Integration Manual

for S32K3 WDG Driver

Document Number: IM34WDGASRR21-11 Rev0000R3.0.0 Rev. 1.0

2 Introduction 2.1 Supported Derivatives 2.2 Overview 2.3 About This Manual 2.4 Acronyms and Definitions 2.5 Reference List 3 Building the driver 3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.1.5 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	
2.2 Overview 2.3 About This Manual 2.4 Acronyms and Definitions 2.5 Reference List 3 Building the driver 3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	3
2.3 About This Manual 2.4 Acronyms and Definitions 2.5 Reference List 3 Building the driver 3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	3
2.4 Acronyms and Definitions 2.5 Reference List 3 Building the driver 3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	4
2.5 Reference List 3 Building the driver 3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	5
3 Building the driver 3.1 Build Options . 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	6
3.1 Build Options 3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	6
3.1.1 GCC Compiler/Assembler/Linker Options 3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up	7
3.1.2 DIAB Compiler/Assembler/Linker Options 3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	7
3.1.3 GHS Compiler/Assembler/Linker Options 3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	8
3.1.4 IAR Compiler/Assembler/Linker Options 3.2 Files required for compilation 3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	10
3.2 Files required for compilation	12
3.3 Setting up the plugins 4 Function calls to module 4.1 Function Calls during Start-up 4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	14
4 Function calls to module 4.1 Function Calls during Start-up	16
4.1 Function Calls during Start-up	20
4.2 Function Calls during Shutdown 4.3 Function Calls during Wake-up 5 Module requirements	25
4.3 Function Calls during Wake-up	25
5 Module requirements	25
	25
	26
5.1 Exclusive areas to be defined in BSW scheduler	26
5.2 Exclusive areas not available on this platform	34
5.3 Peripheral Hardware Requirements	34
5.4 ISR to configure within Autosar OS - dependencies $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	34
5.5 ISR Macro	34
5.5.1 Without an Operating System	34
5.5.2 With an Operating System	35
5.6 Other AUTOSAR modules - dependencies	35
5.7 Data Cache Restrictions	35
5.8 User Mode support	35
5.8.1 User Mode configuration in the module	36
5.8.2 User Mode configuration in AutosarOS	36
5.9 Multicore support	37
6 Main API Requirements	38
6.1 Main function calls within BSW scheduler	38
6.2 API Requirements	38
6.3 Calls to Notification Functions, Callbacks, Callouts	38

7 Memory allocation	39
7.1 Sections to be defined in Wdg_MemMap.h	39
7.2 Linker command file	40
8 Integration Steps	41
9 External assumptions for driver	42

Revision History

Revision	Date	Author	Description
1.0	31.03.2023	NXP RTD Team	S32K3 Real-Time Drivers AUTOSAR 4.4 & R21-11 Version 3.0.0

Introduction

- Supported Derivatives
- Overview
- About This Manual
- Acronyms and Definitions
- Reference List

This integration manual describes the integration requirements for the Wdg Driver for S32K3XX microcontrollers.

2.1 Supported Derivatives

The software described in this document is intended to be used with the following microcontroller devices of NXP Semiconductors:

- s32k310_mqfp100
- $\bullet \hspace{0.1cm} s32k310_lqfp48$
- $s32k311_mqfp100 / MWCT2015S_mqfp100$
- s32k311_lqfp48
- s32k312_mqfp172 / MWCT2016S_mqfp172
- s32k314_mqfp172
- s32k314_mapbga257
- s32k322_mqfp100 / MWCT2D16S_mqfp100
- s32k322_mqfp172 / MWCT2D16S_mqfp172
- s32k324_mqfp172 / MWCT2D17S_mqfp172
- \bullet s32k324_mapbga257

Introduction

- s32k341_mqfp100
- s32k341_mqfp172
- s32k342_mqfp100
- s32k342_mqfp172
- s32k344_mqfp172
- s32k344_mapbga257
- s32k394_mapbga289
- s32k396 mapbga289
- s32k358_mqfp172
- s32k358 mapbga289
- s32k328_mqfp172
- \bullet s32k328_mapbga289
- s32k338_mqfp172
- s32k338_mapbga289
- s32k348_mqfp172
- s32k348_mapbga289
- s32m274_lqfp64
- s32m276_lqfp64

All of the above microcontroller devices are collectively named as S32K3.

Note: MWCT part numbers contain NXP confidential IP for Qi Wireless Power.

2.2 Overview

AUTOSAR (AUTomotive Open System ARchitecture) is an industry partnership working to establish standards for software interfaces and software modules for automobile electronic control systems.

AUTOSAR:

- paves the way for innovative electronic systems that further improve performance, safety and environmental friendliness.
- is a strong global partnership that creates one common standard: "Cooperate on standards, compete on implementation".
- is a key enabling technology to manage the growing electrics/electronics complexity. It aims to be prepared for the upcoming technologies and to improve cost-efficiency without making any compromise with respect to quality.
- facilitates the exchange and update of software and hardware over the service life of the vehicle.

2.3 About This Manual

This Technical Reference employs the following typographical conventions:

- Boldface style: Used for important terms, notes and warnings.
- *Italic* style: Used for code snippets in the text. Note that C language modifiers such "const" or "volatile" are sometimes omitted to improve readability of the presented code.

Notes and warnings are shown as below:

Note

This is a note.

Warning

This is a warning

2.4 Acronyms and Definitions

Term	Definition
API	Application Programming Interface
ASM	Assembler
BSMI	Basic Software Make file Interface
C/CPP	C and C++ Source Code
DEM	Diagnostic Event Manager
DET	Development Error Tracer
DMA	Direct Memory Access
ECU	Electronic Control Unit
LSB	Least Signifigant Bit
MCU	Micro Controller Unit
MIDE	Multi Integrated Development Environment
MSB	Most Significant Bit
N/A	Not Applicable
RAM	Random Access Memory
SIU	Systems Integration Unit
SWS	Software Specification
VLE	Variable Length Encoding
XML	Extensible Markup Language
SWT	Software Watchdog Timer

2.5 Reference List

#	Title	Version
1	Specification of Wdg Driver	AUTOSAR Release R21-11
2	S32K3xx Reference Manual	Rev.6, Draft B, 01/2023
3	S32K39 and S32K37 Reference Manual	Rev. 2 Draft A, 11/2022
4	S32M27x Reference Manual	Rev.2, Draft A, — $02/2023$
5	S32K3xx Data Sheet	Rev. 6, 11/2022
6	S32K396 Data Sheet	Rev. 1.1 — 08/2022
7	S32M27x Data Sheet	Rev. 2 RC — 12/2022
8	S32K358_0P14E Mask Set Errata	Rev. 28, 9/2022
9	S32K396_0P40E Mask Set Errata	Rev. DEC2022, 12/2022
10	S32K311_0P98C Mask Set Errata	Rev. 6/March/2023, 3/2023
11	S32K312: Mask Set Errata for Mask 0P09C	Rev. 25/April/2022
12	S32K342: Mask Set Errata for Mask 0P97C	Rev. 10, 11/2022
13	S32K3x4: Mask Set Errata for Mask 0P55A/1P55A	Rev. 14/Oct/2022

Building the driver

- Build Options
- Files required for compilation
- Setting up the plugins

This section describes the source files and various compilers, linker options used for building the driver.

It also explains the EB Tresos Studio plugin setup procedure.

3.1 Build Options

- GCC Compiler/Assembler/Linker Options
- DIAB Compiler/Assembler/Linker Options
- GHS Compiler/Assembler/Linker Options
- IAR Compiler/Assembler/Linker Options

The RTD driver files are compiled using:

- NXP GCC 10.2.0 20200723 (Build 1728 Revision g5963bc8)
- Wind River Diab Compiler 7.0.4
- Compiler Versions: Green Hills Multi 7.1.6d / Compiler 2021.1.4
- Compiler Versions: IAR ANSI C/C++ Compiler V8.50.10 (safety version)

The compiler, assembler, and linker flags used for building the driver are explained below.

