Nucleotide and Amino Acid Sequence of AIM-I

-51 -16	GGCACGAGCGGCTGCCTGACTTACAGCAGTCAGACTCTGACAGGTTCATGGCTATG -+	8
9	ATGGAGGTCCAGGGGGGACCCAGCCTGGGACAGACCTGCGTGCTGATCGTGATCTTCACA TACCTCCAGGTCCCCCCTGGGTCGGACCCTGTCTGGACGCACGACTAGCACTAGAAGTGT M E V Q G G P S L G Q T C V L I V I F T	68 23
69 24	GTGCTCCTGCAGTCTCTCTGTGGGCTGTAACTTACGTGTACTTTACCAACGAGCTGAAG CACGAGGACGTCAGAGAGACACACCGACATTGAATGCACATGAAATGGTTGCTCGACTTC V L L Q S L C V A V T Y V Y F T N E L K	128 43
129 44	CAGATGCAGGACAAGTACTCCAAAAGTGGCATTGCTTGTTTCTTAAAAGAAGATGACAGT GTCTACGTCCTGTTCATGAGGTTTTCACCGTAACGAACAAAGAATTTTCTTCTACTGTCA Q M Q D K Y S K S G I A C F L K E D D S	188 63
189 64	TATTGGGACCCCAATGACGAAGAGAGTATGAACAGCCCCTGCTGGCAAGTCAAGTGGCAA ATAACCCTGGGGTTACTGCTCTCTCATACTTGTCGGGGACGACCGTTCAGTTCACCGTT Y W D P N D E E S M N S P C W Q V K W Q	248 83
249 84	CTCCGTCAGCTCGTTAGAAAGATGATTTTGAGAACCTCTGAGGAAACCATTTCTACAGTT -++ GAGGCAGTCGAGCAATCTTTCTACTAAAACTCTTGGAGACTCCTTTGGTAAAGATGTCAA L R Q L V R K M I L R T S E E T I S T V	308 103
309 104	CAAGAAAAGCAACAAAATATTTCTCCCCTAGTGAGAGAAAGAGGTCCTCAGAGAGTAGCA GTTCTTTTCGTTGTTTTATAAAGAGGGGATCACTCTCTTTCTCCAGGAGTCTCTCATCGT Q E K Q Q N I S P L V R E R G P Q R V A	368 123
369 124	GCTCACATAACTGGGACCAGAGGAAGAAGCAACACATTGTCTTCTCCAAACTCCAAGAAT CGAGTGTATTGACCCTGGTCTCCTTCGTTGTGTAACAGAAGAGGGTTTGAGGTTCTTA A H I T G T R G R S N T L S S P N S K N	428 143
429 144	GAAAAGGCTCTGGGCCGCAAAATAAACTCCTGGGAATCATCAAGGAGTGGGCATTCATT	488 163

489 164	CTGAGCAACTTGCACTTGAGGAATGGTGAACTGGTCATCCATGAAAAAGGGTTTTACTAC GACTCGTTGAACGTGAACTCCTTACCACTTGACCAGTAGGTACTTTTTCCCAAAATGATG L S N L H L R N G E L V I H E K G F Y Y	548 183
549 184	ATCTATTCCCAAACATACTTTCGATTTCAGGAGGAAATAAAAGAAACACAAAGAACGAC TAGATAAGGGTTTGTATGAAAGCTAAAGTCCTCCTTTATTTTCTTTTGTGTTTCTTGCTG I Y S Q T Y F R F Q E E I K E N T K N D	608 203
609 204	AAACAAATGGTCCAATATATTTACAAATACACAAGTTATCCTGACCCTATATTGTTGATG TTTGTTTACCAGGTTATATAAATGTTTATGTGTTCAATAGGACTGGGATATAACAACTAC K Q M V Q Y I Y K Y T S Y P D P I L L M	668 223
669 224	AAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATGCAGAATATGGACTCTATTCCATCTAT TTTTCACGATCTTTATCAACAACCAGATTTCTACGTCTTATACCTGAGATAAGGTAGATA K S A R N S C W S K D A E Y G L Y S I Y	728 243
729 244	CAAGGGGGAATATTTGAGCTTAAGGAAAATGACAGAATTTTTGTTTCTGTAACAAATGAG GTTCCCCCTTATAAACTCGAATTCCTTTTACTGTCTTAAAAACAAAGACATTGTTTACTC Q G G I F E L K E N D R I F V S V T N E	788 263
789 264	CACTTGATAGACATGGACCATGAAGCCAGTTTTTTCGGGGGCCTTTTTAGTTGGCTAACTG GTGAACTATCTGTACCTGGTACTTCGGTCAAAAAAGCCCCGGAAAAATCAACCGATTGAC H L I D M D H E A S F F G A F L V G	848 281
849	ACCTGGAAAGAAAAGCAATAACCTCAAAGTGACTATTCAGTTTTCAGGATGATACACTA TGGACCTTTCTTTTTCGTTATTGGAGTTTCACTGATAAGTCAAAAGTCCTACTATGTGAT	908
909	TGAAGATGTTTCAAAAAATCTGACCAAAACAAACAAACAGAAAACAGAAAACAAAAAAAA	968
969	CTCTATGCAATCTGAGTAGAGCAGCCACAACCAAAAAATTCTACAACACACAC	1028
1029	AAAGTGACTCACTTATCCCAAGAAAATGAAATTGCTGAAAGATCTTTCAGGACTCTACCT TTTCACTGAGTGAATAGGGTTCTTTTACTTTAACGACTTTCTAGAAAGTCCTGAGATGGA	1088
1089	CATATCAGTTTGCTAGCAGAAATCTAGAAGACTGTCAGCTTCCAAACATTAATGCAATGG -++ GTATAGTCAAACGATCGTCTTTAGATCTTCTGACAGTCGAAGGTTTGTAATTACGTTACC	1148

