Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

Úloha č. 10

Název úlohy: Hallův jev	
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV
Datum měření: .17. 10. 2016	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci.
- 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.
- 3. Výsledky měření zpracujte graficky a vyhodnoť te měrnou vodivost a Hallovu konstantu vzorku.
- 4. Vypočtěte pohyblivost a koncentraci nositelů náboje.

Teoretická část

Hlavním cílem této úlohy je změřit pohyblivost μ a koncentraci n nositelů náboje ve vzorku polovodiče. Měřený polovodič bude vzorek germania typu n, tedy majoritními nositeli náboje jsou elektrony. Pohyblivost a koncentraci elektronů určíme ze změřené měrné vodivosti σ a Hallovy konstanty R_H .

Použitý vzorek je tvaru hranolu s rozměry t, d a l a je opatřený šesti kontakty (viz obrázek 1).

Měrnou vodivost vzorku určíme z naměřené voltampérové charakteristiky. Vzorek zapojíme jako na obrázku 2 a naměříme závislost I_{12} na U_{56} . Měrnou vodivost určíme z fitu

$$I_{12} = \sigma \frac{td}{l} U_{56} \,. \tag{1}$$

Pro měření Hallovy konstanty vložíme vzorek procházený proudem I_{12} do pole o magnetické indukci B. V důsledku působení magnetického pole na pohybující se elektrony ve vzorku se elektrony odchýlí a mezi kontakty 5 a 6 vznikne tzv. Hallovo napětí U_H . Hallovo konstantu určíme z fitu [1]

$$U_H = R_H \frac{I_{12} \cdot B}{t} \,. \tag{2}$$

Vzhledem k tomu, že kontakty 5 a 6 nejsou s velkou pravděpodobností umístěny přesně symetricky, naměříme na nich při průchodu proudu vzorkem nenulové napětí i při nulové magnetické indukci. Abychom tento jev eliminovali, změříme napětí při obou polaritách magnetického pole a správnou hodnotu U_H určíme jako

$$|U_H| = |U_{56}^+ - U_{56}^+|/2. (3)$$

Mezi R_H a koncentrací n platí vztah [1]

$$R_H = \frac{r_H}{en} \,, \tag{4}$$

kde e je náboj elektronu a r_H je tzv. rozptylový faktor. V našem případě můžeme uvažovat $r_H=3\pi/8$. Ze známé R_H a σ můžeme vypočítat tzv. Hallovskou pohyblivost ze vztahu [1]

$$\mu = R_H \sigma. \tag{5}$$

Magnetické pole budeme realizovat elektromagnetem.

Podmínky a použité přístroje

Výsledky měření

Diskuze

kontaktní napětí paraziticke

Závěr

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start).

Obrázek 1: Označení rozměrů a kontaktů na měřeném vzorku (převzato z [1])

Obrázek 2: Zapojení pro měření měrné vodivosti