Introduction to treewidth

Ignasi Sau

LIRMM, Université de Montpellier, CNRS

Rencontres virtuelles en théorie des graphes JCRAALMA – 29 mars 2021

Outline of the talk

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- 4 Computing treewidth

Next section is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- 3 Brambles and duality
- 4 Computing treewidth

The multiples origins of treewidth

- 1972: Bertelè and Brioschi (dimension).
- 1976: Halin (S-functions of graphs).
- 1984: Arnborg and Proskurowski (partial k-trees).
- 1984: Robertson and Seymour (treewidth).

Treewidth measures the (topological) similarity of a graph with a tree.

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

Number of cycles.

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

- Number of cycles.
- Vertex-deletion distance to a forest (feedback vertex set number).

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

Example of a 2-tree:

[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k+1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k+1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k+1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a forest.

Example of a 2-tree:

[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k+1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

• Tree decomposition of a graph *G*:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags),
```

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags), satisfying the following:
```

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags), satisfying the following:
```

• $\bigcup_{t\in V(T)} X_t = V(G)$,

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags),
```

satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags),
```

satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags),
```

satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition:

$$\max_{t \in V(T)} |X_t| - 1.$$

• Tree decomposition of a graph G:

```
pair (T, \{X_t \mid t \in V(T)\}), where T is a tree, and X_t \subseteq V(G) \ \forall t \in V(T) (bags),
```

satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bigcup_{t \in V(T)} X_t = V(G)$,
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.


```
pair (T, \{X_t \mid t \in V(T)\}), where
  T is a tree, and
  X_t \subseteq V(G) \ \forall t \in V(T) \ (bags),
satisfying the following:
```

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subset X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

• Tree decomposition of a graph G:

pair $(T, \{X_t \mid t \in V(T)\})$, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T) \ (bags),$ satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subset X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| - 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

pair
$$(T, \{X_t \mid t \in V(T)\})$$
, where T is a tree, and $X_t \subseteq V(G) \ \forall t \in V(T)$ (bags), satisfying the following:

- $\bullet \bigcup_{t \in V(T)} X_t = V(G),$
- $\forall \{u, v\} \in E(G), \exists t \in V(T)$ with $\{u, v\} \subseteq X_t$.
- $\forall v \in V(G)$, bags containing v define a connected subtree of T.
- Width of a tree decomposition: $\max_{t \in V(T)} |X_t| 1$.
- Treewidth of a graph G, tw(G): minimum width of a tree decomposition of G.

Let $(T, \mathcal{X} = \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

• For every $t \in V(T)$, X_t is a separator in G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Let G be a graph, (T, \mathcal{X}) be a tree decomposition of G, and let $K \subseteq V(G)$ be a clique. Then there exists a bag $X_t \in \mathcal{X}$ such that $K \subseteq X_t$.

Let $K = \{v_1, \dots, v_t\}$. Proof by induction on t. True for $t \leq 2$.

Examples

• If F is a forest, then tw(F) = 1.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on n vertices, then $\operatorname{tw}(K_n) = n 1$.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on n vertices, then $\operatorname{tw}(K_n) = n 1$.
- If $K_{a,b}$ is the complete bipartite graph with parts of sizes a and b, then $\operatorname{tw}(K_{a,b}) = \min\{a,b\}$.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on n vertices, then $\operatorname{tw}(K_n) = n 1$.
- If $K_{a,b}$ is the complete bipartite graph with parts of sizes a and b, then $\operatorname{tw}(K_{a,b}) = \min\{a,b\}$.
- If G is an outerplanar graph, or a series-parallel graph, then tw(G) = 2.

- If F is a forest, then tw(F) = 1.
- If C is a cycle, then tw(C) = 2.
- If K_n is the clique on n vertices, then $\operatorname{tw}(K_n) = n 1$.
- If $K_{a,b}$ is the complete bipartite graph with parts of sizes a and b, then $\operatorname{tw}(K_{a,b}) = \min\{a,b\}$.
- If G is an outerplanar graph, or a series-parallel graph, then tw(G) = 2.
- If G is a planar graph on n vertices, then $tw(G) = \mathcal{O}(\sqrt{n})$.

Treewidth is important for (at least) 3 different reasons:

Treewidth is important for (at least) 3 different reasons:

Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.

Treewidth is important for (at least) 3 different reasons:

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.

Treewidth is important for (at least) 3 different reasons:

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.
- In many practical scenarios, it turns out that the treewidth of the associated graph is small (programming languages, road networks, ...).

