SYLOW THEORY AND SEMIDIRECT PRODUCTS

COLTON GRAINGER

7. Assignment due 2018-10-24

7.1. [1, No. 4.5.16]. Let |G| = pqr where p, q and r are primes with p < q < r. Then G has a normal Sylow subgroup for either p, q or r.

Given. The number of Sylow subgroups for each prime respectively denoted n_p , n_q , and n_r .

To prove. $n_p = 1$, $n_q = 1$, or $n_r = 1$, forcing a normal Sylow subgroup.

Proof by contradiction. Assume n_p, n_q , and n_r are all strictly greater than 1. To achieve a contradiction, let $k, s, t \in \mathbb{N}$ parameterize

$$n_p = kp + 1$$
, $n_q = sq + 1$, $n_r = tr + 1$.

For the largest prime r, from tr + 1|pq we deduce tr + 1 = pq. For the middle prime q, we have sq + 1 = r or pr. For the least prime p, we don't have much restriction, and in turn kp + 1 = q or r or qr.

How many non-identity elements are in G? Exactly pqr - 1. We'll violate this upper bound. Since the Sylow p, q, r-subgroups are conjugate to each other Sylow subgroup of the same prime, and cyclic, the number of non-identity elements from the Sylow subgroups must be

$$n_r(r-1) + n_q(q-1) + n_p(p-1)$$
.

But the number of such nonidentity elements is bounded above by pqr - 1. Working towards contradiction, we take the most conservative possible values for n_r , n_a , and n_p , and present the inequality

$$pqr - 1 \ge pq(r - 1) + r(q - 1) + q(p - 1).$$

From which it follows that $r + q \ge rq + 1$, which is absurd, as $r, q \ge 3$. \square

7.2. [1, No. 4.5.26]. Let G be a group of order 105. If a Sylow 3-subgroup of G is normal, then G is abelian.

Given. $|G| = 3 \cdot 5 \cdot 7$, with n_p representing the number of Sylow p-subgroups of G.

To prove. If $n_3 = 1$, then G is abelian.

Proof. Arguing by Sylow (N), and assuming $n_3 = 1$, we have

$$n_5 \in \{1, 21\},$$
 and $n_7 \in \{1, 15\}.$

Now, considering the number of nonidentity elements in each cyclic Sylow p group, we can't have any of the following:

- $n_5 = 21$, $n_7 = 15$ (clearly)
- $n_5 = 21$, $n_7 = 1$ as then

$$|G| = \underbrace{1}_{\text{order 1}} + \underbrace{2}_{3} + \underbrace{84}_{5} + \underbrace{14}_{7}.$$

• $n_5 = 1$, $n_7 = 15$ as then

$$|G| = \underbrace{1}_{1} + \underbrace{2}_{3} + \underbrace{4}_{5} + \underbrace{90}_{7}.$$

So $n_3 = n_3 = n_7 = 1$ and $G \cong C_3 \times C_5 \times C_7$, which is abelian. \square

Date: 2018-10-18. Compiled: 2018-10-24.

1

7.3. [1, No. 4.5.30]. How many elements of order 7 must there be in a simple group of order 168?

Demonstration. $|G| = 168 = 2^3 \cdot 3 \cdot 7$. Therefore

$$n_2 \in \{3, 7, 21\}$$

 $n_3 \in \{4, 7\}$
 $n_7 \in \{8\}$

There are $n_7 \cdot (7-1) = 42$ elements of order 7. One can show in general the number of elements of order p in G = pm with p not dividing m is given by $n_p(G) \cdot (p-1)$. \square

7.4. [1, No. 4.5.32]. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If $P \triangleleft H$ and $H \triangleleft K$, then P is normal in K. Therefore, if $P \in \text{Syl}_p(G)$ and $H = N_G(P)$, then $N_G(H) = H$.

Given. $P \triangleleft H \triangleleft K$, with $P \in \operatorname{Syl}_n(G)$

To prove. $P \triangleleft K$, also $N_G(N_G(P)) = N_G(P)$.

Proof. Suppose $\sigma \in \text{Aut}(H)$. Say $|P| = p^{\alpha}$. Then $|\sigma(P)| = p^{\alpha}$ as well. Normality of $P \in \text{Syl}_p(G)$ implies there's only one Sylow p-subgroup in G. Therefore $\sigma(P) = P$. So P is characteristic in H. With $H \triangleleft K$, we have $P \triangleleft K$ transitively.

