MS529 - Lista de exercícios no. 2 — prof. Aurelio Oliveira (Problema do Caminho Mínimo)

1. Nas redes abaixo, encontre o caminho mínimo do nó 1 a cada um dos outros nós utilizando o algoritmo de Dijkstra. Verifique em quais redes o caminho mínimo encontrado forma uma árvore. Esta é a árvore geradora mínima da rede?

orig	gem	1	L	2	2	2		3	3	3	4	5
	tino	2 8	3	1	4	5		2	4	5	6	4
compr	imento	20 1	5	2	10	21	5	4	25	10	18	5 1
	0	rigem	1	1	1	1	2	3	3	4	4	
(b)		estino		2	3	4	5	2	5	3	5	
(0)		primen	to	2	2	3	5	4		1	0	
				1	1	2	2	3	4	5	5	1
(c)		rigem estino		2	3	3	4			4	6	
(-)	OA SECTION	primen	to	2	1	3	3			2	5	
	ori	gem			1	1	2	2	3	4	4	5
(d)	Programme and the second	tino	2	2	3	4	3	5	5	3	6	6
		imento	200	2	6	3	5	8	3	2	9	1

- Aplique o algoritmo de Dijkstra eficiente ao problema (1.c). A partir do vetor pred, construa os caminhos mínimos do nó 1 a cada um dos outros nós.
- 3. No problema (1.c), encontre o caminho máximo.
- 4. Nas redes seguintes, encontre o caminho mínimo (custos negativos). Identifique a árvore obtida na solução ótima.

	origem	1	1	2	2	2	3	3	4	5	5	5	6
(a)	destino	2	3	3	4	5	4	6	6	4	6	7	7
,	comprimento	3	10	4	7	1	-2	7	-6	2	9	15	6

	origem	1	1	2	2	3	3	4	5
(b)	destino	2	4	3	5	1	4	5	3
	comprimento	2	-4	2	4	5	3	7	-9

5. (caminho com menor número de arcos)

(a) Para o exercício (1a), formular o problema de determinar o caminho com menor número de arcos que conecta dois nós (por exemplo, 1 e m).

(b) Resolver este problema.

- (c) Formular este problema para uma rede orientada qualquer.
- 6. (caminho simétrico) O caminho mínimo de uma rede não orientada pode ser resolvido considerando uma rede orientada onde cada aresta {i; j} é substituída por dois arcos de mesmo comprimento: (i, j) e (j, i).

(a) Encontre o caminho mínimo do nó 1 a todos os outros nós na rede não

orientada abaixo:

"origon"	1	1	2	2	2	3	3	4	4	5
"origem" "destino"						4	-	5	6	6
comprimento	2	15	24	4	11	2	10	5	15	18

- (b) Encontre a Árvore Geradora Mínima usando um dos algoritmos estudados.
- 7. Considere uma rede com pelo menos um circuito negativo e o algoritmo de marcas modificado para encontrar o caminho mínimo. Este algoritmo identifica a existência de um ciclo negativo. Complete o algoritmo escrevendo um procedimento para encontrar quais são os arcos do ciclo.