Next section is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- Computing treewidth

Next subsection is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- Computing treewidth

[slides borrowed from Christophe Paul]

[slides borrowed from Christophe Paul]

[slides borrowed from Christophe Paul]

Observations:

- Every vertex of a tree is a separator.
- The union of independent sets of distinct connected components is an independent set.

[slides borrowed from Christophe Paul]

Let x be the root of T, $x_1 ldots x_\ell$ its children, $T_1, ldots T_\ell$ subtrees of T - x:

- wIS(T,x): maximum weighted independent set containing x.
- $wIS(T, \overline{x})$: maximum weighted independent set not containing x.

[slides borrowed from Christophe Paul]

Let x be the root of T, $x_1 ldots x_\ell$ its children, $T_1, ldots T_\ell$ subtrees of T - x:

- wIS(T,x): maximum weighted independent set containing x.
- $w/S(T, \overline{x})$: maximum weighted independent set not containing x.

$$\begin{cases} wlS(T,x) = \omega(x) + \sum_{i \in [\ell]} wlS(T_i, \overline{x_i}) \end{cases}$$

[slides borrowed from Christophe Paul]

Let x be the root of T, $x_1 ldots x_\ell$ its children, $T_1, ldots T_\ell$ subtrees of T - x:

- wIS(T,x): maximum weighted independent set containing x.
- $w/S(T, \overline{x})$: maximum weighted independent set not containing x.

$$\begin{cases} wlS(T,x) = \omega(x) + \sum_{i \in [\ell]} wlS(T_i, \overline{x_i}) \\ wlS(T, \overline{x}) = \sum_{i \in [\ell]} \max\{wlS(T_i, x_i), wlS(T_i, \overline{x_i})\} \end{cases}$$

Dynamic programming on tree decompositions

 Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.

• The way that these partial solutions are defined depends on each particular problem:

Back to tree decompositions

Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Back to tree decompositions

Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Notation: If we root $(T, \{X_t \mid t \in V(T)\})$, then:

Back to tree decompositions

Let $(T, \{X_t \mid t \in V(T)\})$ be a tree decomposition of a graph G.

- For every $t \in V(T)$, X_t is a separator in G.
- For every edge $\{t_1, t_2\} \in E(T)$, $X_{t_1} \cap X_{t_2}$ is a separator in G.

Notation: If we root $(T, \{X_t \mid t \in V(T)\})$, then:

- V_t : all vertices of G appearing in bags that are descendants of t.
- $\bullet \ G_t = G[V_t].$

 $\forall S \subseteq X_t$, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

 $\forall S \subseteq X_t$, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

 $\forall S \subseteq X_t$, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

 $\forall S \subseteq X_t$, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S,t) \cap V_{t_j}| = |IS(S_j,t_j)|$.

$$\forall S \subseteq X_t$$
, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S,t) \cap V_{t_j}| = |IS(S_j,t_j)|$.

For contradiction: suppose $IS(S,t) \cap V_{t_j}$ is not maximum in G_{t_j} .

$$\forall S \subseteq X_t$$
, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S,t) \cap V_{t_j}| = |IS(S_j,t_j)|$.

For contradiction: suppose $IS(S,t) \cap V_{t_j}$ is not maximum in G_{t_j} .

 $\Rightarrow \exists y \in (S \setminus S_j) \subseteq X_t \text{ and } \exists x \in IS(S_j, t_j) \setminus X_{t_j} \text{ such that } \{x, y\} \in E(G).$

$$\forall S \subseteq X_t$$
, $IS(S,t) = \text{maximum independent set } I \text{ of } G_t \text{ s.t. } I \cap X_t = S$

Lemma If $S \subseteq X_t$ and $S_j = S \cap X_{t_j}$, then $|IS(S,t) \cap V_{t_j}| = |IS(S_j,t_j)|$.

For contradiction: suppose $IS(S,t) \cap V_{t_j}$ is not maximum in G_{t_j} .

⇒ $\exists y \in (S \setminus S_j) \subseteq X_t$ and $\exists x \in IS(S_j, t_j) \setminus X_{t_j}$ such that $\{x, y\} \in E(G)$. Contradiction! X_{t_i} is not a separator.

Idea of the dynamic programming algorithm:

How to compute |IS(S,t)| from $|IS(S_j^i,t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

Idea of the dynamic programming algorithm:

How to compute |IS(S,t)| from $|IS(S_j^i,t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

Idea of the dynamic programming algorithm:

How to compute |IS(S,t)| from $|IS(S_j^i,t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

ullet verify that $S^i_j\cap X_t=S\cap X_{t_j}=S_j$ and $S_j\subseteq S^i_j.$

Idea of the dynamic programming algorithm:

How to compute |IS(S,t)| from $|IS(S_j^i,t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

- ullet verify that $S^i_j\cap X_t=S\cap X_{t_j}=S_j$ and $S_j\subseteq S^i_j$.
- verify that S_j^i is an independent set.

