Lemma 1. For $x \in \mathbb{R}^2$, the 2D shrinkage function $s^l : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$s^{l}(\mathbf{x}) = s_{\frac{1}{\beta^{l}}}(\mathbf{x}) \triangleq \max\left\{ \|\mathbf{x}\|_{2} - \frac{1}{\beta^{l}}, 0 \right\} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}, \tag{1}$$

where $\beta^l > 0$, is nonexpansive

$$||s^{l}(\mathbf{x}_{1}) - s^{l}(\mathbf{x}_{2})||_{2} \le ||\mathbf{x}_{1} - \mathbf{x}_{2}||_{2}.$$
 (2)

Furthermore, if $||s^{l}(\mathbf{x}_{1}) - s^{l}(\mathbf{x}_{2})||_{2} = ||\mathbf{x}_{1} - \mathbf{x}_{2}||_{2}$, then $s^{l}(\mathbf{x}_{1}) - s^{l}(\mathbf{x}_{2}) = \mathbf{x}_{1} - \mathbf{x}_{2}$.

Proof. Refer to Proposition 3.1 in [R1].

Lemma 2. Assume $\mathcal{N}(\mathbf{K}) \cap \mathcal{N}(\mathbf{D}^*) = 0$, where $\mathcal{N}(\cdot)$ represents the null space of a matrix. Then for any $\mathbf{w} \neq \widetilde{\mathbf{w}} \in \mathbb{R}^n$, it holds that

$$||h^l(\mathbf{w}) - h^l(\widetilde{\mathbf{w}})||_2 \le ||\mathbf{w} - \widetilde{\mathbf{w}}||_2. \tag{3}$$

Proof. Refer to Proposition 3.2 in [R2].

Lemma 3. Let $\{a_k\}_k$ be a real non-negative sequence. If $a_{k+1} \leq a_k + \epsilon_k$ for all k, $\epsilon_k \geq 0$ and $\sum_{i=1}^{\infty} \epsilon_k$ converges, then a_k also converges.

Proof. It is easy to redsee that a_k is bounded. Therefore, $\exists \mathcal{K} \subset \mathbb{N}$ s.t. $\{a_k\}_{k \in \mathcal{K}}$ converges. redFor all $\varepsilon > 0$, choose $N_1 \in \mathbb{N}$ s.t. $|a_{n_1} - a_{n_2}| < \frac{\varepsilon}{2}, \forall n_1, n_2 \in \mathcal{K}$ and $\mathrm{red}n_1, n_2 > N_1$. Now that $\sum_{i=1}^k \epsilon_i$ converges, pick $N_2 \in \mathbb{N}$ s.t. $\sum_{i=N_2+1}^{\infty} \epsilon_i < \frac{\varepsilon}{2}$. Let $N = \min\{n \in \mathcal{K} : n > \max\{N_1, N_2\}\}$. redFor all $m \geq k > N$, choose $k_1 = \max\{n \in \mathcal{K} : n < k\}$, $k_2 = \min\{n \in \mathcal{K} : n > m\}$, then $k_1 > \max\{N_1, N_2\}$, $|a_{k_1} - a_{k_2}| < \frac{\varepsilon}{2}$ and

$$a_k - a_{k_1} \le \sum_{i=k_1}^{k-1} \epsilon_i,\tag{4}$$

$$a_{k_2} - a_m \le \sum_{i=m}^{k_2 - 1} \epsilon_i. \tag{5}$$

Adding (4) and (5) yields $a_k - a_m + a_{k_2} - a_{k_1} \le \sum_{i=k_1}^{k-1} \epsilon_i + \sum_{i=m}^{k_2-1} \epsilon_i \le \sum_{i=k_1}^{\infty} \epsilon_i \le \sum_{i=N_2+1}^{\infty} \epsilon_i < \frac{\varepsilon}{2}$, hence

$$a_k - a_m \le |a_{k_1} - a_{k_2}| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (6)

On the other hand, $k > k_1 > N_2$ and

$$a_m - a_k \le \sum_{i=k}^{m-1} \epsilon_i \le \sum_{i=N2+1}^{\infty} \epsilon_i < \varepsilon. \tag{7}$$

Combining (6) and (7) redgives $|a_k - a_m| < \varepsilon$, which implies $\{a_k\}_k$ is a red Cauchy sequence, and hence it converges.

