1)

For security param n, consider the MAC for messages of length n using a pseudorandom function $F:\{0,1\}^n\times\{0,1\}^n\Rightarrow\{0,1\}$ defined as follows: On input k and message $m=m_1m_2...m_n$, the algorithm $MAC_k(\cdot)$ is defined by $MAC_k(m)=F_k(1||m_1m_2...m_{n-1})\oplus F_k(0||m_2m_3...m_n)$.

The algorithm Vrfy can be defined using canonical verification.

Is this a secure MAC?

This is not a secure MAC. Prove that there exists a PPT adversary such that for any negligible function negl the following does not hold: $Pr[Mac-forge_{A,\Pi}(n)=1] \leq negl(n)$.

Let A be an adversary that selects any string $x \in \{0,1\}^{n-2}$ and outputs messages $m_1 = 0 ||x|| 0$, $m_2 = 0 ||x|| 1$, and $m_3 = 1 ||x|| 0$. It uses the oracle $MAC_k(\cdot)$ to generate the following tags:

$$t_1 = MAC_k(m_1) = F_k(1||0||x) \oplus F_k(0||x||0)$$

$$t_2 = MAC_k(m_2) = F_k(1||0||x) \oplus F_k(0||x||1)$$

$$t_3 = MAC_k(m_3) = F_k(1||1||x) \oplus F_k(0||x||0)$$

Let
$$A = F_k(1||0||x)$$
, $B = F_k(0||x||0)$, $C = F_k(0||x||1)$, and $D = F_k(1||1||x)$.

A outputs the pair $(m=1||x||1, t=t_1 \oplus t_2 \oplus t_3)$.

How often is the adversary correct?

$$t = MAC_k(m) = F_k(1||1||x|) \oplus F_k(0||x||1) = D \oplus C$$

$$t_1 \oplus t_2 \oplus t_3 = (A \oplus B) \oplus (A \oplus C) \oplus (D \oplus B) = A \oplus A \oplus B \oplus B \oplus D \oplus C = D \oplus C$$

Therefore the adversary is always correct, and $Pr[Mac-forge_{A,\Pi}(n)=1]=1>negl(n)$.

Therefore this MAC is not secure.

Prove that CBC-MAC is not secure if it outputs every generated t instead of just the last.

For any security parameter n, let A be an adversary that picks any $m_1=a\|0^n$ where $a\in\{0,1\}^n$. The adversary uses the oracle to generate the m_1 tags $t_1^1=F_k(0^n\oplus a)=A$ and $t_2^1=F_k(A\oplus 0^n)=B$. Let $m_2=B\|0^n$. The adversary uses the oracle to generate the m_2 tags $t_1^2=F_k(0^n\oplus B)=C$ and $t_2=F_k(C\oplus 0^n)=D$. The adversary then outputs $(m=A\|0^n,t=(B,C))$.

How often is the adversary correct?

The tags for $m = A || 0^n$ are:

$$t = F_k(0^n \oplus A) = B$$

$$t = F_k(B \oplus 0^n) = C$$

Since this MAC outputs all generated tags, the complete tag for m is (B,C).

Therefore the adversary is always right, and $Pr[Mac-forge_{A,\Pi}(n)=1]=1>negl(n)$ and the modified CBC-MAC is not secure.