

Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd

MPsrch_nn n.a. n.a. database search, using Smith-Waterman algorithm

Fri Dec 11 06:07:02 1998; MasPar time 1448.41 Seconds 1352.597 Million cell updates/sec

Title: Tabular output not generated.

Description: Perfect Score: >US-08-765-588-3 (1-1094) from US08765588.seq 1094

N.A.

Comp: Sequence:

Scoring table: TABLE default Gap 6

Nmatch

STD :

Dbase 0; Query 0

Searched: 2275026 seqs, 895388244 bases x 2

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: embl-est55

Database: genbank-est107 1:em_est1 2:em_gss1 3:em_gss2 4:em_gss3

5:gb_est1 6:gb_est10 7:gb_est11 8:gb_est12 9:gb_est13 10:gb_est14 11:gb_est15 12:gb_est16 13:gb_est17 14:gb_est18 15:gb_est19 16:gb_est2 17:gb_est20 18:gb_est21 19:gb_est3 20:gb_est4 21:gb_est5 22:gb_est6 23:gb_est7 24:gb_est8 25:gb_est9 26:gb_gss1 27:gb_gss2 28:gb_gss3 29:gb_gss4

Statistics: Mean 11.484; Variance 3.130; scale 3.669

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ο α (n	იი	ი	იი	იი	. 76
13	10	8 7	თთ	- - ω	21	Result No.
405	416 415 410	462 431	483 467	496 489	538 510	Score
37.0 36.6	38.0 37.9	42.2 39.4	44.1 42.7	45.3	49.2	Query Match
440	445 445	490 468	553 469	502 493	565 565	Length DB
17	21 8	12 21	11 13	6	10 18	BG
AI091655 AA535588	AA040843 AA292448 AA746258	AA741539 AA040199	AA082818 AA843530	AA843665 AA434389	AA633535 AI141331	ij
0019g11.x1 nf87a04.s1	zk47h01.rl zt29f01.rl		zn25d01.r1 ak08b11.s1	ak08g12.s1 zw31a04.s1	np66d06.s1 oy51f06.s1	Description
Soares_NSF_ NCI_CGAP_Co		NCI_CGAP_Ki	Stratagene Soares para		NCI_CGAP_Br	
0.00e+00	0.00e+00	0.00e+00 0.00e+00	0.00e+00 0.00e+00	0.00e+00	0.00e+00 0.00e+00	Pred. No.

O	O	0	იი	ი ი	ი	იიი ი
44 44 44 44 44 44	3333 387 5	2 2 2 2 C C C C C C C C C C C C C C C C	27 28 30	23 25 25 25	19 20 21 22	14 15 16 17
135 132 124 118 80 77	199 181 161	261 245 239 232 232	287 283 278 273	310 294 293 289	362 346 342	398 387 375 364 362
12.3 12.1 11.3 10.8 7.3 7.0						
231 136 225 118 88 381						
23 10 15 23	16 23	16 120 15	91 7 81 91	6 6 6	12 25 26	15 24 16 8
7672 77 71 11 9103 7955 7955		07B	Ä	0,0,0,0	AA742966 AA352350 AA182397 H39505	AA948212 AA310070 AA983317 R56770 AA469054
111821	ub/8901.rl Soares mous zu64h12.rl Soares test yn02g09.sl Homo sapien mm94g06 rl Stratagene	r1 eta r1	r1 r1 s1	ab99b07.sl Stratagene EST17094 Aorta endothe zw31a04.rl Soares ovar zu64h12.sl Soares test	2 2 8 E	oq21f09.sl NCI_CGAP_GC EST180930 Jurkat T-cel oq56g10.sl NCI_CGAP_Ki yg95a12.sl Homo sapien ne17d08.sl NCI_CGAP_Co
4.89e-148 1.17e-143 1.04e-132 2.40e-123 1.02e-69 1.29e-65	3.40e-264 4.24e-243 4.16e-216	0.00e+00 0.00e+00 0.00e+00 6.04e-293 7.48e-284			0.00e+00 0.00e+00 0.00e+00	0.00e+00 0.00e+00 0.00e+00 0.00e+00

