UNIT 2 Lecture 19 Relational Algebra Division Operation

Intersection example

Display the name of branches in which project 121 and project 122 both are running.

RA : $\Pi_{\text{branch}}(\sigma_{\text{pno} = 121}(\text{STUDENT})) \cap \Pi_{\text{branch}}(\sigma_{\text{pno} = 122}(\text{STUDENT}))$

SQL > select distinct branch from student where pno = 121

intersect

select distinct branch from student where pno = 122;

STUDENT

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

OUTPUT

Branch
CSE

Branch	Branch
CSE	CSE
IT	MECH

Dinesh Kumar Bhawnani, BIT DURG

Intersection example

Display the name of branches in which all the projects are running.

```
RA: \Pi_{branch}(\sigma_{pno=121}(STUDENT))

\Pi_{branch}(\sigma_{pno=122}(STUDENT))

\Pi_{branch}(\sigma_{pno=123}(STUDENT))

STUDENT
```

OUTPUT

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Branch	Branch	Branch
CSE	CSE	CSE
Т	MECH	ETC

Branch CSE

Dinesh Kumar Bhawnani, BIT DURG

- The division operation, denoted by ÷, is suited to queries that include the phrase "for all."
- Formally, let r(R) and s(S) be relations, and let $S \subseteq R$; that is, every attribute of schema S is also in schema R. The relation $r \div s$ is a relation on schema R S (that is, on the schema containing all attributes of schema R that are not in schema S).
- A tuple t is in r ÷ s if and only if both of two conditions hold:
 - **1.** t is in $\Pi_{R-S}(r)$
 - **2.** For every tuple t_s in s, there is a tuple t_r in r satisfying both of the following:

$$\mathbf{a.}\ \mathsf{t_r}[\mathsf{S}] = \mathsf{t_s}[\mathsf{S}]$$

b.
$$t_r[R - S] = t$$

- We can define the division operation in terms of the fundamental operations.
- Let r(R) and s(S) be given, with $S \subseteq R$:

$$r \div s = \Pi_{R-S}(r) - \Pi_{R-S}((\Pi_{R-S}(r) \times s) - \Pi_{R-S,S}(r))$$

A			
X	Υ		
X1	Y1		
X1	Y2		
X1	Y3		
X1	Y4		
X2	Y1		
X2	Y2		
Х3	Y2		
X4	Y2		
X4	Y4		

B Y2 $A \div B$ X1

Y Y2 Y4

X4

Y4 $A \div D$ X1

R

A	В
1	2
3	4

S

С	D
5	6
7	8

_		

A	В	С	D
1	2	5	6
3	4	5	6
1	2	7	8
3	4	7	8

 $T = R \times S$

Α	В	С	D
1	2	5	6
3	4	5	6
1	2	7	8
3	4	7	8

 $T \div S$

A	В
1	2
3	4

 $T \div R$

С	D
5	6
7	8

STUDENT

PROJECT

□ branch pno	(STUDENT)	÷ П	pno	(PROJECT)
--------------	-----------	-----	-----	-----------

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

Branch
CSE

OUTPUT

Equivalent SQL Query SQL > select distinct branch from student s1 where not exists (select pno from project p where not exists (select branch from student s2 where s1.branch = s2.branch and p.pno = s2.pno));

STUDENT

PROJECT

□ branch pno	(STUDENT)	÷ ∏ pno	(PROJECT)
--------------	-----------	---------	-----------

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

CSE

Equivalent SQL Query
SQL >select distinct branch from student s1
where not exists (select pno from project
where pno not in (select s2.pno from student s2, project p
where s1.branch = s2.branch and p.pno = s2.pno));

STUDENT

PROJECT

$\sqcap_{\text{branch pno}}$ (STUDENT) $\div \sqcap_{\text{pno}}$ (PROJECT)

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

Branch CSE

Equivalent SQL Query
SQL >select distinct branch from student s1
where not exists (select
minus
select s2.pno from student s2, project p
where s1.branch = s2.branch and p.pno = s2.pno);

STUDENT

PROJECT

□ branch pno	(STUDENT)	÷ ∏ pno	(PROJECT)
--------------	-----------	---------	-----------

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

Branch CSE

Equivalent SQL Query SQL >select distinct branch from student group by branch having count(pno) = (select count(pno) from project);

STUDENT

PROJECT

$\sqcap_{\text{sem pno}}$ (STUDENT) $\div \sqcap$	pno (PROJECT)
---	---------------

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

Sem	
3	

OUTPUT

Equivalent SQL Query
SQL >select distinct sem from student group by sem
having count(pno) = (select count(pno) from project);

The Assignment Operation (←)

- It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary relation variables.
- The assignment operation, denoted by ←, works like assignment in a programming language.
- For e.g., consider the definition of division. We could write $r \div s$ as

```
temp1 \leftarrow \Pi_{R-S}(r)

temp2 \leftarrow \Pi_{R-S}((temp1 \times s) - \Pi_{R-S, S}(r))

result = temp1 - temp2
```

• The evaluation of an assignment does not result in any relation being displayed to the user. Rather, the result of the expression to the right of the ← is assigned to the relation variable on the left of the ←. This relation variable may be used in subsequent expressions.

Self Join

STUDENT (s1)

STUDENT (s2)

	7	D		
U			U	

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

□ sname (STUDENT)

 $\sqcap_{s1,sname}$ ($\sigma_{s1,marks} > s2,marks$ (ρ_{s1} (STUDENT) × ρ_{s2} (STUDENT)))

Equivalent SQL Query

SQL > select sname from student where marks in (select min(marks) from student);

Or

SQL > select sname from student minus

select s1.sname from student s1, student s2 where s1.marks > s2.marks;

Using assignment operator (<)

STUDENT (s1)

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

OUTPUT

Equivalent SQL Query
SQL > with r1 as
(select min(marks) as mm
from student)
select sname from student, r1
where marks = mm;

R1
$$\leftarrow \rho_{mm}$$
 ($\mathcal{G}_{min(marks)}$ (STUDENT))

RESULT $\leftarrow \sqcap_{sname}$ ($\sigma_{marks = mm}$ (STUDENT \times R1))

Using assignment operator (<)

STUDENT (s1)

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

OUTPUT

Equivalent SQL Query
SQL > with r1(mm) as
(select min(marks) from
student)
select sname from student, r1
where marks = mm;

R1(mm)
$$\leftarrow G_{min(marks)}$$
 (STUDENT)

RESULT $\leftarrow \sqcap_{sname} (\sigma_{marks = mm} (STUDENT \times R1))$

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1