Introduction to

Binary Logistic Regression - II

Contents

- 1. Binary Logistic Regression in R
- 2. Classification table, Sensitivity & Specificity
- 3. Classification table, Sensitivity & Specificity in R

Data Snapshot

Bā	Bank Loan Data		a <u>l</u> ı	Independent Variables Dependent			epende	dent <u>Variable</u>				
		SN	AGE		EMPLOY	ADDRESS	DEB	TINC	CREDDEBT	OTHDEBT	DEFAULTE	
			2	1	17 10	1000000		9.3 17.3	11.36 1.36	5.01	1 0	
	Column		Desc	ripti	on	Туре			asurem	ent P	ossible \	/alues
	SN		Serial	Nun	nber				-		-	
	AGE		Age (Grou	ıps	Categori	ical	2(2	<28 year !8-40 yea (>40 year	ırs),	3	
	EMPLOY	C	Numbe customer current	WO	rking at	Continu	DUS		-		Positive	value
	ADDRESS		Numbe custome current	r sta	ying at	Continud	DUS		-		Positive	value
	DEBTINC		ebt to Ir	icom	ne Ratio	Continuo	DUS		-		Positive	value
	CREDDEB [*]	Τ	Credit (Card	Debt	Continuo	DUS		-		Positive	value
	OTHDEBT		Othe	er De	ebt	Continuo	DUS		-		Positive	value
	DEFAULTE	R	Whether defaulte			Binary	/		Defaulte on-Defau		2	

Binary Logistic Regression in R

Import data and check data structure before running model

```
data<-read.csv("BANK LOAN.csv",header=TRUE)</pre>
str(data)
# Output:
§ SN
           : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE
          : int 3 1 2 3 1 3 2 3 1 2 ...
$ EMPLOY : int 17 10 15 15 2 5 20 12 3 0 ...
$ ADDRESS : int 12 6 14 14 0 5 9 11 4 13 ...
$ DEBTINC : num 9.3 17.3 5.5 2.9 17.3 10.2 30.6 3.6 24.4 19.7 ...
$ CREDDEBT : num 11.36 1.36 0.86 2.66 1.79 ...
$ OTHDEBT : num 5.01 4 2.17 0.82 3.06 ...
$ DEFAULTER: int 1 0 0 0 1 0 0 0 1 0 ...
data$AGE<-factor(data$AGE)</pre>
str(data)
# Output:
 'data.frame':
               700 obs. of 8 variables:
           : int 1 2 3 4 5 6 7 8 9 10 ...
 $ SN
           : Factor w/ 3 levels "1", "2", "3": 3 1 2 3 1 3 2 3 1 2 ...
 $ AGE
 $ EMPLOY : int 17 10 15 15 2 5 20 12 3 0 ...
```

\$ ADDRESS : int 12 6 14 14 0 5 9 11 4 13 ...

\$ CREDDEBT : num 11.36 1.36 0.86 2.66 1.79 ... \$ OTHDEBT : num 5.01 4 2.17 0.82 3.06 ... \$ DEFAULTER: int 1 0 0 0 1 0 0 0 1 0 ...

\$ DEBTINC : num 9.3 17.3 5.5 2.9 17.3 10.2 30.6 3.6 24.4 19.7 ...

Age is an integer and needs to be converted into a factor, since, it is a categorical variable.

Logistic Regression in R

Using glm function to develop binary logistic regression model

- glm is Generalized Linear Model. Logistic regression is type of GLM.
- □ LHS of ~ is the dependent variable and independent variables on RHS are separated by '+'.
- riskmodel is the model object
- By setting the family =binomial, glm() it fits a logistic regression model

Individual Hypothesis Testing in R

Individual Testing

```
summary(riskmodel)
# Output:

summary() function gives the
output of glm.
```

```
Call:
glm(formula = DEFAULTER ~ AGE + EMPLOY + ADDRESS + DEBTINC +
   CREDDEBT + OTHDEBT, family = binomial, data = data)
Deviance Residuals:
             10
                  Median
                                       Max
-2.3495 -0.6601 -0.2974
                           0.2509
                                    2.8583
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.78821
                       0.26407 -2.985 0.00284 **
AGE 2
            0.25202
                       0.26651
                                0.946
                                        0.34433
AGE 3
            0.62707
                       0.36056
                                1.739
                                        0.08201
           -0.26172
                       0.03188 -8.211 < 2e-16 ***
EMPLOY
ADDRESS
           -0.09964
                       0.02234 -4.459 8.22e-06
DEBTINC
            0.08506
                       0.02212
                                3.845 0.00012 ***
            0.56336
                       0.08877
                                6.347 2.20e-10 ***
CREDDEBT
            0.02315
                       0.05709 0.405 0.68517
OTHDEBT
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 804.36 on 699 degrees of freedom
Residual deviance: 553.41 on 692 degrees of freedom
AIC: 569.41
Number of Fisher Scoring iterations: 6
```

Interpretation:

Since p-value is <0.05 for Employ, Address, Debtinc, Creddebt, these independent variables are significant.

