10/589528LAP6 Rec'd PCT/PTO 15 AUG 2006

vorab per Telefax

Europäisches Patentamt

80298 München

Björn Sommer Abt. ARI

München, 23.05.2006

Amtliches Aktenzeichen: PCT/DE2005/000222

Titel: "Verfahren zur Fertigung angepasster, strömungstechnischer Oberflächen"

Anmelderin: MTU Aero Engines GmbH

Auf den Bescheid vom 23.02.2006:

Es wird – als Formulierungsvorschlag – ein neuer Anspruchssatz überreicht, mit der Bitte, diesen der weiteren Prüfung zugrunde zu legen.

I.

(ursprüngliche) Offenbarung

 Die Merkmalskombination des neu eingereichten Anspruchs 1 ist ursprünglich in den Ansprüchen 1 und 4 offenbart. Die Unteransprüche 2-9 entsprechen den im Hinblick auf ihre Nummerierung sowie ihre Rückbezüge angepassten ursprünglichen Ansprüche 2 und 3 sowie 5 bis 10.

II.

Neuheit

- 2. Der Gegenstand des neu eingereichten Anspruchs 1 somit auch seiner Unteransprüche 2 bis 9 ist neu gegenüber dem Stand der Technik.
- gegenüber der US 4,755,952 A (D2) sowie der US 4,382,215 A (D3)

Die Neuheit des neu eingereichten Anspruchs 1 gegenüber jeder der Druckschriften US 4,755,952 A (D2) sowie US 4,382,215 A (D3) dürfte außer Frage stehen. Hingewiesen sei diesbezüglich auch darauf, dass diese beiden Druckschriften im Recherchebericht als A-Dokumente angegeben wurden.

MTU Aero Engines GmbH
Postfach 50 06 40
80976 München - Deutschland
Lieferanschrift:
Dachauer Straße 665
80995 München - Deutschland
Tel. 49 89 1489-5500
Fax 49 89 1489-5500

Sitz der Gesellschaft: München Handelsregister: München HRB Nr. 154230 Steuer-Nr.: 817/59039 USt-IdNr.: DE238391310

Bankverbindung: Commerzbank AG, München Bankleitzahl 700 400 41 Konto 220 400 600 Geschäftsführer: Udo Stark, Vorsitzender Bemd Kessler Dr. Michael Süß Reiner Winkler Vorsitzender des Aufsichtsrats: Johannes P. Huth Tel. +49 89 1489-6353 Fax +49 89 1489-5947 Ref. P801907/WO/1

)

Björn Sommer Abt. ARI

4. Neuheit gegenüber der EP 0 453 391 A (D1)

Auch gegenüber der D1 ist der Gegenstand des neu eingereichten Anspruchs 1 neu.

Denn der Gegenstand des neu eingereichten Anspruchs 1 unterscheidet sich von der D1 nicht nur durch den kennzeichnenden Teil des bisherigen Anspruchs 4, sondern darüber hinaus dadurch, dass unter Verwendung des zuvor erzeugten Fräsprogramms in einem ersten Teilschritt durch <u>Grobfräsen</u> Material im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante abgetragen wird <u>und</u> in einem sich <u>hieran anschließenden</u>, weiteren Teilschritt durch <u>Feinfräsen</u> die Strömungseintrittskante und/oder Strömungsaustrittskante <u>automatisch verrundet</u> werden.

Die D1 teilt dem Fachmann nämlich lediglich in ganz allgemeiner Form mit, dass nach dem Vermessen ein drehendes Schneidbearbeitungswerkzeug aufgebracht wird (D1, Sp. 9, Z. 40-44).

Die <u>D1</u> spricht <u>also gerade nicht</u> davon, in einem <u>ersten Teilschritt durch Grobfräsen Material</u> im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante <u>abgetragen</u> wird <u>und</u> in einem sich <u>hieran anschließenden zweiten Teilschritt durch Feinfräsen</u> die Strömungsaustrittskante <u>und/oder die Strömungsaustrittskante automatisch verrundet</u> wird.

Ganz <u>im Gegenteil</u> ist der <u>D1</u> vielmehr zu entnehmen, dass das angesprochene Schneidwerkzeug ein <u>Vollform-Schneidwerkzeug</u> sein soll, wie es in Figur 7 der D1 gezeigt ist (D1, Sp. 9, Z. 40-46).

