Datei:

04-ASF_BMG_V.1.00_Modellierungsleitfaden_20211123.pdf

Urheberin:

Ing. Sabine Hruschka
ASFINAG Bau Management GmbH
Schnirchgasse 17
1030 Wien

Diese Lern- und Lehrressource wird unter den Vorgaben der Lizenz Creative Commons Attribution 4.0 International (siehe https://creativecommons.org/licenses/by/4.0/deed.de) zur Verfügung gestellt.

Modellerstellung für die Ausführungsplanung

Anlage zu den Auftraggeber Informationsanforderungen (AIA) in BIM-Projekten

Inhaltsverzeichnis

Präan	nbel		5
Gültig	gkeitsbe	reich	6
Zielse	tzung	••••••	7
0	Übei	rsicht	7
	0.1	Revisionsstand	
1	Allge	emeine Anforderungen	8
	1.1	Modellstrukturierung	8
	1.1.1	Strukturierungsmöglichkeiten	9
	1.2	Modelldetaillierung	10
	1.3	Modelleinheiten	11
	1.4	Bezeichnungskonventionen	11
	1.5	Datenaustausch	12
	1.6	Dateigröße	12
	1.7	Identifikation von Modellelementen (GUID)	12
	1.8	Projektbasispunkt und Bezugssysteme	13
	1.9	Modellunterteilung	14
2	Allge	emeine Anforderungen	15
	2.1	Einleitung und Abgrenzung	15
	2.2	Modellstrukturplan	16
	2.3	Elementkatalog	18
	2.4	Merkmalliste und Merkmal Sets (Msets/Psets)	18
	2.4.1	Essenzielle Merkmale	19
	2.4.2	Anmerkung zur Definition von Merkmalen:	21
3	Teilr	modell "Umgebungsmodell"	22
	3.1	Bestandsinformationen	22
	3.2	Orthofotos	22
	3.3	Modellunterteilung	22
	3.4	Fachmodelle des Umgebungsmodells	
	3.4.1	Fachmodell Bestandsgelände	
	3.4.2	Fachmodell Umgebungsgelände	
	3.4.3	Dateiformate	25
4	Teilr	modell Straße	26
	4.1	Modellierungsanforderungen	26
	4.1.1	Modellierung linienförmiger Bauwerke	
	4.1.2	Modellierung trassen-unabhängiger Bauwerke	
	4.2	Modellstruktur	
	4.2.1	Unterteilung von großen Bauteilen	27

	4.2.2	Bauteilgliederung	28
	4.3	Zugehörige Fachmodelle	29
	4.3.1	Fachmodell Straßenbau	30
	4.3.2	Fachmodell Leitungen & Einbauten	34
	4.3.3	Fachmodell Entwässerung	38
	4.3.4	Fachmodell Ausstattung	41
5	Teilm	odell Kunstbauten	.42
	5.1	Zugehörige Fachmodelle	42
	5.2	Modellstruktur	42
	5.3	Bauteiltrennung	43
	5.4	Modellierungsanforderungen	43
	5.5	Fachmodelle Kunstbauten	44
	5.5.1	Fachmodell Brückenbau	44
	5.5.2	Fachmodell Stützbauwerke	47
	5.5.3	Fachmodell Wannenbauwerk	47
	5.5.4	Fachmodell Straßenbau	48
	5.5.5	Fachmodell Seitenstreifen	48
	5.5.6	Fachmodell Entwässerung	48
	5.5.7	Fachmodell Ausstattung	49
	5.5.8	Fachmodell Leitungen und Einbauten	49
	5.5.9	Fachmodell Baugrube	50
	5.5.10	Fachmodell Erdbau	50
	5.5.11	Fachmodell Lärmschutzwand	51
6	Teilm	odell Tunnelbau	.53
	6.1	Zugehörige Fachmodelle Tunnelbau	53
	6.2	Geschlossene Bauweise	54
	6.2.1	Fachmodell Vortrieb	55
	6.2.2	Fachmodell Betonbau	56
	6.2.3	Fachmodell Straßenbau	57
	6.2.4	Fachmodell Entwässerung	57
	6.2.5	Fachmodell Ausstattung	58
	6.2.6	Fachmodell Leitungen und Einbauten	59
	6.2.7	Fachmodell Baugrube	59
	6.3	Tunnel in offener Bauweise	60
	6.3.1	Fachmodell Betonbau	63
	6.3.2	Fachmodell Straßenbau	63
	6.3.3	Fachmodell Seitenstreifen	63
	6.3.4	Fachmodell Entwässerung	64
	6.3.5	Fachmodell Ausstattung	
	6.3.6	Fachmodell Leitungen und Einbauten	65

	6.3.7	Fachmodell Baugrube	65
7	Teilr	nodell Nebenanlagen	66
	7.1	Modellaufbau	66
	7.2	Fachmodelle Nebenanlagen	67
	7.2.1	Fachmodell Verkehrsflächen	68
	7.2.2	Fachmodell Leitungen & Einbauten	71
	7.2.3	Fachmodell Entwässerung	72
	7.2.4	Fachmodell Ausstattung	73
8	Schn	nittstellenkoordination	74
	8.1	Schnittstelle Teilmodell Straße / Teilmodell Kunstbauten	74
	8.2	Schnittstelle Strecke – Baugrund	75
	8.2.1	Schnittstellendefinition im Dammbereich	75
	8.2.2	Schnittstellendefinition im Einschnittbereich	76
	8.3	Schnittstelle Strecke – Nebenanlagen	76
9	Mod	ellableitungen	77
	9.1	Mengen	77
	9.1.1	Mengenermittlung von nicht modellierten Bauteilen	77
	9.1.2	Mengenermittlung bei linienförmigen Bauwerken	78
	9.1.3	Mengenermittlung bei trassenunabhängigen Objekten	78
	9.2	Plankonsistenz	78
. Anl	hang		79

Liebe Mitarbeitende! Liebe Projektbeteiligte!

Dieser Leitfaden wurde im Rahmen eines gemeinsamen Digitalisierungs-Workshops mit der Vereinigung industrieller Bauunternehmungen Österreichs (VIBÖ) festgelegt und folglich in einer Arbeitsgruppe von Planenden, Bauausführenden und Auftraggebenden ausgearbeitet.

Das Dokument dient als verbindliche Rahmenvorgabe für alle Tätigkeiten, die im Zusammenhang mit den Inhalten dieses Leitfadens stehen.

Zweck und Verwendung des Leitfadens

Dieser Leitfaden dient unter anderem als Grundlage für unsere Tätigkeiten in Bezug auf Building Information Modeling und ist eine wesentliche Basis, um die BIM-Modelle im gesamten Lebenszyklus durchgängig nutzen zu können.

Im Sinne einer einheitlichen und professionellen Arbeitsweise ist es unbedingt erforderlich, dass wir die für uns relevanten Informationen kennen und die entsprechenden Vorgaben aus diesem Leitfaden <u>einhalten</u>.

Da ein Leitfaden niemals jeden Einzel- und Ausnahmefall regeln kann, ist dieser Leitfaden als Rahmen zu verstehen, innerhalb dessen Aufgaben und Tätigkeiten abgewickelt und Entscheidungen getroffen werden. Der sich bietende Handlungsspielraum bedeutet, seine Arbeit und das Treffen der notwendigen Entscheidungen nicht nur an den Leitfaden, sondern auch an einem moralischen, fachlichen und ethisch einwandfreien Verhalten auszurichten. Beim Umsetzen des Leitfadens ist immer auch auf den "gesunden Menschenverstand" zu vertrauen.

Jegliche Art von konstruktivem Feedback zu diesem Leitfaden ist willkommen und kann bei der Dokumentenerstellerin eingemeldet werden. Das Feedback ist jedoch nicht zwingend mit einer verbindlichen Änderung dieses Leitfadens verbunden.

Leitfaden zur Modellierung von Infrastrukturmodellen

Modellerstellung für die Ausführungsplanung

Anlage zu den Auftraggeber Informationsanforderungen (AIA) in BIM-Projekten

Gültigkeitsbereich: BMG	ì	Gültig ab: 01.01.2022		
Version	Sicherheitsstatus	Dokumentenstatus		
1.0 öffentlich		Entwurf		
Intern zuständig				
BMG/Services/Sabine Hruschka, <u>sabine.hruschka@asfinag.at</u> , 0664/60108-14437 BMG/Services/Stefan Pölzl, <u>stefan.poelzl@asfinag.at</u> , 0664/60108-14940				
Verteiler				
via Ausschreibungen				
Veröffentlichung: ⊠ Adonis				

0 Übersicht

Der Modellierungsleitfaden unterstützt Planende und Bauausführende bei der Anwendung der BIM-Methodik in Infrastrukturprojekten und soll keinesfalls die Regelwerke der klassischen Planung ersetzen, sondern als eine Ergänzung dieser verstanden werden.

0.1 Revisionsstand

Tabelle 1: Änderungsangaben zum Modellierungsleitfaden

Version	Datum	Anmerkung	Kapitel
0.1	25.11.2020	Arbeitsstand AK Modellierleitfaden	0-8
1.0	19.11.2021	Erste Version V1.0	0-9

1 Allgemeine Anforderungen

Die allgemeinen Projektinformationen sind den Auftraggeber-Informations-Anforderungen zu entnehmen.

1.1 Modellstrukturierung

Bei der Erstellung von BIM-Modellen ist die Aufteilung und Strukturierung der Daten wichtig, um die Projektzusammenarbeit sicherzustellen und die Grundlage für den Einsatz von BIM über den gesamten Lebenszyklus hinweg zu gewährleisten. Die Strukturierung der Daten hängt von den Besonderheiten des jeweiligen Projekts ab. Insbesondere bei großen, komplexen oder mehrstufigen Projekten kann es erforderlich sein, die Modelle zu unterteilen. Die Aufteilung sollte dabei inhaltlich bzw. gewerkspezifisch sinnvoll gewählt werden. Die Strukturierung in Teilmodelle, welche wiederum in Fachmodelle untergegliedert werden können, optimiert die modellbasierte Koordination und Zusammenarbeit. Hierbei ist es sinnvoll sich an die Struktur der LB-VI zu halten, bzw. an die Hauptgruppen und Obergruppen des Leistungsverzeichnisses:

Hauptgruppe:

z.B. Bauabschnitte eines größeren Bauvorhabens

Obergruppe:

z.B. Bauwerke innerhalb eines Bauabschnitts

Leistungsgruppe:

z.B. Baustellengemeinkosten; Abbruch; Roden, Baugrube, Sicherungen und Tiefgründungen; Aufschließung, Infrastruktur; Beton- und Stahlbetonarbeiten; Mauerarbeiten; Versetzarbeiten; Putz etc.

Unterleistungsgruppe:

z.B. für die Leistungsgruppe Mauerarbeiten: Mauerwerk aus Normalformat-Steinen; Mauerwerk aus Hochlochziegeln; Mauerwerk aus Betonsteinen; Mauerwerk aus Porenbeton; Mauerwerk aus Schal- und Mantelbetonsteinen; Zwischenwände etc.

1.1.1 Strukturierungsmöglichkeiten

Für eine zielführende automatisierte Auswertung von BIM-Modellen benötigt man Gliederungen auf verschiedenen Ebenen.

1. Gliederung über die ASFiNAG-Bezeichnungskonvention:

Lieferobjekte entsprechen Fachmodellen (Dateibezeichnung der IFC-Dateien, siehe Kapitel 1.4):

→ A02_STR_FL_EP_A400_AN1_V02.ifc

2. Gliederung über den IFC-Strukturbaum: ifcSite, ifcBuilding, ifcBuildingStorey, etc. oder IFC-overall-architecture (IFC 5; Ausblick):

Abbildung 1: IFC-Strukturbaum

3. Gliederung über Merkmale, die zum Filtern verwendet werden können (Bauteilgruppen, Blöcke, Zonierungen, etc.):

Abbildung 2: Überblick über strukturgebende Merkmale¹

_

¹ beispielhaft aus ASFINAG Datenstruktur Stand Oktober 2021

Für die Umsetzung von gängigen BIM-Anwendungsfällen (4D, 5D, Dokumentenverlinkung, etc.) ist sowohl eine örtliche (projektspezifische) Gliederung, als auch eine fachliche (projektunabhängige) Gliederung sinnvoll. Sowohl die örtliche als auch die fachliche Gliederung wird über die ASFINAG Datenstruktur auf Merkmalebene umgesetzt. In Infrastrukturprojekten macht es Sinn die fachliche Strukturierung zusätzlich im IFC-Strukturbaum aufzubauen (siehe Abbildung 1), um das Modellhandling wesentlich zu verbessern.

