

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : G01J 3/50, A61C 19/10		A1	(11) International Publication Number: WO 91/02955
			(43) International Publication Date: 7 March 1991 (07.03.91)
<p>(21) International Application Number: PCT/GB90/01288</p> <p>(22) International Filing Date: 15 August 1990 (15.08.90)</p> <p>(30) Priority data: 8918605.0 15 August 1989 (15.08.89) GB</p> <p>(71)(72) Applicant and Inventor: McKEOWN, Sameul, Thomas, John [GB/GB]; 36 Annetyard Drive, Skelmorlie, Renfrewshire PA17 5BN (GB).</p> <p>(74) Agent: PACITTI, Pierpaolo, A., M., E.; Murgitroyd and Company, Mitchell House, 333 Bath Street, Glasgow G2 4ER (GB).</p>		<p>(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.</p> <p>Published <i>With international search report.</i></p>	
<p>(54) Title: SHADE DISTINGUISHING DEVICE</p>			
<p>(57) Abstract</p> <p>A shade distinguishing device comprising a casing (6) having a light source (1) and detector (2). The light source and detector being relatively positioned so that a proportion of the light emitted by the detector, and falling incident on an object, is reflected onto the detector. The proportion of the light detected being dependent on the colour and shade of the object. The signal from the detector being processed to produce an accurate signal representative of the shade and colour of the object, which is displayed on a liquid crystal display (3).</p>			

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
AJ	Burma	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
DE	Germany	LU	Luxembourg	TD	Chad
DK	Denmark			TG	Togo
				US	United States of America

1 "Shade Distinguishing Device"

2

3 This invention relates to a shade distinguishing
4 device.

5

6 In addition to the primary task of caring for patients'
7 teeth and gums dentists today also have to be aware of
8 the cosmetic side of their work. Patients whether they
9 require fillings, caps, veneers or dentures want them
10 to blend and match their own teeth. The most important
11 part of this matching process is colour or shade
12 matching.

13

14 At present shade matching is achieved by a dentist who
15 visually matches the shade of a patients' teeth with a
16 shade guide. This is both an extremely time
17 consuming and an inadequate process. With only 16
18 shades to choose from many patients' teeth cannot be
19 matched perfectly. This problem is compounded both by
20 dentists not always having time for an accurate
21 matching and by the shading on the charts fading with
22 age. These problems added to the fact that many
23 dentists and technicians do not have perfect colour
24 vision results, in many cases in an extremely poor
25 shade match and visually obvious dental work for the

1 patient.

2

3 The provision of a device which can provide an accurate
4 measure of teeth shading is therefore extremely
5 desirable.

6

7 According to the present invention there is provided a
8 shade distinguishing device comprising a light source
9 for projecting light towards an object, light detecting
10 means for receiving light reflected from said object
11 and which produces an output signal the magnitude of
12 said signal being dependent on the intensity of light
13 incident on the detecting means and means for producing
14 an audio or visual display representative of the
15 magnitude of said signal.

16

17 Preferably, the light source is a light emitting diode.

18

19 Most preferably, there is a plurality of light sources,
20 each producing light at a different wavelength,
21 particularly in the ranges including red, yellow, green
22 and blue light.

23

24 Preferably, the detecting means is a diode which
25 produces a voltage signal the magnitude of the signal
26 being dependent on the intensity of the incident light.

27

28 Preferably, the detector is shielded in order to limit
29 the detection of scattered or spurious light.

30

31 Preferably, signals produced by the detection of
32 spurious light are deleted by the modulation of the
33 light source at a known frequency and the use of phase
34 sensitive detection of the reflected light, at the said
35 frequency.

1 Most preferably phase sensitive detection is provided
2 by the inclusion of a lock-in amplifier system.
3

4 Preferably, the light source and detector are
5 relatively positioned so that light emitted by the
6 source will be detected by the detector only if the
7 light is reflected from a surface at a set distance
8 from the light source and detector.
9

10 Most preferably, the surface is a tooth and the
11 intensity of light on the detector is dependent on the
12 proportion of the light, incident on the tooth, which
13 is reflected by the tooth enamel.
14

15 Preferably, the signal is processed by an analogue to
16 digital converter to drive a digital display.
17

18 Most preferably, the analogue to digital converter is
19 in the form of a pre-programmed micro-chip.
20

21 Preferably, the digital display is a seven segment
22 liquid crystal display.
23

24 An embodiment of the present invention will now be
25 described, by way of example, with reference to the
26 accompanying drawings in which:
27

28 Fig. 1 is a side elevation of a shade
29 distinguishing device in accordance with the
30 present invention;
31 Fig. 2 is a plan view of the shade
32 distinguishing device of Fig. 1; and
33 Fig. 3 is a block diagram of the shade
34 distinguishing device of Fig. 1.
35

1 Referring to the drawings, Figs. 1 and 2 show a shade
2 distinguishing device including a plastics housing 6
3 one end of which is attached to an operating head 7
4 containing a light source in the form of a light
5 emitting diode 1 and a light detector 2 in the form of
6 a diode which produces a voltage signal the magnitude
7 of the signal being dependent on the intensity of the
8 light incident on the detector 2. The main body of the
9 housing 6 contains a means of processing the signal, in
10 the form of a pre-programmed micro-chip which converts
11 the analogue signal produced by the detector 2 to a
12 digital signal which is displayed on an array of three
13 liquid crystal diodes 3.

