External Project Report on Computer Organization and Architecture (EET 2211)

Design a system that replaces a character with a user input character in a given string using 8086 assembly language.

Submitted by

2241016307

Dipesh Kumar Patro 2241016308

E. Jagadeeswar Patro 2241016309

Essa Rani Patro 2241016310

B. Tech. CSE 4th Semester (Section - 2241044)

Declaration

We, the undersigned students of B. Tech. of Computer Science & Engineering Department

hereby declare that we own the full responsibility for the information, results etc. provided in this

PROJECT titled "Design a system that replaces a character with a user input character in a given

string using 8086 assembly language." submitted to Siksha 'O' Anusandhan Deemed to be

University, Bhubaneswar for the partial fulfillment of the subject Computer Organization and

Architecture (EET 2211). We have taken care in all respect to honor the intellectual property right and

have acknowledged the contribution of others for using them in academic purpose and further declare

that in case of any violation of intellectual property right or copyright we, as the candidate(s), will be

fully responsible for the same.

D. Balaji Patro

Dipesh Kumar Patro

2241016307

2241016308

E. Jagadeeswar Patro

Essa Rani Patro

2241016309

2241016310

DATE: 13th May, 2024

PLACE: Bhubaneswar

Abstract

This project explores assembly language programming in the context of computer science and architecture, aiming to design a system using 8086 assembly language to replace a character in a given string. Implemented in the emu8086 environment, the system prompts users to input the character to be replaced and the replacement character, providing an interactive interface.

The code consists of initialization, user input handling, character replacement logic, and string printing. Through a reverse iteration process, the program efficiently identifies and substitutes the target character with the user-defined replacement. With comprehensive comments, the code enhances readability for all levels of programmers.

This endeavor not only showcases proficiency in low-level programming but also demonstrates the practical application of assembly language in string manipulation tasks. By bridging theory and application, the project illustrates the symbiotic relationship between computer science principles and architectural intricacies, highlighting the versatility and power of assembly language programming in solving computational challenges.

Contents

Serial No.	Chapter No.	Title of the Chapter	Page No.
1.	1	Introduction	1
2.	2	Problem Statement	2
3.	3	Methodology	3
4.	4	Implementation	6
5.	5	Results and interpretation	7
6.	6	Conclusion	8
7.		References	9
8.		Appendices	10

Introduction

This project presents a straightforward solution to string manipulation using 8086 assembly language. Implemented in the emu8086 environment, the solution allows users to replace a specified character within a given string interactively.

The system works by prompting users to input both the character to be replaced and its replacement. Then, employing a simple yet effective algorithm, it iterates through the string in reverse, identifying and replacing the target character with the user-defined alternative.

What makes this solution remarkable is its clarity and accessibility. Detailed comments within the code ensure that users of all proficiency levels can understand the process. This project highlights the practical application of assembly language programming, demonstrating its efficiency in tackling real-world computational challenges in computer science and architecture.

Problem Statement

The task at hand requires the development of a robust system capable of performing character replacement within a string using 8086 assembly language. We are tasked with designing an algorithm that efficiently traverses the input string, identifies occurrences of a target character, and replaces them with a user-specified character. The primary challenge lies in devising an efficient and reliable methodology to ensure the integrity of the string is preserved while executing the character replacement process.

I Input:-

- o **String 1:** String for performing replacement.
- Character 1: chosen by the user to be replaced.
- Character 2: to replace the chosen character with.

II Output:-

o **STR1:** Modified String back to the user.

Highlighting the constraints:

Memory Limitations: Due to limited memory resources in the 8086 architecture, the solution must manage memory efficiently to avoid overflow or exhaustion.

Instruction Set Constraints: The solution must operate within the capabilities of the 8086 instruction set, utilizing only supported instructions and operations.

Performance Concerns: Efficient algorithms and data manipulation techniques should be employed to optimize performance, especially for large input strings or frequent replacements.

Input Validation: Robust input validation and error handling mechanisms are essential to ensure system reliability and stability.

String Length Limitations: The solution must account for constraints on string length to prevent memory issues and performance degradation.

Navigating these constraints ensures the development of a reliable and efficient system for character replacement in 8086 assembly language.

Methodology

Logic Explanation:

Step 1: Initialize DI pointer to the last character address

Step 2: Load CX counter with string length

Step 3: Take copy of both entered characters into registers

Step 4: Compare entered character with address pointed by offset [DI]

Step 5: If match found replace character with new character or go to next step

Step 6: Decrement DI to point out next character

Step 7: Decrement CX, if it is not 0 go to step 4

Step 8: Print modified string

STR1 H
E
L
L
O
S

Instructions Needed:

MOV: Moves data from one location to another.

Syntax: MOV destination, source

LEA: Loads the effective address of the source operand (usually used for loading the address of variables).

Syntax: LEA destination, source

INT: Triggers a software interrupt, allowing interaction with the operating system's services.

Syntax: INT interrupt_number

CMP: Compares two operands.

Syntax: CMP operand1, operand2

JZ: Jump if zero (used for conditional branching).

Syntax: JZ target_address

JMP: Unconditional jump to a specified location.

Syntax: JMP target_address

LOOP: Decrement the loop counter and jump if the counter is not zero.

Syntax: LOOP target_address

DEC: Decrements the value of the specified operand.

Syntax: DEC operand

AH, AL, BH, BL, CH, CL, DH, DL: Registers for holding data (AH, BH, CH, DH -

High byte, AL, BL, CL, DL - Low byte).

BYTE PTR: Specifies a memory operand size.

