Automatic offline spike sorting using SpikeCluster Minggui Chen, Ph.D.

minggui.chen@gmail.com

Offline sorting?

- ➤ multi-electrode array
- > signal quality
- manual sorting using Offline Sorter -- time-consuming
- customized codes -- which algorithm?
- > isolation quality -- 'well-isolated' doesn't work nowadays

Offline sorting?

- multi-electrode array
- > signal quality
- manual sorting using Offline Sorter -- time-consuming
- > customized codes -- which algorithm?
- isolation quality -- 'well-isolated' doesn't work nowadays

An integrated toolbox to

- 1) automatically sort action potentials,
- 2) quantify the isolation quality.

SpikeCluster

A similar GUI to WAVE_CLUS by Quiroga, R.Q.

But SpikeCluster has...

Aims to automate spike sorting and qualification

Overall scheme of SpikeCluster

Raw signal

Filtering

Spike detection

Feature extraction

Clustering

Template matching

Segment matching

Isolation quality

Overall scheme of SpikeCluster

Raw signal Filtering Spike detection Feature extraction Clustering ≥ 2 clusters Template matching Segment matching Isolation quality

Overall scheme of SpikeCluster

Time for demos

Waveform < 27x1 cell				
	1			
1	<62x48 single>			
2	<56x48 single>			
3	<63x48 single>	<u> </u>		
4	<69x48 single>	#		
5	<82x48 single>			

Waveform × Waveform{1, 1}					
Waveform{1, 1} <62x48 single> ■					
	1	2			
1	-3.5994	0.6929			
2	-4.8965	-3.6488			
3	16.6380	12.9574	5		
4	0.5093	-0.6713	wave		
5	-13.4670	-9.9565	_		
6	-17.7466	-9.0644	Q		
7	-17.5532	-10.0999	orms		
8	-8.8918	-8.2720	S		
9	-2.9978	3.2478			
10	2.5089	-0.6256			

{}	Unit <27x1 ce	<u> </u> >
	1	
1	<62x1 uint8>	
2	<56x1 uint8>	
3	<63x1 uint8>	<u>a</u>
4	<69x1 uint8>	#
5	<82x1 uint8>	

10

Waveform × Waveform{1, 1}					
☐ Waveform{1, 1} < 62x48 single>					
	1	2			
1	-3.5994	0.6929			
2	-4.8965	-3.6488			
3	16.6380	12.9574	8		
4	0.5093	-0.6713	wave		
5	-13.4670	-9.9565	<u>@</u>		
6	-17.7466	-9.0644	Q		
7	-17.5532	-10.0999	orms		
8	-8.8918	-8.2720	S		
9	-2.9978	3.2478			
10	2.5089	-0.6256			

10

Data format for unfiltered LFP (*.mat)

SpikeBasic

₩aveformFs

Field A

SpikeBasic <1x1 struct</p>

Data format for unfiltered LFP (*.mat)

SpikeBasic

→ WaveformFs

Field A

SpikeBasic <1x1 struct</p>

Automated analysis

- individual *.mat file -- open the mat file directly
- ➤ batch mat files -- open *Batch.m directly

```
% Edit file paths here *****************************
FilePath = {
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData\Elec12LFP.mat';
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData\Elec12LFP.mat';
};
```

batch all channels in multiple files -- open *FileBatch.m directly

```
% Edit file paths & electrodes here ********************************
FilePath = {
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData.sss';
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData.sss';
};
ElecNum = {
    [12 12];
    [12 12];
};
```

> called as a function

```
% Edit file paths here *******************************
ArgIn.FileType = 3;
ArgIn.FilePath = {
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData\Elec12Waveform.mat';
    'E:\Research\Program\Included\NSD\SpikeCluster\SampleData\Elec12Waveform.mat';
    };
SpikeCluster(ArgIn);
```