- Week 5

▼ SHORTEST PATH IN WEIGHTED GRAPHS

Weighted graphs

- BFS explores a graph level by level
- BFS compputes shortest path,in terms of number of edges, to every reachable vertex
- May assign values to edges
 - o Cost, time, distance,...
 - Weighted graphs
- G = (V,E), W : $E o \mathbb{R}$

 Adjacency matrix: Record the weights along with edge information - weight is always 0 if no edge

	0	1	2	3	4	5	6
0	(0,0)	(1,10)	(1,80)	(0,0)	(0,0)	(0,0)	(0,0)
1	(1,10)	(0,0)	(1,6)	(0,0)	(1,20)	(0,0)	(0,0)
2	(1,80)	(1,6)	(0,0)	(1,70)	(0,0)	(0,0)	(0,0)
3	(0,0)	(0,0)	(1,70)	(0,0)	(0,0)	(0,0)	(0,0)
4	(0,0)	(1,20)	(0,0)	(0,0)	(0,0)	(1,50)	(1,5)
5	(0,0)	(0,0)	(0,0)	(0,0)	(1,50)	(0,0)	(1,10)
6	(0,0)	(0,0)	(0,0)	(0,0)	(1,5)	(1,10)	(0.0)

• Adjacency list: Record weights along with the edge information

0	[(1,10),(2,80)]
1	[(0,10),(2,6),(4,20)]
2	[(0,80),(1,6),(3,70)]
3	[(2,70)]
4	[(1,20),(5,50),(6,5)]
5	[(4,50),(6,10)]
6	[(4,5),(5,10)]

Shortest paths in weighted graphs

- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- In a weighted graph, add up the weights along a path
- Weighted shortest path need not have minimum number of edges
 - Shortest path from 0 to 2 is via 1 (weight = 16)

Shortest path problems

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addresses

All pairs shortest path

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities

Negative edges weights

- · Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customer, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find route towards home that minimizes cost

Negative cycles

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle
- By repeatedly traversing a negative cycle, total cost keeps decreasing
- If a graph has a negative cycle, total cost keeps decreasing

• Without negative cycles, we can compute shortest paths even if some weights are

Summary

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights
- Length of a path is the sum of the weights
 - o Shortest path in a weighted graph need not be minimum in terms of number of edges
- · Different shortest path problems
 - o Single source from one designated vertex to all others
 - All-pairs Between every pair of vertices
- · Negative edge weights
 - Should not have negative cycles
 - Without negative cycles, shortest paths still well defined

▼ SINGLE SOURCE SHORTEST PATHS

Single source shortest paths

- Weighted graph:
 - $\circ G (V, E)$
 - $\circ W: E \to \mathbb{R}$
- Single source shortest paths
 - Find shortest paths from a fixed vertex to every other vertex
- · Assume, for now, that edge weights are all non-negative
- Compute shortest path from 0 to all other vertices
- Imagine vertices are oil depots, edges are pipelines
- Set fire to oil depot at vertex 0
- Fire travels at uniform speed along each pipeline
- First oil depot to catch fire after 0 is nearest vertex
- Next oil depot is second nearest vertex
- ..

- Compute expected burn time for each vertex
- Each time a new vertex burns, update the expected burn times of its neighbours
- · Algorithm due to Edsger W Dikjstra

Dikjstra's algorithm: Proof of correctness

- Each new shortest path we discover extends an earlier one (Greedy method)
- · By induction, assume we have found shortest paths to all vertices already burnt
- Next vertex to burn is v, via x
- ullet Can't find a shorter path later from y to v via w
 - \circ Burn time of $w \ge$ burn time of v
 - $\circ \hspace{0.2cm}$ Edge from w to v has weight \geq 0
- This argument breaks down if edge (w,v) can have negative weight
 - o Can't use Dikjstra's algorithm with negative edge weights

