Name of Experiment	Date
Name: Yashwanth. M	
Regno: 186AEC9077	
Claus: VII Sem CSE	
Assign	ment II
7	
1, - 1	and the second second
a) Write Gradient descent Algorith	om to train a linear unit along
with the derivation of	gradient descent rule.
	:
The direction of steep	est can be found by computing the
duvative of E with rupu	it to each component of the w.
The vector decirative is ca	lled the gradient of E with desput
to is, written as	<u> </u>
$\nabla E[\vec{\omega}] = 0$	E DE DE
D W	o Dw, Dwn
The gradient quipes +	the direction of steepest increase of E, adjust descent is,
the training rule for gro	adient desunt is,
ルルル・	+ AIJ
where	
$\Delta \vec{\omega} = -\eta$	∇E(\$\alpha\$) .
	→ n is positive learning rate.
This training sule c	an also be written in its
correponent form	The second of th
	chandra's —

$$\omega_{i} \leftarrow \omega_{i} + \Delta \omega_{i}$$

where,
$$\Delta \omega_{i} = -\eta \frac{\partial E}{\partial E} \longrightarrow 0$$

Calculate the gradient at each step. The vector of DE duivalires that form the gradient can be Dwi

obtained by differentiating E from E(w) =1 5 (td-Od)2

$$\frac{\partial E}{\partial \omega} = \frac{\partial}{\partial \omega_{i}} \stackrel{!}{=} \frac{\Sigma}{\Delta} \frac{(td - 0d)^{2}}{(td - 0d)^{2}}$$

$$= \frac{1}{\Delta} \frac{\Sigma}{\Delta} \frac{\partial}{\partial \omega_{i}} (td - 0d)^{2}$$

$$= \frac{1}{\Delta} \frac{\Sigma}{\Delta} 2(td - 0d) \frac{\partial}{\partial \omega_{i}} (td - 0d)$$

$$= \frac{1}{\Delta} \frac{\Sigma}{\Delta} (td - 0d) \frac{\partial}{\partial \omega_{i}} (td - 0d)$$

$$= \frac{1}{\Delta} \frac{\Sigma}{\Delta} (td - 0d) \frac{\partial}{\partial \omega_{i}} (td - 0d)$$

Substituting @ in () yields the weight update rule for gradient descent

Name of Experiment. Experiment No. Date. Page No. 2
Algonithm
Each training example is a pair of the form (\vec{x},t) , where \vec{x} is the vector of input values, and t is the
taget oletput value, n is the learning rate
* Initialize each wi to some small random value
* Until the termination condition is met, Do
→ Initialize each DW; to zero → For each (x', t) in training examples, Do
→ Input the instance of to the unit and compute the output o
\Rightarrow For each linear unit weight ω_i , Do $\Delta \omega_i \leftarrow \Delta \omega_i + n(t-0) \alpha_i$
$\rightarrow \rightarrow \rightarrow$ For each linear unit wight ω_i . Do $\omega_i \leftarrow \omega_i + \Delta \omega_i$
b) write duivation of Backpropagation rule considering unit j as output unit and unit j as hidden unit.
For each training example de every wight wij; is updated by adding to it Dwj;
$\Delta w_{j} = -\eta \frac{\partial Ed}{\partial w_{j}} \longrightarrow 0$
chandra's —

where, Ed is the error on training example d,

 $E_{d}(\vec{u}) = \frac{1}{2} \sum_{k \neq output} (t_{k} - 0_{k})^{2}$

the is target value of unit k Or is output value of unit k

xii = the ith input to uniti.

Wi = the weight associated with the it input to unit j

net = I Willi

0, = output

ti = target

= sigmoid fr

Downstream (j') = set of unit whose immediat inputs include the output of unit j

duire an expression for $\frac{\partial Ed}{\partial w_i}$

Using chain rule.

$$\frac{\partial Ed}{\partial w_{ji}} = \frac{\partial Ed}{\partial net_{j}} \frac{\partial net_{j}}{\partial w_{ji}}$$

$$= \frac{\partial Ed}{\partial net_{j}} \times ji \longrightarrow 2$$

Duire a convenient suprusion for DEd Duly

nent No
 Case 1:- Training sule for O/p unit weights.
$\frac{\partial Ed}{\partial net_j} = \frac{\partial Ed}{\partial O_j} = \frac{\partial O_j}{\partial net_j}$
First term, $\partial E = \partial + \int (t_E - O_E)^2$ in (3) $\partial O_j = \partial O_j = E + Output$
The derivate of D (te-OL)2 is 0 for k except k=j
$\frac{\partial Ed}{\partial o_{j}} = \frac{\partial}{\partial o_{j}} \frac{\int_{0}^{\infty} (t_{j} - o_{j})^{2}}{\partial (t_{j} - o_{j})}$ $= \int_{0}^{\infty} 2(t_{j} - o_{j}) \frac{\partial}{\partial (t_{j} - o_{j})}$
= - (4;-0;) -> 4)
Swond term, Since $0j = \sigma(\text{net}j)$ in $0j = \sigma(\text{net}j)(1 - \sigma(\text{net}j))$ 0 oref
doj _ do(netj) dnetj
= '0; (1-0;) -> (5) (4) & (5) in (3)
<u> </u>
chandra's —

Case 2: - Training rule for Hidden Unit weights.

