Advanced Data Structures and Algorithms

Dynamic Programming and Floyd-Warshall (All-Pairs Shortest Paths: APSP)

Today

- Bellman-Ford is a special case of *Dynamic Programming!*
- What is dynamic programming?
 - Warm-up example: Fibonacci numbers
- Another example:
 - Floyd-Warshall Algorithm

Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)
- What is dynamic programming, exactly?
 - And why is it called "dynamic programming"?
- Another example: Floyd-Warshall algorithm
 - An "all-pairs" shortest path algorithm

Fibonacci Numbers

• Definition:

- F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1.
- The first several are:
 - 1
 - 1
 - 2
 - 3
 - 5
 - 8
 - 13, 21, 34, 55, 89, 144,...

Fibonacci Numbers

• Definition:

```
• F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1.
```

- The first several are:
 - 1
 - 1
 - 2
 - 3
 - 5
 - 8
 - 13, 21, 34, 55, 89, 144,...

• Question:

• Given n, what is F(n)?

- **def** Fibonacci(n):
 - **if** n == 0 or n == 1:
 - return 1
 - return Fibonacci(n-1) + Fibonacci(n-2)

- **def** Fibonacci(n):
 - **if** n == 0 or n == 1:
 - return 1
 - return Fibonacci(n-1) + Fibonacci(n-2)

Running time?

- T(n) = T(n-1) + T(n-2) + O(1)
- $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$

- def Fibonacci(n):
 - **if** n == 0 or n == 1:
 - return 1
 - return Fibonacci(n-1) + Fibonacci(n-2)

Running time?

- T(n) = T(n-1) + T(n-2) + O(1)
- $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$
- So T(n) grows at least as fast as the Fibonacci numbers themselves...
- Fun fact, that's like ϕ^n where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

- def Fibonacci(n):
 - **if** n == 0 or n == 1:
 - return 1
 - return Fibonacci(n-1) + Fibonacci(n-2)

Running time?

- T(n) = T(n-1) + T(n-2) + O(1)
- $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$
- So T(n) grows at least as fast as the Fibonacci numbers themselves...
- Fun fact, that's like ϕ^n where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.
- aka, **EXPONENTIALLY QUICKLY** 😕

What's going on?

Consider Fib(8)

What's going on? Consider Fib(8)

That's a lot of repeated computation!

Maybe this would be better:

Maybe this would be better:

def fasterFibonacci(n):

- F = [1, 1, None, None, ..., None]
 - \\ F has length n + 1
- **for** i = 2, ..., n:
 - F[i] = F[i-1] + F[i-2]
- return F[n]

Maybe this would be better:

def fasterFibonacci(n):

- F = [1, 1, None, None, ..., None]
 - \\ F has length n + 1
- **for** i = 2, ..., n:
 - F[i] = F[i-1] + F[i-2]
- return F[n]

Much better running time!

This was an example of...

What is *dynamic programming*?

What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.

What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving optimization problems
 - eg, *shortest* path
 - (Fibonacci numbers aren't an optimization problem, but they are a good example...)

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \le n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for i ≤ n
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for i ≤ n
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:

$$F(i+1) = F(i) + F(i-1)$$

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \le n$
 - Bellman-Ford: Shortest paths with at most i edges for i ≤ n
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:

$$F(i+1) = F(i) + F(i-1)$$

• Bellman-Ford:

$$d^{(i+1)}[v] \leftarrow \min\{d^{(i)}[v], \min_{u} \{d^{(i)}[u] + weight(u,v)\}\}$$

Shortest path with at most i edges from s to v

Shortest path with at most i edges from s to u.

2. Overlapping sub-problems:

• The sub-problems overlap.

2. Overlapping sub-problems:

- The sub-problems overlap.
 - Fibonacci:
 - Both F[i+1] and F[i+2] directly use F[i].
 - And lots of different F[i+x] indirectly use F[i].

2. Overlapping sub-problems:

- The sub-problems overlap.
 - Fibonacci:
 - Both F[i+1] and F[i+2] directly use F[i].
 - And lots of different F[i+x] indirectly use F[i].
 - Bellman-Ford:
 - Many different entries of d(i+1) will directly use d(i)[v].
 - And lots of different entries of d(i+x) will indirectly use d(i)[v].

2. Overlapping sub-problems:

- The sub-problems overlap.
 - Fibonacci:
 - Both F[i+1] and F[i+2] directly use F[i].
 - And lots of different F[i+x] indirectly use F[i].
 - Bellman-Ford:
 - Many different entries of d(i+1) will directly use d(i)[v].
 - And lots of different entries of d^(i+x) will indirectly use d⁽ⁱ⁾[v].
 - This means that we can save time by solving a sub-problem just once and storing the answer.

