APPROXIMATION DES EDP

Mohammad Reza PAKZAD

2023-2024

Table des matières

Quelques notations			2
	Leg	gradient et la jacobienne	2
		livergence	
		men de l'année dernière	
1	Quelques exemples des EDP		
	1.1	L'équation de la chaleur en 1D (une dimension spatiale)	3
	1.2	L'équation de la chaleur en 2D, 3D ou n D	3
	1.3	L'équation des ondes en 1D	4
	1.4	L'équation des ondes en 2D, 3D ou n D	4
	1.5	L'équation de Poisson	4
	1.6	Généralisation de l'équation de Poisson	4
	1.7	L'équation de Navier-Stokes (2D/3D)	5
	1.8	L'équation de transport	5
	1.9	L'équation de Monge-Ampère (équation complément non-linéaire)	
	1.10	L'équation de la plaque élastique linéaire	5
2	Méthode de différence finie (une méthode d'approximation des EDP)		
	2.1	Approximation des fonctions et leurs dérivées partielles	6
		2.1.1 Théorème de Taylor	
		2.1.2 La différence finie (D.F.)	

EDP : abbreviation pour "équations aux dérivées partielles". De là, deux grandes théories émergent : 17-01-2024 analyse des EDP (aspect théorique) et méthode pour la résolution numérique. Entre les deux, il y a la théorie de l'approximation des EDP.

Il n'y a pas de théorie unique qui s'applique à toutes les EDP.

Dans ce cours, on abordera surtout les équations de type $\Delta u = f$.

Quelques notations

$$\Omega \subseteq \mathbb{R}^n$$
 ouvert.
 $u: \Omega \longrightarrow \mathbb{R}^m$, avec

$$u(x_1, \ldots, x_n) = (u^1(x_1, \ldots, x_n), u^m(x_1, \ldots, x_n)).$$

Pour tout i, $u_{x_i}(x) = \frac{\partial u}{\partial x_i}(x) = \lim_{h\to 0} \frac{u(x+he_i)-u(x)}{h} = \partial_{x_i}u(x) = \partial_i u(x)$ (on utilise la dernière notation quand il n'y a pas d'ambiguité).

Notez que

$$u_{x_i} = (u_{x_i}^1, \dots, u_{x_i}^m).$$
 Aussi $u_{x_i x_j} = \frac{\partial}{\partial x_j} (u x_i) = \frac{\partial}{\partial x_j} \left(\frac{\partial u}{\partial x_i} \right) = \frac{\partial^2 u}{\partial x_j x_i}$, de même pour les dérivées de tout ordre.

Exemple. Pour $m = 1, n = 1, u(t, x) = (e^{-t}x, x^2 + t)$.

On a

$$u_t = (-e^{-t}x, 1), u_x = (e^{-t}, 2x).$$

Le gradient et la jacobienne

Si $m=1,u:\Omega\longrightarrow\mathbb{R}, \nabla u=Du\,\mathrm{grad}\,u=[\partial_{x_1},\ldots,\partial_{x_n}u]:\Omega\longrightarrow\mathbb{R}^n.$

Si m > 1, on a affaire à une matrice jacobienne de taille $m \times n$. Le gradient est un cas particulier de la jacobienne.

$$\nabla u = \begin{bmatrix} \frac{\partial u^1}{\partial x_1} & \cdots & \frac{\partial u^1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial u^m}{\partial x_1} & \cdots & \frac{\partial u^m}{\partial x_n} \end{bmatrix}.$$

La divergence

Si $\overrightarrow{F}:\Omega\longrightarrow\mathbb{R}^n$ est une application linéaire, avec $\overrightarrow{F}(x)=(F^1(x),\ldots,F^n(x))$, on a

$$\operatorname{div} \overrightarrow{F} = \partial_{x_1} F^1 + \dots + \partial_{x_n} F^n = \sum_{i=1}^n F^i_{x_i} : \Omega \longrightarrow \mathbb{R}.$$

On peut aussi dire que div $\overrightarrow{F} = \nabla \cdot \overrightarrow{F}$.