- In this case, j is hidden unit
- -> the derivation of training rule w; must take into amount the indirect ways in which w; can influence the network outputs.
- -> we will find it useful to order to the set of all unit immediately downstream of unit j
- net; can influence the network outputs only though the units in Downstream(j)

=
$$\frac{5}{k \in Downstrean(j)}$$
 - $\delta_k \omega_{kj} O_j(1-O_j) \rightarrow 8$

	of Experiment
	$\delta = 0: (4-0.) = \delta = \delta = 0.$
	$\delta_j = 0_j(1-0_j) \leq \delta_k \omega_k$ $k \in Downstream C_j$
	$\Delta \omega_{ji} = \eta \delta_{ji} \chi_{ji}$
	The second secon
2	
a)	Device duivation to show maximum likely hood hypothesis has
	least squared error hypotheses.
	Consider the problem of learning a continuous valued
	target function such as newal network learning, linear
	Consider the problem of learning a continuous valued torget function such as newed network learning, linear regression, and polynomial overe fitting
	Using the definition of home we have
	har = agmax p(D/h)
	Assuming training examples are mertically independent ginn h, we can unit P(DIh) as the product of the
	various {d; 1h)
	m
	$h_{ML} = aegmax TT p(dilh)$ $heH i=1$
	Given the noise ci obeys a nomaal distribution with
	O mean and unknown variance σ^2 , each di must also obey a Normal distribution around the true
	targit value $f(x_i)$.

Because we are writing the expression for P(D|h), we assume h is the cornet absorption of f.

Hence
$$\mu = f(x_i) = h(x_i)$$

$$hmL = \underset{h \in H}{aigmax} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi e^2}} e^{-\frac{1}{2}e^2} (d_i - \mu)^2$$

$$h_{mL} = \underset{h \in H}{\operatorname{algmax}} \frac{m}{1} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}} (di - h(\alpha_i))^2$$

Maximise the less complicated bogasithm, which is justified because of the monotonicity of function p

$$h_{mL} = \underset{h \in H}{algmax} \sum_{i=1}^{m} l_{n} \frac{1}{\sqrt{2\pi c^{2}}} - \frac{1}{2c^{2}} \left(d_{i} - h(x_{i})^{2} \right)$$

The first term in this expression is a constant independent of h, and can therefore be discarded

$$h_{mL} = \underset{h \in \mathcal{H}}{\operatorname{algmax}} \sum_{j=1}^{m} - \underbrace{\underbrace{\int (d_i - h(x_i))^2}_{g \in \mathcal{I}}}$$

Maximizing this regative quantity is equivalent to minimize the -11-

$$h_{ML} = agmin = \frac{m}{2} \frac{1}{2c^2} (d_i - h(x_i))^2$$

discard constant

$$h_{mL} = \underset{h \in H}{\operatorname{algmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

	e of Experiment		Date Experiment Result	Page No. 5	
	Thus, ab	ore equation	shows that the	maximum likelihood	\exists
				imises the sum of	
	the squ	aced errors b	etween the obser	red training Rules	
			predictions his		
Ь.	Clausify the	test data	and { Red , S	UV, Domestic }	
	using Nai	re Bayes cl	anifier for the	data show in	
	Table		*		
				37	
	Color	Type	Origin	stobn	
	Red	Sports	Domestic	Yes	
	Red	Sport	Domestic	No	
	Red	Sports	Dometic	Yes	
	Yellow	Sports	Donestic	No	
	Yellow	Sports	Imposted	Yes	
	Yellow	SUV	Imported	No	
	Yellow	SUV	Imported	Yu	
	Yellow	SUV	Donustic	No	
	Red	SUV		No	
	Red	Sports	Imported	Yes \	
	75 700			F - (4)	
		Vnb= algm	ax P(v;) /	P (aily;) → O	
		P (a:	(V5) = nc + m	P → ②	
		7 (47)	3n+m	- N	
		. n=	no. of training	examples for which ve	= A.
		ne	= no. of escamp	lus forv=v: & a=a;	
		P	= a priori estim	nate for P(a:1Vi)	
	, , ,		= the Equivalent		

