LITIGATION TECHNICAL SUPPORT AND SERVICES

ROCKY MOUNTAIN ARSENAL

Colorado

FINAL PHASE I

CONTAMINATION ASSESSMENT REPORT SITE 36-12: PITS/TRENCHES (Version 3.2)

January 1988 Contract Number DAAK11-84-D0016 Task Number 1 (Section 36)

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

HARDING LAWSON ASSOCIATES

MIDWEST RESEARCH INSTITUTE

REQUESTS FOR COPIES OF THIS DOCUMENT SHOULD BE REFERRED TO PROGRAM MANAGER FOR ROCKY MOUNTAIN ANSENAL CLEANUF AMXRM-PM ABERDEEN PROVING GROUND, MARYLAND 21010

PREPARED FOR

19950322 124

PROGRAM MANAGER'S OFFICE FOR
ROCKY MOUNTAIN ARSENAL CLEANUP

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this gathering and maintaining the data needed, and completing and reviewing the collection of information. Directorate for information Operations and Reports, 1215 Jefferson collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information, Including suggestions for reducing this burden and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

gathering and hamber collection of information, including suggestions for re- Davis Highway, Suite 1204, Arlington, VA 22202-4302,	ducing this burden, to Washington Head and to the Office of Management and I	Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 01/00/88	3. REPORT TYPE AND D	DATES COVERED
		5.	FUNDING NUMBERS
4. TITLEN AND SUBTITUE 1, SECTION 36, FINAL, VERSION	T, PHASE I, SITE 36-12, P. 3.2	TS/TRENCHES, TASK	
6. AUTHOR(S)			DAAK11 84 D 0016
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)	8	. PERFORMING ORGANIZATION REPORT NUMBER
ENVIRONMENTAL SCIENCE AND ENGI	•	1	
ENGLEWOOD, CO		LECTE TO	88013R08
9. SPONSORING/MONITORING AGENC		ARIZIA	O. SPONSORING / MONITORING AGENCY REPORT NUMBER
ROCKY MOUNTAIN ARSENAL (CO.). COMMERCE CITY, CO	PMRMA		
11. SUPPLEMENTARY NOTES			
	TRACHT		12b. DISTRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY STA	ALEMENI	λ.	
APPROVED FOR PUBLIC RE	LEASE; DISTRIBUTION	I IS UNLIMITED	
13. ABSTRACT (Maximum 200 words) THIS FINAL REPORT DOWNITIONS STORAGE YARD 23 SAMPLES FROM 7 BORGANICS AND METALS WITH HG, PB, AND ZN WERE DETEXCEPTION OF THE SUPER CONCENTRATIONS APPEAR THE HG CONTAMINATIONS SURVEY SINCE THESE VALINONSOURCE AREAS OF THIS 36-12 SINCE THE EXPECT APPENDICES: CHEMICA	USED DURING THE EARORINGS WERE ANALYZED THE SEPARATE ANALYSED TECTED ABOVE THEIR FICIAL SAMPLES CONTOUR WILL BE FURTHER TO BE RESTORMED TO BE RESTORMED TO BE RESTORMED ORGANIC COMPOUNTED	ARLY 1950'S. ED FOR VOLATILE AND ES FOR AS, HG, AND RESPECTIVE INDICAT FAINING HG, THE OTH F NATURALLY OCCURRINATED UNDER ELATED TO WINDBLOWN E II PROGRAM IS NOT DS WERE NOT DETECT	DBCP. CU, CR, AS, TOR RANGES. WITH THE HER METAL ING LEVELS. THE SECTION 36-UNC N CONTAMINATION IN THE T RECOMMENDED FOR SITE ED.
14. SUBJECT TERMS			15. NUMBER OF PAGES
GEOLOGY, HYDROLOGY, GEOPHYSICA CHEMICAL DATA, MUNITIONS	AL EXPLORATION, ANALYTES,	SOIL SAMPLING,	16. PRICE CODE
17. SECURITY CLASSIFICATION 18	. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRAC

LITIGATION TECHNICAL SUPPORT AND SERVICES Rocky Mountain Arsenal

Rocky Mountain Arsenal Information Center Commerce City, Colorado

FILE COPY

JU FINAL PHASE I CONTAMINATION ASSESSMENT REPORT

SITE 36-12: PITS/TRENCHES (Version 3.2)

January 1988 Contract Number DAAK11-84-D0016 Task Number 1 (Section 36)

PREPARED BY

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.
Harding Lawson Associates Midwest Research Institute

PREPARED FOR

U.S. ARMY PROGRAM MANAGER OFFICE FOR ROCKY MOUNTAIN ARSENAL

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATIVE RECORD FOR THIS CERCLA OPERABLE UNIT.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

TABLE OF CONTENTS

Section			Page
	EXEC	JTIVE_SUMMARY	iv
1.0	PHYSI	ICAL_SETTING	1
	1.2	LOCATION GEOLOGY HYDROLOGY	1 1 3
2.0	HISTO	DRY	7
3.0	SITE	INVESTIGATION	10
	3.1	PREVIOUS SOIL INVESTIGATIONS	10
	3.2	PHASE I SURVEY 3.2.1 Phase I Program 3.2.2 Phase I Field Observations 3.2.3 Geophysical Exploration 3.2.4 Phase I Analyte Levels and Distribution 3.2.5 Phase I Contamination Assessment	10 10 13 13 13 21
	3.3	PHASE II SURVEY	22
	3.4	QUANTITIES OF POTENTIALLY CONTAMINATED SOIL	23
4.0	REFEI	RENCES	24
	APPE	NDICES	
	36-12	2-ACHEMICAL NAMES, METHODS, AND ABBREVIATIONS 2-BPHASE I CHEMICAL DATA 2-CCOMMENTS AND RESPONSES	

LIST OF FIGURES

Figure		Page
36-12-1	Site Location Map, Site 36-12, Rocky Mountain Arsenal	2
36-12-2	Field Boring Profile for Boring 3129	4
36-12-3	Regional Topography, Site 36-12, Rocky Mountain Arsenal	5
36-12-4	Regional Ground Water Flow, Site 36-12, Rocky Mountain Arsenal	6
36-12-5	Phase I Investigation Boring Location Map, Site 36-12	11
36-12-6	Phase I Investigation Chemical Analysis Results, Site 36-12	18

LIST OF TABLES

Table		Page
36-12-1	Summary of Analytical Results for Site 36-12	14
36-12-2	Concentrations of Target Analytes Above Detection Limits in Site 36-12 Soil Samples	15
36-12-3	Tentative Identification of Nontarget Compounds in Site 36-12 Soil Samples	19

EXECUTIVE SUMMARY SITE 36-12: PITS/TRENCHES

Site 36-12 occupies approximately 120,000 square feet in the southeast quarter of Section 36 of Rocky Mountain Arsenal. The site, which is divided into three rectangular areas, was investigated under Task 1 in the spring of 1985. Although Site 36-12 was reportedly used for trench disposal activities, historical documentation and personnel interviews indicate that the site was a munitions storage yard. Seven borings were drilled to depths of 5 to 17 feet and yielded 23 soil/bedrock samples.

Target volatile and semivolatile compounds were not detected in any of the Phase I samples. The following metals were detected within or slightly above their indicator range: copper, chromium, arsenic, mercury, lead, and zinc. With the exception of four surficial Phase I samples containing elevated mercury concentrations, these metal values appear to reflect chemical variation between alluvial and bedrock samples.

The surficial mercury values will be further investigated under the Section 36-UNC investigation, since these values appear to be related to windblown contamination in the nonsource areas of the section. A Phase II program is not recommended for this site since the expected organic compounds were not detected. Based on Phase I data, the volume of potentially contaminated soil will be reduced from 44,000 bank cubic yards and included in the Section 36-Nonsource Area volume estimate.

SITE 36-12: PITS/TRENCHES

1.0 PHYSICAL SETTING

1.1 LOCATION

Site 36-12 is composed of three rectangular areas in the southeast corner of Section 36 at Rocky Mountain Arsenal (RMA) (Figure 36-12-1). The three sites are each approximately 1 acre in size and were reportedly used for disposal of solid waste including pesticides.

The areal extent of this site was previously estimated at 120,000 square feet (ft²) (RMACCPMT, 1984, RIC#84034R01). Based on aerial photograph interpretation, the site boundaries were slightly modified prior to the Phase I program, but the investigated site still covered approximately 120,000 ft² (Figure 36-12-1). No physical or visual evidence of disposal activity exists at the site.

1.2 GEOLOGY

The site is situated on Pleistocene alluvium which consists of interbedded silty sand, gravel, and clay partly covered by a thin layer of eolian sand and silt. The alluvial thickness is approximately 9 ft based on lithologic logs from nearby monitor wells (Clark, 1985, RIC#85183R01).

The alluvium is underlain by the Denver Formation which is characterized by bentonite-rich clay/shale and compact lenticular sand horizons. Lithologic variations in the Denver Formation include interbedded siltstone, claystone, sandstone, low-grade coal, lignite, and volcaniclastic material (May, 1982, RIC#82295R01, RMACCPMT, 1983, RIC#83326R01; Anderson et al., 1979; RIC#85214R03; Clark, 1985, RIC#85183R01). Based on the logs of nearby monitor wells, a volcaniclastic unit may be projected beneath Site 36-12 (May et al., 1983, RIC#83299R01). Although this unit may sporadically subcrop in the site area, the bulk of the area is thought to be underlain by a bedrock high composed of claystone.

The seven Phase I borings investigated the alluvium and the upper portion of the Denver Formation. The alluvium consisted of 3 to 4 feet (ft) of sandy silt underlain by 2 of 4 ft to fine-grained, silty sand.

The Denver Formation was encountered in the following four borings from Site 36-12.

Boring Number	<u> Bedrock Depth (ft)</u>	Lithology
3126	5.0	Claystone
3127	6.0	Claystone
3129	7.0	Claystone
3132	6 . 4	Weathered Claystone

A representative boring log is presented in Figure 36-12-2.

1.3 HYDROLOGY

The site is situated on a topographic ridge, which forms a divide between drainage to First Creek and Basin A. The ground surface elevation varies from 5,255 ft above mean sea level (msl) in the northern most rectangular site to 5,263 ft msl in the southeast site (Figure 36-12-3). Surface drainage from Site 36-12 is northwest toward Basin A in the west site and toward First Creek in the other two sites.

Although the general direction of ground water flow at RMA is to the north or northwest, ground water flow beneath Site 36-12 is to the northeast (Figure 36-12-4). The ground water contour map generated from water levels in March 1986 (ESE, 1986b, RIC#86238R08) indicates that the water table elevation ranges from 5,237 ft msl to 5,248 ft msl. The water table at this site lies beneath the alluvium-Denver Formation contact at a depth of 10 to 20 ft below the ground surface. None of the Phase I borings encountered ground water.

Denver Formation Wells 36118 and 36119 were sampled during the Task 4 Initial Screening Program (ESE, 1986b, RIC#86238R08) and are located within Site 36-12 boundaries. Neither of the wells contained target compounds. Not enough data is available to determine if activities at this site contribute to ground water contamination.

Figure 36-12-2 FIELD BORING PROFILE FOR BORING 3129

SOURCE: ESE, 1987

Prepared for:

U.S. Army Program Manager's Office For Rocky Mountain Arsenal

Aberdeen Proving Ground, Maryland

2.0 HISTORY

During the early 1950's, Site 36-12 contained three rectangular plots which were utilized by the Army for the open storage of M19 clusters (CAPS, 1951; RMA, 1951c; RMA, 1951d). Each plot, with approximate dimensions of 400 ft by 230 ft, contained four tracks, oriented north-south, upon which the munitions were stored (CAPS, 1951; RMA, 1951c). Also during the 1950's, similar plots surrounded Site 36-12. It appears that these neighboring plots carried out the same functions as those in Site 36-12 (CAPS, 1951; RMA, 1951c; RMA, 1951d). A 1951 photograph shows the neighboring plots immediately surrounding Site 36-12 on the west, north, and east.

Three suspected former storage plots are located predominantly within the Site 36-2 firebreak. The first plot, approximately 400 ft west of Site 36-12's northern plot, is a clear rectangular area which displays signs of earlier storage activity. Another clear rectangular plot is approximately 400 ft north. The third suspected plot lies approximately 400 ft north of the northern edge of Site 36-12's northern plot (CAPS, 1951; RMA, 1953).

Three additional plots are east of Site 36-12 within the southeastern region of Section 36-UNC. The first of these storage plots is located west of the GB rail line, approximately 400 ft east of Site 36-12's northern plot and contains four distinct storage rows. The second plot, consisting of one and a quarter rows, is approximately 200 ft from the mid-eastern boundary of Site 36-12. The third plot lies east of the GB rail line, approximately 450 ft east of Site 36-12's southeastern plot. In addition to these plots, a graded area is located approximately 400 ft northeast from Site 36-12's northern plot, and can easily be identified due to extensive grading. This graded area may have contained a storage plot (CAPS, 1951; RMA, 1953).

In August 1950, RMA was reactivated in support of the Korean War. As a result, several munitions programs including the M19 Renovation Program were set into motion at RMA (RMA, 1950b, pp. 103-104).

The M19 Incendiary Cluster is comprised of 38 M69 napalm (NP)-filled bomblets. An M69 weighs 6 pounds, is 19.5 inches long and 2.88 inches wide, and is filled with 2.8 pounds of NP, a "black powder" charge, and magnesium.

In addition, the nose cup houses the charge, a diaphragm, and an Ml delay fuze (Eversman, 1954).

Shipments of M19 cluster bombs from Deseret Chemical Depot to RMA began in November 1950. By the end of March 1951, shipments were completed, and a total of 36,629 clusters had been received for renovation (RMA, 1950b; RMA, 1951b; RMA, 1951c). An unknown number of these cluster bombs were stored in the Site 36-12 area. The crated clusters were probably stacked under tarpaulins at Site 36-12 and neighboring plots for temporary storage (CAPS, 1951; Steidtman, 1951).

By 1953, Site 36-12 and neighboring storage plots were phased out of use, apparently due to (1) the January-March 1951 construction of the GB rail line at which time at least 2,600 M19 clusters had to be removed from the storage plots to make room for the construction in the area, (2) the increased use of Site 36-2, a munition test area, in the immediate vicinity of Site 36-12, (3) the completion of the reworking program in 1952, which led to the shipment of the renovated clusters and/or necessitated the establishment of a permanent storage area at RMA for subsequent storage of the clusters, and (4) the availability of new permanent storage facilities at RMA (CAPS, 1951; Armitage, 1951; RMA, 1951c; RMA, 1951a; Smith, 1951a; RMA, 1950a; RMA, 1953).