Syntax: BYTE PTR [operand]

Implementation

The final program is implemented using the **emu8086 Simulator** [2]:

```
.data
  STR1 DB 10, 13, "Siksha 'A' Anusandhan, ITER$"
                                                      ;Source String Terminated by $
  STR2 DB 10, 13, 'Enter a character to be replaced: $'
                                                      ASCII 10 = Enter,
                                                      ;13 = Carriage Return
  STR3 DB 10, 13, 'Enter new character: $'
                                                      ;Used to print in a new Line
  LEN DB $-STR1 ;(offset address of $)-(starting address of STR1)=Length of STR1
.code
MAIN PROC
  MOV AX, data
                          ;Copy base address of .data
  MOV DS, AX
                          ;into DS Register
                          :Print STR1:
                          Offset Address of 1st letter in STR1 stored into DX
  LEA DX, STR1
                          ;Instruction 09h -> Writes String to console until '$' encountered
  MOV AH, 09H
  INT 21H
                          ;Calls the Instruction
  MOV DI, (STR1 + LEN - 1)
                                ;DI points to last Character of STR1
  MOV CL, LEN
                                 ;Initialize counter into CX = LEN
  MOV CH, 00H
                                 ;Make high bits of CX 0
  LEA DX, STR2
  MOV AH, 09H
                          :Print STR2
  INT 21H
  MOV AH, 01H
                          ;INT 21H/01H: Halts the program until user enters a character
                          ;and stores character in ASCII in AL
  INT 21H
  MOV BL, AL
                           ;Copied into BL (Character to be replaced = target)
  LEA DX. STR3
  MOV AH, 09H
                          ;Print STR3
  INT 21H
  MOV AH, 01H
                          ;INT 21H/01H: Halts the program until user enters a character
  INT 21H
                          ;and stores character in ASCII in AL
  MOV BH, AL
                          ;Store copy in BH (Character to replace with)
                          ;Take back target into AL
  MOV AL, BL
COMPARE:
  CMP [DI], AL
                          ;Compare DI(last character) with target in AL
  JZ XCHEG
                          ;If equal go to 'XCHEG'
  JMP CONTINUE
                          ;Else go to 'CONTINUE'
```

XCHEG: ;Perform replace procedure

MOV BYTE PTR [DI], BH ;Copy byte size of BH into offset Address of DI

CONTINUE:

DEC DI ;Decrement DI [point to next letter(reading backwards)]

LOOP COMPARE ;Go back to 'COMPARE'

LEA DX, STR1

MOV AH, 09H ;Print modified STR1

INT 21H

END MAIN

```
edit: D:\SemFour_ITER\Computer Organisation & Architecture\Project\7_Replace Character in String\charReplacement.asm
                                                                                                                                                                                                                                                              ð
          bookmarks assembler emulator math ascii codes help

popen examples save compile emulate calculator convertor options help
  popen examples save compile emulate carcular

D.Balaji Patro : 2241016307

Dipesh Kumar Patro : 2241016309

E. Jagadeeswar Patro : 2241016309

Essa Rani Patro : 2241016310
          ; Design a system that replace a character with a user input character in a given string using 8086 assembly language.
                 STR1 DB 10, 13, "Siksha 'A' Anusandhan, ITER$" ;Source String Terminated by $
STR2 DB 10, 13, 'Enter a character to be replaced: $';ASCII 10 = Enter, 13 = Carriage Return
STR3 DB 10, 13, 'Enter new character: $' ;Used to print in a new Line
LEN DB $-STR1 ;(offset address of $) - (starting address of STR1) = Length of STR1
     14 .code
15 MAIN PROC
                 MOU AX, data
MOU DS, AX
                                                                 ;Copy base address of .data
;into DS Register
                :Print STR1:
                 LEA DX, STR1
MOU AH, 09H
INT 21H
                                                                 ;Offset Address of 1st letter in STR1 stored into DX ;Instruction 09h -> Writes String to standard output(console) untill '$' encountered ;Calls the Instruction
                 LEA DX, STR2
MOU AH, 09H
INT 21H
                                                                 ;Print STR2
                 MOU AH, 01H
INT 21H
MOU BL, AL
                                                                  ;INT 21H/01H: Halts the programm until user enters a character
;and stores character in ASCII in AL
;Copied into BL (Character to be replaced = target)
                 LEA DX, STR3
MOU AH, 09H
INT 21H
                 MOU AH, 01H
INT 21H
MOU BH, AL
MOU AL, BL
                                                                 ;INT 21H/01H: Halts the programm until user enters a character;and stores character in ASCII in AL;Store copy in BH(Characted to replace with);Take back target into AL
   45 COMPARE:
46 CMP [DI], AL
47 JZ XCHEG
48 JMP CONTINUE
                                                                 ;Compare DI(last character) with target in AL ;If equal go to 'XCHEG' ;Else go to 'CONTINUE'
                                                                ;Perform replace procedure
;Copy byte size of BH into offset Address of DI
     XCHEG:
50 XCHEG:
51 MOU BYTE PTR [DI], BH
                                                                 ;Decrement DI [point to next letter(reading backwards)] ;Go back to 'COMPARE'
                 DEC DI
LOOP COMPARE
                 LEA DX, STR1
MOU AH, 09H
INT 21H
                                                                  ;Print modified STR1
     61 END MAIN
                                                                        drag a file here to open
```

Results & Interpretation

Verification of the output through simulation:

Conclusion

Culminating the implementation phase, our system effectively achieves the objective of character replacement within a string using 8086 assembly language. Through meticulous design and implementation, we demonstrate the practical application of assembly language in data manipulation tasks. The system efficiently handles character replacement, showcasing the versatility and effectiveness of assembly language programming in addressing real-world challenges.