Um den Strukturbaum IFC-konform (IFC 2.3 bis 4.1) aufzubauen, wird empfohlen folgende 4 Merkmale aus der ASFiNAG-Datenstruktur heranzuziehen (siehe Abbildung 1):

- 1. ASF_MSet_Semantik_Topologie: Bauwerk (entspricht Teilmodell)
- 2. ASF_MSet_Semantik_Topologie: Kategorie (entspricht Fachmodell)
- 3. ASF_MSet_Semantik_Topologie: Hauptgliederungselement
- 4. ASF_MSet_Semantik_Topologie: Element

Ausführliche Informationen zu den Gliederungen sind im Kapitel 2 bzw. in der ASFiNAG Datenstruktur zu finden.

1.2 Modelldetaillierung

In Literatur zum Thema BIM findet man immer wieder folgende Begriffe:

- LOD Level of Detail
- LOI Level of Information
- LOG Level of Geometrie
- LOIN Level of Information Needed

All diese Begriffe haben den Fokus die Modelldetaillierung zu verschiedenen Projektphasen oder Anwendungsfällen zu definieren. Über diese Definitionen werden geometrische Detaillierung und der Merkmalgehalt von BIM-Modellen festgelegt. Es gibt jedoch noch keinen national oder international gültigen Standard für die Modelldetaillierung. In diesem Modellierungsleitfaden werden daher vorwiegend die klassischen Begriffe zu den jeweiligen Projektphasen verwendet:

Tabelle 2: Modelldetaillierung und LOD

Projektphase	Bezug zu LOD	Beschreibung
Bestand (Grundlage)	vgl. LOD 100	Altbestand, Grundlage
Entwurf	vgl. LOD 200	Entwurfsmodell
Ausschreibung	vgl. LOD 300	Ausschreibungsmodell
Ausführung	vgl. LOD 400	Ausführungsmodell
Bestandsmodell (Übergabe)	vgl. LOD 500	"As-Built"- Modell

1.3 Modelleinheiten

Modelleinheiten sind in den Auftraggeber-Informationsanforderungen (AIA) zu finden.

1.4 Bezeichnungskonventionen

Jedes Teilmodell (Lieferobjekt als IFC oder CPIXML) weist eine eindeutige Dateibezeichnung auf. Eine mögliche Bezeichnungskonvention kann wie folgt lauten:

- 1) Straße (4-stellig)
- 2) Teilmodell (3-stellig)
 - a. STR....Straße
 - b. BRU....Brückenbauwerk
 - c. STU....Stützbauwerke, Schutzbauten, Mauern und geankerte Konstruktionen
 - d. WAN....Wannenbauwerke
 - e. GRU....Baugrund
 - f. HOB....Hochbau
- 3) Objekt & Abschnitt (3-stellig)
 - a. FL....Freiland
 - b. G67....Brücke
- 4) Fachmodell (2-stellig)
- 5) Projektphase LOD
 - a. E100....Vorentwurf mit einem LOD 100
 - b. G200....Genereller Entwurf mit einem LOD 200
 - c. A400....Ausführungsplanung mit einem LOD 400
- 6) Ersteller (2-stellig)
- 7) Version (3-stellig)

Somit ergibt sich folgendes Beispiel:

A02-_STR_FL-_EP_A400_AN1_V02

1.5 Datenaustausch

Für den Datenaustausch der einzelnen Fachmodelle ist ein vom Softwarehersteller unabhängiges Format zu wählen. Bevorzugt wird daher das offene Format IFC von BuildingSmart International. Die BIM-Erstellungssoftware muss zuverlässig den Im- und Export des IFC Formats unterstützen. Ergänzend dazu können die Formate CPIXML, DWF/x, LandXML, DWG und Trassierungsdaten (REB-Datenformate) zum Austausch verwendet werden. Ist eine modellbasierte Kommunikation vorgesehen, wird das BCF-Format (BIM-Collaboration-Format) empfohlen.

1.6 Dateigröße

Die Dateigröße der Lieferobjekte sollte unter Einhaltung der Anforderungen so klein wie möglich gehalten werden. Nicht benötigte Merkmale und Informationen sollten vor dem Modellexport so weit wie möglich entfernt werden. Die Dateigröße ist wesentlich von der geometrischen Größe des beinhalteten Infrastrukturmodells abhängig. Daher ist es sinnvoll die Modelle geometrisch in Abschnitte zu unterteilen und diese Anschnitte in einzelnen Lieferobjekten zur Verfügung zu stellen (etwa begrenzt auf einen Autobahnkilometer).

1.7 Identifikation von Modellelementen (GUID)

Für die Durchführung von BIM-Anwendungsfällen muss jedes geometrische Objekt durch eine eindeutige Identifikationsnummer (GUID) gekennzeichnet sein. Diese GUID muss über die Projektphasen hinweg durchgängig und stabil sein, damit Modelländerungen nachvollzogen und Verknüpfungen bestehen bleiben. In der Regel wird die GUID automatisch von der Modellierungssoftware vergeben und muss nicht gesondert bearbeitet werden. Jedoch kann es vorkommen, dass in Sonderfällen Doppelungen von GUIDs auftreten. Im Falle von doppelten GUIDs kann es zu Fehlern in der Auswertung kommen, weil BIM-Softwareprodukte dann nicht jedes Element eindeutig auswerten können. Aus diesem Grund ist es notwendig im Zuge der Modellprüfung eine ID-Prüfung auf Eindeutigkeit durchzuführen.

Abbildung 3: Informationen zur GUID

1.8 Projektbasispunkt und Bezugssysteme

Für die Erstellung der georeferenzierten BIM-Planung sind zwingend folgende Bezugssysteme zu verwenden.

Tabelle 3: Bezugssysteme

Daten	Bezugssystem Lage	Bezugssystem Höhe
sämtliche Modelle	MGI-AT/a.AUT-East/GK	Meter über Adria (mü A)

Das amtliche Koordinatensystem sowie das amtliche Höhenbezugssystem werden für die Erstellung der georeferenzierten BIM-Planung verwendet. Der Projektnullpunkt darf während der gesamten Planungsphase, der Betriebs- und Erhaltungsphase nicht verändert werden und wird in den AIA wie folgt definiert:

Tabelle 4: Definition Projektnullpunkt

System	Amtliches Koordinatensystem	Lokales Koordinatensystem
Rechtswert	4.555.735 (Beispielwert)	0,000
Hochwert	5.848.915 (Beispielwert)	0,000
Bezugshöhe	0,000 (müA)	0,000

Tabelle 5: Definition Kontrollpunkt

System	Amtliches Koordinatensystem	Lokales Koordinatensystem
Rechtswert	4.560.740 (Beispielwert)	5.006,162
Hochwert	5.846.760 (Beispielwert)	2.155,484
Bezugshöhe	0,000 (müA)	0,000

Grundsätzlich solle die Lage des Projektnullpunkts ca. in der Mitte des Projekts gewählt werden, sodass die Entfernungen zu den Projektgrenzen in etwa gleich groß sind. Der Wert des Projektnullpunkts sollte aus Gründen einer einfachen Handhabung auf einen runden Wert auf- bzw. abgerundet werden (runden auf volle 5 oder 10m).

1.9 Modellunterteilung

Die zu erstellenden Modelle werden entsprechend einer grundsätzlichen Unterteilung nach Straßenkilometer in volle Kilometer unterteilt. Diese Zonierung richtet sich nach der Autobahnkilometrierung entsprechend der ASFINAG PlaDok. Somit werden die Lieferobjekte (Modelldatei, z.B. IFC) auch kilometerweise erstellt. Die Unterteilung ist sowohl geometrisch als auch über das Merkmal "Zonierung" abgebildet.

Tabelle 6: Unterteilung des Modells nach Straßenkilometer

Unterteilung	Kilometer von	Kilometer bis
Z01	Km022+675	Km023+000
Z02	Km023+000	Km024+000
Z03	Km024+000	Km025+000
Z04	Km025+000	Km026+000
Z05	Km026+000	Km027+000
Z06	Km027+000	Km028+000
Z07	Km028+000	Km028+175

2.1 Einleitung und Abgrenzung

Die Themen Modellstrukturplan, Elementkataloge und Merkmalliste sind interdisziplinäre Themen, die in verschiedenen Arbeitsgruppen in Österreich und International erarbeitet werden. Speziell die genannten Themenfelder können nicht getrennt voneinander betrachtet werden, sondern greifen zu einem gewissen Grad ineinander. Aus diesem Grund werden in diesem Modellierungsleitfaden die Themen Modellstruktur und Elementkatalog in ihren Grundzügen beschrieben, für eine weitreichende Bearbeitung wird jedoch auf das entsprechende Dokument verwiesen.

Abbildung 4: BIM-Anforderungen

2.2 Modellstrukturplan

Der Modellstrukturplan gibt einen Überblick über die gewerkspezifische Gliederung der Modelle (in Teil- & Fachmodelle), die auch für die Unterteilung der Lieferobjekte (IFC-Dateien) verwendet wird. Es wird empfohlen für jedes Fachmodell zumindest eine eigene Modelldatei zu definieren, ein Fachmodell kann sich aber je nach Projekt aus mehreren IFC-Dateien (entsprechend Zonen und Abschnitten) zusammensetzen. Somit können zeitunabhängige Gewerke getrennt voneinander geliefert und im Koordinationsmodell wieder zusammengefügt werden.

Die Festlegung im Modellstrukturplan ist grundsätzlich projektunabhängig und kann für alle Gewerke in Infrastrukturprojekten verwendet bzw. erweitert werden. Folgende Abbildung gibt einen Überblick über mögliche Teil- & Fachmodelle in Infrastrukturprojekten:

Abbildung 5: Übersicht über Lieferobjekte (Teil- & Fachmodelle)

Hinweis zu Abbildung 5: Der Modellstrukturplan zeigt eine exemplarische Auflistung der Fachmodelle in div. Projektphasen. Eine konkrete Festlegung wird projektspezifisch in den AIA definiert.

2.3 Elementkatalog

Die im Elementkatalog tabellarisierten Merkmale sowie deren Merkmalgehalt (Ausprägung) sind dem jeweiligen Modellelement in der entsprechenden Detaillierung der Projektphase (LOD) zuzuweisen. Aufgrund der dauerhaften Fortschreibung des Bauwerksinformationsmodells von Projektbeginn an, verändert sich der Merkmalgehalt über den gesamten Lebenszyklus des Bauwerks. Kennzeichnend ist jedoch, dass nicht jede Fortschreibung des Modells mit einem Zuwachs des Merkmalgehalts verbunden ist. Besonders vor der Erhaltungsphase kann es zu einem Ausdünnen der Merkmale kommen. Dies wird in der Regel über Model-View-Definitions (MVD) realisiert, über welche die benötigten Merkmale in der IFC-Ausgabe gesteuert werden können.

Merkmale können direkt von einem Modellierungsprogramm zugewiesen werden (Abmessungen, GUID) oder auch vom Modellersteller projektspezifisch bzw. AG-spezifisch aufgebracht werden. Im weiteren Projektverlaufen können Merkmale über facheinschlägige Software den IFC-Modellen hinzugefügt werden.

Die ASFINAG stellt über eine Web-Plattform eine Übersicht über erforderliche Merkmale zur Verfügung. Auf dieser Plattform kann eine Übersicht der AG-spezifischen Merkmale runtergeladen werden.

Zum Thema AVA-spezifische bzw. 5D-spezifische Merkmale gibt es derzeit Entwicklungen bei der FSV (Forschungsgesellschaft Straße - Schiene - Verkehr). Im FSV-Arbeitskreis "BIM allgemeiner Elementkatalog" wird ein Elementkatalog erarbeitet, der auf Basis der LB-VI und der ÖNORM-A2063 entwickelt wird. Fokus des Arbeitskreises ist die Definition von Merkmalen für BIM-Objekte (sogenannte AVA-Elemente), die in der Auswertung des Modells zu einer eindeutigen LV-Position nach der LB-VI führen. Langfristig soll somit das Leistungsverzeichnis über ein BIM-Modell übergeben werden. Der Arbeitskreis beschäftigt sich somit primär mit dem Thema BIM-5D und der Definition von Merkmalen für den Elementkatalog. Die ÖNORM A2063-2 definiert ein Austauschformat (*.baek) über welches der Elementkatalog übergeben werden kann.

2.4 Merkmalliste und Merkmal Sets (Msets/Psets)

Jedem Modellelement lassen sich je nach Informationsdichte und Zweck beliebige Merkmale und Eigenschaften zuweisen. Einige werden hierbei als minimaler Standard für die Übergabe der Elemente nach IFC definiert und sind in so genannten Merkmal Sets (Msets oder auch als PSets) zusammengefasst. Dabei gibt es für jedes Element bzw. Bauteil, das sich per IFC übertragen lässt, eine eigene allgemeine Merkmalgruppe (ASF_Mset_Semantik_Topologie, PSetWallCommon, ...), die unterschiedlich viele Merkmale enthalten kann. Einzelne Bauteile, vor allem Ausstattungselemente oder erhaltungsrelevante Objekte, besitzen darüber hinaus noch weitere vordefinierte Merkmalgruppen. Diese Gruppierung bietet eine zusätzliche Strukturierung des umfangreichen Merkmalsatzes und ermöglicht daher eine bessere Übersichtlichkeit über alle notwendigen und zu vergebenden Bauteilinformationen.