Now specify $H = N_G(P)$. We'll argue $N_G(H) = H$. Since $N_G(P) \cap P = P$, we can set up a trivial application of the diamond isomorphism theorem:

Having the $\{1 \cdot (P \cap N_G(P))\} = P/(P \cap N_G(P)) \cong N_G(H)/N_G(P)$, we must have $[N_G(N_G(P)) : N_G(P)] = 1$. Given that $N_G(N_G(P)) \subset N_G(P)$, the result follows: normalizers of Sylow *P* groups are *self-normalizing*.

7.5. [1, No. 4.5.35]. Let $P \in \operatorname{Syl}_p(G)$ and $H \leq G$. Then $gPg^{-1} \cap H$ is a Sylow p-subgroup of H for some $g \in G$.

Given. $H \leq G$, groups, with $P \in \text{Syl}_n(G)$.

To prove. $\operatorname{Syl}_p(H)$ contains $g^{-1}Pg \cap H$ for a choice of $g \in G$.

Proof. Let H act on the coset space G/P by left multiplication. Now since |G/P| does not divide p, we know |H(gP)| does not divide p.

By orbit-stabilizer [2, p. 9]

$$|\operatorname{Stab}_{H}(qP)| = |H| / |H(qP)|,$$

so $|\operatorname{Stab}_{H}(gP)|$ is a subgroup of H containing the maximal power of p in |H|.

Say the order of $\operatorname{Stab}_H(gP)$ is p^ak . We want to show k=1. So consider

$$\operatorname{Stab}_{H}\left(gP\right)=\left\{h\in H:hgP=gP\right\}=\left\{h\in H:g^{-1}hg\in P\right\}=\underbrace{H\cap g^{-1}Pg}_{\text{a p-group}}.$$

So k = 1, therefore $\operatorname{Syl}_p(H) \ni \operatorname{Stab}_H(gP) = g^{-1}Pg \cap H$. \square

We exhibit that $hPh^{-1} \cap H$ is not necessarily a Sylow p-subgroup of H for any $h \in H$.

Demo. Consider the subgroup $P = \langle (12) \rangle$ where $P \in \text{Syl}_2(S_3)$. For all $h \in \langle (23) \rangle$, we have $H \cap hPh^{-1} = \emptyset$.

7.6. [1, No. 4.5.44]. Let p be the smallest prime dividing the order of the finite group G. If $P \in \operatorname{Syl}_p(G)$ and P is cyclic, then $N_G(P) = C_G(P)$.

Given. Suppose p is the smallest prime dividing $|G| = p^{\alpha}m$, where G is finite group and $p \nmid m$. Let $P \in \text{Syl}_p(G)$, and suppose P cyclic.

To prove. $N_G(P) = C_G(P)$.

Proof. Clearly P is abelian, so $P \le C_G(P) \triangleleft NGP$. Consider the quotient [1, Ch. 4.4]

$$N_G(P)/C_G(P) \cong K \leq \operatorname{Aut}(P) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}.$$

Observe $[N_G(P): C_G(P)]$ divides $p^{\alpha}(p-1)$. Yet p does not divide $|N_G(P)|/|C_G(P)|$ because

- both N and C contain $P \in Syl_n(G)$, of maximal prime power order, and
- $C \le N$, leaving no powers of p in the quotient.

We're forced by the "N/C-corollary" to accept that $[N_G(P):C_G(P)]$ divides (p-1). Now, $[N_G(P):C_G(P)]$ also divides [G]. Because p is the minimal prime divisor of [G], we obtain $[N_G(P):C_G(P)]=1$. \square

7.7. [1, No. 4.6.4]. A_n is generated by the set of all 3-cycles for each $n \ge 3$. Cf. [3].

Given. Some $n \ge 3$, an arbitrary permutation $x \in A_n$, and the collection Σ of all 3-cycles in A_n .

To prove. An element $x \in A_n$ can be written as a finite product of terms in Σ .

Proof. First we'll argue: for any $x \in A_n$ that moves at least three elements, there's a $\sigma \in \Sigma$ such that $\sigma^{-1}x$ moves fewer than 3 elements. Intuitively, we might imagine that σ "dampens" the oscillation of x acting on A_n . With the a_i denoting elements of $\{1, \ldots, n\}$, perhaps relabelling, we know x moves a_1 to a_2 , and also a_3 somewhere. So let $\sigma = (a_1 \ a_2 \ a_3)$. Then the product

$$\sigma^{-1}x = (a_1 a_3 a_2)(a_1 a_2 \dots = (a_1) \dots$$

moves strictly fewer elements than x, notably fixing a_1 .

