Arithmétique : Examen du 16 décembre 2021

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit A l'anneau $\mathbb{F}_2[X]/(X^4+X^2+1)$.
 - a) Combien A contient-il d'éléments? Combien d'éléments contient le groupe A^* des éléments inversibles de A?
 - b) Montrer qu'il y a dans A^* quatre éléments dont le carré vaut 1.
 - c) Dans un groupe cyclique (G, \times) noté multiplicativement, combien y a-t-il au maximum d'éléments g tels que $g^2 = 1$? En déduire que (A^*, \times) n'est pas cyclique.
 - d) Quel est l'ordre maximal d'un élément de A^* ? Donner un exemple d'un tel élément.

- Exercice 2.

- a) Quels sont les degrés des facteurs irréductibles de $X^{25} + 1$ dans $\mathbb{F}_2[X]$?
- b) En écrivant que $X^{25} = (X^5)^5$, et en utilisant la décomposition de $X^5 + 1$ en facteurs irréductibles dans $\mathbb{F}_2[X]$, trouver la décomposition en facteurs irréductibles de $X^{25} + 1$.
- c) Combien l'anneau $A = \mathbb{Z}/125\mathbb{Z}$ a-t-il d'éléments inversibles?
- d) Calculer 2^{20} et 2^{50} dans A et en déduire que 2 est un générateur du groupe multiplicatif des éléments inversibles de A.
- e) En déduire la décomposition en facteurs irréductibles de $X^{125} + 1$.
- EXERCICE 3. On considère la suite binaire $a=(a_i)_{i\geqslant 0}$ engendrée par la récurrence linéaire

$$a_i = a_{i-2} + a_{i-3}$$

et commençant par $a_0 = a_1 = a_2 = 1$. Écrire la suite a sous sa forme algébrique $a_i = \text{Tr}(\alpha^{i+k})$ où Tr() désigne l'application trace de \mathbb{F}_8 dans \mathbb{F}_2 et où k est un entier à déterminer.

- EXERCICE 4. Soit n un entier de la forme $n = 2^m + 1$.
 - a) Montrer que $\mathbb{F}_{2^{2m}}$ est la plus petite extension de \mathbb{F}_2 dans laquelle il existe un élément α d'ordre n.

- b) Soit P(X) le polynôme minimal d'un tel α . Montrer que α^{-1} est une racine de P(X).
- c) Soit g(X) = (X+1)P(X). Pourquoi g(X) est-il le polynôme générateur d'un code cyclique C de longueur n? Quelle est la dimension de ce code?
- d) Étudier les racines de g(X) pour en déduire que la distance minimale de C est au moins 6.

– EXERCICE 5. On considère le polynôme $g(X) = (X^3 + X + 1)(X^4 + X + 1) = X^7 + X^5 + X^3 + X^2 + 1$ dans $\mathbb{F}_2[X]$.

- a) Quelle est la plus petite extension de \mathbb{F}_2 dans laquelle g(X) a une racine?
- b) Quelle est la plus petite extension de \mathbb{F}_2 dans laquelle g(X) a 7 racines?
- c) Montrer que 105 est le plus petit entier n tel que g(X) soit le polynôme générateur d'un code cyclique de longueur n.
- d) Montrer que toute suite (a_i) satisfaisant la récurrence linéaire sur \mathbb{F}_2

$$a_i = a_{i-2} + a_{i-4} + a_{i-5} + a_{i-7} \tag{1}$$

a pour période 105 ou un diviseur de 105.

- e) Soit $h(X) = (X^{105} + 1)/g(X)$. Quelle est la dimension du code cyclique C de longueur 105 de polynôme générateur h(X)?
- f) Montrer que le polynôme $G(X) = (X^4 + X + 1)h(X)$ s'écrit sous la forme

$$G(X) = (1 + X + X^{2} + X^{4})(1 + X^{7} + X^{14} + \dots + X^{7i} + \dots + X^{7.14}).$$

- g) Montrer que le sous-code cyclique de C de polynôme générateur G(X) a pour mots non nuls des mots de la forme (x, x, \ldots, x) où x est un septuplet répété 15 fois.
- h) Donner un exemple de suite de période 7 vérifiant la récurrence linéaire (1).
- i) Donner un exemple de suite de période 15 vérifiant la récurrence linéaire (1).