Conjuntos
Primitivas
Inclusão

1 Teoria ingênua dos conjuntos

informalmente Produto cartesia

2 Axiomática ZFC de conjuntos

Relações funções

3 Relações e funções

Conjuntos numéricos

4 Conjuntos numéricos

Conjuntos

Primitivas
Inclusão
Conjunto das p

onjuntos

Axiomas, informalmente Produto cartesiar

Relações funções

Conjuntos

- 1 Teoria ingênua dos conjuntos
- 2 Axiomática ZFC de conjuntos
- 3 Relações e funções
- 4 Conjuntos numéricos

Conjuntor

Primitivas

Conjunto das partes

Operações

Conjuntos

informalmente

Relações funções

Conjunto

Conjunto é informalmente entendido como uma *coleção* de entidades, ou objetos, chamados de **elementos** do conjunto e eles mesmos podem ser conjuntos.

Conjunto

Primitivas

Conjunto das parte

Conjunto

informalmente
Produto cartesiar

Relações e funções

Conjuntos

Um elemento x **pertence** ao conjunto A se x é um elemento de A o que é denotado por

$$x \in A$$

e escrevemos a negação como

$$x \not\in A$$

иСТВ019-⁻

J Donadelli

Conjuntos

Primitivas

Conjunto das partes

Operações

Conjuntos

informalmente

Relações

funções

Conjuntos

Igualdade de conjuntos

Dois conjuntos são iguais se, e somente se, têm os mesmos elementos.

иСТВ019-1

J Donadelli

Conjuntos

Primitivas

Inclusão Conjunto das partes

Operações

Conjuntos

informalmente

Relações

funções

Conjuntos

Conjunto vazio

Há um (único) conjunto sem elementos, denotado por ∅ e chamado de conjunto vazio.

.I Donadelli

Conjuntos

Primitivas

Conjunto das parte

Conjunto

Axiomas, informalmente

Relações

Conjuntos

Especificação de conjuntos

• lista entre chaves separados por vírgulas.

.I Donadelli

Conjuntos

Primitivas

Conjunto das parte

Conjunto

Axiomas, informalmente

Relações e funções

Conjuntos

Especificação de conjuntos

lista entre chaves separados por vírgulas.

• As vezes, abreviamos usando "..."

$$\{0, 2, 4, 6, \ldots\}$$

.I Donadelli

Conjuntos

Primitivas

Conjunto das parte

Conjuntos

informalmente
Produto cartesiano

Relações e funções

Conjuntos

Especificação de conjuntos

lista entre chaves separados por vírgulas.

As vezes, abreviamos usando "..."

$$\{0, 2, 4, 6, \dots\}$$

.I Donadelli

Conjuntos

Primitivas

Conjunto das parte

Conjunto

informalmente
Produto cartesiano

Relações funções

Conjuntos

Especificação de conjuntos

lista entre chaves separados por vírgulas.

• As vezes, abreviamos usando "..."

$$\{0, 2, 4, 6, \ldots\}, \{3, 5, 7, \ldots\}$$
?

Conjunto

Primitivas

Inclusão

Conjunto das parte Operações

Jonjunto

Axiomas, informalmente Produto cartesiano

Relações e funções

Conjuntos

Especificação de conjuntos

lista entre chaves separados por vírgulas.

As vezes, abreviamos usando "..."

$$\{0, 2, 4, 6, \ldots\}, \{3, 5, 7, \ldots\}$$
?

 por compreensão, damos uma regra de como gerar todos os seus elementos

$$A = \{x \in B : P(x)\}$$

 $\alpha \in A$ é verdadeiro se e só se, $\alpha \in B$ e $P(\alpha)$ é verdadeiro.

