



#### **EEE108 Electromagnetism and Electromechanics**

### Lecture 8

# **Mini-review of Electrostatics Electric Current**

**Dr. Jinling Zhang** 

Dept. of Electrical and Electronic Engineering University of Xi'an Jiaotong-Liverpool Email: jinling.zhang@xjtlu.edu.cn

## The very basic: Electric Force -- Coulomb's Law

The electric force between charges  $Q_1$  and  $Q_2$ :

 $Q_1$  on  $Q_2$ :

$$\mathbf{F_{12}} = k_e \frac{Q_1 Q_2}{r^2} \mathbf{a}_r$$

where 
$$k_e = \frac{1}{4\pi\varepsilon_0} = 8.9875 \times 10^9 \text{ N} \cdot \text{m}^2 / C^2$$

k<sub>e</sub>: called Coulomb constant

 $\varepsilon_0$ : permittivity of free space,  $= 8.85 \times 10^{-12} C^2 / N \cdot m^2$ 

 $\mathbf{a}_{r}$ : unit vector from  $Q_1$  to  $Q_2$ 

 $Q_2$  on  $Q_1$ :  $\mathbf{F}_{21} = -\mathbf{F}_{12}$  (b)

interaction between two charges

NB: this is in principle, all the rest follows from this and the superposition principle

## Today

- Mini-review of Electrostatics
- Electric Current

Module EEE108

#### Principle of Superposition The very basic:

When more than twocharges are present, the net force on any one charge is the vector sum of the forces from other charges.

$$\mathbf{F}_{j} = \sum_{\substack{i=1 \ j 
eq i}}^{N} \mathbf{F}_{ij}$$

Extremely important because it allows us to transform complicated problems into sum of small, simple problems that we know how to solve.

Module EEE108 Module EEE108

## Electric Force, Electric Field and **Electric Potential**

- •Solving problems in terms of F<sub>coulomb</sub> is not always convenient F depends on probe charge q
- •We get rid of this dependence introducing the Electric Field

$$\mathbf{E} = \mathbf{F} / q_0$$
,  $\mathbf{E} = k_e \frac{q}{r^2} \mathbf{a}_r$  for a point charge

•Advantages and disadvantages of E

**E** describes the properties of space due to the presence of charge qIt's a vector → hard integrals when applying superposition ••



•Introduce Electric Potential  $\varphi$ 

 $\varphi(P)$  is the work done to move a unit positive charge from infinity to P(x,y,z)

$$\varphi = -\int_{-\infty}^{P} \mathbf{E} \cdot d\mathbf{l}$$
 when  $\varphi(\infty) = 0$ 

Advantages: superposition still holds but simpler calculation (scalar)



Module EEE108

### **Electrostatics Problems**

In electrostatics there are 3 different ways of describing a problem

 $\rho \rightarrow \mathbf{E}$ •General case:

•  $\mathbf{E} = k_e \frac{Q}{r^2} \mathbf{a}_r$  for a point charge Q

• Superposition principle:

$$d\mathbf{E} = k_e \frac{dq}{r^2} \mathbf{a}_r \implies \mathbf{E} = \int d\mathbf{E}$$

•Special cases:

•For symmetry systems: Gauss's law:  $\oint \mathbf{E} \cdot d\mathbf{s} = \frac{Q_{enc}}{\mathbf{E}}$ 

Gauss's law is always true but not always useful:

■Symmetry is needed!

Main step: choose the "right" Gaussian surface so that E is constant on the surface of integration

Module EEE108

Charge density

 $\varphi_{(x,y,z)}$ 

Electric potential

 $\mathbf{E}(x,y,z)$ 

Electric field

## **Electrical Potential Energy and Electrical Potential**

- Similar to gravitation, the electrostatic force  $\mathbf{F}_{a}$  is also conservative.
- The electric potential difference between points A and B is defined :

$$\Delta \varphi = -\int_{p}^{A} \mathbf{E} \cdot d\mathbf{l} = -\int_{p}^{A} (\mathbf{F}_{e} / q_{0}) \cdot d\mathbf{l}$$

The amount of work done to move an unit positive charge from B to A

• The electric potential energy to move a charge  $q_0$  from B to A is

$$\Delta U = q_0 \, \Delta \varphi$$

- Potential difference depends only on the source charge distribution.
- Potential energy difference exists only if a test charge is moved between the points.

