

MOS INTEGRATED CIRCUIT μ PD78C14(A)

8-BIT SINGLE-CHIP MICROCONTROLLER (WITH A/D CONVERTER)

The μ PD78C14(A) is a single-chip, CMOS 8-bit microcontroller in which a 16-bit ALU, a ROM, a RAM, an A/D converter, a multifunction timer/event counter, and a serial interface are all integrated. Moreover, a 48-Kbyte external expansion memory (ROM/RAM) can be connected.

Since the μ PD78C14(A) uses the CMOS construction, its operations are performed with low power consumption. By using the standby function, functions such as data retention are performed with lower power consumption.

For details on functions, refer to the User's Manual listed below. Please read it before starting design work. 87AD series μ PD78C18 User's Manual: IEU-1314

F	E	A	Ţ١	U	R	Ε	S
---	---	---	----	---	---	---	---

\bigcirc High reliability as compared with μ PD78C14
○ 159 instructions: 87AD instruction set
Multiply and divide instructions, 16-bit arithmetic operation instructions
\bigcirc Instruction cycle: 0.8 μ s at 15 MHz
O Internal ROM: 16384 W x 8
O Internal RAM: 256 W x 8
ODirect addressing to an external memory (ROM/RAM) up to 64 Kbytes
○ Highly accurate 8-bit A/D converter: Eight analog inputs
○ General-purpose serial interface: Asynchronous, synchronous, and I/O interface modes
○ Multifunction 16-bit timer/event counter
○ Two 8-bit timers
○ I/O lines: 44
O Interrupt functions: Three external, eight internal
Non-maskable interrupt: 1
Maskable interrupts: 10
○ Zero-cross detection function (two inputs)
Standby functions: HALT mode, Hardware/software STOP mode

ORDERING INFORMATION

Part number	Package	Quality grade
μPD78C14G(A)-xxx-36	64-pin plastic QUIP	Special
μPD78C14GF(A)-xxx-3BE	64-pin plastic QFP (14 x 20 mm)	Special
μPD78C14L(A)-xxx	68-pin plastic QFJ (950 x 950 mil)	Special

Remark xxx is a ROM code suffix.

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

Pin Configuration (Top View)

Block Diagram

Note DATA MEMORY can only be used when RAE bit of MM register is set to 1. External memory is necessary when 0 is set.

CONTENTS

1.	DIFF	FERENCES BETWEEN μ PD78C14(A) AND μ PD78C14	6
2.	PIN	FUNCTIONS	7
	2.1	Pin Function List	7
	2.2	Pin Input/Output Circuits	9
	2.3	Recommended Connections for Unused Pins	13
3.	INST	TRUCTION SET	14
	3.1	Operand Expression Format/Description Method	14
	3.2	Instruction Code Description	
	3.3	Instruction Execution Time	17
4.	LIST	OF MODE REGISTERS	29
5.	ELE	CTRICAL SPECIFICATIONS	30
6.	CHA	ARACTERISTIC CURVES (reference value)	41
7.	PAC	KAGE DRAWINGS	44
8.	REC	COMMENDED SOLDERING CONDITIONS	47
ΔΡΙ	PENDI	IX DEVELOPMENT TOOLS	40

1. DIFFERENCES BETWEEN μ PD78C14(A) AND μ PD78C14

Part number	μPD78C14(A)	μPD78C14
Item		
Quality grade	Special	Standard
Electrical	Input leakage current	Input leakage current
specifications	(AN7-0; ±1 μA (MAX.)	AN7-0; ±10 μA (MAX.)
Package	64-pin plastic QUIP	64-pin plastic shrink DIP
	64-pin plastic QFP	64-pin plastic QUIP
	(14 x 20 mm, thickness: 2.05 mm)	64-pin plastic QUIP (straight)
	68-pin plastic QFJ	64-pin plastic QFP
		(14 x 20 mm, thickness: 2.05 mm)
		64-pin plastic QFP
		(14 x 20 mm, thickness: 2.70 mm)
		68-pin plastic QFJ

2. PIN FUNCTIONS

2.1 Pin Function List

Pin	Input/Output	Function		
PA7-PA0	Input/Output	These 8 pins constitute an 8-bit I/O port and input/output can be specified in bit		
(Port A)		units.		
PB7-PB0	Input/Output	These 8 pins constitute an 8-bit I/O por	t and input/output can be specified in bit	
(Port B)		units.		
PC0/TxD	Input/Output,	Port C	Transmit Data	
	Output	These 8 pins constitute an 8-bit I/O	This pin outputs serial data.	
PC1/RxD	Input/Output,	port and input/output can be specified	Receive Data	
	Input	in bit units.	This pin inputs serial data.	
PC2/SCK	Input/Output,		Serial Clock	
	Input/Output		This pin inputs/outputs serial clock. It be-	
			comes an output pin when an internal	
			clock is used or an input pin when an	
			external clock is used.	
PC3/INT2/TI	Input/Output,		Interrupt Request/Timer Input	
	Input, Input		This pin inputs edge triggering (falling	
			edge) maskable interrupt or external	
			clock for timer. This pin is also shared	
			with zero-cross detection pin for AC input.	
PC4/TO	Input/Output,		Timer Output	
	Output		This pin outputs square waves in which	
			one cycle of the internal clock forms a	
			half cycle, indicating the timer's counting	
			time.	
PC5/CI	Input/Output,		Counter Input	
	Input		This pin inputs external pulse for timer/	
			event counter.	
PC6/CO0	Input/Output,		Counter Output 0,1	
PC7/CO1	Output		This pin outputs programmable square	
			wave by timer/event counter.	
PD7-PD0/	Input/Output,	Port D	Address/Data Bus	
AD7-AD0	Input/Output	These 8 pins constitute an 8-bit I/O	These pins function as multiplexed	
		port and input/output can be	address/data bus when using an	
		specified in byte units.	external memory.	
PF7-PF0/	Input/Output,	Port F	Address Bus	
AB15-AB8	Output	These 8 pins constitute an 8-bit I/O	These pins function as address bus when	
		port and input/output can be specified	using an external memory.	
		in bit units.		
WR	Output	This is a strobe signal output to write da	ata in external memory. This signal	
(Write		becomes high level except during the da	ta write machine cycle for external memory.	
Strobe)		This signal becomes output high imped	ance when the RESET signal is low or in	
		the hardware STOP mode.		

(Continued)

Pin	Input/Output	Function
RD	Output	This is a strobe signal output to read data from external memory. This signal
(Read		becomes high level except during the data read machine cycle for external memory.
Strobe)		This signal becomes output high impedance when the RESET signal is low or in
		the hardware STOP mode.
ALE	Output	This is a strobe signal to externally latch the low-order address information
(Address		output to pins PD7-PD0 to access the external memory. This signal becomes
Latch		output high impedance when the RESET signal is low or in the hardware STOP
Enable)		mode.
MODE0	Input/Output	Set the MODE0 pin to 0 (low level) and MODE1 pin to 1 (high level) ^{Note} .
MODE1		When both pins MODE0 and MODE1 are set to 1 ^{Note} , these pins synchronize to
(Mode)		the ALE and a control signal is output.
NMI	Input	This pin inputs the edge triggering (falling edge) nonmaskable interrupt.
(Non-		
Maskable		
Interrupt)		
INT1	Input	This pin inputs edge triggering (rising edge) maskable interrupt. This pin is also
(Interrupt		shared with zero-cross detection pin for AC input.
Request)		
AN7-AN0	Input	These eight pins input analog signals for the A/D converter. Pins AN7-AN4 can
(Analog		be used as edge detection (falling edge) input.
Input)		
Varef	Input	This pin inputs the reference voltage for the A/D converter and controls the
(Reference		operation for the A/D converter.
Voltage)		
AV _{DD}		Power supply pin for the A/D converter
(Analog		
V _{DD})		
AVss		Ground pin for the A/D converter
(Analog		
Vss)		
X1, X2		These are crystal connecting pins for the system clock oscillation. When a clock
(Crystal)		is externally supplied, input it through pin X1. Input the clock to X1 and its reverse
		phase to X2.
RESET	Input	This pin inputs the active-low reset input signal.
(Reset)		
STOP	Input	This pin inputs control signal of the hardware STOP mode. When the low level
(Stop)		of this signal is input, the oscillator stops to operate.
V _{DD}		Positive power supply pin
Vss		Ground pin

Note Pull-up with the following external resistor:

 $4 \; (k\Omega) \leq R \leq 0.4 \; \text{tcyc} \; (k\Omega) \qquad \quad \text{tcyc} \; (\text{unit: ns})$

 $\begin{array}{ll} \text{Example} & 4 \; (k\Omega) \leq R \leq 26 \; (k\Omega); \; \; \text{tcyc} = 66 \; (ns) \; \text{at } 15 \; \text{MHz} \\ \\ & 4 \; (k\Omega) \leq R \leq 33 \; (k\Omega); \; \; \text{tcyc} = 83 \; (ns) \; \text{at } 12 \; \text{MHz} \\ \end{array}$

2.2 Pin Input/Output Circuits

Schematic input/output circuits of the pins are shown in Table 2-1 and figures from (1) to (11).

