## 第十七章群

- □群的定义与性质
- □子群
- □循环群
- □变换群和置换群
- □群的分解
- □正规子群和商群
- □群的同态与同构
- □群的直积

| 对称变换                | 图形的变换                                                    | 顶点的变换                                                    |
|---------------------|----------------------------------------------------------|----------------------------------------------------------|
| 恒等变换 I              |                                                          | $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$   |
| 反射変換り               | $ \begin{array}{c}                                     $ | $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$   |
| 反射变换 r <sub>2</sub> |                                                          | $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$   |
| 反射变换 rs             |                                                          | $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$   |
| 旋转变换 內              | $ \begin{array}{c}                                     $ | $ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} $ |
| 旋转变换 0:             | $ \begin{array}{c}                                     $ | $ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} $ |



|                | I                     | Pi             | P2             | n                     | r <sub>2</sub>        | r <sub>3</sub>        |
|----------------|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|
| I              | I                     | $\rho_{l}$     | $\rho_2$       | $r_1$                 | r2                    | <i>r</i> <sub>3</sub> |
| $\rho_1$       | $\rho_1$              | $\rho_2$       | I              | <b>r</b> <sub>3</sub> | $r_1$                 | r <sub>2</sub>        |
| ρ2             | $\rho_2$              | I              | $\rho_1$       | <b>r</b> <sub>2</sub> | <b>r</b> <sub>3</sub> | $r_1$                 |
| r1             | $r_1$                 | r <sub>2</sub> | $r_3$          | I                     | $\rho_1$              | $\rho_2$              |
| r <sub>2</sub> | <i>r</i> <sub>2</sub> | r <sub>3</sub> | $r_1$          | $\rho_2$              | I                     | $\rho_1$              |
| r3             | r <sub>3</sub>        | $r_1$          | r <sub>2</sub> | $\rho_1$              | $\rho_2$              | I                     |



## 群与对称性

□ 台湾交大应用数学系郭君逸魔方与群论12个PPT (15节课)

http://www.youku.com/playlist\_show/id\_3675769.html

□ <a href="https://en.wikipedia.org/wiki/Rubik%27s">https://en.wikipedia.org/wiki/Rubik%27s</a> Cube g roup



$$|G| = 43,252,003,274,489,856,000$$
  
=  $2^{27}3^{14}5^{3}7^{2}11$ 

The largest <u>order</u> of an element in G is 1260.

G is non-abelian.

**God's Number** for Rubik's Cube is 20. (July 2010)

#### 17.1 群的定义与性质

- □群的定义
  - 定义与实例
  - 等价定义
  - 相关术语
- □群的性质
  - 幂运算规则
  - 群方程有唯一解
  - 消去律
  - 运算表的置换性质
  - 元素的阶的性质
- □习题分析

## 半群与群



#### 群的定义1

可以将群看成代数系统 $< G, \circ, ^{-1}, e >$ 

定义称非空集合G为一个群,如果在G中定义了一个二元运算 $\circ$ ,且满足:

- 1. 结合律:  $(a \circ b) \circ c = a \circ (b \circ c), \forall a, b, c \in G$ ;
- 2. 存在单位元:  $\exists e \in G$ , s. t.  $e \circ a = a \circ e = a$ ,  $\forall a \in G$ ;
- 3. 存在逆元:  $\forall a \in G, \exists a^{-1} \in G, \text{ s. t. } a^{-1} \circ a = a \circ a^{-1} = e.$

#### 群的定义2

定理1 (等价定义) < G,  $\circ >$ ,  $\circ$  可结合,若存在右单位元 e,且每个元素a相对于e存在右逆元a',则G是群。

证 先证e为左单位元.  $\forall a \in G$ ,有aa' = e,且

$$ee = e$$
 (e为右单位元)

$$\Rightarrow e(aa') = (aa') \Rightarrow (ea)a' = aa'$$

$$\Rightarrow ea = a$$
 (右乘 $a'$ 的右逆元)

再证a'为a的左逆元,即a'a = e,亦即证a是a'的右逆元。设a'的右逆元为a'',需证a'' = a。事实上,a'' = ea'' = (aa')a'' = a(a'a'') = ae = a.

#### 群的术语

平凡群 只含单位元的群{e}

交换群 Abel群

有限群与无限群

群G的阶 G的基数,通常有限群记为|G|

元素a的n次幂

$$a^{n} = \begin{cases} e & n = 0 \\ a^{n-1}a & n > 0 \\ (a^{-1})^{m} & m = -n, n < 0 \end{cases}$$

元素a的阶|a|: 使得 $a^k=e$ 成立的最小正整数k

说明:有限群的元素都是有限阶,为群的阶的因子;

反之,元素都是有限阶的群不一定是有限群.

