Session 8: Sampling Techniques

Mark Buntaine

Outline & Goals

- 1. Quick review of sampling bias
- 2. Stratified sampling & re-weighting
- 3. Clustered sampling

Sampling distribution

- ➤ **Sampling distribution**: the distribution of sample values with a repeated draw of a given sampling frame.
- ► Standard deviation of a sample describes the variance in the data $(\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\bar{y})^2})$
- Standard error of a sample describes the sampling variance of a parameter over repeated draws

Sampling bias

In practice, it is often difficult to take a random sample from our target population, which leads to sampling bias.

- Sampling bias is the difference between the true value of the population parameter we are trying to discover and the expected value of that parameter based on the sampling procedure.
 - Sampling bias is **not** the difference between the true value of the population parameter and the realized value in a sample.
 - Sampling procedures that deviate from a random sample cause sampling bias.
- ► There are two main sources of sampling bias:
 - Population / sample mismatches
 - Reporting bias

Main Road Bias Example

Declaring a population: an example

```
set.seed(228)
population <- declare population(</pre>
  households = add level(N=500,
     main=sample(c(rep(0,250),rep(1,250))),
     satisfied=correlate(given = main, rho = 0.5,
                          draw binary, prob = 0.5)
))
pop <- population()</pre>
kable(table(pop$main,pop$satisfied)) %>%
  add header above(c("main"=1, "satisfied"=2))
```

main	satisfied	
	0	1
0	173	77
1	76	174

Response bias

Response bias is the difference between the true parameter of interest and the expected sample value of the parameter based on unequal probabilities of reporting.

Let's continue with last session's example:

- ► For main street residents, the chance of being home is 50%
- ▶ For main street residents, the chance of being home is 20%

Declaring response bias

Examining sample characteristics

Sample Weights

Bias in the above example comes from the over-inclusion of main street residents as compared to side street residents. Let's divide them into two groups:

Strata Weights

Stratification: the division of an observed sample or sample frame into non-overlapping groups.

One way to recover the population parameter value would be to compute the weighted average of the strata values:

$$\bar{Y} = \sum_{j}^{j} \bar{y}_{j} w_{j}$$

Where \bar{y} is the target population parameter, $\bar{y_j}$ is the sample average in strata j, and w_j is the proportion of the population in strata j.

▶ In Salkind, the equivalent formula is used: $\bar{Y} = \frac{1}{N} \sum_{j=1}^{j} N_j \bar{y}_j$

Strata Weights, Analytical Solution

Using this formula:

$$\bar{Y} = \sum_{j}^{j} \bar{y_j} w_j$$

prop.table(table(pop\$main,pop\$satisfied),1)

```
## 0 0.692 0.308
## 1 0.304 0.696
```

We plug in the relevant values:

$$\bar{Y} = 0.316 * 0.5 + 0.652 * 0.5 = 0.484$$

Strata Weights, Analytical Solution

$$\bar{Y} = 0.316 * 0.5 + 0.652 * 0.5 = 0.484$$

mean(pop\$satisfied)

[1] 0.502

Strata Weights, Sampling Distribution Code

```
sims <- 1000 #simulations
sam.n <- 250 #attempted sample size
store <- rep(NA, sims)
for (i in 1:sims){
  index <- sample(1:500, sam.n) #drawn sample
  pop <- reporting(pop)</pre>
  main <- mean(pop[index,] %>%
               filter(R==1 & main==1) %>%
               pull(satisfied))
  side <- mean(pop[index,] %>%
               filter(R==1 & main==0) %>%
               pull(satisfied))
  store[i] \leftarrow main * 0.5 + side * 0.5
```

Strata Weights, Sampling Distribution

Strata Weights, Assumptions

- 1. Different responses rates are entirely captured by the strata
 - ▶ i.e., missingness is at random within strata
- 2. The distribution of the population into strata is known

Note: we have not assumed any advanced knowledge about response rates within strata and have still recovered the population parameter

Within-strata descriptive inference

In many situations, we are interested in strata parameters:

Difference between strata

Disproportionate Stratification

+ Main: n=75

We are not required to sample all strata at equal intensity.

