Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики.

Факультет инфокоммуникационных технологий.

Лабораторная работа №1 по дисциплине: Визуализация и моделирование.

Выполнила: Тихонова Е.К.

Группа: К3241

Преподаватель: Говоров Антон Игоревич

```
# https://www.kaggle.com/migalpha/spanish-names
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
female names = pd.read csv('female names.csv')
male names = pd.read csv('male names.csv')
female names.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24756 entries, 0 to 24755
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
--- ----
0 name
               -----
               24755 non-null object
   frequency 24756 non-null int64 mean_age 24756 non-null float64
 1
dtypes: float64(1), int64(1), object(1)
memory usage: 580.3+ KB
# male names.info()
```

Каждая таблица содержит 3 столбца - **имя**, **встречаемость** (абсолютное количество) - в таблицы вошли только те имена, которые встречаются не менее 20 раз, **средний возраст** людей с указанным именем. Дырок нет, все значения not-null.

```
female names.describe()
```

```
frequency
                          mean_age
count
        24756.000000 24756.000000
mean
          890.212716
                         38.630102
 std
        10761.927108
                         15.338650
min
           20.000000
                          1.100000
25%
           27.000000
                         28.000000
50%
           44.000000
                         38.200000
75%
          102.000000
                         49.100000
max
       668639.000000
                         82.100000
```

```
# male_names.describe()

fig = plt.figure(figsize=[10,6])

al = fig.add_subplot(1,1,1)

al.plot(female_names.index,
```


Средний возраст по столбцу "средний возраст носителей данного имени" - 38.6 для женщин и 37.1 для мужчин. Однако средние значения возраста жителей Испании отличаются: 42,0 года для мужчин и 44,6 - для женщин (2018 год). Что любопытно. Но средний возраст подсчитан только для коренных испанцев, приезжие моложе. Вероятно, данные по именам относятся к предыдущим десятилетиям. Ведь как известно, в последние годы (особенно в развитых странах) население стареет.

На графике видно, что средний возраст мужчин ниже, чем женщин.

По данному графику можно видеть, что испанцы смотрят игру престолов. Раньше не смотрели, потому что ее не было и детей Daenerys не называли, а теперь смотрят и называют.

```
num = 12
old_fem = female_names.sort_values('mean_age', ascending=False).head(num)
fig = plt.figure(figsize=(18,8))
plt.xticks(range(num), old_fem.name.tolist())
a1 = fig.add_subplot(1,1,1)
a2 = a1.twinx()

a1.plot(range(num), old_fem.mean_age, color='blue', label='mean_age')
a2.plot(range(num), old_fem.frequency, color='orange', label='frequency')
fig.legend()
```


80 лет! и это средний возраст. Клавдия, Ефросинья, Раиса, Тамара, Антонина, Аксинья - вот и найдены их испанские аналоги.

	name	frequency	mean_age
0	MARIA CARMEN	668639	54.5
1	MARIA	633600	48.9
2	CARMEN	415535	60.2
3	JOSEFA	298346	66.4
4	ISABEL	279932	56.2
5	ANA MARIA	277090	48.8
6	MARIA PILAR	267272	54.5
7	MARIA DOLORES	265341	54.3
8	MARIA TERESA	256586	54.6
9	ANA	255010	43.1

```
female_names.loc[female_names.name.isnull(), :]
    name frequency mean_age

5593 NaN 116 26.9
```

Здесь можно наблюдать очень интересное явление - имя **NA** решило превратиться в Not a Number. Исправлю это вручную.

```
female_names.loc[female_names.name.isnull(), 'name'] = 'NA'

female_names.loc[female_names.name.isnull(), :] # ниже пустой вывод

name frequency mean_age

male_names.isnull().sum()

name 0

frequency 0

mean_age 0

dtype: int64
```

Добавлю к таблицам столбец word_count и в него запишу количество слов в имени.

```
female_names['word_count'] = None
male_names['word_count'] = None

def count_words(name):
    return len(name.split())

female_names['word_count'] = female_names.name.apply(count_words)
male_names['word_count'] = male_names.name.apply(count_words)
```

```
# посмотрев описание еще раз можем увидеть, что максимальная длина
# имени - 3 слова (как для женщин, так и для мужчин)
female_names.describe()
```

	frequency	mean_age	word_count	
count	24756.000000	24756.000000	24756.000000	
mean	890.212716	38.630102	1.644652	
std	10761.927108	15.338650	0.503312	
min	20.000000	1.100000	1.000000	
25%	27.000000	28.000000	1.000000	
50%	44.000000	38.200000	2.000000	
75%	102.000000	49.100000	2.000000	
max	668639.000000	82.100000	3.000000	

```
# male names.describe()
```

Помимо количества слов в имени было бы интересно проверить, сколько имен общих для мужчин и женщин.

