Matemática atuarial

Seguros Aula 7

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

- Os produtos atuariais de seguro de vida (inteira ou temporária) cobrem o risco de morte do segurado.
- ➤ O seguro Dotal Puro cobre o risco de sobrevida do segurado.
 - ➤O segurado receberá um benefício caso chegue vivo após o período de cobertura do seguro.
 - ➢ Por exemplo: caso uma pessoa de 60 anos decida contratar um seguro dotal com período de 20 anos, ele (o segurado) receberá a indenização caso sobreviva até os 80 anos de idade.

- > A seguradora irá pagar um benefício (trazido a valor presente) caso o segurado sobreviva ou não pagará nada caso ele faleça no período de cobertura.
- > Os valores possíveis da variável aleatória são :

$$0 ou b_T v^T$$

$$b_T = \begin{cases} 1 & se \ T > n \\ 0 & se \ T \le n \end{cases} \quad v_T = v^T se \ T \ge 0$$

$$Z_T = \begin{cases} v^n & se \ T > n \\ 0 & se \ T \le n \end{cases}$$

$$v_T = v^T se \ T \ge 0$$

$$Z_T = \begin{cases} v^n & \text{se } T > n \\ 0 & \text{se } T \le n \end{cases}$$

- Esse tipo de seguro poderá ser útil em diversos casos.
 - Para pagamentos de bônus por uma empresa caso o funcionário "sobreviva" nesta empresa por um certo período
 - Ou ainda, poderá ser utilizada para pagamento da faculdade do filho, caso este sobreviva até a idade para cursar uma faculdade..
 - > ...

> O seguro dotal é um produto atuarial onde $_n p_x$ é a probabilidade de sobrevivência do segurado no período de cobertura e $(1 - _n p_x)$ a probabilidade de morte.

Valor	Probabilidade
$Z_T = v^n \text{ se } T(x) > n$	$_{n}p_{x}$
$Z_T = 0$ $se T(x) \le n$	$1{n}p_{x}$
$A_{x:\overline{n} ^1} = 0 P(T(x) \le n)$	$+ Z_T P(T(x) > n)$
$A_{x:\overline{n} ^1} = v^n P(T(x))$	$> n) = {}_{n}E_{x}$

 $_{n}E_{x}=v^{n}_{n}p_{x}$: Fator de desconto atuarial (o fator de atualização ponderado pela probabilidade do segurado de x anos sobreviver por n anos).

$$A_{x:\overline{n}|^1} = {}_n E_x = v^n P(T(x) > n)$$

$$var(Z_T) = E(Z^2) - [E(Z_T)]^2$$

$$var(Z_T) = 0^2 P(T(x) \le n) + (Z_T)^2 P(T(x) > n) - [Z_T P(T(x) > n)]^2$$

$$var(Z_T) = (Z_T)^2 P(T(x) > n) - (Z_T)^2 [P(T(x) > n)]^2$$

$$var(Z_T) = (Z_T)^2 P(T(x) > n) [1 - P(T(x) > n)]$$

$$var(Z_T) = b_T^2 v^{2n} P(T(x) > n) [1 - P(T(x) > n)]$$

$$A_{x:\overline{n}|^1} = {}_n E_x = v^n P(T(x) > n)$$

$$var(Z_T) = b_T^2 v^{2n} P(T(x) > n) [1 - P(T(x) > n)]$$

$$A_{x:\overline{n}|^1} = {}_n E_x = v^n {}_n p_x$$

$$var(Z_T) = b_T^2 v^{2n} {}_n p_x {}_n q_x$$

Não é apropriado a noção de seguro dotal puro em tempo contínuo.

х	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

> Exemplo 15

Seja um segurado com 50 anos de idade que decide fazer um seguro dotal puro que paga R\$ 250 mil se o segurado sobreviver durante o período de 3 anos. Se a seguradora compromete-se remunerar o capital do segurado à uma taxa anual de 3% a.a., qual deverá ser o Prêmio Puro Único pago pelo segurado?

Para resolução deste exercício considere a tábua de mortalidade CSO-58.

