NUMERICAL-1 on RESERVATION TABLE CALCULATE COLLISION VECTOR, STATE DIAGRAM, GREEDY CYCLES,

MAL

Question 1: Consider the following Reservation Table:

- 1. What are the forbidden latencies?
- 2. Draw the state transition diagram.
- 3. List all the simple cycles and greedy cycles.
- 4. Determine the minimal average latency (MAL).

1. What are the forbidden latencies

Forbidden latencies = $\{2, 4, 5, 7\}$

It causes collision

Permissible Latency =
$$\{1, 3, 6, 8^+\}$$

- It does not causes collision
 Maximum forbidden latency (m) = 7,
- So the collision vector is of 7 bits

Collision Vector
$$\frac{1}{2}$$
 {C₇ C₆ C₅ C₄ C₃ C₂ C₁ }

Collision Vector = (1011010)

1 = forbidden latency 0 = Permissible laten

Note: The last permissible latency of 8 can be ignored because we need only 7 bits to represent Collision Vector

2. Draw State Transition diagram

A **state diagram** is constructed from **Collision Vector**. It specifies the **permissible state transitions** among successive initiations based on the **collision vector**.

How to draw state transition diagram?

The Permissible Latency = $\{1, 3, 6, 8^+\}$, so we have to find the <u>next states of collision vector</u> for the <u>transitions 1, 3, 6, 8^+</u>

Method:

To <u>find</u> the <u>collision vector of the next state</u> the <u>collision vector of the present state is shifted</u> <u>right</u> for each <u>transitions (1, 3, 6, 8⁺)</u>. The <u>shifted collision vector of present state</u> is <u>bitwise-ORed</u> with <u>Initial Collision Vector (ICV)</u>.

ep 1. Culculating next state with Present State (PS) - TOTTOTO

```
Permissible latencies (or transitions) = 1, 3. 6, 8+
```

With latency 1:

1011010 ICV

- + 0101101 After Right Shift PS by 1
 1111111 Next state
- > So, the new state 1111111 with latency 1

With latency 3:

1011010 ICV

+ <u>0001011</u> After Right Shift PS by 3 1011011 Next state

With latency 6:

1011010 ICV

+ 0000001 After Right Shift PS by 6
1011011 Next state

Initial Collision Vector (ICV) = 1011010

With latency 8+:

1011010 ICV

- 1011010 Next state
- So the latency 8 returns to original ICV (1011010)

p 2. Culculating ideal state will resem state (rs) - ioi ioi i

Permissible latencies (or transitions) = 3, 6, 8⁺.

■ With latency 3:

Initial Collision Vector (ICV) = 1011010

1011010 ICV

- + 0001011 After right shifting PS by 3
 1011011 Next State
- With latency 6:

1011010 ICV

- + 0000001 After right shifting PS by 3
 1011011 Next State
- > So the latency 3 & 6 returns to same state.
- □ With latency 8+:

1011010 ICV

+ <u>00000000</u> After right shifting PS by 8⁺ 1011010 Next state

So the latency & returns to evining ICV (1011010)

Intermediate State Diagram

p 3: Calculating Next state with Present State (PS) = 1111111

Permissible latencies (or transitions) = 8+

Initial Collision Vector (ICV) =(101101

With latency 8+:

1011010 ICV

- + 0000000 After right shifting PS by 8⁺
 1011010 Next State
- So the latency 8 returns to original ICV (1011010)

ote:

- The bitwise ORing of the shifted version of the present state with the initial collision vector (ICV) is meant to prevent collisions from future initiations.
- . When the number of shifts is m + 1 (7+1=8) or greater (8+), all transitions are redirected back to the initial state.
 - For example, after **eight or more shifts** (denoted as), the next 8+ state must be the initial state, regardless of which state the transition starts from.

Final State Diagram

3. Simple & Greedy Cycles...

imple Cycle: A Simple Cycle is a latency cycle in which each state appears only once.

whose edges are all made with minimum latencies from their respective starting states.

Their average latencies must be lower

Latency Cycles	Types of cycles	Average Latency
(3)	Simple cycle (Greedy cycle)	3
(6)	Simple cycle	6
(8)	Simple cycle	8
(1,8)	Simple cycle (Greedy cycle)	4.5
(3,8)	Simple cycle	5
(6,8)	Simple cycle	7
(3,6,3)		
(3,3,6)		
(1,8,3,8)		
(1,8,6,8)		

4. MAL (Minimum Average Latency)

MAL (Minimum Average Latency) is the minimum average latency obtained from the greedy cycle.

