HIMatrix

Sicherheitsgerichtete Steuerung

Handbuch F3 AIO 8/4 01

HIMA Paul Hildebrandt GmbH Industrie-Automatisierung

Rev. 2.00 HI 800 160 D

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIMax®, HIMatrix®, SILworX®, XMR® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Weitere Informationen sind in der Dokumentation auf der HIMA DVD und auf unserer Webseite unter http://www.hima.de und http://www.hima.com zu finden.

© Copyright 2013, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Adresse: HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Änderungen	Art der Änderung	
index		technisch	redaktionell
1.00	Hinzugefügt: Konfiguration mit SILworX, Kapitel Anschlussvarianten	X	Х
1.01	Gelöscht: Kapitel <i>Überwachung des Temperaturzustandes</i> in Systemhandbuch verschoben		X
2.00	Geändert: Kapitel 3.5.1, 3.5.2.1 und 4.5 Hinzugefügt: F3 AIO 8/4 014, SIL 4 zertifiziert nach EN 50126, EN 50128 und EN 50129, Kapitel 4.1.3	Х	Х

F3 AIO 8/4 01 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	6
1.3	Darstellungskonventionen	7
1.3.1	Sicherheitshinweise	7
1.3.2	Gebrauchshinweise	8
2	Sicherheit	9
2.1	Bestimmungsgemäßer Einsatz	9
2.1.1	Umgebungsbedingungen	9
2.1.2	ESD-Schutzmaßnahmen	9
2.2	Restrisiken	10
2.3	Sicherheitsvorkehrungen	10
2.4	Notfallinformationen	10
3	Produktbeschreibung	11
3.1	Sicherheitsfunktion	11
3.1.1	Sicherheitsgerichtete analoge Eingänge	11
3.1.1.1	Reaktion im Fehlerfall	12
3.1.2	Line Monitoring für digitale Ausgänge	12
3.1.2.1 3.1.2.2	Voraussetzungen	12
3.1.2.2 3.2	Beispiele	12 17
3.2 3.3	Analoge Ausgänge Ausstattung und Lieferumfang	18
3.3.1	IP-Adresse und System-ID (SRS)	19
3.4	Typenschild	19
3.5	Aufbau	20
3.5.1	LED-Anzeigen	21
3.5.1.1	Betriebsspannungs-LED	21
3.5.1.2	System-LEDs	21
3.5.1.3	Kommunikations-LEDs	22
3.5.2 3.5.2.1	Kommunikation Anschlüsse für Ethernet-Kommunikation	22 22
3.5.2.1 3.5.2.2	Verwendete Netzwerkports für Ethernet-Kommunikation	23
3.5.3	Reset-Taster	23
3.6	Produktdaten	24
3.6.1	Produktdaten F3 AIO 8/4 011 (-20 °C)	25
3.6.2	Produktdaten F3 AIO 8/4 012 (subsea / -20 °C)	25
3.6.3 3.7	Produktdaten F3 AIO 8/4 014 HIMatrix F3 AIO 8/4 01 zertifiziert	27 28
_		
4	Inbetriebnahme	29
4.1	Installation und Montage	29
4.1.1	Anschluss der analogen Eingänge	29
4.1.1.1 4.1.2	Shunt-Adapter	30
4 . I.∠	Anschluss der analogen Ausgänge	30

HI 800 160 D Rev. 2.00 Seite 3 von 56

Inhaltsverzeichnis	F3 AIO 8/4 0 ⁻
nnaitsverzeichnis	F3 AIU 8/4 (

Klemmenstecker	31 32
	33
_	33
Parameter und Fehlercodes der Eingänge und Ausgänge	33 33
Register Modul	34 35
•	36
	36
Register AO 4: Kanäle	37
Konfiguration mit ELOP II Factory	37
Konfiguration der Eingänge und Ausgänge Signale und Fehlercodes der Eingänge und Ausgänge Analoge Eingänge F3 AIO 8/4 01 Analoge Ausgänge F3 AIO 8/4 01	37 37 38 40
Anschlussvarianten	41
Anschluss von Initiatoren Anschluss von beschalteten Kontaktgebern	41 43
Beschalteter Kontaktgeber mit Widerstandswerten 2 k Ω und 22 k Ω Beschalteter Kontaktgeber mit Widerstandswerten 2,1 k Ω und 22 k Ω	43 44
Betrieb	45
Bedienung	45
Diagnose	45
Instandhaltung	46
Fehler	46
Instandhaltungsmaßnahmen	46
Betriebssystem laden Wiederholungsprüfung	46 46
Außerbetriebnahme	47
Transport	48
Entsorgung	49
Anhang	51
Glossar	51
Abbildungsverzeichnis	52
Tabellenverzeichnis	53
Index	54
	Einbau der F3 AlO 8/4 01 in die Zone 2 Konfiguration Konfiguration mit SILworX Parameter und Fehlercodes der Eingänge und Ausgänge Analoge Eingänge F3 AlO 8/4 01 Register Modul Register Modul Register Modul Register Modul Register Modul Register Modul Register AO 4: Kanäle Konfiguration mit ELOP II Factory Konfiguration der Eingänge und Ausgänge Signale und Fehlercodes der Eingänge und Ausgänge Analoge Eingänge F3 AlO 8/4 01 Anschlussvarianten Anschluss von Initiatoren Anschluss von Initiatoren Anschluss von beschalteten Kontaktgebern Beschalteter Kontaktgeber mit Widerstandswerten 2 kΩ und 22 kΩ Betrieb Bedienung Diagnose Instandhaltung Fehler Instandhaltung Fehler Instandhaltungsmaßnahmen Betriebssystem laden Wiederholungsprüfung Außerbetriebnahme Transport Entsorgung Anhang Glossar Abbildungsverzeichnis Tabellenverzeichnis

Seite 4 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 1 Einleitung

1 Einleitung

Dieses Handbuch beschreibt die technischen Eigenschaften des Geräts und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMatrix.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

HIMatrix Remote I/Os sind für die Programmierwerkzeuge SILworX und ELOP II Factory verfügbar. Welches Programmierwerkzeug eingesetzt werden kann, hängt vom Prozessor-Betriebssystem der HIMatrix Remote I/O ab, siehe nachfolgende Tabelle:

Programmierwerkzeug	Prozessor-Betriebssystem	
SILworX	Ab CPU BS V7	
ELOP II Factory	Bis CPU BS V6.x	

Tabelle 1: Programmierwerkzeuge für HIMatrix Remote I/Os

Die Unterschiede werden im Handbuch beschrieben durch:

Getrennte Unterkapitel

1

Tabellen, mit Unterscheidung der Versionen

1	Mit ELOP II Factory erstellte Projekte können in SILworX nicht bearbeitet werden, und
I	umgekehrt!

Kompaktsteuerungen und Remote I/Os werden als Gerät bezeichnet.

HI 800 160 D Rev. 2.00 Seite 5 von 56

1 Einleitung F3 AIO 8/4 01

Zusätzlich sind die folgenden Dokumente zu beachten:

Name	Inhalt	Dokumentennummer
HIMatrix Systemhandbuch Kompaktsysteme	Hardware-Beschreibung HIMatrix Kompaktsysteme	HI 800 140 D
HIMatrix Systemhandbuch modulares System F60	Hardware-Beschreibung HIMatrix modulares System	HI 800 190 D
HIMatrix Sicherheitshandbuch	Sicherheitsfunktionen des HIMatrix Systems	HI 800 022 D
HIMatrix Sicherheitshandbuch für Bahnanwendungen	Sicherheitsfunktionen des HIMatrix Systems für den Einsatz der HIMatrix in Bahnanwendungen	HI 800 436 D
SILworX Online-Hilfe	SILworX-Bedienung	-
ELOP II Factory Online-Hilfe	ELOP II Factory Bedienung, Ethernet IP-Protokoll	-
SILworX Erste Schritte	Einführung in SILworX am Beispiel des HIMax Systems	HI 801 102 D
ELOP II Factory Erste Schritte	Einführung in ELOP II Factory	HI 800 005 D

Tabelle 2: Zusätzlich geltende Dokumente

Die aktuellen Handbücher befinden sich auf der HIMA Webseite www.hima.de. Anhand des Revisionsindexes in der Fußzeile kann die Aktualität eventuell vorhandener Handbücher mit der Internetausgabe verglichen werden.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure und Programmierer von Automatisierungsanlagen sowie Personen, die zu Inbetriebnahme, Betrieb und Wartung der Geräte, Baugruppen und Systeme berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsgerichteten Automatisierungssysteme.

Seite 6 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 1 Einleitung

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können

KursivParameter und SystemvariablenCourierWörtliche Benutzereingaben

RUN Bezeichnungen von Betriebszuständen in Großbuchstaben Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind. Wird der Mauszeiger darauf positioniert, verändert er seine Gestalt. Bei einem Klick springt das Dokument zur betreffenden

Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Die Sicherheitshinweise im Dokument sind wie folgend beschrieben dargestellt. Um ein möglichst geringes Risiko zu gewährleisten, sind sie unbedingt zu befolgen. Der inhaltliche Aufbau ist

- Signalwort: Warnung, Vorsicht, Hinweis
- Art und Quelle des Risikos
- Folgen bei Nichtbeachtung
- Vermeidung des Risikos

A SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung Vermeidung des Risikos

Die Bedeutung der Signalworte ist

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung
- Hinweis: Bei Missachtung droht Sachschaden

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens

HI 800 160 D Rev. 2.00 Seite 7 von 56

1 Einleitung F3 AlO 8/4 01

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form:

An dieser Stelle steht der Text des Tipps.

TIPP

Seite 8 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 2 Sicherheit

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMatrix Komponenten sind zum Aufbau von sicherheitsgerichteten Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMatrix System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Art der Bedingung	Wertebereich 1)
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2
Umgebungstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 61131-2
Aufstellhöhe	< 2000 m
Gehäuse	Standard: IP20
Versorgungsspannung	24 VDC
1) File Constants and constant	

Für Geräte mit erweiterten Umgebungsbedingungen sind die Werte in den technischen Daten maßgebend.

Tabelle 3: Umgebungsbedingungen

Andere als die in diesem Handbuch genannten Umgebungsbedingungen können zu Betriebsstörungen des HIMatrix Systems führen.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Geräten durchführen.

HINWEIS

Geräteschaden durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Gerät elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

HI 800 160 D Rev. 2.00 Seite 9 von 56

2 Sicherheit F3 AIO 8/4 01

2.2 Restrisiken

Von einem HIMatrix System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung
- Fehlern im Anwenderprogramm
- Fehlern in der Verdrahtung

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

2.4 Notfallinformationen

Ein HIMatrix System ist Teil der Sicherheitstechnik einer Anlage. Der Ausfall eines Geräts oder einer Baugruppe bringt die Anlage in den sicheren Zustand.

Im Notfall ist jeder Eingriff, der die Sicherheitsfunktion der HIMatrix Systeme verhindert, verboten.

Seite 10 von 56 HI 800 160 D Rev. 2.00

3 Produktbeschreibung

Die sicherheitsgerichtete Remote I/O **F3 AIO 8/4 01** ist ein Kompaktsystem im Metallgehäuse mit acht analogen Eingängen und vier analogen Ausgängen.

