Discrete Mathematics: Lecture 19

tautological implications, argument

Xuming He Associate Professor

School of Information Science and Technology ShanghaiTech University

Spring Semester, 2022

Notes by Prof. Liangfeng Zhang

Review: Types of WFFs

Tautology(重言式): a WFF whose truth value is T for all truth assignment

• $p \lor \neg p$ is a tautology

Contradiction(矛盾式): a WFF whose truth value is **F** for all truth assignment

• $p \land \neg p$ is a contradiction

Contingency(可能式): neither tautology nor contradiction

• $p \rightarrow \neg p$ is a contingency

Satisfiable(可满足的):a WFF is satisfiable if it is true for at least one truth assignment

Rule of Substitution: (代入規则) Let B be a formula obtained from a tautology

A by substituting a propositional variable in A with an arbitrary formula. Then B must be a tautology.

• $p \vee \neg p$ is a tautology: $(q \wedge r) \vee \neg (q \wedge r)$ is a tautology as well.

Review: Proving $A \equiv B$

Rule of Replacement: (**** Replacing a sub-formula in a formula F with a logically equivalent sub-formula gives a formula logically equivalent to the formula F.

EXAMPLE:
$$P o Q \equiv \neg Q o \neg P$$

 $P o Q \equiv \neg P \lor Q \equiv Q \lor \neg P \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q o \neg P$
EXAMPLE: $P \leftrightarrow Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$
 $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P) \equiv (\neg P \lor Q) \land (\neg Q \lor P)$
 $\equiv (\neg P \lor Q) \land (P \lor \neg Q)$
EXAMPLE: $P \to (Q \to R) \equiv (P \land Q) \to R$

 $\equiv (P \land O) \rightarrow R$

 $P \to (Q \to R) \equiv \neg P \lor (\neg Q \lor R) \equiv (\neg P \lor \neg Q) \lor R \equiv \neg (P \land Q) \lor R$

Tautological Implications

DEFINITION: Let A and B be WFFs in propositional variables p_1, \ldots, p_n .

- A tautologically implies () B if every truth assignment that causes A to be true causes B to be true.
 - Notation: $A \Rightarrow B$, called a **tautological implication**
 - $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}); B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is a tautology.

• $A \Rightarrow B \text{ iff } A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}) \text{ iff } A \rightarrow B \text{ is a tautology}$

THEOREM: $A \Rightarrow B$ iff $A \land \neg B$ is a contradiction.

• $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

Proving $A \Rightarrow B$: (1) $A^{-1}(T) \subseteq B^{-1}(T)$; (2) $B^{-1}(F) \subseteq A^{-1}(F)$;

(3) $A \rightarrow B$ is a tautology; (4) $A \land \neg B$ is a contradiction

Proving $A \Rightarrow B$

EXAMPLE: Show the tautological implication " $p \land (p \rightarrow q) \Rightarrow q$ ".

- Let $A = p \land (p \rightarrow q)$; B = q. Need to show that " $A \Rightarrow B$ "
- $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}; B^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T}), (\mathbf{F}, \mathbf{T})\}; A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}).$

p	q	$p \rightarrow q$	A	В
Т	Т	Т	<u>T</u>	<u>T</u>
Т	F	F	F	F
F	Т	Т	F	Т
F	F	Т	F	F

•
$$A \to B \equiv \neg (p \land (p \to q)) \lor q$$
 • $A \land \neg B \equiv (p \land (p \to q)) \land \neg q$

$$\equiv (\neg p \lor \neg (p \to q)) \lor q$$

$$\equiv (\neg p \lor q) \lor \neg (p \to q)$$

$$\equiv (p \to q) \lor \neg (p \to q)$$

$$\equiv (p \to q) \lor \neg (p \to q)$$

$$\equiv \mathbf{F}$$

$$\equiv \mathbf{T}$$

Tautological Implications

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \land (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

Proofs for 5 and 6

EXAMPLE: $\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$

- $A = \neg Q \land (P \rightarrow Q), B = \neg P.$
- $A \to B \equiv \neg (\neg Q \land (P \to Q)) \lor \neg P$ $\equiv (Q \lor \neg (P \to Q)) \lor \neg P$ $\equiv (\neg P \lor Q) \lor \neg (P \to Q)$ $\equiv \mathbf{T}$

EXAMPLE: $\neg P \land (P \lor Q) \Rightarrow Q$

- $A = \neg P \land (P \lor Q), B = Q.$
- $A \to B \equiv \neg(\neg P \land (P \lor Q)) \lor Q$ $\equiv (P \lor \neg(P \lor Q)) \lor Q$ $\equiv (\neg(P \lor Q) \lor P) \lor Q$ $\equiv \neg(P \lor Q) \lor (P \lor Q)$ $\equiv \mathbf{T}$

