

Wydział Elektrotechniki i Informatyki PRz Zakład Podstaw Elektrotechniki i Informatyki

Kierunek: Elektrotechnika i Telekomunikacja, ET-DI

Studia: stacjonarne I-go stopnia

Rok: 1
Semestr: 2

OBWODY I SYGNAŁY

Instrukcje ćwiczeń laboratoryjnych

OBWODY I SYGNAŁY LABORATORIUM ZJAWISKOWE Ćwiczenie 1: Obwody prądu stałego Grupa: Nazwiska: Data, godzina:

1. Zbudować obwód z rysunku 1. Zanotować użyte wartości rezystorów oraz źródeł. Oznaczyć na rysunku numery punktów z płytki uniwersalnej.

Rys. 1.

2. Dla obwodu z rysunku 1 zapisać oraz rozwiązać równania metody potencjałów węzłowych.

Wyniki:

$$V_1 =$$
_____V, $V_2 =$ ____V, $V_3 =$ ____V.

3. Zmierzyć potencjały węzłów w zbudowanym obwodzie. Wyniki porównać z wynikami obliczeń.

Wyniki pomiarów:

$$V_1 =$$
_____V, $V_2 =$ ____V, $V_3 =$ ____V.

	dzić pomiarowo poprawność zasady superpozycji na przykładzie badanego du. W tym celu:
a.	Zmierzyć prąd I ₂ przy włączonych obu źródłach.
	$I_2 = \underline{\hspace{1cm}} mA$
b.	Źródło E_6 zastąpić zwarciem. Zmierzyć prąd I_2 przy zasilaniu jedynie źródłem $E1$.
	$I_{2E1} = \underline{\qquad} mA$
c.	Źródło E_1 zastąpić zwarciem. Zmierzyć prąd I_2 przy zasilaniu jedynie źródłem $E6$.
	$I_{2E6} = \underline{\qquad} mA$
d.	Wykonać sprawdzenie:
I_{2}	$E_1 + I_{2E6} =m A$?=? $I_2 =m A$
Wnioski:	
5. Spraw obwo	dzić słuszność twierdzenia o wzajemności oczkowej na przykładzie badanego du.
idealne źr samej wa	enie o wzajemności oczkowej: W dowolnym pasywnym obwodzie liniowym odło napięciowe włączone do gałęzi k , wywoła w gałęzi l przepływ prądu o tertości, jaką wywołałoby w gałęzi k włączenie tego źródła do gałęzi l . (k , l – gałęzie obwodu).
W celu sr	orawdzenia powyższego twierdzenia należy:
	Jedno ze źródeł w obwodzie z punktu 1. zastąpić amperomierzem, zanotować wskazanie amperomierza I _a .
	$I_a = \underline{\hspace{1cm}} mA$,
b.	Następnie zamienić miejscami źródło z amperomierzem i ponownie odczytać wskazanie amperomierza \mathbf{I}_{b} .
	$I_b = \underline{\hspace{1cm}} mA$, naszkicować schematy utworzonych obwodów:
a)	b)

6. Wykreślić charakterystykę zewnętrzna I(U) obwodu z rys.1 dla zacisków A, B (rys. 2.)

- 7. Wyznaczyć parametry zastępczego dwójnika Thevenina dla obwodu z punktu 6.
 - a. Na podstawie charakterystyki zewnętrznej wykreślonej w punkcie 6.

$$E_T = U\big|_{I=0} = \underline{\qquad} [V]$$

$$R_T = \frac{E_T}{I|_{U=0}} = \underline{\qquad} [\Omega]$$

Wskazówka: Wartość $I\big|_{U=0}$ odczytać z wykresu, lub wyznaczyć stosując twierdzenie o podobieństwie trójkątów.

b. Zmierzyć parametry zastępczego dwójnika Thewenina

$$E_T = V$$
 (pomiar wykonany w punkcie 6)

$$R_T$$
=_____ Ω (pomiar wykonać omomierzem, źródła napięciowe zastąpić zwarciami)

c. W celu sprawdzenia poprawności uzyskanych parametrów, zbudować obwód dwójnika Thewenina (rys. 3.) wykonać pomiary jak w punkcie 6. Porównać wyniki.

