

Banking Marketing
Targets

Dokumen Laporan Final Project (Stage 3)

By: Group 3 DS Batch 21 aka Jump-start

Data Scientist Team

- Maghfira Amalia
- Mahendra Prabaswara
- Ridwan Donovan
- Windy Nurfikri

Problem Statement

Term deposits are one of the major income sources of a bank. These days, selling deposits through telemarketing is still the main of various plans to reach out to the clients. However, the bank still needs to pay attention to the effectiveness of the direct campaign considering the high cost and the time it takes. Based on previous campaign data of 45,211 clients, only 3.3% of them actually subscribed to a term deposit. Despite the fact that 36,959 clients were never contacted. Therefore, determining the right potential depositors needs to be done to save resources. Meanwhile, we also need to review the efficiency and effectiveness of telemarketing as a direct campaign method.

Goal

Increase the efficiency and effectiveness of direct campaign

Objectives

- Predict the potential depositor by classifying them (based on their background and financial history)
- Find out the success rate of telemarketing as direct campaign method

Business Metric

Conversion Rate

Descriptive Statistic

A. Apakah ada kolom dengan tipe data kurang sesuai, atau nama kolom dan isinya kurang sesuai? Pada kolom job ada value 'admin.' yang mana seharusnya penulisan tidak perlu menggunakan tanda titik (.) seperti pekerjaan lainnya. Selebihnya, semua tipe data sudah sesuai.

