

${\bf Bagian}\,\,{\bf I-Soal}$

1. Kemampuan Dasar

Terdiri dari 10 soal isian singkat. Setiap soal dijawab dengan menuliskan **jawaban akhirnya saja** dan dipastikan merupakan **bilangan bulat**. Soal yang dijawab benar bernilai 2 poin, sedangkan soal yang dijawab salah atau tidak dijawab bernilai 0 poin.

......

1 Sebuah persegi dibagi menjadi dua persegi panjang seperti terlihat pada gambar. Diketahui hasil penjumlahan kedua keliling persegi panjang adalah 60, maka luas persegi adalah

- 2 Diketahui ada 6 pilihan jalan yang dapat digunakan untuk bepergian dari kota A ke kota B dan ada 8 pilihan jalan yang dapat digunakan dari kota B ke kota C. Jika seseorang akan bepergian dari kota A ke kota C melalui kota B dan pulang kembali lagi ke kota A melalui jalan-jalan yang berbeda dari ketiga saat pergi, banyaknya cara memilih jalan yang dapat dilalui adalah
- Pada papan tertulis 90 bilangan asli $1, 1, \dots, a, b$ (ada sebanyak 88 bilangan 1). Hasil penjumlahan seluruh bilangan di papan adalah A dan demikian juga hasil perkalian semua bilangan di papan adalah A. Nilai A adalah
- $oxed{4}$ Misalkan a,b bilangan bulat positif yang tidak memiliki faktor persekutuan selain 1. Jika berlaku

$$\frac{1+2+3+\dots+104}{3+4+5+\dots+106} = \frac{a}{b},$$

maka nilai dari a+b adalah

- **5** Bilangan OSK adalah bilangan 4 angka yang tidak dimulai dengan angka 0 dan hasil penjumlahan semua digitnya adalah 8. Sebagai contoh, 2024 merupakan bilangan OSK. Banyaknya bilangan OSK adalah
- **6** Misalkan u_1, u_2, u_3, \cdots suatu barisan geometri dengan $u_1 > u_2$. Jika $u_2 = 8$ dan $u_5 + u_7 = \frac{17}{4}u_6$, nilai dari u_1 adalah

 $\fbox{\textbf{7}}$ Diberikan segiempat ABCD dengan luas segitiga AED sama dengan luas segitiga BEC. Jika $AB=50, AE=45, \, \mathrm{dan} \, AC=108, \, \mathrm{maka \ panjang} \, CD \, \mathrm{adalah} \, . \, . \, .$

- **8** Banyak bilangan dua digit \overline{ab} dengan $a,b\neq 0$ sehingga $\overline{ab}+\overline{ba}$ merupakan bilangan kelipatan 66 adalah
- $oldsymbol{9}$ Misalkan k adalah bilangan bulat positif terkecil kelipatan 2024 yang memiliki 28 faktor positif. Sisa hasil bagi k oleh 100 adalah
- **10** Misalkan x, y bilangan real positif dengan x > y. Diketahui bahwa $x^2 + y^2 = \frac{545}{272}xy$, maka $\frac{x+y}{x-y}$ adalah

2. Kemampuan Lanjut

Terdiri dari 10 soal isian singkat. Setiap soal dijawab dengan menuliskan **jawaban akhirnya saja** dan dipastikan merupakan **bilangan bulat**. Soal yang dijawab benar bernilai 4 poin, soal yang dijawab salah bernilai -1 poin, dan soal yang tidak dijawab bernilai 0 poin.

Suatu segienam beraturan disisipkan ke dalam sebuah persegi panjang seperti terlihat pada gambar di bawah ini. Jika luas A dan B berturut-turut adalah 24 dan 23, maka luas segienam beraturan adalah

- Banyaknya himpunan bagian A dari $\{24,25,26,\cdots,35\}$ sehingga hasil penjumlahan unsur terbesar dan terkecil dari A sama dengan 59 adalah
- Untuk setiap bilangan asli n, misalkan f(n) menyatakan faktor ganjil terbesar dari n dan $p(n) = f(n) + f(n+1) + \cdots + f(2n)$. Jika p(n) = 8145, maka nilai dari n adalah
- Diberikan suku banyak $P(x) = x^3 + Dx^2 + Ex + 1$ dan P(-1) = 4. Jika a, b, c merupakan akar-akar dari P(x) = 0 memenuhi

$$(a^2 - bc) (b^2 - ca) (c^2 - ab) = 40.$$

Maka nilai dari $(D+E)^2$ adalah

- Banyaknya barisan bilangan bulat positif dengan enam suku a_1, a_2, \cdots, a_6 yang mungkin sehingga $1 \le a_1, a_2, a_3, a_4, a_5, a_6 \le 4$ dan tidak ada dua suku berurutan yang jumlahnya 4 adalah
- Diberikan sebuah segitiga ABC yang siku-siku pada sudut B. Lingkaran ω merupakan lingkaran dalam segitiga ABC yang meyinggung sisi BC pada titik D. Titik E terletak pada ω sehingga PE merupakan diameter ω . Perpanjangan garis AE memotong ω kedua kalinya di titik F dan

memotong sisi BC di titik G. Apabila EF=3 dan FG=4, maka panjang AE dapat dinyatakan dalam bentuk $\frac{p}{r}\sqrt{q}$ dengan p,q,r merupakan bilangan bulat positif, satu-satunya faktor kuadrat dari q adalah 1, dan FPB(p,r)=1. Nilai dari p+q+r adalah

