Toposes

James Leslie

University of Edinurgh s1307323@sms.ed.ac.uk

April 2018

Overview

- Building up to toposes
 - Limits and colimits
 - Exponentiation
 - Subobject classifiers
- 2 Toposes and their logic
 - Toposes
 - Heyting algebras

Products

Coproducts

Equalisers

• Suppose we have the following commutative diagram:

$$E \stackrel{e}{\longrightarrow} X \stackrel{f}{\underset{g}{\longrightarrow}} Y$$

Equalisers

Suppose we have the following commutative diagram:

$$E \stackrel{e}{\longrightarrow} X \stackrel{f}{\underset{g}{\longrightarrow}} Y$$

• $e: E \to X$ is an equaliser if for any commuting diagram

$$Z \xrightarrow{h} X \xrightarrow{f} Y$$

there is a unique \overline{h} such that triangle commutes:

James Leslie

• Let G, H be groups, $f: G \to H$ a group homomorphism and $0: G \to H$ the constant e_H map.

- Let G, H be groups, $f: G \to H$ a group homomorphism and $0: G \to H$ the constant e_H map.
- The following is an equaliser diagram:

$$\ker G \stackrel{i}{\smile} G \stackrel{f}{\bigodot} H$$

- Let G, H be groups, $f : G \to H$ a group homomorphism and $0 : G \to H$ the constant e_H map.
- The following is an equaliser diagram:

$$\ker G \stackrel{i}{\smile} G \stackrel{f}{\bigodot} H$$

• Given a k such that following commutes:

$$K \xrightarrow{k} G \xrightarrow{f} H \qquad \ker G \xrightarrow{i} G$$

$$\downarrow k$$

$$K$$

- Let G, H be groups, $f : G \to H$ a group homomorphism and $0 : G \to H$ the constant e_H map.
- The following is an equaliser diagram:

$$\ker G \stackrel{i}{\smile} G \stackrel{f}{\bigodot} H$$

• Given a k such that following commutes:

$$K \xrightarrow{k} G \xrightarrow{f} H \qquad \ker G \xrightarrow{i} G$$

$$\downarrow k$$

$$K$$

• $\overline{k}: K \to \ker(G), \ \overline{k}(g) = k(g).$

Coequalisers

• Suppose we have the following commutative diagram:

Coequalisers

Suppose we have the following commutative diagram:

$$X \xrightarrow{f} Y \xrightarrow{q} Q$$

ullet q:Y o Q is a coequaliser if for any commuting diagram

$$X \xrightarrow{f} Y \xrightarrow{h} Z$$

there is a unique \overline{h} such that the triangle commutes:

$$X \xrightarrow{g} Y \xrightarrow{q} Q$$

$$\downarrow_{\overline{h}}$$

$$Z$$

• Let \mathbb{Z} be a group under addition. The following is a coequaliser diagram:

$$\mathbb{Z} \xrightarrow{5z} \mathbb{Z} \xrightarrow{q} \mathbb{Z}/5\mathbb{Z}$$

• Let \mathbb{Z} be a group under addition. The following is a coequaliser diagram:

$$\mathbb{Z} \xrightarrow{5z} \mathbb{Z} \xrightarrow{q} \mathbb{Z}/5\mathbb{Z}$$

• Given a *h* such that the following commutes:

$$\mathbb{Z} \xrightarrow{5z} \mathbb{Z} \xrightarrow{h} H \qquad \mathbb{Z} \xrightarrow{q} \mathbb{Z}/5z$$

$$\downarrow h \qquad \downarrow h$$

$$H$$

• Let \mathbb{Z} be a group under addition. The following is a coequaliser diagram:

$$\mathbb{Z} \xrightarrow{5z} \mathbb{Z} \xrightarrow{q} \mathbb{Z}/5\mathbb{Z}$$

• Given a *h* such that the following commutes:

$$\mathbb{Z} \xrightarrow{5z} \mathbb{Z} \xrightarrow{h} H \qquad \mathbb{Z} \xrightarrow{q} \mathbb{Z}/5\mathbb{Z}$$

$$\downarrow_{\overline{h}}$$

$$H$$

• $\overline{h}(g) = h(g)$. Look familiar?

