Statistics Tutorial 03

Philipp Scherer & Jens Wiederspohn

13.05.2020

Disclaimer!

- The content of the slides partly relies on material of Philipp Prinz, a former Statistics tutor. Like us, he's just a student. Therefore we provide no guarantee for the content of the slides or other data/information of the tutorial.
- Please note that the slides will not cover the entire lecture content. To pass the exam, it is still absolutely necessary to deal with the Wooldridge in detail!

Logarithm in regressions

Figure 1: Original data

Figure 2: Log transformed data

- If residuals are not normally distributed but right-skewed, taking the logarithm of a variable may improve fit
 - Distribution becomes more symmetric and normal
 - BUT: If we use log of left skewed distributions, it makes them even more left skewed!:(

Fun with logarithms

- Model interpretation
 - log(y) and log(x): one % increase in X increases Y by $\beta\% \to \beta$ measures 'elasticity'
 - log(y) and x: one unit increase in X increases Y by $\beta \cdot 100\% \rightarrow \beta$ measures 'semi-elasticity'
 - y and log(x): one unit increase in X increases Y by $\beta \div 100$
- Calculation
 - log(x) = y is solution to $e^y = x$
 - $y = log(x) \Leftrightarrow exp(y) = x$
 - log(1) = 0 since $e^0 = 1$
 - Basic Rules
 - $log(a \cdot x) = log(a) + log(x)$
 - $log(a \div x) = log(a) log(x)$
 - $log(x)^a = a \cdot log(x)$
 - $\frac{d\log(x)}{dx} = \frac{1}{x}$
 - · Logarithmic function is inverse of exponential function
 - log(exp(x)) = x = exp(log(x))

Coefficient of determination

- Goodness-of-fit → How well does regression line fit the data?
 - R^2 = percentage of sample variation in y that is explained by x = ratio of explained variation compared to total variation
 - R^2 is bound between 0 and 1 (0% to 100%)
- $R^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$
 - $SST = SSE + SSR \rightarrow \frac{SST}{SST} = \frac{SSE}{SST} + \frac{SSR}{SST} \rightarrow 1 = \frac{SSE}{SST} + \frac{SSR}{SST}$
 - What assumption do we need to make so that this holds?
- $R^2 = (Corr(y_i, \hat{y}_i))^2 = \text{squared correlation of } y_i \text{ and } \hat{y}_i$
- ullet Low/high R^2 does not always mean that model is bad/good
 - Quality of estimate does not depend directly on R^2
 - R² automatically grows with number of explanatory variables

Composition of OLS estimator

ullet eta in population is unknown, we estimate \hat{eta} from our data

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \bar{x})y_{i}}{\sum (x_{i} - \bar{x})^{2}}, \text{ since } \sum -\bar{y}(x_{i} - \bar{x}) = 0$$

$$= \frac{\sum (x_{i} - \bar{x})(\beta_{0} + \beta_{1}x_{i} + u_{i})}{SST_{x}}$$

$$= \frac{\beta_{0}\sum (x_{i} - \bar{x})}{SST_{x}} + \frac{\beta_{1}\sum (x_{i} - \bar{x})x_{i}}{SST_{x}} + \frac{\sum (x_{i} - \bar{x})u_{i}}{SST_{x}}$$

$$= \beta_{1} + \frac{\sum (x_{i} - \bar{x})u_{i}}{SST_{x}}$$

$$= \text{true } \beta_{1} + \text{error}$$

 \rightarrow WS 2 Ex. 3c!

Unbiasedness of OLS estimator

• Recall: bias = $E(\hat{\theta}) - \theta \rightarrow \text{unbiased if } E(\theta) - \theta = 0$

$$E(\hat{\beta}_1) = E(\beta_1) + E\left(\frac{\sum (x_i - \bar{x})u_i}{SST_x}\right)$$

$$= \beta_1 + \frac{1}{SST_x} \sum E(x_i - \bar{x})u_i$$

$$= \beta_1 + \frac{1}{SST_x} \sum (x_i - \bar{x}) \underbrace{E(u_i)}_{0}$$

$$= \beta_1$$

- $E(\hat{\beta}_1) \beta_1 = \beta_1 \beta_1 = 0 \rightarrow OLS$ estimator is unbiased!
 - ... as long as our assumptions 1-4 hold
 - If all assumptions hold, OLS estimator is BLUE
 → best linear unbiased estimator