#### 定理2幂运算规则

- 1.  $(a^{-1})^{-1}=a$
- 2.  $(ab)^{-1}=b^{-1}a^{-1}$
- 3.  $a^n a^m = a^{n+m}$
- **4.**  $(a^n)^m = a^{nm}$
- 5. 若G为Abel群,则 $(ab)^n=a^nb^n$

#### 说明:

等式1和2的证明用到逆元定义和唯一性等式3和4的证明使用归纳法并加以讨论等式2可以推广到有限个元素之积.

定理3 方程ax = b和ya = b在群G中有解且有唯一解.证  $a^{-1}b$ 是ax = b的解. 假设c为解,则

$$c = ec = (a^{-1}a)c = a^{-1}(ac) = a^{-1}b$$

定理4 (逆命题) 设G是半群,如果对任意 $a,b \in G$ ,方程 ax = b和ya = b在G中有解,则G为群.

证 找右单位元和任意元素的右逆元.

任取 $b \in G$ , 方程bx = b的解记为e.

 $\forall a \in G, yb = a$ 的解记为c, 即cb = a.

ae = (cb)e = c(be) = cb = a

故e为右单位元.

 $\forall a \in G$ , 方程ax = e有解,得到a的右逆元.

定理5 (消去律)  $ab=ac \Rightarrow b=c, ba=ca \Rightarrow b=c$ 

定理6 设G是有限半群,且不含零元。若G中消去律成立,则G是群。

证 设 $G=\{a_1,a_2,...,a_n\}$ ,任取 $a_i\in G$ ,有  $a_iG=\{a_ia_j\,|\,j=1,2,...,n\}$  由封闭性知, $a_iG\subseteq G$ ,假设 $|a_iG|< n$ ,则存在j,k使得 $a_ia_j=a_ia_k$ ,根据消去律, $a_j=a_k$ ,矛盾!所以 $a_iG=G$ . 任取 $a_i$ ,  $a_j$ , 由 $a_i$ ,  $a_j\in G\Rightarrow a_j\in a_iG\Rightarrow f$ 程 $a_ix=a_j$ 有解。 同理,方程 $ya_i=a_j$ 有解。因此,G是群。

注:  $\langle \mathbf{Z}_5, \otimes \rangle$ 不是群,因为有零元 $\mathbf{0}$ ;  $\langle \mathbf{Z}^+, \cdot \rangle$ 也不是群,无限.

定理7 有限群G的运算表中每行、每列都是G的置换,即aG=G, Ga=G.

说明 运算表的行列构成置换的不一定是群,反例:

|   | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 1 | 2 | 0 |
| 1 | 0 | 1 | 2 |
| 2 | 2 | 0 | 1 |

#### 思考:

- 3元集上的不同的二元运算有多少个?
- 3元集上二元运算表有多少个,使得每行每列能够构成置换?
- 3元集上有多少个不同的运算表代表群?
- 3元集上同构的群有多少个?

定理8 G为群,  $a \in G$ , 且|a| = r, 则

- $(1) a^k = e \Leftrightarrow r|k|$
- $(2) |a| = |a^{-1}|$
- (3) 若|G| = n, 则 $r \leq n$ .
- 证 (1)充分性.  $a^k = a^{rl} = (a^r)^l = e^l = e$ 必要性.  $k = rl + i, l \in \mathbb{Z}, i \in \{0, 1, ..., r-1\}$  $\Rightarrow e = a^k = a^{rl+i} = a^i \Rightarrow i = 0 \Rightarrow r|k.$
- $(2)(a^{-1})^r = e \Rightarrow |a^{-1}|$ 存在,  $\Leftrightarrow |a^{-1}| = t$ , 则t|r. 同理r|t.
- (3) 假设r > n, 令 $G' = \{e, a, a^2, ..., a^{r-1}\}$ , 则G'中元素两两不同,否则与|a| = r矛盾。从而|G'| > n,与 $G' \subseteq G$ 矛盾.

#### 习题课一

#### 重要结果

- $(1) |a| = 1 \operatorname{g} 2 \Leftrightarrow a = a^{-1}$
- (2)  $|a| = |a^{-1}|$ , |ab| = |ba|,  $|a| = |bab^{-1}|$
- $(3) |a| = r \Rightarrow |a^t| = \frac{r}{(t,r)}$
- $(4) |a| = n, |b| = m, ab = ba \Rightarrow |ab||[n, m];$  若(n, m) = 1, 则|ab| = nm.
- (1)(2)(4)的证明留做思考题

## 符号(n,r)与[n,r]

性质:  $[m,n] = \frac{mn}{(m,n)}$ 

(n, r)定义: n与r的最大公约数 性质:  $\exists u, v \in Z \text{ s. t. } un + rv = (n, r)$ (n, r) = 1, n 与 r 互 质 ( 互 素 ) $\exists u, v \in Z \text{ s. t. } un + rv = 1$ [n, r]定义: n与r的最小公倍数

#### 证明方法

证明元素的阶相等或求元素的阶的方法

求|x|:

找到满足 $x^n = e$ 的n, 分析n的因子.

