Deep Generative Modelling

Presenter:

Kurra Bavanya Choudhry

18075034 BTech CSE Part-IV

Core goal of Generative modelling

- Let's say we have an observed data D, for eg: images of cats.
- D can be thought of as a sample from probability distribution $p_{\rm data}$ (true distribution).
- The goal of Generative modelling is to find an approximate probability distribution p_{θ} which is as close as possible to p_{data} for an observed data D.
- Now we can generate unseen data by sampling from p_{θ} .

source: Karras et al. (2018)

Surprisingly, this is not an image of a real child!

This image was produced by the style based generator proposed by T Karras in 2018.

2 Tasks: Learning and Inference (1/2)

- Learning (unsupervised and parametric):
 - \circ p_{θ} is picked from a family of model distributions M.
 - \circ **Optimization problem:** $\min d(p_{\text{data}}, p_{\theta})$

$$\theta \in M$$

- \blacksquare How to represent model family M?
- What is the objective function d(.)?
- How do we minimize d(.)?

Model family

2 Tasks: Learning and Inference (2/2)

• Inference

- Generative models are used for 3 fundamental inference tasks:
 - **■** Density estimation:
 - Obtaining $p_{\theta}(\mathbf{x})$ for a given datapoint \mathbf{x} .
 - Sampling:
 - Generating unseen data $\mathbf{x}_{new} p_{\theta}(\mathbf{x})$.
 - **■** Unsupervised representation extraction:
 - Latent space feature representation vector $\mathbf{f}_{\text{vector}}$ for a given datapoint \mathbf{x} .

There are many deep generative models (DGMs) present in the market today and we choose a model suitable for our inference requirements.

Generative approach to classification task

• **Problem:** Detect an image as cat or dog):

• Solution:

- $\circ \quad \text{Obtain } p_{\theta} \text{ for } D_{cat} \text{ and } p_{\theta 1} \text{ for } D_{dog}.$
- $\circ \quad \text{where:} \quad D_{cat} \cup D_{dog} = D \quad \& \quad D_{cat} \cap D_{dog} = \phi.$
- For test datapoint \mathbf{x}_{test} , find $p_{\theta}(\mathbf{x}_{\text{test}})$ and $p_{\theta 1}(\mathbf{x}_{\text{test}})$ (to find out which distribution is it most probably came from.)

• How is it different from discriminative approach?

- Doesn't find a decision boundary that separates data points of different classes.
- Estimates P(Y|X) using Bayes Rule on P(X|Y) i.e $p_{\theta}(\mathbf{x})$ and P(Y), whereas discriminative models finds it directly from training data.

Family of Deep Generative Models (DGMs)

- "Deep" in DGM refer to multiple layers of neurons with hidden variables.
- Generative modelling can be done without using neural networks (NNs).
- But still NNs are widely used to parameterize generative models because they are flexible and powerful.

Deep Generative models can be expressed into the following three main groups:

Autoregressive Models (1/2)

- We fix an ordering of the variables x_1, x_2, \dots, x_n .
- The distribution for the *i*-th random variable depends on the values of all the preceding random variables in the chosen ordering $x_1, x_2, \ldots, x_{i-1}$.
- Expressing the above assumption in graphical form:

• $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_{< i}) \text{ where } \mathbf{x}_{< i} = [x_{1, x_{2..., x_{i-1}}}]$

Autoregressive Models (2/2)

• KL divergence is taken as the objective function d(.).

$$\min_{\theta \in M} d_{\mathrm{KL}}(p_{\mathrm{data}}, p_{\theta}) = \max_{\theta \in M} (\Sigma_{\mathbf{x} \in D} \log(p_{\theta}(\mathbf{x})))$$

i.e we pick the model parameters $\theta \in M$ that maximize the log-probability of the observed data points in D.

- The model parameters $\theta \in M$ are optimized using mini-batch gradient descent.
- For density estimation and unseen data generation, sequential sampling procedure is followed.
- Hence both the inference tasks are expensive.
- These models do not learn unsupervised representation of data.
- Hence, they can't be used to get f_{vector} for a given datapoint.

Generative Adversarial Networks (GANs)

- It has two parts:
 - o <u>Generator</u>
 - Learns to generate plausible data.
 - It's output become negative training examples for the discriminator.

o <u>Discriminator</u>

- Learns to distinguish the generator's fake data from real data.
- Penalizes the generator for producing implausible results.

GAN Architecture

source: medium post

Training in GANs

• at Discriminator:

- Connects to two loss functions: Generator and Discriminator loss.
- Ignores the generator loss and just uses the discriminator loss.
- The discriminator loss penalizes the discriminator for misclassifying a real instance as fake or a fake instance as real.
- Network's weights are updated through backpropagation.

• at Generator:

- Takes random noise sampled from any probability distribution as input.
- This noise is transformed into meaningful output.
- The gradient of the Generator loss is used to change the weights of only the generator.

Real life applications

• Data Generation

- Art creation
- Code generation
- Text generation
- Audio synthesis
- Text to image generation
- o etc.

Measuring the plausibility of data

- Anomaly detection
 - If $p_{\theta}(\mathbf{x}^1) \ll p_{\theta}(\mathbf{x})$ for $\mathbf{x} \in D$, then \mathbf{x}^1 is an outlier.
- Classification (it was discussed in previous slides)
- o etc.

New York City in a thunderstorm (cc12m_1_cfg)

source: <u>post link</u>, generated using <u>cc12m 1 cfg model</u> developed by <u>@RiversHaveWings</u>

THANK YOU