Lecture 8:

Parameter Estimation in Subspace Problems

Singular Prediction Problems

Overview

- scalar case: sinusoids in noise
- multivariate case: blind MIMO channel estimation
- combined case: specular wireless channel models

SISO/Scalar Linear Prediction

• ∞ th order prediction error:

$$\widetilde{x}_{\infty,k} = x_k - \widehat{x}_{\infty,k} = x_k - \sum_{n=1}^{\infty} p_{\infty,n} \, x_{k-n} = P_{\infty}(q) \, x_k$$

$$q^{-1}x_k = x_{k-1}, \ P_{\infty}(z) = \sum_{n=0}^{\infty} p_{\infty,n} \, z^{-1}, \ p_{N,0} = 1 \text{ (monic)}$$

- ∞^{th} order prediction error variance: $\sigma_{\widetilde{x},\infty}^2 = e^{\int_{-\frac{1}{2}}^{\frac{1}{2}} \ln S_{xx}(f) df}$
- singular case: $\sigma_{\widetilde{x},\infty}^2 = 0$ whenever spectrum bandlimited (parts are missing). Why perfect prediction? bandlimited \Rightarrow can downsample \Rightarrow can obtain some samples by linear interpolation from others, interpolation can be causal \Rightarrow perfect prediction

Prototype Problem: Sinusoids

$$\bullet \ x_k = \sum_{n=1}^N A_n \, e^{j2\pi f_n k}$$

$$\Rightarrow \underbrace{\prod_{n=1}^{N} (1 - e^{j2\pi f_n} q^{-1})}_{P_N(q)} x_k = 0 = \widetilde{x}_{N,k} = x_k + p_{N,1} x_{k-1} + \dots + p_{N,N} x_{k-N}$$

- $\{A_n\}$ i.i.d. uniform phases $\Rightarrow x_k$ stationary, zero mean
- correlation sequence: $r_m = r_{xx}(m) = \operatorname{E} x_{k+m} x_k^H = \sum_{n=1}^N |A_n|^2 e^{j2\pi f_n m}$ spectrum:

$$S_{xx}(f) = \sum_{m=-\infty}^{\infty} r_{xx}(m) e^{-j2\pi f m} = \sum_{n=1}^{N} |A_n|^2 \delta(f - f_n)$$

Sinusoids: Signal Subspace Structure

$$X_{M}(k) = \begin{bmatrix} x_{k} \\ x_{k-1} \\ \vdots \\ x_{k-M+1} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \cdots & 1 \\ e^{-j2\pi f_{1}} & \cdots & e^{-j2\pi f_{N}} \\ \vdots & \cdots & \vdots \\ e^{-j2\pi f_{1}(M-1)} & \cdots & e^{-j2\pi f_{N}(M-1)} \end{bmatrix}}_{= \mathcal{V}} \underbrace{\begin{bmatrix} A_{1} e^{j2\pi f_{1} k} \\ \vdots \\ A_{N} e^{j2\pi f_{N} k} \end{bmatrix}}_{= S_{k}}$$

$$= \mathcal{V} S_{k}$$

• one calls

$$Range \{\mathcal{V}\} = \text{signal subspace}$$

 $(Range \{\mathcal{V}\})^{\perp} = \text{noise subspace}$

Sinusoids: Covariance Subspace Structure

• covariance matrix

$$R_{M} = \mathbf{E} \begin{bmatrix} x_{k} \\ x_{k-1} \\ \vdots \\ x_{k-M+1} \end{bmatrix} \begin{bmatrix} x_{k} \\ x_{k-1} \\ \vdots \\ x_{k-M+1} \end{bmatrix} = \begin{bmatrix} r_{0} & r_{1} & \cdots & r_{M-1} \\ r_{1}^{*} & r_{0} & \ddots & r_{M-2} \\ \vdots & \ddots & \ddots & \vdots \\ r_{M-1}^{*} & r_{M-2}^{*} & \cdots & r_{0} \end{bmatrix}$$

=
$$EX_M(k) X_M^H(k) = \mathcal{V} R_{SS} \mathcal{V}^H$$
, $R_{SS} = diag\{|A_1|^2, \dots, |A_N|^2\}$

- $[x_k \ x_{k-1} \cdots x_{k-M+1}] = \text{linear combination of } A_1, \cdots, A_N$ $\Rightarrow \text{rank}(R_M) = N \text{ for } M \ge N$
- Eigenvalues of R_M behave like $S_{xx}(f)$ for large M. However, singular sinusoid spectrum (support of measure zero) leads to singular R_M for finite M.

