- Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G).
- Cada aresta é um par (não ordenado) de vértices distintos.
- Se xy é uma aresta, então os vértices x e y são os extremos desta aresta. Dizemos também que x e y estão conectados, ou que são adjacentes ou vizinhos.

- A ordem de um grafo é G é o número de vértices de G.
- Notação: n = |V(G)| e m = |E(G)|
- O tamanho de um grafo G é a soma n + m
- Grafo trivial: é aquele com um único vértice (n = 1)
- Grafo nulo: é aquele com $V(G) = \emptyset$ (isto é, n = 0)

- Um multigrafo é uma generalização do conceito de grafo simples. Em um multigrafo podem existir:
- arestas paralelas: são arestas que conectam os mesmos vértices.
- ▶ laços: um laço é uma aresta com extremos idênticos.

O mesmo grafo pode ter várias representações geométricas diferentes.

- A vizinhança aberta de um vértice v é o conjunto de seus vizinhos. Notação: N(v) = vizinhança aberta de v.
- A vizinhança fechada de um vértice é definida como: $N[v] = N(v) \cup \{v\}.$

- O grau de um vértice é o número de vezes em que ele ocorre como extremo de uma aresta. (Esta definição serve para grafos e multigrafos.)
- Em um grafo simples, o grau de vértice é igual ao número de vizinhos que ele possui.
- Notação: d(v) = grau do vértice v
- Em um grafo simples, é claro que d(v) = |N(v)|.

- Um grafo é regular quando todos os seus vértices têm o mesmo grau.
- Um grafo é k-regular quando todos os seus vértices têm grau igual a k.

O grau máximo de um grafo G é definido como:

$$\Delta(G) = \max \{ d(v) \mid v \in V(G) \}.$$

■ O grau mínimo de um grafo G é definido como:

$$\delta(G) = \min \{ d(v) \mid v \in V(G) \}.$$

■ Dado um grafo G, a sequência de graus de G é a sequência

$$(d_1, d_2, \dots, d_{n-1}, d_n)$$

onde:

- $d_1 \le d_2 \le \dots \le d_{n-1} \le d_n$
- $V(G) = \{ v_1, v_2, \dots, v_{n-1}, v_n \}$
- \mathbf{I}_{i} é o grau do vértice v_{i} , para j = 1, 2, ..., n

- Um vértice é isolado quando tem grau zero (não possui vizinhos).
- Um vértice v é universal quando está conectado por arestas a todos os demais vértices, isto é:

$$N(v) = V(G) \setminus \{v\}.$$

■ Se v é um vértice universal então d(v) = n - 1.

■ O complemento de um grafo G é o grafo G tal que

$$V(\bar{G})=V(G)$$

$$e$$
 $E(\bar{G})=\{ xy \mid xy \notin E(G) \}.$

■ Complemento de um grafo G

- Um subgrafo de um grafo G é um grafo H tal que $V(H) \subseteq V(G)$ e $E(H) \subseteq E(G)$.
- H é um subgrafo próprio de G quando H é um subgrafo de G que não é o próprio G.

- Um subgrafo gerador ("spanning subgraph") de G é um subgrafo H de G tal que V(H) = V(G).
- Em outras palavras, *H* tem os mesmos vértices de *G*, mas nem todas as arestas de *G*.

■ Subgrafo gerador: um exemplo ("árvore geradora")

- Seja *H* um subgrafo de *G*.
- H é um subgrafo induzido por um conjunto de vértices X se V(H) = X e vale a seguinte propriedade:

se
$$xy \in E(G)$$
 e $x,y \in X$ então $xy \in E(H)$.

■ Notação: H = G[X]

- Seja *H* um subgrafo de *G*.
- H é um subgrafo induzido por um conjunto de arestas E' se vale a seguinte propriedade:

$$E(H) = E'$$
 e
$$V(H) = \{ x \mid x \text{ \'e extremo de alguma aresta de } E' \}.$$

■ Notação: *H* = *G*[*E*']

- Definição: Se S é um subconjunto de vértices de G, então $G S = G[V(G) \setminus S]$.
- Notação: Se v é um vértice de G então $G v = G \{v\}$.
- Definição: Se E' é um subconjunto de arestas de G, então o grafo G E' é definido da seguinte forma:
 - V(G E') = V(G)
 - $E(G E') = E(G) \setminus E'$
- Notação: Se e é uma aresta de G então G e = G {e}.

■ Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 1: se o grafo G não contém triângulos, então "ser livre de triângulos" é uma propriedade hereditária por subgrafos e por subgrafos induzidos.

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 1: se o grafo G não contém triângulos, então "ser livre de triângulos" é uma propriedade hereditária por subgrafos e por subgrafos induzidos.

Se P é uma propriedade hereditária por subgrafos então

P é hereditária por subgrafos induzidos

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 2: se o grafo G possui um vértice universal, então "possuir um vértice universal" não é uma propriedade hereditária por subgrafos, nem por subgrafos induzidos.

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 2: se o grafo G possui um vértice universal, então "possuir um vértice universal" não é uma propriedade hereditária por subgrafos, nem por subgrafos induzidos.