[a,b,c] Diketahui a,b,c merupakan bilangan real positif yang memenuhi

$$a+b+c=\frac{32}{a}+\frac{32}{b}+\frac{32}{c}=24.$$

Nilai terbesar yang mungkin dicapai oleh $\frac{a^2+32}{a}$ adalah

Untuk setiap bilangan real x, notasi $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar kurang dari atau sama dengan x. Sebagai contoh, $\lfloor 1,1 \rfloor = 1$, $\lfloor 3 \rfloor = 3$, dan sebagainya. Jika ada tepat sebanyak 1000 bilangan berbeda pada barisan

$$\left\lfloor \frac{1^2}{2024} \right\rfloor, \left\lfloor \frac{2^2}{2024} \right\rfloor, \left\lfloor \frac{3^2}{2024} \right\rfloor, \cdots, \left\lfloor \frac{n^2}{2024} \right\rfloor,$$

maka nilai dari n adalah

- **19** Banyaknya pemetaan $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ sehingga $f(f(x)) \in \{2, 4\}$ untuk setiap $x \in \{1, 2, 3, 4, 5\}$ adalah
- Pada segitiga ABC, titik D dan E terletak pada garis BC sehingga B, D, E, C terletak pada urutan tersebut. Diketahui bahwa BD:DE:EC=4:2:5 dan garis-garis AD,AE membagi tiga $\angle BAC$ sama besar. Garis AD dan AE masing-masing memotong lingkaran luar ABC pada titik E dan E0. Nilai dari E1 dapat dinyatakan dalam bentuk E2 untuk suatu bilangan bulat positif E3 dan E4 yang relatif prima, nilai dari E4 adalah

Bagian II – Solusi

3. Solusi Kemampuan Dasar

1 Sebuah persegi dibagi menjadi dua persegi panjang seperti terlihat pada gambar. Diketahui hasil penjumlahan kedua keliling persegi panjang adalah 60, maka luas persegi adalah

Jawab: 100

Misalkan panjang sisi persegi adalah s.

Perhatikan bahwa

$$60 = (AB + BF + FE + EA) + (EF + FC + CD + DE)$$

$$= (AB + FE + EF + CD) + (BF + FC) + (EA + DE)$$

$$= 4s + s + s$$

$$= 6s$$

sehingga s = 10. Jadi, luasnya adalah $s^2 = \boxed{100}$.

.....

2 Diketahui ada 6 pilihan jalan yang dapat digunakan untuk bepergian dari kota A ke kota B dan ada 8 pilihan jalan yang dapat digunakan dari kota B ke kota C. Jika seseorang akan bepergian dari kota A ke kota C melalui kota B dan pulang kembali lagi ke kota A melalui jalan-jalan yang berbeda dari ketiga saat pergi, banyaknya cara memilih jalan yang dapat dilalui adalah

Jawab: 1680

Karena $A \to B$ ada 6 cara dan $B \to C$ ada 8 cara, maka $A \to B \to C$ ada 6 · 8 = 48 cara. Untuk kembali pulang, $C \to B$ ada 7 cara karena salah satu jalan telah dilalui, kemudian $B \to A$ ada 5 cara sehingga $C \to B \to A$ ada 7 · 5 = 35 cara. Jadi, total kemungkinannya adalah 48 · 35 = 1680.

.....

Pada papan tertulis 90 bilangan asli $1, 1, \dots, a, b$ (ada sebanyak 88 bilangan 1). Hasil penjumlahan seluruh bilangan di papan adalah A dan demikian juga hasil perkalian semua bilangan di papan adalah A. Nilai A adalah

Jawab: 180

Dari sini diperoleh

$$1 \cdot 1 \cdot \ldots \cdot 1 \cdot a \cdot b = A = \underbrace{1 + 1 + \cdots + 1}_{88} + a + b$$

sehingga ab = 88 + a + b. Ini berarti (a - 1)(b - 1) = 89 sehingga (a - 1, b - 1) = (1, 89), (89, 1). Diperoleh (a, b) = (2, 90), (90, 2) sehingga $A = ab = \boxed{180}$.

.....

 $oxed{4}$ Misalkan a,b bilangan bulat positif yang tidak memiliki faktor persekutuan selain 1. Jika berlaku

$$\frac{1+2+3+\dots+104}{3+4+5+\dots+106} = \frac{a}{b},$$

maka nilai dari a + b adalah

Jawab: 214

Perhatikan bahwa $1+2+\cdots+104=\frac{104(104+1)}{2}=52\cdot 105$. Sedangkan, $3+4+5+\cdots+106$ merupakan deret aritmetikadengan beda 1 sehingga

$$3 + 4 + \dots + 106 = \frac{104}{2}(2 \cdot 3 + 103 \cdot 1) = 52 \cdot 109.$$

Jadi, $\frac{a}{b} = \frac{52 \cdot 105}{52 \cdot 109} = \frac{105}{109}$ sehingga a = 105 dan b = 109. Jadi, a + b = 214.

.....

5 Bilangan OSK adalah bilangan 4 angka yang tidak dimulai dengan angka 0 dan hasil penjumlahan semua digitnya adalah 8. Sebagai contoh, 2024 merupakan bilangan OSK. Banyaknya bilangan OSK adalah

Jawab:

Misalkan bilangan empat digit tersebut adalah abcd yang mana harus memenuhi a+b+c+d=8.

