PROJECT - 4 - Application of Clustering Models

By Prakash Ghosh

Problem Statement: Application of Clustering Models

* Dataset Link: https://drive.google.com/file/d/1pP0Rr83ri0voscgr95-YnVCBv6BYV22w/view/)

Problem 1: There are various stocks for which we have collected a data set, which all stocks are apparently similar in performance.

Problem 2: How many Unique patterns that exist in the historical stock data set, based on fluctuations in price.

Problem 3: Identify which all stocks are moving together and which all stocks are different from each other.

Solution:

```
In [10]: # Import Required Libraries
    import pandas as pd
    import numpy as np

import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D

from sklearn import decomposition, datasets
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler
    from sklearn.cluster import KMeans
    import seaborn as sns
    sns.set()
    sns.set_style('whitegrid')

%matplotlib inline
    from datetime import datetime
```

Load Data

In [3]: # Load data from link
 # File downloaded as data_stocks.csv from the URL="https://drive.google.com/file/d/1pP0Rr83ri0voscgr95-YnVCBv6BYV22w/v
 iew"
 file_name="data_stocks.csv"
 df = pd.read_csv(file_name)
 df.head(10)

Out[3]:

	DATE	SP500	NASDAQ.AAL	NASDAQ,AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP	NASDAQ.ADSK	NASDAQ.AF
0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040	102.2300	85.2200	59.760
1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080	102.1400	85.6500	59.840
2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030	102.2125	85.5100	59.795
3	1491226380	2364.3101	42.3700	143.6400	130.0729	82.000	102.1400	85.4872	59.620
4	1491226440	2364.8501	42.5378	143.6600	129.8800	82.035	102.0600	85.7001	59.620
5	1491226500	2365.6201	42.5399	143.7800	130.0700	82.040	102.0400	85.9200	59.610
6	1491226560	2365.2000	42.4700	143.8640	130.1800	82.120	102.3300	85.9120	59.540
7	1491226620	2365.2900	42.4700	143.8100	130.1400	82.190	102.3700	85.8200	59.410
8	1491226680	2364.3201	42.3900	143.8150	130.1000	82.230	102.3800	85.8800	59.430
9	1491226740	2364.6399	42.3300	143.8000	130.2100	82.165	102.3300	85.8600	59.260

10 rows × 502 columns

Problem 1: There are various stocks for which we have collected a data set, which all stocks are apparently similar in performance.

Analyze Data

In [21]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41266 entries, 0 to 41265
Columns: 502 entries, DATE to NYSE.ZTS

dtypes: float64(501), int64(1)

memory usage: 158.0 MB

In [22]: df.describe()

Out[22]:

	DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP	NASDAQ.ADSK	N
count	4.126600e+04	41266.000000	41266.000000	41266.000000	41266.00000	41266.000000	41266.000000	41266.000000	41
mean	1.497749e+09	2421.537882	47.708346	150.453566	141.31793	79.446873	103.480398	102.998608	50
std	3.822211e+06	39.557135	3.259377	6.236826	6.91674	2.000283	4.424244	9.389788	4.8
min	1.491226e+09	2329.139900	40.830000	140.160000	128.24000	74.800000	95.870000	83.000000	44
25%	1.494432e+09	2390.860100	44.945400	144.640000	135.19500	78.030000	101.300000	94.820000	47
50%	1.497638e+09	2430.149900	48.360000	149.945000	142.26000	79.410000	102.440000	106.820000	49
75%	1.501090e+09	2448.820100	50.180000	155.065000	147.10000	80.580000	104.660000	110.490000	52
max	1.504210e+09	2490.649900	54.475000	164.510000	155.33000	90.440000	121.770000	119.270000	62

8 rows × 502 columns

In [23]: # Check Null

df.isnull().values.any()

Out[23]: False

```
In [14]: # Drop date variable
         df_new = df.copy()
         df new = df new.drop(['DATE'], 1)
         # Dimensions of dataset
         n = df_new.shape[0]
         p = df new.shape[1]
         # Make data a numpy array
         df new = df new.values
In [15]: df_new
Out[15]: array([[2363.6101,
                            42.33 , 143.68 , ..., 63.86 , 122.
                  53.35 ],
                            42.36 , 143.7 , ...,
                                                     63.74 , 121.77 ,
               [2364.1001,
                  53.35 ],
                            42.31 , 143.6901, ..., 63.75 , 121.7 ,
               [2362.6799,
                  53.365 ],
               . . . ,
                            44.74 , 164.01 , ..., 76.88 , 114.31 ,
               [2470.03 ,
                  62.685 ],
               [2471.49 ,
                            44.71 , 163.88 , ...,
                                                     76.83 , 114.23 ,
                  62.6301],
               [2471.49 , 44.74 , 163.98 , ..., 76.81 , 114.28 ,
                  62.68 ]])
```

In [18]: plt.plot(df['SP500'])

Out[18]: [<matplotlib.lines.Line2D at 0x20d1bdbea90>]

