Acceleration Data Structures for Ray Tracing

Last Time:

Modeling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

Visibility / Display

- Graphics Pipeline!!
- Clipping

- Bresenham (DDA)
- Visibility
 - Depth Buffer(z-buffer)

Schedule

- Wed Oct 13thAssignment 4 due (Shadows, Reflection, & Refraction)
- Wed Oct 20th Assignment 5 due (Voxel Rendering)

- Review Session for Quiz 1
 Monday 25th, 7:30 9pm, room TBA
- Tuesday October 26th, in class: Quiz 1

Today

- Motivation Distribution Ray Tracing
 - Soft shadows
 - Antialiasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)
- Bounding Boxes
- Spatial Acceleration Data Structures
- Flattening the Transformation Hierarchy

Shadows

 one shadow ray per intersection per point light source

Shadows & Light Sources

http://3media.initialized.org/photos/2000-10-18/index gall.htm

http://www.davidfay.com/index.php

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm

Soft Shadows

 multiple shadow rays to sample area light source

Antialiasing – Supersampling

jaggies

multiple rays per pixel

point light

area light

Reflection

• one reflection ray per intersection

Glossy Reflection • multiple reflection rays Justin Legakis polished surface

Motion Blur

Sample objects temporally

Rob Cook

Depth of Field

• multiple rays per pixel

Justin Legakis

Ray Tracing Algorithm Analysis

- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field

 $\frac{\text{cost}}{\text{cost}} \approx \text{height * width *}$ num primitives * intersection cost * size of recursive ray tree * num shadow rays * num supersamples * num glossy rays * num temporal samples * num focal samples * can we reduce this?

MIT EECS 6.837, Durand and Cutler

Questions?

Today

- Motivation Distribution Ray Tracing
- Bounding Boxes
 - of each primitive
 - of groups
 - of transformed primitives
- Spatial Acceleration Data Structures
- Flattening the Transformation Hierarchy

Acceleration of Ray Casting

Conservative Bounding Region

Conservative Bounding Regions

 tight → avoid false positives

• fast to intersect

bounding sphere

arbitrary convex region (bounding half-spaces)

axis-aligned bounding box

Intersection with Axis-Aligned Box

From Lecture 2, Ray Casting II

- For all 3 axes, calculate the intersection distances t_1 and t_2
- $t_{near} = \max (t_{1x}, t_{1y}, t_{1z})$ $t_{far} = \min (t_{2x}, t_{2y}, t_{2z})$
- If $t_{near} > t_{far}$, box is missed
- If $t_{far} < t_{min}$, box is behind
- If box survived tests, report intersection at t_{near}

Bounding Box of a Triangle


```
(x_{max}, y_{max}, z_{max})
= (\max(x_0, x_1, x_2), \max(y_0, y_1, y_2), \max(z_0, z_1, z_2))
```

```
(x_{min}, y_{min}, z_{min})
```

=
$$(\min(x_0, x_1, x_2), \min(y_0, y_1, y_2), \min(z_0, z_1, z_2))$$

Bounding Box of a Sphere

Bounding Box of a Plane

$$(x_{max}, y_{max}, z_{max})$$
$$= (+\infty, +\infty, +\infty)*$$

$$(x_{min}, y_{min}, z_{min})$$
$$= (-\infty, -\infty, -\infty)^*$$

* unless n is exactly perpendicular to an axis

Bounding Box of a Group

$$(x_{max}, y_{max}, z_{max})$$

$$= (\max(x_{max_a}, x_{max_b}),$$

$$\max(y_{max_a}, y_{max_b}),$$

$$\max(z_{max_a}, z_{max_b}))$$

$$(x_{min}, y_{min}, z_{min}) = (\min(x_{min_a}, x_{min_b}), \\ \min(y_{min_a}, y_{min_b}), \\ \min(z_{min_a}, z_{min_b}))$$

Bounding Box of a Transform

MIT EECS 6.837, Durand and Cutler

Special Case: Transformed Triangle

Can we do better?