Eine vollständige AG-spezifische Merkmalliste ist in der ASFiNAG Datenstruktur zu finden. Im nachfolgenden Kapitel sind Standardmerkmale, die unabhängig von Anwendungsfällen in jedem BIM-Modell enthalten sein müssen, sodass das Betrachten und Filtern, bzw. einfaches Koordinieren der Modelle in facheinschlägiger BIM Software sichergestellt wird.

2.4.1 Essenzielle Merkmale

In der Regel sind Merkmale bauteilspezifisch definiert (Elementkatalog). Es gibt eine Reihe an essenziellen Merkmalen, die an jedem Bauteil vorhanden sein müssen, damit das Betrachten und Filtern, bzw. einfaches Koordinieren der Modelle in facheinschlägiger BIM Software sichergestellt wird. Die folgende Tabelle gibt einen Überblick über die essenziellen Merkmale in BIM-Modellen:

Tabelle 7: Essenzielle Merkmale

Pse	Pset: ASF_MSet_Semantik_Topologie				
1	: Abschnitt	Tunnelbauwerksabschnitt			
2	: AbschnittBezeichnung	TF1_OBW_1300-1650_zweizellig			
3	: Bauteilgruppe	Block			
4	: BauteilgruppeBezeichnung	D003			
5	: Bauwerk (Empfehlung: "Teilmodell")	Tunnelbauwerk (Empfehlung: "Tunnel")			
6	: BauwerkBezeichnung	Tunnel Freinberg			
7	: ElementID	W_D003.1_2			
8	: Element	Decke			
9	: ElementTypenindikator1	Decke			
10	: ElementTypenindikator2	Außendecke			
11	: ElementTypenindikator3	Massiv			
12	: Fachmodell	A26_STE_ET2_Z01_TUN_KON_TUNN (Empfehlung: "Betonbau")			
13	: Hauptgliederungselement	Fahrröhre			
14	: HauptgliederungselementBezeichnung	Röhre1			
15	: Kategorie	Konstruktiver Ingenieurbau			
16	: Projekt²	A26 E2 NBTU Hast.Waldeggstraße - Ast.Donau Süd			
17	: Projektgebiet	A26 Linzer Autobahn			
18	: Referenzachse	A102A_Roehre1			
19	: StationierungAnfang	1.351,6920 [m]			
20	: StationierungEnde	1.360,0250 [m]			
21	: Verwendungszweck	#			

²Übergeordnete Merkmale werden am besten in den Header der IFC-Datei geschrieben:

Tabelle 8: Weitere Standardmerkmale

Ме	Merkmale - Projektphasen				
22	Projektphase	Abriss/Neubau/Bestand/Temporär			
23	Phasenmodell	Ausführungsmodell (LOD 400)			
24	ifcOrganization ²	Planer AB			
25	ifcModelCreationDate ²	2021-08-30			
4D	Merkmale - Bauausführung				
26	Bauphase	BPh 4.1			
27	Start	Baustart nach Terminplan SOLL			
28	Ende	Fertigstellung nach Terminplan SOLL			
29	Start IST	Baustart nach Terminplan IST			
30	Ende IST	Fertigstellung nach Terminplan IST			
5D	D Merkmale - Mengenberechnung (exemplarisch) ³				
31	Material	Beton			
32	Material_Detail	Ortbeton C30/37			
33	Laenge	2,500 [m] – sofern definierbar			
34	Breite	1,000 [m] – sofern definierbar			
35	Hoehe	1,500 [m] – sofern definierbar			
36	Durchmesser	0,800 [m] – sofern definierbar			
37	Staerke	0,800 [m] – sofern definierbar			
38	Volumen	2,760 [m³] – sofern definierbar			
39	Oberfläche	10,950 [m²] – sofern definierbar			
40	Aufstandsflaeche	4,210 [m ²] – sofern definierbar			
41	Kontaktflaeche	1,760 [m²] – sofern definierbar			
42	Flaeche_Oberflaechenbehandlung	1,120 [m²] – sofern definierbar			
43	Schalungsflaeche	8,860 [m²] – sofern nicht separat modelliert			

 $^{^{3}}$ Merkmale zur Mengenberechnung (5D) sind entsprechend ÖNORM A2063-2 BAEK zu definieren.

2.4.2 Anmerkung zur Definition von Merkmalen:

- Wenn Merkmale nicht definiert werden können, weil diese Information an einem konkreten Bauteil oder im Projekt nicht festgelegt werden kann, dann ist das Merkmal mit dem Wert "#" oder "-999" zu versehen
- Grundabmessungen wie Länge, Breite, Höhe, Stärke sind einzutragen (soweit diese definiert werden können)
- Grundsätzlich sind jene Parameter als Abmessungen anzugeben, die für eine Modellierung benötigt werden.
- Nicht alles muss modelliert werden jedoch sollen alle LV-Positionen mit Parametern vom gegenständlichen Bauteil bzw. anderen Bauteilen herleitbar sein

3.1 Bestandsinformationen

Das Bestandsgeländemodell beruht auf Bestandsunterlagen und Vermessungsdaten, die zu einem DGM verarbeitet werden. Hierbei ist darauf zu achten, dass die Vermaschung des DGM unter Berücksichtigung von Bruchkanten erfolgt, sodass Geländelinien im Modell richtig definiert sind.

Das Geländemodell muss das Bestandsgelände bzw. das zukünftige "Umgebungsgelände" in seiner tatsächlichen Form darstellen und als Grundlage für die Modellierung der restlichen Modelle dienen. Die Baufeldgrenzen sind am Geländemodell darzustellen, oder als eigenständige Objekte zu modellieren (3D-Polylinie).

3.2 Orthofotos

Die Information der Oberflächenbeschaffenheit und -nutzung wird über Luftbilder gewährleistet, welche auf das Geländemodell projiziert werden. Ergebnis ist ein 2,5D Modell, welches farbliche und thematische Information des Geländes enthält.

3.3 Modellunterteilung

Das Geländemodell wird entsprechend der generellen Zonierung in einzelne Lieferobjekte unterteilt und Kilometerweise zur Verfügung gestellt. Die Unterteilung ist sowohl geometrisch als auch über das Merkmal "Zonierung" abgebildet. Die Zonierung richtet sich nach der Autobahnkilometrierung entsprechend der ASFINAG PlaDok.

Tabelle 9: Unterteilung des Projekts nach Straßenkilometer

Unterteilung	Kilometer von	Kilometer bis
Z01	km22+675	km23+000
Z02	km23+000	km24+000
Z03	km24+000	km25+000
Z04	km25+000	km26+000
Z05	km26+000	km27+000
Z06	km27+000	km28+000
Z07	km28+000	km28+175

3.4 Fachmodelle des Umgebungsmodells

Das Teilmodell "Umgebungsmodell" setzt sich aus folgenden Fachmodellen zusammen:

3.4.1 Fachmodell Bestandsgelände

Tabelle 10: Fachmodell Bestand Gelände

3.4.2 Fachmodell Umgebungsgelände

Tabelle 11: Fachmodell Umgebungsgelände

LOD 400 - Umgebungsgelände

LOG 400	LOI 400

Definition

Das Fachmodell Umgebungsgelände stellt das Gelände nach der Bauausführungsphase in seiner tatsächlichen Form dar.

Es müssen zumindest die Standardmerkmale laut ASFINAG-Datenstruktur enthalten sein.

Zusätzlich muss die Oberflächennutzung aus dem Modell erkennbar oder in den Merkmalen enthalten sein.

Beschreibung

Das neue Gelände wird im Zuge der Trassierung der Autobahn modelliert. Aus der Autobahntrasse ergeben sich neue Böschungen bzw. Einschnitte, die an das Modell "Neues Gelände" anschließen. Das Geländemodell läuft unterhalb der Autobahn auf dem Niveau des Planums, also oberhalb des Erdbaus. Das Geländemodell und die anliegenden Modelle sind kollisionsfrei oder direkt anliegend zu modellieren.

Die Flächennutzung sollte entweder über Merkmale oder über Bildinformation (Mapping von Orthofotos) aus den Modellen erkennbar sein.

Im Ausführungsmodell sind Baufeldgrenzen und im Übergabemodell sind Erhaltungsgrenzen zu modellieren.

Ziel

Darstellung des Geländes und Klassifizierung der Oberfläche.

Klassifizierung der Elemente und der Oberfläche.

3.4.3 Dateiformate

Die Dateiformate der enthaltenen Objekte im Teilmodell Gelände sind in nachfolgender Tabelle aufgeführt:

Tabelle 12: Dateiformate

Objekt	Dateiformat
DGM	LandXML, DWG, REB, CPIXML
Orthofotos	JPG+JGW, PNG+JGW, (CPIXML)
Geländemodell	CPIXML, (IFC 4)

4 Teilmodell Straße

Das Teilmodell Straße enthält alle Modellelemente, die zur betrachteten Straße bzw. deren Achse gehören. Kunstbauten und Anlagen werden separat betrachtet.

4.1 Modellierungsanforderungen

4.1.1 Modellierung linienförmiger Bauwerke

Objekte, die eine linienförmige Ausprägung besitzen - also einer Trasse (Achse, Gradiente) folgen - werden analog zur Abrechnung über Querprofile entlang einer Achse definiert und auch modelliert. Der aktuelle Stand von BIM-fähigen Straßenplanungstools sieht nach wie vor eine Modellierung über Querprofile vor. Man modelliert somit aufbauend auf Flächen, die man im Querprofil definiert. Für den regelmäßigen Verlauf einer Straße eignet sich diese Vorgangsweise sehr gut. Wenn es allerdings zu kleinräumigen Querprofiländerungen kommt, wie etwa im Abschlussbereich einer Entwässerungsmulde, so können diese detaillierten Änderungen nur bedingt über Querprofile dargestellt werden. Es kann daher im visuellen, ästhetischen Sinne nicht jede Änderung detailgetreu im Modell abgebildet werden. Der Abschluss von Modellelementen im Längsverlauf der Straße wird zwischen 2 Querprofilen verzogen bzw. der Modellkörper verjüngt sich auf eine Nullfläche. Bei großen Änderungen ist an diesen Stellen ein Sonderprofil einzufügen.

Besondere Modellierungsmaßnahmen stellen Punkt-, Linien- und Flächenobjekte dar, die über die standardmäßige 3D-Modellierung der Trassierung hinausgehen. In modernen Modellierungsprodukten ist es möglich 3D-Punktobjekte zu erstellen und zu platzieren. Somit ist es möglich Ausstattungsobjekte, wie z.B.: Schilder, Markierungen, Fahrzeugrückhaltesysteme, Bäume etc. zu erstellen und zu platzieren. Flächenhafte Bauwerke werden in der Regel über Flächen bzw. DGMs modelliert (siehe Kapitel 4.1.2).

4.1.2 Modellierung trassen-unabhängiger Bauwerke

Wegen der unregelmäßigen Geometrie von Bauwerken wie z.B. Regenrückhaltebecken, Verkehrsinseln, Gewinnungsstellen, Kippen, Halden, Baugruben, Schüttungen und Aushüben ist eine flächenhafte Modellierung oft besser geeignet als eine Beschreibung des Körpers in stationierten Querprofilen. Die Modellierung erfolgt häufig über DGMs und die Mengenberechnung über die Prismenmethode.

4.2 Modellstruktur

Besonders bei großen Projekten mit einer Vielzahl unterschiedlicher Gewerke ist es notwendig gleichartige Bauteile/Modellelemente zum Zwecke der Orientierung im Koordinationsmodell (Modellhandling) und der Optimierung der technischen Performance zusammenzufassen. Dazu wird das Modell einer räumlichen und inhaltlichen Gliederung unterzogen.

Folgende Strukturen sind in das Modell einzuarbeiten:

- Modellstrukturplan (Einteilung in Teil- & Fachmodelle)
- ASFiNAG Datenstruktur
- IFC Struktur (noch nicht vollständig für Infrastruktur)

4.2.1 Unterteilung von großen Bauteilen

Ein Straßenbauwerk erstreckt sich als Linienbauwerk häufig über eine große Entfernung. Die Bauteile des Straßenmodells sollten für ein geeignetes Modellhandling in Achsrichtung unterteilt werden.

