

So the voltage on Sense for each Ampere is about

 $U = R*I / 9700 = 220\Omega * 1A / 9700 = 0.02268V$

The typical current on fault conditions is $I_{fault} = 5.2 \text{mA}$, so

 $U_{fault} = 220\Omega * 5.2mA = 1.144V$

The maximum sense current is 7.5mA, so

 $U_{max} = 220\Omega * 7.5mA = 1.65V$

So the voltage on Sense for each Ampere is about

 $U = R*I / 9700 = 220\Omega * 1A / 9700 = 0.02268V$

The typical current on fault conditions is $I_{fault} = 5.2 \text{mA}$, so

 $U_{fault} = 220\Omega * 5.2mA = 1.144V$

The maximum sense current is 7.5mA, so

 $U_{max} = 220\Omega * 7.5 \text{mA} = 1.65 \text{V}$

So the voltage on Sense for each Ampere is about

 $U = R*I / 9700 = 220\Omega * 1A / 9700 = 0.02268V$

The typical current on fault conditions is $I_{fault} = 5.2 \text{mA}$, so

 $U_{fault} = 220\Omega * 5.2mA = 1.144V$

The maximum sense current is 7.5mA, so

 $U_{max} = 220\Omega * 7.5 \text{mA} = 1.65 \text{V}$

So the voltage on Sense for each Ampere is about

 $U = R*I / 9700 = 220\Omega * 1A / 9700 = 0.02268V$

The typical current on fault conditions is $I_{fault} = 5.2 \text{mA}$, so

 $U_{fault} = 220\Omega * 5.2mA = 1.144V$

The maximum sense current is 7.5mA, so

 $U_{max} = 220\Omega * 7.5mA = 1.65V$

So the voltage on Sense for each Ampere is about

 $U = R*I / 9700 = 220\Omega * 1A / 9700 = 0.02268V$

The typical current on fault conditions is $I_{fault} = 5.2 \text{mA}$, so

 $U_{fault} = 220\Omega * 5.2mA = 1.144V$

The maximum sense current is 7.5mA, so

 $U_{max} = 220\Omega * 7.5 \text{mA} = 1.65 \text{V}$

GND

