Programación Orientada a Objetos

Departamento de Computación, FCEyN, UBA

Cálculo de Objetos no tipado (ς cálculo) [Abadi&Cardelli,98]

Cálculo de Objetos no tipado (ς cálculo) [Abadi&Cardelli,98]

Ingredientes

- Objetos como única estructura computacional.
- Los objetos son una colección de atributos nombrados (registros).
- Todos los atributos son métodos.
- Cada método tiene una única variable ligada que representa a self (this) y un cuerpo que produce un resultado.
- Los objetos proveen dos operaciones:
 - envío de mensaje (invocación de un método)
 - redefinición de un método

Sintaxis

Sintaxis

Un objeto

$$o \stackrel{\text{def}}{=} [l_1 = \varsigma(x_1)[\], \ l_2 = \varsigma(x_2)x_2.l_1]$$

- o tiene dos métodos:
 - l_1 retorna un objeto vacío [].
 - l_2 es un método que envía el mensaje l_1 a self (representado por el parámetro x_2).

Atributos vs métodos

- el cálculo ς no incluye explícitamente atributos (campos/fields).
- ightharpoonup los atributos se representan como métodos que no utilizan al parámetro self. Por ejemplo, l_1 en

$$o \stackrel{\text{def}}{=} [l_1 = \varsigma(x_1)[\], \ l_2 = \varsigma(x_2)x_2.l_1]$$

- De esta manera,
 - el envío de un mensaje representa también a la selección de un atributo
 - la redefinición de un método representa también a la asignación de un atributo

Notación

- Atributo: $[\ldots, l=b, \ldots]$ es una abreviatura de $[\ldots, l=\varsigma(x)b, \ldots]$ cuando x no se usa en b.
- Asignación de atributo: o.l := b denota $o.l \Leftarrow \varsigma(x)b$ cuando x no se usa en b

Notación

- Atributo: $[\ldots, l=b,\ldots]$ es una abreviatura de $[\ldots, l=\varsigma(x)b,\ldots]$ cuando x no se usa en b.
- Asignación de atributo: o.l := b denota $o.l \Leftarrow \varsigma(x)b$ cuando x no se usa en b

Escribimos

$$o \stackrel{\text{def}}{=} [l_1 = [], \ l_2 = \varsigma(x_2)x_2.l_1]$$

en lugar de

$$o \stackrel{\text{def}}{=} [l_1 = \varsigma(x_1)[\], \ l_2 = \varsigma(x_2)x_2.l_1]$$

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

$$fv(\varsigma(x)b) =$$

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

$$\begin{array}{ll} \mathsf{fv}(\varsigma(x)b) & = \; \mathsf{fv}(b) \, \setminus \, \{x\} \\ \mathsf{fv}(x) & = \end{array}$$

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

```
\begin{array}{ll} \operatorname{fv}(\varsigma(x)b) &= \operatorname{fv}(b) \setminus \{x\} \\ \operatorname{fv}(x) &= \{x\} \\ \operatorname{fv}([l_i = \varsigma(x_i)b_i{}^{i \in 1..n}]) &= \end{array}
```

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

```
\begin{array}{ll} \operatorname{fv}(\varsigma(x)b) &= \operatorname{fv}(b) \setminus \{x\} \\ \operatorname{fv}(x) &= \{x\} \\ \operatorname{fv}([l_i = \varsigma(x_i)b_i{}^{i \in 1..n}]) &= \bigcup^{i \in 1..n} \operatorname{fv}(\varsigma(x_i)b_i) \\ \operatorname{fv}(o.l) &= \end{array}
```

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

```
\begin{array}{ll} \operatorname{fv}(\varsigma(x)b) &= \operatorname{fv}(b) \setminus \{x\} \\ \operatorname{fv}(x) &= \{x\} \\ \operatorname{fv}([l_i = \varsigma(x_i)b_i{}^{i \in 1..n}]) &= \bigcup_{i \in 1..n} \operatorname{fv}(\varsigma(x_i)b_i) \\ \operatorname{fv}(o.l) &= \operatorname{fv}(o) \\ \operatorname{fv}(o.l \Leftarrow \varsigma(x)b) &= \end{array}
```