Idea of the dynamic programming algorithm:

How to compute |IS(S,t)| from $|IS(S_j^i,t_j)|$, $\forall j \in [\ell]$, $\forall S_j^i \subseteq X_{t_j}$:

- verify that $S_j^i \cap X_t = S \cap X_{t_j} = S_j$ and $S_j \subseteq S_j^i$.
- verify that S_j is an independent set.

$$|IS(S,t)| = \begin{cases} |S| + \\ |IS(S_j^i, t_j)| - |S_j| : \\ |S_j^i \cap X_t = S_j| \land |S_j| \subseteq |S_j^i| \text{ independent} \end{cases}$$

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size k:

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ |S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size k:

• Computing IS(S, t): $\mathcal{O}(2^k \cdot k^2 \cdot \ell)$.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size k:

- Computing IS(S, t): $\mathcal{O}(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S,t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ |S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size k:

- Computing IS(S, t): $\mathcal{O}(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S,t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.
- Computing an optimal solution: $\mathcal{O}(4^k \cdot k^2 \cdot n)$.

$$|IS(S,t)| = \begin{cases} |S| + \\ \sum_{i \in [\ell]} \max & \{|IS(S_j^i, t_j)| - |S_j| : \\ S_j^i \cap X_t = S_j \land S_j \subseteq S_j^i \text{ independent} \} \end{cases}$$

Analysis of the running time, with bags of size k:

- Computing IS(S, t): $\mathcal{O}(2^k \cdot k^2 \cdot \ell)$.
- Computing IS(S,t) for every $S \subseteq X_t$: $\mathcal{O}(2^k \cdot 2^k \cdot k^2 \cdot \ell)$.
- Computing an optimal solution: $\mathcal{O}(4^k \cdot k^2 \cdot n)$.
- ★ We have to add the time in order to compute a "good" tree decomposition of the input graph (we discuss this later).

A rooted tree decomposition $(T, \{X_t : t \in T\})$ of a graph G is nice if every node $t \in V(T) \setminus \text{root}$ is of one of the following four types:

• Leaf: no children and $|X_t| = 1$.

- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.

- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.

- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.
- Join: two children t_1 and t_2 with $X_t = X_{t_1} = X_{t_2}$.

A rooted tree decomposition $(T, \{X_t : t \in T\})$ of a graph G is nice if every node $t \in V(T) \setminus \text{root}$ is of one of the following four types:

- Leaf: no children and $|X_t| = 1$.
- Introduce: a unique child t' and $X_t = X_{t'} \cup \{v\}$ with $v \notin X_{t'}$.
- Forget: a unique child t' and $X_t = X_{t'} \setminus \{v\}$ with $v \in X_{t'}$.
- Join: two children t_1 and t_2 with $X_t = X_{t_1} = X_{t_2}$.

Lemma

A tree decomposition $(T, \{X_t : t \in T\})$ of width k and x nodes of an n-vertex graph G can be transformed in time $\mathcal{O}(k^2 \cdot n)$ into a nice tree decomposition of G of width k and $k \cdot x$ nodes.

How to compute IS(S, t) for every $S \subseteq X_t$:

How to compute IS(S, t) for every $S \subseteq X_t$:

• If t is a leaf: trivial.

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- t is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- t is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

• If t is a forget node: $X_t = X_{t'} \setminus \{v\}$

$$|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\},t')|\}$$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- t is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\}, t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

- If t is a forget node: $X_t = X_{t'} \setminus \{v\}$ $|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\},t')|\}$
- If t is a join node: $X_t = X_{t_1} = X_{t_2}$ $|IS(S,t)| = |IS(S,t_1)| + |IS(S,t_2)| |S|$

How to compute IS(S, t) for every $S \subseteq X_t$:

- If t is a leaf: trivial.
- t is an introduce node: $X_t = X_{t'} \cup \{v\}$

$$|IS(S,t)| = \begin{cases} |IS(S,t')| & \text{if } v \notin S \\ |IS(S \setminus \{v\},t')| + 1 & \text{if } v \in S \text{ and } S \text{ independent} \\ -\infty & \text{otherwise} \end{cases}$$

• If t is a forget node: $X_t = X_{t'} \setminus \{v\}$

$$|IS(S,t)| = \max\{|IS(S,t')|, |IS(S \cup \{v\},t')|\}$$

• If t is a join node: $X_t = X_{t_1} = X_{t_2}$

$$|IS(S,t)| = |IS(S,t_1)| + |IS(S,t_2)| - |S|$$

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let \mathcal{C} be a Hamiltonian cycle.

