Forecasting Demand

4

PowerPoint presentation to accompany
Heizer and Render
Operations Management, Global Edition, Eleventh Edition
Principles of Operations Management, Global Edition, Ninth Edition

PowerPoint slides by Jeff Heyl

Learning Objectives

When you complete this chapter you should be able to:

- Understand the three time horizons and which models apply for each use
- 2. Explain when to use each of the four qualitative models
- Apply the naive, moving average, exponential smoothing, and trend methods

Learning Objectives

When you complete this chapter you should be able to:

- 4. Compute three measures of forecast accuracy
- Develop seasonal indices
- Conduct a regression and correlation analysis
- 7. Use a tracking signal

What is Forecasting?

Process of predicting a

future event

 Underlying basis of all business decisions

- Production
- Inventory
- Personnel
- Facilities

4 - 4

Forecasting Time Horizons

1. Short-range forecast

- Up to 1 year, generally less than 3 months
- Purchasing, job scheduling, workforce levels, job assignments, production levels

2. Medium-range forecast

- 3 months to 3 years
- Sales and production planning, budgeting

3. Long-range forecast

- 3+ years
- New product planning, facility location, research and development

Distinguishing Differences

- Medium/long range forecasts deal with more comprehensive issues and support management decisions regarding planning and products, plants and processes
- Short-term forecasting usually employs different methodologies than longer-term forecasting
- 3. Short-term forecasts tend to be more accurate than longer-term forecasts

Influence of Product Life Cycle

Introduction – Growth – Maturity – Decline

- Introduction and growth require longer forecasts than maturity and decline
- As product passes through life cycle, forecasts are useful in projecting
 - Staffing levels
 - Inventory levels
 - Factory capacity

Product Life Cycle

Figure 2.5

Product Life Cycle

	Introduction	Growth	Maturity	Decline
OM Strategy/Issues	Product design and development critical Frequent product and process design changes Short production runs High production costs Limited models Attention to quality	Forecasting critical Product and process reliability Competitive product improvements and options Increase capacity Shift toward product focus Enhance distribution	Standardization Fewer product changes, more minor changes Optimum capacity Increasing stability of process Long production runs Product improvement and cost cutting	Little product differentiation Cost minimization Overcapacity in the industry Prune line to eliminate items not returning good margin Reduce capacity

Figure 2.5

Types of Forecasts

1. Economic forecasts

Address business cycle – inflation rate, money supply, housing starts, etc.

2. Technological forecasts

- Predict rate of technological progress
- Impacts development of new products

3. Demand forecasts

Predict sales of existing products and services

Strategic Importance of Forecasting

- Supply-Chain Management Good supplier relations, advantages in product innovation, cost and speed to market
- Human Resources Hiring, training, laying off workers
- Capacity Capacity shortages can result in undependable delivery, loss of customers, loss of market share

Seven Steps in Forecasting

- 1. Determine the use of the forecast
- 2. Select the items to be forecasted
- Determine the time horizon of the forecast
- 4. Select the forecasting model(s)
- Gather the data needed to make the forecast
- 6. Make the forecast
- 7. Validate and implement results

The Realities!

- Forecasts are seldom perfect, unpredictable outside factors may impact the forecast
- Most techniques assume an underlying stability in the system
- Product family and aggregated forecasts are more accurate than individual product forecasts

Forecasting Approaches

Qualitative Methods

- Used when situation is vague and little data exist
 - New products
 - New technology
- Involves intuition, experience
 - e.g., forecasting sales on Internet

Forecasting Approaches

Quantitative Methods

- Used when situation is 'stable' and historical data exist
 - Existing products
 - Current technology
- Involves mathematical techniques
 - e.g., forecasting sales of color televisions

Overview of Qualitative Methods

1. Jury of executive opinion

Pool opinions of high-level experts, sometimes augment by statistical models

2. Delphi method

Panel of experts, queried iteratively

Overview of Qualitative Methods

3. Sales force composite

 Estimates from individual salespersons are reviewed for reasonableness, then aggregated

4. Market Survey

Ask the customer

Jury of Executive Opinion

- Involves small group of high-level experts and managers
- Group estimates demand by working together
- Combines managerial experience with statistical models
- Relatively quick
- 'Group-think' disadvantage

