CПK1xx EHI

Панель оператора программируемая (панельный контроллер)

руководство по эксплуатации

Содержание

1 Назначение	6
2 Технические характеристики и условия эксплуатации	7
2.1 Технические характеристики	7
2.2 Условия эксплуатации	13
3 Устройство и работа	14
3.1 Общие сведения	14
3.2 Конструкция	
3.3 Принцип действия	
3.4 Заводские настройки панели	
4 Подготовка к работе	
4.1 Монтаж панели	
4.2 Монтаж внешних связей	26
4.3 Пробный пуск	27
4.4 Помехи и методы их подавления	28
5 Использование по назначению	
6 Меры безопасности	30
7 Техническое обслуживание	
8 Маркировка	
9 Транспортирование и хранение	
10 Комплектность	
11 Гарантийные обязательства	33
Приложение А. Габаритные чертежи корпуса панели	34
Приложение Б. Схема электрическая кабеля для программирования панели	
Приложение В. Порядок программирования СПК1ХХ	
Приложение Г. Техническая поддержка	

В настоящем руководстве представлена информация по применению панели оператора программируемой с сенсорным экраном СПК1XX, в дальнейшем по тексту именуемой «панель» и «СПК».

Настоящее руководство было составлено в расчете на то, что им будет пользоваться подготовленный и квалифицированный персонал, аттестованный по действующим стандартам, регламентирующим применение электрооборудования. Определение квалификации такого лица, или группы лиц, включает в себя следующее:

- 1. Любой инженер, ответственный за планирование, проектирование и конструирование автоматизированного оборудования, где используется изделие, описанное в данном руководстве, должен представлять собой компетентное лицо, обладающее необходимой квалификацией, в соответствии с местными и государственными стандартами, требуемой для выполнения этой роли. Данные лица должны быть полностью осведомлены обо всех аспектах обеспечения безопасности в отношении автоматизированного оборудования.
- 2. Любой инженер по вводу в эксплуатацию, или сервисному обслуживанию, должен представлять собой компетентное лицо, получившее необходимую подготовку и обладающее достаточной квалификацией, в соответствии с местными и государственными стандартами, требуемой для выполнения этой работы. Данные лица также должны быть подготовлены в области использования и проведения технического обслуживания полностью собранных изделий. Это включает в себя условие ознакомления, в полном объеме, со всей документацией, связанной с данным изделием. Весь объем технического обслуживания должен выполняться в соответствии с установленными правилами применения мер безопасности.
- 3. Все операторы полностью собранного оборудования, (см. **Примечание**) должны быть подготовлены в области использования этого оборудования с обеспечением безопасности, в соответствии с установленными правилами применения мер

безопасности. Данные лица также должны быть ознакомлены с документацией, которая связана с фактической эксплуатацией полностью собранного оборудования.

Примечание - Понятие «полностью собранного оборудования» относится к устройству, сконструированному третьей стороной, в котором содержится или применяется изделие, описанное в руководстве.

Отказ от ответственности

Ни при каких обстоятельствах компания ООО «Производственное объединение ОВЕН» и его контрагенты не будут нести юридическую ответственность, и не будут признавать за собой какие-либо обязательства, в связи с любым ущербом, который может возникнуть в результате установки или использования данного оборудования с нарушением действующей нормативнотехнической документации.

Для получения более подробной информации свяжитесь с компанией ООО «Производственное объединение ОВЕН» (контакты приведены в паспорте на прибор) и его контрагентами по применению изделий в условиях, критических в отношении жизни человека, или в условиях, когда требуется особо высокая надежность.

Панель изготавливается в различных исполнениях, отличающихся друг от друга количеством и типом поддерживаемых интерфейсов связи, а также размером дисплея. Информация об исполнении панели зашифрована в коде полного условного обозначения:

Размер дисплея:

о5 – размер диагонали дисплея 4,3 дюйма;

07 – размер диагонали дисплея 7,0 дюймов;

10 – размер диагонали дисплея 10,2 дюйма.