FEATURES Source		JOURNAL COMMENT	REFERENCE AUTHORS TITLE	KEYWORDS SOURCE ORGANISM	RESULT 1 LOCUS DEFINITION ACCESSION
Insert Length: 648 Std Error: 0.00 Seg primer: -40ml3 fwd. ET from Amersham High quality sequence stop: 411. Location/Qualifiers 1565 /organism-"Homo sapiens" /note-"Vector: pT7T3D-Pac (Pharmacia) with a modified	Tel: (301) 496-1550 Tel: (301) 496-1550 Email: Robert_Strausberg@nih.gov Tissue Procurement: Christopher Moskaluk, M.D., Ph.D., Michael R. Emmert-Buck, M.D., Ph.D. cDNA Library Preparation: M. Bento Soares, Ph.D. cDNA Library Arrayed by: Greg Lennon, Ph.D. DNA Sequencing by: Washington University Genome Sequencing Center Clone distribution: NCI-GCAP clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: www-bio.llnl.gov/bbrp/image/image.html	Tumor Gene Index Unpublished (1997)	Primates; Catarnini; Hominidae; Homo. 1 (bases 1 to 565) NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap. National Cancer Institute, Cancer Genome Anatomy Project (CGAP),	dens	AA633535 565 bp mRNA EST 28-OCT-1997 np66d06.51 NCI_CGAP_Br2 Homo sapiens cDNA clone IMAGE:1131275 similar to TR:G1216398 G1216398 VEGF RELATED FACTOR ISOFORM VRF167 PRECURSOR. ;, mRNA sequence. AA633535

电影传染性 化水子 医水子氏试验检检尿病 化异丙基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	

* * * *	
* * * * * * * * * * * * * * * * * * * *	(MT)

Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd

MPsrch_nn n.a. n.a. database search, using Smith-Waterman algorithm

Run on: Fri Dec 11 06:38:25 1998; MasPar time 163.86 Seconds 908.342 Million cell updates/sec

Tabular output not generated.

Title: >US-08-765-588-3 (1-1094) from US08765588.seq

Description:
Perfect Score:
N.A. Sequence:
Comp: ~1094

Scoring table: TABLE default Gap 6

Nmatch STD : Dbase 0; Query 0

Searched: 188442 seqs, 68026449 bases x

Minimum Match 0% Listing first 45 summaries

Post-processing:

Database:

n-geneseg32
1:part1 2:part2 3:part3 4:part4 5:part5 6:part6 7:part7 8:part8 9:part9 10:part10 11:part11 12:part12 13:part13 14:part14 15:part15 16:part16 17:part17 18:part18 19:part19 20:part20 21:part21 22:part22 23:part23 24:part24 25:part25 26:part26 27:part27 28:part28 29:part29 30:part30 31:part31 32:part32 33:part33 34:part34 35:part35 36:part36 37:part37 38:part38 39:part39 40:part40

Statistics: Mean 9.233; Variance 6.558; scale 1.408

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

45	44	43	42	41	40	39	38	37	36	<u>ω</u>	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	+
											48																				
4.4	4.4	٠	4.4	٠	•	4.4	4.4	4.4		٠	4.4		•		٠		٠			4.4	4.4	4.4	4.4			4.4		4.4	•	4.4	٠
87	85	83	82	80	80	80	79	79	78	78	1664	64	59	55	53	39	29	22	16	15	œ	7	7	0	ø	ø	9	7	σ	u	V
39	22	37	22	22	22	22	37	37	22	37	37	37	22	22	22	22	22	22	22	22	N	39	ω	17	22	22	N	17	22	22	0
10	575	583	575	779	575	574	583	583	574	583	T95835	583	575	778	574	574	778	574	778	574	700	510	564	806	774	774	079	806	773	774	121
an vascular endo	VEGF16	for VEGF/CPG2 f	-AlaMet-VEGF165((Gly4Ser) VEGF165	GF165 (Alamet-VEGE 	-	н.	-AlaMet-VEGF165-	for VEGF/CPG2 f	for VEGF/CPG2 f	for VEGF/CPG2 f	(Gly4Ser)2VEGF12	(Gly4Ser)VEGF121	ᅼ	F165-AlaMet-SAF	5	(Gly4Ser)4VEGF12	(Gly4Ser)VEC	AP-AlaMet-VEGF121	lambda.vegf.2	an vascular	ense inhibitor	A encoding	165 Cys+4	N	n vasculaı	A encoding human	F121 Cys+4	F121 Cys+2 codin	Tr Tigate At
.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	3.85e-11	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-1	.85e-	.85e-	85	. 400