References

- [1] "AH=09H 8086 INT 21H" Wikidev. https://wikidev.in/wiki/assembly/8086_INT_21H/AH09H (accessed May. 08, 2024).
- [2] "EMU8086 MICROPROCESSOR EMULATOR" Softonic. https://emu8086-microprocessor-emulator.en.softonic.com/? (accessed May. 05, 2024).
- [3] W. Stallings, Computer Organization and Architecture, Designing for Performance 10th Edition
- [4, Appendix] "8086 Datasheet (PDF) Intel Corporation" ALLDATASHEET.COM, https://www.alldatasheet.com/datasheet-pdf/pdf/1154707/INTEL/8086.html (accessed May. 08, 2024).

Appendix

8086 16-BIT HMOS MICROPROCESSOR 8086/8086-2/8086-1

- Y Direct Addressing Capability 1 MByte of Memory
- Y Architecture Designed for Powerful Assembly Language and Efficient High Level Languages
- Y 14 Word, by 16-Bit Register Set with Symmetrical Operations
- Y 24 Operand Addressing Modes
- Y Bit, Byte, Word, and Block Operations
- Y8 and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal Including Multiply and Divide

- Y Range of Clock Rates: 5 MHz for 8086, 8 MHz for 8086-2, 10 MHz for 8086-1
- Y MULTIBUS System Compatible Interface
- Y Available in EXPRESS
 - Standard Temperature Range
 - Extended Temperature Range
- Y Available in 40-Lead Cerdip and Plastic Package

(See Packaging Spec. Order > 231369)

The Intel 8086 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is implemented in N-Channel, depletion load, silicon gate technology (HMOS-III), and packaged in a 40-pin CERDIP or plastic package. The 8086 operates in both single processor and multiple processor configurations to achieve high performance levels.

Figure 1. 8086 CPU Block Diagram

231455-1

September 1990 Order Number: 231455-005

Table 1. Pin Description

The following pin function descriptions are for 8086 systems in either minimum or maximum mode. The "Local Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers).

Symbol	Pin No.	Туре		Name ar	nd Function				
AD ₁₅ -AD ₀	2-16, 39	I/O	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T_1), and data (T_2 , T_3 , T_W , T_4) bus. A_0 is analogous to BHE for the lower byte of the data bus, pins D_7 - D_0 . It is LOW during T_1 when a byte is to be transferred on the lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half would normally use A_0 to condition chip select functions. (See BHE.) These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold acknowledge".						
A19/S6, A18/S5, A17/S4, A16/S3	35-38	0	ADDRESS/STATUS: During T ₁ these are the four most significant address lines for memory operations. During I/O operations these lines are LOW. During memory and I/O operations, status information is available on these lines during T ₂ , T ₃ , T _W , T ₄ . The status of the interrupt enable FLAG bit (S ₅) is updated at the beginning of each CLK cycle. A ₁₇ /S ₄ and A ₁₆ /S ₃ are encoded as shown. This information indicates which relocation register is presently being used for data accessing. These lines float to 3-state OFF during local bus "hold acknowledge."						
			A ₁₇ /S ₄ A ₁₆ /S ₃ Characteristics						
			0 (LOW) 0 Alternate Data 0 1 Stack 1 (HIGH) 0 Code or None 1 1 Data S6 is 0 (LOW)						
BHE/S ₇	34	0	BUS HIGH ENABLE/STATUS: During T ₁ the bus high enable signal (BHE) should be used to enable data onto the most significant half of the data bus, pins D ₁₅ -D ₈ . Eight-b <u>it ori</u> ented devices tied to the upper half of the <u>bus</u> would normally use BHE to condition chip select functions. BHE is LOW during T ₁ for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The S ₇ status information is available during T ₂ , T ₃ , and T ₄ . The signal is active LOW, and floats to 3-state OFF in "hold". It is LOW during T ₁ for the first interrupt acknowledge cycle.						
			BHE A ₀ Characteristics						
			0 0 Whole word 0 1 Upper byte from/to odd address 1 0 Lower byte from/to even address 1 None						
RD	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the S ₂ pin. This signal is used to read devices which reside on the 8086 local bus. RD is active LOW during T ₂ , T ₃ and T _W of any read cycle, and is guaranteed to remain HIGH in T ₂ until the 8086 local bus has floated. This signal floats to 3-state OFF in "hold acknowledge".						

Table 1. Pin Description (Continued)

Symbol	Pin No.	Туре	Name and Function					
READY	22	_	READY: is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The READY signal from memory/IO is synchronized by the 8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not met.					
INTR	18	_	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.					
TEST	23	_	TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution continues, otherwise the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.					
NMI	17		NON-MASKABLE INTERRUPT: an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.					
RESET	21	I	RESET: causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.					
CLK	19	I	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.					
V _{CC}	40		V _{CC} : a5V power supply pin.					
GND	1, 20		GROUND					
MN/MX	33	I	MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.					

