- ◆ As stated before a CODEC is used to generate a Digital Signal:
 - Hence this is the device to be considered here,
 - This device was also used to encode Digital Data onto a Digital Signal:
 - Recall the use of NRZ, Bipolar AMI and Manchester techniques.
- ◆ There are two encoding methods to consider:
 - Pulse Code Modulation,
 - Delta Modulation.

- ◆ To encode Analogue Data onto a Digital Signal requires two steps:
 - Convert analogue data into digital data,
 - Encode the digital data onto a digital signal.
- ◆ The first step requires the use of *Sampling*:
 - This is necessary as an Analogue Data signal has an infinite amount of data. Consequently, it is not feasible to send all of the Analogue Data.
- Nyquist also did some work on sampling.

◆ The Sampling Theorem (from Nyquist):

"If a signal f(t) is sampled at regular intervals of time and at a rate higher than twice the highest signal frequency, then the samples will contain all the information necessary for the reconstruction of the original signal."

- ◆ The original analogue signal is sampled at regular intervals to produce PAMS.
- ◆ The PAMS are quantized i.e. assigned a binary value.
- ◆ There are considerations to be given to the number of bits to use to represent each sample:
 - These will be explored in class.

- ◆ Regardless of the number of bits chosen there will always be some level of 'rounding':
 - This is known as Quantization which gives rise to Quantization error or Quantizing noise.
 - Hence, the original Analogue Data signal can never be truly reproduced.

- ◆ Using PCM to encode voice data results in:
 - A stream of 8-bit samples,
 - Each sample is assigned an 8-bit value,
 - Resulting in a Data Rate of 64Kbps in Europe.
 - This calculation will be demonstrated in class.

Digit	Binary Equivalent	PCM waveform
0	0000	
1	0001	
2	0010	
3	0011	5
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	7
9	1001	
10	1010	7
11	1011	7
12	1100	
13	1101	777
14	1110	75
15	1111	

- ◆ This technique involves the use of a staircase function:
 - Here the analogue signal is <u>approximated</u> by a simple mathematical function,
 - At each sampling interval a positive or negative quantization step is added to the output.

- ◆ The result is a single binary digit for <u>each</u> sample indicating a positive or negative slope in the original analogue signal.
- ◆ An explanation will be given in class.

- ◆ Two Significant Parameters:
 - Quantization step delta (δ)
 - large delta <u>reduces</u> Slope Overload Noise
 - small delta reduces Quantization Noise
 - Sampling rate
 - Large rate <u>reduces</u> noise but <u>increases</u> data rate of output signal
- ◆ DM compared to PCM:
 - DM is easier to implement
 - PCM produces better SNR characteristics

Voice data: Digital V's Analogue

- ◆ Digital (PCM):
 - Good voice reproduction with 256 quantisation levels i.e. 8bit coding
 - Required sampling rate of 8000 per second for 4000hz voice i.e. 64Kbps voice channels
 - 64Kbps voice channel requires approx. 32KHz. of BW
- ◆ Analogue (PoTS):
 - Voice channel requires approx. 4KHz. of BW
- However, digital is still preferable to analogue for the following reasons (see next slide)

- Popularity increasing
 - Repeaters can be used so no additive noise
 - Time-division multiplexing (TDM) can be used eliminating intermodulation noise which occurs with FDM
 - Digital signalling allows use of digital switching techniques

Analogue Data / Analogue Signals

- Analogue data can be used to modulate an analogue signal
- ◆ This is often used to:
 - Obtain a more appropriate frequency for a particular transmission
 - Allow a number of analogue signals to share a transmission medium (Frequency Division Multiplexing) – will examine later
- ◆ Three basic techniques available

Analogue Modulation Techniques

- Amplitude Modulation
 - Carrier amplitude varies in proportion to the amplitude of the analogue data
- ◆ Frequency Modulation
 - Frequency deviation is proportional to the analogue data
- Phase Modulation
 - Phase is proportional to the analogue data
- ◆ These techniques were examined previously (see Digital Data/Analogue Signal slides)