X	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} {}_{3}p_{50}$$

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} \frac{l_{50+3}}{l_{50}}$$

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} \frac{85242}{87620}$$

$$250000A_{50:\overline{3}|^1} = R$222576, 2$$

ou

$$250000A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} p_{50}p_{51}p_{52}$$

$$250000 A_{50:\overline{3}|^{1}} = 250000 \left(\frac{1}{1,03}\right)^{3} (1 - 0,00832)(1 - 0,00911)(1 - 0,00996)$$

$$= R$222576,2$$

Adicionalmente

$$var(Z_T) = b_T^2 v^{2n} {}_n p_x {}_n q_x$$

$$var(Z) = 250000^{2} \left(\frac{1}{1,03}\right)^{6} {}_{3}p_{50}(1 - {}_{3}p_{50})$$

$$var(Z) = 250000^{2} \left(\frac{1}{1,03}\right)^{6} {}_{3}p_{50}({}_{3}q_{50})$$

$$var(Z) = 250000^{2} \left(\frac{1}{1,03}\right)^{6} \frac{l_{50+3}}{l_{50}} \left(\frac{l_{50} - l_{50+3}}{l_{50}}\right)$$

$$var(z) = 1382024215$$

> Exemplo 16

Seja um segurado de 47 anos queria receber R\$100000,00 caso sobreviva nos próximos $10\ anos$. Considerando a mesma taxa anual de 3%, qual será o prêmio Puro único que deverá ser pago pelo segurado?

X	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

$$A_{x:\overline{n}|^1} = {}_{n}E_x = v^n {}_{n}p_x$$

> Exemplo 16

$$100000A_{47:\overline{10}|^{1}} = 100000 \left(\frac{1}{1,03}\right)^{10} {}_{10}p_{47}$$

$$100000A_{47:\overline{10}|^{1}} = 100000 \left(\frac{1}{1,03}\right)^{10} \frac{l_{47+10}}{l_{47}}$$

$$10^{5}A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} \frac{81059}{89478} = R\$67408, 2$$

ou

$$10^{5}A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} p_{47}p_{48}p_{49}p_{50}p_{51}p_{52}p_{53}p_{54}p_{55}p_{56}$$

> Exemplo 17

Seja um segurado de 47 anos queria receber R\$100000,00 caso sobreviva nos próximos $10\ anos$. Considerando a mesma taxa anual de 3%, qual será o prêmio que deverá ser pago pelo segurado, utilizando o principio abaixo?

Х	qx	lx
47	0,00636	89478
48	0,00695	88909
49	0,0076	88291
50	0,00832	87620
51	0,00911	86891
52	0,00996	86100
53	0,01089	85242
54	0,0119	84314
55	0,013	83311
56	0,01421	82228
57	0,01554	81059
58	0,017	79799
59	0,01859	78443
60	0,02034	76985

$$\Pi = E(X) + \sigma_X \beta \; {
m considerando} \; \beta = 1,2$$

$$A_{47:\overline{10}|^1}$$

> Exemplo 17

$$10^5 A_{47:\overline{10}|^1} = 10^5 \left(\frac{1}{1,03}\right)^{10} {}_{10} p_{47}$$

$$10^{5} A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} \frac{l_{47+10}}{l_{47}}$$

$$10^{5}A_{47:\overline{10}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{10} \frac{81059}{89478} = R\$67408, 2$$

$$var(Z) = 100000^{2} \left(\frac{1}{1,03}\right)^{20} \frac{l_{47+10}}{l_{47}} \left(\frac{l_{47} - l_{57}}{l_{47}}\right)$$

$$var(Z) = 471937753$$

$$\Pi = E(X) + \sigma_X \beta$$

$$\Pi = 67408, 2 + \sqrt{471937753} (1,2) = 93477,16$$

Exemplo 36

$$Z_T = \begin{cases} v^{T+1} & T \leq n \\ 0 & c. c. \end{cases} \quad \mathbf{A}_{\mathbf{x}^1:\overline{n|}} = \sum_{t=0}^{n-1} \mathbf{Z}_{T t} \mathbf{p}_{\mathbf{x}} \mathbf{q}_{\mathbf{x}+t}$$

$$Z_T = e^{-\delta t}; \ 0 \le t \le n \quad \overline{A}_{x^1:\overline{n|}} = \int_0^n Z_T \, p_x \mu_{x+t} dt$$

$$Z_{T} = \begin{cases} v^{n} & \text{se } T > n \\ 0 & \text{se } T \leq n \end{cases} A_{x:\overline{n}|^{1}} = Z_{T} p_{x}$$

$$Z_T = \begin{cases} v^{T+1} & T \leq \infty \\ 0 & c. c. \end{cases} \mathbf{A}_{x} = \sum_{t=0}^{\infty} Z_{Tt} \mathbf{p}_{x} \mathbf{q}_{x+t}$$

$$Z_T = e^{-\delta t}$$
; $t \ge 0$ $\overline{A}_x = \int_0^\infty Z_T t p_x \mu_{x+t} dt$

$$E(Z_T)$$

$$b_{T} = 1$$

$$P(T_{x} = t) = {}_{t} p_{x} q_{x+t}$$

$$f_{T_{x}}(t) = {}_{t} p_{x} \mu_{x+t}$$

- > É o seguro que cobre a vida e morte do segurado.
- Esse seguro paga uma certo valor se o segurado morrer durante um período ou paga (...) caso o segurado sobreviva a este período, o que ocorrer primeiro.

