# "... each with its own beauty, and each with a story to tell." -- Stephen Jay Gould

Homology:

P [ 
$$a_i$$
,  $a_j$  | H ] =  $q_{ij}$  = (frequency of  $a_i$ ,  $a_j$  pairs in homologous protein alignments)

Random sequence:

P [ 
$$a_i$$
,  $a_j$  | R ] =  $p_i$   $p_j$  = (frequency of  $a_i$ ) \*

(frequency of  $a_i$ )

The maximum local alignment score (similarity) is the alignment that maximizes the log odds ratio of H vs R:

$$s(x,y) = log (q_{xy} / p_x p_y)$$

The logarithm is necessary for an additive scoring scheme.

Each column of alignment is independent

# Simple maximum likelihood estimate.

In principle, given a large set of confirmed alignments we can calculate:  $q_{xy}$ ,  $p_x$ , and  $p_y$ 



#### However,

- This simple approach for calculating a scoring matrix has two problems:
- 1. It is difficult to obtain a good random sample of protein sequences.
- 2. This approach does not take into account the effect of evolutionary distances.
  - Short evolutionary distance -> small q<sub>xy</sub>
  - Large evolutionary distance -> q<sub>xy</sub> is same p<sub>x</sub> and p<sub>y</sub>

# Deriving scoring parameters

- Maximum likelihood estimate
  - From a set of known good alignments
- Appropriate homology model depends on evolutionary distance of protein sequences
  - (Many) different scoring matrices.

The optimal (local) alignment using the wrong scoring matrix might tell a very implausible evolutionary story for your sequences.

### PAM (point accepted mutation)

- Dayhoff, Schwartz, & Orcutt (1978)
- Identify substitution matrix for closely related (easy to determine) alignments
- Extrapolate to longer evolutionary distances

Not estimating joint P<sub>ab</sub> but rather P(b|a, t)!

Goal was to derive a matrix for which expectation:

$$\Sigma_{a,b} p_a p_b P(b | a, t=1) = 0.01$$

i.e. 1% expected number mutations which define as t = 1.

# Expected score?

$$E(X) = \sum_{x=1}^{Z} x_i p_{x_i}$$

The *expected value* of a random variable:

- intuitively, is the long-run average value of repetitions of the experiment it represents.
- measure of the center of the distribution of the variable.
- is the probability-weighted average of all possible values.

$$\mathsf{E}(\mathsf{S}_{\mathsf{a},\mathsf{b}}) = \mathsf{\Sigma}_{\mathsf{a},\mathsf{b}} \, \mathsf{p}_{\mathsf{a}} \mathsf{p}_{\mathsf{b}} \mathsf{s}(\mathsf{x},\mathsf{y})$$

Not estimating joint  $P_{ab}$  but rather P(b|a, t)!

Goal was to derive a matrix for which expectation:

$$\Sigma_{a,b} p_a p_b P(b | a, t=1) = 0.01$$

i.e. 1% expected number mutations which define as t = 1.

Scaled and rounded => PAM<sub>1</sub>

$$PAM_n = (PAM_1)^n$$

We will not formally derive the PAM matricies in this class, but it really isn't \*that\* hard ...

#### The basic idea

• High confidence alignments are built relative to an evolutionary tree:

DEGHG (8) ADGHG (8) ADGHG



• Acceptable point mutations are tallied from the tree:



