ECE 645: Lecture 5

Fast Adders: Parallel Prefix Network Adders, Conditional-Sum Adders, & Carry-Skip Adders

Required Reading

Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design

Chapter 6.4, Carry Determination as Prefix Computation Chapter 6.5, Alternative Parallel Prefix Networks

Chapter 7.4, Conditional-Sum Adder Chapter 7.5, Hybrid Adder Designs

Chapter 7.1, Simple Carry-Skip Adders

Note errata at:

http://www.ece.ucsb.edu/~parhami/text_comp_arit_1ed.htm#errors

Recommended Reading

J-P. Deschamps, G. Bioul, G. Sutter, Synthesis of Arithmetic Circuits: FPGA, ASIC and Embedded Systems

Chapter 11.1.9, Prefix Adders

Chapter 11.1.3, Carry-Skip Adder Chapter 11.1.4, Optimization of Carry-Skip Adders Chapter 11.1.10, FPGA Implementations of Adders Chapter 11.1.11, Long-Operand Adders

Parallel Prefix Network Adders

Parallel Prefix Network Adders

Basic component - Carry operator (1)

$$(g, p) = (g', p') \notin (g'', p'') = (g'' + g'p'', p'p'')$$

Parallel Prefix Network Adders

Basic component - Carry operator (2)

$$g = g'' + g'p''$$

 $p = p'p''$

$$(g, p) = (g', p') \notin (g'', p'') = (g'' + g'p'', p'p'')$$

Properties of the carry operator ¢

Associative

$$[(g_1, p_1) \notin (g_2, p_2)] \notin (g_3, p_3) = (g_1, p_1) \notin [(g_2, p_2) \notin (g_3, p_3)]$$

Not commutative

$$(g_1, p_1) \notin (g_2, p_2) \neq (g_2, p_2) \notin (g_1, p_1)$$

Parallel Prefix Network Adders

Major concept

Given:

$$(g_0, p_0)$$

$$(\mathbf{g}_1, \mathbf{p}_1)$$

$$(g_2, p_2)$$

$$\cdot$$
 (g

$$(g_0, p_0)$$
 (g_1, p_1) (g_2, p_2) (g_{k-1}, p_{k-1})

Find:

$$(\mathbf{g}_{[0,0]},\,\mathbf{p}_{[0,0]})\,(\mathbf{g}_{[0,1]},\,\mathbf{p}_{[0,1]})\,(\mathbf{g}_{[0,2]},\,\mathbf{p}_{[0,2]})\,\,\dots\,\,(\mathbf{g}_{[0,k-1]},\,\mathbf{p}_{[0,k-1]})$$
 block generate from index 0 to k-1

Similar to Parallel Prefix Sum Problem

Parallel Prefix Sum Problem

Given:

$$X_0 X_1$$

$$X_2$$
 ...

$$\mathbf{X}_{k-1}$$

Find:

$$x_0 \quad x_0 + x_1 \quad x_0 + x_1 + x_2 \quad \dots$$

$$x_0 + x_1 + x_2 + ... + x_{k-1}$$

Parallel Prefix Adder Problem

Given:

$$X_0 X$$

$$X_2$$
 ...

$$\mathbf{X}_{k-1}$$

Find:

$$\mathbf{x}_0 \quad \mathbf{x}_0 \not\in \mathbf{x}_1 \quad \mathbf{x}_0 \not\in \mathbf{x}_1 \not\in \mathbf{x}_2 \quad \dots$$

$$\mathbf{x}_0 \not\in \mathbf{x}_1 \not\in \mathbf{x}_2 \not\in \dots \not\in \mathbf{x}_{k-1}$$

Parallel Prefix Sums Network I

Parallel Prefix Sums Network I – Cost (Area) Analysis

Cost = C(k) = 2 C(k/2) + k/2 =
= 2 [2C(k/4) + k/4] + k/2 = 4 C(k/4) + k/2 + k/2 =
= ... =
= 2
$$\log_2 k^{-1}$$
C(2) + k/2 ($\log_2 k^{-1}$) =
= k/2 $\log_2 k$

Example

$$C(16) = 2 C(8) + 8 = 2[2 C(4) + 4] + 8 =$$

= $4 C(4) + 16 = 4 [2 C(2) + 2] + 16 =$
= $8 C(2) + 24 = 8 + 24 = 32 = (16/2) \log_2 16$