Theorem 1. (Convergence result) For a fixed $\mu > 0$, suppose $\mathbf{D}^l = \mathbf{D}^* + \xi_l \mathbf{E}^l$ and $\beta^l = \beta^* + \gamma_l$, where \mathbf{E}^l is a Toeplitz matrix with the same structure as \mathbf{D}^l , $\mathbf{D}^* \in \mathbb{R}^{m \times n}$ and $\beta^* \in \mathbb{R}$ are fixed quantities, and $\xi_l \in \mathbb{R}$, $\gamma_l \in \mathbb{R}$ are absolutely summable, redmeaning $\sum_l |\xi_l|$ and $\sum_l |\gamma_l|$ both converge. Then the sequence $\{(\mathbf{w}^l, \mathbf{u}^l)\}$ generated from any starting point $\{(\mathbf{w}^0, \mathbf{u}^0)\}$ converges to a solution $\{(\mathbf{w}^*, \mathbf{u}^*)\}$ of (9) (in the original manuscript) and (10) (in the original manuscript) in which both \mathbf{D}^l and β^l converge to \mathbf{D}^* and β^* respectively.

Proof. According to the assumption on \mathbf{D}^l and β^l , we have $\lim_{l\to +\infty} \mathbf{D}^l = \lim_{l\to +\infty} (\mathbf{D}^* + \xi_l \mathbf{E}^l) = \mathbf{D}^*$ and $\lim_{l\to +\infty} \beta^l = \lim_{l\to +\infty} (\beta^* + \gamma_l) = \beta^*$. It therefore follows that $\lim_{l\to +\infty} \mathbf{M}^l = \lim_{l\to +\infty} (\mathbf{D}^l)^T \mathbf{D}^l + \frac{\mu}{\beta^l} \mathbf{K}^T \mathbf{K} = (\mathbf{D}^*)^T \mathbf{D}^* + \frac{\mu}{\beta^*} \mathbf{K}^T \mathbf{K} = \mathbf{M}^*$. By continuity of s^l and h^l , $\forall \mathbf{x} \in \mathbb{R}^n$, we have $\lim_{l\to +\infty} s^l(\mathbf{x}) = \max\left\{\|\mathbf{x}\|_2 - \frac{1}{\beta^*}, 0\right\} \frac{\mathbf{x}}{\|\mathbf{x}\|_2} := s^*$ and $\lim_{l\to +\infty} h^l(\mathbf{x}) = \mathbf{D}^*(\mathbf{M}^*)^{-1} \left[(\mathbf{D}^*)^T(\mathbf{x}) + \frac{\mu}{\beta^*} \mathbf{K}^T \mathbf{y}\right] := h^*(\mathbf{x})$ Invoking Lemma 1 and 2, we have $\|s^l(h^l(\mathbf{w}^l)) - s^l(h^l(\widetilde{\mathbf{w}}))\| \leq \|h^l(\mathbf{w}^l) - h^l(\widetilde{\mathbf{w}})\| \leq \|\mathbf{w}^l - \widetilde{\mathbf{w}}\|$. Furthermore, Lemma 1 and 2 ensures non-expansiveness of the shrinkage operator s^* and the function h^* ; suppose $\widetilde{\mathbf{w}}$ is any fixed point of $s^* \circ h^*$, that $\widetilde{\mathbf{w}} = s^*(h^*(\widetilde{\mathbf{w}}))$, then we have

$$\|\mathbf{w}^{l+1} - \tilde{\mathbf{w}}\| = \|s^{l}(h^{l}(\mathbf{w}^{l})) - s^{*}(h^{*}(\tilde{\mathbf{w}}))\|$$

$$= \|s^{l}(h^{l}(\mathbf{w}^{l})) - s^{l}(h^{l}(\tilde{\mathbf{w}})) + s^{l}(h^{l}(\tilde{\mathbf{w}})) - s^{*}(h^{*}(\tilde{\mathbf{w}}))\|$$

$$\leq \|s^{l}(h^{l}(\mathbf{w}^{l})) - s^{l}(h^{l}(\tilde{\mathbf{w}}))\| + \|s^{l}(h^{l}(\tilde{\mathbf{w}})) - s^{*}(h^{*}(\tilde{\mathbf{w}}))\|$$

$$= \|\mathbf{w}^{l} - \tilde{\mathbf{w}}\| + \zeta^{l},$$
(8)

