CS711008Z Algorithm Design and Analysis

Lecture 5. Basic algorithm design technique: Divide-and-Conquer

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline

- The basic idea of divide-and-conquer technique;
- The first example: MERGESORT
 - Correctness proof by using loop invariant technique;
 - Time complexity analysis of recursive algorithm;
- Other examples: CountingInversion, ClosestPair, Multiplication, FFT;
- Combining with randomization: QUICKSORT algorithm, SELECTION problem;
- Remarks:
 - ① Divide-and-conquer technique is usually serving to reduce the running time though the brute-force algorithm is already polynomial-time. Say $O(n^2) \Rightarrow O(n\log(n))$ for CLOSESTPAIR problem.
 - 2 This technique is especially powerful when combined with randomization technique.

If a problem can be reduced into smaller sub-problems I

- We can consider two possible strategies:
 - Incremental: to solve the original problem, it suffices to solve a smaller sub-problem; thus the problem is shrunk step-by-step. In other words, a feasible solution can be constructed step-by-step. Say Gale-Shapley algorithm for STABLE MATCHING problem, where a stable, partial matching is maintained at each step.

If a problem can be reduced into smaller sub-problems II

divide-and-conquer: the original problem is decomposed into several independent sub-problems; thus, a feasible solution to the original problem can be constructed by assembling the solutions to independent sub-problems.

$\ensuremath{\mathrm{SORT}}$ algorithms

SORT problem

INPUT: An array of n integers, say A[0..n-1]; **OUTPUT:** the items of A in increasing order;

Trial 1: Basic idea of Incremental strategy

• Basic idea: At each step of the execution, we have a partial solution in its correct order, i.e., A[0..j-1] has already been correctly sorted, and the objective is to put A[j] in its correct position. This way, the final complete solution is constructed step-by-step.

Trial 1: INSERTIONSORT algorithm

InsertionSort(A)

```
1: for j = 0 to n - 1 do
```

2:
$$key = A[j];$$

3:
$$i = j - 1$$
;

4: while
$$i \geq 0$$
 and $A[i] > key$ do

5:
$$A[i+1] = A[i];$$

6:
$$i - -;$$

8:
$$A[i+1] = key;$$

9: end for

Trial 1: Analysis of INSERTIONSORT algorithm

- Worst-case: if A[0..n-1] has already been sorted.
- Time complexity: $O(n^2)$.
- In fact, the running time is $T(n) = T(n-1) + cn = O(n^2)$.

÷

InsertSort: 28 ops

Trial 2: divide-and-conquer idea (MERGESORT algorithm [J. von Neumann, 1945, 1948])

Figure 1: von Neumann in 1940s

Trial 2: divide-and-conquer idea (MERGESORT algorithm)

 Key observation: the problem can be decomposed into two independent sub-problems.

- **1 Divide** divide the n-element sequence into two subsequences; each has n/2 elements;
- **Conquer** sort the subsequences recursively by calling MERGESORT itself:
- Combine merge the two sorted subsequences to yield the answer to the original problem;

Trial 2: divide-and-conquer idea (MERGESORT algorithm)

MERGESORT(A, l, r)

- 1: /* To sort part of the array A[l..r]. */
- 2: if l < r then
- 3: m = (l+r)/2; //m denotes the middle point;
- 4: MergeSort(A, I, m);
- 5: MergeSort(A,m,r);
- 6: Merge(A, I, m, r); // combining the sorted subsequences;
- 7: end if

MERGESORT algorithm: how to divide?

MERGESORT algorithm: how to combine?

```
Merge (A, l, m, r)
1: /* to merge A[l..m] (named as L) and A[m+1..r] (named as R). */
2: i = 0: i = 0:
3: for k = l to r do
4: if L[i] < R[j] then
5: A[k] = L[i];
6: i + +;
7: else
8: A[k] = R[j];
9:
    i++;
     end if
10:
11: end for
```


(See extra slides by K. Wayne.)

Correctness of $\operatorname{MERGESORT}$ algorithm

Correctness of **Merge** procedure: **loop-invariant** technique [R. W. Floyd, 1967]

Loop invariant: (similar to **mathematical induction** proof technique)

- ① At the start of each iteration of the **for** loop, A[l..k-1] contains the k-l smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order.
- ② L[i] and R[j] are the smallest elements of their array that have not been copied to A.

Proof.

- Initialization: k=l. Loop invariant holds since A[l..k-1] is empty.
- Maintenance: Suppose L[i] < R[j], and A[l..k-1] holds the k-l smallest elements. After copying L[i] into A[k], A[l..k] will hold the k-l+1 smallest elements.

