19/01/2007

Algebra lineare - Corso di laurea in Informatica

Nome:	Cognome:	Matricola:
i tollic.	cognome.	man record

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.

Esercizio 1 [2.5 PUNTI]

Calcolare z^4 , dove $z = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$.

Risposta:

Esercizio 2 [2.5 PUNTI]

Trovare i numeri complessi che soddisfano l'equazione $z^4=z^2.$

Risposta:

Esercizio 3 [2.5 PUNTI]

Scrivere due numeri complessi non nulli z e w tale che $z^2=w$ e $\operatorname{Arg} z=\operatorname{Arg} w.$

Risposta:

Esercizio	4	[2.5]	PUNTI	l
-----------	---	-------	-------	---

Esercizio 4 [2.5 PUNTI]

Trovare un vettore \mathbf{v} di \mathbb{R}^3 di norma unitaria, ortogonale ai vettori $\mathbf{v_1} = (1, 1, 1)$ e $\mathbf{v_2} = \mathbf{v_3} + 2\mathbf{v_4}$, dove $\mathbf{v_3} = (1, 0, 1)$ e $\mathbf{v_4} = (-\frac{1}{2}, 0, \frac{1}{4})$.

Risposta:

Esercizio 5 [2.5 PUNTI]

Siano $\mathbf{u},\,\mathbf{v}$ e \mathbf{w} tre vettori di \mathbb{R}^3 . Allora $(\mathbf{u}+\mathbf{v})\cdot\mathbf{w}=\mathbf{u}\cdot\mathbf{w}+\mathbf{v}\cdot\mathbf{w}$ Giustificazione:

Esercizio 6 [2.5 PUNTI]

Calcolare il volume del parallelepipedo generato dai tre vettori $\mathbf{u}=(1,0,1),\,\mathbf{v}=(1,0,2)$ e $\mathbf{w} = (1, 2, -1).$

Risposta:

Esercizio 7 [2.5 PUNTI]

calcolare A^{-1} .

Risposta:

Esercizio 8 [2.5 PUNTI]

Trovare i valori di $\lambda \in \mathbb{R}$ per i quali i vettori u = (0, 1, 1, 0) e $v = (\lambda \pi, 1, 1, \lambda e)$ di \mathbb{R}^4 generano uno spazio di dimensione due.

Risposta:

Esercizio 9 [2.5 PUNTI]

Scrivere due vettori di \mathbb{R}^4 che formano un angolo di $\frac{\pi}{4}$ e che siano ortogonali al vettore (0,0,2,3).

Risposta:

Esercizio 10 [2.5 PUNTI]

Trovare i valori dei parametri reali λ e μ tali che (0,1,1) sia una soluzione del seguente sistema.

$$\begin{cases} x + \lambda y + \mu z = 1 \\ 10x + \lambda y - \mu z = 0 \end{cases}$$

Risposta:

Esercizio 11 [2.5 punti] Discutere le soluzioni del seguente sistema lineare al variare del parametro reale λ .

$$\begin{cases} \lambda x + y + 2z = 1\\ x + y + (\lambda + 1)z = 0\\ x + \lambda z = -1 \end{cases}$$

Risposta:

Esercizio 12 [2.5 PUNTI]

Un sistema linerare di tre equazioni in quattro incognite è sempre compatibile. ${f V}$ ${f F}$ Risposta: