# Chapitre 18 - Algorithmique du texte

#### Vocabulaire:

On travaille avec un alphabet  $\sum$ , ensemble fini non vide de symboles appelées des lettres.

# Alphabets classiques:

- $\sum = \{\text{caract\`eres ASCII}\}$
- $\sum = \{0, 1\}$
- $\sum = \{\text{unicode}\}$

Un mot est une suite, éventuellement vide, de lettres sur un alphabet. L'ensemble des mots sur un alphabet  $\sum$  est noté  $\sum^*$ . Le mot vide est noté  $\epsilon$ .

La taille d'un mot  $m \in \sum^*$  est noté |m|, et est le nombre de lettres de la suite qui le compose.

La concaténation de deux mots u et v, notée  $u \cdot v$  est défini par :

- ullet  $\epsilon \cdot v = v$
- $u \cdot \epsilon = u$
- $ullet (u_0u_1\dots u_{|u|-1})\cdot (v_0v_1\dots v_{|v|-1})=u_0u_1\dots u_{|u|-1}v_0v_1\dots v_{|v|-1}$

 $u \in \sum^*$  est un préfixe d'un mot  $v \in \sum^*$  si il existe  $\omega \in \sum^*$  tel que  $v = u \cdot \omega$ .

 $u\in \sum^*$  est un suffixe d'un mot  $v\in \sum^*$  si il existe  $\omega\in \sum^*$  tel que  $v=\omega\cdot u.$ 

 $u\in \sum^*$  est un facteur d'un mot  $v\in \sum^*$  s'il existe  $\omega_1, omega_2\in \sum^*$  tel que  $v=\omega_1\cdot u\cdot \omega_2.$ 

# **Proposition:**

Un mot  $u \in \sum^*$  possède :

- |u| + 1 préfixes
- |u| + 1 suffixes
- $ullet \frac{|u|(|u|+1)}{2}+1$  facteurs

L'occurrence d'un mot  $u\in \sum^*$  dans un mot  $v=v_0v_1\dots v_{|v|-1}\in \sum^*$  est un indice i tel que  $u=v_i\dots v_{i+|u|-1}.$ 

On parle d'algorithmique du texte quand le nombre de lettres de l'alphabet est négligeable devant la taille des mots.

#### I. Recherche d'un motif dans un texte

#### Entrées:

- Un mot sur un alphabet  $\sum$ , appelé le texte.
- Un mot sur le même alphabet  $\sum$ , appelé le motif m, avec  $|m| \leq |t|$  (et généralement |m| << |t|).

# Sortie:

- Première variante : booléen indiquant si m est un facteur de t.
- Deuxième variante : première occurrence de m dans t.
- Troisième variante : trouver toutes les occurrences de m dans t.

On peut utiliser un algorithme de recherche par force brute où pour chaque indice possible  $0 \le i < |t|$ , on détermine si i est une occurrence de m dont la complexité est  $\mathcal{O}(|m|)$ . Ainsi la complexité totale est en  $\mathcal{O}(|t| \times |m|)$ .

#### 1. Algorithme de Rabin-Karp

Il permet de diminuer la complexité du test d'une occurrence.

- $\rightarrow$  On veut éviter de faire |m| complexité pour chaque indice.
- → On compare l'empreinte du motif avec l'empreinte du facteur à la position actuelle.
- → L'empreinte est le résultat entier d'une fonction de hachage.
- → Si les empreintes ne correspondent pas, on passe à l'indice suivant. Sinon, on compare (car risque de collision).

## Exemple:

 $\sum = \{\text{alphabet à 26 lettres}\}$ 

Fonction de hachage  $h(u_0\dots u_{|u|-1})=\sum_{i=0}^{|u|-1}P_{u_i}$  avec  $P_{u_i}$  la position dans l'alphabet; t=abacbbabca et m=abc.

Etape 0 : L'empreinte du motif est calculé. h(abc) = 1 + 2 + 3 = 6.