Delphi Method

Iterative group process, continues until consensus is reached

3 types of participants Staff (Administering survey)

- Decision makers
- Staff
- Respondents

Respondents
(People who can make valuable judgments)

Decision Makers

(Evaluate responses

and make decisions)

Sales Force Composite

- Each salesperson projects his or her sales
- Combined at district and national levels
- Sales reps know customers' wants
- May be overly optimistic

Market Survey

- Ask customers about purchasing plans
- Useful for demand and product design and planning
- What consumers say, and what they actually do may be different
- May be overly optimistic

Overview of Quantitative Approaches

- 1. Naive approach
- 2. Moving averages
- 3. Exponential smoothing
- 4. Trend projection
- 5. Linear regression

Time-series models

Associative model

Time-Series Forecasting

- Set of evenly spaced numerical data
 - Obtained by observing response variable at regular time periods
- Forecast based only on past values, no other variables important
 - Assumes that factors influencing past and present will continue influence in future

Time-Series Components

Components of Demand

Trend Component

- Persistent, overall upward or downward pattern
- Changes due to population, technology, age, culture, etc.
- Typically several years duration

Seasonal Component

- Regular pattern of up and down fluctuations
- Due to weather, customs, etc.
- Occurs within a single year

PERIOD LENGTH	"SEASON" LENGTH	NUMBER OF "SEASONS" IN PATTERN
Week	Day	7
Month	Week	4 – 4.5
Month	Day	28 – 31
Year	Quarter	4
Year	Month	12
Year	Week	52

Cyclical Component

- Repeating up and down movements
- Affected by business cycle, political, and economic factors
- Multiple years duration
- Often causal or associative relationships

Random Component

Erratic, unsystematic, 'residual' fluctuations

Due to random variation or unforeseen events

Short duration and nonrepeating

© 2014 Pearson Education

4 - 29

Naive Approach

 Assumes demand in next period is the same as demand in most recent period

- e.g., If January sales were 68, then February sales will be 68
- Sometimes cost effective and efficient
- Can be good starting point

Moving Average Method

- MA is a series of arithmetic means
- Used if little or no trend
- Used often for smoothing
 - Provides overall impression of data over time

Moving average =
$$\frac{\text{å demand in previous } n}{n}$$

Moving Average Example

MONTH	ACTUAL SHED SALES	3-MONTH MOVING AVERAGE
January	10	
February	12	
March	13	
April	16	$(10 + 12 + 13)/3 = 11^{2}/_{3}$
May	19	$(12 + 13 + 16)/3 = 13^{2}/_{3}$
June	23	(13 + 16 + 19)/3 = 16
July	26	$(16 + 19 + 23)/3 = 19 ^{1}/_{3}$
August	30	$(19 + 23 + 26)/3 = 22^{2}/_{3}$
September	28	$(23 + 26 + 30)/3 = 26 ^{1}/_{3}$
October	18	(29 + 30 + 28)/3 = 28
November	16	$(30 + 28 + 18)/3 = 25 ^{1}/_{3}$
December	14	$(28 + 18 + 16)/3 = 20^{2}/_{3}$

Weighted Moving Average

- Used when some trend might be present
 - Older data usually less important
- Weights based on experience and intuition

Weighted moving =
$$\frac{\mathring{a}(\text{Weight for period }n)(\text{Demand in period }n))}{\mathring{a}\text{Weights}}$$

Weighted Moving Average

Weighted Moving Average

MONTH	ACTUAL SHED SALES	3-MONTH WEIGHTED MOVING AVERAGE
January	10 —	
February	12	
March	13	
April	16	$[(3 \times 13) + (2 \times 12) + (10)]/6 = 12^{1}/6$
May	19	$[(3 \times 16) + (2 \times 13) + (12)]/6 = 14^{1}/_{3}$
June	23	$[(3 \times 19) + (2 \times 16) + (13)]/6 = 17$
July	26	$[(3 \times 23) + (2 \times 19) + (16)]/6 = 20^{1}/_{2}$
August	30	$[(3 \times 26) + (2 \times 23) + (19)]/6 = 23 5/6$
September	28	$[(3 \times 30) + (2 \times 26) + (23)]/6 = 27^{1}/_{2}$
October	18	$[(3 \times 28) + (2 \times 30) + (26)]/6 = 28^{1}/_{3}$
November	16	$[(3 \times 18) + (2 \times 28) + (30)]/6 = 23^{1}/_{3}$
December	14	$[(3 \times 16) + (2 \times 18) + (28)]/6 = 18^{2}/_{3}$