Implementation

- · Maintain 2 dictionaries with vertices as keys
 - \circ visited initially False for all v (burnt vertices)
 - \circ distance initially infinity for all v (expected burn time)
- Set distance[s] to 0
- · Repeat, until all reachable vertices are visited
 - Find unvisited vertex nexty with minimum distance
 - Set visited[nextv] to True
 - Recompute distance[v] for every neighbour v of nextv

```
def dijkstra(WMat, s):
 # s is the source vertex; WMat is the weighted adj matrix
  (rows,cols,x) = WMat.shape # x is the edge/weight info
 # x[0] edge info; x[1] weight info
 infinity = np.max(WMat) * rows + 1
 # max value in the matrix multipied by rows + 1 is larger than all
  (visited, distance) = ({},{})
 for v in range(rows):
    (visted[v], distance[v]) = (False, infinity)
 distance[s] = 0
 for u in range(rows):
   nextd = min([distance[v] for v in range(rows) if not visted[v]])
   nextvlist = [v for v in range(rows) if(not visited[v]) and distance[v] == nextd]
   if nextvlist == []:
      break
   nextv = min(nextvlist)
   visited[nextv] = True
   for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
```

```
distance[v] = min(distance[v], distance[nextv] + WMat[nextv, v, 1])
```

Complexity

- Setting infinity takes $O(n^2)$ time
- Main loop runs n times
 - Each iteration visits one more vertex
 - $\circ O(n)$ to find next vertex to visit
 - $\circ \ O(n)$ to update distance[v] for neighbours
- Overall $O(n^2)$
- · If we use an adjacency list
 - \circ Setting infinity and updating distances both O(m), amortised
 - $\circ O(n)$ bottleneck remains to find next vertex to visit
 - Better data structure? Later

```
def dijkstralist(WList, s):
 infinity = 1 + len(WList.keys()) * max([d for u in WList.keys() for (v,d) in WList[u]])
 (visited, distance) = ({},{})
 for v in WList.keys():
   (visited[v], distance[v]) = (False,infinity)
 distance[s] = 0
 for u in WList.keys():
   nextd = min([distance[v] for v in WList.keys() if not visited[v]])
   nextvlist = [v for v in WList.keys() if (not visited[v]) and distance[v] == nextd]
   if nextvlist == []:
     break
   nextv = min(nextvlist)
   visited[nextv] = True
   for (v,d) in WList[nextv]:
     if not visited[v]:
        distance[v] = min(distance[v], distance[nextv])
 return(distance)
```

Summary

- Dijkstra's algorithm computes single source shortest paths
- · Use a greedy strategy to identify vertices to visit
 - Next vertex to visit is based on shortest distance computed so far
 - Need to prove that such a strategy is correct
 - Correctness requires edge weights to be non-negative
- Complexity is $O(n^2)$
 - Even with adjacency lists
 - Bottleneck is identifying unvisited vertex with minimum distance
 - Need a better data structure to identify and remove minimum (or maximum) from a collection

▼ SINGLE SOURCE SHORTEST PATHS WITH NEGATIVE WEIGHTS

Dijkstra's Algorithm

Burning pipe analogy

- · We keep track of the following
 - The vertices that have been burnt
 - The expected burn time of vertices
- Initially
 - No vertex is burnt
 - o Expected burn time of vehicles
 - \circ Expected burn time of rest is ∞
- · While there are vertices yet to burn
 - Pick unburnt vertex with minimum expected burn time, mark it s burnt
 - Update the expected burn time of its neighbours

Initialization (assume source vertex 0)

•
$$B(i)$$
 = False, for $0 \le i < n$

$$\circ$$
 UB = $\{k \mid B(k) = False\}$

$$ullet \ EBT(i) = \left\{ egin{array}{ll} 0, & ext{if i} = 0 \ \infty & ext{otherwise.} \end{array}
ight.$$

Update, if $UB
eq \emptyset$

- ullet Let $j\in UB$ such that $EBT(j)\leq EBT(k)$ for all $k\in UB$
- Update B(j) = True, $UB = UB \setminus \{j\}$
- ullet For each $(j,k)\in E$ such that $k\in UB$, EBT(k)=min(EBT(k),EBT(j)+W(j,k))

Extending to negative edge weights

- The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt
- What if we allow updates evenafter a vertex is burnt?
- · Negative edge weights are allowed, but no negative cycles
- · Going around a cycle can only add to the length
- Shortest route to every vertex is a path, no loops
- Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_\ell} k$$

