Netzwerke und Internettechnologien 1

Internet Protocol Version 4

Netzwerke und Internettechnologien 1

Lernziele

1

Aufbau und Verwendung von IPv4

Internet Protocol Version 4

- Das Internet Protocol (IP) wurde veröffentlicht 1981 im RFC 791 veröffentlicht.
- Befindet sich in der Internetschicht des Im TCP/IP-Protokollstapels.

Schicht	Protokolle	
Anwendungsschicht	DNS, IMAP, HTTP,	
Transportschicht	TCP, UDP	
Internetschicht	IP (IPv4, IPv6)	
Netzzugangsschicht	Ethernet, WLAN,	

- Ist verbindungslos und unsicher, garantiert nicht, das alle Pakete in der richtigen Reihenfolge oder überhaupt ankommen.
- Jedes Paket wird als unabhängige Einheit betrachtet, d.h. jedes Datenpaket kann individuell geroutet werden.

Aufgaben von IPv4

Logische Adressierung

- Jeder Host in einem TCP/IP-Netzwerk benötigt für die Kommunikation eine IP-Adresse. Diese muß zumindest im lokalen Netzwerk (private IP-Adresse) einmalig sein.
- Dazu wird jedem Hardware-Interface (Netzwerkkarte oder -adapter) eine logische IPv4-Adresse zugeteilt.

Routing

• Eine weitere Aufgabe ist es, Datenpakete zu übertragen. Bei jedem Paket entscheidet sich, welchen Weg zum Zielnetz das IP-Paket übertragen wird.

Aufgaben von IPv4

Fragmentierung

- Daten werden immer dann in Fragmente aufgeteilt, wenn Daten größer sind als die erlaubte Größe eines Datenblocks im Netzwerk.
- Die größtmögliche Länge wird als MTU (maximum transmission unit) bezeichnet, beträgt im Ethernet standardmäßig 1.500 Bytes.
- Sind die Daten größer werden diese in Fragmente aufgeteilt. Jedes Fragment hat danach eine Länge von max.. 1.500-Bytes und im Feld Identification denselben Wert.
- Fragmentierung hat in der Regel negativen Einfluss auf den Datendurchsatz.
- Sender kann die Fragmentierung mit dem Flag Don't-Fragment verhindern.

Aufbau eines IP-Paketes

- IP-Pakete (Datagramme) sind die Grundelemente der IP-Kommunikation.
- Sie bestehen aus 2 Teilen:
 - 1. IP-Header
 - Länge beträgt 20 60 Byte
 - Kopfdatenbereich ist 20 Byte lang, Optionen und Fülldaten können bis zu 40 Byte lang sein

Abbildung 1: IPv4-Header (Quelle: RFC 791, eigene Darstellung)

Aufbau eines IP-Paketes

- 2. Bereich für Nutzdaten (Payload)
 - Nutzdaten umfassen die Daten der Protokolle darüber liegender Schichten (z.B. TCP, UDP)
 - Verschachtelung wird als Datenkapselung bezeichnet
- Die max.. Größe eine IP-Paketes, Header + Payload, wird als MTU bezeichnet. Diese beträgt 65.535 Bytes, im Ethernet max. 1.500 Byte.

Adressaufbau

- IP-Adressen sind 32-Bit lang
- Theoretisch sind 4.294.967.296 (2 hoch 32) Adressen möglich
- Für die bessere Lesbarkeit werden Adressen in der Dottet decimal notation dargestellt
 - Die 32-Bit werden in 4 Blöcken zu je 8-Bit aufgeteilt, sogenannte Oktette.
 - Jedes Oktett wird in das dezimale Äquivalent umgewandelt und mit einem Punkt getrennt.
 - Jedes Oktett kann eine Zahl von 0 255 repräsentieren

Netzklassen

- Anfangs gab es fest vorgeschriebene Einteilungen für Netzwerkklassen mit einer festen Länge.
- Da diese Einteilung sehr unflexibel ist, wird seit 1993 vor allem im WAN hauptsächlich das Classless Inter-Domain Routing-Verfahren durchgeführt, welches bitvariable Netzmasken ermöglicht.
- Viele netzwerkfähige Betriebssysteme bestimmen die Standardnetzmaske anhand der alten Klassifikation, da im lokalen Netz überwiegend noch mit den Klassen gearbeitet wird.

