Inference with Graphical Models

Presented by - Amruta Purandare

Date - 09/14/2005

CS3710 Advanced Al

Overview

- Query Types
- Complexity of answering queries
- Simple Inferences for chain, loop n/ws
- Variable Elimination

Query I: Conditional Probability

- Given evidence: E=e
- Query: Y
- P(Y=y|E=e) = P(Y=y, E=e) / P(E=e)
- $P(Y=y, E=e) = \sum_{w} P(Y=y, E=e, w); W=X-Y-E$
- $P(E=e) = \Sigma_y P(Y=y, E=e)$

Query II: Most Probable Explanation

- Given evidence: E=e
- Find: most likely assignment to ALL nonevidence variables; W=X-E
- \bullet MPE(W|E=e) = max_w P(w, E=e)
- MPE(A,W-A|E=e) != max P(A|E=e)

Query III: Maximum A Posteriori

- Given evidence: E=e
- Find: most likely assignment to only SOME nonevidence variables; Y=X-E-Z
- MAP(Y|E=e) = max_y Σ_z P(y,z|E=e)
- Non-monotonic: MAP(Y1|E) != MAP(Y1,Y2|E=e)
- General Case of MPE

Summary

- Probability Query
 - OFind: P(Y|E=e)
- MPE
 - ○Find: max_w P(w|E=e); W=X-E
- MAP
 - \bigcirc Find: max_y P(y|E=e); Y=X-E-Z

Complexity

Given BN β over X, where x ϵ val(X)

Probability Query

Decide: P(X=x)>0 NP-complete Compute: P(X=x) #P-complete

MPE:

If there exists x such that $P(x)>\delta$ NP-complete

MAP:
NP-hard

#P (Sharp-P)

- NP problems:
 - are there any solutions that satisfy given constraints?
 - e.g. 3SAT problem, subset-sum problem
- #P

How many solutions?

e.g. how many solutions satisfy a CNF formula how many subsets of set S add to T

Background (from wikipedia)

- P: solvable in polynomial time
- P-complete: subclass of P, which all problems in P can be reduced to in polynomial time
- NP: solution can be guessed or verified in polynomial time
- NP-Hard: every NP is reducible to, in poly-time
- NP-complete: subclass of NP which is NP-Hard if you solve a NP-complete problem in poly-time, you can solve all NP problems in poly-time

Theorem 6.2.1

Decision problem P(X=x)>0 is NPcomplete

Simple Chain

- $P(B) = \Sigma_a P(a) P(B|a)$
- $P(C) = \Sigma_b P(b) P(C|b)$

- $P(X_{i+1}) = \Sigma_{xi} P(x_i) P(X_{i+1}|x_i)$ takes $O(nk^2)$ k² multiplications, k(k-1) additions
- $P(X_n) = \sum_{x_{n-1}...} \sum_{x_2} \sum_{x_1} P(x_1, x_2, ..., x_{n-1}, X_n)$ takes $O(k^n)$

- $p(W) = \Sigma_c \Sigma_s \Sigma_r p(W|r,s) p(r|c) p(s|c) p(c)$
- = $\Sigma_s \Sigma_r p(W|r,s) \Sigma_c p(r|c) p(s|c) p(c)$
- = $\Sigma_s \Sigma_r p(W|r,s) T(r,s)$
- $\neq \Sigma_s \Sigma_r p(W|r,s) p(r) p(s)$