1	N.A. Sequence:		Tabular output not generated	Run on:	MPsrch_nn n.a	Release Copyrig	**********	
	1 ccatgagccctctgctccgcgaaggaaaaaaaaaa	>US-08-765-588-3 1011094) from US08765588.seq	t generated.	Fri Dec 11 05:32:48 1998; MasPar time 1605.71 Seconds	n.a. database search, using Smith-Waterman algorithm	Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd	**************************	

Tit Des Per Scoring table: TABLE default Gap 6

Searched: Nmatch STD : 567134 seqs, 1101898692 bases x 2 Dbase 0; Query 0

Post-processing: Minimum Match 0% Listing first 45 summaries

Database: emb155

Database:

1:em_ba 2:em_fun 3:em_htg 4:em_hum1 5:em_hum2 6:em_in 7:em_om 8:em_or 9:em_ov 10:em_pat 11:em_ph 12:em_pl 13:em_ro 14:em_vi 9:em_bat 11:em_ph 12:em_pl 15:em_ro 14:em_vi 9:em_bat 11:em_bh 12:em_pl 15:eb_bat 16:eb_ba2 17:eb_htg 18:eb_in 19:eb_om 20:eb_ov 21:eb_pat 22:eb_ph 23:eb_ph 124:eb_pl 25:eb_pr 27:eb_pr 27:eb_pr 28:eb_pr 27:eb_pr 27:eb_pr

Statistics: Mean 11.281; Variance 6.527; scale 1.728

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	O	٠,	R e
10 12 13	8765	4224	Result
322 322 302 283	412 412 410 364	1079 749 545	Score
29.4 29.3 27.6 25.9	37.7 37.7 37.5 33.3	49.60 49.60 49.60	Query Match
795 567 405 349	570 570 567 413	1079 755 896 1236	Query Match Length DB
28 21 21 28	30 30 30	25 28 28	DB
MMU48800 MMU43837 I36626 I36628 AF032925	HSU48801 I36629 HSU43369 G21825	HSU43368 HSU52819 MMU52820 MMU43836	Ħ
Mus musculus vascular Mus musculus VEGF-rela Sequence 4 from patent Sequence 8 from patent Rattus norvegicus vasc	Human vascular endothe Sequence 10 from paten Human VEGF related fac human STS WI-14122.	Human VEGF related fac Human vascular endothe Mus musculus vascular Mus musculus VEGF-rela	Description
1.80e-203 5.10e-202 1.44e-200 1.61e-187 8.87e-174	1.34e-267 1.34e-267 3.88e-266 1.46e-232	0.00e+00 0.00e+00 0.00e+00 0.00e+00	Pred. No.

																										ი					
45	44	43	42	41	40	39	38	37	36	35	3 4	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14
40	40	42	42	42	42	44	44	46	47	48	48	48	48	48	48	48	48	48	4.8	48	48	48	48	48	50	52	56	67	N3	241	4
					٠	٠	٠	٠	٠	4.4	٠	4.4	4.4	٠	4.4	4.4		4.4	4.4	4.4	4.4								20.3	٠	2
										1832	790	_	7	-	w	٠.	_	٠.	-	_	-	649	0	O1	O,	w	O,	w	_	U	w
28	19	19	19	19	28	19	25	27	25	21	21	21	21	21	21	25	25	27	21	10	21	25	27	21	25	21	19	21	21	21	28
S38083	AF071015	BOVEGFA	BOVVEGFA	BOVVEGFB	GPIVEGFA	SSVEGF	HUMVEGF3	AF022375	HSU43370	A64402	A64400	A64398	A64394	A64404	A64396	HUMVPF	HUMEGFAA	S85192	E13332	E11017	E13215	HSVEGF	\vdash	A64392	S82167	I66494	끈	9	ω	9	AF022952
ular endothelial	ular e	ne hej	vascular		pig wascu	S.scrofa mRNA for vasc	Human vascular endothe	S	F relate	Sequence 15 from Paten	13 from	e 11 from	e 7 from F	e 17 from	nce 9 from	vascular	Human heparin-binding		.cDNA encoding vascular	N		H.sapiens vegf gene fo	ien	Sequence 5 from Patent	65=vascular	Sequence 14 from paten	igus cunic	14 from	6 from	1 from pat	Rattus norvegicus vasc
. 65e-	.65e-	.32e-	.32e-	.32e-	.32e-	.18e-	.18e-	.25e-	.91e-	1.54e-11	.54e-	.54e-	.54e-	.54e-	.54e-	.54e-	.54e-	- 1	.54e-	.54e-	.54e-	1.54e-11	.54e-	.54e-	.02e-	.59e-	.53e-	.73e-	6.19e-130	.54e-14	.45e-14

