

低功耗蓝牙 (BLE) 安全研究

针对特定BLE进行连接阻断和中继的研究探索

未来安全研究院 张伟 zhangwei13@360.cn

项目介绍

防止攻击, 保证安全

特定设备

增加传输 距离

多时段多 用户

3

Data Packet

LLData: CONNECT_REQ

Figure 2.1: Link Layer packet format for the LE Uncoded PHYs

Figure 2.13: LLData field structure in CONNECT_IND and AUX_CONNECT_REQ PDU's payload

如何同步信道?

- * CI = Connection Event + Sleeping
 - = (Connection Interval + Slave Latency + Supervision Timeout) + Sleeping

BLE 数据包嗅探

BLE 阻断

阻断方式

中继实现过程

Now I wanna sniff some Bluetooth: Sniffing and Cracking Bluetooth with the UbertoothOne

Access Address

CRC Init

· CRC生成过程:

· 反转生成 CRC 所用的 LFSR 而得到的新 LFSR:

Hop Interval

* Connection Interval=Hop Interval* **1.25ms**

Hop Increment

破解Hop 加定目标BLE连接选择用的 加频信道序列

exploitable

确定目标BLE连接exploitable信道 与unique信道之间的距离牙

实验结果

🏶 Texas Instruments SmartRF Packet Sniffer Bluetooth Low Energy

File Settings Help

	3-																
P.nbr.	Time (us) +1865	Channel	Access Address	Adv PDU T	уре Туре	Adv PDU TxAdd Rx	Header Add PDU-Length	AdvA	AdvData 02 01 05 0C 09 4E 6	F 72 CRC	RSSI (dBm)	cs					^
1170	=6070440	0x25	0x8E89BED6	ADV_IN		1 () 22 0x	E8DA9BA7CCB4	64 69 63 5F 55 41 5	2 54 0x5F3	8817 -38 0	OK					_
P. nbr.	Time (us) +406	Channel	Access Address	Adv PD	U Type		v PDU Header RxAdd PDU-Lengtl	InitA	AdvA	AccessAddr	CRCInit	LData (Part 1)	inOffeet :	Interval L	tonou Tim	LLData (eout ChM	(Part 2)
1.71	=6070846	0x25	0x8E89BED6	ADV_CONN		ype TxAdd 5 1	1 34	0x589D0BEDE	0xE8DA9BA7CCB4	0x50655318	35 09 70					1F4 1F FF	FF FF
P.nbr.	Time (us) +46520	Channel	Access Address	Direction	ACK Status	Data Type	Data Head		LL Opcode		/ersion_Ind	CRC	RSSI (dBm)	cs			
1172		0x0C	0x50655318	M->S	OK	Control	LLID NESN SN MD	6 PDU-Length	Version_Ind(0x0C)		CompId SubVe 0x000F 0x41	rsNr	(dbiii)	OK			
P.nbr.	Time (us) +278	Channel	Access Address	Direction	ACK Status	Data Type	Data Head	der	L2CAP Header		nge_MTU_Req	CRC /	RSSI (Bm) FCS				
1173	+278 =6117644	0x0C	0x50655318	S->M	OK	L2CAP-S	LLID NESN SN MD 2 1 0 0		L2CAP-Length ChanI 0x0003 0x000		lientRxMTU k00F7		-40 OK				
P.nbr.	Time (us) +48474	Channel	Access Address	Direction	ACK Status	Data Type	Data Head	der	L2CAP Header		nge_MTU_Rsp		RSSI IBm) FCS				
1174	+48474 =6166118	0x18	0x50655318	M->S	OK	L2CAP-S			L2CAP-Length ChanI 0x0003 0x000		k00F7		-50 OK				
P.nbr.	Time (us) +286	Channel	Access Address	Direction	ACK Status	Data Type	Data Head		LL_Opcode		/ersion_Ind	CRC	RSSI (dBm)	FCS			
1175	=6166404	0x18	0x50655318	S->M	OK	Control	LLID NESN SN MD 3 0 1 0		Version_Ind(0x0C)		Compld SubVe 0x0059 0x00			OK			
P.nbr.	Time (us) +279	Channel	Access Address	Direction	ACK Status	Data Type	Data Head		L2CAP Header	d On and a Ca		y_Group_Type_		CRC	RSSI (dBm)	FCS	
1176	=6166683	0x18	0x50655318	M->S	OK	L2CAP-S	LLID NESN SN MD	11	L2CAP-Length ChanI 0x0007 0x000	_	tartingHandle k0001	0xFFFF	00 28	0x523		OK	
P.nbr.	Time (us) +48186	Channel	Access Address	Direction	ACK Status	Data Type	Data Head		L2CAP Header		ATT_Read_B	y_Group_Type_	Req	CRC	RSSI	FCS	
	+48186 =6214869	0x24	0x50655318	M->S	RETRY	L2CAP-S	LLID NESN SN MD 2 0 0 0		L2CAP-Length ChanI 0x0007 0x000		tartingHandle k0001	0xFFFF	e AttGroupTy 00 28	0x523	(abm)	OK	
P.nbr.	Time (us) +319	Channel	Access Address	Direction	ACK Status	Data Type	Data He		CRC RSSI	FCS							
	+319 =6215188	0x24	0x50655318	S->M	OK	Empty PDU	LLID NESN SN I	MD PDU-Lengt 0 0	n (abm)	OK							
		Channel	Access Address	Direction	ACK Statue		Data Head		LL Opcode			LL_Cor	nect_Update_f	Req		CRC	R (dl Y
<	+48433	Cilainiei	Access Address	Direction	I ACK Status	Data Type	LLID NESN SN MD	PDU-Length	LL_opcode	Wi	inSize WinOff	set Interva	l Latency	v Timeo	ıt Instar	t	(dl [∨]

