华东理工大学 _2012-2013 _ 学年第 _1 _ 学期 《数理统计方法》课程考试 B卷 _2013_年_1_月

开课学院:	理	学院	_, 考证	式形式:_	闭卷	,所需	唇时间:	120	分钟
考生姓名:			_ 学号:			E课教师	:	朱坤平	
		r							
题序		_	1 1	111	四	五.	六	七	总分
得分									
评卷人									
一. 选择题	(每小	题 3 分,	共 30 分)						
1. 三个因于	子,每个	因子都是	是2个水平	.若考虑一	级交互作员	用,应选耳	权的正交	表为 (D)
	(A)	$L_9(3^4)$		(B) $L_{27}(3^{13})$)			
	(C)	$L_4(2^3)$		(1	D) $L_8(2^7)$)			
2. 对总体 ξ	2. 对总体 ξ 观测 4 次得到的样本观测值分别为 2, 1,1, 2, 则错误的选项是 (B)								
(A) 样z	本 中位	数 = 样	本均值	(B) 样	本方差 =	样本极	差		
(C) 修.	正样本	标准差)	$\sqrt{3}$	(D)样	本经验分	布函数为	$ \mathcal{F}_n(x) $	$= \begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	$x < 1$ $1 \le x < 2$ $2 \le x$
3. 关于标准	生正态:	分布的分	个位数 u_{α}	(0 < α <	1,Φ(.)为	标准正	态分布	的分布	函数),错误
的选项是(A)							
	(A)	$u_{\alpha} + u_{1-}$	$_{\alpha}=1$		(B) 	$\mathbf{p}(u_{\alpha}) =$	α		
	(C)	$\Phi(-u_{\alpha})$	$=1-\alpha$		(D)	$\frac{1}{4}\alpha_1 < \alpha$	u ₂ ,则 u	$a_1 \leq u_{\alpha_2}$	
4. 设(X ₁ ,	X_2, \cdots	(X_n) 是	:总体 & 的	的样本, ξ	$\delta \sim N(\mu,$	${\sigma_0}^2)$,	其中 σ	02己知,	参数 μ 的
置信水平为	j1-α f	的置信区	间L包含,	u_0 ,则显着	著性水平 $lpha$	下,对原	假设 <i>H</i>	$_{0}$: $\mu = \mu$	μ_0 的假设检
验,有(C)								
	(A) 7	不能确定	是否接受	\boldsymbol{H}_0	(B) ‡	巨绝 $oldsymbol{H}_0$			
	(C) ‡	妾受 H_0			(D) ¾	D第二类	错误的	概率为1	-α

5. 设总体	$X \sim N(0.1)$,	X_1, X_2, \dots, X_d	,为样本,又设	ţ	
$Y = (X_1$	$+X_3+X_5)^2+$	$(X_2 + X_4 + X_6)$	$)^2$,且 $CY \sim \chi^2$	² 分布,则 C 的	值为(C)
	(A) 1	(B) $\frac{1}{2}$	(C) $\frac{1}{3}$	(D) $\frac{1}{6}$	
6. 设(X ₁ ,	X_2, \dots, X_n)为	总体 $N(\mu,\sigma^2)$ (μ未知)的一个档	样本, \overline{X} 为样本均	匀值,则总体方
差 σ^2 的无值	偏估计量的是(В)			
	(A) $\sigma_1^2 = \frac{1}{n}$	$\sum_{i=1}^{n} (X_i - \overline{X})^2$	(B) 6	$\sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i)^{n-1}$	$(i-\overline{X})^2$
	(C) $ \overset{\wedge}{\sigma_3^2} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} $	$\sum_{i=1}^{n} (X_i - \mu)^2$	(D) ($\sigma_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i)^{n-1}$	$(1 - \mu)^2$

- 7. 在显著性水平 α 下的某假设检验,如果原假设 H_0 被拒绝,则(A)
 - (A) 在比 α 更大的显著性水平下检验,原假设 H_0 一定被拒绝
 - (B) 在比 α 更大的显著性水平下检验,原假设 H_0 一定被接受
 - (C) 在比 α 更大的显著性水平下检验,不能确定原假设 H_0 是否被拒绝
 - (D) 在比 α 更小的显著性水平下检验,原假设 H_0 一定被拒绝
- 8. 设 (X_1, X_2, \cdots, X_m) , (Y_1, Y_2, \cdots, Y_n) 分别是取自相互独立的正态总体

$$\xi \sim N(\mu_1, \sigma_1^2)_{\pi} \eta \sim N(\mu_2, \sigma_2^2)$$
 的样本,则(D)

