Aussagen-Logik

- 1. Einfache Aussagen: Sätze, die
 - (a) Tatbestand ausdrücken, (wahr oder falsch)
 - (b) keine *Junktoren* enthalten.

 Junktoren: "und", "oder", "nicht",

 "wenn ..., dann", und "genau dann, wenn"

Beispiele für einfache Aussagen:

- (a) "Die Sonne scheint."
- (b) "Es regnet."
- (c) "Am Himmel ist ein Regenbogen." einfache Aussagen = atomare Aussagen
- 2. Zusammengesetzte Aussagen

"Wenn die Sonne scheint <u>und</u> es regnet, <u>dann</u> ist ein Regenbogen am Himmel."

- 3. Logische Schlüsse
 - 1. SonneScheint
 - 2. EsRegnet
 - 3. SonneScheint \land EsRegnet \rightarrow Regenbogen

Regenbogen

Schluss-Regeln

1. Junktoren als Abkürzungen:

- (a) $\neg a$ für nicht a
- (b) $a \wedge b$ für a und b
- (c) $a \lor b$ für $a \ oder \ b$
- (d) $a \rightarrow b$ für wenn a, dann b
- (e) $a \leftrightarrow b$ für a genau dann, wenn b

2. Konkreter Schluß:

- 1. SonneScheint
- 2. EsRegnet
- 3. SonneScheint \land EsRegnet \rightarrow Regenbogen

Regenbogen

3. Schluss-Regel:

$$\frac{p \quad q \quad p \land q \to r}{r}$$

Aufgabe: Welche Schluss-Regel wird in dem folgenden Argument verwendet?

"Wenn es regnet, ist die Straße nass. Es regnet nicht. Also ist die Straße nicht nass."

Kalkül, Herleitungsbegriff

- 1. Kalkül = Menge von Schluss-Regeln
- 2. Scheibweise: $M \vdash r$

lese: Kalkül \vdash leitet r aus M her.

- (a) ⊢: Kalkül
- (b) M: Menge von aussagenlogischen Formeln
- (c) r: aussagenlogische Formel

Folgerungsbegriff

1. $M \models r$ (lese: aus M folgt r)

Interpretation:

Wenn alle Formeln aus M wahr sind, dann ist auch r wahr.

Ziel: korrekter und vollständiger Kalkül

1. Korrektheit:

Aus
$$M \vdash r$$
 folgt $M \models r$.

2. Vollständigkeit:

Aus
$$M \models r$$
 folgt $M \vdash r$.

Anwendung der Aussagenlogik

- Analyse und Design digitaler Schaltungen.
 Pentium IV, Northwood Kernel: 55 Millionen Gatter
 - (a) Schaltungsvergleich: Magma offeriert

 Quartz Formal zum Preis von 150 000 \$ pro

 Lizenz
 - (b) Timing Analyse
 - (c) ···
- Erstellung von Stundenplänen.
 (diskrete Mathematik → Aussagenlogik)
- Verschlußpläne für Weichen und Signale.
 (Einstellung von Fahrstraßen)
- Kombinatorische Puzzle
 (Beispiel: 8-Damen-Problem).

Extensional vs. Intensional Interpretation

Interpretation aussagenlogischer Junktoren *extensional*:
Berechnung von

$$\mathcal{I}(f \odot g)$$
 mit $\odot \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

- 1. Werte $\mathcal{I}(f)$ und $\mathcal{I}(g)$ reichen aus,
- 2. f und g nicht benötigt!

Problem: Umgangssprache

Kausale Bedeutung von "wenn ···, dann"

Beispiel:

"Wenn $3 \cdot 3 = 8$, dann schneit es Morgen."

- 1. Extensional: wahr
- 2. Intensional: Unsinn, da kein Zusammenhang besteht.

Erkenntnis

- extensionale Interpretation ist Abstraktion
 kausale Zusammenhänge bleiben unberücksichtigt
- mathematische Praxis
 - 1. extensionale Interpretation ausreichend
 - 2. intensionale Interpretation zu kompliziert

Aussagenlogische Formeln

Gegeben: \mathcal{P} Menge 0-stelliger Prädikats-Zeichen (Aussage-Variablen)

1. $\top \in \mathcal{F}$ und $\bot \in \mathcal{F}$.

⊤: *Verum*, immer wahr.

⊥: Falsum, immer falsch.

- 2. Wenn $p \in \mathcal{P}$, dann $p \in \mathcal{F}$.
- 3. Wenn $f \in \mathcal{F}$, dann $\neg f \in \mathcal{F}$.
- 4. Wenn $f_1, f_2 \in \mathcal{F}$, dann $(f_1 \vee f_2) \in \mathcal{F}$.
- 5. Wenn $f_1, f_2 \in \mathcal{F}$, dann $(f_1 \wedge f_2) \in \mathcal{F}$.
- 6. Wenn $f_1, f_2 \in \mathcal{F}$, dann $(f_1 \to f_2) \in \mathcal{F}$.
- 7. Wenn $f_1, f_2 \in \mathcal{F}$, dann $(f_1 \leftrightarrow f_2) \in \mathcal{F}$.

