

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08307859 A

(43) Date of publication of application: 22 . 11 . 96

(51) Int. CI

H04N 7/24 H04L 12/28 H04Q 3/00

(21) Application number: 07104057

(22) Date of filing: 27 . 04 . 95

(71) Applicant:

HITACHI LTD

(72) Inventor:

TAKAHASHI SUSUMU OKU MASUO

(54) CODE TRANSMITTER

(57) Abstract:

PURPOSE: To send data of the consumer digital VTR coding system to an ATM network.

CONSTITUTION: Output data of an in-frame coder 1 are converted into a payload in 48-byte by a DIF data payload processing circuit 4. Then an ATM cell processing circuit 5 adds a header and the resulting data are sent to an ATM network 3 by a network interface

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-307859

(43)公開日 平成8年(1996)11月22日

(51) Int.Cl. 6	51)Int.Cl.6		F I			技術表示箇所	
H04N 7/24			H 0 4 N	7/13		Z	
H 0 4 L 12/28			H 0 4 Q	3/00			
H 0 4 Q 3/00	9466-5K		H 0 4 L 11/20		D		
		9466-5K]	E	
			審査請求	未請求	請求項の数 6	OL (全 10 頁)	
(21)出願番号	特願平7-104057		(71)出願人	000005108			
				株式会社	土日立製作所		
(22)出願日	平成7年(1995)4月27日			東京都司	F代田区神田駿 河	可台四丁目6番地	
			(72)発明者	高橋 ギ	₹		
				神奈川県	具横浜市戸塚区 市	与田町292番地 株	
					メディア研究所内		
			(72)発明者				
						5田町292番地 株	
						メディア研究所内	
			(74)代理人	并理士	武 顕次郎		
			1				

(54) 【発明の名称】 符号送出装置

(57)【要約】

【目的】 民生用ディジタルVTR符号化方式のデータを、ATMネットワーク上に送出すること。

【構成】 フレーム内符号化装置 (1) の出力データを、DIFデータペイロード化回路 (4) で48バイトのペイロードに変換し、ATMセル化回路 (5) によりヘッダーを追加し、ネットワークインタフェース (6) によりATMネットワーク (3) へ送出する。

30

【特許請求の範囲】

画像を小単位に分割してフレーム内符号 【請求項1】 化され、この画像小単位当たりの符号量に対応した大き さのブロック内に画像小単位毎の符号化データがほぼ対 応するように配置された映像データ、音声データ、その 他の付加情報データを、伝送路に対応した固定長のセル に乗せるペイロード上に配置するペイロード化手段と、 上記ペイロードにヘッダーを付加してセルを生成するセ ル化手段と、

上記セルを伝送路に送出するネットワークインタフェー 10 ス手段と、を備えていることを特徴とする符号送出装

【請求項2】 請求項1記載において、

前記ペイロード化手段は、1つの映像データブロックに 1ないし複数のペイロードを対応させ、ペイロード毎に 音声データおよびその他の付加情報データを多重するデ ータ多重手段を備えていることを特徴とする符号送出装

【請求項3】 請求項1記載において、

前記ペイロード化手段は、複数個の符号化データブロッ 20 クを接続するブロック結合手段と、それを複数個のペイ ロードに分割するブロック再分割手段とからなることを 特徴とする符号送出装置。

【請求項4】 入力画像を小単位に分割してフレーム内 符号化し、この画像小単位当たりの符号量に対応した大 きさのブロック内に、画像小単位毎の符号化データがほ ぼ対応するように配置する符号化手段と、

該符号化手段が生成する映像データ, 音声データ, その 他の付加情報データを、伝送路に対応した固定長のセル に乗せるペイロード上に配置するペイロード化手段と、 上記ペイロードにヘッダーを付加してセルを生成するセ ル化手段と、

上記セルを伝送路に送出するネットワークインタフェー ス手段と、を備え、

上記符号化手段は画素密度および符号化後のビットレー トの異なる複数の符号化モードをもち、伝送路に送出す るビットレートに合わせて符号化手段における符号化モ ードを切り換えるモード設定手段を備えていることを特 徴とする符号送出装置。