 ς es un ligador para el parámetro self x_i en el cuerpo b_i de la expresión $\varsigma(x_i)b_i$

Definición

```
\begin{array}{ll} \operatorname{fv}(\varsigma(x)b) &= \operatorname{fv}(b) \setminus \{x\} \\ \operatorname{fv}(x) &= \{x\} \\ \operatorname{fv}([l_i = \varsigma(x_i)b_i{}^{i \in 1..n}]) &= \bigcup_{i \in 1..n} \operatorname{fv}(\varsigma(x_i)b_i) \\ \operatorname{fv}(o.l) &= \operatorname{fv}(o) \\ \operatorname{fv}(o.l \Leftarrow \varsigma(x)b) &= \operatorname{fv}(o.l) \cup \operatorname{fv}(\varsigma(x)b) \end{array}
```

Un término o es cerrado si $fv(o) = \emptyset$.

 $x\{c/x\}$

 $x\{c/x\} = c$ $y\{c/x\} =$

$$x\{c/x\} = c$$

$$y\{c/x\} = y$$

$$([l_i = \varsigma(x_i)b_i^{i\in 1..n}])\{c/x\} =$$

if
$$x \neq y$$

```
 x\{c/x\} = c 
 y\{c/x\} = y 	 if  x \neq y 
 ([l_i = \varsigma(x_i)b_i^{i\in 1..n}])\{c/x\} = [l_i = (\varsigma(x_i)b_i)\{c/x\}^{i\in 1..n}] 
 (o.l)\{c/x\} =
```

$$\begin{array}{lll} x\{c/x\} & = c \\ y\{c/x\} & = y & \text{if } x \neq y \\ ([l_i = \varsigma(x_i)b_i^{i\in 1..n}])\{c/x\} & = [l_i = (\varsigma(x_i)b_i)\{c/x\}^{i\in 1..n}] \\ (o.l)\{c/x\} & = (o\{c/x\}).l \\ (o.l \Leftarrow \varsigma(y)b)\{c/x\} & = \end{array}$$

```
 x\{c/x\} = c 
 y\{c/x\} = y 	 if  x \neq y 
 ([l_i = \varsigma(x_i)b_i^{i\in 1..n}])\{c/x\} = [l_i = (\varsigma(x_i)b_i)\{c/x\}^{i\in 1..n}] 
 (o.l)\{c/x\} = (o\{c/x\}).l 
 (o.l \Leftarrow \varsigma(y)b)\{c/x\} = (o\{c/x\}).l \Leftarrow ((\varsigma(y)b)\{c/x\}) 
 (\varsigma(y)b)\{c/x\} = (o\{c/x\}).l \Leftrightarrow ((\varsigma(y)b)\{c/x\})
```

```
 x\{c/x\} = c 
 y\{c/x\} = y 	 if  x \neq y 
 ([l_i = \varsigma(x_i)b_i^{i\in 1..n}])\{c/x\} = [l_i = (\varsigma(x_i)b_i)\{c/x\}^{i\in 1..n}] 
 (o.l)\{c/x\} = (o\{c/x\}).l 
 (o.l \Leftarrow \varsigma(y)b)\{c/x\} = (o\{c/x\}).l \Leftarrow ((\varsigma(y)b)\{c/x\}) 
 (\varsigma(y)b)\{c/x\} = \varsigma(y')(b\{y'/y\}\{c/x\}) 
 if  y' \notin \mathsf{fv}(\varsigma(y)b) \cup \mathsf{fv}(c) \cup \{x\}
```

Equivalencia de términos (\equiv)