where we write $\zeta^l = \|s^l(h^l(\tilde{\mathbf{w}})) - s^*(h^*(\tilde{\mathbf{w}}))\|$. We are going to show that $\sum_{l=1}^l \zeta^l$ converges, which indicates that the real non-negative sequence $\|\mathbf{w}^{l+1} - \tilde{\mathbf{w}}\|$ converges as well according to Lemma 3. The assertion holds trivially if $\|h^*(\tilde{\mathbf{w}})\| < \frac{1}{\beta^*}$, as it will be the case that $\|D^l\tilde{\mathbf{u}}\| < \frac{1}{\beta^l}$ for l sufficiently large. Otherwise, $\|\mathbf{D}^*\tilde{\mathbf{u}}\| > 0$. Choose l sufficiently large so that $|\beta^l - \beta^*| \leq \frac{\beta^*}{2}$, $\|(\mathbf{D}^l - \mathbf{D}^*)\tilde{\mathbf{u}}\| < \frac{\|\mathbf{D}^*\tilde{\mathbf{u}}\|}{2}$. we have

$$\begin{aligned} \|s^{l}(h^{l}(\tilde{\mathbf{w}})) - s^{*}(h^{*}(\tilde{\mathbf{w}}))\| &= \|h^{l}(\tilde{\mathbf{w}}) - h^{*}(\tilde{\mathbf{w}}) - (\chi^{l}(h^{l}(\tilde{\mathbf{w}})) - \chi^{*}(h^{*}(\tilde{\mathbf{w}})))\| \\ &= \|(\mathbf{D}^{l} - \mathbf{D}^{*})\tilde{u} - \left(\frac{1}{\beta^{l}} \frac{\mathbf{D}^{l}\tilde{u}}{\|\mathbf{D}^{l}\tilde{u}\|} - \frac{1}{\beta^{*}} \frac{\mathbf{D}^{*}\tilde{u}}{\|\mathbf{D}^{*}\tilde{u}\|}\right) \| \\ &\leq \|(\mathbf{D}^{l} - \mathbf{D}^{*})\tilde{u}\| + \|\frac{1}{\beta^{l}} \frac{\mathbf{D}^{l}\tilde{u}}{\|\mathbf{D}^{l}\tilde{u}\|} - \frac{1}{\beta^{*}} \frac{\mathbf{D}^{*}\tilde{u}}{\|\mathbf{D}^{l}\tilde{u}\|} \| \\ &\leq \|\mathbf{D}^{l} - \mathbf{D}^{*}\|\|\tilde{\mathbf{u}}\| + \|\left(\frac{1}{\beta^{l}} - \frac{1}{\beta^{*}}\right) \frac{\mathbf{D}^{l}\tilde{u}}{\|\mathbf{D}^{l}\tilde{u}\|} \| \\ &+ \frac{1}{\beta^{*}} \|\frac{\mathbf{D}^{l}\tilde{u}}{\|\mathbf{D}^{l}\tilde{u}\|} - \frac{\mathbf{D}^{*}\tilde{u}}{\|\mathbf{D}^{*}\tilde{u}\|} \| \\ &= \|\xi_{l}\|\|\tilde{\mathbf{u}}\| + \frac{|\beta^{l} - \beta^{*}|}{\beta^{l}\beta^{*}} + \frac{1}{\beta^{*}} \|\frac{\|\mathbf{D}^{*}\tilde{u}\|\mathbf{D}^{l}\tilde{u} - \|\mathbf{D}^{l}\tilde{u}\|\mathbf{D}^{*}\tilde{u}} \| \\ &\leq \|\xi_{l}\|\|\tilde{\mathbf{u}}\| + \frac{2|\beta^{l} - \beta^{*}|}{\beta^{*2}} \\ &+ \frac{2}{\beta^{*}} \frac{\|\|\mathbf{D}^{*}\tilde{u}\|\|(\mathbf{D}^{l} - \mathbf{D}^{*})\tilde{u} + (\|\mathbf{D}^{*}\tilde{u}\| - \|\mathbf{D}^{l}\tilde{u}\|)\mathbf{D}^{*}\tilde{u}} \| \\ &\leq \|\xi_{l}\|\|\tilde{u}\| + \frac{2|\beta^{l} - \beta^{*}|}{\beta^{*2}} \\ &+ \frac{2}{\beta^{*}} \frac{\|\mathbf{D}^{*}\tilde{u}\|\|(\mathbf{D}^{l} - \mathbf{D}^{*})\tilde{u}\| + \|\mathbf{D}^{*}\tilde{u} - \mathbf{D}^{l}\tilde{u}\|\|\mathbf{D}^{*}\tilde{u}\|} \\ &\leq \|\xi_{l}\|\|\tilde{u}\| + \frac{2|\gamma_{l}|}{\beta^{*2}} + \frac{2}{\beta^{*}} \frac{\|\xi_{l}\|\|\tilde{u}\|}{\|\mathbf{D}^{*}\tilde{u}\|} \end{aligned}$$

