Review of Functional analysis concepts

Linear and bilinear functionals

Given a functional space V, a linear functional is a map $L:V o\mathbb{R}$ that satisfies linearity:

 $L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$ for all $u,v \in V$ and scalars $\alpha,\beta \in \mathbb{R}$.

A bilinear functional is a map $B:V imes V o \mathbb{R}$ that is linear in each argument.

Boundedness and Continuity

A functional L is bounded if there exists a constant C such that $|L(u)| \leq C|u|$ for all $u \in V$. If V is a Banach space (normed and complete), then a linear bounded functional is also continuous.

Dual Space

The dual space $V^{*}=V^{\prime}$ is the space of all bounded linear functionals on V.

$$V^* := \{F : V \to \mathbb{R} : F \text{ is linear and bounded}\}.$$

Norm

The norm of a functional $L \in V^*$ is defined as

$$|L| = \sup_{|u| \le 1} |L(u)| = \sup_{|u| \ne 0} rac{|L(u)|}{||u||_V}.$$

Hilbert Space

A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.

The inner product is a bilinear function $(\cdot,\cdot)_H:V\times V\to\mathbb{R}$ that is symmetric and positive definite. The induced norm is $||u||_H:=\sqrt{(u,u)_H}$.

Riesz Representative

The Riesz representation theorem states that for every bounded linear functional L on a Hilbert space H, there exists a unique element $v_L \in H$ such that

$$L(u) = (u, v_L)_H$$

for all $u \in H$. Moreover, $||L||_{H^*} = ||u_L||_H$.

Conversly, for every element $u \in H$ there exists a linear and bounded functional L_u such that

$$L_u(v) = (u, v)_H$$
 for every $v \in V$.

Moreover, $||L_u||_{H^*} = ||u||_H$.

Hence, there is a bijection between H and H^* .

Bilinear form

Given V a normed functional space, a bilinear form a is a function that maps every two elements of V to a scalar $a:V\times V\to\mathbb{R}$.

A form

- is bilinear if
 - $\circ \ a(\lambda u + \mu w, v) = \lambda a(u,v) + \mu a(w,v)$ for every $\lambda, \mu \in \mathbb{R}$ and every $v,w,u \in V$, and
 - $\circ \ a(u,\lambda v + \mu w) = \lambda a(u,v) + \mu a(u,w)$ for every $\lambda,\mu \in \mathbb{R}$ and every $v,w,u \in V$;
- is continuous if there exists an M>0 such that

$$a(u,v) \leq M||u||_H||v||_H$$
 for every $v,w,u \in V$;

- ullet is symmetric if a(u,v)=a(v,u) for every $u,v\in V$;
- is positive if a(v,v)>0 for all $v\in V$ with $v\neq 0$;
- ullet is coercive if there exists lpha>0 such that $a(v,v)>lpha\|v\|_H^2$ for all $v\in V$.

Distributions

Let $\Omega\subset\mathbb{R}^d$ be an open set and $f:\Omega o\mathbb{R}$ a function.

Support of a Function

The support of a function f, denoted by $\mathrm{supp}(f)$, is the closure of the set where f is non-zero.

$$\operatorname{supp}(f) := \overline{\{x \in \Omega : f(x) \neq 0\}}.$$

Compact Support

A function has compact support if its support is a compact set.

C^{∞} Compact Support Functions

A function is in $\mathcal{D}(\Omega):=C_c^\infty(\Omega)$ if it is infinitely differentiable and has compact support in Ω .

Convergence in $\mathcal{D}(\Omega)$

A sequence of functions $\{f_n\}$ in $\mathcal{D}(\Omega)$ converges to f in $C_c^\infty(\Omega)$ if

- ullet exists a fixed compact set K that contains all supports of f_n
- all derivatives of f_n converge uniformly to the corresponding derivatives of f, i.e. $\partial_{x_1^{p_1}\dots x_d^{p_d}}f_n o \partial_{x_1^{p_1}\dots x_d^{p_d}}f$ for all p_1,\dots,p_d .

Distributions

A **distribution** is a linear functional $T:\mathcal{D}(\Omega) o\mathbb{R}$ that is continuous, i.e.,

$$\lim_{k o\infty}T(arphi_k)=T(arphi),$$

for all $arphi_k o_{\mathcal D} arphi \in \mathcal D$.

