

Informe ALGORITMOS SECUENCIALES

Curso: Algoritmia y Programación

Tipo de grupo: Teoría

Docente: LAZO AGUIRRE, Walter

Alumno: MORALES ROBLES, Jeancarlo

Fecha: 12/04/2023

2022

1. Leer 2 números y Reportar la suma de ambos números.

Diseño de algoritmo:

Resultados:

```
Ingrese el primer número:
5
Ingrese el segundo número:
7
La suma de 5 y 7 es: 12
```

```
// 1. Leer 2 números y Reportar la suma de ambos números.

import java.util.Scanner;

public class SumaNumeros {
    public static void main(String[] args) {
        // Crear un objeto Scanner para leer la entrada de la consola
        Scanner sc = new Scanner(System.in);

        // Crear variables para almacenar los números
        int num1, num2, suma;

        // Lectura de los números desde el teclado
        System.out.print("Ingrese el primer número: ");
        num1 = sc.nextInt();

        System.out.print("Ingrese el segundo número: ");
        num2 = sc.nextInt();

        // Cálculo de la suma
        suma = num1 + num2;

        // Mostrar el resultado por pantalla
        System.out.println("La suma de " + num1 + " y " + num2 + " es: " + suma);

        // Cerrar el objeto Scanner
        sc.close();
    }
}
```


2. Leer 2 números y Reportar la suma de ambos números.

Diseño de algoritmo:

Problema 2

Resultados:

```
Ingrese la primera nota:
4.5
Ingrese la segunda nota:
3.8
El promedio de las notas 4.5 y 3.8 es: 4.15
```

```
// 2. Leer dos notas y Calcular y reportar la nota promedio.
import java.util.Scanner;

public class PromedioNotas {
   public static void main(String[] args) {
        // Crear un objeto Scanner para leer la entrada de la consola
        Scanner sc = new Scanner(System.in);

        // Crear variables para almacenar las notas
        double notel, note2, average;

        // Lectura de las notas desde el teclado
        System.out.print("Ingrese la primera nota: ");
        notel = sc.nextDouble();

        System.out.print("Ingrese la segunda nota: ");
        note2 = sc.nextDouble();

        // Cálculo de la nota promedio
        average = (notel + note2) / 2;

        // Mostrar el resultado por pantalla
        System.out.println("La nota promedio de " + notel + " y " + note2 + " es: " + average);

        // Cerrar el objeto Scanner
        sc.close();
    }
}
```


3. Leer dos números enteros N1, N2. Reportar el cuadrado de la resta de N1-N2 y el cubo del producto de N1 y N2.

Diseño de algoritmo:

Problema 3

Resultados:

```
Ingrese el primer número: 8
Ingrese el segundo número: 5
El cuadrado de la resta de 8 y 5 es: 9.0
El cubo del producto de 8 y 5 es: 64000.0
```

```
// 3. Leer dos números enteros N1, N2. Reportar el cuadrado de la resta de N1-N2 y el cubo del producto de N1 y N2.

import java.util.Scanner;

public class OperacionesAritmeticas {
    public static void main(String[] args) {
        // Declaración de variables
        int N1, N2;
        double resta, producto, cuadrado, cubo;

        // Creación de un objeto Scanner para leer los datos desde el teclado
        Scanner sc = new Scanner(System.in);

        // Lectura de los números desde el teclado
        System.out.print("Ingrese el primer número: ");
        N1 = sc.nextInt();

        System.out.print("Ingrese el segundo número: ");
        N2 = sc.nextInt();

        // Cálculo de la resta
        resta = N1 - N2;

        // Cálculo del producto
        producto = N1 + N2;

        // Cálculo del cuadrado de la resta
        cuadrado = Math.pow(resta, 2);

        // Cálculo del cubo del producto
        cubo = Math.pow(producto, 3);

        // Nostrar los resultados por pantalla
        System.out.println("El cuadrado de la resta de " + N1 + " y " + N2 + " es: " + cuadrado);
        System.out.println("El cuadrado de la resta de " + N1 + " y " + N2 + " es: " + cuadrado);
        System.out.println("El cuadrado de la resta de " + N1 + " y " + N2 + " es: " + cuadrado);
        // Cierre del objeto Scanner
        sc.close();
    }
}
```


4. Leer el precio unitario de un producto y la cantidad que desea comprar. Luego reportar la cantidad total a pagar.

Diseño de algoritmo:

Problema 4 Inicio Variables precioUnitario, cantidad, totalPagar Leer precioUnitario, cantidad totalPagar = precioUnitario * cantidad Escribir totalPagar Fin