The following pin function descriptions are for the 8086/8288 system in maximum mode (i.e., $MN\overline{/MX} \in VSS$). Only the pin functions which are unique to maximum mode are described; all other pin functions are as described above.

used to indicate the end of a bus cycle.
--

Table 1. Pin Description (Continued)

Symbol	Pin No.	Туре			Name and	I Function			
$\overline{S_2}, \overline{S_1}, \overline{S_0}$ (Continued)	26-28	0	These signals float to 3-state OFF in "hold acknowledge". These status lines are encoded as shown.						
,			$\overline{\mathbb{S}_2}$	S ₁	$\overline{\mathbb{S}_0}$	Characteristics			
			0 (LOW)	0	0	Interrupt Acknowledge			
			0	0	1	Read I/O Port			
			0	1	0	Write I/O Port			
			0 1 (HIGH)	1	1 0	Halt Code Access			
			1 (111011)	0	1	Read Memory			
			1	1	0	Write Memory			
			1	1	1	Passive			
RQ/GT ₀ , RQ/GT ₁	30, 31	I/O	the processor to current bus cycl priority than RC may be left unc (see Page 2-24). A pulse of 1 (bus request ("h 2. During a T4 of the requesting relocal bus to float the next CLK. The from the local bus to float the next CLK. The float bus the local bus in the local float floa	orelease the Each pink (GT1. RQ/onnected. It): CLK wide froid") to the or T1 clock master (pull that and that the CPU's us during "K wide fror et all bus at the aster exchange be one that are the color on or bus is not the et as idle when the color of	he local bun is bidired GT pins he The reque rom another 8086 (pul cycle, a pulse 2), indivit will enter bus interfathold acknown the request is a senext CLK ange of the dead CLH during T4 or effore T2. Iow byte on first acknown the request is a contract the cycle of the dead CLH during the dead CLH during the dead cycle of the	alse 1 CLK wide from the 8086 to cates that the 8086 has allowed the rethe "hold acknowledge" state at ice unit is disconnected logically owledge". The esting master indicates to the 8086 bout to end and that the 8086 can can be local bus is a sequence of 3 cycle after each bus exchange. The active LOW. The is performing a memory cycle, it is the cycle when all the following of a word (on an odd address). The word (on an odd address). The word is made the two possible events are the solutions.			
LOCK	29	0	LOCK: output ir control of the sy is activated by t	rstem bus he "LOCK ne next inst	while LOC " prefix ins truction. Tl	stem bus masters are not to gain K is active LOW. The LOCK signal truction and remains active until the his signal is active LOW, and floats 3".			

Table 1. Pin Description (Continued)

Symbol	Pin No.	Туре	Name and Function						
QS ₁ , QS ₀	24, 25	0	QUEUE STATUS: The queue status is valid during the CLK cycle after which the queue operation is performed. QS ₁ and QS ₀ provide status to allow external tracking of the internal 8086 instruction queue.						
			QS ₁ QS ₀ Characteristics						
			0 (LOW) 0 No Operation 1 First Byte of Op Code from Queue 1 (HIGH) 0 Empty the Queue 1 Subsequent Byte from Queue						

The following pin function descriptions are for the 8086 in minimum mode (i.e., MN/\overline{MX} e V_{CC}). Only the pin functions which are unique to minimum mode are described; all other pin functions are as described above.

-		Inque te	i minimum mode are described, all other pin functions are as described above.
M/IO	28	0	STATUS LINE: logically equivalent to S ₂ in the maxim <u>u</u> m mode. It is used to distinguish a memory access from an I/O access. M/IO becomes valid in the T ₄ preceding a bus cycle <u>and</u> remains valid until the final T ₄ of the cycle (M e HIGH, IO e LOW). M/IO floats to 3-state OFF in local bus "hold acknowledge".
WR	29	0	WRITE: indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the M/IO signal. WR is active for T ₂ , T ₃ and T _W of any write cycle. It is active LOW, and floats to 3-state OFF in local bus "hold acknowledge".
INTA	24	0	INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T ₂ , T ₃ and T _W of each interrupt acknowledge cycle.
ALE	25	0	ADDRESS LATCH ENABLE: provided by the processor to latch the address into the 8282/8283 address latch. It is a HIGH pulse active during T ₁ of any bus cycle. Note that ALE is never floated.
DT/R	27	0	DATA TRANSMIT/RECEIVE: needed in minimum system that desires to use an 8286/8287 data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically DT/R is equivalent to S ₁ in the maximum mode, and its timing is the same as for M/IO. (T e HIGH, R e LOW.) This signal floats to 3-state OFF in local bus "hold acknowledge".
DEN	26	0	DATA ENABLE: provided as an output enab <u>le for</u> the 8286/8287 in a minimum system which uses the transceiver. DEN is active LOW <u>during</u> each memory and I/O access and for INTA cycles. For a read or INTA cycle it is active from the middle of T ₂ until the middle of T ₄ , whi <u>le fo</u> r a write cycle it is active from the beginning of T ₂ until the middle of T ₄ . DEN floats to 3-state OFF in local bus "hold acknowledge".
HOLD, HLDA	31, 30	I/O	HOLD: indicates that another master is requesting a local bus "hold." To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgement in the middle of a T4 or Ti clock cycle. Simultaneous with the issuance of HLDA the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor will LOWer the HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. Hold acknowledge (HLDA) and HOLD have internal pull-up resistors. The same rules as for RQ/GT apply regarding when the local bus will be released. HOLD is not an asynchronous input. External synchronization should be provided if the system cannot otherwise guarantee the setup time.

FUNCTIONAL DESCRIPTION

General Operation

The internal functions of the 8086 processor are partitioned logically into two processing units. The first is the Bus Interface Unit (BIU) and the second is the Execution Unit (EU) as shown in the block diagram of Figure 1.

These units can interact directly but for the most part perform as separate asynchronous operational processors. The bus interface unit provides the functions related to instruction fetching and queuing, operand fetch and store, and address relocation. This unit also provides the basic bus control. The overlap of instruction pre-fetching provided by this unit serves to increase processor performance through improved bus bandwidth utilization. Up to 6 bytes of the instruction stream can be queued while waiting for decoding and execution.

The instruction stream queuing mechanism allows the BIU to keep the memory utilized very efficiently. Whenever there is space for at least 2 bytes in the queue, the BIU will attempt a word fetch memory cycle. This greatly reduces "dead time" on the memory bus. The queue acts as a First-In-First-Out (FIFO) buffer, from which the EU extracts instruction bytes as required. If the queue is empty (following a branch instruction, for example), the first byte into the queue immediately becomes available to the EU.

