

Introducción a la Optimización

Tomás de la Rosa

Esquema

- Introducción
- Optimización con Restricciones
- 3 Resolución de Problemas de Optimización
- Optimización Convexa

Esquema

- Introducción
- Optimización con Restricciones
- Resolución de Problemas de Optimización
- Optimización Convexa

Contenido del Curso

- Optimización
 - Introducción a la Optimización
 - Programación Lineal
 - Programación Cuadrática
 - Programación Entera Mixta
- Búsqueda
 - Búsqueda en Grafos
 - Búsqueda Local Estocástica

Optimización

- Herramienta para la toma de decisiones
- Un problema de optimización es el problema que plantea encontrar la mejor solución que existe entre las soluciones posibles
- Proceso presente cuando:
 - se pretende una gestión eficiente de recursos limitados
 - la gran cantidad de alternativas hace inviable evaluarlas todas

Campo Inter-disciplinar

Definiciones

- Hablamos de un modelo cuando nos referimos a una representación matemática de un problema de optimización
- La solución a un modelo es factible si satisface todas las restricciones del modelo
- La solución es óptima cuando su valor es el mejor entre todos los valores de las soluciones factibles
- El problema es infactible si no existe ninguna solución que satisfaga las restricciones

Elementos de un Problema de Optimización

- Las variables de decisión son las alternativas que podemos elegir. Se representan como variables a las que vamos a asignar algún valor
- La función objetivo es lo que queremos optimizar. La expresamos como una función de las variables de decisión
- Las restricciones nos limitan el valor que se puede obtener en la función objetivo. También son funciones de las variables de decisión

- ¿Cuál es la cartera con acciones del EUROSTOXX50 que arroja una menor volatilidad?
- ¿Cuál es la cartera que mejor replica al Nasdaq 100 sólo invirtiendo como mucho en 25 activos?
- ¿Cuál hubiera sido la mejor cartera europea del año pasado que cumpliera la normativa de los fondos UCITS?
- ¿Cuál es la mejor ventana para utilizar el indicador de la media móvil?

Determinar el Tipo de Problema

- En el proceso de modelado debemos determinar el tipo de problema que estamos representando
- Nuestro problema puede representarse con diferentes modelos, incluso pertenecer a categorías diferentes de problemas de optimización
- Esta decisión es relevante para:
 - tener una representación más cerca o más lejos de la realidad
 - ▶ la elección de algoritmos de resolución, software disponible, etc.

Diferentes Clasificaciones

Optimización Combinatoria

- En la optimización discreta buscamos la solución en un conjunto finito de posibles soluciones
- La optimización combinatoria es un tipo de optimización discreta en la que la representación del problema en una estructura de grafos permite resolverlos mediante algoritmos de búsqueda
- Ejemplos:
 - el problema de la mochila
 - camino más corto entre dos puntos

Esquema

- Introducción
- Optimización con Restricciones
- 3 Resolución de Problemas de Optimización
- Optimización Convexa

Variables de Decisión

- Decidimos qué hacer, o qué seleccionar:
 - asignación de recursos para un proyecto
 - activos a incluir en una cartera de inversión
 - cantidad a financiar para el siguiente período
- En un proceso de exploración de prueba y error corresponden a la parte del problema que iríamos cambiando

Función Objetivo

- Maximización de lo bueno
 - beneficio económico
 - preferencias de usuario
 - en contexto más amplio hablamos de utilidad
- Minimización de lo malo o lo escaso
 - todo tipo de coste
 - riesgo
 - tiempo

Restricciones

- Para indicar disponibilidad de recursos
 - conseguir lo máximo hasta agotar el presupuesto
 - producir hasta agotar la materia prima

Restricciones

- Para indicar disponibilidad de recursos
 - conseguir lo máximo hasta agotar el presupuesto
 - producir hasta agotar la materia prima
- Para indicar requisitos o una necesidad
 - transportar productos hasta suplir la demanda
 - asignar como mínimo una cantidad de elementos

Restricciones

- Para indicar disponibilidad de recursos
 - conseguir lo máximo hasta agotar el presupuesto
 - producir hasta agotar la materia prima
- Para indicar requisitos o una necesidad
 - transportar productos hasta suplir la demanda
 - asignar como mínimo una cantidad de elementos
- Para forzar la integridad de las variables de decisión
 - ► Si decido cuanto del recurso X se gasta, X es una cantidad positiva
 - Si decido que proporción le asigno a cada clase de activo, el total debe sumar 1.

 Calcular la asignación de pesos para una cartera de REE, MAPFRE e INDITEX para obtener la mejor rentabilidad por dividendo con la condición que ninguna acción supere el 50 % de la cartera y que la combinación de ingresos nacionales sean como mucho del 40 %.

Acción	REE	MAP	ITX
Rentabilidad Div.	7.1	5.1	3.5
Ingresos España	0.9	0.5	0.2
Ingresos Extranjero	0.1	0.5	8.0

Acción	REE	MAP	ITX
Rentabilidad Div.	7.1	5.1	3.5
Ingresos España	0.9	0.5	0.2
Ingresos Extranjero	0.1	0.5	0.8

- Variables de decisión: Proporción de cada acción en la cartera
 x₁: %REE, x₂: %MAP, x₃: %ITX
- Función objetivo: Combinación de RPD 7.1x₁ + 5.1x₂ + 3.5x₃
- Restricciones:
 - ► El total de las asignaciones componen la cartera $x_1 + x_2 + x_3 = 1$
 - $x_1 + x_2 + x_3 = 1$
 - La combinación de ingresos menor del 40 % $0.9x_1 + 0.5x_2 + 0.2x_3 \le 0.4$
 - No superar el 50 % de la cartera $x_1, x_2, x_3 < 0.5$

Problemas no Acotados

- Un problema que no tiene restricciones
 - ightharpoonup En un problema de maximización, su función objetivo puede crecer todo lo que quiera hasta ∞
 - ▶ En un problema de minimización, su función objetivo puede tomar el valor más pequeño posible hasta $-\infty$
 - Nos referimos a estos problemas como no acotados
- Un problema con restricciones puede ser no acotado, si existen variables de decisión que no están restringidas, pero que están incluidas en la función objetivo

Programación Lineal

- Las variables de decisión son reales no negativos
- La función objetivo es una función lineal de las variables
- Las restricciones son expresiones lineales sobre las variables

$$Max Z = 2x_1 + x_2$$

sujeto a
$$x_1 + 3x_2 \le 50$$

 $2x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$

Programación Cuadrática

- Las variables de decisión son reales no negativos
- La función objetivo es una función cuadrática de las variables
- Las restricciones son expresiones lineales sobre las variables

$$MaxZ = x_1^2 + 3x_1x_2 + x_1$$

sujeto a
$$x_1 + 3x_2 \le 50$$

 $2x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$

Programación Entera Mixta

- Algunas de las variables de decisión son enteros no negativos
- La función objetivo es una función lineal de las variables
- Las restricciones son expresiones lineales sobre las variables

$$Max Z = 2x_1 + x_2$$

sujeto a
$$x_1 + 3x_2 \le 50$$

 $2x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$ y enteros

Esquema

- Introducción
- Optimización con Restricciones
- Resolución de Problemas de Optimización
- Optimización Convexa

¿Por qué optimización?

- Teoría amplia, aplicaciones en múltiples campos
- Algoritmos desarrollados
 - garantías de optimalidad
 - en muchos casos resolución en tiempo polinomial
- Implementación en paquetes software de propósito general que denominamos solvers
- Enfoque para resolución de problemas
 - Modelar el problema como un problema de optimización con un lenguaje de representación adecuado
 - Utilizar un solver para obtener la solución

Modelado en Python

- CVXPY: Paquete Python para modelado de problemas de optimización convexa
- Abstrae el lenguaje particular de cada solver

Solvers en CVXPY

- CVXPY instala varios solvers open-source (ECOS, OSQP, SCS)
- Podemos instalar GLPK para problemas de programación entera
- Es posible configurar solvers comerciales por tema de rendimiento en problemas grandes

