Matched Cohort Tables

Shawn Garbett, Kyle Rove

2020-05-07

Matched Cohort

A matched cohort study utilizes specific summary statistics across the group. Recommendations are taken from the following references:

- Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statist Med 2008; 27: 2037–49. doi:10.1002/sim.3150.
- Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions (3rd edn). Wiley: New York, NY, 2003.

The goal is to be able to use tangram defaults as much as possible, while using the following tests.

For 1:1 matching

variables	statistical test	Notes
Numeric x Cat	paired Student's t	t.test(x=covariate, y=arm, paired=TRUE)
	Wilcoxon (preferred)	<pre>wilcox.test(x=covariate, y=arm, paired=TRUE)</pre>
	Cox proportional hazards models stratifying on matched groups	<pre>survival::coxph(outcome ~ covariate + strata(block), data = m1.final)</pre>
Cat X Cat	McNemar's	<pre>useful for time to event analysis mcnemar.test(x=covariate, y=arm)</pre>
		2 x 2 cases only. Expects factors
	Stuart Maxwell chi-squared test	<pre>DescTools::StuartMaxwellTest(x=covariate, y=arm)</pre>
		for 2 x k polytomous covariates, where $k >= 2$ expects factors

For 1:many matching

variables	statistical test	Notes
Numeric x Cat	logistic regression with generalized estimated equations	<pre>geepack::geeglm(formula = outcome ~ covariate, family = binomial("logit"), data = m2.final, id = block, corstr = "independence", zcor = "zcor")</pre>
		outcome must be binary numeric (not a factor) covariate must be numeric
Cat x Cat	conditional logistic regression	<pre>block must be numeric (not a factor) survival::clogit(outcome ~ covariate + strata(block), data = m2.final)</pre>

variables	statistical test	Notes
		strata with only 1 occurrence cause errors, there should be check for this covers 2×2 and $2 \times >2$ polytomous covariates

