CH 209 – Basic Organic Chemistry

Reaction mechanisms: Elimination reactions (E2, E1, E1cB)

Dr. Venkateswarlu Yarlagadda, Ph. D. Assistant Professor, Department of Chemistry Indian Institute of Technology Bombay – 400076

https://www.vylab.in/

Email: venky@chem.iitb.ac.in

Elimination reactions

- In elimination reactions, two atoms or groups are removed from a molecule
- Formation of multiple bond occurs
- In the majority of elimination reactions, the atoms or groups are lost from adjacent carbon atoms, one of them very often being a proton and the other a good leaving group.

Key point – H from one carbon atom and a leaving group (typically a halide) from the adjacent carbon atom.

Elimination reactions

- Carbon that is connected to leaving group is designated as α carbon
- The adjacent carbon from which the hydrogen atom is removed is called the β carbon
- 1,2 or α , β elimination or simple the β elimination

Mechanisms of elimination reactions

The elimination reaction consists of three fundamental events, and they are:

- Proton removal
- C-C pi bond is formed
- There is a breakage in the bond of the leaving group

- All can happen simultaneously in a concerted manner (Or)
- First, loss of leaving group and then proton removal while pi-bond formation (Or)
- First proton removal, then the loss of leaving group while pi-bond formation

Zaitsev's rule (or Saytzeff's rule, Saytzev's rule)

- When alkyl halides have two or more different β carbons, more than one alkene product can be formed.
- In such cases, the major product is the more stable product—the one with the more substituted double bond. This phenomenon is called the Zaitsev rule

- The Zaitsev product or the more substituted alkene product is more stable than the less substituted product.
- Thermodynamically controlled

Types of elimination reactions

- Just as there are two mechanisms of substitution (S_N2 and S_N1), there are two mechanisms of elimination (E2 and E1).
- E2 mechanism bimolecular elimination

Rate =
$$k_2$$
[**R-X**][**B:**]

• E1 mechanism — unimolecular elimination

Rate =
$$k_1[R-X]$$

- The E2 and E1 mechanisms differ in the timing of bond cleavage and bond formation, analogous to the S_N2 and S_N1 mechanisms.
- E2 and S_N 2 reactions have some features in common, as do E1 and S_N 1 reactions.

The E2 mechanism

- E2 stands for bimolecular elimination
- One step mechanism in which carbon hydrogen and carbon halogen bonds break to form a double bond $C=C\pi$ bond
- Two leaving groups (often a hydrogen and a halogen) need to be anti-periplanar

rate =
$$k[(CH_3)_3CCH_2Br][OH^-]$$

How does energy profile diagram look like?

- The special alignment of the β -hydrogen and the leaving group in the transition state is required
- If the β -hydrogen and the leaving group are on the same side of the molecule, it is called a *syn* periplanar
- If the β -hydrogen and the leaving group are on opposite sides of the molecule, it is called an *anti*—periplanar
- E2 elimination occurs in the anti-periplanar geometry since this is the low-energy staggered conformation of the alkyl halide.

How does *anti*-periplanar geometry explain the stereochemistry of the E2 reaction?

How does anti-periplanar geometry explain the stereochemistry of the E2 reaction?

Conformation 1

Br H_a H_b

β-Hb *anti*-periplanar to the leaving group

Conformation 2

β-Ha *anti*-periplanar to the leaving group

There are two conformations that allow having a β -hydrogen anti-periplanar to the leaving group:

- The first conformation leads to the formation of the cis alkene.
- Not stable (the extra gauche interaction between the methyl and phenyl groups as seen in the <u>Newman projection</u>.)

The second conformation puts the phenyl and methyl groups at anti geometry and there is only one gauche interaction between the methyl and Br groups.

• E2 reaction is stereoselective when there are two β -hydrogens and selects the more stable, thermodynamic product

• E2 eliminations are stereospecific as well

Stereospecificity: stereochemistry of the reactants controls the outcome of the reaction. The substrate is stereoisomeric and results in one stereoisomer as the product

Stereoselectivity: The substrate can produce two isomers as products, where one is the major product

Write the only possible products

The stereochemical requirement of an anti-periplanar geometry in an E2 reaction has important consequences for compounds containing six-membered rings.

Cyclohexane

• For E2 elimination, the C—Cl bond must be <u>anti-periplanar</u> to the C—H bond on a β carbon, and this occurs only when the <u>H and Cl atoms are both</u> <u>in the axial position</u>.

