Hinweise zur Bearbeitung der Prüfung

- Die Prüfung findet im "Open-Book-Format" statt, es dürfen also alle Unterlagen zur Lösung der Aufgaben verwendet werden
- Andere Hilfsmittel, insbesondere die Kommunikation mit anderen Personen oder auch die Weitergabe der Aufgaben während der Prüfung sind untersagt und werden als Täuschungsversuch behandelt.
- ➤ Prüfungsteilnehmer müssen während der gesamten Prüfung sichtbar und ansprechbar sein. Eine ausgeschaltete Kamera oder ein Nichtreagieren auf Ansprache führt zum Nichtbestehen der Prüfung.
 - Bei technischen Problemen wenden Sie sich bitte unverzüglich an die angegebene Rufnummer gegebenenfalls kann Ihre Prüfung dann mündlich fortgesetzt werden.
- ➤ Die Aufgaben dieser Prüfung werden auf Papier handschriftlich gelöst dann in digitaler Form (Scan, Foto, etc.) eingereicht. Hierzu dürfen die Aufgaben natürlich auch ausgedruckt und auf dem Ausdruck bearbeitet werden.
- Lösungswege müssen eindeutig und nachvollziehbar sein!

1.	Die Rechnerarchitektur nach "vo wahr	on Neumann" besitzt eine Speichermöglichkeit
2.	Die Rechnerarchitektur nach "vo	on Neumann" verwendet einen Kleinbus
3.	Die Rechnerarchitektur nach "vo	on Neumann" benutzt Rechen- und Steuerwerk
4.	Der Systembus ist Teil des Steue wahr	rbusses falsch
5.	Datenbus, Steuerbus und Adress wahr	sbus werden zum Systembus zusammengefasst
6.	Datenbus, Steuerbus und Adress Für alle größeren Rechner verw wahr	sbus werden nur bei Computern von bis zu 32Bit verwendet. rendet man den Systembus.
7.	In Computern kann immer nur e	in Bus zeitgleichverwendet werden.
8.	Von Neumann hat als Erster das wahr	Bit verwendet falsch
9.	Die Datenspeicherung erfolgt be	ei Von-Neumann-Rechnern erstmals auf Festplatten
10	Von-Neumann-Rechner gelter die jeweilige Aufgabe angepasswahr	n als universelle Maschinen und können über Programme für t werden falsch
11	Die ALU führt alle in einem Cor	mputer anfallenden Rechnungen aus
12	Da Rechenoperationen der ALI als sehr schnell wahr	J in der Regel über Schaltungen realisiert werden, gelten sie ☐ falsch
13	S. Computer, die mehr als eine A	ALU benutzen benötigen sehr schnelle Speicherbausteine

14	 Rechenoperationen mit Komr komponente verarbeitet 	mazahlen werden in der Regel in einer anderen Computer-
	wahr	falsch
15	diesem System vorkommen kö	
	wahr	falsch
16	. Das Alphabet umfasst im Binä 0 bis 9	rsystem die Ziffern 0 und 1, im Dezimalsystem die Ziffern
	wahr	falsch
17	 Alphabete arbeiten nur mit Bonierfür Ziffern benötigt werder 	uchstaben und können für Zahlen nicht verwendet werden, da n
18	·	tems umfasst alle Zeichen, die bei der Darstellung einer Zahl in nnen, allerdings ohne Vorzeichen falsch
19	. Was bedeutet der Begriff Kodi nicht von Unbefugten gelesen wahr	ierung beschreibt die Verschlüsselung einer Datei, so dass Sie werden kann falsch
20		dungsvorschrift. Jedem Zeichen aus einem Zeichenvorrat wird olge aus einem anderen Zeichenvorrat zugeordnet
21	. Die Umrechnungen von dezin jeweils Kodierungen dar wahr	nalen Zahlen ins Hexadezimalsystem und umgekehrt stellen
22		en Zahlen ins Hexadezimalsystem stellt eine Kodierung dar, die len ins dezimale System jedoch nicht, da hier der zur Verfü- leiner ist
23	_	n das Format, in dem Informationen dargestellt werden

