

GL4U: Introduction 2024 Lecture 4 of 4

Amanda M. Saravia-Butler, Ph.D.

NASA GeneLab Science Lead

Contractor: KBR

Biological & Physical Sciences

Sequencing Through the Ages

1977

1990

Now

Assembly required

Assembly required

Not much assembly required

Pyrosequencing aka Sequencing by Synthesis

Illumina Sequencing Workflow

- Illumina is a very successful biotech company specializing in next generation technology that uses the pyrosequencing method
- ~90% of all sequencing worldwide is performed on an Illumina instrument (including GeneLab)
- The Illumina sequencing workflow has the following 3 steps:
 - **➤** Library Construction
 - > Cluster Formation
 - Sequencing

DNAseq: Library Preparation

Step 1: Create DNA fragments (with a means to attach adapters) from the extracted sample DNA

Tagmentation: Illumina DNA Prep (formerly Nextera Flex)

Target PCR: Illumina Amplicon

DNAseq: Library Preparation

Step 2: Attach adapters

Tagmentation: Illumina DNA Prep

DNAseq: Library Preparation

Step 3: Amplify libraries

Tagmentation: Illumina DNA Prep

Fragmentation/A-tailing: IDT

Target PCR: Illumina Amplicon

DNA Library QC: Electrophoresis and Electropherogram

Electrophoresis

Electropherogram

DNAseq: Library QC

Libraries are evaluated using a bioanalyzer or a tape station to create an electropherogram to assess quality

Good Library - 1

When assessing library quality look for the following:

- NO adapter dimers! Why?
- Library size is consistent with the number of desired sequencing cycles
 - ➤ If you're sequencing at PE 250, what is a good library size? (hint: library size = insert length + adapter length)

Assuming adapters are ~65bp each (130bp) ~600bp that would give an insert length of ~470, allowing a ~30bp overlap between R1 and R2

DNAseq: Library QC

- Assess library quality (bioanalyzer, TapeStation)
 - Adapter dimers
 - > Fragment size
- Determine library quantity (Qubit, qPCR)

% AD	% PF	% AD Reads	
Control	69.54	0.24	
10%	10.87	84.25	
5%	21.39	60.44	
1%	51.88	6.46	

rRNA Contamination

mRNA makes up only ~2-5% of a total RNA sample

RNAseq: Library Preparation

Figure 1 Ribo-Zero Depleting and Fragmenting RNA

Figure 2 Synthesizing First Strand cDNA

Figure 3 Synthesizing Second Strand cDNA

Figure 4 Adenylating 3' Ends*

RNAseq: Library Preparation

Figure 5 Ligating Adapters

RNAseq: Library Preparation

Figure 6 Enriching DNA Fragments*

Figure 7 LS Final Library

RNA Library QC: Electrophoresis and Electropherogram

Electrophoresis

Electropherogram

RNAseq: Library QC

Libraries are evaluated using a bioanalyzer or a tape station to create an electropherogram to assess quality

When assessing library quality look for the following:

- NO adapter dimers! Why?
- Library size is consistent with the number of desired sequencing cycles
 - ➤ If you're sequencing at PE 100, what is a good library size? (hint: library size = insert length + adapter length)

Assuming adapters are ~65bp each (130bp): ~300bp that would give an insert length of ~170, allowing a ~30bp overlap between R1 and R2

What is the size range of library 1? Library 2? ~175-250bp; ~150-275bp, Modified from UC Davis Bioinformatics RNAseq Training

RNAseq: Library QC

- Assess library quality (bioanalyzer, TapeStation)
 - Adapter dimers
 - > Fragment size
- Determine library quantity (Qubit, qPCR)

% AD	% PF	% AD Reads		
Control	69.54	0.24		
10%	10.87	84.25		
5%	21.39	60.44		
1%	51.88	6.46		

Cluster Formation

Figure 4. Bridge PCR - a PCR method used to amplify samples for sequencing.

Illumina's High Throughput Sequencing by Synthesis

- For paired-end (PE) sequencing, after read
 1 is sequenced, forward strand reagents
 are washed
- The index read(s) are sequenced next
- Sequencing of the reverse read (read 2) is initiated after the index read(s)

Figure 9 Read 2 Sequencing

Sequencing Parameters

	Read length	Sequencing depth	Paired-end (PE) or Single- end (SE)
DNAseq	 Longer reads enable greater confidence in taxonomic classifications and functional annotations "Assembly" is often performed with short reads to facilitate this GL standard is 2x250bp 	 Greater depth increases the likelihood of sequencing low-abundance organisms (if metagenomics) and detecting things like single-nucleotide variants and genetic rearrangements with greater confidence GL standards: Single organism or tissue: Re-sequencing (reference available): 10X minimum De novo sequencing (no reference available): 50X minimum Metagenomics (mixed community): 10M per sample, minimum 	PE is generally preferred
RNAseq	 Longer reads increase gene ID confidence GL standard is 2x150bp for bulk RNAseq 	 Greater depth increases the likelihood of sequencing low-abundant transcripts, detecting novel transcripts, and quantifying isoforms Greater depth is necessary for ribo-depleted samples (vs. poly-A enriched samples) – for RNAseq GL RNAseq standard for mammalian samples prepared with ripo-depletion is ~60M reads/sample and ~40M reads/sample for samples prepared with polyA-selection. More replicates is usually preferred over greater depth 	➤ PE is preferred

Illumina's High Throughput Sequencing by Synthesis

https://www.youtube.com/watch?v=fCd6B5HRaZ8

