Biology 30 IB Genetics

Jad Chehimi

November 30, 2020

Unfinished!

Contents

18.1) Gregor Mendel	3
Peas	3
ntroduction	3
General	3
Terms	3
Dominance	4
Crosses	
Generations	•
lendel's Laws	4
18.2) Punnett Squares	!
18.3) Pedigree Charts	(
18.4) Other Patterns of Inheritance	
Pleiotropy	(
Multiple Alleles	-
Example	
Incomplete Dominance	
Codominance	;
Blood Type	;

(18.5) Dihybrid Crosses	9
# of Gametes	9
Drawing a Dihybrid Cross	10
Example	10

(18.1) Gregor Mendel

- Created the Laws of Inheritance of Traits
- Studied inheritance of traits in pea plants (test question)
- Called DNA and chromosomes particles he didn't know
- Father of Genetics

Peas

- Can be grown in a small area
- Produce lots of offspring
- Self-pollinate
- Can be artificially cross-pollinated (test question)

Introduction

General

- Trait = any characteristic that can be passed from parent to offspring
- **Heredity** = passing of traits from parent to offspring
- **Genetics** = study of heredity

Terms

- Alleles = two forms of a gene dominant & recessive
- **Dominant** = stronger of two genes, represented with capital letter (R)
- **Recessive** = weaker of two genes, represented with lowercase letter (r)
- **Genotype** = gene combination for a trait (RR, Rr, rr)
- **Phenotype** = physical feature resulting from genotype (red, white)
- Homozygous genotype = genotype involving 2 dominant OR 2 recessive genes pure, RR or rr
- Heterozygous genotype = genotype involving 1 dominant OR 1 recessive gene hybrid, Rr

Dominance

• Dominant and recessive alleles can code for different things

• e.x. R = Brown eyes, r = blue eyes

• Any dominant alleles = dominant phenotype — RR, Rr in most cases

• Only recessive alleles = recessive phenotype — rr

Genotypes RR Rr rr

Phenotypes RED RED YELLOW

Crosses

• Monohybrid cross = cross involving a single trait

• **Dihybrid cross** = cross involving two traits

• **Test cross** = cross involving always involing a homozygous recessive (rr) parent crossed with an unknown genotype, in order to find the genotype

Generations

- P1 Generation = parental generation in a breeding experiment
- **F1 Generation** (1st filial gen) = first-generation offspring in a breeding experiment
- **F2 Generation** (2nd filial gen) = second-generation offspring, and so on...

Mendel's Laws

LAW	PARENT CROSS	OFFSPRING
DOMINANCE	TT x tt tall x short	100% Tt tall
SEGREGATION	Tt x Tt tall x tall	75% tall 25% short
INDEPENDENT ASSORTMENT	RrGg x RrGg round & green x round & green	9/16 round seeds & green pods 3/16 round seeds & yellow pods 3/16 wrinkled seeds & green pods 1/16 wrinkled seeds & yellow pods

(18.2) Punnett Squares

Figure 1: Punnett square demonstrating law of segregation, which occurs in anaphase I

- One gene from father, one gene from mother
- Dominant and recessive alleles compete in punnett squares
- Phenotypic ratio = ratio of dominant phenotypes to recessive phenotypes, in this diagram its 3:1

(18.3) Pedigree Charts

Figure 2: All in your data booklet, except known heterozygotes

- **Pedigree** = a family tree used to trace inherited traits from parents to offspring
- Roman numerals denote different generations (rows)
- Arabic numerals denote different individuals in a generation (columns)

(18.4) Other Patterns of Inheritance

Pleiotropy

- Pleiotropic gene = one gene affects more than one phenotypic characteristic
- Examples of wide-ranging effects from a single gene include...
 - dwarfism (achondroplasia)
 - gigantism (acromegaly)
 - Cystic fibrosis = mucus build up in many organs
 - Sickle cell anemia = sickling of blood cells, cannot carry oxygen
 - * normal alleles = Hb^AHb^A
 - * mutated alleles = HbSHbS
 - * carrier alleles = Hb^AHb^S (less extreme effects)

Multiple Alleles

- Possible to have more than two alleles for a trait
- Superscript identifies different alleles
- Different alleles are dominant to one another

- e.g.
$$E^1 > E^2 > E^3 > E^4$$

Example

Predict the genotypic and phenotypic outcomes of crossing $E^1E^4 \times E^2E^3$.