Sinusoids: Singular Prediction

- $\widetilde{x}_{M,k} = P_M(q) x_k = 0, \quad M \ge N$
- Hence, x_k is perfectly predictible from the previous N samples.

$$P_N(z) = \prod_{n=1}^N (1 - e^{j2\pi f_n} z^{-1})$$
 and hence the f_n can be found by

linear prediction: *Prony* method.

Normal equations:

$$P_N R_{XX} = [\sigma_{\widetilde{x},N}^2 \ 0 \cdots 0], \ \sigma_{\widetilde{x},N}^2 = 0$$

where

$$R_{XX} = \operatorname{E} X_{N+1}(k) X_{N+1}^{H}(k)$$

 $P_{N} = [p_{N,0} \ p_{N,1} \cdots p_{N,N}], \ p_{N,0} = 1$

•
$$P_N R_{XX} = 0 \Rightarrow P_N \mathcal{V} = 0$$

$$R_{SS} > 0$$

Sinusoids in Noise: Signal and Noise Subspaces

SP4COM

- additive white Gaussian noise $v_k \Rightarrow \text{measure: } y_k = x_k + v_k$
- covariance structure

$$Y_M(k) = X_M(k) + V_M(k) = \mathcal{V} S_k + V_M(k) \Rightarrow R_{YY} = \mathcal{V} R_{SS} \mathcal{V}^H + \sigma_v^2 I$$

• Consider the eigendecomposition of R_{YY} ($\lambda_1 \geq \lambda_2 \geq \cdots$):

$$R_{YY} = \sum_{i=1}^{N} \lambda_i V_i V_i^H + \sum_{i=N+1}^{M} \lambda_i V_i V_i^H = V_{\mathcal{S}} \Lambda_{\mathcal{S}} V_{\mathcal{S}}^H + V_{\mathcal{N}} \Lambda_{\mathcal{N}} V_{\mathcal{N}}^H$$

where $\Lambda_{\mathcal{N}} = \sigma_v^2 I_{M-N}$.

• Assuming $V_{\mathcal{S}}$ and R_{SS} to have full rank, the sets of eigenvectors $V_{\mathcal{S}}$ and $V_{\mathcal{N}}$ are orthogonal: $V_{\mathcal{S}}^H V_{\mathcal{N}} = 0$, and $\lambda_i > \sigma_v^2$, $i = 1, \ldots, N$.

Sinusoids in Noise: Linear Prediction

• Equivalent descriptions of the signal and noise subspaces:

Range
$$\{V_{\mathcal{S}}\} = Range \{\mathcal{V}\}, \quad V_{\mathcal{N}}^{H}\mathcal{V} = 0$$

• Linear prediction in the noisy case: minimize variance subject to norm constraint: Pisarenko method with M = N + 1: noise subspace dimension = 1

$$\min_{\|P\|=1} P R_{YY} P^{H} = \min_{\|P\|=1} \left\{ P R_{XX} P^{H} + P R_{VV} P^{H} \right\}
= \min_{\|P\|=1} \left\{ P R_{XX} P^{H} + \sigma_{v}^{2} \|P\|^{2} \right\}
= \sigma_{v}^{2} + \min_{\|P\|=1} P R_{XX} P^{H}
\Rightarrow P R_{XX} = [0 \cdots 0], P^{H} = V_{min}(R_{YY}) = V_{min}(R_{XX})$$

