

Computational Engineering

2022-01-21

BM40A0202 Foundations of Computer Science Olli-Pekka Hämäläinen

Exercise 5 (week 7): Machine language programming

Tasks (1 p/task)

- 1. Task in Moodle.
- 2. Suppose that the memory locations 100, 101, ..., 109 contain numbers 105, 106, ..., 114. What is the content of the accumulator (register) and memory locations after the following machine language instructions? In both parts, the initial state of the memory locations is the same.

(a)	LOAD	100	(b)	LOAD	109
	STORE	108		STORE	100
	ADD	101		LOAD	108
	STORE	109		STORE	101
				LOAD	107
				ADD	103
				STORE	104

3. Find out what the machine language program below does. "Run" the program step by step, and explain each step and the final contents of the memory locations.

101	LOAD	114
102	JUMPZERO	117
103	STORE	115
104	SUBTRACT	116
105	STORE	114
106	LOAD	114
107	JUMPZERO	117
108	${\tt MULTIPLY}$	115
109	STORE	115
110	LOAD	114
111	SUBTRACT	116
112	STORE	114
113	JUMP	106
114	5	
115	1	
116	1	

- 4. The factorial of n can be mathematically defined as $n! = n \cdot ... \cdot 2 \cdot 1$ or alternatively $n! = n \cdot (n-1)!$, 0! = 1.
 - (a) In symbolic machine language, present a program that computes the value of factorial iteratively.

E-mail: toni.kuronen@lut.fi

(b) Modify your machine language program so that the multiplication is implemented as a subroutine. Then present a calling program where you compute the value of the expression

$$nk = \frac{n!}{k!(n-k)!}$$

where n and k are integer constants, n > k.

5. In order to program a micro-programmable computer at a higher level language with instructions that are slightly more sophisticated than the hardware itself, an interpreter must be written for the computer and stored in the computer's microprogram memory.

Review the symbolic machine language instructions (11 of them) described in the lecture notes and describe the possible implementations of each instruction using the functions available in the micro-programmable computer. Describe at least one instruction (e.g. ADD M) in detail as a microprogram (control bits or symbolic microcode, annotated in both cases). For the other instructions, it is sufficient to justify whether the instruction is feasible and which functions of the micro-programmable computer can be used to implement the instruction.