Organometallic Compound

Contents

Organometallic compounds		5
Components of organometallic compounds	 	5
Father of organometallic compounds	 	5
Condition for organometallic compound	 	5
Quantity of metal atom in organometallic compound	 	5
Examples of metal atoms in organometallic compound	 	6
Examples of metalloids in organometallic compound	 	6
Examples of non metals in organometallic compound	 	6
Examples of organometallic compound		6
Molecular formula for diethyl zinc	 	7
Molecular formula for organocadmium	 	7
Molecular formula for organocopper	 	7
Molecular formula for tetramethylsilane	 	7
Molecular formula for tetraethyl lead	 	7
Molecular formula for organolithium	 	7
Molecular formula for ferrocene	 	7
History		8
First synthesizer of organometallic compound	 	8
First synthesized of organometallic compound	 	8
Molecular formula for Zeise's salt	 	8
Molecular formula for wilkinson's catalyst	 	8
Name for wilkinson's catalyst	 	8
Molecular formula for Ziegler - Natta catalyst	 	8
Precautions of organometaliic compound		9
$B(OCH_3)_3$	 	9
$(C_3H_7O_4)Ti$	 	9
Physical properties of organometallic compounds		9
Toxicity of organometallic compounds	 	9
Oxidation and reduction agent in organometallic compounds	 	9
Melting point of organometallic compounds	 	9
Solubility of organometallic compounds in water	 	9
Solubility of organometallic compounds in organic solvent	 	10
Reactivity of organometallic compounds	 	10

Applications of organometallic compounds	10
Applications of solvent in organometallic compounds	10
Application for additive in oragnometallic compounds	10
Application of TEL as organometallic compound	10
Application of Wilkinson's catalyst in organometallic compounds	10
Type of wilkinson's catalyst	13
Application of Ziegler Natta catalyst of organometallic compounds	13
Type of zielger natta catalyst	11
Applications of grignard's reagent in organometallic compounds	13
Applications of organoarsenic organometallic compounds	13
Application of pallidium of organometallic compounds	13
Classification of organometallic compounds	12
Basis for classifiction of organometallic compounds	
Types of organometallic compounds on the basis of classification	12
Nature of bond between carbon atom and metal atom in sigma bonded	
organometallic compounds	12
Examples of sigma bonded organometallic compounds	12
Nature of bond between carbon atom and metal atom in pi bonded	
organometallic compounds	
Examples of sigma and bonded organometallic compounds	13
Nature of bond between carbon atom and metal atom in sigma and pi bonded	
organometallic compounds	13
Examples of sigma and pi bonded organometallic compounds	13
Nature of metal carbon bond in organometallic compounds	13
Charge in carbon atom in organometallic compound	14
Charge in metal atom in organometallic compound	14
Cause of negative charge of carbon atom in organometallic compound	14
Preparation of organometallic compound	14
Grignard reagent	14
Preparer for Grignard Reagent	14
Nobel Prize for Victor Grignard	14
Reaction of preparation of organometallic compound of grignard's reagent	
from haloalkane	15
Haloarene	15
Reaction of preparation of organometallic compound organolithium compound	16

Reaction of preparation of organometallic compound of organocopper com-	17
pound	17
pound	17
Chemical Properties	18
Reactions	18
Molecular formula for ester	18
Molecular formula for acid chloride	18
Reaction of organometallic compound of grignard reagent with ester	18
Reaction of organometallic compound of grignard reagent with acid chlorides	19
Reaction of organometallic compound as grignard reagent with hydrogen cyanide .	20
Intermediate compound in reaction of organometallic compound with hydro-	
gen cyanide with grignard reagent	20
Reactants in reaction of organometallic compound as grignard reagent with	
hydrogen cyanide	21
Products in reaction of organometallic compound as grignard reagent with	
hydrogen cyanide	21
Reaction of organometallic compound as grignard reagent with alkane nitrile	21
Intermediate compound in reaction of organometallic compound with alkane	
nitrile with grignard reagent	21
Reactants in organometallic compound as grignard reagent with alkane nitrile	22
Products in organometallic compound as grignard reagent with alknae nitrile.	22

Organometallic compounds

Components of organometallic compounds

- Metals
- Metalloids
- Non metals

Father of organometallic compounds

The father of organometallic compounds is

Henry Guilman

Condition for organometallic compound

- There must be bonding between carbon and metal.
- · The carbon must be of organic compound