Variance of the OLS estimator

• We need homoskedasticity assumption: $Var(u_i|x_i) = \sigma^2$

$$Var(\hat{\beta}_1) = \underbrace{Var(\beta_1)}_{0} + Var\left(\frac{\sum (x_i - \bar{x})u_i}{SST_x}\right)$$

$$= \left(\frac{1}{SST_x}\right)^2 \underbrace{\sum (x_i - \bar{x})^2}_{SST_x} \underbrace{Var(u_i)}_{\sigma^2}$$

$$= \frac{1}{SST}\sigma^2 = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

- When is $Var(\hat{\beta}_1)$ large?
 - Large error variance and little variability in x
 → increase n and try to account for unobservables → Why?

Error variance

- Remember difference between u_i (error) and \hat{u}_i (residual)!
- u_i cannot be observed, but we can use \hat{u}_i as an estimator

$$\sigma^{2} = \frac{1}{n} \sum u_{i}^{2}$$

$$\rightarrow \hat{\sigma}^{2} = \frac{1}{n} \sum \hat{u}_{i}^{2} = \frac{SSR}{n}$$

- Biased! Does not account for $\sum \hat{u}_i = 0$ and $\sum x_i \hat{u}_i = 0$
 - "Give up" 2 df to guarantee that assumptions hold $\rightarrow df = n 2$ gives unbiased estimator

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum u_i^2 = \frac{SSR}{n-2}$$

Standard error of $\hat{\beta}_1$

- Estimate σ with $\hat{\sigma}$ (standard error of regression, also RMSE)
- We can use $\hat{\sigma}$ to estimate SE of our regressors

$$sd(\hat{eta}_1) = \sqrt{rac{\sigma^2}{SST_x}} = rac{\sigma}{\sqrt{SST_x}}$$
 $se(\hat{eta}_1) = rac{\hat{\sigma}}{\sqrt{SST_x}}$
 $= rac{\hat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}}$

Multiple Linear Regression

- More than one explanatory variable
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$
- x₂ is taken out of the error term u
 - Effect of x_2 was not accounted for before, but now it is
 - Explicitly accounting for x_2 allows to hold it constant
 - \rightarrow Effect of x_1 on y holding x_2 constant (& vice versa)
 - Relaxes assumption Cov(x, u) = 0
- Useful for generalizing functional relationships
 - Suppose too much learning can harm your grades
 - Include quadratic term to account for u-shaped relationship
 - grade = $\beta_0 + \beta_1 hours + \beta_2 hours^2 + u$
 - What type of effects do you expect?

OLS estimates for k > 1 (optional)

OLS estimation works analogous to the case where k=1
 → Minimize sum of squared residuals

$$\arg \min_{u^2} \sum_{i=1}^n u_i^2$$

$$= \arg \min_{u^2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2})^2$$

• FOC w.r.t. $\hat{\beta}_1$:

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2})^2}{\partial \hat{\beta}_1} =$$

$$-2 \sum_{i=1}^{n} x_{i1} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2}) = 0$$

Computation is usually performed with computer program

Dataframe & notation

Уi	x _{i1}	x _{i2}	X _i 3	 Xik
<i>y</i> ₁	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	 <i>x</i> _{1<i>k</i>}
<i>y</i> ₂	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	 x_{2k}
<i>y</i> 3	<i>X</i> 31	<i>X</i> 32	<i>X</i> 33	 <i>X</i> 3 <i>k</i>
Уn	X _n 1	X _n 2	X _n 3	 X _{nk}

- Top-down: units from i = 1 to n
- Left-right: variables from j = 1 to k
 - x_{23} = value for second person on x_3

Interpretation of regression equation

- $\hat{\beta}_0$: intercept, predicted value of y when $x_k = 0$
- Coefficients $\hat{\beta}_k$ have partial effect (c.p.) interpretations

