Information Retrieval

A Simple Search Project Daniel Zhou

Q People seem to like this X

Google Search

I'm Feeling Lucky

Google offered in: Français

My Story

```
About Me:
  New Grad Full Stack Dev. Mew CMPUT 361
Why This Project:
  IR is neat 👍
  Search is useful 😐
  Search can be complex
Takeaways:
  Overview of Two IR methods 
  Thoughts On Side Projects V
```

My Project

What is it about:

A simple search service on movie summaries.

Hosts a toy movie summaries collection from ~1950 - 2010, ~1700 movies!.

Exposes two search complementary search interfaces.

Demo

Demo

Demo

Demo

Demo

Demo

Demo

Demo

... Or Rather Text Retrieval

"Finding material that satisfies an informational need"

Why Use It:

Direct **V**

Tolerant 😀

Easy To Use 👍

Why Implement It:

- People Like It
- Simple & Cheap (ish)

Two Information Retrieval Methods

Boolean Retrieval

Queries as Boolean expressions

Find documents that satisfy them ...

Vector Space Retrieval

Treat queries & documents as vectors in a "keyword" space Score & rank documents by similarity in this space

Boolean Retrieval

Unpack the query into a search expression tree, recursively compute the expression.

Parse operators as set operations.

Parse Symbols as getter calls to an index.

Index: Keyword → [Doc ID 1, Doc Id 2, ...]

```
>>> import boolean
>>> algebra = boolean.BooleanAlgebra()
>>> algebra.parse('x & y')
AND(Symbol('x'), Symbol('y'))

>>> parse('(apple or banana and (orange or pineapple and (lemon or cherry)))')
OR(
    Symbol('apple'),
    AND(Symbol('banana'),
        OR(Symbol('orange'),
             AND(Symbol('pineapple'),
             OR(Symbol('lemon'), Symbol('cherry'))))))
```

Vector Space Retrieval

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Documents exist across various keywords (dimensions).

Queries are just short documents.

Similarity Scores:

Cosine Similarity (Angle Similarity)

Term (Dimension) Scores:

TF*IDF=TERM FREQUENCY * INVERSE DOCUMENT FREQUENCY

INVERSE DOCUMENT
FREQUENCY=
A MEASURE OF WHETHER A
TERM IS RARE OR COMMON
IN A COLLECTION OF
DOCUMENTS.

Considerations I've Skipped

Index Creation & Text Parsing

Optimizing Boolean Search

Vector Space Term Score Weighing & Normalization

Phrase Queries

Query Expansion

Implementation

NLTK - NLP / Text Parsing / Indexation Boolean.Py - / Boolean Expressions Flask - Web framework Heroku - Hosting service

Tech Takeaways

Search is a useful and interesting feature

Boolean search systems - good for power users

Vector space search systems - good for generic search

Python specifics:

Boolean.py

NLTK

Soft Takeaways

CMPUT 361 Is Pretty Neat

Booking an hour to work means you're more likely to do it.

GitHub Projects is a lightweight and great way of staying organized.