Star and Bar Theorem

Diberikan bilangan bulat $k \ge 0$. Banyaknya solusi bilangan bulat tak negatif (x_1, x_2, \dots, x_n) yang memenuhi $x_1 + x_2 + \dots + x_n = k$ adalah

$$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}.$$

Menurut Star and Bar Theorem, banyaknya solusi bilangan bulat tak negatif (a,b,c,d) yang memenuhi adalah

 $\binom{8+4-1}{8} = \binom{11}{8} = \frac{11 \cdot 10 \cdot 9 \cdot 8!}{8! \cdot 3!} = 165.$

Namun, dari semua solusi ini ada kasus di mana a = 0. Maka banyaknya solusi yang terhitung sebelumnya perlu dikurangi saat a = 0, yaitu banyaknya solusi b + c + d = 8, ada sebanyak

$$\binom{8+3-1}{8} = \binom{10}{8} = \frac{10 \cdot 9 \cdot 8!}{8! \cdot 2!} = 45.$$

Jadi, banyaknya bilangan empat digit abcd yang memenuhi adalah $165-45=\boxed{120}$.

.....

6 Misalkan u_1, u_2, u_3, \cdots suatu barisan geometri dengan $u_1 > u_2$. Jika $u_2 = 8$ dan $u_5 + u_7 = \frac{17}{4}u_6$, nilai dari u_1 adalah

Jawab: 32

Misalkan $u_1 = a$ dan r sebagai rasio barisan geometri tersebut, maka $u_n = ar^{n-1}$. Karena $u_1 > u_2$, maka r < 1 dan $a \ne 0$. Ini berarti $\frac{17}{4}ar^5 = ar^4 + ar^6$ sehingga

$$0 = 4r^{6} - 17r^{5} + 4r^{4} = r^{4} (4r^{2} - 17r + 4) = r^{4} (4r - 1)(r - 4).$$

Ini brrarti r=0 atau $r=\frac{1}{4}$. Mengingat $8=u_2=ar$ yang merupakan tak nol, maka haruslah $r\neq 0$ sehingga $r=\frac{1}{4}$. Ini berarti $8=ar=\frac{a}{4}$ yang berarti $u_1=a=\boxed{32}$.

.....

 $\fbox{\textbf{7}}$ Diberikan segiempat ABCD dengan luas segitiga AED sama dengan luas segitiga BEC. Jika $AB=50, AE=45, \, \mathrm{dan} \, AC=108, \, \mathrm{maka \, panjang} \, CD \, \mathrm{adalah} \, . \, . \, .$

Jawab: 70

Perhatikan bahwa EC = 108 - 45 = 63. Karena [AED] = [BEC], maka

$$1 = \frac{[AED]}{[BEC]} = \frac{\frac{1}{2} \cdot EB \cdot EC \cdot \sin \angle BEC}{\frac{1}{2} \cdot EA \cdot ED \cdot \sin \angle AED} = \frac{EB}{EA} \cdot \frac{EC}{ED}$$

sehingga diperoleh $\frac{EB}{EA} = \frac{ED}{EC}$. Karena $\angle AEB = \angle DEC$, maka $\triangle EAB \sim \triangle ECD$ (SAS). Jadi, $\frac{CD}{AB} = \frac{EC}{EA} = \frac{63}{45} = \frac{7}{5}$ sehingga $CD = \frac{7}{5}AB = \boxed{70}$.

.....

8 Banyak bilangan dua digit \overline{ab} dengan $a, b \neq 0$ sehingga $\overline{ab} + \overline{ba}$ merupakan bilangan kelipatan 66 adalah

Jawab: 13

Perhatikan bahwa

$$66 \mid \overline{ab} + \overline{ba} = (10a + b) + (10b + a) = 11(a + b)$$

sehingga 6 | a+b. Karena $a+b \le 18$, maka semua kemungkinan nilai a+b adalah 6, 12, atau 18. Perhatikan bahwa untuk a+b=6 ada 5 solusi: (1,5), (2,4), (3,3), (4,2), (5,5), untuk a+b=12 ada 7 solusi: $(3,9), (4,8), \dots, (8,4), (9,3)$, dan untuk a+b=18 ada 1 solusi yaitu (9,9). Jadi, total ada $5+7+1=\boxed{13}$ solusi.

.....

 $oldsymbol{9}$ Misalkan k adalah bilangan bulat positif terkecil kelipatan 2024 yang memiliki 28 faktor positif. Sisa hasil bagi k oleh 100 adalah

Jawab: 92

Misalkan $k = 2^a 11^b 23^c N$ di mana a, b, c, N bilangan asli degan $a \ge 3, b \ge 1, c \ge 1$, dan N tidak habis dibagi 2,11, maupun 23. Ini berarti FPB(2, N) = FPB(11, N) = FPB(23, N) = 1.

Notasikan $\tau(n)$ sebagai banyak faktor positif dari bilangan asli n yang mana bersifat multiplikatif, yaitu jika FPB(a,b)=1 berlaku $\tau(ab)=\tau(a)\tau(b)$. Dari sini diperoleh

$$28 = \tau(k) = \tau\left(2^a 11^b 23^c N\right) = \tau\left(2^a\right) \tau\left(11^b\right) \tau\left(23^c\right) \tau(N) = (a+1)(b+1)(c+1)\tau(N).$$

Tinjau $a+1 \ge 4, b+1 \ge 2, c+1 \ge 2$, ini berarti hanyalah mungkin saat

$$a+1=7$$
, $b+1=c+1=2$, $\tau(N)=1$

sehingga a=6, b=c=1, dan N=1. Jadi, $k=2^6\cdot 11^1\cdot 23^1$ sebagai satu-satunya solusi. Diperoleh sisa bagi saat dibagi 100 adalah

$$k \equiv 2^6 \cdot 11 \cdot 23 \equiv 64 \cdot 253 \equiv 64 \cdot 53 \equiv 3392 \equiv \boxed{92} \pmod{100}.$$

......

