МИНЕСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ НАВОИЙСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ КОМБИНАТ»

НАВОИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ ИНСТИТУТ

ХИМИКО-МЕТАЛЛУРГИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

≪,	Допущен в	с защите»:
Зав	.кафедрой	
«	»	<u>2019</u> г.

НАУЧНАЯ КВАЛИФИКАЦИОННАЯ ВЫПУСКНАЯ РАБОТА

Тема: НКМК ДК нинг 2-ГМЗ даги охактош куйдириш печлари чикинди газларининг иссиклигидан фойдаланиш имкониятларини тадкик килиш Разработал: Мустофаев Темур Эшмурод ўғли

Руководитель: проф. Бахронов Хошим Шайимович

Рецензент: нач. 201 цеха ОАО «Навоиазот»

Консультанты: по правилам техники безопасности при проведении опытов Турсунова И.Н.

НАВОИ - 2019 г.

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

МИНЕСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ НАВОИЙСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ КОМБИНАТ»

НАВОИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ ИНСТИТУТ
ХИМИКО-МЕТАЛЛУРГИЧЕСКИЙ ФАКУЛЬТЕТ
КАФЕДРА «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»
Утверждаю Зав.
каф «»2019 год
ЗАДАНИЕ
на научную квалификационную выпускную работу студенту: Мустофаев Темур Эшмурод ўғли 1. Тема выпускной работы: НКМК ДК нинг 2-ГМЗ даги охактош куйдириш печлари чикинди газларининг иссиклигидан фойдаланиш имкониятларини тадкик килиш
Утверждена приказом №4/13 ректора института от « 15 » 02 2019 г. 2. Срок сдачи студенткой законченной работы 23.06. 2018 г.
3. Исходные данные для выполнения выпускной работы: концентрация CO ₂ в газе на входе в абсорбер; абсорбент - вода.
4. Перечень подлежащих разработке вопросов или краткое содержание выпускной работы: разработка конструкции и экспериментальное исследование эффективности вихревого тепломассообменного аппарата
5. Перечень графического материала: <u>схема экспериментальной установки, результаты опытных данных.</u>
6. Консультанты по выпускной работе
5320400 – "Кимёвий технология" Беп

№ Ҳужжат.

Имзо

Сана

Вароқ

Ўзг.

МАЛАКАВИЙ БИТИРУВ ИШИ

№			сультант		Под	цпись
	Тема раздела		И.О.)	Зада	ание	Задание
	_		T III		учила	выполнил
1.	По технике безопасности	Type	сунова И.Н.			
2.						
3.						
4.						
5.						
7. I	Ілан выполнения выпускной	і работы	I			
№	Раздел выпускной работы		Дата выполн	ения		етки о
1					ВЫПО	олнении
1.						
2.3.						
3. 4.						
4. 5.						
<i>5</i> . 6.						
7.						
8.						
U.	I .					
9.						
9. 10. 11.						
9. 10. 11. 8. <i>J</i> 3aB	Дата выдачи задания «» . кафедрой соводитель дание получил(а) «»			_		
9. 10. 11. 8. Д Зав Рук	. кафедрой	2	019г.	_		
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.	_		
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.	-		
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.			
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.	-		
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.	-		
9. 10. 11. 8. Д Зав Рук	. кафедрой соводитель	2	019г.			
9. 10. 11. 8. Д Зав Рук	. кафедрой	2	019 г.			
9. 10. 11. 8. Д Зав Рук	. кафедрой	ГЛАВЛЕ	019 г.	вий те	ехноле	огия"
9. 10. 11. 8. Д Зав Рук	. кафедрой		019 г.			огия —

	ВВЕДЕНИЕ	5
ГЛАВА 1	ЛИТЕРАТУРНЫЙ ОБЗОР ПО УТИЛИЗАЦИИ ТЕПЛА	7
	ВЫБРОСНЫХ ГАЗОВ	
1.1	Виды оборудования для утилизации теплоты выбросных газов	7
1.2	Основные конструкции теплообменных аппаратов	8
1.3	Интенсификация теплообмена в трубчатых аппаратах	11
ГЛАВА 2	РАЗРАБОТКА КОНСТРУКЦИИ АППАРАТА И СХЕМЫ	19
	ИСПОЛЬЗОВАНИЯ ТЕПЛОТЫ ОТХОДЯЩИХ ГАЗОВ С	
	ЦЕЛЬЮ ПОЛУЧЕНИЯ ГОРЯЧЕЙ ВОДЫ	
2.1	Расчет рекуператора для утилизации тепла выбросных газов	19
2.2	Конструкция рекуператора для утилизации тепла выбросных газов	21
2.3	Исследования теплообменной эффективности и гидравлического	22
	сопротивления аппарата	
2.4	Разработка схемы использования тепла отходящих газов	36
3.	ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ	39
	ОПЫТОВ	
	ЗАКЛЮЧЕНИЕ	44
СПИСОК И	СПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	45

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

ВВЕДЕНИЕ

Одной из важнейших проблем металлургии, химической и легкой промышленности, особенно в производстве сыпучих материалов, сопровождающейся их термической обработкой в потоке газа, является проблема экологической безопасности, заключающаяся в необходимости утилизации теплоты и очистки выбросных нагретых газов.

Выбрасываемые в атмосферу участком обжига известняка ГМЗ-2 дымовые газы с высокой температурой являются причиной больших потерь тепла и, следовательно, отрицательно влияют на экологическую обстановку. В связи с этим утилизация тепла отходящих газов является одной из важных задач энергосбережения и рационального расходования природного газа, что способствует повышению экономической эффективности процесса обжига известняка и положительно влияет на показатели работы всего топливно-энергетического комплекса завода.

Изучение проблемы утилизации тепла выбросных газов с высоким тепловым потенциалом участка обжига известняка показало, что рекуперация тепловой энергии представляет определенные трудности, связанные с физико-химическими характеристиками рабочих сред и компоновкой оборудования. Утилизация тепла выбросных газов возможна только с помощью теплообменников поверхностного типа, в которых интенсивность теплопереноса низкая. Следовательно, требуется применять аппараты с большими размерами.

В связи с указанными выше обстоятельствами, основное тепло отходящих газов из одной печи целесообразно использовать для получения горячей воды, которая используется в системах горячего водо- и теплоснабжения, что способствует предотвращения расхода природного газа на существующие котлы водо- и теплоснабжения.

Выбор конструкции утилизатора теплоты определяется целым рядом факторов: рабочей температурой выбросных газов, составом и физическими свойствами рабочих сред, а также техническими условиями промышленной площадки. Трудности утилизации тепла выбросных газов, связанные с разработкой конструкций нетрадиционного теплообменного оборудования и пылеуловителя требует проведения научных исследований.

Целью второго этапа является: на основе теоретических и экспериментальных исследований разработать конструкции высокоэффективных теплообменных аппаратов и схем утилизации тепла выбросных газов.

Для достижения цели решаются следующие задачи:

- анализ научно-технической литературы в области утилизации теплоты выбросных газов;
- разработка конструкции теплообменного аппарата для рекуперации тепла выбросных газов с твердыми включениями, с целью получения горячей воды;

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

- проведение исследований с целью определения теплообменной эффективности и гидравлического сопротивления аппарата;
- разработка принципиальной схемы использования тепла отходящих газов, с целью их внедрения.

Утилизация тепла выбросных газов в поверхностном теплообменнике позволяет получить качественную горячую воду требуемых параметров для отопления и горячего водоснабжения площадки и отказаться от существующей в настоящее время системы горячего тепловодоснабжения с консервацией котельного оборудования, что должно обеспечить снижение расхода природного газа на объем потребления производственной котельной.

Реализация результатов работы позволяет снизить расход природного газа и повысить энергоэффективность всего топливно-энергетического комплекса ГМЗ-2.

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР ПО УТИЛИЗАЦИИ ТЕПЛА ВЫБРОСНЫХ ГАЗОВ

1.1. Виды оборудования для утилизации теплоты выбросных газов

Наиболее крупными потребителями топливо-энергетических ресурсов, но и самых крупных источников загрязнения воздушного бассейна газовыми выбросами являются металлургия и химическая промышленность. Выбросы газов исчисляются многими тысячами тонн в год. Вместе с тем эти газы являются высокоэнергетическими горючими ресурсами, которые могут быть утилизированы как непосредственно в технологическом процессе, так и направлены для выработки энергетических ресурсов (тепла, электроэнергии). Таким образом, в металлургии и химической промышленности имеются большие резервы экономии энергоресурсов с одновременным снижением загрязнения среды.

Для утилизации тепла газов в настоящее время используются аппараты поверхностного типа и аппараты с непосредственным контактом газов с охлаждающей жидкостью (контактные аппараты) [1, 2].

