

Unità 2

II Physical Layer del TCP/IP

Il progetto IEEE 802 (1)

Il modello TCP/IP affida al **Physical Layer** la definizione delle regole per l'accesso al mezzo fisico.

IEEE, ISO e ANSI hanno sviluppato uno standard, il **Progetto IEEE 802**, per definire le reti LAN a livello Physical e Data Link del modello ISO/OSI.

Gli standard introdotti stabilirono 20 categorie con cui identificare i diversi modi di accedere al canale di trasmissione.

Le **tecniche** che regolano il diritto ad accedere e trasmettere su un canale condiviso sono due.

- 1. Tecnica a contesa: occorre prevenire le collisioni, prevedendo i possibili problemi che vi possono essere
- 2. Tecnica deterministica: in cui ogni trasmissione avviene in un istante definito.

Il progetto IEEE 802 (2)

Il livello Data Link è suddiviso in **due sottolivelli**, su cui è stato fondato il **Progetto IEEE 802**: **LLC** e **MAC**.

Il sottolivello LLC (1)

Il sottolivello superiore è l'LLC (IEEE 802.2).

LLC ha il compito di fornire un'interfaccia unificata verso il livello Network, pur a fronte di tecnologie trasmissive e mezzi fisici differenziati.

	HEADER	LLC		
DSAP (1 byte)	SSAP (1 byte)	Control (1-2 byte)		NETWORK PDU

LLC prevede:

- Destination Service Access Point (DSAP Destinatario);
- Source Service Access Point (SSAP Mittente/Sorgente);
- Controllo (Regolazione trasmissione)

Il sottolivello LLC (2)

Il campo Control può essere:

- Information: usato per controllare il flusso dati e assicurarsi che arrivi nel modo corretto, ricevendo conferma di ricezione
- Supervisor: controlla che il traffico di controllo vada correttamente
- Unnumbered: assicura che la connessione vada nel modo corretto

	HEADER	LLC		
DSAP (1 byte)	SSAP (1 byte)	Control (1-2 byte)		NETWORK PDU

LLC prevede 3 modi di funzionamento:

- Unacknowledged Connectionless Service (traffico non affidabile)
- Connection Oriented Service (traffico affidabile, con ricezione errore)
- Semireliable Connectionless Service (metà strada tra le due)

Il sottolivello MAC

Il sottolivello inferiore è il **MAC** (IEEE 802.x).

Il suo compito è arbitrare l'accesso all'unico mezzo trasmissivo comune tra tutti i sistemi che hanno necessità di trasmettere in una certa rete.

Mentre LLC è unico, si ha uno standard MAC diverso per ogni tipo di rete e mezzo fisico di trasmissione.

HEADER MAC				
DSAP (6 byte)	SSAP (6 byte)		LLC PDU	FCS (4 byte)

HDLC e PPP (1)

I **protocolli di linea** utilizzati per le trasmissioni punto-punto o multipunto sono LLC, HDLC e PPP.

Il protocollo HDLC è utilizzato su reti di grandi dimensioni anche per connessioni multipunto, ma attualmente è usato quasi esclusivamente per connessioni punto-punto.

Il frame HDLC è composto da 3 parti: un header, un campo dati e un trailer.

flag	address	control	data	FCS	flag
01111110	8 bit	8 o 16 bit	lunghezza variabile, 0 o più bit a multipli di 8	16 o 32 bit	01111110
	← he	eader →		← trailer →	

HDLC e PPP (2)

Il protocollo HDLC non ha una modalità standard per trasmettere sullo stesso canale pacchetti generati da protocolli diversi di livello superiore.

Per questo è stato introdotto il protocollo di linea **PPP**, il cui frame contiene un campo **protocol** di 2 byte per la codifica del protocollo di livello superiore.

Il protocollo PPP viene usato per la comunicazione punto-punto tra due router o nella comunicazione tra utente e provider.

byte:	1	1	1	2	variabile	2 oppure 4	1
	flag	address	control	protocol	information	FCS	flag
	01111110	111111111	00000011				01111110
		 ←	header	\rightarrow		← trailer →	

IEEE 802.3: la rete Ethernet (1)

Ethernet è il più diffuso tipo di rete locale che esista al mondo.

Nel 1985 Ethernet di evolve e diventa lo standard IEEE 802.3.

Passa dal cavo coassiale al **doppino** e quindi dal doppino alla **fibra**. Le velocità di trasmissione salgono dai 10 Mbps alle **decine di Gbps**.

La topologia passa dal bus alla **stella** o **stella estesa**.

La modalità half-duplex è sostituita dalla modalità **full-duplex** e gli hub sono sostituiti dagli **switch**.

Si risolve il problema delle collisioni, per cui si sostituisce la tecnica CSMA/CD con lo **switching**.

IEEE 802.3: la rete Ethernet (2)

Il frame Ethernet ha una lunghezza variabile compresa tra 64 e 1518 byte, preceduti da un preambolo e da un byte di start.

Esistono due formati del frame che attualmente convivono sulle reti Ethernet: **Ethernet v2.0** ed **Ethernet 802.3**.

Ethernet v2.0

Preamble	SFD	Destin. Add.	Source Add.	Туре	Da	nta	FCS		
7	1	6	6 2 da 46 a 1500		4				
		Lunghezza del frame compresa tra 64 e 1518 ottetti ◆							
Preamble	SFD	Destin. Add.	Source Add.	Length	Data	PAD	FCS		
7	1	6	6	2	da 0 a 1500	da 0 a 46	4		

IEEE 802.3