Д.В. Карпов

Теория графов. Глава 9. Остовные деревья.

Определение

- ullet Пусть G граф, в котором допустимы петли и кратные рёбра, а $e=xy\in E(G)$, причем x
 eq y.
- Положим $V(G*e) = (V(G) \setminus \{x,y\}) \cup \{w\}.$
- ullet Отображение arphi:V(G) o V(G*e) задано так, что arphi(x)=arphi(y)=w и arphi(z)=z для остальных вершин z.
- Для любого ребра $f=ab\in E(G-e)$ в графе G*e будет ребро $\varphi(f)$ с концами $\varphi(a)$ и $\varphi(b)$, а других рёбер в определяемом графе нет.
- Будем говорить, что граф G*e получен из G в результате *стягивания* ребра e и применять обозначение w=x*y.

• Отображение $\varphi: E(G-e) \to E(G*e)$, определенное выше — биекция. Далее мы будем отождествлять соответствующие друг другу при этой биекции рёбра.

- Обозначим через st(G) количество остовных деревьев связного графа G.
- Следующий результат иногда называют *формулой Кэли*.

(A. Cayley, 1889.) Пусть $G - \text{гра} \phi$, в котором возможны петли и кратные рёбра, а ребро $e \in E(G)$ — не петля. Тогда st(G) = st(G - e) + st(G * e).

Доказательство. • Количество остовных деревьев графа G, не содержащих ребра e, очевидно, равно st(G-e).

• Между остовными деревьями, содержащими ребро e и остовными деревьями графа G*e существует взаимно однозначное соответствие $T \to T*e$ (где T — остовное дерево графа $G, e \in E(T)$).

- С помощью формулы Кэли можно вычислить количество остовных деревьев произвольного графа, однако этот процесс весьма небыстрый.
- Для ряда графов можно напрямую вычислить количество остовных деревьев. Наверное, наиболее известный результат в этом направлении подсчёт количества остовных деревьев полного графа, который был получен Артуром Кэли также в 1889 году.
- Вместо первоначального доказательства со сложными рекуррентными соотношениями мы приведём ставшее даже более классическим доказательство Прюфера, опубликованное в 1918 году. Каждому дереву будет поставлен в соответствие так называемый код Прюфера.

(A. Cayley, 1889.) $st(K_n) = n^{n-2}$.

Доказательство. (H. Prüfer, 1918.)

- Пусть $V(K_n)=[1..n]$. Мы построим взаимно однозначное соответствие между остовными деревьями K_n (то есть всеми деревьями на вершинах [1..n].) и последовательностями длины n-2, в которых каждый член принимает натуральное значение от 1 до n.
- Количество таких последовательностей равно в точности n^{n-2} .

- Пусть T дерево на вершинах [1..n]. Построим соответствующую ему последовательность t_1, \ldots, t_{n-2} .
- Пусть ℓ_1 висячая вершина наименьшего номера в дереве T, тогда t_1 единственная смежная с ℓ_1 вершина дерева T, $T_1=T-\ell_1$.
- Затем найдём в T_1 висячую вершину наименьшего номера ℓ_2 , пусть t_2 единственная смежная с ℓ_1 вершина дерева T_1 , $T_2 = T_1 \ell_2$, и так далее, будем повторять процесс, пока не получим последовательность длины n-2 (при этом, останется дерево T_{n-2} на двух вершинах).

 $8\; 1\; 8\; 7\; 4\; 1\; 7\; 8\\$

ullet Выберем такую вершину ℓ_1 с наименьшим номером и соединим её с t_1 , после чего удалим ℓ_1 из списка номеров: $V_1 = V \setminus \{\ell_1\}$.

вершины дерева.

• Теперь выберем вершину $\ell_2 \in V_1$ с наименьшим номером, которая не встречается в последовательности t_2,\ldots,t_{n-2} , соединим ℓ_2 с t_2 и положим $V_2=V_1\setminus\{\ell_2\}$. И так далее, повторим такую операцию n-2 раза.

Рис.: Дерево и его код Прюфера.

Теория графов. Глава 9. Остовные деревья.

- ullet В результате будет использована вся последовательность и проведено n-2 ребра, останется множество V_{n-2} из двух вершин и одно непроведённое ребро дерева T.
- Именно две вершины из V_{n-2} и нужно соединить ребром: их степени в имеющемся графе равны количеству вхождений этих вершин в последовательность t_1,\ldots,t_{n-2} , то есть на 1 меньше, чем их степени в дереве T.

Рис.: Дерево и его код Прюфера.

- ullet Мы докажем, что на самом деле все количества висячих вершин в остовных деревьях связного графа G от минимума до максимума достижимы.
- ullet Будем обозначать количество висячих вершин дерева T через u(T).