Create functions for matching testing

```
psm <- hmisc
psm[['Cell']][['fraction']] <- function(numerator, denominator, format=3, ...) {</pre>
 pasteO(numerator, '(',render_f(100*numerator/denominator, format), '%)')
psm[['Footnote']] = paste("N is the number of non-missing value.",
 "^1^*t*-test.",
 "^2~Wilcoxon signed rank test.",
  "^3^Cox proportional hazards.",
  "^4^Logistic regression with GEE.",
  "^5^Conditional logistic regression.",
 "^6^McNemar's test.",
 "^7^Stuart Maxwell \u03a7^2^ test.",
  "^8^Cochran-Mantel-Haenszel \u03a7^2^ test."
mctest.numxcat <- function(rdata, cdata, cell_style, block, pref_test="default", ...)</pre>
  # qet data
  covariate <- rdata
  outcome <- cdata
  n_matched <- length(block) / length(levels(as.categorical(block)))</pre>
  # make the df and sort it
  df <- data.frame(</pre>
    covariate=as.numeric(covariate),
    outcome=as.numeric(levels(factor(outcome,levels=c(0,1))))[outcome],
                               block=as.numeric(block)
  ) %>% arrange(block,outcome)
 p_val <- NA
  ref <- " "
  # first branch point is whether data is matched 1:1 or 1:many
  if (n_matched == 2) {
    # paired Student's t-test
    if (pref_test == "t.test") {
      # run test
      stat <- t.test(x = df$covariate[df$outcome == 0],</pre>
                     y = df$covariate[df$outcome == 1],
                     paired = TRUE)
      ref <- "1"
```

```
if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value</pre>
    # Wilcoxon signed rank test
    } else if (pref_test == "default" || pref_test == "wilcox.test") {
      # run test
      stat <- wilcox.test(x = df$covariate[df$outcome == 0],</pre>
                           y = df$covariate[df$outcome == 1],
                           paired=TRUE)
      ref <- "2"
      if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value</pre>
    # Cox proportional hazards model stratefied on matched pairs
    } else if (pref_test == "coxph") {
      # run regression
      stat <- survival::coxph(outcome ~ covariate + strata(block), data = df)</pre>
      ref <- "3"
      if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value</pre>
    }
  } else if (n_matched > 2) {
    # logistic regression with generalized estimating equations
    if (pref_test == "default" || pref_test == "geeglm") {
      # run regression
      stat <- suppressWarnings(</pre>
        geepack::geeglm(formula = outcome ~ covariate,
                         family = binomial("logit"),
                         data = df,
                               = block,
                         corstr = "independence",
                         zcor = "zcor")
      ref <- "4"
      if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value[[1]]</pre>
    # conditional logistic regression
    } else if (pref_test == "clogit") {
      # run regression
      stat <- survival::clogit(outcome ~ covariate + strata(block), data = df)</pre>
      ref <- "5"
      if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value[[1]]</pre>
    }
 }
 paste0(cell_style[['p']](p = p_val), "^", ref, "^")
mctest.catxcat <- function(rdata, cdata, cell_style, block, ...)</pre>
```

```
covariate <- as.categorical(rdata)</pre>
outcome <- as.categorical(cdata)</pre>
         <- as.categorical(block)
block
n_matched <- length(block) / length(levels(as.categorical(block)))</pre>
              <- table(covariate, outcome, block, useNA="no")
grid
              <- which(!apply(grid,1,FUN = function(x){all(x == 0)}))
validrow
              <- which(!apply(grid,2,FUN = function(x){all(x == 0)}))
validcol
validblocks <- which(!apply(grid,3,FUN = function(x){all(x == 0)}))</pre>
invalidstatum <- which(apply(grid,1,FUN = function(x){sum(ifelse(x==1,1,0))})==1)
# make the df and sort it
df <- data.frame(var=as.numeric(covariate),</pre>
                 outcome=as.numeric(levels(factor(outcome,levels=c(0,1))))[outcome],
                 block=as.numeric(block) )
df <- df %>% arrange(block,outcome)
p_val <- NA</pre>
ref <- " "
if (n_matched == 2 && length(levels(covariate)) == 2) {
  # McNemar's test
 # x and y must be equal length vectors and have same levels
  # also removed hard-coded outcome levels in cases of other 2-level variables are used
  # (e.g., "M", "F" or 1,2 or "No", "Yes")
  # code above was somehow stripping a level if the responses were only one level
  # each stats test could have exclusions based on expectations of the underlying
  # function with smarter error handling messages
 stat <- exact2x2::mcnemar.exact(</pre>
   x = factor(df$var[df$outcome == levels(outcome)[[1]]], levels = levels(covariate)),
    y = factor(df$var[df$outcome == levels(outcome)[[2]]], levels = levels(covariate)),
    conf.level=.95)
 ref <- "6"
  # get p value
 if (length(stat) > 1) p_val <- stat$p.value</pre>
} else if (n_matched == 2 && length(levels(covariate)) > 2) {
  # Stuart Maxwell chi-squared test
  stat <- StuartMaxwellTest(x=df$var[df$outcome == 0], y=df$var[df$outcome == 1])</pre>
 ref <- "7"
  # get p value
 if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value[[1]]</pre>
} else if (n_matched > 2) {
  # Cochran-Mantel-Haenszel chi-squared test
  stat <- if(length(validrow)</pre>
                                  < 2 | |
                                    < 2 | |
             length(validcol)
             length(validblocks) < 1 ||</pre>
             length(invalidstatum) > 0) NA else
```

```
mantelhaen.test(covariate,outcome,block)
    ref <- "8"
    # get p value
    if (length(stat) > 1) p_val <- broom::tidy(stat)$p.value</pre>
 pasteO(cell_style[['p']](p = p_val), "^", ref, "^")
}
mctest <- function(row, col, cell_style, block=NULL, ...)</pre>
{
  if(is.null(block)) stop("Block must be specified for matched cohort testing")
  if(is.numeric(row$data) && is.categorical(col$data))
    return(mctest.numxcat(row$data, col$data, cell_style, block, ...))
  if(is.categorical(row$data) && is.categorical(col$data))
    return(mctest.catxcat(row$data, col$data, cell_style, block, ...))
  stop(paste("Unsupported comparison for", row$name, "x", col$name, "\nAppears to be",
    hmisc_data_type(row$data), "X", hmisc_data_type(column$data)))
}
```

