### CSE400 Assignment 3 report

Huahao Shang hushang@syr.edu SUID: hushang

1(a).

|   | Age  | Attrition | BusinessTravel    | DailyRate | Department                | DistanceFromHome | EnvironmentSatisfaction | JobSatisfaction | PerformanceRating | WorkLifeBalance | Y |
|---|------|-----------|-------------------|-----------|---------------------------|------------------|-------------------------|-----------------|-------------------|-----------------|---|
| C | 41   | Yes       | Travel_Rarely     | 1102      | Sales                     | 1                | 2                       | 4               | 3                 | 1               |   |
| 1 | 49   | No        | Travel_Frequently | 279       | Research &<br>Development | 8                | 3                       | 2               | 4                 | 3               |   |
| 2 | 2 37 | Yes       | Travel_Rarely     | 1373      | Research &<br>Development | 2                | 4                       | 3               | 3                 | 3               |   |
| 3 | 33   | No        | Travel_Frequently | 1392      | Research &<br>Development | 3                | 4                       | 3               | 3                 | 3               |   |
| 4 | 27   | No        | Travel_Rarely     | 591       | Research &<br>Development | 2                | 1                       | 2               | 3                 | 3               |   |

| JobSatisfaction | PerformanceRating | WorkLifeBalance | YearsAtCompany |
|-----------------|-------------------|-----------------|----------------|
| 4               | 3                 | 1               | 6              |
| 2               | 4                 | 3               | 10             |
| 3               | 3                 | 3               | 0              |
| 3               | 3                 | 3               | 8              |
| 2               | 3                 | 3               | 2              |

ment', ction',

### (b) There is no NaN values

| : | dfl.isna().any()         |       |
|---|--------------------------|-------|
| : | Age                      | False |
|   | Attrition                | False |
|   | BusinessTravel           | False |
|   | DailyRate                | False |
|   | Department               | False |
|   | DistanceFromHome         | False |
|   | Education                | False |
|   | EducationField           | False |
|   | EmployeeCount            | False |
|   | EmployeeNumber           | False |
|   | EnvironmentSatisfaction  | False |
|   | Gender                   | False |
|   | HourlyRate               | False |
|   | JobInvolvement           | False |
|   | JobLevel                 | False |
|   | JobRole                  | False |
|   | JobSatisfaction          | False |
|   | MaritalStatus            | False |
|   | MonthlyIncome            | False |
|   | MonthlyRate              | False |
|   | NumCompaniesWorked       | False |
|   | Over18                   | False |
|   | OverTime                 | False |
|   | PercentSalaryHike        | False |
|   | PerformanceRating        | False |
|   | RelationshipSatisfaction | False |
|   | StandardHours            | False |
|   | StockOptionLevel         | False |
|   | TotalWorkingYears        | False |

rerrormancewacting RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

(c)

Yes, The "Attrition" is set to 0 or 1 based on Yes or No

(4)

|   | Age | Attrition | DailyRate | DistanceFromHome | EnvironmentSatisfaction | JobSatisfaction | PerformanceRating | WorkLifeBalance | YearsAtCompany | x0_Travel_Freq |
|---|-----|-----------|-----------|------------------|-------------------------|-----------------|-------------------|-----------------|----------------|----------------|
| 0 | 41  | 1         | 1102      | 1                | 2                       | 4               | 3                 | 1               | 6              |                |
| 1 | 49  | 0         | 279       | 8                | 3                       | 2               | 4                 | 3               | 10             |                |
| 2 | 37  | 1         | 1373      | 2                | 4                       | 3               | 3                 | 3               | 0              |                |
| 3 | 33  | 0         | 1392      | 3                | 4                       | 3               | 3                 | 3               | 8              |                |
| 4 | 27  | 0         | 591       | 2                | 1                       | 2               | 3                 | 3               | 2              |                |

| nceRating | WorkLifeBalance | YearsAtCompany | x0_Travel_Frequently | x0_Travel_Rarely | xu_Research<br>&<br>Development | x0_Sales |
|-----------|-----------------|----------------|----------------------|------------------|---------------------------------|----------|
| 3         | 1               | 6              | 0                    | 1                | 0                               | 1        |
| 4         | 3               | 10             | 1                    | 0                | 1                               | 0        |
| 3         | 3               | 0              | 0                    | 1                | 1                               | 0        |
| 3         | 3               | 8              | 1                    | 0                | 1                               | 0        |
| 3         | 3               | 2              | 0                    | 1                | 1                               | 0        |
|           |                 |                |                      |                  |                                 |          |

2.

(a) train data: 1176 test data: 294 Index:285 Index:721

(b)

The performance is fine, with around 0.85 accuracy

score: 0.845

### Beta features:

```
array([[-3.18147741e-02, -2.62857411e-04, 2.17927310e-02, -2.78447164e-01, -2.61351594e-01, 5.28027676e-01, -2.52099456e-01, -5.86571245e-02, 5.26873313e-01, -9.91669493e-02, -2.76229119e-01, 3.86154826e-01]])
```

(c)

Increase Iteration to 1000, the algorithm won't converge. Use scaler, the algorithm will converge Changing solver, newton-cg and lbfgs, it also won't converge.

