DD2434 - Machine Learning, Advanced Course Assignment 1A

Tristan Perrot tristanp@kth.se

Étienne Riguet riguet@kth.se

November 2023

${\bf Contents}$

1	Exponential Family	3
2	Dependencies in a Directed Graphical Model	4
3	CAVI	9
\mathbf{A}	Appendix	17
	A.1 Question 3.12	17
	A.2 Question 3.13	17
	A.3 Question 3.14	17
	A.4. Question 3.15	19

1 Exponential Family

Question 1.1

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= h(x) \exp(\eta(\lambda) \cdot T(x) - A(\eta(\lambda)))$$

$$= h(x) \exp(\log \lambda \cdot x - A(\log \lambda))$$

$$= h(x) \exp(\log \lambda \cdot x - \lambda)$$

$$= h(x) \exp(\log \lambda \cdot x) \exp(-\lambda)$$

$$= e^{-\lambda} \frac{\lambda^x}{x!}$$
(1)

We can see that the distribution correspond to a Poisson distribution of parameter λ .

Question 1.2

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \exp(\eta([\alpha, \beta]) \cdot [\log x, x] - A(\alpha - 1, -\beta))$$

$$= \exp([\alpha - 1, -\beta] \cdot [\log x, x] - \log \Gamma(\alpha) + \alpha \log(\beta))$$

$$= \exp((\alpha - 1) \log x - \beta x - \log \Gamma(\alpha) + \alpha \log(\beta))$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
(2)

We can see that the distribution correspond to a Gamma distribution of parameters α and β .

Question 1.3

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \frac{\exp(\eta([\mu, \sigma^{2}]) \cdot [x, x^{2}] - A(\eta([\mu, \sigma^{2}])))}{\sqrt{2\pi}}$$

$$= \frac{\exp([\frac{\mu}{\sigma^{2}}, -\frac{1}{2\sigma^{2}}] \cdot [x, x^{2}] - A([\frac{\mu}{\sigma^{2}}, -\frac{1}{2\sigma^{2}}]))}{\sqrt{2\pi}}$$

$$= \frac{\exp(\frac{\mu x}{\sigma^{2}} - \frac{x^{2}}{2\sigma^{2}} - \frac{\mu^{2}}{2\sigma^{2}} - \log \sigma)}{\sqrt{2\pi}}$$

$$= \frac{\exp(-\frac{(x-\mu)^{2}}{2\sigma^{2}})}{\sigma\sqrt{2\pi}}$$
(3)

We can see that the distribution correspond to a Normal distribution of parameters μ and σ^2 .

Question 1.4

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= 2 \exp(\eta(\lambda) \cdot x - A(\eta(\lambda)))$$

$$= 2 \exp(-\lambda x - A(-\lambda))$$

$$= 2 \exp\left(-\lambda x + \log\left(\frac{\lambda}{2}\right)\right)$$

$$= \lambda e^{-\lambda x}$$
(4)

We can see that the distribution correspond to a Exponential distribution of parameter λ .

Question 1.5

$$p(x|\theta) = h(x) \exp(\eta(\theta) \cdot T(x) - A(\eta))$$

$$= \exp(\eta([\psi_1, \psi_2]) \cdot [\log x, \log(1 - x)] - A(\eta([\psi_1, \psi_2])))$$

$$= \exp([\psi_1 - 1, \psi_2 - 1] \cdot [\log x, \log(1 - x)] - A([\psi_1 - 1, \psi_2 - 1]))$$

$$= \exp((\psi_1 - 1) \log x + (\psi_2 - 1) \log(1 - x) - \log \Gamma(\psi_1) - \log \Gamma(\psi_2) + \log \Gamma(\psi_1 + \psi_2))$$

$$= \frac{\Gamma(\psi_1 + \psi_2)}{\Gamma(\psi_1)\Gamma(\psi_2)} x^{\psi_1 - 1} (1 - x)^{\psi_2 - 1}$$
(5)

We can see that the distribution correspond to a Beta distribution of parameters ψ_1 and ψ_2 .

2 Dependencies in a Directed Graphical Model

Question 2.6

Figure 1: Graphical model of smooth LDA.

The Bayes net take this form:

Then, if we use the method using the d-separation, we obtain this :

Therefore, we can see that $W_{d,n} \perp W_{d,n+1} | \theta_d, \beta_{1:K}$ is <u>true</u>.