Disproportionate Stratification

```
sims <- 1000 #simulations
store <- rep(NA, sims)
for (i in 1:sims){
  sam <- c(sample(main.index,75),</pre>
            sample(side.index,175)) #drawn sample
  pop <- reporting(pop)</pre>
  main <- mean(pop[sam,] %>%
                filter(R==1 & main==1) %>%
                pull(satisfied))
  side <- mean(pop[sam,] %>%
                filter(R==1 & main==0) %>%
                pull(satisfied))
  store[i] \leftarrow main * 0.5 + side * 0.5
```

Disproportionate Stratification

Disproportionate Stratification, Sampling Variation

We do not add much sampling variance!

Within-strata sampling variance, disproportionate sampling

Proportionate vs. disproportionate stratified sampling

Sampling distribution of difference between strata

Conceptual practice: stratification

- Describe a monitoring situation where you might want to use stratified sampling
 - ► What are the strata?
 - How would you allocate sampling effort across the strata?

```
set.seed(228)
population <- declare_population(</pre>
  households = add level(N=500,
     main=draw_binary(N=N, prob = 0.5),
     satisfied=correlate(given = main, rho = 0.5,
                           draw_binary, prob = 0.5)
))
my_estimand <- declare_estimands(mean(satisfied),</pre>
                                   label = "Ybar")
```

```
strata_weighted_mean <- function(data){</pre>
  data.frame(
  estimator_label = "strata_w_mean",
  estimand label = "Ybar",
 n = nrow(data),
  stringsAsFactors = FALSE,
  estimate = data %>% filter(R==1) %>%
    group by (main) %>%
    summarise(mean=mean(satisfied)) %>%
    mutate(prop=c(0.5,0.5)) \%
    mutate(sub.mean=mean*prop) %>% pull(sub.mean) %>%
    sum())
} #just use this function, custom
```

```
answer <- declare estimator(</pre>
  handler = tidy_estimator(strata_weighted_mean),
  estimand = my_estimand)
design <- population + my estimand + reporting +
          sampling + answer
diagnosis <- diagnose design(design, sims = 1000)
diagnosis$diagnosands_df[,c(4,5,12,14)] \%
 kable()
```

bias	se(bias)	mean_estimate	sd_estimate
0.0015043	0.0013906	0.5025683	0.0564495

Clustered sampling

- Sometimes it might be logistically difficult to sample at the level of *units* and we instead want to sample at the level of *clusters*. Examples:
 - students vs. classrooms
 - households vs. neighborhoods
 - volunteers vs. volunteer teams
 - employees vs. branches
- We can still recover a population parameter by randomly sampling clusters
 - (assuming responses are missing at random within clusters)
- However, we pay a cost in terms of sampling variance when units within clusters are similar
 - ▶ i.e., we draw a large number of similar units into the final sample

Example: How well do agents serve the rural poor in India?

```
population <- declare population(</pre>
  district = add level(N=3,
    u = runif(N, min=0.3, max=0.7)),
  office = add level(N=30,
    v = runif(length(office), min=-0.1, max=0.1)),
  agent = add_level(N=5,
    w=runif(length(agent), min=-0.3, max=0.3)),
  shg = add level(N=10,
    x=runif(length(shg), min=-0.1, max=0.1)),
  individual = add_level(N=20,
    y=runif(length(individual), min=-0.3, max=0.3),
    prob=case_when(u+v+w+x+y<0 \sim 0,
                   u+v+w+x+y>1 \sim 1,
           u+v+w+x+y>=0 & u+v+w+x+y<=1 \sim u+v+w+x+y),
     satisfied=draw binary(prob = prob))
```

Comparing sampling distributions

Let's compare what happens when we sample 5000 people in three ways:

- ► Sample 5 offices
- ► Sample 25 agents
- ► Sample 5000 individuals

```
pop <- population()</pre>
```

Three clustered sampling designs sims <- 1000 #simulations

sam <- sample(unique(pop\$office),5)</pre>

store.o <- rep(NA, sims)

for (i in 1:sims){

```
store.o[i] <- mean(pop[pop$office %in% sam, "satisfied"])
}
store.a <- rep(NA, sims)
for (i in 1:sims){
  sam <- sample(unique(pop$agent),25)</pre>
  store.a[i] <- mean(pop[pop$agent %in% sam, "satisfied"])
}
store.i <- rep(NA, sims)
for (i in 1:sims){
  sam <- sample(unique(pop$individual),5000)</pre>
  store.i[i] <- mean(pop[pop$individual %in% sam, "satisfied
```

Comparing sampling distributions

Conceptual practice: clusters

- Describe a monitoring situation where you might want to use clustered sampling
 - ► What are the clusters?
 - How would you choose the level of clustering?