Beispiele: Sei $\mathcal{P} = \{p, q, r\}$

- $(\neg p \rightarrow q)$
- $((p \land q) \rightarrow q))$
- $(p \leftrightarrow (q \land (q \land p)))$

Klammern Sparen

1. Äußere Klammern werden weggelassen:

$$p \wedge q$$
 statt $(p \wedge q)$.

2. "∨" und "∧" werden links geklammert:

$$p \wedge q \wedge r$$
 statt $(p \wedge q) \wedge r$.

3. "→" wird rechts geklammert:

$$p \rightarrow q \rightarrow r$$
 statt $p \rightarrow (q \rightarrow r)$.

4. " \vee " und " \wedge " binden stärker als " \rightarrow ":

$$p \wedge q \rightarrow r$$
 statt $(p \wedge q) \rightarrow r$

5. " \rightarrow " bindet stärker als " \leftrightarrow ":

$$p \to q \leftrightarrow r$$
 statt $(p \to q) \leftrightarrow r$.

Beispiele:

$$ullet$$
 $(\neg p
ightarrow q)$ wird zu $\neg p
ightarrow q$

$$ullet$$
 $((p \wedge q)
ightarrow (q ee r))$ wird zu $p \wedge q
ightarrow q ee r$

•
$$(p \leftrightarrow ((q \land q) \land p))$$
 wird zu $p \leftrightarrow q \land q \land p$

Wahrheits-Tafel

p	q	$\neg p$	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
true	true	false	true	true	true	true
true	false	false	true	false	false	false
false	true	true	true	false	true	false
false	false	true	false	false	true	true

Interpretiere Junktoren als Funktionen gemäß Wahrheits-Tafel:

$\bigcirc : \mathbb{B} \to \mathbb{B}$	
$\bigcirc : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$	$\bigcirc: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$
$\bigcirc: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$	$\Theta: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$

Definition: Semantik der Aussagenlogik

Gegeben: $\mathcal{I}: \mathcal{P} \to \mathbb{B}$

Erweitere: $\mathcal{I}: \mathcal{F} \to \mathbb{B}$

1.
$$\mathcal{I}(\neg f) := \bigcirc (\mathcal{I}(f))$$

2.
$$\mathcal{I}(f \wedge g) := \bigotimes \Big(\mathcal{I}(f), \, \mathcal{I}(g) \Big)$$

3.
$$\mathcal{I}(f \vee g) := \bigotimes \Big(\mathcal{I}(f), \, \mathcal{I}(g) \Big)$$

4.
$$\mathcal{I}(f \to g) := \bigoplus (\mathcal{I}(f), \mathcal{I}(g))$$

5.
$$\mathcal{I}(f \leftrightarrow g) := \bigoplus \Big(\mathcal{I}(f), \, \mathcal{I}(g) \Big)$$

Wahrheits-TafeIn

Prinzip:

- 1. Eine Spalte pro Teilformel.
- 2. Teilformeln ordnen nach Komplexität.
- 3. Eine Zeile pro aussagenlogische Interpretation. (n aussagenlogische Variablen $\Rightarrow 2^n$ Zeilen.)

Wahrheits-Tafel für $(\neg p \rightarrow q) \rightarrow q$

Teilformeln: $\{p, q, \neg p, \neg p \rightarrow q, (\neg p \rightarrow q) \rightarrow q\}$

p	q	$\neg p$	$\neg p \rightarrow q$	$(\neg p \to q) \to q$
true	true	false	true	true
true	false	false	true	false
false	true	true	true	true
false	false	true	false	true

Aufgabe: Wahrheits-Tafel für $(p \rightarrow \neg p) \rightarrow \neg p$

Lösung:

Teilformeln $\{p, \neg p, p \rightarrow \neg p, (p \rightarrow \neg p) \rightarrow \neg p\}$

p	$\neg p$	$p \rightarrow \neg p$	$(p \to \neg p) \to \neg p$
true	false	false	true
false	true	true	true

Anwendung

Nach einem Einbruch: drei Verdächtige Anton, Bruno, Claus

1. Einer der drei ist schuldig:

$$f_1 := a \vee b \vee c$$
.