(S. Schuster, 1983.) Пусть связный граф G имеет остовные деревья c m u n висячими вершинами, m < n. Тогда для любого натурального $k \in [m..n]$ существует остовное дерево графа G ровно c k висячими вершинами.

Доказательство. • Пусть T_1 и T^* — остовные деревья с $u(T_1) = n$ и $u(T^*) = m$.

- Начиная с дерева T_1 , будем выполнять следующий шаг. Пусть уже построена последовательность остовных деревьев T_1, \ldots, T_i графа G.
- ullet Если $T_i
 eq T^*$, то существует ребро $e_i \in E(T^*) \setminus E(T_i)$, пусть $G_i = T_i + e_i$.

ullet Если $T_i
eq T^*$, то существует ребро $e_i \in E(T^*) \setminus E(T_i)$, пусть $G_i = T_i + e_i$.

- В графе G_i есть ровно один простой цикл C_i , проходящий по ребру e_i . Понятно, что $E(C_i) \not\subset E(T^*)$, поэтому существует ребро $f_i \in E(C_i) \setminus E(T^*)$. Положим $T_{i+1} = G_i f_i = T_i + e_i f_i$.
- Поскольку в дереве T_{i+1} больше рёбер из $E(T^*)$, чем в T_i , в некоторый момент мы получим $T_\ell = T^*$. Рассмотрим последовательность деревьев $T_1, T_2, \ldots, T_\ell = T^*$.
- Деревья T_i и T_{i+1} отличаются двумя рёбрами, поэтому, $|u(T_i) u(T_{i+1})| \le 2$. Следовательно, количества висячих вершин деревьев нашей последовательности деревьев покрывают отрезок натурального ряда [m..n] с пробелами не более чем в одно число.

Теория графов. Глава 9. Остовные деревья.

- ullet Тогда существует такое j, что $u(T_j)=t+1$ и $u(T_{j+1})=t-1$. По построению, $T_{j+1}=G_j-f_j$ и $T_j=G_j-e_j$, пусть $f_i=ab,\ e_i=xy$.
- Тогда $d_{G_j}(a)=d_{G_j}(b)=2$ (обе вершины a и b становятся висячими после удаления ребра e_j), $d_{G_j}(x)>2$ и $d_{G_j}(y)>2$ (вершины x и y не становятся висячими после удаления ребра f_j).
- Таким образом, в цикле C_j есть вершины степени 2 и есть вершины степени более 2, тогда одно из рёбер $e'=uw\in E(C_i)$ таково, что $d_{G_j}(u)>2$ и $d_{G_j}(w)=2$. Значит, в дереве $T'=G_i-e'$ ровно одна из вершин $V(C_i)$ вершина w—становится висячей, то есть u(T')=t.

(D. J. Kleitman, D. B. West, 1991.) В связном графе G с $\delta(G) \geq 3$ существует остовное дерево c не менее чем $\frac{v(G)}{4}$ листьями.

• Изображенный пример показывает, что эта оценка почти точная.

Доказательство. • Мы приведем алгоритм построения остовного дерева с соответствующим количеством висячих вершин. Алгоритм будет выделять в графе G дерево, последовательно, по шагам добавляя к нему вершины.

• Пусть в некоторый момент уже построено дерево F — подграф графа G.

Определение

- Висячую вершину x дерева F назовем мертвой, если все вершины графа G, смежные с x, входят в дерево F.
- ullet Количество мёртвых вершин дерева F мы обозначим через b(F).
- Мертвые вершины останутся мертвыми висячими вершинами на всех последующих этапах построения. Для дерева F мы определим

$$\alpha(F) = \frac{3}{4}u(F) + \frac{1}{4}b(F) - \frac{1}{4}v(F).$$

Мы хотим построить такое остовное дерево T графа G, что $\alpha(T) \geq 0$.

• Так как в остовном дереве все висячие вершины — мертвые, то $u(T) = b(T) = \frac{1}{4}v(G) + \alpha(T)$ и дерево T нас устраивает.

Базовое дерево F' — это дерево, в котором произвольная вершина a соединена со всеми $k \geq 3$ вершинами из ее окрестности. Мы имеем v(F') = k + 1, u(F') = k

$$\alpha(F') \geq \frac{3}{4} \cdot k - \frac{1}{4} \cdot (k+1) = \frac{2k-1}{4} > \frac{5}{4}.$$

Шаг алгоритма.

- Пусть после нескольких шагов построения мы получили дерево F (естественно $V(F) \subset V(G), \ E(F) \subset E(G)$).
- ullet Пусть в результате шага добавилось Δv вершин, количество висячих вершин увеличилось на Δu , а количество мертвых вершин на Δb .
- Назовем доходом шага S величину $P(S) = \frac{3}{4} \Delta u + \frac{1}{4} \Delta b \frac{1}{4} \Delta v$.
- Мы будем выполнять только шаги с неотрицательным доходом. При вычислении дохода шага мы будем полагать, что все добавленные вершины, про которые не сказано, что они мертвые, не являются мёртвыми. Это предположение лишь уменьшит доход шага.

