

Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

1.-20 (cancelled)

21. (Previously presented) A product containing (a) a compound as defined in claim 25, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
22. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 25 and (b) another antiretroviral compound.
23. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 25.
24. (Previously presented) A process for preparing a pharmaceutical composition according to claim 23 comprising a therapeutically effective amount of a compound as claimed in claim 25 intimately mixed with a pharmaceutically acceptable carrier.

25. (currently amended) A compound selected from the group consisting of:

and *N*-oxides, or a pharmaceutically acceptable addition salts, quaternary amines or stereochemically isomeric forms thereof.

Claim 26. (new) A compound of formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

A and B each represents a radical of formula

ring E represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

ring F represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

R¹ represents hydrogen; aryl; formyl; C₁-6alkylcarbonyl; C₁-6alkyloxycarbonyl;

C₁-6alkyl optionally substituted with formyl, C₁-6alkylcarbonyl,

C₁-6alkyloxycarbonyl, C₁-6alkylcarbonyloxy; or C₁-6alkyloxyC₁-6alkylcarbonyl substituted with C₁-6alkyloxycarbonyl;

R² represents cyano; C₁-6alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl; C₂-6alkenyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl; or C₂-6alkynyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl;

X₁ represents -NR⁵-; -NH-NH-; -N=N-; -O-; -C(=O)-; -C₁-4alkanediyl-; -CHOH-; -S-; -S(=O)_p-; -X₂-C₁-4alkanediyl-; -C₁-4alkanediyl-X₂-; or -C₁-4alkanediyl-X₂-C₁-4alkanediyl-;

X₂ represents -NR⁵-; -NH-NH-; -N=N-; -O-; -C(=O)-; -CHOH-; -S-; or -S(=O)_p-;

m represents an integer of value 1, 2, 3 or 4;

R³ represents cyano; aminocarbonyl; amino; halo; NHR¹³; NR¹³R¹⁴; -C(=O)-NHR¹³; -C(=O)-NR¹³R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C₁-6alkyl optionally substituted with one or more substituents each independently selected from R^{3a}; C₁-6alkyloxy optionally substituted with one or more substituents each independently selected from R^{3a}; C₁-6alkyloxyC₁-6alkyl optionally substituted with one or more

substituents each independently selected from R^{3a}; C₂-6alkenyl optionally substituted with one or more substituents each independently selected from R^{3a}; C₂-6alkynyl optionally substituted with one or more substituents each independently selected from R^{3a}; -C(=N-O-R⁸)-C₁₋₄alkyl; R⁷ or -X₃-R⁷;

R^{3a} represents halo, cyano, hydroxy, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl, -C(=O)-O-C₁₋₆alkyl, -C(=O)-polyhaloC₁₋₆alkyl, -C(=O)-O-polyhaloC₁₋₆alkyl or R⁷;

X₃ represents -NR⁵-; -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; -S(=O)_p-;

-X_{4a}-C₁₋₄alkanediyl-; -C₁₋₄alkanediyl-X_{4b}-; -C₁₋₄alkanediyl-X_{4a}-C₁₋₄alkanediyl-; or -C(=N-OR⁸)-C₁₋₄alkanediyl-;

X_{4a} represents -NR⁵-; -NH-NH-; -N=N-; -C(=O)-; -S-; or -S(=O)_p-;

X_{4b} represents -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; or -S(=O)_p-;

each R⁴ independently represents hydroxy; halo; C₁₋₆alkyl optionally substituted with one or more substituents each independently selected from R^{4a}; C₂-6alkenyl optionally substituted with one or more substituents each independently selected from R^{4a};

C₂-6alkynyl optionally substituted with one or more substituents each independently selected from R^{4b}; C₃₋₇cycloalkyl; C₁₋₆alkyloxy; C₁₋₆alkyloxycarbonyl;

C₁₋₆alkylcarbonyloxy; carboxyl; formyl; cyano; nitro; amino; mono- or

di(C₁₋₆alkyl)amino; polyhaloC₁₋₆alkyl; polyhaloC₁₋₆alkyloxy; polyhaloC₁₋₆alkylthio;

-S(=O)_pR⁶; -NH-S(=O)_pR⁶; -C(=O)R⁶; -NHC(=O)H; -C(=O)NHNH₂; NHC(=O)R⁶;