证明群的一些基本性质的方法 工具---幂运算规则、结合律、消去律、群方程的解

例1 设G为群,若 $\forall x \in G$ 有 $x^2 = e$ ,则G为Abel群.

iii. 
$$\forall x, y \in G, xy = (xy)^{-1} = y^{-1}x^{-1} = yx$$

分析 
$$x^2 = e \Leftrightarrow x = x^{-1}$$
 幂运算规则

例2 若群G中只有唯一2阶元,则这个元素与G中所有元素可交换.

证 设2阶元为
$$x$$
,  $\forall y \in G$ ,  $|yxy^{-1}| = |x| = 2 \Rightarrow yxy^{-1} = x \Rightarrow yx = xy$  分析  $|yxy^{-1}| = |x|$ 

例3 若G为偶数阶群,则G中必存在2阶元.

证 若 $\forall x \in G$ , |x| > 2,则 $x \neq x^{-1}$ 由于 $|x| = |x^{-1}|$ ,大于2阶的元素成对出现,总数有偶数个。G中1阶和2阶元总共也有偶数个,由于1阶元只有单位元,因此2阶元有奇数个,从而命题得证。

分析 
$$|x| = |x^{-1}|$$
  
 $x^2 = e \Leftrightarrow x = x^{-1}$ 

例4 *G*为群,
$$a \in G$$
, $|a| = r$ ,证明 $|a^t| = r/(t,r)$   
证令 $|a^t| = s$ ,设 $(t,r) = d$ ,则 $t = dp$ , $r = dq$ ,  
 $(p,q) = 1, r/(t,r) = r/d = q$   
下面只要证 $s = q$   
 $(a^t)^q = (a^t)^{r/d} = (a^r)^{t/d} = e^p = e \Rightarrow s|q$   
 $(a^t)^s = e \Rightarrow a^{ts} = e \Rightarrow r|ts \Rightarrow dq|dps \Rightarrow q|ps$   
 $\Rightarrow q|s \ (p,q互素)$ 

#### 分析 相互整除

$$|a|=r$$
,  $a^k=e$ 当且仅当 $r|k$ 

例5 设G是群, $x, y \in G, y$ 为2阶元, $x \neq e$ ,且 $x^2y = yx$ ,求|x|.

解: 
$$x^2y=yx \Rightarrow yx^2y=x$$
  
 $\Rightarrow (yx^2y)(yx^2y)=x^2$   
 $\Rightarrow yx^4y=x^2=yxy$   
 $\Rightarrow x^4=x\Rightarrow x^3=e$   
 $\Rightarrow |x|=3$   $(x\neq e)$ 

分析 关键是导出关于 $x^k=e$ 的等式 根据 $x^k=e \Leftrightarrow |x||k$ , 使用幂运算规则,结合律,消去律, $|x|=2 \Leftrightarrow x=x^{-1}$ 

#### 17.2 子群

- □子群定义
- □子群判别定理
- □重要子群的实例
  - ■生成子群
  - ■中心
  - ■正规化子
  - ■共轭子群
  - ■子群的交
- □子群格

#### 子群定义

定义 设G为群,H是G的非空子集,若H关于G中运算构成群,则称H为G的子群,记作 $H \le G$ .

如果子群H是G的真子集,则称为真子群,记作H < G.

说明: 子群H就是G的子代数.

假若H的单位元为e',且x在H中相对e'的逆元为x',则

$$xe' = x = xe \Rightarrow e' = e$$
  
 $xx' = e' = e = xx^{-1} \Rightarrow x' = x^{-1}$ 

#### 子群判定定理一

定理1 G是群,H是G的非空子集,则  $H \leq G \Leftrightarrow \forall a,b \in H,ab \in H,b^{-1} \in H.$ 

证: 只证充分性.

H非空,存在 $a \in H$ ,

由条件2,  $a^{-1} \in H$ ,

由条件1,有 $aa^{-1} \in H$ ,即 $e \in H$ .

