Exemplar Problem

Mathematical Reasoning

6. Write down the negation of following compound statements

(i) All rational numbers are real and complex.

Solution:

The given statement is compound statement then components are,

P: All rational numbers are real.

~p: All rational numbers are not real.

q: All rational numbers are complex.

~q: All rational numbers are not complex.

 $(p \land q)$ = All rational numbers are real and complex.

 \sim (p \land q)= \sim p v \sim q= All rational numbers are neither real nor complex.

(ii) All real numbers are rationals or irrationals.

Solution:

The given statement is compound statement then components are,

P: All real numbers are rational.

~p: All real numbers are not rational.

q: All real numbers are irrational.

~q: All real numbers are not irrational.

 $(p \land q)$ = All real numbers are rationals or irrationals.

 \sim (p \land q)= \sim p v \sim q= All real numbers are neither rationals nor irrationals.

(iii) x = 2 and x = 3 are roots of the Quadratic equation x = 2 - 5x + 6 = 0.

Solution:

The given sentence is a compound statement in which components are

p: x = 2 is a root of Quadratic equation $x^2 - 5x + 6 = 0$.

~p: x = 2 is not a root of Quadratic equation $x^2 - 5x + 6 = 0$.

q: x = 3 is a root of Quadratic equation $x^2 - 5x + 6 = 0$.

~q: x = 3 is not a root of Quadratic equation $x^2 - 5x + 6 = 0$.

 $(p \land q) = x = 2$ and x = 3 are roots of the Quadratic equation $x^2 - 5x + 6 = 0$.

 \sim (p \land q)= \sim p v \sim q= Neither x = 2 and nor x = 3 are roots of x 2 – 5x + 6 = 0

(iv) A triangle has either 3-sides or 4-sides.

Solution:

The given statement is compound statement then components are,

P: A triangle has 3 sides

~p: A triangle does not have 3 sides.

q: A triangle has 4 sides.

~q: A triangle does not have 4 side.

(p v q)= A triangle has either 3-sides or 4-sides.

 \sim (p v q)= \sim p \wedge \sim q= A triangle has neither 3 sides nor 4 sides.