

Spray Combustion Modeling Including Detailed Chemistry

Eva Gutheil

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 22 JUN 2004		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Spray Combustion	'y	5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universität Heidelberg Im Neuenheimer Feld 368, 69120 Heidelberg, Germany				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 93, International Sy une 2005., The origi		=	ndamentals E	Ield in Istanbul,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 33	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

- I. Why Detailed Chemisty?
- II. Structures of Spray Flames in the Counterflow Configuration
- III. Turbulent Spray-Flame Modeling
- IV. Summary and Conclusions

Modeling of Technical Spray Flames

Why Detailed Chemistry?

Detailed Chemical Reaction Mechanisms are Available for a Considerate Number of Relevant Combustion Systems (Alcanes, Alcohols, Hydrogen/Air, Hydrogen/Oxygen, ...)

- Combustion of liquid fuel sprays in air (e.g. internal engine combustion, industrial furnaces, gas turbine combustors)
- Liquid oxygen in (gaseous) hydrogen (liquid rocket propulsion)
- Liquid oxygen in gaseous hydrocarbons or alcohols (green propellants)

Advantages of Using Detailed Chemistry:

- Mechanism is independent of the experimental configuration, it depends only on pressure (not for hydrogen/air or hydrogen/oxygen)
- ➤ Mechanism is the base for development of reduced mechanisms (both manually or automatically developed systems)
- > Prediction of pollutants and precursors of soot formation

Disadvantages of Using Detailed Chemistry:

- > Stiffness of the conservation equations
- > Consume a considerable amount of computer time

Applications:

Laminar Flames: Detailed mechanisms can be implemented directly for

hydrogen and small hydrocarbons and alcohols

Turbulent Flames: Detailed chemistry may be implemented through use

of the flamelet model

Modeling of Laminar Spray Flames in the Counterflow Configuration

Motivation:

Investigation of laminar spray flame structures using detailed models for instance for chemical reactions

Flamelet modeling of turbulent spray diffusion flames

Properties:

- Planar or axisymmetric
- Two-dimensional
- Strained

Detailed Versus One-Step Chemistry

n-Heptane/Air Spray Flame at Atmospheric Pressure

a = 500/s

Detailed Chemistry:

Solid Lines, Square

One-Step Chemistry:

Dashed Lines, Triangles

⇒ One-Step Chemistry is not Suitable to Correctly Predict Even the Outer Flame Structure

Gutheil, E., Sirignano, W. A.: Counterflow Spray Combustion Modeling Including Detailed Transport and Detailed Chemistry, Combustion and Flame: 113(2), 92-105 (1998).

Mathematical Model

Gas-phase with dilute spray

- ➤ Boundary layer approximation, low Mach number
- ➤ Dimensionless, steady equations
- \triangleright Similarity transformation \Rightarrow 2D \rightarrow 1D equations
- ➤ Ideal gas law
- > Detailed chemical reaction mechanisms.
 - \rightarrow H₂/O₂ (8 species and 38 elementary reactions)
 - ➤ methanol/air (23 species and 170 elementary reactions)
- > Detailed transport: molecular diffusion and thermo diffusion
- ➤ Gas-phase properties between 300 and 5000 K from NASA polynomials
- \triangleright Physical properties of H₂ and O₂ in the range of 80 to 300 K and 1 to 200 bar from *JSME* tables

Mathematical Model

Liquid phase

- ➤ Mono-, bi- and polydisperse sprays, single-component sprays
- ➤ Discrete droplet model
- > Spherically symmetric droplets
- ➤ Convective droplet model for heating and vaporization (Abramzon-Sirignano model)
- ➤ Pressure and temperature dependent heat of vaporization
- ➤ Assumption of thermodynamic equilibrium:
 - Ambrose's equation for the evaluation of the vapor pressure for methanol/air
 - Calculation of binary H₂/O₂ mixtures to obtain the gas mixture composition at the interface (replacement of Raoult's law)
- ➤ Droplet motion (drag)

Physical Properties of Oxygen (Cryogenic, High Pressure)

Yang, V., Lin, N.N., Shuen, J.S., Combust. Sci. and Tech., 97: pp. 247-270, 1994 JSME Data Book, Thermophysical Properties of Fluids, 1983.

Prausnitz, J.M., Lichtenthaler, R.N., de Avezedo, E.G., *Molecular Thermo-dynamics of Fluid-Phase Equilibria*, Prentice-Hall, New Jersey, 1986. Litchford, R.R., Jeng, S.M., *AIAA Paper* 90-2191, 1990.

