Теоретическ	ий конспе	кт по теор	веру
Владимир Латыпов donrumata03@gmail.com			

Содержание

1 Об инегралах	. 3
1 2 Числовые характеристики случайных величин	
3 Матстат	
3.1 Metal Momentar	6

1 Об инегралах

Можно рассматривать функции от случайных векторов. Если $g:\mathbb{R}^n \to \mathbb{R}$, то g(X) — случайная величина.

Более того, можно интегрировать эту штуку по вероятностному пространству Ω :

$$\int_{\Omega} g(X(\omega))P(d\omega) = \int_{\mathbb{R}^n} g(x)P_{X(dx)}$$

Forward measure — мера при отображении.

Теорема 1.1 (theorem 1: Фубини) Пусть X — случайный вектор в \mathbb{R}^n , $g:\mathbb{R}^n \to \mathbb{R}$ — борелевская функция. Тогда

$$\int g(x,y)P_{X,Y}(\,\mathrm{d} x,\mathrm{d} y) = \int \left[\int g(x,y)\,\mathrm{d} F_{Y(y)}\right]\mathrm{d} F_{X(x)} =$$

$$= \int \left[\int g(x,y)\,\mathrm{d} F_{X(x)}\right]\mathrm{d} F_{Y(y)}$$

(один интеграл — по Forward measure, другой — по мере Лебега-Стилтьеса)

2 Числовые характеристики случайных величин

Определение 2.2 Пусть X — случайная величина. Тогда её математическим ожиданием называется число

$$\mathbb{E}X = \int_{\mathbb{D}} x \, \mathrm{d}F_{X(x)}$$

(интеграл Лебега-Стилтьеса)

Замечание 2.3 Если X — дискретная случайная величина, то

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x P_{X(x)}$$

Замечание 2.4 Если X — абсолютно непрерывная случайная величина, то

$$\mathbb{E}X = \int_{\mathbb{R}} x p_{X(x)} \, \mathrm{d}x$$

Свойство 2.5 (property 5: Функция от случайной величины) $g: \mathbb{R} \to \mathbb{R}$ — борелевская функция, X — случайный вектор. Тогда

$$\mathbb{E}\underbrace{g(X_1,...,X_n)}_{Y} = \int y \,\mathrm{d}F_{Y(y)} = \int_{\mathbb{R}^n} g(x_1,...,x_n) P_{\mathrm{d}x_1,...,\,\mathrm{d}x_n}$$

Свойство 2.6 (property 6: Линейность) $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$

Свойство 2.7 (property 7: Неотрицательность)

- $X \ge 0$ почти наверное $\Rightarrow \mathbb{E} X \ge 0$.
- $X \ge 0, \mathbb{E}X = 0 \Rightarrow X = 0$ почти наверное.

Свойство 2.8 (property 8: Монотонность) $X \leq Y$ почти наверное, то $\mathbb{E}X \leq \mathbb{E}Y$

Свойство 2.9 (property 9: Матожидание произведения независимых случайных величин) $\mathbb{E} XY = \mathbb{E} X \mathbb{E} Y$

Теорема 2.10 (theorem 10: Неравенство Маркова) Пусть X — неотрицательная случайная величина, $\exists \mathbb{E} X, \, a>0$. Тогда

$$P(X \ge a) \le \frac{\mathbb{E}X}{a}$$

Доказательство

$$\mathbb{E} X = \int_0^\infty x p_{X(x)} \, \mathrm{d} x \geq \int_a^\infty a p_{X(x)} \, \mathrm{d} x \geq a \int_a^\infty p_{X(x)} \, \mathrm{d} x = a P(X \geq a)$$

Свойство 2.11 $\mathbb{E} X = \int_0^\infty P(X \geq x) \, \mathrm{d} x$ для абсолютно непрерывных случайных величин. $\mathbb{E} X = \sum_{x \in \mathbb{R}} P(X \geq x)$ для дискретных случайных величин.

Определение 2.12 Пусть X — случайная величина. Тогда её дисперсией называется число

$$\operatorname{Var} X = \mathbb{D} X = \mathbb{E} (X - \mathbb{E} X)^2$$

Стандартным отклонением случайной величины X называется число $\sigma_X = \sqrt{\operatorname{Var} X}$. Она часто используется вместо дисперсии, потому что она имеет ту же размерность, что и X.

