Devoir à la maison no 1

À rendre le lundi 15 septembre 2025

Ce premier devoir maison est (partiellement) commun aux groupes MPI et MPI*. Il est constitué de deux petits problèmes et de deux exercices supplémentaires pour les étudiants MPI*.

I. Problème : Supplémentaire commun à deux sous-espaces

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On se donne A et B deux sous-espaces vectoriels de E et on cherche à prouver l'existence d'un sous-espace vectoriel C, tel que :

$$E = A \oplus C = B \oplus C$$
.

- 1. Montrer que si C existe, on a nécessairement $\dim(A) = \dim(B)$.
 - Dans la suite de cette étude, on suppose $\dim(A) = \dim(B)$ et on va montrer qu'un tel sous-espace vectoriel C existe.
- **2.** Résoudre le problème lorsque A = B.

Dans toute la suite, on suppose $A \neq B$.

- 3. On étudie pour commencer le cas où A et B sont de dimension n-1 (ce sont des hyperplans).
 - a) Justifier l'existence de vecteurs $u \in A$ et $v \in B$ tels que $u \notin B$ et $v \notin A$.
 - b) Montrer que le vecteur w = u + v n'est pas dans $A \cup B$.
 - c) Vérifier que C = vect(w) est solution du problème posé.
- **4.** On revient au cas général, où on suppose seulement $\dim(A) = \dim(B)$ et $A \neq B$.
 - a) Justifier l'existence d'un sous-espace vectoriel $A' \neq \{0\}$, tel que $(A \cap B) \oplus A' = A$. De manière symétrique, on introduit B', tel que $(A \cap B) \oplus B' = B$.
 - b) Montrer que $A' \cap B' = \{0\}$ et que $\dim(A') = \dim(B') \ge 1$. Dans la suite, on pose $p = \dim(A') = \dim(B')$. On considère (e_1, \ldots, e_p) et (f_1, \ldots, f_p) des bases de A' et B' respectivement.
 - c) Montrer que la famille (g_1, \ldots, g_p) , définie par $g_i = e_i + f_i$ pour $i \in [1, p]$, est libre. Quelle est la dimension de $G = \text{vect}(g_1, \ldots, g_p)$?
 - **d)** Montrer que $A \cap G = B \cap G = \{0\}$ et que $A + B = A \oplus G = B \oplus G$.
 - e) Soit H un supplémentaire de A+B. Montrer que la somme G+H est directe et que $C=G\oplus H$ est un supplémentaire commun à A et à B.

II. Problème: Pseudo-inverse d'une matrice

Dans ce problème \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , n un entier strictement positif, $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carré à n lignes et n colonnes, et $GL_n(\mathbb{K})$ le groupe des matrices inversibles.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Une matrice $A' \in \mathcal{M}_n(\mathbb{K})$ est appelée un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

(1)
$$AA' = A'A$$
; (2) $A = AA'A$; (3) $A' = A'AA'$.

On note a l'endomorphisme canoniquement associé à A, c'est-à-dire l'endomorphisme de \mathbb{K}^n dont A est la matrice dans la base canonique de \mathbb{K}^n .

- 1. Montrer que l'existence d'un pseudo-inverse de A implique que $rg(a) = rg(a^2)$.
- 2. Réciproquement, on suppose que $rg(a) = rg(a^2)$. On note r cet entier.
 - a) Montrer que l'image et le noyau de a sont supplémentaires : $\operatorname{Im}(a) \oplus \operatorname{Ker}(a) = \mathbb{K}^n$.
 - **b)** En déduire qu'il existe $B \in GL_r(\mathbb{K})$ et $W \in GL_n(\mathbb{K})$ telles que $A = W\begin{pmatrix} B & (0) \\ (0) & (0) \end{pmatrix} W^{-1}$.
 - c) Montrer enfin que A admet au moins un pseudo-inverse.
- 3. Considérons maintenant un pseudo-inverse A' quelconque de A et notons a' l'endomorphisme canoniquement associé.
 - a) Montrer que Ker(a) et Im(a) sont stables par a'
 - **b)** En déduire qu'il existe $D \in \mathcal{M}_r(\mathbb{K})$ telle que $A' = W\begin{pmatrix} D & (0) \\ (0) & (0) \end{pmatrix} W^{-1}$.
 - c) Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de a, et préciser ce que vaut $W^{-1}AA'W$.
 - \mathbf{d}) En déduire que A admet au plus un pseudo-inverse.

Exercice 1. (MPI*)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, \mathcal{B} une base de E, et soit $u \in \mathcal{L}(E)$. Pour $(x_1, \ldots, x_n) \in E$, on pose :

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \det_{\mathcal{B}}(x_1, \dots, x_{i-1}, u(x_i), x_{i+1}, \dots, x_n)$$

Montrer que f est n-linéaire alternée, puis que $f = \operatorname{tr}(u) \det_{\mathcal{B}}$

Exercice 2. (MPI*)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$. Montrer que f est un projecteur si, et seulement si, $\operatorname{rg}(f) + \operatorname{rg}(f - Id) = n$.