The TS_T40D34M30I0R0 part of the plugin name is composed as follows:

- T = Target_Id (e.g. T40 identifies Cortex-M architecture)
- D = Derivative_Id (e.g. D34 identifies S32K3 platform)
- M = SW_Version_Major and SW_Version_Minor
- $I = SW_Version_Patch$
- R = Reserved

3.1.1 GCC Compiler/Assembler/Linker Options

3.1.1.1 GCC Compiler Options

Compiler Option	Description
-mcpu=cortex-m7	Targeted ARM processor for which GCC should tune the performance of the code
-mthumb	Generates code that executes in Thumb state
-mlittle-endian	Generate code for a processor running in little-endian mode
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions
-std=c99	Specifies the ISO C99 base standard
-Os	Optimize for size. Enables all -O2 optimizations except those that often increase code size
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-Wall	Enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros
-Wextra	This enables some extra warning flags that are not enabled by -Wall
-pedantic	Issue all the warnings demanded by strict ISO C. Reject all programs that use forbidden extensions. Follows the version of the ISO C standard specified by the aforementioend -std option
-Wstrict-prototypes	Warn if a function is declared or defined without specifying the argument types
-Wundef	Warn if an undefined identifier is evaluated in an #if directive. Such identifiers are replaced with zero
-Wunused	Warn whenever a function, variable, label, value, macro is unused
-Werror=implicit-function-declaration	Make the specified warning into an error. This option throws an error when a function is used before being declared
-Wsign-compare	Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to unsigned.
-Wdouble-promotion	Give a warning when a value of type float is implicitly promoted to double
-fno-short-enums	Specifies that the size of an enumeration type is at least 32 bits regardless of the size of the enumerator values.
-funsigned-char	Let the type char be unsigned by default, when the declaration does not use either signed or unsigned
-funsigned-bitfields	Let a bit-field be unsigned by default, when the declaration does not use either signed or unsigned

Compiler Option	Description
-fno-common	Makes the compiler place uninitialized global variables in the BSS section of the object file. This inhibits the merging of tentative definitions by the linker so you get a multiple- definition error if the same variable is accidentally defined in more than one compilation unit
-fstack-usage	This option is only used to build test for generation Ram/← Stack size report. Makes the compiler output stack usage information for the program, on a per-function basis
-fdump-ipa-all	This option is only used to build test for generation Ram/← Stack size report. Enables all inter-procedural analysis dumps
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1. For example: Predefine for S32K344 will be -DS32K344.
-DGCC	Predefine GCC as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPORT as a macro, with definition 1. Allows drivers to be configured in user mode.
-sysroot=	Specifies the path to the sysroot, for Cortex-M7 it is /arm-none-eabi/newlib
-specs=nano.specs	Use Newlib nano specs
-specs=nosys.specs	Do not use printf/scanf

3.1.1.2 GCC Assembler Options

Assembler Option	Description
-Xassembler-with-cpp	Specifies the language for the following input files (rather than letting the compiler choose a default based on the file name suffix)
-mcpu=cortexm7	Targeted ARM processor for which GCC should tune the performance of the code
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions
-mthumb	Generates code that executes in Thumb state
-с	Stop after assembly and produce an object file for each source file

3.1.1.3 GCC Linker Options

Linker Option	Description
-Wl,-Map,filename	Produces a map file
-T linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-entry=Reset_Handler	Specifies that the program entry point is Reset_Handler
-nostartfiles	Do not use the standard system startup files when linking
-mcpu=cortexm7	Targeted ARM processor for which GCC should tune the performance of the code
-mthumb	Generates code that executes in Thumb state
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions
-mlittle-endian	Generate code for a processor running in little-endian mode
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-lc	Link with the C library
-lm	Link with the Math library
-lgcc	Link with the GCC library
-specs=nano.specs	Use Newlib nano specs
-specs=nosys.specs	Do not use printf/scanf

${\bf 3.1.2}\quad {\bf DIAB\ Compiler/Assembler/Linker\ Options}$

3.1.2.1 DIAB Compiler Options

Compiler Option	Description
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software
	double-precision floating-point)
-mthumb	Selects generating code that executes in Thumb state
-std=c99	Follows the C99 standard for C
-Oz	Like -O2 with further optimizations to reduce code size
-g	Generates DWARF 4.0 debug information
-fstandalone-debug	Emits full debug info for all types used by the program
-Wstrict-prototypes	Warn if a function is declared or defined without specifying
	the argument types
-Wsign-compare	Produce warnings when comparing signed type with un-
	signed type
-Wdouble-promotion	Give a warning when a value of type float is implicitly pro-
	moted to double
-Wunknown-pragmas	Issues a warning for unknown pragmas
-Wundef	Warns if an undefined identifier is evaluated in an #if direc-
	tive. Such identifiers are replaced with zero

Compiler Option	Description
-Wextra	Enables some extra warning flags that are not enabled by '-Wall'
-Wall	Enables all of the most useful warnings (for historical reasons this option does not literally enable all warnings)
-pedantic	Emits a warning whenever the standard specified by the -std option requires a diagnostic
-Werror=implicit-function-declaration	Generates an error whenever a function is used before being declared
-fno-common	Compile common globals like normal definitions
-fno-signed-char	Char is unsigned
-fno-trigraphs	Do not process trigraph sequences
-V	Displays the current version number of the tool suite
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1
-DDIAB	Predefine DIAB as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPORT as a macro, with definition 1. Allows drivers to be configured in user mode

${\bf 3.1.2.2}\quad {\bf DIAB\ Assembler\ Options}$

Assembler Option	Description
-mthumb	Selects generating code that executes in Thumb state
-Xpreprocess-assembly	Invokes C preprocessor on assembly files before running the assembler
-Xassembly-listing	Produces an .lst assembly listing file
-с	Stop after assembly and produce an object file for each source file
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software double-precision floating-point)

3.1.2.3 DIAB Linker Options

Building the driver

Linker Option	Description
-e Reset_Handler	Make the symbol Reset_Handler be treated as a root symbol and the start label of the application
1: 1	
linker_script_file.dld	Use linker_script_file.dld as the linker script. This script replaces the default linker script (rather than adding to it)
-m30	m2 + m4 + m8 + m16
-Xstack-usage	Gathers and display stack usage at link time
-Xpreprocess-lecl	Perform pre-processing on linker scripts
-Llibrary_path	Points to the libraries location for ARMV7EMMG to be used for linking
-lc	Links with the standard C library
-lm	Links with the math library
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software double-precision floating-point)

$3.1.3 \quad \text{GHS Compiler/Assembler/Linker Options}$

3.1.3.1 GHS Compiler Options

Compiler Option	Description
-cpu=cortexm7	Selects target processor: Arm Cortex M7
-thumb	Selects generating code that executes in Thumb state
-fpu=vfpv5_d16	Specifies hardware floating-point using the v5 version of the VFP instruction set, with 16 double-precision floating-point registers
-fsingle	Use hardware single-precision, software double-precision FP instructions
-C99	Use (strict ISO) C99 standard (without extensions)
-ghstd=last	Use the most recent version of Green Hills Standard mode (which enables warnings and errors that enforce a stricter coding standard than regular C and $C++$)
-Osize	Optimize for size
-gnu_asm	Enables GNU extended asm syntax support
-dual_debug	Generate DWARF 2.0 debug information
-G	Generate debug information
-keeptempfiles	Prevents the deletion of temporary files after they are used. If an assembly language file is created by the compiler, this option will place it in the current directory instead of the temporary directory
-Wimplicit-int	Produce warnings if functions are assumed to return int
-Wshadow	Produce warnings if variables are shadowed
-Wtrigraphs	Produce warnings if trigraphs are detected
-Wundef	Produce a warning if undefined identifiers are used in #if preprocessor statements
-unsigned_chars	Let the type char be unsigned, like unsigned char
-unsigned_fields	Bitfelds declared with an integer type are unsigned

Compiler Option	Description
-no_commons	Allocates uninitialized global variables to a section and ini-
	tializes them to zero at program startup
-no_exceptions	Disables C++ support for exception handling
-no_slash_comment	C++ style // comments are not accepted and generate errors
-prototype_errors	Controls the treatment of functions referenced or called when
	no prototype has been provided
-incorrect_pragma_warnings	Controls the treatment of valid #pragma directives that use
	the wrong syntax
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1.
	For example: Predefine for S32K344 will be -DS32K344.
-DGHS	Predefine GHS as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with
	definition 1. By default, the drivers are compiled to handle
	interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition
	1. Enables data cache initalization in source file system. ← c under the Platform driver
-DI CACHE ENABLE	Predefine I CACHE ENABLE as a macro, with defini-
-DI_ONOTID_DIVIDDD	tion 1. Enables instruction cache initalization in source file
	system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. En-
	ables FPU initalization in source file system.c under the
	Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPORT
	as a macro, with definition 1. Allows drivers to be configured in user mode
	III user mode

