Prof. Erickson R. Nascimento erickson@dcc.ufmg.br

RADIOMETRY AND PHOTOMETRY

/ER.ab

1

Illumination

- The goal of rendering algorithms is to create images that accurately represent the appearance of objects in scenes
- □ For every pixel, the algorithm must find the objects that are visible at that pixels and display their appearance to the user
- Understanding the nature of light and how it scatter in the environment is crucial to correctly simulate illumination

3

UF**m**G

Illumination

Matthias Teschner, University of Freiburg

UFmG

2

Models of Light

- Ray optics: models light as independent rays that travel in different optical media according to a set of gemetrical rules
- $\hfill\Box$ Common used in Computer Graphics
- Wave optics: models light as electromagnetic waves
 - □ Interference and diffraction
- Electromagnetic optics
- □ Polarization and dispersion
- Photon optics: explains the interaction of light and matter

4

UFmG

Assumptions of Ray optics

VER.ab
Computer Vision and Robotics

- Light travels in straight lines
- No diffraction
- Light travels instantaneously through a medium
- □ Infinite speed
- Light is not influenced by external factors, such as
- Gravity
- Magnetic fields

5

UFmG

5

Radiant Flux or Power

- Light "flows" through space, and so radiant flux is the total radiant power emitted from a source or received by a surface.
- □ Commonly "time rate of flow of radiant energy"

$$\Phi = \frac{dQ}{dt}$$

- $\hfill \square \ensuremath{\mbox{\it Q}}$ is radiant energy and t is time
- measure in joules per second or Watts

7

 $UF\underline{m}G$

Radiometry

- The goal of an illumination algorithm is to compute the steadystate distribution of light energy in a scene
- Radiometry: The science of measuring light
- Light: A particular kind of electromagnetic radiation (of a frequency that can be detected by the human eye)

6

UFmG

6

Radiant Flux or Power

- r Power
- We can say
- □ A ligth source emits 50 Watts of radiant power
- 20 Watts of radiant power is incident on a table

 $UF\underline{m}G$

7

8

Radiant Flux

VER.ab
Computer Vision and Robotics

 The flow of light through space is often represented by geometrical rays of light such as those used in computer graphics ray tracing.

9

9

UF<u>m</u>G

Radiant Flux Density

Computer Vision and Robotics

- Radiant flux density is the power per unit area at a point on a surface.
- □ The flux can be arriving at the surface, it is referred to as **Irradiance (E,** french: *éclairage*, meaning lighting/illumination).
- □ The flux can leave from any direction above the surface, as indicated by the rays, it is called Radiant exitance (M) or Radiosity.
- □ It is measured in watts per square meter.

10

 $UF\underline{m}G$

10

Radiant Flux Density

VER.ab
Computer Vision and Robotics

- Directional light source
- □ Useful approximation when the distance to the light is much larger than the extent of room from the light bulb

Radiant Flux Density Irradiance can be used to measure the illumination of an ideal directional light E = 0.3 W/m² UF mG

13

Irradiance

• Irradiance for a sphere that has radius r is equals

• Total area of a sphere: $4\pi r^2$ E = $\frac{\Phi}{4\pi r^2}$ • The amount of energy received from a light falls off with the squared distance from the light

15

UF m G

Irradiance and Radiance Exitance • Irradiance is defined as: $E = d\Phi/dA$ • where Φ is the radiance flux arriving at the point and dA the differential area surronding the point • Radiance Exitance: $M = d\Phi/dA$ • where Φ is the radiance flux leaving the point $UF \mathcal{M} G$

Irradiance and Radiance Exitance

- The radiant flux density can be measured anywhere in threedimensional space.
- □ surface of physical objects

14

- □ in the space between them (e.g., in air or a vacuum),
- $\hfill \square$ inside transparent media such as water and glass.
- Surface can be real or imaginary (i.e., a mathematical plane).

16 U F <u>m</u> G

Radiant Intensity

 The radiant intensity is the power per unit solid angle emanating from a point source:

 $I = \frac{d\Phi}{d\omega}$

Solid what?

Solid Angle

17

17

1/

Computer Vision and Robotics

- A solid angle is a three-dimensional extension of the concept in 2D
- A continous sef of directions

19

 $UF_{m}G$

Solid Angle

SVERab Computer Vision and Robotics

• First of all, what is an angle?

 $heta \equiv rac{s}{R}$ radians

- ullet Unit circle has 2π radians
- □ An angle is a set of directions in a plane

Q = 32{ ~ 22 199.34?