Sinusoids in Noise: Signal Subspace Fitting

- two equivalent signal subspace descriptions: \mathcal{V} and $V_{\mathcal{S}}$
- with an estimated covariance matrix, $\widehat{V}_{\mathcal{S}}$ is approximate, so consider

$$\min_{\mathbf{f},T} \| \mathcal{V}(\mathbf{f}) - \widehat{V}_{\mathcal{S}} T \|_F$$

where $\mathbf{f} = [f_1 \cdots f_N],$

$$||A||_F^2 = \operatorname{tr} \{A^H A\}.$$

9

• separable problem $\Rightarrow T = \widehat{V}_{\mathcal{S}}^H \mathcal{V}$, $\mathcal{V} - \widehat{V}_{\mathcal{S}} T = P_{\widehat{V}_{\mathcal{S}}}^{\perp} \mathcal{V}$ and hence

$$\|\mathbf{P}_{\widehat{V}_{\mathcal{S}}}^{\perp} \mathcal{V}\|_{F}^{2} = \operatorname{tr} \mathcal{V}^{H} \mathbf{P}_{\widehat{V}_{\mathcal{S}}}^{\perp} \mathcal{V} = \operatorname{tr} \mathcal{V}^{H} \mathbf{P}_{\widehat{V}_{\mathcal{N}}} \mathcal{V} = \|\widehat{V}_{\mathcal{N}}^{H} \mathcal{V}\|_{F}^{2}$$
$$= \sum_{i=N+1}^{M} \|\widehat{V}_{i}^{H} \mathcal{V}\|^{2} = \sum_{j=1}^{N} \sum_{i=N+1}^{M} |\widehat{V}_{i}(f_{j})|^{2}$$

$$P_V = V(\underbrace{V^H V}_{=I})^{-1}V^H = V V^H, \ P_V^{\perp} = I - P_V, \ P^H = P, \ PP = P$$

Sinusoids in Noise: Signal Subspace Fitting (2)

- $\widehat{V}_i(f)$ = Fourier Transform of \widehat{V}_i components
- exact solution: joint optimization

$$\min_{f_1, \dots, f_N} \sum_{j=1}^N \sum_{i=N+1}^M |\widehat{V}_i(f_j)|^2$$

ullet approximate solution: plot as a function of f and find N largest peaks of

$$\frac{1}{\sum_{i=N+1}^{M} |\widehat{V}_i(f)|^2}$$

MUSIC! (MUltiple SIgnal Classification algorithm)

Sinusoids in Noise: Noise Subspace Parameterization

• $P(q) e^{j2\pi f_i k} = 0$, $\Rightarrow \mathcal{G}^H(P) \mathcal{V} = 0$ where $\mathcal{G}(P) : M \times (M-N)$

$$\mathcal{G}^{H}(P) = \begin{bmatrix} p_{0} & p_{1} & \cdots & p_{N} & 0 & \cdots & 0 \\ 0 & p_{0} & p_{1} & \cdots & p_{N} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & p_{0} & p_{1} & \cdots & p_{N} \end{bmatrix}$$
Toeplitz

hence $Range \{\mathcal{G}(P)\} = Range \{\mathcal{V}_{\mathcal{N}}\} = \text{noise subspace}$

• noise subspace fitting:

$$\min_{P,T} \|\mathcal{G}(P) - \widehat{V}_{\mathcal{N}} T\|_{F}$$

Sinusoids in Noise: Noise Subspace Fitting

• separable problem $\Rightarrow T = \widehat{V}_{\mathcal{N}}^H \mathcal{G}$, $\mathcal{G} - \widehat{V}_{\mathcal{N}} T = P_{\widehat{V}_{\mathcal{N}}}^{\perp} \mathcal{G}$ and hence

$$\|P_{\widehat{V}_{\mathcal{N}}}^{\perp}\mathcal{G}\|_{F}^{2} = \operatorname{tr}\mathcal{G}^{H}P_{\widehat{V}_{\mathcal{N}}}^{\perp}\mathcal{G} = \operatorname{tr}\mathcal{G}^{H}P_{\widehat{V}_{\mathcal{S}}}\mathcal{G} = \|\widehat{V}_{\mathcal{S}}^{H}\mathcal{G}\|_{F}^{2}$$

