Cartesian cubical model categories

Steve Awodey

CT 2023

Background

- There has recently been work on **cubical** homotopy theory.
- It is related to homotopy type theory which is being used for computerized proof checking.
- The cubes used for this are closed under finite products.
- This model of homotopy was also proposed by Lawvere who stressed the tinyness of the geometric interval I.
- The tinyness of I is also used in the current theory.

Cartesian cubical sets

The **Cartesian cube category** \square is the opposite of the category \mathbb{B} of finite, strictly bipointed sets,

$$\square := \mathbb{B}^{\mathsf{op}}$$
.

Thus \square is the **Lawvere theory of bipointed objects**: the free finite product category with a bipointed object $[0] \rightrightarrows [1]$.

The **Cartesian cubical sets** is the category of presheaves on \Box ,

$$\mathsf{cSet} = \mathsf{Set}^{\square^{\mathsf{op}}}$$
 .

Thus cSet consists of all **covariant** functors $\mathbb{B} \to \mathsf{cSet}$.

The tiny interval ${\mathbb I}$

The 1-cube [1] represents the cubical set that **forgets the points**,

$$\mathbb{I} := \mathbb{B}([1], -) : \mathbb{B} \longrightarrow \mathsf{cSet}$$
 .

It **generates** cSet under finite products and colimits.

The two points $1 \rightrightarrows \mathbb{I}$ have a trivial intersection.

This is the universal **interval** in a topos.

It provides a **good cylinder** $X + X \rightarrow \mathbb{I} \times X$ for every object X, and a **good path object** $X^{\mathbb{I}} \rightarrow X \times X$ for every **fibrant** object X.

The main result

Theorem (A. 2023)

There is a Quillen model structure (C, W, F) on cSet where:

- ullet the **cofibrations** $\mathcal C$ are an axiomatized class of monos,
- the **fibrations** \mathcal{F} are those $f: X \to Y$ for which

$$(f^{\mathbb{I}} \times \mathbb{I}, \text{eval}) : X^{\mathbb{I}} \times \mathbb{I} \longrightarrow (Y^{\mathbb{I}} \times \mathbb{I}) \times_{Y} X$$

lifts on the right against all cofibrations,

• the weak equivalences W are those $f: X \to Y$ for which $K^f: K^Y \longrightarrow K^X$ is bijective under π_0 whenever K is fibrant.

The construction of (C, W, F)

The **proof** of the theorem

- uses ideas from type theory,
- including the univalence axiom of Voevodsky,
- is axiomatized in terms of:
 - 1. a classifier $\Phi \hookrightarrow \Omega$ for the cofibrations,
 - 2. a tiny interval $1 \rightrightarrows \mathbb{I}$,
 - 3. a universal small map $V \to V$,
- applies in several different cases.

$$(\mathcal{C}, \mathcal{W}, \mathcal{F})$$
 from (Φ, \mathbb{I}, V)

The model structure (C, W, F) is constructed in 3 steps:

- 1. Φ is used to determine a wfs (\mathcal{C} , TFib),
- 2. \mathbb{I} is used to determine a wfs (TCof, \mathcal{F}) with TFib $\subseteq \mathcal{F}$,
- 3. V is used to show 3-for-2 for $\mathcal{W}:=\mathsf{TFib}\circ\mathsf{TCof}.$

1. The cofibration wfs (C, TFib)

The **cofibrations** C are the monos $C' \rightarrow C$ classified by $t: 1 \rightarrow \Phi$.

$$\begin{array}{ccc}
C' & \longrightarrow 1 & \longrightarrow 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \longrightarrow \Phi & \longrightarrow \Omega
\end{array}$$

The **trivial fibrations** TFib are the maps T woheadrightarrow X that lift against the cofibrations.

$$C^{\uparrow} =: \mathsf{TFib}$$

$$C' \longrightarrow T$$

$$C \longrightarrow X$$

1. The cofibration wfs (C, TFib)

Proposition

 $(\mathcal{C},\mathsf{TFib})$ is an algebraic weak factorization system.