Die räumliche Trennung kann sich beispielsweise an Bauabschnitten, vollen Autobahnkilometern oder Bauphasen orientieren und wird sowohl geometrisch als auch über Merkmale definiert. Zusätzlich sollten die einzelnen Elemente innerhalb dieser Zonen entsprechend einem Regelabstand (**5m, 15m oder 25m Stationierung**) unterteilt werden. Diese Unterteilung wird in der IFC-Datei über sogenannte "Composite-Elemente" abgebildet.

In der Praxis hat sich gezeigt, dass eine Stationierung des Oberbaus in 5m bzw. 10m Abschnitte sinnvoll ist. Beim Erdbau ist eine Stationierung analog zur klassischen Planung von 15 bis 25m ausreichend. Diese Bauteiltrennung bedeutet nicht, dass die geometrischen Volumenkörper nicht zwischen den Stationen noch genauer detailliert sind. In moderne Straßenplanungssystemen kann man sowohl die Stationierung als auch die Genauigkeit der "Tessellierung" (Punkte und Dreiecke, die einen Körper definieren) beim IFC-Export festlegen. Somit wird gewährleistet, dass die geometrischen Elemente nicht nur linear zwischen 2 Profilen interpoliert werden, sondern fachlich und optisch den Gegebenheiten des Urgeländes und der Planung folgen.

Abbildung 6: Detaillierung bzw. "Tessellierung" von Bauteilen

4.2.2 Bauteilgliederung

Die folgende Darstellung gibt einen Überblick über die inhaltliche Gliederung des Straßenquerschnitts. Diese Gliederung erfolgt über die Merkmale bzw. über die Modellstruktur (bzw. IFC-Strukturbaum). Dementsprechend gliedert sich das Fachmodell "Straßenbau" in folgende Bauteile:

Abbildung 7: Überblick über die Bauteile eines Straßenquerschnitts im Dammbereich

Straßenaufbau: Einschnittsbereich / Übergang

Abbildung 8: Überblick über die Bauteile eines Straßenquerschnitts im Einschnittsbereich

Die Gliederung in Fachmodelle und Bauteilgruppen ist im nächsten Kapitel beschrieben.

4.3 Zugehörige Fachmodelle

Tabelle 13: Fachmodelle des Straßenmodells

Fachmodell	Abgrenzung/Beschreibung
Erdbau	Erdbau zwischen Oberbau und Baugrundmodell
	Begleitgräben, Begleitdämme und -einschnitte, Oberboden
Straßenbau	Trag-, Binder-, Deckschichten etc. des Oberbaus
Sekundäres Wegenetz	Sekundäres Straßennetz wie kreuzende oder begleitende Straßen und Wege (z.B.: Wirtschaftswege)
Entwässerung	Straßenentwässerung und Entwässerungsanlagen
Leitungen & Einbauten	Unterirdische Leitungen (ausgenommen Straßenentwässerung)
Lärmschutzwand	Lärmschutzwände als Begleitbauwerke zur Strecke sind als BIM-Modell darzustellen.
Überkopfkonstruktion	Überkopfwegweiser und Verkehrszeichenbrücken sind als eigenes Fachmodell zu modellieren.
Ausstattung	Schutzeinrichtungen, Stationszeichen, Einzäunungen, Anlagen etc.
Beschilderung	Verkehrszeichen, Wegweisende sowie zivile Beschilderung
Markierung	Modellierung der Markierungen und Markierungsflächen

4.3.1 Fachmodell Straßenbau

Tabelle 14: Fachmodell Bestand Strecke

geringen Detaillierungsgrad (LOG 100) erfassen. Folgende Modellelemente müssen mindestens in den Fachmodellen enthalten sein:

- Asphaltschichten
- Betonschichten
- Frostschutzschichten
- Oberboden bis zum Bodenschichtenmodell inklusive Bankett
- Unterbau (im Dammbereich) bis zum Bodenschichtenmodell
- Aushubkörper im Einschnittsbereich
- Anpassung des Oberflächenmodells (DGM) im Einschnittsbereich

Oberirdische Bestandsbauwerke (mit Ausnahme der Ausstattung) wie Erdbauwerke, Entwässerungsmulden, Dämme, Becken müssen mindestens über ihre Oberfläche als DGM erfasst werden.

Zielführend ist eine Modellierung als Volumenkörperelemente mit entsprechender Attributierung.

Achsparallele Bauwerke (begleitende Dämme, Mulden, usw.) sind als Trassierungskörper zu erstellen und mit Merkmalen zu versehen.

Ziel

Erfassung des Bestands als Planungsgrundlage:

- Abtrag des Oberbaus
- Abtrag Oberboden
- Bodenabtrag (Aushub)

Eindeutiges Erkennen der Bestandsobjekte und Zuordnen der Schichten zu Abtragspositionen im Leistungsverzeichnis, bzw. dem Bauzeitplan.

Tabelle 15: Fachmodell Straßenbau - Ausführungsmodell

LOG 400 LOI 400

Definition

Ausführungsmodell, "As-Planned" -Modell: Detailliertes Modell mit Modellelementen, die eine Ableitung von Ausführungsplänen erlauben. Die Merkmale ermöglichen eine eindeutige Identifizierung der Modellkörper und deren Funktion und Bedeutung. Erste Merkmale für Betrieb und Erhaltung werden angelegt, soweit sie in der Planungsphase schon vorliegen.

Beschreibung

Das Modell enthält neben der Modellstruktur eine geometrische Untergliederung des Querschnitts in verschiedene Fachmodelle bzw. Bauteilgruppen wie Oberbau, Unterbau, Erdbau, Borde, etc. mit allen zugehörigen Schichten und Elementen in ihrer tatsächlichen Geometrie laut Ausführungsplanung. Folgende Schichtenkörper sind zusätzlich zu den Anforderungen von LOG200 zu modellieren:

- Achse als IFC Objekt (ifcAlignment)
- Oberbau mit allen Schichten
- Unterbau inkl. Schichten der Bodenverbesserung
- Planum als Flächenelement (DGM)
- Betondeckenelemente unterteilt in Längs- und Querrichtung
- Bankett inkl. Hinterfüllung
- Mittelstreifen inkl. Schichtaufbau
- Borde und Bordsteine mit Rückenstütze
- Gehwege inkl. Aufbau
- Nothaltebuchten
- Auf- / Ausfahrten

Die Volumenkörper werden mit Merkmalen laut AIA, der ASFiNAG Datenstruktur, strukturgebenden Merkmalen, sowie relevanten Merkmalen für die Mengenermittlung (5D) Bauzeitplanung (4D) und Bauausführung versehen.

Eine elementbasierte Auflistung aller Merkmale ist in der ASFiNAG DS Datenbank zu finden.

Anwendungsspezifische Merkmale für die Mengenauswertung (5D) sind entsprechend der ÖNORM A2063-2:2021-3 zu definieren.

Aushubkörper nach Bodenklasse im Falle eines Einschnitts in den
 Ziel
 Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert, sodass sich daraus zumindest Pläne bis zu einem Maßstab 1:50 ableiten lassen.

Merkmale für die Bauzeitplanung, Bauausführung und Kalkulation/Abrechnung können aus dem Modell gewonnen werden.

4.3.2 Fachmodell Leitungen & Einbauten

Tabelle 16: Fachmodell Bestand Leitungen

OI 100
C

Definition

Bestandsleitungen werden vereinfacht und mit Lage und Höheninformationen versehen dargestellt.

Die Merkmale geben einen Überblick über die Strukturierung, den Eigentümer/Betreiber, sowie über die Lagegenauigkeit der Leitungen.

Beschreibung

Bestandsleitungen weisen häufig keine Höhenangaben auf und darüber hinaus ist die Lageinformation auch nicht immer zuverlässig.

Dennoch müssen Bestandsleitungen im Modell eingezeichnet bzw. modelliert werden.

Liegt keine oder eine ungenaue Höhen-, bzw. Lageinformation vor, so sind die Leitungen mit einem halbtransparenten Schutzbereich in sinnvoller Größe um die Leitung modellieren.

Schächte werden als vereinfachte Volumenkörper dargestellt.

Das Fachmodell weist eine Merkmalstruktur entsprechend des Leitungskatasters auf.

Die Leitungen gliedern sich in folgende Leitungsarten:

- Elektrizitätsleitung
- Telekommunikationsleitung
- Gasleitung
- Wasserleitung
- Abwasserleitung
- Fernwärmeleitung
- Ölleitung

Die Lage- & Höhengenauigkeit muss als Merkmal definiert werden, um eine grobe Einschätzung der Zuverlässigkeit zu ermöglichen. (Siehe unten)

Eine elementbasierte Auflistung aller Merkmale ist in der ASFINAG Datenstruktur zu finden.

Ziel

Darstellung der Bestandsleitungen im Bestandsmodell trotz möglicher Ungenauigkeit der vorliegenden Daten. Eindeutiges Erkennen und zuordnen der Leitungen inklusive der Lagegenauigkeit.

Inhalt	Beschreibung
Bestand Leitun- gen	Als "Leitungen" gelten alle unterirdischen Leitungen mit Ausnahme der Straßenentwässerung. Die Bestandsleitungen werden mit einer geringen Genauigkeit als Linienelemente über einen Querschnitt bzw. Durchmesser modelliert. Bei Bestandsleitungen, die keine Höhenangaben besitzen, wird ein halbtransparenter Schutzbereich in sinnvoller Größe um die Leitung modelliert. Zusätzlich werden für die Leitungen die Merkmale Lagegenauigkeit und Höhengenauigkeit definiert, die über Kennzahlen von 1 bis 3 die Zuverlässigkeit der Angaben beschreiben: • "1" zuverlässige Angabe: aus Vermessungsdaten; • "2" halbzuverlässige Angabe: aus schriftlichen Aufzeichnungen; • "3" unzuverlässige Angaben, bzw. keine Angabe. Schächte und Anschlussbauwerke werden in einem geringen Detaillierungsgrad als Punktobjekte im Modell dargestellt.

Tabelle 17: Fachmodell Leitungen & Einbauten - Ausführungsmodell

Inhalt	Beschreibung
Leitungen	Das Fachmodell Leitungen beschreibt alle unterirdischen Leitungen (Kabel, Wasserleitungen, etc.) mit Ausnahme der Entwässerung. Leitungen werden als Linienelemente über einen Querschnitt bzw. Durchmesser modelliert.
Schächte, Verbindungen, Anschlüsse	Schächte, Schachtdeckel, Verbindungen, Anschlüsse werden als Punktobjekte generiert und im Modell platziert.

4.3.3 Fachmodell Entwässerung

Tabelle 18: Fachmodell Bestand Entwässerung

Tabelle 19: Fachmodell Entwässerung - Ausführungsmodell

LOG 400 LOI 400

Definition

Die Elemente des Entwässerungsmodells werden mit der Genauigkeit einer Ausführungs-planung als Volumenkörper dargestellt. Die Merkmale ermöglichen eine eindeutige Identifizierung der Modellkörper und deren Funktion und Bedeutung. Erste Merkmale für Betrieb und Erhaltung werden angelegt, soweit sie in der Planungsphase schon vorliegen.

Beschreibung

Zusätzlich zu den Anforderungen des LOG 200 sind folgende Elemente als Volumenkörper zu modellieren:

- Straßenabläufe
- Anschlüsse / Verbindungen

Die Modellelemente weisen eine hohe geometrische Genauigkeit und Detaillierung auf.

Die Volumenkörper werden mit Merkmalen laut BAP, der ASFiNAG Datenstruktur, strukturgebenden Merkmalen, sowie relevanten Merkmalen für die Mengenermittlung (5D) Bauzeitplanung (4D) und Bauausführung versehen.

Eine elementbasierte Auflistung aller Merkmale ist in der ASFiNAG DS Datenbank zu finden. Anwendungsspezifische Merkmale für die Mengen-

Anwendungsspezifische Merkmale für die Mengenauswertung (5D) sind entsprechend der ÖNORM A2063-2:2021-3 zu definieren.

Ziel

Darstellung des Entwässerungsmodells entsprechend einer Ausführungsplanung.

Unterscheidungsmöglichkeit und Informationsaustausch über die Merkmale des Entwässerungsmodells.

Inhalt	Beschreibung
Entwässerung	Entwässerungsmulden und -gräben sowie Entwässerungsbecken als Begleitbauwerke zur Autobahn werden als Volumenkörper im Zuge der Trassierung erstellt. Bei der Modellierung der Entwässerungsbauwerke werden Oberbodenandeckung und Filterschichten als eigene Schicht erfasst. Entwässerungsleitungen wie Kanäle, Dräne etc. werden vergleichbar zu den Leitungen als Linienobjekte über eine Achse und einen Durchmesser modelliert. Schächte samt Schachtdeckel werden als Punktobjekte auf den Leitungsachsen platziert. Die Höhen der Schachtdeckel sind an die Höhen der obersten Deck-
	schicht anzupassen.

