

Routing and switching (TI40122)

April Rustianto, S.Komp, M.T, CCIE-IA, JNCIP-SP, MTCINE, MTCTCE, MTCUME, MTCWE, MTCIPv6E, MTCSE, ITILv3, COA, UEWA, UBWA, UBRSA, NSE2, AWS CCP

Konsep Dasar MPLS

Pengertian MPLS

- •Menurut Wikipedia MPLS adalah teknologi penyampaian paket pada jaringan backbone berkecepatan tinggi.
- Asas kerjanya menggabungkan beberapa kelebihan dari sistem komunikasi circuit-switched dan packet-switched yang melahirkan teknologi yang lebih baik dari keduanya.
- •Sebelumnya, paket-paket diteruskan dengan protokol routing seperti OSPF, IS-IS, BGP, atau RIP.
- •Protokol routing berada pada lapisan network (ketiga) dalam sistem OSI, sedangkan MPLS berada di antara lapisan kedua dan ketiga.
- Prinsip kerja MPLS ialah menggabungkan kecepatan switching pada layer 2 dengan kemampuan routing dan skalabilitas pada layer 3

Pengertian MPLS Lanjutan

- Cara kerjanya adalah dengan menyelipkan label di antara header layer 2 dan layer 3 pada paket yang diteruskan.
- Label dihasilkan oleh Label-Switching Router dimana bertindak sebagai penghubung jaringan MPLS dengan jaringan luar.
- •Label berisi informasi tujuan node selanjutnya ke mana paket harus dikirim
- •Kemudian paket diteruskan ke node berikutnya, di node ini label paket akan dilepas dan diberi label yang baru yang berisi tujuan berikutnya

Komponen MPLS

Tugas-tugas komponen MPLS:

- **LER** (Label Edge Router) atau PE router
 - Menambahkan Label (Insert) ketika trafik datang (Ingress).
 - Menambah label lagi (Stack) jika ada service tambahan.
 - Menghilangkan semua label (POP) pada trafik keluar dari MPLS (Egress).
 - Outer yang terhubung ke berbagai service: Internet, L3VPN, L2VPN/VPLS, TE (Traffic Engineering)
- **LSR** (Label Switching Router) atau P router
 - Melakukan forwarding packet (SWAP) berdasarkan label (LSP) yang sudah dibuat.
 - Menghilangkan Label terluar (POP) jika terjadi Label Stack.
- **CE (Customer Edge Router) -** Perangkat yang ada di customer yang akan berkomunikasi dengan PE.

Cara Kerja MPLS

Berikut ini merupakan salah satu contoh packet flow pada MPLS

Router R5 receives the actual packet and the forwards to the local network (traditional routing)

Cara Kerja MPLS

- Minimal terdapat dua jenis protokol yang berjalan untuk dapat menjalankan MPLS, yaitu IGP dan LDP
- •IGP digunakan untuk menjangkau ip dari node/router yang terlibat dalam jaringan MPLS
- LDP digunakan untuk mendistribusikan label ke node/router yang menjalankan MPLS
- Protokol BGP di digunakan untuk menjalankan MPLS service seperti MPLS L3VPN, MPLS L2VPN, dll
- Terdapat dua jenis MPLS yaitu control plane dan data plane, atau bisa disebut juga underlay dan overlay

MPLS Control Plane

Berikut ini merupakan MPLS control plane pada saat melakukan label push, label swap dan label pop

MPLS Forwarding Plane

Berikut ini merupakan MPLS forwarding plan pada saat melakukan label push, label swap dan label pop

Studi Kasus MPLS

Topologi

Studi Kasus MPLS

Konfigurasi

```
R1(config)#router ospf 10
R1(config-router)#net 1.1.1.1 0.0.0.0 area 0
R1(config-router)#net 12.12.12.0 0.0.0.255 area 0
```

R2(config)#router ospf 10
R2(config-router)#net 2.2.2.2 0.0.0.0 area 0
R2(config-router)#net 12.12.12.0 0.0.0.255 area 0
R2(config-router)#net 23.23.23.0 0.0.0.255 area 0

R3(config)#router ospf 10
R3(config-router)#net 3.3.3.3 0.0.0.0 area 0
R3(config-router)#net 23.23.23.0 0.0.0.255 area 0

Studi Kasus MPLS

Konfigurasi

```
R1(config)#mpls label protocol ldp
R1(config)#mpls ldp router-id lo0 force
R1(config)#int fa0/0
R1(config-if)#mpls ip
```

R2(config)#mpls label protocol ldp
R2(config)#mpls ldp router-id lo0 force
R2(config)#int fa0/0
R2(config-if)#mpls ip
R2(config)#int fa0/1
R2(config-if)#mpls ip

R3(config)#mpls label protocol ldp R3(config)#mpls ldp router-id lo0 force R3(config)#int fa0/0 R3(config-if)#mpls ip

