Introduction to Information Retrieval

CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan

Lecture 6: Scoring, Term Weighting and the Vector Space Model

Recap of lecture 5

- Collection and vocabulary statistics: Heaps' and Zipf's laws
- Dictionary compression for Boolean indexes
 - Dictionary string, blocks, front coding
- Postings compression: Gap encoding, prefix-unique codes

Variable-Byte and Gamma codes	MB
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ-encoded	101.0

This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't. Only return True or False
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often <u>result in either too few</u>
 (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits Boolean search 對於每個查詢都只會回傳「符合」或「不符合」,結果不是太多就是太少 -> 必須找一個更好的查詢法
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

對所有結果評分 而非只回傳ture or false

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa Free text queriers: A free text query is simply one or more words, terms, numbers, and optionally operators.

其實就是自然語言

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

對使用者來說,搜尋出幾個結果並不是重點,使用者通常只有耐心去看前10個結果 所以需要對所有結果排序,使用Ranking algorithm

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

評分越高的document,代表越接近使用者想要查詢的結果分數會落在0,1之間

Query-document matching scores

- We need a way of assigning a score to a query/ document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A,A) = 1
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

```
通常A = Query, B = Document
分數越高,代表該document出現越多query中的單字
```

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march |Q| = 3, Q = {ides, of, march}
- Document 1: caesar died in march |D1| = 4, D1 = {caesar, died, in, march}
- Document 2: the long march |D2| = 3, D2 = {the, long, march}

```
jaccard(Q, D1) = (Q n D1) / (Q u D1) = Q和D1重複字數 / Q和D1總共字數 = 1/6 jaccard(Q, D2) = (Q n D2) / (Q u D2) = Q和D2重複字數 / Q和D2總共字數 = 1/5 (重複的字只能算一次!)
```

缺點:

分數高的document可能只是因為他比較短(cosine similarity可以解決) 沒考慮到Query在Document出現的頻率(tf-idf可以解決)

Issues with Jaccard for scoring

只有用出現與否的True / False

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information 罕見字比常用字更有價值, jaccard卻沒考慮到這點
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$
- . . . instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

Recall (Lecture 1): Binary termdocument incidence matrix

Bi-word

Doc	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

只考慮每一組Bi-word有沒有出現在某個doc中

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in N^v: a column below 改良原本的boolean matrices, 把單純的true false改為 每個bi-word出現在各document的次數

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model. ^{一袋文字,只考慮有沒有} 出現過,沒考慮順序
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course. 只考慮出現的次
- For now: bag of words model

只考慮出現的次數,不考慮順序 所以事先建立positional index 再使用bag of words model 即可改善這個問題

Term frequency tf 基個term在某個document出現了幾次?

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term. 出現1次query和出現10次query的documents,重要性並不剛好相差10倍 term. 而是會隨著出現頻率的增加,重要性的成長會漸漸趨緩 -> 取log
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.
 NB: frequency = count in IR

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0$, $1 \to 1$, $2 \to 1.3$, $10 \to 2$, $1000 \to 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:
- The score is 0 if none of the query terms is present in the document.

Document frequency —個term在幾個documents出現過

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

越罕見的單字, 在搜尋時應該越有價值

當一個罕見字出現在某一文件時,該文件有很大的機率會是使用者要的,所以罕見字的df低反之,常見的單字在任何文件中都看得到,就沒辦法作為判斷的標準,所以常見字的df高所以取inverse-df(IDF),就可以代表一個字的權重,越稀有的字權重越高

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line) 如果查詢的是常用字,即使出現在 document,也不一定是使用者要的
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this. 越常見的單字給予越高的分數->最後再inverse取log

idf weight Inverse document frequency

- df_t is the documents中,不會重複計算
 df_t is the document frequency of t: the number of documents that contain t
 - df, is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by

 $\mathbf{idf}_t = \log_{10} \left(N/\mathbf{df}_t \right)$ 如果df越小,代表這個字愈罕見 他能得到的idf分數就愈高

• We use $\log (N/df_t)$ instead of N/df_t to "dampen" the 同樣,取log是因為出現頻率和相關程度並非線性關係 effect of idf. 就像出現1000次並不代表分數應該比出現1次的高1000倍

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf_t 可視為這個 $term$ 的權重(價值)
calpurnia	1	log(1,000,000 / 1) = 6
animal	100	log(1,000,000 / 100) = 4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

零代表每個document都 會出現這個字,完全無 法作為判斷基準

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like 所以如果Query只有一個字,那IDF就沒用
 - iPhone 因為不同於tf, idf是指一個term出現在「幾個」document, 不會重複計算 但可以透過idf分數來決定每個term的稀有度, 作為最後documents ranking依據
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

搜尋"capricious person"時應該著重在較罕見的"capricious"而非"person"把出現"capricious"的document排在前面

Collection vs. Document frequency

Term t 出現在collection的「次數」,會重複算!