(A)
$$\overline{X}$$
, \overline{Y} , S_x^2 , S_y^2 相互独立 (B) $\frac{\overline{X} - \mu_1}{S_x^*} \sqrt{m} \sim t \ (m-1)$

(C)
$$\frac{{S_x^*}^2/\sigma_1^2}{{S_y^*}^2/\sigma_2^2} \sim F(m-1, n-1)$$
 (D) 以上选项全对

- 9. 可以克服线性回归中的复共线性问题的方法是(A)

 - (A) 减少自变元个数 (B) 增加自变元个数
 - (C) 减少样本容量
- (D) 增加样本容量
- 10. 在多元线性回归中, 若减少了自变元的个数,则(C)
 - (A) 总离差平方和会增加 (B) 回归平方和会增加
 - (C) 残差平方和会增加 (D) 判定系数 \mathbb{R}^2 会提高

二. (12 分) 设总体 X 的概率分布列为:

其中 λ (0 < λ < $\frac{1}{2}$) 是未知参数. 令 p =1- λ , $(X_1, X_2, ..., X_n)$ 为总体 X 的样本.

- 1) 若样本观测值为: (1, 3, 0, 2, 3, 3, 1, 3) 求 *p* 的矩法估计**值**和 *p* 的极大似然估计**值**;
- 2) 证明 p 的矩法估计量是 p 的无偏估计

解: 1)
$$EX = 0 \cdot p + 2p(1-p) + 2p^2 + 3(1-2p) = 3-4p$$

$$\overline{X} = \frac{1}{8} \sum_{i=1}^{8} X_i = 2$$
 令 $EX = \overline{X}$, 得 p 的矩法估计 $\hat{p} = \frac{1}{4}$ ----4"

$$L(p) = \prod_{i=1}^{8} P(X_i = x_i) = P(X = 0)[P(X = 1)]^2 P(X = 2)[P(X = 3)]^4$$

$$= 4p^6(1-p)^2(1-2p)^4$$

$$\ln(L(P)) = \ln 4 + 6 \ln p + 2 \ln(1-p) + 4 \ln(1-2p)$$

$$\Leftrightarrow [\ln(L(p))]' = \frac{6}{p} - \frac{2}{1-p} - \frac{8}{1-2p} = 0$$

$$\Rightarrow 12p^2 - 14p + 3 = 0 \quad \text{得到 } p_1 = \frac{7 - \sqrt{13}}{12}, \quad p_1 = \frac{7 + \sqrt{13}}{12} \quad \text{(舍去)}$$
所以 p 的极大似然估计为 $\hat{p} = \frac{7 - \sqrt{13}}{12} = 0.2828$ ----4"

2) 由 1)知
$$p$$
 的矩法估计: $\hat{p} = \frac{3 - \overline{X}}{4}$ (由 $3 - 4p = \overline{X}$ 得) 故 $E\hat{p} = \frac{3 - E\overline{X}}{4} = \frac{3}{4} - \frac{1}{4} EX = \frac{3}{4} - \frac{1}{4} (3 - 4p) = p$, 故 p 的矩法估计是无偏的 ----4'

三.(10分) 据某校的一份关于是否想去电影院买票看影片<泰囧>的抽样调查:

性别意向	想去	不想去
男	32	118
女	20	130

在显著性水平 $\alpha = 0.05$ 下,能否认为学生是否想看这个电影的意向与性别有关?

解: H₀: 意向与性别独立

$$\chi^{2} = n\left(\sum_{i,j} \frac{n_{ij}^{2}}{n_{i}n_{.j}} - 1\right) = 300\left(\frac{32^{2}}{52*150} + \frac{118^{2}}{248*150} + \frac{20^{2}}{52*150} + \frac{130^{2}}{248*150} - 1\right) = 3.3498$$

$$\chi^{2} < \chi_{0.95}^{2}(1) = 3.841.$$

故接受 H_0 ,可以认为意向与性别无关.