Special Case: Transformed Triangle

Questions?

Today

- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the Transformation Hierarchy

Regular Grid

Create Grid

- Find bounding box of scene
- Choose grid resolution

$$(n_x, n_y, n_z)$$

• $grid_x$ need not = $grid_y$

MIT EECS 6.837, Durand and Cutler

Insert Primitives into Grid

- Primitives that overlap multiple cells?
- Insert into multiple cells (use pointers)

For Each Cell Along a Ray

 Does the cell contain an intersection? • Yes: return closest intersection • No: continue

Preventing Repeated Computation

Don't Return Distant Intersections

• If intersection t is not within the cell range, continue (there may be something closer)

Which Cells Should We Examine?

• Should we intersect the ray with each voxel?

Where Do We Start?

Is there a Pattern to Cell Crossings?

 Yes, the horizontal and vertical crossings $dt_{y} = grid_{y} / dir_{y}$ have regular spacing grid_v dir $dt_v = grid_v / dir_y$ dir grid,

What's the Next Cell?

What's the Next Cell?

• 3DDDA – Three Dimensional Digital Difference Analyzer

Similar to Bresenham's Line Rasterization!

MIT EECS 6.837, Durand and Cutler

Pseudo-Code

```
create grid
insert primitives into grid
for each ray r
  find initial cell c(i,j), t_{min}, t_{next\ x} & t_{next\ y}
  compute dt_x, dt_v, sign_x and sign_v
  while c != NULL
    for each primitive p in c
      intersect r with p
      if intersection in range found
        return
    c = find next cell
```

Regular Grid Discussion

- Advantages?
 - easy to construct
 - easy to traverse

- Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

A Note about Typos

- Typos happen in lecture notes
 - Don't be afraid of thinking and asking questions
 - Please tell us about any typos you find
 & we'll fix them ASAP

- Typos happen in textbooks
 - The pseudocode for the 3DDDA ray/grid marching in Shirley is buggy
 - Think, don't just copy directly

Questions?

Today

- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the Transformation Hierarchy

Adaptive Grids

• Subdivide until each cell contains no more than *n* elements, or maximum depth *d* is reached

Nested Grids

Octree/(Quadtree)

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest level of grid

Octree/(Quadtree)

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (especially octree)

Today

- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
 - Regular Grid
 - Adaptive Grids
 - Hierarchical Bounding Volumes
- Flattening the Transformation Hierarchy

- Find bounding box of objects
- Split objects into two groups

Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Intersection with BVH

Check sub-volume with closer intersection first

Intersection with BVH

• Don't return intersection immediately if the other subvolume may have a closer intersection

Bounding Volume Hierarchy Discussion

Advantages

- easy to construct
- easy to traverse
- binary

Disadvantages

- may be difficult to choose a good split for a node
- poor split may result in minimal spatial pruning

Today

- Motivation Distribution Ray Tracing
- Bounding Boxes
- Spatial Acceleration Data Structures
- Flattening the Transformation Hierarchy

Transformation Hierarchy

Assignments 5 & 6

- Assignment 5: Voxel Rendering
 - Bounding boxes for primitives
 - Sphere voxelization
 - Regular grid data structure
 - Fast ray-grid intersection
 - Flatten the transformation hierarchy
- Assignment 6: Grid Acceleration & Solid Textures
 - Accelerated ray tracing (6)
 - Analyze ray tracing statistics(average # of rays, intersections, etc. per pixel)
 - Solid textures (next time)
 - Extra Credit: Distribution Ray Tracing

Ray Marching Visualization

sphere voxelization

- 0 × **OpenGL Viewer**

OpenGL Viewer - 0 ×

cells traversed

primitive density

entered faces

MIT EECS 6.837, Durand and Cutler

Next Time:

Texture Mapping