COMPUTER VISION

MOVING OBJECT DETECTION

With Optical flow

GROUP MEMBERS

Panadda Luckananukul 62011182

Thammachet Asavathongkul 62011306

SOFTWARE

PRESENTER

HARDWARE

COORDINATOR

Siwapol Tapanawong 62011248

OUTLINE

CONCEPT & ALGORITHM

OUR PROJECT

SOFTWARE DEMONSTRATION

WHAT IS OPTICAL FLOW?

FRAME_1

FRAME_2

RESULTS

USAGE

STABILIZED DRONE

MOTION ESTIMATION

VIDEO STABILIZATION

CONCEPT

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$

TAYLOR SERIES APPROXIMATION

$$I(x + \partial x, y + \partial y, t + \partial t) = I(x, y, y) + \frac{\partial I}{\partial x} \partial x + \frac{\partial I}{\partial y} \partial y + \frac{\partial I}{\partial t} \partial t + \cdots$$
$$\rightarrow \frac{\partial I}{\partial x} \partial x + \frac{\partial I}{\partial y} \partial y + \frac{\partial I}{\partial t} \partial t = 0$$

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

TAYLOR SERIES APPROXIMATION

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0 \qquad \text{Where:} \quad u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$

$$\frac{dI}{dx}, \frac{dI}{dy}, \frac{dI}{dt} = gradients$$

Rewritten for the derivative in the following:

$$I_x u + I_y v = -I_t$$

$$I_x u + I_y v = -I_t$$

This equation has two unknowns with only one equations.

Thus, we cannot directly solve the optical flow equation.

To solve for u and v, we need additional method.

In our project, we use the FDRIG algorithm. (Halcon software)

FDRIG ALGORITHM

This approach is flow-driven, robust, isotropic, and uses a gradient constancy term.

The FDRIG algorithm is based on the minimization of an energy functional that contains the following assumptions...

FDRIG ASSUMPTIONS

Constancy of the gray values

Constancy of the spatial gray value derivatives

Large displacements

Statistical robustness in the data term

Preservation of discontinuities in the flow field I

$$E(\mathbf{w}) = E_{\mathrm{D}}(\mathbf{w}) + \alpha E_{\mathrm{S}}(\mathbf{w}),$$

Can be expressed as:

$$E_{\mathrm{FDRIG}}(\mathbf{w}) = \int \Psi_{\mathrm{S}} \left(\underbrace{|f(\mathbf{x} + \mathbf{w}) - f(\mathbf{x})|^{2}}_{\text{gray value constancy}} + \gamma \underbrace{|\nabla_{2} f(\mathbf{x} + \mathbf{w}) - \nabla_{2} f(\mathbf{x})|^{2}}_{\text{gradient constancy}} \right) dr dc$$

$$+ \alpha \int \Psi_{\mathrm{S}} \left(\underbrace{|\nabla_{2} u(\mathbf{x})|^{2} + |\nabla_{2} v(\mathbf{x})|^{2}}_{\text{smoothness assumption}} \right) dr dc$$

FDRIG COMPUTING STEP

STEP 1

Acquire the original two sequence images.

STEP 2 Preprocess image and convert a color motion sequence image into a monochrome gray image.

STEP 3 Use Gaussian filtering to smooth the image sequence and eliminate noise.

STEP 4

Solve the partial derivatives of the optical component.

REFERENCES

\bigcirc	Optical flow – Wikipedia
	Optical_flow_mg [HALCON Operator Reference] (mvtec.com)
	Image Stabilization – YouTube
	Research on Moving Target Tracking Based on FDRIG Optical Flow (mdpi.com)
	Introduction to Motion Estimation with Optical Flow (nanonets.com)

LET'S SEE THE SOFTWARE DEMONSTRATION ...

