共8题,前7题每题12分,第8题16分

- 1. 设总体 $X \sim N(1,4)$, $Y \sim N(-0.5,2)$,且 X_1, X_2, \cdots, X_{25} 与 Y_1, Y_2, \cdots, Y_{10} 分别为来自总体 X 与 Y 的样本,并且相互独立。 \bar{X} 与 \bar{Y} 为样本均值, S_X^2 与 S_Y^2 为样本方差。求 $P\{\bar{X} < \bar{Y}\}$, $P\{S_Y^2 > 3S_Y^2\}$ 。
 - 2. 设总体 X 的密度函数 $p(x;\theta)=(\theta-1)x^{-\theta}I_{x>1}, \ (\theta>2), \ X_1, X_2, \cdots, X_n$ 为样本。
 - (1) 求数学期望E(X) 以及参数 θ 的矩估计 $\hat{\theta}_{l}$ 。
 - (2) 写出似然函数 $L(\theta)$, 并求 θ 的最大似然估计 $\hat{\theta}$,
- 3. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$,抽取容量为 16 的样本,测得样本均值 $\bar{x}=37$,样本方差 $s^2=8^2$,求
 - (1) 总体期望μ的95%置信区间。
 - (2) 总体方差 σ^2 的 95%置信区间。
- 4. 为了比较甲乙两个班的概率论考试成绩,分别独立地从两个班上随机抽取 11 名和 9 名同学,根据他们的考试成绩计算得 $\bar{x} = 78, s_1^2 = 6^2, \bar{y} = 73, s_2^2 = 5^2$ 。并设两个班的考试成绩都服从正态分布。在显著水平 $\alpha = 0.05$ 下作如下检验。
 - (1) 检验其方差有无显著差异,并计算p值。
 - (2) 利用第(1) 问的结果,检验甲班是否明显比乙班成绩高,并计算p 值。
 - 5. 掷一枚骰子60次,结果如下

点数	1	2	3	4	5	6
出现次数	10	5	7	17	6	15

试检验这枚骰子是否均匀?

 $(\alpha = 0.05, 请写出假设、检验统计量及其分布、拒绝域、决策,并计算 <math>p$ 值)

6. 现有三种食品,其蛋白质含量都服从正态分布,且方差相等。为了检验其蛋白质含量是否存在显著差异。从每种食品中独立地各取5份,测量蛋白质含量得计算表

食品	蛋白质含量				T_i	T_i^2	Σy_{ij}^2	
A_1	19.5	17.9	20	19.8	18.4	95.6	9139.36	1831.26
A_2	16.4	18.4	18.1	17.8	16.4	87.1	7586.41	1520.93
A_3	17.3	18.3	17.6	18.4	18.3	89.9	8082.01	1617.39
Σ						272.6	24807.78	4969.58

- (1) 检验三种食品蛋白质含量有无显著差异,写出方差分析表($\alpha = 0.05$)。
- (2) 求 A_1 平均蛋白质含量 μ_1 的 0.95 置信区间。

7. 某企业近6年的利润数据如下表

年份 x	15	16	17	18	19	20
利润 y	67	82	91	113	126	136

经计算得 \bar{x} =17.5, \bar{y} =102.5, l_{xx} =17.5, l_{xy} =249.5, l_{yy} =3597.5。

- (1) 建立利润对年份的一元线性回归方程 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 。
- (2) 对建立的回归方程作显著性检验,列出方差分析表。($\alpha = 0.05$)
- (3) 求今年 $x_0 = 21$ 时,利润Y的预测值 $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ 及 0.95 预测区间。
- 8. 总体 X 服从两点分布,满足 $P\{X=1\}=\theta$, $P\{X=0\}=1-\theta$, $(0<\theta<1)$,且 X_1,X_2,\cdots,X_n 为样本。

(1)概率
$$\theta$$
的点估计是频率 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$,由此猜测 $g(\theta) = \theta^2$ 的点估计为 \overline{X}^2 。

根据 $Y = n\bar{X} = \sum_{i=1}^n X_i$ 服从二项分布 $b(n,\theta)$ 计算 $E(\bar{X}^2)$,判断 \bar{X}^2 是否 $g(\theta) = \theta^2$ 的无偏估计?

- (2) 如果 \bar{X}^2 不是 $g(\theta) = \theta^2$ 的无偏估计,请根据 $E(\bar{X}^2)$ 的结果及 $E(\bar{X}) = \theta$ 修偏得到由 \bar{X} 与 \bar{X}^2 构成的估计量 \hat{g} ,使得 \hat{g} 是 $g(\theta) = \theta^2$ 的无偏估计,即 $E(\hat{g}) = \theta^2$ 。
- (3) 由 $p(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0,1, 证明 θ 的 Fisher 信息量 $I(\theta) = \frac{1}{\theta(1-\theta)}$, 并 求 $g(\theta) = \theta^2$ 的 C-R 下界。

(4) 根据
$$Y = n\overline{X} = \sum_{i=1}^{n} X_{i}$$
 服从二项分布 $b(n, \theta)$,可得

$$Var(Y^2 - Y) = n(n-1)[2\theta^2 + (4n-8)\theta^3 - (4n-6)\theta^4],$$

根据此结论求出 $Var(\hat{g})$ 。 $Var(\hat{g})$ 与 $g(\theta) = \theta^2$ 的 C-R 下界相差多少? \hat{g} 是否 $g(\theta) = \theta^2$ 的有效估计?

