

SCHOOL OF ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING

APN functions

Zhaole Li

Workshop of APN function, 2022

Section 1 Introduction

Vectorial Boolean functions

Given two positive integers n and m, a vectorial Boolean (n,m)-function, or simply (n,m)-function, is any function $F:\mathbb{F}_2^n\to\mathbb{F}_2^m$. When m=1, we often call it n-variable Boolean function.

One can identify the vector space \mathbb{F}_2^n with the finite field \mathbb{F}_{2^n} .

Differential uniformity

The differential attack, introduced by Biham and Shamir¹, is a chosen plaintext attack for block ciphers in general.

An (n,m)-function F is called differentially δ -uniform, if for every nonzero $a\in\mathbb{F}_2^n$ and every $b\in\mathbb{F}_2^m$, the equation F(x)+F(x+a)=b has at most δ solutions. We denote the minimum of these integers δ by δ_F and call it the differential uniformity of F. For every (n,m)-function F, we have $\delta_F\geq \max(2,2^{n-m})$.

¹E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4 (1), pp. 3–72, 1991.

APN functions

We can have $\delta_F = 2$ only when $n \ge m$, and this case is specially defined for n = m:

Definition (APN functions)

An (n,n)-function F is called almost perfect nonlinear (APN) if it is differentially 2-uniform, i.e. if for every $a \in \mathbb{F}_2^n \setminus \{0_n\}$ and every $b \in \mathbb{F}_2^n$, the equation F(x) + F(x+a) = b has 0 or 2 solutions (i.e. the derivative $D_aF(x) = F(x) + F(x+a)$ is 2-to-1). Equivalently, $|D_aF(x), x \in \mathbb{F}_2^n| = 2^{n-1}$. In other words, for distinct elements $x, y, z, t \in \mathbb{F}_2^n$, the equality $x+y+z+t=0_n$ implies $F(x) + F(y) + F(z) + F(t) \neq 0_n$.

The classification of APN functions

Definition

Let F and F' be two functions from \mathbb{F}_2^n to \mathbb{F}_2^n .

 \bullet F and F' are Extended affine equivalent (EA-equivalent) if

$$F'(x) = L_1(F(L_2(x))) + L(x),$$

where L_1 and L_2 are affine permutations on \mathbb{F}_2^n , and L is an affine function on \mathbb{F}_2^n .

2 F and F' are Carlet–Charpin–Zinoviev equivalent (CCZ-equivalent) if there exists an affine permutation which maps G_F onto $G_{F'}$, where $G_F = \{(x, F(x)) : x \in \mathbb{F}_2^n\}$ is the graph of F, and $G_{F'}$ is the graph of F'.

The classification of APN functions

Remark:

- 1 CCZ-equivalence is a generalization of EA-equivalence.
- 2 If a function is APN, then its CCZ-equivalent functions are all APN.
- 3 Two quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

Section 2

A matrix approach for constructing quadratic APN functions

Quadratic APN functions

Let $F(x) = \sum_{1 \leq t < i \leq n} c_{i,t} x^{2i-1+2^{t-1}} \in \mathbb{F}_{2^n}[x]$ be a quadratic function. We define an $n \times n$ matrix $E = (e_{i,t})_{n \times n}$ by setting $e_{i,t} = c_{i,t}$ for i > t, otherwise $e_{i,t} = 0$. Let $X = (x^{2^0}, x^{2^1}, ..., x^{2^{n-1}})^T$ and $x = x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_n \alpha_n$ where $x_i \in \mathbb{F}_2$ for $1 \leq i \leq n$. We have $F(x) = \overline{x}^T M^T E M T \overline{x}.$

where
$$\overline{x}=(x_1,x_2,...,x_n)^T$$
 and $M=\begin{pmatrix} \alpha_1 & \alpha_2 & \ldots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \ldots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_2^{2^{n-1}} & \alpha_2^{2^{n-1}} & \alpha_2^{2^{n-1}} & \alpha_2^{2^{n-1}} \end{pmatrix}$.

