

الرقمي المنطق الرقمي عال - تصميم المنطق الرقمي CSC 211 - Digital Logic Design First Term 1439/1440

## **Solution to Midterm #1**

## **General Information**

• Date: Wednesday, October 24th, 2018

• Duration: 60 minutes

• Total marks: 20

## **Instructions and Guidelines**

- No books or notes are permitted.
- Computer usage is prohibited.
- Cell phones must be turned off.
- Calculators are not allowed.
- Try to answer all questions.
- Write down your answers neatly in this booklet.
- To earn partial marks, justify your answers.
- If you need extra paper, request some from a proctor.

## **Grading**

| Question | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Total         |
|----------|----|----|----|----|----|----|----|----|----|-----|---------------|
| Points   | 2  | 2  | 1  | 2  | 2  | 2  | 2  | 3  | 3  | 1   | <del>20</del> |

| <b>Student Name:</b> |  |
|----------------------|--|
| ID Number:           |  |

Q1 [2 Points]

Convert 44.375<sub>10</sub> to binary.

| 44 / 2 = 22, <b>0</b>        | 0.375 * 2 = 0.75            |  |  |  |
|------------------------------|-----------------------------|--|--|--|
| 22 / 2 = 11, <b>0</b>        | 0.75 * 2 = 1.5              |  |  |  |
| 11 / 2 = 5, 1                | 0.5 * 2 = 1.0               |  |  |  |
| 5 / 2 = 2, 1                 | <b>→</b> 0.011 <sub>2</sub> |  |  |  |
| 2/2 = 1, 0                   |                             |  |  |  |
| 1/2=0, 1                     |                             |  |  |  |
| <b>→</b> 101100 <sub>2</sub> |                             |  |  |  |
| → 101100.011 <sub>2</sub>    |                             |  |  |  |

Q2 [2 Points]

Convert 725<sub>8</sub> to hexadecimal.

- 7 2  $5_8$   $\downarrow$   $\downarrow$   $\downarrow$ 111 010  $101_2 = 0001 \ 1101 \ 0101_2$ 
  - $\begin{array}{cccc}
    \downarrow & \downarrow & \downarrow \\
    1 & D & 5_{16}
    \end{array}$

Q3 [1 Point]

Convert 985<sub>10</sub> to BCD.



Q4 [2 Points]

Convert the Gray code 10110010 to binary.

Q5 [2 Points]

Express 0.00011001<sub>2</sub> in the single-precision floating-point format.

$$0.00011001_2 = 1.1001 * 2^{-4}$$

Q6 [2 Points]

Convert the sign-magnitude number 1011011110 to the 1's complement form.

 $10110111110_{SM}$  represents  $-0110111110_2$ 

-011011110<sub>2</sub> can be represented in 1's complement form by:

1's complement of  $(0011011110) \rightarrow 1100100001$ 

Q7 [2 Points]

Subtract the following BCD numbers:

Q8 [3 Points]

Divide the following unsigned binary numbers:

Q9 [3 Points]

Multiply the following 2's complement numbers:



Q10 [1 Point]

Determine which of the following odd parity codes are in error (if any): (a) 10101101 and (b) 1111101011. Justify your answer to get the full marks.

Number of 1's in 10101101 is odd → No error!

Number of 1's in 1111101011 is even → Error!