Por exemplo, o conjunto dos números naturais primos

$$\{x \in \mathbb{N}: x > 1 \text{ e } \forall y, z \in \mathbb{N} (yz = x \rightarrow y = 1 \lor z = 1)\}.$$

Conjuntos

A é **subconjunto** de B, se, e só se, para todo x

$$x \in A \Rightarrow x \in B$$

Notação: $A \subset B$ (também é usual $A \subseteq B$)

A é **subconjunto próprio** de B, se, e só se, é verdadeira a sentença: $A \subset B$ e $A \neq B$

Notação: $A \subseteq B$

Notação: A ⊈ B para "A é **não é subconjunto** de B", o que é equivalente a

 $\exists x (x \in A e x \notin B)$

Exercício: Para qualquer conjunto A,

$$\emptyset \subseteq A$$
.

J Donadelli

Conjunto Primitivas

Conjunto das partes

Operações

Axiomas

informalmente Produto cartesian

Relações funções

Conjunto

Conjunto das partes

O conjunto das partes do conjunto A é o conjunto formado por todos os subconjuntos de A.

Notação: 2^A ou $\mathcal{P}(A)$.

Exercício: $2^{\{\alpha\}}$? 2^{\emptyset} ? $2^{\{\emptyset\}}$?

иСТВ019-

J Donadelli

Conjunto

Primitivas Inclusão

Conjunto das parte Operações

Conjunto

informalmente

Produto cartesia

Relações funções

Conjuntos

Operações básicas

• União: $A \cup B = \{x : x \in A \text{ ou } x \in B\}$

.I Donadelli

Operações

Operações básicas

- União: $A \cup B = \{x : x \in A \text{ ou } x \in B\}$
- Intersecção $A \cap B = \{x : x \in A \text{ e } x \in B\}.$

иСТВ019-1

J Donadelli

Conjunto

Primitivas

Conjunto das parte Operações

Conjunt

informalmente

Produto cartesia

Relações funções

Conjuntos

Operações básicas

- **União:** $A \cup B = \{x : x \in A \text{ ou } x \in B\}$
- Intersecção $A \cap B = \{x : x \in A \text{ e } x \in B\}.$
- Diferença $A \setminus B = \{x : x \in A \text{ e } x \notin B\}.$

Primitivas Inclusão Conjunto das parte

Operações Conjunto

informalmente

Produto cartesiar

Relações funções

Conjuntos

- União: $A \cup B = \{x : x \in A \text{ ou } x \in B\}$
- Intersecção $A \cap B = \{x : x \in A \text{ e } x \in B\}.$
- Diferença $A \setminus B = \{x \colon x \in A \text{ e } x \notin B\}.$
- Diferença simétrica

 $A \triangle B = \{x \colon x \in A \cup B \text{ e } x \not\in A \cap B\}.$

//C1B019-1

J Donadelli

Conjuntos

Primitivas Inclusão

Conjunto das parte Operações

Conjunto

Axiomas, informalmente

Relações funções

Conjuntos

Exercício: Assuma que $\forall x \in D, P(x)$ é logicamente equivalente a $\forall x \in D, Q(x)$.

$$\{x \in D : P(x)\} = \{x \in D : Q(x)\}$$
?

Conjuntos
Primitivas
Inclusão
Conjunto das parte
Operações

Conjuntos

Axiomas, informalmente Produto cartesian

Relações funções

Conjuntos

Seguem das equivalências lógicas notáveis

$$2 A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

+ na pág. 124 do Rosen

.I Donadelli

Operações

Exercício: Seja R um conjunto de conjuntos. Denote por [] R a união dos elementos de R.

Por exemplo, se $A = \{X, Y, Z\}$, por exemplo, então $| A = X \cup Y \cup Z$.

Tome $R = \{\{\{1\}, \{1,2\}\}, \{\{1\}, \{1,3\}\}, \{\{2\}, \{2,3\}\}\}\}.$

Escreva os conjuntos | | R e | | | | R.

