

FEATURE EXPLORATION FOR BETTER PREDICTION

Presented by: Akila

TABLE OF CONTENT

Problem statement

Solution proposal

Approach

Algorithm

Flowchart

Data Randomization Strategy

Forecast Accuracy Evaluation

Conclusion

Presentation Overview

Objective:

Enhance forecasting accuracy of telecom KPIs using time series modeling.

Key Steps:

- Identified gaps in raw data and missing features
- Applied advanced feature engineering (temporal, rolling, lag)
- Used Prophet for forecasting Avg. UE Number & DL PRB Utilization
- Implemented randomized train-test splitting to avoid bias
- Evaluated model with combined R² score

Result:

Achieved high forecast accuracy with $R^2 = 0.8489$, suitable for real-world deployment.

PROBLEM STATEMENT

- The input time-series data lacks deeper evaluation, limiting the discovery of hidden patterns that could enhance model accuracy.
- Additional feature engineering opportunities remain unexplored, potentially affecting the predictive performance of the forecasting model.

SOLUTION PROPOSAL

- Utilize Facebook's Prophet model tailored for time-series forecasting to handle seasonality, trends, and complex telecom KPI patterns.
- Engineer comprehensive features such as temporal indicators (hour, day, weekend), rolling statistics, lag variables, and a load ratio metric to improve model accuracy.
- Implement randomized train-test splitting to prevent temporal bias, ensuring robust and generalized model performance evaluation

APPROACH

- Data Preparation & Features: Clean and merge data, add time-based features, rolling stats, lags, and load ratio to capture patterns.
- Randomized Split: Use random 80-20 train-test split to avoid time bias and improve model generalization.
- Prophet Modeling: Train Prophet models on smoothed data for each KPI, forecast, evaluate with R², and save results.

FLOWCHART

Data Collection

Load Avg_UE_Number and DL Prb_Utillization datasets

Data Preprocessing

Convert timestamps

Merge datasets on commnon keys

Handle missing values

Feature Engineering

Extract time-based features (hour, day of week, weekend)
Calculate rolling statistics and lag fetures
Derive load ratio metric

Data Randomization & Split

Randomly split data into training and testing sets to avoid temporal bias

Model Training

Train Prophet models on the randomized training dataa

Forecasting & Evaluation

Predict on test set and calculate combined R² score for accuracy

ALGORITHM

Data Ingestion and Preprocessing

- Load average UE and PRB utilization datasets
- Convert timestamps, remove malformed and null entries for consistency

Feature Engineering and Aggregation

- Merge datasets on common identifiers (Timestamp, NCI, gNB)
- Derive temporal features (hour, day of week, weekend flag)
- Calculate rolling statistics and lag variables
- Compute additional metric: PRB-to-UE load ratio

Data Preparation and Modeling

- Apply smoothing to reduce noise in time series
- Perform randomized train-test split to prevent temporal leakage
- Train separate Prophet models for UE count and PRB utilization

Forecast Generation and Evaluation

- Generate forecasts using test set timestamps
- Evaluate model performance using combined R² score
- Save forecasted output and accuracy metrics to CSV for reporting

DATA RANDOMIZATION STRATEGY

Randomized Train-Test Split

Data is shuffled and split to ensure diverse representation

Enhances Forecast Reliability

Allows the model to learn from varied conditions across the dataset.

Removes Temporal Bias

Avoids reliance on chronological order, improving model generalization

Improved Evaluation Metrics

R² score better reflects true predictive performance across all time periods.

FORECAST ACCURACY EVALUATION

- Consistent Accuracy: The R² score remains stable at 0.8565, demonstrating that the model generalizes well, even with shuffled (randomized) data.
- Robust Model: Your use of advanced feature engineering and Prophet's modeling capability is effective across varied data splits.
- No Overfitting: Randomizing avoids temporal bias, and the model still performs reliably a sign of low overfitting risk.
- Production-Ready Quality: An R² score near 0.85 for time-series forecasting in telecom KPIs (which are noisy and volatile) is strong and suitable for operational deployment

CONCLUSION

Achieved high forecasting accuracy (R² Score: 0.8489) using Prophet with enhanced feature engineering and randomized data splitting

The model effectively captures temporal patterns and shows strong potential for scalable, real-world telecom KPI prediction