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 3: se o grafo G é completo (isto é, quaisquer dois vértices de G são vizinhos), então "ser completo" não é uma propriedade hereditária por subgrafos, mas é uma propriedade hereditária por subgrafos induzidos.

- Dado um grafo G, uma propriedade é hereditária por subgrafos [induzidos] se, quando ela vale para G, vale também para todos os subgrafos [induzidos] de G.
- Exemplo 3: se o grafo G é completo (isto é, quaisquer dois vértices de G são vizinhos), então "ser completo" não é uma propriedade hereditária por subgrafos, mas é uma propriedade hereditária por subgrafos induzidos.

■ Dois grafos G e H são disjuntos em vértices se $V(G) \cap V(H) = \emptyset$.

■ Dois grafos G e H são disjuntos em arestas se $E(G) \cap E(H) = \emptyset$.

- Se G e H são disjuntos em vértices, então é claro que são também disjuntos em arestas.
- Porém, G e H podem ser disjuntos em arestas tendo alguns vértices em comum.

■ A união de dois grafos G e H é o grafo G ∪ H tal que:

$$V(G \cup H) = V(G) \cup V(H)$$
$$E(G \cup H) = E(G) \cup E(H)$$

■ A interseção de dois grafos G e H é o grafo G ∩ H tal que:

$$V(G \cap H) = V(G) \cap V(H)$$

$$E(G \cap H) = E(G) \cap E(H)$$

■ Teorema do Aperto de Mãos:

Em qualquer grafo simples G, vale que

$$2m = \sum_{v \in V(G)} d(v)$$

O Teorema do Aperto de Mãos vale também para multigrafos.

Em qualquer multigrafo G, vale que

$$2m = \sum_{v \in V(G)} d(v)$$

■ Teorema do Aperto de Mãos

Em qualquer grafo/multigrafo G, vale que:

$$2m = \sum_{v \in V(G)} d(v)$$

■ Corolário:

"Em qualquer grafo/multigrafo, a quantidade de vértices de grau ímpar é par."

■ Dois grafos G e H são isomorfos se existe uma bijeção

$$f: V(G) \rightarrow V(H)$$

tal que

$$xy \in E(G)$$
 se e somente se $f(x)f(y) \in E(H)$.

■ Em outras palavras, G e H são o "mesmo" grafo, a menos de rotulações diferentes para os vértices.

- Um grafo G é um grafo completo se quaisquer dois vértices de G são vizinhos.
- \blacksquare O número de arestas de um grafo completo é n(n-1)/2.
- Notação: K_n = grafo completo com n vértices

- Uma clique em um grafo G é um conjunto de vértices $K \subseteq V(G)$ tal que G[K] é completo.
- Um conjunto estável ou independente em um grafo G é um subconjunto de vértices $S \subseteq V(G)$ tal que G[S] é um grafo sem arestas.
- Qualquer par de vértices de um conjunto independente é formado por vértices não adjacentes.
- Notação: I_n = grafo cujos vértices formam um conjunto independente de tamanho n.

conjuntos independentes e cliques

Um passeio é uma sequência de vértices

$$V_1$$
 , V_2 , V_3 , ... , V_{k-1} , V_k

onde $v_{j-1}v_j \in E(G)$ para j = 2, ..., k.

Note que em um passeio pode haver repetição de vértices e arestas.

Uma trilha é um passeio

$$V_1$$
 , V_2 , V_3 , ... , V_{k-1} , V_k

onde as <u>arestas</u> são todas distintas.

Note que em uma trilha pode haver repetição de vértices, mas não de arestas.

■ Um caminho é um passeio

$$V_1$$
, V_2 , V_3 , ..., V_{k-1} , V_k

onde os <u>vértices</u> são todos distintos.

- Note que em um caminho, como não pode haver repetição de vértices, não há repetição de arestas.
- Todo caminho é uma trilha, mas nem toda trilha é um caminho.
- O comprimento de um caminho é o número de arestas neste caminho.

■ Um passeio fechado é um passeio

$$V_1$$
 , V_2 , V_3 , ... , V_{k-1} , V_k

onde
$$v_1 = v_k$$
.

- A mesma definição se aplica a trilhas fechadas.
- Note que não pode haver "caminho fechado", pois em um caminho não há repetição de vértices.

■ Um ciclo é um passeio

$$V_1, V_2, V_3, \dots, V_{k-1}, V_k$$

onde $v_1, v_2, v_3, \dots, v_{k-1}$ é um caminho e $v_k = v_1$.

- Por definição, em um ciclo devemos ter $k \ge 3$.
- O comprimento de um ciclo é o número de vértices (ou arestas) do ciclo.

Exemplo de ciclo com comprimento 6:

a,b,c,f,g,h,a

- Uma corda é uma aresta que liga dois vértices não consecutivos de um ciclo (ou caminho).
- Um ciclo induzido C é um subgrafo induzido por um conjunto de vértices tal que C é um ciclo sem cordas.
- Um caminho induzido P é um subgrafo induzido por um conjunto de vértices tal que P é um caminho sem cordas.
- Notação: C_k = ciclo sem cordas com k vértices.
- Notação: P_k = caminho sem cordas com k vértices.