where $\tilde{u} = \left(\mathbf{D}^{*\mathrm{T}}\mathbf{D}^{*} + \frac{\mu}{\beta^{*}}\mathbf{K}^{\mathrm{T}}\mathbf{K}\right)^{-1}\left(\mathbf{D}^{*\mathrm{T}}\tilde{\mathbf{w}} + \frac{\mu}{\beta^{*}}\mathbf{K}^{\mathrm{T}}\mathbf{y}\right)$, which is bounded. The convergence of $\sum_{l} \zeta^{l}$ follows from that of $\sum_{l} \|\xi_{l}\|$ and $\sum_{l} |\gamma_{l}|$. Now that $\{\mathbf{w}^{l}\}_{l}$ is bounded, let \mathbf{w}^{*} be any limit point of

it and $\{\mathbf{w}^{l_i}\}_i$ be a subsequence such that $\lim_{i\to\infty}\mathbf{w}^{l_i}=\mathbf{w}^*$. Let $l\to+\infty$, (8) becomes

$$\lim_{l \to +\infty} \|\mathbf{w}^{l+1} - \tilde{\mathbf{w}}\| \le \lim_{l \to +\infty} \|\mathbf{w}^{l} - \tilde{\mathbf{w}}\| = \lim_{i \to \infty} \|\mathbf{w}^{l_i} - \tilde{\mathbf{w}}\| = \|\mathbf{w}^* - \tilde{\mathbf{w}}\|$$
(10)

which implies that all limit point of $\{\mathbf{w}^k\}$, if more than one, have an equal distance to $\tilde{\mathbf{w}}$. On the other hand,

$$\|\mathbf{w}^{l_{i}+1} - s^{*}(h^{*}(\mathbf{w}^{*}))\| = \|s^{l_{i}}(h^{l_{i}}(\mathbf{w}^{l_{i}})) - s^{*}(h^{*}(\mathbf{w}^{*}))\|$$

$$\leq \|s^{l_{i}}(h^{l_{i}}(\mathbf{w}^{l_{i}})) - s^{l_{i}}(h^{l_{i}}(\mathbf{w}^{*}))\|$$

$$+ \|s^{l_{i}}(h^{l_{i}}(\mathbf{w}^{*})) - s^{*}(h^{*}(\mathbf{w}^{*}))\|$$

$$\leq \|\mathbf{w}^{l_{i}} - \mathbf{w}^{*}\| + \|s^{l_{i}}(h^{l_{i}}(\mathbf{w}^{*})) - s^{*}(h^{*}(\mathbf{w}^{*}))\|,$$
(11)

which implies $\lim_{i\to\infty} \mathbf{w}^{l_i+1} = s^*(h^*(\mathbf{w}^*))$, so that $s^*(h^*(\mathbf{w}^*))$ is also a limit point of $\{\mathbf{w}^k\}$ which is required to have the same distance to $\tilde{\mathbf{w}}$ as \mathbf{w}^* does, that is $\|\mathbf{w}^* - \tilde{\mathbf{w}}\| = \|s^*(h^*(\mathbf{w}^*)) - \tilde{\mathbf{w}}\| = \|s^*(h^*(\mathbf{w}^*)) - s^*(h^*(\tilde{\mathbf{w}}))\|$. Since $\tilde{\mathbf{w}}$ is any fixed point of $s^*(h^*(\cdot))$, replacing $\tilde{\mathbf{w}}$ with \mathbf{w}^* in (10) gives rise to $\lim_{l\to\infty} \|\mathbf{w}^l - \mathbf{w}^*\| = \lim_{i\to\infty} \|\mathbf{w}^{l_i} - \mathbf{w}^*\| = \|\mathbf{w}^* - \mathbf{w}^*\| = 0$, which implies

$$\lim_{l \to \infty} \mathbf{w}^l = \mathbf{w}^* \tag{12}$$

combining (6) (in the original manuscript) and (12) leads to

$$\lim_{l \to +\infty} \mathbf{u}^l = \lim_{l \to +\infty} \left(\mathbf{D}^{l^{\mathrm{T}}} \mathbf{D}^l + \frac{\mu}{\beta^l} \mathbf{K}^{\mathrm{T}} \mathbf{K} \right)^{-1} \left(\mathbf{D}^{l^{\mathrm{T}}} \mathbf{w}^l + \frac{\mu}{\beta^l} \mathbf{K}^{\mathrm{T}} \mathbf{y} \right) = \mathbf{u}^*$$

which completes the proof of Theorem 1.

[R1] Y. Wang, J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," *SIAM J. Imaging Sci*, vol. 1, no. 3, pp. 248–272, 2008.