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2$$

- Multiple regression allows us to mimic a ceteris paribus style data collection without restricting values of any independent variables
- If x_2 is held fixed, we have $\Delta x_2 = 0$
 - $\Delta \hat{y} = \hat{\beta}_1 \Delta x_1$
 - $\hat{\beta}_1 = \text{change in } \hat{y} \text{ due to a one-unit increase in } x_1 \text{ if } x_2 \text{ is fixed}$
 - Works similarly if we have more than two explanatory variables
- Likewise, if x_1 is held fixed, we have $\Delta x_1 = 0$
 - $\Delta \hat{y} = \hat{\beta}_2 \Delta x_2$

Regression coefficient

• Effect of $x_1 = \text{change in } \hat{y} \text{ per change in } x_1$

$$\begin{split} \Delta \hat{y} = & \hat{\beta}_1 \Delta x_1 \\ \rightarrow & \hat{\beta}_1 = \frac{\Delta \hat{y}}{\Delta x_1} \end{split}$$

Controlling for confounders

- Controlling = holding confounders fixed
 - Hold $x_2, x_3,...$ fixed when we are interested in the effect of x_1
 - x_2 etc. should be confounders of x_1 and y
- Suppose we have $\hat{\beta_0} + \hat{\beta_1} wage + \hat{\beta_2} foreign + \hat{\beta_3} age$
 - If foreign and age are fixed, $\hat{\beta}_1 =$ effect of wage
 - If only wage varies, it is responsible for changes in vote
- Allows us to keep other factors fixed, similar to laboratory
 - $\bullet \ \ \text{Requires correctly specified model} \to \text{Lab is still ideal case!}$

Fitted values

- Fitted value = predicted value
- Value that \hat{y} takes if certain values of x_k are inserted
 - Prediction of \hat{y} for individual with certain combination of x_k
 - E(grade) for $x_1 = male$, $x_2=11$ lectures, $x_3=13$ tutorials?

Coefficient of determination for MLR

- We still have $\underbrace{SST}_{\text{total}} = \underbrace{SSE}_{\text{explained}} + \underbrace{SSR}_{\text{residual}}$
- Divide by SST to get:

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- Sample variation in y_i that is explained by our model
- $R^2 = corr(y_i, \hat{y}_i)^2$
- In MLR, R^2 never decreases with additional variables!
 - More variables \rightarrow larger SSE \rightarrow larger R^2
 - Also applies if the connection is purely random and close to 0
 - Number of variables not taken into account \rightarrow adjusted R^2

Gauss-Markov for k > 1

- **1** Model is linear in its parameters β_k
- We have a random sample of n observations
- No perfect collinearity
 - x_k varies (= x_k is not constant)
 - No perfect correlation between the x_k
 - Fails if we have too few observations
 - For k+1 parameters, we need $n \ge k+1$
- **4** Zero conditional mean $\rightarrow E(u|x_1, x_2, ..., x_k) = 0$
 - Given all independent variables, u is 0 on average
- **6** Homoskedasticity $\rightarrow Var(u|x_1, x_2, ..., x_k) = \sigma^2$
 - Variance in error term is equal for all combinations of x_k
 - Var(u) does not change with explanatory variables

Perfect collinearity

- Perfect collinearity: $x_k^* = \text{exact linear function of other } x_k$
 - Results in **perfect** correlation between independent variables
 - E.g. date of birth and age; p_{dem}, p_{rep} and vote margin
- ullet Stat software cannot compute \hat{eta}_{k} with perfect correlation
 - Suppose $corr(x_1, x_2) = 1 \rightarrow perfect correlation$
 - Can we keep x_2 constant and change only x_1 to get $\hat{\beta}_1$?
 - Standard errors of perfectly correlated variables are infinite
- Does not apply to x and $x^2! \to x^2$ no linear function of x
- → More on that in section on multicollinearity

Expected value & unbiasedness

- Like in bivariate case, $E(\hat{\beta}_k) = \beta_k$ for k = 0, 1, ..., k
 - If Gauss-Markov assumptions 1-4 hold
 - Conditional on the explanatory variables (see App. 3A)
- Estimator $\hat{\beta}_k$ is unbiased estimator of population β_k
- Can estimates of regression coefficients be unbiased? Why?

