Ispit - RM

Usmjernici

- Uređaj koji odlučuje kojim putem paket poslati prema cilju.
- Usmjernik prihvati paket, pročita odredišnu IP adresu, nađe najbolji put te prosljeđuje paket prema cilju.
- Usmjeravanje (engl. Routing)
- Omogućavaju različite servise koji jamče kvalitetu (QoS Quality of Service), te filtriraju promet.

Subnetiranje - VLSM

- Postupak dijeljenja jedne velike mreže u nekoliko manjih kako bi se optimalno iskoristile raspoložive IP adrese.

Npr. Napiši VLSM za 192.168.18.0 / 24 (LAN A = 100pc-a, LAN B = 35pc-a, LAN C= 25 pc-a, LAN D = 2 pc-a.)

LAN	CIDR	MASKA	ADRESA MREŽE	PRVA PC	ZADNJA PC	BROADCAST ADRESA
				ADRESA	ADRESA	
Α	/25	255.255.255.128	192.168.18.0	192.168.18.1	192.168.18.126	192.168.18.127
В	/26	255.255.255.192	192.168.18.128	192.168.18.129	192.168.18.190	192.168.18.191
С	/27	255.255.255.224	192.168.18.192	192.168.18.193	192.168.18.222	192.168.18.223
D	/30	255.255.255.252	192.168.18.224	192.168.18.225	192.168.18.226	192.168.18.227

Usmjerničke tablice

- Proces u kojem usmjernik na temelju mogućih putova nađe najbolji put do određene mreže i upiše ga u usmjerničku tablicu (eng. Routing table).
- Svaki usmjernik ima svoju tablicu.

Usmjerničke tablice popunjavaju se:

- Statički (upisuje administrator)
- Dinamčki (popunjavaju se usmjernički protokoli)

Svi paketi koji nemaju odredišnu adresu u tablici usmjernik prosljeđuje na standardno sučelje (default gateway).

Jedna putanja može zamijeniti više putanja, ta tehnika se naziva sažimanje ruta (eng. Summary route).

Primjer:

 $2^7 \quad \ 2^6 \quad 2^5 \quad 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$

128 64 32 16 8 4 2 1

Pretvorimo IP adrese u binarni zapis, te primjenimo AND (&) log. operator

192.168.1.0 / 24	11000000.10101000 .00000001.00000000		
192.168.5.0 / 23	11000000.10101000 .00000101.00000000		
192.168.0.0/22	11000000.10101000 .00000000.00000000		
192.168.180.0 / 24	11000000.10101000 .10110100.00000000		
	&		
	11000000.10101000 .00000000.00000000		
	192. 168. 0. 0 / 16		

CIDR (eng. Classless Interdomain Routing)

Prefiks podržava sažimanje s brojem bitova manjim od bitova osnovne klase.

Na taj način se ukidaju klase.

Tri osnovna načela usmjeravanja:

- 1. Svaki usmjernik donosi odluku o usmjeravanju paketa neovisno, na temelju informacija u svojoj usmjerničkoj tablici.
- 2. Ako 1 usmjernik ima informaciju o nekoj mreži u svojoj tablici, ne znači da ostali usmjernici imaju tu istu informaciju.
- 3. Informacija o putu od jedne mreže do druge ne znači da postoji informacija i o obrnutom putu.

Statičko usmjeravanje

Ručno popunjavanje usmjerničkih tablica od strane administratora.

Upotrebljava se u slučajevima:

- Mreža je spojena od nekoliko usmjernika.
- Mreža je spojena na Internet preko ISP-a.

Kad usmjernik u tablici ne nađe odredišnu adresu, uništi paket jer ne zna na koje ga izlazno sučelje spojiti.

Prikaz u CLI - u

IP route {odredišna adresa} {maska} {sljedeća hop adresa ili izlazno sučelje} Npr.

R1(config) #ip route 172.16.10.0 255.255.255.0 10.10.11.2

R2(config) #ip route 192.168.30.0 255.255.255.0 10.10.11.1

Usmjernički protokoli

- Usmjernički protokoli pronalaze puteve do odredišta, nalaze najbolji put.
- Mjera za kvalitetu puta zove se METRIC.

172.16.30.0/24

- Svaki protokol ima svoje kriterije za određivanje najboljeg puta.
- Značajke usmjerničkih protokola:
- → Vrijeme konvergencije (brzina razmjene informacija)
 - o Skalabilnost (mogućnost nadogradnje)
 - o Jesu li klasificirani ili neklasificirani
 - o Upotreba resursa
 - o Implementacija i održavanje
 - o Distance vektori (protokoli kod kojih usmjernici ne znaju cijelu topologiju, već smjer i udaljenost do te mreže (npr.RiP)).
 - o Link state su protokoli u kojima svaki usmjernik u posebnoj datoteci ima kompletnu topologiju mreže.

Na temelju te topologije, posebnim algoritmom izračunava najbolji put (OSPF, IS-IS)

Klasificirani (Classfull) – ne šalje mrežnu masku pri razmjeni informacija, ne podržavaju VLSM,CIDR i diskontinuirane mreže (primjer je RiPv1).

Neklasificirani (Classless) - šalju mrežnu masku (primjer su RiPv2, OSPF, EIGRP, IS-IS)

IGP (eng. Interior Gateway Protocols) – su protokoli koji se koriste unutar istog autonomnog sustava pod jednim administrativnim nadzorom, npr. RiP, OSPF, IS-IS)

EGP (eng. Exterior Gateway Protocols) – protokoli koji služe za razmjenu informacija između autonomnih sustava.

RiP usmjernički protokol

RiP(eng. Routing Information Protocol) je najstariji usmjernički protokol.