• $E^1 = \text{wild}$, $E^2 = \text{apricot}$, $E^3 = \text{honey}$, $E^4 = \text{white}$

Wild type	$E^{1}E^{1}$, $E^{1}E^{2}$, $E^{1}E^{3}$, $E^{1}E^{4}$
Apricot	$E^{2}E^{2}$, $E^{2}E^{3}$, $E^{2}E^{4}$
Honey	E^3E^3 , E^3E^4
White	E^4E^4

Figure 3: This is typically given

- Genotype = $1 \times E^1 E^2 : 1 \times E^1 E^3 : 1 \times E^2 E^4 : 1 \times E^3 E^4$
- Phenotype = 2 wild : 1 apricot : 1 honey

Incomplete Dominance

- A hybrid (Rr) appearance can sometimes be in between the phenotypes
- For example...
 - -RR = red
 - rr = white
 - $Rr = \frac{pink}{pink}$ (normally red)

Codominance

• Both alleles expressed in heterozygous individuals

Figure 4: Red bull + white cow = red and white hair

Blood Type

Example of codominance and multiple alleles

$$I^A \ \& \ I^B > i$$

- $\bullet \ \ {\rm Type} \ {\rm A} = I^A I^A \ {\rm or} \ I^A i$
- $\bullet \ \, \mathsf{Type} \; \mathsf{B} = I^B I^B \; \mathsf{or} \; I^B i$
- ullet Type $AB = I^A I^B$
- Type O = ii

(18.5) Dihybrid Crosses

- A breeding experiment that tracks the inheritance of two traits
- Law of Independent Assortment = each pair of alleles segregate independently (metaphase)
- The two traits do not influence one another, they are independent
- These traits are on different locations called **loci**, **locus** of a chromosome

of Gametes

 2^n

n=# of heterozygotes

Examples...

- RrBb = 2 heterozygotes $= 2^2 = 4$ gametes
- $\underline{\mathsf{AaBb}}\mathsf{CC}\underline{\mathsf{Dd}} = \mathsf{3} \; \mathsf{heterozygotes} = 2^3 = 8 \; \mathsf{gametes}$
- $\underline{\mathsf{MmNnOo}}\mathsf{PPQQ}\underline{\mathsf{Rr}}\mathsf{ss}\underline{\mathsf{TtXx}} = \mathsf{6} \mathsf{\ heterozygotes} = 2^6 = 64 \mathsf{\ gametes}$

Drawing a Dihybrid Cross

Determine how many different possible gametes/phenotypes with the formula.

- $2^2 = 4$
- There will be 4 different types of offspring from this cross

Prepare a cross for every possible combination of all heterozygotes.

- 1. Top header = FOIL between genes of the gene pair of the first parent
- 2. Left header = FOIL between genes of the gene pair of other parent
- 3. Fill in the table like usual, including the top and left header, to list every possible combination
- 4. Make sure to order the alleles dominant to recessive, and same letters together Using the cross, you can...
- Determine the number/ratio of all possible genotypes by counting
- Determine the number of phenotypes from all possible genotypes

It helps to mark each of the table cells with a symbol to keep track.

Example

- $R_- = round$, $Y_- = yellow$
- rr = wrinkled, yy = green

Question: Determine the genotype and phenotype of a RyYy x RyYy cross.

	RY	Ry	rY	ry
RY	RRYY	RRYy	RrYY	RrYy
Ry	RRYy	RRyy	RrYy	Rryy
rY	RrYY	RrYy	rrYY	rrYy
ry	RrYy	Rryy	rrYy	rryy

Genotype

$$1 \times RRYY: 2 \times RRYy: 2 \times RrYY: 4 \times RrYy: 1 \times RRyy: 2 \times Rryy: 1 \times rrYY: 2 \times rrYy: 1 \times rryy$$

- Phenotype
 - 9 round, yellow
 - 3 round, green
 - 3 wrinkled, yellow
 - 1 wrinkled, green