Module FFF108

#### **Electrostatics Problems**

 $\rho \longrightarrow \varphi$ 

•General finite charge sources:

• 
$$\varphi = \frac{Q}{4\pi\varepsilon_0 r}$$
 For point charge  $Q$ 

•Superposition principle:

$$\varphi_{\rm L} = \frac{1}{4\pi\varepsilon_0} \int_{L}^{r} \frac{\rho_L}{r} dl$$



$$\varphi_{\rm S} = \frac{1}{4\pi\varepsilon_0} \iint_{S} \frac{\rho_{\rm S}}{r} dS \qquad \varphi_{\rm V} = \frac{1}{4\pi\varepsilon_0} \iiint_{V} \frac{\rho_{\rm V}}{r} dV$$

- •Special cases:
- •For symmetry systems: use Gauss's law to extract **E** and then integrate **E** to get  $\varphi$ :

### **Electrostatics Problems**

## $\varphi \rightarrow \rho$ and **E**

$$\varphi \rightarrow \mathbf{E}$$

$$\mathbf{E} = -\nabla \boldsymbol{\varphi}$$

•make sure you choose the best coordinate



#### $\varphi \rightarrow \rho$

Poisson's equation

$$\nabla^2 \varphi = -\rho / \varepsilon$$

$$\rho = -\varepsilon_0 \nabla^2 \varphi \qquad \Rightarrow \rho = -\varepsilon_r \varepsilon_0 \nabla^2 \varphi$$

Module EEE108

## Capacitors and Capacitance

• Capacitors and capacitance:

A capacitor is a device to store electric charge and potential energy.

The capacitance :  $C = Q/|\Delta \varphi|$ 

• Energy in a capacitor:

$$U = \frac{1}{2}CV^2 = \frac{1}{2}QV$$
 (Energy stored)  $u_E = \frac{1}{2}\varepsilon_0 E^2$  (Energy density)

• Dielectrics:

When a dielectric material is filled into a capacitor, the capacitance increases by a factor  $\varepsilon_r$ :  $C = \varepsilon_r C_0$ 

What should you remember?

- •Parallel plate capacitor: very well
- •Be able to derive the other standard geometries:

cylindrical and spherical

### Conductors

The basic properties of a conductor:

- (1) The electric field inside a conductor is
- (2) The surface of a conductor is an equipotential surface.
- (3) Just outside the conductor, the electric field is normal to the surface, the tangential component of the electric field on the surface is zero.
- (4) Any net charge must reside on the surface of the conductor.





Module EEE108

### **Electric Current**

Like a review but with more information in microscopic level

### Overview

Phenomenon: a flow of free electric charges

Quantity: the rate of flow of free electric charges

#### Flowing charge typically:

- moving electrons, in a conductor such as a wire
- ions, in an electrolyte
- both (electrons and ions), in a plasma

SI unit: ampere, A



Average current  $I_{av}$ : Charge  $\varDelta Q$  flowing across area A in time interval  $\varDelta t$ :  $I_{av} = \frac{\varDelta Q}{\varDelta t}$ Instantaneous current:

differential limit of 
$$I_{av}$$
:  $I = \frac{dQ}{dt}$ 

Unit of current: Ampere =  $\frac{\text{Coulomb}}{\text{second}}$ 

Module EEE108

# **Current Density**

It is defined as a **vector** whose magnitude is the electric current per cross-sectional area:  $I = \mathbf{J} \bullet \mathbf{A}$ 

sectional area:  $I = \mathbf{J} \bullet \mathbf{A}$  where I is current,  $\mathbf{J}$  the current density, and  $\mathbf{A}$  the cross-sectional area.

SI units: amperes per square meter, A/m<sup>2</sup>.

The total current through a surface:  $I = \iint \mathbf{J} \cdot d\mathbf{A}$ 

If q is the charge of each carrier, n is the number of charge carriers per unit volume the total charge

in the section :  $\Delta Q = q(nA\Delta x)$ 

and if the charge carriers move with a speed  $v_d$ , the displacement in a

time interval  $\Delta t$  is:  $\Delta x = v_d \Delta t$ 

then the average current is :  $I_{av} = \frac{\Delta Q}{\Delta t} = nqv_d A$ 

the current density:

 $\mathbf{J} = nq\mathbf{v}_d$ 

### More FAQ

#### Why do charges flow?

If an electric field is set up in a conductor, charge will move (making a current in direction of the electric field).



