ระบบทำนายตลาดแลกเปลี่ยนเงินตราต่างประเทศ Foreign Exchange Market Prediction System

ปัณณวิชญ์ พันธ์วงศ์ ศันสนีย์ เอื้อพันธ์วิริยะกุล วิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

บทคัดย่อ

การลงทุนในฟอเร็กซ์นั้น มีความเสี่ยงสูงเนื่องจาก ความผันผวนที่มากกว่าตลาดหุ้น ทำให้ผู้จัดทำต้องการ พัฒนาระบบที่สามารถทำนายแนวโน้มของตลาดฟอเร็กซ์ โดยใช้ซัพพอร์ตเวกเตอร์รีเกรสชัน เพื่อลดความเสี่ยงและ เพิ่มความมั่นใจในการลงทุน โดยระบบจะแสดงผลลัพธ์ให้แก่ ผู้ลงทุนในตลาดฟอเร็กซ์ จึงหวังว่าระบบทำนายตลาด แลกเปลี่ยนเงินตราต่างประเทศจะช่วยเพิ่มโอกาสของผู้ ลงทุนในตลาดฟอเร็กซ์ให้มีกำไรมากขึ้น

คำสำคัญ: ตลาดฟอเร็กซ์, หุ้น, ซัพพอร์ตเวกเตอร์รีเกรสชั่น

Abstract

According to a higher fluctuation rate than the stock market, forex investing has a high risk. The developer wants to develop a system that can predict forex market trends using a Support Vector Regression to reduce the risk and to increase investor confidence. It is hoped that the Foreign exchange market prediction system will higher the investors' chance in Forex market.

Keywords: Forex Market, Stock market, Support Vector Regression

1. บทน้ำ

1.1. ที่มาของโครงงาน

ฟอเร็กซ์(Forex) คือ ตลาดที่ทำการซื้อขายอัตรา แลกเปลี่ยนเงินตรา โดยราคานั้นจะแปรผัน ตามอุปสงค์และ อุปทาน ของแต่ละสกุลเงิน ซึ่งทั้งนี้อาจจะขึ้นอยู่กับหลาย ปัจจัย ไม่ว่าจะเป็นอัตราดอกเบี้ย อัตราเงินเฟ้อ สภาพ เศรษฐกิจ สถานการณ์บ้านเมือง เหตุการณ์ทั้งในและ ต่างประเทศ เรียกได้ว่า อัตราแลกเปลี่ยนเงินตรามีความ อ่อนไหวต่อปัจจัยรอบข้างค่อนข้างมาก

ด้วยเหตุผลที่ว่าตลาดฟอเร็กซ์มีความอ่อนไหวหรือผัน ผวนสูง ผู้จัดทำได้สร้างระบบทำนายตลาดฟอเร็กซ์โดยใช้ การเรียนรู้ของเครื่องคอมพิวเตอร์(Machine Learning) มา ประยุกต์ใช้เพื่อเพิ่มโอกาสให้ผู้ลงทุนได้กำไรและเพิ่มความ มั่นใจในการลงทุนบนตลาดฟอเร็กซ์มากขึ้น โดยผลลัพธ์ของ ระบบทำนายจะแสดงผลลัพธ์ผ่านบนเว็บไซต์เพื่อสะดวกต่อ การใช้งาน

1.2. วัตถุประสงค์

- เพื่อเป็นตัวช่วยในการตัดสินใจในการลงทุน บนตลาดฟอเร็กซ์
- 2. เพื่อลดโอกาสผิดพลาดในการลงทุนบน ตลาดฟอเร็กซ์

2. ทฤษฎีที่เกี่ยวข้อง [1]

ซัพพอร์ตเวกเตอร์รีเกรสซัน (Support Vector Regression; SVR) มีหลักการคล้ายกับซัพพอร์ตเวกเตอร์แม ชชีน(Support Vector Machine; SVM) คือใช้หาระนาบ เกินที่เหมาะสมที่สุด (Optimal Hyperplane) แตกต่างกันที่ SVM จะสนใจเพียงค่าบวกและลบที่เกิดขึ้นจากการแบ่งกลุ่ม ข้อมูลแต่ SVR จะสนใจค่าจริงที่เกิดขึ้นจากการประมาณค่า ฟังก์ชัน ดังนั้นแนวคิดหลัก คือ เพื่อลดข้อผิดพลาด (Minimize error) ให้น้อยที่สุด โดยกำหนดระนาบซึ่งจะเพิ่ม ระยะขอบ (\mathcal{E}) ให้ใหญ่ที่สุดโดยคำนึงถึง ข้อผิดพลาด ($\mathcal{\xi}$) ที่ ยอมรับได้

