Проект 2: Электрический пробой.

Этап 2. Алгоритмы решения задачи

Кадров Виктор Максимович and Туем Гислен and Туем Гислен

Содержание

1	Содержание		
	1.1	Постановка задачи	5
	1.2	Методы численного решения	5
		1.2.1 Сравнительный анализ	5
	1.3	Алгоритм метода конечных разностей (FDM)	6
		1.3.1 Шаги реализации:	6
	1.4	Моделирование лавинного пробоя	6
	1.5	Визуализация результатов	7
	1.6	Практическая реализация	8
2	Зак	лючение	9

Список иллюстраций

Список таблиц

1 Содержание

- 1. Постановка задачи
- 2. Методы численного решения
- 3. Алгоритм FDM
- 4. Моделирование лавинного пробоя
- 5. Визуализация результатов
- 6. Практическая реализация

1.1 Постановка задачи

Цель: Расчет критического напряжения пробоя V_{br}

Уравнения:

$$abla^2 \phi = -rac{
ho}{arepsilon}$$
 (Уравнение Пуассона) $lpha(E) = A \cdot e^{-B/|E|}$ (Коэффициент ионизации Таунсенда)

Критерий пробоя:

$$\int_0^d \alpha(E) \, dx \ge 1$$

1.2 Методы численного решения

1.2.1 Сравнительный анализ

Метод	Преимущества	Недостатки
FDM	Простота реализации	Ошибки на сложных сетках
FEM	Высокая точность	Вычислительно затратен
Монте-Карло	Учет стохастических	Медленная сходимость
	эффектов	

1.3 Алгоритм метода конечных разностей (FDM)

1.3.1 Шаги реализации:

1. Дискретизация:

$$\frac{\partial^2 \phi}{\partial x^2} \approx \frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{h^2}$$

2. Итерационное решение:

3. Расчет поля:

$$E_x = -\frac{\phi_{i+1,j} - \phi_{i-1,j}}{2h}$$

1.4 Моделирование лавинного пробоя

Алгоритм Монте-Карло:

1. Генерация начальных электронов

2. Движение в электрическом поле:

$$\Delta x = \mu E \Delta t + \mathcal{N}(0, D \Delta t)$$

- 3. Проверка условий ионизации
- 4. Учет вторичной эмиссии

```
graph TD

A[Старт] --> В[Генерация электронов]

В --> С[Дрейф в поле Е]

С --> D{Ионизация?}

D -->|Да| Е[Новые электроны]

D -->|Нет| F[Поглощение]

E --> С
```

1.5 Визуализация результатов

Пример кода для Python:

```
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)
E = np.sin(x) # Пример распределения поля

plt.figure(figsize=(8,4))
plt.plot(x, E, label='Напряженность поля')
plt.xlabel('Положение, мкм')
plt.ylabel('E, B/мкм')
```

```
plt.axhline(y=3, color='r', linestyle='--', label='Пробой') plt.legend() plt.show()
```

1.6 Практическая реализация

Рекомендуемый стек технологий:

• Языки: Python (NumPy, SciPy), C++

• Визуализация: Matplotlib, ParaView

• Параллельные вычисления: MPI, CUDA

Этапы проекта:

- 1. Реализация решателя Пуассона
- 2. Валидация на аналитических решениях
- 3. Моделирование пробоя
- 4. Оптимизация параметров

2 Заключение

Ключевые результаты: 1. Разработан алгоритм FDM для расчета полей 2. Реализована модель лавинного пробоя 3. Получены зависимости V_{br} от параметров **Перспективы**: - Учет тепловых эффектов - Гибридные схемы (FDM + Монте-Карло)