Documentation indicates that from approximately April 1951 to June 1952, the Army reworked a total of 37,657 M19 clusters at RMA (Smith 1951b; RMA, 1952).

A review of aerial photographs taken between 1943 and 1975 (CWS, 1945; CAPS, 1948; CAPS, 1951; RMA, 1953; Stout et al, 1982, RIC#83368R01) reveals the following information pertinent to the Site 36-12 area:

Photograph_Date	Site_Description
July 9, 1943	No activity at the site can be noticed. The site is indistinguishable from its surroundings.
August 20, 1945	No change from the previous photograph.

October 21, 1948

No change from the previous photograph.

July 21, 1950

No change from the previous photograph.

March 25, 1951

Site 36-12 activity is now visible. Three rectangular plots, each approximately 400 ft by 230 ft, are seen. The two eastern plots contain four north-south-oriented storage rows. The western plot contains three rows and displays signs that an additional row has existed. Neighboring plots surround Site 36-12 on the west, north, and east.

1953

The three rectangular plots at Site 36-12 are faintly visible. It appears that the site is naturally revegetating and is inactive.

February 21, 1958

The site has almost completely revegetated.

August 11, 1962

The site has revegetated and for the most part cannot be distinguished from its surroundings.

October 15, 1975

No changes from the previous photograph.

Site 36-12 was clearly part of a temporary open storage area for M19 incendiary cluster bombs. In February 1982, W.J. Moloney, a RMA employee at the time, prepared a report covering known and suspected disposal activities in Section 36 of RMA. Interpreting a 1953 aerial photograph of RMA, Mr. Moloney reported that the site consisted of "three separate groups, each containing four or five long trenches" (Moloney, 1982, p.7-7). The original site designation, "Pits/Trenches", was based on this photograph interpretation. In a deposition taken in November 1985, however, Mr. Moloney admitted that he had reported this because "I didn't know what it was" and that "it had a suspicious appearance". "In the interest of being careful and conservative, I included it [as a disposal site]", he added. He further clarified that "more than likely what I saw was the storage of munitions" at the site (Moloney, 1985, p. 185).

3.0 SITE_INVESTIGATION

3.1 PREVIOUS SOIL INVESTIGATIONS

The soil at Site 36-12 is classified by the U.S. Soil Conservation Service (Sampson and Baber, 1974) in the Ascalon Series and is characterized as Ascalon-Sandy loam with a 3- to 5-percent slope. Ascalon series soils are well-drained and become calcareous with depth. The soil absorbs water at a moderate to rapid rate and has a high water capacity.

No previous soil contamination studies are documented for this site.

3.2 PHASE I SURVEY

3.2.1 Phase I Program

The Phase I Survey for Site 36-12 consisted of drilling 7 borings, yielding 23 soil/bedrock samples from depths from 5 ft to 17 ft. Boring locations are shown in Figure 36-12-5.

Soil samples were collected using the continuous soil sampling method described in the Task 1 Technical Plan (ESE, 1985, RIC#85127R07). Samples were obtained as predetermined intervals unless field conditions (i.e., water table, staining, etc.) required an adjustment in the intervals. Seven borings yielding 23 samples were completed in Site 36-12 as follows:

Boring Number	Depth (ft)	Number of Samples
3126	14.5	4
3127	14.5	4
3128	5	2
3129	17	5
3130	5	2
3 131	5	2
3132	15	4
	Total =	23

Prior to drilling, all boring sites were cleared for safety purposes in accordance with the geophysical program detailed in the Task 1 Technical Plan (ESE, 1985, RIC#85127R07). Borehole site clearance was used to ensure drilling would not encounter buried unexploded ordnance (UXO) or other metal that could pose a significant safety risk. Magnetic intensity readings were obtained with a gradiometer. A 20-ft square grid was centered at each boring location and gradiometer readings were obtained at a spacing of 5 ft

throughout the area. A contour map was prepared from the data and used to place the boring in the safest location within the geophysical plot. Following borehole site clearance, a metal detector was used to check for surficial (0 to 2 ft) metal which may have presented a safety risk. None of the seven borings were relocated as a result of borehole site clearance, although the gradiometer survey for Boring 3126 indicated a linear anomaly east of the boring which was caused by a barbed wire fence 15 ft away.

A photoionization detector (PID) calibrated to an isobutylene standard, was used to obtain readings from open boreholes during drilling and from soil samples during geologic logging. The PID measures the concentration of organic vapors in the air and is a method of ensuring personnel safety.

All samples were analyzed by gas chromatography/mass spectrometry (GC/MS) for semivolatile organic compounds and by inductively coupled argon plasma (ICP) analyses for cadmium, chromium, copper, lead, and zinc. All samples were analyzed for arsenic and mercury by atomic absorption (AA) spectroscopy and for dibromochloropropane (DBCP) by GC. A GC/MS volatile organic analysis was performed on four samples. A complete list of Phase I analytes is in Appendix 36-12-A.

The Phase I remedial investigation program for this site was developed and implemented based on historical documentation, aerial photographs, and other information available at the time of its implementation. Since that time, previously unavailable information has been identified through the efforts of Acumenics, a contractor to the Department of Justice. This more recently available information has been incorporated into the history section of this report. Furthermore, this additional information has been evaluated in detail to determine how it might impact the investigation approach at this site. Based upon this evaluation, it has been determined that the additional information collected since the Phase I program was designed does not substancially alter the view of potential contamination at this site. As a result, the Phase I program as conducted is judged to provide a complete and accurate investigation of the possible contamination at this site.

3.2.2 Phase I Field Observations

Observations during the drilling operations did not reveal any evidence of historical trenching activities. The ground surface is relatively flat and uniformly vegetated. There are no signs of depressed liner features nor are there any signs of furrows or mounding.

An M8 alarm and M18A2 test kit were used to detect the presence of chemical agents in boreholes and soils samples. The M8 alarm is used to detect Sarin (GB) and VX at detection levels of 0.2 and 0.4 milligrams per cubic meter (mg/m³) respectively, after a response time of 2 to 3 minutes (USAMDARC, 1982; USAMDARC, 1979; HDOA, 1976). However, many other substances, including smoke and engine exhaust, can activate the M8 alarm. The M18A2 is used as a backup test if the M8 alarm is triggered, as a substitute for the M8, and as a specific check for the presence of mustard (H). Specifically at RMA, the M18A2 test kit is used to detect GB, VX, H, distilled mustard (HD), and Lewisite (L), based upon the knowledge that these agents were manufactured, stored, or demilitarized at the site. The detection limit for mustard agents is 0.5 mg/m³ and the detection limit for GB is 0.2 mg/m³. The detection limit for L in soil is 5 parts per million (ppm). Field monitoring for chemical agents with the M8 alarm and M18A2 test kit were negative at this site.

PID readings during drilling were below background in the breathing zone. Readings of 0.4 to 2, however, were observed in the auger annulus.

3.2.3 Geophysical Exploration

Although this site was reportedly used for trench disposal activities, historical documentation, personnel interviews, review of aerial photographs, and field observations indicate that the site was used for munitions storage. No geophysical survey was performed at this site other than the borehole clearance program previously described in Section 3.2.1.

3.2.4 Phase I Analyte Levels and Distribution

Table 36-12-1 contains indicator ranges and a statistical summary of Phase I analytical results. A summary of analytical data for each sample including lithology and air monitoring results is presented in Table 36-12-2. A listing of the target compounds and a tabulation of analytical data can be found in Appendices 36-12-A and 36-12-B.

Table 36-12-1. Summary of Analytical Results for Site 36-12

			Concen	Concentrations (µg/g)			
Constituent	Number of Samples*	Range	Mean	Median	ESE Detection Limit	MRI Detection Limit	Indicator Range
Volatiles (N=4)↑							
None detected							DL
Semivolatiles (N=23);	•						
None detected							DL
Dibromochloropropane (N=23) t							
None detected					0.005	0.005	DL
Metals (N=23)↑							
Cadmium	0	1	ł	1	6	c	
Chromium	13	9-27	14	12	7.2	2.5	35
Copper	23	6-47	20	18	8,4	6.4	20-35
Lead	17	19-60	26	22	17	16	25-40
Zinc	23	30-100	57	45	16	2.8	60-80
Arsenic (N=23)†	8	5-10	9.9	6.6	4.7	5.2	DL-10
Mercury (N=23)t	4	0.07-0.16	0.10	0.08	0.050	0.070	DL-0.10
			The second secon				

Number of samples in which constituent was detected above the detection limit. N = Number of samples analyzed. Not calculated for less than five detections. Petection limit

* + | =

Source: ESE, 1987

Table 36-12-2. Concentrations of Target Analytes Above Detection Limits in Site 36-12 Soil Samples (Page 1 of 2)

3128 4-5 Silty Sand BDL 10 9.0 60 0.5 BDL Ϋ́ 3128 0-1 Sandy Silt 9.0 Ä BDL 12 10 BDL 42 BDL 3127 13.4-14.5 Claystone (Denver Formation) 8DL 37 29 96 2.0 BDL BDL 3127 9-10 Claystone (Denver Formation) BDL 29 22 22 96 BKD NA BDL 3126 3127 3127 13.5-14.5 0-1 4-5 Claystone Sandy Silt Silty Sand (Denver Sandy Clay w/ Fragments Formation) of Claystone BDL BDL 22 20 61 RDL 0.4 NA BDL 3DL 24 16 24 79 BKD NA BKD BDL BDL BDL 18 23 64 BDL BDL 3126 9-10 Glaystone (Denver Formation) BDL 27 27 BDL 38 2.0 BDL NA 3126 4-5 Sandy Silt Fragment of Claystone BDL BDL 26 21 42 BDL BDL BKD NA 3126 0-1 Sandy Silt BDL 13 11 31 43 BKD NA BDL Dibromochloropropane (µg/g) Semivolatiles (µg/g) Bore Number Depth (ft) Geologic Material SOIL CHEMISTRY Volatiles (µg/g) None detected None detected Arsenic (µg/g) Mercury (µg/g) AIR MONITORING Metals (µg/g) Chromium Cadmium Copper Lead Zinc PID*

Table 36-12-2. Concentrations of Target Analytes Above Detection Limits in Site 36-12 Soil Samples (Page 2 of 2)

	0-1 Sandy Silt	4-5 Silty Sand	9-10 Claystone (Denver Formation)	3129 3129 3129 9-10 14-15 16-17 laystone Claystone Claystone (Denver (Denver (Denver) Formation) Formation)	1129 16-17 Claystone (Denver) Formation	3130 0-1 Sandy Silt	3130 4-5 Silty Sand	3131 0-1 Sandy Silt	3131 4-5 Silty Sand	3132 0-1 Sandy Sil	3132 4-5 Silty very fine sand	3132 3132 3132 4-5 9-10 14-15 Silty very Claystone Claystone fine sand (Denver (Denver Formation) Formation)	3132 14-15 Claystone (Denver Formation)
AIR MONITORING													
PID*	BKD	вкр	вкр	1.4	BKD	BKD	1.4	BKD	BKD	BKD	BKD	1.0	BKD
SOIL CHEMISTRY Volatiles (µg/g)													
	NA	NA	NA	NA	BDL	NA	NA	NA	NA	NA	NA	NA	BDL
Semivolatiles (µg/g)													
None detected													
Dibromochloropropane (µg/g)	(8/8d)												
None Detected													
Metals (µg/g)													
Cadmium Chromium	BDL 14	BDL 9.0	BDL	BDL BDL	BDL	BDL 9.0	BDL	BDL 12	BDL 10	RDL	BDL 10	BDL 26	BDL 27
Copper	11	6.0	34	39	34	10	0.6	11	21	11	7.0	47	24
Zinc	45	30 6	85	100	86	37	35 35	77	37	53	35	20	20 78
Arsenic (µg/g)	9.9	BDL	5.4	6.7	BDL	5.0	NDL	5.8	BDL	301	BDL	6.6	BDL
Mercury (µg/g)	0.070	BDL	BDL	BDL	BDL	0.07	BDL	0.10	BDL	0.16	BDL	ROL	BDL

As calibrated to an isobutylene standard. No readings above ambient background. Below detection limit. * BKD BDL NA

To assess the significance of metal and organic analytical values, indicator ranges were established. For organic compounds, the indicator limit is the method detection limit. For metals, a range of values was chosen to reflect the upper end of the natural range for each metal as normally found in RMA alluvial soil. The procedure for establishing indicator ranges is presented in the Introduction to the Contamination Assessment Reports (ESE, 1986a). Concentrations within and above indicator ranges for Phase I data are presented in Figure 36-12-6.

Semivolatile and volatile target organic compounds were not detected in any of the Phase I samples. Six samples contained arsenic within the indicator range, and one sample (Boring 3127, 0 to 1 ft) had an arsenic concentration slightly above the indicator range. Four of the 0- to 1-ft samples contained mercury within or slightly above its indicator range. Five samples contained lead within its indicator range and one sample (Boring 3128, 4 to 5 ft) contained lead at 60 ppm. Zinc was detected within or above the indicator range in 9 samples and cadmium was not detected in any of the 23 Phase I samples. Nine samples contained copper and two samples contained chromium within their indicator ranges.

Several compounds were detected by GC/MS that were not included in the target compound list and that were not conclusively identified. Table 36-12-3 lists the boring number, sample interval depth, relative retention time (shown as "unknown number" on the table), concentration, sample number, lot best-fit identification, and comments for these nontarget compounds detected at Site 36-12.

It should be noted that an individual compound may have more than one relative retention time and that a particular retention time may be assigned to more than one compound. Therefore, Table 36-12-3 provides only a general indication of additional compounds that may be present.

