Таблица основных интегралов

$\int 0 \cdot dx = C$	$\int 1 \cdot dx = \int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	
$\int \frac{dx}{x^2} = -\frac{1}{x} + C$	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$	$\int \frac{dx}{\sqrt[3]{x}} = \frac{3}{2}x^{\frac{2}{3}} + C$	
$\int \frac{dx}{x} = \ln x + C$	$\int \frac{dx}{x+a} = \ln\left x+a\right + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C (a \neq 0)$	
$\int \frac{x dx}{x^2 \pm a^2} = \frac{1}{2} \ln x^2 \pm a^2 + C$	$\int \frac{dx}{x^2 + 1} = arctgx + C$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$	
$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left x + \sqrt{x^2 \pm a^2} \right + C (a \neq 0)$	
$\int e^x dx = e^x + C$	$\int \frac{dx}{e^x} = -e^{-x} + C$	$\int a^x dx = \frac{a^x}{\ln a} + C$	
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$	$\int tgxdx = -\ln\left \cos x\right + C$	
$\int ctgxdx = \ln\left \sin x\right + C$	$\int \frac{dx}{\cos^2 x} = tgx + C$	$\int \frac{dx}{\sin^2 x} = -ctgx + C$	
$\int shxdx = chx + C$	$\int chxdx = shx + C$	$\int thx dx = \ln chx + C$	
$\int cthxdx = \ln shx + C$	$\int \frac{dx}{ch^2x} = thx + C$	$\int \frac{dx}{sh^2x} = -cthx + C$	
$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ $\int \sqrt{x^2 + A} dx = \frac{x}{2} \sqrt{x^2 + A} + \frac{A}{2} \ln \left x + \sqrt{x^2 + A} \right + C$			

$$\begin{split} &\int (\alpha u + \beta v) dx = \alpha \int u dx + \beta \int v dx \,; \quad \int u dv = u v - \int v du \,; \\ &\int f(x) dx = F(x) + C \Rightarrow \int f(\varphi(t)) d\varphi(t) = F(\varphi(t)) + C \Leftrightarrow \int f(\varphi(t)) \varphi'(t) dt = F(\varphi(t)) + C \,; \\ &\int f\left(ax + b\right) dx = \frac{1}{a} F\left(ax + b\right) + C \,; \quad J_n = \int \frac{dx}{\left(x^2 + a^2\right)^n} \Rightarrow J_{n+1} = \frac{1}{2na^2} \frac{x}{\left(x^2 + a^2\right)^n} + \frac{2n-1}{2n} J_n \,. \end{split}$$

Таблица некоторых дифференциалов

$xdx = \frac{1}{2}d\left(x^2\right)$	$\frac{dx}{\sqrt{x}} = 2d\left(\sqrt{x}\right)$	$\frac{dx}{x^2} = -d\left(\frac{1}{x}\right)$
$\cos x dx = d\left(\sin x\right)$	$\sin x dx = -d(\cos x)$	$\frac{dx}{\cos^2 x} = d\left(tgx\right)$
$\frac{dx}{\sin^2 x} = -d\left(ctgx\right)$	$\frac{dx}{\sqrt{1-x^2}} = d\left(\arcsin x\right)$	$\frac{dx}{1+x^2} = d\left(arctgx\right)$
$e^x dx = d\left(e^x\right)$	$a^x dx = \frac{1}{\ln a} d\left(a^x\right)$	$\frac{dx}{x} = d\left(\ln x\right)$