Resultados:

```
Ingrese el precio unitario del producto:
5.5
Ingrese la cantidad que desea comprar:
3
La cantidad total a pagar es: 16.5
```

```
// 4. Leer el precio unitario de un producto y la cantidad que desea comprar.

// Luego reportar la cantidad total a pagar.

import java.util.Scanner;

public class PrecioTotal {
    public static void main(String[] args) {
        // Crear objeto Scanner para leer la entrada del usuario
        Scanner input = new Scanner(System.in);
        // Declarar variables
        double precioUnitario, totalPagar;
        int cantidad;

        // Solicitar al usuario que ingrese el precio unitario y la cantidad
        System.out.print("Ingrese el precio unitario del producto: ");
        precioUnitario = input.nextDouble();

        System.out.print("Ingrese la cantidad que desea comprar: ");
        cantidad = input.nextInt();

        // Calcular el total a pagar
        totalPagar = precioUnitario * cantidad;

        // Mostrar el total
        System.out.println("La cantidad total a pagar es: " + totalPagar);

        // Cerrar el objeto Scanner
        input.close();
    }
}
```


5. Leer una temperatura en grados centígrados y reportarla en grados Fahrenheit (°F= 1.8*°C + 32)

Diseño de algoritmo:

Problema 5 Inicio Variables celsius, fahrenheit Leer celcius fahrenheit = 1.8 * celsius + 32 Escribir fahrenheit

Resultados:

Ingrese la temperatura en grados Celsius: 25 La temperatura en grados Fahrenheit es: 77.0

```
// 5. Leer una temperatura en grados centígrados y reportarla en grados
// Fahrenheit (°F= 1.8*°C+32)
import java.util.Scanner;

public class ConversionTemperatura {
  public static void main(String[] args) {
      // Crea un objeto Scanner para leer la entrada del usuario
      Scanner sc = new Scanner(System.in);
      // Declara las variables
      double celsius, fahrenheit;

      // Pide al usuario ingresar la temperatura en grados Celsius
      System.out.print("Ingrese la temperatura en grados Celsius: ");
      celsius = sc.nextDouble();

      // Convierte la temperatura de Celsius a Fahrenheit utilizando la fórmula °F =
      // 1.8 * °C + 32
      fahrenheit = 1.8 * celsius + 32;

      // Imprime la temperatura convertida en grados Fahrenheit
      System.out.println("La temperatura en grados Fahrenheit es: " + fahrenheit);

      // Cierra el objeto Scanner
      sc.close();
    }
}
```


6. Ingresar la velocidad en cm/seg y el tiempo en horas y reportar la distancia recorrida. (V = d/t).

Diseño de algoritmo:

Problema 6 Inicio Variables velocidad, tiempo, distancia Leer velocidad, tiempo distancia = velocidad * tiempo * 3600; Escribir distancia Fin

Resultados:

```
Ingrese la velocidad en cm/seg: 50
Ingrese el tiempo en horas: 2
La distancia recorrida es: 360000 cm
```

```
6.Ingresar la velocidad en cm/seg y el tiempo en horas y reportar la distancia recorrida. (V =
a/t).
import java.util.Scanner;
public class DistanciaRecorrida {
  public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);
    // Se declaran las variables necesarias para almacenar los valores ingresados
    // por el usuario y el resultado de los cálculos double velocidad, tiempo, distancia;
    // Se le solicita al usuario que ingrese la velocidad en cm/seg y se almacena en
    System.out.print("Ingrese la velocidad en cm/seg: ");
    velocidad = sc.nextDouble();
    System.out.print("Ingrese el tiempo en horas: ");
    tiempo = sc.nextDouble();
    // = V*t y se almacena en la variable correspondiente
    distancia = velocidad * tiempo * 3600;
    System.out.println("La distancia recorrida es: " + distancia + " cm");
    // Se cierra el objeto Scanner para liberar los recursos utilizados
    sc.close();
```


7. Ingrese el peso (P) de una persona, expresado en Kg y su talla (T) expresada en cm. Calcule el índice de masa corporal que se halla dividiendo el peso expresado en kg, entre la talla en cm elevada al cuadrado.

