

Regularization

K. Breininger, S. Vesal, B. Geissler, N. Maul, L. Reeb, M. Vornehm, Z. Yang, A. Popp, M. Nau S. Gündel, F. Denzinger, F. Thamm, C. Bergler, S. Jaganathan, F. Meister, C. Liu, T. Würfl Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg June 19, 2020

Tasks in this exercise

4.4

- 1. Optimization Constraints: Augmenting the loss function
- Dropout Layer
- 3. Batch Normalization Layer
- 4. LeNet: Put everything together (optional)
- 5. RNN layer: Elman Unit
- 6. LSTM layer: Backpropagation at its best! (optional)

Optimization Constraints: Loss function augmentation

- · Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!

Goal: weights smaller

But: large weights -> purish them!

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- Implement constraints as separate classes
- → Independent of loss function

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- Implement constraints as separate classes
- → Independent of loss function Since Loss function graves about y, ŷ labels.
- Constraints only need current weights
- → Add constraint objects in the optimizer

- Constraints change the total loss ...
- ... and have influence on the weight update of the respective layer!
- Implement constraints as separate classes
- → Independent of loss function
- Constraints only need current weights
- → Add constraint objects in the optimizer
- Since constraints generate part of the loss:
- → Change Neural Network container class (and associated classes) to "channel" and gather regularization loss for all layers

L₂ regularization

every layer with weights: get \| | | | | | | |

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{(1 - \eta \lambda) \mathbf{w}^{(k)}}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

Note: The influence of constraints is controlled via λ . Because lambda is a python keyword, you want to use e.g. alpha instead.

L₁ regularization

Forward pass:

$$\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

Backward pass:

$$\mathbf{w}^{(k+1)} = \underbrace{\mathbf{w}^{(k)} - \eta \lambda \operatorname{sign}\left(\mathbf{w}^{(k)}\right)}_{\text{Other shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

Dropout

Method

Figure: Dropout

• Implement this as a fixed-function layer

Method

Figure: Dropout

- Implement this as a fixed-function layer
- Randomly set activations \mapsto 0 with probability 1 p

Method

Figure: Dropout

- Implement this as a fixed-function layer
- Randomly set activations \mapsto 0 with probability 1-p \Rightarrow reduce the energy / Tast-time: multiply activations with $p \Leftarrow$ decrees every
- Randomy Set us....

 Test-time: multiply activations with $p \Leftarrow decree energy$ (Since energy is high)

Inverted Dropout

• Can we get rid of the dropout layer at test-time?

Inverted Dropout

- Can we get rid of the dropout layer at test-time?
- Change the behavior during training
 Multiply activations in forward-pass only during training
 ★ Change the behavior during training
- Note: the <u>backward pass</u> has to be adapted as well!
 - derivative!

Batch normalization

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

Normalization as a new layer with 2 parameters, γ and β

input matrix
$$ilde{\mathbf{X}} = \frac{\mathbf{X} - \mu_{B}}{\sqrt{\sigma_{B}^{\mathbf{S}} + \epsilon}}$$

 μ_B and σ_B from **batch**

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_{B}}{\sqrt{\sigma_{B}^{2} + \epsilon}}$$

 μ_B and σ_B from **batch**

$$\hat{\mathbf{Y}} = \frac{\mathbf{y} \hat{\mathbf{x}} + \mathbf{\beta}}{\mathbf{y} \hat{\mathbf{x}} + \mathbf{\beta}}$$

ightarrow Normalization as a new layer with 2 parameters, γ and eta

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

 μ_B and σ_B from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

 $oldsymbol{\mu}$, $oldsymbol{\sigma}$ have the **same dimension** as the **input vectors**

ightarrow Normalization as a new layer with 2 parameters, γ and $oldsymbol{eta}$

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

 μ_B and σ_B from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{eta}$$

- ullet μ , σ have the **same dimension** as the **input vectors**
- β , γ and μ_B , σ_B have same **dimension** to be able to preserve **identity**

 \rightarrow Normalization as a new layer with 2 parameters, γ and β

$$ilde{ extsf{X}} = rac{ extsf{X} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

 μ_B and σ_B from **batch**

$$\hat{\mathbf{Y}} = \gamma \tilde{\mathbf{X}} + \boldsymbol{\beta}$$
 where $\hat{\mathbf{Y}}$

- μ , σ have the same dimension as the input vectors β , γ and μ_B , σ_B have same dimension to be able to preserve identity
- Notice that *\beta* is a bias

ullet Test-time: replace μ_B and σ_B with μ and σ of the **training set**

- ullet Test-time: replace μ_{B} and σ_{B} with μ and σ of the **training set**
- It's expensive to calculate the true training set mean and variance