Primitivas Inclusão Conjunto das p

Conjuntos

1 Teoria ingênua dos conjuntos

Relações

2 Axiomática ZFC de conjuntos

Conjunto numérico

3 Relações e funções

4

Conjuntos numéricos

Conjuntos
Primitivas
Inclusão
Conjunto das pa

Axiomas, informalmente

Produto cartesi

Relações funções

Conjunto

Axioma da existência Existe um conjunto que não tem elementos. Na linguagem formal

$$\exists a \forall x (x \notin a).$$

Axioma da extensionalidade Quaisquer dois conjuntos com os mesmos elementos são iguais. Na linguagem formal

$$\forall a \forall b ((\forall x (x \in a \leftrightarrow x \in b)) \rightarrow a = b).$$

Conjunto: numérico **Axioma do par** Dados conjuntos y e z existe o conjunto formado somente por tais elementos $\{y, z\}$.

$$\forall y \forall z \exists a \forall x (x \in a \leftrightarrow x = y \lor x = z).$$

Axioma da união Para qualquer conjunto z existe o conjunto $\bigcup z$ formado pela união dos elementos de z.

$$\forall z \exists a \forall x (x \in a \leftrightarrow \exists y (x \in y \land y \in z)).$$

Exercício: Dados os conjuntos A e B, forme $A \cup B$.

Conjunto Axiomas,

Produto cartesis

Relações (funções

Conjunto

Axioma das partes Para qualquer conjunto y, existe o conjunto a tal que $x \in a$ se, e só se, $x \subseteq y$.

$$\forall y \exists a \forall x (x \in a \leftrightarrow \forall z (z \in x \rightarrow z \in y)).$$

Axioma do infinito Existe um conjunto indutivo; tem \varnothing como elemento e, se x é elemento, também é $x \cup \{x\}$.

$$\exists a (\varnothing \in a \land \forall x (x \in a \rightarrow x \cup \{x\} \in a))$$

Conjunto

Axiomas, informalmente

Produto cartes

Relações funções

Conjuntos

Axioma da especificação De um conjunto y e um predicado P, formamos o conjunto $\{x \in y \colon P(x)\}$.

$$\forall y \exists \alpha \forall x (x \in \alpha \leftrightarrow x \in y \land P(x)).$$

Conjuntos

Inclusão

Conjunto das par Operações

Axiomas, informalmente

Relações e

Conjunto

A definição de união $\{x: x \in A \lor x \in B\}$ não se enquadra.

Se x é não vazio então

$$\bigcap x = \Big\{ y \in \bigcup x \colon \forall z \in x, y \in z \Big\}.$$

Não temos mais o paradoxo de Russell pois se

$$S = \{x \in U \colon x \not\in x\}$$

então $S \in S$ se e só se $S \in U$ e $S \notin S$ o que não é contraditório.

não há conjunto universo: **Teorema.** $\neg \exists y \forall x (x \in y)$.

Conjunto

Axiomas, informalmente Produto cartesia

Relações funções

Conjunto numérico **Axioma da fundação** Cada conjunto não vazio a tem um elemento b com $a \cap b = \emptyset$.

Axioma da substituição Dado um conjunto x e um predicado R(s,t) com a propriedade $\forall s \exists ! t R(s,t)$, existe o conjunto z tal que $y \in z$ se, e só se, existe $w \in x$ para o qual R(w,y) é verdadeiro.

Axiomas, informalmente

Produto cartesia

Relações funções

Conjunto numérico

O último axioma é controverso para alguns. Embora pareça coerente há decorrências não intuitivas.

Axioma da escolha Para qualquer conjunto x formado de conjuntos não-vazios, existe uma função f que atribui para cada $y \in x$ um $f(y) \in y$.

ou

Dado qualquer conjunto x de conjuntos não vazios e dois-a-dois disjuntos, existe pelo um conjunto z que contém exatamente um elemento em comum com cada um dos conjuntos em x.

