ниу итмо

Факультет Информационных Технологий и Программирования Направление "Прикладная Математика и Информатика"

Лабораторная работа №3 курса "Методы Оптимизации"

Выполнили студенты:

Антонов Кирилл Владимирович, М3237

Чмыхалов Артемий Витальевич, М3237

Якупова Айша Рустемовна, М3234

Факультет: ИТИП

Санкт-Петербург, 2021 г

- 1. Реализовали прямой метод решения СЛАУ на основе LU-разложения с учетом следующих требований:
 - формат матрицы профильный;

Профильный формат хранения матрицы предполагает, что все достаточно удаленные от диагонали элементы — нули, что помогает в некоторых случаях сэкономить память.

Матрица А представляется в виде четырёх массивов:

- массив диагональных элементов diagonal[]— вещественный массив длины n, в котором элемент diagonal[i] равен значению элемента матрицы $a_{i+1,i+1}$.
- портрет матрицы profile[i] целочисленный массив длины n+1, в котором значения элементов определяются рекурсивно:

$$profile[i] = \begin{cases} 0, & i = 0 \\ profile[i-1] + i - k_i, & i \neq 0 \end{cases}$$

$$\Gamma_{\text{Де }}k_i = \begin{cases} \min\limits_{1 \leq j < i, \ (a_{i,j} \neq 0 \text{ или } a_{j,i} \neq 0)} j \\ i, \ \text{если такого } j \text{ не существует} \end{cases}$$

значения определяются, как

$$lowerRows[profile[i-1] + (j-k_i)] = a_{i,i}$$

и upperColumns[profile[
$$i-1$$
] + $(j-k_i)$] = $a_{i,i}$

таким образом, эти массивы хранят в себе подряд идущие профили соответствующего треугольника.

Все ненулевые элементы матрицы будут содержаться в этих массивах.

Понятно, что данный формат оптимальнее обычного, если ненулевые элементы сосредоточены около диагонали. В противном случае, матрица может занять больше памяти, чем плотная(изначальная матрица).

- размерность матрицы, элементы матрицы и вектор правой части читать из файлов, результаты записывать в файл;
- в программе резервировать объём памяти, необходимый для хранения в нем только одной матрицы и необходимого числа векторов (то есть треугольные матрицы, полученные в результате разложения, должны храниться на месте исходной матрицы);
- элементы матрицы обрабатывать в порядке, соответствующем формату хранения, то есть необходимо работать именно со столбцами верхнего и строками нижнего треугольников.

Решение системы осуществляется с помощью вот этих формул:

Алгоритм действий:

- Получить из матрицы A нижнетреугольную матрицу L и верхнетреугольную матрицу U.
- Решить уравнение Ly = b прямой ход, найти у.

• Обратный ход Ux = y, находим x.

y = Up * x - peшение обратным ходом Гаусса;

2. Провели исследование реализованного метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания

Для этого мы решили последовательность СЛАУ: А

$$A_k x_k = f_k, k = 0, 1, 2, ..., (1)$$

где матрицы A_k строятся следующим образом:

$$a_{ij} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, & i = 1 \end{cases}$$

 $a_{ij} \epsilon \{0, 1, 2, 3, 4\}$ выбираются достаточно произвольно, а правая часть f_k получается умножением матрицы A_k на вектор $x^* = (1, \ldots, n)$. Размерность n для СЛАУ выбирать от 10 до 10^3 .

LU-разложение:

n	k	$\ x^*-x_k\ $	$\frac{\parallel x^* - x_k \parallel}{\parallel x^* \parallel}$
10	0	1.084202172e-18	5.525605922e-20
10	1	1.24565346e-18	6.348437875e-20
10	2	7.818293052e-19	3.984571096e-20
10	3	1.24565346e-18	6.348437875e-20
10	4	1.084202172e-18	5.525605922e-20
10	5	1.084202172e-18	5.525605922e-20
10	6	1.084202172e-18	5.525605922e-20
10	7	1.693577933e-18	8.631272372e-20
10	8	1.167721477e-18	5.951259709e-20
10	9	1.388456242e-18	7.076228241e-20
10	10	1.084202172e-18	5.525605922e-20

n	k	$\ x^*-x_k\ $	$\frac{\parallel x^* - x_k \parallel}{\parallel x^* \parallel}$
			x*
100	0	1.061889548e-16	1.825560608e-19
100	1	9.903320396e-17	1.825560608e-19
100	2	1.006606836e-16	1.587937011e-19
100	3	9.619702536e-17	1.730520646e-19
100	4	9.613444037e-17	1.653783111e-19
100	5	9.669624701e-17	1.652707173e-19
100	6	9.619702536e-17	1.662365542e-19
100	7	9.619702536e-17	1.653783111e-19
100	8	9.613444037e-17	1.652707173e-19
100	9	9.613444037e-17	1.652707173e-19
100	10	9.613444037e-17	1.652707173e-19