Контактные теплообменники позволяют глубоко охлаждать отходящие газы, не применяя металлических теплообменных поверхностей. Газовые контактные теплообменники применяют для приготовления подпиточной воды тепловых сетей и питательной воды котлов, для производства и горячего водоснабжения, для нагрева воздуха в системах воздушного отопления и системе кондиционирования воздуха а также для отопления теплиц. Поверхностью теплообмена в газовом контактном теплообменнике служит поверхность пленки, капель и струй воды. Между средами происходит массообмен: конденсация водяного пара, содержащегося в продуктах сгорания, или испарение части подаваемой воды, растворение газов в воде. Главное преимущество контактного теплообмена — возможность конденсации водяных паров из продуктов сгорания и использования выделяющейся при этом теплоты для нагрева воды. В процессе адиабатического испарения вода в газовом контактном теплообменнике может быть нагрета до придельной температуры, которая называется температурой мокрого термометра.

Устройство газового контактного теплообменника конструкций агрегата, за которым он установлен, и дымовой трубы, а также схемы дымоходов. Основная часть газового контактного теплообменника контактная камера, которая имеет большую поверхность контакта уходящих продуктов сгорания и воды и как следствие высокую интенсивность единице объема при определенном аэродинамическом теплообмена в По конструктивному исполнению газовые контактные теплообменники могут быть: форсуночные, насадочно-конвективные, пенные, вихревые, пленочно-конвективные, циклонные, насадочно-дисковые, насадочно-эрлифтные. Возможна и комбинация этих схем. В системах

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

утилизации широко распространены самые простые по конструкции форсуночные газовые контактные теплообменники. Однако при непосредственном контакте газов с водой возможно некоторое изменение физико-химических свойств воды за счет поглощения ею нежелательных газовых компонентов.

Изучение проблемы утилизации тепла выбросных газов с высоким тепловым потенциалом предприятий Навоийского промышленного региона показало, что рекуперация тепловой энергии представляет определенные трудности, связанные с физико-химическими характеристиками самих выбросных газов и их компонентов в отдельности. Для утилизации тепла газов часто приходиться использовать только теплообменники поверхностного типа, которые имеют ряд недостатков перед аппаратами с непосредственным контактом газов с охлаждающей жидкостью: меньшая поверхность контакта фаз, неглубокое охлаждение газов и т.д. Особенно, использование тепла отходящих газов для нагрева воздуха, требует применения поверхностного теплообменного оборудования большого габаритного размера.

Следовательно, тепло отходящих газов целесообразно использовать для получения горячей воды, которая используется в системах горячего водо- и теплоснабжения, что способствует снижению расхода тепловой энергии (электроэнергии, природного газа, греющего пара).

Выбросные газы производства извести имеют большую запыленность и при использовании аппаратов с непосредственным контактом теплоносителей нагреваемая вода сильно загрязняется. Следовательно такую воду невозможно использовать для тепловодоснабжения. Утилизировать тепло выбросных газов возможно только с помощью теплообменников поверхностного типа, несмотря на низкую интенсивность теплообмена. В связи с этим ниже рассмотрены основные конструкции рекуперативных теплообменников и методы интенсификации теплопереноса в них.

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

ЗАКЛЮЧЕНИЕ

По календарному плану работ договора был проведен анализ научнотехнической литературы по утилизации теплоты отходящих газов печей обжига известняка, на основе которого принято решение утилизировать теплоту отходящих газов с помощью змеевиковых (поверхностных) теплообменников и с использованием вихревого эффекта для интенсификации теплоотдачи от выбросных газов к наружной поверхности труб змеевика.

Разработана конструкция вихревого змеевикового теплообменника для утилизации теплоты выбросных газов. В этих аппаратах можно достичь значений коэффициента теплоотдачи от газа к поверхности трубы 180-200 Вт/(м²·К) против 40-60 Вт/(м²·К) в обычных аппаратах с осевой подачей газа, вследствие высоких значений скорости потока газа. Разработанный аппарат работает в режиме противотока, что позволяет получить нагретую воду с более высокой температурой.

Выполнен расчет рекуператора для утилизации тепла выбросных газов и определены тепловая нагрузка, требуемая поверхность теплообмена и длина теплообменных труб, а также диаметр теплообменника.

Проведены экспериментальные исследования интенсификации конвективного теплообмена в теплообменнике "труба в трубе" в условиях закрученного потока. Результаты опытов показали, с точки зрения энергетического использования системы, закручиватели с тангенциальным подводам воздуха, созданют сильно закрученные потоки, дают выигрыш в теплоотдаче на 70-110% по сравнению с опытными данными аппарата с осевой подачей газа при одинаковой затрате мощности.

Учитывая, что в выбросных газах печей обжига содержится большое количества пыли проведены также экспериментальные исследования внешнего теплообмена от псевдоожиженного слоя к поверхности трубы змеевика. Установлено, что интенсивность теплоотдачи от слоя полидисперсного зернистого материала к стенке трубы змеевика, псевдоожиженным воздухом, значительно выше, чем в аппарате без кипящего слоя и зависит от скорости газа и диаметра частиц.