Correctness of **Merge** procedure: **loop-invariant** technique [R. W. Floyd, 1967]

- Since the loop invariant holds initially, and is maintained during the for loop, thus it should hold when the algorithm terminates.
- Termination: At termination, k=r+1. By loop invariant, A[l..k-1], i.e. A[l..r] must contain r-l+1 smallest elements, in sorted order.

Time-complexity of $\operatorname{MERGESORT}$ algorithm

Time-complexity of MERGE algorithm

```
Merge(A, l, m, r)
 1: /* to merge A[l..m] (denoted as L) and A[m+1..r] (denoted
   as R). */
 2: i = 0; j = 0;
 3: for k = l to r do
 4: if L[i] > R[j] then
 5: A[k] = R[j];
 6: j + +:
 7: else
 8: A[k] = L[i];
   i++;
10:
   end if
11: end for
Time complexity: O(n). (See extra slides for a demo)
```

Time-complexity of MERGESORT algorithm

• Let T(n) denote the running time on a problem of size n. We have the following recursion:

$$T(n) = \begin{cases} c & n=2\\ T(n/2) + T(n/2) + cn & otherwise \end{cases}$$
 (1)

Time-complexity analysis technique for recursion tree

- Ways to analyse a recursion:
 - Unrolling the recurrence to find a pattern: unrolling a few levels to find a pattern, and then sum over all levels;
 - **Quess and substitution:** guess the solution, substitute it into the recurrence relation, and check whether it works.
 - Generating function

• Unrolling the recurrence to find a pattern: unrolling a few levels to find a pattern, and then sum over all levels;

• Unrolling the recurrence to find a pattern: unrolling a few levels to find a pattern, and then sum over all levels;

 Unrolling the recurrence to find a pattern: unrolling a few levels to find a pattern, and then sum over all levels;

• Unrolling the recurrence to find a pattern: unrolling a few levels to find a pattern, and then sum over all levels;

Analysis technique 2: Guess and substitution

- Guess and substitution: guess a solution, substitute it into the recurrence relation, and justify that it works.
- Guess: $T(n) \le cn \log_2 n$ for all $n \ge 2$;
- Verification:
 - Case n = 2: $T(2) = c \le cn \log_2 n$;
 - Case n>2: Suppose $T(m) \leq cm \log_2 m$ holds for all $m \leq n$. We have

$$T(n) = 2T(n/2) + cn \tag{2}$$

$$\leq 2c(n/2)\log_2(n/2) + cn \tag{3}$$

$$= 2c(n/2)\log_2 n - 2c(n/2) + cn \tag{4}$$

$$= cn \log_2 n \tag{5}$$

Analysis technique 2': a weaker version

- Guess and substitution: one guesses the overall form of the solution without pinning down the constants and parameters.
- A weaker guess: $T(n) = O(n \log n)$. Rewritten as $T(n) = k \log_b n$, where k, b will be determined later.

$$\begin{array}{lll} T(n) &=& 2T(n/2) + cn \\ &\leq & 2k(n/2)\log_b(n/2) + cn \quad \text{(set b=2 for simplification)} \\ &=& 2k(n/2)\log_2 n - 2k(n/2) + cn \\ &=& kn\log_2 n - kn + cn \quad \text{(set k=c for simplification again)} \\ &=& cn\log_2 n \end{array}$$

Master theorem

Theorem

Let T(n) be defined by T(n)=aT(n/b)+f(n), then T(n) can be bounded by:

- If $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$;
- ② If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a}) \log n$;
- $\textbf{3} \ \ \textit{If} \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \ \textit{and} \ \ af(n/b) \leq cf(n), \ \ \textit{then}$ $T(n) = \Theta(f(n)). \ \ \textit{Here, ϵ denotes a small, positive number.}$
 - Intuition: comparing the costs in combining steps (labelled at internal nodes) and the costs in base cases (labelled at leaves).

Master theorem: examples

- Example 1: $T(n) \leq 3T(n/2) + cn$ (see a figure) $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$
- Example 2: $T(n) \le 2T(\frac{n}{2}) + cn^2$ (see a figure)

$$T(n) = \sum_{j=0}^{\log n} \frac{cn^2}{2^j} = cn^2 \sum_{j=0}^{\log n} \frac{1}{2^j} = 2cn^2$$
 (Note: not $O(n^2 \log n)$)

• Example 3: $T(n) \le T(n/3) + T(2n/3) + cn$ (see a figure)

Question: from $O(n^2)$ to $O(n \log n)$, what did we save?

:

InsertSort: 28 ops

 $MergeSort \ \text{step 1: 4 ops} \\$

MERGESORT step 2: 4 ops, save: 4

MERGESORT step 3: 4 ops, save: 12

A related problem: COUNTINGINVERSION

COUNTINGINVERSION problem

Practical problems:

- to identify two persons with similar preference, i.e. ranking books, movies, etc.
- ② In case of **meta search engine**, each engine produces a ranked pages for a given query. Comparison of the rankings help identify consensus or similar interests.