- The minimum-latency edges in the state diagrams are marked with asterisks.
- Atleast one of the greedy cycles will lead to the MAL

Latency Cycles	Types of cycles	Average Latency
(3)	Simple cycle (Greedy cycle)	3 (MAL
(6)	Simple cycle	6
(8)	Simple cycle	8
(1,8)	Simple cycle (Greedy cycle)	4.5
(3,8)	Simple cycle	5
(6,8)	Simple cycle	7
(3,6,3)		
(3,3,6)		
(1,8,3,8)		(
(1.8.6.8)		

Question 2: Consider the following Reservation Table:

									→	Tim
		1	2	3	4	5	6	7	8	9
	S1	X								X
	S1 S2		X	X					X	
Stages	S3				X					
						X	X			
	S4 S5							X	X	

- 1. What are the forbidden latencies and initial collision vector?
- 2. Draw the state transition diagram for scheduling the pipeline.
- 3. List all the simple cycles and greedy cycles.
- 4. Determine the minimal average latency (MAL).

I. What are the forbidden latencies & initial collision vector?

Forbidden latencies = $\{1, 5, 6, 8\}$

It causes collision

Permissible Latency = $\{2, 3, 4, 7, 9^+\}$

It does not causes collision

Maximum forbidden latency (m) = 8,

So the collision vector is of 8 bits

Collision Vector:
$$\{C_8 C_7 C_6 C_5 C_4 C_3 C_2 C_1\} = \{10110001\}$$

1 0 1 1 0 0 0

1 = forbidden latency

0= Permissible latency

2. Draw State Transition diagram

- How to draw state transition diagram?
 - The Permissible Latency = $\{2, 3, 4, 7, 9^+\}$, so we have to find the <u>next states of collision vector</u> for the <u>transitions 2, 3, 4, 7, 9^+</u>
 - Method:

To <u>find</u> the <u>collision vector</u> of the <u>next state</u> the <u>collision vector</u> of the <u>present state</u> is <u>bitwise-ORed</u> with <u>Initial</u> Collision Vector (ICV).

p 1. Culculating next state with Fresent State (FS) - TOTTOOOT

Permissible latencies (or transitions) = 2, 3, 4, 7, 9⁺

With latency 2:

10110001 ICV

- + 00101100 After Right Shift PS by 2
 10111101 Next state
- > So, the new state is 10111101 with latency 2

With latency 3:

10110001 ICV

- + 00010110 After Right Shift PS by 3
 10110111 Next state
- > So, the new state is 10110111 with latency 3

With latency 4:

10110001 ICV

+ 00001011 After Right Shift PS by 4
10111011 Next state

Initial Collision Vector (ICV) = 10110001

With latency 7:

10110001 ICV

- + 00000001 After Right Shift PS by 7
- > So the latency 7 returns to original ICV (1011010)
- With latency 9+:

10110001 ICV

- + <u>00000000</u> After Right Shift PS by 9 10110001 Next state
- > So the latency 9+ returns to original ICV (1011010)

Step 2: Calculating Next state with Present State (PS) = 10111101

Permissible latencies (or transitions) = 2, 7, 9⁺.

■ With latency 2:

Initial Collision Vector (ICV) = 10110001

10110001 ICV

- + 00101111 After right shifting PS by 2
- So, the new state is 10111111 with latency 2
- With latency 7:

10110001 ICV

- + 00000001 After right shifting PS by 7
 10110001 Next State
- So the latency 7 returns to original ICV (10110001)
- With latency 9+:

10110001 ICV

- + 00000000 After right shifting PS by 9⁺
 10110001 Next state
- > So the latency 9+ returns to original ICV (10110001)

Intermediate State Transition Diagram

Note: The process of shifting continues by taking the collision vector of new state, shifting and ORing with the initial collision vector (ICV).

Step 5: Present State (PS) = 101111111

Permissible latencies (or transitions) = 7, 9⁺.

Final State Transition Diagram

3. Simple & Greedy Cycles

Latency Cycles	Types of cycles	Average Latency
(7)	Simple cycle (Constant Cycle)	7
(2, 7)	Simple cycle	4.5
(2, 2, 7)	Simple cycle (Greedy Cycle)	3.6
(3, 7)	Simple cycle	5
(3, 4)	Simple cycle (Greedy Cycle)	3.5
(4, 7)	Simple cycle	5.5
(4, 3, 7)	Simple cycle	4.6
(3, 4, 7)	Simple cycle	4.6

- A Simple Cycle is a latency cycle in which each state appears only once.
- A Greedy Cycle is a simple cycle whose edges are all made with minimum latencies from their respective starting states.
 - Their average latencies must be lower

4. MAL Minimum Average Latency

Latency Cycles	Types of cycles	Average Latency
(7)	Simple cycle (Constant Cycle)	7
(2, 7)	Simple cycle	4.5
(2, 2, 7)	Simple cycle (Greedy Cycle)	3.6
(3, 7)	Simple cycle	5
(3, 4)	Simple cycle (Greedy Cycle)	3.5 (MA
(4, 7)	Simple cycle	5.5
(4, 3, 7)	Simple cycle	4.6
(3, 4, 7)	Simple cycle	4.6
1-1 11 1		

MAL (Minimum Average Latency) is the minimum average latency obtained from the greedy cycle.

The greedy cycle (3, 4) leads to MAL = 3.5