Data Analytics Workflow Development on DBLP Dataset

- Sponsor: Pro. Jia Zhang
- Point of Contact: Keen Wang (keen.wang@sv.cmu.edu)
- Faculty Advisor: Pro. Jia Zhang
- Team: Team 5

Roadmap

- Introduction
- Motivation
- Related technology
 - System design
- System implementation
 - Demo
 - Conclusions and future work

Introduction

- DBLP is a well-known service that provides open bibliographic information on major computer science journals and proceedings.
- DBLP indexes more than 3 million publications' metadata.

Motivation

- Create the data analytics service for DBLP:
- Build a network between authors and publications
- Develop a user-friendly interface
- Melp users get what they want effectively, efficiently and accurately:
- Improve functionality of queries
- Visualize the answer

Related Technology

🎇 Graph Database:

- A database management system with
 CRUD options working on a graph data model
- Good at handling data relationships

MySQL:

Use relational database to store user information

Related Technology

Spring framework:

vis.js:

Display dynamic, automatically organised, customizable network views.

System Design (Frontend)

Page flow:

System Implementation (Front-end)

System Design (Back-end)

Class Diagram:

```
startingPoint.KG_DBLP

KnowledgeGraph

+getPaperByAuthor(String name)
+getCoAuthor(String name)
+getMultiDepthCoAuthor(String name)
+getPaperByTimeLine(Integer begYear, Integer endYear)
+....()
+Define URL()
```



```
public Map<String, Object> findByTitleContaining(String s) {
    System.out.println("findByTitleContaining: " + s);
    Iterator<Map<String, Object>> result = paperRepository.findByTitleContaining(s).iterator();
    return FormatConverter.toAlcFormat(result);
}
```

System Design (Back-end)

O Class Diagram:

```
neo4j.repository

PaperRepository

+findPaperByTitleContaining()
+getPaperByAuthor()
+getCoAuthor()
+getPaperByTimeline()
+.....()
+Query neo4j()
```

```
@Query("MATCH (p:Paper)<-[:PUBLISH]-(a:Author) WHERE a.name = {name} RETURN p.title as paper, collect(a.name) as cast LIMIT 50")
List<Map<String, Object>> getPaperByAuthor(@Param("name") String name);
@Query("MATCH (a1:Author)<-[:CO]-(a2:Author) WHERE a2.name = {name} RETURN a2.name as author, collect(a1.name) as cast LIMIT 50"]
List<Map<String, Object>> getCoAuthor(@Param("name") String name);
```

System Implementation (Back-end)

Parse and Load DBLP data:

mdate	key	author	editor	title	pages	year	volume	journal	number	url
2011-01-11	journals/acta/Saxena	Sanjeev Saxena		Parallel Integer Sorti	607-619	1996	33	Acta Inf.	7	db/journals/acta/act
2011-01-11	journals/acta/Simon8	Hans-Ulrich Simon		Pattern Matching in	227-248	1983	20	Acta Inf.		db/journals/acta/act
2011-01-11	journals/acta/Goodma	Nathan GoodmanlOded Shmueli		NP-complete Problem	171-178	1983	20	Acta Inf.		db/journals/acta/act
2011-01-11	journals/acta/Blum82	Norbert Blum		On the Power of Cha	425-433	1982	17	Acta Inf.		db/journals/acta/act
2013-11-28	journals/acta/Schonh	nhage		rpern der Charakteris	395-398	1977	7	Acta Inf.		db/journals/acta/act

System Implementation (Back-end)

Categorized Queries:

Node

Paper

findTop5RelatedPaper

Author

formTeamByKeyWord

Relationship

Paper-----Paper

findTop5CitedPaper

Author----Author

getMultiDepthCoauthor

Author-----Paper

get Paper By Author And Timeline

System Design (User-System)

DataBase Schema

Backend Architecture

System Implementation (User-System)

System Architecture

Conclusion & Future Work

Problem:

Big data

Query time consuming

Future Work:

More friendly UI Design
Load all data
More efficient class design