Table 36-12-3. Tentative Identification of Nontarget Compounds in Site 36-12 Soil Samples. (Page 1 of 2)

Borehole Number	Interval Depth (ft)	Unknown Number	Concentration (ppm)*	Sample Numbe r	Lot	Best Fit	Comments†
3126	0-1 4-5 9-10 13.5-14.5	524 614 630 614	0.7 2 1 0.5	508908 508901 508901 508902 508903	BAT BAT BAT BAT	Oxabicycloheptane 2-(9-Octadecenyloxy)-ethanol Dioctyladipate Dibutylnonanedioate	م م م.ن ن به
3127	0-1 4-5 9-10 13.5-14.5	614 614 630	100 3 2	50850 6 508907 508908 508909	BAK BAK BAK	9-Octadecen-1-ol Dibutylnonanedioate Dioctyladipate	ن ۾ ۾ ٿ
3128	0-1 4-5	629 620 629	2 0.8 1	508912 508913 508913	BAK BAK BAK	Dioctyladipate Butyloctadecanoate Butyloctadecanoate	c,d d,f d
3129	0-1	628 627 633 637 558 558	2 0.5 0.7 0.6 0.4 0.07	508918 508918 508918 508918 508919 508919	BAJ BAJ BAJ BAJ BAJ BAJ	Butyl myristate 1-Heptadecanol Eicosane Unknown Unknown Unknown	ש לילי מ מ מ מ ייי
	4-5 9-10	619 635 621	0.33	508919 508919 508920 508920	BAJ BAJ BAJ	Butyl-p-toluene sulphonate Phthalate Butyl-p-toluene sulphonate Heptadecanol, acetate	a o Signa de la companya de la compa
	14-15	628 614 619 628 629	0.1 0.5 0.3 1	508920 508921 508921 508921 508922	BAJ BAJ BAJ BAK BAK	Octadecanoic acid c4 ester Hexadecanoic acid Unknown Butyl-p-toluene sulphonate Butyl myristate Butyl octadecanoate	

Table 36-12-3. Tentative Identification of Nontarget Compounds in Site 36-12 Soil Samples. (Page 2 of 2)

Borehole Number	Interval Depth (ft)	Unknown Number	Concentration (ppm)*	Sample Number	Lot	Best Fit	Comments†
3130	0-1	608 619 629 633 619	0.4 0.3 0.7 0.3	508924 508924 508924 508924 508925	BAJ BAJ BAJ BAJ BAJ	Dodecanoic acid Butyl-p-toluene sulphonate Dioctyladipate Unknown hydrocarbon Butyl-p-toluene sulphomate	d e,i c,g,h a,c,f,g e
3131	0-1	608 619 629 630 633 614	0.5 0.6 0.2 0.5 0.5	508930 508930 508930 508930 508931 508931	BAJ BAJ BAJ BAJ BAJ BAJ	Tetradecanoic acid Butyl myristate Dioctyladipate Dodecenol Unknown hydrocarbon Butyl-p-toluene sulphonate	ט ט ט ט ט ט ט ט ט ט ט ט
3132	0-1 4-5 9-10	619 619 614 620 621	0.2 0.4 0.7 1	508936 508937 508938 508938 508938	BAJ BAJ BAJ BAJ BAJ BAJ	Butyl-p-toluene sulphonate Butyl-p-toluene sulphonate Octasulfur Butyl myristate Heptadecanol acetate Octadecanoic acid,	ଷ ଷ ଫ ଫ ଫ ଫ
	14-15	614 619	0.9	508939 508939	BAJ BAJ	dibutyl ester Dibutylnonanedioate Butyl-p-toluene sulphonate	ים טי

Values reported are method blank corrected. a. No positive identification. b. Surfactant.

Plasticizer (note: All phthalates and adipates will have this comment).

Derived from natural products.

Suspected laboratory contaminant.

Low concentration.

Low frequency of occurrence.

Ubiquitous.

Possible column bleed. р. ..

None detected.

contamination could be the result of windblown contamination from Basin A, which exhibits widespread mercury contamination in near-surface soil. The phenomenon will be investigated under the Section 36-UNC program.

The semivolatile GC/MS method applied to all Phase I samples, although not certified for volatile compounds, has been shown capable of detecting tetrachloroethylene, toluene, chlorobenzene, ethylbenzene, and xylene in the nontarget fraction at low recovery levels. The absence of these compounds in the nontarget results for this site is an indication that no contamination is present from these compounds.

Phase I results indicated that the three storage plots included in the Site 36-12 investigation are not sources of contamination. The neighboring storage plots, therefore, are also not considered to be sources of contamination.

The draft version of this report and the proposed Phase II program were reviewed at the onpost MOA meeting on June 3 and 4, 1986. Comments were received from the Colorado Department of Health on May 7, 1986, and from Shell Chemical Company on April 7, 1986. These comments were considered in the preparation of this final report and are presented with responses in Appendix 36-4-C. U.S. Environmental Protection Agency (USEPA) comments are an integral part of the review process and have been previously incorporated into this report.

3.3 PHASE II SURVEY

Phase I investigation did not detect the presence of organic contaminants at this site. Evidence of disturbed soil that would suggest trenching activities was also not observed during the Phase I investigation. The elevated metals concentrations in Phase I samples are most likely due to natural geochemical variability in the Denver Formation. A review of historical documentation, interviews with RMA personnel, and aerial photographs indicates that Site 36-12 and the neighboring storage plots consisted of munitions storage areas and are not contaminant sources.

The presence of mercury contamination was noted in four samples in the vicinity of Site 36-12 suggesting that the source of the mercury is unrelated to any disposal activity at this site. As mercury may have been aerially distributed over the general area, follow-up studies to determine the extent and significance of shallow mercury contamination will be conducted under the Section 36-UNC program. Therefore, no Phase II work is recommended for Site 36-12.

3.4 QUANTITY OF POTENTIALLY CONTAMINATED SOIL

The Decontamination Assessment Report (RMACCPMT, 1984, RIC#84034R01) outlined a hypothetical cleanup strategy for Site 36-12, which consisted of removing 44,000 bank cubic yards (bcy) of soil from the 120,000 ft² site. The maximum depth of excavation was estimated at 15 ft. Since only surficial contamination was encountered, the volume will be reduced and included in the Section 36-nonsource area volume estimate.

4.0 REFERENCES

RIC#85214R03

- Anderson, B., Krell, J., and Jones, D. 1979. Tier I Data Files, Rocky Mountain Arsenal Field Drilling Files, Bore Logs, Vols. I-III.
- Armitage, D. April 10, 1951. Report to Chief Chemical Officer,
 Department of the Army, Washington, D.C. Monthly Historical
 Report for the Month of March 1951. p. 2. Microfilm RSA012,
 Frames 2108-2110, at 2109.
- Chemical Warfare Service (CWS). 1945. Aerial Photographs Contained Within History of Rocky Mountain Arsenal (Aerial Photographs: August 20, 1945, Project No. 162PS5M276, "311RW-5007:; July 9, 1943, "M1-12 3338-RD"). pp. 30-31. Microfilm RMA188, Frames 0055, 0057.

RIC#85183R01

- Clark, J. June 1985. Section Plots and Well Summary. D.P. Associates, Inc.
- Colorado Aerial Photo Service (CAPS). October 21, 1948. Aerial Photograph of Central RMA. Negative No. DV-5-48.
- Colorado Aerial Photo Service (CAPS). March 25, 1951. Aerial Photograph of Central RMA. Negative No. 29-A-6.

RIC#85127R07

- Environmental Science and Engineering, Inc. (ESE). June 1985. Rocky Mountain Arsenal Section 36 Contamination Survey Technical Plan. Vols. I and II. Revision A, Task 1 (Section 36). Prepared for Army Toxic and Hazardous Materials Agency.
- Environmental Science and Engineering, Inc. (ESE). 1986a. Introduction to the Contamination Assessment Reports. Rocky Mountain Arsenal (Draft Report). Prepared for Office of the Program Manager, Rocky Mountain Arsenal.

RIC#86238R08

- Environmental Science and Engineering, Inc. October 1986e. Rocky Mountain Arsenal Water Quantity/Quality Survey: Initial Screening Program Report, Draft Final. Vols. I, II, and III. Task Number 4. Prepared for U.S. Army Program Manager's Office for Rocky Mountain Arsenal.
- Eversman, D.W. September 28, 1954. Demilitarization Analysis Report, Report No. RMSA-4-54. p. 1. Rocky Mountain Arsenal. Microfilm RLA002, Frames 0648-0650, at 0648.

RIC#82295R01

May, J. July 1982. Regional Ground Water Study of Rocky Mountain Arsenal, Denver Colorado. Report 1, Hydrogeological Definition. Waterways Experiment Station (WES), U.S. Army Corps of Engineers.

RTC#83299R01

May, J., Crabtree, J., Hunt, R., and Murphy, W. September 1983.

Hydrogeology and Analysis Study, Rocky Mountain Arsenal.

Waterways Experiment Station (WES). U.S. Army Corps of Engineers.

RIC#85085R01

- Moloney, W.J. February 1982. Assessment of Historical Waste Disposal in Section 36 of Rocky Mountain Arsenal. pp. 7-7 and 7-16. Rocky Mountain Arsenal. Microfilm RAA038, Frames 1792-1840, at 1813 and 1822.
- Moloney, W.J. November 6, 1985. Deposition Transcript, Vol. II. pp. 184-185.
- Rocky Mountain Arsenal (RMA). October 26, 1950a. Plot Plan. Goop Drum Storage Proposed Plot Plan and Stacking Details. Drawing No. E2-7-4.
- Rocky Mountain Arsenal (RMA). 1950b. History of Rocky Mountain Arsenal, July 1, 1950 Through December 31, 1950. pp. 103-104, 112-113. Microfilm RMA192, Frames 0844-0845, 0854-0855.
- Rocky Mountain Arsenal (RMA). January 3, 1951a. Plot Plan. Open Ammunition Storage Pads for M19- and M20-Type Clusters. Drawing No. C2-7-5.
- Rocky Mountain Arsenal (RMA). April 6, 1951b. Monthly Historical Report for the Month of March 1951. p. 3. Microfilm RLA010, Frames 1068-1074, at 1070.
- Rocky Mountain Arsenal (RMA). 1951c. History of Rocky Mountain Arsenal, Vol. XXVII, January 1, 1951 Through June 30, 1951. pp. 98, 143. Microfilm RMA192, Frames 1110, 1159.
- Rocky Mountain Arsenal (RMA). October 1, 1951d. List of Buildings Showing Description, User, Responsible Division or Lessee Area Cost Code. Microfilm RMA001, Frames 0364-0382, at 0381.
- Rocky Mountain Arsenal (RMA). 1952. History of Rocky Mountain Arsenal, April 1, 1952 Through June 30, 1952, Part V, Section A. p. 4. Microfilm RMA192, Frame 1722.
- Rocky Mountain Arsenal (RMA). 1953, <u>circa</u>. Aerial Photograph of RMA, "Part A."

RIC#83326R01

Rocky Mountain Arsenal Contamination Control Program Management Team (RMACCMPT). September 1983. Selection of a Contamination Control Strategy for Rocky Mountain Arsenal, Vols. I and II. Final Report.

RIC#84034R01

- Rocky Mountain Arsenal Contamination Control Program Management Team (RMACCPMT). January 1984. Decontamination Assessment of Land and Facilities at Rocky Mountain Arsenal, Draft Final Report.
- Sampson, J.S. and Baber, T.G. 1974. Soil Survey of Adams County, Colorado. U.S. Soil Conservation Service (SCS). 77 pp. plus maps.
- Smith D.P. September 30, 1951a. Procurement Progress Report.
 Cluster, Incendiary Bomb M19. Rocky Mountain Arsenal. Microfilm RLA004, Frame 2063.
- Smith, D.P. October 18, 1951b. Memorandum with Attachment to Chief, Industrial Division, Washington, D.C. FY1953 Construction Program. Rocky Mountain Arsenal. Microfilm RSN001, Frames 1971, 1978.
- Steidtman, C.A. May 9, 1951. Memorandum with Attachment to Commanding Officer, RMA, et al. Status of FY52 Construction Program Depots. Office of the Chief Chemical Officer, Department of the Army, Washington, D.C. Microfilm RMA005, Frames 1914-1918, at 1914, 1916.

RIC#83368R01

- Stout, K., Abbott, L., and Webb, V. October 1982. Installation Assessment, Rocky Mountain Arsenal. Vols. I and II. U.S. Environmental Protection Agency (USEPA).
- U.S. Army Materiel Development and Readiness Command (USAMDARC). 1979. Safety Regulations for Chemical Agent H. DARCOM-R 385-31. Department of the Army.
- U.S. Army Materiel Development and Readiness Command (USAMDARC). 1982. Safety Regulations for Chemical Agents GB and VX. DARCOM-R 385-102. Department of the Army.

