

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

Senyals i Sistemes II

Data d'examen: 24 d' Octubre de 2008

Data notes provisionals: Període d'al.legacions: Data notes revisades:

Professors: J. Hernando, J.B. Mariño, E. Monte, P. Salembier, A. Oliveras.

Codi de la prova: 230 11485 65 0 00

Temps: 1 h 30 min

- Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents.
- Totes les marques del full de respostes s'han de fer preferiblement amb boligraf negre.
- Les preguntes poden tenir <u>més d'una</u> resposta correcta (tres com a màxim). Les respostes errònies <u>resten punts</u>. Utilitzeu la <u>numeració de la dreta</u> (opció d'anul·lar respostes).
- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil.

- 1. Sigui l'esquema de la figura on la frequència de mostreig és F_m i els filtres antialiasing i reconstructor són ideals i tenen frequències de tall F_A=F_R=F_m/2. Indiqueu les afirmacions correctes:
 - **1A:** Si $F_m = 8$ kHz. i x[n] és filtrada pel sistema $h[n] = \{\underline{1},0,1\}$, llavors y(t) no tindrà mai la component freqüencial de 700 Hz.
 - **1B:** Si x[n] té un període de 10 mostres, podem afirmar que x[n] te una sola component de freqüència 1/10, dins del període fonamental de la representació freqüencial.
 - 1C: Si x[n] és filtrada pel sistema $h[n] = \delta[n] \delta[n-4]$, llavors y(t) no contindrà mai la component contínua.
 - **1D:** Si $F_m = 8$ kHz. i y[n] és la seqüència periòdica y[n] = {...1,1,-1,-1,1,1,-1,-1,...}, podem afirmar que y(t) només conté un to de 2 kHz.
- 2. En el mismo esquema de la figura anterior, con y[n] = x[n], $F_m = 12$ kHz, $F_A = 9$ kHz, $F_R = 7$ kHz y x(t) senoidal de F kHz, ¿cuál o cuáles de las afirmaciones siguientes son ciertas?:
 - **2A:** Si F = 2 kHz, y(t) es una sinusoide de la misma frecuencia
 - **2B:** Si F = 4 kHz, y(t) es una sinusoide de la misma frecuencia
 - **2C:** Si F = 6 kHz, y(t) es una sinusoide de la misma frecuencia
 - **2D:** Si F = 8 kHz, y(t) es una sinusoide de la misma frecuencia
- 3. Considere las siguientes secuencias $x[n] = \delta[n] \delta[n-1]$, $y[n] = (-1)^n$, $z[n] = \{..., 0, 1, 1, 1, 0, ...\}$. Señale las afirmaciones correctas entre las siguientes:
 - **3A:** x[n] * y[n] = 2 y[n]
 - **3B:** $x[n] * z[n] = \delta[n+1] \delta[n-1]$
 - **3C:** z[n] * y[n] = 0
 - **3D:** $z[n] * z[n] = {..., 0, 1, 2, 3, 4, 3, 2, 1, 0, ...}$
- 4. Sea la secuencia periódica $x[n] = \{..., 2, 1, -1, -2, -1, 1, \underline{2}, 1, -1, -2, -1, 1, ...\}$, se cumple:
 - **4A:** No es sinusoidal.
 - **4B:** Su pulsación es $\pi/3$ rad.
 - **4C:** Tiene una componente frecuencial en 5/6.
 - **4D:** Su frecuencia es 1/6 Hz.