Die Remote I/O ist in verschiedenen Modellvarianten für die Programmierwerkzeuge SILworX und ELOP II Factory verfügbar, siehe Tabelle 10.

Die Remote I/Os werden jeweils mit einer HIMax oder HIMatrix Steuerung über safe**ethernet** verbunden. Die Remote I/Os dienen der Erweiterung der E/A Ebene und führen selbst kein Anwenderprogramm aus.

Die Remote I/O ist geeignet zum Einbau in die Ex-Zone 2, siehe Kapitel 4.1.4.

Das Gerät ist TÜV zertifiziert für sicherheitsgerichtete Anwendungen bis SIL 3 (IEC 61508, IEC 61511 und IEC 62061), Kat. 4 und PL e (EN ISO 13849-1) und SIL 4 (EN 50126, EN 50128 und EN 50129).

Weitere Sicherheitsnormen, Anwendungsnormen und Prüfgrundlagen können den Zertifikaten auf der HIMA Webseite entnommen werden.

3.1 Sicherheitsfunktion

Die Remote I/O ist mit sicherheitsgerichteten analogen Eingängen ausgestattet. Eingangswerte an den Eingängen werden sicher über safe**ethernet** an die angeschlossene Steuerung übertragen. Die Ausgänge erhalten ihre Werte sicher über safe**ethernet** von der angeschlossenen Steuerung.

3.1.1 Sicherheitsgerichtete analoge Eingänge

Die Remote I/O verfügt über acht analoge Eingänge mit Transmitterspeisungen zur unipolaren Messung von Spannungen, bezogen auf L-.

Die Remote I/O misst grundsätzlich die Spannung an den Eingängen. Zur Strommessung müssen die Eingänge mit externen Shunt-Adaptern beschaltet werden, siehe Tabelle 4.

Nur abgeschirmte Kabel dürfen an die analogen Eingänge angeschlossen werden. Jeder analoge Eingang muss mit einem verdrillten Adernpaar angeschlossen werden. Die Abschirmungen sind an der Remote I/O und am Gehäuse des Sensors großflächig aufzulegen und auf der Seite der Remote I/O zu erden, um damit einen Faraday schen Käfig zu erzeugen.

Nicht verwendete Eingangskanäle müssen jeweils mit dem Bezugspotenzial (L-) kurzgeschlossen sein.

Als Eingangswerte stehen zur Verfügung:

Eingangs- kanäle	Polarität	Strom, Spannung	Wertebereich Anwendung	Sicherheitstechnische Genauigkeit
8	unipolar	0+10 V	02000	2%
8	unipolar	0/420 mA	01000 ¹⁾ 02000 ²⁾	2% 2%
mit externem Shunt-Adapter Z 7301, siehe Kapitel 4.1.1.1 mit externem Shunt-Adapter Z 7302 oder Z 7309, siehe Kapitel 4.1.1.1				

Tabelle 4: Eingangswerte der analogen Eingänge

HI 800 160 D Rev. 2.00 Seite 11 von 56

Bei Leitungsbruch während einer Spannungsmessung (es erfolgt keine Leitungsüberwachung) werden an den hochohmigen Eingängen beliebige Eingangssignale verarbeitet. Der aus dieser schwebenden Eingangsspannung resultierende Wert ist nicht sicher; bei Spannungseingängen müssen die Kanäle mit einem Widerstand von 10 k Ω abgeschlossen werden. Der Innenwiderstand der Quelle ist dabei zu beachten.

Bei einer Strommessung mit parallel geschaltetem Shunt ist der Widerstand von 10 k Ω nicht erforderlich.

Die analogen Eingänge sind so konstruiert, dass sie die messtechnische Genauigkeit über 10 Jahre beibehalten. Alle 10 Jahre muss eine Wiederholungsprüfung (Proof Test) durchgeführt werden.

3.1.1.1 Reaktion im Fehlerfall

Stellt das Gerät an einem analogen Eingang einen Fehler fest, wird der Parameter Al. Fehlercode auf einen Wert größer 0 gesetzt. Handelt es sich um einen Gerätefehler, wird in SILworX der Systemparameter Modul Fehlercode, in ELOP II Factory das Signal Bg. Fehlercode auf einen Wert größer 0 gesetzt.

In beiden Fällen aktiviert das Gerät die LED FAULT.

Zusätzlich zum Analogwert muss der Fehlercode ausgewertet werden. Damit eine sicherheitsgerichtete Reaktion erfolgt, ist diese zu projektieren.

Durch Verwendung des Fehlercodes bestehen zusätzliche Möglichkeiten, Fehlerreaktionen im Anwenderprogramm zu konfigurieren.

3.1.2 Line Monitoring für digitale Ausgänge

Die analogen Eingänge AI der F3 AIO 8/4 01 lassen sich auch für die Leitungsbruch- und Leitungsschluss-Überwachung (Line Monitoring) von digitalen Ausgängen anderer HIMatrix Steuerungen einsetzen. Die Transmitterspeisung muss dazu auf 26 V eingestellt werden. Hierzu in den Programmierwerkzeugen SILworX und ELOP II Factory den Parameter *Transmitter Spannung*[01] auf 2 einstellen, siehe Tabelle 29 und Tabelle 33.

3.1.2.1 Voraussetzungen

Die Überwachung von digitalen Ausgängen beliebiger HIMatrix Steuerungen ist mit HIMatrix Geräten mit analogen Eingängen unter folgenden Voraussetzungen möglich:

- Transmitterspeisung f
 ür analoge Eingänge ist vorhanden,
- Anschluss von externem Messwiderstand (Shunt) an analogem Eingang ist möglich.

Diese Bedingungen gelten auch systemübergreifend zwischen Kompaktsystemen und modularen Systemen der HIMatrix Familie.

3.1.2.2 Beispiele

Es lassen sich die digitalen Ausgänge der F2 DO 16 01 oder der F20 mit den analogen Eingängen der F3 AIO 8/4 01 überwachen.

Die analogen Eingänge der F3 AlO 8/4 01 können die digitalen Ausgänge der DlO 24/16 01 (modulares System) überwachen.

Bild 1 zeigt eine Möglichkeit, wie die Leitungen von einem digitalen Ausgang DO zu einem Aktor (Magnetventil) auf Leitungsbruch und Leitungsschluss überwacht werden können.

Die Schaltung muss für die eingesetzten Feldgeräte angepasst und auf Funktion geprüft werden!

Seite 12 von 56 HI 800 160 D Rev. 2.00

Schaltskizze:

Bereich der Leitungsbruch-/Leitungsschluss-Überwachung

Schutzschaltung bei Leitungsschluss

Parametrierungsbeispiel für Line Monitoring des digitalen Ausgangs DO (Schaltung mit Magnetventil 8 W 24 VDC):

Widerstandswerte:				
Vorwiderstand:	R _{Vorwiderstand}	1,6 kΩ		
Widerstand Magnetventil:	R _{Magnetventil}	75 Ω		
Messwiderstand:	R _{Shunt}	10 Ω		

Tabelle 5: Beispiel für Line Monitoring - Widerstandswerte

Spannungswerte:	
Transmitterspannung:	26,4 V
Ausgangsspannung DO im Normalbetrieb:	24 V
Ausgangsspannung DO bei Leitungsschluss:	26,8 V
Spannungsabfall am Magnetventil:	21 V
Schaltspannung der Z-Diode:	12 V

Tabelle 6: Beispiel für Line Monitoring - Spannungswerte

HI 800 160 D Rev. 2.00 Seite 13 von 56

Messwerte für Span	Messwerte für Spannung an AI bei Line Monitoring von DO					
Spannungsabfall	Spannungsabfall	Spannungsabfall	Werte für Al			
R _{Vorwiderstand}	R _{Magnetventil}	R _{Shunt}	(bei Auflösung FSx000)			
			FS1000	FS2000		
Ausgang DO False						
(Ausgang DO abges	steuert, energieloser 2	Zustand)				
25,08 V	1,15 V	0,15 V	14	28		
	Ausgang DO True oder 1					
(Ausgang DO angesteuert)						
-	21 V	3 V	300	600		
Bruch in Feldverdrahtung						
-	-	0 V	0	0		
Kurzschluss in Feldverdrahtung oder Aktor						
-	0 V	26,8 V	1000 ¹⁾	2000 ¹⁾		
maximale Auflösung der analogen Eingänge AI bei Spannungsbegrenzung auf 12 V durch Z-Diode						

Tabelle 7: Spannungswerte bei Line Monitoring der DO

Erläuterung zu Bild 1 und Tabelle 7

1. Leitungsbruch:

Die Speisespannung des Vorwiderstandes (Transmitterspannung) schwankt innerhalb eines Toleranzbereiches, siehe Tabelle 18 in den Technischen Daten. Daher können sich die Spannungsabfälle an den Widerständen leicht ändern. Innerhalb der Schwankungsbreite der Speisespannung existiert in jedem Fall noch ein messbarer Spannungsabfall am Messwiderstand R_{Shunt}.

Der Vorwiderstand wurde so dimensioniert, dass bei DO = FALSE ein möglichst kleiner Spannungsabfall am Magnetventil (geringe Erwärmung des Ventils) existiert und der Spannungsabfall am Messwiderstand noch messbar ist.

Der Messwiderstand R_{Shunt} wurde in Abhängigkeit des Magnetventil-Widerstandes so bemessen, dass bei angesteuertem Ausgang DO (DO = TRUE) der Spannungsabfall am Magnetventil oberhalb der Schaltschwelle des Magnetventils liegt, d. h. die Spule des Magnetventils zieht an.

Zudem ist der Messwiderstand R_{Shunt} so ausgelegt, dass sich bei jedem Schaltzustand des Ausgangs DO (TRUE oder FALSE) jeweils ein messbarer Spannungsabfall ergibt (Werte für Al > 10. siehe Tabelle 7).

Bei Bruch in der Feldverdrahtung innerhalb des rot markierten Bereiches dagegen, gibt es am Messwiderstand keinen Spannungsabfall mehr.

Ein Leitungsbruch im rot markierten Bereich (siehe Bild 1) kann über den Spannungsabfall am Messwiderstand R_{Shunt}, d. h. den Eingangswert von AI, überwacht werden, siehe Tabelle 7.

Für eine Leitungsbruch-Überwachung muss der Wert von AI innerhalb der Logik des Anwenderprogramms ausgewertet werden.

Den Vorwiderstand $R_{\text{Vorwiderstand}}$ und den Messwiderstand R_{Shunt} direkt an den Klemmen der Steuerung oder Remote I/O anbringen, um den überwachten Leitungsbereich zu maximieren.

Seite 14 von 56 HI 800 160 D Rev. 2.00

2. Leitungsschluss:

Ein Leitungsschluss im Aktorkreis (einschließlich Aktor) resultiert in einem hohen Spannungsabfall (≤ Ausgangsspannung von DO) über dem Shunt, wodurch der Leitungsschluss detektiert wird (maximale Auflösung von AI, siehe Tabelle 7). Der Überspannungsschutz der analogen Eingänge spricht bei ca. 15 V an.

Um eine Überlastung des internen Überspannungsschutzes zu vermeiden, muss eine Schutzschaltung aus Z-Diode und Vorwiderstand aufgebaut werden.

HINWEIS

Um die Eingangsmultiplexer der analogen Eingänge vor Überlast zu schützen, muss im Eingangskreis eine Schutzschaltung von Z-Diode mit Vorwiderstand parallel zum bestehenden Shunt angeschlossen werden.