Caso Contínuo

$$\bar{A}_{x:\overline{n|}} = \bar{A}_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

Caso Discreto

$$A_{x:\overline{n|}} = A_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

 b_T ; $b_n \rightarrow$ beneficio;

$$v_T = \begin{cases} v^{T+1} & \text{se } T \leq n \\ v^n & \text{se } T > n. \end{cases} \to \text{desconto}$$

$$z_T = \begin{cases} b_T v^{T+1} & se \ T \le n \\ b_n v^n & se \ T > n \end{cases} \rightarrow \text{valor presente atuarial(VPA)}$$

> Exemplo 18

Seja um segurado de 47 anos queria receber R\$100000,00 caso sobreviva nos próximos 5 anos e caso faleça deixa a mesma quantia a um beneficiário. Considerando a mesma taxa anual de 3%, qual será o prêmio Puro único que deverá ser pago pelo segurado?

$$Z(T) = \begin{cases} 10^{5} \left(\frac{1}{1,03}\right)^{T+1} & se \ T \le 5 \\ 10^{5} \left(\frac{1}{1,03}\right)^{n} se \ T > 5 \end{cases}$$
$$A_{47:\overline{5}|} = A_{47}:\overline{5}| + A_{47:\overline{5}|^{1}}$$

Temos que:

Lembrando que
$$_tp_x = \frac{l_{x+t}}{l_x} \ e \ _tq_x = \frac{l_x - l_{x+t}}{l_x}$$

$$10^5 A_{47:\overline{5}|^1} = 10^5 \left(\frac{1}{1,03}\right)^5 {}_5 p_{47}$$

$$10^{5}A_{47:\overline{5}|^{1}} = 10^{5} \left(\frac{1}{1,03}\right)^{5} 0,971 = R\$83766.89$$

Já para $A_{47^1:\overline{5}|}$ temos:

$$10^{5}A_{47^{1}:\overline{5}|} = 10^{5} \left[\left(\frac{1}{1,03} \right)^{1} q_{47} + \left(\frac{1}{1,03} \right)^{2} {}_{1}p_{47}q_{48} + \left(\frac{1}{1,03} \right)^{3} {}_{2}p_{47}q_{49} + \left(\frac{1}{1,03} \right)^{4} {}_{3}p_{47}q_{50} + \left(\frac{1}{1,03} \right)^{5} {}_{4}p_{47}q_{51} \right]$$

$$= R\$3441,68$$

Assim:

$$\mathbf{10}^{5}A_{47:\overline{5}|} = \mathbf{10}^{5}\left(A_{47^{1}:\overline{5}|} + A_{47:\overline{5}|^{1}}\right) = R\$83766, 89 + R\$3441, 682 = R\$87208, 57$$

> EXEMPLO 19 (entregar)

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro Dotal por 5 anos. Ou seja, caso esse segurado faleça antes de completar 30 anos ou sobreviva até os 30 anos, o beneficiário receberá uma quantia de 1.u.m Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

$$Z(T) = \begin{cases} \left(\frac{1}{1,04}\right)^{T+1} & se \ T \le 5 \\ \left(\frac{1}{1,04}\right)^{n} se \ T > 5 \end{cases}$$
$$A_{25:\overline{5}|} = A_{25^{1}:\overline{5}|} + A_{25:\overline{5}|^{1}}$$

$$b=1 \qquad t \geq 0,$$

$$v_T = \begin{cases} v^{T+1} \ se \ T \leq n \\ v^n \ se \ T > n. \end{cases} \rightarrow \text{desconto}$$

$$z_T = \begin{cases} v^T & se \ T \le n \\ v^n & se \ T > n \end{cases}$$
 valor presente atuarial(VPA)

$$Z_T = Z_1 + Z_2$$

$$Z_1 = \begin{cases} v^{T+1} & \text{se } T \leq n \\ 0 & \text{se } T > n \end{cases}$$

