On the theory of ultrafilters

Why we need ultrafilters?

Continuity v.s. Absolute Continuity

From filters to ultrafilters

Space of ultrafilters

Basic properties

Space βN

Algebratical properties of $\beta\mathbb{N}$ space

Why we need ultrafilters?

Continuity v.s. Absolute Continuity

Example 1.1.1 Let $f:X \to Y$ be a mapping between Hausdorff spaces, then the following three statements are equivalent:

- 1. f is continuous at $p \in X$.
- 2. For every neighbourhood $U_{f(p)}$, the preimage $f^{-1}(U_{f(p)})$ is a neighbourhood of p.
- 3. For every sequence $x_n o p$, we also have $f(x_n) o f(p)$.

Remark We call $x_n \to x$ in the topology (X,τ) , whenever U_x contains x_{k+N} for some $N \in \mathbb{N}$. Here U_x is an arbitrary open set containing x. In other words, each subset of x contains almost all elements of $\{x_n\}$ except finite lamsters.

However, somethings gets stranger as X and Y are no longer Hausdorff spaces, i.e., 2 implies 3, but it seems impossible to prove the the converse. As a result, we shall DISTINCT **continuity** and **sequential continuity** thenceforth.

We know that

Fact 1.1.2 Sequential compactness ⇒ compactness. (See Fact 2.2.5 for examples)

Then we might propose the following conjecture

?

Conjecture 1.1.3 Sequential continuity \Rightarrow continuity.

The conjecture is proved true by the following example

Example 1.1.4 Let X be uncountable. Consider the example constructed by the following steps

- 1. Let η be the discrete topology of $X\setminus\{x_0\}$, that is, $\eta=\mathcal{P}(X\setminus\{x_0\})$.
- 2. Let τ be the topology of X, given by

$$au = \eta \cup \{A \cup \{x_0\} \mid |X \setminus A| \leq |\mathbb{N}|\}.$$

3. (X,τ) and $(X,2^X)$ has the same set of convergent sequences. However, $i:(X,\tau)\to (X,2^X)$ is not continuous since the latter has finer topology than the former.

▼ Hints

 $\{x_n\}$ is convergent in either (X,τ) or $(X,2^X)$, whenever $x_{N+1}=x_{N+1}=\cdots$ for some $N\in\mathbb{N}$. The function i is sequentially continuous everywhere but discontinuous at x_0 .

Indeed, the continuity can be characterised by a kind of *generalised sequece*, which assumes uncountable many elements. Such generalised sequence is actually a poset relation, the poset itself is called a filter when some conditions are satisfied.

From filters to ultrafilters

Definition 1.2.1 We call non-empty subset $\mathscr{F}\subset \mathcal{P}(X)$ a filter whenever

- 1. (Downward closed) $\forall A, B \in \mathscr{F}$, $A \cap B \in \mathscr{F}$.
- 2. (Upward closed) $\forall A \in \mathscr{F}$, $\{U \in \mathscr{P}(X) \mid A \subset U\} \subset \mathscr{F}$.
- 3. $\emptyset \notin \mathscr{F}$.

Example 1.2.2 We call $\{U\in\mathscr{P}(X)\mid x_0\in U\subset X\}$ a principle filter generated by x_0 .

Example 1.2.3 x-nieghbourhood filter is generated by all neighbourhoods containing x, which is defined on a topology space.

Example 1.2.4 The Fréchet filter is defined by the set of cofinite subsets.

Definition 1.2.5 We define **prime filters** and **ultrafilters (or maximal filters)** similar the way as prime ideals and maximal ideals:

 \mathscr{F} is a **prime filter** on X whenever \mathscr{F} is generated by \mathscr{F}_1 and \mathscr{F}_2 implies either $\mathscr{F}_1=\mathscr{F}$ or $\mathscr{F}_2=\mathscr{F}$.

 \mathscr{F} is a **maximal filter** whenever $\mathscr{F} \subset \mathscr{F}'$ implies $\mathscr{F}' = \mathscr{F}$ if \mathscr{F}' is a filter.