//CTB019-

J Donadelli

Par ordenado

Primitivas
Inclusão
Conjunto das parte

Conjunto

Axiomas, informalmen

Produto cartesiano

Relações funções

Conjuntos

Definição: $(a, b) = \{\{a\}, \{a, b\}\}.$

Primitivas
Inclusão

Inclusão
Conjunto das partes
Operações

Conjunto

Produto cartesiano

Relações

funções

Conjuntos

Definição: $(a, b) = \{\{a\}, \{a, b\}\}.$

<u>Exercício:</u> Verifique que a definição acima satisfaz a propriedade fundamental de par ordenado se

$$(a,b) = (x,y)$$
 então $a = x$ e $b = y$.

Conclua que se $a \neq b$ então $(a,b) \neq (b,a)$.

иСТВ019-1

J Donadelli

Conjuntos
Primitivas
Inclusão
Conjunto das partes

Axiomas,

informalmente
Produto cartesiano

Helações funções

Conjuntos

Produto cartesiano

A e B são conjuntos **não vazios**. Vamos definir o conjunto $A \times B$ que contém os partes ordenados (x,y) com $x \in A$ e $y \in B$.

Conjur

informalmente
Produto cartesiano

Produto cartes

funções

Conjunto numérico

Produto cartesiano

A e B são conjuntos **não vazios**. Vamos definir o conjunto $A \times B$ que contém os partes ordenados (x,y) com $x \in A$ e $y \in B$.

- —axiomas do par e da união: $A \cup B = \bigcup \{A, B\}$
- —axioma das partes: $\mathcal{P}(A \cup B)$.

Dados $a \in A$ e $b \in B$,

—axioma do par: $\{a\} e \{a,b\}$

 $\in \mathcal{P}(A \cup B)$.

—axioma do par: $\{\{a\}, \{a,b\}\}$

 $\subset \mathscr{D}(A \cup B).$

J Donadelli

Conjuntos Primitivas Inclusão

Axiomas, informalmente

Produto cartesiano

funções

Conjunto

Produto cartesiano

A e B são conjuntos **não vazios**. Vamos definir o conjunto $A \times B$ que contém os partes ordenados (x,y) com $x \in A$ e $y \in B$.

- —axiomas do par e da união: $A \cup B = \bigcup \{A, B\}$
- —axioma das partes: $\mathcal{P}(A \cup B)$.

Dados $a \in A$ e $b \in B$,

—axioma do par: $\{a\} \in \{a,b\}$

 $\in \mathcal{P}(A \cup B).$ $\subset \mathcal{P}(A \cup B).$

—axioma do par: $\{\{\alpha\}, \{\alpha, b\}\}$

Portanto

$$\{\{a\},\{a,b\}\}\in\mathcal{B}(\mathcal{B}(A\cup B)).$$

Especificando $A \times B =$

$$\{z \in \mathcal{P}(\mathcal{P}(A \cup B)) \colon \exists x, \exists y (x \in A \land y \in B \land z = (x,y))\}$$

иСТВ019-1

J Donadelli

Semana 2

Conjuntos
Primitivas
Inclusão
Conjunto das p
Operações

Axiomas, informalmente

informalmente Produto cartesiar

Relações e funções

Conjuntos

- Teoria ingênua dos conjuntos
- 2 Axiomática ZFC de conjuntos
- 3 Relações e funções
- 4 Conjuntos numéricos

Primitivas
Inclusão
Conjunto das part
Operações

Axiomas, informalmente Produto cartesiano

Relações e funções

Conjuntos

Se A e B são conjuntos, uma **relação** R com **domínio** A e **contradomínio** B é um subconjunto

$$R \subseteq A \times B$$
.

Se A = B escrevemos A^2 para $A \times B$ e dizemos que $R \subseteq A^2$ é uma relação *sobre* A, ou *em* A.

Se $R \subseteq A \times B$ e $(a, b) \in R$ escrevemos a R b.

Conjuntos

Primitivas Inclusão

Conjunto das pa Operações

Axiomas, informalmente Produto cartesian

Relações e funções

Conjuntos

Exemplo:

 $A = \{1, 2, 3, 4\}$ e $R \subseteq A \times A$ dada por

$$R = \{(1,1), (2,1), (2,2), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1)\}$$

Temos

- 1 R 1,
- 2 R 1,
- 2 R 2 e
- 3 R 4.