- Los términos $\varsigma(x)b$ y $\varsigma(y)(b\{y/x\})$ con $y \notin \mathsf{fv}(b)$ se consideran equivalentes (α -conversión).
- Dos objetos que difieren en el orden de sus componentes son considerados equivalentes.
- ▶ Por ejemplo,

$$\begin{aligned} o_1 &\stackrel{\text{def}}{=} [l_1 = \varsigma(x_1)[\], \ l_2 = \varsigma(x_2) x_2.l_1] \\ o_2 &\stackrel{\text{def}}{=} [l_2 = \varsigma(x_3) x_3.l_1, \ l_1 = \varsigma(x_1)[\]] \end{aligned}$$

son equivalentes $(o_1 \equiv o_2)$.

Valores

$$v ::= [l_i = \varsigma(x_i)b_i^{i \in 1..n}]$$

Valores

$$v ::= [l_i = \varsigma(x_i)b_i{}^{i \in 1..n}]$$

Reducción big-step ----

Valores

$$v ::= [l_i = \varsigma(x_i)b_i^{i \in 1..n}]$$

Reducción big-step ----

$$\frac{o \longrightarrow v' \quad v' \equiv \begin{bmatrix} l_i = \varsigma(x_i) b_i^{i \in 1..n} \end{bmatrix} \quad b_j \{v'/x_j\} \longrightarrow v \quad j \in 1..n}{o.l_j \longrightarrow v} \text{ [Sel]}$$

Valores

$$v ::= [l_i = \varsigma(x_i)b_i^{i \in 1..n}]$$

Reducción big-step ----

$$\frac{}{v \longrightarrow v}$$
 [Obj]

$$\frac{o \longrightarrow v' \quad v' \equiv [l_i = \varsigma(x_i)b_i^{i \in 1..n}] \quad b_j \{v'/x_j\} \longrightarrow v \quad j \in 1..n}{o.l_i \longrightarrow v}$$
[Sel]

Valores

$$v ::= [l_i = \varsigma(x_i)b_i^{i \in 1..n}]$$

Reducción *big-step* →

$$\frac{}{v \longrightarrow v}$$
 [Obj]

$$\frac{o \longrightarrow v' \quad v' \equiv \begin{bmatrix} l_i = \varsigma(x_i)b_i^{i \in 1..n} \end{bmatrix} \quad b_j \{v'/x_j\} \longrightarrow v \quad j \in 1..n}{o.l_j \longrightarrow v} \text{[Sel]}$$

$$\frac{o \longrightarrow \left[l_i = \varsigma(x_i)b_i^{i \in 1..n}\right] \qquad j \in 1..n}{o.l_j \Leftarrow \varsigma(x)b \longrightarrow \left[l_j = \varsigma(x)b, \ l_i = \varsigma(x_i)b_i^{i \in 1..n - \{j\}}\right]} \text{[UPD]}$$

Ejemplos $[a = [\], l = \varsigma(x)x.a].l \longrightarrow ...$

Ejemplos $[a = [\], l = \varsigma(x)x.a].l \longrightarrow ...$

$$\underbrace{\begin{array}{c}
o \longrightarrow o \\
 & \underbrace{[]\{o/x\}} \longrightarrow []\\
 & \underbrace{[]} \\
 & \underbrace{[SEL]}
\end{array}}_{=o.a}$$

$$\underbrace{\begin{array}{c}
o \longrightarrow o \\
 & \underbrace{(x.a)\{o/x\}} \longrightarrow []\\
 & \underbrace{[]}
\end{array}}_{[SEL]}$$

$$\underbrace{\begin{array}{c}
o \longrightarrow o \\
 & \underbrace{(x.a)\{o/x\}} \longrightarrow []\\
 & \underbrace{[]}
\end{array}}_{[SEL]}$$

Ejemplos ([$a = [], l = \varsigma(x)x.a$]. $l \Leftarrow \varsigma(y)[]$). $l \longrightarrow ...$