Formalized representation

INPUT: n (distinct) numbers $a_1, a_2, ..., a_n$;

OUTPUT: the number of **inversions**, i.e. a pair of indices such that i < j but $a_i > a_j$;

Application 1: Genome comparison

Figure 2: Sequence comparison of the 5' flanking regions of mouse, rat and human $ER\beta$.

Reference: In vivo function of the 5' flanking region of mouse estrogen receptor β gene, The Journal of Steroid Biochemistry and Molecular Biology Volume 105, Issues 1-5, June-July 2007, pages 57-62.

Application 2: A measure of bivariate association

- Motivation: how to measure the association between two genes when given expression levels across n time points?
- Existing measures:
 - Linear relationship: Pearson's CC (most widely used, but sensitive to outliers)
 - Monotonic relationship: Spearman, Kendall's correlation
 - General statistical dependence: Renyi correlation, mutual information, maximal information coefficient
- A novel measure:

$$W_1 = \sum_{i=1}^{n-k+1} (I_i^+, I_i^-)$$

Here, I_i^+ is 1 if $X_{[i,..,i+k-1]}$ and $Y_{[i,..,i+k-1]}$ has the same order and 0 otherwise.

 Advantage: the association may exist across a subset of samples. For example,

$$X: 13425$$

 $Y: 14523$

 $W_1=3$ when k=3. Much better than Pearson CC, et al.

COUNTINGINVERSION problem

- Solution: index pairs. The possible solution space has a size of $O(n^2)$.
- Brute-force: $O(n^2)$ (checking each pair (a_i, a_j)).
- Can we design a better algorithm?

COUNTINGINVERSION problem

- Key observation: the problem/solution can be divided into subproblems/solutions;
- Divide-and-conquer strategy:
 - **1 Divide:** divide into two subproblems: A[0..n/2] and A[n/2 + 1...n 1];
 - Conquer: counting inversion in each half by calling COUNTINGINVERSION itself;

Combine strategy 1

- Combine: how to count inversion (a_i, a_j) , when a_i and a_j are in different half?
- A simple enumeration will take $\frac{n^2}{4}$ steps. Thus, $T(n)=2T(\frac{n}{2})+\frac{n^2}{4}=O(n^2).$

Combine strategy 2

- Combine: how to count inversion (a_i, a_j) , when a_i and a_j are in different half?
- A simple enumeration will take $\frac{n^2}{4}$ steps. Thus, $T(n)=2T(\frac{n}{2})+\frac{n^2}{4}=O(n^2).$
- We will get a $O(n \log n)$ algorithm if we can perform "combine" step in O(n) time.
- Thing will be easy provided each half has already been sorted!


```
Sort-and-Count(A)
 1: Divide A into two sub-sequences L and R;
2: (RC_L, L) = \text{SORT-AND-COUNT}(L);
3: (RC_R, R) = \text{SORT-AND-COUNT}(R);
4: (C, A) = Merge-And-Count(L, R);
 5: return (RC = RC_L + RC_R + C, A);
Merge-and-Count (L, R)
1: RC = 0: i = 0: i = 0:
2: for k = 0 to ||L|| + ||R|| - 1 do
3: if L[i] > R[j] then
4: A[k] = R[i];
5: i + +:
6: RC + = (\frac{n}{2} - i);
7: else
```

8: A[k] = L[i];9: i + +;10: **end if** 11: **end for**

12: return (RC, A);

Time complexity: $T(n) = O(n \log n)$.

Another view point

- A sorted array has an inversion number of 0.
- Thus, we can treat the sorting process as a process to decrease inversion number to 0.
- Suppose we can record the decrement of inversion number during the sorting process, the sum will be the inversion number.

The general $\operatorname{DIVIDE-AND-CONQUER}$ paradigm

The general DIVIDE-AND-CONQUER paradigm

- Basic idea: Many problems are recursive in structure, i.e., to solve a given problem, they call themselves several times to deal with closely related sub-problems.
- The divide-and-conquer paradigm contains three steps:
 - Divide a problem into a number of independent sub-problems; How to divide? at middle-point; divide into two parts with odd- and even- indices; enumerate all cases of dividing point; randomly choose one, etc.
 - Conquer the subproblems by solving them recursively;
 - 3 Combine the solutions to the subproblems into the solution to the original problem;
 - Sometimes clever ideas are needed to combine.