Die Parametrierung von Z-Diode mit Vorwiderstand ist abhängig von der Schwelle des Überspannungsschutzes und muss so ausgelegt sein, dass der Überspannungsschutz der HIMatrix bei Leitungsschluss <u>nicht</u> anspricht.

Parametrierungsbeispiel für Leitungsschluss:		
Messwiderstand:	R _{Shunt}	10 Ω
Widerstand Magnetventil:	R _{Magnetventil}	75 Ω
maximale Ausgangsspannung von digitalem Ausgang DO	U _{max}	26,8 V

Tabelle 8: Beispiel Leitungsschluss

- Z-Diode mit Schaltspannung von 12 V
- Analoger Eingang Al mit Arbeitsbereich von 0...10 V
- Überspannungsschutz in HIMatrix bei Eingangsspannung > 15 V

Normalbetrieb (kein Leitungsschluss):

$$U_{max} = U_{Magnetventil} + U_{Shunt} = 26,8 \text{ V} = 23,65 \text{ V} + 3,15 \text{ V}$$

Die Spannung U_{Shunt} liegt auch an der Schutzschaltung von Z-Diode und Vorwiderstand an.

Die Z-Diode schaltet bei 3,15 V nicht durch, d. h. der Spannungsabfall von 3,15 V am Shunt liegt am analogen Eingang.

Leitungsschluss:

$$U_{max} = U_{Magnetventil} + U_{Shunt} = 26.8 \text{ V} = 0 \text{ V} + 26.8 \text{ V}$$

Im Falle eines Kurzschlusses im Außenkreis (Aktor oder Leitung) fällt die Spannung von DO gänzlich am Shunt ab.

Die Schaltschwelle des Überspannungsschutzes von AI beträgt ca. 15 V.

Die Z-Diode soll bei 12 V leitend werden, so dass nie mehr als 12 V an Al anliegen und der volle Skalierungsbereich von Al zur Verfügung steht.

Der maximale Spannungsabfall U_{Diode} am Vorwiderstand R_{Diode} der Z-Diode ergibt sich daraus zu:

 $U_{Diode} = 26.8 \text{ V} - 12 \text{ V} = 14.8 \text{ V}$

HI 800 160 D Rev. 2.00 Seite 15 von 56

Der Strom durch die Z-Diode soll auf 20 mA (Spezifikation der Z-Diode) begrenzt sein. Daraus resultiert ein minimaler Wert für den Vorwiderstand von:

 R_{Diode} = 14,8 V / 20 mA = 740 Ω

Der Wert für R_{Diode} kann auf 1 K Ω gesetzt werden.

Der maximale Strom durch die Z-Diode wird durch diesen Widerstand auf ca. 15 mA begrenzt.

Ein Leitungsschluss im rot markierten Bereich (siehe Schaltskizze) kann über den Spannungsabfall am Messwiderstand R_{Shunt} , d. h. den Eingangswert von AI, überwacht werden, siehe Tabelle 7.

Für eine Leitungsschluss-Überwachung muss der Wert von AI innerhalb der Logik des Anwenderprogramms ausgewertet werden.

Seite 16 von 56 HI 800 160 D Rev. 2.00

3.2 Analoge Ausgänge

Die Remote I/O verfügt über vier analoge Ausgänge. Diese sind nicht sicherheitsgerichtet, können aber durch Konfiguration im Anwenderprogramm bei einem internen Fehler gemeinsam sicher abgeschaltet werden.

Zum Erreichen von SIL 3 müssen die Ausgangswerte über sicherheitsgerichtete analoge Eingänge zurückgelesen und im Anwenderprogramm ausgewertet werden. Dort müssen auch Reaktionen auf fehlerhafte Ausgangswerte festgelegt werden.

HINWEIS

Die analogen Ausgänge dürfen <u>nur dann</u> als sicherheitsgerichtete Ausgänge verwendet werden, wenn die Ausgangswerte auf sicherheitsgerichtete analoge Eingänge zurückgelesen und im Anwenderprogramm ausgewertet werden.

Als sichere Reaktion in SILworX die vier Systemparameter *Kanal verwendet [BOOL]* -> und in ELOP II Factory die vier Systemsignale *AO[1..4].Verwendet* auf FALSE setzen. Hierdurch werden intern Sicherheitsschalter geöffnet, die sicherstellen, dass kein Ausgangssignal ausgegeben wird.

Alternativ kann die sichere Reaktion durch die Verwendung der Systemvariable *Notaus* eingeleitet werden.

Applikationsbeispiel für sicherheitsgerichtete analoge Ausgänge:

Bild 2: Applikationsbeispiel für sicherheitsgerichtete analoge Ausgänge

Als Ausgangswerte stehen zur Verfügung:

Wertebereich in der Anwendung	Ausgangsstrom
0	0,0 mA
2000	20,0 mA

Tabelle 9: Ausgangswerte der analogen Ausgänge

Die analogen Ausgänge sind so konstruiert, dass sie die messtechnische Genauigkeit über 10 Jahren beibehalten. Alle 10 Jahre muss eine Wiederholungsprüfung (Proof Test) durchgeführt werden.

HI 800 160 D Rev. 2.00 Seite 17 von 56

3.3 Ausstattung und Lieferumfang

In der folgenden Tabelle sind die verfügbaren Varianten der Remote I/O aufgeführt:

Bezeichnung	Beschreibung
F3 AIO 8/4 01	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur 0+60 °C,
	für Programmierwerkzeug ELOP II Factory
F3 AIO 8/4 011 (-20 °C)	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -20+60 °C, für Programmierwerkzeug ELOP II Factory
F3 AIO 8/4 012 (subsea / -20 °C)	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -20+60 °C, subsea Typprüfung gemäß ISO 13628-6, für Programmierwerkzeug ELOP II Factory
F3 AIO 8/4 014	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -25+70 °C (Temperaturklasse T1), Schwingen und Schock geprüft nach EN 50125-3 und EN 50155, Klasse 1B gemäß IEC 61373, für Programmierwerkzeug ELOP II Factory
F3 AIO 8/4 01 SILworX	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur 0+60 °C, für Programmierwerkzeug SILworX
F3 AIO 8/4 011 SILworX (-20 °C)	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -20+60 °C, für Programmierwerkzeug SILworX
F3 AIO 8/4 012 SILworX (subsea / -20 °C)	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -20+60 °C, subsea Typprüfung gemäß ISO 13628-6, für Programmierwerkzeug SILworX
F3 AIO 8/4 014 SILworX	Remote I/O (8 analoge Eingänge, 4 nicht sicherheitsgerichtete analoge Ausgänge), Betriebstemperatur -25+70 °C (Temperaturklasse T1), Schwingen und Schock geprüft nach EN 50125-3 und EN 50155, Klasse 1B gemäß IEC 61373, für Programmierwerkzeug SILworX

Tabelle 10: Verfügbare Varianten

Seite 18 von 56 HI 800 160 D Rev. 2.00

3.3.1 IP-Adresse und System-ID (SRS)

Mit dem Gerät wird ein transparenter Aufkleber geliefert, auf dem die IP-Adresse und die System-ID (SRS, System.Rack.Slot) nach einer Änderung vermerkt werden können.

IΡ		SRS	

Default-Wert für IP-Adresse: 192.168.0.99

Default-Wert für SRS: 60000.200.0 (SILworX)

60 000.0.0 (ELOP II Factory)

Die Belüftungsschlitze auf dem Gehäuse des Geräts dürfen durch den Aufkleber nicht abgedeckt werden.

Das Ändern von IP-Adresse und System-ID ist im Erste Schritte Handbuch des Programmierwerkzeugs beschrieben.

3.4 Typenschild

Das Typenschild enthält folgende Angaben:

- Produktnamen
- Barcode (Strichcode oder 2D-Code)
- Teilenummer
- Produktionsjahr
- Hardware-Revisionsindex (HW-Rev.)
- Firmware-Revisionsindex (FW-Rev.)
- Betriebsspannung
- Prüfzeichen

Bild 3: Typenschild exemplarisch

HI 800 160 D Rev. 2.00 Seite 19 von 56

3.5 Aufbau

Das Kapitel Aufbau beschreibt das Aussehen und die Funktion der Remote I/Os, und ihre Kommunikation über safe**ethernet**.

Bild 4: Frontansicht

Bild 5: Blockschaltbild

Seite 20 von 56 HI 800 160 D Rev. 2.00

3.5.1 LED-Anzeigen

Die Leuchtdioden zeigen den Betriebszustand der Remote I/O an. Die LED-Anzeigen unterteilen sich wie folgt:

- Betriebsspannungs-LED
- System-LEDs
- Kommunikations-LEDs

3.5.1.1 Betriebsspannungs-LED

LED	Farbe	Status	Bedeutung
24 VDC	Grün	Ein	Betriebsspannung 24 VDC vorhanden
		Aus	Keine Betriebsspannung

Tabelle 11: Anzeige der Betriebsspannung

3.5.1.2 System-LEDs

Beim Booten des Geräts leuchten alle LEDs gleichzeitig.

LED	Farbe	Status	Bedeutung
RUN	Grün	Ein	Gerät im Zustand RUN, Normalbetrieb
		Blinken	Gerät im Zustand STOPP
			Ein neues Betriebssystem wird geladen.
		Aus	Gerät ist nicht im Zustand RUN.
ERROR	Rot	Ein	Das Gerät ist im Zustand FEHLERSTOPP.
			Durch Selbsttest festgestellter interner Fehler, z. B. Hardware-Fehler
			oder Zykluszeitüberschreitung.
			Das Prozessorsystem kann nur durch einen Befehl vom PADT wieder gestartet werden (Reboot).
		Blinken	Wenn ERROR blinkt und alle anderen LEDs gleichzeitig leuchten, dann hat der BootLoader einen Fehler des Betriebssystems im Flash
			festgestellt und wartet auf den Download eines neuen Betriebssystems.
		Aus	Keine Fehler festgestellt.
PROG	Gelb	Ein	Das Gerät wird mit einer neuen Konfiguration geladen.
		Blinken	Das Gerät wechselt von INIT nach STOPP.
			Das Flash-ROM wird mit einem neuen Betriebssystem geladen.
		Aus	Kein Laden von Konfiguration oder Betriebssystem.
FORCE	Gelb	Aus	Bei einer Remote I/O ist die FORCE-LED ohne Funktion. Das Forcen
			einer Remote I/O wird durch die FORCE-LED der zugeordneten
	<u> </u>		Steuerung signalisiert.
FAULT	Gelb	Ein	Die geladene Konfiguration ist fehlerhaft.
		D.: 1	Das neue Betriebssystem ist verfälscht (nach dem BS-Download).
		Blinken	Fehler beim Laden eines neuen Betriebssystems.
			Einer oder mehrere E/A-Fehler haben sich ereignet.
001	0 "	Aus	Keiner der beschriebenen Fehler ist aufgetreten.
OSL	Gelb	Blinken	Notfall-Loader des Betriebssystems aktiv.
		Aus	Notfall-Loader des Betriebssystems inaktiv.
BL	Gelb	Blinken	BS und OSL Binary defekt oder Hardware-Fehler, INIT_FAIL.
		Aus	Keiner der beschriebenen Fehler ist aufgetreten.

