SAMSUNG

Samsung Innovation Campus

Artificial Intelligence Course

HR Analysis

Machine Learning project

Al Course

Hunters Team Group:

Ola El-Shiekh

https://www.linkedin.com/in/ola-el-shiekh/

Ahmed Abdelnasser

https://www.linkedin.com/in/ahmedabdelnasser-sayed

Presentation Contents

slide	content
1	Why data analysis ?
2:3	Our Data : HR Analysis
4:5	Data insights before working on it:
6:14	Data insights after working on it:
14:27	• modeling
28	• Finishing

Why Data Analytics?

Data analytics is important because it helps businesses optimize their performances. Implementing it into the business model means companies can help them in many decisions

Also **Data visualizations** make big and small data easier for the human to understand, and visualization also makes it easier to detect patterns, trends, and outliers in groups of data.

Our Data: HR Analysis

Our data is about Company gets large number of signups for their trainings. Now, company wants to connect these enrollees with their clients who are looking to hire employees working in the same domain. Before that, it is important to know which of these candidates are really looking for a new employment

the we worked to design a model that uses the current credentials/demographics/experience to predict the probability of an enrollee to look for a new job.

Our data: HR Analysis

Data contains:

enrollee_id: which is special number for each enrolee

City: city where he lives

city_development_index

gender: male, female or other

relevent_experience : having previous experience related to job

enrolled_university: if he studing in uni or not

education_level : his education level when he enroll

major_discipline: his major of study and work

Experience: num. of years of experience

company_size : number of employees in company

company_type : company type

last_new_job: last new job

training_hours: number of training hours

Data insights before working on it:

train.isna().sum()	
enrollee_id	0
city	0
city_development_index	0
gender	4098
relevent_experience	0
enrolled_university	342
education_level	457
major_discipline	2838
experience	59
company_size	4779
company_type	5039
last_new_job	367
training_hours	0
target	0
dtype: int64	

test.isna().sum()	
enrollee_id	0
city	0
city_development_index	0
gender	3388
relevent_experience	0
enrolled_university	279
education_level	395
major_discipline	2393
experience	44
company_size	4051
company_type	4330
last_new_job	304
training_hours	0
dtype: int64	

We have a lot of missing data that we caused a problems so we need to handle this.

Data insights before working on it:

We have to keep percentages as we can to avoid errors :

We use Filling values forward technique to fill our missing data and that give us good values and close to values before filling:

And we have no missing data!!

```
train.isnull().sum()
enrollee id
city
city development index
gender
relevent experience
enrolled university
education level
major discipline
experience
company size
company_type
last new job
training hours
target
dtype: int64
```

Now, let's show up data with visuals to know more about it...

And here we show up charts clarify ratio and numbers between features and target in train data:

Samsung Innovation Campus

And here we show up charts clarify ratio and numbers between features and target in train data:

12

After encoding data we can see relation between any two features below by using correlation heat map:

Here we use boxplot to show up target statistics according to gender and experience:

Conclusion

The most qualified applicant for the data analysis Internship:

- •Gender: Male (There is gender equality despite of the number of male applicants is more than females but the targeting is nearly equivalent). This is shown in the boxplot above.
- •More than 20 years experience.
- •Has relevant experience.
- Last job was at PVT LTD Company.
- Not currently enrolled at University.
- •Major is STEM.
- Graduated

We working on different models to detect suitable one and we get :

Logistic Regression

```
# Confusion matrix.
conf_mat = metrics.confusion_matrix(Y_test,Y_pred_test)
print(conf_mat)

[[6346  0]
[ 998  0]]
```

```
# Alternative way.
accuracy = metrics.accuracy_score(Y_test,Y_pred_test)
Recall = metrics.recall_score(Y_test,Y_pred_test)
precision = metrics.precision_score(Y_test,Y_pred_test)
print('Accuracy = {}'.format(np.round(accuracy,3)))
print('Recall = {}'.format(np.round(Recall,3)))
print('Precision = {}'.format(np.round(precision,3)))
```

```
Accuracy = 0.864
Recall = 0.0
Precision = 0.0
```

KNN

```
kclf.score(X train, Y train)
0.876078075351793
kclf.score(X test,Y test)
0.8523965141612201
confusion matrix(Y test,kclf.predict(X test))
array([[6222, 124],
       [ 960, 38]], dtype=int64)
# Alternative way.
accuracy = metrics.accuracy score(Y test,Y pred test)
Recall = metrics.recall score(Y test,Y pred test)
precision = metrics.precision_score(Y_test,Y_pred_test)
print('Accuracy = {}'.format(np.round(accuracy,3)))
print('Recall = {}'.format(np.round(Recall,3)))
print('Precision = {}'.format(np.round(precision,3)))
Accuracy
            = 0.852
Recall = 0.038
Precision = 0.235
```

