

MT7986 Preamble Puncturing Application Note

Document History

Version	Date	Description	Note
1.0	2021.09.23	Initial version	

Preamble Puncturing

- Allow an 802.11ax AP to transmit a "punctured" 80/160 MHZ channel if some of the secondary channels are already in use by nearby legacy radio
- Preamble puncturing is only for MU-OFDMA and BW 80/160MHz
- Only one 20MHz sub-channel can be punctured @BW80MHz

Preamble Puncturing

BW160: <= 3 x 20MHz sub-channels can be punctured @sec_80</p>

HE PHY Capability

Punctured Preamble RX will be specified in HE PHY Capabilities
 Information field

Subfield	Definition	Encoding
Punctured Preamble Rx	B0 indicates support for the reception of an 80 MHz preamble where the secondary 20 MHz subchannel is punctured.	B0 is set to 0 if not supported. B0 set to 1 if supported.
		B1 set to 0 if not supported. B1 set
	B1 indicates support for the reception of an 80 MHz preamble where one of the two 20 MHz subchannels in	to 1 if supported.
	the secondary 40 MHz is punctured.	B2 set to 0 if not supported. B2 set to 1 if supported.
	B2 indicates support for the reception of a 160 MHz or	
	80+80 MHz preamble where in the primary 80 MHz of the preamble only the secondary 20 MHz is punctured.	B3 set to 0 if not supported. B3 set to 1 if supported.
	B3 indicates support for the reception of a 160 MHz or 80+80 MHz preamble where in the primary 80 MHz of the preamble, the primary 40 MHz is present.	

RX Clear Channel Assessment - Energy Detect (CCA-ED)

According to CCA-ED status to do preamble puncturing

RX Clear Channel Assessment - Energy Detect (CCA-ED)

Transmit spectral power mask

Panther Preamble Puncturing Environment Setup

Cable mode, 5G BW160, 2ss, 8STAs

MediaTek Proprietary and Confidential. © 2021 MediaTek Inc. All rights reserved.

Panther Preamble Puncturing Result

Preamble Puncturing		CH36 (P)	CH40	CH44	CH48	CH52	CH56	CH60	CH64
Panthe	r								
Case	Test item								
	0 No OBSS								
	1 Punc_sec20		QA tool1						
	2 Punc_sec20		QA tool1			QA	tool2		
	3 Punc_sec40			QA	tool2				
	4 Punc_sec40			QA	tool1			QA	tool2
	5 Punc_sec40				QA tool1				

Test case	SU	RU+PP	RU+PP gain
0	1389	1512	9%
1	705	1095	55%
	TOTAL AIRTIME_IN_UNIT: 50.07%	TOTAL AIRTIME_IN_UNIT: 81.17%	
2	282	525	86%
	TOTAL AIRTIME_IN_UNIT: 20.55%	TOTAL AIRTIME_IN_UNIT: 46.56%	
3	373	569	53%
	TOTAL AIRTIME_IN_UNIT: 40.33%	TOTAL AIRTIME_IN_UNIT: 74.72%	
4	560	766	37%
	TOTAL AIRTIME_IN_UNIT: 41,97%	TOTAL AIRTIME_IN_UNIT: 73,86%	
5	1092	1481	36%
	TOTAL AIRTIME_IN_UNIT: 77.96%	TOTAL AIRTIME_IN_UNIT: 96.56%	

Static Check

- CFG_SUPPORT_FALCON_PP=y
- Key parameters in 5G profile
 - PPEnable=1 (default value is set to FALSE)
 - HT_BW=1
 - VHT_BW=1/2
- PP iwpriv cmd
 - Enable PP: iwpriv rax0 set ppcapctrl=0-1-0;
 - Disable PP: iwpriv rax0 set ppcapctrl=0-0-0;

PP SOP

- 1. Check fixed RU / SU have similar throughput performance
 - if RU has bad mcs rate/PER, location between AP/STAs should be adjusted

#Fix 4 * 242 tone plan iwpriv rax0 set set_muru_manual_config=dl_comm_bw:2; iwpriv rax0 set set_muru_manual_config=dl_comm_user_cnt:4; iwpriv rax0 set set_muru_manual_config=dl_comm_toneplan:192:192:192:192:0; iwpriv rax0 set set_muru_manual_config=dl_user_ru_alloc:0:61:0:62:0:63:0:64; iwpriv rax0 set set_muru_manual_config=update;

- 2. rssi of OBSS should be closed to -60 dBm to MyBSS AP
- 3. When PP is enabled, CCA_status=0x7 in TX cmd report should be more than 70%

```
# cancel fix ru cmd
iwpriv rax0 set set_muru_manual_config=dl_init;
iwpriv rax0 set set_muru_manual_config=update;
# enable DL OFDMA
iwpriv rax0 set ppcapctrl=0-1-0;
# enable PP
iwpriv rax0 set ppcapctrl=0-1-0;
```


Note

- Other conditions to execute PP
 - DL OFMDA is supported by STA
 - RU num >=4 @BW80
 - RU num >=8 @BW160

MEDIATEK

everyday genius