Potential Problems With Moving Average

- Increasing n smooths the forecast but makes it less sensitive to changes
- Does not forecast trends well
- Requires extensive historical data

Graph of Moving Averages

Figure 4.2

Exponential Smoothing

- Form of weighted moving average
 - Weights decline exponentially
 - Most recent data weighted most
- ightharpoonup Requires smoothing constant (α)
 - Ranges from 0 to 1
 - Subjectively chosen
- Involves little record keeping of past data

Exponential Smoothing

New forecast = Last period's forecast + α (Last period's actual demand - Last period's forecast)

$$F_t = F_{t-1} + \alpha(A_{t-1} - F_{t-1})$$

where

 F_t = new forecast

 F_{t-1} = previous period's forecast

 $\alpha = \text{smoothing (or weighting) constant } (0 \le \alpha \le 1)$

 A_{t-1} = previous period's actual demand

Exponential Smoothing Example

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant α = .20

Exponential Smoothing Example

```
Predicted demand = 142 Ford Mustangs
Actual demand = 153
Smoothing constant \alpha = .20
New forecast = 142 + .2(153 - 142)
```

Exponential Smoothing Example

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant α = .20

```
New forecast = 142 + .2(153 - 142)
= 142 + 2.2
= 144.2 \approx 144 cars
```

Effect of Smoothing Constants

- ▶ Smoothing constant generally $.05 \le \alpha \le .50$
- As α increases, older values become less significant

	WEIGHT ASSIGNED TO					
SMOOTHING CONSTANT	MOST RECENT PERIOD (α)	2^{ND} MOST RECENT PERIOD α (1 – α)	3^{RD} MOST RECENT PERIOD $\alpha(1 - \alpha)^2$	4 th MOST RECENT PERIOD $\alpha(1 - \alpha)^3$	5^{th} MOST RECENT PERIOD $\alpha(1-\alpha)^4$	
α = .1	.1	.09	.081	.073	.066	
α = .5	.5	.25	.125	.063	.031	

Impact of Different α

Impact of Different α

225 |-

- Chose high values of α when underlying average is likely to change
- Choose low values of α when underlying average is stable

Quarter

Choosing α

The objective is to obtain the most accurate forecast no matter the technique

We generally do this by selecting the model that gives us the lowest forecast error

Forecast error = Actual demand – Forecast value $= A_t - F_t$

Common Measures of Error

Mean Absolute Deviation (MAD)

$$MAD = \frac{\mathring{a}|Actual - Forecast|}{n}$$

Determining the MAD

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST WITH $lpha$ = .10	FORECAST WITH $\alpha = .50$
1	180	175	175
2	168	175.50 = 175.00 + .10(180 – 175)	177.50
3	159	174.75 = 175.50 + .10(168 – 175.50)	172.75
4	175	173.18 = 174.75 + .10(159 – 174.75)	165.88
5	190	173.36 = 173.18 + .10(175 – 173.18)	170.44
6	205	175.02 = 173.36 + .10(190 – 173.36)	180.22
7	180	178.02 = 175.02 + .10(205 – 175.02)	192.61
8	182	178.22 = 178.02 + .10(180 - 178.02)	186.30
9	?	178.59 = 178.22 + .10(182 – 178.22)	184.15

Determining the MAD

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST WITH $\alpha = .10$	D	BSOLUTE EVIATION OR a = .10	FORECAST WITH $\alpha = .50$	D	BSOLUTE EVIATION OR a = .50
1	180	175		5.00	175		5.00
2	168	175.50		7.50	177.50		9.50
3	159	174.75		15.75	172.75		13.75
4	175	173.18		1.82	165.88		9.12
5	190	173.36		16.64	170.44		19.56
6	205	175.02		29.98	180.22		24.78
7	180	178.02		1.98	192.61		12.61
8	182	178.22		3.78	186.30		4.30
Sum of abso	olute deviations:			82.45			98.62
	MAD =	Σ Deviations		10.31			12.33