• Note that $\mathcal{C} \cap G[V_t]$ is a collection of paths.

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let \mathcal{C} be a Hamiltonian cycle.

- Note that $C \cap G[V_t]$ is a collection of paths.
- Partition of the bag X_t :
 - X_t^0 : isolated in $G[V_t]$.
 - X_t^1 : extremities of paths.
 - X_t^2 : internal vertices.

HAMILTONIAN CYCLE on tree decompositions

[slides borrowed from Christophe Paul]

Let \mathcal{C} be a Hamiltonian cycle.

- Note that $\mathcal{C} \cap G[V_t]$ is a collection of paths.
- Partition of the bag X_t :
 - X_t^0 : isolated in $G[V_t]$.
 - X_t^1 : extremities of paths.
 - X_t^2 : internal vertices.

For every node t of the tree decomposition, we need to know if

$$(X_t^0, X_t^1, X_t^2, M)$$

where M is a matching on X_t^1 , corresponds to a partial solution.

Forget node

Let t be a forget node and t' its child such that $X_t = X_{t'} \setminus \{v\}$.

Claim X_t is a separator \Rightarrow

 $\forall v \in V_t \setminus X_t$, v is internal in every partial solution.

Forget node

Let t be a forget node and t' its child such that $X_t = X_{t'} \setminus \{v\}$.

Claim
$$X_t$$
 is a separator \Rightarrow

 $\forall v \in V_t \setminus X_t$, v is internal in every partial solution.

$$(X_{t'}^0, X_{t'}^1, X_{t'}^2 \setminus \{v\}, M)$$
 is a partial solution for t

$$(X_{t'}^0,X_{t'}^1,X_{t'}^2,M)$$
 is a partial solution for t' with $v\in X_{t'}^2$

Introduce node

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

Introduce node

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^0$.

Introduce node

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^0$.

$$(X_{t'}^0 \cup \{v\}, X_{t'}^1, X_{t'}^2, M)$$
 is a partial solution for t \Leftrightarrow $(X_{t'}^0, X_{t'}^1, X_{t'}^2, M)$ is a partial solution for t'

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^1$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^1$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^1$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^1$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$. $(X_{t'}^0, X_{t'}^1 \cup \{v\} \setminus \{u\}, X_{t'}^2 \cup \{u\}, M')$ is a partial solution for t \Leftrightarrow

 $(X_{t'}^0, X_{t'}^1, X_{t'}^2, M)$ is a partial solution for t'

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose: $v \in X_t^1$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

- a vertex $u \in X_{t'}^1$ becomes internal $\Rightarrow u \in X_t^2$.
- or a vertex $w \in X_{t'}^0$ becomes extremity of a path $\Rightarrow w \in X_t^1$ (similar).

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose. $v \in X_t^2$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose. $v \in X_t^2$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose. $v \in X_t^2$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

• two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$. $(X_{t'}^0, X_{t'}^1 \setminus \{u, u'\}, X_{t'}^2 \cup \{v, u, u'\}, M')$ is a partial solution for $t \Leftrightarrow 0$

 $(X_{t'}^0, X_{t'}^1, X_{t'}^2, M)$ is a partial solution for t'

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose. $v \in X_t^2$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

- two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$.
- ② two vertices $w, w' \in X_{t'}^0$ become extremities $\Rightarrow w, w' \in X_t^1$.

Let t be an introduce node and t' its child such that $X_t = X_{t'} \cup \{v\}$.

• Suppose. $v \in X_t^2$.

Fact $X_{t'}$ is a separator $\Rightarrow N(v) \cap V_t \subseteq X_t$.

- **1** two vertices $u, u' \in X_{t'}^1$ become internal $\Rightarrow u, u' \in X_t^2$.
- ② two vertices $w, w' \in X_{t'}^0$ become extremities $\Rightarrow w, w' \in X_t^1$.

Join node

Let t be a join node and t_1, t_2 its children such that $X_t = X_{t_1} = X_{t_2}$

Fact For being compatible, partial solutions should verify:

- $X_{t_1}^2 \subseteq X_{t_2}^0$ and $X_{t_1}^1 \subseteq X_{t_2}^1 \cup X_{t_2}^0$.
- $\bullet \ \, X_{t_2}^2 \subseteq X_{t_1}^0 \,\, \text{and} \,\, X_{t_2}^1 \subseteq X_{t_1}^1 \cup X_{t_1}^0.$
- The union of matchings M_1 et M_2 does not create any cycle.

