Modelo Físico de Disco Rotatorio con Cuchillas

Fórmulas del Modelo Dinámico

Este modelo describe el movimiento de un disco rotatorio con dos cuchillas articuladas, considerando torques ejercidos por el motor, el pasto, fuerzas centrífugas, resortes de retorno y amortiguamiento viscoso.

1. Momento de Inercia

$$\begin{split} I_{\rm disc} &= \frac{1}{2} M R^2 \quad \text{(Disco)} \\ I_{\rm blade} &= \frac{1}{3} m L^2 \quad \text{(Cuchilla)} \\ I_{\rm tot} &= I_{\rm disc} + 2 \left(m r^2 + I_{\rm blade} \right) \quad \text{(Sistema total)} \end{split}$$

2. Torque del Motor

$$\tau_{\text{motor}}(t) = f(t)$$

3. Torque del Pasto sobre el Disco

$$\tau_{\rm disc_b} = b \, \dot{\phi} \, \sin(\theta) \left(\frac{rL^2}{2} + \frac{L^3}{3} \cos(\theta) \right) + b \, \dot{\theta} \, \sin(\theta) \left(\frac{L^3}{3} \right)$$

4. Torque del Pasto sobre la Cuchilla

$$\tau_{\text{blade_b}} = b \,\dot{\phi} \,\sin(\theta) \left(\frac{rL^2}{2}\right) + b \,\dot{\theta} \,\sin(\theta) \left(\frac{L^3}{3}\right)$$

5. Torque Centrífugo sobre la Cuchilla

$$\tau_{\rm centrifugo} = \frac{1}{2} m r L \dot{\phi}^2 \sin(\theta) + \frac{1}{3} m L^2 \dot{\phi}^2 \sin(\theta) \cos(\theta)$$

6. Torque del Resorte

$$\tau_{\text{resorte}} = -k(\theta - \theta_0)$$

7. Torque por Amortiguamiento

$$\tau_{\rm amortiguamiento} = -c_{\theta} \dot{\theta}$$

8. Ecuación de Movimiento del Disco

$$I_{\text{tot}} \ddot{\phi} = \tau_{\text{motor}} - \tau_{\text{disc_b1}} - \tau_{\text{disc_b2}} - c_{\text{disk}} \dot{\phi}$$

9. Ecuación de Movimiento de una Cuchilla

$$I_{\text{blade}} \ddot{\theta} = -\tau_{\text{centrifugo}} - \tau_{\text{blade_b}} - c_{\theta} \dot{\theta} - k(\theta - \theta_0)$$