TABLEAU

ScatterPlot

Population by State

Bubble Graph

Population by State

Density Map

Motor Vehicle Theft by State

RSTUDIO

Scatterplot

Correlation of Murder and Robberies

BubbleGraph #size is via population and color is via state

Density Map

Density of Murders


```
In [15]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import plotly.express as px
   import seaborn as sns
```


Out[4]:

	year	rate
0	1960	36.400
1	1961	35.179
2	1962	33.863
3	1963	32.459
4	1964	30.994

```
In [5]: #import data to dataframe
    df2=pd.read_csv('birth-rate.csv')
    df2.head()
```

Out[5]:

	Country	1960	1961	1962	1963	1964	1965	1966	1967	1968	 1999
0	Aruba	36.400	35.179	33.863	32.459	30.994	29.513	28.069	26.721	25.518	 15.024
1	Afghanistan	52.201	52.206	52.208	52.204	52.192	52.168	52.130	52.076	52.006	 51.229
2	Angola	54.432	54.394	54.317	54.199	54.040	53.836	53.585	53.296	52.984	 48.662
3	Albania	40.886	40.312	39.604	38.792	37.913	37.008	36.112	35.245	34.421	 17.713
4	Netherlands Antilles	32.321	30.987	29.618	28.229	26.849	25.518	24.280	23.173	22.230	 15.809

5 rows × 50 columns

→

```
In [6]: #import data to dataframe
df3=pd.read_csv('crimerates-by-state-2005.csv')
df3.head()
```

Out[6]:

	state	murder	forcible_rape	robbery	aggravated_assault	burglary	larceny_theft	motor_v
0	United States	5.6	31.7	140.7	291.1	726.7	2286.3	
1	Alabama	8.2	34.3	141.4	247.8	953.8	2650.0	
2	Alaska	4.8	81.1	80.9	465.1	622.5	2599.1	
3	Arizona	7.5	33.8	144.4	327.4	948.4	2965.2	
4	Arkansas	6.7	42.9	91.1	386.8	1084.6	2711.2	
4								•

Out[7]:

	country	year	expectancy
0	Afghanistan	2008	42
1	A l bania	2008	73
2	Algeria	2008	71
3	Angola	2008	46
4	Antiqua and Barbuda	2008	74

```
In [9]: #scatter plot
df1.plot.scatter(x = 'year', y = 'rate')
```

Out[9]: <AxesSubplot: xlabel='year', ylabel='rate'>

In [24]: # use the scatterplot function to build the bubble map
#comparing if robbery and murder are correlated by state
sns.scatterplot(data=df3, x="state", y="robbery", size="murder", legend=False)
plt.show()


```
In [25]: #density plot
    #graph shows the murder rate between 0 and 10 is the most common
    df3.murder.plot.density(color='green')
    plt.title('Density plot for Murder')
    plt.show()
```


In []:

```
title: "Week7"
output: html document
date: "2024-01-22"
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
setwd("C:/Users/brean/OneDrive/Desktop/640/week7/breannaparkerdsc640week7")
knitr::opts chunk$set(echo = TRUE)
```{r}
library(readr)
data <- read.csv("crimerates-by-state-2005.csv")</pre>
data
```{r}
#scatterplot
plot(x=data$robbery, y=data$murder,
 xlab="Robbery By State", ylab="Murder By State",
 main="Correlation of Murder and Robberies")
. . .
```{r}
#bubble graph
library(ggplot2)
library(dplyr)
library(plotly)
ggplot(data, aes(x=murder, y=burglary, size = population, color=state)) +
    geom point(alpha=0.7) +
    scale size(range = c(.1, 24), name="Population (M)")
```{r}
#density graph
d <- density(data$murder)</pre>
plot(d, main="Density of Murders")
polygon(d, col="red")
. . .
```