

Mathieu FONTAINE mathieu.fontaine@riken.jp

Fast Multichannel Nonnegative Matrix Factorization with Gaussian Scale Mixture Distributions

KYOTO SAP Seminar

matfontaine.github.io

January 27th, 2021

Outline

- I FastMNMF for Multichannel Blind Speech Separation [Sek. 20]
- II Gaussian Scale Mixture
- III Variational Lower Bound Through Expectation-Maximization Algorithm : Application to GH-FastMNMF and β -FastMNMF
- IV Speech Enhancement and Speaker Separation Experiments
- V Conclusion and Future Works

▶ Sekiguchi, K. et al. (2020, TASLP). FastMNMF with Directivity-Aware Jointly-Diagonalizable Spatial Covariance Matrices for Blind Source Separation

Multichannel Blind Speech Separation?

Goal: extract speakers 1,2,3

In the Short-time Fourier transform (STFT) domain with $\mathbf{x}_{ft} \in \mathbb{C}^M$:

$$\mathbf{x}_{ft} = \sum_{n=1}^{N-1} \mathbf{x}_{nft} + \mathbf{x}_{Nft}$$
observation speakers noise

M: number of channels

F: number of frequency bins

T: number of time frame

N: number of sources

Spatial Gaussian Model + MNMF $\forall n, \ \mathbf{x}_{nft} \sim \mathcal{N}_{\mathbb{C}} \left(\mathbf{0}, \lambda_{nft} \mathbf{G}_{nft} \right)$ scale parameter spatial covariance matrix \mathbb{R}_{+} $\mathbb{C}^{M \times M}$ $\mathbf{x}_{ft} = \sum_{n=1}^{N} \mathbf{x}_{nft} \sim \mathcal{N}_{\mathbb{C}} \left(\mathbf{0}, \sum_{n=1}^{N} \lambda_{nft} \mathbf{G}_{nft} \right)$ $\lambda_{nft} = \sum_{k=1}^{K} w_{nfk} h_{nkt}$ frequency basis time activation \mathbb{R}_{+} MNMF Model $\{\lambda_{nft}\}_{f,t=1}^{F,T}$

▶ Duong, N. et al. (2009, TASLP). Under-determined reverberant audio source separation using a full-rank spatial covariance model.

Fast Gaussian MNMF Models

Independent Low-Rank Matrix Analysis (ILRMA) [Kit. 18]

 $lackbox{\textbf{Z}} \mathbf{x}_{nft} = \mathbf{a}_{nf} s_{nft}$

- (Direct sound propagation model)
- Then $\mathbf{x}_{nft} \sim \mathcal{N}_{\mathbb{C}}\left(\lambda_{nft}\mathbf{a}_{nf}\left(\mathbf{a}_{nf}\right)^{\mathrm{H}}\right)$ (Rank-1 SCM model)

lacksquare MNMF model for λ_{nft} parameters

Fast MNMF 2: a joint diagonalization (JD) technique |Sek. 19, 20|

$$lackbox{$$

- lacksquare MNMF model for λ_{nft} parameters
- ILRMA ⊂ FastMNMF2

▶ Kitamura, D. et al. (2018, Audio Source Separation, Springer). Determined blind source separation with independent low-rank matrix analysis. > Sekiguchi, K. et al. (2020, TASLP) FastMNMF with Directivity-Aware Jointly-Diagonalizable Spatial Covariance Matrices for Blind Source Separation

Multiplicative update strategy

lacktriangle Expectation-Maximization approach \Longrightarrow minimization of the log-likelihood

$$\blacksquare w_{nfk} \leftarrow w_{nfk} \sqrt{\frac{\sum_{t,m=1}^{T,M} h_{nkt} \tilde{g}_{nm} \tilde{x}_{ftm} \tilde{y}_{ftm}^{-2}}{\sum_{t,m=1}^{T,M} h_{nkt} \tilde{g}_{nm} \tilde{y}_{ftm}^{-1}}}; \quad h_{nkt} \leftarrow h_{nkt} \sqrt{\frac{\sum_{f,m=1}^{F,M} w_{nfk} \tilde{g}_{nm} \tilde{x}_{ftm} \tilde{y}_{ftm}^{-2}}{\sum_{f,m=1}^{F,M} w_{nfk} \tilde{g}_{nm} \tilde{y}_{ftm}^{-1}}};$$

