

Subject

موضوع الدرس

Date

التاريخ

lab (1)

15-2-2015

flat-top Sampling

Sampling & holding (TDM)

* يهدف لبروسى مع التعامل بالـ Digital Communication
 هو الاتصال على عدد محدود من عدد درجات سرور levels

* For any communication system :-

11-10-2015

Subject

موضوع الدرس

Date _____

التاريخ

III Sampling:-

Leucosolenia

16. 1-273

Aspergillus *clavatus*

Quantizers:

A hand-drawn graph on lined paper showing three horizontal lines representing linear functions. The top line passes through points (0, 7) and (1, 1). The middle line passes through points (0, 3) and (1, -1). The bottom line passes through points (0, 1) and (1, -3). All lines have a slope of -4.

approximation دعویٰ

میث خصوصیات عذرخواز

levels use

$$x \in [0, 0.5] \quad x =$$

$$x \in [0.5, 1], x =$$

$$1.2 \rightarrow 1 < 2.7 \rightarrow 3 < 7 \rightarrow 7$$

| 3 | Encoder :-

binary Code ⚫ Discrete levels

00 01 11

Sampling types ..

II Natural sampling

عبارة عن switch دوائى هربت pulse train من signal

الاستهلاك لنفس سك، لـ (natural) f_s(t) ، ولكن

(natural) بـ الاصوات ؛ with sampling

Note:

تحول في Time domain)، (هزب في) Frequency domain)، (Convolution

Natural \Leftrightarrow flat-top

Subject

موضوع الدرس

Date

التاريخ

Time domain

Frequency domain

$F_s(\omega) \rightarrow$ Time (دلتى)
Flat-top فناطة سكوتر

* Notes

$$f_s(\omega) = S(\omega) * f(\omega)$$

↳ convolution

$$S(\omega) = \frac{\pi}{T_s} \operatorname{sinc}\left(n \frac{\pi}{T_s}\right) \delta(f - n f_s)$$

$$f_s(\omega) = \frac{\pi}{T_s} \operatorname{sinc}\left(n \frac{\pi}{T_s}\right) \cdot f(f - n f_s)$$

$$\left[f(f) * \delta(f - n f_s) = f(f - n f_s) \right]$$

f_s , i.e. shift $f(\omega)$ by f_s (backward), but $f_s(\omega)$.

نفترض أن $f(\omega)$ هي موجة موجية (أصلية) $\xrightarrow{\text{Recovery}}$ استرجاع / Recovery.

ويمكننا بشرط $f_s > 2f_m$ (الشرط على f_s) $\xrightarrow{\text{LPF}}$ 濾波器 (filtering).

إذا $f_s << 2f_m$

فسيتم $\xrightarrow{\text{filtering}}$ (الخط الثاني)

Subject

موضع الدرس

Date

التاريخ

١٢ Flat-top Sampling

١٣ Frequency Domains

Notes :

: flat-top Sampling في حالة (

$$f(t) \times \text{impulse train} = \boxed{\text{ }}$$

$$\boxed{\text{ }} \times \text{Pulse train} = f_s(t)$$

: Natural Sampling في حالة (

$$f(t) \times \text{Pulse train} = f_s(t)$$

impulse train :

flat-top Sampling بحال فreq. Domain (

$$f_s(\omega) = \frac{\tau}{T_s} \cdot \text{sinc}(F\tau) \cdot F(1 - nF_s)$$

يعني هي أسلوب وباسكيل Frequency داره في (Sinc) داره في natural)

للتحول على لدالة الأصلية (rect)

$$f_s(\omega) = F(f) * S(\omega)$$

$$S(\omega) = \frac{\tau}{T_s} \cdot \text{sinc}(F\tau) \cdot S(F - nF_s)$$

Time 3 خطوات في (F.T)

Domain

Subject

موضوع الدرس

Date

التاريخ

Lab

Operations:

ON/OFF

← Switch S Sampling Unit (يعني)
ويعني عمل كفالة.