Are the properties of conductors in electrostatic right?

No. When there is a current, the conductor is not an equipotential surface, and the electric field inside is not zero!

#### What's the direction of the current?

Direction of current is direction of flow of positive charge or, opposite direction of flow of negative charge

It is a convention.

#### Is current a vector?

Current is a scalar not a vector! It flows always along a current-carrying wire.



## **Current Density**

Current density:  $\mathbf{J} = nq\mathbf{v}_d$ 

If q is positive,  $\mathbf{v}_d$  is in the same direction as  $\mathbf{E}$ ,

If q is negative,  $\mathbf{v}_{d}$  is opposite to  $\mathbf{E}$ .

In either case,  $\mathbf{J}$  is in the same direction as  $\mathbf{E}$ .

NB: **J** is always in the same direction as **E**, NOT  $\mathbf{v}_{d}$ !



#### Current Density vs. Current

| Current density                      | Current                          |  |
|--------------------------------------|----------------------------------|--|
| $\mathbf{J} = nq\mathbf{v}_d$        | $I = n q v_d A$                  |  |
| Vector, same direction as E          | Scalar                           |  |
| How charges flow at a certain point  | Through an extended object, wire |  |
| The magnitude varys around a circuit | The same value at all section    |  |
|                                      | of the circuit                   |  |

Module EEE108 16 Module EEE108

## **Drift Speed/Velocity**

The current density:  $\mathbf{J} = nq\mathbf{v}_d$ 

v<sub>d</sub>: <u>Drift Speed</u>: average velocity forced by applied electric field in the presence of collisions

A charge e in an electric field experiences an electric force:  $\mathbf{F}_{e} = -e\mathbf{E}$ 

If no collision, there is an acceleration:  $\mathbf{a} = \mathbf{F}/m$  where m: mass of the charge

In gaseous, liquid and solid conductors: collision

E

If  $\boldsymbol{E}$  is constant and the medium is homogeneous: the net effect : constant average velocity  $\boldsymbol{v}_{d}$ 

Module EEE108

### Ohm's Law

$$\mathbf{J} = \sigma \mathbf{E}$$

$$\mathbf{J} = nq\mathbf{v}_{d} = nq\mu_{m}\mathbf{E}$$

 $\sigma$ : conductivity, SI units:  $(\Omega \cdot m)^{-1}$ 

For many materials (including most metals), the ratio of the current density to the electric field is a constant that is independent of the electric field producing the current.

- The conductivity of a material is a measure of how easily free charges can travel through the material under the influence of an externally applied electric field.
  - A *perfect dielectric* is a material with  $\sigma = 0$ , and
  - a *perfect conductor* is a material with  $\sigma = \infty$ .
- The conductivity depends only on the microscopic properties of the material, not on its shape.

### Mobility

If **E** is constant and the medium is homogeneous:

 $\mathbf{v}_{d}$  is related to **E** by a constant called *mobility*  $\mu_{m}$ :

$$\mathbf{v}_{d} = \mu_{m} \mathbf{E}$$
 (m/s) SI unit of  $\mu_{m} : \frac{\mathbf{m}^{2}}{\mathbf{V} \cdot \mathbf{s}}$   
 $\mathbf{J} = nq \mathbf{v}_{d} = nq \mu_{m} \mathbf{E}$ 

In a conductor, the free charges are electrons:  $\mu_m \to \mu_e$ 

 $\mu_m$  and  $\mu_e$  both are positive.

Typical values of  $\mu_e$  (SI unit): Aluminum: 0.0012 Copper: 0.0032 Silver: 0.0056



Module EEE108

## Resistivity

18

$$\rho = \frac{1}{\sigma}$$
 where  $\rho$ : resistivity

 $\rho$  depends only on the microscopic properties of the material, not on its shape.

The greater the resistivity, the greater the field needed to cause a given current density.

