrix containing the marginal distribution of the latent states
ns	number of distinct response configurations
call	command used to call the function
data	data.frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

1mest

LMbasiccont-class Class 'LMbasiccont'

Description

An S3 class object created by lmestCont function for the latent Markov (LM) model for continuous responses in long format.

Value

lk	maximum log-likelihood
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices (k x k x TT)
Mu	estimate of conditional means of the response variables (r x k)
Si	estimate of var-cov matrix common to all states (r x r)
np	number of free parameters
k	optimal number of latent states
aic	value of the Akaike Information Criterion for model selection
bic	value of the Bayesian Information Criterion for model selection
lkv	log-likelihood trace at every step
n	number of observations in the data
TT	number of time occasions
modBasic	model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT

sepiv	standard errors for the initial probabilities
sePi	standard errors for the transition probabilities
seMu	standard errors for the conditional means
seSi	standard errors for the var-cov matrix
sc	score vector
J	information matrix
Lk	vector containing the values of the log-likelihood of the LM model with each ${\bf k}$ (latent states)
Bic	vector containing the values of the BIC of the LM model with each ${\sf k}$ (latent states)
Aic	vector containing the values of the AIC of the LM model with each k (latent states)
V	array containing the posterior distribution of the latent states for each units and time occasion
U1	matrix containing the predicted sequence of latent states by the local decoding method
Pmarg	matrix containing the marginal distribution of the latent states
call	command used to call the function
data	data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

1mestCont

lmest	Estimate Latent Markov models for categorical responses

Description

Main function for estimating Latent Markov (LM) models for categorical responses.

Usage

```
lmest(responsesFormula = NULL, latentFormula = NULL,
  data, index, k = 1:4, start = 0,
  modSel = c("BIC", "AIC"), modBasic = 0,
  modManifest = c("LM", "FM"),
  paramLatent = c("multilogit", "difflogit"),
  weights = NULL, tol = 10^-8, maxit = 1000,
```

Arguments

responsesFormula

a symbolic description of the model to fit. A detailed description is given in the

'Details' section

latentFormula a symbolic description of the model to fit. A detailed description is given in the

'Details' section

data a data. frame in long format

index a character vector with two elements, the first indicating the name of the unit

identifier, and the second the time occasions

k an integer vector specifying the number of latent states (default: 1:4)

start type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) a string indicating the model selection criteria: "BIC" for Bayesian Information

Criterion and "AIC" for Akaike Information Criterion

modBasic model on the transition probabilities (0 for time-heterogeneity, 1 for time-homogeneity,

from 2 to (TT-1) partial time-homogeneity of a certain order)

modManifest model for manifest distribution when covariates are included in the measurement

model ("LM" = Latent Markov with stationary transition, "FM" = finite mixture model where a mixture of AR(1) processes is estimated with common variance

and specific correlation coefficients).

paramLatent type of parametrization for the transition probabilities ("multilogit" = standard

multinomial logit for every row of the transition matrix, "difflogit" = multino-

mial logit based on the difference between two sets of parameters)

weights an optional vector of weights for the available responses

tol tolerance level for convergence

maxit maximum number of iterations of the algorithm out_se to compute the information matrix and standard errors

q number of support points for the AR(1) process (if modManifest ="FM")

output to return additional output: V, Ul, S, yv, Pmarg for the basic LM model and for

the LM with covariates on the latent model (LMbasic-class and LMlatent-class) and V, PRED1, S, yv, Pmarg for the LM model with covariates in the measurement

model (LMmanifest-class)

parInit list of initial model parameters when "start = 2". For the list of parameters

look at LMbasic-class, LMlatent-class and LMmanifest-class

fort to use fortran routines when possible

seed an integer value with the random number generator state

ntry to set the number of random initializations

Details

lmest is a general function for estimating LM models for categorical responses. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

Covariates are allowed to affect manifest distribution (measurement model) or the initial and transition probabilities (latent model). Two different formulas are employed to specify the different LM models, responsesFormula and latentFormula:

- responsesFormula is used to specify the measurament model:
 - responsesFormula = y1 + y2 ~ NULL
 the LM model without covariates and two responses (y1 and y2) is specified;
 - responsesFormula = NULL
 all the columns in the data except the "id" and "time" columns are used as responses to estimate the LM model without covariates;
 - responsesFormula = y1 ~ x1 + x2
 the univariate LM model with response (y1) and two covariates (x1 and x2) in the measurement model is specified;
- latentFormula is used to specify the LM model with covariates in the latent model:
 - responsesFormula = y1 + y2 ~ NULL
 latentFormula = ~ x1 + x2 | x3 + x4
 the LM model with two responses (y1 and y2) and two covariates affecting the initial probabilities (x1 and x2) and other two affecting the transition probabilities (x3 and x4) is specified;
 - responsesFormula = y1 + y2 ~ NULL
 latentFormula = ~ 1 | x1 + x2
 (or latentFormula = ~ NULL | x1 + x2)
 the covariates affect only the transition probabilities and an intercept is specified for the intial probabilities;
 - responsesFormula = y1 + y2 ~ NULL
 latentFormula = ~ x1 + x2
 the LM model with two covariates (x1 and x2) affecting both the initial and transition probabilities is specified;
 - responsesFormula = y1 + y2 ~ NULL
 latentFormula = ~ NULL | NULL
 (or latentFormula = ~ 1 | 1)
 the LM model with only an intercept on the initial and transition probabilities is specified.

The function also allows us to deal with missing responses, including drop-out and non-monotonic missingness, under the missing-at-random assumption. Missing values for the covariates are not allowed.

The LM model with individual covariates in the measurement model is estimated only for complete univariate responses. In such a case, two possible formulations are allowed: modManifest="LM" is used to estimate the model illustrated in Bartolucci et al. (2017), where the latent process is of first order with initial probabilities equal to those of the stationary distribution of the chain; modManifest="FM" is used to estimate a model relying on the assumption that the distribution of

the latent process is a mixture of AR(1) processes with common variance and specific correlation coefficients. This model is illustrated in Bartolucci et al. (2014).

For continuous outcomes see the function lmestCont.

Value

Returns an object of class 'LMbasic' for the model without covariates (see LMbasic-class), or an object of class 'LMmanifest' for the model with covariates on the manifest model (see LMmanifest-class), or an object of class 'LMlatent' for the model with covariates on the latent model (see LMlatent-class).

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References

Bartolucci, F., Bacci, S., and Pennoni, F. (2014). Longitudinal analysis of the self-reported health status by mixture latent autoregressive models, *Journal of the Royal Statistical Society - series C*, **63**, pp. 267-288.

