Boundedness and Stability

第一次 SDEM 5.1-5.2

杨徵羽

2022年11月21日

5.1 Introduction

- 稳定性引入(圆形壁上的小球)
- 稳定性定义(类比极限,先按 ω 分类,再按 t 分类)
- Lyapunov 方法(V 相当于势能, LV 相当于求导)
- 全章结构(两步建立稳定性判据)
- 对系统的假设: f(0,t) = 0, g(0,t) = 0 (不为 0 就作差)
- 对系统的假设:初值不随机(利用全概率公式)

全章结构

稳定性种类	节	定义	V 函数判别法	系数判别法	例子
 p 阶矩渐近有界	5.2	1	2	3	4,5
p 阶矩指数稳定	5.3	7	8	10,12,16	25,26,27
p 阶矩渐近稳定	5.4	28	29,30,31		32,33
a.s. 指数稳定	5.3	7	9	10,12,14,16	
a.s. 渐近稳定	5.4	28	29		
依概率稳定	5.5	34	35		
依概率渐近稳定	5.5	34	36		38
依概率渐近大范围稳定	5.5	34	37		
依分布渐近稳定	5.6	40	43	44	45,46

初值不随机 (SDE p.110)

Definition 2.1 (i) The trivial solution of equation (1.2) is said to be stochastically stable or stable in probability if for every pair of $\varepsilon \in (0,1)$ and r > 0, there exists a $\delta = \delta(\varepsilon, r, t_0) > 0$ such that

$$P\{|x(t;t_0,x_0)| < r \text{ for all } t \ge t_0\} \ge 1 - \varepsilon$$

Let us now explain why we need only to discuss the case of constant initial values. Suppose one would like to let the initial value x_0 be a random variable. He then should replace e.g. " $|x_0| < \delta$ " by " $|x_0| < \delta$ a.s." in the definition accordingly. This seems more general but is in fact equivalent to the above definition. For example, suppose we have (i), then for any random variable x_0 with $|x_0| < \delta$ a.s., we have

$$\begin{split} &P\{|x(t;t_0,x_0)| < r \text{ for all } t \geq t_0\} \\ &= \int_{S_\delta} P\{|x(t;t_0,y)| < r \text{ for all } t \geq t_0\} P\{x_0 \in dy\} \\ &\geq \int_{S_\delta} (1-\varepsilon) P\{x_0 \in dy\} = 1-\varepsilon. \end{split}$$

初值不随机 (SDE p.119)

Definition 3.1 The trivial solution of equation (1.2) is said to be almost surely exponentially stable if

$$\limsup_{t \to \infty} \frac{1}{t} \log |x(t; t_0, x_0)| < 0 \qquad a.s. \tag{3.1}$$

to the equilibrium position x=0 exponentially fast. Moreover, let us explain once again why we only need to discuss the case of constant initial values. For a general initial value x_0 (i.e. x_0 is \mathcal{F}_{t_0} -measurable and belongs to $L^2(\Omega; \mathbb{R}^d)$), it follows from (3.1) that

$$\begin{split} & P \big\{ \limsup_{t \to \infty} \frac{1}{t} \log |x(t;t_0,x_0)| < 0 \big\} \\ & = \int_{R^d} P \big\{ \limsup_{t \to \infty} \frac{1}{t} \log |x(t;t_0,y)| < 0 \big\} P \{x_0 \in dy\} \\ & = \int_{R^d} P \{x_0 \in dy\} = 1, \end{split}$$

初值不随机 (SDE p.127)

Definition 4.1 The trivial solution of equation (1.2) is said to be pth moment exponentially stable if there is a pair of positive constants λ and C such that

$$E|x(t;t_0,x_0)|^p \le C|x_0|^p e^{-\lambda(t-t_0)}$$
 on $t \ge t_0$ (4.1)

for all $x_0 \in \mathbb{R}^d$. When p = 2, it is usually said to be exponentially stable in mean square.

exponent is negative. Moreover, if one wishes to consider the initial value of an \mathcal{F}_{t_0} -measurable random variable $x_0 \in L^p(\Omega; \mathbb{R}^d)$, then, by (4.1),

$$\begin{split} E|x(t;t_0,x_0)|^p &= \int_{R^d} E|x(t;t_0,y)|^p P\{x_0 \in dy\} \\ &\leq \int_{R^d} C|y|^p e^{-\lambda(t-t_0)} P\{x_0 \in dy\} = CE|x_0|^p e^{-\lambda(t-t_0)}. \end{split}$$

Besides, noting $(E|x(t)|\hat{p})^{1/\hat{p}} \le (E|x(t)|p)^{1/p}$ for $0 < \hat{p} < p$ we see that the pth moment exponential stability implies the \hat{p} th moment exponential stability.

