Álgebra Linear (ALIOO01 – CCI-192-02U)

Transformações Lineares

Injetoras, Sobrejetoras e Bijetoras

Professor: Marnei Luis Mandler

Aula do dia 17 de maio de 2023.

Transformações lineares injetoras

Exemplo 1) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por

$$T(x, y, z) = (x + 4y - 2z, -3x - 11y + 9z).$$

Determine as imagens de u=(1,2,3) e de v=(-13,5,2) por T.

Solução: Temos que

$$T(u) = T(1,2,3) = (1+4\cdot 2-2\cdot 3, -3\cdot 1-11\cdot 2+9\cdot 3) = (3,2)$$

e que

$$T(v) = T(-13, 5, 2) = (-13 + 4 \cdot 5 - 2 \cdot 2, -3 \cdot (-13) - 11 \cdot 5 + 9 \cdot 2) = (3, 2).$$

Note que, mesmo que $u \neq v$, obtivemos que T(u) = T(v).

Nesse caso, dizemos que T não é injetora.

Definição 1: Uma transformação linear $T: U \to V$ é injetora se para quaisquer $u, v \in U$ for válido que

$$u \neq v \Rightarrow T(u) \neq T(v).$$

Tomando a contraposição da definição acima, obtemos uma definição alternativa:

Definição 2: Uma transformação linear $T: U \to V$ é injetora se para quaisquer $u, v \in U$ for válido que

$$T(u) = T(v) \Rightarrow u = v.$$

Transformações lineares injetoras

O próximo resultado simplifica a verificação da injetividade de uma transformação linear $T\colon U \to V$, a partir do que ocorre com seu núcleo.

Teorema: Uma transformação linear $T: U \to V$ é injetora se, e somente se, $N(T) = \{\vec{0}_U\}$.

Justificativa: Suponha que $T: U \rightarrow V$ é injetora.

Seja $u \in N(T)$. Logo, pela definição de núcleo, temos que

$$T(u) = \vec{0}_V$$
.

Pela Propriedade 1 sabemos que

$$T(\vec{0}_U) = \vec{0}_V.$$

Dessa forma, temos que

$$T(u) = T(\overrightarrow{0}_U).$$

Como por hipótese T é injetora, temos pela Definição 2, que

$$u = \vec{0}_{II}$$

 \bigcup ou seja, se $u \in N(T)$ então $u = \overrightarrow{0}_U$. Isso mostra que

$$N(T) = \{ \vec{0}_U \}.$$

Transformações lineares injetoras

Reciprocamente, suponhamos que $T:U\to V$ seja tal que $N(T)=\{\overrightarrow{0}_U\}$.

Assim, se $u, v \in U$ são tais que

$$T(u) = T(v)$$

obtemos que

$$T(u) - T(v) = \vec{0}_V,$$

e usando que kT(v) = T(kv) para k = -1, temos que

$$T(u) + T(-v) = \overrightarrow{0}_V \qquad \Rightarrow \qquad T(u - v) = \overrightarrow{0}_V.$$

Assim, obtemos que

$$u-v\in N(T)$$
.

Como, por hipótese, $N(T) = {\vec{0}_U}$, obtemos que

$$u - v = \overrightarrow{0}_{II}$$

🖶 ou seja

$$u = v + \overrightarrow{0}_U = v$$
.

Com isso, sempre que $u, v \in U$ são tais que T(u) = T(v) obtemos que u = v.

Isso significa, aplicando a Definição 1, que $T\colon\thinspace U\to V$ é injetora.

Exercícios

Exercício 1) Encontre uma base e a dimensão para o núcleo das transformações lineares abaixo. A seguir, classifique as transformações como injetoras ou não:

- a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x, y) = (x 2y, -3x + 5y, 4x 9y)
- b) $T: P_2 \to \mathbb{R}^3$ dada por $T(a + bx + cx^2) = (a + 4b c, -2a 5b + c, 9a + 6b + c)$

c)
$$T: \mathbb{R}^4 \to M(2,2)$$
 dada por
$$T(x,y,z,w) = \begin{bmatrix} x - 3z + 2w & 2x + y - 7z + w \\ -3x + 4y + 6z - 9w & -5y + 3z - 4w \end{bmatrix}$$

Solução: Todos os itens foram resolvidos durante a aula.

Transformações lineares Sobrejetoras

Um função é dita sobrejetora quando todo os elementos do seu contradomínio são imagens de algum elemento do domínio, ou seja, quando o contradomínio e o conjunto imagem da função são idênticos.

O mesmo conceito é válido para transformações lineares, com uma informação adicional para a dimensão do conjunto imagem:

Definição: Uma transformação linear $T\colon U\to V\;$ é sobrejetora se, e somente se, Im(T)=V,

ou seja, se e somente se

$$\dim(Im(T)) = \dim(V).$$

- Exercício 2) Verifique se as transformações lineares abaixo são sobrejetoras e obtenha uma base e a dimensão para seu conjuntos imagem: Todos os itens foram resolvidos em aula.
- a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x, y) = (x 2y, -3x + 5y, 4x 9y)
- b) $T: P_2 \to \mathbb{R}^3$ dada por $T(a + bx + cx^2) = (a + 4b c, -2a 5b + c, 9a + 6b + c)$
- $T: \mathbb{R}^4 \to M(2,2)$ dada por

$$T(x,y,z,w) = \begin{bmatrix} x - 3z + 2w & 2x + y - 7z + w \\ -3x + 4y + 6z - 9w & -5y + 3z - 4w \end{bmatrix}$$

Transformações lineares bijetoras

Definição: Uma transformação linear $T: U \to V$ é bijetora se for simultaneamente injetora e sobrejetora, ou seja, se e somente se

$$N(T) = \{\overrightarrow{0}_U\}$$
 e $Im(T) = V$.

<u>Observações</u>

- Uma transformação linear bijetora também é chamada de isomorfismo.
- Se $T:\ U \to V$ for um isomorfismo, os espaços vetoriais U e V são ditos "isomorfos".
- Espaços vetoriais isomorfos possuem a "mesma forma", ou seja, são praticamente idênticos, a menos da representação de seus elementos.
 - Reunindo as informações dos Exercícios 1c e 2c, vemos que $T: \mathbb{R}^4 \to M(2,2)$ era injetora e sobrejetora. Portanto, T é bijetora e pode ser chamada de um isomorfismo entre \mathbb{R}^4 e M(2,2).
 - Isso significa que \mathbb{R}^4 e M(2,2) são espaços isomorfos (tem a mesma forma).
 - Com isso, dizemos que o elemento $u = (x, y, z, w) \in \mathbb{R}^4$ é isomorfo ao elemento

$$A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in M(2,2).$$

Teorema

O próximo resultado generaliza tal fato entre os espaços domínio e contradomínio de uma transformação linear bijetora:

Teorema: Se $T: U \rightarrow V$ é uma transformação linear bijetora, então $\dim(U) = \dim(V)$.

Justificativa: Se $T: U \rightarrow V$ é bijetora, então pela definição, temos que

$$N(T) = {\vec{0}_U}$$
 e $Im(T) = V$.

Dessa forma

$$\dim(N(T)) = 0$$
 e $\dim(Im(T)) = \dim(V)$.

Pelo Teorema da Dimensão do Núcleo e Imagem, obtemos que

$$\dim(U) = \dim(N(T)) + \dim(Im(T)) = 0 + \dim(V) = \dim(V).$$

Observações:

- Pelo teorema anterior, dois espaços isomorfos sempre possuem a mesma dimensão.
- Será que a recíproca do teorema é verdadeira?
- Veremos que não, ou seja, nem toda transformação linear entre espaços vetoriais de mesma dimensão será necessariamente bijetora.

Exercício

Exercício 3) Verifique se são bijetoras as transformações lineares abaixo:

- a) $T: \mathbb{R}^3 \to P_2$ dada por $T(a,b,c) = (a-b+c) + (-a+2b+c)x + (5a-3b+9c)x^2$.
 - b) $T: P_2 \to \mathbb{R}^3$ dada por T(p(x)) = (3p(-1) + p(1), p(2) p(0), p(1) p(-1)).

Solução: O item (a) foi deixado como exercício. O item (b) foi resolvido em aula.

Exemplo 2) Verifique se $T: \mathbb{R}^3 \to P_2$ dada por

$$T(a,b,c) = (9a - 2b + c) + (6a - 5b + 4c)x + (a + b - c)x^{2}$$

👢 é injetora ou não.

Solução: Vamos verificar se $N(T) = \{\vec{0}_{\mathbb{R}^3}\}$.

Para isso, seja $u=(a,b,c)\in N(T)$. Logo $T(u)=\overrightarrow{0}_{P_2}$ e $T(a,b,c)=0+0x+0x^2$.