Hence, the distribution space $\mathcal{D}^*(\Omega)$ is the dual of $\mathcal{D}(\Omega)$.

Notation for distribution $T\in \mathcal{D}^*(\Omega)$ applied to a function $f\in \mathcal{D}(\Omega)$: $T(f)=\langle T,f
angle$.

Example Dirac Delta

The Dirac delta distribution δ_a with $a \in \Omega$ a point, is defined by $\delta_a(\phi) = \phi(a)$ for all $\phi \in \mathcal{D}(\Omega)$. It is a distribution that "picks out" the value of a function at a point.

Convergence in $\mathcal{D}^*(\Omega)$

A sequence of distributions T_n converges in $\mathcal{D}^*(\Omega)$ to $T \in \mathcal{D}^*(\Omega)$ if

$$\lim_{n o\infty}T_n(arphi)=T(arphi), \qquad orall arphi\in \mathcal{D}(\Omega).$$

$L^2(\Omega)$ squared summable functions

$$L^2(\Omega):=\{f:\Omega o\mathbb{R} ext{ such that }\int_\Omega f(x)^2\mathrm{d}x<\infty\}.$$

- 1. $L^2(\Omega)$ is a Hilbert space with scalar product $(f,g):=\int_\Omega f(x)g(x)\mathrm{d}x$.
- 2. The $L^2(\Omega)$ norm is define through the inner product as $\|f\|_{L^2(\Omega)}:=\sqrt{\int_\Omega f(x)^2\mathrm{d}x}.$
- 3. To every function $f\in L^2(\Omega)$ is associated a distribution $T_f\in \mathcal{D}^*(\Omega)$ defined by

$$T_f(arphi) := \int_\Omega f(x) arphi(x) \mathrm{d}x, \qquad orall arphi \in \mathcal{D}(\Omega).$$

- 4. $\mathcal{D}(\Omega)$ is dense in $L^2(\Omega)$, i.e., for every $f\in L^2(\Omega)$ there exists a sequence of $\varphi_k\in\mathcal{D}(\Omega)$ such that $\|\varphi_k-f\|_{L^2(\Omega)} o 0.$
- 5. $\mathcal{D}(\Omega) \subset L^2(\Omega) \Longrightarrow (L^2(\Omega))^* = L^2(\Omega) \subset \mathcal{D}^*(\Omega)$.

Example: convergence to Dirac Delta

Let $\chi_{[a,b]}$ be the characteristic function on the interval $[a,b]\subset\mathbb{R}$ defined as

$$\chi_{[a,b]}(x) = egin{cases} 0 & ext{if } x
otin [a,b], \ 1 & ext{if } x \in [a,b]. \end{cases}$$

Let us build the sequence of functions in $L^2(\mathbb{R})$ $f_n(x):=rac{n}{2}\chi_{[-1/n,1/n]}(x).$ Clearly, we have that

1.
$$\int_{\mathbb{R}} f_n(x) \mathrm{d}x = 1$$

2.
$$T_{f_n}(arphi)=\int_{\mathbb{R}}f_n(x)arphi(x)\mathrm{d}x=rac{n}{2}\int_{-1/n}^{1/n}arphi(x)\mathrm{d}x=rac{n}{2}(\Phi(1/n)-\Phi(-1/n))$$
 where $rac{d}{dx}\Phi(x)=arphi(x)$.

3. Let
$$h_n=1/n$$
, $T_{f_n}(arphi)=rac{\Phi(h)-\Phi(-h)}{2h}$

4.
$$\lim_{n o\infty}T_{f_n}(arphi)=\lim_{n o\infty}rac{\Phi(h)-\Phi(-h)}{2h}=rac{d}{dx}\Phi(0)=arphi(0).$$

5.
$$T_{f_n}(arphi) o arphi(0) = \delta_0(arphi).$$

Derivation in distributional sense

Let $T\in\mathcal{D}^*(\Omega)$, with $\Omega\subset\mathbb{R}^d$. We can define the derivative of T using the integration by parts.

$$\partial_{x_i}T(arphi)=\langle\partial_{x_i}T,arphi
angle:=-\langle T,\partial_{x_i}arphi
angle, \qquad orallarphi\in\mathcal{D}(\Omega)=C_c^\infty(\Omega).$$