Osnovne značajke RiP-a:

- Protokol tipa distance vektor
- Kao mjeru kvalitete puta (metric) upotrebljava broj usmjernika Mreže do kojih se treba proći > 15 usmjernika su nedostupne.
- Razmjena informacija o putevima do određenih mreža je u intervalima od 30s
 (nakon 180s nepotvrđivanja smjer je proglašen neispravnim te se metrika stavlja na 16) Informacije RiP protokola su enkapsulirane u UDP segmentu.

Usporedba RiPv1 i RiPv2:

RiPv1 je klasificirani protokol, za razmjenu informacija koristi se broadcast adresa.

RiPv2 je neklasificirani protokol, u razmjeni se šalje i adresa sljedećeg skoka, komuniciraju višeodredišnom adresom 224.0.0.9 (multicast), podržava autentifikaciju.

Zajedničko između RiPv1 i RiPv2:

Protokoli su tipa distance vektor, najveća udaljenost je 15 skokova, šalju nove usmjerničke poruke u pravilnim intervalima ili kada se promijeni topologija mreže.

```
Router(config) #router rip
Router(config-router) #network 172.16.0.0
Router(config-router) #exit
```

Konfiguracija RIP protokola u CLI-u.

OSPF usmjernički protokol

Osnovne značajke OSPF-a:

- Link state tip
- Brzo vrijeme konvergencije
- Hijerahijsko usmjeravanje
- Podržava VLSM i CIDR
- Višeodredišne (multicast) adrese u razmjeni informacija.

Nedostatak OSPF-a je što SPF algoritam troši resurse usmjernika.

OSPF tablica sadrži:

- Tablica susjeda
- Tablica topologije mreže
- Usmjernička tablica

Mjera kvalitete puta je COST (trošak)

Osnovni parametar za izračun je brzina prijenosa na vezi (eng. bandwidth)

$$COST = \frac{1000000000}{bit/s}$$

Ukupna kvaliteta puta je zbroj svih dobivenih kvaliteta veza

Administrativna udaljenost je mjera pouzdanosti gdje niži brojevi označavaju veću pouzdanost.

IZVOR RUTE	ADMINISTRATIVNA
	UDALJENOST
Statička ruta	0
EIGRP	5
OSPF	110
(sumarna ruta)	
IS-IS	115
RiPv1,2	120
Nepoznato odredište	255

Ako imamo 2 ili više rute za 1 mrežu, uzima se najpouzdanija.

Ovako izgleda usmjernička tablica, ono što je bitno promotriti jest ovo što se nalazi u uglatim zagradama, npr . [120/1] - - -> 120 je admin. udaljenost za RIP protokol, a 1 je metrika (hop count).

TRANSPORTNI SLOJ

Osnovni zadatak:

- Na ishodišnoj strani priprema podatke za prijenos kroz mrežu.
- Prima poruke s aplikacijskog sloja i dijeli ih na segmente
- Svakom segmentu dodaje zaglavlje protokola transportnog sloja i prosljeđuje mrežnom sloju.

Na računalu može biti pokrenuto više procesa koji mogu istodobno komunicirati s procesima drugih računala u mreži.

Transportni sloj dodaje ID procesa u zaglavlje svakog segmenta.

ID procesa je 16-bitni broj koji se zove priključak (eng. port).

Svaka aplikacija, odnosno proces šalje i prima podatke na određenom portu.

Portovi su podijeljeni u 3 skupine:

- 1. Standardni poslužiteljski portovi u rasponu od 0 1023, namijenjeni standardnim servisima interneta (HTTP, 80 / 8080, SMTP 25, POP110 , <u>FTP 20/21</u>, DNS 53, DHCP 57, TELNET 23...)
- 2. Rezervirani portovi u rasponu od 1024 49151, namijenjeni vlasničkim servisima kojima se nudi mogućnost registracije.
- 3. Dinamički priključci u rasponu 49152 65535 , ne mogu se registrirati i namijenjeni su za slobodnu upotrebu.

Kombinacija porta i adrese naziva se utičnica (eng. socket).

Protokoli transportnog sloja

TCP (Transport control protocol)

- TCP je protokol koji jamči isporuku segmenta, drugim riječima to je protokol koji provjerava je li segment stigao i da li je stigao u dobrom obliku.

TCP podržava:

- Pouzdan prijenos podataka
- Kontrola toka podataka
- Upravljanje zagušenjima

FUNCTIONING OF TRANSMISSION CONTROL PROTOCOL (TCP)

UDP (User Datagram Protocol)

UDP je protokol transportnog sloja koji ne uspostavlja vezu i ne jamči isporuku paketa, pouzdanost je žrtvovana u korist brzine, UDP se upotrebljava pri videoprijenosu preko interneta, telefoni preko interneta i slično...

WAN MREŽA

WAN mreža (eng. Wide Area Network) je mreža koja povezuje krajnje uređaje na većim geografskim udaljenostima, za taj pristup koriste se usluge tvrtki poput telekom operatera, davatelja internetskih usluga, satelitskih sustava.

CPE (eng. Customer Permises Equipment) – uređaj koji se fizički nalazi kod krajnjeg korisnika, može biti DCE (eng. Data Communications Equipment) ili DTE (eng. Data Terminal Equipment).

Lokalna petlja (eng. Local Loop) – veza između korisnika i davatelja usluga, počinje od točke razgraničenja (npr. razvodna kutija) do pristupnog čvora davatelja usluge.

Pristupni čvor davatelja usluge (eng. Central Office) – oprema davatelja usluge gdje završava lokalna petlja i kreće WAN usluga.

WAN uređaji:

Modem – prilagođava signal CPE uređaja na analognoj lokalnoj petlji. WAN preklopnik (WAN switch) – radi na drugom sloju OSI modela , svaka tehnologija ima svoj tip preklopnika.