3.1.3.2 GHS Assembler Options

Assembler Option	Description
-cpu=cortexm7	Selects target processor: Arm Cortex M7
-fpu=vfpv5_d16	Specifies hardware floating-point using the v5 version of the VFP instruction set, with 16 double-precision floating-point registers
-fsingle	Use hardware single-precision, software double-precision FP instructions
-preprocess_assembly_files	Controls whether assembly files with standard extensions such as .s and .asm are preprocessed
-list	Creates a listing by using the name and directory of the object file with the .lst extension
-с	Stop after assembly and produce an object file for each source file

3.1.3.3 GHS Linker Options

Building the driver

Linker Option	Description
-e Reset_Handler	Make the symbol Reset_Handler be treated as a root symbol and the start label of the application
-T linker_script_file.ld	Use linker_script_file.ld as the linker script. This script replaces the default linker script (rather than adding to it)
-map	Produce a map file
-keepmap	Controls the retention of the map file in the event of a link error
-Mn	Generates a listing of symbols sorted alphabetically/numerically by address
-delete	Instructs the linker to remove functions that are not referenced in the final executable. The linker iterates to find functions that do not have relocations pointing to them and eliminates them
-ignore_debug_references	Ignores relocations from DWARF debug sections when using -delete. DWARF debug information will contain references to deleted functions that may break some third-party debuggers
-Llibrary_path	Points to library_path (the libraries location) for thumb2 to be used for linking
-larch	Link architecture specific library
-lstartup	Link run-time environment startup routines. The source code for the modules in this library is provided in the src/libstartup directory
-lind_sd	Link language-independent library, containing support routines for features such as software floating point, run-time error checking, C99 complex numbers, and some general purpose routines of the ANSI C library
-V	Prints verbose information about the activities of the linker, including the libraries it searches to resolve undefined symbols
-keep=C40_Ip_AccessCode	Avoid linker remove function C40_Ip_AccessCode from Fls module because it is not referenced explicitly
-nostartfiles	Controls the start files to be linked into the executable

${\bf 3.1.4}\quad {\bf IAR~Compiler/Assembler/Linker~Options}$

3.1.4.1 IAR Compiler Options

Compiler Option	Description
-cpu Cortex-M7	Targeted ARM processor for which IAR should tune the performance of the code
-cpu_mode thumb	Generates code that executes in Thumb state
-endian little	Generate code for a processor running in little-endian mode
-fpu VFPv5-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant.
-e	Enables all IAR C language extensions
-Ohz	Optimize for size. the compiler will emit AEABI attributes indicating the requested optimization goal. This information can be used by the linker to select smaller or faster variants of DLIB library functions
-debug	Makes the compiler include debugging information in the object modules. Including debug information will make the object files larger

Compiler Option	Description
-no_clustering	Disables static clustering optimizations. Static and global variables defined within the same module will not be arranged so that variables that are accessed in the same function are close to each other
-no_mem_idioms	Makes the compiler not optimize certain memory access patterns
-do_explicit_zero_opt_in_named_sections	Disable the exception for variables in user-named sections, and thus treat explicit initializations to zero as zero initializations, not copy initializations
-require_prototypes	Force the compiler to verify that all functions have proper prototypes. Generates an error otherwise
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages
-diag_suppress Pa050	Suppresses diagnostic message Pa050
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1. For example: Predefine for S32K344 will be -DS32K344.
-DIAR	Predefine IAR as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode.
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPORT as a macro, with definition 1. Allows drivers to be configured in user mode.

3.1.4.2 IAR Assembler Options

Assembler Option	Description
-cpu Cortex-M7	Targeted ARM processor for which IAR should generate the instruction set
-fpu VFPv5-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant.
-cpu_mode thumb	Selects the thumb mode for the assembler directive CODE
-g	Disables the automatic search for system include files
-r	Generates debug information

3.1.4.3 IAR Linker Options

Building the driver

Linker Option	Description
-map filename	Produces a map file
-config linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-cpu=Cortex-M7	Selects the ARM processor variant to link the application for
-fpu VFPv5-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant.
-entry _start	Treats _start as a root symbol and start label
-enable_stack_usage	Enables stack usage analysis. If a linker map file is produced, a stack usage chapter is included in the map file
-skip_dynamic_initialization	Dynamic initialization (typically initialization of C++ objects with static storage duration) will not be performed automatically during application startup
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages

3.2 Files required for compilation

This section describes the include files required to compile, assemble (if assembler code) and link the Wdg driver for S32K3XX microcontrollers. To avoid integration of incompatible files, all the include files from other modules shall have the same AR_MAJOR_VERSION and AR_MINOR_VERSION, i.e. only files with the same AUTOSAR major and minor versions can be compiled.

Wdg Files

- ..\Wdg TS T40D34M30I0R0\include\Wdg 43 Instance0.h
- ..\Wdg TS T40D34M30I0R0\include\Wdg 43 Instance1.h
- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_43_Instance2.h
- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_43_Instance3.h
- ..\Wdg TS T40D34M30I0R0\include\Wdg 43 Instance4.h
- ..\Wdg TS T40D34M30I0R0\src\Wdg 43 Instance0.c
- ..\Wdg TS T40D34M30I0R0\src\Wdg 43 Instance1.c
- ..\Wdg TS T40D34M30I0R0\src\Wdg 43 Instance2.c
- ..\Wdg TS T40D34M30I0R0\src\Wdg 43 Instance3.c
- ..\Wdg_TS_T40D34M30I0R0\src\Wdg_43_Instance4.c
- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_Channel.h

- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_ChannelTypes.h
- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_Ipw.h
- ...\Wdg TS T40D34M30I0R0\include\Wdg Ipw Types.h
- ..\Wdg TS T40D34M30I0R0\include\Swt Ip.h
- ..\Wdg TS T40D34M30I0R0\src\Swt Ip.c
- .. $\Wdg_TS_T40D34M30I0R0\include\Swt_Ip_Types.h$
- ..\Wdg_TS_T40D34M30I0R0\src\Swt_Ip_Irq.c
- ..\Wdg_TS_T40D34M30I0R0\include\Wdg_EnvCfg.h
- ...\Wdg TS T40D34M30I0R0\include\Swt Ip FeatureDefines.h

Wdg Generated Files

• Wdg_43_Instance0_[VariantName]_PBcfg.c (For Instance 0) - For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective

variant.

- Wdg_43_Instance1_[VariantName]_PBcfg.c (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance2_[VariantName]_PBcfg.c (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance3_[VariantName]_PBcfg.c (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance4_[VariantName]_PBcfg.c (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance0_[VariantName]_PBcfg.h (For Instance 0) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance1_[VariantName]_PBcfg.h (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance2_[VariantName]_PBcfg.h (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance3_[VariantName]_PBcfg.h (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance4_[VariantName]_PBcfg.h (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance0_Ipw_[VariantName]_PBcfg.c (For Instance 0) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance1_Ipw_[VariantName]_PBcfg.c (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance2_Ipw_[VariantName]_PBcfg.c (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant
- Wdg_43_Instance3_Ipw_[VariantName]_PBcfg.c (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance4_Ipw_[VariantName]_PBcfg.c (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance0_Ipw_[VariantName]_PBcfg.h (For Instance 0) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance1_Ipw_[VariantName]_PBcfg.h (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_43_Instance2_Ipw_[VariantName]_PBcfg.h (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant
- Wdg_43_Instance3_Ipw_[VariantName]_PBcfg.h (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective

Building the driver

variant.

