Advanced Statistical Computing Week 2: Monte Carlo Study of Statistical Procedures and Permutation Tests

Aad van der Vaart

Fall 2012

Contents

Sampling distribution

Estimators

Tests

Permutation Tests

Sampling distribution

Sampling distribution

DATA X (possibly equal to (X_1, \ldots, X_n)) STATISTIC T = T(X)

The distribution of T is called *sampling distribution*

EXAMPLE OF THEORETICAL SAMPLING DISTRIBUTION:

If
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$
, then $T = \sqrt{n}\bar{X}/S_X \sim t_{n-1}$

DETERMINATION BY SIMULATION:

- For b = 1, ..., B
 - generate independent replicate X^b of data X
 - compute $T^b = T(X^b)$
- Make a plot (histogram, density, ecdf) of T^1, \ldots, T^B .

Standard error

DATA X (possibly equal to (X_1, \ldots, X_n)) STATISTIC T = T(X)

The standard deviation of T is called *standard error* or *se*

EXAMPLE OF THEORETICAL STANDARD ERROR:

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, then se of \bar{X} is σ/\sqrt{n} .

DETERMINATION OF STANDARD ERROR BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data
 - compute $T^b = T(X^b)$
- Compute root of sample variance of T^1, \ldots, T^B , i.e.

$$\widehat{se} = \sqrt{\frac{1}{B} \sum_{b=1}^{B} (T^b - \overline{T})^2},$$
 where $\overline{T} = \frac{1}{B} \sum_{b=1}^{B} T^b$.

Estimators

Bias

DATA X (possibly equal to (X_1, \ldots, X_n)) ESTIMATOR T = T(X) OF QUANTITY θ

The bias of T is $ET - \theta$

EXAMPLE OF THEORETICAL BIAS:

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, then bias of \bar{X} for θ is 0.

DETERMINATION OF BIAS BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data
 - compute $T^b = T(X^b)$
- Compute

$$\widehat{bias} = \frac{1}{B} \sum_{b=1}^{B} T^b - \theta.$$

Mean square error

DATA X (possibly equal to (X_1, \ldots, X_n)) ESTIMATOR T = T(X) OF QUANTITY θ

The *mean square error* (MSE) of T is $E(T - \theta)^2$. (It is also the sum of the squared bias and the squared se.)

EXAMPLE OF THEORETICAL MSE:

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, then MSE of \bar{X} for θ is σ^2/n .

DETERMINATION OF MSE BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data
 - compute $T^b = T(X^b)$
- Compute mean sum of squares

$$\widehat{MSE} = \frac{1}{B} \sum_{b=1}^{B} (T^b - \theta)^2.$$


```
> B=1000
> m=tm = numeric(B)
> for (i in 1: B) { x=rnorm(10)
                   m[i]=mean(x)
+
                   tm[i]=mean(x,trim=0.3)
> hist(m, xlim=c(-1.5, 1.5)); hist(tm, xlim=c(-1.5, 1.5))
> sd(m); sd(tm)
[1] 0.3222936
[1] 0.3566153
> mean(m)-0; mean(tm)-0
[1] -0.009780955
[1] -0.01743183
> mean((m-0)^2); mean((tm-0)^2)
[1] 0.103865
    0.1273511
```


Simulation error

By making B larger the simulation error can be made arbitrarily small.

B=10000 is desirable, but B=1000 typical, and only B=100 may be feasible.

If EZ is estimated by \bar{Z}_B for iid Z^1,\ldots,Z^B , then

$$\bar{Z}_B - EZ \sim \approx N(0, \operatorname{var} Z/B).$$

Thus the se of simulation is $\sqrt{\operatorname{var} Z/B}$, and can be estimated by

$$\sqrt{B^{-1} \sum_{b=1}^{B} (Z^b - \bar{Z})^2 / B}.$$

EXAMPLE: If the MSE $E(T-\theta)^2$ is estimated by $\widehat{MSE} = B^{-1} \sum_{b=1}^{B} (T^b - \theta)^2$, then the *se of simulation* can be estimated by

