

Conjuntos Matemática Discreta Sistemas de Informação **Moésio M. de Sales**¹

1 Problemas Conjuntos

Estude[2, 1, 3]

- 1. Se um conjunto A tem 1024 subconjuntos, então o cardinal de A, ou número de elementos de A, é:
 - (a) 5
- **(b)** 6
- **(c)** 7
- **(d)** 9
- **(e)** 10

Solução 1.1

$$2^n = 1024$$

$$2^n = 2^{10} \Rightarrow n = 10$$

- 2. 35 estudantes estrangeiros vieram ao Brasil. 16 visitaram Manaus; 16, S. Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e , desses 5, 3 visitaram também São Paulo. O número de estudantes que visitaram Manaus ou São Paulo foi:
 - (a) 29
- **(b)** 24
- (c) 11
- (d) 8
- **(e)** 5

3. Seja $E = {\Delta}$. Determine $\mathcal{P}(\mathcal{P}(E))$.

Solução 1.2 Temos que:

$$\begin{split} \mathcal{P}(E) &= \{\varnothing, \{\Delta\}\} \\ \mathcal{P}(\mathcal{P}(E)) &= \{\varnothing, \{\varnothing\}, \{\{\Delta\}\}, \{\varnothing, \{\Delta\}\}\} \end{split}$$

- **4.** Determine $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- **5.** Prove que $A \subset B \Leftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
- **6.** Sejam dois conjuntos, X e Y, e a operação Δ , definida por $X\Delta Y=(X-Y)\cup (Y-X)$. Justifique todos os ítens.
 - (a) $(X\Delta Y) \cap (X \cap Y) = \emptyset$
 - **(b)** $(X\Delta Y) \cap (X-Y) = \emptyset$
 - (c) $(X\Delta Y) \cap (Y X) = \emptyset$
 - (d) $(X\Delta Y) \cup (X Y) = X$
 - (e) $(X\Delta Y) \cup (Y X) = X$

IFCE -1- 27 de abril de 2023

¹moesio@ifce.edu.br

$$\begin{array}{lll} (X\Delta Y)\cap (X\cap Y) & = & [(X-Y)\cup (Y-X)]\cap (X\cap Y) \\ & = & [(X-Y)\cap (X\cap Y)]\cup [(Y-X)\cap (X\cap Y)] \\ & = & \varnothing\cup\varnothing \\ & = & \varnothing \end{array}$$

- 7. Dados os conjuntos $A \in B$, seja X um conjunto com as seguintes propriedades:
 - I. $X \supset A \in X \supset B$,
 - II. Se $Y \supset A$ e $Y \supset B$ então $Y \supset X$

Prove que: $X = A \cup B$.

Solução 1.4 Provaremos primeiro $(A \cup B \subset X)$: Seja

$$\begin{array}{ccc} x \in A \cup B & \Rightarrow & x \in A \ ou \ x \in B \\ Como, \ por \ (I), & A \subset X \ e \ B \subset X \\ Em \ qualquer \ caso: & \Rightarrow & x \in X \end{array}$$

Portanto, $A \cup B \subset X$.

Provaremos, agora: $(X \subset A \cup B)$: Note que:

$$A \cup B \supset A \ e \ A \cup B \supset B \ Pela \ propriedade \ (II) \Rightarrow A \cup B \supset X$$

Portanto, $X \subset A \cup B$.

Assim, dado que $X \subset A \cup B$ e $X \supset A \cup B$, então $X = A \cup B$.

- 8. Sejam $A, B \subset E$.
 - (a) Prove que $A \cap B = \emptyset$ se, somente se, $A \subset B^c$.
 - (b) Prove que $A \cup B = E$ se, somente se, $A^c \subset B$.

Solução 1.5 (a)
$$A \cap B = \emptyset \Rightarrow A \subset B^c$$

Seja $x \in A$, dado que $A \cap B = \emptyset$ temos que $x \notin B$ logo $x \in B^c$.

