Федеральное государственное бюджетное образовательное учреждение высшего национально-исследовательского университета «Московский государственный технический университет имени Н.Э.Баумана»

Кафедра «Прикладная математика»

Лабораторная работа №2

по дисциплине «Методы вычислений»

Исследования обусловленности задачи решения СЛАУ.

Выполнили студенты группы ФН2-51

Бондарчук Виктория и Мукова Рагнеда

Вариант 2; 7

1. Исходные данные

Рассмотрим систему линейных алгебраический уравнений вида:

$$Ax = b, (1)$$

где A — матрица системы размера $n \times n$, $\det A \neq 0$, b — вектор правой части.

2. Описание используемы алгоритмов

Будем считать, что система (1) имеет единственное решение.

В лабораторной работе заданная система решается методом QR-разложения, реализованным в лабораторной работе №1.

2.1. Число обусловленности

Пусть Δb — погрешность, с которой задана правая часть системы (1). Тогда в результате решения системы

$$A(x + \Delta x) = b + \Delta b \tag{2}$$

решение исходной задачи (1) будет найдено с погрешностью Δx , удовлетворяющей условию:

$$A\Delta x = \Delta b$$
 или $\Delta x = A^{-1}\Delta b$.

Учитывая неравенство:

$$||b|| \leq ||A|| \cdot ||x||$$
,

получаем:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \cdot \|A\| \cdot \frac{\|\Delta b\|}{\|b\|}.$$
 (3)

Величину cond $A = ||A^{-1}|| \cdot ||A||$ называют числом обусловленности матрицы A.

2.2. Оценка числа обусловленности

Из соотношения (3) следует неравенство:

$$\operatorname{cond} A = \frac{\delta x}{\delta b},$$

где

$$\delta x = \frac{\|\Delta x\|}{\|x\|} \qquad \delta b = \frac{\|\Delta b\|}{\|b\|},$$

— относительные погрешности решения и правой части соответственно.

Для получения нижней оценки числа обусловленности, система (2) решается нескольно раз с разными Δb и выбирается наибольшая величина отношения относительных погрешностей решения и правой части.

3. Результаты расчетов

4. Анализ результатов

Число обусловленности характерезует чувствительность решения системы к малым погрешностям входных данных. Если система хорошо обусловленна, то при малых возмущениях правой части, решение изменится не сильно. Если же система плохо обусловлена, то решение изменится сильно.

Число обусловленности, в следствии своих свойств, всегда удовлетворяет неравенству: cond $A \geqslant 1$, но можно посчитать более точную оценку, используя абсолютные и относительные погрешности решения и правой части системы. Оценка числа обусловленности бывает близка к самому числу обусловленности, но бывают случаи, когда они значительно отличаются.

Число обусловленности отличается для разных норм, но порядок всегда остается один и тот же, так как нормы эквивалентны.

5. Ответы на контрольные вопросы

1. Что такое число обусловленности? Что оно характерезует?

Величину cond $A = \|A^{-1}\| \cdot \|A\|$ называют числом обусловленности матрицы A. Число обусловленности характерезует чувствительность решения системы Ax = b к малым погрешностям входных данных.

- 2. Как упрощается оценка числа обусловленности, если матрица является:
 - (а) диагональной;
 - (b) симметричной;
 - (c) ортогональной;
 - (d) положительно определенной;
 - (е) треугольной?
 - (а) Пусть матрица коэффициентов СЛАУ имеет вид:

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Тогда коэффициенты a_{ii} , $i = \overline{1,n}$ — собственные числа матрицы A. Так как диагональная матрица — частный случай симметричной, то оценка для числа обусловленности матрицы A имеет вид:

$$\operatorname{cond} A = \frac{|\lambda_{max}|}{|\lambda_{min}|}.$$

Учитывая, что собственные числа матрицы A — это ее элементы, получаем:

$$\operatorname{cond} A = \frac{|\lambda_{max}|}{|\lambda_{min}|} = \frac{\max_{i} |a_{ii}|}{\min_{i} |a_{ii}|}$$

(b) Пусть матрица A — симметрична, то есть опрератор A — самомопряженный.

Рассмотрим пространство H с евклидовой нормой $||x||^2 = (x, x)$. Тогда оператор A имеет n собственных векторов, образующих ортонормированный базис, и $\forall x \in H$ можно записать:

$$x = \sum_{i=1}^{n} c_i x_i,$$

причем $||x||^2 = \sum_{i=1}^n c_i^2$.