PHASE I ANALYTES AND CERTIFIED METHODS

	Synonymous Names	Standard
Analytes/Methods	and Abbreviations	Abbreviations
VOLATILE ORGANIC COMPOUNDS/GCMS	VOL	VO .
1,1-Dichloroethane	1,1-Dichloroethane	11DCLE
1,2-Dichloroethane	1,2-Dichloroethane	12DCLE
1,1,1-Trichloroethane (TCA)	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Benzene	Benzene	С ₆ н ₆
Bicycloheptadiene	Bicycloheptadiene (BCHD)	BCHPD
Carbon tetrachloride	Carbon tetrachloride	CCL ₄
Chlorobenzene	Chlorobenzene	CLC ₆ H ₅
Chloroform	Chloroform	CHCL3
Dibromochloropropane	Dibromochloropropane	DBCP
Dicyclopentadiene	Dicyclopentadiene	DCPD
Dimethyldisulfide	Dimethyldisulfide	DMDS
Ethylbenzene	Ethylbenzene	ETC ₆ H ₅
m-Xylene	meta-Xylene	13DMB
Methylene chloride	Methylene chloride	CH ₂ CL ₂
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
o,p-Xylene	ortho- and/or para-Xylene	XYLEN
Tetrachloroethene (PCE)	Tetrachloroethylene	TCLEE
Toluene	Toluene	MEC ₆ H ₅
Trans 1,2-dichloroethene	Trans 1,2-dichloroethylene	12DCE
Trichloroethene (TCE)	Trichloroethylene	TRCLE
	·	
SEMIVOLATILE ORGANIC COMPOUNDS/GCMS	EXTRACTABLE ORGANIC COMPOUNDS (EX)) SVO
1,4-Oxathiane	1,4-Oxathiane	OXAT
2,2-Bis (para-chlorophenyl)-		
1,1-dichloroethane	Dichlorodiphenylethane	PPDDE
2,2-Bis (para-chlorophenyl)		
1,1,1-trichloroethane	Dichlorodiphenyltrichloroethane	PPDDT
Aldrin	Aldrin	ALDRN
Atrazine	Atrazine	ATZ
Chlordane	Chlordane	CLDAN
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfide	CPMS
Chlorophenylmethyl sulfoxide	p-Chlorophenylmethyl sulfoxide	CPMSO
Chlorophenylmethyl sulfone	p-Chlorophenylmethyl sulfone	CPMSO2
Dibromochloropropane	Dibromochloropropane	DBCP
Dicyclopentadiene	Dicyclopentadiene	DCPD
Dieldrin	Dieldrin	DLDRN
Diisopropylmethyl phosphonate	Diisopropylmethyl phosphonate	DIMP

	Synonymous Names	Standard
Analytes/Methods	and_Abbreviations	Abbreviations
SEMIVOLATILE ORGANIC COMPOUNDS (CONT)		
Dimethylmethyl phosphonate	Dimethylmethyl phosphonate	DMMP
Dithiane	Dithiane	DITH
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene (HCPD)	CL ₆ CP
Isodrin	Isodrin	ISODR
Malathion	Malathion	MLTHN
Parathion	Parathion	PRTHN
Supona	<pre>2-Chloro-1(2,4-dichlorophenyl) vinyldiethyl phosphate</pre>	SUPONA
Vapona	Vapona	DDVP
METALS/ICP	ICAP	ICP
Cadmium	Cadmium	CD
Chromium	Chromium	CR
Copper	Copper	CU
Lead	Lead	PB
Zinc	Zinc	ZN
SEPARATE ANALYSES		
Arsenic/AA	Arsenic	AS
Mercury/AA	Mercury	HG
Dibromochloropropane/GC	Dibromochloropropane	DBCP

PHASE II ANALYTES AND CERTIFIED METHODS

Analytes/Methods	Synonymous Namesand_Abbreviations	Standard Abbreviations
VOLATILE ORGANIC COMPOUNDS/GCMS (Same as Phase I)	VOL	VO .
SEMIVOLATILE ORGANIC COMPOUNDS/GCMS (Same as Phase I)	EXTRACTABLE ORGANIC COMPOUNDS (EX)	SVO
VOLATILE HALOCARBON COMPOUNDS/GCCON	PURGEABLE HALOCARBONS (PHC)	VHO
1,1-Dichloroethane	1,1-Dichloroethane	11DCLE
1,2-Dichloroethane	1,2-Dichloroethane	12DCLE
1,1-Dichloroethene	1,1-Dichloroethene	11DCE
1,1,1-Trichloroethane (TCA)	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Carbon tetrachloride	Carbon tetrachloride	CCL ₄
Chlorobenzene	Chlorobenzene	CLC ₆ H ₅
Chloroform	Chloroform	CHCL3
Methylene chloride	Methylene chloride	CH ₂ CL ₂
Trans 1,2-dichloroethylene	Trans 1,2-dichloroethene	12DCE
Tetrachloroethene (PCE)	Tetrachloroethylene	TCLEE
Trichloroethene (TCE)	Trichloroethylene	TRCLE
VOLATILE HYDROCARBON COMPOUNDS/GCFID	DCPD	HYDCBN
Bicycloheptadiene	Bicycloheptadiene (BCHD)	BCHPD
Dicyclopentadiene	Dicyclopentadiene	DCPD
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
VOLATILE AROMATIC COMPOUNDS/GCPID	PURGEABLE AROMATICS (PAM)	VAO
Benzene	Benzene	С ₆ н ₆
Ethylbenzene	Ethylbenzene	ETC ₆ H ₅
m-Xylene	meta-Xylene	13DMB
o,p-Xylene	ortho- and/or para-Xylene	XYLEN
Toluene	Toluene	MEC ₆ H ₅
ORGANOCHLORINE PESTICIDES/GCEC		OCP
2,2-Bis (para-chloropheny1)-		
1,1-dichloroethane	Dichlorodiphenylethane	PPDDE
2,2-Bis (para-chlorophenyl)-		
1,1,1-trichloreoethane	Dichlorodiphenyltrichloroethane	PPDDT
Aldrin	Aldrin	ALDRN
Chlordane	Chlordane	CLDAN
Dieldrin	Dieldrin	DLDRN
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene	CL ₆ CP
Isodrin	Isodrin	ISÖDR

APPENDIX 36-12-A CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

	Synonymous Names	Standard
Analytes/Methods	and_Abbreviations	Abbreviations
ORGANOPHOSPHOROUS PESTICIDES/GCNPD	ORGANOPHOSPHOROUS COMPOUNDS (OPC)	OPP
Atrazine	Atrazine	ATZ
	Malathion	MLTHN
Malathion	Parathion	PRTHN
Parathion	2-Chloro-1(2,4-dichlorophenyl)	SUPONA
Supona	vinyldiethyl phosphate	
Vapona	Vapona .	DDVP
ORGANOPHOSPHOROUS COMPOUNDS/GCFPD	DIMP	OPC
Diisopropylmethyl phosphonate	Diisopropylmethyl phosphonate	DIMP
Dimethylmethyl phosphonate	Dimethylmethyl phosphonate	DMMP
ORGANOSULPHUR COMPOUNDS/GCFPD		OSC
1,4-Oxathiane	1,4-Oxathiane	OXAT
Benzothiazole	Benzothiazole	BTZ
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfide	CPMS
Chlorophenylmethyl sulfone	p-Chlorophenylmethyl sulfone	CPMSO ₂
Chlorophenylmethyl sulfoxide	p-Chlorophenylmethyl sulfoxide	CPMSO
Dimethyldisulfide	Dimethyldisulfide	DMDS
Dithiane	Dithiane	DITH
METALS/ICP	ICAP	ICP
Cadmium	Cadmium	CD
Chromium	Chromium	CR
Copper	Copper	CU
Lead	Lead	PB
Zinc	Zinc	ZN
SEPARATE ANALYSES		
Arsenic/AA	Arsenic	AS
Mercury/AA	Mercury	HG
Dibromochloropropane/GC	Dibromochloropropane	DBCP

APPENDIX 36-12-A CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

Analytes/Methods	Synonymous Namesand Abbreviations	Standard Abbreviations
ARMY AGENT DEGRADATION PRODUCTS:		ADP
AGENT PRODUCTS/HPLC Chloroacetic Acid Thiodiglycol	TDGCL Chloroacetic acid Thiodiglycol (TDG)	CLC2A TDGCL
AGENT PRODUCTS/IONCHROM Fluoroacetic acid Isopropylmethylphosphonic acid Methylphosphonic acid	IMPA Fluoroacetic acid Isopropylmethylphosphonate Methylphosphonate	GBDP FC2A IMPA MPA

Methods	Abbreviations
Atomic Absorption Spectroscopy Gas Chromatography/Conductivity Detector Gas Chromatography/Electron Capture Gas Chromatography/Flame Ionization Detector Gas Chromatography/Flame Photometric Gas Chromatography/Mass Spectrometry Gas Chromatography/Nitrogen Phosphorous Detector Gas Chromatography/Photoionizaton Detector High Performance Liquid Chromatography Inductively Coupled Argon Plasma	AA GCCON GCEC GCFID GCFPD GCMS GCNPD GCPID HPLC ICP, ICAP
Ion Chromatography	IONCHROM

APPENDIX 36-12-B PHASE I CHEMICAL DATA

		31288 508913	05/07/85	906	SO	122	BORE	&K	S	4.1	6*0>	10	6	09	35	<4.7	<0.0>	<0.90	<0.300	00400>	<0.700	<1.00	<0.300	<0.300	, .
		3128A 506912	05/01/85	901	SO	0	BORE	æ	S	8.9	<0.0>	12	10	<17	45	<4.7	<0.0>	006*0>	<0* 300	<0.400	<0.700	<1.00	<0.300	<0.300	
	2001	31270 5 68909	05/03/85	1104	SO	411	BORE	Œ	S	17.5	<0.0	41	37	62	96	6.8	<0.0>	006*0>	<0.300	<0.400	<0.700	<1.00	<0.300	<0.300	
	N 36 RNA L FRASER GEISZLER/BERGDOLL	3127C 50890B	05/01/85	1022	SO	274	BORE	RK	S	19.2	<0.0>	()	53	22	96	<4.7	<0.05	<0.90	<0.300	<0.400	<0.700	<1.00	<0.300	<0.300	
PRELIMINARY	SECTION SER: BILL FADER: GE	NUMBERS 31278 6 508907	05/01/85	656	SO	122	BORE	RX	S	19.3	<0.9	()	22	20	19	<4.7	<0.05	006*0>	<0.300	004*0>	<0.700	<1.00	<0.300	<0.300	,
STATUS: PRE	PROJECT NAME SECTION PROJECT MANAGER: BILL FIELD GROUP LEADER: 6	SAMPLE NUP 3127A 508906	05/07/85	950	SO	0	BURE	8K	S	12.3	<0.0>	54	16	42	19	10	<0.0>	005*0>	<0.300	<0.400	<0.760	<1.00	<0.300	<0.300	
0,	FEE	31260 508903	05/23/85	918	SO	411	8 ORE	8K	S	21.9	6.0>	<i>(</i>)	18	23	59	*<4.7	<0.05	006*0>	<0.300	0.04*0>	<0.700	<1.00	<0.300	<0.300	
12/03/65		3126C 508902	05/23/85	651	20	274	BORE	æ	S	19.3	6.0>	1>	27	<1.7	38	464.7	<0.05	<0.900	<0.360	<0.460	<0.700	<1.00	<0.360	<0.300	
_		31263 508901	05/23/85	523	30	122	BURE	RK	S	13.9	¢0°0	()	56	21	45	4<4.7	<0.05	0.06*9>	<0.300	<0.400	<0.730	<1.00	<0.300	<0.300	
EERING	6300 SAMPLES: ALL	3126A 503900	0.5/23/85	918	20	0	BORE	RK	S	13.4	<0.0	13	-	31	43	4<4.7	<0.05	<0.906	<0.300	004.0>	<0.700	<1.00	<0.390	<0,300	
CIENCE E ENGIN	PPOJECT AUNOLR 84936300 FIELD GROUP: 3612A PARAKETEES: ALL SAMPI	STURET #	METHOD #		11999	0. 0.	65166	02166 3001	VIGUE 72005	WT) 70320	0 16/u- 1028	0. -0k.t) 99584	3/6- 1043	7501 (1997)	5-681 (Yad-2	167 3- 1603	12617 -5/54	3/5- 94356	0F13 98365	0kt) 98364	56873 94369	0 (06/63/36)	5411 93303	64986 -9/ch)	>
ENVIRONNERAL SCIENCE E ENGINEERING	PROJECT AS FIELD GROUP PANAMETELS	PAKAMETERS	0 1 11	TARE	SAMPLE TYPE	SAMPLE DEPTHICH)	SITE TIPE I	INSTALLATION CODE	SAMPLING TECHNIQUE	MOISTURE (ZECT HT)	CABMIUM, SEB (UG/u-	CR.Sall (UG/5-06-7)	CUPPERISED (US/6-	UEAD, SED (US/6-DRT)	ZINC, SED (US/G-BRY)	ANSENICASER (L	MERCURY, SEG (UG/G-	ALCRIMASED (UG/S-	DIELDRIM(UG/G-DFT)	DUT,PP*(UC/G-DKY)	ENDRIN (UG/6-5RY)	CHLORDANE, SLOCUS/5-	ODE,PP*(UG/5-DKY)	1,4 OXAIHIANE (US/6- 93649	1100

