数字集成电路设计课程设计

快速傅里叶变换电路设计

方案讨论

第六组 罗恬齐奕翔杨文曦

School of Microelectronics, F1703901 Shanghai Jiao Tong University https://github.com/VenciFreeman/FFT_ChipDesign Friday, March 20, 2020, Version 3.3

TOC

运算原理及数据表示整体架构设计 整体架构设计 模块细节设计 资源及面积统计

运算原理及数据表示

FFT算法原理及选择

算法中的数据表示方式

16点基4-FFT算法流图

16点基4-FFT原理

$$X(r) = X_0(r) + W_N^r X_1(r) + W_N^{2r} X_2(r) + W_N^{3r} X_3(r)$$

$$X\left(r + \frac{N}{4}\right) = X_0(r) - jW_N^r X_1(r) - W_N^{2r} X_2(r) + jW_N^{3r} X_3(r)$$

$$X\left(r + \frac{N}{2}\right) = X_0(r) - W_N^r X_1(r) + W_N^{2r} X_2(r) - W_N^{3r} X_3(r)$$

$$X\left(r + \frac{3N}{4}\right) = X_0(r) + jW_N^r X_1(r) - W_N^{2r} X_2(r) - jW_N^{3r} X_3(r)$$

基4相比基2的优点

复数乘法减少,加减法可通过线性变换优化

数据表示

$$z = a + bj$$

整体架构设计

整体架构框图 时序过程和地址产生 资源的充分利用

整体时序过程图

各模块																													
时钟周期	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
输入	第N组输入数据到REG1													第N+1组输入数据到REG1															
计算	两级蝶形运算 两级蝶形运算 两级蝶形运算																												
输出	第N-1组从REG3输出数据 第N-1组从REG3输出数据											第N组从REG3输出数据																	
REGISTER																													
0	第N组输入										第N+1组输入																		
1	蝶形运算中间值									蝶形运算	草中间值	1																	
2	第N-2组输出 第N-1组输出																	第N组	1输出										

REG0

REG1

REG2

流水线	时钟周期	读数据	蝶形运算	写数据
	5	0, 1, 2, 3	1	0, 4, 8, 12
第一级	6	4, 5, 6, 7	1	1, 5, 9, 13
蝶形运算	7	8, 9, 10, 11	1	2, 6, 10, 14
	8	12, 13, 14, 15	1	3, 7, 11, 15
	9	0, 1, 2, 3	1	0, 4, 8, 12
第二级	10	4, 5, 6, 7	1	1, 5, 9, 13
蝶形运算	11	8, 9, 10, 11	1	2, 6, 10, 14
	12	12, 13, 14, 15	1	3, 7, 11, 15

地址产生

两个RAM交替使用

第一	·次	第二	.次	第三	次	第四	第四次				
00 00	0	01 00	4	10 00	8	11 00	12				
00 01	1	01 01	5	10 01	9	11 01	13				
00 10	2	01 10	6	10 10	10	11 10	14				
00 11	3	01 11	7	10 11	11	11 11	15				
第一	·次	第二	.次	第三	次	第四	次				
00 00	0	00 01	1	00 10	2	00 11	3				
01 00	4	01 01	5	01 10	6	01 11	7				
10 00	8	10 01	9	10 10	10	10 11	11				
11 00	12	11 01	13	11 10	14	11 11	15				

运算资源的充分利用

输入

16个数 16组输入 16个周期

计算和转存

两级FFT 8次蝶形运算 8个周期

输出

16个数 16组输出 16个周期

运算逻辑设计

蝶形运算模块设计控制逻辑 乘法与加减法的实现方式

蝶形运算

整个芯片共采用一个蝶形运算模块

加减法的硬件实现

加法

直接使用加法运算

减法

取补码后使用加法运算

乘法的硬件实现

方案一

使用移位方式计算乘法会有四舍五入累积误差

乘法的硬件实现

方案二

用复数加减代替复数乘法 仍会有四舍五入累积误差

$$(X + Yj)(P + Qj) = a + bj$$

 $a = (P - Q)Y + (X - Y)P$
 $b = (P + Q)X - (X - Y)P$

将一个复数乘法变为三个复数加法

面积估算

管脚统计及面积估算

管脚统计及面积估算

• 串行输入: 34个管脚

• 串行输出: 34个管脚

• 时钟: 1个管脚

• 输入使能信号: 1个管脚

• 输出使能信号: 1个管脚

•接地:约17个管脚

共88个管脚

如果芯片为正方形

$$\left(76\mu m \times \frac{88}{4} + 210\mu m \times 2\right)^2 = 4.376464mm^2$$

参考资料

- [1] Siva Kumar Palaniappan, et al. Design of 16-point Radix-4 Fast Fourier Transform in 0.18µm CMOS Technology[J]. American Journal of Applied Sciences 4 (8): 570-575, 2007
- [2] N. Weste, M. Bickerstaff, et al. A 50MHz 16-point FFT processor for WLAN application: IEEE 1997 Custom Integrated Circuits Conference: 457-460, 1997
- [3] 丁晓磊等. 16点基4-FFT芯片设计技术研究[J]. 信息技术. 64-71, 2007(1)