Pullbacks

• Take functions $f: X \to Z$, $g: Y \to Z$. The pullback of f and g the following set:

$$P = \{(x,y) \in X \times Y : f(x) = g(y)\}$$

Pullbacks

• Take functions $f: X \to Z$, $g: Y \to Z$. The pullback of f and g the following set:

$$P = \{(x, y) \in X \times Y : f(x) = g(y)\}$$

As a diagram:

$$\begin{array}{ccc}
P & \xrightarrow{\pi_2} & Y \\
\pi_1 \downarrow & & \downarrow \xi \\
X & \xrightarrow{f} & Z
\end{array}$$

Pullbacks

• The universal property:

Pullbacks - Intersection

• Take two subsets $i: 2\mathbb{Z} \hookrightarrow \mathbb{Z}$ and $j: 3\mathbb{Z} \hookrightarrow \mathbb{Z}$. Their pullback is their intersection:

$$\begin{array}{ccc}
6\mathbb{Z} & \stackrel{i^*}{\longrightarrow} & 3\mathbb{Z} \\
\downarrow^{j^*} & & & \downarrow^{j} \\
2\mathbb{Z} & \stackrel{i}{\longrightarrow} & \mathbb{Z}
\end{array}$$

Pushouts

• Given two functions with same domain $f: X \to Y$, $g: X \to Z$, we can from their pushout square:

Pushouts

• Given two functions with same domain $f: X \to Y$, $g: X \to Z$, we can from their pushout square:

$$\begin{array}{ccc}
X & \xrightarrow{f} & Z & & X & \xrightarrow{f} & Z \\
g \downarrow & & & \downarrow q_2 \\
Y & & & Y & \xrightarrow{q_1} & Q
\end{array}$$

• Q is $(Y + Z)/\sim$, where \sim is generated by $\sim = \langle \{(f(x), g(x)) : x \in X\} \rangle$.

Pushouts

The universal property:

• Let I be a small category. A diagram in $\mathscr A$ is a functor $D:I\to\mathscr A$.

- Let I be a small category. A diagram in $\mathscr A$ is a functor $D:I\to\mathscr A$.
- A cone on D is an object $A \in \mathscr{A}$ with maps $(A \xrightarrow{f_I} D(I))_{I \in I}$, such that the following commutes for all $u : I \to J$ in I.

• A limit of D is a universal cone $(L \xrightarrow{\pi_I} D(I))_{I \in I}$ such that the following commutes for all $I, J \in I$:

Limit examples

• If **I** is a discrete, 2 object category, a limit of $D: \mathbf{I} \to \mathscr{A}$ is a product.

Limit examples

- If I is a discrete, 2 object category, a limit of $D: \mathbf{I} \to \mathscr{A}$ is a product.
- If I consists the following objects and maps, a limit of D: I → A is an equaliser:

Limit examples

- If I is a discrete, 2 object category, a limit of $D: I \to \mathscr{A}$ is a product.
- If I consists the following objects and maps, a limit of
 D: I → Ø is an equaliser:

 If I consists the following objects and maps, a limit of D: I → Ø is an pullback:

 A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.

- A category has limits of shape I if for every diagram D of shape I in ℳ, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.

- A category has limits of shape I if for every diagram D of shape I in ℳ, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.

- A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.
- All limits is equivalent to all products and equalisers.

- A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.
- All limits is equivalent to all products and equalisers.
- All finite limits is equivalent to all binary products, equalisers and a terminal object.

- A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.
- All limits is equivalent to all products and equalisers.
- All finite limits is equivalent to all binary products, equalisers and a terminal object.
- Dualising everything gives co-limits.