Pomiary:

$R_{obc}[\Omega]$	I [mA]	V [V]
∞	0	

OBWODY I SYGNAŁY LABORATORIUM ZJAWISKOWE Ćwiczenie 2: Obwody prądu zmiennego. Grupa: Nazwiska: Data, godzina:

1. Obwód RC.

Rys. 1.

Zbudować obwód z rysunku 1.

Jako źródła napięcia należy użyć generatora funkcyjnego (włączyć funkcje sinus). Obliczenia i pomiary wykonać dla czterech częstotliwości z zakresu 100-300Hz. Należy użyć elementów: $R\sim1k\Omega$, $C\sim1uF$.

a) Zaobserwować na oscyloskopie przebiegi napięć U_{RC} oraz U_R (proporcjonalne do prądu I). Naszkicować oscylogram. Podpisać przebiegi.

Wnioski:

b) Wykonać następujące obliczenia:

Częstotliwość	R	X_{C}	<u>Z</u>	IZI	φ
f1=					
f2=					
f3=					
f4=					

$$X_C = \frac{1}{2\pi fC}; \quad \underline{Z} = R - j \cdot X_C = |Z| \cdot e^{j\varphi}$$

Dla dwóch	przypadków	narysować	w skali	trójkąt	impedancji.	Na rysunku	zaznaczyć
R, X_C, Z , C	p	-		-		-	

c) Wykonać następujące pomiary:

Częstotliwość	I	U_R	$U_{\rm C}$	U_{RC}	$\phi(I, U_{RC})$
f1=					
f2=					
f3=					
f4=					

Do pomiaru kąta fazowego $\phi(I,\,U_{RC})$ wykorzystać miernik częstotliwości (funkcja $A{\to}B)$ lub oscyloskop.

d) Na podstawie powyższych pomiarów wykonać następujące obliczenia obliczenia, porównać wyniki:

Częstotliwość	$ Z = U_{RC}/I$	Zgodność z pkt. b) T/N	φ = -atan(U _C /U _R)	Zgodność z pkt. b) T/N
f1=				
f2=				
f3=				
f4=				

e) Wykonać obliczenia mocy:

Częstotliwość	$P=R*I^2$	$Q=X_C*I^2$	$S=U_{RC}*I$
f1=			
f2=			
f3=			
f4=			

f) Dla dwóch wybranych częstotliwości sprawdzić, na podstawie wyników pomiarów z punktu c, poprawność równania: U_{RC} ?=? U_R+U_C
Wnioski:
g) Dla dwóch wybranych częstotliwości narysować w skali wykresy wektorowe napięć i prądu w badanym obwodzie.

2. Wyznaczanie parametrów cewki – metoda trzech woltomierzy.

Rysunek 3 przedstawia wykres wektorowy napięć w obwodzie z rysunku 1. Woltomierze mierzą moduły wektorów U_1 , U_2 oraz U_3 . Na podstawie wykresu wektorowego można, z wykorzystaniem twierdzenia cosinusów, wyznaczyć parametry rzeczywistej cewki R, L.

$$\cos \varphi = \frac{U_{1}^{2} - U_{2}^{2} - U_{3}^{2}}{2U_{2}U_{3}}$$

$$R = \frac{U_{3} \cdot \cos \varphi}{U_{2}} R_{p}$$

$$Z = \frac{U_{3}}{U_{2}} R_{p}$$

 $L=\frac{\sqrt{Z^2-R^2}}{2\pi f}$ Wykonać pomiary w układzie z rysunku 2. Przyjąć wartość $R_p\sim30\Omega$, f ~10 kHz. Wyniki:

Na podstawie podanych wzorów obliczyć parametry cewki R,L.

OBWODY I SYGNAŁY LABORATORIUM ZJAWISKOWE Ćwiczenie 3: Rezonans napięć Grupa: Nazwiska: Data, godzina:

Rys. 2.

Zbudować obwód z rysunku 2. Rezystor R_E symbolizuje rezystancje wewnętrzną generatora i nie należy go włączać dodatkowo do obwodu (R_E =50 Ω). Wybrać następujące wartości elementów R~30 Ω , L~40mH, C=~1uF.

