

Data & Sampling Sampling Dustribution

Dipresentasikan Oleh: Asthagina Delia Putri (20244920001)

www.reallygreatsite.com

DISTRIBUSI NORMAL

Distribusi normal adalah distribusi probabilitas kontinu yang berbentuk lonceng dan simetris terhadap rata-rata. Digunakan dalam berbagai analisis statistik.

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad -\infty < x < \infty$$

cdf:

$$F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right]$$


```
distribution = {
    "Normal": stats.norm.rvs(loc=0, scale=1, size=100),
for name, data in distribution.items():
   x = np.linspace(min(data), max(data), 100)
   pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
   cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
   mean = np.mean(data)
   std = np.std(data)
   print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
   plt.figure(figsize=(10, 4))
   plt.subplot(1, 2, 1)
   plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
   plt.plot(x, pdf, color='red', label='PDF')
   plt.title(f"PDF dari Distribusi {name}")
   plt.legend()
   plt.subplot(1, 2, 2)
   plt.plot(x, cdf, color='green', label='CDF')
   plt.title(f"CDF dari Distribusi {name}")
   plt.legend()
```


Distribusi Normal : Mean = 0.0049, Std = 1.0660

DISTRIBUSI LONG TAILED

Distribusi dengan ekor panjang menunjukkan probabilitas tinggi untuk nilai ekstrem dibandingkan distribusi norma

pdf:

$$f(x)=rac{lpha x_m^lpha}{x^{lpha+1}},\quad x\geq x_m$$

cdf:

$$F(x)=1-\left(rac{x_m}{x}
ight)^{lpha},\quad x\geq x_m$$

```
distribution = {
    "Long-Tailed": stats.cauchy.rvs(size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
    plt.figure(figsize=(10, 4))
    plt.subplot(1, 2, 1)
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
    plt.legend()
    plt.show()
```


Distribusi Long-Tailed: Mean = 1.7525, Std = 17.0255

DISTRIBUSI STUDENT'S T

Digunakan dalam pengujian hipotesis untuk sampel kecil.

kode phyton data:

```
distribution = {
    "Student's t": stats.t.rvs(df=10, size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
    plt.figure(figsize=(10, 4))
    plt.subplot(1, 2, 1)
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
    plt.legend()
    plt.show()
```

pdf:

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

cdf:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Distribusi Student's t: Mean = 0.2042, Std = 1.1656

kode phyton data:

```
distribution = {
    "binomial": np.random.binomial(n=10, p=0.5, size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
   plt.figure(figsize=(10, 4))
    plt.subplot(1, 2, 1)
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
   plt.legend()
    plt.show()
```

DISTRIBUSI BINOMIAL

Digunakan untuk menghitung probabilitas sukses dalam percobaan Bernoulli yang berulang.

pdf:

$$P(x = k) = C_k^n p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

cdf:

$$F(x) = \sum_{k=0}^{x} P(X = k)$$

w

visualisasi data:

Distribusi binomial: Mean = 4.9800, Std = 1.3265

DISTRIBUSI CHI-SQUARE

Digunakan dalam uji statistik untuk varians populasi dan goodness-of-fit test.

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

cdf:

$$F(x) = \frac{1}{\Gamma(k/2)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right)$$


```
distribution = {
    "Chi-Square": stats.chi2.rvs(df=4, size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
    plt.figure(figsize=(10, 4))
    plt.subplot(1, 2, 1)
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
    plt.legend()
    plt.show()
```


Distribusi Chi-Square: Mean = 4.4182, Std = 2.9563

DISTRIBUSIF

Distribusi untuk membandingkan dua varians dalam analisis varians (ANOVA).

$$F = \frac{s_1^2}{s_2^2}$$

cdf:

$$F(x) = \int\limits_{-\infty}^x f(t) \mathrm{d}t.$$

```
distribution = {
    "F": stats.f.rvs(dfn=5, dfd=2, size=100)
for name, data in distribution.items():
   x = np.linspace(min(data), max(data), 100)
   pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
   cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
   mean = np.mean(data)
   std = np.std(data)
   print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
   plt.figure(figsize=(10, 4))
   plt.subplot(1, 2, 1)
   plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
   plt.plot(x, pdf, color='red', label='PDF')
   plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
   plt.subplot(1, 2, 2)
   plt.plot(x, cdf, color='green', label='CDF')
   plt.title(f"CDF dari Distribusi {name}")
   plt.legend()
    plt.show()
```