Для этих целей сделаю merge

common names.describe()

	frequency_x	mean_age_x	word_count	frequency_y	mean_age_y
count	653.000000	653.000000	653.000000	653.000000	653.000000
mean	4194.707504	32.344564	1.004594	1879.490046	32.054671
std	30947.130404	15.883909	0.067676	20464.369507	15.056555
min	20.000000	3.500000	1.000000	20.000000	3.300000
25%	33.000000	21.200000	1.000000	36.000000	22.800000
50%	64.000000	31.100000	1.000000	71.000000	31.200000
75%	194.000000	41.100000	1.000000	163.000000	39.600000
max	633600.000000	76.500000	2.000000	367726.000000	74.600000

Что можно увидеть? Средняя частота (как для мужчин, так и для женщин) больше, чем по всем именам. То есть среди редких имен меньше тех, которые встречаются у обоих полов, чем среди более распространенных.

```
fig = plt.figure(figsize=(10,10))
a1 = fig.add_subplot(1,2,1)
a2 = fig.add_subplot(1,2,2)

a1.hist(x=(
    female_names.word_count,
    male_names.word_count,
    common_names.word_count
    ),
    bins=range(1,5,1), color=('#fa20aa', '#209aff', '#a630a0'))

a2.hist(x=common_names.word_count,
    bins=range(1,5,1), color='#a630a0')
```


Кроме того, в таблице общих имен среднее количество слов в имени - едва больше единицы (когда как в таблице отдельно для женщин 1.64, для мужчин 1.67) То есть обладание двойным (и тем более тройным) именем значительно уменьшает

вероятность встретить тёзку среди представителей противоположного пола, что можно увидеть на графиках выше

Приведу в порядок таблицу с общими именами... суммарная частота, средний возраст по людям обоих полов и, наверное, отношение частоты встречаемости у женщин ко всем людям - female_to_male in (0,1)

```
common_names['frequency'] = \
  common_names.frequency_y+common_names.frequency_x
common_names['female_to_male'] = \
  common_names.frequency_x / common_names.frequency
common_names['mean_age'] = \
  (common_names.frequency_x*common_names.mean_age_x + \
   common_names.frequency_y*common_names.mean_age_y) / \
  common_names.frequency
```

	name	frequency_x	mean_age_x	word_count	frequency_y	mean_age_y	frequency	female_to_male	mean_age
73	SIMONE	731	40.7	1	655	31.2	1386	0.527417	36.210462
91	GHEORGHITA	494	46.5	1	557	38.3	1051	0.470029	42.154234
92	GABRIELE	488	50.5	1	442	31.1	930	0.524731	41.279785
164	EDEN	192	18.6	1	172	22.2	364	0.527473	20.301099
179	VALERY	168	10.0	1	184	45.3	352	0.477273	28.452273
183	QI	162	24.5	1	156	27.4	318	0.509434	25.922642
222	AMANDEEP	122	26.0	1	109	25.2	231	0.528139	25.622511
226	MANDEEP	119	28.3	1	128	27.5	247	0.481781	27.885425
232	LIJUN	115	38.9	1	116	36.8	231	0.497835	37.845455
240	KULWINDER	107	37.6	1	113	35.6	220	0.486364	36.572727

```
# еще можно поглядеть на то, сколько самых популярных имен нужно, чтобы ср авняться с остальными

# может, всего 100 имен из 20+к покроют половине испанского населения? над о проверить 
females = female_names.frequency.sum()

half = females / 2

sum_freq = 0

for index, name in female_names.iterrows():

sum_freq += name['frequency']

if sum_freq > half:
```

```
break
half_female = index+1
print(sum freq)
print(name['name'], index)
11052041
ANGELES 65
males = male names.frequency.sum()
half = males / 2
sum freq = 0
for index, name in male_names.iterrows():
  sum_freq += name['frequency']
 if sum freq > half:
   break
half male = index+1
print(sum freq)
print(name['name'], index)
10777334
EDUARDO 44
fig = plt.figure(figsize=[15,12])
a1 = fig.add subplot(2,1,1)
a2 = fig.add subplot(2,1,2)
al.plot(female names.index, female names.frequency, color='#fa20aa')
a1.plot(0,half female, marker='*', color='#fa20aa')
al.plot(male names.index, male names.frequency, color='#209aff')
a1.plot(0,half_male, marker='*', color='#209aff')
a2.set xscale('log')
a2.plot(female names.index, female names.frequency, color='#fa20aa')
a2.axvline(half_female, color='#fa20aa')
a2.plot(male_names.index, male_names.frequency, color='#209aff')
a2.axvline(half_male, color='#209aff')
```


Оказалось, что половину всех испанских женщин называют одним из 66 имен (индексация начинается с 0).

Для мужчин это число еще меньше - 45!

У другой половины разнообразие имен куда больше - 24.5 тысячи

На нижнем графике вертикальные линии делят представителей женского и мужского пола пополам

На верхнем графике на местах этих линий находятся звездочки.

Ну и напоследок, надо выяснить, какие имена самые длинные

```
longest_fem = female_names.sort_values(
    'length', ascending=False).head(10).name.tolist()
longest_male = male_names.sort_values(
    'length', ascending=False).head(10).name.tolist()
```

Слева - самые длинные женские имена. Справа - мужские.