```
In [2]:
```

```
# aa_spectraltool
# 2017 francesco.anselmo@aaschool.ac.uk
```

In [3]:

```
%matplotlib inline
```

In [51]:

```
# import libraries
import colour
import colour.plotting
import colour.io
from colour.plotting import *
import PIL
import numpy as np
from numpy import array, zeros, linspace, float64, savetxt
from scipy import interpolate, vectorize
from scipy.signal import argrelextrema, argrelmax, savgol_filter, resample
from sklearn.preprocessing import normalize
import matplotlib.pyplot as plt
import pylab
from itertools import izip
import csv
import warnings
warnings.filterwarnings("ignore")
```

In [30]:

img = PIL.Image.open("DSC_0064.JPG") # EDIT THIS: change name of your file

In [31]:

```
# show image format, size and colour mode
print(img.format, img.size, img.mode)
```

JPEG (3840, 2160) RGB

In [32]:

show image - ensure that the image has the blue part of the spectrum on the le
ft
if not, rotate it with an image editing software, save it and import it again

if not, rotate it with an image editing software, save it and import it again
plt.imshow(np.asarray(img))

Out[32]:

<matplotlib.image.AxesImage at 0x13034b898>

In [33]:

```
# convert image to grey scale
greyscale_img = img.convert("LA")
print(greyscale_img.format, greyscale_img.size, greyscale_img.mode)
```

None (3840, 2160) LA

In [34]:

```
# show grey scale image
plt.imshow(greyscale_img)
# show sampling line
sampling_line = 1000 # EDIT THIS: change to the line you need to sample
plt.axhline(sampling_line)
```

Out[34]:

<matplotlib.lines.Line2D at 0x12d81a6d8>

In [35]:

```
# load pixels into numpy array
pix = array(greyscale_img)
```

In [36]:

```
# sample at the specified pixel row / horizontal line
data_row = pix[sampling_line]
```

In [37]:

```
# take data in sampling line as an array of values - this is the raw spectral da
ta
spectrum = np.take(data_row,0,1)
# print the number of values, which is equal to the image horizontal size
print(len(spectrum))
# plot the raw spectrum
plt.plot(spectrum)
```

3840

Out[37]:

[<matplotlib.lines.Line2D at 0x133e34fd0>]

In [41]:

```
# this is the calibration process:
# using a compact fluorescent spectrum, choose how to trim the left and right ed
ge of the data
# so that the second blue wavelength is 436 nm and the green wavelength is 546 n
# this might need a little bit of trial and error and running iteratively this c
ell and
# the next two cells too
trimLeft = 700 # EDIT THIS: change this for calibration
trimRight = 1900 # EDIT THIS: change this for calibration
# create a linear integer space arrangement with x trimmed between the two selec
ted values
x = np.linspace(trimLeft,trimRight,trimRight-trimLeft+1)
# smooth the spectrum using the Savitzky-Golay filter
newSpectrum = savgol filter(spectrum, 21, 2)
\# normalise the spectrum so that the values are between 0 and 1
normalizedSpectrum =
normalize(newSpectrum[trimLeft:trimRight+1],'max').reshape(-1,1)
# resample the spectrum so that the sampling is every nanometer
resampledSpectrum = resample(normalizedSpectrum,730-380+1)
```

In [42]:

```
# plot the resampled and smoothed spectrum
plt.plot(resampledSpectrum)
```

Out[42]:

[<matplotlib.lines.Line2D at 0x133deba90>]

In [44]:

create a linear integer space arrangement with x between 380 and 730 nm
xx = np.linspace(380,730,730-380+1)

plot the new resampled, smoothed spectrum, transposed between 380 and 730 nm
plt.plot(xx,resampledSpectrum)

plot the second blue wavelength (436 nm) and the green wavelength (546 nm)
plt.axvline(x=436)
plt.axvline(x=546)

if the blue lines are marking the second blue wavelength and the green wavelength,
proceed to the next cell, otherwise revise the trimLeft and trimRight values a
nd run
another iteration

Out[44]:

<matplotlib.lines.Line2D at 0x13b740a20>

In [45]:

transform the spectrum into a dictionary that the Colour library can process
spd_data = dict(izip(xx, resampledSpectrum))

In [53]:

```
# EDIT THIS: change name according to name of spectrum
spd = colour.SpectralPowerDistribution('Compact Fluorescent Lamp', spd_data)
# plot the spectrum using the Colour library
single_spd_plot(spd)
```


In [54]:

```
# calculate the sample spectral power distribution *CIE XYZ* tristimulus values
# using the CIE 1931 2 degree standard observer and D65 (daylight) standard illu
minant
cmfs = colour.STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']
illuminant = colour.ILLUMINANTS_RELATIVE_SPDS['D65']
XYZ = colour.spectral_to_XYZ(spd, cmfs, illuminant)
print(XYZ)
```

[45.02891476 52.32765966 20.07891099]

In [55]:

```
# calculate *xy* chromaticity coordinates for the spectrum
xy = colour.XYZ_to_xy(XYZ)
print(xy)
```

