SC1005 Digital Logic Tutorial 4

Combinational Logic

- 1. Given the following truth table, determine:
 - a. The canonical sum-of-minterms expression
 - b. The minimum cost sum-of-products (SOP) expression from (a) using algebraic manipulation.
 - c. The canonical product-of-maxterms expression
 - d. The minimum cost product-of-sums (POS) expression from (c) using algebraic manipulation.
 - e. The NAND gate only implementation of the minimum cost SOP expression.
 - f. The NOR gate only implementation of the minimum cost POS expression.
 - g. That the two expressions in (b) and (d) are identical using algebraic manipulation.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Page 1 of 3 SC1005 Tutorial 4

Karnaugh maps

2. Simplify the following expressions using Karnaugh map:

(a)
$$X = AB'D' + A'BC'D + A'BCD + A'B'D'$$

(b)
$$Y = (P+Q'+R+S')(P+Q'+R'+S')(P'+Q'+R+S')(P'+Q'+R'+S')$$

3. Simplify the Boolean function F together with the don't care condition d, using the K-map method. Give your answer in SOP.

$$F(A, B, C, D) = \Sigma m (0, 5, 6, 8, 14)$$

d (A, B, C, D) =
$$\Sigma$$
 m (2, 7, 15)

4. Repeat Question 3. Give your answer in POS.

Page 2 of 3 SC1005 Tutorial 4

Answers

a.
$$F_{SOP} = A'B'C + A'BC + AB'C' + ABC' + ABC$$

b.
$$F = AB + A'C + AC'$$

c.
$$F_{POS} = (A+B+C) (A+B'+C) (A'+B+C')$$

d.
$$F = (A+C)(A'+B+C')$$

e.
$$F = ((AB)' (A'C)' (AC')')'$$

f.
$$F = ((A+C)' + (A'+B+C')')'$$

2. (a)
$$X = B'D' + A'BD$$

(b)
$$Y = Q' + S'$$

3. (a)
$$F = BC + A'BD + B'C'D'$$

(b)
$$F = (A'+D') (B+D') (B+C') (B'+C+D)$$