$$= \sum_{i=1}^{2M} \|\mathcal{G}^H \widehat{V}_i\|^2$$

Let $\mathcal{G}^H \widehat{V}_i = \widehat{\mathcal{W}}_i P^H$ where $\widehat{\mathcal{W}}_i = \mathcal{W}(\widehat{V}_i)$ is Hankel, then we get

$$\min_{P} P\left(\sum_{i=1}^{N} \widehat{\mathcal{W}}_{i}^{H} \widehat{\mathcal{W}}_{i}\right) P^{H}$$

subject to $P_0 = 1$ or ||P|| = 1.

Sinusoids in Noise: Maximum Likelihood Estimation

• additive noise v_k white and Gaussian \rightarrow likelihood criterion

$$\min_{\mathbf{f},S} \|Y - \mathcal{V}(\mathbf{f}) S\|^2$$

- separable $\Rightarrow S = (\mathcal{V}^H \mathcal{V})^{-1} \mathcal{V}^H Y$ $\Rightarrow \|Y - \mathcal{V} S\|^2 = Y^H P_{\mathcal{V}}^{\perp} Y = Y^H P_{\mathcal{G}(P)} Y = P \mathcal{Y}^H (\mathcal{G}^H(P) \mathcal{G}(P))^{-1} \mathcal{Y} P^H$ where $\mathcal{G}^H(P) Y = \mathcal{Y}(Y) P^H$ (commutativity of convolution, \mathcal{Y} Hankel)
- IQML (Iterative Quadratic Maximum Likelihood), iteration n:

$$\min_{P^{(n)}} P^{(n)} \left(\mathcal{Y}^H (\mathcal{G}^H (P^{(n-1)}) \mathcal{G}(P^{(n-1)}))^{-1} \mathcal{Y} \right) P^{(n) H}$$

subject to $P_0 = 1$ or ||P|| = 1

• initialization: Pisarenko: $\min_{P^{(0)}} P^{(0)} (\mathcal{Y}^H \mathcal{Y}) P^{(0)H}$

Sinusoids in Noise: Maximum Likelihood Estimation (2)

- IQML leads to biased estimates
- Denoised IQML (DIQML): since tr $\{P_{\mathcal{G}}\}$ = dimension noise subspace = constant

$$\arg \min_{P} Y^{H} P_{\mathcal{G}(P)} Y = \arg \min_{P} \operatorname{tr} \left\{ P_{\mathcal{G}(P)} Y Y^{H} \right\}$$
$$= \arg \min_{P} \operatorname{tr} \left\{ P_{\mathcal{G}(P)} \left(Y Y^{H} - \sigma_{v}^{2} I \right) \right\}$$

hence we get
$$\min_{P^{(n)}} P^{(n)} \left(B^{(n-1)} - \sigma_v^2 C^{(n-1)} \right) P^{(n)H}$$
 where

$$B^{(n-1)} = \mathcal{Y}^H(\mathcal{G}^H(P^{(n-1)})\mathcal{G}(P^{(n-1)}))^{-1}\mathcal{Y}$$

$$C^{(n-1)} = \sum_{k=1}^{M-N} \left[(\mathcal{G}^H(P^{(n-1)}) \mathcal{G}(P^{(n-1)}))^{-1} \right]_{k:k+N,k:k+N}$$

Sinusoids in Noise: Maximum Likelihood Estimation (3)

• Pseudo Quadratic ML (PQML): actual ML gradient

$$\nabla_P Y^H P_{\mathcal{G}(P)} Y = Q P$$
, $Q = B - D \ge 0$

relation with DIQML: $E_V D = \sigma_v^2 C$

- (D)IQML: asymptotically globally convergent PQML: with a consistent initialization (e.g. DIQML), asymptotically only one iteration is required to get an estimate with ML performance
- So far: Deterministic ML (DML).

