Package 'motif4node'

January 23, 2023

 motif_analysis
 8

 plot_adj
 8

 plot_motif
 9

 plot_net
 9

 plot_RACIPE
 10

Index																14
	z_score			 	 						•				 •	12
	trig_score .			 	 											12
	single_motif_	_permut	e	 	 											11
	sim_4node.			 	 											11
	simu_rnorm			 	 											10

all.circuits

Data file containing the topology of all 60212 non-redundant fournode gene circuits

Description

This data contains the topology of all 60212 non-redundant four-node gene circuits.

Usage

all.circuits

Format

A list of 60212 circuits, each element is a matrix of adjacency matrix. Four columns/rows represent genes "A", "B", "C", and "D". In each adjacency matrix, 1 represents activation, 2 represents inhibition, and 0 represents no interaction.

analysis_circuit_2node

Analysis script to evaluate the state distribution of a two-node gene circuit

Description

Analysis script to evaluate the state distribution of a two-node gene circuit

Usage

```
analysis_circuit_2node(rSet, numModels = 10000, filename)
```

Arguments

rSet sRACIPE object. RACIPE simulation data.

numModels Numeric. Number of models to be simulated. Default: 10000

filename Character. Filename. Default: "myplot".

analysis_circuit_4node

```
analysis_circuit_4node
```

Analysis script to evaluate the state distribution of a four-node gene circuit

3

Description

Analysis script to evaluate the state distribution of a four-node gene circuit

Usage

```
analysis_circuit_4node(rSet, numModels = 10000, filename = "myplot")
```

Arguments

rSet sRACIPE object. RACIPE simulation data.

numModels Numeric. Number of models to be simulated. Default: 10000

filename Character. Filename. Default: "myplot".

circuit_grouping

Grouping two-node circuit motifs by their types

Description

Grouping two-node circuit motifs by their types

Usage

```
circuit_grouping()
```

Value

Vector of factor: types for all two-node motifs.

dist_ks

Calculate th KS distance of two gene expression distributions

Description

Calculate th KS distance of two gene expression distributions

Usage

```
dist_ks(query, reference, experimental)
```

Arguments

query sRACIPE object or PCA matrix of the query data

reference sRACIPE object of the reference data

experimental Logical. T: query is the PCA matrix from an experimental dataset. F: query is

an sRACIPE object

Value

the distance between the gene expression distributions from the query and reference.

Description

Motif enrichment analysis for the coupling of two two-node circuit motifs

Usage

```
enrichment_coupling(
  all.circuits = all.circuits,
  all.scores,
  motif_list,
  new_ind,
  overlap_list,
  decreasing = T,
  if_overlap = 2,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
overlap_list	Matrix (6 by 6 integers). Info of overlapping from the motif location in the 4-node circuit generated by the function: generate_overlap_data.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
if_overlap	Whether consider two motifs with overlapping (1), without overlapping (0), or both (2). Default 2.
topCircuits nhill	Integer. Number of top circuits for the enrichment analysis. Default 600. Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

A data frame containing the enrichment scores of the coupling between 2-node circuit motifs (39 by 39)

```
enrichment_coupling_all_cases
```

A convenient function to perform different motif coupling analyses altogether

Description

A convenient function to perform different motif coupling analyses altogether

Usage

```
enrichment_coupling_all_cases(
  all.circuits,
  all.scores,
  motif_list,
  new_ind,
  overlap_list,
  decreasing = decreasing,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
overlap_list	Matrix (6 by 6 integers). Info of overlapping from the motif location in the 4-node circuit generated by the function: generate_overlap_data.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

List containing the enrichment of coupling between 2-node motifs for all cases (without overlapping, overlapping, and both)

enrichment_single

Motif enrichment analysis for single two-node circuit motifs

Description

Motif enrichment analysis for single two-node circuit motifs

Usage

```
enrichment_single(
  all.circuits = all.circuits,
  all.scores,
  motif_list,
  new_ind,
  decreasing = T,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

Data frame containing the enrichment scores of each 2-node circuit motif (39 by 1)

```
{\it Convert\ redundant\ indices\ to\ the\ indices\ for\ all\ 39\ non-redundant\ motifs}
```

Description

Convert redundant indices to the indices for all 39 non-redundant motifs

gen_network_scalefree 7

Usage

```
generate_index_conversion()
```

gen_network_scalefree Generate a random scale-free gene network consisting the two-node motifs of choice

Description

Generate a random scale-free gene network consisting the two-node motifs of choice

Usage

```
gen_network_scalefree(num_nodes, motif_list, motif_choice)
```

Arguments

motif_list List of 2 by 2 integer matrix. 2-node motif info generated by the function:

generate_motif_list.

motif_choice Vector of integer. A vector of indices of the selected two-node circuit motifs

Value

Matrix. Adjacency matrix of the generated network

lin_score The scoring function for ranking circuits with a linear state distribution

Description

The scoring function for ranking circuits with a linear state distribution

Usage

```
lin_score(rset)
```

Arguments

rset

The sRACIPE object of the simulated circuit.

Value

return(min(score_vector)): returns the score for the linear state distribution.

8 plot_adj

motif_analysis A combined motif enrichment analysis for single two-node circuit m tifs and motif coupling	0-
--	----

Description

A combined motif enrichment analysis for single two-node circuit motifs and motif coupling

Usage

```
motif_analysis(
   all.circuits = all.circuits,
   all.scores,
   ylim = NULL,
   color_breaks = NULL,
   filename = NULL,
   decreasing = T,
   topCircuits = 600
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
ylim	Vector of numerics (2). Y axis limit for single motif enrichment. Default: NULL.
color_breaks	Vector that defines color scaling for pheatmap. Default: NULL
filename	Character. Prefix of filenames for plotting. Default: NULL. If provided, plots are also saved to files.
decreasing	Logical. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.

Value

List of plotting objects for single motif and motif coupling enrichment analyses.

plot_adj	Plot a network from the adjacency matrix	

Description

Plot a network from the adjacency matrix

plot_motif 9

Usage

```
plot_adj(adj)
```

Arguments

adj

Matrix (4 by 4, integer). Adjacency matrix of a four node circuit.

Value

empty

plot_motif

Plot a specific circuit motif

Description

Plot a specific circuit motif

Usage

```
plot_motif(number, motif_list)
```

Arguments

number

Integer. Index of a two-node circuit motif

 ${\tt motif_list}$

List of 2 by 2 integer matrix. 2-node motif info generated by the function:

generate_motif_list.

Value

empty

plot_net

Network plotting function

Description

Network plotting function

Usage

```
plot_net(tf_links = tf_links)
```

Arguments

tf_links

Data frame of circuit edge list. Three columns: Source, Target, Interaction Types – 1: Activation; 2: Inhibition

Value

empty

10 simu_rnorm

plot_RACIPE

Scatterplots of PCA and Gene expression from any 4-node circuit

Description

Scatterplots of PCA and Gene expression from any 4-node circuit

Usage

```
plot_RACIPE(rset)
```

Arguments

rset

The sRACIPE object of the simulated circuit

Value

list(g,p)

simu_rnorm

RACIPE simulations with random kinetic parameters from Gaussian distributions

Description

RACIPE simulations with random kinetic parameters from Gaussian distributions

Usage

```
simu_rnorm(rset, numModels = 10000)
```

Arguments

rset sRACIPE object. sRACIPE output from a standard RACIPE simulation

numModels Numeric. Number of models to be simulated. Default: 10000.

sim_4node 11

sim_4node Simulate one of the 4-node circuits from the 60212 unique circuits
--

Description

Simulate one of the 4-node circuits from the 60212 unique circuits

Usage

```
sim_4node(index, Gaussian = F, numModels = 10000, all.circuits = all.circuits)
```

Arguments

index	Numeric index number of 4-node circuit to be simulate. Takes values from 1:60212
Gaussian	Logical. If T, kinetic parameters will be sampled from a gaussian distribution. If F, kinetic parameters will be sampled from a uniform distribution
numModels	Numeric. Number of models to be simulated. Default: 10000
all.circuits	List. The topology of all 60212 circuit motifs. Default "all.circuits" from the package data.

Value

rset: sRACIPE object. RACIPE simulation results for a circuit

```
single_motif_permute Generate permutations for p-value calculations
```

Description

Generate permutations for p-value calculations

Usage

```
single_motif_permute(
  all.circuits = all.circuits,
  all.scores,
  decreasing = T,
  topCircuits = 600,
  no_perm
)
```

12 z_score

Arguments

all.circuits List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.

all.scores Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.

decreasing Logical. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.

topCircuits Integer. Number of top circuits for the enrichment analysis. Default 600.

no_perm Integer. Number of permutations.

Value

List of permuted enrichment scores.

trig_score The scoring function for ranking circuits with a triangular state distribution

Description

The scoring function for ranking circuits with a triangular state distribution

Usage

```
trig_score(rset)
```

Arguments

rset The sRACIPE object of the simulated circuit.

Value

return(min(score_vector)): returns the score for the triangular state distribution.

z_score Calculate z-score for a specific distance

Description

Calculate z-score for a specific distance

Usage

```
z_score(distances, score)
```

Arguments

distances list of distances

score Numeric. score to calculate the z-score

z_score

Value

z-score

Index

```
*Topic datasets
    all.circuits, 2
all.circuits, 2
{\tt analysis\_circuit\_2node, 2}
analysis_circuit_4node, 3
circuit\_grouping, 3
dist_ks, 3
\verb"enrichment_coupling", 4
\verb|enrichment_coupling_all_cases|, 5
enrichment_single, 6
generate_index_conversion, 6
lin_score, 7
{\tt motif\_analysis}, {\tt 8}
plot_adj, 8
plot_motif, 9
plot_net, 9
plot_RACIPE, 10
sim_4node, 11
simu_rnorm, 10
single_motif_permute, 11
trig_score, 12
z_score, 12
```