4.3.4 Fachmodell Ausstattung

Tabelle 20: Fachmodell Ausstattung

Fachmodelle	Beschreibung
Markierungen	Bodenmarkierungen werden in Linienelemente, Flächenelemente und Punktelemente unterteilt. Um den Anforderungen des Übergabeformats IFC gerecht zu werden, sind alle Markierungselemente als Volumenkörper mit geringer Stärke zu erstellen. Linien- und Flächenelemente werden als Trassierungskörper erstellt. Punktelemente wie Symbole werden als 3D-Objekte eingefügt.
Schutz-einrich- tungen	Linienbauwerke (Schutzplanken und Betonschutzwände, Wildschutzzaun) sind bis LOG 200 als Volumenkörper über die Trassierung zu erstellen. Sie können somit mit einem vereinfachten, über die Achse gleichbleibenden Querschnitt modelliert werden. Ab LOG 400 erfordert der Detaillierungsgrad eine Modellierung als Objekte mit detailliertem Querschnitt und Längsschnitt. Schutzeinrichtungen die Punktobjekte darstellen (Anpralldämpfer, Wildschutzklappen, etc.) können bis LOG 200 als vereinfachter Volumenkörper mit entsprechender Attributierung dargestellt werden. Ab LOG 400 sind die Objekte mit detaillierter Geometrie mit entsprechender Software erkennbar zu modellieren.
Beschilderung	Verkehrsschilder können bis LOG 200 als vereinfachter Volumenkörper mit ent- sprechender Attributierung dargestellt werden. Ab LOG 400 sind die Objekte mit detaillierter Geometrie mit entsprechender Software erkennbar zu modellieren.
Beleuchtung	Beleuchtungen können bis LOG 200 als vereinfachter Volumenkörper mit ent- sprechender Attributierung dargestellt werden. Ab LOG 400 sind die Objekte mit detaillierter Geometrie mit entsprechender Software erkennbar zu modellieren.
Sonstige Anlagen	Sonstige Anlagen der Straßenausstattung (punktförmig, streckenförmig, seriell, Summenausstattung) müssen trotz der individuellen Anforderungen als Volumenkörper modelliert werden. Können die Anforderungen an das Objekt nicht über die Trassierungssoftware realisiert werden, werden die Objekte in einer geeigneten BIM-Software modelliert und im Anschluss in ein koordiniertes Modell zusammengeführt.

5 Teilmodell Kunstbauten

Das Teilmodell Kunstbauten fasst alle Ingenieurbauwerke im Infrastrukturbereich zusammen. Einen Überblick über die zugehörigen Fachmodelle ist im folgenden Kapitel zu finden.

5.1 Zugehörige Fachmodelle

Tabelle 21: Beschreibung Fachmodelle

Fachmodell	Beschreibung
Brückenbau	BIM Modelle von Brückenbauwerken
Stützbauwerke	Stützbauwerke als Begleitbauwerke zu Infrastrukturbauwerken sind als eigenes Fachmodell zu modellieren
Wannenbauwerke	Wannenbauwerke als Teil von Infrastrukturbauwerken sind als eigenes Fachmodell zu modellieren
Straßenbau	Fahrbahnaufbau nur im Bereich der Kunstbauten, ansonsten ist der Straßenbau im Teilmodell Straße einzugliedern
Seitenstreifen	Erhöhter Seitenstreifen im Bereich des Bauwerks
Entwässerung	Bauteile und Anlagen der Brücken- bzw. Straßenentwässerung
Ausstattung	Bauteile und Elemente der Bauwerksausstattung, Sicherheitseinrichtungen, Markierungen, etc.
Leitungen und Einbauten	Leitungen div. Einbautenträger
Baugrube	Modellierung der Baugrube, Aushub bzw. Erdbaukörper
Erdbau	Böschungen und Hinterfüllungen im Bereich des Bauwerks und Hinterfüllungen im Bereich des Bauwerks und Hinterfüllungen im Bereich des Bauwerks

5.2 Modellstruktur

Im Gegensatz zum Straßenmodell, mit seiner Untergliederung in Kilometerabschnitte, wird das Fachmodell Brückenbauwerk mit all seinen Elementen in der Regel in einem Modell abgebildet. Es setzt sich im Wesentlichen zusammen aus Unterfangung, Fundamenten, Widerlager, Flügelwänden, Böschungstreppen, Überbau, Randbalken, Brückenausstattung und Schutzeinrichtungen.

5.3 Bauteiltrennung

Sämtliche Modellelemente müssen klar nach dem Modellstrukturplan und der ASFiNAG Datenstruktur aufgebaut und identifizierbar sein, darüber hinaus ist in Abhängigkeit des Bauverfahrens (Bauphasen) und der Abrechnung zu modellieren. Das bedeutet, die Geometrie jedes Bauteils muss den Bau-/ Betonierabschnitten folgen. Nur so ist eine bauteilscharfe Parametrisierung und die Umsetzung wesentlicher BIM-Anwendungsfälle möglich.

5.4 Modellierungsanforderungen

Gängige Modellierungssoftwareprodukte für den Ingenieurbau arbeiten mit sogenannten Bauteilfamilien, Blöcken, Bausteinen, Gruppen etc. Darunter versteht man in BIM-Modellierungssoftwareprodukten Einheiten an geometrischen Elementen mit gemeinsamen Eigenschaften. Diese "Bausteine" sind vordefinierte Bauteile, die in der Regel einem "Bauteil" entsprechen wie z.B. Wände, Decken, Stützen, Dächer aber auch Randbalken, Träger, Widerlagerwände, Geländer. Die Geometrie solcher Bausteine lässt sich häufig über essenzielle Parameter steuern.

Die Verwendung von solchen "Bausteinen" ist im Hochbau Standard und in gängigen Softwareprodukten stehen bereits Bibliotheken zur Verfügung. Für Ingenieurbauwerke gibt es meist noch keine Standardbibliotheken, jedoch ist es ratsam solche Bausteine auch für den Ingenieurbau aufzubauen und mit Standardmerkmalen zu hinterlegen. Somit kann man ein dynamisches Modell aufbauen, dass sich im Falle von Änderungen schneller abändern lässt und durch die Bibliothekbausteine durchgängige Merkmale aufweist.

5.5 Fachmodelle Kunstbauten

Bauteilgruppen	Beschreibung
	Flächenhafte Bauteile mit geringer Stärke wie z.B. Beschichtungen, KO-Schutz,
In der Regel nicht	Vliese, Folien, etc.
modelliert werden	Bei diesen Bauteilen werden die Massen über die Bauteilabmessungen (Merk-
	male) abgeleitet.

5.5.1 Fachmodell Brückenbau

Tabelle 22: Fachmodell Bestand Kunstbauten - dargestellt ist nur der Betonbau.

- Punktwolke als Referenz zur Vermessung (und in weiterer Folge als Kontrollfunktion Bestand/Umbau)
- Bestandsunterlagen mit allfälligen Umbau- bzw. Sanierungsmaßnahmen.

Zu modellieren sind:

- Alle Bauteile die von der jeweiligen Umbau- bzw. Sanierungsmaßnahme betroffen sind
- Alle Bauteile die für die Darstellung und Abbildung erforderlich sind, um örtliche und räumliche Bezüge herzustellen und die Maßnahme im Kontext zur Umgebung abzubilden.

Ziel

4D+5D Simulation vom Abbruch des Bestands:

- Darstellung der Abbruch und Umbaumaßnahmen
- Mengenermittlung des Abbruchs

Eindeutiges Erkennen und Zuordnen der Bauteile zum Leistungsverzeichnis, bzw. dem Bauzeitplan.

Tabelle 23: Fachmodell Brücke - Ausführungsmodell - Darstellung ohne Topografie und Baugrube

LOG 400 LOI 400

Definition

Ausführungsmodell "wie es ausgeführt werden soll" - Modell mit Modellelementen, die die Ableitung von z.B. Schnitten, Grundrisse, etc. zur Erstellung von konventionellen Ausführungsplänen erlauben.

Modell mit Bauteilinformationen, die für die Ausführung und Baubegleitung benötigt werden. Merkmale für die Erhaltungsphase werden angelegt.

Beschreibung

Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert, sodass sich daraus zumindest Pläne bis zu einem Maßstab 1:50 ableiten lassen. Eventuell erforderliche Details (Maßstab kleiner 1:50) werden in der Regel als 2D-Darstellung ergänzt (nicht modelliert)

Die Volumenkörper werden mit Merkmalen laut AIA, der ASFiNAG Datenstruktur, strukturgebenden Merkmalen, sowie relevanten Merkmalen für die Mengenermittlung (5D) Bauzeitplanung (4D) und Bauausführung versehen.

Eine elementbasierte Auflistung aller Merkmale ist in der ASFiNAG DS Datenbank zu finden.

Anwendungsspezifische Merkmale für die Mengenauswertung (5D) sind entsprechend der ÖNORM A2063-2:2021-3 zu definieren.

Ziel

Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert. Merkmale für die Bauzeitplanung, Bauausführung und Kalkulation/Abrechnung müssen im Modell vorhanden sein.

Die Auflistung der zu modellierenden Bauteile ist beispielhaft zu verstehen und muss für das jeweilige Projekt sinngemäß angepasst werden.

Inhalt	Beschreibung
	Sauberkeit
	 Fundament
Betonbauteile	 Aufgehendes, Flügel
Betombautene	 Lagersockel
	 Tragwerk
	 Schleppplatte
	Schleppplatte
Widerlager-rück-	 Sauberkeitsschichte
seite	 Frostschutzschicht
Seite	 Drainagebeton/Filterkies
	Betonauflager für Drainage
Randbalken	Randbalken
Kunubukti	 Verankerung Randbalken

5.5.2 Fachmodell Stützbauwerke

Tabelle 24: Fachmodell Stützbauwerke

Inhalt	Beschreibung
	Sauberkeit
	 Fundament
Betonbauteile	 Aufgehendes
	Randbalken
	• Füllbeton
	Sauberkeitsschichte
Rückseite	 Frostschutzschicht
Ruckseite	 Drainagebeton/Filterkies
	Betonauflager für Drainage
Gesimse	Gesimse
	Verankerung

5.5.3 Fachmodell Wannenbauwerk

Tabelle 25: Fachmodell Wannenbauwerk

Inhalt	Beschreibung
	Sauberkeit
Betonbauteile	Bodenplatte
	 Aufgehendes
	 Randbalken

	Füllbeton
	 Sauberkeitsschichte
Rückseite	 Frostschutzschicht
Ruckseite	 Drainagebeton/Filterkies
	Betonauflager für Drainage
Gesimse	Gesimse
	 Verankerung

5.5.4 Fachmodell Straßenbau

Tabelle 26: Fachmodell Straßenbau

Inhalt	Beschreibung
Fahrbahnaufbau	DeckschichtenBinderschichtenTragschichten
Lichtraum (falls erforderlich)	Lichtraum gem. RVS

5.5.5 Fachmodell Seitenstreifen

Tabelle 27: Fachmodell Seitenstreifen

Inhalt	Beschreibung
	Schlitzrinne
	 Abdeckplatten
Seitenstreifen	Betonauflager
(bei Wannen)	Sauberkeit
	 Fundament
	Mörtelbett

5.5.6 Fachmodell Entwässerung

Tabelle 28: Fachmodell Entwässerung

Inhalt	Beschreibung
	Brückenabläufe
	 Abdichtungsentwässerung
Entwässerung	Ableitungen
	Schächte
	 Drainageleitungen
	 Lagerbankentwässerung
Abdichtung	Abdichtung
/ waiting	 Schutzbeton

5.5.7 Fachmodell Ausstattung

Tabelle 29: Fachmodell Ausstattung

Inhalt	Beschreibung	
Ausbau, Ausrüs- tung	 Messbolzen Böschungstreppen Kantenschutzwinkel Lager FÜK Schienenauszug Fahrleitungsmaste Beleuchtungsmaste Unterschottermatte bei EB-Tragwerken Randbalken FRS Geländer Spritzschutz LSW Verankerung Randbalken KSR Mittelstreifenabdeckung/Absturzsicherung 	
E&M (es ist ausreichend die Bauteile als Platzhalter zu modellieren)	 CN.as Leitungen Rohrführungen Leerrohre (KSR) 	
Erdung	ErdungsleitungErdungsfestpunktErdungsbrücke (Seilverbindung)	

5.5.8 Fachmodell Leitungen und Einbauten

Tabelle 30: Fachmodell Leitungen und Einbauten

Inhalt	Beschreibung
	• Strom
Leitungen div. Ein-	• Gas
bautenträger	Telekom
	Kanal, etc.