 Gaussian ML (GML): postulate Gaussian distribution for S

SIMO/Multichannel Model (1)

Discrete-time Channels at symbol rate

- SIMO: Single Input Multiple Outputs
- oversampling received signal at twice the transmission rate

SIMO/Multichannel Model (2)

• single transmit (TX) antenna, multiple receive (RX) antennas

SIMO Singularity

• FIR channel input/output:

$$\underbrace{\mathbf{y}_k}_{p \times 1} = \underbrace{\mathbf{H}(q)}_{p \times 1} \underbrace{a_k}_{1 \times 1}, \quad \mathbf{H}(z) = \sum_{n=0}^{N-1} \mathbf{h}_n z^{-n} \qquad \qquad \mathbf{H}(f) = \mathbf{H}(e^{j2\pi f})$$

• matricial psdf:

$$\underbrace{S_{\mathbf{yy}}(f)}_{p \times p} = \mathbf{H}(f) S_{aa}(f) \mathbf{H}^{H}(f) = \sigma_a^2 \mathbf{H}(f) \mathbf{H}^{H}(f)$$
 rank 1!

singular spectrum for $p \geq 2$ subchannels even though channel input a_k is white noise, not sinusoids

SIMO Singularity (2)

- MIMO prediction: $\underbrace{\widetilde{\mathbf{y}}_k}_{p \times 1} = \underbrace{\mathbf{P}_{\infty}(q)}_{p \times p} \underbrace{\mathbf{y}_k}_{p \times 1}$
- prediction error covariance $\underbrace{\sigma_{\widetilde{\mathbf{y}},\infty}^2}_{p \times p} = \mathrm{E} \, \widetilde{\mathbf{y}}_{\infty,k} \widetilde{\mathbf{y}}_{\infty,k}^H$

$$\det(\sigma_{\widetilde{\mathbf{y}},\infty}^2) = e^{\int_{-\frac{1}{2}}^{\frac{1}{2}} \ln \det(S_{\mathbf{y}\mathbf{y}}(f)) df}$$
$$= 0 \Rightarrow \sigma_{\widetilde{\mathbf{y}},\infty}^2 \text{ singular}$$

does not mean no randomness, but number of random sources 1

Deterministic Blind Identifiability

 \bullet blind: determine H and A from Y only

$$\begin{bmatrix} \mathbf{y}_k \\ \mathbf{y}_{k-1} \\ \vdots \\ \mathbf{y}_{k-L+1} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} & 0_{p \times 1} & \cdots & 0_{p \times 1} \\ 0_{p \times 1} & \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0_{p \times 1} \\ 0_{p \times 1} & \cdots & 0_{p \times 1} & \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} \end{bmatrix} \begin{bmatrix} a_k \\ a_{k-1} \\ \vdots \\ \vdots \\ a_{k-L-N+2} \end{bmatrix}$$

or
$$Y_L(k) = \underbrace{\mathcal{T}_L(\mathbf{H}_N)}_{pL \times 1} \underbrace{A_{L+N-1}(k)}_{(L+N-1) \times 1}$$

• p = 1 single channel: L+2N-1 unknowns from L equations

Deterministic Blind Identifiability (2)

- p > 1 multichannel: L+(p+1)N-1 unknowns from pL equations \Rightarrow gets overdetermined for L big enough
- can easily eliminate A, e.g. for p = 2 subchannels:

$$\begin{bmatrix} -H_2(q) & H_1(q) \end{bmatrix} \begin{bmatrix} y_{1,k} \\ y_{2,k} \end{bmatrix} = \underbrace{\begin{bmatrix} -H_2(q) & H_1(q) \end{bmatrix}}_{=\mathbf{H}^{\perp\dagger}(q)} \underbrace{\begin{bmatrix} H_1(q) \\ H_2(q) \end{bmatrix}}_{=\mathbf{H}(q)} a_k$$

$$= (H_1(q)H_2(q) - H_2(q)H_1(q)) a_k \equiv 0$$

where $\mathbf{H}^{\dagger}(z) = \mathbf{H}^{H}(1/z^{*})$ (matched filter)