B. Apakah ada kolom yang memiliki nilai kosong? Jika ada, apa saja? Tidak ada kolom dengan nilai kosong.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 18 columns):
                Non-Null Count Dtvpe
     Column
     age
                45211 non-null int64
     job
                45211 non-null
                               object
     marital
                45211 non-null
     education
               45211 non-null
                                object
     default
                45211 non-null
                               object
     balance
                45211 non-null
     housing
                45211 non-null
                               object
     loan
                45211 non-null
                                object
     contact
                45211 non-null
                               object
     day
     month
                45211 non-null
                               object
     duration
                45211 non-null
     campaign
                45211 non-null int64
     pdays
                45211 non-null
     previous
                45211 non-null
                               int64
     poutcome
                45211 non-null
                                object
 16
                45211 non-null
                               object
                45211 non-null int64
dtypes: int64(8), object(10)
```


C. Apakah ada kolom yang memiliki nilai summary agak aneh? (min/mean/median/max/unique/top/freq)

- Pada kolom **previous** nampak issue pada nilai maksimalnya, dimana salah satu customer dihubungi pada campaign sebelumnya sebanyak 275 kali. Kemungkinan akan di drop pada saat pre-processing.
- kolom balance, duration, dan pdays tampak right-skewed (median < mean).

0	df.deso	cribe()						
Ľ•		age	balance	day	duration	campaign	pdays	previous
	count	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000
	mean	40.936210	1362.272058	15.806419	258.163080	2.763841	40.197828	0.580323
	std	10.618762	3044.765829	8.322476	257.527812	3.098021	100.128746	2.303441
	min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000000	0.000000
	25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000000	0.000000
	50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000000	0.000000
	75%	48.000000	1428.000000	21.000000	319.000000	3.000000	-1.000000	0.000000
	max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000000	275.000000

0	df[cats]	.describe	≘()							
		marital	education	default	housing	loan	contact	month	poutcome	У
	count	45211	45211	45211	45211	45211	45211	45211	45211	45211
	unique	3	4	2	2	2	3	12	4	2
	top	married	secondary	no	yes	no	cellular	may	unknown	no
	freq	27214	23202	44396	25130	37967	29285	13766	36959	39922

- Data didominasi oleh customer yang sudah menikah (marital) dan/atau tidak memiliki tunggakkan (default) ataupun pinjaman (loan).
- lebih dari 75% data customer tidak diketahui hasil/output dari campaign sebelumnya (poutcome).

Univariate Analysis

• Pada **previous** dan **duration** terdapat outlier yang berbeda sangat signifikan.

• hampir semua fiture numerical, distribusi datanya (sangat) right-skewed.

Sedangkan untuk data kategorikal, dapat terlihat hampir seluruh fitur data memiliki ketimpangan, kecuali housing.

Encoding **y** untuk untuk kebutuhan cek korelasi fitur dengan target output.

	age	Job	marital	education	default	balance	nousing	Toan	contact	day	montn	duration	campaign	paays	previous	poutcome	У
13195	57	technician	married	primary	no	4442	no	no	cellular	8	jul	97	6	-1	0	unknown	(
20666	37	technician	single	secondary	no	3665	no	no	cellular	12	aug	664	3	-1	0	unknown	i e
7142	38	retired	single	secondary	no	44	no	no	unknown	29	may	148	1	-1	0	unknown	. (
592	41	admin.	divorced	primary	no	4070	yes	no	unknown	6	may	140	2	-1	0	unknown	(
15482	31	entrepreneur	single	secondary	no	379	yes	no	cellular	18	jul	570	2	-1	0	unknown	
8457	38	services	married	secondary	no	823	yes	no	unknown	3	jun	132	5	-1	0	unknown	
37178	39	management	married	tertiary	no	141	yes	no	cellular	13	may	788	2	331	6	other	(
40357	59	self-employed	married	tertiary	no	185	no	no	cellular	22	jun	177	5	138	1	failure	i i
36342	46	blue-collar	married	secondary	no	-27	yes	no	cellular	11	may	254	1	-1	0	unknown	. (

Dari correlation heatmap di atas dapat disimpulkan bahwa:

- y memiliki potensi korelasi yang tinggi dengan duration (strong potential correlation)
- y juga memiliki korelasi yang lemah dengan previous dan pdays (decent potential feature)
- campaign memiliki korelasi positif dengan day
- Sedangkan korelasi **campaign** dengan **age** sangat lemah, kemungkinan bukan fitur yang potensial (decent potential feature)
- ada korelasi antar previous dengan pdays, namun tidak cukup kuat untuk dikatakan redundant

belum ada fitur yg memiliki korelasi linear yg cukup kuat.

Korelasi Data Kategorik

terhadap y

Belum nampak ada korelasi yg kuat pada data kategorik terhadap output target.

Korelasi data kategorik terhadap duration

0.0020

0.0015

0.0005

0.0000

1000

namun customer yang melakukan subsribed deposito (y = 'yes') cenderung memiliki durasi telepon yg lebih lama dibandingkan yang tidak subscribed.

Business Insight

- Dilihat pada heatmap, terdapat korelasi yg cukup tinggi antara target output (y) dengan duration. Jadi, untuk meningkatkan jumlah nasabah yang melakukan deposito dengan menambahkan durasi telepon kepada nasabah. Tetapi perlu diperhatikan juga semakin lama durasi telepon semakin besar biaya yang diperlukan.
- Pada **previous** dan **pdays** walaupun memiliki korelasi tapi sepertinya tidak ada kausalitas.
- Terdapat korelasi **campaign** terhadap **day**. Sehingga dapat dipilih hari-hari tententu yang memiliki tingkat keberhasilan campaign yang tinggi, agar campaign dapat lebih efektif.

```
os O
```

```
dy = df[df['y'] == 1]

dy_cpg = dy.groupby('day')['campaign'].count()

dy_cpg.plot(x='day', y='campaign', kind='bar')
plt.title("Campaign vs Day", loc='left', y=1.03, fontsize=15, weight='bold')
plt.show()
```

Campaign vs Day

campaign yg menghasilkan output positif (customer subscribed to deposit) jarang terjadi pada akhir bulan.

Langkah Meningkatkan Model

- a. Encode Data Yes dan No pada \mathbf{y} menjadi boolean agar bisa lebih mudah melihat
- b. Ambil insight dari korelasi antara **y** dengan data kategorik serta korelasi **duration** dengan data kategorik.
- c. Handling outlier menggunakan metode manual filtering.
- d. Melakukan box-cox transformation pada balance, duration, campaign, dan previous kemudian lakukan normalisasi data.

e.

Data Cleansing

A. Handle missing values

Tidak ada data yang null jadi tidak perlu dlakukan handle missing values