SI units: 
$$\frac{V \cdot m}{A}$$
 or ohm-meter  $(\Omega \cdot m)$ ,  $1 \frac{V}{A}$  is called one ohm  $(1 \Omega)$ .

The resistivity of a material actually varies with temperature.

Module EEE108 20 Module EEE108

## Example -- Charge at a Junction

Find the total amount of charge at the junction of the two conducting materials.



#### **Solution**

In a steady state of current flow, the normal component of the current density **J** must be the same on both sides of the junction.

Since 
$$J = \sigma E$$
, we have  $\sigma_1 E_1 = \sigma_2 E_2$  or  $E_2 = (\sigma_1 / \sigma_2) E_1$ 

Let the charge on the interface be  $q_{in}$ , from the Gauss's law:

$$\iint_{S} \mathbf{E} \bullet d\mathbf{s} = (E_{2} - E_{1})A = \frac{q_{in}}{\varepsilon} \implies E_{2} - E_{1} = \frac{q_{in}}{A\varepsilon}$$

### Resistance

Suppose a potential difference is applied between the ends of the wire, creating a uniform electric field E:

$$\Delta \varphi = \varphi_b - \varphi_a = -\int_a^b \mathbf{E} \bullet d\mathbf{l} = El$$

The current density:  $J = \sigma E = \sigma \left( \frac{\Delta \varphi}{I} \right) = \sigma \left( \frac{V}{I} \right)$ 

also 
$$J = \frac{I}{A}$$
, then  $V = \frac{l}{\sigma} J = \left(\frac{l}{\sigma A}\right)I = RI$ 







### Example -- Charge at a Junction

#### **Solution Cont.**

Substituting the expression for  $E_2$  from  $E_2 - E_1 = \frac{q_{in}}{4c}$ 

$$q_{\mathrm{in}} = \varepsilon A E_{\mathrm{1}} \left( \frac{\sigma_{\mathrm{1}}}{\sigma_{\mathrm{2}}} - 1 \right) = \varepsilon A \sigma_{\mathrm{1}} E_{\mathrm{1}} \left( \frac{1}{\sigma_{\mathrm{2}}} - \frac{1}{\sigma_{\mathrm{1}}} \right)$$

$$E_2 = (\sigma_1/\sigma_2) E_1$$

Since the current is  $I = JA = (\sigma_1 E_1) A$ ,

the amount of charge on the interface becomes

$$q_{\rm in} = \varepsilon I \left( \frac{1}{\sigma_2} - \frac{1}{\sigma_1} \right)$$



## Resistance and Resistivity

Resistivity: 
$$\rho = \frac{1}{\sigma} = \frac{E}{J}$$
 SI:  $\frac{V/l}{I/A} = \frac{RA}{l}$   $\Omega \bullet r$ 
Resistance:  $R = \frac{\rho l}{l}$  SI:  $\Omega$ 

Resistivity is property of a substance. Every ohmic material has a characteristic resistivity that depends on the properties of the material and on temperature, not on its shape or size.

Resistance is property of an object, depends on geometry (shape and size) as well as resistivity.

Module EEE108

#### Resistance and Resistivity

#### Resistance of a Hollow Cylinder

Consider a hollow cylinder of length L and inner radius a and outer radius b. The material has resistivity  $\rho$ .

- (a) Suppose a potential difference is applied between the ends of the cylinder and produces a current flowing parallel to the axis. What is the resistance measured?
- (b) If instead the potential difference is applied between the inner and outer surfaces so that current flows radially outward, what is the resistance measured?



Module EEE108

### Resistance and Resistivity

#### Resistance of a Coaxial Cable

A coaxial cable consists of two concentric cylindrical conductors. The region between the conductors is completely filled with silicon.

a = 0.5 cm, b = 1.75 cm, L = 15.0 cm. The resistivity of silicon: 640  $\Omega$ -m

Calculate the resistance of the silicon between the two conductors.

