Code No:131AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech I Year I Semester Examinations, December - 2018 **MATHEMATICS-II**

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a)	Write the Dirichlet's Conditions of Laplace transform.	[2]
b)	Find the Laplace transform of 3Cos 4(t-2) u(t-2).	[3]
c)	Write the relation between β and γ functions.	[2]
d)	Evaluate $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$.	[3]
e)	In evaluating $\iint_R f(x, y) dy dx$ over the first quadrant of the circle $x^2 + y^2 = 4$,	find
	the limits.	[2]
f)	Evaluate $\int_0^1 \int_0^x y dy dx$.	[3]
g)	Evaluate ∇xyz .	[2]
h)	If $\bar{F} = xi + xyj + zxk$, Evaluate curl \bar{F} .	[3]
i)	State the transformation between surface and volume integral in Cartesian form.	[2]
j)	State Gauss divergence theorem.	[3]

PART - B

Solve y''' - 2y'' + 5y' = 0 given that y(0) = y'(0) = 0, y''(0)Laplace transform 2. Laplace transform.

- Using Laplace transform of evaluate $\int_0^\infty t \ e^{-t} \sin t \ dt$. 3.a)
 - Using Convolution theorem find $L^{-1} \left[\frac{1}{(s^2 + a^2)^2} \right]$. b)
- Show that $\int_{0}^{\infty} x^{2n-1} e^{-ax^2} dx = \frac{\Gamma(n)}{2a^n}$, a > 0, n > 0. 4.a)
 - Evaluate $\int_0^1 x^3 \sqrt{1-x} \, dx$ using Beta Gamma functions. b) [5+5]

- 5.a)
- Evaluate $\int_0^1 x^4 (\log \frac{1}{x})^3 dx$. Evaluate $\int_0^\infty x^2 e^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx$. b) [5+5]

- Evaluate $\iint_R y \, dx \, dy$ where R is bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
 - Evaluate $\int_0^{\pi/2} \int_0^{a \sin \theta} \int_0^{(a^2-r^2)/a} r dr d\theta dz$. [5+5]

- Evaluate $\int_0^{\pi/4} \int_0^{a \sin \theta} \frac{r}{\sqrt{a^2 r^2}} dr d\theta$.
 - Evaluate $\iiint_V xyz \, dx \, dy \, dz$ where V is bounded by the co-ordinate planes and the plane x + y + z = 1. [5+5]
- If \overline{r} is the position vector of the point (x,y,z), prove that $\nabla^2(r^n) = n(n+1).r^{n-2}$. 8.a)
 - Find the directional derivative of the function $2xy + z^2$ at the point (1, -1, 3) in the b) direction of the vector $\overline{i} + 2\overline{j} + 2\overline{k}$. [5+5]

- Prove that $\nabla \times (\nabla \times \overline{F}) = \nabla (\nabla \cdot \overline{F}) \nabla^2 \overline{F}$. 9.a)
 - Find the angle between surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point b) (2, -1, 2).
- Verify Stoke's theorem for $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ and S is the upper half 10. surface $x^2 + y^2 + z^2 = 1$ of the sphere and C is its boundary. [10]

- Find the work done in moving a particle by the force $\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the line joining (0,0,0) to (2,1,3).
 - b) Evaluate $\iint \overline{F} \cdot \overline{n} ds$ where $\overline{F} = 12x^2y\overline{i} 3y\overline{z}\overline{j} + 2z\overline{k}$ and S is the portion of the plane x+y+z=1 included in the 1st octant. [5+5]

---00O00---