Question 2.7

The Bayes net take this form (with d-separation marks) :

Therefore, we can see that $\theta_d \perp \theta_{d+1} | Z_{d,1:N}$ is <u>false</u>.

Question 2.8

The Bayes net take this form (with d-separation marks) :

Therefore, we can see that $\theta_d \perp \theta_{d+1} | \alpha, Z_{1:D,1:N}$ is <u>true</u>.

Question 2.9

Figure 2: Graphical model of Labeled LDA.

The Bayes net take this form (with d-separation marks) :

Therefore, we can see that $W_{d,n} \perp W_{d,n+1} | \Lambda_d, \beta_{1:K}$ is <u>false</u>.

Question 2.10

The Bayes net take this form (with d-separation marks):

Therefore, we can see that $\theta_d \perp \theta_{d+1}|Z_{d,1:N}, Z_{d+1,1:N}$ is <u>false</u>.

Question 2.11

The Bayes net take this form (with d-separation marks) : $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{$

Therefore, we can see that $\Lambda_d \perp \Lambda_{d+1} | \Phi, Z_{1:D,1:N}$ is <u>false</u>.

3 CAVI

Figure 3: DGM

Question 3.12

In the bishop book, we can see that :

$$p(X|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left\{-\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$
 (6)

$$p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0 \tau)^{-1}) \tag{7}$$

$$p(\tau) = \operatorname{Gam}(\tau | a_0, b_0) \tag{8}$$

Then, by using the code in appendix A.1, we obtain:

Figure 4: Generated Data

Question 3.13

Let's find the ML estimates of μ and τ . We know that $\log(q^*(\mu)) = \mathbb{E}_{-\mu}[\log p(X, \mu, \tau)]$. Then, we can write:

$$\log(q^{*}(\mu)) = \mathbb{E}_{-\mu}[\log p(X, \mu, \tau)]$$

$$\stackrel{\pm}{=} \mathbb{E}_{\tau}[\log p(X|\mu, \tau) + \log p(\mu|\tau)]$$

$$= \mathbb{E}_{\tau} \left[\frac{N}{2} \log \left(\frac{\tau}{2\pi} \right) - \frac{\tau}{2} \sum_{n=1}^{N} (x_{n} - \mu)^{2} + \frac{1}{2} \log \left(\frac{\lambda_{0}\tau}{2\pi} \right) - \frac{\lambda_{0}\tau}{2} (\mu - \mu_{0})^{2} \right]$$

$$\stackrel{\pm}{=} -\frac{\mathbb{E}_{\tau}[\tau]}{2} \left(\lambda_{0}(\mu - \mu_{0})^{2} + \sum_{n=1}^{N} (x_{n} - \mu)^{2} \right)$$

$$= -\frac{\mathbb{E}_{\tau}[\tau]}{2} \left(\lambda_{0}\mu^{2} - 2\lambda_{0}\mu\mu_{0} + \lambda_{0}\mu_{0}^{2} + \sum_{n=1}^{N} x_{n}^{2} - 2\mu \sum_{n=1}^{N} x_{n} + N\mu^{2} \right)$$

$$= -\frac{\mathbb{E}_{\tau}[\tau]}{2} \left((\lambda_{0} + N)\mu^{2} - 2(\lambda_{0}\mu_{0} + \sum_{n=1}^{N} x_{n})\mu + \lambda_{0}\mu_{0}^{2} + \sum_{n=1}^{N} x_{n}^{2} \right)$$

$$= -\frac{\mathbb{E}_{\tau}[\tau](\lambda_{0} + N)}{2} \left(\mu^{2} - 2\mu \frac{\lambda_{0}\mu_{0} + \sum_{n=1}^{N} x_{n}}{\lambda_{0} + N} + \frac{\lambda_{0}\mu_{0}^{2} + \sum_{n=1}^{N} x_{n}^{2}}{\lambda_{0} + N} \right)$$
(9)

