ANY BOSTON AT HOME?

David Masip & Leonardo Gonzalez & Carlos Mougan

WHAT ITS INTERESTING

- Feature Engineering
- Mathematical modeling
- Some Tips & Tricks

FEATURE ENGINEERING

Looked at a couple of papers about the collision

- Measurement of CP observables in B o \rightarrow DK *o with D \rightarrow K + K-[1]
- Helicity Angles [2]
- Angular analysis of B^o \to \phi K^{*}B
 o→φK * decays and search for CPCP
 violation at Belle [3]

FEATURE ENGINEERING

Particle schema with the features of the problem

RESULTS

- 181 Features
- Baseline: 0.90AUC (default lightgbm)

MATHEMATICAL MODELING

- FastAI Default NN 0.929
- Selfmade Resnet, Pytorch 0.934
- Ensemble: 0.937 (0.86*resnet + 0.14*fastai)

SOME TIPS & TRICKS

Scaling: Gauss Rank Transformation

- 0.01 Improvement on AUC
- 2x Faster tranning 1h30

AVERAGING PREDICTIONS THROUGH EPOCHS

mean(pred_100 + pred_200 + pred_300)

METHODOLOGY [4]

- Understanding the problem
- Understanding the metric
- Feature Engineering
- Mathematical Modeling
- Hyperparameter Optimization
- Ensembling

END