

Baseline Correction

Goal: design and verification of FPGA baseline correction module (drift and droop) which can run inside of Gen-2 DOM.

Prerequisite for running Wavedeform in the DOM.

Drift and Droop

<u>Drift</u> - long term change of baseline due to electronics and environment

Droop - a change due to toroid, following a signal.

Drift correction.

Idea: Histogramming. Fill the RAM with ADC values and find the baseline from the mean (central_val).

Drift correction module diagram

Drift correction testing with ModelSim.

They match!

Python. Expected Histogram.

ModelSim. Histogram result.

Drift Correction on FPGA.

Drift correction testing on FPGA.

They match! Using Quartus' SignalTap. <u>150K</u> events (22 batches). Example batch:

Droop Correction.

Signal Transformation:

Goal: Find x[n] from y[n]. x[n] is Discrete and without Droop.

Droop Correction. Possible strategy.

Calculated possible transfer function h[n] (Impulse invariance).

 $k=-\infty$

- $\ \, \Box \ \, \text{Convolution} \quad \, y[n] = \ \, \sum \ \, h[n-k]x[k]$
- **□** Recursive solution:

$$x[n] = a \cdot (b \cdot (y[n-1] - x[n-1]) - y[n]])$$

$$x[0] = -a \cdot y[0]$$

Conclusion

Done

Drift monitoring module implemented and tested

To be done

- Droop monitoring module implementation and testing
- Module to control all separate modules and do correction

Back up slides

Rehit Handling strategy

Due to RAM limitations in Pipeline, same bin can't be rehit within 4 cycles

addr_mem_n - remembers the repeating address remove_n - is high until repeating address is removed

Droop Correction Detail Signal transformation scheme

Transfer function

Recursive expression

Discretization

Convolution

Transfer function

 $h(t) = L^{-1}\left\{H(s)\right\} \quad \begin{array}{c} \text{Mathematica} \\ h(t) = \int_{0}^{-\frac{e^{-t}}{\tau}} + \delta(t), \ t \geq 0 \\ 0, \ t < 0 \end{array}$

 $\begin{array}{l} \text{ ADC frequency } f = \frac{1}{T}, \Gamma = \frac{\tau}{T} \\ & \longrightarrow \\ h[n] = \begin{cases} -\frac{e^{\frac{-n}{\Gamma}}}{\Gamma} + \delta[n], & n \geq 0 \\ 0, & n < 0 \end{cases}$

 $y(t) = \int_{-\infty}^{\infty} h(t - t')x(t')dt' \longrightarrow y[n] = \sum_{k=0}^{\infty} h[n - k]x[k]$ $y[n] = \sum_{k=0}^{n} \left(\frac{-e^{\frac{k-n}{\Gamma}}}{\Gamma} + \delta[n - k]\right)x[k]$

Expansion

$$\mathbf{y}(\mathbf{0}) = -\left(rac{1}{\Gamma} - 1
ight)\mathbf{x}[\mathbf{0}]$$

$$\mathbf{y}(\mathbf{1}) = -rac{\mathbf{e}^{-rac{1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{0}] - \left(rac{1}{\Gamma} - \mathbf{1}
ight)\mathbf{x}[\mathbf{1}]$$

$$\mathbf{y}(2) = -\frac{e^{-\frac{2}{\Gamma}}}{\Gamma}\mathbf{x}[0] - \frac{e^{-\frac{1}{\Gamma}}}{\Gamma}\mathbf{x}[1] - \left(\frac{1}{\Gamma} - 1\right)\mathbf{x}[2]$$

$$\mathbf{y}(3) = -\frac{e^{-\frac{3}{\Gamma}}}{\Gamma}\mathbf{x}[0] - \frac{e^{-\frac{2}{\Gamma}}}{\Gamma}\mathbf{x}[1] - \frac{e^{-\frac{1}{\Gamma}}}{\Gamma}\mathbf{x}[2] - \left(\frac{1}{\Gamma} - 1\right)\mathbf{x}[3]$$

$$\mathbf{y}ig[\mathbf{n}ig] = -rac{\mathrm{e}^{-rac{\mathbf{n}}{\Gamma}}}{\Gamma}\mathbf{x}[0] - rac{\mathrm{e}^{-rac{\mathbf{n}-\mathbf{1}}{\Gamma}}}{\Gamma}\mathbf{x}[1] - \cdots - rac{\mathrm{e}^{-rac{\mathbf{1}}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-1] - \left(rac{1}{\Gamma}-1
ight)\mathbf{x}[\mathbf{n}]$$

Recursive form

$$\begin{aligned} \mathbf{y}(\mathbf{n}) &= -\frac{e^{-\frac{\mathbf{n}}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{0}] - \frac{e^{-\frac{\mathbf{n}-1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{1}] - \cdots - \frac{e^{-\frac{1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-1] - \left(\frac{1}{\Gamma}-1\right)\mathbf{x}[\mathbf{n}] \\ \mathbf{y}(\mathbf{n}-1) &= -\frac{e^{-\frac{\mathbf{n}-1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{0}] - \frac{e^{-\frac{\mathbf{n}-2}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{1}] - \cdots - \frac{e^{-\frac{1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-2] - \left(\frac{1}{\Gamma}-1\right)\mathbf{x}[\mathbf{n}-1] \\ \mathbf{y}(\mathbf{n}-1) &= -\frac{e^{-\frac{\mathbf{n}}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{0}] - \frac{e^{-\frac{\mathbf{n}-1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{1}] - \cdots - \frac{e^{-\frac{2}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-2] - \left(\frac{1}{\Gamma}-1\right)e^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-1] \end{aligned}$$