		3128A 3128B 508912 508913	5/01/85 05/01/85	901 908	002-02		0.300									•	•							
	ב ב	3127D 508909	05/07/85 05	1104	<0.500		< 0.300			0.300 0.889 0.600	0.300 0.869 0.600 0.300	0.300 0.300 0.300 0.300	0.300 0.869 0.600 0.300 0.300 0.300	0.300 0.869 0.800 0.300 0.300 0.300										
	RMA ASER Zler/Bergool	3127C 508908	05/07/85 0	1022	<0.500		<0.300	<0.300	<0.300 <0.859 <0.600	<0.300 <0.859 <0.600 <0.300	<0.300 <0.859 <0.600 <0.300 <0.300	<0.300 <0.859 <0.600 <0.300 <0.300	<0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300	<0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300	<0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400	<pre><0.300 <0.869 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400</pre>	<0.300 <0.869 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.500	<pre><0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.4</pre>	<pre><0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <2.00 <2.00 <0.700 <2.00 </pre>	<pre><0.300 <0.869 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.700 <0.500 <2.00 <2.00</pre>	<0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300	<pre><0.300 <0.859 <0.600 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.4</pre>	<pre><0.300 <0.600 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.500 <2.00 <0.700 <0.700 </pre> NA NA NA NA	<pre><0.300 <0.659 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <0.700 <0.500 <2.00 <0.700 </pre> NA
	PROJECT NAME SECTION 36 RHA PROJECT MANAGER: BILL FRASER FIELD GROUP LEADER: GETSZLER	NUMBERS A 31278 D6 508907	05/07/85 0	656	<0.500		<0.300	<0.300	009*0>	00°°0> 00°°0> 00°°0> 00°°0>	<0.300 <0.369 <0.300 <0.300	<0.300	<0.300 <0.369 <0.300 <0.300 <0.300 <0.005	<0.300 <0.369 <0.300 <0.300 <0.300 <0.300 <0.300	<0.300	<pre><0.300 <0.369 <0.360 <0.300 <0.300 <0.300 <0.300 <0.400 <0.4</pre>	<pre><0.300 <0.869 <0.869 <0.300 <0.300 <0.300 <0.300 <0.005 <0.300 <0.400 <0.400 <0.500 <0.500</pre>	<pre><0.300 <0.369 <0.360 <0.300 <0.3</pre>	<pre><0.300 <0.369 <0.600 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <0.500 <2.00 <2.00 <0.700 </pre>	<0.300	<pre><0.300 <0.869 <0.869 <0.800 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.4</pre>	<0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.700 <2.00 <2.00	<pre><0.300 <0.369 <0.60.000 <0.300 <</pre>	<pre><0.300 <0.300 <0.400 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.700 <0.500 <0.500 </pre> <pre>NA</pre> <pre>NA</pre> <pre>NA</pre> <pre>NA</pre>
	ECT NAME ECT MANAGE D GROUP LE	3127A 508906	05/01/85 0	950	<0.500		<0.300	30.	<0.300 <0.869 <0.660	<0.300 <0.300 <0.869 <0.6600 <0.300	<0.300 <0.869 <0.600 <0.300	<0.300 <0.869 <0.660 <0.300 <0.300	<0.300 <0.869 <0.660 <0.300 <0.005	<0.300 <0.869 <0.660 <0.300 <0.005 <0.005	<pre><0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 </pre>	<pre><0.300 <0.869 <0.6600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <0.400</pre>	<pre><0.300 <0.869 <0.6600 <0.300 </pre>	<pre><0.300 <0.869 <0.869 <0.500 <0.300 <0.3</pre>	<pre><0.300 <0.869 <0.660 <0.300 <0.300 <0.400 <0.400 <0.500 <0.500 <2.00 <2.00 <0.700 <2.00 </pre>	<pre><0.300 <0.869 <0.6600 <0.300 <0.300 <0.005 <0.300 <0.500 <2.00 <0.700 </pre>	<pre><0.300 <0.869 <0.6600 <0.300 <0.</pre>	<pre><0.300 <0.869 <0.660 <0.300 <0.400 <0.300 <0.400 <0.400 <0.300 <0.400 <0.4</pre>	<pre><0.300 <0.869 <0.6600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.500 <0.500 <0.500 <0.500 </pre> <pre>NA</pre> <pre>NA</pre> <pre>NA</pre>	<pre><0.300 <0.869 <0.6600 <0.300 <0.0300 <0.0050 <0.700 <0.500 <0.500 <0.700 </pre> <pre>NA</pre>
	PRO J PRO J FIEL	31260 508903	05/23/85 0	918	<0.500		<c 300<="" td="" •=""><td><0.300</td><td><pre><0.300 <1.00 <0.600</pre></td><td><0.300 <1.00 <0.600 <0.300</td><td><pre><0.300 <1.00 <0.600 <0.300 <0.300</pre></td><td><0.300 <1.00 <0.600 <0.300 <0.300 <0.300</td><td><0.300 <1.00 <0.500 <0.300 <0.300 <0.005</td><td><pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300</pre></td><td><pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400</pre></td><td><pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400</pre></td><td><pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <0.500</pre></td><td><pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.005 <0.005 <0.400 <0.400 <0.700 <0.500 <2.00</pre></td><td><pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700</pre></td><td><pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.300 <0.400 <0.700 <0.700 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500</pre></td><td><pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400 <0.700 <0.700 <0.700 <0.300 <0.300</pre></td><td><pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.400 <0.400 <0.700 <0.500 <0.700 <0.300 <0.300</pre></td><td><pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400 <0.500 <0.700 <0.700 <0.500 <0.500 <0.300 <0.300</pre></td><td><pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.300 <0.700 <0.700 <0.500 <0.300 <0.30</pre></td></c>	<0.300	<pre><0.300 <1.00 <0.600</pre>	<0.300 <1.00 <0.600 <0.300	<pre><0.300 <1.00 <0.600 <0.300 <0.300</pre>	<0.300 <1.00 <0.600 <0.300 <0.300 <0.300	<0.300 <1.00 <0.500 <0.300 <0.300 <0.005	<pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300 <0.300</pre>	<pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400</pre>	<pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400</pre>	<pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.400 <0.400 <0.500</pre>	<pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.005 <0.005 <0.400 <0.400 <0.700 <0.500 <2.00</pre>	<pre><0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.400 <0.400 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700</pre>	<pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.300 <0.400 <0.700 <0.700 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500</pre>	<pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400 <0.700 <0.700 <0.700 <0.300 <0.300</pre>	<pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.400 <0.400 <0.700 <0.500 <0.700 <0.300 <0.300</pre>	<pre><0.300 <1.00 <0.400 <0.300 <0.300 <0.400 <0.400 <0.400 <0.500 <0.700 <0.700 <0.500 <0.500 <0.300 <0.300</pre>	<pre><0.300 <1.00 <0.300 <0.300 <0.300 <0.300 <0.300 <0.400 <0.300 <0.700 <0.700 <0.500 <0.300 <0.30</pre>
		3126C 5089C2	723785	159	<0.560		<0.300	<0.300	<0.300 <1.00 <0.600	<0.300 <1.00 <0.600 <0.300	<0.300 <1.00 <0.600 <0.300	<0.300 <1.00 <0.600 <0.300 <0.300	<0.300 <1.00 <0.600 <0.300 <0.300 <0.005	<0.300	<0.300	<0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.300 <0.005 <0.006 <0.006 <0.006	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300 <1.00 <0.600 <0.300 <0.300 <0.300 <0.055 <0.300 <0.400 <0.400 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.700 <0.	<0.300
,		106395 89218	723/85 05	828	<0.540		<0.300	0.30		<0.300 <1.30 <0.600 <0.30	<0.300 <1.30 <0.603 <0.330	<0.300 <1.00 <0.600 <0.300 <0.300	<0.300 <1.30 <0.330 <0.350 <0.550 <0.005	<0.300 <1.30 <0.300 <0.300 <0.300 <0.005 <0.005	<0.300 <1.30 <0.300 <0.300 <0.300 <0.400 <0.400	<0.300	<0.300	<pre><0.300 <1.30 <1.30 <0.330 <0.330 <0.350 <0.400 <0.400</pre>	<pre><0.300 <1.30 <1.30 <0.330 <0.330 <0.330 <0.400 <0.400</pre>	<pre><0.300 <1.30 <1.30 <0.330 <0.330 <0.350 <0.0550 <0.400 <0.400 <0.500 <0.50</pre>	<pre><0.300 <1.30 <1.30 <0.330 <0.330 <0.330 <0.330 <0.400 <0.400</pre>	<pre><0.300 <1.30 <1.30 <0.330 <0.330 <0.330 <0.400 <0.400 <0.400 <0.500 <0.500 <0.700 </pre> <pre><0.700 </pre> <pre><0.800 </pre>	<pre><0.300 <1.30 <1.30 <0.500 <0.300 <0.500 <0.400 <0.400 <0.400 <0.500 <0.500 <0.700 </pre> <pre>NA</pre> <pre>NA</pre>	<pre><0.300 <1.300 <1.300 <0.330 <0.330 <0.400 <0.400 <0.500 <0.500 <0.500 <0.500 <0.500 </pre> <pre> <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
	TI WE ST	3126A 503930	05/23/85 65,	916	<0.500		<0.330																	
	4936360 A SAMPLES	STURET #	NE THOO # 0.5		95645	Ģ																		
	PROJECT NUMBER 84936300 FIELD GRUDP: 3612A PARAMETERS: ALL SAMP	AKAMĒTŪKS STO	ALC:	3 471	OIMP (UG/6-CRY)		CHL DAVOS 1 UG/ S	CHLONVOS (UG/G TEKY) XCLCYYPENDI (US/G-	DICHLORNOS (UG/S 93646 0	DICHLORNOS (UG/S —CKY) HEXCLCYYPENDI (US/G- BAY) MALATHIUM (UG/G-UKY) ISOURIN (UG/G-DRY)	CHLORNOS (UG/G TCKY) XCLCYYPENDI (US/G- DAY) LATHIUM (UG/G-URY) OURIN (UG/G-DRY) 4 OITHIALE (UG/G-	CHLONVOS (UG/S XCLCYPFENDI (US/G- DRY) LATHIUN (UG/G-UNY) QUAIN (UG/G-DRY) 4 OITHIANE (US/G- CYCL'UFEN) ADIENE (U	DICHLORNOS (UG/G 936% -EKY) -EKY) HEXCLCYYPENDI (US/G- 9664) MALATHIUM (US/G-UNY) 96648 ISOURIN (US/G-UNY) 96649 ISOURIN (US/G-UNY) 9669 DICYCLUFENIADIEME (U 98651 6/6-6KY) OBCP(NEMADLEME (U 98651	CHLONVOS (UG/S XCLCYPENDI (US/G- DAY) LATHIUM (UG/G-UMY) QUAIN (UG/G-UMY) CYCLUFENIADIEME (UG/G- CYCLUFENIADIEME (UG/G- G/G-UMY) CYCLUFENIADIEME (UG/G- G/G-UMY) CYCLUFENIADIEME (UG/G- G/G-UMY) CPCREMEGLM) (UG/G- G/G-UMY)	CHLONVOS (UG/S CLCYPPENDI (US/G- DRY) LATHIUN (US/G-UNY) QUAIN (US/G-UNY) 4 DITHIALE (US/G- CYCLUFENIADIEME (U	DICHLORNOS (UGGS LEXY) HEXCLCYYPENDI (US/G-) MALATHIUN (US/G-) ISOUAIN (US/G-) DICYCLUFENTADIENE (US/G-) DICYCLUFENTADIENE (US/G-) P-CLPHENTHEITHYSULFI P-CLPHENTENTHYSULFI P-CLPHENTENTHYSULFI P-CLPHENTENTHYSULFI P-CLPHENTENTHYSULFI P-CLPHENTENTHYSULFI ME(US/G-) ATRAZINE (US/G-) ATRAZINE (US/G-)	DICHLONVOS (UGVS -CKY) HEXCLCYPPENDI (US/G- BAY) MALATHIUN (UG/G-UNY) ISOURIN (UG/G-UNY) DICYCLUFENIADIENE (UG/G- BOCYCLUFENIADIENE (UG/G- P-CLPHENYINEIHYSULF) P-CLPHENYINEIHYSULF) P-CLPHENYINEIHYSULFO ATRAZINE (UG/G-0/X) SUPONA (UG/G-0/X)	DICHLONGOS (UG/G —EXY) HEXCLCYPENDI (US/G- DRY) MALATHIUN (US/G-UNY) 1/4 OITHIALE (US/G- DRY) DECYCLUFENIADIENE (U GG-GONY) OBCP(NEM-GUN) (US/G- P-CLPHENTINEIHYSULF) P-CLPHENTINEIHYSULF) DECYG-G-G-DAY) AIRAZINE (UG/G-DAY) SUPONA (UG/G-ORY)	CHLONVOS (UG/S CKLCYPENDI (US/G- DAY) LATHIUN (UG/G-UNY) QUAIN (UG/G-UNY) CYCLUFENIADIENE (UG/G- CYCLUFENIADIENE (UG/G- CLPHENTINEIHYSULFO CLPHENTINEIHYSULFO CLPHENTINEIHYSULFO CLPHENTINEIHYSULFO CE (UG/G-ORY) NO (UG/G-ORY) Y*P ARATHIUM (UG/G-	DICHLORVOS (UG/G — CRY) MALATHIUN (UG/G-UKY) ISOUAIN (UG/G-UKY) ISOUAIN (UG/G-UKY) DICYCLUFENIADIENE (UG/G- DICYCLUFENIADIENE (UG/G- DICYCLUFENIADIENE (UG/G- P-CLPHENIADIENE (UG/G- P-CLPHENIADIENE (UG/G- P-CLPHENIADIENE (UG/G- BETUTE (UG/G-ORY) SUPONA (UG/G-ORY) ETYTP ARATHIUN (US/G- CARBJA ILINACHIUNIOE	DICHLOREOS LUGGA LEKY) HEXCLCTYPENDI (US/G- DRY) ISOURIN (UG/G-URY) ISOURIN (UG/G-URY) DICYCLUFENIKOTENE (UG/G- DRCYCLUFENIKOTENE (UG/G-D) P-CLPHENTINETHYSULF) P-CLPHENTINETHYSULFO ATRAZINE (UG/G-DRY) DMMP (UG/G-ORY) ETY*P ARATHIUM (US/G- CARBUN IT FRACHLEIGE CARBUN IT FRACHLENIGE CARBUN IT FRACHLENIGE CARBUN IT FRACHLENIGE CARBUN IT FRACHLENIGE CORREDA (UG/G-ORY)	CHLONVOS (UG/5 KCLCYYPENDI (US/6- LATHIUN (US/0-UNY) UDAIN (US/0-UNY) UDINIALE (US/0- CYCLUFENIADIENE (U 60-60NY) CYCLUFENIADIENE (U 60-60NY) CPENENTHEINYSULFI CECUG/6-0 CHENTINE (US/6-0) RAZINE (US/6-0NY) MP (UG/6-0NY) REJA ILINACHULKIÖE UG/0-0NY) LOKUBENZENE UG/6-0NY) LOKUBENZENE UG/6-0NY) LOKUBENZENE UG/6-0NY)	DICHLONNOS (UG/G -EKY) HEXCLCYPENDI (US/GEKY) MALATHIUN (UG/G-UKY) ISOURIN (UG/G-UKY) DECYCLUFENIADIENE (U GG-GNN) P-CLPHENIADIENE (U P-CLPHENIADIENE (U P-CLPHENIADIENE (U F-CLPHENIADIENE (U F-CLGGG-GNY) CARBJA (UG/G-GNY) CARBJA (UG/G-GNY) CHLGGGERZENE (UG/G-GNY) CHLGGGERZENE (UG/G-GNY) 1,1-01CHLENGERIENE	DICHLORNOS (UG/S -EKY) HEXCLCYPPENDI (US/GEKY) MALATHIGK (UG/G-UKY) ISOURIN (UG/G-UKY) DECYCLUFENIADIERE (US/G- DECYCLUFENIADIERE (US/G- P-CLPHENIMETHYSULF) P-CLPHENIMETHYSULFO P-CLPHENIMETHYSULFO P-CLPHENIMETHYSULFO P-CLPHENIMETHYSULFO CHCAGEG-ORY) GUG/G-ORY) CARBUR (UG/G-ORY) CARBUR (UG/G-ORY) CARBUR (UG/G-ORY) CHLGAGEG-ORY) CHLGAGEG-ORY) CHLGAGEG-ORY) CHLGAGEG-ORY) CHLGAGEG-ORY) (UG/G-ORY) LINACHLKIGE (UG/G-ORY) CHLGAGEG-ORY) (UG/G-ORY) LIN-OICHILEGETHANCE (UG/G-ORY)