	FIG.1C			
1569	GCGACAGAGCGAGACTTGGTTTC -+			
1509	TTTGAACCCGGGAGGCAGAGGTTGCAGTGTGGTGAGATCATGCCACTACACTCCAGCCTG -+			
1449	TGGGTGTGTTGGCACATGCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGCAGGAGAATCG ACCCACACACCGTGTACGGACATCAGGGTCGATGAACTCTCCGACTCCGTCCTCTTAGC			
1389	TCAAGACCATAGTGACCAACATAGTGAAACCCCATCTCTACTGAAAGTGCAAAAATTAGC 9 -+			
1329	TCACACCTGTAATCCCAACATTTTGGGAACCCAAGGTGGGTAGATCACGAGATCAAGAGA AGTGTGGACATTAGGGTTGTAAAACCCTTGGGTTCCACCCATCTAGTGCTCTAGTTCTCT			
1269	CTTAAGTCAAAAGAGAGAGAGAGGCACCACTAAAAGATCGCAGTTTGCCTGGTGCAGTGGC GAATTCAGTTTTCTCTCTCTCTCCGTGGTGATTTTCTAGCGTCAAACGGACCACGTCACCG			
1209	TCCATCTCTCAAGTAGTGTATCACAGTAGTAGCCTCCAGGTTTCCTTAAGGGACAACATC -++ AGGTAGAGAGTTCATCACATAGTGTCATCATCAGGAGGTCCAAAGGAATTCCCTGTTGTAG			
1149	TTAACATCTTCTGTCTTTATAATCTACTCCTTGTAAAGACTGTAGAAGAAAGCGCAACAA 49 -++			

Alignment of AIM-I to Human Fas Ligand (Similarity = 48.594 % Identity = 22.892 %)

4	MEVQGGPSLGQTCVLIVIFTVLLQSLCVAVTYV	
15	:: :::: :	
37	YFTNELKOMODKYSKSGIACFLKEDDSYWDPNDEESMNSPCWQVKWQLRQ	86
65	:. :: . : : : ::: : :: plplpplkkrgnhstglcllvmffmvlvalvglglgmfql.fhlqk	109
87	LVRKMILRTSEETISTVQEKQQNISPLVRERGPQRVAAHITGTRGRSNTL	136
110	elaelrestsqmhtasslekqighpspppekkelrkvahltgksnsr	156
137	SSPNSKNEKALGRKINSWESSRSGHSFLSNLHLRNGELVIHEKGFYYIYS	186
157	:: : .: : : . : smplewedtygivllsgvkykkgglvinetglyfvys	193
187	QTYFRFQEEIKENTKNDKQMVQYIYKYTS.YPDPILLMKSARNSCWSKDA	235
194	: : :: : ::::: .: . :kvyfrgqscnnlplshkvymrnskypqdlvmmegkmmsycttgq	237
236	EYGLYSIYQGGIFELKENDRIFVSVTNEHLIDMDHEASFFGAFLV 280	
238	:: :: : ::: . .: :::: :: mwar.ssylgavfnltsadhlyvnvselslvnfeesqtffglykl 281	

FIG.2

Alignment Report of AlM-1, hFas Ligand, TNF- α and TNF- β by Clustal Method with PAM250 Residue Weight Table

1 1 1	10 20 MAMMEVQGGPSLGQTCVLIVIFTV MQQPMNYPCPQIFWVDSSATSSWAPPGSV MTPPERL	F FAS LIGAND - tnfa.pep
26 31 2 9		60 A AIM 1 P FAS LIGAND
56 57 12 17		R AIM 1 V FAS LIGAND L tnfa.pep
86 85 32 21	QLVRKMILRTSEETISTVQEKQQNIISPLV	
116 -114 62 34	EKGPQRVAAHITGTRGRSNTLSSPNSKNE EFT-NQSLKVSSFEKQIANPSTPSEKKEP	R FAS LIGAND K tnfa.pep
146 143 88 63	160 170 160 A L G R K I N S W E S S R S G H S F L S S V A H L T G N P H S R S I P L E W E D T Y G T A L I - S C P V A H V V A N P Q A E G Q - L Q W L N R R A N A L L A N P A A H L I G D P - S K Q N S L L W R A N T D R A F L Q D	G FAS LIGAND G tnfa.pep

FIG.3A

167 172 117 92	190 L HL R N G K L V I H E K G V K Y K K G G L V I N E T G V E L R D N Q L V V P S E G F S L S N N S L L V P T S G	LYFVYSKVYFF	GOSC-	AIM 1 FAS LIGAND tnfo.pep tnfb.pep
197 202 146 122	220 K E N T K N D K Q M V Q Y I N Q P L N H K V P S T H V L L T H T I P K A P S S P L Y L A H E V	YMRNSKYPEDI SRIAVSYQIKN	VLMEE NLLSA	AIM 1 FAS LIGAND tnfa.pep tnfb.pep
226 226 173 152	250 ARNSCWSKDAEYGL KRLNYCTT IKSPCQRETPEGAE QKMVYPGL	GQIWAHSSYLO AKPWYEPIYLO	CVFQL	AIM 1 FAS LIGAND tnfo.pep tnfb.pep
251 250 203 176	TSADHLYVNISQLS EKGDRLSAEINRPD	Y L D F A E S G Q V Y	FGLY-	AIM 1 FAS LIGAND tnfa.pep tnfb.pep
280 278 232 204	VG- - KL - A L			AIM 1 FAS LIGAND tnfa.pep tnfb.pep

Decoration 'Decoration #1': Box residues that match the Consensus within 2 distance units.

FIG.3B

-16.4