- ullet Test-time: replace μ_B and σ_B with μ and σ of the **training set**
- It's expensive to calculate the true training set mean and variance
- Therefore a **moving average** is common:

$$\begin{split} \tilde{\boldsymbol{\mu}}^{(k)} &\approx \alpha \tilde{\boldsymbol{\mu}}^{(k-1)} + (1-\alpha) \boldsymbol{\mu}_{B}^{(k)} \\ \tilde{\boldsymbol{\sigma}}^{(k)} &\approx \alpha \tilde{\boldsymbol{\sigma}}^{(k-1)} + (1-\alpha) \boldsymbol{\sigma}_{B}^{(k)} \end{split}$$

- ullet Test-time: replace μ_B and σ_B with μ and σ of the **training set**
- It's expensive to calculate the true training set mean and variance
- Therefore a moving average is common:

$$\tilde{\boldsymbol{\mu}}^{(k)} \approx \alpha \tilde{\boldsymbol{\mu}}^{(k-1)} + (1-\alpha)\boldsymbol{\mu}_{B}^{(k)}$$

$$\tilde{\boldsymbol{\sigma}}^{(k)} \approx \alpha \tilde{\boldsymbol{\sigma}}^{(k-1)} + (1-\alpha)\boldsymbol{\sigma}_{B}^{(k)}$$

• Moving average **decay** α (e.g. 0.8)

Gradient with respect to weights is simply:

$$\frac{\partial L}{\partial \gamma} = \sum_{b=1}^{B} \frac{\partial L}{\partial \hat{\mathbf{Y}}_{b}} \tilde{\mathbf{X}}_{b} = \sum_{b=1}^{B} \mathbf{E}_{b} \tilde{\mathbf{X}}_{b}$$

For the bias likewise we have:

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = \sum_{b=1}^{B} \frac{\partial L}{\partial \hat{\mathbf{Y}}_{b}} = \sum_{b=1}^{B} \mathbf{E}_{b}$$

The gradient with respect to the input is more complicated, but here it is:

$$\frac{\partial L}{\partial \tilde{\mathbf{X}}} = \frac{\partial L}{\partial \hat{\mathbf{Y}}} \odot \gamma$$

$$\frac{\partial L}{\partial \sigma_B^2} = \sum_{b=1}^B \frac{\partial L}{\partial \tilde{\mathbf{X}}_b} \odot (\mathbf{X}_b - \mu_B) \odot \frac{-1}{2} (\sigma_B^2 + \epsilon)^{\frac{-3}{2}}$$

$$\frac{\partial L}{\partial \mu_B} = \left(\sum_{b=1}^B \frac{\partial L}{\partial \tilde{\mathbf{X}}_b} \odot \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}}\right) + \underbrace{\frac{\partial L}{\partial \sigma_B^2}} \odot \underbrace{\sum_{b=1}^B -2(\mathbf{X}_b - \mu_B)}_{B}$$

$$\frac{\partial L}{\partial \mathbf{X}} = \underbrace{\begin{pmatrix} \partial L}{\partial \tilde{\mathbf{X}}} \odot \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \underbrace{\begin{pmatrix} \partial L}{\partial \sigma_B^2} \odot \frac{2(\mathbf{X} - \mu_B)}{B} + \underbrace{\begin{pmatrix} \partial L}{\partial \mu_B} \odot \frac{1}{B} \end{pmatrix}}_{B}$$

 denotes an element-wise multiplication. Always check the dimensionality of your matrices!

- denotes an element-wise multiplication. Always check the dimensionality of your matrices!
- To make life easier, we will provide the code for the computation of the gradient with respect to the input:

- denotes an element-wise multiplication. Always check the dimensionality of your matrices!
- To make life easier, we will provide the code for the computation of the gradient with respect to the input:

• compute_bn_gradients

• In CNNs batch normalization is adjusted to work similar to convolution

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $B \cdot M \cdot N \times H$ tensor

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the H channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $B \cdot M \cdot N \times H$ tensor
- Consequently we have to reverse this before returning the output

- In CNNs batch normalization is adjusted to work similar to convolution
- A scalar μ , σ is calculated for the \underline{H} channels
- Implementation can be reused, by observing
 - \rightarrow that spatial dimensions M, N can be treated like the batch dimension B
 - \rightarrow we can **reshape** the $B \times H \times M \times N$ tensor to $B \times H \times M \cdot N$
 - → because of our format we have to transpose from B × H × M · N to B × M · N × H
 - \rightarrow and afterwards **reshape again** to have a $\underline{B \cdot M \cdot N \times H}$ tensor
- Consequently we have to reverse this before returning the output
- ... and do the same in the backward pass

LeNet (optional)

LeNet architecture

Figure: LeNet

Modified LeNet architecture

Deviations

- Input is 28 × 28
- Our conv only supports "same" padding so C3 has larger activation maps
- Input to C5 is also larger
- We only implemented ReLUs, so no TanH
- We also use the implemented SoftMax instead of RBF units

Figure: LeNet

Thanks for listening.

Any questions?