

Automated Planting Solutions

CG Anjali (CB.EN.U4CSE20612) Dharshita R(CB.EN.U4CSE20615) Krisha Vardhni (CB.EN.U4CSE20633) Sneha Varsha M (CB.EN.U4CSE20659)

Faculty In-Charge: Ms. Nalinadevi Kadiresan

Introduction

- Designed to automate the process of watering plants based on environmental conditions.
- Incorporates sensors to measure soil moisture, water depth, temperature, and light intensity

Aim

- To create a sophisticated plant watering system that utilizes real-time sensor data to make informed decisions about watering plants.
- To automate the process by monitoring and analyzing environmental parameters
- To provide precise and timely watering, enabling optimal plant health and reducing water waste.

Method

Sensor Integration:

- Soil moisture sensor
- Depth sensor
- Temperature sensor
- Light intensity sensor

Cloud Connectivity:

 Utilizes MQTT protocol to securely transmit sensor data from the plant to AWS IoT Core.

Data Collection:

• Sensor data, along with timestamps, is collected and stored in DynamoDB.

Items returned (300)				C	Actions ▼	Create item
					< 1	> @ 53
	TS	▽	DepthLevel	LDRMeasurem	MoistureLevel	
	1685456937719		1507	2670	2885	1
	1685521995346		1679	2111	2439	o
	1685417875089		1443	1535	2359	o
	1685417568033		1395	1390	2368	О

Data Analytics:

- Analysis using AWS Sagemaker.
- EDA techniques are applied.
- Predictive analytics models developed to predict watering needs based on sensor readings.

Decision-Making and Automation:

- Intelligent algorithms to analyze the sensor data
- Make watering decisions based on predefined thresholds.

```
if ((soilMoistureValue > 2700) && (depthValue > 1350))
{
    digitalWrite(RELAY_PIN, LOW);
    motorState=1;
}
else
{
    digitalWrite(RELAY_PIN,HIGH);
    motorState=0;
}
```

User Notifications:

 AWS SNS to send notifications to users via email when the water level in the tank is insufficient for watering.

Working

Results

- Successfully automated and optimized the plant watering process based on sensor data.
- Analysis revealed a correlation between soil moisture and motor state and between water depth level and motor state
- Real-time data visualization on a web server allowed users to monitor plant conditions

- AWS SNS notifications alerted users when water levels were insufficient.
- The project's results demonstrate the system's effectiveness in promoting efficient water usage and healthy plant growth.