Magnetic Moment and Modeling

USIYPT presentation based on thesis

Group #3: Guangyuan Wang, Lijie Yin, Xiaoyang Li, Zixuan Lin, Jin'en Tang

November 16, 2021

PARAMETERS

Terms	Parameters	Terms	Parameters
Diameter	N35	Remanence	1.17 T
Galvanization	Nickel + Argentum	Volume	16.2 cm ³
Density	7.4 g cm^{-3}	Relative permeability	1.09

PARAMETERS

▲ Figure (a) shown left: Magnetization vector of the #N35 sphere itself;

▲ Figure (b) shown right: The demagnetization curves of typical *NdFeB* and *Samarium Cobalt* permanent magnets that we have used.

REMANENCE Br"Br" \rightarrow "m"

Using thermodynamic methods, only the changes from the initial equilibrium state to the final state equilibrium state are studied. The work $W_{\rm env}$ that the outer-environment does is mostly translated into the inherent energy

$$A(\mathcal{B}r) = \int \delta A = \int_0^B H_{\mathrm{total}} \mathrm{d}B - \frac{1}{2}\mu_0\mu_r H_0^2 = \mu_{\mathrm{sphere}} \int_0^M H \mathrm{d}M$$

REMANENCE Br

By the First Law of Thermodynamics, we have

$$dU = TdS + \delta A = TdS - P_0 dV + \mu_r \mu_0 HdM$$

Since the magnetization process was completed during an isochoric process,

$$P_0 dV = 0$$

And, the internal energy is related to the magnetic induction force received, so this internal energy should be counted when dealing out the potential. Then, the actual potential energy

$$U_{\text{total}} = V_{\text{mag}}(\mathbf{B}, \mathbf{m}, \mathbf{r}) + A_{\text{char}}(\text{Br})$$

Magnetic Moment "m"

$$\mathbf{m} := \sum_{i} \mathbf{M}_{i} \, dV \approx \chi_{\mathrm{m}} \, \mathbf{B} / \mu_{0}$$
$$= \int_{0}^{\pi} \left\{ \int_{0}^{2\pi} \left[\int_{0}^{R} \mathbf{M}(\boldsymbol{h}, \boldsymbol{\mu}_{\boldsymbol{B}}, \boldsymbol{\mu}_{\boldsymbol{S}}) \, dr \right] d\varphi \right\} d\theta$$

(μ_B is Bohr magneton, and μ_S is Magnetic moment of electron spin)

Magnetic Moment "m"

$$\begin{split} \phi(\mathbf{r}) &= \left\{ \sum_{\lambda=0}^{\infty} \left[A_{\lambda} r^{\lambda} + B_{\lambda} r^{-(\lambda+1)} \right] \right\} \left[\sum_{\epsilon_{i}}^{\epsilon_{f}} P_{\epsilon}(\cos(\theta)) \right] \\ &= \frac{1}{4\pi} \int_{V} \frac{\rho_{\mathrm{m}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \mathrm{d}V(\mathbf{r}') \\ \begin{cases} \phi_{\mathrm{m}1} \to 0 \text{ for } r \to \infty \\ \phi_{\mathrm{m}1} = \phi_{\mathrm{m}2} \text{ for } r = R \\ \left(\frac{\partial \phi_{\mathrm{m}}}{\partial n} \right)_{1} - \left(\frac{\partial \phi_{\mathrm{m}}}{\partial n} \right)_{2} = -M_{0} \cos(\theta) \text{ for } r = R \\ \phi_{\mathrm{m}2} \neq \infty \text{ for } r = 0 \end{split}$$

 $\mathbf{m} = \iiint_{\mathbf{m}} \mathbf{M}_i \, dV = \frac{3}{4} \pi R^3 \mathbf{M}_{\text{net}} = \sum_i I \Delta \mathbf{S}_{\text{laver}(i)}$

How To Obtain"m"?

Our instrument consists of a student AC power supply, a set of copper coils, a voltmeter with its peak voltage of 6 V, a combination of ammeters, some conductor wires, a 5 Ω protection resistance, a meter stick, and two powerful magnet spheres. Specifically, the magnets we've used in our experiments are ball-shaped #N35 neodymium-iron-boron permanent magnets, measuring 1.57 cm in radius.

How To Obtain"m"?

