Decision Trees

- Learn from labeled observations supervised learning
- Represent the knowledge learned in form of a tree

Example: learning when to play tennis.

 Examples/observations are days with their observed characteristics and whether we played tennis or not

Play Tennis Example

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Decision Tree Learning

Interpreting a DT

DT ≡ Decision Tree

	ı			
Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	(High)	True	Yes
Overcast	Hot Mild	Normal	False	Yes
Rainy	Mild	High	True	No
				\

- → A DT uses the <u>features</u> of an observation table as nodes and the <u>feature values</u> as links.
- → <u>All</u> feature values of a particular feature need to be represented as links.
- → The target feature is special its values show up as <u>leaf nodes</u> in the DT.

Interpreting a DT

Each <u>path</u> from the root of the DT to a leaf can be interpreted as a <u>decision rule</u>.

IF Outlook = Sunny AND Humidity = Normal THEN Playtennis = Yes

IF Outlook = Overcast THEN Playtennis = Yes

IF Outlook = Rain AND Wind = Strong THEN Playtennis = No

DT: Explanation & Prediction

	1			
Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Explanation: the DT summarizes (explains) all the observations in the table perfectly ⇒ 100% Accuracy

<u>Prediction</u>: once we have a DT (or model) we can use it to make predictions on observations that are not in the original training table, consider:

Outlook = Sunny, Temperature = Mild, Humidity = Normal, Windy = False, Playtennis = ?

Constructing DTs

- How do we choose the attributes and the order in which they appear in a DT?
 - Recursive partitioning of the original data table
 - Heuristic each generated partition has to be "less random" (entropy reduction) than previously generated partitions

Entropy

- □ S is a sample of training examples
- p^+ is the proportion of positive examples in S
- p^{-} is the proportion of negative examples in S
- Entropy measures the impurity (randomness) of S

٦				1	
	Outlook	Temperature	Humidity	Windy	PlayTennis
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
	Rainy	Cool	Normal	True	No
} {	Overcast Sunny Sunny	Cool	Normal	True	Yes
		Mild	High	False	No
		Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
	Rainy	Mild	High	True	No

$$Entropy(S) = Entropy([9+,5-]) = .94$$

$$\Box Entropy(S) \equiv -p^+ \log_2 p^+ - p^- \log_2 p^-$$

Partitioning the Data Set

Partitioning in Action

Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Partition(Examples, TargetAttribute, Attributes)

Examples are the training examples. TargetAttribute is a binary (+/-) categorical dependent variable and Attributes is the list of independent variables which are available for testing at this point. This function returns a decision tree.

- Create a *Root* node for the tree.
- If all *Examples* are positive then return *Root* as a leaf node with label = +.
- Else if all *Examples* are negative then return *Root* as a leaf node with label = -.
- Else if *Attributes* is empty then return *Root* as a leaf node with label = most common value of TargetAttribute in Examples.
- Otherwise
 - \circ A := the attribute from Attributes that reduces entropy the most on the Examples.
 - $\circ Root := A$
 - \circ F or each $v \in values(A)$
 - Add a new branch below the *Root* node with value A = v
 - L et $Examples_v$ be the subset of Examples where A = v
 - If *Examples*_v is empty then add new leaf node to branch with label = most common value of *TargetAttribute* in *Examples*.
 - Else add new subtree to branch Partition(*Examples_v*, *TargetAttribute*, *Attributes* – {*A*})
- Return Root

Our data set:

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

-					
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Continuous-Valued Attributes

Highest Gain: Temperature > 54

- Sort instances according to the attribute values
- Find "Splits" where the classes change
- Select the split that gives you the highest gain

Decision Trees & Patterns in Data

- True pattern in domain
 - present in large amounts of data
 - generalizes to unseen instances
- Spurious pattern in training set
 - "noise in the data"
 - present in small amounts of data
 - does not generalize

Overfitting – Also True for Trees!

Tree Depth!

Tree Learning Process

- Beginning
 - lots of data
 - discovers true patterns in data
- Later
 - small amount of data
 - likely to learn spurious patterns

Control the Tree Complexity - Pruning

Pruning

- One of two ways:
 - 1. Prevent the tree from overfitting limit the tree depth.
 - 2. Build the whole tree and then remove subtrees and replaces with suitable leaves.

Pruning Example

X ₁	X ₂	X 3	X 4	C
F	F	H	H	բ
F	F	Т	Т	Ը
F	Т	F	Т	Ը
Т	Т	Т	F	Р
Т	F	F	F	Ν
Т	Т	Т	Т	Ν
Т	Т	Т	F	Z

Subtree Pruning with Deviation

- At each split ask:
 - Is the pattern found in the data after splitting statistically significant?
- Prune if deviation is small that is, prune if no significant information gain.

Given Split

- Given instances D
- Propose split on X_i
- Notation
 - N_c = number of instances with class c
 - D_x = data set with value x for attribute X_i
 - N_x = number of instances in D_x
 - N_{xc} = number of instances in D_x with class c

Absence of Pattern

- Null hypothesis: X_i is irrelevant
- In D, proportion with class c: N_c/N
- If null hypothesis is true, we expect on average the number of instances in D_x with class c to be:

$$\widehat{N}_{XC} = \frac{|D_{\mathcal{X}}|}{N} N_C$$

Deviation

- We don't expect to see exactly that many, even if null hypothesis is true
- We expect some deviation due to random chance
- Measure the deviation from total absence of pattern:

Dev =
$$\sum_{x} \sum_{c} \frac{(N_{xc} - \hat{N}_{xc})^{2}}{\hat{N}_{xc}}$$

→ Delete split if Dev is small