## ECON 703 - PS 4

## Alex von Hafften\*

## 9/9/2020

- (1) Let X, Y be two vector spaces such that dim X = n, dim Y = m. Construct a basis of L(X, Y).
- (2) Suppose that  $T \in L(X, X)$  and  $\lambda$  is T's eigenvalue.
- (a) Prove that  $\lambda^k$  is an eigenvalue of  $T^k$ ,  $k \in \mathbb{N}$ .

Proof: If  $\lambda$  is T's eigenvalue  $\implies T(v) = \lambda v$  for eigenvector  $v \neq \bar{0}$ . Applying T again, we get  $T(T(v)) = \lambda(\lambda v) \implies T^2(v) = \lambda^2 v$ . Similarly, applying T k times to v, we get  $T^k(v) = \lambda^k v$ . Thus,  $\lambda^k$  is an eigenvalue for  $T^k$  where  $k \in \mathbb{N}$ .

(b) Prove that if T is invertible, then  $\lambda^{-1}$  is an eigenvalue of  $T^{-1}$ .

Proof: If T is invertible,  $T^{-1} \in L(X,X)$ . Thus, for eigenvector v of T,

$$T(v) = \lambda v \implies T^{-1}(T(v)) = T^{-1}(\lambda v)$$
  
 $\implies v = \lambda T^{-1}(v)$   
 $\implies T^{-1}(v) = \lambda^{-1}v.$ 

Therefore,  $\lambda^{-1}$  is an eigenvalue of  $T^{-1}$ .

(c) Define an operator  $S: X \to X$ , such that  $S(x) = T(x) - \lambda x$  for all  $x \in X$ . Is S linear? Prove that ker  $S := \{x \in X | S(x) = \bar{0}\}$  is a vector space.

For  $x_1, x_2 \in X$  and  $\alpha_1, \alpha_2 \in \mathbb{R}$ ,

$$\begin{split} S(\alpha_1 x_1 + \alpha_2 x_2) &= T(\alpha_1 x_1 + \alpha_2 x_2) - \lambda(\alpha_1 x_1 + \alpha_2 x_2) \\ &= \alpha_1 T(x_1) + \alpha_2 T(x_2) - \lambda \alpha_1 x_1 - \lambda \alpha_2 x_2 \\ &= \alpha_1 (T(x_1) - \lambda x_1) + \alpha_2 (T(x_2) - \lambda x_2) \\ &= \alpha_1 S(x_1) + \alpha_2 S(x_2) \end{split}$$

Yes, S is linear.

Proof: For a fixed  $\lambda$ , let  $x, y \in \ker S$  and  $\alpha, \beta \in \mathbb{R}$ . We know that  $S(x) = S(y) = \bar{0}$ . As a linear transformation,  $S(\alpha x + \beta y) = \alpha S(x) + \beta S(y) = \alpha \bar{0} + \beta \bar{0} = \bar{0}$ , so properties 1, 2, 5, 6, 7 of the definition of a vector space are satisfied.

For property 3, note that  $S(\bar{0}) = T(\bar{0}) - \lambda \bar{0} = T(\bar{0}) = \bar{0}$ , so  $\bar{0} \in \text{ker} S$ . Furthermore,  $x + \bar{0} = \bar{0} + x = x$  for  $x \in \text{ker} S$ .

For property 4, for  $x \in \ker S$ ,  $S(-x) = (-1)S(x) = (-1)\bar{0} = \bar{0}$  where  $x + (-x) = \bar{0}$ .

<sup>\*</sup>I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

The any linear transformation  $T: X \to Y$ ,  $T(\bar{0}_X) = T(\bar{0}_X + \bar{0}_X) = T(\bar{0}_X) + T(\bar{0}_X) \implies T(\bar{0}_X) = T(\bar{0}_X) - T(\bar{0}_X) = \bar{0}_Y$ .

For property 8, for  $x \in \ker S$ ,  $S(1 \cdot x) = 1 \cdot S(x) = 1 \cdot \bar{0} = \bar{0}$ .

Thus ker S is a vector space.  $\square$ 

- (3) Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be given by T(x,y) = (x-y,2x+3y). Let W be the standard basis of  $\mathbb{R}^2$  and let V be another basis of  $\mathbb{R}^2$ ,  $V = \{(1,-4),(-2,7)\}$  in the coordinates of W.
- (a) Find  $mtx_W(T)$ .

$$T(x,y) = (x - y)w_1 + (2x + 3y)w_2$$
  
=  $(w_1 + 2w_2)x + (-w_1 + 3w_2)y$ 

$$\operatorname{mtx}_W(T) = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}.$$

(b) Find  $mtx_V(T)$ .

$$P = \operatorname{mtx}_{W,V}(id) = \begin{bmatrix} 1 & -2 \\ -4 & 7 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} -7 & -2 \\ -4 & -1 \end{bmatrix}$$

$$mtx_V(T) = P^{-1}mtx_W(T)P = \begin{bmatrix} -7 & -2 \\ -4 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -4 & 7 \end{bmatrix} = \begin{bmatrix} -15 & 29 \\ -10 & 19 \end{bmatrix}$$

(c) Find T(1, -2) in the basis V.

$$\operatorname{mtx}_V(T) \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -15 & 29 \\ -10 & 19 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -73 \\ -48 \end{bmatrix}$$

(4) In this exercise you will learn to solve first order linear difference equations in n variables. We want to find an n-dimensional process  $\{\mathbf{x}_1, \mathbf{x}_2, ...\}$  such that each  $\mathbf{x}_i$  is an n-dimensional vector and

$$\mathbf{x}_t = A\mathbf{x}_{t-1}, t = 1, 2, \dots, \tag{1}$$

where  $A \in M_{n \times n}$  and  $\mathbf{x}_0 \in \mathbb{R}^n$  are given. Then

$$\mathbf{x}_1 = A\mathbf{x}_0, \mathbf{x}_2 = A\mathbf{x}_1 = A(A\mathbf{x}_0) = A^2\mathbf{x}_0, \mathbf{x}_t = A^t\mathbf{x}_0 \forall t \in \mathbb{N},$$

where  $A^t = A \cdot A \cdot ... \cdot A$  (t times). Thus, we need to calculate  $A^t$ .