Parallel Prefix Sums Network I – Delay Analysis

Delay = D(k) = D(k/2) + 1 =
=
$$[D(k/4) + 1] + 1 = D(k/4) + 1 + 1 =$$

= =
= $log_2 k$

$$D(2) = 1$$

Example:

$$\mathbf{D(16)} = D(8) + 1 = [D(4) + 1] + 1 =$$

$$= D(4) + 2 = [D(2) + 1] + 2 =$$

$$= \mathbf{4} = \log_2 16$$

Parallel Prefix Sums Network II (Brent-Kung)

Cost = C(k) = C(k/2) + k-1 =
=
$$[C(k/4) + k/2-1] + k-1 = C(k/4) + 3k/2 - 2 =$$

= =
= $C(2) + (2k - 2k/2^{(\log \frac{1}{2}-1)}) - (\log_2 k-1) =$
= $2k - 2 - \log_2 k$
Example:

$$C(16) = C(8) + 16-1 = [C(4) + 8-1] + 16-1 =$$

= $C(2) + 4-1 + 24-2 = 1 + 28 - 3 = 26$
= $2 \cdot 16 - 2 - \log_2 16$

Parallel Prefix Sums Network II – Delay Analysis

Delay = D(k) = D(k/2) + 2 =
=
$$[D(k/4) + 2] + 2 = D(k/4) + 2 + 2 =$$

= =
= $2 \log_2 k - 1$

$$D(2) = 1$$

Example:

$$\mathbf{D(16)} = \mathbf{D(8)} + 2 = [\mathbf{D(4)} + 2] + 2 =$$

$$= \mathbf{D(4)} + 4 = [\mathbf{D(2)} + 2] + 4 =$$

$$= 7 = 2 \log_2 16 - 1$$

8-bit Brent-Kung Parallel Prefix Network

4-bit Brent-Kung Parallel Prefix Network

8-bit Brent-Kung Parallel Prefix Network Critical Path

Critical Path

GP

$$g_i = x_i \ y_i$$
$$p_i = x_i \oplus y_i$$

1 gate delay

¢

2 gate delays

C

$$\mathbf{c}_{i+1} = \mathbf{g}_{[0,i]} + \mathbf{c}_0 \, \mathbf{p}_{[0,i]}$$

2 gate delays

S

$$s_i = p_i \oplus c_i$$

1 gate delay

Brent-Kung Parallel Prefix Graph for 16 Inputs

Kogge-Stone Parallel Prefix Graph for 16 Inputs

Parallel Prefix Network Adders

	Comparison of	f architectures					
	Network 2 Brent-Kung	Hybrid	Kogge-Stone				
Delay(k)	$2 \log_2 k - 2$	log ₂ k+1	$\log_2 k$				
Cost(k)	$2k - 2 - log_2k$	$k/2 log_2 k$	k log ₂ k - k +				
Delay(16)		5	4				
Cost(16)			49				
Delay(32)			5				
<u>Cost(32)</u>	57	80	129				

Latency vs. Area Tradeoff

B-K: Six levels, 26 cells

K-S: Four levels, 49 cells

Hybrid Brent-Kung/Kogge-Stone Parallel Prefix Graph for 16 Inputs

Hybrid: Five levels, 32 cells

Conditional-Sum Adders

One-level k-bit Carry-Select Adder

Two-level k-bit Carry Select Adder

Conditional Sum Adder

Extension of carry-select adder Carry select adder
One-level using k/2-bit adders

Two-level using k/4-bit adders
Three-level using k/8-bit adders
Etc.

Assuming k is a power of two, eventually have an extreme where there are log₂k-levels using 1-bit adders

This is a conditional sum adder

Top-Level Block for One Bit

Position

Three Levels of a Conditional Sum Adder

16-Bit Conditional Sum Adder Example

		х	0	0	1	0	0	1	1	0	1	1	1	0	1	0	1	0	
Block width	Block carry-in				sur 13						out		5	4	3	2	1	0	c _i
1	0	я С	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	0
	1	я С	1	0	0	1	0	0	1 1	0	0	1 1	0	0	1	0	0		
2	0	а C	0	1	1	0	1	1	0	1	0	0	1	1	0	1	1	1	
	1	в С	1	0	1	1	0	0	1 1	0	0	1	0 1	0	1 1	0			
4	0	ш С	0	1	1	0	0	0	0	1	0	0	1	1	0	1	1	1	
	1	в С	0	1	1	1	0	0	1	0	0	1	0	0					
8	0	ш C	0	1	1	1	0	0	0	1	0	1	0	0	0	1	1	1	
	1	а С	0	1	1	1	0	0	1	0									
16	0	ш C	0 0	1	1	1	0	0	1	0	0	1	0	0	0	1	1	1	
	1	ш C																	
			cou	t															

