Zadanie 6 lista 3

Kajetan Bilski 244942

5 lutego 2020

Jeśli mamy język, w którego gramatyce występują tylko wyprowadzenia $A \to w$ i $A \to wB$, to możemy dla niego stworzyć automat nideterministyczny, gdzie dla każdego termianala A mamy stan q_A (q_S jest stanem startowym) i dla każdego wyprowadzenia $A \to wB$ mamy dodatkowy zbiór stanów $q_{w_1}, q_{w_2}, ..., q_{w_{n-1}}$ i przejścia $\delta(q_A, w_1) = q_{w_1}, \delta(q_{w_1}, w_2) = q_{w_2}, ..., \delta(q_{w_{n-2}}, w_{n-1}) = q_{w_{n-1}}, \delta(q_{w_{n-1}}, w_n) = q_b$, gdzie n = |w|, a dla $A \to w$ mamy to samo z jedną różnicą $\delta(q_{w_{n-1}}, w_n) = q_{ACC}$, gdzie q_{ACC} jest stanem akceptującym. Istnieje automat bez stosu dla tego języka, więc ten język jest regularny.

Jeśli mamy język regularny, to istnieje dla niego minimalny automat niedeterministyczny bez ε -przejść (jedynymi stanami bez przejść będą stany akceptujące). Wtedy możemy stworzyć gramatykę, gdzie każdy nieterminal A odpowiada stanowi z q_A dla którego istnieją przejścia. Wtedy dla każdego przejścia $\delta(q_A,a)=q_B$, dodajemy do gramatyki wyprowadzenie $A\to aB$ jeśli istnieją przejścia z q_B , a jeżeli q_B jest stanem akceptującym (niezależnie, czy są z niego przejścia, czy nie), to dodajemy $A\to a$.