We also have the following propositions:

- 1. A maximal filter (or ultrafilter) is always prime.
- 2. A principle filter is always maximal.
- 3. For each filter \mathscr{F} , there exists an ultrafilter contianing \mathscr{F} . It depends on the Axiom of Chioce.

I is a **prime ideal** on R whenever I is generated by I_1 and I_2 implies either $I = I_1$ or $I = I_2$.

I is a **maximal ideal** whenever $I \subset I'$ implies I = I' if I' is a nontrivial ideal.

We also have the following propositions:

- 1. A maximal ideal is always prime.
- 2. A principle ideal is always maximal.
- 3. For each ideal I, there exists an maximal ideal contianing I. It depending on the Axiom of Chioce.

Furthermore, we find that every finite subset of a filter has non-empty intersection. The following theorem strengthens the existence of ultrafilter:

Theorem 1.2.6 Let $\mathscr C$ be a collection of subsets with finite intersection property (*FIP* for short), that is, arbitrary finite many elements in it always have nonempty intersetion. Then there exists an ultrafilter $\mathscr U$ containing $\mathscr C$.

Here we admit the axiom of choice.

▼ Proof of the theorem

Let $\mathscr{X}:=\{U\supset\mathscr{C}\mid U\in\mathcal{P}(X),U \text{ has FIP}\}$, which has the **finite intersection** property.

Definition 1.2.7 Let βX denotes the space of ultrafilters, we see the canonical embedding

$$X
ightarrow eta X, \quad x \mapsto \{x \mid x \in U\},$$

which resembles $X \to X^{**}$, the **canonical embedding** into double dual space.

We shall compare it with **Banach limits** in the following sections.

Space of ultrafilters

Basic properties

Notation The symbol ${\mathscr F}$ always stands for filters, ${\mathscr U}$ stands for ultrafilters.

Theorem 2.1.1 Each filter is contained in an ultrafilter by Zorn's lemma.

▼ Proof of the theorem

Consider the partially ordered set (P, \leq) . Here P consists the set of filters of X, $\mathscr{F}_1 \leq \mathscr{F}_2$ whenever $\mathscr{F}_1 \subset \mathscr{F}_2$. Let $\{\mathscr{F}\}_{i \in I}$ be a chain in P that contains \mathscr{F}_1 . We claim that $\bigcup_{i \in I} \{\mathscr{F}_i\}$ is also a filter since it satisfies 3 principles in **Definition 1.2.1**.

Since each chains has a upper bound, there exists a maximal element by Zorn's lemma.

Theorem 2.1.2 Let $\mathscr U$ be an ultrafilter. If $B\cap A
eq \emptyset$ for each $A\in \mathscr U$, then $B\in \mathscr U$.

▼ Proof of the theorem

The set $\{B\cap A\mid A\in\mathscr{U}\}$ is equipped with the finite intersection principle, thus can be extended into an ultrafilter \mathscr{U}' . Therefore, $B\in\mathscr{U}'$ and $\mathscr{U}'\subset\mathscr{U}$. Thus $B\in$

$$\mathscr{U}=\mathscr{U}'$$
.

Theorem 2.1.3 Let $\mathscr U$ be an ultrafilter. If $A \cup B \in \mathscr F$, then $(A \in \mathscr U) \vee (B \in \mathscr U)$.

▼ Proof of the theorem

For the sake of contradiction, if $A \notin \mathscr{U}$ and $B \notin \mathscr{U}$, then there exists $C, D \in \mathscr{U}$ such that $C \cap A = D \cap B = 0$. As a result, $(A \cup B) \cap (C \cap D) = \emptyset$. Since $C \cap D$ is nonempty, $A \cup B \notin \mathscr{U}$, which leads to a contradiction.

Theorem 2.1.4 If $\mathscr{U}_1 \neq \mathscr{U}_2$, there there exists $A \in \mathscr{U}_1$ and $B \in \mathscr{U}_2$ such that $A \cap B = \emptyset$.

▼ Proof of the theorem

By Theorem 2.1.1.

Theorem 2.1.5 If $\mathscr U$ is an ultrafilter and $A\in\mathscr U$, if $A=\dot\cup_{i=1}^NA_i$ is a disjoint union, then exactly one A_i is in $\mathscr U$.

