Aldéhydes et cétones

Formule brute et nomenclature

Aldéhyde : radical + suffixe al si non prioritaire préfixe oxo ou aldo

$$CH_3-CH_2-CH_2-C_H^O$$
 butanal

Formule brute et nomenclature

Cétone: radical + suffixe one si non prioritaire préfixe oxo ou céto

$$CH_3$$
— C — CH_2 — CH_3
 O

Butan-2- one

$$CH_3-C_{OH}$$
 Acide 3-oxo-butanoïque Acide 3-céto-butanoïque

$$\sum C=O$$

C=O Groupement carbonyle R-C Groupement acyle

$$R-C \bigcirc O$$

Propriétés physiques

➤ Liquides à température ordinaire C2-C16

$$C_2H_5$$
-CH₃ CH₃-CHO C₂H₅-OH (44) (44) (46) + 21°C + 78°C

> Faible solubilité dans l'eau

Réactivité

- Polarisation de la liaison C-O
- Liaison π
- Caractère acide de l'H en α

$$-\frac{H}{C} - C = O \qquad \longrightarrow -\frac{C}{C} - C = O \qquad \longrightarrow C = C - O \qquad \text{Ion énolate}$$

Réactions d'addition nucléophile, de condensation pour les aldéhydes et cétones aliphatiques et d'oxydo-réduction

Réactions d'addition simples

$$Nu^-M^+$$
 + $C=O$ \longrightarrow $Nu-C-OM$

Organo-magnésiens

Réactions d'addition simples

$$Nu^-M^+$$
 + $C=O$ \longrightarrow $Nu-C\longrightarrow OM$

Acide cyanhydrique H-CN

Réactions d'addition simples

Acétylures

$$R \subset C = O + R'' - C \equiv C \cap A^{+} \xrightarrow{H_{2}O} R'' - C \equiv C - C = OH + NaOH$$

Hydrures (H⁻) LiAlH₄

Réactions d'addition simples

Condensation : réaction d'aldolisation ou de cétolisation

$$R \xrightarrow{H} C = C = O$$

$$H = R \xrightarrow{H} R_{1}$$

$$R \xrightarrow{H} R_{1}$$

β cétol, si R_1 = H β aldol

$$R - CH_2 - C - C - C - C - R_1$$

$$R - CH_2 - C - C - C - C - R_1$$

$$R - CH_2 - C - C - C - C - R_1$$

$$R_1 R + H_2O$$

Réactions de condensation avec élimination H₂O

Composés azotés

amine 1aire	H ₂ N-R	C=N-R	imine
hydroxylamine	H ₂ N-OH	>C=N-OH	oxime
hydrazine	H ₂ N-NH ₂	\supset C=N-NH ₂	hydrazone
phényhydrazine	H ₂ N-NPh	C=N-NPh	phenylhydrazone
Semi-carbazide	H ₂ N-NH-CONH ₂	C=N-NH-CONH	2
			semi-carbazone

Réactions de réduction

R'
$$C=O$$
 \longrightarrow
 $R-C-OH$
 H

Aldéhyde
 \longrightarrow alcool 1^{aire}

Cétone
 \longrightarrow alcool 2^{aire}

$$\begin{array}{c} O \\ H_2 \\ \hline \\ OH \\ \hline \\ LiAlH_4 \\ \hline \end{array}$$

Réactions d'oxydation

Oxydation plus facile des aldéhydes

Permet de distinguer les aldéhydes et les cétones

$$R-C \stackrel{O}{\longleftarrow} R-C \stackrel{O}{\longleftarrow} R-C$$

Réactions de caractérisation des aldéhydes

Réactions d'oxydation

Réactions de caractérisation des aldéhydes

Réaction au nitrate d'argent ammoniacal ou test de Tollens

RCHO +
$$2 (Ag(NH_3)_2)OH$$
 \longrightarrow RCOOH + $2 Ag + 4 NH_3 + 2 H_2O$

Réactions d'oxydation

Réactions de caractérisation des aldéhydes

• Test à la liqueur de Fehling

Rouge brun

Réactions d'oxydation

Oxydation des cétones : mélange de 4 acides

$$R - CH_2 - C + CH_2 - R' \longrightarrow R - CH_2 - C OH + R' - COH$$

$$R-CH_2$$
 $C-CH_2$ R' $R-COOH$ CH_2 CH_2 $COOH$

Réactions de dismutation: réaction de Cannizzaro

Réaction particulière aux aldéhydes ne possédant pas d'H en α

Réactions particulières

Réactions des haloformes:

caractéristiques des cétones méthylées

$$R - C - CH_3 + NaOC1 \longrightarrow R - C \bigcirc O - Na^+ + CH_3C1$$

Préparations

Préparations des aldéhydes et des cétones

Oxydation des alcools

$$R-CH_2OH \longrightarrow RCHO$$

R-CHOH-R' \longrightarrow RCOR'

Oxydation des alcènes

Condensation des acides

$$R-COOH + HOOC-R' \longrightarrow R-CO-R' + CO_2 + H_2O$$

Préparations

Préparations des aldéhydes

Réduction des chlorures d'acides

R-COCI
$$\frac{H_2}{Pd}$$
 RCHO + HCI

Préparations des cétones

Hydratation des alcynes

$$R-C \equiv C-R' + H_2O \xrightarrow{Hg^{2+}} R-C-CH_2-R'$$

Organo-magnésien sur un nitrile

$$R-C\equiv N + R'MgX \longrightarrow R-C-R' + NH_3 + MgXOH$$

Réactions de Friedel et Crafts : cétones aromatiques

État naturel

De nombreux dérivés carbonylés sont présents dans les plantes et à l'origine de leur parfum

$$CH_3O$$
 C
 HO
 C
 H

vanilline