- For E2 elimination, the C—Cl bond must be <u>anti-periplanar</u> to the C—H bond on a β carbon, and this occurs only when the <u>H and Cl atoms are both</u> <u>in the axial position</u>.
- The requirement for trans-diaxial geometry means that elimination must occur from the less stable conformer

- For E2 elimination, the C—Cl bond must be <u>anti-periplanar</u> to the C—H bond on a β carbon, and this occurs only when the <u>H and Cl atoms are both</u> <u>in the axial position</u>.
- The requirement for trans-diaxial geometry means that elimination must occur from the less stable conformer

What are the possible products?

Any β-H?
Leaving group and
H are periplanar??
Is this Cis or trans?

In this conformer one H and one CH₃ are anti periplanar to the Cl.

Possible products?

In this case Zaitsev rule is not followed due to the requirement of antiperiplanar

- Substrate
- Base
- Leaving group
- Solvent

• There are close parallels between E2 and S_N^2 mechanisms in how the identity of the base, the leaving group and the solvent affect the rate.

Substrate

As the number of R groups on the carbon with the leaving group increases,

the rate of the E2 reaction increases.

• The increase in E2 reaction rate with increasing alkyl substitution can be rationalized in terms of transition state stability

• In the transition state, the double bond is partially formed. Thus, the transition state for a more substituted alkene is lower in energy, reducing the activation energy for the reaction and making the reaction faster.

E2 reactions are **regioselective** and favor the formation of Zaitsev products.

Base

• E2 reactions are generally run with strong, negatively charged bases like OH⁻ and OR⁻

$$H_3C$$

Which is more basic?

Leaving group

- There is a partial breaking of the bond to the leaving group in the transition state.
- So, the better the leaving group the faster the E2 reaction.

$$R-I > R-Br > R-C1 > R-F$$

The Hofmann elimination

Amines as leaving groups

- Hofmann elimination is an elimination reaction of an amine to form alkenes.
- The least stable alkene (the one with the fewest substituents on the carbons of the double bond), called the **Hofmann product**, is formed.

Why not just use a hydroxide instead of Ag_2O and where is the hydroxide actually coming from when Ag_2O is added?

The Hofmann elimination

Iodide is a large ion

Negative charge blocks the base

- Iodide is a counter ion and not the leaving group here
- Leaving group is 4° ammonium group

• Silver oxide captures the iodide forming a nice precipitate and replacing the counterion of the quaternary ammonium salt with a hydroxide.

The Hofmann elimination - Regioselectivity

How can you explain formation of less stable regioselective isomer as major?

The Hofmann elimination - Regioselectivity

The Hofmann elimination - Regioselectivity

Solvent

Like S_N 2, polar aprotic solvents favour E2 reactions

Polar aprotic solvents Dimethyl sulfoxide (DMSO) Dimethylformamide (DMF) OH Increasing Polarity Acetonitirile (MeCN) CH₃CN Hexamethylphosphoramide (HMPA) Acetone (Me₂CO) O

E2 eliminations – The case of Alkyl fluorides

Alkyl Fluorides Preferentially Form the Less Stable Alkene

F CH₃CHCH₂CH₂CH₃ + CH₃O
$$^ \longrightarrow$$
 CH₃CH=CHCH₂CH₃ + CH₂=CHCH₂CH₃ + CH₃OH + F $^-$ 2-pentene 1-pentene 30% 70% (mixture of *E* and *Z*)

X │ CH₃CHCH₂CH₂C	CH ₂ CH ₃ + CH ₃ O	\longrightarrow	CH ₃ CH=CHCH ₂ CH ₂ CH ₃ (mixture of <i>E</i> and <i>Z</i>)	+ CH ₂ =CHCH ₂ CH ₂ CH ₂ CH ₃
Leaving group	Conjugate acid	pK _a	More stable product	Less stable product
X = I	HI	-10	81%	19%
X = Br	HBr	-9	72%	28%
X = C1	HC1	-7	67%	33%
X = F	HF	3.2	30%	70%

E2 eliminations – the case of bulky base

Table 9.4	Effect of the Steric Properties of the Base on the Distribution of Products
	in an E2 Reaction

Base	More stable alkene	Less stable alkene
CH ₃ CH ₂ O ⁻	79%	21%
CH ₃ CH ₃ CO CH ₃ CO	27%	73%
CH ₃ CH ₃ CO CH ₂ CH ₃	19%	81%
$\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \\ \text{CH}_3\text{CH}_2\text{CO}^- \\ \\ \text{CH}_2\text{CH}_3 \end{array}$	8%	92%