If T is a T_f with $f\in\mathcal{C}^1(\Omega)$, it is clearly the classical derivative. Let's see in 1D with $\Omega=[a,b]$.

$$\partial_x T_f(arphi) = \langle \partial_x T_f, arphi
angle = \int_a^b \partial_x f(x) arphi(x) \mathrm{d}x = \underbrace{[f(x) arphi(x)]_a^b}_{=0} - \int_a^b f(x) \partial_x arphi(x) \mathrm{d}x, \qquad orall arphi \in \mathcal{D}(\Omega).$$

Higher derivatives

$$\left\langle rac{\partial^{p_1+\cdots+p_d}T}{\partial x_1^{p_1}\dots\partial x_d^{p_d}},arphi
ight
angle := (-1)^{p_1+\cdots+p_d}\left\langle T,rac{\partial^{p_1+\cdots+p_d}arphi}{\partial x_1^{p_1}\dots\partial x_d^{p_d}}
ight
angle, \qquad orallarphi\in\mathcal{D}(\Omega)=C_c^\infty(\Omega).$$

Example: Derivative of Heaviside function

$$H(x) = egin{cases} 1 & ext{if } x > 0, \ 0 & ext{if } x \leq 0, \end{cases}$$

- $H \in L^2((-1,1))$
- $H \notin C((-1,1))$
- $T_H \in \mathcal{D}^*((-1,1))$

$$\langle \partial_x T_H, arphi
angle = - \int_{-1}^1 H(x) \partial_x arphi(x) \mathrm{d}x$$

$$egin{aligned} &= -\int_0^1 \partial_x arphi(x) \mathrm{d} x = -[arphi]_0^1 = arphi(0) \ &\Longrightarrow \partial_x H = \delta_0. \end{aligned}$$

Sobolev Spaces

As we have seen $L^2(\Omega) \subset \mathcal{D}^*(\Omega)$. This does not imply that their distributional derivatives are still in L^2 . The Heaviside function is in L^2 but its derivative it's not.

We need to introduce other spaces!

Sobolev spaces

Let $\Omega \subset \mathbb{R}^d$ and $k \in \mathbb{N}_0$. We define the Sobolev space of order k on Ω the space of the functions in $L^2(\Omega)$ with distributional derivatives up to order k in $L^2(\Omega)$.

$$H^k(\Omega):=\{f\in L^2(\Omega): \partial_{x_1^{p_1}\dots x_d^{p_d}}f\in L^2(\Omega), ext{ for all } p_1,\dots,p_d: p_1+\dots+p_d\leq k\}.$$

- $ullet H^{k+1}(\Omega) \subset H^k(\Omega)$
- $L^2(\Omega) = H^0(\Omega)$
- Heaviside $H \in H^0((-1,1))$, but $H
 otin H^1((-1,1))$

Examples

• Example of $H^{\infty}(\Omega)$ but not $C(\Omega)$

$$f(x) = egin{cases} x^2 & ext{if } x
eq 0, \ 3 & ext{if } x = 0. \end{cases}$$

• Example of $H^1(\Omega)$ but not $H^2(\Omega)$

$$f(x) = egin{cases} x & ext{if } x > 0, \ 0 & ext{if } x \leq 0. \end{cases} \qquad f'(x) = egin{cases} 1 & ext{if } x > 0, \ 0 & ext{if } x \leq 0. \end{cases}$$

Norms and inner products of Sobolev spaces

• Sobolev spaces $H^k(\Omega)$ are Hilbert space with respect to the following scalar product

$$(f,g)_k=(f,g)_{H^k(\Omega)}:=\sum_{p_1+\cdots+p_d\leq k}\int_\Omega\partial_{x_1^{p_1}\dots x_d^{p_d}}f\cdot\partial_{x_1^{p_1}\dots x_d^{p_d}}g\,\mathrm{d}x,$$

with the norms

$$\|f\|_k = \|f\|_{H^k(\Omega)} := \sqrt{\sum_{p_1 + \dots + p_d \leq k} \int_{\Omega} (\partial_{x_1^{p_1} \dots x_d^{p_d}} f)^2 \, \mathrm{d}x},$$