В настоящем документе приняты следующие обозначения и аббревиатуры:

ПЗУ (Постоянное Запоминающее Устройство) — энергонезависимая память, используется для хранения пользовательских данных и проекта.

ПК – персональный компьютер.

ПО – программное обеспечение.

Проект – результат проектирования алгоритма работы панели.

Среда исполнения — операционная среда или система, выполняющая управление системными ресурсами панели и осуществляющая доступ проекта к периферийным устройствам панели.

Объект – составная часть проекта, например, изображение или сообщение. Служит для просмотра и/или ввода значений на экране панели.

ОЗУ (Оперативное Запоминающее Устройство) — энергозависимая часть системы памяти, в которой временно хранятся данные и исполняемый проект.

Управляющий элемент – составная часть проекта, используемая для ввода значений и запуска функций.

Функциональное заземление – заземление, выполняющее функции повышения помехоустойчивости панели.

CODESYS (Controller Development System) – программное обеспечение, специализированная среда программирования логических контроллеров. Торговая марка компании 3S-Smart Software Solutions GmbH.

Modbus – открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (<u>www.modbus.org</u>).

Retain-память — энергонезависимая память для хранения значений Retain-переменных пользовательской программы.

Retain-переменные – переменные пользовательской программы, значение которых сохраняется при выключении питания панели.

USB (Universal Serial Bus) – последовательный интерфейс связи.

1 Назначение

Панель предназначена для исполнения программы пользователя. Она может взаимодействовать с дополнительными устройствами, расширяющими его функциональность, например, модулями ввода-вывода. Панель позволяет отображать на экране ход выполнения различных технологических процессов и редактировать значения параметров, отвечающих за функционирование системы.

Логика работы панели определяется пользователем в процессе создания проекта на ПК в среде программирования CODESYS.

Панель может быть использована в системах автоматического управления технологическим оборудованием в различных областях промышленности, жилищно-коммунального и сельского хозяйства в качестве устройства отображения, мониторинга и управления ходом различных технологических процессов.

По эксплуатационной законченности панели относятся к изделиям второго и третьего порядка.

Время установления рабочего режима панели после включения напряжения питания должно составлять не более 30 сек.

Панель не является средством измерения.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Основные технические данные панели представлены в таблице 2.1.

Таблица 2.1 – Основные технические данные

Наименование	Значение	
Системные характеристики		
Центральный процессор	SAMSUNG 400MHz S3C2416XH-40 (ARM926EJ)	
Объем FLASH-памяти (ПЗУ), Мб	128	
Объем оперативной памяти (ОЗУ), Мб	64	
Объем retain-памяти, Кб	4	
Мин. время выполнения одного цикла программы, мс	10	
Человеко-машинный	й интерфейс	
Разрешение дисплея, пиксел		
– CΠK105	480 × 272	
– CΠK107	800 × 480	
– CΠΚ110	800 × 480	
Количество отображаемых цветов	65536	
Сенсорная панель	есть	
Тип дисплея, диагональ, мм (дюймы)		
СПК105	цветной TFT, 110 (4,3)	
— СПК107	цветной ТFT, 178 (7,0)	
– CΠK110	цветной TFT, 260 (10,2)	

Продолжение таблицы 2.1

Наименование	Значение
Размер пикселя (ширина × высота), мм — СПК105 — СПК107 — СПК110 Рабочая зона дисплея (ширина × высота), мм — СПК105 — СПК107 — СПК110	0,198 × 0,198 0,064 × 0,179 0,072 × 0,219 95,04 × 53,86 15,08 × 85,92
Питание	221,80 × 131,52
Напряжение	от 12 до 28 В (номинальное значение 24 В)*
Максимальный потребляемый ток в момент запуска, А, не более — СПК105 — СПК107 — СПК110 Максимальная потребляемая мощность в установившемся режиме, Вт, не более — СПК105 — СПК107 — СПК110	14 в течении 200 мкс 14 в течении 200 мкс 14 в течении 200 мкс 5 10 10

Примечание * - Питание приборов от распределенной сети 24 В не допустимо! Рекомендуется использовать локальный источника питания.

