asymptotic analysis 時間複雜度 divide and conquer merge sort insertion sort worst case compared based — quick sort average case sorting best case linear index sort counting sort partition Select(A,p,r,i)best case average case search, delet, insert collision hashing hash function probe

演算期中

Insertion Sorti

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2  key = A[i]

3  // Insert A[i] into the sorted subarray A[1:i-1].

4  j = i - 1

5  while j > 0 and A[j] > key

6  A[j+1] = A[j]

7  j = j - 1

8  A[j+1] = key
```

```
INSERTION-SORT(A, n)
                                                                        times
                                                                 cost
   for i = 2 to n
                                                                 c_1
        kev = A[i]
                                                                        n-1
2
                                                                 C_2
        // Insert A[i] into the sorted subarray A[1:i-1].
3
                                                                        n-1
        j = i - 1
                                                                        n-1
                                                                 C_4
                                                                        \sum_{i=2}^{n} t_i
        while j > 0 and A[j] > key
5
                                                                 C_5
                                                                      \sum_{i=2}^{n} (t_i - 1)\sum_{i=2}^{n} (t_i - 1)
             A[j+1] = A[j]
                                                                 c_6
             j = j - 1
                                                                 C_7
        A[j+1] = key
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1).$$

$$\sum_{i=2}^{n} i = \left(\sum_{i=1}^{n} i\right) - 1$$

$$= \frac{n(n+1)}{2} - 1 \quad \text{(by equation (A.2) on page 1141)}$$

worst case = average ase = (4)