[0.38343534 0.44558644]

```
# display the colour coordinate of the spectral sample in the CIE chromaticity d
# plot the *CIE 1931 Chromaticity Diagram* including the Planckian Locus
# the argument *standalone=False* is passed so that the plot doesn't get display
# and can be used as a basis for other plots
#CIE_1931_chromaticity_diagram_plot(standalone=False)
planckian_locus_CIE_1931_chromaticity_diagram_plot(standalone=False)
# plot the *xy* chromaticity coordinates of the spectrum
x, y = xy
pylab.plot(x, y, 'o-', color='white')
# Annotating the plot.
pylab.annotate(spd.name.title(),
               xy=xy,
               xytext=(-50, 30),
               textcoords='offset points',
               arrowprops=dict(arrowstyle='->', connectionstyle='arc3,
rad=-0.2'))
# Displaying the plot.
display(standalone=True)
```


In [58]:

show the spectrum wavelengths
print(spd.wavelengths)

[380.	381.	382.	383.	384.	385.	386.	387.	388.	389.	390.
391.										
392.	393.	394.	395.	396.	397.	398.	399.	400.	401.	402.
403.										
404.	405.	406.	407.	408.	409.	410.	411.	412.	413.	414.
415.										
416.	417.	418.	419.	420.	421.	422.	423.	424.	425.	426.
427.										
428.	429.	430.	431.	432.	433.	434.	435.	436.	437.	438.
439.										
440.	441.	442.	443.	444.	445.	446.	447.	448.	449.	450.
451.										
452.	453.	454.	455.	456.	457.	458.	459.	460.	461.	462.
463.										
	465.	466.	467.	468.	469.	470.	471.	472.	473.	474.
475.										
	477.	478.	479.	480.	481.	482.	483.	484.	485.	486.
487.										
488.	489.	490.	491.	492.	493.	494.	495.	496.	497.	498.
499.	103.	1300	171	1,52,4	1300	1710	1331	150.	15, .	1301
500.	501.	502.	503.	504.	505.	506.	507.	508.	509.	510.
511.	301.	302.	303.	301.	303.	300.	307.	300.	303.	310.
512.	513.	514.	515.	516.	517.	518.	519.	520.	521.	522.
523.	J1 J •	314.	313.	510.	517.	310.	317.	320.	JZ1•	JZZ •
524.	525.	526.	527.	528.	529.	530.	531.	532.	533.	534.
535.	323.	320.	327.	320.	323.	550.	331.	332.	555.	334.
536.	537.	538.	539.	540.	541.	542.	543.	544.	545.	546.
547.	557.	550.	339.	340.	341.	342.	343.	344.	545.	340.
	E 4 O	EEO	E E 1	EEO	EEO	EE1	E E E	E E C	E E 7	EEO
548.	549.	550.	551.	332.	555.	554.	555.	556.	557.	558.
559.	F.C.1	F.C.2	F.C.2	E C 1	FCF	F.C.C	F C 7	E C O	E C O	F 7.0
560.	561.	562.	563.	564.	565.	566.	567.	568.	569.	570.
571.	F 7 2	574	-	F76	-	F 7 0	F 7 0	F 0 0	F 0 1	F 0 2
572.	573.	574.	575.	576.	577.	578.	579.	580.	581.	582.
583.	F 0 F	F.O.6	507	500	500	500	F 0 1	500	500	504
584.	585.	586.	587.	588.	589.	590.	591.	592.	593.	594.
595.										
596.	597.	598.	599.	600.	601.	602.	603.	604.	605.	606.
607.										
608.	609.	610.	611.	612.	613.	614.	615.	616.	617.	618.
619.										
620.	621.	622.	623.	624.	625.	626.	627.	628.	629.	630.
631.										
632.	633.	634.	635.	636.	637.	638.	639.	640.	641.	642.
643.										
644.	645.	646.	647.	648.	649.	650.	651.	652.	653.	654.
655.										
656.	657.	658.	659.	660.	661.	662.	663.	664.	665.	666.
667.										
668.	669.	670.	671.	672.	673.	674.	675.	676.	677.	678.
679.										
680.	681.	682.	683.	684.	685.	686.	687.	688.	689.	690.
691.										
692.	693.	694.	695.	696.	697.	698.	699.	700.	701.	702.
703.										
704.	705.	706.	707.	708.	709.	710.	711.	712.	713.	714.
715.										
716.	717.	718.	719.	720.	721.	722.	723.	724.	725.	726.
727.										
728.	729.	730.]								

