Vertex of the Quadratic

Given a quadratic $s(r) = a r^2 + b r + c$ compute its value at $r_1 = -\frac{b}{2a}$ namely $s(r_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{r}_{1^+}\mathsf{h}$, namely

 $s(r_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = s(r_1 + h) - s(r_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

$s(r) = 4 r^2 - 16 r - 63$

Example 1.