Свойство 2.13 (property 13: Неотрицательность) $Var X \ge 0$

Свойство 2.14 (property 14: Связь с матожиданием) $\operatorname{Var} X = \mathbb{E} X^2 - \left(\mathbb{E} X\right)^2$

Свойство 2.15 (property 15: Квадратичная однородность) $Var(aX + b) = a^2 Var X$

Свойство 2.16 (property 16: Дисперсия суммы (разности))

$$Var(X \pm Y) = Var X + Var Y \pm 2 Cov(X, Y)$$

(для независимых случайных величин Cov(X, Y) = 0)

Свойство 2.17 (property 17: Нулевая дисперсия и константность) $\operatorname{Var} X = 0 \Leftrightarrow X = C$ почти наверное

Теорема 2.18 (theorem 18: Неравенство Чебышёва) Пусть X — случайная величина, $\exists \mathbb{E} X, \operatorname{Var} X, a > 0$. Тогда

$$P(|X - \mathbb{E}X| \ge a) \le \frac{\operatorname{Var}X}{a^2}$$

Доказательство

$$P(|X - \mathbb{E}X| \geq a) = P\Big((X - \mathbb{E}X)^2 \geq a^2\Big) \leq \frac{\mathbb{E}(X - \mathbb{E}X)^2}{a^2} = \frac{\operatorname{Var}X}{a^2}$$

Определение 2.19 Пусть X — случайная величина. Тогда для $\alpha \in (0,1)$

$$q_{\alpha}$$
— квантиль порядка α — число, такое что
$$\begin{cases} P(x \geq q_{\alpha}) \geq 1 - \alpha \\ P(x \leq q_{\alpha}) \geq \alpha \end{cases}$$

Для непрерывной случайной величины X квантиль порядка α — это решение уравнения $F_{X(x)}=\alpha$. Если F_X строго возрастает, то $q_{\alpha}=F_X^{-1}(\alpha)$.

Для дискретной случайной величины X квантиль порядка α — это минимальное x, такое что $P_{X(x)} \geq \alpha$.

Определение 2.20 Медиана случайной величины $\operatorname{med} X$ — это квантиль порядка $\frac{1}{2}$.

Теорема 2.21

$$\operatorname{med} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \ |X - x|$$

Матожидание тоже кое-что оптимизирует, но не так круто.

Теорема 2.22

$$\mathbb{E} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} (X - x)^2$$

Почему не так круто, спросите вы? Потому что матожидание — это не медиана, а среднее. А среднее — это для средних, посредственных людей. А медиана — это для лучших. © Copilot

Определение 2.23 Момент порядка k случайной величины X — это число $\mathbb{E} X^k$.

Определение 2.24 Центральный момент порядка k случайной величины X — это число $\mathbb{E}(X-\mathbb{E}X)^k$.

Определение 2.25 Абсолютный момент порядка k случайной величины X — это число $\mathbb{E} \ |X|^k.$

Определение 2.26 Абсолютный центральный момент порядка k случайной величины X — это число $\mathbb{E} \ |X - \mathbb{E} X|^k$.

Пример 2.27 Коэфициент асимметрии случайной величины X — это, с точностью до коэфициента, центральный момент порядка 3: $\mathbb{E} \frac{(X-\mathbb{E} X)^3}{\sigma^3}$.

Коэфициент эксцесса случайной величины X — это, с точностью до коэфициента, центральный момент порядка 4: $\mathbb{E} \frac{(X-\mathbb{E} X)^4}{\sigma^4} - 3$. Минус три потому что мы хотим, чтобы эксцесс нормального распределения был нулевой.

Определение 2.28 Мода случайной величины X — это число $\operatorname{argmax}_{x \in \mathbb{R}} p_{X(x)}.$

Если мода одна, то говорят, что случайная величина X унимодальна.

Определение 2.29 Ковариация случайных величин X и Y — это число $\mathrm{Cov}(X,Y)=\mathbb{E}(X-\mathbb{E}X)(Y-\mathbb{E}Y).$

Свойство 2.30 $\mathrm{Cov}(X,Y) = \mathbb{E} XY - \mathbb{E} X\mathbb{E} Y$, то есть для независимых случайных величин $\mathrm{Cov}(X,Y) = 0$. (Но обратное неверно: если $\mathrm{Cov}(X,Y) = 0$, то случайные величины могут быть зависимыми)

Свойство 2.31 Cov(X, X) = Var X.

Свойство 2.32 (property 32: Симметричность) Cov(X,Y) = Cov(Y,X).

Свойство 2.33 (property 33: Билинейность) Cov(aX + b, Y) = a Cov(X, Y).

3 Матстат

3.1 Метод моментов

Цель: с помощью выборки оценить параметр $\theta \in \Theta \subset \mathbb{R}^d$.

$$X_1,...X_n$$
—i.i.d. F_{Θ} .

 $g_1, ..., g_d$ — координаты параметра.

$$Eg_{i(X_1)} = m_{i(\Theta)}$$

 \mapsto перейдём к выборке.

$$\left\{ \frac{1}{n} \sum_k g_{i(X_k)} {=} m_1(\Theta) \right.$$