10 Misalkan x, y bilangan real positif dengan x > y. Diketahui bahwa $x^2 + y^2 = \frac{545}{272}xy$, maka $\frac{x+y}{x-y}$ adalah

Jawab: 33

Perhatikan bahwa

$$(x-y)^2 = x^2 + y^2 - 2xy = \frac{545}{272}xy - 2xy = \frac{545 - 544}{272}xy = \frac{xy}{272}.$$

Di sisi lain,

$$(x+y)^2 = x^2 + y^2 + 2xy = \frac{545}{272}xy + 2xy = \frac{545 + 544}{272}xy = \frac{1089}{272}xy.$$

Dari sini diperoleh

$$\left(\frac{x+y}{x-y}\right)^2 = \frac{(x+y)^2}{(x-y)^2} = \frac{\frac{1089}{272}xy}{\frac{xy}{272}} = 1089.$$

Karena x > y > 0, tentu $\frac{x+y}{x-y} > 0$ sehingga $\frac{x+y}{x-y} = \sqrt{1089} = \boxed{33}$

4. Solusi Kemampuan Lanjut

Suatu segienam beraturan disisipkan ke dalam sebuah persegi panjang seperti terlihat pada gambar di bawah ini. Jika luas A dan B berturut-turut adalah 24 dan 23, maka luas segienam beraturan adalah

Jawab:

Beri nama titik-titik sudut sebagaimana gambar di bawah dan misalkan $\angle WXS = x$.

Perhatikan bahwa besar setiap sudut interior segi enam adalah $\frac{180^{\circ}\cdot(6-4)}{6}=120^{\circ}$. Perhatikan bahwa YT=YX, maka $\angle YXT=\angle YTX=\frac{180^{\circ}-120^{\circ}}{2}=30^{\circ}$ dan $\angle TXW=120^{\circ}-30^{\circ}=90^{\circ}$. Misalkan $\angle WXS=x$, maka $\angle PXT=180^{\circ}-x-90^{\circ}=90^{\circ}-x$ dan $\angle PYX=180^{\circ}-90^{\circ}-(90^{\circ}-x)=x$. Karena $\angle SXW=\angle PTX$ dan $\angle TPX=\angle SXSW$, maka $\triangle PTX\sim\triangle SXW$. Misalkan SX=a

dan SW=b, maka $\frac{PT}{PX}=\frac{SX}{SW}=\frac{a}{b}$. Misalkan PT=ka dan PX=kb. Perhatikan bahwa $\angle WXU=60^\circ=\angle TUX$ dan

$$\angle TUQ = \angle XUQ - 60^{\circ} = \angle UXS - 60^{\circ} = \angle SXW = x.$$

Maka diperoleh $\angle UTQ = \angle XWS$, $\angle TUQ = \angle WXS$, dan XW = TU sehingga $\triangle TQU \cong \triangle XSW$ (ASA). Jadi, panjang UQ = SX = a dan TQ = SW = b. Dari Teorema Pythagoras SXW dan PTX berlaku $XW = \sqrt{a^2 + b^2}$ dan $XT = k\sqrt{a^2 + b^2}$. Perhatikan bahwa panjang $YT = TX = XW = \sqrt{a^2 + b^2}$. Dari aturan cosinus $\triangle XYT$, maka

$$XT^{2} = YT^{2} + YX^{2} - 2 \cdot YT \cdot YX \cos 120^{\circ}$$

$$k^{2} (a^{2} + b^{2}) = a^{2} + b^{2} + a^{2} + b^{2} - 2 (a^{2} + b^{2}) \left(-\frac{1}{2}\right)$$

$$k^{2} (a^{2} + b^{2}) = 3 (a^{2} + b^{2})$$

sehingga $k=\sqrt{3}.$ Karena 24 = $[SXW]=\frac{ab}{2},$ maka ab=48dan

$$[PTX] = \frac{ka \cdot kb}{2} = k^2 \cdot \frac{ab}{2} = 3(24) = 72$$

sehingga [TXY] = 72 - 23 = 49. Dari sini diperoleh pula

$$49 = [TXY] = \frac{1}{2} \cdot YT \cdot YX \cdot \sin 120^{\circ} = \frac{1}{2} \cdot \left(a^2 + b^2\right) \cdot \frac{\sqrt{3}}{2} \implies a^2 + b^2 = \frac{196}{\sqrt{3}}.$$

Perhatikan bahwa segienam tersebut dibentuk dari enam segitiga sama sisi dengan panjang sisi $\sqrt{a^2+b^2}$, maka luas segienam tersebut adalah

$$6 \cdot \frac{\left(\sqrt{a^2 + b^2}\right)^2}{4} \sqrt{3} = 6 \cdot \frac{a^2 + b^2}{4} \cdot \sqrt{3} = 6 \cdot \frac{\frac{196}{\sqrt{3}}}{4} \cdot \sqrt{3} = \boxed{294}.$$

.....

