

Chapter 11 Bird's-eye-view

Lin ZHANG
School of Computer Science and Technology
Tongji University

- Our task is to measure the geometric properties of objects on a plane (e.g., conveyor belt)
- Such a problem can be solved if we have its bird'seye-view image; bird's-eye-view is easy for object detection and measurement

Four coordinate systems are required

- Bird's-eye-view image coordinate system
- Physical plane coordinate system
- Undistorted image coordinate system
- Original image coordinate system

Basic idea for bird's-eye-view generation

Suppose that the transformation matrix from bird's-eye-view to the physical plane CS is $P_{B\to W}$, the transformation matrix from the physical plane CS to the undistorted image is $P_{W\to U}$, and the camera intrinsics are known

Then, given a position $\mathbf{x}_B = (x_B, y_B)^T$ on bird's-eye-view \mathbf{I}_B , we can get its corresponding position in the original fisheye image \mathbf{I}_D as,

$$\mathbf{x}_{D} = \mathbf{K} \mathcal{D} \left(\mathbf{K}^{-1} \mathbf{P}_{W \to U} \mathbf{P}_{B \to W} \begin{pmatrix} x_{B} \\ y_{B} \\ 1 \end{pmatrix} \right)$$

Then, the intensity of the pixel $I_B(x_B)$ can be determined using some interpolation technique based on the neighborhood around x_D on I_D

Basic idea for bird's-eye-view generation

Suppose that the transformation matrix from bird's-eye-view to the physical plane CS is $P_{B\to W}$, the transformation matrix from the physical plane CS to the undistorted image is $P_{W\to U}$, and the camera intrinsics are known

The key problem is how to obtain $P_{B\to W}$ and $P_{W\to U}$?

• Determine $P_{B \to W}$

Note: It is valid only when you think the origin of the world CS is at the center of the bird's-eye-view image

• Determine $P_{B \to W}$

For a point $(x_B, y_B, 1)^T$ on bird's-eye-view, the corresponding point on the physical plane coordinate system is,

$$\begin{pmatrix} x_W \\ y_W \\ 1 \end{pmatrix} = \begin{bmatrix} \frac{H}{M} & 0 & -\frac{HN}{2M} \\ 0 & -\frac{H}{M} & \frac{H}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_B \\ y_B \\ 1 \end{pmatrix} \equiv \mathbf{P}_{B \to W} \begin{pmatrix} x_B \\ y_B \\ 1 \end{pmatrix}$$

• Determine $P_{W \to U}$

The physical plane and the undistorted image plane can be linked via a homography matrix $P_{W \to U}$

$$\mathbf{x}_U = \mathbf{P}_{W \to U} \mathbf{x}_W$$

If we know a set of correspondence pairs $\left\{\mathbf{x}_{U}^{i}\leftrightarrow\mathbf{x}_{W}^{i}\right\}_{i=1}^{p}$, p>4, $\mathbf{P}_{W\to U}$ can be estimated using the least-square method

• Determine $P_{W \to U}$

A set of point correspondence pairs; for each pair, we know its coordinate on the undistorted image plane and its coordinate in the physical plane CS

SCST, Tongji Univ.

When $P_{B\to W}$ and $P_{W\to U}$ are known, the mapping between I_B and I_D can be described as,

$$\mathbf{x}_{D} = \mathbf{K} \mathcal{D} \left(\mathbf{K}^{-1} \mathbf{P}_{W \to U} \mathbf{P}_{B \to W} \begin{pmatrix} x_{B} \\ y_{B} \\ 1 \end{pmatrix} \right)$$

The mapping look-up table $T_{B\to D}(\mathbf{x}_B)\to \mathbf{x}_D$ can be created offline, and it can be used to generate online bird's-eye-view images

Example

Original fish-eye image

Undistorted image

Example

Original fish-eye image

Bird's-eye-view

With multiple bird's-eye-view from multiple cameras, a surround-view can be synthesized

Practice for Theme 2

Checker-board pattern file

Camera calibration using Matlab toolbox

 About how to use the Matlab toolbox to perform camera calibration, please refer to the textbook

(demo time)

Matlab code to perform image un-distortion with camera intrinsics

OpenCV source code for camera calibration

- Pore over the core implementations of camera calibration in OpenCV
- I have added necessary comments to help your understanding
- I strongly recommend you to perform this practice!!! You will have a **deep** understanding of the theories mentioned in our lectures

Fisheye camera calibration using C++ and OpenCV

- Step 1: collect checker-board images
- Step 2: perform camera intrinsics calibration

• Step 3: with the obtained intrinsics, perform real-time image un-distortion

(demo time)

Surround-view

- Original fisheye videos, intrinsics for the four fisheye cameras, and the homography between each imaging plane and the road surface is provided
- Generate the mapping tables between four bird's-eye-views and the four fisheye images and synthesize the surround-view video