Deterministic Blind Identification

• Subchannel Response Matching (SRM), Cross-Relation (CR) method

$$\underbrace{\mathbf{u}_k}_{(p-1)\times 1} = \underbrace{\widehat{\mathbf{H}}^{\perp\dagger}(q)}_{(p-1)\times p} \underbrace{\mathbf{y}_k}_{p\times 1}$$

$$\operatorname{tr}\left\{R_{\mathbf{u}\mathbf{u}}\right\} = \sigma_a^2 \int_{-\frac{1}{2}}^{\frac{1}{2}} \|\widehat{\boldsymbol{H}}^{\perp H}(f) \boldsymbol{H}(f)\|^2 df + \sigma_v^2 \|\widehat{\boldsymbol{H}}^{\perp}\|^2$$

$$\Rightarrow \min_{\|\widehat{\mathbf{H}}^{\perp}\|=1} \sum_{k} \|\widehat{\mathbf{H}}^{\perp\dagger}(q) \mathbf{y}_{k}\|^{2}$$

equivalent of Pisarenko

• for Signal or Noise Subspace fitting or DML:

$${\mathcal V} \;\; o \;\; {\mathcal T}({\mathbf H}) \;\; , \;\;\; {\mathcal G} \;\; o \;\; {\mathcal T}({\mathbf H}^\perp)$$

SIMO Channel Equalization

CHANNEL EQUALIZER

• SISO equalization: $F_1(z) = \frac{1}{H_1(z)}$: ∞ causal and anti-causal portions

SIMO Channel Equalization (2)

• ZF condition in z domain:

$$n \in \{0, 1, \dots, N+L-2\}$$

$$\sum_{i=1}^{p} F_i(z) H_i(z) = [F_1(z) \cdots F_p(z)] \begin{bmatrix} H_1(z) \\ \vdots \\ H_p(z) \end{bmatrix} = \mathbf{F}(z) \mathbf{H}(z) = z^{-n}$$

Bezout identity: FIR MISO equalizers exist for FIR SIMO channels

• condition: $\mathbf{H}(z)$ no zeros (otherwise SISO equalization problem for common factor between the $H_i(z)$)

SIMO Channel Equalization (3)

• in time domain:

$$\begin{bmatrix} \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} & 0_{p \times 1} & \cdots & 0_{p \times 1} \\ 0_{p \times 1} & \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0_{p \times 1} \\ 0_{p \times 1} & \cdots & 0_{p \times 1} & \mathbf{h}_0 & \cdots & \mathbf{h}_{N-1} \end{bmatrix}$$

$$= [0 \cdots 0 \ 1 \ 0 \cdots 0]$$

L+N-1 eqs. to be satisfied with pL parameters $\Rightarrow L \geq \frac{N-1}{p-1}$

• $\mathcal{T}_L(\mathbf{H}_N)$: Sylvester matrix: full column rank if $\mathbf{H}(z)$ has no zeros

Linear Prediction in SIMO Channel

- linear prediction of order $L \ge \frac{N-1}{p-1} \Rightarrow \widehat{\mathbf{y}}_{L,k}$ can form any linear combination of $\{a_{k-1}, a_{k-2}, \dots, a_{k-L-N+1}\}$, hence only $\mathbf{h}_0 a_k$ left in $\mathbf{P}_L(q) \mathbf{y}_k = \widetilde{\mathbf{y}}_{L,k} = \mathbf{h}_0 a_k$
- SIMO (FIR) channel \Rightarrow singular prediction problem (at finite prediction order): $\sigma_{\widetilde{\mathbf{y}},L}^2 = \sigma_a^2 \, \mathbf{h}_0 \mathbf{h}_0^H$
- FIR channel \Rightarrow FIR predictor:

$$\mathbf{y}_k = \mathbf{H}_N(q) a_k \Leftrightarrow \mathbf{P}_L(q) \mathbf{y}_k = \mathbf{h}_0 a_k$$