Ejemplos ($[a = [], l = \varsigma(x)x.a].l \leftarrow \varsigma(y)[]).l \longrightarrow ...$

$$\frac{\overline{o \longrightarrow o}^{\text{[OBJ]}}}{u \longrightarrow [a = [\], l = [\]]} [\text{UPD}] \xrightarrow{=[\]} [\text{OBJ}]$$

$$\underbrace{([a = [\], l = \varsigma(x)x.a]}_{o} .l \Leftarrow \varsigma(y)[\]) .l \longrightarrow [\]} [\text{SEL}]$$

Ejemplos $[a = \varsigma(x)x.a].a \longrightarrow ...$

Ejemplos $[a = \varsigma(x)x.a].a \longrightarrow ...$

$$\frac{o \longrightarrow o \text{ [OBJ]}}{\underbrace{\sum_{=o.a}^{=o.a} \text{ [SEL]}}} \underbrace{\left[\frac{}{\sum_{x.a} \{o/x\}} \right]}_{o} \text{ [SEL]}$$

Ejemplos $[a = \varsigma(x)x.a].a \longrightarrow ...$

$$\underbrace{\frac{o \longrightarrow o}{[OBJ]} \underbrace{\overbrace{x.a\{o/x\}}^{=o.a} \longrightarrow [SEL]}^{\vdots}}_{[Set]}$$

$$\underbrace{[a = \varsigma(x)x.a] .a \longrightarrow}_{[Set]}$$

La evaluación de esta expresión se indefine (análogo a fix $\lambda x : \sigma.x$).

Ejemplo: Los naturales

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

```
\mathtt{zero} \stackrel{\mathsf{def}}{=}
```

Ejemplo: Los naturales

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

```
 \begin{array}{c} \mathtt{zero} \stackrel{\mathsf{def}}{=} \big[ \ iszero = \mathtt{true}, \\ pred &= \varsigma(x)x, \\ succ &= \varsigma(x)(x.iszero := \mathtt{false}).pred := x \big] \end{array}
```

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

```
zero \stackrel{\text{def}}{=} [ iszero = \texttt{true}, pred = \varsigma(x)x, succ = \varsigma(x)(x.iszero := \texttt{false}).pred := x] uno
```

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

```
 \begin{array}{c} \mathtt{zero} \stackrel{\mathsf{def}}{=} \big[ \ \mathit{iszero} = \mathtt{true}, \\ \mathit{pred} \ = \varsigma(x)x, \\ \mathit{succ} \ = \varsigma(x)(x.\mathit{iszero} := \mathtt{false}).\mathit{pred} := x \big] \\ \mathtt{uno} \stackrel{\mathsf{def}}{=} \ \mathtt{zero}.\mathit{succ} \\ \mathtt{uno} \longrightarrow \underbrace{\big[\mathit{iszero} = \mathtt{false}, \mathit{pred} = \mathtt{zero}, \mathit{succ} = \ldots\big]}_{\mathtt{uno}'} \end{aligned}
```

dos

- Asumir que existen los objetos true y false que corresponden a los valores booleanos
- Luego

Las funciones

• Es posible codificar los términos del cálculo λ (no tipado).

$$M ::= MN \mid \lambda x.M \mid x$$

- Idea:
 - Representar a una función como un objeto [arg = ..., val = ...].
 - Al aplicar una función, primero se asigna el valor del argumento al atributo arg y luego se envía el mensaje val que evalúa el cuerpo de la función.
 - (fv) se traduce en $(o_f.arg := o_v).val$

