CS312 Notes

August 27, 2024

Contents

I Theory Of Computation Introduction	1
Automata (Automaton)	2
Computability	2
Complexity	3
Problem Abstration	3
Abstration of Data	3
II Finite Automata	4
Formal Language	4
Abstraction of Problems	4
Formal Definition	Ę
Example	Ę
DFA	Ę
Applications	Ę
FA Computation	Ę
Language Recognition	6
Formal Definition of Acceptance	6
Regular Languages	6
FA Design Approach	6
Example	
Notes on Example	7
Example 2	7
Expansion on Above M_3	8
What does this give us?	
Last DFA Example	8
III Regular Languages	8
Is ϵ always a member of A^* regarless of the language A?	Ć
What is another name for the language of A $^{^{*}}$ A*?	Ć
Closures of Regular Languages	Ć
Nondeterminism	Ć
Formal Definition	Ć
Formal Definition of Acceptance (NFA)	9

I Theory Of Computation Introduction

The 3 componenets of problem solving

- 1. Unknowns
- 2. Data
- 3. Conditions

To solve a problem we need to find a way of determining the unknowns from given data such that conditions of the problem are satisfied.

The traditional areas of the theory of computation (TOC)

- Automata
 - Provide problem solving devices
- Computability
 - Provide framework that can characterize devices by their computing power
- Complexity
 - Provide framework to classify problems acording to time/space complexity of the toold used to solve them

Automata (Automaton)

- Abstration of computing devices
- How much memory can be used?
- What operations can be performed?

Computability

- Study different computing models and identify the most powerful ones
- Range of problems

- Problems can be undecidable or uncomputable
 - The halting problem

Complexity

- Computing problems range from easy to hard; sorting is easier than scheduling
- Question
 - What makes some problems computationally hard or others easy?

Problem Abstration

Data

• Abstracted as a word in a given alphabet

Conditions

• Abstracted as a set of words called a language

Unknowns

• A boolean variable: true if a word is in the language or false other wise

Abstration of Data

- Σ : alphabet, a finite, nonempty set of symbols
- Σ^* : all words of a finite length built up using Σ
- Rules: (1) the empty word (ϵ) is in Σ^* ; (2) if $w \in \Sigma^*$ and $a \in \Sigma$, then $aw \in \Sigma^*$, and (3) nothing else is in Σ^*

Example: If
$$\Sigma = \{0,1\}$$
, then $\Sigma^* = \{\epsilon,0,1,00,01,10,11,000,001,010,011,\dots\}$.

1. Valid C

```
int my_func() { return 1; };
int main() {
    int var = my_func(1,2,3,4,5,6,7);
    for (;;) {}
    // You cannot just simply change the syntax of a for loop
    for(;) {}
}
2. Invalid C++
    int my_func() { return 1; };
    int main() {
        int var = my_func(1,2,3,4,5,6,7);
        for (;;) {}
        // You cannot just simply change the syntax of a for loop
        for(;) {}
}
```

II Finite Automata

Formal Language

- Some set of strings over a give alphabet
- How do you specify a language?
- How do you recognize strings in a language?
- How do you translate the language?

Abstraction of Problems

- 1. Data word in a given alphabet
 - Σ alphabet, a finite non-empty set of symbols
 - Σ^* all words of finite length built-up using Σ
- 2. Conditions Set of words called a language
 - Any subset $L \subseteq \Sigma^*$ is a formal language

- 3. Unknown a boolean variable that is true, if word is in language; false, otherwise.
 - Given $w \in \Sigma^*$ and $L \subseteq \Sigma^*$, is $w \in L$?

Formal Definition

- Simplest computational model also referred to as a finite-state machine or finite automaton (FA)
- Representations: graphical, tabular, and mathmatical
- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is a finite set of symbols (alphabet), the transition function δ maps $Q \times \Sigma$ to $Q, q_0 \in Q$ is the start (initial) state, and $F \subseteq Q$ is the set of accept (final) states
- Used to design embedded systems, or compilers

Example

If the machine is in a start state, where the initial state is an accept state, that means that our FA can accept an empty string ϵ

DFA

Deterministic Finite Automata

Applications

- Parsers for compilers
- Pattern recognition
- Speech processing and OCR
- Financial planning and market prediction

FA Computation

- Automaton M₁ receives input symbols one-by-one (left to right)
- After reading each symbol, M₁ moves from one state to another along the transition that has that symbol as its label

• When M_1 reads the last symbol of the input, it produces the output: accept if M_1 is in an accept state, or reject if M_1 is not in an accept state

Language Recognition

- If L is the set of all strings that an FA M accepts, we say that L is the language of the machine M and write L(M) = L
- An automaton may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language 0

The machines are recognizing words in the language Any given automaton only recognizes specifically one language

Formal Definition of Acceptance

- LEt $M = (Q, \Sigma, \delta, q_0, F)$ be an FA and $w = a_1 a_2 \dots a_n$ be a string over Σ . We say M accepts w if a sequence of states $r_0 r_1 \dots r_n$ exist in Q such that
 - $r_0 = q_0$ (where machine starts)
 - $\delta(r_i,\!a_{i+1})=r_{i+1},\,i{=}0,\!1,\!\dots,\!n{-}1,\!(transitions\ based\ on\ \delta)$
 - $r_n \in F$ (input accepted)

Regular Languages

- We say that FA recognizes the language L if L = {w | M accepts w}
- A language is called a regular language, if there exists an FA that recognizes it
- Q: how do you design/build an FA

FA Design Approach

- 1. Identify finite pieces of information you need, i.e., the states (possibilities)
- 2. Identify the condition (or alphabet) to change from one state to another
- 3. Idenitfy the starting and final/accept states
- 4. Add missing transitions

Example

Let $M_1 = (Q, \Sigma, \delta, q_1, F)$, $Q = \{q_1, q_2, q_3\}$, $\Sigma = \{0,1\}$, and $F = \{q_2\}$. Let's define a transition function δ for M_1 and then draw the resulting (graph-based) **state transition diagram** for M_1

DFA, this table is Q X $\Sigma \to Q$ q_1 is the start state q_2 is the accept

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Notes on Example

 $L(M_1) = ?$

 $L(M_1) = A$

 $A = \{w \mid w \text{ contains at least one 1 AND an event number of 0's following the last 1}\}$

Example 2

 $\delta \neq Q \times \Sigma \to Q$

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

 $L(M_2) = B = \{ \ w \mid w \ ends \ in \ a \ 1 \ \}$

Expanstion on Above M_3

Language of $M_3 = C = \{ w \mid w \text{ ends in a } 0 \text{ OR } w \text{ is empty } \}$

What does this give us?

If we flip the accept and initial state, we generate the complement of the machine (flip the meaning)

Last DFA Example

$$\begin{array}{l} Q {=} \{s, q_1, q_2, r_1, r_2\} \\ \Sigma {=} \{a, b\} \\ F {=} \{q_1, r_1\} \end{array}$$

 Δ chart

$$\begin{array}{c|cccc} & a & b \\ \hline s & q_1 & r_1 \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \\ r_1 & r_2 & r_1 \\ r_2 & r_2 & r_1 \\ \end{array}$$

 $\{ \ w \mid starts \ with \ 'a' \ AND \ ends \ with \ 'a' \ \}$

III Regular Languages

Let A and B be languages

Union: A B = $\{ x \mid x \in A \lor x \in B \}$

Concatenation: A $\hat{ }$ B = { xy | x \in A \lambda y \in B }

Star: $A^* = \{ x_1 x_2 ... x_k \mid k > = 0 \land x_i \in A, 0 < = i < = k \}$

Is ϵ always a member of A^* regarless of the language A?

What is another name for the language of $A \hat{A}^*$?

Closures of Regular Languages

Theorem: Class of regular languages is closed under intersection. (Proof: Use cross-product construction of states)

Theorem: Class of regular languages is closed under complementation (Proof: swap accept/non-accept states and show FA recognizes the complement)

Nondeterminism

NFA or nondeterministic finite automata

- Every stop of a FA computation follows in a unique way from the proceeding step; a deterministic computation
- Nondeterministic computation choices exist for the next state; a nondeterministic FA (NFA)
- Ways to introduct nondeterminism
 - more choices for next state (zero, one, many)
 - State may change to another state without reading any symbol

Formal Definition

a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is a finite set of symbols (alphabet), the transition function δ maps $Q \times \Sigma \{\epsilon\}$ to $P(Q), q_0 \in Q$ is the start (initial) state, and $F \subseteq Q$ is the set of accept (final) states.

Notice that the range of the transition function δ for an NFA is the power set of Q P(Q)

Formal Definition of Acceptance (NFA)

Let N k (Q, Σ , δ , q₀, F) be an NFA and w = y₁y₂...y_n be a string over $\Sigma_{\epsilon} = \Sigma \epsilon$. We say N accepts w if a sequence of states r₀,r₁,...,r_m exist in Q such that

1.
$$r_0 = q_0$$

- 2. $\delta(r_i,y_{i+1})=r_{i+1}$ for $i=0,1,\ldots,m\text{-}1$
- 3. $r_m \in F$