Individual Testing in R

- Validating the signs of coefficients:
 - Once the coefficients are obtained, they are checked for their signs based on business logic. Variable should be reconsidered if its sign does not match with the business logic.
 - For Ex. in our case study, sign of coefficient of Debtinc is positive which indicates that if debt to income ratio increases, chances of default increases.

Re-run Model in R

- Once variables to be retained are finalized ,re-run the model with these final variables and obtain revised coefficients for the model.
- Re-run the model with employ, address, debtinc, creddebt.

Re-run Model in R

Output:

```
Call:
glm(formula = DEFAULTER ~ EMPLOY + ADDRESS + DEBTINC + CREDDEBT,
    family = binomial, data = data)
Deviance Residuals:
   Min
             1Q Median
                               3Q
                                      Max
-2.4483 -0.6396 -0.3108 0.2583
                                   2.8496
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                    0.25154 -3.145 0.00166 **
(Intercept) -0.79107
           -0.24258
                       0.02806 -8.646 < 2e-16 ***
EMPLOY
           -0.08122
                       0.01960 -4.144 3.41e-05
ADDRESS
DEBTINC
          0.08827 0.01854 4.760 1.93e-06 ***
CREDDEBT 0.57290
                       0.08725 6.566 5.17e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 804.36 on 699 degrees of freedom
Residual deviance: 556.74 on 695 degrees of freedom
AIC: 566.74
Number of Fisher Scoring iterations: 6
```

Interpretation:

Since p-value is <0.05 for Employ, Address, Debtinc, Creddebt, these independent variables are significant and sign of the coefficients are also logical.

Final Model

• Final Model is:

```
log (\frac{p}{1-p}) = -0.79107 - 0.24258 * (EMPLOY) - 0.08122 * (ADDRESS) + 0.08827* (DEBTINC) + 0.57290 (CREDDEBT)
```

• This model is used for predicting the probabilities.

Odds Ratio in R

```
coef(riskmodel)
exp(coef(riskmodel))
exp(confint(riskmodel))
cbind(coef(riskmodel),odds_ratio=exp(coef(riskmodel)),exp(confint
(riskmodel)))
```

- coef(riskmodel): identify the model coefficients.
- exp(coef(riskmodel)): find odds ratio.
- exp(confint(riskmodel)): calculates confidence interval for odds ratio.

Odds Ratio in R

Output:

```
odds_ratio 2.5 % 97.5 %

(Intercept) -0.79107079 0.4533591 0.2756574 0.7400939

EMPLOY -0.24258492 0.7845971 0.7408645 0.8271278

ADDRESS -0.08122146 0.9219895 0.8863345 0.9572345

DEBTINC 0.08826530 1.0922779 1.0536134 1.1332029

CREDDEBT 0.57289682 1.7733968 1.5097676 2.1242860
```

Interpretation:

- Note that, confidence interval for odds ratio does not include '1' for all variables retained in the model.
 Which means that all of these variables are significant.
- The odds ratio for CREDDEBT is approximately 1.77
- For one unit change CREDDEBT, the odds of being a defaulter will change by 1.77 folds.

Predicting Probabilities in R

Predicting Probabilities

```
data$predprob<-round(fitted(riskmodel),2)
head(data,n=10)</pre>
```

- fitted function generates the predicted probabilities based on the final riskmodel.
- round function helps rounding the probabilities to 2 decimal
- data\$predprob: Predicted probabilities are saved in the same dataset 'data' in new variable 'predprob'.

Predicting Probabilities in R

Output:

100	SN	AGE	EMPLOY	ADDRESS	DEBTINC	CREDDEBT	OTHDEBT	DEFAULTER	predprob
1	1	3	17	12	9.3	11.36	5.01	1	0.81
2	2	1	10	6	17.3	1.36	4.00	0	0.20
3	3	2	15	14	5.5	0.86	2.17	0	0.01
4	4	3	15	14	2.9	2.66	0.82	0	0.02
5	5	1	2	0	17.3	1.79	3.06	1	0.78
6	6	3	5	5	10.2	0.39	2.16	0	0.22
7	7	2	20	9	30.6	3.83	16.67	0	0.19
8	8	3	12	11	3.6	0.13	1.24	0	0.01
9	9	1	3	4	24.4	1.36	3.28	1	0.75
10	10	2	0	13	19.7	2.78	2.15	0	0.82

Interpretation:

 Last column in the data 'predprob;' is the probabilities generated using final model.