IP-Netzklassen				
Bit 31-28	Bit 27-24	Bit 23-16	Bit 15-8	Bit 7-0
Klasse A: Netze 0.0.0.0/8 bis 127.255.255.255				
0 8-Bit-N	8-Bit-Netz 24-Bit-Host			
Klasse B: Netze 128.0.0.0/16 bis 191.255.255.255				
10 16-Bit-Netz		16-Bit-Host		
Klasse C: Netze 192.0.0.0/24 bis 223.255.255.				
110 24-Bit-Netz			8-Bit-Host	
Klasse D: Multicast-Gruppen 224.0.0.0/4 bis 239.255.255.255				
1110	28-Bit-Multicast-Guppen-ID			
Klasse E: Reserviert 240.0.0.0/4 bis 255.255.255				
1111	28 Bit reserviert für zukünftige Anwendungen			

Abbildung 1: IP-Netzklassen (Quelle: RFC 791, eigene Darstellung)

Netzklassen

- Nicht verwendbare bzw. für besondere Zwecke vorgesehene Bereiche
 - 0.0.0.0 => das vorliegende Netzwerk
 - 127.0.0.0 127.255.255.255 => Loopback (lokaler Computer)
 - 169.254.0.0 169.254.255.255 => Automatic Private IP-Adressing (APIPA)
 - 255.255.255.255 => globaler Broadcast, adressiert alle Host im gesamten Netzwerk
 - Erste Adresse eines Netzwerkes => Netz-ID
 - Letzte Adresse eines lokalen Netzwerkes => adressiert alle Hosts in diesem Subnetzwerk

Private IP-Adressbereiche

- Adressklassen für private Netzwerke, um Unternehmen und Privatpersonen die Möglichkeit zu geben, lokale Netzwerke unterschiedlicher Größe zu erstellen.
- Die Adressen dieser Bereiche werden im Internet nicht geroutet.
- In den Adressklassen wurden folgende Bereiche festgelegt:
 - Klasse A: 10.0.0.0 10.255.255.255
 - Klasse B: 172.16.0.0 172.31.255.255
 - Klasse C: 192.168.0.0 192.168.255.255

Subnetzmaske

- Mittels der Subnetzmaske kann ermittelt werden, ob eine IP-Adresse zum gleichen Subnetz gehört.
- Ist eine Bitmaske, bestehend aus 32 Bit, die angibt, wie viele Bits einer IP-Adresse das Netzpräfix ausmachen.
- Besteht aus 2 Teilen (Netzteil und Hostanteil)
 - Die Anzahl der 1er-Bits von links geben den Netzanteil, die restlichen 0er-Bits den Hostanteil an.
 - Beispiel: **11111111 1111111 1111111 0**0000000
- Der Netzwerkteil muss bei allen Geräten in einem Netz gleich sein.
- Schreibweisen:
 - 255.255.255.0 => Dezimal-Punkt-Schreibweise
 - /24 => als Suffix (CIDR)

Subnetzmaske - CIDR

- Classless Inter-Domain-Routing (CIDR) ist ein Verfahren zur effizienteren Nutzung des Adressraumes.
- Mit CIDR entfällt die feste Zuordnung einer IP-Adresse zu einer Netzklasse
- Die Präfixlänge ist im Gegensatz zum Klassenbezogenem Subnetting frei wählbar und muss bei der CIDR-Notation zwingend mit angegeben werden.

