SECURITY (COMP0141): INTEGRITY

INTEGRITY

WARNING

You should never design your own cryptography!

This lecture on cryptography does not in any way qualify you to design cryptographic algorithms or protocols

Instead it's an introduction to what you can expect from cryptography and a feeling for how these algorithms work

SECRET COMMUNICATION

MAN IN THE MIDDLE (MITM)

Diffie-Hellman key exchange know who Bob is? or vice versa?

for confidentiality, considered **passive** eavesdropper for integrity, consider more **active** attacker

HOW TO PREVENT SPOOFING?

how do we do this in the physical world?

HOW TO PREVENT SPOOFING?

how do we do this in the physical world?

DIGITAL SIGNATURES

DIGITAL SIGNATURES

Correctness: Valid signatures using valid keys will verify properly (for all k,m and (pk,sk)∈[KeyGen(1^k)], Verify(pk,m,Sign(sk,m)) = 1)

Unforgeability (EUF-CMA): For a given public key, an adversary can't produce new signatures that verify ((pk,sk)←KeyGen(1^k), A gets pk and access to oracle Sign(m), can't output (σ,m) for m not queried to Sign)

9

THREAT MODEL FOR SIGNATURES

Motivation:

- Recover key: sign all future messages
- Forge signature: pretend to be someone else

Capabilities:

- Known algorithm: know scheme used to sign
- Known signature: (partial) information about signature

Chosen message: adversary picked messages

Strongest security statement: the adversary with the strongest capabilities can't achieve even the weakest goal (EUF-CMA)

TEXTBOOK RSA SIGNATURES

-sk = (N,d)

CORRECTNESS OF RSA

SIGN $\sigma = m^d \mod N$ m check that Correctness: $\sigma^e \mod N = (m^d)^e \mod N$ $\sigma^e = m \mod N$ = med mod N $= m^{1 \mod (p-1)(q-1)} \mod N$ = $m^{1 \mod \phi(N)} \mod N$ (because N = pq) $= m^{1 + k\phi(N)} \mod N$ $= m*(m^{\phi(N)})^k \mod N$ = m*1k mod N (by Euler's theorem) = m mod N

SECURITY OF RSA

(p-1)(q-1)

-pk = (N,e)

-sk = (N,d)

-No EUF-CMA: if adversary gets signatures σ_1 on m_1 and σ_2 on m_2 then it can create valid signature $\sigma = \sigma_1 * \sigma_2$ on $m_1 * m_2$ -This works because this function $f(m) = m^d$ is homomorphic, so $f(m_1)*f(m_2) = f(m_1*m_2)$

USING DIGITAL SIGNATURES

Diffie-Hellman key exchange

USING DIGITAL SIGNATURES

```
if Verify(pk<sub>B</sub>, \sigma_B, B)
then sk = Ba
else abort
```

if $Verify(pk_A, \sigma_A, A)$ then $sk = A^b$ else abort

$$A, \sigma_A = Sign(sk_A, A)$$

$$B,\sigma_B=$$
Sign(sk_B,B)

a,
$$A = g^a \mod p$$

 $\mathbf{sk}_A, \mathbf{pk}_B$

b,
$$B = g^b \mod p$$

 $\mathbf{sk_B,pk_A}$

USING DIGITAL SIGNATURES

 \forall if $Verify(pk_B, \sigma_B, B)$ if $Ver_{\mathbf{Y}}(pk_{\mathbf{A}}, \sigma_{\mathbf{A}}, \mathbf{A})$ then sk = Ab then $sk = B^a$ pk_A,pk_B else abort else abort $c, C = g^c$ C,σ A,σ_A $a, A = g^a \mod p$ b, $B = g^b \mod p$ sk_A,pk_B sk_B,pk_A by unforgeability

TRADEOFFS FOR SIGNATURES

setup?
basis for security?
fast?

no*
math
no!

yes
heuristics
yes

what's the version of this for signatures?

MESSAGE AUTHENTICATION CODE

m="Hi!" m,t=MAC(sk,m) verify(sk,t,m)
sk

MACS

Correctness: Verify(k, m, MAC(k,m)) = 1

Unforgeability: hard to generate (m,MAC(k,m)) without knowing k

MACS FROM AES-CBC

CBC (Cipher Block Chaining) mode: $c_0 = IV$, $c_i = Enc(k, m_i \oplus c_{i-1})$

Cipher Block Chaining (CBC) mode encryption

Can use last block of this as a MAC: MAC(k, $(m_1,...,m_n)$) = c_n using fixed IV for c_0 , Verify(k, m, t) recomputes MAC and checks equality with t

AUTHENTICATED ENCRYPTION (AEAD)

THREAT MODEL FOR AEAD

Motivation:

- Recover key: learn all future plaintexts
- Recover plaintext: learn this specific plaintext
- Distinguish plaintext: learn a single bit about plaintext
- Forge plaintext: ciphertext decrypts to plaintext never encrypted by the sender (INT-PTXT)

Capabilities:

- Known algorithm: know schemes used to encrypt/MAC
- Known ciphertext: (partial) information about ciphertext
- Chosen message: adversary picked messages
- Chosen ciphertext: adversary picked ciphertexts

CONSTRUCTING AEAD

Encrypt-and-MAC (E&M)

m="Hi!"

c = Enc(sk,m)

t=MAC(sk,m)

m = Dec(sk,c)

Verify(sk,t,m)

Encrypt-then-MAC (EtM)

m="Hi!"

c = Enc(sk,m)

t = MAC(sk,c)

m = Dec(sk,c)

Verify(sk,t,c)

MAC-then-Encrypt (MtE)

Enc(sk,m||MAC(sk,m))

 \mathfrak{p} m || t = $\mathsf{Dec}(sk,c)$

Verify(sk,t,m)

GALOIS COUNTER MODE (GCM)

Galois Counter Mode: achieving AEAD with block ciphers