Proof.

The classifier $t: 1 \rightarrow \Phi$ determines a fibeblue polynomial monad

$$P_t = \Phi_1 t_* : \mathsf{cSet} \longrightarrow \mathsf{cSet}$$

the algebras for which in cSet/X are the trivial fibrations.

2. The fibration wfs $(\mathsf{TCof}, \mathcal{F})$

The **fibrations** ${\mathcal F}$ are defined in terms of the trivial fibrations by

$$(f: F \to X) \in \mathcal{F}$$
 iff $(\delta \Rightarrow f) \in \mathsf{TFib}$

where $\delta \Rightarrow f$ is the **gap map** with $\delta : 1 \longrightarrow \mathbb{I}$ in $\mathsf{cSet}/_{\mathbb{I}}$.

The **trivial cofibrations** TCof are the maps that lift against \mathcal{F} .

$$\mathsf{TCof} := {}^{\pitchfork}\mathcal{F}$$

3. The weak equivalences ${\cal W}$

Let $\mathcal{W} := \mathsf{TFib} \circ \mathsf{TCof}$.

Proposition

 (C, TFib) and $(\mathsf{TCof}, \mathcal{F})$ form a Barton premodel structure.

$$\mathsf{TCof} = \mathcal{W} \cap \mathcal{C}$$
 $\mathsf{TFib} = \mathcal{W} \cap \mathcal{F}$

Corollary

If W satisfies 3-for-2, then (C, W, F) is a QMS.

3. The weak equivalences ${\cal W}$

We use a **universal fibration** $\dot{U} \rightarrow U$ to show 3-for-2 for W.

- (i) there is a universal small map $\dot{V} \rightarrow V$
- (ii) U is the **classifying type** for fibration structures on $\dot{V} \rightarrow V$
- (iii) U → U is univalent
- (iv) U is fibrant
- (v) fibrant U implies **3-for-2** for \mathcal{W}

The idea of getting a QMS from univalence is due to Sattler.

3(i). The universal small map $\dot{V} \rightarrow V$

The category of elements functor $\int_{\mathbb{C}}$

$$\int_{\mathbb{C}}:\widehat{\mathbb{C}} \longrightarrow \mathsf{Cat}: \nu_{\mathbb{C}}$$

always has a right adjoint **nerve** functor $\nu_{\mathbb{C}}$.

Proposition

For any small map Y o X in $\widehat{\mathbb{C}}$ there is a canonical pullback

$$Y \longrightarrow \nu_{\mathbb{C}} \stackrel{\cdot}{\operatorname{set}}^{\operatorname{op}} \ \downarrow \ X \longrightarrow \nu_{\mathbb{C}} \operatorname{set}^{\operatorname{op}}$$

since $set^{op} \longrightarrow set^{op}$ classifies small discrete fibrations in Cat.

3(i). The universal small map $\dot{V} \rightarrow V$

The category of elements functor $\int_{\mathbb{C}}$

$$\int_{\mathbb{C}}:\widehat{\mathbb{C}}$$
 \longrightarrow Cat $:\nu_{\mathbb{C}}$

always has a right adjoint **nerve** functor $\nu_{\mathbb{C}}$.

Proposition

For any small map $Y \longrightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

$$Y \longrightarrow \nu_{\mathbb{C}} \stackrel{\circ}{\operatorname{set}}^{\operatorname{op}} = V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow \nu_{\mathbb{C}} \operatorname{set}^{\operatorname{op}} = V$$

since $set^{op} \rightarrow set^{op}$ classifies small discrete fibrations in Cat.

For any $A \to X$ in cSet there is a **classifying type** Fib(A) $\to X$, the sections of which correspond to fibration structures.

The construction of $Fib(A) \longrightarrow X$ is stable under pullback.

This uses the **root** functor $(-)^{\mathbb{I}} \dashv (-)_{\mathbb{I}}$.

