Cambridge IGCSE

Computer Science
Section 1

Binary systems

Data representation

1

MCQ Computing

Objectives

- Recognise the use of binary in computer systems
- Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte
- Understand that data needs to be converted into a binary format to be processed by a computer
- Convert positive denary whole numbers (0-255) into 16-bit binary numbers and vice versa
- Use binary in computer registers for given applications

Vocabulary

- Data
- Analogue
- Digital
- Denary
- Binary
- Register

- Bit
- Byte
- Kilobyte
- Megabyte
- Gigabyte
- Terabyte

What is this symbol? Why?

Understanding binary

- Computers understand only two things: power on, or power off
- This is represented by switches, and computers are essentially calculators made up of billions of switches
- Power on = 1
- Power off = 0

Binary number system

- Computers use a binary number system consisting of only 0s and 1s
- Everything that a computer needs to process must be converted into a binary format
- This format is used for storing numbers, text, images, sound and program instructions

We see this ...

What does a computer see ...

What does a computer see ...

Binary and denary number systems

- Denary is a base 10 number system with 10 digits 0-9
- Why 10 digits?

• Binary is a Base-2 system with 2 digits, 0 and 1

Numbers with the denary system

Thousands, Hundreds, Tens and Units

10010110

Binary works in exactly the same way

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1
1	0	0	1	0	1	1	0
1x128	0x64	0x32	1x16	0x8	1x4 1x2		0 x 1
128 +	0 +	- 0	+16	+ 0	+ 4 + 2		+ 0

Binary to denary conversion

· What is:

128 64 32 16 8 4 2 1 0 0 1 1 1 0 0 1

Denary to binary

- Convert 28 to binary:
- Method
 - Working right to left, write out the numbers 1, 2, 4, 8 and so on doubling each time to 128

```
128 64 32 16 8 4 2 1
0 0 0 1 1 1 0 0
```

• 28 has a 16 in it, leaving 12. 12 is 8 + 4

There are different methods of doing this ...

CONVERT NUMBERS INTO BINARY (BASE 2)

Convert the following numbers

- 230
- 1001 1100
- 143
- 1100 0011

Binary Game

 https://studio.code.org/projects/applab/iukLbcDnzqg oxuu810unLw

Bits and bytes

- 1 bit = a single 0 or 1
- 1 nibble = 4 bits (or half a byte)
- 1 byte = 8 bits
- 1 kibibyte (1 KiB) = 1024 bytes
- 1 mebibyte (1 MiB) = 1024 KiB (or 1024x1024 bytes)
- 1 gibibyte (1 GiB) = 1024 MiB
- 1 tebibyte (1 TiB) = 1024 GiB
- 1 pebibyte (1 PiB) = 1024 TiB
- 1 exbibyte (1 EiB) = 1024 PiB

A sense of scale

File	Size
One character of text	1 byte
A full page of text	30 KB
One small digital colour photograph	3 MB
Music CD	600 MB
A DVD	4.5 GB
Hard disk	1 TB

Bits and bytes

- 1 KB = ____
- 1 GB = ____
- 1 bit = _____
- 1 MB = ____
- 1 byte = _____
- 1 nibble = _____
- 1 TB = ____

Binary representation

Number of Switches (Bits)	Possible combinations or states
1	2
2	4
3	
4	
5	
6	
7	
8	

Digital displays

- A standard numeric display uses 7 (or 8) segments
- Each segment is given a binary value
- Based on the binary values, lights are switched on or off to create a recognisable number

Binary in digital displays

 A register of 8 bits is used to store and determine the state of each segment (including the decimal point - 0)

Display Register

						1	
1	1	0	1	1	0	1	0

 What number would be represented if the register value was 11001100?

Registers in industry

Registers can also be used to hold the state of a

machine

A robotic arm may have eight possible movements

 The register values below extend and lower the arm whilst opening the claw

Rotate left	Rotate right	Open claw	Close claw	Extend arm	Retract arm	Raise arm	Lower arm
0	0	1	0	1	0	0	1

Plenary

- For your exam you need to be able to:
 - explain why computers use binary to represent any kind of data
 - give examples of the different types of data that computers can hold
 - convert numbers 0 65,535 to binary and vice versa
 - define bit, byte, kilobyte, megabyte, gigabyte, terabyte
 - understand how registers are used in applications

Homework:

Complete Tasks 1, 2 and 3

Read book pages ...

Learn vocabulary

Data

• Bit

Analogue

• Byte

Digital

• Kilobyte

Denary

Megabyte

Binary

• Gigabyte

Register

• Terabyte

Data raw facts and figures, before processing

Analogue continuous smooth changing data in the form of a wave. eg sound

Digital data in the form of 1s and 0s, that can be read by computer

• **Denary** using Base 10

Binary using Base 2

• Hexadecimal using Base 16

• **Register** very fast memory location in the CPU, used to store data in the execution of instructions. eg MAR - Memory Address Register

Adding Binary Numbers

Overflow Errors

An overflow error will occur if the value is greater than, for example, 255 in an 8-bit register.

A computer or a device has a predefined limit that it can represent or store, for example 16-bit.

An **overflow error** occurs when a value outside the limit of a register is produced.