We want to classify I Red, Domestic, SUV }

We need to calculate

P[Red | Yes), P (SUV | Yes), P (Domestic + Yes)

P(Red INO), P(SUV INO), and P(Domestic INO)

and multiply them by P(Yes) and P(No) suspentively,

color

o d	DIV	2/11
Red	2/5	P(No) 2/5
Vellow	· \$/5	3/5

Type

Sports	416	2/6
SUV	1/4	3/4

ame of Experiment xperiment No			Result	Page No. 6
		S	tolen	Algorphi, i
		P(Y4)	P(No)	- p
Origin	Domutic	3 /5	3/5	the first year
	Imposted	3/5	2/5	· · · · · · · · · · · · · · · · · · ·
6 1 2 T	· 2 AM 1	6 19 v	* 1 1 4	
1 2 × ×	1 1	i gel	M1 1.	E 4.12 861
Plyo1x)=	P(Red 1 Yes)	* P(SUV 1	YW) & P(E	Doniestic 186)
			* Pl Ye	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V -	₹ 1 . ⁹ V	, i li	1 4
	= 3 * 1	* 2 ×	1	
	5 4	F 5	2	
	= 0.03			
			A so yo	
P(No/x)	= Plred (No)	* PLJUV 1	No) * P(0	brustic (No)
	H 1 1 1	HEY S	* P(No)
* (*)	*	. Iú	a Kaj	, \L
	= 2 1 3	4 3	*1'	
	5 4	k 2	2_	
	= 0.036			
Sine	0.036 > 0.1	03 , it is	classifico	l as 'No'
	was grant on			
U , 1 , 1				- Paristra
	•			
		1.7	*\ \ \ \	
		•		
-				

3) a) Define

- i) Sample Error
- ii) True Esnor
- (i) Confidence intervals for disente valued hypothesis.

Sample Error: The Sample Error of a hypothesis with deput to some sample s of instances drawn from x is the fraction of s that its misclassifies

Definition: The Sample Error (error (h)) of hypothesis h with respect to target function of and data sample

errors(h) = $\frac{1}{n} \sum_{x \in S} \delta(f(x), h(x))$

where is is the no. of examples in S, and the quantity off(x), h(x)) is I if f(x) +h(x) and 0 otherwise:

Tru Error

The true error (error D(h)) of hypothesis h with espect to target function of and distribution D, is the probability that h will misclassify an instance drawn at random according to D

> emoralh) = Pr [$f(x) \neq h(x)$] $x \in D$

Name of Experiment
Confidence Intervals for Discrete - Valued Hypothesis
Suppose we wish to estimate the true coror too some
discrete valued hypothesis h, based on its observed sample
error ord a sample S, where
-> The sample is contains in example drawn independent
of one another, and independent of h, awarding to
the probability distribution D
→ n> 30
-> Hypothesi's h commits r errors one these n examples
(i.e errors (h) = r/n)
Under these conditions, statistical theory allows to make
the following assertions.
1. Given no other info, the mos probable value of erosph)
i's errors (h)
2. With approx 95% probability, the true error o(h)
lies in the interval
nes in the network
(1) 1 1 0 1 1 0 2 1 1 1 1
errors(n) ± 1.96 (errors(h) (1-errors(h))
Green, Vision De
b) Last year, five randomly selected students took a math
aptitude test before they began their statistics source.
The Statistics Department has these questions.
i) What linear regression equation but predicts statistics
pujormance, band their aptitude scores?
chandra's —

ii) if a student made on 80 on the aptitude test, what grade would we expect her to make in statistics ?

iii) How well does the reguesion equation bit the data?

Student	x;	زي
1 K 5 1	95	85
a	85	95
3	80	70
4	70	65
5	60	70

$$\hat{y} = b_0 + b_1 x_1$$

$$b_0 = (\Sigma Y) (\Sigma x^2) - \Sigma (x) \Gamma xy$$

 $T (\Sigma x^2) - (\Sigma x)^2$

$$b_1 = n(\Sigma xy) - \Sigma x \Sigma y$$

$$n(\Sigma x^2) - (\Sigma x)^2$$

\propto	y	x^2	24
95	85	9025	8075
85	95	7225	8075
80	70	6400	5600
70	65	4900	4550
60	70	3600	4200
390	385	31150	30500

Name of Experiment	Date	
Experiment No	Experiment Result	Page No. 🧣
· ·	bo = 36.780 = 36.780	
	3650	
-	$b_1 = 2350 = 0.64383$	
	3656	
:	ŷ = 26.780 + xx0.64383	
ij) z =	= 8.0	
ŷ	= 26.780 + 80 x 0.64383	
q	= 78.28	
J		
iii)		
E	$= \frac{1}{2} \frac{5}{200} (f(x) - f(x))^2$	
E	= 83.78	
		1 1
		das —