(1)

Matrices when F is APN

When
$$a = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n$$
 and $\overline{a} = (a_1, ..., a_n)^T$, we have

$$D_a F(x) = F(x+a) + F(x) + F(a)$$

$$= (\overline{x} + \overline{a})^T M^T E M(\overline{x} + \overline{a}) + \overline{x}^T M^T E M \overline{x} + \overline{a}^T M^T E M \overline{a}$$

$$= \overline{x}^T M^T (E + E^T) M \overline{a}.$$

So we define a symmetric matrix $C_F=E+E^T$ with diagnoal elements are all zero, so is $H=M^TC_FM$. When F is quadratic, $D_aF(x)$ is a linear function, so F is APN iff $\max\{\dim_{\mathbb{F}_2}(Ker(D_a))|a\in\mathbb{F}_{2^n}\}=1$.

Matrices when F is APN

 $D_a F(x) = \overline{x}^T H \overline{a}$ has 2 solutions iff $\operatorname{Rank}_{\mathbb{F}_2}(H \overline{a})^T = n - 1$, and $H \overline{a}$ is the linear combination of n colomums of H. Thus

$$D_a(x) = \overline{x}^T H \overline{a} = 0,$$

has 2 solutions for $\overline{a} \in \mathbb{F}_2^n \setminus \{0\}$ iff F is APN.

Definition

Let $H=(h_{u,v})_{n\times n}$ be an $n\times n$ matrix over \mathbb{F}_{2^n} . H is called a quadratic APN matrix (QAM) if

- $oldsymbol{1}$ H is symmetric and the elements in its main diagonal are zero;
- **2** Every nonzero linear combination of the n rows of H has rank n-1.

Properties of QAMs

F is an APN function with the correspondence matrix is QAM related to basis $\{\alpha_1,...,\alpha_n\}$.

① So if H_{α}, H_{β} are corresponding matrices for F(x) relative to the α, β respectively. Then we confirm $H_{\beta} = P^T H_{\alpha} P$ where the invertible $n \times n$ matrix P satisfying that

$$(\beta_1, ..., \beta_n) = (\alpha_1, ..., \alpha_n)P.$$

2 So if F(x), F'(x) is the quadratic function defined by H_{α}, H_{β} related to α , are two functions EA-equivalent?

The relation between F(x) and F'(x)

The answer is yes: F'(x) is EA-equivalent to F(x).

Proof.

Set the functions defined by H and $H'=P^THP$ relative to α be $F(x)=\sum_{1\leq t< i\leq n}c_{i,t}x^{2^{i-1}+2^{t-1}}$, define E,E' as before, hence we have

$$F(x) = \overline{x}^T M^T E M \overline{x}, F'(x) = \overline{x}^T M^T E' M \overline{x},$$

where
$$\overline{x}=(x_1,...,x_n)^T\in\mathbb{F}_2^n$$
. We set $W=M^TEM,W'=M^TE'M$, then $W+W^T=H$ and $W'+W'^T=H'=P^THP=P^TWP+P^TW^TP$.

The Lemma for the symmetric matrix with zero diagnoal

Lemma

Suppose $H=(h_{u,v})_{n\times n}$ is a symmetric matrix over \mathbb{F}_{2^n} with diagnoal elements are all zeros, define a set $S=\{W|W+W^T=H\}$, if $W_1+W_1^T=W_2+W_2^T=H$, then there exists a symmetric matrix A such that $W_2=W_1+A$.

Proof.

Obviously for any symmetric matrix A, we have

$$(W_1 + A) + (W_1 + A)^T = W_1 + W_1^T + A + A^T = W_1 + W_1^T = H$$

which implies that $W_1 + A \in S$ for any symmetric matrix A.

By fixing W_1 , we define another set $S'=\{W_1+A|A \text{ is symmetric}\}$, then #S' is the number of symmetric matrices over \mathbb{F}_{2^n} , i.e. $\#S'=(2^n)^{n+\frac{n(n-1)}{2}}$. Note that #S=#S', and all elements of S' belong to S, so S'=S, i.e. $W_2=W_1+A$.

The relation between F(x) and F'(x)

Proof.