 $Agora, A \subset B^c \Rightarrow A \cap B = \emptyset$ Suponha, por absurdo que $x \in A \cap B$. Assim, $x \in A$ e $x \in B$, dado que $A \subset B^c$ temos que, como $x \in A \Rightarrow x \in B^c \Rightarrow x \notin B$ absurdo.

- **9.** Dados os intervalos A = [-1, 3), B = [1, 4], C = [2, 3), D = (1, 2] e E = (0, 2] dizer se 0 pertence a $((A-B)-(C\cap D))-E.$
- **10.** Dados $A, B \subset E$, prove que $A \subset B$ se, somente se, $A \cap B^c = \emptyset$.
- 11. Se $A, X \subset E$ são tais que $A \cap X = \emptyset$ e $A \cup X = E$, prove que $X = A^c$.
- **12.** Seja $A \triangle B = (A B) \cup (B A)$. Prove que $A \triangle B = A \triangle C$ implica B = C.

IFCE 27 de abril de 2023

Solução 1.6 Primeiro:

$$A \triangle B = A \triangle C \Rightarrow B \subset C$$

Note que se $x \in A \triangle B$, significa que $x \in A - B$ ou $x \in B - A$, ou seja, x pertence apenas a A ou apenas a B.

Seja $x \in B$. Temos dois casos:

- Se x pertence apenas a B, então $x \in (A B) \cup (B A)$. Como $A \triangle B = A \triangle C$ neste caso $x \in A \triangle C$, logo $x \in (A C) \cup (C A)$ e como $x \notin A$ temos que $x \in C$.
- Se x pertence a B e a A, então $x \notin (A B) \cup (B A)$. Como $A \triangle B = A \triangle C$ neste caso $x \notin A \triangle C$, logo $x \notin (A C) \cup (C A)$ e como $x \in A$ temos que $x \in C$.

Analogamente:

$$A \triangle B = A \triangle C \Rightarrow B \supset C$$

13. Uma urna contém três bolas vermelhas, duas azuis e uma amarela. Duas bolas são selecionadas aleatoriamente sem reposição. Sejam os eventos:

 $A = \{\text{pelo menos uma bola \'e vermelha}\}\ B = \{\text{pelo menos uma bola \'e azul}\}$

Descreva usando a notação de conjuntos os seguintes eventos:

- (a) Ambas as bolas são amarelas.
- (b) Há uma bola vermelha e uma azul.

Solução 1.7 (a) O evento em questão é que não ocorre A e não ocorre B, ou seja, $A^c \cap B^c$

- (b) Há uma bola vermelha e uma azul na amostra, se e somente se, os eventos A e B ocorrem, ou seja, $A \cap B$
- 14. Nas mesmas condições do exercício anterior, descreva os seguintes eventos:
 - (a) $A \cap B^c$
 - (b) $A \cup B$
 - (c) $A \cup B^c$

Solução 1.8 (a) $A \cap B^c = \{Significa que há pelo menos uma bola vermelha e não há bolas azuis.\}$

- (b) $A \cup B = \{Representa \ que \ h\'a \ pelo \ menos \ uma \ bola \ que \ n\~ao \ \'e \ amarela.\}$
- (c) A ∪ B^c = Há duas bolas azuis na amostra, ou uma vermelha e uma azul ou uma vermelha e uma amarela. Note que isto é precisamente o evento A, pois o evento B^c, implica que o evento A ocorre, pois se não há bolas azuis na amostra, necessariamente uma delas será vermelha.

Referências

- [1] Edgard de Alencar Filho. Teoria Elementar dos Conjuntos. Nobel, 1976.
- [2] Judith L. Gersting. Fundamentos Matemáticos para a Ciência da Computação: um tratamento moderno de Matemática Discreta. Livros Técnicos e Científicos, 2004.
- [3] Edward R. Scheinerman. Matemática Discreta Uma Introdução. THOMSON PIONEIRA, 2003.

IFCE -3- 27 de abril de 2023