n	k	$\parallel x^* - x_k \parallel$	$\frac{\parallel x^* - x_k \parallel}{\parallel x^* \parallel}$
			x*
1000	0	1.025766254e-14	5.614142734e-19
1000	1	1.025762499e-14	5.614122182e-19
1000	2	1.025762499e-14	5.614122182e-19
1000	3	1.025762499e-14	5.614122182e-19
1000	4	1.025762499e-14	5.614122182e-19
1000	5	1.025762499e-14	5.614122182e-19
1000	6	1.025762499e-14	5.614122182e-19
1000	7	1.025762499e-14	5.614122182e-19
1000	8	1.025762499e-14	5.614122182e-19
1000	9	1.025762499e-14	5.614122182e-19
1000	10	1.025762499e-14	5.614122182e-19

Метод Гаусса(4 пункт, перенесли сюда для удобства сравнивания):

n	k	$\parallel x^* - x_k \parallel$	$\frac{\parallel x^* - x_k \parallel}{\parallel x^* \parallel}$
10	0	0	0
10	1	1.502314599e-18	7.656504159e-20
10	2	8.67361738e-19	4.420484737e-20
10	3	4.33680869e-19	2.210242369e-20
10	4	8.67361738e-19	4.420484737e-20
10	5	1.98737541e-18	1.012860296e-19
10	6	1.301042607e-18	6.630727106e-20
10	7	9.697399036e-19	4.942252183e-20
10	8	1.8399521e-18	9.377264202e-20
10	9	1.301042607e-18	6.630727106e-20
10	10	9.697399036e-19	4.942252183e-20

n	k	$\parallel x^* - x_k \parallel$	$\frac{\parallel x^* - x_k \parallel}{\parallel x^* \parallel}$
100	0	1.244928505e-16	2.140234304e-19
100	1	1.636006113e-16	2.812560231e-19
100	2	1.739768522e-16	2.990944666e-19
100	3	1.413028218e-07	2.429225013e-10
100	4	1.413028218e-08	2.429225013e-11
100	5	1.413028218e-09	2.429225013e-12
100	6	1.413028219e-10	2.429225015e-13
100	7	1.413028219e-11	2.429225009e-14
100	8	1.413028246e-12	2.429225061e-15
100	9	1.413029637e-13	2.429227453e-16
100	10	1.413116718e-14	2.429377159e-17

n	k	$\ x^*-x_k\ $	$\ x^*-x_k\ $
			x*

1000	0	1.527972168e-14	8.362776414e-19
1000	1	1.541580274e-07	8.437255225e-12
1000	2	1.541580274e-08	8.437255225e-13
1000	3	1.541580274e-09	8.437255225e-14
1000	4	1.541580282e-10	8.437255267e-15
1000	5	1.541581066e-11	8.437259562e-16
1000	6	1.541659365e-12	8.4376881e-17
1000	7	1.549473794e-13	8.480457413e-18
1000	8	2.194619833e-14	2.194619833e-14
1000	9	1.569598262e-14	8.590601059e-19
1000	10	1.562086297e-14	8.54948717e-19

Вывод:

При больших числах обусловленности погрешность начинает накапливаться.

Пока мы вычисляем LU разложения мы работаем в основном именно с целыми числами и поэтому получаем достаточно точное разложение, только уже с дробными частями.

Во время решения СЛАУ для каждой матрицы используя арифметические операции с числами с плавающей точкой мы накапливаем погрешность.

Во время прямого хода мы сначала нормируем ответ для x_i , а далее последовательно его вычитаем из n-i векторов, что приводит к неточностям.

Во время обратного хода происходит аналогичная ситуация, для x_i мы делаем вычитания с і векторами, что при накопившейся погрешности дает ещё большую погрешность.

С точки зрения погрешности вычисления, оба метода ведут себя одинаково, однако если требуется проводить вычисления с одной и той же матрицей несколько раз, то метод Гаусса с выбором ведущего элемента уступает методу на основе LU-разложения из-за невозможности переиспользования результатов наиболее затратного в вычислительном плане прямого хода.

В методе Гаусса погрешность накапливается быстрее, т.к. матрица имеет больше значений. Здесь каждый столбец вычитается по n раз после релаксации, где n это размерность матрицы. Тем самым появляется лишняя погрешность которую мы не получаем в случае с LU разложением, в котором в данных местам стояли нули.