Banyaknya himpunan bagian A dari $\{24, 25, 26, \cdots, 35\}$ sehingga hasil penjumlahan unsur terbesar dan terkecil dari A sama dengan 59 adalah

Jawab: 1365

Misalkan $a \in A$ anggota terkecil dari A, maka anggota terbesar dari A haruslah 59-a untuk $24 \le a \le 29$. Untuk a=29 hanya ada 1 kemungkinan. Untuk $24 \le a \le 28$, di sini untuk anggota lainnya dipilih dari interval [a+1,58-a] yang mana ada 58-a-(a+1)+1=58-2a anggota. Karena anggota lainnya memiliki 2 kemungkinan: menjadi anggota atau tidak menjadi

anggota dari A, maka ada 2^{58-2a} pemilihan. Dengan menjumlahkan semua kemungkinan untuk $24 \le a \le 29$, banyak kemungkinannya adalah

$$2^{10} + 2^8 + 2^6 + 2^4 + 2^2 + 1 = \boxed{1365}$$

.....

13 Untuk setiap bilangan asli n, misalkan f(n) menyatakan faktor ganjil terbesar dari n dan $p(n) = f(n) + f(n+1) + \cdots + f(2n)$. Jika p(n) = 8145, maka nilai dari n adalah

Jawab: 90

Perhatikan bahwa jika n ganjil maka f(n) = n. Perhatikan bahwa

$$p(n+1) = f(n+1) + f(n+2) + \dots + f(2n) + f(2n+1) + f(2n+2)$$
$$p(n) = f(n) + f(n+1) + \dots + f(2n).$$

Kurangkan kedua persamaan, diperoleh p(n+1)-p(n)=f(2n+1)+f(2n+2)-f(n). Perhatikan bahwa faktor ganjil terbesar 2n+2=2(n+1) hanya bergantung dari faktor ganjil terbesar dari n+1. Karena 2n+1 juga ganjil, maka

$$p(n+1) - p(n) = 2n + 1 + f(n+1) - f(n) \iff p(n+1) - f(n+1) = (p(n) - f(n)) + 2n + 1.$$

Misalkan q(n) = p(n) - f(n), maka q(n+1) = q(n) + 2n + 1 sehingga q(n+1) - q(n) = 2n + 1 untuk setiap bilangan asli n. Perhatikan bahwa

$$q(n+1) - q(n) = 2n + 1$$

 $q(n) - q(n-1) = 2n - 1$
 \vdots
 $q(2) - q(1) = 3$

dan jumlahkan semuanya diperoleh

$$q(n+1) - q(1) = 3 + 5 + \dots + (2n-1) + (2n+1) = \frac{n}{2}(2(3) + (n-1)(2)) = n(n+2).$$

Di sisi lain, q(1) = p(1) - f(1) = f(1) + f(2) - f(1) = f(2) = 1 sehingga q(n+1) = n(n+2) + 1 sehingga $q(n) = (n-1)(n+1) - 1 = n^2$ untuk setiap bilangan asli $n \ge 2$. Jadi, $p(n) = f(n) + n^2$. Akan ditentukan nilai n sehingga p(n) = 8145, ini berarti $f(n) + n^2 = 8145$ sehingga $n \le 90$. Perhatikan bahwa untuk n = 90 memenuhi karena $f(90) + 90^2 = 45 + 8100 = 8145$, sedangkan $f(89) + 89^2 = 89 + 7921 = 8010 < 8145$ sehingga tentu $f(n) + n^2 < 8145$ untuk $n \le 89$. Jadi, $n = \boxed{90}$.

.....

Diberikan suku banyak $P(x) = x^3 + Dx^2 + Ex + 1$ dan P(-1) = 4. Jika a, b, c merupakan akar-akar dari P(x) = 0 memenuhi

$$(a^2 - bc) (b^2 - ca) (c^2 - ab) = 40.$$

Maka nilai dari $(D+E)^2$ adalah

Jawab: 8

Perhatikan bahwa 4 = P(-1) = -1 + D - E + 1 sehingga D - E = 4. Dari Teorema Vieta, maka a + b + c = -D, ab + bc + ca = E, dan abc = -1. Kalikan kedua ruas pada persamaan yang diberikan,

$$abc (a^{2} - bc) (b^{2} - ca) (c^{2} - ab) = 40abc$$

$$(a^{3} - abc) (b^{3} - abc) (c^{3} - abc) = -40$$

$$(a^{3} + 1) (b^{3} + 1) (b^{3} + 1) = -40$$

$$(a + 1) (a^{2} - a + 1) (b + 1) (b^{2} - b + 1) (c + 1) (c^{2} - c + 1) = -40.$$

Karena a, b, c akar-akar dari P(x), maka P(x) = (x - a)(x - b)(x - c). Ini berarti

$$4 = P(-1) = (-1 - a)(-1 - b)(-1 - c) = -(1 + a)(1 + b)(1 + c)$$

sehingga (a+1)(b+1)(c+1) = -4. Ini berarti

$$(a^2 - a + 1) (b^2 - b + 1) (c^2 - c + 1) = 10.$$

Tinjau ω dan γ merupakan akar dari $X^2-X+1=0$. Dari Teorema Vieta tentu $\omega+\gamma=1$ dan $\omega\gamma=1$. Ini berarti $X^2-X+1=(X-\omega)(X-\gamma)$ sehingga

$$(a^2 - a + 1) (b^2 - b + 1) (c^2 - c + 1) = (a - \omega)(a - \gamma)(b - \omega)(b - \gamma)(c - \omega)(c - \gamma)$$
$$= [(a - \omega)(b - \omega)(c - \omega)][(a - \gamma)(b - \gamma)(c - \gamma)].$$

