Phân Hiệu Trường Đại Học Giao Thông Vận Tải tại TP. HCM Bộ Môn Toán

Chương 1: Ma Trận và Định Thức (tt)

Giảng viên: Ths. Nguyễn Thị Thái Hà

Email: nttha@utc2.edu.vn

NỘI DUNG

III. Ma trận nghịch đảo

IV. Hạng của ma trận

Định nghĩa:

Cho A vuông cấp n.

A được gọi là ma trận khả nghịch nếu tồn tại B sao cho $AB = BA = I_n$.

Khi đó: B _ Ma trận nghịch đảo của A.

Chú ý:

• Ma trận nghịch đảo của A nếu có là duy nhất và được ký hiệu A^{-1} .

$$A.A^{-1} = A^{-1}.A = I$$

Định lý: Cho A là ma trận vuông

A khả nghịch khi và chỉ khi det $A \neq 0$

Chứng minh

Khi đó tồn tại ma trận nghịch đảo A^{-1} thỏa $AA^{-1} = I$

Suy ra
$$det(AA^{-1}) = det I \implies det(A) \cdot det(A^{-1}) = 1 \implies detA \neq 0$$

$$B = \frac{1}{detA} \cdot A^* \text{ v\'oi}$$

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

Kiểm tra $A.B = I = BA \Longrightarrow$ Bài tập thêm

Cách tìm ma trận nghịch đảo của A:

Bước 1: Tìm det A

- $\det A = 0 \implies \nexists A^{-1} \longrightarrow \text{dùng}.$
- $\det A \neq 0 \implies \exists A^{-1} \longrightarrow \text{bu\'oc } 2$

Bước 2: Tính các phần bù đại số A_{ij} Lập ma trận phụ hợp A^*

$$A^* = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^T$$

Bước 3:
$$A^{-1} = \frac{1}{\det A} . A^*$$

$$A = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 2 & 1 \\ 3 & 2 & 4 \end{pmatrix}$$

Giải

• det A =
$$16 + 3 - (-18) - 4 = 33 \neq 0 \implies \exists A^{-1}$$

• Tìm ma trận phụ hợp
$$A^*$$
: $A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 2 & 1 \\ 2 & 4 \end{vmatrix} = 6$

$$A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 0 & 1 \\ 3 & 4 \end{vmatrix} = 3; A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 0 & 2 \\ 3 & 2 \end{vmatrix} = -6;$$

$$A_{21} = -10$$
; $A_{22} = 17$; $A_{23} = -1$; $A_{31} = 7$; $A_{32} = -2$; $A_{33} = 4$.

$$A^* = \begin{pmatrix} 6 & 3 & -6 \\ -10 & 17 & -1 \\ 7 & -2 & 4 \end{pmatrix}^T = \begin{pmatrix} 6 & -10 & 7 \\ 3 & 17 & -2 \\ -6 & -1 & 4 \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{33} \begin{pmatrix} 6 & -10 & 7 \\ 3 & 17 & -2 \\ -6 & -1 & 4 \end{pmatrix}$$

Chú ý:

Ma trận nghịch đảo cho trường hợp vuông cấp 2

$$\binom{a}{c} \binom{b}{d}^{-1} = \frac{1}{ad-bc} \cdot \binom{d}{-c} \binom{-b}{a} \text{ v\'oi } ad \neq bc$$

$$\mathbf{V}\mathbf{i}\,\mathbf{d}\mathbf{u}:A = \begin{pmatrix} 2 & -3 \\ 1 & 6 \end{pmatrix}$$

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} 6 & 3 \\ -1 & 2 \end{pmatrix}$$

Ứng dụng giải phương trình ma trận

Tìm X biết

Dạng 1
$$: AX = B \stackrel{det A \neq 0}{\longleftrightarrow} X = A^{-1}B$$

$$\stackrel{det A \neq 0}{\longleftrightarrow} A^{-1}(AX) = A^{-1}B \Leftrightarrow (A^{-1}.A)X = A^{-1}B$$

$$\Leftrightarrow I.X = A^{-1}B \Leftrightarrow X = A^{-1}B$$

Dạng 2:
$$XA^{\downarrow} = B \stackrel{\downarrow det A \neq 0}{\longleftrightarrow} X = BA^{-1}$$

Dạng 3: AXB =
$$C \stackrel{det A \neq 0; det B \neq 0}{\longleftrightarrow} X = A^{-1}.C.B^{-1}$$

Ví dụ: Tìm X biết
$$\begin{pmatrix} 4 & -3 \\ 3 & 2 \end{pmatrix} X = \begin{pmatrix} 7 & 5 \\ 3 & 2 \end{pmatrix}$$
 (*)

Giải:

Đặt
$$A = \begin{pmatrix} 4 & -3 \\ 3 & 2 \end{pmatrix}$$
; $B = \begin{pmatrix} 7 & 5 \\ 3 & 2 \end{pmatrix}$.