Let U be the type of fibration structures on $\dot{V} \rightarrow V$

$$\begin{matrix} V \\ \downarrow \\ U := \mathsf{Fib}(\dot{V}) \longrightarrow V \end{matrix}$$

then define $\dot{U} \to U$ by pulling back.

$$\dot{\mathsf{U}} \longrightarrow \dot{\mathsf{V}}$$
 $\downarrow \qquad \qquad \downarrow$
 $\dot{\mathsf{U}} \longrightarrow \mathsf{V}$

Since Fib(-) is stable, the lower square is a pullback.

Since Fib(-) is stable the lower square is also a pullback.

But since $U=Fib(\dot{V})$ there is a section of $Fib(\dot{U})$. So $\dot{U}\to U$ is a fibration.

A fibration structure α on a small map $A \to X$ determines a factorization (a, α) of its classifying map $a: X \to V$.

A fibration structure α on a small map $A \to X$ determines a factorization (a, α) of its classifying map $a: X \to V$,

which classifies $A \rightarrow X$ as a fibration since $Fib(\dot{V}) = U$.

3(iii). $\dot{U} \rightarrow U$ is univalent

The universal fibration $\dot{U} \twoheadrightarrow U$ is univalent if the type

$$Eq_B = \Sigma_B Eq(-, B) \longrightarrow U$$

of based equivalences is always a trivial fibration.

Remark

In HoTT this implies $(A = B) \simeq (A \simeq B)$.

3(iii). $\dot{U} \rightarrow U$ is univalent

Unwinding (*) gives the **equivalence extension property**: weak equivalences extend along cofibrations $C' \rightarrow C$.

3(iii). $\dot{U} \rightarrow U$ is univalent

Proposition

The universal fibration $\dot{U} \rightarrow U$ is univalent.

Voevodsky proved this classically for Kan fibrations in sSet.

Coquand gave a constructive proof in **type theory** for cSet.

We have generalized Coquand's proof to cartesian cubical sets.

3(iv). U is fibrant

Univalence of $\dot{U} \twoheadrightarrow U$ implies that U is fibrant.

Proposition

The universe U is fibrant.

Voevodsky proved this for Kan sSets using minimal fibrations.

Shulman proved it using **3-for-2** for \mathcal{W} .

Coquand proved it from univalence without 3-for-2 using **Kan composition** for cSets in type theory.

We give a general proof from univalence without using 3-for-2.

3(v). From fibrant U to 3-for-2

Finally, we can apply the following.

Proposition (Sattler)

 ${\cal W}$ satisfies 3-for-2 if fibrations extend along trivial cofibrations.

This is called the **fibration extension property**.

3(v). From fibrant U to 3-for-2 for ${\mathcal W}$

Lemma

Given a universal fibration $\dot{U} \rightarrow U$ the FEP holds if U is fibrant.

References

- · S. Awodey, Cartesian cubical model categories, 2023.
- · C. Cohen, et al., Cubical type theory: A constructive interpretation of the univalence axiom, 2016.
- C. Kapulkin and P. LeFanu Lumsdaine, The simplicial model of univalent foundations (after Voevodsky), 2021.
- · C. Sattler, The equivalence extension property and model structures, 2017.
- · M. Shulman, All $(\infty, 1)$ -toposes have strict univalent universes, 2019.

It suffices to show the following.

Proposition

Evaluation at the **generic point** $U^{\mathbb{I}} \longrightarrow U$ is a trivial fibration.

Proof.

We need a diagonal filler for any cofibration c.

Transposing by ${\mathbb I}$ and using the classifying property of U gives the following equivalent problem.

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e: A \xrightarrow{\sim} A_0 \times \mathbb{I}$ to which we can apply the EEP.

Apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e:A\simeq A_0\times \mathbb{I}$ to which we can apply the EEP. This produces the required fibration $D\twoheadrightarrow Z\times \mathbb{I}$.