C(=NH)R⁶; or R⁷;

R^{4a} represents halo, cyano, NR⁹R¹⁰, hydroxy or -C(=O)R⁶;

R⁵ represents hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl;

C₁₋₆alkyl optionally substituted with formyl, C₁₋₆alkylcarbonyl,

C₁₋₆alkyloxycarbonyl or C₁₋₆alkylcarbonyloxy; or C₁₋₆alkyloxyC₁₋₆alkylcarbonyl substituted with C₁₋₆alkyloxycarbonyl;

R⁶ represents C₁₋₆alkyl, amino, mono- or di(C₁₋₄alkyl)amino or polyhaloC₁₋₄alkyl;

R⁷ represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic,

bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may, whenever possible, optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl, formyl, C₁-6alkylcarbonyl, C₃-7cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC₁-6alkyl, polyhaloC₁-6alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} or R^{7a}-C₁-4alkanediyl-;

R^{7a} represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl, formyl, C₁-6alkylcarbonyl, C₃-7cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC₁-6alkyl, polyhaloC₁-6alkyloxy, aminocarbonyl, -CH(=N-O-R⁸);

R⁸ represents hydrogen, C₁-4alkyl optionally substituted with aryl, or aryl;

R⁹ and R¹⁰ each independently represent hydrogen; hydroxy; C₁-6alkyl; C₁-6alkyloxy; C₁-6alkylcarbonyl; C₁-6alkyloxycarbonyl; amino; mono- or di(C₁-6alkyl)amino; mono- or di(C₁-6alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned C₁-6alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁-6alkyloxy, hydroxyC₁-6alkyloxy, carboxyl, C₁-6alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁-4alkyl)amino, polyhaloC₁-4alkyl, polyhaloC₁-4alkyloxy, polyhaloC₁-4alkylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, or R⁷; or

R⁹ and R¹⁰ may be taken together to form a bivalent radical of formula

-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(d-1);
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	(d-2);
-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -	(d-3);
-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -	(d-4);
-CH ₂ -CH ₂ -NR ¹² -CH ₂ -CH ₂ -	(d-5); or
-CH ₂ -CH=CH-CH ₂ -	(d-6);

R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl;

C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹² represents hydrogen or C₁₋₄alkyl;

R¹³ and R¹⁴ each independently represent C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁵ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;

-C-D- represents a bivalent radical of formula

-N=CH-NR ¹⁷ -	(c-1); or
-NR ¹⁷ -CH=N-	(c-2);

R¹⁷ represents hydrogen; C₁₋₆alkyl optionally substituted with hydroxy, cyano,

aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, C₁₋₄alkyloxycarbonyl or aryl;

p represents an integer of value 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl,

C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl,

R⁷ or -X₃-R⁷;

provided that when A represents a radical of formula (a) then B represents a radical of formula (b) and when A represents a radical of formula (b) then B represents a radical of formula (a).

27. (New) A compound according to claim 26 wherein the compound has the formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D, X₁ and m are as defined in claim 26.

28. (New) A compound according to claim 27 wherein the compound of formula (I-A) has the formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D and X₁ are as defined in claim 26.

29. (New) A compound according to claim 26 wherein the compound has the formula

or a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D, X₁ and m are as defined in claim 26.

30. (New) A compound according to claim 29 wherein the compound of formula (I-B) has the formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D and X₁ are as defined in claim 26.

31. (Previously Presented) A compound according to claim 26 wherein ring E is phenyl.

32 (Previously Presented) A compound according to claim 26 wherein ring F is phenyl.

33. (New) A compound according to claim 26 wherein the compound has the formula

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

$-a^1=a^2-C(R^2)=a^3-a^4$ represents a bivalent radical of formula

$-CH=CH-C(R^2)=CH-CH=$ (a-1);

$-N=CH-C(R^2)=CH-CH=$ (a-2);

$-CH=N-C(R^2)=CH-CH=$ (a-3);

$-N=CH-C(R^2)=N-CH=$ (a-4);

$-N=CH-C(R^2)=CH-N=$ (a-5);

$-CH=N-C(R^2)=N-CH=$ (a-6); or

$-N=N-C(R^2)=CH-CH=$ (a-7);

