Práctica: CAPÍTULO 5 - AUTOVECTORES Y AUTOVALORES (tercera parte)

- 1. Sea T la transformación en el plano xy que representa la reflexión a través de la recta y=x.
 - a) Hallar la matriz asociada a T respecto a la base estándar $\mathcal{B} = \{(1,0),(0,1)\}$, y también respecto a $\mathcal{B}' = \{(1,1),(1,-1)\}$.
 - b) Verificar que las matrices halladas en el ítem anterior son semejantes.
- 2. Sea T una transformación lineal de un espacio vectorial de dimensión finita V en sí mismo y, \mathcal{B}_1 y \mathcal{B}_2 dos bases ordenadas de V. Sean A y B las matrices asociadas a T considerando las bases \mathcal{B}_1 y \mathcal{B}_2 respectivamente. Demostrar que A y B son semejantes.

Ayuda: Probar que $B = M^{-1}AM$ donde M es la matriz de cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .

- 3. Sea T la proyección en \mathbb{R}^2 sobre la recta que pasa por el origen formando un ángulo θ con el eje x. Construir la matriz A asociada a T con la base canónica de \mathbb{R}^2 a partir de la matriz B asociada a T con una base que contiene un vector sobre la recta y un vector ortogonal a la recta.
- 4. Probar que la relación de semejanza entre matrices es una relación de equivalencia.
- 5. Probar que las matrices $A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ y $B = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$ son semejantes.
- 6. Sean A y B matrices semejantes. Probar que A y B tienen el mismo polinomio característico.
- 7. Probar que:
 - a) Si A es semejante a B entonces A^2 es semejante a B^2 .
 - b) Existen matrices A y B no semejantes tales que A^2 y B^2 son semejantes.
- 8. En cada caso, encontrar una matriz unitaria U y una matriz triangular T tal que $U^{-1}AU = T$.

$$A = \begin{bmatrix} 5 & -3 \\ 4 & -2 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

9. Sea U_k una matriz unitaria de tamaño $k \times k$. Sea U de tamaño $(k+1) \times (k+1)$ tal que

$$U = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & & U_k \\ 0 & & \end{bmatrix}.$$

Probar que U es unitaria.

- 10. Demostrar que el producto de matrices unitarias es una matriz unitaria.
- 11. Sea N una matriz normal. Demostrar:
 - a) Para todo vector $x \in \mathbb{C}^n$, $||Nx|| = ||N^H x||$.
 - b) La *i*-ésima fila de N tiene la misma norma que la *i*-ésima columna de N (pensando tanto a las filas como a las columnas como vectores de \mathbb{C}^n).
- 12. Probar que:
 - a) Las matrices hermitianas son normales.

b) Las matrices unitarias son normales.

13. Probar que
$$A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$
 es diagonalizable y no es normal.

Observación: No todas las matrices diagonalizables son normales.

14. Sea T una matriz triangular. Entonces T es normal si y solo si T es diagonal.

15. Sea A una matriz de tamaño $n \times n$ y U una matriz unitaria tal que $U^{-1}AU = \Lambda$. Probar que A es normal.

16. Probar que:

a) Todo bloque de Jordan tiene un único autovalor con multiplicidad geométrica 1.

b) Existen matrices no diagonalizables ni semejantes que tienen el mismo polinomio característico. Ayuda: Como las matrices semejantes tienen el mismo polinomio característico, la búsqueda se puede simplificar a matrices de Jordan no diagonales.

17. Sean las matrices:

$$J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad K = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}.$$

a) Justificar por qué $\lambda = 0$ es autovalor de multiplicidad algebraica 4 de ambas matrices.

b) Sin hacer los cálculos, responder:

¿Cuántos autovectores l.i. tiene asociado, en cada caso, el autovalor? Justificar.

Ayuda: Relacionar la pregunta con la cantidad de bloques de Jordan.

c) Describir el autoespacio asociado a $\lambda = 0$ en cada caso.

d) Probar que J no es semejante a K.

Ayuda: Suponer que existe S tal que $S^{-1}JS=K$ y comparando JS con SK concluir que S no puede ser invertible.