(d) the accuracy: 0.836

(e)

With the converged algorithm, changing L1, L2 penalty and C = 1.0 or 10.0 won't affect much of the accuracy. The accuracy is always around 0.836.

solver='liblinear', multi\_class = 'auto', penalty = 'l1', C = 1

|      | pred_Attri | tion | Attrition |
|------|------------|------|-----------|
| 7    |            | 0    | 0         |
| 14   |            | 0    | 1         |
| 17   |            | 0    | 0         |
| 18   |            | 0    | 0         |
| 20   |            | 0    | 0         |
| Pero | centage    | of   | correct   |

Percentage of correct predictions is 0.8367346938775511

solver='liblinear', multi\_class = 'auto', penalty = 'l1', C = 10

|    | pred_Attrition | Attrition |
|----|----------------|-----------|
| 7  | 0              | 0         |
| 14 | 0              | 1         |
| 17 | 0              | 0         |
| 18 | 0              | 0         |
| 20 | 0              | 0         |

Percentage of correct predictions is 0.8367346938775511

solver='liblinear', multi\_class = 'auto', penalty = 'l2', C = 10

|   |    | pred_Attrition | Attrition |
|---|----|----------------|-----------|
|   | 7  | 0              | 0         |
| 1 | 14 | 0              | 1         |
| 1 | 17 | 0              | 0         |
| 1 | 18 | 0              | 0         |
| 2 | 20 | 0              | 0         |

Percentage of correct predictions is 0.8367346938775511

solver='liblinear', multi\_class = 'auto', penalty = 'l2', C = 1

|    | pred_Attrition | Attrition |
|----|----------------|-----------|
| 7  | 0              | 0         |
| 14 | 0              | 1         |
| 17 | 0              | 0         |
| 18 | 0              | 0         |
| 20 | 0              | 0         |

Percentage of correct predictions is 0.8367346938775511

3 (a)

|   | Age | Attrition | BusinessTravel    | DailyRate | Department                | DistanceFromHome | EnvironmentSatisfaction | JobSatisfaction | PerformanceRating | WorkLifeBalance | Y |
|---|-----|-----------|-------------------|-----------|---------------------------|------------------|-------------------------|-----------------|-------------------|-----------------|---|
| 0 | 41  | Yes       | Travel_Rarely     | 1102      | Sales                     | 1                | 2                       | 4               | 3                 | 1               |   |
| 1 | 49  | No        | Travel_Frequently | 279       | Research &<br>Development | 8                | 3                       | 2               | 4                 | 3               |   |
| 2 | 37  | Yes       | Travel_Rarely     | 1373      | Research &<br>Development | 2                | 4                       | 3               | 3                 | 3               |   |
| 3 | 33  | No        | Travel_Frequently | 1392      | Research &<br>Development | 3                | 4                       | 3               | 3                 | 3               |   |
| 4 | 27  | No        | Travel_Rarely     | 591       | Research &<br>Development | 2                | 1                       | 2               | 3                 | 3               |   |

| ıg | WorkLifeBalance | YearsAtCompany | MaritalStatus |
|----|-----------------|----------------|---------------|
| 3  | 1               | 6              | Single        |
| 4  | 3               | 10             | Married       |
| 3  | 3               | 0              | Single        |
| 3  | 3               | 8              | Married       |
| 3  | 3               | 2              | Married       |

(b)

Train length: 1176 Test Length: 294

Index: 285 Index: 721

(c)

Accuracy: 0.486. The accuracy is not very well. The algorithm doesn't converge also,

(d) By increasing the iteration, the algorithm converges.

```
LogisticRegression(max_iter=1000, multi_class='ovr', penalty='none')
0.48639455782312924
array([[ 8.06179501e-03, 1.97346150e-04, -5.87966355e-03,
        -1.67074532e-02, -6.94243385e-02, -2.01517082e-01,
        -9.74078863e-02, 2.57054148e-03, -2.19569429e-01,
        -2.64960786e-01, -5.98956640e-02, -2.51044564e-01,
        -7.00819448e-01],
       [ 1.04686544e-02, 1.80352021e-04, 1.32474771e-02,
        -2.69902868e-02, -6.53969446e-02, -2.33555298e-02,
        -1.02664435e-02, 1.49822408e-03, 3.69906995e-01, 4.20782998e-01, -4.76225352e-01, -3.44495573e-01,
        -5.92373068e-01],
       [-2.14001588e-02, -4.06761642e-04, -1.18032365e-02,
         2.94344481e-02, 1.24242176e-01, -9.27633885e-02,
         4.53480168e-02, -4.33122041e-03, -2.03281045e-01,
        -2.31179944e-01, 3.90428446e-01, 4.50462602e-01,
         9.93104141e-01]])
array([-0.12877401, -0.35767902, -0.09939082])
```

