5-3 半群

半群是一种特殊的代数系统,它在形式语言、 自动机等领域中,都有具体的应用。

一、广群

定义5-3.1 一个代数系统〈S,*〉,其中S是非空集合,*是S上的一个二元运算,如果运算*是封闭的,则称代数结构〈S,*〉为广群。

二、半群

定义5-3.2 一个代数系统〈S,*〉,其中S是非空集合,*是S上的一个二元运算,如果:

- (1)运算*是封闭的;
- (2)运算*是可结合的,即对任意的x, y, z∈S,满足

$$(x*y)*z=x*(y*z)$$

则称代数结构〈S,*〉为半群。

例题1 设集合 S_k ={ $x|x\in I \land x\geq k$ }, $k\geq 0$,那么< S_k ,+>是一个半群,其中+是普通的加法运算。

解

因为运算+在 $\mathbf{S}_{\mathbf{k}}$ 上是封闭的,而且普通加法运算是可结合的。所以, $<\mathbf{S}_{\mathbf{k}}$ +>是一个半群。

在例题1中, $k \ge 0$ 这个条件是重要的,否则,如果k < 0,则运算+在 S_k 上将是不封闭的。

190页(1)对于正整数k, N_k ={0,1,2,···,k-1},设*k是 N_k 上的一个二元运算,使得 a^*_k b=用k除a·b所得的余数,这里a,b \in N_k 。

- a)当k=4时,试造出 $*_k$ 的运算表。
- **b)**对于任意正整数k,证明<N $_k$, $*_k>$ 是一个半群。

解 a)当k=4时, $*_k$ 的运算表如下:

* k	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

b)对于任意的a, $b \in N_k$, $a*_k b = a \cdot b \cdot nk = r$, $0 \le r \le k \cdot 1$, 所以运算 $*_k$ 在 N_k 上是封闭的。

对于任意的a, b, $c \in N_k$, 有

$$(a*_kb)*_kc=(a\cdot b-n_1k)\cdot c-n_2k=r_1 \quad 0 \le r_1 \le k-1$$

$$= a\cdot b\cdot c-k(n_1 c+n_2)$$

$$a*_k(b*_kc)=a\cdot (b\cdot c-n_3k)-n_4k=r_2 \quad 0 \le r_2 \le k-1$$

$$= a\cdot b\cdot c-k(n_{13}a+n_4)$$

可见 \mathbf{r}_1 和 \mathbf{r}_2 都是 $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}$ 用 \mathbf{k} 除所得的余数,所以 $\mathbf{r}_1 = \mathbf{r}_2$ 。所以($\mathbf{a}^*_k \mathbf{b}$) * $_k \mathbf{c} = \mathbf{a}^*_k (\mathbf{b}^*_k \mathbf{c})$,即* $_k$ 满足结合律。因此, $<\mathbf{N}_k$,* $_k>$ 是半群。

例题**2** 设**S**={**a**,**b**,**c**},在**S**上的一个二元运算 \triangle 定义如表**5-3.1** 所示。表**5-3.1**:

Δ	a	b	c
a	a	b	c
b	a	b	c
c	a	b	c

验证**<S**, Δ >是一个半群。

解 从表**5**-3.1中可知运算 \triangle 是封闭的,同时a, b和c都是左幺元。所以,对于任意的x, y, z \in S,都有 $x \triangle (y \triangle z) = x \triangle z = z = y \triangle z = (x \triangle y) \triangle z$ 因此, $\langle S, \Delta \rangle$ 是半群。

明显地,代数系统<**I**₊, ->和<**R**, />都不是半群,这里, -和/分别是普通的减法和除法。

练习 设*是实数集R上的运算, 其定义如下:

$$a*b=a+b+2ab$$

- 1)求2*3, 3*(-5)和7*1/2。
- 2)<R, *>是半群吗?*可交换吗?
- 3)求R中关于*的幺元(单位元)。
- 4)R中哪些元素有逆元, 逆元素是什么?

