Šime
Batović
Mislav
Vučković
Andrija
Mandić
Marko
Jukić

Uvod

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže –

Osvrt na

Mogući budući nastavak

Klasifikacija glazbe po žanru

Šime Batović Mislav Vučković Andrija Mandić Marko Jukić

Prirodoslovno-matematički fakultet — Matematički odsjek

24. lipnja 2020.

Konvolucijske neuronske mreže – CNN

Osvrt na

Mogući budući nastavak

Sadržaj

- 1 Uvod
- 2 Opis problema i metode
- 3 Klasične metode
- 4 Konvolucijske neuronske mreže CNN
- **6** Rezultati
- 6 Osvrt na druge pristupe
- 7 Mogući budući nastavak istraživanja

Klasičn

Konvolucij ske neuronske mreže – CNN

O

Osvrt na druge pristupe

Mogući budući nastavak istraživania

Motivacija i ciljevi

Analiza i klasifikacija glazbe danas su dobro istraživana područja. Popularne aplikacije poput *Spotify* i *Google Play Music* se već dugi niz godina bave ovim problemom.

Cilj istraživanja: na problemu klasifikacije žanrova usporediti **točnosti** klasičnih metoda strojnog učenja i metode dubokog učenja koristeći konvolucijske neuronske mreže.

Konvolucij ske neuronske mreže – CNN

Osvrt na

Mogući budući nastavak istraživanja

Skup podataka

Koristili smo FMA dataset (fma_small):

- 8000 isječaka pjesama duljine 30 sekundi,
- mp3 format,
- 1000 pjesama za svaki od 8 žanrova.

Žanrovi: Experimental, Hip-Hop, Rock, Pop, Folk, Electronic, Instrumental i International.

Uvo

Opis problema i metode

Klasične metode

Konvolucij ske neuronske mreže – CNN

Osvrt na druge

Mogući budući nastavak

Pristup rješavanju problema

Klasifikaciji glazbe po žanru:

- 1 izračunati razne spektralne i ritamske značajke za svaku pjesmu, te pomoću njih i klasičnih metoda stojnog učenja pokušati odrediti žanr,
- 2 reprezentirati pjesme mel-spektogramima i iskoristiti konvolucijsku neuronsku mrežu za klasifikaciju.

Uvod

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže – CNN

Osvrt na

Mogući budući nastavak istraživanja

Korištena tehnologija

- Python
- Treniranje modela na *Kaggle*-u, koristeći grafičke procesore za ubrzanje
- Tesla P100 grafički procesor sa 16GB memorije

Konvolucij ske neuronske mreže –

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživania

Klasične metode

Koristili smo dvije vrste značajki za klasifikaciju: **spektralne** (*special centroid*, *special bandwidth*, *special contrast*...) i **ritamske** (tempo). Ukupno smo izračunali 380 značajki za svaku pjesmu.

Za računanje svih značajki koristili smo Python paket LibROSA.

Uvo

Opis problema i metode

Klasične metode

Konvolucij ske neuronske mreže –

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživania

Vizualizacija pomoću t-SNE

Konvolucij ske neuronske mreže – CNN

Rezultati

Osvrt na druge pristupe

Mogući budući nastavak

Klasične metode

Istražili smo šest klasičnih modela strojnog učenja:

- Stablo odlučivanja
- Slučajna šuma
- Logistička regresija
- Metoda potpornih vektora (SVM)
- AdaBoost
- XGBoost

Skup značajki podijelili smo na train (80%) i test (20%). Za svaki model na train skupu smo isprobali veliki broj parametara pomoću GridSearchCV i za model s najboljim parametrima odredili točnost na testnim podacima.

Šime Batović Mislav Vučković Andrija Mandić Marko Jukić

Uvoc

Opis problema i metode

Klasične metode

Konvolucijske neuronske

ezultat

Osvrt na druge pristupe

Mogući budući nastavak

Stablo odlučivanja

Stabla odlučivanja su se pokazala kao dosta nestabilan model. Pretraživanjem velikog broja parametara pomoću $\tt GridSearchCV$ postigli smo maksimalnu točnost od samo 34.75% na testnim podacima.

Šime
Batović
Mislav
Vučković
Andrija
Mandić
Marko
Jukić

Uvo

Opis problema i metode

Klasične metode

konvolucij ske neuronske mreže –

rtezurta

Osvrt na druge pristupe

Mogući budući nastavak istraživania

Slučajna šuma

Uz neograničenu maksimalnu dubinu stabala, funkciju razdvajanja na temelju gini indexa, te 1000 stabala u šumi, uspili smo postiči točnost od 53.25% na testnim podacima.

Uvo

Opis problema i metode

Klasične metode

Konvolucij ske neuronske mreže –

Osvrt na

Osvrt na druge pristupe

Mogući budući nastavak

Logistička regresija

Pomoću GridSearchCV ponovo tražimo najbolji model. Za odabir značajki nam služi prethodno izračunat model slučajne šume. Uz maksimalan broj iteracija postavljen na 1000, model postiže točnost od 52.25% na testnim primjerima.