$$lackbox{acbbox{lackbox{lackbox{ac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$
\righta \right. \righta \righta

$$lackbox{$$

Iterative projection method [Ono 11]

$$\mathbf{V}_{fm} = rac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{ft} \mathbf{x}_{ft}^{\mathrm{H}} y_{ftm}^{-1} \ \mathbf{e}_{m} = \left[\delta_{1,m} \ldots, \delta_{M,m}
ight]^{ op} ext{ with } \delta_{m,m'} = egin{cases} 1 & ext{if } m = m' \ 0 & ext{otherwise} \end{cases}$$

▶ Ono, N. (2011, WASPAA). Stable and fast update rules for independent vector analysis based on auxiliary function technique

Drawbacks of Gaussian MNMF Models

- \blacksquare The MNMF initialization is sometimes tricky $[\mathbf{Bou.}\ 08]$
- \blacksquare Light tails \implies less robust against impulsive noise or uncommon scenario

In $[\mathrm{Sim.}\ 19]$, suggest to use heavy-tailed models for gradient descent algorithm

▶ Boutsidis C. (2008, Pattern Recognition). SVD based initialization: A head start for nonnegative matrix factorization ▶ Simsekli U. (2019, Deep Al). A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks

Gaussian Scalar Mixture (GSM) Distribution

- Gaussian where the covariance is randomly perturbed
- \blacksquare If ${f u}$ is a GSM, then its PDF. is

$$p(\mathbf{u}) = \int_0^\infty p(\mathbf{u} \mid \boldsymbol{\phi}) p(\boldsymbol{\phi}) d\boldsymbol{\phi}$$

with

$$\mathbf{u} \mid oldsymbol{\phi} \sim \mathcal{N}_{\mathbb{C}}\left(\mathbf{0}, oldsymbol{\phi} \mathbf{A}
ight)$$

Examples of Gaussian Scale Mixture (1/2)

(Symmetric Isotropic) Generalized Hyperbolic (GH) distribution

- lacksquare ϕ is known: inverse Gaussian distribution
- \blacksquare The PDF of \mathbf{u} is given by:

$$p(\mathbf{u}) = C_{\eta,lpha,\delta,\mathbf{A}} \left(rac{2\mathbf{u}^{\mathrm{H}} oldsymbol{A}^{-1}\mathbf{u} + 1}{(\deltalpha)^2}
ight)^{rac{\eta-M}{2}} \mathcal{K}_{\eta-M} \left(rac{lpha}{\delta} \sqrt{2\mathbf{u}^{\mathrm{H}} oldsymbol{A}^{-1}\mathbf{u} + 1}
ight)^{-1}$$

- \parallel η, α : controls the heaviness of the tails
- lacksquare δ, \mathbf{A} : shape ("scale") parameter and covariance matrix
- lacksquare e.g. Student t $(\eta=rac{u}{2},lpha=0,\delta=\sqrt{
 u})$, Gaussian, Normal-Inverse Gaussian (NIG) $(\eta=-0.5,lpha>0,\delta>0)$ are GH

Examples of Gaussian Scale Mixture (2/2)

(Symmetric) Generalized Super-Gaussian Distribution

- lacksquare for $0<eta\leq 2$, GSM. But ϕ unknown! (except for eta=1,eta=2)
- \blacksquare The PDF of \mathbf{u} is given by:

$$p\left(\mathbf{u}
ight) = C_{eta,\mathbf{A}} \exp\left(-\left[\mathbf{u}^{\mathrm{H}}\mathbf{A}^{-1}\mathbf{u}
ight]^{rac{eta}{2}}
ight)$$

- \blacksquare β : shape parameter controling the tail-index
- **A**: shape matrix

A plethora of new FastMNMF models

GSM-FastMNMF

How to derive a parameter technique that unify all those probabilistic models?