Overspecification

- Inclusion of an irrelevant variable (let's call it x_{irr})
 - Independent variable has no partial effect on y $(o eta_{\it irr} = 0)$
 - If all other variables are controlled for, x_{irr} has no effect on y
- True population model vs. overspecified regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_{irr} x_{irr}$$

- What if $\beta_{irr} = 0$, but we include $\hat{\beta}_{irr}$ in the regression?
 - Estimators are still unbiased
 - $E(\hat{\beta}_0) = \beta_0, E(\hat{\beta}_1) = \beta_1, ..., E(\hat{\beta}_{irr}) = 0$ $\rightarrow \hat{\beta}_{irr}$ is 0 on average
 - Negative effect on variances of the OLS estimators
 - See multicollinearity

Underspecification

- Omitting a variable that belongs in the true model
- True population model vs. underspecified regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
$$\hat{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

- Are estimators still unbiased? o We know $E(ilde{eta}_1) = E(\hat{eta}_1 + \hat{eta}_2 ilde{\delta}_1)$
 - ullet $ilde{eta}_1$ coefficient in underspecified model
 - $\hat{\beta}_1$, $\hat{\beta}_2$ partial effects of x_1, x_2 on \hat{y}
 - $\tilde{\delta}_1$ = slope parameter of the regression of x_2 on x_1 .

$$egin{aligned}
ightarrow extit{Bias}(ilde{eta}_1) &= E(ilde{eta}_1) - eta_1 \ &= eta_1 + eta_2 ilde{\delta}_1 - eta_1 \ &= eta_2 ilde{\delta}_1 \end{aligned} \qquad ext{(MLR.1 - MLR.4)}$$

• When is $\tilde{\beta}_1$ unbiased?

Omitted variable bias (OVB)

- No need to worry about OVB in the model above if:
 - **1** β_2 that is omitted is 0 in the population model
 - Model is correctly specified
 - ② $Corr(x_1, x_2) = 0$, i.e. x_1 and x_2 are uncorrelated
 - If $Corr(x_1, x_2) = 0$, x_2 cannot be a confounder of y and x_1
 - Controlling for non-confounders does not change estimates
- If $\beta_2 \neq 0$ and $Corr(x_1, x_2) \neq 0$, we have $OVB = \beta_2 \tilde{\delta}_1$
 - Even if β_2 is unknown, direction of bias can be assessed!

TABLE 3.2 Summary of Bias in $\tilde{\beta}_1$ when x_2 Is Omitted in Estimating Eqution (3.40)					
	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$			
$\beta_2 > 0$	Positive bias	Negative bias			
$\beta_2 < 0$	Negative bias	Positive bias			

Figure 3: Table 3.2: Bias in $\tilde{\beta}_1$ if x_2 is omitted

• What could lead to OVB in $p_{cdu} = \tilde{\beta}_0 + \tilde{\beta}_{christ}$? Is $\beta_2 \tilde{\delta}_1 \geqslant 0$?

OVB for k > 2

- Suppose we omit x_3 from the model
 - x_3 in error term u might be correlated with x_1 and x_2 \rightarrow violates MLR.4 \rightarrow biased OLS estimators!
- Bias, if there is pairwise correlation between x_1, x_2 and x_3
 - ullet e.g. $ilde{eta}_2$ is only unbiased if x_2 is not correlated with x_1 and x_3
- With assumptions, we can (easily) obtain direction of bias:
 - If $corr(x_1,x_2)=0 o OVB(\tilde{eta}_1)=E(\tilde{eta}_1)-eta_1=eta_3\tilde{\delta}_{1,3}$
 - Why can we treat x_2 as absent if $corr(x_1, x_2) \approx 0$?
 - Interpretation like in the case with two explanatory variables

Variance of β_k

- $Var(\beta_k)$ determines test statistics and precision of estimators
 - Confidence intervals and accuracy of hypothesis testing
- $Var(\beta_k) = \frac{\sigma^2}{SST_k(1-R_k^2)}$
 - Requires that all Gauss-Markov assumptions hold

