Kenneth Eversole 11463589 CPTS440 HW11

1 Decision trees)

$$YES = 7$$

$$No = 0$$

Entropy(s)=
$$-\frac{7}{10}\log_2\frac{7}{10} - \frac{3}{10}\log_2\frac{3}{10} = .882$$

Entropy(S, Sky) = .882
$$-\left[\frac{3}{10}(.918) + \frac{4}{10}(.811) + \frac{3}{10}(.918)\right]$$

= .882 - .8752
= .0068

Information gain = .0068

1C)

Entropy(S, Sea) = .882
$$-\left[\frac{5}{10}0 + \frac{5}{10}(.970)\right]$$

= .882 - .450
= .3965

Information gain = .3965

1D)

Entropy(S, Sea) = .882
$$-\left[\frac{6}{10}1 + \frac{4}{10}(0)\right]$$

= .882 - .6
= .282

Information gain = .282

WORK:

Entropy(gray, sun) = .970 -
$$\left[\frac{2}{5} \text{ entropy(true,sun)} + \frac{3}{5} \text{ entropy(false,sun)}\right]$$

$$= .970 - [0 + 0]$$

IG = .970

Entropy(gray, sun) = .970 -
$$\left[\frac{2}{5} \text{ entropy(clear,sky)} + \frac{2}{5} \text{entropy(cloudy,sun)} + \frac{2}{5} \text{entropy(overcast,sky)}\right]$$

= .970 -
$$\left[\frac{2}{5}(1) + \frac{2}{5}(1) + \frac{2}{5}(0)\right]$$

= .970 - .8 = .17
IG = .17

How would the learned Decision Tree classify the new instance <Sky=overcast,Sea=gray,Sun=true>

It would classify it as Sail= yes

2A)

Sky	Sea	Sun	Sail
1	1	1	1
1	2	2	1
1	2	1	0
2	1	2	1
2	1	1	1
2	2	2	1
2	2	1	0
3	1	2	1
3	1	1	1
3	2	1	0

2 B)

Rule: if W * X is greater than 0 then 1(yes) else 0(no)

I decided to code this instead of having the TA's try to decipher my hand writing. (the data in results of each pass is on the next page)

Code ->

```
import numpy as np
import itertools
def perceptron():
   output = open("output.txt", "w")
   sail data = list()
   sail data labels = list()
   for data, label in zip(open("data.txt", "r"), open("datalabels.txt", "r")):
        temp = list(map(float, data.split(",")))
       temp2 = np.array(temp)
       sail data.append(temp2)
       sail data labels.append(int(label.strip('\n')))
   weight = np.zeros(4, np.float) #weight
   for i in range(len(weight)):
       weight[i] = 1.0
   for k in range(3):
        tempstr = "[pass " + str(k + 1) + "]\n"
       output.write(tempstr)
        for j in range(len(sail data)):
           x = sail data[j]
           yHat_t = np.dot(x, weight)
            correct label = sail data labels[j]
           if yHat t > 0:
                yHat t = 1
            else:
                yHat t = 0
           if yHat_t != correct_label:
               weight = weight + (.5 *(correct_label-yHat_t)*x )
               tempstr = str(weight.tolist()) + "\n"
               output.write(tempstr)
            else:
               output.write("Guess Correct\n")
   tempstr ="Trained weight: " + str(weight.tolist()) + "\n"
   output.write(tempstr)
   output.close()
if name == " main ":
    perceptron()
```

2 B continued)

Pass 1	Pass 2	Pass 3
Guess Correct	[0.5, 0.0, -1.0, 1.0]	Guess Correct
Guess Correct	Guess Correct	Guess Correct
[0.5, 0.5, 0.0, 0.5]	Guess Correct	Guess Correct
Guess Correct	Guess Correct	Guess Correct
Guess Correct	Guess Correct	Guess Correct
Guess Correct	Guess Correct	Guess Correct
[0.0, -0.5, -1.0, 0.0]	Guess Correct	Guess Correct
[0.5, 1.0, -0.5, 1.0]	Guess Correct	Guess Correct
Guess Correct	Guess Correct	Guess Correct
[0.0, -0.5, -1.5, 0.5]	Guess Correct	Guess Correct

Trained weight: [0.5, 0.0, -1.0, 1.0]

2 c How would the learnedperceptronclassify the new instance <Sky=overcast,Sea=gray,Sun=true>?Show your work.) [3, 2,1]

$$X = [1,3,2,1]$$

Weight = [0.5, 0.0, -1.0, 1.0]

$$Y_hat = -0.5 < 0 \text{ so } Y_hat = no$$

Guess: NO