#### Solution

$$R_{silicon} = \int_{a}^{b} \frac{\rho dr}{2\pi r L} = \frac{\rho}{2\pi L} \ln\left(\frac{b}{a}\right)$$
$$= \frac{640}{2\pi \times 0.15} \ln\left(\frac{1.75}{0.5}\right) = 851 \Omega$$





#### Resistance and Resistivity

### Resistance of a Hollow Cylinder

#### Solution

(a) When a potential difference is applied between the ends of the cylinder, current flows parallel to the axis. In this case, the cross-sectional area is  $A=\pi(b^2-a^2)$ , and the resistance is given by:



(b) Consider a differential element which is made up of a thin cylinder of inner radius r and outer radius r + dr and length L. Its contribution to the resistance of the system is given by:





The total resistance of the system: 
$$R = \int_a^b \frac{\rho \, dr}{2\pi rL} = \frac{\rho}{2\pi L} \ln\left(\frac{b}{a}\right)$$

Module EEE108

### Resistance and Resistivity

#### Resistance of a Coaxial Cable

The current leakage through the silicon, in the radial direction, is unwanted.

Let's compare this resistance to that of the inner conductor. Assuming that the conductor is made of copper with  $\rho = 1.7 \times 10^{-8} \ \Omega \cdot m$ 



$$R_{copper} = \rho \frac{l}{A} = 1.7 \times 10^{-8} \frac{0.15}{\pi (5 \times 10^{-3})^2} = 3.2 \times 10^{-5} \Omega$$

$$\frac{I_{silicon}}{I_{copper}} = \frac{R_{copper}}{R_{silicon}} = \frac{3.2 \times 10^{-5}}{851}$$

Almost all of the current corresponds to charge moving along the length of the cable

## **Electrical Energy and Power**

Electric energy of charge  $\Delta q$  increased by through the battery:  $\Delta U = \Delta q V$ Neglect the internal resistance of the battery and the connecting wires

The rate of electric energy loss through the resistor:  $P = \frac{\Delta U}{\Delta t} = \left(\frac{\Delta q}{\Delta t}\right)V = IV$ 

With V = IR, the power supplied by the battery:  $P = I^2 R = \frac{V^2}{R}$ 

In a time t, the energy consumed by the device:

 $W = Pt = I^2 Rt$   $\Leftarrow$  Joule's law

W: energy, SI unit: J,  $1J = 1W \times 1sec$ 

P: power, W, R: resistance,  $\Omega$ , t: time, sec

 $\begin{array}{c}
b \\
+ \\
- \\
a
\end{array}$   $\begin{array}{c}
R \\
\end{array}$ 

If power is not constant over the time, then  $W = R \int_0^t I^2 dt$ 

Module EEE108

## **Electrical Energy and Power**

## Example

#### **Solution Cont.**

$$R = \frac{V^2 \Delta t}{mC_p \Delta T} = \frac{110^2 (10 \times 60)}{1.5 \times 4186 \times (50 - 10)} = 28.9 \ \Omega$$

The amount of energy transferred:

$$P\Delta t = \frac{V^2 \Delta t}{R} = \frac{110^2 \times 10}{28.9} \frac{1}{60} = 69.8 \text{ Wh} = 0.0698 \text{ kWh}$$

| Fuel                   | Pounds of CO2 per million Btu | Heat rate (Btu per kWh) | Pounds of CO2 per kWh | g of CO2 per kWh     |
|------------------------|-------------------------------|-------------------------|-----------------------|----------------------|
| Coal                   |                               |                         |                       | 1 Pounds = 0.4356 Kg |
| Bituminous             | 205.691                       | 10,080                  | 2.07                  | 902                  |
| Subbituminous          | 214.289                       | 10,080                  | 2.16                  | 941                  |
| Lignite                | 215.392                       | 10,080                  | 2.17                  | 945                  |
| Natural gas            | 116.999                       | 10,408                  | 1.22                  | 531                  |
| Distillate oil (No. 2) | 161.290                       | 10,156                  | 1.64                  | 714                  |
| Residual oil (No. 6)   | 173.702                       | 10,156                  | 1.76                  | 767                  |
| Last updated: February |                               |                         |                       |                      |

## **Electrical Energy and Power**

### Example

What is the required resistance of an immersion heater that will increase the temperature of 1.5 kg of water from 10  $^{0}$ C to 50  $^{0}$ C in 10 min while operating at 110 V?

#### **Solution**

Ignore the initial period during which the temperature of the resistor increases,

Ignore any variation of resistance with temperature.