5.5.9 Fachmodell Baugrube

Tabelle 31: Fachmodell Baugrube

Inhalt	Beschreibung	
	 Baugrubenaushub 	
Baugrube	 Böschungssicherungen (Spritzbetonschale, Bodennägel) 	
	 Anker (Ankerkopf mit Überstand, Zugglied, Verpresskörper) 	
	Hinterfüllung	

5.5.10 Fachmodell Erdbau

Tabelle 32: Fachmodell Erdbau

Inhalt	Beschreibung	
	 Böschungskegel 	
Erdbau	 Böschung seitlich bis Schnittstelle zum Straßenbau 	
	 Hinterfüllung Widerlager, Baugrube 	

5.5.11 Fachmodell Lärmschutzwand

Tabelle 33: Modellelemente des Teilmodells Lärmschutzwand – Ausführungsmodell

LOG 400	LOI 400
LOG TOO	LOI TOO

Definition

Darstellung aller Elemente des Lärmschutzwand-Modells in der Detaillierung einer Ausführungsplanung. Modell weist die Merkmale laut ASFiNAG Datenstruktur auf und enthält Bauteilinformationen, die für die Ausführung und Baubegleitung benötigt werden.

Grundsätzlich sind alle Informationen, die in der 2D Planung enthalten sind, auch in das Modell zu integrieren. Erste Merkmale für die Erhaltungsphase können enthalten sein.

Beschreibung

Im Gengensatz zu den Anforderungen des LOG200 sind die Elemente bei LOG400 sowohl im Querschnitt als auch im Längsschnitt mit einer detaillierten Geometrie entsprechend einer Ausführungsplanung zu modellieren.

Im Falls der Lärmschutzwand sind mindestens folgende Elemente zu modellieren:

- Träger
- Fundament
- Lärmschutzelemente

Merkmale, die die Funktion und Kennwerte des Bauwerks beschreiben sind anzuheften.

Mögliche Merkmale der Lärmschutzwand:

- Lärmabsorptionsgrad
- Masse
- Material
- Material- und Oberflächeneigenschaften
- Farbe

Eine elementbasierte Auflistung aller Merkmale ist im Elementkatalog zu finden.

Ziel

Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert, sodass sich daraus zumindest Pläne bis zu einem Maßstab 1:50 ableiten lassen.

Merkmale für die Bauzeitplanung, Bauausführung und Kalkulation/Abrechnung können aus dem Modell gewonnen werden.

Inhalt	Beschreibung
Tragwerk	Pfosten
Lärmschutzelemente	Wandsegmente (-element), Sockelsegmente (-element), Dichtprofil und Verkeilung
Unterbau	Betonsockel, Elastomerlager und Aufstandsprofilblech
Gründung Köcherverguss, Köcherfüllung, Sauberkeitsschicht und Rammpfahl	
Ausstattung	Fangvorrichtung, Netz, Seile, Vogelschutz, Pflanzung, Rankgitter und Abdeckprofil

6 Teilmodell Tunnelbau

6.1 Zugehörige Fachmodelle Tunnelbau

Tabelle 34: Fachmodelle des Teilmodells Tunnelbau

Fachmodell	Beschreibung
Betonbau	Modellierung des Betonbaus mit all seinen Bestandteilen
Straßenbau	Schichten des Oberbaus der Straße
Seitenstreifen	Modellierung des Seitenstreifens
Entwässerung	Straßen- bzw. Tunnelentwässerung
Ausstattung	Schutzeinrichtungen, Beleuchtung, sonstige vorhandene Anlagen und Tunnelausstattung, E&M
Leitungen & Einbauten	Neu zu verlegende / umzuverlegende Leitungen und Einbauten
Baugrube	Modellierung der Baugrube inkl. Abtrag und Erdbau

Die einzelnen Fachmodelle werden in unterschiedlichen Detaillierungsgraden erstellt.

6.2 Geschlossene Bauweise

Tabelle 35: Teilmodell Tunnel - Ausführungsmodell

LOD 400 - Tunnelbau Geschlossene Bauweise

LOG 400 LOI 400

Definition

Ausführungsmodell, "As-Planned" -Modell: Detailliertes Modell mit Modellelementen, die eine Ableitung von Ausführungsplänen erlauben. Modell mit Bauteilinformationen, die für die Ausführung und Baubegleitung benötigt werden. Merkmale für die Erhaltungsphase werden angelegt.

Beschreibung

Das Modell enthält eine Untergliederung des Querschnitts in verschiedene Baugruppen wie Vortriebsausbruch, Hohlraumsicherung, Drainage, Abdichtung, Innenschale, Erdung, Ausbau, Oberbau mit allen zugehörigen Schichten und Elementen in ihrer tatsächlichen Geometrie.

Die Volumenkörper werden mit relevanten Merkmalen für die Bauausführung und Bauzeitplanung versehen.

Die Bauwerksstruktur mit Einteilung in Bauteil- und LocationCodes ist den Modellelementen als Merkmal anzuheften.

Eine elementbasierte Auflistung aller Merkmale ist im Elementkatalog zu finden.

Ziel	
Alle für die Bauausführung relevanten Bauteile sind	Merkmale für die Bauzeitplanung, Bauausführung
im Modell enthalten und in einem Detaillierungs-	und Kalkulation/Abrechnung können aus dem Mo-
grad modelliert, sodass sich daraus zumindest	dell gewonnen werden.

6.2.1 Fachmodell Vortrieb

Pläne bis zu einem Maßstab 1:50 ableiten lassen.

Tabelle 36: Fachmodell Vortrieb

Bauteilgruppen	Beschreibung	
Vortriebsausbruch (Bauzwischenzu- stand)	Der Vortriebsausbruch wird mit dem entsprechenden Übermaß modelliert und in folgende Bereiche unterteilt (es handelt sich hier um einen Bauzwischenzustand): • Kalotte • Strosse • Sohle • Vollausbruch Das Ziel ist, je nach Vortriebsklasse die einzelnen Abschläge zu modellieren, nach der Bauausführung können die prognostizierten VKL an die tatsächlich gebauten VKL angeglichen werden und das Modell neu aufgebaut werden.	
Hohlraumsicherung	 Bei der Hohlraumsicherung werden folgende Objekte modelliert Außenschale (Gewölbe, Sohle) Sicherungsmittel (Anker, Bögen, Spieße, Rohrschirm, Stauchelemente) Ortsbrustsicherung (Ortsbrustanker, Ortsbrustversiegelung), Bauzwischenzustand Die Hohlraumsicherung wird mit dem entsprechenden Übermaß modelliert, man hat dann im Endzustand einen Hohlraum zwischen Außenschale und Innenschale. Das Ziel ist, je nach Vortriebsklasse die einzelnen Abschläge zu modellieren, nach der Bauausführung können die prognostizierten VKL an die tatsächlich gebauten VKL angeglichen werden und das Modell neu aufgebaut werden. Wichtig ist, dass Objekten, die relevanten Attribute (z.B. die Länge bei einem Anker, Stärke beim Spritzbeton, usw. zugeordnet werden) 	

6.2.2 Fachmodell Betonbau

Tabelle 37: Fachmodell Betonbau

Bauteilgruppen	Beschreibung	
Innenschale	Folgende Objekte werden modelliert: Auskleidung/Innenschale: hier ist zwischen Gewölbe, Sohle und ev. Nischen zu unterscheiden Sohlplatte Sauberkeitsschicht Füllbeton Zwischendecke Abhängung Trennfolie Fugenband Die Objekte werden blockweise modelliert. Die Fugen zwischen den Blöcken sind entsprechend abzubilden und die Fugenbänder	
Ausbau	Folgende Objekte werden modelliert: Randweg Füllbeton Gefällebeton Fundament Trennfolie Wand Treppe Schutzbeton	

6.2.3 Fachmodell Straßenbau

Tabelle 38: Fachmodell Straßenbau

Bauteilgruppen	Beschreibung	
Oberbau	Alle Schichten des Oberbaus werden als schichtenartiger Volumenkörper über die Trassierung erstellt. Um die Anforderungen der "4D- Bauablaufplanung" zu erfüllen, werden alle zu planenden Schichten des Oberbaus als Elemente modelliert: Deckschichten Binderschichten Tragschichten Frostschutzschichten Bettungsschicht Bei konstanter Schichtstärke wird die Stärke als Attribut an den Volumenkörper geheftet.	

6.2.4 Fachmodell Entwässerung

Tabelle 39: Fachmodell Entwässerung

Bauteilgruppen	Beschreibung	
	Folgende Objekte werden modelliert:	
	• Leitung	
	Schacht	
Drainage	Filterschicht	
	 Noppenfolie 	
	 Abschlauchung 	
	Schutzbeton	
	 Pumpensumpf 	
	Folgende Objekte werden modelliert:	
	 Abdichtungsträger 	
	Schutzschicht	
	 Kunststoffdichtungsbahn 	
Abdichtungssystem	 Fugenband 	
	Fugenblech	
	Geotextil	
	Die gesamte Abdichtung ist zu modellieren, und mit den entsprechen-	
	den Merkmalen (Stärke, Fläche) zu versehen. Bei den Fugenbändern,	
	Fugenblechen ist die Länge und die Breite anzugeben.	

6.2.5 Fachmodell Ausstattung

Tabelle 40: Fachmodell Ausstattung

Bauteilgruppen	Beschreibung
Ausbau, Ausrüs- tung	Folgende Objekte werden modelliert:
Erdung	Folgende Objekte werden modelliert: Banderder Erdungsbrücke Fundamenterder Erdungsfestpunkt
E&M (es ist ausreichend die Bauteile als Platzhalter zu modellieren)	Folgende Objekte werden modelliert: Anzeigetafeln (FASI, etc.) Beleuchtung Bordsteinreflektoren Löschwasser, Hydranten CN.as Leitungen Rohrführungen Leerrohre (KSR) Maschinen, Pumpen Aufstiegshilfen Schaltkästen, Trafos
Lüftung (es ist ausreichend die Bauteile als Platzhalter zu mo- dellieren)	 Luftkanal für die Volumenermittlung Ventilatoren Zu- und Abluft Betriebs- und Revisionsräume, Kollektoren Abluftklappen Filter

6.2.6 Fachmodell Leitungen und Einbauten

Tabelle 41: Fachmodell Leitungen und Einbauten

Bauteilgruppen	Beschreibung	
	•	Strom
Leitungen div. Ein-	•	Gas
bautenträger	•	Telekom
	•	Kanal, etc.

6.2.7 Fachmodell Baugrube

Tabelle 42: Fachmodell Baugrube

Bauteilgruppen	Beschreibung	
	 Baugrubenaushub 	
Baugrube	 Böschungssicherungen (Spritzbetonschale, Bodennägel) 	
	 Anker (Ankerkopf mit Überstand, Zugglied, Verpresskörper) 	
	Hinterfüllung	

6.3 Tunnel in offener Bauweise

Tabelle 43: Teilmodell Tunnel - Bestandsmodell

LOG 100	LOI 100

Definition

Das Teilmodell weist im LOG 100 nur Elemente mit generalisierter und vereinfachter Geometrie auf.

Die Attributierung beschränkt sich auf die für die Umbau- bzw. Sanierungsmaßnahmen erforderlichen Informationen.

Beschreibung

Die Modellierung des Bestandes sollte anhand folgender Unterlagen erfolgen:

- Klassische Grundrissvermessung im DWG-Format, ergänzt mit 3D-Vermaschung und Bruchkanten der Oberfläche sowie Konstruktionsunterkanten und Bauteilfluchten
- Punktwolke als Referenz zur Vermessung (und in weiterer Folge als Kontrollfunktion Bestand/Umbau)
- Bestandsunterlagen mit allfälligen Umbau- bzw. Sanierungsmaßnahmen.

Zu definierende Merkmale:

- Attributierung gem. Standardmerkmalen
- Attributierung gem. ASFiNAG DS in Abstimmung mit dem BAP

Zu modellieren sind:

- Alle Bauteile, die von der jeweiligen Umbau- bzw. Sanierungsmaßnahme betroffen sind
- Alle Bauteile, die für die Darstellung und Abbildung erforderlich sind, um örtliche und räumliche Bezüge herzustellen und die Maßnahme im Kontext zur Umgebung abzubilden.

Ziel

4D+5D Simulation vom Abbruch des Bestands:

- Darstellung der Abbruch und Umbaumaßnahmen
- Mengenermittlung des Abbruchs

Eindeutiges Erkennen und Zuordnen der Bauteile zum Leistungsverzeichnis, bzw. dem Bauzeitplan.

Tabelle 44: Teilmodell Tunnel - Ausführungsmodell

Dargestellt ist das Fachmodell Betonbau, Straße, Ausstattung und Seitenstreifen mit zwei Bauphasen.

LOG 400 LOI 400

Definition

Ausführungsmodell "wie es ausgeführt werden soll" - Modell mit Modellelementen, die die Ableitung von z.B. Schnitten, Grundrisse, Bauphasen etc. zur Erstellung von konventionellen Ausführungsplänen erlauben.

