$12n_{0582} \ (K12n_{0582})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^7 + u^6 - 6u^5 + 4u^4 - 9u^3 + 3u^2 + 2b - 2u, \ -u^8 - 7u^6 - 2u^5 - 13u^4 - 10u^3 - 3u^2 + 4a - 10u + 2, \\ u^9 - u^8 + 9u^7 - 5u^6 + 25u^5 - 3u^4 + 23u^3 + 7u^2 + 6u + 2 \rangle \\ I_2^u &= \langle b - u - 1, \ 3a - u, \ u^2 + 3 \rangle \\ I_3^u &= \langle b + u + 1, \ a + u, \ u^2 + 1 \rangle \end{split}$$

$$I_1^v = \langle a, b-1, v-1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 14 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^7 + u^6 - 6u^5 + 4u^4 - 9u^3 + 3u^2 + 2b - 2u, -u^8 - 7u^6 + \dots + 4a + 2, u^9 - u^8 + \dots + 6u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{4}u^{8} + \frac{7}{4}u^{6} + \dots + \frac{5}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{7} - \frac{1}{2}u^{6} + \dots - \frac{3}{2}u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{8} - \frac{7}{4}u^{6} + \dots - \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{4}u^{8} - \frac{5}{4}u^{6} + \dots - \frac{5}{4}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + 4u^{3} + 3u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{8} + \frac{7}{4}u^{6} + \dots + \frac{5}{2}u - \frac{1}{2} \\ -\frac{1}{4}u^{8} - \frac{9}{4}u^{6} + \dots - u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{6} + \frac{1}{2}u^{5} + \dots - \frac{7}{2}u^{2} - \frac{3}{2}u \\ -\frac{1}{4}u^{8} - \frac{5}{4}u^{6} + \dots - \frac{5}{4}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - 3u^{2} - 1 \\ -u^{6} - 4u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^8 + 2u^7 18u^6 + 10u^5 50u^4 + 6u^3 46u^2 12u 12u^2 + 12u^3 12u^2 + 12u^2 12u^$

Crossings	u-Polynomials at each crossing	
c_1	$u^9 - 4u^8 + \dots + 145u + 64$	
c_2, c_6	$u^9 - 2u^8 + 4u^7 - 6u^6 + 18u^5 - 2u^4 + 8u^3 - 6u^2 - 7u + 8$	
$c_3, c_4, c_5 \ c_{10}, c_{11}$	$u^9 - u^8 + 9u^7 - 5u^6 + 25u^5 - 3u^4 + 23u^3 + 7u^2 + 6u + 2$	
c_7, c_8, c_{12}	$u^9 + 2u^8 - 8u^7 - 18u^6 + 18u^5 + 50u^4 + 4u^3 - 34u^2 + 9u + 8$	
<i>c</i> 9	$u^9 - 19u^8 + \dots - 654u + 82$	

Crossings	Riley Polynomials at each crossing	
c_1	$y^9 + 40y^8 + \dots + 6177y - 4096$	
c_2, c_6	$y^9 + 4y^8 + \dots + 145y - 64$	
c_3, c_4, c_5 c_{10}, c_{11}	$y^9 + 17y^8 + \dots + 8y - 4$	
c_7, c_8, c_{12}	$y^9 - 20y^8 + \dots + 625y - 64$	
<i>c</i> ₉	$y^9 + 17y^8 + \dots - 49688y - 6724$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.286210 + 1.260340I		
a = 0.755885 - 0.774032I	6.78979 + 0.44094I	1.257807 - 0.497446I
b = 0.258411 - 0.633815I		
u = 0.286210 - 1.260340I		
a = 0.755885 + 0.774032I	6.78979 - 0.44094I	1.257807 + 0.497446I
b = 0.258411 + 0.633815I		
u = -0.064698 + 0.563024I		
a = -0.501501 + 1.062470I	0.80178 + 1.43893I	-0.93515 - 5.88586I
b = 0.419693 - 0.038751I		
u = -0.064698 - 0.563024I		
a = -0.501501 - 1.062470I	0.80178 - 1.43893I	-0.93515 + 5.88586I
b = 0.419693 + 0.038751I		
u = -0.312120		
a = -1.25225	-0.900968	-13.4400
b = -0.623552		
u = 0.30797 + 1.73568I		
a = -0.412318 + 1.116980I	17.2800 - 2.5995I	1.01236 + 1.23711I
b = -0.65742 + 2.01585I		
u = 0.30797 - 1.73568I		
a = -0.412318 - 1.116980I	17.2800 + 2.5995I	1.01236 - 1.23711I
b = -0.65742 - 2.01585I		
u = 0.12658 + 1.95644I		
a = -0.215942 - 1.161020I	-7.97178 - 5.85424I	0.38489 + 1.87688I
b = 0.29109 - 2.91331I		
u = 0.12658 - 1.95644I		
a = -0.215942 + 1.161020I	-7.97178 + 5.85424I	0.38489 - 1.87688I
b = 0.29109 + 2.91331I		