- Optimal substructure.
 - Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.
- Overlapping subproblems.
 - The subproblems show up again and again

- Optimal substructure.
 - Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.
- Overlapping subproblems.
 - The subproblems show up again and again
- Using these properties, we can design a dynamic programming algorithm:
 - Keep a table of solutions to the smaller problems.
 - Use the solutions in the table to solve bigger problems.
 - At the end we can use information we collected along the way to find the solution to the whole thing.

Two ways to think about and/or implement DP algorithms

Top down

Bottom up

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
 - fill in F[2]

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
 - fill in F[2]
- ...
- Then bigger problems
 - fill in F[n-1]

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
 - fill in F[2]
- ...
- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]

- For Bellman-Ford:
- Solve the small problems first
 - fill in d⁽⁰⁾

Bottom up approach what we just saw.

- For Bellman-Ford:
- Solve the small problems first
 - fill in d⁽⁰⁾
- Then bigger problems
 - fill in d⁽¹⁾

Bottom up approach what we just saw.

- For Bellman-Ford:
- Solve the small problems first
 - fill in d⁽⁰⁾
- Then bigger problems
 - fill in d⁽¹⁾
- ...
- Then bigger problems
 - fill in d⁽ⁿ⁻²⁾

Bottom up approach what we just saw.

- For Bellman-Ford:
- Solve the small problems first
 - fill in d⁽⁰⁾
- Then bigger problems
 - fill in d⁽¹⁾
- ...
- Then bigger problems
 - fill in d⁽ⁿ⁻²⁾
- Then finally solve the real problem.
 - fill in d⁽ⁿ⁻¹⁾

Top down approach

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc..

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc..

- Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
- Aka, "memorization"

Example of top-down Fibonacci

- define a global list F = [1,1,None, None, ..., None]
- def Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

Example of top-down Fibonacci

- define a global list F = [1,1,None, None, ..., None]
- def Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

Memorization: Keeps track (in F) of the stuff you've already done.

Memorization visualization

Collapse
repeated nodes
and don't do
the same work
twice!

Memorization visualization

Collapse repeated nodes and don't do the same work twice!

Memorization Visualization ctd

Collapse
repeated nodes
and don't do the
same work
twice!

But otherwise treat it like the same old recursive algorithm.

- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - · else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

What have we learned?

Dynamic programming:

- Paradigm in algorithm design.
- Uses optimal substructure
- Uses overlapping subproblems
- Can be implemented bottom-up or top-down.
- It's a fancy name for a pretty common-sense idea:

Don't duplicate work if you don't have to!

- Programming refers to finding the optimal "program."
 - as in, a shortest route is a *plan* aka a *program*.

- Programming refers to finding the optimal "program."
 - as in, a shortest route is a *plan* aka a *program*.
- Dynamic refers to the fact that it's multi-stage.

- Programming refers to finding the optimal "program."
 - as in, a shortest route is a *plan* aka a *program*.
- Dynamic refers to the fact that it's multi-stage.
- But also it's just a fancy-sounding name.

Richard Bellman invented the name in the 1950's.

 At the time, he was working for the RAND Corporation, and projects needed flashy names to get funded.

Floyd-Warshall Algorithm Another example of Dynamic Programming

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.

- This is an algorithm for **All-Pairs Shortest Paths** (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.

	Destination					
Source		S	u	V	t	
	S	0	2	4	2	
	u	1	0	2	0	
	V	∞	∞	0	-2	
	t	∞	∞	∞	0	

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.
 - Time ?

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.
 - Time $O(n \cdot nm) = O(n^2m)$,
 - may be as bad as n⁴ if m=n²

Another example of Dynamic Programming

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.
 - Time $O(n \cdot nm) = O(n^2m)$,
 - may be as bad as n⁴ if m=n²

Can we do better?

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

3

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

k

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

k Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1). 3 k-1 Vertices 1, ..., k-1

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

u
1
2
wertices 1, ..., k-1

k

This is the shortest path from u to v through the blue set. It has cost D^(k-1)[u,v]

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Our DP algorithm
will fill in the
n-by-n arrays
D⁽⁰⁾, D⁽¹⁾, ..., D⁽ⁿ⁾
iteratively and then
we'll be done.

k+1

k

This is the shortest path from u to v through the blue set. It has cost D^(k-1)[u,v]

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Our DP algorithm
will fill in the
n-by-n arrays
D⁽⁰⁾, D⁽¹⁾, ..., D⁽ⁿ⁾
iteratively and then
we'll be done.

k+1

Question: How can we find D^(k)[u,v] using D^(k-1)?

k

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

Suppose there are no negative cycles.