Nature of bond in organometallic compound The bond in organometallic compound is

· covalent bond

Carbon atom in organometallic compound The carbon atom in organometallic compound is that of

Organic molecule

Quantity of metal atom in organometallic compound

The minimum quantity of metal atom in organometallic compound is

• 1

Examples of metal atoms in organometallic compound

The examples of metal atoms in organometallic compound are

- Lithium
- Magnesium
- Aluminium
- Potassium
- Calcium
- Chromium
- Cobalt
- Nickel
- Copper
- Zinc

Examples of metalloids in organometallic compound

The examples of metalloids in organometallic compound are

- Germanium
- Silicon

Examples of non metals in organometallic compound

The examples of non metals in organometallic compound are

Boron

Examples of organometallic compound

The examples of organometallic compounds are

- · Diethyl zinc
- Organocadmium
- Organocopper
- Tetramethylsilane
- · Tetraethyl lead
- Organolithium

- Ferrocene
- · Zeigler-Natta Catalyst
- Wilkinson's Catalyst

Molecular formula for diethyl zinc

 $(C_2H_5)_2Zn$

Molecular formula for organocadmium

 $(CH_3)_2Cd$

Molecular formula for organocopper

 R_2Cu

Molecular formula for tetramethylsilane

 $(CH_3)_4 Si$

Molecular formula for tetraethyl lead

 $Pb(CH_3)_4$

Molecular formula for organolithium

 $\mathrm{CH_{3}}\mathrm{-Li}$

Molecular formula for ferrocene

 $(C_5H_5)_2Fe$

History

First synthesizer of organometallic compound

The first synthesize of organometallic compound was

· William C. Zeise

First synthesized of organometallic compound

The first synthesized organometallic compound is

· Zeise's salt

Molecular formula for Zeise's salt

The molecular formula for Zeise's salt is

•

 $K[PtCl_3(C_2H_4)]$

Molecular formula for wilkinson's catalyst

The molecular formula for wilkinson's catalyst is

.

[(C6H5)3P3RhCl]

Name for wilkinson's catalyst

The name for wilkinson's catalyst is

· Triphenyl phosphine rhodium chloride

Molecular formula for Ziegler - Natta catalyst

The molecular formula for Ziegler - Natta catalyst is

•

[(C2H5)3AlTiCl4]

Precautions of organometaliic compound

 $B(OCH_3)_3$

 ${
m B(OCH_3)_3}$ is not organometallic compound. - The bond between carbon is with oxygen. - There is no bond with carbon and metal.

 $(C_3H_7O_4)Ti$

 $(C_3HtO_4)Ti$ is not organometallic compound.

- The bond between carbon is with oxygen.
- · There is no bond between carbon and metal.

Physical properties of organometallic compounds

Toxicity of organometallic compounds

Organometallic compounds are

Highly toxic

Oxidation and reduction agent in organometallic compounds

Organometallic compounds act as

Reducing agent

Melting point of organometallic compounds

The melting point of organometallic compounds is

Low

Solubility of organometallic compounds in water

The solubility of organometallic compounds in water is

· Insoluble in water

Solubility of organometallic compounds in organic solvent.

The solubility of organometallic compounds in organic solvent is

• Soluble in organic solvent

Reactivity of organometallic compounds

The reactivity of organometallic compounds is

Highly reactive

Applications of organometallic compounds

Applications of solvent in organometallic compounds

Organometallic compounds are used as

solvents

Application for additive in oragnometallic compounds

Organometallic compounds are used as additive as

• TEL

Application of TEL as organometallic compound

TEL is used in fuel as

Antiknocking agent

Application of Wilkinson's catalyst in organometallic compounds

Wilkinson's catalyst is used in

· Hydrogenation of alkene

Type of wilkinson's catalyst

The types of wilkinson's catalyst is

· Heterogenous

Application of Ziegler Natta catalyst of organometallic compounds

Zeigler Natta catalyst is used in

Polymerization of alkene

Type of zielger natta catalyst

The type of ziegler natta catalyst is

Heterogenous

Applications of grignard's reagent in organometallic compounds

Grignard's reagent is used to prepare

- Alcohol
- · Carboxylic acid

Applications of organoarsenic organometallic compounds

Organoarsenic compounds are used for

Treatment of syphillis

Application of pallidium of organometallic compounds

Palladium compounds are used in

Catalyzing coupling reactions

Classification of organometallic compounds

Basis for classifiction of organometallic compounds

The basis for classification of organometallic compounds is

Nature of bonds

Types of organometallic compounds on the basis of classification

The types of organometallic compounds are

- · Sigma Bonded Organometallic compounds
- Pi bonded organometallic compounds
- Sigma and pi bonded organometallic compounds

