Actividad de aprendizaje N°1

Aprenda sobre corriente eléctrica continua, su fundamento, sus tipos, su generación y aplicación en circuitos eléctricos básicos

Unidad de estudio	GENERACIÓN DE CORRIENTE CONTINUA, ALTERNA Y ELECTROMAGNETISMO
Tiempo de desarrollo	1 hora
Metodología de trabajo	Individual – taller

Objetivo de la actividad

Al desarrollar esta actividad, el estudiante estará en la capacidad de:

Identificar los componentes y calcular los valores de un circuito eléctrico cerrado.

Materiales de formación

Guía de aprendizaje.

Tabla de símbolos eléctricos

Actividad por desarrollar

Situación: Se propone ejercicios de aplicación de las leyes de Faraday-Lenz y Ohm para afianzar la interacción con los conceptos y términos eléctricos, además le proporcionará las bases tanto fundamentales como teóricas del funcionamiento de los artefactos y máquinas modernos de la industria y del hogar.

R1 R2 WR3 V R4	Calcular el voltaje de alimentación del circuito si circula una corriente de 0.5 A y el valor de las resistencias es: R1 = $100~\Omega$ R2 = $2.000~\Omega$ R3 = $500~\Omega$ R4 = $1.500~\Omega$ Ω
R1 R2	En el ejercicio anterior, con los mismos valores de las resistencias, calcule el valor de la corriente si el voltaje de alimentación es de 12 V. ¿A=?
Se tiene un sistema constituido por un conductor sobre el cual se desliza una varilla metálica de 40 cm de longitud y con una velocidad de $0.2 \frac{m}{s}$ el circuito que forman está bajo un campo magnético de 4.8 T y presenta una resistencia de 4 Ω .	Calcular: 1. La fuerza electromotriz inducida (FEM) 2. La intensidad de la corriente inducida
R1 R2 R3	Calcular la resistencia total y la corriente que circula por el circuito teniendo en cuenta los siguientes valores: $V = 24 \text{ V}$ R1 = 8 Ω R2 = 12 Ω R3 = 5 Ω

- 1. ¿En el átomo, cual es el componente subatómico de carga negativa?
- 2. Si una pila genera 1.5 ¿Cómo se logra obtener una pila de 9 V?
- 3. ¿Por qué los gobiernos de algunos países incentivan y apoyan el uso de paneles solares?
- 4. defina el concepto de tensión, intensidad y resistencia
- 5. ¿Qué aporte le realizó Lenz a la ley de Faraday?
- 6. ¿Qué ventaja tiene un acumulador (batería) frente a una pila?
- 7. ¿Cuál es la eficiencia máxima de un panel solar experimentada en laboratorio?
- 8. Mencione las diferencias entre los tres tipos de paneles solares

Posibilidades

La actividad permite que el estudiante interiorice los términos eléctricos, calcule las diferentes variables que interactúan entre sí y comprenda la relación de la inducción magnética, el flujo de corriente y la generación de voltaje a partir de un campo magnético y un conductor.

Desarrollo

Con el fin de que el estudiante culmine la actividad debe:

- Dar respuesta a las preguntas orientadoras.
- Desarrollar y hallar los valores pedidos en los ejercicios.
- Identificar los símbolos electricos.

Evaluación

La evaluación de esta actividad está representada por el desarrollo correcto de los ejercicios propuestos, además de responder con claridad a las preguntas de contexto general las cuales deben ser entregadas al profesor.

Evidencias de aprendizaje

Todas las evidencias de aprendizaje serán entregadas al profesor de forma clara.

Para el desarrollo de esta unidad, se solicitarán las siguientes evidencias:

- Debe presentarse las soluciones de los ejercicios y las respuestas de las preguntas propuestas.
- Debe enunciarse las dificultades presentadas durante el desarrollo de los ejercicios.