Creating a simple ADC capture on a ROACH

Rachel Domagalski

University of California, Berkeley

Overview

Getting started...

System Generator

XSG_core_config

The iADC

The iADC sample rate is four times the FPGA sampling rate.

The QuadADC

- ADC card that can take up to four signal inputs.
- The QuadADC sampling rate is the same as the FPGA.

Shared BRAM

Shared BRAM

Putting it together...

- This reads out one sample per channel every FPGA clock cycle and stores it in BRAM.
- Data can be read out of the BRAM using KATCP in Python with the FpgaClient.read() function.
- Integers are stored in big-endian format and are read out as a sequence of hex strings.

Capturing a sample

- This system generates addresses to store each sample in BRAM and stops writing when all samples are read.
- A sample is captured by successively writing 1 and then 0 to the trig software register.
- The counter has one more bit than the BRAM address so that the counter's MSB acts and a write-enable.

The full design