Dieser Figur 7 der D1 kann deutlich entnommen werden, dass unter einem Vollform-Scheidwerkzeug in diesem Sinne zu verstehen ist, dass die Kontur der Schneidkante des Schneidwerkzeuges identisch mit der zu erzeugenden Endkontur sein soll.

Hieraus ist klar zu entnehmen, dass gemäß der D1 also nicht ein Grobfräsen und ein sich hieran anschließendes Feinfräsen vorgesehen sind, sondern die abgerundete Form vielmehr direkt – und somit ohne vorheriges Grobfräsen - erzeugt wird.

Hinzu kommt, dass in der D1 nirgendwo offenbart ist, dass

Björn Sommer Abt. ARI

das Nominalfräsprogramm für den Bereich der Strömungseintrittskante und/oder Strömungsaustrittskante mehrere Nominalfräsbahnen umfasst, nämlich eine Nominalfräsbahn im Bereich der Saugseite, jeweils eine Nominalfräsbahn im Bereich der Druckseite und jeweils mindestens eine zwischen diesen beiden Nominalfräsbahnen geschaltete Nominalfräsbahn für einen Übergangsbereich zwischen der Saugseite und der Druckseite.

Vielmehr wird anhand der Figur 7 der D1 klar, dass gemäß der D1 nämlich nur (genau) eine Nominalfräsbahn vorgesehen, also gerade nicht mehrere Nominalfräsbahnen, von denen eine im Bereich der Saugseite und eine im Bereich der Druckseite und zumindest eine dazwischen gelegen ist.

Folglich ist der Gegenstand der vorliegenden Anmeldung auch neu gegenüber der D1.

III. Erfinderische Tätigkeit

5. Nächstliegender Stand der Technik

Die D1 wird als nächstliegender Stand der Technik angesehen, da sie – im Vergleich zur der D2 bzw. D3 - die höchste Anzahl Merkmalsübereinstimmungen mit dem Gegenstand des Anspruchs 1 der vorliegenden Anmeldung aufzuweisen scheint.

6. Objektive Aufgabe

)

)

Dadurch, dass gemäß der Erfindung zunächst mittels des Fräsprogramms grob gefräst wird, und anschließend dann durch Feinfräsen die Strömungsaustrittskante bzw. Strömungseintrittskante automatisch verrundet wird, lässt sich mit großer Betriebssicherheit eine besonders formgenaue Strömungseintrittskante bzw. Strömungsaustrittskante ausbilden.

Denn bei dem Verfahren gemäß der D1, bei dem mit einem an die Krümmung der Strömungseintrittsbzw. Strömungsaustrittskante angepassten Schneidwerkzeug gearbeitet wird, kann bereits ein geringer Versatz bzw. eine geringe Abweichung von der idealen Relativposition dazu führen, dass (beispielsweise) zuviel Material abgetragen wird und sich Riefen oder dergleichen bilden.

)

Björn Sommer Abt. ARI

Auch der Merkmalskomplex gemäß dem kennzeichnenden Teil des bisherigen Anspruchs 4, also das Vorsehen mehrerer Nominalfräsbahnen, von denen jeweils eine im Bereich der Saugseite, eine im Bereich der Druckseite und mindestens eine dazwischen angeordnet ist, fördert die <u>Betriebssicherheit beim formgenauen Ausbilden der Strömungseintritts- bzw. Strömungsaustrittskante</u>, und bietet darüber hinaus die Möglichkeit, das Verfahren inklusive der Anpassung des Fräsprogramms flexibel für unterschiedlich gestaltete Schaufelblätter bzw. Strömungseintritts- und Strömungsaustrittskanten anzuwenden.

Denn durch die Formvorgabe des Werkzeugs gemäß der D1 ist das dortige Verfahren eng auf eine eindeutig bestimmte Kontur der Eintritts- bzw. Austrittskante inklusive ihres Übergangs zum Zwischenbereich zwischen der Strömungseintritts- und Strömungsaustrittskante beschränkt. Denn vor Allem bei einem aerodynamisch gut ausgebildeten Strömungsprofil kommt es nicht nur auf die Formgebung er Strömungseintritts- und Strömungsaustrittskante an, sondern auf den gesamten Verlauf des Strömungsprofils, und insbesondere auch auf den (stufenlosen) Übergang zwischen der Strömungseintrittsbzw. Strömungsaustrittskante und dem zwischen diesen Kanten gelegenen Bereich.

