

FLUCTUATION MICROSCOPIES

Emmanuel MARGEAT

CNRS

Centre de Biochimie Structurale - Montpellier

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

History: 1st measurement of correlation spectroscopy

(Svedberg & Inouye, 1911) Occupancy Fluctuation

 $1200020013241231021111311251110233133322111224221226122142345241141311423\\ 100100421123123201111000111_211001320000010011000100023221002110000201001\\ _333122000231221024011102_12221122310001103311102101100101030113121210101\\ 21111211_1000322101230201212132111011002331224211000120301010022173441010\\ 1002112211444421211440132123314313011222123310121111222412231113322132110\\ 000410432012120011322231200_253212033233111100210022013011321131200101314\\ 322112211223234422230321421532200202142123232043112312003314223452134110\\ 412322220221$

Svedberg and Inouye, Zeitschr. F. physik. Chemie 1911, 77:145

Visual counting of visible gold particles, as seen trough an "ultramicroscope"

Histogram of particles numbers

*Autocorrelation

• Poisson law

$$\langle N \rangle = 1.55$$

• Today : easy to calculate

$$\langle N \rangle = \frac{1}{G(0)} = 1.56$$

Poisson law: decribes independant events, occuring in a fixed time lag, with a fixed average frequency

Observation of fluctuations

What can we observe?

- 1. Speed of the movement
- 2. Particles concentration
- 3. Change of state, and thus of the signal, of the particles
- \rightarrow Particles interactions

Sample Space

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

Observing fluctuations: fluorescence microscopy

The observation volume One- & Two-Photon Excitation.

1-photon

Need a pinhole to define a small volume

2-photon

Brad Amos MRC, Cambridge, UK

Fluorescence correlation spectroscopy

Using FCS, we will analyze these intensity fluctuations

Data Treatment & Analysis

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

Introduction to correlation function.

AutoCorrelation. Diffusion only, No Dynamics. "Donor-Donor"

$$G(\tau) = \frac{\left\langle F(t+\tau) \cdot F(t) \right\rangle}{\left\langle F \right\rangle^2}$$

2 definitions for the autocorrelation function

$$G(\tau) = \frac{\left\langle \delta F(t) \ \delta F(t+\tau) \right\rangle}{\left\langle F \right\rangle^2}$$
$$\delta F(t) = F(t) - \left\langle F(t) \right\rangle$$

Decays to 0 for $\tau \rightarrow \infty$

$$G(\tau) = \frac{\left\langle F(t+\tau) \cdot F(t) \right\rangle}{\left\langle F \right\rangle^2}$$

Decays to 1 for $\tau \rightarrow \rightarrow \infty$

Factors influencing the fluorescence signal:

κQ = quantum yield and detector sensitivity (how bright is our probe). This term could contain the fluctuation of the fluorescence intensity due to internal processes

W(r) describes our observation volume

C(r,t) is a function of the fluorophore concentration over time. This is the term that contains the "physics" of the diffusion processes

G(0) = 1/Nb of observed particles

In a poissonian systme the variance of the number of events is equal to its mean (here the average numer of observed particles)

$$\langle N \rangle = Variance_N = \sigma_N^2$$

$$G(\tau) = \frac{\left\langle \delta F(t) \delta F(t+\tau) \right\rangle}{\left\langle F(t) \right\rangle^2}$$

$$G(0) = \frac{\left\langle \delta F(t)^2 \right\rangle}{\left\langle F(t)^2 \right\rangle} = \frac{\left\langle \left(F(t) - \left\langle F(t) \right\rangle \right)^2 \right\rangle}{\left\langle F \right\rangle^2} = \frac{\sigma_F^2}{\left\langle F \right\rangle^2} = \frac{\varepsilon^2 . \sigma_N^2}{\left\langle F \right\rangle^2}$$

$$G(0) = \frac{\left\langle \delta F(t)^2 \right\rangle}{\left\langle F \right\rangle^2} = \frac{\left\langle \left(F(t) - \left\langle F(t) \right\rangle \right)^2 \right\rangle}{\left\langle F \right\rangle^2} = \frac{\sigma_F^2}{\left\langle F \right\rangle^2} = \frac{\varepsilon^2 . \sigma_N^2}{\varepsilon^2 . \left\langle N \right\rangle^2}$$

$$G(0) = \frac{Variance}{\left\langle N \right\rangle^2} = \frac{1}{\left\langle N \right\rangle}$$

