Expressões úteis

	Emissor Comum	Emissor Comum c/R _E	Colector comum	Base Comum
Impedância de Entrada	$R_{ent} = R_1 // R_2 // r_b$	$R_{ent} \approx R_1 // R_2 // (r_b + \beta r_E)$	$R_{ent} \approx R_1 // R_2 // \beta R_E$	$R_{ent} = r_e$
Ganho de Tensão em c.a.	$A = -\beta \frac{R_C}{r_b}$	$A = -\beta \frac{R_C}{r_b + \beta r_E}$ $= -\frac{R_C}{r_e + r_E} \approx -\frac{R_C}{r_E}$	<i>A</i> ≈ 1	$A = \frac{R_c}{r_e}$
Impedância de Saída	$R_{saida} = R_{C}$	$R_{saida} = R_{C}$	$R_E / (r'_e + \frac{R_1//R_2//R_f}{(\beta+1)})$	$R_{\text{saída}} = R_{\text{C}}$

$$\rightarrow r'_{\rm e} \approx \frac{25 {\rm mV}}{I_{\rm E}}$$

$$r_b' pprox rac{25 \text{mV}}{I_E/(eta+1)} pprox eta r_e'$$

Expressões úteis

	NMOS reforço	NMOS depleção	JFET canal N	PMOS reforço	PMOS depleção	JFET canal P	
Vt	(c) +	(b)	-	(c)	+ ^(b)	+	
ON	$V_{GS} > V_t$			$V_{GS} < V_t$			
Tríodo	$V_{DS} < V_{GS} - V_t$			$V_{DS} > V_{GS} - V_t$			
	$i_D \approx k_n' \frac{W}{L} (v_{GS} - V_t) v_{DS}$						
Saturação	$V_{DS} > V_{GS} - V_t$			$V_{DS} < V_{GS} - V_t$			
Saturação	$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2$						

Expressões úteis

MOSFET de depleção

$$i_D = i_{DSS} \left(1 - \frac{V_{GS}}{V_t} \right)$$

$$i_{DSS} = \frac{1}{2} K'_n \frac{w}{L} V_t^2$$

JFET

$$i_D = i_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)$$
 $i_{DSS} = \frac{1}{2} K'_n \frac{w}{L} V_p^2$