Total No. of Questions : 6]	200	SEAT No.:	
P32	Oct./TE/Insem146	[Total	No. of Pages :

T.E. (E&TC) DIGITAL COMMUNICATION

(2015 Pattern) (Semester - I) (304181)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) With the block diagram explain the generation and reconstruction of PCM signal. [5]
 - b) Considers a DM system designed to accommodate analog message signals limited to bandwidth W = 5KHz. A sinusoidal test signal of amplitude A = 1 Volt and frequency im = 1KHz is applied to the system. The sampling rate of the system is 50 KHz. [5]
 - i) Calculate the minimum step size required to minimize slope overload.
 - ii) Calculate SNR of the system for the specified sinusoidal test signal.

OR

- Q2) a) Explain with block diagram. Adaptive delta modulation.
 - Explain how compounding improves the signal to noise ratio of PCM system with respect to μ-law.
- Q3) a) Explain T_1 multiplexing system in detail.
 - b) Given a six channel main multiplexes with fs = 8 KHz. Device a telemetry system including a marker that accommodates six input signals having following bandwidth 8.0, 3.5, 2.0, 1.8 and 1.2 KHz. Make sure that successive samples of each input signal are equispaced in time. Calculate the resulting baseband transmission bandwidth. Draw the block schematic of designed telemetry system. [5]

OR

[5]

Q4)	a)	Dra	w waveforms for the bit sequence 11010100 to	[5]		
		i)	RZ unipolar			
		ii)	NRZ polar			
		iii)	Bipolar NRZ			
		iv)	Manchester			
		v)	Polar Quaternary NRZ			
	b)	Wh	at is bit synchronization? Explain closed loop bit synchronizer.	[5]		
Q 5)	a)	If X	` c ' '			
		vari mea	hable uniformly distributed over $(0, 2\pi)$ Prove that x (t). is ergodi	c in [5]		
	b)		plain random process with classification.	[5]		
	0)	, Q	OR OR	[°]		
Q6)	a)	Exr	plain various sources of noise.	[5]		
20)	b)	X,	where k is an random variable uniform			
	U)		ributed in the range $(-1, +1)$. Find process is wide sense station			
		or r		[5]		
TE/Insem146						
Ap Ap Ap						
			36.			
			Cy 29°			
			6.1			
			8. V			
TE/	Ins	em1	2			