Tabelle 12: Anzeige der System-LEDs

HI 800 160 D Rev. 2.00 Seite 21 von 56

3.5.1.3 Kommunikations-LEDs

Alle RJ-45-Anschlussbuchsen sind mit einer grünen und einer gelben LED ausgestattet. Die LEDs signalisieren folgende Zustände:

LED	Status	Bedeutung
Grün	Ein	Vollduplex-Betrieb
	Blinken	Kollision
	Aus	Halbduplex-Betrieb, keine Kollision
Gelb	Ein	Verbindung vorhanden
	Blinken	Aktivität der Schnittstelle
	Aus	Keine Verbindung vorhanden

Tabelle 13: Ethernetanzeige

3.5.2 Kommunikation

Die Remote I/O kommuniziert mit der zugehörigen Steuerung über safeethernet.

3.5.2.1 Anschlüsse für Ethernet-Kommunikation

Eigenschaft	Beschreibung	
Port	2 x RJ-45	
Übertragungsstandard	10BASE-T/100BASE-Tx, Halb- und Vollduplex	
Auto Negotiation	Ja	
Auto-Crossover	Ja	
IP-Adresse	Frei konfigurierbar ¹⁾	
Subnet Mask	Frei konfigurierbar ¹⁾	
Unterstützte Protokolle	 Sicherheitsgerichtet: safeethernet Standardprotokolle: Programmiergerät (PADT), SNTP 	
Allgemein gültige Regeln für die Vergabe von IP-Adressen und Subnet Masks müssen		

beachtet werden.

Tabelle 14: Eigenschaften Ethernet-Schnittstellen

Die zwei RJ-45-Anschlüsse mit integrierten LEDs sind auf der Unterseite des Gehäuses links angeordnet. Die Bedeutung der LEDs ist in Kapitel 3.5.1.3 beschrieben.

Das Auslesen der Verbindungsparameter basiert auf der MAC-Adresse (Media Access Control), die bei der Herstellung festgelegt wird.

Die MAC-Adresse der Remote I/O befindet sich auf einem Aufkleber über den beiden RJ-45-Anschlüssen (1 und 2).

MAC 00:E0:A1:00:06:C0

Bild 6: Aufkleber MAC-Adresse exemplarisch

Die Remote I/O besitzt einen integrierten Switch für die Ethernet-Kommunikation. Weitere Details zu den Themen Switch und safeethernet finden sich in Kapitel Kommunikation im Systemhandbuch Kompaktsysteme HI 800 140 D.

Seite 22 von 56 HI 800 160 D Rev. 2.00

3.5.2.2 Verwendete Netzwerkports für Ethernet-Kommunikation

UDP Ports	Verwendung
8000	Programmierung und Bedienung mit Programmierwerkzeug
8001	Konfiguration der Remote I/O durch die PES (ELOP II Factory)
8004	Konfiguration der Remote I/O durch die PES (SILworX)
6010	safeethernet
123	SNTP (Zeitsynchronisation zwischen PES und Remote I/O, sowie externen Geräten)

Tabelle 15: Verwendete Netzwerkports

3.5.3 Reset-Taster

Die Remote I/O ist mit einem Reset-Taster ausgerüstet. Ein Betätigen wird nur notwendig, wenn Benutzername oder Passwort für den Administratorzugriff nicht bekannt sind. Passt lediglich die eingestellte IP-Adresse der Remote I/O nicht zum PADT (PC), kann durch einen Route add Eintrag im PC die Verbindungsaufnahme ermöglicht werden.

Nur die Modellvarianten ohne Schutzlackierung sind mit einem Reset-Taster ausgestattet.

Der Taster ist durch ein kleines rundes Loch an der Oberseite des Gehäuses zugänglich, das sich ca. 5 cm vom linken Rand entfernt befindet. Die Betätigung muss mit einem geeigneten Stift aus Isoliermaterial erfolgen, um Kurzschlüsse im Innern der Remote I/O zu vermeiden.

Der Reset ist nur wirksam, wenn die Remote I/O neu gebootet (ausschalten, einschalten) und gleichzeitig der Taster für die Dauer von mindestens 20 s gedrückt wird. Eine Betätigung während des Betriebs hat keine Wirkung.

Eigenschaften und Verhalten der Remote I/O nach einem Reboot mit betätigtem Reset-Taster:

- Verbindungsparameter (IP-Adresse und System-ID) werden auf die Default-Werte gesetzt.
- Alle Accounts werden deaktiviert, außer dem Default-Account Administrator ohne Passwort.

Nach einem erneuten Reboot ohne betätigtem Reset-Taster, werden die Verbindungsparameter (IP-Adresse und System-ID) und Accounts gültig:

- Die vom Anwender parametrierten wurden.
- Die vor dem Reboot mit betätigtem Reset-Taster eingetragen waren, wenn keine Änderungen vorgenommen wurden.

HI 800 160 D Rev. 2.00 Seite 23 von 56

3.6 Produktdaten

Allgemein	
Reaktionszeit	≥ 20 ms
Ethernet-Schnittstellen	2 x RJ-45, 10BASE-T/100BASE-Tx mit integriertem Switch
Betriebsspannung	24 VDC, -15+20 %, w _{ss} ≤ 15 %, aus einem Netzgerät mit sicherer Trennung, nach Anforderungen der IEC 61131-2
Stromaufnahme	max. 0,8 A (mit maximaler Last) Leerlauf: 0,4 A bei 24 V
Absicherung (extern)	10 A Träge (T)
Pufferbatterie	Keine
Betriebstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Schutzart	IP20
Max. Abmessungen (ohne Stecker)	Breite: 207 mm (mit Gehäuseschrauben) Höhe: 114 mm (mit Befestigungsriegel) Tiefe: 97 mm (mit Erdungsschiene)
Masse	ca.1 kg

Tabelle 16: Produktdaten

Analoge Eingänge	
Anzahl der Eingänge	8 (nicht galvanisch getrennt)
Nennbereich	0+10 VDC,
	$0/4+20$ mA mit Shunt $500~\Omega$
Gebrauchsbereich	-0,1+11,5 VDC,
	-0,4+23 mA mit Shunt 500 Ω
Eingangswiderstand	> 2 MΩ
Quellenwiderstand	≤ 500 Ω
des Eingangssignals	
Digitale Auflösung	12 Bit
Messtechnische Genauigkeit	±0,1 % vom Endwert
bei 25 °C, max.	
Messtechnische Genauigkeit	±0,5 % vom Endwert
über gesamten	
Temperaturbereich, max.	
Temperaturkoeffizient, max.	±0,011 %/K vom Endwert
Sicherheitstechnische	±2 % vom Endwert
Genauigkeit, max.	
Messwerterneuerung	einmal je Zyklus der Steuerung
Abtastzeit	ca. 45 µs

Tabelle 17: Technische Daten der analogen Eingänge

Seite 24 von 56 HI 800 160 D Rev. 2.00

Speiseausgänge	
Anzahl der Speiseausgänge	8
Nennspannungen	8,2 VDC / 26 VDC, umschaltbar
Toleranz	±5 %
Sicherheitstechnisch überwachte Grenzen: Bereich 8,2 V	7,68,8 V, (Toleranzbereich: 7,39,1 V)
Bereich 26 V	24,327,7 V, (Toleranzbereich: 24,028,0 V)
Strombegrenzung	> 200 mA, Ausgang wird abgeschaltet

Tabelle 18: Technische Daten der Transmitterspeisungen

Analoge Ausgänge				
Anzahl der Ausgänge	4 nicht galvanisch getrennt, nicht sicherheitsgerichtet, gemeinsame sichere Abschaltung			
Nennwert	420 mA			
Gebrauchswert	021 mA			
Digitale Auflösung	12 Bit			
Lastimpedanz	max. 600 Ω			
Messtechnische Genauigkeit bei 25 °C, max.	±0,1 % vom Endwert			
Messtechnische Genauigkeit über gesamten Temperaturbereich, max.	±0,5 % vom Endwert			
Temperaturkoeffizient, max.	±0,011 %/K vom Endwert			
Sicherheitstechnische Genauigkeit, max.	±1 % vom Endwert			

Tabelle 19: Technische Daten der analogen Ausgänge

3.6.1 Produktdaten F3 AIO 8/4 011 (-20 °C)

Die Modellvariante HIMatrix F3 AlO 8/4 011 (-20 °C) ist für den Einsatz im erweiterten Temperaturbereich -20...+60 °C ausgelegt. Die Elektronikkomponenten sind mit einem Schutzlack überzogen.

F3 AIO 8/4 011	
Betriebstemperatur	-20+60 °C
Masse	ca. 1 kg

Tabelle 20: Produktdaten F3 AIO 8/4 011 (-20 °C)

3.6.2 Produktdaten F3 AIO 8/4 012 (subsea / -20 °C)

Die Modellvariante HIMatrix F3 AIO 8/4 012 (subsea / -20 °C) ist für den Subsea-Einsatz gemäß ISO 13628 Part 6: Subsea production control systems ausgelegt. Die Elektronikkomponenten sind mit einem Schutzlack überzogen. Das Gehäuse der Remote I/O besteht aus V2A Edelstahl und die Remote I/O ist für die Montage auf einer Montageplatte vorgesehen. Dazu ist das Gehäuse mit einer Aluminiumplatte verschraubt, siehe Bild 7. Die Angaben der Lochabstände sind Bild 8 zu entnehmen.

HI 800 160 D Rev. 2.00 Seite 25 von 56

F3 AIO 8/4 012			
Gehäusematerial	Edelstahl V2A		
Betriebstemperatur	-20+60 °C		
ISO 13628-6: 2006	Erfüllt Schwingungs- und Schockprüfung nach Level Q1 und Q2. Erfüllt stochastische Schwingprüfung, ESS (Enviromental stress screening)		
Max. Abmessungen (ohne Stecker und Aluminiumplatte)	Breite: 207 mm (mit Gehäuseschrauben) Höhe: 114 mm (mit Befestigungsriegel) Tiefe: 97 mm (mit Erdungsschiene)		
Abmessungen: Aluminiumplatte (B x H x T)	(200 x 160 x 6) mm		
Masse	ca. 1,4 kg		

Tabelle 21: Produktdaten F3 AIO 8/4 012 (subsea / -20 °C)

Bild 7: HIMatrix F3 AIO 8/4 012 mit Aluminiumplatte

Seite 26 von 56 HI 800 160 D Rev. 2.00

Bild 8: Aluminiumplatte mit Bemaßung

3.6.3 Produktdaten F3 AIO 8/4 014

Die Modellvariante F3 AlO 8/4 014 ist für den Einsatz im Bahnbetrieb ausgelegt. Die Elektronikkomponenten sind mit einem Schutzlack überzogen.

F3 AIO 8/4 014	
Betriebstemperatur	-25+70 °C (Temperaturklasse T1)
Masse	ca.1 kg

Tabelle 22: Produktdaten F3 AIO 8/4 014

Die Remote I/O F3 AIO 8/4 014 erfüllt die Bedingungen für Schwingungen und Schocken gemäß EN 61373, Kategorie 1, Klasse B.

