Векторы и операторы

Обращение оператора

Определение

Рассмотрим оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.

Оператор L^{-1} называют обратным оператором к L, если

$$\mathbf{L} \cdot \mathbf{L}^{-1} = \mathbf{L}^{-1} \cdot \mathbf{L} = I.$$

Определение

Рассмотрим оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.

Оператор L^{-1} называют обратным оператором к L, если

$$L \cdot L^{-1} = L^{-1} \cdot L = I.$$

Мы не обращаем операторы $L: \mathbb{R}^n \to \mathbb{R}^k$ при $n \neq k$.

Определение

Рассмотрим оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.

Оператор L^{-1} называют обратным оператором к L, если

$$L \cdot L^{-1} = L^{-1} \cdot L = I.$$

Мы не обращаем операторы $L: \mathbb{R}^n \to \mathbb{R}^k$ при $n \neq k$.

Даже для L : $\mathbb{R}^n \to \mathbb{R}^n$ обратный оператор не всегда существует!

Определение

Рассмотрим оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.

Оператор L^{-1} называют обратным оператором к L, если

$$L \cdot L^{-1} = L^{-1} \cdot L = I.$$

Мы не обращаем операторы $L: \mathbb{R}^n \to \mathbb{R}^k$ при $n \neq k$.

Даже для L : $\mathbb{R}^n \to \mathbb{R}^n$ обратный оператор не всегда существует!

В определении достаточно потребовать $L \cdot L^{-1} = I$.

Обращение растягивания

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Обращение растягивания

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

• Обратный оператор:
$$\mathsf{L}^{-1}:\begin{pmatrix} a_1\\a_2\end{pmatrix} \to \begin{pmatrix} \frac{1}{2}a_1\\\frac{1}{-3}a_2\end{pmatrix}$$

Обращение растягивания

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

- Обратный оператор: $\mathsf{L}^{-1}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} \frac{1}{2}a_1 \\ \frac{1}{-3}a_2 \end{pmatrix}$
- $L^{-1}L = I$

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$

• Обратный оператор:
$$\mathbf{L}^{-1}:\begin{pmatrix} a_1\\a_2\end{pmatrix} \to \begin{pmatrix} a_2\\a_1\end{pmatrix}$$

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$

- Обратный оператор: $\mathbf{L}^{-1}:\begin{pmatrix}a_1\\a_2\end{pmatrix}\to\begin{pmatrix}a_2\\a_1\end{pmatrix}$
- $L^{-1}L = I$

- Исходный оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$
- Обратный оператор: $\mathbf{L}^{-1}:\begin{pmatrix}a_1\\a_2\end{pmatrix}\to\begin{pmatrix}a_2\\a_1\end{pmatrix}$
- $L^{-1}L = I$
- $L^{-1} = L$

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$$

• Исходный оператор L : $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$

• Обратный оператор: $\mathsf{L}^{-1}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_3 \\ a_1 \end{pmatrix}$

• Исходный оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$$

• Обратный оператор:
$$\mathbf{L}^{-1}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_3 \\ a_1 \end{pmatrix}$$

•
$$L^{-1}L = I$$

Обращение единичного оператора

• Исходный оператор $I: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}
ightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$

Обращение единичного оператора

• Исходный оператор $I: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}
ightarrow \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$

• Обратный оператор: $I: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$

Обращение единичного оператора

• Исходный оператор
$$I: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

• Обратный оператор:
$$I: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} o \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

•
$$I^{-1}I = I$$

• Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.

- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Обратный оператор: R^{-1} , поворот на 30° по часовой стрелке, $R^{-1}R = I$

- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Обратный оператор: R^{-1} , поворот на 30° по часовой стрелке, $R^{-1}R = I$

- Исходный оператор $R: \mathbb{R}^2 \to \mathbb{R}^2$, поворот на 30° против часовой стрелки.
- Обратный оператор: R^{-1} , поворот на 30° по часовой стрелке, $R^{-1}R = I$

$$\mathbf{R}\,\mathbf{v}=\mathbf{b}$$
 или $\mathbf{v}=\mathbf{R}^{-1}\,\mathbf{b}$

Не все действия обратимы!

• По определению, исходный оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.

Не все действия обратимы!

- По определению, исходный оператор L : $\mathbb{R}^n \to \mathbb{R}^n$.
- Исходный оператор $H:\mathbb{R}^2 \to \mathbb{R}^2$, проекция на прямую $x_1+2x_2=0$.

Не все действия обратимы!

- По определению, исходный оператор $\mathsf{L}:\mathbb{R}^n \to \mathbb{R}^n$.
- Исходный оператор $H:\mathbb{R}^2 \to \mathbb{R}^2$, проекция на прямую $x_1+2x_2=0$.
- Обратный оператор H^{-1} не существует!

