ELSEVIER

Contents lists available at ScienceDirect

### Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb



# Selective photocatalytic reduction of CO<sub>2</sub> into CH<sub>4</sub> over Pt-Cu<sub>2</sub>O TiO<sub>2</sub> nanocrystals: The interaction between Pt and Cu<sub>2</sub>O cocatalysts



Zhuo Xiong<sup>a</sup>, Ze Lei<sup>a</sup>, Chia-Chien Kuang<sup>b</sup>, Xiaoxiang Chen<sup>a</sup>, Bengen Gong<sup>a</sup>, Yongchun Zhao<sup>a,\*</sup>, Junying Zhang<sup>a,\*</sup>, Chuguang Zheng<sup>a</sup>, Jeffrey C.S. Wu<sup>b</sup>

- <sup>a</sup> State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074 China
- b Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

#### ARTICLE INFO

Article history:
Received 22 July 2016
Received in revised form
22 September 2016
Accepted 3 October 2016
Available online 4 October 2016

Keywords: CO<sub>2</sub> photocatalytic reduction Selectivity Cocatalyst Interaction

#### ABSTRACT

Photocatalytic reduction of  $CO_2$  with water is one of the most popular and challenging technologies to produce renewable energy. In this paper, Pt and  $Cu_2O$  nanoparticles (NPs) were deposited on the surface of anatase  $TiO_2$  nanocrystals, and their effects on the photocatalytic performance of  $TiO_2$  were thoroughly studied. Based on experimental results, Pt tended to promote the production of  $CH_4$  and  $H_2$ . However,  $Cu_2O$  suppressed  $H_2$  production and exhibited lower  $CH_4$  selectivity than that of Pt. Furthermore, when Pt and  $Cu_2O$  were co-deposited on  $TiO_2$  crystals,  $H_2$  production was inhibited and  $CO_2$  was selectively converted into  $CH_4$ . From characterization, we found that Pt could not only capture photogenerated electrons and but also increase the electrons density on the catalyst, which were beneficial for selective  $CH_4$  formation. In addition, co-deposited  $Cu_2O$  enhanced the  $CO_2$  chemisorption on  $TiO_2$  while inhibited that of water, resulting in enhancement of  $CO_2$  reduction and lower  $H_2$  production. On account of the above-mentioned contribution of Pt and  $Cu_2O$  NPs, Pt- $Cu_2O/TiO_2$  catalyst showed high  $CH_4$  selectivity towards all products from reductive reaction.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

 $\rm CO_2$  has been recognized as the main greenhouse gas contributing to global warming. Therefore, one of the best solutions to this issue is to convert  $\rm CO_2$  into renewable fuels by utilizing solar energy, which not only can reduce  $\rm CO_2$  emission but also provide useful energy sources [1–3]. Since Inoue et al. [4] first reported the  $\rm CO_2$  photocatalytic reduction over semiconductor materials in 1979,  $\rm TiO_2$  has become a favored photocatalyst because of its availability, stability, low cost, and low toxicity [5,6]. However, due to fast recombination of photogenerated electron-hole pairs and limited utilization of solar energy,  $\rm TiO_2$  shows low photocatalytic reaction efficiency [7]. In addition, the weak adsorption and interaction of  $\rm CO_2$  on  $\rm TiO_2$  surface also limit the efficiency of  $\rm CO_2$  photocatalytic reduction.

Many strategies, including preparing  $TiO_2$  with different structures or morphologies [8–10], decorating  $TiO_2$  with noble metals [11–14], and combining  $TiO_2$  with other materials [15,16] have

been reported as routes to enhance the efficiency of CO2 photocatalytic reduction. In our previous work [17], we reported that TiO<sub>2</sub> nanocrystals with co-exposed {101} and {001} facets exhibited enhanced CO<sub>2</sub> photocatalytic reduction activity, which resulted from promoted spatial separation of photogenerated charges towards the different facets of TiO2 nanocrystals. However, most of these strategies promote H<sub>2</sub> production from water splitting as well, which is completive with CO<sub>2</sub> photocatalytic reduction. Besides, it is still difficult to selectively convert CO2 into the specific product. Recently, Xie et al. [18] reported that Pt-MgO/TiO<sub>2</sub> enhanced the selectivity of CH<sub>4</sub> production from CO<sub>2</sub> photoreduction because MgO enhanced CO2 chemsorption and Pt increased electron density. Zhai et al. [19] prepared Pt@Cu<sub>2</sub>O coreshell structured cocatalyst and found it enhanced CO<sub>2</sub> reduction while suppressed the reduction of water to H<sub>2</sub>. Many studies have reported that cocatalysts are able to enhance photocatalytic efficiency of TiO2, however, still limited researches have discussed the effects of cocatalysts contributed to the product selectivity in CO<sub>2</sub> reduction.

In this paper, anatase  $TiO_2$  nanocrystals with co-exposed  $\{101\}$  and  $\{001\}$  facets were prepared through a solvothermal method. After that, Pt and  $Cu_2O$  NPs were deposited on the surface of  $TiO_2$  crystals as cocatalysts. The effects of cocatalysts on the photocat-

<sup>\*</sup> Corresponding authors. E-mail addresses: yczhao@hust.edu.cn (Y. Zhao), jyzhang@hust.edu.cn (J. Zhang).

alytic activity of  ${\rm TiO_2}$  and product selectivity were investigated. Finally, a possible reaction mechanism about the selectivity of the catalysts was proposed based on experimental results. This study attempts to provide a new insight for the design of photocatalysts with high selectivity for  ${\rm CO_2}$  reduction.

#### 2. Experimental

#### 2.1. Catalyst preparation

#### 2.1.1. Preparation of TiO<sub>2</sub> nanocrystals

 $TiO_2$  nanocrystals with co-exposed  $\{001\}$  and  $\{101\}$  facets were prepared by a solvothermal method reported in our previous work [17]. First, 10 mL titanium butoxide and 1.2 mL HF solution were added into 90 mL ethanol under sonication for 1 h. The mixed solution was transferred into a 200 mL Teflon-lined autoclave and kept at  $180\,^{\circ}$ C for 24 h. Later, the autoclave was cooled naturally to ambient temperature. The white precipitate in the clave was collected by centrifugation, washed with ethanol and deionized water for 3 times, and then dried in an oven at  $60\,^{\circ}$ C for 12 h. To remove fluorine residues, the  $TiO_2$  powder was further calcined in air atmosphere  $(500\,^{\circ}$ C, 2 h).