Therefore we can conclude that $q^*(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N^{-1})$ with:

$$\mu_N = \frac{\lambda_0 \mu_0 + \sum_{n=1}^N x_n}{\lambda_0 + N} \tag{10}$$

$$\lambda_N = (\lambda_0 + N) \mathbb{E}[\tau] \tag{11}$$

And for τ we have :

$$\log(q^{*}(\tau)) = \mathbb{E}_{-\tau}[\log p(X,\mu,\tau)]$$

$$\stackrel{+}{=} \mathbb{E}_{\mu}[\log p(X|\mu,\tau) + \log p(\mu|\tau)] + \log p(\tau)$$

$$\stackrel{+}{=} (a_{0} - 1)\log \tau - b_{0}\tau + \frac{N+1}{2}\log \tau - \frac{\tau}{2}\mathbb{E}_{\mu}\left[\sum_{n=1}^{N}(x_{n} - \mu)^{2} + \lambda_{0}(\mu - \mu_{0})^{2}\right]$$

$$= (a_{0} + \frac{N+1}{2} - 1)\log \tau - \left(b_{0} + \frac{1}{2}\mathbb{E}_{\mu}\left[\sum_{n=1}^{N}(x_{n} - \mu)^{2} + \lambda_{0}(\mu - \mu_{0})^{2}\right]\right)\tau$$
(12)

Therefore we can conclude that $q^*(\tau) = \operatorname{Gam}(\tau|a_N, b_N)$ with :

$$a_N = a_0 + \frac{N+1}{2} \tag{13}$$

$$b_{N} = b_{0} + \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_{n} - \mu)^{2} + \lambda_{0} (\mu - \mu_{0})^{2} \right]$$

$$b_{N} = b_{0} + \frac{1}{2} \left(\sum_{n=1}^{N} x_{n}^{2} + N \mathbb{E}_{\mu} [\mu^{2}] - 2 \mathbb{E}_{\mu} [\mu] \sum_{n=1}^{N} x_{n} + \lambda_{0} \left(\mathbb{E}_{\mu} [\mu^{2}] + \mu_{0}^{2} - 2 \mu_{0} \mathbb{E}_{\mu} [\mu] \right) \right)$$
(14)

With:

$$\mathbb{E}_{q(\mu)}[\mu] = \mu_N$$

$$\mathbb{E}_{q(\mu)}[\mu^2] = \frac{1}{\lambda_N} + \mu_N^2$$

$$\mathbb{E}_{q(\tau)}[\tau] = \frac{a_N}{b_N}$$
(15)

If we take non-informative priors then $a_0 = b_0 = \mu_0 = \lambda_0 = 0$, then we have :

$$\mu_{N} = \overline{x}$$

$$\lambda_{N} = N\mathbb{E}[\tau]$$

$$a_{N} = \frac{N+1}{2}$$

$$b_{N} = \frac{1}{2}\mathbb{E}_{\mu}\left[\sum_{n=1}^{N}(x_{n} - \mu)^{2}\right]$$
(16)

And by using $\mathbb{E}[\tau] = \frac{a_N}{b_N}$ we obtain :

$$\frac{1}{\mathbb{E}[\tau]} = \frac{b_N}{a_N}
\frac{1}{\mathbb{E}[\tau]} = \frac{2}{2(N+1)} \mathbb{E}_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 \right]
\frac{1}{\mathbb{E}[\tau]} = \frac{N}{N+1} \left(\overline{x^2} - 2\overline{x} \mathbb{E}[\mu] + \mathbb{E}[\mu^2] \right)$$
(17)

And, with the fact that $\mathbb{E}[\mu] = \mu_N$ and $\mathbb{E}[\mu^2] = \frac{1}{\lambda_N} + \mu_N^2$, we obtain :

$$\mathbb{E}[\mu] = \overline{x}$$

$$\mathbb{E}[\mu^2] = \frac{1}{N\mathbb{E}[\tau]} + \overline{x}^2$$
(18)

And therefore:

$$\frac{1}{\mathbb{E}[\tau]} = \frac{N}{N+1} \left(\overline{x^2} - 2\overline{x}^2 + \frac{1}{N\mathbb{E}[\tau]} + \overline{x}^2 \right) \Leftrightarrow \frac{1}{\mathbb{E}[\tau]} - \frac{1}{(N+1)\mathbb{E}[\tau]} = \frac{N}{N+1} \left(\overline{x^2} - \overline{x}^2 \right)
\Leftrightarrow \frac{N+1-1}{(N+1)\mathbb{E}[\tau]} = \frac{N}{N+1} \left(\overline{x^2} - \overline{x}^2 \right)
\Leftrightarrow \frac{1}{\mathbb{E}[\tau]} = \left(\overline{x^2} - \overline{x}^2 \right)
\Leftrightarrow \frac{1}{\mathbb{E}[\tau]} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$$
(19)

Which define the ML estimates. The implementation is in the code in appendix A.2.

