565 mid-term

model

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, $i = 1, 2, a, j = 1, 2, n$, $\sum_{i=1}^a \tau_i = 0$
Random effects: $\tau_i \sim iidN(0, \sigma_\tau^2)$, τ_i and ε_{ij} indep

$$\epsilon_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, $i = 1, 2, a, j = 1, 2, b$

Random effects:
$$\tau_i \sim tialN(0, \sigma_{\tau}^2), \tau_i$$
 and ε_{ij} indep $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim tidN(0, \sigma^2)$, $i = 1, 2, a, j = 1, 2, b$
Fixed effects: $\sum_{i=1}^a \tau_i = 0, \sum_{j=1}^b \beta_j = 0$ Random effects: $\beta_j \sim tidN(0, \sigma_{\beta}^2)$

$$y_{..} = \sum_{i=1}^{a} (y_{i.} = \sum_{j=1}^{n} y_{ij}), \mu = \frac{\sum_{i=1}^{a} \mu_{i}}{a}$$

$$\bar{y}_{..} = \frac{1}{N} \left[y_{..} = \sum_{i=1}^{a} (y_{i.} = \sum_{j=1}^{n} y_{ij}) \right] = \frac{1}{a} \sum_{i=1}^{a} \left[\bar{y}_{i.} = \frac{1}{n} (y_{i.} = \sum_{j=1}^{n} y_{ij}) \right]$$

least square and normal equation CRD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_i)^2$$

$$\frac{\partial SSE}{\partial \mu} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i})(-1) = 0 \ y_{..} = an\hat{\mu} + n \sum_{i=1}^{a} \hat{\tau}_{i}$$

$$\frac{\partial SSE}{\partial \tau_{i}} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i})(-1) = 0 \ y_{i.} = n\hat{\mu} + n\hat{\tau}_{i}$$
RCBD: $SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_{i} - \beta_{j})^{2}$

RCBD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_i - \beta_j)^2$$

$$\frac{\partial SSE}{\partial \mu}\Big|_{\hat{\mu},\hat{\tau}_i,\hat{\beta}_j} = 2\sum_{i=1}^a \sum_{j=1}^b (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$\frac{\partial SSE}{\partial \tau_i}\Big|_{\hat{\mu},\hat{\tau}_i,\hat{\beta}_j} = 2\sum_{j=1}^b (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$\frac{\partial \underline{\partial S}\underline{\partial E}}{\partial \tau_i}\Big|_{\hat{\mu},\hat{\tau}_i,\hat{\beta}_j} = 2\sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_i - \beta_j)(-1) = 0$$

$$\left. \frac{\partial SSE}{\partial \beta_j} \right|_{\hat{\mu}, \hat{\tau}_i, \hat{\beta}_j} = 2 \sum_{i=1}^a (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$y_{..} = ab\hat{\mu} + b\sum_{i=1}^{a} \hat{\tau}_i + a\sum_{j=1}^{b} \hat{\beta}_j$$

$$y_{i.} = b\hat{\mu} + b\hat{\tau}_i + \sum_{j=1}^b \hat{\beta}_j$$

$$y_{.j} = a\hat{\mu} + \sum_{i=1}^{a} \hat{\tau}_i + a\hat{\beta}_j$$

hypothesis test

ANOVA

	SS	df	MS	F
SS_{Trt}	$n\sum_{i=1}^{a}(\bar{y}_{i.}-\bar{y}_{})^{2}$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_E	$\sum_{\substack{i=1\\ a\\ i=1}}^{a} \sum_{\substack{j=1\\ j=1}}^{n} (y_{ij} - \bar{y}_{i.})^2$	a(n-1)	$\frac{SS_E}{N-a}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{})^2$	an-1		
SS_{Trt}	$b\sum_{i=1}^{a}(\bar{y}_{i.}-\bar{y}_{})^{2}$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_{Blk}	$a\sum_{j=1}^{b}(\bar{y}_{.j}-\bar{y}_{})^{2}$	b-1	$\frac{SS_{Trt}}{b-1}$	$\frac{MS_{Blk}}{MS_{E}}$
SS_E	$SS_T - SS_{Trt} - SS_{Blk}$	(a-1)(b-1)	$\frac{SS_E}{df_E}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{})^2$	ab-1		'

distribution

 $SS_{Blk} = \frac{1}{a} \sum_{j=1}^{b} y_{.j}^2 - \frac{y_{.j}^2}{N}$

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2}$$

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} - \frac{y_{.}^{2}}{N}$$

$$SS_{C} = \frac{(\sum_{i=1}^{a} c_{i}\bar{y}_{i})^{2}}{\frac{1}{n} \sum_{i=1}^{a} c_{i}^{2}} = SS_{Trt}$$

$$C = \sum_{i=1}^{a} c_i \mu_i; \sum_{i=1}^{a} c_i = 0;$$
orthogonal $\sum_{i=1}^{a} c_i d_i = 0$