Factor Product

b1	c1	0.1
b1	c2	0.6
b2	c1	0.3
b2	c2	0.4

a1	b1	c1	0.5*0.1
a1	b1	c2	0.5*0.6
a1	b2	c1	0.2*0.3
a1	b2	c2	0.2*0.4
a2	b1	c1	0.1*0.1
a2	b1	c2	0.1*0.6
a2	b2	c1	0.3*0.3
a2	b2	c2	0.3*0.4
а3	b1	c1	0.2*0.1
а3	b1	c2	0.2*0.6
а3	b2	c1	0.4*0.3
а3	b2	c2	0.4*0.4

$$\emptyset(x,y,z) = \emptyset1(x,y) \cdot \emptyset2(y,z)$$

Factor Product

a1	b1	0.5
a1	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

b1	c1	0.1
b1	c2	0.6
b2	c1	0.3
b2	c2	0.4

a1	b1	c1	0.5*0.1
a1	b1	c2	0.5*0.6
a1	b2	c1	0.2*0.3
a1	b2	c2	0.2*0.4
a2	b1	c1	0.1*0.1
a2	b1	c2	0.1*0.6
a2	b2	c1	0.3*0.3
a2	b2	c2	0.3*0.4
а3	b1	c1	0.2*0.1
a3	b1	c2	0.2*0.6
а3	b2	c1	0.4*0.3
a3	b2	c2	0.4*0.4

$$\emptyset(x,y,z) = \emptyset1(x,y) \cdot \emptyset2(y,z)$$

Factor Product

b1	c1	0.1
b1	c2	0.6
b2	c1	0.3
b2	c2	0.4

a1	b1	c1	0.5*0.1
a1	b1	c2	0.5*0.6
a1	b2	c1	0.2*0.3
a1	b2	c2	0.2*0.4
a2	b1	c1	0.1*0.1
a2	b1	c2	0.1*0.6
a2	b2	c1	0.3*0.3
a2	b2	c2	0.3*0.4
а3	b1	c1	0.2*0.1
а3	b1	c2	0.2*0.6
a3	b2	c1	0.4*0.3
a3	b2	c2	0.4*0.4

$$\emptyset(x,y,z) = \emptyset1(x,y) \cdot \emptyset2(y,z)$$

Factor Product

b1	c1	0.1
b1	c2	0.6
b2	c1	0.3
b2	c2	0.4

a1	b1	c1	0.5*0.1
a1	b1	c2	0.5*0.6
a1	b2	c1	0.2*0.3
a1	b2	c2	0.2*0.4
a2	b1	c1	0.1*0.1
a2	b1	c2	0.1*0.6
a2	b2	c1	0.3*0.3
a2	b2	c2	0.3*0.4
a3	b1	c1	0.2*0.1
a3	b1	c2	0.2*0.6
а3	b2	c1	0.4*0.3
а3	b2	c2	0.4*0.4

$$\emptyset(x,y,z) = \emptyset1(x,y) \cdot \emptyset2(y,z)$$

Factor Marginalization

$$\emptyset(x) = \Sigma_y \, \emptyset(x,y)$$

Properties

$$\bigcirc$$
ø1.ø2 = ø2.ø1

$$\bigcirc \Sigma_{x} \Sigma_{y} \otimes = \Sigma_{y} \Sigma_{x} \otimes$$

- Associative
 - \bigcirc (ø1.ø2).ø3 = ø1.(ø2.ø3)
- Σ_x ø1ø2 = ø1 Σ_x ø2 if x ¢ scope[ø1]

Variable Elimination

- $p(d) = \Sigma_c \Sigma_b \Sigma_a p(a,b,c,d)$
- $\bullet = \Sigma_{c} \Sigma_{b} \Sigma_{a} \otimes_{a} \otimes_{b} \otimes_{c} \otimes_{d}$
- ...assuming scope[\emptyset_a]={a}, scope[\emptyset_b]={a,b}, scope[\emptyset_c]={b,c} scope[\emptyset_d]={c,d}
- $= \Sigma_{c} \Sigma_{b} \emptyset_{c} \emptyset_{d} \Sigma_{a} \emptyset_{a} \emptyset_{b}$
- $= \Sigma_{c} \emptyset_{d} \Sigma_{b} \emptyset_{c} \Sigma_{a} \emptyset_{a} \emptyset_{b}$

Cont...

p(c,d,i,g,l,s,j,h)

- = p(c) p(i) p(d|c) p(g|i,d) p(s|i) p(l|g) p(j|l,s) p(h|g,j)
- = Ø(c) Ø(i) Ø(d,c) Ø(g,i,d) Ø(s,i) Ø(l,g) Ø(j,l,s) Ø(h,g,j)

Cont...