#### Mutational probability matrix derived by Dayhoff for the 20 amino acids

|   | Α    | R    | N    | D    | С    | Q    | Е    | G    | Н    | -1   | L    | K    | M    | F    | Р    | S    | Т    | W    | Υ    | ٧    |
|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Α | 9867 | 2    | 9    | 10   | 3    | 8    | 17   | 21   | 2    | 6    | 4    | 2    | 6    | 2    | 22   | 35   | 32   | 0    | 2    | 18   |
| R | 1    | 9913 | 1    | 0    | 1    | 10   | 0    | 0    | 10   | 3    | 1    | 19   | 4    | 1    | 4    | 6    | 1    | 8    | 0    | 1    |
| N | 4    | 1    | 9822 | 36   | 0    | 4    | 6    | 6    | 21   | 3    | 1    | 13   | 0    | 1    | 2    | 20   | 9    | 1    | 4    | 1    |
| D | 6    | 0    | 42   | 9859 | 0    | 6    | 53   | 6    | 4    | 1    | 0    | 3    | 0    | 0    | 1    | 5    | 3    | 0    | 0    | 1    |
| C | 1    | 1    | 0    | 0    | 9973 | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0    | 0    | 1    | 5    | 1    | 0    | 3    | 2    |
| ø | 3    | 9    | 4    | 5    | 0    | 9876 | 27   | 1    | 23   | 1    | 3    | 6    | 4    | 0    | 6    | 2    | 2    | 0    | 0    | 1    |
| Е | 10   | 0    | 7    | 56   | 0    | 35   | 9865 | 4    | 2    | 3    | 1    | 4    | 1    | 0    | 3    | 4    | 2    | 0    | 1    | 2    |
| G | 21   | 1    | 12   | 11   | 1    | 3    | 7    | 9935 | 1    | 0    | 1    | 2    | 1    | 1    | 3    | 21   | 3    | 0    | 0    | 5    |
| Н | 1    | 8    | 18   | 3    | 1    | 20   | 1    | 0    | 9912 | 0    | 1    | 1    | 0    | 2    | 3    | 1    | 1    | 1    | 4    | 1    |
| _ | 2    | 2    | 3    | 1    | 2    | 1    | 2    | 0    | 0    | 9872 | 9    | 2    | 12   | 7    | 0    | 1    | 7    | 0    | 1    | 33   |
| ш | 3    | 1    | 3    | 0    | 0    | 6    | 1    | 1    | 4    | 22   | 9947 | 2    | 45   | 13   | 3    | 1    | 3    | 4    | 2    | 15   |
| K | 2    | 37   | 25   | 6    | 0    | 12   | 7    | 2    | 2    | 4    | 1    | 9926 | 20   | 0    | 3    | 8    | 11   | 0    | 1    | 1    |
| M | 1    | 1    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 5    | 8    | 4    | 9874 | 1    | 0    | 1    | 2    | 0    | 0    | 4    |
| F | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 1    | 2    | 8    | 6    | 0    | 4    | 9946 | 0    | 2    | 1    | 3    | 28   | 0    |
| Р | 13   | 5    | 2    | 1    | 1    | 8    | 3    | 2    | 5    | 1    | 2    | 2    | 1    | 1    | 9926 | 12   | 4    | 0    | 0    | 2    |
| S | 28   | 11   | 34   | 7    | 11   | 4    | 6    | 16   | 2    | 2    | 1    | 7    | 4    | 3    | 17   | 9840 | 38   | 5    | 2    | 2    |
| Т | 22   | 2    | 13   | 4    | 1    | 3    | 2    | 2    | 1    | 11   | 2    | 8    | 6    | 1    | 5    | 32   | 9871 | 0    | 2    | 9    |
| W | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 9976 | 1    | 0    |
| Υ | 1    | 0    | 3    | 0    | 3    | 0    | 1    | 0    | 4    | 1    | 1    | 0    | 0    | 21   | 0    | 1    | 1    | 2    | 9945 | 1    |
| ٧ | 13   | 2    | 1    | 1    | 3    | 2    | 2    | 3    | 3    | 57   | 11   | 1    | 17   | 1    | 3    | 2    | 10   | 0    | 2    | 9901 |

For clarity, the values have been multiplied by 10000

P(b|a, t=1)

This matrix corresponds to an evolution time period giving 1 mutation/100 amino acids, and is refered to as the **PAM1 matrix**.

Source: Dayhoff, 1978

Note that we convert this into our log-odds scoring scheme by:

$$s(x,y) = log (q_{xy} / p_x p_y)$$

PAM matrix was: P(B|A, t= 1)

Recall: p(A)p(B|A) = P(AB) Log<sub>2</sub> is often used to

make the scores represent

information content

Therefore ... (bits).

 $S(a,b) = c \log (p(b|a, t=1) / p_b)$  Why a c? To

Why a c? To account for the evolutionary distance – scaling!

The resulting matrix is, in fact, symmetrical.



# PAM summary

- The scores derived through the PAM model are an accurate description of the information content (or the relative entropy) of an alignment (Altschul, 1991).
- PAM-1 corresponds to about 1 million years of evolution
- PAM-250 is the traditionally most popular matrix