gene	FEATURES Source	AUTHORS TITLE JOURNAL	JOURNAL REFERENCE	TITLE	REFERENCE AUTHORS	ACCESSION NID KEYWORDS SOURCE ORGANISM	RESULT 1 LOCUS DEFINITION
		Silins,G.U. Direct Submission Submitted (15-DEC-1995) Ginters U. Silins, Human Genetics, Queensland Institute of Medical Research, Herston, Queensland, 4029, Australia	dothelial growth factor 6 (2), 122-129 (1996) to 1079)	Pollock, P., Gotley, D., Carson, E., Rakar, S., Nordenskjold, M., Ward, L., Hayward, N. and Weber, G. Cloning and characterization of a novel human gene related to	Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 1079) Grimmond,S., Lagerorantz,J., Drinkwater,C., Silins,G., Townson,S.,	U43368 g1216395 human. human.	HSU43368 1079 bp mRNA PRI 07-MAR-1996 Human VESF related factor isoform VRF186 precursor (VRF) mRNA,

Scoring table: TABLE default	Title: >US-08-765-588-3 Description: (1-1094) from US08765588.seq Perfect Score: 1094 N.A. Sequence: 1094 ccatgagccctctgctccgcgaaggaaaaaaa Comp: ggtactcgggagacgaggcgcttcctttttt	Run on: Fri Dec 11 06:42:18 1998; MasPar time 43.51 Seconds 1172.855 Million cell updates/sec Tabular output not generated.	MPsrch_nn n.a n.a. database search, using Smith-Waterman algorithm	Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd	(TM)	
	.gaaggaaaaaaaaaaaaa 1094 .cttccttttttttttttt	0.51 Seconds con cell updates/sec	erman algorithm	irch Unit. b, U.K. Ltd	* *	

Tit Des Peri Sco Nmatch STD : Dbase 0; Query 0 Gap 6

Post-processing: Minimum Match 0% Listing first 45 summaries

Searched:

88822 seqs, 23323279 bases x 2

Database:

n-issued 1:5_COMB 2:PCT9_COMB 3:backfiles1

Statistics: Mean 8.813; Variance 5.776; scale 1.526

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

a	. ×
20 20 20 20 20 20 20	Result
3331 222 222 224 224 224 224 224 224 224 22	Score
70 C C C C C C C C C C C C C C C C C C C	Query Match
5670 5670 405 886 886 591 7218 7218 7218 7218 4477 4478 4478 4478 4478 1195 11195 11212 12212	Length
22222222222222222222	. E
US-08-469- US-08-469- US-08-469- US-08-232- US-08-232- US-08-232- PCT US95-1 PCT US95-1	ID
Sequence 10, Applicatio Sequence 4, Applicatio Sequence 8, Applicatio Sequence 6, Applicatio Sequence 6, Applicatio Sequence 14, Applicatio Sequence 14, Applicati Sequence 88, Applicati Sequence 88, Applicati Sequence 87, Applicati Sequence 89, Applicati Sequence 89, Applicati Sequence 87, Applicati Sequence 87, Applicati Sequence 87, Applicati Sequence 87, Applicati Sequence 57, Applicati Patent No. 5332671. Sequence 57, Applicati Sequence 57, Applicati Patent No. 5340848. Sequence 31, Applicati Sequence 37, Applicati Patent No. 5240848. Sequence 31, Applicati Sequence 32, Applicati Sequence 33, Applicati Sequence 38, Applicati Sequence 38, Applicati	ion
7.79e-243 3.12e-183 1.29e-171 2.92e-132 2.92e-120 2.56e-24 2.15e-15 3.61e-13	Pred. No.