Bartolucci F., Pandolfi S., and Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**(4), 1-38.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

52 lmest

```
## Basic LM model with model selection using BIC
out1 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              index = c("id","t"),
              data = SRHS,
              k = 1:5,
              tol = 1e-8,
              modBasic = 1,
              seed = 123, ntry = 2)
out1
out1$Bic
# Basic LM model with model selection using AIC
out2 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              index = c("id","t"),
              data = SRHS,
              k = 1:5,
              tol = 1e-8,
              modBasic = 1,
              modSel = "AIC",
              seed = 123, ntry = 2)
out2
out2$Aic
# Criminal data
data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)
responsesFormula <- lmestFormula(data = data_criminal_sim,response = "y")$responsesFormula
out3 <- lmest(responsesFormula = responsesFormula,</pre>
              index = c("id","time"),
              data =data_criminal_sim,
              k = 1:7,
              modBasic = 1,
               tol = 10^{-4}
out3
# Example of drug consumption data
data("data_drug")
long <- data_drug[,-6]-1</pre>
long <- data.frame(id = 1:nrow(long),long)</pre>
long <- reshape(long,direction = "long",</pre>
                 idvar = "id",
                varying = list(2:ncol(long)))
out4 <- lmest(index = c("id","time"),</pre>
              k = 3,
```

lmest 53

```
data = long,
              weights = data_drug[,6],
              modBasic = 1)
out4
summary(out4)
### LM model with covariates in the latent model
# Covariates: gender, race, educational level (2 columns), age and age^2
out5 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              latentFormula = ~
              I(gender - 1) +
              I(0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              paramLatent = "multilogit",
              start = 0)
out5
summary(out5)
### LM model with the above covariates in the measurement model (stationary model)
out6 <- lmest(responsesFormula = srhs ~ -1 +
              I(gender - 1) +
              I( 0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) + I(age - 50) +
              I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              modManifest = "LM",
              out_se = TRUE,
              tol = 1e-8,
              start = 1,
              seed = 123)
out6
summary(out6)
#### LM model with covariates in the measurement model (mixture latent auto-regressive model)
out7 <- lmest(responsesFormula = srhs \sim -1 +
              I(gender - 1) +
              I( 0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) + I(age - 50) +
              I((age-50)^2/100),
```

lmestCont

Estimate Latent Markov models for continuous responses

Description

Main function for estimating Latent Markov (LM) models for continuous outcomes under the assumption of (multivariate) Gaussian distribution of the response variables given the latent process.

Usage

Arguments

responsesFormula

a symbolic description of the model to be fitted. A detailed description is given

in the 'Details' section

latentFormula a symbolic description of the model to be fitted. A detailed description is given

in the 'Details' section

data a data.frame in long format

index a character vector with two elements, the first indicating the name of the unit

identifier, and the second the time occasions

k an integer vector specifying the number of latent states (default: 1:4)

start type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)

modSel a string indicating the model selection criteria: "BIC" for Bayesian Information

Criterion and "AIC" for Akaike Information Criterion Criterion

modBasic	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
paramLatent	type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters)
weights	vector of weights
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors (By default is set to FALSE)
output	to return additional output (V, Ul, Pmarg) (LMbasiccont-class,LMlatentcont-class,LMmanifestcont-
parInit	list of initial model parameters when "start = 2". For the list of parameters look at LMbasiccont-class, LMlatentcont-class, and LMmanifestcont-class
fort	to use fortran routines when possible (By default is set to TRUE)
seed	an integer value with the random number generator state
ntry	to set the number of random initializations
miss.imp	how to deal with missing values (TRUE for imputation through the imp.mix function, FALSE for missing at random assumption)

Details

The function lmestCont is a general function for estimating LM models for continuous responses. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

Covariates are allowed on the initial and transition probabilities (latent model). Two different formulas are employed to specify the different LM models, responsesFormula and latentFormula:

- responsesFormula is used to specify the measurament model:
 - responsesFormula = y1 + y2 ~ NULL
 the LM model without covariates and two responses (y1 and y2) is specified.
 - responsesFormula = NULL
 all the columns in the data except the "id" and "time" columns are used as responses to estimate the LM model without covariates;
 - responsesFormula = y1 + y2 ~ x1 + x2
 the LM model with two responses (y1 and y2) and two covariates in the measurement model is specified;
- latentFormula is used to specify the LM model with covariates in the latent model:
 - responsesFormula = y1 + y2 ~ NULL
 latentFormula = ~ x1 + x2 | x3 + x4
 the LM model with two responses (y1 and y2) and two covariates affecting the initial probabilities (x1 and x2) and other two affecting the transition probabilities (x3 and x4) is specified;

```
latentFormula = ~ 1 | x1 + x2
  (or latentFormula = ~ NULL | x1 + x2)
  the covariates affect only the transition probabilities and an intercept is specified for the intial probabilities;
- responsesFormula = y1 + y2 ~ NULL
  latentFormula = ~ x1 + x2
  the LM model with two covariates (x1 and x2) affecting both the initial and transition probabilities is specified;
- responsesFormula = y1 + y2 ~ NULL
  latentFormula = ~ NULL | NULL
  (or latentFormula = ~ 1 | 1)
```

the LM model with only an intercept on the initial and transition probabilities is specified.

The function also allows us to deal with missing responses using the mix package (Schafer, 2024) for imputing the missing values. Missing values for the covariates are not allowed.

For categorical outcomes see the function lmest.

- responsesFormula = y1 + y2 ~ NULL

Value

Returns an object of class 'LMbasiccont' for the model without covariates (see LMbasiccont-class), an object of class 'LMlatentcont' for the model with covariates on the latent model (see LMlatentcont-class), or an object of class 'LMmanifestcont' for the model with covariates on the measurement model (see LMmanifestcont-class)).

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni

References

Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**(4), 1-38.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

See Also

lmestFormula

```
data = data_long_cont,
                 k = 3,
                 modBasic = 1,
                 tol = 10^{-5}
out
summary(out)
# Basic LM model with model selection using BIC
out1 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,</pre>
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 1:5,
                  ntry = 2,
                  modBasic = 1,
                  tol = 10^{-5}
out1
out1$Bic
# Basic LM model with model selection using AIC
out2 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,</pre>
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 1:5,
                  modBasic = 1,
                  ntry = 2,
                  modSel = "AIC",
                  tol = 10^{-5}
out2
out2$Aic
# LM model with covariates in the measurement model
out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 \sim X1 + X2,
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 3,
                  output = TRUE)
out3
summary(out3)
# LM model with covariates in the latent model
out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,</pre>
                  latentFormula = ~ X1 + X2,
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 3,
```

58 lmestData

 ${\tt lmestData}$

Data for LMest functions

Description

An object of class lmestData containing data in long format, some necessary information on the data structure and objects for the estimation functions.

Usage

```
lmestData(data, id = NULL, time = NULL,
    idAsFactor = TRUE, timeAsFactor = TRUE,
    responsesFormula = NULL, latentFormula = NULL,
    na.rm = FALSE, check.names = FALSE)
```

Arguments

data	a matrix or data frame in long format of observation
id	a numeric vector or a string indicating the column with the unit identifier. If NULL, the first column is considered
time	a numeric vector or a string indicating the column with the time occasions. If NULL, the second column is considered, and if the id is not NULL, the function will automatically add the column with the time occasions
idAsFactor	a logical value indicating whether or not the column with the ids is converted to a factor. (By default is set to TRUE)
timeAsFactor	a logical value indicating whether or not the column with the time occasions is converted in a factor. (By default is set to TRUE)

ImestData 59

responsesFormula

A detailed description is given in lmest, lmestCont

latentFormula A detailed description is given in lmest, lmestCont

na.rm a logical value indicating whether or not the observation with at least a missing

value is removed (By default is set to FALSE)

check.names a logical value indicating whether or not the names of the variables are syntacti-

cally valid, and adjusted if necessary. (By default is set to FALSE)

Value

An object of class 'lmestData' with the following objects:

data a data.frame object to use in the estimation functions

id a integer vector with the unit identifiertime a integer vector with the time occasions

n the number of observation

TT an integer value indicating number of time occasions

d an interger value indicating the number of variables (columns except id and

time)

Y the response variables

Xmanifest the variables affecting the measurement model if specified in responsesFormula
Xinitial the variables affecting the initial probabilities of the latent model if specified in

latentFormula

Xtrans the variables affecting the transition probabilities of the latent model if specified

in latentFormula

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

```
data(data_long_cont)
str(data_long_cont)

## Data with continous resposes

dt <- lmestData(data = data_long_cont, id = "id",time="time")
str(dt)

## Summary of each variable and for each time
summary(dt)

## Summary of each variable
summary(dt, type = "cross")</pre>
```

