```
. use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 7-8-9\
> version\data_b3_2.dta"
no; data in memory would be lost
r(4);
. use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 7-8-9\
> version\data_b3_2.dta",clear
. do "C:\Users\lutib\AppData\Local\Temp\STD36fc_000000.tmp"
. // Q1
. /* Use the non parametric regression approach to predict the perceveid minimum well-being */
. use data_b3_2.dta, replace
. cnpe ae_exp min_ae_exp, xvar(ae_exp) min(0) max(60000)
                                                         hs(hsize)
                                                                       ///
> legend(order( 1 "Perceived minimum well-being " 2 "Observed well-being")) ///
> subtitle("") title(The subjective poverty line)
        ///
> xtitle(Observed well-being)
               ///
> ytitle(Predicted level of the perceived minimum well-being)
                                                                         ///
> vgen(yes)
WAIT: Estimation of in progress: ==>>
: . : . : . : . 10%
: . : . : . : . 20%
: . : . : . : . 30%
: . : . : . : . 40%
: . : . : . : . 50%
  . : . : . : . 60%
: . : . : . : . 70%
: . : . : . : . 80%
: . : . : . : . 90%
: . : . : . : . 100%
<== END
WAIT: Estimation of in progress: ==>>
: . : . : . : . 10%
: . : . : . : . 20%
: . : . : . : . 30%
: . : . : . : . 40%
: . : . : . : . 50%
: . : . : . : . 60%
: . : . : . : . 70%
: . : . : . : . 80%
  . : . : . : . 90%
: . : . : . : . 100%
<== END
```

[.] /* Estimate the level of ae_exp where the difference between the predicted minimum well-being > and the observed well-being is nil */

```
. cnpe ae_exp, hs(hsize) xvar(dif) xval(0) vgen(yes)
In progress ...
  Household size
                      : hsize
  Sampling weight
                        sweight
     Variable(s)
                     Estimated value
                         22289.966797
   ae_exp
. /*Show the subjective poverty line */
. cnpe ae_exp min_ae_exp, xvar(ae_exp) min(0) max(60000)
                                                                             ///
                                                            hs(hsize)
> legend(order( 1 "Perceived minimum well-being " 2 "Observed well-being")) ///
> subtitle("") title(The subjective poverty line)
         ///
> xline(22289.966797) xtitle(Observed well-being)
         ///
> ytitle(Predicted level of the perceived minimum well-being )
. // Q2:
. ifgt ae_exp, alpha(1) hsize(hsize) pline(22289.966797)
    Poverty index
                   : FGT index
                   : hsize
    Household size
    Sampling weight:
                      sweight
    Parameter alpha:
                      1.00
  Variable
                      Estimate
                                          STE
                                                          LB
                                                                          UB
                                                                                     Pov. line
                        0.110094
                                         0.008527
                                                          0.093357
                                                                          0.126831
                                                                                           22289.97
ae_exp
. ifgt ae_exp, alpha(1) hsize(hsize) pline(20600)
    Poverty index
                   : FGT index
                   : hsize
    Household size
    Sampling weight : sweight
    Parameter alpha : 1.00
                                          STE
  Variable
                      Estimate
                                                          LB
                                                                          UB
                                                                                     Pov. line
```

0.008031

0.075563

0.107089

20600.00

. cap drop dif

ae_exp

. gen dif = _npe_min_ae_exp- ae_exp

0.091326

. ifgt ae_exp, alpha(1) hsize(hsize) opl(mean) prop(50)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 1.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.058674	0.006965	0.045002	0.072346	17243.92

```
. // Q3:
. /*
> The use of the relative poverty line is more appropriate for the developed countries.
> This can be justified by the rapid increase in well-being in average and the standard of livin > gs over time.
> */
.
. end of do-file
. do "C:\Users\lutib\AppData\Local\Temp\STD36fc_000000.tmp"
. // EXERCICE 2
. end of do-file
```

- . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 7-8-9\ver > $sion\data_b3_2.dta$ ", clear
- . do "C:\Users\lutib\AppData\Local\Temp\STD36fc_000000.tmp"
- . dfgtg ae_exp, hgroup(sex) hsize(hsize) alpha(0) pline(20600)

Decomposition of the FGT index by groups

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : sex Parameter alpha : 0.00

Group	FGT index	Population share	Absolute contribution	Relative contribution
Male	0.292844	0.794986	0.23280	7 0.758764
	0.017957	0.011824	0.014660	0.024917
Female	0.361034	0.205014	0.07401	7 0.241236
	0.035384	0.011824	0.008928	0.024917
Population	0.306824 0.017156	1.00000 0.000000	0.30682 0.017156	1.000000 0.000000

```
. /*
```

> We can conclude that the poverty within the female-headed households is more pronounced.