 $\operatorname{QUICKSORT}$ algorithm: an example of randomly-chosen splitter

QUICKSORT algorithm [C. A. R. Hoare, 1960]

Figure 3: Sir Charles Antony Richard Hoare, 2011

QUICKSORT: divide randomly

```
QUICKSORT (A)

1: Choose a splitter A[j] randomly;

2: for i=0 to n-1 do

3: Put A[i] in S_- if A[i] < A[j];

4: Put A[i] in S_+ if A[i] \ge A[j];

5: end for

6: QUICKSORT(S_+);

7: QUICKSORT(S_-);

8: Output S_-, then A[j], then S_+;
```

Note:

- The randomization operation makes this algorithm simple (relative to MERGESORT algorithm) but efficient.
- However, the randomization also incurs a difficulty for analysis: Instead of selecting the median $A_{\lfloor \frac{n}{2} \rfloor}$, we use a randomly chosen A_j as splitter; thus, we cannot guarantee that each sub-problem has exactly $\frac{n}{2}$ elements.

Various cases of the execution of QUICKSORT algorithm

 Worst-case: selecting the smallest/biggest element at each iteration;

$$T(n) \le T(n-1) + cn \Rightarrow T(n) = O(n^2)$$

Best-case: if we select the median at each iteration;

$$T(n) \le 2T(n/2) + cn \Rightarrow T(n) = O(n \log n)$$

• Most cases: instead of selecting the median exactly, we can select a nearly central splitter with high probability. We can prove that the expected running time is still $T(n) = O(n \log n)$.

Analysis

- Let X denote the number of comparison in Line 5 and 6;
- It is obvious that the running time of QUICKSORT is O(n+X).
- We have the following two key observations:
- Observation 1: A[i] and A[j] are compared at most once for any i and j. (Why?)

Analysis cont'd

- Define index variable $X_{ij}=I\{A[i] \text{ is compared with } A[j]\}.$ Thus we have $X=\sum_{i=0}^{n-1}\sum_{j=i+1}^{n-1}X_{ij}.$

$$E[X] = E[\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} X_{ij}]$$
$$= \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}]$$
$$= \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} E[X_{ij}]$$

Analysis cont'd

- Observation 2: A[i] and A[j] are compared iff either A[i] or A[j] is selected as pivot when processing numbers containing A[i,i+1,...,j]. (Why?)
- We have $Pr\{A[i] \text{ is compared with } A[j]\} \leq \frac{2}{i-i+1}$.
- Thus we have:

$$\begin{split} E[X] &= \sum_{i=1}^{n} \sum_{j=i+1}^{n} Pr\{A[i] \text{ is compared with } A[j]\} \\ &\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1} \\ &< \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k+1} \\ &= O(n \log n) \end{split}$$

Here k is defined as k = j - i.

MODIFIED QUICKSORT: easier to analyze

```
ModifiedQuickSort(A)
 1: while TRUE do
      randomly choose a splitter A[j];
 3: for i = 0 to n - 1 do
         Put A[i] in S_{-} if A[i] < A[j];
 4:
         Put A[i] in S_+ if A[i] > A[j];
 5:
 6: end for
 7: if ||S_+|| > \frac{n}{4} and ||S_-|| > \frac{n}{4} then
 8:
     break:
      end if
 9:
10: end while
11: ModifiedQuickSort(S_{+});
12: ModifiedQuickSort(S_{-});
13: Output S_{-}, then A[j], and finally S_{+};
```

- Note:
 - This version is slower than the original version since it doesn't run when the splitter is "off-center".
 - ModifiedQuickSort works when all items are distinct.

Modified QuickSort: analysis

best splitter

- **1** $Pr\{\text{select the centroid splitter }\} = \frac{1}{n}$
- **2** $Pr\{\text{select a nearly center splitter}\} = \frac{1}{2}$
- ① It is quick to get a nearly center splitter since E(#WHILE)=2; thus the expected time of this step is 2n. (Note: |S|=n.)
- The nearly center is good:
 - The recursion tree has a depth of $O(\log_{\frac{4}{3}} n)$.
 - And O(n) work is needed for each level.
 - So $T(n) = O(n \log_{\frac{4}{3}} n)$.

(See extra slides.)

Extension: sorting on dynamic data

- When the data changes gradually, the goal of a sorting algorithm is to sort the data at each time step, under the constraint that it only has limited access to the data each time.
- As the data is constantly changing and the algorithm might be unaware of these changes, it cannot be expected to always output the exact right solution; we are interested in algorithms that guarantee to output an approximate solution.
- In 2011, Eli Upfal et al. proposed an algorithm to sort dynamic data.

$Multiplication \ \ \text{problem}$

MULTIPLICATION problem

ullet Problem: multiply two n-bits integer x and y;

• Question: Is the grade-school $O(n^2)$ algorithm optimal?

• Conjecture: In 1952, Andrey Kolmogorov conjectured that any algorithm for that task would require $\Omega(n^2)$ elementary operations.

MULTIPLICATION problem: Trial 1

- ullet Key observation: both x and y can be decomposed into two parts;
- Divide-and-conquer:
 - **1 Divide:** $x = x_h \times 2^{\frac{n}{2}} + x_l$, $y = y_h \times 2^{\frac{n}{2}} + y_l$,
 - **2** Conquer: calculate $x_h y_h$, $x_h y_l$, $x_l y_h$, and $x_l y_l$;
 - Combine:

$$xy = (x_h \times 2^{\frac{n}{2}} + x_l)(y_h \times 2^{\frac{n}{2}} + y_l)$$
 (6)

$$= x_h y_h 2^n + (x_h y_l + x_l y_h) 2^{\frac{n}{2}} + x_l y_l \tag{7}$$

MULTIPLICATION problem: Trial 1

- Example:
 - Objective: to calculate 12×34
 - $x = 12 = 1 \times 10 + 2$, $y = 34 = 3 \times 10 + 4$
 - $x \times y = (1 \times 3) \times 10^2 + ((1 \times 4) + (2 \times 3)) \times 10 + 2 \times 4$
- Note: 4 sub-problems, 3 additions, and 2 shifts;
- Time-complexity: $T(n) = 4T(n/2) + cn \Rightarrow T(n) = O(n^2)$

Question: can we reduce the number of sub-problems?

Reduce the number of sub-problems

×	y_h	y_l
x_h	$x_h y_h$	$x_h y_l$
x_l	$x_l y_h$	$x_l y_l$

- Our objective is to calculate $x_h y_h 2^n + (x_h y_l + x_l y_h) 2^{\frac{n}{2}} + x_l y_l$.
- Thus it is unnecessary to calculate $x_h y_l$ and $x_l y_h$ separately; we just need to calculate the sum $(x_h y_l + x_l y_h)$.
- It is obvious that $(x_hy_l+x_ly_h)+(x_hy_h+x_ly_l)=(x_h+x_l)\times(y_h+y_l).$
- The sum $(x_h y_l + x_l y_h)$ can be calculated using only one additional multiplication.

MULTIPLICATION problem: a clever **conquer** [Karatsuba-Ofman 1962]

Figure 4: Anatolii Alexeevich Karatsuba

 Karatsuba algorithm was the first multiplication algorithm asymptotically faster than the quadratic "grade school" algorithm.

MULTIPLICATION problem: a clever conquer

- Divide-and-conquer:
 - **1 Divide:** $x = x_h \times 2^{\frac{n}{2}} + x_l$, $y = y_h \times 2^{\frac{n}{2}} + y_l$,
 - **2** Conquer: calculate $x_h y_h$, $x_l y_l$, and $P = (x_h + x_l)(y_h + y_l)$;
 - Combine:

$$xy = (x_h \times 2^{\frac{n}{2}} + x_l)(y_h \times 2^{\frac{n}{2}} + y_l)$$
 (8)

$$= x_h y_h 2^n + (x_h y_l + x_l y_h) 2^{\frac{n}{2}} + x_l y_l$$
 (9)

$$= x_h y_h 2^n + (P - x_h y_h - x_l y_l) 2^{\frac{n}{2}} + x_l y_l$$
 (10)

Karatsuba-Ofman algorithm

- Example:
 - Objective: to calculate 12×34

•
$$x = 12 = 1 \times 10 + 2$$
, $y = 34 = 3 \times 10 + 4$

•
$$P = (1+2) \times (3+4)$$

•
$$x \times y = (1 \times 3) \times 102 + (P - 1 \times 3 - 2 \times 4) \times 10 + 2 \times 4$$

- Note: 3 sub-problems, 6 additions, and 2 shifts;
- Time-complexity:

$$T(n) = 3T(n/2) + cn \Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

(See an extra slide)

Theoretical analysis vs. empirical comparisons

- For large n, Karatsuba's algorithm will perform fewer shifts and single-digit additions.
- For small values of n, however, the extra shift and add operations may make it run slower.
- The crossover point depends on the computer platform and context.
- When applying FFT technique, the MULTIPLICATION can be finished in $O(n \log n)$ time.

Figure 5: Sun SPARC4, g++ -O4, random input. See

Extension: FAST DIVISION

- Problem: Given two n-digit numbers s and t, to calculate q = s/t and $r = s \mod t$.
- Method:
 - Calculate x = 1/t using Newton's method first:

$$x_{i+1} = 2x_i - t \times x_i^2$$

- 2 At most $\log n$ iterations are needed.
- **3** Thus division is as fast as multiplication.

Details of FAST DIVISION: Newton's method

- Objective: Calculate x = 1/t.
 - x is the root of f(x) = 0, where $f(x) = (t \frac{1}{x})$. (Why the form here?)
 - Newton's method:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{11}$$

$$= x_i - \frac{t - \frac{1}{x_i}}{\frac{1}{x_i^2}} \tag{12}$$

$$= -t \times x_i^2 + 2x_i \tag{13}$$

• Convergence speed: quadratic, i.e. $\epsilon_{i+1} \leq M \epsilon_i^2$, where M is a supremum of a ratio, and ϵ_i denotes the distance between x_i and $\frac{1}{t}$. Thus the number of iterations is limited by $\log \log t = O(\log n)$.

