Санкт-Петербургский государственный университет Математико-механический факультет

ОТЧЁТ ПО ПРАКТИЧЕСКОМУ ЗАДАНИЮ №4 «Метод Якоби нахождения собственных чисел»

Выполнила: Бушмакова М. А.

1 Постановка задачи

Для матрицы A найти собственные числа λ_i :

$$A\mathbf{x} = \lambda_i \mathbf{x}, \ \mathbf{x} \neq 0 \tag{1}$$

Метод Якоби работает в том случае, если матрица A — эрмитова.

2 Теоретические основания

2.1 Оценка сходимости

Рассмотрим недиагональные элементы матрицы A. Для диагональной матрицы сумма $s = \sum_{i \neq j} |a_{ij}|^2 = 0$, следовательно, для того, чтобы последовательность преобразованных матриц A_k сходилась к диагональной матрице с такими же собственными числами, нужно на каждом шаге уменьшать s.

2.2 Метод Якоби

Матрица плоского поворота T_{ij} , такая что: $T_{kk}=1,\ k\neq i,j;\ T_{ii}=T_{jj}=\cos\phi,$ $T_{ij}=-T_{ji}=-\sin\phi.$ Для того, чтобы обнулить a_ij , можно применить к матрице $T_{ij}:\phi=\frac{1}{2}\arctan(\frac{-2a_{ij}}{a_{ii}-a_{jj}}),\ a_{ii}\neq a_{jj};$ иначе $\phi=\pi/4$.

Будем последовательно обнулять недиагональные элементы, пользуясь следующими стратегиями выбора:

- 1. стратегия "преград-барьеров": на k-ом шаге обнуляем только элементы $a_{ij} > \varepsilon_k$; $\varepsilon_0 > \varepsilon_1 > ... > \varepsilon_n$.
- 2. выбираем максимальный по модулю элемент в строке с кругом Гершгорина максимального радиуса

$$\sum_{i \neq j} |a_{ij}|^2 = \max_{l=1,\dots,n} \sum_{l \neq j} |a_{lj}|^2 \tag{2}$$

$$|a_{ij}| = \max_{m \neq i} |a_{im}| \tag{3}$$

3 Численный эксперимент

Порядок эксперимента:

- найдём собственные числа, пользуясь стратегиями 1) и 2) с заданной погрешностью $\varepsilon:\sum_{i\neq j}|a_{ij}|^2<\varepsilon$
- сравним количество итераций для разных стратегий

4 Результаты

4.1 Tect 1

Исходные данные:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 10 & 0 & \dots & 0 & 0 \\ 0 & 10 & 20 & 30 & \dots & 100 & 110 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 90 & 0 & \dots & 0 & 0 \\ 0 & 0 & 100 & 0 & \dots & 1 & 0 \\ 0 & 0 & 110 & 0 & \dots & 0 & 1 \end{bmatrix} \varepsilon = 10^{-10}$$

Таблица 1. сравнение эффективности стратегий

4.2 Tect 2

Исходные данные:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1e-4 & 3 & 0 \\ 0 & 0 & 1 & 2e-4 & 6 & 0 \\ 0 & 1e-4 & 2e-4 & 3e-4 & 4e-4 & 5e-4 \\ 0 & 3 & 6 & 4e-4 & 12 & 15 \\ 0 & 0 & 0 & 5e-4 & 15 & 1 \end{bmatrix} \varepsilon = 10^{-12}$$

Таблица 2. сравнение эффективности стратегий

4.3 Tect 3

Исходные данные:

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix} \varepsilon = 10^{-20}$$

Таблица 3. сравнение эффективности стратегий

4.4 Tect 4

Исходные данные:

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{3} & \dots & \dots & \frac{1}{7} \\ \frac{1}{3} & \frac{1}{4} & \dots & \dots & \frac{1}{8} \\ \dots & \dots & \dots & \dots \\ \frac{1}{6} & \frac{1}{7} & \dots & \dots & \frac{1}{11} \end{bmatrix} \varepsilon = 10^{-12}$$

Таблица 4. сравнение эффективности стратегий

4.5 Вывод

Обе стратегии дают (почти) одинаковое количество итераций, при этом для второй стратегии (по кругам Гершгорина) погрешности получаются больше (особенно это заметно на матрице Гильберта, для которой в целом получились бо'льшие погрешности, возможно, это связано с тем, что она плохо обусловлена).