```
1 df.isnull().sum()
     age
     job
     marital
     education
     default
     balance
     housing
     loan
     contact
     day
     month
     duration
    campaign
     pdays
    previous
     poutcome
     dtype: int64
Data tidak ada yang null
```


B. Handle duplicated data

Tidak ditemukan data duplikat jadi tidak perlu dilakukan handle duplicate data

```
[ ] 1 df.duplicated().sum()

0

Data tidak ada yang duplikat
```


C. Handle outliers

```
1 from sklearn.preprocessing import MinMaxScaler, StandardScaler
2
3 df['age_norm'] = MinMaxScaler().fit_transform(df['age'].values.reshape(len(df), 1))
4 df['day_norm'] = MinMaxScaler().fit_transform(df['day'].values.reshape(len(df), 1))
5 df['campaign_norm'] = MinMaxScaler().fit_transform(df['campaign'].values.reshape(len(df), 1))
6 df['pdays_norm'] = MinMaxScaler().fit_transform(df['pdays'].values.reshape(len(df), 1))
7
8
9 df.describe()
```

, <u> </u>	age	balance	day	duration	campaign	pdays	previous	У	log_balance	log_duration	age_norm	day_norm	campaign_norm	pdays_norm
cour	t 36954.000000	36954.000000	36954.000000	36954.000000	36954.000000	36954.0	36954.0	36954.000000	3.367600e+04	3.695400e+04	36954.000000	36954.000000	36954.000000	36954.0
mea	40.932430	1318.788846	16.145424	257.726119	2.921957	-1.0	0.0	0.091573	-inf	-inf	0.297824	0.504847	0.030999	0.0
std	10.430218	3039.557077	8.372554	262.256406	3.325791	0.0	0.0	0.288427	NaN	NaN	0.135457	0.279085	0.053642	0.0
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.0	0.0	0.000000	-inf	-inf	0.000000	0.000000	0.000000	0.0
25%	33.000000	55.000000	9.000000	101.000000	1.000000	-1.0	0.0	0.000000	4.867534e+00	4.615121e+00	0.194805	0.266667	0.000000	0.0
50%	39.000000	414.000000	17.000000	177.000000	2.000000	-1.0	0.0	0.000000	6.240276e+00	5.176150e+00	0.272727	0.533333	0.016129	0.0
75%	49.000000	1358.000000	22.000000	318.000000	3.000000	-1.0	0.0	0.000000	7.333023e+00	5.762051e+00	0.402597	0.700000	0.032258	0.0
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	-1.0	0.0	1.000000	1.153397e+01	8.500657e+00	1.000000	1.000000	1.000000	0.0

D. Feature transformation Berikut adalah perubahan dari grafik sebelum dan setelah dilakukan feature transformation

Feature Transformation menggunakan Box Cox

- Box cox tidak bisa digunakan pada data yang

