Sub-sistema de entrada e saída – E/S (I/O)

- □ Periféricos do processador
 - Circuitos na periferia do processador (CPU)

MICROCONTROLADOR TÍPICO

- □ A comunicação entre o processador e os periféricos é feita através de registradores
 - Os registradores podem estar dentro dos periféricos ou entre o processador e os periféricos
 - Podem ser de leitura, de escrita ou ambos
 - Esses registradores também são chamados de portas de E/S

- Da mesma maneira que o processador acessa a memória fornecendo endereços, outros periféricos também tem endereços de acesso, os quais correspodendem aos registradores
- O endereçamento dos registradores pode seguir duas abordagens
 - Mapeamento em memória
 - □ Mapeamento em portas de E/S

- Mapeamento em memória
 - Espaço de endereçamento único
 - □ Parte usado para acessar a memória
 - Parte usado para acessar periféricos
 - □ Divisão do espaço definida pelo projetista
 - ☐ Exemplo: espaço de endeçamento 0 255 (8 bits)
 - 0 249: memória (250 endereços de memória)
 - 250 255: periféricos (6 endereços de periféricos)
 - Periféricos acessados utilizando instruções de acesso à memória
 - □ Load/Store
 - Exemplos
 - MIPS
 - Processadores da Motorola

Mapeamento em memória

Exemplo: barramento de endereços de 8 bits

- Mapeamento em memória
 - Exemplo: barramento de endereços de 8 bits
 - ☐ Espaço de endereçamento: 0 255
 - 0 253: memória
 - 254: P1
 - 255: P2

Desabilita a memória quando o endereço gerado pelo processador estiver fora do intervalo 0 - 253

- Mapeamento em memória
 - Exemplo: barramento de endereços de 8 bits
 - ☐ Espaço de endereçamento: 0 255
 - 0 63 (00000000-00111111): memória
 - 64 127 (**01**000000-**01**111111): P1
 - 128-191 (**10**000000-**10**111111): P2
 - 192-255 (**11**000000-**11**111111): P1 e P2 (simultâneos)

Elimina decodificadores, os quais podem ser bem grandes em termos de portas lógicas

- □ Mapeamento em portas de E/S
 - Dois espaços de endereçamento isolados
 - ☐ Um espaço é usado para acessar a memória
 - Outro é usado para acessar as interfaces de E/S
 - ☐ Exemplo considerando 8 bits no barramento de endereços
 - 0 255: memória (256 endereços de memória)
 - 0 255: periféricos (256 endereços de periféricos)
 - ☐ O processador tem uma saída (e.g. io) que indica o espaço de endereçamento em uso (e.g. io = 1: periférico)
 - Periféricos são acessados utilizando instruções específicas
 - □ In/Out
 - Exemplos
 - Processadores da Intel

Mapeamento em portas de E/S

entra/saída (in e out)

- Exemplo: barramento de endereços de 8 bits
- Espaço de endereçamento: 0 255 0 - 255: memória Habilita periféricos de acordo com o endereço 0 – 255: periféricos (0: P1; 1:P2; ...; 255: P256) io ativo indica gerado pelo iО acesso a processador **DECOD** periféricos ce **Processador** address ce ativo indica **MEM** data acesso à Exemplo: memória lw \$8, 0(\$0); Lê da memória ce P1 in \$9, 0(\$0) ; Lê de P1 (io=1) sw \$9, 1(\$0); Escreve na mem ce **P2** out \$8, 1(\$0); Escr. em P2 (io=1) Periféricos acessados utilizando intruções de

ce

P256

- Mapeamento em portas de E/S
 - Exemplo: barramento de endereços de 8 bits
 - ☐ Espaço de endereçamento: 0 255
 - 0 255: memória
 - 0 255: periféricos (0: P1; 1:P2; ...;255: P256)

Decodificação do endereço gerado pelo processador feita pelos periféricos

- Estrutura básica de um sistema computacional
 - Principais componentes

- Estrutura básica de um sistema computacional
 - Sistema atual (R8_tb.vhd)

O objetivo do trabalho é adicionar ao sistema duas portas de E/S

Estrutura básica de um sistema computacional

Porta de E/S adicionada

O objetivo do trabalho é adicionar ao sistema uma porta de E/S

- Estrutura básica de um sistema computacional
 - Porta de E/S adicionada

O objetivo do trabalho é adicionar ao sistema uma porta de E/S

- □ Trabalho 2 parte 1
 - A porta de E/S deve ter 16 bits para interface com o mundo externo
 - Os bits da porta devem ser individualmente configuráveis como entrada ou saída
 - Exemplo
 - PortaA(15:10) e PortaA(1:0) entrada
 - PortaA(9:2) saída
 - A configuração dos bits é controlada por um registrador (16 bits) onde cada bit corresponde à configuração de um bit da porta
 - □ 0: saída (*output*)
 - □ 1: entrada (*input*)
 - Deve haver também um registrador que habilita individualmente a utilização dos bits da porta de E/S e um registrador de dados (ambos 16 bits)

- ☐ Trabalho 2 parte 1
 - Interface VHDL da porta de E/S
 - Arquivo BidirectionalPort.vhd disponível no moodle
 - ☐ Descrição VHDL pode ser comportamental, estrutural ou mista

R8 uC.vhd

R8

Porta A

RAM

```
entity BidirectionalPort is
                                  Esta interface não deve ser alterada!
    generic (...);
    port (
      clk : in std logic;
      rst : in std logic;
      -- Interface com o processador
      data i : in std logic vector (DATA WIDTH-1 downto 0);
      data o : out std logic vector (DATA WIDTH-1 downto 0);
      address: in std logic vector (1 downto 0); -- NÃO ALTERAR!
              : in std logic; -- 0: read; 1: write
              : in std logic;
      ce
      -- Interface com o mundo externo
     port io : inout std logic vector (DATA WIDTH-1 downto 0)
);
end BidirectionalPort;
```

- ☐ Trabalho 2 parte 1
 - Circuito resumido da porta de E/S
 - Descrição VHDL pode ser comportamental, estrutural ou mista

- ☐ Trabalho 2 parte 1
 - Mapear os registradores da porta em memória
 - Os endereços devem seguir o seguinte formato

MSb do endereço indica

0: memória

1: Entrada/Saída

- ☐ Trabalho 2 parte 1
 - A memória de dados deve ser desabilitada durante o acesso aos registradores da porta de E/S
 - Estrutura dos arquivos VHDL
 - A interface do R8_uC contém apenas clock, reset e port_io
 - O test bench deve gerar o clock, reset e estímulos para os bits de port_io que forem configurados como entrada

Apresentar diagrama
correspondente ao R8_uC.vhd
Devem aparecer as ligações de
todas interfaces do
processador, memória e porta
de E/S (address, data_i, data_o,
ce, rw, ...)
Sugestão de editor : Dia
Diagram Editor

- ☐ Trabalho 2 parte 1
 - □ Aplicação
 - Ler o estado das slide switches da placa Nexys 3 e mostar nos LEDs utilizando a porta de E/S

- ☐ Trabalho 2 parte 1
 - Manter mesmos grupos do trabalho 1
 - Apresentação dia 28/4
 - A nota do trabalho dará ENORME ÊNFASE à execução correta da simulação e prototipação
 - A apresentação será oral, teórico-prática, frente ao computador, onde o grupo deverá explicar ao professor o projeto, a simulação e a implementação