- A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.
- All limits is equivalent to all products and equalisers.
- All finite limits is equivalent to all binary products, equalisers and a terminal object.
- Dualising everything gives co-limits.
- **Set**, **Top**, **Grp**, [\mathscr{A}^{op} , **Set**] etc all have all limits and colimits.

- A category has limits of shape I if for every diagram D of shape I in A, a limit of D exists.
- A category has all limits if it has limits of shape I for all small
 I.
- A category has all finite limits if it has limits of shape I for all finite I.
- All limits is equivalent to all products and equalisers.
- All finite limits is equivalent to all binary products, equalisers and a terminal object.
- Dualising everything gives co-limits.
- **Set**, **Top**, **Grp**, [\mathscr{A}^{op} , **Set**] etc all have all limits and colimits.
- FinSet has finite limits and finite colimits.

For sets X and Y, there is a set of maps from X to Y denoted Set(X, Y), or Y^X.

- For sets X and Y, there is a set of maps from X to Y denoted Set(X, Y), or Y^X.
- A function $f: X \times Y \to Z$ corresponds to a function $f_X: X \to Z^Y$, where $f(x) = f(x, -): Y \to Z$.

- For sets X and Y, there is a set of maps from X to Y denoted Set(X, Y), or Y^X.
- A function $f: X \times Y \to Z$ corresponds to a function $f_X: X \to Z^Y$, where $f(x) = f(x, -): Y \to Z$.
- This correspondence is a bijection and natural in the following sense:

- For sets X and Y, there is a set of maps from X to Y denoted Set(X, Y), or Y^X.
- A function $f: X \times Y \to Z$ corresponds to a function $f_X: X \to Z^Y$, where $f(x) = f(x, -): Y \to Z$.
- This correspondence is a bijection and natural in the following sense:
- For all $X \in \mathbf{Set}$, there are functors $(-) \times X, (-)^X : \mathbf{Set} \to \mathbf{Set}$ with

$$Set(Y \times X, Z) \cong Set(Y, Z^X),$$

naturally in $X, Y, Z \in \mathbf{Set}$.

- For sets X and Y, there is a set of maps from X to Y denoted Set(X, Y), or Y^X.
- A function $f: X \times Y \to Z$ corresponds to a function $f_X: X \to Z^Y$, where $f(x) = f(x, -): Y \to Z$.
- This correspondence is a bijection and natural in the following sense:
- For all $X \in \mathbf{Set}$, there are functors $(-) \times X, (-)^X : \mathbf{Set} \to \mathbf{Set}$ with

$$\mathbf{Set}(Y \times X, Z) \cong \mathbf{Set}(Y, Z^X),$$

naturally in $X, Y, Z \in \mathbf{Set}$.

 \bullet $(-) \times X \dashv (-)^X$.

Exponentials

• Let $\mathscr A$ be a category with finite products.

Exponentials

- Let $\mathscr A$ be a category with finite products.
- Let $X \in \mathcal{A}$. \mathcal{A} has an exponential for X if $(-) \times X : \mathcal{A} \to \mathcal{A}$ has a right adjoint, $(-)^X$.

Exponentials

- Let $\mathscr A$ be a category with finite products.
- Let $X \in \mathcal{A}$. \mathcal{A} has an exponential for X if $(-) \times X : \mathcal{A} \to \mathcal{A}$ has a right adjoint, $(-)^X$.
- $\mathscr A$ has exponentials if $\mathscr A$ has exponentials for all $X \in \mathscr A$.

Universal property of exponentials

 A category having exponentials is equivalent to the following universal property:

Universal property of exponentials

 A category having exponentials is equivalent to the following universal property:

• $\epsilon: Z^X \times X \to Z$ is the counit of the adjunction.

Universal property of exponentials

 A category having exponentials is equivalent to the following universal property:

- $\epsilon: Z^X \times X \to Z$ is the counit of the adjunction.
- In Set it is an evaluation map.

