ACKNOWLEDGMENT

Apart from our efforts, the success of this project depends largely on the encouragement and guidelines of many others. We take this opportunity to express our gratitude to the people who have been instrumental in the successful completion of this project.

We take immense pleasure in thanking **Dr. Avinash G. Kharat,** Principal, Sinhgad Academy of Engineering, for having permitted us to carry out this project work.

We deeply express our sincere thanks to our Head of Department **Prof** (**Col**) **O. P. Misra** for encouraging and allowing us to present the project on the topic "DESIGN AND FABRICATION OF SHOCK ABSORBER TEST RIG" at our department premises for the partial fulfilment of the requirements leading to the award of Bachelors of Engineering degree.

We wish to express our deep sense of gratitude to our Internal Guide, **Prof. J.N. KAJALE**, Dept of Mechanical Engineering, Sinhgad Academy of Engineering for his able guidance and useful suggestions, this helped us in completing the project work, in time.

We are thankful to **Prof. P.P.Hujare**, Dept of Mechanical Engineering, Sinhgad Academy of Engineering for his able guidance and useful suggestions regarding the project.

We are thankful to **Mr. Phatak Sir**, for allowing us to work in their workshop. Without their kind cooperation and guidance at every step these project would not have been possible.

Words are inadequate in offering our thanks to all the teaching staff for their encouragement and cooperation in carrying out the project work.

Finally, yet importantly, we would like to express our heartfelt thanks to our beloved parents for their blessings, our friends/classmates for their help and wishes for the successful completion of this project.

BHUSHAN BABAR
PRADEEP BAGWALE
SWAPNIL MORE
VISHAL PATIL

ABSTRACT

Vibration creates excessive stresses in machine parts, it leads to loosening of assembled parts, it may also lead to partial or complete failure of machine systems. Therefore in order to reduce excessive vibration to protect system shock absorbers are used. But due to bad selection of shock absorber this may not be achieved in practice. So it is necessary to select appropriate shock absorbing unit based on application. To govern such phenomena *shock absorber testing machine* is used. This would help to check whether the designed shock absorber is performing up to its potential in practice. It would also help user to use it for required application.

This project is helpful to find the transmissibility ratio of the shock absorber in order to check whether the selected shock absorber is suitable for required application.

INDEX

Sr. No	Names of Topics P	age Number
1.	Introduction	
	1.1 Background.	02
	1.2 Objective	03
2.	Theory	
	2.1 Force Excitation.	05
	2.2 Transmissibility	06
	2.2.1 Force transmissibility	06
	2.3 Damping.	08
	2.3.1 Damping ratio.	10
	2.4 Dynamic characterization.	11
3.	Literature Survey	
	3.1 Velocity Transducer in Shock Absorber Testing Machine	14
	3.2. Hydraulically operated shock absorber testing machine	15
4.	Construction and Working	
	4.1 Construction.	18
	4.2 Working	20
5.	Design	
	5.1 Selection of Motor	22
	5.1.1 Motor Specification.	22
	5.2 Design of worm gear box	23
	5.3 Design Of Shaft	27
	5.3.1 Worm	27
	5.3.2 Worm Gear	29
	5.4 Design of Lovejoy Coupling.	31
	5.4.1 Material Selection	31
	5.5 Design of Key	32

6.	Drawing and production sheet	
	6.1 Cam	35
	6.2 Connecting rod.	37
	6.3 S frame	39
	6.4 Knuckle	41
	6.5 Sliding unit	43
	6.6 Guideway Support A	45
	6.7 Guideway Support B	47
	6.8 Base Plate	49
	6.9 Support Plate	51
	6.10 Lovejoy coupling	53
7.	Bill of Material	55
8.	Costing	
	8.1 Raw Material Cost	58
	8.2 Machining Cost.	58
	8.3 Miscellaneous cost	58
	8.4 Cost of Purchased Parts	58
	8.5 Total Cost	59
9.	Results	61
10.	Conclusion	64
11.	Present application and future scope	
	11.1 Present Application	66
	11.2 Future Scope.	66
	Appendix	68
	References	71

List of Figures

Sr. No.	Fig No.	Name of figure Page	No.
1	1.2	Transmissibility Vs Frequency	03
2	2.1	Concept for constructing shock absorber testing models	05
2	2.2.1	Transmissibility Vs Frequency	07
3	2.4	Typical transmissibility curves plotted against frequency ratio with varying damping ratios	12
4	3.1	Test model using velocity transducer	14
5	3.2	Hydraulically Operated Shock Absorber Testing Machine	16
6	4	Block diagram	18
7	6.1	Cam	35
8	6.2	Connecting Rod.	37
6	6.3	S-Frame	39
7	6.4	Knuckle	41
8	6.5	Sliding Unit.	43
9	6.6	Guide Way Support A	45
10	6.7	Guide Way Support B	47
11	6.8	Base Plate	49
12	6.9	Vertical Support Frame	51
13	6.10	Lovejoy Coupling	53
14	9	Figure 9: Practical graph obtained on display	61

List of Tables

Sr. No.	Table No.	Table Title	Page No.
1	6.1	Cam Manufacturing	36
2	6.2	Connecting Rod Manufacturing	38
2	6.3	S-Frame Manufacturing	40
3	6.4	Knuckle Manufacturing	42
4	6.5	Sliding Unit Manufacturing	. 44
5	6.6	Guide Way Support A Manufacturing	46
6	6.7	Guide Way Support B Manufacturing	48
7	6.8	Base Plate Manufacturing	50
8	6.9	Vertical Support Frame Manufacturing	52
9	6.10	Love Joy Coupling	54
10	7	Bill of Material	56
11	8.1	Raw Material Cost	. 58
12	8.2	Machining Cost	58
13	8.3	Miscellaneous Cost	58
14	8.4	Cost of Purchased Parts	. 58
15	9.	Result table	62
15			

EXPERIMENTAL SETUP OF SHOCK ABSORBER TESTING MACHINE

SYMBOLS

- c viscous damping
- d Diameter
- F Force,
- f Coefficient of friction
- K Service factor
- l Length
- m Mass
- p Pitch
- T Torque
- v Linear velocity
- λ lead angle
- μ coefficient of friction
- ω Angular velocity, circular frequency
- ψ Helix angle
- τ Shear stress
- K_b Combined shock and fatigue factor for bending
- K_t Combined shock and fatigue factor for torsion

ABBREVATIONS

PWM Pulse width modulation

PMDC Permanent magnet DC motor

TEFC Totally enclosed fan cooled