

# Application Motivated Benchmarking of Quantum Computation and Compilation

Daniel Mills Seyon Sivarajah Travis Scholten Ross Duncan

daniel.mills@cambridgequantum.com, Cambridge Quantum Computing Ltd

#### **Motivation**

By benchmarking NISQ technology, great progress can be made towards building large scale universal quantum computers.

What: Noisy Intermediate Scale Quantum computers are built from of the order of 50-100 qubits. This is enough to perform interesting computations, but not to also allow fault tolerance.

Why: While allowing us to begin to explore interesting applications of quantum technology, NISQ devices also provide insights into the design and utility of universal quantum computers.

How: Benchmarking NISQ devices reveals the technological innovations required to construct more powerful devices by demonstrating the approaches that are most beneficial.

We keep two benchmark design philosophies in mind:

- Incorporate the full stack, including the compiler. This extracts all information about how best to exploit NISQ technology.
- Complement traditional benchmarks with others motivated by applications to measure the device's areas of applicability.

We introduce a methodology for designing benchmarks for NISQ devices, and implement them on several which are publicly available.

# Benchmarking

We suggest selecting separately, and guided by an application of concern, the circuits and figure of merit.

**Circuits:** Motivated by our interest in demonstrations of quantum supremacy, and in applications such as quantum chemistry.

Random circuits [1]: Random two qubit gates and permutations. Sampling from the output distribution is classically hard.



Pauli gadgets [2]: Random Pauli gadgets, with application in variational quantum eigensolvers.



**Figures of merit:** Measure the accuracy of the real distribution in approximating the ideal one. We use the following:

Cross entropy difference [3]: Related to the circuit fidelity so measures the impact of noise and guides its correction.

Heavy output probability [4]: Probability of reproducing likely (heavy) outputs of the ideal distribution. High reproduction probability is classically hard so indicates supremacy.

## Compilation

The accuracy of an implementation of a unitary depends on the circuit depth and gate count, and qubit noise levels. Hence, the compiler should be incorporated into the benchmark. We consider:

Noise aware placement: Adjusting the choice of qubits used by the circuit according to the qubit noise levels.

t|ket> vs default compilers: Optimised t|ket> compiler vs other default and custom compilers in common software packages.

Connectivity vs noise: Comparative benefits of qubit connectivity as opposed to gate fidelity and qubit degradation.

### Results



Above is heavy output production probability data, as a function of the circuit width and averaged over 300 circuits, for the 14 qubit ibmq\_16\_melbourne device with random circuits. The error bars indicate one standard deviation. We see the comparative benefit of using the t|ket> compiler, and noise aware initial placement. Notice that by incorporating software into benchmarks we understand how best to extract power from a fixed device.



Above is cross-entropy difference data for the 5 qubit Aspen-4-5Q-C device with Pauli gadget circuits, again as a function of width and over 300 circuits. Notice the reduced impact of the noise awareness when the size of the device is smaller; a theme found throughout our benchmarking. We see limited improvement between the compilers, possibly resulting from high connectivity.

#### References

- [1] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta. Validating quantum computers using randomized model circuits. *Physical Review A*, 100(3):032328, 2019.
- [2] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734, 2019.
- [3] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. *Nature Physics*, 14(6):595, 2018.
- [4] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy experiments. In 32nd Computational Complexity Conference (CCC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Acknowledgements: Thanks to Rigetti and IBM for device time.