- · Need not be minimum in terms of number of edges
- · Every prefix of this path must be a minimum weight path
- $\begin{array}{c} \bullet \quad 0 \xrightarrow{w_1} j_1 \\ \bullet \quad 0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \\ \bullet \quad \dots \\ \bullet \quad 0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \dots \xrightarrow{w_{\ell-1}} j_{\ell-1} \end{array}$
 - ullet Once we discover shortest path to j_{l-1} , next update will fix shortest path to k
 - Repeatedly update shortest distance to each vertex based on shortest distance to its neighbours
 - Update cannot push this distance below actual shortest distance
 - After l updates,all shortest paths using $\geq l$ edges have stabilized
 - \circ Minimum weight path to any node has at most n-1 edges
 - \circ After n-1 update, all shortest paths have stabilized

Bellman-Ford Algorithm

Initialization (source vertex 0)

- D(j) : minimum distance known so far to vertex j

•
$$D(j) = \begin{cases} 0, & \text{if } j = 0 \\ \infty & \text{otherwise.} \end{cases}$$

Repeat n-1 times

ullet For each vertex $j\in\{0,1,\ldots,n-1\}$, for each edge $(j,k)\in E$, D(k)=min(D(k),D(j)+W(j,k))

Works for directed and undirected graphs

```
def bellmanford(WMat,s):
    (rows,cols,x) = WMat.shape
    infinity = np.max(WMat)*rows + 1
    distance = {}
    for v in range(rows):
        distance[v] = infinity
    distance[s] = 0
    for i in range(rows):
```

```
for u in range(rows):
    for v in range(cols):
        if WMat[u,v,0] == 1:
            distance[v] = min(distance[v], distance[u] + WMat[u,v,1])
return(distance)
```


V				D(v)		
0	0	0	0				
1	∞	10	10				
2	∞	∞	∞				
3	∞	∞	∞				
4	∞	∞	∞				
5	∞	∞	12				
6	∞	∞	9				
7	∞	8	8				

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k), D(j) + W(j, k))$

V		D(v)											
0	0	0	0	0									
1	∞	10	10	5									
2	∞	∞	∞	(10)									
3	∞	∞	∞	∞									
4	∞	∞	∞	∞									
5	∞	∞	12	8									
6	∞	∞	9	9									
7	∞	8	8	8									

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k), D(j) + W(j, k))$

V		D(v)										
0	0	0	0	0	0	0	0	0				
1	∞	10	10	5	5	5	5	5				
2	∞	∞	∞	10	6	5	5	5				
3	∞	∞	∞	∞	11	7	6	6				
4	∞	∞	∞	∞	∞	14	10	9				
5	∞	∞	12	8	7	7	7	7				
6	∞	∞	9	9	9	9	9	9				
7	∞	8	8	8	8	8	8	8				

- Initialize D(0) = 0
- For each $(j, k) \in E$, update

$$D(k) = \min(D(k), D(j) + W(j, k))$$

- What if there was a negative cycle? Distance would continue to decrease
- Check if update n reduces any D(v)

Complexity

- Initialising infinity takes $O(n^2)$ time
- The outer update loop runs $\mathcal{O}(n)$ times
- · In each iteration, we have to examine every edge in the graph
 - $\circ \;\;$ This take $O(n^2)$ for an adjacency matrix
- Overall, $O(n^3)$
- If we shift to adjacency lists
 - \circ Initializing infinity is O(m)
 - $\circ~$ Scanning all edges in each update iteration is ${\cal O}(m)$

```
def bellmanfordlist(WList,s):
    infinity = 1 + len(WList.keys())*max([d for u in WList.keys() for (v,d) in WList[u]])
    distance = {}
    for v in WList.keys():
        distance[v] = infinity

distance[s] = 0

for i in WList.keys():
    for u in WList.keys():
    for (v,d) in WList[u]:
```

```
distance[v] = min(distance[v], distance[u] + d)
return(distance)
```

Summary

- · Dijkstra's algorithm assumes non-negative edge weights
 - Final distance is frozen each time a vertex "burns"
- · Without negative cycles, every shortest route is a path
- Every prefix of a shortest path is also a shortest path
- Iteratively find shortest paths of length $1, 2, \ldots, n-1$
- Update distance to each vertex with every iteration Bellman-Ford algorithm
- $O(n^3)$ time with adjacency matrix, O(mn) time with adjacency list
- $\bullet\,$ If Bellman-Ford algorithm does not converge after n-1 iterations, there is a negative cycle

▼ ALL PAIRS SHORTEST PATHS (FLOYD-WARSHALL ALGORITHM)

Shortest paths in weighted graphs

Two types of shortest path problems of interest Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addresses

All pairs shortest paths

- ullet Find shortest paths between every pair of vertices i and j
- · Optimal airline, railway, road routes between cities
- Run Dijkstra or Bellman-Ford from each vertex
- Is there is another way?

Transitive closure

- ullet Adjacency matrix A represents paths of length 1
- Matrix multiplication, A^2 = $A \times A$
 - $\circ \ A^2[i,j]=1$ if there is a path of length 2 from i to j
 - $\circ \ \ \mathsf{For some} \ k \mathsf{,} \ A[i,k] = \mathsf{1} \mathsf{,} \ A[k,j] = \mathsf{1}$
- $A^+ = A + A^2 + \ldots + A^{n-1}$

An alternative approach

• $B^k[i,j]=1$ if there is path from i to j via vertices $\{0,1,\dots,k-1\}$

- \circ Constraint applies only to intermediate vertices between i and j
- $\circ \ B^0[i,j]=1$ if there is a direct edge
- $\circ B^0 = A$
- $B^{k+1}[i,j] = 1$ if
 - $\circ \ B^k[i,j] = 1$ can already reach j from i via $\{0,1,\ldots,k-1\}$
 - $\circ \ \ B^k[i,k]=1$ and $B^k[k,j]=1$ use $\{0,1,\ldots,k-1\}$ to go from i to k and then from k to j

Warshall's Algorithm

- $B^k[i,j]=1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - o Direct edges, no intermediate vertices
- $\bullet \ \ B^{k+1}[i,j]=1 \ \mathrm{if}$
 - $\circ \ B^k[i,j]=1$, or
 - $\circ \ B^k[i,k]=1$ and $B^k[k,j]=1$
- This algorithm also computes transitive closure Warshall's algorithm
- $B^n[i,j]=1$ if there is some path from i to j with intermediate vertices in { $0,1,\dots,n-1$ }
- $B^n = A^+$
- · We adapt Warshall's algorithm to compute all-pairs shortest paths

Floyd-Warshall Algorithm

- Let $SP^k[i,j]$ be the length of the shortest path i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^{0}[i,j] = W[i,j]$
 - o No intermediate vertices, shortest path is weight of direct edge
 - $\circ \;$ Assume $W[i,j]=\infty$ if $(i,j)
 ot\in E$
- $SP^{k+1}[i,j]$ is the minimum of
 - $\circ SP^k[i,j]$

Shortest path using only $\{0,1,\ldots,k-1\}$

 $\circ SP^k[i,k] + SP^k[k,j]$

Combine shortest path from i to k and k to j

SP ⁰	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	$-\infty$	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	(3)	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^3	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	$-\infty$	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	$-\infty$	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	-1	-2	-1	∞	1	∞	∞
6	∞	-4	∞	∞	∞	−2 °	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP ⁷	0	1	2	3	4	5	6	7
0	∞	10	10	11	14	12	∞	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

SP ⁸	0	1	2	3	4	5	6	7
0	∞	5	5	6	9	7	9	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
. 4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

Implementation

- Shortest path matrix SP is $n \times n \times (n+1)$
- Initialize SP[i,j,0] to edge weight W(i,j), or ∞ if no edge
- Update SP[i,j,k] from SP[i,j,k-1] using the Floyd-Warshall update rule
- Time complexity is $O(n^3)$
- We only need SP[i,j,k-1] to compute SP[i,j,k]
- Maintain two "slices" SP[i,j], SP'[i,j], compute SP' from SP, copy SP' to SP, save space

```
def floydwarshall(WMat):
  (rows, cols, x) = WMat.shape
  infinity = np.max(WMat) * rows * rows + 1
  SP = np.zeros(shape=(rows,cols,cols+1))
  for i in range(rows):
    for j in range(cols):
      SP[i,j,0] = infinity
  for i in range(rows):
    for j in range(cols):
      if WMat[i,j,0] == 1:
        SP[i,j,0] = WMat[i,j,1]
  for k in range(1,cols+1):
    for i in range(rows):
      for j in range(cols):
        SP[i,j,k] = min(SP[i,j,k-1], SP[i,k-1,k-1]+SP[k-1,j,k-1])
  return(SP[:,:,cols])
```

Summary

- · Warshall's algorithm is an alternative way to compute transitive closure
 - $\circ \ B^k[i,j]=1$ if we can reach j from i using vertices in $\{0,1,\ldots,k-1\}$
- · Adapt Warshall's algorithm to compute all pairs shortest paths
 - $\circ \;\; SP^k[i,j]$ is the length of the shortest path from i to j using vertices in { $0,1,\ldots,k-1$ }
 - $\circ \ SP^n[i,j]$ is the length of the overall shortest path
 - o Floyd-Warshall algorithm
- · Works with negative edge weights, assuming no negative cycles
- Simple nested loop implementation, time $O(n^3)$
- ullet Space can be limited to $O(n^2)$ by reusing two "slices" SP and SP'

MINIMUM COST SPANNING TREES

Spanning trees

- · Retain a minimal set of edges so that graph remains connected
- · A minimally connected graph is a tree
 - Adding an edge to a tree creates a loop
 - Removing an edge disconnects the graph
- · Want a tree tht connects all the vertices spanning tree

Spanning trees with costs

- Restoring a road or laying a fibre optic cable has a cost
- Minimum cost spanning tree
 - Add the cost of all edges in the tree
 - Among the different spanning trees, choose one with minimum cost
- Example
 - Spanning tree, Cost is 114 not minimum cost spanning tree
 - Another spanning tree, Cost is 44 minimum cost spanning tree

Some facts about trees

Defn: A tree is a connected acyclic graph

Fact 1: A tree on n vertices has exactly n-1 edges

- · Initially, one single component
- Deleting edge (i, j) msut split component
 - \circ Otherwise, there is still a path from i to j, combine with (i,j) to form cycle
- · Each edge deletion creates one more component
- Deleting n-1 edges creates n components, each an isolated vertex

Fact 2: Adding an edge to a tree must create a cycle

- Suppose we add an edge (i, j)
- ullet Tree is connected, so there is already a path from i to j forms a cycle

Fact 3: In a tree, every pair of vertices is connected by a unique path

• If there are two paths from i to j, there must be a cycle

Observation: Any two of the following facts about a graph ${\cal G}$ implies the third

- ullet G is connected
- ullet G is acyclic
- ullet G has n-1 edges

Summary

- We will use these facts about trees to build minimum cost spanning trees
- Two natural strategies
- Start with the smallest edge and "grow" a tree

- o Prim's algorithm
- Scan the edges in ascending order of weight to connect components without forming cycles
 - · Kruskal's algorithm

▼ MINIMUM COST SPANNING TREES - PRIM'S ALGORITHM

Minimum Cost Spanning tree (MCST)

- Weighted undirected graph, G = (V,E), W: $E o \mathbb{R}$
 - $\circ G$ assumed to be connected
- Find a minimum cost spanning tree
 - \circ Tree connecting all vertices in V
- Strategy
 - Incrementally grow the minimum cost spanning tree
 - o Start with a smallest weight edge overall
 - Extend the current tree by adding the smallest edge from the tree to a vertex not yet in the tree

Example

- Start with smallest edge (1,3)
- Extend the tree with (1,0)
- $\bullet \ \, {\rm Can't\ add}\ (0,3) \text{, forms\ a\ cycle} \\$
- Instead, extend the tree with (1, 2)
- Extend the tree with (2,4)

Prim's algorithm

- ullet G = (V,E), $W:E
 ightarrow\mathbb{R}$
- Incrementally build an MCST
 - $\circ \ TV \subseteq V$: tree vertices, already added to MCST
 - $\circ \ TE \subseteq E$: tree edges, already added to MCST

- Initially, $TV = TE = \emptyset$
- Choose minimum weight edge e=(i,j)

$$\circ$$
 Set $TV = \{i, j\}$, $TE = \{e\}$ MCST

- Repeat n-2 times
 - $\circ~$ Choose minimum weight edge f=(u,v) such that $u\in TV$, v
 otin TV
 - $\circ~$ Add v to TV , f to TE