Table 2-1. Name of Type No.

Pin	Type No.	Pin	Type No.
PA0-7	5	RESET	2
PB0-7	5	RD	4
PC0-1	5	WR	4
PC2/SCK	8	ALE	4
PC3/INT2	10	STOP	2
PC4-7	5	MODE0	11
PD0-7	5	MODE1	11
PF0-7	5	AN0-3	7
NMI	2	AN4-7	12
INT1	9	Varef	13

(1) Type 1

(2) Type 2

(3) Type 4

(4) Type 5

(5) Type 7

(6) Type 8

(7) Type 9

(8) Type 10

μ**PD78C14(A)**

(9) Type 11

(10) Type 12

(11) Type 13

2.3 Recommended Connections for Unused Pins

Pin	Recommended connection	
PA7-0		
PB7-0		
PC7-0	Connect to VDD or Vss via resistor.	
PD7-0		
PF7-0		
RD		
WR	Leave unconnected.	
ALE		
STOP	Vdd	
INT1, NMI	Connect to VDD or Vss.	
AVDD	Connect to VDD.	
VAREF	Connect to Vss.	
AVss		
AN7-0	Connect to AVss or AVDD.	

3. INSTRUCTION SET

3.1 Operand Expression Format/Description Method

Expression format	Description method
r	V, A, B, C, D, E, H, L
r1	EAH, EAL, B, C, D, E, H, L
r2	A, B, C
sr	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB,
	MC, MF, TXB, TM0, TM1, ZCM
sr1	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CR0, CR1, CR2, CR3
sr2	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM
sr3	ETM0, ETM1
sr4	ECNT, ECPT
rp	SP, B, D, H
rp1	V, B, D, H, EA
rp2	SP, B, D, H, EA
rp3	B, D, H
rpa	B, D, H, D+, H+, D–, H–
rpa1	B, D, H
rpa2	B, D, H, D+, H+, D-, H-, D+byte, H+A, H+B, H+EA, H+byte
rpa3	D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte
wa	8-bit immediate data
word	16-bit immediate data
byte	8-bit immediate data
bit	3-bit immediate data
f	CY, HC, Z
irf	NMI Note, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7,
	SB

Note NMI can be also described as FNMI.

Remarks

1. sr to sr4 (special register)

PΑ : PORT A ETMM: TIMER/EVENT РΒ : PORT B **COUNTER MODE** PC : PORT C EOM: TIMER/EVENT PD : PORT D **COUNTER OUTPUT** PF : PORT F MODE MA : MODE A ANM : A/D CHANNEL MODE MB : MODE B CR0 : A/D CONVERSION MC : MODE C RESULT 0 to 3 MCC: MODE CONTROL C CR3 MF : MODE F TXB : Tx BUFFER MM : MEMORY MAPPING RXB : Rx BUFFER TM0 : TIMER REG0 SMH : SERIAL MODE High TM1 : TIMER REG1 SML : SERIAL MODE Low TMM: TIMER MODE MKH : MASK High ETM0: TIMER/EVENT MKL : MASK Low COUNTER REGO ZCM : ZERO CROSS MODE ETM1: TIMER/EVENT **COUNTER REG1** ECNT: TIMER/EVENT COUNTER UPCOUNTER ECPT: TIMER/EVENT **COUNTER CAPTURE**

2. rp to rp3 (register pair)

SP : STACK POINTER

B : BC

D : DE

H : HL

V : VA

EA : EXTENDED

ACCUMULATOR

Z : ZERO

HC: HALF CARRY

CY: CARRY

4. f (flag)

5. irf (interrupt flag) NMI: NMI INPUT FT0: INTFT0 FT1: INTFT1 F1 : INTF1 F2 : INTF2 FE0: INTFE0 FE1: INTFE1 FEIN: INTFEIN FAD: INTFAD FSR: INTFSR FST: INTFST ER: ERROR OV : OVERFLOW AN4: ANALOG INPUT 4 to 7 AN7 SB : STANDBY

3. rpa to rpa3 (rp addressing)

В : (BC) D : (DE) : (HL) D+ : (DE)+ H+ : (HL)+ D-: (DE)-H-: (HL)-D++ : (DE)++ H++ : (HL)++ D+byte: (DE+byte) H+A : (HL+A) H+B : (HL+B) H+EA : (HL+EA) H+byte: (HL+byte)

3.2 Instruction Code Description

r1			
T ₂	T1	To	reg
0	0	0	EAH
0	0	1	EAL
0	1	0	В
0	1	1	С
1	0	0	D
1	0	1	E
1	1	0	Н
1	1	1	L

ра					1	
Аз	A2	A ₁	Αo	addressing		
0	0	0	0		1	
0	0	0	1	(BC)	A	→ →
0	0	1	0	(DE)		rpa1
0	0	1	1	(HL)		_ ★
0	1	0	0	(DE) ⁺	rpa	
0	1	0	1	(HL) ⁺	liπ	
0	1	1	0	(DE) ⁻		rpa
0	1	1	1	(HL) ⁻	I ★	i i
1	0	1	1	(DE+byte)		
1	1	0	0	(HL+A)		
1	1	0	1	(HL+B)		
1	1	1	0	(HL+EA)		
1	1	1	1	(HL+byte)		+

rpa3				
Сз	C2	C1	C ₀	addressing
0	0	1	0	(DE)
0	0	1	1	(HL)
0	1	0	0	(DE) ⁺⁺
0	1	0	1	(HL)++
1	0	1	1	(DE+byte)
1	1	0	0	(HL+A)
1	1	0	1	(HL+B)
1	1	1	0	(HL+EA)
1	1	1	1	(HL+byte)

sr3	
Uo	Special-reg
0 1	ETM0 ETM1

sr4	
Vo	Special-reg
0	ECNT
1	ECPT

irf						
Г	I 4	Із	l 2	lι	I ₀	INTF
	0	0	0	0	0	NMI
1	0	0	0	0	1	FT0
1	0	0	0	1	0	FT1
1	0	0	0	1	1	F1
1	0	0	1	0	0	F2
1	0	0	1	0	1	FE0
1	0	0	1	1	0	FE1
1	0	0	1	1	1	FEIN
1	0	1	0	0	0	FAD
1	0	1	0	0	1	FSR
1	0	1	0	1	0	FST
1	0	1	0	1	1	ER
1	0	1	1	0	0	OV
1	1	0	0	0	0	AN4
1	1	0	0	0	1	AN5
1	1	0	0	1	0	AN6
1	1	0	0	1	1	AN7
L	1	0	1	0	0	SB

rp				_
P ₂	P ₁	P ₀	reg-pair	
0	0	0	SP	T
0	0	1	BC	
0	1	0	DE	rp
0	1	1	HL	♦
1	0	0	EA	
				•

	rp1			
	Q ₂	Q ₁	Q ₀	reg-pair
1	0	0	0	VA
ı	0	0	1	BC
ı	0	1	0	DE
ı	0	1	1	HL
I	1	0	0	EA
ı				

t			
F ₂	F1	Fo	flag
0	0	0	_
0 0	1	0	CY
0	1	1	HC
1	0	0	Z

3.3 Instruction Execution Time

In the following table, one state consists of three clock cycles. So, when the 15 MHz clock is used, one state becomes 200 ns (= 3 x 1/15 μ s). Execution time of the 4-state instruction, the shortest instruction, becomes 0.8 μ s.

