3D Graphics Programming Tools

Projection

Queen Mary

1

EBU5405

The 3D rendering pipeline

3D geometric primitives Modelling Transformation Transform individual object coordinates into 3D world coordinate system Lighting Illuminate according to lighting and reflectance Viewing Transformation Transform 3D scene into 3D camera coordinate system Projection Transformation Transform 3D coordinates into 2D screen coordinate system Clipping Clip primitives outside camera's view Scan Conversion Draw pixels (includes texturing, hidden surface, ...) Queen Mary University of London EBU5405 **Image**

Today's agenda

- Taxonomy of projections
- Parallel projection
- Perspective projection

EBU5405

3

Planar Geometric Projection

Taxonomy of projections

5

Classical projections

EBU5405

Queen Mary
University of London

Taxonomy of projections

Planar geometric projections

Today's agenda

- · Taxonomy of projections
- Parallel projection
- Perspective projection

EBU5405

Queen Mary

9

Parallel projection

Center of projection is at infinity

- Direction of projection (DOP) is the same for all points

EBU5405

Orthographic projections

DOP is perpendicular to the view plane

- Advantage: you can make accurate measurements of image features in the two dimensions that remain.
- Disadvantage: images don't appear natural (i.e. they lack perspective foreshortening).

EBU5405

Orthographic projection

EBU5405

Queen Mary

13

Exercise

Draw the top, front and right side views

EBU5405

Queen Mary
University of London

Orthographic projection

Orthographic projection

• Simple orthographic transformation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Notice that the parallel lines of the tiled floor remain parallel after orthographic projection.

EBU5405

Queen Mary

Orthographic: screen space transformation

• glOrtho (left, right, bottom, top, near, far)

17

Screen space transformation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{width}{right-left} & 0 & 0 & \frac{-left \times width}{right-left} & 0 \\ 0 & \frac{height}{bottom-top} & 0 & \frac{-top \times height}{bottom-top} \\ 0 & 0 & \frac{z_{\max}}{far-near} & \frac{-near \times z_{\max}}{far-near} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- · This matrix scales and translates to accomplish the transition in units
 - Left, right, top, bottom refer to the viewing frustum (view volume) in modelling coordinates
 - width and height are in pixel units (viewport)

EBU5405

Queen Mary
University of London

Today's agenda

- Taxonomy of projections
- Parallel projection
- Perspective projection

EBU5405

19

Perspective

166 pixels tall

370 pixels tall

600 pixels tall

EBU5

Perspective projection

- In the real world, objects exhibit perspective foreshortening
 - distant objects appear smaller
 - objects closer to viewer look larger
- Parallel lines appear to converge to single point (vanishing point)
- First discovered by Donatello, Brunelleschi, and Da Vinci during Renaissance

EBU5405

21

University of London

Perspective projection

How many vanishing points?

Perspective projection

3-point perspective

2-point perspective

1-point perspective

EBU5405

23

Perspective projection

 3-D graphics → think of the screen as a 2-D window onto the 3-D world

EBU5405

Synthetic Camera

• The geometry of the situation is that of similar triangles.

Perspective projection

• Desired result for a point $[x, y, z, I]^T$ projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{d \cdot x}{z} = \frac{x}{z/d}$$
, $y' = \frac{d \cdot y}{z} = \frac{y}{z/d}$, $z' = d$

What could a matrix look like to do this?

EBU5405

27

Perspective projection matrix

$$x' = \frac{x}{z/d}$$
, $y' = \frac{y}{z/d}$, $z' = d$

$$M_{perspective} =$$

EBU5405

Queen Mary

Perspective vs. Parallel

- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not (in general) preserved
 - Parallel lines do not (in general) remain parallel

- Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

Queen Mary

EBU5405

29

OpenGL Orthogonal Viewing

glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

EBU5405

OpenGL Perspective

glFrustum(left,right,bottom,top,near,far)

EBU5405

31

"Isometric" view

Using Field of View

- With glfrustum it is often difficult to get the desired view
- gluPerpective(fov, aspect, near, far) often provides a better interface

What did we learn?

- · Taxonomy of projections
- · Parallel projection
- · Perspective projection

Queen Mary

EBU5405