Example

$$TV = \{1, 3, 0, 2\}$$

 $TE = \{(1, 3), (1, 0), (1, 2)\}$

Correctness of Prim's Algorithm

Minimum Separator Lemma

- Let V be partitioned into two non-empty sets U and $W=V \setminus U$
- ullet Let e=(u,w) be the minimum cost edge with $u\in U, w\in W$
- ullet Every MCST must include e
- · Assume for now, all edge weights distinct
- Let T be an MCST, $e \not\in T$
- ullet T contains a path p from u to
 - $\circ \ \ p \ {\rm starts \ in} \ U {\rm , ends \ in} \ W$
 - $\circ \ \ \operatorname{Let} f = (u',w')$ be the first edge on p crossing from U to W
 - $\circ \hspace{0.1in}$ Drop f , add e to get a cheaper spanning tree
- What if two edges have same weights?
- Assign each edge a unique index from 0 to $m-1\,$
- Define (e,i) < (f,j) if W(e) < W(j) or W(e) = W(j) and i < j

- In Prim's algorithm, TV and $W-V \setminus TV$ partition V
- ullet Algorithm picks smallest edge connecting TV and W, which must belong to every MCST
- In fact, for any $v \in V$, { v } and $V \setminus$ { v } form a partition
- The smallest weight edge leaving any vertex must belong to every MCST
- · We started with overall minimum cost edge
- ullet Instead, can start at any vertex v , with TV = { v } and $TE=\emptyset$

Implementation

1)

- Keep track of
 - \circ visited[v] is v in the spanning tree?
 - \circ distance[v] shortest distance from v to the tree
 - TreeEdges edges in the current spanning tree

```
def primlist(WList):
 infinity = 1 + max([d for u in WList.keys() for (v,d) in WList[u]])
  (visited, distance, TreeEdges) = ({},{},[])
 for v in WList.keys():
    (visited[v], distance[v]) = (False, infinity)
 visited[0] = True
 for (v,d) in WList[0]:
   distance[v] = d
 for i in WList.keys():
   (mindist, nextv) = (infinity, None)
   for u in WList.keys():
      for (v,d) in WList[u]:
        if visited[u] and (not visited[v]) and d < mindist:</pre>
          (mindist, nextv, nexte) = (d,v,(u,v))
   if nextv is None:
      break
```

```
visited[nextv] = True
TreeEdges.append(nexte)
for (v,d) in WList[nextv]:
   if not visited[v]:
      distance[v] = min(distance[v], d)
return(TreeEdges)
```

- Initialize visited[v] to False, distance[v] to infinity
- First add vertex 0 to tree
- Find edge (u,v) leaving the tree where distance[v] is minimu, add it to the tree, update distance[w] of neighbours

Complexity

- Initialization takes O(n)
- Loop to add nodes to the tree runs O(n) times
- ullet Each iteration takes O(m) time to find a node to add
- Overall time is O(mn), which could be $O(n^3)$!

2)

- For each v, keep track of its nearest neighbour in the tree
 - \circ visited[v] is v in the spanning tree?
 - \circ distance[v] shortest distance from v to the tree
 - \circ nbr[v] nearest neighbour of v in tree
- Scan all non-tree vertices to find nexty with minimum distance
- Very similar to Dijkstra's algorithm, except for the update rule for distance
- Like Dijksta's algorithm, this is still $O(n^2)$ even for adjacency lists
- · With a more clever data structure to extract the minimum, we can do better

```
def primlist2(WList):
 infinity = 1 + max([d for u in WList.keys() for (v,d) in WList[u]])
  (visited, distance, nbr) = ({},{},{})
 for v in WList.keys():
   (visited[v], distance[v], nbr[v]) = (False, infinity, -1)
 visited[0] = True
 for (v,d) in WList[0]:
   (distance[v], nbr[v]) = (d,0)
 for i in range(1, len(WList.keys())):
   nextd = min([distance[v] for v in WList.keys() if not visited[v]])
   nextvlist =[v for v in WList.keys() if (not visted[v]) and distance[v] == nextd]
   if nextvlist == []:
     break
   nextv = min(nextvlist)
   visited[nextv] = True
   for (v,d) in WList[nextv]:
```

```
if not visited[v]:
    (distance[v],nbr[v]) = (min(distance[v], d), nextv)
return(nbr)
```

