ARCOS Group

uc3m Universidad Carlos III de Madrid

Lesson 2 (I) Representation of information

Computer Structure
Bachelor in Computer Science and Engineering

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- 1. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Introduction Computer

▶ A computer is a machine designed to process data.

Instructions are applied and results are obtained.

Introduction Computer

▶ A computer is a machine designed to process data.

- Instructions are applied and results are obtained.
- ▶ The data/information can be of different types.

Introduction Computer

▶ A computer is a machine designed to process data.

- Instructions are applied and results are obtained.
- The data/information can be of different types.
- A computer uses only one representation: binary.

Introduction Information representation

▶ The use of a representation allows the transformation of different types of information into binary (and vice versa).

Introduction

Characteristics of the information representation

- ▶ A computer handles a finite set of values
 - Binary type (two states)
 - Finite (bounded representation)
 - Number of bits of the computer word (32/64) or bit (1), nibble (4), byte (8), half w., double w., ...
 - With n bits, 2n different values can be encoded

- ▶ There are some types of information that are infinite
 - Impossible to represent all values of natural numbers, real numbers, etc.

▶ The chosen representation has limitations.

Example 1: the Google calculator with 15 digits...

http://www.20minutos.es/noticia/415383/0/google/restar/error/

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

We need...

▶ To know possible representations:

We need...

▶ To know possible representations:

- ▶ To know the characteristics of theses representations:
 - Limitations

We need...

▶ To know possible representations:

- ▶ To know the characteristics of theses representations:
 - Limitations

▶ To know how work with the selected representation:

Contents

- Introduction
 - Motivation and goals
 - 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

- A number is defined by a ordered list of digits, each of which is affected by a scaling factor that depends on the position it occupies in the list.
- Given a numbering base b,a number X is defined as the list of digits:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ with a list of associated weights:

$$P = (\dots b^2 b^1 b^0 b^{-1} b^{-2} \dots)_b$$

It value is:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binary

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binary

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

From binary to hexadecimal:

- Group by 4 bits, right to left
- Each 4 bits is the value of a hexadecimal digit

Decimal

Binary

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Exercise

▶ To represent 342 in binary:

256	128	64	32	16	8	4	2	
?	?	?	?	?	?	?	?	?

Exercise (solution)

▶ To represent 342 in binary:

▶ With 3 binary digits, up to 8 symbols can be represented:

▶ How many values can be represented with n bits?

▶ How many bits are needed to represent m 'values'?

With n bits, if the minimum representable value corresponds to the number 0, what is the maximum representable numerical value?

- ▶ How many values can be represented with n bits?
 - 2n 1011
 - E.g.: with 4 bits up to 16 values can be represented
- ▶ How many bits are needed to represent m 'values'?
 - $ightharpoonup \left[\text{Log2(n) round up} \right]$
 - E.g.: 6 bits are required to represent 35 values
- With n bits, if the minimum representable value corresponds to the number 0, what is the maximum representable numerical value?
 - ▶ 2ⁿ-1

Exercise

▶ To compute the value of (23 ones):

Exercise (solution)

▶ To compute the value of (23 ones):

$$X = 2^{23} - 1$$

Tip:

$$X = 2^{23} - 1$$

Example: operations

▶ Add in binary:

Example: operations

Add in binary:

Subtract in binary:

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical

29

- Natural and integer
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Alphanumeric representation

- Each character is encoded as one byte.
- With n bits \Rightarrow up to 2^n characters can be encoded:

# bits	# characters	Includes	Example
6	64	 26 letter: az 10 number: 09 punctuation: .,;: specials: + - [BCDIC
7	128	 adds uppercases and control characters 	ASCII
8	256	 adds accented letters, ñ, semigraphic characters 	EBCDIC ASCII extended
16	34.168	 add support for Chinese, Arabic, 	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	æ	096	
001	<u> </u>	SOH	033	1	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	•	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	ť	071	G	103	g
008	12	BS	040	(072	Н	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	I	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	•	076	L	108	1
013	(carriage return)	CR	045		077	M	109	m
014	,ri	SO	046		078	N	110	n
015	₩.	SI	047	1	079	0	111	0
016		DLE	048	0	080	P	112	Р
017		DC1	049	l	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	Ş	NAK	053	5	085	U	117	u
022	MARKE	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u> </u>	CAN	056	8	088	X	120	х
025	1	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '`	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	-
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

control characters

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	!	065	A	097	α
002	•	STX	034	"	066	В	098	b
003	♥	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	ť	071	G	103	g
800		BS	040	(072	Н	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	,ri	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016	-	DLE	048	0	080	P	112	p
017		DCl	049	1	081	Q	113	q
018	‡	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	MAKES	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	х
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	į.
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	
031	(cursor down)	US	063	?	095	mann .	127	

