Homework 5

Introduction to Model Theory

Due 2021-10-28

If the homework is turned in n days late, the grade will be scaled by a factor of (1 - n/5). If you have questions about the homework, please ask them in office hours or in the class WeChat group.

- 1. Let M be a structure and \mathcal{U} be an ultrafilter on \mathbb{N} . Let $M^{\mathcal{U}}$ be the ultrapower $\prod_{i\in\mathbb{N}} M/\mathcal{U}$. Let $f:M\to M^{\mathcal{U}}$ be the map sending $a\in M$ to the class of (a,a,a,\ldots) , i.e., the class of the constant function $g_a(x)=a$. Show that f is an elementary embedding. *Hint*: use Łoś's theorem.
- 2. Say that a set $S \subseteq \mathbb{N}$ is *cofinite* if $\mathbb{N} \setminus S$ is finite. Show that there is an ultrafilter \mathcal{U} on \mathbb{N} containing every cofinite set (and possibly other sets as well).
- 3. For $i \in \mathbb{N}$, let \mathcal{U}_i be the set $\{S \subseteq \mathbb{N} : i \in S\}$. Show that \mathcal{U}_i is an ultrafilter on \mathbb{N} . Such ultrafilters are called *principal ultrafilters*.
- 4. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Show that \mathcal{U} contains every cofinite set.
- 5. Let \mathcal{U} be an ultrafilter on \mathbb{N} containing every cofinite set. Let $\mathbb{R}^{\mathcal{U}}$ be the ultrapower of the structure $(\mathbb{R}, +, \cdot, 0, 1)$. Show that $\mathbb{R}^{\mathcal{U}}$ is not isomorphic to \mathbb{R} . *Hint:* let $a \in \mathbb{R}^{\mathcal{U}}$ be the class of the tuple $(0, 1, 2, 3, 4, 5, \ldots)$. Show that a satisfies all the formulas of the form

$$\exists y : 1 + 1 + \dots + 1 + y \cdot y = x.$$