• An element $x \in X$ can be thought of as a map $x : 1 \to X$, which is the unique map selecting $x \in X$.

- An element $x \in X$ can be thought of as a map $x : 1 \to X$, which is the unique map selecting $x \in X$.
- A subset $U \subseteq X$ is 'the same as' the inclusion map $U \hookrightarrow X$.

- An element $x \in X$ can be thought of as a map $x : 1 \to X$, which is the unique map selecting $x \in X$.
- A subset $U \subseteq X$ is 'the same as' the inclusion map $U \hookrightarrow X$.
- What is an inclusion between algebraic structures?

- An element $x \in X$ can be thought of as a map $x : 1 \to X$, which is the unique map selecting $x \in X$.
- A subset $U \subseteq X$ is 'the same as' the inclusion map $U \hookrightarrow X$.
- What is an inclusion between algebraic structures?
- We can embed \mathbb{R} into \mathbb{R}^2 (as vector spaces) with the injective linear map f(x) = (x, 0).

- An element $x \in X$ can be thought of as a map $x : 1 \to X$, which is the unique map selecting $x \in X$.
- A subset $U \subseteq X$ is 'the same as' the inclusion map $U \hookrightarrow X$.
- What is an inclusion between algebraic structures?
- We can embed \mathbb{R} into \mathbb{R}^2 (as vector spaces) with the injective linear map f(x) = (x, 0).
- The map g(x) = (2x, 0) is 'the same' embedding.

• Let $\mathscr A$ be a category and $E \in \mathscr A$. A subobject of E is an isomorphism class of monics into E.

- Let \mathscr{A} be a category and $E \in \mathscr{A}$. A subobject of E is an isomorphism class of monics into E.
- Two 'inclusion' maps i, j are isomorphic if there is an invertible map f such that:

- Let \mathscr{A} be a category and $E \in \mathscr{A}$. A subobject of E is an isomorphism class of monics into E.
- Two 'inclusion' maps i, j are isomorphic if there is an invertible map f such that:

• Subobjects of groups, rings, fields and modules are exactly subgroups, subrings, subfields and submodules.

- Let $\mathscr A$ be a category and $E \in \mathscr A$. A subobject of E is an isomorphism class of monics into E.
- Two 'inclusion' maps i, j are isomorphic if there is an invertible map f such that:

- Subobjects of groups, rings, fields and modules are exactly subgroups, subrings, subfields and submodules.
- What about subobjects of topological spaces?

Characteristic maps

• A subset $i: U \hookrightarrow X$ corresponds with map $\chi_i: X \to 2$, where

$$\chi_i(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{otherwise.} \end{cases}$$

This correspondence is bijective.

Characteristic maps

• A subset $i: U \hookrightarrow X$ corresponds with map $\chi_i: X \to 2$, where

$$\chi_i(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{otherwise.} \end{cases}$$

This correspondence is bijective.

•
$$\mathcal{P}(X) \cong \operatorname{Sub}(X) \cong \operatorname{\mathbf{Set}}(X,2)$$
.

Characteristic maps

• A subset $i: U \hookrightarrow X$ corresponds with map $\chi_i: X \to 2$, where

$$\chi_i(x) = \begin{cases} 1 & \text{if } x \in U \\ 0 & \text{otherwise.} \end{cases}$$

This correspondence is bijective.

- $\mathcal{P}(X) \cong \operatorname{Sub}(X) \cong \operatorname{Set}(X,2)$.
- This isomorphism lets us classify subobjects with maps into 2.

• Let $\mathscr A$ be a category with terminal object 1. A subobject classifier is a map True : $1 \to \Omega$ such that for any subobject $m: U \rightarrowtail X$, there exists a unique map $\chi_m: X \to \Omega$ such that the following is a pullback diagram:

ullet True : $1 \rightarrow 2$ in **Set** is a subobject classifier.

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)
- ullet For a small category \mathscr{A} , $[\mathscr{A}^{op},\mathbf{Set}]$ has a subobject classifier.

