Geostatistics Basics

SERGIO REY

GEOG 384 Spatial Data Analysis

Center for Open Geographical Science Department of Geography San Diego State University Fall 2023

Outline

- Geostatistical Perspective
 - Spatial Random Field
 - Moment Conditions

- Variogram and Correlogram
 - Semi-Variogram
 - Covariogram

Spatial Random Field

Continuous Spatial Process

$$\{Z(s): s \in D\} \tag{1}$$

- s is spatial index, continuous in R^2 (R^3)
- Sample of spatial locations
 - $\{s_1, s_2, \dots, s_n\}$: sample locations
 - $\{Z(s_1), Z(s_2), \dots, Z(s_n)\}$: random variable at sample locations

Geostatistical Data

Spatial Domain: D

- A continuous and fixed set.
- Meaning Z(s) can be observed everywhere within D.
- Between any two sample locations s_i and s_j you can theoretically place an infinite number of other samples.
- By fixed: the points in D are non-stochastic

Continuous Variation

- Because of the continuity of D
- Geostatistical data is referred to as "spatial data with continuous variation."
- Continuity is associated with D.
- Attribute Z may, or may not, be continuous.

Geostatistical Data: Rainfall in Parana State Brazil

Geostatistical Data

Continuous variation

- Potentially measurable anywhere in D
- Impossible to sample D exhaustively

Reconstruction of the surface from observed sites

- Tessellation based methods
- Interpolation
- Kriging

Surface Reconstruction: Example¹

¹From Goovaerts, P. (1999) "Performance comparison of geostatistical algorithms for incorporating elevation into the mapping of precipitation". *Geocomputation* '99.

8/34

Surface Reconstruction: Tessellation Based Method

Surface Reconstruction: Spatial Interpolation

Surface Reconstruction: Kriging

Baltimore Sales Price, Baltimore MD

LA Basin Ozone Levels

Conceptual Framework

Equilibrium

- Equilibrium = Stationarity
- Stochastic Process
 - not multiple realizations, but a single realization
 - the map is a single data point
- Notion of Stability
 - go from a single data point to acting as if there are multiple observations

Spatial Stationarity

15/34

Moment Conditions

- Constrain Variability
- Moments Must Exist
 - no infinite variance
- Moments Must Be Regular Over Space
 - restrictions on heterogeneity
 - restrictions on range of dependence

Ergodicity

- Sample Realization is Representative
 - average obtained using a single realization is same as over all possible realizations
 - whether you observer one or many maps, the information should be the same

Strict Stationarity

- Pertains to the Complete Distribution
- Invariance Under Spatial Shift
 - joint density for two different spatial subsets is same
 - $\{z(s_l), \ldots, z(s_k)\}\$ and $\{z(s_{l+h}), \ldots, z(s_{k+h})\}\$
 - information about process is the same no matter where it is obtained
- Very Strict Requirement

Moment Stationarity

- Moments Invariant Under Spatial Shift
- Mean
 - no spatial trend
- Variance
 - no heteroskedasticity (no spatial regimes)
- Covariance
 - not a function of location
 - only spatial separation, angle

Intrinsic Hypothesis

No Spatial Trend

- if there is a trend, take it out
- residuals have no trend (mean = 0

Constant Variance

Variance of first difference only a function of displacment

$$V\{Z_{s+h}-Z_s\} \tag{2}$$

a variability of the difference

Bubble Plot Baltimore House Sales Prices

Detrending Baltimore House Sales Prices

P = -166.02 - 0.148x + 0.634y

Semi-Variogram

Variogram Function

$$2\gamma(h) = V[Z_{s+h} - Z_s] \tag{3}$$

factor 2, so $\gamma(h)$ is half of the variogram, or semi-variogram

Constant Mean Assumption

- $E[Z_{s+h} Z_s] = E[Z_{s+h}] E[Z_s] = 0$
- $V[Z_{s+h} Z_s] = E[Z_{s+h} E[Z_s]]^2 0$
- $\gamma(h) = (1/2)E[Z_{s+h} E[Z_s]]^2$
- average of squared differences

Variogram Cloud

Outliers in Variogram Cloud

Outliers in Bubble Plot

Estimating a Variogram

Methods of Moments

$$2\gamma(h) = (1/|N(h)|) \sum_{h} [Z_{s+h} - Z_s]^2$$
 (4)

- average of squared differences by distance bin h
- N(h) number of pairs in distance bin h

Rules of Thumb

- at least 30 pairs in each bin
- max h < D/2 (D is maximum distance)
- distance of reliability

Variogram on 2nd Order Trend Surface

Covariogram

Second Order Stationarity

- covariance regular over space
- stronger assumptions: regularity second order moments, cross-product

Covariance at h

$$C(h) = Cov[Z_{s+h}, Z_s]$$
 (5)

Process Variance

- covariance at distance zero
- $C(0) = V[Z_s]$

Correlogram

Autocorrelation Function

$$\rho(h) = C(h)/C(0) \tag{6}$$

covariance standardized by proces variance

Distance Decay

- Correlogram decreases with distance
- Tobler's law

Semi-Variogram and Covariogram

Two approaches to same concept

$$2\gamma(h) = E[Z_{s+h} - Z_s]^2$$

$$= 2E[Z_s^2] - 2E[Z_{s+h}Z_s]$$
(8)

Semi-variance

- $\gamma(h) = C(0) C(h)$
- semi-variance is variance of process less covariance at distance h