Решить краевую задачу ОДУ сеточным методом. Использовать метод прогонки.

- а) Написать расчетную схему дифференциальной задачи, используя **параметрический стиль программирования**. Это значит, что параметры a (левый конец отрезка), b (правый конец отрезка), n (размер сетки: h = (b-a)/n), константы краевых условий λ_a , μ_a , ψ_a , λ_b , μ_b , ψ_b задавать как **глобальные константы** с помощью оператора #define. Функции p(x), q(x) и g(x) оформить как **внешние процедуры** по отношению к функции **main**{}. В программе НЕ использовать двумерные массивы, применять только ОДНОМЕРНЫЕ массивы прогоночных коэффициентов и сеточных функций-решений.
- б) Записать краевое условие, которое содержит производную u'(x), со вторым порядком аппроксимации двумя способами: **схема 1** метод несимметричной производной, **схема 2** метод фиктивного узла.
- в) Найти два вектора решений: $\{u_i\}$ решение для схемы 1, $\{v_i\}$ решение для схемы 2.
- г) Проверить гипотезу, что $\|\vec{u} \vec{v}\| = O(h^2)$. Для этого найти сеточные функции для двух различных сеток $n_{\rm II}$ =2 $n_{\rm I}$ и вычислить отношения двух норм $\|\vec{u}(n_{\rm I}) \vec{v}(n_{\rm I})\| / \|\vec{u}(n_{\rm II}) \vec{v}(n_{\rm II})\|$. Результаты внести в таблицу:

$n_{\mathrm{I}}/n_{\mathrm{II}}$	25/50	50/100	100/200	200/500	500/10 ³	10 ³ /2·10 ³	2·10³/4·10³	4·10³/8·10³
$\ \bullet\ _{\infty}$								
$\ \bullet\ _2$								

д) Для n= $2\cdot 10^3$ построить график сеточной функции $\left\{x_i,u_i\right\}$ (в любом удобном Вам графопостроителе).

1.
$$u''(x) - (\sqrt{x} + 1)u'(x) - u(x) = \frac{2}{(x+1)^3}$$
, $0 < x < 1$, $u(0) = 1$, $u'(1) = 0$.

2.
$$u''(x) + \sqrt{\frac{1}{x}}u'(x) - 2u(x) = x^2$$
, $0.33 < x < 1$, $u'(0.33) = -0.5$, $u(1) = -1$.

3.
$$u''(x) + \frac{2}{x^3 - 2}u'(x) + (x - 2)u(x) = 1$$
, $0 < x < 1$, $u(0) = -0.5$, $u'(1) = -1$.

4.
$$u''(x) + 2u'(x) - \frac{4}{x}u(x) = 1$$
, $0.4 < x < 1$, $u(0.4) = 1.5$, $u(1) + u'(1) = 4$.

5.
$$u''(x) + \frac{4x}{x^2 + 1}u'(x) - \frac{1}{x^2 + 1}u(x) = -\frac{3}{(x^2 + 1)^2}, \quad 0 < x < 1, \quad u'(0) = 0, \quad u(1) = 0.5.$$

6.
$$u''(x) - \frac{2}{x}u'(x) - \frac{4}{x^2 + 2}u(x) = 8$$
, $0.3 < x < 1$, $u(0.3) = 0.5$, $u(1) + u'(1) = 1$.

7.
$$u''(x) + (x+1)u'(x) - u(x) = \frac{x^2 + 2x + 2}{x+1}$$
, $0 < x < 1$, $u'(0) = 1$, $u(1) = 1.38294$.

8.
$$u''(x) + xu'(x) - \sqrt{x}u(x) = -3e^{-x}$$
, $0 < x < 1$, $u(0) = 0$, $u(1) + 2u'(1) = 0$.

9.
$$u''(x) + u'(x) - \frac{1}{x}u(x) = \frac{x+1}{x}$$
, $0.5 < x < 1$, $u(0.5) = -\frac{1}{2 \ln 2}$, $u'(1) = 0$.

10.
$$u''(x) + 2xu'(x) - \sin x \cdot u(x) = 2(x^2 + 1)\cos(\pi x)$$
, $0 < x < 0.5$, $u'(0) = 0$, $u(0.5) = 0.5\sin 0.5$.

11.
$$u''(x) + \frac{3}{2(x+1)}u'(x) - x^4 \cdot u(x) = \frac{2}{\sqrt{x+1}}, \quad 0 < x < 1, \quad 3u(0) - u'(0) = 1, \quad u(1) = \sqrt{2}$$
.

12.
$$u''(x) - \frac{1}{x}u'(x) + e^xu(x) = -\frac{2}{x^2}$$
, $0.25 < x < 1$, $u'(0.25) = -2$, $u(1) = 0$.

13.
$$u''(x) - \frac{1}{2(x+1)}u'(x) - \sqrt{x+1} \cdot u(x) = -\frac{2}{3} \cdot (x+1)^2$$
, $0 < x < 1$, $u(0) = 1$, $3 \cdot u(1) + 2 \cdot u'(1) = 3 \cdot 2^{3/2}$.

