

Universidad Politécnica de Baja California

Trabajo que para evaluar presenta:

Yair Dalariel Ruiz Tolentino

Matricula:

180393

Tema:

Teoría de Grafos - Examen

Docente:

Alicia del Refugio López Aguirre

Clase:

Lenguajes y Autómatas

Mexicali, B.C

1. Para el siguiente grafo obtenga la matriz de adyacencia, la secuencia de grados y la lista de adyacencia.

Matriz de adyacencia:

	Α	В	C	D	Е	F	G	Н	- 1	J
Α	0	1	0	1	1	0	0	0	1	0
В	1	0	1	0	1	0	1	0	0	0
С	0	1	0	0	0	0	1	1	0	0
D	1	0	0	0	0	0	0	0	1	0
E	1	1	0	0	0	1	0	0	1	0
F	0	0	0	0	1	0	1	0	1	1
G	0	1	1	0	0	1	0	1	0	0
н	0	0	1	0	0	0	1	0	0	1
1	1	0	0	1	1	1	0	0	0	1
J	0	0	0	0	0	1	0	1	1	0

Secuencia de grados:

(4, 4, 3, 2, 4, 4, 4, 4, 3, 5, 3)

Lista de adyacencia:

 $\{ \{B,D,E,I\}, \{A,C,E,G\}, \{B,G,H\}, \{A,I\}, \{A,B,F,I\}, \{E,G,I,J\}, \{B,C,F,H\}, \{C,G,J\}, \{A,D,E,F,J\}, \{F,H,I\} \}$

- 2.- Para el grafo del problema anterior determine si es posible lo siguiente:
- a) Un ciclo euleriano.
 - No, según el teorema necesario donde cada vértice debe tener un número de grado par.
- b) Un camino euleriano.
 - Sí, según el teorema de que por lo menos dos vértices deben tener un grado impar.
- c) Un ciclo hamiltoniano.
 - Sí, según el teorema donde se cumple la condición de que la suma de dos grafos no adyacentes sea mayor o igual a n (donde n es el número de aristas recorridas): grado (vértice X) + grado (vértice Y) >= n. Entonces se puede decir que por lo menos existe un ciclo hamiltoniano.
- d) Un camino hamiltoniano.
 - Sí, según el teorema donde se cumple la condición de que la suma de dos grafos no adyacentes sea mayor o igual a n-1 (donde n es el número de aristas recorridas): grado (vértice X) + grado (vértice Y) >= n-1. Entonces se puede decir que por lo menos existe un camino hamiltoniano.

3.-En la siguiente topología de red, el nodo S manda información al resto de los nodos. Utilizar el algoritmo de Dijkstra para encontrar la ruta de costo mínimo entre S y el nodo 6.

Camino: S-1-6 Distancia: 11