About the observation volume

$$G(0) = \frac{1}{\langle N \rangle} = \frac{1}{\langle C \rangle V_{eff}} = \frac{\gamma}{\langle C \rangle V_{PSF}}$$

 V_{eff} = effective volume V_{PSF} = volume of the psf

 γ = shape factor, that takes into account the non-uniformity of the observation volumes. Practically, γ < 1

$$\gamma = \frac{1}{2\sqrt{2}}$$
 3D Gaussian volume $\gamma = \frac{3}{4\pi^2}$ 2D Gaussian – Lorentzien volume

Effect of the concentration

For a single species, no photobleaching

$$G(0) = \frac{1}{\langle N \rangle}$$

Rhodamine 6G in 70% sucrose (0.62nM, 1.25nM, 2.5nM, 5nM, 10nM, 20nM) (green curves)

0.62nM with a 70 times higher excitation power (red curve)

G(0), Particle Brightness and Poisson Statistics

Time

Average =
$$0.275$$
 Variance = 0.256

Variance
$$= 0.256$$

$$\langle N \rangle \propto Average^2 / Variance = \frac{0.275^2}{0.256} \neq 0.296$$

Lets increase the particle brightness by 4x:

 $4\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 8\ 0\ 4\ 4\ 4\ 0\ 0\ 0\ 0\ 0\ 0\ 4\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 4\ 0\ 0\ 0\ 4\ 0\ 0\ 0\ 0\ 0\ 0$

$$\langle N \rangle \propto$$
 (0.296)

$$F = \varepsilon.N$$

Mais ε x4

What about the excitation (or observation) volume shape?

Volume shape and autocorrelation

2-dimensional Gaussian excitation volume:

$$G(\tau) = \frac{\gamma}{N} \left(1 + \frac{4D\tau}{w_{2DG}^2} \right)^{-1}$$

For 2photon excitation, 8Dτ

3-dimensional Gaussian excitation volume:

$$G(\tau) = \frac{\gamma}{N} \left(1 + \frac{4D\tau}{w_{3DG}^2} \right)^{-1} \left(1 + \frac{4D\tau}{z_{3DG}^2} \right)^{-\frac{1}{2}}$$

Triplet:

$$(1+\frac{T}{1-T}e^{\frac{-\tau}{\tau_T}})$$

..where T is the triplet state $(1 + \frac{T}{1 - T}e^{\frac{-\tau}{\tau_T}})$...where T is the triplet state amplitude and τ_T is the triplet lifetime.

Orders of magnitude (for 1 µM solution, small molecule, water)

Volume	Device S	Size(µm)	Molecules	Time
milliliter	cuvette	10000	6x10 ¹⁴	104
microliter	plate well	1000	$6x10^{11}$	10^{2}
nanoliter	microfabricat	ion 100	$6x10^{8}$	1
picoliter	typical cell	10	6x10 ⁵	10-2
femtoliter	confocal volu	me 1	$6x10^{2}$	10-4
attoliter	nanofabricati	on 0.1	$6x10^{-1}$	10 ⁻⁶

