How to choose a life partner optimally?

Małgorzata Sulkowska

Université Côte d'Azur, Inria, France Wrocław University of Science and Technology, Poland

> C@FÉ ADSTIC 6 December 2021

Problem of choosing a time to take a particular action in order to maximise gain or minimise cost.

Problem of choosing a time to take a particular action in order to maximise gain or minimise cost.

Optimal stopping in practice

• Should I already park a car or drive further towards the goal?

Problem of choosing a time to take a particular action in order to maximise gain or minimise cost.

Optimal stopping in practice

• Should I already park a car or drive further towards the goal?

• Should I stop paying for fixing my car and buy a new one?

Problem of choosing a time to take a particular action in order to maximise gain or minimise cost.

Optimal stopping in practice

• Should I already park a car or drive further towards the goal?

• Should I stop paying for fixing my car and buy a new one?

Should I propose to my current partner?

Introduction to online algorithms in three steps

- FIRST PROBLEM
- SECOND PROBLEM

Introduction to online algorithms in three steps

- SECRETARY PROBLEM
- SECOND PROBLEM

- There are *n* linearly ordered candidates.
- They appear one by one in some random order.
- You know the relative ranks of the candidates met so far.

- There are *n* linearly ordered candidates.
- They appear one by one in some random order.
- You know the relative ranks of the candidates met so far.
- You can accept or decline the current candidate.
- Declined candidate takes offence and never comes back.
- Accepted candidate is your choice.

- There are *n* linearly ordered candidates.
- They appear one by one in some random order.
- You know the relative ranks of the candidates met so far.
- You can accept or decline the current candidate.
- Declined candidate takes offence and never comes back.
- Accepted candidate is your choice.
- Your choice turns out to be 1: you win!! :) (gain 1).
- Your choice is not 1: you loose... :((gain 0).

- There are *n* linearly ordered candidates.
- They appear one by one in some random order.
- You know the relative ranks of the candidates met so far.
- You can accept or decline the current candidate.
- Declined candidate takes offence and never comes back.
- Accepted candidate is your choice.
- Your choice turns out to be 1: you win!! :) (gain 1).
- Your choice is not 1: you loose... :((gain 0).

Aim: maximise the expected gain (all permutations of candidates are equiprobable).

Equivalently: maximise the probability of choosing candidate no. 1.

Optimal solution is of a threshold type:

- wait until a certain threshold r;
- at this time or later accept the first candidate best so far.

Optimal solution is of a threshold type:

- wait until a certain threshold r;
- at this time or later accept the first candidate best so far.

$$\mathbb{P}[S] = \sum_{i=1}^{n} \mathbb{P}[S|1 \text{ is at pos i}] \mathbb{P}[1 \text{ is at pos i}]$$

Optimal solution is of a threshold type:

- wait until a certain threshold r;
- at this time or later accept the first candidate best so far.

$$\mathbb{P}[S] = \sum_{i=1}^{n} \mathbb{P}[S|1 \text{ is at pos i}] \mathbb{P}[1 \text{ is at pos i}]$$
$$= \sum_{i=1}^{n} \mathbb{P}[S|1 \text{ is at pos i}] \frac{1}{n}$$

$$\mathbb{P}[S] = \sum_{i=1}^{n} \mathbb{P}[S|1 \text{ is at pos i}] \mathbb{P}[1 \text{ is at pos i}]$$
$$= \frac{1}{n} \sum_{i=r}^{n} \mathbb{P}[S|1 \text{ is at pos i}]$$

$$\mathbb{P}[S] = \sum_{i=1}^{n} \mathbb{P}[S|1 \text{ is at pos i}] \mathbb{P}[1 \text{ is at pos i}]$$

$$= \frac{1}{n} \sum_{i=r}^{n} \mathbb{P}[S|1 \text{ is at pos i}]$$

$$= \frac{1}{n} \sum_{i=r}^{n} \frac{r-1}{i-1} = \frac{r-1}{n} \sum_{i=r}^{n} \frac{1}{i-1} \approx \frac{r}{n} \ln \frac{n}{r}$$

Probability of success: $\mathbb{P}[S] \approx \frac{r}{n} \ln \frac{n}{r}$.

The above function is maximised for r=n/e. Then $\mathbb{P}[S]\approx 1/e$.