Copyright 1998, JimPrice Com Copyright 1982, Leading Edge Computer Products, Inc

distance between uppercase and lowercase letters

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001		SOH	033	1	065	A	097	α
002	•	STX	034	"	066	В	098	b
003	•	ETX	035	#	067	C	099	С
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	f	071	G	103	g
008	123	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045		077	M	109	m
014		SO	046		078	N	110	n
015	Ď.	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017		DC1	049	l	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	Ş	NAK	053	5	085	U	117	u
022	eares	SYN	054	6	086	V	118	V
023	<u></u>	ETB	055	7	087	W	119	w
024	<u> </u>	CAN	056	8	088	X	120	X
025	\downarrow	EM	057	9	089	Y	121	У
026	·	SUB	058	:	090	Z	122	Z
027		ESC	059	;	091	[123	· {
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	~
031	(cursor down)	US	063	?	095		127	

97-65=32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

conversion of a number to a character

ASCII		Control	ASCII		ASCII		ASCII	
value	Character	character	value	Character	value	Character	value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	Į	065	A	097	α
002		STX	034	n	066	В	098	b
003	♥	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
800	10	BS	040	(072	Н	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	- ,	077	M	109	m
014	j	SO	046		078	N	110	n
015	☆-	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	р
017	45	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	<u>ii</u>	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	ences .	SYN	054	6	086	V	118	v
023	1	ETB	055	7	087	W	119	w
024	<u></u>	CAN	056	8	088	X	120	х
025	į	EM	057	9	089	Y	121	У
026	·	SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	}
029	(cursor left)	GS	061		093]	125	}
030	(cursor up)	RS	062	>	094	^	126	~
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

Curiosity: Display "image" with characters

HHHHCHCCCCCCHHHHHH88X888888X8CC8X77X7XXX888888XX8HHHHHH8X88 88HH@@@@@@@@@mmmmmmmmem@H8XX8888ZZX8H@@m@@@@@m@@@@HHH88HHH888

http://www.typorganism.com/asciiomatic/

Character strings

1000 00110011 1001 01101100 ••• 1008 10100011

Fixed-length string:

2. Variable-length string with delimiter:

3. Variable-length strings with length in header:

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- 1. Alphanumeric
 - Characters
 - 2. Strings

2. Numerical

- Natural and integer
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Numerical representation

- Classification of real numbers:
 - ▶ Naturals: 0, 1, 2, 3, ...
 - ▶ Integers: ... -3, -2, -1, 0, 1, 2, 3,
 - Rational: fractions (5/2 = 2,5)
 - Irrational: $2^{1/2}$, π , e, ...
- Infinite sets but finite representation space:
 - Impossible to represent all
- Characteristics of the representation used:
 - Represented element: Natural, integer, ...
 - Representation range: Interval between minor and major not representable
 - Resolution of representation:
 Difference between a representable number and the following one.
 It represents the maximum error committed. It can be cte. or variable.

Most used binary representation systems

- A. (Pure) binary natural
- B. Sign-Magnitude
- c. One's complement (Ca I)

integer

- D. Two's complement (Ca 2)
- E. Biased 2ⁿ⁻¹-1
- F. Floating point: IEEE 754 standard

real

(Pure) binary or unsigned binary [natural numbers]

Positioning system with base 2 and without fractional part.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot x_i$$

- Representation range: [0, 2ⁿ -1]
- Resolution: I unit

Comparative example (3 bits)

Decimal	Pure Binary		
+7	111		
+6	110		
+5	101		
+4	100		
+3	011		
+2	010		
+1	001		
+0	000		
-0	N.D.		
-1	N.D.		
-2	N.D.		
-3	N.D.		
-4	N.D.		
-5	N.D.		
-6	N.D.		
-7	N.D.		

Signed binary number or Sign-Magnitude [integer numbers]

• One bit (S) is reserved for the sign $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $\mathbf{v}(x) = \sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$ \Rightarrow $\mathbf{v}(x) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$ Si $x_{n-1} = 1$ $\mathbf{v}(x) = -\sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$

- Representation range: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolution: | unit
- Ambiguity of zero + complex hw. for subtraction

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	
+7	111	N.D.	
+6	110	N.D.	
+5	101	N.D.	
+4	100	N.D.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.D.	100	
-1	N.D.	101	
-2	N.D.	110	
-3	N.D.	111	
-4	N.D.	N.D.	
-5	N.D.	N.D.	
-6	N.D.	N.D.	
-7	N.D.	N.D.	

▶ Can we represent 745₁₀ in sign-magnitude with 10 bits?

