Theorem. Every prime greater than 2 is odd.

Proof. Fix a prime p > 2. Observe that $(p-1)^2 \equiv 1 \mod p$, since

$$(p-1)^2 = p^2 - 2p + 1,$$

= $p(p-2) + 1,$
= $0 + 1 \mod p,$
= $1 \mod p.$

That is, |p-1| divides 2, where |p-1| is the order of p-1 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, the multiplicative group of integers modulo p. Since p>2, we have that p-1>1. Then, certainly $p-1\neq 1$. Thus, it cannot be the case that the order of p-1 is 1, so it must be the case that p-1 has order 2 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. By Lagrange's Theorem, this gives us that 2 divides the order of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. But $|(\mathbb{Z}/p\mathbb{Z})^{\times}| = p-1$, so this implies that p-1 is even. Therefore, p is odd.