> However, their relative and absolute contribution to the total poverty is lower than man-headed h > ouseholds.

> This is because of the much lower population share of female-headed households in the total popul > ation.

> */

.

. // Q3:

. ifgt ae_exp, hgroup(region) hsize(hsize) alpha(0) pline(20600)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : region Parameter alpha : 0.00

Group	Estimate	STE	LB	UB	Pov. line
1: central	0.172511	0.021242	0.130817	0.214205	20600.
2: eastern	0.339337	0.027234	0.285881	0.392793	20600.
3: northern	0.599108	0.047338	0.506191	0.692025	20600.
4: western	0.215728	0.027715	0.161329	0.270127	20600.
Population	0.306824	0.017156	0.273149	0.340499	20600.

```
.
```

. // Q3:

. gen ae_exp2=ae_exp

. replace ae_exp2=ae_exp2*(1+0.12) if region==3
(508 real changes made)

. replace ae_exp2=ae_exp2*(1-0.06) if region==2
(792 real changes made)

.

. // Q4:

. dfgtgr ae_exp ae_exp2, alpha(1) pline(20600) hsize1(hsize) hsize2(hsize)

Decomposition of the variation in the FGT index into growth and redistribution.

Parameter alpha : 1.00 Poverty line : 20600.00

	Estimate	STE	LB	UB
Distribution_1 Distribution_2	0.091326 0.088063	0.008031 0.007358	0.075563 0.073619	0.107089 0.102506
Difference: (d2-d1)	-0.003263	0.001111	-0.005443	-0.001083
	Datt & Ravallion ag	oproach: referen	ce period t1	
Growth Redistribution Residue	0.000038 -0.003303 0.000002	0.000322 0.001008	-0.000594 -0.005282 	0.000671 -0.001324
	Datt & Ravallion ag	oproach: referen	ce period t2	
Growth	0.000040	0.000336	-0.000620	0.000699

Redistribution Residue	-0.003301 -0.000002	0.001010	-0.005284 	-0.001318
	Shapley approach			
Growth	0.000039	0.006870	-0.013445	0.013523
Redistribution	-0.003302	0.001009	-0.005283	-0.001321

. // Q5:

. dfgtg2d ae_exp ae_exp2, alpha(1) hgroup(region) pline(20600) hsize1(hsize) hsize2(hsize) ref(0)

Decomposition of the FGT index by groups

Group variable : region
Parameter alpha : 1.00

Population shares and FGT indices

Group	Initial Pop. share	Initial FGT index	Final Pop. share		ference in Findex
central	0.299749	0.036190	0.299749	0.036190	0.000000
	0.016365	0.005377	0.016365	0.005377	0.00000
eastern	0.256752	0.086712	0.256752	0.103596	0.016883
	0.013749	0.008955	0.013749	0.009747	0.001262
northern	0.188621	0.243506	0.188621	0.203225	-0.040281
	0.016391	0.028370	0.016391	0.026696	0.002996
western	0.254878	0.048195	0.254878	0.048195	0.000000
	0.013794	0.006716	0.013794	0.006716	0.000000
Population	1.000000	0.091326	1.000000 0.000000	0.088063	-0.003263

