1. a) Podem representar el diagrama de Karnaugh com

cd	00	01	11	10
00	0	1	0	0
01	0	1	1	0
11	1	1	1	0
10	1	1	0	1

De forma que la funció simplificada és

$$f(a, b, c, d) = \bar{c}d + a\bar{c} + bd + a\bar{b}\bar{d}$$

b) En quant al diagrama de contactes

2.	a)	La	taula	de	la.	veritat	demana	ada	és
╼.	α	பப	uauia	uc	10	VCIIUau	acman	aua	\sim

a	b	c	d	S_1	S_2
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	1	1

Les funcions lògiques són

$$S_1(a,b,c,d) = a\bar{b}c\bar{d} + a\bar{b}cd + ab\bar{c}\bar{d} + ab\bar{c}d + abc\bar{d} + abc\bar{d}$$
$$S_2 = \bar{a}\bar{b}\bar{c}d + \bar{a}\bar{b}c\bar{d} + \bar{a}b\bar{c}d + \bar{a}b\bar{c}d + a\bar{b}c\bar{d} + a\bar{b}c\bar{d} + ab\bar{c}d + ab\bar{c}d$$

b) El diagrama de Karnaugh per la funció S_1 es pot representar com

cd	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	1

De forma que tenim

$$S_1 = ab + ac = a(b+c)$$

El diagrama de Karnaugh per la funció S_2 es pot representar com

cd	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

De forma que tenim

$$S_2 = d$$

c) Per S_1 el diagrama de contactes serà

Per ${\cal S}_2$ el diagrama de contactes és trivial

3. Prenent, per exemple, per les variables els símbols a,b,c,d i per les sortides $S_1,\,S_2,$ llavors la taula de la veritat es pot escriure com

a	b	c	d	S_1	S_2
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	1	0

Les funcions lògiques són

$$S_1 = \bar{a}bcd + a\bar{b}cd + ab\bar{c}d + abc\bar{d} + abc\bar{d}$$

$$S_2 = \bar{a}\bar{b}cd + \bar{a}b\bar{c}d + \bar{a}bc\bar{d} + a\bar{b}\bar{c}d + a\bar{b}c\bar{d} + ab\bar{c}\bar{d}$$

b) El diagrama de Karnaugh per la funció S_1 es pot representar com

De forma que tenim

$$S_1(a, b, c, d) = abd + abc + bcd + acd$$

El diagrama de Karnaugh per la funció S_2 es pot representar com

cd	00	01	11	10
00	0	0	1	0
01	0	1	0	1
11	1	0	0	0
10	0	1	0	1

i com és trivial comprovar, no admet simplificació.

- 4. a) L'altura dels pisos es codifica amb dos bits, per exemple
 - 00 planta baixa
 - 01 primera planta
 - 10 segona planta
 - 11 tercera planta

per tant el màxim serà planta baixa més tres plantes superiors. El pis sel·leccionat al panell de l'ascensor es codifica amb AB i el pis on es troba l'ascensor amb CD, de les condicions del problema volem que l'ascensor pugi només quan AB > CD.

b) La taula de la veritat és

A	B	C	D	M
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

La funció lògica associada a aques ta taula és

$$M(A,B,C,D) = \bar{A}B\bar{C}\bar{D} + AB\bar{C}\bar{D} + A\bar{B}\bar{C}\bar{D} + AB\bar{C}D + A\bar{B}\bar{C}D + ABC\bar{D}$$

Respecte al diagrama de Karnaugh

De forma que la funció simplificada serà

$$M(A,B,C,D) = A\bar{C} + B\bar{C}\bar{D} + AB\bar{D}$$