Distribusi F: Mean = 4.5416, Std = 10.5911

DISTRIBUSI POISSON

Digunakan untuk menghitung jumlah kejadian dalam interval tetap

pdf:

$$P(x=k) = \frac{\mu^k e^{-\mu}}{k!}$$

cdf:

$$F(x) = \sum_{k=0}^{x} P(X = k)$$


```
distribution = {
    "Poisson": stats.poisson.rvs(mu=3, size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
    plt.figure(figsize=(10, 4))
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
    plt.legend()
    plt.show()
```


Distribusi Poisson: Mean = 3.1600, Std = 1.7130

DISTRIBUSI EKSPONENTIAL

Digunakan untuk model waktu tunggu antar kejadian dalam proses Poisson.

 $f(x)=\lambda e^{-\lambda x}, \quad x\geq 0$

cdf:

$$F(x) = 1 - e^{-\lambda x}$$


```
distribution = {
    "Eksponensial": stats.expon.rvs(scale=1, size=100)
for name, data in distribution.items():
    x = np.linspace(min(data), max(data), 100)
    pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
    cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
    mean = np.mean(data)
    std = np.std(data)
    print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
    plt.figure(figsize=(10, 4))
    plt.subplot(1, 2, 1)
    plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
    plt.plot(x, pdf, color='red', label='PDF')
    plt.title(f"PDF dari Distribusi {name}")
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, cdf, color='green', label='CDF')
    plt.title(f"CDF dari Distribusi {name}")
    plt.legend()
    plt.show()
```


Distribusi Eksponential: Mean = 1.2196, Std = 1.2658

DISTRIBUSI WEIBULL

Distribusi fleksibel yang sering digunakan dalam analisis reliabilitas.

$$f(x) = rac{k}{\lambda} \left(rac{x}{\lambda}
ight)^{k-1} e^{-(x/\lambda)^k}, \quad x \geq 0$$

cdf:

$$F(x) = 1 - e^{-(x/\lambda)^k}$$


```
"weibull": stats.weibull_min.rvs(c=1.5, size=100)
for name, data in distribution.items():
   x = np.linspace(min(data), max(data), 100)
   pdf = stats.gaussian_kde(data).evaluate(x) # Estimasi PDF
   cdf = np.cumsum(pdf) / sum(pdf) # Estimasi CDF
   mean = np.mean(data)
   std = np.std(data)
   print(f"Distribusi {name}: Mean = {mean :.4f}, Std = {std:.4f}")
   plt.figure(figsize=(10, 4))
   plt.subplot(1, 2, 1)
   plt.hist(data, bins=30, density=True, alpha=0.6, color='b',
label='Histogram')
   plt.plot(x, pdf, color='red', label='PDF')
   plt.title(f"PDF dari Distribusi {name}")
   plt.legend()
   plt.subplot(1, 2, 2)
   plt.plot(x, cdf, color='green', label='CDF')
   plt.title(f"CDF dari Distribusi {name}")
   plt.legend()
```


Distribusi Weibull : Mean = 0.8798, Std = 0.6189

tabel perbandingan:

No.	Distribusi	Mean	Standar deviasi
1	Normal	0,0049	1,066
2	Long-tailed	1,7525	17,0255
3	Student's T	0,2042	1,1656
4	Binomial	4,98	1,3265
5	Chi-square	4,4182	2,9563
6	F	4,516	10,5911
7	Poisson	3,16	1,731
8	Eksponensial	1,2196	1,2658
9	Weibull	0,8798	0,6189

kesimpulan:

hasil pembangkitan dan analisis data, setiap distribusi memiliki karakteristik unik yang tercermin dalam bentuk histogram, PDF, dan CDF. Distribusi seperti Normal dan Binomial menunjukkan pola yang lebih terpusat, sementara distribusi seperti long-tailed memiliki ekor panjang yang menyebabkan nilai-nilai ekstrem. Nilai mean dan standar deviasi dari data yang dibangkitkan menunjukkan adanya variasi yang bergantung pada jenis distribusi.

Thank You