Question 3.14

The posterior is defined as $p(\mu, \tau | x)$. Then, we can write :

$$p(\mu, \tau | x) = \frac{p(x | \mu, \tau) p(\mu, \tau)}{p(x)}$$

$$\propto p(x | \mu, \tau) p(\mu, \tau)$$
(20)

Where $x|\mu, \tau \sim \mathcal{N}(\mu|\mu, \tau^{-1})$ and $\mu, \tau \sim NormalGamma(\mu_0, \lambda_0, a_0, b_0)$. Therefore, as we saw in the question 1.3 in the Module 1 exercise, we have $\mu, \tau|x \sim NormalGamma(\mu', \lambda', a', b')$, where :

$$\mu' = \frac{N\overline{x} + \mu_0 \lambda_0}{N + \lambda_0}$$

$$\lambda' = N + \lambda_0$$

$$a' = a_0 + \frac{N}{2}$$

$$b' = b_0 + \frac{1}{2} \left(\sum_{n=1}^{N} x_n^2 + \lambda_0 \mu_0^2 - \frac{(N\overline{x} + \mu_0 \lambda_0)^2}{N + \lambda_0} \right)$$
(21)

Therefore, if we plot the contour for each datasets we obtain:

Figure 5: Contours of exact posteriors by datasets

The rest of the answer is in the code in appendix A.3.

Question 3.15

The equation (10.24) in the Bishop is the mean-field approximation which is :

$$q(\mu, \tau) = q(\mu)q(\tau) \tag{22}$$

This time, we take the result of the question 3.13 without setting the priors to 0. Then, we have

 $q(\mu) = \mathcal{N}(\mu|\mu_N, \lambda_N^{-1})$ $q(\tau) = \operatorname{Gam}(\tau|a_N, b_N)$ (23)

with updates equations in the cavi algorithm described by :

$$\mu_{N} = \frac{\lambda_{0}\mu_{0} + N\overline{x}}{\lambda_{0} + N}$$

$$\lambda_{N} = (\lambda_{0} + N)\mathbb{E}[\tau]$$

$$a_{N} = a_{0} + \frac{N+1}{2}$$

$$b_{N} = b_{0} + \frac{1}{2} \left(\sum_{n=1}^{N} x_{n}^{2} + N\mathbb{E}_{\mu}[\mu^{2}] - 2\mathbb{E}_{\mu}[\mu] \sum_{n=1}^{N} x_{n} + \lambda_{0} \left(\mathbb{E}_{\mu}[\mu^{2}] + \mu_{0}^{2} - 2\mu_{0}\mathbb{E}_{\mu}[\mu] \right) \right)$$
(24)

and the expectations are the ones described in the equation (15). Now, we need to find the ELBO formula :

$$\mathcal{L}(q) = \mathbb{E}_{q(\mu),q(\tau)}[\log p(X,\mu,\tau)] - \mathbb{E}_{q(\mu),q(\tau)}[\log q(\mu,\tau)]
= \mathbb{E}_{q(\mu),q(\tau)}[\log p(X|\mu,\tau) + \log p(\mu,\tau)] - \mathbb{E}_{q(\mu),q(\tau)}[\log q(\mu) + \log q(\tau)]
= \mathbb{E}_{q(\mu),q(\tau)}[\log p(X|\mu,\tau)] + \mathbb{E}_{q(\mu),q(\tau)}[\log p(\mu,\tau)] - \mathbb{E}_{q(\mu)}[\log q(\mu)] - \mathbb{E}_{q(\tau)}[\log q(\tau)]
= \mathbb{E}_{q(\mu),q(\tau)}[\log p(X|\mu,\tau)] + \mathbb{E}_{q(\mu),q(\tau)}[\log p(\mu,\tau)] + \mathbb{H}_{q}[\mu] + \mathbb{H}_{q}[\tau]$$
(25)

If we compute the first term we have:

$$\mathbb{E}_{q(\mu),q(\tau)}[\log p(X|\mu,\tau)] = \mathbb{E}_{q(\mu),q(\tau)} \left[\frac{N}{2} \log \left(\frac{\tau}{2\pi} \right) - \frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right]
= \frac{N}{2} \left(\mathbb{E}_{q(\tau)}[\log \tau] - \log(2\pi) \right)
- \frac{\mathbb{E}_{q(\tau)}[\tau]}{2} \left(\sum_{n=1}^{N} x_n^2 - 2\mathbb{E}_{q(\mu)}[\mu] N \overline{x_n} + N \mathbb{E}_{q(\mu)}[\mu^2] \right)$$
(26)