Assim, temos que

$$\begin{cases} 9a - 2b + c = 0 \\ 6a - 5b + 4c = 0 \\ a + b - c = 0 \end{cases} \Rightarrow \begin{cases} 9a - 2b + (a + b) = 0 \\ c = a + b \end{cases} \Rightarrow \begin{cases} b = 10a \\ 6a - 5 \cdot (10a) + 4 \cdot (11a) = 0 \\ c = a + 10a = 11a \end{cases} \Rightarrow c = a + b$$

$$u = (a, b, c) = (a, 10a, 11a) = a(1, 10, 11).$$

Assim

$$N(T) = ger\{(1,10,11)\} = \{(a,b,c) \in \mathbb{R}^3; b = 10a \text{ e } c = 11a\}.$$

Como

$$N(T)\} \neq \{\overrightarrow{0}_U\},$$

Temos, pelo teorema anterior, que T não é injetora.

Exemplo 3) Verifique se $T: P_3 \to M(2,2)$ dada por

$$T(a+bx+cx^2+dx^3) = \begin{bmatrix} a+2b-3c & -5b+4c+d \\ -3a-9c+2d & -a+b-c-d \end{bmatrix}$$

- 🛑 é injetora ou não.
- Solução: Vamos verificar se $N(T) = {\vec{0}_{P_3}}$.
- Para isso, seja $p(x) = a + bx + cx^2 + dx^3 \in N(T)$. Logo $T(p(x)) = \vec{0}_{M(2,2)} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Assim, temos que

$$\begin{cases} a + 2b - 3c = 0 \\ -5b + 4c + d = 0 \\ -3a - 9c + 2d = 0 \\ -a + b - c - d = 0 \end{cases} \Rightarrow \begin{cases} a = -2b + 3c \\ d = 5b - 4c \\ c = -a + b - d \end{cases} \Rightarrow \begin{cases} a = 0 + 3c = 3c \\ d = 0 - 4c = -4c \\ c = -(-2b + 3c) + b - (5b - 4c) \end{cases}$$

Substituindo na terceira equação:

$$-3a - 9c + 2d = 0$$
 \Rightarrow $-3(3c) - 9c + 2(-4c) = 0$ $-26c = 0$ $c = 0$

c = -2b + c

b = 0

Portanto

$$p(x) = a + bx + cx^2 + dx^3 = 0 + 0x + 0x^2 + 0x^3 = \vec{0}_{P_3}.$$

Assim $N(T) = \{\vec{0}_{P_3}\},$

 \Longrightarrow e, pelo teorema, T é injetora.

Transformações lineares Sobrejetoras

Pelo Teorema da Dimensão do Núcleo e da Imagem, para $T: P_3 \to M(2,2)$ obtemos que $\dim(N(T)) + \dim(Im(T)) = \dim(P_3)$

L ou seja

$$0 + \dim(Im(T)) = 4.$$

Então

$$\dim(Im(T)) = 4.$$

lacksquare Como o contradomínio de T é tal que

$$\dim(M(2,2)) = 4$$

temos que

$$\dim(Im(T)) = 4 = \dim(M(2,2)).$$

Com isso, vemos que

$$Im(T) = M(2,2)$$

 $lue{T}$ e T é sobrejetora.

🌉 Observação:

A transformação linear do exemplo anterior é simultaneamente injetora e sobrejetora.

Quando isso ocorre, dizemos que a transformação é bijetora!

Exemplo 6) Verifique se é bijetora a transformação linear $T: \mathbb{R}^4 \to M(2,2)$ dada por

$$T(x, y, z, t) = \begin{bmatrix} x + y + z + t & -x - 2y + t \\ 5y - z + 2t & 3y + z - t \end{bmatrix}.$$

Solução: Vamos verificar se os dois itens da definição anterior são satisfeitos:

$$\bullet N(T) = \{\overrightarrow{0}_{\mathbb{R}^4}\}?$$

Seja $u=(x,y,z,t)\in N(T)$. Logo $T(u)=T(x,y,z,t)=\overrightarrow{0}_{M(2,2)}$, isto é

$$\begin{bmatrix} x+y+z+t & -x-2y+t \\ 5y-z+2t & 3y+z-t \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

E obtemos o sistema homogêneo

$$\begin{cases} x + y + z + t = 0 \\ -x - 2y + t = 0 \\ 5y - z + 2t = 0 \\ 3y + z - t = 0 \end{cases}$$

