Address: Room M210, Lazenby Hall, The Ohio State University

1827 Neil Ave, Columbus, Ohio, US, 43210

Email: zitonglu1996@gmail.com / lu.2637@osu.edu

Personal Homepage: <u>zitonglu1996.github.io</u> GitHub Website: github.com/ZitongLu1996

Zitong Lu 路子童

(Update by 03/2023)

Education Background

The Ohio State University

Ph.D. in Cognitive Neuroscience

Graduate Minor in Statistics

M.S. in Psychology

Columbus, Ohio, the United State

Expected 2025

Department of Psychology

Expected 2023

Department of Statistics

2022

Department of Psychology

Advised by Julie D. Golomb

Vision and Cognitive Neuroscience Lab https://u.osu.edu/golomblab/

East China Normal University

M.S. in Cognitive Neuroscience

Shanghai, China

The Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science Advised by <u>Yixuan Ku</u>, <u>Yong-di Zhou</u> & <u>Huimin Wang</u>

Memory and Emotion Lab (now in Sun Yat-sen University) https://sysumelab.com

Northeastern University

B.E. in Software Engineering

Shenyang, China

2018

Department of Software Engineering, Software College

Research Interests

Main topics:

- (1) Neural and behavioral mechanisms of visual perception: Object-location binding, depth and 3D perception, generally spatial representation.
- (2) Artificial neural networks in cognitive computational neuroscience: Inter-individual neural converters, brain encoding and decoding, reverse engineering to interpret neural mechanisms.

Using behavior, Eye-tracking, EEG, fMRI and computational methods (MVPA, RSA, IEM, pRF), and deep neural networks (CNN, VAE, GAN).

Working Experience

08/2022-OSU EEG lab manager

Dept of Psychology, The Ohio State University

08/2022-04/2023

Teaching Assistant (PSYCH 4510)

Dept of Psychology, The Ohio State University

09/2020-06/2021

Research Assistant Brain-Like Memory Group, Peng Cheng Laboratory

05/2017-08/2017

Programmer (as Project Leader)

iSoftStone corporation

Typical Research Projects

Generate your neural signals from mine: individual-to-individual EEG converters

Department of Psychology, OSU

01/2023 – 02/2023

Object real-world size representations in human brains and artificial neural networks

Department of Psychology, OSU

11/2022 –

The influence of a moving object's location on object identity judgements.

Department of Psychology, OSU 08/2022 -

Unfolding the spatiotemporal neural mechanisms of 3D perception in the human brain: an fMRI-EEG fusion study.

Department of Psychology, OSU

06/2022 -

The influence of task-irrelevant landmarks on spatiotopic localization and object-location binding.

Department of Psychology, OSU

03/2022 -

Dynamic saccade context triggers more stable spatiotopic object-location binding
Department of Psychology, OSU 09/2021 – 03/2022

Representation Comparisons between Human Brain and Hierarchical Deep Convolutional Neural Network in Face Perception Reveal a Fatigue Mechanism of Repetition Suppression Institute of Cognitive Neuroscience, ECNU 09/2020 – 05/2021

Dynamic Object-based Encoding Mechanism in Visual Working Memory by EEG Decoding Institute of Cognitive Neuroscience, ECNU 03/2019 – 03/2020

NeuroRA: A Python Toolbox of Representational Analysis from Multi-modal Neural Data Institute of Cognitive Neuroscience, ECNU 03/2019 – Present, continuously updated

Website: https://zitonglu1996.github.io/NeuroRA/. (123 stars on GitHub!)

Publications

- **Lu, Z.**, & Ku, Y. (submitted). Facial representation comparisons between human brain and hierarchical deep convolutional neural network reveal a fatigue repetition suppression mechanism. BioRxiv.
 - https://doi.org/10.1101/2023.01.02.522298
- **Lu, Z.**, & Golomb, J.D. (submitted). Generate your neural signals from mine: individual to-individual EEG converters.
- **Lu, Z.**, Shafer-Skelton, A., & Golomb, J.D. (2022). Gaze-centered spatial representations in human hippocampus. *Conference on Cognitive Computational Neuroscience* **2022**. https://doi.org/10.32470/CCN.2022.1088-0
- **Lu, Z.,** & Ku, Y. (2020). NeuroRA: A Python toolbox of representational analysis from multi-modal neural data. *Frontiers in Neuroinformatics*. 14:563669. https://doi.org/10.3389/fninf.2020.563669
- **Lu, Z.** (2020). PyCTRSA: A Python package for cross-temporal representational similarity analysis-based E/MEG decoding. **Zenodo**. https://doi.org/10.5281/zenodo.4273674
- **Lu, Z.**, & Golomb, J.D. (submitted). Generate your neural signals from mine: individual to-individual EEG converters.
- **Lu, Z.**, & Ku, Y. (submitted). Facial representation comparisons between human brain and hierarchical deep convolutional neural network reveal a fatigue repetition suppression mechanism. BioRxiv.

https://doi.org/10.1101/2023.01.02.522298

- Zhang, M*., **Lu**, **Z***., & Wang, Z. (preprint). Behavioral and neural evidence of musical learning improving audiovisual matching ability. *PsyArXiv*. https://doi.org/10.31234/osf.io/w74nr
- **Lu. Z**., & Golomb, J.D. (in preparation). Dynamic saccade context triggers more stable object-location binding.
- Zhang, M*., Lu, Z*., Otani, S., & Wang, Z. (in preparation). Transcultural differences in the neural correlates of Theory of Mind between Chinese and Japanese: an fMRI study.

