Transformation de Fourier

1 Rappel

Soit $f \in L^1(\mathbb{R})$. On définit la transformée de Fourier de f comme

$$F(f): \mathbb{R} \to \mathbb{R}$$
$$\nu \mapsto \hat{f}(\nu) \equiv \int_{\mathbb{R}} f(x) e^{-2i\pi\nu x} dx$$

L'application $F:L^1\to L^\infty$ est la transformation de Fourier. C'est une application continue qui vérifie les propriétés :

- a) Linéarité : $F(af(x) + bg(x))(\nu) = aF(f)(\nu) + bF(g)(\nu)$
- b) Contraction du domaine : $F(f(ax))(\nu) = \frac{1}{|a|}F(f)(\nu/a)$
- c) Translation temporelle : $F(f(x+x_0))(\nu) = F(f)(\nu) \exp(2i\pi\nu x_0)$
- d) Produit de convolution : $F(f * g)(\nu) = F(f)(\nu) F(g)(\nu)$
- e) Dérivation dans l'espace direct : $F(f')(\nu) = 2i\pi\nu F(f)(\nu)$ où $f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R})$ et $f' \in L^1(\mathbb{R})$

2 Exercices

Exercice 1. Soit [a,b] un intervalle de $\mathbb R$ et $\mathbf 1_{[a,b]}$ la fonction caractéristique associée.

- a) Calculer la transformée de Fourier $F\left(\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}\right)$.
- b) Soit t > 0. Calculer la transformée de Fourier $F\left(\mathbf{1}_{\left[-\frac{t}{2},\frac{t}{2}\right]}\right)$.
- c) Soit $a>\frac{t}{2}.$ En déduire $F\left(\mathbf{1}_{[a-\frac{t}{2},a+\frac{t}{2}]}\right)$ et $F\left(\mathbf{1}_{[-a-\frac{t}{2},-a+\frac{t}{2}]}+\mathbf{1}_{[a-\frac{t}{2},a+\frac{t}{2}]}\right).$

Exercice 2.

- a) Enoncer le théorème de Riemann-Lebesgue pour la transformation de Fourier sur $L^1(\mathbb{R})$.
- b) Soit $f \in L^1(\mathbb{R})$ deux fois dérivable telle que f' et $f'' \in L^1(\mathbb{R})$. Montrer que

$$F(f)(\nu) = o_{|\nu| \to \infty} \left(\frac{1}{\nu^2}\right). \tag{1}$$

- c) Soit $f(t) = e^{-|t|}$. Montrer que $f \in L^1(\mathbb{R})$, et calculer sa transformée de Fourier $F(e^{-|t|})(\nu)$.
- d) Montrer que $F(e^{-|t|})(\nu)$ ne vérifie pas (1). Commenter.

Exercice 3. On admet dans cet exercice que la transformée de Fourier de la fonction $G(x) = \exp(-\pi x^2)$ est $\hat{G}(\nu) = \exp(-\pi \nu^2)$.

a) Soit:

$$G_a(x) = \frac{1}{\sqrt{a}} \exp\left(-\frac{x^2}{2a}\right) \quad a > 0.$$

Calculer la transformée de Fourier \hat{G}_a de G_a .

- b) Calculer la transformée de Fourier du produit de convolution $G_a * G_b$, a,b > 0.
- c) En déduire $G_a * G_b$.