Common Measures of Error

Mean Squared Error (MSE)

$$MSE = \frac{\mathring{a}(Forecast errors)^2}{n}$$

Determining the MSE

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST FOR $\alpha = .10$	(ERROR) ²
1	180	175	$5^2 = 25$
2	168	175.50	$(-7.5)^2 = 56.25$
3	159	174.75	$(-15.75)^2 = 248.06$
4	175	173.18	$(1.82)^2 = 3.31$
5	190	173.36	$(16.64)^2 = 276.89$
6	205	175.02	$(29.98)^2 = 898.80$
7	180	178.02	$(1.98)^2 = 3.92$
8	182	178.22	$(3.78)^2 = 14.29$
			Sum of errors squared = 1,526.52

MSE =
$$\frac{\text{å}(\text{Forecast errors})^2}{n}$$
 = 1,526.52 / 8 = 190.8

Common Measures of Error

Mean Absolute Percent Error (MAPE)

$$\frac{\stackrel{n}{\circ} 100 | Actual_i - Forecast_i | / Actual_i}{MAPE} = \frac{\stackrel{i=1}{\circ} n}{n}$$

Determining the MAPE

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST FOR $\alpha = .10$	ABSOLUTE PERCENT ERROR 100(ERROR/ACTUAL)
1	180	175.00	100(5/180) = 2.78%
2	168	175.50	100(7.5/168) = 4.46%
3	159	174.75	100(15.75/159) = 9.90%
4	175	173.18	100(1.82/175) = 1.05%
5	190	173.36	100(16.64/190) = 8.76%
6	205	175.02	100(29.98/205) = 14.62%
7	180	178.02	100(1.98/180) = 1.10%
8	182	178.22	100(3.78/182) = 2.08%
			Sum of % errors = 44.75%

MAPE =
$$\frac{\text{å absolute percent error}}{n} = \frac{44.75\%}{8} = 5.59\%$$

Quarter	Actual Tonnage Unloaded	Rounded Forecast with $\alpha = .10$	Absolute Deviation for $\alpha = .10$	Rounded Forecast with $\alpha = .50$	Absolute Deviation for $\alpha = .50$
1	180	175	5.00	175	5.00
2	168	175.5	7.50	177.50	9.50
3	159	174.75	15.75	172.75	13.75
4	175	173.18	1.82	165.88	9.12
5	190	173.36	16.64	170.44	19.56
6	205	175.02	29.98	180.22	24.78
7	180	178.02	1.98	192.61	12.61
8	182	178.22	_3.78_	186.30	4.30_
			82.45		98.62

$$\mathsf{MAD} = \frac{\sum |\mathsf{deviations}|}{n}$$

For
$$\alpha = .10$$

= 82.45/8 = 10.31

For
$$\alpha = .50$$

= 98.62/8 = 12.33

82.45

Rounded Forecast with $\alpha = .50$	Absolute Deviation for $\alpha = .50$
175	5.00
177.50	9.50
172.75	13.75
165.88	9.12
170.44	19.56
180.22	24.78
192.61	12.61
186.30	4.30_
	98.62

4 - 55

82.45 MAD 10.31

Rounded Forecast with $\alpha = .50$	Absolute Deviation for $\alpha = .50$
175	5.00
177.50	9.50
172.75	13.75
165.88	9.12
170.44	19.56
180.22	24.78
192.61	12.61
186.30	4.30
	98.62
	12.33

MAPE =
$$\sum_{i=1}^{n} 100 |\text{deviation}_{i}| / \text{actual}_{i}$$
 Absolute Deviation for $\alpha = .50$