The Effects of Particle Size on the Autocorrelation Curve

Diffusion Constants

300 um²/s 90 um²/s 71 um²/s

Stokes-Einstein Equation:

$$D = \frac{k \cdot T}{6 \cdot \pi \cdot \eta \cdot r}$$

and

 $MW \propto Volume \propto r^3$

Monomer --> Dimer

Only a change in D by a factor of $2^{1/3}$, or 1.26

Mobility of a fluorescent macromolecule

Rhodamine dye in different environments

Measurement of the interaction between ezrin and Large Unilamelar Vesicles (LUV)

Collaboration with Pr. Picard (UM2)

Ezrin: protein interacting with actin and phospholipids
Specific labeling with Alexa488

LUV, labeled or unlabeled

- Titiration curve allowing the determination of the affinity between ezrin and LUV with different lipid compositions
- Demonstration of préférential binding of ezrin to PIP_2 -containing vesicles

Multiple Species

Case 1: Species vary by a difference in diffusion constant, D.

Autocorrelation function can be used:

$$G(\tau)_{sample} = \sum_{i=1}^{M} f_i^2 \cdot G(0)_i \cdot \left(1 + \frac{8D\tau}{w_{2DG}^2}\right)^{-1}$$
(2D-Gaussian Shape)
$$f_i \text{ is the fractional fluorescence intensity of species } i.$$

$$G(0)_{sample} = \sum f_i^2 \cdot G(0)_i$$

 $G(0)_{sample}$ is no longer γ/N !

Case 2: Species vary by a difference in brightness assuming that $D_1 \approx D_2$

The quantity G(0) becomes the only parameter to distinguish species, but we know that:

$$G(0)_{sample} = \sum f_i^2 \cdot G(0)_i$$

The autocorrelation function is not suitable for analysis of this kind of data without additional information.

We need a different type of analysis

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

Photon Counting Histogram (PCH)

Aim: To resolve species from differences in their molecular brightness

Molecular brightness ε : The average photon count rate of a single fluorophore

PCH: probability distribution function p(k)

where p(k) is the probability of observing k photon counts

Single Species:

$$p(k) = PCH(\varepsilon, \langle N \rangle)$$

Note: PCH is Non-Poissonian!

Sources of Non-Poissonian Noise

- Detector Noise
- Diffusing Particles in an Inhomogeneous Excitation Beam*
- Particle Number Fluctuations*
- Multiple Species*

PCH Example: Differences in Brightness

Photon Counting Histogram: Multispecies

Binary Mixture: $p(k) = PCH(\varepsilon_1, \langle N_1 \rangle) \otimes PCH(\varepsilon_2, \langle N_2 \rangle)$

Snapshots of the excitation volume

Photon Counting Histogram: Multispecies

The occupancy fluctuations for each specie in the mixture becomes a convolution of the individual specie histograms. The resulting histogram is then broader than expected for a single species.

Resolve a protein mixture with a brightness ratio of two

Alcohol dehydrogenase labeling experiments

Singly labeled proteins

Mixture of singly or doubly labeled proteins

с	\mathcal{E}_1 kcpsm	\overline{N}_{1}	\mathcal{E}_2 kcpsm	\overline{N}_2
Sample A	$26.2^{+0.19}_{-0.18}$	$0.540^{+0.004}_{-0.004}$		
Sample B	$25.1^{+0.6}_{-1.2}$	$0.155^{+0.007}_{-0.002}$	56^{+10}_{-10}	$0.006^{+0.008}_{-0.003}$

Both species have

same

- color
- fluorescence lifetime
- diffusion coefficient
 - polarization

PCH in cells: Brightness of EGFP

The molecular brightness of EGFP is a factor ten higher than that of the autofluorescence in HeLa cells

Brightness and Stoichiometry

Brightness of EGFP₂ is twice the brightness of EGFP

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

Introduction to correlation function.

