Essais cliniques adaptatifs à l'aide des bandits stochastiques

21 juillet 2022

Le problème

- on dispose de N médicaments
- on souhaite déterminer lequel de ces médicaments est le plus efficace
- pour cela, on va donner ces médicaments à des patients (dans le cadre d'essais cliniques) tout en cherchant à attribuer le meilleur médicament le plus grand nombre de fois possible

Plan

- Formalisation à l'aide des bandits stochastiques
- **2** Stratégie ϵ -greedy
- Algorithme Upper Confidence Bound (UCB)
- Application à des données réelles

Formalisation du problème

- N médicaments
- chacun a une certaine probabilité fixée de faire guérir le patient
- on dispose d'un certain nombre de patients
- But: donner le meilleur médicament au plus grand nombre de personnes possible

- **1** *N* actions: 0,1,...N-1
- chaque action a, lorsqu'elle est choisie, donne une récompense 1 avec une probabilité q(a)
- 3 le pas de temps t = 0,1,...on note A_t et R_t
- But : récolter un nombre maximal de récompenses

Stratégie ϵ -greedy

- pour chaque action a, on calcule la moyenne des récompenses obtenues après avoir choisi a. On la note $Q_t(a)$.
- **exploitation**: choisir l'action a qui a la plus grande moyenne $Q_t(a)$
- exploration: choisir une action au hasard

Stratégie ϵ -greedy

- pour chaque action a, on calcule la moyenne des récompenses obtenues après avoir choisi a. On la note $Q_t(a)$.
- exploitation : choisir l'action a qui a la plus grande moyenne $Q_t(a)$ avec une probabilité $1-\epsilon$
- ullet exploration : choisir une action au hasard avec une probabilité ϵ

Algorithme ϵ -greedy

pour chaque patient:

avec une probabilité $1 - \epsilon$:

donner le médicament A_t qu'on pense être le meilleur sinon:

donner un médicament A_t aléatoire observer l'état du patient R_t et mettre à jour Q_t

Résultats

$$actions_q = [0.9, 0.1, 0.8]$$

FIG.: ϵ -greedy ($\epsilon = 0.2$)

$$actions_q = [0.9, 0.1, 0.88]$$

FIG.: ϵ -greedy ($\epsilon = 0.2$)

Incertitude

Upper Confidence Bound

$$P\Big(q(a) \geq Q_t(a) + U_t(a)\Big) \leq p$$

Calcul de $U_t(a)$

Inégalité de Hoeffding

Soit $(X_1,...,X_t)$ des variables aléatoires réelles mutuellement indépendantes à valeurs presque sûrement dans $\{0,1\}$, et $S_t = \frac{1}{t} \sum_{k=1}^t X_k$. Alors,

$$\forall u \in \mathbb{R}_+^*, P(\mathbb{E}[S_t] \ge S_t + u) \le e^{-2tu^2}$$

Calcul de $U_t(a)$

Inégalité de Hoeffding

Soit $(X_1,...,X_t)$ des variables aléatoires réelles mutuellement indépendantes à valeurs presque sûrement dans $\{0,1\}$, et $S_t = \frac{1}{t} \sum_{k=1}^t X_k$. Alors,

$$\forall u \in \mathbb{R}_+^*, P(\mathbb{E}[S_t] \geq S_t + u) \leq e^{-2tu^2}$$

Application aux récompenses données par une action a :

$$P\Big(q(a) \geq Q_t(a) + U_t(a)\Big) \leq e^{-2N_t(a)U_t(a)^2}$$

Calcul de $U_t(a)$

Application aux récompenses données par une action a :

$$P\Big(q(a) \geq Q_t(a) + U_t(a)\Big) \leq \mathrm{e}^{-2N_t(a)U_t(a)^2}$$

on veut

$$e^{-2N_t(a)U_t(a)^2}=p$$

d'où

$$U_t(a) = \sqrt{\frac{-\ln(p)}{2N_t(a)}}$$

Algorithme UCB

on choisit $p = t^{-4}$, d'où:

$$U_t(a) = \sqrt{\frac{2\ln(t)}{N_t(a)}}$$

alors:

$$A_t \leftarrow \operatorname{argmax}_a Q_t(a) + U_t(a)$$

Résultats

$$actions_q = [0.9, 0.1, 0.8]$$

FIG.: ϵ -greedy ($\epsilon = 0.2$)

$$actions_q = [0.9, 0.1, 0.8]$$

Fig.: UCB

Résultats

$$actions_q = [0.9, 0.1, 0.88]$$

FIG.: ϵ -greedy ($\epsilon = 0.2$)

$actions_q = [0.9, 0.1, 0.88]$

Fig.: UCB

Application : la base de données International Stroke Trials

- près de 20 000 patients atteints d'AVC en phase aiguë
- 6 traitements (différentes doses d'aspirine et d'héparine)
- donnée sur la mort des patients à J+14

	SEX	AGE	RXASP	RXHEP	DDEAD
0	М	69	Υ	N	N
1	М	76	N	L	N
2	F	71	Υ	N	N
3	М	81	N	М	N
4	М	78	Υ	М	N
19430	М	66	N	L	N
19431	М	75	N	М	N
19432	М	77	N	N	N
19433	F	87	N	N	Υ
19434	М	54	Υ	М	N

Résultats

- But:
 - s'assurer de la convergence d'UCB vers le meilleur traitement (YL: aspirine = Y, héparine = L)
 - étudier le nombre d'attributions du meilleur traitement

Résultats

	classique	UCB
nombre de	3319	4665
traitements YL		
attribués		

Ouverture

- utilisation concrète encore limitée
- adaptation pratique de la stratégie pour permettre une plus grande vitesse de distribution des médicaments aux patients
- essai clinique DisCoVeRy dans le cadre de la Covid-19, mené en France

Annexe : ϵ -greedy sur IST

Annexe: cas concret d'un essai adaptatif

FIG.: PALLMAN ET AL., *BMC Medicine*, [Adaptive designs in clinical trials: why use them, and how to run and report them]

Annexe: incertitudes en fonction du temps

$$t = 1000$$

$$t = 190000$$

Annexe: Modification de p dans UCB

$$p=\tfrac{1}{t^2}$$

$$p = \frac{1}{t^{10}}$$

Annexe: UCB avec des groupes de patients

 on traite des groupes de patient et on fait les mises à jour par paquets

Annexe: UCB avec des groupes de patients

Annexe: comparaison entre les essais cliniques randomisés et adaptatifs

6 traitements, 20 000 patients

- jours_attente: temps nécessaire entre l'administration d'un traitement et l'observation de son résultat.
- p_mort : probabilité quotidienne qu'a un patient atteint de la maladie de mourir

Annexe: comparaison entre les essais cliniques randomisés et adaptatifs

Lien avec le RL

- problème de bandit ←⇒ MDP avec un seul état
- chaque épisode est de longueur 1
- model-free

Des bandits?

bandit manchot (one-armed bandit)

bandit à plusieurs bras (*multi-armed bandit*)