H₂/Air Spray Flame at Atmospheric Pressure

$$p = 1$$
 bar, $T_{+} = T_{-} = 300$ K, $a = 100/s$

Symbols: Experiment: T. M. Brown *et. al.*, *Combust. Sci. and Tech.*, Vol. 129, pp. 71-88, 1997.

 Experiment: Sohn, C. H., Chung, S. H., Lee, S. R., Kim, J. S., Combustion and Flame, 115 (3): 299-312, 1998.

LOX/H₂ Spray Flame

 $p = 30 \text{ bar}, \ \Phi = 6, \ a = 3,000/\text{s} \text{ (spray side)}, \ R_{A,0} = 10 \ \mu\text{m}, \ R_{B,0} = 25 \ \mu\text{m}, \ \text{SMR}_0 = 14.3 \ \mu\text{m}$

Schlotz, D., Gutheil, E.: *Modeling of Laminar Mono- and Bidisperse Liquid Oxygen/Hydrogen Spray Flames in the Counterflow Configuration*, Combustion Science and Technology, 158, 195-210 (2000).

LOX/H₂ Spray Flame

 $p = 30 \text{ bar}, \ \Phi = 6, \ a = 3,000/\text{s} \text{ (spray side)}, \ R_{A,0} = 10 \ \mu\text{m}, \ R_{B,0} = 25 \ \mu\text{m}, \ \text{SMR}_0 = 14.3 \ \mu\text{m}$

Schlotz, D., Gutheil, E.: *Modeling of Laminar Mono- and Bidisperse Liquid Oxygen/Hydrogen Spray Flames in the Counterflow Configuration*, Combustion Science and Technology, 158, 195-210 (2000).

LOX/H₂ Spray Flame

Chemical Reaction Rate and Vaporization Rate

 $p = 30 \text{ bar}, \ \Phi = 6, \ a = 3,000/\text{s} \text{ (spray side)}, \ R_{A,0} = 10 \ \mu\text{m}, \ R_{B,0} = 25 \ \mu\text{m}, \ \text{SMR}_0 = 14.3 \ \mu\text{m}$

Schlotz, D., Gutheil, E.: *Modeling of Laminar Mono- and Bidisperse Liquid Oxygen/Hydrogen Spray Flames in the Counterflow Configuration*, Combustion Science and Technology, 158, 195-210 (2000).

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

a = 100/s

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

a = 300/s

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Methanol/Air Spray Flame at Atmospheric Pressure

a = 500/s

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

$$a = 300/s$$

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Comparison: Gas-Sided Flame and Pure Gas Flames

Methanol/Air Spray Flame at Atmospheric Pressure

a = 300/s

Gas Side (Spray Flame)

Gas Flame

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Methanol/Air Spray Flame at Atmospheric Pressure

Comparison of Spray and Gas Flame

Gutheil, E.: *Multiple Solutions for Structures of Laminar Counterflow Spray Flames*, Progress in Computational Fluid Dynamics, 2004, to appear.

Structures of Laminar Spray Flames in the Counterflow Configuration

- The LOX/H₂ Spray Flames are very stable and persist to strain rates of 25,000/s. The non-monotonicity of the gaseous oxygen profile on the spray side stems from the competition of vaporization and combustion.
- Multiple structures of methanol/air spray flames have been found for strain rates up to 400/s. The inner structure of the gas-sided flame is the same as a pure gas flamelet with appropriate initial conditions.
- At high strain, the gas-sided flame is extinguished and the spray-sided flame moves towards the gas-side of the counterflow configuration.

Question: How does the finding affect models such as the flamelet model for turbulent spray diffusion flames?

Flamelet-Model for Turbulent Diffusion Flames

Turbulent Flame

Library of laminar flame structures in the counterflow configuration

- Gas flames
 - Strain rate
- Spray flames
 - Strain rate
 - Droplet size
 - Droplet velocity
 - Equivalence ratio

Laminar Spray Flame Structures for Use in Flamelet Models for Turbulent Spray Diffusion Flames (Methanol/Air)

LHS: Gas Flamelets

RHS: Spray Flamelets

Experiment: McDonell V.G., Samuelsen, G.S., UCI-Laboratory Report UCI-ARTR-90-17A-C (1990)

Simulation: Hollmann, C., Gutheil. E., Combust. Sci. and Tech. 135 1-6, 175 (1998).