- ▶ Can we represent 745₁₀ in sign-magnitude with 10 bits?
- With 10 bits the range in sign-magnitude is: $[-2^9+1,...,-0,+0,....2^9-1] \Rightarrow [-511,511]$ then, we cannot represent 745

One's complement (to the base minus one) [integer] (1/3)

Positive number: is represented in pure binary with n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot X_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot X_{i}$$

- Representation range (+): [0, 2ⁿ⁻¹ 1]
- Resolution: I unit

One's complement (to the base minus one) [integer] (2/3)

Negative number:

- Complemented to the base minus one.
- The number X < 0 is represented as $2^n X 1$ with n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Representation range (-): [-(2ⁿ⁻¹-1), -0]
- Resolution: I unit

One's complement (to the base minus one) [integer] (3/3)

- Example: For n=4 \Rightarrow the value +3₁₀ = 00 I I₂
- Example: For $n=4 \Rightarrow$ the value $-3_{10} = 1100_2$
 - → I (sign bit and also part of magnitude)
 - C a $I(3) \Rightarrow 2^4 00II_2 I = 2^4 3 I = I2 \Rightarrow II00_2$
 - Representation range: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolution: I unit
 - Zero has a double representation (+0 y -0)
 - Symmetrical range

Ones' complement

Positive numbers have a 0 in the most significant bit.

Negative numbers have a I in the most significant bit.

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement
+7	111	N.D.	N.D.
+6	110	N.D.	N.D.
+5	101	N.D.	N.D.
+4	100	N.D.	N.D.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	N.D.	100	111
-1	N.D.	101	110
-2	N.D.	110	101
-3	N.D.	111	100
-4	N.D.	N.D.	N.D.
-5	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.

With n = 5 bits and using one's complement:

▶ How is represented X = 5?

▶ How is represented X = -5?

- ▶ What is the value of 00111 in 1's complement?
- ▶ What is the value of 11000 in 1's complement?

With n = 5 bits and using one's complement:

- ▶ How is represented X = 5?
 - Because is positive then is like (pure) binary
 - > 00101
- ▶ How is represented X = -5?
 - ▶ Because is negative, then 5 is complemented to one (00101)
 - **III0I0**
- What is the value of 00111 in 1's complement?
 - Because is positive then its value is 7
- What is the value of 11000 in 1's complement?
 - Because is negative, then is complemented and is 00111 (7)
 - ▶ The value is -7

Two's complement (complement to the base) [integer] (1/3)

Positive number: is represented in pure binary with n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Representation range (+): [0, 2ⁿ⁻¹ 1]
- Resolution: I unit

Two's complement (complement to the base) [integer] (2/3)

Negative number:

- Complemented to the base.
- The number X < 0 is represented as $2^n X$ with n bits

$$V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot y_i$$

- Representation range (-): [-2ⁿ⁻¹, -1]
- Resolution: I unit

Two's complement (complement to the base) [integer] (3/3)

Tip:
$$C a 2 (X) = X$$

 $C a 2 (-X) = C a I (X) + I$

- Example: For $n=4 \Rightarrow +3 = 0011_2$
- Example: For $n=4 \Rightarrow -3 = 1101_2$
 - ▶ $I \Rightarrow$ (sign bit and also part of magnitude)
 - C a 2 (3) = C a 2(00|1₂) = 2^4 3 = $13 \Rightarrow 1101_2$
 - Representation range: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolution: I unit
 - 0 has only one representation (∄ -0)
 - Asymmetric range

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement	Two's complement
+7	111	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.D.	100	111	N.D.
-1	N.D.	101	110	Ш
-2	N.D.	110	101	110
-3	N.D.	111	100	101
-4	N.D.	N.D.	N.D.	100
-5	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.

Two's complement

Biased 2ⁿ⁻¹-1 representation [integer]

- ▶ El valor X con n bits se reprsenta como X + 2ⁿ⁻¹-I
- Bias refers to the value 2ⁿ⁻¹-1

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Representation range: $[-(2^{n-1}-1), 2^{n-1}]$
- Resolution: Lunit
- No existe ambigüedad con el 0

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement	Two's complement	Biased-3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	111	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings

2. Numerical

- Natural and integer
 - Arithmetic operations
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Comparison of arithmetic in B, 1C and 2C

	Binary	One's complement	Two' complement
Add	10110 01100 100010	same as binary	same as binary
Subtract	10110 01100 01010	add and if there is Cn-I then add Cn-I to total	add and if there is Cn-I then discard it

In hardware, it is easier to operate with complement

Comparison of arithmetic in B, 1C and 2C why add the carry to the result in 1C

Correction of the result by adding the carry...

Comparison of arithmetic in B, 1C and 2C why discard the carry in 2C

Correction of the result by discarding the carry...