To find a representation of an arbitrary $x \in A_n$ we proceed by strong induction on the number of elements that x moves. For the base case, observe that if $x \in A_n$ moves fewer than three elements, then $x = \mathrm{id}$, and we're done. Now take x to move finitely many elements. Now, there's a $\sigma_r \in \Sigma$ such that $\sigma_r^{-1}x$ can be represented as a finite product of 3-cycles in Σ , e.g.,

$$\sigma_r^{-1} x = \sigma_1 \sigma_2 \cdots \sigma_{r-1}, \text{ thus } x = \sigma_1 \cdots \sigma_r.$$

Which is what we wanted. □

7.8. [1, No. 5.1.4]. Let A and B be finite groups and let p be a prime. Any Sylow p-subgroup of $A \times B$ is of the form $P \times Q$, where $P \in \operatorname{Syl}_p(A)$ and $Q \in \operatorname{Syl}_p(B)$. Therefore $n_p(A \times B) = n_p(A)n_p(B)$. We generalize to a direct product of any finite number of finite groups (so that the number of Sylow p-subgroups of a direct product is the product of the numbers of Sylow p-subgroups of the factors).

Given. Let $\{G_i\}_1^n$ be a finite collection of groups, and $G = \prod_{i=1}^n G_i$ their direct product. Suppose $|G_i| = p^{a_i} m_i$ with $p \mid m_i$ for all i.

To prove. We'll generalize immediately and show that the number of Sylow *p*-subgroups of a direct product is the product of the numbers of Sylow *p*-subgroups of the factors.

Proof. Note that the coordinate axis subgroups $G_i \triangleleft G$ for all $i \in \{1, ..., n\}$. Suppose $P \in \operatorname{Syl}_p(G)$. By the lemma below, it's clear that $\pi_i(P) = P \cap G_i \in \operatorname{Syl}_p(G)_i$. Furthermore, we have as a (subset, and thus as a) subgroup

$$P \leq \prod_{1}^{n} \pi_{i}(P).$$

 $^{^{1}\}mathrm{I}$ referred to outside sources (see discussion at https://math.stackexchange.com/questions/1554316, https://math.stackexchange.com/questions/985346, and https://math.stackexchange.com/questions/2229117) to see applications of the "normalizer-centralizer theorem" in the context of this problem.

Then the order of P is given p^{α} where $\alpha = \sum_{i=1}^{n} a_{i}$. Yet also

$$\left| \prod_{i=1}^{n} \pi_i(P) \right| = \prod_{i=1}^{n} p^{a_i} = p^{\wedge} \left[\sum_{i=1}^{n} a_i \right] = p^{\alpha}.$$

Now P is a subgroup with the same order as the direct product, so

$$P=\prod_{1}^{n}\pi_{i}(P).$$

Now, applying the lemma below, we have a unique representation² of $P \in \operatorname{Syl}_p(G)$ as a direct product of Sylow p-subgroups along the coordinate axes, so it follows that $n_p(G) = \prod_{i=1}^n n_p(G_i)$. \square

Lemma. Suppose $N \triangleleft G$ where G is a group.

- (a) For any $P \in \operatorname{Syl}_p(G)$, we have $P \cap N \in \operatorname{Syl}_p(N)$.
- (b) For any $K \in \operatorname{Syl}_n(N)$, there's a $P \in \operatorname{Syl}_n(G)$ such that $P \cap N = K$.

7.9. [1, No. 5.4.15]. If A and B are normal subgroups of G such that G/A and G/B are both abelian, then $G/(A \cap B)$ is abelian.

Given. Groups $A \triangleleft G$ and $B \triangleleft G$ such that G/A and G/B abelian.

To prove. That $A \cap B$ produces an abelian quotient of G.

Proof. By minimality of the commutator G', we have $G' \leq A$ and $G' \leq B$. Therefore $G' \leq A \cap B$. So $G/A \cap B$ is abelian. \square

- 7.10. [1, No. 5.4.19]. A group H is called perfect if H' = H (i.e., if H is its own commutator subgroup).
 - (a) Every non-abelian simple group is perfect.

Given. G, a nonabelian, simple group.

To prove. G = [G, G] =: G'.