| A<br>R<br>N<br>D | 2<br>-2<br>0<br>0<br>-2 | 6<br>0<br>-1<br>-4 | 2 2 -4 | 4 -5 |                                                       |                     |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
|------------------|-------------------------|--------------------|--------|------|-------------------------------------------------------|---------------------|----|----|----|----|----|----|----|----|-------------------|----|----|----|----|---|--|--|--|--|--|
| Q                | 0                       | 1                  | 1      | 2    | -5 4                                                  |                     |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
| E                | 0                       | -1                 | 1      | 3    | $\frac{3}{3}$ $s^{n}(a,b)$ : $n = 250$                |                     |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
| G<br>H           | -1                      | -3<br>2            | 0      | 1    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                     |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
| I                | -1                      | -2                 | -2     | -2   | -3                                                    | -2                  | -2 | -2 | -2 | 5  | l  |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
| L                | -2                      | -3                 | -3     | -4   | -6                                                    | -2                  | -3 | -4 | -2 | -2 | 6  | 1  |    |    | values rounded to |    |    |    |    |   |  |  |  |  |  |
| K                | -1                      | 3                  | 1      | 0    | -5                                                    | the pearest integer |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |
| M                | -1                      | 0                  | -2     | -3   | -5                                                    | -1                  | -2 | -3 | -2 | 2  | 4  | 0  | 6  | 1  |                   |    |    |    |    |   |  |  |  |  |  |
| F                | -3                      | -4                 | -3     | -6   | -4                                                    | -5                  | -5 | -5 | -2 | 1  | 2  | -5 | 0  | 9  | 1                 |    |    |    |    |   |  |  |  |  |  |
| P                | 1                       | 0                  | 0      | -1   | -3                                                    | 0                   | -1 | 0  | 0  | -2 | -3 | -1 | -2 | -5 | 6                 | 1  |    |    |    |   |  |  |  |  |  |
| S                | 1                       | 0                  | 1      | 0    | 0                                                     | -1                  | 0  | 1  | -1 | -1 | -3 | 0  | -2 | -3 | 1                 | 2  | ]  |    |    |   |  |  |  |  |  |
| T                | 1                       | -1                 | 0      | 0    | -2                                                    | -1                  | 0  | 0  | -1 | 0  | -2 | 0  | -1 | -3 | 0                 | 1  | 3  |    |    |   |  |  |  |  |  |
| W                | -6                      | 2                  | -4     | -7   | -8                                                    | -5                  | -7 | -7 | -3 | -5 | -2 | -3 | -4 | 0  | -6                | -2 | -5 | 17 |    |   |  |  |  |  |  |
| Y                | -3                      | -4                 | -2     | -4   | 0                                                     | -4                  | -4 | -5 | 0  | -1 | -1 | -4 | -2 | 7  | -5                | -3 | -3 | 0  | 10 |   |  |  |  |  |  |
| V                | 0                       | -2                 | -2     | -2   | -2                                                    | -2                  | -2 | -1 | -2 | 4  | 2  | -2 | 2  | -1 | -1                | -1 | 0  | -6 | -2 | 4 |  |  |  |  |  |
|                  | A                       | R                  | N      | D    | C                                                     | Q                   | E  | G  | H  | I  | L  | K  | M  | F  | P                 | S  | Т  | W  | Y  | V |  |  |  |  |  |
|                  |                         |                    |        |      |                                                       |                     |    |    |    |    |    |    |    |    |                   |    |    |    |    |   |  |  |  |  |  |

### **PAM limitations**

- Small dataset for derivation of PAM.
- Substitution data is calculated for *small* evolutionary distance and extrapolated to longer times.
- Raising PAM<sub>1</sub>(a,b) to a higher power, to give for instance a PAM250 matrix does not capture the true difference between short time substitutions and long term ones [Gonnet, 1992].

# Deriving scoring parameters

- Maximum likelihood estimate
  - From a set of known good alignments
- Appropriate homology model depends on evolutionary distance of protein sequences
  - (Many) different scoring matrices.

The BLOSSUM approach leverages both strategies !!!

#### **BLOSUM** matrices

- Henikoff & Henikoff (1992)
- <u>Blo</u>cks <u>Substitution</u> <u>Matrix</u>. Scores for each position are obtained frequencies of substitutions in blocks of local alignments of protein sequences.
- Motivation: At increasingly longer times, mutational process observed wasn't well represented in scaled PAM matricies.