Presentations

05/23/2023 Vision Sciences Society (VSS) 2023 [Poster] Examining Hering's theory for color responses in human V1 and V4

05/21/2023 Vision Sciences Society (VSS) 2023 [Poster] The influence of a moving object's location on object identity judgments

05/20/2023

Vision Sciences Society (VSS) 2023

[Poster] The influence of task-irrelevant landmarks on spatiotopic localization and object-location binding

03/08/2021

Cog Psy Prosem, OSU

[Talk] Object real-world size representations in human brains and artificial neural networks

12/31/2022

The 2nd Neural Network Interdisciplinary Forum 2022

[Talk] Facial representation comparisons between human brain and hierarchical deep convolutional neural network reveal a fatigue repetition suppression mechanism

11/12/2022

Society of Neuroscience (SFN) 2022

[Poster] Dynamic saccade context triggers more stable object-location binding

10/22/2022

OSU CCBS Retreat 2022

[Talk] Dynamic saccade context triggers more stable object-location binding

08/27/2022

Cognitive Computational Neuroscience (CCN) 2022

[Poster] Gaze-centered spatial representations in human hippocampus

05/17/2022

Vision Sciences Society (VSS) 2022

[Talk] Dynamic saccade context triggers spatiotopic object-location binding

04/15/2022

Cog Neuro Prosem, OSU

[Talk] Dynamic saccade context triggers spatiotopic object-location binding

12/06/2021

OSU CCBBI Research Day 2021

[Talk] Gaze-centered spatial representations in human hippocampus

11/11/2021

Society of Neuroscience (SFN) 2021

[Poster] Representation comparisons between human brain and hierarchical deep convolutional neural network in face perception reveal a fatigue mechanism of repetition suppression

08/27/2021

The European Conference on Visual Perception (ECVP) 2021

[Poster] Representation comparisons between human brain and hierarchical deep convolutional neural network in face perception reveal a fatigue mechanism of repetition suppression

06/27/2021

Centre for Cognition and Brain Science, University of Macau

[Talk] Using computational methods to explore the neural representational mechanism in cognitive neuroscience

06/08/2021

UNIQUE Student Symposium 2021

[Talk] Representation comparisons between human brain and hierarchical deep convolutional neural network in face perception reveal a fatigue mechanism of repetition suppression 12/28/2020 Dept of Biomedical Engineering, UESTC [Talk] Representational Analysis for Cognitive Neuroscience based on NeuroRA

12/17/2020 Dept of Biomedical Engineering, Shenzhen University [Talk] Representational Analysis for Cognitive Neuroscience based on NeuroRA

Toolboxes & Tutorials

NeuroRA toolbox:

https://zitonglu1996.github.io/NeuroRA/ (123 stars on GitHub!)

Citation: Lu, Z., & Ku, Y. (2020). NeuroRA: A Python toolbox of representational analysis from multi-modal neural data. *Frontiers in Neuroinformatics*. 14:563669. https://doi.org/10.3389/fninf.2020.563669

Python EEG data analysis handbook in Chinese: https://github.com/ZitongLu1996/Python-EEG-Handbook (165 stars on GitHub!)

Programming & Experiment Skills

Computer Languages: Python, C, C++, MATLAB, Java, Julia

Software & Toolboxes: EEGLAB, MNE, SPM, FSL, Nibabel, Nilearn, NeuroRA, PyTorch

Experimental Experience: EEG, fMRI, Eye tracker and TMS

Honors & Awards

CCBBI Gibson Research Award (USD 3,000, by OSU CCBBI)
University Fellowship (USD 30,000, by OSU)
Outstanding Graduate Student (3%, Department of Education of Shanghai City)
(上海市优秀毕业生)
Short-Term Overseas Research Scholarship (about USD 7,000 , by ECNU)
Third prize (30%, China Graduate Student Mathematical Contest in Modeling)
Outstanding Graduate Student (3%, Department of Education of Liaoning
Province) (辽宁省优秀毕业生)
Second-Class Merit Scholarship (13%, by NEU)
Meritorious Winner (13%, Mathematical Contest in Modeling, by the U.S COMAP)
First-Class Liu Dajie & Fang Wenyu's Scholarship (<1%, USD 1500, by NEU)
Provincial First Prize (3%, China Undergraduate Mathematical Contest in
Modeling)
First-Class Merit Scholarship (3%, by NEU)
Honorable Mention (30%, Mathematical Contest in Modeling, by the U.S COMAP)
Second-Class Merit Scholarship (13%, by NEU)

Ad Hoc Reviewer

Scientific Reports, Advances in Psychological Science, Conference on Cognitive Computational Neuroscience (CCN) 2022, Annual meeting of the cognitive science society (CogSci) 2023.