▼ Proof of the theorem

Prove by induction (see **Theorem 2.1.3**).

Here is another definition of ultrafilter:

Definition 2.1.6 (Compare to **Definition 1.2.5**) $\mathscr{U}\subset 2^X$ is an ultrafilter whenever

- 1. $X \in \mathscr{U}$ and $\emptyset \notin \mathscr{U}$.
- 2. If $A\in \mathscr{U}$ and $B\in \mathscr{U}$, then $A\cap B\in \mathscr{U}$.
- 3. For all $A\subset X$, either $A\in \mathscr{U}$ or $A^c\in \mathscr{U}$.

Exactly *half* of the subsets in 2^X are in $\mathscr U$.

One can also characterise ultrafilters by finitely-additive measure on X, i.e.,

$$\mu: 2^X
ightarrow \{0,1\}, A \mapsto egin{cases} 1, & A \in \mathscr{U}, \ 0, & A
otin \mathscr{U}. \end{cases}$$

As a result, $\mu(\dot{\cup}_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$ for disjoint union. We obtain that each ultrafilter corresponds a finitely-additive measure.

Theorem 2.1.7 Let X be a finite set. Then each ultrafilter is principle (see **Example 1.2.2**).

▼ Proof of the theorem

Let $\mathscr U$ be an ultrafilter. First $\cap \{U \in \mathscr U\} \neq \emptyset$ since it is a finite intersection. If $\cap \{U \in \mathscr U\} \neq \emptyset$ contains two elements, i.e., $\{x_1, x_2\} \subset \cap \{U \in \mathscr U\}$, then $\mathscr U$ is contained in the principle ultrafilter generated by x_1 . It contradicts our assumption.

As a result, any ultrafilter on a finite set is generated by one element, that is, a principle ultrafilter.

Fact 2.1.8 There exists a non-principle ultrafilter on INFINITE set X. For instance, the set $\{U \mid |X \setminus U| < |\mathbb{N}|\}$ is an ultrafilter yet not principle.

Space $\beta\mathbb{N}$

Ultrafilters seems trivial when we set X as a finite set, since all ultrafilters are principle. **Definition 1.2.7** provides an isomorphism.

Take $\mathbb N$ as an example, define the double dual of $A\subset X$ by

Definition 2.2.1

$$A^{\star} := \{ \mathscr{U} \in \beta X \mid A \in \mathscr{U} \},$$

that is, the collection of ultrafilter contains the given set.

Theorem 2.2.2 We have the following:

1.
$$A^* \cap B^* = (A \cap B)^*$$
,

2.
$$(A^c)^\star\dot{\cup}A^\star=eta X$$
 ,

3.
$$A^* \cup B^* = (A \cup B)^*$$
,

4.
$$A^\star \subset B^\star$$
 whenever $A \subset B$.

▼ Proof of the theorem

The first identity is due to

$$A^* \cap B^* = \{ \mathscr{U} \mid A, B \in \mathscr{U} \}$$
$$= \{ \mathscr{U} \mid A \cap B \in \mathscr{U} \}$$
$$= (A \cap B)^*.$$

The second identity is due to

$$(A^c)^* = \{ \mathscr{U} \in \beta X \mid A^c \in \mathscr{U} \}$$

= $\{ \mathscr{U} \in \beta X \mid A \notin \mathscr{U} \}$
= $\beta X \setminus \{ \mathscr{U} \in \beta X \mid A \in \mathscr{U} \}.$

The third identity is similar to the first one.

The final identity is trivial.

Theorem 2.2.3 The following statements are equivalent:

- 1. (X, τ) is comact.
- 2. Let $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of open sets of X such that $\cup_{{\lambda}\in\Lambda}U_{\lambda}=X$. Then there exists a **FINITE** subset $I\subset\Lambda$ such that $\cup_{{\lambda}\in I}U_{\lambda}=X$.
- 3. Let $\{F_{\lambda}\}_{\lambda\in\Lambda}$ be a family of closed sets such that for each finite $I\subset\Lambda$, $\cap_{\lambda\in I}F_{\lambda}\neq\emptyset$ (the **finite intersection property**, see **Theorem 1.2.6**). Then $\cap_{\lambda\in\Lambda}F_{\lambda}\neq\emptyset$.
- 4. Every ultrafilter converges.

