Exercice 1 (Solution? Pas solution?)

Dans chacun des cas suivants, dire si la fonctions f proposée est solution ou non de l'équation différentielle (E) dans laquelle y est une fonction de la variable x définie et deux fois dérivable sur \mathbb{R} .

1.
$$f(x) = xe^x$$
 et $(E) : y' - y = e^x$.

2.
$$f(x) = x^2 \cos x$$
 et $(E) : 2y - xy' = x^3 \sin x$

Exercice 2 (Équation du type y' + ay = 0)

Résoudre les équations différentielles suivantes dans lesquelles u est une fonction de la variable x définie et dérivable sur \mathbb{R} .

1.
$$y' + 2y = 0$$

3.
$$y' = 5y$$

5.
$$2y' = 3y$$

2.
$$y' - 3y = 0$$

4.
$$y' = -4y$$

4.
$$y' = -4y$$
 6. $-7y' + 2y = 0$

Exercice 3 (Équation du type y' + ay = b)

Résoudre les équations différentielles suivantes dans lesquelles y est une fonction de la variable x définie et dérivable sur \mathbb{R} .

1.
$$y' + y = 4$$

3.
$$y' = 3y + 2$$

$$5. \ 3y' + 2y + 3 = 0$$

2.
$$y' - 4y = 2$$

4.
$$y' = -4y - 5$$

1.
$$y' + y = 4$$

2. $y' - 4y = 2$
3. $y' = 3y + 2$
4. $y' = -4y - 5$
5. $3y' + 2y + 3 = 0$
6. $7y' - 2y - \sqrt{2} = 0$

Exercice 4 (Équation du type y' + ay = b avec condition initiale)

Déterminer la solution f de l'équation différentielle (E) dans laquelle y est une fonction de la variable x définie et dérivable sur \mathbb{R} vérifiant la condition initiale $f(x_0) = y_0$.

1.
$$(E): y' + y = 4 \text{ avec } f(0) = 2$$

3.
$$(E): y' = 3y + 2 \text{ avec } f(1) = e$$

2.
$$(E): y'-3y+2=0; f(\ln 2)=3$$

2.
$$(E): y'-3y+2=0; f(\ln 2)=3$$
 4. $(E): 2y'=4y-3 \text{ avec } f(0)=7$

Exercice 5 (Ex 15 p 206, Maths STI2D/STL, Hachette éducations)

Soit (E) l'équation différentielle y' + ay = 0, dans laquelle y est une fonction de la variable réelle x définie et dérivable sur \mathbb{R} , a étant un réel non nul. Sur les graphiques ci-après, on a représenté la courbe \mathcal{C} d'une fonction f de (E) et la tangente \mathcal{T} à \mathcal{C} au point A. La droite \mathcal{T} passe par le point B.

- 1. Rappeler une expression des solutions de l'équation différentielle y' + ay = 0.
- 2. (a) Par lecture graphique, déterminer f(0). Exprimer f(x) en fonction de a.
 - (b) En déduire f'(x) en fonction de a.

3. Déterminer f'(0) par lecture graphique. En déduire a puis f(x).

Exercice 6 (Exercice de bac STI2D : Polynésie, 2014)

On considère l'équation différentielle y'-3y=2, où y désigne une fonction dérivable sur l'ensemble des réels. Une solution f de cette équation est la fonction de la variable x vérifiant pour tout réel x:

a.
$$f(x) = 2e^{-3x}$$

b.
$$f(x) = e^{3x} + \frac{2}{3}$$

c.
$$f(x) = e^{\frac{2}{3}x}$$

a.
$$f(x) = 2e^{-3x}$$
 b. $f(x) = e^{3x} + \frac{2}{3}$ **c.** $f(x) = e^{\frac{2}{3}x}$ **d.** $f(x) = e^{3x} - \frac{2}{3}$

Exercice 7 (Exercice de bac STI2D : Polynésie, 2013)

La grand-mère de Théo sort un gratin du four, le plat étant alors à 100 °C. Elle conseille à son petit-fils de ne pas le toucher afin de ne pas se brûler, et de laisser le plat se refroidir dans la cuisine dont la température ambiante est supposée constante à 20 °C.

Théo lui rétorque que quand il sera à 37 °C il pourra le toucher sans risque; et sa grand-mère lui répond qu'il lui faudra attendre 30 minutes pour cela.

La température du plat est donnée par une fonction q du temps t, exprimé en minutes, qui est solution de l'équation différentielle : (E) y' + 0.04y = 0.8.

- 1. Résoudre l'équation différentielle (E) et donner sa solution particulière q définie par la condition initiale q(0) = 100.
- 2. En utilisant l'expression de q(t) trouvée :
 - (a) La grand-mère de Théo a-t-elle bien évalué le temps nécessaire pour atteindre 37°C?
 - (b) Quelle est la valeur exacte du temps nécessaire pour obtenir cette température? En donner une valeur arrondie à la seconde près.