TGDA + Neuroscience Project: Shape Analysis and classification via Persistent Homology

Student: Yuting Fang

Instructor: Facundo Mémoli

fang.564@osu.edu

May 28 2020

O. Problem Statement

Input: Non-Rigid World <u>TOSCA</u> database of 3D shapes. About 10 classes, 150 shapes, 3000 vertices in each object.

Output: Classification between different classes

Challenges:

- Dataset too large to process all (3000*150 3D points)
- Discriminate shapes from different class, without being overly sensitive to different poses of a given class.

Figure 1: Different poses of the cat shape.

1. Basic Pipeline

1. Basic Pipeline

Persistence Diagrams, Barcodes

2. Bottleneck Distance Matrices

3. Visualization: Multi Dimensional Scaling

with **cmdscale** function in MATLAB based on PH2

3. Multi Dimensional Scaling - Human

- Classify well: male vs. female
- Problem: male vs. male?

Actually Twins

4. Next Step

- Apply Machine Learning to get better model
- \blacktriangleright Better combination: $A = A_0 \times dB0 + A_1 \times dB1 + A_2 \times dB2$
- \triangleright k-Nearest Neighbors: Mdl = fitcknn()
- Apply Eccentricity Function to enlarge features [1] For two connected points x, y: G(x, y) = 1
- \triangleright Current Weight: w(x,y) = ||x-y||
- \triangleright Better Weight: w(x, y) = ||x y|| e(x) e(y)
- Normalization

What I learn these days

- Experience of processing large geometric database
 - > Subsampling: random, FPS, ...
 - > Noise Canceling: which points to choose
 - > What I should prepare for: huge dataset, long running time...

- Experience of Topology Data Analysis
 - Basic ideas of Persistent Homology
 - > Important features and their meaning: **DM**, **PD**, **Barcodes**, ...

Reference

[1] Gromov-Hausdorff Stable Signatures for Shapes using Persistence, Frédéric Chazal, 2009.

[2] <u>Ripser</u>: efficient computation of Vietoris-Rips persistence barcodes, Ulrich Bauer, 2019.