#### 子群判定定理二和三

定理2 G是群,H是G的非空子集,则  $H \le G \Leftrightarrow \forall a,b \in H,ab^{-1} \in H.$ 

证 充分性.  $H \neq \emptyset \Rightarrow \exists b \in H$   $b \in H \Rightarrow bb^{-1} \in H \Rightarrow e \in H$   $\forall a, a \in H \Rightarrow ea^{-1} \in H \Rightarrow a^{-1} \in H$   $\forall a, b, a, b \in H \Rightarrow a, b^{-1} \in H$   $\Rightarrow a(b^{-1})^{-1} \in H \Rightarrow ab \in H$ 

定理3 G是群,H是G的非空有限子集,则 $H \leq G \Leftrightarrow \forall a,b \in H,ab \in H$ . 证明见教科书.

#### 重要子群的实例

```
a生成的子群 \langle a \rangle = \{a^k | k \in \mathbb{Z}\}, \ a \in \mathbb{G}
B生成的子群 \langle B \rangle = \cap \{H | H \leq G, B \subseteq H\}, B \subseteq G
\langle B \rangle = \{b_1^{e_1}b_2^{e_2} \dots b_n^{e_n} | b_i \in B, e_i = \pm 1, i = 1, 2, \dots, n, n \in Z^+\}
中心
                 C = \{a \in G | \forall x \in G, ax = xa\}
a的正规化子 N(a) = \{x \in G | xa = ax\}, a \in G
H的正规化子 N(H) = \{x \in G | xHx^{-1} = H\}, H \subseteq G, H非空
共轭子群 xHx^{-1} = \{xhx^{-1} | h \in H\},其中H \leq G, x \in G
子群的交
                                     If H \le G, then the largest subgroup in
```

which H is normal is the subgroup N(H).

A,  $B \leq G$ ,则

(1)  $A \cap B \leq G$ 

## 关于子群的证明

求证:中心C为G的子群.

 $C = \{a \in G \mid \forall x \in G, ax = xa\}$ 

证 由于e属于C, 故C非空.

任取 $x, y \in C$ ,对于任意 $a \in G$ 有

$$(xy^{-1})a = x(y^{-1}a) = x(a^{-1}y)^{-1} = x(ya^{-1})^{-1}$$

$$=x(ay^{-1})=(xa)y^{-1}=(ax)y^{-1}=a(xy^{-1})$$

因此 $xy^{-1}$ 属于C. 由判定定理2,命题得证.

## 子群的证明(续)

设*H*, *K*≤*G*, 则

- (1)  $H \cap K \leq G$ .
- (2)  $H \cup K \leq G \Leftrightarrow H \subseteq K$ 或 $K \subseteq H$ .

证(1)略.

(2) 只证必要性.

假若  $\exists h(h \in H, h \notin K), \exists k(k \in K, k \notin H),$ 

则 $hk \notin H$ ,否则 $k = h^{-1}(hk) \in H$ ,矛盾.

同理 $hk \notin K$ , 从而 $hk \notin H \cup K$ ,

但是 $h, k \in H \cup K$ ,与 $H \cup K \leq G$ 矛盾.

#### AB构成子群的条件

命题 设 $A, B \leq G$ ,定义 $AB = \{ab | a \in A, b \in B\}$ ,则

- $(1) AB \leq G \Leftrightarrow AB = BA$
- $(2) AB \leq G \Rightarrow AB = \langle A \cup B \rangle$ .

证(1)习题16.

- (2)  $A \subseteq AB$ ,  $B \subseteq AB \Rightarrow A \cup B \subseteq AB \Rightarrow <A \cup B > \subseteq AB$   $\forall ab \in AB$ , 其中 $a \in A$ ,  $b \in B \Rightarrow a$ ,  $b \in A \cup B$   $\Rightarrow a$ ,  $b \in <A \cup B > \Rightarrow ab \in <A \cup B >$
- 例 Klein四元群 $G=\{e, a, b, c\}$ ,  $<a>=\{e, a\}, <b>=\{e, b\}, <c>=\{e, c\}$   $<a><b>=\{e, a, b, c\}$   $<\{a, e\}\cup\{b, e\}>=<\{a, b, e\}>=\{e, a, b, c\}$

|          | e        | a                | <b>b</b> | C        |   |
|----------|----------|------------------|----------|----------|---|
| e        | e        | a<br>e<br>c<br>b | <b>b</b> | C        | _ |
| a        | a        | e                | c        | <b>b</b> |   |
| <b>b</b> | <b>b</b> | C                | e        | a        |   |
| C        | c        | <b>b</b>         | a        | e        |   |

# 子群格格的偏序集定义:

<S, ≤>, S 的任何二元子集都有最大下界、最小上界.

G为群, $S=\{H|H\leq G\}$ ,偏序集< S, $\le >$ 构成格,

称为G的子群格

Klein四元群, $Z_{12}$ 的子群格.