CrossCorrelation. Diffusion only, No Dynamics. "Donor-Acceptor"

Two-Color Cross-correlation

Only the green-red molecules are observed!!

$$G_X(\tau) = \frac{\left\langle \delta F_1(t) . \delta F_2(t+\tau) \right\rangle}{\left\langle F_1(t) \right\rangle \left\langle F_2(t) \right\rangle}$$

- n_1 : number of green molecules
- n_2 : number of red molecules
- n_{12} : number of green-red molecules

$$g_1(0) = \frac{1}{n_1 + n_{12}}, \quad g_2(0) = \frac{1}{n_2 + n_{12}}, \quad g_{\times}(0) = \frac{n_{12}}{(n_1 + n_{12})(n_2 + n_{12})}$$

$$\frac{g_{\times}(0)}{g_2(0)} = \frac{n_{12}}{n_1 + n_{12}} \rightarrow$$
 fraction of green in complex with red

$$\frac{g_{\times}(0)}{g_1(0)} = \frac{n_{12}}{n_2 + n_{12}}$$
 \rightarrow fraction of red in complex in complex with green

Cross-correlation Calculations

One uses the same fitting functions you would use for the standard autocorrelation curves.

Thus, for a 3-dimensional Gaussian excitation volume one uses:

$$G_{12}(\tau) = \frac{\gamma}{N_{12}} \left(1 + \frac{8D_{12}\tau}{w^2} \right)^{-1} \left(1 + \frac{8D_{12}\tau}{z^2} \right)^{-\frac{1}{2}}$$

 G_{12} is commonly used to denote the cross-correlation and G_1 and G_2 for the autocorrelation of the individual detectors. Sometimes you will see $G_x(0)$ or C(0) used for the cross-correlation.

In vitro interaction between the CGGR repressor and its operator Nathalie Declerck (CBS)

FBP induces the dissociation of the CGGR tztramer from its operator

FBP: fructose-1,6-bis-phosphate

FLUCTUATION MICROSCOPIES

- INTRODUCTION
- PRINCIPE OF FCS
- AUTOCORRELATION
- PHOTON COUNTING HISTOGRAM
- CROSS CORRELATION
- EXPERIMENTAL DETAILS
- NUMBER & BRIGHTNESS
- PRACTICAL PART

Experimental details

- Background
- Photobleaching
- Size and shape of the observation volume
- Cross-talk between detection channels (FCCS)
- Afterpulsing

Background

- · Constant, uncorrelated (B)
 - \rightarrow Diminishes the value of G(0)

$$g'(\tau) = g(\tau) \left(\frac{\langle F \rangle}{\langle F \rangle + B}\right)^2$$

- Correlated (arising from diffusing molecules)
 - → Add a new component to the analysis

$$G(\tau) = \sum_{i=1}^{M} f_i^2 \cdot G(0)_i \cdot \left(1 + \frac{8D\tau}{w_{2DG}^2}\right)^{-1}$$
 (2D-Gaussian, 2PE)

Photobleaching

 Static (photobleaching of quasi immobiles molecules)

Photobleaching

Dynamic

→ Diminishes the apparent diffusion coefficient

Size and shape of the observation volume

FCS: distortions of the volume size can affect:

- measured diffusion coefficient D via r_0 in $D = r_0^2/\tau_D$
- measured concentration via changed V_{eff} : $g(0) = 1/cV_{\text{eff}}$

FCCS: in addition to the above, the volume overlap affects $g_{\times}(\tau)$

— use objective correction collar for coverslip thickness correction

NB: Using 2photon excitation, the excitation volumes are identical

Spectral cross talk (FCCS)

Detection of the « green » fluorophore in the « red » detection channel : — Artifactual cross correlation

→ Use spectrally distincs fluorophores
 → Use alternated laser excitation (nsALEX / PIE)

ALEX: Alternating laser excitation, PIE: Pulsed interleaved excitation

PIE / nsALEX with a supercontinuum source

Removal of crosstalk in FCCS

Overlap of the excitation and detection volumes

Afterpulsing

Autocorrelation : One detector

Cross correlation:
Two spectrally equivalent detectors
50/50 beam splitter