Etape 1:  $h(aba) = 4 \neq 6$  donc aucune comparaison.

Etape 2: h(bac) = 6 = 6 donc |m| comparaisons, collisions.

Etape 3: h(acb) = 6 = 6 donc |m| comparaisons, collision.

Etape 4:  $h(cbb) \neq 6$ , pas de comparaisons.

Etape 5: idem.

. . .

Etape 7: h(abc) = 6, |m| comparaisons, occurrence trouvée.

### Critères sur la fonction de hachage :

- → Eviter les collisions.
- $\rightarrow$  Le calcul initial des empreintes du motif et du facteur du texte à l'indice 0 se fait en  $\mathcal{O}(|m|)$ .
- $\rightarrow$  Le calcul de l'empreinte à l'indice i+1 doit pouvoir être fait en  $\mathcal{O}(1)$  à partir de l'empreinte de l'indice i.

# Fonction respectant ces critères est utilisée par Rabin-Karp :

$$h(l_0 l_1 \dots l_{|l|-1}) = (\sum_{i=0}^{|l|-1} l_i b^{|l|-1-i}) mod(p)$$
 avec

- $*l_i$  un code entier assimilé à chaque lettre de l'alphabet (exemple : code ASCII).
- b la base, plus grande que le nombre de lettres de  $\sum$ .
- p choisi entier premier et le plus grand possible (souvent  $2^{31} 1$ ).
- avec l'algorithme de Horner, on a bien un calcul initial en  $\mathcal{O}(|m|)$ .

•  $h(l_{i+1} \dots l_{i+|l|}) = b(h(l_i \dots l_{i+|l|-1}) - l_i b^{|l|-1}) + l_{i+|l|}$  avec l le facteur du texte de taille |m|. Le calcul de h entre parenthèses est en  $\mathcal{O}(1)$ .

# Complexité:

Au plus |t| itérations. Le calcul initial est en  $\mathcal{O}(|m|)$  pour les 2 empreintes.

La nouvelle empreinte est en  $\mathcal{O}(1)$ . On a seulement 1 comparaisons sur les empreintes ne correspondent pas. La complexité est en  $\mathcal{O}(|m|)$  sinon. En notant C le nombre de collisions :

Complexité : 
$$\mathcal{O}(|m|) + \mathcal{O}(|t|) \times \mathcal{O}(1) + C \times O(|m|) = \mathcal{O}(|t| + C \times |m|)$$

Admis, sauf cas pathologique, C est de l'ordre de  $\frac{1}{n}$ .

## 2. Algorithme de Boyer-Moore

Il permet de diminuer le nombre d'itérations.

Première version : Boyer-Moore-Horspool

Première étape : Pré-traitement du motif

```
Pour chaque préfixe du motif i :

Pour chaque lettre de l'alphabet :

On stocke la dernière occurence de la lettre dans le préfixe dans une table à l'indice [i,j] (et -1 si n'apparaît pas)
```

## Exemple:

$$\sum = \{a,b,c\}$$
 ;  $m = abaaa$ 

| 1          | a  | b  | c  |  |
|------------|----|----|----|--|
| $\epsilon$ | -1 | -1 | -1 |  |
| a          | 0  | -1 | -1 |  |
| ab         | 0  | 1  | -1 |  |
| aba        | 2  | 1  | -1 |  |
| abaa       | 3  | 1  | -1 |  |
| abaaa      | 4  | 1  | -1 |  |

# Deuxième étape :

- → On compare le motif avec le facteur actuel de la droite vers la gauche.
- $\rightarrow$  Quand la comparaison échoue entre une lettre l du texte et une lettre à l'indice j du motif, on décale le motif pour la prochaine comparaison de j-décalage, avec décalage = entier donné par la table du prétraitement, ligne j, colonne l.