And the second one is:

$$\mathbb{E}_{q(\mu),q(\tau)}[\log p(\mu,\tau)] = \mathbb{E}_{q(\mu),q(\tau)} \left[\log \left(\frac{b_0^{a_0} \sqrt{\lambda_0}}{\Gamma(a_0)\sqrt{2\pi}} \right) + (a_0 - \frac{1}{2}) \log \tau - b_0 \tau - \frac{\lambda_0 \tau (\mu - \mu_0)^2}{2} \right] \\
= \log \left(\frac{b_0^{a_0} \sqrt{\lambda_0}}{\Gamma(a_0)\sqrt{2\pi}} \right) + (a_0 - \frac{1}{2}) \mathbb{E}_{q(\tau)}[\log \tau] - b_0 \mathbb{E}_{q(\tau)}[\tau] \\
- \frac{\lambda_0 \mathbb{E}_{q(\tau)}[\tau]}{2} \left(\mathbb{E}_{q(\mu)}[\mu^2] - 2\mu_0 \mathbb{E}_{q(\mu)}[\mu] + \mu_0^2 \right) \tag{27}$$

And we can compute all of that because entropies are known and we have the following expectations:

$$\mathbb{E}_{q(\mu)}[\mu] = \mu_N$$

$$\mathbb{E}_{q(\mu)}[\mu^2] = \frac{1}{\lambda_N} + \mu_N^2$$

$$\mathbb{E}_{q(\tau)}[\tau] = \frac{a_N}{b_N}$$

$$\mathbb{E}_{q(\tau)}[\log \tau] = \psi(a_N) - \log b_N$$
(28)

Then we obtain this result :

Figure 6: Contours of the approximations by VI and the exact posterior by datasets, by iterations And we obtain an elbo plot :

Figure 7: ELBO plot by datasets

The code is in appendix A.4.

A Appendix

A.1 Question 3.12

```
import numpy as np
from scipy.stats import gamma, norm
from scipy.special import psi
from scipy.special import gamma as gamma_func
np.random.seed(14)
def generate_data(mu, tau, N):
    # Insert your code here
    D = np.random.normal(mu, np.sqrt(1/tau), N)
    return D
MU = 1
TAU = 0.5
dataset_1 = generate_data(MU, TAU, 10)
dataset_2 = generate_data(MU, TAU, 100)
dataset_3 = generate_data(MU, TAU, 1000)
# Visulaize the datasets via histograms
# Insert your code here
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
axs[0].hist(dataset_1, bins=20)
axs[1].hist(dataset_2, bins=20)
axs[2].hist(dataset_3, bins=20)
plt.tight_layout()
plt.savefig('../images/12_data.png')
plt.show()
```

A.2 Question 3.13

```
def ML_est(data):
    # insert your code
    N = len(data)
    x_mean = np.mean(data)
    x_var = np.var(data)

    tau_ml = 1 / x_var
    mu_ml = x_mean

    return mu_ml, tau_ml
```

