CS473 Assignment 2

Boran Yildirim

Yigit Bediskan

February 2018

1

a) The functions f(n) and g(n) are non negative. There exists n_0 such that $f(n) \ge 0$ and $g(n) \ge 0$ for all $n \ge n_0$.

Thus, we have that for all $n \geq n_0$,

$$f(n) + g(n) \ge f(n) \ge 0$$
 and $f(n) + g(n) \ge g(n) \ge 0$

Adding both inequalities, since the functions are non negative, we get $f(n) + g(n) \ge max(f(n), g(n))$ for all $n \ge n_0$. This proves that,

$$max(f(n), g(n)) \le c(f(n) + g(n))$$
 for all $n \ge n_0$ with $c = 1$

In other words, max(f(n), g(n)) = O(f(n) + g(n)). Similarly, we can see that

$$max(f(n), g(n)) \ge f(n)$$
 and $max(f(n), g(n)) \ge g(n)$ for all $n \ge n_0$

Adding these two inequalities, we can see that,

$$2max(f(n), g(n)) \ge (g(n) + f(n))$$

or

$$max(f(n), g(n)) \ge 1/2(g(n) + f(n))$$
 for all $n \ge n_0$.

Thus $max(f(n), g(n)) = \Omega(g(n) + f(n))$ with constant c = 1/2.

c1) Given $\exists c > 0$ such that $f(n) \leq cg(n)$ for sufficiently large n.

$$log(f(n)) \le log(c(g(n))) = log(c) + log(g(n))$$

$$(log(c) \div log(g(n)) + log(g(n)) \div log(g(n))) * log(g(n))$$

which is bounded by a constant.

Counter example: $f(n) = 2^{1/n}$ and $g(n) = 2^{1/n^2}$

Thus, $log(f(n)) \neq O(log(g(n)))$

d1) Let $f(n) = 2^n$. The function 2^{2n} grows far faster than 2^n . Thus, this is false

2

Sorted functions in asymptotically increasing order. Asymptotically equivalent functions are shown in same lines.

- 1. ϵ^n
- 2. n^{-a}
- 3. $n^{-\epsilon}$
- 4. $log(n^a), log(n^b), log(n^\epsilon), log_{1/\epsilon}(n), log(bn)$
- 5. $(log(n))^a$
- 6. n^{ϵ}
- 7. n/a, $a^{log_a(n)}$, ϵn
- 8. n^a , $(n+b)^a$
- 9. $(n+a)^b$
- 10. n^{a+b}
- 11. $a^{\epsilon n}$
- 12. a^n
- 13. b^n