Продолжение таблицы 2.1

Наименование	Значение	
Интерфейсы связи		
СПК105	1 x USB-Host/Device (переключается программно*), 1 x COM RS485/RS232 (независимые интерфейсы)	
СПК107, СПК110	1 x USB-Device,	
	1 x USB-Host,	
	1 x SD Card,	
	2 x COM RS485/RS232 (переключаются программно)	
Последовательные интерфейсы связи		
RS-232	RxD, TxD, GND	
RS-485	A(Data+), B(Data-)	
Разъем	DB9M	
Гальваническая изоляция	отсутствует	
Пополнитоли ное оборудование		

Дополнительное оборудование

- автономные часы реального времени (точность хода при +25 °C не более ± 0.7 сек в сутки, время автономной работы при +25 °C не менее 5 лет**);
- программный сторожевой таймер (Watchdog Timer);

Примечания * Любые манипуляции с устройствами, подключаемыми к разъему USB у СПК105 должны выполняться исключительно при отключенном питании прибора. В момент запуска СПК105 диагностирует тип устройства, подключенного к порту USB, и дальше продолжает загрузку в режиме Host или Device. По умолчанию СПК105 работает в режиме Host и на ножки USB порта подается питание.

** Реализованы с помощью литиевого элемента питания типоразмера CR2032.

Окончание таблицы 2.1

Наименование	Значение	
Общие характеристики		
Степень защиты корпуса		
 со стороны лицевой панели 	IP54	
 со стороны задней панели 	IP20	
Рабочий диапазон температур, °С	060	
Габаритные размеры корпуса		
СПК105, мм	(142×86×38)±1	
СПК107, мм	(204×149×37)±1	
СПК110, мм	(277×200×39)±1	
Установочные размеры		
СПК105, мм	131×79×33	
СПК107, мм	191×137×33	
СПК110, мм	258×177×33	
Масса брутто, кг, не более		
– CΠK105	0,5	
– CΠK107	1,2	
– CΠΚ110	1,5	
Средний срок службы лет, не менее	12	
Средняя наработка на отказ, ч, не более	50 000	
Время работы энергонезависимых часов		
реального времени от резервного источни	ıка 5	
питания, лет, не менее		

Характеристики интерфейсов связи представлены в таблице 2.2.

Таблица 2.2 – Характеристики интерфейсов связи

Интерфейсы связи	Протоколы (тип связи и особенности работы)		Длина кабеля, м, не более	Тип рекомендуемого кабеля
RS-485	ModBus-RTU (Master/Slave),	4800, 9600,	1200**	КИПЭВ 1×2×0,6ТУ 16.К99- 008–2001 или аналогичный
RS-232	ModBus-ASCII (Master/Slave), OBEH (Master)	19200, 38400, 57600, 115200 бит/с	3	Кабели, выполненные в соответствии с рекомендациями Приложения Б
USB-Host, SD	MSD	12 Мбит/с		я для подключения USB стройств (mass storage
USB-Device	Gateway	(USB)	1,5	Используется для подключения панели к ПК***

Примечания

^{*} Критерий правильного функционирования интерфейсов связи контроллера – не более 5% пакетов данных, содержащих ошибку, на любой из скоростей.

^{**} Максимальная скорость обмена зависит от длины кабеля.

^{***} Через виртуальный Ethernet-порт, который создается на ПК после установки драйвера USB.