#### 2.1.2. Deposition of Pt and Cu<sub>2</sub>O NPs onto TiO<sub>2</sub> nanocrystals

Pt and Cu<sub>2</sub>O NPs were co-deposited onto TiO<sub>2</sub> nanocrystals by using a chemical reduction method with the help of NaBH<sub>4</sub>. In a typical process, 1 g TiO<sub>2</sub> nanocrystal powders were dispersed in a 50 mL H<sub>2</sub>PtCl<sub>6</sub> and Cu(CH<sub>3</sub>COO)<sub>2</sub> mixed aqueous solution under stirring for 30 min. The mass ratio of Pt or Cu to TiO<sub>2</sub> is 1%. Then 5 mL of mixed solution of NaBH<sub>4</sub> solution (0.1 M) and NaOH solution (0.5 M) were added into the TiO<sub>2</sub> suspension under vigorous stirring for 30 min. After reduction, the solid samples were washed with DI water and collected by centrifugation and drying at 60 °C overnight. The obtained sample was donated as Pt-Cu<sub>2</sub>O/TiO<sub>2</sub>. Besides, Pt/TiO<sub>2</sub> and Cu<sub>2</sub>O/TiO<sub>2</sub> were fabricated by dispersing TiO<sub>2</sub> into the metal precursor solution (*only* H<sub>2</sub>PtCl<sub>6</sub> *or* Cu(CH<sub>3</sub>COO)<sub>2</sub>), which is similar to the above-mentioned method.

#### 2.2. Catalyst characterization

For all samples, X-ray diffraction (XRD) patterns were recorded on an Empyrean diffractometer using Cu  $K\alpha$  radiation  $(\lambda$  = 0.1542 nm) in the range of  $10-80^{\circ}$ . The specific surface areas and pore size distribution were measured by a Micrometrics ASAP 2020 surface area and porosity analyzer. Transmission electron microscopy (TEM) images were obtained using an FEI Tecnai  $G^2$  F30 instrument. X-ray photoelectron spectra (XPS) were recorded on a Shimadzu/KRATOS AXIS-ULTRA DLD-600W instrument equipped with Al/Mg  $K\alpha$  radiation. Photoluminescence spectra (PL) were recorded on a confocal laser Raman microscope (Horiba JobinYvon, LabRAM HR800) using a 325 nm excitation light source.

In order to verify the behavior of the catalysts in the presence of CO<sub>2</sub>, all samples were analyzed by temperature programmed CO<sub>2</sub> desorption (TPD-CO<sub>2</sub>). This technique enables us to analyze the types of sites existing in the materials. For the procedures in detail, 50 mg sample of powder was placed into a quartz tube reactor first, which was heated under ultra-high purity He flow (30 mL min $^{-1}$ ) up to 300 °C at a rate of 25 °C min $^{-1}$  for 1 h and then cooled to ambient temperature. After the pretreatment, CO<sub>2</sub> flow (30 mL min $^{-1}$ ) passed through the catalyst bed for 30 min, subsequently the sample was flushed by He flow (30 mL min $^{-1}$ ) for 1 h. Finally, the TPD analysis was performed under He flow (30 mL min $^{-1}$ ) by heating the reactor up to 750 °C (Rate: 10 °C min $^{-1}$ ). The effluent gas flow was monitored by a TCD detector.

**Table 1**Specific surface areas, pore volumes, and pore sizes of the catalysts.

| Samples                               | BET surface area/ $m^2g^{-1}$ | Pore volume/cm $^3$ g $^{-1}$ | Pore size/nm |
|---------------------------------------|-------------------------------|-------------------------------|--------------|
| TiO <sub>2</sub>                      | 167.4                         | 0.28                          | 6.7          |
| Cu <sub>2</sub> O/TiO <sub>2</sub>    | 165.0                         | 0.30                          | 7.2          |
| Pt/TiO <sub>2</sub>                   | 165.6                         | 0.29                          | 6.9          |
| Pt-Cu <sub>2</sub> O/TiO <sub>2</sub> | 166.8                         | 0.29                          | 7.0          |

#### 2.3. Photocatalytic reduction of CO<sub>2</sub>

CO<sub>2</sub> photocatalytic reduction under UV light irradiation was carried out in an internal circulated reaction system (as shown in Fig. 1), including a 500 mL Pyrex glass reactor with a quartz window at the top, a 300 W Xe lamp positioned 10 cm above the reactor, and an online gas chromatography (GC). The UV light  $(300 \, \text{nm} < \lambda < 400 \, \text{nm}, 20.5 \, \text{mW cm}^{-2})$  was obtained by using a UV light reflector. 10 mL of deionized water was added in the bottom of the reactor, and then 20 mg of catalyst powders was placed on a Petri plate positioned 2 cm above the water in the reactor. Prior to illumination, the reactor was first vacuumed by a pump and then was purged and filled by ultra pure CO<sub>2</sub> (99.999%). The internal pressure of the reactor was 71 kPa and the temperature of the reactor was kept at 20 °C by cooling it with circulating water. The vapor pressure of water was 2.3 kPa under this situation. During 4 h UV light irradiation, the amounts of H<sub>2</sub>, CO, and hydrocarbons in the reactor were analyzed by a GC every 15 min. The GC was equipped with a flame ionization detector (FID), a thermal conductivity detector (TCD), and a methanizer. The gaseous sample containing H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CO, CO<sub>2</sub>, and hydrocarbons flowed through a carbon molecular sieve column (TDX-01) to flush CO2 back to the atmosphere. After that,  $H_2$ ,  $O_2$ ,  $N_2$ , CO, and hydrocarbons in the sample were separated by a molecular sieve 5A column. Finally,  $H_2$ , O<sub>2</sub>, and N<sub>2</sub> in the sample were analyzed by the TCD, while CH<sub>4</sub> and CO (converted to  $CH_4$  by a methanizer) were analyzed by the FID. Ar was the carrier gas of GC.

Several blank experiments were performed to ensure that any carbon-containing products measured by GC indeed originated from purged CO<sub>2</sub>. First, tests using CO<sub>2</sub> and water as reactants were conducted in the empty reactor. No hydrocarbons were detected in the dark or under light irradiation in this case. This indicated that the CO<sub>2</sub> reduction reaction could not happen in the absence of catalyst. Also, when the reactor was vacuumed (without purged CO<sub>2</sub>), no hydrocarbons were detected under UV light irradiation in the presence of water and catalyst.