Remarque 0.1. Si $\overrightarrow{F} = (0,T) \times \Omega \longrightarrow \mathbb{R}^n$ (c'est-à-dire \overrightarrow{F} dépend aussi du temps), $\operatorname{div} \overrightarrow{F} = \operatorname{div}_t \overrightarrow{F}(t,x) = F_{x_1}^1 + \dots + F_{x_n}^n(t,x).$

Le laplacien

On définit

$$\Delta u := \partial_{x_1 x_1} + \dots \partial_{x_n x_n} = \operatorname{div}(\nabla u) = \nabla \cdot (\nabla u)$$

et si $u = (u^1, \dots u^m)$, alors

$$\Delta u := (\Delta u^1, \dots, \Delta^m).$$

Encore $\Delta u : div(Du)$ où $A := \Omega \longrightarrow \mathbb{R}^{m \times n}$, où $A = [\overrightarrow{v}^1, \dots, \overrightarrow{v}^n]$, avec $\overrightarrow{v}^j : \Omega \longrightarrow \mathbb{R}^m$, on définit

$$div A: \partial_{x_1} \overrightarrow{v}^1 + \dots + \partial_{x_n} \overrightarrow{v}^n.$$

Ici on a identifié $\Delta u = (\Delta u^1, \dots, \Delta^m)$ comme un vecteur ligne avec le vecteur colonne qui est

$$div(Du) = \begin{bmatrix} div\nabla u^1 \\ \vdots \\ div\nabla u^1 \end{bmatrix} = \begin{bmatrix} \Delta u^1 \\ \vdots \\ \Delta u^1 \end{bmatrix}.$$

1 Quelques exemples des EDP

On cherche une ou plusieurs applications $u:? \longrightarrow ?$ satisfaisant

1.1 L'équation de la chaleur en 1D (une dimension spatiale)

$$u:]0, T[\times[a,b] \longrightarrow \mathbb{R}, t \in]0, T[, x \in [a,b], a, b, t \in \mathbb{R}, T > 0.$$

 $f:]0,T[\times[a,b]\longrightarrow\mathbb{R}$ est donnée (la source), les données sont $u_0(x),g_a(t),g_b(t),\,\alpha\in\mathbb{R}$. L'équation est la suivante :

$$\begin{cases} u_t - \alpha^2 u_{xx} = f \text{ (EDP)} \\ u(0, x) = u_0(x) \text{ (condition initiale, CI), } \forall x \in [a, b] \\ u(t, a) = g_a(t) \\ u(t, b) = g_b(t), \forall t \in]0, T[. \end{cases}$$

$$(1)$$

Ce sont les valeurs limites aux bords (ou conditions aux bords) de type Dirichlet.

C'est un problème d'évolution.

Cette équation s'appelle aussi l'équation de la diffusion.

Ici, l'équation de la chaleur a besoin de sa CI et de ses valeurs aux bords (VB) pour être bien posée (existence, unicité et stabilité d'une solution).

 $A = \alpha^2$ est la conductivité (une constante).

Si la barre n'est pas homogène dans ses propriétés thermiques, on peut avoir une conductivité non constante.

$$A: [a,b] \longrightarrow \mathbb{R}^+ := \{ y \in \mathbb{R} \mid y > 0 \}.$$

L'équation devient $u_t - (A(x)u_x)_x = f$.

1.2 L'équation de la chaleur en 2D, 3D ou nD

L'équation de la chaleur (en deux, trois ou n dimensions). Soit $\Omega \iota \mathbb{R}^n$ domaine spatial, $\partial \Omega$ le bord de Ω dans \mathbb{R}^n .