Таблица 2.3 – Характеристики подключаемых устройств хранения данных

Наименование	Значение	
USB flash накопитель		
Поддерживаемая версии спецификации USB*	1.0, 1.1	
Поддерживаемые файловые системы	FAT 16, FAT 32	
Максимальная емкость накопителя, Гб**	32	
Карты памяти Secure Digital		
Поддерживаемые форматы карт***	SD 1.0, SD1.1, SDHC	
Класс скорости	SD class 2 и выше	
Поддерживаемые файловые системы	FAT 16, FAT 32	
Максимальная емкость накопителя, Гб**	32	

Примечания

- * Устройства версий USB 2.0 и 3.0, не поддерживающие более ранние спецификации USB, с СПК1xx работать не будут.
- ** Максимальная емкость накопителя зависит от типа файловой системы и формата устройства.
- *** Карты форм-фактора microSD подключаются через переходник.

В соответствии с ГОСТ 52931 электрическая прочность изоляции обеспечивает в течение не менее 1 мин отсутствие пробоев и поверхностного перекрытия изоляции электрических цепей относительно корпуса при испытательном напряжении 500 В переменного тока для панелей с номинальным напряжением питания постоянного тока 24 В.

Электрическое сопротивление изоляции электрических цепей панелей относительно корпуса не менее 20 МОм в нормальных климатических условиях и не менее 5 МОм при температуре, соответствующей верхнему значению температуры рабочего диапазона.

В СПК107 и СПК110 порты СОМ1 и СОМ2 могут работать только с одним интерфейсом (выбирается программно): RS-232 или RS-485.

В СПК105 возможна одновременная работа по интерфейсам RS-485 и RS-232, выводимым на СОМ1.

2.2 Условия эксплуатации

Рабочие условия эксплуатации: закрытые взрывобезопасные помещения без агрессивных паров и газов, при атмосферном давлении от 84 до 106,7 кПа, с температурой в диапазоне от 0 до +60 °C и относительной влажностью от 10 до 90 % без конденсации влаги.

Нормальные условия эксплуатации: закрытые взрывобезопасные помещения без агрессивных паров и газов, при атмосферном давлении от 84 до 106,7 кПа, с температурой воздуха 20 ± 5 °C и относительной влажностью воздуха не более 80 % при +35 °C и более низких температурах без конденсации влаги.

По устойчивости к механическим воздействиям соответствуют группе N2 по ГОСТ Р 52931.

Панели устойчивы к воздействию одиночных механических ударов с пиковым ускорением 50 м/c^2 и длительностью ударного импульса в пределах от 0,5 до 30 мс.

По устойчивости к климатическим воздействиям при эксплуатации соответствует группе исполнения B4 по ГОСТ Р 52931.

По устойчивости к воспламенению и распространению пламени FV1 корпус контроллера соответствует ГОСТ Р 51841, разделу 6.

По устойчивости к электромагнитным воздействиям панель соответствует требованиям п. 5.9 ГОСТ 51841.

Панель отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ Р 51522.1 для оборудования класса A.

По уровню излучаемых радиопомех панель соответствует классу А по ГОСТ Р 51318.22.

3 Устройство и работа

3.1 Общие сведения

Панель выполнена на основе микропроцессора ARM926EJ с тактовой частотой до 400 МГц и имеет динамическое ОЗУ (RAM) объемом 64 Мб, энергонезависимую память (Flash) объемом 128 Мб. Память, зарезервированная для хранения энергонезависимых данных (Retain) средствами среды программирования CODESYS имеет объем 4 кб.

Панель имеет жидкокристаллический TFT дисплей, способный отображать 65536 цветов, совмещенный с резистивной сенсорной панелью.

Панель, в зависимости от модификации, оборудована портом USB Host, портом USB Device, интерфейсом для работы с картами памяти SecureDigital, одним или двумя интерфейсами RS-232/RS-485 (COM1 и COM2). В зависимости от настроек панели, возможна связь с другими приборами с помощью данных портов по интерфейсам RS-232/RS-485 (COM1 и COM2 могут независимо работать по RS-232 и RS-485).