Nature of bond between carbon atom and metal atom in sigma bonded organometallic compounds

The bond between carbon atom and metal atom in sigma bonded organometallic compounds is

Sigma

Examples of sigma bonded organometallic compounds

The examples of sigma bonded organometallic compounds are

 C_2H_5MgBr

(Ethyl Magnesium Bromide)

Nature of bond between carbon atom and metal atom in pi bonded organometallic compounds

The bond between carbon atom and metal atom in sigma bonded organometallic compounds is

• Pi

Examples of sigma and bonded organometallic compounds

The examples of sigma bonded organometallic compounds are

 $\mathrm{Co}(\mathrm{C_5H_5})_2$

Cobaltocene

.

 $Ru(C_5H_5)_2$

Ruthocene

racinoco

 $Fe(C_5H_5)_2$

Ferrocene

Nature of bond between carbon atom and metal atom in sigma and pi bonded organometallic compounds

The bond between carbon atom and metal atom in sigma bonded organometallic compounds is

· Sigma and Pi

Examples of sigma and pi bonded organometallic compounds

The examples of sigma bonded organometallic compounds are

Tetracatbonyl nickel

 $Ni(CO)_4$

Pentacarbonyl iron

Fe(CO)₅

Hexacarbonyl chromide

 $Cr(CO)_5$

Nature of metal carbon bond in organometallic compounds

The bond between metal and carbon atom in organometallic compound is

Polar

Charge in carbon atom in organometallic compound

The carbon atom in organometallic compound has charge of

Partial negative

Charge in metal atom in organometallic compound

The metal atom in organometallic compound has charge of

Partial postive

Cause of negative charge of carbon atom in organometallic compound

The cause of negative charge of carbon atom in organometallic compound is

· Metals are highly electropositive.

Preparation of organometallic compound

Grignard reagent

Grignard reagents are

· Alkyl magnesium halide

Preparer for Grignard Reagent

The preparer for grignard reagent is

Victor grignard

Nobel Prize for Victor Grignard

The date for nobel prize award for Victor Grignard was on

· 1912

Reaction of preparation of organometallic compound of grignard's reagent from haloalkane

$$R-X + Mg \longrightarrow RMgX$$

Reactants in preparation of organometallic compound grignard reagent from haloalkane

- · Alkyl Halide
- Magnesium metal

RX, Mg

Products in preparation of organometallic compound grignard regagent from haloalkane

RMgX

· Alkyl Magneisum halide

Haloarene

Reaction of preparation of organometallic compound grignard reagent from haloarene

Condition for preparation of organometallic compound grignard reagent from haloarene The condition for preparation of organometallic compound grignard reagent from haloarene

is - Presence of dry ether - Presence of THF - Presence of Inert Condition

Reactants in Reaction of preparation of organometallic compound grignard reagent from haloarene

- Haloobenze
- Magneisum Metal

Products in Reaction of preparation of organometallic compound grignard reagent from haloarene

· Phenyl magnesium halide

Reaction of preparation of organometallic compound organolithium compound

$$2 \operatorname{Li} + \operatorname{CH_3Cl} \longrightarrow \operatorname{LiCH_3} + \operatorname{LiCl}$$

Reactants in preparation of organometallic compound organolithium compound

- Lithium
- Chloromethane

 Li, CH_3Cl

Products in preparation of organometallic compound organolithium compound

- Methylithium
- · Lithium chloride

LiCH₃, LiCl

Reaction of preparation of organometallic compound of organocopper compound

$$Cu_2H_2+CuCl \longrightarrow Cu_2C_2$$

Reactants in preparation of organometallic compound of organocopper compound

- · Copper hydride
- · Copper chloride

Cu_2H_2 , CuCl

Products in preparation of organometallic compound of organocopper compound

· Copper acetylide

Cu_2C_2

Reaction of preparation of organometallic compound organocadmium compound

$$2 RMgX + CdCl_2 \longrightarrow R_2Cd + 2 MgXCl$$

Reactants in preparation of organometallic compound organocadmium compound

- Cadmium Chloride
- · Alkyl Magnesium Halide

$RMgX, CdCl_2$

Products in preparation of organometallic compound organocadmium compound

- Alkyl Cadmium
- Magnesium Dihalide

 $R_2Cd, MgXCl$

Chemical Properties

Reactions

The reactions of organometallic compound with grignard reagent are

- Preparation of alcohol
- · Preparation of carboxylic acid
- Preparation of alkanes
- · Reaction with esters
- · Reaction with acid chloride

