Modelling Count Variables

MA4128 - Spring 2016

Overview

- 1. Introduction to Modelling Count Variables
- 2. Poisson Regression
- 3. Negative Binomial Regression
- 4. Zero-Inflated Models and Vuong Tests
- 5. Zero Truncation

PART 1: Introduction to Modelling Count Variables

Introduction

- This presentation is about regression methods in which the dependent variable takes count (nonnegative integer) values.
- ► The dependent variable is usually the number of times an event occurs in a certain period of time.

- ► Linear regression is used to model and predict continuous measurement variables.
- Poisson regression is used to model and predict discrete count variables.

Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

Overview

Some examples of **event counts** are:

- number of claims per year on a particular car owners insurance policy,
- number of workdays missed due to sickness of a dependent in a one-year period,
- number of papers published per year by a researcher.

Modelling Count Variables

Poisson Distribution

- ► The number of persons killed by mule or horse kicks in the Prussian army per year.
- Ladislaus Bortkiewicz collected data from 20 volumes of Preussischen Statistik.
- These data were collected on 10 corps of the Prussian army in the late 1800s over the course of 20 years, giving a total of 200 observations of one corps for a one year period.
- ▶ The unit period of observation is thus one year.

Poisson Distribution: Prussian Cavalary

- ▶ The total deaths from horse kicks were 122, and the average number of deaths per year per corps was thus 122/200 = 0.61.
- ▶ In any given year, we expect to observe, well, not exactly 0.61 deaths in one corps
- Here, then, is the classic Poisson situation: a rare event, whose average rate is small, with observations made over many small intervals of time.

Generating Random Numbers

```
> X <- rpois(200,lambda=0.61)</pre>
> X
[1] 1 2 0 1 0 3 0 0 1 0 0 4 0 0 0 1 0 1 0 2
[21] 00022000100001000120
[41] 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 3 1
[141] 0 0 0 0 1 2 0 1 0 1 0 0 0 0 0 0
             0 0 0 1 0 0 0 0 0 1
[181] 0 0 2 0 2 0 0 1 0 0 3 1 0 0 0 1
>
> mean(X); var(X)
[1] 0.53
[1] 0.5317588
```

Poisson Distribution Assumptions

- Poisson Regression is main technique used to model count variables.
- Assumption underlying Poisson Distribution :
 Mean and Variance are equal

$$\mathrm{E}(X)=\mathrm{Var}(X)$$

Allow for a margin of error of about 5%.
 Simulation Studies can be used to determine the validity of this assumption. (see Next Slide)

Simulation Studies

```
> X=rpois(1000,lambda=1);mean(X);var(X)
[1] 1.001
[1] 1.028027
> X=rpois(5000,lambda=0.5);mean(X);var(X)
[1] 0.5074
[1] 0.5232499
> X=rpois(2500,lambda=0.7);mean(X);var(X)
[1] 0.7248
[1] 0.7317577
> X=rpois(500,lambda=3);mean(X);var(X)
[1] 3.076
[1] 2.851928
```

Simulation Studies

```
> Ratio = numeric()
> M = 10000
>
> for ( i in 1:M){
     X=rpois(2500,lambda=5);
       Ratio[i] = var(X)/mean(X)
>
> quantile(Ratio, c(0.025,0.975))
     2.5% 97.5%
0.9452617 1.0563994
```

Problem Areas

Over-Dispersion: Important Poisson Distributon assumption does not hold

Zero-Inflation: More "Zeros" would occure than in conventional Poisson Process (This is actually "overdispersion" also, but we will treat them separately).

Zero-Truncation: Process does not allow for a "Zero" outcome.

Over-Dispersion

- Overdispersion is the presence of greater variability in a data set than would be expected based on a given simple statistical model.
- Violation of Poisson Distribution Assumption:

Zero-Inflation

- One common cause of over-dispersion is excess zeros, which in turn are generated by an additional data generating process.
- In this situation, zero-inflated model should be considered.
- If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

Over-Dispersion

- When there seems to be an issue of dispersion, we should first check if our model is appropriately specified, such as omitted variables and functional forms.
- For example, if we omitted the predictor variable prog in the example above, our model would seem to have a problem with over-dispersion.
- ▶ In other words, a misspecified model could present a symptom like an over-dispersion problem.

- Assuming that the model is correctly specified, the assumption that the conditional variance is equal to the conditional mean should be checked.
- There are several tests including the likelihood ratio test of over-dispersion parameter alpha by running the same model using negative binomial distribution.