Proofs for 7 and 8

```
EXAMPLE: (P \to Q) \land (Q \to R) \Rightarrow P \to R

• A = (P \to Q) \land (Q \to R); B = (P \to R).

• A \land \neg B \equiv (\neg P \lor Q) \land (\neg Q \lor R) \land (P \land \neg R)

\equiv ((\neg P \lor Q) \land P) \land ((\neg Q \lor R) \land \neg R)

\equiv ((\neg P \land P) \lor (Q \land P)) \land ((\neg Q \land \neg R) \lor (R \land \neg R))

\equiv (Q \land P) \land (\neg Q \land \neg R)

\equiv \mathbf{F}

EXAMPLE: (P \lor Q) \land (\neg P \lor R); B = (Q \lor R).
```

 $\equiv ((P \lor Q) \land \neg Q) \land ((\neg P \lor R) \land \neg R)$

 $A \wedge \neg B \equiv (P \vee Q) \wedge (\neg P \vee R) \wedge (\neg Q \wedge \neg R)$

 $\equiv (P \land \neg O) \land (\neg P \land \neg R)$

 $\equiv \mathbf{F}$

More Examples

EXAMPLE:
$$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$$

- $A = (P \leftrightarrow Q) \land (Q \leftrightarrow R); B = (P \leftrightarrow R).$
- $A = \mathbf{T} \text{ iff } (P \leftrightarrow Q) = \mathbf{T} \text{ and } (Q \leftrightarrow R) = \mathbf{T} \text{ iff } P = Q \text{ and } Q = R$
 - $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{F}, \mathbf{F}, \mathbf{F})\}$
- $B = \mathbf{T} \text{ iff } P = R$
 - $B^{-1}(\mathbf{T}) = \{ (\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{T}, \mathbf{F}, \mathbf{T}), (\mathbf{F}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{F}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$

EXAMPLE: $(Q \to R) \Rightarrow ((P \lor Q) \to (P \lor R))$

- $A = Q \rightarrow R$; $B = ((P \lor Q) \rightarrow (P \lor R))$.
- $A = \mathbf{F} \text{ iff } (Q, R) = (\mathbf{T}, \mathbf{F})$
 - $A^{-1}(\mathbf{F}) = \{ (\mathbf{T}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{T}, \mathbf{F}) \}$
- $B = \mathbf{F} \text{ iff } (P \lor Q, P \lor R) = (\mathbf{T}, \mathbf{F}) \text{ iff } (P, Q) \neq (\mathbf{F}, \mathbf{F}) \text{ and } (P, R) = (\mathbf{F}, \mathbf{F})$
 - $B^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{T}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{F}) \supseteq B^{-1}(\mathbf{F})$

More Examples

```
EXAMPLE: (P \to R) \land (Q \to S) \land (P \lor Q) \Rightarrow R \lor S
```

- $A = (P \rightarrow R) \land (Q \rightarrow S) \land (P \lor Q); B = R \lor S$
- $A \land \neg B \equiv (P \rightarrow R) \land (Q \rightarrow S) \land (P \lor Q) \land \neg (R \lor S)$ $\equiv (\neg P \lor R) \land (\neg O \lor S) \land (P \lor O) \land (\neg R \land \neg S)$ $\equiv ((\neg P \lor R) \land \neg R)) \land ((\neg Q \lor S) \land \neg S) \land (P \lor Q)$ $\equiv ((\neg P \land \neg R) \lor (R \land \neg R)) \land ((\neg Q \land \neg S) \lor (S \land \neg S)) \land (P \lor Q)$ $\equiv ((\neg P \land \neg R) \lor \mathbf{F}) \land ((\neg O \land \neg S) \lor \mathbf{F}) \land (P \lor O)$ $\equiv (\neg P \land \neg R) \land (\neg Q \land \neg S) \land (P \lor Q)$ $\equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land (P \lor Q))$ $\equiv \neg R \land (\neg Q \land \neg S) \land ((\neg P \land P) \lor (\neg P \land Q))$ $\equiv \neg R \land (\neg Q \land \neg S) \land (\mathbf{F} \lor (\neg P \land Q))$ $\equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land Q)$ $\equiv \neg R \land \neg S \land \neg P \land (\neg Q \land Q)$ $\equiv \neg R \land \neg S \land \neg P \land \mathbf{F}$

New part

Argument

DEFINITION: An **argument** (论证) is a sequence of propositions

- Conclusion(结论): the final proposition
- **Premises**(假设): all the other propositions
- Valid(有效): the truth of premises implies that of the conclusion
- **Proof**(证明): a valid argument that establishes the truth of a conclusion

EXAMPLE: a valid argument, a proof

- If $\{2^{-n}\}$ is convergent, then $\{2^{-n}\}$ has a convergent subsequence.
- $\{2^{-n}\}$ is convergent.

premises T ranch son T

• $\{2^{-n}\}$ has a convergent subsequence.