#### 3. Results and discussion

#### 3.1. Characterization of the catalysts

Fig. 2 shows the XRD patterns of as-prepared samples. Among all the samples,  $TiO_2$  was in anatase form and no diffraction peaks for Pt or Cu species were observed, which may result from the low loaded content or fine dispersion of metal species on the surface of  $TiO_2$  crystals [8,20]. The patterns showed that the deposition of metal species did not affect the crystal structure of anatase  $TiO_2$ .

 $N_2$  adsorption-desorption was used to explore the textual properties of the catalysts. The BET surface area, pore volume, and pore size of the samples were summarized in Table 1. The BET surface areas of the all samples are nearly identical ( $\it ca.$  165 m² g $^{-1}$ ). The loaded metal species barely affect the surface areas, pore size, and pore structure of TiO $_2$  nanocrystals.

The TEM and HR-TEM images of the samples are shown in Fig. 3. The pure  $TiO_2$  nanocrystal is a truncated tetragonal bipyramidal enclosed by eight  $\{101\}$  facets on sides and two  $\{001\}$  facets on the top and bottom (Fig. 3A). The side length and thickness of  $TiO_2$ 



**Fig. 1.** Schematic of experimental setup for CO<sub>2</sub> photocatalytic reduction.

nanocrystal was approximately 50 nm and 20 nm. The ratio of the  $\{001\}$  facets was calculated to be around 40% based on the method reported in the literature [21]. Fig. 3B–C shows the TEM and HR-TEM of Pt/TiO2 sample. Many small black spots were observed on the surface of TiO2 NPs. According to the interplanar spacing in Fig. 3C, these black spots were identified as Pt particles [20,22]. The TEM images of Cu2O/TiO2 catalysts are shown in Fig. 3D–F. The TiO2 nanocrystals with co-exposed  $\{101\}$  and  $\{001\}$  facets was clearly observed but Cu was difficult to be found in Fig. 3D, which may be caused by the small size and low crystallinity of Cu species. In Fig. 3E, with higher resolution, Cu species deposited on the surface can be clearly observed, which existed as Cu2O according to the interplanar spacing shown in Fig. 3F [19]. For Pt-Cu2O/TiO2 catalyst (shown in Fig. 3G–H), both Pt and Cu2O NPs could be distinguished on the surface of TiO2 crystals.

XPS was used to investigate the chemical states of Pt, Cu, Ti, and O on the surface of the catalysts.



Fig. 2. XRD patterns of the as-prepared catalysts.

Fig. 4A shows the high-resolution Ti 2p XPS spectra of Pt/TiO<sub>2</sub>. There exist two peaks in the binding energy region of Ti 2p. The binding energy of Ti 2p<sub>3/2</sub> for each sample is around 458.6 eV, which indicates Ti<sup>4+</sup> in the TiO<sub>2</sub> [23,24]. The high-resolution O 1 s XPS spectra of all the samples in Fig. 4B can be resolved into two peaks. The one with lower energy (around 530.0 eV) is assigned to oxygen in  $TiO_2$  lattice  $(O_L)$  and the other (531.5 eV) can be ascribed to superficial oxygen of hydroxyl species (O<sub>H</sub>) [17]. The O<sub>H</sub>/O<sub>L</sub> molar ratio of TiO<sub>2</sub>, Pt/TiO<sub>2</sub>, Cu<sub>2</sub>O/TiO<sub>2</sub>, and Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> were 0.203, 0.243, 0.269, and 0.338, respectively. This information suggests that both deposited Pt and Cu increased the amount of O<sub>H</sub> on TiO<sub>2</sub>, which may enhance of CO<sub>2</sub> adsorption and its catalytic activity [20,25,26]. The high-resolution Pt 4f XPS spectra of Pt/TiO2 and Pt-Cu2O/TiO2 catalysts are shown in Fig. 4C. The Pt 4f region contains two peaks, which can be resolved into two pairs of XPS peaks. The peaks can be attributed to Pt<sup>0</sup> (70.6 eV, 74.1 eV) and Pt<sup>2+</sup> (71.4 eV and 75.5 eV) [23,24]. The existence of Pt<sup>2+</sup> might result from partial oxidation of Pt NPs [27]. Meanwhile, the binding energy of Pt 4 almost unchanged, showing the electron density on Pt was not influenced by co-deposited Cu<sub>2</sub>O. Fig. 4D shows the high-resolution Cu 2p XPS spectra of Cu<sub>2</sub>O/TiO<sub>2</sub> and Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalysts. The binding energy of Cu 2p<sub>3/2</sub> for Cu<sub>2</sub>O/TiO<sub>2</sub> was ca. 932.5 eV, indicating that the Cu species exist as Cu<sub>2</sub>O [19,26]. This is in line with the results from TEM. Besides, compared to the peak position of Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst, it is notable that the Cu 2p peaks of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> shows slight shift to lower binding energy, which implies that Pt promoted the electron migration towards Cu<sub>2</sub>O NPs. The phenomenon also indicated increased electron density on Cu<sub>2</sub>O NPs.

PL spectrum was useful for the investigation of electron-hole recombination in semiconductor, which induces fluorescence. The PL spectra of the catalysts are shown in Fig. 5. Their PL spectra were similar to each other except for different fluorescence intensity. Generally, fluorescence intensity declines in accordance of reduced photogenerated electron-hole recombination [28]. In our previous work [17], we found that the co-exposed {101} and {001} facets of TiO<sub>2</sub> nanocrystals promoted the separation of photogenerated charges because photogenerated electrons on the anatase TiO<sub>2</sub> nanocrystals prefer to migrate to the {101} facets while the photogenerated holes tend to transfer to the {001} facets [21,29]. In this work, the deposition of Pt and Cu<sub>2</sub>O NPs on TiO<sub>2</sub> nanocrystals both suppressed the PL intensity of TiO<sub>2</sub> nanocrystals. This is because the Pt and Cu<sub>2</sub>O NPs deposited on the {101} facets of TiO<sub>2</sub> crystals can easily capture the photogenerated electrons accumulated on



 $\textbf{Fig. 3.} \ \ \text{TEM and HR-TEM images of TiO}_{2} \ (A), \ Pt/TiO_{2} \ (B-C), \ Cu_{2}O/TiO_{2} \ (D-F), \ and \ Pt-Cu_{2}O/TiO_{2} \ (G-H) \ catalysts.$ 



Fig. 4. XPS spectra of the as-prepared samples: (A) High-resolution Ti 2p spectra; (B) High-resolution O 1s spectra; (C) High-resolution Pt 4f spectra; (D) High-resolution Cu 2p spectra.



