Exercícios Propostos¹

- 1. (2,5 pt.) Considere a reta $s: x+2=\frac{y}{3}=\frac{-z+1}{2}$ e o plano $\pi: 2x+3y+z-7=0$.
 - (a) (1,0 pt.) Escreva equações nas formas vetorial, paramétrica e simétrica da reta r que contém o ponto (1, -3, 5) e é paralela à reta s.
 - (b) (1,0 pt.) Escreva equações nas formas vetorial e paramétrica do plano π e determine a posição relativa entre π e s.
 - (c) (0,5 pt.) Calcule $\cos \theta$, onde θ é o ângulo formado entre a reta s e o plano π .
- 2. **(2,5 pt.)** Considere os planos π_1 : $X = (1,0,0) + \lambda(1,-1,0) + \mu(-1,-1,-2), \ \lambda, \mu \in \mathbb{R}$, e π_2 : -3x y + z + 1 = 0.
 - (a) (1,0 pt.) Os planos π_1 e π_2 são paralelos? Justifique.
 - (b) (1,0 pt.) Determine uma equação vetorial da reta normal a π_1 e que passa pelo ponto médio do segmento \overline{PQ} , com P = (2,3,8) e Q = (0,1,-2).
 - (c) (0,5 pt.) Encontre a medida θ do ângulo formado entre os planos π_1 e π_2 .
- 3. (2,5 pt.) São dadas as retas $r: \frac{x+3}{2} = \frac{y-1}{4} = z$ e $s: \begin{cases} 2x-y+7=0\\ x+y-3z=-2 \end{cases}$
 - (a) (1,0 pt.) Escreva as equações de r e s na forma vetorial.
 - (b) (1,0 pt.) As retas $r \in s$ são reversas? Justifique.
 - · (c) (0,5 pt.) Calcule $\cos \theta$, onde θ é o ângulo entre as retas.
- 4. (2,5 pt.) Considere a reta $r: X = (2,4,1) + \lambda(1,-1,2), \lambda \in \mathbb{R}$.
 - (a) (0,5 pt.) Mostre que o ponto P = (4, 1, -1) não pertence à reta r.
 - (b) (1,0 pt.) Obtenha uma equação geral do plano π_1 determinado por $r \in P$.
 - (c) (1,0 pt.) Dado um plano π_2 que contém os pontos A=(1,0,0), B=(3,1,1) e C=(1,0,1), determine um vetor diretor da reta s formada pela intersecção entre π_1 e π_2 .

¹Coloque o nome completo nas folhas de prova e escreva o resultado final das questões à caneta. Respostas sem resolução e/ou justificativa não serão consideradas. Data da Avaliação: 10/07/2023