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example: 此字在collection出現次數 此collection中多少documents出現此字

Word	Collection frequency	Document frequency
insurance	10440 次數差不多	較少文件中看到 3997 -> 每個文件可能有2-3個insurance
try	10422	較多文件中看到 8760 -> 每個文件可能有1-2個try

 Which word is a better search term (and should get a higher weight)? insurance屬於較罕見的字 因為df較低,所以idf較低

tf-idf weighting 某個term在某個document出現的次數 x 該term的權重權重愈高,出現愈多,評分愈高

The tf-idf weight of a term is the product of its tf weight and its idf weight. [1 + log(tf)] * [log(N/df)] ??

$$\mathbf{w} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$
 $\frac{\text{Hog}_{\text{Hog}}}{\text{\#4Example}}$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

 $Log(TF) \times Log(IDF) = LOG(TF+IDF)$ 取LOG是為了平滑化 就像出現1000次不代表分數應該要是出現1次的一千倍

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

若query中有不只一個terms,那就算出「每一個term的tf.idf」再相加

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - •••

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51 0		1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

Documents as vectors

V is the number of words

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

把Queries和Documents視為向量去做比較

Queries as vectors

把Query和Document轉成向量 去比較他們的距離

- <u>Key idea 1:</u> Do the same for queries: <u>represent</u> them as vectors in the space Query和Document距離愈短 _->他們之間的相關性愈高
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance? $p_1(x_1, y_1), p_2(x_2, y_2),$ distance $(p_1, p_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

可能因為documents比較長,導致距離變長,進而誤判queries和documents的相關性

Why distance is a bad idea

The Euclidean distance Between q and \overrightarrow{d}_2 is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document \vec{d}_2 are very similar.

Q = 找出包含GOSSIP和JEALOUS的Document 從向量空間來看,很明顯是 d_2 最符合需求 但就因為他最長,導致distance(q, d_2)最大->誤判為最不相關

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same contented
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity. d和2d內文的單字完全一致,僅長度不同,但算距離卻會得到很大差異,誤判為兩個文章不相關 ->改用角度,query和document夾角越大,代表他們越不相關
- Key idea: Rank documents according to angle with query.

 _{用夾角來取代距離}

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing order of the angle</u> between query and document
 - Rank documents in <u>increasing order of</u> cosine (query, document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

角度愈大, cosine愈小, 愈不相關

From angles to cosines

But how - and why - should we be computing cosines?

Length normalization Cosine可以直接解決長度不同造成的誤判 因為Cosine的分母會對長度做標準化

• A vector can be (length-) normalized by dividing each of its components by its length - for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$

將向量標準化(x,y座標分別除以長度)後再算Ranking,即可排除長度造成的錯估

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document) a·b = |a| * |b| * cosθ -> cosθ = (a·b) / (|a| * |b|)

算出query中每個term的tf-idf

以及這些term在document中的tf-idf

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

這邊用tf-idf 所以還不是word2vec的cosine similarity

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

已經把長度標準化後的公式、只要取內積即可得到cosine、不必再除以長度

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

這4個terms分別在這3個documents出現的次數

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

(P.17) 出現次數取log再+1

SaS	PaP	WH
3.06	2.76	2.30
2.00	1.85	2.04
1.30	0	1.78
15.0526	0	2.58
	3.06 2.00	3.06 2.76 2.00 1.85 1.30 0 0 0

After length normalization

長度標準化

 $\sqrt{3.06/(\sqrt{15.0536})}$

term	SzS	PaP	WH						
affection	0.789	0.832	0.524						
jealous	0.515	0.555	0.465						
gossip	0.335	0	0.405						
wuthering	0	0	0.588						

cos(SaS,PaP) ≈

 $0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$

≈ **0.94**

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

把term視為維度,把document視為空間向量

每一個document的長度都要標準化 = 1

 $0.789^2 + 0.515^2 + 0.335^2 + 0^2 = 1$

標準化後的document, 只要互相內積即可得到cosine Cosine愈大代表他們的相關性愈高

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
 2 float Length[N]
 3 for each query term t
    do calculate W_{t,q} and fetch postings list for t
         for each pair (d, \mathsf{tf}_{t,d}) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
  6
     Read the array Length
     for each d
  8
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization			
n (natural)	tf _{t,d}	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$		
a (augmented)	$0.5 \qquad \begin{array}{c} 0.5 \times tf_{t,d} \\ max_t(tf_{t,d}) \end{array}$	p (prob idf)	$\max\{0,\log rac{N-\mathrm{df_t}}{\mathrm{df_r}}\}$	и (pivoted unique)	1/ u		
b (boolean)	$\begin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$		
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 - \log(ave_{t \subseteq d}(tf_{t,d}))}$						

最常一起用的組合,稱為SMART Notation, itc Log(TF) with add-1 smoothing + Log(IDF)

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: lnc.ltc
- Document: logarithmic tf (l as first character),
 no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...

tf-idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

IDF是拿來評價Query中每一個字的權重 所以Document不會有IDF

出現次數	人 拟Log+T	幾個又1	件有 取inverse), Log+1 ¹	tt-idt cos	S標準化 出:	境次數 │ 取L0	>g+1 tf=tf	f–wt (no DF) <u> </u>	COS標準化 │	評分
Term Query							Docu	ment		Prod	
	tf- raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000					1.3	1.3	0.68	0.53

Exercise: what is N, the number of docs?

Summary - vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Resources for today's lecture

IIR 6.2 - 6.4.3

- http://www.miislita.com/information-retrievaltutorial/cosine-similarity-tutorial.html
 - Term weighting and cosine similarity tutorial for SEO folk!