18

#### Conserved blocks in alignments

AKLGGREAVEAAVDKFYNKIVADPTVSTYFSNTDMKVQRSKQFAFLAYALG AKLGGREAVEAAVDKFYNKVVADPTVSVFFSKTDMKVQRSKQFAFLAYALG  ${\tt DKIGGHEAIEVVVEDFYVRVLADDQLSAFFSGTNMSRLKGKQVEFFAAALG}$ DNIGGQPAIEQVVDELHKRIATDSLLAPVFAGTDMVKQRNHLVAFLAQIFE DNIGGQPAIEQVVDELHKRIATDSLLAPIFAGTDMAKQRNHLVAFLGQIFE EKLGGTTAVDLAVDKFYERVLQDDRIKHFFADVDMAKQRAHQKAFLTYAFG EQLGGQAAVQAVTAQFYANIQADATVATFFNGIDMPNQTNKTAAFLCAALG EKLGGENAMKAAVPLFYKKVLADERVKHFFKNTDMDHQTKQQTDFLTMLLG EKLGGQAAMHAAVPLFYKKVLADDRVKHYFKNTNMEHQAKQQEDFLTMLLG  $\verb|YEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGG|$ EQLGGEAAVHAVTTQFYANIAADATVANFFNGINMPTQTDKTAAFLCAALG EQLGGEAAVTAVTTQFYANIQADATVANFFNGINMADQTNKTASFLCAALG

GAHFQAVARHLSDTLTELGV GAHFQAVVRHLSDTLAELGV **GPHFSLVAGHLADALTAAGV** GPHFDAIAKHLGERMAVRGV GPHFDAIAKHLGEAMAVRGV GTHFDAVAEDLLATLKEMGV GPQFTTVIGHLRSALTGAGV **GPHFDAIIENLAATLKELGV** GPHFDAIIENLAATLKELGV PPRADAWLSCMKDAMDHVGL GPQFTTVIGHLRSALTGAGV GPQFTTVIGHLRSALTSAGV

Yes, there is a little circularity here - calculating alignment scores from alignments!

19

#### Collecting substitution statistics

1. Count amino acids pairs in each column;

6 AA pairs, 4 AB pairs, 4 AC, 1 BC, 0 BB, 0 CC.

- Total = 6+4+4+1=15

2. Normalize results to obtain probabilities  $(p_X' \text{ s and } q_{xy}' \text{ s})$ 

3. Compute log-odds score matrix from probabilities:

$$s(x,y) = \log (q_{xy}/(p_X p_y))$$

Α

Α

В

Α C

Α

20

# Constructing BLOSUM r

- To avoid bias in favor of a certain protein, first eliminate sequences that are more than r% identical
- · The elimination is done by either
  - removing sequences from the block, or
  - finding a cluster of similar sequences and replacing it by a new sequence that represents the cluster.
- BLOSUM r is the matrix built from blocks with no more the r% of similarity
  - E.g., BLOSUM62 is the matrix built using sequences with no more than 62% similarity.
  - Note: BLOSUM 62 is the default matrix for protein BLAST

21

# Cluster sequences by L% identity

AKLGGREAVEAAVDKFYNKIVADPTVSTYFSNTDMKVQRSKQFAFLAYALG
AKLGGREAVEAAVDKFYNKIVADPTVSTYFSNTDMKVQRSKQFAFLAYALG
AKLGGREAVEAAVDKFYNKVVADPTVSVFFSKTDMKVQRSKQFAFLAYALG
AKLGGREAVEAAVDKFYNKVVADPTVSVFFSKTDMKVQRSKQFAFLAYALG
DKIGGHEAIEVVVEDFYNRVLADDDLSAFFSGTNMSRLKGKQVEFFAAALG
DKIGGHEAIEVVVEDLFKIATDSLLAPVFAGTDMVAKORNHLVAFLAQIFE
DNIGGQPAIEQVVDELHKRIATDSLLAPVFAGTDMVAKORNHLVAFLAQIFE
EKLGGTAVUDLAVDKFYERVLODDEIKHFPADVDMAKQRAHLVAFLGQIFE
EQLGGQAAVQAVTAQFYANIQADATVATFFNGIDMPNQTNKTAAFLCAALG
EKLGGGNAMRAAVPLFYKKVLADDRVKHFFRNTDMBDQTKXQTDFITMLLG
YEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGG

EKLGGGAAMHAAVPLFYKKVLADDRVKHFFKNTDMEHQAKQQEDFLTMLLG
YEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGG

EKLGGGAAMHAAVPLFYKKVLADDRVKHFFKNTDMEHQAKQQEDFLTMLLG
YEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGG

EKLGGGAAMHAAVPLFYKKVLADDRVKHFFKNTDMDHQTKQTDFLTMLLG
YEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGG



# So what do the scores mean?

- Positive scores: The given amino acid pair is *more likely to occur* in an alignment than by chance.
- Negative scores: amino acid pair is *less likely* to occur than by chance.



# Comparison

- PAM is based on an evolutionary model using phylogenetic trees
- BLOSUM assumes no evolutionary model, but rather empirical from conserved "blocks" of proteins