Probabilistic Model

■ We assume a GSM model on sources:

$$orall n, \mathbf{x}_{nft} \mid oldsymbol{\phi_{ft}} \sim \mathcal{N}_{\mathbb{C}}\left(\mathbf{0}, oldsymbol{\phi_{ft}} \lambda_{nft} \mathbf{G}_{nft}
ight)$$

- lacktriangle The covariance perturbation ϕ_{ft} is the same for all sources
- The mixing model becomes:

$$\mathbf{x}_{ft} \mid oldsymbol{\phi_{ft}} \sim \mathcal{N}_{\mathbb{C}}\left(\mathbf{0}, oldsymbol{\phi_{ft}} \sum_{n=1}^{N} \lambda_{nft} \mathbf{G}_{nft}
ight)$$

GSM FastMNMF + Filtering Method

Weighted-shared JD model

$$\blacksquare \mathbf{Y}_{ft} = \mathbf{Q}_f^{-1} \begin{pmatrix} \boldsymbol{\phi_{ft}} \sum_{n=1}^{N} \underline{\lambda_{nft} \mathrm{Diag}\left(\tilde{\mathbf{g}}_{n}\right)} \\ \underline{=\mathrm{Diag}(\tilde{\mathbf{y}}_{nft})} \end{pmatrix} \mathbf{Q}_f^{-\mathrm{H}}$$

- lacksquare $\mathbf{x}_{ft} \mid \mathbf{\Phi} \sim \mathcal{N}_{\mathbb{C}} \left(\mathbf{0}, \mathbf{Y}_{ft}
 ight)$
- lacksquare MNMF model for λ_{nft} parameters

Marginalized Wiener filter

Using the conditional Gaussian model we have:

$$\mathbb{E}_{\phi}\left[\mathbb{E}\left[\mathbf{x}_{nft}\mid\mathbf{\Theta},\phi,\mathbf{x}_{ft}
ight]
ight]=\mathbf{Q}_{f}^{-1}\mathrm{Diag}\left(ilde{\mathbf{y}}_{nft}
ight)\mathrm{Diag}\left(ilde{\mathbf{y}}_{ft}
ight)^{-1}\mathbf{Q}_{f}^{-\mathrm{H}}\mathbf{x}_{ft}.$$
 $lacksymbol{f W}$ Where $oldsymbol{f \Theta}=\left\{\mathbf{W},\mathbf{H}, ilde{\mathbf{G}},\mathbf{Q}
ight\}$

$$lacksquare$$
 Where $oldsymbol{\Theta} = \left\{ \mathbf{W}, \mathbf{H}, ilde{\mathbf{G}}, \mathbf{Q}
ight\}$

The filtering technique is equivalent to the classical Multichannel Wiener filter

Variational lower-bound

We develop a Majorization-Minimization algorithm for the parameter estimation

- lacksquare Consider the LL: $\log p(\mathbf{X}|oldsymbol{\Theta}) = \log \int p(\mathbf{X}|oldsymbol{\Theta},oldsymbol{\phi})p(oldsymbol{\phi})doldsymbol{\phi}$
- \blacksquare Using the fact that $\mathbf X$ is a GSM, we get:

$$\log p(\mathbf{X}|oldsymbol{arOmega}) \overset{c}{\geq} \ \sum_{n,f,t,k,m=1}^{N,F,T,K,M} \left(-\omega_{ftm}^{-1} ilde{g}_{nm} w_{nkf} h_{nkt} + ilde{x}_{ftm} \pi_{nkftm}^2 ilde{g}_{nm}^{-1} w_{nkf}^{-1} h_{nkt}^{-1} \mathbb{E}_{q(heta)} \left[\phi_{ft}^{-1}
ight]
ight) \ - T \sum_{f=1}^{F} \log \left| \mathbf{Q}_f \mathbf{Q}_f^{\mathrm{H}}
ight| - \mathrm{KL} \left[q \left(\phi_{ft}
ight) \mid\mid p \left(\phi_{ft}
ight)
ight]$$

- lacksquare KL denotes the Kullback-Leibler divergence
- $lackbox{f \blacksquare} ilde{x}_{ftm} = \left| {f q}_{fm}^{
 m H} {f x}_{ft}
 ight|$
- lacksquare ω_{ftm},π_{nkftm} are auxiliary variables that depends on Θ to satisify the equality
- $lacksquare q\left(heta
 ight)$ satisfy the equality with the LL when $q(heta)=p\left(\phi\mid\mathbf{X},\mathbf{\Theta}
 ight)$

How to compute
$$\mathbb{E}_{q(heta)}\left[\phi_{ft}^{-1}
ight]$$
 ?