Generalized Linear Models

The glm() function

- ▶ In statistics, the problem of modelling count variables is an example of generalized linear modelling.
- ► Generalized linear models are fit using the glm() function.
- ▶ The form of the glm function is

```
glm( modelformula,
     family=familytype(link=linkfunction),
     data=dataname)
```

Generalized Linear Models

Family	Default Link Function		
binomial	(link = "logit")		
gaussian	(link = "identity")		
Gamma	(link = "inverse")		
inverse.gaussian	$(link = "1/mu^2")$		
poisson	(link = "log")		
quasibinomial	(link = "logit")		
quasipoisson	(link = "log")		

Generalized Linear Models

Texts on GLMs

- ▶ Dobson, A. J. (1990) An Introduction to Generalized Linear Models. (*London: Chapman and Hall.*)
- Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
- McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. (London: Chapman and Hall.)
- Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

pscl: Political Science Computational Laboratory

Author(s): Simon Jackman et al (Stanford University)

URL: http://pscl.stanford.edu/

Description

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching at the Political Science Computational Laboratory; seats-votes curves.

glm2: Fitting Generalized Linear Models

Author(s): Ian Marschner

Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm

VGAM: Vector Generalized Linear and Additive Models

Author(s): Thomas W. Yee (t.yee@auckland.ac.nz)

URL: http://www.stat.auckland.ac.nz/ \sim yee/VGAM

Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs).

This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology.

MA4128 - Review Questions

- (i) Describe Event Counts / Count Variables.
- (ii) Poisson Distribution : Assumption of Parameter Equality what is it? how to check?
- (iii) State the three cases where assumption does not hold

You are not required to know anything about R implementation.

PART 2: Poisson Regression

- Poisson regression is used to model count variables.
- Poisson regression has a number of extensions useful for count models.

Conventional OLS regression

- Count outcome variables are sometimes log-transformed and analyzed using OLS regression.
- Many issues arise with this approach, including loss of data due to undefined values generated by taking the log of zero (which is undefined) and biased estimates.

If $\mathbf{x} \in \mathbb{R}^n$ is a vector of independent variables, then the model takes the form

The Crabs Data Set

The crabs data set is derived from Agresti (2007, Table 3.2, pp.76-77). It gives 4 variables for each of 173 female horseshoe crabs.

- Satellites number of male partners in addition to the female's primary partner
- ▶ Width width of the female in centimeters
- Dark a binary factor indicating whether the female has dark coloring (yes or no)
- ► **GoodSpine** a binary factor indicating whether the female has good spine condition (yes or no)

Let the first variable be a response variable, with the other three as predictors.

The data is containted in the R package glm2

```
require(glm2)
data(crabs)
head(crabs)
summary(crabs[,1:4])
```

>	head(crabs)					
	Satellites	Width	Dark	${\tt GoodSpine}$	Rep1	Rep2
1	8	28.3	no	no	2	2
2	0	22.5	yes	no	4	5
3	9	26.0	no	yes	5	6
4	0	24.8	yes	no	6	6
5	4	26.0	yes	no	6	8

```
> summary(crabs[,1:4])
Satellites
          Width
                          Dark GoodSpine
Min. : 0.000
              Min. :21.0 no:107 no:121
1st Qu.: 0.000
              1st Qu.:24.9 yes: 66 yes: 52
Median : 2.000
              Median: 26.1
Mean : 2.919
              Mean :26.3
3rd Qu.: 5.000
              3rd Qu.:27.7
Max. :15.000
              Max. :33.5
```

- ► Fit a Poisson regression model with the number of Satellites as the outcome and the width of the female as the covariate.
- What is the multiplicative change in the expected number of crabs for each additional centimeter of width?

```
crabs.pois <- glm2(Satellites ~ Width,
data=crabs, family="poisson")
summary(crabs.pois)
exp(0.164)</pre>
```

```
> summary(crabs.pois)
Call:
glm2(formula = Satellites ~ Width,
family = "poisson", data = crabs)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
Width 0.16405
                  0.01997 8.216 < 2e-16 ***
```


Code for Crabs Data Plot

```
plot(crabs$Width, crabs$Satellites,
  pch=16, col="darkred")
  points(crabs$Width, crabs.pois$fitted.values,
  col="green", lwd=3)
```

Other Examples of Poisson regression

- ► The number of awards earned by students at a secondary or high school.
- Predictors of the number of awards earned include the type of program in which the student was enrolled (e.g., vocational, general or academic) and the score on their final exam in math.

