MMSNP: An algebraic proof of the dichotomy

Manuel Bodirsky, Antoine Mottet

October 12, 2018

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

Complexity:

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

Complexity: NP-complete.

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

- ► Complexity: NP-complete.
- ► Input: undirected graph G
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

► Complexity: in P.

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph *G*,
- Question: can one colour the vertices of G and avoid \mathcal{F} ?

```
(i.e., find G^* such that \forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*)
```

In general, for some fixed set ${\cal F}$ of vertex-coloured graphs, the problem ${\sf FPP}({\cal F})$ is:

- ► Input: finite graph *G*,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n$$

where:

 $ightharpoonup M_1, \ldots, M_n$ are unary predicates,

In general, for some fixed set $\mathcal F$ of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal F)$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg ($$

where:

 $ightharpoonup M_1, \ldots, M_n$ are unary predicates,

In general, for some fixed set $\mathcal F$ of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal F)$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}))$$

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$,

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph *G*,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$,
- \triangleright β_i is a conjunction of literals.

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$, (Monotone)
- \triangleright β_i is a conjunction of literals.

In general, for some fixed set $\mathcal F$ of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal F)$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates, (Monadic)
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$, (Monotone)
- \triangleright β_i is a conjunction of literals.

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

where:

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates, (Monadic)
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$, (Monotone)
- \triangleright β_i is a conjunction of literals.

(Strict NP)

Theorem (Bulatov, Zhuk '17)

Finite-domain CSPs have a complexity dichotomy.

Theorem (Bulatov, Zhuk '17)

Finite-domain CSPs have a complexity dichotomy.

Theorem (Feder-Vardi '93, Kun '13)

MMSNP has a complexity dichotomy if and only if finite-domain CSPs have a complexity dichotomy.

Theorem (Bulatov, Zhuk '17)

Finite-domain CSPs have a complexity dichotomy.

Theorem (Feder-Vardi '93, Kun '13)

MMSNP has a complexity dichotomy if and only if finite-domain CSPs have a complexity dichotomy.

Proof.

- ► finite CSP ⊂ MMSNP.
- randomized reduction (Feder-Vardi) from MMSNP to CSP,
- derandomization by Kun (expander structures).

- Finite-domain dichotomy is algebraic, but Kun's reduction is not.
- MMSNP can describe some infinite-domain CSPs, and the conjecture for infinite domains is still open.

- ► Finite-domain dichotomy is algebraic, but Kun's reduction is not.
- ► MMSNP can describe some infinite-domain CSPs, and the conjecture for infinite domains is still open.

Theorem

Let A be ω -categorical and such that CSP(A) is in MMSNP. Then one of the following holds:

- ▶ there is a uniformly continuous clonoid homomorphism $Pol(A) \rightarrow \mathscr{P}$, and CSP(A) is NP-complete,
- \blacktriangleright A has a pseudo-Siggers polymorphism and CSP(A) is in P.

- ► Finite-domain dichotomy is algebraic, but Kun's reduction is not.
- ► MMSNP can describe some infinite-domain CSPs, and the conjecture for infinite domains is still open.

Theorem

Let A be ω -categorical and such that CSP(A) is in MMSNP. Then one of the following holds:

- ▶ there is a uniformly continuous clonoid homomorphism $Pol(A) \rightarrow \mathscr{P}$, and CSP(A) is NP-complete,
- ightharpoonup A has a pseudo-Siggers polymorphism and CSP(A) is in P.

In particular, this confirms the infinite-domain conjecture for CSPs in MMSNP.

Introduction

MMSNP "⊆" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Definition

 $\mathcal{B} = (B; E)$ a graph. CSP(\mathcal{B}) is the problem:

▶ **Input:** a finite graph A,

▶ **Question:** is there a homomorphism $A \rightarrow B$?

Definition

 $\mathcal{B} = (B; E)$ a graph. CSP(\mathcal{B}) is the problem:

▶ **Input:** a finite graph A,

Question: is there a homomorphism $A \to B$?

In general, the forbidden patterns problem (FPP) for \mathcal{F} is not a CSP, but a finite union of CSPs.

Proposition

Every FPP reduces in polynomial-time to a finite number of FPP of connected structures.

Theorem (Cherlin-Shelah-Shi, '99)

For every finite set \mathcal{F} of finite connected coloured graphs, there exists an ω -categorical partially coloured graph \mathcal{B}^* such that $\mathcal{A}^* \to \mathcal{B}^*$ iff \mathcal{A}^* avoids \mathcal{F} .

Theorem (Cherlin-Shelah-Shi, '99)

For every finite set $\mathcal F$ of finite connected coloured graphs, there exists an ω -categorical partially coloured graph $\mathcal B^*$ such that $\mathcal A^* \to \mathcal B^*$ iff $\mathcal A^*$ avoids $\mathcal F$.

Construct a new \mathcal{B} by:

- deleting the uncoloured elements in B*,
- forgetting about the colours.

For this talk: we call \mathcal{B} an MMSNP structure.

Theorem (Cherlin-Shelah-Shi, '99)

For every finite set $\mathcal F$ of finite connected coloured graphs, there exists an ω -categorical partially coloured graph $\mathcal B^*$ such that $\mathcal A^* \to \mathcal B^*$ iff $\mathcal A^*$ avoids $\mathcal F$.

Construct a new \mathcal{B} by:

- ightharpoonup deleting the uncoloured elements in \mathcal{B}^* ,
- forgetting about the colours.

For this talk: we call \mathcal{B} an MMSNP structure.

Proposition (Bodirsky-Dalmau, '06)

$$CSP(\mathcal{B}) = FPP(\mathcal{F}).$$

Moreover, \mathcal{B} belongs to the class of reducts of finitely bounded homogeneous structures.

Introduction

MMSNP "⊂" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

▶ $Pol(\mathcal{B})$: clone of homomorphisms $\mathcal{B}^k \to \mathcal{B}$,

- ▶ $Pol(\mathcal{B})$: clone of homomorphisms $\mathcal{B}^k \to \mathcal{B}$,
- ► Clonoid homomorphism:

$$f(x_{i_1},\ldots,x_{i_k}) \approx g(x_{j_1},\ldots,x_{j_l}) \Rightarrow \xi(f)(\ldots) \approx \xi(g)(\ldots),$$

- ▶ $Pol(\mathcal{B})$: clone of homomorphisms $\mathcal{B}^k \to \mathcal{B}$,
- Clonoid homomorphism:

$$f(x_{i_1},\ldots,x_{i_k})\approx g(x_{j_1},\ldots,x_{j_l})\Rightarrow \xi(f)(\ldots)\approx \xi(g)(\ldots),$$

 $ightharpoonup \mathcal{A}$ finitely bounded homogeneous structure \Leftrightarrow exists finite universal theory s.t. $\mathcal{C} \hookrightarrow \mathcal{A}$ iff \mathcal{C} model of the theory.

- ▶ $Pol(\mathcal{B})$: clone of homomorphisms $\mathcal{B}^k \to \mathcal{B}$,
- ► Clonoid homomorphism: $f(x_{i_1},...,x_{i_k}) \approx g(x_{i_1},...,x_{i_k}) \Rightarrow \xi(f)(...) \approx \xi(g)(...),$
- ▶ \mathcal{A} finitely bounded homogeneous structure \Leftrightarrow exists finite universal theory s.t. $\mathcal{C} \hookrightarrow \mathcal{A}$ iff \mathcal{C} model of the theory.

Conjecture (Bodirsky-Pinsker, '11 (rephrased))

Let $\mathcal B$ be a reduct of a finitely bounded homogeneous structure. If there is no uniformly continuous clonoid homomorphism $\mathsf{Pol}(\mathcal B) o \mathscr P$, then $\mathsf{CSP}(\mathcal B)$ is in P.

- ▶ $Pol(\mathcal{B})$: clone of homomorphisms $\mathcal{B}^k \to \mathcal{B}$,
- Clonoid homomorphism:

$$f(x_{i_1},\ldots,x_{i_k})\approx g(x_{j_1},\ldots,x_{j_l})\Rightarrow \xi(f)(\ldots)\approx \xi(g)(\ldots),$$

▶ \mathcal{A} finitely bounded homogeneous structure \Leftrightarrow exists finite universal theory s.t. $\mathcal{C} \hookrightarrow \mathcal{A}$ iff \mathcal{C} model of the theory.

