Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_st-nat*

Barem de evaluare și de notare

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 = (2+i)^2 = 4+4i+i^2 =$	2n
		3 p
	=3+4i	2p
2.	f(m)=1	2p
	$m-3=1 \Leftrightarrow m=4$	3 p
3.	x-3=9	3 p
	x=12 care verifică ecuația	2p
4.	Numărul submulțimilor cu un număr impar de elemente ale unei mulțimi cu 4 elemente este	_
	egal cu $C_4^1 + C_4^3 =$	3 p
	=8	2 p
5.	$\overrightarrow{MB} = \overrightarrow{MA} + \overrightarrow{AB}$	2p
	$\overrightarrow{MC} = \overrightarrow{MD} + \overrightarrow{DC} \Rightarrow \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{AB}$	3 p
6.	$\cos C = \sin B , \sin C = \cos B$	2p
	$\sin B \cdot \cos C + \sin C \cdot \cos B = \sin^2 B + \cos^2 B = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 0 & 2014 \\ 1 & -1 \end{vmatrix} = 0 \cdot (-1) - 1 \cdot 2014 =$	3 p
	= -2014	2p
b)	$A \cdot A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2014 & -2014 \\ -1 & 2015 \end{pmatrix}$	3p
	$A + A \cdot A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 2014 & -2014 \\ -1 & 2015 \end{pmatrix} = \begin{pmatrix} 2014 & 0 \\ 0 & 2014 \end{pmatrix} = 2014I_2$	2p
c)	$A^{-1} = \frac{1}{2014} \begin{pmatrix} 1 & 2014 \\ 1 & 0 \end{pmatrix}$	3р
	$X = 2014 A^{-1} = \begin{pmatrix} 1 & 2014 \\ 1 & 0 \end{pmatrix}$	2p
2.a)	$f(0) = 0^3 - 6 \cdot 0^2 + m \cdot 0 - 6 =$	2p
	=-6	3 p
b)	$x_1 + x_2 + x_3 = 6$, $x_1 x_2 x_3 = 6$	2p
	$\frac{1}{x_1 x_2} + \frac{1}{x_1 x_3} + \frac{1}{x_2 x_3} = \frac{x_1 + x_2 + x_3}{x_1 x_2 x_3} = \frac{6}{6} = 1$	3 p
c)		2p
	$x_1x_2 + x_1x_3 + x_2x_3 = 1 \cdot 2 + 1 \cdot 3 + 2 \cdot 3 \Rightarrow m = 11$	3p

SUBIECTUL al III-lea (30 de puncte)

	(50 de punció		
1.a)	$f'(x) = \frac{x'(x^2+1) - x(x^2+1)'}{(x^2+1)^2} =$	2p	
	$= \frac{1 - x^2}{\left(x^2 + 1\right)^2} = \frac{(1 - x)(1 + x)}{\left(x^2 + 1\right)^2}, \ x \in \mathbb{R}$	3р	
b)	y - f(1) = f'(1)(x-1)	2p	
	$f(1) = \frac{1}{2}$, $f'(1) = 0$, deci ecuația tangentei este $y = \frac{1}{2}$	3p	
c)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = -1$	2p	
	$f'(x) < 0$ pentru $x \in (-\infty, -1)$, $f'(x) > 0$ pentru $x \in (-1, 1)$, $f'(x) < 0$ pentru $x \in (1, +\infty)$	2p	
	Punctele de extrem sunt $x = -1$ și $x = 1$	1p	
2.a)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+2} - \frac{1}{x+3} \right) dx = \int_{0}^{1} \frac{1}{x+1} dx =$	2p	
	$= \ln\left(x+1\right) \Big _{0}^{1} = \ln 2$	3р	
b)	F este o primitivă a lui $f \Rightarrow F''(x) = f'(x) = -\frac{1}{(x+1)^2} - \frac{1}{(x+2)^2} - \frac{1}{(x+3)^2}$	2p	
	$F''(x) < 0$ pentru orice $x \in (-1, +\infty)$, deci F este concavă pe $(-1, +\infty)$	3 p	
c)	$\mathcal{A} = \int_{0}^{n} f(x) dx = \int_{0}^{n} \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} \right) dx = \ln\left((x+1)(x+2)(x+3) \right) \Big _{0}^{n} =$	2p	
	$= \ln \frac{(n+1)(n+2)(n+3)}{\epsilon}$	1p	
	$n \ge 1 \Rightarrow (n+1)(n+2)(n+3) \ge 24 \Rightarrow A \ge \ln 4$ pentru orice număr natural nenul n	2p	