A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EL	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Let pbea prime number. A p-group is any group whose order is a power of p. It will be shown here that if $|G| = p^k$ then G has a normal subgroup of order p^m for every m between 1 and k. The proof is by induction on |G|; we therefore assume our result is true for all /^-groups smaller than G. Prove parts 1 and 2:

Explain why it may be assumed that $G/\langle a \rangle$ has a normal subgroup of order p^{m-1} .

Step-by-step solution

Step 1 of 3

Consider a group G whose order is a power of p. That is, G is a p-group and

$$|G| = p^k$$

for some integer k. With the help of mathematical induction on the order of group G, it can be prove that G has a normal subgroup of order p^m for every 1 < m < k.

Consider the induction hypothesis that this statement is true for all *p*-groups whose order is less than *G*.

Objective is to describe the reason behind the assumption that $G/\langle a \rangle$ has a normal subgroup of order p^{m-1} .

Comment

Step 2 of 3

Before going to prove this statement consider the following results:

- (1) There exists an element $a \in C$ (center of G) such that ord(a) = p.
- (2) $\langle a \rangle$ is a normal subgroup of G.

Note that, the elements of subgroup generated by a will be some powers of a. That is,

$$\langle a \rangle = \{a^k : k \in Z\}$$

Since order of a is p, therefore the elements generated by a also have the order as p. So, $|\langle a \rangle| = p$. Now, use the basic property to calculate the order of quotient group $G/\langle a \rangle$ as:

$$\left| \frac{G}{\langle a \rangle} \right| = \frac{|G|}{|\langle a \rangle|}$$

$$= \frac{p^k}{p}$$

$$= p^{k-1}$$

Since $p^{k-1} < p^k$, therefore by induction hypothesis it can be conclude that there exists a normal subgroup whose order can be p^{m-1} .

Comment

Step 3 of 3

Hence, it can be assume that $G/\langle a \rangle$ has a normal subgroup of order p^{m-1} .

Comment