Switch ON → Charge

Switch OFF → Hold

Switch ON → Charge

Time Division multiplexing (TDM)

استعمل فرقة لسكون بين علی two pulses يعني في اني
ارسلت علیه samples

الرسالة المدخلة : ١٢٣

ROB

Subject

موضوع الدرس

Date

التاريخ

Module Name : Sample - Hold and multiplex

Control logic unit :

Controls Sample Pulse width (T_s)

فيفصل فتح عدّايسه بـ switch

$T_s \uparrow$: Hold time \downarrow \rightarrow Sine (نَقْرِيبُ مِنْ سِكِّينٍ)
لأنّم (عَلَى عَلَى) سَوْفَ سِكِّينٍ (Sample)

Clock Frequency Unit :

Controls T_s in μs or pulse train

$f_s \uparrow$: no. of samples \uparrow \rightarrow Sine (نَقْرِيبُ عَدَسِكِينٍ)

LPF Circuits :

For Signal recovery

more pure Sine

LPF more Pizzi مُنْتَجٌ أَكْثَرَ

Subject

موضوع الدرس

Date

التاريخ

Very important:

clipping (saturation) \rightarrow dynamic range \rightarrow amplitude \rightarrow لوك (loss) \rightarrow distortion

dynamic range \rightarrow amplitude \rightarrow لوك \rightarrow distortion

$f_s \gg 2f_m$ \rightarrow لوك \rightarrow distortion

$f_s \gg 2f_m$ \rightarrow لوك \rightarrow distortion

$$f_s \gg 2f_m$$

Rect \rightarrow نو، نب (input signal) \rightarrow لوك

Sine \rightarrow LPF \rightarrow output \rightarrow لوك

Harmonics \rightarrow نو، نب، نم، نثri \rightarrow Rect \rightarrow لوك

but LPF Selects harmonic in B.W only

Subject

موضوع الدرس

Date

التاريخ

II Sample-hold

مُعَدَّات لِلْتَجْرِيَةِ :-

1- تَمَّ مُعَايِرَةً (على) function generator

Range: 200

- تَمَّ مُعَايِرَةً (F.G) بِمُخَارِجِ فُونِ (Probe) .

2- لِصُرْفِ تَوْجِيهِ input 1

module (يَاصِنْ) GND (GND)

3- تَمَّ تَوْصِيلُ دُبُّ (LPF) لِسَيْرِ اسْتِرْبَاعِ (Sampled signal)

4- تَمَّ تَوْصِيلُ دُبُّ (LPF) output

oscilloscope probe بِمُوصلِ بِالصُّرْفِ

5- الصُّرْفُ (GND) تَمَّ تَوْصِيلُهُ (Prob 2)

module (يَاصِنْ)

clock input → clock output

Don't forget ^

Function Generator

Subject

موضوع الدرس

Date

التاريخ

٢) T.D.M

خطوات لتجربة :-

- تم استخدام F.G و Sinewave لانتاج input ١

- تم استخدام F.G و Tri wave لانتاج input ٢

- تم توصيل input ١ بال output ١

- تم توصيل input ٢ بال output ٢

- oscilloscope (Ch₁) فتح Filter ١ و توصيل Filter ١ output

- oscilloscope (Ch₂) فتح Filter ٢ و توصيل Filter ٢ output

- (modulator + F.G + oscilloscope) GND (الإرضاء توصيل)

lab (2)

24/12/2015

P T M ماقيلعها

Pulse time modulation

Pulse modulation

II Analogue Pulse modulation

Converts Analogue Signal that is continuous with time
to another Analogue Signal that is discrete in time

(Quantizer), يدعى بـ #

III Digital Pulse modulation

Converts Analogue Signal (infinite levels) into
Digital Signal (with binary code)

encoder (پرميس Coding), يدعى بـ #

Subject

موضوع الدرس

Date _____

التاريخ

Old Recipe

(3) (d)(1)

For Analogue Pulse modulation

① Pulse Amplitude modulation (PAM)

يُتَحْصِّلُ لِتَعْلِيمٍ Samples يُؤْخَذُونَ بِأَعْلَى amplitude f(t) يُؤْخَذُونَ بِأَعْلَى amplitude

عند ذلك تكون الـ noise less و يكون R_x less distortionless

② Pulse width / duration modulation (Pwm/PDU)

يتغير، width مخصوص بـ pulse يتغير، ارتفاع (PAM) في (P)

از آن دلیل که width سینه Pulse باید برابر باشد

لی نئیں) Power خاصہ بارے میں سے قدر

ترجمہ آنے لاسی و نویز

distortion in pulse (بخصوص width) لذلک

Rx : inc alr, c, l w

③ Pulse Position modulation (PPM)

يتم تغيير وقوع (position) بعثة pulses (بـnegative edge) بـpositive edge (PDM) و يتم تحويل عرض (width) pulses على ولكن وقوع متغير