The execution unit receives pre-fetched instructions from the BIU queue and provides un-relocated operand addresses to the BIU. Memory operands are passed through the BIU for processing by the EU, which passes results to the BIU for storage. See the Instruction Set description for further register set and architectural descriptions.

MEMORY ORGANIZATION

The processor provides a 20-bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million

bytes, addressed as 00000(H) to FFFFF(H). The memory is logically divided into code, data, extra data, and stack segments of up to 64K bytes each, with each segment falling on 16-byte boundaries. (See Figure 3a.)

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All information in one segment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries and are thus not constrained to even boundaries as is the case in many 16-bit computers. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU automatically performs the proper number of memory accesses, one if the word operand is on an even byte boundary and two if it is on an odd byte boundary. Except for the performance penalty, this double access is transparent to the software. This performance penalty does not occur for instruction fetches, only word operands.

Physically, the memory is organized as a high bank (D₁₅ -D₈) and a low bank (D₇ -D₀) of 512K 8-bit bytes addressed in parallel by the processor's address lines A₁₉-A₁. Byte data with even addresses is transferred on the D₇ -D₀ bus lines while odd addressed byte data (A₀ HIGH) is transferred on the D₁₅ -D₈ bus lines. The processor provides two enable signals, BHE and A₀, to selectively allow reading from or writing into either an odd byte location, even byte location, or both. The instruction stream is fetched from memory as words and is addressed internally by the processor to the byte level as necessary.

Memory Reference Need	Segment Register Used	Segment Selection Rule				
Instructions	CODE (CS)	Automatic with all instruction prefetch.				
Stack	STACK (SS)	All stack pushes and pops. Memory references relative to BP base register except data references.				
Local Data	DATA (DS)	Data references when: relative to stack, destination of string operation, or explicitly overridden.				
External (Global) Data	EXTRA (ES)	Destination of string operations: explicitly selected using a segment override.				

Figure 3a. Memory Organization

In referencing word data the BIU requires one or two memory cycles depending on whether or not the starting byte of the word is on an even or odd address, respectively. Consequently, in referencing word operands performance can be optimized by locating data on even address boundaries. This is an especially useful technique for using the stack, since odd address references to the stack may adversely affect the context switching time for interrupt processing or task multiplexing.

Figure 3b. Reserved Memory Locations

Certain locations in memory are reserved for specific CPU operations (see Figure 3b). Locations from

address FFFF0H through FFFFFH are reserved for operations including a jump to the initial program loading routine. Following RESET, the CPU will always begin execution at location FFFF0H where the jump must be. Locations 00000H through 003FFH are reserved for interrupt operations. Each of the 256 possible interrupt types has its service routine pointed to by a 4-byte pointer element consisting of a 16-bit segment address and a 16-bit offset address. The pointer elements are assumed to have been stored at the respective places in reserved memory prior to occurrence of interrupts.

MINIMUM AND MAXIMUM MODES

The requirements for supporting minimum and maximum 8086 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8086 is equipped with a strap pin (MN/MX) which defines the system configuration. The definition of a certain subset of the pins changes dependent on the condition of the strap pin. When MN/MX pin is strapped to GND, the 8086 treats pins 24 through 31 in maximum mode. An 8288 bus controller interprets status information coded into S₀, S₂, S₂ to generate bus timing and control signals compatible with the MULTIBUS architecture. When the MN/MX pin is strapped to V_{CC}, the 8086 generates bus control signals itself on pins 24 through 31, as shown in parentheses in Figure 2. Examples of minimum mode and maximum mode systems are shown in Figure 4.

BUS OPERATION

The 8086 has a combined address and data bus commonly referred to as a time multiplexed bus. This technique provides the most efficient use of pins on the processor while permitting the use of a standard 40-lead package. This "local bus" can be buffered directly and used throughout the system with address latching provided on memory and I/O modules. In addition, the bus can also be demultiplexed at the processor with a single set of address latches if a standard non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T_1 , T_2 , T_3 and T_4 (see Figure 5). The address is emitted from the processor during T_1 and data transfer occurs on the bus during T_3 and T_4 . T_2 is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "Wait" states (T_W) are inserted between T_3 and T_4 . Each inserted "Wait" state is of the same duration as a CLK cycle. Periods

Figure 4a. Minimum Mode 8086 Typical Configuration

Figure 4b. Maximum Mode 8086 Typical Configuration

can occur between 8086 bus cycles. These are referred to as "Idle" states (T_i) or inactive CLK cycles. The processor uses these cycles for internal house-keeping.

During T_1 of any bus cycle the ALE (Address Latch Enable) signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/ $\overline{\text{MX}}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{S_0}$, $\overline{S_1}$, and $\overline{S_2}$ are used, in maximum mode, by the bus controller to identify the type of bus transaction according to the following table:

$\overline{S_2}$	S ₁	S ₀	Characteristics
0 (LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1 (HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Figure 5. Basic System Timing

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ¿¿¿¿¿¿۵%C to 70%C Storage Temperature $\mbox{\em 2iiiiiii} b65\mbox{\em 65}\mbox{\em C}$ to a 150\mbox{\em C} Voltage on Any Pin with

 $Power \quad Dissipation \ensuremath{\mathcal{U}} \ensurem$ NOTICE: This is a production data sheet. The specifications are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

