Q1 Problem ABCD is a convex quadrilateral such that the diagonals are perpendicular which intersects at O and OA > OC and OB > OD. To prove AD + BC > AB + CD.

Created by Mr. Hung Tak Wai on 20110424

Last updated: 22 September 2021

Theorem In $\triangle ABC$, AB = c, AC = b, P is a point <u>inside</u> $\triangle ABC$. BP = x, CP = y. Then b + c > x + y.

Product BP to Q on AC

In $\triangle ABQ$, c + AQ > x + PQ (\triangle inequality)(1)

In $\triangle CPQ$, PQ + QC > y (\triangle inequality)(2)

$$(1) + (2) PQ + (AQ + QC) + c > x + y + PQ$$

 $\therefore b + c > x + y$ The theorem is proved.

Problem ABCD is a convex quadrilateral such that the diagonals are perpendicular which intersects at O and OA > OC and OB > OD. To prove AD + BC > AB + CD.

Step 1 Translate $\triangle ADC$ in the direction *DB* to $\triangle EBF$. Join *AE*, *CE*.

Then AE // DB // CF and $EA \perp AC$ and $FC \perp AC$ and AE = CF. AEFC is a rectangle.

Join AF and CE. The diagonals AF and CE bisect each other at H.

Step 2 Draw a line *GHI* // *DB*. Reflect $\triangle ABF$ along the line *GHI* to $\triangle CJE$.

Then AD = BE, AB = CJ, CD = BF = EJ.

 \therefore OA > OC, OB > OD (given) and GHI bisects the rectangle AEFC.

 $\therefore O$ and B lie on the same side of GHI. Also B and D lie on the opposite sides of AF.

 \therefore B is a point inside $\triangle EFH$.

Apply Pythagoras' Theorem on $\triangle ADO$ and $\triangle CDO$.

$$DO^2 = AD^2 - OA^2 = CD^2 - OC^2 \Rightarrow AD^2 - CD^2 = OA^2 - OC^2$$

Consider $\triangle BEF$, by the property of translation, BE = AD and BF = CD

$$::AD > CD \Rightarrow BE > BF \Rightarrow \angle BFE > \angle BEF \dots (*)$$

By the property of diagonals of a rectangle, $\angle HFE = \angle HEF$

$$\angle HFB = \angle HFE - \angle BFE \le \angle HEF - \angle BEF = \angle HEB$$
 by (*)

By the property of reflection, $\angle HFB = \angle HEJ \Rightarrow \angle HEB > \angle HEJ \dots (1)$

In a similar manner, we can prove that

- (i) H lies inside $\triangle ABC$
- (ii) $AB > AC \Rightarrow \angle BCO > \angle BAO$
- (iii) Use the property that $\angle HAG = \angle HCG$ and (ii) to deduce that $\angle BCH > \angle BAH$
- (iv) Use the property of reflection to deduce that $\angle BCH > \angle JCH$ (2)

Combine (1) and (2) to conclude that J is a point <u>inside</u> ΔCBE .

By the theorem at the beginning, CB + BE > CJ + JE

By the property of reflection again, we conclude that AD + BC > AB + CD.

The result is proved.

Method 2

Let the letters a, b, c, d, x, y be as shown.

Reflect $\triangle ACD$ along the line AC to $\triangle ACE$.

$$:: OD < OB :: OB > OE \Rightarrow E$$
 lies inside $\triangle ABC$.

By the theorem at the beginning, b + c > a + d

$$b-a > d-c$$

$$b + c > a + d$$
(1)

Apply Pythagoras' Theorem on $\triangle AEO$, $\triangle CEO$, $\triangle ABO$, $\triangle CBO$

$$x^2 - y^2 = a^2 - d^2 = b^2 - c^2$$

$$(a+d)(a-d) = (b+c)(b-c)$$

$$\frac{b+c}{a+d} = \frac{a-d}{b-c} \quad \dots (2)$$

In (1)
$$\frac{b+c}{a+d} > 1 \Rightarrow$$
 (2) $\frac{a-d}{b-c} > 1$

$$a-d > b-c$$

$$a + c > b + d$$

AD + BC > AB + CD. The result is proved.