Principal Component Analysis

```
In [19]: pca = PCA(n_components=3)
    pca.fit(df_new)
    df_pca = pca.transform(df_new)

#Scatter PLot
    plt.figure(figsize=(16,9))
    plt.scatter(df_pca[:,0],df_pca[:,1])
    plt.ylabel('PC1')
    plt.xlabel('PC2')
    plt.show()
```


KMeans Clustering

```
In [20]: | df pca
Out[20]: array([[ 312.06471872, 82.16326685,
                                                61.13922645],
                [ 308.40806514, 78.09348261,
                                                61.7988178 ],
                [ 306.77364778, 77.32427431,
                                                59.11828842],
                [-201.54427195, 118.68060234, -59.00831309],
                [-200.92133737, 119.16896696, -58.55435589],
                [-202.42056915, 117.64446307, -59.82857205]])
In [24]: # Finding optimum number of clusters for KMEANS cluster - Elbow Method
         k = []
         inertia = []
         for i in range(1,20):
             k_means = KMeans(n_clusters = i, random_state = 0)
             k_means.fit(df_new)
             k.append(i)
             inertia.append(k means.inertia )
```

```
In [25]: # Plot to find the Number of clusters
plt.plot(k,inertia)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('Mean Squared Errors')
plt.show()
```


Observation - 1: Optimum number of cluster from the above graph can be determined as 5

```
In [28]: # with the number of KMeans cluster =5
k_means = KMeans(n_clusters=5,random_state=0,init='k-means++')
k_means.fit(df_pca)
y_kmeans = k_means.fit_predict(df_pca)
labels = k_means.labels_
labels
```

Out[28]: array([1, 1, 1, ..., 4, 4, 4])

```
In [31]: plt.scatter(df_pca[y_kmeans == 0, 0], df_pca[y_kmeans == 0, 1], label = 'Cluster 1')
    plt.scatter(df_pca[y_kmeans == 1, 0], df_pca[y_kmeans == 1, 1], label = 'Cluster 2')
    plt.scatter(df_pca[y_kmeans == 2, 0], df_pca[y_kmeans == 2, 1], label = 'Cluster 3')
    plt.scatter(df_pca[y_kmeans == 3, 0], df_pca[y_kmeans == 3, 1], label = 'Cluster 4')
    plt.scatter(df_pca[y_kmeans == 4, 0], df_pca[y_kmeans == 4, 1], label = 'Cluster 5')
    plt.title('Clusters of stocks')
    plt.xlabel('PC-1')
    plt.ylabel('PC-2')
    plt.legend()
    plt.show()
```


Answer of Problem -1: The above 5 clusters shows the stocks which are similar in stock performance

Problem 2: How many Unique patterns that exist in the historical stock data set, based on fluctuations in price.

```
In [35]: df_pc = df.copy()
    df_pc = df_pc.drop(['DATE'], 1)
    df_pc = pd.DataFrame(pca.components_,columns=df_pc.columns)
    df_pc.head()
```

Out[35]:

	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP	NASDAQ.ADSK	NASDAQ.AKAM	NASDAC
0	-0.216015	-0.013154	-0.019954	-0.037492	-0.002238	-0.012834	-0.046234	0.020698	-0.02990
1	-0.030758	-0.017003	0.015011	0.011668	-0.006525	0.020935	-0.020952	0.004190	0.077607
2	0.047246	0.007741	-0.025218	-0.014318	-0.010718	0.031483	-0.043681	0.029598	0.064317

3 rows × 501 columns

In [36]: sns.set_style('whitegrid')
sns.heatmap(df_pc)

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x20d1c16cdd8>


```
In [37]: plt.figure(figsize=(11,8))
    df_corr = df_pc.corr().abs()
    sns.heatmap(df_corr,annot=True)
```

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x20d1be81c50>

Problem 3: Identify which all stocks are moving together and which all stocks are different from each other.

```
In [40]: df['labels'] = labels
    df.head()
```

Out[40]:

	DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP	NASDAQ.ADSK	NASDAQ.AF
0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040	102.2300	85.2200	59.760
1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080	102.1400	85.6500	59.840
2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030	102.2125	85.5100	59.795
3	1491226380	2364.3101	42.3700	143.6400	130.0729	82.000	102.1400	85.4872	59.620
4	1491226440	2364.8501	42.5378	143.6600	129.8800	82.035	102.0600	85.7001	59.620

5 rows × 503 columns

```
In [41]: df['labels'].unique().tolist()
```

Out[41]: [1, 3, 0, 2, 4]

```
In [42]: for i in df['labels'].unique().tolist():
    count = df[df['labels'] == i].shape[0]
    print('For lablel {}: The number of stock with similar performances is: {} '.format(i,count))
```

```
For lablel 1: The number of stock with similar performances is: 7024 For lablel 3: The number of stock with similar performances is: 6661 For lablel 0: The number of stock with similar performances is: 12065 For lablel 2: The number of stock with similar performances is: 8869 For lablel 4: The number of stock with similar performances is: 6647
```