Conditional Sum Adder Metrics

Multilevel carry-select idea carried out to the extreme, until we arrive at single-bit blocks.

$$C(k) \approx 2C(k/2) + k + 2 \approx k (log_2k + 2) + k C(1)$$

$$T(k) = T(k/2) + 1 = log_2k + T(1)$$

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11 used at the top to derive the sum and carry bits with a carry-in of 0 and 1

The term k + 2 in the first recurrence represents an upper bound on the number of single-bit 2-to-1 multiplexers needed for combining two k/2-bit adders into a k-bit adder

Hybrid Adders

A Hybrid Ripple-Carry/Carry-Lookahead Adder

A Hybrid Carry-Lookahead/Carry-Select Adder

Carry-Skip Adders Fixed-Block-Size

7.1 Simple Carry-Skip Adders

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

Another View of Carry-Skip Addition

Street/freeway analogy for carry-skip adder.

Mux-Based Skip Carry Logic

The carry-skip adder with "OR combining" works fine if we begin with a clean slate, where all signals are 0s at the outset; otherwise, it will run into problems, which do not exist in mux-based version

Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

$$T_{\text{fixed-skip-add}} = (b-1) + 0.5 + (k/b - 2) + (b-1)$$

in block 0 OR gate skips in last block
 $\cong 2b + k/b - 3.5$ stages
 $dT/db = 2 - k/b^2 = 0 \Rightarrow b^{\text{opt}} = \sqrt{k/2}$
 $T^{\text{opt}} = 2\sqrt{2k} - 3.5$

Example: k = 32, $b^{\text{opt}} = 4$, $T^{\text{opt}} = 12.5$ stages (contrast with 32 stages for a ripple-carry adder)

Fixed-Block-Size Carry-Skip Adder (1)

Notation & Assumptions

Adder size - k-bits

Fixed block size - b bits

Number of stages - t

Delay of skip logic = Delay of one stage of ripple-carry adder = 1 delay unit

Latency of the carry-skip adder with fixed block width

Latency_{fixed-carry-skip} =
$$(b-1) + 0.5 + \frac{k}{b} - 2 + (b-1)$$

in block 0 OR gate skips in last block
= $2b + \frac{k}{b} - 3.5$

Fixed-Block-Size Carry-Skip Adder (2)

Optimal fixed block size

$$\frac{d\text{Latency}_{\text{fixed-carry-skip}}}{db} = 2 - \frac{k}{b^2} = 0$$

$$b_{\text{opt}} = \sqrt{\frac{k}{2}} \qquad t_{\text{opt}} = \left\lceil \frac{k}{b_{\text{opt}}} \right\rceil = \sqrt{2 k}$$

$$\text{Latency}_{\text{fixed-carry-skip}}^{\text{opt}} = 2\sqrt{\frac{k}{2}} + \frac{k}{\sqrt{\frac{k}{2}}} - 3.5 =$$

$$= \sqrt{2 k} + \sqrt{2 k} - 3.5 = 2\sqrt{2 k} - 3.5$$

Fixed-Block-Size Carry-Skip Adder (3)

k	b_{opt}	t_{opt}	Latency fixed-carry-skip	Latency ripple-carry	Latency _{look-ahead}
32	4	8	12.5	32	6.5
128	8	16	28.5	128	8.5
16	2	8	8.5	16	4.5
	3	5	7.5		
64	5	13	18.5	64	6.5
	6	11	18.5		

Carry-Chain & Carry-Skip Adders in Xilinx FPGAs

Basic Cell of a Carry-Chain Adder in Xilinx FPGAs

X_i	y _i	C _{i+1}
0	0	y _i
0	1	C _i
1	0	C _i
1	1	$\begin{vmatrix} y_i \end{vmatrix}$

Carry-Skip Adder b-bit block

Carry-Skip Adder: Carry Skip Multiplexers

Carry-Skip Adder: Computation of the Block Propagate Signals

Complete Carry-Skip Adder

Carry-Skip Adders in Xilinx Spartan II FPGAs

by J-P. Deschamps, G. Bioul, G. Sutter

k		Delay	Max. Frequency		
	b=k	b=8	b=16	b=32	Increase
1	4	13	12		13
1	6	14	13		21
2	3	14	14		63
3	8	_	16	17	141
7	7	_	20	20	29
15	9	_	28	25	53
	1	1	l J	l l	