Relações e funções

Exemplo:

< é uma relação sobre \mathbb{N} .

Ao invés de escrevermos $(x, y) \in <$ escrevemos x < y.

Temos

- 2 ≮ 1,
- 3 < 4.

Primitivas
Inclusão
Conjunto das parte

Uma relação $R \subseteq A \times B$ é uma **função** se para cada $x \in A$ existe um único $y \in B$ tal que $(x, y) \in R$.

Axiomas, informalmente Produto cartesian

Em símbolos $\forall x \in A, \exists ! y \in A, (x,y) \in R$.

Relações e funções

∃! abrevia "existe único".

numérico

Como y é único ganha um nome: **imagem** de x por R, denotado R(x).

Escrevemos R: $A \rightarrow B$ para $R \subseteq A \times B$ função.

Conjunto das parti

Axiomas, informalmente

Relações e funções

Conjuntos

Exemplo:

A função f que o axioma da escolha afirma existir é um subconjunto de $x \times \bigcup x$, ou seja, $f \colon x \to \bigcup x$, com a propriedade de que $f(y) \in y$, para todo $y \in x$.

лСТВ019-1

J Donadelli

Semana 2

Primitivas
Inclusão
Conjunto das p

Axiomas,

informalmente Produto cartesian

funções

- 1 Teoria ingênua dos conjuntos
- 2 Axiomática ZFC de conjuntos
- 3 Relações e funções
- 4 Conjuntos numéricos

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

- 1 (associativa)(a + b) + c = a + (b + c)
- 2 (comutativa) a + b = b + a
- 3 (elemento neutro da adição) 0 é o único natural tal que $\alpha+0=0+\alpha=\alpha$
- 4 (cancelamento da adição) Se a+c=b+c então a=b
- **6** Se a + b = 0 então a = b = 0.
- 6 (elemento neutro da multiplicação) $m \cdot 1 = 1 \cdot m = m$ e 1 é único com essa propriedade.
- 7 (associativa)($m \cdot n$) · $p = m \cdot (n \cdot p)$.
- 8 (comutativa) $m \cdot n = n \cdot m$.

Inclusão Conjunto das par

Conjuntos

Axiomas, informalmente Produto cartesian

Relações e funções

J Donadelli

Naturais

Primitivas
Inclusão
Conjunto das parte

Axiomas, informalmente

Relações e funções

- 9 (cancelamento da multiplicação) Se mp = np e $p \neq 0$ então m = n.
- (multiplicação é distributiva com respeito a adição) $(a + b) \cdot m = a \cdot m + b \cdot m$.
- 11 Se $m \cdot n = 0$ então m = 0 ou n = 0.
- Problem Se $m \cdot n = 1$ então m = n = 1.
- (reflexiva) $a \leq a$.
- (simétrica) Se $a \le b$ e $b \le a$ então b = a.
- (transitiva) Se $a \le b$ e $b \le c$ então $a \le c$.
- 16 $a \leq b$ ou $b \leq a$.
- (tricotomia) Vale uma e só uma das relações

$$a = b$$
, $a < b$, $b < a$.

//CTB019-

J Donadelli

Conjunto

Primitivas Inclusão Conjunto das partes

Conjunto

Axiomas, informalmente Produto cartesian

Relações funções

Conjuntos numéricos

Naturais

- \blacksquare (compatibilidade com +) Se $a \leqslant b$ então $a + c \leqslant b + c$.
- $\textbf{(g)} \ (\text{compatibilidade com} \ \cdot) \ \text{Se} \ a \leqslant b \ \text{ent\~ao} \ a \cdot c \leqslant b \cdot c.$