A.3 Question 3.14

```
def compute_exact_posterior(D, a_0, b_0, mu_0, lambda_0):
   # your implementation
   x_{mean} = np.mean(D)
   N = len(D)
   mu_prime = (lambda_0 * mu_0 + N * x_mean) / (lambda_0 + N)
   lambda_prime = lambda_0 + N
    a_prime = a_0 + N / 2
    b_{prime} = b_{0} + 0.5 * (np.sum(D**2) +
                           lambda\_0 \ * \ mu\_0**2 \ - \ lambda\_prime \ * \ mu\_prime**2)
    exact_post_distribution = (a_prime, b_prime, mu_prime, lambda_prime)
   return exact_post_distribution
# prior parameters
mu_0 = 0
lambda_0 = 10
a_0 = 20
b_0 = 20
mus = np.linspace(-0.25, 1.1, 200)
taus = np.linspace(0.4, 0.9, 200)
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
for i, dataset in enumerate([dataset_1, dataset_2, dataset_3]):
   mu_ml, tau_ml = ML_est(dataset)
    a_T, b_T, mu_T, lambda_T = compute_exact_posterior(
        dataset, a_0, b_0, mu_0, lambda_0)
   Z_exact = np.zeros((len(mus), len(taus)))
   pTau = gamma(a=a_T, loc=0, scale=1/b_T)
    for j, tau in enumerate(taus):
        pMu = norm(loc=mu_T, scale=1/np.sqrt(lambda_T*tau))
        Z_exact[:, j] = pMu.pdf(mus) * pTau.pdf(tau)
    # Finding the maximum of the exact posterior
   mu_max_exact = mus[np.argmax(np.max(Z_exact, axis=1))]
    tau_max_exact = taus[np.argmax(np.max(Z_exact, axis=0))]
    # Plotting the results
   \verb"axs[i].contour(*np.meshgrid(mus, taus), Z_exact.T",
                   levels=5, colors=['green'])
   axs[i].plot(mu_max_exact, tau_max_exact, 'ro', label='MAP')
    axs[i].plot(mu_ml, tau_ml, 'b+', label='ML Estimate')
    axs[i].plot(MU, TAU, 'gx', label='Actual')
   axs[i].legend()
   axs[i].grid()
   axs[i].set_xlabel('mu')
    axs[i].set_ylabel('tau')
    axs[i].set_title('Exact posterior Dataset {}'.format(i+1))
```

```
plt.tight_layout()
plt.savefig('../images/14_contours.png')
plt.show()
```

