# Algoritmos e Estrutura de Dados

Aula 6 – Algoritmos de

Ordenamento: Quick Sort

Prof. Tiago A. E. Ferreira

## QuickSort

- O Quiksort é um algoritmo de ordenamento que no pior caso é Θ(n²)
  - Contudo, na prática, geralmente é a melhor opção!
    - Devido a sua alta eficiência no caso médio: Θ(nlgn)
- O algoritmo *Quicksort* utiliza a tática de dividir e conquistar
  - Esta tática é dividida em três partes para a realização do ordenamento do arranjo A[p..r]

# Dividir para Conquistar

#### Dividir:

- A[p..r] é particionado em dois subarranjos, A[p..q-1]
   e A[q+1..r]
  - □ Cada elemento de A[p..q-1] é menor ou igual que A[q].
  - □ A[q] é menor ou igual a todos os elementos de A[q+1..r]
  - □ O índice **q** é calculado como parte do procedimento de particionamento

# Dividir para Conquistar

#### Conquistar:

 Os dois subarranjos A[p..q-1] e A[q+1..r] são ordenados por chamadas recursivas ao quiksort

#### Combinar:

- Os arranjos são ordenados localmente!
  - Não há trabalho para combiná-lo: O arranjo A[p..r] está inteiramente ordenado!

# Quicksort – Pseudo-Código

```
QUICKSORT(A, p, r)

1 if p < r

2 then q \leftarrow \text{PARTITION}(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

Para ordenar um arranjo A, é chamado inicialmente a função

QUICKSORT(A,1,comprimento[A])

Em python, seria de 0 até comprimento[A]-1

## Particionamento do Arranjo

O Procedimento PARTITION organiza o

subarranjo A[p..r] localmente

```
PARTITION(A, p, r)

1 x \leftarrow A[r] \longrightarrow Pivô

2 i \leftarrow p - 1

3 for j \leftarrow p to r - 1

4 do if A[j] \le x

5 then i \leftarrow i + 1

6 trocar A[i] \leftarrow A[j]

7 trocar A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

- Loop invariante:
  - É possível enunciar um loop invariante entre as linhas 3 e 6 do pseudo-código
  - Propriedades:
    - □ Se  $p \le k \le i$ , então  $A[k] \le x$
    - □ Se  $i+1 \le k \le j-1$ , então A[k] > x
    - □ Se k = r, então A[k] = x

#### Inicialização:

- Antes da primeira iteração
  - i =p-1
  - j = p
  - □ Não há nenhum número entre p e i, e entre i+1 e j-1
    - As duas primeiras propriedades são satisfeitas
  - A atribuição na linha 1
    - A terceira propriedade é satizfeita!

### Manutenção

- Existem dois casos a considerar, dependendo do teste da linha 4:
  - □ Se A[j]>x
    - A única ação do loop é incrementar j (as propriedades continuam válidas)



## Manutenção

- Existem dois casos a considerar, dependendo do teste da linha 4:
  - Se A[j] ≤ x
    - A[i] e A[j] são permutados e então j é incrementado
    - Assim, fica: A[i] ≤ x (propriedade 1 satisfeita)
    - A[j-1] > x (propriedade 2 satisfeita)



#### □ Término:

- j=r
  - Toda a entrada no arranjo pose ser classificada em um dos três conjuntos definidos pelo loop invariante
    - Um conjunto com todos os elementos menores que x
    - Um conjunto com todos os elementos maiores que x
    - Um conjunto unitário contende x

- $\square$  O particionamento tem custo  $\Theta(n)$
- Particionamento no pior caso
  - São produzidos dois subproblemas: um com n-1 elementos e um com zero elementos.
  - Gera-se a recursão:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
  
=  $T(n-1) + \Theta(n)$ .

□ O que significa  $T(n) = \Theta(n^2)$ 

- Particionamento do melhor caso:
  - São produzidos dois subproblemas não maiores que n/2
    - □ Sendo um \[ n/2 \] e o outro \[ n/2 \] 1
  - Gera-se a recorrência:

$$T(n) \leq 2T(n/2) + \Theta(n)$$

O que significa T(n) = O(nlgn)

- Particionamento balanceado Caso médio
  - No caso médio, o algoritmo quicksort se aproxima muito mais do melhor caso do que do pior caso!
  - Suponha que o particionamente sempre produza uma divisão proporcional de 9 para 1:

$$T(n) \le T(9n/10) + T(n/10) + cn$$

O que significa T(n) = O(nlgn)



## Versão Aleatória do Quicksort

- O caso médio significa um particionamento médio
  - Assim se garantirmos que o parcionamento médio esteja balanceado, também garantimos que na médio o custo do quicksort será O(nlgn)
  - Para tal aleatoriza-se a escolha no pivô

```
RANDOMIZED-PARTITION(A, p, r) RANDOMIZED-QUICKSORT(A, p, r)

1 i \leftarrow \text{RANDOM}(p, r) 1 if p < r

2 trocar A[p] \leftrightarrow A[i] 2 then q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)

3 return PARTITION(A, p, r) 3 RANDOMIZED-QUICKSORT(A, p, q - 1)

4 RANDOMIZED-QUICKSORT(A, q + 1, r)
```

## Exercício:

- Implemente o Quicksort em Python
  - Ambas as versões (normal e aleatória)
- Resolva o problema do livro Texto
  - 7-1 (pág. 129 da versão em protuguês)