•	ystem kann immer danr iffern geht, zum Beispie			_
25 . Das BCD-S ☐ wahr	ystem verwendet für di	e Darstellung de falsch	zimaler Ziffern in je	dem Fall vier Bit
26. Circa ein D also quasi v	Orittel der binär darstell Verloren	baren Zahlen wir falsch	rd im BCD-System ni	cht verwendet, geht
waiii		Taiscii		
27. Buchstabe ☐ wahr	en sind im BCD-System r	nicht darstellbar falsch		
	indlung dezimaler Zahle er einfachen Tabelle erf	•	n kann ohne komple	exe Umrechnung
	ndigen Sie bitte folgend			_
Dezimal	ndigen Sie bitte folgend Binär	e Tabelle durch o	die schnellstmöglich Hexadezimal	e Umrechnung BCD
				_
Dezimal		Oktal		BCD
Dezimal 10101011	Binär	Oktal 714	Hexadezimal D2A	BCD 1001 0011 0111
Dezimal 10101011 Achtung: - Für zieh		Oktal 714 Aufgabe muss de	Hexadezimal D2A r Rechenweg eindeu	BCD 1001 0011 0111 utig und nachvoll-
Dezimal 10101011 Achtung: - Für zieł - Die	Binär die Bewertung dieser A	Oktal 714 Aufgabe muss der	Hexadezimal D2A r Rechenweg eindeu th nicht berechnet z	BCD 1001 0011 0111 utig und nachvoll- u werden
Dezimal 10101011 Achtung: - Für zieh - Die 30. Das Zweie	Binär die Bewertung dieser A hbar sein! e geschwärzten Felder b	Oktal 714 Aufgabe muss de rauchen natürlichen die Darstellung von falsch	D2A r Rechenweg eindeu th nicht berechnet z	BCD 1001 0011 0111 utig und nachvoll- u werden erwendet
Dezimal 10101011 Achtung: - Für zieh - Die 30. Das Zweie wahr 31. Mit dem Z wahr 32. Subtraktio	Binär die Bewertung dieser A hbar sein! e geschwärzten Felder b rkomplement wird für o	Oktal 714 Aufgabe muss der rauchen natürlich die Darstellung von falsch den positive und falsch	D2A r Rechenweg eindeu th nicht berechnet z on Kommazahlen ver	BCD 1001 0011 0111 utig und nachvoll- u werden erwendet len dargestellt

	veierkomplements zur Speicherung von Daten kann Speicher-
platz eingespart werden mahr	☐ falsch
34. Das Zweierkomplement dient	dem Beschleunigen von Rechnungen [falsch
35. Um eine Dezimalzahl in das Zu Nachkommastellen wahr	weierkomplement umzuwandeln benötigt man die Anzahl der
waiii	
denen im Binärsystem dargeste	weierkomplement muss man die Anzahl der Stellen kennen, mit ellt werden soll, zum Beispiel 8-Bit, 16-Bit, 32-Bit. etc. Notfalls ngefügt werden, dass die entsprechende Anzahl erreicht wird.
37. Für die Berechnung der Zweie chen der umzuwandelnden Zah wahr	erkomplementdarstellung einer Zahl ist es wichtig, das Vorzei- nl zu kennen falsch
38. Vor der Umwandlung einer Zaumgewandelt werden soll, also	ahl ins Zweierkomplement muss man wissen, in welches System BCD, Hex, etc. falsch
	n die Zweierkomplementdarstellung muss man beachten, für vandelte Zahl verwendet werden soll
40. Beim Rechnen mit Hilfe des Zestellen ggf. Rechengenauigkeit wahr	weierkomplements geht durch den Verlust der Nachkommaverloren
41. Die (Zweierkomplement-) Um Ergebnisse liefern	wandlung einer Zahl für die falsche Art einer ALU kann falsche
wahr	falsch
	erkomplement die darstellbaren Zahlenbereiche nicht beachtet ss die Addition von zwei positiven Zahlen zu einem negativen
wahr	☐ falsch
verfälschen	plement können Überläufe im Zahlenbereich Rechenergebnisse
☐ wahr	falsch

	wendung der falsche ndigkeitsvorteil verlo		geht beim Rechnen mit dem Zweierkomplement	
wahr		falsch		
wandeln Sie o Achtung: Für	das Ergebnis wieder	in das dezi	ndung des 8-Bit-Zweierkomplements binär und male System um. muss der Lösungsweg eindeutig und	
	Dezimal		Binär	
Zahl A	83	->		
Zahl B	44	->		
-		1	=	
Ergebnis		<-		
	Dezimal]	Binär	
Zahl A	+83	->		
Zahl B	-127	->		
		4	=	
Ergebnis		<-		
 46. Halb-Addierer berücksichtigen nur zwei Eingänge				
	er können keine Ub	erträge voi	angegangener Rechnungen als Eingang berück-	
sichtigen wahr]	falsch		
49. Halb-Addier dieser Zahlen wahr		dition von	Binärzahlen lediglich für die jeweils letzte Stelle	
50. Halb-Addier	er können nicht selk [ostständig a	arbeiten. Sie sind auf die Hilfe der ALU angewiesen	
51. Voll-Addiere agieren.	er können im Gegen:	satz zu Hal	b-Addierern auch ohne Hilfe der ALU selbstständig	
☐ wahr		falsch		