Since $W' + W'^T = H' = P^T H P = P^T W P + P^T W^T P$, according to lemma above, there exists a symmetric matrix A such that $W' = P^T W P + A$. Thus

$$F'(x) = \overline{x}^T M^T E' M \overline{x} = \overline{x}^T W' \overline{x}$$

= $\overline{x}^T (P^T W P + A) \overline{x} = \overline{x}^T P^T M^T E M P \overline{x} + \overline{x}^T A \overline{x}$
= $G(x) + \overline{x}^T A \overline{x}$,

where $G(x) = \overline{x}^T P^T M^T E M P \overline{x}$, is affine equivalent to F(x).

$$\overline{x}^T A \overline{x} = \sum_{i=1}^n a_{i,i} x_i.$$

is a linear function since A is symmetric, so F'(x) is EA-equivalent to G(x). Thus F'(x) is EA-equivalent to F(x).

The relation between H and L(H)

Theorem

Let $H=(h_{u,v})\in \mathbb{F}_{2^n}^{n\times n}$ be a symmetric matrix with main diagonal elements all zeros, and L be a linear permutation on \mathbb{F}_{2^n} . Let $H'=(h'_{u,v})\in \mathbb{F}_{2^n}^{n\times n}$ such that $h'_{u,v}=L(h_{u,v})$ for all $1\leq u,v\leq n$. Then the quadratic functions defined by H and H' relative to α are EA-equivalent. And H is a QAM iff H' is a QAM.

Proof.

Just as before, we have $H=M^T(E+E^T)M=M^TC_FM$, then $C_F=(M^T)^{-1}HM^{-1}$. For the basis $\alpha=\{\alpha_1,...,\alpha_n\}$, we have the dual basis $\theta=\{\theta_1,...\theta_n\}$ such that

$$Tr(\alpha_i \theta_j) = \begin{cases} 0, \text{ for } i \neq j; \\ 1, \text{ for } i = j. \end{cases}$$

Thus we have $(M^T)^{-1}=M_\theta$ and the element in i-th row and j-th colomum is $\theta_j^{2^{i-1}}$. Hence we have $C_F=M_\theta H M_\theta^T$, so

$$c_{i,t} = \sum_{1 \le u \le v} \theta_u^{2^{i-1}} \theta_u^{2^{t-1}} h_{u,v}.$$

Choose $\eta_{u,v}\in\mathbb{F}_{2^n}$ such that $\eta_{u,v}+\eta_{v,u}=h_{u,v}$ and $h_{u,v}=0$, then we have a quadratic function $Q(x)=\sum_{1\leq v\leq u\leq n}Tr(\theta_ux)Tr(\theta_vx)h_{u,v}$ over \mathbb{F}_{2^n} which is EA-equivalent to

Proof.

F(x), using the same technique we get Q'(x) which is also EA-equivalent to F'(x). Thus we only need to confirm the relation between Q(x) and Q'(x):

$$Q'(x) = \sum_{1 \le v < u \le n} Tr(\theta_u x) Tr(\theta_v x) h'_{u,v} = \sum_{1 \le v < u \le n} Tr(\theta_u x) Tr(\theta_v x) L(h_{u,v})$$
$$= L(\sum_{1 \le v < u \le n} Tr(\theta_u x) Tr(\theta_v x) h_{u,v}) = L(Q(x)).$$

L(Tr(x)) = Tr(x) since L is a linear permutation. Therefore it duduces that F(x) and F'(x) are EA-equivalent.

Constructing quadratic APN functions from a given QAM (shanghai Jiao Tong

Before introducing the algorithms for constructing quadratic APN functions, we give some results on matrices over \mathbb{F}_{2^n} which are useful.

Lemma

Let $H \in \mathbb{F}_{n \times n}^{2^n}$ be a symmetric matrix with main diagonal elements all zero. Then every nonzero linear combination over \mathbb{F}_2 of the n rows of H has rank at most n-1.