Description of the data

- For the purpose of illustration, we have simulated a data set for the last example.
- The data set is called poisreg.csv
- In this example, num_awards is the outcome variable and indicates the number of awards earned by students at a high school in a year.

Predictor Variables

- math is a continuous predictor variable and represents students' scores on their math final exam,
- prog is a categorical predictor variable with three levels indicating the type of program in which the students were enrolled.
- prog is coded as 1 = "General", 2 = "Academic" and 3 = "Vocational".

```
id
                num_awards
                                                 math
                                    prog
           Min. :0.00
                         General
                                  : 45
                                        Min. :33.0
           1st Qu.:0.00 Academic :105
                                         1st Qu.:45.0
          Median: 0.00 Vocational: 50
                                        Median:52.0
4
          Mean :0.63
                                         Mean :52.6
5
           3rd Qu.:1.00
                                         3rd Qu.:59.0
6
           Max. :6.00
                                         Max. :75.0
  (Other):194
```


- ► Each variable has 200 valid observations and their distributions seem quite reasonable.
- ► The mean and variance of our outcome variable are more or less the same.
- Our model assumes that these values, conditioned on the predictor variables, will be equal (or at least roughly so).

Poisson regression

- ► At this point, we are ready to perform our Poisson regression model analysis using the glm() function.
- We fit the model and save it in the object model1 and get a summary of the model.

```
model1 <- glm(num_awards ~ prog + math,
family="poisson", data=poisreg)
summary(model1)</pre>
```

```
Call:
glm(formula = num_awards ~ prog + math,
     family = "poisson",
     data = poisreg)
Deviance Residuals:
Min 1Q Median 3Q
                            Max
-2.204 -0.844 -0.511 0.256 2.680
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                     0.6585
(Intercept)
            -5.2471
                            -7.97 1.6e-15 ***
progAcademic
            1.0839
                     0.3583
                            3.03 0.0025 **
progVocational
            math
            0.0702
                     0.0106
                            6.62
                                 3.6e-11 ***
```

0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' Signif. codes:

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 287.67 on 199 degrees of freedom Residual deviance: 189.45 on 196 degrees of freedom ATC: 373.5

Number of Fisher Scoring iterations: 6

Regression Coefficients

- ▶ Intercept $\beta_0 = -5.2471$
- progAcademic $\beta_1 = 1.0839$
- progVocational $\beta_2 = 0.3698$
- math $\beta_3 = 0.0702$

Exercise

Predict number of awards for Vocational Student with a maths mark of 70.

$$\hat{Y} = e^{-5.2471} \times e^{1.0839 \times 0} \times e^{0.3698 \times 1} \times e^{0.0702 \times 70} = e^{0.0367} = 1.0373$$

We expect the student to win 1 award.

MA4128 Review

(i) Based on R output, be able to carry out calculations similar to that in previous slide.

PART 3: Negative Binomial Regression

Negative Binomial Regression is for modeling count outcome variables, when over-dispersion is detected.

► Negative binomial regression can be used for over-dispersed count data, that is when the conditional variance exceeds the conditional mean.

▶ It can be considered as a generalization of Poisson regression since it has the same mean structure as Poisson regression and it has an extra parameter (r) to model the over-dispersion.

$$\Pr(X = k) = {k + r - 1 \choose k} p^k (1 - p)^r \text{ for } k = 0, 1, 2, ...$$

Examples of negative binomial regression

- ▶ Example 1 School administrators study the attendance behavior of high school juniors at two schools. Predictors of the number of days of absence include the type of program in which the student is enrolled and a standardized test in math.
- ▶ Example 2 A health-related researcher is studying the number of hospital visits in past 12 months by senior citizens in a community based on the characteristics of the individuals and the types of health plans under which each one is covered.

Description of the data

Let's pursue Example 1 from above.

- We have attendance data on 314 high school juniors from two urban high schools in the file negbin.csv.
- The response variable of interest is days absent, daysabs.
- ► The variable **math** gives the standardized math score for each student.
- ► The variable **prog** is a three-level nominal variable indicating the type of instructional program in which the student is enrolled.