Fig. 5. The photoluminescence spectra of the catalysts.

**Table 2** Photocatalytic activities and selectivities of as-prepared samples.

| Samples                               | CO <sub>2</sub> chemisorbed<br>/µmol g <sup>-1</sup> | Yields/μmol g <sup>-1</sup> h <sup>-1</sup> |      |                 | Selectivity/%  |                |      |                 |
|---------------------------------------|------------------------------------------------------|---------------------------------------------|------|-----------------|----------------|----------------|------|-----------------|
|                                       |                                                      | H <sub>2</sub>                              | СО   | CH <sub>4</sub> | O <sub>2</sub> | H <sub>2</sub> | СО   | CH <sub>4</sub> |
| TiO <sub>2</sub>                      | 6.3                                                  | 0.39                                        | 0.64 | 0.22            | 1.02           | 31.1           | 51.1 | 17.8            |
| Pt/TiO <sub>2</sub>                   | 6.8                                                  | 0.72                                        | 0.17 | 0.42            | 1.31           | 33.8           | 8.1  | 58.1            |
| Cu <sub>2</sub> O/TiO <sub>2</sub>    | 10.6                                                 | 0                                           | 0.42 | 0.99            | 2.22           | 0              | 29.9 | 70.1            |
| Pt-Cu <sub>2</sub> O/TiO <sub>2</sub> | 11.0                                                 | 0                                           | 0.05 | 1.42            | 2.95           | 0              | 3.4  | 96.6            |

the  $\{101\}$  facets, promoting the spatial separation of photogenerated electrons and holes effectively. The PL intensity of Pt/TiO $_2$  was lower, indicating that Pt NPs inhibited the recombination of photogenerated charges more effectively than Cu NPs. Pt-Cu $_2$ O/TiO $_2$  exhibited the lowest PL intensity and most efficient separation of photogenerated charges, which may potentially contribute to enhanced photocatalytic activity of Pt-Cu $_2$ O/TiO $_2$ .

#### 3.2. CO<sub>2</sub> photocatalytic reduction

Fig. 6 and Table 2 show the yields and product selectivity of H<sub>2</sub>, CO, and CH<sub>4</sub> using different catalysts. The amounts of H<sub>2</sub>, CH<sub>4</sub>, and CO all increased almost linearly with the reaction time, suggesting that the generation of H<sub>2</sub>, CH<sub>4</sub>, and H<sub>2</sub> over our catalysts proceeded in a steady-state manner but not a transient manner [18]. Comparing to pristine TiO<sub>2</sub>, Pt/TiO<sub>2</sub> significantly enhanced the production of H<sub>2</sub> and CH<sub>4</sub> while inhibited that of CO, which can be attributed to reduced electron-hole recombination (in good accordance with the PL spectra). Differing from Pt, Cu<sub>2</sub>O promoted the production of CH<sub>4</sub> but suppressed that of H<sub>2</sub>. Moreover, the CH<sub>4</sub> yield of Cu<sub>2</sub>O/TiO<sub>2</sub> was lower than that of Pt/TiO<sub>2</sub>. This can be explained by the higher electron-hole recombination rate in Cu<sub>2</sub>O/TiO<sub>2</sub>, which was confirmed by comparing different PL spectra. Moreover, it seems that Pt preferred to activate H<sub>2</sub>O while Cu<sub>2</sub>O intended to reduce CO<sub>2</sub>, which was similar to the results from reported literatures [19,30]. For Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst, the productions of H<sub>2</sub> and CO were both effectively inhibited and CO2 was selectively converted into CH4 (selectivity = 96.6%), which may be attributed to the co-deposition of Pt and Cu<sub>2</sub>O cocatalysts. The product selectivity of different catalyst will be discussed later in detail.

The  $O_2$  yields during the photocatalytic reaction were also measured (Table 2). On one hand, for Pt-Cu<sub>2</sub>O/TiO<sub>2</sub>, the O<sub>2</sub> yield was 2.95  $\mu$ mol g<sup>-1</sup> h<sup>-1</sup>. On the other hand, we also estimated the stoichiometric yield of O<sub>2</sub> from the product yields of H<sub>2</sub>, CH<sub>4</sub> and CO.



Irradiation time/h
Fig. 6. H<sub>2</sub> (A), CO (B), and CH<sub>4</sub> (C) yields over the catalysts.

The calculation shows as follows: stoichiometric yield of  $O_2 = (H_2 \text{ yield})/2 + (CH_4 \text{ yield}) \times 8 + (CO \text{ yield})/2 = 2.87 \,\mu\text{mol g}^{-1} \,h^{-1}$ , which was only slightly lower than the average production rate of  $O_2$ , indicating that  $H_2$ ,  $CH_4$  and CO were the main products of Pt- $Cu_2O/TiO_2$ .

Fig. 7 shows the cycle performance of  $Pt-Cu_2O/TiO_2$  catalyst. After the first cycle, the used  $Pt-Cu_2O/TiO_2$  catalyst was collected and the same experimental process was repeated. The yields of  $CH_4$  and CO in the second and the third cycle were similar to those in the first cycle. This suggests that the reactions over the  $Pt-Cu_2O/TiO_2$  catalyst are catalytic reactions but not stoichiometric ones [18]. Besides, the results in Fig. 7 also indicate that the cycle performance of  $Pt-Cu_2O/TiO_2$  catalyst is good under our reaction conditions.



Fig. 7. Cycle photocatalytic performance of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst.