- Wdg_43_Instance4_Ipw_[VariantName]_PBcfg.h (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance0_Ip_[VariantName]_PBcfg.c (For Instance 0) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance1_Ip_[VariantName]_PBcfg.c (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance2_Ip_[VariantName]_PBcfg.c (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance3_Ip_[VariantName]_PBcfg.c (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance4_Ip_[VariantName]_PBcfg.c (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance0_Ip_[VariantName]_PBcfg.h (For Instance 0) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance1_Ip_[VariantName]_PBcfg.h (For Instance 1) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance2_Ip_[VariantName]_PBcfg.h (For Instance 2) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance3_Ip_[VariantName]_PBcfg.h (For Instance 3) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_43_Instance4_Ip_[VariantName]_PBcfg.h (For Instance 4) For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_Ip_Cfg_Defines.h For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Swt_Ip_DeviceRegisters.h For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_Ipw_Cfg_Defines.h For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_Cfg_Defines.h For driver compilation, this file should be generated by the user using a configuration tool. The file contains the definition of the init pointer for the respective variant.
- Wdg_Cfg.h For driver compilation, this file should be generated by the user using a configuration tool
- Wdg_CfgExt.h For driver compilation, this file should be generated by the user using a configuration tool
- Wdg_CfgExt.c For driver compilation, this file should be generated by the user using a configuration tool

Files from Base common folder

- ..\Base TS T40D34M30I0R0\include\Compiler.h
- ..\Base TS T40D34M30I0R0\include\Compiler Cfg.h
- ..\Base TS T40D34M30I0R0\include\ComStack Types.h
- ..\Base TS T40D34M30I0R0\include\Wdg MemMap.h
- ..\Base TS T40D34M30I0R0\include\Mcal.h

- ..\Base_ $TS_T40D34M30I0R0\include\Platform_Types.h$
- ..\Base_TS_T40D34M30I0R0\include\Std_Types.h
- ..\Base TS T40D34M30I0R0\include\Reg eSys.h
- ..\Base TS $T40D34M30I0R0\$ include\Soc Ips.h
- ..\Base TS $T40D34M30I0R0\include\SilRegMacros.h$

Files from WdgIf folder:

• ..\WdgIf_TS_T40D34M30I0R0\include\WdgIf_Types.h

Files from Dem folder:

- ..\Dem TS T40D34M30I0R0\include\Dem.h
- $\bullet \ ... \\ Dem_TS_T40D34M30I0R0 \\ \\ include \\ Dem_IntErrId.h$
- ..\Dem TS_T40D34M30I0R0\include\Dem_Types.h

Files from Gpt folder:

- ..\Gpt_TS_T40D34M30I0R0\src\Gpt.c
- ..\ $Gpt_TS_T40D34M30I0R0\src\Rtc_Ip.c$
- ..\Gpt TS $T40D34M30I0R0\src\Gpt$ Ipw.c
- ..\Gpt_TS_T40D34M30I0R0\src\Pit_Ip.c
- ..\ $Gpt_TS_T40D34M30I0R0\src\Stm_Ip.c$
- ..\Gpt TS T40D34M30I0R0\src\Emios Gpt Ip.c
- ..\Gpt TS T40D34M30I0R0\include\Gpt.h
- ..\Gpt_TS_T40D34M30I0R0\include\Gpt_EnvCfg.h
- ..\Gpt TS $T40D34M30I0R0\$ include\Rtc Ip.h
- ..\Gpt_TS_T40D34M30I0R0\include\Rtc_Ip_Types.h
- ..\Gpt TS T40D34M30I0R0\include\Gpt Ipw.h
- $\bullet \ ... \backslash Gpt_TS_T40D34M30I0R0 \backslash include \backslash Gpt_Ipw_Irq.h$
- ..\Gpt TS T40D34M30I0R0\include\Gpt Ipw Types.h
- ..\Gpt_TS_T40D34M30I0R0\include\Gpt_Irq.h
- ..\Gpt TS T40D34M30I0R0\include\Pit Ip.h
- ..\Gpt_TS_T40D34M30I0R0\include\Pit_Ip_Types.h
- ..\ $Gpt_TS_T40D34M30I0R0\$ include\ $Emios_Gpt_Ip.h$
- ..\ $Gpt_TS_T40D34M30I0R0\$ include\ $Emios_Gpt_Ip_Types.h$

- Gpt Cfg.c (For PC Variant) This file should be generated by the user using a configuration tool for compilation
- Gpt_PBCfg_VS_[index].c (For PB Variant, [index] is Variant Indexer) This file should be generated by the user using a configuration tool for compilation

Files from Det folder:

- ..\Det_TS_T40D34M30I0R0\src\Det.c
- ..\Det_ $TS_T40D34M30I0R0\$ include\Det.h

Files from Os folder:

- ..\Os TS T40D34M30I0R0\src\Os counter api.c
- .. $\Os_TS_T40D34M30I0R0\src\Os_multicore.c$
- ..\Os TS T40D34M30I0R0\include\Os.h
- ..\Os TS T40D34M30I0R0\include\Os multicore.h
- ..\Os TS T40D34M30I0R0\include\Os counter api.h

Building the driver

- ..\Os_TS_T40D34M30I0R0\include\Os_counter_types.h
- ..\Os TS T40D34M30I0R0\include\Os types basic.h
- ..\Os TS T40D34M30I0R0\include\Os types common public.h
- ..\Os TS T40D34M30I0R0\include\Os version.h
- .. $\Os_TS_T40D34M30I0R0\generate_PC\include\\Os_cfg.h$

Files from Platform folder:

- ..\Platform TS T40D34M30I0R0\src\Platform.c
- ..\Platform TS T40D34M30I0R0\src\IntCtrl Ip.c
- ..\Platform_TS_T40D34M30I0R0\include\Platform.h
- $\bullet \ ... \\ Platform_TS_T40D34M30I0R0 \\ \\ include \\ IntCtrl_Ip.h$

3.3 Setting up the plugins

The Wdg driver was designed to be configured by using the EB Tresos Studio (version 29.0.0 or later.)

Location of various files inside the plugin folder is explained below.

- VSMD (Vendor Specific Module Definition) file in EB tresos Studio XDM format:
- ..\Wdg_TS_T40D34M30I0R0\config\Wdg.xdm
- .. $\Gpt_TS_T40D34M30I0R0\config\Gpt.xdm$
- .. $\Mcu_TS_T40D34M30I0R0\config\Mcu.xdm$
- ..\EcuM TS T40D34M30I0R0\config\EcuM.xdm
- ..\ $EcuC_TS_T40D34M30I0R0$ \config\EcuC.xdm
- ..\Dem_TS_T40D34M30I0R0\config\Dem.xdm
- ..\Os TS T40D34M30I0R0\config\Os.xdm
- ..\Resource TS T40D34M30I0R0\config\Resource.xdm
- ..\Platform TS T40D34M30I0R0\config\Platform.xdm
- VSMD (Vendor Specific Module Definition) file(s) in AUTOSAR compliant EPD format:
- ..\Wdg_TS_T40D34M30I0R0\autosar\Wdg_<subderivative_name>.epd
- ..\Gpt_TS_T40D34M30I0R0\autosar\Gpt_<subderivative_name>.epd
- ..\Mcu TS T40D34M30I0R0\autosar\Mcu <subderivative name>.epd
- ..\EcuM TS T40D34M30I0R0\autosar\EcuM.epd
- ..\ $EcuC_TS_T40D34M30I0R0\autosar\EcuC.epd$
- ..\Dem_TS_T40D34M30I0R0\autosar\Dem.epd
- .. $\Os_TS_T40D34M30I0R0\autosar\Os.epd$
- ..\Resource_TS_T40D34M30I0R0\autosar\Resource_<subderivative_name>.epd
- $\bullet \ ... \\ Platform_TS_T40D34M30I0R0 \\ \\ autosar\\ \\ Platform_< subderivative_name > .epd$
- Code Generation Templates for Pre-Compile time configuration parameters:
- ..\Wdg TS T40D34M30I0R0\generate\src\Wdg CfgExt.c
- ..\Wdg_TS_T40D34M30I0R0\generate\include\Wdg_CfgExt.h
- ..\Wdg_TS_T40D34M30I0R0\generate\include\Wdg_Cfg.h
- ..\Wdg TS T40D34M30I0R0\generate PC\src\Wdg 43 Instance0 Cfg.c
- ..\Wdg TS T40D34M30I0R0\generate PC\src\Wdg 43 Instance1 Cfg.c
- ..\Wdg TS T40D34M30I0R0\generate PC\src\Wdg 43 Instance2 Cfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PC\src\Wdg_43_Instance3_Cfg.c
- ..\Wdg TS T40D34M30I0R0\generate PC\src\Wdg 43 Instance4 Cfg.c
- ..\EcuM TS T40D34M30I0R0\generate PC\include\EcuM Cfg.h

```
• ..\Gpt_TS_T40D34M30I0R0\generate_PC\include\Gpt_Cfg.h
```