【請求項5】 請求項4記載において、

前記符号化手段は、画像のコマ落しを行ってビットレー トを下げるコマ落し手段を備えていることを特徴とする 符号送出装置。

【請求項6】 請求項5記載において、

入力画像の動きを検出する動き検出手段を備え、該動き 検出手段により動きが検出されない間は、前記コマ落し 手段でビットレートを下げた映像データを送出してビッ トレートの高い符号化モードで符号化し、動きが検出さ れたときは、ビットレートの低い符号化モードで符号化 したコマ落しを行わない映像データを送出するように、

前記モード設定手段によるモード切り換えを行うことを

特徴とする符号送出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、圧縮符号化された動画 像データを固定長のセルに乗せて伝送路に送出する符号 送出装置に関する。

[0002]

【従来の技術】マルチメディア通信に欠かせない技術と して、ATM(非同期転送モード)が注目されている。 現在標準化されているのは、5バイトのヘッダーと48 バイトのペイロードからなる53バイトのセルを、15 5 M b p s のネットワーク上に非同期で転送するもので ある。この特徴は、通信速度の柔軟性、メディア多重の 柔軟性であり、欠点は、ネットワーク内のバッファが溢 れてセルが失われる可能性があること (セル損失) であ

【0003】一方、動画像の符号化については、MPE G2と呼ばれる符号化方式の標準化が進められている。 このMPEG2の符号化データをATMネットワークで 伝送する技術に関しては、「電子情報通信学会技術報 告」CS93-164, DSP93-88 (1994年 1月)に詳しい。

【0004】MPEG2は、動き補償フレーム間予測と DCT(離散コサイン変換)を組み合わせた符号化であ り、髙い圧縮率が得られることを特徴としている。しか し、符号に誤りがあった場合、符号化の単位であるマク ロブロックと呼ばれる小単位画像が複数個連なったスラ イスと呼ばれるレベルまで誤りが伝播し、またフレーム 間予測を行っているため、時間方向にも誤りが伝播する という欠点がある。したがって、セル損失があったとき の画質の劣化は甚大である。また、このときの再生画の 修整(コンシールメント)も難しい。

【0005】一方また、民生用ディジタルVTRの規格 化も進められている。これについては、日本電子機械工 業会;「第30回電子工業技術大会資料集」C-2,5 9~64頁(1993年10月)に詳しい。こちらに用 いられる符号化方式もDCT符号化であるが、VTRの 様々な特殊機能に対応するため、フレーム間予測を用い ないフレーム内符号化になっている。符号化後のビット レートは約28Mbpsであり、MPEG2ほど高い圧 縮率は得られないが、誤り伝播の範囲がほぼマクロブロ ック内に抑さえられ、時間方向にも伝播しないという特 徴がある。また、コンシールメントも、1フレーム前の マクロブロックデータに置き換えることで簡単に行うこ とができる。しかしながら、この民生用ディジタルVT R符号化方式のデータを、ATMネットワークで伝送す ることについては考慮されていなかった。

[0006]

【発明が解決しようとする課題】従来の技術は、MPE

G2の符号化データをATMネットワークで伝送するこ とにより、マルチメディア通信に適した動画像データの 伝送を実現しているが、セル損失による画質劣化が大き く、コンシールメントも難しいという欠点があった。ま た、セル損失に強い民生用ディジタルVTR符号化方式 のデータを、ATMネットワークで伝送することについ ては考慮されていなかった。

【0007】本発明の目的とするところは、民生用ディ ジタルVTR符号化方式のデータをATMネットワーク で伝送できるようにすることにより、セル損失に強く、 マルチメディア通信に適した符号送出装置を提供するこ とにあり、またできるだけ低いビットレートで伝送する ことにある。

[0008]

