Evolution on graphs and the transition to cancer

Chay Paterson

University of Manchester

June 25, 2024

Introduction

Differential equations

Introduction

Driver mutations

Multi-stage models

P. Armitage and R. Doll¹²

¹P. Armitage and R. Doll, British Journal of Cancer 1954; 8: 1–12

²P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

Multi-stage models

A.G. Knudson¹²

Mutation and Retinoblastoma

Fig. 1. Semilogarithmic plot of fraction of cases of retino-blastoma not yet diagnosed (S) vs. age in months (t). The one-hit curve was calculated from $\log S = -t/30$, the two-hit curve from $\log S = -4 \times 10^{-4} \, t^2$.

¹AG. Knudson, PNAS 68.4 (1971): 820-823.

²F. Michor, Y. Iwasa and MA. Nowak, Nature Reviews Cancer 2004; 4: 107 205 doi:10.1038/prc1205

Graphs

corresponds to this stochastic process:...

 $\emptyset \to X, \quad \text{rate } \alpha$ $X \to X + Y, \quad \text{rate } \mu X$ $Y \to Y + Y, \quad \text{rate } \beta Y$ $Y \to \emptyset, \quad \text{rate } \delta Y$

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

How do these studies work?

What are the relevant observables in this type of longitudinal study & data analysis?

Track a cohort that initially contains N patients in the study:

- Age-specific incidence I(a): rate at which new cases are recorded in the cohort with ages between a and a + da
- Survival function S(a): probability to survive to age a without being diagnosed.

$$I(a) = -N\frac{dS}{da} = -N S(a)\frac{d \ln S}{da}$$
 (1)

- ▶ The survival curve S(a) determines the incidence curve I(a)
- ➤ The model determines the survival curve: the probability not to end up at one of the end nodes of the graph. We want to know what model+parameters best agree with data from studies.
- ▶ To fit (or "train") the model to longitudinal data, we need to compute S(a)!

This is the central mathematical problem in cancer epidemiology. How do we compute S?

Multi-stage clonal expansion models

2-3 rate limiting steps¹²³

Problem: how to compute S(t) for a given model?

Different methods: Fast:

- Armitage + Doll's approximation¹
- Moolgavkar + Venzon's quadrature²

Very slow:

► Gillespie algorithm + sampling ³

¹P. Armitage and R. Doll, British Journal of Cancer 1957; 11(2): 161-169

(supp. material)

²S. Moolgavkar and G. Luebeck, JNCI 1992; 84(8): 610-618

³C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Armitage and Doll's approximation

- Assume all the probabilities are small: $1 S \ll 1$
- ► Then the relevant probability S(a) is expressible in terms of expected values/population means, which implies

$$S(a) \propto a^k (e^{sa} - 1)$$
 (2)

with constants k and s.

Don't use correlations, variances, or higher moments in stem cell populations – just ignore these.

Models on graphs

- Most methods for computing S(a) do not consider graphs with multiple end nodes
- To study specific genes and mechanisms of interest (SNVs, LOH, CNA, etc.), we need to evaluate S(a) for a model defined on a graph (right)
- 3. What methods do we actually have?

This gets us the incidence of specific karyotypes

Colorectal adenocarcinoma model

 Can use A-D type approximation, or stochastic simulations

but:

- Mean-field breaks down at old ages / large probabilities
- Stochastic simulations are extremely slow

¹C. Paterson, I. Bozic, H. Clevers, PNAS 2020; 117(34): 20681-20688

Alternative approach: Kolmogorov forward equations

Define a more general generating function Ψ :

$$\Psi(t, \vec{q}) = \mathbb{E}\left[\prod_{j} q_{j}^{N_{j}}\right]$$
 (3)

and derive Kolmogorov forward equations instead. Then we can numerically integrate these, and get survival curves $S_i(a)$ for different types of cancer i. E.G. tumours with clonal LOH, or no clonal LOH.

$$S_i = \Psi(t, q_i = 1, \dots, q_i = 0)$$
 (4)

People knew about this approach for a long time (since 1970s) but it was never considered as useful as backward equations.

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

²DW Quinn, Risk Analysis 1989; 9(3): 407-13

Kolmogorov forward equations as wave equations

Briefly: the Kolmogorov forward equations in $P(N_0,...)$

$$\frac{dP(N_0, N_1, \dots)}{dt} = \sum_{\textit{vertices}} \alpha(N_j - 1)P(\dots, N_j - 1, \dots)$$
$$-\alpha N_j P(\dots, N_j, \dots)$$
$$+\beta \dots + \mu \dots + \delta \dots$$

get transformed...

Kolmogorov forward equations as wave equations

They transform with $P \rightarrow \Psi$:

$$\frac{\partial \Psi}{\partial t} = \sum_{\text{vertices}} \alpha (q_j - 1) q_j \frac{\partial \Psi}{\partial q_j} + \dots = \mathcal{H} \Psi$$
 (5)

where \mathcal{H} is a hyperbolic differential operator.

Because this is a hyperbolic wave equation, we can solve for future values of Ψ if we have initial values, by evolving them along characteristics.

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

Kolmogorov forward equations

Using the big generating function Ψ , find the corresponding wave equation:

$$\frac{d\Psi}{dt} = \mathcal{H}\Psi \tag{6}$$

This can be solved using the method of characteristics, so we can instead integrate

$$\frac{d\vec{\gamma}}{dt} = \vec{X} \tag{7}$$

numerically, using an appropriate time stepper.

The vector field \vec{X} and a characteristic $\vec{\gamma}$

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

Random sampling

Error analysis

To compare methods, ask under what conditions the errors are similar. Stochastic algorithms have

$$\epsilon \sim N^{-1/2} \tag{8}$$

and will thus need

$$N \sim \mathcal{O}(\epsilon^{-2})$$
 (9)

runs, so overall runtime $T \propto N$.

Method of characteristics

Error analysis

Why wasn't this method ever used? Wave equation+characteristic methods were studied before, but used Euler integration, which has error

$$\epsilon \sim \Delta t$$
 (10)

and required two passes, so it ran in

$$T \sim \Delta t^{-2} \sim \mathcal{O}(\epsilon^{-2})$$
 (11)

this is asymptotically just as bad as random sampling!

¹SH Moolgavkar and DJ Venzon, Math. biosc. 1979; 47(1): 55-77

²DW Quinn, Risk Analysis 1989; 9(3): 407-13

Error analysis

But what happens if we only need one pass, and replace Euler integration with a Runge-Kutta scheme?

$$\epsilon \sim \Delta t^2$$
 (12)

and runs in

$$T \sim \Delta t^{-1} \sim \mathcal{O}(\epsilon^{-1/2})$$
 (13)

so new runtime $\sim \mathcal{O}$ (old runtime $^{1/4}$).

Amazing!

Random sampling vs fast forward method: Monte Carlo: $\approx 5000s$ Fast forward: 4ms

Error analysis

How do they compare?

Efficiently computing $S_k(a)$ means we can evaluate likelihood functions directly, just sampling them....

Parameter inference

Parameter inference

Thank you!

What is my message?

- Don't study continua study PROBABILITIES!
- ▶ Age structure is important & informative, genes are discrete

Where next?

- Run these analyses on real studies!
- Combine genomic and age data TOGETHER
- Ongoing: sequencing schwannoma tumours in NF2 and oesophageal cancer in Barrett's cases

Acknowledgements

funded this research

All my collaborators...

- Ivana Božić
- ► Gareth Evans
- Miaomiao Gao
- David Wedge
- Miriam Smith
- Marian Love
- Joshua Hellier