		31268 508913	05/07/85	906	X	N.	¥	X.	Z	X	Y.	A.	XX.	¥.	×	A.	X	<0*300	180918	2188181	0.819			ż
		3126A 508912	05/01/85	106	×	Æ.	NA NA	×	X	N.	Z	X	N.	N	2	X.	Z	<0.300	180918	2188181				
	2006	3127D 508909	05/01/05	1104	<0.500	<0.500	005*0>	<0.500	005*0>	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.560	<0.500	<0.500	<0.300	181421	2188190				
	PROJECT MANE SECTION 36 RMA PROJECT MANAGER: BILL FRASER FIELD GROUP LEADER: GEISZLER/BERGOOLL	3127C 508908	05/07/85	1022	X	N.	X.	N.	×	¥¥	N.	N.	×	×	N.	X	N	<0.300	181421	2188190				
PRELIMINARY	SECTION GER: BILL LEADER: GE	NUMBERS 1278 106 508907	05/01/65	959	≪ Z	NA NA	N.	NA	~~	X	X	X.	NA	W.	NA	Z	**	<0.300	181421	2188190				
STATUS: PRI	JECT MANE	SAMPLE NU 3127A 506906	05/07/85	950	KA	X	=	** **	X X	X	NA	N.	est Z	NA	NA	NA	NA	<0.300	181421	2186190				
0,	PRC	31260 508903	05/23/85	913	<0.300	<0,360	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<6.350	<0.500	<0.360	<0.300	<0.500	<0.300	161573	2168152				
12/03/65		3126C 508902	05723785	651	# Z	NA	NA	*	44	**	**	Z.	A. W.	*	X	4.7	N.A.	<0.300	181573	2168162				
-		31263 508901	05/23/35	828	## ZZ	H.A.	- T	**	WW	A M	**************************************	4	7	M M	¥.	N.A.	N.	<0.300	161573	2166192				
ECRING	6300 SAMPLES: ALL	3126A 508900	05/23/85	818	N	X	HA	4	A N	**	NA NA	a	AH	ब	N N	Z	N.	<0.300	181573	2168132				
E FAGINEERIN	84+36360 2.A Samp	STORET #	ECTHOD #				63916	06916	98691	26996 0	98693	0 93694	92695	96986	90697	94699	00151	13703	79395	95393	97076	1)11/5	73685	90006
ENVIRONMENTAL SCI. CE	PRGJECT AJGGG, 84936366 FIELG GRUDP: 5612A PAK/FLIENS: GLL SAMP	PARAMETERS	DATE	31 21 11	TRANS-1, Z-UICHEUR LET	ETHYLDENZENE ETHYLDENZENE	METHYLENE CHERRIDE	TETRACHLOS DETREME	TOLDENE (UD/O-DAT)	19191-1FIGHER SETTO	1,1,2-TAICHLORGETHAN	TRICHLORER THERE	K-XYLERE	MISS.	CEND-0/97)	(16/6-0/1) 8E32ENE (16/6-087)	O-ALDYDR P-XTLESS	PCP4S62 U6/6-0KT	C00401HF114,475(S147)	COGROINATE JE ZMESTRA	UNK620 (UG/S)	UNK621 (UC/G)	UNK833 (UG/G)	UNK537 (UG/G)

1

		31268 506913	05/07/85	906						1.00				
		3128A 508912	05/01/85	901						1.65				
	7 7009	31270 5 08909	05/01/85	1104								2.11	2.11	
	PROJECT MANE SECTION 36 RMA PROJECT MANAGER: BILL FRASER FIELD GNOUP LEADER: GEISTLER/8ERGOOLL	3127C 508908	05/01/85	1022										
ELIHINARY	SECTION GER: BILL LEADER: GE	SAMPLE NUMBERS 3127A 508906 508907	05/07/85 05/07/85	656								141		
STATUS: PRELIMINARY	DJECT NAME DJECT NANA ELD GROUP	SAMPLE NU 3127A 508906		950										
	RAL	31260 508903	05/23/85 05/23/85	918										
12/03/85		3126C 508902	U5/23/85	651								6,519		
		31268 508961	58/23/33	823						٠		2.16	1.03	
KEERING	63UP SAMPLES: ALL	3126A 508900	05/23/85	918										0.655
Tente & their	PROJECT AUTOLA 849363CP FIELD GUOVE 36124 PARANTILRS: ALL SANF	STARET #			90108	86966	460et	90105	90687	93682	93066	9007006	90106	9.10 15
ENVIRORMENTAL SCOUNCE & UNGLACERONS	PROJECT AUP FIELD GLOUP PARANT LESS	PARAMETERS	31.40	Tine	UNKESS (CEVO)	UNK558 (UC/5)	URK559 (06/6)	UNK619 (UG/5)	UNK635 (U6/6)	UNK629 (UG/G)	UNKSUE (UE/G)	Unk614 (UG/6)	DAK630 (UG/G)	UNK524 (EE/S)

12/03/65

ENVIRUNHERIAL SCIENCE & ENGINEERING

																								, ,
	3132A 508936	05/06/85	931	20		BORE	æ	S	0•9	6*0>	=	Î	35	23	<4.7	0.16	<0.90	<0.300	<0.400	<0.700	<1.00	<0.300	<0.300	
	31318 508931	05/06/85	1154	SO	122	BORE	æ	S	1.3	<0.0>	10	21	<17	3.7	<4.7	<0.05	<0.90	<0.300	<0.400	<0.700	<1.00	<0.300	<0.300	
/BERGDOLL	3131A 508930	05/06/85	1139	0.5	0	80PE	Œ X	S	7.0	6.0>	12	11	22	40	5.8	0.10	006*0>	< 0.300	>00%	<0.700	<1.00	<0.300	<0.300	
N 36 RMA L FRASER GEISZLER/BER	31308 508925	05/06/85	1404	80	122	BURE	× ×	S	4.3	6.0>	<7	6	<17	35	(%)>	<0.0>	<0.900	<0.300	<0.400	<0.700	<1.00	<0.300	<0.300	-
I NAME SECTION I MANAGER: BILL GROUP LEADER: GE	NUMBERS 31304 2 508924	05/06/85	1356	20	0	BORE	z. X.	S	4.6	<0.0>	6	10	20	37	5.0	0.07	006*0>	<0,300	<0.400	<0.700	<1.00	< (i. 300	<0.300	
PROJECT MANE PROJECT MANAGE FIELD GROUP	SAMPLE NUI 3129E 508922	65/67/85	618	SO	488	BERE	KX	S	18.6	6.0>	**	34	19	86	<4.7	<0.0>	<0.00	<0.300	<0.400	<0.100	<1.00	c0.36-0	<0.300	
PRG	31290 506921	35766785	1546	So	124	365E	Ä	<i>S</i>	19.0	<0.0>	<>	39	26	lùl	6.7	<0.05	<0.950	<0.300	<0.4b6	<6.7Cb	<1.00	<0.350	<6.360	
	3129C 508920	05 / 06 / 85	1504	SO	574	60RE	XX	S	15.0	6*9>	</td <td>34</td> <td>19</td> <td>90</td> <td>9.6</td> <td><0.05</td> <td><0.0</td> <td><0.300</td> <td><0.460</td> <td><6.700</td> <td><1.00</td> <td><0°360</td> <td><0.369</td> <td></td>	34	19	90	9.6	<0.05	<0.0	<0.300	<0.460	<6.700	<1.00	<0°360	<0.369	
	31298 503919	58/30/50	2651	20	721	64.9 770 94.3 463	Ä	S	5.2	6.3>	o.	, 6	<1.1	35	<4.1	<6.15	<0.96û	<6.359	C05*0>	c6.700	<1.63	<6.3333	<0.300	
6360 SAMPLES: ALL	3129A 503913	65736785	1437	20	0	BORE	×	S	0.9	<0.0	7,4	11	2.7	45	9 = 9	0.01	<0.60	<0.300	30€*0>	<0.790	<1.00	<0.336	<0.306	
~~	STORET #	4£ 0000 #		11999	91158	9276	0.5786	22005	7.320	0 1028	99584	1643	1652	£60:1	1003	71921		9 1365	73564	95369	93361	9556	93644	
PRUJECT NUMBER 849 FIELD G. BOPT 3612A PARAMETERST NAL	ARANE LEAC	1	24 11	SAMPLE 17FL	SAMPLE BEPTH(CN)	SITE TYPE 1	INSTALLATIC, CUBC	SAMPLING LICHARYUM	MOISTURECTRUE RO	CABAIURASEB (UG/u-	CK, SUIL (UG/G-BKY)	COPPER,SEC (US/o-	DAY) LEAU/SED (UU/G-DRY)	ZI 10,550 (U6/5-cn f)	ARSENICASED (66/0-	517) MEKCURYJSEB (4676~	LATURITASED (UG/6-	OLELOKIK(U6/3-CFT)	001,PP*(L6/5mcs/)	ENDRIN (UC/U-URY)	CHLORDARE JUSCOLOVICA	ODCIPE"(LGV5-SNY)	194 OXATHING (UC/S-	LhY)

12/03/65

ENVIRGANTALIA SCARICE & ENGINEERINS

	3132A 508936	05/06/85	931	<0.500	<0.300	<1.00	009*0>	<0.300	<0.300	<0.300	<0.00>	<0.300	<0.400	<0.700	<0.500	<2.00	<0.700	NA	¥X.	ž	N.	K Z	¥ .	
	31318 508931	05/06/85	1154	<0.500	<0.300	<1.00	<0.600	<0.300	<0.300	<0.300	<0.00>	<0.300	<0.400	<0.700	<0.500	<2.00	<0.700	₩	*	Z Z	X.	X	X.	
2000	3131A 508930	05/06/85	1139	<0.50	<0.300	<1,00	009*0>	<0.300	<0.300	<0.300	<0.00>	<0.300	054*0>	<0.700	<0.50	<2.00	<0.700	4	*	N.	×		N N	
N 36 RMA L FRASER GEISZLER/BERGOOLI	31308 508925	05/06/85	1404	<0.500	<0.330	<1.00	009*0>	<0.300	<0.300	<0.300	<0.005	<0*300	<0.400	<0.700	<0.500	<2.00	<0.136	X	HA	N A	MA	*	AN	
T NAME SECTION T MANAGER: BILL GROUP LEADER: GE	MBERS 3130A 508924	05/06/85	1356	<0.500	<0.300	<1.00	<0.09.0>	<0.300	<0.300	<0.300	<0.00	<0.300	<0.04.0>	<0.700	<0.500	<2.60	cu. 700	X X	**	Z Z	A	X	NA	
PROJECT NAME PROJECT MANA FIELD GROUP	SAMPLE NUMBE 3129E 508922	05/03/65	.618	<3.564	<0.300	<0.369	<0.9*0>	<0.300	<0.300	<6.309	<0.00	<0.308	401.400	<0.100	<0.500	<2.60	001.3>	005*9>	<0.500	<0.500	<u></u>	<0.500	<0.560	
ZZZ	31296/ 568921	05/00/85	1546	<6.500	<0.300	<1.00	009*0>	<0.300	<0.300	<0.350	<0.655	<0.300	nc4-3>	<0.700	<0.503	<2.09	<0.763	NA	N. W.	**	42K	Z.	**	
	3129C 568920	98/90/50	1504	<0.500	<6.36⊍	<1.00	009*0>	<6.300	<0.300	<0.366	<0.00	<6,300	(04-0>	<6.760	0.1540>	<2.60	<6.766	HA	ÑA	W.	NA	A:4	P.4	
	51298 508919	58790759	1442	<0.500	<6.300	<4.39	<0.04.05	<0.350	<0.300	<0.300	<0.00	<0.333	<0.490	CC.733	<6.508	<2.50	<0.700	HA	N.A.	N	N.	NA	HA	
6300 Sämples: All	3129A 558915	05/06/85	1437	<0.500	¢0.300	<1.00	<0.00	<6.336	<0.300	<0.300	<1.615	<0.300	<0.430	<0.105	<6.530	<2.00	<0.700	X	*** 7°	N	M	A	NA	
36366 SARF	#\$	*		33645	94966	0 0 0 0 0 0 0 0 0	95648	64926	0.3650	365 <u>1</u>) 5652	0 13653	93554 93554	9365	33556	0 5956	4,555 a	93660	1.06¢1	5895£	9368 3	48688	93086	ɔ
349	13.9IS	OCHELI ZW		73	£.		0.05	98					73			7,								•
PROJECT NORMEN 04936366 FIELE GAGOP: 56124 PARAHLIEMS: ALL	ACANETERS S			DIMP (UGZE-CAT)	LEAVES EGG/E	HEXCLCYPROT (95/5-	HALATHIEN (GGZC-SET)	ISODAIN (US/S-BA)	1,4 011h14.2 (06/m-	OXCYCLGPERTSULFT.	DBCP(NEMALON) (LUVG-	FILENTER THE TANK THE TOTAL TO	CUPSTEETHEST P-C	AINAZINE (03/6-5.Y)	Supona (LL/órbit)	UNE CUEVE-ONTO	EIYPAKATELUA (Uuzu-	CARBON IETFACHELLES	CHLCX CEER ZL SL	CHEGROFURY CHEGROFURY	Les/317 -JIChicileine	1,2-01ChLG: USTRA: 1	AVOLOMEPTAVILSAL ALCYCLOMEPTAVILSAL	1.24.0.1031
	4 . A	0415	IME	DIMP	DICH	HEX C	MÁLA	1500	1,9	CTO	DBCF	: -	P=C1	AIK	SuP	Dhins	EIY	CAR	CHI	CHE	1,1	1,2	BIC	