Khi đó (*) trở thành AX = B (dạng 1)

$$\det A = 17 \neq 0 \implies A^{-1} = \frac{1}{17} \begin{pmatrix} 2 & 3 \\ -3 & 4 \end{pmatrix}$$

$$\det A = 17 \neq 0 \implies A^{-1} = \frac{1}{17} \begin{pmatrix} 2 & 3 \\ -3 & 4 \end{pmatrix}$$

Vậy
$$X = \begin{pmatrix} \frac{23}{17} & \frac{16}{17} \\ \frac{-9}{17} & \frac{-7}{17} \end{pmatrix}$$

Ta có
$$X = A^{-1}$$
. $B = \frac{1}{17} \begin{pmatrix} 2 & 3 \\ -3 & 4 \end{pmatrix} . \begin{pmatrix} 7 & 5 \\ 3 & 2 \end{pmatrix} = \frac{1}{17} \begin{pmatrix} 23 & 16 \\ -9 & -7 \end{pmatrix}$

Ví dụ: Tìm x để ma trận sau khả nghịch

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ x & 2 & 2 & 2 \\ x & x & -2 & -2 \\ x & x & x & -1 \end{pmatrix}$$

Giải

A khả nghịch khi $det A \neq 0$ (*)

Lấy
$$c_4 - c_3 \rightarrow c_4$$
; $c_3 - c_2 \rightarrow c_3$; $c_2 - c_1 \rightarrow c_2$

$$\det A = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x & 2 & 2 & 2 \\ x & x & -2 & -2 \\ x & x & x & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ x & 2 - x & 0 & 0 \\ x & 0 & -2 - x & 0 \\ x & 0 & 0 & -1 - x \end{vmatrix} = (2 - x)(-2 - x)(-1 - x)$$

$$(*)\Leftrightarrow (2-x)(-2-x)(-1-x)\neq 0$$

$$\Leftrightarrow \begin{cases} 2 - x \neq 0 \\ -2 - x \neq 0 \\ -1 - x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 2 \\ x \neq -2 \\ x \neq -1 \end{cases}$$

Vậy Ma trận khả nghịch khi $x \neq \{-2; -1; 2\}$

1.Ma trân bậc thang

Phần tử **khác không** đầu tiên của một hàng kể từ bên trái được gọi là **phần tử cơ sở** của hàng đó

Ma trận bậc thang là ma trận thỏa 2 điều sau:

- 1. Hàng không có phần tử cơ sở (nếu tồn tại) thì nằm dưới cùng
- 2. Phần tử cơ sở của hàng dưới nằm bên phải (không cùng cột) so với phần tử cở sở của hàng trên.

Ví dụ: Nhận diện ma trận bậc thang

$$A = \begin{pmatrix} -2 & 5 & 8 & 9 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

là ma trận bậc thang

$$B = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

là ma trận bậc thang

$$C = \begin{pmatrix} -2 & 3 & 3 \\ 0 & 5 & 9 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Không phải là ma trận bậc thang

Không phải là ma trận bậc thang

Định lý

Mọi ma trận đều có thể đưa về ma trận bậc thang bằng các phép biến đổi sơ cấp trên hàng

Chú ý

Khi dùng các phép biến đổi sơ cấp ta thu được nhiều ma trận bậc thang khác nhau.

Các phép biến đổi sơ cấp trên hàng

- 1. $h_i \leftrightarrow h_j$
- 2. $\alpha . h_i \rightarrow h_i \quad \forall \ \alpha \neq 0$
- 3. $h_i + \beta h_j \rightarrow h_i$; $\forall i \neq j$

$$\propto h_i + \beta h_i \rightarrow h_i; \propto \neq 0$$

Ví dụ: Dùng các phép biến đổi sơ cấp trên hàng đưa ma trận sau về ma trận hình thang

$$A = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \\ 4 & 5 & 2 & 1 & 7 \end{pmatrix}$$

Giải

$$= \begin{vmatrix} 3 & 1 & 2 & 2 & 1 \\ 3 & 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \end{vmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 3 & 1 & 2 & 3 \\ 3 & 5 & 5 & 1 & 2 \\ 4 & 5 & 2 & 1 & 7 \end{pmatrix} \xrightarrow{2h_1 - h_2 \to h_2 \atop 3h_1 - h_3 \to h_3 \atop 4h_1 - h_4 \to h_4} \begin{pmatrix} \neq 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & 3 & 2 & -1 \\ 0 & -2 & 1 & 5 & 1 \\ 0 & -1 & 6 & 7 & -3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 2 & 2 & 1 \\
0 & -1 & 3 & 2 & -1 \\
0 & > 2 & 1 & 5 & 1 \\
0 & > 4 & 6 & 7 & -3
\end{pmatrix}
\xrightarrow{2h_2 - h_3 \to h_3 \atop h_2 - h_4 \to h_4}
\begin{pmatrix}
1 & 1 & 2 & 2 & 1 \\
0 & -1 & 3 & 2 & -1 \\
0 & 0 & 5 & -1 & -3 \\
0 & 0 & > 5 & -5 & 2
\end{pmatrix}$$

2. Định nghĩa

Định nghĩa hạng của ma trận

Cho $A_{m \times n} \neq \theta$; ta gọi số nguyên dương r là hạng của A nếu thỏa hai điều kiện sau:

- 1. Có một định thức con cấp r của ma trận A có giá trị khác 0.
- 2. Nếu A có các định thức con cấp lớn hơn r thì các định thức con này bằng 0

Ký hiệu hạng của A r(A) = r

$$D = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 0 & 0 \\ 6 & 3 & 2 \end{vmatrix} = -6 - 8 = -14 \neq 0 \qquad \text{Vây r(A)} = 3$$

Ví dụ : Tính hạng của ma trận sau

$$B = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

Giải

$$\det B = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ -2 & 1 & 1 \end{vmatrix} = (3-4-1)-(6+4+1) = -13 \neq 0$$

Vây r(A) = 3

Tính chất của hạng

- 1. $r(\theta) = 0$.
- 2. $N \in u A = (a_{ij})_{m \times n}$ thì $r(A) \le \min\{m, n\}$
- 3. Nếu $A \xrightarrow{Biến đổi sơ cấp} B thì r(A) = r(B)$

Nhận xét

Cho A là ma trận vuông cấp n.

Nếu det $A \neq 0$ thì r(A) = n.

Nếu det A = 0 thì r(A) < n

Ví dụ:

$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 9 & 6 \\ 0 & 0 & 0 & 8 \end{pmatrix} \qquad r(A) = 4$$

$$r(A) = 4$$

$$B = \begin{pmatrix} 9 & 2 & 9 \\ 0 & 8 & -7 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 $r(\mathbf{B}) = 3$

$$r(B) = 3$$

Cách tìm hạng ma trận A

- + Dùng các phép biến đổi sơ cấp đưa A về ma trận hình thang B.
- + $r(A) = s\hat{o}$ hàng khác 0 của B.

$$A = \begin{pmatrix} 1 & -2 & 3 & -1 & 3 \\ 2 & 3 & -1 & -2 & 6 \\ 1 & 5 & -4 & -1 & 2 \end{pmatrix}$$

Giải

$$A = \begin{pmatrix} 1 & -2 & 3 & -1 & 3 \\ 2 & 3 & -1 & -2 & 6 \\ 1 & 5 & -4 & -1 & 2 \end{pmatrix} \xrightarrow{h_2 - 2h_1 \to h_2} \xrightarrow{h_3 - h_1 \to h_3}$$

$$\begin{pmatrix} 1 & -2 & 3 & -1 & 3 \\ 0 & 7 & -7 & 0 & 0 \\ 0 & 7 & -7 & 0 & 1 \end{pmatrix} \xrightarrow{h_3 - h_2 \to h_3}$$

 $V_{A}^{2}y r(A) = 3$

Bài 1.24. Tính hạng của ma trận sau theo x

$$A = \begin{pmatrix} 1 & 1 & 1 & x \\ 1 & x & x & 1 \\ x & x & 1 & 1 \\ x & 1 & x & 1 \end{pmatrix}.$$