Evaluation Metrics

Intersection over Union (IoU)

- Intersection over Union (IoU) is a metric used to evaluate the accuracy of object detection models, such as object localization and image segmentation.
- It measures the overlap between two bounding boxes: the predicted bounding box and the ground truth bounding box.
- An IoU threshold (e.g., 0.5) is often set to determine if a predicted bounding box is a true positive or a false positive. If IoU > threshold, the prediction is considered accurate.

How to represent Bounding Boxes

How to represent Bounding Boxes

How to represent Bounding Boxes

Approach to Calculate IoU?

NMS

Steps in NMS:-

- Filter out bounding boxes that have a confidence score below a certain threshold.
- Sort the remaining bounding boxes based on their confidence scores in descending order.
- Start with the highest-scoring bounding box and select it as the best bounding box.
- Compute the Intersection over Union (IoU) of the selected box with all other boxes and remove (suppress) all boxes that have an IoU greater than a predefined threshold (e.g., 0.5) with the selected box. These boxes are considered redundant because they overlap significantly with the selected box.
- Repeat the process with the next highest-scoring box from the remaining set of boxes until no more boxes remain.

Implement NMS using the IoU function you've just seen

mean Average Precision

- Calculate Average Precision for each class separately and then take the mean over all classes.
- Average Precision is always calculated for a particular IoU threshold.
- Average Precision is the area under the Precision-Recall Curve.
- How to plot the Precision-Recall Curve? Let's see

TP	FP	Cum TP	Cum FP	Precision	Recall
					0.3
		2	9		0.6
		2		0.6	0.6
		2	2	0.5	D.6

Table made for each class individually

Let's take
Person
class first

TP	FP	Cum TP	Cum FP	Precision	Recall

Table made for each class individually

Car Class

mAP at 0.5 = [AP(Person) + AP(Car)]/2