 $2 Var(y|x) = \sigma^2$

GM1-GM4

GM5

Variance of β_k

- $Var(\beta_k) = \frac{\sigma^2}{SST_k(1-R_k^2)}$ depends on
 - **1** Error variance σ^2
 - More noise in regression equation \rightarrow larger $Var(\beta_k)$
 - Population property, therefore independent of n
 - Can only be reduced if some factors are taken out of error term
 - 2 Total sample variation in x_k
 - Larger total variation in $x_k \to \text{smaller } Var(\beta_k)$
 - Total variation can be increased by increasing n
 - If $SST_k = 0$, GM3 is violated
 - **3** Goodness-of-fit R_k^2
 - Regression of all independent variables on x_k instead of y
 - R_k^2 increases if explanatory variables are strongly correlated
 - $x_1, x_2, ...$ explain x_k very well \rightarrow large $R_k^2 \rightarrow$ large $Var(\beta_k)$
 - As R_k^2 approximates 1, $Var(\beta_k)$ approximates ∞
 - $ightarrow R_k^2 = 1$ violates GM3 (no perfect linear combination)
 - \rightarrow For R_k^2 close to 1, we have "multicollinearity"

Multicollinearity

- Extent to which independent variables are correlated
 - Explanatory variables can predict another one
 - Height & weight, education & income, product age & price
- Large $R_k^2 o \text{large } Var(\beta_k)$
- Results in unstable and unreliable regression estimates
 - Difficulties to measure effect of an independent variable on y
 - Small test statistic and large confidence intervals
 - Imprecise regression coefficients (+ large se)
- Perfect correlation → perfect multicollinearity
- Solutions:
 - Increase sample size (smaller sampling error)
 - Remove highly-correlated independent variables
 - Replace highly-correlated variables by new variable (e.g. index)

Trade-off unbiasedness vs. variance

- In an underspecified model we have:
 - $bias(\tilde{\beta}) > bias(\hat{\beta})$
 - $Var(\tilde{\beta}) < Var(\hat{\beta})$, if $corr(x_1, x_2) \neq 0$
- ullet Bias does not depend on $n \to choose$ unbiased estimator
 - Variance shrinks to 0 as n gets larger
 - Multicollinearity issues can be countered with larger n

Standard error

• Recall that $\hat{\sigma}^2 = \frac{SSR}{n-k-1}$ is an unbiased estimator for σ^2

$$sd(\hat{\beta}_k) = \sqrt{Var(\hat{\beta}_k)}$$

$$= \frac{\sigma}{\sqrt{SST_k(1 - R_k^2)}}$$

$$se(\hat{\beta}_k) = \frac{\hat{\sigma}}{\sqrt{SST_k(1 - R_k^2)}}$$

$$= \frac{\hat{\sigma}}{\sqrt{nsd(x_k)}\sqrt{1 - R_k^2}}$$

• What sample size is needed to cut the standard error in half?

Gauss-Markov Theorem

- There are many unbiased estimators, why use OLS estimator?
- If all GM assumptions hold, OLS is BLUE
 - Best Linear Unbiased Estimator
 - Linear estimator with the smallest variance
 - If GM assumptions are violated, theorem does not hold. E.g.:
 - ullet GM4 o no longer unbiased
 - ullet GM5 ightarrow no longer smallest variance

Exercise 1a and b

What is SSR?

- Sum of squared residuals
- $SSR = \sum (\hat{u}_i)^2$

How can you obtain the left hand side of Equation 2 from the right hand side of Equation 1? Describe it briefly.

$$SSR = \sum_{i} [\hat{\beta}_{1}^{2} x_{i1}^{2} - 2\hat{\beta}_{1} x_{i1} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{2} x_{i2}) + (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{2} x_{i2})^{2}](1)$$

From the right hand side of this Equation, we can obtain

$$\sum_{i} [2\hat{\beta}_{1}x_{i1}^{2} - 2x_{i1}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{2}x_{i2})]$$
 (2)

for $\hat{\beta}_1$ by doing a partial derivation with respect to $\hat{\beta}_1$ and NOT as usual to x. Simple example:

- If $F(x_1, x_2) = \hat{\beta}_1^3 x_1^2 + x_2^2$, its derivation with respect to $\hat{\beta}_1$ would be:
- $f(x_1, x_2) = 3\hat{\beta}_1^2 x_1^2$

Exercise 1c and d

Above, we could obtain the unique solution for the estimates. But this is not always the case. Which assumption assures such an unique solution?