NEC

Instruc- tion group	Mnomo	nio	Operand		Instruction	on code		State	Operation	Skip
Instrution o	Mnemo		Operand	B1	B2	В3	B4	State	Operation	condition
			r1, A	0 0 0 1 1 T ₂ T ₁ T ₀				4	r1 ← A	
			A, r1	0 0 0 0 1 T ₂ T ₁ T ₀				4	A ← r1	
	MOV	*	sr, A	01001101	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀			10	sr ← A	
	IVIO V	*	A, sr1	01001100	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀			10	A ← sr1	
			r, word	01110000	0 1 1 0 1 R ₂ R ₁ R ₀	Low Adrs	High Adrs	17	$r \leftarrow (word)$	
			word, r	01110000	0 1 1 1 1 R ₂ R ₁ R ₀	Low Adrs	High Adrs	17	$(word) \leftarrow r$	
	M∨I	*	r, byte	0 1 1 0 1 R ₂ R ₁ R ₀	→ Data — ►			7	$r \leftarrow \text{byte}$	
			sr2, byte	01100100	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	Data		14	sr2 ← byte	
nsfer	MVIW	*	wa, byte	01110001	Offset →	Data		13	(V. wa) ← byte	
8-bit data transfer	MVIX	*	rpa1, byte	0 1 0 0 1 0 A ₁ A ₀	→ Data — ▶			10	(rpa1) ← byte	
8-bit d	STAW	*	wa	01100011	Offset →			10	(V. wa) ← A	
	LDAW	*	wa	0000001	Offset — ►			10	A ← (V. wa)	
	STAX	*	rpa2	A ₃ O 1 1 1 A ₂ A ₁ A ₀	Data Note 1			Note 3 7/13	(rpa2) ← A	
	LDAX	*	rpa2	A ₃ O 1 O 1 A ₂ A ₁ A ₀	Data ^{Note 1}			Note 3 7/13	A ← (rpa2)	
	EXX			00010001				4	$ \begin{cases} B \leftrightarrow B', C \leftrightarrow C', D \leftrightarrow D' \\ E \leftrightarrow E', H \leftrightarrow H', L \leftrightarrow L' \end{cases} $	
	EXA			00010000				4	$V,A \leftrightarrow V',A',EA \leftrightarrow EA'$	
	EXH			01010000				4	H, L ↔ H', L'	
	BLOCK			00110001				13 (C+1)	$(DE)^+ \leftarrow (HL)^+, C \leftarrow C-1$ End if borrow	
16-bit data transfer	DMOV		rp3, EA	101101P ₁ P ₀				4	rp3L ← EAL, rp3H ← EAH	
16-bit da transfer	DIVIOV		EA, rp3	1 0 1 0 0 1 P ₁ P ₀				4	EAL ← rp3L, EAH ← rp3H	

c- guo							Instruction	on code				04-4-		Skip
Instruc- tion group	Mnemonic	Operand		B1		B2		В	3	В	4	State	Operation	condition
		sr3, EA	010	0100	0	1101001	U₀					14	sr3 ← EA	
	DMOV	EA, sr4		,	,	1100000	V ₀					14	EA ← sr4	
	SBCD	word	0 1 1	1000	0	0001111	0	Low	Adrs	High	Adrs	20	$(word) \leftarrow C, (word+1) \leftarrow B$	
	SDED	word				0010111	0					20	$(word) \leftarrow E, (word+1) \leftarrow D$	
	SHLD	word				0011111	0					20	$(word) \leftarrow L, (word+1) \leftarrow H$	
	SSPD	word		,	,	00001110				,		20	$(word) \leftarrow SP_{L}, (word+1) \leftarrow SP_{H}$	
fer	STEAX	rpa3	010	01001000		1 0 0 1 C ₃ C ₂	2 C 1 C 0	Data	Note 2			Note 3 14/20	(rpa3) ← EAL, (rpa3+1) ← EAH	
16-bit data transfer	LBCD	word	0 1 1	1000	0	00011111		Low Adrs		High	Adrs	20	$C \leftarrow (word), B \leftarrow (word+1)$	
oit data	LDED	word				00101111						20	$E \leftarrow (word),D \leftarrow (word\text{+}1)$	
16-1	LHLD	word				00111111						20	$L \leftarrow \text{(word), H} \leftarrow \text{(word+1)}$	
	LSPD	word		,	,	0000111	1	,	ı		,	20	$SP_L \leftarrow (word), SP_H \leftarrow (word \text{+} 1)$	
	LDEAX	rpa3	010	0100	0	1 0 0 0 C ₃ C ₂ C ₁ C ₀		Data	Note 2			Note 3 14/20	$EAL \leftarrow (rpa3), EAH \leftarrow (rpa3+1)$	
	PUSH	rp1	101	1 0 Q ₂	Q1 Q0							13	(SP-1)← rp1н, (SP-2)← rp1∟ SP ← SP-2	
	POP	rp1	101	0 0 Q ₂	Q1 Q0							10	rp1 ι ← (SP), rp1 ι ← (SP+1) SP ← SP+2	
	LXI *	rp2, word	0 P ₂	P ₁ P ₀ 0	100	Low By	∕te —►	High	Byte			10	$rp2 \leftarrow word$	
	TABLE		010	0100	0	1010100	0					17	$C \leftarrow (PC+3+A)$ $B \leftarrow (PC+3+A+1)$	
ter)	ADD	A, r	0 1 1	0000	0	1 1 0 0 0 R ₂	R ₁ R ₀					8	A ← A+r	
8-bit arithmetic operation (register)	אטט	r, A				0100						8	r ← r+A	
it arithi ration	ADC	A, r				1101						8	A ← A+r+CY	
8-b ope	ADC	r, A				0101	,					8	r ← r+A+CY	

NEC

- Cond	Mnemonic	Operand					Instructi	ion code		Sta	to	On anation	Skip
Instruc- tion group	vinemonic	Operand		B1		B2		В3	B4	Sia	ite	Operation	condition
		A, r	0 1 1	0000	0	10100R2F	R1 R0			8		A ← A+r	No Carry
	ADDNC	r, A				0010				8		r ← r+A	No Carry
	OUD	A, r				1110				8		A ← A–r	
	SUB	r, A				0110				8		r ← r–A	
	SBB	A, r				1111				8		A ← A−r−CY	
	ЗВВ	r, A				0111				8		r ← r–A–CY	
	SUBNB	A, r				1011				8		A ← A–r	No Borrow
ster)	SUBIND	r, A				0011	V			8		r ← r–A	No Borrow
8-bit arithmetic operation (register)	ANA	A, r				10001R ₂ F	R1 R0			8		A ← A^r	
eratior		r, A				0000				8		r ← r∧A	
etic op	ORA	A, r				1001				8		A←A∨r	
arithm	ORA	r, A				0001	,			8		r ← r v A	
8-bit	VDA	A, r				10010R ₂ F	R1 R0			8		A ← A v r	
	XRA	r, A				0001	V			8		r ← r v A	
	GTA	A, r				10101R ₂ F	R1 R0			8	, ,	A–r–1	No Borrow
	GIA	r, A				0010				8		r–A–1	No Borrow
	LTA	A, r				1011				8		A–r	Borrow
	LIA	r, A				0011				8		r–A	Borrow
	NEA	A, r				1110				8		A–r	No Zero
	INEA	r, A		ļ ,		0110	Į.			8		r–A	No Zero

on on o					I	nstruction	code		01-1-		Skip
Instruc- tion group	Mnemonic	Operand		B1	B2		В3	B4	State	Operation	condition
		A, r	011	00000	1 1 1 1 1 R ₂ R	R1 R0			8	A-r	Zero
thmetia (regist	EQA	r, A			0 1 1 1				8	r–A	Zero
8-bit arithmetic operation (register)	ONA	A, r			1100				8	Α∧r	No Zero
8 obe	OFFA	A, r		, ,	1101	,			8	Α∧r	Zero
	ADDX	rpa	0 1 1	10000	1 1 0 0 0 A ₂ A	1 A 0			11	A ← A+(rpa)	
	ADCX	rpa			1 1 0 1				11	A ← A+(rpa)+CY	
	ADDNCX	rpa			1010				11	A ← A+(rpa)	No Carry
	SUBX	rpa			1110				11	A ← A−(rpa)	
	SBBX	rpa			1111				11	A ← A−(rpa)−CY	
(nomer	SUBNBX	rpa			1011	,			11	A ← A−(rpa)	No Borrow
tion (m	ANAX	rpa			1 0 0 0 1 A ₂ A	1 Ao			11	A ← A ∧ (rpa)	
opera	ORAX	rpa			1001	,			11	A ← A ∨ (rpa)	
nmetic	XRAX	rpa			1 0 0 1 0 A ₂ A	11 Ao			11	A ← A ∀ (rpa)	
8-bit arithmetic operation (memory)	GTAX	rpa			1 0 1 0 1 A ₂ A	11 Ao			11	A-(rpa)-1	No Borrow
8	LTAX	rpa			1011				11	A-(rpa)	Borrow
	NEAX	rpa			1110				11	A-(rpa)	No Zero
	EQAX	rpa			1111				11	A-(rpa)	Zero
	ONAX	rpa			1100				11	A _Λ (rpa)	No Zero
	OFFAX	rpa		, ,	1101	,			11	A ∧ (rpa)	Zero