$-b^1=b^2-b^3=b^4$ represents a bivalent radical of formula

$-CH=CH-CH=CH-$ (b-1);

$-N=CH-CH=CH-$ (b-2);

$-N=CH-N=CH-$ (b-3);

$-N=CH-CH=N-$ (b-4); or

$-N=N-CH=CH-$ (b-5);

$-C-D-$ represents a bivalent radical of formula

$-N=CH-NR^{17}-$ (c-1); or

$-NR^{17}-CH=N-$ (c-2);

m represents an integer of value 1, 2, 3 and in case $-b^1=b^2-b^3=b^4$ is (b-1), then m may also be 4;

R^1 represents hydrogen; aryl; formyl; C₁-6alkylcarbonyl; C₁-6alkyloxycarbonyl;

C₁-6alkyl optionally substituted with formyl, C₁-6alkylcarbonyl,

C₁-6alkyloxycarbonyl, C₁-6alkylcarbonyloxy; or C₁-6alkyloxyC₁-6alkylcarbonyl substituted with C₁-6alkyloxycarbonyl;

R² represents cyano; C₁-6alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl; C₂-6alkenyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl; or C₂-6alkynyl substituted with cyano, aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl;

X₁ represents -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, C₁-4alkanediyl, -CHOH-, -S-, -S(=O)_p-, -X₂-C₁-4alkanediyl- or -C₁-4alkanediyl-X₂-;

X₂ represents -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-,

R³ represents NHR¹³, NR¹³R¹⁴, -C(=O)-NHR¹³, -C(=O)-NR¹³R¹⁴, -C(=O)-R¹⁵, -CH=N-NH-C(=O)-R¹⁶; cyano; halo; C₁-6alkyl; polyhaloC₁-6alkyl; C₁-6alkyl substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₁-6alkyl substituted with hydroxy and a second substituent selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₁-6alkyloxyC₁-6alkyl optionally substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₁-6alkyloxy optionally substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₂-6alkenyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₂-6alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; -C(=N-O-R⁸)-C₁-4alkyl; R⁷ or -X₃-R⁷;

X₃ is -NR⁵-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, -X_{4b}-C₁-4alkanediyl-, -C₁-4alkanediyl-X_{4a}-, -C₁-4alkanediyl-X_{4b}-C₁-4alkanediyl, -C(=N-OR⁸)-C₁-4alkanediyl-;

with X_{4a} being -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-, and

with X_{4b} being -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-,

each R⁴ independently represents halo, hydroxy, C₁-6alkyl, C₃-cycloalkyl,

C₁-6alkyloxy, hydroxyC₁-6alkyl, aminoC₁-6alkyl, cyano, nitro, polyhaloC₁-6alkyl,

polyhaloC₁₋₆alkyloxy, aminocarbonyl, mono- or di(C₁₋₄alkyl)aminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyl, formyl, amino, mono- or di(C₁₋₄alkyl)amino or R⁷;

R⁵ is hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl optionally substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl or C₁₋₆alkylcarbonyloxy; or C₁₋₆alkyloxyC₁₋₆alkylcarbonyl substituted with C₁₋₆alkyloxycarbonyl;

R⁶ is C₁₋₄alkyl, amino, mono- or di(C₁₋₄alkyl)amino or polyhaloC₁₋₄alkyl;

R⁷ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, formyl, C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} or R^{7a}-C₁₋₄alkanediyl-;

R^{7a} is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, formyl, C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, or -CH(=N-O-R⁸);

R⁸ is hydrogen, C₁₋₄alkyl optionally substituted with aryl, or aryl;

R⁹ and R¹⁰ each independently are hydrogen; C₁₋₆alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; amino; mono- or di(C₁₋₆alkyl)amino; mono- or di(C₁₋₆alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned

C₁₋₆alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₄alkyl)amino, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, polyhaloC₁₋₆alkylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, C(=NH)R⁶, R⁷; or

R⁹ and R¹⁰ may be taken together to form a bivalent radical of formula

- CH₂-CH₂-CH₂-CH₂- (d-1);
- CH₂-CH₂-CH₂-CH₂-CH₂- (d-2);
- CH₂-CH₂-O-CH₂-CH₂- (d-3);
- CH₂-CH₂-S-CH₂-CH₂- (d-4);
- CH₂-CH₂-NR¹²-CH₂-CH₂- (d-5); or
- CH₂-CH=CH-CH₂- (d-6);

R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl;

C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹² represents hydrogen or C₁₋₄alkyl;

R¹³ and R¹⁴ each independently represent C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁵ represents C₁₋₆alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;

R¹⁷ represents hydrogen; C₁₋₆alkyl; or C₁₋₆alkyl substituted with aryl;

p is 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

C₁-6alkylcarbonyl, C₃-7cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC₁-6alkyl, polyhaloC₁-6alkyloxy, aminocarbonyl, R⁷ or -X₃-R⁷.

