Danny Tan

AI Fall 2018

HW # 3

Problem 1:

A.

[A,E] Error =
$$0 + 6 = 6$$

Neighbors:

[A,B,E] Error =
$$3 + 0 = 3$$

[A,C,E] Error =
$$2 + 0 = 2$$

$$[A,D,E]$$
 Error = 2 + 0 = 2

[A] Error
$$0 + 10 = 10$$
 [E] Error $0 + 4 = 16$

$$[A,B] = 4$$
 $[A,C] = 4$

$$[A,D]=5$$
 $[E,B]=8$ $[E,C]=9$ $[E,D]=10$

The best neighbor will be [A,C,E] and [A,D,E] each give an error of 2.

On the next iteration, the best neighbor for [B,C,E] which give a error of 1 because the algorithm will choose [A,C,E] first.

B.

The size of the state space is all of the subset. N choose 0 + N choose 1 + N choose 2 + ... + N choose N which equals to 2^N .

S =the set of number that is already used

Deletion is S

Addition is N -S

Replacement is S* (N-S)

When you sum everything it will be, N+ NS –S 2 . To find the maximum we can set the derivative to 0. 2 S + N = 0. So we get S = 0.5N

So the equation is $N + 0.5* N^2 - 0.25* N^2 = 0.25* N^2 + N$.

But we have to account for the odd case, in this case it will be $0.25*N^2 + N - 0.25$. And the even case is $0.25*N^2 + N$

Problem 2:

The roots that are pruned are 6, 2, 20, and 7. The best move for max is 8.

