Wzory

• Informacja:

$$I(x) = -\log_2 P(x)$$

Entropia:

$$H(X) = \sum P(x) \cdot I(x)$$

• Śr. długość kodu:

$$L = \sum P_i \cdot l_i$$

Nierówność Krafta:

$$\sum 2^{-l_i} \le 1$$

Wydajność:

$$r = \frac{1}{n} \log |\mathcal{C}|$$

$$\sum_{i=1}^{t} \binom{n}{i} \leq 2^{n-k}$$

• Wsp. informacji: $\eta = k/n$

 Hamming: d= liczba różnic Wykrywanie: d-1, Korekcja: $\lfloor (d-1)/2 \rfloor$

• Cykliczność: przesunięcie \Rightarrow w kodzie

• Wielomian
$$g(x)$$
:

$$g(x) \mid x^n + 1 \in \mathbb{Z}_2[x]$$

$$I(1/2) = 1$$
, $H(\{1/2, 1/2\}) = 1$, $L = 0.5 \cdot 1 + 0.5 \cdot 2 = 1.5$, $\sum 2^{-l}i = 0.75$

Kod Huffmana

Algorytm:

- Połącz 2 najmniejsze wagi \rightarrow nowe
- Krawedzie: lewa = 0, prawa = 1
- Powtarzaj aż zostanie jedno drzewo
- Kody = ścieżki z korzenia

Wariant dynamiczny:

- Drzewo budowane w trakcie odczytu
- ullet Nowe symbole \Rightarrow użycie NYT (Not Yet Transmitted)
- Nowy symbol dodany do drzewa, reszta aktualizowana
- Znane symbole: kod z aktualnego

Kod prefiksowy, jednoznaczny, optymalny

Kod Shannon-Fano

Kod prefiksowy, nie zawsze optymalny.

- \bullet Oblicz $w_j\colon \quad w_1=0, \quad w_j=\sum_{i=1}^{j-1}2^{l_j-l_i}$
- Kod a_j : binarna postać w_j dopełniona zerami z lewej do l_j bitów

Przykład: $p = [0.5, 0.25, 0.25] \Rightarrow l = [1, 2, 2]$ $w = [0, 2, 3] \Rightarrow \text{kody: } 0, 10, 11$

Kod Golomba/Rice

Dla liczby n i parametru M:

$$q=\lfloor\frac{n}{M}\rfloor, r=n \text{ mod } M$$

Golomb: kod = q w unarnym + r w binarnym (długość zależna od M) Rice: Golomb z $M = 2^k \Rightarrow r = k$ -bitowy binarny

Kod Tunstalla

Kod nieprefiksowy, ale jednoznaczny przy stałej długości. Kompresja bezstratna o stałej długości wyjściowej (kod: n bitów):

- Dla alfabetu a_i z p_i budujemy drzewo od najczęstszych symboli.
- Rozwijaj liść S: twórz ciągi Sa_1, \ldots, Sa_m z wagą $P \cdot p_i$.
- Powtarzaj aż liczba liści (kodów) = 2^n .
- Kody to indeksy liści (słowa) \Rightarrow długość kodu = n.

Przykład: $p(a)=0.6,\ p(b)=0.4\Rightarrow$ start: $a,\ b$ Rozwijaj $a:\ aa,\ ab$ itd. aż do np. 4 słów (dla n=2)

Kodowanie Eliasa

Dla liczby całkowitej x, długości binarnej $n = \lfloor \log_2 x \rfloor + 1$:

- $\delta(x) = \gamma(n) + (x)_2$ bez pierwszego bitu
- $\omega(x) = \omega(n-1) + (x)_2 + 0$ (rekurencja)

 $\begin{array}{c} \mathbf{Przykład:} \ \ x=9, \ (x)_2=1001, \ n=4 \\ \gamma(9)=0001001 \quad \delta(9)=\gamma(4)+001 \\ \omega(9)=\omega(3)+1001+0 \end{array}$

Kodowanie Fibonacciego

- Reprezentacja liczby $x\colon\thinspace x=\sum a_if_i,\;a_i\in\{0,1\}$
- Warunek: brak dwóch jedynek obok siebie (Zeckendorfa)
- Na końcu dodajemy dodatkowe 1 jako znacznik końca

Przykład: x = 6, $6 = 5 + 1 = f_4 + f_1 \Rightarrow 100100 + 1 = 1001001$

Kodowanie arytmetyczne

Kodowanie:

- d = p l
- $\bullet \quad l \leftarrow l + d \cdot F(j)$
- $p \leftarrow l + d \cdot F(j+1)$