By using scaler, the algorithm also converges.

```
LogisticRegression(multi_class='ovr', penalty='none')

0.483843537414966

array([[ 0.07138442,  0.08237795, -0.04751135, -0.01965579, -0.07873187, -0.05216146, -0.07349446,  0.01983936, -0.11449575, -0.14744609, -0.09657201, -0.20706819, -0.24316969],
      [ 0.11147008,  0.08219233,  0.11113723, -0.02188601, -0.06179201,  0.0277134 ,  0.01100717,  0.01036311,  0.13649332,  0.18214652, -0.19322897, -0.13349832, -0.20754517],
      [-0.19200763, -0.16480818, -0.09445363,  0.04145396,  0.1362615 ,  0.00827789,  0.04692884, -0.0273917 , -0.06054792, -0.08390798,  0.35001086,  0.3652269 ,  0.36644813]])

array([-1.30759213, -0.19329194, -0.75571357])
```

## (e) Accuracy of prediction: 0.472

#### pred\_MaritalStatus MaritalStatus 7 Divorced Married 14 Married Single 17 Married Divorced 18 Married Married 20 Married Divorced

Percentage of correct predictions is 0.47278911564625853

(f)

solver='newton-cg', multi\_class = 'ovr', penalty = '12', max\_iter =
1000, C = 1.0

# pred\_MaritalStatus MaritalStatus 7 Single Divorced 14 Single Single 17 Divorced Divorced 18 Divorced Married 20 Married Divorced

Percentage of correct predictions is 0.673469387755102

solver='newton-cg', multi\_class = 'ovr', penalty = '12', max\_iter =
1000, C= 10

|    | pred_MaritalStatus | MaritalStatus |
|----|--------------------|---------------|
| 7  | Single             | Divorced      |
| 14 | Single             | Single        |
| 17 | Divorced           | Divorced      |
| 18 | Divorced           | Married       |
| 20 | Married            | Divorced      |

Percentage of correct predictions is 0.673469387755102

solver='liblinear', multi\_class = 'ovr', penalty = 'l2', max\_iter =
1000, C= 1

### pred\_MaritalStatus MaritalStatus

| 7  | Single   | Divorced |
|----|----------|----------|
| 14 | Single   | Single   |
| 17 | Divorced | Divorced |
| 18 | Divorced | Married  |
| 20 | Married  | Divorced |

Percentage of correct predictions is 0.6700680272108843

solver='liblinear', multi\_class = 'ovr', penalty = 'l2', max\_iter =
1000, C= 10

### pred\_MaritalStatus MaritalStatus

| Divorced | Single   | 7  |
|----------|----------|----|
| Single   | Single   | 14 |
| Divorced | Divorced | 17 |
| Married  | Divorced | 18 |
| Divorced | Married  | 20 |

Percentage of correct predictions is 0.673469387755102

solver='liblinear', multi\_class = 'ovr', penalty = 'l1', max\_iter =
1000, C= 10

|    | pred_MaritalStatus | MaritalStatus |
|----|--------------------|---------------|
| 7  | Single             | Divorced      |
| 14 | Single             | Single        |
| 17 | Divorced           | Divorced      |
| 18 | Divorced           | Married       |
| 20 | Married            | Divorced      |

Percentage of correct predictions is 0.673469387755102

solver='liblinear', multi\_class = 'ovr', penalty = 'l1', max\_iter =
1000, C= 1)

|    | pred_MaritalStatus | MaritalStatus |
|----|--------------------|---------------|
| 7  | Single             | Divorced      |
| 14 | Single             | Single        |
| 17 | Divorced           | Divorced      |
| 18 | Divorced           | Married       |
| 20 | Married            | Divorced      |

Percentage of correct predictions is 0.6700680272108843

With penalty the prediction accuracy is higher, but L1 and L2 penalty don't have significant difference in accuracy and also C values.

4.

(a)

<AxesSubplot:xlabel='X1', ylabel='Y'>



<AxesSubplot:xlabel='X2', ylabel='Y'>



### 4]: <AxesSubplot:xlabel='X3', ylabel='Y'>



### 4]: <AxesSubplot:xlabel='X4', ylabel='Y'>



(b) Train length: 452

Test length:113 Index:307

Index:363

(c) R^2. 0.7135

Beta1: 10.58 Beta2: 16.36 Beta3: 2.31 Beta4: 3.79

LinearRegression()

0.7135508460514826

array([10.58004134, 16.36289846, 2.31514097, 3.79524388])

173.4788609504679

(d)
Mean absolute error is
87.0872695766073
Fraction MAE is

0.16810263818922502

The prediction is pretty accurate. The value difference won't normally exceed 100.

(e)

The model prediction performs very well.

Compare to not using polynomials, the prediction is much more accurate. The correctness raise to 0.97, compare to 0.71 previously.

| 1   | predict Y | Y      |
|-----|-----------|--------|
| 363 | 365.08    | 388.71 |
| 176 | 436.22    | 505.72 |
| 192 | 349.74    | 366.29 |
| 77  | 603.99    | 661.84 |
| 320 | 412.65    | 473.04 |

Mean absolute error is
41.422900538736215
Fraction MAE is
0.07995771248616405
Percentage of correct predictions is
0.976505646183937

- : LinearRegression()
- : 0.9645039503735615
- : array([4.86945856, 2.12144482, 0.09533217, 0.01034503, 0.10109484])
- : 332.70512196470736