Divide & Conquer

Pivide Conquer Combine

Merge sort

```
MERGE(A, p, q, r)
1 n_L = q - p + 1 // length of A[p:q]
2 \quad n_R = r - q \qquad \text{// length of } A[q+1:r]
 3 let L[0:n_L-1] and R[0:n_R-1] be new arrays
 4 for i = 0 to n_L - 1 // copy A[p:q] into L[0:n_L - 1]
        L[i] = A[p+i]
 5
 6 for j = 0 to n_R - 1 // copy A[q + 1:r] into R[0:n_R - 1]
        R[j] = A[q+j+1]
 8 i = 0
                         ## i indexes the smallest remaining element in L
9 i = 0
                         // j indexes the smallest remaining element in R
10 k = p
                         // k indexes the location in A to fill
   // As long as each of the arrays L and R contains an unmerged element,
           copy the smallest unmerged element back into A[p:r].
12
    while i < n_{\perp} and j < n_{R}
13
        if L[i] \leq R[j]
            A[k] = L[i]
14
           i = i + 1
15
        else A[k] = R[j]
16
17
          j = j + 1
        k = k + 1
18
    // Having gone through one of L and R entirely, copy the
19
        remainder of the other to the end of A[p:r].
    while i < n_L
20
        A[k] = L[i]
21
        i = i + 1
22
        k = k + 1
23
24 while j < n_R
25
        A[k] = R[j]
        j = j + 1
26
        k = k + 1
27
```

```
MERGE-SORT(A, p, r)

1 if p \ge r

2 return

3 q = \lfloor (p+r)/2 \rfloor // midpoint of A[p:r]

4 MERGE-SORT(A, p, q) // recursively sort A[p:q]

5 MERGE-SORT(A, q+1, r) // recursively sort A[q+1:r]

6 // Merge A[p:q] and A[q+1:r] into A[p:r].

7 MERGE(A, p, q, r)
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n < n_0, \\ D(n) + aT(n/b) + C(n) & \text{otherwise}. \end{cases}$$

Divide: The divide step just computes the middle of the subarray, which takes constant time. Thus, $D(n) = \Theta(1)$.

Conquer: Recursively solving two subproblems, each of size n/2, contributes 2T(n/2) to the running time (ignoring the floors and ceilings, as we discussed).

Combine: Since the MERGE procedure on an *n*-element subarray takes $\Theta(n)$ time, we have $C(n) = \Theta(n)$.

$$T(n) = 2T(n/2) + \Theta(n)$$
. $T(n) = (nQ)$

Rechroton tree

Asymptotic

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$$
.

$$\Omega(g(n))=\{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0\leq c\,g(n)\leq f(n) \text{ for all } n\geq n_0\}$$
 .

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.\quad \frac{1}{n\to\infty}\frac{f(n)}{g(n)}=\infty,$$

floor

modular

polynomial polynomially bounded if $f(n) = O(n^k)$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}, \qquad \lim_{n \to \infty} \frac{n^b}{a^n} = 0, \quad n^b = o(a^n).$

 $\begin{array}{ccc}
f(n) = O(\lg^k n) & & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & & & \\
f(n) = O(\lg^k n) & & \\
f($

factorial
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right),$$
 $n! = o(n^n),$ $n! = \omega(2^n),$ $n!$

fibonacci numbers

golden ratio
$$\phi$$
 $\phi = \frac{1+\sqrt{5}}{2}$ $\phi = \frac{1-\sqrt{5}}{2}$ $\phi = -.61803...$

Vivide & Conquet

substitution method

- 1. Guess the form of the solution using symbolic constants.
- 2. Use mathematical induction to show that the solution works, and find the constants.

recursion-tree method

master method

$$T(n) = aT(n/b) + f(n),$$

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

watershed function: $n^{\log_b a}$

matrix multiplication

recurssion vision

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r & s \\ \vdots & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$ $recursive$
8 mults

r = ae + bg s = af + bh t = ce + dhPrecursive 8 mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices

$$t = ce + dh$$

 $u = cf + dg$ 4 adds of $(n/2) \times (n/2)$ submatrices

$$o(n^3)$$

0.1	100	0	α	212
× 1	1 2		× 1	- 1 1

$$P_{1} = A_{11} \cdot S_{1} \ (= A_{11} \cdot B_{12} - A_{11} \cdot B_{22}) \ ,$$

$$P_{2} = S_{2} \cdot B_{22} \ (= A_{11} \cdot B_{22} + A_{12} \cdot B_{22}) \ ,$$

$$P_{3} = S_{3} \cdot B_{11} \ (= A_{21} \cdot B_{11} + A_{22} \cdot B_{11}) \ ,$$

$$P_{4} = A_{22} \cdot S_{4} \ (= A_{22} \cdot B_{21} - A_{22} \cdot B_{11}) \ ,$$

$$P_{5} = S_{5} \cdot S_{6} \ \ (= A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}) \ ,$$

$$P_{6} = S_{7} \cdot S_{8} \ \ (= A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}) \ ,$$

$$P_{7} = S_{9} \cdot S_{10} \ \ (= A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}) \ .$$

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$\Theta(n^{\lg 7})$$
 \simeq $O(n^{2.81})$

anick Sort

```
QUICKSORT(A, p, r)

1 if p < r

2  // Partition the subarray around the pivot, which ends up in A[q].

3  q = \text{PARTITION}(A, p, r)

