Semantic Furniture Feature Extraction

by **decorAID**

Semantic Furniture Feature Extraction

Find furnitures to realise your dream home

Click on furnitures in your image to view similar furnitures.

Breakdown of problem

How to search for similar furnitures?

Clustering & feature extraction

Data collection

Categories

Sofas	Chairs	Tables
2 Seaters	Dining Chairs	Dining Tables
3 Seaters	Office Chairs	Coffee Tables
4 Seaters & Up	Bar Stools	Side Tables
L-Shape Sofas	Dining Benches	Bedside Tables
Sofa Beds	Benches	Study Desks
Genuine Leather Sofas	Stools & Ottomans	Console Tables
Recliners	Bean Bags & Poufs	Outdoor Tables
Armchairs	Outdoor Dining Sets	Dressing Tables
Lounge Chairs	All Chairs	Bar Tables
Sofa Sets		Office Tables
Outdoor Sofas & Sets	Storage	Dining Table Sets
All Sofas	Wardrobes	
	TV Consoles	
Beds	Storage Cabinets	
Upholstered Beds	Bookcases & Shelves	
Storage Beds	Sideboards & High Boards	
Bunk Beds	Shoe Racks & Cabinets	
Metal Bed Frames	Kitchen Cabinets & Trolleys	
Wooden Bed Frames	Chest of Drawers	
Trundle Beds	Office Cabinets	
Bed & Mattress Packages	Outdoor Storage Cabinets	
Bedroom Sets		
Mattresses		

Product Page

Iteration 1: issues

Iteration 2

Manual grouping of clusters

- Group based on Form,
 Pattern and material
- Consistent interpretation of considerations
- Forms a solid ground truth

Splitting of dataset

Generation of triplets

Evaluation Intuition

- Given an image, we want to measure if it is clustered among other products of the same group
- We know the trained model has some baseline understanding of the training data and has clustered them
- We can use the training data to form cluster centroids
- Given an evaluation image, we can then predict a product's group by its nearest cluster centroid

Getting centroids

Getting predicted group

Precision score

- With the predicted and true group labels, we calculated the F1, precision and recall score
- Needed to choose a metric as a measure of success

To improve user experience:

Model must recommend only relevant furniture items

Reduce number of false positives

Precision

Architectural & Washing &

Reducing training set for hyperparameter tuning

Limit by n

- Keep hyperparameter tuning relevant through a reduced training set
- Keep a high development velocity
- Same triplets generation script with a smaller **n**

Anchor, Positive Negative

Overview of hyperparameter tuning

Choosing the optimal batch size

- Batch size determines our training time and computing resource consumption
- Shortest training time would give us quicker iteration cycles

Batch sizes tested:

32, 64, 128, 256, 512, 1024

Optimal batch size:

512

Tuning architecture and learning rate

5 epochs Triplet loss margin of 1.0 Batch size of 512 Constant learning rate

Learning rates:

0.00001, 0.000001, 0.0000001

une

В

C

- With over 700 groups, more layers might be needed
- Reduced representation dimensionality in smaller steps
- LeakyReLU may help in gaining more diverse feature representations

Architecture	Learning rate	Average Loss	Precision
Baseline	0.000001	0.089	0.52
В	0.0000001	0.714	0.55
С	0.00001	0.030	0.55

Tuning architecture and learning rate

Architecture	Learning rate	Average Loss	Precision
Baseline	0.000001	0.089	0.52
В	0.000001	0.714	0.55
С	0.00001	0.030	0.55

B has more room for improvement!

Triplet loss margin

An arbitrary range of triplet loss margin: **0.5**, **1.0**, **1.5**, **2.0**, **2.5**, **3.0**

	Average Loss	Precision
0.5	0.273	0.40
1.0	0.714	0.55
1.5	1.232	0.43
2.0	1.731	0.34
2.5	2.270	0.42
3.0	2.701	0.43

Final architecture & Hyperparameters

Batch size: 512

Triplet loss margin: 1.0

Constant Learning rate: 0.000001

Training Results

Batch size: 512

Triplet loss margin: 1.0

Learning rate: 0.000001

Constant learning rate

Epochs: 5, 10, 15, 20

	Precision
BLIP Only	0.46

Epochs	Average Loss	Precision
5	0.194	0.39
10	0.118	0.43
15	0.087	0.41
20	0.069	0.42

Improving the final model

With dropout

Epochs	Average Loss	Precision
5	0.2762	0.43
10	0.1865	0.36
15	0.08678	0.41
20	0.0688	0.40

With dropout (with lower LR)

Epochs	Average Loss	Precision
5	0.409	0.45
10	0.280	0.37

10 epochs

Model still converges and overfits early!

Potential improvements

Data preparation & preprocessing

Current

Future Improvements

Multiple angles (include existing images)

Blur

Dropout

Image augmentation

Potential improvements

Tuning architecture & hyperparameters

Grid Search or Random Search

UI Demo