What is claimed is:

- 1. A wireless communication system including a plurality of transmitting antennas and a plurality of receiving antennas through which signals are transmitted and received, the wireless communication system comprising:
- a transmitter that restores feedback information from a predetermined feedback signal, weights an information signal with the restored feedback information, and converts the weighted information signal to a radio frequency signal in order to transmit the radio frequency signal; and
- a receiver that receives the radio frequency signal to estimate the state of a channel through which the radio frequency signal is transmitted, calculates a weight of a dimensionality corresponding to the number of the transmitting antennas, approximates the weight as lower-dimensional one to extract feedback information, and converts the feedback information into a radio frequency signal to send the radio frequency signal to the transmitter.
- 2. The wireless communication system of claim 1, wherein the receiver comprises:
- a baseband processor that extracts a baseband signal from the radio frequency signal and estimates the channel state;
- a feedback information approximation unit that calculates the weight of a dimensionality corresponding to the number of the transmitting antennas, which maximizes a predetermined objective function, and approximates the weight as lower-dimensional one to extract the feedback information; and
 - a feedback unit that sends the feedback information back to the transmitter.
- 3. The wireless communication system of claim 2, wherein the predetermined objective function is $P=W^HH^HHW$, where a matrix H denotes the channel state, a vector W denotes the weight, and the superscript H denotes a Hermitian operator, the feedback information approximation unit calculates W_{opt} that maximizes the objective function and approximates W_{opt} to a lower dimension constituted by a predetermined basis vectors to extract the feedback information.
- 4. The wireless communication system of claim 3, wherein \mathbf{W}_{opt} is an eigenvector corresponding to a maximum eigenvalue of $\mathbf{H}^H\mathbf{H}$ in the objective function.

- 5. The wireless communication system of claim 1, wherein the transmitter comprises:
- a feedback information restoring unit that restores feedback information from the radio frequency signal received from the receiver;
 - a baseband processor that encodes and modulates an information signal;
- a weighting unit that multiplies the restored feedback information by an output signal of the baseband processor; and
- a radio frequency processor that converts an output signal of the weighting unit to a radio frequency signal to output the radio frequency signal.
- 6. A wireless communication system including a plurality of transmitting antennas and a plurality of receiving antennas through which signals are transmitted and received, respectively, the wireless communication system comprising:
- a transmitter that restores feedback information from a predetermined feedback signal, weights an information signal with the restored feedback information, and converts the weighted information signal into a radio frequency signal in order to transmit the radio frequency signal; and
- a receiver that receives the radio frequency signal to estimate the state of a channel through which the radio frequency signal is transmitted, selects a number of basis vectors and their coefficients corresponding to the dimensionality of approximation among the basis vectors whose number corresponds to the number of the transmitting antennas, obtains a plurality of weights from the selected basis vectors and coefficients, extracts a weight that maximizes a predetermined objective function obtained from the channel state among the plurality of weights as feedback information, and converts the feedback information into a radio frequency signal in order to send the radio frequency signal to the transmitter.
- 7. The wireless communication system of claim 6, wherein the receiver comprises:
- a baseband processor that extracts a baseband signal from the radio frequency signal and estimates the channel state;
- a feedback information approximation unit that selects a number of basis vectors and their coefficients corresponding to the dimensionality of approximation among the basis vectors whose number corresponds to the number of the transmitting antennas, obtains a plurality of weights from the selected basis vectors and coefficients, extracts a weight that maximizes a predetermined objective

function obtained from the channel state among the plurality of weights as feedback information; and

a feedback unit that sends the feedback information back to the transmitter.

- 8. The wireless communication system of claim 7, wherein an objective function is $P_i = W_i^H H^H H W_i$, where a matrix H denotes the channel state, a vector W_i is a weight calculated from i-th selected basis vector and coefficient, and the superscript H is a Hermitian operator, the feedback information approximation unit extracts the weight W_i that maximizes the objective function as the feedback information.
- 9. A wireless communication method in which, when M radio frequency signals transmitted from a transmitter are received through multiple paths, feedback information is extracted from the received signals and the feedback information is sent to the transmitter, the method comprising the steps of:
- (a) estimating states of channels comprising the multiple paths from the received signals;
- (b) calculating a weight, which is fed back into the transmitter and multiplied by the M radio frequency signals, from the channel state;
- (c) approximating the weight as dimension S which is less than M and quantizing coefficients for the approximated dimension; and
- (d) feeding basis vectors and their quantized coefficients of the approximated dimension, or indices that identify the basis vectors and their quantized coefficients, back to the transmitter.
- 10. The method of claim 9, wherein, in the step (b), when the number of multiple paths is L, \mathbf{W}_{opt} that maximizes an objective function expressed by $P = \mathbf{W}^H \mathbf{H}^H \mathbf{H} \mathbf{W}$ is extracted as the feedback information, where a matrix \mathbf{H} having a size of L x M denotes the channel state, a vector \mathbf{W} having magnitude of M denotes the weight, and the superscript H denotes a Hermitian operator.
 - 11 The method of claim 10, wherein the step (c) comprises the steps of:
 - (c1) determining basis vectors that represent the M dimensions;
- (c2) calculating coefficients corresponding to the basis vectors from the inner product of the \mathbf{W}_{opt} and each basis vector;

