$2025\mbox{-}08\mbox{-}07$ - Apply the concepts of Convolution Neural Network on the given data

07 August 2025 09:19

07 August 2025 09:19		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 64)	640
max_pooling2d (MaxPooling2D)	(None, 13, 13, 64)	
flatten (Flatten)	(None, 10816)	0
dense (Dense)	(None, 128)	1,384,576
dense_1 (Dense)	(None, 10)	1,290
-> hayer Werron Sh	ape Activation Shape	Parmeters
IIP (28,28,1)	•	0
=> (3,7,64)	$\left[\frac{28-3}{1} \right] + 1 = 2$	
-> (nv2) (26,26,6)		646
Y = [Heigh of filter x Wilth of Filter No. of fitter in last layer]		
[Y+1] x No. 9 filler in convent layer		
$\sum \left[3 \times 3 \times 1 \right] + 1 \right] \times 64 = 640$		
-s Max Pol 2D (13 x 13	1816	6

=> Underfitting Strategies: => Train = Deeper M/W

Deta Agmentation