4  QUICKSORT(A, p, q - 1)  // recursively sort the low side

5  QUICKSORT(A, q + 1, r)  // recursively sort the high side
```

```
PARTITION(A, p, r)
1 \quad x = A[r]
                                   // the pivot
2 i = p - 1
                                   // highest index into the low side
  for j = p \text{ to } r - 1
                                   // process each element other than the pivot
4
       if A[j] \leq x
                                   // does this element belong on the low side?
5
            i = i + 1
                                        // index of a new slot in the low side
            exchange A[i] with A[j] // put this element there
7 exchange A[i+1] with A[r] // pivot goes just to the right of the low side
8 return i+1
                                   // new index of the pivot
```

loop invariant

Initialization: Prior to the first iteration of the loop, we have i = p - 1 and j = p. Because no values lie between p and i and no values lie between i + 1 and j - 1, the first two conditions of the loop invariant are trivially satisfied. The assignment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the outcome of the test in line 4. Figure 7.3(a) shows what happens when A[j] > x: the only action in the loop is to increment j. After j has been incremented, the second condition holds for A[j-1] and all other entries remain unchanged. Figure 7.3(b) shows what happens when $A[j] \le x$: the loop increments i, swaps A[i] and A[j], and then increments j. Because of the swap, we now have that $A[i] \le x$, and condition 1 is satisfied. Similarly, we also have that A[j-1] > x, since the item that was swapped into A[j-1] is, by the loop invariant, greater than x.

Termination: Since the loop makes exactly r - p iterations, it terminates, whereupon j = r. At that point, the unexamined subarray A[j:r-1] is empty, and every entry in the array belongs to one of the other three sets described by the invariant. Thus, the values in the array have been partitioned into three sets: those less than or equal to x (the low side), those greater than x (the high side), and a singleton set containing x (the pivot).

Worst-case partitioning

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n).$$

 $\Theta(n^2)$

Best-case partitioning

$$T(n) = 2T(n/2) + \Theta(n)$$

 $O(n \lg n)$

Balanced partitioning

$$T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

$$\log_{10/9} n = \Theta(\frac{\lg n}{\lg n})$$

 $O(n \lg n)$

randonmized partition

RANDOMIZED-PARTITION (A, p, r)

- i = RANDOM(p, r)
- 2 exchange A[r] with A[i]
- 3 **return** PARTITION(A, p, r)

RANDOMIZED-QUICKSORT (A, p, r)

- 1 if p < r
- q = RANDOMIZED-PARTITION(A, p, r)
- RANDOMIZED-QUICKSORT (A, p, q 1)
- 4 RANDOMIZED-QUICKSORT(A, q + 1, r)

Worst-case analysis

$$T(n) = \max \{T(q) + T(n-1-q) : 0 \le q \le n-1\} + \Theta(n),$$

$$T(n) \le \max \left\{ cq^2 + c(n-1-q)^2 : 0 \le q \le n-1 \right\} + \Theta(n)$$

= $c \cdot \max \left\{ q^2 + (n-1-q)^2 : 0 \le q \le n-1 \right\} + \Theta(n)$.

$$q^{2} + (n-1-q)^{2} = q^{2} + (n-1)^{2} - 2q(n-1) + q^{2}$$
$$= (n-1)^{2} + 2q(q-(n-1))$$