-or	Mnemo	nio	Operand		Instruction	on code		State	Operation	Skip
Instruc- tion group	Willemo	inic	Operand	B1	B2	В3	B4	State	Operation	condition
		*	A, byte	01000110	→ Data — ►			7	A ← A+byte	
	ADI		r, byte	01110100	0 1 0 0 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r$ +byte	
			sr2, byte	0110	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2+byte	
		*	A, byte	01010110	→ Data — ►			7	A ← A+byte+CY	
	ACI		r, byte	01110100	0 1 0 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r + byte + CY$	
			sr2, byte	0110	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2+byte+CY	
		*	A, byte	00100110	→ Data — ►	·		7	A ← A+byte	No Carry
ata	ADINC		r, byte	01110100	0 0 1 0 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r$ +byte	No Carry
diate d			sr2, byte	0110	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2+byte	No Carry
imme		*	A, byte	01100110	→ Data — ▶			7	A ← A–byte	
tion of	SUI		r, byte	01110100	0 1 1 0 0 R ₂ R ₁ R ₀	Data		11	r ← r–byte	
Arithmetic operation of immediate data			sr2, byte	0110	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2–byte	
nmetic		*	A, byte	01110110	→ Data — ►			7	A ← A-byte-CY	
Aritl	SBI		r, byte	01110100	0 1 1 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r$ -byte-CY	
			sr2, byte	0110	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2–byte–CY	
		*	A, byte	00110110	→ Data — ►			7	A ← A–byte	No Borrow
	SUINB		r, byte	01110100	0 0 1 1 0 R ₂ R ₁ R ₀	Data		11	$r \leftarrow r$ -byte	No Borrow
			sr2, byte	0110	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	•		20	sr2 ← sr2–byte	No Borrow
	ANI	*	A, byte	00000111	■ Data — ■			7	A← A ^ byte	
	AIN		r, byte	01110100	0 0 0 0 1 R ₂ R ₁ R ₀	Data		11	r ← r ^ byte	

roup Toup	M		0		Instruction	code		Ctata	•	Skip
Instruc- tion group	Mnem	onic	Operand	B1	B2	ВЗ	B4	State	Operation	condition
	ANI		sr2, byte	01100100	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	Data		20	sr2 ← sr2 ∧ byte	
		*	A, byte	00010111	→ Data →			7	$A \leftarrow A_V$ byte	
	ORI		r, byte	01110100	0 0 0 1 1 R ₂ R ₁ R ₀	Data		11	r ← r v byte	
			sr2, byte	0110	S ₃ 0 0 1 1 S ₂ S ₁ S ₀			20	sr2 ← sr2 v byte	
		*	A, byte	00010110	→ Data →			7	A ← A v byte	
	XRI		r, byte	01110100	0 0 0 1 0 R ₂ R ₁ R ₀	Data		11	r ← r + byte	
data			sr2, byte	0110	S ₃ 0 0 1 0 S ₂ S ₁ S ₀			20	sr2 ← sr2 +byte	
nediate	GTI	*	A, byte	00100111	← Data — ►			7	A-byte-1	No Borrow
of imm			r, byte	01110100	0 0 1 0 1 R ₂ R ₁ R ₀	Data		11	r-byte-1	No Borrow
ration			sr2, byte	0110	S ₃ 0 1 0 1 S ₂ S ₁ S ₀			14	sr2-byte-1	No Borrow
Arithmetic operation of immediate data		*	A, byte	00110111	→ Data — ►			7	A-byte	Borrow
rithme	LTI		r, byte	01110100	0 0 1 1 1 R ₂ R ₁ R ₀	Data		11	r-byte	Borrow
⋖			sr2, byte	0110	S ₃ 0 1 1 1 S ₂ S ₁ S ₀			14	sr2-byte	Borrow
		*	A, byte	01100111	→ Data — ►			7	A-byte	No Zero
	NEI		r, byte	01110100	0 1 1 0 1 R ₂ R ₁ R ₀	Data		11	r-byte	No Zero
			sr2, byte	0110	S ₃ 1 1 0 1 S ₂ S ₁ S ₀			14	sr2-byte	No Zero
		*	A, byte	01110111	→ Data →			7	A-byte	Zero
	EQI		r, byte	01110100	0 1 1 1 1 R ₂ R ₁ R ₀	Data		11	r-byte	Zero
			sr2, byte	0110	S ₃ 1 1 1 1 S ₂ S ₁ S ₀	<u> </u>		14	sr2-byte	Zero

	П
	P
	D
	7
	∞
	C
	_
	4
•	
	7

roup	Mnemonic	Operand		Instruction	on code		State	Onevetion	Skip
Instruc- tion group	vinemonic	Operand	B1	B2	В3	B4	State	Operation	condition
	*	A, byte	01000111	→ Data — ►			7	A ^ byte	No Zero
on of a	ONI	r, byte	01110100	0 1 0 0 1 R ₂ R ₁ R ₀	Data		11	r^ byte	No Zero
Arithmetic operation of immediate data		sr2, byte	0110	S ₃ 1 0 0 1 S ₂ S ₁ S ₀	,		14	sr2^ byte	No Zero
metic o	*	A, byte	01010111	← Data — ►			7	A ^ byte	Zero
Arithr	OFFI	r, byte	01110100	0 1 0 1 1 R ₂ R ₁ R ₀	Data		11	r^byte	Zero
		sr2, byte	0110	S ₃ 1 0 1 1 S ₂ S ₁ S ₀	•		14	sr2^byte	Zero
	ADDW	wa	01110100	11000000	offset		14	$A \leftarrow A+(V.wa)$	
	ADCW	wa		1101			14	A ← A+(V.wa)+CY	
	ADDNCW	wa		1010			14	$A \leftarrow A+(V.wa)$	No Carry
1.	SUBW	wa		1110			14	A ← A−(V.wa)	
egister	SBBW	wa		1111			14	A ← A−(V.wa)−CY	
rking r	SUBNBW	wa		1011			14	A ← A−(V.wa)	No Borrow
ow Jo	ANAW	wa		10001000			14	$A \leftarrow A \land (V.wa)$	
eration	ORAW	wa		1 0 0 1			14	A ← A ∨ (V.wa)	
etic op	XRAW	wa		10010000			14	A ← A ∨ (V.wa)	
Arithmetic operation of working register	GTAW	wa		10101000			14	A-(V.wa)-1	No Borrow
	LTAW	wa		1011			14	A-(V.wa)	Borrow
	NEAW	wa		1110			14	A-(V.wa)	No Zero
	EQAW	wa		1111			14	A–(V.wa)	Zero
	ONAW	wa		1100	•		14	A ^ (V.wa)	No Zero

