Numerical Methods for Financial Mathematics.

Exercise Handout 9: theoretical exercises

Lecture: Prof. Dr. Christian Fries, Exercises: Dr. Andrea Mazzon, Tutorium: Lorenzo Berti

Sommersemester 2022

Exercise 1

Consider the Acceptance-Rejection method for the generation of realizations of a random variable X which has Inhomogeneous Exponential distribution with intensity function $\lambda:[0,\infty)\to[0,\infty)$ defined by

$$\lambda(x) = \frac{1}{2} + \frac{2x}{1+x^2}, \quad x \ge 0.$$

Suppose we use an exponential distributed random variable Y as at page 251 of the script. How many uniform random numbers are required, on average, to generate one realization of X? Motivate your answer.

Exercise 2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space endowed with the filtration $(\mathcal{F}_t)_{0 \leq t \leq T}$ satisfying the usual assumptions. Introduce an $(\mathcal{F}_t)_{0 \leq t \leq T}$ -Brownian motion $(W_t)_{0 \leq t \leq T}$. Consider an Itô process satisfying the SDE

$$dX_t = \mu X_t dt + \sigma X_t dW_t, \quad 0 \le t \le T,$$

with $X_0 = x \in \mathbb{R}^+$, $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$, and let \mathcal{T}^{Δ} be a time-discretization with step size $\Delta > 0$, that is,

$$\mathcal{T}^{\Delta} = \{t_0 = 0, t_1, \dots, t_n = T\},\,$$

with
$$\Delta = t_{i+1} - t_i, i = 1, ..., n$$
.

Write down the Euler-Maruyama scheme for $(X_t)_{t\in[0,T]}$ with discretization step-size Δ , i.e., the way you derive $X_{t_{k+1}}^{\Delta}$ from $X_{t_k}^{\Delta}$, where $(X_{t_i}^{\Delta})_{i=0,\dots,n}$ is the approximated process. Also derive analytic expressions for $\mathbb{E}[X_T]$, $Var[X_T]$, $\mathbb{E}[X_{t_n}^{\Delta}]$ and $Var[X_{t_n}^{\Delta}]$.

Exercise 3

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space endowed with the filtration $(\mathcal{F}_t)_{0 \leq t \leq T}$ satisfying the usual assumptions. Introduce an $(\mathcal{F}_t)_{0 \leq t \leq T}$ -Brownian motion $(W_t)_{0 \leq t \leq T}$ and a continuous adapted stochastic process $(X_t)_{0 \leq t \leq T}$ which solves the SDE

$$dX_t = (a - bX_t)dt + cX_t^{\alpha}dW_t, \quad 0 \le t \le T,$$

$$X_0 = x_0,$$

for a, b, c > 0, $\alpha \ge 0$.

- Find a set for α for which SDE above admits a unique strong solution.
- Find a set for α for which the Euler-Maruyama discretisation converges strongly.
- Provide the Milstein discretisation of the SDE.