E2 eliminations summary

Kinetics – Second order

Mechanism – Single step

Identity of R group – More substituted halides react faster

Rate: $R_3CX > R_2CHX > RCH_2X$

Strength of the base – Stronger bases favor the reaction

Leaving group — Better leaving group leads to faster

reaction rates

Type of solvent – Favored by polar aprotic solvents

Stereochemical implications

- Anti-periplanar requirement
- Regioselective follows Zaitsev rule
- Stereoselective selects the more stable one
- Stereospecific stereoisomerism of substrate is conserved

The E1 elimination

• The E1 reaction proceeds via a two-step mechanism: the bond to the leaving group breaks first before the π bond is formed. The slow step is unimolecular, involving only the alkyl halide.

It exhibits first-order kinetics, $rate = k[(CH_3)_3CCI]$

• E1 reactions also are regioselective and follow Zaitsev rule

Energy profile of an E1 reaction

The E1 elimination

Identify the major product?

-OH as a leaving group

Why is acid needed when the alcohol is the leaving group – why can't we rely on a base?

- Substrate
- Base
- Leaving group
- Solvent

• There are close parallels between E1 and S_N1 mechanisms in how the identity of the base, the leaving group and the solvent affect the rate.

Substrate

• As the number of R groups on the carbon with the leaving group increases, the rate of the E1 reaction increases.

- Substrate
- Base: Favoured by weak bases such as water, alcohol, etc.
- Leaving group: Better leaving group
- Solvent: Polar protic solvents

• There are close parallels between E1 and S_N1 mechanisms in how the identity of the base, the leaving group and the solvent affect the rate.

E1 eliminations summary

Kinetics – First order

Mechanism – Two steps

Leaving group

Type of solvent

Identity of R group – More substituted halides react faster

Rate: $R_3CX > R_2CHX > RCH_2X$

Strength of the base – Favored by weaker bases such as H_2O and ROH

Better leaving group leads to faster reaction rates.

Just as in S_N1 reactions, the rate determining step involves the $C_{--}X$ bond cleavage

involves the C—X bond cleavage

Favored by polar protic solvents, which can stabilize the ionic intermediates

Eliminations and substitutions

Table 9.7 Summary of the Products Expected in Substitution and Elimination Reactions					
Class of alkyl halide	S _N 2 and E2	S _N 1 and E1			
primary	primarily substitution, unless there is steric hindrance in the alkyl halide or nucleophile, in which case elimination is favored	cannot undergo S _N 1/E1 solvolysis reactions			
secondary	both substitution and elimination; the stronger and bulkier the base and the higher the temper- ature, the greater the percentage of elimination	cannot undergo S _N 1/E1 solvolysis reactions			
tertiary	only elimination	both substitution and elimination with substitution favored			

• An elimination reaction that happens when a compound bearing a poor leaving group and an acidic hydrogen is treated with a base.

- E1cB stands for **Elimination Unimolecular conjugate Base**. The reaction is unimolecular from the conjugate base of the starting compound.
- The electron withdrawing group (EWG) can be a carbonyl group, a nitro group, etc.

Reaction Coordinate Diagram For An E₁cB Reaction

•for a case where deprotonation is fast, and elimination is slow

Transition state 1 (TS1)
Deprotonation to give
carbanion (fast step)

Transition state 2 (**TS2**)
Formation of pi bond with loss of leaving group
(rate determining step)

- How might we determine that some reactions follow an E1cB mechanism versus an E2 mechanism? How do you know the difference?
- Kinetic isotope effect
- C-D (deuterium) bonds are slightly shorter (and stronger) than comparable C-H bonds.
- If C-H bond breaking occurs in the rate determining step, then the rate for the reaction of the C-H compound (k_H) should be slightly faster than the rate of the deuterium labelled analog with a C-D bond (k_D).

Comparing the E1, E2, and E1cB Mechanisms

E1

E2

E1cB

Two steps

- 1) C-LG breaks
- 2) C-H breaks C-C (pi) forms

One step

C-H breaks, C-C (pi) forms C-LG breaks, all at same time Two steps

- 1) C-H breaks
- 2) C-LG breaks C-C (pi) forms

Carbocation intermediate

Carbocation stabilized by electron **donating** groups

Assisted by **good** leaving groups

No strict requirement on stereochemistry of C–H and C–LG No intermediate (concerted)

C-H and C-LG are anti

Carbanion intermediate

Carbanion stabilized by electron withdrawing groups

Assisted by **poor** leaving groups

No strict requirement on stereochemistry of C–H and C–LG