总结

▶优势

- □ 方案具有很强的可行性;
- 相对2018 BtleJack 优化了嗅探 access address 的效率;
- □ 可以快速切换嗅探信道,避免固件在 一个信道上长时间停留

▶ 不足

- PDU抓包困难; 破解效率有待提高
- □ 方案仅适用于首次连接的蓝牙设备,对于二次连接的两个设备不适用

▶创新

□ 阻断和中继方案具有很强的创新性,首次提出

▶ 下一步研究

- □ 破解过程需进一步优化;
 - 需要提高破解效率
- □ 需要根据特定应用场景调整抓包策略

参考资料

- [1] Bluetooth Core Specification Core_v5.0[EB/OL]. Bluetooth SIG Proprietary. http://www.uni-obuda.hu/users/wuhrlt/MSc_Adatatvitel/Core_v5.0.pdf. 2016.12.06
- [2] Michael Ossmann, Dominic Spill, Mike Ryan, Will Code, Jared Boone. Ubertooth[CP/OL]. https://github.com/greatscottgadgets/ubertooth/, 2018.12.20.
- [3] Damien Cauquil. Btlejack firmware[CP/OL]. https://github.com/virtualabs/btlejackfirmware/tree/e664385437068c5bbcb9ac9dc67c883de9754997, 2018.9.17.
- [4] 徐井源. 低功耗蓝牙连接阻断与设备接管方法研究[D].华中科技大学,2019.
- [5] Damien Cauquil. BtleJack: a new Bluetooth Low Energy swiss-army knife[CP/OL]. https://github.com/virtualabs/btlejack, 2019.2.11.
- [6] Mahyar Taj Dini. Volodymyr Sokolov. Penetration Tests for Bluetooth Low Energy and Zigbee using the Software-Defined Radio[C]. arXiv preprint arXiv 1902.08595, 2019.2.
- [7] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg. Meltdown[C]. arXiv preprint arXiv:1801.01207, 2018.1.3.
- [8] Kocher, Paul, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution[C]. arXiv preprint arXiv:1801.01203, 2018.1.3.

Thanks for Your Listening

未来安全研究院 张伟 zhangwei13@360.cn