รูปที่ 1 การหาระนาบที่เหมาะสมที่สุด

ชัพพอร์ตเวกเตอร์รีเกรสชันมีอยู่ 2 ประเภท คือ แบบเชิงเส้น (Linear Regression) และ แบบไม่เป็นเชิงเส้น (Nonlinear Regression) ซึ่งชัพพอร์ตเวกเตอร์แมชชีนแบบ ไม่เป็นเชิงเส้นจะมี ขั้นตอนแตกต่างจากแบบเชิงเส้นคือจะมี การแมปข้อมูลให้อยู่ปริภูมิที่สูงกว่าเพื่อให้ได้ข้อมูลที่มี ลักษณะเป็นเชิงเส้น

การสร้างระนาบเกินที่จะสามารถประมาณค่าได้ อย่างแม่นยำนั้น สามารถกำหนดความแม่นยำได้จากการ กำหนดความกว้างของระนาบที่เหมาะสมโดยพิจารณาจาก ค่าความคลาดเคลื่อนที่ยอมรับได้ (Error Insensitive) ในรูป ฟังก์ชันการสูญเสีย (Loss Function) จากฟังก์ชันการ สูญเสียแบบ **E**-Insensitive

$$L\big(y_i,f(x)\big) = \left\{ \begin{aligned} 0 & ; \ |y_i-f(x)| \leq \varepsilon \\ |y_i-f(x)| - \, \varepsilon \, ; \ |y_i-f(x)| > \varepsilon \end{aligned} \right.$$

1. Linear Regression

เป็นการนำสมการเส้นตรงมาใช้เพื่อสร้าง ระนาบโดยคำนึงถึงข้อผิดพลาดที่ยอดรับได้ดัง ตัวอย่าง**รูปที่ 1**

$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot \langle x_i, x \rangle + b$$

2. Nonlinear Regression

สำหรับสมการไม่เป็นเชิงเส้น จะมี Kernel function แปลงข้อมูลให้เป็นพื้นที่คุณลักษณะที่มี มิติสูงกว่าเพื่อให้ได้ข้อมูลที่มี ลักษณะเป็นเชิงเส้น ดังรูปที่ 2

$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot \langle \varphi(x_i), \varphi(x) \rangle + b$$

$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot K(x_i, x) + b$$

รูปที่ 2 จำลองการแปลงข้อมูลให้เป็นเส้นตรง

สำหรับ Kernel function จะมีด้วยกัน หลายประเภท ซึ่งผู้จัดทำเลือกใช้ Radial basis function kernel (RBF)

$$K(x_i, x) = exp\left[-\frac{\|x_i - x\|}{2\sigma^2}\right]$$

3. โครงสร้างของโครงงาน

3.1. เทคโนโลยีด้านซอฟต์แวร์

- Scikit learn เป็น Library เขียนโดยภาษา
 Python สำหรับพัฒนา Support Vector
 Regression ในการเทรนข้อมูล
- 2. Flask เป็น API ที่เชื่อมภาษา Python ในส่วน ของโมเดลที่ทำการเทรน เข้ากับเว็บไซต์เพื่อ แสดงผลลัพธ์
- Vue.js เป็น JavaScript Framework ที่ใช้พัฒนา ในส่วนของ Website application

3.2. หลักการทำงานของระบบ

รูปที่ 3 ภาพแสดงแผนผังการทำงานของระบบ

จากร**ูปที่ 1** เป็นแผนผังการทำงานของระบบ ซึ่ง ลำดับแรก Flask API จะทำการดึงข้อมูล Real-time จาก เว็บ fcsapi.com/ และจะส่งข้อมูลที่ได้ไปในส่วนของ SVR Model ที่ทำการฝึกสอนมาก่อนแล้ว เพื่อทำนายค่าเปิดและ ค่าปิดในอีก 24 ชม. ถัดไป โดยผลทำนายที่ได้จะส่งผ่าน Flask API ไปแสดงผลผ่านหน้าเว็บไซต์