ro duo						Instruction	on code			01-1-		Skip
Instruc- tion group	Mnemonic	Operand	В	B1		2	E	33	B4	State	Operation	condition
	OFFAW	wa	011101	0 0	110110	1 1 0 1 1 0 0 0 Offset		fset		14	A∧ (V.wa)	Zero
ter	ANIW *	wa, byte	000001	0 1	→ Offset →		Da	ata		19	(V.wa) ← (V.wa) ∧ byte	
g regis	ORIW *	wa, byte	0001							19	(V.wa) ← (V.wa) v byte	
Arithmetic operation of working register	GTIW *	wa, byte	0010							13	(V.wa)-byte-1	No Borrow
ion of	LTIW *	wa, byte	0011							13	(V.wa)-byte	Borrow
operat	NEIW *	wa, byte	0110							13	(V.wa)-byte	No Zero
metic	EQIW *	wa, byte	0111							13	(V.wa)-byte	Zero
Arith	ONIW *	wa, byte	0100							13	(V.wa)∧byte	No Zero
	OFFIW *	wa, byte	0101		,			,		13	(V.wa)∧byte	Zero
	EADD	EA, r2	01110000		010000	R ₁ R ₀				11	EA ← EA+r2	
	DADD	EA, rp3	0 1	0 0	110001	P ₁ P ₀				11	EA ← EA+rp3	
	DADC	EA, rp3			1101					11	EA ← EA+rp3+CY	
tion	DADDNC	EA, rp3		•	1010	•				11	EA ← EA+rp3	No Carry
opera	ESUB	EA, r2	0.0	000	011000	R ₁ R ₀				11	EA ← EA-r2	
16-bit arithmetic operation	DSUB	EA, rp3	0 1	0 0	111001	P ₁ P ₀				11	EA ← EA-rp3	
bit aritl	DSBB	EA, rp3			1111					11	EA ← EA-rp3-CY	
16-	DSUBNB	EA, rp3			1011	•				11	EA ← EA–rp3	No Borrow
	DAN	EA, rp3			100011	P ₁ P ₀				11	EA ← EA ∧ rp3	
	DOR	EA, rp3			1001	V				11	EA ← EA v rp3	
	DXR	EA, rp3	•	V	100101	P ₁ P ₀				11	EA ← EA + rp3	

	П
	P
	D
	7
	∞
	C
	_
	4
•	
	7

Instruc- tion group	Maaaaaia	Operand		Instruction	on code		State	On another	Skip
Instrution c	Mnemonic	Operand	B1	B2	В3	B4	State	Operation	condition
	DGT	EA, rp3	01110100	1 0 1 0 1 1 P ₁ P ₀			11	EA-rp3-1	No Borrow
eration	DLT	EA, rp3		1011			11	EA-rp3	Borrow
tic op	DNE	EA, rp3		1110			11	EA-rp3	No Zero
rithme	DEQ	EA, rp3		1111			11	EA-rp3	Zero
16-bit arithmetic operation	DON	EA, rp3		1100			11	EA∧rp3	No Zero
	DOFF	EA, rp3	, ,	1101			11	EA^rp3	Zero
iply/ de	MUL	r2	01001000	0 0 1 0 1 1 R ₁ R ₀			32	EA ← A×r2	
Multiply/ divide	DIV	r2	1	0 0 1 1			59	EA ← EA÷r2, r2 ← The Remainder	
	INR	r2	0 1 0 0 0 0 R ₁ R ₀				4	r2 ← r2+1	Carry
	INRW *	wa	00100000	Offset →			16	(V.wa) ← (V.wa)+1	Carry
nent	INX	rp	0 0 P ₁ P ₀ 0 0 1 0				7	rp ← rp+1	
Decrement/Increment	IINA	EA	10101000				7	EA ← EA+1	
ement	DCR	r2	0 1 0 1 0 0 R ₁ R ₀				4	r2 ← r2−1	Borrow
Decr	DCRW *	wa	00110000	Offset ──►			16	(V.wa) ← (V.wa)–1	Borrow
	DCX	rp	0 0 P ₁ P ₀ 0 0 1 1				7	rp ← rp−1	
	DCX	EA	10101001				7	EA ← EA−1	
. <u>o</u>	DAA		01100001				4	Decimal Adjust Accumulator	
ithmet	STC		01001000	00101011			8	CY ← 1	
Other arithmetic	CLC			00101010			8	CY ← 0	
Ö	NEGA			00111010			8	A ← Ā+1	

roup	Mnemonic	Operand		Instruction	on code		State	Onavation	Skip
Instruc- tion group	winemonic	Operand	B1	B2	В3	B4	State	Operation	condition
	RLD		01001000	00111000			17	Rotate Left Digit	
	RRD			1001			17	Rotate Right Digit	
	RLL	r2		0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow CY, CY \leftarrow r2_7$	
	RLR	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow CY, CY \leftarrow r2_0$	
	SLL	r2		0 0 1 0 0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow 0, CY \leftarrow r2_7$	
hift	SLR	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow 0, \text{CY} \leftarrow r2_0$	
Rotation shift	SLLC	r2		0 0 0 0 0 1 R ₁ R ₀			8	$r2_{m+1} \leftarrow r2_m, r2_0 \leftarrow 0, CY \leftarrow r2_7$	Carry
Rot	SLRC	r2		0 0 R ₁ R ₀			8	$r2_{m-1} \leftarrow r2_m, r2_7 \leftarrow 0, CY \leftarrow r2_0$	Carry
	DRLL	EA		10110100			8	$EA_{n+1} \leftarrow EA_{n}, EA_{0} \leftarrow CY, CY \leftarrow EA_{15}$	
	DRLR	EA		0000			8	$EA_{n-1} \leftarrow EA_{n}, EA_{15} \leftarrow CY, CY \leftarrow EA_{0}$	
	DSLL	EA		10100100			8	$EA_{n+1} \leftarrow EA_{n}, EA_{0} \leftarrow 0, CY \leftarrow EA_{15}$	
	DSLR	EA	1	0000			8	$EA_{n-1} \leftarrow EA_n, EA_{15} \leftarrow 0, CY \leftarrow EA_0$	
	JMP *	word	01010100	Low Adrs →	High Adrs		10	PC ← word	
	JB		00100001				4	$PC_H \leftarrow B, PC_L \leftarrow C$	
Jump	JR	word	1 1 ← jdisp 1 —	-			10	PC ← PC+1+jdisp 1	
	JRE *	word	0100111	jdisp			10	PC ← PC+2+jdisp	
	JEA		01001000	00101000			8	PC ← EA	
	CALL *	word	01000000	Low Adrs	High Adrs		16	$ \begin{array}{c} (SP1) \leftarrow (PC\text{+-}3)\text{H}, \ (SP2) \leftarrow (PC\text{+-}3)\text{L} \\ PC \leftarrow word, \ SP \leftarrow SP2 \end{array} $	
Call	CALB		01001000	00101001			17	$ \begin{array}{l} (SP-1) \leftarrow (PC+2)_H, \ (SP-2) \leftarrow (PC+2)_L \\ PC_H \leftarrow B, \ PC_L \leftarrow C, \ SP \leftarrow SP-2 \end{array} $	
	CALF *	word	01111 -	fa ►			13	$ \begin{array}{c} (SP-1) \leftarrow (PC+2) \text{H, } (SP-2) \leftarrow (PC+2) \text{L} \\ PC_{15-11} \leftarrow 00001, \ PC_{10-0} \leftarrow fa, \ SP \leftarrow SP-2 \end{array} $	

Z

ıc- Iroup	Mnemonic	Operand			Instru	ction code		State	On continu	Skip
Instruc- tion group	winemonic	Operand		B1	B2	В3	B4	State	Operation	condition
Call	CALT	word	100	← ta —►				16	$ \begin{array}{l} (SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, PC_{L} \\ \leftarrow (128+2ta), PC_{H} \leftarrow (129+2ta), SP \leftarrow SP-2 \end{array} $	
ő	SOFT1		011	10010				16	$ \begin{array}{l} (SP1) \leftarrow PSW, (SP2) \leftarrow (PC\text{+-}1)\text{H}, (SP3) \\ \leftarrow (PC\text{+-}1)\text{L}, PC \leftarrow 0060H, SP \leftarrow SP3 \end{array} $	
	RET		101	11000				10	$PC_L \leftarrow (SP), PC_H \leftarrow (SP+1)$ $SP \leftarrow SP+2$	
Return	RETS		•	1001				10	$\begin{array}{c} PCL \leftarrow (SP), PCH \leftarrow (SP+1), SP \leftarrow SP+2 \\ PC \leftarrow PC+n \end{array}$	Uncondi- tional
"	RETI			00010				13	$PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP+1)$ $PSW \leftarrow (SP+2), SP \leftarrow SP+3$	
	BIT *	bit, wa	0 1 0 1 1 B ₂ B ₁ B ₀		Offset —	-		10	Skip if (V.wa) bit = 1	(V.wa) bit = 1
	SK	f	010	01000	0 0 0 0 1 F ₂ F ₁ F ₀			8	Skip if f = 1	f = 1
Skip	SKN	f			0001			8	Skip if f = 0	f = 0
	SKIT	irf			0 1 0 4 3 2 1 0			8	Skip if irf = 1, then reset irf	irf = 1
	SKNIT	irf	•	•	0 1 1 4 3 2 1 0			8	Skip if irf = 0 Reset irf, if irf = 1	irf = 0
	NOP		0000	0000				4	No Operation	
ation	EI		1010	01010				4	Enable Interrupt	
CPU operation	DI		1011	11010				4	Disable Interrupt	
CPL	HLT		0100	01000	00111011			12	Set Halt Mode	
	STOP		0100	01000	10111011			12	Set Stop Mode	

Notes 1. B2 (Data) is applied for rpa2 = D + byte or H + byte.