- (c3) selecting S coefficients among the coefficients calculated in the step (c2) in order of magnitude and selecting basis vectors corresponding to the selected coefficients; and
 - (c4) quantizing the selected coefficients.
- 12. The method of claim 9, if feedback signal includes the basis vectors and the quantization coefficients in the step (d), further comprising the steps of:
- (e) extracting the basis vectors and the quantization coefficients from the feedback signal received from the transmitter;
- (f) restoring feedback information from the extracted basis vectors and the quantization coefficients;
- (g) weighting an information signal to be transmitted with the restored feedback information; and
 - (h) transmitting the weighted information signal.
- 13. The method of claim 9, if feedback information includes the indices in the step (d), further comprising the steps of:
- (e) storing the base vectors and the quantization coefficients of S dimensions and indices identifying the basis vectors and the quantization coefficients, respectively, in the transmitter;
- (f) extracting the indices from a received feedback signal and basis vectors and quantization coefficients identified by the indices among the base vectors and the quantization coefficients stored in the step (e);
- (g) restoring feedback information from the extracted basis vectors and the quantization coefficients;
- (h) weighting an information signal to be transmitted with the restored feedback information; and
 - (i) transmitting the weighted information signal.
- 14. A wireless communication method in which, when M radio frequency signals transmitted from a transmitter are received through multiple paths, feedback information is extracted from the received signals and the feedback information is sent to the transmitter, the method comprising the steps of:
- (a) estimating states of channels comprising the multiple paths from the received signals;
 - (b) determining basis vectors that represent M dimensions;

- (c) selecting S basis vectors among the determined basis vectors where S is less than M;
 - (d) selecting one of N quantization coefficients for each basis vector;
 - (e) obtaining feedback information W_{i} from the selected basis vectors and quantization coefficients; and $% \frac{\partial f_{i}}{\partial x_{i}}=\frac{\partial f_{i}}{\partial x_{i}}$
 - (f) sending W_i or an index indicating W_i back to the transmitter if a predetermined objective function P_i generated from W_i and the estimated channel \boldsymbol{H} reaches a maximum.
- 15. The method of claim 14, wherein the objective function P_i is expressed by $P_i = W_i^H \mathbf{H}^H \mathbf{H} W_i$ where the superscript H is a Hermitian operator.
 - 16. The method of claim 14, wherein, if the predetermined objective function P_i does not reach a maximum, the steps (e) and (f) are repeated for ${}_MC_S$ cases in which another S basis vectors are selected from the M basis vectors and for N^S cases in which another quantization coefficient is selected for each of the selected S basis vectors.
 - 17. The method of claim 14, if feedback information includes W_i in the step (f), further comprising the steps of:
 - (g) extracting Wi from a received feedback signal;
 - (h) weighting an information signal to be transmitted with the extracted \boldsymbol{W}_{i} ; and
 - (i) transmitting the weighted information signal.
 - 18. The method of claim 14, if feedback information includes the index in the step (f), further comprising the steps of:
 - (g) storing selectable W_i and index indicating W_i in the transmitter;
 - (h) extracting the index from a received feedback signal and W_{i} identified by the index;
 - (i) weighting an information signal to be transmitted with the extracted Wi; and
 - (j) transmitting the weighted information signal.

2

3

4

5

б

1

2

- 19. The wireless communication system of claim 5, wherein the predetermined objective function is $P=W^HH^HHW$, where a matrix H denotes the channel state, a vector W denotes the weight, and the superscript H denotes a Hermitian operator, the feedback information approximation unit calculates W_{opt} that maximizes the objective function and approximates W_{opt} to a lower dimension constituted by a predetermined basis vectors to extract the feedback information.
- 20. The wireless communication system of claim 5, wherein W_{opt} is an eigenvector corresponding to a maximum eigenvalue of $\mathbf{H}^H\mathbf{H}$ in the objective function.