

Lecture 19

Symmetric and Positive Definite Matrices

Dr. Ralph Chikhany

Strang Section 6.4 – Symmetric Matrices and Section 6.5 – Positive Definite Matrices

Symmetric Matrices

Diagonalizing a Symmetric Matrix

An $n \times n$ matrix A is symmetric if $A^T = A$.

The eigenvalues of a symmetric matrix are real and the eigenvectors are orthogonal (or can be made orthogonal).

Every symmetric matrix is diagonalizable

$$A = X\Lambda X^{-1}$$
 eigenvectors are orthogonal they can be made orthonormal

$$\implies A = Q\Lambda Q^T$$
 orthogonal matrix: $Q^{-1} = Q^T$

Eigenvectors of a Symmetric Matrix

Let \vec{x}_1, \vec{x}_2 be eigenvectors of A associated with λ_1, λ_2 , such that $\lambda_1 \neq \lambda_2$

$$\implies A\vec{x}_1 = \lambda_1\vec{x}_1, \quad A\vec{x}_2 = \lambda_2\vec{x}_2$$

We want to show that $\vec{x}_1 \perp \vec{x}_2 \implies \vec{x}_1^T \vec{x}_2 = 0$

Diagonalize
$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
.

Diagonalize
$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
.

Positive Definite Matrices

Definition

An $n \times n$ matrix A is positive definite if:

(i)
$$A = A^T$$

(ii)
$$\lambda_i > 0$$
 for all $1 \le i \le n$

The following statements are equivalent to "all eigenvalues are positive":

- (1) all pivots are positive
- (2) all upper left determinants are positive
- (3) $\vec{x}^T A \vec{x}$ is positive for all $\vec{x} \neq 0$

Show all equivalent positive definite properties for
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
.

Show all equivalent positive definite properties for
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
.

Properties

Theorem: If A is positive definite, then so is A^{-1} .

Properties

Theorem: If A, B are positive definite, then A + B is positive definite.