$$A_{x:\overline{n}|^1}$$

$$Z_T = \begin{cases} 0 & \text{se } T \leq n \\ v^n & \text{se } T > n \end{cases}$$

$$Z_T = Z_1 + Z_2$$

$$z_1 = \begin{cases} v^{T+1} & \text{se } T \le n \\ 0 & \text{se } T > n \end{cases}$$

$$z_T = \begin{cases} 0 & \text{se } T \le n \\ v^n & \text{se } T > n \end{cases}$$

$$var(Z_T) = var(Z_1) + var(Z_2) + 2cov(Z_1Z_2)$$

$$cov(Z_1Z_2) = E(Z_1Z_2) - E(Z_1)E(Z_2) = -(A_{\chi^1:\overline{n|}})(A_{\chi:\overline{n|}^1})$$

$$var(Z_T) = v^{2n} _{n} p_{x n} q_x + \left[\sum_{t=0}^{n-1} v^{2(t+1)} _{t} p_x q_x - \left(\sum_{t=0}^{n-1} v^{t+1} _{t} p_x q_x \right)^2 \right] - 2 \left(\sum_{t=0}^{n-1} v^{t+1} _{t} p_x q_x \right) (v^n _{n} p_x)$$

- > É o seguro que cobre a vida e morte do segurado.
 - Esse seguro paga uma certo valor se o segurado morrer durante um período ou paga (...) caso o segurado sobreviva a este período, o que ocorrer primeiro.

Caso Contínuo

$$\overline{A}_{x:\overline{n|}} = \overline{A}_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

$$b_T$$
; $b_n \rightarrow$ beneficio; $z_T = \begin{cases} b_T \ e^{-\delta T} \ se \ T \le n \\ b_n v^n \ se \ T > n \end{cases} \rightarrow \text{valor presente atuarial(VPA)}$

Caso Discreto

$$A_{x:\overline{n|}} = A_{x^1:\overline{n|}} + A_{x:\overline{n|}^1}$$

$$b_T$$
; $b_n \rightarrow$ beneficio; $z_T = \begin{cases} b_T v^{T+1} & \text{se } T \leq n \\ b_n v^n & \text{se } T > n \end{cases} \rightarrow \text{valor presente atuarial(VPA)}$

$$Z_{T} = \begin{cases} v^{T+1} T \leq n \\ 0 \ c. c. \end{cases} \quad A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} Z_{T \ t} p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1} T \leq \infty \\ 0 \ c. c. \end{cases} \quad A_{x} = \sum_{t=0}^{\infty} Z_{T \ t} p_{x} q_{x+t}$$

$$Z_{T} = e^{-\delta t}; \ 0 \leq t \leq n \quad \overline{A}_{x^{1}:\overline{n}|} = \int_{0}^{n} Z_{T \ t} p_{x} \mu_{x+t} dt$$

$$Z_{T} = e^{-\delta t}; \ t \geq 0 \quad \overline{A}_{x} = \int_{0}^{\infty} Z_{T \ t} p_{x} \mu_{x+t} dt$$

$$Z_{T} = \begin{cases} v^{n} \text{ se } T > n \\ A_{x:\overline{n}|^{1}} = Z_{T n} p_{x} \end{cases}$$

$$Z_T = \begin{cases} v^n & \text{se } T > n \\ 0 & \text{se } T \le n \end{cases} \quad \mathbf{A}_{\mathbf{x}: \overline{\mathbf{n}}|^{\mathbf{1}}} = Z_{T \mathbf{n}} \mathbf{p}_{\mathbf{x}}$$

$$z_T = \begin{cases} b_T e^{-\delta T} \operatorname{se} T \leq n \\ b_n v^n \operatorname{se} T > n \end{cases} \quad \overline{A}_{x:\overline{n}|} = \overline{A}_{x^1:\overline{n}|} + A_{x:\overline{n}|1}$$

$$E(Z_T)$$

$$z_T = \begin{cases} b_T v^{T+1} & \text{se } T \leq n \\ b_n v^n & \text{se } T > n \end{cases} A_{x:\overline{n}|} = A_{x^1:\overline{n}|} + A_{x:\overline{n}|^1}$$

$$b_{T} = 1$$

$$P(T_{x} = t) = {}_{t} p_{x} q_{x+t}$$

$$f_{T_{x}}(t) = {}_{t} p_{x} \mu_{x+t}$$