HI 800 160 D Rev. 2.00 Seite 27 von 56

3.7 HIMatrix F3 AIO 8/4 01 zertifiziert

HIMatrix F3 AIO 8/4 01				
CE	EMV, ATEX Zone 2			
TÜV	IEC 61508 1-7:2000 bis SIL 3			
	IEC 61511:2004			
	EN ISO 13849-1:2008 bis Kat. 4 und PL e			
UL Underwriters Laboratories	ANSI/UL 508, NFPA 70 – Industrial Control Equipment			
Inc.	CSA C22.2 No.142			
	UL 1998 Software Programmable Components			
	NFPA 79 Electrical Standard for Industrial Machinery			
	IEC 61508			
FM Approvals	Class I, DIV 2, Groups A, B, C and D			
	Class 3600, 1998			
	Class 3611, 1999			
	Class 3810, 1989			
	Including Supplement #1, 1995			
	CSA C22.2 No. 142			
	CSA C22.2 No. 213			
TÜV CENELEC	Bahnanwendungen			
	EN 50126: 1999 bis SIL 4			
	EN 50128: 2001 bis SIL 4			
	EN 50129: 2003 bis SIL 4			

Tabelle 23: HIMatrix F3 AIO 8/4 01 zertifiziert

Seite 28 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 4 Inbetriebnahme

4 Inbetriebnahme

Zur Inbetriebnahme des Remote I/O gehören der Einbau und der Anschluss sowie die Konfiguration im Programmierwerkzeug.

4.1 Installation und Montage

Die Montage der Remote I/O erfolgt auf einer Hutschiene 35 mm (DIN) oder einer Montageplatte bei der F3 AIO 8/4 012.

Beim Anschluss ist auf eine störungsarme Verlegung von insbesondere längeren Leitungen zu achten, z. B. durch getrennte Verlegung von Signal- und Versorgungsleitungen.

Bei der Dimensionierung des Kabels ist darauf zu achten, dass die elektrischen Eigenschaften des Kabels keinen negativen Einfluss auf den Messkreis haben.

4.1.1 Anschluss der analogen Eingänge

Nur abgeschirmte Kabel dürfen an die analogen Eingänge angeschlossen werden. Jeder analoge Eingang muss mit einem verdrillten Adernpaar angeschlossen werden. Die Abschirmungen sind an der Remote I/O und am Gehäuse des Sensors großflächig aufzulegen und auf der Seite der Remote I/O zu erden, um damit einen Faraday´schen Käfig zu erzeugen

Die analogen Eingänge werden mit folgenden Klemmen angeschlossen:

Klemme	Bezeichnung	Funktion (analoge Eingänge AI)			
1	S1	Transmitterspeisung 1			
2	l1+	Analoger Eingang 1			
3	I1-	Bezugspotenzial			
4	S2	Transmitterspeisung 2			
5	12+	Analoger Eingang 2			
6	12-	Bezugspotenzial			
Klemme	Bezeichnung	Funktion (analoge Eingänge AI)			
7	S3	Transmitterspeisung 3			
8	l3+	Analoger Eingang 3			
9	13-	Bezugspotenzial			
10	S4	Transmitterspeisung 4			
11	14+	Analoger Eingang 4			
12	14-	Bezugspotenzial			
Klemme	Bezeichnung	Funktion (analoge Eingänge AI)			
13	S5	Transmitterspeisung 5			
14	15+	Analoger Eingang 5			
15	15-	Bezugspotenzial			
16	S6	Transmitterspeisung 6			
17	16+	Analoger Eingang 6			
18	16-	Bezugspotenzial			
Klemme	Bezeichnung	Funktion (analoge Eingänge AI)			
19	S7	Transmitterspeisung 7			
20	17+	Analoger Eingang 7			
21	17-	Bezugspotenzial			
22	S8	Transmitterspeisung 8			
23	18+	Analoger Eingang 8			
24	18-	Bezugspotenzial			

Tabelle 24: Klemmenbelegung der analogen Eingänge

HI 800 160 D Rev. 2.00 Seite 29 von 56

4 Inbetriebnahme F3 AIO 8/4 01

4.1.1.1 Shunt-Adapter

Der Shunt-Adapter ist ein Aufsteck-Modul für die analogen Eingänge der sicherheitsgerichteten Remote I/O F3 AIO 8/4 01.

Es gibt fünf Modelle mit unterschiedlichen Bestückungen:

Modell	Bestückung			
Z 7301	Shunt 250 Ω			
Z 7302	Shunt 500 Ω			
Z 7306	■ Shunt 250 Ω			
	 Überspannungsschutz 			
	HART-Vorwiderstand (Strombegrenzung)			
Z 7308	Spannungsteiler			
	 Überspannungsschutz 			
Z 7309 ¹⁾	Shunt 500 Ω			
bei Anschluss von Initiatoren, siehe Kapitel 4.5.1				

Tabelle 25: Shunt-Adapter

Weitere Informationen zu den Shunt-Adaptern sind in den entsprechenden Handbüchern zu finden.

4.1.2 Anschluss der analogen Ausgänge

Die analogen Ausgänge werden mit folgenden Klemmen angeschlossen:

Klemme	Bezeichnung	Funktion (analoge Ausgänge AO)			
25	1+	Analoger Ausgang 1			
26	1-	Bezugspotenzial Ausgang 1			
27	2+	Analoger Ausgang 2			
28	2-	Bezugspotenzial Ausgang 2			
29	3+	Analoger Ausgang 3			
30	3-	Bezugspotenzial Ausgang 3			
31	4+	Analoger Ausgang 4			
32	4-	Bezugspotenzial Ausgang 4			

Tabelle 26: Klemmenbelegung der analogen Ausgänge

Seite 30 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 4 Inbetriebnahme

4.1.3 Klemmenstecker

Der Anschluss der Spannungsversorgung und der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten der Geräte aufgesteckt werden. Die Klemmenstecker sind im Lieferumfang der HIMatrix Geräte und Baugruppen enthalten.

Die Anschlüsse der Spannungsversorgung der Geräte besitzen folgende Eigenschaften:

Anschluss Spannungsversorgung				
Klemmenstecker	4-polig, Schraubklemmen			
Leiterquerschnitt	0,22,5 mm ² (eindrähtig)			
	0,22,5 mm ² (feindrähtig)			
	0,22,5 mm ² (mit Aderendhülse)			
Abisolierlänge	10 mm			
Schraubendreher	Schlitz 0,6 x 3,5 mm			
Anzugsdrehmoment	0,40,5 Nm			

Tabelle 27: Eigenschaften Klemmenstecker der Spannungsversorgung

Anschluss Feldseite				
Anzahl Klemmenstecker	4 Stück, 6-polig, Schraubklemmen			
	1 Stück, 8-polig, Schraubklemmen			
Leiterquerschnitt	0,21,5 mm ² (eindrähtig)			
	0,21,5 mm ² (feindrähtig)			
	0,21,5 mm ² (mit Aderendhülse)			
Abisolierlänge	6 mm			
Schraubendreher	Schlitz 0,4 x 2,5 mm			
Anzugsdrehmoment	0,20,25 Nm			

Tabelle 28: Eigenschaften Klemmenstecker der Eingänge und Ausgänge

HI 800 160 D Rev. 2.00 Seite 31 von 56

4 Inbetriebnahme F3 AIO 8/4 01

4.1.4 Einbau der F3 AIO 8/4 01 in die Zone 2

(EG-Richtlinie 94/9/EG, ATEX)

Die Remote I/O ist geeignet zum Einbau in die Zone 2. Die entsprechende Konformitätserklärung ist auf der HIMA Webseite zu finden.

Beim Einbau sind die nachfolgend genannten besonderen Bedingungen zu beachten.

Besondere Bedingungen X

 Die Remote I/O in ein Gehäuse einbauen, das die Anforderungen der EN 60079-15 mit einer Schutzart von mindestens IP54 gemäß EN 60529 erfüllt. Dieses Gehäuse mit folgendem Aufkleber versehen:

Arbeiten nur im spannungslosen Zustand zulässig

Ausnahme:

Ist sichergestellt, dass keine explosionsfähige Atmosphäre vorhanden ist, darf auch unter Spannung gearbeitet werden.

- 2. Das verwendete Gehäuse muss die entstehende Verlustleistung sicher abführen können. Die Verlustleistung der HIMatrix F3 AIO 8/4 01 beträgt max. 18 W.
- Die HIMatrix F3 AlO 8/4 01 mit einer trägen Sicherung 10 A absichern.
 Die Spannungsversorgung 24 VDC muss aus einem Netzgerät mit sicherer Trennung erfolgen. Nur Netzgeräte in den Ausführungen PELV oder SELV einsetzen.
- 4. Anwendbare Normen:

VDE 0170/0171 Teil 16, DIN EN 60079-15: 2004-5 VDE 0165 Teil 1, DIN EN 60079-14: 1998-08

Darin folgende Punkte besonders beachten:

DIN EN 60079-15:

Kapitel 5 Bauart

Kapitel 6 Anschlussteile und Verkabelung
Kapitel 7 Luft- und Kriechstrecken und Abstände
Kapitel 14 Steckvorrichtungen und Steckverbinder

DIN EN 60079-14:

Kapitel 5.2.3 Betriebsmittel für die Zone 2

Kapitel 9.3 Kabel und Leitungen für die Zonen 1 und 2

Kapitel 12.2 Anlagen für die Zonen 1 und 2

Die Remote I/O hat zusätzlich das gezeigte Schild:

HIMA

Paul Hildebrandt GmbH

A.-Bassermann-Straße 2

A.-Bassermann-Straße 28, D-68782 Brühl

HIMatrix (Ex) II 3 G Ex nA II T4 X

F3 AIO 8/4 01 0°C ≤ Ta ≤ 60°C

Besondere Bedingungen X beachten!

Bild 9: Schild für Ex-Bedingungen

Seite 32 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 4 Inbetriebnahme

4.2 Konfiguration

Die Konfiguration der Remote I/O kann durch die Programmierwerkzeuge SILworX oder ELOP II Factory erfolgen. Welches Programmierwerkzeug zu verwenden ist, hängt vom Revisionsstand des Betriebssystems (Firmware) ab:

- CPU-Betriebssysteme ab V7 erfordern den Einsatz von SILworX.
- CPU-Betriebssysteme bis V6.x erfordern den Einsatz von ELOP II Factory.

Der Wechsel des Betriebssystems ist im Kapitel *Laden von Betriebssystemen* im Systemhandbuch Kompaktsysteme HI 800 140 D beschrieben.

Bei der Konfiguration folgende Punkte beachten:

- Im Programmierwerkzeug SILworX muss dem Systemparameter Transmitterspannung[01] eine globale Variable zugewiesen werden. Über diese globale Variable wird der Wert der Transmitterspeisung eingestellt, siehe Tabelle 29.
- Im Programmierwerkzeug ELOP II Factory muss dem Systemsignal Transmitter
 Spannung[01] [USINT] ein Signal zugewiesen werden. Über dieses Signal wird der Wert der Transmitterspeisung eingestellt, siehe Tabelle 33.
- $\begin{tabular}{ll} \hline \textbf{Die Transmitterspeisung muss auch dann konfiguriert werden, wenn sie nicht verwendet} \\ \hline \textbf{1} \\ \hline \end{tabular}$

4.3 Konfiguration mit SILworX

Der Hardware-Editor zeigt die Remote I/O ähnlich einem Basisträger, bestückt mit folgenden Modulen an:

- Prozessormodul (CPU)
- Eingangsmodul (AI 8)
- Ausgangsmodul (AO 4)

Durch Doppelklicken auf die Module öffnet sich die Detailansicht mit Registern. In den Registern können die im Anwenderprogramm konfigurierten globalen Variablen den Systemvariablen des jeweiligen Moduls zugeordnet werden.