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)
- For a small category \mathscr{A} , $[\mathscr{A}^{op}, \mathbf{Set}]$ has a subobject classifier.
- A sieve on $A \in \mathscr{A}$ is a set of arrows with codomain A, that is closed under right composition.

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)
- For a small category \mathscr{A} , $[\mathscr{A}^{op}, \mathbf{Set}]$ has a subobject classifier.
- A sieve on $A \in \mathscr{A}$ is a set of arrows with codomain A, that is closed under right composition.
- Let $\Omega: \mathscr{A}^{op} \to \mathbf{Set}$ be the functor sending A to the set of sieves on A.

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)
- For a small category \mathscr{A} , $[\mathscr{A}^{op}, \mathbf{Set}]$ has a subobject classifier.
- A sieve on $A \in \mathscr{A}$ is a set of arrows with codomain A, that is closed under right composition.
- Let $\Omega: \mathscr{A}^{op} \to \mathbf{Set}$ be the functor sending A to the set of sieves on A.
- $(\text{True}_A : 1(A) \to \Omega(A))_{A \in \mathscr{A}}$ is a natural transformation that selects the maximal sieve on A.

- True : $1 \rightarrow 2$ in **Set** is a subobject classifier.
- For a fixed group G, True : $1 \rightarrow 2$ is a subobject classifier for $G \mathbf{Set}$. (2 has trivial group action)
- For a small category \mathscr{A} , $[\mathscr{A}^{op}, \mathbf{Set}]$ has a subobject classifier.
- A sieve on $A \in \mathscr{A}$ is a set of arrows with codomain A, that is closed under right composition.
- Let Ω : A^{op} → Set be the functor sending A to the set of sieves on A.
- $(\text{True}_A : 1(A) \to \Omega(A))_{A \in \mathscr{A}}$ is a natural transformation that selects the maximal sieve on A.
- G − Set is a special case of [A^{op}, Set], where A is G regarded as a category.

• A topos $\mathscr E$ is a category with:

- A topos $\mathscr E$ is a category with:
 - Finite limits and colimits,

- ullet A topos $\mathscr E$ is a category with:
 - Finite limits and colimits,
 - Exponentiation,

- ullet A topos $\mathscr E$ is a category with:
 - Finite limits and colimits,
 - 2 Exponentiation,
 - A subobject classifier.

- A topos \mathscr{E} is a category with:
 - Finite limits and colimits,
 - 2 Exponentiation,
 - A subobject classifier.
- **Set** is the archetypal topos.

- A topos \mathscr{E} is a category with:
 - Finite limits and colimits,
 - Exponentiation,
 - A subobject classifier.
- Set is the archetypal topos.
- $\mathbf{Set}^2, \mathbf{Set}^n, \mathbf{Set}^{\mathbb{N}}, [\mathscr{A}^{op}, \mathbf{Set}], \mathbf{FinSet}$ are all toposes.

- A topos \mathscr{E} is a category with:
 - Finite limits and colimits,
 - Exponentiation,
 - A subobject classifier.
- Set is the archetypal topos.
- $\mathbf{Set}^2, \mathbf{Set}^n, \mathbf{Set}^{\mathbb{N}}, [\mathscr{A}^{op}, \mathbf{Set}], \mathbf{FinSet}$ are all toposes.
- For any topos $\mathscr E$ and A in $\mathscr E$, $\mathscr E/A$ is a topos.

• In every category, subobjects form a partially ordered set.

- In every category, subobjects form a partially ordered set.
- In **Set** they form a Boolean algebra.

- In every category, subobjects form a partially ordered set.
- In **Set** they form a Boolean algebra.
- In an arbitrary topos, they form a Heyting algebra.

- In every category, subobjects form a partially ordered set.
- In **Set** they form a Boolean algebra.
- In an arbitrary topos, they form a Heyting algebra.
- Their logic is intuitionistic proof by contradiction isn't always valid.

The End