Diseño de algoritmo:

Problema 7 Inicio Variables peso, talla, imc Leer peso, talla distancia = velocidad * tiempo * 3600; Escribir distancia

Resultados:

```
Ingrese el peso en Kg: 70
Ingrese la talla en cm: 170
El índice de masa corporal es: 24.22
```

```
// 7. Ingrese el peso (P) de una persona, expresado en Kg y su talla ( T )
// expresada en cm. Calcule el índice de masa corporal que se halla dividiendo
// el peso expresado en hg, entre la talla en cm elevada al cuadrado.

import java.util.Scanner;

public class IMC {
    public static void main(String[] args) {
        // Creamos un objeto de la clase Scanner
        Scanner sc = new Scanner(System.in);
        double peso, talla, imc, tallaEnMetros;

        // Solicitamos el peso al usuario
        System.out.print("Ingrese el peso en Kg: ");
        peso = sc.nextDouble();

        // Solicitamos la talla al usuario
        System.out.print("Ingrese la talla en cm: ");
        talla = sc.nextDouble();

        // Convertimos la talla de centímetros a metros
        tallaEnMetros = talla / 100;
        // Calculamos el índice de masa corporal
        imc = peso / (tallaEnMetros * tallaEnMetros);

        // Mostramos el resultado al usuario
        System.out.println("El indice de masa corporal es: " + imc);

        // Cerramos el objeto Scanner
        sc.close();
    }
}
```


8. Ingrese el peso (P) de una persona, expresado en Kg y su talla (T) expresada en cm. Calcule el índice de masa corporal que se halla dividiendo el peso expresado en kg, entre la talla en cm elevada al cuadrado.

Análisis: EFD x, y, z Proceso total

Diseño de algoritmo:

Problema 8 Inicio Variables x, y, z, total Leer x, y, z total = (10 * x) + (20 * y) + (50 * z) Escribir total Fin

Resultados:

```
Ingrese la cantidad de billetes de 10 soles: 5
Ingrese la cantidad de billetes de 20 soles: 3
Ingrese la cantidad de billetes de 50 soles: 2
La cantidad total de dinero es: 210 soles
```

```
// 8. Se tienen % billetes de 10 soles, % billetes de Veinte soles y 2 billetes
// de 50 soles. Reportar cuánto dinero tengo en total.
import java.util.Scanner;

public class CalcularDinero {
   public static void main(String[] args) {
        // Crear un objeto de la clase Scanner
        Scanner sc = new Scanner(System.in);

        // Declarar variables
        int x, y, z, total;

        // Leer la cantidad de billetes de 10 soles
        System.out.print("Ingrese la cantidad de billetes de 10 soles: ");
        x = sc.nextInt();

        // Leer la cantidad de billetes de 20 soles
        System.out.print("Ingrese la cantidad de billetes de 20 soles: ");
        y = sc.nextInt();

        // Leer la cantidad de billetes de 50 soles
        System.out.print("Ingrese la cantidad de billetes de 50 soles: ");
        z = sc.nextInt();

        // Calcular la cantidad total de dinero
        total = (10 * x) + (20 * y) + (50 * z);

        // Mostrar el resultado
        System.out.println("La cantidad total de dinero es: " + total + " soles");
        sc.close();
    }
}
```


9. Ingresar el radio y la altura de un cilindro y reportar su volumen y su superficie.

Diseño de algoritmo:

Problema 9

Inicio
Variables radio, altura, volumen, superficie
Leer radio, altura
volumen = Math.PI * radio * radio * altura
superficie = 2 * Math.PI * radio * (radio + altura)
Escribir volumen, superficie
Fin

Resultados:

Ingrese el valor del radio del cilindro en cm: 4 Ingrese el valor de la altura del cilindro en cm: 8 El volumen del cilindro es: 402.1238596594935 cm^3 La superficie del cilindro es: 301.59289474462014 cm^2

```
9. Ingresar el radio y la altura de un cilindro y reportar su volumen y su
// superficie
import java.util.Scanner;
public class Cilindro {
  public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);
    System.out.print("Ingrese el valor del radio del cilindro en cm: ");
    double radio = sc.nextDouble();
    System.out.print("Ingrese el valor de la altura del cilindro en cm: ");
    double altura = sc.nextDouble();
    double volumen = Math.PI * radio * radio * altura;
    // Paso 4: Calcular la superficie del cilindro
    double superficie = 2 * Math.PI * radio * (radio + altura);
    // Paso 5: Imprimir el valor del volumen y la superficie
    System.out.println("El volumen del cilindro es: " + volumen + " cm^3");
System.out.println("La superficie del cilindro es: " + superficie + " cm^2");
    sc.close();
```


10. Leer un número N y el porcentaje que desea calcular del número leído.

Reportar tanto el número como el porcentaje calculado.