Obs: A é dita matriz que induz a transformação T

$$3y + z - t = 0$$
Resolvendo-o por escalonamento da matriz dos coeficientes $[A] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -2 & 0 & 1 \\ 0 & 5 & -1 & 2 \\ 0 & 3 & 1 & -1 \end{bmatrix}$

$$[A] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -2 & 0 & 1 \\ 0 & 5 & -1 & 2 \\ 0 & 3 & 1 & -1 \end{bmatrix} L_2 \to L_2 + L_1 \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 5 & -1 & 2 \\ 0 & 3 & 1 & -1 \end{bmatrix} L_2 \to L_2 + L_1$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 4 & 12 \\ 0 & 0 & 4 & 5 \end{bmatrix} \begin{array}{c} L_3 \to \frac{1}{4}L_3 \\ L_4 \to L_4 - L_3 \end{array} \qquad \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -7 \end{bmatrix}$$

Portanto

$$\begin{cases} x + y + z + t = 0 \\ y - z - 2t = 0 \\ z + 3t = 0 \\ -7t = 0 \end{cases} \Rightarrow \begin{cases} x = -y - z - t \\ y = z + 2t \\ z = -3t \\ t = 0 \end{cases} \Rightarrow z = 0$$

T Assim

$$u = (x, y, z, t) = (0,0,0,0) = \overrightarrow{0}_{\mathbb{R}^4}.$$

Portanto $N(T) = \{ \overrightarrow{0}_{\mathbb{R}^4} \}$ e então T é injetora, pelo Teorema.

• Im(T) = M(2,2)?

Como $N(T) = {\overrightarrow{0}_{\mathbb{R}^4}}$ temos que $\dim(N(T)) = 0$.

Pelo Teorema da Dimensão do Núcleo e da Imagem, temos que

$$\dim(\mathbb{R}^4) = \dim(N(T)) + \dim(Im(T)) \Rightarrow 4 = 0 + \dim(Im(T))$$

que indica que

$$\dim(Im(T)) = 4 = \dim(M(2,2))$$

Então

$$Im(T) = M(2,2).$$

Com isso,

T é sobrejetora.

Portanto, T é simultaneamente injetora e sobrejetora, ou seja, é bijetora.

Observação:

- Como $T: \mathbb{R}^4 \to M(2,2)$ dada no exemplo anterior é bijetora temos que \mathbb{R}^4 e M(2,2) são isomorfos.
- Além disso, veja que $\dim(\mathbb{R}^4) = 4 = \dim(M(2,2))$.

Exemplo 7) Verifique se $T: P_1 \to \mathbb{R}^2$ dada por

$$T(a + bx) = (a - 2b, -3a + 6b)$$

🛓 é bijetora.

Solução: Vamos verificar se $N(T) = \{\vec{0}_{P_1}\}$.

Seja $p(x) = a + bx \in N(T)$. Logo

$$T(p(x)) = \overrightarrow{0}_{\mathbb{R}^2}$$
 ou seja, $T(a + bx) = (0,0)$,

🖶 e então

$$(a-2b, -3a+6b) = (0,0).$$

Assim obtemos o sistema homogêneo

$$\begin{cases} a - 2b = 0 \\ -3a + 6b = 0 \end{cases}$$

📘 cuja solução é

$$a=2b$$
.

Portanto

$$N(T) = \{a + bx \in P_1; a = 2b\}$$

Como $N(T) \neq \{\vec{0}_{P_1}\}$, temos que T não é injetora e portanto, também não é bijetora.

Exemplo 8: Pode existir uma transformação linear $T: P_2 \to \mathbb{R}^4$ que seja bijetora? E injetora? E sobrejetora?

Solução: Como $\dim(P_2) = 3$ e $\dim(\mathbb{R}^4) = 4$

temos que $\dim(P_2) \neq \dim(\mathbb{R}^4)$ e por isso, não pode existir $T: P_2 \to \mathbb{R}^4$ bijetora, pois senão o teorema anterior seria contrariado.

Se existir $T: P_2 \to \mathbb{R}^4$ que for injetora, temos que $N(T) \neq \{\vec{0}_{P_2}\}$ e $\dim(N(T)) = 0$ e com isso, pelo Teorema da Dimensão do Núcleo e da Imagem:

$$\dim(P_2) = \dim(N(T)) + \dim(Im(T)) = 0 + \dim(Im(T))$$

que indica que

$$3 = \dim(Im(T)),$$

ightharpoonup que é possível, pois $Im(T) \subset \mathbb{R}^4$.

Portanto, é possível existir alguma $T: P_2 \to \mathbb{R}^4$ que seja injetora.

Se existir $T: P_2 \to \mathbb{R}^4$ que for sobrejetora, temos que

$$Im(T) = \mathbb{R}^4$$
 e $\dim(Im(T)) = 4$.

