UNIVERZITET U BANJOJ LUCI ELEKTROTEHNIČKI FAKULTET

Prof. dr Dražen Brđanin

PROJEKTOVANJE SOFTVERA / HW-SW mapiranje/

Banja Luka 2024.

8 bitnih aktivnosti u projektovanju

Ova aktivnost u projektovanju sistema treba da odgovori na pitanja:

Kako da se realizuju podsistemi?

– Hardverski ili softverski?

Kako da se objektni model mapira na odabrani hardver i/ili softver?

- Mapiranje objekata: procesor, memorija, U/I.
- Mapiranje asocijacija: konekcije između podsistema/hardverskih čvorova.

Mapiranje objekata na hardver:

kontrolni objekti → procesor

- Da li je jedan procesor dovoljan za izvršavanje željenog procesa, odnosno da li je željena (očekivana) brzina izvršavanja previše zahtjevna za jedan procesor?
- Možemo li ubrzati izvršavanje ako distribuiramo objekte na više procesora?
- Koliko procesora je potrebno za izvršavanje pri ustaljenom opterećenju?

domenski objekti → memorija

- Da li je kapacitet memorije dovoljan da prihvati seriju zahtjeva?
- **–** ...

granični objekti → U/I

- Može li se postići željeni odziv pomoću raspoloživog propusnog opsega između podsistema?
- **–** ...

Mapiranje asocijacija:

Fizička povezanost / veze između hardverskih elemenata (veze na fizičkom sloju OSI)

- Koje se asocijacije iz objektnog modela mapiraju u fizičke veze?
- Koje veze tipa client/supplier iz objektnog modela korespondiraju fizičkim vezama?

Logička povezanost / veze između softverskih komponenata

Koje asocijacije se ne mapiraju u fizičke veze i u kojim slojevima se implementiraju?

Reprezentacija fizičkih i logičkih veza

 Uobičajeno projektanti koriste neformalne notacije za reprezentaciju veza (tipično kombinovana i konfuzna reprezentacija i fizičkih i logičkih veza)

UML podrška za HW/SW mapiranje

UML komponenta

gradivni blok sistema u UML-u

- Klasifikacija komponenata:
 - logička komponenta: podsistem koji nema eksplicitni run-time ekvivalent
 - fizička komponenta: podsistem koji ima eksplicitni run-time ekvivalent, npr. DB server
- Životni vijek komponenata:
 - tokom projektovanja (design time): npr. asocijacije, klase, ...
 - tokom implementacije (compile time): npr. izvorni kod, pointeri, ...
 - tokom povezivanja i/ili eksploatacije (run time): npr. adrese, izvršni kod, ...
- Tokom HW/SW mapiranja razmatra se distribucija design time komponenata

UML dijagrami za HW/SW mapiranje

- dijagram komponenata (component diagram)
 - za modelovanje zavisnosti između komponenata (desin time, compile time i run time)
- dijagram razmještaja (deployment diagram)
 - za modelovanje rasporeda/razmještaja komponenata u eksploataciji (run time)

Dijagram komponenata (component diagram)

- Strukturni UML dijagram za modelovanje komponenata i njihovih veza
- Najviši nivo apstrakcije u projektovanju sistema (u pogledu komponenata i njihovih veza)
- Alternativne reprezentacije komponenata

UML 1.x

- Veze između komponenata = zavisnosti (isprekidane linije client → supplier)
- Dijagram komponenata često se neformalno naziva "software wiring diagram"
 - pokazuje kako su komponente uvezane u softverski sistem
- Interfejs = skup operacija koje neka komponenta pruža drugim komponentama
 - provided interface (lollipop)
 - required interface (socket)
- Port = tačka interakcije neke komponente (kvadratić na rubu komponente):
 - sa okolinom komponente (service port)
 - sa unutrašnjošću komponente (behaviour port)

Provided interface

Primjeri:

Required interface

Primjer dijagrama komponenata

Primjer dijagrama komponenata

Dijagram razmještaja (deployment diagram)

- Strukturni UML dijagram za modelovanje rasporeda komponenata u eksploataciji sistema
- Pogodan za modelovanje sistema nakon dekompozicije i HW/SW mapiranja
- To je graf kojeg čine:
 - čvorovi (nodes)
 - apstrakcije fizičkih objekata HW i SW (CPU, disk, operativni sistem, ...)
 - reprezentacija kvadrom
 - mogu da sadrže različite softverske artefakte (komponente)
 - veze čvorova (communication associations)
 - apstrakcije fizičkih veza između objekata komunikacioni linkovi
 - reprezetacija punom linijom

Vrste čvorova u dijagramu razmještaja

uređaj («device»)

reprezentacija hardverskih uređaja

Standardna notacija

smartphone

radno okruženje («executionEnvironment»)

reprezentacija softverskog okruženja u kojem se izvršava neka komponenta

Primjeri specijalizovane notacije

Primjer:

Razmještaj softverskih artefakata po čvorovima

- Čvorovi mogu da sadrže različite softverske artefakte (komponente, biblioteke, ...)
- Artefakti koji su raspoređeni na čvorovima mogu da se reprezentuju na dva načina:

zavisnost artefakt → čvor

artefakt sadržan u čvoru

Primjer:

Veze između softverskih elemenata u čvoru

Specifikacija razmještaja

(«deployment spec»)

Parametri razmještaja artefakta na čvoru (npr. adresa, sesija, konkurentnost, ...)

alternativna reprezentacija:

Implementacija / Manifestacija («manifest»)

Fizička realizacija komponente nekim artefaktom (artefakt → komponenta)

Primjer:

Primjer dijagrama razmještaja

(BL BusTracker sistem)

