1. Consider the grammar $G=(V,\Sigma,R,S)$, where

$$egin{aligned} V &= \{a,b,S,A\}, \ \Sigma &= \{a,b\}, \ R &= \{S
ightarrow AA, \ A
ightarrow AAA, . \ A
ightarrow aAA, \ A
ightarrow bA, \ A
ightarrow Ab\}. \end{aligned}$$

Write all the strings of L(G) whose length is at most 4.

2. Consider the context free grammar $G=(V,\Sigma,R,S)$, where

$$\begin{split} V &= \{a,b,S,A,B\}, \\ \Sigma &= \{a,b\}, \\ R &= \{S \rightarrow aB, \\ S \rightarrow bA, \\ A \rightarrow a, \\ A \rightarrow aS, \\ A \rightarrow BAA, \\ B \rightarrow b, \\ B \rightarrow bS, \\ B \rightarrow ABB\}. \end{split}$$

Show that $ababba \in L(G)$.

$$S \Rightarrow aB \Rightarrow |\Rightarrow| abaB \Rightarrow ababS \Rightarrow ababbA \Rightarrow ababba$$

3. Construct context-free grammars that generate each of these language

a).
$$\{ww^R: w \in [a,b]^{\iota}\}$$

b).
$$\{w \in [a,b]^{l}: w = w^{R}\}$$

A:
$$a i.\{ww^{R}:w\in[a,b]^{i}\}$$

$$S \rightarrow aSa$$

 $S \rightarrow bSb$

$$S \rightarrow e$$

b).
$$\{w \in [a,b]^{i}: w = w^{R}\}$$

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

$$S \rightarrow a$$

$$S \to b$$

$$S \to e$$
4.

Let $G = (V, \Sigma, R, S)$, where $V = \{a, b, S\}$, $\Sigma = \{a, b\}$, and $R = \{S \rightarrow aSb, S \rightarrow aSa, S \rightarrow bSa, S \rightarrow bSb, S \rightarrow e\}$. Show that L(G) is regular.

A: We first prove that $L(G)=M=\{w\in [a,b]^t:|w| is even\}$. To show L(G)=M, we show $L(G)\subseteq M$ and $M\subseteq L(G)$.

Step 1. We show that $M \subseteq L(G)$.

Proof by induction on the string length:

Base case: Obviously $e \in L(G)$.

Induction hypothesis: Suppose any string of length 2k, $k \ge 0$, is contained in L(G).

Consider $w \in [a,b]^{k}$, |w| = 2k+2.

Depending on the first and last symbols, there are three possibilities: w=aua, w=bub or aub, where |u|=2k. According to the induction hypothesis, we have $S\Rightarrow^{i}u$

- i) If w = aua, then $S \Rightarrow aSa \Rightarrow^i aua = w$
- ii) If w = bub, then $S \Rightarrow bSb \Rightarrow^{i} bub = w$
- iii) If w = aub, then $S \Rightarrow aSb \Rightarrow aub = w$

Therefore, $w \in L(G)$. Hence, $M \subseteq L(G)$

Step 2. We show that $L(G) \subseteq M$.

Proof by induction on the derivation length (i.e., number of \Rightarrow 's in the derivation):

Base case: If the derivation length is 1, then the only string that can be derived is $S \Rightarrow e$. |e|=0, which is even.

Induction hypothesis: Suppose any derivation with length at most k generates a string of even length, we consider a derivation with length k+1. Consider the first derivation. It can be $S \Rightarrow aSa$, $S \Rightarrow bSb$, $S \Rightarrow aSb$, $S \Rightarrow bSb$. According to the hypothesis, with at most k derivations we always have $S \Rightarrow u$ for some u of even length. Hence if the first derivation is aSa, bSb, aSb, bSa, then with additional k more derivations we get aua, bub, aub, bua, respectively, whose length is even in all cases. Thus, $L(G) \subseteq M$.

Step 3. We have proved so far that L(G)=M. Since $M=((a+b)(a+b))^{i}$, L(G) is regular.