52. Voll-Addierer berücksichtigen wahr	drei Eingänge ☐ falsch
53. Ein Voll-Addierer kann im Geg in einem Taktzyklus addieren wahr	ensatz zu einem Halb-Addierer eine 8-Bit breite Binärzahlen
54. Voll-Addierer können Überträ wahr	ge vorangegangener Rechnungen als Eingang berücksichtigen [] falsch
55. Voll-Addierer sind bei einer Adeinsetzbar	ddition von Binärzahlen für beliebige Stellen dieser Zahlen
_	ist ein Baustein, in dem logische Gatter, Schaltungen oder
_	sen" versteht man Schaltkreise zur Berechnung bestimmter
	ezeichnet man die Schaltelemente, die John von Neumann für
59. Integrierte Schaltkreise könne schen Bauteil zusammenfassen wahr	n komplette Funktionsgruppen zu einem einzigen elektroni-
60. Integrierte Schaltkreise, sind S die Wärme zu reduzieren, die in wahr	Schaltkreise, die durch ihre besondere Bauform dazu beitragen, n einem Computer entsteht falsch
61. ICs und Integrierte Schaltkreis ☐ wahr	e verwenden unterschiedliche Spannungen
62. ICs sind die nächste Generation kleinere Gehäuseabmessungen wahr	on der integrierten Schaltkreise und haben daher in der Regel
_	e unterscheiden sich nur die Bezeichnung
64. Integrierte Schaltkreise und IC	Ss unterliegen anderen Normen

65. Leiten Sie aus der unten stehenden Wahrheitstabelle die Funktionsgleichung für Y ab

C	В	A	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

66. Leiten Sie aus der Wahrheitstabelle aus der vorherigen Aufgabe mit Hilfe des untenstehenden KV-Diagrammes die kürzeste Funktionsgleichung her.

	Ä	$\overline{4}$	A	
$ar{C}$				
С				
	$ar{B}$	H	3	$ar{B}$

67. Skizzieren Sie die sich daraus ergebende Schaltung

68. Gegeben ist eine Schaltfunktion, die durch $\mathbf{Q} = \mathbf{x} \wedge \mathbf{y} \vee \mathbf{x} \wedge \mathbf{z} \vee \mathbf{y} \wedge \mathbf{z}$ beschrieben ist. Bitte wandeln Sie diese unter Verwendung der de Morganschen Gesetze so um, dass die Schaltung ausschließlich mit NAND-Gattern realisiert werden kann und skizzieren Sie die sich ergebende Schaltung.

69. EEPROM-Bausteine sind weite gelöscht und neu geschrieben v	rentwickelte ROM-Bausteine, bei denen gespeicherte Daten werden können falsch
70. EPROM-Bausteine vertragen ir wahr	n der Regel nur eine begrenzte Anzahl von Schreibzyklen
71. Welche Funktion übernimmt d	lie unten dargestellte Schaltung?
$S \longrightarrow 21$ Q_2 Q_1	
72. Bei der Grafikdarstellung Ihres — wahr	Computers findet die NIC in der Regel keine Verwendung falsch
73. AGP steht für einen Steckplatz wahr	für eine Grafikkarte mit beschleunigtem Datendurchsatz falsch
74. PCI kann zwar prinzipiell in der noch verwendet	r Grafikverarbeitung eine Rolle spielen, wird aber hierzu kaum
wahr	falsch

Identifizieren wichtiger Komponenten auf dem Mainboard

- 75. Ordnen Sie, sofern möglich, die aufgeführten Komponenten dem abgebildeten Mainboard zu. Dies können Sie tun, indem Sie die Komponenten auf einem Ausdruck einzeichnen, mit einem Programm wie z.B. Paint direkt in die Grafik einzeichnen, oder in Textform die Koordinaten in dem Bild angeben, die der jeweiligen Komponente am nächsten liegen.
- Floppy-Anschluss
- 2. IDE-Steckplatz
- 3. HD-Anschluss (SATA)
 4. Stromversorgung
 8. Batterie
 9. South-Bridge
- 5. Arbeitsspeicher
- 6. North-Bridge
 - 7. PCI-Bussteckplätze