【課題を解決するための手段】上記の目的を達成するた め、本発明では、映像データ、音声データ、その他の付 加情報データを、伝送路に対応した固定長のセルに乗せ るペイロード上に配置するペイロード化手段と、ペイロ ードにヘッダーを付加してセルを生成するセル化手段 と、セルを伝送路に送出するネットワークインタフェー 20 ス手段を設けた。

【0009】また、ペイロード化手段に、1つの映像デ ータブロックに1ないし複数のペイロードを対応させ、 ペイロード毎に音声データおよびその他の付加情報デー タを多重するデータ多重手段を設けた。

【0010】あるいは、ペイロード化手段を、複数個の 符号化データブロックを接続するブロック結合手段と、 それを複数個のペイロードに分割するブロック再分割手 段とから構成した。

【0011】さらに、符号化手段に画素密度および符号 化後のビットレートの異なる複数の符号化モードを設 け、伝送路に送出するビットレートに合わせて符号化手 段における符号化モードを切り換えるモード設定手段を 設けた。

【0012】また特に、符号化手段においてコマ落し手 段を設けた。

【0013】加えて、入力画像の動きを検出する動き検 出手段を設けた。

[0014]

【作用】ペイロード化手段は、映像データ,音声デー タ、その他の付加情報データからペイロードを形成し、 セル化手段はペイロードからセルを生成し、ネットワー クインタフェース手段はセルを伝送路に送出する。

【0015】また、ペイロード化手段において、データ 多重手段は映像データと他のデータをセル内に多重す る。

【0016】あるいは、プロック結合手段とプロック再 分割手段は、データをセル内に隙間なく配置する。

【0017】さらに、符号化手段は複数の符号化モード

ビットレートの低いモードに切り換えることができる。

【0018】特に、コマ落し手段は画素密度を変えずに ビットレートを下げる。

【0019】加えて、動き検出手段は入力画像の動きを 検出し、動きが検出されない間は、モード設定手段はビ ットレートの高い符号化モードに切り換え、コマ落し手 段はこのビットレートを下げる。動きが検出されたとき は、モード設定手段はビットレートの低い符号化モード に切り換える。

[0020]

【実施例】以下、本発明の詳細を図示した各実施例によ って説明する。

【0021】図1は、本発明の第1実施例に係る符号送 出装置の概略構成を示すブロック図である。同図におい て、1はフレーム内符号化装置、2はATMセル送出装 置、3はATMネットワーク、4はDIFデータペイロ ード化回路、5はATMセル化回路、6はネットワーク インタフェースである。

【0022】図1に示す構成において、フレーム内符号 化装置1からは、符号化された映像、音声データおよび 付加情報が出力される。図17は、このフレーム内符号 化装置1から出力されるデータの構成図である。

【0023】図17に示すように、1個のヘッダーDI F (ディジタルインタフェース) ブロックと、9個のオ ーディオDIFブロックと、135個のビデオDIFブ ロックと、3個のVAUXDIFプロックと、2個のサ ブコードDIFブロックとで、1つのサブシーケンスを 形成する。そして、525/60システムでは10個の サブシーケンス、625/50システムでは12個のサ ブシーケンスで、それぞれ1フレームのデータとなる。

【0024】ヘッダーDIFブロックにはサブシーケン スに関する制御情報が、オーディオDIFブロックには オーディオデータおよびオーディオに関するアグジュア リーデータが、ビデオDIFブロックおよびVAUXD IFブロックにはビデオデータおよびビデオに関するア グジュアリーデータが、サブコードDIFブロックには その他の付加情報が、それぞれ乗せられている。1つの DIFブロックは80バイトからなり、最初の3バイト はIDで、残りの77バイトにデータが乗せられてい る。但し、ヘッダーDIFブロックは5バイト、サブコ

ードDIFブロックは48バイトしか使われていない。 【0025】フレーム内符号化装置1から出力されたD IFデータは、DIFデータペイロード化回路4により ATMセルに乗せる48バイトのペイロードに変換さ れ、ATMセル化回路5により5バイトのヘッダーが追 加されて53バイトのATMセルに変換される。生成さ れたATMセルは、ネットワークインタフェース6によ りATMネットワーク3へ送出される。