SVM

```
svm.score(X_test,Y_test)
0.8641067538126361
svm.score(X train,Y train)
0.8704493871992737
confusion matrix(Y test,svm.predict(X test))
array([[6346, 0],
      [ 998, 0]], dtype=int64)
# Alternative way.
accuracy = metrics.accuracy score(Y test,Y pred test)
Recall = metrics.recall score(Y test,Y pred test)
precision = metrics.precision score(Y test,Y pred test)
print('Accuracy = {}'.format(np.round(accuracy,3)))
print('Recall = {}'.format(np.round(Recall,3)))
print('Precision = {}'.format(np.round(precision,3)))
Accuracy
           = 0.864
Recall = 0.0
Precision = 0.0
```

Navie Bayes

```
gnb.score(X train,Y train)
0.8651838402178847
gnb.score(X test,Y test)
0.8586601307189542
confusion matrix(Y test,gnb.predict(X test))
array([[6294, 52],
      [ 986, 12]], dtype=int64)
# Alternative way.
accuracy = metrics.accuracy score(Y test,Y pred test)
Recall = metrics.recall_score(Y_test,Y_pred_test)
precision = metrics.precision score(Y_test,Y_pred_test)
print('Accuracy = {}'.format(np.round(accuracy,3)))
print('Recall = {}'.format(np.round(Recall,3)))
print('Precision = {}'.format(np.round(precision,3)))
Accuracy
           = 0.859
Recall = 0.012
Precision = 0.188
```

Random Forest

```
confusion matrix(Y test,clf.predict(X test))
: array([[6250, 96],
         [ 973, 25]], dtype=int64)
: print("random forest F1-score",f1 score(Y test,Y pred test))
  print("random forest Recall: ",recall score(Y test,Y pred test))
   random forest F1-score 0.044682752457551385
   random forest Recall: 0.025050100200400802
: # Alternative way.
  accuracy = metrics.accuracy score(Y test,Y pred test)
  Recall = metrics.recall score(Y test,Y pred test)
   precision = metrics.precision score(Y test,Y pred test)
  print('Accuracy = {}'.format(np.round(accuracy,3)))
  print('Recall = {}'.format(np.round(Recall,3)))
  print('Precision = {}'.format(np.round(precision,3)))
  Accuracy
              = 0.854
   Recall = 0.025
   Precision = 0.207
```

Logistic Regression with grid search

```
confusion_matrix(Y_test,clf2_)
```

```
Out[94]: array([[6346, 0], [ 998, 0]], dtype=int64)
```

XGB Model

Continue XGB

```
In [192]: # Alternative way.
    accuracy = metrics.accuracy_score(Y_test,Y_pred_test)  # Alternative way to calculate the accuracy.
    Recall = metrics.recall_score(Y_test,Y_pred_test)
    precision = metrics.precision_score(Y_test,Y_pred_test)
    print('Accuracy = {}'.format(np.round(accuracy,3)))
    print('Recall = {}'.format(np.round(Recall,3)))
    print('Precision = {}'.format(np.round(precision,3)))

Accuracy = 0.846
    Recall = 0.04
    Precision = 0.187
```

SO, After Modelling I See that the XGBoost classifier gets the best results.

Finally, we predict target and fill sample with it.

```
In [479]: pred_xg = Xg_boost(X_train,Y_train,X_test)
          [18:15:22] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.4.0/src/learner.cc:573:
          Parameters: { "criterion", "loss", "min_impurity_decrease", "min_samples_leaf", "min_samples_split", "min_weight_fraction_lea
          f", "presort", "tol", "validation_fraction", "verbose", "warm_start" } might not be used.
            This may not be accurate due to some parameters are only used in language bindings but
            passed down to XGBoost core. Or some parameters are not used but slip through this
            verification. Please open an issue if you find above cases.
          [18:15:22] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.4.0/src/learner.cc:1095: Starting in XGBoost 1.3.
          0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly se
          t eval metric if you'd like to restore the old behavior.
In [480]: sample['target'] = pred xg
          print(sample['target'].unique())
          sample.to_csv('XG.csv',index = False)
          [1 0]
In [481]: dict(sample['target'])
           273: 1,
           274: 0,
           275: 0,
           276: 0,
           277: 0,
           278: 0,
           279: 0,
           280: 0,
           281: 0.
           282: 0.
           283: 0,
           284: 1,
           285: 0,
           286: 0,
           287: 0,
           288: 0,
           289: 0,
           290: 0,
```

Code on Kaggle and github.

Ola's Account:

https://www.kaggle.com/olaelshiekh/first-code-with-ahmed

https://github.com/olaelshiekh/HR-Analysis-Preprocessing-Modelling-

Ahmed's Account:

https://www.kaggle.com/ahmedabdelnasser1/first-code-with-ola

https://github.com/ahmed3bnaser/HR-Analysis-Project

Special Thanks for:

Dr: Doaa Mahmoud

Eng: Shimaa Osman

THANKS!!

SAMSUNG

Together for Tomorrow! Enabling People

Education for Future Generations

©2020 SAMSUNG. All rights reserved.

Samsung Electronics Corporate Citizenship Office holds the copyright of book.

This book is a literary property protected by copyright law so reprint and reproduction without permission are prohibited.

To use this book other than the curriculum of Samsung innovation Campus or to use the entire or part of this book, you must receive written consent from copyright holder.