For a 2x2 matrix containing two objects {x,y} and

two attributes {a,b}

$$-D = (Xa - Ya) - (Xb - Yb)$$

(to measure the shift in the data)

	Attribute a	Attribute b
Object x	Xa	Xb
Object y	Ya	Yb

- If $D \le \delta$, then this 2x2 matrix is a δ -coherent cluster
- An $m \times n$ matrix X is a δ -coherent cluster if every 2×2 submatrix of X is a δ -coherent cluster.
- A δ -coherent cluster is a maximum δ -coherent cluster if it is not a submatrix of any other δ -coherent cluster.

- **Objective:** given a data matrix and a threshold δ , find all maximum δ -coherent clusters.
- **Input:** matrix M, threshold δ
- Algorithm:
 - 1. Compute the **maximum coherent attribute sets** for each pair of objects
 - 2. Two-way pruning
 - 3. Construct the lexicographical tree
 - Use post-order traverse the tree to find all maximum coherent clusters

• Example:

	a_0	a_1	a ₂	a_3
o ₀	1	4	2	5
01	2	5	5	8
02	3	6	5	7
0 ₃	4	20	7	2
04	30	7	6	6

δ =1

Example:

	a ₀	a ₁	a ₂	a ₃
o ₀	1	4	2	5
0 ₁	2	5	5	8
02	3	6	5	7
0 ₃	4	20	7	2
0 ₄	30	7	6	6

 Compute the maximum coherent attribute sets for each pair of objects

$$-(O_0, O_1)$$

	a ₀	a ₁	a ₂	a ₃
o ₀	1	4	2	5
o ₁	2	5	5	8
D(O ₀ ,O ₁)	-1	-1	3	-3

	a ₂	a ₃	a_0	a_1	
o _0	2	5	1	4	
0 ₁	5	8	2	5	
D(O ₀ ,O ₁)	-3	-3	-1	-1	

 $(o_0,o_1): \{a_0,a_1\}, \{a_2,a_3\}$

$$-(O_0, O_3)$$

	a ₀	a ₁	a ₂	a ₃
o _0	1	4	2	5
<i>o</i> ₃	4	20	7	2
D(O ₀ ,O ₃)	-3	-16	-5	3

	a ₁	a ₂	a ₀	a ₃
o _0	4	2	1	5
0 ₃	20	7	4	2
D(O ₀ ,O ₃)	-16	-5	-3	3

$$(o_0,o_3)$$
: empty

Two Way Pruning

	a0	a1	a2
00	1	4	2
o1	2	5	5
ο2	3	6	5
03	4	200	7
04	300	7	6

$$delta=1 nc = 3 nr = 3$$

$$(00,02) \rightarrow (a0,a1,a2)$$
 $(a0,a1) \rightarrow (00,01,02)$
 $(01,02) \rightarrow (a0,a1,a2)$ $(a0,a2) \rightarrow (01,02,03)$
 $(a1,a2) \rightarrow (01,02,04)$
 $(a1,a2) \rightarrow (00,02,04)$

$$(00,02) \rightarrow (a0,a1,a2)$$
 $(a0,a1) \rightarrow (00,01,02)$
 $(01,02) \rightarrow (a0,a1,a2)$ $(a0,a2) \rightarrow (01,02,03)$
 $(a1,a2) \rightarrow (01,02,04)$
 $(a1,a2) \rightarrow (00,02,04)$

MCAS MCOS

• After step 1:

$$(o_0,o_1): \{a_0,a_1\}, \{a_2,a_3\}$$

 $(o_0,o_2): \{a_0,a_1,a_2,a_3\}$
 $(o_0,o_4): \{a_1,a_2\}$
 $(o_1,o_2): \{a_0,a_1,a_2\}, \{a_2,a_3\}$
 $(o_1,o_3): \{a_0,a_2\}$
 $(o_1,o_4): \{a_1,a_2\}$
 $(o_2,o_3): \{a_0,a_2\}$
 $(o_2,o_4): \{a_1,a_2\}$

2. Two-way pruning

- Apply for constraints
 - Ex: min number of object
 - Ex: min number of attribute
- Remove the coherent attribute/ object sets that do not satisfy our constraints
- In this example, this step is omitted

After step 1

$$(o_0,o_1): \{a_0,a_1\}, \{a_2,a_3\}$$

 $(o_0,o_2): \{a_0,a_1,a_2,a_3\}$
 $(o_0,o_4): \{a_1,a_2\}$
 $(o_1,o_2): \{a_0,a_1,a_2\}, \{a_2,a_3\}$
 $(o_1,o_3): \{a_0,a_2\}$
 $(o_1,o_4): \{a_1,a_2\}$
 $(o_2,o_3): \{a_0,a_2\}$
 $(o_2,o_4): \{a_1,a_2\}$

3. Construct the lexicographical tree

 Rewrite the maximal coherent attribute sets:

```
\{a_0,a_1\}:(o_0,o_1)

\{a_0,a_2\}:(o_1,o_3),(o_2,o_3)

\{a_1,a_2\}:(o_0,o_4),(o_1,o_4),(o_2,o_4)

\{a_2,a_3\}:(o_0,o_1),(o_1,o_2)

\{a_0,a_1,a_2\}:(o_1,o_2)

\{a_0,a_1,a_2,a_3\}:(o_0,o_2)
```

3. Construct the lexicographical tree

4. Use **post-order traverse** the tree to find all maximum coherent clusters

Post-order Traversal: A - C - E - D - B - H - I - G - F

- 4. Use **post-order traverse** the tree to find all maximum coherent clusters
 - At each node
 - Represented by a coherent attribute set and its coherent object sets
 - Copying:
 - » Let k = the size of the coherent attribute set
 - » Copy the object sets to all nodes that represent the subsets of the coherent attribute set with (k-1) size
 - » Purpose to facilitate the recovery of the maximum coherent clusters
 - Report: Report the maximum coherent clusters

- Use post-order traverse the tree to find all maximum coherent clusters
- Coherent object sets:

$$(O_0, O_2)$$

• Coherent attribute set:

$${a_0, a_1, a_2, a_3}$$

• (K-1) Coherent attribute sets:

start

- Use post-order traverse the tree to find all maximum coherent clusters
- Coherent object sets:

$$(O_0, O_2)$$

• Coherent attribute set:

$$\{a_0, a_1, a_3\}$$

• (K-1) Coherent attribute sets:

Use post-order traverse the tree to find all maximum coherent clusters

Copying

$$(O_0, O_2)$$

to

Use post-order traverse the tree to find all maximum coherent clusters

Report:

$$\{O_0, O_2\} X \{a_0, a_1, a_3\}$$
 is a subset of

is a subset of ${O_0, O_2} \times {a_0, a_1, a_2, a_3}$