#### 3.3. Determination of the active sites for CO<sub>2</sub> reduction

Generally, Pt serves as active site for water reduction while Cu<sub>2</sub>O is responsible for CO<sub>2</sub> reduction [19,30]. Considering the possible transformation of the cocatalysts, especially Cu species, during the

photocatalytic reaction, XPS spectra of the catalysts after photocatalytic reaction were also recorded and compared with those before the reaction (Fig. 8). As shown in Fig. 8A, the binding energy of Pt 4f peaks in Pt/TiO<sub>2</sub> catalyst remained unchanged after reaction, indicating the chemical state of Pt in Pt/TiO<sub>2</sub> was stable during the reaction. Combining the photocatalytic activity of Pt/TiO<sub>2</sub>, Pt in Pt/TiO<sub>2</sub> works as the active site for the reduction of CO<sub>2</sub> and water. For Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst, the Cu existed in Cu<sub>2</sub>O form before reaction (Fig. 8B). After 4 h reaction, Cu<sub>2</sub>O was partially reduced into elemental Cu. This can be explained by the reduction of Cu<sub>2</sub>O by trapped photogenerated electrons. For Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst (Fig. 8C-D), most of Cu<sub>2</sub>O were reduced to elemental Cu after reaction, indicating that the deposition of Pt promoted the electron transfer to Cu<sub>2</sub>O during photocatalytic reaction.

Considering the good stability of  $Pt-Cu_2O/TiO_2$  catalysts even after most of  $Cu_2O$  was reduced to Cu, it is necessary to investigate the effect of Cu on  $CO_2$  photocatalytic reduction. Cu (0) deposited  $TiO_2$  ( $Cu/TiO_2$ ) was prepared by the reduction of  $Cu_2O/TiO_2$  under a flow of 5%  $H_2/N_2$  at 250 °C for 3 h. Similarly, Pt and Cu (0) co-deposited  $TiO_2$  catalyst ( $Pt-Cu/TiO_2$ ) was by the reduction of  $Pt-Cu_2O/TiO_2$ . The XPS spectra in Fig. S1 in the online version at  $Pt-Cu_2O/TiO_2$ . The XPS spectra in Fig. S1 in the online version at  $Pt-Cu_2O/TiO_2$  were both totally reduced to  $Pt-Cu_2O/TiO_2$  and  $Pt-Cu_2O/TiO_2$  were both totally reduced to  $Pt-Cu_2O/TiO_2$  and  $Pt-Cu_2O/TiO_2$  were both totally reduced to  $Pt-Cu_2O/TiO_2$  and  $Pt-Cu_2O/TiO_2$  were both totally reduced to  $Pt-Cu_2O/TiO_3$  and  $Pt-Cu_2O/TiO_4$  were both totally reduced to  $Pt-Cu_2O/TiO_4$  and  $Pt-Cu_2O/TiO_5$  were both totally reduced to  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$  were both totally reduced to  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$  were both totally reduced to  $Pt-Cu_2O/TiO_5$  and  $Pt-Cu_2O/TiO_5$ 



Fig. 8. XPS spectra of the catalyst before and after photocatalytic reaction: (A) Pt 4f spectra of  $Pt/TiO_2$ ; (B) Cu 2p spectra of  $Cu_2O/TiO_2$ ; (C) Pt 4f spectra of  $Pt-Cu_2O/TiO_2$ ; (D) Cu 2p spectra of  $Pt-Cu_2O/TiO_2$ .





Fig. 9. Photocatalytic activity of Cu/TiO<sub>2</sub> (A)and Pt-Cu/TiO<sub>2</sub> (B) catalysts.

for  $CO_2$  reduction [9]. The higher activity of  $Cu_2O/TiO_2$  indicated  $Cu_2O$  is a more effective active site than Cu. Similarly, as shown in Fig. 9B, Pt- $Cu/TiO_2$  also exhibited high  $CH_4$  production although it is slightly lower than that of Pt- $Cu_2O/TiO_2$ . This can explain the good cycle performance of Pt- $Cu_2O/TiO_2$ . That is although most of the  $Cu_2O$  in Pt- $Cu_2O/TiO_2$  was reduced to Cu after photocatalytic reaction, Cu still trapped photogenerated electrons and served as the active site for  $CO_2$  reduction. In addition, the partial reduction of  $Cu_2O$  to Cu would lead to the formation of  $Cu_2O-Cu/TiO_2$  structure, which can prolong the lifetime of the electrons [26], enhancing the efficiency of  $CO_2$  photocatalytic reduction.

#### 3.4. Discussion on the reaction mechanism

The mechanism plays a decisive part in both the selectivity of photo-excited electrons for  $\mathrm{CO}_2$  reduction and that of products of  $\mathrm{CO}_2$  reduction. The present work has demonstrated that deposition of both Pt and  $\mathrm{Cu}_2\mathrm{O}$  NPs significantly enhanced the selectivity of photogenerated electrons for  $\mathrm{CO}_2$  and the production of  $\mathrm{CH}_4$ .



Fig. 10. The catalytic behavior of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst in the control experiments.

**Table 3**The catalytic performance of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalyst in control experiments<sup>a</sup>.

| Reaction atmosphere                           | Yield/ $\mu$ mol g $^{-1}$ h $^{-1}$ |      |                 |  |
|-----------------------------------------------|--------------------------------------|------|-----------------|--|
|                                               | H <sub>2</sub>                       | СО   | CH <sub>4</sub> |  |
| CO <sub>2</sub> + water vapor                 | 0 –                                  | 0.05 | 1.42            |  |
| CO <sub>2</sub> + H <sub>2</sub> <sup>b</sup> |                                      | 1.03 | 0.22            |  |
| CO+water vapor                                | 21.2                                 | 0    | 0.04            |  |
| Water vapor                                   | 3.24                                 |      | 0               |  |

 $<sup>^{\</sup>rm a}$  Reaction conditions: catalyst, 0.020 g; CO<sub>2</sub> pressure, 71 kPa; H<sub>2</sub>O, 5 mL; irradiation time. 4 h.

## 3.4.1. The high selectivity of photogenerated electrons for ${\rm CO_2}$ reduction

The results in Fig. 6 show that the high selectivity of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> for CO<sub>2</sub> reduction resulted from the deposited Cu<sub>2</sub>O, which remarkably inhibited the production of H<sub>2</sub>. The Cu<sub>2</sub>O may suppress H<sub>2</sub> production through three possible routes. First, the H<sub>2</sub> produced from water splitting may be consumed by the reduction of Cu<sub>2</sub>O. Second, H<sub>2</sub> can also be consumed by the hydrogenation of CO<sub>2</sub>/CO [26,31]. Third, the interfacial contact between water and catalyst might be inhibited and results in low H<sub>2</sub> production. For example, Zhai et al. [19] found that H<sub>2</sub> production was suppressed when the Pt on TiO<sub>2</sub> was covered by Cu<sub>2</sub>O layer. Similarly, Xie et al. [18] reported that MgO loaded Pt/TiO<sub>2</sub> obviously enhanced the CO<sub>2</sub> adsorption on TiO<sub>2</sub> so that the adsorption of water on TiO<sub>2</sub> was inhibited, resulting in low H<sub>2</sub> production.