In [59]:

show the spectrum values
print(spd.values)

[0. 4047	0208532	0.0276647	0.02705774	0.02857712	0.02757241	0.0270
	02655208	0.02816369	0.02960833	0.03137507	0.03104737	0.0313
0.	03362139	0.03885933	0.04821104	0.06173291	0.08048775	0.1046
	12883401	0.15049445	0.16405011	0.16713666	0.16188531	0.1452
	12155411	0.09827836	0.07876268	0.06809213	0.06355497	0.0602
-	05897934	0.05840131	0.05876845	0.06003597	0.06100284	0.0631
6679 0.	0650546	0.06717051	0.06977669	0.07214287	0.07483113	0.0775
9553 0.	0812703	0.08445041	0.08798542	0.09211443	0.0951888	0.1013
09 0.	10721708	0.11378383	0.12170485	0.12757968	0.13217332	0.1342
912 0.	13441399	0.13424532	0.13394442	0.13332682	0.13011293	0.1250
9383	12012495	0.11697253	0.11561395	0.11486569	0.11371808	0.1129
253 0.	11304927	0.11336467	0.11251656	0.11122885	0.10972158	0.1088
4345		0.1091733	0.10876491	0.10771535	0.10634419	0.1045
5106		0.10208042	0.10016011	0.09912679	0.09710617	0.0959
3964		0.10501397	0.11227592	0.12153846	0.13160431	0.1482
2223						
5141		0.18192386	0.19656192	0.21123455	0.22954628	0.2501
2653		0.29623251	0.3220319	0.34798454	0.37899008	0.4196
3736			0.57046239			0.6697
0. 8976	68707329	0.69587873	0.69986553	0.70011914	0.70006321	0.6981
0. 6193	69318454	0.68604671	0.67711478	0.66371328	0.64647006	0.6259
0. 0917	60306604	0.57746577	0.54903081	0.51312023	0.47342207	0.4335
0. 5582	39636979	0.36787321	0.34472369	0.32735881	0.31408608	0.3024
0. 2556	29824511	0.2953585	0.29193385	0.28639587	0.27651715	0.2711
	26874644	0.26599569	0.26349957	0.25849622	0.25788944	0.2606
	26199981	0.26514868	0.26775772	0.2738861	0.28511369	0.2967
	31361297	0.33528754	0.36328957	0.39814369	0.43774585	0.4738
	50519948	0.54422731	0.59084599	0.63234286	0.6643888	0.7014
0.	76447728	0.84500756	0.91214098	0.94366321	0.94895798	0.9350
	89205414	0.82036985	0.74303304	0.6864942	0.66124573	0.6561
	65399752	0.63744469	0.60528323	0.56061692	0.50895642	0.4622
9187 0.	42332402	0.38986833	0.36337942	0.34365058	0.33506426	0.3310

1434					
0.33059806 5068	0.32644338	0.32092394	0.32199736	0.32367027	0.3298
0.34506855 584	0.36600491	0.4091305	0.47005863	0.53863144	0.6156
0.68202372	0.73385218	0.78035866	0.81183814	0.83237448	0.8450
9714 0.85084503	0.85637306	0.85948471	0.85648523	0.8396101	0.8150
0.78928083	0.76549763	0.74543108	0.71999868	0.68934411	0.6596
9543 0.63792409	0.62610721	0.61846006	0.60907596	0.58860875	0.5614
7873 0.53624808	0.52198981	0.52454641	0.56233434	0.65876969	0.7938
206 0.91558636	0.9848981	0.99986573	0.97536923	0.91407373	0.8133
0012 0.69259416	0.5922527	0.52761976	0.49054903	0.4702032	0.4577
8523 0.44557041	0.43037878	0.41325657	0.39938376	0.39313505	0.3962
489 0.40471458	0.41418736	0.41318507	0.38803135	0.34138332	0.2906
9322 0.24997929	0.22902382	0.21909617	0.21313405	0.20958483	0.2058
5604 0.20192641	0.1977575	0.19564312	0.19582315	0.19533689	0.1984
5998 0.20262221	0.20640468	0.20715235	0.19941753	0.18579084	0.1678
3557 0.15180272	0.14271603	0.13728926	0.13810497	0.141982	0.1501
7986 0.16165584	0.17032694	0.17446937	0.17195729	0.16459166	0.1541
7384 0.14263512	0.13024197	0.11764841	0.10722557	0.09860438	0.0913
2427 0.08554107	0.08107416	0.07705725	0.07528649	0.07441203	0.0724
5976 0.07045841	0.06729825	0.06369236	0.06013696	0.0567705	0.0532
9291 0.0507702	0.04793462	0.04371459	0.04090486	0.03819947	0.0364
3053 0.03510026	0.03276661	0.03248427	0.03273332	0.03242645	0.0330
703 0.03353955	0.03343585	0.03181774	0.02996533	0.02864418	0.0285
4561 0.02964049	0.02993882	0.02801315	0.02532085	0.02235417	0.0205
0332	0.02169528	0.02323981	0.02434216	0.02373819	0.0222
9067 0.02076481	0.02080465	0.02086707	0.02108103	0.02108124	0.0201
847 0.02013291	0.02066616	0.02064667	0.02079031	0.01748933	0.0157
0138	0.0150428	0.01608278	0.01650037	0.01498474	0.0143
9265 0.01194791	0.0121482	0.01127465]			

```
In [61]:
```

```
# export the spectral dataset to a csv file
# EDIT THIS: change filename of the csv file (csv means comma separated values)
out = csv.writer(open("compact_fluorescent.csv","w"),
delimiter=',',quoting=csv.QUOTE_ALL)
out.writerow(spd.wavelengths)
out.writerow(spd.values)
```

Out[61]:

6036

In [62]:

well done! now do the same with other spectral pictures!