COMP498G/691G COMPUTER VISION

LECTURE 4
EDGE DETECTION

Today's Lecture

- Edge detection
 - Slides acknowledgment: A. Farhadi, S. Seitz
- Questions

Edges and Scale

From Sandlot Science

Today's reading

- Cipolla & Gee on edge detection (on class website)
- Szeliski Ch. 3.2, 3.4, 3.5, 4.2

Origin of Edges

Edges are caused by a variety of factors

An edge is a place of rapid change in the image intensity function

image

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ The gradient points in the direction of rapid change in intensity

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ The gradient points in the direction of rapid change in intensity

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ The gradient points in the direction of rapid change in intensity

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ The gradient points in the direction of rapid change in intensity

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

• The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

How does this relate to the direction of the edge?

- The gradient direction is given by: $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$ How does this relate to the direction of the edge?
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

How can we differentiate a *digital* image F[x,y]?

How can we differentiate a digital image F[x,y]?

• Option 1: reconstruct a continuous image, then take gradient

How can we differentiate a digital image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative ("finite difference")

How can we differentiate a digital image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

Step size is 1

How can we differentiate a digital image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a cross-correlation?

H

Better approximations of the derivatives exist

The Sobel operators below are very commonly used

7	-1	0	1			
흥	-2	0	2			
	-1	0	1			
$\overline{s_x}$						

Better approximations of the derivatives exist

The Sobel operators below are very commonly used

1	-1	0	1			
흥	-2	0	2			
	-1	0	1			
$\overline{s_x}$						

7	1	2	1
흥	0	0	0
•	-1	-2	-1
•		$\overline{s_y}$	

Better approximations of the derivatives exist

The Sobel operators below are very commonly used

- The standard definition of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

Original Magnitude Orientation

Consider a single row or column of the image

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbours
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

Solution: smooth first

Solution: smooth first

Solution: smooth first

Solution: smooth first

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

• Differentiation is convolution, and convolution is associative: $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$
- This saves us one operation:

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$
- This saves us one operation:

Remember: Derivative of Gaussian filter

x-direction

y-direction

Laplacian of Gaussian

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

 ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

filter demo

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed – original (scaled by 4, offset +128)

filter demo

Gaussian - image filter

Laplacian of Gaussian

This is probably the most widely used edge detector in computer vision

original image (Lena)

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

norm of the gradient

thresholding

Get Orientation at Each Pixel

thresholding

Get Orientation at Each Pixel

theta = atan2(-gy, gx)

thresholding

thinning (non-maximum suppression)

Non-maximum suppression

Check if pixel is local maximum along gradient direction

requires checking interpolated pixels p and r

Non-maximum suppression

Check if pixel is local maximum along gradient direction

requires checking interpolated pixels p and r

Canny Edges

Effect of σ (Gaussian kernel spread/size)

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

An edge is not a line...

An edge is not a line...

How can we detect lines?

- Option 1:
 - Search for the line at every possible position/orientation
 - What is the cost of this operation?

- Option 1:
 - Search for the line at every possible position/orientation
 - What is the cost of this operation?
- Option 2:
 - Use a voting scheme: hough transform

- Connection between image (x,y) and Hough (m,b) spaces
 - o A <u>line</u> in the image corresponds to a <u>point</u> in Hough space

- Connection between image (x,y) and Hough (m,b) spaces
 - A <u>line</u> in the image corresponds to a <u>point</u> in Hough space
 - To go from image space to Hough space:
 - \blacksquare given a set of points (x,y), find all (m,b) such that y = mx+ b

- Connection between image (x,y) and Hough (m,b) spaces
 - A <u>line</u> in the image corresponds to a <u>point</u> in Hough space
 - To go from image space to Hough space:
 - \blacksquare given a set of points (x,y), find all (m,b) such that y = mx+ b
 - What does a point (x_0, y_0) in the image space map to?

- Connection between image (x,y) and Hough (m,b) spaces
 - o A <u>line</u> in the image corresponds to a <u>point</u> in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx+ b
 - What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of b = $-x_0 m + y_0$
 - this is a line in Hough space

Typically use a different parameterization

$$d = x\cos\theta + y\sin\theta$$

- d is the perpendicular distance from the line to the origin
- \circ θ is the angle

- Basic Hough transform algorithm
 - Initialize H[d, θ] = 0
 - for each edge point I[x,y] in the image

```
for \theta = 0 to 180

d = x cos\theta + y sin\theta
H[d,\theta] += 1
```

- \circ Find the value(s) of (d, θ) where H[d, θ] is maximum
- The detected line in the image is given by $d = x\cos\theta + y\sin\theta$

- Basic Hough transform algorithm
 - \circ Initialize H[d, θ] = 0
 - for each edge point I[x,y] in the image

```
for \theta = 0 to 180

d = x cos\theta + y sin\theta
H[d,\theta] += 1
```

- \circ Find the value(s) of (d, θ) where H[d, θ] is maximum
- The detected line in the image is given by $d = x\cos\theta + y\sin\theta$
- What's the running time (measured in #votes)?

Extensions

- Extension 1: Use the image gradient
 - o same
 - o for each edge point I[x,y] in the image
 - \blacksquare compute unique (d, θ) based on image gradient at (x,y)
 - \blacksquare H[d, θ] += 1
 - o same
 - same
- What's the running time measured in votes?
- Extension 2
 - give more votes for stronger edges
- Extension 3
 - \circ change the sampling of (d, θ) to give more/less resolution
- Extension 4
 - the same procedure can be used with circles, squares, or any other shape, How?

CONCORDIA.CA

Copyright © Charalambos Poullis