The specific heat of water:  $C_n = 4186 \text{ J/(kg} - {}^{\circ}\text{C})$ 

Assume: a constant rate of energy transfer for the entire 10 min, and the rate of energy delivered to the resistor equal to the rate of energy entering the water by heat

We have:

$$P = \frac{V^2}{R} = \frac{Q}{\Delta t}$$
 The total amounts 
$$R = \frac{V^2}{R} = \frac{Q}{\Delta t}$$

The total amount of energy required

 $R = \frac{V^2 \Delta t}{mC_p \Delta T}$  t: time T: temperature

Module EEE108

## Resistors in a Circuit

The three resistors  $R_1$ ,  $R_2$  and  $R_3$  in series,

the equivalent resistance  $R_{eq}$  between points a and b

$$R_{eq} = \frac{V_{ab}}{I} = R_1 + R_2 + R_3$$



Generally, to any number of resistors in series:

$$R_{eq} = R_1 + R_2 + R_3 + ... + R_N = \sum_{i=1}^{N} R_i$$

If they are in parallel, the equivalent resistance  $R_{aa}$  between points a and b:



Generally, to any number of resistors in parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N} = \sum_{i=1}^{N} \frac{1}{R_i}$$

32 Module EEE1

## **Resistors and Capacitors**

Resistors

Capacitors

Series

$$R_{eq} = \sum_{i=1}^{N} R_i$$

$$\frac{1}{C_{eq}} = \sum_{i=1}^{N} \frac{1}{C_i}$$

Parallel 
$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$
 
$$C_{eq} = \sum_{i=1}^{N} C_i$$

$$C_{eq} = \sum_{i=1}^{N} C$$

Module EEE108

#### **RC Circuits**

## Charging a Capacitor

The capacitor is connected to a DC voltage source of emf  $\varepsilon$ . When t < 0, there is no voltage across the capacitor. We say that the capacitor initially is uncharged. At time t = 0, the switch is closed and current,  $I_0 = \varepsilon / R$ , begins to flow.

As the capacitor starts to charge, the voltage across the capacitor increases in time,  $V_C(t) = q(t)/C$ . Using C Kirchhoff's loop rule for capacitors and traversing the loop clockwise, we obtain:



The charging capacitor then satisfies a first order differential equation:

$$\frac{dq}{dt} = \frac{1}{R} \left( \varepsilon - \frac{q}{C} \right)$$





Module EEE108

### **Electromotive Force**

Electrical energy must be supplied to maintain a constant current in a closed circuit. The source of energy is commonly referred to as the electromotive force, or emf (symbol  $\varepsilon$ ).

34

Examples: Batteries, solar cells, thermocouples, ...

Mathematically emf is defined as:  $\varepsilon \equiv dW/dq$ 

Physical meaning: the work done to move a unit charge in the direction of higher potential. The SI unit: the volts (V).

In analyzing circuits, there are two fundamental (Kirchhoff's) rules: Junction rule and Loop rule

# 1. Junction Rule

At any point where there is a junction between various current carrying branches, by current conservation the sum of the currents into the node must equal the sum of the currents out of the node.

#### 2. Loop Rule

The sum of the voltage drops  $\Delta V$ , across any circuit elements that form a closed circuit is zero.

Module EEE108

#### **RC Circuits**

## Charging a Capacitor

By using the method of separation of variables:

$$\frac{dq}{q - C\varepsilon} = -\frac{1}{RC} dt \implies \int_0^q \frac{dq'}{q' - C\varepsilon} = -\frac{1}{RC} \int_0^r dt'$$

Then:  $q(t) = C\varepsilon(1 - e^{-t/(RC)}) = Q(1 - e^{-t/(RC)})$ where  $Q = C\varepsilon$  is the maximum amount of charge stored on the plates.

Charge as a function of time

The voltage across the capacitor:

$$V_C(t) = \frac{q(t)}{C} = \varepsilon \left(1 - e^{-t/(RC)}\right)$$

The current flowing in the circuit:

$$I(t) = \frac{dq}{dt} = \left(\frac{\varepsilon}{R}\right) e^{-t/(RC)} = I_0 e^{-t/(RC)}$$

where  $I_0$  is the initial current at t = 0



as a function of time

### Charging a Capacitor

 $\tau = RC$ .  $\tau$  is called the *time constant* of the system.

