Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number Scheme			
1. (a)	Collection / group / set of individuals or items	B1 (1	
(b)	A r.v. that is a function of known observations from a population	B1B1 (2	
(c)	College students. Mean approval rating of 75%	B1.B1 (2	
(d)	(Probability) distribution of all possible mean approval ratings of sample size 50 Dependent	B1 B1	
		7	
2.	$H_0: \lambda = 2.5; H_1: \lambda > 2.5 \text{ (Accept } H_0: \lambda = 10; H_1: \lambda > 10)$	B1,B1	
		B1 M1A1	
	Insufficient evidence to reject H_0	MIAI M1	
	Sales have not increased after appointment of new salesman. Context [Note: $P(X \le 14) = 0.9165$, $P(X \le 15) = 0.9153$ for M1A1]	A1ft	
		(7)	
3, (a)	X is no of passengers who do not turn up for this flight.	M1	
	both	A1	
(b)	$X \sim Po(6)$	B1	
	P(X < 4) = 0.1512 Strict inequality, 0.1512	M1A1	
(c)	P(X > 4) = 1 - 0.2851 = 0.7149 [Notes: (b)Use of N(6,5.82) B1 P(X<3.5)M1A0 (c) P(X>4.5)M1A0 (b) Use of N(6,6) B0	M1A1	
	1. (a) (b) (c) (d) 2. 3. (a)	1. (a) Collection / group / set of individuals or items (b) A r.v. that is a function of known observations from a population (c) College students. Mean approval rating of 75% (d) (Probability) distribution of all possible mean approval ratings of sample size 50 Dependent 2. $H_0: \lambda = 2.5; H_1: \lambda > 2.5 \text{ (Accept } H_0: \lambda = 10; H_1: \lambda > 10)$ $1 \text{ week } X \sim Po(2.5), 4 \text{ weeks } X \sim Po(10) \qquad Po(10)$ $P(X \ge 14) = 1 - 0.8645 = 0.1355$ Insufficient evidence to reject H_0 Sales have not increased after appointment of new salesman. [Note; $P(X \le 14) = 0.9165$, $P(X \le 15) = 0.9153$ for M1A1] 3. (a) X is no of passengers who do not turn up for this flight. $X \sim Bin(200, 0.03)$ both (b) $X \sim Po(6)$ $P(X < 4) = 0.1512$ Strict inequality, 0.1512 (e) $P(X > 4) = 1 - 0.2851 = 0.7149$	

Stewart House 32 Russell Square London WC1B 5DN

Jun 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

uestion umber	Scheme		Marks
4. (a)	Continuous Uniform (Rectangular), $X \sim U$	0,14]	B1,B1
(b)	$E(X) = \frac{(14+0)}{2} = 7$ Mean arrival time is 8.02am	Form & sub, 7 8.02am	M1A1 A1
(c)	$P(X \le x) = \int_0^x \frac{1}{14} dt = \frac{x}{14}$	Integral, $\frac{x}{14}$	M1,A1
	$F(x) = \begin{cases} x < 0 \\ \frac{x}{14} \end{cases} \qquad 0 \le x \le 14$ $1 \qquad x > 14$	Centre Ends	B1ft
(d)		1 minus'or valid integral 2 7	B1 M1 A1
			·

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Scheme	e di	Marks
Failed connections occur singly, indep constant rate of 3 per hour, randomly	pendently and at a Any two	B1,B1
X is no of failed connections every ho	ur. $P(X=0) = 0.0498$	M1A1
P(X > 4) = 1 - 0.8153 = 0.1847	Require '1 minus', 0.1847	M1A1
$X \sim Po(24)$		B1
Y is no of users that fail to connect at $Y \sim N(24, 24)$	their first attempt Normal, both	B1,B1
	From above, all correct	M1,A1
= P(Z < -2.55) $= 0.9946$	-2.55	A1 A1 13
$X \sim Bin(20, 0.4)$	Bin, 20 & 0.4	B1,B1
P(5 < X < 15) = 0.9984 - 0.1256 $= 0.8728$	≤14&≤5, Subtract, both correct	M1,M1(dep A1A1
$E(X) = 20 \times 0.4 = 8$	8	B1
$sd = \sqrt{20 \times 0.4 \times 0.6} = 2.19$	Sub in \sqrt{npq} , 2.19	M1,A1
$H_0: p = 0.4$	Roth	73.4
$P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$	Require '1 minus'	B1 M1 A1
Reject H ₀ Proportion of diners who prefer to ea		M1
		A1ft 14
	Failed connections occur singly, independent and the constant rate of 3 per hour, randomly X is no of failed connections every ho $P(X > 4) = 1 - 0.8153 = 0.1847$ $X \sim Po(24)$ Y is no of users that fail to connect at $Y \sim N(24, 24)$ $P(Y \ge 12) = 1 - P(Z < \frac{11.5 - 24}{\sqrt{24}})$ $= P(Z < -2.55)$ $= 0.9946$ $X \sim Bin(20, 0.4)$ $P(5 < X < 15) = 0.9984 - 0.1256$ $= 0.8728$ $E(X) = 20 \times 0.4 = 8$ $sd = \sqrt{20 \times 0.4 \times 0.6} = 2.19$ $H_0: p = 0.4$ $H_1: p > 0.4$ $P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$ $= 0.0123$ Reject H_0 Proportion of diners who prefer to earlier is higher than trade magazine's claim.	Failed connections occur singly, independently and at a constant rate of 3 per hour, randomly X is no of failed connections every hour. $P(X = 0) = 0.0498$ $P(X > 4) = 1 - 0.8153 = 0.1847$ Require '1 minus', 0.1847 $X \sim Po(24)$ Y is no of users that fail to connect at their first attempt $Y \sim N(24, 24)$ Normal, both $P(Y \ge 12) = 1 - P(Z < \frac{11.5 - 24}{\sqrt{24}})$ From above, all correct $= P(Z < -2.55)$ $= 0.9946$ $P(5 < X < 15) = 0.9984 - 0.1256$ $= 0.8728$ $P(X) = 20 \times 0.4 = 8$ $Sd = \sqrt{20 \times 0.4 \times 0.6} = 2.19$ Sub in \sqrt{npq} , 2.19 $P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$ $= 0.0123$ Require '1 minus' $= 0.0123$

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

uestion umber	Scheme		Marks	
7. (a)	$8k = 1, k = \frac{1}{8}$	cso	B1	
(b)	F(m) = 0.5		M1	(
	$x^2 + 2x - 4 = 0$		A1	
	$x = \sqrt{5} - 1 = 1.236$	awrt 1.24	A1	(
(c)	$f(x) = \frac{1}{4}(x+1), \qquad 0 \le x \le 2$	Differentiation, all correct	M1A1	
	•	therwise 0 and ranges	A1	
				(
(d)				
	f(x)		B1 vals&	
	3 4		labels B1 slope	
ļ.	1		$\mathbf{B1} \ \mathbf{f(x)} = 0$	
	4			
	0	2 x		
			B1	
(e)	mode= 2	2	Di	
(f)	$E(X) = \int_0^2 x(\frac{1}{4}(x+1))dx$	Attempt $\int_0^2 x f(x) dx$	M1	
	$= \left[\left(\frac{1}{12} x^3 + \frac{1}{8} x^2 \right) \right]_0^2$	Expression all correct	A1	
	[12 8] ₀		A1	
	= -6	A	M1A1	
(g)	mean <median<mode negative="" ske<="" td="" ⇒=""><td>ew Comparison, both</td><td></td><td></td></median<mode>	ew Comparison, both		
			1	