Dekodowanie:

- $\bullet \quad d = p l$
- Znajdź j: $F(j) \le \frac{x-l}{d} < F(j+1)$
- $l \leftarrow l + d \cdot F(j)$
- $p \leftarrow l + d \cdot F(j+1)$

Kodowanie słownikowe

 $(o, l, k) = C_{i-o} \dots C_{i-o+l} k$ o — przesunięcie, l — długość, k — nowy znak Przykład: abcaabc (0,0,a), (0,0,a), (0,0,c), (4,3,c)

LZ78

Znajdź najdłuższy prefiks (lub ϵ)
Dodaj: prefiks + nowy znak Zakoduj: (i, k)Przykład: ababchababaaaaa (0, a), (0, b), (1, b), (0, c), (2, a), (4, a), (6, a), (7, a)

LZW

Startowy słownik = alfabet Kodujemy indeksy ciągów (i) Dodaj nowy ciąg gdy brak Przykład: abababa a (97), b (98), ab (256), ba (257), aba (258) Kody: 97, 98, 256, 257, 258

BWT / bzip2

Dla słowa tworzymy wszystkie rotacje cykliczne.
 Sortujemy je leksykograficznie.
 Zapisujemy ostatnią kolumnę (BWT) i numer wiersza, gdzie znajduje się oryginalne słowo.
 Odwracanie: znając BWT i indeks, możemy odzyskać oryginalne słowo.

ı	e	h					
ĺ	h	0	0	1	2	3	4
ĺ	11	е	е	h	1	1	0
ĺ	lo	1	2	0	3	4	1
ſ	_	1					

Move-To-Front (MTF)

Transformacja zmniejszająca entropię (często po ${\rm BWT}).$

- Start: tabela liter w porządku alfabetycznym
- Dla każdej litery: zapisz jej pozycję, przesuń ją na początek

					$h \rightarrow 1$	tabela:	[h, e, l, o
	hello	Alfabet:	[e, h, 1, c		$e \rightarrow 1$	tabela:	[e, h, l, o
Przykład:				, 1, 0]	$1 \rightarrow 2$	tabela:	[l, e, h, o
					$1 \rightarrow 0$	tabela:	[l, e, h, o
					$o \rightarrow 3$	tabela:	[o, l, e, h

Wvnik: 11203

PPM

- ullet Dla symbolu sprawdzamy jego kontekst (max długość n).
- Dla $n \geq 0$: zliczamy wystąpienia; dla -1: tylko obecność.
- Budujemy model prawdopodobieństw np. do Huffmana.

!: szukaj symbolu w najdłuższym kontekście. Jeśli nie ma – wypisz ESC i przejdź do krótszego.

| Kontekst | Symbol | Licznik | Symbol | Licznik | Kontekst | Symbol | Licznik | Symbol | Licznik | Kontekst | Symbol | Licznik | Kontekst | Symbol | Licznik | Symbol | Symbol | Licznik | Symbol | Symbol

			t	ESC	1		th	ESC	1
Symbol	Symbol	Licznik		h	1			i	1
Symbol	ESC	1	h	ESC	1		hi	ESC	1
t L	t	1		i	1			s	1
	h	1	i	ESC	1		is	ESC	1
1	i	1		s	2			-	1
8	s	2	8	ESC	1		8-	ESC	1
	-	1		-	1			i	1
			-	ESC	1		-i	ESC	1
				i	1			s	1

Kody Hamminga

- Długość kodu: $n=2^m-1$, dane: k=n-m
- Macierz parzystości H: kolumny = binarne zapisy 1, . . . , n

$$H_H(3) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

• Macierz generująca $G\colon\thinspace [I_k\mid P],$ gdzie Ppochodzi z H

$$G_H(3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Rozszerzony kod Hamminga: dodany bit parzystości – długość n+1 Cykliczny kod Hamminga: generowany przez g(x), który dzieli x^n+1 w $\mathbb{Z}_2[x]$ Kod Hamminga (7,4) jest kodem doskonałym dla d=3

Hatsune przypomina: Nie da się skompresować wszystkich możliwych słów — zbiór skompresowanych musi być mniejszy => nie istnieje bijekcja.

Lew: Twoja pewność siebie jest jak kod Huffmana — konkretna i skuteczna. Ryby: Chaos w danych?
Nie szkodzi — PPM poradzi sobie nawet z tobą.

Wodnik: BWT to twoja dusza — nieoczywista, ale piękna w dekodowaniu.

Koziorożec: Twoja determinacja przypomina kod Hamminga — wykrywa, poprawia i nie odpuszcza.