Join node

Let t be a join node and t_1, t_2 its children such that $X_t = X_{t_1} = X_{t_2}$

Fact For being compatible, partial solutions should verify:

- $\bullet \ \ X_{t_1}^2 \subseteq X_{t_2}^0 \ \ \text{and} \ \ X_{t_1}^1 \subseteq X_{t_2}^1 \cup X_{t_2}^0.$
- $\bullet \ X_{t_2}^2 \subseteq X_{t_1}^0 \ \text{and} \ X_{t_2}^1 \subseteq X_{t_1}^1 \cup X_{t_1}^0.$
- The union of matchings M_1 et M_2 does not create any cycle.

Analysis of the running time, given a tree decomposition of width k:

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

• Number of subproblems at each node: : $3^k \cdot k!$.

HAMILTONIAN CYCLE on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $: 3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Analysis of the running time, given a tree decomposition of width k:

- Number of subproblems at each node: $3^k \cdot k!$.
- Number of nodes in a nice tree decomposition: $k \cdot n$.

Total running time of the algorithm: $k^{\mathcal{O}(k)} \cdot n$.

Can this approach be generalized to more problems?

Next subsection is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- 4 Computing treewidth

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

```
We represent a graph G = (V, E) with a structure G = (U, \text{vertex}, \text{edge}, I), where
```

• $U = V \cup E$ is the universe.

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

An MSO formula is built using the following:

• Logical connectors \vee , \wedge , \Rightarrow , \neg , =, \neq .

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

- Logical connectors \vee , \wedge , \Rightarrow , \neg , =, \neq .
- Predicates adj(u, v) and inc(e, v).

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

- Logical connectors \vee , \wedge , \Rightarrow , \neg , =, \neq .
- Predicates adj(u, v) and inc(e, v).
- Relations \in , \subseteq on vertex/edge sets.

We represent a graph G = (V, E) with a structure G = (U, vertex, edge, I), where

- $U = V \cup E$ is the universe.
- "vertex" and "edge" are unary relations that allow to distinguish vertices and edges.
- $I = \{(v, e) \mid v \in V, e \in E, v \in e\}$ is the incidence relation.

- Logical connectors \vee , \wedge , \Rightarrow , \neg , =, \neq .
- Predicates adj(u, v) and inc(e, v).
- Relations \in , \subseteq on vertex/edge sets.
- Quantifiers ∃, ∀ on vertex/edge variables or vertex/edge sets .

```
(MSO<sub>1</sub>/MSO<sub>2</sub>)
```

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $DomSet(S): \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $\texttt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S: \{u,v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, inc(u, e) \land inc(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $DomSet(S): \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

ullet For every bipartition de V, there is a transversal edge:

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $\mathtt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S : \{u,v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

 \bullet For every bipartition de V, there is a transversal edge:

Expressing that two sets V_1 , V_2 define a bipartition of V:

 $\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $\mathtt{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S : \{u,v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

 \bullet For every bipartition de V, there is a transversal edge:

Expressing that two sets V_1 , V_2 define a bipartition of V:

$$\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$$

Connected: \forall bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Example 1 Expressing that $\{u, v\} \in E(G)$: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

 $DomSet(S): \forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G).$

Example 3 Expressing that a graph G = (V, E) is connected.

 \bullet For every bipartition de V, there is a transversal edge:

Expressing that two sets V_1 , V_2 define a bipartition of V:

$$\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \notin V_2) \land (v \in V_2 \Rightarrow v \notin V_1).$$

Connected:
$$\forall$$
 bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Other properties that can be expressed in MSO_2 :

• a set being a vertex cover, independent set.

Example 1 Expressing that
$$\{u, v\} \in E(G)$$
: $\exists e \in E, \text{inc}(u, e) \land \text{inc}(v, e)$.

Example 2 Expressing that a set $S \subseteq V(G)$ is a dominating set.

$$\mathsf{DomSet}(S): \quad \forall v \in V(G) \setminus S, \exists u \in S: \{u,v\} \in E(G).$$

Example 3 Expressing that a graph G = (V, E) is connected.

 \bullet For every bipartition de V, there is a transversal edge:

Expressing that two sets V_1 , V_2 define a bipartition of V:

$$\forall v \in V, (v \in V_1 \lor v \in V_2) \land (v \in V_1 \Rightarrow v \not\in V_2) \land (v \in V_2 \Rightarrow v \not\in V_1).$$

Connected:
$$\forall$$
 bipartition $V_1, V_2, \exists v_1 \in V_1, \exists v_2 \in V_2, \{v_1, v_2\} \in E(G)$.