Wenn das aus der D1 bekannte Verfahren für unterschiedliche Strömungsprofile Anwendung finden sollte, müsste entweder eine Vielzahl von einzelnen Schneidbearbeitungswerkzeugen bereitgestellt werden, oder das Verfahren wäre auf unterschiedliche Strömungsprofile nicht anwendbar, ohne dass es zu erheblichen Beeinträchtigungen der aerodynamischen Konturen kommt.

Denn unterschiedliche, verschieden starke gekrümmte oder dimensionierte Strömungseintritts- oder - austrittskanten lassen sich mit dem durch die D1 vorgeschlagenen Verfahren nicht herstellen, ohne dass aerodynamische Aspekte außer Acht gelassen werden.

Im Gegensatz hierzu wird nun erfindungsgemäß durch die Unterteilung in Grobfräsen mit anschließendem Feinfräsen zum Verrunden, einerseits, sowie dadurch, dass in Kombination hiermit verschiedene Fräsbahnen abgefahren werden, von denen eine auf der Saug- und eine auf der Druckseite gelegen ist und zumindest eine dazwischen gelegen ist, ermöglicht, dass im Rahmen der Grobbearbeitung – in flexibler Anpassung an die jeweils angestrebte Sollkontur - eine grobe, aber jeweils verhältnismäßig gute Anpassung an die entstehende Sollkontur erzeugt wird, wobei dabei gleichzeitig die Übergänge bereits gut vorgeformt werden können. Beim anschließenden Verrunden lässt sich dann eine mit der Sollkontur

١

١

Björn Sommer Abt. ARI

gut übereinstimmende, formgenaue und verrundete Gestaltung der Eintrittskante und Austrittskante ausbilden.

Im Gegensatz zu dem aus der D1 bekannten Verfahren lässt sich das erfindungsgemäße Verfahren somit für die Ausbildung unterschiedlich geformter oder dimensionierter Strömungseintrittskanten und/oder Strömungsaustrittskanten verwenden, ohne dass hierzu jeweils speziell angepasste Werkzeuge einer Gasturbinenschaufel heranzuziehen sind. Gemäß der Erfindung erfolgt die Anpassung an die jeweilige Form und Dimensionierung der Strömungseintrittskanten und/oder Strömungsaustrittskanten nämlich im Rahmen der Erstellung des Fräsprogramms automatisch, wobei stets die gleichen Fräser zum Einsatz kommen können.

Gerade dies wird durch die Gestaltung gemäß der D1 nicht ermöglicht.

Demzufolge liegt der Erfindung die <u>objektive Aufgabe</u> zugrunde, ein Verfahren zur Fertigung angepasster, strömungstechnischer Oberflächen an Gasturbinenschaufeln im Bereich der Strömungseintrittskante und/oder Strömungsaustrittskante einer Gasturbinenschaufel zu schaffen, das mit geringem fertigungstechnischen Aufwand, und insbesondere mit einem verhältnismäßig geringen Werkzeugsatz, bei unterschiedlich konturierten Strömungsprofilen jeweils auf betriebssichere Weise eine formgenaue Ausbildung der Strömungseintritts- und/oder Austrittskante ermöglicht.

7. Keine Anregung aus dem Stand der Technik

Der von der D1 ausgehende Fachmann konnte keiner der Entgegenhaltungen eine Anregung entnehmen, die ihn im Lichte der objektiven Aufgabe zum Gegenstand der vorliegenden Erfindung geführt hätte.

Von einer (nicht erfinderischen) Auswahlerfindung kann vorliegend im Übrigen nicht die Rede sein.

Denn in keiner Entgegenhaltung ist offenbart, dass der Fachmann zunächst grob und dann zum Verrunden fein fräsen soll. Eine Auswahlerfindung kommt allerdings nur dann in Betracht, wenn die vermeintliche Erfindung aus einem bekannten Bereich konkreter Werte bzw. Merkmale ausgewählt hat.

Gerade dies ist aber allerdings mangels entsprechender Offenbarung vorliegend nicht der Fall.

)

Björn Sommer Abt. ARI

Hinzu kommt, dass die D1 als nächstliegender Stand der Technik von der Erfindung weglenkt.

Denn die D1 spricht ebenso – wie die Beschreibungseinleitung der Erfindung – an, dass es bereits bekannt ist, durch ein abschließendes, <u>manuelles</u> Verrunden, Schaufelblätter zu bearbeiten (D1, Sp. 1, Z. 49-55).