FAST DIVISION: an example

• Objective: to calculate $\frac{1}{13}$.

#lteration	x_i	ϵ_i
0	0.018700	-0.058223
1	0.032854	-0.044069
2	0.051676	-0.025247
3	0.068636	-0.008286
4	0.076030	-0.000892
5	0.076912	-1.03583e-05
6	0.076923	-1.39483e-09
7	0.076923	-2.77556e-17
8		

• Note: the quadratic convergence implies that the error ϵ_i has a form of $O(e^{2^i})$; thus the iteration number is limited by $\log \log(t)$.

MATRIX MULTIPLICATION problem

MATRIXMULTIPLICATION problem: Trial 1 | 1

- Matrix multiplication: Given two $n \times n$ matrices A and B, compute C = AB;
 - Grade-school: $O(n^3)$.
- Key observation: matrix can be decomposed into four $\frac{n}{2} \times \frac{n}{2}$ matrices;
- Divide-and-conquer:
 - **1 Divide:** divide A, B, and C into sub-matrices;
 - 2 Conquer: calculate products of sub-matrices;
 - Combine:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$(17)$$

MATRIXMULTIPLICATION problem: Trial 1 | II

- We need to solve 8 sub-problems, and 4 additions; each addition takes $O(n^2)$ time.
- $T(n) = 8T(n/2) + cn^2 \Rightarrow T(n) = O(n^3)$

Question: can we reduce the number of sub-problems?

Strassen algorithm, 1969

Figure 6: Volker Strassen, 2009

 \bullet The first algorithm for performing matrix multiplication faster than the $O(n^3)$ time bound.

MATRIXMULTIPLICATION problem: a clever conquer

- Matrix multiplication: Given two $n \times n$ matrices A and B, compute C = AB;
 - Grade-school: $O(n^3)$.
 - Key observation: matrix can be decomposed into four $\frac{n}{2} \times \frac{n}{2}$ matrices:

Divide-and-conquer:

- **1 Divide:** divide A, B, and C into sub-matrices;
- Conquer: calculate products of sub-matrices;
- Combine:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

$$(24)$$

$$C_{11} = P_4 + P_5 + P_6 - P_2$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_1 + P_5 - P_3 - P_7$$
(25)
(26)
(27)

- We need to solve 7 sub-problems, and 18 additions/subtraction; each addition/subtraction takes $O(n^2)$ time.
- $T(n) = 7T(n/2) + cn^2 \Rightarrow T(n) = O(n^{\log_2 7}) = O(n^{2.807})$

Advantages

- ullet For large n, Strassen algorithm is faster than grade-school method. 2
- Strassen algorithm can be used to solve other problems, say matrix inversion, determinant calculation, finding triangles in graphs, etc.
- Gaussian elimination is not optimal.

 $^{^2}$ This heavily depends on the system, including memory access property, hardware design, etc.

Shortcomings

- ullet Strassen algorithm performs better than grade-school method only for large n.
- The reduction in the number of arithmetic operations however comes at the price of a somewhat reduced numerical stability,
- The algorithm also requires significantly more memory compared to the naive algorithm.

Fast matrix multiplication

- multiply two 2×2 matrices: 7 scalar sub-problems: $O(n^{\log_2 7}) = O(n^{2.807})$ [Strassen 1969]
- multiply two 2×2 matrices: 6 scalar sub-problems: $O(n^{\log_2 6}) = O(n^{2.585})$ (impossible)[Hopcroft and Kerr 1971]
- multiply two 3×3 matrices: 21 scalar sub-problems: $O(n^{\log_3 21}) = O(n^{2.771})$ (impossible)
- multiply two 20×20 matrices: 4460 scalar sub-problems: $O(n^{\log_{20}4460}) = O(n^{2.805})$
- multiply two 48×48 matrices: 47217 scalar sub-problems: $O(n^{\log_{48} 47217}) = O(n^{2.780})$
- Best known: $O(n^{2.376})$ [Coppersmit-Winograd, 1987]
- Conjecture: $O(n^{2+\epsilon})$ for any $\epsilon > 0$;

${\rm CLOSESTPAIR} \ \mathsf{problem}$

Practical problem: Hierarchical clustering

Practical problem: Nearest neighbor heuristic for TSP

Practical problem: MST heuristic for TSP

Basic operation: CLOSESTPAIR problem

INPUT: n points in a plane;

OUTPUT: the pair with the least Euclidean distance;

About CLOSESTPAIR problem

- Computational geometry: M. Shamos and D. Hoey were working out efficient algorithm for basic computational primitive in CG in 1970's. Does there exist an algorithm using less than $O(n^2)$ time?
- 1D case: it is easy to solve the problem in $O(n\log n)$ via sorting.
- 2D case: a brute-force algorithm works in $O(n^2)$ time by checking all possible pairs.
- Question: can we find a faster method?