- ..\Gpt TS T40D34M30I0R0\generate PC\src\Gpt Cfg.c
- ..\Os TS T40D34M30I0R0\generate PC\include\Os cfg.h
- $\bullet \ ... \\ Platform_TS_T40D34M30I0R0 \\ \\ yenerate_PC \\ include \\ Platform_Cfg.h$
- Code Generation Templates for Post-Build time configuration parameters:
- ..\Wdg_TS_T40D34M30I0R0\generate\src\Wdg_CfgExt.c
- ..\Wdg TS T40D34M30I0R0\generate\src\Wdg CfgExt.h
- ..\Wdg TS T40D34M30I0R0\generate\include\Wdg Cfg.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance0_PBcfg.h
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash enerate_PB \backslash include \backslash Wdg_43_Instance1_PBcfg.h$
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Wdg_43_Instance2_PBcfg.h$
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance3_PBcfg.h
- $.. \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Wdg_43_Instance4_PBcfg.h$
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance0_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance1 PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance2_PBcfg.c
- ...\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance3_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance4 PBcfg.c
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Wdg_43_Instance0_Ipw_PBcfg.h$
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance2_Ipw_PBcfg.h
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance3 Ipw PBcfg.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance4_Ipw_PBcfg.h
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance0 Ipw PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance1_Ipw_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance2 Ipw PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance3 Ipw PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance4_Ipw_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance0 Ip PBcfg.h
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance1 Ip PBcfg.h
- Will To The Detailed the Line in the Line
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Swt_43_Instance3_Ip_PBcfg.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Swt_43_Instance4_Ip_PBcfg.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Swt_43_Instance0_Ip_PBcfg.c
- ...\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance1 Ip PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Swt_43_Instance2_Ip_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance3 Ip PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance4 Ip PBcfg.c
- ...\Wdg TS T40D34M30I0R0\generate PB\include\Swt Ip Cfg Defines.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_Ipw_Cfg_Defines.h
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg Cfg Defines.h
- ..\EcuM_TS_T40D34M30I0R0\generate_PC\include\EcuM_Cfg.h
- ..\Dem TS T40D34M30I0R0\generate PC\include\Dem intErrId.h
- ..\Gpt TS T40D34M30I0R0\generate PC\include\Gpt Cfg.h
- ...\Gpt TS T40D34M30I0R0\generate PB\src\Gpt PBCfg.c
- ...\Os TS T40D34M30I0R0\generate PC\include\Os cfg.h
- $\bullet \ ... \\ Platform_TS_T40D34M30I0R0 \\ \\ yenerate \\ include \\ Platform_Cfg.h$
- Code Generation Templates for parameters without variation points:
- ..\Wdg TS T40D34M30I0R0\generate\src\Wdg CfgExt.c
- ..\Wdg_TS_T40D34M30I0R0\generate\include\Wdg_CfgExt.h

Building the driver

• ..\Wdg TS T40D34M30I0R0\generate\include\Wdg Cfg.h $... \Vdg_TS_$ T40D34M30I0R0\generate PB\include\Wdg 43 Instance0 PBcfg.h • ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance1 PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance2 PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance3 PBcfg.h ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance4_PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance0 PBcfg.c ...\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance1 PBcfg.c ...\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance2 PBcfg.c ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance3_PBcfg.c ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance4_PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance1 Ipw PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance2 Ipw PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance3 Ipw PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance4 Ipw PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance1 Ipw PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance2 Ipw PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance3 Ipw PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance4 Ipw PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance0 Ip PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance2 Ip PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance3 Ip PBcfg.h • ..\Wdg TS T40D34M30I0R0\generate PB\include\Swt 43 Instance4 Ip PBcfg.h ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance0 Ip PBcfg.c ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Swt_43_Instance1_Ip_PBcfg.c ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Swt_43_Instance2_Ip_PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance3 Ip PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance4 Ip PBcfg.c $.. \label{local_total_$..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg Ipw Cfg Defines.h ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg Cfg Defines.h ..\EcuM TS T40D34M30I0R0\generate PC\include\EcuM Cfg.h ..\Dem TS T40D34M30I0R0\generate PC\include\Dem intErrId.h ...\Gpt TS T40D34M30I0R0\generate PC\include\Gpt Cfg.h ...\Os TS T40D34M30I0R0\generate PC\include\Os cfg.h ..\Platform TS T40D34M30I0R0\generate\include\Platform Cfg.h Code Generation Templates for variant aware parameters: ..\Wdg_TS_T40D34M30I0R0\generate\src\Wdg_CfgExt.c ...\Wdg TS T40D34M30I0R0\generate\include\Wdg CfgExt.h ..\Wdg TS T40D34M30I0R0\generate\include\Wdg Cfg.h ...\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance0 PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance1 PBcfg.h ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance2_PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance3 PBcfg.h ...\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance4 PBcfg.h • ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance0 PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance1 PBcfg.c ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance2_PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance3 PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance4 PBcfg.c ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance0 Ipw PBcfg.h

S32K3 WDG Driver

NXP Semiconductors

22

- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_43_Instance1_Ipw_PBcfg.h
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance2 Ipw PBcfg.h
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Wdg_43_Instance3_Ipw_PBcfg.h$
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg 43 Instance4 Ipw PBcfg.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance0_Ipw_PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance1_Ipw_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Wdg 43 Instance2 Ipw PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance3_Ipw_PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Wdg_43_Instance4_Ipw_PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Swt_43_Instance0_Ip_PBcfg.h
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Swt_43_Instance2_Ip_PBcfg.html \\$
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash include \backslash Swt_43_Instance3_Ip_PBcfg.h$
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Swt_43_Instance4_Ip_PBcfg.h
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash src \backslash Swt_43_Instance0_Ip_PBcfg.c$
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash src \backslash Swt_43_Instance1_Ip_PBcfg.c$
- $\bullet \ ... \backslash Wdg_TS_T40D34M30I0R0 \backslash generate_PB \backslash src \backslash Swt_43_Instance2_Ip_PBcfg.c$
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\src\Swt_43_Instance3_Ip_PBcfg.c
- ..\Wdg TS T40D34M30I0R0\generate PB\src\Swt 43 Instance4 Ip PBcfg.c
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Swt_Ip_Cfg_Defines.h
- ..\Wdg_TS_T40D34M30I0R0\generate_PB\include\Wdg_Ipw_Cfg_Defines.h
- ..\Wdg TS T40D34M30I0R0\generate PB\include\Wdg Cfg Defines.h
- ..\Gpt_TS_T40D34M30I0R0\generate_PC\include\Gpt_Cfg.h
- ..\Gpt TS T40D34M30I0R0\generate PB\src\Gpt PBCfg.c
- ..\Os TS T40D34M30I0R0\generate PC\include\Os cfg.h
- ..\Platform TS T40D34M30I0R0\generate\include\Platform Cfg.h

Steps to generate the configuration:

- 1. Copy the module folders Wdg_TS_T40D34M30I0R0 , Dem_TS_T40D34M30I0R0 , Base_TS_T40D34 \leftrightarrow M30I0R0 , Resource_TS_T40D34M30I0R0 , EcuM_TS_T40D34M30I0R0, Gpt_TS_T40D34M30I0R0, Mcl_TS_T40D34M30I0R0, Os_TS_T40D34M30I0R0, Platform_TS_T40 \leftrightarrow D34M30I0R0, Ae_TS_T40D34M30I0R0, Spi_TS_T40D34M30I0R0 into the Tresos plugins folder.
- 2. Set the desired Tresos Output location folder for the generated sources and header files.
- 3. Use the EB tresos Studio GUI to modify ECU configuration parameters values.
- 4. Generate the configuration files.

Dependencies

- RESOURCE is required to select processor derivative. Current driver has support for the following derivatives, each one having attached a Resource file: s32k344_mapbga257, s32k344_mqfp172, s32k358_ \leftarrow mapbga289, s32k358_mqfp172, s32k396_mapbga289, s32m276_lqfp64.
- Base is required for platform specific files.
- DET is required for signaling the development error detection (parameters out of range, null pointers, etc).
- DEM is required for signaling the production error detection (hardware failure, etc).
- WdgIf is required for retrieve the watchdog mode types

Building the driver

- GPT is required for handling the watchdog internal timer
- MCU is required for selecting the timebase for the watchdog internal timer, via Gpt
- MCL is required by Gpt to retrieve the timer specific files
- $\bullet~{\rm RTE}$ is required for critical sections
- ECUM is required for selecting the reference to the wakeup source for every Gpt channel configured as a wakeup source.
- ECUC is required for selecting variant.
- OS is required for selecting core.
- Platform is required for selecting interrupt for GPT and WDG .
- Ae and Spi are required for configurating for AEWDOG .