Argument Form

Proposition: specific

nent form is a see

DEFINITION: An **argument form**(论证形式) is a sequence of formulas.

Valid(有效): no matter which propositions are substituted for the propositional variables, the truth of conclusion follows from the truth of premises Fixed Rules of inference(推理规则): valid argument forms (relatively simple)

```
formula argument form and an invalid argument form p \to q \quad p \in \{(-1)^n\} \text{ is convergent. } (\cite{-1})^n  q: \{(-1)^n\} \text{ has a convergent subsequence. } (\cite{-1})^n  has a convergent valid subsequence. (\cite{-1})^n\} has a convergent subsequence. (\cite{-1})^n\}
                                \neg p: \{(-1)^n\} is not convergent. (7)
                   p \rightarrow q
                                                 \neg q: \{(-1)^n\} does not have a convergent subsequence.
                    \neg p
                    \neg q
                                                        The truth of \neg p and p \rightarrow q does not imply that of \neg q
                   invalid
```

QUESTION: Given the premises $P_1, ..., P_n$, show a conclusion Q, that is, show that $P_1 \land \cdots \land P_n \Rightarrow Q$.

	w ender 1 / / / / / /	12 12 M
	Name	Operations Sparrage
F	Remembering Conclusion	Introduce the given formulas P_1, \dots, P_n in the process of constructing proofs.
	Conclusion	Quote the <u>intermediate formula</u> that have been deducted.
	Rule of replacement	Replace a formula with a <u>logically</u> equivalent formula.
<	Rules of Inference	Deduct a new formula with a <u>tautological</u> implication.
	Rule of substitution	Deduct a formula from a <u>tautology</u> .

Review: Tautological Implications

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \wedge (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

EXAMPLE: Show that the premises 1, 2, 3, and 4 lead to conclusion 5.

- 1. "It is not sunny this afternoon and it is colder than yesterday,"
- 2. "We will go swimming only if it is sunny,"
- 3. "If we do not go swimming, then we will take a canoe trip,"
- 4. "If we take a canoe trip, then we will be home by sunset"
- 5. "We will be home by sunset."

Translating the premises and the conclusion into formulas. Let

- p: "It is sunny this afternoon"
- q: "It is colder than yesterday"
- r: "We will go swimming"
- s: "We will take a canoe trip"
- t: "We will be home by sunset"
 - The premises are $\neg p \land q, r \rightarrow p, \neg r \rightarrow s$, and $s \rightarrow t$.
 - The conclusion is *t*.
- Question: $?(\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t) \Rightarrow t$
 - Can be proven with truth table. 32 rows!

EXAMPLE: Show that the premises 1, 2, 3, and 4 lead to conclusion 5.

- 1. "It is not sunny this afternoon and it is colder than yesterday,"
- 2. "We will go swimming only if it is sunny,"

(7) $s \rightarrow t$ Premise

(8)

- 3. "If we do not go swimming, then we will take a canoe trip,"
- 4. "If we take a canoe trip, then we will be home by sunset"
- 5. "We will be home by sunset."
- Show that $(\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t) \Rightarrow t$ (1) $\neg p \land q$ Premise
 (2) $\neg p \land q$ Simplification using (1)
 (3) $r \rightarrow p$ Premise
 (4) $\neg r$ Modus tollens using (2) and (3)
 (5) $\neg r \rightarrow s$ Premise $(a, b) \land (a, c) \land (a,$

Modus ponens using (6) and (7)

EXAMPLE: Show that
$$(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$$

(1)
$$P \lor \emptyset$$
 Premise

(2)
$$\neg P \rightarrow Q$$
 Rule of replacement applied to (1)

(3)
$$Q \rightarrow S$$
 Premise

(4)
$$\neg P \rightarrow S$$
 Hypothetical syllogism applied to (2) and (3)

(5)
$$\neg S \rightarrow P$$
 Rule of replacement applied to (4)

(6)
$$P \rightarrow R$$
 Premise

(7)
$$\neg S \rightarrow R$$
 Hypothetical syllogism applied to (5) and (6)

(8)
$$S \vee R$$
 Rule of replacement applied to (7)