- Мы опишем несколько вариантов шага алгоритма. К очередному варианту мы будем переходить, только когда убедимся в невозможности всех предыдущих.
- ullet Введём обозначение $W=V(G)\setminus V(F)$.
- Вот какие шаги мы будем выполнять.

 $\mathbf{S1}.\ B$ дереве F есть невисячая вершина x, смежная $c\ y\in W.$

Добавим в дерево вершину y, получим $\Delta v = \Delta u = 1$ и

$$p(S1) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2}.$$

S2. В дереве F есть вершина x, смежная хотя бы c двумя вершинами из W.

Добавим в дерево эти две вершины, получим $\Delta v=2$, $\Delta u=1$ и

$$p(S2) \geq \frac{3}{4} - 2 \cdot \frac{1}{4} = \frac{1}{4}.$$

S3. Существует вершина $y \in W$, смежная с деревом F и хотя бы с двумя вершинами из W.

Добавим в дерево y и две смежные с ней вершины из W. Получим $\Delta v = 3$, $\Delta u = 1$ и

$$p(S3) \ge \frac{3}{4} - 3 \cdot \frac{1}{4} = 0.$$

S4. Существуют не вошедшие в дерево F вершины.

- Тогда существует и смежная с деревом F вершина $y \in W$. Так как невозможно выполнить S3, то y смежна не более, чем с одной вершиной из W.
- Однако $d_G(y) \geq 3$, следовательно, вершина y смежна с двумя вершинами $x, x' \in V(F)$. Присоединим $y \in x$. Так как невозможно выполнить шаги S1 и S2, вершина x' висячая в дереве F и смежна ровно с одной вершиной из W с вершиной y.
- ullet Поэтому, в новом дереве вершина x' мёртвая. Таким образом, $\Delta v=1,\ \Delta b\geq 1$ и $P(S4)\geq 0.$

• Ввиду конечности графа, построение закончится, и мы получим искомое остовное дерево графа G.

ullet Для $x,y\in V(G)$ через $e_G(x,y)$ обозначается количество рёьер графа G между вершинами x и y.

Определение

Пусть G — граф на множестве вершин [1..n]. Лапласиан графа G — это квадратная матрица $L=(\ell_{i,j})_{i,j\in[1..n]}$, заданная следующим образом: $\ell_{i,i}=d_G(i)$, и $\ell_{i,j}=-e_G(i,j)$ при $i\neq j$.

- Из определения и отсутствия петель следует, что сумма элементов в любой строке и в любом столбце матрицы L равна 0.
- Таким образом, матрица L вырождена (сумма строк равна 0, значит, они ЛЗ). Следовательно, $\det(L)=0$.
- ullet Матрица L симметрична относительно главной диагонали.

Определение

Пусть $A \in M_n(K)$ — матрица с коэффициентами из поля K.

- 1) Через $A_{i_1,\dots,i_k;j_1,\dots,j_m}$ будем обозначать матрицу, полученную из A удалением строк с номерами i_1,\dots,i_k и столбцов с номерами j_1,\dots,j_m .
- 2) Число $(-1)^{i+j}\det(A_{i:j})$ называется алгебраическим дополнением элемента $a_{i,j}$ матрицы $A_{a_{i+1}} = a_{i+1} = a_$

(G. Kirhhoff, 1847.) Пусть G — граф без петель (возможно, с кратными ребрами) на $n \ge 2$ вершинах, а L — его лапласиан. Тогда $st(G) = \det(L_{i;i})$ для любого $i \in [1..n]$.

Доказательство. • При одновременной перестановке пары строк и пары столбцов с такими же номерами знак определителя не меняется. Поэтому нумерация вершин не имеет значения, что мы будем использовать.

- ullet Докажем, что $st(G) = \det(L_{1;1})$.
- ullet При n=1 матрица $L_{1;1}$ пустая. Мы будем считать, что $\det(L_{1;1})=1$ именно столько остовных деревьев у графа на одной вершине.
- ullet Если граф имеет более одной вершины и не имеет ребер, то его лапласиан нулевая матрицы размера не менее чем 2×2 , и алгебраическое дополнение любого ее элемента равно 0. Эти случаи будут базой индукции.
- Далее рассмотрим случай, когда G имеет ребро e. Будем считать, что для всех меньших графов утверждение теоремы доказано.