12/03/85

ENVIRONNENTAL SCI., CE G ENGINEERING

	3132A 508936	05/06/85	931	A.	¥ 2	¥	NA	XX	×	N.	×	₹ %	NA	**	AN	N.	<0.300	180769	2187751				
	31318 506931	05/06/85	1154	×	×	æ	N.	N.A.	NA	NA	X.	X X	NA	N.	A N	NA	<0.300	180948	2187811				
2001	3131A 508930	05/06/85	1139	×	4	×	NA	N.A.	4	XX	4	*** ***	et Æ	200	**C	#E.	<0.300	1 80948	2187811			0.224	
PROJECT NAME SECTION 36 RMA PROJECT MANAGER: BILL FRASER FIELD GROUP LEAGER: GEISZLER/BERGDOLL	31306 508925	05/06/85	1404	A Z	×	M	NA	N N	NA	≪ . ≥:	N	Z	NA	×	N	X	<0.300	180710	2188154				
SECTION GER: BILL LEADER: GE	KUMBERS E 3130A 22 568924	05/06/85	1356	NA	×	X	NA	NA	N.	N.	NA	XX	M M	Z	KA	Ä	<0.300	163710	2188154			0.170	
JECT NAME JECT NAMA LD GROUP	SAMPLE NUI 3129E 508922	05/107/65	813	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0*200	<0.500	<0,500	<0.500	<0.500	<0.500	<0.500	<0.300	180330	2188111	0.951			
4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31290 506921	05/16/85	1546	N.	NA	N.N.	×	X.	X	NA	N. W.	ИА	NA	N.		**	<0.300	160639	2168111				
	3129C 508920	65/06/85	1564	AN.	Z Z	***	«C	W	N.A.	RA	W.	**	NA NA	NA	4	**	<0.300	180030	2166111		0.279		
	31298 508919	65756785	1442	M M	W.	7.	**	NA	er Z	N.	**	**	≪ %	NA	2	×	< 0.300	1.80830	218111			,	
6300 SAMPLES: ALL	31294 533913	65736785	1437	77	4	NA	2	₹ 7:	₹ 7.	## %:	=1. T	4 A	**	W N	¥	**	<0.333	183839	2186111	2.13	0.403	0.652	0.569
33	## [j]	H.30 #		9.3687	9 36 8 8 9 3 6 8	30.25 20.25 20.25	06986 0	0 7569 <u>1</u>	269°6	0 90693	93694	13695	96956	13697	90899	03786	93705	ñ 38866	95393	5/ 0/6	9.1875	\$100V	0 68996
PROJECT BORDON 34 FIELD GROUP: 2612A PALAMPICAS: 311	ARAHE JEKS STURET	SELTHUD SELTHUD	IIME					<u>.</u>	1,1,1-1-1,1(h,0,0,0)		_		~ .	~ -	RENZERE (LG/5-UN/)		PCPMSGZ BG/6-DRY	CUBROLLAS/SISTED	COORDINATEAL/A(SIV)	UNK625 (UE/S)	UNK621 (UCZG)	UNK633 (U6/6)	UNK637 (UE/G)
;	d d	č	Ξ	<u>+</u>	Ξ	#	<u> </u>	<u> </u>			-	Ė	×	ä	ã	Ġ	ā.	ā	ŭ	⋽	5	3	5

		3132A 508936	05/06/85	931				0.171						
		31318 508931	05/06/85	1154				0,222				0.462		
	60 OL L	3131A 508930	05/06/05 05/06/05 05/06/05 05/07/05 05/06/05 05/06/05 05/06/05	1139				0.637		1.89	595*0		0,221	
	PRUJECT HAME SECTION 36 RHA PROJECT MANAGER: BILL FRASER FIELO GROUP LEAGER: GEISZLER/BERGDOLL	3130B 508925	05/06/85	1404				0.282						
ELIMINARY	SECTION GER: BILL LEADER: GE	MBERS 3130A 508924	35/06/85	1356				0,333		0,738	0.416			
STATUS: PRELIMINARY	U JECT HAME O JECT HANA E LO GROUP	SAMPLE NUMBERS 3129E 3130 504922 5089	05/07/85	818						1.23				
	4 G.H	31296 508921	35/06/85	1546				ú.345			0.138	6.508		
12/63/85		3129C 56392u	05/1,6/65	1564				1.63		2.06				
		31258 508919	05/06/05	1442		0.071	3,655	0.236	0.154					
LLERING	63cc SAMPLES: ALL	31294 503915	65/00/95	1437	6.435									
ice i Enul	36124 3124 31	# B8618	nic f tub #		7,1108	91098	56907	30106	30087	28006	3,0065	9 1070	00100	9,101,5
ENVISORBENTO SCORCE & ENGINEERING	PROJECT NOW W. 049363CG FIELD GROUP: 3612A PARARTICKS: J.L. SANPI	PARMETERS	ህን I ແ	77 50 100	UMK542 (LCr.)	URK\$54 (UC/s)	URKSS9 (béza)	UNK519 (U6/1)	URK635 (CGr.2)	UNKS29 (UB/G)	USKSJE (ULZS)	UNK614 (06/5)	UNK630 (CC/J)	(1790) 525MN

	NN 36 RMA L FRASER GEISZLER/BERGDOLL																							
STATUS: PRELIMINARY	PROJECT NAME SECTION 36 R PRGJECT MANAGER: BILL FRAS FIELD GROUP LEADER: GEISZI	SAMPLE NUMBERS GLK 508961	05/56/45	Ĵ	So	0	JCHB	XX	ی	2.6	A.A.	~	W	~	4	*** .	4 4	X	MA	V I d	N. A. M.	NA .	A.N.	≈ €€ 22
	PRG	ELK 563933	05/06/05	0	50		£775	йК	Ş	2.6	<0.9	13	2	16	3.9	<4.1	<0.05	096*0>	<0.300	<0.409	<6.700	<1.09	<0.36b	<0.300
12/03/85		3132E 568939	35 70 6 7 85	1622	SC	124	BASS	K.K.	ν .	14.8	<0.0>	13	42	¢2	78	<4.7	<0.05	<0.960	<0.360	005*0>	<0*1 00	.<1.60	<0.360	<0.300
	٠.	3132C 508938	05/66/35	1000	\$3	274	BURE	RK	S	16.2	40.9	92	47	20	58	6.3	<0.05	<0.933	<0.300	66¥*3>	c6.733	<1.00	<5.330	<5,303
SETER	DSCC SARPLES: ALL	31328 508937	£2/90/45	959	SO	122	308E	R.K	S	1.44	<0.9	10	7	<17	35	(4.7	<3.05	€0.998	<0.390	<0.406	<3.730	<1,00	<0.139	<3.350
S CROTHERRING		150 121 121 122	cittis #		11.999	93/60	92178	94720	72605	7326	1.128	99584	19 43	25°1	1098	9 6 9 3	71.921) 3356	75365	90364	98369	75.561	90363	93644
ENVIRGABENTAL SCLUAR	PRUJETT BUSELF 3 FIELD BROBP: 3-12 PARANE ENS: 41L	PARAJETERS Siv	DATE	1146	SAMPLE INF.	SAMPLE LIFICILIA	SIIE IYPE J	INSTALLATION COV.	SAMPLING ITCH JUL	MUISTURE (2-11 -1)	CABNI UND. J. (1977 6-	CRISCIL (N. /6-1-17)	COPPERISED (Goran	LEADASED (GA/Organ)	ZIAC, SEG (us/2-ball)	AKSENICASIC (36/3-	MENCUNINSEL (USTON	ALERIA SEE (5776-	CLELDKIR(U6/6-247)	DulyPP*(LG/5-unY)	ENORIN (NEZG-LAT)	CHLORCANE JOSQ (GG/6+	DDE #PP*(LC/6-tar/)	194 UXAIBILAS (66/6-

	BERGOULL																							
STATUS: PRELIMINARY	PROJECT MAKE SECTION 36 RMA PROJECT MAKAGER: BILL FRASER FIELD SKOUP LEADER: GEISZLER/BERGOOLL	SAMPLE AUMBERS OLY SCEPAL	05/26/35	0	eri.	74	**	et.	*# 25	n.A.	. 4%	<6.505	A Marie Control of the Control of th	4 ~	***	#### 	S . 22	45	4 52		4.5 3.2	-1	च्या प्रदे	≪ ≥
12	PROJ FIEL	SLK 500960	05786785 (0.	095*6>	cc.330	<1.00	009*7>	₹Ğ•34ÿ	<6.360	<6.320	<3.005	<6.300	<6.460	<0.760	005•n>	<2.00	<6.708	<6. 300	<0.300	0.981	<6.309	<0.363	<0.300
12/03/85		31320 503939	65736765	1625	<0°,500	φ.3αβ.	dis.	099*0>	<0.366	<0.366	<0° 30°	<0.46	<0°360	204-3>	<8.76¢	<0.500	99•7>	<0.760	995*3>	<0.500	<0.500	<0.500	\$35*3>	095*9>
-		313cL 563938	6571,6785	1 ບວີ ປ	503.c>	<6,303	(1.43)	(6.9°)	@nE+3>	<6.393	<0.319	<0.05	<5.393	<6*409	<0.769	665.55	<2.00	<0.708	31.4	न्त इस	**	72	44	₹.
Just, & a Girthing	34755300 24 SAMPLES: ALL	31328	85/38/58	939	60,500	<0.330	<1.00	<0.600	<0.3300	<0.399	<0.330	<0.03	<0.300	<0.440	<0.100	<0.500	<2,03	CC. 730	47% 477	2	A N	1100	2	7
		Sc. 1	## 14 H		922.45	95996	9003	95648	92649	96820	9 16.51 6	93652	9353	* 5396	96655	9C)S(438.57	9425B	0 0 0 0 0 0	فنادا	30.10	950.8 <mark>3</mark>	9000A	9565
	اند ؤ سمالات اند الاستارات	e Barf	er offi er				3	300		3 	ت	3)	- 1 			5		12/C) W		5/0" JEL 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Morani Lifebai	STOTEN IN
ENVINGHERD C	PAGAECT COURTS FIELD COURTS PAREMATERED	PARAMETERS	DA Të	38.1	OIMP (UC/6-0-T)	DICHLERVES (box -	HEXCLETT END TO SE	HALATHICA (OSzu-SAY)	ISCORIN (Cor6-orl)	194 diffiles	DICTORUPENTAGE	eva Docklastagi	P-CLPbenkler	P-CLPHINITALINGSOLF	ATRAZIEL (UC/Grant)	Supure (LEZ6:)	onne (teléter)	LITAPLEATE.	CARLIN TETT SCHELLER	Chrontsky	CHLUKLFUFF	1,1-8101.6	1,2-03Ch1Ch	BICYCLUNCY FALLACTORY) (16/0-JRY)

	סרר																							
STATUS: PRELIMINARY	Project kare section 36 RMA Project Manager: Bill Fraser Field Group Leader: Geiszler/Bergooll	SARPLE NUMBEPS SLK 503961	65708/85	د.	ነነቶ	43°. 26°.	+2; -2; -	7.1	***	wige And	BAA		4T 1	44	¥.4	P. D.	***	- E-A	N.A.	y _N				
<i>y</i>	Z.A.II	ELK 5089du	65/96/85	G	<0.300	<0.309	0.631	<6,305	<0.353	6,396	<0° 300	<6.300	<u.300< td=""><td><6.503</td><td><0.360</td><td><1,.366</td><td><0.500</td><td><€.39€</td><td>1.A</td><td>100 m</td><td></td><td></td><td></td><td></td></u.300<>	<6.503	<0.360	<1,.366	<0.500	<€.39€	1.A	100 m				
12763785		31386 508935	52/00/50	7291	ng5-a>	(i) (i) (i)	<3,560	<3.536	<0.565	245*P>	395°C>	¢η• \$(-ή	<6,560	<0.563	415.15	6,565	336.0>	<0.369	150769	210.7751				
		3132C 538933	55756735	1038	er.	est XII	=======================================	THE STATE OF THE S	#1 T#	-6 178	W P	ers. 201	e.* 32.	yr.	ৰহ জু	7.5		<u.309< td=""><td>1 cU69</td><td>187751.</td><td>605**</td><td>542*9</td><td></td><td></td></u.309<>	1 cU69	187751.	605**	542*9		
CHEIGLERING	udte Samples: All	31328 568937	05/08/85	939	N.	# K	**	HA	W To	*** ***	3	X	A N	4 %	NA	8. A	¥	<0.300	130769	1511615				
Course a Casto		7	# actifica		1,0637	0.000 a k c	623FF	063.7	1259	9469	40.09	8007	3.595	36.06	7,007	2660 m	637 c	1.103	266 1	55.5 5.62 5.62 5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	10.14	1.77	3 49 5 7	9.11.69
		7/3	ř.		[36 m m 3]	3.00/00/00/00/00/00/00/00/00/00/00/00/00/		coffee on 1	11 40 47 400		los/org/	1000	- ·		7 17 17 17 17	Understand Control	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Coroni Coroni	, destable	LECONDER.	101	(;)	11.1	(ú)
ENVIS JAMES I	PAGUL CSOSP: PARAN LESS:	PARARITE	PYE	Ting	18485-192º	EMTERNATION	MUNICIE CHO, Jac.	E (KACRLCE SUSPEN)	TCLU: NE	19191#1#14[6]	1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	TEICHTOFUE AND A TANK	IT-XYLLME	Mion	2011	3E12, 50 (0.10m)	9-43. On Buth.	PLPH JUST LEADS	Charaffah, dar	COURTINATESCA	Unkell (bella)	UNK621 1 (4) 733	UNK633 (L. 7). J	Unk617 (Uc/G)

ENVINUABL 11, JOHNIEL & ENGINEERING	1983 3 71	MERING		12763785		STATUS: PRELIMINARY	
PREJECT COLL SANDAGE FIELD SECONDAGES SON PROPERTY SAMP	3612. 3AM	63CC JAMPLES: ALL			g d d	PRUJECT MANE SECTION 36 RMA PRUJECT MANAGER: BILL FRASER FIELO GROUP LEADER: GEISZLER/BERGOOLL	1100
रेक्टरेस के जिल्हा	2000 1000 1000 1000 1000 1000 1000 1000	31.123 506937	3132C 503935	31527 503933	21.K 5ud960	SAMPLE NUMBERS BLK SOBGET	
<u></u>	4 90 LT	65756745	C575(745) - C5776745	65756785	US 756785 US 756785 US 746785	55/1,6/25	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		939	loss	1622	0		
UNKONE TUBLER	4.108						
UAK556 (UC757	860 /						
UnK559 (UCA.)	6631						
UNKOTS (UCZZ)	1,1105	0.272		0.310			
Unkass (4.57.)	lance.						
UNK629 (GS/C)	1082		1.13				
Uhksaž (Gera)	335.4						
UNKOL4 (UEZE)	J. w.		6.434	6.967			
UNKSSU (LCZC)	971.0						
UNK524 (LULU	7 : 15 s						
	*						

APPENDIX 36-12-C COMMENTS AND RESPONSES

NT OF HEALTH

Thomas M. Vernon, M.D. Executive Director

May 7, 1986

Mr. Donald Campbell
Office of the Program Manager
RMA Contamination Cleanup
Department of the Army
Aberdeen Proving Ground
Maryland, 21010-5401

Dear Mr. Campbell:

Enclosed are our comments on the Phase II, Section 36, Draft Final Source Report, 36-5, 36-8, 36-10, 36-11, 36-20, 36-21, and 36-22. This document includes a very brief discussion of the general approach for conducting Phase II investigations and a proposal for Phase II "indicator levels" for all future source area investigations.