Probability of success: $\mathbb{P}[S] \approx \frac{r}{n} \ln \frac{n}{r}$. The above function is maximised for r = n/e. Then $\mathbb{P}[S] \approx 1/e$.

Asymptotically optimal solution:

- wait until a threshold $r_n \sim n/e$,
- afterwards accept the first candidate best so far,
- $\mathbb{P}[S] \xrightarrow{n \to \infty} 1/e \approx 0.368$.

Probability of success: $\mathbb{P}[S] \approx \frac{r}{n} \ln \frac{n}{r}$.

The above function is maximised for r = n/e. Then $\mathbb{P}[S] \approx 1/e$.

Asymptotically optimal solution:

- wait until a threshold $r_n \sim n/e$,
- afterwards accept the first candidate best so far,
- $\mathbb{P}[S] \xrightarrow{n \to \infty} 1/e \approx 0.368$.

Exact solution:

- wait until the first r such that $\frac{1}{r} + \frac{1}{r+1} + \ldots + \frac{1}{n-1} < 1$,
- at this time or later accept the first candidate best so far.

n	3	4	5	6	7	8	9	10	20	30	40	50	100
$r \\ \mathbb{P}[S]$	2 0.5	2 0.46		3 0.43		4 0.41		4 0.4	8 0.38	12 0.38	16 0.38	19 0.37	38 0.37

(Lindley, 1961)

Example revisited

Random permutation: $\sigma = (5, 3, 4, 1, 2)$ (you do not know it!) For n = 5 the decision threshold is r = 3 (1/3 + 1/4 \approx 0.58 < 1).

A postdoc problem (Rose 1982; Vanderbei, 2012).
 Maximise the probability of choosing the second best.

$$\mathbb{P}[S] \xrightarrow{n \to \infty} 1/4$$

A postdoc problem (Rose 1982; Vanderbei, 2012).
 Maximise the probability of choosing the second best.

$$\mathbb{P}[S] \xrightarrow{n \to \infty} 1/4$$

• Minimise the expected absolute rank (Chow et al., 1964).

$$\mathbb{E}[rank] \xrightarrow{n \to \infty} 3.8695...$$

A postdoc problem (Rose 1982; Vanderbei, 2012).
 Maximise the probability of choosing the second best.

$$\mathbb{P}[S] \xrightarrow{n \to \infty} 1/4$$

• Minimise the expected absolute rank (Chow et al., 1964).

$$\mathbb{E}[rank] \xrightarrow{n \to \infty} 3.8695...$$

• Success: accepting any of $\{1, 2, ..., k\}$ (Gusein-Zade, 1966).

for
$$k = 2$$
 $\mathbb{P}[S] \xrightarrow{n \to \infty} 0.5736...$

A postdoc problem (Rose 1982; Vanderbei, 2012).
 Maximise the probability of choosing the second best.

$$\mathbb{P}[S] \xrightarrow{n \to \infty} 1/4$$

• Minimise the expected absolute rank (Chow et al., 1964).

$$\mathbb{E}[rank] \xrightarrow{n \to \infty} 3.8695...$$

• Success: accepting any of $\{1, 2, ..., k\}$ (Gusein-Zade, 1966).

for
$$k = 2$$
 $\mathbb{P}[S] \xrightarrow{n \to \infty} 0.5736...$

 The possibility of recall and the possibility of being refused (Yang, 1974; Smith, 1975; Petrucelli, 1981)

$$p_{being refused} = 1/2 \quad \mathbb{P}[S] \xrightarrow{n \to \infty} 1/4$$

• Partially ordered sets instead of a linear order (Stadje, 1980).

• Partially ordered sets instead of a linear order (Stadje, 1980).

The selector knows the cardinality of the set but not its structure. Success: stopping at any maximal element.

$$\mathbb{P}[S] > 1/e$$

(Freij, Wästlund, 2010)

Introduction to online algorithms in three steps

- SECRETARY PROBLEM
- SKI RENTAL PROBLEM your homework!

Ski rental problem

- Rent per day: 1 \$.
- Cost of buying the equipment: k \$.
- You do not know how many days are you going to ski...

Should you buy? Should you rent? Should you rent and later buy?

Ski rental problem

- Rent per day: 1 \$.
- Cost of buying the equipment: k \$.
- You do not know how many days are you going to ski...

Should you buy? Should you rent? Should you rent and later buy?