Zmierzone wartości elementów:

$$R=\underline{\hspace{1cm}}\Omega, C=\underline{\hspace{1cm}}uF, E=\underline{\hspace{1cm}}V.$$

(pomiar napięcia źródła należy wykonać przy nieobciążonym wyjściu generatora)

a) Zaobserwować na oscyloskopie napięcia U_{RLC} oraz U_R (proporcjonalne do prądu). Obserwacje wykonać dla różnych częstotliwości, wyznaczyć na ich podstawie częstotliwość rezonansową.

$$f_r = \underline{\hspace{1cm}} Hz$$

Wnioski:

Naszkicować oscylogramy dla dwóch przypadków $f>f_r$ oraz $f<f_r$, podpisać przebiegi, określić wzajemne położenie napięcia U_{RLC} i prądu I (napięcie U_R jest proporcjonalne do prądu I) dla częstotliwości $f>f_r$, $f<f_r$ oraz $f=f_r$.

b) Wykonać Pomiary dla zakresu częstotliwości 500 – 1100 Hz, punkty pomiarowe zagęścić dla częstotliwości bliskich częstotliwości rezonansowej.

f [Hz]	U _R [V]	$I=U_R/R[mA]$	$U_{L}[V]$	U _C [V]	U _{LC} [V]	U _{RLC} [V]

- c) Sporządzić następujące wykresy
 - 1. $U_L(f)$, $U_C(f)$, $U_{LC}(f)$ (na jednym wykresie)
 - 2. I(f)

Na podstawie pomiarów oraz wykresów wyznaczyć częstotliwość rezonansową (zaznaczyć ją na wykresie)

$f_{r}=$			Н	7
-1	 			-

Na podstawie wyznaczonej częstotliwości rezonansowej oraz warunku rezonansu wyznaczyć indukcyjność cewki.

L=____mH

d) Wykreślić w skali wykresy wektorowe napięć i prądów w badanym układzie dla następujących 3 przypadków: $f>f_r$, $f=f_r$ oraz $f< f_r$.
Wnioski:
WINOSKI.
e) Wyznaczyć pomiarowo maksymalne wartości napięć $U_{L}\mbox{oraz}U_{C}$
U_{Lmax} =V przy f=Hz
U_{Cmax} =V przy f=Hz
Pomiary wykonano przy wartości napięcia źródłowego:
E=V
Wnioski:

OBWODY I SYGNAŁY

LABORATORIUM ZJAWISKOWE

Ćwiczenie 4: Obwody sprzężone magnetycznie

Grupa: Nazwiska:

Data, godzina:

1.

Rys. 1

Zbudować obwód z rysunku 1.

Rezystancja R_E jest wewnętrzną rezystancją generatora, rezystancje R_1 oraz R_2 to rezystancje cewek (nie trzeba ich dodatkowo włączać w obwód). R_E =50 Ω .

Cewki mają następujące parametry:

 $L_1 = 1 \text{ mH } R_1 = 0.7 \Omega$

 $L_2 = 2 \text{ mH R}_2 = 1.2 \Omega$

Wykonać pomiary prądu i napięcia dla dodatniego i ujemnego sprzężenia cewek. Zidentyfikować zaciski jednoimienne.

Wyniki pomiarów:

· · · J ====== P = ====== = · · · ·							
sprzężenie	U[V]	I[mA]	Z=U/I $[\Omega]$				
+							
-							

$$f = Hz$$

Na podstawie wyników pomiarów wyznaczyć M, k, oraz (L₁+L₂).

Wskazówka:

$$Z_{\pm} = R_1 + R_2 + j(X_{L1} + X_{L2} \pm 2X_M)$$

$$K = \frac{M}{\sqrt{L_1 \cdot L_2}}$$

Wyniki:

$$M = ___ mH$$
, $k = ___, L_1 + L_2 = __mH$

Wnioski:

2.

Zbudować obwód transformatora powietrznego przedstawiony na rysunku 2.

Zaobserwować zmiany napięcia indukowanego w cewce L_2 występujące podczas zmiany wzajemnego położenia cewek.

Na podstawie pomiarów I_1 oraz U_2 wyznaczyć współczynniki M oraz k. Pomiary i obliczenia wykonać dla dwóch częstotliwości

Wskazówka: $U_2 = X_M \cdot I_1$

Wyniki pomiarów:

f	$I_1[mA]$	$U_2[V]$
$f_1 = \underline{\hspace{1cm}} Hz$		
$F_2 = \underline{\hspace{1cm}} Hz$		

Wyniki obliczeń:

f	M [mH]	k
$f_1 = \underline{\hspace{1cm}} Hz$		
$F_2 = \underline{\hspace{1cm}} Hz$		