60 ImestDecoding

```
## Summary of each variable by time
summary(dt, type = "year")
plot(dt)
plot(dt, typePlot = "sh")
## Not run:
data("data_criminal_sim")
dt1 <- lmestData(data = data_criminal_sim, id = "id", time = "time")</pre>
str(dt1)
summary(dt1, varType = rep("d",ncol(dt1$Y)))
dt2 <- lmestData(data = data_criminal_sim, id = "id", time = "time",</pre>
                responsesFormula = y1 + y2 ~ y3, latentFormula = ~ y7 + y8 | y9 + y10)
str(dt2)
## Summary for responses, covariates on the manifest distribution,
## covariates on intial and transition probabilities
summary(dt2, dataSummary = "responses", varType = rep("d", ncol(dt2$Y)))
summary(dt2, dataSummary = "manifest",varType = rep("d",ncol(dt2$Xmanifest)))
summary(dt2, dataSummary = "initial",varType = rep("d",ncol(dt2$Xinitial)))
summary(dt2, dataSummary = "transition",varType = rep("d",ncol(dt2$Xtrans)))
## End(Not run)
```

lmestDecoding

Perform local and global decoding

Description

Function that performs local and global decoding (Viterbi algorithm) from the output of lmest, lmestCont, and lmestMixed.

Usage

```
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
## S3 method for class 'LMbasic'
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
## S3 method for class 'LMmanifest'
lmestDecoding(est, sequence = NULL, fort = TRUE, ...)
```

ImestDecoding 61

```
## S3 method for class 'LMlatent'
lmestDecoding(est, sequence = NULL, fort = TRUE,...)
## S3 method for class 'LMbasiccont'
lmestDecoding(est, sequence = NULL, fort = TRUE,...)
## S3 method for class 'LMmixed'
lmestDecoding(est, sequence = NULL, fort = TRUE,...)
```

Arguments

an object obtained from a call to lmest, lmestCont, and lmestMixed est an integer vector indicating the units for the decoding. If NULL the whole obsersequence vations are considered. (By default is set to NULL) to use fortran routines when possible fort

further arguments . . .

Value

Ul matrix of local decoded states corresponding to each row of Y matrix of global decoded states corresponding to each row of Y Ug

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References

Viterbi A. (1967) Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13, 260-269.

Juan B., Rabiner L. (1991) Hidden Markov Models for Speech Recognition. Technometrics, 33, 251-272.

```
# Decoding for basic LM model
data("data_drug")
long <- data_drug[,-6]-1</pre>
long <- data.frame(id = 1:nrow(long),long)</pre>
long <- reshape(long,direction = "long",</pre>
                 idvar = "id",
                 varying = list(2:ncol(long)))
est <- lmest(index = c("id", "time"),</pre>
              k = 3,
              data = long,
              weights = data_drug[,6],
              modBasic = 1)
# Decoding for a single sequence
```

62 ImestFormula

```
out1 <- lmestDecoding(est, sequence = 1)</pre>
out2 <- lmestDecoding(est, sequence = 1:4)</pre>
# Decoding for all sequences
out3 <- lmestDecoding(est)</pre>
## Not run:
# Decoding for LM model with covariates on the initial and transition probabilities
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]</pre>
# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs
est2 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              latentFormula = ~
              I(gender - 1) +
              I(0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              paramLatent = "difflogit",
              output = TRUE)
# Decoding for a single sequence
out3 <- lmestDecoding(est2, sequence = 1)</pre>
# Decoding for the first three sequences
out4 <- lmestDecoding(est2, sequence = 1:3)</pre>
# Decoding for all sequences
out5 <- lmestDecoding(est2)</pre>
## End(Not run)
```

lmestFormula 63

Description

Bulding formulas for lmest, lmestCont, lmestMixed, and lmestMc.

Usage

```
lmestFormula(data,
```

response, manifest = NULL, LatentInitial = NULL, LatentTransition = NULL, AddInterceptManifest = FALSE, AddInterceptInitial = TRUE, AddInterceptTransition = TRUE, responseStart = TRUE, manifestStart = TRUE, LatentInitialStart = TRUE, LatentTransitionStart = TRUE)

Arguments

data a data frame or a matrix of data

response a numeric or character vector indicating the column indices or the names for the

response variables

manifest a numeric or character vector indicating the column indices or the names for the

covariates affecting the measurement model

LatentInitial a numeric or character vector indicating the column indices or the names for the

covariates affecting the initial probabilities

LatentTransition

a numeric or character vector indicating the column indices or the names for the

covariates affecting the transition probabilities

AddInterceptManifest

a logical value indicating whether the intercept is added to the covariates affect-

ing the measurement model

AddInterceptInitial

a logical value indicating whether the intercept is added to covariates affecting

the initial probabilities

AddInterceptTransition

a logical value indicating whether the intercept is added to covariates affecting

the transition probabilities

responseStart a logical value indicating whether the response variables names start with response

argument

manifestStart a logical value indicating whether the covariates names start with manifest

argument

LatentInitialStart

a logical value indicating whether the covariates names start with LatentInitial

argument

LatentTransitionStart

a logical value indicating whether the covariates names start with LatentTransition

argument

64 ImestFormula

Details

Generates formulas for responsesFormula and latentFormula to use in lmest, lmestCont, lmestMixed, and lmestMc.

Value

Returns a list with responsesFormula and latentFormula objects.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

```
data(data_SRHS_long)
names(data_SRHS_long)
# Formula with response srhs and covariates for both initail and transition:
# gender,race,educational,age.
## LM model with covariates on the latent model
# and with intercepts on the initial and transition probabilities
fm <- lmestFormula(data = data_SRHS_long,</pre>
                   response = "srhs",
                   LatentInitial = 3:6, LatentTransition = 3:6)
fm
## LM model with covariates on the latent model
# and without intercepts on the initial and transition probabilities
fm <- lmestFormula(data = data_SRHS_long,</pre>
                   response = "srhs",
                   LatentInitial = 3:6, LatentTransition = 3:6,
                   AddInterceptInitial = FALSE, AddInterceptTransition = FALSE)
fm
######
data(data_criminal_sim)
str(data_criminal_sim)
# Formula with only the responses from y1 to y10
fm <- lmestFormula(data = data_criminal_sim,response = "y")$responsesFormula
fm
# Formula with only the responses from y1 to y10 and intercept for manifest
fm <- lmestFormula(data = data_criminal_sim,</pre>
                   response = "y",AddInterceptManifest = TRUE)$responsesFormula
fm
```

lmestFormula 65

```
## LM model for continous responses
data(data_long_cont)
names(data_long_cont)
# Formula with response Y1, Y2, no covariate for manifest,
# X1 covariates for initail and X2 covariate for transition
fm <- lmestFormula(data = data_long_cont,</pre>
                   response = c("Y"),
                   LatentInitial = "X"
                   LatentTransition = "X2")
fm
## Wrong model specification since two variable start with X.
# Check the starts arguments.
# For the right model:
fm <- lmestFormula(data = data_long_cont,</pre>
                   response = c("Y"),
                   LatentInitial = "X1",LatentTransition = "X2")
fm
## or
fm <- lmestFormula(data = data_long_cont,</pre>
                   response = c("Y"),
                   LatentInitial = 6,LatentTransition = "X2",
                   LatentInitialStart = FALSE)
fm
## Not run:
data(data_criminal_sim)
data_criminal_sim <- data.frame(data_criminal_sim)</pre>
# Mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim,</pre>
                                  response = "y")$responsesFormula
out <- lmest(responsesFormula = responsesFormula,</pre>
             index = c("id","time"),
             data = data_criminal_sim,
             k = 2
## End(Not run)
```

66 lmestMc

|--|

Description

Main function for estimating Markov Chain (MC) models for categorical responses with or without covariates.

