Solution

Q1		
Sale Price	(p,\$/q)	100
Oper Cost per Unit	(<i>c</i> , \$/q)	40
Delay Time	(t_g, yr)	2
Percent Price Reduction	(x_g)	0.20
Delay Discount Factor	g	0.100

Q2			
Existing System			
Cost of Capital	(i)	5%	0.04
Economic Life	(<i>N</i> , yr)	10	5
Annual Demand	(q/yr)	1,500	10000
Sale Price	(p,\$/q)	70	70
Investment Cost	(IV, \$)	250,000	59000
Salvage Percentage		30%	0.25
Salvage Value	(SV, \$)	75,000	=C5*C6
Eff. Investment Cost	(IV ^{eff} , \$)	203,957	=C5-C7*(1+C1)^(-C2)
Cost Cap Recovery	(K, \$/yr)	26,413	=C8*(C1/(1-(1+C1)^(-C2)))
Annual Operating Hours	(H, hr/yr)	2,000	2000
Known Departure Rate	(<i>r_d</i> , q/hr)	0.75	=C3/C10
Estimated Utilization	(u)	0.80	0.95
Estimated Capacity	$(r_e, q/hr)$	0.94	=C11/C12
Capital Cost per Unit	(k, \$/q)	14.09	=(C9/C10)/C13
Operating Cost	(OC, \$/yr)	50,000	500000
Oper Cost per Unit	(<i>c</i> , \$/q)	33	=C15/C3
New System			
Delay Time	(t_g, hr)	2	
Percent Price Reduction	(x_g)	0.50	
Delay Discount Factor	g	0.477	
Annual Demand	(q/yr)	2500	
Known Departure Rate	$(r_d, q/hr)$	1.25	
Optimal Capacity	(r _e , q/hr)	2.50	