OFF Optimal offline algorithm

- j number of skiing days
 - if $j \leqslant k$ rent every day,
 - if $j \ge k$ buy on the first day.

$$cost(OFF(j)) = min\{j, k\}$$

Ski rental problem

- Rent per day: 1 \$.
- Cost of buying the equipment: k \$.
- You do not know how many days are you going to ski...

Should you buy? Should you rent? Should you rent and later buy?

OFF Optimal offline algorithm

- j number of skiing days
 - if $j \leqslant k$ rent every day,
 - if $j \geqslant k$ buy on the first day.

$$cost(OFF(j)) = min\{j, k\}$$

Instances of our problem: $\{1,2,3,\ldots\}$ - # of skiing days.

Strictly *c*-competitive online algorithm

For $c \geqslant 1$ ONLINE is strictly c-competitive if

$$\frac{cost(ONLINE(I))}{cost(OFF(I))} \leqslant c$$

for all instances *I* of the problem.

Examples

1 buy on the first day.

$$cost(ONLINE(j)) = k$$
 for all j

$$\max_{j} \frac{cost(ONLINE(j))}{cost(OFF(j))} = \frac{cost(ONLINE(1))}{cost(OFF(1))} = \frac{k}{1} = k$$

This algorithm is strictly k-competitive.

Examples

1 buy on the first day.

$$cost(ONLINE(j)) = k \quad \text{for all} \quad j$$

$$\max_{j} \frac{cost(ONLINE(j))}{cost(OFF(j))} = \frac{cost(ONLINE(1))}{cost(OFF(1))} = \frac{k}{1} = k$$

This algorithm is strictly k-competitive.

l always rent.

$$\begin{aligned} & cost(\textit{ONLINE}(j)) = j \quad \text{for all} \quad j \\ & \max_{j} \frac{cost(\textit{ONLINE}(j))}{cost(\textit{OFF}(j))} \stackrel{j \geqslant k}{=} \max_{j} \frac{j}{k} \xrightarrow{j \to \infty} \infty \end{aligned}$$

This algorithm is not competitive at all...

Examples

1 buy on the first day.

$$\begin{aligned} &cost(ONLINE(j)) = k \quad \text{for all} \quad j \\ &\max_{j} \frac{cost(ONLINE(j))}{cost(OFF(j))} = \frac{cost(ONLINE(1))}{cost(OFF(1))} = \frac{k}{1} = k \end{aligned}$$

This algorithm is strictly k-competitive.

I always rent.

$$\begin{aligned} & cost(\textit{ONLINE}(j)) = j \quad \text{for all} \quad j \\ & \max_{j} \frac{cost(\textit{ONLINE}(j))}{cost(\textit{OFF}(j))} \stackrel{j \geqslant k}{=} \max_{j} \frac{j}{k} \xrightarrow{j \to \infty} \infty \end{aligned}$$

This algorithm is not competitive at all...

Let's find the best possible (in terms of strictly competitiveness) deterministic algorithm!

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

Deterministic online algorithm is described just buy one number $t\geqslant 1$:

rent for t-1 days and buy equipment on the t^{th} day

It's your turn! Find the optimal t! Winter is coming...

Deterministic online algorithm is described just buy one number $t\geqslant 1$: rent for t-1 days and buy equipment on the t^{th} day

It's your turn! Find the optimal t!
Winter is coming...

Thank you!!! :)

Małgorzata Sulkowska

- 2012-2014, assistant at the Wrocław University of Science and Technology, Poland
- 2013, PhD, Stopping algorithms under the supervision of prof. Michał Morayne Wrocław University of Science and Technology, Poland

- since 2014, assistant professor at the Wrocław University of Science and Technology, Poland
- 2015/2016, postdoc at the Federal University of Ceará, Brazil
- since 2020, postdoc at Université Côte d'Azur, Inria, CNRS, I3S, France

References

Y.S. Chow, S. Moriguti, H. Robbins, and

S.M. Samuels

Optimal selection based on relative rank (the secretary problem).

Israel J. Math., 2:81--90, 1964.

T.S. Ferguson.

Who solved the secretary problem?

Statist. Sci., 4(3):282-289, 08 1989.

P.R. Freeman.

The secretary problem and its extensions Int. Stat. Rev., 51(2):189-206, 1983.

