Tarea 1 - Números Complejos

Problema 1. Simplifique las siguientes expresiones en la forma estándar a + bi.

1.
$$\frac{i(10-12i)}{(2+i)(-1+4i)}$$

2.
$$\frac{-2-4i}{i}$$

 $3. i^{4528325089}$

Problema 2. Si

$$\frac{x+iy}{i} = 7 + 9i$$

con x y y números reales, encuentre el valor de (x + yi)(x - yi).

Problema 3. Encuentre la raíz cuadrada de 8-6i.

Problema 4. Encuentre todos los números complejos de la forma z=a+bi, con a y b números reales tales que $z\overline{z}=25$ y a+b=7.

Problema 5. El número complejo 2+4i es una de las raíces de la ecuación $x^2+bx+c=0$, con b y c números reales. Encuentre b y c, escriba la segunda raíz de la ecuación y verifique que, en efecto, es una raíz.

Problema 6. Dado que z = -2 + 7i es raíz de la ecuación $z^3 + 6z^2 + 61z + 106 = 0$, encuentre la raíz real de la ecuación.

Problema 7. Muestre que el número complejo 2i es una raíz de la ecuación $z^4 + z^3 + 2z^2 + 4z - 8 = 0$ y encuntre todas las raíces de tal ecuación.

Problema 8. Encuentre el conjugado de

$$z = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$$

¿Qué puede decir de z?

Problema 9. Resuelva $z^2 = -4i$.

Problema 10. Encuentre $\frac{(1+i)^{17}}{(1-i)^{16}}$.