Function calls to module

- Function Calls during Start-up
- Function Calls during Shutdown
- Function Calls during Wake-up

4.1 Function Calls during Start-up

Wdg shall be initialized during STARTUP phase of EcuM initialization. The API to be called for this is Wdg_← Init(). The MCU and Gpt module should be initialized before the Wdg is initialized. Note: If there are multiple WDG hardware instances used on the platform, the API names will expand according to AUTOSAR requirement SRS_BSW_00347. For example, if there are instances 0 and 1 available on the hardware, then the name of the init functions will be Wdg_43_Instance0_Init and Wdg_43_Instance1_Init instead of Wdg_Init().

4.2 Function Calls during Shutdown

None.

4.3 Function Calls during Wake-up

None.

NXP Semiconductors S32K3 WDG Driver 25

Module requirements

- Exclusive areas to be defined in BSW scheduler
- Exclusive areas not available on this platform
- Peripheral Hardware Requirements
- ISR to configure within AutosarOS dependencies
- ISR Macro
- Other AUTOSAR modules dependencies
- Data Cache Restrictions
- User Mode support
- Multicore support

5.1 Exclusive areas to be defined in BSW scheduler

In the current implementation, WDG is using the services of Schedule Manager (SchM) for entering and exiting the exclusive areas. The following critical regions are used in the WDG driver:

Exclusive Areas are used in High level driver layer (HLD)

WDG_EXCLUSIVE_AREA_00 is used in function Wdg_Cbk_GptNotification0 to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_00 is used in function Wdg_Cbk_GptNotification1 to protect the updates for the global array:

• Wdg au32Timeout[Wdg Instance]

WDG_EXCLUSIVE_AREA_00 is used in function Wdg_Cbk_GptNotification2 to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_00 is used in function Wdg_Cbk_GptNotification3 to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_00 is used in function Wdg_Cbk_GptNotification4 to protect the updates for the global array:

• Wdg au32Timeout[Wdg Instance]

WDG_EXCLUSIVE_AREA_01 is used in function Wdg_43_Instance0_Init to protect the updates for the global array:

• Wdg au32Timeout[Wdg Instance]

WDG_EXCLUSIVE_AREA_01 is used in function Wdg_43_Instance1_Init to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_01 is used in function Wdg_43_Instance2_Init to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_01 is used in function Wdg_43_Instance3_Init to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_01 is used in function Wdg_43_Instance4_Init to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_02 is used in function Wdg_43_Instance0_Init to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

Module requirements

WDG_EXCLUSIVE_AREA_02 is used in function Wdg_43_Instance1_Init to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_02 is used in function Wdg_43_Instance2_Init to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_02 is used in function Wdg_43_Instance3_Init to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

WDG_EXCLUSIVE_AREA_02 is used in function Wdg_43_Instance4_Init to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

WDG_EXCLUSIVE_AREA_03 is used in function Wdg_43_Instance0_SetMode to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_03 is used in function Wdg_43_Instance1_SetMode to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_03 is used in function Wdg_43_Instance2_SetMode to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_03 is used in function Wdg_43_Instance3_SetMode to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_04 is used in function Wdg_43_Instance0_SetMode to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

WDG_EXCLUSIVE_AREA_04 is used in function Wdg_43_Instance1_SetMode to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_04 is used in function Wdg_43_Instance2_SetMode to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_04 is used in function Wdg_43_Instance3_SetMode to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

WDG_EXCLUSIVE_AREA_05 is used in function Wdg_43_Instance0_SetTriggerCondition to protect the updates for the global array:

• Wdg au32Timeout[Wdg Instance]

 $\label{local_wdg_43_Instance1_SetTriggerCondition} Wdg_43_Instance1_SetTriggerCondition \ to \ protect \ the updates for the global array:$

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_05 is used in function Wdg_43_Instance2_SetTriggerCondition to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_05 is used in function Wdg_43_Instance3_SetTriggerCondition to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_05 is used in function Wdg_43_Instance4_SetTriggerCondition to protect the updates for the global array:

• Wdg_au32Timeout[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance0_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

Module requirements

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance1_Init to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance2_Init to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance3_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance4_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance0_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance1_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance2_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_06 is used in function Wdg_43_Instance3_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance0_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance1_Init to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance2_Init to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance3_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance4_Init to protect the updates for the global array:

• Wdg aeStatus[Wdg Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance0_SetMode to protect the updates for the global array:

 \bullet Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance1_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance2_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_07 is used in function Wdg_43_Instance3_SetMode to protect the updates for the global array:

• Wdg_aeStatus[Wdg_Instance]

WDG_EXCLUSIVE_AREA_08 is used in function Wdg_43_Instance0_ClearResetRequest to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

Module requirements

WDG_EXCLUSIVE_AREA_08 is used in function Wdg_43_Instance1_ClearResetRequest to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_08 is used in function Wdg_43_Instance2_ClearResetRequest to protect the updates for the global array:

• Wdg aePreviousMode[Wdg Instance]

WDG_EXCLUSIVE_AREA_08 is used in function Wdg_43_Instance3_ClearResetRequest to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_08 is used in function Wdg_43_Instance4_ClearResetRequest to protect the updates for the global array:

• Wdg_aePreviousMode[Wdg_Instance]

WDG_EXCLUSIVE_AREA_09 is used in function Wdg_43_Instance0_Service to protect the SWT_SR register from read/modify/write operation in Swt_Ip_Service.

WDG_EXCLUSIVE_AREA_09 is used in function Wdg_43_Instance1_Service to protect the SWT_SR register from read/modify/write operation in Swt_Ip_Service.

WDG_EXCLUSIVE_AREA_09 is used in function Wdg_43_Instance2_Service to protect the SWT_SR register from read/modify/write operation in Swt_Ip_Service.

WDG_EXCLUSIVE_AREA_09 is used in function Wdg_43_Instance3_Service to protect the SWT_SR register from read/modify/write operation in Swt_Ip_Service.

WDG_EXCLUSIVE_AREA_09 is used in function Wdg_43_Instance4_Service to protect the SWT_SR register from read/modify/write operation in Swt_Ip_Service.

WDG_EXCLUSIVE_AREA_10 is used in function Wdg_43_Instance0_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StartTimer.

WDG_EXCLUSIVE_AREA_10 is used in function Wdg_43_Instance1_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StartTimer.

WDG_EXCLUSIVE_AREA_10 is used in function Wdg_43_Instance2_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StartTimer.

WDG_EXCLUSIVE_AREA_10 is used in function Wdg_43_Instance3_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StartTimer.

WDG_EXCLUSIVE_AREA_11 is used in function Wdg_43_Instance0_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StopTimer.

WDG_EXCLUSIVE_AREA_11 is used in function Wdg_43_Instance1_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StopTimer.

WDG_EXCLUSIVE_AREA_11 is used in function Wdg_43_Instance2_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StopTimer.

WDG_EXCLUSIVE_AREA_11 is used in function Wdg_43_Instance3_SetMode to protect the SWT_SR register from read/modify/write operation in Swt_Ip_StopTimer.

Exclusive Areas implemented in Low level driver layer (IPL)

 $\mathbf{WDG_EXCLUSIVE_AREA_09} \text{ is used in function } \mathbf{Swt_Ip_Service} \text{ to to protect the updates for:}$

• SWT_SR register

WDG_EXCLUSIVE_AREA_10 is used in function Swt_Ip_StartTimer to to protect the updates for:

• SWT_SR register

WDG_EXCLUSIVE_AREA_11 is used in function Swt_Ip_StopTimer to protect the updates for the function:

• SWT_SR register

Critical Region Exclusive Matrix

Below is the table depicting the exclusivity between different critical region IDs from the WDG driver. If there is an X in the table, it means that those 2 critical regions cannot interrupt each other.