 - 10. ALU

- 11. CPU
- 12. RAM-Steckplatz
- 13. Steckplatz für Grafikkarte
- 14. Anschluss für CD-ROM
- 15. HD-Anschluss (IDE)

	eibarm in der Regel deutlich kleiner ausgeführt ist als bei da sie auch deutlich unempfindlicher gegen äußere Einflüsse falsch
77. Klassische, mechanische Festp Bezeichnung wahr	latte unterscheiden sich von einer HD nur durch die
waiii	
•	Festplatten können Stöße zu einem Headcrash führen. Da im n rein elektronischen besitzt, kann dies hier nicht passieren falsch
79. Festplatten können zu RAID-Sy Systeme RAID 0 und RAID 1 bes wahr	ystemen zusammengefasst werden. Bei HD ist dies auf die schränkt falsch
80. HD sind die Nachfolger von Fe	stplatten und haben daher andere Anschlüsse
81. Festplatten verwenden andere	e Spannungen als HD
82. SSD kennzeichnet eine schnel Komponenten zum Einsatz kom wahr	le Speichertechnik, bei der keine mechanisch empfindlichen nmen falsch
83. SSD intern werden in der Hau wahr	ptsache Flash-ROM eingesetzt
84. Regelmäßiges Defragmentiere wahr	en kann die nutzbare Lebensdauer einer SSD verkürzen
85. Durch den Einsatz von SSD ka wahr	nn die Netzgeschwindigkeit gesteigert werden
86. Der Maintainability-Index MI _w	voc (Wartbarkeitsindex) ist bei SSD deutlich verbessert
Kosten	te Kompromiss aus Datensicherheit, Geschwindigkeit und
wahr	falsch
88. RAID 10 bezeichnet eine Komb	pination aus RAID 0 und RAID 1

89	. RAID 5 verwendet Redundanze Datensicherheit	en und fehlerkorrigierende Algorithmen zur Steigerung der
90	Hilfe von Paritätsbits kann man	nung bei einem übertragenen/gespeicherten Datenwort mit auf der sendenden Seite mit zusätzlichen Zeichen die vorhanes zu einer geraden Anzahl ergänzen. Ist die empfangene muss ein Fehler vorliegen falsch
91		gung mit Hilfe von Paritätsbits wird auf der Senderseite das r Empfängerseite das Odd-Parity-Bit. Die Summe dieser beiden
92	5 5 . 1	rung eines Datenwortes gegen Fehler zu schützen, ergänzt ge Paritätsbits, bis ein redundanzfreies Datenwort entsteht.
93	Paritätsbits sind Redundanzbit (un)gerade Anzahl von Einserwahr	s, mit denen eine Kontrollgruppe von Bits gezielt auf eine n erweitern wird. falsch
94	. Der Hamming-Code kann sehr ☐ wahr	einfach positive und negative Kommazahlen darstellen
95	. Im Hamming-Code dargestellt großen Anteil an Redundanzbit wahr	e Codewörter haben neben den Informationsbits einen relativ s falsch
96	. Ein Fehler in einem im Hammi automatisch korrigiert werden wahr	ng-Code gespeicherten oder übertragenen Datenwort kann
97	. Subtraktionen können mit der □ wahr	m Hamming-Code vereinfacht werden
98	. Um Daten im Hamming-Code im normalen Binärsystem ☐ wahr	speichern zu können, werden deutlich mehr Bit benötigt als

- **99.** Auf einem Datenträger sind die unten stehenden Bitfolgen im Hamming-Code gespeichert:
 - a) 1011011
 - b) 0110011

Sind diese Daten fehlerfrei gespeichert worden? Wenn nicht, korrigieren Sie (wenn möglich) die fehlerhaften Stellen.

Achtung: Für die Bewertung dieser Aufgabe muss der Lösungsweg eindeutig und nachvollziehbar sein!