- 2. B3 (Data) is applied for rpa3 = D + byte or H + byte.
- 3. In the "state" column, data to the right of the slash applies when rpa2 or rpa3 is D + byte, H + A, H + B, H + EA, or H + byte.

Remark When the instructions below are skipped, the number of idle states is as listed below and differs from the number of execution states.

1-byte instruction: 4-state 3-byte instruction (with *): 10-state

1-byte instruction : 4-state 3-byte instruction (with *) : 10-state 2-byte (with *) : 7-state 3-byte : 11-state 2-byte : 8-state 4-byte : 14-state

4. LIST OF MODE REGISTERS

Name of	mode register	Read/Write	Function
MA	MODE A	W	Specifies input/output of Port A in bit units
MB	MODE B	W	Specifies input/output of Port B in bit units
MCC	MODE CONTROL C	W	Specifies port/control mode of Port C in bit units
MC	MODE C	W	Specifies input/output of Port C set in the port mode in bit units
MM	MEMORY MAPPING	W	Specifies port/expansion mode of Ports D and F
MF	MODE F	W	Specifies input/output of Port F set in the port mode in bit units
TMM	Timer mode	R/W	Specifies operation mode of the timer
ETMM	Timer/Event	W	Specifies operation mode of the Timer Event Counter
	Counter Mode		
EOM	Timer/Event	R/W	Controls output level of CO0 and CO1
	Counter Output Mode		
SML	Serial Mode	W	Specifies operation mode of the serial interface
SMH		R/W	
MKL	Interrupt Mask	R/W	Specifies interrupt request enable/disable
MKH			
ANM	A/D Channel Mode	R/W	Specifies operation mode of the A/D converter
ZCM	Zero-cross Mode	W	Specifies operation mode of the zero-cross detection circuit

5. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \, ^{\circ}C$)

Parameter	Symbol	Test Condition	Ratings	Unit
Power Supply Voltage	VDD		-0.5 to +7.0	V
	AV _{DD}		AVss to VDD + 0.5	V
	AVss		-0.5 to +0.5	V
Input Voltage	Vı		-0.5 to V _{DD} + 0.5	V
Output Voltage	Vo		-0.5 to V _{DD} + 0.5	V
Output Current Low	loL	All Output Pin	4.0	mA
		All Output Pin Total	100	mA
Output Current High	Іон	All Output Pin	-2.0	mA
		All Output Pin Total	-50	mA
A/D Converter	Varef		-0.5 to AV _{DD} + 0.3	V
Reference Input Voltage				
Operating Ambient	TA		-40 to +85	°C
Temperature				
Storage Temperature	Tstg		-65 to +150	°C

* Caution If any of the parameters exceeds the absolute maximum ratings even for a moment, this may damage product quality. The absolute maximum ratings are values that may physically damage the product. You must use the product within the specified ratings.

Oscillation Characteristics (TA = -40 to +85 °C, VDD = AVDD = +5.0 V \pm 10 %, Vss = AVss = 0 V, VDD - 0.8 V \leq AVDD \leq VDD, 3.4 V \leq VAREF \leq AVDD)

Resonator	Recommended Circuits	Parameter	Test Conditions	MIN.	MAX.	UNIT
Ceramic Resonator or Crystal	X1 X2	Oscillation Frequency (fxx)	A/D Converter Not used	4	15	MHz
ResonatorNote	C1 C2		A/D Converter Used	5.8	15	MHz
External Clock	X1 X2	X1 Input Frequency (fx)	A/D Converter Not used	4	15	MHz
	X1 X2		A/D Converter Used	5.8	15	MHz
		X1 Input Rise, Fall Time (tr, tr)		0	20	ns
	HCMOS Inverter	X1 Input High, Low Level Width (tøн, tøь)		20	250	ns

Cautions 1. Oscillator circuit should be in the nearest area from X1 and X2 pins.

2. Do not place other signal lines within the area enclosed with broken lines.

Note For a crystal resonator, the following external capacitances are recommended: C1 = C2 = 10 pF

CAPACITANCE (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	UNIT
Input Capacitance	Сı	fc = 1 MHz			10	pF
Output Capacitance	Со	Unmeasured pins returned to 0 V			20	pF
I/O Capacitance	Сю				20	pF

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = AVDD = +5.0 V \pm 10 %, Vss = AVss = 0 V)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	UNIT	
Input Low Voltage	VIL1	All except RESET, STOP	0		0.8	V	
		TI, AN7 to AN4					
	V _{IL2}	RESET, STOP, NMI, SC	RESET, STOP, NMI, SCK, INT1, TI, AN7 to AN4			0.2VDD	V
Input High Voltage	V _{IH1}	All except RESET, STOF	, NMI, SCK, INT1,	2.2		Vdd	V
		TI, AN7 to AN4, X1, X2					
	V _{IH2}	RESET, STOP, NMI, SC	K, INT1, TI, AN7 to	0.8V _{DD}		Vdd	V
		AN4, X1, X2					
Output Low Voltage	Vol	loL = 2.0 mA				0.45	V
Output High Voltage	Vон	lон = −1.0 mA		VDD-1.0			V
		I он = $-100 \mu A$		VDD-0.5			V
Input Current	lı	INT1 Note 1, TI (PC3) Note 2; $0 \text{ V} \le V_1 \le V_{DD}$				±200	μΑ
Input Leakage	lu	All except INT1, TI (PC3), AN7 to AN0; 0 V ≤ Vı ≤ VDD				±10	μΑ
Current		AN7 to AN0; $0 \text{ V} \leq V_1 \leq V_{DD}$				±1	μΑ
Output Leakage	ILO	$0 \text{ V} \leq \text{Vo} \leq \text{Vdd}$				±10	μΑ
Current							
AVDD Supply	Aldd1	Operation Mode fxx = 15	MHz		0.5	1.3	mA
Current	Aldd2	STOP Mode			10	20	μΑ
VDD Supply Current	I _{DD1}	Operation mode fxx = 15 MHz			16	30	mA
	I _{DD2}	HALT Mode fxx = 15 MHz			8	15	mA
Data Retention	VDDDR	Hardware/Software STOP Mode		2.5			V
Voltage							
Data Retention	Idddr	Hardware/Software Note 3		1	15	μΑ	
Current		STOP Mode		10	50	μΑ	

Notes 1. When self-bias is generated by ZCM register.

- 2. When set in the control mode by MCC register and self-bias is generated by ZCM register.
- **3.** When self-bias is not generated.