$$\leq (n-1)^{2}$$

$$T(n) \le c(n-1)^2 + \Theta(n)$$

$$\le cn^2 - c(2n-1) + \Theta(n)$$

$$\le cn^2,$$

Theorem 7.4

The expected running time of RANDOMIZED-QUICKSORT on an input of n distinct elements is $O(n \lg n)$.

Proof The analysis uses indicator random variables (see Section 5.2). Let the n distinct elements be $z_1 < z_2 < \cdots < z_n$, and for $1 \le i < j \le n$, define the indicator random variable $X_{ij} = I\{z_i \text{ is compared with } z_j\}$. From Lemma 7.2, each pair is compared at most once, and so we can express X as follows:

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} .$$

By taking expectations of both sides and using linearity of expectation (equation (C.24) on page 1192) and Lemma 5.1 on page 130, we obtain

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \qquad \text{(by linearity of expectation)}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared with } z_j\} \qquad \text{(by Lemma 5.1)}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \qquad \text{(by Lemma 7.3)}.$$

We can evaluate this sum using a change of variables (k = j - i) and the bound on the harmonic series in equation (A.9) on page 1142:

$$\begin{split} \mathbf{E}\left[X\right] &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\ &= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\ &< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \\ &= \sum_{i=1}^{n-1} O(\lg n) \\ &= \sum_{i=1}^{n} O(\lg n) \\ &= O(n \lg n) \,. \end{split}$$

Sorting in linear time

decision-tree

Theorem 8.1

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a decision tree in which each permutation appears as a reachable leaf. Consider a decision tree of height h with l reachable leaves corresponding to a comparison sort on n elements. Because each of the n! permutations of the input appears as one or more leaves, we have $n! \leq l$. Since a binary tree of height h has no more than 2^h leaves, we have

$$n! \leq l \leq 2^h$$
,

which, by taking logarithms, implies

 $h \ge \lg(n!)$ (since the lg function is monotonically increasing) = $\Omega(n \lg n)$ (by equation (3.28) on page 67).

counting sort 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 A 2 5 3 0 2 3 0 3 0 1 2 3 4 5 C 2 2 4 7 7 8 0 1 2 3 4 5 0 1 2 3 4 5 C 2 0 2 3 0 1 C 2 2 4 6 7 8 (b) 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 B 0 3 3 1 2 3 4 5 6 7 8 B 0 0 2 2 3 3 3 5 0 1 2 3 4 5 0 1 2 3 4 5 C 1 2 4 6 7 8 C 1 2 4 5 7 8 (d) COUNTING-SORT(A, n, k)let B[1:n] and C[0:k] be new arrays for i = 0 to k3 C[i] = 04 for j = 1 to nC[A[j]] = C[A[j]] + 1// C[i] now contains the number of elements equal to i. 7 for i = 1 to kC[i] = C[i] + C[i-1]// C[i] now contains the number of elements less than or equal to i. // Copy A to B, starting from the end of A. 11 for j = n downto 1 B[C[A[j]]] = A[j]12 C[A[j]] = C[A[j]] - 1 // to handle duplicate values 13 14 return B radix sort 720 329 329 720 329 457 355 355 657 436 436 436 839 457 839 457 436 657 355 657 720 329 457 720 355 839 839 657

RADIX-SORT
$$(A, n, d)$$

1 **for** $i = 1$ **to** d
2 use a stable sort to sort array $A[1:n]$ on digit i

Median & Order Statistic