Usage

```
lmestMc(responsesFormula = NULL,
       data, index, start = 0,
       modBasic = 0, weights = NULL,
       tol = 10^-8, maxit = 1000,
       out_se = FALSE, output = FALSE, fort = TRUE, seed = NULL)
```

Arguments

	-	-	
respor	ısest	·orn	nu⊥a

responsesFormula	
	a symbolic description of the model to fit. A detailed description is given in the 'Details' section
data	a data.frame in long format
index	a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions
start	type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
modBasic	model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order)
weights	an optional vector of weights for the available responses
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors (FALSE is the default option)
output	to return additional output (PI,Piv) (MCcov-class)
fort	to use fortran routines when possible (By default is set to TRUE)
seed	An integer value with the random number generator state.

Details

The function 1mestMc estimates the basic MC model and the MC model with covariates for categorical responses. The function requires data in long format and two additional column indicating the unit identifier and the time occasions.

responsesFormula is used to specify the basic MC models and the model with covariates:

lmestMc 67

- responsesFormula = y1 + y2 ~ NULL the MC model without covariates and two responses (y1 and y2) is specified;
- responsesFormula = NULL
 all the columns in the data except the "id" and "time" columns are used to estimate MC
 without covariates;
- responsesFormula = y1 ~ x1 + x2 | x3 + x4 the MC model with one response (y1), two covariates affecting the initial probabilities (x1 and x2) and other two different covariates affecting the transition probabilities (x3 and x4) is specified;
- responsesFormula = $y1 \sim x1 + x2$ the MC model with one response (y1) and two covariates (x1 and x2) affecting both the initial and transition probabilities is specified.

Missing responses are not allowed.

Value

Returns an object of class 'MCbasic' for the basic model without covariates (see MCbasic-class), or an object of class 'MCcov' for the model with covariates (see MCcov-class).

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References

Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**(4), 1-38.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

lmestMc

```
# Example of drug consumption data
data("data_drug")
long <- data_drug[,-6]</pre>
long <- data.frame(id = 1:nrow(long),long)</pre>
long <- reshape(long,direction = "long",</pre>
                 idvar = "id",
                 varying = list(2:ncol(long)))
out1 <- lmestMc(index = c("id","time"), data = long,</pre>
                 weights = data_drug[,6], modBasic = 1, out_se = TRUE)
out1
### MC model with covariates
### Covariates: gender, race, educational level (2 columns), age and age^2
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]</pre>
# Categories of the responses rescaled from 1 "poor" to 5 "excellent"
SRHS$srhs <- 5 - SRHS$srhs
out2 <- lmestMc(responsesFormula = srhs ~</pre>
                I( 0 + (race==2) + (race == 3)) +
                I(0 + (education == 4)) +
                I(0 + (education == 5)) +
                 I(age - 50) +
                 I((age-50)^2/100),
                 index = c("id","t"),
                 data = SRHS)
out2
summary(out2)
# Criminal data
data(data_criminal_sim)
data_criminal_sim = data.frame(data_criminal_sim)
out3 <- lmestMc(responsesFormula = y5~sex,</pre>
                index = c("id","time"),
                 data = data_criminal_sim,
                 output = TRUE)
out3
## End(Not run)
```

ImestMixed 69

lmestMixed	Estimate mixed Latent Markov models
------------	-------------------------------------

Description

Main function for estimating the mixed latent Markov (LM) models for categorical responses with discrete random effects in the latent model.

Usage

Arguments

responsesFormula	
	a symbolic description of the model to fit. A detailed description is given in the 'Details' section
data	a data.frame in long format
index	a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions
k1	number of latent classes
k2	number of latent states
start	type of starting values (0 = deterministic, 1 = random, 2 = initial values in input)
weights	an optional vector of weights for the available responses
tol	tolerance level for convergence
maxit	maximum number of iterations of the algorithm
out_se	to compute the information matrix and standard errors (FALSE is the default option)
seed	an integer value with the random number generator state

Details

The function lmestMixed estimates the mixed LM for categorical data. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.

responsesFormula is used to specify the responses of the mixed LM model:

- responsesFormula = $y1 + y2 \sim NULL$ the mixed LM model with two categorical responses (y1 and y2) is specified;
- responsesFormula = NULL
 all the columns in the data except the "id" and "time" columns are used as responses to
 estimate the mixed LM.

Missing responses are not allowed.

70 ImestSearch

Value

Returns an object of class 'LMmixed' (see LMmixed-class).

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References

Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**(4), 1-38.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

Examples

```
## Not run:
# Example based on criminal data
data(data_criminal_sim)
data_criminal_sim <- data.frame(data_criminal_sim)</pre>
# Estimate mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim,</pre>
                                  response = "y")$responsesFormula
# fit mixed LM model only for females
out <- lmestMixed(responsesFormula = responsesFormula,</pre>
                  index = c("id","time"),
                  k1 = 2,
                  k2 = 2,
                  data = data_criminal_sim[data_criminal_sim$sex == 2,])
out
summary(out)
## End(Not run)
```

lmestSearch

Search for the global maximum of the log-likelihood

Description

Function that searches for the global maximum of the log-likelihood of different models and selects the optimal number of states.

ImestSearch 71

Usage

Arguments

res	ponsesFormula
-----	---------------

a symbolic description of the model to fit. A detailed description is given in the

'Details' section of lmest

latentFormula a symbolic description of the model to fit. A detailed description is given in the

'Details' section of lmest

data a data. frame in long format

index a character vector with two elements, the first indicating the name of the unit

identifier, and the second the time occasions

k a vector of integer values for the number of latent states

weights an optional vector of weights for the available responses

version type of responses for the LM model: "categorical" and "continuous"

nrep number of repetitions of each random initialization

tol1 tolerance level for checking convergence of the algorithm in the random initial-

izations

tol2 tolerance level for checking convergence of the algorithm in the last determinis-

tic initialization

out_se to compute the information matrix and standard errors (FALSE is the default

option)

miss.imp Only for continuous responses: how to deal with missing values (TRUE for im-

putation through the imp.mix function, FALSE for missing at random assump-

tion)

seed an integer value with the random number generator

... additional arguments to be passed to functions lmest or lmestCont

Details

The function combines deterministic and random initializations strategy to reach the global maximum of the model log-likelihood. It uses one deterministic initialization (start=0) and a number of random initializations (start=1) proportional to the number of latent states. The tolerance level is set equal to 10^-5. Starting from the best solution obtained in this way, a final run is performed (start=2) with a default tolerance level equal to 10^-10.

Missing responses are allowed according to the model to be estimated.

72 ImestSearch

Value

Returns an object of class 'LMsearch' with the following components:

out.single	Output of every LM model estimated for each number of latent states given in input
Aic	Values the Akaike Information Criterion for each number of latent states given in input
Bic	Values of the Bayesian Information Criterion for each number of latent states given in input
lkv	Values of log-likelihood for each number of latent states given in input.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

References

Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, *Journal of Statistical Software*, **81**(4), 1-38.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) *Latent Markov Models for Longitudinal Data*, Chapman and Hall/CRC press.

```
### Example with data on drug use in wide format
data("data_drug")
long <- data_drug[,-6]</pre>
# add labels referred to the identifier
long <- data.frame(id = 1:nrow(long),long)</pre>
# reshape data from the wide to the long format
long <- reshape(long,direction = "long",</pre>
                 idvar = "id",
                 varying = list(2:ncol(long)))
out <- lmestSearch(data = long,</pre>
                    index = c("id","time"),
                    version = "categorical",
                    k = 1:3,
                    weights = data_drug[,6],
                    modBasic = 1,
                    seed = 123)
out
summary(out$out.single[[3]])
```

LMlatent-class 73

```
## Not run:
### Example with data on self rated health
# LM model with covariates in the measurement model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:1000,]</pre>
# Categories rescaled to vary from 1 ("poor") to 5 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs
out1 <- lmestSearch(data = SRHS,</pre>
                    index = c("id","t"),
              version = "categorical",
             responsesFormula = srhs \sim -1 +
             I(gender - 1) +
             I( 0 + (race == 2) + (race == 3)) +
             I(0 + (education == 4)) +
             I(0 + (education == 5)) + I(age - 50) +
             I((age-50)^2/100),
                   k = 1:2,
                   out_se = TRUE,
                   seed = 123)
summary(out1)
summary(out1$out.single[[2]])
## End(Not run)
```

LMlatent-class

Class 'LMlatent'

Description

An S3 class object created by lmest for Latent Markov (LM) model with covariates in the latent model.

1k	maximum log-likelihood
Ве	estimated array of the parameters affecting the logit for the initial probabilities
Ga	estimated array of the parameters affecting the logit for the transition probabilities
Piv	estimate of initial probability matrix. The first state is used as reference category when param = "multilogit"
PI	estimate of transition probability matrices. State u is used as reference category when paramLatent = "multilogit"

74 LMlatent-class

estimate of conditional response probabilities (mb x k x r)

number of free parameters np k optimal number of latent states value of the Akaike Information Criterion for model selection aic value of the Bayesian Information Criterion for model selection bic log-likelihood trace at every step of the EM algorithm 1kv number of observations in the data TT number of time occasions type of parametrization for the transition probabilities ("multilogit" = standard paramLatent multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) sePsi standard errors for the conditional response matrix standard errors for Be seBe seGa standard errors for Ga vector containing the values of the log-likelihood of the LM model with each k Lk (latent states) Bic vector containing the values of the BIC for each k Aic vector containing the values of the AIC for each k array containing the posterior distribution of the latent states for each response configuration and time occasion U1 matrix containing the predicted sequence of latent states by the local decoding method array containing the available response configurations S

vector of frequencies of the available configurations yν

matrix containing the marginal distribution of the latent states Pmarg

call command used to call the function

data Data frame given in input

Author(s)

Psi

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

1mest

LMlatentcont-class 75

Description

An S3 class object created by lmestCont for the Latent Markov (LM) model for continuous responses in long format with covariates in the latent model.

estimated array of the parameters affecting the logit for the initial probabilities estimated array of the parameters affecting the logit for the transition probabilities estimate of conditional means of the response variables estimate of var-cov matrix common to all states np number of free parameters k optimal number of latent states aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent states)	1k	maximum log-likelihood
ties Mu estimate of conditional means of the response variables Si estimate of var-cov matrix common to all states np number of free parameters k optimal number of latent states aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection lkv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent states)	Ве	estimated array of the parameters affecting the logit for the initial probabilities
si estimate of var-cov matrix common to all states np number of free parameters k optimal number of latent states aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection lkv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent states)	Ga	
np number of free parameters k optimal number of latent states aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection lkv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent states)	Mu	estimate of conditional means of the response variables
k optimal number of latent states aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection lkv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent states)	Si	estimate of var-cov matrix common to all states
aic value of the Akaike Information Criterion for model selection bic value of the Bayesian Information Criterion for model selection lkv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	np	number of free parameters
bic value of the Bayesian Information Criterion for model selection 1kv log-likelihood trace at every step n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	k	optimal number of latent states
n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	aic	value of the Akaike Information Criterion for model selection
n number of observations in the data TT number of time occasions paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for Be seGa standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	bic	value of the Bayesian Information Criterion for model selection
paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	lkv	log-likelihood trace at every step
paramLatent type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	n	number of observations in the data
multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) seMu standard errors for the conditional means seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	TT	number of time occasions
seSi standard errors for the var-cov matrix seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	paramLatent	multinomial logit for every row of the transition matrix, "difflogit" = multino-
seBe standard errors for Be seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	seMu	standard errors for the conditional means
seGa standard errors for Ga sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	seSi	standard errors for the var-cov matrix
sc score vector J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	seBe	standard errors for Be
J information matrix PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	seGa	standard errors for Ga
PI estimate of transition probability matrices Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	sc	score vector
Piv estimate of initial probability matrix Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	J	information matrix
Lk vector containing the values of the log-likelihood of the LM model with each k (latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	PI	estimate of transition probability matrices
(latent states) Bic vector containing the values of the BIC of the LM model with each k (latent states) Aic vector containing the values of the AIC of the LM model with each k (latent	Piv	estimate of initial probability matrix
states) Aic vector containing the values of the AIC of the LM model with each k (latent	Lk	
	Bic	
	Aic	

76 LMmanifest-class

V	array containing the posterior distribution of the latent states for each units and time occasion
U1	matrix containing the predicted sequence of latent states by the local decoding method
Pmarg	matrix containing the marginal distribution of the latent states
call	command used to call the function
data	data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

lmestCont

uss'LMmanifest'	
bb Limanii Coc	

Description

An S3 class object created by lmest for Latent Markov (LM) model with covariates in the measurement model.

mu	vector of cut-points
al	support points for the latent states
be	estimate of the vector of regression parameters
si	sigma of the AR(1) process (mod = "FM")
rho	parameter vector for AR(1) process (mod = "FM")
la	vector of initial probabilities
PI	transition matrix
lk	maximum log-likelihood
np	number of parameters
k	optimal number of latent states
aic	value of the Akaike Information Criterion
bic	value of Bayesian Information Criterion
n	number of observations in the data
TT	number of time occasions

LMmanifestcont-class 77

modManifest for LM model with covariates on the manifest model: "LM" = Latent Markov

with stationary transition, "FM" = finite mixture model where a mixture of AR(1) processes is estimated with common variance and specific correlation

coefficients

sebe standard errors for the regression parameters be selrho standard errors for logit type transformation of rho

J1 information matrix

V array containing the posterior distribution of the latent states for each units and

time occasion

PRED1 prediction of the overall latent effect

S array containing the available response configurations yv vector of frequencies of the available configurations

Pmarg matrix containing the marginal distribution of the latent states

Lk vector containing the values of the log-likelihood of the LM model with each k

(latent states)

Bic vector containing the values of the BIC for each k
Aic vector containing the values of the AIC for each k

call command used to call the function

data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

1mest

LMmanifestcont-class Class 'LMmanifestcont'

Description

An S3 class object created by lmestCont for Latent Markov (LM) model for continuous responses in long format with covariates in the measurement model.

Al	support points for the latent states
Ве	estimate of the vector of regression parameters
Si	estimate of var-cov matrix common to all states
piv	vector of initial probabilities

78 LMmanifestcont-class

Ρi transition matrix 1k maximum log-likelihood number of parameters np k optimal number of latent states value of the Akaike Information Criterion aic bic value of Bayesian Information Criterion number of observations in the data TT number of time occasions modBasic model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order) 1kv log-likelihood trace at every step seAl standard errors for the support points Al seBe standard errors regression parameters Be sepiv standard errors for the initial probabilities sePi standard errors for the transition probabilities seSi standard errors for the var-cov matrix Lk vector containing the values of the log-likelihood of the LM model for each k (latent states) Np vector containing the number of parameters for each k (latent states) vector containing the values of the BIC for each k Bic vector containing the values of the AIC for each k Aic J information matrix score vector sc ٧ array containing the posterior distribution of the latent states for each units and time occasion Ul matrix containing the predicted sequence of latent states by the local decoding method **Pmarg** matrix containing the marginal distribution of the latent states call command used to call the function

Author(s)

data

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni

data frame given in input

See Also

lmestCont

LMmixed-class 79

LMmixed-class	Class 'LMmixed'	

Description

An S3 class object created by ${\tt lmestMixed}$ for the mixed latent Markov (LM) models for categorical data in long format.