- Если $d_G(1) = 0$ (то есть, вершина 1 изолированная), то st(G) = 0 ввиду несвязности графа.
- В этом случае в L первая строка и первый столбец состоят из 0.
- Поэтому, i строка $L_{1;1}$ получается из соответствующей строки L вычеркиванием 0.
- ullet Следовательно, сумма элементов в каждой строке $L_{1,1}$ равна 0, откуда следует, что $\mathrm{rk}(L_{1;1}) < n-1$, а значит, $\det(L_{1;1}) = 0$.
- ullet Случай разобран, далее считаем, что $d_G(1) \geq 1.$
- Тогда НУО ребро е соединяет вершины 1 и 2.

- Пусть H граф, полученный из G * e удалением всех петель. Понятно, что st(H) = st(G * e).
- Пусть L' и L^* лапласианы графов G e и H соответственно. Тогда по индукцинному предпложению $st(G e) = \det(L'_{1\cdot 1})$ и $st(H) = \det(L^*_{1\cdot 1})$.
- ullet Остается доказать, что $\det(L_{1;1}) = \det(L_{1;1}') + \det(L_{1;1}^*)$.
- Как изменяется лапласиан графа при удалении ребра между вершинами 1 и 2?
- ullet Из $\ell_{1,1}$ и $\ell_{2,2}$ вычитается по 1, а к $\ell_{1,2}$ и $\ell_{2,1}$ прибавляется по 1.
- При вычеркивании первого столбца и первой строчки получается, что $L'_{1,1}$ отличается от $L_{1,1}$ только элементом в левом верхнем углу это $\ell_{2,2}-1$ у $L'_{1,1}$ вместо $\ell_{2,2}$ у $L_{1,1}$.
- Пусть вершина графа H, полученная объединением 1 и 2 вершин графа G, имеет номер 1, а остальные вершины H занумеруем так же, как в графе G числами 3,4, ..., n (пропустив индекс 2).
- ullet Тогда все элементы матрицы L^* вне 1 строки и 1 столбца равны элементам L с соответствующим индексами.
- ullet Значит, $L_{1\cdot 1}^* = L_{1\cdot 2:1\cdot 2}$.

• Разложим определитель $L_{1,1}$ по первой строке (она же вторая строка матрицы L с удаленным 1 элементом), используя обозначения элементов матрицы L (но учитывая, что вторая строка матрицы L — это первая строка $L_{1;1}$, а $j \geq 2$ столбец L — это j-1 столбец матрицы $L_{1;1}$):

$$\begin{split} \det(L_{1,1}) &= \sum_{j=2}^n (-1)^{1+(j-1)} \ell_{2,j} \cdot \det(L_{1,2;1,j}) = \\ \det(L_{1,2;1,2}) + \left((\ell_{2,2} - 1) \cdot \det(L_{1,2;1,2}) + \sum_{j=3}^n (-1)^{1+(j-1)} \ell_{2,j} \cdot \det(L_{1,2;1,j}) \right) = \\ \det(L_{1,1}) + \det(L_{1,1}) + \det(L_{1,1}). \quad \Box \end{split}$$

Следствие 1

Пусть L — лапласиан связного графа G без петель на $n \geq 2$ вершинах. Тогда $st(G) = (-1)^{i+j} \det(L_{i:j})$ для любых $i,j \in [1..n]$.

Доказательство. • Так как сумма элементов любой строки матрицы L равна 0, система уравнений

$$LX = 0 (*)$$

имеет ненулевое решение — столбец из n единиц.

- ullet Следовательно, матрица L вырождена, а значит, $\mathrm{rk}(L) \leq n-1$ и $\det(L)=0$.
- По Теореме 5 мы знаем, что $\det(L_{i;i}) = st(G) \neq 0$ (так как граф G связен).
- Таким образом, матрица L имеет ненулевой минор порядка n-1, а значит, $\mathrm{rk}(L)=n-1$.
- Размерность пространства решений системы (*) равна $n-\mathrm{rk}(L)=1.$
- Значит, все решения пропорциональны вектору из n единиц, то есть все n координат любого решения (*) равны.

- Введем обозначение для алгебраических дополнений элементов матрицы L: пусть $a_{i,j} := (-1)^{i+j} \det(L_{i:j})$.
- Напомним, что сумма произведений элементов строки матрицы на их алгебраические дополнения равна ее определителю, а сумма произведений элементов строки матрицы на алгебраические дополнения другой строки равна 0.
- ullet Так как $\det(L)=0$, мы имеем

Теореме 5.

$$\sum\limits_{j=1}^n\ell_{k,j}a_{k,j}=\det(\mathit{L}),\quad,\sum\limits_{j=1}^n\ell_{s,j}a_{k,j}=0$$
 при $s
eq k.$

- Таким образом, столбец из алгебраических дополнений любой строки $(a_{k,1},\ldots,a_{k,n})^T$ является решением системы (*).
- ullet Следовательно, алгебраические дополнения всех элементов одной строки равны и $(-1)^{i+k}\det(L_{k;i})=a_{k,i}=a_{k,k}=\det(L_{k;k})=st(G)$ по

П