We say \mathscr{U} converges to x on (X,τ) , whenever each neighbourhood of x contains some elements in \mathscr{U} . Especially, every convergent filter converges to exactly one point on Hausdorff space.

- 5. $\cap \{\overline{A} \mid A \in \mathscr{F}\}
 eq \emptyset$, \mathscr{F} is arbitrary ultrafilter.
- **▼** Proof of the theorem
 - 2 and 3 are equivalent definition of compactness. An equivalent statement of 2 is

Let $\{F_{\lambda}\}_{\lambda\in\Lambda}$ be a family of closed sets of X such that $\cap_{\lambda\in\Lambda}F_{\lambda}=\emptyset$. Then there exists a **FINITE** subset $I\subset\Lambda$ such that $\cap_{\lambda\in I}F_{\lambda}=\emptyset$.

Thus 2 and 3 are equivalent. We mainly focus on

2 4 If there exists a non-convergent ultrafilter \mathscr{U} , then for each $x \in X$ there exists a neighbour $V_x \notin \mathscr{U}$. Since the open conver $\{V_x\}_{x \in X}$ has finite subcover $\{V_{x_i}\}_{i=1}^N$, we have $V_{x_i}^c \in \mathscr{U}$ and $\bigcap_{i=1}^N V_{x_i}^c = \emptyset$, which contradicts our assumption.

 \blacksquare \blacksquare \blacksquare For arbitrary filter \mathscr{F} , there exists an ultrafilter $\mathscr{U}\supset\mathscr{F}$. Let x be one of the convergent points that \mathscr{U} converges to. $\forall A\in\mathscr{F}, \forall V_x$, we have $V_x\cap A=\emptyset$. As a result, $x\in\overline{A}$.

 $5 \rightarrow 2$ For the sack of contradiction, suppose that (X, τ) is not compact. Then there exists an open cover $\{O_i\}_{i\in I}$ of X without finite subcovers. Construct a basis of filter by

$$\mathscr{B} := \{\cap_{i \in \Lambda} O_i^c \mid n \geq 1, \Lambda \subset O, |\Lambda| < |\mathbb{N}| \}$$

Then \mathscr{B} is equipped with **FIP** (See **Theorem 1.2.6**), thus can be extended to a filter \mathscr{F} . However, $\cap \mathscr{F} = \emptyset$, which leads to a contradiction.

Theorem 2.2.4 The set $\mathscr{B}:=\{A^\star\mid A\subset\mathbb{N}\}$ is a basis of compact Hausdorff space on $\beta\mathbb{N}$.

▼ Proof of the theorem

We shall prove \blacksquare \mathscr{B} is a valid basis, \blacksquare the compactness of $\beta\mathbb{N}$, as well as \blacksquare $\beta\mathbb{N}$ is a Hausdorff space.

II For each $\mathscr{U}\in\beta\mathbb{N}$, there exists A such that $\mathscr{U}\in A^{\star}$. If $\mathscr{U}\in A^{\star}\cap B^{\star}$, then $\mathscr{U}\in(A\cap B)^{\star}$ by **Theorem 2.2.2**. Therefore \mathscr{B} is a well-defined topological basis.

 ${f 2}$ In fact each element in ${\cal B}$ is bath open and closed. Let Y be closed set in $\beta {\Bbb N}$, then there exists a set of $A_{\lambda} \subset {\Bbb N}$ such that

$$Y=(\cup A_{\lambda}^*)^c=\cap (A_{\lambda}^c)^*.$$

Hence each closed set is a intersection of sets in \mathscr{B} . Let $\{[U_{\lambda}]\}_{\lambda \in \lambda}$ be arbitrary collection of open sets covering βX . For the sake of contradiction we assume that

eta X has no finite subcover. Then $\bigcap_{k=1}^N U_{\lambda_k}^c
eq \emptyset$. **Theorem 1.2.6** proves the existence of ultrafilter $\mathscr U$ containing $\{U_{\lambda_0}^c\}_{\lambda \in \Lambda}$. There exists U_{λ_0} such that $\mathscr U \in [U_{\lambda_0}]$. Therefore both U_{λ_0} and $U_{\lambda_0}^c$ are contained in $\mathscr U_0$, which leads to a contradictory!