Exploratory Data Analysis

```
summary(dat)
      id
                gender
                             math
                                        daysabs
     : 1 female:160
 1001
                         Min. : 1.0
                                      Min. : 0.00
 1002 : 1
             male :154
                         1st Qu.:28.0
                                      1st Qu.: 1.00
 1003 : 1
                         Median:48.0
                                      Median: 4.00
 1004 : 1
                         Mean :48.3
                                      Mean : 5.96
 1005 : 1
                         3rd Qu.:70.0
                                      3rd Qu.: 8.00
 1006
                         Max. :99.0
                                      Max.
                                           :35.00
 (Other):308
        prog
 General: 40
```

Academic :167
Vocational:107

Data Set

► The table on next slide shows the average numbers of days absent by program type and seems to suggest that program type is a good candidate for predicting the number of days absent, our outcome variable, because the mean value of the outcome appears to vary by prog.

Programme	Mean	Std.Deviation
	Days Absent	Days Absent
General	10.65	8.20
Academic	6.95	7.45
Vocational	2.67	3.73

Data Set

- ► The variances within each level of prog are higher than the means within some of the levels.
- These are the conditional means and variances. These differences suggest that over-dispersion is present and that a Negative Binomial model would be appropriate.

Negative binomial regression analysis

We will use the glm.nb function from the MASS package to estimate a negative binomial regression.

- R first displays the call and the deviance residuals.
- Next, we see the regression coefficients for each of the variables, along with standard errors, z-scores, and p-values.

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
                         13.24 < 2e-16 ***
(Intercept)
          2.61527
                  0.19746
math
          -0.00599 0.00251 -2.39
                               0.017 *
progAcademic -0.44076 0.18261 -2.41
                               0.016 *
```

```
0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 '
Signif. codes:
```

- ► The variable math has a coefficient of -0.006, which is statistically significant.
- ► This means that for each one-unit increase in math, the expected log count of the number of days absent decreases by 0.006.
- ► The indicator variable shown as **progAcademic** is the expected difference in log count between group 2 and the reference group (prog=1).

- ► The expected log count for level 2 of prog is 0.44 lower than the expected log count for level 1.
- ► The indicator variable for **progVocational** is the expected difference in log count between group 3 and the reference group.

- ► The expected log count for level 3 of prog is 1.28 lower than the expected log count for level 1.
- To determine if prog itself, overall, is statistically significant, we can compare a model with and without prog.
- ► The reason it is important to fit separate models, is that unless we do, the overdispersion parameter is held constant.

```
m2 <- update(m1, . ~ . - prog)</pre>
anova(m1, m2)
## Likelihood ratio tests of Negative Binomial Models
##
## Response: daysabs
##
        Model theta Resid. df
                                   2 x log-lik. Test
## 1
         math 0.8559
                          312
                                          -1776
                                          -1731 1 vs 2
## 2 math + prog 1.0327
                            310
      Pr(Chi)
##
## 1
## 2 1.652e-10
```

- ► The two degree-of-freedom chi-square test indicates that prog is a statistically significant predictor of daysabs.
- The null deviance is calculated from an intercept-only model with 313 degrees of freedom.
- ► Then we see the residual deviance, the deviance from the full model.
- ▶ We are also shown the AIC and 2*log likelihood.

The theta parameter shown is the dispersion parameter.

```
## (Dispersion parameter for Negative Binomial(1.033)
## family taken to be 1)
##
      Null deviance: 427.54 on 313 degrees of freedom
##
## Residual deviance: 358.52 on 310 degrees of freedom
## AIC: 1741
##
## Number of Fisher Scoring iterations: 1
##
##
                 Theta: 1.033
##
             Std. Err.: 0.106
##
##
   2 x log-likelihood: -1731.258
```

Confidence Intervals

We can get the confidence intervals for the coefficients by profiling the likelihood function.

```
(est <- cbind(Estimate = coef(m1), confint(m1)))
## Waiting for profiling to be done...
## Estimate 2.5 % 97.5 %
## (Intercept) 2.615265 2.2421 3.012936
## math -0.005993 -0.0109 -0.001067
## progAcademic -0.440760 -0.8101 -0.092643
## progVocational -1.278651 -1.6835 -0.890078</pre>
```

Incidence Rate Ratios

- We might be interested in looking at incident rate ratios rather than coefficients.
- To do this, we can exponentiate our model coefficients.
- ▶ The same applies to the confidence intervals.