Soit $x \in \Omega, A(x) \in \mathbb{R}^{n \times n}_{\text{sym,pos}}$.

$$\begin{cases} u_t - div(ADu) = f & u, f : [0, T[\times \Omega \longrightarrow \mathbb{R} \\ u(0, x) = u_0(x) \text{ CI} \\ u(t, x) = g(t, x) & (t, x) \in [0, T[\times \partial \Omega \text{ VB}]. \end{cases}$$
 (2)

Si $A(x) = \alpha^2 I$, l'équation devient $u_t - \alpha^2 \Delta u = f$. $u_t - div(A\nabla u)$ est l'équation parabolique de diffusion.

1.3 L'équation des ondes en 1D

L'équation des ondes (1D), aussi appelée l'équation d'Alembert. $u(t,x), t \in [0,T[,x\in[a,b].\ f(t,x)\ \text{est donnée},\ \nu\in\mathbb{R}^+,\ u_0(x),\nu_0(x),g_a(t),g_b(t).$

$$\begin{cases} \frac{1}{\nu^2} u_{tt} - u_{xx} = f \\ u(0, x) = u_0(x), u_t(0, x) = \nu_0(x) \text{ CI} \\ u(t, a) = g_a(t), u(t, b) = g_b(t) \text{ VB.} \end{cases}$$
 (3)

Si les deux bouts de la corde sont fixés, on peut imposer $g_a(t) = g_b(t) = 0$. L'équation des ondes est une équation **hyperbolique**.

1.4 L'équation des ondes en 2D, 3D ou nD

 $\Omega \in \mathbb{R}^n$.

$$\begin{cases} \frac{1}{x^2} u_{tt} - \Delta u = f \\ u(0, x) = u_0(x), u_t(0, x), \nu_0(x) \text{ CI} \\ u(t, x) = g(t, x), (t, x) \in [0, T[\times \partial \Omega. \end{cases}$$
 (4)

1.5 L'équation de Poisson

 $\Omega \in \mathbb{R}^n, u(x), f(x), g(x), x \in \partial \Omega.$

$$\begin{cases}
-\Delta u = f \\
u(x) = g(x), \forall x \in \partial \Omega \text{ VB de type Dirichlet.}
\end{cases}$$
(5)

C'est un problème aux limites de type elliptique.

Remarque 1.1. Si n=1,

$$\begin{cases}
-u_{xx} = f \\
u(a) = g_a, u(b) = g_b
\end{cases}$$

n'est pas une EDP, mais une EDO.

1.6 Généralisation de l'équation de Poisson

C'est une équation scalaire elliptique d'ordre 2. Soit $A: \Omega \longrightarrow \mathbb{R}^{n \times n}$ symétrique positive, $f: \Omega \longrightarrow \mathbb{R}, u: \Omega \longrightarrow \mathbb{R}$.

$$\begin{cases}
-div(A(x)\nabla u) = f \text{ dans } \Omega \\
\text{VB } \partial\Omega
\end{cases}$$
(6)

Remarque 1.2. Si $\Omega \subseteq \mathbb{R}^n$, $a:\Omega \longrightarrow \mathbb{R}^+$ la conductivité, avec A(x)=a(x) id $_{n\times n}$, alors l'équation de la chaleur devient :

$$u_t - div(a(x)\nabla u) = fCIVB.$$

Si $u: \Omega \longrightarrow \mathbb{R}$ est la température en équlibre (u(t,x)) ne change pas dans le temps), alors $u_t(t,x) = 0$ implique que u(x) := u(t,x) est une solution de 6.

En général on s'attend à ce que si u_{∞} satisfait 6 et u(t,x) est la solution de l'équation de la chaleur, alors

$$\lim_{t \to \infty} u(t, x) = u_{\infty}(x).$$

1.7 L'équation de Navier-Stokes (2D/3D)

Soit $\Omega \subseteq \mathbb{R}^n, t \in [0, T[, x \in \Omega, u(t, x) \in \mathbb{R}^n, u : [0, T[\times \Omega \longrightarrow \mathbb{R}^n, p(t, x) \in \mathbb{R}^n]$. $f : [0, T[\times \Omega \longrightarrow \mathbb{R}^n \text{ donn\'e}, \text{ ainsi que } u_0(x), g(t, x) \text{ donn\'es}.$ $u_0 : \Omega \longrightarrow \mathbb{R}^n, g : [0, T[\times \partial \Omega \longrightarrow \mathbb{R}^n].$

