Math 120

PSet 7

Oct 24 2024

Contents

Chapter 1			Page 2	
	11 I	Set. 7	2	

Chapter 1

1.1 PSet 7

Question 1

Calculate the given iterated integrals.

1.
$$\int_0^1 \int_0^1 x \sqrt{1+4y} \, dy \, dx$$

2.
$$\int_0^1 \int_1^2 \frac{xe^x}{y} \, dy \, dx$$

Question 2

(a) Sketch the solid whose volume is given by the iterated integral

$$\int_0^1 \int_0^2 e^{-x^2 - y^2} \, dy \, dx.$$

(b) Explain why

$$\int_0^1 \int_0^2 e^{-x^2 - y^2} \, dy \, dx = \int_0^1 e^{-x^2} \, dx \cdot \int_0^2 e^{-y^2} \, dy.$$

(c) Use Desmos to compute

$$\int_0^1 \int_0^2 e^{-x^2 - y^2} \, dy \, dx.$$

(Desmos will give a numerical approximation, but this is fine. In fact, there is no way to compute the antiderivatives necessary to get an exact answer.)

Solution:

Question 3

- (a) Find the average value of the function $f(x,y) = \sin x \cos y$ on the rectangle $R = [0,\pi] \times [-\pi/2,\pi/2]$.
- (b) Use symmetry to find the average value of $f(x,y) = \frac{4\sin y}{e^{x^2}} \frac{\cos x}{\ln y} + 3$ on the region $R = [2\pi, 4\pi] \times [2\pi, 6\pi]$. Please explain your answer carefully.

Question 4

In each part, draw the region D, and evaluate the integral.

- 1. $\iint_D \frac{y}{x^5+1}\,dA, \text{ where } D \text{ is the region } D=\{(x,y)\mid 0\leqslant x\leqslant 1,\, 0\leqslant y\leqslant x^2\}.$
- 2. $\iint_D x^3\,dA, \text{ where } D=\{(x,y)\mid 1\leqslant x\leqslant e,\, 0\leqslant y\leqslant \ln x\}.$

Question 5

Draw the region D. Set up the iterated integrals for both orders of integration. Then evaluate the double integral using the easier order and explain why it's easier.

$$\iint_D x^2 e^{-xy} \, dA \quad \text{where } D \text{ is bounded by } y = x, \, x = 4, \, \text{and } y = 0.$$

Question 6

- (a) Find the volume of the solid in the first octant enclosed by the parabolic cylinder $y = 1 x^2$ and the planes z = 2 y and z = y.
- (b) Sketch the solid whose volume is given by the iterated integral

$$\int_0^1 \int_0^{1-x} (2-y^2) \, dy \, dx.$$

Question 7

Sketch the region of integration and change the order of integration.

- 1. $\int_0^1 \int_{4x}^4 f(x,y) \, dy \, dx$
- 2. $\int_0^3 \int_{\sqrt{9-y}}^3 f(x,y) \, dx \, dy$

3.
$$\int_0^4 \int_0^{\ln 2x} f(x, y) \, dy \, dx$$

Question 8

Evaluate the integral

$$\int_0^1 \int_x^1 \frac{e^x}{y} \, dy \, dx$$

by reversing the order of integration.

Question 9

Evaluate the given integral by converting to polar coordinates. Be sure to draw the region of integration in each part.

- 1. $\iint_R (x+y) dA$, where R is the region that lies to the left of the y-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 2. $\iint_R y e^x dA$, where R is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$.

Question 10

Use polar coordinates to find the volume of the given solid.

- (a) Inside the sphere $x^2 + y^2 + z^2 = 4$ and outside the cylinder $x^2 + y^2 = 1$.
- (b) Bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 x^2 y^2$.

Question 11

Evaluate the iterated integral

$$\int_0^b \int_{-\sqrt{b^2 - y^2}}^0 x^2 y \, dx \, dy$$

by converting to polar coordinates.

Question 12

Let D be the disk with center at the origin and radius a.

- (a) Use your intuition: what do you expect is the average distance from points on the disk to the origin?
 - less than a/2
 - a/2
 - between a/2 and a
 - \bullet more than a

Give an intuitive explanation of your answer.

(b) What is the average distance from points in the disk to the origin?