14
15 Fig. 3 is a block diagram showing how the shade
16 distinguishing device will show a unique number on the
17 display corresponding to the colour and shade of the
18 object under test.

19
20 The sample is illuminated sequentially by various
21 colour light emitting diodes and the light reflected
22 back from the sample is measured using a photodiode.

23
24 In any practical measurement the signals will be
25 accompanied by unwanted noise energy that limits the
26 sensitivity that can be obtained. An a.c. phase
27 sensitive measurement system is used in order to
28 improve the signal to noise ratio and provide some
29 immunity to strong light entering the detector. The
30 phase sensitive detector has the ability to resolve a
31 signal from broadband noise many times the amplitude of
32 the signal to be measured. A lock-in amplifier
33 measurement system is used which incorporates a
34 modulation circuit, selective amplification,
35 synchronous demodulation and low pass filtering.

1 The light emitting diodes are modulated at a discreet
2 frequency in a region of minimal noise well removed
3 from low frequency flicker noise and interference such
4 as mains pick-up. Logic circuitry sequentially turns
5 on each light emitting diode for a short period in
6 turn. A driver circuit is used to provide sufficient
7 current drive to the light emitting diodes.

8

9 The signal from the detector first undergoes wideband
10 filtering and amplification. A band pass filter is
11 used to remove any large interference signals which
12 could saturate the output of the phase detector.

13

14 The modulated signal is synchronously detected using
15 the reference signal to form the product in a
16 multiplier circuit. This enables the system to
17 discriminate against random noise components. The
18 reference signal is derived from the same source as the
19 signal and must be phase coherent. The output from the
20 synchronous detector is then converted to a d.c. signal
21 by an integrator and low pass filter. This provides a
22 narrow bandwidth and removes any higher order a.c.
23 components in the signal. The d.c. signal is then
24 converted to a digital code using an analogue to
25 digital convertor. At the end of conversion the output
26 from the A/D convertor is latched into a shift register
27 for storage.

28

29 A separate shift register is used for each light
30 emitting diode. The outputs from the shift registers
31 are connected to the address lines of then memory
32 device and are used to select a unique address on the
33 chip. The address selected will therefore depend on
34 the level of the measurement signal. The memory device
35 is pre-programmed with a unique number in each

1 location. The memory devices are configured as READ
2 ONLY and therefore the date lines will correspond to
3 the binary code of the location selected by the address
4 lines. The data from the memory device is processed
5 into a suitable form for the digital display which is
6 updated at the end of each cycle of measurements.

7

8 The means of actuating the shade distinguishing device
9 is in the form of an operating button 4.

10

11 In use a dentist or other user would place the open end
12 5 of the operating head 7 over a patients' tooth, thus
13 positioning the light emitting diode 1 and light
14 detector 2 at a set distance from the tooth. In this
15 way the maximum amount of light emitted by the diode 1
16 and reflected off of the tooth falls incident on the
17 detector 2.

18

19 The light incident on the tooth is either absorbed,
20 transmitted or reflected. The proportion of the light
21 reflected is dependent on the shade of the tooth; a
22 black tooth reflecting no light and a pure white tooth
23 reflecting all of the incident light. Therefore, the
24 proportion of the light reflected is determined by the
25 shade of the tooth and the voltage signal produced by
26 the detector is determined by the intensity of this
27 light incident on the detector.

28

29 Thus the voltage signal produced by the detector
30 provides an accurate measure of the shade of a tooth.
31 The voltage signal is converted from an analogue to a
32 digital signal for ease of display, using a three digit
33 liquid crystal diode display 3.

34

35 The voltage signal provided by the shade distinguishing

1 device can be compared to the signal obtained from each
2 of the 16 shades available from a Vita (TM) shade
3 guide. As the shades of porcelain produced by Vita
4 (TM) and other manufacturers increase the electronic
5 shade indicator will enable the exact matching of any
6 tooth shade to that of a porcelain, which can be used
7 to produce dentures or crowns or other dental
8 requirements.

9

10 In this way the introduction of a shade distinguishing
11 device in accordance with the present invention not
12 only enables more accurate use of the presently
13 available shades of porcelain but also facilitates the
14 introduction and use of a much wider range of shades of
15 porcelain.

16

17 Modifications and improvements may be incorporated
18 without departing from the scope of the invention.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1 Claims

2

3 1. A shade distinguishing device comprising a light
4 source for projecting light towards an object, light
5 detecting means for receiving light reflected from said
6 object and which produces a signal, the magnitude of
7 said signal being dependent on the intensity of light
8 incident on the detecting means and means for producing
9 an audio or visual display representative of the
10 magnitude of said signal.