Proof. For contradiction, suppose $G' \subseteq G$. The commutator is a proper normal subgroup $G' \triangleleft G$. Because G is simple, the commutator must be trivial. It follows that $G \cong G/G'$ is abelian—absurd! \square

(b) If H and K are perfect subgroups of a group G, then $\langle H, K \rangle$ is also perfect. Thence the subgroup of G generated by any collection of perfect subgroups is perfect.

Given. A group G, two perfect subgroups H and K, and a collection of perfect subgroups $\{H_{\lambda}\}$.

To prove. The join $\langle H, K \rangle$ is perfect, and, in a similar fashion, the join $\langle H_{\lambda} \rangle$ is perfect.

Proof. Suppose $\langle H, K \rangle$ ain't perfect. Then there exists J such that

$$\langle H, K \rangle' \leq J \underset{\neq}{\triangleleft} \langle H, K \rangle$$

where $\langle H, K \rangle/J$ is abelian and nontrivial. We can assume without loss of generality that $H \leq J$. But as K is perfect and not quotiented out by J, the group $\langle H, K \rangle/J$ has noncommutative elements generated by representatives⁴ from K, a contradiction. So it cannot be that $\langle H, K \rangle \leq \langle H, K \rangle$. Therefore $\langle H, K \rangle$ is perfect.

Generalizing, $\langle H_{\lambda} \rangle$ is perfect, for if it's not, we find J such that

$$\langle H_{\lambda} \rangle' \leq J \underset{\neq}{\triangleleft} \langle H_{\lambda} \rangle$$

with an abelian quotient $\langle H_{\lambda} \rangle / J$ for contradiction. \square

²Notice we're *not* claiming to have a unique representation of coordinate axis Sylow subgroups in terms of a subgroup *P* of the product.

³To extend a previous exercise [1, No. 3.4.9].

⁴What vocabulary to use here? Certainly jK is not actually an element in $\langle H, K \rangle / J$, for J is neither normal nor a subgroup of K. But some objects (which?) from K are in the quotient, and they don't commute with each other.

(c) Any conjugate of a perfect subgroup is perfect.

Proof. Conjugation is an automorphism. As a consequence of the definition of *the* commutator subgroup [1, Ch. 5.4], if a group is equal to its commutator subgroup, then any automorphed image of the group will also be equal to its commutator subgroup. \Box

(d) Any group G has a unique maximal perfect subgroup, and moreover, this subgroup is normal.

Proof (by induction). It's clear that G at least one perfect subgroup $\{e\}$. If G has any others, we'll find the maximal one as follows.

- Certainly the maximal perfect subgroup is contained in [G, G].
- So also it's also contained in $G^{(2)} = [[G, G], [G, G]],$
- and generally contained in $G^{(n)}$...
- So the unique maximal perfect subgroup is $\bigcap_{n=0}^{\infty} G^{(n)}$.

That the unique maximal perfect subgroup, call it $G^{(\infty)}$, is normal, should not be surprising. Extending the argument in (c), each term in the derived series⁵ is characteristic in G. Therefore the perfect core⁶ $G^{(\infty)}$ is characteristic in G. \square

7.11. [1, No. 5.5.12]. We classify the groups of order 20 (into five isomorphism types).

Demonstration. Consider G a group with $|G| = 20 = 2^2 \cdot 5$. The number of Sylow p-subgroups is found to be $n_2 \in \{1, 5\}$ and $n_5 = 1$. The Sylow 2-subgroups of order 4 will either be isomorphic to V_4 or cyclic. We obtain 3 groups immediately.

*	n_2 ?	1	5
2-groups?			
cyclic		C_{20}	$C_2 \times C_{10}$
isom. to V_4			D_{20}

We'll list 2 new groups (5 groups in total) and distinguish them each up to isomorphism. Starting with those familiar:

- $C_{20} = \langle x : x^{20} = e \rangle$ exists.
- $C_{10} \times C_2$ also exists as a familiar cartesian product.
 - $C_{10} \times C_2$ has an element (1, -1) of order 2 which prevents an isomorphism to cyclic C_{20} .
- D_{20} has the Coxeter presentation $\langle r, s : r^{10} = s^2 = e, srs^{-1} = r^{-1} \rangle$.
 - $D_{20} \cong C_{10} \rtimes_{\varphi} C_2$ where $\varphi \colon C_2 \to \operatorname{Aut}(C_{10})$ is defined (sufficiently, on *generators*) by $\varphi(s)(r) = r^{-1}$.
 - Now $D_{20} \not\cong C_{20}$ as D_{20} is not abelian.
 - To distinguish D_{20} from $C_{10} \times C_2$, it's enough to see

$$C_{10} \rtimes_{\varphi} C_2 \not\cong C_{10} \rtimes_{\psi} C_2$$

where $\psi \colon C_2 \to \mathrm{id}_{C_{10}} \subset \mathrm{Aut}(C_{10})$ is trivial.

