

EECE5698 Parallel Processing for Data Analytics

Lecture 4: Key-Value Pairs & Partitioning

Outline

- □Key-Value Pairs
- **□**Joins
- □Parallelism & Partitioners

Outline

- □Key-Value Pairs
- **□**Joins
- Parallelism & Partitioners

Working with Key-Value Pairs

- RDDs of key-value pairs play a special role in Spark
- Python: a pair is a tuple of two elements:

```
pair = (a, b)
pair[0] # => a
pair[1] # => b
```

reduceByKey

```
pets = sc.parallelize([('cat', 1), ('dog', 1), ('cat', 2)])

pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}
```

- ☐ It's a transform, not an action (produces a new rdd)
- ☐ Presumes that data is in (key,value) pair form
 - ☐ Error will be generated if they are not.
 - ☐ True for all ...ByKey() operations

Example: Word Count

Each key is mapped to a machine (actually, partition)

target machine = hash(Key) % num machines

using python's builtin hash() function

A **shuffle** takes place: key-value pairs are moved appropriate machines, collocating pairs with identical keys

Reduce then applied locally at each machine

Optimizations

- □ Values are first combined locally before the shuffle takes place
- ☐ Shuffles avoided when not needed (partition-awareness, described soon)
- ☐ Big improvement in later versions of Spark: **sort-based** shuffle (we will not cover this)

Additional ByKey Transforms

```
pets = sc.parallelize([('cat', 1), ('dog', 1), ('cat', 2)])
pets.reduceByKey(lambda x, y: x + y)
\# = \{(cat, 3), (dog, 1)\}
pets.groupByKey()
# => {(cat, Seq(1, 2)), (dog, Seq(1)}
pets.sortByKey()
# => {(cat, 1), (cat, 2), (dog, 1)}
```

Transforms Applied on Values only

```
pets = sc.parallelize([('cat', 1), ('dog', 1), ('cat', 2)])
pets.mapValues(lambda x: x + 1 )
# => [('cat', 2), ('dog', 2), ('cat', 3)]
pets.flatMapValues(lambda x: range(x+1))
# => [('cat', 0), ('cat', 1), ('dog', 0), ('dog', 1), ('cat',
0), ('cat', 1), ('cat', 2)]
```

Useful PairRDD Transforms/Actions/IO

```
pets = sc.parallelize([('cat', 1), ('dog', 1), ('parrot', 2)])
pets.values()
                                # rdd containing values only
pets.keys()
                                # rdd containing keys only
# => ['cat', 'dog', 'parrot']
pets.collectAsMap()
                                # returns dictionary to driver
# => {'cat':1, 'dog':1, 'parrot':2}
allFiles = sc.wholeTextFiles('dir') # loads all files in
directory 'dir' in a PairRDD, with file names as keys end file
contents as values
```

combineByKey() -- similar to aggregate()

combineByKey(createCombiner, mergeValue, mergeCombiners)

turns a V merges a V combines two C's into a C into a single one

Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C

combineByKey() -- similar to aggregate()

Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C

Example: Computing a Per Key Average:

```
keyAvg = words.combineByKey(
            (lambda x: (x,1)),
                                                      #converts val to (val,1)
            (lambda x, y: (x[0] + y, x[1] + 1)), #adds val to running tally
            (lambda x, y: (x[0] + y[0], x[1] + y[1])) #merges two tallies
            ).mapValues(lambda (val,count):1.*val/count)
```


Outline

- □Key-Value Pairs
- **□**Joins
- □ Parallelism & Partitioners

Joins

```
grades = sc.parallelize([('Alice', 2), ('Bob', 4), ('Bob', 6)])
register = sc.parallelize([('Bob','UGrad'),(('Maria','Grad'))])
grades.join(register) # Perform an inner join between two RDDs
# => [('Bob', (4, 'UGrad')), (Bob, (6, 'UGrad'))]
```

grades

key	value
Alice	2
Bob	4
Bob	6

key	value
Bob	UGrad
Maria	Grad

grades.join(register)

key	value
Bob	(4,UGrad)
Bob	(6,UGrad)

If (key, val1) in rdd and (key, val2) in other, join contains (key, (val1, val2))

How Does join Work? (simplified)

Joins require shuffling

rdd:grades rdd:register

(Maria, Grad) (Bob,4) (Alice,2) (Bob,6) (Bob,Ugrad)

How Does join Work? (simplified)

Joins require shuffling

rdd:grades rdd:register

```
(Maria, Grad) (Bob,4)
(Alice,2) (Bob,6)
```


How Does join Work? (simplified)