	ი	a	ი	a	a					ი		a													
	45	44	43	42	41	40	39	38	37	36	ω	34	33	32	31	30	29	28	27	26	25	24	23	22	21
	25	25	25	25	25	26	26	26	27	28	3 8	38	3 8	42	42	.42	42	44	44	46	47	47	48	48	48
	٠	٠									•		ω .5										•		
	8438	6513	6513	6513	6513	5011	2504	2504	242	5775	196	215	215	1543	961	790	789	886	197	498	728	677	1809	1557	1369
	۲	щ	μ	N	N	Ë	ш	_	1	N	ω	μ.	Н	w	ω	ω	ω	w	N	ω	N	N	N	Ŋ	N
	US-07-945-	US-08-724-	US-08-337-	PCT-US95-1	PCT-US95-1	US-08-141-	US-08-484-	US-08-484-	US-08-273-	PCT-US93-0	5194596-16	US-08-238-	US-08-238-	5332671-5	5219739-16	5194596-8	5219739-8	5219739-23	PCT-US95-1	5219739-21	PCT-US95-1	PCT-US95-1	PCT-US95-1	PCT-US95-1	5
•	1,	Sequence 7; Applicatio	7, App1	7,	Sequence 7, Applicatio	1,			Sequence 1, Applicatio	Sequence 29, Applicati	·	'n	Sequence 5, Applicatio	Patent No. 5332671.	No.	No. 519459	•	Patent No. 5219739.	Sequence 18, Applicati		28,	Sequence 27, Applicati	•	`	33,
	.28e-	'n	, N	.28e-	.28e-	.93e-	.93e-	.93e-	.72e-	.16e-	.79e-	.79e-	8.79e-08	.67e-	.67e-	.67e-	.67e-	5.56e-11	.56e-	.53e-	.28e-		.61e-	.61e-	

8888	ននន	888	888	38	88	38	38	S	88	88	36	88	გ	გ	8	ရှ	86	38	င္ပ	38	38	6	36	SE	달 ?	S U	RESULT
INFORMATION FOR SEQ ID NO: 10: SEQUENCE CHARACTERISTICS: LENGTH: 570 base pairs TYPE: nucleic acid	INFORMATION: 2) 628-8800 628-8844	NAME: EVAIS, JOSEPH U REGISTRATION NUMBER: 26,269 REFERENCE/DOCKET NIMBER: 41979cm2	ы	APPLICATION NUMBER: US 08/397,651	CLASSIFICATION: 435 PRIOR APPLICATION DATA:	on t		PatentIr	COMPUTER: IBM PC compatible OPERATING SYSTEM: PC-DOS/MS-DOS	MEDIUM TYPE: Floppy disk		ຸ∷ ວ	Washington	Suite 700	ADDRESSEE: Evenson, McKeown, Edwards & Lenahan	SS	NUMBER OF SEQUENCES: 17	INVENTION:	Pajusola, Katri	APPLICANT: Alitalo, Kari	Eriksson,	GENERAL INFORMATION:	Patent No. 5607918	Application	ΑΛΑΛΑΑ	US-08-469-427A-10 STANDARD; DNA; UNC; 570 BP.	

<u> </u>	***
[MI]	* 西班通安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安

<u> </u>	****
* (TM)	* * * * * * *

Release 3.1A John F. Collins, Biocomputing Research Unit. Copyright (c) 1993-1998 University of Edinburgh, U.K. Distribution rights by Oxford Molecular Ltd

MPsrch_nn n.a. - n.a. database search, using Smith-Waterman algorithm

Tabular output not generated. Run on: Fri Dec 11 06:43:42 1998; MasPar time 917.76 Seconds 1290.001 Million cell updates/sec

Title:

Description: Perfect Score: >US-08-765-588-3 (1-1094) from US08765588.seq 1094

N.A. Sequence: Comp:

Scoring table: TABLE default Gap 6

Nmatch STD : Dbase 0; Query 0

Searched: 1686833 seqs, 541095398 bases x 2

Post-processing: Minimum Match 0% Listing first 45 summaries

Database:

n-pending
1:P9 2:U6000 3:U6001 4:U6002 5:U6003 6:U6004 7:U6005
8:U6006 9:U6007 10:U6008 11:U7 12:U80 13:U81 14:U82
15:U83 16:U84A 17:U84B 18:U85 19:U86 20:U87 21:U88
22:U89 23:U90A 24:U90B 25:U91 26:NEWP 27:NEWU6 28:NEWU8
29:NEWU9