【0026】以上により、フレーム内符号化された符号 を持ち、モード設定手段は符号化手段の符号化モードを 50 データをATMネットワークに送出することができる。

10

6

【0027】図2は、図1のDIFデータペイロード化 回路4の1例を示すブロック図であって、同図におい て、7はDIFブロック分割回路、8はペイロード形成 回路である。

【0028】図2に示す構成において、DIFブロック分割回路7は、80バイトのDIFブロックデータを40バイトずつに分割し、ペイロード形成回路8は、分割された40バイトのデータを用いて48バイトのペイロードを形成する。

【0029】図3に、本例によるペイロードのバイトアロケーションを示す。DIFブロックデータの前半の40バイト(3バイトのIDとそれにつづく37バイトのデータ)からペイロード"1"を、後半の40バイトからペイロード"2"を形成する。ペイロード"1",

"2"の残りの8バイトには、AAL (ATMアダプテーションレイヤ) その他の付加情報、あるいはエラー訂正用のパリティー符号を割り当てる。但し、ヘッダーD I Fブロックについては、前半の40バイトがあれば十分であるので、ペイロード"2"は送らない。

【0030】以上のように、本例では、比較的簡単な回路で、フレーム内符号化された符号データをATMネットワークに送出することができる。

【0031】図4は、図1のDIFデータペイロード化回路4の他の1例を示すブロック図である。同図において、9はビデオ・VAUXDIFブロックバッファ、10はオーディオDIFブロックバッファ、11はサブコードDIFブロックバッファ、12,15はブロック選択回路、13はデータ多重回路、14はペイロード形成回路、16はヘッダーDIFブロックバッファであり、図4中において、前記図2に示した構成要素と同一の構成要素には、同一番号を付してある。

【0032】図4に示す構成において、ビデオ・VAU XDIFプロックバッファ9は、DIFプロックデータ のうちのビデオDIFプロックおよびVAUXDIFプロックのデータを蓄える。同様に、オーディオDIFプロックのデータを蓄える。同様に、オーディオDIFプロックバッファ11は、オーディオDIFプロック, サブコードDIFプロックのデータをそれぞれ蓄える。データ多重回路 13は、ビデオDIFプロックおよびVAUXDIFプロックのデータ40バイトと、プロック選択回路12により選択されるオーディオDIFブロックあるいはサブコードDIFブロックのどちらかのデータ4バイトを多重して、44バイトのデータを生成する。ペイロード形成回路14は、多重された44バイトのデータを用いて 48バイトのペイロードを形成する。

【0033】図5に、本例によるペイロードのバイトアロケーションを示す。本例では、ビデオDIFブロックおよびVAUXDIFブロックのデータの前半の40バイトと、オーディオDIFブロックあるいはサブコード DIFブロックのデータ4バイトからペイロード"1"

を、ビデオDIFブロックおよびVAUXDIFブロッ クのデータの後半の40バイトと、オーディオDIFブ ロックあるいはサブコードDIFブロックのデータ4バ イトからペイロード"2"を、それぞれ形成する。オー ディオDIFブロックあるいはサブコードDIFブロッ ク1個分のデータは、20個のペイロードに分散される ことになる。1サブシーケンス当たり138個のビデオ およびVAUXDIFブロックのデータを収容するペイ ロードは276個あるので、1ペイロード当たり4バイ トあれば、9個のオーディオDIFブロックと2個のサ ブコードDIFブロックを収容するには十分である。残 りの4バイトには、AALあるいはエラー検出用符号を 割り当てる。なお、ヘッダーDIFブロックのデータ は、ヘッダーDIFブロックバッファ16に蓄え、多重 は行わず、図2、図3に示した例と同じようにペイロー ド"1"だけを送る。

【0034】以上のように、本例では、ビデオおよびVAUXDIFブロックのデータと、オーディオあるいはサブコードDIFブロックのデータを多重することにより、より低いビットレートでフレーム内符号化された符号データをATMネットワークに送出することができる。