- PDM + PPM \rightarrow Pulse time modulation
(T_s) time
- PAM \rightarrow Sampling stage:

يتم استخدام جزء من PDM مع خلال PPM
حيث يقوم بإنتاج دلالة جاد
(negative edge) فنحصل على PPM في لفترة

monostable multiVibrator

Subject

موضوع الدرس

Date

التاريخ

$f(t)$

Analogous

$c(t)$

Pulse train within Amp. (Position),

PAM

$f(t)$ جيب حسب

PDM

جيب الارتفاع

PPM

جيب Position

PDM

Subject

موضوع الدرس

Date

التاريخ

١٥/٢/٢٠١٩

(cont.) amplitude modulation

	PAM	PDM	PPM
Amplitude	Variable	Const.	Const.
width	Const.	Variable	Const.
Position	Const.	Const.	Variable

الخطوة الأولى : تدوين الموجة المدخلة
 الخطوة الثانية : تدوين الموجة المدخلة
 الخطوة الثالثة : تدوين الموجة المدخلة

الخطوة الرابعة : مراجعة الموجات
 الخطوة الخامسة : التأكيد

الخطوة السادسة : التأكيد

Subject

موضوع الدرس

Date

التاريخ

PWM & PPM modulation (Generation)

Clock : Generates the same frequency (T_s) to the both generators

V_r : Reference level

Comparitor :

V_r مع PAM يكون حنايا بـ different levels
لهـ different widths for pulses ثم ينبع

افتراضية V_r يكون حنايا بـ same width
لـ different loss روى فـ Signal اذـ ادى نـ قـ اـ كـ اـ سـ بـ V_r
 V_r معـ same width Amp. of pulses وـ معـ different loss

PWM & PPN Demodulation

on time (الوقت المفتوح) charging (مدة PPM)، بعد ذلك next pulse (الوقت المفتوح التالي) والHold (مدة Hold)،
 (Charging + Hold) - less all pulses, ie (stop)

width of Pwm decreases \rightarrow Charging time \downarrow

\rightarrow Amplitude \downarrow

فترة \leftarrow hold i.e; \leftarrow تأخير في التحفيز \rightarrow charging + Hold \rightarrow const at t_s

Subject

موضوع الدرس

Date

التاريخ

Lab

Contents:

① Oscilloscope

② Power supply (U-2920M)

Dc output - بيحمل
module تكون توصيل باكيزه -
(2920 family) - ماصب

③ Signal source (2920B)

(f(t)) input signal - اللهم يطبع
ramp signal - نقدر خص عن على
f(t) - نفس تردد

④ PTM (2920D)

(Demodulation) يحصل على Rx سين -
(modulation) يحصل على Tx سين -

Subjec

موضوع الدرس

Date

التاريخ

* لا يدخل توجيه رقمي (GND) بين module C , module E , oscilliscope

* يستخدم modulator (oscilliscope) في modulation process .
ويمكن نرى output بـ demodulation .

2920 B Signal Source

Function generator (أعتاب)

consists of :-

① Audio Generator

Sine wave

triangle wave

② Noise Generator

③ Ramp Generator

MM

④

clk x 8

موجة مربعية بـ 8 ترددات، 8 بتات، 8 فولت

⑤

Sockets

To Control amplitude of generated waves

⑥ Frequency Selector

Selects frequency of generated ramp and clocks

⑦ Signal Generator

generates Square Signals with freq

From 1K Hz ~ 2 MHz (fixed nodes)

2920 D PTM

Consists of :-

A) The Transmitter

① LPF

eliminate any coming noise and produce
Pure Sine

② Sample & hold

produce PAM

Samples (دالات) clock pulse (دھیکہ، روتیہ،

Samples (دالات) ہیزید بکریہ و باہمی نیچرے سکل (دھیکہ،

سینے wave (دھیکہ،

لذتیں یجب تکلیں تردد (دھیکہ، Samples (دھیکہ،

③ Summation Point (Σ)

adds PAM + Ramp Signal

④ Comparator

Compares input with threshold Voltage

Ramp + PAM

and produces PDM

Subject

موضوع الدرس

Date

التاريخ

Comparator has internal threshold which is uncontrollable

if $V_{th} > \text{input}$ \rightarrow increase amplitude of Ramp

if $V_{th} < \text{input}$ \rightarrow produce PDM

with pulse width \uparrow

⑤ Converter

(is a monostable multivibrator)

produce PPM at every -ve edge of PDM

PPM \rightarrow pulses with constant width

B) The Receiver

Consists of :-

① Limiter

يسهل أي noise لكن يوجد في (ppm)
 زائد بالنسبة لـ (noise) . Pulse طبعاً هناك
 فجوة اربعراوند وزي noise يتم العاشر