Decomposition components

Group	Poverty Component	Population Component	Interaction Component
central	0.000000	0.000000	0.000000
	0.00000	0.00000	0.00000
eastern	0.004335	0.000000	0.00000
	0.000420	0.00000	0.00000
northern	-0.007598	0.000000	0.000000
	0.000959	0.00000	0.000000
western	0.00000	0.000000	0.000000
	0.00000	0.000000	0.00000
Population	-0.003263	0.000000	0.000000
	===	===	===

```
. // EXERCICE 3
. // Q1:
. clear
. input identifier weight inc_t1 inc_t2
    identif~r
                weight
                           inc_t1
                                      inc_t2
 1.0 0
                         0.00
                  0.00
 2. 1
3. 2
4. 3
5. 4
6. 5
7. 6
           0.1
                   1.50
                         1.54
           0.1
                   4.50
                         3.85
           0.1
                   7.50
                           6.60
           0.1
                   3.00
                           2.75
           0.1
                   4.50
                           4.40
                   9.00
                           7.70
           0.1
                   10.50
                          8.80
 8.7
 9.8
           0.1
                   15.00
                           7.70
10.9
           0.1
                  12.00
                          6.60
11. 10
           0.1
                  13.50
                           6.60
12.
. end
. sort inc_t1
. gen perc=sum(weight)
. // Q2:
. qui sum inc_t1 [aw=weight]
. scalar mean1=r(mean)
. qui sum inc_t2 [aw=weight]
. scalar mean2=r(mean)
. scalar g_mean = (mean2-mean1)/mean1
. gen g_{mean} = (mean2-mean1)/mean1
. dis "Mean 1
                         =" mean1
Mean 1
                   =8.1
. dis "Mean 2
                       = " mean2
                   = 5.6539999
Mean 2
. dis "Growth in averages = " g_mean
Growth in averages = -.30197531
```

```
. // Q3:
. gen g_inc =(inc_t2-inc_t1)/inc_t1
(1 missing value generated)
. replace g_{inc} = 0 in 1
(1 real change made)
. // Q4:
. line g_inc g_mean perc, title(Growth Incidence Curve) yline(`g_mean') ///
> legend(order( 1 "GIC curve" 2 "Growth in average income")) ///
> xtitle(Percentiles (p)) ytitle(Growth in incomes) ///
> plotregion(margin(zero))
. // Q5:
. drop in 1
(1 observation deleted)
. cap drop temp
. gen temp = g_inc
. sum temp [aw=weight] if (inc_t1<10.4)</pre>
   Variable
                   Obs
                            Weight
                                          Mean Std. Dev.
                                                                  Min
                                                                             Max
                      6 .600000009
                                       -.0812963
                                                   .0701759 -.1444445
                                                                           .0266666
       temp
. dis = r(mean)
-.08129631
. ipropoor inc_t1 inc_t2, pline(10.4)
```

Poverty line : 10.40 Parameter alpha: 0.00

Estimate	STE	LB	UB
-0.301975	0.068365	-0.456627	-0.1473
-0.081296 0.220679	0.027568 0.075578	-0.143659 0.049710	-0.01893 0.39164
1.333333	0.418947	0.385609	2.2810
-0.402634 -0.100658	0.181351 0.136631	-0.812877 -0.409739	0.0076 0.2084
	-0.301975 -0.081296 0.220679 1.333333 -0.402634	-0.301975	-0.301975

. // Q6:

. dfgtgr inc_t1 inc_t2, alpha(1) pline(10.4)

Decomposition of the variation in the FGT index into growth and redistribution. Parameter alpha: $1.00\,$

Parameter alpha :
Poverty line : 10.40

	Estimate	STE	LB	UB
Distribution_1 Distribution_2	0.311538 0.456346	0.105810 0.072481	0.072180 0.292383	0.550897 0.620309
Difference: (d2-d1)	0.144808	0.044233	0.044745	0.244871
	Datt & Ravallion ap	pproach: referen	ce period t1	
Growth Redistribution Residue	0.145484 -0.057026 0.056350	0.036725 0.026851 	0.062407 -0.117767 	0.228562 0.003714
	Datt & Ravallion ap	proach: referen	ce period t2	
Growth Redistribution Residue	0.201834 -0.000677 -0.056350	0.059022 0.009501	0.068318 -0.022169 	0.335350 0.020816
	Shapley approach			
Growth Redistribution	0.173659 -0.028851	0.046125 0.010816	0.069318 -0.053318	0.278001 -0.004385

end of do-file