Other properties that can be expressed in MSO₂:

- a set being a vertex cover, independent set.
- a graph being k-colorable (for fixed k), having a Hamiltonian cycle.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a vertex/edge set satisfying an MSO_2 formula.

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a vertex/edge set satisfying an MSO_2 formula.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle, Clique, Independent Set, k-Coloring for fixed k, ...

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO₂ formula.

Withing the same running time, one can also optimize the size of a $\frac{\text{vertex}}{\text{edge}}$ set satisfying an $\frac{\text{MSO}_2}{\text{ormula}}$.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle, Clique, Independent Set, k-Coloring for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.

Next subsection is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- 4 Computing treewidth

Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size and an additional parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established and very active area.

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \le k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \ge k$, of pairwise adjacent vertices?
- VERTEX k-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \le k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \ge k$, of pairwise adjacent vertices?
- VERTEX k-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

They behave quite differently...

• k-Vertex Cover: Solvable in time $\mathcal{O}(2^k \cdot (m+n))$

• k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k)$

• VERTEX k-Coloring: NP-hard for fixed k = 3.

• k-Vertex Cover: Solvable in time $\mathcal{O}(2^k \cdot (m+n)) = f(k) \cdot n^{\mathcal{O}(1)}$.

• k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

• VERTEX k-Coloring: NP-hard for fixed k = 3.

• k-VERTEX COVER: Solvable in time $\mathcal{O}(2^k \cdot (m+n)) = f(k) \cdot n^{\mathcal{O}(1)}$.

The problem is FPT (fixed-parameter tractable)

• k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

• VERTEX k-COLORING: NP-hard for fixed k = 3.

• k-Vertex Cover: Solvable in time $\mathcal{O}(2^k \cdot (m+n)) = f(k) \cdot n^{\mathcal{O}(1)}$.

The problem is FPT (fixed-parameter tractable)

• k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

The problem is XP (slice-wise polynomial)

• VERTEX k-COLORING: NP-hard for fixed k = 3.

• k-Vertex Cover: Solvable in time $\mathcal{O}(2^k \cdot (m+n)) = f(k) \cdot n^{\mathcal{O}(1)}$.

The problem is FPT (fixed-parameter tractable)

• k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

The problem is XP (slice-wise polynomial)

• VERTEX k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

Why k-CLIQUE may not be FPT?

k-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

Why k-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

k-CLIQUE: Solvable in time
$$\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$$
.

Why k-CLIQUE may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for $3\text{-}\mathrm{SAT}$)

Working hypothesis of parameterized complexity: k-CLIQUE is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A

time
$$f(k) \cdot |x|^{\mathcal{O}(1)}$$

Instance (x', k') of B

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance
$$(x, k)$$
 of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance (x', k') of B

- **1** (x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B.
- $k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance
$$(x, k)$$
 of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance (x', k') of B

- **①** (x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B.
- ② $k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

W[1]-hard problem: \exists parameterized reduction from k-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from k-Dominating Set to it.

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance (x', k') of B

- **①** (x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B.
- ② $k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

W[1]-hard problem: \exists parameterized reduction from k-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT.

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A time $f(k) \cdot |x|^{\mathcal{O}(1)}$ Instance (x', k') of B

- **①** (x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B.
- **4** a = b = b = 0 **4 a** b = b = 0 **4 b** b = b = 0 **a** b = b = 0 **b** b = b = 0 **b** b = b = 0 **c** b = b = 0 **d** b = 0 **d** b = 0 **d** b = 0 **d** b = 0 **e** b = 0

W[1]-hard problem: \exists parameterized reduction from k-CLIQUE to it.

W[2]-hard problem: \exists param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: $FPT \neq W[1]$

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

• Are all "natural" graph problems FPT parameterized by treewidth?

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Are all "natural" graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

• LIST COLORING is W[1]-hard parameterized by treewidth.

 $[Fellows,\ Fomin,\ Lokshtanov,\ Rosamond,\ Saurabh,\ Szeider,\ Thomassen.\ 2007]$

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Are all "natural" graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

• LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

• Some problems are even NP-hard on graphs of constant treewidth: STEINER FOREST (tw=3), BANDWIDTH (tw=1).

Theorem (Courcelle. 1990)

Every problem expressible in MSO_2 can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Are all "natural" graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

• LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

- Some problems are even NP-hard on graphs of constant treewidth: Steiner Forest (tw = 3), Bandwidth (tw = 1).
- Most natural problems (VERTEX COVER, DOMINATING SET, ...) do not admit polynomial kernels parameterized by treewidth.