Seminorms

$$|f|_k=|f|_{H^k(\Omega)}:=\sqrt{\sum_{p_1+\cdots+p_d=k}\int_\Omega(\partial_{x_1^{p_1}\ldots x_d^{p_d}}f)^2\,\mathrm{d}x},$$

$$ullet$$
 $\|f\|_k = \sqrt{\sum_{m=0}^k |f|_m^2}$

Examples for k=1

$$(f,g)_1 = (f,g)_{H^1(\Omega)} = \int_{\Omega} f(x) \, g(x) \, \mathrm{d}x + \int_{\Omega} f'(x) \, g'(x) \, \mathrm{d}x$$
 $\|f\|_1 = \sqrt{\int_{\Omega} f^2(x) \, \mathrm{d}x + \int_{\Omega} (f'(x))^2 \, \mathrm{d}x} = \sqrt{\|f\|_{L^2(\Omega)}^2 + \|f'\|_{L^2(\Omega)}^2}$ $|f|_1 = \sqrt{\int_{\Omega} (f'(x))^2 \, \mathrm{d}x} = \|f'\|_{L^2(\Omega)}$

Boundary for bounded domains

Property

If $\Omega \subset \mathbb{R}^d$ is open with a *smooth enough* boundary, then $H^k(\Omega) \subset C^m(\bar{\Omega})$ if $m < k - \frac{d}{2}$.

Careful, in this case we mean that there is a representative of the function in H^k such that it also belongs to C^m . In the previous example where

$$f(x) = egin{cases} x^2 & ext{if } x
eq 0, \ 3 & ext{if } x = 0. \end{cases}$$

there exists a continuous representative of this function $f(x)=x^2$ which is the same function in $L^2(\Omega)$.

$$H^1_0(\Omega)$$

Let Ω be a bounded domain. We denote with $H^1_0(\Omega)$ the closure of $\mathcal{D}(\Omega)$ in $H^1(\Omega)$. (morally zero on the boundary)

Poincarè inequality

Let $\Omega\subset\mathbb{R}^d$ be a bounded domain with a Lipschitz boundary. There exists a constant $C=C(\Omega)>0$ such that for all $u\in H^1_0(\Omega)$,

$$\|u\|_{L^2(\Omega)} \leq C \|
abla u\|_{L^2(\Omega)} = C|u|_1.$$

Proof

Since $\Omega \subset \mathbb{R}^d$ is bounded there exists a ball $S_R = \{x: |x-x_0| < R\}$ that contains Ω . Since, $\mathcal{D}(\Omega)$ is dense in $H^1_0(\Omega)$, we can prove the inequality for $u \in \mathcal{D}(\Omega)$ and pass to the limit to get it for H^1_0 . Notice that $\operatorname{div}(x-x_0) = d$. So,

$$\|u\|_{L^2(\Omega)}^2 = d^{-1} \int_\Omega d\, |u(x)|^2 \mathrm{d}x = d^{-1} \int_\Omega \mathrm{div}(x-x_0) |u(x)|^2 \mathrm{d}x = -d^{-1} \int_\Omega (x-x_0)
abla (|u(x)|^2) \mathrm{d}x = -2d^{-1} \int_\Omega (x-x_0) u(x)
abla (u(x))^2 \mathrm{d}x = d^{-1} \int_\Omega (x-x_0) u(x)
abla (u(x))^2 \mathrm{d}x = d^{-1} \int_\Omega (x-x_0) u(x)
abla (u(x))^2 \mathrm{d}x = d^{-1} \int_\Omega (x-x_0) u(x)
abla (u(x))^2 \mathrm{d}x = -d^{-1} \int_\Omega (x-x_0) \nabla (|u(x)|^2) \mathrm{d}x = -d^{-1} \int_\Omega (x-x_0) \nabla (|u(x)|^2) \mathrm{d}x = -2d^{-1} \int_\Omega (x-x_0) u(x) \nabla (u(x)) \mathrm{d}x \le 2d^{-1} \|x-x_0\|_\infty \|u\|_{L^2(\Omega)} \|
abla u\|_{L^2(\Omega)} = 2d^{-1} R \|u\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)}.$$

Proposition

On $H^1_0(\Omega)$ the seminorm $|\cdot|_1$ is actually a norm and it is equivalent to $||\cdot||_1$.

Proof

$$\|u\|_1^2 = |u|_1^2 + \|u\|_{L^2}^2 \le (1+C^2)|u|_1^2.$$

On the other hand

$$|u|_1^2 \leq |u|_1^2 + \|u\|_{L^2}^2 = \|u\|_1^2.$$