Graphically presenting associations of related but distinct phenomena:

moving beyond p-values

Maia P. Smith, PhD St. George's University, Grenada Maia.phillips.smith@gmail.com

Background: Increasing importance of multifactorial measures

- Exposures and/or outcomes increasingly multifactorial
 - Omics studies: genes, proteins, metabolites
 - Nutrition: nutrients and/or foods
 - Social sciences: crimes
- Increases in computing power allow research to precede hypothesis formulation— 'fishing expeditions'
- Multiple comparisons = increased risk of random false positives.

Distinguishing false from true positives: current options

Clinical judgment

→Useful only if hypotheses already exist

Adjustment of p-value for significance

- Statistical correction: Bonferroni, Benjamini-Hochberg...
- Graphical visualization: Manhattan plots
- → Costs statistical power: increases false negatives
- → Does not address effect size
- → Does not address global null ('Is there a genetic effect?')

My method: Graph sample size against effect size (similar to a funnel plot)

Answers two questions:

- → Is there a main effect? "Association" maybe not causal
 - Is the plot centered on 'no effect'?
- → Is there effect heterogeneity (subgroup effects)?
 - Is the plot spread out / asymmetrical?
 - Are extreme-valued points similar in some way?

Example: Risk of crime in LA: effects of lunar phase or victim sex

- → Is there a main effect?
 - 1. Does overall crime rate vary with lunar phase?
 - 2. Is one sex at greater risk of victimization?
- → Is there effect heterogeneity / subgroup effects?
 - 1. Are certain crimes (or crime types) more or less common at a given lunar phase?
 - 2. Are certain crimes (or crime types) more likely to victimize one sex?

Example 1: No main effect of lunar phase on crime rate: no clear heterogeneity

Lunar phase and crime incidence

Example 1: Examination of extremevalued points: no subgroup effects

Example 2: No main effect of sex on crime risk: however significant heterogeneity

Example 2: Examination of extremevalued points: obvious subgroup effects

Conclusion: Association of rate of crime(s) with lunar phase or victim gender

- → Is there a main effect?
 - Is crime more common at full or new moon? Not really
 - Is one sex at greater risk of victimization?
 Not really
- → Is there effect heterogeneity?
 - Are certain types of crime more common at a given lunar phase? No
 - Are certain types of crime more likely to victimize one gender?

Conclusions:

- Effects of lunar phase on crime are consistent with artifact and can be ignored, regardless of individual p-value
- Effects of sex on crime victimization are consistent with a true effect and should not be ignored, regardless of p-value
 - →Base rate of victimization does not vary much by sex: no main effect
 - →Large within-outcome heterogeneity: 'crime' is not a single outcome
 - →Studies of sex and crime should consider the clusterings we found (e.g. treat sex offenses as one cluster, and crimes against emergency personnel as another).

Application: Genome-wide association studies (GWAS)

Further application: Environmental health

Relative risk of a given cancer in a town

Final example: Environmental health

1.0

Standardized incidence ratio, vs. a reference population

Final example: Environmental health

Cancer ('C') and adverse reproductive outcomes associated with residence in Love Canal, New York

Data from Tables 10 and 17 in Love Canal Follow-up Health Study, New York State Health Department; available at health.ny.gov/environmental/investigations/love canal/docs/report public comment final.pdf.

Thanks for listening! Questions? Comments?