ANDRÉ ROCHA GUARANÁ RAFAEL SCHAPINSKI RODRIGO AZUMA

Curitiba

2015

Conteúdo

Introdução	3
Dados do experimento	3
Memorial de cálculo	4
Conclusão	6

Introdução

A calibração dos medidores de vazão pode ser realizada por meio de comparações volumétricas ou mássicas. A massa é uma propriedade fundamental de medida, a incerteza de medição e calibração mássica são bem menores do que através de medição e calibração volumétrica. Através deste experimento é possível comparar os resultados dos dois tipos de medição.

Para isso dividimos o experimento em duas etapas: na primeira realizamos medições de massa com a mesma vazão para se obter uma incerteza da vazão na saída da bomba. E na segunda etapa medimos a massa com diferentes vazões, para comparar a vazão volumétrica medida no indicador digital com a vazão volumétrica real.

Dados do experimento

Objetivo

Determinar uma equação de recorrência que ajusta a vazão obtida no medidor para a vazão real.

Metodologia

Utilizar a balança mecânica e o cronômetro. Verificar o fluxo de massa e convertê-lo em fluxo volumétrico.

Procedimento

Na primeira parte do experimento foram realizadas sete medições de massa, com duração de 5 segundos para cada medição e vazão constante, com objetivo de obter uma incerteza para a vazão calculada (real) na saída da bomba. Em uma segunda parte do experimento, foram realizadas mais 15 medições com diferentes vazões volumétricas tendo como objetivo comparar a vazão volumétrica medida no indicador digital com a vazão volumétrica real.

- 1. Ligar a bomba
- 2. Escorvar a bomba se necessário
- Para uma determinada vazão, medir 7 vezes o fluxo de massa, alterando o tempo de 5 em 5 segundos
- 4. Realizar 15 medições, alterando a vazão volumétrica em cada uma.

5. Construir tabela e gráfico

Memorial de cálculo

N	massa inicial	massa final	Δt	Δm	vazão em massa	Qp Vazão padrão	Qi Vazão indicada
pto	m _i [kg]	m _f [kg]	[s]	$m_e = m_{i}$ - m_f	m'=m _c /Δt [kg/s]	Q _p = 1,002*m' [l/s]	[l/s]
1	32,7	35,6	5	2,90	0,49252	0,4935050	0,67
2	35,6	39,3	5	3,70	0,65156	0,6528631	0,67
3	39,3	42,7	5	3,40	0,59192	0,5931038	0,67
4	42,7	45,9	5	3,20	0,55216	0,5532643	0,67
5	45,9	49,3	5	3,40	0,59192	0,5931038	0,67
6	49,3	52,7	5	3,40	0,59192	0,5931038	0,67
7	52,7	56,1	5	3,40	0,59192	0,5931038	0,67

Através dessas medições conseguimos calcular o desvio padrão e multiplicamos por t de Student para 7 medições, a fim de se obter a incerteza expandida da bomba. Para tal cálculo, consideramos uma distribuição normal, com 95% de confiabilidade:

$$v = n - 1 = 6 g. l.$$

Portanto, t = 1,94.

$$U = u.t = 0.048795.1,94 = 0.095$$

Logo a incerteza é de ±0,095.

Os resultados da segunda etapa do experimento estão na tabela a seguir.

N	massa inicial	massa final	intervalo de tempo	Δm	Vazão em massa	Qp Vazão padrão	Qi Vazão indicada
pto	mi [kg]	mf [kg]	Δt [s]	me = mi- mf	m'=mc/∆t [kg/s]	Qp = 1,002*m' [l/s]	[l/s]
1	56,1	58,4	5	2,30	0,37324	0,3739865	0,451
2	58,4	59,4	5	1,00	0,1148	0,1150296	0,191
3	59,4	60,6	5	1,20	0,15456	0,1548691	0,221
4	60,6	61,7	5	1,10	0,13468	0,1349494	0,241
5	61,7	63,4	5	1,70	0,25396	0,2544679	0,281
6	63,4	64,9	5	1,50	0,2142	0,2146284	0,321
7	64,9	66,6	5	1,70	0,25396	0,2544679	0,351
8	66,6	68,5	5	1,90	0,29372	0,2943074	0,401
9	68,5	70,8	5	2,30	0,37324	0,3739865	0,431
10	70,8	73,1	5	2,30	0,37324	0,3739865	0,471
11	73,1	75,9	5	2,80	0,47264	0,4735853	0,501
12	75,9	78,3	5	2,40	0,39312	0,3939062	0,551
13	78,3	80,6	5	2,30	0,37324	0,3739865	0,581
14	80,6	83,3	5	2,70	0,45276	0,4536655	0,601
15	83,3	86,6	5	3,30	0,57204	0,5731841	0,671

Legenda	
Entrada de Dados	
Cálculo Automático	

Os dados destacados em vermelho foram desconsiderados, pois a vazão no equipamento estava desregulada. No gráfico abaixo temos a vazão real no eixo x, e a vazão indicada pelo medidor no eixo y. Utilizando a regressão linear do Excel, obtemos a reta e a equação de correção do valor indicado pelo instrumento.

Conclusão

Visto o gráfico concluímos que as medições estão dentro do esperado, e podemos atribuir os pontos dispersos a erros humanos. Podemos relacionar as vazões pela equação da reta.

Por fim medimos a massa de 1 litro de água para obter a massa específica. O valor da vazão mássica (**ṁ**) é obtido dividindo a variação de massa em quilogramas pelo tempo da vazão em segundos. A vazão foi calculada através da equação abaixo:

$$Q = \frac{\dot{\mathbf{m}}}{U}$$