【0035】また、VAUXDIFブロックは3個であるので、VAUXDIFブロックのデータもビデオDIFブロックのデータに多重してもよい。そうすれば、270個のペイロードに多重することができる。

【0036】図6は、図1のDIFデータペイロード化 回路4のさらに他の1例を示すブロック図である。同図 において、17はDIFブロック結合回路、18はDI Fブロック再分割回路であり、図6中において、前記図 2に示した構成要素と同一の構成要素には、同一番号を 付してある。

【0037】図6に示す構成において、DIFブロック 結合回路17はDIFブロック3個分のデータを結合 し、DIFブロック再分割回路18は、結合された24 0バイトのデータを48バイトずつに分割して、5つの ペイロードを形成する。

【0038】図7に、本例によるペイロードのバイトアロケーションを示す。48バイトのペイロードを全て使用し、5個のペイロードに3個のDIFブロックのデータを配置する。138個のビデオDIFブロックおよびVAUXDIFブロックのデータは230個ペイロードで、9個のオーディオDIFブロックのデータは15個のペイロードで収容できる。サブコードDIFブロックは2個しかないので4個のペイロードで、ヘッダーDIFブロックは1個のペイロードで送る。

【0039】以上のように、本例では、さらに低いビットレートでフレーム内符号化された符号データをATMネットワークに送出することができる。

【0040】図8は、本発明の第2実施例に係る符号送

タを配置する。

は1/4になる。

出装置の構成を示すブロック図であり、本実施例は、ビットレートの異なる複数のモードを持つ符号送出装置へ の適用例である。

【0041】図8において、19は通常モード符号化回路、20はHモード符号化回路、21はQモード符号化回路、22はコマ落レバッファ、23はデータ選択回路、24はヘッダーDIFブロック生成回路、25はプロック多重回路、26はモード設定回路、27は映像音声入力端子であり、28はこれらの構成要素19~27を含むフレーム内符号化回路である。なお、図8中において、前記図1に示した構成要素と同一の構成要素には、同一番号を付してある。

【0042】図8に示す構成において、通常モード符号化回路19は、図1に示した第1実施例のフレーム内符号化装置1と同様の符号化を行う。これに対し、Hモード符号化回路20は、通常モード符号化回路19の約1/2のビットレートとなるような符号化を行う。また、Qモード符号化回路21は、通常モード符号化回路19の約1/4のビットレートとなるような符号化を行う。データ選択回路23はモード設定回路26からの制御信20号に基づき、所望のビットレートの符号化データを選択する。ビットレートは、コマ落しバッファ22において複数フレーム毎に1フレームのデータだけを抜き出すことにより、1/4よりもさらに下げることができる。どのモードで符号化したデータかを判別する情報は、ヘッダーDIFブロック生成回路24で生成されるヘッダーDIFブロックの中に盛り込まれる。

【0043】図9は、上記各モードにおける映像および音声データのサンプルレートを示す概念図である。Hモードでは水平方向に2/3のデシメーションを行い、画 30素数を通常モードの2/3に削減する。さらに、垂直方向にプリフィルタをかけて情報量を削減しておいてから、1マクロブロック当たりの発生符号量が通常モードの3/4となるようにレートコントロールを行い、全体の符号量を通常モードの約1/2にする。音声についても、32kHzサンプル12ビット2チャンネル、あるいは48kHzサンプル16ビット1チャンネルとすることにより、通常モードの約1/2の符号量にする。

【0044】Qモードでは水平方向,垂直方向とも1/2のデシメーションを行って画素数を1/4にすることにより、符号量を約1/4にする。音声も32kHzサンプル12ビット1チャンネルとし、符号量を約1/4にする。

【0045】通常モードのビットレートは約28Mbpsであるので、Hモードは約14Mbps、Qモードは約7Mbpsとなる。

【0046】図10に、HモードにおけるビデオDIF ブロックのデータを収容するペイロードのバイトアロケ ーションを示す。前述のとおり、Hモードでは画素数は 2/3までしか削減されていないので、発生符号量が3 50 /4となるようなレートコントロールを行う。したがって、1ビデオDIFブロックの情報量は60バイトになる。DIFデータペイロード化回路4の具体的構成は、図6と同じである。ビデオDIFブロックに対しては、5個のペイロードに4個のビデオDIFブロックのデー

