위성 이미지 분류 보고서

2022315965 문준원

1. 데이터 개요

위성 이미지 분류를 위한 EuroSAT 데이터셋을 활용한 프로젝트를 수행했습니다. 이 데이터셋은 다양한 지리적 특성을 포함하는 고해상도 위성 이미지로 구성되어 있으며, 총 27,000장의 이미지를 통해 10가지 서로 다른 지리 카테고리를 구분하고자 했습니다.

- 훈련용 데이터는 전체 이미지의 70%를 차지하여 모델의 학습에 중점을 둠
- 검증 세트는 20%로 구성되어 모델의 성능을 중간에 평가하고 최적화하는 데 활용
- 최종 테스트를 위한 데이터셋은 10%로 제한되어 모델의 일반화 성능을 객관적으로 평가

기술적 전처리 과정에서 모든 이미지는 64x64 픽셀 크기로 통일되었으며, 각 이미지는 RGB 컬러 채널 정보를 보존하여 풍부한 시각적 특징을 유지했습니다. 이를 통해 다양한 지리적 환경을 정확하게 식별하고 분류할 수도록 하였습니다.

2. 이미지 증강기법

이미지 증강을 통해 모델의 일반화 성능을 높이기 위해 여러 기법을 적용했습니다. 그러나 회색조 변환과 좌우 반전 등의 기법은 성능 저하를 일으킨 것을 실험적으로 확인하여 제외하였습니다.

- **1.** 회전: 이미지를 90도 회전시켜 다양한 시점의 데이터를 학습 image = tf.image.rot90(image)
- 2. 밝기 조정: `max_delta=0.1`로 이미지를 랜덤하게 밝기를 조정하여 조명 변화에 대응.

image = tf.image.random brightness(image, max delta=0.1)

- 3. 랜덤 크롭: 이미지를 랜덤하게 자르기 위해 `random_crop`을 사용, 크롭된 영역을 원본 크기(64x64)로 재조정하여 공간적 다양성을 추가.
- 4. 정규화: 픽셀 값을 [0, 1]로 스케일링하여 학습 안정화. 이 모든 증강은 `AUTOTUNE` 설정을 사용하여 효율적으로 로드 및 전처리.

3. 모델

모델 구조는 4개의 컨볼루션 블록(conv_block)과 Fully Connected 레이어로 구성됩니다. 각 컨볼루션 블록은 Conv2D \rightarrow BatchNormalization \rightarrow ReLU \rightarrow MaxPooling2D 순으로 구성되어 있으며, 각 블록의 필터 수는 $64 \rightarrow 128 \rightarrow 256 \rightarrow 512$ 로 점차적으로 증가합니다.

이러한 구조는 모델이 점점 더 복잡한 특징을 학습할 수 있도록 도왔습니다.

최종적으로 GlobalAveragePooling2D를 사용하여 피처맵을 평균화하고, 이후 Fully Connected 레이어와 연결하여 최종적으로 10개의 클래스를 분류합니다. 출력 레이어에서는 Softmax 활성화함수를 사용하여 각 클래스에 대한 확률 분포를 반환합니다.

모델 구조 변경 이유

모델을 conv_block 함수를 사용하여 모듈화한 이유는 코드의 재사용성과 가독성을 높이고, 모델의 확장성을 증가시키기 위해서였습니다. 이전 모델은 각 Conv2D와 MaxPooling2D가 고정된 방식으로 연결되어 있었고, 코드의 중복이 많았습니다. conv_block 함수는 컨볼루션 레이어와 배치 정규화(Batch Normalization), ReLU 활성화 함수, 맥스 풀링을 포함하여 동일한 작업을 반복할 수 있도록 만들었습니다.

변경된 모델 구조:

Model: "sequential_12"

Layer (type)	Output Shape	Param #
sequential_8 (Sequential)	(None, 63, 63, 64)	2,048
sequential_9 (Sequential)	(None, 62, 62, 128)	74,368
sequential_10 (Sequential)	(None, 61, 61, 256)	296,192
sequential_11 (Sequential)	(None, 60, 60, 512)	1,182,208
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 512)	Ø
dense_9 (Dense)	(None, 128)	65,664
dropout_3 (Dropout)	(None, 128)	0
dense_10 (Dense)	(None, 64)	8,256
dropout_4 (Dropout)	(None, 64)	0
dense_11 (Dense)	(None, 10)	650

Total params: 1,629,386 (6.22 MB)
Trainable params: 1,627,466 (6.21 MB)
Non-trainable params: 1,920 (7.50 KB)

모델 구조 설명

- 1. Sequential Layers (컨볼루션 블록)
 - sequential_8 (출력 크기: (None, 63, 63, 64)): 첫 번째 컨볼루션 블록으로, 필터 64개를 사용하며 Conv2D,
 BatchNormalization, ReLU, MaxPooling2D로 구성됩니다.
 - o sequential_9 (출력 크기: (None, 62, 62, 128)): 두 번째 컨볼루션 블록으로, 필터 128개를 사용합니다.
 - o sequential_10 (출력 크기: (None, 61, 61, 256)): 세 번째 컨볼루션 블록으로, 필터 256개를 사용합니다.
 - o sequential_11 (출력 크기: (None, 60, 60, 512)): 네 번째 컨볼루션 블록으로, 필터 512개를 사용합니다.

2. Global Average Pooling

global_average_pooling2d_1 (출력 크기: (None, 512)):
 피처맵의 평균값을 구하여 차원을 줄이고, 후속의 Dense
 레이어와 연결됩니다. 이는 모델이 더 효율적으로 학습할 수
 있도록 돕습니다.

3. Fully Connected Layers

- dense_9 (출력 크기: (None, 128)): 첫 번째 Fully Connected 레이어로, 128개의 유닛을 사용하며 ReLU 활성화 함수가 적용됩니다.
- o dropout_3 (드롭아웃 레이어): 드롭아웃 비율 0.3을 사용하여 과적합을 방지합니다.

- dense_10 (출력 크기: (None, 64)): 두 번째 Fully Connected 레이어로, 64개의 유닛을 사용합니다.
- **dropout_4 (**드롭아웃 레이어**)**: 두 번째 드롭아웃 레이어로, 과적합 방지를 위해 사용됩니다.
- dense_11 (출력 크기: (None, 10)): 출력 레이어로, 10개의 클래스를 분류하기 위해 Softmax 활성화 함수가 사용됩니다.

모델 파라미터 분석

- 전체 파라미터 수: 1,629,386 (약 6.22 MB)
 - Trainable params: 1,627,466 (학습 가능한 파라미터, 6.21 MB)
 - o Non-trainable params: 1,920 (학습되지 않는 파라미터, 7.5 KB)

4. 최적화, 손실 함수

- 최적화 알고리즘: Adam Optimizer를 사용하여 가중치 업데이트.
- 손실 함수: Sparse Categorical Crossentropy를 사용하여 다중 클래스 분류를 최적화.
- 평가지표: 정확도(Accuracy)를 사용하여 성능 평가.

5. 스케줄러와 조기 종료

훈련을 안정화하고 과적합을 방지하기 위해 다음과 같은 콜백을 적용했습니다:

- 1. ReduceLROnPlateau: 3번의 에포크 동안 val_loss가 개선되지 않으면 학습률을 줄입니다
- 2. **EarlyStopping**: 검증 손실(val_loss)이 5번 연속 개선되지 않으면 훈련 종료.
- 3. **ModelCheckpoint**: 가장 낮은 val_loss를 기록한 모델을 .keras 파일로 저장.

6. 학습 파라미터들

● 배치 크기: 32,64 실험

● 에포크 수: 10,30 실험

• 입력 이미지 크기: 64x64x3 (RGB)

• 학습률 초기값: Adam Optimizer의 기본값 (0.001)

7. 결과 분석

훈련 및 테스트 과정에서의 성능 향상을 관찰할 수 있었습니다. 아래는 각 단계별로 성능 변화의 분석입니다.

7.1 기본 코드(교수님이 제시해주신 코드)

처음 모델을 실행했을 때, 기본 코드로 테스트셋에서 다음과 같은 결과를 얻었습니다:

● 테스트셋 정확도: 0.7589

● 테스트셋 손실: 1.5564

7.2 콜백 추가 (ReduceLROnPlateau, EarlyStopping, ModelCheckpoint)

훈련 안정화와 과적합 방지를 위해 ReduceLROnPlateau, EarlyStopping, 그리고 ModelCheckpoint를 추가하여 모델을 개선했습니다. 그 결과, 테스트셋 정확도와 손실은 다음과 같이 향상되었습니다:

● 최종 테스트 정확도: 0.7941

● 최종 테스트 손실: 1.4272

이 추가적인 콜백 설정은 학습률 감소와 조기 종료 기능을 통해 모델의학습을 최적화하고, 과적합을 방지하여 성능을 더욱 향상시킨 것으로 분석됩니다.

7.3 이미지 증강 기법 추가 (밝기 조정)

이미지 증강 기법으로 밝기 조정을 추가했더니, 테스트셋 정확도는 다음과 같이 추가로 상승했습니다:

● 최종 테스트 정확도: 0.8081

● 최종 테스트 손실: 0.6638

밝기 조정은 조명 변화에 대한 모델의 강건성을 높여줬으며, 데이터 다양성을 증가시켜 더 나은 성능을 도출할 수 있었습니다.

7.4 모델 구조의 변경

모델 구조 변경의 핵심은 컨볼루션 블록의 모듈화와 블록마다 증가하는 필터 수를 사용한 것입니다. 이를 통해 모델의 성능을 향상시키고, 과적합을 방지할 수 있었습니다.

```
Epoch 23/30
591/591 ---
                                                                                                  Os 94ms/step - accuracy: 0.9319 - loss: 0.2159
 Epoch 23: val loss did not improve from 0.26648
 591/591
                                                                                                - 61s 103ms/step - accuracy: 0.9319 - loss: 0.2159 - val accuracy: 0.8670 - val loss: 0.4608 - learning rate: 1.2500e-04
            24/30
591/591 — 0s 94ms/step - accuracy: 0.9313 - loss: 0.2201 Epoch 24: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
                                                                                                - 61s 103ms/step - accuracy: 0.9313 - Ioss: 0.2201 - val_accuracy: 0.8804 - val_loss: 0.3847 - learning_rate: 1.2500e-04
 Epoch 25/30
591/591 -
                                                                                                  0s 94ms/step - accuracy: 0.9332 - loss: 0.2078
       ch 25: val_loss improved from 0.26648 to 0.26372, saving model to best_model.keras

61s 103ms/step - accuracy: 0.9332 - loss: 0.2078 - val_accuracy: 0.9113 - val_loss: 0.2637 - learning_rate: 6.2500e-05
 591/591
Epoch 26/30
591/591
 | Specific 
       ch 27/30
 591/591
                                                                                                 - Os 95ms/step - accuracy: 0.9357 - loss: 0.2008
                                                                                                 61s 103ms/step - accuracy: 0.9357 - Toss: 0.2008 - val_accuracy: 0.8993 - val_Toss: 0.2978 - Tearning_rate: 6.2500e-05
Epoch 28/30
591/591
 Enoch 29/30
Epoch 29: val_loss did not improve from 0.21627 591/591
                                                                                                  61s 103ms/step - accuracy: 0.9382 - loss: 0.1943 - val_accuracy: 0.8713 - val_loss: 0.4231 - learning_rate: 6.2500e-05
 Epoch 30/30
 591/591
                                                                                                  Os 94ms/step - accuracy: 0.9392 - loss: 0.1915
            30: val_loss did not improve from 0.21627
 591/591
                                                                                                 61s 103ms/step - accuracy: 0.9392 - Toss: 0.1915 - val_accuracy: 0.9165 - val_Toss: 0.2519 - Tearning_rate: 6.2500e-05
Restoring model weights from the end of the best epoch: 28
 1 loss, accuracy = model.evaluate(test)
   2
   3
```

● 최종 테스트 정확도: 0.9312

● 최종 테스트 손실: 0.2294

최종적으로, 모델은 약 **168%**의 정확도 향상과 함께 손실을 대폭 줄였습니다. 이는 구조 변경, 이미지 증강 기법 추가, 그리고 콜백 설정을 통해 모델 성능을 효율적으로 개선했기 때문입니다.

8. 느낀점 및 참고사항

본 프로젝트를 통해 다음을 배웠습니다:

 데이터 증강과 정규화가 모델의 일반화 성능을 향상시키는 데 효과적임을 확인.

사전 학습된 모델을 사용하면 더 높은 정확도를 얻을 수 있다는 점을 알게 되었습니다. 특히, 논문에서 ResNet 모델을 사용하면 정확도가 98%까지 상승한다는 것을 확인했지만, 기본 모델 구조 변경에 더욱 신경을 써서 정확도 상승을 목표로 실험을 진행했습니다. 여러 실험을 통해 가능한 한 다양한 실험적인 결과를 확인하려고 노력했습니다.

9. 참고자료 및 문헌

- 1. TensorFlow 공식 문서: https://www.tensorflow.org/
- 2. EuroSAT 데이터셋: https://knowyourdata-tfds.withgoogle.com/
- 3. Keras API 문서: https://keras.io/api/
- Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study, December 2021, Sensors 21(23):8083, DOI: 10.3390/s21238083, License: CC BY 4.0

- 5. IMPROVING LULC CLASSIFICATION FROM SATELLITE
 IMAGERY USING DEEP LEARNING EUROSAT DATASET
- 6. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
- 7. ChatGPT (OpenAI). Available at: https://openai.com/chatgpt