Comparison of arithmetic in B, 1C and 2C

	Binary	One's complement	Two' complement
Detect	The result needs I bit more	Adding ++ is -, Adding is +	Adding ++ is -, Adding is +
overflow	There are Cn	Cn <> Cn-I	Cn <> Cn-I
Sign extension	00 10110	11*(10110 00*(00110	11*10110 00*00110
•••	•••	•••	•••

ARCOS Group

uc3m Universidad Carlos III de Madrid

Lesson 2 (I) Representation of information

Computer Structure
Bachelor in Computer Science and Engineering

Indicate the representation of the following numbers, giving a brief justification of your answer:

- 1. -32 in one's complement with 6 bits
- 2. -32 in two's complement with 6 bits
- 3. -10 in sign-magnitude with 5 bits
- 4. + 14 in two's complement with 5 bits

- With 6 bits **is not representable** in IC: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- 2. |C + | -> |00000
- 3. Sign=I, magnitude=I0I0 -> II0I0
- 4. Positive -> IC=2C=SM -> 01110

Arithmetic in 1's complement

- \blacktriangleright With n = 5 bits
- ▶ X = 5
 - In one's complement = 00101
- Y = 7
 - ▶ In one's complement = 00111
- X + Y? X = 00101 Y = 00111+ X+Y = 01100
- ▶ The value 01100 in one's complement is 12

Arithmetic in 1's complement

- \blacktriangleright With n = 5 bits
- ▶ X = -5
 - ▶ In one's complement = complement of 00101:11010
- Y = -7
 - ▶ In one's complement = complement of 00111:11000
- X + Y:

 -X = 11010

 -Y = 11000+

 -(X+Y) = 110010 A carry is generated and is added

 10011
- The value of 10011 in one's complement is negative and the complement is
 -01100 = -12

Arithmetic in 2's complement

- \blacktriangleright With n = 5 bits
- ▶ X = 5
 - In two's complement = 00101
- Y = 7
 - ▶ Is two's complement = 00111
- ➤ X + Y?

$$X = 00101$$

$$Y = 00111+$$

$$X+Y = 01100$$

▶ The value of 01100 in two's complement is 12

Arithmetic in 2's complement

- \blacktriangleright With n = 5 bits
- ▶ X = -5
- Y = -7
 - ▶ In two's complement = | | 1000 + | = | 1100 |
- X + Y?

• The result is 10100. The value is 01011 + 1 = 01100 = >-12

Ejemplo

Aritmética en complemento a dos

- ▶ With n = 5 bits
- ▶ X = 8
 - ▶ In two's complement = 01000
- Y = 9
 - ▶ In two's complement = 01001
- X + Y? X = 01000 Y = 01001+ X+Y = 10001
- \blacktriangleright A negative value is obtained \Rightarrow overflow

Ejemplo

Aritmética en complemento a dos

- \blacktriangleright With n = 5 bits
- ▶ X = -8
 - ▶ In two's complement = |0||| + | = |1000
- Y = -9
 - ▶ In two's complement = | 10| | 10 + | = | 10| | 1 |
- X + Y?

$$-X = 11000$$

 $-Y = 10111+$
 $-(X+Y) = 101111$ The carry is discarded

The result 01111, is positive ⇒ overflow

Extensión de signo en complemento a dos

▶ How to represent the same number of n bits but with m bits, being n < m?

Example:

- n = 4, m = 8
- X = 0110 with 4 bits X = 00000110 with 8 bits
- X = 1011 with 4 bits $\Rightarrow X = 11111011$ with 8 bits

- Using 5 bits, compute the following additions in 1's complement:
 - a) 4 + 12
 - b) 4-12
 - c) **-4-12**

By using 5 bits in I's complement the result is:

a)
$$4 + 12$$

00100

01100

 $10000 \Rightarrow -15 \Rightarrow \text{negative!} \Rightarrow \text{overflow}$

- ▶ By using 5 bits in I's complement the result is:
 - b) 4 12

00100

10111 ⇒ -8

- ▶ By using 5 bits in I's complement the result is:
 - c) -4 12

11011 10011

 $101110 \Rightarrow 6$ bits are needed \Rightarrow overflow

Two's complement with 32-bits

```
0000 \dots 0000 \ 0000 \ 0000 \ 0000_{2c} =
                                                  0_{(10)}
0000 \dots 0000 \ 0000 \ 0000 \ 0001_{2c} =
                                                  1_{(10)}
0000 \dots 0000 \ 0000 \ 0000 \ 0010_{2c} =
                                               2_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{2c} = 2,147,483,645_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{2c} = 2,147,483,646_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{2c} = 2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000_{2c} = -2,147,483,648_{(10)}
1000 \dots 0000 \ 0000 \ 0001_{2c} = -2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0010_{2c} = -2,147,483,646_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{2c} = -3_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{2c} = -2_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{2c} = -1_{(10)}
```