Estimació no paramètrica de la densitat

Mètodes no paramètrics i de remostreig Grau en Estadística UB-UPC

- En tot el que segueix, suposarem que partim d'una mostra aleatòria simple x₁, x₂, ..., x_n,
- d'una variable aleatòria X absolutament contínua amb distribució F i densitat f.
- F_n designarà la corresponent distribució empírica o mostral
- \hat{f} designarà una estimació de la funció de densitat f, f_n indicarà la densitat de F_n (prob. 1/n a cada valor observat x_i)

Planteig general i notació

- Procediment de construcció:
 - Decidir "marques de classe":

$$b_0 < b_1 < \dots < b_m$$
, reals,
 $b_0 < \min x_i$ i $b_m \ge \max x_i$

• Intervals o classes:

$$B_{j} = (b_{j-1}, b_{j}], j = 1, ..., m$$

• Freqüències:

$$n_{j} = \# \{ x_{i} : x_{i} \in (b_{j-1}, b_{j}] \}, \quad f_{j} = n_{j}/n$$

Histograma: estimació d'f més coneguda i utilitzada

Estimació:

$$\hat{f}_{H}(x) = \begin{cases} f_{j} / (b_{j} - b_{j-1}) & \text{si } x \in B_{j} \\ 0 & \text{si } x \leq b_{0} & \text{o } x > b_{m} \end{cases}$$

• Gràficament, representarem un rectangle damunt cada B_j , amb base $b_j - b_{j-1}$ i alçada $f_j / (b_j - b_{j-1})$

Histograma

• Típicament s'agafa $b = b_j - b_{j-1}$ constant $\hat{f}_H(x) = f_j/b$ si $x \in B_j$ $\hat{f}_H(x) = \sum_{j=1}^{m} f_j = 1$

$$\hat{f}_{H}(x) = \sum_{j=1}^{m} f_{j} \frac{1}{b} I_{B_{j}}(x),$$

on
$$I_{B_j}(x) = \begin{cases} 1 & \text{si } x \in B_j \\ 0 & \text{en cas contrari} \end{cases}$$

• Mixtura de distribucions uniformes sobre B_{i} , amb pesos f_{i}

Histograma amb classes de llargada constant

- (Possible interès en generar remostres bootstrap a partir de densitat \hat{f}_H)
- Consequència directa de definició anterior, per generar $X^* \sim \hat{f}_H$:
 - 1) Triem a l'atzar una classe, amb probabilitats $f_1, ..., f_m$. Suposem que hem triat B_j
 - 2) Generem un valor X^* amb distribució uniforme entre b_{j-1} i b_j

Generació aleatòria a partir d'histograma

- A Simplicitat. Facilitat d'interpretació
- ◆ Com estimació de la densitat, no és una funció contínua
- V Constant a intervals
- Molt dependent de la tria de classes, en particular de l'amplada b i del punt d'ancoratge, b₀. (Observem la figura següent, per diferents valors de b...)

Pros i contres de l'histograma

Les mateixes dades, diferent b

- Considerem un punt x entre b_0 i b_m
- La densitat $\hat{f}_{H}(x)$ es pot considerar un estimador de f(x)

$$\mathsf{E}\left\{\hat{f}_{H}\left(X\right)\right\} = f\left(X\right) + O\left(b\right)$$

$$\operatorname{var}\left\{\hat{f}_{H}\left(X\right)\right\} = \frac{f\left(X\right)}{nb} + O\left(\frac{1}{n}\right)$$

 Com més gran sigui b, més biaix però menys variància (i viceversa)

Biaix i variància de l'histograma

$$\hat{f}_H(x) \xrightarrow{P} f(x)$$
 $n \to \infty \text{ (i } b \to 0, nb \to \infty)$

- (És a dir, consistència si b es fa cada cop més petit, però no massa de pressa)
- Propietats anteriors també tenen com a consequència que \hat{f}_H estima millor f al centre de cada interval que a la perifèria

Consistència de l'histograma

 Anteriors són propietats "locals" (per un x donat). Hi ha criteris globals integrant l'error quadràtic mitjà, MSE:

$$MSE(\hat{f}_{H}(x)) = (E\{\hat{f}_{H}(x)\} - f(x))^{2} + var\{\hat{f}_{H}(x)\}$$

 Millor elecció de b segons AMISE (asymptotic mean integrated square error), valor que el minimitza:

$$b_{opt} = \left(\frac{n}{6} \int_{\text{suport}(f)} (f'(x))^2 dx\right)^{-1/3}$$

Elecció de b òptim

- b_{opt} tal com definit abans no serveix per a res, f és desconeguda...
- S'acostuma a calcular la integral agafant com a referència la densitat normal ("normal reference rule"), $N(\mu, \sigma^2)$
- Que dóna com a resultat:

$$b_{opt}^* = 3.491 \sigma n^{-1/3}$$

 \bullet σ estimada com

$$\hat{\sigma} = \min\{S, IQR/1.35\}$$

(S² variància mostral, IQR rang interquartílic)

Elecció de b òptim

Polígon de frequències

- Interpolador lineal als punts centrals de cada classe de l'histograma
- Punt central de classe B_j : $c_j = b_{j-1} + b/2 = b_j b/2$, j = 1,..., m.
- (Més $c_0 = b_0 b/2$, $c_{m+1} = b_m + b/2$)
- Millor expressada a partir de $C_j = (c_{j-1}, c_j),$ j = 1, ..., m+1

$$\hat{f}_{FP}(x) = \frac{f_{j-1}}{b} + \frac{f_j - f_{j-1}}{b^2}(x - c_{j-1}) \text{ si } x \in C_j$$