Exclusive Area Matrix													
Exclusive Area ID	WDG_EXCLUSIVE_AREA_00	WDG_EXCLUSIVE_AREA_01	WDG_EXCLUSIVE_AREA_02	WDG_EXCLUSIVE_AREA_03	WDG_EXCLUSIVE_AREA_04	WDG_EXCLUSIVE_AREA_05	WDG_EXCLUSIVE_AREA_06	WDG_EXCLUSIVE_AREA_07	WDG_EXCLUSIVE_AREA_08	WDG_EXCLUSIVE_AREA_09	WDG_EXCLUSIVE_AREA_10	WDG_EXCLUSIVE_AREA_11	
WDG_EXCLUSIVE_AREA_00	х	х		х		х							
WIDG EVOLUCIVE ADEA O1						х							
WDG_EXCLUSIVE_AREA_01	Х	X		X		^							
WDG_EXCLUSIVE_AREA_01 WDG_EXCLUSIVE_AREA_02	Х	X	х	Х	х	^			х				
	x	x	x	x	х	x			х				
WDG_EXCLUSIVE_AREA_02			x		x				х				
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03									x				
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03 WDG_EXCLUSIVE_AREA_04	х	х		x		х	x	x	x				
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03 WDG_EXCLUSIVE_AREA_04 WDG_EXCLUSIVE_AREA_05	х	х		x		х	x	x	x				
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03 WDG_EXCLUSIVE_AREA_04 WDG_EXCLUSIVE_AREA_05 WDG_EXCLUSIVE_AREA_06	х	х		x		х			x				
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03 WDG_EXCLUSIVE_AREA_04 WDG_EXCLUSIVE_AREA_05 WDG_EXCLUSIVE_AREA_06 WDG_EXCLUSIVE_AREA_07	х	х	x	x		х				x	x	x	
WDG_EXCLUSIVE_AREA_02 WDG_EXCLUSIVE_AREA_03 WDG_EXCLUSIVE_AREA_04 WDG_EXCLUSIVE_AREA_05 WDG_EXCLUSIVE_AREA_06 WDG_EXCLUSIVE_AREA_07 WDG_EXCLUSIVE_AREA_08	х	х	x	x		х				x	x	x	

5.2 Exclusive areas not available on this platform

None.

5.3 Peripheral Hardware Requirements

A Software watchdog timer (SWT) with programmable interrupt response is available in S32K3XX. There are three user-defined responses to a time-out:

- If a time-out occurs, the SWT generates an interrupt to the processor core.
- The first time-out generates an interrupt to the processor, and if not serviced, then a second time-out generates a system reset and sets the MC_RGM[FES] flag.
- If a time-out occurs, the SWT generates a system reset and sets the MC_RGM[FES] flag. In addition to these three modes of operation, the watchdog timer also supports a windowed mode. In this mode, the service sequence must be performed in the last part of the time-out period defined by the window register. The window is open when the down counter is less than the value in the SWT_WN register. Outside of this window, service sequence writes are invalid accesses and generate a bus error or reset depending on the value of the SWT \leftarrow CR.RIA

5.4 ISR to configure within AutosarOS - dependencies

The following ISR's are used by the WDG driver:

ISR Name	HW INT Vector	Observations
ISR(Swt_Ip_Swt0_Isr)	42	None
ISR(Swt_Ip_Swt1_Isr)	43	None
ISR(Swt_Ip_Swt2_Isr)	44	None

5.5 ISR Macro

RTD drivers use the ISR macro to define the functions that will process hardware interrupts. Depending on whether the OS is used or not, this macro can have different definitions.

5.5.1 Without an Operating System The macro _USING_OS_AUTOSAROS_ must not be defined.

5.5.1.1 Using Software Vector Mode

The macro USE SW VECTOR MODE must be defined and the ISR macro is defined as:

#define ISR(IsrName) void IsrName(void)

In this case, the drivers' interrupt handlers are normal C functions and their prologue/epilogue will handle the context save and restore.

5.5.1.2 Using Hardware Vector Mode

The macro _USE_SW_VECTOR_MODE_ must not defined and the ISR macro is defined as:

#define ISR(IsrName) INTERRUPT FUNC void IsrName(void)

In this case, the drivers' interrupt handlers must also handle the context save and restore.

5.5.2 With an Operating System Please refer to your OS documentation for description of the ISR macro.

5.6 Other AUTOSAR modules - dependencies

Dependencies:

- WDGIF: The Watchdog Interface module is necessary for importing the Mode type in which the watchdog can configured.
- BASE: The BASE module contains the common files/definitions needed by all RTD modules.
- DEM: The DEM module is used for enabling reporting of production relevant error status. The API function used is Dem_SetEventStatus().
- DET: The DET module is used for enabling Development error detection. The API function used is Det_Report Error(). The activation/deactivation of Development Error Detection is configurable using the 'WdgDevErrorDetect' configuration parameter.
- ECUC: The ECUC module is used for ECU configuration. RTD modules need ECUC to retrieve the variant information.
- MCU: The MCU driver provides services for basic microcontroller initialization, power down functionality, reset and microcontroller specific functions required by other RTD software modules. The clocks need to be initialized prior to using the Wdg driver.
- GPT: The GPT driver is required to periodically reset the watchdog timeout counter.
- MCL: The MCL driver is a dependency for certain Gpt driver functions.
- RESOURCE: The RESOURCE module is used to select microcontroller's derivatives.

Current driver has support for the following derivatives, each having attached a Resource file: s32k344_mapbga257, s32k344_mqfp172, s32k358_mapbga289, s32k358_mqfp172, s32k396_mapbga289, s32m276_lqfp64.

• RTE: The RTE module is needed for implementing data consistency of exclusive areas that are used in the Wdg driver.

5.7 Data Cache Restrictions

None.

5.8 User Mode support

- User Mode configuration in the module
- User Mode configuration in AutosarOS

5.8.1 User Mode configuration in the module

Wdg driver can not run in user mode.

5.8.2 User Mode configuration in AutosarOS

When User mode is enabled, the driver may has the functions that need to be called as trusted functions in AutosarOS context. Those functions are already defined in driver and declared in the header <IpName>_Ip _
_TrustedFunctions.h. This header also included all headers files that contains all types definition used by parameters or return types of those functions. Refer the chapter User Mode configuration in the module for more detail about those functions and the name of header files they are declared inside. Those functions will be called indirectly with the naming convention below in order to AutosarOS can call them as trusted functions.

Call_<Function_Name>_TRUSTED (parameter1, parameter2, ...)

That is the result of macro expansion OsIf_Trusted_Call in driver code:

#define OsIf_Trusted_Call[1-6params](name,param1,...,param6) Call_##name##_TRUSTED(param1,...,param6) So, the following steps need to be done in AutosarOS:

- Ensure MCAL_ENABLE_USER_MODE_SUPPORT macro is defined in the build system or somewhere global.
- Define and declare all functions that need to call as trusted functions follow the naming convention above in Integration/User code. They need to visible in Os.h for the driver to call them. They will do the marshalling of the parameters and call CallTrustedFunction() in OS specific manner.
- CallTrustedFunction() will switch to privileged mode and call TRUSTED_<Function_Name>().
- TRUSTED_<Function_Name>() function is also defined and declared in Integration/User code. It will unmarshalling of the parameters to call <Function_Name>() of driver. The <Function_Name>() functions are already defined in driver and declared in <IpName>_Ip_TrustedFunctions.h. This header should be included in OS for OS call and indexing these functions.

See the sequence chart below for an example calling Linflexd_Uart_Ip_Init_Privileged() as a trusted function.

Figure 5.1 Example sequence chart for calling Linflexd_Uart_Ip_Init_Privileged as trusted function

5.9 Multicore support

The Wdg implements the "Autosar 4.4 RTD Multicore Distribution" according to type II, in which the mappable element is set to channel. For additional details, please refer to AUTOSAR_EXP_BSWDistributionGuide.

The **Wdg** and the mappable elements can only be allocated one ECUC partitions, by means of "WdgEcucPartition ← Ref". If there is only one instance of Wdg is used, the **Wdg** behavior reverts to single-core implementation, similar to previous Autosar versions. If the number of **Wdg** is more than one, the **Wdg** enforces the following multicore assumptions:

- 1. The Wdg assumes there is a single EcucPartition allocated per core. Internally, the module will use the Core ID returned by GetCoreID API to reference the appropriate global data and configuration elements.
- 2. The Wdg assumes the EcucCoreIDs are defined in a compact/consecutive order, starting from zero. The rationale is that the number of EcucPartitions is used for dimensioning the Wdg internal variables and the EcucCoreIDs are used for indexing those variables.
- 3. The Wdg assumes that initialization is performed on each core, Wdg_43_InstanceX_Init() is called separately for each core, using a different configuration structure. (Type II).
- 4. The Wdg initialization expects the upper layer will pass the correct initialization pointer, specific to the partition in which the driver is to be used. For example: EcucPartition_1 is assigned to CoreID 1; Wdg_43_Instance1_Init function will be called with configuration structure init, on Core 1.
- 5. The Wdg will check upon each API call if the requested resource is configured to be available on the current core, if DET error reporting is enabled.
- 6. The Wdg assumes that RTE module implements the EXCLUSIVE AREAS to be coreaware only. The rationale is that the module implementation ensures data integrity by separating the mappable elements for different cores already, thus implementing the EXCLUSIVE AREAS in a blocking manner (ex: spin-lock) on a multicore scope, might affect the performance of the drivers on the two cores, although they might access separate HW elements. For single-core scope, the EXCLUSIVE AREAS keep the same purpose as on previous AUTOSAR implementations. (to be updated per Wdg usecase, to be detailed/removed if some modules require such kind of functionality for critical features which cannot be atomically shared among cores).
- 7. The Wdg assumes that each interrupt is routed by the system only to the core on which is supposed to be serviced.