Molecular formula for ester

Molecular formula for acid chloride

Reaction of organometallic compound of grignard reagent with ester

Intermediate compound in reaction of organometallic compound of grignard reagent with ester

Reactants in reaction of organometallic compound of grignard reagent with ester

- Ester
- Grignard Reagent(Alkyl Magnesium Halide)

$$R \longrightarrow C \longrightarrow OR', R_2MgX$$

Products in reaction of organometallic compound of grignard reagent with ester

Ketone

Reaction of organometallic compound of grignard reagent with acid chlorides

$$\begin{array}{c|c} O & O \longrightarrow MgX \\ \parallel & & \\ R \longrightarrow C \longrightarrow OX' + R_2MgX \longrightarrow R \longrightarrow C \longrightarrow OX' \\ & & \\ R " & \\ \end{array}$$

$$\begin{array}{c|c} O \longrightarrow MgX & O \\ \parallel & \\ R \longrightarrow C \longrightarrow OX' \longrightarrow R \longrightarrow C \longrightarrow R" + X'OMgX \\ \parallel & \\ R \end{array}$$

Intermediate compound in reaction of organometallic compound of grignard reagent with ester

$$\begin{array}{c} O \longrightarrow MgX \\ \downarrow \\ R \longrightarrow C \longrightarrow OX' \\ \downarrow \\ R" \end{array}$$

Reactants in reaction of organometallic compound of grignard reagent with acid chloride

- Acid chloride
- Grignard reagent (Alkyl Magnesium Halide)

$$R \longrightarrow C \longrightarrow OX', R_2MgX$$

Products in reaction of organometallic compound of griganrd reagent with acid chloride

Ketone

Reaction of organometallic compound as grignard reagent with hydrogen cyanide

$$\begin{array}{c} H \longrightarrow C \Longrightarrow N^{+} R - MgX \xrightarrow{dry \, ether} H \longrightarrow C \Longrightarrow N \longrightarrow MgX \\ & R \\ \\ H \longrightarrow C \Longrightarrow N \longrightarrow MgX \xrightarrow{H^{+}, \, OH^{-}} R \longrightarrow C \longrightarrow H + NH_{3} + Mg(OH)X \\ & R \end{array}$$

Intermediate compound in reaction of organometallic compound with hydrogen cyanide with grignard reagent

Reactants in reaction of organometallic compound as grignard reagent with hydrogen cyanide

- · Hydrogen Cyanide
- Grignard reagent (Alkyl Magnesium Halide)

$$H - C = N, R - MgX$$

Products in reaction of organometallic compound as grignard reagent with hydrogen cyanide

- · Aldehyde
- Ammonia
- Magnesium Hydroxy Halide

Reaction of organometallic compound as grignard reagent with alkane nitrile

$$R-CN+R'MgX \longrightarrow R \longrightarrow C \Longrightarrow N \longrightarrow MgX$$

$$R'$$

$$R \longrightarrow C \Longrightarrow N \longrightarrow MgX \xrightarrow{H^+} R \longrightarrow C \longrightarrow R'+NH_3+Mg(OH)X$$

$$R'$$

Intermediate compound in reaction of organometallic compound with alkane nitrile with grignard reagent

$$R - C = N - MgX$$

$$\downarrow$$

$$R'$$

Reactants in organometallic compound as grignard reagent with alkane nitrile

- Alkane nitrile
- Grignard reagent (Alkyl magnesium halide)

$$R-CN, R'MgX$$

Products in organometallic compound as grignard reagent with alknae nitrile

- Ketone
- Ammonia
- Magnesium Hydroxy Halide

$$R \longrightarrow C \longrightarrow R', NH_3, Mg(OH)X$$