Вычислительная сложность обоих методов составляет $O(n^3)$

3. Провели аналогичные исследования на матрицах Гильберта различной размерности. Матрица Гильберта размерности k строилась следующим образом:

$$a_{ij} = \frac{1}{i+j-1}, \qquad i,j = \overline{1,k}$$

LU-разложение

k	$ x^*-x_k $	$\frac{ x^*-x_k }{ x^* }$
2	5.366584612e-05	2.4000096e-05
3	0.001783829819	0.0004767485727
4	0.02690216081	0.004911640107
5	0.4868910335	0.06565237356
6	10.23133929	1.072535784
7	24.50959987	2.071439261
8	21.9234279	1.534946973
9	117.0934379	6.936016651
10	363.6682186	18.53424862
50	10666.35241	51.48263612

Метод Гаусса

k	$ x^*-x_k $	$\frac{\mid\mid x^* - x_k\mid\mid}{\mid\mid x^*\mid\mid}$
2	5.266385612e-05	2.3552e-05
3	0.001683828817	0.000450022
4	0.02090430081	0.00381659
5	0.4377911335	0.0590317
6	10.2112393	1.07043
7	24.51059879	2.07152
8	21.9334378	1.53565
9	116.9934371	6.93009
10	364.0692279	18.5547
50	10676.25231	51.5304

Вывод:

Из-за плохой обусловленности матриц Гильберта метод LU-разложения и метод Гаусса. Быстро накапливают сравнительно большую погрешность.

5. Бонус

1) хотим решить A*x = b

2) Перенесём A*x - b = 0

3) x*A*x - B*x -> min

4) а это и достигается в x_{min} функции Ax - b = 0;

Матрицы с диагональным преобладанием:

n	Количество итераций	$ x^*-x_k $	$\frac{ x^* - x_k }{ x^* }$	Оценка снизу cond(A)
10	8	1.150669e-09	5.86435587e-11	0.8948290238
10	9	3.801193e-10	1.93726754e-11	0.9272815638
10	6	1.0024357e-09	5.10888556e-11	0.9522666558
10	7	7.8309158e-10	3.99100424e-11	0.963101617
10	8	1.15066971e- 09	5.86435587e-11	0.8948290238
100	31	6.69290237e- 09	1.15061862e-11	0.9927170893
100	34	6.21686636e- 09	1.06878030e-11	0.9942352401
100	32	1.91427135e- 08	3.29094337e-11	0.9970482941
100	32	1.30239016e- 08	2.23902022e-11	0.9977703255
100	33	1.21501751e- 08	2.08881244e-11	0.9980653372
1000	40	2.80774163e- 08	1.53671094e-12	0.9979399681
1000	41	3.64884063e- 08	1.99705461e-12	0.9980071022
1000	39	4.31094966e- 08	2.35943489e-12	0.99785663
1000	42	3.51090098e- 08	1.92155856e-12	0.9979755679

1000	40	4.93982544e-	2.70362618e-12	0.9979855183
		08		

Матрицы с обратным знаком внедиагональных элементов:

n	k	$ x^*-x_k $	$\frac{ x^*-x_k }{ x^* }$	Оценка снизу cond(A)
10	10	1.285215587e- 09	6.550065145e- 11	0.9243163076
10	10	6.023267043e- 10	3.069741132e- 11	0.9495866821
10	8	4.61891267e- 10	2.35401587e-11	0.9341676911
10	10	7.398870705e- 10	3.770813675e- 11	0.9764895374
10	9	1.538130966e- 09	7.839041269e- 11	0.9836090054
100	34	1.65587439e- 09	2.846717027e- 12	0.9979771076
100	33	4.336117952e- 09	7.45449104e-12	0.9934321963
100	34	2.03533465e- 09	3.499070847e- 12	0.9953234818
100	34	2.514011118e- 09	4.321993442e- 12	0.9940775933
100	35	2.038165085e- 09	3.503936823e- 12	0.9972015447
1000	39	1.117214353e- 07	6.114649232e- 12	0.999750525
1000	40	1.397580336e- 07	7.649126156e- 12	0.9997154923
1000	41	1.68321455e- 07	9.212436742e- 12	0.9997732446
1000	39	1.281873716e- 07	7.015849836e- 12	0.9997513364
1000	40	1.611004905e- 07	8.817224626e- 12	0.9997374817

Гильберт:

n	k	$ x^*-x_k $	$\frac{ x^* - x_k }{ x^* }$	Оценка снизу cond(A)
10	21	363.6682186	18.53424862	7.615459824e+14
50	250	10666.35235	51.48263584	1.425713992e+12
100	1557	13256.2713	22.78968347	3.796986011e+11
500	10000	500098.2505	77.35885919	7709116.822

Вывод:

Метод сопряженных градиентов показал себя достаточно хорошо при решении СЛАУ с положительно определенной матрицей. Он оказался одним из наиболее эффективных метолов.

 ${
m HO!}\ {
m B}$ этом методе есть своя проблема: ортогональность базисных векторов p_k может нарушаться из-за накопления погрешностей, что достаточно неприятно ухудшает сходимость.

Ссылка на гит: https://github.com/Matrixoid/MethOpt_labs/tree/master/lab3