For $\alpha = .10$ 5.00

= $44.75/8 = 5.59\%$ 5 13.75

For $\alpha = .50$ 8 9.12

= $54.05/8 = 6.76\%$ 19.56

= $54.05/8 = 6.76\%$ 98.62

MAD 10.31 98.62

© 2014 Pearson Education 4 - 57

190.82

MSE

12.33

195.24

Quarter	Actual Tonnage Unloaded	Rounded Forecast with $\alpha = .10$	Absolute Deviation for $\alpha = .10$	Rounded Forecast with $\alpha = .50$	Absolute Deviation for $\alpha = .50$
1	180	175	5.00	175	5.00
2	168	175.5	7.50	177.50	9.50
3	159	174.75	15.75	172.75	13.75
4	175	173.18	1.82	165.88	9.12
5	190	173.36	16.64	170.44	19.56
6	205	175.02	29.98	180.22	24.78
7	180	178.02	1.98	192.61	12.61
8	182	178.22	3.78	186.30	4.30_
			82.45		98.62
		MAD	10.31		12.33
		MSE	190.82		195.24
		MAPE	5.59%		6.76%
© 2014 Pearso	n Education				4 - 58

When a trend is present, exponential smoothing must be modified

MONTH	ACTUAL DEMAND	FORECAST (F_t) FOR MONTHS 1 – 5
1	100	$F_t = 100 \text{ (given)}$
2	200	$F_t = F_1 + \alpha (A_1 - F_1) = 100 + .4(100 - 100) = 100$
3	300	$F_t = F_2 + \alpha (A_2 - F_2) = 100 + .4(200 - 100) = 140$
4	400	$F_t = F_3 + \alpha (A_3 - F_3) = 140 + .4(300 - 140) = 204$
5	500	$F_t = F_4 + \alpha (A_4 - F_4) = 204 + .4(400 - 204) = 282$

Forecast Exponentially Exponentially including
$$(FIT_t)$$
 = smoothed (F_t) + smoothed (T_t) trend trend

$$F_{t} = \alpha(A_{t-1}) + (1 - \alpha)(F_{t-1} + T_{t-1})$$

$$T_{t} = \beta(F_{t} - F_{t-1}) + (1 - \beta)T_{t-1}$$

where

 F_t = exponentially smoothed forecast average

 T_t = exponentially smoothed trend

 A_t = actual demand

 α = smoothing constant for average (0 $\leq \alpha \leq$ 1)

 β = smoothing constant for trend (0 $\leq \beta \leq$ 1)

Step 1: Compute F_t

Step 2: Compute T_t

Step 3: Calculate the forecast $FIT_t = F_t + T_t$

MONTH (t)	ACTUAL DEMAND (A_t)	MONTH (t)	ACTUAL DEMAND (<i>A,</i>)
1	12	6	21
2	17	7	31
3	20	8	28
4	19	9	36
5	24	10	?

$$\alpha$$
 = .2

$$\beta = .4$$

TABLE 4	TABLE 4.1 Forecast with α 2 and β = .4					
MONTH	ACTUAL DEMAND	SMOOTHED FORECAST AVERAGE, F _t	SMOOTHED TREND, <i>T_t</i>	FORECAST INCLUDING TREND, FIT_t		
1	12	11	2	13.00		
2	17	12.80				
3	20					
4	19	Step 1: Avera	ge for Mon	th 2		
5	24					
6	21	$F_2 = \alpha A_1$	+ $(1 - \alpha)(F_1)$	$+T_1$		
7	31	5 (0)//	() ()	0) (44 - 0)		
8	28	$F_2 = (2)(2)$	12) + (1 – .2	2)(11 + 2)		
9	36	= 24 + (.8)(13) = 2.4 + 10.4				
10	_					
		= 12.8	units			

TABLE 4.1 Forecast with α 2 and β = .4				
MONTH	ACTUAL DEMAN	SMOOTHED FORECAST D AVERAGE, F _t	SMOOTHED TREND, T_t	FORECAST INCLUDING TREND, FIT_t
1	12	11	2	13.00
2	17	12.80	1.92	
3	20			
4	19			
5	24	Step 2: Trer	nd for Montl	hΥ
6	21	T 0/ F		
7	31		$F_2 - F_1 + (1)$	
8	28	$T_{\rm o} = (.4)$	(12.8 - 11)	+ (14)(2)
9	36			
10	_	= .72	+ 1.2 = 1.9	92 units

