Einführung in die statistische Datenanalyse mit R

Lineare Regression II

David Benček

Wintersemester 2015/16

Zur Erinnerung: Zweck der Regression

- ► Formulierung eines plausiblen Modells für die Wirkung von Einflussgrößen (unabhängigen Variablen) auf die abhängige Größe (abhängige Variable),
- Quantifizierung der Wirkung von Einflussgrößen,
- Bestimmung der statistischen Signifikanz von Effekten,
- ▶ Vorhersage der abhängigen Größe bei neuen Beobachtungen.

Lineare Einfachregression

Lineare Einfachregression in R

```
lacina_one <- lm(lnbdb ~ lnduration, data = lacina)
summary(lacina_one)</pre>
```

```
##
## Call:
## lm(formula = lnbdb ~ lnduration, data = lacina)
##
## Residuals:
      Min
              10 Median
                                    Max
## -3.3934 -0.8756 -0.1360 0.7390 4.7763
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0790 0.2291 35.263 < 2e-16 ***
## Induration 0.8242 0.1190 6.925 2.89e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.438 on 112 degrees of freedom
## Multiple R-squared: 0.2998, Adjusted R-squared: 0.2936
## F-statistic: 47.96 on 1 and 112 DF, p-value: 2.892e-10
```

Modellqualität

par(mfrow=c(2,2))
plot(lacina_one)

R^2 – Intuition

Wieviel Varianz der abhängigen Variable wird durch das Modell erklärt?

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\text{Variation der Regresswerte}}{\text{Variation von Y}}$$

Manuelle Berechnung:

```
sum((fitted(lacina_one) - mean(lacina$lnbdb))^2) /
sum((lacina$lnbdb - mean(lacina$lnbdb))^2)
```

```
## [1] 0.29982
```

Oder einfach:

```
summary(lacina_one)$r.squared
```

```
## [1] 0.29982
```

Vorsicht!

Nicht einfach nur \mathbb{R}^2 maximieren! Annahmen beachten!

Anscombe Quartett

Multiple Regression

► Bisher:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

▶ Jetzt:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_m x_{mi} + \epsilon_i$$

Lacina-Modell

TABLE 2 Ordinary Least Squares (OLS) Regressions of Battle Deaths in Civil Conflicts, 1946-2002

Independent Variable	OLS Regression of ln Total Battle Deaths		
	Coefficient	(SE)	p-Value
Model 1 ^a			
In Duration	0.81	(0.12)	.000
In Population	-0.044	(0.081)	.580
In Military quality	0.10	(0.12)	.400
In Gross domestic product	-0.19	(0.18)	.280
Cold war	0.67	(0.31)	.036
In Percentage mountainous territory	0.10	(0.12)	.400
Democracy	-0.87	(0.36)	.017
Ethnic polarization	-0.98	(0.34)	.005
Religious polarization	0.12	(0.32)	.710
Intercept	9.50	(2.00)	.000
Model 2 ^b			
In Duration	0.86	(0.11)	.000
Cold war	0.59	(0.27)	.030
Democracy	-0.91	(0.33)	.006
Ethnic polarization	-1.00	(0.30)	.001
Intercept	8.60	(0.35)	.000

a. n = 105. Adjusted $R^2 = 0.40$. b. n = 114. Adjusted $R^2 = 0.43$.

Replikation des Lacina-Modells

Call:

##

```
## lm(formula = lnbdb ~ lnduration + lnpop + lnmilqual + lngdp +
## cw + lnmountain + democ + ethnicpolar + relpolar, data =
##
## Pagiduals:
```

```
## Residuals:
## Min 1Q Median 3Q Max
## -2.3879 -0.9286 -0.0551 0.6936 3.5885
```

```
## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.54259 1.97523 4.831 5.20e-06 ***
```

Induration 0.80722 0.11908 6.778 1.02e-09 ***
Inpop -0.04445 0.08065 -0.551 0.58287