- No Perfect Collinearity
- $SSR = \sum (\hat{u}_i)^2$

In which scenario is the assumption of the last task violated? Mark all the scenarios in which the assumption is violated.

- A another binary variable for a revised ordinance of the State Government \rightarrow perhaps similar, but certainly not identical to x_1
- B another variable $x_3 = x_1 \times 2 \rightarrow x_3$ increases simultaneous to x_1
- C another variable $x_3 = (x_1)^2 \rightarrow x^2$ no linear function of x!
- D **another variable** $x_3 = x_1 + x_2 \rightarrow x_3$ increases simultaneous to $x_1 \& x_2$

Exercise 1e

Before enforcement of the ordinance of the State Government, how much increase of the infected persons is predicted for a day?

- Remember:
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u = -7376.70 + 669.89 x_1 2796.09 x_2$
 - $\Delta y = \beta_1 * \Delta x_1 + \beta_2 * \Delta x_2$
- We are interested in the marginal change (change from one day to the next) for $\Delta x_1 = 1$ and $\Delta x_2 = 0$
- Therefore we note $\Delta y = 669.89 * 1 2796.09 * 0 = 669.89$

Exercise 1f

After enforcement of the ordinance of the State Government, how much increase of the infected persons is predicted for a day?

- We are still interested in the marginal change Δy , but this time for $x_1=1$ and $x_2=1$
- If x_2 would constantly increase as x_1 does, we would note $\Delta y = 669.89 * 1 2796.09 * 1 = -2126.2$
- Seems like the ordinance of the State Government is having the desired effect. Or perhaps not?
- Because x_2 stays constant (since day 23), the increase of the infected persons per day still is
- $\Delta y = 669.89 * 1 2796.09 * 0 = 669.89$

Exercise 1g

Predict the number of infected persons at the 21st day and 24th day.

- Now, we are not longer interested in the marginal change but in the total number of infected persons!
- Remember:
 - $y = -7376.70 + 669.89x_1 2796.09x_2$
- Insert the appropriate values for 21st $(x_1 = 21 \text{ and } x_2 = 0)$ and for 24th $(x_1 = 24 \text{ and } x_2 = 1)$
- $y_1 = -7376.70 + 669.89 * 21 2796.09 * 0 = 6690.99$
- $y_2 = -7376.70 + 669.89 * 24 2796.09 * 1 = 5904.57$

Exercise 1h

Calculate the residual at the 21st day and 24th day.

- Formula for calculating residuals:
 - $\hat{u}_i = y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) = y_i \hat{y}_i$
 - where y_i present the true values (see the table on WS, p.1) and $\hat{y_i}$ our estimates (see 1g)
- $\hat{u}_1 = y_i \hat{y}_i = 1105 6690.99 = -5585.99$
- $\hat{u}_2 = y_i \hat{y}_i = 2748 5904.57 = -3156.57$

Exercise 1i

If the variance of all residuals is 7768923, calculate SSR.

- Starting point:
 - $\frac{1}{n}\sum \hat{u}_i^2 = \frac{SSR}{n}$
- Arranging formula yields:
 - $SSR = \frac{1}{n} \sum \hat{u}_i^2 * n = 7768923 * 66 = 512748918$

Exercise 1j

If the variance of y is 144894582, calculate SST.

- Same procedure: $Var(y) = \frac{SST}{n}$
- Arranging formula yields:
 - SST = Var(y) * n = 144894582 * 66 = 9563042412
 - Including df correction:

$$SST = Var(y) * (n-1) = 144894582 * 65 = 9418147830$$

If the population variance was estimated, we would had to take account for uncertainty, by including a Degrees of Freedom correction n-1 into our formula.