$\mathsf{Theorem}$

Let $A = (a_{i,j}) \in \mathbb{F}_{2^n}^{r \times c}$ with $1 \le r < c \le n$ and $a_{i,j} = a_{j,i}, a_{i,i} = 0$ for $1 \le i, j \le r$. Let A[:,k], A[k] be the k-th colomum and k-th row of A, respectively. Set $b = \sum_{k=1}^{c} \lambda_k A[:,k]$, where $0 \neq (\lambda_1,...,\lambda_c) \in \mathbb{F}_2^c$. Assume $t = \operatorname{Rank}_{\mathbb{F}_2}\{b[1], b[2], ..., b[r]\}$. Then if every nonzero linear combination over \mathbb{F}_2 of the r rows of A has rank at least c-1, we have

- **1** if $(\lambda_{r+1},...,\lambda_c) = 0$, then t = r 1;
- $(\lambda_{r+1}, \dots, \lambda_c) \neq 0$, then t = r:

- ① Assume $(\lambda_{r+1},...,\lambda_c)=0$, then $b=\sum_{k=1}^r\lambda_kA[:,k]$, so $t\leq r-1$; Let B is the matrix of first $r\times r$ submatrix of A, then $b=\mathrm{Rank}_{\mathbb{F}_2}(\sum_{k=1}^r\lambda_kB[k])$, so if t< r-1, then we have $\mathrm{Rank}_{\mathbb{F}_2}(\sum_{k=1}^r\lambda_kA[k])< r-1+(c-r)=c-1$, contradiction.
- 2 Assume $(\lambda_{r+1},...,\lambda_c) \neq 0$, w.l.o.g. let $\lambda_c = 1$, then substitude A[:,c] with b, we get a new $r \times c$ matrix A'. If t < r, we have $\sum_{k=1}^r \lambda_k' A'[k,c] = 0$ for $(\lambda_1',...,\lambda_r') \in \mathbb{F}_2^r \setminus \{0\}$. W.l.o.g. suppose $\lambda_1' \neq 0$, then substitude A'[1] with $\sum_{i=1}^r \lambda_i' A'[i]$ and get a new matrix A'', then substitude A''[:,1] with $\sum_{i=1}^r \lambda_i' A''[:,i]$ and get get a new matrix A''', note that A' = AP, where P is a invertible matrix; A'' = P'A', A''' = A''P'', where P', P'' are also invertible matrices, so every nonzero linear combination over \mathbb{F}_2 of the r rows of A''' has rank at least c-1. However, we have A'''[1,c] = A'''[1,1] = 0, contradiction.

Exclude some improper matrices

Corollary

 $H=(h_{u,v})_{n\times n}$ is a symmetric matrix over \mathbb{F}_{2^n} and A is the $r\times c$ submatrix consisting of the first r rows and the first c colomums of H. Suppose $B=A^T$, then if A has the property that every nonzero linear combination over \mathbb{F}_2 of the r rows of A has rank at least c-1, so does B.

Note that every submatrix $A=(a_{i,j})\in \mathbb{F}_{2^n}^{r\times c}$ with $1\leq r< c\leq n$ of a QAM H must has the property that every nonzero linear combination over \mathbb{F}_2 of the r rows of the submatrix has rank at least c-1. Thus, if a matrix has a submatrix which don't have that property, it cannot be a QAM. Using the corollary, checking the property of submatrix A is enough.

How to construct QAMs

Given an $n\times n$ QAM matrix H over \mathbb{F}_{2^n} , we wish to get some new QAMs by assigning some different values of H. Since H is a QAM, the $n-1\times n-1$ submatrix A consists of the first n-1 rows and the first n-1 colomums of H, and any nonzero linear combination of the n-1 rows of A has rank n-2. Thus $H=\begin{pmatrix} A & c \\ c^T & 0 \end{pmatrix}$, where $c=(x_1,...,x_{n-1})^T$. Then we choose suitable c to make H a QAM.