Value

la	estimate of the mass probability vector (distribution of the random effects)
Piv	estimate of initial probabilities
Pi	estimate of transition probability matrices
Psi	estimate of conditional response probabilities
lk	maximum log-likelihood
W	posterior probabilities of the random effect
np	number of free parameters
k1	number of support points (latent classes) of the latent variable defining the unobserved clusters
k2	number of support points (latent states) of the latent variable defining the first-order Markov process
bic	value of the Akaike Information Criterion for model selection
aic	value of the Akaike Information Criterion for model selection
n	number of observations in the data
TT	number of time occasions
sela	standard errors for la
sePiv	estimate of initial probability matrix
sePi	standard errors for the transition probabilities
sePsi	standard errors for the conditional response matrix
call	command used to call the function
data	the input data

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

lmestMixed

80 long2matrices

long2matrices

From data in the long format to data in array format

Description

Function that transforms data in the long format to data in array format.

Usage

```
long2matrices(id, time = NULL, X = NULL, Y)
```

Arguments

id	vector of subjects id
time	vector of time occasions
X	matrix of covariates in long format
Υ	matrix of responses in long format

Value

```
XX array of covariates (n x TT x nc)
YY array of responses (n x TT x r)
```

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
# Example based on SRHS data

# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long[1:1600,]
head(dataSRHS)
X <- cbind(dataSRHS$gender-1, dataSRHS$race == 2 | dataSRHS$race == 3,
dataSRHS$education == 4,dataSRHS$education == 5, dataSRHS$age-50,
(dataSRHS$age-50)^2/100)
Y <- dataSRHS$srhs
res <- long2matrices(dataSRHS$id, X = X, Y = Y)</pre>
```

long2wide 81

long2wide	From data in the long format to data in the wide format	

Description

Function that transforms data in the long format to data in the wide format.

Usage

```
long2wide(data, nameid, namet, colx, coly, aggr = T, full = 999)
```

Arguments

data	matrix of data
nameid	name of the id column
namet	name of the t column
colx	vector of the names of the columns of the covariates
coly	vector of the names of the columns of the responses
aggr	if wide aggregated format is required
full	number to use for missing data

Value

listid	list of id for every unit
listt	list of the time occasions
data_wide	data in wide format
XX	array of the covariates
YY	array of the responses
C	1' C

freq vector of the corresponding frequencies

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

```
# Example based on criminal data
# load criminal data
data(data_criminal_sim)
# consider only the first 1000 records to shorten time
out <- long2wide(data_criminal_sim[1:1000,], "id", "time", "sex",
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"), aggr = TRUE, full = 999)</pre>
```

82 matrices2long

matrices2long

From data in array format to data in long format

Description

Function to convert data with array format in data with long format.

Usage

```
matrices2long(Y, X1 = NULL, X2 = NULL)
```

Arguments

```
Y array of responses (n x TT x r)
X1 array of covariates (n x TT x nc1)
X2 array of covariates (n x TT x nc2)
```

Details

Y, X1 and X2 must have the same number of observations.

Value

Returns a data.frame with data in long format. The first column indicates the name of the unit identifier, and the second column indicates the time occasions.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

MCbasic-class 83

```
res <- long2matrices(SRHS$id, X = X, Y = Y)
long <- matrices2long(Y = res$YY, X1 = res$XX)</pre>
```

Description

An S3 class object created by lmestMc function for the Markov chain (MC) model without covariates.

Value

1k	maximum log-likelihood
piv	estimate of initial probability vector
Pi	estimate of transition probability matrices
np	number of free parameters
aic	value of the Akaike Information Criterion for model selection
bic	value of the Bayesian Information Criterion for model selection
Fy	estimated marginal distribution of the response variable ats each time occasion
n	number of observations in the data
TT	number of time occasions
modBasic	model on the transition probabilities: default 0 for time-heterogeneous transition matrices, 1 for time-homogeneous transition matrices, 2 for partial time homogeneity based on two transition matrices one from 2 to (TT-1) and the other for TT
sepiv	standard errors for the initial probabilities
sePi	standard errors for the transition probabilities
call	command used to call the function
data	data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

lmestMc

MCcov-class

|--|

Description

An S3 class object created by lmestMc function for Markov chain (MC) model for categorical responses in long format with covariates.

Value

lk	maximum log-likelihood
Ве	estimated array of the parameters affecting the logit for the initial probabilities
Ga	estimated array of the parameters affecting the logit for the transition probabilities
np	number of free parameters
aic	value of the Akaike Information Criterion (AIC) for model selection
bic	value of the Bayesian Information Criterion (BIC) for model selection
n	number of observations in the data
TT	number of time occasions
seBe	standard errors for Be
seGa	standard errors for Ga
Piv	estimate of initial probability matrix
PI	estimate of transition probability matrices
call	command used to call the function
data	data frame given in input

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

See Also

lmestMc

NLSYlong 85

NLSYlong

National Longitudinal Survey of Youth data

Description

Longitudinal dataset in long format deriving from the National Longitudinal Survey of Youth with information about 581 individuals followed from 1990 to 1994.

Usage

```
data(NLSYlong)
```

Format

A data frame with 1743 observations on the following 12 variables.

```
momage mother's age at birth.

gender 0 if male, 1 if female.

childage child's age at first interview.

hispanic 1 if child is Hispanic, 0 if not.

black 1 if child is black, 0 if not.

momwork 1 if mother works, 0 if not.

married 1 if parents are married, 0 if not.

time occasion of observation.

anti a measure of antisocial behavior measured on a scale from 0 to 6.

self a measure of self-esteem measured on a scale from 6 to 24.

pov a time varying variable assuming value 1 if family is in poverty, 0 if not.

id subject id.
```

Source

```
https://www.nlsinfo.org/content/cohorts/nlsy79
```

References

The wide format of this dataset is downloadable from the package 'panelr'.

```
data(NLSYlong)
```

86 plot

plot

Plots for Generalized Latent Markov Models

Description

 $Plots \ for \ outputs \ of \ LMest \ objects: \ LMbasic, \ LMbasic \ cont, \ LMl \ atent, \ LMl \ atent \ cont, \ and \ LMsearch$

Usage

```
## S3 method for class 'LMbasic'
plot(x,
                       what = c("modSel", "CondProb", "transitions", "marginal"),
                            verbose=interactive(),...)
## S3 method for class 'LMlatent'
plot(x,
                       what = c("modSel", "CondProb", "transitions", "marginal"),
                             verbose=interactive(),...)
## S3 method for class 'LMbasiccont'
plot(x,
                        what = c("modSel", "density", "transitions", "marginal"),
                                 components,verbose=interactive(),...)
## S3 method for class 'LMlatentcont'
plot(x,
                        what = c("modSel", "density", "transitions", "marginal"),
                                  components, verbose=interactive(),...)
## S3 method for class 'LMsearch'
plot(x,...)
```

Arguments

X	an object of class LMbasic, LMlatent, LMbasiccont, LMlatentcont or LMsearch
what	a string indicating the type of plot. A detailed description is provided in the 'Details' section.
components	An integer or a vector of integers specifying the components (latent states) to be selected for the "density" plot.
verbose	A logical controlling if a text progress bar is displayed during the fitting procedure. By default is TRUE if the session is interactive, and FALSE otherwise.
	Unused argument.

Details

The type of plots are the following:

"modSel"	plot of values of the Bayesian Information Criterion and of the Akaike Information	
	Criterion for model selection	
"CondProb"	plot of the estimated conditional response probabilities	

plot 87