$$[\![x]\!] \qquad \stackrel{\text{\tiny def}}{=} x$$

```
\llbracket x \rrbracket \qquad \stackrel{\text{def}}{=} x
               \llbracket MN \rrbracket \ \stackrel{\mathsf{def}}{=} \ (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
               [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                             arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
```

```
\llbracket x \rrbracket \qquad \stackrel{\text{def}}{=} x
               \llbracket MN \rrbracket \ \stackrel{\mathsf{def}}{=} \ (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
               [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                            arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                                   def
```

```
\llbracket x \rrbracket \qquad \stackrel{\text{def}}{=} x
               \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
               [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                             arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                                    \stackrel{\mathsf{def}}{=} \lceil val = \varsigma(y) \llbracket x \rrbracket \{y.arg/x\}, arg = \varsigma(y)y.arg \rfloor
```

```
[x] \stackrel{\text{def}}{=} x
              \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
             [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                         arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                                \stackrel{\mathsf{def}}{=} \quad \llbracket val = \varsigma(y) \llbracket x \rrbracket \{y.arg/x\}, \, arg = \varsigma(y)y.arg \rrbracket
    [\![\lambda x.x]\!]
                                 = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
```

```
[x] \stackrel{\text{def}}{=} x
             \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
            [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                      arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                              \stackrel{\mathsf{def}}{=} \quad \llbracket val = \varsigma(y) \llbracket x \rrbracket \{y.arg/x\}, arg = \varsigma(y)y.arg \rrbracket
    [\![\lambda x.x]\!]
                               = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
                               = [val = \varsigma(y)y.arq, arq = \varsigma(y)y.arq]
```

```
[x] \stackrel{\text{def}}{=} x
             \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
             [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [val = \varsigma(y)[\![M]\!] \{y.arg/x\},
                                        arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                               \stackrel{\mathsf{def}}{=} \quad \llbracket val = \varsigma(y) \llbracket x \rrbracket \{y.arg/x\}, \, arg = \varsigma(y)y.arg \rrbracket
    [\![\lambda x.x]\!]
                                = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
                                = [val = \varsigma(y)y.arq, arq = \varsigma(y)y.arq]
    [(\lambda x.x) M] \stackrel{\mathsf{def}}{=}
```

```
[x] \stackrel{\text{def}}{=} x
            \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
           [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [\![val = \varsigma(y)]\![M]\!] \{y.arg/x\},
                                    arg = \varsigma(y)y.arg ] y \notin fv(M)
(\lambda x.x)v
                            \stackrel{\text{def}}{=} [val = \varsigma(y)[x]\{y.arg/x\}, arg = \varsigma(y)y.arg]
    [\![\lambda x.x]\!]
                             = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
                             = [val = \varsigma(y)y.arq, arq = \varsigma(y)y.arq]
   [\![(\lambda x.x)\ M]\!] \stackrel{\text{def}}{=} ([\![\lambda x.x]\!].arg := [\![M]\!]).val
```

```
[x] \stackrel{\text{def}}{=} x
             \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
            [\![\lambda x.M]\!] \stackrel{\mathsf{def}}{=} [\![val = \varsigma(y)]\![M]\!] \{y.arg/x\},
                                    arg = \varsigma(y)y.arg ] y \notin fv(M)
 (\lambda x.x)v
                             \stackrel{\mathsf{def}}{=} \left[ val = \varsigma(y) [x] \{ y.arg/x \}, arg = \varsigma(y)y.arg \right]
     [\![\lambda x.x]\!]
                             = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
                             = [val = \varsigma(y)y.arq, arq = \varsigma(y)y.arq]
    [(\lambda x.x) \ M] \stackrel{\text{def}}{=} ([\lambda x.x].arg := [M]).val
                              = ([val = \varsigma(x)x.arg, arg = \varsigma(x)x.arg].
                                                                                     arg := [M] \cdot val
                            \longrightarrow \llbracket M \rrbracket
siempre que \llbracket M \rrbracket sea un objeto.
```

```
[x] \stackrel{\text{def}}{=} x
            \llbracket MN \rrbracket \stackrel{\text{def}}{=} (\llbracket M \rrbracket.arg := \llbracket N \rrbracket).val
            [\![\lambda x.M]\!] \stackrel{\text{def}}{=} [\![val = \varsigma(y)]\![M]\!] \{y.arg/x\},
                                   arg = \varsigma(y)y.arg ] y \notin fv(M)
 (\lambda x.x)v
                            \stackrel{\mathsf{def}}{=} \left[ val = \varsigma(y) [x] \{ y.arg/x \}, arg = \varsigma(y)y.arg \right]
     [\![\lambda x.x]\!]
                            = [val = \varsigma(y)x\{y.arg/x\}, arg = \varsigma(y)y.arg]
                             = [val = \varsigma(y)y.arq, arq = \varsigma(y)y.arq]
    [(\lambda x.x) \ M] \stackrel{\text{def}}{=} ([\lambda x.x].arg := [M]).val
                             = ([val = \varsigma(x)x.arg, arg = \varsigma(x)x.arg].
                                                                                   arg := [M] \cdot val
                           \longrightarrow \llbracket M \rrbracket
siempre que \llbracket M \rrbracket sea un objeto.
Qué sucede al evaluar [\![\lambda x.x]\!].val?
```