How to choose suitable c

Example

Let n=4 and we give the H over \mathbb{F}_{2^4} :

$$\begin{pmatrix}
0 & h_{1,2} & h_{1,3} & c_1 \\
h_{2,1} & 0 & h_{2,3} & c_2 \\
h_{3,1} & h_{3,2} & 0 & c_3 \\
c_1 & c_2 & c_3 & 0
\end{pmatrix}$$
(2)

The matrix framed is the submatrix A, clearly any nonzero linear combination of the 4-1 rows of A has rank 4-2. Then we need to test whether [A,c] has the similar property:

- \bullet if $c_1 \in \operatorname{Span}(A[1])$, then the first row of [A, c] has rank 4-2, so H is not a QAM;
- 2 if $c_1 + c_2 \in \text{Span}(A[1] + A[2])$, then the sum of the first two rows of [A, c] has rank 4 2, so H is not a QAM;
 - 3

How to choose suitable c

From the example above, we need only to choose $c=(c_1,...,c_{n-1})^T\in\mathbb{F}_{2^n}^{n-1}$ to satisfy

$$\lambda_1 c_1 + \dots + \lambda_{n-1} c_{n-1} \in \mathbb{F}_{2^n} \setminus \operatorname{Span}(\lambda_1 A[1] + \dots + \lambda_{n-1} A[n-1]),$$

where $\lambda_i \in \mathbb{F}_2$ for all $1 \leq i \leq n-1$.

First we only modify c_1 , we can simplify the set as below: Let $S_1 = \mathbb{F}_{2^n} \setminus V_1$, where $V_1 = \operatorname{Span}(A[1])$. After fixing the value for c_1 , we need to modify c_2 , but the range of c_2 is more complex: $c_2 \notin \operatorname{Span}(A[2])$ and $c_2 \notin \operatorname{Span}(A[1] + A[2])$. And c_3 has the same condition: $c_3 \notin \operatorname{Span}(A[3])$, $c_3 \notin \operatorname{Span}(A[3] + A[1])$, $c_3 \notin \operatorname{Span}(A[3] + A[2])$ and $c_3 \notin \operatorname{Span}(A[3] + A[2])$.

An algorithm for choosing suitable c


```
Let A be the submatrix of H consisting of the first n-1 rows and colomums.
S = \{S_{\lambda} : \lambda = (\lambda_1, \dots, \lambda_{n-1}) \in \mathbb{F}_2^{n-1} \setminus \{0\}\} where S_{\lambda} = \mathbb{F}_{2^n} \setminus \operatorname{Span}(\sum_{j=1}^{n-1} \lambda_j A[j]).
```

Algorithm 1: The algorithm for choosing suitable c

```
Input: A QAM H over \mathbb{F}_{2^n}; A set S as defined above; An index i=1.
Output: Some QAMs
```

```
1 for each c_i \in S_{e_i} do
```

 $i \leftarrow i + 1$:

```
if i=n-1 then
 3 h_{n-1,n} = h_{n,n-1} = c_{n-1};
        return H
       end
6 h_{i,n} = h_{n,i} = c_i;
7 S_{e_{i+1}} \leftarrow S_{e_{i+1}} \cap S_{e_{i+1}+e_i};
```

9 end

How to choosing suitable c

Thus, given a QAM H, we can assign the values of the last colomum of H to get some new QAMs by using algorithm. Furthermore, assigning the values of the more colomums of H can get more QAMs, but it needs to apply the algorithm several times. If we want to find new APN functions on \mathbb{F}_{2^n} for $n \geq 8$, we must change values of a QAM for at least two colomums by experimental results,

Example

 x^3 is a well-known quadratic APN function on \mathbb{F}_{2^n} . Let n=8, g be the primitive element of \mathbb{F}_{2^8} with $g^8+g^4+g^3+g^2+1=0$, C be an 8×8 matrix such that $c_{1,2}=c_{2,1}=1$ and $c_{i,j}=0$ for all the others. Suppose M is an 8×8 matrix such that $m_{i,j}=(g^11)^{2^{i-1}+2^{j-1}}$ for $1\leq i,j\leq 8$. Then the corresponding QAM of x^3 is