Results

```
# 2-level categories are typically dependent variable in propensity score matching
tangram ( group
           ~ age[1]
                        # numeric
           + sex
                        # binary categorical
           + lang
                        # multi-level categorical
           + opioids[1] # numeric
           + los[1]
                       # numeric
                        # binary categorical
           + nsaid
           + neuro,
                        # multi-level categorical
       data
                = m1.final,
       block
                = m1.final$block,
       test
                = mctest,
       transform = psm,
       digits = 2,
              = "nejm",
       style
       caption = "Example 1:1 Matching")
```

Table 3: Example 1:1 Matching

Table 3: Example 1:1 Matching				
	N	Historical	Prospective	Test Statistic
		(N=30)	(N=30)	
Age	60	8.8 10.4 11.7	8.9 10.1 11.2	$P=0.245^2$
Gender : Female	60	22 (73.33%)	22 (73.33%)	$P=1.000^6$
Language	60			$P=0.630^7$
English		12 (40.00%)	8 (26.67%)	
Spanish		6 (20.00%)	7 (23.33%)	
French		6 (20.00%)	10 (33.33%)	
Other		6 (20.00%)	5 (16.67%)	
Opioids mg/kg	60	1.3 2.4 3.8	1.6 2.8 4.5	$P=0.715^2$
Length of Stay days	60	21.0 28.4 47.2	18.5 30.3 50.2	$P=0.839^2$
NSAID Given : Yes	60	23 (76.67%)	30 (100.00%)	$P=1.000^6$
Neurological	60			$P=0.635^7$
Cervical		7 (23.33%)	10 (33.33%)	
Thoracic		7 (23.33%)	6 (20.00%)	
Lumbar		2 (6.67%)	5 (16.67%)	
Sacral		9 (30.00%)	6 (20.00%)	
Other		5 (16.67%)	3 (10.00%)	

N is the number of non-missing value. 1t -test. 2 Wilcoxon signed rank test. 3 Cox proportional hazards. 4 Logistic regression with GEE. 5 Conditional logistic regression. 6 McNemar¹s test. 7 Stuart Maxwell χ^2 test. 8 Cochran-Mantel-Haenszel χ^2 test.

```
\# 2-level categories are typically dependent variable in propensity score matching
tangram ( group
                      # numeric
           ~ age[1]
           + sex
                      # binary categorical
           + lang
                    # multi-level categorical
           + opioids[1] # numeric
           + los[1]
                     # numeric
                      # binary categorical
           + nsaid
                      # multi-level categorical
           + neuro,
              = m2.final,
       data
       block
                = m2.final$block,
                = mctest,
       transform = psm,
       digits
                = 2
                 = "nejm",
       style
       caption = "Match 1:k Example")
```

Table 4: Match 1:k Example

Table 4: Match 1:k Example				
	N	Historical	Prospective	Test Statistic
		(N=60)	(N=30)	
Age	90	8.9 10.2 11.5	8.9 10.1 11.2	$P=0.974^4$
Gender : Female	90	34 (56.67%)	22 (73.33%)	$P=0.057^8$
Language	90			P=0.713 ⁸
English		19 (31.67%)	8 (26.67%)	
Spanish		13 (21.67%)	7 (23.33%)	
French		14 (23.33%)	10 (33.33%)	
Other		14 (23.33%)	5 (16.67%)	
Opioids mg/kg	90	1.6 2.3 3.5	1.6 2.8 4.5	$P=0.002^4$
Length of Stay days	90	20.7 27.3 48.2	18.5 30.3 50.2	$P=0.070^4$
NSAID Given : Yes	90	42 (70.00%)	30 (100.00%)	$P=0.004^8$
Neurological	90			$P=0.526^8$
Cervical		12 (20.00%)	10 (33.33%)	
Thoracic		11 (18.33%)	6 (20.00%)	
Lumbar		7 (11.67%)	5 (16.67%)	
Sacral		19 (31.67%)	6 (20.00%)	
Other		11 (18.33%)	3 (10.00%)	

N is the number of non-missing value. 1t -test. 2 Wilcoxon signed rank test. 3 Cox proportional hazards. 4 Logistic regression with GEE. 5 Conditional logistic regression. 6 McNemar¹s test. 7 Stuart Maxwell χ^2 test. 8 Cochran-Mantel-Haenszel χ^2 test.