Métodos con parámetros

Un método que espera un parámetro es un método cuya definición es (un objeto que codifica a) una función.

$$\varsigma(y)[\![\lambda x.M]\!]$$

Métodos con parámetros

Un método que espera un parámetro es un método cuya definición es (un objeto que codifica a) una función.

$$\varsigma(y)[\![\lambda x.M]\!]$$

Notación

- $\lambda(x)M$ en lugar de $[\![\lambda x.M]\!]$
- M(N) en lugar de $[\![MN]\!]$

Ejemplo: Punto en el plano

 Un punto en el plano que puede ser desplazado y se encuentra inicialmente en el origen de coordenadas.

```
\begin{split} \text{origen} &\stackrel{\text{def}}{=} \left[ \begin{array}{l} x &= 0, \\ y &= 0, \\ mv\_x &= \varsigma(p)\lambda(d_x)p.x := p.x + d_x, \\ mv\_y &= \varsigma(p)\lambda(d_y)p.y := p.y + d_y \end{array} \right] \end{split}
```

Ejemplo: Punto en el plano

Un punto en el plano que puede ser desplazado y se encuentra inicialmente en el origen de coordenadas.

$$\begin{split} \text{origen} &\stackrel{\text{def}}{=} \left[\begin{array}{l} x &= 0, \\ y &= 0, \\ mv_x &= \varsigma(p)\lambda(d_x)p.x := p.x + d_x, \\ mv_y &= \varsigma(p)\lambda(d_y)p.y := p.y + d_y \end{array} \right] \end{split}$$

Luego,

```
\begin{array}{ccc} \mathtt{unidad} & \stackrel{\mathsf{def}}{=} & \mathtt{origen}.mv\_x(1).mv\_y(1) \\ & \longrightarrow & \end{array}
```

Ejemplo: Punto en el plano

Un punto en el plano que puede ser desplazado y se encuentra inicialmente en el origen de coordenadas.

$$\begin{aligned} \text{origen} &\stackrel{\text{def}}{=} \left[\begin{array}{l} x &= 0, \\ y &= 0, \\ mv_x &= \varsigma(p)\lambda(d_x)p.x := p.x + d_x, \\ mv_y &= \varsigma(p)\lambda(d_y)p.y := p.y + d_y \end{array} \right] \end{aligned}$$

Luego,

$$\begin{array}{ll} \text{unidad} & \stackrel{\text{def}}{=} & \text{origen.} mv_{-}x(1).mv_{-}y(1) \\ & \longrightarrow & \left[x=1,y=1,mv_{-}x=\dots,mv_{-}y=\dots\right] \end{array}$$

- Un trait es una colección de ciertos métodos.
- (Stateless) Traits no especifican variables de estado ni acceden al estado.