Conjecture (Bodirsky-Pinsker, '11 (rephrased))

Let $\mathcal B$ be a reduct of a finitely bounded homogeneous structure. If there is no uniformly continuous clonoid homomorphism $\operatorname{Pol}(\mathcal B) o \mathscr P$, then $\operatorname{CSP}(\mathcal B)$ is in P.

Interesting?

- statement and its consequences: *******
- ▶ proofs: ★★★★★

Introduction

MMSNP "⊂" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Another question about MMSNP

A precoloured forbidden patterns problem is an FPP where the input can be partially coloured.

Precoloured MMSNP

Question (Lutz-Wolter, '15)

 $\mathcal F$ finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal F)$ and its precoloured version have the same complexity?

Question (Lutz-Wolter, '15)

 $\mathcal F$ finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal F)$ and its precoloured version have the same complexity?

Rephrased: do $CSP(\mathcal{B}, \bullet, \bullet)$ and $CSP(\mathcal{B})$ have same complexity?

Question (Lutz-Wolter, '15)

 \mathcal{F} finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal{F})$ and its precoloured version have the same complexity?

Proposition (Bodirsky, '07)

For ω -categorical model-complete cores, it is possible to add constants without changing the complexity.

Question (Lutz-Wolter, '15)

 \mathcal{F} finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal{F})$ and its precoloured version have the same complexity?

Proposition (Bodirsky, '07)

For ω -categorical model-complete cores, it is possible to add constants without changing the complexity.

Good news: we can choose the MMSNP structure $\mathcal B$ so that $(\mathcal B,\neq)$ is an ω -categorical model-complete core.

- ► Obstructions F:
- \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

- \blacktriangleright Obstructions \mathcal{F} :
- \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

- \blacktriangleright Obstructions \mathcal{F} :
- \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

- \blacktriangleright Obstructions \mathcal{F} :
- \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

- \blacktriangleright Obstructions \mathcal{F} :
- \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

 \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

 \triangleright x precoloured in the instance of CSP($\mathcal{B}, \bigcirc, \bigcirc$):

Proposition

There is a unif. cont. clonoid homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$ iff there is one $Pol(\mathcal{B}, \bullet, \bullet) \to \mathscr{P}$.

Introduction

MMSNP "⊂" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Definition

 $f: B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathcal G$, there exists $\beta \in \mathcal G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

Definition

 $f \colon B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathcal G$, there exists $\beta \in \mathcal G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

Definition

 $f \colon B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathcal G$, there exists $\beta \in \mathcal G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

 \mapsto

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

Theorem (Bodirsky-M, '16)

Let $\mathcal B$ be in the class (reduct of...). If $\operatorname{Pol}(\mathcal B)$ contains a pseudo-Siggers operation modulo $\operatorname{Aut}(\mathcal B)$ that is canonical with respect to $\operatorname{Aut}(\mathcal B)$, then $\operatorname{CSP}(\mathcal B)$ is in P.

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

Theorem (Bodirsky-M, '16)

Let $\mathcal B$ be in the class (reduct of...). If $\operatorname{Pol}(\mathcal B)$ contains a pseudo-Siggers operation modulo $\operatorname{Aut}(\mathcal B)$ that is canonical with respect to $\operatorname{Aut}(\mathcal B)$, then $\operatorname{CSP}(\mathcal B)$ is in P.

 \Rightarrow If there is no clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$, then $CSP(\mathcal{B})$ is in P.

- 1. No clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$: done (in P),
- 2. Clone homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$: done (NP-hard),
- 3. not case 1 or 2: ?

- 1. No clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$: done (in P),
- 2. Clone homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$: done (NP-hard),
- 3. not case 1 or 2: ?

Proposition

For \mathcal{B} an MMSNP structure, case 3 does not happen.

- 1. No clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$: done (in P),
- 2. Clone homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$: done (NP-hard),
- 3. not case 1 or 2: ?

Proposition

For \mathcal{B} an MMSNP structure, case 3 does not happen.

Proof.

ightharpoonup Every function in $Pol(\mathcal{B})$ has canonical friends in $Pol(\mathcal{B})_{can}$,

- 1. No clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$: done (in P),
- 2. Clone homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$: done (NP-hard),
- 3. not case 1 or 2: ?