Предложены схемы использования тепла отходящих газов. Указаны достоинства и недостатки приведенных схем.

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Касаткин А.Г. Основные процессы и аппараты химической технологии. / 12 изд. стереотип., дораб. -М.: Альянс, 2005. –750 с.
- 2. Плановский А.Н., Николаев П.И. Процессы и аппараты химической и нефтехимической технологии. 3-е изд. -М.: Химия, 1987. -540с.
- 3. Общий курс процессов и аппаратов химической технологии. Кн. 1,2. / В. Г. Айнштейн, М. К. Захаров, Г. А. Носов и др.; Под ред. В. Г. Айнштейна. М.: Логос; Высшая школа, 2003. -912 с.
- 4. Chris Long, Naser Sayma. Heat Transfer. 1st edition. -Brighton: Great Britain. Ventus Publishing, 2009. -156 p.
- 5. Дытнерский Ю. И. Процессы и аппараты химической технологии: Учебник для вузов. 2 е изд. Ч. 1, 2. -М.: Химия, 1995. -400 с; -368 с.
- 6. Фролов В. Ф. Лекции по курсу «Процессы и аппараты химической технологии». СПб.: XИМИЗДАТ, 2003. –608 с.
- 7. Методы расчета процессов и аппаратов химической технологии (Примеры и задачи): Учеб. Пособие для вузов / П. Г. Романков, В. Ф. Фролов, О. М. Флисюк, М. И. Курочкина. -СПб.: Химия, 1993. -496 с.
- 8. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учеб. Пособие для вузов / Под ред. П. Г. Романкова. 10 e изд. -Л.: Химия, 1987. -576 с.
- 9. Бахронов Х.Ш. Повышение эффективности выпаривания кристаллизующихся растворов с использованием псевдоожиженного слоя: Дис. . . . докт. техн. наук. –Ташкент: 2009. -270 с.
- 10. Коваленко Л.М., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. М.: Энергоиздат, 1986. 240 с.
- 11. Калинин Э.К., Дрейцер Г.А., Копп И.З. Современные методы интенсификации теплообмена при кипении // Изв. РАН, серия «Энергетика». Москва, 1992. № 3. –С. 121-136.
- 12. Дрейцер Г.А. Современное состояние исследований интенсификации теплообмена в каналах и перспективы создания компактных теплообменных аппаратов//Тепломассообмен ММФ-96: III Минский международный форум, 20-24 мая 1996 г. Минск, 1996. Т. 10, ч. 1. -С. 26-39.
- 13. Митрофанова О.В. Гидродинамика и теплообмен закрученных потоков в каналах с завихрителями // Теплофизика высоких температур. 2003, т. 41. -№ 4. -С. 587-633.
- 14. Технический отчет по результатам режимно-накладочных испытаний печи обжига известняка №8, установленной в цехе №4 ГМЗ-2 ЦРУ ГП НГМК, при сжигании природного газа. ООО "UZ-HELAMIN". Ташкент. 2016. -25 с.
- 15. Псевдоожижение / Под ред. И.Ф. Дэвидсона и Д. Харрисона. Пер. с англ. В.Г. Айнштейна, Н.И. Гельперина, В.Л. Новобратского. М., Химия, 1974. 782 с.

					5320400 – "Кимёвий технология"	Бет
					МАЛАКАВИЙ БИТИРУВ ИШИ	
Ўзг.	Вароқ	№ Ҳужжат.	Имзо	Сана		

- 16. Гельперин Н.И., Айнштейн В.Г., Кваша В.Б. Основы техники псевдоожижения. М.: Химия, 1968. 664 с.
- 17. Тодес О.М., Цитович О.Б. Аппараты с кипящим зернистым слоем: гидравлические и тепловые основы работы. Л.: Химия, 1981. 296 с.
- 18. Красных Ю.В. Оптимизация энергетических затрат на образование псевдоожиженного слоя при сохранении высокой интенсивности внешнего теплообмена / Промышленная энергетика. 2006. № 12. —С.30-33.
- 19. Ильин И.Н., Блумберга М.Д., Гришин Н.А., Об экономической эффективности контактных теплообменников с активной насадкой // Промышленная энергетика. 1986. -№8, -С.26.

	 						Бет
-						5320400 – "Кимёвий технология" МАЛАКАВИЙ БИТИРУВ ИШИ	Bom
Ў	'3 <i>2</i> .	Вароқ	№ Ҳужжат.	Имзо	Сана		