② R S - f/f

Demodulator block

Converts PPM or PDM back into PAm

③ LPF

Converts PAm back into Sinewave Signal

يوجد # كاملاً لـ (الـ FSK) Simulation

Subject

موضوع الدرس

Date

التاريخ

2920

Power supply

Subject

الموضوع

Date

التاريخ

اذ اتم ترجمة الـ Sinewave بعملية \oplus modulation

① فراجع توصيلات Power Supply

Sinewave يحصل على Amplitude من ناعب في

② لأنوصل RS - FF مع clock

ملاحظات

Lab (3)

12/13/2015

Digital Pulse modulation

Pulse modulation

analog

Digital

- PAM (Sampling)
- PTM
 - PWM
 - PPM

- PCM
- DPCM
- DM
- ADM
- Sigma mod.

:: analogue في حالة

Digital مُولدة من

فِرَا نَقْوَم بِتَحْوِيلِ -
analogue Signal (Continuous \rightarrow Discrete)Digital في حالة :: digital في حالة
Digital في حالة \rightarrow analogue \rightarrow نَقْوَم فِرَا نَقْوَم بِتَحْوِيلِ -

Subject

موضع الدرس

Date _____

التاريخ

III Delta modulation (Dm)

$$\Sigma : \text{input (no feedback), } \underline{f(t) = f_3(t)}$$

Comparator :

$$V_{CC} + \Delta \leftarrow \text{نحصل على موجة قيمة} \\ V_{CC} - \Delta \quad " \quad " \leftarrow \text{موجة سالبة}$$

integrator, + PIB :- $\Delta + \Delta + \Delta \rightarrow$ جمع

Subject

موضوع الدرس

Date

التاريخ

 $f(t)$ Δt V_{cc} $-V_{cc}$

لـ بـ تـ بـ لـ

 $f_s(t)$ $f(t) - f_s(t)$
 $+ V_e \rightarrow + V_{cc} \rightarrow 1$
 $- V_e \rightarrow - V_{cc} \rightarrow 0$

ROK

$R_{x,:}$

$\delta(t) \uparrow$

integrator :-

خطوات (steps) لـ $\int_0^t \delta(t)$ ونقوم بتحريك (Samples) Sampling معه ونخرج منه (Output) وينتج منه (Pure Signal)

LPF :-

Pure Signal (Samples), خطوات (Samples)

$f_s \downarrow \rightarrow$ Distortion X

$f_s(t) \rightarrow f(t) \rightarrow$ خطوات (Samples)

$f_s \uparrow \rightarrow$ Pure Signal ✓

الخطوات (Samples) ترجع إلى حركة (Motion) وهذا يتحقق بـ (Sampling Rate)

عند ابرز فسائى هذا النوع ... !

① Slope overload noise

وهو يحيد عندهما تكون لاتارة سرعة ($f_{in} \uparrow$)
وبالنهاية تكون steps بعدة درجات، بالإضافة

② Granular noise

وهو يحيد عندهما تكون لاتارة سرعة ($f_{in} \downarrow$)
وبالنهاية تكون هناك فرق بين درجة الصلبة و

وتحصل هذه بمتكررة في استخدام :-

① Adaptive Delta modulation (ADM)

خادل زخم Signal لل track (زخم زخم)
قمعة، بتلات، دفع ببات، دلتا،

② Sigma Modulation

نقوم بتوزيع قيمة زخم Step (زخم قمة)
input، تخصيص بار amplitude،

١٢) Adaptive Delta modulation

نظام متغير الخطوة مع سرعة
tracking single input

- low frequency \rightarrow small steps
- High frequency \rightarrow large steps

$T_x \dots |$

Pulse
generator

Sequence Detector:

مقدمة في الاتصالات

يقوم بتحدد قيمة رقميّة معيّنة باعتماد عدد موجات دافع

دوالى لـ $(\cdot)^2$ و LPF

$$\begin{aligned} XX1 &\rightarrow S \\ XX11 &\rightarrow 2S \\ XX111 &\rightarrow 3S \\ XX1111 &\rightarrow 4S \end{aligned}$$

$$XX0 \rightarrow -S$$

$$XX01 \rightarrow \frac{2}{3}S$$

إذا كانت فرق مبتداً

S يبقى ثابت، فيكون قيمة $f_s(t)$ دائمة

$$R_X = 1$$

steps, أخطاء

Subject

موضوع الدرس

Date

التاريخ

3 | Sigma Modulation

في هذا النوع نقوم بتمرير قيمة مع دينار قيمة steps

Tx :-

$$\int \sin 2\pi f_k t = -\frac{1}{2\pi f_k} \cos 2\pi f_k t$$

$f_k \uparrow$: amplitude \downarrow

$f_k \downarrow$: amplitude \uparrow

Rx :-

ROX

lab

اذا قمنا بـ $\int_{-\infty}^{\infty} s \cdot S(s) ds$ فـ $S(s)$ تكون تـ $\frac{1}{j\omega + R_x}$ مـ $\frac{1}{j\omega + R_x}$ مـ $\frac{1}{j\omega + R_x}$

نیز دیکیل ایج دیکیل DC Value کیا ہے؟

اذا قمنا بزيادة فرقة input signal بـ f_{req} فـ tracking error فـ tracking steps لن يتغير

ويمكنني الحصول على R_x

- 1- distorted signal $f_{\text{rx}} \uparrow \uparrow$
- 2- output signal but with phase shift T_x ، (تردد الموجة المائية)

Slope overload Problem \rightarrow وكم يمكنا

T_x

high freq

t_{ri}

R_x

Subject:

موضع الدرس

Date _____

التاريخ

نتيجة لزيارة تردد $f_{in} \uparrow\downarrow$ input لـ Samples فـ f_{in} هي عبارة عن عد عكـن من تأثير سـكن f_{tri} وليس تكون عدد كبير جداً من Harmonics.

و عند ذلك ω_L ينبع $\omega_0 \leftarrow R_x$ و يسمى بـ جذور تردد و موجات Harmonics

و بالذات ذهب على \sin ايطاً (عن بـ) input دلـى بـ تردد مختلف تماـنـاً

این آنکہ ایک سسٹم کا ہر قسم کے مترقبہ tracking کے

DM

Subject

موضوع الدرس

Date

function generator

Notes

- $+6V, -ve 6V \rightarrow$ For test

$$+6V \rightarrow -S$$

$$-6V \rightarrow +S$$

- -ve input Differential amplifier

module N (نحوه) $f(t)$ \rightarrow (نحوه) $f(t)$ \rightarrow (نحوه) $f(t)$

-ve Diff amp $\xrightarrow{\text{موج}} -ve \text{ integrator}$

- Function generator $\rightarrow f(t) \rightarrow -ve \text{ Diff amp}$

$+ve \text{ Diff amp} \rightarrow \text{integrator output}$

$\text{integrator input} \rightarrow \text{Pulse generator output}$

$\text{Diff amp output} \rightarrow \text{Comparator input}$

$\text{Comparator output} \rightarrow \text{Data input or Pulse generator}$

$\text{Clock input of Pulse generator} \rightarrow \text{clock output}$

$t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}$

Subject

موضوع الدرس

Date

التاريخ

- تيار GND (مع oscilloscope)، فتح GND (مع Pin Gen) بـ GND، module number،

سوف يخرج باستخراج (osc) مع (osc) عند كل عدمة

(فرق) \rightarrow Diff amp \rightarrow (فرق)

- $V_{CC} = V_{CE}$ Comparator \rightarrow ونكتئي ارض، فرق مختلف، فرق كل دورة يستمر $f(t)$ (Feedback)،

(Wavelength) Deltas \rightarrow Pulse generator \rightarrow

Samples، موجة \rightarrow R_x (integrator)، i.e. 4 tracks (sin) على شكل

Pin Chopper، ونكتئي (هذا يتحقق على \rightarrow SLPF \rightarrow)

Differential Amplifier \rightarrow Σ (ذكر بعد)

Difference between $I_S(+)$ - $I_S(-)$

$$\rightarrow + \rightarrow V_{CE} \rightarrow S$$

$$- V_E \rightarrow - V_{CC} \rightarrow - S$$

Subject:

موضوع الدرس

Date:

التاريخ

* Rx

pulse generator output \rightarrow integrator input

integrator output \rightarrow LPF input

LPF output \rightarrow oscilloscope A & E

Subject

موضوع الدرس

Date

٢٠١٩

[2] Segma mod.