```
exp(est)
## Estimate 2.5 % 97.5 %
## (Intercept) 13.6708 9.4127 20.3470
## math 0.9940 0.9892 0.9989
## progAcademic 0.6435 0.4448 0.9115
## progVocational 0.2784 0.1857 0.4106
```

- The output above indicates that the incident rate for prog = 2 is 0.64 times the incident rate for the reference group (prog = 1).
- ► Likewise, the incident rate for prog = 3 is 0.28 times the incident rate for the reference group holding the other variables constant.
- ► The percent change in the incident rate of daysabs is a 1% decrease for every unit increase in math.

- The form of the model equation for negative binomial regression is the same as that for Poisson regression.
- ► The log of the outcome is predicted with a linear combination of the predictors:

$$log(\widehat{\textit{daysabs}_i}) = \textit{Intercept} + b_1(\textit{prog}_i = 2) + b_2(\textit{prog}_i = 3) + b_2(\textit{prog}$$

$$\widehat{\textit{daysabs}}_i = e^{\textit{Intercept} + b_1(\textit{prog}_i = 2) + b_2(\textit{prog}_i = 3) + b_3 \textit{math}_i}$$

$$= e^{\textit{Intercept}} e^{b_1(\textit{prog}_i = 2)} e^{b_2(\textit{prog}_i = 3)} e^{b_3 \textit{math}_i}$$

- ► The coefficients have an additive effect in the In(y) scale and the IRR have a multiplicative effect in the y scale.
- The dispersion parameter in negative binomial regression does not effect the expected counts, but it does effect the estimated variance of the expected counts.

Things to consider

- It is not recommended that negative binomial models be applied to small samples.
- One common cause of over-dispersion is excess zeros by an additional data generating process. In this situation, zero-inflated model should be considered.
- ▶ If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

- Count data often have an exposure variable, which indicates the number of times the event could have happened.
- This variable should be incorporated into your negative binomial regression model with the use of the offset option.

- ► The outcome variable in a negative binomial regression cannot have negative numbers.
- You will need to use the m1\$resid command to obtain the residuals from our model to check other assumptions of the negative binomial model

Zero-inflated Regression models - Summary

- Zero-inflated models attempt to account for excess zeros.
- ► In other words, two kinds of zeros are thought to exist in the data, "true zeros" and "excess zeros".

Two Distinct Processes

- The two parts of the a zero-inflated model are a binary model, usually a logit model to model which of the two processes the zero outcome is associated with and a count model (either a Poisson or negative binomial model) to model the count process.
- ▶ In other words, the excess zeros are generated by a separate process from the count values and that the excess zeros can be modelled independently.
- Zero-inflated models estimate two equations simultaneously, one for the count model and one for the excess zeros.
- ► The expected count is expressed as a combination of the two processes.

Fishing Data Set

- We have data on 250 groups that went to a park.
- Each group was questioned about how many fish they caught (count), how many children were in the group (child), how many people were in the group (persons), and whether or not they brought a camper to the park (camper).
- ▶ In addition to predicting the number of fish caught, there is interest in predicting the existence of excess zeros, i.e., the probability that a group caught zero fish.

Fishing Data Set

- We will use the variables child, persons, and camper in our model.
- ► In addition to predicting the number of fish caught, there is interest in predicting the existence of excess zeros, i.e., the probability that a group caught zero fish.
- We will use the variables child, persons, and camper in our model.

> head(fish)

	${\tt nofish}$	livebait	camper	persons	child	xb
1	1	0	0	1	0	-0.8963146
2	0	1	1	1	0	-0.5583450
3	0	1	0	1	0	-0.4017310
4	0	1	1	2	1	-0.9562981
5	0	1	0	1	0	0.4368910
6	0	1	1	4	2	1.3944855

zg count

1 3.0504048 0 2 1.7461489 0 3 0.2799389 0 4 -0.6015257 0 5 0.5277091 1 6 -0.7075348 0

What is a Zero-Inflated Model?

The Fishing Example

- Recall: A zero-inflated model assumes that zero outcome is due to two different processes.
- ▶ For instance, in the example of fishing presented here, the two processes are that a subject has gone 1. *fishing* vs. 2. *not fishing*.
- ▶ If not gone fishing, the only outcome possible is zero.
- ▶ If gone fishing, it is then a count process.

$$E(\text{no. fish caught} = k)$$

= $P(\text{not fishing}) \times 0 + P(\text{fishing}) \times E(y = k|\text{fishing})$

The zeroinfl() function

The arguments of zeroinfl() are given by

```
zeroinfl(formula, data, subset, na.action,
    weights, offset,
dist = "poisson", link = "logit",
control = zeroinfl.control(...),
model = TRUE,
y = TRUE, x = FALSE, ...)
```

Though we can run a Poisson regression in R using the glm function in one of the core packages, we need another package to run the zero-inflated poisson model. We use the **pscl** package.