$$\begin{split} \mathbf{y}(\mathbf{n}-\mathbf{1}) &= -\frac{1}{\Gamma}\mathbf{x}[\mathbf{0}] - \frac{\mathbf{x}[\mathbf{1}] - \cdots - \frac{1}{\Gamma}\mathbf{x}[\mathbf{n}-\mathbf{2}] - \left(\frac{1}{\Gamma} - \mathbf{1}\right)\mathbf{x}[\mathbf{n}-\mathbf{1}]}{\Gamma}\mathbf{x}[\mathbf{n}-\mathbf{1}] \\ e^{-\frac{1}{\Gamma}}\mathbf{y}(\mathbf{n}-\mathbf{1}) &= -\frac{e^{-\frac{n}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{0}] - \frac{e^{-\frac{n-1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{1}] - \cdots - \frac{e^{-\frac{2}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-\mathbf{2}] - \left(\frac{1}{\Gamma} - \mathbf{1}\right)e^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-\mathbf{1}] \\ \mathbf{y}[\mathbf{n}] &= e^{-\frac{1}{\Gamma}}\mathbf{y}[\mathbf{n}-\mathbf{1}] + \left(\frac{1}{\Gamma} - \mathbf{1}\right)e^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-\mathbf{1}] - \left(\frac{1}{\Gamma} - \mathbf{1}\right)\mathbf{x}[\mathbf{n}] \\ \mathbf{y}[\mathbf{n}] &= e^{-\frac{1}{\Gamma}}\mathbf{y}[\mathbf{n}-\mathbf{1}] - e^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-\mathbf{1}] - \left(\frac{1}{\Gamma} - \mathbf{1}\right)\mathbf{x}[\mathbf{n}] \end{split}$$

$$\begin{aligned} \mathbf{y}[\mathbf{n}] &= \mathbf{e}^{-\frac{1}{\Gamma}}\mathbf{y}(\mathbf{n}-1) + \left(\frac{1}{\Gamma}-1\right)\mathbf{e}^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-1] - \frac{\mathbf{e}^{-\frac{1}{\Gamma}}}{\Gamma}\mathbf{x}[\mathbf{n}-1] - \left(\frac{1}{\Gamma}-1\right)\mathbf{x}[\mathbf{n}] \\ \mathbf{y}[\mathbf{n}] &= \mathbf{e}^{-\frac{1}{\Gamma}}\mathbf{y}[\mathbf{n}-1] - \mathbf{e}^{-\frac{1}{\Gamma}}\mathbf{x}[\mathbf{n}-1] - \left(\frac{1}{\Gamma}-1\right)\mathbf{x}[\mathbf{n}] \\ \mathbf{x}[\mathbf{n}] &= \left(\frac{\Gamma}{1-\Gamma}\right)\left(\mathbf{e}^{-\frac{1}{\Gamma}}\left(\mathbf{y}[\mathbf{n}-1] - \mathbf{x}[\mathbf{n}-1]\right) - \mathbf{y}[\mathbf{n}]\right) = \mathbf{a} \cdot \left(\mathbf{b} \cdot \left(\mathbf{y}[\mathbf{n}-1] - \mathbf{x}[\mathbf{n}-1]\right) - \mathbf{y}[\mathbf{n}]\right) \end{aligned}$$

$$\mathbf{x}[\mathbf{n}] = \left(\frac{\Gamma}{1-\Gamma}\right) \left(\mathbf{e}^{-\frac{1}{\Gamma}} \left(\mathbf{y}[\mathbf{n}-1] - \mathbf{x}[\mathbf{n}-1]\right) - \mathbf{y}[\mathbf{n}]\right) = \mathbf{a} \cdot \left(\mathbf{b} \cdot \left(\mathbf{y}[\mathbf{n}-1] - \mathbf{x}[\mathbf{n}-1]\right) - \mathbf{y}[\mathbf{n}]\right)$$

$$\mathbf{x}[n] = a \cdot \left(b \cdot \left(\mathbf{y}[n-1] - \mathbf{x}[n-1]\right) - \mathbf{y}[n]\right) \quad a = \frac{\Gamma}{1-\Gamma}, b = e^{-\frac{1}{\Gamma}}$$

 $|x|0| = -a \cdot y|0|$

$$\mathbf{y}(\mathbf{n}) = -\frac{\mathbf{e}^{-\frac{\mathbf{n}}{\Gamma}}}{\Gamma} \mathbf{x}[\mathbf{0}] - \frac{\mathbf{e}^{-\frac{\mathbf{n}-1}{\Gamma}}}{\Gamma} \mathbf{x}[\mathbf{1}] - \cdots - \frac{\mathbf{e}^{-\frac{\mathbf{n}-1}{\Gamma}}}{\Gamma} \mathbf{x}[\mathbf{0}] - \frac{\mathbf{e}^{-\frac{\mathbf{n}-2}{\Gamma}}}{\Gamma} \mathbf{x}[\mathbf{1}] - \cdots - \frac{\mathbf{e}^{-\frac{\mathbf{n}-2}{\Gamma}}}{\Gamma} \mathbf{x}[\mathbf{n}] - \cdots - \frac{\mathbf{n}-2}{\Gamma} \mathbf{x}[\mathbf{$$

Numerical confirmation

c) After convolution y(t)

d) After the method x'(t)

DSP block in FPGA

Need to:

- Multiply by a constant
- Subtraction
- Storage of previous values