Note: X is the number of instance is used (Wdg_43_InstanceX_Init)

Main API Requirements

- Main function calls within BSW scheduler
- API Requirements
- Calls to Notification Functions, Callbacks, Callouts

6.1 Main function calls within BSW scheduler

None.

6.2 API Requirements

None.

6.3 Calls to Notification Functions, Callbacks, Callouts

Call-back Notifications: In Gpt Triggered Mode, a Gpt callback notification will be configured, which will periodically trigger the Wdg servicing routine. This notification will be named Wdg_Cbk_GptNotificationX, depending on the Wdg instance number "X" used.

User Notification:

The WDG Driver provides a notification that is called whenever the defined time period is over. The notifications can be configured as pointers to user defined functions. If notification is not desired, NULL_PTR shall be configured. An example of the syntax of this function is as follows:

void Wdg_Notification (void)

The function has to be implemented by the user.

Memory allocation

- Linker command file

7.1 Sections to be defined in Wdg_MemMap.h

Section name	Type of section	Description
WDG_START_SEC_CONST_8	Configuration Data	Start of Memory Section for Config Data
WDG_STOP_SEC_CONST_8	Configuration Data	End of Memory Section for Config Data.
WDG_START_SEC_CONST_32	Configuration Data	Start of Memory Section for Config Data.
WDG_STOP_SEC_CONST_32	Configuration Data	End of Memory Section for Config Data.
WDG_START_SEC_CONST_← UNSPECIFIED	Configuration Data	Start of Memory Section for Config Data.
WDG_STOP_SEC_CONST_← UNSPECIFIED	Configuration Data	End of Memory Section for Config Data.
WDG_START_SEC_CONFIG_DATA↔ _UNSPECIFIED	Configuration Data	Start of Memory Section for Config Data.
WDG_STOP_SEC_CONFIG_DATA_← UNSPECIFIED	Configuration Data	End of Memory Section for Config Data.
WDG_START_SEC_CODE	Code	Start of memory Section for Code in flash.
WDG_STOP_SEC_CODE	Code	Stop of memory Section for Code in flash.
WDG_START_SEC_RAMCODE	Code	Start of memory Section for Code in ram.
WDG_STOP_SEC_RAMCODE	Code	Stop of memory Section for Code in ram.
WDG_START_SEC_VAR_INIT_← UNSPECIFIED	Variables	Used for variables, structures, arrays, when the SIZE (alignment) does not fit the cri- teria of 8,16 or 32 bit. These variables are initialized with values after every reset
WDG_STOP_SEC_VAR_INIT_← UNSPECIFIED	Variables	End of above section.
WDG_START_SEC_VAR_INIT_16	Variables	Used for variables which have to be aligned to 16 bit. For instance used for variables of size 16 bit or used for composite data types: arrays, structs containing elements of maximum 16 bits. These variables are initialized with values after every reset
NXP Semiconductors	\$32K3 WDG Drive	

Memory allocation

Section name	Type of section	Description
WDG_STOP_SEC_VAR_INIT_16	Variables	End of above section.
WDG_START_SEC_VAR_INIT_32	Variables	Used for variables which have to be aligned to 32 bit. For instance used for variables of size 32 bit or used for composite data types: arrays, structs containing elements of maximum 32 bits. These variables are initialized with values after every reset
WDG_STOP_SEC_VAR_INIT_32	Variables	End of above section.
WDG_START_SEC_VAR_CLEARED↔ _UNSPECIFIED	Variables	Used for variables, structures, arrays when the SIZE (alignment) does not fit the criteria of 8,16 or 32 bit. These variables are cleared to zero by start-up code (BBS).
WDG_STOP_SEC_VAR_CLEARED_← UNSPECIFIED	Variables	End of above section.

7.2 Linker command file

Memory shall be allocated for every section defined in the driver's "<Module>"_MemMap.h.

Integration Steps

This section gives a brief overview of the steps needed for integrating this module:

- 1. Generate the required module configuration(s). For more details refer to section Files Required for Compilation
- 2. Allocate the proper memory sections in the driver's memory map header file ("<Module>"_MemMap.h) and linker command file. For more details refer to section Sections to be defined in <Module>_MemMap.h
- 3. Compile & build the module with all the dependent modules. For more details refer to section Building the Driver

NXP Semiconductors S32K3 WDG Driver 41

External assumptions for driver

The section presents requirements that must be complied with when integrating the WDG driver into the application.

External Assumption Req ID	External Assumption Text
SWS_Wdg_00144	The Wdg Manager (or other entities) shall control the watchdog driver via a so called trigger condition: as long as the trigger condition is valid the Wdg Driver services the watchdog hardware, if the trigger condition becomes invalid the Wdg Driver stops triggering and the watchdog expires. The semantics of the trigger condition can be interpreted as a "permission to service the watchdog for the next n milliseconds". Within this time frame the trigger condition has to be updated by the controlling entity else the watchdog will expire. Handover of the watchdog control logic is simply done by shared usage of the trigger condition (e.g. during startup / shutdown).
EA_RTD_00053	The application shall ensure that Wdg_SetTriggerCondition() function is not preempting itself or any of the following WDG functions: - Wdg_Init() - Wdg_SetMode()
EA_RTD_00055	If WdgRunArea is set to RAM, then the application shall execute all the code which interacts with WDG from RAM (this means also at least DET, DEM, Gpt, SchM,application code will be executed from RAM). Note←: Motivation 1: Except the boot loader use case when entire software may run from RAM, there is no other obvious use case when WDG should run from RAM , especially a use case when WDG should run from RAM and other modules from ROM.
EA_RTD_00056	If WdgRunArea is set to ROM, then the application shall execute all the code which interacts with WDG from ROM (this means also at least DET, DEM, Gpt, SchM,application code will be executed from ROM).
EA_RTD_00071	If interrupts are locked, a centralized function pair to lock and unlock interrupts shall be used.
EA_RTD_00079	It shall be the integrator responsibility to configure the additional hardware resources (i.e. FCCU) to handle the signals from watchdog modules to generate either an interrupt or a reset.
EA_RTD_00082	When caches are enabled and data buffers are allocated in cacheable memory regions the buffers involved in DMA transfer shall be aligned with both start and end to cache line size. Note: Rationale : This ensures that no other buffers/variables compete for the same cache lines.

External Assumption Req ID	External Assumption Text
EA_RTD_00092	The integrator shall allocate a single EcucPartition per core or the partition in which the Wdg is allocated shall be exclusively mapped to a core. Note: Internally, the Wdg will use the Core ID returned by GetCoreID API to reference the appropriate global data and configuration elements, that is why a core should reference only one configured partition.
EA_RTD_00093	The application shall define EcucCoreIDs in a compact/consecutive order, starting from zero.
EA_RTD_00094	When multicore support is enabled, the application shall call Wdg_Init() for each core, using the dedicated configuration pointer for that core.
EA_RTD_00096	The application shall pass the correct initialization pointer, specific to the partition in which the driver is to be used.
EA_RTD_00097	The application, after a successful call of Wdg_ClearResetRequest, shall set the watchdog into an active mode using Wdg_SetMode.
EA_RTD_00106	Standalone IP configuration and HL configuration of the same driver shall be done in the same project
EA_RTD_00107	The integrator shall use the IP interface only for hardware resources that were configured for standalone IP usage. Note: The integrator shall not directly use the IP interface for hardware resources that were allocated to be used in HL context.
EA_RTD_00108	The integrator shall use the IP interface to a build a CDD, therefore the BSWMD will not contain reference to the IP interface
EA_RTD_00113	When RTD drivers are integrated with AutosarOS and User mode support is enabled, the integrator shall assure that the definition and declaration of all RTD functions needed to be called as trusted functions follow the naming convention Call <function_name>TRUSTED(parameter1,parameter2,) in Integration/User code. They need to visible in Os.h for the driver to call them. They will call RTD <function_name>() as trusted functions in OS specific manner.</function_name></function_name>

How to Reach Us:

Home Page: nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec. C-5. CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and Vision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2023 NXP B.V.