To do this, we diagonalize A,  $A = PDP^{-1}$ , where D is diagonal,  $D = diag\{\lambda_1, ..., \lambda_n\}$ .

Hence we can rewrite

$$A^{t} = PDP^{-1}PDP^{-1}...PDP^{-1} = PD^{t}P^{-1} = Pdiag\{\lambda_{1},...,\lambda_{n}\}P^{-1},$$

which is now easy to compute. Thus, what you is

Step 1: Calculate A's eigenvalues  $\lambda_1, ..., \lambda_n$  and eigenvectors  $\mathbf{v}_1, ..., \mathbf{v}_n$ .

Remember that we need to independent eigenvectors (this holds if all eigenvalues are distinct).

Step 2: Set  $D = diag\{\lambda_1, ..., \lambda_n\}$  and  $P = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$  (eigenvectors are columns of P).

Step 3: Calculate  $P^{-1}$  and  $Pdiag\{\lambda_1^t,...,\lambda_n^t\}P^{-1}$ .

Step 4: Plug  $A^t$  from Step 3 to get  $\mathbf{x}_t = A^t \mathbf{x}_0$ .

Implement the above approach to solve for  $\mathbf{x}_t \in \mathbb{R}^2$ :

$$\mathbf{x}_t = \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \mathbf{x}_{t-1}, \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Simplify your answer as much as possible.

```
library(matlib)
A \leftarrow matrix(c(1, 2, 4, -1), ncol=2)
print(A)
## [,1] [,2]
## [1,]
       1 4
## [2,]
ev <- eigen(A)
p <- ev$vectors</pre>
lambda <- diag(ev$values)</pre>
print(p)
           [,1]
                       [,2]
## [1,] 0.8944272 -0.7071068
## [2,] 0.4472136 0.7071068
print(lambda)
      [,1] [,2]
## [1,] 3 0
## [2,]
       0 -3
print(p %*% lambda %*% inv(p))
      [,1] [,2]
## [1,] 1 4
## [2,] 2 -1
# for first ten x_t
x_0 \leftarrow c(1, 1)
for (t in 1:10) {
 print(paste("t =", t))
 print(p %*% lambda^t %*% inv(p) %*% x_0)
## [1] "t = 1"
       [,1]
##
## [1,] 5
## [2,]
         1
## [1] "t = 2"
##
      [,1]
## [1,] 9
## [2,] 9
## [1] "t = 3"
##
   [,1]
## [1,] 45
## [2,] 9
## [1] "t = 4"
```

```
##
        [,1]
## [1,]
          81
          81
   [1] "t = 5"
##
        [,1]
## [1,]
         405
## [2,]
## [1] "t = 6"
##
        [,1]
##
  [1,]
         729
## [2,]
         729
   [1] "t = 7"
##
        [,1]
## [1,] 3645
## [2,]
         729
## [1] "t = 8"
##
        [,1]
  [1,] 6561
  [2,] 6561
##
   [1] "t = 9"
##
          [,1]
## [1,] 32805
## [2,] 6561
## [1] "t = 10"
##
          [,1]
## [1,] 59049
## [2,] 59049
```

(5) In this exercise you will learn to to solve *n*th order linear difference equations in one variable. We want to find a sequence of real numbers  $\{z_t\}_{t=1}^{\infty}$ , which satisfies

$$z_t = a_1 z_{t-1} + a_2 z_{t-2} + \dots + a_n z_{t-n}, (2)$$

where  $a_1, ..., a_n \in \mathbb{R}$  and  $z_0, z_{-1}, ..., z_{-n+1} \in \mathbb{R}$  are given.

- (a) Define  $\mathbf{x}_t := (z_t, z_{t-1}, ..., z_{t-n+1})'$  and rewrite Eq. (2) in the form of Eq. (1). What is A?
- (b) Notice that if you find the function form of  $z_t = f(t)$ , then you do not need to find a similar form for  $z_{t-1},...,z_{t-n+1}$  (you use the same function  $f(\cdot)$  and evaluate it at a different time). Thus, you actually do not need to calculate  $Pdiag\{\lambda_1^t,...,\lambda_n^t\}P^{-1}\mathbf{x}_0$ . You only need the first coordinate of that n-dimensional vector. The first coordinate takes the form

$$\mathbf{x}_{t1} \equiv z_t = c_1 \lambda_1^t + c_2 \lambda_2^t + \dots + c_n \lambda_n^t, \tag{3}$$

where coefficient  $c_1, ..., c_n$  depend on P and  $\mathbf{x}_0$ .

Given Eq. (3) which holds for any t and initial values  $z_0, ..., z_{-n+1}$ , which equations must  $c_1, ..., c_n$  solve?

(c) Suppose that n = 3,  $a_1 = 2$ ,  $a_2 = 1$ ,  $a_3 = -2$ , and  $a_0 = 2$ ,  $a_{-1} = 2$ ,  $a_{-2} = 1$ . Find the expression for  $a_t$  as a function of t.