Subnetzmaske

• Anzahl der Host bei einer Subnetzmaske von 255.255.255.0 bzw. /24 ermitteln:

- 24 Bit der Subnetmaske sind auf 1 gesetzt
- Es bleiben von insg. 32 Bits 8 übrig (32-24)
- Hostanteil ist 8 Bit
- 2⁸ = 256
- 256 2 = 254 Hosts

Subnetzmaske

- Ermitteln, ob die 2 PCs im selben Subnetz sind:
- PC1 = 192.168.0.13/24 und PC2 = 192.168.0.138/24
- Mit der logischen "UND"-Funktion kann man die Netz-ID ermitteln (Erste IP-Adresse in einem Netzwerk).

• Ist das Ergebnis bei beiden PCs gleich, befinden sie sich im gleichen IP-Subnetz

IPv4 - Subnetz-Berechnung

Subnetz-Bildung

- Auswirkungen:
 - Veränderung der Standardsubnetzmaske
 - Bildung verschiedener kleiner Netze
 - Verringerung der Anzahl von adressierbaren Hosts pro Netzwerk
- Ergebnisse:
 - kleinere Netzwerke
 - mehr Sicherheit
 - Verminderung des Broadcast-Verkehrs

Subnetz-Bildung

- Ermittlung der Anzahl der der notwendigen Subnetze und der Anzahl der Hosts pro Subnetz
- Die Anzahl der nach dem Subnetting übrig gebliebenen Nullen in der Subnetzmaske bestimmt die Anzahl der Hosts pro Subnetz.
 - Werden 3 Bits vom Hostanteil einer Klasse C Adresse entliehen, um
 8 Subnetze zu bilden, können 32 Adressen pro Subnetz gebildet werden
 - Die jeweils erste und letzte Adresse in einem Subnetz darf nicht verwendet werden, da sie Netzwerk- und Broadcastadresse des Subnetzes darstellen.
 - Insgesamt sind also 30 Hosts pro Subnetz adressierbar!

Subnetting

- Ist das Unterteilen eines Netzes in mehrere Unternetze (Subnetze), die alle im selben zusammenhängenden Adressraum bleiben.
- Ein Ziel ist dabei die Verschwendung von Hostadressen zu reduzieren.
- Subnetting anhand eines Beispiels:
 - Klasse C-Netz
 - Netz-Adresse = 192.168.1.0
 - Subnetzmaske = 255.255.255.0 (11111111 11111111 1111111 00000000)
 - Hostanteil = 192.168.1.n
 - Ohne Subnetting ein Netzwerk mit 256 möglichen IP-Adressen (254 für Hosts nutzbar).

Subnetting

Beispielrechnung

- Aufteilung eines Klasse C Netzwerkes (192.168.1.0/24) in 6 Subnetze
- Subnetze können nur aufgrund von 2er Potenzen gebildet werden, d.h. es müssen 8 Netzwerke gebildet werden
- Für die Adressierung von 8 Subnetzen werden 3 zusätzliche Bits benötigt, die dem Hostanteil entnommen werden.
 - Neue Subnetzmaske: 11111111 11111111 11111111 11100000 => 255.255.255.224
 - 1. Subnet
 - Netzadresse: 192.168.1.0
 - IP-Range: 192.168.1.1 192.168.1.30
 - Broadcast: 192.168.1.31
 - 2. Subnet
 - Netzadresse: 192.168.1.32
 - IP-Range: 192.168.1.33 192.168.1.62
 - Broadcast: 192.168.1.63
 - USW.

