1

EE23010 Assignment

Sayyam Palrecha* EE22BTECH11047

Question 12.13.3.11

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?

Solution: Let, X_i be the sequence of independent Bernoulli random varibles.

$$\implies X = \sum_{i=1}^{n} X_i \tag{1}$$

$$X_i = \begin{cases} 1, & \text{Heads} \\ 0, & \text{Tails} \end{cases}$$
 (2)

$$p_X(k) = \begin{cases} 0.5 = p, & k = 0 \\ 0.5 = q, & k = 1 \end{cases}$$
 (3)

Let, the total number of trials be n and the PMF of getting k heads is given by:

$$p_X(k) = \Pr(X = k) \tag{4}$$

$$= {}^{n}C_{k}(p)^{k}(q)^{n-k}$$
 (5)

$$= {}^{n}C_{k} (0.5)^{k} (0.5)^{n-k}$$
 (6)

The CDF of *X* is defined as:

$$F_X(k) = \sum_{i=0}^k p_X(i) \tag{7}$$

$$= \sum_{i=0}^{k} {}^{n}C_{i} (0.5)^{n-i} (0.5)^{i}$$
 (8)

$$\Pr(X \ge 1) > 0.9$$
 (9)

$$1 - p_X(0) > 0.9 \tag{10}$$

$$(2)^n > 10 \tag{11}$$

$$n > \log_2(10) \tag{12}$$

$$n > 3.32$$
 (13)

$$\implies n = 4$$
 (14)