Computer Organization and Design ECE 452 (Spring 2015)

Arithmetic for Computers: Building Blocks of Processors

Sudeep Pasricha

(http://www.engr.colostate.edu/~sudeep/

Review: Number Representations

□ 32-bit signed numbers (2's complement):

- Converting <32-bit values into 32-bit values
 - copy the most significant bit (the sign bit) into the "empty" bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

sign extend versus zero extend (lb vs. lbu)

Arithmetic for Computers

- How are operations on integers performed?
 - Addition and subtraction
 - Multiplication and division
- What are the ways in which hardware can multiply and divide numbers?
- What about fractions and real numbers?
 - Representation and operations
- How are overflow scenarios handled?
 - e.g. An operation creates a number bigger than can be represented

The Importance of Fast Arithmetic

- Addition of two numbers is most common operation
 - Programs use addition frequently
 - Loads and stores use addition for address calculation
 - Branches use addition to test conditions and calculate targets
 - All insns use addition to calculate default next PC
- Fast addition critical to high performance

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic zero ovf operations of the ISA

```
add, addi, addiu, addu
sub, subu
mult, multu, div, divu
sqrt
and, andi, nor, or, ori, xor, xori
beg, bne, slt, slti, sltiu, sltu

ALU
32
result
32
m (operation)
```

With special handling for

```
sign extend - addi, addiu, slti, sltiu
zero extend - andi, ori, xori
overflow detection - add, addi, sub
```

Review Appendix C (from CD or lecture page) for more details on ALU design

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign bit is 1
 - Adding two –ve operands
 - Overflow if result sign bit is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

<u>-6</u>: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign bit is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign bit is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - C compilers use MIPS addu, addui, subuinstructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is set to the largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

10000000

10000000

100000000

Example: Saturation vs. Overflow

Without saturating arithmetic, clipping/saturation in audio/video becomes worse!

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - ~32 cycles for multiplying 2 32-bit values
 - That's ok, if frequency of multiplications is low

Even Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff
 - 31 adders $\rightarrow \log_2(31) = \sim 5$ cycles for multiplying 2 32-bit values

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division)
 generate multiple quotient bits per step
 - Guesses quotient bits using a table lookup based on upper bits of dividend, remainder
 - Subsequent steps correct wrong guesses
 - Still require multiple steps
- Other faster dividers exist
 - nonrestoring dividers, nonperforming dividers,

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - Use mfhi, mflo to access result
 - No overflow or divide-by-0 checking
 - Software must perform checks if required

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \blacksquare $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE 754 Standard
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
 - In every computer invented since 1980
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
 - reduces chance of underflow and overflow
 - Balance between precision and representable range

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - so we do not have to save sign bit
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

S Exponent Fraction

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 111111110 \Rightarrow actual exponent = 254 127 = +127
- Fraction: 111...11 ⇒ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

S Exponent Fraction

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $= \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Fraction: 111...11 ⇒ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Floating-Point Example

- Represent –0.75
 - $-0.75 = -0.11_2 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000....00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $= 9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - \blacksquare 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - \blacksquare 1.000₂ × 2⁻¹ + -1.110₂ × 2⁻² (0.5 + -0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - \blacksquare 1.000₂ × 2⁻¹ + -0.111₂ × 2⁻¹
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - \blacksquare 1.000₂ × 2⁻⁴ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- Why not have a unified register file?
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.se.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.de.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1    $f16, const5($gp)
    lwc1    $f18, const9($gp)
    div.s    $f16, $f16, $f18
    lwc1    $f18, const32($gp)
    sub.s    $f18, $f12, $f18
    mul.s    $f0, $f16, $f18
    ir    $ra
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                     # $t1 = 32 (row size/loop end)
   li $s0, 0
                     # i = 0; initialize 1st for loop
L1: li $s1, 0
                    # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   s11 $t2, $s0, 5 # <math>$t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

Memory addresses: suppose [0][0] = 0; then [0][31] = 31*8; [1][0] = 32*8; ...