R. Freij and J. Wästlund

Partially ordered secretaries. Electron. Commun. Prob., 15:504-507, 2010

S.M. Gusein-Zade

The problem of choice and the optimal stopping rule for a sequence of independent trials.

Theory Probab. Appl+, 11(3):472-476, 1965.

D.V. Lindley.

Dynamic programming and decision theory. Appl. Stat. - J. Roy. St. C, 10(1):39-51, 1961.

J.S. Rose.

A problem of optimal choice and assignment. Operations Research, 30(1):172-181, 1982.

M. H. Smith.

A secretary problem with uncertain employment.

J. Appl. Prob., 12(3):620-624, 1975.

W. Stadje.

Efficient stopping of a random series of partially ordered points.

Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, 177:430–447, 1980.

R.J. Vanderbei.

The postdoc variant of the secretary problem, 2012.

M.C.K. Yang

Recognizing the maximum of a random sequence based on relative rank with backward solicitation.

J. Appl. Prob., 11:504--512, 1974.

R.A. Baezayates, J.C. Culberson, and G.J.E. Rawlins

Searching in the plane.

Inform. Comput., 106(2):234-252, 1993.

M.Y. Kao, J.H. Reif, and S.R. Tate.

Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem.

Inform. Comput., 131(1):63-79, 1996

Sources of images

- https://www.scotthyoung.com/blog/2019/01/09/mih-decision-algorithm/
- https://commons.wikimedia.org/wiki/File:Random_car_parking_problem.svg
- https://pl.depositphotos.com/vector-images/car-broken-down.html
- https://tr.pinterest.com/pin/498703358732529489/
- https://www.pinterest.com/pin/60094976266947339/
- https:
 - //pl.depositphotos.com/71415921/stock-illustration-i-small-lost-cow.html
- https://www.istockphoto.com/fr/search/2/image?mediatype=illustration&phrase=confused
- https://www.istockphoto.com/fr/search/2/image?mediatype=illustration&phrase=spiral
- https://www.istockphoto.com/fr/search/2/image?phrase=polish+flag

Deterministic online algorithm is described just buy one number $t \geqslant 1$:

rent for t-1 days and buy equipment on the t^{th} day

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

Let's investigate $\max_{j} \frac{cost(ONLINE(j))}{cost(OFF(j))} t$ by t:

• t = 1 then c = k by choosing j = 1

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2
- •
- t = k 1 then $c = \frac{k-2+k}{k-1}$ by choosing j = k 1

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2
- •
- t = k 1 then $c = \frac{k 2 + k}{k 1}$ by choosing j = k 1
- t = k then $c = \frac{k-1+k}{k}$ by choosing any $j \ge k$

Deterministic online algorithm is described just buy one number $t \ge 1$:

rent for t-1 days and buy equipment on the t^{th} day

$$cost(\textit{ONLINE}(j)) = egin{cases} j, & j < t \ t - 1 + k, & j \geqslant t \end{cases}$$

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2
- •
- t = k 1 then $c = \frac{k 2 + k}{k 1}$ by choosing j = k 1
- t = k then $c = \frac{k-1+k}{k}$ by choosing any $j \geqslant k$
- t = k + 1 then $c = \frac{k+k}{k}$ by choosing any $j \geqslant k + 1$
- •

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2
- ...
- t = k 1 then $c = \frac{k 2 + k}{k 1}$ by choosing j = k 1
- t = k then $c = \frac{k-1+k}{k}$ by choosing any $j \geqslant k$
- t = k + 1 then $c = \frac{k+k}{k}$ by choosing any $j \geqslant k$
- ...

We get
$$c = \begin{cases} \frac{t-1+k}{t}, & t \leqslant k \\ \frac{t-1+k}{k}, & t \geqslant k \end{cases} = \begin{cases} 1 + \frac{k-1}{t}, & t \leqslant k \\ 1 + \frac{t-1}{k}, & t \geqslant k \end{cases}$$

Let's investigate $\max_{j} \frac{cost(ONLINE(j))}{cost(OFF(j))} t$ by t:

- t = 1 then c = k by choosing j = 1
- t=2 then $c=\frac{1+k}{2}$ by choosing j=2
- •
- t = k 1 then $c = \frac{k 2 + k}{k 1}$ by choosing j = k 1
- t = k then $c = \frac{k-1+k}{k}$ by choosing any $j \geqslant k$
- t = k + 1 then $c = \frac{k+k}{k}$ by choosing any $j \geqslant k$
- ...

We get
$$c = \begin{cases} \frac{t-1+k}{t}, & t \leqslant k \\ \frac{t-1+k}{k}, & t \geqslant k \end{cases} = \begin{cases} 1 + \frac{k-1}{t}, & t \leqslant k \\ 1 + \frac{t-1}{k}, & t \geqslant k \end{cases}$$

Choosing t = k we get strictly (2 - 1/k)-competitive algorithm.

• Choosing t=k we get strictly (2-1/k)-competitive algorithm: rent for k-1 days and buy equipment on the k^{th} day. This is the best deterministic algorithm.

• Choosing t=k we get strictly (2-1/k)-competitive algorithm: rent for k-1 days and buy equipment on the k^{th} day. This is the best deterministic algorithm.

Can we do better?

• Choosing t=k we get strictly (2-1/k)-competitive algorithm: rent for k-1 days and buy equipment on the k^{th} day. This is the best deterministic algorithm.

Can we do better?

Yes! Randomization helps!

- Set of deterministic strategies: $\{S_1, S_2, \dots, S_k\}$ S_i : rent for i-1 days and buy equipment on the i^{th} day.
- Probability distribution: $\{p_1, p_2, \dots, p_k\}$
- ullet Randomized algorithm RAND chooses strategy S_i with probability p_i .

- Set of deterministic strategies: $\{S_1, S_2, \dots, S_k\}$ S_i : rent for i-1 days and buy equipment on the i^{th} day.
- Probability distribution: $\{p_1, p_2, \dots, p_k\}$
- Randomized algorithm RAND chooses strategy S_i with probability p_i .

Strictly *c*-competitive online randomized algorithm

For $c \geqslant 1$ RAND is strictly c-competitive if

$$\frac{\mathbb{E}[cost(RAND(I))]}{cost(OFF(I))} \leqslant c$$

for all instances I of the problem.

- Set of deterministic strategies: $\{S_1, S_2, \dots, S_k\}$ S_i : rent for i-1 days and buy equipment on the i^{th} day.
- Probability distribution: $\{p_1, p_2, \dots, p_k\}$
- ullet Randomized algorithm RAND chooses strategy S_i with probability p_i .

Strictly *c*-competitive online randomized algorithm

For $c \geqslant 1$ RAND is strictly c-competitive if

$$\frac{\mathbb{E}[cost(RAND(I))]}{cost(OFF(I))} \leqslant c$$

for all instances *I* of the problem.

The best probability distribution

$$p_i = \gamma \delta^{i-1}$$

$$\delta = \frac{k}{k-1} \qquad \gamma = \frac{\delta - 1}{\delta^k - 1}$$

- Set of deterministic strategies: $\{S_1, S_2, \dots, S_k\}$ S_i : rent for i-1 days and buy equipment on the i^{th} day.
- Probability distribution: $\{p_1, p_2, \dots, p_k\}$
- Randomized algorithm RAND chooses strategy S_i with probability p_i .

Strictly *c*-competitive online randomized algorithm

For $c \geqslant 1$ RAND is strictly c-competitive if

$$\frac{\mathbb{E}[cost(RAND(I))]}{cost(OFF(I))} \leqslant c$$

for all instances *I* of the problem.

The best probability distribution

$$p_i = \gamma \delta^{i-1}$$

$$\delta = \frac{k}{k-1} \qquad \gamma = \frac{\delta - 1}{\delta^k - 1}$$

• Then RAND is strictly $\frac{\delta^k}{\delta^k-1}$ -competitive

$$\frac{\delta^k}{\delta^k - 1} \xrightarrow{k \to \infty} \frac{e}{e - 1} \approx 1.582$$

Ski rental problem, comparison of algorithms

• The best deterministic online algorithm is strictly $(2 - \frac{1}{k})$ -competitive.

$$2-1/k \xrightarrow{k\to\infty} 2$$

• The best randomized online algorithm is strictly $\frac{\delta^k}{\delta^k-1}$ -competitive, where $\delta=\frac{k}{k-1}$

$$\frac{\delta^k}{\delta^k - 1} \xrightarrow{k \to \infty} \frac{e}{e - 1} \approx 1.582$$

Thank you again!!! :)