Die D1 möchte nun gerade diese (manuelle) Feinbearbeitung vermeiden, und schlägt aus diesem Grunde vor, durch ein entsprechendes Vermessungssystem und ein exakt die Form abbildendes Schneidwerkzeug die Strömungseintrittskante zu bilden.

Eine Grobbearbeitung mit einer an sich darin anschließenden Feinbearbeitung soll also gemäß der D1 gerade vermieden werden.

Der Knackpunkt der D1 besteht gerade darin, unter Vermeidung eines zweistufigen Verfahrens in einem einstufigen Schritt durch automatische Bearbeitung die Eintrittskante zu formen, wobei ein an die Form der Strömungseintrittskante angepasstes Werkzeug verwendet wird.

Im Gegensatz hierzu wird erfindungsgemäß vorgeschlagen, die Ausbildung der Strömungseintritts- bzw. Strömungsaustrittskante zweistufig, nämlich mit einem ersten Schritt des Grobfräsens und einem sich daran anschließenden zweiten Schritt des Feinfräsens für die Verrundung <u>automatisch</u> durchzuführen.

Dies soll im Übrigen so erfolgen, dass verschiedene Nominalfräsbahnen, die unterschiedlich positioniert sind, abgefahren werden.

Da die D1 offensichtlich in eine völlig andere Richtung lenkt, hätte der von der D1 ausgehende Fachmann die Erfindung gerade nicht realisiert.

Im Übrigen konnte der Fachmann auch weder der D2 noch der D3 eine entsprechende Anregung entnehmen, da weder die D2 noch die D3 das zweistufige Grob- und Feinfräsen zur Verrundung offenbaren, und darüber hinaus weder die D2 noch die D3 offenbart, dass das Nominalfräsprogramm für den Bereich der Strömungseintrittskante und/oder für den Bereich der Strömungsaustrittskante mehrere Nominalfräsbahnen umfasst, nämlich jeweils eine Nominalfräsbahn im Bereich der Saugseite, jeweils

Björn Sommer Abt. ARI

eine Nominalfräsbahnen im Bereich der <u>Druckseite</u>, und jeweils eine zwischen diesen beiden Nominalfräsbahnen geschaltete Nominalfräsbahn für den <u>Übergangs</u>bereich zwischen der Saugseite und der Druckseite.

Damit wird nun aber gerade erreicht – und dieses ermöglicht die Gestaltung gemäß der D1 nicht – dass die Strömungseintrittskante bzw. die Strömungsaustrittskante automatisch sehr konturgenau gefertigt werden können, ohne dass es hier zu eines jeweils speziellen, an die Form und Abmaße der jeweils Strömungseintrittskante bzw. Strömungsaustrittskante angepassten Werkzeugs bedarf (vgl. in diesem Zusammenhang Fig. 7 der D1).

IV.

8. Folglich ist der Gegenstand des Anspruchs 1 der vorliegenden Erfindung - und somit auch der Gegenstand der entsprechenden Unteransprüche – neu und erfinderisch gegenüber dem Stand der Technik.

Es wird daher höflichst darum gebeten, im internationalen vorläufigen Prüfungsbericht die Schutzfähigkeit der vorliegenden Erfindung festzustellen.

Für den Fall, dass die Prüfungsstelle wider Erwarten nicht zum Ergebnis gelangen sollte, dass der Gegenstand der vorliegenden Erfindung neu und erfinderisch gegenüber dem Stand der Technik ist, wird vorsorglich gemäß Anhörung gemäß Regel 66.6 PCT beantragt.

MTU Aero Engines GmbH

Sommer

)

)

<u>Anlage</u>

Neuer Anspruchssatz

)

(neue) Patentansprüche

- 1. Verfahren zur Fertigung angepasster, strömungstechnischer Oberflächen an Gasturbinenschaufeln im Bereich einer Strömungseintrittskante und/oder einer Strömungsaustrittskante einer Gasturbinenschaufel, gekennzeichnet durch folgende Schritte:
 - a) Erzeugen eines Nominalfräsprogramms zur Fertigung strömungstechnischer Oberflächen im Bereich einer Strömungseintrittskante und/oder einer Strömungsaustrittskante für eine ideale Gasturbinenschaufel;
 - b) Vermessen einer realen Gasturbinenschaufel im Bereich einer Strömungseintrittskante und/oder einer Strömungsaustrittskante;
 - c) Erzeugen eines an die reale Gasturbinenschaufel angepassten Fräsprogramms zur Fertigung strömungstechnischer Oberflächen im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante für die reale Gasturbinenschaufel, wobei im Schritt b) ermittelte Messwerte zur Anpassung des in Schritt a) erzeugten Nominalfräsprogramms in das Fräsprogramm für die reale Gasturbinenschaufel verwendet werden;
 - d) Fertigen der strömungstechnischen Oberflächen an der realen Gasturbinenschaufeln im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante durch Fräsen unter Verwendung des in Schritt c) erzeugten Fräsprogramms, wobei in einem ersten Teilschritt durch Grobfräsen, insbesondere durch Schruppen, Material im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante abgetragen wird, und wobei in einem sich hieran anschließenden zweiten Teilschritt durch Feinfräsen, insbesondere durch Schlichten, die Strömungseintrittskante und/oder die Strömungsaustrittskante automatisch verrundet werden,

wobei das Nominalfräsprogramm für den Bereich der Strömungseintrittskante und/oder den Bereich der Strömungsaustrittskante mehrere Nominalfräsbahnen umfasst, nämlich jeweils eine Nominalfräsbahn im Bereich der Saugseite, jeweils eine Nominalfräsbahn im Bereich der Druckseite und jeweils mindestens eine zwischen diesen beiden Nominalfräsbahnen geschaltete Nominalfräsbahn für einen Übergangsbereich zwischen der Saugseite und der Druckseite, wobei jede der Nominalfräsbahnen mehrere Nominalbahnpunkte umfasst.

 Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt b) die reale Gasturbinenschaufel derart vermessen

23.05.2006

P801907/WO/1

)

)

wird, dass im Bereich der Strömungseintrittskante und/oder im Bereich der Strömungsaustrittskante an einer Saugseite und an einer Druckseite der Gasturbinenschaufel jeweils eine Messpunktreihe ermittelt wird, wobei jede Messpunktreihe aus mehreren über die Höhe bzw. die Länge der Strömungseintrittskante und/oder der Strömungsaustrittskante verteilten Messpunkten gebildet ist.

- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in Schritt c) für jeden Messpunkt eine Abweichung zwischen der idealen Gasturbinenschaufel und der realen Gasturbinenschaufel ermittelt wird, wobei diese Abweichungen verwendet werden, um das Nominalfräsprogramm in das Fräsprogramm für die reale Gasturbinenschaufel abzuändern.
- 4. Verfahren nach einem oder mehreren der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass die oder jede im Bereich der Saugseite ermittelte Messpunktreihe zur Änderung der jeweiligen Nominalfräsbahn im Bereich der Saugseite derart verwendet wird, dass jeder Nominalbahnpunkt der jeweiligen Nominalfräsbahn, für den ein entsprechender Messpunkt vorliegt, um den Betrag der Abweichung zwischen der idealen Gasturbinenschaufel und der realen Gasturbinenschaufel im Bereich der Saugseite verschoben wird.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass für Nominalbahnpunkte der jeweiligen Nominalfräsbahn, für die kein entsprechender Messpunkt vorliegt, eine Interpolation durchgeführt wird.
- 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die oder jede im Bereich der Druckseite ermittelte Messpunktreihe zur Änderung der jeweiligen Nominalfräsbahn im Bereich der Druckseite derart verwendet wird, dass jeder Nominalbahnpunkt der jeweiligen Nominalfräsbahn, für den ein entsprechender Messpunkt vorliegt, um den Betrag der Abweichung zwischen der idealen Gasturbinenschaufel und der realen Gasturbinenschaufel im Bereich der Druckseite verschoben wird.

23.05.2006

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass für Nominalbahnpunkte die jeweiligen Nominalfräsbahn, für die kein entsprechender Messpunkt vorliegt, eine Interpolation durchgeführt wird.
- 8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass für die oder jede zwischen der jeweiligen Nominalfräsbahn der Saugseite und der jeweiligen Nominalfräsbahn der Druckseite vorliegende Nominalfräsbahn zur Anpassung derselben an die reale Gasturbinenschaufel eine Interpolation durchgeführt wird.
- 9. Verfahren nach einem oder mehreren der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass zur Fertigung strömungstechnischer und stetiger Oberflächen im Bereich der Strömungseintrittskante und/oder der Strömungsaustrittskante Spline-Interpolationen durchgeführt werden.