【0047】図11にコマ落し処理の概念図を示す。コマ落しバッファ22において、1/2コマ落しモードのように、2フレーム毎に1フレーム(A1, A2, C1, C2, E1, E2, …)のデータを抜き出せば、ビットレートは1/2になり、また、1/4コマ落しモードのように、4フレーム毎に1フレーム(A1, A2,

【0048】以上のように、本実施例では、低いビットレートの符号化モードを設けることにより、さらに低いビットレートで符号データをATMネットワークに送出することができる。

E1, E2, …) のデータを抜き出せば、ビットレート

【0049】図12は、本発明の第3実施例に係る符号送出装置の構成を示すブロック図であり、本実施例は、フィールドコマ落しを行う符号送出装置への適用例である

【0050】図12において、29はフィールドマージ 回路であり、図12中において、前記図8に示した構成 要素と同一の構成要素には、同一番号を付してある。

【0051】図12に示す構成において、フィールドマージ回路29はフィールド単位のコマ落しを行い、抜き出された2つのフィールド画をマージしてフレーム画を構成し、Qモード符号化回路21へ入力する。

【0052】図13にフィールドコマ落し処理の概念図を示す。1/2コマ落しモードのように、2フィールド毎に抜き出したフィールド(A1, B1, C1, D1, E1, …)を2つずつマージして符号化すれば、ビットレートは1/2になり、また、1/4コマ落しモードのように、4フィールド毎に抜き出したフィールド(A1, C1, E1, …)を2つずつマージして符号化すれば、ビットレートは1/4になる。

【0053】以上のように、本実施例では、フィールド 単位のコマ落しにより、低いビットレートで符号データ をATMネットワークに送出することができる。

【0054】図14は、本発明の第4実施例に係る符号送出装置の構成を示すプロック図であり、本実施例は、動き検出によりモードを切り換える符号送出装置への適用例である。

【0055】図14において、30は動き検出回路であり、図14中において、前記図12に示した構成要素と同一の構成要素には、同一番号を付してある。

【0056】図14に示す構成において、動き検出回路 30は入力映像信号の動きを検出し、これによりモード を切り換える。また、コマ落し処理は、通常およびHモ

8

ードに対しても行われるようになっている。

【0057】図15は本実施例によるモード切り換え例のタイミングチャートである。本例では、符号の送出レートはQモードに合わせてある。まず、動きのない間は4フィールドに1フィールドの割合でコマ抜きを行い、通常モードで符号化して1フレームのデータを4フレームの時間をかけて送出する。動きが検出されると、Qモードに切り換えられ、動画が送出される。

【0058】以上のように、本実施例では、低い伝送レートであっても、動きのない間には高精細の静止画を送 10出することができる。

【0059】図16は、本発明の第5実施例に係る符号送出装置の構成を示すプロック図であり、本実施例は、 VTRインタフェースを備えかつ符号受入機能を具備した符号送出受入装置への適用例である。

【0060】図16において、31は符号送出受入装置、32はディジタルVTR、33はフレーム内符号化復号回路、34はATMセル受入回路、35はVTRインタフェース、36は映像音声出力端子、37,38,39は選択回路であり、図16中において、前記図1,図8に示した構成要素と同一の構成要素には、同一番号を付してある。

【0061】図16に示す構成において、フレーム内符号化復号回路33およびATMセル受入回路34は、図8に示した実施例と逆の処理を行い、ATMネットワーク3を通して送られてきたデータから動画像データを再生し、映像音声出力端子36へ出力する。また、符号化データは、VTRインタフェース35を通してディジタルVTR32に接続され、記録再生を行うことができる。

【0062】以上のように、本実施例では、ディジタル VTRに蓄えた符号化データをATMネットワークに送 出し、また、ATMネットワークから受入したものをディジタルVTRに蓄えることができる。