AC CHARACTERISTICS (Ta = -40 to +85 °C, Vdd = AVdd = +5.0 V \pm 10 %, Vss = AVss = 0 V)

READ/WRITE OPERATION:

Parameter	Symbol	Test Condition	MIN.	MAX.	UNIT
X1 Input Cycle Time	tcyc		66	250	ns
Address Setup Time to ALE	tal	fxx = 15 MHz, CL = 150 pF	30		ns
Address Hold Time after ALE ↓	t LA		35		ns
$Address \to \overline{RD} \ \downarrow Delay \ Time$	tar		100		ns
$\overline{RD} \downarrow \to Address\ Floating\ Time$	tafr	C _L = 150 pF		20	ns
Address → Data Input Time	t AD	f _{xx} = 15 MHz, CL = 150 pF		250	ns
ALE \downarrow \rightarrow Data Input Time	tldr			135	ns
$\overline{RD} \downarrow \to Data$ Input Time	trd			120	ns
ALE \downarrow \rightarrow RD \downarrow Delay Time	t LR		15		ns
Data Hold Time after RD ↑	t RDH	C _L = 150 pF	0		ns
$\overline{RD} \uparrow \to ALE \uparrow Delay Time$	trl	f _{xx} = 15 MHz, C _L = 150 pF	80		ns
RD Width Low	t rr	Data Read	215		ns
		f _{xx} = 15 MHz, C _L = 150 pF			
		OP code Fetch	415		ns
		f _{xx} = 15 MHz, C∟ = 150 pF			
ALE Width High	tll	fxx = 15 MHz, CL = 150 pF	90		ns
M1 Setup Time to ALE ↓	tmL	f _{xx} = 15 MHz	30		ns
M1 Hold Time after ALE ↓	tьм		35		ns
\overline{IO}/M Setup Time to ALE \downarrow	tı∟		30		ns
IO/M Hold Time after ALE ↓	tLı		35		ns
$Address \to \overline{WR} \downarrow Delay \; Time$	taw	f _{xx} = 15 MHz, C _L = 150 pF	100		ns
ALE \downarrow \rightarrow Data Output Time	tldw			180	ns
$\overline{WR} \downarrow \to Data$ Output Time	two	C _L = 150 pF		100	ns
ALE $\downarrow \rightarrow \overline{WR} \downarrow$ Delay Time	tuw	f _{xx} = 15 MHz, C _L = 150 pF	15		ns
Data Setup Time to WR ↑	tow		165		ns
Data Hold Time after WR ↑	twdh		60		ns
$\overline{WR} \uparrow \to ALE \uparrow Delay Time$	twL		80		ns
WR Width Low	tww		215		ns

SERIAL OPERATION:

Parameter	Symbol	Test Condition	1	MIN.	MAX.	UNIT
SCK Cycle Time	t cyk	SCK Input	Note 1	800		ns
			Note 2	400		ns
		SCK Output		1.6		μs
SCK Width Low	t kkl	SCK Input	Note 1	335		ns
			Note 2	160		ns
		SCK Output		700		ns
SCK Width High	tккн	SCK Input	Note 1	335		ns
			Note 2	160		ns
		SCK Output		700		ns
RxD Setup Time to SCK ↑	trxk	Note 1		80		ns
RxD Hold Time After SCK ↑	tkrx	Note 1		80		ns
$\overline{SCK} \downarrow \to TxD$ Delay Time	tктх	Note 1			210	ns

Notes 1. In case of x1 clock rate in asynchronous mode, synchronous mode, or I/O interface mode.

2. In case of x16 or x64 clock rate in asynchronous mode.

Remark The numeric values in the table apply when fxx = 15 MHz, CL = 150 pF.

ZERO-CROSS CHARACTERISTICS:

Parameter	Symbol	Test Condition	MIN.	MAX.	UNIT
Zero-Cross Detection Input	Vzx	AC Coupled	1	1.8	VAC _{P-P}
Zero-Cross Accuracy	Azx	60-Hz Sine Wave		±135	mV
Zero-Cross Detection Input Frequency	fzx		0.05	1	kHz

OTHER OPERATION:

Parameter	Symbol	Test Condition	MIN.	MAX.	UNIT
TI Width High, Low	t⊤ıн, t⊤ı∟		6		tcyc
CI Width High, Low	tci1H, tci1L	Event Counter Mode	6		tcyc
	tci2H, tci2L	Pulse Width Measurement Mode	48		tcyc
NMI Width High, Low	tnih, tnil		10		μs
INT1 Width High, Low	tııH, tııL		36		tcyc
INT2 Width High, Low	t12H, t12L		36		tcyc
AN7-4 Width High, Low	tanh, tanl		36		tcyc
RESET Width High, Low	trsh, trsl		10		μs

A/D CONVERTER CHARACTERISTICS: (TA = -40 to +85 °C, VDD = +5.0 V \pm 10 %, Vss = AVss = 0 V, VDD -0.5 V \leq AVDD \leq VDD, 3.4 V \leq VAREF \leq AVDD)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	UNIT
Resolution			8			Bits
Absolute Accuracy Note		$3.4 \text{ V} \le \text{Varef} \le \text{AVdd}, 66 \text{ ns} \le \text{tcyc} \le 170 \text{ ns}$			±0.8 %	FSR
		$4.0 \text{ V} \le \text{Varef} \le \text{AVdd}, 66 \text{ ns} \le \text{tcyc} \le 170 \text{ ns}$			±0.6 %	FSR
		$T_A = -10 \text{ to } +70 ^{\circ}\text{C},$			±0.4 %	FSR
		$4.0 \text{ V} \le \text{Varef} \le \text{AVdd}, 66 \text{ ns} \le \text{tcyc} \le 170 \text{ ns}$				
Conversion time	tconv	66 ns ≤ tcyc ≤ 110 ns	576			tcyc
		110 ns ≤ tcyc ≤ 170 ns	432			tcyc
Sampling Time	t SAMP	66 ns ≤ tcyc ≤ 110 ns	96			tcyc
		110 ns ≤ tcyc ≤ 170 ns	72			tcyc
Analog Input Voltage	VIAN	AN7-0 (include unused pins)	0		VAREF	V
Analog Input Impedance	Ran			50		ΜΩ
Reference Voltage	VAREF		3.4		AVDD	V
Varef Current	IAREF1	Operation mode		1.5	3.0	mA
	laref2	STOP mode		0.7	1.5	mA
AVDD Supply Current	Aldd1	Operation mode, f _{xx} = 15 MHz		0.5	1.3	mA
	AIDD2	STOP mode		10	20	μΑ

Note Except quantization error (i.e. $\pm 1/2$ LSB).

AC TIMING TEST POINTS

*

AC CHARACTERISTIC CALCULATING EXPRESSION depending on toyo

Symbol	Calculating Expression	MIN./MAX.	UNIT	
t AL	2T – 100	MIN.	ns	
t LA	T – 30	MIN.	ns	
t ar	3T – 100	MIN.	ns	
t AD	7T – 220	MAX.	ns	
t ldr	5T – 200	MAX.	ns	
t RD	4T – 150	MAX.	ns	
tlr	T – 50	MIN.	ns	
trl	2T – 50	MIN.	ns	
t rr	4T – 50 (Data Read)	MIN.	ns	
	7T – 50 (OP Code Fetch)			
tll	2T – 40	MIN.	ns	
t ML	2T – 100	MIN.	ns	
t LM	T – 30	MIN.	ns	
tıL	2T – 100	MIN.	ns	
t∟ı	T – 30	MIN.	ns	
taw	3T – 100	MIN.	ns	
tldw	T + 110	MAX.	ns	
tLW	T – 50	MIN.	ns	
tow	4T – 100	MIN.	ns	
twdh	2T – 70	MIN.	ns	
twL	2T – 50	MIN.	ns	
tww	4T – 50	MIN.	ns	
tcyk	6T (SCK Input) Note 1 /12T (SCK Input) Note 2	MIN.	ns	
	24T (SCK Output)			
tkkl	2.5T + 5 (SCK Input) Note 1 /5T + 5 (SCK Input) Note 2	MIN.	ns	
	12T – 100 (SCK Output)			
tккн	2.5T + 5 (SCK Input) Note 1 /5T + 5 (SCK Input) Note 2	MIN.	ns	
	12T – 100 (SCK Output)			

Notes 1. In case of x16 or x64 clock rate in asynchronous mode.

In case of x1 clock rate in asynchronous mode, synchronous mode, or I/O interface mode.

- **Remarks 1.** $T = tcyc = 1/f_{xx}$
 - 2. Symbols that cannot be found in this table do not depend on the oscillation frequency (fxx).

Timing Waveform

Read Operation

Write Operation

Notes 1. M1 signal is output to MODE1 pin at first OP code fetch cycle if MODE1 pin is pulled up.

- 2. IO/M signal is output to MODE0 pin at sr to sr2 register read cycle if MODE0 pin is pulled up.
- 3. IO/M signal is output to MODE0 pin at sr to sr2 register write cycle if MODE0 pin is pulled up.