```
summary(m1 <- zeroinfl(count ~ child + camper |
    persons, data = zinb))</pre>
```

```
##
## Call:
## zeroinfl(formula = count ~ child + camper | persons, dand
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.237 -0.754 -0.608 -0.192 24.085
```

```
## Count model coefficients (poisson with log link):

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.5979 0.0855 18.68 <2e-16 ***

## child -1.0428 0.1000 -10.43 <2e-16 ***

## camper1 0.8340 0.0936 8.91 <2e-16 ***
```

```
## Zero-inflation model coefficients (binomial with logit 1)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.297 0.374 3.47 0.00052 ***
## persons -0.564 0.163 -3.46 0.00053 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
## Number of iterations in BFGS optimization: 12
## Log-likelihood: -1.03e+03 on 5 Df
```

- Below the model call, you will find a block of output containing Poisson regression coefficients for each of the variables along with standard errors, z-scores, and p-values for the coefficients.
- ► A second block follows that corresponds to the inflation model.
- ► This includes logit coefficients for predicting excess zeros along with their standard errors, z-scores, and p-values.

Zero-Inflation

```
confint(m1)
## 2.5 % 97.5 %
## count_(Intercept) 1.4302 1.7655
## count_child -1.2388 -0.8469
## count_camper1 0.6505 1.0175
## zero_(Intercept) 0.5647 2.0302
## zero_persons -0.8838 -0.2449
```

Zero-Inflation

- All of the predictors in both the count and inflation portions of the model are statistically significant.
- We can use other methods (for example non parametric methods) to compute CIs (probably more accurate)

Vuong Testing

- Note that the model output above does not indicate in any way if our zero-inflated model is an improvement over a standard Poisson regression.
- We can determine this by running the corresponding standard Poisson model and then performing a Vuong test of the two models.

```
summary(p1 <- glm(count ~ child + camper,
family = poisson, data = fishing))</pre>
```

Vuong Testing

- ► The Vuong test compares the zero-inflated model with an ordinary Poisson regression model.
- ▶ In this example, we can see that our test statistic is significant, indicating that the zero-inflated model is superior to the standard Poisson model.

```
vuong(p1, m1)

## Vuong Non-Nested Hypothesis Test-Statistic: -3.574

##

## (test-statistic is asymptotically distributed N(0,1)

## under the null hypothesis that the models are

## indistinguishible)

## in this case:

##

## model2 > model1, with p-value 0.0001756
```

PART 4B:

- Zero-inflated negative binomial regression is for modeling count variables with excessive zeros and it is usually for overdispersed count outcome variables.
- Furthermore, theory suggests that the excess zeros are generated by a separate process from the count values and that the excess zeros can be modeled independently.

- We are going to use the variables: child and camper to model the count in the part of negative binomial model and the variable persons in the logit part of the model.
- We use the **pscl** to run a zero-inflated negative binomial regression.
- We begin by estimating the model (called m1) with the variables of interest.

```
m1 <- zeroinfl(count ~ child + camper | persons,
  data = fishing, dist = "negbin",
  EM = TRUE)
summary(m1)</pre>
```

```
## Call:
## zeroinfl(formula = count ~ child + camper | persons,
## data = fishing,
## dist = "negbin", EM = TRUE)
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -0.586 -0.462 -0.389 -0.197 18.013
```

- Below the model call, you will find a block of output containing negative binomial regression coefficients for each of the variables along with standard errors, z-scores, and p-values for the coefficients.
- ► A second block follows that corresponds to the inflation model.
- ► This includes logit coefficients for predicting excess zeros along with their standard errors, z-scores, and p-values.