D.C. CHARACTERISTICS (8086: $T_A = 0\%C$ to 70%C, $V_{CC} = 5V g 10\%$) $(8086-1: T_A = 0)C \text{ to } 70)C, V_{CC} = 5V \text{ g}5\%)$ $(8086-2: T_A = 0)C \text{ to } 70)C, V_{CC} = 5V \text{ g}5\%)$

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IL}	Input Low Voltage	b0.5	a0.8	V	(Note 1)
V _{IH}	Input High Voltage	2.0	V _{CC} a 0.5	V	(Notes 1, 2)
V _{OL}	Output Low Voltage		0.45	V	I _{OL} e 2.5 mA
V _{OH}	Output High Voltage	2.4		V	I _{OH} e b 400 mA
I _{CC}	Power Supply Current: 8086 8086-1 8086-2		340 360 350	mA	T _A e 25%C
I _{LI}	Input Leakage Current		g10	mA	0V s V _{IN} s V _{CC} (Note 3)
I _{LO}	Output Leakage Current		g10	mA	0.45V s V _{OUT} s V _{CC}
V _{CL}	Clock Input Low Voltage	b0.5	a0.6	٧	
V _{CH}	Clock Input High Voltage	3.9	V _{CC} a 1.0	٧	
C _{IN}	Capacitance of Input Buffer (All input except AD ₀ -AD ₁₅ , RQ/GT)		15	pF	fc e 1 MHz
C _{IO}	Capacitance of I/O Buffer (AD ₀ -AD ₁₅ , RQ/GT)		15	pF	fc e 1 MHz

^{1.} V_{IL} tested with MN/MX Pin e 0V. V_{IH} tested with MN/MX Pin e 5V. MN/MX Pin is a Strap Pin. 2. Not applicable to $\overline{RQ/GT0}$ and $\overline{RQ/GT1}$ (Pins 30 and 31).

^{3.} HOLD and HLDA I $_{LI}$ min $^{\rm e}$ 30 mA, max $^{\rm e}$ 500 mA.

A.C. CHARACTERISTICS (8086: $T_A = 0\%C$ to 70%C, $V_{CC} = 5V \ g \ 10\%$) (8086-1: $T_A = 0\%C$ to 70%C, $V_{CC} = 5V \ g \ 5\%$) (8086-2: $T_A = 0\%C$ to 70%C, $V_{CC} = 5V \ g \ 5\%$)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Symbol	Parameter	80)86	808	6-1	808	36-2	Units	Test Conditions
Оуппоот	r didirictor	Min	Max	Min	Max	Min	Max	Onito	rest conditions
TCLCL	CLK Cycle Period	200	500	100	500	125	500	ns	
TCLCH	CLK Low Time	118		53		68		ns	
TCHCL	CLK High Time	69		39		44		ns	
TCH1CH2	CLK Rise Time		10		10		10	ns	From 1.0V to 3.5V
TCL2CL1	CLK Fall Time		10		10		10	ns	From 3.5V to 1.0V
TDVCL	Data in Setup Time	30		5		20		ns	
TCLDX	Data in Hold Time	10		10		10		ns	
TR1VCL	RDY Setup Time into 8284A (SeeNotes 1, 2)	35		35		35		ns	
TCLR1X	RDY Hold Time into 8284A (See Notes 1, 2)	0		0		0		ns	
TRYHCH	READY Setup Time into 8086	118		53		68		ns	
TCHRYX	READY Hold Time into 8086	30		20		20		ns	
TRYLCL	READY Inactive to CLK (See Note 3)	b8		b10		b8		ns	
THVCH	HOLD Setup Time	35		20		20		ns]
TINVCH	INTR, NMI, TEST Setup Time (See Note 2)	30		15		15		ns	
TILIH	Input Rise Time (Except CLK)		20		20		20	ns	From 0.8V to 2.0V
TIHIL	Input Fall Time (Except CLK)		12		12		12	ns	From 2.0V to 0.8V

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 1.5V for both a Logic "1" and "0".

A.C. TESTING LOAD CIRCUIT

WAVEFORMS

MINIMUM MODE

NOTES:

- All signals switch between V_{OH} and V_{OL} unless otherwise specified.
 RDY is sampled near the end of T₂, T₃, T_W to determine if T_W machines states are to be inserted.
 Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control signals shown for second INTA cycle.
 4. Signals at 8284A are shown for reference only.

All timing measurements are made at 1.5V unless otherwise noted.

Table 2. Instruction Set Summary

Mnemonic and	Instruction Code			
Description DATA TRANSFER	1			
MOV e Move:	76543210	76543210	76543210	76543210
Register/Memory to/from Register	100010dw	mod reg r/m		
Immediate to Register/Memory	1100011w	mod 0 0 0 r/m	data	data if w ^e 1
Immediate to Register	1 0 1 1 w reg	data	data if w e 1	
Memory to Accumulator	1010000w	addr-low	addr-high	
Accumulator to Memory	1010001w	addr-low	addr-high	
Register/Memory to Segment Register	10001110	mod 0 reg r/m		
Segment Register to Register/Memory	10001100	mod 0 reg r/m		
PUSH e Push:				
Register/Memory	11111111	mod 1 1 0 r/m		
Register	0 1 0 1 0 reg			
Segment Register	0 0 0 reg 1 1 0			
POP e Pop:				
Register/Memory	10001111	mod 0 0 0 r/m		
Register	0 1 0 1 1 reg			
Segment Register	0 0 0 reg 1 1 1			
XCHG e Exchange:				
Register/Memory with Register	1000011w	mod reg r/m		
Register with Accumulator	1 0 0 1 0 reg			
IN ^e Input from:				
Fixed Port	1110010w	port		
Variable Port	1110110w			
OUT e Output to:				
Fixed Port	1110011w	port		
Variable Port	1110111w			
XLAT e Translate Byte to AL	11010111			
LEA ^e Load EA to Register	10001101	mod reg r/m		
LDS e Load Pointer to DS	11000101	mod reg r/m		
LES ^e Load Pointer to ES	11000100	mod reg r/m		
LAHF ^e Load AH with Flags	10011111			
SAHF ^e Store AH into Flags	10011110			
PUSHF e Push Flags	10011100			
POPF e Pop Flags	10011101			