Тогда получаем:

$$Ax = \sum_{i=1}^{n} c_i \lambda_i x_i, \quad ||Ax||^2 = \sum_{i=1}^{n} c_i^2 \lambda_i^2.$$

Отсюда, $||A|| = |\lambda_{max}|$. Таким же образом можно получить $||A^{-1}|| = |\lambda_{min}|^{-1}$. Следовательно, cond $A = \frac{|\lambda_{max}|}{|\lambda_{min}|}$, причем все собственные значения симметричной матрицы $\lambda \in \mathbb{R}$.

(c) Пусть матрица коэффициентов СЛАУ A — ортогональная, то есть $A^{-1} = A^T$. Модуль каждого собственного значения ортогональной матрицы равен единицы, тогда:

$$\operatorname{cond} A \geqslant 1$$
.

(d) Пусть матрица коэффициентов СЛАУ A — положительно определена, то есть $\forall x \neq 0$ квадратичная форма (Ax, x) > 0. Все собственные значения положительно определенной матрицы — положетельны, тогда:

$$\operatorname{cond} A \geqslant \frac{\lambda_{max}}{\lambda_{min}}.$$

По теореме Гершгорина: Все собственные значения матрицы A лежат в объединении кругов S_1, S_2, \ldots, S_n , где $S_i = \{z \in \mathbb{C} : |a_{ii} - \lambda| \leqslant \sum_{j \neq i} a_{ij}\}$. Ес-

ли объединение i изолированных друг от друга кругов образует связное множество, то в этом множестве находится ровно i собственных значений. Так как для положительно определенной матрицы $\lambda > 0$, $\lambda \in \mathbb{R}$, то достаточно рассмотреть лишь отрезки с центрами на положительноц части действительной полуоси. Обозначив точную верхнюю грань связного множества λ_{sup} , а точную нижнюю грань — λ_{inf} , получим следующую оценку обусловленности матрицы A:

$$\operatorname{cond} A \geqslant \frac{\lambda_{sup}}{\lambda_{inf}}.$$

(е) Пусть матрица коэффициентов СЛАУ имеет вид:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

Собственные значения треугольной матрицы стоят на главной диагонали. Тогда:

$$\operatorname{cond} A \geqslant \frac{\max_{i} |a_{ii}|}{\min_{i} |a_{ii}|}.$$

3. Имеется ли связь между обусловленностью и величиной определителя матрицы?

Обобщенным понятием вырожденной системы является плохо обусловленная система. Системы «близкие» к вырожденным скорее всего будут плохо обусловленными.

Исключение: СЛАУ с матрицей коэффициентов вида $A=\alpha E$, где $\alpha\ll 1$, число обусловленности таких матриц cond A=1.

4. Как влияет выбор нормы матрицы на оценку числа обусловленности?

Числа обусловленности одной и той же матрицы при выборе разных норм различны, но всегда имеют одинаковый порядок, кроме того всегда выполняется $A \geqslant 1$.

5. Применимо ли понятие числа обусловленности к вырожденным матрицам?

Пусть матрица A — вырожденная. Если матрица вырожденная, то у нее есть собственное значение $\lambda = 0$. Тогда $|\lambda_{min}| = 0$. Следовательно,

$$\operatorname{cond} A \geqslant \frac{|\lambda_{max}|}{|\lambda_{min}|},$$

но, так как $|\lambda_{min}|=0$, то можно записать, что для вырожденной матрицы cond $A=\infty$.

6. Объясните, почему, говоря о векторах, норму $\|\cdot\|_1$ часто называют октаэдрической, норму $\|\cdot\|_2$ — шаровой, а норму $\|\cdot\|_\infty$ — кубической.

Норма вектора $\|\cdot\|_1$ называется октаэдрической, потому что если откладывать все векторы от одной точки, то концы векторов, удовлетворяющих равенству $\|x\|_1 = a$ заполнят октаэдр с диагональю a в трехмерном пространстве.

Норма вектора $\|\cdot\|_2$ называется шаровой, потому что если откладывать все векторы от одной точки, то концы векторов, удовлетворяющих равенству $\|x\|_2 = a$ заполнят шар с радиусом a в трехмерном пространстве.

Норма вектора $\|\cdot\|_{\infty}$ называется кубической, потому что если откладывать все векторы от одной точки, то концы векторов, удовлетворяющих равенству $\|x\|_{\infty}=a$ заполнят куб со стороной a в трехмерном пространстве.