3.2.1. การสร้างชุดฝึกสอน

ก่อนที่จะนำข้อมูลไปฝึกสอนระบบนั้น จะต้องทำ การเตรียมข้อมูล(Preprocessing) โดย ข้อมูลที่จะนำไป สร้างชุดฝึกสอนจะมีข้อมูลของ 3 คู่สกุลเงิน ดังต่อไปนี้ EUR/USD ,USD/JPY และ GBP/USD โดยข้อมูลของแต่ละ คู่สกุลเงินมีข้อมูล 9 ปีย้อนหลัง ที่มีกรอบเวลา(Time frame) ที่ 1 ชั่วโมง โดยจะนำข้อมูล 5 ปีย้อนหลัง คือ ม.ค 2015 - ธ.ค. 2020 นำข้อมูลมาจาก forexsb.com/

3.2.2 การเตรียมข้อมูล

โดยพื้นฐานแล้วข้อมูลของแต่ละคู่สกุลเงินจะ ประกอบไปด้วย Open, High, Low, Close และ Volume โดยจะนำค่าเหล่านี้มาสร้างอินดิเคเตอร์โดยใช้ทั้งหมด 13 อินดิเคเตอร์ [2] **ดังตารางที่ 1**

ตัวย่อ						
ลิงเดิเดเตลร์	คาบ					
O WHISTISHIO 3	110					
Heiken-Ashi	=					
Momentum	3,4,5,8,9,10					
Stochastic Oscillator	3,4,5,8,9,10					
Williams %R	6,7,8,9, 10					
Price Rate of Change	12,13,14,15					
Weighted Closing						
Price	=					
Accumulation						
Distribution Line	-					
Accumulation	(2,10), (3,12), (4,14),					
Distribution Oscillator	(5,16)					
Moving Average						
Convergence						
Divergence	(12,16,9)					
Commodity Channel						
Index	15					
Bollinger Bands	15					
Relative Strange index	6,8,10,12					
Slope	6					
	Momentum Stochastic Oscillator Williams %R Price Rate of Change Weighted Closing Price Accumulation Distribution Line Accumulation Distribution Oscillator Moving Average Convergence Divergence Commodity Channel Index Bollinger Bands Relative Strange index					

ตารางที่ 1 แสดงอินเดเคเตอร์ที่ใช้สร้างข้อมูลสำหรับระบบ

เมื่อทำการสร้างอินดิเคเตอร์ตาม**ตารางที่ 1** เสร็จ แล้ว จะนำค่าที่ได้มารวมกับค่าพื้นฐาน และทำการดรอป (Drop) ข้อมูลปริมาณการซื้อขาย(Volume) และกำหนดค่า เอาต์พุทคือค่า ราคาเปิด(Open) และราคาปิด(Close) ใน อีก 24 ชม. ข้างหน้าจะได้ **ตารางที่ 2**

ลำดับ คอลัมน์	ชื่อคอลัมน์	ลำดับ คอลัมน์	ชื่อ คอลัมน์
1-4	Open, High, Low, Close	38-40	MACD
5-10	МОМ	41	CCI
11-22	STOCH	42-44	BBANDS
23-27	WILLR	45-48	HA
28-31	PROCP	49-53	RSI
32	WPC	53	Slope
33	ADL	54-55	OUPUT
34-37	ADOSC		

ตารางที่ 2 อธิบายค่าในแต่ละลำดับคอลัมท์

3.2.3. การฝึกสอน

หลังจากผ่านการเตรียมข้อมูล มาแล้วจะเข้าสู่ ขั้นตอนการสร้างสมการทำนายโดยใช้ Support Vector Regression โดยก่อนจะทำการเข้าสมการทำนายนั้นจะทำ การ Features scaling ด้วยสมการ Standardization จากนั้นจะฝึกสอนด้วยวิธีการ k-Fold Cross – Validation โดยใช้ทั้งหมด 10 กลุ่ม(k=10)

3.2.4. การทดสอบ

เมื่อสร้างชุดฝึกสอนเสร็จแล้ว จะนำข้อมูลที่ไม่เคย ผ่านการฝึกสอน คือข้อมูลที่อยู่ในช่วงของ เดือน ม.ค. 2021 - ก.พ. 2021

3.2.5. การวัดความถูกต้อง

รายงานนี้วัดประสิทธิภาพการคำนวณของระบบ โดยพิจารณาจากสมการต่อไปนี้

1. Mean Absolute Error (MAE)

การวัดประสิทธิภาพด้วย MAE ใช้สำหรับหาความ ผิดพลาดเฉลี่ยของหน่วยสกุลเงิน(Pip) นั้นๆ กล่าวคือ 1 pip ในคู่สกุลเงินของ EUR/USD และ GBP/USD คือ 0.0001 หรือ 10^4 และสำหรับคู่สกุลเงิน USD/JPY จะ มีค่า 0.01 หรือ 10^2

$$MAE = \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{2} \left| y_{ij} - \hat{y}_{ij} \right| \times pip \right)$$