```
RANDOMIZED-SELECT(A, p, r, i)
1 if p == r
       return A[p]   // 1 \le i \le r - p + 1 when p == r means that i = 1
q = \text{RANDOMIZED-PARTITION}(A, p, r)
4 k = q - p + 1 \rightarrow \downarrow \downarrow Subarray by Fix Fig.
5 if i == k
       return A[q] // the pivot value is the answer
7 elseif i < k
       return RANDOMIZED-SELECT (A, p, q - 1, i)
9 else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
```

worst-case $\Theta(n^2)$

$$\Theta(n^2)$$

$$T(n) = T(n-1) + \Theta(n)$$

Select

SELECT guarantees a good split by choosing a provably good pivot

```
SELECT(A, p, r, i)
                       0~4
     while (r-p+1) \mod 5 \neq 0
         for j = p + 1 to r
                                             // put the minimum into A[p]
             if A[p] > A[j]
 3
                  exchange A[p] with A[j]
         // If we want the minimum of A[p:r], we're done.
         if i == 1
             return A[p] > 作 (p+1) 物 base, 划 (i-1) 大的
         // Otherwise, we want the (i-1)st element of A[p+1:r].
    i = i - 1 | have the use in 9 - 1 | manufactories of 5-element groups for j = p to p + g - 1 | manufactories of 5-element groups
        p = p + 1
10
11
12
         sort \langle A[j], A[j+g], A[j+2g], A[j+3g], A[j+4g] \rangle in place
13
    // All group medians now lie in the middle fifth of A[p:r].
14
15 // Find the pivot x recursively as the median of the group medians.
16 x = SELECT(A, p + 2g, p + 3g - 1, (g/2)) median of median
    q = \text{PARTITION-AROUND}(A, p, r, x) // partition around the pivot
    // The rest is just like lines 3-9 of RANDOMIZED-SELECT.
19
    k = q - p + 1
    if i == k
20
21
         return A[q]
                                             // the pivot value is the answer
22
    elseif i < k
23
         return SELECT(A, p, q - 1, i)
    else return SELECT(A, q + 1, r, i - k)
24
```


low & high side

$$5g - 3g/2 = 7g/2 \le 7n/10$$

() 不能给某

$$T(n) \le T(n/5) + T(7n/10) + \Theta(n)$$
.

$$T(n) \leq c(n/5) + c(7n/10) + \Theta(n)$$

$$\leq 9cn/10 + \Theta(n)$$

$$= cn - cn/10 + \Theta(n)$$

$$\leq cn$$

Hash

Direct Address

avoiding collisions altogether is impossible

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT(T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE(T, x)

1 T[x.key] = NIL

$\Rightarrow O(1)$

independent uniform hash function

每個 elements 都被难推抽中

一多個 810年的平均面别指生相同的個數

each key is equally likely to hash to any one of the m slots

Analysis

- · land factor d = -

- search
 - · successtul (thm 11.1)

B(1+d) on average

· Uhsuccessty (thm 11-2)

(1) (1+a) on average

· DU) 條件

n = O(m)

 $\alpha = n/m = O(m)/m = O(1)$

• 富是 independent uniform 時

two distinct keys collide \longrightarrow probability 1/m

Hash function

The division method

$$h(k) = k \bmod m .$$

The multiplication method

$$h(k) = \lfloor m \, (kA \bmod 1) \rfloor$$

The multiply-shift method

$$h_a(k) = (ka \bmod 2^w) \ggg (w - \ell)$$

Multiplication method example

$$h(k) = (A \cdot k \mod 2^w) \operatorname{rsh} (w - r)$$

Suppose that $m = 8 = 2^3$ and that our computer has w = 7-bit words:

Modular wheel

Double hashing

$$h(k,i) = (h_1(k) + i)h_2(k) \mod m$$

Linear probing

$$h(k,i) = (h_1(k) + i) \mod m$$

$$h(k,i) = (h_1(k) + i) \mod m$$

Advantage:

可以更平均的 hash 到每個 610t!

$$h: U \times (0, 1, \dots, m-1) \to \{0, 1, \dots, m-1\}$$

```
HASH-INSERT(T, k)
  i = 0
  repeat
      q = h(k, i)
3
  if T[q] == NIL
          T[q] = k
          return q
       else i = i + 1
  until i == m
   error "hash table overflow"
HASH-SEARCH(T, k)
1 i = 0
  repeat
2
      q = h(k, i)
3
  if T[q] == k
4
5
       return q
      i = i + 1
7 until T[q] == NIL \text{ or } i == m
   return NIL
```

m! permutations of (0, 1, ..., m-1)

Analysis

Search

· Successfy (fhm 11.6)

· un successful (thm 11.7)

Why	7	youtube:hash介紹
		https://www.voutube.com/watch

•	https://www.youtube.com/watch?v=fT3uaSleptl&list=PLyyZcZrmGuHFLOltniDCj5Jbgm_dyfh6T&index=7&ab_channel=%E6%86%B6%E7%B4%94%E6%99%83%E6%99%83
	Hash
	(1) 4 15 60 to (4)
	(1) 為何军有 hash:
	ex. 另有上個 key: k1=1, k2=1000
	o without hash table (using array)
	1000
	另有 key=1, 股 key=[000 是存用的, 集他 998個都沒用到
	998個新沙文用到
	一) 京建青 [3
	1 U
	o with hash table (U)
	<u> </u>
	Lihiversal
	A STATE OF THE STA
	(Actual Ex
	(C)
	M~
	追旅一张, 只要開一個大小為m A hash table 就好了。[3 ** Re actual key
	the hard table tel 42 3 D 13 gp actual key
	is nown table in 400 % [3 - 12 %?

(2) hash 產生的 problem

collision (different keys point to the same slot)

Solution:

(1) chaining satellite

m-2

m-2

Operations

Insert: O(1)

Delete: D(1)

Search: Ocl)