Trial 1: Divide into 4 subsets

Trial 1: divide-and-conquer (4 subsets)

- Key observation: a point set can also be divided into subsets.
- Divide-and-conquer: divide into 4 subsets.

• Difficulty: The subsets might be unbalanced — we cannot guarantee that each subset has (roughly) $\frac{n}{4}$ points. Thus, it will take $O(n^2)$ time to combine. For example, we might have the following recursion $T(n)=2T(\frac{n}{2})+O(n^2)$.

Trial 2: Divide into 2 halves

Trial 2: divide-and-conquer (2 subsets)

• **Divide:** divide into two halves; It is easy to achieve this through sorting by x coordinate first, and then select $x_{\lfloor \frac{n}{2} \rfloor}$ as splitter.

Trial 2: divide-and-conquer (2 subsets)

- Divide: dividing into two (roughly equal) subsets;
- Conquer: finding closest pairs in each half;

Trial 2: divide-and-conquer (2 subsets)

- Divide: dividing into two (roughly equal) subsets;
- Conquer: finding closest pairs in each half;
- Combine: It suffices to consider the pairs consisting of one point from left half and one point from right half.
 - There are $O(n^2)$ such pairs;
 - Can we find the closest pair in O(n) time?

It is unnecessary to check all pairs (I) I

Observation 1:

- The closest pair is located in left part, or right part, or within δ of the middle line L.
- The third type occurs in a narrow strip only!
- \bullet Thus, it suffices to check point pairs in the $2\delta\text{-strip}.$
- Here, δ is the minimum of ClosestPair(LeftHalf) and ClosestPair(RightHalf).

It is unnecessary to check all pairs (II)

Observation 2:

- Moreover, it is unnecessary to explore all point pairs in the 2δ -strip.
- Let's divide the 2δ -strip into grids (size: $\frac{\delta}{2} \times \frac{\delta}{2}$).
- A grid contains at most one point.
- \bullet If two points are 2 rows apart, the distance between them should be over δ and thus cannot construct closest-pair.
- Example: For point i, it suffices to search within 2 rows for possible closest partners ($< \delta$).

- Green: point *i*;
- Red: the possible closest partner (distance $< \delta$) of point i;

- Green: point *i*;
- Red: the possible closest partner (distance $< \delta$) of point i;

- Green: point *i*;
- Red: the possible closest partner (distance $< \delta$) of point i;

- Green: point *i*;
- Red: the possible closest partner ($< \delta$) of point i;

- If all points within the strip were sorted by y-coordinates, it suffices to calculate distance between each point with its next 11 neighbors.
- Why 11 points here? All red points fall into the subsequent 11 points.
- Reason: All the points in red are within 3 rows, which have at most 12 points.

CLOSESTPAIR algorithm

CLOSESTPAIR $(p_i,...,p_j)$ /* $p_i,...,p_j$ have already been sorted according to x-coordinate; */

- 1: **if** j i == 1 **then**
- 2: return $d(p_i, p_j)$;
- 3: end if
- 4: Use the x-coordinate of $p_{\lfloor \frac{i+j}{2} \rfloor}$ to divide $p_i,...,p_j$ into two halves:
- 5: $\delta_1 = \text{CLOSESTPAIR}(\text{left half}); T(\frac{n}{2})$
- 6: $\delta_2 = \text{CLOSESTPAIR}(\text{right half}); T(\frac{n}{2})$
- 7: $\delta = \min(\delta_1, \delta_2);$
- 8: Sort points within the 2δ strip by y-coordinate; $O(n\log(n))$
- 9: Scan points in y-order and calculate distance between each point with its next 11 neighbors. Update δ if finding a distance less than δ ; O(n)
 - Time-complexity:

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) = O(n \log^2(n)).$$

CLOSESTPAIR algorithm: improvement

- Note: can be improved to $O(n\log n)$ if we do not sort points within 2δ strip from the scratch every time.
 - ullet Each recursion keeps two sorted list: one list by x, and the other list by y.
 - \bullet Merge pre-sorted lists into a list as MergeSort does. Thus it costs only O(n) time.
- Time-complexity: $T(n) = 2T(\frac{n}{2}) + O(n) = O(n \log n)$.

CLOSESTPAIR: an example with 8 points

• Objective: to find the closest pair among these 8 points.

CLOSESTPAIR: an example with 8 points

• Objective: to find the closest pair among these 8 points.