# Exemple:

t = abcaababbaabaaaab.

| 1     | а | b | С | а | а | b | а | b | b | а | а | b | а |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| i = 0 | а | b | а | а | а |   |   |   |   |   |   |   |   |
| i=3   |   |   |   | а | b | а | а | а |   |   |   |   |   |
| i=6   |   |   |   |   |   |   | а | b | а | а | а |   |   |
| i=7   |   |   |   |   |   |   |   | а | b | а | а | а |   |
| i=10  |   |   |   |   |   |   |   |   |   |   | а | b | а |

<u>Complexité</u>: Même que celle de l'algorithme par force brute :  $\mathcal{O}(|m| \times |t|)$ 

Deuxième version : Boyer-Moore, version complète

- Il construit plusieurs tables de décalage lors du pré-traitement du motif (étape 1).
- Lors du parcours du texte et des comparaisons de droite à gauche (étape 2), on utilise le meilleur décalage fourni par les tables construites.

La table de décalage construite dans la version de Horspool, aussi utilisée pour la Boyer-Moore complet, utilise la "règle du mauvais caractère" (seule à connaître et savoir implémenter).

Les autres règles, par exemple "règle du bon suffixe", seront explicitées dans les sujets.

Avec toutes les règles combinées, on a une complexité de  $\mathcal{O}(|m| + |t|)$ .

## II. Compression d'un texte

# Compression sans perte:

On possède un mot  $\in \sum^*$ , appelé le texte t. On veut écrire deux fonctions comp,  $decomp \sum^* \to \sum^*$  telles que decomp(comp(t)) = t. Pour les mots qui nous intéressent, |comp(t)| < |t|.

Le résultat de la compression d'un texte est appelé codage du texte. Les règles utilisées pour les construites sont des codes.

# Exemple:

```
texte = abaac; code : a = 00, b = 01, c = 11
```

Alors le codage est : 0001000011.

Un code à longueur fixe est tel que pour tout c et c' deux codes, |c| = |c'|.

Un code préfixe est tel que pour tout c et c' deux codes, alors c n'est pas un préfixe de c'.

Un code à longueur fixe ou un code préfixe permet une compression sans perte.

Il y a ainsi deux algorithmes:

- Algorithme de Huffman qui construit un code préfixe
- Algorithme de Lempel-Ziv-Welch pour un code à longueur fixe.

### 1. Algorithme de Huffman

#### Compression:

## Première étape :

Compter le nombre d'occurrences de chaque caractères du texte à compresser.

## Exemple:

```
mot : "satisfaisant", s = 3, a = 3, t = 2, i = 2, f = 1, n = 1
```

#### Deuxième étape :

On construit l'arbre de Huffman optimal.

On construit une forêt d'arbres réduits à une feuille, étiquetées par chaque lettre apparaissant dans le texte, de poids leur nombre d'occurrences.

Tant que la forêt contient plus d'un arbre, on sélectionne deux arbres de la forêt g et d, on construit un nouvel arbre N(g,d) de poids le poids de g + le poids de d et on le remet dans la forêt.

L'algorithme de Huffman est un algorithme glouton, les deux arbres choisis sont de poids minimaux. Le seul restant est l'arbre de Huffman optimal.

# Exemple:

Pour le mot "scienceinformatique" :



Troisième étape :

## On construit le code :

Pour chaque lettre a un code différent, déterminé par sa position dans l'arbre. On suit le chemin de la racine à la feuille, en ajoutant 0 si gauche et 1 si droite.

# Exemple:

$$a:00, n:010, f:011, s:10, i:110, t:111.$$

# Propriété:

Par construction de l'arbre, le code est préfixe.

### Quatrième étape :

On utilise le code pour construire le codage du texte.

 $satisfaisant \rightarrow 10001111101001100\dots 1101000010111$  (compression).

## Dernière étape :

Le résultat de la compression (ce qu'il faut stocker/envoyer) est le texte compressé et l'arbre de Huffman.