 Then without loss of generality the shortest path from u to v through {1,...,k} is simple.

Suppose there are no negative cycles.

 Then without loss of generality the shortest path from u to v through {1,...,k} is simple.

 If <u>that path</u> passes through k, it must look like this:

- Suppose there are no negative cycles.
 - Then without loss of generality the shortest path from u to v through {1,...,k} is **simple**.
- If <u>that path</u> passes through k, it must look like this:
- This path is the shortest path from u to k through {1,...,k-1}.
 - sub-paths of shortest paths are shortest paths

- Suppose there are no negative cycles.
 - Then without loss of generality the shortest path from u to v through {1,...,k} is **simple**.
- If <u>that path</u> passes through k, it must look like this:
- This path is the shortest path from u to k through {1,...,k-1}.
 - sub-paths of shortest paths are shortest paths
- Similarly for this path.

- Suppose there are no negative cycles.
 - Then without loss of generality the shortest path from u to v through {1,...,k} is **simple**.
- If <u>that path</u> passes through k, it must look like this:
- This path is the shortest path from u to k through {1,...,k-1}.
 - sub-paths of shortest paths are shortest paths
- Similarly for this path.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

Case 1: we don't need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of
 shortest path
through {1,...,k-1}

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

- Optimal substructure:
 - We can solve the big problem using solutions to smaller problems.
- Overlapping sub-problems:
 - D^(k-1)[k,v] can be used to help compute D^(k)[u,v] for lots of different u's.

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!

- Initialize n-by-n arrays D^(k) for k = 0,...,n
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = weight(u,v)$ for all (u,v) in E.

- Initialize n-by-n arrays $D^{(k)}$ for k = 0,...,n
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = weight(u,v)$ for all (u,v) in E.

The base case checks out: the only path through zero other vertices are edges directly from u to v.

- Initialize n-by-n arrays $D^{(k)}$ for k = 0,...,n
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = weight(u,v)$ for all (u,v) in E.
- For k = 1, ..., n:
 - **For** pairs u,v in V²:
 - $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$
- Return D⁽ⁿ⁾

The base case checks out: the only path through zero other vertices are edges directly from u to v.

- Initialize n-by-n arrays $D^{(k)}$ for k = 0,...,n
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - D⁽⁰⁾[u,v] = weight(u,v) for all (u,v) in E. ◆
- For k = 1, ..., n:
 - **For** pairs u,v in V²:
 - $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$
- Return D⁽ⁿ⁾

This is a bottom-up **Dynamic programming** algorithm.

The base case checks out: the only path through zero other vertices are edges directly from u to v.

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v] = distance between u and v in G.$

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v]$ = distance between u and v in G.

- Running time: O(n³)
 - Better than running Bellman-Ford n times!

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v] = distance between u and v in G.$

- Running time: O(n³)
 - Better than running Bellman-Ford n times!

Storage:

 Need to store two n-by-n arrays, and the original graph.

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v] = distance between u and v in G.$

- Running time: O(n³)
 - Better than running Bellman-Ford n times!
- Storage:
 - Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don't really need to store all n of the $D^{(k)}$.

What if there *are* negative cycles?

What if there *are* negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:

 - Negative cycle $\Leftrightarrow \exists v \text{ s.t. } D^{(n)}[v,v] < 0.$

What if there *are* negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:

 - Negative cycle $\Leftrightarrow \exists v \text{ s.t. } D^{(n)}[v,v] < 0.$
- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some v so that D⁽ⁿ⁾[v,v] < 0:
 - return negative cycle.

What have we learned?

- The Floyd-Warshall algorithm is another example of dynamic programming.
- It computes All Pairs Shortest Paths in a directed weighted graph in time O(n³).

Recap

- Two shortest-path algorithms:
 - Bellman-Ford for single-source shortest path
 - Floyd-Warshall for all-pairs shortest path

Dynamic programming!

- This is a fancy name for:
 - Break up an optimization problem into smaller problems
 - The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 - Build the optimal solution iteratively by filling in a table of sub-solutions.
 - Take advantage of overlapping sub-problems!

Next time

More examples of dynamic programming!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

Acknowledgement

Stanford University