Exorcises 4

4 Let 9 be entine (i.e. get(am)). Prove:

a) Ig g is bounded them it is constant (Liouville's theonem)

By Liouville's theorem in one variable, the restriction of a bounded holomorphic function of to each complex line through the origin is constant (since this is a function in a and Liouville's theorem in one variable apply).

Therefore, $f(z) \equiv g(0)$ am \mathbb{C}^m

ע

b) Ig $|g(z)| \le A + B|z^{\alpha}| \forall z \in \mathcal{I}^m$, then g is a polynomial of the form $g(z) = \prod_{R \le \alpha} c_R z^R$

Since g es entire, we have that $g(z) = \sum_{\beta \in \mathbb{N}^m} \frac{\partial^{\beta} g(0)}{\beta!} z^{\beta}$

Since (auchy gormula holds in several variables, (auchy estimates

also hold and therefore, $|g(z)| \leq A + \beta |z^{\alpha}|$ $|\partial^{\beta} g(0)| \leq \frac{\beta!}{\pi^{\beta}} \sup_{z \in D^{m}(0, \tau)} |g(z)| \leq \frac{\beta!}{\pi^{\beta}} (A + B \pi^{\alpha})$

Then, got every $\beta > \alpha$, $1-\frac{\partial^{\beta}g(o)}{\partial B} = \frac{\beta!}{\pi^{\beta}} + \frac{\beta!}{\pi^{\beta-\alpha}} + \frac{\beta!}{\pi^{\beta-\alpha}} = \frac{\pi^{-\beta}\alpha}{\beta}$

Hence, $g(z) = \sum_{\beta \leq \alpha} \frac{\partial^{\beta} g(0)}{\beta!} z^{\beta} = \sum_{\beta \leq \alpha} c_{\beta} z^{\beta}.$

(5) Ig DC (1" is the domain of convergence of the power Series I CX ZX them (\log \rangle \log \rangle \log \rangle \log \rangle 15 convex im IR m. Since D is the domain of convergence of the power series, D is a complete Reinhardt domain. Now, let z, we D, since D is open, we can take 1>1 such that 12, 1 w ED. that $12, 1 w \in D$. Since LZ, LwED, Sup { | CX | \ | X | | ZX |, | [CX | \ \ | WX |] & C gor some C>0. Them, sup? | Cx | X | 12x | 1 | wx | J = C VI | Tm deed, dein vi VI every on Die to so so solowon attractor where By Abel's lemma, the power series I CXZX converge ucs in { Xe. J. | X: | X | X | X: Z: W: | := 1, m]. In posticulor, since >! the series convenges at the point 3t= (12,10 | w, 1-t, ..., 12m | wm | 1-t) Theodone, 3+6 D and on 30 t | cg | z | + (1-t) | cg | w | E { (| cg | z |) ... , | cg | zm |) : Z E D} and the set 1 is convex