- Pair 1: $d(A, B) = \sqrt{2}$;
- Pair 2: d(C,D)=3; \Rightarrow $\min=\sqrt{2};$ Thus, it suffices to calculate:
- Pair 3: $d(B,C) = \sqrt{2}$;
- Pair 4: $d(B, D) = \sqrt{5}$; $\Rightarrow \delta_L = \sqrt{2}$.

- Pair 1: $d(A, B) = \sqrt{2}$;
- Pair 2: d(C, D) = 3; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 3: $d(B,C) = \sqrt{2}$;
- Pair 4: $d(B, D) = \sqrt{5}$; $\Rightarrow \delta_L = \sqrt{2}$.

- Pair 1: $d(A, B) = \sqrt{2}$;
- Pair 2: d(C,D)=3; $\Rightarrow \min=\sqrt{2};$ Thus, it suffices to calculate:
- Pair 3: $d(B,C) = \sqrt{2}$;
- Pair 4: $d(B,D) = \sqrt{5}$; $\Rightarrow \delta_L = \sqrt{2}$.

- Pair 1: $d(A, B) = \sqrt{2}$;
- Pair 2: d(C,D)=3; \Rightarrow $\min=\sqrt{2};$ Thus, it suffices to calculate:
- Pair 3: $d(B,C) = \sqrt{2}$;
- Pair 4: $d(B,D) = \sqrt{5}$; $\Rightarrow \delta_L = \sqrt{2}$.

- Pair 1: $d(A, B) = \sqrt{2}$;
- Pair 2: d(C,D)=3; $\Rightarrow \min=\sqrt{2};$ Thus, it suffices to calculate:
- Pair 3: $d(B,C) = \sqrt{2}$;
- Pair 4: $d(B,D) = \sqrt{5}$; $\Rightarrow \delta_L = \sqrt{2}$.

- Pair 5: $d(E, F) = \sqrt{5}$;
- Pair 6: $d(G, H) = \sqrt{2}$; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 7: $d(G,F) = \sqrt{5}$; $\Rightarrow \delta_R = \sqrt{2}$.

- Pair 5: $d(E, F) = \sqrt{5}$;
- Pair 6: $d(G, H) = \sqrt{2}$; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 7: $d(G, F) = \sqrt{5}$; $\Rightarrow \delta_R = \sqrt{2}$.

- Pair 5: $d(E, F) = \sqrt{5}$;
- Pair 6: $d(G, H) = \sqrt{2}$; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 7: $d(G, F) = \sqrt{5}$; $\Rightarrow \delta_R = \sqrt{2}$.

- Pair 5: $d(E, F) = \sqrt{5}$;
- Pair 6: $d(G, H) = \sqrt{2}$; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 7: $d(G, F) = \sqrt{5}$; $\Rightarrow \delta_R = \sqrt{2}$.

- Pair 5: $d(E, F) = \sqrt{5}$;
- Pair 6: $d(G, H) = \sqrt{2}$; $\Rightarrow \min = \sqrt{2}$; Thus, it suffices to calculate:
- Pair 7: $d(G, F) = \sqrt{5}$; $\Rightarrow \delta_R = \sqrt{2}$.

- Pair 8: d(C, E) = 1;
- Pair 9: $d(D, E) = \sqrt{10}$; $\Rightarrow \delta = 1$.

- Pair 8: d(C, E) = 1;
- Pair 9: $d(D, E) = \sqrt{10}$; $\Rightarrow \delta = 1$.

- Pair 8: d(C, E) = 1;
- Pair 9: $d(D, E) = \sqrt{10}$; $\Rightarrow \delta = 1$.

- Pair 8: d(C, E) = 1;
- Pair 9: $d(D, E) = \sqrt{10}$; $\Rightarrow \delta = 1$.

- Pair 8: d(C, E) = 1;
- Pair 9: $d(D, E) = \sqrt{10}$; $\Rightarrow \delta = 1$.

From $O(n^2) \Rightarrow O(n \log(n))$, what did we save?

- We calculated distances for only 9 pairs of points (see 'blue' line). The other 19 pairs are redundant due to:
 - at least one of the two points lies out of 2δ -strip.
 - although two points appear in the same 2δ -strip, they are at least 2 rows of grids (size: $\frac{\delta}{2} \times \frac{\delta}{2}$) apart.

103 / 105

Extension: arbitrary (not necessarily geometric) distance functions

Theorem

We can perform bottom-up hierarchical clustering, for any cluster distance function computable in constant time from the distances between subclusters, in total time $O(n^2)$. We can perform median, centroid, Wards, or other bottom-up clustering methods in which clusters are represented by objects, in time $O(n^2 \log^2 n)$ and space O(n).

See Eppstein 1998 for details.

SELECTION problem (to appear in Lec 14)