Insights on Mott Transition and The Pseudogap Through the Veil of a Quantum Impurity Model

ABHIRUP MUKHERJEE

DPS DAY '25 DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

MARCH 19, 2025

Debraj Debata

Siddhartha Patra (Multiverse Computing)

Financial support by IISER K and SERB is gratefully acknowledged.

Prof. Anamitra Mukherjee (NISER Bhubaneshwar)

Prof. Arghya Taraphder (IIT Kharagpur)

Prof. N. S. Vidhyadhiraja (INCASR Bangalore)

- Display exotic properties arising due to strong electronic/spin **interactions**.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

- Display exotic properties arising due to strong electronic/spin **interactions**.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

- Display exotic properties arising due to strong electronic/spin interactions.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

What Makes Them Special - Phenomenology of The Cu-O Superconductors

■ Cu-O planes separated by insulating layers that can be doped.

- Display exotic properties arising due to strong electronic/spin **interactions**.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

- Cu-O planes separated by insulating layers that can be doped.
- Strange metal phase beyond 1-particle description (breakdown of perturbation theory)

- Display exotic properties arising due to strong electronic/spin **interactions**.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

- Cu-O planes separated by insulating layers that can be doped.
- Strange metal phase beyond 1-particle description (breakdown of perturbation theory)
- Pseudogap phase has Fermi arcs and competing fluctuations (strong correlations)

- Display exotic properties arising due to strong electronic/spin **interactions**.
- **Examples**: heavy fermion compounds (CePd₂Si₂), copper oxides (La_{2-x}Sr_xCuO₄), iron pnictides (BaFe₂(As_{1-x}P_x)₂), twisted bilayer graphene.

- Cu-O planes separated by insulating layers that can be doped.
- Strange metal phase beyond 1-particle description (breakdown of perturbation theory)
- Pseudogap phase has Fermi arcs and competing fluctuations (strong correlations)
- Superconductivity is **unconventional** (gap vanishes at points on Fermi surface)

OPEN QUESTIONS

The "normal phases" remain ill-understood:

- simple and universal mechanism for strange metals (akin to Fermi liquid theory)
- Microscopic understanding of the pseudogap phase
- How to connect T = 0 results to those at T > 0?

OPEN QUESTIONS

The "normal phases" remain ill-understood:

- simple and universal mechanism for strange metals (akin to Fermi liquid theory)
- Microscopic understanding of the pseudogap phase
- How to connect T = 0 results to those at T > 0?

Simplest model for realising these phases

- the 2D Hubbard model on square lattice

$$H = -t \sum_{\langle i,j \rangle, \sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

OPEN QUESTIONS

The "normal phases" remain ill-understood:

- simple and universal mechanism for strange metals (akin to Fermi liquid theory)
- Microscopic understanding of the pseudogap phase
- How to connect T = 0 results to those at T > 0?

Simplest model for realising these phases

- the 2D Hubbard model on square lattice

$$H = -t \sum_{\langle i,i\rangle,\sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Existing methods suffer from a variety of problems:

- Quantum Monte Carlo suffers from fermion sign problem at low temperatures
- Dynamical mean-field theory: low lack of *k*-space resolution & large computation cost
- DMRG only works in quasi-1D systems

What is an Impurity Model?

■ Single correlated site, hybridising with conduction bath

What is an Impurity Model?

- Single correlated site, hybridising with conduction bath
- Impurity-bath hybridisation respects C_4 symmetry of 2D square lattice (important!)

What is an Impurity Model?

- Single correlated site, hybridising with conduction bath
- Impurity-bath hybridisation respects C_4 symmetry of 2D square lattice (important!)
- (Much!) **Simpler to solve** than Hubbard model, because of non-interacting conduction bath

What is an Impurity Model?

- Single correlated site, hybridising with conduction bath
- Impurity-bath hybridisation respects C_4 symmetry of 2D square lattice (important!)
- (Much!) Simpler to solve than Hubbard model, because of non-interacting conduction bath

Mapping to the Lattice Model

Impurity model describes local environment of each site.

What is an Impurity Model?

- Single correlated site, hybridising with conduction bath
- Impurity-bath hybridisation respects C_4 symmetry of 2D square lattice (important!)
- (Much!) **Simpler to solve** than Hubbard model, because of non-interacting conduction bath

Mapping to the Lattice Model

- Impurity model describes local environment of each site.
- **Translation** operator maps impurity model quantities to those on the lattice model

Raising bath correlation *W* tunes the impurity model through three phases

Raising bath correlation $\ensuremath{\mathit{W}}$ tunes the impurity model through three phases

■ Impurity **strongly coupled** to Fermi surface

Raising bath correlation \ensuremath{W} tunes the impurity model through three phases

- Impurity **strongly coupled** to Fermi surface
- Impurity coupled **only to parts** of Fermi surface

Raising bath correlation *W* tunes the impurity model through three phases

- Impurity **strongly coupled** to Fermi surface
- Impurity coupled **only to parts** of Fermi surface
- Impurity **decoupled** from the Fermi surface

PSEUDOGAPPING TRANSITION ON THE LATTICE MODEL

- Map Greens functions from impurity model to lattice model.
- Momentum-space DOS reveals **partially gapped** Fermi surface.

MAIN TAKEAWAYS

Simplifies the study of lattice models through appropriate **impurity models**.

MAIN TAKEAWAYS

Simplifies the study of lattice models through appropriate **impurity models**.

Our impurity model realises a **pseudo-gapping transition** in a correlated model.

MAIN TAKEAWAYS

Simplifies the study of lattice models through appropriate **impurity models**.

Our impurity model realises a **pseudogapping transition** in a correlated model.

Generalisations and Extensions

- Tune impurity filling simulate **doping!**
- Multiple impurities symmetry-broken or **spin liquid** phases