Carry-Skip Adders in Xilinx Spartan II FPGAs

by J-P. 1	Deschamp	s, G. Bioul	, G. Sutter

k	Area in CLB shoesa Overhead					
	b=k	b=8	b=16	b=32	b=8 b=16	b=32
3	32	47	41	_	47%	28%
4	18	73	66	_	52%	38%
6	54	99	91	_	55%	6 42%
12	28	_	191	179	_	49%
256	-	391	3	75	- 53	% 46°
51	.2	-	791	767	_	549

Carry-Skip Adders Variable-Block-Size

Carry-Skip Adder with Variable-Width Blocks

Fig. 7.2 Carry-skip adder with variable-size blocks and three sample carry paths.

Ripple Skip

The total number of bits in the t blocks is k:

$$2[b + (b + 1) + \dots + (b + t/2 - 1)] = t(b + t/4 - 1/2) = k$$

$$b = k/t - t/4 + 1/2$$

$$T_{\text{var-skip-add}} = 2(b - 1) + 0.5 + t - 2 = 2k/t + t/2 - 2.5$$

$$dT/db = -2k/t^2 + 1/2 = 0 \qquad \Rightarrow \qquad t^{\text{opt}} = 2\sqrt{k}$$

$$T^{\text{opt}} = 2\sqrt{k} - 2.5$$
 (a factor of $\sqrt{2}$ smaller than for fixed-block)

Most critical path to produce carry

Most critical path to assimilate carry

Variable-Block-Size Carry-Skip Adder (1)

Notation & Assumptions

Adder size - k-bits

Number of stages - t

Block size - variable

First and last block size - b bits

Delay of skip logic = Delay of one stage of ripple-carry adder = 1 delay unit

Variable-Block-Size Carry-Skip Adder (2)

Optimum block sizes

$$b_{t-1}$$
 b_{t-2} b_{t-3} ... $b_{t/2+1}$ $b_{t/2-1}$... b_2 b_1 b_0

$$b + 1 \quad b+2 \quad ... \quad b+\frac{t}{2}-1 \quad b+\frac{t}{2}-1 \quad b+2 \quad b+1 \quad b$$

Total number of bits

$$k = 2 [b + (b+1) + (b+2) + ... + (b + \frac{t}{2} + 1)] =$$
 $= t (b + \frac{t}{4} - \frac{1}{2})$

Variable-Block-Size Carry-Skip Adder (3)

Number of bits in the first and last block

$$b = \frac{k}{t} - \frac{t}{4} + \frac{1}{2}$$

Latency of the carry-skip adder with variable block width

Latency_{fixed-carry-skip} =
$$(b-1) + 0.5 + t-2 + (b-1)$$

in block 0 OR gate skips in last block
= $2b + t - 3.5 = 2\left[\frac{k}{t} - \frac{t}{4} + \frac{1}{2}\right] + t - 3.5 =$
= $\frac{2k}{t} + \frac{1}{2}t - 2.5$

Variable-Block-Size Carry-Skip Adder (4)

Optimal number of blocks

$$\frac{d\text{Latency}_{\text{variable-carry-skip}}}{dt} = -\frac{2k}{t^2} + \frac{1}{2} = 0$$

$$t_{\text{opt}} = \sqrt{\frac{1}{4} \cdot \frac{1}{k}} = 2\sqrt{\frac{1}{k}}$$

$$b_{\text{opt}} = \frac{k}{t_{\text{opt}}} - \frac{t_{\text{opt}}}{4} + \frac{1}{2} = \frac{1}{2}$$

$$b_{\text{opt}} = \frac{k}{2\sqrt{\frac{1}{k}}} - \frac{2\sqrt{\frac{1}{k}}}{4} + \frac{1}{2} = \frac{1}{2}$$

Variable-Block-Size Carry-Skip Adder (5)

Optimal latency

Latency variable-carry-skip
$$= \frac{2k}{t} + \frac{1}{2}t - 2.5 =$$

$$= \frac{2k}{2\sqrt{k}} + \frac{2\sqrt{k}}{2} - 2.5 =$$

$$= 2\sqrt{k} - 2.5$$

Latency variable-carry-skip
$$\approx \frac{\text{Latency}_{\text{fixed-carry-skip}}^{\text{opt}}}{\sqrt{2}}$$