CI $\begin{array}{ll} \text{balanced} & \text{unbalanced} \\ \bar{y}_i \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n}} & \bar{y}_i \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n_i}} \\ \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{2MS_E}{n}} & \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})} \end{array}$

expected value

	E[f.]		E[r.]		
MS_{Tr}	$\sigma_t \mid \sigma^2 + \frac{1}{\sigma}$	$\frac{n}{i-1} \sum_{i=1}^{a} \tau_i^2$	$\sigma^2 + n\tau$	$\frac{2}{i}$	
MS_{Tr}	$\sigma^2 + \frac{1}{\sigma^2}$	$\frac{b}{a-1}\sum_{i=1}^a \tau_i^2$			
MS_{Bl}	$k \mid \sigma^2 + \overline{k}$	$\frac{a}{b-1}\sum_{j=1}^{b}\beta_j^2$	$\begin{vmatrix} \sigma^2 + a\beta \\ \sigma^2 \end{vmatrix}$	$\frac{2}{i}$	
MS_E	σ^2	$-1 \longrightarrow j=1$	σ^2	J	
	y_{ij}	$ \bar{y}_{\cdot\cdot} $	\bar{y}_{i} .	$ \begin{array}{ c c } $	
$\mathrm{E}[\mathrm{f.}]$	μ	μ_{\perp}	$\begin{array}{ c c } \mu + \tau_i \\ \underline{\sigma^2} \end{array}$	$\mu + \beta_j$	
V[f.]	σ^2	$\frac{\sigma^2}{na}$	$\frac{\sigma^2}{n}$		
E[r.]	μ	μ	$\mu + \tau_i$ $\frac{\sigma^2}{\sigma^2} + \sigma^2$		_
V[r.]	$\sigma^2 + \sigma_{ au}^2$	$\frac{\sigma_{\tau}^2}{a} + \frac{\sigma^2}{na}$	$\frac{\sigma^2}{n} + \sigma_{\tau}^2$		_
û		$ \hat{u}_i \hat{\tau}$, l <i>6</i>),	$\hat{y}_{i,i}$

 $Cov(y_{ij}, y_{kl}) = \{0, i \neq k; \sigma_{\tau}^2, i = k, j \neq l; \sigma^2 + \sigma_{\tau}^2, i = k, j = l\}$

	$\hat{\sigma}^2$	$\hat{\sigma}_{Trt}^2$	$\hat{\sigma}_{Blk}^2$	$V\widehat{ar(\bar{y}_{i.})}$	\hat{X}
f.	MSE	$\frac{\stackrel{O}{M}\stackrel{T}{S}_{Trt}^{t}-MS_{E}}{n}$		$\frac{MS_E}{n}$	
r.	MSE	$\frac{MS_{Trt} - MS_E}{n}$	$\frac{MS_{Blk}-M}{a}$	$\frac{MS_{Trt}}{n}$	$ \frac{ay'_{i.} + by'_{.j} - y'_{}}{(a-1)(b-1)} $

covariance

 \mathbf{E} Var[] $\frac{n-1}{n}\sigma^2$ 0 $(a-1)\sigma^2$ $\frac{\overline{a}_n}{\text{Var}[]}$ $\frac{n-1}{n}\sigma^2$ $y_{ij} - \bar{y}_{i}$. $(a-1)(n\sigma_{\tau}^2 + \sigma_{\tau}^2)$ 0 Var[] β_i $(a-1)\sigma^2$ τ_i $\underline{(a\!-\!1)\sigma^2}$ τ_i $(b-1)\sigma^2$ Е $(b\!-\!1)(\sigma_\beta^2\!+\!\sigma^2)$ 0

$$y_{.j} - y_{..} \mid \beta_{j} - \frac{1}{b} + \frac{1}{a} - \frac{1}{a} - \frac{1}{ab} \mid 0 \mid \frac{1}{ab}$$

$$y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..} = \varepsilon_{ij} - \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{a} - \frac{\sum_{j=1}^{b} \varepsilon_{ij}}{b} + \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{ab}, E[] = 0, Var = \frac{(a-1)(b-1)\sigma^{2}}{ab}$$

$$Var \left[\sum_{i=1}^{a} c_{i}y_{i.} \right] = \sigma^{2} \sum_{i=1}^{a} n_{i}c_{i}^{2}$$

 $\beta_j - \frac{\sum_{j=1}^b \beta_j}{b} + \frac{\sum_{i=1}^a \varepsilon_{ij}}{2} - \frac{\sum_{i=1}^a \sum_{j=1}^b \varepsilon_{ij}}{2}$

 $(a-1)\sigma^2$

 $(a-1)\sigma^2$

 $(b-1)(a\sigma_{\beta}^2+\sigma^2)$