1

UNIVERSITY OF STRATHCLYDE DEPARTMENT OF MATHEMATICS AND STATISTICS

MM101 Introduction to Calculus

Exercises: Chapter 4

1. For the function f defined by $f(x) = x^2 + 1$, $x \in \mathbb{R}$ evaluate

$$f(0)$$
, $f(-3)$, $f(5)$, $f(t)$, $f(2x)$, $f(a^2)$, $f(1-x)$, $f(x^2+1)$.

- 2. The function h defined by $h(t) = 50t 5t^2$, gives the height in metres of a projectile fired vertically upwards t seconds after launch.
- (i) Evaluate

- (ii) What meaning can you give to the values h(10) and h(11)?
- (iii) State a sensible domain for the function h.
- (iv) What would be a sensible definition of the function h for $t \leq 0$?
- 3. State the natural domain for each of the following functions:

(i)
$$f_1(x) = x^2 - 4$$
,

(i)
$$f_1(x) = x^2 - 4$$
, (ii) $f_2(x) = \frac{1}{x^2 - 4}$,

(iii)
$$f_3(x) = \sqrt{x-4}$$

(iii)
$$f_3(x) = \sqrt{x-4}$$
, (iv) $f_4(x) = \frac{1}{\sqrt{x-4}}$,

(v)
$$f_5(x) = \frac{x}{(x-3)(x+4)}$$
, (vi) $f_6(x) = \sqrt{x^2+3}$.

(vi)
$$f_6(x) = \sqrt{x^2 + 3}$$

- 4. Determine the natural domain of each of the following functions.

- (i) $f: x \mapsto \sqrt{x-2}$ (ii) $f: x \mapsto \sqrt{x+3}$ (iii) $f: x \mapsto \sqrt{(x-2)(x+3)}$ (iv) $f: x \mapsto \sqrt{1-2x}$ (v) $f: x \mapsto \frac{1}{\sqrt{1-2x}}$ (vi) $f: x \mapsto \sqrt{x+3} + \frac{1}{\sqrt{2-x}}$
- 5. Make a rough sketch of the graph of each of the following functions and hence state the range of the function:
 - (i) f(x) = 3x + 2, (ii) $g(x) = x^2 + 3$,
 - (iii) $h(x) = 4 x^2$, (iv) $p(x) = \sqrt{x}$,

 - (v) $q(x) = \frac{1}{x^2}$, (vi) $r(x) = \frac{1}{x^2 + 1}$.

2

- 6. Verify the results in Theorem 4.6 in the notes.
- 7. Prove the result in Theorem 4.7 (b).
- 8. Determine whether the following expressions define functions that are odd or even or neither:
 - (i) $f(x) = x^3 + x$.
 - (ii) $q(x) = 1 x^2$,

 - (iii) $h(x) = x^2 + x + 1$, (iv) $p(x) = x^2(x^3 4x)$,
 - (v) $q(x) = \frac{x}{r^2 + 1}$, (vi) $r(x) = (x^2 + 1)^3$.
- 9. Let f_1 and f_2 be even functions, and g_1 and g_2 be odd functions, with a common domain D. What can you say about $f_1 + f_2$, $f_2 + g_1$, f_1f_2 , f_1g_1 and g_1g_2 ?
- 10. Prove that every function is the sum of an even and an odd function. Hint: start by verifying that if $\phi(x) = f(x) + f(-x)$ then ϕ is even.
- 11. If f is both an even and an odd function, show that f(x) = 0 at every point of its domain.
- 12. Given that $f(x) = 1 \frac{1}{x}$ and $g(x) = 1 + \frac{1}{x}$, write down (f+g)(x), (fg)(x) and $\left(\frac{f}{g}\right)(x)$. Determine the domains of f+g, fg and $\frac{f}{g}$.
- 13. For each of the following pairs of functions determine (f(g(x))) and (g(f(x))), and in each case determine the domain of the composite function.
 - (i) $f(x) = 1 + \frac{1}{x}$, $g(x) = x^2 + 2x + 5$;
- (ii) $f(x) = x^2, \quad q(x) = \sqrt{x};$
- (iii) $f(x) = \sqrt{x+1}$, $g(x) = x^2 + 2x + 3$.
- 14. Find f(g(x)) and g(f(x)) when
 - (i) $f(x) = x^2 + 1$, $g(x) = \frac{1}{x}$;
 - (ii) $f(x) = x^3$, $g(x) = 1 x^2$;
 - (iii) $f(x) = \sqrt{x+4}$, $g(x) = \frac{3}{x^2}$;
 - (iv) $f(x) = \frac{x+1}{x-3}$, $g(x) = x^2 + 3$.
- 15. Find f(g(h(x))), h(g(f(x))) and h(f(g(x))) when

$$f(x) = x^3$$
, $g(x) = \frac{1}{x}$ and $h(x) = x^2 + 1$.

16. Find $f^{-1}(x)$ when f(x) is given by:

(i)
$$5x + 3$$
; (ii) $4x^3 - 5$; (iii) $\frac{1}{2x + 3}$.

In each case, verify that $f^{-1}(f(x)) = f(f^{-1}(x)) = x$.

17. Determine the inverse function of each of the following functions and state their domains.

(a)
$$f: x \mapsto 3x - 1$$
 (b) $f: x \mapsto 2x + 3$ (c) $f: x \mapsto \frac{1}{x - 7}$ (d) $f: x \mapsto \sqrt{x - 5}$.

18. (i) Find the inverse of the function f_1 defined by

$$f_1(x) = x^2 + 4, \quad x \ge 0.$$

Sketch, on the same diagram, the graphs of $f_1(x)$ and $f_1^{-1}(x)$.

(ii) Find the inverse of the function f_2 defined by

$$f_2(x) = x^2 + 4, \quad x \le 0.$$

Sketch, on the same diagram, the graphs of $f_2(x)$ and $f_2^{-1}(x)$.

19. Let $y(x) = x^2 - 2x - 3$.

- (a) Complete the square in x and show that y(x) has a minimum of -4 when x = 1.
- (b) Verify that y(-1) = y(3) = 0 and sketch y(x).
- (c) Confirm from your sketch that for each $y_0 \in (-4, \infty)$ there are two values of x for which $y(x) = y_0$. Show that these are $x = 1 \sqrt{y_0 + 4}$ and $x = 1 + \sqrt{y_0 + 4}$.
- (d) Deduce the inverse functions of
- (i) $f_1: x \mapsto x^2 2x 3, \quad x \in (-\infty, 1],$
- (ii) $f_2: x \mapsto x^2 2x 3, \quad x \in [1, \infty).$
- 20. (a) Show, by completing the square, that the curve $y = \frac{1}{2}(x^2 + 6x + 10)$ has a minimum at $(x, y) = (-3, \frac{1}{2})$. Sketch the curve for $-6 \le x \le 0$.
 - (b) Determine the inverse functions of
 - (i) $f_1: x \mapsto \frac{1}{2}(x^2 + 6x + 10), \quad x \in (-\infty, -3]$ (ii) $f_2: x \mapsto \frac{1}{2}(x^2 + 6x + 10), \quad x \in [-3, \infty).$

21. Sketch the graphs of the functions given by the following parametric equations.

- (i) $x(t) = t + 1, y(t) = 2t 4, t \in (-\infty, \infty).$
- (ii) $x(t) = 2t, y(t) = t^2, t \in [0, \infty).$