[0063]

【発明の効果】以上述べたように、本発明によれば、民生用ディジタルVTR符号化方式のデータをATMネットワークで伝送できるようにすることにより、セル損失に強く、マルチメディア通信に適した符号送出装置を提供することができる。

【0064】また、映像データと他のデータをセル内に 多重することにより、より低いビットレートで伝送する ことができる。

【0065】あるいは、データをセル内に隙間なく配置することにより、さらに低いビットレートで伝送することができる。

【0066】さらに、複数の符号化モードを設けることにより、さらに低いビットレートで伝送することができる。

【0067】特に、コマ落しを行うことにより、画素密 50

10

度を下げずにビットレートを下げることができる。

【0068】加えて、動きが検出されない間は、ビットレートの高い符号化モードで符号化してコマ落しをすることにより、低い伝送レートであっても、高精細の静止画を送出することができる。

【図面の簡単な説明】

【図1】本発明の第1実施例に係る符号送出装置の構成 を示すプロック図である。

【図2】図1中のDIFデータペイロード化回路の1例 を示すブロック図である。

【図3】図2に示した例における、ペイロードのバイト アロケーションを示す説明図である。

【図4】図1中のDIFデータペイロード化回路の他の1例を示すブロック図である。

【図5】図4に示した例における、ペイロードのバイト アロケーションを示す説明図である。

【図6】図1中のDIFデータペイロード化回路のさらに他の1例を示すブロック図である。

【図7】図6に示した例における、ペイロードのバイト アロケーションを示す説明図である。

【図8】本発明の第2実施例に係る符号送出装置の構成を示すブロック図である。

【図9】本発明の第2実施例による各モードにおける、 映像および音声データのサンプルレートを示す概念図で ある。

【図10】本発明の第2実施例によるHモードにおける、ビデオDIFブロックのデータを収容するペイロードのバイトアロケーションを示す説明図である。

【図11】本発明の第2実施例によるフレームコマ落し 30 処理の概念を示す説明図である。

【図12】本発明の第3実施例に係る符号送出装置の構成を示すブロック図である。

【図13】本発明の第3実施例によるフィールドコマ落 し処理の概念を示す説明図である。

【図14】本発明の第4実施例に係る符号送出装置の構成を示すプロック図である。

【図15】本発明の第4実施例によるモード切り換え例を示すタイミングチャート図である。

【図16】本発明の第5実施例に係る符号送出装置の構成を示すプロック図である。

【図17】フレーム内符号化出力データの構成を示す説明図である。

【符号の説明】

- 1 フレーム内符号化装置
- 2 ATMセル送出装置
- 3 ATMネットワーク
- 4 DIFデータペイロード化回路
- 5 ATMセル化回路
- 6 ネットワークインタフェース
- 7 DIFブロック分割回路

11

- 8, 14 ペイロード形成回路
- 9 ビデオ・VAUXDIFプロックバッファ
- 10 オーディオDIFブロックバッファ
- 11 サブコードDIFブロックバッファ
- 12, 15 プロック選択回路
- 13 データ多重回路
- 16 ヘッダーDIFブロックバッファ
- 17 DIFブロック結合回路
- 18 DIFブロック再分割回路
- 19 通常モード符号化回路
- 20 Hモード符号化回路
- 21 Qモード符号化回路
- 22 コマ落しバッファ
- 23 データ選択回路

*24 ヘッダーDIFブロック生成回路

12

- 25 ブロック多重回路
- 26 モード設定回路
- 27 映像音声入力端子
- 28 フレーム内符号化回路
- 29 フィールドマージ回路
- 30 動き検出回路
- 31 符号送出受入装置
- 32 ディジタルVTR
- 10 33 フレーム内符号化復号回路
 - 34 ATMセル受入回路
 - 35 VTRインタフェース
 - 36 映像音声出力端子
- * 37,38,39 選択回路

図1]

【図3】

【図5】

【図2】

【図4】

【図6】

【図11】

【図12】

【図13】

【図16】

VTR

【図17】

