Test | & Test 2 Steely guides de Frichting

Review How solutions

Do the 6 / Know det f'(xo)

Test 2 Scale:

291 A

24 B

19 C

4.1				
· Derivaki	~e	Definba	8044	ems
Sylose	f:	D > IR	and	Xo

Suppose film R and xo is has a neighborhood in D.

we say fire differentiable at xo (and use face)

if

Im $f(x) - f(x_0)$ $x \to x_0$ $x - x_0$ $x \to x_0$

Recall: $f: D \to IR$ and so is a limit point of A. We supply with $\lim_{x \to x_0} f(x) = L \in IR$

YIN C DING, if lin xn = to, then fine f(x) = L

(16) Prove Suppose
$$f$$
 is differentiable at $x_0 = 0$.

$$\lim_{X \to 0} f(x^2) - f(0)$$

$$|x \to 0| = 0$$

Note: lm f(x) - f(0) $x \rightarrow 0$ f(x) - f(0) $x \rightarrow 0$ f(x) - f(0) f(x) - f(0)f(x) - f(

Supplie [Xn] is such that lim xn = 0 and xn is contained in the neighborhood of the:

Consider $\lim_{n\to\infty} f\left(x_n^2\right) - f(0) = \lim_{n\to\infty} x_n \cdot \frac{f(x_n^2) - f(0)}{x_n}$

Noting $\lim_{n \to \infty} x_n^2 = 0$, we have $\lim_{n \to \infty} f(x_n^2) - f(0) = f(0)$.

They has
$$f(x_n^2) - f(0) = (\lim_{N \to \infty} x_n) (\lim_{N \to \infty} f(x_n^2) - f(0))$$

$$= (\int_{N \to \infty} f(0)) = (\int_{N \to \infty} x_n) (\int_{N \to \infty} f(x_n^2) - f(0))$$

$$= (\int_{N \to \infty} f(0)) = (\int_{N \to \infty} x_n) (\int_{N \to \infty} f(x_n^2) - f(0))$$

$$= (\int_{N \to \infty} f(x_n^2) - f(0)) = (\int_{N \to \infty} f(x_n^2) - f(x_n^2) + f(x_n^2) + f(x_n^2) = (\int_{N \to \infty} x_n^2) (\int_{$$

$$= \lim_{x \to x_0} \left(\frac{x - x_0}{x - x_0} f(x_0) + x_0 \left(\frac{f(x_0) - f(x)}{x - x_0} \right) \right) = f(x_0) + x_0 f'(x_0)$$

4.3 (4) For (>0), prove the equation does not have 2 solutions. m = 0 < t < 1. $\chi^{3} - 3x + c = 0.$

prof. Let c70. Suppose the equation has 2 solutions in 0<x<1.

Define $f:(0,1) \rightarrow \mathbb{R}$ by $f(x)=x^{-3}x+C$. So $\exists x_1, x_2 \in (0,1)$ st. $x_1 < x_2$ and $f(x_1) = G = f(x_2)$. Notice f is continuous on $[x_1, x_2] \in (0,1)$ and differentiable on (x_1, x_2) .

So $\exists x_3 \in (x_1, x_2)$ st. $f'(x_3) = 0$. But $f'(x_3) = 3(x_3^2 - 1) < 0$. (=>=). (5) Prove the following they exactly I solution. $\chi^{5} + 5\chi + 1 = 0 \quad \text{for } -1 < \chi < 0.$

Mot: a Show existence of a solution.

Let $f \in [-1, 0] \Rightarrow \mathbb{R}$ by $f(x) = x^T + 5x + 1$.

Notice $f \in \mathbb{R}$ continuous on [-1, 0], f(-1) = -5 and f(0) = 1.

The IVT says $\exists x_0 \in (-1, 0)$ st. $f(x_0) = 0$ since -5 < 0 < 1.

② Uniqueness: Suppose not. Then $\exists x_1, x_2 \in (-1, 0)$ st. $x_1 < x_2$ and $f(x_1) = 0 = f(x_2)$. Follow last example ...

(3) For a, b, c, d EIR, define O = {x | ex+d + 0}. Definee $f(x) = \frac{ax+b}{cx+d}$ for all $x \in \mathcal{O}$. Show if f is not constant, then it fails to have any local maximozor or minimizer. proof sherel : . Supere of not constant and suppose xo & O of is differentiable on 8. is a maxime ze WLOG. Garl: 7

" 4.19 says f'(x)=0.

· Congite & show f'(x0) \$0,