Eliminating c,

- = $\Sigma_{l}\Sigma_{s}\Sigma_{g}\Sigma_{h}\Sigma_{i}\Sigma_{d}\emptyset(i) \emptyset(g,i,d) \emptyset(s,i) \emptyset(l,g) \emptyset(j,l,s)$ $\emptyset(h,g,j) \Sigma_{c} \emptyset(c)\emptyset(d,c)$
- = $\Sigma_{l}\Sigma_{s}\Sigma_{g}\Sigma_{h}\Sigma_{i}\Sigma_{d}\emptyset(i) \emptyset(g,i,d) \emptyset(s,i) \emptyset(l,g) \emptyset(j,l,s)$ $\emptyset(h,g,j) \mathcal{I}(d)$

Cont...

Eliminating d,

- $= \sum_{l} \sum_{s} \sum_{g} \sum_{h} \sum_{i} \emptyset(i) \ \emptyset(s,i) \ \emptyset(l,g) \ \emptyset(j,l,s) \ \emptyset(h,g,j)$ $\sum_{d} \mathcal{I}(d) \ \emptyset(g,i,d)$
- $= \sum_{l} \sum_{s} \sum_{g} \sum_{h} \sum_{i} \emptyset(i) \ \emptyset(s,i) \ \emptyset(l,g) \ \emptyset(j,l,s) \ \emptyset(h,g,j)$ $\mathcal{I}(g,i)$

Eliminating i,

- $= \sum_{l} \sum_{s} \sum_{g} \sum_{h} \emptyset(l,g) \ \emptyset(j,l,s) \ \emptyset(h,g,j) \ \sum_{i} \emptyset(i) \ \emptyset(s,i)$ $\mathcal{I}(g,i)$
- = $\Sigma_{I}\Sigma_{s}\Sigma_{g}\Sigma_{h} \phi(I,g) \phi(j,I,s) \phi(h,g,j) \tau(s,g)$

Cont..

Eliminating h,

- $= \Sigma_{l} \Sigma_{s} \Sigma_{g} \, \emptyset(l,g) \, \emptyset(j,l,s) \, \mathcal{I}(s,g) \, \Sigma_{h} \, \emptyset(h,g,j)$
- = $\Sigma_{I}\Sigma_{S}\Sigma_{g} \phi(I,g) \phi(j,I,s) \tau(s,g) \tau(g,j)$

Eliminating g,

- $= \sum_{l} \sum_{s} \emptyset(j,l,s) \sum_{g} \emptyset(l,g) \eta(s,g) \eta(g,j)$
- = $\sum_{l} \sum_{s} \emptyset(j,l,s) \eta(l,s,j)$

Eliminating s,

$$= \sum_{i} q(j,l)$$

Eliminating I,

$$= T(j)$$

Restricted Factors - when given evidence

Used for calculating conditional prob. queries

$$P(Y'|U=u) = \frac{P(Y',U=u)}{P(U=u)} = \frac{P(Y',U=u)}{\sum_{u} P(Y'=u)}$$

- Notation: Ø_{IU=u}(Y')= Ø(Y',u) where Y'=Y-U
- Student Example revisited:
 - P(C,D,I,G,S,L,H)
 - $= \varnothing(C) \ \varnothing(I) \ \varnothing(D,C) \ \varnothing(G,I,D) \ \varnothing(S,I) \ \varnothing(L,G) \ \varnothing(J,L,S) \ \varnothing(H,G,J)$
 - Given I=i, H=h,

$$P(C,D,I=i,G,S,L,J,H=h)$$

=
$$\emptyset(C) \otimes_{|I=i}() \otimes(D,C) \otimes_{|I=i}(G,D) \otimes_{|I=i}(S) \otimes(L,G) \otimes(J,L,S)$$

 $\otimes_{|I+i}(G,J)$