Diseño de algoritmo:

Problema 10 Inicio Variables numero, porcentaje, porcentajeCalculado Leer numero, porcentaje porcentajeCalculado = numero * porcentaje / 100 Escribir porcentajeCalculado Fin

Resultados:

```
Ingrese un número: 100
Ingrese el porcentaje que desea calcular: 20
El número es: 100.0
El porcentaje calculado es: 20.0
```

```
. .
  10. Leer un número N y el porcentaje que desea calcular del número leído. Reportar tanto
import java.util.Scanner;
public class PorcentajeCalculado {
 public static void main(String[] args) {
    // Instancio un objeto Scanner para poder leer la entrada de teclado
    Scanner input = new Scanner(System.in);
    // Pido al usuario que ingrese un número y lo guardo en la variable numero
    System.out.print("Ingrese un número: ");
   numero = input.nextDouble();
    // y lo guardo en la variable porcentaje
    System.out.print("Ingrese el porcentaje que desea calcular: ");
    porcentaje = input.nextDouble();
    // Calculo el porcentaje y guardo el resultado en la variable
    porcentajeCalculado = numero * porcentaje / 100;
    System.out.println("El número es: " + numero);
    System.out.println("El porcentaje calculado es: " + porcentajeCalculado);
    input.close();
```


11. Elaborar un programa que ingrese el número de partidos ganados, empatados y perdidos por un equipo y calcule su puntaje total, sabiendo que por cada partido ganado son 5 puntos, cada partido empatado es 3 punto y por partido perdido 1 puntos.

Diseño de algoritmo:

Resultados:

```
Ingrese el número de partidos ganados: 4
Ingrese el número de partidos empatados: 2
Ingrese el número de partidos perdidos: 3
El puntaje total del equipo es: 29
```

```
y perdidos por un equipo y calcule su puntaje total, sabiendo que por cada
// partido ganado son 5 puntos, cada partido empatado es 3 punto y por partido
// perdido 1 puntos.
import java.util.Scanner;
public class PuntajeEquipo {
 public static void main(String[] args) {
   Scanner sc = new Scanner(System.in);
   System.out.print("Ingrese el número de partidos ganados: ");
    int partidosGanados = sc.nextInt();
   System.out.print("Ingrese el número de partidos empatados: ");
   int partidosEmpatados = sc.nextInt();
   System.out.print("Ingrese el número de partidos perdidos: ");
   int partidosPerdidos = sc.nextInt();
   int puntajeTotal = (partidosGanados * 5) + (partidosEmpatados * 3) + (partidosPerdidos *
   System.out.println("El puntaje total del equipo es: " + puntajeTotal);
   sc.close();
 }
```


12. Elaborar un algoritmo que ingrese el número de respuestas correctas, incorrectas y no respondidas por un estudiante. Y calcule su nota final sabiendo que cada respuesta correcta vale 6 puntos, cada incorrecta -3 puntos y cada pregunta no respondida -2 puntos.

Análisis: EFD

Diseño de algoritmo:

Problema 12

Resultados:

Ingrese el número de respuestas correctas: 25 Ingrese el número de respuestas incorrectas: 5 Ingrese el número de preguntas no respondidas: 10 La nota final es: 115

```
// 12. Elaborar un algoritmo que ingrese el número de respuestas correctas, incorrectas y no respondidas por un estudiante. Y calcule su nota final sabiendo que cada respuesta correcta vale 6 puntos, cada incorrecta -3 puntos y cada pregunta no respondida -2 puntos.

import java.util.Scanner;

public class NotaFinal {
    public static void main(String[] args) {
        // Creación de un objeto Scanner
        Scanner sc = new Scanner(System.in);

        // Solicita al usuario que ingrese el número de respuestas correctas
        System.out.print("Ingrese el número de respuestas correctas: ");
        int respuestasCorrectas = sc.nextInt();

        // Solicita al usuario que ingrese el número de respuestas incorrectas: ");
        int respuestasIncorrectas = sc.nextInt();

        // Solicita al usuario que ingrese el número de preguntas no respondidas
        System.out.print("Ingrese el número de preguntas no respondidas
        System.out.print("Ingrese el número de preguntas no respondidas : ");
        int preguntasNoRespondidas = sc.nextInt();

        // Calcula la nota final
        int notaFinal = (respuestasCorrectas * 6) - (respuestasIncorrectas * 3) - (
        preguntasNoRespondidas * 2);

        // Muestra el resultado al usuario
        System.out.println("La nota final es: " + notaFinal);

        // Cierra el objeto Scanner
        sc.close();
    }
}
```