4.3.1 Parameter und Fehlercodes der Eingänge und Ausgänge

In den folgenden Übersichten sind die lesbaren und einstellbaren Systemparameter der Eingänge und Ausgänge einschließlich der Fehlercodes aufgeführt.

Die Fehlercodes können innerhalb des Anwenderprogramms über die entsprechenden, in der Logik zugewiesenen Variablen ausgelesen werden.

Die Anzeige der Fehlercodes kann auch in SILworX erfolgen.

4.3.2 Analoge Eingänge F3 AIO 8/4 01

Die nachfolgenden Tabellen enthalten die Status und Parameter des Eingangsmoduls (AI 8) in derselben Reihenfolge wie im Hardware-Editor.

HI 800 160 D Rev. 2.00 Seite 33 von 56

4 Inbetriebnahme F3 AIO 8/4 01

4.3.2.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
Al.Fehlercode WORD		R	Fehlercodes aller analogen Eingänge		
			Codierung	Beschreibung	
			0x0001	Fehler der Baugruppe	
			0x0004	Zeitüberwachung der Wandlung fehlerhaft	
			0x0008	FTZ-Test: Walking-Bit des Datenbus fehlerhaft	
			0x0010	FTZ-Test: Fehler beim Prüfen der Koeffizienten	
			0x0020	FTZ-Test: Betriebsspannungen fehlerhaft	
			0x0040	A/D-Konvertierung fehlerhaft (DRDY_LOW)	
			0x0080	Cross-Links der MUX fehlerhaft	
			0x0100	Walking-Bit des Datenbus fehlerhaft	
			0x0200	Multiplexer-Adressen fehlerhaft	
			0x0400	Betriebsspannungen fehlerhaft	
			0x0800	Messsystem (Kennlinie) fehlerhaft (unipolar)	
			0x1000	Messsystem (Endwerte, Nullpunkt) fehlerhaft (unipolar)	
			0x8000	A/D-Konvertierung fehlerhaft (DRDY_HIGH)	
ModulFehlercode	WORD	R	Fehlercodes des Moduls		
			Codierung	Beschreibung	
			0x0000	E/A-Verarbeitung, ggfs. mit Fehlern, siehe weitere Fehlercodes	
			0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)	
			0x0002	keine E/A-Verarbeitung während der Hochfahrtests	
			0x0004	Hersteller-Interface in Betrieb	
			0x0010	keine E/A-Verarbeitung: falsche Parametrierung	
			0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten	
			0x0040/ 0x0080	keine E/A-Verarbeitung: konfiguriertes Modul nicht gesteckt	
ModulSRS	UDINT	R	Steckplatznum	nmer (System.Rack.Slot)	
ModulTyp	UINT	R		ıls, Sollwert: 0x001E [30 _{dez}]	
Transmitter.Fehlercode	WORD	R		ler Transmittereinheit	
			Codierung	Beschreibung	
			0x0001	Fehler in der Transmitterspeisung	
			0x0400	FTZ-Test: 1. Temperaturschwelle überschritten	
			0x0800	FTZ-Test: 2. Temperaturschwelle überschritten	

Seite 34 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 4 Inbetriebnahme

Systemparameter	Datentyp	R/W	Beschreibung	
Transmitter[01].Fehlercode	BYTE	R	Fehlercodes je Transmittergruppe	
			Codierung	Beschreibung
			0x01	Baugruppenfehler der Transmitterspeisung
			0x02	Überstrom der Transmitterspeisung
			0x04	Unterspannung der Transmitterspeisung
			0x08	Überspannung der Transmitterspeisung
Transmitterspannung[01]	USINT	W	Umschaltung der Transmitterspannung je Gruppe: 1 = 8,2 V 2 = 26,0 V	

Tabelle 29: SILworX - Systemparameter der analogen Eingänge, Register Modul

4.3.2.2 Register Al 8: Kanäle

Das Register Al 8: Kanäle enthält die folgenden Systemvariable:

Systemparameter	Datentyp	R/W	Beschreibung		
-> Fehlercode	BYTE	R	Fehlercodes der analogen Eingangskanäle		
[BYTE]			Codierung	Beschreibung	
			0x01	Fehler im analogen Eingangsmodul	
			0x02	Grenzwerte sind unter-/überschritten	
			0x04	A/D-Konverter fehlerhaft, Messwerte nicht gültig	
			0x08	Messwert nicht innerhalb der sicherheitstechnischen Genauigkeit	
			0x10	Messwert-Überlauf	
			0x20	Kanal nicht in Betrieb	
			0x40	Adressfehler der beiden A/D-Konverter	
-> Wert [INT]	INT	R	Analogwert je Kanal [INT] von 0+2000 (0+10 V) Die Gültigkeit hängt von <i>Al.Fehlercode</i> ab		
Kanal verwendet [BOOL] ->	BOOL	W	Konfiguration des Kanals: 1 = in Betrieb 0 = nicht in Betrieb		
Grenzwert LOW [INT] ->	INT	W	Obergrenze des Spannungsbereichs 0-Pegel -> Unterlauf [BOOL]		
Grenzwert HIGH [INT] ->	INT	W	Untergrenze des Spannungsbereichs 1-Pegel -> Überlauf [BOOL]		
Transmitter verwendet [BOOL] ->	BOOL	W	Al-Kanal mit Transmitterspeisung verwendet: 1 = verwendet 0 = nicht verwendet		
-> Unterlauf [BOOL]	BOOL	R	Unterlauf -> Wert [INT] gemäß Grenzwert LOW [INT] -> Die Gültigkeit hängt von Al.Fehlercode ab		
-> Überlauf [BOOL]	BOOL	R	Überlauf -> Wert [INT] gemäß Grenzwert HIGH [INT] -> Die Gültigkeit hängt von Al.Fehlercode ab		

Tabelle 30: SILworX - Systemparameter der analogen Eingänge, Register Al 8: Kanäle

HI 800 160 D Rev. 2.00 Seite 35 von 56

4 Inbetriebnahme F3 AIO 8/4 01

4.3.3 Analoge Ausgänge F3 AIO 8/4 01

Die nachfolgenden Tabellen enthalten die Status und Parameter des Ausgangsmoduls (AO 4) in derselben Reihenfolge wie im Hardware-Editor.

4.3.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
AO.Fehlercode	WORD	R	Fehlercodes aller analogen Ausgänge		
			Codierung	Beschreibung	
			0x0001	Fehler der Baugruppe	
			0x0002	Sicherheitsschalter 1 fehlerhaft	
			0x0004	Sicherheitsschalter 2 fehlerhaft	
			0x0008	FTZ-Test des Testmusters fehlerhaft	
			0x0010	FTZ-Test: Fehler beim Prüfen der Koeffizienten	
			0x0400	FTZ-Test: 1. Temperaturschwelle überschritten	
			0x0800	FTZ-Test: 2. Temperaturschwelle überschritten	
			0x2000	Status der Sicherheitsschalter	
			0x4000	Aktive Abschaltung über Watchdog fehlerhaft	
ModulFehlercode	WORD	R	Fehlercodes des Moduls		
			Codierung	Beschreibung	
			0x0000	E/A-Verarbeitung, ggfs. mit Fehlern, siehe weitere Fehlercodes	
			0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)	
			0x0002	keine E/A-Verarbeitung während der Hochfahrtests	
			0x0004	Hersteller-Interface in Betrieb	
			0x0010	keine E/A-Verarbeitung: falsche Parametrierung	
			0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten	
			0x0040/ 0x0080	keine E/A-Verarbeitung: konfiguriertes Modul nicht gesteckt	
ModulSRS	UDINT	R	Steckplatznummer (System.Rack.Slot)		
ModulTyp	UINT	R	Typ des Moduls, Sollwert: 0x0069 [105 _{dez}]		

Tabelle 31: SILworX - Systemparameter der analogen Ausgänge, Register Modul

Seite 36 von 56 HI 800 160 D Rev. 2.00

4.3.3.2 Register AO 4: Kanäle

Das Register AO 4: Kanäle enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung		
-> Fehlercode	BYTE	R	Fehlercodes für analoge Ausgangskanäle Codierung Beschreibung		
[BYTE]					
			0x01 Fehler in der analoge	n Ausgangseinheit	
			0x80 -> Wert [INT] nicht im	spezifizierten Bereich	
-> Wert [INT]	INT	R	Ausgangswert der AO-Kanäle: Stromkennlinie: 0+2000 (0+20 mA Stromkennlinie: -20000 (0 mA) Werte werden vor der Normierung a Stromkennlinie: Werte < 0: Normierung mit 0 Werte < Stützstelle LOW: Normierung mit Stützstelle LC Werte > Stützstelle HIGH: Normierung mit Stützstelle HI Ausgänge dürfen NICHT als sicher verwendet werden!	auf Plausibilität geprüft. DW GH	
Kanal verwendet [BOOL] ->	BOOL	W	Konfiguration des Kanals: 1 = in Betrieb 0 = nicht in Betrieb		

Tabelle 32: SILworX - Systemparameter der analogen Ausgänge, Register AO 4: Kanäle

4.4 Konfiguration mit ELOP II Factory

4.4.1 Konfiguration der Eingänge und Ausgänge

Mit ELOP II Factory werden die zuvor im Signaleditor definierten Signale (Hardware Management) den einzelnen Kanälen (Eingängen und Ausgängen) zugeordnet, siehe dazu das Systemhandbuch Kompaktsysteme oder die Online-Hilfe.

Die Systemsignale, welche für die Zuordnung von Signalen in der Remote I/O vorhanden sind, finden sich im folgenden Kapitel.

4.4.2 Signale und Fehlercodes der Eingänge und Ausgänge

In den folgenden Übersichten sind die lesbaren und einstellbaren Systemsignale der Eingänge und Ausgänge einschließlich der Fehlercodes aufgeführt.

Die Fehlercodes können innerhalb des Anwenderprogramms über die entsprechenden, in der Logik zugewiesenen Signale ausgelesen werden.

Die Anzeige der Fehlercodes kann auch in ELOP II Factory erfolgen.