$$\begin{cases} u_t + u \cdot \nabla u - \nu \Delta u + \Delta p = f \\ divu = 0 \text{ (incompréssibilité ou continuité)} \\ u(0,x) = u_0(x) \text{ CI} \\ u(t,x) = g(t,x) \text{ VB de type Dirichlet (d'autre type sont possibles)} \end{cases}$$
 (N.S.)

u est la vitesse d'un fluide en un point $x \in \Omega$.

 ν est la [...] du fluide.

p et la pression.

Il faut résoudre N.S. pour u et p.

C'est une équation de mécanique des fluides.

Notez le terme $u \cdot \nabla u = [u \cdot \nabla u^1, \dots, u \cdot \nabla u^n]$, avec $\nabla u = \nabla_x u = [\partial_{x_1} u, \dots, \partial_{x_n} u]$.

L'équation de l'équilibre de la quantité du mouvement fluide homogène de densité $f={\rm constante}.$

S'il y a une non-linéarité forte, alors il y a problème technique pour l'analyse.

1.8 L'équation de transport

1.9 L'équation de Monge-Ampère (équation complément non-linéaire)

$$u:\Omega\longrightarrow\mathbb{R}^2, Hu=\left[rac{\partial^2 u}{\partial x^ix^j}
ight]_{n imes n},\,f$$
donné.
$$\det(Hu)=f+VB.$$

1.10 L'équation de la plaque élastique linéaire

Soit $\Omega \subseteq \mathbb{R}^n, u : \Omega \longrightarrow \mathbb{R}, f : \Omega \longrightarrow \mathbb{R}$ données, $g : \partial \Omega \longrightarrow \mathbb{R}, h : \partial \Omega \mathbb{R}$.

$$\Delta^{2}u = fu(x) = g(x)\frac{\partial u}{\partial \overrightarrow{n}}(x) = h(x), x \in \partial\Omega, \tag{7}$$

avec
$$\Delta^2 u = \Delta(\Delta u) = \sum_{i=1}^n \partial_{ii}(\Delta u).$$

C'est l'équation de la plaque elastique linéaire (n=2) avec le bord fixé. u modélise le déplacement vertical de la plaque et f est la forme verticale.

2 Méthode de différence finie (une méthode d'approximation des EDP)

2.1 Approximation des fonctions et leurs dérivées partielles

2.1.1 Théorème de Taylor

Théorème 2.1. Soient $[a,b] \subseteq \mathbb{R}, u \in \mathcal{C}^{n+1}([a,b]), c \in [a,b]$. Pour tout $x \in [a,b]$, il existe z entre c et x tel que

$$u(x) = T_n(x) + E_{n+1}(x),$$

où T_n est le polynôme de degré $\leq n, E_{n+1}$ est l'erreur (le reste) et

$$T_n(x) = \sum_{k=0}^n \frac{u^{(k)}}{k!} (x-c)^k, E_{n+1} = \frac{u^{(n+1)}(z)}{(n+1)!} (x-c)^{n+1}.$$

Remarque 2.1. $T^{(z)}(c) = u^{(j)}(c), \forall 0 \le j \le n.$

Si on remplace x par (x + h) et c par x, on obtient

$$u(x+h) = \sum_{k=0}^{n} \frac{u^{(k)}(x)}{k!} h^{k} + \frac{u^{(n+1)}(z)}{(n+1)!} h^{n+1}.$$

2.1.2 La différence finie (D.F.)

$$x_0 \qquad x_1 \qquad x_N$$

$$x_N \qquad k$$
 grille = maillage uniforme
$$N \in \mathbb{N}$$

$$x_i = a + ih$$

$$u_i = u(x_i)$$

$$b = x_N = a + Nh$$

FIGURE 1 – Méthode de la différence finie