

Reconfigurable Architectures support in EDDL

January 27 2022

Neural networks on embedded devices

Inferences are performed locally.

Privacy

Costs

24-28 January 2022

Computing power

Storage

Neural network pruning

24-28 January 2022

Iterative pruning strategy

PWE= patience on the epochs before pruning

Unstructured vs structured pruning

Removes many parameters from the network. Can highly reduce the compressed model size.

Structured

Removes entire neurons in the network. Reduces the number of operations.

Unstructured vs structured pruning

STRUCTURED sparsity

Unstructured vs structured pruning

Pruning alone is not enough!

- Need for a real removal of the neurons/channels
- SIMPLIFY, available at https://github.com/EIDOSlab/simplify, does that!
- Paper with description in detail available at https://reader.elsevier.com/reader/sd/pii/S2352711021001576?token=8C19E 9E2A04C913B545980F7567737F387925763A5A15B994AA9E2BC3D0A67D3B3 01B42C4791FC7F0113B420874CCF63&originRegion=eu-west-1&originCreation=20220120212108

The pruning pipeline for compression

References

- Tartaglione, E., Bragagnolo, A., Fiandrotti, A., & Grangetto, M. (2022). Loss-based sensitivity regularization: towards deep sparse neural networks. *Neural Networks*, *146*, 230-237.
- Tartaglione, E., Bragagnolo, A., Odierna, F., Fiandrotti, A., & Grangetto, M. (2021). SeReNe: Sensitivity-Based Regularization of Neurons for Structured Sparsity in Neural Networks. IEEE Transactions on Neural Networks and Learning Systems.
- Bragagnolo, A., & Barbano, C. A. (2022). Simplify: A Python library for optimizing pruned neural networks. *SoftwareX*, *17*, 100907.
- Bragagnolo, A., Tartaglione, E., Fiandrotti, A., & Grangetto, M. (2021, September). On the role of structured pruning for neural network compression. In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 3527-3531). IEEE.
- Tartaglione, E., Lepsøy, S., Fiandrotti, A., & Francini, G. (2018, December). Learning sparse neural networks via sensitivity-driven regularization. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems* (pp. 3882-3892).