Uvo

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže –

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak

Metoda potpornih vektora -SVM

Ponovo za odabir značajki koristimo model slučajne šume. RBF kernel služi za mapiranje u veće dimenzije te žrtvujemo veličinu margine za što bolju klasifikacijsku točnost. Model postiže točnost od 57.63%.

Konvolucijske neuronske mreže – CNN

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

AdaBoost

Koristimo AdaBoost algoritam s povećanim brojem estimatora i smanjenim learning_rate koji određuje koliko svaki model pridonosi postojećem. Postignuta točnost na testnim primjerima je loša, samo 46.31%.

ske neuronske mreže –

Osvrt na

Mogući budući nastavak

XGBoost

XGBoost se zbog svoje robustnosti na outliere pokazao kao najbolja metoda. Postavljanjem broja stabala na 180 i learning_rate na 0.25 dalo nam je najbolju točnost od 57.50% na testnim primjerima.

Uvo

Opis problema i metode

Klasične metode

konvolucij ske neuronske mreže –

Rezulta

Osvrt na druge pristupe

Mogući budući nastavak

Analiza modela

Klasičnim metodama dobili smo uglavnom očekivane rezultate kad usporedimo s prethodnim istraživanjima na istom datasetu. Na slici lijevo vidimo koliki je broj pjesama po žanru koje niti jedan model nije točno klasificirao.

Uvo

Opis problema i metode

Klasičn metode

Konvolucijske neuronske mreže – CNN

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživania

Konvolucijske neuronske mreže

Za opisivanje svake pjesme koristili smo mel-spektogram, dvodimenzionalni graf koji prikazuje jačinu frekvencija u ovisnosti o vremenu.

Slika: Mel-spektogram pjesme žanra Folk

Uvod

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže – CNN

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Metoda

Originalni mel-spektogrami većinom dimenzija 128 × 1291.

Podjela na manje slike dimenzija 128×16 na kojima smo učili neuronsku mrežu.

Konačni model je metoda većinskog glasa.

Šime
Batović
Mislav
Vučković
Andrija
Mandić
Marko
Jukić

Uvod

Opis problema i metode

Klasične

Konvolucijske neuronske mreže – CNN

Rezultat

Osvrt na

Mogući budući nastavak istraživanja

Metoda većinskog glasa

Konvolucijske neuronske mreže – CNN

Rezultati

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Metoda

Podjela podataka: train 72%, validation 8% i test 20%.

Prilikom učenja koristili smo Stohastic gradient descent s parametrima $learning_rate = 0.001$ i momentum = 0.9 te je tokom učenja korišten $batch_size = 256$.

Korištene razne arhitehture (njih 11). Osnovna ideja: nizanje konvolucijskih slojeva zajedno s *Max-Pooling* slojem, nakon čega slijedi niz potpuno povezanih slojeva.

Šime Batović Mislav Vučković Andrija Mandić Marko Jukić

Uvo

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže –

Rezultati

druge pristup

Mogući budući nastavak

Arhitektura neuronske mreže


```
Sequential([
InputLayer(input_shape=(height, width, 1)),
Conv2D(128, (5, 5), activation='relu',
padding='same', strides=1),
MaxPooling2D(pool_size=(2, 2), strides=2),
Flatten(),
Dense(32, activation="relu"),
Dense(8, activation="softmax")
]),
```

Šime Batović Mislav Vučković Andrija Mandić Marko Jukić

Uvod

Opis problema i

Klasične metode

Konvolucijske neuronske mreže – CNN

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Krivulja učenja

Uvo

Opis problema i metode

Klasične metode

Konvolucij ske neuronske mreže –

Rezultati

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Prikaz rezultata

Usporedba točnosti modela mjerenih na testnim primjerima:

Model	Točnost
Stablo odlučivanja	34.75%
Slučajna šuma	53.25%
Logistička regresija	52.25%
Metoda potpornih vektora	57.63%
AdaBoost	46.31%
XGBoost	57.50%
CNN	58.69%

Osvrt na druge pristupe

Osvrt na druge pristupe

Tim s pekinškog sveučilišta, na istom datasetu, koristeći CNN postigao točnost 59.4% (metoda većinskog glasa, data augmentation, Conv1D layeri).

Korišteniem rezidualne neuronske mreže – ResNet-a, SVM-om kao stacking classifier-om umjesto metode većinskog glasa, postigli su točnost od 66.3%.

Opis problema i metode

Klasične metode

Konvolucijske neuronske mreže –

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Nastavak istraživanja

- Istraživanje novih arhitektura konvolucijske neuronske mreže.
- Učenje na većem skupu podataka (hardverska ograničenja).
- Korigiranje overlap-a kod rezanja slika.
- Korištenje data augmentation radi povećanja volumena dataseta i smanjivanja overfitting-a
- Korištenje drugih podataka o pjesmama, poput podžanrova.

Šime Batović Mislav Vučković Andrija Mandić Marko Jukić

Uvod

Opis problema i

Klasične metode

Konvolucijske neuronske mreže –

Rezultat

Osvrt na druge pristupe

Mogući budući nastavak istraživanja

Hvala na pažnji!