(i 0 en cas contrari)

Polígon de frequències

- Millora la velocitat de convergència a la veritable densitat f
- Finestra òptima segons regla de referència a la normal $b_{opt}^* = 2.15 \sigma n^{-1/5}$
- No presenta discontinuïtats
- Ψ Però no és derivable als punts c_i ...
- Ψ Continua depenent del punt d'ancoratge, c_0 , i d'amplada de finestra, b

Polígon de frequències. Propietats bàsiques

- Simulació de $X^* \sim \hat{f}_{FP}$:
- Escollir, amb probabilitats $p_j = (f_{j-1} + f_j)/2$, j = 2,...,m, $p_1 = f_1/2$, $p_{m+1} = f_{m+1}/2$, un interval C_i
- Generar ún valor T entre 0 i b segons densitat

$$f(t) = f_{j-1}/(bp_j) + \left(\left(f_j - f_{j-1}\right)/\left(b^2p_j\right)\right)t$$

$$\bullet X^* = c_{j-1} + T$$

Simulació de la densitat polígon de frequències

- Recordem: histograma és millor estimació d'f al centre de cada interval de classe B_i
- **Histograma mòbil**: Fem que interval de llargada b estigui **centrat a cada punt x** on volem estimar f: $B_x = (x h, x + h]$, h = b/2

$$f_x = \#\{x_i \in B_x\}/n$$

$$\hat{f}_{HM}(x) = \frac{f_x}{b} = \frac{1}{2} \frac{f_x}{h} = \frac{\#\{x_i \in B_x\}}{2hn}$$

Estimadors nucli de la densitat

Expressió alternativa:

$$\hat{f}_{HM}(x) = \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} I_{B_{x}}(x_{i})$$

$$= \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} I_{(-1,+1]} \left(\frac{X - X_{i}}{h} \right)$$

 Variant x tindríem una estimació de la densitat. Si la representéssim gràficament, veuríem que no és suau

Estimadors nucli de la densitat

$$g(u) = \frac{1}{2}I_{(-1,+1]}(u)$$
 densitat uniforme sobre $(-1,+1]$

Estimador nucli (uniforme)

- Si al sumatori substituïm la densitat uniforme per una de més suau (un "nucli" K) i que sigui positiva en un interval més ampli...
- …(per exemple, una normal)…
- …tindrem un estimador nucli (o "kernel")
 pel nucli K amb paràmetre de suavitzat h:

$$\hat{f}_{K}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X - X_{i}}{h}\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{X - X_{i}}{h}\right)$$

Estimadors nucli

 Normalment s'utilitzen nuclis K basats en distribucions contínues, unimodals i simètriques

Kernel	K(u)
Uniform	$\frac{1}{2}I(\mid u\mid \leq 1)$
Triangle	$(1- u) \ I(u \le 1)$
Epanechnikov	$\frac{3}{4}(1-u^2)I(u \le 1)$
Quartic	$\frac{15}{16}(1-u^2)^2I(\mid u\mid \leq 1)$
Triweight	$\frac{35}{32}(1-u^2)^3I(\mid u\mid \leq 1)$
Gaussian	$\frac{1}{\sqrt{2\pi}}exp(-\frac{1}{2}u^2)$
Cosinus	$\frac{\pi}{4}cos(\frac{\pi}{2}u)I(\mid u\mid \leq 1)$

Nuclis utilitzats habitualment

Nuclis utilitzats habitualment

 Mixtura d'n densitats (amb pesos 1/n) amb la mateixa forma que K però rescalades segons h i centrades a x_i

Interpretació de l'estimació nucli

 h controla concentració del pes 1/n al voltant d'x_i: com més gran, més observacions llunyanes influiran en l'estimació de la densitat

Interpretació de l'estimació nucli

- Biaix: augmenta en augmentar h
- Variància: disminueix en augmentar h
- Consistència:

$$\hat{f}_{K}(x) \xrightarrow{P} f(x)$$

 Finestra òptima: depèn de K, conegut, i de f, desconegut. Referència a normal:

K Gausià:
$$h_{opt}^* = 1.059 \, \sigma \, n^{-\frac{1}{5}}$$

En general:
$$h_{opt,K} = \left(\frac{R(K)}{\sigma_K^4 R(f'')}\right)^{-\frac{1}{5}} n^{-\frac{1}{5}}$$

Principals propietats de l'estimació nucli de la densitat

• Interpretació alternativa: Composició de n distribucions amb densitat $K(\varepsilon/h)/h$ i pesos 1/n

 $\hat{f}_{K}(X) = \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{h} K \left(\frac{X - X_{i}}{h} \right) \right)$

• Experiment associat: primer triem una x_i amb probabilitat 1/n (distribució empírica); desprès obtenim un valor aleatori segons $K(\varepsilon/h)/h$ (dibuixeu l'arbre de probabilitats)

Relació amb la distribució empírica

- Generació de valors bootstrap segons densitat nucli:
- 1) Variable X' amb **distribució empírica** F_n
- 2) Variable aleatòria ε (pertorbació aleatòria) amb densitat $K(\varepsilon/h)/h$
- Simulació de \hat{f}_{κ} : $X^* = X' + \varepsilon$
- Sovint designat com a bootstrap semiparamètric

Consequència: aplicació a bootstrap semiparamètric