II.
$$I_2^u = \langle b - u - 1, \ 3a - u, \ u^2 + 3 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{3}u \\ u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{3}u \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{3}u \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{3}u+1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

 $a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	$(u-1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^2 + 3$
c_6, c_7, c_8	$(u+1)^2$

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-1)^2$	
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(y+3)^2$	

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.73205I		
a =	0.577350I	13.1595	0
b =	1.00000 + 1.73205I		
u =	-1.73205I		
a =	-0.577350I	13.1595	0
b =	1.00000 - 1.73205I		

III.
$$I_3^u=\langle b+u+1,\; a+u,\; u^2+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u + 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

- $a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$
- $a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
c_1, c_6, c_7 c_8	$(u-1)^2$		
c_2, c_{12}	$(u+1)^2$		
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^2 + 1$		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-1)^2$		
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(y+1)^2$		

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	-1.000000I	3.28987	0
b =	-1.00000 - 1.00000I		
u =	-1.000000I		
a =	1.000000I	3.28987	0
b =	-1.00000 + 1.00000I		

IV.
$$I_1^v = \langle a, b-1, v-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	u-1
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	u
c_6, c_7, c_8	u+1

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	y-1	
c_3, c_4, c_5 c_9, c_{10}, c_{11}	y	

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^9-4u^8+\cdots+145u+64)$
c_2	$(u-1)^3(u+1)^2$ $\cdot (u^9 - 2u^8 + 4u^7 - 6u^6 + 18u^5 - 2u^4 + 8u^3 - 6u^2 - 7u + 8)$
$c_3, c_4, c_5 \\ c_{10}, c_{11}$	$u(u^2+1)(u^2+3)(u^9-u^8+\cdots+6u+2)$
c_6	$(u-1)^{2}(u+1)^{3}$ $\cdot (u^{9}-2u^{8}+4u^{7}-6u^{6}+18u^{5}-2u^{4}+8u^{3}-6u^{2}-7u+8)$
c_{7}, c_{8}	$(u-1)^{2}(u+1)^{3}$ $\cdot (u^{9} + 2u^{8} - 8u^{7} - 18u^{6} + 18u^{5} + 50u^{4} + 4u^{3} - 34u^{2} + 9u + 8)$
<i>c</i> 9	$u(u^{2}+1)(u^{2}+3)(u^{9}-19u^{8}+\cdots-654u+82)$
c_{12}	$(u-1)^3(u+1)^2$ $\cdot (u^9 + 2u^8 - 8u^7 - 18u^6 + 18u^5 + 50u^4 + 4u^3 - 34u^2 + 9u + 8)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^9 + 40y^8 + \dots + 6177y - 4096)$
c_2, c_6	$((y-1)^5)(y^9+4y^8+\cdots+145y-64)$
$c_3, c_4, c_5 \\ c_{10}, c_{11}$	$y(y+1)^2(y+3)^2(y^9+17y^8+\cdots+8y-4)$
c_7, c_8, c_{12}	$((y-1)^5)(y^9 - 20y^8 + \dots + 625y - 64)$
<i>c</i> 9	$y(y+1)^2(y+3)^2(y^9+17y^8+\cdots-49688y-6724)$