Modell mit Bauteilinformationen, die für die Ausführung und Baubegleitung benötigt werden. Merkmale für die Erhaltungsphase werden angelegt.

Beschreibung

Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert, sodass sich daraus zumindest Pläne bis zu einem Maßstab 1:50 ableiten lassen. Eventuell erforderliche Details (Maßstab kleiner 1:50) werden in der Regel als 2D-Darstellung ergänzt (nicht modelliert)

Die Volumenkörper werden mit Merkmalen laut AIA, der ASFiNAG Datenstruktur, strukturgebenden Merkmalen, sowie relevanten Merkmalen für die Mengenermittlung (5D) Bauzeitplanung (4D) und Bauausführung versehen.

Eine elementbasierte Auflistung aller Merkmale ist in der ASFiNAG DS Datenbank zu finden.

Anwendungsspezifische Merkmale für die Mengenauswertung (5D) sind entsprechend der ÖNORM A2063-2:2021-3 zu definieren.

Ziel

Alle für die Bauausführung relevanten Bauteile sind im Modell enthalten und in einem Detaillierungsgrad modelliert Merkmale für die Bauzeitplanung, Bauausführung und Kalkulation/Abrechnung müssen im Modell vorhanden sein.

Die Auflistung der zu modellierenden Bauteile ist beispielhaft zu verstehen und muss für das jeweilige Projekt sinngemäß angepasst werden. Die einzelnen Bauteile werden vom jeweiligen Fachplaner modelliert bzw. vom übergeordneten Planer als Platzhalter dargestellt.

Bauteilgruppen	Beschreibung	
In der Regel nicht modelliert werden	Flächenhafte Bauteile mit geringer Stärke wie z.B. Beschichtungen, KO-Schutz, Vliese, Folien, etc. Bei diesen Bauteilen werden die Massen über die Bauteilabmessungen (Merk- male) abgeleitet.	
	,	

6.3.1 Fachmodell Betonbau

Tabelle 45: Fachmodell Betonbau

Bauteilgruppen	Beschreibung
Betonbauteile	 Sauberkeit Fundament Wand Decke / Tragwerk Nischen
	 Brüstungen Gebäude Becken Stützmauern Schachtbauwerke

6.3.2 Fachmodell Straßenbau

Tabelle 46: Fachmodell Straßenbau

Bauteilgruppen	Beschreibung
Fahrbahnaufbau	DeckschichtenTragschichten
Lichtraum	Lichtraum gem. RVS

6.3.3 Fachmodell Seitenstreifen

Tabelle 47: Fachmodell Seitenstreifen

Bauteilgruppen	Beschreibung
	Schlitzrinne
	Abdeckplatten
Seitenstreifen	Betonauflager
	Sauberkeit
	Fundament

Mörtelbett

6.3.4 Fachmodell Entwässerung

Tabelle 48: Fachmodell Entwässerung

Bauteilgruppen	Beschreibung
	 Entwässerungsleitungen
	 Drainageleitungen
Entwässerung	 Schächte und Syphone als Platzhalter
	Schlitzrinne sh. Seitenstreifen
	Gullys, Abläufe
Abdichtung	Abdichtung
	 Schutzbeton
	 Fugenband
	Fugenblech

6.3.5 Fachmodell Ausstattung

Tabelle 49: Fachmodell Ausstattung

Bauteilgruppen	Beschreibung
Ausbau, Ausrüs- tung	Folgende Objekte werden modelliert:
Erdung	Folgende Objekte werden modelliert: Banderder Erdungsbrücke Fundamenterder Erdungsfestpunkt
E&M (es ist ausreichend die Bauteile als Platzhalter zu modellieren)	 Anzeigetafeln (FASI, etc.) Beleuchtung Bordsteinreflektoren Löschwasser, Hydranten CN.as Leitungen Rohrführungen Leerrohre (KSR) Maschinen, Pumpen Türen, Tore

	AufstiegshilfenSchaltkästen, TrafosAusstattung
Lüftung (es ist ausreichend die Bauteile als Platzhalter zu mo- dellieren)	 Luftkanal für die Volumenermittlung Ventilatoren Zu- und Abluft Betriebs- und Revisionsräume, Kollektoren Abluftklappen Filter

6.3.6 Fachmodell Leitungen und Einbauten

Tabelle 50: Fachmodell Leitungen und Einbauten

Bauteilgruppen	Beschreibung	
	• Strom	
Leitungen div. Ein-	• Gas	
bautenträger	 Telekom 	
	Kanal, etc.	

6.3.7 Fachmodell Baugrube

Tabelle 51: Fachmodell Baugrube

Bauteilgruppen	Beschreibung
	 Baugrubenaushub
Baugrube	 Böschungssicherungen (Spritzbetonschale, Bodennägel)
Daugiube	 Anker (Ankerkopf mit Überstand, Zugglied, Verpresskörper)
	Hinterfüllung

7 Teilmodell Nebenanlagen

Das Teilmodell Nebenanlagen ist als besondere bauliche Maßnahme als eigenes Modell angeführt, wird aber im Wesentlichen analog zum Teilmodell Strecke mit seinen Teilmodellen (Streckenbau, Entwässerung, Ausstattung und Leitungen) erstellt. In diesem Kapitel werden die Sonderheiten bzw. Unterschiede zum Straßenmodell beschrieben.

Das Teilmodell Nebenanlagen fasst folgende Bauwerke zusammen:

- Rastplätze
- Rastplätze mit Tankstellen
- Parkplätze (P+R, Pendlerparkplatz, etc.)
- Autobahnmeisterei

7.1 Modellaufbau

Die Modellerstellung der Verkehrsflächen erfolgt meist analog zum Straßenbau über eine klassische Straßentrassierung mit Achsen, Gradienten, Querneigung, Breiten, etc. Ist der Querschnitt geometrisch festgelegt kann im Zuge der Mengenberechnung positionsweise ein Modell erstellt werden. Die Ergebnisse der Mengenberechnung nach Norm werden den Elementen als Merkmale angeheftet. Runde und flächenhafte Objekte wie Verkehrsinseln oder Regenrückhaltebecken können in der Regel besser über eine achsunabhängige Modellierung über den Lageplan erstellt werden. In diesem Fall müssen die auftretenden Schnittstellen zu Beginn schlüssig definiert werden (Massenteilungsplan).

7.2 Fachmodelle Nebenanlagen

Das Teilmodell Nebenanlagen setzt sich ausfolgenden Teilmodellen zusammen:

Tabelle 52: Fachmodelle des Teilmodells Nebenanlagen

Fachmodell	Beschreibung
Bestand Verkehrsflä- chen	Nebenanlagen inkl. Bestandsgelände, Bestandsbauwerke, Bestandsstraßen, Anschlussstellen.
Bestand Leitungen	Das Bestandsmodell der Leitungen wird als separates Teilmodell erstellt.
Bestand Entwässe- rung	Bestandsentwässerung beinhaltet die Straßenentwässerung
Verkehrsflächen	Oberbau, Erdbau der Parkflächen
Entwässerung	Straßen- und Parkplatzentwässerung
Leitungen	Neu zu verlegende / umzuverlegende Leitungen.
Hochbau	Hochbauten im Bereich der Anlage sind ein eigenes Teilmodell "Hochbau"
Ausstattung	Schutzeinrichtungen, Stationszeichen, Einzäunungen, Anlagen etc.
Beschilderung	Verkehrszeichen, Wegweisende sowie zivile Beschilderung
Markierung	Modellierung der Markierungen und Markierungsflächen

7.2.1 Fachmodell Verkehrsflächen

Tabelle 53: Fachmodell Bestand Verkehrsflächen

Inhalt	Beschreibung	
	bzw. des zugrundeliegenden DGMs. Im Bereich des Einschnitts der Autobahn in das Urgelände wird kein Unterbau modelliert.	
Verkehrsinseln	Verkehrsinseln werden entweder im Zuge der Trassierung mitmodelliert oder können als lokale flächige Elemente über ein DGM als Volumenkörper erstellt werden.	
Bauwerke & Anla-	Bestandsbauwerke wie Gebäude, Anlagen etc. sind als Volumenkörperelemente	
gen	zumindest in ihrer Gebäudehülle vereinfacht darzustellen.	

Tabelle 54: Fachmodell Verkehrsflächen – Ausführungsmodell

LOG 400 LOI 400

Definition

Ausführungsmodell, "As-Planned" -Modell: Detailliertes Modell mit Modellelementen, die eine Ableitung von Ausführungsplänen erlauben. Die Merkmale ermöglichen eine eindeutige Identifizierung der Modellkörper und deren Funktion und Bedeutung.

Erste Merkmale für Betrieb und Erhaltung werden angelegt, soweit sie in der Planungsphase schon vorliegen.

Beschreibung

Das Modell enthält eine Untergliederung des Querschnitts in verschiedene Baugruppen wie Oberbau, Erdbau, Entwässerung mit allen zugehörigen Schichten und Elementen in ihrer tatsächlichen Geometrie.

Folgende Schichtenkörper werden zusätzlich zu den Anforderungen von LOG200 modelliert:

- Alle Bauteilgruppen mit den zugehörigen Schichten
- Betondeckenelemente unterteilt in Längs- und Querrichtung
- Bankett
- Borde und Bordsteine mit Rückenstütze
- Mittelstreifen
- Rinnenoberbau

Die Volumenkörper werden mit Merkmalen laut AIA, der ASFiNAG Datenstruktur, strukturgebenden Merkmalen, sowie relevanten Merkmalen für die Mengenermittlung (5D) Bauzeitplanung (4D) und Bauausführung versehen.

Eine elementbasierte Auflistung aller Merkmale ist in der ASFiNAG DS Datenbank zu finden.

Anwendungsspezifische Merkmale für die Mengenauswertung (5D) sind entsprechend ÖNORM A2063-2:2021-3 zu definieren.

Ziel						
Alle für die Bauausfüh	rung relevanten Bauteile sind	Merkmale für die Bauausführung und für die Kalku-				
im Modell enthalten u	nd in einem Detaillierungs-	lation / Abrechnung können aus dem Modell ge-				
grad modelliert, sodas	ss sich daraus zumindest	wonnen werden.				
Pläne bis zu einem Maßstab 1:50 ableiten lassen.						
Inhalt	Beschreibung					
Oberbau	Alle Schichten des Oberbaus werden als schichtenartiger Volumenkörper über die Trassierung erstellt. Um die Anforderungen der "4D- Bauablaufplanung" zu erfüllen, werden alle zu planenden Schichten des Oberbaus als Elemente modelliert: Deckschichten Tragschichten Frostschutzschichten Stabilisierungsschichten Bankette unbefestigte Schichten / Flächen Bei konstanter Schichtstärke wird die Stärke als Attribut an den Volumenkörper geheftet.					
Erdbau	Modellierung des Unterbaus: Bei der Modellierung des Erdbaus ist es wichtig, dass sowohl die Positionen der neuen Planung als auch Abtragspositionen (Aushub) vollständig und der Bauausführung entsprechend modelliert werden. Der Dammkörper im Falle einer Aufschüttung wird als Volumenkörper erstellt. Im Falle eines Einschnitts wird der Aushub als abzutragender Volumenkörper modelliert. Neu anzulegende Böschungen werden zumindest über die Schicht "Oberboden" als Volumenkörper erfasst. Das Oberflächen-DGM wird anliegend an das Geländemodell angepasst. Sonstige Erdbaukörper wie Begleitdämme, Mulden werden als Volumenkörper modelliert. Bei Erdbaumodellierungen wird die Oberbodenandeckung als eigene					

7.2.2 Fachmodell Leitungen & Einbauten

Schicht erfasst.

Tabelle 55: Fachmodell Leitungen & Einbauten

Inhalt	Beschreibung
Leitungen & Ein-	Leitungen & Einbauten werden analog zum Straßenmodell erstellt.
bauten	Siehe Kapitel 4.3.2

7.2.3 Fachmodell Entwässerung

Tabelle 56: Fachmodell Entwässerung – Ausführungsmodell

dells.

Inhalt	Beschreibung
Straßenentwässerung	Entwässerungsmulden und -gräben sowie Entwässerungsbecken als Begleitbauwerke zur Autobahn werden als Volumenkörper im Zuge der Trassierung erstellt. Bei der Modellierung der Entwässerungsbauwerke werden Oberbodenandeckung und Filterschichten als eigene Schicht erfasst. Entwässerungsleitungen wie Kanäle, Dräne etc. werden vergleichbar zu den Leitungen als Linienobjekte über eine Achse und einen Durchmesser modelliert. Schächte samt Schachtdeckel werden als Punktobjekte auf den Leitungsachsen platziert. Die Höhen der Schachtdeckel sind an die Höhen der obersten Deckschicht anzupassen.
Entwässerungsanla- gen	Zu modellieren sind Beckenanlagen bestehend aus ein oder mehreren Schichten (Filterschichten, Kiesschichten, Oberboden) sowie technische An- lagenteile wie Förderanlagen, Absperrschieben, etc.

