HAFTA 11

ALAN ETKİLİ TRANSİSTORLAR(FET)

ALAN ETKİLİ TRANSİSTORLAR (FET)

- ➤ Npn veya pnp olarak yapılan bipolar jonksiyonlu transistor (BJT) iki kutuplu bir elemandır.
- ➤BJT akım kontrollü bir transistordür.
- ➤ Alan etkili transistor (FET) ise tek kutuplu bir elemandır.
- ➤N-kanallı veya p-kanallı bir FET gerilim kontrollü bir transistordür.
- ➤ FET ler p-n jonksiyonuna sahip üç uçlu bir eleman olup ya jonksiyon FET (JFET) veya metal oksit yarıiletken FET (MOSFET) olarak üretilmektedir.

FET ile BJT nin karşılaştırılması:

- FET in gerilim direnci tipik olarak $100M\Omega$ gibi yüksek bir değer iken, BJT nin gerilim direnci tipik olarak $2k\Omega$ dur.
- FET in anahtar (veya kıyıcı) olarak kullanıldığında sapma gerilimi yoktur.
- FET ler radyasyona duyarsız, BJT ler duyarlıdır. (β radyasyondan çok etkilenir)
- >FET ler, BJT lerden daha az gürültülüdür.
- FET ler, BJT lere göre daha yüksek ısı kararlılığı sağlayacak şekilde çalıştırılabilir.
- ➤ FET ler BJT lerden daha küçüktür.

JFET in çalışması

N kanallı JFET, içine bir çift p-tipi bölgenin difüzyon yoluyla yerleştirilmiş olan n-tipi bir çubuk kullanılarak yapılmaktadır. p kanallı JFET ise bunun tam tersidir.

- ➤Şekil 1(a)'daki n-tipi eleman için kapı üzerindeki ok işareti, kapının (geçit) p-tipi, kanalın ise n-tipi, Şekil 1(b) deki p-tipi eleman içinse, kapının n-tipi, kanalın p-tipi olduğunu gösteren bir ok işareti vardır.
- ➤N-kanallı bir JFET de besleme gerilimi akaçtan kaynağa bir akımının akmasını sağlar. Bu akaç akımı p-tipi kapı ile çevrili kanaldan geçer.
- ➤ Kapı ile kaynak arasında besleme kaynağı ile bir gerilim oluşturulmuştur. Bu kapı kaynak geriliminin polaritesi, kapı-kaynak jonksiyonunu ters öngerilimleyeceğinden, kapıdan akım akmayacaktır. Kapı-kaynak geriliminin yaratacağı etki, kanal genişliğini azaltarak akaç-kaynak direncini artırıp daha az akaç akımı geçirmektir (Şekil 2).

Şekil 2.

Şekil 3'deki I_{DSS} akımı akaç-kaynak doyma akımı olup, V_{p} ise kısılma gerilimidir.

Şekil 3.

JFET in akaç-kaynak karakteristiği

(a) n-kanallı JFET için $V_{GS}=0\,V$ karakteristiği

(b) n-kanallı JFET için $\,V_{\rm GS} = -1\,V\,\,$ karakteristiği

Şekil 4. n-kanallı JFET için ve akaç-kaynak karakteristikleri

Şekil 5. n-kanallı JFET in tüm karakteristiği

Şekil 6. p-kanallı JFET in tüm karakteristiği

JFET in transfer karakteristiği

Şekil 7. n-kanallı JFET in transfer karakteristiği

Örnek: V_p (kısılma gerilimi) = -4 volt, I_{DSS} (akaç-kaynak doyma akımı) = 12 miliamper olan n-kanallı JFET'in akaç akımını, (a) $V_{GS} = 0 V$, (b) $V_{GS} = -1.2 V$ ve (c) $V_{GS} = -2 V$ kapı-kaynak gerilimleri için bulunuz.

(a)
$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 12 \, mA \times (1 - \frac{0 \, V}{-4 \, V})^2 = 12 \, mA$$

(b)
$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 12 \, mA \times (1 - \frac{-1.2 \, V}{-4 \, V})^2 = 5.88 \, mA$$

(c)
$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_D})^2 = 12 \, mA \times (1 - \frac{-2V}{-4V})^2 = 3 \, mA$$

JFET elemanının çalışmasını tanımlamak için kullanılan I_{DSS} ve V_p değerleri için üretici karakteristik özellik sayfalarındaki tipik değerler kullanılabilir veya bu değerler söz konusu JFET üzerinden ölçülebilir.

 I_{DSS} yi ölçmek için $V_{GS}=0$ yapılır ve I_{D} akımı doymaya erişene kadar V_{DD} artırılır ve akımı bir ampermetre ile I_{DSS} ölçülür. Buna ait devre şeması Şekil 8'de gösterilmiştir.