Next section is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- Brambles and duality
- 4 Computing treewidth

How to provide a lower bound on the treewidth of a graph?

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family B of pairwise touching connected vertex sets of G.

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family B of pairwise touching connected vertex sets of G.

The order of a bramble \mathcal{B} in a graph G is the minimum size of a vertex set $S \subseteq V(G)$ intersecting all the sets in \mathcal{B} .

How to provide a lower bound on the treewidth of a graph?

Two sets $A, B \subseteq V(G)$ touch if either $A \cap B \neq \emptyset$ or there is an edge in G from A to B.

A set $S \subseteq V(G)$ is connected if G[S] is connected.

A bramble in a graph G is a family \mathcal{B} of pairwise touching connected vertex sets of G.

The order of a bramble \mathcal{B} in a graph G is the minimum size of a vertex set $S \subseteq V(G)$ intersecting all the sets in \mathcal{B} .

Theorem (Robertson and Seymour. 1993)

For every $k \ge 0$ and graph G, the treewidth of G is at least k if and only if G contains a bramble of order at least k+1.

[slides borrowed from Christophe Paul]

• Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G - S contains no path between $Y \setminus S$ and $Z \setminus S$.

[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X$, $|Y| = |Z| \le k$, Y and Z are not separable.

[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X$, $|Y| = |Z| \le k$, Y and Z are not separable.

The $(k \times k)$ -grid is k-linked

[slides borrowed from Christophe Paul]

- Two sets $Y, Z \subseteq V(G)$, with |Y| = |Z|, are separable if there is a set $S \subseteq V(G)$ with |S| < |Y| and such that G S contains no path between $Y \setminus S$ and $Z \setminus S$.
- For $k \ge 1$, a set $X \subseteq V(G)$ is k-linked if $|X| \ge k$ and $\forall Y, Z \subseteq X$, $|Y| = |Z| \le k$, Y and Z are not separable.

The $(k \times k)$ -grid is k-linked

 $K_{2k,k}$ is also k-linked

Lemma

If G contains a (k+1)-linked set X with $|X| \ge 3k$, then $\mathsf{tw}(G) \ge k$.

→ skip

Lemma

If G contains a (k+1)-linked set X with $|X| \ge 3k$, then $\operatorname{tw}(G) \ge k$.

→ skip

Contradiction: Consider a tree decomposition of G of width < k.

Let t be a "lowest" node with $|V_t \cap X| > 2k$.

Lemma

If G contains a (k+1)-linked set X with $|X| \ge 3k$, then $tw(G) \ge k$.

→ skip

Contradiction: Consider a tree decomposition of G of width < k.

Let t be a "lowest" node with $|V_t \cap X| > 2k$.

If $\exists i \in [\ell]$ such that $|V_{t_i} \cap X| \geqslant k$, then we can choose $Y \subseteq V_{t_i} \cap X$, |Y| = k and $Z \subseteq (V \setminus V_{t_i}) \cap X$, |Z| = k.

But $S = X_{t_i} \cap X_t$ separates Y and Z and $|S| \le k - 1$.

Lemma

If G contains a (k+1)-linked set X with $|X| \ge 3k$, then $tw(G) \ge k$.

→ skip

Contradiction: Consider a tree decomposition of G of width < k.

Let t be a "lowest" node with $|V_t \cap X| > 2k$.

Otherwise, let $W = V_{t_1} \cup \cdots \cup V_{t_i}$ with $|W \cap X| > k$ and $|(W \setminus V_{t_j}) \cap X| < k$ for $1 \le j \le i$.

$$Y \subseteq W \cap X$$
, $|Y| = k + 1$ and $Z \subseteq (V \setminus W) \cap X$, $|Z| = k + 1$.

But $S = X_t$ separates Y from Z and $|S| \leq k$.

Deciding linkedness is FPT

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{O(1)}$.

Deciding linkedness is FPT

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

• For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).

Deciding linkedness is FPT

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

- For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).
- Complexity: $4^k \cdot n^{O(1)}$.

Deciding linkedness is FPT

Lemma

Given a vertex set X of a graph G and $k \leq |X|$, it is possible to decide whether X est k-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$.

- For every pair of subsets $Y, Z \subseteq X$ with $|Y| = |Z| \le k$, we can test whether Y and Z are separable in polynomial time (flow algorithm).
- Complexity: $4^k \cdot n^{O(1)}$.

Remark If X is not k-linked we can find, within the same running time, two separable subsets $Y, Z \subseteq X$.

Next section is...