Tinjau bahwa

$$P(\omega) = (\omega - a)(\omega - b)(\omega - c) = -(a - \omega)(b - \omega)(c - \omega).$$

Ini berarti

$$10 = (-P(\omega))(-P(\gamma)) = (\omega^3 + D\omega^2 + E\omega + 1)(\gamma^3 + D\gamma^2 + E\gamma + 1).$$

Perhatikan bahwa $X^2-X+1=0$ berarti $X^2=X-1$. Ini berarti $X^3=X^2-X=(X-1)-X=-1$. Ini berarti $\omega^3=\gamma^3=-1$ sehingga

$$10 = (-1 + D\omega^2 + E\omega + 1)(-1 + D\gamma^2 + E\gamma + 1)$$

$$= \omega\gamma(D\omega + E)(D\gamma + E)$$

$$= D^2\omega\gamma + DE(\omega + \gamma) + E^2$$

$$= D^2 + DE + E^2$$

$$= (D - E)^2 + 3DE$$

$$= 16 + 3DE$$

sehingga DE = -2. Jadi, $(D + E)^2 = (D - E)^2 + 4DE = 16 + 4(-2) = 8$.

.....

Banyaknya barisan bilangan bulat positif dengan enam suku a_1, a_2, \dots, a_6 yang mungkin sehingga $1 \le a_1, a_2, a_3, a_4, a_5, a_6 \le 4$ dan tidak ada dua suku berurutan yang jumlahnya 4 adalah

Jawab: 1549

Akan diselesaikan secara rekursif, definisikan:

- A_n sebagai banyaknya barisan a_1, a_2, \dots, a_n dengan $1 \le a_i \le 4$ dengan $a_n = 1$ atau $a_n = 3$, serta tidak ada dua suku berurutan yang jumlahnya 4.
- B_n sebagai banyaknya barisan a_1, a_2, \dots, a_n dengan $1 \le a_i \le 4$ dengan $a_n = 2$, serta tidak ada dua suku berurutan yang jumlahnya 4.
- C_n sebagai banyaknya barisan a_1, a_2, \dots, a_n dengan $1 \le a_i \le 4$ dengan $a_n = 4$, serta tidak ada dua suku berurutan yang jumlahnya 4.

Di sini $A_1 = 2$ dan $B_1 = C_1 = 1$ serta $S_n = A_n + B_n + C_n$ sebagai total keseluruhannya. Sekarang akan ditentukan formula rekursif dari A_n, B_n, C_n .

- Akan ditinjau untuk A_{n+1} . Tinjau barisan $a_1, a_2, \dots, a_n, a_{n+1}$ dengan $a_{n+1} = 1$ atau $a_{n+1} = 3$. Jika $a_{n+1} = 1$, maka a_n bernilai 2 atau 4 sehingga ada $B_n + C_n$ cara, atau $a_n = 1$ (*). Jika $a_{n+1} = 3$, maka a_n bernilai 2 atau 4 sehingga ada $B_n + C_n$ cara, atau $a_n = 3$ (**). Menjumlahkan (*) dan (**) memberikan ada $A_{n+1} = A_n + 2B_n + 2C_n$.
- Akan ditinjau untuk B_{n+1} . Tinjau barisan $a_1, a_2, \dots, a_n, 2$. Ini berarti $a_n = 1$ atau $a_n = 3$ yang mana ada A_n kemungkinan, atau $a_n = 4$ yang mana ada C_n kemungkinan. Jadi, $B_{n+1} = A_n + C_n$.

• Akan ditinjau untuk C_{n+1} . Tinjau barisan $a_1, a_2, \dots, a_n, 4$, ini berarti a_n bernilai bebas sehingga $C_{n+1} = A_n + B_n + C_n$.

Diperoleh

$$A_{n+1} = A_n + 2B_n + 2C_n$$
, $B_{n+1} = A_n + C_n$, $C_{n+1} = A_n + B_n + C_n$, $A_1 = 2, B_1 = C_1 = 1$.

Misalkan $S_n = A_n + B_n + C_n = C_{n+1}$ sebagai banyaknya barisan dengan n suku sesuai syarat soal, tinjau

$$S_{n+1} = A_{n+1} + B_{n+1} + C_{n+1}$$

$$= 3A_n + 3B_n + 4C_n$$

$$= 3(A_n + B_n + C_n) + C_n$$

$$= 3S_n + S_{n-1}$$

dengan $S_1 = 2 + 1 + 1 = 4$ dan $S_2 = 6 + 3 + 4 = 13$. Diperoleh

$$S_3 = 3(13) + 4 = 43,$$

 $S_4 = 3(43) + 13) = 142,$
 $S_5 = 3(142) + 43 = 469,$
 $S_6 = 3(469) + 142 = 1549.$

Jadi, ada 1549 kemungkinan.

.....