٦.٩١

Notes:

هذا النوع يصلاح لرسائل

Slope over load . هذا النوع قايم بحل مستكته.

$$\int \sin 2\pi f t = -\frac{1}{2\pi f} \cos 2\pi f t$$

ينبئ بوزوست قيمة f_{reg} صارقة
وقدر المدى سحولة tracking

ولكن خذ بالاعتبار هنا مصلحة لأن حكوة
برد $f_s > 2f_m$

ويجب أن يكون f_s يتجاوز f_m فيقتصر المدى

Sigma mod.

Subject

موضوع الدرس

Date

التاريخ

function generator

لوكس تشن / مار - نفس التوصيل السابقة

lab (4)

PCM Pulse code modulation

Note that

(m) bits \rightarrow Sample نجرب عنصر .

bits ؟ في串行 transmission , 8 bits .
bit - bit \leftarrow Cable , في串行 bits . , بین .

Packet \rightarrow group (m bits) .

Synchronization (Packet مع header) .
(Packet) ، تردد نافذة (Rx) ، تردد (Tx) .

3 bit
4 bit
Switch \rightarrow no m bits . خود .
no. of levels $\leftarrow M = 2^m$ مع علامات
no. of bits

3 bits \rightarrow 8 levels \leftarrow 4 bits \rightarrow 16 levels ;

$m = 4 \text{ bits}$, λ_0 ف.

Syne. Pattern

1111 1111

نرخ دفعه channel 3 pulses.

ISI (بسبب انتشار في الزمن)

Guard bits (لمنع ISI)

Sample (قبل و بعد)

- Coded binary sequence of quantized Sample.

00 ABCD 00 → guard bits

sample = 4 bits

00 ABCD 00 1111 1111

- Problems :

① For $m = 4$ Sample $\rightarrow 16$ bits B.W

(لـ user من مساحة بanda و بـ 4 bits)

② Throughput [i.e. useful B.W] is ABCD

16 bits, لـ user من مساحة بanda و بـ 4 bits

data, لـ user من مساحة بanda و بـ 4 bits

لـ user من مساحة بanda و بـ 4 bits

T_x

Switch :

determines no. of bits used to represent each sample

clock :

- fast $f_{in} > 300 \text{ Hz}$

output is shown on the oscilloscope

- low $f_{in} < 300 \text{ Hz}$

output is shown on the LEDs

Counter :

- Counts from 0 to 15 0000 to 1111

use all bits (جول هو ان Counter) (فقط)

you provide analogue output (S)

ADC (Analog-to-Digital Converter)

- if input of Counter = 110

currents (S) bits (جول هو Counter) (فقط)

0 → → current zero

1 → ← current zero

Summing junction (جمع) Currents (جذور) (فقط) (لذلك) ramp signal (انحدار) وحيث Voltage (نسبة)

• Summing junction:

Converts digital input into analogue output that is a Periodic ramp signal.

$-1.3 \sim +1.3 \text{ V} \leftarrow \text{Dynamic Range}$,

ويعنى ازدحام في محاور (Dynamic range)

(0.35) (3 input) اخرب (Comparison),

يعنى 0.35 يقتصر input a attenuation (Comparison),

ما يعنى ماتخصن

Quantizer \leftarrow its Counter (هو تضييق)،

clipping \leftarrow DR (عند خروج)

Comparators: Relate output logic to analog input

Level 2 Gray code conversion

- $+ > - \rightarrow \text{high}$
- $+ < - \rightarrow \text{low}$

- if $\text{input} = 0$:

a) $\text{clock} \rightarrow \text{low}$

approximate to low level $\rightarrow [0111]$

b) $\text{clock} \rightarrow \text{high}$

approximate to high level $\rightarrow [1000]$

وهو معمول في الـ latch بالمقارنة بين قيم ramp signal و Comparator

وanalogue input

يعمل على تعاون مع Counter # بعدها يدخل في shift register، ثم enable يدخل في latch ويرسل إلى جهود

shift register :

PISO مسلسل
Converts Parallel input
into Serial output

PCM output :

11 11 11 11 00 D C B A 00
 Sync. bits Data
 guard bits

Subject

موضوع الدرس

Date

التاريخ

 R_x :

