OFFICE DU BACCALAUREAT DU CAMEROUN						
EXAMEN	BACCALAUREAT	SERIE	CetD	SESSION	2019	
EPREUVE	CHIMIE	COEF.	2	DUREE	3h	

EXERCICE 1: CHIMIE ORGANIQUE/(6pts)

1-QCM : Choisir la bonne réponse parmi celles proposées ci-dessous :	
La formule NH ₂ -CH(CH ₃)-CH=CH-CH(CH ₃)-COOH représente :	
(a). L'acide 2-amino 5-méthylhex-3-énoïque ; (b). Le 5-carboxypent-3-ène 2-amine ;	0,5pt
(c). L'acide 5-amino 2-méthylhex-3-énoïque .	0,5pt
2- Un alcool A a pour formule semi-développée : CH ₃ -CH-CH ₃ . 2-1- Donner le nom et la classe de cet alcool. OH	0,5pt
2-1-Donner le nom et la classe de cet alcool. 2-2-Cet alcool peut être obtenu par hydratation d'un alcène.	0,560
Identifier cet alcène et écrire l'équation-bilan de son hydratation conduisant au produ	it
majoritaire exclusivement.	0,75pt
2-3-On oxyde l'alcool A par l'ion dichromate en milieu acide.	
2-3-1-Donner la formule et le nom du composé B obtenu.	0,5pt
2-3-2-Le composé B peut-il réagir avec la 2,4-DNPH ? avec le réactif de Schiff ?	0,5pt
2-4-On estérifie l'alcool A avec l'acide éthanoïque.	
2-4-1-Ecrire l'équation- bilan de la réaction.	0,5pt
2-4-2-Donner deux caractéristiques de ce type de réaction.	0,5pt
3-L 'alanine ou acide 2-aminopropanoïque est un acide α -aminé. 3-1 -Ecrire la formule semi-développée de ce composé.	0,5pt
3-2-Représenter en perspective ses deux énantiomères.	0,5pt
3-3-En solution aqueuse, cette molécule existe sous forme d'amphion : Ecrire la formule	0,00
semi- développée de cet amphion.	0,5pt
3-4-La réaction de condensation entre deux molécules d'alanine donne un dipeptide.	
Ecrire l'équation- bilan de cette réaction.	0,75pt
EVERGICE 2 CHARACT CENTRALE (ALLE)	
EXERCICE 2 : CHIMIE GENERALE / (4pts) 1-Définir : état fondamental ; énergie d'ionisation.	1pt
2- Quelle est la valeur (en eV) de l'énergie d'ionisation d'un atome d'hydrogène ?	0,5pt
3-L'énergie de l'atome d'hydrogène dont l'électron est sur la couche n est donnée par la	-/-(-
relation suivante : $E_n = -\frac{E_0}{n^2}$.	
3-1 - Un atome d'hydrogène a pour énergie $E_n = -0.85$ eV : déterminer n.	0,5pt
3-2-Un atome d'hydrogène passe du niveau 4 au niveau 1 :	
3-2-1-Dire si cette transition correspond à une absorption ou à une émission du rayonne	0,5pt
Justifier votre réponse.	1,5pt
3-2-2-Calculer la longueur d'onde λ du rayonnement correspondant. Données : $E_0 = 13,6$ eV, avec 1 eV = $1,6.10^{-19}$ J ; $h = 6,62.10^{-34}$ J.s ; $C = 3.10^8$ m/s.	2,000
Doinices . Eq = 13,0 ev, avec 1 ev = 1,0.10 3, 11 = 0,02.10 3/3 / 0 = 3/10 11/3	
EXERCICE 3: ACIDES ET BASES/(6pts)	
1 -Une solution d'acide éthanoïque CH_3COOH de concentration $C = 10^{-2}$ mol. L^{-1}	

1-Une solution d'acide éthanoïque CH_3COOH de concentration $C = 10^{-2}$ mol. L^{-1} a un pH = 3,4 à 25° C.

1-1 - Montrer que l'acide éthanoïque est un acide faible dans l'eau.

0,5pt

1-2- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau.

0,5pt

MINESEC / OBC / BACCALAUREAT ESG / EPREUVE DE CHIMIE/ SERIE : C ET D / SESSION 20:19. Page 1 sur 2

1-3 -Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. 1,5pt **1-4-** En déduire le pKa du couple $\mathrm{CH_{3}COOH} \, / \, \mathrm{CH_{3}COO^{-}}$. 0,5pt **2-** On dose V_b = 10 mL d'une solution de méthylamine CH_3NH_2 de concentration C_b inconnue par une solution d'acide chlorhydrique de concentration $C_a = 1,2.10^{-1} \text{ mol.L}^{-1}$. 2-1-Faire le schéma annoté du dispositif expérimental utilisé pour ce dosage. 1,5pt 2-2-Ecrire l'équation-bilan de la réaction de dosage. 0,5pt **2-3-** Les coordonnées du point à l'équivalence sont : E ($V_{a\, {\rm é}q}$ =15mL ; pH $_{\rm \acute{e}q}$ = 5,8). Déterminer la concentration C_b de la solution de méthylamine. 0,5pt 2-4- Si ce dosage avait été colorimétrique, quel serait, parmi les indicateurs colorés ci-dessous, le plus approprié pour ce dosage ? 0,5pt On donne les zones de virage des indicateurs suivants : Hélianthine : 3,1 - 4,4 Rouge de méthyle : 4, 4 - 6,2 ; Phénolphtaléine : 8,2 - 10,2.

EXERCICE 4: TYPE EXPÉRIMENTAL (4pts)

Dans un laboratoire de Lycée, on désire étudier l'influence de la température sur la vitesse de formation du diiode (I_2) au cours de la réaction entre les ions iodure (I^-) et les ions peroxodisulfate ($S_2O_8^{2-}$).

Pour cela, on choisit trois béchers numérotés 1, 2 et 3, et on introduit dans chaque bécher une même quantité suffisante de solution d'iodure de potassium et d'empois d'amidon. A l'instant t=0, on ajoute dans chaque bécher une même quantité suffisante de solution de peroxodisulfate de sodium, puis on soumet le mélange à une température donnée, suivant la répartition du tableau ci-dessous, dans lequel on note la durée t au bout de laquelle une couleur bleue apparaît dans chaque bécher :

Bécher	N°1	N°2	N°3
Température (°C)	0	20	100
temps t (s)	3300	745	99

1-Citer deux règles de sécurité à observer dans un laboratoire.

0,5pt

2-Écrire l'équation-bilan de la réaction entre les ions I^- et les ions $S_2O_8^{2-}$.

1pt 0,5pt

3 -Préciser le rôle de l'empois d'amidon au cours de cette expérience.
4-Identifier l'espèce chimique qui en présence de l'empois d'amidon est responsable de la

,560

coloration bleue dans chaque bécher.

5- Donner l'expression de la vitesse volumique instantanée de formation du diiode à un

0,5pt

instant t et dire comment on peut la déterminer graphiquement.

1pt

6- A partir du tableau ci-dessus, dire comment varie la vitesse de formation du diiodé en fonction de la température.

Epreuve disponible sur www.emergencetechnocm.com

Le pôle de l'innovation

Lemon 2019