- 2. Wenn Anton schuldig ist, dann hat er genau einen Komplizen.
 - (a) Wenn Anton schuldig, dann hat er mindestens einen Komplizen:

$$f_2 := a \rightarrow b \lor c$$

(b) Wenn Anton schuldig ist, dann hat er höchstens einen Komplizen:

$$f_3 := a \rightarrow \neg (b \land c)$$

3. Wenn Bruno unschuldig ist, dann Claus auch:

$$f_4 := \neg b \rightarrow \neg c$$

4. Wenn genau zwei schuldig, dann Claus schuldig.

$$f_5 := \neg(\neg c \land a \land b)$$

5. Wenn Claus unschuldig ist, ist Anton schuldig.

$$f_6 := \neg c \rightarrow a$$

Äquivalenzen

1.
$$\models \neg \bot \leftrightarrow \top$$
 und $\models \neg \top \leftrightarrow \bot$

2. Tertium-non-Datur

$$\models p \lor \neg p \leftrightarrow \top$$
$$\models p \land \neg p \leftrightarrow \bot$$

3. Neutrales Element

$$\models p \lor \bot \leftrightarrow p$$

$$\models p \land \top \leftrightarrow p$$

$$\models p \lor \top \leftrightarrow \top$$

$$\models p \land \bot \leftrightarrow \bot$$

4. Idempotenz

$$\models p \land p \leftrightarrow p$$

$$\models p \lor p \leftrightarrow p$$

5. Kommutativität

$$\models p \land q \leftrightarrow q \land p$$

$$\models p \lor q \leftrightarrow q \lor p$$

6. Assoziativität

$$\models (p \land q) \land r \leftrightarrow p \land (q \land r)$$

$$\models (p \lor q) \land r \leftrightarrow p \lor (q \land r)$$

Äquivalenzen

7. Elimination der Doppelnegation

$$\models \neg \neg p \leftrightarrow p$$

8. DeMorgan'sche Regeln

$$\models \neg (p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\models \neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

9. Absorption

$$\models p \land (p \lor q) \leftrightarrow p$$
$$\models p \lor (p \land q) \leftrightarrow p$$

10. Distributivität

$$\models p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$
$$\models p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

11. Elimination von \rightarrow

$$\models (p \rightarrow q) \leftrightarrow \neg p \lor q$$

12. Elimination von \leftrightarrow

$$\models (p \leftrightarrow q) \leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$$

Konjunktive Normalform

Definition: $f \in \mathcal{F}$ ist *Literal* g.d.w.

- $f = \top$ oder $f = \bot$, oder
- f = p mit $p \in \mathcal{P}$, oder
- $f = \neg p$ mit $p \in \mathcal{P}$.

Definition: $f \in \mathcal{F}$ ist *Klausel* g.d.w.

$$f = L_1 \vee \cdots \vee L_r$$

mit Literalen L_1 , \cdots , L_r .

Mengenschreibweise:

$$f = \{L_1, \dots, L_r\}$$
 (statt $f = L_1 \vee \dots \vee L_r$)

Definition:

 $f \in \mathcal{F}$ ist in konjunktiver Normalform (kurz KNF) g.d.w.

$$f = k_1 \wedge \cdots \wedge k_n$$

mit Klauseln k_i für $i = 1, \dots, n$.

Mengenschreibweise:

$$f = \{k_1, \dots, k_n\}$$
 (statt $f = k_1 \wedge \dots \wedge k_n$)

Überführung in KNF

1. Eliminiere "↔" mit

$$(p \leftrightarrow q) \leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$$

2. Eliminiere "→" mit

$$(p \to q) \leftrightarrow \neg p \lor q$$

- 3. Schiebe "¬" nach innen mit
 - (a) $\neg \bot \leftrightarrow \top$
 - (b) $\neg \top \leftrightarrow \bot$
 - (c) $\neg \neg p \leftrightarrow p$
 - (d) $\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
 - (e) $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$

Ergebnis in Negations-Normalform:

"¬" steht nur noch vor Aussage-Variablen.

4. Ausmultiplizieren mit

$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

"V" steht nur noch innen.

- 5. Mengen-Schreibweise:
 - (a) Klausel: Menge von Literalen
 - (b) Formel: Menge von Klauseln

Beispiel zur Überführung in KNF

$$(p \to q) \to (\neg p \to \neg q)$$

$$\Leftrightarrow \neg (p \to q) \lor (\neg p \to \neg q)$$

$$\Leftrightarrow \neg (\neg p \lor q) \lor (\neg \neg p \lor \neg q)$$

$$\Leftrightarrow (\neg \neg p \land \neg q) \lor (\neg \neg p \lor \neg q)$$

$$\Leftrightarrow (p \land \neg q) \lor (p \lor \neg q)$$

$$\Leftrightarrow (p \lor (p \lor \neg q)) \land (\neg q \lor (p \lor \neg q))$$

$$\Leftrightarrow \{\{p, p, \neg q\}, \{\neg q, p, \neg q\}\}$$

$$\Leftrightarrow \{\{p, \neg q\}, \{\neg q, p\}\}$$