

Ab Initio Molecular Dynamics Simulations of Phosphate Hydrolysis Using Neural Network Potentials

Albert MAKHMUDOV

Supervisor: Prof. J. Harvey KU Leuven

Thesis presented in fulfillment of the requirements for the degree of Master of Science in Theoretical Chemistry and Computational Modelling

© Copyright by KU Leuven

Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Celestijnenlaan 200H bus 2100, 3001 Leuven (Heverlee), telephone +32 16 32 14 01.

A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests.

This thesis is an exam document that obtained no further correction of possible errors after the defense. Referring to this thesis in papers and analogous documents is only allowed after written consent of the supervisor(s), mentioned on the title page.

Foreword

Contribution statement

Summary

List of abbreviations

Contents

1	Introduction									
	1.1	Role of phosphates in biological systems								
	1.2	Enzyn	nes involved in phosphate hydrolysis	1						
	1.3	React	ion mechanism	1						
	1.4	Resea	arch goals	1						
2	The	ory		2						
	2.1	A brie	f introduction to statistical mechanics	3						
		2.1.1	Classical forcefields and molecular dynamics	3						
		2.1.2	The canonical ensemble and free energy calculations	3						
		2.1.3	Enhanced sampling techniques	3						
	2.2	.2 Density functional theory								
		2.2.1	The Kohn-Sham approach	3						
		2.2.2	Generalised gradient approximation and PBE functional	3						
		2.2.3	Ab initio molecular dynamics and GPW method	3						
	2.3	B Extended tight binding								
	2.4	Neural network potentials								
		2.4.1	Deep neural networks	3						
		2.4.2	Invariance and equivariance	3						
		2.4.3	Behler-Parrinello neural network potentials	3						
		2.4.4	Equivariant neural network potentials	3						
3	Con	nputati	onal Details	4						
	3.1	3.1 Training dataset generation								
		3.1.1	System preparation	4						
		3.1.2	Initial equillibration using the classifal forcefields	4						
		3.1.3	xTB based exploration of the configuration space	4						
		3.1.4	Data labeling	4						
		3.1.5	Iterative training of the neural network potential	4						
	3.2	Produ	ction runs at different temperatures	4						

C(ONTE	ENTS	viii					
		Validation of the transition states	4 4					
4	Results and Discussion							
5	5 Conclusions							
Bibliography								
Α	Sup	plementary information	8					

Introduction

- 1.1 Role of phosphates in biological systems
- 1.2 Enzymes involved in phosphate hydrolysis
- 1.3 Reaction mechanism
- 1.4 Research goals

Theory

^	4	_								
•,	7	Λ	hriat	t intra	NALIATIAN	t 🔿	statistic	al m	DANS	nice
Z.		\boldsymbol{H}	DIIC		JUUGIIOII	LU	Statistic	aı III	CLIIA	11163

- 2.1.1 Classical forcefields and molecular dynamics
- 2.1.2 The canonical ensemble and free energy calculations
- 2.1.3 Enhanced sampling techniques

Metadynamics and its well-tempered flavour

Kinetics from metadynamics

2.2 Density functional theory

- 2.2.1 The Kohn-Sham approach
- 2.2.2 Generalised gradient approximation and PBE functional
- 2.2.3 Ab initio molecular dynamics and GPW method
- 2.3 Extended tight binding

2.4 Neural network potentials

2.4.1 Deep neural networks

Multilayer perceptron

Graph neural networks

Message passing neural networks

2.4.2 Invariance and equivariance

Computational Details

3.1	Training	dataset	generation

- 3.1.1 System preparation
- 3.1.2 Initial equillibration using the classifal forcefields
- 3.1.3 xTB based exploration of the configuration space
- 3.1.4 Data labeling
- 3.1.5 Iterative training of the neural network potential

First round

Second round

Third round

- 3.2 Production runs at different temperatures
- 3.3 Validation of the transition states
- 3.4 Data analysis and visualisation

Chapter 4 Results and Discussion

Conclusions

Bibliography

Appendix A Supplementary information

Quantum Chemistry and Physical Chemistry
Celestijnenlaan 200F bus 2404
3001 LEUVEN, BELGIË
tel. + 32 16 37 21 98
jeremy.harvey@kuleuven.be www.kuleuven.be