----1'+6'+3'

四. (14 分) 对 5 块小麦试验田的施肥量 x 和亩产量 y 分别进行测量,得到数据如下:

施肥量 x _i	7.7	8.0	8.4	8.8	9.6
亩产量 y _i	128	131	134	146	158

设有
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 , $\varepsilon_i \sim N(0, \sigma^2)$ $(i = 1, 2, \dots, 5)$,

且 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_5$ 相互独立。

- 1) 求 $oldsymbol{eta}_0$, $oldsymbol{eta}_1$ 的最小二乘估计 $\hat{oldsymbol{eta}}_0$, $\hat{oldsymbol{eta}}_1$,并写出回归方程;
- 2) 计算残差平方和 SS_a , 估计的标准差 $\hat{\sigma}$, 样本相关系数 r ;
- 3) 检验 H_0 : $\beta_1 = 0$ (显著水平 $\alpha = 0.05$)

解:
$$n=5$$
 , $\overline{x}=8.5$, $L_{xx}=2.2$, $\overline{y}=139.4$, $L_{yy}=619.2$, $L_{xy}=36.3$ 。

1)
$$\hat{\beta}_1 = \frac{L_{xy}}{L_{xx}} = \frac{36.3}{2.2} = 16.5$$
, $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 139.4 - 16.5 \times 8.5 = -0.85$.

所以,回归方程为
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = -0.85 + 16.5x$$
 。 ——4

2)
$$SS_e = L_{yy} - \hat{\beta}_1 L_{xy} = 619.2 - 16.5 \times 36.3 = 20.25$$
,

$$\hat{\sigma} = \sqrt{\frac{SS_e}{n-2}} = \sqrt{\frac{20.25}{5-2}} = \sqrt{6.75} = 2.598 ,$$

$$r = \frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}} = \frac{36.3}{\sqrt{2.2 \times 619.2}} = 0.98351$$
 ---6

3) (方法一) 用 t 分布检验:

$$T = \frac{\hat{\beta}_1}{\hat{\sigma}} \sqrt{L_{xx}} = \frac{16.5}{2.598} \times \sqrt{2.2} = 9.420$$
 .

对
$$\alpha=0.05$$
 , 得 $t_{1-\alpha/2}(n-2)=t_{0.975}(3)=3.1824$,

因为|T| = |9.420| = 9.420 > 3.1824, 所以拒绝 H_0 : $\beta_1 = 0$, 说明自变量 x 与因变量 y 之间有显著的统计线性相关关系。

(方法二) 用 F 检验:

$$F = \frac{SSR/1}{SSe/(n-2)} = \frac{SST - SSe}{SSe/(n-2)} = \frac{619.2 - 20.25}{20.25/3} = 88.7333$$

$$F > F_{1-\alpha}(1, n-2) = F_{0.95}(1,3) = 10.1$$

所以拒绝 H_0 : $\beta_1 = 0$,

说明自变量 x 与因变量 y 之间有显著的统计线性相关关系。 -----4'

五. (12分)设某种针织品在70°C和80°C时的强度为 $\xi \sim N(\mu_1, \sigma_1^2)$ 和 $\eta \sim N(\mu_2, \sigma_2^2)$,

在 70°C 时,抽取 6 个样品,测得样本均值 $\overline{X}=20.3$,修正样本标准差 $S_x^*=0.57$; 在 80°C 时,抽取 5 个样品,测得样本均值 $\overline{Y}=19.5$,修正样本标准差 $S_y^*=0.75$ 。

- (1) 分别求出参数 σ_1^2 和 μ_2 置信水平为 95% 的置信区间;
- (2) 能否认为 70℃ 和 80℃ 时针织品强度的方差相等(显著水平 $\alpha = 0.05$)?

解 1) 参数 σ_1^2 置信水平为 95% 的置信区间为: -----3'+3

$$\left[\frac{(n-1)S_x^{*^2}}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S_x^{*^2}}{\chi_{\frac{\alpha}{2}}^2(n-1)}\right] = \left[\frac{5*0.57^2}{12.833}, \frac{5*0.57^2}{0.831}\right] = \left[0.1266, 1.9549\right]$$

 μ 。 置信水平为 95% 的置信区间为:

$$\overline{Y} \pm t_{1-\frac{\alpha}{2}}(n-1)\frac{s_y^*}{\sqrt{n}} = 19.5 \pm t_{0.975}(4)\frac{0.75}{\sqrt{5}} = [18.5687, 20.4313]$$

