

News Articles Classification & Recommandation

Amine HADDOU

Marouan BOULLI

Content

- Context
 - Purpose
 - Dataset
- Classification task
 - Preprocessing
 - Vectorization
 - Models training and evaluation
- Recommendation system
 - Articles similarity
 - Evaluations
- Conclusion

Purpose

Dataset

BBC News Classsification dataset

(https://www.kaggle.com/competitions/learn-ai-bbc)

Train 1490 labelled articles

Business Politics

Sport

Tech

Test 735 non labelled articles

Entertainment

Dataset

Classification task

Preprocessing

Remove stop words

Remove punctuation

Lemmatization

Preprocessing

worldcom ex-boss launches defence lawyers defending former worldcom chief bernie ebbers against a battery of fraud charges have called a company whistleblower as their first witness. cynthia cooper worldcom s ex-head of internal accounting alerted directors to irregular accounting practices at the us telecoms giant in 2002.

worldcom exboss launch defence lawyer defending former worldcom chief bernie ebbers battery fraud charge called company whistleblower first witness cynthia cooper worldcom exhead internal accounting alerted director irregular accounting practice u telecom giant 2002

Vectorization

Count Vectorizer + TFIDF transformer

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

Doc2Vec

Models Training and Evaluation

Support Vector Machine

K-neighbors Classifier

Support Vector Machine

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

Training

70% of the dataset

Model TFIDF

	precision	recall	f1-score	support
business	1.00	0.97	0.98	117
entertainment	1.00	0.99	0.99	88
politics	0.93	0.97	0.95	93
sport	0.99	1.00	1.00	110
tech	0.95	0.95	0.95	84
accuracy			0.98	492
macro avg	0.97	0.97	0.97	492
weighted avg	0.98	0.98	0.98	492

K Neighbors Classifier

Classifier implementing the k-nearest neighbors vote.

70% of the dataset

Model TFIDF

	precision	recall	f1-score	support
business	0.97	0.96	0.96	117
entertainment	1.00	0.99	0.99	88
politics	0.92	0.98	0.95	93
sport	1.00	1.00	1.00	110
tech	0.97	0.93	0.95	84
accuracy			0.97	492
macro avg	0.97	0.97	0.97	492
weighted avg	0.97	0.97	0.97	492

Recommendation task

Articles similarity

World 1-

 $\cos(45^{\circ}) = 0.71$

Cosine similarity

Evaluations

Keywords extraction

LLM Evaluation

Keywords extraction

Extraction of keywords

Database Articles

Article Keywords

Articles Keywords

Obtains an accuracy: 34%

For every article, we compute the number of **common keywords** with the others

LLM Evaluation

10 random Articles from the same category

- 2 were redundants
- 1 was "unique"

Not enough to conclude but it gives an inidcation on the quality of the recommandation

Conclusion

- Classification + recommendation
- High classification accuracy
- Vectorization method is important
- Automated evaluation of the recommendation system is not easy
- Improvements:
 - o Provide the LLMs with the entire dataset to improve the reliability of evaluation
 - Consider performing an end-user evaluation
 - Test the recommendation without classifying the article

Thank you!