The SI units of  $\tau$  are seconds:

$$[\Omega][F] = ([V]/[A])([C]/[V])$$
$$= [C]/[A] = [C]/([C]/[s])$$
$$= [c]$$

=[s]

In term of  $\tau$ , for example :

$$I(t) = I_0 e^{-t/(RC)} = I_0 e^{-t/\tau}$$



Module EEE108

### **RC Circuits**

$$q(t) = Qe^{-t/\tau}$$

## Discharging a Capacitor

The voltage across the capacitor:

$$V_C(t) = \frac{q(t)}{C} = \left(\frac{Q}{C}\right) e^{-t/\tau}$$

The current also exponentially decays:







Voltage across the capacitor as a function of time

#### **RC Circuits**

#### Discharging a Capacitor

Suppose initially the capacitor has been charged to some value Q. The potential difference across the capacitor is given by  $V_C = Q/C$ . At t = 0 the switch is closed and the capacitor will begin to discharge.

Applying the Kirchhoff's loop rule by traversing the loop counterclockwise, the equation that describes the dischargin g process is: q/C - IR = 0

The current flowing away from the positive plate is proportional to the charge on the plate: I = -dq/dtThus, charge satisfies a first order differential equation:

$$\frac{q}{C} + R\frac{dq}{dt} = 0$$

Similarly, the equation can also be integrated by the method of separation of variables, and we have:

$$\int_{\varrho}^{q} \frac{dq'}{q'} = -\frac{1}{RC} \int_{0}^{t} dt' \Rightarrow \ln\left(\frac{q}{\varrho}\right) = -\frac{t}{RC} \Rightarrow q(t) = \varrho e^{-t/\tau}$$



Module EEE108

### **RC Circuits**

## Quiz 1

Consider the circuit in the Figure and assume that the battery has no internal resistance. Just after the switch is closed, the current in the battery is:

a) 
$$\frac{2\varepsilon}{R}$$

c) zero.

b) 
$$\frac{\varepsilon}{2R}$$



### **RC Circuits**

### Quiz 2

Consider the circuit in the Figure and assume that the battery has no internal resistance. The switch has been closed for a very long time, then the current in the battery is: C

- a)  $\frac{\varepsilon}{R}$ .
- b)  $\frac{\varepsilon}{2R}$ .
- c) zero.
- d)  $\frac{2\varepsilon}{R}$



Module EEE108

# **Summary of Current**

• The equivalent resistance of a set of resistors connected in series:

$$R_{eq} = R_1 + R_2 + R_3 + \dots = \sum_{i=1}^{N} R_i$$

• The equivalent resistance of a set of resistors connected in parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \sum_{i=1}^{N} \frac{1}{R_i}$$

• In a charging capacitor, the charges and the current as a function of time:

$$q(t) = Q(1 - e^{-t/\tau}), \quad I(t) = \left(\frac{\varepsilon}{R}\right)e^{-t/\tau}$$
 t is time and  $\tau$  is time constant,  $\tau = RC$ 

• In a discharging capacitor, the charges and the current as a function of time:

$$q(t) = Qe^{-t/\tau}$$
,  $I(t) = \left(\frac{Q}{RC}\right)e^{-t/\tau}$  t is time and  $\tau$  is time constant,  $\tau = RC$ 

## **Summary of Current**

• The electric current defined :

$$I = \frac{dQ}{dt}$$

• The average current in a conductor:

$$I_{av} = nqv_d A$$

• The current density:

$$\mathbf{J} = nq\mathbf{v}_d$$

• The Ohm's law:

$$\mathbf{J} = \sigma \mathbf{E}$$

• Resistance R and resistivity  $\rho$ :

$$R = \frac{\rho l}{A}$$

Drift velocity:

$$\mathbf{v}_{\mathrm{d}} = \mu_{\scriptscriptstyle m} \mathbf{E}$$

• Electric power:

$$P = IV = I^2R$$

• Electric energy -- Joule's law:

$$W = Pt = I^2 Rt$$

Module EEE108

### Next

## Electromagnetism:

- · Biot-Savart Law
- Ampere's Law
- Gauss's Law for Magnetism

# Thanks for your attendance