E-Step: computation of
$$\mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left|\phi_{ft}^{-1}\right|$$

Thanks to the GSM assumption, it can be shown that:

$$rac{d \log p(\mathbf{x}_{ft})}{d\mathbf{x}_{ft}^{ ext{H}}} = -\sum_{m=1}^{M} 2\mathbf{q}_{fm}^{ ext{H}}\mathbf{x}_{ft}\mathbf{q}_{fm} ilde{y}_{ftm}^{-1}\mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left[\phi_{ft}^{-1}
ight]$$

- lacksquare $ilde{y}_{ftm} = \sum_{n,k=1}^{N,K} ilde{g}_{nm} w_{nfk} h_{nkt}$
- Only the knowledge of the log PDF is required
- \blacksquare The knowledge of the law of ϕ_{ft} is not necessary!

M-Step

Multiplicative update rules (MUR)

- lacksquare Let assume that $ilde{\phi}_{ft}^{-1} riangleq \mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left[\phi_{ft}^{-1}
 ight]$ are known
- As in FastMNMF, the MURs are given as the Itakura-Saito (IS) minimization:
- lacktriangle Minimization-Maximization approach \Longrightarrow minimization of the log-likelihood

$$lackbox{ackbox{ac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

Iterative projection method

$$\mathbf{V}_{fm} = rac{1}{T} \sum_{t}^{T} ilde{oldsymbol{\phi}}_{ft}^{-1} \mathbf{x}_{ft} \mathbf{x}_{ft}^{\mathrm{H}} y_{ftml}^{-1} \ \mathbf{e}_{m} = \left[\delta_{1,m} \dots, \delta_{M,m}
ight]^{ op} ext{ with } \delta_{m,m'} = egin{cases} 1 & ext{if } m = m' \ 0 & ext{otherwise} \end{cases}$$

E-Step for GH-FastMNMF and eta-FastMNMF

We apply the following formula in the case of a GH model and a β -FastMNMF:

$$rac{d \log p(\mathbf{x}_{ft})}{d\mathbf{x}_{ft}^{ ext{H}}} = -\sum_{m=1}^{M} 2\mathbf{q}_{fm}^{ ext{H}}\mathbf{x}_{ft}\mathbf{q}_{fm} ilde{y}_{ftm}^{-1}\mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left[\phi_{ft}^{-1}
ight]$$

GH-FastMNMF

We get the following result for $\tilde{\phi}_{ft}^{-1} \triangleq \mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left[\phi_{ft}^{-1}\right]$:

$$ilde{\phi}_{ft}^{-1} = \left(rac{2(M-\eta)}{\gamma_{ft}} + lpharac{\mathcal{K}_{\eta-M+1}\left(lpha^2\gamma_{ft}
ight)}{\gamma_{ft}\mathcal{K}_{\eta-M}\left(lpha^2\gamma_{ft}
ight)}
ight)$$

where $\gamma_{ft} riangleq 1 + rac{2}{\delta^2} \sum_m ilde{x}_{ftm} ilde{y}_{ftm}^{-1}$

lacksquare The results coincide with the already proposed u-FastMNMF and $\mathcal N$ -FastMNMF

eta-FastMNMF

We get the following result for
$$ilde{\phi}_{ft}^{-1} riangleq \mathbb{E}_{p(\phi|\mathbf{X},\mathbf{\Theta})}\left[\phi_{ft}^{-1}\right]$$
:
$$ilde{\phi}_{ft}^{-1} = frac{\beta}{2} \left(\sum_{m=1}^{M} ilde{x}_{ftm} y_{ftm}^{-1}\right)^{\frac{\beta-2}{2}}$$