```
"density" plot of the overall estimated density for continuous responses, with weights given by the estimated marginal distribution of the latent variable. For multivariate continuous responses a contour plot is provided. If the argument components is specified, the density plot for the selected components results

"transitions" path diagram of the estimated transition probabilities

"marginal" plot of the estimated marginal distribution of the latent variable
```

If argument what is not specified, a menu of choices is proposed in an interactive session.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

```
## Not run:
### Plot of basic LM model
data("data_SRHS_long")
SRHS <- data_SRHS_long[1:2400,]</pre>
# Categories rescaled to vary from 0 ("poor") to 4 ("excellent")
SRHS$srhs <- 5 - SRHS$srhs
out <- lmest(responsesFormula = srhs ~ NULL,
            index = c("id","t"),
            data = SRHS,
            k = 1:3,
            start = 1,
            modBasic = 1,
            seed = 123)
out
summary(out)
plot(out)
### Plot of basic LM model for continuous responses
data(data_long_cont)
out1 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 1:5,
                  modBasic=1,
                  tol=10^{-5})
plot(out1,what="modSel")
plot(out1,what="density")
plot(out1, what="density", components=c(1,3))
```

88 print

```
## End(Not run)
```

print

Print the output

Description

Given the output, it is written in a readable form

Usage

```
## S3 method for class 'LMbasic'
print(x, ...)
## S3 method for class 'LMbasiccont'
print(x, ...)
## S3 method for class 'LMlatent'
print(x, ...)
## S3 method for class 'LMlatentcont'
print(x, ...)
## S3 method for class 'LMmanifest'
print(x, ...)
## S3 method for class 'LMmixed'
print(x, ...)
## S3 method for class 'MCbasic'
print(x, ...)
## S3 method for class 'MCcov'
print(x, ...)
## S3 method for class 'LMsearch'
print(x, modSel = "BIC",...)
```

Arguments

```
x output from lmest,lmestCont,lmestMixed, and lmestMc
modSel a string indicating the model selection criteria: "BIC" (default) for Bayesian
Information Criterion and "AIC" for Akaike Information Criterion Criterion
... further arguments passed to or from other methods
```

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

PSIDlong 89

PSIDlong

Dataset about income dynamics

Description

Longitudinal dataset deriving from the Panel Study of Income Dynamics (PSID) from 1987 to 1993.

Usage

data(PSIDlong)

Format

A data frame with 1446 observations on the following variables.

id subject id.

time occasion of observation.

Y1Fertility indicating whether a woman had given birth to a child in a certain year 1 for "yes", 0 for "no".

Y2Employment indicating whether she was employed 1 for "yes", 0 for "no".

X1Race dummy variable equal to 1 for a "black" woman, 0 for "other".

X2Age age in 1986, rescaled by its maximum value.

X3Age2 squared age.

X4Education number of years of schooling.

X5Child1_2 number of children in the family aged between 1 and 2 years, referred to the previous year.

X6Child3_5 number of children in the family aged between 3 and 5 years, referred to the previous year.

X7Child6_13 number of children in the family aged between 6 and 13 years, referred to the previous year.

X8Child14 number of children in the family aged over 14 years, referred to the previous year.

X9Income income of the husband (in dollars, referred to the previous year, divided by 1,000.

Source

```
https://psidonline.isr.umich.edu
```

References

This dataset is downloadable through the package 'psidR'.

```
data(PSIDlong)
```

90 RLMSdat

RLMSdat

Dataset about job satisfaction

Description

Longitudinal dataset deriving from the Russia Longitudinal Monitoring Survey (RLMS) about job satisfaction measured by an ordinal variable at seven different occasions with five categories, 1 for "absolutely satisfied", 2 for "mostly satisfied", 3 for "neutral", 4 for "not very satisfied", and 5 for "absolutely unsatisfied".

Usage

```
data(RLMSdat)
```

Format

A data frame with 1718 observations on the following 7 variables.

IKSJQ reported job satisfaction at the 1st occasion

IKSJR reported job satisfaction at the 2nd occasion

IKSJS reported job satisfaction at the 3rd occasion

IKSJT reported job satisfaction at the 4th occasion

IKSJU reported job satisfaction at the 5th occasion

IKSJV reported job satisfaction at the 6th occasion

IKSJW reported job satisfaction at the 7th occasion

Source

```
http://www.cpc.unc.edu/projects/rlms-hse, https://www.hse.ru/org/hse/rlms
```

References

Russia Longitudinal Monitoring survey, RLMS-HSE, conducted by Higher School of Economics and ZAO "Demoscope" together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology RAS

```
data(RLMSdat)
```

RLMSlong 91

RLMSlong

Dataset about job satisfaction

Description

Longitudinal dataset in long format deriving from the Russia Longitudinal Monitoring Survey (RLMS, from Round XVII to Round XXIII, collected from 2008 to 2014) about job satisfaction measured by an ordinal variable at seven different occasions with five categories, 1 for "absolutely satisfied", 2 for "mostly satisfied", 3 for "neutral", 4 for "not very satisfied", and 5 for "absolutely unsatisfied".

Usage

```
data(RLMSlong)
```

Format

A data frame with 1718 observations on the following 7 variables.

time occasion of observation.

id subject id.

rlms see RLMSdat.

value reported job satisfaction at different time occasions coded as 1 for "absolutely satisfied", 2 for "mostly satisfied", 3 for "neutral", 4 for "not very satisfied", 5 for "absolutely unsatisfied".

Source

```
http://www.cpc.unc.edu/projects/rlms-hse, https://www.hse.ru/org/hse/rlms
```

References

Russia Longitudinal Monitoring survey, RLMS-HSE, conducted by Higher School of Economics and ZAO "Demoscope" together with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of Sociology RAS

```
data(RLMSlong)
```

92 se

se

Standard errors

Description

Function to compute standard errors for the parameter estimates.

Usage

```
se(est, ...)
## S3 method for class 'LMbasic'
se(est, ...)
## S3 method for class 'LMbasiccont'
se(est, ...)
## S3 method for class 'LMlatent'
se(est, ...)
## S3 method for class 'LMlatentcont'
se(est, ...)
```

Arguments

est an object obtained from a call to lmest and lmestCont ... further arguments

Value

Standard errors for estimates in est object.

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

se 93

```
modBasic = 1,
             out_se = FALSE)
out.se <- se(out)</pre>
out1 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              index = c("id","t"),
              data = SRHS,
              k = 3,
              modBasic = 1,
              out_se = TRUE)
out1.se <- se(out1)
# LM model for categorical responses with covariates on the latent model
out2 <- lmest(responsesFormula = srhs ~ NULL,</pre>
              latentFormula = ~
              I(gender - 1) +
              I( 0 + (race == 2) + (race == 3)) +
              I(0 + (education == 4)) +
              I(0 + (education == 5)) +
              I(age - 50) + I((age-50)^2/100),
              index = c("id","t"),
              data = SRHS,
              k = 2,
              paramLatent = "multilogit",
              start = 0
out2.se <- se(out2)
# LM model for continous responses without covariates
data(data_long_cont)
out3 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,</pre>
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 3,
                  modBasic = 1,
                  tol = 10^{-5}
out3.se <- se(out3)
# LM model for continous responses with covariates
out4 <- lmestCont(responsesFormula = Y1 + Y2 + Y3 ~ NULL,
                  latentFormula = ~ X1 + X2 | X1 + X2,
                  index = c("id", "time"),
                  data = data_long_cont,
                  k = 3,
                  output = TRUE)
```

94 search.model.LM