## Propriété:

Le code de Huffman est optimal pour un code préfixe, c'est-à-dire qu'il minimise

$$\sum_{\text{lettre } l_i} |\text{code de } l_i| \times \frac{\text{nb d'occ. de } l_i}{|\text{text}|} \text{ (Admis, se montre par récurrence sur le nombre de lettres de } \sum).$$

# <u>Décompression:</u>

On reçoit l'arbre et comp(t), comment retrouver t.

On parcourt comp(t) en descendant à gauche, à droite dans l'arbre, quand on arrive à une feuille, on l'ajoute à la décompression et on repart de la racine.

Le mot "satisfaisant" devient ainsi "saint".

## 2. Algorithme de Lempel-Ziv-Welch

C'est un code à longueur fixe, la longueur est choisi au préalable. On stocke les codes au fur et à mesure de la compression dans une table T. Chaque lettre de l'alphabet est codé par lui-même (typiquement code ASCII).

Donc tous les codes entre 0 et  $|\sum |-1$  sont pris.

On lit le texte de gauche à droite, lettre par lettre, en gardant dans un "buffer" les lettres lues et non compressées.

- Quand  $buffer. caract\`erelu \in T$ , on ajoute  $caract\`erelu$  au buffer.
- Sinon, on l'ajoute à T avec un nouveau code pas encore pris, et on compresse le buffer.

A la fin, on compresse ce qui est resté dans le buffer.

$$\sum = \{e, n, t, d\}$$
, Texte = entendent

| T                                                                                    | buffer | caractère lu | compression |
|--------------------------------------------------------------------------------------|--------|--------------|-------------|
| $E \leftrightarrow 0, N \leftrightarrow 1, T \leftrightarrow 2, D \leftrightarrow 3$ |        |              |             |
|                                                                                      |        | e            |             |
| $en \leftrightarrow 4$                                                               | e      | n            | 0           |
| $nt \leftrightarrow 5$                                                               | n      | t            | 1           |
| $te \leftrightarrow 6$                                                               | t      | e            | 2           |
|                                                                                      | e      | n            |             |
| $end \leftrightarrow 7$                                                              | en     | d            | 4           |
|                                                                                      | d      | e            | 3           |
|                                                                                      | e      | n            |             |
| $ent \leftrightarrow 9$                                                              | en     | t            | 4           |
|                                                                                      | t      | rien         | 2           |

On a alors : comp(texte) = 0124342.

La table T n'est pas conservée, on garde la taille choisie.

# <u>Décompression</u>:

$$comp(t) = 0124342, \sum = \{e, n, t, d\}.$$

T est reconstruite au fur et à mesure de la décompression. On ajoute un nouveau code à la table pour la décompression précédente concaténée à la décompression actuelle (première lettre).

| T                                                                                    | Code lu | décompression |
|--------------------------------------------------------------------------------------|---------|---------------|
| $e \leftrightarrow 0, n \leftrightarrow 1, t \leftrightarrow 2, d \leftrightarrow 3$ |         |               |
|                                                                                      | 0       | e             |
| $en \leftrightarrow 4$                                                               | 1       | n             |
| $nt \leftrightarrow 5$                                                               | 2       | t             |
| $te \leftrightarrow 6$                                                               | 4       | en            |
| $end \leftrightarrow 7$                                                              | 3       | d             |
| $de \leftrightarrow 8$                                                               | 4       | en            |
| $ent \leftrightarrow 9$                                                              | 2       | t             |

$$\sum = a, comp(t) = 01.$$

| T                      | lu | décompression |
|------------------------|----|---------------|
| $a \leftrightarrow 0$  |    |               |
|                        | 0  | a             |
| $aa \leftrightarrow 1$ | 1  | aa            |

Quand ce cas se produit, on ajoute à T un code pour (décompresser avant). (décompresser avant première lettre), ici (a).(première lettre de a) = aa.