Inclusão Conjunto das partes

Conjuntos
Axiomas,

Relações e

Conjuntos numéricos Princípio da Boa Ordem (PBO) Todo $A\subset \mathbb{N}$ não-vazio tem um menor elemento, ou seja, existe $a\in \mathbb{N}$ tal que

$$\alpha \in A$$

 $\forall x \in A, \ \alpha \leqslant x.$

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

- (Associativa) a + (b + c) = (a + b) + c.
- (Comutativa) a + b = b + a.
- 3 (Elemento neutro) a + 0 = a e 0 é o único com essa propriedade.
- 4 (Elemento inverso) a + (-a) = 0.
- **6** (Cancelativa) $a + b = a + c \leftrightarrow b = c$
- **6** (Troca de sinal) -(a + b) = (-a) + (-b) = -a b
- (Associativa) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 8 (Comutativa) $a \cdot b = b \cdot a$.
- **9** (Elemento neutro) $a \cdot 1 = a$ e 1 é o único com essa propriedade.

(Distributiva)

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

(Cancelativa

$$b = c \Rightarrow a \cdot b = a \cdot c$$

$$\alpha \neq 0$$
 e $\alpha \cdot b = \alpha \cdot c \Rightarrow b = c$.

- (Anulamento) se $a \cdot b = 0$ então a = 0 ou b = 0.
- (Tricotomia) vale só um de

$$a < b$$
 ou $a = b$ ou $b < a$.

- $a \le b \Leftrightarrow a + c \le b + c$
- **15** se $c \in \mathbb{N}$ então $a \leq b \Leftrightarrow a \cdot c \leq b \cdot c$.
- 16 $a < b \in b \le c \Rightarrow a < c$.

- $\mathfrak{m} \quad \mathfrak{a} \leq \mathfrak{b} \quad \mathfrak{e} \quad \mathfrak{b} < \mathfrak{c} \Rightarrow \mathfrak{a} < \mathfrak{c}.$
- 18 $a \le b \Leftrightarrow -a > -b$.
- $a < b \Leftrightarrow -a > -b$.
- Regras de sinal
 - $\mathbf{1}$ a > 0 e b > 0 \Rightarrow ab > 0
 - **2** a < 0 **e** $b < 0 \Rightarrow ab > 0$
 - 3 $a < 0 e b > 0 \Rightarrow ab < 0$
- $a \leq b \in c \leq d \Rightarrow a + c \leq b + d$.
- $a \le b \in c < d \Rightarrow a + c < b + d$.
- $a^2 > 0$.
- $a < b e c > 0 \Rightarrow ac < bc$
- 25 $a < b e c < 0 \Rightarrow ac > bc$
- 26 ac \leq bc e c $< 0 \Rightarrow$ a > b

- $|\alpha| > 0$, ademais $|\alpha| = 0$ se e só se $\alpha = 0$.
- $|a| \leq a \leq |a|$.
- |-a| = |a|.
- |ab| = |a||b|.
- 31 $|a| \le b \Leftrightarrow -b \le a \le b$.
- $||a| |b|| \le |a + b| \le |a| + |b|$.
- 33 $|a| |b| \le |a b| \le |a| + |b|$

Axiomas, informalmente

Relações e

tunçoes

Conjuntos numéricos $A\subset\mathbb{Z}$ não-vazio é **limitado inferiormente** se existe $\mathfrak{m}\in\mathbb{Z}$ (chamado **cota inferior**) tal que

$$\forall a \in A, m \leq a.$$

Exercício: Todo $A \subset \mathbb{Z}$ não vazio e limitado inferiormente tem um elemento mínimo.

Exercício: Para todos $a,b\in\mathbb{Z}$ com $b\neq 0$, existe $n\in\mathbb{Z}$ tal que $n\cdot b>a$.

J Donadelli

Conjun

Primitivas Inclusão

Conjunto das partes Operações

Conjunto

Axiomas, informalmente

Produto cartesi

Relações funções

Conjuntos numéricos Exercícios: veja na página web e nas notas de aula.