Summary

- · Prim's algorithm grows an MCST starting with any vertex
- At each step, connect one more vertex to the tree using minimum cost edge from inside the tree to outside the tree
- Correctness follows from Minimum Seperator Lemma
- Implementation similar to Dijksta's algorithms
 - · Update rule for distance is different
- Complexity is $O(n^2)$
 - Even with adjacency lists
 - Bottleneck is identifying unvisited vertex with minimum distance
 - Need a better data structure to identify and remove minimum (or maximum) from a collection

▼ MINIMUM COST SPANNING TREES - KRUSAL'S ALGORITHM

Minimum Cost Spanning tree (MCST)

Strategy 2

- Start with n components, each a single vertex
- Process edges in ascending order of cost
- Include edge if it does not create a cycle

Example

- Start with smallest edge, (1, 3)
- Add next smallest edge, (2, 4)
- Add next smallest edge, (0, 1)
- Can't add (0,3), forms a cycle
- Add next smallest edge, (1, 2)

Kruskal's Algorithm

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots e_{m-1}\}$ be edges sorted in asceding order by weight
- Let $TE \subseteq E$ be the set of tree edges already added to MCST
- Initially, $TS=\emptyset$
- ullet Scan E from e_0 to e_{m-1}
 - $\circ~$ If adding e_i to TE creates a loop, skip it
 - \circ Otherwise, add e_i to TE

Example 2 70 3 18 6 0 10 1 20 4 10 5

.

- Sort E as $\{(5,6),(1,2),(0,1),(4,5),(0,2),(1,4),(2,3)\}$
- Set $TE = \emptyset$
- Kepe adding each into TE after checking
- $TE = \{(5,6), (1,2), (0,1), (4,5), (1,4), (2,3)\}$

Correctness of Kruskal's Algorithm

From Minimum Separator Lemma

- Edges in TE partition vertices into connected components
 - o Initially each vertex is a separate component
- Adding e=(u,w) merges components of u and w
 - $\circ\hspace{0.2cm}$ If u and w are in the same component, e forms a cycle and is discarded
- Let U be component of u , W be $V \ \backslash \ U$
 - $\circ~U$, W form a partition of V with $u \in U$ and $w \in W$
 - $\circ~$ Since we are scanning edges in ascending order of cost, e is minimum cost edge connecting U and W ,soit must be part of any MCST

Implementaion

• Collect edges in a list as (d,u,v)

- Weight as first component for easy sorting
- Main challenge is to keep track of connected components
 - Dictionary to record component of each vertex
 - o Initially each vertex is an isolated component
 - \circ When we add an edge (u, v), merge the components of u and v

```
def kruskal(WList):
  (edges, component, TE) = ([],{},[])
  for u in WList.keys():
    # Weight as first component to sort easily
    edges.extend([(d,u,v)] for (v,d) in WList[u])
    component[u] = u
  edges.sort()
  print(edges)
  for (d,u,v) in edges:
    if component[u] != component[v]:
     TE.append((u,v))
      c = component[u]
      for w in WList.keys():
        if component[w] == c:
          component[w] = component[v]
  return(TE)
```

Analysis

- Sorting the edges is O(mlogm)
 - \circ Since m is atmost n^2 , equivalently O(mlogn)
- Outer loop runs m times
 - \circ Each time we add a tree edge, we have to merge components O(n) scan
 - $\circ \ n-1$ tree edges, so this is done O(n) times
- Overall $O(n^2)$
- · Bottleneck is naive strategy to label and merge components
- · Components partition vertices
 - Collection of disjoint sets
- Data structure to maintain collectio of disjoint sets
 - $\begin{tabular}{ll} \circ & {\it find(v)} {\it return set containing v} \\ \circ & {\it union(u,v)} {\it merge sets of u,v} \\ \end{tabular}$
- Efficient union-find brings complexity down to O(mlogn)

Summary

Kruskal's algorithm builds an MCST bottom up

- \circ Start with n components, each an isolated vertex
- Scan edges in ascending order of cost
- Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- ullet Complexity is $O(n^2)$ due to naive handling components
 - \circ Will see he to improve to O(mlogn)
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - o Consider a triangle on 3 vertices with all edges equal
- Different choices lead to different spanning trees
- In general, there may be a very number of minimum cost spanning trees