TABLE 4	TABLE 4.1 Forecast with α 2 and β = .4			
MONTH	ACTUAL DEMAN	SMOOTHED FORECAST ID AVERAGE, F_t	SMOOTHED TREND, T_t	FORECAST INCLUDING TREND, FIT _t
1	12	11	2	13.00
2	17	12.80	1.92	14.72
3	20			
4	19		\ \	
5	24	Step 3: Calcu	ulate <i>FIT</i> fo	r Month 2
6	21			
7	31	FIT_2	$= T_2 + T_2$ $= 12.8 + 1.$	
8	28	FIT	= 128 + 1	92
9	36	1112		
10	_		= 14.72 un	its

TABLE 4.1 Forecast with α 2 and β = .4				
MONTH	ACTUAL DEMAND	SMOOTHED FORECAST AVERAGE, <i>F_t</i>	SMOOTHED TREND, <i>T_t</i>	FORECAST INCLUDING TREND, FIT _t
1	12	11	2	13.00
2	17	12.80	1.92	14.72
3	20	15.18	2.10	17.28
4	19	17.82	2.32	20.14
5	24	19.91	2.23	22.14
6	21	22.51	2.38	24.89
7	31	24.11	2.07	26.18
8	28	27.14	2.45	29.59
9	36	29.28	2.32	31.60
10		32.48	2.68	35.16

Trend Projections

Fitting a trend line to historical data points to project into the medium to long-range

Linear trends can be found using the least squares technique

$$\hat{y} = a + bx$$

where \hat{y} = computed value of the variable to be predicted (dependent variable)

a = y-axis intercept

b = slope of the regression line

x = the independent variable

Least Squares Method

Least Squares Method

Equations to calculate the regression variables

$$\hat{y} = a + bx$$

$$b = \frac{\mathring{a}xy - n\overline{xy}}{\mathring{a}x^2 - n\overline{x}^2}$$

$$a = \overline{y} - b\overline{x}$$

Least Squares Example

YEAR	ELECTRICAL POWER DEMAND	YEAR	ELECTRICAL POWER DEMAND
1	74	5	105
2	79	6	142
3	80	7	122
4	90		

Least Squares Example

YEAR (x)	ELECTRICAL POWER DEMAND (y)	x ²	xy
1	74	1	74
2	79	4	158
3	80	9	240
4	90	16	360
5	105	25	525
6	142	36	852
7	122	49	854
$\Sigma x = 28$	$\Sigma y = 692$	$\Sigma x^2 = 140$	$\Sigma xy = 3,063$

$$\overline{x} = \frac{\mathring{a}x}{n} = \frac{28}{7} = 4$$
 $\overline{y} = \frac{\mathring{a}y}{n} = \frac{692}{7} = 98.86$

Least Squares Example

$$b = \frac{\ddot{a}xy - n\overline{xy}}{\ddot{a}x^2 - n\overline{x}^2} = \frac{3,063 - (7)(4)(98.86)}{140 - (7)(4^2)} = \frac{295}{28} = 10.54$$

$$a = \overline{y} - b\overline{x} = 98.86 - 10.54(4) = 56.70$$

Thus,
$$\hat{y} = 56.70 + 10.54x$$

 $\Sigma x = 28$ $\Sigma y = 692$ $\Sigma x^2 = 140$ $\Sigma xy = 3.063$

Demand in year 8 = 56.70 + 10.54(8)= 141.02, or 141 megawatts

Least Squares Example

Least Squares Requirements

- We always plot the data to insure a linear relationship
- We do not predict time periods far beyond the database
- Deviations around the least squares line are assumed to be random

Seasonal Variations In Data

The multiplicative seasonal model can adjust trend data for seasonal variations in demand

Seasonal Variations In Data

Steps in the process for monthly seasons:

- 1. Find average historical demand for each month
- 2. Compute the average demand over all months
- 3. Compute a seasonal index for each month
- 4. Estimate next year's total demand
- Divide this estimate of total demand by the number of months, then multiply it by the seasonal index for that month

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE YEARLY DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90		
Feb	70	85	85	80		
Mar	80	93	82	85		
Apr	90	95	115	100		
May	113	125	131	123		
June	110	115	120	115		
July	100	102	113	105		
Aug	88	102	110	100		
Sept	85	90	95	90		
Oct	77	78	85	80		
Nov	75	82	83	80		
Dec	82	78	80	80		
	Tota	al average a	annual dema	and = 1,128		