 $singular MA process \Leftrightarrow singular AR process$

Linear Prediction in SIMO Channel (2)

- let \mathbf{h}_0^{\perp} : $\left[\mathbf{h}_0 \ \mathbf{h}_0^{\perp}\right]^H \left[\mathbf{h}_0 \ \mathbf{h}_0^{\perp}\right] = \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$
- predictor has 2 components:
 - $-\mathbf{h}_0^H \mathbf{P}(q) \mathbf{y}_k = \|\mathbf{h}_0\|^2 a_k$: 0-delay equalizer
 - $\mathbf{h}_0^{\perp H} \mathbf{P}(q) \mathbf{y}_k = 0$: $\mathbf{h}_0^{\perp H} \mathbf{P}(z)$ characterizes the noise subspace whereas $\mathbf{H}(z)$ characterizes the signal subspace, can find $\mathbf{H}(z)$ from $\mathbf{h}_0^{\perp H} \mathbf{P}(z) \mathbf{H}(z) = 0$, we have $\mathbf{h}_0^{\perp H} \mathbf{P}(z) = \mathbf{H}^{\perp \dagger}(z)$

MIMO Case

- MIMO input/output: $\underbrace{\mathbf{y}_k}_{p \times 1} = \underbrace{\mathbf{H}(q)}_{p \times q} \underbrace{\mathbf{a}_k}_{q \times 1}$
- MIMO channel MIMO prediction: $\mathbf{P}_L \mathbf{y}_k = \mathbf{h}_0 \mathbf{a}_k$ for $L \ge \frac{\sum_{i=1}^q N_i q}{p q}$
- MIMO Bezout conditions: $\mathbf{H}(z)$ irreducible (full column rank $\forall z$) and column reduced

Multivariate Spectral Factorization

•
$$S_{\mathbf{yy}}(z) = \sigma_a^2 \mathbf{H}(z) \mathbf{H}^{\dagger}(z)$$
 $\mathbf{H}^{\dagger}(z) = \mathbf{H}^H(1/z^*)$

- spectral factor $S_{\mathbf{yy}}^{1/2}(z)$ minimum phase and $p \times q$ since $S_{\mathbf{yy}}(z)$ of generic rank q
- then $\sigma_a \mathbf{H}(z) = S_{\mathbf{yy}}^{1/2}(z) Q$ for some unitary $Q: QQ^H = I_q$ if $\mathbf{H}(z)$ not irreducible but only minimum-phase: |zeros| < 1
- when p > q, it is easy to be minimum-phase (not for p = q = 1)

MIMO Transmission

• multiple transmit and receive antennas

MIMO Channel Model

• time-varying channel: $\mathbf{h}(t,\tau)$

$$\mathbf{h}(t, kT) = \sum_{i=1}^{I} A_i(t) e^{j2\pi f_i t} \mathbf{a}_R(\phi_i) \mathbf{a}_T^T(\theta_i) p(kT - \tau_i)$$

h rank 1 in 3 dimensions; pathwise contributions:

- A_i : complex attenuation
- f_i : Doppler shift
- θ_i : angle of departure
- ϕ_i : angle of arrival
- τ_i : path delay
- $\mathbf{a}(.)$: antenna array response, p(.) pulse shape (TX filter)

MIMO Channel Prediction

- $\underline{\mathbf{h}}(t) = \text{vec}\{\mathbf{h}(t, kT)\} = \sum_{i=1}^{I} \underline{\mathbf{h}}_i A_i(t) e^{j2\pi f_i t}$ size M = # TX antenna x # RX antennas x delay spread
- $f_i \in (-f_D, f_D) \Rightarrow$ (fast fading) variation bandlimited \Rightarrow perfectly predictible!?
- $S_{\mathbf{hh}}(f)$ can be doubly singular:
 - 1. if $A_i(t) \equiv A_i$ and I finite: spectral support singularity: sinusoids!
 - 2. if I < M: matrix singularity, limited source of randomness (limited diversity)