HI 800 160 D Rev. 2.00 Seite 37 von 56

4.4.3 Analoge Eingänge F3 AlO 8/4 01

Systemsignal	R/W	Beschreibung	Beschreibung			
Bg.SRS [UDINT]	R	Steckplatznum	nmer (System.Rack.Slot)			
Bg.Typ [UINT]	R	Typ des Moduls, Sollwert: 0x001E [30 _{dez}]				
Bg.Fehlercode	R	Fehlercodes des Moduls				
[WORD]		Codierung	Beschreibung			
		0x0000	E/A-Verarbeitung, ggfs. mit Fehlern,			
			siehe weitere Fehlercodes			
		0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)			
		0x0002	keine E/A-Verarbeitung während der Hochfahrtests			
		0x0004	Hersteller-Interface in Betrieb			
		0x0010	keine E/A-Verarbeitung: falsche Parametrierung			
		0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten			
		0x0040/ 0x0080	keine E/A-Verarbeitung: konfiguriertes Modul nicht gesteckt			
Al.Fehlercode	R	Fehlercodes a	ller analogen Eingänge			
[WORD]		Codierung	Beschreibung			
		0x0001	Fehler der Baugruppe			
		0x0004	Zeitüberwachung der Wandlung fehlerhaft			
		0x0008	FTZ-Test: Walking-Bit des Datenbus fehlerhaft			
		0x0010	FTZ-Test: Fehler beim Prüfen der Koeffizienten			
		0x0020	FTZ-Test: Betriebsspannungen fehlerhaft			
		0x0040	A/D-Konvertierung fehlerhaft (DRDY_LOW)			
		0x0080	Cross-Links der MUX fehlerhaft			
		0x0100	Walking-Bit des Datenbus fehlerhaft			
		0x0200	Multiplexer-Adressen fehlerhaft			
		0x0400	Betriebsspannungen fehlerhaft			
		0x0800	Messsystem (Kennlinie) fehlerhaft (unipolar)			
			0x1000	Messsystem (Endwerte, Nullpunkt) fehlerhaft (unipolar)		
		0x8000	A/D-Konvertierung fehlerhaft (DRDY_HIGH)			
Al[xx].Fehlercode	R	Fehlercodes der analogen Eingangskanäle				
[BYTE]		Codierung	Beschreibung			
		0x01	Fehler im analogen Eingangsmodul			
		0x02	Grenzwerte sind unter-/überschritten			
		0x04	A/D-Konverter fehlerhaft, Messwerte nicht gültig			
		0x08	Messwert nicht innerhalb der sicherheitstechnischen Genauigkeit			
		0x10	Messwert-Überlauf			
		0x20	Kanal nicht in Betrieb			
		0x40	Adressfehler der beiden A/D-Konverter			
Al[xx].Wert [INT]	R		Kanal [INT] von 0+2000 (0+10 V) hängt von <i>Al[xx].Fehlercode</i> ab			
Al[xx].Verwendet	W	Konfiguration des Kanals:				
[BOOL]		1 = in Betrieb				
		0 = nicht in Be	trieb			
Al[xx].Transmitter	W	Al-Kanal mit Transmitterspeisung verwendet:				
Verwendet		1 = verwendet				
[BOOL]		0 = nicht verwendet				

Seite 38 von 56 HI 800 160 D Rev. 2.00

Systemsignal	R/W	Beschreibung			
Transmitter Spannung[01] [USINT]	W	Umschaltung der Transmitterspannung je Gruppe: 1 = 8,2 V 2 = 26,0 V			
Transmitter.	R	Fehlercodes der Transmittereinheit			
Fehlercode [WORD]		Codierung	Beschreibung		
		0x0001	Fehler in der Transmitterspeisung		
		0x0400	FTZ-Test: 1. Temperaturschwelle überschritten		
		0x0800	FTZ-Test: 2. Temperaturschwelle überschritten		
Transmitter[01].	R	Fehlercodes je Transmittergruppe			
Fehlercode [BYTE]		Codierung	Beschreibung		
		0x01	Baugruppenfehler der Transmitterspeisung		
		0x02	Überstrom der Transmitterspeisung		
		0x04	Unterspannung der Transmitterspeisung		
		0x08	Überspannung der Transmitterspeisung		
Al[xx].Unterlauf [BOOL]	R	Unterlauf Al[xx]. Wert gemäß Al[xx]. Grenzwert LOW Die Gültigkeit hängt von Al[xx]. Fehlercode ab			
Al[xx].Überlauf [BOOL]	R	Überlauf Al[xx].Wert gemäß Al[xx].Grenzwert HIGH Die Gültigkeit hängt von Al[xx].Fehlercode ab			
AI[xx].Grenzwert LOW [INT]	W	Obergrenze des Spannungsbereichs 0-Pegels Al[xx].Unterlauf			
Al[xx].Grenzwert HIGH [INT]	W	Untergrenze des Spannungsbereichs 1-Pegels Al[xx]. Überlauf			

Tabelle 33: ELOP II Factory - Systemsignale der analogen Eingänge

HI 800 160 D Rev. 2.00 Seite 39 von 56

4.4.4 Analoge Ausgänge F3 AlO 8/4 01

Systemsignal	R/W	Beschreibung			
Bg.SRS [UDINT]	R		Steckplatznummer (System.Rack.Slot)		
Bg.Typ [UINT]	R	Typ des Moduls, Sollwert: 0x0069 [105 _{dez}]			
Bg.Fehlercode	R	Fehlercodes des Moduls			
[WORD]		Codierung	Beschreibung		
		0x0000	E/A-Verarbeitung, ggfs. mit Fehlern, siehe weitere Fehlercodes		
		0x0001	keine E/A-Verarbeitung (CPU nicht in RUN)		
		0x0002	keine E/A-Verarbeitung während der Hochfahrtests		
		0x0004	Hersteller-Interface in Betrieb		
		0x0010	keine E/A-Verarbeitung: falsche Parametrierung		
		0x0020	keine E/A-Verarbeitung: Fehlerrate überschritten		
		0x0040/	keine E/A-Verarbeitung: konfiguriertes Modul nicht		
		0x0080	gesteckt		
AO.Fehlercode	R	Fehlercodes fü	r analoge Ausgangseinheit		
[WORD]		Codierung	Beschreibung		
		0x0001	Fehler der Baugruppe		
		0x0002	Sicherheitsschalter 1 fehlerhaft		
		0x0004	Sicherheitsschalter 2 fehlerhaft		
		0x0008	FTZ-Test des Testmusters fehlerhaft		
		0x0010	FTZ-Test: Fehler beim Prüfen der Koeffizienten		
		0x0400	FTZ-Test: 1. Temperaturschwelle überschritten		
		0x0800	FTZ-Test: 2. Temperaturschwelle überschritten		
		0x2000	Status der Sicherheitsschalter		
		0x4000	Aktive Abschaltung über Watchdog fehlerhaft		
AO[xx].Fehlercode	R	Fehlercodes fü	ir analoge Ausgangskanäle		
[BYTE]		Codierung	Beschreibung		
		0x01	Fehler in der analogen Ausgangseinheit		
		0x80	AO[xx]. Wert nicht im spezifizierten Bereich		
AO[xx].Wert [INT]	W	Ausgangswert	der AO-Kanäle:		
			e: 0+2000 (0+20 mA) e: -20000 (0 mA)		
		Stromkennlinie Werte < 0:			
			erung mit 0		
			itzstelle LOW: erung mit Stützstelle LOW		
			itzstelle HIGH:		
			erung mit Stützstelle HIGH		
		Ausgänge dürfen <u>NICHT</u> als sicherheitsgerichtete Ausgänge verwendet werden!			
AO[x]. Verwendet	W	Konfiguration des Kanals			
[BOOL]		1 = in Betrieb	tui a la		
		0 = nicht in Be	rried		

Tabelle 34: ELOP II Factory - Systemsignale der analogen Ausgänge

Seite 40 von 56 HI 800 160 D Rev. 2.00

4.5 Anschlussvarianten

Dieses Kapitel beschreibt die sicherheitstechnisch zulässige Beschaltung der Remote I/O.

Für SIL 3 Anwendungen sind nur die nachfolgend beschriebenen Anschlussvarianten zulässig.

4.5.1 Anschluss von Initiatoren

Initiatoren werden über den Shunt-Adapter Z 7309 an den analogen Eingängen angeschlossen, siehe Bild 10.

Der Initiator ist über den Leitungswiderstand RL an die Initiatorspeisung angeschlossen. Danach ist er mit dem in Reihe verschalteten Widerstand R1 verbunden.

Bild 10: Initiator an analogen Eingängen

• Es können ungeschirmte Kabel verwendet werden (Zone A, gemäß EN 61131 – 2: 2007).

Sollte sich das System in einer rauen EMV Umgebung (Zone B oder C) befinden, so sind geschirmte Kabel vorzusehen. Dabei ist der Schirm durch Anbringen an das Schirmblech zu erden.

HI 800 160 D Rev. 2.00 Seite 41 von 56

HINWEIS

Überlastung, Fehler durch falsch eingestellten Spannung (8,2 V / 26 V)! Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen.

Vor Inbetriebnahme den Systemparameter *Transmitterspeisung[01]* auf 1 setzen (8,2 V). Sollte der Shunt-Adapter überlastet worden sein, so ist dieser auszutauschen.

Schaltschwellen der analogen Eingänge

Mit dem Shunt-Adapter Z 7309 ist die Strommessung von 0/4...20 mA bei einer Auflösung von 2000 Digit festgelegt.

Im Anwenderprogramm sind die Einschalt- und Ausschaltschwellen, die Schwellen für Leitungsbruch (LS) und Leitungsschluss (LS), und deren Fehlerreaktion einzustellen. Der Leitungswiderstand ist bei den Grenzen schon berücksichtigt.

Schaltschwellen	Bereich 2000 Digit 1)	Beschreibung			
NAMUR-Initiatoren na	NAMUR-Initiatoren nach EN 60947-5-6				
Einschaltschwelle L → H	1,75 mA [175 Digit]	Übergang von Low nach High			
Ausschaltschwelle H → L	1,55 mA [155 Digit]	Übergang von High nach Low			
LB-Schwelle	≤ 0,200 mA [20 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf fehlerhaft setzen.			
LS-Schwelle	≥ 10,86 mA [1086 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf fehlerhaft setzen.			
SN / S1N-Initiatoren von Pepperl+Fuchs					
Einschaltschwelle L → H	2,45 mA [245 Digit]	Übergang von Low nach High			
Ausschaltschwelle H → L	2,25 mA [225 Digit]	Übergang von High nach Low			
LB-Schwelle	≤ 0,200 mA [20 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf fehlerhaft setzen.			
LS-Schwelle	≥ 5,63 mA [563 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf fehlerhaft setzen.			
Werte für den konkret eingesetzten Initiator überprüfen.					

Tabelle 35: Schaltschwellen der Eingänge bei Initiatoren

Seite 42 von 56 HI 800 160 D Rev. 2.00

4.5.2 Anschluss von beschalteten Kontaktgebern

Der Anschluss von beschalteten Kontaktgebern erfolgt wie in Bild 11 und Bild 12 dargestellt. Beschaltete Kontaktgeber werden über den Shunt-Adapter Z 7308 an den analogen Eingängen angeschlossen. Der Shunt-Adapter schützt die analogen Eingänge vor Überspannung und Leitungsschluss aus dem Feld.

Die Speisespannung muss auf 26 V eingestellt werden.

4.5.2.1 Beschalteter Kontaktgeber mit Widerstandswerten 2 k Ω und 22 k Ω

Bild 11: Beschalteter Kontaktgeber

Schaltschwellen der analogen Eingänge

Im Anwenderprogramm sind die Einschalt- und Ausschaltschwellen, die Schwellen für Leitungsbruch (LB) und Leitungsschluss (LS), und deren Fehlerreaktionen festzulegen. Der Leitungswiderstand ist bei den Grenzen schon berücksichtigt.

Schaltschwelle	Wert	Beschreibung	
Einschaltschwelle L → H	> 5 V [1000 Digit]	Übergang von Low nach High	
Ausschaltschwelle H → L	< 4 V [800 Digit]	Übergang von High nach Low	
LB-Schwelle	< 0,4 V [80 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf Null setzen.	
LS-Schwelle	> 11 V [2200 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf Null setzen.	