Mnemonics © Intel, 1978

13

Table 2. Instruction Set Summary (Continued)

Mnemonic and	E Z. Mistruction Se	et Summary (Cont	inueu)	
Description	Instruction Code			
ARITHMETIC ADD ^e Add:	76543210	76543210	76543210	76543210
Reg./Memory with Register to Either	00000dw	mod reg r/m		
Immediate to Register/Memory	100000sw	mod 0 0 0 r/m	data	data if s: w e 01
Immediate to Accumulator	0000010w	data	data if w e 1	
ADC e Add with Carry:				
Reg./Memory with Register to Either	000100dw	mod reg r/m		
Immediate to Register/Memory	100000sw	mod 0 1 0 r/m	data	data if s: w e 01
Immediate to Accumulator	0001010w	data	data if w e 1	
INC e Increment:				
Register/Memory	1111111w	mod 0 0 0 r/m		
Register	0 1 0 0 0 reg			
AAA e ASCII Adjust for Add	00110111			
BAA ^e Decimal Adjust for Add	00100111			
SUB ^e Subtract:				
Reg./Memory and Register to Either	001010dw	mod reg r/m		
Immediate from Register/Memory	100000sw	mod 1 0 1 r/m	data	data if s w ^e 01
Immediate from Accumulator	0010110w	data	data if w ^e 1]
SSB ^e Subtract with Borrow				
Reg./Memory and Register to Either	000110dw	mod reg r/m		
Immediate from Register/Memory	100000sw	mod 0 1 1 r/m	data	data if s w ^e 01
Immediate from Accumulator	000111w	data	data if w ^e 1]
DEC ^e Decrement:				
Register/memory	1111111w	mod 0 0 1 r/m		
Register	01001 reg			
NEG ^e Change sign	1111011w	mod 0 1 1 r/m		
CMP e Compare:				
Register/Memory and Register	001110dw	mod reg r/m		
Immediate with Register/Memory	100000sw	mod 1 1 1 r/m	data	data if s w ^e 01
Immediate with Accumulator	0011110w	data	data if w ^e 1	
AAS e ASCII Adjust for Subtract	00111111			
DAS e Decimal Adjust for Subtract	00101111			
MUL e Multiply (Unsigned)	1111011w	mod 1 0 0 r/m		
IMUL e Integer Multiply (Signed)	1111011w	mod 1 0 1 r/m		
AAM e ASCII Adjust for Multiply	11010100	00001010		
DIV e Divide (Unsigned)	1111011w	mod 1 1 0 r/m		
IDIV ^e Integer Divide (Signed)	1111011w	mod 1 1 1 r/m		
AAD ^e ASCII Adjust for Divide	11010101	00001010		
CBW ^e Convert Byte to Word	10011000			
CWD ^e Convert Word to Double Word	10011001			

Mnemonics $^{\circledR}$ Intel, 1978

Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code			
LOGIC	76543210	76543210	76543210	76543210
NOT ^e Invert	1111011w	mod 0 1 0 r/m		
SHL/SAL ^e Shift Logical/Arithmetic Left	110100vw	mod 1 0 0 r/m		
SHR ^e Shift Logical Right	110100vw	mod 1 0 1 r/m		
SAR ^e Shift Arithmetic Right	110100vw	mod 1 1 1 r/m		
ROL ^e Rotate Left	110100vw	mod 0 0 0 r/m		
ROR ^e Rotate Right	110100vw	mod 0 0 1 r/m		
RCL ^e Rotate Through Carry Flag Left	110100vw	mod 0 1 0 r/m		
RCR ^e Rotate Through Carry Right	110100vw	mod 0 1 1 r/m		
AND e And:				
Reg./Memory and Register to Either	001000dw	mod reg r/m		
Immediate to Register/Memory	1000000w	mod 1 0 0 r/m	data	data if w ^e 1
Immediate to Accumulator	0010010w	data	data if w ^e 1	
TEST ^e And Function to Flags, No Result:				
Register/Memory and Register	1000010w	mod reg r/m		
Immediate Data and Register/Memory	1111011w	mod 0 0 0 r/m	data	data if w ^e 1
Immediate Data and Accumulator	1010100w	data	data if w ^e 1	_
OR e Or:				
Reg./Memory and Register to Either	000010dw	mod reg r/m		
Immediate to Register/Memory	1000000w	mod 0 0 1 r/m	data	data if w ^e 1
Immediate to Accumulator	0000110w	data	data if w ^e 1	<u>.</u>
XOR ^e Exclusive or:				
Reg./Memory and Register to Either	001100dw	mod reg r/m		
Immediate to Register/Memory	1000000w	mod 1 1 0 r/m	data	data if w ^e 1
Immediate to Accumulator	0011010w	data	data if w ^e 1	
STRING MANIPULATION				
REP ^e Repeat	1111001z			
MOVS ^e Move Byte/Word	1010010w			
CMPS e Compare Byte/Word	1010011w			
SCAS e Scan Byte/Word	1010111w			
LODS e Load Byte/Wd to AL/AX	1010110w			
STOS e Stor Byte/Wd from AL/A	1010101W			
CONTROL TRANSFER CALL e Call:		•		
Direct within Segment	11101000	disp-low	disp-high	
Indirect within Segment	11111111	mod 0 1 0 r/m		
Direct Intersegment	10011010	offset-low	offset-high	
		seg-low	seg-high	
Indirect Intersegment	11111111	mod 0 1 1 r/m		