```
for box cox = df['campaign'].values
fitted data, fitted lambda = stats.boxcox(for box cox)
# creating axes to draw plots
fig, ax = plt.subplots(1, 2)
# plotting the original data(non-normal) and
# fitted data (normal)
sns.distplot(for box cox, hist = False, kde = True,
            kde kws = {'shade': True, 'linewidth': 2},
            label = "Non-Normal", color = "green", ax = ax[0])
sns.distplot(fitted data, hist = False, kde = True,
            kde kws = {'shade': True, 'linewidth': 2},
            label = "Normal", color = "green", ax = ax[1])
# adding legends to the subplots
plt.legend(loc = "upper right")
# rescaling the subplots
fig.set figheight(5)
fig.set figwidth(10)
print(f"Lambda value used for Transformation: {fitted lambda}")
```


Berikut adalah perubahan dari datasebelum dan setelah dilakukan feature transformation

	age	balance	day	duration	campaign	pdays	previous		у		
count	36954.000000	36954.000000	36954.000000 3	6954.000000 36	5954.000000 3	6954.0	36954.0	36954	1.000000		
mean	40.932430	1318.788846	16.145424	257.726119	2.921957	-1.0	0.0	(0.091573		
std	10.430218	3039.557077	8.372554	262.256406	3.325791	0.0	0.0	(0.288427		
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.0	0.0	(0.000000		
25%	33.000000	55.000000	9.000000	101.000000	1.000000	-1.0	0.0	(0.000000		
50%	39.000000	414.000000	17.000000	177.000000	2.000000	-1.0	0.0	(0.000000		
75%	49.000000	1358.000000	22.000000	318.000000	3.000000	-1.0	0.0	(0.000000		
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	-1.0	0.0		1.000000		
	age	balance	e day	duration	ı campaig	gn pd	ays pre	vious	у	log_balance	log_duration
count	36954.000000	36954.000000	36954.000000	36954.000000	36954.00000	00 369	54.0 36	5954.0	36954.000000	3.367600e+04	3.695400e+04
mean	40.932430	1318.788846	6 16.145424	257.726119	2.92195	57	-1.0	0.0	0.091573	-inf	-inf
std	10.430218	3039.557077	8.372554	262.256406	3.32579)1	0.0	0.0	0.288427	NaN	NaN
min	18.000000	-8019.000000	1.000000	0.000000	1.00000	00	-1.0	0.0	0.000000	-inf	-inf
25%	33.000000	55.000000	9.000000	101.000000	1.00000	00	-1.0	0.0	0.000000	4.867534e+00	4.615121e+00
50%	39.000000	414.000000	17.000000	177.000000	2.00000	00	-1.0	0.0	0.000000	6.240276e+00	5.176150e+00
75%	49.000000	1358.000000	22.000000	318.000000	3.00000	00	-1.0	0.0	0.000000	7.333023e+00	5.762051e+00
	95.000000	102127.000000	31.000000	4918.000000	63.00000			0.0	1.000000	1.153397e+01	8.500657e+00

E. Feature encoding

	age	job	education	default	balance	housing	loan	day m	onth	duration	day_norm	campaign_norm	pdays_norm	marital_divorced	marital_married	marital_single	contact_cellular	contact_telephone	contact_unknown	poutcome_unknown
0	58	management	3	0	2143	1	0	5	5	261	0.133333	0.0	0.0	0	1	0		0	1	1
1	44	technician	2		29			5	5	151	0.133333	0.0	0.0	0	0					1
2	33	entrepreneur	2	0	2	1	1	5	5	76	0.133333	0.0	0.0	0	1	0	0	0	1	1
3	47	blue-collar	0	0	1506	1	0	5	5	92	0.133333	0.0	0.0	0	1	0	0	0	1	1
4	33	unknown	0	0	1	0	0	5	5	198	0.133333	0.0	0.0	0	0	1	0	0	1	1
		-																		

5 rows × 27 columns

F. Handle class imbalance menggunakan SMOTE pertimbangan menggunakan SMOTE adalah menghindari adanya informasi yang hilang

```
[146] df1.y.value counts()
          39899
           5284
     Name: y, dtype: int64
[156] X = df1[[col for col in df1.columns if (str(df1[col].dtype) != 'object') and col not in ['y']]]
     y = df1['y'].values
     print(X.shape)
     print(y.shape)
     (45183, 13)
     (45183,)
[157] from imblearn import under sampling, over sampling
     X over SMOTE, y over SMOTE = over sampling.SMOTE(0.5).fit resample(X, y)
     print('SMOTE')
     print(pd.Series(y over SMOTE).value counts())
     SMOTE
          39899
          19949
     dtype: int64
     /usr/local/lib/python3.7/dist-packages/imblearn/utils/ validation.py:591: FutureWarning: Pass sampling
       FutureWarning,
```


2. Feature Engineering

A. Feature selection

Beberapa feature yang di drop menggunakan korelasi