Setting for Speech Enhancement

Dataset description

- \blacksquare REVERB CHALLENGE dataset sampled at 16 kHz recorded with 8 microphones
- RT₆₀ are either 0.25, 0.5 or 0.7s
- \blacksquare 3 Signal to noise ratio level: 0,5,10 dB
- lacksquare 2 distances: "near" (50cm between mic and speaker) & "far" (\simeq 2m)
- $lacksquare{1}{2} M \in \{2,5,8\}$ are considered with N=M (to include ILRMA)
- 100 utterances for the first experiment (dev set)
- \blacksquare 200 utterances for the second experiment (test set)

Scores

■ Signal to Distorsion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ) (higher is better)

Methods

- lacksquare $\mathcal{N},
 u$ -FastMNMF: Gaussian and Student t weighted-shared JD SCM decomposition + MNMF
- lacksquare $\mathcal{N}, eta,
 u$ -ILRMA: Gaussian, Super-Gaussian and Student t rank t constrained SCM + direct sound propagation model + MNMF
- \blacksquare NIG-FastMNMF: proposed method with hyperparameters (α, δ)
- lacksquare eta-FastMNMF: proposed Super Gaussian FastMNMF with $0<eta\leq 2$

Settings

- 300 iterations for the EM algorithm is considered
- NMF coefficients are randomly initialized
- lacksquare Demixing matrix in ILRMA and \mathbf{Q}_f are initialized as identity matrix orall f
- lacksquare The Matrix $\left[ilde{\mathbf{g}}_1,\ldots, ilde{\mathbf{g}}_N
 ight]^ op\in\mathbb{R}^{N imes M}$ is initialized as the circulant matrix

SDR performance along the number of NMF basis K

- lacksquare M=8 and best hyperparameters for all methods
- lacksquare NIG-FastMNMF seems better for a small K compare to u-FastMNMF