Diberikan sebuah segitiga ABC yang siku-siku pada sudut B. Lingkaran ω merupakan lingkaran dalam segitiga ABC yang meyinggung sisi BC pada titik D. Titik E terletak pada ω sehingga DE merupakan diameter ω . Perpanjangan garis AE memotong ω kedua kalinya di titik E dan memotong sisi E di titik E. Apabila EF = 3 dan E dan panjang E dapat dinyatakan dalam bentuk $\frac{p}{r}\sqrt{q}$ dengan E0, E1. Nilai dari E3 dan E4 adalah

Jawab: 14

Misalkan I titik pusat lingkaran dalam dan P titik singgung lingkaran dalam dengan AB. Dari Power of Point berlaku $GD^2 = GF \cdot GE = 4 \cdot 7 = 28$ sehingga $GD = 2\sqrt{7}$. Dari Teorema Pythagoras, $DE = \sqrt{GE^2 - DG^2} = \sqrt{49 - 28} = \sqrt{21}$ yang berarti $ID = IE = IP = \frac{\sqrt{21}}{2}$. Perhatikan bahwa $\angle EDG = \angle ABG$ dan $\angle GDE = \angle BGA$ sehingga $\triangle GDE \sim \triangle GBA$. Diperoleh

$$\frac{GE}{EA} = \frac{GD}{DB} = \frac{2\sqrt{7}}{\frac{\sqrt{21}}{2}} = \frac{4}{\sqrt{3}}$$

.....

[17] Diketahui a, b, c merupakan bilangan real positif yang memenuhi

$$a+b+c = \frac{32}{a} + \frac{32}{b} + \frac{32}{c} = 24.$$

Nilai terbesar yang mungkin dicapai oleh $\frac{a^2+32}{a}$ adalah

Jawab: 28

Perhatikan bahwa dari Cauchy Schwarz Engel,

$$\frac{3}{4} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{1}{a} + \frac{(1+1)^2}{b+c} = \frac{1}{a} + \frac{4}{24-a} = \frac{24+3a}{24a-a^2}.$$

Bongkar,

$$3(24a - a^2) \ge 4(24 + 3a) \iff 24a - a^2 \ge 32 + 4a$$

sehingga $a^2+32=32a$ atau $a+\frac{32}{a}\geq 28$. Kondisi kesamaan terjadi saat $\frac{1}{b}=\frac{1}{c}\iff b=c$, atau jika diselesaikan salah satunya dapat tercapai saat $(a,b,c)=\left(10+2\sqrt{17},7-\sqrt{17},7-\sqrt{17}\right)$. Jadi, nilai terbesarnya 28.

.....

Untuk setiap bilangan real x, notasi $\lfloor x \rfloor$ menyatakan bilangan bulat terbesar kurang dari atau sama dengan x. Sebagai contoh, $\lfloor 1,1 \rfloor = 1$, $\lfloor 3 \rfloor = 3$, dan sebagainya. Jika ada tepat sebanyak 1000 bilangan berbeda pada barisan

$$\left\lfloor \frac{1^2}{2024} \right\rfloor, \left\lfloor \frac{2^2}{2024} \right\rfloor, \left\lfloor \frac{3^2}{2024} \right\rfloor, \cdots, \left\lfloor \frac{n^2}{2024} \right\rfloor,$$

maka nilai dari n adalah

Jawab: 1505

Akan digunakan sifat fungsi floow, yaitu $x-1 < \lfloor x \rfloor \le x$. Misalkan $f(a) = \left\lfloor \frac{a^2}{2024} \right\rfloor$, maka $a_1 = a_2 = \cdots = a_{44} = 0$. Perhatikan bahwa

$$f(a+1) - f(a) > \frac{(a+1)^2}{2024} - \frac{a^2}{2024} = \frac{2a+1}{2024}.$$

Jika $a \ge 1012$, maka f(a+1) - f(a) > 0 sehingga $f(1012), f(1013), \cdots$ semuanya akan menghasilkan nilai-nilai yang berbeda. Jika a < 1012, maka

$$f(a+1) - f(a) \le \frac{(a+1)^2}{2024} - \left(\frac{a^2}{2024} - 1\right) = \frac{2a+1}{2024} + 1 < 2.$$

Ini berarti $0 \le f(a+1) - f(a) \le 1$ atau $f(a+1) \le f(a) + 1$. Karena f(1011) = 505 dan f(1012) = 506, ini berarti $f(1), f(2), \dots, f(1011)$ mencakup 506 nilai yang berbeda (dari 0 hingga 505). Agar ada 1000 solusi, maka diperlukan 1000 - 506 = 494 nilai berbeda lagi dari $f(1012), f(1013), \dots$. Jadi, nilai n yang diminta adalah $1012 + 494 - 1 = \boxed{1505}$.

.....

Banyaknya pemetaan $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ sehingga $f(f(x)) \in \{2, 4\}$ untuk setiap $x \in \{1, 2, 3, 4, 5\}$ adalah

Jawab: 188

Misalkan $A = \{2,4\}$ dan $S = \{1,2,3,4,5\}$. Andaikan untuk setiap $a \in A$ berlaku $f(a) \notin A$. Misalkan b = f(a) dengan $b \notin A$, tinjau $f(b) = f(f(a)) \in A$. Namun, ini memberikan $f(f(b)) \notin A$ sehingga kontradiksi.

Kasus 1: Tepat satu elemen di A terpetakan ke A

Tanpa mengurangi keumuman $f(2) \in A$ (di akhir perlu dikalikan dengan 2 karena kasus $f(4) \in A$). Jika f(2) = 4, maka $f(4) = f(f(2)) \in A$ sehingga kontradiksi. Jadi, haruslah f(2) = 2. Agar terpenuhinya $f(f(x)) \in A$, maka ada dari f(1), f(3), f(5) harus elemen A.