18

 $UF_{\mathbf{m}}^{\mathbf{G}}G$

18

Solid Angles

- The solid angle represents the angular "size" of a beam as well as the direction
- It represents both a direction and an infinitesimal area on the unit sphere

20

UFmG

19

Solid Angles

VERab Computer Vision and Robotics

Definition:

$$\Omega \equiv rac{A}{R^2}$$
 steredians

- $\hfill\Box$ Unit sphere has 4π steredians
- ullet Total area of a sphere: $4\pi R^2$

21

UFmG

21

22

Radiant Intensity

• Intensity or Radiant intensity is the flux density per solid angle

$$I = \frac{d\Phi}{d\omega}$$

■ Measured in Watts per steredians

22

UF<u>m</u>G

Integrals over projected solid angle

• Spherical Coordinates $\begin{array}{c}
z = r \cos \theta \\
x = r \sin \theta \cos \phi \\
y = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \sin \phi \\
x = r \sin \theta \sin \phi$ $\begin{array}{c}
x = r \sin \theta \cos \phi \\
x = r \sin \theta \sin \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \cos \phi \\
x = r \sin \theta \sin \phi$ $\begin{array}{c}
x = r \sin \theta \cos \phi \\
x = r \sin \theta \cos \phi
\end{array}$ $\begin{array}{c}
x = r \sin \theta \cos \phi \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \sin \theta \cos \phi \\
x = r \sin \theta \cos \phi
\end{array}$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi
\end{array}$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \sin \theta \cos \phi$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta \\
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$ $\begin{array}{c}
x = r \cos \theta \\
x = r \cos \theta$

24

Integrals over projected solid angle

• From the angle definition:

$$\Box d\phi = \frac{s_2}{R}$$

$$\square R = r \sin \theta$$

25

25

Integrals over projected solid angle

• Integrating over a sphere

$$\Omega = \int_{S^2} d\omega$$

$$\square \Omega = \int_0^\pi \int_0^{2\pi} \sin\theta d\phi d\theta$$

$$\square \Omega = \int_0^{\pi} [2\pi - 0] \sin\theta d\theta$$

$$\square \Omega = 2\pi \int_0^{\pi} \sin\theta \, d\theta = 2\pi [-\cos\pi - (-\cos0)]$$

 $\Omega = 4\pi$

27

 $UF\underline{m}G$

Integrals over projected solid angle

UFmG

- $\bullet dA = (s_1)(s_2)$
- $dA = (r d\theta)(r \sin \theta d\phi)$

ullet The solid angle $d\omega$ is

$$\Box d\omega = \frac{dA}{r^2}$$

26

26

Radiant Intensity

• Isotropic Point Source (Sphere S^2)

$$\Box \Phi = \int_{S^2} I \ d\omega$$

$$\Phi = 4\pi I$$

$$\Box I = \frac{\Phi}{4\pi}$$

28

28

Radiance

- Imagine ray of light arriving at or leaving a point on a surface in a given direction.
- Radiance is simply the infinitesimal amount of radiant flux contained in this ray.
- Radiance is probably the most important quantity in global illumination because it is the quantity that captures the appearance of objects in the scene

29

 $UF_{m}G$

29

Solid Angles and Cones

 Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray

31

31

 $UF \underline{m} G$

Radiance

 A formal definition: think of a ray as being an infinitesimally narrow cone with its apex at a point on a real or imaginary surface.

UFmG

VERab

30

30

Radiance

• The ray intersects the surface at an angle θ .

32

Radiance

ullet Let dA be the differential cross-sectional area of the surface and heta is the angle between the ray and the surface normal

 \Box The cross-sectional area of the ray is: $dA\cos\theta$

33

Radiance

- Radiance L is what sensors measure.
 It is of prime importance for rendering!
- The main reason of evaluating a shading equation is to compute the radiance along a given ray.
- Shading is the process of using an equation to compute the outgoing radiance L_Q along the view ray.

35

 $UF_{m}G$

Radiance

• Radiance measures the illumination in a single ray of light. It is flux density with respect to both area and solid angle:

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} L(x, \omega) = \frac{d\Phi}{(dA \cos \theta) da}$$

- ☐ The metric units are watts per square meter per steradian
- □ Radiance is a five-dimensional quantity
- Three for position
- Two for the direction

34

UF**m**G

34

Computing total flux

Rewriting:

$$L(x,\omega) = \frac{d\Phi}{(dA\cos\theta)\,d\omega}$$

$$L(x,\omega)(dA\cos\theta)\ d\omega = d\Phi$$

36

UFmG

35

Computing total flux

- Let us consider a diffuse emitter
- A diffuse emitter emits equal radiance in all directions from all its surface points

37

37

Computing total flux

 $UF \underline{m}G$

• Total flux is equal to

$$d\Phi = \int_{0}^{\pi/2} \int_{0}^{2\pi} L_{i}(dA \cos \theta) \sin \theta \ d\phi \ d\theta$$

$$d\Phi = \int_{0}^{\pi/2} L_{i}(dA\cos\theta)\sin\theta \ (2\pi - 0)d\theta$$

39

UFmG

Computing total flux

Computer Vision and Robotics

• Total flux is equal to

 $\Phi = \int_{A} \int_{H^{2}} L_{i}(dA \cos \theta) d\omega$

- \square where H^2 is the entire upper hemisphere
- \Box dA for all directions
- \square A is the total area

