# Find a suitable location to open a restaurant in Toronto

Abhishek Deb April 2020

# Introduction

- As the population is constantly increasing, the requirement of Different services are also increasing. Hence, Opening a Restaurant or a chain of Restaurant is a very common business idea For any entrepreneur nowadays. The Success and profit of the restaurant are dependent on several factors like locality, type, services etc. One of the very first problems is to find a suitable locality for the new Restaurant as location plays a big role in the success of Restaurant.
- The goal of this project is to provide the answer to the business question "In Toronto if an entrepreneur wants to open a new restaurant, which neighbourhood/neighbourhoods will be suitable for this?

## Data acquisition

- In this project, we have used the below data to find the similar Neighbourhood.
  - i. Different neighbourhood information of Toronto City from The official website for the City of Toronto (www.toronto.ca).
  - ii. Latitude and Longitude of all neighbourhoods using Geocoder.
  - iii. Different venue details based on all neighbourhoods using Foursquare API

## Data Cleaning and Modification

- A. Unwanted observations and missing data removal.
- B. correcting Datatypes for calculation

| object |
|--------|
| object |
| ohiect |
|        |

| df.dtypes                   |         |
|-----------------------------|---------|
| Neighbourhood_Name          | object  |
| Population_2016             | int64   |
| Population_Change_2011_2016 | float64 |
| Population_density          | int64   |
| Children                    | int64   |
| Youth                       | int64   |
| Working_Age                 | int64   |
| Pre_retirement              | int64   |
| Seniors                     | int64   |
| Older_Seniors               | int64   |
| Family_2_persons            | int64   |
| Family_3_persons            | int64   |
| Family_4_persons            | int64   |

C. Merging related columns

## **Exploratory Data Analysis**

We have plotted data in maps to show the distribution of restaurant and other venues



## Feature Selection

- It has observed in machine learning that if we use important features instead of all features, the machine learning algorithm's output is better.
  - i. Filtering population related data
  - ii. Filtering Venue related data

#### Final selected features:

```
['Living_alone', 'Population_density', 'Arcade', 'Art Gallery', 'Arts & Crafts Store', 'BBQ Joint', 'Bagel Shop', 'Bakery', 'Bank', 'Bar', 'Beer Bar', 'Bookstore', 'Boutique', 'Breakfast Spot', 'Bubble Tea Shop', 'Burger Joint', 'Café', 'Chiropractor', 'Cocktail Bar', 'Coffee Shop', 'Deli / Bodega', 'Dessert Shop', 'Diner', 'Event Space', 'Farmers Market', 'Food & Drink Shop', 'Fried Chicken Joint', 'Frozen Yogurt Shop', 'Gastropub', 'Grocery Store', 'Gym', 'Hobby Shop', 'Hospital', 'Ice Cream Shop', 'Indie Movie Theater', 'Jazz Club', 'Jewelry Store', 'Juice Bar', 'Karaoke Bar', 'Lounge', 'Miscellaneous Shop', 'Noodle Hous e', 'Pet Store', 'Pizza Place', 'Pub', 'Record Shop', 'Restaurant', 'Rock Club', 'Sandwich Place', 'Snack Place', 'Sports Bar', 'Supermarket', 'Taco Place', 'Tea Room', 'Wine Bar', 'Yoga Studio']
```

# Scaling

Feature scaling in ML algorithms is one of the most important steps, which use to affect the output of the algorithm. It helps to normalise the data within a particular range. we have used StandardScaler from SKlearn library to perform feature scaling on our data before feeding it to ML algorithm.

|   | Living_alone | Population_density | Arcade    | Art<br>Gallery | Arts &<br>Crafts<br>Store | BBQ<br>Joint | Bagel<br>Shop | Bakery    | Bank      | Bar       | <br>Record<br>Shop | Rock<br>Club | Sandwich<br>Place |
|---|--------------|--------------------|-----------|----------------|---------------------------|--------------|---------------|-----------|-----------|-----------|--------------------|--------------|-------------------|
| 0 | -0.592582    | -0.497702          | -0.094916 | -0.204598      | -0.246183                 | -0.330017    | -0.156174     | 1.701691  | 2.370289  | -0.378658 | <br>-0.127804      | -0.094916    | 0.848440          |
| 1 | -0.460640    | -0.668695          | -0.094916 | -0.204598      | -0.246183                 | -0.330017    | -0.156174     | -0.580817 | -0.595883 | -0.378658 | <br>-0.127804      | -0.094916    | 0.848440          |
| 2 | -0.714751    | -0.783136          | -0.094916 | -0.204598      | -0.246183                 | -0.330017    | -0.156174     | -0.580817 | -0.595883 | -0.378658 | <br>-0.127804      | -0.094916    | 0.848440          |
| 3 | 2.596013     | 0.827061           | -0.094916 | -0.204598      | -0.246183                 | -0.330017    | -0.156174     | 0.560437  | -0.595883 | -0.378658 | <br>-0.127804      | -0.094916    | 0.848440          |
| 4 | 0.875882     | -0.718178          | -0.094916 | -0.204598      | -0.246183                 | -0.330017    | -0.156174     | -0.580817 | -0.595883 | -0.378658 | <br>-0.127804      | -0.094916    | -0.684226         |

# Applying ML Algorithm:

- We have used
- K-means clustering
- here.

Cluster Labels
0 85 2.35
1 1 21.0
2 1 24.0
3 2 11.0
4 23 12.43

(matplotlib.axes.\_subplots.AxesSubplot at 0x2cebc277f08>



Some details about Cllusters

## Cluster 4

Number of restaurent in each neighbourhood of cluster 4

|     | Neighbourhood_Name           | Restaurant |
|-----|------------------------------|------------|
| 107 | Wychwood                     | 23         |
| 109 | Yonge-St.Clair               | 20         |
| 108 | Yonge-Eglinton               | 19         |
| 30  | Dufferin Grove               | 19         |
| 105 | Willowdale East              | 15         |
| 60  | Lawrence Park South          | 14         |
| 51  | Junction Area                | 14         |
| 54  | Kensington-Chinatown         | 14         |
| 70  | Moss Park                    | 13         |
| 3   | Annex                        | 13         |
| 18  | Cabbagetown South            | 13         |
| 75  | Niagara                      | 12         |
| 100 | University                   | 12         |
| 56  | Kingsway South               | 11         |
| 6   | Bay Street Corridor          | 11         |
| 85  | Roncesvalles                 | 10         |
| 41  | Greenwood                    | 10         |
| 72  | Mount Pleasant West          | 10         |
| 88  | Runnymede-Bloor West Village | 8          |
| 22  | Church-Yonge Corridor        | 8          |
| 97  | The Beaches                  | 7          |
| 76  | North St. James Town         | 5          |
| 102 | West Hill                    | 5          |
| 102 | ME2C LITI                    | 5          |

## Recommendations:

In cluster number 4 neighbourhoods with less than 10 restaurants are: 'Runnymede-Bloor West Village', 'Church-Yonge Corridor', 'The Beaches', 'North St. James Town' and 'West Hill' but the neighbourhood is similar to other neighbourhood which has a higher number of restaurants.



### Conclusion and future directions

- I have gone through the process of identifying the business problem. I have analyzed, collected and prepared to find a solution performing the machine learning (i.e. k-means clustering). In the end, I have provided recommendations to the entrepreneur based on the result.
- There are many factors that can be taken into consideration such as connectivity of the neighbourhood, rating of the existing venues, how much the neighbourhood is developing etc. Additionally, if we can categorize existing venues in a better way, it will affect the result as well. Future research can take into consideration these factors.