Gas Flamelet

Modeling of Turbulent Spray Flames

Leads to Simplification of Implementing **Laminar Spray Flamelets**

Modeling of Turbulent LOX/H₂ Spray Flames

Micro Combustion Chamber M3 (DLR Lampoldshausen)

OH-Emission, p = 5 bar, $T_0 = 100$ K

Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, Florence, Italy, 145-154 (1997).

Modeling of Turbulent Spray Flames

Experiment: Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, Florence, Italy, 145-154 (1997).

Simulation: Schlotz, D., Brunner, M., Gutheil, E.: *Modeling of Turbulent LOX/H*₂ *Combustion under Cryogenic and Elevated Pressure Conditions*, ILASS Europe Conference, Zürich, September 2-6 (2001).

Modeling of Turbulent Spray Flames

Experiment: Sender, J., et al., Proceedings of the 13th Annual Conference on Liquid Atomization on Spray Systems, Florence, Italy, 145-154 (1997).

Simulation: Schlotz, D., Brunner, M., Gutheil, E.: *Modeling of Turbulent LOX/H*₂ *Combustion under Cryogenic and Elevated Pressure Conditions*, ILASS Europe Conference, Zürich, September 2-6 (2001).

Mixing in Turbulent Sprays

- The β -function that is typically used to describe the mixing in turbulent diffusion flames does not perform well in regions where vaporization is present¹.
- Here: Modification of the description of the β -function through use of a transport equation for the probability density function of the mixture fraction, f, in turbulent sprays²:

$$\overline{\rho}_{g} \frac{\partial \tilde{f}}{\partial t} + \overline{\rho}_{g} U_{j} \frac{\partial \tilde{f}}{\partial x_{j}} + \frac{\partial (\overline{\rho}_{g} \overline{S}_{s} \tilde{f})}{\partial \zeta_{c}} = -\frac{\partial}{\partial \zeta_{c}} \left[\overline{\rho}_{g} \left\langle \frac{\partial}{\partial x_{j}} \left(D_{M} \frac{\partial \xi_{c}}{\partial x_{j}} \right) \middle| \zeta_{c} \right\rangle \tilde{f} \right].$$

¹Miller R.S. Bellan, J. On the Validity of the Assumed Probability Density Function Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in Gas/Liquid-Droplet Turbulent Shear Flow, *Proc. Combust. Inst.* **27**: 1065-1072, 1998.

²Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, *Atomiz. Sprays*, 2004, submitted.

Mixing in Turbulent Methanol/Air Sprays

Methanol Vapor Fraction and PDF of the Mixture Fraction

Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, *Atomiz. Sprays*, 2004, submitted.

Probability Density Functions at Various Positions

$$\begin{split} P(\xi_c) &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \xi_c^{\alpha - 1} (1 - \xi_c)^{\beta - 1} \\ P(\xi_c) &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} (\xi_{c,\text{max}} - \xi_{c,\text{min}})^{1 - \alpha - \beta} (\xi_c - \xi_{c,\text{min}})^{\alpha - 1} (\xi_{c,\text{max}} - \xi_c)^{\beta - 1} \end{split}$$

Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted.

Comparison of Results with Presumed and Monte-Carlo PDF, and with Experiment

Experiment: McDonell, V. G. and Samuelsen, G.S., An Experimental Data Base for Computational Fluid Dynamics

of Reacting and Nonreacting Methanol Sprays, J. Fluids Engin. 117: 145-153, 1995.

Ge, H.-W., Gutheil, E.: PDF Simulation of Turbulent Spray Flows, Atomiz. Sprays, 2004, submitted. Simulation:

Summary and Conclusions

- LOX/H₂ spray flames in the counter-flow configuration have been studied, and the gaseous oxygen profile shows a non-monotonic behavior because of the high reactivity of the system. The flames persist to strain rates up to 25,000/s, and extinction has not yet been found.
- Multiple structures of laminar methanol/air counter-flowing spray flames have been identified at low strain rates up to 400/s on the spray side of the configuration for the present conditions. The gas-sided spray flame shows the same inner structure as a pure gas flamelet with appropriate boundary conditions, and this simplifies the implementation of the flamelet model for turbulent spray diffusion flames.
- The assumed β -function for the turbulent mixing in spray flames is poor in regions where vaporization exists, and it has been replaced by a PDF transport equation for the mixture fraction. A modified β -function is suitable to predict the shape of the PDF of the mixture fraction.

Future Research

- Extension of the model to unsteady flamelets
- Application of the PDF method to turbulent spray flame simulations
- Extension to other liquids