Variable Length of Subnet Mask (VLSM)

- Bietet die Möglichkeit Subnetze mit unterschiedlicher Größe zu erstellen.
- Subnetting hat eine "feste" Anzahl von IP-Adressen in einem Subnetz, VLSM dagegen ermöglicht je Subnetz eine unterschiedliche Anzahl von IP-Adressen
- Beispiel anhand eines Klasse-C-Adressraumes:
 - 4 Gruppen an Computern:
 - Gruppe 1: Data Center mit 72 Hosts
 - Gruppe 2: Call Center mit 50 Hosts
 - Gruppe 3: Operative Ebene mit 25 Hosts
 - Gruppe 4: Management mit 20 Hosts
 - Herkömmliches Subnetting => 4 Subnetze (62 Hosts je Netz)

Variable Length of Subnet Mask (VLSM)

Beispielrechnung

- Der Adressraum wird erst zweigeteilt:
 - Subnetz 1: deckt das Data Center ab
 - Subnetz 2: wird abermals zweigeteilt (62 Hosts)
 - Subnetz 2.1: Call Center
 - Subnetz 2.2: wird zweigeteilt (30 Hosts)
 - Subnetz 2.2.1: operative Ebene
 - Subnetz 2.2.2: Management

Gruppe 1: Data Center mit 72 Hosts

Gruppe 2: Call Center mit 50 Hosts

Gruppe 3: Operative Ebene mit 25 Hosts

Gruppe 4: Management mit 20 Hosts

gesamtes Netzwerk (/24)

Subnetz 2 (/25)

Subnetz 2.2 (/26)

Subnetz 1 (/25) Data Center

Subnetz 2.1 (/26) Call Center Subnetz 2.2.1 (/27) op Ebene Subnetz 2.2.1 (/27) Management

Variable Length of Subnet Mask (VLSM)

Beispielrechnung

gesamtes Netzwerk (/24)

Subnetz 2 (/25)

Subnetz 2.2 (/26)

Subnetz 1 (/25) Data Center

Subnetz 2.1 (/26)
Call Center

Subnetz 2.2.1 (/27) op Ebene

Subnetz 2.2.1 (/27) Management

- 4 Gruppen an Computern:
 - Gruppe 1: Data Center mit 72 Hosts
 - Gruppe 2: Call Center mit 50 Hosts
 - Gruppe 3: Operative Ebene mit 25 Hosts
 - Gruppe 4: Management mit 20 Hosts

Netz1 126	Netz2 126
10.10.10.0/25	10.10.10.128/25

Netz2 10.10.10.128/25 +1 = /26

10.10.10.0/24 +1 = /25 = 128

 Netz3
 62
 Netz4
 62

 10.10.10.128/26
 10.10.10.192/26

Netz 4 10.10.10.192/26 +1 = /27

Netz5 30 Netz6 30 10.10.10.192/27 10.10.10.224/27

Abbildung 1: VLSM (eigene Darstellung)

Supernetting

- Mehrere Adressen werden in einer einzigen Netzwerkkennung zusammengefasst.
- Damit erhöht sich die Effizienz der Zuweisung der IP-Adressen und reduziert die Anzahl nicht genutzter IP-Adressen.
- Dient zur Reduzierung des Umfanges der Routingtabellen und erhöht die Effizienz des Routing.

```
• Beispiel:

IP 220.78.168.0/24

IP: 11011100.01001110.10101000.00000000

Mask: 1111111.1111111.1111111.00000000 /24

IP 220.78.172.0/24

IP: 11011100.01001110.10101100.00000000

Mask: 1111111.1111111.11111111.00000000 /24

IP 220.78.175.0/24

IP 220.78.175.0/24

IP: 11011100.01001110.10101111.00000000 /24
```


Quellen

Buchquelle

NAT - Network Address Translation (2021). Online verfügbar unter https://www.elektronik-kompendium.de/sites/net/0812111.htm, zuletzt aktualisiert am 30.04.2021, zuletzt geprüft am 30.04.2021.

Kersken, Sascha (2017): IT-Handbuch für Fachinformatiker. Der Ausbildungsbegleiter. 8. Auflage, revidierte Ausgabe. Bonn: Rheinwerk Verlag; Rheinwerk Computing.

Schreiner, Rüdiger (2014): Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. 5., erw. Aufl. München: Hanser.

Abbildungen

VIELEN DANK!