Classification Table

• Based on **cut-off value** of p, Y is estimated to be either 1 or 0

```
Ex. p>0.5; Y=1 p\le 0.5; Y=0
```

- Cross tabulation of observed values of Y and predicted values of Y is called as Classification Table.
- The predictive success of the logistic regression can be assessed by looking at the classification table, but classification table is not a good measure of goodness fit since it varies with the cut off value set.
- Accuracy Rate measures how accurate a model is in predicting outcomes.
- In the adjoining table, 479 times Y=0 was observed as well as predicted. Similarly, Y=1 was observed and predicted 92 times.
 Accuracy Rate = (479+92)/700 = 81.571

Misclassification

- Misclassification Rate

 Percentage of wrongly predicted observations
- Note that misclassification rate depends on cut off used for predictions

Suppose our classification table looks as follows:

		Expe	cted
bserved	0	0 479	1 38
Obse	1	91	92

• Here misclassification rate is: (38 +91) / 700=18.43%

Classification Table Terminology

Sensitivity	% of occurrences correctly predicted P(Ypred=1/Y=1)		
Specificity	% of non occurrences correctly predicted P(Ypred=0/Y=0)		
False Positive Rate (1 – Specificity)	% of non occurrences which are incorrectly predicted. P(Ypred=1/Y=0)		
False Negative Rate (1- Sensitivity)	% of occurrences which are incorrectly predicted. P(Ypred=0/Y=1)		

		Pred	icted
		0	1
Observed	0	Specificity	False Positive (1-Specificity)
Observed	False Negative (1-Sensitivity)		Sensitivity

Sensitivity and Specificity calculations

Cut-off Value		Accuracy	Sensitivity	Specificity
0.1	FALSE TRUE 0 252 265 1 12 171	(245+171)/700 = 60.4%	171/183=93.4%	245/517=48.7%
0.2	FALSE TRUE 0 352 165 1 28 155	(352+155)/700 = 72.4%	155/183=84.7%	352/517=68.1%
0.3	FALSE TRUE 0 415 102 1 46 137	(415+137)/700 = 78.9%	137/183=74.9%	415/517=80.3%
0.4	FALSE TRUE 0 449 68 1 70 113	(449+113)/700 = 80.14%	113/183=61.7%	449/517=86.8%
0.5	FALSE TRUE 0 479 38 1 91 92	(479+92)/700 =81. 57%	92/183=50.3%	479/517=92.6%

Note: Here we are trying to find out the best cut-off value based on accuracy, sensitivity & specificity.

Classification and Sensitivity and Specificity table in R

Predicting Probabilities

```
classificationtable<-table(data$DEFAULTER,data$predprob > 0.5)
classificationtable
```

□ table function will create a cross table of observed
 Y (defaulter) vs. predicted Y (predprob).

Output:

	FALSE	TRUE
0	479	38
1	91	92

Interpretation:

- True indicates predicted defaulters and False indicates predicted non-defaulters.
- ☐ There are 479 correctly predicted non-defaulters and 92 correctly predicted defaulters.
- There are 38 wrongly predicted as defaulters and91 wrongly predicted as non-defaulters.

Sensitivity and Specificity in R

Sensitivity and Specificity

```
sensitivity<-(classificationtable[2,2]/(classificationtable[2,2]+class
ificationtable[2,1]))*100
sensitivity

specificity<-(classificationtable[1,1]/(classificationtable[1,1]+class
ificationtable[1,2]))*100
specificity</pre>
```

Output:

Interpretation:

The Sensitivity is at 50.3% and the Specificity is at 92.7%. This is when the cutoff was set at 0.5

Quick Recap

In this session, we learned how to execute **Binary Logistic Regression in R**:

Binary logistic regression	 Dependent variable is binary and independent variables are categorical or continuous or mix of both. Regression line is sigmoid curve. Parameters are estimated using MLE.
Classification table	 percentage of correctly predicted observations =accuracy. Percentage of wrongly predicted observations =misclassification rate
Sensitivity/True Positive rate	· % of occurrences correctly predicted
Specificity/True Negative rate	% of non occurrences correctly predicted
False Positive Rate	% of non occurrences which are incorrectly predicted
False Negative Rate	% of occurrences which are incorrectly predicted