Patent Claims

1. Process for the enantioselective preparation of amino alcohols of the formula I

 R^1 N R^2

10 in which

R¹ denotes a saturated, unsaturated or aromatic carbocyclic or heterocyclic radical which is unsubstituted or mono- or polysubstituted by R³ and/or R⁴,

R² denotes alkyl having 1-20 C atoms or H,

15 R³, R⁴ each, independently of one another, denote H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or COOR², F, Cl, Br, OH, CN, NO₂, N(R²)₂ or NHCOR₂

and

n denotes 0, 1, 2 or 3,

20

5

by enantioselective hydrogenation of amino ketones of the formula II

$$R^1$$
 N R^2

25 in which

R¹, R² and n have the meaning indicated above, in the presence of a non-racemic catalyst, characterised in that the catalyst is a transition-metal complex in which the transition metal is complexed to a chiral diphosphine ligand A

in which

15

R⁵, R⁶, R⁷ and R⁸

each, independently of one another, denote H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or F, Cl, Br, N(R²)₂ or NHCOR₂

each, independently of one another, denote

20
$$R^9$$
 and R^{10} $(R^{11})_m$,

or cyclohexyl

25 R¹¹ denotes H, alkyl or alkoxy having 1-20 C atoms, aryl, aryloxy or SO₃Na, COOR¹², F, Cl, N(R¹²)₂ or NHCOR¹²,

 R^{12} denotes alkyl having 1-20 C atoms or H 30

and

denotes 0, 1, 2 or 3, m

where R⁵ and R⁶, R⁶ and R⁷ and R⁷ and R⁸ together can also have the 35 meaning

$$-(CH_2)_4- \qquad , \qquad -CH=CH-CH=CH- \qquad , \qquad \qquad Or \qquad \qquad \begin{array}{c} CH_3 \\ \\ \\ \\ \end{array}$$

or B

5

20

35

10 H₃C Y B

15 in which

- Y denotes OH, P(cyclohexyl)₂, P(3,5-dimethylphenyl)₂ or $P(C(CH_3)_3)_2$,
- Z denotes H or P(phenyl)₂,
- Q denotes PPh₂, P(cyclohexyl)₂, P[3,5-bis(trifluoromethyl)phenyl]₂, P(4-methoxy-3,5-dimethylphenyl)₂ or P(C(CH₃)₃)₂

and

Ph denotes phenyl, o-, m- or p-methylphenyl or dimethylphenyl.

- 2. Process according to Claim 1, in which R¹ denotes phenyl or 2-thienyl.
- 25
 3. Process according to Claim 1 or 2, in which R² denotes methyl, ethyl, n-propyl or isopropyl.
- 4. Process according to one or more of Claims 1 to 3, in which n denotes1.
 - 5. Process according to Claim 1 for the preparation of (S)-3-methylamino-1-phenyl-1-propanol or (S)-3-methylamino-1-(2-thienyl)-1-propanol or acid-addition salts thereof.
 - 6. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 5, characterised in that the chiral, non-

racemic catalyst is a transition-metal complex containing one or more metals or salts thereof selected from the group consisting of rhodium, iridium, ruthenium and palladium.

- 7. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 6, characterised in that the chiral, non-racemic catalyst is a transition-metal complex containing rhodium or salts thereof.
- 10
 8. Process according to one or more of the preceding claims, characterised in that the chiral diphosphine ligand used is a compound of the formula A1 to A5:

20

10

20

in which Ph has the meaning indicated in Claim 1, and X denotes H, alkyl, O(alkyl), Cl, or F, and R' denotes alkyl O(alkyl) or F.

25

- 9. Process according to Claim 7 or 8, characterised in that the chiral diphosphine ligand used is (S)-(-)-2,2'bis(di-p-tolylphosphino)-1,1'binaphthyl or (S)-(-)-2,2'bis(diphenylphosphino)-1,1'-binaphthyl.
- 30 10. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 9, characterised in that the reaction temperature is between 0 and 200°C.
 - 11. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 10, characterised in that the catalyst/ substrate ratio is between 1:5000 and 1:50.

12. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 11, characterised in that the hydrogenation is carried out under 1-200 bar of hydrogen.

13. Process for the preparation of compounds of the formula I according to one or more of Claims 1 to 12, characterised in that the hydrogenation is carried out in the presence of an alcohol.

14. Process for the preparation of compounds of the formula I according to one or more of the preceding claims, characterised in that the chiral, non-racemic catalyst is a transition-metal complex containing sulfate, chloride, bromide, iodide, PF₆, BF₄, methanesulfonate, toluene-sulfonate, hexachloroantimonate, hexafluoroantimonate or trifluoromethanesulfonate as anion.

20

5

25