```
## Count model coefficients (negbin with log link):

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.371 0.256 5.35 8.6e-08 ***

## child -1.515 0.196 -7.75 9.4e-15 ***

## camper1 0.879 0.269 3.26 0.0011 **

## Log(theta) -0.985 0.176 -5.60 2.1e-08 ***
```

```
## Zero-inflation model coefficients (binomial with logit ]
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.603 0.836 1.92 0.055 .
## persons -1.666 0.679 -2.45 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.5
##
## Theta = 0.373
## Number of iterations in BFGS optimization: 2
```

Log-likelihood: -433 on 6 Df

- The predictors child and camper in the part of the negative binomial regression model predicting number of fish caught (count) are both significant predictors.
- ► The predictor person in the part of the logit model predicting excessive zeros is statistically significant.
- ► For these data, the expected change in log(count) for a one-unit increase in child is -1.515255 holding other variables constant.
- A camper (camper = 1) has an expected log(count) of 0.879051 higher than that of a non-camper (camper = 0) holding other variables constant.

Tests of Significance

▶ All of the predictors in both the count and inflation portions of the model are statistically significant.

- ► The log odds of being an excessive zero would decrease by 1.67 for every additional person in the group.
- ▶ In other words, the more people in the group the less likely that the zero would be due to not gone fishing.
- ▶ Put plainly, the larger the group the person was in, the more likely that the person went fishing.
- ► The Vuong test suggests that the zero-inflated negative binomial model is a significant improvement over a standard negative binomial model.

Vuong Testing

- Note that the model output above does not indicate in any way if our zero-inflated model is an improvement over a standard negative binomial regression.
- We can determine this by running the corresponding standard negative binomial model and then performing a Vuong test of the two models.
- ▶ We use the MASS package to run the standard negative binomial regression.

Vuong Testing

```
library(MASS)
summary(m2 <- glm.nb(count ~ child + camper, data = zinb))
.....</pre>
```

Vuong Testing

```
## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.073 0.242 4.42 9.7e-06 ***

## child -1.375 0.196 -7.03 2.1e-12 ***

## camper1 0.909 0.284 3.21 0.0013 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.5
```

Vuong Testing

```
## Vuong Non-Nested Hypothesis Test-Statistic: 1.702
## (test-statistic is asymptotically distributed N(0,1) und
## null that the models are indistinguishible)
## in this case:
## model1 > model2, with p-value 0.0444
```

- ► The log odds of being an excessive zero would decrease by 1.67 for every additional person in the group.
- ▶ In other words, the more people in the group the less likely that the zero would be due to not gone fishing.
- ▶ Put plainly, the larger the group the person was in, the more likely that the person went fishing.
- ▶ The Vuong test suggests that the zero-inflated negative binomial model is a significant improvement over a standard negative binomial model.

Zero Truncated Poisson Distribution

Zero-Truncated Poisson Regression

- Zero-truncated Modelling is used to model count data for which the value zero cannot occur.
- Zero Truncated Poisson Model
- Zero Truncated Negative Binomial Model (Over Dispersion)

Examples of Zero-Truncated Model

Example 1.

- A study of length of hospital stay, in days, as a function of age, kind of health insurance and whether or not the patient died while in the hospital.
- Length of hospital stay is recorded as a minimum of at least one day.

Example 2.

- A study of the number of journal articles published by tenured faculty as a function of discipline (fine arts, science, social science, humanities, medical, etc).
- ► To get tenure faculty must publish, therefore, there are no tenured faculty with zero publications.

Examples of Zero-Truncated Model

Example 3.

- A study by the county traffic court on the number of tickets received by teenagers as predicted by school performance, amount of driver training and gender.
- Only individuals who have received at least one citation are in the traffic court files.

Example 4.

- Consider for example the random variable of the number of items in a shopper's basket at a supermarket checkout line.
- ▶ Presumably a shopper does not stand in line with nothing to buy (i.e. the minimum purchase is 1 item), so this phenomenon may follow a ZTP distribution

Data Set: hospitalstay

- ▶ We have a hypothetical data file, **hospitalstay** with 1,493 observations.
- ► The length of hospital stay variable is **stay**.
- ► The variable **age** gives the age group from 1 to 9 which will be treated as interval in this example.
- The variables hmo and died are binary indicator variables for HMO insured patients and patients who died while in the hospital, respectively.

Data Set: hospitalstay