PCM1P

00 ABCD 00

Shift register

S I P o

00 A B C D 00

A B C D

Buffer

Subject

موضوع الدرس

Date

التاريخ

Synch. Detector:-

Counts no. of 1's (ones) from Pcm i/p

PCM input (التي جاء من الباينت) يدخل
 (Put Zeros) لـ ٥ يضاف على كل (Put)

Clock:-

detector (no. of Volt طلب من clocks بطيء) -
 clock (رسالة قوية bit)
 no. of clocks = 12 clock

Counter:-

a) Div by 8

generates one clock pulse if input is 8
clock pulses

b) Div by 9

generates one clock pulse if input is 9
clock pulses

Shift Register → SIPO
Serial input Parallel output

AND gate :

clock

Div by 8
Counter

input of AND gate → clock pulses

→ inverted output of
Div by 8 Counter

8 clock pulses بارسل أول (AND) gate ، ثم
shift register يدخل ، ولذلك يوم بتخزين
00 ABCD 00 ، حيث كل سبعة

In Case of Div by 9 Counter

8 clock pulses بعد active low pulse .
وبالتالي يقول لها انه يسخون 3 توكين [shift register] ،
الذى يمكن تكون حزن ، 8 bits
transmission ، الى وصلو ببعضها .

فاينما ال 8 bits ← (يختلط وجوه) Div by 8
 داخلي Reg (داخلي)
 و باشك بيجه (داخلي) Div by 8 (باشك)
 قوى (Reg.)

Shift register is connected with latch
 by (4) connections that transmit (A B C D)

latch: active low device

مترسخ (ABC D) ← Data bits),
 shift register),

و معهم يوم بـ, مدخل (DAC)
 في يرسل على (analogue output signal)

buffer amplifier:-

different modules (isolation) بعده

if input is Sine wave → output will be
 Sampled Sine
 to get pure Sine → use LPF

LabStage ①: ~~slow mode~~

Clock → slow mode

Connect analog input with GND

في هذه الممارسة
في ذكر 15 رقم في Counter (بالترتيب
ويعندها صورة في Clock Pulse)،
في ذكر 1110 في latch،
أيضاً فيه 1111 في Counter (أي
latch)، وهو يمر بـ Shift Reg.

- Stage ② :

Connect Sync. Pulse output with EXT trigger
from oscilloscope

Show Ramp output on Ch. ① of oscilloscope

- with $m = 4$ bits
we get 16 levels (midrise)
- with $m = 3$ bits
we get 8 levels (mid rise)

for fast clock

→ approximate to high level 1111

for slow clock

→ approximate to low level 0000

Note

→ Don't forget to connect the GND of
oscilloscope with the GND of module

Connect analogue input with GND

stage ③ :

Connect Sync. Pulse output with EXT trigger
of oscilloscope

EXT \longleftrightarrow Osc Source (مصدر #)
EXT Trigg \rightarrow Probe (مجزء #)

Connect between Pcm input & Pcm output

Connect analogue input with GND

Using ch ① show output of different positions on oscilloscope

→ synch Detector

→ clock

→ Counter [Div by 8]

→ after AND gate

Subject

موضوع الدرس

Date

التاريخ

- Stage (4) :-

- Connect Sync. Pulse output with EXT trigger of oscilloscope.
- Connect Pcm input with Pcm output
- Use external sine wave (from Function Generator) and connect it with analogue input
- Show output of analogue output on CHB of oscilloscope

End of note

Subject

موضوع الدرس

Dato

التاريخ

Notes

- Output of this stage is Sampled Sine

نمونه هایی را که Samples نمایند می خواهیم output می خواهیم Sample / sample می خواهیم.

عکن الوجه (Clipping) سینوس محدود (Sampled Sine) را داشت که محدودیت Dynamic Range را داشت و این بستاره عیّن amplitude را داشت.

"Synchronization" لترجمت بـ (ال sincronization) ← Sync.