```
    l abs(df.corr()['y'][abs(df.corr()['y'])>0.05].drop('y')).index.tolist()

    ['housing',
    'duration',
    'campaign',
    'log_balance',
    'log_duration',
    'campaign_norm',
    'marital_married',
    'marital_single',
    'contact_cellular',
    'contact_unknown']
```


B. Feature extraction

duration_minute : Mengubah duration pada satuan detik menjadi menit agar lebih mudah dipahami

2	df3[perminute = cost'] = (d ead()		'] * cost_	_perminut	e).round	(2)												
	age	job	education	default	balance	housing	loar	day	month	duration	pdays_norm	marital_divorced	marital_married	marital_single	contact_cellular	contact_telephone	contact_unknown	poutcome_unknown	duration_minute
0	58	management	3	0	2143	1	C) 5	5	261	0.0	0	1	0	0	0	1	1	4.4
1	44	technician	2	0	29	1	() 5	5	151	0.0	0	0	1	0	0	1	1	2.5
2	33	entrepreneur	2	0	2	1	1	5	5	76	0.0	0	1	0	0	0	1	1	1.3
3	47	blue-collar	0	0	1506	1	C) 5	5	92	0.0	0	1	0	0	0	1	1	1.5
4	33	unknown	0	0	1	0	0) 5	5	198	0.0	0	0	- 1	0	0	1	- 1	3.3
5 ro	ws × 2	29 columns																	

C. 4 feature tambahan:

- duration_minute: Mengubah duration pada satuan detik menjadi menit agar lebih mudah dipahami
- cost: Menambahkan fitur tambahan cost yaitu biaya tambahan dengan tarif 0.01 euro per menit, sehingga menjadi bisa menjadi pertimbangan perusahaan untuk memperhatikan duration
- group_balance: Mengkategorikan nasabah sesuai dengan balancenya

• group_age: Mengkategorikan nasabah sesuai dengan umurnya, agar dapat

diperhatikan usia produktif untuk bekerja

duration_minute	cost	group_balance	group_age
4.4	2.61	High	Adults
2.5	1.51	Low	Adults
1.3	0.76	Low	Adults
1.5	0.92	High	Adults
3.3	1.98	Low	Adults

Modeling

A. Split Data Train dan Test

Test size menggunakan default 0.2 dan random state 42. Untuk pembanding model agar mengetahui performance yang lebih baik, akan dilakukan percobaan dengan test size yang berbeda.

```
[120] from sklearn.model selection import train test split
[127] X train, X test, y train, y test = train_test_split(X, y, test_size = 0.2, random_state = 42)
[128] X_train.shape
     (36146, 13)
[129] X test.shape
      (9037, 13)
```

B. Modeling

Fokus utama adalah nilai F1 Score, dan RandomForest memiliki nilai F1 Score yang paling bagus diantara semuanya.

