Predicting IMDB score for TV shows

The Problem

- There have been 38 cancelled TV shows in 2018 from 5 networks alone (ABC, CBS, The CW, Fox, NBC)
- The average cost for a 30-minute comedy pilot is \$2 million.
- An hour-long drama averages out at \$5.5 million.
- Per ScreenRant, 65% of new shows get cancelled per season
- All this is compounded by the fact that streaming is increasing in popularity, actively taking away from traditional tv-based viewing

The Question

- Can Hollywood's bean counters be replaced with machine learning?
- Is it possible to predict a show's success based on certain features about the show?

The Dataset

- Data is the modern gold, so there are limited resources on gathering viewership data for tv shows
- Target to predict is IMDB score
- Important features may include:
 - Actors
 - Writers
 - Genre
 - Air time
 - Runtime

The Dataset pt 2

- The intuitive sources:
 - Nielsen \$\$\$
 - IMDB No open API
- Network TV shows from Wikipedia
- APIs used instead:
 - The Movie Database (TMDB)
 - The TVDB (TVDB)
 - The Open Movie Database (OMDB)

Initial Data Exploration

IMDB Rating vs. Votes Number of IMDB Votes IMDB Rating ġ

The Approach/Methodologies

- Features engineered:
 - Actors > imbued weights based on frequency of appearance
 - Runtime > half hour/full/special (movies)
 - Timeslot > Morning/Afternoon/Evening/Late Night
 - First episode aired month > Seasons
 - Awards/nominated > Yes/No
- Models evaluated:
 - Linear Regression
 - Random Forest
 - Gradient Boost

Predicted

Conclusion

- The best model has ~43% of the variance explained by the model.
- The best model has a mean absolute error of .583
 - The mean rating is 7.03
 - One standard deviation is 1.1
- The model will not be able to reliably replace bean counters in the current state
- With better data, the model can be improved for production use

Model	R2	Mean Absolute Error
Linear Regression	0.200	0.715
Random Forest	0.429	0.583
Gradient Boost	0.401	0.599

Next Steps

- Acquire more complete data no missing values
- Utilize per episode data (rather than per series)
 - Evaluate rating trends between and within seasons
 - Writers per episode
 - Directors per episode
 - Guest Stars Y/N
 - Timeslot
- Possibly change the target variable viewership numbers may be a better indicator than ratings, which are very subjective