Homework 2

Digital Signal Processing CE 352 / EE 453 (L1)

Fall 2021

Note: You are only allowed to refer to the roots(p) command from MATLAB while writing up the solution for this homework assignment.

Question 1

(20 points)

(a)

Determine the z-Transform of the following signal (including ROC):

$$x(n) = \{3, 0, 0, 6, 1, -4\}$$

(b)

Given the following pole-zero plot for the system function [H(z)] of an LTI system,

Is the LTI system an FIR system or an IIR system? Justify your answer based on z-Transform and its ROC.

Question 2

(20 points)

Given a causal system:

$$y(n) = 0.8 y(n-1) - 0.6 y(n-2) + x(n) + 2x(n-1)$$

- a) Determine the system function H(z)
- b) Sketch pole-zero plot of H(z)
- c) Is this system stable?

Question 3

(20 points)

Given that

$$H(z) = \frac{z^2 + z}{z^2 + z - 0.75}$$

is a causal system.

- a) Sketch its pole-zero plot.
- b) Is this system stable?
- c) Find its difference equation representation.

Question 4

(20 points)

Given the z-Transform of x(n)

$$X(z) = \frac{z}{z^2 + z - 0.75}$$

Determine x(n) through inverse z-Transform by using the partial fraction expansion method. (Assume ROC is $|z| > \frac{3}{2}$). For your reference, a table of common z-transform pairs is provided below:

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$\cos(\omega_0 n)u(n)$	$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
8	$\sin(\omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1
9	$a^n \cos(\omega_0 n) u(n)$	$\frac{1-az^{-1}\cos\omega_0}{1-2az^{-1}\cos\omega_0+a^2z^{-2}}$	z > a
10	$a^n \sin(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Question 5

(20 points)

A digital filter is characterized by the following properties:

- 1. It is highpass and has one pole and one zero.
- 2. The pole is at a distance of r=0.9 from the origin of the z-plane.
- 3. Constant signals do not pass through the system.

Plot the pole-zero pattern of the system function H(z) for the digital filter.

(b)

The pole-zero plot (along with unit circle) for the system function H(z) of a digital filter is provided

below:

1. Is this a lowpass, highpass, or bandpass filter. Justify your answer based on the geometrical interpretation of the relationship between pole-zero locations of system function and the magnitude response of a digital filter.

2

2. What is the value of magnitude response at $\omega = 0$.