Tabelle 36: Schaltschwellen der Eingänge bei beschaltetem Kontaktgeber

HI 800 160 D Rev. 2.00 Seite 43 von 56

4.5.2.2 Beschalteter Kontaktgeber mit Widerstandswerten 2,1 k Ω und 22 k Ω

Dem Kontaktgeber wird ein Widerstandskoppelglied von BARTEC (2, HIMA Teile-Nr. 88 0007829) vorgeschaltet und über den Shunt-Adapter Z 7308 an den analogen Eingängen angeschlossen, siehe Bild 12.

Bild 12: Kontaktgeber mit Widerstandskoppelglied

Schaltschwellen der analogen Eingänge

Im Anwenderprogramm sind die Einschalt- und Ausschaltschwellen, die Schwellen für Leitungsbruch (LB) und Leitungsschluss (LS), und deren Fehlerreaktionen festzulegen. Der Leitungswiderstand ist bei den Grenzen schon berücksichtigt.

Schaltschwelle	Wert	Beschreibung		
Einschaltschwelle L → H	> 5 V [1000 Digit]	Übergang von Low nach High		
Ausschaltschwelle H → L	< 4 V [800 Digit]	Übergang von High nach Low		
LB-Schwelle	< 0,4 V [80 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf Null setzen.		
LS-Schwelle	> 9 V [1800 Digit]	Zu konfigurierende Fehlerreaktion: Eingangswert auf Null setzen.		

Tabelle 37: Schaltschwellen der Eingänge bei Kontaktgeber mit Widerstandskoppelglied

Seite 44 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 5 Betrieb

5 Betrieb

Die Remote I/O ist nur zusammen mit einer Steuerung betriebsfähig. Eine besondere Überwachung der Remote I/O ist nicht erforderlich.

5.1 Bedienung

Eine Bedienung der Remote I/O während des Betriebs ist nicht erforderlich.

5.2 Diagnose

Eine erste Diagnose erfolgt durch Auswertung der Leuchtdioden, siehe Kapitel 3.5.1.

Die Diagnosehistorie des Geräts kann zusätzlich mit dem Programmierwerkzeug ausgelesen werden.

HI 800 160 D Rev. 2.00 Seite 45 von 56

6 Instandhaltung F3 AIO 8/4 01

6 Instandhaltung

Im normalen Betrieb sind keine Instandhaltungsmaßnahmen erforderlich.

Bei Störungen das Gerät oder die Baugruppe durch einen identischen Typ, oder einen von HIMA zugelassenen Ersatztyp austauschen.

Die Reparatur des Geräts oder der Baugruppe darf nur durch den Hersteller erfolgen.

6.1 Fehler

Zur Fehlerreaktion der Eingänge siehe Kapitel 3.1.1.1.

Zur Fehlerreaktion der Ausgänge siehe Kapitel 3.2.

Entdecken die Prüfeinrichtungen sicherheitskritische Fehler, geht das Gerät in den Zustand STOP_INVALID und bleibt in diesem Zustand. Das bedeutet, dass das Gerät keine Eingangssignale mehr verarbeitet und die Ausgänge in den sicheren, energielosen Zustand übergehen. Die Auswertung der Diagnose gibt Hinweise auf die Ursache.

6.2 Instandhaltungsmaßnahmen

Für das Gerät sind selten folgende Maßnahmen erforderlich:

- Betriebssystem laden, falls eine neue Version benötigt wird
- Wiederholungsprüfung durchführen

6.2.1 Betriebssystem laden

Im Zuge der Produktpflege entwickelt HIMA das Betriebssystem der Geräte weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um eine aktuelle Version des Betriebssystems auf die Geräte zu laden.

Zuvor anhand der Release-Liste Auswirkungen der Betriebssystemversion auf das System prüfen!

Das Betriebssystem wird über das Programmierwerkzeug geladen.

Vor dem Laden muss das Gerät im Zustand STOPP sein (Anzeige im Programmierwerkzeug). Andernfalls Gerät stoppen.

Näheres in der Dokumentation des Programmierwerkzeugs.

6.2.2 Wiederholungsprüfung

HIMatrix Geräte und Baugruppen müssen alle 10 Jahre einer Wiederholungsprüfung (Proof Test) unterzogen werden. Weitere Informationen im Sicherheitshandbuch HI 800 022 D.

Seite 46 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 7 Außerbetriebnahme

7 Außerbetriebnahme

Das Gerät durch Entfernen der Versorgungsspannung außer Betrieb nehmen. Danach können die steckbaren Schraubklemmen für die Eingänge und Ausgänge und die Ethernetkabel entfernt werden.

HI 800 160 D Rev. 2.00 Seite 47 von 56

8 Transport F3 AIO 8/4 01

8 Transport

Zum Schutz vor mechanischen Beschädigungen HIMatrix Komponenten in Verpackungen transportieren.

HIMatrix Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

Seite 48 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 9 Entsorgung

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter HIMatrix Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

HI 800 160 D Rev. 2.00 Seite 49 von 56

9 Entsorgung F3 AIO 8/4 01

Seite 50 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 Anhang

Anhang

Glossar

Begriff	Beschreibung
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen zu Hardware-Adressen
Al	Analog Input, analoger Eingang
AO	Analog Output, analoger Ausgang
COM	Kommunikationsmodul
CRC	Cyclic Redundancy Check, Prüfsumme
DI	Digital Input, digitaler Eingang
DO	Digital Output, digitaler Ausgang
ELOP II Factory	Programmierwerkzeug für HIMatrix Systeme
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	ElectroStatic Discharge, elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
FTZ	Fehlertoleranzzeit
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
MAC-Adresse	Hardware-Adresse eines Netzwerkanschlusses (Media Access Control)
PADT	Programming and Debugging Tool (nach IEC 61131-3), PC mit SILworX oder ELOP II Factory
PE	Protective Earth: Schutzerde
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmierbares Elektronisches System
R	Read: Systemvariable/signal liefert Wert, z. B. an Anwenderprogramm
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Es seien zwei Eingangsschaltungen an dieselbe Quelle (z. B. Transmitter) angeschlossen. Dann wird eine Eingangsschaltung <i>rückwirkungsfrei</i> genannt, wenn sie die Signale der anderen Eingangsschaltung nicht verfälscht.
R/W	Read/Write (Spaltenüberschrift für Art von Systemvariable/signal)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction, Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug für HIMatrix Systeme
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Systemvariable/signal wird mit Wert versorgt, z. B. vom Anwenderprogramm
W _{SS}	Spitze-Spitze-Wert der Gesamt-Wechselspannungskomponente
Watchdog (WD)	Zeitüberwachung für Module oder Programme. Bei Überschreiten der Watchdog-Zeit
	geht das Modul oder Programm in den Fehlerstopp.

HI 800 160 D Rev. 2.00 Seite 51 von 56

Anhang F3 AIO 8/4 01

Abbildu	ngsverzeichnis	
Bild 1:	Schaltskizze für Line Monitoring	13
Bild 2:	Applikationsbeispiel für sicherheitsgerichtete analoge Ausgänge	17
Bild 3:	Typenschild exemplarisch	19
Bild 4:	Frontansicht	20
Bild 5:	Blockschaltbild	20
Bild 6:	Aufkleber MAC-Adresse exemplarisch	22
Bild 7:	HIMatrix F3 AIO 8/4 012 mit Aluminiumplatte	26
Bild 8:	Aluminiumplatte mit Bemaßung	27
Bild 9:	Schild für Ex-Bedingungen	32
Bild 10:	Initiator an analogen Eingängen	41
Bild 11:	Beschalteter Kontaktgeber	43
Bild 12:	Kontaktgeber mit Widerstandskoppelglied	44

Seite 52 von 56 HI 800 160 D Rev. 2.00

F3 AIO 8/4 01 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Programmierwerkzeuge für HIMatrix Remote I/Os	5
Tabelle 2:	Zusätzlich geltende Dokumente	6
Tabelle 3:	Umgebungsbedingungen	9
Tabelle 4:	Eingangswerte der analogen Eingänge	11
Tabelle 5:	Beispiel für Line Monitoring - Widerstandswerte	13
Tabelle 6:	Beispiel für Line Monitoring - Spannungswerte	13
Tabelle 7:	Spannungswerte bei Line Monitoring der DO	14
Tabelle 8:	Beispiel Leitungsschluss	15
Tabelle 9:	Ausgangswerte der analogen Ausgänge	17
Tabelle 10:	Verfügbare Varianten	18
Tabelle 11:	Anzeige der Betriebsspannung	21
Tabelle 12:	Anzeige der System-LEDs	21
Tabelle 13:	Ethernetanzeige	22
Tabelle 14:	Eigenschaften Ethernet-Schnittstellen	22
Tabelle 15:	Verwendete Netzwerkports	23
Tabelle 16:	Produktdaten	24
Tabelle 17:	Technische Daten der analogen Eingänge	24
Tabelle 18:	Technische Daten der Transmitterspeisungen	25
Tabelle 19:	Technische Daten der analogen Ausgänge	25
Tabelle 20:	Produktdaten F3 AIO 8/4 011 (-20 °C)	25
Tabelle 21:	Produktdaten F3 AIO 8/4 012 (subsea / -20 °C)	26
Tabelle 22:	Produktdaten F3 AIO 8/4 014	27
Tabelle 23:	HIMatrix F3 AIO 8/4 01 zertifiziert	28
Tabelle 24:	Klemmenbelegung der analogen Eingänge	29
Tabelle 25:	Shunt-Adapter	30
Tabelle 26:	Klemmenbelegung der analogen Ausgänge	30
Tabelle 27:	Eigenschaften Klemmenstecker der Spannungsversorgung	31
Tabelle 28:	Eigenschaften Klemmenstecker der Eingänge und Ausgänge	31
Tabelle 29:	SILworX - Systemparameter der analogen Eingänge, Register Modul	35
Tabelle 30:	SILworX - Systemparameter der analogen Eingänge, Register Al 8: Kanäle	35
Tabelle 31:	SILworX - Systemparameter der analogen Ausgänge, Register Modul	36
Tabelle 32:	SILworX - Systemparameter der analogen Ausgänge, Register AO 4: Kanäle	37
Tabelle 33:	ELOP II Factory - Systemsignale der analogen Eingänge	39
Tabelle 34:	ELOP II Factory - Systemsignale der analogen Ausgänge	40
Tabelle 35:	Schaltschwellen der Eingänge bei Initiatoren	42
Tabelle 36:	Schaltschwellen der Eingänge bei beschaltetem Kontaktgeber	43
Tabelle 37:	Schaltschwellen der Eingänge bei Kontaktgeber mit Widerstandskoppelglied	44

HI 800 160 D Rev. 2.00 Seite 53 von 56

Anhang F3 AIO 8/4 01

Index

Blockschaltbild20	Reset-Taster	23
Diagnose45	safe ethernet	22
Fehlerreaktionen	Sicherheitsfunktion	
analoge Eingänge12	SRS	19
Frontansicht20		

Seite 54 von 56 HI 800 160 D Rev. 2.00

HIMA Paul Hildebrandt GmbH
Postfach 1261
68777 Brühl
Tel.: +49 6202 709-0

Fax: +49 6202 709-107