Joins require shuffling

rdd:grades

rdd:register

Shuffles avoided when not necessary through partition-awareness

> (Bob,(4,Ugrad)) (Bob,(6,Ugrad))

Other Transformations On Pairs of RDDs

```
rdd = sc.parallelize([(1, 2), (3, 4), (3, 6)])
other = sc.parallelize([(3,9),(5,8)])
rdd.join(other)
                                             # Perform an inner join
\# \Rightarrow [(3, (4, 9)), (3, (6, 9))]
rdd.leftOuterJoin(other)
                          # Perform a left outer join
\# \Rightarrow [(1, (2, None)), (3, (4, 9)), (3, (6, 9))]
rdd.rightOuterJoin(other) # Perform a right outer join
\# \Rightarrow [(3, (4, 9)), (3, (6, 9)), (5, (None, 8))]
rdd.subtractByKey(other) # Remove elements with key in other
\# =  (1,2)
rdd.cogroup(other) # Group data sharing the same key together
\# \Rightarrow [(1,([2],[])), (3,([4, 6],[9])), (5,([],[8]))]
```

Outline

- □Key-Value Pairs
- **J**oins
- □Parallelism & Partitioners

Controlling the Level of Parallelism

All the pair RDD operations, and some of the nonpair operations, take an optional second parameter for **number of partitions**

```
words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)
```

This can be used to control the level of parallelism

What Are Partitions?

□RDDs are internally split into **partitions**

part 1 line2, line3, ..., line333]

[line1,

worker

myrdd=sc.textFile("WarAndPeace.txt",3)

What Are Partitions?

partitions < #machines</pre>

part0000

part0001

part0002

What Are Partitions?

partitions > #machines

part0005 part0000 part0004 part0009

part0006 part0001 part0003 part0002 part0007 part0008

Number of Partitions Controls Parallelism

rdd.map(lambda x: x+1)

- ☐ Map executed **serially** in each partition
- ☐ If machine stores **k** partitions, and has **n>k** processors, partition evaluations **executed in parallel**

part0005 part0004 part0000 part0009

part0006 part0001 part0003 part0002

part0007 part0008

How Many Partitions Should One Use?

□ *m* workers with *k* processors each

"ideal" #partitions = m k

- ☐ Fewer partitions: not exploiting full parallelism in this operation
- More partitions: No advantage in speedup; in practice, there may be advantage in memory usage (each cpu dealing with smaller partition, spark less likely to crash/hang)

Mapping Data to Partitions

Each key is mapped to a m (actually, partition) **≪**0e

target_machine = hash(Key) % num_partitions

using python's builtin hash() function

$$(to,1)$$
 $(or,1)$ $(to,1)$ $(that, be,1)$ $(not,1)$ $(be,1)$ $(is,1)$

A **shuffle** takes place: key-value pairs are moved appropriate machines, collocating pairs with identical keys

Re-Partitioning a key-value pair RDD

```
words.partitionBy(numPartitions,partitionFunc=hash)
```


Partition-Awareness

How Does This Work?

- □ key-to partition map fully defined by
 - ■NumPartitions
 - ☐ PartitionFunct (default:hash)
- ☐ When rdd is shuffled by partitionBy, these are stored in private variables

■When reduceByKey() is called next, it checks to see if these fields are set; if so, it skips shuffling

Partition-Awareness & Joins

- □ key-to partition map fully defined by
 - NumPartitions
 - □ PartitionFunct (default:hash)
- □ Join of rdds with the same partitioning information do not require a shuffle!!!!
 - □ keys are already on the same machines
- □Useful when doing repeated joins on large rdd

Partition-Awareness & Joins

```
grades = sc.parallelize([('Alice', 2), ('Bob', 4), ..., ('Bob', 6)])\
            .partitionBy(100).cache() #Perform a shuffle, sets partition info
register = sc.parallelize([('Bob','UGrad'),(('Maria','Grad'))])\
            .partitionBy(100) #Perform a tiny shuffle, sets partition info
grades.join(register)
                      # NO SHUFFLING REQUIRED
```

grades

key	value
Alice	2
Bob	4
•••	••
Bob	6

register

key	value
Bob	UGrad
Maria	Grad

grades.join(register)

key	value
Bob	(4,UGrad)
Bob	(6,UGrad)

Operations That Create/Preserve Partitioner

Create & Preserve cogroup(), groupWith() join(),leftOuterJoin(), rightOuterJoin(), groupByKey(), reduceByKey(), combineByKey() partitionBy(), sortByKey() Preserve (if parent has partitioner) mapValues(), flatMapValues() filter()

Beware of non-key value operations!

☐ A map will **remove partitioning info**, even if it does not alter keys.

