Effective Feature Representation for Clinical Text Concept Extraction

Yifeng Tao^{1,2}, Bruno Godefroy¹, Guillaume Genthial¹, Christopher Potts^{1,3,*}

¹Roam Analytics

²Carnegie Mellon University

³Stanford University

Background

- Crucial information of healthcare is recorded only in free-form text
- Annotated clinical text datasets are scarce and expensive
 - o privacy considerations
 - o domain specialists
- Clinical text are different from general text

○SOTA methods:

Task: Clinical Text Annotation

Five clinical text datasets

Dataset	Example
Diagnosis Detection	Asymptomatic/Positive bacteriuria/Positive, could be neurogenic/Concern bladder/Concern disorder/Concern.
Prescription Reasons	I will go ahead and place him on Clarinex/PRESCRIBED for/REASON his/REASON seasonal/REASON allergic/REASON rhinitis/REASON.
Penn Adverse Drug Reactions (ADR)	#TwoThingsThatDontMixWell venlafaxine and alcohol- you'll cry/ADR and throw/ADR chairs/ADR at your mom's BBQ.
Chemical–Disease Relations (CDR)	Ocular/DISEASE and/DISEASE auditory/DISEASE toxicity/DISEASE in hemodialyzed patients receiving desferrioxamine/DRUG.
Drug–Disease Relations	Indicated for the management of active/TREATS rheumatoid/TREATS arthritis/TREATS and should not be used for rheumatoid/CONTRA arthritis/CONTRA in/CONTRA pregnant/CONTRA women/CONTRA.

Methods

oCombine the hand-built features and ELMo embeddings

Results

Evaluated on four different models

	Diagnosis Detection	Prescription Reasons	Penn Adverse Drug Reactions (ADR)	Chemical–Disease Relations (CDR)	Drug-Disease Relations
rand-LSTM-CRF	77.3 ± 0.05	69.6 ± 0.25	53.8 ± 0.88	85.1 ± 0.10	48.2 ± 1.12
HB-CRF	82.0 ± 0.05	78.5 ± 0.01	58.8 ± 0.12	86.2 ± 0.02	42.3 ± 0.30
ELMo-LSTM-CRF	83.9 ± 0.35	81.0 ± 0.20	65.7 ± 0.35	88.2 ± 0.34	50.6 ± 0.64
ELMo-LSTM-CRF-HB	$85.3 \pm 0.24***$	82.0 \pm 0.03***	68.5 \pm 1.67*	89.9 \pm 0.12***	$51.9 \pm 0.52**$

• Trade-off of two base models:

The Role of Text Length

Major Improvements in Minor Categories

Diagnosis Detection					Presci	ription Reasons	
Label	Support	F1 score	Improvement	Label	Support	F1 score	Improvement
OTHER	74888	95.3	1.4%	OTHER	83618	95.8	0.9%
POSITIVE	24489	86.1	4.4%	REASON	9114	64.7	8.6%
RULED-OUT	2797	86.4	3.6%	Prescribed	5967	84.7	4.4%
Concern	2780	72.1	5.6%	DISCONTINUED	2754	82.7	5.6%
Chemical–Disease Relations (CDR)				Drug–Disease Relations			
Label	Support	F1 score	Improvement	Label	Support	F1 score	Improvement
OTHER	104530	98.3	0.5%	OTHER	10634	90.8	2.3%
DISEASE	6887	84.2	6.3%	TREATS	3671	76.0	5.7%
CHEMICAL	6270	87.0	6.7%	Unrelated	1145	53.8	71.3%
				PREVENTS	320	41.1	103.5%
				CONTRAINDICATED-FOR	69	0	_

References

 Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding: https://arxiv.org/abs/1810.04805