Лабораторная работа №17

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	14
Сг	исок литературы	15

Список иллюстраций

Список таблиц

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Выполнение лабораторной работы

Моделирование работы вычислительного центра На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче. Смоделируем работу ЭВМ за 80 ч. и определим её загрузку. Построим модель. Задается хранилище гат на две заявки. Затем записаны три блока: первые два обрабатывают задания класса А и В, используя один элемент гат, а третий обрабатывает задания класса С, используя два элемента гат. Также есть блок времени генерирующий 4800 минут (80 часов). Из отчета увидим, что загруженность системы равна 0.994.(рис.??), (рис.??).

Untitled Model 1

ram STORAGE 2: GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 GENERATE 20,10 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE 0 GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram, 2 TERMINATE 0 GENERATE 4800 TERMINATE 1 START 1

=100%}

QUEUE CLASS_A		MAX CONT. 183 181	ENTRY ENTF	Y(0) AVE.COM 4 92.35		AVE.(-0) RETRY 688.354 0
		I				
STORAGE		CAP. REM.	MIN. MAX.	ENTRIES AV	L. AVE.C. UT	IL. RETRY DELAY
RAM		2 0	0 2	467 1	1.988 0.	994 0 181
FEC XN	PRI	BDT	ASSEM CU	URRENT NEXT	PARAMETER	VALUE
650	0	4803.512	650	0 1		
636	0	4805.704	636	5 6		
651	0	4807.869	651	0 15		
637	0	4810.369	637	12 13		
652	0	4813.506	652	0 8		
653	0	9600.000	653	0 22		

=100%}

Модель работы аэропорта Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине. Требуется: • выполнить моделирование работы аэропорта в течение суток; • подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; • определить коэффициент загрузки взлетно-посадочной полосы. Построим модель. Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным

обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440

(24 часа). После запуска симуляции получаем отчёт(рис.??), (рис.??).

```
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0
; ожидание
wait TEST L pl,5, goaway
ADVANCE 5
ASSIGN 1+,1 ;если значение атрибута меньше 5,
; то счетчик прибавляет 1 (круг) и идет попытка приземления
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0
;взлет
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0
GENERATE 1440
TERMINATE 1
START 1
```

=100%}

	~	*******		~	~		
	9	TERMINATE	146	0	0		
WAIT	10	TEST	38	0	0		
	11	ADVANCE	38	0	0		
	12	ASSIGN	38	0	0		
	13	TRANSFER	38	0	0		
GOAWAY	14	SEIZE	0	0	0		
	15	DEPART	0	0	0		
	16	RELEASE	0	0	0		
	17	TERMINATE	0	0	0		
	18	GENERATE	142	0	0		
	19	QUEUE	142	0	0		
	20	SEIZE	142	0	0		
	21	DEPART	142	0	0		
	22	ADVANCE	142	0	0		
	23	RELEASE	142	0	0		
	24	TERMINATE	142	0	0		
	25	GENERATE	1	0	0		
	26	TERMINATE	1	0	0		
FACILITY	ENTRIES	I UTIL.	AVE. TIME AVAIL. O	WALD DEND IN	TER RETRY	DEIAV	
RUNWAY	288	0.400	2.000 1	0 0	0 0	0	
RONWAI	200	0.400	2.000 1	0 0	0 0	v	
QUEUE	MAX 0	CONT. ENTRY	ENTRY(0) AVE.CONT	. AVE.TIME	AVE. (-0)	RETRY	
TAKEOFF	1	0 142	114 0.017	0.173	0.880	0	
ARRIVAL	2	0 146	114 0.132	1.301	5.937	0	=100%

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется. Моделирование работы морского порта Морские суда прибывают в порт каждые часов. В порту имеется N причалов. Каждый корабль по длине занимает М причалов и находится в порту часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Рассмотрим два варианта исходных данных. Построим модель для первого варианта(рис.??), (рис.??).

🏰 Untitled Model 1

```
pier STORAGE 10
GENERATE 20,5
 моделирование занятия причала
QUEUE arrive
ENTER pier, 3
DEPART arrive
ADVANCE 10,3
LEAVE pier, 3
TERMINATE 0
GENERATE 24
TERMINATE 1
START 180
```

=100%}

QUEUE ARRIVE			AVE.CONT. 0.000	AVE.(-0) 0.000	
STORAGE PIER				JTIL. RETRY	
					=100%}

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете(рис.??).

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
ARRIVE 1 0 215 215 0.000 0.000 0.000 0

TORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
PIER 3 0 0 3 645 1 1.485 0.495 0 0

=100%}

Построим модель для второго варианта(рис.??), (рис.??).

Untitled Model 1

START 180

pier STORAGE 6
GENERATE 30,10
; моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0
GENERATE 24
TERMINATE 1

=100%}

1		>	IEN	HINAIE	100	v	v		
	QUEUE ARRIVE				AVE.CONT.		E AVE.(-0)		
	STORAGE PIER	CAP.	REM.		RIES AVL. 286 l		JTIL. RETRY	DELAY 0	
- 1									=100%}

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно из отчета(рис.??).

100%}

3 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss: • модель работы вычислительного центра; • модель работы аэропорта; • модель работы морского порта.

Список литературы