Şekil 8. $I_{\rm DSS}$ nin ölçülerek elde edilmesine ait devre

Kapı-kaynak gerilimi, akaç akımı sıfıra çok yakın olana kadar 0 volttan daha büyük negatif değerlere doğru ayarlanır. Akaç akımının 0 olmasını sağlayan minimum V_{GS} gerilimi V_p nin ölçülen değeridir. Buna ait devre şeması Şekil 9'da gösterilmiştir.

Şekil 9. V_p nin ölçülerek elde edilmesine ait devre

Kanal ayarlamalı MOSFET

Şekil 10. n-kanallı kanal ayarlamalı MOSFET in (a) Transfer (b) Akaç karakteristiği

Şekil 11. p-kanallı kanal ayarlamalı MOSFET in (a) Transfer (b) Akaç karakteristiği

Kanal oluşturmalı MOSFET

$$I_D = K(V_{GS} - V_T)^2$$

Burada K katsayısı elemanın yapısına ilişkin bir değer olup, V_T ise eşik gerilimidir. $V_{GS}=0$ iken $I_D=0$ dir.

Şekil 12. n-kanallı kanal oluşturmalı MOSFET in (a) Transfer karakteristiği (b) Akaç karakteristiği

FET öngerilimleme

Bir FET elemanının dc öngerilimlenmesi, istenilen bir akaç akımının akmasına yol açan bir kapı-kaynak geriliminin uygulanmasını gerektirir. Bir JFET için akaç akımı, doyma akımı I_{DSS} ile sınırlıdır. Kanal ayarlamalı bir MOSFET, I_{DSS} nin altında, üstünde veya ona eşit bir değerde öngerilimlenebilir. Kanal oluşturmalı bir MOSFET elemanının açılması için, eşik değerini aşan bir kapıkaynak gerilimiyle öngerilimlenmelidir. V_{GG} kaynağı, V_{GG} gerilimini R_G den ya da kapı ucundan hiç akım akmayacak şekilde ters öngerilim düzeyine çekmek için kullanılır. Bu durum Şekil 14'de verilmiştir

Şekil 14. FET in öngerilimlenmesi

Kapı-kaynak ters öngerilimli olduğu için, bu jonksiyondan akım akmaz. C kondansatöründen de dc akım geçmediğinden R_G direncinden de akım geçmeyecektir. Kaynak (V_{GG}) n-kanallı JFET i öngerilimleyecek V_{GS} gerilimi sağlar, fakat V_{GG} kaynağından akım geçmez.

$$I_{RG}=0$$
 olduğundan $V_{RG}=R_G.I_{RG}=0\,V$ olur.

Çevre denkleminden $V_{GS}+V_{GG}-R_GI_{RG}=0$ yazılır. $I_{RG}=0$ olduğundan, $V_{GS}=-V_{GG}$ olur.

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_D})^2$$
 $V_{RD} = I_D R_D$ $V_D = V_{DD} - I_D R_D$

JFET Akaç-kaynak karakteristiğine dayalı grafik analizi

Şekil 16. Bir JFET in akaç-kaynak karakteristiği

Bir JFET akaç-kaynak karakteristiği Şekil 16'daki gibi olsun. ($I_{DSS}=12\,mA$, $V_p=-4\,V$). Bu durumda yaklaşık olarak $V_{GS}=-1.5\,V$ olarak tespit edilir.

$$I_D = 0 \, mA$$
 için, $V_D = V_{DD} - R_D I_D = V_{DD} = 12 \, V$ olur.

$$V_{DS} = V_D = 0 V$$
 için, $I_D = \frac{V_{DD}}{R_D} = \frac{12 V}{1.2 \, k \Omega} = 10 \, mA$ olur.

Bu dc yük çizgisi ile JFET in akaç-kaynak karakteristiğinin kesişme noktalarını ölçeklemek suretiyle bu JFET in çalışma noktalarını $I_{DQ} \cong 4.7 \ mA$ ve $V_{DSQ} \cong 6.4 \ V$ olarak bulabiliriz.

Kendinden öngerilimli JFET yükselticisi

Şekil 17. Kendinden öngerilimli JFET yükseltici devresi

Ters gerilimli kapı-kaynak üzerinden hiç kapı akımı akmayacağından $I_G = 0$ dır. Bu nedenle $V_G = I_G R_G = 0$ olur. Ayrıca bu devre için aşağıdaki denklemler de yazılabilir.

$$V_S = I_D R_S$$

$$V_{GS} = V_G - V_S = 0 - I_D R_S = -I_D R_S$$

$$I_D=0$$
 için $V_{\rm GS}=0$

$$V_{GS} = V_p$$
 için $-I_D R_S = V_p$

Buradan da $I_D = -\frac{V_p}{R_S}$ elde edilir.