```
died
##
       stay
                      age
                               hmo
                 Min.
                        :1.00
                               0:1254
##
   Min. : 1.00
                                       0:981
##
   1st Qu.: 4.00
                 1st Qu.:4.00
                               1: 239
                                       1:512
   Median: 8.00
                 Median:5.00
##
##
   Mean : 9.73
                 Mean :5.23
##
   3rd Qu.:13.00
                 3rd Qu.:6.00
##
   Max. :74.00
                 Max.
                        :9.00
```


Data Set: hospitalstay

- ► For the lowest ages, a smaller proportion of people in HMOs died, but for higher ages, there does not seem to be a huge difference, with a slightly higher proportion in HMOs dying if anything.
- Overall, as age group increases, the proportion of those dying increases, as expected.

- ► To fit the zero-truncated Poisson model, we use the vglm function in the VGAM package.
- This function fits a very flexible class of models called vector generalized linear models to a wide range of assumed distributions.
- ▶ In our case, we believe the data are Poisson, but without zeros.
- Thus the values are strictly positive Poisson, for which we use the positive Poisson family via the pospoisson function passed to vglm.

Fitting the Model with R

We will use the *hospitalstay* data.

```
m1 <- vglm(stay ~ age + hmo + died,
    family = pospoisson(),
    data = hospitalstay)
summary(m1)</pre>
```

Fitting the Model with R

Model Summary

```
## Coefficients:
```

```
## Estimate Std. Error z value

## (Intercept) 2.436 0.027 89.1

## age -0.014 0.005 -2.9

## hmo1 -0.136 0.024 -5.7

## died1 -0.204 0.018 -11.1
```

- ▶ The value of the coefficient for age, -0.0144 suggests that the log count of stay decreases by 0.0144 for each year increase in age.
- ► The coefficient for hmo, -0.1359 indicates that the log count of stay for HMO patient is 0.1359 less than for non-HMO patients.
- ▶ The log count of stay for patients who died while in the hospital was 0.2038 less than those patients who did not die.
- ► Finally, the value of the constant 2.4358 is the log count of the stay when all of the predictors equal zero.

- Can compute Cls using boot package
- Age does not have a significant effect, but hmo and died both do.

Zero-truncated negative binomial regression

Zero-truncated negative binomial regression is used to model count data for which the value zero cannot occur and for which over dispersion exists.

Zero-truncated negative binomial regression

- To fit the zero-truncated negative binomial model, we use the vglm function in the VGAM package.
- This function fits a very flexible class of models called vector generalized linear models to a wide range of assumed distributions.
- ▶ In our case, we believe the data come from the negative binomial distribution, but without zeros.
- Thus the values are strictly positive poisson, for which we use the positive negative binomial family via the posnegbinomial function passed to vglm.

Zero-truncated negative binomial regression

Fitting the Model with R

We will use the hospitalstay data again.

```
m1 <- vglm(stay ~ age + hmo + died,
  family = posnegbinomial(),
  data = hospitalstay)</pre>
```

```
summary(m1)
##
## Call:
## vglm(formula = stay ~ age + hmo + died,
      family = posnegbinomial(),
##
      data = hospitalstay)
##
##
## Pearson Residuals:
              Min 10 Median 30 Max
##
## log(munb) -1.4 -0.70 -0.23 0.45 9.8
## log(size) -14.1 -0.27 0.45 0.76 1.0
```

```
## Coefficients:
##
                Estimate Std. Error z value
   (Intercept):1
                  2.408
                             0.072
                                      33.6
## (Intercept):2
                   0.569
                             0.055
                                     10.4
                  -0.016
                             0.013 - 1.2
## age
                             0.059 - 2.5
## hmo1
                  -0.147
                  -0.218
                             0.046 - 4.7
## died1
```

 \blacktriangleright

- ► The first intercept is what we know as the typical intercept.
- ▶ The second is the **over dispersion parameter**, α .
- ▶ The number of linear predictors is two, one for the expected mean λ and one for the over dispersion.
- Next the dispersion parameter is printed, assumed to be one after accounting for overdispersion.

- ► The value of the coefficient for age, -0.0157 suggests that the log count of stay decreases by 0.0157 for each year increase in age.
- ► The coefficient for hmo, -0.1471 indicates that the log count of stay for HMO patient is 0.1471 less than for non-HMO patients.
- ▶ The log count of stay for patients who died while in the hospital was 0.2178 less than those patients who did not die.

- ► The value of the constant 2.4083 is the log count of the stay when all of the predictors equal zero.
- ▶ The value of the second intercept, the over dispersion parameter, α is 0.5686.
- ➤ To test whether we need to estimate over dispersion, we could fit a zero-truncated Poisson model and compare the two. (Not Covered).