Statistics: Mean 10.542; Variance 4.383; scale 2.405

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Score	Query Match	Length	BB	Ħ	<i>"</i>		Description	ion		Pred. No.	
ב	1094	100.0	1094	28	us-	Z	L	Sequence	ψ	Applicatio	0.00e+00	
2	622	56.9	624	19	US-		ļ	Sequence	14,		0.00e+00	
ω	622	56.9	624	81	US-			Sequence	14,	Applicati	0.00e+00	
4	622	56.9	624	19	US-	-	4	Sequence	14,	Applicati	0.00e+00	
5	622	56.9	624	18	US-		-	Sequence	14	Applicati	0.00e+00	
თ	622	56.9	624	18	US-	i		Sequence	14,	Applicati	0.00e+00	
7	608	55.6	910	28	US-		-	Sequence	9	Applicatio	0.00e+00	
ω	604	55.2	666	25	US-		4	Sequence	1,	Applicatio	0.00e+00	
9	604	55.2	666	23	US-		+	Sequence	1,		0.00e+00	
10	604	55.2	666	17	US-		J	Sequence	,1	Applicatio	0.00e+00	
11	604	55.2	666	17	US-	_	ate.	Sequence	1,	Applicatio	0.00e+00	
12	583	53.3	993	28	US-	,	len	Sequence	'n	Applicatio	0.00e+00	
13	537	49.1	1242	28	US-		444	Sequence	16,	Applicati	0.00e+00	
14	496	45.3	624	19	S.	,		Sequence	12,	Applicati	0.00e+00	
15	496	45.3	624	8	us-		4	Sequence	12,	Applicati	0.00e+00	
16	496	5.3	624	19	US-	1	4	Sequence	12,	Applicati	0.00e+00	

Db Db Db	Ои Ве	ង្គីដូន្តមានមានមានមានមានមានមានមានមានមានមានមានមានម
1 61 61	uery Ma est Loc atches	117 4 118 4 20 4 20 4 21 4 221 4 221 4 222 4 223 4 224 9 225 3 226 3 230 3 231 3 33 3 33 3 33 3 33 3 34 3 33 3 34 4 33 3 35 3 36 3 37 33 3 37 33 3 38 33 3 37 33 3 38 33 3 37 33 3 38 33 3 39 39 33 3 30 30 33 3 30 30 30 3 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 30 3 30 30 3 30 30 30 3 3
CCATGAGO	tch als	7 496 8 496 8 496 9 4448 9 448 9 448 9 448 9 448 412 1 412 4 412 2 4412 3 46 6 346 7 346 8 320 9 320 9 320 1 320 1 320 1 320 2 302 2 302 2 302 2 302 2 302 2 302 2 302 2 302 2 302 3 302 3 302 3 302 3 302 3 302 3 302 5 285 T 1 Sequence 3, Sequence 3, Sequence 3, Sequence 3, T 1 1 Sequence 3, T 1 1 TIPLE OF III APPLICANT: APPLICAN
Egto CCT	imilarii 4; Cons	445.3 441.0 445.3 441.0 445.3 347.7 37
TGCTC cccag	100. ty 100. servati	624 18 624 18 624 18 624 18 624 18 626 19 570 17 570 18 570 18 570 19 57
CCTGA	0 % 0 % 0 %	
CCTGCT IIIII TGCCCC IIIIII	Score Pred. 0;	2, 6 .25 Hr × 266 " H
GCTGCTCG	e 1094 . No. Misma	UNC; 109 UNC; 109 UNC; 109 S5588 S55888 S55888 S5588 S55888 S5588 S5588 S5588 S5588 S558
ACTO acto acto GAGO	; DB 28; 0.00e+00; tches 0;	sequence
ფ <u>-</u> ფ ი-ი	Length Indels	
CCCCC 	1094;	Application Applic
CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	Gap	Q 4333333372222222222200000000
0 20 20	s 0;	00e+00 00e+00 00e+00 00e+00 00e+00 00e+00 00e+00 00e+00 00e+00 00e+00 00e-282 06e-282 06e-282 06e-282 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264 19e-264

Saoud, Christine
To: STIC-Biotech/ChemLib

Subject:

08/765588

Sequence search -

Please return results via SCORE.

SEQ ID NO:4, 8, 10. – protein search. Patent database – issued and pending. SEQ ID NO:16 and 3 – nucleic acids. Patent database – issued and pending.

Thank you, **Christine Saoud** AU 1647 571-272-0891 **REM 04E81**

STIC-Biotech/ChemLib

12-1927

From:

Elliott, George

Sent:

Wednesday, December 30, 1998 3:18 PM

To:

STIC-Biotech/ChemLib

Cc:

Saoud, Christine

Subject:

FW: RUSH search

Importance:

High

Please rush.

Thanks,

George

----Original Message-----

From: Saoud, Christine

Sent: Wednesday, December 30, 1998 2:18 PM

To: Elliott, George **Subject:** RUSH search **Importance:** High

u.S.S.N. 08/765,588

Please search SEQ ID NO:16 in the patent and commercial databases. This is a rush search because it is a due amended.

thank you, christine Saoud CM1-10E03 305-7519

1