5. Siguin els següents sistemes definits per la seva relació entrada (x[n]) sortida (y[n]) o per la seva resposta impulsional (Considerar N>1, P>0):

S1:
$$y[n] = x[-n]$$
, S2: $y[n] = x[Nn]$, S3: $y[n] = \sum_{r=-\infty}^{\infty} x[n+rP]$, S4: $h[n] = \delta[n-1]$

Indiqueu les respostes correctes:

5A:
$$S2\{S3\{S4\{S1\{x[n]\}\}\}\}\}=\sum_{n=0}^{\infty}x[-Nn+1+rP]$$

5B:
$$S2 \{S4 \{S1 \{S3 \{x[n]\}\}\}\}\} = \sum_{n=0}^{\infty} x[-Nn+1+rP]$$

5C:
$$S2\{S4\{x[n]\}\} = S4\{S2\{x[n]\}\}$$

5D:
$$S3\{S4\{S1\{x[n]\}\}\}=\sum_{r=-\infty}^{\infty}x[-n+1-rP]$$

- 6. Considérese el sistema de la figura en reposo. Señale las afirmaciones correctas:
 - **6A:** Cuando $x[n] = (-1)^n$, la respuesta del sistema es nula.
 - **6B:** Cuando x[n] = 1, la respuesta del sistema es nula.
 - **6C:** La función de transferencia asociada con el sistema es $H(z) = (1 z^{-1}) / (1 + 0.5 z^{-1})$.
 - **6D:** La respuesta impulsional del sistema es $h[n] = (-0.5)^n u[n] + \delta[n] + \delta[n-1]$.
- 7. Si x[n] y $X(e^{j\omega})$ son pares transformados mediante la transformada de Fourier, señale las afirmaciones correctas:
 - **7A:** Si x[n] es impar, $X(e^{j\omega})$ es imaginaria pura.
 - **7B:** La transformada de $(-j)^n x[n]$ es $X(e^{j(\omega+\pi/2)})$.
 - **7C:** Si x[n] es real, $X(e^{j\omega})=X^*(e^{j(2\pi-\omega)})$.
 - **7D:** La transformada de $x^2[n]$ es $\frac{1}{2\pi} \int_{-\infty}^{\infty} X(e^{j\lambda}) X(e^{j(\omega-\lambda)}) d\lambda$.
- 8. Considere las secuencias escalón unidad u[n] y x[n] = {... 0, 1, 1, 0, -1, -1, 0, ...}. Si TF{ } y DFT N{ } representan la transformada de Fourier y la transformada discreta de Fourier discreta con N muestras, respectivamente, indique las afirmaciones que considera correctas:
 - **8A:** Para todo N > 0 se cumple que: $DFT_N\{u[n]\} = N \delta[k]$ k = 0, ..., N-1.
 - **8B:** $TF\{x[n] * x[-n-2]\} = |TF\{x[n]\}|^2 e^{-2j\omega}$.
 - **8C:** Para todo $N \ge 5$ se cumple que: $DFT_N\{x[n+2]\} = DFT_N\{x[n]\} e^{2j2\pi k/N}$
 - **8D:** TF $\{x[n+2]\}$ es impar e imaginaria.
- 9. Señale las afirmaciones correctas:
 - **9A:** $x[n]=\cos(\omega_0 n)$ e $y[n]=\sin(\omega_0 n)$ son incorreladas.
 - **9B:** Si y[n]=x[n]cos(ω_0 n), la autocorrelación de y[n] es r_v[m]=r_x[m]cos(ω_0 m).
 - **9C:** Para cualquier señal de potencia media finita x[n] e y[n], $r_{x+y}[m]=r_x[m]+r_y[m]$.
 - **9D:** La densidad espectral de potencia de la señal u[n] es: $\pi \sum_{k=-\infty}^{\infty} \delta(\omega + 2k\pi)$
- 10. Indiqueu les afirmacions correctes pel sistema delmador definit per la relació y[n]=x[Nn]:
 - **10A:** El sistema és linial.
 - **10B:** Suposant N=3, si $x[n] = \cos(2\pi 3n/32)$, llavors $y[n] = \cos(2\pi 9n/32)$.
 - **10C:** Suposant N=3, si $x[n] = \cos(2\pi 9n/32)$, llavors $y[n] = \cos(2\pi 3n/32)$.
 - **10D:** El sistema és invariant.