Autonomous mobile robot | the key questions

- The three key questions in Mobile Robotics
 - Where am I?
 - Where am I going ?
 - How do I get there ?
- To answer these questions the robot has to
 - have a model of the environment (given or autonomously built)
 - perceive and analyze the environment
 - find its position/situation within the environment
 - plan and execute the movement

Motion Control | kinematics and motion control

- Wheel types and its constraints
 - Rolling constraint
 - no-sliding constraint (lateral)
- Motion control

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1 \cdots \dot{\varphi}_n, \theta, geometry)$$

$$\begin{bmatrix} \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_n \end{bmatrix} = f(\dot{x}, \dot{y}, \dot{\theta})$$

TH zürich

Perception | sensing

- Laser scanner
 - time of flight

Camera

Perception | information extraction

Filtering / Edge Detection

- **Keypoint Features**
 - features that are reasonably invariant to rotation, scaling, viewpoint, illumination
 - FAST, SURF, SIFT, BRISK, ...

- Keypoint matching
 - BRISK example

TH zürich Autonomous Systems Lab

Localization | where am I?

- SEE: The robot queries its sensors → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

Cognition | Where am I going ? How do I get there ?

Cognition | Where am I going ? How do I get there ?

- Global path planning
 - Graph search

- Local path planning
 - Local collision avoidance

Next generation of Robots

| mobile, smart, connected, adaptive and closer to humans

Service Robots

Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance

Robotics | challenges and technology drivers

- The challenges
 - Seeing, feeling and understanding the world
 - Dealing with *uncertain* and partially available information
 - Act appropriately onto the environment
- **Technology drivers** technology evolutions enable robotics revolutions
 - Laser time-of-flight sensors
 - Cameras and IMUs combined with required calculation power
 - Torque controlled motors, "soft" actuation
 - New materials