- Jika semua 1,3,5 terpetakan ke A. Andaikan ada $t \in \{1,3,5\}$ yang memenuhi f(t) = 4, maka $f(f(t)) = f(4) \notin A$ yang mana kontradiksi. Haruslah f(1) = f(3) = f(5) = 2 sehingga $f(4) \in \{1,3,5\}$ yang ada 3 kemungkinan. Jadi, ada 3 solusi.
- Jika tepat dua dari 1,3,5 terpetakan ke A, tanpa mengurangi keumuman $f(1), f(3) \in A$. Ini haruslah $f(1), f(3) \neq 4$ karena jika tidak, $f(4) = f(f(t)) \notin A$ untuk suatu $t \in \{1,3\}$. Jadi, f(1) = f(3) = 2. Kemudian, diperoleh juga $f(4), f(5) \in \{1,3\}$ sehingga ada $2 \cdot 2 = 4$ kemungkinan. Jadi, ada $\binom{3}{2} \cdot 4 = 12$ kemungkinan.
- Jika tepat satu dari 1,3,5 terpetakan ke A, tanpa mengurangi keumuman $f(1) \in A$. Ini berakibat f(3) = f(5) = f(4) = 1 agar terpenuhi $f(f(x)) \in A$ sehingga hanya ada 1 solusi. Jadi, ada $\binom{3}{1} \cdot 1 = 3$ solusi.

Jadi, dalam kasus ini ada 2(3+12+3)=36 keungkinan.

Kasus 2: Semua elemen di A terpetakan ke A

Tanpa mengurangi keumuman, misalkan f(2) = f(4) = 2 (untuk kasus sisanya analog, di akhir perlu dikalikan dengan $2^2 = 4$).

- Jika semua 1, 3, 5 terpetakan ke A, maka setiap nilainya memiliki 2 kemungkinan sehingga ada $2^3 = 8$ cara.
- Jika tepat dua dari 1, 3, 5 terpetakan ke A, tanpa mengurangi keumuman $f(1), f(3) \in A$ yang mana ada $2^2 = 4$ kemungkinan untuk kedua nilai tersebut. Di sini $f(5) \in \{1,3\}$ sehingga ada 2 kemungkinan. Jadi, ada $\binom{3}{2} \cdot 4 \cdot 2 = 24$ kemungkinan.
- Jika tepat satu dari 1,3,5 terpetakan ke A, tanpa mengurangi keumuman $f(1) \in A$ yang mana ada 2 kemungkinan. Jika ada $t \in \{3,5\}$ sehingga $f(t) \in \{3,5\}$, maka $f(f(t)) \notin A$ sehingga kontradiksi. Jadi, f(3) = f(5) = 1 yang berarti ada $\binom{3}{1} \cdot 2 \cdot 1 = 6$ kemungkinan.

Jadi, dalam kasus ini ada 4(8 + 24 + 6) = 152.

Jawabannya adalah $36 + 152 = \boxed{188}$ kemungkinan.

.....

Pada segitiga ABC, titik D dan E terletak pada garis BC sehingga B, D, E, C terletak pada urutan tersebut. Diketahui bahwa BD:DE:EC=4:2:5 dan garis-garis AD,AE membagi tiga $\angle BAC$ sama besar. Garis AD dan AE masing-masing memotong lingkaran luar ABC pada titik E dan E0. Nilai dari E1 dapat dinyatakan dalam bentuk E2 untuk suatu bilangan bulat positif E3 dan E4 yang relatif prima, nilai dari E4 adalah

Jawab: 29

Tanpa mengurangi keumuman, misalkan BD = 4, DE = 2, dan EC = 5 (karena nantinya jawabannya juga menentukan rasio dua sisi yang tidak berdampak terhadap skala).

Perhatikan bahwa AD garis bagi $\angle BAE$, dari teorema garis bagi berlaku $\frac{AE}{AB} = \frac{DE}{DB} = \frac{1}{2}$ sehingga misalkan AE = k dan DB = 2k. Karena AE garis bagi $\angle DAC$, maka $\frac{AC}{AD} = \frac{EC}{ED} = \frac{5}{2}$ sehingga misalkan AD = 5l, ED = 2l. Karena AD garis bagi $\angle BAE$, menggunakan teorema Stewart garis bagi AD diperoleh

$$4l^2 = AD^2 = AE \cdot AB - DE \cdot DB = 2k^2 - 8 \implies 2l^2 = k^2 - 4.$$

Daru teorema Stewart garis bagi AE,

$$k^2 = AE^2 = AC \cdot AD - EC \cdot ED = 10l^2 - 10 \implies k^2 = 10l^2 - 10.$$

Substitusikan,

$$2l^2 = k^2 - 4 = 10l^2 - 10 - 4 = 10l^2 - 14 \implies l = \sqrt{\frac{7}{4}}.$$

Ini berarti $k^2 = 10(l^2 - 1) = 10(\frac{7}{4} - 1) = \frac{30}{4}$ sehingga $k = \sqrt{\frac{30}{4}}$. Dari Teorema Power of Point berlaku

$$EG \cdot EA = EC \cdot EB$$
 dan $DF \cdot DA = DB \cdot DC$

sehingga $DF = \frac{14}{l} \operatorname{dan} EG = \frac{30}{k}$. Jadi,

$$\frac{DF}{EG} = \frac{14/l}{30/k} = \frac{7}{15} \cdot \frac{k}{l} = \frac{7}{15} \sqrt{\frac{30/4}{7/4}} = \frac{7}{15} \sqrt{\frac{30}{7}} = \sqrt{\frac{49}{225} \cdot \frac{30}{7}} = \sqrt{\frac{14}{15}}.$$

Ini berarti p = 14 dan q = 15 sehingga p + q = 29.