Redul	-	z.B. ISO-OSI und TCP/IP) ist unter anderem Abstraktion, gaben in übersichtliche Teile und klare Definition von einzelnen
	ahr	☐ falsch
einen Komn	logischen Vorgang, bei d	Schichtenmodellen beschreibt horizontale Kommunikation em die jeweiligen Partnerinstanzen der unterschiedlichen iteinander kommunizieren
Weg e Hierb Inforr	eines Datenpakets durch	Schichtenmodellen beschreibt vertikale Kommunikation den die einzelnen Schichten (mindestens) eines Teilnehmers. e jede durchlaufene Schicht dem Datenpaket neue
Schich		verwendet im Gegensatz zum TCP/IP-Modell 5 statt 7
Arbeit reiner		odell lassen sich Kommunikationsvorgänge in unterschiedliche CP/IP-Modell arbeitet ähnlich, orientiert sich aber stärker an rendungen falsch
	r Adressraum von IPv6 ist ahr	doppelt so groß wie der von IPv4
und e	4 verwendet zur Darstell ine andere Darstellung de ahr	ung von IP-Adressen 32 Bit in 4 Oktetten, IPv6 verwendet 64 Bit er IP-Adressen falsch
Adres	6 gilt als der Nachfolger v sen die vierfache Bitanza ahr	von IPv4, verwendet aber intern zur Adressierung der IP- hl
dass s	6 ist in erster Line ein exp ich nie wirklich am Markt ahr	perimentelles Protokoll für Broadcastanwendungen gewesen, t durchgesetzt hat falsch
D		ausgeführt werden, sind sicherer, da die übertragenen ming-Code auf Fehler überprüft werden falsch

110. In einem Büronetzwerk ist einem Rechner die IP-Adresse 192.168.100.99 zugewiesen worden

Achtung: Für die Bewertung dieser Aufgabe muss der Lösungsweg eindeutig und nachvollziehbar sein!

- O Wie lautet die hierzu gehörende Netzwerkmaske?
- o Wie lautet die Adresse des hierzu gehörenden Netzwerkes?
- Wie lautet die Broadcastadresse in diesem Netzwerk?
- O Wie wird die Computeradresse in CIDR-Notation angegeben?
- In dieses Netzwerk soll ein weiterer Computer eingefügt werden, der mit der Adresse
 192.168.100.256 konfiguriert werden soll. Was ist hierbei zu beachten?
- 111. In einer Fachhochschule soll das Netz 192.168.1.0 mittels Subnetting so aufgeteilt werden, dass jeder Rechnerraum ein eigenes Subnetz bekommt.
 - Wie viele Adressen stehen im Netz 192.168.1.0 ohne Subnetting frei zur Verfügung?
 - Wie viele Rechnerräume k\u00f6nnen ein eigenes Netz bekommen, wenn in einem Raum 14 Studierende und ein Dozenten-PC sowie ein Drucker installiert sind?
 - Stellen Sie bitte die Netzadresse, die Subnetzmaske und die Broadcast-IP der Subnetze in einer Tabelle dar.
 - Nachträglich sollen die Rechner nicht nur untereinander vernetzt, sondern auch mit dem Internet verbunden werden. Welches Problem tritt hierbei auf?

Formelsammlung

Funktion	Schaltzeichen	Funktionsgleichung	Wahrheitstabelle
AND (Konjunktion)	A — & — Y	$y = a \wedge b$	A B Y 0 0 0 0 1 0 1 0 0 1 1 1 1
OR (Disjunktion)	A — ≥1 B — Y	$y = a \lor b$	A B Y 0 0 0 0 1 1 1 0 1 1 1 1
NOT (Negation)	A — 1 0— Y	$y = \bar{a}$	A Y 0 1 1 0
NAND	A — & D— Y	$y = \overline{a \wedge b}$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A — ≥1 B — ⊃- Y	$y = \overline{a \vee b}$	A B Y 0 0 1 0 1 0 1 0 0 1 1 0
XOR (Antivalenz)	A = 1 Y	$y = (a \land \overline{b}) \lor (\overline{a} \land b)$ $y = a \leftrightarrow b$	A B Y 0 0 0 0 1 1 1 0 1 1 1 0
XNOR (Äquivalenz)	A =1 0- Y	$y = (a \land b) \lor (\bar{a} \land \bar{b})$ $y = a \leftrightarrow b$	A B Y 0 0 1 0 1 0 1 0 0 1 1 1 1

Neutralität:

$$A \wedge 1 = A$$

$$A \lor 0 = A$$

Absorption:

$$A \vee (A \wedge B) = A$$

$$A \wedge (A \vee B) = A$$

Extreme Absorption:

$$A \wedge 0 = 0$$

$$A \lor 1 = 1$$

Idempotenz:

$$A \wedge A = 0$$

$$A \lor A = A$$

Kommutativgesetz:

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Assoziativgesetz:

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivgesetz:

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

Doppelte Negation:

$$\bar{\bar{A}} = A$$

Komplementärgesetz:

$$A \wedge \bar{A} = 0$$

$$A \vee \bar{A} = 1$$

De Morgansche Gesetze:

$$\overline{A \wedge B} = \overline{A} \vee \overline{B}$$

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$