 ${f 3}$ For arbitrary ultrafilter ${\mathscr U}$ and ${\mathscr U}'$, there exists $A\in{\mathscr U}$ and $B\in{\mathscr U}'$ such that $A\cap B=\emptyset$ by definition of ultrafilter. Therefore, we have ${\mathscr U}\in A^\star$, ${\mathscr U}'\in B^\star$, and $A^\star\cap B^\star=\emptyset$.

Fact 2.2.4 Let $\mathscr{P}(X)$ be the product topology space $(\{0,1\}^X,\tau)$, where τ is generated by

$$V(lpha,eta):=\{(u_i)_{i\in X}\in \mathcal{P}(X)\mid u_{lpha_j}=1,u_{eta_k}=0\}.$$

That is, $V(\alpha,\beta)=(1)_{lpha} imes(0)_{eta} imes\{0,1\}_{X\setminus(\alpha\dot\cup\beta)}$. We equal $\{0,1\}^X$ and $\mathcal P(X)$ here.

For instance, an open set in $\mathscr{P}(\{1,2,3\})$ is given by

$$V(\{1\},\{2\})=\{\{(1,0,1)\},\{(1,0,0)\}\}=\{\{1,3\},\{1\}\}.$$

We claim that $\mathscr{P}(X)$ is finer than βX .

Fact 2.2.5 (Stone-Čech compactification) The topology $\beta\mathbb{N}$ is called Stone-Čech compactification of \mathbb{N} . Since no sequences converge to a point in $\beta\mathbb{N}\setminus\mathbb{N}$ and \mathbb{N} is not sequentially compact, we deduce that $\beta\mathbb{N}$ is not sequentially compact. However, $\beta\mathbb{N}$ is indeed compact!

As we mentioned in **Example 1.1.4**, sequentially properties no longer imply absolute properties.

Theorem 2.2.6 We set J as canonical embedding in Definition 1.2.7. Then J(x) is isolated in βX , J(X) is dense in βX .

▼ Proof of the theorem

We claim that J(x) is isolated in βX since $\{x\}^\star = \{J(x)\}$ is both close and open.

For each $\mathscr{U}\in\beta X$, there exists $A\subset X$ such that $\mathscr{U}\in A^\star$ by definition of topological spaces. Take $x\in A$, then $J(x)\in A^\star$. It reveals that each neighbourhood of \mathscr{U} has non empty intersection with J(X), thus J(X) is dense in $\beta\mathbb{N}$.

Algebratical properties of $\beta\mathbb{N}$ space

Definition 2.3.1 We define the binary operation on $\beta\mathbb{N}$ as follows

$$egin{aligned} +:η\mathbb{N} imeseta\mathbb{N} oeta\mathbb{N},\ (\mathscr{U}_1,\mathscr{U}_2)&\mapsto \{A\subset X\mid \{n\in\mathbb{N}\mid A-n\in\mathscr{U}_2\}\in\mathscr{U}_1\}. \end{aligned}$$

lacktriangle Proof that + is closed on $\beta\mathbb{N}$.

For each \mathscr{U}_1 and \mathscr{U}_2 in $\beta\mathbb{N}$, it is easy to show $X\in (\mathscr{U}_1+\mathscr{U}_2)$ and $\emptyset\notin \mathscr{U}_1+\mathscr{U}_2$. Suppose that $A,B\in (\mathscr{U}_1+\mathscr{U}_2)$, we claim that $(A\cap B)\in (\mathscr{U}_1+\mathscr{U}_2)$. This is due to

$$\{n\mid A-n\in\mathscr{U}_2\}\cap\{n\mid B-n\in\mathscr{U}_2\}\subset\{n\mid A\cap B-n\in\mathscr{U}_2\}.$$

Suppose $A
otin (\mathscr{U}_1 + \mathscr{U}_2)$. Then $\{n \mid A - n \in \mathscr{U}_2\}
otin \mathscr{U}_1$ and $\{n \mid A - n \notin \mathscr{U}_2\} \in \mathscr{U}_1$. Since $A - n \notin \mathscr{U}_2$ whenever $A^c - n \in \mathscr{U}_2$. Thus $A^c \in (\mathscr{U}_1 + \mathscr{U}_2)$.