Proposition

For \mathcal{B} an MMSNP structure, case 3 does not happen.

Proof.

- ▶ Every function in $Pol(\mathcal{B})$ has canonical friends in $Pol(\mathcal{B})_{can}$,
- ▶ Some clone homomorphism ξ : Pol(\mathcal{B})_{can} $\to \mathscr{P}$ is constant on the sets of canonical friends,

- 1. No clone homomorphism $Pol(\mathcal{B})_{can} \to \mathscr{P}$: done (in P),
- 2. Clone homomorphism $Pol(\mathcal{B}) \to \mathscr{P}$: done (NP-hard),
- 3. not case 1 or 2: ?

Proposition

For \mathcal{B} an MMSNP structure, case 3 does not happen.

Proof.

- Every function in $Pol(\mathcal{B})$ has canonical friends in $Pol(\mathcal{B})_{can}$,
- ▶ Some clone homomorphism ξ : Pol(\mathcal{B})_{can} $\to \mathscr{P}$ is constant on the sets of canonical friends,
- ▶ Define extension of ξ in natural way.

- \triangleright σ : set of colour symbols.
- ▶ A trivial subfactor of $\mathscr C$ is a partition $S \uplus T \subseteq \sigma$ such that $\mathscr C/\sim$ is isomorphic to $\mathscr P.$

Proposition

Suppose there is $Pol(\mathcal{B})_{can} \to \mathscr{P}$. There exists S, T trivial subfactor of \mathscr{C} and E undirected graph on σ s.t.:

- \triangleright *E* is preserved by Pol(\mathcal{B}),
- E contains an edge from S to T but does not contain pseudo-loops;
- ▶ there is no E-path of even length between S and T.

 \rightsquigarrow clone homomorphism $\operatorname{Pol}(\mathcal{B})_{\operatorname{can}} \to \mathscr{P}$ that is constant on every set of canonical friends.

Theorem (Hubička-Nešetřil, 2016)

Let $\mathcal B$ be an MMSNP structure. Then there is a linear order < on $\mathcal B$ such that $(\mathcal B,<)$ is ω -categorical and Ramsey.

Theorem (Hubička-Nešetřil, 2016)

Let $\mathcal B$ be an MMSNP structure. Then there is a linear order < on $\mathcal B$ such that $(\mathcal B,<)$ is ω -categorical and Ramsey.

Theorem (Bodirsky-Pinsker-Tsankov, 2010)

Suppose that $\mathcal G$ is the automorphism group of an ω -categorical ordered Ramsey structure. For every $f: B^k \to B$, there exists a function $g \in \overline{\mathcal Gf\mathcal G}$ that is canonical with respect to $\mathcal G$.

Theorem

Let B be an MMSNP structure.

Then either the following equivalent statements hold:

1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathcal{B}) o \mathscr{P}$,

and CSP(B) is in P, or CSP(B) is NP-complete.

$\mathsf{Theorem}$

Let B be an MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathcal{B}) o \mathscr{P},$
- 2. Pol(B) contains a pseudo-Siggers,

and CSP(B) is in P, or CSP(B) is NP-complete.

Theorem

Let B be an MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathcal{B}) o \mathscr{P}$,
- 2. Pol(B) contains a pseudo-Siggers,
- 3. Pol(B) contains a canonical pseudo-Siggers,

and CSP(B) is in P, or CSP(B) is NP-complete.

Theorem

Let B be an MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathcal{B}) \to \mathscr{P}$,
- 2. Pol(B) contains a pseudo-Siggers,
- 3. Pol(B) contains a canonical pseudo-Siggers,
- **4.** $Pol(\mathcal{B}, \bullet, \bullet)$ contains a colour-canonical pseudo-Siggers, and $CSP(\mathcal{B})$ is in P, or $CSP(\mathcal{B})$ is NP-complete.

Theorem

Let B be an MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathcal{B}) \to \mathscr{P}$,
- 2. Pol(B) contains a pseudo-Siggers,
- 3. Pol(B) contains a canonical pseudo-Siggers,
- **4.** $Pol(\mathcal{B}, \bullet, \bullet)$ contains a colour-canonical pseudo-Siggers, and $CSP(\mathcal{B})$ is in P, or $CSP(\mathcal{B})$ is NP-complete.

Items 3. and 4. are decidable.