$$H_8 = \begin{pmatrix} 0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & \mathbf{c_{13}} & \mathbf{c_{7}} \\ g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & \mathbf{c_{12}} & \mathbf{c_{6}} \\ g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & \mathbf{c_{11}} & \mathbf{c_{5}} \\ g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & \mathbf{c_{10}} & \mathbf{c_{4}} \\ g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & \mathbf{c_{9}} & \mathbf{c_{3}} \\ g^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & \mathbf{c_{8}} & \mathbf{c_{2}} \\ \mathbf{c_{13}} & \mathbf{c_{12}} & \mathbf{c_{11}} & \mathbf{c_{10}} & \mathbf{c_{9}} & \mathbf{c_{8}} & 0 & \mathbf{c_{1}} \\ \mathbf{c_{7}} & \mathbf{c_{6}} & \mathbf{c_{5}} & \mathbf{c_{4}} & \mathbf{c_{3}} & \mathbf{c_{2}} & \mathbf{c_{1}} & 0 \end{pmatrix}.$$

Example

We assign values for c_i for $1 \le i \le 13$ to get new QAMs. Let H_8 be a QAM, then:

- $\begin{array}{l} 1 \ V = \mathrm{Span}(g^{34},g^{81},g^{83},g^{170},g^{106}), \text{ and } V \text{ can partition } \mathbb{F}_{2^8} \text{ into } 8 \text{ sets:} \\ \mathbb{F}_{2^8} = V \cup (V+a_1) \cup (V+a_2) \cup (V+a_3) \cup (V+a_4) \cup (V+a_5) \cup (V+a_6) \cup (V+a_7); \end{array}$
- 2 $\operatorname{Rank}_{\mathbb{F}_2}(0,g^{34},g^{81},g^{83},g^{170},g^{106},c_{13})=6$, i.e. $c_{13}\in\mathbb{F}_{2^8}\setminus V$. Suppose c_{13} is the linear combination of $g^{34},g^{81},g^{83},g^{170},g^{106}$ with a set $A=\{a_i|1\leq i\leq 7\}$;

Example

3 Thus we have

$$H_8' = P^T H_8 P = \begin{pmatrix} 0 & g^{34} & g^{81} & g^{83} & g^{170} & g^{106} & a & \mathbf{c_7} \\ g^{34} & 0 & g^{68} & g^{162} & g^{166} & g^{85} & x_{12} & \mathbf{c_6} \\ g^{81} & g^{68} & 0 & g^{136} & g^{69} & g^{77} & x_{11} & \mathbf{c_5} \\ g^{83} & g^{162} & g^{136} & 0 & g^{17} & g^{138} & x_{10} & \mathbf{c_4} \\ g^{170} & g^{166} & g^{69} & g^{17} & 0 & g^{34} & x_{9} & \mathbf{c_3} \\ g^{106} & g^{85} & g^{77} & g^{138} & g^{34} & 0 & x_{8} & \mathbf{c_2} \\ a & x_{12} & x_{11} & x_{10} & x_{9} & x_{8} & 0 & \mathbf{c_1} \\ \mathbf{c_7} & \mathbf{c_6} & \mathbf{c_5} & \mathbf{c_4} & \mathbf{c_3} & \mathbf{c_2} & \mathbf{c_1} & 0 \end{pmatrix}$$

4 If H_8 is a QAM then H_8' is also a QAM, and they are EA-equivalent. So we only need to consider $c_{13} \in A$.

Example

- 5 Similarly, $U = \mathrm{Span}(g^{34}, g^{68}, g^{162}, g^{166}, g^{85})$, and $B \cup (B + g^{34})$ be a partition of $\mathbb{F}_{2^8} \setminus U$.
- 6 When c_{13} and c_{12} have been chosen, let $E = \operatorname{Span}(g^{34}, g^{81}, g^{83}, g^{170}, g^{106}, c_{13})$, then E can partition \mathbb{F}_{28} into 4 parts.
- 7 $F = \operatorname{Span}(g^{34}, g^{68}, g^{162}, g^{166}, g^{85}, c_{12})$ and $G \cup (G + g^{34})$ be a partition of $\mathbb{F}_{2^8} \setminus F$.

Thank You

Zhaole Li · APN functions