```
from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import GradientBoostingClassifier
     from sklearn import metrics
     from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc
1391 models = {
         "DecisionTree"
                             : DecisionTreeClassifier(random_state=42),
         "RandomForest"
                             : RandomForestClassifier(random state=42).
         "GradientBoosting" : GradientBoostingClassifier(random_state=42)
    for model name, clf in models.items():
         clf.fit(X train, y train)
        y_pred = clf.predict(X_test)
        probs = clf.predict_proba(X_test)[:,1]
         print("\n")
         print("Evaluate model: {}".format(model name))
         fpr, tpr, thresholds = metrics.roc curve(y test, probs, pos label=1)
         auc = metrics.auc(fpr, tpr)
         print("AUC: "+str(round(auc*100,2))+'%')
         accuracy = metrics.accuracy_score(y_test, y_pred)
         print("accuracy: "+str(round(accuracy*100,2))+'%')
         precision = metrics.precision score(y test, y pred)
         print("precision: "+str(round(precision*100,2))+'%')
         recall = metrics.recall_score(y_test, y_pred)
         print("recall: "+str(round(recall*100,2))+'%')
         f1_score = ((2 * precision * recall)/(precision + recall))
         print("F1 score: "+str(round(f1 score*100,2))+'%')
         train score = clf.score(X train, y train)
         print("train_score: "+str(round(train_score*100,2))+'%")
```

Evaluate model: DecisionTree

AUC: 88.83% accuracy: 88.82% precision: 87.93% recall: 90.16% F1 score: 89.03% train_score: 99.99% test score: 88.82%

Evaluate model: RandomForest

AUC: 97.24% accuracy: 91.38% precision: 90.4% recall: 92.7% F1 score: 91.54% train_score: 99.99% test_score: 91.38%

Evaluate model: GradientBoosting

AUC: 95.99%
accuracy: 89.23%
precision: 88.85%
recall: 89.86%
F1 score: 89.35%
train_score: 89.85%
test_score: 89.23%

C. Hyperparameter tuning


```
[159] from sklearn.model_selection import RandomizedSearchCV
      from sklearn.ensemble import RandomForestClassifier
      #List of Hyper-parameters will be tested
      hyperparameters = dict(
                            n_estimators = [int(x) for x in np.linspace(start = 100, stop = 200, num = 5)], # Number of subtrees
                            max_depth = [int(x) for x in np.linspace(10, 110, num = 4)]+[None], # Maximum depth of each subtree
                            min samples split = [2, 5, 10]
[160] # Inisialiasi model
     clf = RandomForestClassifier(random state=42)
     clf tuned = RandomizedSearchCV(clf, hyperparameters, cv=5, random state=12, scoring='precision', n iter=15)
     clf_tuned.fit(X_train, y_train)
     RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(random_state=42),
                        param_distributions={'max_depth': [10, 43, 76, 110, None],
                                             'min_samples_split': [2, 5, 10],
                                             'n_estimators': [100, 125, 150, 175,
                        random_state=12, scoring='precision')
 [ ] # Predict & Evaluation
     y_pred = clf_tuned.predict(X_test)
     probs = clf_tuned.predict_proba(X_test)[:,1]
  print(y_pred)
   print(probs)
   [0 0 0 ... 1 1 1]
   [0.49113152 0.44390641 0.
                                    ... 0.94742857 0.96710884 0.90795692]
```

Check the best hyperparameter:

D. Model Evaluation Mencari model yang paling bagus

```
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```



```
clf_tuned.best_estimator_.feature_importances_
array([0.02276521, 0.11402032, 0.11434977, 0.0285804 , 0.35914542,
       0.03926539, 0.03577036, 0.05391773, 0.03172553, 0.01760321,
       0.07111136, 0.00567571, 0.10606958])
feat_importances = pd.Series(clf_tuned.best_estimator_.feature_importances_, index=X.columns)
ax = feat_importances.nlargest(25).plot(kind='barh', figsize=(10, 8))
ax.invert_yaxis()
plt.xlabel('score')
plt.ylabel('feature')
                                                                                                                                   feature importance score
plt.title('feature importance score')
                                                                                              housing
                                                                                              balance
                                                                                    poutcome_unknown
                                                                                      contact unknown
                                                                                       marital_married
                                                                                            campaign
                                                                                             previous
                                                                                         marital_single
                                                                                            education
                                                                                       contact cellular
                                                                                     poutcome_success -
                                                                                                              0.05
                                                                                                                         0.10
                                                                                                                                    0.15
                                                                                                                                               0.20
                                                                                                                                                          0.25
```