Considering the low Cu2O loading content, the reduction of Cu<sub>2</sub>O cannot be the key factor for the completely inhibited H<sub>2</sub> production over the catalyst. In order to verify the possibility of the last two cases, we performed several control experiments to investigate the reaction pathway of CO<sub>2</sub> reduction over Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> (as shown in Fig. 10 and Table 3). In the case of CO<sub>2</sub> hydrogenation with H<sub>2</sub> addition, the CO and CH<sub>4</sub> yield were much higher and lower than those with water as reductant. This indicated that H<sub>2</sub> reduced CO<sub>2</sub> into CO but was difficult to further reduce CO into CH<sub>4</sub>. In the case of CO reduction with water vapor, the H<sub>2</sub> yield was remarkably higher while the CH<sub>4</sub> yield was much lower than those of CO<sub>2</sub> reduction with water vapor. The enhanced H<sub>2</sub> production can be attributed to the water-gas shift (WGS) reaction, namely,  $CO + H_2O \rightarrow CO_2 + H_2$ [1]. The reduced CH<sub>4</sub> yield refers to the insufficiency of effective CO reduction into CH<sub>4</sub> by H<sub>2</sub> or water vapor, although CO is believed to be more active. These results demonstrate that the consumption of H<sub>2</sub> by CO<sub>2</sub>/CO hydrogenation was not the main cause for low H<sub>2</sub> yield of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> during CO<sub>2</sub> photoreduction. Based on the above-mentioned contents, we propose that CH<sub>4</sub> should

<sup>&</sup>lt;sup>b</sup> The molar ratio of H<sub>2</sub> to CO<sub>2</sub> is 0.1%.



**Fig. 11.** TPD-CO<sub>2</sub> profiles for the catalysts.

be mainly produced through the direct photocatalytic reduction of  ${\rm CO_2}$  into  ${\rm CH_4}$  while a part of  ${\rm CH_4}$  may come from the photocatalytic reduction of  ${\rm CO}$ .

Moreover, we also tested the  $H_2$  production of  $Pt-Cu_2O/TiO_2$  in the absence of  $CO_2$  (Fig. 8, Table 3). Comparing to the  $H_2$  production of  $Pt-Cu_2O/TiO_2$  in the presence of  $CO_2$ , the result clearly shows the existence  $CO_2$  obviously inhibited the production of  $H_2$ . Considering the competitive adsorption of  $CO_2$  and  $H_2O$  on the surface of  $TiO_2$  [18,19,32], we suppose the low  $H_2$  yield of  $Pt-Cu_2O/TiO_2$  in the presence of  $CO_2$  is mainly caused by the suppressed water adsorption on  $TiO_2$  due to the enhanced  $CO_2$  absorption induced by  $Cu_2O$ .

To investigate the effect of Pt and Cu<sub>2</sub>O NPs on CO<sub>2</sub> adsorption of the catalyst, TPD-CO<sub>2</sub> of all the samples were performed and the results are shown in Fig. 11. The profiles of TiO2 show CO<sub>2</sub> desorption at low temperatures, with T<sub>max</sub> equal to 109 °C and 450 °C, respectively, indicating low interaction between CO<sub>2</sub> and the photocatalyst. This interaction may be slightly higher for Pt/TiO<sub>2</sub> due to the higher desorption temperature at 341 °C and 490 °C. For Cu<sub>2</sub>O/TiO<sub>2</sub> and Pt-Cu<sub>2</sub>O/TiO<sub>2</sub>, their profiles show higher desorption peaks at temperatures of 148, 374, 500 °C and 111, 394, and 497 °C, respectively, indicating Cu<sub>2</sub>O cocatalyst can enhanced the interaction between CO<sub>2</sub> and the photocatalyst. The amounts of CO<sub>2</sub> chemisorbed by the catalysts were calculated and summarized in Table 2. The CO<sub>2</sub> chemisorption of TiO<sub>2</sub> was the lowest among all the samples. Besides, the effect of Pt on the CO<sub>2</sub> chemisorption was not obvious, however, the CO<sub>2</sub> chemisorption remarkably enhanced while Cu<sub>2</sub>O was deposited on TiO<sub>2</sub>. The CO<sub>2</sub> chemisorptions of Cu<sub>2</sub>O/TiO<sub>2</sub> and Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> were 10.6 and  $11.0 \,\mu\text{mol}\,g^{-1}$ , respectively, which are much higher than that of  $TiO_2$  (6.3  $\mu$ mol  $g^{-1}$ ) and  $Pt/TiO_2$  (6.8  $\mu$ mol  $g^{-1}$ ), indicating an increase in the photocatalyst affinity from Cu<sub>2</sub>O deposition. Comparably, Paulino et al. also reported that Cu/TiO2 obviously enhanced the CO<sub>2</sub> chemisorption of TiO<sub>2</sub> [33]. Combing with the results of control experiments, we confirmed our speculation that the high selectivity of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> for CO<sub>2</sub> reduction was mainly caused by the enhanced CO<sub>2</sub> absorption induced by Cu<sub>2</sub>O, which also led to the suppression of water adsorption on TiO2. However, we still cannot rule out the possibility that part of H2 was consumed by CO<sub>2</sub>/CO hydrogenation and Cu<sub>2</sub>O reduction.

#### 3.4.2. The high $CH_4$ selectivity in $CO_2$ photoreduction

It has been widely accepted by many researchers that the formation of CH<sub>4</sub> and CO are the compromise between charge transfer and thermodynamics [18,27]. The formation of CH<sub>4</sub> is thermody-

namically more feasible than that of CO [34]. That means  $CH_4$  will be selectively formed if enough protons and electrons are supplied. CO was formed as the main product over  $TiO_2$ , which possibly results from the low electron density over  $TiO_2$ . As mentioned previously,  $CH_4$  was formed through the direct reduction of  $CO_2$ . Thus, it is easy to understand that  $Pt/TiO_2$  and  $Cu_2O/TiO_2$  exhibit higher  $CH_4$  selectivity because both Pt and  $Cu_2O$  NPs captures photogenerated electrons and increase the electrons density on them as evidenced by the PL spectra, which enhance the probability of multielectron reactions to form  $CH_4$ . It is worth noting that the  $CH_4$  selectivity further increased by loading both Pt and  $Cu_2O$  onto  $TiO_2$  catalyst. This is because the simultaneous loading of Pt and  $Cu_2O$  trap photogenerated electrons and promote the separation of photogenerated electrons and holes more effectively (also proved by PL spectra).

In addition, the Cu 2p XPS spectra of the fresh  $\text{Cu}_2\text{O}/\text{TiO}_2$  and  $\text{Pt-Cu}_2\text{O}/\text{TiO}_2$  catalysts (shown in Fig. 4C–D) have shown that the addition of Pt can enhance the electron density on  $\text{Cu}_2\text{O}$  particles, resulting in higher  $\text{CH}_4$  selectivity of  $\text{Pt-Cu}_2\text{O}/\text{TiO}_2$ . And the XPS spectra of the used  $\text{Cu}_2\text{O}/\text{TiO}_2$  and  $\text{Pt-Cu}_2\text{O}/\text{TiO}_2$  catalysts (as shown in Fig. 8) demonstrated that the presence of Pt promoted the reduction of  $\text{Cu}_2\text{O}$  during reaction, indicating accelerated electron transfer to  $\text{Cu}_2\text{O}$  during reaction. This contributes to the enough supply of photogenerated electrons for  $\text{CH}_4$  production.

Based on the results, it can be concluded that the deposition of  $\text{Cu}_2\text{O}$  enhanced the  $\text{CO}_2$  chemisorption on the surface of  $\text{TiO}_2$ , which accelerated the reduction of  $\text{CO}_2$  and suppressed that of  $\text{H}_2\text{O}$ . Meanwhile, the loaded Pt promoted the migration of excited electrons towards the cocatalysts and effectively enhanced the electron density on  $\text{Cu}_2\text{O}$  particles. Consequently, the absorbed  $\text{CO}_2$  was sufficiently supplied with photogenerated electrons and selectively reduced to  $\text{CH}_4$ .

#### 4. Conclusions

Pt and Cu<sub>2</sub>O NPs co-depositedTiO<sub>2</sub> nanocrystals with coexposed {001} and {101} facets were prepared through a solvothermal method combining with a NaBH<sub>4</sub> reduction method. Pt remarkably promoted the production of H<sub>2</sub> and CH<sub>4</sub> while suppressed the formation of CO. Cu<sub>2</sub>O enhanced the generation of CH<sub>4</sub> while suppressed the production of H<sub>2</sub>. When Pt and Cu<sub>2</sub>O were co-deposited on TiO<sub>2</sub> crystals, the productions of H<sub>2</sub> and CO were both effectively inhibited and CO2 was selectively converted into CH<sub>4</sub> (selectivity = 96.6%). We demonstrated that CH<sub>4</sub> was mainly produced through the direct photocatalytic reduction of CO<sub>2</sub> into CH<sub>4</sub> rather than the hydrogenation of intermediate products such as CO. The deposition of Cu<sub>2</sub>O enhanced the CO<sub>2</sub> chemisorption on TiO<sub>2</sub> and inhibited that of water, resulting in enhanced CO<sub>2</sub> reduction and suppressed H<sub>2</sub> production. The Pt loading captured photogenerated electrons and increased the electrons density on the cocatalysts, which was advantageous to the selective formation of CH<sub>4</sub>. The high CH<sub>4</sub> selectivity of Pt-Cu<sub>2</sub>O/TiO<sub>2</sub> catalysts can be attributed to the co-loading of Cu<sub>2</sub>O and Pt NPs, which enhanced the CO<sub>2</sub> chemisorption and electron density on the surface of TiO<sub>2</sub> simultaneously.

#### Acknowledgments

This project was supported by the National Key Basic Research and Development Program (2011CB707301), the National Key Technology R&D Program (2011BAC05B00), the Program of International S&T Cooperation (2012DFB60100), the Foundation of State Key Laboratory of Coal Combustion (FSKLCCB1402), and the Foreign Science and Technology Cooperation of Hubei Province. The authors acknowledge the Analysis and Test Center of Huazhong University of Science & Technology.