▲ Figure (c): Schematic diagram of the experimental apparatus. (screenshotted from *Modeling of Spherical Magnet Arrays Using the Magnetic Charge Model B. vanNinhuijs, T. E. Motoasca, B. L. J. Gysen, and E. A. Lomonova Eindhoven University of Technology*; labeled accessorial apparatus)

How To Obtain"m"?

$$\rightarrow L = \frac{\mu_r}{25} \frac{D-d}{D+d} N^2 = 23 \text{ H} = 23 \text{ VAs}^{-1}$$

$$\xi_{\rm ind} := LI$$

$$\rightarrow \qquad \Rightarrow \sum I = \frac{\xi_{\text{ind}}}{L} \approx \frac{1}{L} \left\langle \frac{d\Phi}{d\tau} \right\rangle_{\tau \in (0,2\pi)} = \frac{B\Delta S}{LT}$$

$$\begin{split} & \to \qquad m_{\rm total} = I_{\rm net} \left[\sum_i \Delta S_{{\rm layer}(i)} \right]_0^{N_{\rm coil}} \\ & = \frac{B_{\rm (in)}}{LT} (\int {\rm d}S) \left\{ \lim_{\Delta r \to 0} [\pi N_{\rm coil} (R - \Delta r)^2] \right\} \\ & = \frac{\mathcal{B}r}{LT} (4\pi R^2) (N\pi R^2) \approx 0.86 \ {\rm Am}^2 \end{split}$$

MODELING PROCEDURE

Create parameters and functions

1

Establish static model 2

Make it work

3

Export the results of the operation

Examine the results

4

5

Create parameters and functions

♪ 名称	表达式	值	描述
L	10[cm]	0.1 m	移动参数
mu_r	1.09	1.09	相对导磁率
В0	1.17[T]	1.17 T	剩磁 (固有磁感应强度)
B_analytic	((3*mu_r)/(mu_r+2))*B0	1.2382 T	导磁球内部场的解析
dm	7.4[g/cm^3]	7400 kg/m ³	磁球密度
r0	1.57[cm]	0.0157 m	半径,导磁球

) 属性	变量	表达式	单位
热膨胀系数	alpha i	alpha p(pA,T)	1/K
平均摩尔质量	Mn	0.02897	kg/mol
本体黏度	muB	muB(T)	Pa·s
相对磁导率	mur_is	1	1
相对介电常数	epsilon	1	1
动力黏度	mu	eta(T)	Pa⋅s
比热率	gamma	1.4	1
电导率	sigma_i	0[S/m]	S/m
恒压热容	Ср	Cp(T)	J/(kg·K)
密度	rho	rho(pA,T)	kg/m³
导热系数	k_iso ;	k(T)	W/(m·K)
声速	С	cs(T)	m/s

▲ Table (b); (c): The COMSOL parameter list; the one of air column.

Establish static model

- ▲ Figure (d) shown left: A list of component models, comp1, including stable physical field, air gap, magnetic spheres, material definition, etc.
 - ▲ Figure (e) shown right: The sphere is magnetized in divided layers.
 - ▲ Figure (f) shown in the middle: Meshed rendering of experimental set-ups.

▲ Figure (g): The magnetic sphere and the air cuboid with quadrilateral grids.

Make it work

Rapid iteration ... \rightarrow Approach ideal results

 \blacktriangle Figure (i): Steady-state equations: boundary conditions and expression of F_{12} .

▲ Figure (i): The Convergence Trend Lines of magnetic flux density modulus.

Examine the results

(Roughly)

<u>F₁₂[N]</u>	<u>x₁₂[cm]</u>
0	15.131
0.01	10.621
0.02	6.403
0.03	5.411
0.05	4.252
0.08	4.722
0.11	3.576
0.21	3.553

F_2	x_2	in m^4
0	14.95	0.00049953
0.01	10.8	0.00013605
0.02	6.4	1.6777E-05
0.03	5.2	7.3116E-06
0.05	4.35	3.5806E-06
0.08	4.3	3.4188E-06
0.11	3.65	1.7749E-06
0.21	3.05	8.6537E-07

lacktriangle Table (d): Some x-values taken from the experimental data and the corresponding F.

Citation

4 Citation

- [1] PhET interactive simulations, University of Colorado at Boulder.
- [2] Roald K. Wangsness, Electromagnetic Fields, 2nd edition (Wiley, New York, NY, 1986), p. 494.
- [3] Horace Lamb, Hydrodynamics 16th edition (Dover, New York, 1993) Sec. 337, pp. 597-599.
 - Magnetic Properties, Integrated Magnetics, http://www.intemag.com/magnetic properties.html.
- [5] Shuohong Guo, Electrodynamics 2nd edition.
- [6] David. J. Griffiths, Electrodynamics 4th edition.