PESQ results for different settings

D' CND A		3.4	FastMNMF variants				ILRMA variants		
Distance	SNR	M	NIG	β	ν	\mathcal{N}	β	ν	\mathcal{N}
		2	$1.9~(\pm 0.6)$	$2.0~(\pm 0.7)$	$1.9~(\pm 0.6)$	$1.8 \ (\pm 0.6)$	$1.8 \ (\pm 0.6)$	$1.7~(\pm 0.6)$	$1.7 (\pm 0.6)$
	0 dB	5	$2.4 \ (\pm 0.7)$	$2.4 \ (\pm 0.7)$	$2.4 \ (\pm 0.7)$	$2.3 \ (\pm 0.7)$	$2.0\ (\pm0.7)$	$2.1 \ (\pm 0.7)$	$2.0\ (\pm0.7)$
		8	${f 2.6}\ (\pm {f 0.8})$	$2.6 \ (\pm 0.8)$	$2.5 \ (\pm 0.7)$	$2.4 \ (\pm 0.7)$	$2.3 \ (\pm 0.7)$	$2.3 \ (\pm 0.7)$	$2.2 \ (\pm 0.8)$
		2	$2.2~(\pm 0.7)$	$2.2~(\pm 0.7)$	$2.2~(\pm 0.6)$	$2.1 \ (\pm 0.7)$	$2.0~(\pm 0.7)$	$2.1~(\pm 0.7)$	$2.0 \ (\pm 0.6)$
Near	5 dB	5	$2.7 \ (\pm 0.7)$	$2.7 \ (\pm 0.6)$	$2.7 \ (\pm 0.6)$	$2.6 \ (\pm 0.6)$	$2.5\ (\pm0.8)$	$2.4 \ (\pm 0.8)$	$2.4 \ (\pm 0.7)$
		8	$2.9 \ (\pm 0.7)$	$2.9 \ (\pm 0.7)$	$2.8 \ (\pm 0.7)$	$2.8 \ (\pm 0.6)$	$2.6 \ (\pm 0.8)$	$2.6 \ (\pm 0.8)$	$2.5 \ (\pm 0.7)$
		2	$2.5 (\pm 0.6)$	$2.5~(\pm 0.6)$	$2.4 \ (\pm 0.6)$	$2.3 \ (\pm 0.6)$	$2.2~(\pm 0.8)$	$2.3~(\pm 0.8)$	$2.2 \ (\pm 0.7)$
	10 dB	5	$3.0~(\pm 0.5)$	$3.0\ (\pm0.5)$	$3.0 \ (\pm 0.5)$	$2.8 \ (\pm 0.5)$	$2.7 \ (\pm 0.9)$	$2.7 \ (\pm 0.9)$	$2.7 \ (\pm 0.6)$
		8	$3.2~(\pm 0.5)$	$3.2\ (\pm0.5)$	$3.1 \ (\pm 0.5)$	$3.0 \ (\pm 0.5)$	$2.9 \ (\pm 0.9)$	$2.9 \ (\pm 0.9)$	$2.8 \ (\pm 0.6)$
		2	$1.7~(\pm 0.4)$	$1.7~(\pm 0.4)$	$1.7~(\pm 0.4)$	$1.6~(\pm 0.4)$	$1.5~(\pm 0.4)$	$1.5~(\pm 0.4)$	$1.5 (\pm 0.4)$
	0 dB	5	$2.1 \ (\pm 0.6)$	${f 2.1}~(\pm 0.5)$	$2.0 \ (\pm 0.5)$	$1.9 \ (\pm 0.5)$	$1.9 \ (\pm 0.5)$	$1.8 \ (\pm 0.5)$	$1.8 \ (\pm 0.5)$
		8	$2.3 \ (\pm 0.7)$	$2.2\ (\pm0.6)$	$2.2 \ (\pm 0.6)$	$2.1\ (\pm0.6)$	$1.9 \ (\pm 0.5)$	$1.9 \ (\pm 0.5)$	$1.9\ (\pm0.6)$
		2	$1.9~(\pm 0.4)$	$1.9 (\pm 0.4)$	$1.9 \ (\pm 0.4)$	$1.7~(\pm 0.4)$	$1.7 \ (\pm 0.5)$	$1.7 (\pm 0.5)$	$1.7 \ (\pm 0.4)$
Far	5 dB	5	$2.2~(\pm 0.4)$	$2.2 \ (\pm 0.5)$	$2.2~(\pm 0.4)$	$2.1\ (\pm 0.5)$	$2.1 \ (\pm 0.5)$	$2.0\ (\pm0.6)$	$2.0\ (\pm 0.5)$
		8	$2.3\ (\pm0.5)$	$2.4 \ (\pm 0.6)$	$2.3 \ (\pm 0.5)$	$2.1 \ (\pm 0.5)$	$2.2 \ (\pm 0.6)$	$2.2 \ (\pm 0.6)$	$2.1\ (\pm0.6)$
	10 dB	2	$2.0~(\pm 0.4)$	$2.0~(\pm 0.4)$	$2.0~(\pm 0.4)$	$1.8 \ (\pm 0.4)$	$1.8 \ (\pm 0.5)$	$1.8 \ (\pm 0.5)$	$1.8 \ (\pm 0.4)$
		5	$2.3~(\pm 0.4)$	$2.3 \ (\pm 0.4)$	$2.3 \ (\pm 0.4)$	$2.1 \ (\pm 0.4)$	$2.1\ (\pm0.6)$	$2.2 \ (\pm 0.6)$	$2.1\ (\pm 0.5)$
		8	$2.5~(\pm 0.5)$	$2.5\ (\pm 0.5)$	$2.5\ (\pm 0.5)$	$2.3 \ (\pm 0.5)$	$2.3 \ (\pm 0.6)$	$2.4 \ (\pm 0.6)$	$2.3 \ (\pm 0.5)$

- NMF basis number selected from previous SDR results
 NIG is not always the best PESQ
- lacktriangle The Modifed Bessel function computation for $ilde{\phi}_{ft}$ could induces outliers

Settings for Speaker Separation

Dataset description

- \blacksquare spatialized WSJ0-2,3mix dataset sampled at 16 kHz recorded with 8 microphones
- \blacksquare RT $_{60}$ ranging from 0.2s to 0.6s
- lacksquare N=2 or N=3 speakers and M=N,5,8 (determined/overdetermined case)
- 100 utterances for the first experiment (dev set)
- 200 utterances for the second experiment (test set)

Scores

■ Signal to Distorsion Ratio (SDR), Signal to Artifiact Ratio (PESQ) and Signal to Inference Ratio (SIR)(higher is better)

SDR performance along the number of NMF basis K

- lacksquare NIG outperforms other methods for K=8
- lacksquare eta-FastMNMF is also performant for a small number K
- \blacksquare β -FastMNMF seems to be more performant for 3 speakers