FP Example: Array Multiplication

\$11 \$t0, \$s0, 5 # \$t0 = i*32 (size of row of y)addu \$t0, \$t0, \$s2 # \$t0 = i*size(row) + k sll \$t0, \$t0, 3 # \$t0 = byte offset of [i][k] addu t0, a1, t0 # t0 = byte address of y[i][k]1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]addiu \$s2, \$s2, 1 # \$k = k + 1bne \$s2, \$t1, L3 # if (k != 32) go to L3 s.d f4, O(t2) # x[i][j] = f4addiu \$s1, \$s1, 1 # \$j = j + 1bne \$s1, \$t1, L2 # if (j != 32) go to L2 addiu \$s0, \$s0, 1 #\$i = i + 1 bne \$s0, \$t1, L1 # if (i != 32) go to L1

Accurate Arithmetic

- Infinite variety of real numbers between, say, 0 and 1
 - Only 2⁵³ can be represented by double precision FP
- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - guard and round bits are 2 extra bits kept on the right during intermediate additions
 - sticky bit used in rounding in addition to guard and round bits; is set whenever a 1 bit shifts right of the round bit

- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Same bits can represent a variety of objects
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Programmers, computer systems must minimize gap between computer arithmetic and real world arithmetic

Parallelism and Associativity

- Parallel programs may interleave operations in unexpected orders
 - Integer addition is associative
 - Assumptions of associativity for FP numbers may fail!

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

- Floating point numbers are approximations of real numbers – not associative!
- Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...

- FP values are 32-bit or 64-bit in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- No FP branch FSTSW sends result of CMP to INT CPU
- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit single precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Fallacy: Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers!
- For signed integers
 - Logical right shift is clearly erroneous
 - e.g., -5 / 4
 - 11111011₂ >>> 2 = 001111110₂ = +62
 - Arithmetic right shift replicate the sign bit
 - $-11111011_2 >> 2 = 111111110_2 = -2$
 - Result is -2 instead of -1; close, but no cigar

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" 🕾
- The Intel Pentium FDIV bug (~1994)

Bug in LUT used to guess multiple quotient bits per

step; wrong values in some LUT locations

- Cost Intel \$500+ million
- The market expects accuracy
- See Colwell, The Pentium Chronicles

Chapter 3 — Arithmetic for Computers — 50

Summary: MIPS Instruction Set

MIPS core instructions	Name	Format	MIPS arithmetic core	Name	Format
add	add	R	multiply	mult	R
add immediate	addi	1	multiply unsigned	multu	R
add unsigned	addu	R	divide	div	R
add immediate unsigned	addiu	I	divide unsigned	divu	R
subtract	sub	R	move from Hi	mfhi	R
subtract unsigned	subu	R	move from Lo	mflo	R
AND	AND	R	move from system control (EPC)	mfc0	R
AND immediate	ANDi	1	floating-point add single	add.s	R
OR	OR	R	floating-point add double	add.d	R
OR immediate	ORi	1	floating-point subtract single	sub.s	R
NOR	NOR	R	floating-point subtract double	sub.d	R
shift left logical	s11	R	floating-point multiply single	mul.s	R
shift right logical	srl	R	floating-point multiply double	mul.d	R
load upper immediate	lui	1	floating-point divide single	div.s	R
load word	1 w	I	floating-point divide double	div.d	R
store word	SW	T	load word to floating-point single	lwc1	1
load halfword unsigned	1hu	1	store word to floating-point single	swc1	1
store halfword	sh	I	load word to floating-point double	ldc1	1
load byte unsigned	1 bu	1	store word to floating-point double	sdc1	1
store byte	sb	1	branch on floating-point true	bc1t	1
load linked (atomic update)	11	I	branch on floating-point false	bc1f	1
store cond. (atomic update)	SC	I	floating-point compare single	C.X.S	R
branch on equal	beq	I	(x = eq, neq, lt, le, gt, ge)		
branch on not equal	bne	Ţ	floating-point compare double	c.x.d	R
jump	j	J	(x = eq, neq, lt, le, gt, ge)		
jump and link	jal	J			
jump register	jr	R			
set less than	slt	R		1	
set less than immediate	slti	1			
set less than unsigned	sltu	R			
set less than immediate unsigned	sltiu	1			
	90, 90, 51				