5. Show that the following languages are context-free by exhibiting contextfree grammars generating each:

i)
$$\{a^nb^mc^{m+n}:n,m\geq 0\}.$$

ii)
$$\{a^mb^nc^pd^q:m+n=p+q\}$$

iii)
$$\{uawb:u,w\in[a,b]^{\iota},|u|=\iota w\vee\}$$

A: i)
$$\{a^n b^m c^{m+n}: n, m \ge 0\}$$
.

The language $G=(V,\Sigma,R,S)$ where $V=\{a,b,c,A,B,S\}$, terminals $\Sigma=\{a,b,c\}$, and rules $R=\{S\rightarrow A,A\rightarrow aAc,A\rightarrow B,A\rightarrow e,B\rightarrow bBc,B\rightarrow e\}$.

ii)
$$\{a^mb^nc^pd^q:m+n=p+q\}.$$

The language $G=(V,\Sigma,R,S)$ where $V=\{a,b,c,d,A,B,S\}$, terminals $\Sigma=\{a,b,c,d\}$, and rules $\{S\to S_1\vee S_2\}$

$$S_1 \to a S_1 d | A_1, A_1 \to b A_1 d | B_1, B_1 \to b B_1 c \lor e$$

$$S_2 \rightarrow a S_2 d \left| A_2, A_2 \rightarrow a A_2 c \right| B_2, B_2 \rightarrow b B_2 c \vee e$$

iii)
$$\{uawb: u, w \in [a,b]^{\iota}, |u| = \iota w \vee \}$$

The language $G = (V, \Sigma, R, S)$ where $V = \{a, b, T, S\}$, terminals $\Sigma = \{a, b\}$, and rules $R = \{S \rightarrow Tb, T \rightarrow aTa, T \rightarrow bTb, T \rightarrow aTb, T \rightarrow bTa, T \rightarrow a\}$.

6. What does the following PDA's accept?

A:
$$\{0^n 1^n : n \ge 0\}$$

$$A: \{a^i b^j c^k : i = j \lor i = k\}$$

(Additional question: can you modify the PDA for $\{a^ib^jc^{i+j}:i,j\geq 0\}$?)

7. (*) What does the following PDA accept?

$$K = [q], \Sigma = [0,1], \Gamma = [a,b,0,1], F = [q],$$
 $\Delta = \{([q,0,e],(q,a)],$
 $([q,1,e],(q,1))$
 $([q,0,1],(q,0))$
 $([q,1,a],(q,0))$
 $([q,1,0],(q,e))$
 $([q,1,1],(q,b))$
 $([q,0,b],(q,e))\}$

- 8. Use Pumping theorem to show the followings are not context-free:
 - a). $\{a^nb^nc^n:n\geq 0\}$
 - b). $\{a^p: p \text{ is prime }\}$
 - c). $\{a^{n^2}: n \ge 0\}$
 - d). $\{a^nb^na^nb^n:n\geq 0\}$
 - e). $\{ww: w \in [a,b]^{i}\}$

A:

a). Suppose on the contrary that $L=\{a^nb^nc^n:n\geq 0\}$ is CFG, then

there exists some sufficiently large number N, for any $n \ge N$, we have $a^n b^n c^n = uvxyz$ such that |vy| > 0, $|vxy| \le N$, and $uv^i x y^i z \in L$ for any $i \ge 0$.

Pick n=N and consider $a^N b^N c^N = uvxyz$. $|vxy| \le N$, so there are 5 different possibilities.

i). $vxy=a \cdots a, \forall b \cdots b, \forall c \cdots c$, i.e., it only consists one symbol We show the case of $vxy=a \cdots a$, the other two cases are the same. Since |vy|>0, we know v^2xy^2 contains exactly $ivy \lor i$ more a's than vxy. That is, uv^2xy^2z will contain N+|vy|>N copies of a, i.e., $uv^2xv^2z=a^{N+ivy \lor ib^Nc^N\notin L,i}$ contradicting that $uv^ixv^iz\in L$ for any $i\geq 0$.

ii). $vxy=a\cdots ab\cdots b$ or $vxy=b\cdots bc\cdots c$, i.e., vxy contains both a,b or b,c. We show that case of $vxy=a\cdots ab\cdots b$, the other case is the same. Since |vy|>0, we assume $vy=a^{\alpha}b^{\beta}$ for some α , $\beta\geq 0$ and $\alpha+\beta>0$. Now we have $uv^2xy^2z=a^{N+\alpha}b^{N+\beta}c^N\notin L$, contradicting that $uv^ixy^iz\in L$ for any $i\geq 0$

Note that since $|vxy| \le N$, it is impossible for vxy to contain all a,b,c. Thus we have exhausted all the possibilities.

- b). Proof essentially the same as that in slide for non-regularity
- c) Suppose on the contrary that $L=\{a^{n^2}:n\geq 0\}$ is CFG, then there

exists some sufficiently large number N, for any $n \ge N$, we have $a^{n^2} = uvxyz$ such that |vy| > 0' $|vxy| \le N'$ and $uv^i x y^i z \in L$ for any $i \ge 0$.

Pick $_{n=N}$ and consider $_{a^{N^2}=uvxyz}$. Let $_{vxy=a^\beta}$ for some $_{1\leq \beta \leq N}$.

Then $uv^2xy^2z=a^{N^2+\beta}\in L$. Hence, there exists some integer N_1 such

that $N^2+\beta=N_1^2$. Obviously $N_1>N$, i.e., $N_1\geq N+1$. However,

 $N_1^2 \ge (N+1)^2 > N^2 + N$, implying that $\beta > N$, contradicting that $\beta \le N$. Hence, L is not CFG.

d). Suppose on the contrary that $L=\{a^nb^na^nb^n:n\geq 0\}$ is CFG, then there exists some sufficiently large number N, for any $n\geq N$, we

have $a^nb^na^nb^n=uvxyz$ such that |vy|>0, $|vxy|\leq N$, and $uv^ixy^iz\in L$ for any $i\geq 0$.

Pick n=N and consider $a^Nb^Na^Nb^N=uvxyz$. $|vxy|\leq N$. We divide $a^Nb^Na^Nb^N$ into 4 substrings of equal length, and let them be w_1,w_2,w_3,w_4 where $w_1=w_3=a^N$, $w_2=w_4=b^N$. There are 3 different

possibilities.

i). vxy is a substring of w_1 or w_2 or w_3 or w_4 .

We show the case that vxy is a substring of w_1 , the other 3 cases are the same. Since |vy| > 0, we know $v^2 x y^2$ contains exactly $vy \lor v$ more a's than vxy. That is, $uv^2 x y^2 z$ will contain vxy = v

 $i \ge 0$.

- ii). $vxy=a\cdots ab\cdots b$, and is a substring of w_1w_2 or w_3w_4 . We show the case that vxy is a substring of w_1w_2 , the other case is the same. Since |vy|>0, we assume $vy=a^\alpha b^\beta$ for some α , $\beta\geq 0$ and $\alpha+\beta>0$. Now we have $uv^2xy^2z=a^{N+\alpha}b^{N+\beta}a^Nb^N\notin L$, contradicting that $uv^ixy^iz\in L$ for any $i\geq 0$.
- iii). $vxy=b\cdots ba\cdots a$, and is a substring of w_2w_3 . Since |vy|>0, we assume $vy=b^\beta a^\alpha$ for some $\alpha,\beta\geq 0$ and $\alpha+\beta>0$. Now we have $uv^2xy^2z=a^Nb^{N+\beta}a^{N+\alpha}b^N\notin L$, contradicting that $uv^ixy^iz\in L$ for any $i\geq 0$
- e) Apply pumping theorem on $a^nb^na^nb^n$, show that the resulted string cannot be expressed as ww
- 9. Determine whether the following statement is correct or wrong, and state your reason.
- a). Language $\{a^{6n}b^{3m}c^{p+10}: n \ge 0, m \ge 0, p \ge 0\}$ is regular.

True

- b). Let $L_1, L_2 \dots L_i$ be regular languages, then $\bigcup_{i=1}^{\infty} L_i$ is also regular. False, consider $L_i = \{a^i b^i\}$.
- c). \boldsymbol{A} and \boldsymbol{B} are two context-free languages, so is $\boldsymbol{A} \oplus \boldsymbol{B}$, where

$$A \oplus B = (A - B) \cup (B - A)$$
.

False, consider $B \subseteq A = [a,b]^{i}$, then it is essentially the complement of B, which is not necessarily CFG.

Q: what if I replace context-free with regular?

d). Language $\{a^m b^n c^l : m, n, l \in \mathbb{Z}_{\geq 0}, m+n>3l\}$ is context free.

True.

e). Language $\{a^m(bc)^n: m, n \ge 0\}$ is not regular.

False. It is the same as $a^{i}(bc)^{i}$

f). Language $\{a^n b^m : m \equiv n \mod 2\}$ is regular

True. It is the same as $[(aa)^i(bb)^i] \cup \{a(aa)^ib(bb)^i\}$

g). The concatenation of a regular language and non-regular language is non-regular.

False. a^{ι} concatenate with $\{a^{m}b^{n}:m\leq n\}$ is $a^{\iota}b^{\iota}$

10.

(a) Give a context-free grammar for the language

$$L_3 = \{xy \mid x, y \in \{a, b\}^*, |x| = |y| \text{ and } x \text{ and } y^R \text{ differ in one positions } \}.$$

(b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a) We can construct the context-free grammar $G = (V, \Sigma, R, S)$ for language L_3 , where

$$V=\{a,b,S,A,B\}; \Sigma=\{a,b\};$$
 and
$$R=\{S\to aSa,S\to bSb,S\to aAb,A\to aAa,A\to bAb,A\to e,$$

$$S\to bBa,B\to aBa,B\to bBb,B\to e\}$$

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	(q, σ, β)	(p, γ)
	(p, e, e)	(q, S)
$K = \underline{\{p,q\}}$	(q, e, S)	(q, aSa)
	(q, e, S)	(q, bSb)
$\Sigma = \{a,b\}$	(q, e, S)	(q, aAb)
	(q, e, A)	(q, aAa)
$\Gamma = \underline{\{a,b,S,A,B\}}$	(q, e, A)	(q, bAb)
	(q, e, A)	(q,e)
$s = \underline{p}$	(q, e, S)	(q, bBa)
	(q, e, B)	(q, aBa)
$F = \underline{\{q\}}$	(q, e, B)	(q, bBb)
	(q, e, B)	(q,e)
	(q, a, a)	(q,e)
	(q, b, b)	(q,e)

11.

Give a context-free grammar for language:

$$L_1=\{a^mb^ncww^R|m,n\in\mathbb{N},n\leq m\leq 2n,w\in\{a,b\}^*\}$$

A:

$$G = (V, \Sigma, R, S)$$

$$V = \{a,b,S,S_1,S_2\}$$

$$\Sigma = \{a,b\}$$

$$R = \{$$

$$S \rightarrow S_1 c S_2,$$

$$S_1 \rightarrow a S_1 b,$$

$$S_1 \rightarrow a a S_1 b,$$

$$S_1 \rightarrow e,$$

$$S_2 \rightarrow a S_2 a,$$

$$S_2 \rightarrow b S_2 b,$$

$$S_2 \rightarrow e$$

$$\}$$

12.

(20%) Let $\Sigma = \{a, b, c\}$. Let $L_3 = \{w | w \in \{a, b, c\}^*, \#_b(w) = \#_c(w)\}$. Where $\#_z(w)$ is the number of appearances of the character z in w. For example, the string $x = baccabcbcb \in L_3$, since $\#_b(x) = \#_c(x) = 4$. Similarly, the string $x = abcaba \notin L_3$, since $\#_b(x) = 2$ and $\#_c(x) = 1$.

- (a) Construct a context-free grammar that generates the language L_3 .
- (b) Construct a pushdown automata that accepts L_3 .

A:

$$R = \{S \to bSc|cSb|SS|AS|e, A \to aA|e\}.$$