Theorem 2.3.2 Let \mathscr{U}_i be the principle ultrafilter generated by x_i , i=1,2. Then $\mathscr{U}_1+\mathscr{U}_2$ equals the principle filter generated by x_1+x_2 .

▼ Proof of the theorem

This is due to

$$egin{aligned} A &\in (\mathscr{U}_1 + \mathscr{U}_2) \ \Leftrightarrow \{n \in \mathbb{N} \mid A - n \in \mathscr{U}_2\} \in \mathscr{U}_1 \ \Leftrightarrow x_1 \in \{n \in \mathbb{N} \mid A - n \in \mathscr{U}_1\} \ \Leftrightarrow (A - x_1) \in \mathscr{U}_2 \ \Leftrightarrow x_1 \in (A - x_1) \ \Leftrightarrow (x_1 + x_2) \in A. \end{aligned}$$

Theorem 2.3.3 + is associative.

▼ Proof of the theorem

We shall prove that $(\mathscr{U}_1+\mathscr{U}_2)+\mathscr{U}_3=\mathscr{U}_1+(\mathscr{U}_2+\mathscr{U}_3)$. Since

$$egin{aligned} A &\in \mathscr{U}_1 + (\mathscr{U}_2 + \mathscr{U}_3) \ &\Leftrightarrow \{n \mid \{m \mid A - m - n \in \mathscr{U}_3\} \in \mathscr{U}_2\} \in \mathscr{U}_1 \ &\Leftrightarrow \{n \mid \{m \mid A - n \in \mathscr{U}_3\} - m \in \mathscr{U}_2\} \in \mathscr{U}_1 \ &\Leftrightarrow (U_1 + \mathscr{U}_2) + \mathscr{U}_3. \end{aligned}$$

Theorem 2.3.4 + is left continuous, that is, $\mathscr{U} \mapsto \mathscr{U} + \mathscr{U}_0$ is continuous for arbitrary fixed \mathscr{U}_0 .

▼ Proof of the theorem

For each basic open set A^\star , the preimage of A^\star under the mapping $\mathscr{U}\mapsto \mathscr{U}+\mathscr{U}_0$ is

$$egin{aligned} &\{\mathscr{U} \mid \mathscr{U} + \mathscr{U}_0 \in A^\star\} \ &\Leftrightarrow \{\mathscr{U} \mid A \in (\mathscr{U} + \mathscr{U}_0)\} \ &\Leftrightarrow \{\mathscr{U} \mid \{n \mid A - n \in \mathscr{U}_0\} \in \mathscr{U}\} \ &\Leftrightarrow \{n \mid A - n \in \mathscr{U}_0\}^\star. \end{aligned}$$

Theorem 2.3.5 There exists $\mathscr{I}\in\beta\mathbb{N}$ such that $\mathscr{I}+\mathscr{I}=\mathscr{I}$, if Axiom of Chioce is admitted.

▼ Proof of the theorem

Let $\mathscr{A}:=\{U\subset\beta\mathbb{N}\mid U \text{ is a compact semigroup}\}$. Then $\beta\mathbb{N}\in\mathscr{A}$ and \mathscr{A} is partially ordered by inclusion. Each chain in \mathscr{A} has a non-empty and compact. By Zorn's lemma we deduce the existence of minimal element A in \mathscr{A} .

We claim that each $\mathscr{U}\in A$ is the desired \mathscr{I} . By left continuity we deduce that $A+\mathscr{U}=\{\mathscr{U}'+\mathscr{U}\mid \mathscr{U}'\in A\}$ is also a compact semigroup, and $A+\mathscr{U}=A$ by minimality.

Let $B:=\{\mathscr{U}'\in A\mid \mathscr{U}'+\mathscr{U}=\mathscr{U}\}$. Since $A+\mathscr{U}=A$, B is non-empty. We notice that B is also a compact semigroup by continuity. Thus B=A by minimality.