DEMAND						
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE YEARLY DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90	94	
Feb	70	95	95	<u> </u>	94	
Mar	A.			5	94	
Apr	Average	1	,128	= 94 ⁰ ₃ ₅	94	
May	montniy	$=\frac{1}{12}$	months		94	
June	demand				94	
July	100	102	ПЭ	105	94	
Aug	88	102	110	100	94	
Sept	85	90	95	90	94	
Oct	77	78	85	80	94	
Nov	75	82	83	80	94	
Dec	82	78	80	80	94	
	Tota	al average a	annual dema	and = 1,128		

DEMAND							
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE YEARLY DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX	
Jan	80	85	105	90	94	.957(= 90/94)	
Feb	70	85	85	80	94		
Mar	80	93	82	85	94		
Apr	an	95	115	100	Q/I		
	Seasonal = Average monthly demand for past 3 years index Average monthly demand						
Cont							
Sept	85	90	95	90	94		
Oct	85 77	90 78	95 85	90 80	94 94		
•							
Oct	77	78	85	80	94		

		DEMAND				
MONTH	YEAR 1	YEAR 2	YEAR 3	AVERAGE YEARLY DEMAND	AVERAGE MONTHLY DEMAND	SEASONAL INDEX
Jan	80	85	105	90	94	.957(= 90/94)
Feb	70	85	85	80	94	.851(= 80/94)
Mar	80	93	82	85	94	.904(= 85/94)
Apr	90	95	115	100	94	1.064(= 100/94)
May	113	125	131	123	94	1.309(= 123/94)
June	110	115	120	115	94	1.223(= 115/94)
July	100	102	113	105	94	1.117(= 105/94)
Aug	88	102	110	100	94	1.064(= 100/94)
Sept	85	90	95	90	94	.957(= 90/94)
Oct	77	78	85	80	94	.851(= 80/94)
Nov	75	82	83	80	94	.851(= 80/94)
Dec	82	78	80	80	94	.851(= 80/94)
	Tota	al average a	annual dema	and = 1,128		

Seasonal forecast for Year 4

MONTH	DEMAND	MONTH	DEMAND
Jan	$\frac{1,200}{12} \times .957 = 96$	July	$\frac{1,200}{12} \times 1.117 = 112$
Feb	$\frac{1,200}{12} \times .851 = 85$	Aug	$\frac{1,200}{12} \times 1.064 = 106$
Mar	$\frac{1,200}{12} \times .904 = 90$	Sept	$\frac{1,200}{12} \times .957 = 96$
Apr	$\frac{1,200}{12} \times 1.064 = 106$	Oct	$\frac{1,200}{12} \times .851 = 85$
May	$\frac{1,200}{12} \times 1.309 = 131$	Nov	$\frac{1,200}{12} \times .851 = 85$
June	$\frac{1,200}{12} \times 1.223 = 122$	Dec	$\frac{1,200}{12} \times .851 = 85$

Seasonality Indices for Adult Inpatient Days at San Diego Hospital

MONTH	SEASONALITY INDEX	MONTH	SEASONALITY INDEX
January	1.04	July	1.03
February	0.97	August	1.04
March	1.02	September	0.97
April	1.01	October	1.00
May	0.99	November	0.96
June	0.99	December	0.98

Period	67	68	69	70	71	72
Month	Jan	Feb	Mar	Apr	May	June
Forecast with Trend & Seasonality	9,911	9,265	9,164	9,691	9,520	9,542
Period	73	74	75	76	77	78
Month	July	Aug	Sept	Oct	Nov	Dec
Forecast with Trend & Seasonality	9,949	10,068	9,411	9,724	9,355	9,572

Adjusting Trend Data

$$\hat{y}_{\text{seasonal}} = \text{Index } \hat{y}_{\text{trend forecast}}$$

Quarter I: $\hat{y}_1 = (1.30)(\$100,000) = \$130,000$

Quarter II: $\hat{y}_{II} = (.90)(\$120,000) = \$108,000$

Quarter III: $\hat{y}_{III} = (.70)(\$140,000) = \$98,000$

Quarter IV: $\hat{y}_{IV} = (1.10)(\$160,000) = \$176,000$