Grundlagen der Rechnerarchitektur Blatt 4

Marco Deuscher Carolin Schindler

18. November 2019

1 Aufgabe: Negativ, Positiv: So viele Möglichkeiten

(a) 11000101010₂

vorzeichenbehaftet: -554_{10}

negative Zahl mit Betrag: $1000101010_2 \rightarrow (2 + 2^3 + 2^5 + 2^9)_{10} = 554_{10}$

b-1-Komplement: -469_{10}

negative Zahl mit Betrag: $00111010101_2 \rightarrow (1+2^2+2^4+2^6+2^7+2^8)_{10} = 469_{10}$

b-Komplement: -470_{10}

"b-1-Komplement -1" : $-469_{10} - 1_{10}$

(b) 01111010₂

vorzeichenbehaftet: 122_{10}

positive Zahl mit Betrag: $1111010_2 \rightarrow (2+2^3+2^4+2^5+2^6)_{10} = 122_{10}$

b-1-Komplement: 122_{10}

positive Zahl mit Betrag: $01111010_2 \rightarrow (2+2^3+2^4+2^5+2^6)_{10} = 122_{10}$

b-Komplement: 121_{10}

"b-1-Komplement -1" : $122_{10} - 1_{10}$

(c) 1111111₂

vorzeichenbehaftet: -63_{10}

negative Zahl mit Betrag: $111111_2 \rightarrow (1+2+2^2+2^3+2^4+2^5)_{10} = 63_{10}$

b-1-Komplement: -0_{10}

negative Zahl mit Betrag: $0000000_2 \rightarrow 0_{10}$

b-Komplement: -1_{10}

"b-1-Komplement -1" : $-469_{10}-1_{10}\,$

Aufgabe: Multiplikation und Division $\mathbf{2}$

(a)

```
1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad \cdot \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad = 10001001001010_2
                                         1
                                             1
                                                 1 0
                                                            0
                               1\quad 1\quad 1\quad 0\quad 0\quad 1
                          1 \ 1 \ 1 \ 0 \ 0 \ 1
         1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1
```

(b)

```
1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad : \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad = 1010101_2 Rest \colon 10011_2
0
     1
          1
0
           1
      1
                1
                     1
      0
          1
               0
                    0 0 0 0
                    0 1 1 0
                1
           0
               0
                    1
                        0 1
                                 0 0 1
                         1 0
```

3 Keine Brüche, nur Kommas

(a) $1,453125_{10} \rightarrow 000001011101$ (ohne Abschneiden)

$$0,453125 * 2 = 0,90625$$

$$0,90625 * 2 = 1,8125$$

$$0,8125 * 2 = 1,625$$

$$0,625 * 2 = 1,25$$

$$0,25 * 2 = 0,5$$

$$0,5 * 2 = 1$$

1

0 1 0 0

1 0

1 1

(b) $0, \overline{3}_{10} \rightarrow 000000010101_2$ (mit Abschneiden)

$$\frac{1}{3} \cdot 2 = \frac{2}{3}$$

$$\frac{2}{3} \cdot 2 = \frac{4}{3}$$

$$\frac{1}{3} \cdot 2 = \frac{2}{3}$$

$$\frac{2}{3} \cdot 2 = \frac{4}{3}$$

Es gibt (abgesehen von der Einführung eines Periodenzeichens: $0, \overline{3}_{10} \rightarrow 000000\overline{01}_2$) keine Möglichkeit die Zahl als 12 Bit Festkommazahl darzustellen.

4 Multiplizieren und Dividieren, aber schnell

- (a) 1001010100_2 (entspricht $\ll 1_{10}$)
- **(b)** 010100_2 (entspricht $\ll 2_{10}$)
- (c) 000000000001_2 (entspricht $\gg 9_{10}$)
- (d) 000000000001010₂ (entspricht $\gg 3_{10}$) Interpretation als Festkommazahl mit 8 Bit vor und 8 Bit nach dem Komma $\to (2^{-7}+2^{-5})_{10}=0,0390625_{10}$

5 Binär und doch Dezimal

(a) $377_{10} \rightarrow 001101110111_{BCD}$

$$3_{10} \rightarrow 0011_2$$
 $7_{10} \rightarrow 0111_2$

(b)
$$17_{10} + 13_{10} \rightarrow 00110000_{BCD} \rightarrow 30_{10}$$

$$\begin{aligned} &17_{10} \rightarrow 00010111_{BCD} \\ &13_{10} \rightarrow 00010011_{BCD} \end{aligned}$$

(c) $110_{10} + 99_{10} \rightarrow 001000001001_{BCD} \rightarrow 209_{10}$

$$\begin{aligned} 110_{10} &\to 000100010000_{BCD} \\ 99_{10} &\to 10011001_{BCD} \end{aligned}$$

(d)
$$3_{10} \cdot 4_{10} \rightarrow 00010010_{BCD} \rightarrow 12_{10}$$

$$3_{10} \rightarrow 0011_{BCD}$$

 $4_{10} \rightarrow 0100_{BCD}$

6 Was passiert hier?

(a)
$$01011110_2 + 01101111_2 = 1100101_2$$

→ ein Bit fehlt, um das Ergebnis korrekt darzustellen (Ergebnis muss positiv sein, hier wäre es negativ).

(b)
$$1011111_2 - 0110111_2 = 1011111_2 + 1001000_2 = 0100111_2$$

→ Überlauf bei Addition

Knobelaufgabe

Es gibt Zahlen, die im Dezimalsystem weder irrational noch periodisch sind und im Dualsystem nicht durch eine endliche Anzahl an Stellend darstellbar sind. Ein Beispiel hierfür ist die Zahl $0, 1_{10} \rightarrow 0, 00011_2$:

$$0, 1 \cdot 2 = 0, 2$$

$$0, 2 \cdot 2 = 0, 4$$

$$0, 4 \cdot 2 = 0, 8$$

$$0, 8 \cdot 2 = 1, 6$$

$$0, 6 \cdot 2 = 1, 2$$

 $0, 2 \cdot 2 = 0, 4$