Serial Operation

Timer Input Timing

Timer/Event Counter Input Timing

Event Counter Mode

Pulse Width Measurement Mode

Interrupt Input Timing

RESET Input Timing

External Clock Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	UNIT
Data retention power supply voltage	VDDDR		2.5		5.5	V
Data retention power supply current	Idddr	VDDDR = 2.5 V		1	15	μΑ
		VDDDR = $5 \text{ V} \pm 10 \%$		10	50	μΑ
V _{DD} rise, fall time	trvd, trvd		200			μs
STOP setup time to VDD	tsstvd		12T ^{Note} + 0.5			μs
STOP hold time to V _{DD}	thydst		12T ^{Note} + 0.5			μs

Note $T = t_{CYC} = 1/f_{xx}$

Data Retention Timing

6. CHARACTERISTIC CURVES (reference value)

7. PACKAGE DRAWINGS

64 PIN PLASTIC QUIP

NOTE

Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.

P64GQ-100-36

ITEM	MILLIMETERS	INCHES
А	41.5 +0.3 -0.2	1.634 ^{+0.012} _{-0.008}
С	16.5	0.650
Н	$0.50^{\pm0.10}$	$0.020^{+0.004}_{-0.005}$
I	0.25	0.010
J	2.54 (T.P.)	0.100 (T.P.)
K	1.27 (T.P.)	0.050 (T.P.)
М	1.1+0.25	0.043 ^{+0.011} _{-0.006}
N	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Р	4.0 ^{±0.3}	0.157 ^{+0.013} _{-0.012}
S	3.6 ^{±0.1}	$0.142^{+0.004}_{-0.005}$
W	24.13 ^{±1.05}	0.950 ^{±0.042}
Х	19.05 ^{±1.05}	0.750 ^{±0.042}

64 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

INICHES MILLIMETERS

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	0.551 ^{+0.009} _{-0.008}
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	$0.016^{+0.004}_{-0.005}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$
Ν	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

68 PIN PLASTIC QFJ (□950 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P68L-50A1-2

ITEM	MILLIMETERS	INCHES
Α	25.2±0.2	0.992±0.008
В	24.20	0.953
С	24.20	0.953
D	25.2±0.2	0.992±0.008
Е	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173+0.009
Н	2.8±0.2	0.110+0.009
- 1	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±1.0	0.016+0.004
N	0.12	0.005
Р	23.12±0.20	0.910+0.009
Q	0.15	0.006
Т	R 0.8	R 0.031
U	$0.20^{+0.10}_{-0.05}$	0.008+0.004 0.002

*

8. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD78C14(A) under the recommended conditions listed below.

For details of the recommended conditions for soldering, please refer to **Semiconductor Device Mounting Technology Manual (IEI-1207)**.

Consult an NEC sales representative about soldering methods and soldering conditions other than listed below.

Table 8-1. Soldering Conditions for Surface Mount Type

(1) μ PD78C14GF(A)-xxx-3BE: 64-pin plastic QFP (14 x 20 mm)

Soldering Method	Soldering Conditions	Recommended
		Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: Within 30 s (at 210 °C or higher),	IR35-00-2
	Count: Twice or less	
	<attention></attention>	
	(1) Perform the second reflow when the device temperature has come down	
	to the room temperature from the heating from the first reflow.	
	(2) Do not wash the soldered portion with the flux following the first reflow.	
VPS	Package peak temperature: 215 °C, Time: Within 40 s (at 200 °C or higher),	VP15-00-2
	Count: Twice or less	
	<attention></attention>	
	(1) Perform the second reflow when the device temperature has come down	
	to the room temperature from the heating from the first reflow.	
	(2) Do not wash the soldered portion with the flux following the first reflow.	
Wave soldering	Soldering bath temperature: 260 °C or less, Time: Within 10 s,	WS60-00-1
	Count: Once, Preheating temperature: 120 °C MAX.	
	(package surface temperature)	
Partial heating	Pin temperature: 300 °C or less, Time: Within 3 s (per pin row)	_

Caution Do not use several soldering methods together (except partial heating).

(2) µPD78C14L (A)-xxx: 68-pin plastic QFJ (950 x 950 mil)

Soldering Method	Soldering Conditions	Recommended
		Condition Symbol
Infrared reflow	Package peak temperature: 230 °C, Time: Within 30 s (at 210 °C or higher),	IR30-107-1
	Count: Once, Maximum number of days: Seven Note (after seven days,	
	prebaking at 125 °C is required for 10 hours)	
VPS	Package peak temperature: 215 °C, Time: Within 40 s (at 200 °C or higher),	VP15-107-1
	Count: Once, Maximum number of days: Seven Note (after seven days,	
	prebaking at 125 °C is required for 10 hours)	
Partial heating	Pin temperature: 300 °C or less, Time: Within 3 s (per pin row)	_

Note Number of storage days under the storage conditions of 25 °C and 65 % RH or less after the dry pack is opened.

Caution Do not use several soldering methods together (except partial heating).

μ**PD78C14(A)**

Table 8-2. Soldering Conditions for Hole-Through Type

 μ PD78C14G(A)-xxx-36: 64-pin plastic QUIP

Soldering Method	Soldering Conditions
Wave Soldering (pin part only)	Soldering bath temperature: 260 °C or less, Time: Within 10 s
Partial heating	Pin temperature: 300 °C or less, Time: Within 3 s (per pin row)

Caution Apply wave soldering only to pins and be careful not to bring solder directly in contact with the package.

APPENDIX DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD78C14(A):

Language processor

87AD series	This relocatable assembler is a program which converts a program written in mnemonics				
relocatable assembler	into object code that can be executed by microcontroller.				
(RA87)	In addition, it contains the automatic function of symbol table generation and branch				
	instruction optimization processing.				
	Host machine Ordering code				
	OS Distribution media (product name)				
	PC-9800 series	800 series MS-DOS™ 3.5-inch 2HD			
	(Ver. 2.11 to Ver. 5.00A Note) 5-inch 2HD μS5A10RA87				
	IBM PC/AT TM PC DOS TM 3.5-inch 2HC μ S7B13RA87				
		(Ver. 3.1)	5-inch 2HC	μS7B10RA87	

PROM write tools

Hard-	PG-1500	PG-1500 is a PROM programmer which enables you to program single chip microcontrollers					
ware		containing PROM	by stand-alone or host machine	operation by connecti	ng an attached		
		board and optiona	I programmer adapter to PG-15	00. It also enables you	u to program typical		
		PROM devices of	256 Kbits to 4 Mbits.				
	PA-78CP14GQ	PROM programme	er adapter for the μ PD78CP14(μ	A) and connected to Po	G-1500 for use.		
Soft-	PG-1500	PG-1500 and a host machine are connected by a serial or parallel interface and PG-1500 is					
ware	controller	controlled on the h	nost machine.				
		Host machine Ordering code					
			OS Distribution media (product name)				
		PC-9800 series MS-DOS 3.5-inch 2HD μS5A13PG1500					
		(Ver. 2.11 to Ver. 5.00A Note) 5-inch 2HD μS5A10PG1500					
		IBM PC/AT PC DOS 3.5-inch 2HD μS7B13PG1500					
			(Ver. 3.1)	5-inch 2HC	μS7B10PG1500		

Note Ver. 5.00/500A have task swap function. However, this function is not supported by this software.

Remark Operations of the assembler and PG-1500 controller are guaranteed only on the host machines under the operating systems listed above.

*

Debugging tools

In-circuit emulator (IE-78C11-M) is provided for μ PD78C14(A) program debugging tools. The system configuration is listed below:

Hard-	IE-78C11-M	IE-78C11-M is an in-circuit emulator for the 87AD series.				
ware		IE-78C11-M can b	IE-78C11-M can be connected to a host machine efficient debugging.			
Soft-	IE-78C11-M	IE-78C11-M and a	IE-78C11-M and a host machine are connected by RS-232-C and IE-78C11-M is controlled			
ware	control program	on the host machine.				
	(IE controller)	Host machine Ordering code				
		OS Distribution media (product name)				
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13IE78C11	
		(Ver. 2.11 to Ver. 3.30D) 5-inch 2HD μS5A10IE78C11				
		IBM PC/AT	PC DOS	5-inch 2HC	μS7B10IE78C11	
			(Ver. 3.1)			

Remark Operation of IE controller is guaranteed only on the host machine under the operating systems listed above.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vpp or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.

NEC μ PD78C14(A)

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11