- Definition and simple properties
- 2 Dynamic programming on tree decompositions
 - Two simple algorithms
 - Courcelle's theorem
 - Introduction to parameterized complexity
- 3 Brambles and duality
- 4 Computing treewidth

Given a graph G on n vertices and a positive integer k:

Given a graph G on n vertices and a positive integer k:

• Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

[Bodlaender. 1996]

• Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

- Either concludes that $\mathsf{tw}(G) \geq k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
 - Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 5k + 4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
- Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
 - Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most 5k+4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]
- Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most $\mathcal{O}(k \cdot \sqrt{\log k})$ in time $n^{\mathcal{O}(1)}$.

Given a graph G on n vertices and a positive integer k:

- Deciding whether $tw(G) \le k$ is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]
 - Can be solved in time $k^{\mathcal{O}(k^3)} \cdot n$.

- \star Either concludes that $\mathsf{tw}(G) \geq k$ or finds a tree decomposition of width at most 4k in time $\mathcal{O}(3^{3k} \cdot k \cdot n^2)$. [Robertson and Seymour. 1995]
- Either concludes that $tw(G) \ge k$ or finds a tree decomposition of width at most 9k/2 in time $\mathcal{O}(2^{3k} \cdot k^{3/2} \cdot n^2)$. [Amir. 2010]
- Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most 5k+4 in time $2^{\mathcal{O}(k)} \cdot n$. [Bodlaender et al. 2016]
- Either concludes that $\operatorname{tw}(G) \geq k$ or finds a tree decomposition of width at most $\mathcal{O}(k \cdot \sqrt{\log k})$ in time $n^{\mathcal{O}(1)}$.

[slides borrowed from Christophe Paul]

Idea

• We add vertices to a set U in a greedy way, until U = V(G).

[slides borrowed from Christophe Paul]

Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$,

[slides borrowed from Christophe Paul]

Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that $\mathsf{tw}(G) \ge k$.

[slides borrowed from Christophe Paul]

Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that $\mathsf{tw}(G) \ge k$.

Invariant

• Every connected component of G - U has at most 3k neighbors in U.

[slides borrowed from Christophe Paul]

Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that $\mathsf{tw}(G) \ge k$.

Invariant

- Every connected component of G U has at most 3k neighbors in U.
- There exists a bag X_t of \mathcal{T}_U containing all these neighbors.

Islides borrowed from Christophe Paull

Idea

- We add vertices to a set U in a greedy way, until U = V(G).
- We maintain a tree decomposition \mathcal{T}_U of G[U] s.t. width $(\mathcal{T}_U) < 4k$, unless we stop the algorithm and conclude that tw(G) > k.

Invariant

- Every connected component of G U has at most 3k neighbors in U.
- There exists a bag X_t of T_U containing all these neighbors.

Initially, we start with U being any set of 3k vertices.

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| < 3k: we add a node t' neighbor of t such that $X_{t'} = \{x\} \cup X$, with $x \in C$ being a neighbor of X_t .

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

• If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:
 - ① If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:
 - If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.
 - Otherwise, we find sets Y, Z, S with $|S| < |Y| = |Z| \le k + 1$ and such that S separates Y and Z.

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:
 - If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.
 - ② Otherwise, we find sets Y, Z, S with $|S| < |Y| = |Z| \le k + 1$ and such that S separates Y and Z.

We create a node t' neighbor of t s.t. $X_{t'} = (S \cap C) \cup X$.

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:
 - ① If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.
 - Otherwise, we find sets Y, Z, S with $|S| < |Y| = |Z| \le k + 1$ and such that S separates Y and Z.

We create a node t' neighbor of t s.t. $X_{t'} = (S \cap C) \cup X$.

Obs: the neighbors of every new component $C' \subseteq C$ are in $(X \setminus Z) \cup (S \cap C)$ or in $(X \setminus Y) \cup (S \cap C)$

Let X be the neighbors of a component C and t be the node s.t. $X \subseteq X_t$.

- If |X| = 3k: we test whether X is (k+1)-linked in time $f(k) \cdot n^{\mathcal{O}(1)}$:
 - ① If X is (k+1)-linked, then $tw(G) \ge k$, and we stop.
 - Otherwise, we find sets Y, Z, S with $|S| < |Y| = |Z| \le k + 1$ and such that S separates Y and Z.

We create a node t' neighbor of t s.t. $X_{t'} = (S \cap C) \cup X$.

Obs: the neighbors of every new component $C' \subseteq C$ are in $(X \setminus Z) \cup (S \cap C)$ or in $(X \setminus Y) \cup (S \cap C) \Rightarrow \leq 3k$ neighbors.

Gràcies!