Панель имеет энергонезависимые часы реального времени, работающие от литиевого источника питания.

Панель предназначена для функционирования под управлением среды исполнения CODESYS 3.5.

Панель предназначена для выполнения следующих функций:

- управления объектом;
- отображение состояния управляемого объекта в режиме реального времени, с использованием графических пиктограмм (индикаторы, линейки, условные обозначения оборудования и т.д.);
- отображение сенсорных элементов, при помощи которых оператор осуществляет непосредственное управление функционированием объекта;
- управление функционированием других приборов посредством интерфейсов связи; запись и чтение значений других приборов, к которым подключается панель.

Примечание – Проект функционирования панели создается на ПК под конкретную задачу и загружается в энергонезависимую память панели.

3.2 Конструкция

Панель изготавливается в пластмассовом корпусе, предназначенном для крепления в щит. Внешний вид модификаций панели представлен на рисунках 3.1 - 3.4.

3.2.1 Лицевая панель

На лицевой стороне СПК1XX (рисунок 3.1) расположены:

- цветной TFT дисплей с сенсорной панелью;
- индикатор «ПИТАНИЕ», сигнализирующий о наличии напряжения питания панели;
- индикатор «СОМ», сигнализирующий о наличии обмена данными по портам СОМ1 и СОМ2.
- Индикатор «Работа», сигнализирует о том, что запущен проект CODESYS. Мигание индикатора с интервалом 1 раз в секунду говорит о возникновении исключения (Exception), которое привело к остановке выполнения программы.

a)

б)

Рисунок 3.1 – Внешний вид лицевой панели: а) СПК105, б) СПК107/СПК110

3.2.2 Задняя поверхность панели

На задней поверхности панели (см. рисунки 3.2, 3.3) расположены, в зависимости от модификации:

- соединитель интерфейсов USB Host (USB A), предназначенный для подключения к панели устройств, оснащенных интерфейсом USB;
- соединитель интерфейса USB Device (USB B), предназначенный для подключения панели к ПК по интерфейсу USB в качестве периферийного устройства для программирования;
- соединитель(ли) DB9M порта(тов) COM1(/COM2), предназначенный(ые) для подключения к панели внешних устройств по интерфейсу RS-232/RS-485;
- разъемный клеммный соединитель питания, предназначенный для подключения панели к питающей сети.

Примечание — Соединение СПК105 с ПК производится через единственный USB порт типа А. Одновременно этот порт служит для подключения устройств типа USB flash.

Особенностью работы СПК105 с интерфейсами RS-232 и RS-485 является то, что эти интерфейсы выведены в один порт.

a)

Рисунок 3.2 – Внешний вид задней стороны СПК105 (а) и СПК107 (б)

Рисунок 3.3 – Внешний вид задней стороны СПК110

3.2.3 Боковая грань

На левой боковой грани СПК107 и СПК110 (см. рисунок 3.4) расположен слот для подключения карт флэш-памяти формата SD.

Рисунок 3.4 – Внешний вид боковой грани

3.2.4 Соединители

Назначение контактов соединителей приведено в таблицах 3.1 – 3.4.

Таблица 3.1 – Назначение контактов соединителя USB-Host (USB A)

Номер контакта 4 1	Наименование сигналов
1	+5 B
2	Data-
3	Data+
4	GND

Таблица 3.2 – Назначение контактов соединителя USB-Device (USB B)

4 3 ————————————————————————————————————	Наименование сигналов
1	+5 B
2	Data-
3	Data+
4	GND

Таблица 3.3 – Назначение контактов соединителя порта COM1/COM2 (DB9M)

Номер контакта	Наименование сигнала
1	RS-485 A
2	RXD
3	TXD
4	-
5	GND
6	RS-485 B
7	-
8	-
9	-

Таблица 3.4 – Назначение контактов соединителя питания

Номер контакта 1 2 3	Наименование сигнала	
1	+24 D	
2	GND	
3	Функциональное заземление*	
Примечание: * - подключение согласно ГОСТ Р 50571.21		

3.2.5 Сенсорный экран

Сенсорный экран резистивного типа предназначен для ввода и отображения информации.