A.4 Question 3.15

```
def compute_E_tau(a_N, b_N):
    E_tau = a_N / b_N
    return E_tau
def compute_E_mu_2(mu_N, lambda_N):
    E_mu_2 = mu_N**2 + 1/lambda_N
   return E_mu_2
def compute_E_log_tau(a_N, b_N):
   E_log_tau = psi(a_N) - np.log(b_N)
   return E_log_tau
def compute_elbo(D, a_0, b_0, mu_0, lambda_0, a_N, b_N, mu_N, lambda_N):
   N = len(D)
   x_mean = np.mean(D)
   x_2_{sum} = np.sum(D**2)
   E_tau = compute_E_tau(a_N, b_N)
   E_mu_2 = compute_E_mu_2(mu_N, lambda_N)
   E_log_tau = compute_E_log_tau(a_N, b_N)
   # compute the elbo
    # E[log p(D|mu, tau)]
   E_log_p_D = N/2 * (E_log_tau - np.log(2*np.pi)) - 0.5 * 
        E_{tau} * (x_2_{sum} - 2*N*x_{mean*mu_N} + N*E_{mu_2})
   # E[log p(mu, tau)]
    E_log_p_mu_tau = a_0*np.log(b_0) + 0.5*np.log(lambda_0) - np.log(
       gamma_func(a_0)) - 0.5*np.log(
        2*np.pi) - (a_0-0.5)*E_log_tau - b_0*E_tau - 0.5*lambda_0*E_tau*(
           E_mu_2 + mu_0**2 - 2*mu_0*mu_N
    # Entropy of mu
    entropy_mu = norm.entropy(loc=mu_N, scale=1/np.sqrt(lambda_N))
    # Entropy of tau
    entropy_tau = gamma.entropy(a=a_N, scale=1/b_N)
    elbo = E_log_p_D + E_log_p_mu_tau + entropy_mu + entropy_tau
    return elbo
```

```
def CAVI(D, a_0, b_0, mu_0, lambda_0, iter=5):
           # make an initial guess for the expected value of tau
          E_{tau} = 1
          N = len(D)
          x_mean = np.mean(D)
          x_2_{sum} = np.sum(D**2)
          # Constants
          a_N = a_0 + (N+1) / 2
          mu_N = (lambda_0 * mu_0 + N * x_mean) / (lambda_0 + N)
          E_mu = mu_N
          # Variables
          b_Ns = []
          lambda_Ns = []
           # ELBO
           elbos = []
          # CAVI iterations ...
          for i in range(iter):
                      # update the values for the variational parameters
                      lambda_N = (lambda_0 + N) * E_tau
                      E_mu_2 = compute_E_mu_2(mu_N, lambda_N)
                      b_N = b_0 + 0.5 * (x_2_sum + N*E_mu_2 - 2*N*E_mu*x_mean + 0.5 * (x_2_sum + N*E_mu*x_mean + 0.5 * (x_2_sum + 0.5 * (x_
                                                                           lambda_0*(E_mu_2 - 2*E_mu*mu_0 + mu_0**2))
                      E_tau = compute_E_tau(a_N, b_N)
                      b_Ns.append(b_N)
                      lambda_Ns.append(lambda_N)
                      # save ELBO for each iteration, plot them afterwards to show
                                convergence
                      elbos.append(compute_elbo(D, a_0, b_0, mu_0,
                                                           lambda_0, a_N, b_N, mu_N, lambda_N))
          return a_N, b_N, mu_N, lambda_N, elbos, b_Ns, lambda_Ns
def compute_z_exact(mus, taus, a_, b_, mu_, lambda_):
          z = np.zeros((len(mus), len(taus)))
          pTau = gamma(a=a_, loc=0, scale=1/b_)
          for j, tau in enumerate(taus):
                      pMu = norm(loc=mu_, scale=1/np.sqrt(lambda_*tau))
                      z[:, j] = pMu.pdf(mus) * pTau.pdf(tau)
          return z
```

```
def compute_z_cavi(mus, taus, a_, b_, mu_, lambda_):
   pTau = gamma(a=a_, loc=0, scale=1/b_)
   pMu = norm(loc=mu_, scale=1/np.sqrt(lambda_))
   z = np.outer(pMu.pdf(mus), pTau.pdf(taus))
   return z
iter = 4 # number of iterations for CAVI
mus = np.linspace(-0.2, 1.1, 200)
taus = np.linspace(0.1, 1.1, 200)
xlims = [[-0.2, 1.1], [0.3, 1.1], [0.7, 1.1]]
ylims = [[0.4, 1.1], [0.4, 0.7], [0.4, 0.55]]
elbos_list = []
fig, axs = plt.subplots(iter, 3, figsize=(30, 30))
for i, dataset in enumerate([dataset_1, dataset_2, dataset_3]):
   mu_ml, tau_ml = ML_est(dataset)
    a_N, b_N, mu_N, lambda_N, elbos, b_Ns, lambda_Ns = CAVI(
        dataset, a_0, b_0, mu_0, lambda_0, iter=iter)
    a_T, b_T, mu_T, lambda_T = compute_exact_posterior(
        dataset, a_0, b_0, mu_0, lambda_0)
    elbos_list.append(elbos)
    for j in range(iter):
        Z_exact = compute_z_exact(mus, taus, a_T, b_T, mu_T, lambda_T)
        Z_cavi = compute_z_cavi(mus, taus, a_N, b_Ns[j], mu_N, lambda_Ns[j])
        # Finding the maximum of the exact posterior
       mu_max_exact = mus[np.argmax(np.max(Z_exact, axis=1))]
        tau_max_exact = taus[np.argmax(np.max(Z_exact, axis=0))]
        # Finding the maximum of the CAVI approximation
       mu_max_cavi = mus[np.argmax(np.max(Z_cavi, axis=1))]
        tau_max_cavi = taus[np.argmax(np.max(Z_cavi, axis=0))]
        # Plotting the results
        axs[j, i].contour(*np.meshgrid(mus, taus), Z_exact.T,
                          levels=5, colors=['green'])
        axs[j, i].contour(*np.meshgrid(mus, taus), Z_cavi.T,
                          levels=5, colors=['red'])
        axs[j, i].plot(mu_max_exact, tau_max_exact, 'r+', label='MAP (Exact)
        axs[j, i].plot(mu_max_cavi, tau_max_cavi, 'mx', label='MAP (CAVI)')
        axs[j, i].plot(mu_ml, tau_ml, 'bo', label='ML Estimate')
        axs[j, i].plot(MU, TAU, 'go', label='Actual')
        axs[j, i].legend()
        axs[j, i].grid()
        axs[j, i].set_xlabel('mu')
        axs[j, i].set_ylabel('tau')
        axs[j, i].set_title(f'Dataset {i+1}, iteration {j}')
        axs[j, i].set_xlim(xlims[i])
```

```
axs[j, i].set_ylim(ylims[i])
plt.tight_layout()
plt.savefig('../images/15_contours.png')
plt.show()

# Plot ELBOs
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
for i in range(3):
    axs[i].plot(elbos_list[i])
    axs[i].set_xlabel('Iteration')
    axs[i].set_ylabel('ELBO')
    axs[i].set_title(f'Dataset {i+1}')
    axs[i].grid()
plt.tight_layout()
plt.savefig('../images/15_elbo.png')
plt.show()
```