```
out4.se <- se(out4)
## End(Not run)

search.model.LM Search for the global maximum of the log-likelihood</pre>
```

Description

Function that searches for the global maximum of the log-likelihood of different models given a vector of possible number of states to try for.

The function is no longer maintained. Please look at lmestSearch function.

Usage

Arguments

version	model to be estimated ("basic" = basic LM model (est_lm_basic function); "la-
	tent" = LM model with covariates in the distribution of the latent process (est_lm_cov_latent
	function); "manifest" = LM model with covariates in the measurement model
	(est_lm_cov_maifest function), "basic.cont" = basic LM model for continuous
	outcomes (est_lm_basic_cont function); "latent.cont" = LM model for continu-
	ous outcomes with covariates in the distribution of the latent process (est_lm_cov_latent_cont
	function))
kv	vector of possible number of latent states
	additional arguments to be passed based on the model to be estimated (see de-
	tails)
nrep	number of repetitions of each random initialization
tol1	tolerance level for checking convergence of the algorithm in the random initial-
	izations
tol2	tolerance level for checking convergence of the algorithm in the last determinis-
	tic initialization
out_se	TRUE for computing information matrix and standard errors
	1 5

Details

The function combines deterministic and random initializations strategy to reach the global maximum of the model log-likelihood. It uses one deterministic initialization (start=0) and a number of random initializations (start=1) proportional to the number of latent states. The tolerance level is set equal to 10^-5. Starting from the best solution obtained in this way, a final run is performed (start=2) with a default tolerance level equal to 10^-10.

Arguments in ... depend on the model to be estimated. They match the arguments to be passed to functions est_lm_basic, est_lm_cov_latent, est_lm_cov_manifest, est_lm_basic_cont, or est_lm_cov_latent_cont.

summary 95

Value

```
out.single output of each single model (as from est_lm_basic, est_lm_cov_latent or est_lm_cov_manifest) for each k in kv

aicv value of AIC index for each k in kv

bicv value of BIC index for each k in kv

lkv value of log-likelihood for each k in kv
```

Author(s)

Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci

Examples

```
## Not run:

# example for est_lm_basic
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
# Search Basic LM model

res <- search.model.LM("basic", kv = 1:4, S, yv, mod = 1)
summary(res)

## End(Not run)</pre>
```

summary

Summary of LM fits

Description

Summary methods

Usage

```
## S3 method for class 'LMbasic'
summary(object, ...)
## S3 method for class 'LMbasiccont'
summary(object, ...)
## S3 method for class 'LMlatent'
summary(object, ...)
## S3 method for class 'LMlatentcont'
summary(object, ...)
## S3 method for class 'LMmanifest'
```

96 summary.lmestData

```
summary(object, ...)
## S3 method for class 'LMmixed'
summary(object, ...)
## S3 method for class 'MCbasic'
summary(object, ...)
## S3 method for class 'MCcov'
summary(object, ...)
## S3 method for class 'LMsearch'
summary(object, ...)
```

Arguments

```
object output from lmest,lmestCont,lmestMixed, and lmestMc ... further arguments passed to or from other methods
```

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

summary.lmestData Summary and plot of lmestData

Description

Methods for lmestData object providing basic descriptive statistics (summary) and plots.

Usage

Arguments

```
object an object of class lmestData
x an object of class lmestData
```

summary.lmestData 97

type	type of summary to print. all prints a summary for each variable, and a summary for each variables by time. cross prints a summary for each variable. year prints a summary for each variable by time. The summary is adapted according to varType (By default is set to all)
dataSummary	a string indicating whether summary is returned: all for the entire data, responses for the responses, manifest for covariates on the manifest distribution, initial for the covariate affecting the initial probabilities, and transition for the covariates affecting the transition probabilities. (By default is set to all)
varType	a string vector of lengh equal to the number of variables, "c" for continuous and "d" for discrete, indicating wich variables are continuous and which are discrete
digits	the number of significant digits
maxsum	an integer value indicating the maximum number of levels to print
maxobs	an integer value indicating the maximun number of observation in which the summary statistics are reported for each observation
typePlot	a string indicating the type of plot. "s" plots a scatterplot matrix. "sh" plots a scatterplot matrix with the histogram for each variable in the diagonal
dataPlots	a string indicating whether the plot is returned: all for the entire data, responses for the responses, manifest for covariates on the manifest distribution, initial for the covariate affecting the initial probabilities, transition for the covariates affecting the transition probabilities. (By default is set to all)
	further arguments

Author(s)

Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini

Index

* datasets	est_lm_basic_cont, 33
data_criminal_sim, 12	est_lm_cov_latent, 34
data_drug, 13	est_lm_cov_latent_cont, 37
data_employment_sim, 14	est_lm_cov_manifest, 39
data_heart_sim, 15	est_lm_mixed, 41
data_long_cont, 16	est_mc_basic, 43
data_market_sim, 16	est_mc_cov, 44
data_SRHS_long, 17	
NLSYlong, 85	LMbasic-class, 46
PSIDlong, 89	LMbasiccont-class, 47
RLMSdat, 90	LMest (LMest-package), 3
RLMSlong, 91	lmest, 3-5, 21, 31, 34, 39, 46, 47, 48, 56, 59,
	61, 63, 64, 71, 73, 74, 76, 77, 88, 92,
bootstrap, 5, 7-9, 11	96
<pre>bootstrap_lm_basic, 7</pre>	LMest-package, 3
<pre>bootstrap_lm_basic_cont, 8</pre>	lmestCont, 3-5, 21, 33, 37, 47, 48, 51, 54, 59,
<pre>bootstrap_lm_cov_latent, 9</pre>	61, 63, 64, 71, 75–78, 88, 92, 96
<pre>bootstrap_lm_cov_latent_cont, 11</pre>	lmestData, 58
	lmestDecoding, 4, 18, 60
data_criminal_sim, 12	lmestFormula, 56, 62
data_drug, 13	lmestMc, 3, 4, 43, 44, 63, 64, 66, 83, 84, 88, 96
data_employment_sim, 14	lmestMixed, 3, 4, 41, 61, 63, 64, 69, 79, 88, 96
data_heart_sim, 15	lmestSearch, 4, 70, 94
data_long_cont, 16	LMlatent-class, 73
data_market_sim, 16	LMlatentcont-class, 75
data_SRHS_long, 17	LMmanifest-class, 76
decoding, 18	LMmanifestcont-class, 77
draw, 20	LMmixed-class, 79
draw.LMbasic, 25	long2matrices, 80
draw.LMbasiccont, 26	long2wide, 81
draw.LMlatent, 27	,
draw.LMlatentcont, 28	matrices2long, 82
draw.LMmixed, 30	MCbasic-class, 83
draw_lm_basic, 24	MCcov-class, 84
draw_lm_basic_cont, 26	
draw_lm_cov_latent, 27	NLSYlong, 85
draw_lm_cov_latent_cont, 28	
draw_lm_mixed, 30	plot, 86
	plot.lmestData(summary.lmestData),96
est_lm_basic, 31	print, 4, 88

INDEX 99

```
print.lmestData(summary.lmestData), 96 PSIDlong, 89 RLMSdat, 90, 91 RLMSlong, 91 se, 4, 92 search.model.LM, 94 summary, 4, 95 summary.lmestData, 96
```