Exercise 1k and I

Calculate the R-squared

- $R^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$
- $R^2 = 1 \frac{SSR}{SST}$
- $R^2 = 1 \frac{512748918}{9563042412}$
- $R^2 = 0.9463822$

Which (in)equation is true?

- A is true: $\delta > 0$
 - δ is bigger than zero because x_2 and x_1 are positive correlated. With a higher value on x_1 it is more likely that x_2 has also an higher value, respectively is more likely to be 1 and not 0.

Exercise 1m

Assume that $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$ are BLUE. Is $\tilde{\beta}_1$ biased?

- B is true: Yes, and the bias is negative.
- $\delta > 0$ and $\hat{\beta}_2 < 0$, because of that is the bias negative

•
$$E(\tilde{\beta}_1) = E(\hat{\beta}_1 + (-\hat{\beta}_2)\tilde{\delta}_1)$$

•
$$E(\tilde{\beta}_1) = \beta_1 + (-\beta_2)\tilde{\delta}_1$$

•
$$Bias(\tilde{\beta}_1) = E(\tilde{\beta}_1) - \beta_1$$

$$\bullet = \beta_1 + (-\beta_2)\tilde{\delta}_1 - \beta_1$$

$$\bullet = (-\beta_2)\tilde{\delta}_1$$

Exercise 1n

What is the name of the assumptions assuring the OLS estimates being BLUE?

- Gauss-Markov-Assumption
 - If all GM assumptions hold, OLS is BLUE
 - Best Linear Unbiased Estimator
 - Linear estimator with the smallest variance
 - If GM assumptions are violated, theorem does not hold. E.g.:
 - ullet GM4 o no longer unbiased
 - ullet GM5 ightarrow no longer smallest variance

Exercise 10 and p

It is known that the variance of $\hat{\beta}$ is as follows: $Var(\hat{\beta}) = \frac{\sigma^2}{SST_j(1-R_j^2)}$. What is σ^2

A is true: Variance of the errors

We can estimate σ^2 as follows: $\hat{\sigma}^2 = \frac{1}{???} \sum_i \hat{u}_i$. What value do we have for ??? for Model 1?

- $\hat{\sigma}^2 = \frac{1}{(n-k-1)} \sum_{i=1}^n \hat{u}_i^2$
- n = 66
- k = 2 (number of slope parameters)
- and 1 for the intercept in the model
- df = n k 1 = 63
- $\hat{\sigma}^2 = \frac{1}{63} \sum_{i=1}^n \hat{u}_i^2$

Exercise 1q and r

How do we call the value of the last task?

- degrees of freedom
 - The term n-k-1 in the last task is the degrees of freedom (df) for the general OLS problem with n observations and k independent variables. Since there are k+1 parameters in a regression model with k independent variables and an intercept, we can write:
 - df = n (k+1)
 - df = (number of observations) (number of estimated parameters)

Concerning the variance of estimates, what is true?

- A is true: $Var(\tilde{\beta}) < Var(\hat{\beta})$
- $Var(\tilde{\beta})$ is always smaller than $Var(\hat{\beta})$, unless x_1 and x_2 are uncorrelated in the sample, in which case the two estimators $\tilde{\beta}$ and $\hat{\beta}$ are the same.

Exercise 1s and t

If the sample size grows infinitely, which of the three (in)equations in the last task is approximately true?

- C is true: $Var(\tilde{\beta}) = Var(\hat{\beta})$
 - $Var(\tilde{\beta})$ and $Var(\hat{\beta})$ both shrink to zero as n gets large, which means that the multicollinearity induced by adding x_2 becomes less important as the sample size grows.

Is the R-squared of Model 2 is in comparison with that of Model 1:

- A is true: smaller
 - An important fact about R-squared is that it never decreases, and it
 usually increases when another independent variable is added to a
 regression. This algebraic fact follows because, by definition, the sum
 of squared residuals never increases when additional regressors are
 added to the model.
 - Because Model 1 has an additional independent variable with an non-zero effect in the sample R-squared of model 1 is bigger that R-squared of model 2.