Probabilidad Examen Tarea 4

Rubén Pérez Palacios Lic. Computación Matemática Profesor: Dr. Juan Carlos Pardo Millán

25 de noviembre de 2023

1. Sea $(X_n)_{n\geq 1}$ una susesión de v.a. que converge en probabilidad a la v.a. X. Demuestre que si para cada $n\geq 1, X_n\leq X_{n+1}$ casi seguramente, entonces la sucesión converge casi seguramente.

Demostración. Sea $(X_n)_{n\geq 1}$ una susesión de v.a. que

$$X_n \xrightarrow[n \to \infty]{P} X$$
,

y además existe un Ω' tal que

$$\mathbb{P}\left[\Omega'\right] = 1 \quad \text{y} \quad \omega \in \Omega', n \geq 1 \Longrightarrow X_n(\omega) \leq X_{n+1}(\omega).$$

Como toda sucesión que converge en probabilidad tiene una subsucesión que converge casi seguramente al mismo limite tenemos que existe una subsucesión $(X_{n_k})_{k>1}$ tal que

$$X_{n_k} \xrightarrow[k \to \infty]{c.s.} X,$$

sea Ω'' el conjunto con probabilidad 1 donde X_n converge a X.

Recordemos que que toda sucesión monotona de números reales con una subsucesión convergente implica que la sucesión converge al mismo limite. Sea $\Omega = \Omega' \cap \Omega''$ y $\omega \in \Omega$ entonces la sucesión de números reales $(X_n)_{n \geq 1}$ es no decreciente, y debido a que la subsucesión

$$X_{n_k} \xrightarrow[k\to\infty]{} X(\omega),$$

entonces

$$X_n \xrightarrow[n\to\infty]{} X(\omega).$$

Por último como Ω' y Ω'' tienen probabilidad 1 entonces $1 = \mathbb{P}[\Omega'] \leq \mathbb{P}[\Omega' \cup \Omega''] \leq 1$, por lo tanto

$$\mathbb{P}\left[\Omega\right] = \mathbb{P}\left[\Omega' \cap \Omega''\right] = \mathbb{P}\left[\Omega'\right] + \mathbb{P}\left[\Omega'\right] - \mathbb{P}\left[\Omega' \cup \Omega''\right] = 1 + 1 - 1 = 1.$$

Finalmente como para todo $\omega \in \Omega$ la sucesión $X_n(\omega)$ converge a $X(\omega)$ y $\mathbb{P}[\Omega] = 1$ concluimos que

$$X_n \xrightarrow{c.s} X.$$

2. Sea $(X_n)_{n\geq 1}$ una susesión de v.a. que converge en probabilidad a la v.a. X. y supongamos que f es una función uniformemente continua. Demuestre que $(f(X_n))_{n\geq 1}$ converge en probabilidad.

Demostraci'on. Sea $(X_n)_{n\geq 1}$ una susesi\'on de v.a. que converge en probabilidad a la v.a. X y sea f una funci\'on uniformemente continua. Entonces para todo $\varepsilon>0$ existe un $\delta>0$ tal que para todo $x,y\in\mathbb{R}$

$$|x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon,$$

por lo tanto

$$|x - y| > \varepsilon \Rightarrow |f(x) - f(y)| > \delta$$
,

Sea $\varepsilon>0$ y $\delta>0$ como en la definición de uniforme continuidad, para todo $n\geq 1$ se cumple que

$$\mathbb{P}\left[\left|f\left(X_{n}\right)-f\left(X\right)\right|<\varepsilon\right]\leq\mathbb{P}\left[\left|X_{n}-X\right|<\delta\right].$$

Como $(X_n)_{n\geq 1}$ converge en probabilidad a X entonces para todo $\delta>0$ tenemos que

$$\lim_{n\to\infty} \mathbb{P}\left[|X_n - X| < \delta\right] = 1.$$

Por lo tanto para todo $\varepsilon > 0$ tenemos que

$$\lim_{n\to\infty} \mathbb{P}\left[|f(X_n) - f(X)| < \varepsilon\right] = 1.$$

Por lo tanto $(f(X_n))_{n\geq 1}$ converge en probabilidad a f(X).