Summary: MIPS Instruction Set

Name

abs

negs rol

muls

mulos

divu

1i

1a

1d

sd

ulw

USW

ulhs

ush

begz

sne

1.f

Format

rd,rs rd,rs

rd,rs,rt rd,rs,rt rd,rs,rt

rd,rs,rt

rd,rs,rt

rd,rs,rt rd,rs,rt

rd,imm

rd,addr

rd,addr

rd.addr

rd,addr rd,addr

rd,addr

rd,addr

Label

rs,L rs,rt,L

rd,rs,rt

rd,rs,rt rd,rs,rt

rd,addr

Remaining MIPS-32	Name	Format	Pseudo MIPS
exclusive or $(rs \oplus rt)$	xor	R	absolute value
exclusive or immediate	xori	1	negate (signed or <u>u</u> nsigned)
shift right arithmetic	sra	R	rotate left
shift left logical variable	sllv	R	rotate right
shift right logical variable	srlv	R	multiply and don't check oflw (signed or uns.)
shift right arithmetic variable	srav	R	multiply and check oflw (signed or uns.)
move to Hi	mthi	R	divide and check overflow
move to Lo	mtlo	R	divide and don't check overflow
load halfword	1 h	1	remainder (signed or <u>u</u> nsigned)
load byte	1 b	1	load immediate
load word left (unaligned)	1w1	I	load address
load word right (unaligned)	lwr	1	load double
store word left (unaligned)	swl	1	store double
store word right (unaligned)	swr	1	unaligned load word
load linked (atomic update)	11	1	unaligned store word
store cond. (atomic update)	SC	1	unaligned load halfword (signed or uns.)
move if zero	movz	R	unaligned store halfword
move if not zero	movn	R	branch
multiply and add (S or <u>u</u> ns.)	madds	R	branch on equal zero
multiply and subtract (S or uns.)	msubs	1	branch on compare (signed or unsigned)
branch on ≥ zero and link	bgezal	1	(x = lt, le, gt, ge)
branch on < zero and link	bltzal	1	set equal
jump and link register	jalr	R	set not equal
branch compare to zero	bxz	1	set on compare (signed or unsigned)
branch compare to zero likely	bxzl	1	(x = lt, le, gt, ge)
(x = lt, le, gt, ge)			load to floating point (s or d)
branch compare reg likely	bx1	I	store from floating point (s or d)
trap if compare reg	tx	R	
trap if compare immediate	txi	I	
(x = eq, neq, lt, le, gt, ge)			
return from exception	rfe	R	
system call	syscal1	1	
break (cause exception)	break	1	
move from FP to integer	mfc1	R	1
move to FP from integer	mtc1	R	†
FP move (<u>s</u> or <u>d</u>)	mov.f	R	
FP move if zero (s or d)	movz.f	R	-
FP move if not zero (s or d)	movn.f	R	-
FP square root (s or d)	sqrt.f	R	-
	abs.f	R	-
FP absolute value (s or d)	neg.f	R	-
FP negate (s or d)	0.0	(30.00)	-
FP convert (<u>w</u> , <u>s</u> , or <u>d</u>)	cvt.f.f	R	-
FP compare un (s or d)	c.xn.	R	

Frequency of Common MIPS Instructions

Only included those with >3% (table 1) and >1% (table 2)

MIPS core	SPECint	SPECfp
addu	5.2%	3.5%
addiu	9.0%	7.2%
or	4.0%	1.2%
sll	4.4%	1.9%
lui	3.3%	0.5%
lw	18.6%	5.8%
SW	7.6%	2.0%
lbu	3.7%	0.1%
beq	8.6%	2.2%
bne	8.4%	1.4%
slt	9.9%	2.3%
slti	3.1%	0.3%
sltu	3.4%	0.8%

Arith core + MIPS-32	SPECint	SPECfp
add.d	0.0%	10.6%
sub.d	0.0%	4.9%
mul.d	0.0%	15.0%
add.s	0.0%	1.5%
sub.s	0.0%	1.8%
mul.s	0.0%	2.4%
l.d	0.0%	17.5%
s.d	0.0%	4.9%
l.s	0.0%	4.2%
S.S	0.0%	1.1%
lhu	1.3%	0.0%

Chapter 3 — Arithmetic for Computers — 53

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation for reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - MIPS core and arithmetic core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent