DVB S2 Modem IP Core in Matlab

IP CORE SERIAL NUMBER	1
IP TYPES	1
STANDARDS	1
LANGUAGES	2
DEVELOPMENT ENVIRONMENT	2
MATURITY / STATUS	2
OVERVIEW	
DELIVERABLES	
BLOCK DIAGRAM	
SOURCE FILE DESCRIPTION	
INTEGRATION GUIDE	
DEVELOPER	
LICENSE	5

IP Core Serial Number

Angelia DVB S2 Modem Matlab No 002 v1.0

IP Types

Soft IP

Standards

Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications;

Part 1: DVB-S2

Languages

Matlab

Development Environment

MathWorks

Maturity / Status

Pre-Silicon

Overview

The aim of this IP core is to implement RTL components for DVB-S2 Modulator and Demodulator.

The IP core will match exactly what was described on the DVB-S2 base spec (no extensions yet). This means components will handle

- Frame types: Normal and short
- Constellations: 8 PSK, 16 APSK and 32 APSK
- Code rates: 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10,

Components will also handle parameters changing on every frame, that is, they will handle frame with config A then a frame with config B immediately afterwards without requiring reset or wait cycles

Use AXI-Stream interfaces

Deliverables

Matlab source code
HDL simulation models
Comprehensive documentation

Block Diagram

Functional block diagram of the DVB-S2 System from ETSI EN 302 307-1 V1.4.1

Source File Description

Key source code files:

main.m

Main entry

dvbs2.m

DVB S2 modulation for Additive White Gaussian Noise (AWGN) channel

BCHCoeffs.m

BCH code coefficients

gamma dvbs2

The ratio of the outer circle radius to the inner circle radius ($\gamma = R2/R1$)

modulation

Modulates the stream of input bits according to the 16apsk mapping

DVBS2Constellation

The constellation points and the bit mapping specified in the DVB-S2 Standard ETSI EN 302 307.

AWGNChannel

Additive white Gaussian noise (AWGN) Channel

soft_demod

Demodulates the stream of symbols according to the 16apsk mapping defined for a certain gamma value.

DVBS2Constellation

dvbs2 AMC.m

DVB S2 modulation for ideal channel

BCHCoeffs.m

BCH code coefficients

gamma dvbs2

The ratio of the outer circle radius to the inner circle radius ($\gamma = R2/R1$)

modulation

Modulates the stream of input bits according to the 16apsk mapping

DVBS2Constellation

The constellation points and the bit mapping specified in the DVB-S2 Standard ETSI EN 302 307.

AWGNChannel

Additive white Gaussian noise (AWGN) Channel

raychannel.m

ray channel

soft demod

Demodulates the stream of symbols according to the 16apsk mapping defined for a certain gamma value.

4

mod_8psk.m

mod_16apsk.m

mod_32apsk.m

nonlin_phase.m

nonlinearity.m

Integration Guide

See INTEGRATION GUIDE.pdf

Developer

Mark Chen Angelia Technology / ICTech http://www.angelia.eu.org

License

See "License Agreement".