Управление осуществляется путем нажатия на экран или перемещения по нему пальцем или другим удобным предметом, не наносящим повреждений экрану.

Внимание! Во избежание ухудшения качества изображения на экране панели следует регулярно протирать сенсорный экран и избегать его загрязнения. Возможно использование специализированных защитных покрытий для резистивных дисплеев.

3.3 Принцип действия

Структурная схема панели представлена на рисунке 3.5.

Аппаратная платформа панели построена на 32-х разрядном RISC-процессоре с архитектурой ARM926. Быстродействие и наличие каналов прямого доступа к памяти позволяют данному процессору оперировать с высокоскоростными потоками данных по последовательным интерфейсам при обмене информацией, производить обработку данных по заданным пользователем алгоритмам, отображать информацию на TFT дисплее в заданной пользователем форме.

Пользовательское ПО (проект) загружается и хранится в ПЗУ панели. При старте проект переносится в ОЗУ и исполняется непосредственно из ОЗУ.

Рисунок 3.5 - Структурная схема панели

Цветной ТГТ дисплей конструктивно совмещен с сенсорным экраном, чувствительным к прикосновениям. Управляющие элементы могут быть представлены в диалоговых окнах экрана. Управление аналогично управлению с помощью механических клавиш. Активирование управляющих элементов осуществляется прикосновением пальца, карандаша и/или пр.

С помощью интерфейса для работы с SD-картами и USB-Host интерфейса к панели могут быть подключены внешние накопители информации, такие как USB-кардридеры, USB flash накопители.

Панель оснащена часами реального времени с резервным питанием от литиевого элемента питания. При отключении питания панели, часы реального времени продолжают функционировать.

Примечание – Продолжительность работы элемента питания составляет не менее 5 лет. В случае эксплуатации панели при температуре на границах рабочего диапазона, время работы часов сокращается.

Последовательные порты COM1 и COM2 предназначены для подключения внешних приборов по интерфейсам RS-232, RS-485. Гальваническая изоляция портов COM1 и COM2 отсутствует. Тип интерфейса портов COM1 и COM2 возможно выбрать в режиме конфигурирования панели (см. Приложение В). Одновременно доступен лишь один тип интерфейса по каждому порту.

3.4 Заводские настройки панели

Панель поставляется со следующими заводскими настройками:

- IP адрес: 10.0.6.10;
- шлюз: 10.0.6.1;
- маска подсети: 255.255.0.0;
- интерфейс по умолчанию для портов COM1, COM2: RS-485.

Сетевые настройки относятся к виртуальному Ethernet-порту, который используется для программирования панели через интерфейс USB-Device. На ПК виртуальный Ethernet-порт создается после установки драйвера с диска из комплекта поставки.

4 Подготовка к работе

4.1 Монтаж панели

При монтаже панелей необходимо учитывать меры безопасности, представленные в разделе 6 «Меры безопасности».

При монтаже для панели предварительно подготавливается место в шкафу электрооборудования (см. Приложение A).

Панель устанавливается в щите шкафа электрооборудования под любым углом наклона для удобства пользователя.

Конструкция шкафа должна обеспечивать защиту корпуса панели от попадания через вентиляционные отверстия влаги, грязи и посторонних предметов.

Габаритный чертеж, размеры установочного отверстия панели и ограничительные размеры при установке приведены в Приложении A.

При установке панели порядок действий следующий:

- проверяется наличие на панели монтажного уплотнителя;
- панель устанавливается в монтажный вырез щита;
- крепежные зажимы вставляются в отверстия, имеющиеся на верхней и нижней сторонах корпуса (см. Приложение A);
- монтажные зажимы закрепляются на местах затяжкой установочных винтов с достаточным, но не чрезмерным усилием.

