Київський національний університет ім. Т.Г.Шевченка кафедра Програмних систем та Технологій

Звіт до лабораторної роботи № 1 варіант №11

з дисципліни

«Об'єктно-орієнтоване конструювання програм»

Студента групи ІПЗ-24 групи

Липник Артем Вадимович

Лабораторна робота 1 Центральні тенденції та міра дисперсії

Мета – навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Постановка задачі

- 1. Побудувати таблицю частот та сукупних частот для переглянутих фільмів. Визначити фільм, який був переглянутий частіше за інші.
- 2. Знайти Моду та Медіану заданої вибірки.
- 3. Порахувати Дисперсію та Середнє квадратичне відхилення розподілу.
- 4. Побудувати гістограму частот для даного розподілу.
- 5. Зробити висновок з вигляду гістограми, про закон розподілу.

Псевдокод алгоритму

```
import math
import numpy
import matplotlib.pyplot as plt
def setData(fileName, data):
   file = open(fileName, 'r')
    for line in file:
        data.append(int(line.strip()))
def getN(data):
   N = 0
   for i in data:
       N += i
    return N
def printTable(data):
   print("Xi\t fi\t Rf\t\t Fi\t")
    count = 1
   N = getN(data)
   Cum = 0
```

```
for i in data:
       Cum += i
       print(count, "\t", i, "\t", round(i/N, 3), "\t\t", Cum)
   print("Total\t", N, "\t", " ", "\t", " ")
data = []
setData('input_10.txt', data)
# Firts Exersice
printTable(data)
print("MAX - ", max(data))
print("\n\n")
# Second Exercise
print("Moda - ", max(set(data), key=data.count))
sortData = data.copy()
sortData.sort()
print("Mediana - ", sortData[int(len(sortData)/2)] if len(sortData) % 2
      0 else (sortData[int(len(sortData)/2) - 1] +
sortData[int(len(sortData)/2)]))
# third exercise
rangeD = max(data) - min(data)
upper = 0
for i in data:
   upper += (i - numpy.average(data)) ** 2
dispersion = (upper / (len(data) - 1))
print("MDA = ", dispersion)
sqlrDisper = math.sqrt(dispersion)
print("Середнє квадратичне відхилення розподілу: ", sqlrDisper)
plt.bar(range(len(data)), data)
```

```
plt.xlabel("Film")
plt.ylabel("Частота")
plt.show()
```

Випробування алгоритму			
Xi	fi	Rf	Fi
1	10	0.028	10
2	1	0.003	11
3	66	0.188	77
4	75	0.214	152
5	1	0.003	153
6	1	0.003	154
7	12	0.034	166
8	10	0.028	176
9	97	0.276	273
10	12	0.034	285
11	66	0.188	351
Total 351			
MAX - 97			

Moda - 1 Mediana - 12 MDA = 1303.6909090909094

Середнє квадратичне відхилення розподілу: 36.10666017635679

Висновки: Проробивши лабораторну роботу я навчився використовувати на практиці набуті знання про центральні тенденції та міри.