2. R-Squared (R²)

การวัดประสิทธิภาพด้วย R² ใช้วัดว่าโมเดลที่ ฝึกสอนมานั้นผลลัพธ์ที่ได้นี้มีความสมรูปกับ ข้อมูลมากน้อยอย่างไร

$$R^{2} = 1 - \left(\frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}\right)$$

3. Trend accuracy (%)

การหา Trend accuracy มีขั้นตอนในการคำนวณ 3 ขั้นตอน ลำดับแรก คือ การหา Simple Moving Average ในคาบที่ 24 จากนั้น ในลำดับที่สอง จะทำ การหาความชัน(Slope) โดยเฉลี่ยใน 48 ชม.ที่ผ่านมา จากนั้นลำดับสุดท้าย ทำการเปรียบเทียบว่าเป็น แนวโน้มขาขึ้นหรือแนวโน้มขาลง ถ้าความชันเป็นค่า บวกจะกำหนดให้เป็นแนวโน้มขาขึ้น และหากความชัน เป็นลบจะกำหนดให้เป็นแนวโน้มขาขึ้น

3.2.6. พารามิเตอร์ฝึกสอน

หลังจากที่ผ่านเตรียมข้อมูลมาแล้วจะเข้าสู่ขั้นตอน การฝึกสอนโดยใช้ Support Vector Regression โดยใช้ Scikit learn เป็น Library ที่นำเข้ามา โดยพารามิเตอร์ที่ ได้มาเกิดจากการปรับแต่ง(Tuning) ด้วยหลายๆพารามิเตอร์ โดยใช้ค่า MAE เป็นการเปรียบเทียบ จึงได้ดัง**ตารางที่ 3**

Kernel	С	ε	gamma
RBF	1	0.001	0.001

ตารางที่ 3 แสดงค่าพารามิเตอร์ที่ใช้ฝึกสอน

4. ขั้นตอนการใช้งาน และผลลัพธ์

ผลลัพธ์ของการทำนายจากโมเดลที่ถูกฝึกสอน จะ ถูกแสดงผ่านเว็บไซต์ที่ใช้พัฒนาโดย Vue.js โดยจะประกอบ ไปด้วย 2 หน้าหลัก ประกอบไปด้วย หน้าแสดงภาพรวม และหน้าแสดงผลทำนายของแต่ละสกุลเงิน โดยจะใช้ข้อมูล 1 เดือนย้อนหลังในการแสดงผลลัพธ์

4.1. หน้าแสดงภาพรวม

รูปที่ 4 แสดงตัวอย่างหน้าแสดงภาพรวม

โดยสำหรับหน้าแสดงภาพรวม จะแสดงถึง คำแนะนำในอีก 24 ซม. ถัดไปว่าจะควรทำการซื้อหรือการ ขายของแต่ละสกุลเงิน โดยจะมีเกณฑ์ที่ถึงความแข็งแรงของ แนวโน้มในรูปแบบเปอร์เซนต์ของความชัน ซึ่งความชันจะ คำนวณจาก Simple moving average ในคาบที่ 48 หรือ 2 วันที่แล้ว จากนั้นนำความชันที่ได้ แปลงช่วงของ ตัวเลขให้อยู่ในช่วง 0 – 1 โดยใช้สมการ

$$threshold = \frac{x^2}{c + x^2} * 100$$

โดยค่า c จะมีค่ากับ 0.4 ซึ่งเป็นค่าที่เกิดจาก ดุลพินิจของผู้จัดทำเอง หาก c มีค่ามากๆ ค่า threshold จะเข้าใกล้ 1 ช้ากว่า ที่ค่า c น้อยๆ

ระบบจะนำค่า threshold ที่แปลงได้มา เปรียบเทียบกับเกณฑ์ที่กำหนดไว้ตามการตัดสินใจของ ผู้จัดทำอีกครั้ง นั่นคือ ถ้า $threshol \geq 0.7$ จะให้ทำการ ซื้อในกรณีที่ x เป็นบวก และทำการขายในกรณีที่ x เป็นอบ