11

12 2. A shade distinguishing device as claimed in Claim
13 1, wherein the light source is a light emitting diode.

14

15 3. A shade distinguishing device as claimed in Claim
16 2, wherein the device includes a plurality of light
17 emitting diodes each providing light at a different
18 wavelength, thus allowing the device to distinguish
19 between colours.

20

21 4. A shade distinguishing device as claimed in Claim
22 3, wherein a logic circuit is provided to operate each
23 light emitting diode in sequence.

24

25 5. A shade distinguishing device as claimed in any
26 preceding claim, wherein the detector is shielded in
27 order to limit the detection of scattered or spurious
28 light.

29

30 6. A shade distinguishing device as claimed in any
31 preceding claim, wherein the signals produced by
32 scattered or spurious light are deleted by the
33 modulation of the light source at a known frequency and
34 the use of phase sensitive detection of the reflected
35 light at the said frequency.

1

2 7. A shade distinguishing device as claimed in Claim
3 6, wherein a lock-in amplifier system is used.

4

5 8. A shade distinguishing device as claimed in any
6 preceeding claim, wherein the light source and detector
7 are relatively positioned so that light emitted by the
8 light source will be detected by the detector only if
9 the light is reflected from a surface at a set distance
10 from the light source and detector.

11

12 9. A shade distinguishing device as claimed in Claim
13 8, wherein the surface is a tooth and the intensity of
14 light incident on the detector is dependent on the
15 proportion of the light, incident on the tooth, which
16 is reflected by the tooth enamel.

17

18 10. A shade distinguishing device as claimed in any
19 preceeding claim wherein the signal is processed by an
20 analogue to digital convertor in the form of a
21 pre-programmed micro-chip, to drive a digital display.

22

23 11. A shade distinguishing device as claimed in any
24 preceeding claim, wherein the device is powered by a
25 power cell such as a battery.

26

27

28

29

30

31

32

33

34

35

$\frac{1}{2}$

SUBSTITUTE SHEET

FIG. 3

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 90/01286

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC⁵ : G 01 J 3/50, A 61 C 19/10

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
IPC ⁵	G 01 J, A 61 C
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched ⁸	

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
P,X	EP, A, 0360657 (BERTIN & CO) 28 March 1990 see column 4, lines 2-51; figure 1 --	1,9,10
P,X	Patent Abstracts of Japan, volume 13, no. 427 (C-639), 22 September 1989, & JP, A, 01164361 (SHIGERU ONOZUKA) 28 June 1989 see abstract --	1
X	US, A, 3910701 (R. HENDERSON) 7 October 1975 see figure 2; claims 1-9; column 9, lines 13-15 --	1-4,11
X	EP, A, 0256970 (F. KURANDT) 24 February 1988 see claims 1-10 --	1-4
P,X	EP, A, 0375317 (E.I. DU PONT DE NEMOURS AND CO) 27 June 1990 see claim 1 --	1

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

12th November 1990

Date of Mailing of this International Search Report

13.12.90

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

F.W. HECK

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category ^a	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	WO, A, 87/03470 (BERTIN & CIE) 18 June 1987 see claims 1-13	1
A	FR, A, 2188157 (W. SWINSON) 18 January 1974 see pages 4,5	1
A	EP, A, 0109686 (HITACHI MAXELL) 30 May 1984 see claim 1	1-4
A	EP, A, 0114515 (DEVELOPMENT FINANCE CORP) 1 August 1984	----

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

GB 9001288
SA 39170

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 05/12/90. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A- 0360657	28-03-90	FR-A-	2637368	06-04-90
		AU-A-	4217589	02-04-90
		WO-A-	9002929	22-03-90
US-A- 3910701	07-10-75	None		
EP-A- 0256970	24-02-88	DE-A-	3626373	18-02-88
		US-A-	4838697	13-06-89
EP-A- 0375317	27-06-90	US-A-	4917495	17-04-90
		AU-A-	4699889	28-06-90
WO-A- 8703470	18-06-87	FR-A-	2591470	19-06-87
		AU-B-	598784	05-07-90
		AU-A-	6739387	30-06-87
		EP-A-	0250519	07-01-88
		JP-T-	63501930	04-08-88
		US-A-	4836674	06-06-89
FR-A- 2188157	18-01-74	DE-A-	2256355	13-12-73
		JP-A-	49027096	11-03-74
EP-A- 0109686	30-05-84	JP-A-	59094021	30-05-84
		JP-A-	59094022	30-05-84
		JP-A-	59097019	04-06-84
		JP-A-	59097020	04-06-84
		US-A-	4678338	07-07-87
EP-A- 0114515	01-08-84	AU-B-	566527	22-10-87
		AU-A-	2278083	28-06-84
		CA-A-	1206621	24-06-86
		JP-A-	59166824	20-09-84