4.2 Монтаж внешних связей

Максимальное сечение проводов, подключаемых к панели при монтаже $-0.5~{\rm mm}^2$ (соответствует 20 AWG).

Минимальное сечение подключаемых проводов – 0,25 мм².

Внимание! Не следует укладывать сигнальные провода в один жгут или короб с силовыми проводами. Для защиты цепей от влияния внешних наводимых помех рекомендуется применять экранированные кабели.

Питание СПК1XX следует осуществлять от локального блока питания подходящей мощности, установленного совместно с панелью в шкафу электрооборудования. Подключение панели по интерфейсу USB к ПК через порт USB-Device осуществляется специальным кабелем, входящим в комплект поставки. Для связи среды программирования с панелью используется высокоскоростное подключение через порт USB, в связи с этим не рекомендуется использовать удлинители USB, платы расширения или USB HUB. Подключение должно производиться напрямую к ПК, кабелем из комплекта поставки. Схема кабеля приведена в Приложении Б.

Панели имеют точку для подключения функционального заземления (см таблицу 3.6). Требования к функциональному заземлению приведены в ГОСТ Р 50571.21.

4.3 Пробный пуск

Если панель находилась длительное время при температуре ниже минус 20 °C, то перед включением и началом работ с панелью необходимо выдержать прибор в помещении с температурой, соответствующей рабочему диапазону, в течение не менее 30 мин.

Перед подачей питания на СПК1XX следует проверить правильность подключения напряжения питания и его уровень:

- при напряжении ниже 12 В работа панели не гарантируется (панель прекращает функционировать, однако, из строя не выходит);
- при превышении напряжения питания уровня 30 В возможен выход панели из строя.

После включения питания, панель загружается в течении 30 - 35 секунд. Если в панель была записана пользовательская программа, то она начинает исполняться сразу после окончания загрузки.

Если после включения питания выполнение программы не началось, необходимо проверить наличие в памяти панели программы и следовать инструкциям раздела 5.

4.4 Помехи и методы их подавления

На работу панели могут оказывать влияние внешние помехи:

- помехи, возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на саму панель и на линии связи с внешним оборудованием;
- помехи, возникающие в питающей сети.

Для уменьшения влияния электромагнитных помех необходимо выполнять приведенные ниже рекомендации:

- обеспечить надежное экранирование сигнальных линий, экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземленному контакту щита управления;
- панель рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования, корпус шкафа должен быть заземлен.
- Для уменьшения помех, возникающих в питающей сети, следует выполнять следующие рекомендации:
- при монтаже системы, в которой работает панель, следует учитывать правила организации эффективного заземления и прокладки заземленных экранов:
- все заземляющие линии и экраны прокладывать по схеме «звезда», при этом необходимо обеспечить хороший контакт с заземляемым элементом;
- заземляющие цепи должны быть выполнены проводами максимально возможного сечения.

5 Использование по назначению

Перед использованием панель необходимо запрограммировать, т.е. создать пользовательскую программу. После создания, пользовательская программа может быть сохранена в энергонезависимой Flash-памяти панели и запускаться на выполнение после включения питания или перезагрузки.

Программирование СПК1XX осуществляется с помощью ПО CODESYS V3.5.

В качестве интерфейса для связи со средой программирования CODESYS используется порт USB. СПК1XX подключается к ПК напрямую с помощью кабеля, входящего в комплект поставки, кабель включается в разъем, расположенный на задней панели СПК (см. рисунки 3.2, 3.3). Ответная часть кабеля подключается к порту USB ПК.

Порт USB Host используется для подключения USB flash накопителей, либо иных устройств через адаптер USB.

На компакт-диске из комплекта поставки прилагаются также документация от 3S Software и др.