38

38

UFmG

Computing total flux

Total flux is equal to

$$d\Phi = \int_{0}^{\pi/2} 2\pi (L_i dA) (\cos \theta \sin \theta) d\theta$$

Remember that

$$\frac{d(\sin^2\theta)}{d\theta} = 2\sin\theta\cos\theta$$

40

UF m G

39

Computing total flux

Total flux is equal to

$$d\Phi = \pi L_i dA \left(\sin^2 \frac{\pi}{2} - \sin^2 0\right) = \pi L_i dA$$

$$\Phi = \pi L_i \int\limits_A dA = \pi L_i A$$

41

UFmG

41

Radiance and Irradiance

• Irradiance at a point p with surface normal n and radiance over a set of directions Ω is

$$E(p, \mathbf{n}) = \int_{\Omega} L_i(x, \omega) (\mathbf{n}^T \omega) d\omega$$

where $L_i(x,\omega)$ is the incident radiance function at location x and direction ω

43

Radiance and Irradiance

• Since the total flux is equal to (of a set of directions Ω)

 $d\Phi = \int_{\Omega} L_i(\overrightarrow{dA}\cos\theta) \, d\omega \, \langle$

• Then, Irradiance

$$E = \frac{d\Phi}{dA} = \int_{\Omega} L_i \cos \theta \, d\omega$$

•

d_A

UFmG

42

42

The Irradiance over the hemisphere

Irradiance

$$E = \frac{d\Phi}{dA} = \frac{\pi L_i dA}{dA} = \pi L_i$$

• If the radiance is the same (i.e., L) from all directions:

$$E = \pi L$$

44

UFmG

43

Communication

First test: 29/04/2019Final test: 19/06/2019

• New extra pratical exercise (next Wednesday – 17/04/2019)

56

UFmG

56

Photometry

- Photometry is the science of measuring visible light in units that are weighted according to the sensitivity of the human eve
- quantitative science based on a statistical model of the human visual response to light

58

 $UF\underline{m}G$

Spectral Radiance

Energy

energy
$$\approx \int_{t_0}^{t_1} \int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{\omega \in \Omega} \int_{\lambda_0}^{\lambda_1} L(t, (x, y, 0), -\omega, \lambda) d\lambda d\omega dy dx dt$$

• Radiance is the quantity

$$L = \int_0^\infty L(t, P, \omega, \lambda) d\lambda$$

57

 $UF\underline{m}G$

57

Photometry

- The human visual system is complex and highly nonlinear.
- □ Detector of electromagnetic radiation with wavelengths ranging from 380 to 770 nanometers (nm).

59

UFmG

58

Photometry

- The sensitivity of the human eye to light varies with wavelength.
- □ A light source with a radiance of one watt/m²-steradian of green light appears much brighter than the same source with a radiance of one watt/m²-steradian of red or blue light.

60

UFmG

60

Commission Internationale d'Eclairage (CIE)

- Asked over one hundred observers to visually match the "brightness" of monochromatic light sources with different wavelengths under controlled conditions
- photopic luminous efficiency of the human visual system as a function of wavelength.

62

62

UFmG

Photometry

• In photometry, we do not measure watts of radiant energy. It measures the **subjective impression** produced by stimulating the human eye-brain visual system with radiant energy

61

61

63

UFmG

Commission Internationale d'Eclairage (CIE) • CIE photometric curve \square The spectral response curve $V(\lambda)$ 0.4 Wavelength (nm) UFmG63

Luminous Intensity

- VERab
 Computer Vision and Robotics
- The international standard is a theoretical point source that has a luminous intensity of one candela
- □ It emits monochromatic radiation with a frequency of 540 x 10¹²
 Hertz (or approximately 555 nm, corresponding with the wavelength of maximum photopic luminous efficiency)
- □ It has a radiant intensity (in the direction of measurement) of 1/683 watts per steradian.

64

UFmG

64

Luminance

- Luminance is photometrically weighted radiance
- We perceive luminance
- □ It is an approximate measure of how "bright" a surface appears when we view it from a given direction.

$$L_{\lambda} = \int_{\lambda} L(\lambda)V(\lambda)d\lambda$$

66

UFmG

Luminous Intensity

- CIE photometric curve and the candela provides the weighting factor needed to convert between radiometric and photometric measurements
- □ a monochromatic point source with a wavelength of 510 nm and a radiant intensity of 1/683 watts per steradian. The photopic luminous efficiency at 510 nm is 0.503. The source therefore has a luminous intensity of 0.503 candela

65

U F <u>m</u> G