Exemplo de ciclo induzido:

a,b,c,d,a

Exemplo de caminho induzido:

a,b,c,f,e

Exemplo de caminho não induzido:

a,b,c,f,g

Exemplo de caminho não induzido:

a,b,c,f,g

- Um conjunto S é maximal em relação a uma propriedade P se:
- √ S satisfaz P;
- ✓ não existe conjunto S' que satisfaz P e que contenha propriamente S.
- Um conjunto S é máximo em relação a uma propriedade P se:
- √ S satisfaz P;
- ✓ não existe conjunto S' que satisfaz P e que possua mais elementos do que S.
- Todo conjunto máximo é também maximal, mas nem todo conjunto maximal é máximo.

- Um conjunto S é minimal em relação a uma propriedade P se:
- √ S satisfaz P;
- ✓ não existe conjunto S' que satisfaz P e que esteja propriamente contido em S.
- Um conjunto S é mínimo em relação a uma propriedade P se:
- √ S satisfaz P;
- ✓ não existe conjunto S' que satisfaz P e que possua menos elementos do que S.
- Todo conjunto mínimo é também minimal, mas nem todo conjunto minimal é mínimo.

Exemplo: uma cobertura de vértices é um subconjunto de vértices com a propriedade de que todas as arestas têm pelo menos um de seus extremos no conjunto

Vamos aplicar os conceitos de minimal e mínimo a coberturas de vértices

- Um grafo G é conexo se existe caminho entre qualquer par de vértices de G.
- Caso contrário, o grafo é desconexo.
- Uma componente conexa de um grafo G é um subgrafo conexo maximal de G.
- Notação: w(G) = número de componentes conexas de G
- G é conexo se e somente se w(G) = 1.

Exemplo de grafo desconexo:

$$V(G) = \{a,b,c,d,e,f,g,h\}$$

$$E(G) = \{ab,bg,gh,ha,ef,fc,cd,de\}$$

Exemplo de grafo desconexo:

$$V(G) = \{a,b,c,d,e,f,g,h\}$$

duas componentes conexas!

- A distância entre dois vértices x e y é o comprimento do menor caminho de x a y no grafo.
- Notação: dist(x, y) = distância entre x e y
- Obs: para qualquer x, dist(x, x) = 0.
- A excentricidade de um vértice v em um grafo G é definida como:

$$exc(v) = max \{ dist(v, x) \mid x \in V(G) \}.$$

excentricidades dos vértices

O diâmetro de um grafo G é definido como

$$diam(G) = max \{ exc(v) \mid v \in V(G) \}.$$

■ O centro de um grafo G é o conjunto de vértices de G que possuem excentricidade mínima.

o diâmetro de T é 5

o centro de T é o conjunto C = {d,e}

■ A matriz de adjacências de um grafo G é uma matriz A_{n x n} onde:

$$A[i, j] = 1$$
 se $ij \in E(G)$
e
 $A[i, j] = 0$ se $ij \notin E(G)$

- A matriz de adjacências é simétrica e possui zeros na sua diagonal principal
- Utilizando a matriz de adjacências como estrutura de dados, basta armazenar o triângulo superior da matriz
- A matriz de adjacências gasta memória quadrática (O(n²)), mas o tempo de acesso é constante -- gasta-se tempo O(1) para decidir se dois vértices são vizinhos.

	а	b	С	d	е	f
a	0	1	0	1	0	1
b	1	0	1	0	0	1
С	0	1	0	1	1	0
d	1	0	1	0	1	0
е	0	0	1	1	0	1
f	1	1	0	0	1	0

matriz de adjacências

- A lista de adjacências de um grafo G é um outro tipo de estrutura de dados para armazenar G
- O número de células de memória em uma lista de adjacências é n+2m
- Gasta-se tempo O(n) no pior caso para decidir se dois vértices são vizinhos.

а	b	d	f
b	а	С	f
С	b	d	е
d	а	С	е
е	С	d	f
f	а	b	е

listas de adjacência

- Um grafo G é bipartido se V(G) pode ser <u>particionado</u> em conjuntos X e Y de modo que toda aresta de G tem um extremo em X e outro Y.
- Como consequência desta definição, X e Y são conjuntos independentes.
- Um grafo bipartido G será bipartido completo se, para qualquer par de vértices x,y, onde $x \in X$ e $y \in Y$, temos que $xy \in E(G)$.
- Notação: $K_{p,q}$ = grafo bipartido completo com p vértices em X e q vértices em Y. (Neste caso, o grafo tem p.q arestas.)

Duas representações do grafo $K_{3,3}$

Duas representações do grafo $K_{3,3}$ (grafos bipartidos também são chamados 2-coloríveis)

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (=>) Por contradição. Suponha que G tenha um ciclo ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.
- (<=) Por construção.</p>

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.

- Caracterização de grafos bipartidos
- Teorema: G é bipartido sss G não contém ciclos de comprimento ímpar.

Logo, G é bipartido!

■ (<=) Por construção.</p>