34. (New) A compound according to claim 26 wherein R² represents cyano.

35. (New) A compound according to claim 26 wherein R³ is cyano; aminocarbonyl; C₁-6alkyl optionally substituted with cyano or aminocarbonyl; C₁-6alkyloxy optionally substituted with cyano or aminocarbonyl; C₂-6alkenyl substituted with cyano or aminocarbonyl.

36. (New) A compound according to claim 26 wherein m is 2; R¹ represents hydrogen; R² represents cyano; R³ represents cyano; C₁-6alkyl; C₁-6alkyl substituted with cyano; C₁-6alkyloxy optionally substituted with cyano; C₂-6alkenyl substituted with cyano or -C(=O)-NR⁹R¹⁰; each R⁴ independently represents halo, C₁-6alkyl or C₁-6alkyloxy; X₁ represents -NR⁵- or -O-; R⁵ represents hydrogen; R⁹ and R¹⁰ each independently are hydrogen or C₁-6alkyl; or R⁹ and R¹⁰ may be taken together to form a bivalent radical of formula -CH₂-CH₂-O-CH₂-CH₂- (d-3); R¹⁷ is hydrogen; C₁-6alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, C₁-4alkyloxycarbonyl or aryl; aryl is phenyl substituted with C₁-6alkyloxy.

37. (New) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 26.

38. (New) A process for preparing a pharmaceutical composition according to claim 37 comprising mixing a compound of claim 26 with a pharmaceutically acceptable carrier.

39. (New) A process for preparing a compound as claimed in claim 26, comprising:
a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula (III) in the presence of a suitable catalyst, a suitable ligand, a suitable base, and a suitable solvent,

with W₁ representing a suitable leaving group, R^{17b} representing C₁₋₆alkyl optionally substituted with aryl, and A and B being defined as in claim 26 and wherein X₁ represents -NR⁵-, -O- or -S-;

b) reacting an intermediate of formula (II'-a) or (II'-b) with an intermediate of formula (III') in the presence of a suitable catalyst, BINAP, a suitable base, and a suitable solvent,

with W_1 representing a suitable leaving group, R^{17b} representing C_{1-6} alkyl optionally substituted with aryl, and A and B being defined as in claim 26 and wherein X_1 represents $-NR^5-$, $-O-$ or $-S-$;

c) by converting a compound of formula (I-a) or (I-b) into a compound of formula (I-c) and (I-d) by reaction with a suitable acid,

with R^{17b} representing C_{1-6} alkyl substituted with aryl, and A and B being defined as in claim 26;

d) converting a compound of formula (I-c) into a compound of formula (I-e) by reaction with an intermediate of formula $R^{17c}-W_2$ in the presence of a suitable base and a suitable solvent,

with W_2 representing a suitable leaving group, R^{17c} representing C_{1-6} alkyl optionally substituted with cyano or C_{1-4} alkyloxycarbonyl, and A and B being defined as in claim 26;

e) converting a compound of formula (I-e-1) into a compound of formula (I-f), by reaction with NH_3 in the presence of a suitable solvent,

with A and B being defined as in claim 26;

f) converting a compound of formula (I-e-1) into a compound of formula (I-g), by reaction with $NaBH_4$ in the presence of a suitable solvent,

with A and B being defined as in claim 26;

g) converting a compound of formula (I-f) into a compound of formula (I-h), by reaction with POCl_3 in the presence of a suitable solvent,

with A and B being defined as in claim 26;

or if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or converting the acid addition salt form into the free base by treatment with alkali.

40. (New) A product containing (a) a compound as defined in claim 26, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.

41. (New) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 26, and (b) another antiretroviral compound.