14.
$$u''(x) + \frac{1}{x}u'(x) - \cos x \cdot u(x) = \frac{1}{x}$$
, $0.1 < x < 1$, $u'(0.1) = 3$, $u(1) = 1$.

15.
$$u''(x) - \sin x \cdot u' + \frac{2}{(x+1)^2} y(x) = \frac{9}{2(x+1)^{3/2}}, \quad 0 < x < 1, \quad u(0) - 2u'(0) = 0, \quad u(1) = -\frac{1}{\sqrt{2}}.$$

16.
$$u''(x) + u' - \frac{6x}{2x^2 + 1}u(x) = 6x + \frac{1}{2}$$
, $0.5 < x < 1$, $u(0.5) = 1.25$, $u(1) + u'(1) = 5$.

17.
$$u''(x) - (x^2 + 1)u'(x) - 2x \cdot u(x) = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$
, $0 < x < 1$, $u(0) - 2u'(0) = 1$, $u(1) = 0.5$.

18.
$$u''(x) + (x^2 + 1)u'(x) - u(x) = \sin(\pi x)$$
, $0 < x < 1$, $u'(0) = 1$, $u(1) = 1$.

19.
$$u''(x) - \frac{1}{x}u'(x) + 2u(x) = \cos^2(\pi x)$$
, $0.5 < x < 1$, $u(0.5) = 0$, $u'(1) + u(1) = -1$.

20.
$$u''(x) - \frac{2}{x^2 - 2}u'(x) + (x + 2)u(x) = x^2$$
, $0 < x < 1$, $u'(0) = 0$, $u(1) = 1$.

21.
$$u''(x) - 2u'(x) + \frac{1}{x^2}u(x) = \frac{1}{1+x^2}$$
, $0.3 < x < 1$, $u(0.3) = 1.5$, $u(1) + u'(1) = 3$.

22.
$$u''(x) - \frac{2x}{x^3 + 1}u'(x) + \frac{1}{x^2 + 1}u(x) = -\sin\frac{\pi x}{2}$$
, $0 < x < 1$, $u'(0) = 0$, $u(1) = 0.5$.

23.
$$u''(x) - \sqrt{\frac{2}{x}}u'(x) + \frac{4}{x^2 + 2}u(x) = \frac{2}{x^3 - 7}$$
, $0.2 < x < 1$, $u(0.2) + u'(0.2) = 1$, $u(1) = 0.5$.

24.
$$y''(x) + (x+1)y'(x) - y(x) = \frac{x^2 + 2x + 2}{x+1}$$
, $0 < x < 1$, $y'(0) = 1$, $y(1) = 1.38294$.

25.
$$y''(x) - x^3 y'(x) - 2y(x) = -3e^{-x}$$
, $0 < x < 1$, $y(0) = 0$, $y(1) + 2y'(1) = 0$.

26.
$$y''(x) + y'(x) - \frac{1}{x}y(x) = \frac{x+1}{x}$$
, $0.5 < x < 1$, $y(0.5) = -\frac{1}{2 \ln 2}$, $y'(1) = 0$.

27.
$$y''(x) + 2xy'(x) - y(x) = 2(x^2 + 1)\cos x$$
, $0 < x < 0.5$, $y'(0) = 0$, $y(0.5) = 0.5\sin 0.5$.

28.
$$y''(x) + \frac{3}{2(x+1)}y'(x) = \frac{2}{\sqrt{x+1}}, \quad 0 < x < 1, \quad 3y(0) - y'(0) = 1, \quad y(1) = \sqrt{2}$$
.

29.
$$y''(x) - \frac{1}{x}y'(x) = -\frac{2}{x^2}$$
, $0.5 < x < 1$, $y'(0.5) = -2$, $y(1) = 0$.

30.
$$y''(x) - \frac{1}{2(x+1)}y'(x) - \sqrt{x+1} \cdot y(x) = -\frac{2}{3} \cdot (x+1)^2$$
, $0 < x < 1$, $y(0) = 1$, $3 \cdot y(1) + 2 \cdot y'(1) = 3 \cdot 2^{3/2}$.

31.
$$y''(x) + \frac{1}{x}y'(x) = \frac{1}{x}$$
, $0.5 < x < 1$, $y'(0.5) = 3$, $y(1) = 1$.

32.
$$y''(x) - \frac{2}{(x+1)^2}y(x) = \frac{9}{2(x+1)^{3/2}}, \quad 0 < x < 1, \quad y(0) = 0, \quad y'(1) = -\frac{1}{\sqrt{2}}.$$

33.
$$y''(x) + y' - \frac{6x}{2x^2 + 1}y(x) = 6x + \frac{1}{2}$$
, $0.5 < x < 1$, $y(0.5) = 1.25$, $y(1) + y'(1) = 5$.

34.
$$y''(x) - (x^2 + 1)y'(x) - 2x \cdot y(x) = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}, \quad 0 < x < 1, \quad y(0) - 2y'(0) = 1, \quad y(1) = 0.5.$$