$$\frac{1}{B}\sqrt{\sum_{b=1}^{B} \left[(T^b - \theta)^2 - \widehat{MSE} \right]^2}.$$

```
> B=100
> tm = numeric(B)
> for (i in 1: B) { x=rnorm(10)
+
                   tm[i] = mean(x, trim=0.3)
> mean((tm-0)^2)
[1] 0.1603573
>  sqrt(sum(((tm-0)^2-mean((tm-0)^2))^2))/B # se of simulation error in MSE
[1] 0.02689583
>
> B=1000
> tm = numeric(B)
> for (i in 1: B) { x=rnorm(10)
                   tm[i] = mean(x, trim=0.3)
+
> mean((tm-0)^2)
[1] 0.125947
>  sqrt(sum(((tm-0)^2-mean((tm-0)^2))^2))/B # se of simulation error in MSE
[1] 0.005799775
```

Tests

DATA X (possibly equal to (X_1, \ldots, X_n)) TEST STATISTIC T = T(X), REJECTS H_0 IF $T \in K$.

The *size* of the test is $\alpha = P_{H_0}(T \in K)$.

EXAMPLE OF THEORETICAL SIZE

Tests are constructed so that the size equals the *level*, e.g. 5%, in prescribed situation.

DETERMINATION OF SIZE BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data using its null distribution
 - compute $T^b = T(X^b)$
- Compute

$$\hat{\alpha} = \frac{1}{B} \sum_{b=1}^{B} 1_{T^b \in K} = \text{ fraction rejections.}$$

[If H_0 is composite, must simulate using the worst case null distribution, or repeatedly simulate using all null distributions and take the maximum of the simulated $\hat{\alpha}$.]

Power

DATA X (possibly equal to (X_1,\ldots,X_n)) TEST STATISTIC T=T(X) THAT REJECTS H_0 IF IT FALLS IN CRITICAL REGION K

The *power* is $P_{\theta}(T \in K)$ viewed as function of the alternative $\theta \in H_1$.

EXAMPLE OF THEORETICAL POWER

Power of the *t*-test can be expressed using non-central *t*-distributions.

DETERMINATION OF POWER BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data using alternative θ
 - compute $T^b = T(X^b)$
- Compute

$$\frac{1}{B} \sum_{b=1}^{B} 1_{T^b \in K}.$$

Repeat for all alternatives.

```
> tmtest=function(x) {n=length(x)
                     k=trunc(0.3*n)
+
                     y = sort(x)[(k+1):(n-k)]
+
+
                     mean(y)/sd(y)
>
> B=10000
> s=numeric(B)
> for (i in 1:B) s[i]=tmtest(rnorm(20))
> CV=quantile(s,.975) # determine critical value by simulation
>
> a=numeric(1000)
> B=10000
> for (i in 1:B) {x=rnorm(20)}
                 a[i] = (abs(tmtest(x)) > CV) 
+
> mean(a)
[1] 0.0478
```


[Is it useful to resimulate new normal samples for every b?]

Coverage

DATA X (possibly equal to (X_1, \ldots, X_n)) CONFIDENCE INTERVAL [L(X), U(X)] FOR PARAMETER θ

The *coverage* is $\inf_{\theta} P_{\theta} (L(X) \leq \theta \leq U(X))$

EXAMPLE OF THEORETICAL COVERAGE

Theoretical confidence intervals have given coverage, e.g. 95%, in the prescribed situation.

DETERMINATION OF CONFIDENCE LEVEL BY SIMULATION:

- For b = 1, ..., B
 - generate replicate X^b of data using parameter θ
 - compute $L^b = L(X^b)$, $U^b = U(X^b)$,
- Compute

$$\hat{C}_{\theta} = \frac{1}{B} \sum_{b=1}^{B} 1_{L^b \le \theta \le U^b}.$$

• Repeat for all θ . Compute $\min_{\theta} \hat{C}_{\theta}$.

[In practice you cannot use all θ .]

Simulation error

By making B larger the simulation error can be made arbitrarily small.

B=10000 is desirable, but B=1000 typical, and only B=100 may be feasible.

When estimating a proportion p = P(Z = 1) by a sample fraction \bar{Z} , for iid $Z_1, \ldots, Z_B \in \{0, 1\}$,

$$\bar{Z} - p \sim \approx N(0, p(1-p)/B).$$

The se of simulation can be estimated by

$$\sqrt{\bar{Z}(1-\bar{Z})/B} \le \sqrt{1/(4B)}.$$

Permutation Tests

Permutation test

IDEA

Take any reasonable test statistic.