- Don't forget to connect GND of module with GND of Function generator or oscilloscope

Subject موضوع الدرس
lab (5)

التاريخ Date 26/14/2015

Line Codes (Data formats)

* Simulation of Digital Comm. system

$R_x \leftarrow T_x \leftarrow \text{Signal} \leftarrow \text{دست لکوں سے} \dots \text{Simulation} \leftarrow \text{یعنی ہمارے} \\ \text{وہم ارسال (analog \ digital) data} \leftarrow \text{وہ مارسال اور سیگنل اور}$

→ we have two techniques i.e. τ_{min} & τ_{max}

- ① Detect and Correct errors
 - ② Detect errors, Reject Packet and then recall it again

modules family → 2970

You must use power supply from the same family

at T_x

جُنْدِيْفِرْس ... internal clock بِعَوْرَكْ •

```

graph LR
    Input(( )) --> Top[100 K Hz]
    Top --> TopFin["fin < 50 K Hz"]
    Input --> Middle[100 Hz]
    Middle --> MiddleFin["fin < 50 Hz"]
    Input --> Bottom[1 Hz]
    Bottom --> BottomFin["fin < 0.5 Hz"]
  
```

- Pizeta ، clock مع clock ، A Dc ، ملأ دعوز أفعى / نة

→ Input Cases :- Project will be taken to

① analogue

DR = ±2.5V (analogue Signal input) - وهذا أقدر أدخلAnalogue input)، فيه عند فتح ماء يُدخل Calibration (رسان)، فلن ما ذكرت..

1. Connect analogue input with GND
 2. Change Zero button until LEDs get the value 10000000

(Correct | Uncorrect) \leftarrow Switch (جایگزینی R_x)
 علتن لومض هوئ مند و ذئرعه noise
 اُقد، اُستله (Correct errors)

② Digital

each sample is represented by 8 bits

$$\text{bit clock} = 80 \text{ KHz}$$

$$\text{word clock} = \frac{80}{8} = 10 \text{ KHz}$$

we can enter data manually using digital buttons

③ Random

random binary stream

we can't expect or control it

→ Data formats :-

① 8 bit

Can't detect errors

transmitted bits) حسناً ما يزيد عن 8 bits (ولكن يمكن اكتشاف خطأ في كل بit)
وذلك مع افضل (انواع) ... (ذى باع ...)
(bit rate ↑) data (من فهم)

② Parity Check

7 bits for Data + 1 bit for check

لكرة هنا انه يعمق عملية XOR بين 7 Bits
ويثبت انه لو لقيت

\leftarrow no. of ones
Even Packet \Rightarrow بحيث انه يعطى

odd bits then it is even and

if also odd \leftarrow لو لقيت R_x error ie

: detects only odd errors but can't correct them

③ Hamming Code

4 bits for data + 3 check bits + LSB

- Can detect & correct only one error

- Can detect two errors

- can detect odd errors and define

- Position of errors

في R_x هناك 3 خانة تعرف عن

odd error \leftarrow error (عذر)

2 errors \leftarrow 2 errors (نحوه اثنين)

one error \leftarrow error (واحد)

Lab ① Data Formats

1- Connect T_x , R_x with Power Supply

2- Connect GND of T_x with GND of R_x

3- Connect clock in $\rightarrow f_s = 100 \text{ kHz}$

4- T_x R_x

هذا ندخل في ونخرج digital input bits

R_x (3 errors وختير Format),

وذلك لأن كل 3 لات، و ذلك

مع الأخطاء 3 # (Format), توفرت التي تأتي مع T_x (3 errors)

Lab ②. Digital Comm. system

الفكرة هنا .. هي يائز نعمل System بـ telephone خلار
مع صريح في أرض voice signal ونحوه قدر (ساعي)
وألا يزال

- 1- microphone
- 2- transmitter
- 3- receiver
- 4- speaker

Power supply

ولكن يعني R_x أخفق يعني وذهب
(Correct / Uncorrect) يعني switch في
and caused mistake error لأن #
والاخفق يعني

analog case \rightarrow switch \rightarrow T_x #
input \rightarrow opamp \rightarrow Calibration \rightarrow عمل

Lab ③

line Codes

الفكرة هنا ذي أدخل 8 bits digital input وسوف من قادر ذي إدخال (صيغة بنائية) ولازالت $NRZ \leftarrow RZ \leftarrow [Unipolar | bipolar]$

هاسنخ حم هنا، لي/module و اللي هيكون مختلف عن في R_x في بسبابة

خرباله .. ذي R_x في NRZ output ذي Processing بعد T_x نتيبة لا Phase Shift

هاسنخ حم بـ oscilloscope علشان نعرض

word clock \rightarrow ch ①

output \rightarrow ch ②

علشان نعرف هاردخل ذي فرقة ولازالت

line module ذي ذي ماتسازن # # #
Power supply بار

- at R_x \rightarrow input - Digital
format - 8 bits