2)运算*在R上是封闭的。

对任意a, b, $c \in R$,

$$(a*b)*c=(a+b+2ab)*c=a+b+2ab+c+2(a+b+2ab)c$$

$$=a+b+c+2ab+2ac+2bc+4abc$$

$$a*(b*c)=a*(b+c+2bc)=a+b+c+2bc+2a(b+c+2bc)$$

$$=a+b+c+2ab+2ac+2bc+4abc$$

所以(a*b)*c= a*(b*c)。因此<R, *>是半群。*可交换。

- 3)R中关于*的幺元是0。
- 4)R中除-1/2外所有元素都有逆元, a的逆元素是-a/(1+2a)。

练习 设 $S=\{a, b\}$, S^S 是从S到S的所有函数的集合, O是函数的复合运算, 写出运算 \bigcirc 的运算表,证明<S S , \bigcirc >是半群。

$$f_1 \circ f_1 : a \to a$$
 $f_2 \circ f_1 : a \to a$
 $f_3 \circ f_1 : a \to b$
 $f_4 \circ f_1 : a \to b$
 $S^S = \{f_1, f_2, f_3, f_4\}$
 $= f_1 \quad b \to a$
 $= f_1 \quad b \to a$
 $= f_4 \quad b \to b$
 $= f_4 \quad b \to b$

$$f_4$$

$$f_1 \circ f_1 : \mathbf{a} \to \mathbf{a}$$

$$f_2 \circ f_1 : \mathbf{a} \to \mathbf{a}$$

$$f_3 \circ f_1 : \mathbf{a} \to \mathbf{b}$$

$$f_4 \circ f_1 : \mathbf{a} \to \mathbf{b}$$

其中
$$f_1: \mathbf{a} \to \mathbf{a}$$

$$f_1 \circ f_2 : \mathbf{a} \to \mathbf{a}$$

$$f_2 \circ f_2 : \mathbf{a} \to \mathbf{a}$$

$$f_3 \circ f_2 : \mathbf{a} \to \mathbf{b}$$
 $f_4 \circ f_2 : \mathbf{a} \to \mathbf{b}$

$$f_4 \circ f_2 : \mathbf{a} \to \mathbf{b}$$

$$b \rightarrow a$$

$$=f_1$$
 b \rightarrow

$$= f_2$$
 b \rightarrow b

$$= f_1 \quad \mathbf{b} \to \mathbf{a} \qquad = f_2 \quad \mathbf{b} \to \mathbf{b} \qquad = f_3 \quad \mathbf{b} \to \mathbf{a}$$

$$= f_4 \qquad \mathbf{b} \to \mathbf{b}$$

$$f_2: \mathbf{a} \to \mathbf{a}$$

$$f_1 \circ f_3 : \mathbf{a} \to \mathbf{a}$$

$$f_1 \circ f_3 : \mathbf{a} \to \mathbf{a}$$
 $f_2 \circ f_3 : \mathbf{a} \to \mathbf{b}$

$$f_3 \circ f_3 : \mathbf{a} \to \mathbf{a}$$

$$f_3 \circ f_3 : \mathbf{a} \to \mathbf{a}$$
 $f_4 \circ f_3 : \mathbf{a} \to \mathbf{b}$

$$b \rightarrow b$$

$$= f_1 \qquad \mathbf{b} \rightarrow \mathbf{a}$$

$$= f_2$$
 b \rightarrow

$$= f_2$$
 $b \rightarrow a$ $= f_2$ $b \rightarrow b$

$$=f_4$$
 b \rightarrow b

$$f_3: \mathbf{a} \to \mathbf{b}$$

$$f_1 \circ f_4 : \mathbf{a} \to \mathbf{a}$$
 $f_2 \circ f_4 : \mathbf{a} \to \mathbf{b}$

$$f_3 \circ f_4 : \mathbf{a} \to \mathbf{a}$$

$$f_3 \circ f_4 : \mathbf{a} \to \mathbf{a}$$
 $f_4 \circ f_4 : \mathbf{a} \to \mathbf{b}$

$$b \rightarrow a$$

$$=f_1$$
 b \rightarrow

$$= f_4$$
 $b \rightarrow 1$

$$= f_1$$
 $b \rightarrow a$ $= f_4$ $b \rightarrow b$ $= f_1$ $b \rightarrow a$

$$= f_4$$
 $\mathbf{b} \to \mathbf{b}$

 $f_4: \mathbf{a} \to \mathbf{b}$

 $b \rightarrow b$

运算0的运算表如下:

٥	f_1	f_2	f_3	f_4
f_1	f_1	f_1	f_1	f_1
f_2	f_1	f_2	f_2	f_4
f_3	f_4	f_3	f_2	f_1
f_4	f_4	f_4	f_4	f_4

由表中可看到运算○在 S^S 上是封闭的, 由第4章知 函数的复合运算满足结合律, 因此 $< S^S$, $\bigcirc >$ 是半群。

子半群

定理5-3.1 设<S,*>为一半群, B_CS且*在B上封闭,那么<B, *>也是一个半群, 称为<S,*>的子半群。 口证明思路:结合律在B上仍成立。口

证明 因为*在S上是可结合的,而BCS且*在B上封闭,所以*在B上也是可结合的,因此, $\langle B, * \rangle$ 也是一个半群。

○ 证明<B, * 是<S, *>的 子半群, 只须证明运算* 在B上是封闭的。

例题**3** 设·表示普通的乘法运算,那么<[**0**,**1**],·>、<[**0**,**1**),·>和<**I**,·>都是<**R**,·>的子半群。

解 首先,运算·在R上是封闭的,且是可结合的,所以<R,·〉是一个半群。其次,运算·在[0,1]、[0,1)和I上都是封闭的,且[0,1]⊂R,[0,1) ⊂R,I⊂R。因此,由定理5-3.1可知<[0,1],·>、<[0,1),·>和<I,·>都是<R,·>的子半群。

练习 若**<S**, *>是半群, $a \in S$, $M = \{a^n | n \in N\}$, 证明 **<M**, *>是**<S**, *>的子半群。

证明 只须证明运算*在M上是封闭的。

任取 a^n , $a^m \in M$,

$$a^{n} * a^{m} = (a^{n} * a) * a^{m-1}$$

$$= a^{n+1} * a^{m-1}$$

$$= (a^{n+1} * a) * a^{m-2}$$

$$= a^{n+2} * a^{m-2}$$

$$= \cdots$$

$$= a^{n+m} \in M$$

所以**<M**, *>是**<S**, *>的子半群。

定理 5-3.2 设代数结构<S, *>为一个半群,如果S是一个有限集合,则必有 $a \in$ S ,使得a * a = a。

□ 证明思路: 因<S,*>是半群,对于任意**b**∈S,由于* 的封闭性可知

.

b, b², b³, ..., bⁱ, ..., b^q, ..., b^j(最多有|S|个不同元素)

因**S**是一个有限集合,所以必存在 **j>i**,使得 **b**ⁱ = **b**^j

令 p=j-i 即 j=p+i 代入上式: bⁱ = b^p * bⁱ 所以, b^q = b^p * b^q i≤q

因为p≥1所以总可以找到k≥1,使得 kp≥i , 对于b^{kp}∈S,就有 b^{kp} = b^p * b^{kp} = b^p * (b^p * b^{kp})

$$= b^{2p} * b^{kp} = b^{2p} * (b^p * b^{kp}) = ... = b^{kp} * b^{kp}$$

这就证明了在S中存在元素 $a=b^{kp}$,使得a*a=a

再看190页(1)对于正整数k, N_k ={0,1,2,···,k-1},设*k是 N_k 上的一个二元运算,使得 $a*_k$ b=用k除a*b所得的余数,这里a*b $\in N_k$ 。我们已经证明了< N_k , $*_k$ >是一个半群。

当k=4时,*_k的运算表如下:

* k	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

找出 $\langle N_k, *_k \rangle$ 中的等幂元。

0和1都是等幂元。

例题**2** 设**S**={**a**,**b**,**c**},在**S**上的一个二元运算 \triangle 定义如表**5-3.1** 所示。表**5-3.1**:

Δ	a	b	с
a	a	b	c
b	a	b	c
c	a	b	c

验证**<S**, Δ >是一个半群。

前面已验证<S, △>是一个半群。这里a, b, c都是等幂元。

三、独异点

定义5-3.3 设代数结构<S,*>为半群,若<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群。

例如,代数系统<R,+>是一个独异点,因为<R,+>是一个半群,且0是R中关于运算+的幺元。另外,代数系统
<I,·>,<I₊,·>,<R,·>都是具有幺元1的半群,因此它们都是独异点。

代数系统<N-{0}, +>虽是一个半群,但关于运算+不存在幺元,所以,这个代数系统不是独异点。

有代数系统**<S**, *>, 其中={**a**, **0**, **1**}, 运算*由下表定义,证明**<S**, *>是独异点。

*	a	0	1
a	a	0	1
0	0	0	1
1	1	0	1

证明 1) 运算*是封闭的。

2) 对于任意x, y∈S,

$$(x*y)*a=x*y$$
 $x*(y*a)=x*y$

$$(x*y)*0=0$$
 $x*(y*0)=x*0=0$

$$(x*y)*1=1$$
 $x*(y*1)=x*1=1$

所以运算*是可结合的。

因此**<S,*>**是独异点。

定理5-3.3 设<S,*,e>是一个独异点,则在关于运算*的运算表中任何两行或两列都是不相同的。

 \square 证明: 因S 中关于*运算的幺元是e,因为对于任意的元素a,b \in S,且a \neq b时,总有

$$e * a = a \neq b = e * b$$

和
$$a * e = a \neq b = b * e$$

所以,在的运算表中不可能有两行或两列是相同的。

例题4: 因设I是整数集合,m是任意正整数, Z_m 是由模m的同余类组成的同余类集,在 Z_m 上定义两个二元运算+ $_m$ 和 \times_m 分别如下:对于任意的[i],[j] $\in Z_m$

$$[i] +_{m} [j] = [(i+j) \pmod{m}]$$
$$[i] \times_{m} [j] = [(i\times j) \pmod{m}]$$

试证明在这两个二元运算的运算表中任何两行或两列都是 不相同的。

证明:考察代数结构< Z_m , $+_m$ >和< Z_m , \times_m >, 只须证明< Z_m , $+_m$ >和< Z_m , \times_m >都是独异点。先分三步证明 < Z_m , $+_m$ >是独异点,再利用定理5-3.3的结论:

- 1) 根据运算定义,证明两个运算在Z_m上封闭;
- 2) 根据运算定义,证明两个运算满足结合律;
- 3) 根据运算定义,证明[0]是< Z_m,+_m>的幺元,
- [1]是 $< Z_m, \times_m >$ 的幺元。

本例题的实例见 表5-3.2和表5-3.3

(1)由运算+"和ׄ的定义,可知它们在Z"上都是封闭的。

(3)因为 $[0]+_m[i]=[i]+_m[0]=[i]$,所以,[0]是 $<Z_m$, $+_m>$ 中的 幺元。因为 $[1]\times_m[i]=[i]\times_m[1]=[i]$,所以[1]是 $<Z_m$, $\times_m>$ 中的幺元。

因此,代数系统<Z_m,+_m>, <Z_m,×_m>都是独异点。由定理**5-3.3**可知,这两个运算的运算表中任何两行或两列都不相同。

- 19/21页 -

上例中,如果给定 m=5, 那么, $+_{\delta}$ 和 \times_{δ} 的运算表分别如表 $\delta-3.2$ 和表 $\delta-3.3$ 所示。

	装	5-3.2			
+5	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	ļ [1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]
	表	5-3.3		y	
Χf	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[8]
[8]	[0]	[3]	[1]	[4]	[2]
			[3]	[2]	

显然,上述运算表中没有两行或两列是相同的。

定理5-3.4 设<S,*,e>是一个独异点,如果对于任意a, $b \in S$,且a,b均有逆元,则

- a) $(a^{-1})^{-1}=a$
- b) (a*b)⁻¹有逆元,且(a*b)⁻¹ =b⁻¹ * a⁻¹。
- □ 证明: a) 因a-1和a为互为逆元,直接得到结论。
 - b) 必须证明两种情况:

利用结合律容易得出。