5.2 Asymptotic Boundedness

- Definition 5.1: p 阶矩渐近有界性定义
- Theorem 5.2: V 函数判别法(辅助函数 $e^{\lambda t}V$,停时截断, \mathcal{X} 类函数,Jensen 不等式)
- Theorem 5.3: 系数判别法(LV 计算, Young 不等式, M-矩阵)
- Examples 5.4, 5.5: 数值算例

Example 5.4 (α 为常数)

图 1: 样本轨迹, $\alpha = 0.1, \sigma = 0.5$

Example 5.4(α 为常数)

图 2: 2 阶矩, $\alpha = 0.1, \sigma = 0.5$

Example 5.4 (α 为常数)

图 3: 样本轨迹, $\alpha = -0.1, \sigma = 0.5$

Example 5.4 (α 为常数)

图 4: 2 阶矩, $\alpha = -0.1, \sigma = 0.5$

Example 5.4(α与 r(t) 有关)

图 5: 马尔可夫切换, $\gamma = 0.5, \sigma = 0.5$

Example 5.4(α 与 *r*(*t*) 有关)

图 6: 样本轨迹, $\gamma = 0.5, \sigma = 0.5$

Example 5.4 $(\alpha 与 r(t) 有关)$

图 7: 2 阶矩, $\gamma = 0.5, \sigma = 0.5$

Example 5.4(α与 r(t) 有关)

图 8: 马尔可夫切换, $\gamma = 1.5, \sigma = 0.5$

Example 5.4(α 与 *r*(*t*) 有关)

图 9: 样本轨迹, $\gamma = 1.5, \sigma = 0.5$

Example 5.4 (α 与 r(t) 有关)

图 10: 2 阶矩, $\gamma = 1.5, \sigma = 0.5$

markovianSwitching.m

```
function [rGrid] = markovianSwitching(Gamma, T, stepSize)
    N = length(Gamma); % the quantity of states
    iJump = 1: tJump(1) = 0: rJump(1) = randi(N): % initial value setting
    while tJump(iJump) < T</pre>
 5
         tJump(iJump+1) = tJump(iJump) + exprnd(-1/Gamma(rJump(iJump),rJump(iJump))
6
         distribution = Gamma(rJump(iJump),:);
7
         distribution(rJump(iJump)) = 0;
8
9
         distribution = distribution/sum(distribution);
         rJump(iJump+1) = discretize(rand, cumsum([0 distribution]));
10
         iJump = iJump + 1:
11
    end
12
    %% convert to time grid in order to be compatible with numerical solutions
13
    nJump = length(tJump):
14
    tGrid = 0:stepSize:T; nGrid = length(tGrid); rGrid = zeros(1, nGrid);
15
    tJumpGrid = ceil(tJump/stepSize);
16
    for iJump = 1:nJump-1
17
        for iGrid = tJumpGrid(iJump)+1:tJumpGrid(iJump+1)
18
           rGrid(iGrid) = rJump(iJump):
19
        end
20
    end
21
    rGrid = rGrid(1:nGrid): % delete calculation beyond T
```

SDEMexample5_4.m

```
clear;clc;close all;
    nSample = 25: T = 20: stepSize = 0.01:
    alpha = \Omega(r)(1*(r==1)+(-1/2)*(r==2)); % a simple way of representing piecewise
          function
    sigma = 5; gamma = 1.5; Gamma = [[-4 4]; [gamma -gamma]];
    r = markovianSwitching(Gamma, T, stepSize); % one r(t) for all sample paths
    tGrid = 0:stepSize:T;
    nGrid = length(tGrid);
    f = Q(x,t,r) alpha(r) * x;
9
    g = @(x,t,r) sigma;
10
    x = zeros(nSample, nGrid); % not `zeros(nGrid)`!!!
11
    for iSample = 1:nSample
12
        x(1) = 1:
13
        for iGrid = 1:nGrid - 1
14
           x(iSample, iGrid + 1) = x(iSample, iGrid) + f(x(iSample, iGrid), iGrid, r
                 (iGrid)) * stepSize + g(x(iSample, iGrid), iGrid, r(iGrid)) *
                normrnd(0, stepSize);
15
        end
16
    end
17
    for iSample = 1:nSample
18
        plot(tGrid,x(iSample, :)); hold on
19
    end
20
    p = 2; pthmoment = mean(x.^p, 1);
21
    plot(tGrid.pthmoment)
```