As we stated in our preliminary comments transmitted to you on April 2, 1986, we do not concur with the proposed Phase II approach and specifically with the proposed inorganic indicator levels. It was not at all clear in the report how the indicator levels for the metals were determined. At the April 22, 1986 MOA Onpost Task Group Meeting, Mr. Kevin Blose stated that the proposals for the Phase II approach and indicator levels were generated together by the Army and the U.S. EPA. We were told that this occurred at "numerous meetings in the past several months" between the Army Staff, the Army's remedial contractors and Mr. Jim Baker, the EPA Region VIII toxicologist. Since we were not present at any of these meetings, we are formally requesting that you provide to us the minutes and any handouts from each of the meetings so that we may better understand the reasoning behind the Army and EPA's Phase II proposals.

Thank you for your consideration in this matter.

Sincerely,

Thomas P. Looby

Remedial Programs Director

TPL:CS/ras

cc: Howard Kenison, Colorado Attorney General Office Bob Duprey, U. S. EPA, Region VIII Bob Lundahl, Shell Chemical Co. REVIEW COMMENTS ON THE PHASE II., SECTION 36 DRAFT FINAL SOURCE REPORT, 36-5, 36-8, 36-10, 36-11, 36-20, 36-21 AND 36-22, FEBRUARY 1986

GENERAL COMMENTS

1. The "Executive Summary" section is not an accurate heading for this portion of the report. According to the Onpost Task Group meeting held on April 22, 1986, the section is actually an abbreviated discussion of the Army and EPA's proposal for determining representative background levels for metals at RMA and Phase II "indicator levels" for contaminants analyzed in the Phase I unsaturated soils sampling program. For organic compounds, the background and indicator levels proposed are the same as the analytical method detection limit. For the metals, it is not clear whether there was a statistical or scientific basis used to establish the indicator levels.

We recommend that the entire Executive Summary Section should be removed from this document and be rewritten as a separate document. The separate report would be a detailed compilation and evaluation of as much of the "uncontaminated area" soils data as exists at the time the draft is prepared. The final report would include all the Phase I soils data for the known "uncontaminated areas" of RMA. The report must include a thorough statistical analysis of all the soils data collected to document what constitutes the "background" or naturally occurring levels for all inorganic contaminants examined in the Phase I program.

The executive summary defines an indicator level as "a concentration or range of concentrations for each potential contaminant above which that contaminant approaches levels considered to be above natural background variability. These indicator levels are not to be considered action levels as they are not based on toxicity." Using this definition of an indicator level, the report would then identify the concentration or range of concentrations where a contaminant approaches levels considered to be above natural background variability. That variability within the data base can be expressed as the standard deviation (sigma). The indicator levels for inorganics would then be established based on multiples of sigma. If a concentration of a potential contaminant exceeds the calculated background level plus two times sigma, then you are 95% confident that the level found in the soil sample is "above natural background variability". We propose that at a minimum, all Phase I soils data that exceed the 95% confidence level should be evaluated in the Phase II investigations. Some substantial justification would have to be provided to eliminate that boring from the Phase II program. If indicator ranges for inorganic metals are desired, we would propose using the 90% confidence level as the lower limit when Phase II investigations should be

The Phase I "uncontaminated area" soils data collected from the four most contaminated sections on the Arsenal (36, 26, 1 and 2) must <u>not</u> be used in the assessment of background concentrations for metals. The probability that contamination has migrated to these areas from windblown deposits, contaminated surface water or ground water is very high. The report should also discuss the objectives of the Phase II program, the changes in the sampling methodology and analytic procedures, and other procedural changes from the Phase I program.

2. We do not concur with all the indicator levels presently proposed by the Army and EPA in the Phase II report. The levels proposed in the Executive Summary for metals need substantially greater justification than one paragraph per inorganic metal as offered in the summary. Until the above described analysis to establish statistically and scientifically based indicator levels can be completed, we propose that the following indicator levels be utilized in all Phase II investigations.

ANALYTE AND RMA DET. LIM. All Organic Compounds	RMA PROPOSED INDICATOR LEVEL Method Detection limit	COMMENT	CDH PROPOSED INDICATOR LEVEL Method Detection limit of
Arsenic 4.7 ppm	10 - 15 ppm	None detected (ND) in 87% of the 258 Phase I samples collected. ND in 97% of all Phase I samples collected outside Sec. 36.	Method Detection limit of 4.7 ppm
Cadmium .5 ppm9 ppm	2-5 ppm	ND in 98% of the Phase I samples at .5 to .9 ppm	Method Detection limit of .59 ppm.
Chromium 7ppm	30-50 ppm	ND in 33% of Phase I samples at 7 ppm. Actual mean was approx. 10 ppm. Highest level found in 258 Phase I samples 24 ppm.	20 ppm
Copper 5 ppm	20-50 ppm	ND in 25% of the Phase I samples 70% of all samples show 10 ppm or less. Highest level found in 258 samples was 24 ppm. A 30 ppm range is not justified	20 ppm
Mercury .05 ppm	.12 ppm	ND in 93% of all Phase I samples ND in 99% of all samples collected outside Sec. 36.	Method detection limit of .05 ppm

30-75 ppm Lead ND in 60% of all 25 ppm 16 ppm Phase I samples. 75% of samples had less than 20 ppm. Highest concentration found in all Phase I Samples was 44 ppm. Zinc 80-100 ppm ND in 7% of Phase 50 ppm 10 ppm I samples at 10 ppm Mean concentration found approximately 36 ppm. Highest concentration in 258 Phase I samples was 65 ppm.

3. The Phase II monitoring program must incorporate contaminant transport mechanisms into the sample collection scheme. In areas where windblown contamination is suspected, samples of the upper 2-4 inches of soils would be collected. Phase II investigations of source areas must extend into the uppermost saturated zone to evaluate if the source area is contributing to contamination found in the saturated zone.

The Phase II Remedial Investigation program within the presumed uncontaminated portions of RMA must investigate the primary contaminant transport pathway to confirm that no active source areas remain undetected. Some soil bores in the "uncontaminated" areas must extend into the uppermost saturated zone except in areas where detailed definition of the chemical quality of the uppermost groundwater system exists. Volatile organics contaminants were eliminated from analysis in all Phase I uncontaminated area samples due to the compositing procedure which we did not agree was appropriate sample collection method. All Phase II investigations of the uncontaminated areas must include the analysis of volatiles in the deepest interval at or within the saturated zone.

4. For all future source reports, related or adjacent source areas should be compiled into a single volume or provided for review in several volumes simultaneously. This first Phase II report often referred to data collected from source areas that were not included in this volume. There were several instances when the Army was using data to support decisions to eliminate sources or alter source boundaries without providing that data to us. Without the data we are unable to concur with the Army's recommendations and this may eventually delay Phase II implementation.

FINAL RESPONSE TO SPECIFIC COMMENTS OF COLORADO DEPARTMENT OF HEALTH TASK 1, DRAFT FINAL PHASE I REPORT SITE 36-12: PITS/TRENCHES

General comments made in the cover letter by Colorado Department of Health were discussed at the MOA meeting on June 3 and 4, 1986. A final response to these comments is included within the minutes of the MOA meeting. The following responses address the preceding specific comments from Colorado Department of Health on the Final Site 36-12 Report.

Comment_1:

P. 36-12-2 Boring location for 3010 needs to be corrected.

Response: Boring location for 3010 has been corrected.

Comment_2:

P. 36-12-12 Boring 3127 had arsenic at 10 ug/g in A interval; Boring 3131

had mercury at 0.1 ug/g in A interval. These need to be

indicated.

Response: The figures only showed values above the lower indicator

level at that time. These results have been added to the

figure.

Comment 3:

P. 36-12-16 What efforts were made to assure that the Phase I boring

locations actually penetrated the trenches and were not

located outside them.

Response: Please see the Introduction to the Contamination Assessment

Reports, the Task 1 Technical Plan, and Section 2.0 of this

text regarding the rationale for boring placement. According to

historical evidence, aerial photograph interpretation,

personnel interviews, and field observations, trenches were

never dug at this site.

Comment 4:

P. 36-12-19 Given the results in Figure 31-12-3, justification for no

Phase II work needs additional clarification.

Response: Please see p. 36-12-9 for a site history update and

p. 36-12-21 for an explanation of bedrock high effects on metals levels. Shallow mercury contamination will be further

investigated under the windblown contamination study for

nonsource areas in Section 36.

Shell Oil Company

One Shell Plaza P.O. Box 4320 Houston, Texas 77210

April 7, 1986

USATHAMA
Office of the Program Manager
Rocky Mountain Arsenal Contamination Cleanup
ATTN: ANXRM-EE: Chief: Mr. Donald L. Campbell
Building E4585
Aberdeen Proving Ground, MD 21010-5401

Dear Mr. Campbell:

We submit herewith Shell's comments on the draft final copies of Contamination Assessment Reports on Section 36, sources 36-5, 36-8, 36-10, 36-11, 36-12, 36-20, 36-21, and 36-22, February 1986.

In view of the limited time available for review, Shell may have additional comments at a later date. Also, since as indicated in your March 11, 1986 cover letter, this first group of reports represents relatively straightforward contamination results and uncomplicated Phase II sampling design, it may not expose substantive issues which may arise in the later more complex source assessments. For this reason also we reserve the right to make additional comments at a later date.

General comments which apply to the methodology and data presentation of all reports are provided below. Comments on specific sources are attached.

Our most serious concern with your assessment approach is with the derivation of background levels ("Indicator Levels") as described in the Executive Summary.

- For all seven of the trace metals, the indicator levels selected are greater than the facts presented can support. This is due partly to the use of national and regional background statistics (literature sources) in guiding the selection of the indicator levels. Comparison of local background data (bulk soil sample and soil from "uncontaminated" areas) clearly shows that the literature statistics are not representative of the RMA environment, i.e., they indicate higher background levels.
- Some of the soil analyses of "uncontaminated" areas (Table 4) used in guiding the selection of indicator levels can be expected to include a contaminant component in addition to natural background.

This may be especially true for mercury and arsenic based on Section 36 Phase I data which indicates frequent occurrences of these metals at shallow levels. This would tend to increase apparent natural background levels.

- The highest measurements (upper 20%) for each metal in the "uncontaminated" soil samples appear to have keyed the lower bound of the selected indicator level. The upper bounds (excepting zinc) range from a factor of 1.6 to 2.5 of the lower bound. This results in too broad a range in which proposed decisions will be made on the Phase II investigation.
- Shell's proposals for indicator levels are developed in comments under the Executive Summary section of the attached comments.

A second concern relates to the presentation (or lack thereof) of data and other information. Certain features of the presentation, listed below, could cause misinterpretation of the data or misdirection of subsequent work efforts.

- Sampling intervals in each report (e.g., Table 36-5-1) list the planned intervals in the Phase I Technical Plan but the actual depth of the interval was frequently changed in the field (usually because the water table was encountered). Actual depth of sampling should be shown in the reports for each sample.
- Each report includes a table of most recent analyses of ground-water under or near the source area (e.g., Table 36-5-5). Many of these analyses are quite old, up to 8 years, and therefore highly questionable as to interpretive value. Also, since ground-water contamination at any point frequently reflects contaminants up dip of the area, it is difficult to see how inclusion of groundwater analysis can provide insight to contamination on a localized basis. Groundwater data should not be included unless inferences can reasonably be made from it.
- Soil samples taken near the water table may reflect contaminants from the underlying groundwater (by volatilization or level fluctuation) as opposed to contamination from the surface. This should be suspected especially when volatiles are found at this level but not at shallower levels. See for example boring 3136 in Source 36-5. A designator should be used when groundwater contamination is possible.
- Modifications to source area boundaries from the Phase I Technical Plan occur frequently in this set of reports, e.g., Source 36-5 and 36-11. The modifications should be described in the text and reasons stated.

In designing Section 36 Phase II plans, several of the source areas in these reports are redistributed and consolidated with other source areas. This creates multiple source areas for Phase II study but the title of the expanded sources do not reflect this. For example, borings are assigned to Source 36-20 (Chemical Sewer) which are unlikely to have been impacted by the chemical sewer because of lateral distance from it. To avoid misinterpretation of data, adjustments should be made to titles in these instances.

Finally, we would like to comment regarding the Army's screening method whereby the data generated by all samples analyzed for semi-volatile and volatile compounds by GC/MS be examined to identify the unknown present. The issue of identification of unknowns is not a new issue and has been the subject of numerous communications in recent months, in particular with regard to possible degradation compounds from Army surety agents. Shell has provided the Army with a list of compounds which have a high probability of being in the environment. Unfortunately, the screening techniques utilized by the Army have a low probability of detecting most of the compounds specified by Shell. Most of these compounds would not get through the gas chromatographic columns and would require derivatization to be amenable to the specified analytical techniques. This may account for the fact that, basis the Assessment Reports released thus far, unknowns have not been found, except for naturally occurring organic compounds or impurities introduced during extraction. We recognize that the Army has plans underway to supplement Phase II analytical efforts with several specific target compounds and possible addition of methods for organo-mercury and organo-arsenic compounds. This is a step in the right direction.

We look forward to discussing these comments at a forthcoming On-Post MOA Task Group meeting.

Very truly yours,

C. K. Hahn, Manager Denver Site Project

Manufacturing & Technical

RDL:ajg

Attachment

CC: (w/attachment)
USATHAMA
Office of the Program Manager
Rocky Mountain Arsenal Contamination Cleanup
ATTN: AMXRM-EE: Mr. Kevin T. Blose
Aberdeen Proving Ground, MD 21010-5401

Mr. Thomas Bick
Land & Natural Resources Division
U.S. Department of Justice
P.O. Box 7415
Benjamin Franklin Station
Washington, D.C. 20044-7415

Major Robert J. Boonstoppel Headquarters - Department of the Army ATTN: DAJA-LTS Washington, DC 20313-2210

FINAL RESPONSE TO SPECIFIC COMMENTS OF SHELL OIL COMPANY ON TASK 1, DRAFT FINAL PHASE I REPORT SITE 36-12: PITS/TRENCHES

General comments made in the cover letter by Shell Oil Company were discussed at the MOA meeting on June 3 and 4, 1986. A final response to these comments is included within the minutes of the MOA meeting. The following responses address the preceding specific comments from Shell Oil Company on the Final Site 36-12 Report.

Comment 1: P. 36-12-19 last paragraph Agree that follow-up studies on shallow mercury contamination should be conducted.

Response:

An additional area-wide investigation of mercury contamination will be conducted under the Section 36 Nonsource Area windblown contamination study.