Mnemonics © Intel, 1978

15

Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code		
MP ^e Unconditional Jump:	76543210	76543210	76543210
rect within Segment	11101001	disp-low	disp-high
irect within Segment-Short	11101011	disp	
ndirect within Segment	11111111	mod 1 0 0 r/m	
irect Intersegment	11101010	offset-low	offset-high
		seg-low	seg-high
ndirect Intersegment	11111111	mod 1 0 1 r/m	
ET ^e Return from CALL:			
Vithin Segment	11000011		
ithin Seg Adding Immed to SP	11000010	data-low	data-high
tersegment	11001011		
stersegment Adding Immediate to SP	11001010	data-low	data-high
E/JZ e Jump on Equal/Zero	01110100	disp	
_/JNGE e Jump on Less/Not Greater or Equal	01111100	disp	
LE/JNG e Jump on Less or Equal/ Not Greater	01111110	disp]
B/JNAE ^e Jump on Below/Not Above or Equal	01110010	disp	
BE/JNA ^e Jump on Below or Equal/ Not Above	01110110	disp	
P/JPE e Jump on Parity/Parity Even	01111010	disp	
e Jump on Overflow	01110000	disp	
^e Jump on Sign	01111000	disp	
IE/JNZ ^e Jump on Not Equal/Not Zero	01110101	disp	
L/JGE e Jump on Not Less/Greater or Equal	01111101	disp	
NLE/JG ^e Jump on Not Less or Equal/ Greater	01111111	disp]
IB/JAE e Jump on Not Below/Above or Equal	01110011	disp	
NBE/JA ^e Jump on Not Below or Equal/Above	01110111	disp	
IP/JPO e Jump on Not Par/Par Odd	01111011	disp	
NO ^e Jump on Not Overflow	01110001	disp]
S ^e Jump on Not Sign	01111001	disp	
OOP e Loop CX Times	11100010	disp	
OOPZ/LOOPE e Loop While Zero/Equal	11100001	disp	
OOPNZ/LOOPNE ^e Loop While Not Zero/Equal	11100000	disp	
CXZ e Jump on CX Zero	11100011	disp	
T e Interrupt			•
ype Specified	11001101	type	1
rpe 3	11001100		J
NTO ^e Interrupt on Overflow	11001110		
RET e Interrupt Return	11001111		

Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code		
	76543210	76543210	
PROCESSOR CONTROL			
CLC e Clear Carry	11111000		
CMC e Complement Carry	11110101		
STC e Set Carry	11111001		
CLD e Clear Direction	11111100		
STD ^e Set Direction	11111101		
CLI e Clear Interrupt	11111010		
STI ^e Set Interrupt	11111011		
HLT e Halt	11110100		
WAIT e Wait	10011011		
ESC e Escape (to External Device)	11011xxx	mod x x x r/m	
LOCK ^e Bus Lock Prefix	11110000		

NOTES:

AL e 8-bit accumulator

AX e 16-bit accumulator

CX e Count register DS e Data segment

ES e Extra segment

Above/below refers to unsigned value

Greater e more positive;

Less e less positive (more negative) signed values if d e 1 then "to" reg; if d e 0 then "from" reg

if w e 1 then word instruction; if w e 0 then byte instruc-

if mod e 11 then r/m is treated as a REG field

if mod e 00 then DISP e 0*, disp-low and disp-high are

if mod e 01 then DISP e disp-low sign-extended to 16 bits, disp-high is absent

if mod e 10 then DISP e disp-high; disp-low

if r/m e 000 then EA e (BX) a (SI) a DISP

if r/m e 001 then EA e (BX) a (DI) a DISP

if r/m e 010 then EA e (BP) a (SI) a DISP if r/m e 011 then EA e (BP) a (SI) a DISP if r/m e 100 then EA e (SI) a DISP if r/m e 101 then EA e (DI) a DISP if r/m e 101 then EA e (DI) a DISP

if r/m e 110 then EA e (BP) a DISP*

if r/m e 111 then EA e (BX) a DISP

DISP follows 2nd byte of instruction (before data if required)

*except if mod e 00 and r/m e 110 then EA e disp-high; disp-low.

Mnemonics © Intel, 1978

if s w e 11 then an immediate data byte is sign extended to form the 16-bit operand

if v e 0 then "count" e 1; if v e 1 then "count" in (CL) x e don't care

z is used for string primitives for comparison with ZF FLAG SEGMENT OVERRIDE PREFIX

001 reg 110

REG is assigned according to the following table:

16-Bit (w ^e 1)	8-Bit (w e 0)	Segment	
000 AX	000 AL	00 ES	
001 CX	001 CL	01 CS	
010 DX	010 DL	10 SS	
011 BX	011 BL	11 DS	
100 SP	100 AH		
101 BP	101 CH		
110 SI	110 DH		
111 DI	111 BH		

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file: ${\sf FLAGS} \ \ {\sf e} \ \ X:X:X:X:({\sf OF}):({\sf DF}):({\sf IF}):({\sf SF}):({\sf ZF}):X:({\sf AF}):X:({\sf PF}):X:({\sf CF})$

DATA SHEET REVISION REVIEW

The following list represents key differences between this and the -004 data sheet. Please review this summary carefully.

- 1. The Intel 8086 implementation technology (HMOS) has been changed to (HMOS-III).
- 2. Delete all "changes from 1985 Handbook Specification" sentences.

if s w e 01 then 16 bits of immediate data form the oper-