และ ในกรณีที่ threshold < 0.7 ระบบจะแนะนำให้รอ ดูสถานการณ์

4.2. หน้าแสดงผลทำนายของแต่ละสกุลเงิน

รูปที่ 5 ตัวอย่างส่วนหัวและส่วนกลางหน้าแสดงผลทำนาย

รูปที่ 6 ตัวอย่างส่วนท้ายหน้าแสดงผลทำนาย

ส่วนประกอบในหน้าแสดงผลทำนายจะประกอบ ไปด้วย 3 ส่วนหลักๆ คือ

- 1. ส่วนหัว จะแสดงค่าจากการวัดประสิทธิภาพ
- 2. ส่วนกลาง จะแสดงคำแนะนำจากหน้าภาพรวม
- 3. ส่วนท้าย จะแสดงถึงกราฟแท่งเทียนของค่าที่ ทำนาย และค่าจริง

5. สรุปและข้อแนะนำ

5.1. สรุป

- คู่สกุลเงิน	MAE	R ²	Trend%
EUR/USD	37	0.62	63
GBP/USD	52	0.84	60
USD/JPY	26	0.90	75

ตารางที่ 4 แสดงค่าการวัดประสิทธิภาพของระบบ

จาก**ตารางที่ 4** เมื่อเปรียบเทียบแล้ว พบว่า ค่า MAE ของคู่สกุลเงิน USD/JPY มีค่าต่ำสุดกว่าสกุลเงินอื่น ซึ่ง หมายถึงว่า มีความใกล้เคียงกับค่าจริงมากกว่า คู่สกุลเงินอื่น กลับกัน ค่า R² ของคู่สกุลเงิน GBP/USD มีค่าที่สูงกว่าอย่าง เห็นได้ชัดซึ่งหมายถึง โมเดลสามารถอธิบายความแปรปรวน ของตัวแปรที่ส่งผลต่อกันได้ดีกว่า และสุดท้าย ค่า Trend% มีค่าที่ใกล้เคียงกัน

5.2. ข้อแนะนำ

ในส่วนของระบบแสดงผลลัพธ์ส่วนที่ควรเพิ่มเติม คือระบบของฐานข้อมูลบันทึกผลลัพธ์การทำนายที่ผ่านมา ซึ่งระบบของผู้จัดทำสามารถดูย้อนหลังได้เพียงแค่ 1 เดือน เท่านั้น อีกทั้งระบบยังไม่ได้ Deploy เป็น Web application ทำให้คนอื่นๆ ไม่สามารถใช้งานได้ และสุดท้าย ระบบต้องทำการดึงข้อมูล Real-time จาก fcsapi.com ซึ่ง มีค่าใช้จ่ายหากระบบมีผู้ใช้งานมากๆ

ผลลัพธ์ที่ได้พบว่าค่าความถูกต้องของแต่ละมาตราวัดผลนั้นมีค่าที่ไม่สูงมาก เนื่องจากปัจจัยที่ส่งผลต่อการ เคลื่อนไหวตลาดฟอเร็กซ์นั้นไม่ได้มีเพียงแค่สถิติย้อนหลัง ของตลาดฟอเร็กซ์เป็นหลัก แต่ขึ้นเกี่ยวกับปัจจัยทางด้าน เศรษฐกิจของโลก รวมถึงข่าวสารต่างๆที่ส่งผลกระทบต่อ การเงิน ดังนั้นเมื่อนำไปใช้จริงแล้วทำให้ไม่สามารถเชื่อถือได้ มากนัก แต่โดยรวมแล้ว คู่สกุลเงิน GBP/USD และ USD/JPY เมื่อทำการทดลองลงทุน พบว่าแนวโน้มของเทรน มีความใกล้เคียงกับค่าความเป็นจริง เพราะค่าของ R² มีค่า สูงที่สุดเมื่อเทียบกับคู่สกุลเงินอื่น

เอกสารอ้างอิง

- [1] S. Saed, "Support Vector Machine -Regression (SVR)," [Online]. Available: https://www.saedsayad.com/support_vector machine reg.htm. [Accessed 09 03 2021].
- [2] A. A. Baasher and M. W. Fakhr, "FOREX Trend Classification using Machine Learning Techniques," Arab Academy for Science and Technology, Cairo, EGYPT, 2011.
- [3] A. J. Dautel, W. K. Härdle, S. Lessmann and H.-V. Seow, "Forex exchange rate forecasting using deep recurrent neural networks," Digit Finance, -, 2020.