2) 问题相当于要检验
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

$$F = \frac{S_x^{*2}}{S_y^{*2}} = \frac{0.57^2}{0.75^2} = 0.5776 \quad .$$

对 $\alpha = 0.05$, 查F分布表, 可得

$$F_{1-\alpha/2}(m-1, n-1) = F_{0.975}(5,4) = 9.36$$
,

$$F_{\alpha/2}(m-1,n-1) = \frac{1}{F_{1-\alpha/2}(n-1,m-1)} = \frac{1}{F_{0.975}(4,5)} = \frac{1}{7.39} = 0.135$$
,

因为
$$0.135 < F = 0.5776 < 9.36$$
 ,所以接受 H_0 : $\sigma_1^2 = \sigma_2^2$ 。

六. (10 分) 随机抽取甲、乙、丙三厂生产的某型号锂电池各三件,测量它们充满电后在手机上使用的待机时间,得到数据如下:

生产厂	锂电池的待机	几时间	(单位:	: 小时)
甲厂	36	35	31	
乙厂	40	38	42	
丙厂	39	43	47	

问这三厂生产的锂电池其待机时间是否有显著差异($\alpha = 0.05$)?

解 设三家厂生产的锂电池的待机时间分别为相互独立的 $\xi_i \sim N(\mu_i,\sigma^2)$, i=1,2,3 。

检验三种锂电池的待机时间是否有显著差异,相当于要检验假设 $H_0: \mu_1 = \mu_2 = \mu_3$ 计算结果见下表:

-	••					
	水平	观测值	(使用	寿命)	y_i	SS_i
	$A_{\rm l}$	36	35	31	34	14
	A_2	40	38	42	40	8
	A_3	39	43	47	43	32
					$SS_A = 126$	$SS_e = 54$

方差分析表为:

/	1/1/12	79:				
	来源	平方和	自由度	均方	F 值	分位数
	A	$SS_A = 126$	r-1=2	63	$F_A = 7$	$F_{0.95}(2, 6) = 5.14$
	误差	$SS_e = 54$	n-r=6	9		

总和	$SS_T = 180$	n-1=8			
----	--------------	-------	--	--	--

因为
$$F_{\scriptscriptstyle A} = 7 > 5.14 = F_{0.95}(2,6)$$
 ,所以拒绝 $H_{\scriptscriptstyle 0}$: $\mu_{\scriptscriptstyle 1} = \mu_{\scriptscriptstyle 2} = \mu_{\scriptscriptstyle 3}$,

结论是:三家厂生产的电池使用寿命有显著的差异。 -----5*2'

七. (12分) 在某细沙机上进行断头率的测定,试验锭子总数300个,测得结果如下:

各锭的断头数	0	1	2	3
对应的锭数	120	90	60	30

问各锭子的断头数是否服从泊松分布($\alpha = 0.05$)?

解 Ho: 锭子的断头数 X 服从泊松分

$$\hat{\lambda} = \overline{x} = 1 \qquad \qquad -----2$$

作分点 [-0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, +∞)则:

$$\hat{p}_1 = P\{X \in [-0.5, 0.5)\} = P\{X = 0\} = \frac{\hat{\lambda}^0}{0!} e^{-\hat{\lambda}} = e^{-1}$$

$$\hat{p}_2 = P\{X \in [0.5, 1.5)\} = P\{X = 1\} = \frac{\hat{\lambda}^1}{1!}e^{-\hat{\lambda}} = e^{-1}$$

$$\hat{p}_3 = P\{X \in [1.5, 2.5)\} = P\{X = 2\} = \frac{\hat{\lambda}^2}{2!}e^{-\hat{\lambda}} = e^{-1}/2$$

$$\hat{p}_4 = 1 - \hat{p}_1 - \hat{p}_2 - \hat{p}_3 = 1 - 2.5e^{-1} \qquad -----4*1$$

$$\chi^2 = \frac{1}{n} \sum_{i=1}^{r} \frac{n_k^2}{\hat{p}_k} - n \sim \chi^2 (r - m - 1)$$

$$\chi^{2} = \frac{1}{300} \left[\frac{120^{2}}{e^{-1}} + \frac{90^{2}}{e^{-1}} + \frac{60^{2}}{0.5e^{-1}} + \frac{30^{2}}{1.2.5e^{-1}} \right] - 300 = 6.48$$

$$\overrightarrow{m}$$
 $\chi_{1-\alpha}^2(r-m-1) = \chi_{0.95}^2(2) = 5.991$

 χ^2 〉 $\chi^2_{0.95}(2)=5.991$,故拒绝原假设,认为锭子的断头数不服从泊松分布。

_____2