- Notice $\ker \varphi = \{e\} \neq C_2 = \ker \psi$.

With the theory of semi-direct products, we have the wherewithal to define 2 new groups. They are:

- $C_5 \rtimes_{\gamma} C_4$ where $\gamma \colon C_4 \to \operatorname{Aut}(C_5)$ is defined $\gamma(x)(y) = y^{-1}$.
 - This group is not abelian, so is suffices just to check $C_5 \rtimes_{\nu} C_4 \ncong D_{20}$.
 - Easily done! $\ker \varphi = \{e\} \neq \langle x^2 \rangle = \ker \gamma$.
- $F_{20} := C_5 \rtimes_{\beta} C_4 \text{ with } \beta(x)(y) = y^2$.
 - Now F_{20} is not abelian, so we need only to distinguish F_{20} from the two previous groups.
 - Well $\ker \beta = \{e\} \neq \langle x^2 \rangle = \ker \gamma$.
 - Moreover F_20 has an element (x, id) of order 4 that D_{20} lacks.

⁵https://ncatlab.org/nlab/show/derived+series

⁶https://groupprops.subwiki.org/wiki/Perfect_core

We've classified the 5 isomorphism classes of groups of order 20.

7.12. [1, No. 5.5.18]. If H is any group then there's a group G that contains H as a normal subgroup with the property that for every automorphism σ of H there is an element $g \in G$ such that conjugation by g when restricted to H is the given automorphism σ . That is, every automorphism of H is obtained as an inner automorphism of G restricted to G.

Given. H a group and its group of automorphisms Aut (H).

To prove. There's a group G with the properties (i) $H \triangleleft G$ and (ii) $\forall \sigma \in \text{Aut}(H)$ there's a $g \in G$ such that $ghg^{-1} = \sigma(h)$ for all $h \in H$.

Proof. Consider $G = H \rtimes_{id} \operatorname{Aut}(H)$ where id is the identity endomorphism on $\operatorname{Aut}(H)$. Now $H \triangleleft G$ by definition of the semidirect product. Futhermore, for each $\sigma \in \operatorname{Aut}(H)$, there's $(1, \sigma) \in G$ such that

$$(1 \sigma)(h, id)(1, \sigma)^{-1} = (1 \sigma)(h, id)(1, \sigma^{-1})$$
$$= (\sigma(h)\sigma(1), id)$$
$$= (\sigma(h), id).$$

Identifying $\sigma(h)$ with the last term above, the proof is complete. \square

- 7.13. **[1, No. 5.5.23].** Let K and L be groups, let n be a positive integer, let $\rho: K \to S_n$ be a homomorphism and let H be the direct product of n copies of L. From [1, No. 5.1.8], we constructed an injective homomorphism ψ from S_n into Aut (H) by letting the elements of S_n permute the n factors of H. The compositions $\psi \circ \rho$ is a homomorphism from G into Aut (H). The *wreath product* of L by K is the semidirect product $H \rtimes_{\psi} K$ with respect to this homomorphism and is denoted by $L \wr K$. Note this wreath product depends on the choice of permutation representation ρ of K if none is given explicitly, then φ is assumed to be the left regular representation of K.
 - (a) Assume K and L are finite groups and ρ is the left regular representation of K. We find $|L \wr K|$ in terms of |K| and |L|.

TODO

(b) Let p be a prime, let $K = L = Z_p$. Suppose ρ is the left regular representation of K. Then $Z_p \wr Z_p$ is a non-abelian subgroup of order p^{p+1} and is isomorphic to a Sylow p-subgroup of S_{p^2} . [The p copies of Z_p whose direct products makes up H may be represented by p disjoint p-cycles; these are cyclically permuted by K.]

TODO

References

- [1] D. S. Dummit and R. M. Foote, *Abstract algebra*, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349
- [2] K. Conrad, "Applications of Sylow's Theorem," 2018 [Online]. Available: http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/sylowapp.pdf
- [3] G. Bergman, "Proof that the group An is simple for all n greater than or equal to 5," Jul. 2000 [Online]. Available: https://math.berkeley.edu/~gbergman/ug.hndts/A_n_simple.ps