پسگرد

backtracking

Backtracking

- □ Suppose you have to make a series of *decisions*, among various *choices*, where
 - ✓ You don't have enough information to know what to choose
 - ✓ Each decision leads to a new set of choices
 - ✓ Some sequence of choices (possibly more than one) may be a solution to your problem
- □ Backtracking is a methodical way of trying out various sequences of decisions, until you find one that "works"

Solving a maze

- ☐ Given a maze, find a path from start to finish
- □ At each intersection, you have to decide between three or fewer choices:
 - ✓ Go straight
 - ✓ Go up
 - ✓ Go down
- ☐ You don't have enough information to choose correctly
- □ Each choice leads to another set of choices
- ☐ One or more sequences of choices may (or may not) lead to a solution
- ☐ Many types of maze problem can be solved with backtracking

Coloring a map

- ☐ You wish to color a map with not more than four colors
 - ✓ red, yellow, green, blue
- □ Adjacent countries must be in different colors
- ☐ You don't have enough information to choose colors
- □ Each choice leads to another set of choices
- ☐ One or more sequences of choices may (or may not) lead to a solution
- ☐ Many coloring problems can be solved with backtracking

N-Queens

Backtracking (animation)

Terminology I

A tree is composed of nodes

There are three kinds of nodes:

The (one) root node

Internal nodes

Leaf nodes

Backtracking can be thought of as searching a tree for a particular "goal" leaf node

Maze

Graph coloring

N-Queens

جستجوى اولعمق

- □ بسط عمیق ترین گره در frontier فعلی درخت جستجو، تاجایی که گرهها فاقد جانشین باشند.
 - حذف این گرهها از frontier درخت.
 - ✓ استفاده از صف LIFO (پشته)

N-Qeens

کولەپشتى ۱-۰

- ☐ Given some items, pack the knapsack to get the maximum total value.
- \square Each item i has some weight denoted by w_i and some value denoted by p_i .
- \square Total weight that we can carry is no more than some fixed number W.
- ☐ So we must consider weights of items as well as their values.

i	p _i	w _i	p _i /w _i
1	40	2	20
2	30	5	6
3	50	10	5
4	10	5	2

W = 16

كولەپشتى ١-٠

حل مسئله کولهپشتی ۱-۰ با برنامهنویسی پویا

□ رابطه بازگشتی:

$$V[k,w] = \begin{cases} V[k-1,w] & \text{if } w_k > w \\ \max\{V[k-1,w],V[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

- \square It means, that the best subset of S_k that has total weight w is:
- ✓ 1) the best subset of S_{k-1} that has total weight $\leq w$, or
- ✓ 2) the best subset of S_{k-1} that has total weight $\leq w-w_k$ plus the item k

Example (1)

□ مىخواھىم مسئلە زىر را بە روش برنامەنويسى پويا حل كنيم:

Item#	Weight	Value
1	2	3
2	3	4
3	4	5
4	5	6

$$W = 5$$

Example (2)

$i\backslash V$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W
 $V[0,w] = 0$

Example (3)

$i\backslash W$	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Example (4)

$i\backslash V$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10				
2	0					
3	0					
4	0					

i=1 Items:

$$b_i=3$$
 1: (2,3)
 $w_i=2$ 2: (3,4)
 $w=1$ 3: (4,5)
 4 : (5,6)

$$\begin{split} &if \ w_i <= w \ /\!/ \ item \ i \ can \ be \ part \ of \ the \ solution \\ &if \ b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &else \\ &V[i,w] = V[i\text{-}1,w] \\ &else \ V[i,w] = V[i\text{-}1,w] \ /\!/ \ w_i > w \end{split}$$

Example (5)

$i\backslash W$	<i>y</i> 0	1	2	3	4	5
0	0 ~	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

i=1

 $b_i=3$

 $w_i=2$

w=2

 $w-w_i = 0$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$ $\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$ else $V[i,w] = V[i-1,w]$ else $V[i,w] = V[i-1,w]$ // $V[i,w] = V[i-1,w]$

Example (6)

$i\backslash V$	7 0	1	2	3	4	5
0	0	0 ~	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

Items:

1: (2,3)

i=1

 $b_i=3$

 $w_i=2$

w=3

 $w-w_i = 1$

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (7)

$i\backslash W$	<i>y</i> 0	1	2	3	4	5
0	0	0	0 ~	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

i=1

 $b_i=3$

 $w_i=2$

w=4

 $w-w_i = 2$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (8)

$i\backslash V$	7 0	1	2	3	4	5
0	0	0	0	0 ~	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

i=1

$$b_i$$
=3
 w_i =2
 w =5
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

 $w-w_i = 3$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (9)

$i\backslash V$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10	3	3	3	3
2	0	1 0				
3	0					
4	0					

1: (2,3)

2: (3,4)

3: (4,5)

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (10)

$i\backslash V$	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	13	3	3	3
2	0	0	3			
3	0					
4	0					

i=2

$$b_i$$
=4
 w_i =3
 w =2
Items:
1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (11)

$i\backslash W$	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0_	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

i=2

 $b_i=4$ $w_i=3$

w=3

 $w-w_i = 0$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (12)

$i\backslash V$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0 _	3	3	3	3
2	0	0	3	4	→ 4	
3	0					
4	0					

 $b_i=4$ $w_i=3$

w=4

 $w-w_i = 1$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (13)

$i\backslash W$	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 _	3	3	3
2	0	0	3	4	4	→ 7
3	0					
4	0					

 $b_i=4$

 $w_i=3$

w=5

 $w-w_i = 2$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (14)

$i\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	10	3	, 4	4	7
3	0	0	3	4		
4	0					

$$\begin{array}{c}
i=3\\
b_i=5\\
w_i=4\\
w=1..3
\end{array}$$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (15)

$i\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0-	0	3	4	4	7
3	0	0	3	4	5	
4	0					

 $w-w_i=0$

1: (2,3)

2: (3,4)

3: (4,5)

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (16)

$i\backslash V$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0					

$$i=3$$

$$b_i=5$$

$$w_i=4$$

$$w=5$$

$$w-w_i=1$$

if
$$\mathbf{w_i} \leftarrow \mathbf{w}$$
 // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$
$$V[i,w] = b_i + V[i-1,w-w_i]$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $V[i,w] = V[i-1,w]$ // $V[i,w] = V[i-1,w]$

Example (17)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	10	13	14	5	7
4	0	0	3	4	⁺ 5	

$$i=4$$

$$b_i=6$$

$$w_i=5$$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (18)

i∖W	<i>J</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	₁ 7
4	0	0	3	4	5	⁺ 7

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \end{split}$$

else V[i,w] = V[i-1,w]

else $V[i,w] = V[i-1,w] // w_i > w$