6 Меры безопасности

По способу защиты от поражения электрическим током СПК1XX соответствует классу III в соответствии с ГОСТ 12.2.007.0-75.

При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Подключение, регулировка и техническое обслуживание панели должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

Любые подключения к панели и работы по его техническому обслуживанию производить только при отключенном напряжении питания панели и подключенных к ней устройств.

7 Техническое обслуживание

Техническое обслуживание панели проводится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя выполнение следующих операций:

- очистку корпуса, сенсорного экрана и соединителей панели от пыли, грязи и посторонних предметов;
- проверку качества крепления панели;
- проверку качества подключения внешних устройств;

Обнаруженные при осмотре недостатки следует немедленно устранить.

8 Маркировка

При изготовлении на панель наносятся:

- условное обозначение панели;
- степень защиты по ГОСТ 14254;
- род питающего тока и напряжение питания,
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- заводской номер панели;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);

На потребительскую тару наносится:

- условное обозначение панели;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер панели и год выпуска.

9 Транспортирование и хранение

- 9.1 Панель транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах производится согласно правилам, действующим на соответствующих видах транспорта.
- 9.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150 при температуре окружающего воздуха от минус 25 до +55 °C с соблюдением мер защиты от ударов и вибраций.
 - 9.3 Перевозку панелей осуществлять в транспортной таре поштучно или в контейнерах.
- 9.4 Условия хранения панелей в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси. Панели следует хранить на стеллажах.

10 Комплектность

Контроллер панельный сенсорный	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Крепежные элементы	1 к-т
Кабель для программирования	1 шт.

Примечание — Изготовитель оставляет за собой право внесения дополнений в комплектность изделия.

11 Гарантийные обязательства

Изготовитель гарантирует соответствие панели требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации 24 месяца со дня продажи.

В случае выхода панели из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи изделия в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Габаритные чертежи корпуса панели

На рисунках А.1 и А.2 изображены габаритный и установочный чертежи панели СПК105, на рисунках А.3 и А.4 изображены габаритный и установочный чертежи панели СПК107, на рисунках А.5 и А.6 изображены габаритный и установочный чертежи панели СПК110 соответственно.

Рисунок А.1 – Габаритные размеры СПК105

Рисунок А.2 – Установочные размеры СПК105

Рисунок А.3 – Дополнительные установочные размеры СПК105

Рисунок А.4 – Габаритные размеры СПК107

Рисунок А.5 – Установочные размеры СПК107

Рисунок А.6 – Дополнительные установочные размеры СПК107

Рисунок А.7 – Габаритные размеры СПК110

Рисунок А.8 – Установочные размеры СПК110 41

Рисунок А.9 – Дополнительные установочные размеры СПК110

Рисунок А.10 – Размеры крепежа: а) для СПК105/СПК107, б) для СПК110

Приложение Б. Схема электрическая кабеля для программирования панели

Рисунок Б.1 – Схема кабеля для программирования панелей СПК107/СПК110

Рисунок Б.2 – Схема кабеля для программирования панели СПК105

Рисунок Б.3 – Схема электрическая кабеля для подключения устройств к панели: a) по интерфейсу RS-232, б) по интерфейсу RS-485

Приложение В. Порядок программирования СПК1XX

Информация о настройке и программировании СПК приведена в документах «СПК. Первый старт» и «СПК. FAQ», расположенных на диске из комплекта поставки. Также эти и другие документы доступны на сайте http://www.owen.ru/ в разделе CODESYS V3/Документация по CODESYS V3.

Приложение Г. Техническая поддержка

Группа технической поддержки:

Email: support@owen.ru

Телефон: 8(495) 64-111-56

Online ресурсы:

Сайт: http://www.owen.ru/

Форум: http://www.owen.ru/forum/forum.php

Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45

www.owen.ru

Отдел сбыта: sales@owen.ru Группа тех. поддержки: support@owen.ru

> Рег. № 2591 Зак. №