Com isso, pelo Teorema da Dimensão do Núcleo e da Imagem

$$\dim(P_2) = \dim(N(T)) + \dim(Im(T))$$

ou seja

E então

$$3 = \dim(N(T)) + 4.$$

$$\dim(N(T)) = -1,$$

que não é possível, pois a dimensão representa a quantidade de vetores em uma base.

Portanto, não é possível existir alguma $T: P_2 \to \mathbb{R}^4$ que seja sobrejetora.

Além disso, toda transformação linear $T: P_2 \to \mathbb{R}^4$ é, no máximo, injetora.

O resultado do exemplo anterior pode ser generalizado pelo seguinte teorema: Teorema: Se $\dim(U) < \dim(V)$ então não existe nenhuma transformação $T: U \rightarrow V$ que seja sobrejetora.

Justificativa: Suponha que $\dim(U) < \dim(V)$. Supondo, por absurdo, que exista alguma transformação linear $T: U \rightarrow V$ que seja sobrejetora, então Im(T) = V e, pelo teorema da Dimensão do Núcleo e da Imagem, obtemos

$$\dim(U) = \dim(N(T)) + \dim(Im(T)) = \dim(N(T)) + \dim(V).$$

 \longrightarrow Como dim $(N(T)) \ge 0$, obtemos que

$$\dim(U) = \dim(N(T)) + \dim(V) \ge 0 + \dim(V) \ge \dim(V)$$

 $\blacksquare \hspace{-0.4cm} \blacksquare$ que é uma contradição. Portanto, não pode existir tal T.

Exemplo 9: Pode existir uma transformação linear $T: \mathbb{R}^5 \to M(2,2)$ que seja bijetora? E sobrejetora? E injetora?

Solução: Como $\dim(\mathbb{R}^5) = 5$ e $\dim(M(2,2)) = 4$

temos que $\dim(\mathbb{R}^5) \neq \dim(\mathbb{R}^4)$ e por isso, não pode existir $T: \mathbb{R}^5 \to M(2,2)$ bijetora, pois senão o teorema para transformações bijetoras seria contrariado.

Se existir $T: \mathbb{R}^5 \to M(2,2)$ que for sobrejetora, temos que $Im(T) = \mathbb{R}^4$ e então, pelo Teorema da Dimensão do Núcleo e da Imagem

$$\dim(\mathbb{R}^5) = \dim(N(T)) + \dim(Im(T)) = \dim(N(T)) + \dim(\mathbb{R}^4)$$

ou seja

$$5 = \dim(N(T)) + 4$$

que significa que

$$\dim(N(T)) = -1,$$

que não é possível, pois a dimensão representa a quantidade de vetores em uma base.

Portanto, não é possível existir alguma $T: \mathbb{R}^5 \to M(2,2)$ que seja sobrejetora.

Se existir $T: \mathbb{R}^5 \to M(2,2)$ que for injetora, temos que $N(T) \neq \{\vec{0}_{\mathbb{R}^5}\}$ e $\dim(N(T)) = 0$ e com isso, pelo Teorema da Dimensão do Núcleo e da Imagem

$$\dim(\mathbb{R}^5) = \dim(N(T)) + \dim(Im(T)) = 0 + \dim(Im(T))$$

que indica que

$$5 = \dim(Im(T)),$$

que não é possível, pois $Im(T) \subset M(2,2)$ e, por isso,

$$\dim(Im(T)) \le \dim(M(2,2) = 4.$$

Portanto, não é possível existir alguma $T: \mathbb{R}^5 \to M(2,2)$ que seja injetora.

 \blacksquare Além disso, toda transformação linear $T \colon \mathbb{R}^5 \to M(2,2)$ é, no máximo, sobrejetora.

O resultado do exemplo anterior pode ser generalizado pelo seguinte teorema:

Teorema: Se $\dim(U) > \dim(V)$ então não existe nenhuma transformação linear $T: U \rightarrow V$ que seja injetora.

Justificativa: Suponha que $\dim(U) > \dim(V)$. Supondo, por absurdo, que exista alguma transformação linear $T: U \to V$ que seja injetora, então $N(T) \neq \{\vec{0}_U\}$ e $\dim(N(T)) = 0$ e, pelo teorema da Dimensão do Núcleo e da Imagem, obtemos

$$\dim(U) = \dim(N(T)) + \dim(Im(T)) = 0 + \dim(V).$$

 \longrightarrow ou seja, $\dim(U) = \dim(V)$, que é uma contradição.

lacksquare Portanto, não pode existir tal T.