#### References

- [1] Y.-H. Cheng, V.-H. Nguyen, H.-Y. Chan, J.C.S. Wu, W.-H. Wang, Photo-enhanced hydrogenation of CO<sub>2</sub> to mimic photosynthesis by CO co-feed in a novel twin reactor, Appl. Energy 147 (2015) 318–324.
- [2] W. Li, Y. Shi, Y. Luo, Y. Wang, N. Cai, Carbon monoxide/carbon dioxide electrochemical conversion on patterned nickel electrodes operating in fuel cell and electrolysis cell modes, Int. J. Hydrogen Energy 41 (2016) 3762–3773.
- [3] W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, J.C.S. Wu, A novel twin reactor for CO<sub>2</sub> photoreduction to mimic artificial photosynthesis, Appl. Catal. B: Environ. 132–133 (2013) 445–451.
- [4] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (1979) 637–638.
- [5] Z. Xiong, Y. Zhao, J. Zhang, C. Zheng, Efficient photocatalytic reduction of CO<sub>2</sub> into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method, Fuel Process. Technol. 135 (2015) 6–13.
- [6] C.-W. Huang, C.-H. Liao, J.C.S. Wu, Y.-C. Liu, C.-L. Chang, C.-H. Wu, M. Anpo, M. Matsuoka, M. Takeuchi, Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition, Int. J. Hydrogen Energy 35 (2010) 12005–12010.
- [7] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ. 125 (2012) 331–349.
- [8] Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Photocatalytic reduction of CO<sub>2</sub> with H<sub>2</sub>O on mesoporous silica supported Cu/TiO<sub>2</sub> catalysts, Appl. Catal. B: Environ. 100 (2010) 386–392.
- [9] J.Z.Y. Tan, Y. Fernández, D. Liu, M. Maroto-Valer, J. Bian, X. Zhang, Photoreduction of CO<sub>2</sub> using copper-decorated TiO<sub>2</sub> nanorod films with localized surface plasmon behavior, Chem. Phys. Lett. 531 (2012) 149–154.
- [10] Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Ordered mesoporous CeO<sub>2</sub>-TiO<sub>2</sub> composites: highly efficient photocatalysts for the reduction of CO<sub>2</sub> with H<sub>2</sub>O under simulated solar irradiation, Appl. Catal. B: Environ. 130–131 (2013) 277–284.
- [11] Z. Zhang, B. Dong, M. Zhang, J. Huang, F. Lin, C. Shao, Electrospun Pt/TiO<sub>2</sub> hybrid nanofibers for visible-light-driven H<sub>2</sub> evolution, Int. J. Hydrogen Energy 39 (2014) 19434–19443.
- [12] W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO<sub>2</sub> photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO<sub>2</sub> single crystals, J. Am. Chem. Soc. 134 (2012) 11276–11281.
- [13] H. Li, X. Wu, J. Wang, Y. Gao, L. Li, K. Shih, Enhanced activity of Ag-MgO-TiO<sub>2</sub> catalyst for photocatalytic conversion of CO<sub>2</sub> and H<sub>2</sub>O into CH<sub>4</sub>, Int. J. Hydrogen Energy 41 (2016) 8479–8488.
- [14] D. Kong, J.Z.Y. Tan, F. Yang, J. Zeng, X. Zhang, Electrodeposited Ag nanoparticles on TiO<sub>2</sub> nanorods for enhanced UV visible light photoreduction CO<sub>2</sub> to CH<sub>4</sub>, Appl. Surf. Sci. 277 (2013) 105–110.
- [15] H. Xu, S. Ouyang, L. Liu, D. Wang, T. Kako, J. Ye, Porous-structured Cu<sub>2</sub>O/TiO<sub>2</sub> nanojunction material toward efficient CO<sub>2</sub> photoreduction, Nanotechnology 25 (2014) 165402.
- [16] X. Liu, Y.-y. Hu, R.-Y. Chen, Z. Chen, H.-C. Han, Coaxial nanofibers of ZnO-TiO<sub>2</sub> heterojunction with high photocatalytic activity by electrospinning technique, Synt. React. Inorg. Met.-Org. Nano-Met. Chem. 44 (2013) 449–453.
- [17] Z. Xiong, Y. Luo, Y. Zhao, J. Zhang, C. Zheng, J.C. Wu, Synthesis, characterization and enhanced photocatalytic CO<sub>2</sub> reduction activity of

- graphene supported  $TiO_2$  nanocrystals with coexposed  $\{001\}$  and  $\{101\}$  facets, Phys. Chem. Chem. Phys. 18 (2016) 13186–13195.
- [18] S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, MgO- and Pt-promoted TiO<sub>2</sub> as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water, ACS Catal. 4 (2014) 3644–3653.
- [19] Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure, Angew. Chem. 52 (2013) 5776–5779.
- [20] Z. Xiong, H. Wang, N. Xu, H. Li, B. Fang, Y. Zhao, J. Zhang, C. Zheng, Photocatalytic reduction of CO<sub>2</sub> on Pt<sup>2+</sup>-Pt<sup>0</sup>/TiO<sub>2</sub> nanoparticles under UV/Vis light irradiation: a combination of Pt<sup>2+</sup> doping and Pt nanoparticles deposition, Int. J. Hydrogen Energy 40 (2015) 10049–10062.
- [21] J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO<sub>2</sub>-reduction activity of anatase TiO<sub>2</sub> by coexposed {001} and {101} facets, J. Am. Chem. Soc. 136 (2014) 8839–8842.
- [22] Z. Zhang, Z. Wang, S.-W. Cao, C. Xue, Au/Pt nanoparticle-decorated TiO<sub>2</sub> nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion, J. Phys. Chem. C 117 (2013) 25939–25947.
- [23] L. Zhang, R.V. Koka, A study on the oxidation and carbon diffusion of TiC in alumina?titanium carbide ceramics using XPS and Raman spectroscopy, Mater. Chem. Phys. 57 (1998) 23–32.
- [24] B. Fang, N.K. Chaudhari, M.-S. Kim, J.H. Kim, J.-S. Yu, Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell, J. Am. Chem. Soc. 131 (2009) 15330–15338.
- [25] S. Lee, S. Jeong, W.D. Kim, S. Lee, K. Lee, W.K. Bae, J.H. Moon, S. Lee, D.C. Lee, Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO<sub>2</sub> for enhanced photocatalytic conversion of fx1fx2CO<sub>2</sub>, Nanoscale 8 (2016) 10043–10048.
- [26] B.R. Chen, V.H. Nguyen, J.C. Wu, R. Martin, K. Koci, Production of renewable fuels by the photohydrogenation of CO<sub>2</sub>: effect of the Cu species loaded onto TiO<sub>2</sub> fx7photocatalysts, Phys. Chem. Chem. Phys. 18 (2016) 4942–4951.
- [27] W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO<sub>2</sub> photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO<sub>2</sub> single crystals, J. Am. Chem. Soc. 134 (2012) 11276–11281.
- [28] J. Wu, Q. Liu, P. Gao, Z. Zhu, Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO<sub>2</sub>, Mater. Res. Bull. 46 (2011) 1997–2003
- [29] C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie, L. Zheng, Enhancing the photocatalytic activity of anatase TiO<sub>2</sub> by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes, Chem.: Asian J. 8 (2013) 282–289.
- [30] O.K. Varghese, M. Paulose, T. LaTempa, C.A. Grimes, High-rate solar photocatalytic conversion of CO<sub>2</sub> and water vapor to hydrocarbon fuels, Nano Lett. 9 (2008) 731–737.
- [31] G. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal. B: Environ. 41 (2003) 387–396.
- [32] J.C.S. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO<sub>2</sub> to methanol using optical-fiber photoreactor, Appl. Catal. A: Gen. 296 (2005) 194–200.
   [33] P.N. Paulino, V.M.M. Salim, N.S. Resende, Zn-Cu promoted TiO<sub>2</sub> photocatalyst
- [33] P.N. Paulino, V.M.M. Salim, N.S. Resende, Zn-Cu promoted TiO<sub>2</sub> photocatalyst for CO<sub>2</sub> reduction with H<sub>2</sub>O under UV light, Appl. Catal. B: Environ. 185 (2016) 362–370.
- [34] A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 1983–1994.