Solver	P. Lineal	P. Cuadrática	P. Entera
ECOS	1	✓	
OSQP	1	✓	
SCS	1	✓	
GLPK	✓		✓
XPRESS	✓	✓	✓
GUROBI	1	✓	✓
MOSEK	1	✓	✓
CPLEX	✓	✓	✓

Esquema

- Introducción
- Optimización con Restricciones
- Resolución de Problemas de Optimización
- Optimización Convexa

Problemas de Optimización Convexa

sujeto a
$$f_i(X) \le 0$$
 para $i \dots m$
 $AX = b$

- El vector $X \in R^n$
- Las restricciones de igualdad son lineales
- $f_0 \dots f_m$ son funciones **convexas**

Programación Convexa Disciplinada

- DCP (Disciplined Convex Programming) conjunto de reglas de modelado que aseguran que un problema de optimización es convexo
- la idea consiste en mantener la convexidad mediante la combinación de expresiones de las que conocemos su curvatura
- Si un problema se modela siguiendo las reglas DCP sabemos que se puede resolver con un solver de optimización convexa (y por tanto con CVXPY)
- Nosotros veremos solo sub-clases de problemas: lineal, cuadrática y entera

Función Convexa, Cóncava y Afín

• Si f es convexa: Para cualquier $x, y, \theta \in [0, 1]$

$$f_i(\theta x + (1-\theta)y) \ge \theta f_i(x) + (1-\theta)f_i(y)$$

- Si f es convexa, −f es cóncava
- f es afín, si es a la vez cóncava y convexa

$$f_i(\theta x + (1-\theta)y) = \theta f_i(x) + (1-\theta)f_i(y)$$

Ejemplos Funciones Convexas

•
$$f_i(\theta x + (1 - \theta)y) \ge \theta f_i(x) + (1 - \theta)f_i(y)$$

•
$$f(x) = x^2$$

▶ Para
$$x = 2, y = 4$$

$$\bullet \ \theta = 0 \rightarrow f(4) \geq f(4)$$

•
$$\theta = 0.5 \rightarrow f(1+2) \ge f(1) + f(2)$$

▶
$$\theta = 1 \to f(2) \ge f(2)$$

- e^x
- $max(x_1, \ldots x_n)$

Ejemplos Funciones Cóncavas

•
$$f_i(\theta x + (1 - \theta)y) \leq \theta f_i(x) + (1 - \theta)f_i(y)$$

- f(x) = log(x)
 - Para x = 10, y = 100
 - $\theta = 0 \to f(100) \le f(100)$
 - $\theta = 0.5 \rightarrow f(5+50) \le f(5) + f(50)$
 - $\theta = 1 \to f(10) \le f(10)$
- \bullet \sqrt{X}
- $min(x_1, \ldots x_n)$

Reglas DCP

- Las expresiones son combinaciones de constantes, variables con operadores matemáticos y con funciones básicas de curvatura conocida
- Cada expresión se identifica de un tipo: constante, afín, cóncava, convexa y desconocida
- Cada tipo tiene sus reglas para mantener su curvatura.
- Por ejemplo $f(exp_1, exp_2, ..., exp_n)$ es convexa si f es convexa y además para cada expresión se cumple al menos que:
 - ▶ f es creciente en el argumento i y la expi es convexa
 - ▶ f es decreciente en el argumento i y la expi es cóncava
 - exp_i es constante o afín

Problemas DCP

- Las reglas de DCP requiere que la función objetivo sea:
 - Minimizar(convexa)
 - Maximizar(cóncava)
- Las restricciones tienen que ser de la forma
 - ▶ afín == afín
 - convexa <= concava</p>
 - concava >= convexa

Referencias

- Libros
 - Investigación de Operaciones, Hamdy Taha
 - Convex Optimization, Boyd & Vandenberghe
 - Optimization Methods in Finance, Cornuejols & Tütüncü
 - Heuristic Search Theory and Applications, Edelkamp & Schrödl
- Enlaces de Interés
 - https://neos-guide.org/content/optimization-introduction