7.2.4 Fachmodell Ausstattung

Tabelle 57: Fachmodell Ausstattung

Inhalt	Beschreibung
Ausstattung	Elemente der Ausstattung werden analog zum Straßenmodell erstellt.
	Siehe Kapitel 4.3.4

8.1 Schnittstelle Teilmodell Straße / Teilmodell Kunstbauten

Es ist wichtig, dass die Schnittstelle im BAP projektspezifisch eindeutig definiert wird, damit klar geregelt ist wo die Planungsgrenzen zwischen zwei Fachplanern liegen und wer was modelliert und somit welche Massen ermittelt, etc.

Empfohlen wird als Grenze die längste Ausdehnung des Bauwerks. Das kann bei einer Brücke das Ende der Schlepplatte gem. Detail Längsschnitt oder auch das Ende des Randbalkens bzw. die Randbalkenabsenkung sein.

Abbildung 9: Schnittstellenkoordination im Längsschnitt am Beispiel einer Brücke

Abbildung 10: Schnittstellenkoordination im Grundriss am Beispiel einer Brücke

8.2 Schnittstelle Strecke - Baugrund

Die Schnittstelle zwischen dem Teilmodell "Straße" und Teilmodell "Baugrund" ist nachfolgend beschrieben.

8.2.1 Schnittstellendefinition im Dammbereich

Die Schnittstelle zwischen dem Teilmodell "Strecke" und Teilmodell "Baugrund" ist im Dammbereich für den Bestand ist wie folgt definiert:

- Der Fachplaner "Baugrund" erstellt das Teilmodell "Bodenschichtenmodell" mit all seinen Schichten. Es ist zielführend, dass der Oberboden als eigene Schicht modelliert wird.
- Der Fachplaner "Straße" erstellt das Bestandsmodell auf Grundlage des Bestands-DGM und der oberen Begrenzung des Baugrundmodells. Zu planen sind:
 - Asphaltschichten
 - Betonschichten
 - Frostschutzschichten
 - Oberboden (Mittelstreifen, Böschungen, Bankett)
 - Unterbau bis zum Baugrundmodell

Abbildung 11: Schnittstellenkoordination im Dammbereich

8.2.2 Schnittstellendefinition im Einschnittbereich

Die Schnittstelle zwischen Teilmodell "Strecke" und Teilmodell "Baugrund" ist im Einschnittbereich ist wie folgt definiert:

- Der Fachplaner "Strecke" erstellt das Teilmodell "Straßenbau" auf Grundlage des Bestands-DGM. Zu planen sind:
 - Asphaltschichten;
 - Betonschichten;
 - Frostschutzschichten;
 - Planum als DGM;
 - Modellgrenze als DGM (durch Verschneidung des Bestands-DGM mit dem Planum).

Der Fachplaner "Bodenschichten" erstellt das Modell mit all seinen Schichten. Im Falle einer Modellfortschreibung erhält der die obere Begrenzung (Einschnittsbereich) vom Fachplaner "Straße" als DGM (Modellgrenze).

Abbildung 12: Schnittstellenkoordination im Einschnittbereich

Das Ergebnis dieser Schnittstellenkoordination ist ein kollisionsbereinigtes Gesamtmodell.

8.3 Schnittstelle Strecke - Nebenanlagen

Die Schnittstelle zwischen dem Teilmodell "Straße" und Teilmodell "Nebenanlagen" wird in der Regel im Bereich der Rampen festgelegt. Hierfür wird eine sinnvolle Stationierung definiert, im Falle eines Wechsels des Oberbaus, wie z.B. der Übergang von Asphaltfahrbahn auf Betondecke, eignet sich die Stelle optimal als Schnittstelle zwischen den Modellen.

9 Modellableitungen

9.1 Mengen

Die Mengenermittlung erfolgt in BIM-Projekten typischerweise modellbasiert. BIM-Modelle können auf verschiedene Arten ausgewertet werden. Mengen können einerseits direkt aus der Geometrie (Volumenkörper) abgeleitet, oder aus den Merkmalen ausgelesen werden. Im ersteren Fall berechnet die entsprechende BIM-Software die geometrischen Kennwerte nochmals neu aus dem Modell. Diese Methode ist grundsätzlich zu bevorzugen, jedoch weisen die Modellierungssoftwareprodukte im Infrastrukturbereich noch Schwächen in der Modellqualität auf, daher ist derzeit speziell für Straßenmodelle noch eine Auswertung auf Basis der Merkmale sinnvoll. Grund für die mangelnde Modellqualität ist die Komplexität und Größe von Straßenbaukörpern, die gerade im Erdbau sehr häufig unförmig sind und aus einer Vielzahl an Dreiecken bestehen. Für Straßenmodelle gibt es allerdings die Möglichkeit der Mengenberechnung nach ÖNORM A2063, die derzeit auch für BIM Modelle empfohlen wird (siehe Kapitel 9.1.2).

Für die digitale Mengenermittlung im Straßenbau kann die Berechnung prinzipiell in zwei Arten unterteilt werden. Eine trassenabhängige Mengenermittlung kommt für Geometrien, die einer Achse folgen zur Anwendung (=Trassenkörper). Zu diesen zählen der Oberbau, der Unterbau und teilweise der Überbau von Brückenbauwerken. Für unregelmäßige Körper bzw. Anlagen, die keiner Trasse folgen ist eine trassenunabhängige Berechnung von Rauminhalten besser geeignet. Die beiden Methoden werden in den folgenden Kapiteln beschrieben.

9.1.1 Mengenermittlung von nicht modellierten Bauteilen

Sind BIM-Modelle nicht vollständig, weil einzelne Gewerke oder etwa interimistische Bauzustände nicht modelliert sind, werden die fehlenden Bauteile in klassischer Art und Weise in LV, Aufmaß und Abrechnung mitgeführt bzw. abgewickelt. In Manchen Fällen kann jedoch die notwendige Information über zugehörige Modellelemente in Form von Merkmalen übermittelt werden. Wenn z.B. die Schalung einer Widerlagerwand nicht als Modellelement vorliegt, so kann die Information der Schalungsfläche als Merkmal an das Beton-Bauteil der Widerlagerwand angehängt werden. In dem Fall überträgt dieses Objekt dann die Informationen für die Vorgänge "betonieren" und "schalen", weil sowohl das Volumen als auch die Schalungsfläche am Objekt enthalten sind. Wird die Schalungsfläche als separates Objekt modelliert, muss gewährleistet sein, dass die Zugehörigkeit der Schalung zum Betonbauteil entweder über eine Verlinkung oder über eine entsprechende Klassifizierung über Merkmale gegeben ist.

9.1.2 Mengenermittlung bei linienförmigen Bauwerken

Die Mengenberechnung bei linienförmigen Bauwerken erfolgt über die Querprofilabrechnung nach ÖNORM A2063. Das Ergebnis der Mengenberechnung wir den Modellelementen als Merkmal angehängt.

9.1.3 Mengenermittlung bei trassenunabhängigen Objekten

Wegen der unregelmäßigen Geometrie von Erdkörpern wie z.B. Gewinnungsstellen, Kippen, Halden, Baugruben, Schüttungen und Aushüben ist eine Aufteilung dieser in vertikale Prismen oft besser geeignet als eine Beschreibung des Körpers in stationierten Querprofilen. Für die Ermittlung von Mengen werden deshalb oftmals zwei Oberflächen-DGM miteinander verglichen und die Mengen nach der Prismenmethode berechnet. Ein Beispiel dafür kann der Vergleich des Urgelände-DGM (Umgebungs-DGM) mit dem aus der Planung stammenden Planums-DGM (aus den Profilen einer Trasse) für die Ermittlung eines Dammkörpers sein. Das Ergebnis der Mengenberechnung wir den Modellelementen als Merkmal angehängt.

9.2 Plankonsistenz

Modell und Pläne müssen aus demselben CAD-Modell und demselben Versionsstand kommen, sodass die 2D Pläne & 3D Modelle konsistent sind. Es macht Sinn im Falle von Änderungen immer sowohl Pläne als auch die Modellausgaben zu aktualisieren und mit demselben Index zu versehen.

A. ANHANG

A.1 MODELLFARBEN

Die folgenden Farbdefinitionen sind ein Vorschlag für zu verwendende Modellfarben:

Tabelle 58: Farbschemata für Material

Kürzel	Material	R	G	В	Farbe	Beschreibung
ABW	Abwasserleitung	168	50	0		
ELK	Elektrizitätsleitung	255	0	0		
ELS	Straßenbeleuchtung ELK	255	128	0		
ENW	Entwässerungsleitung	0	0	136		
FWR	Fernwärmeleitung	255	0	115		
GAS	Gasleitung	0	255	0		
MTL	Mörtel	130	130	130		
OEL	Ölleitung	130	82	0		
PFG	Planfeststellungsgrenze	247	255	64		
TEL	Telekommunikationsleitung	255	0	255		
TWL	Trinkwasserleitung	0	255	255		
WAL	Nutzwasserleitung	0	0	255		
ANH	Anhydrit	220	229	124		
ASP	Asphalt	102	102	102		Fahrbahn
AUF	Füllmaterial	255	255	255		Auffüllung
BAM	Bankett-Material	214	255	168		Bankett
ОВО	Oberboden	221	165	110		Oberboden
BDE	Bodenmaterial	170	100	70		Boden allgemein
BEB	Beton bewehrt	204	204	204		
BIT	Bitumenschweißbahn	104	104	148		
ВМВ	Bodenmaterial mit Bindemittel	104	104	148		

Kürzel	Material	R	G	В	Farbe	Beschreibung
ВОВ	Bodenmaterial ohne Bindemittel	146	169	194		
BPF	Bepflanzung	83	150	53		
BSA	Bodenstabilisierung	255	168	0		
BUW	Beton unbewehrt	204	204	204		
DBE	Dränbeton	204	204	204		
DHA	Dämmstoff hart	255	0	255		Dämmstoff (hart)
DSM	Dammschüttmaterial	100	100	120		
DWE	Dämmstoff weich	255	170	0		Dämmstoff (weich)
EDL	Edelstahl	220	220	220		
EKB	Kunstharzgebundener Einkornbeton	204	204	204		
ELA	Elastomer	191	143	199		
FUM	Frostunempfindliches Material	164	211	238		
GET	Geotextil	76	124	84		
GLA	Glas	0	255	255		Glas
GUA	Gussasphalt	102	102	102		
GUE	Gusseisen	65	55	71		
HOL	Holz	210	180	140		Holz
HOW	Holzwerkstoffe	184	86	0		Holzwerkstoffe
HSP	Hartschaumplatte	255	0	255		Dämmstoff (hart)
ним	Humus, Oberboden	127	79	63		Oberboden, Torf, Humus
K02	Bodenklasse 2	255	255	204		Aushub BKL2
K35	Bodenklasse 3-5	255	255	136		Aushub BKL3-5
K67	Bodenklasse 6-7	255	221	0		Aushub BKL6-7
KAL	Kalk	137	214	247		Kalk
KIE	Kies	248	241	129		Kies
KLE	Klei	185	135	188		Klei
KRE	Kreidestein	154	217	230		Kreidestein
KST	Kunststoff	255	170	205		Kunststoff
LEH	Lehm	228	227	227		Lehm
LOE	Löss	193	218	111		Löss
MAW	Mauerwerk	196	0	0		Mauerwerk (nicht dämmend)
MER	Massige Erstarrungsgesteine	239	68	35		Massige Erstarrungsgesteine

Kürzel	Material	R	G	В	Farbe	Beschreibung
MET	Metall	150	150	150		
MGB	Magerbeton	204	204	204		
MGL	Mergel	133	153	206		Mergel
MIX	Multi Color (Besteht aus mehreren Materialien)	0	0	0		wenn keine eindeutige Farbe zu- geordnet werden kann
MPH	Metamorphite	140	126	187		Metamorphite
PFL	Pflasterung	61	75	120		
QUA	Quarzit	242	126	158		Quarzit
RAS	Rasen	55	179	40		
SAN	Sand	252	190	127		Sand
SMA	Splittmastixasphalt	102	102	102		
SSU	Schluff	193	218	111		Schluff
STA	Stahl	240	240	240		
STK	Steinkohle	185	115	92		Steinkohle
TON	Ton	140	126	187		Ton
UBF	Unbefestigte Flächen	194	230	135		Straßennebenflächen
UVG	Untergrundverfestigung	255	168	0		
VUA	Vulkanische Aschen	228	227	227		Vulkanische Aschen
WAS	Wasser	0	0	255		
WUA	Wasserdurchlässiger Asphalt	102	102	102		
ZGL	Ziegel	196	0	0		Mauerwerk (nicht dämmend)

- Ende des Dokuments -