Compare its observed value to the set of values obtained by applying the statistic after *permuting* the data in such a way that the *distribution under* H_0 *does not change*.

Advantages: very flexible, no theory needed, correct level guaranteed Disadvantage: computationally very expensive.

The *level is guaranteed*, because:

- conditionally, given any observed data, we reject with probability less than, say 5 %,
- hence unconditionally, we reject with probability less than 5 %.

Two sample test

DATA X_1, \ldots, X_m and Y_1, \ldots, Y_n independent random samples from F and G. TEST STATISTIC Reject H_0 if $T = T(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ is large.

Let Z_1, \ldots, Z_N be the *pooled sample* $X_1, \ldots, X_m, Y_1, \ldots, Y_n$, i.e. N = m + n.

Under H_0 : F = G this is i.i.d. and so is every permutation $Z_{\pi(1)}, \ldots, Z_{\pi(N)}$.

PERMUTATION TEST

- For every partition b of the observed values z_1, \ldots, z_N into 2 sets of sizes m and n compute T^b with the X's and Y's taken equal to the two sets.
- For $tobs = T(x_1, \dots, x_m, y_1, \dots, y_n)$ the observed value, compute

$$\hat{p} = \frac{1}{B} \sum_{b=1}^{B} 1_{T^b > tobs}.$$

IN PRACTICE

The number of partitions $\binom{N}{m}$ is too large and one takes a large number of random partitions instead.

```
> mu=0.5
> x = rnorm(20); y = rnorm(25, mu, 2)
> tm2=function(x,y) mean(x,trim=0.2)-mean(y,trim=0.2)
> tobs=tm2(x,y)
> B=1000; tperm=numeric(B)
> z=c(x,y); N=length(z); m=length(x)
> for (i in 1:B) {xco=sample(1:N,m)
                   tperm[i]=tm2(z[xco],z[-xco])}
+
> mean(tperm>tobs); mean(tperm<tobs)</pre>
[1] 0.969
[1] 0.031
>
> tobs
[1] -0.9936397
> hist(tperm); points(tobs,0,pc=19)
```


Paired two-sample test

DATA $(X_1, Y_1), \ldots, (X_n, Y_n)$ random sample from bivariate distribution. TEST STATISTIC Reject H_0 if $T = T(X_1, \ldots, X_n, Y_1, \ldots, Y_n)$ is large.

Under $H_0:(X,Y)$ is exchangeable, every of the 2^n possible permutations within the pairs (X_i,Y_i) gives the same distribution.

PERMUTATION TEST

- For every of the 2^n possible (re)assignments b of the X or Y -label within the pairs compute T^b .
- For $t = T(x_1, \dots, x_m, y_1, \dots, y_n)$ the observed value, compute

$$\hat{p} = \frac{1}{B} \sum_{b=1}^{B} 1_{T^b > t}.$$

IN PRACTICE

The number of (re)assignments 2^n is too large and one takes a large number of random assignments instead.

Symmetry

DATA Random sample X_1, \ldots, X_n of univariate distribution.

Under the hypothesis H_0 that the distribution is symmetric about 0 S_1X_1, \ldots, S_nX_n and X_1, \ldots, X_n have the same distribution for S_1, \ldots, S_n random signs.

PERMUTATION TEST

- For every of the 2^n possible sign vectors compute $T^b = T(S_1X_1, \dots, S_nX_n)$.
- For $t = T(x_1, \dots, x_m, y_1, \dots, y_n)$ the observed value, compute

$$\hat{p} = \frac{1}{B} \sum_{b=1}^{B} 1_{T^b > t}.$$

IN PRACTICE

The number of sign vectors is too large and one takes a large number of *random* sign vectors instead.

When you do simulations

- Good documentation is essential.
- Write separate programs for each case
- Or keep a precise record
- Save as much of the output as you can
- Do that in a structured way (multidimensional arrays)
- Summarize later
- Make programs "re-startable"
- To continue smoothly after a computer crash
- Or to divide the work over more computers