- Un trait es una colección de ciertos métodos.
- (Stateless) Traits no especifican variables de estado ni acceden al estado.

$$\begin{array}{c} \operatorname{CompT} \stackrel{\operatorname{def}}{=} \left[\ eq = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) == 0, \\ lt = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) < 0 \end{array} \right]$$

- Los podemos pensar como una colección de pre-métodos:
 - ▶ pre-método: $\varsigma(\mathbf{t})\lambda(y)b$ con $\mathbf{t} \notin \mathsf{fv}(\lambda(y)b)$ (no usan el parámetro self \mathbf{t}).
 - Recordar que en este caso podemos omitir $\varsigma(t)$ y escribir $\lambda(y)b$.
 - Luego, $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ es un trait.

- Los podemos pensar como una colección de pre-métodos:
 - ▶ pre-método: $\varsigma(\mathbf{t})\lambda(y)b$ con $\mathbf{t} \notin \mathsf{fv}(\lambda(y)b)$ (no usan el parámetro self \mathbf{t}).
 - Recordar que en este caso podemos omitir $\varsigma(t)$ y escribir $\lambda(y)b$.
 - Luego, $t = [l_i = \lambda(y_i)b_i^{i \in 1..n}]$ es un trait.
- A partir de un trait $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ podemos definir un constructor de objetos (cuando t es completo).

- Los podemos pensar como una colección de pre-métodos:
 - ▶ pre-método: $\varsigma(t)\lambda(y)b$ con $t \notin fv(\lambda(y)b)$ (no usan el parámetro self t).
 - Recordar que en este caso podemos omitir $\varsigma(t)$ y escribir $\lambda(y)b$.
 - Luego, $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ es un trait.
- A partir de un trait $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ podemos definir un constructor de objetos (cuando t es completo).

$$new \stackrel{\text{def}}{=} \lambda(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n}]$$

- Los podemos pensar como una colección de pre-métodos:
 - ▶ pre-método: $\varsigma(t)\lambda(y)b$ con $t \notin fv(\lambda(y)b)$ (no usan el parámetro self t).
 - Recordar que en este caso podemos omitir $\varsigma(t)$ y escribir $\lambda(y)b$.
 - Luego, $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ es un trait.
- A partir de un trait $t = [l_i = \lambda(y_i)b_i^{i \in 1...n}]$ podemos definir un constructor de objetos (cuando t es completo).

$$new \stackrel{\text{def}}{=} \lambda(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n}]$$

$$o \stackrel{\text{def}}{=} new \text{ (t)}$$

$$\approx [l_i = \varsigma(s)t.l_i(s)^{i \in 1..n}]$$

$$\approx [l_i = \varsigma(y_i)b_i^{i \in 1..n}]$$

$$\begin{array}{c} \operatorname{CompT} & \stackrel{\operatorname{def}}{=} \left[\ eq = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) == 0, \\ lt = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) < 0 \end{array} \right] \\ new & \stackrel{\operatorname{def}}{=} \ \lambda(z) \left[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n} \right] \\ new \ (\operatorname{CompT}) \approx \\ \end{array}$$

```
\begin{aligned} &\operatorname{CompT} & \stackrel{\operatorname{def}}{=} \left[ \ eq = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) == 0, \\ & lt = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) < 0 \end{aligned} \\ &new & \stackrel{\operatorname{def}}{=} \lambda(z) \left[ l_i = \varsigma(s)z.l_i(s)^{i \in 1...n} \right] \\ &new \; (\operatorname{CompT}) \approx & \begin{bmatrix} \ eq = \varsigma(s)\operatorname{CompT}.eq(s) \\ & lt = \varsigma(s)\operatorname{CompT}.lt(s) \ \end{bmatrix} \\ &\approx & \begin{bmatrix} \ eq = \varsigma(s)\lambda(y) \; (s.comp(y)) == 0, \\ & lt = \varsigma(s)\lambda(y) \; (s.comp(y)) < 0 \ \end{bmatrix} \end{aligned}
```

```
\begin{array}{ll} \operatorname{CompT} & \stackrel{\operatorname{def}}{=} \left[ \ eq = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) == 0, \\ & lt = \varsigma(t)\lambda(x)\lambda(y)(x.comp(y)) < 0 \end{array} \right] \\ new & \stackrel{\operatorname{def}}{=} \ \lambda(z) \left[ l_i = \varsigma(s)z.l_i(s)^{i \in 1..n} \right] \\ new & (\operatorname{CompT}) \approx \begin{array}{ll} \left[ \ eq = \varsigma(s)\operatorname{CompT}.eq(s) \\ & lt = \varsigma(s)\operatorname{CompT}.lt(s) \end{array} \right] \\ & \approx \begin{array}{ll} \left[ \ eq = \varsigma(s)\lambda(y) \ (s.comp(y)) == 0, \\ & lt = \varsigma(s)\lambda(y) \ (s.comp(y)) < 0 \end{array} \right] \end{array}
```

 Este objeto es inutilizable (porque CompT no es completo ya que comp no es un método de CompT).

Clases

Una clase es un trait (completo) que además provee un método new.

$$\mathbf{c} \stackrel{\text{def}}{=} \left[\begin{array}{l} new = \varsigma(z) [l_i = \varsigma(s) z. l_i(s)^{i \in 1..n}], \\ l_i = \lambda(s) b_i^{i \in 1..n} \end{array} \right]$$

Luego,

$$o \stackrel{\text{def}}{=} c.new$$

$$\longrightarrow [l_i = \varsigma(s)c.l_i(s)^{i \in 1..n}]$$

$$\approx [l_i = \varsigma(s)b_i^{i \in 1..n}]$$

Clase Contador

```
Contador \stackrel{\text{def}}{=} \left[ \begin{array}{l} new = \varsigma(z) [ \ v = \varsigma(s)z.v(s), \\ inc = \varsigma(s)z.inc(s), \\ get = \varsigma(s)z.get(s) ], \\ v = \lambda(s)0, \\ inc = \lambda(s)s.v := s.v + 1, \\ get = \lambda(s)s.v \end{array} \right]
```

Sea la clase

$$\mathbf{c} \stackrel{\text{def}}{=} [new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i\in 1..n}],$$
$$l_i = \lambda(s)b_i^{i\in 1..n}]$$

Sea la clase

$$\mathbf{c} \stackrel{\text{def}}{=} [new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n}],$$
$$l_i = \lambda(s)b_i^{i \in 1..n}]$$

> Se desea definir c' como subclase de c que agrega los pre-métodos $\lambda(s)b_k{}^{k\in n+1..n+m}$

Sea la clase

$$\mathbf{c} \stackrel{\text{def}}{=} [new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n}],$$
$$l_i = \lambda(s)b_i^{i \in 1..n}]$$

• Se desea definir c' como subclase de c que agrega los pre-métodos $\lambda(s)b_k{}^{k\in n+1..n+m}$

$$\mathbf{c}' \stackrel{\mathrm{def}}{=} \begin{bmatrix} new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n+m}], \\ l_j = \mathbf{c}.l_j^{j \in 1..n} \\ l_k = \lambda(s)b_k^{k \in n+1..n+m} \end{bmatrix}$$

Sea la clase

$$\mathbf{c} \stackrel{\text{def}}{=} [new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n}],$$
$$l_i = \lambda(s)b_i^{i \in 1..n}]$$

> Se desea definir c' como subclase de c que agrega los pre-métodos $\lambda(s)b_k{}^{k\in n+1..n+m}$

$$\mathbf{c}' \stackrel{\mathrm{def}}{=} \begin{bmatrix} new = \varsigma(z)[l_i = \varsigma(s)z.l_i(s)^{i \in 1..n+m}], \\ l_j = \mathbf{c}.l_j^{j \in 1..n} \\ l_k = \lambda(s)b_k^{k \in n+1..n+m} \end{bmatrix}$$

▶ En una subclase también se puede redefinir pre-métodos.