SDR,SAR,SIR performances

3.7			FastMNMF variants				
N	M	score	NIG	β	ν	\mathcal{N}	
		SDR	$3.9~(\pm 3.4)$	$3.6 (\pm 3.3)$	$2.8 \ (\pm 2.9)$	$2.8 (\pm 3.4)$	
	2	SAR	$11.4 \ (\pm 2.6)$	$11.6 \ (\pm 2.6)$	${f 12.9} \; (\pm {f 2.7})$	$10.0\ (\pm 2.6)$	
		SIR	$7.3~(\pm 4.3)$	$7.0 \ (\pm 4.1)$	$6.0 \ (\pm 3.6)$	$6.5 (\pm 4.1)$	
		SDR	$8.6 \ (\pm 5.8)$	$8.7~(\pm 5.6)$	$8.0 \ (\pm 5.2)$	$7.3 (\pm 5.1)$	
2	5	SAR	$17.2 \ (\pm 5.0)$	$17.0 \ (\pm 4.8)$	${f 18.0} \; (\pm {f 4.4})$	$14.9 \ (\pm 4.1)$	
		SIR	${f 13.4} \; (\pm {f 7.1})$	$13.4\ (\pm 6.8)$	$12.3\ (\pm 6.3)$	$12.0\ (\pm 6.0)$	
		SDR	$9.4~(\pm 5.6)$	$8.9 (\pm 5.8)$	$8.3 (\pm 4.9)$	$7.7 (\pm 5.1)$	
	8	SAR	$19.0 \ (\pm 4.8)$	$18.7 \ (\pm 5.1)$	$19.2~(\pm 4.2)$	$16.7 \ (\pm 4.3)$	
		SIR	$14.3~(\pm 7.3)$	$14.0\ (\pm 7.6)$	$12.8 \ (\pm 6.6)$	$12.7\ (\pm 6.7)$	
		SDR	$1.5~(\pm 2.3)$	$1.3 (\pm 2.1)$	$1.0~(\pm 2.1)$	$1.2 (\pm 2.0)$	
	3	SAR	$9.9 \ (\pm 1.6)$	$10.0 \ (\pm 1.5)$	${f 11.3} \; (\pm {f 1.7})$	$8.6 \ (\pm 2.0)$	
		SIR	${f 3.7} \; (\pm {f 2.4})$	$3.4 \ (\pm 2.9)$	$3.0\ (\pm 2.8)$	$3.7 \ (\pm 3.0)$	
		SDR	$3.5~(\pm 3.2)$	$3.3 (\pm 3.1)$	$3.1 (\pm 3.4)$	$2.8 (\pm 3.2)$	
3	5	SAR	$12.9 \ (\pm 2.7)$	$12.8~(\pm 2.4)$	${f 14.1}\ (\pm{f 2.8})$	$11.1~(\pm 2.9)$	
		SIR	$6.5~(\pm 4.4)$	$6.2~(\pm 4.3)$	$5.9 (\pm 4.2)$	$6.1 \ (\pm 4.3)$	
		SDR	$5.1~(\pm 3.7)$	$5.0 \ (\pm 3.8)$	$4.5~(\pm 3.6)$	$4.5 (\pm 3.8)$	
	8	SAR	$15.7 \ (\pm 3.4)$	$15.6 \ (\pm 3.4)$	$16.0~(\pm 3.2)$	$13.8 \ (\pm 3.6)$	
		SIR	$8.5\ (\pm 5.1)$	$8.6~(\pm 5.2)$	$7.6\ (\pm 4.9)$	$8.3~(\pm 5.0)$	

- NIG-FastMNMF SAR performance is maybe due to Modified Bessel Function
 The best SDR is globally got by NIG-FastMNMF
- \blacksquare Surprisely the best SAR is in general for ν -FastMNMF

Conclusion & Future Works

Conclusion

- Extension of Gaussian FastMNMF to GSM-FastMNMF
- Outperforms the state-of-the-art given the good set of parameters
- Easy to implement

Future works

- Improve NIG by smoothing the parametersWhy NIG theoretically seems to work better?

Thank you for your attention! Questions?