# **Announcements**

- Check in on map tutorials
  - First map tutorial write-ups are due by 2:00 PM Mountain
    Time
    - Wednesday, February 7 for Wednesday lab
    - Thursday, February 8 for Thursday lab
  - Turn in your map tutorials using the Microsoft Form on the Map Tutorial assignment page
- Readings now up on schedule for remainder of semester!
  - Also on content pages for each week
  - Additional resources may be posted with lecture slides
- First Voices of GIS guest next Thursday!
  - Lee Macholz of Missoula City GIS

# Scales of Measurement

Kyle Bocinsky

FORS350 / GPHY488

(Forestry) Applications of GIS

University of Montana

WA Franke College of Forestry & Conservation

# Scales of Measurement

The scale indicates the data summarization and statistical analyses that are most appropriate. It determines the amount of information in the data.

#### Scales of measurement include:

#### Qualitative

- Logical
- Nominal
- Ordinal

#### Quantitative

- Interval
- Ratio

# Scales of Measurement

Today, we will explore scales of measurement by creating choropleths using data from the Montana Department of Revenue.<sup>1</sup>

# Qualitative versus Quantitative data

Data can be **qualitative** or **quantitative**.

The appropriate thematic map depends on whether the data for the variable are qualitative or quantitative.

# **Qualitative Data**

Qualitative data indicate what kind.

- Labels or names used to identify an attribute of each element. E.g., Black or white, male or female.
- Often referred to as categorical data
- May use either the nominal or ordinal scale of measurement
- Can be either numeric or non-numeric

# **Quantitative Data**

Quantitative data indicate how many or how much.

- Discrete, if measuring how many. E.g., number of 6-packs consumed at tail-gate party
- Continuous, if measuring how much. E.g., pounds of hamburger consumed at tail-gate party
- Quantitative data are always numeric.
- Ordinary arithmetic operations are meaningful for most quantitative data.

# Logical

**Logical** data are True/False; it is a binary form of nominal data (see next slide!).

- A non-numeric label (true/false) or numeric code (1/0) may be used to represent logical data.
- Many statistical tests, when performed on logical data, yield proportions. For example, taking the mean of a logical variable (with 1 representing true, and 0 representing false) will reveal the proportion of the sample that is "true".

**Cannabis in Montana** 

Recreational Sales, December 2023



# Nominal

**Nominal** data are categorically discrete data such as the name of a country visited, type of ground-cover, or the name of a biome.

- This one is easy to remember because nominal sounds like name (they have the same Latin root).
- A non-numeric label or numeric code may be used for nominal data.

**Cannabis in Montana** 

Local Option Tax Status, December 2023



# **Ordinal**

**Ordinal** data are nominal data where the order or rank of the data is meaningful. However, the distance (interval) between categories is unknown or irregular.

- A non-numeric label or numeric code may be used.
- For example: freshmen → sophomore → junior → senior.

Cannabis in Montana

Estimated Total Sales, December 2023 (Ordinal)



# Interval

**Interval** data have the properties of ordinal data, and the interval between observations is expressed in terms of a fixed unit of measure.

- Interval data are always numeric, and may be continuous or discrete.
- Interval data often do not have a zero that represents nothingness; temperature in the Celsius or Fahrenheit scales are examples of Interval data.
- You can add or subtract interval data, but you shouldn't multiply or divide them.

**Cannabis in Montana** 

Estimated Total Sales, December 2023 (Interval)



# Ratio

**Ratio** data have all the properties of interval data and the ratio of two values is meaningful.

- Ratio data are always numeric, and may be continuous or discrete.
- Ratio data must contain a true zero value that indicates that nothing exists for the variable at the zero point.
- Variables such as precipitation, temperature in degrees
  Kelvin, distance, height, weight, and time use the ratio scale.
- You can add, subtract, multiply and divide ratio scale data.

**Cannabis in Montana** 

Estimated Total Sales, December 2023 (Ratio)



**Cannabis in Montana** 

% Change, December 2022 to December 2023



#### **Cross-sectional Data**

**Cross-sectional** data are observations across individuals at the same point in time, or aggregated over the same time period.

**Cannabis in Montana** 

Estimated Sales per Capita, 2023



# **Time Series Data**

Time series data are collected over several time periods.

#### Cannabis in Montana

Estimated Monthly Total Sales, 2022-01-01