(5) 写出样本联合概率函数 $p=p(x_1,x_2,\cdots,x_n;\theta)$,求偏导数 $\frac{\partial p}{\partial \theta}$ 并化简得到它与 p 的关系,证明 \hat{g} 是 $g(\theta)=\theta^2$ 的 UMVUE。

附录:
$$\Phi(2.5) = 0.9938$$
, $\chi_{0.95}^2(5) = 11.0705$, $\chi_{0.97}^2(5) = 12.3746$, $\chi_{0.025}^2(15) = 6.2621$, $\chi_{0.975}^2(15) = 27.4884$, $t_{0.975}(4) = 2.7764$, $t_{0.975}(12) = 2.1788$, $t_{0.975}(15) = 2.1314$, $t_{0.95}(18) = 1.7341$, $t_{0.9693}(18) = 1.9944$, $f_{0.95}(1,4) = 7.71$, $f_{0.999952}(1,4) = 350$, $f_{0.95}(2,12) = 3.89$, $f_{0.981}(2,12) = 5.6122$, $f_{0.975}(8,10) = 3.8549$, $f_{0.975}(10,8) = 4.2951$, $f_{0.691}(10,8) = 1.4401$, $f_{0.73}(24,9) = 1.5$, $f_{0.955}(24,9) = 3.0$

数理统计常用公式:

1、单个正态总体
$$U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
, $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$, $\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$;两个

独立正态总体
$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$
; $F = \frac{S_\chi^2/\sigma_1^2}{S_\gamma^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$; 当 $\sigma_1^2 = \sigma_2^2$ 但

未知时,
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2) \; , \quad S_w = \sqrt{\frac{(n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2}{n_1 + n_2 - 2}} \; .$$

2、参数
$$\theta$$
 的费希尔信息量 $I(\theta) = E \left[\frac{\partial}{\partial \theta} \ln p(X, \theta) \right]^2$, $g(\theta)$ 无偏估计的 C-R 下界为 $\frac{[g'(\theta)]^2}{nI(\theta)}$ 。

3、分类数据
$$\chi^2$$
 检验 $\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(r-1)$; 若 p_i 的计算与 k 个未知参数有关,有

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{\sim}{\sim} \chi^2(r - k - 1) \; ; \quad \text{独立性检验} \; \chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \stackrel{\sim}{\sim} \chi^2((r - 1)(c - 1)) \; .$$

4、 方差分析中
$$S_T = \sum_{i=1}^r \sum_{i=1}^{m_i} (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^r \sum_{i=1}^{m_i} Y_{ij}^2 - \frac{1}{n} T^2$$
, $S_A = \sum_{i=1}^r m_i (\overline{Y}_{i.} - \overline{Y})^2 = \sum_{i=1}^r \frac{T_i^2}{m_i} - \frac{1}{n} T^2$,

$$S_e = \sum_{i=1}^r \sum_{i=1}^{m_i} (Y_{ij} - \overline{Y}_{i\cdot})^2 = \sum_{i=1}^r \sum_{i=1}^{m_i} Y_{ij}^2 - \sum_{i=1}^r \frac{T_i^2}{m_i}$$
;满足 $S_T = S_e + S_A$,以及 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$,并且当 H_0 :

$$a_1 = a_2 = ... = a_r = 0$$
 成立时, $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$,且 $S_e = S_A$ 相互独立.

此外,
$$\overline{Y} \sim N(\mu, \frac{\sigma^2}{n})$$
, $\overline{Y}_i \sim N(\mu_i, \frac{\sigma^2}{m})$, σ^2 的无偏估计 $\hat{\sigma^2} = \frac{S_e}{n-r} = MS_e$.

5、回归分析中,
$$l_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2$$
, $l_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}$,

$$l_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - n\overline{y}^2, \quad \hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} \sim N\left(\beta_1, \frac{\sigma^2}{l_{xx}}\right), \quad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} \sim N\left(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}\right)\sigma^2\right);$$

$$\hat{Y_0} = \hat{\beta_0} + \hat{\beta_1} x_0 \sim N \left(\beta_0 + \beta_1 x_0, \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}} \right] \sigma^2 \right), \quad Y_0 - \hat{Y_0} \sim N \left(0, \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}} \right] \sigma^2 \right);$$

$$S_T = \sum (Y_i - \overline{Y})^2 = l_{YY}, \quad S_R = \sum (\hat{Y}_i - \overline{Y})^2 = \hat{\beta}_1^2 l_{xx} = \frac{l_{xY}^2}{l_{xy}}, \quad S_e = \sum (Y_i - \hat{Y}_i)^2 = l_{YY} - \frac{l_{xY}^2}{l_{xy}};$$

$$S_T = S_e + S_R$$
, 以及 $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$, 当 H_0 : $\beta_1 = 0$ 成立时, $\frac{S_R}{\sigma^2} \sim \chi^2(1)$, 且 $S_e = S_R$ 独立。