1) In class, we showed that

Caleb Jacobs

$$p_{k+1} = r_{k+1} - \frac{\langle p_k, r_{k+1} \rangle_A}{\|p_k\|_A^2} p_k. \tag{1}$$

(a) Using the fact that $r_{k+1} = r_k - \alpha_k A p_k$ and $r_{k+1}^T r_k = 0$, show that $\langle p_k, r_{k+1} \rangle_A = -\frac{\|r_{k+1}\|_2^2}{\alpha_k}$.

$$0 = r_{k+1}^{T} r_{k} = r_{k+1}^{T} (r_{k+1} + \alpha_{k} A p_{k})$$

$$= r_{k+1}^{T} r_{k+1} + \alpha_{k} r_{k+1} A p_{k}$$

$$\implies r_{k+1} A p_{k} = -\frac{r_{k+1}^{T} r_{k+1}}{\alpha_{k}}$$

which implies

$$\langle p_k, r_{k+1} \rangle_A = -\frac{\|r_{k+1}\|_2^2}{\alpha_k}.$$

(b) Rewrite $||p_k||_A^2$ in terms of r_k and α_k .

$$\begin{aligned} \|p_k\|_A^2 &= p_k^T A p_k \\ &= \left(r_k - \frac{\langle p_{k-1}, r_k \rangle}{\|p_{k-1}\|_A^2} p_{k-1}\right)^T \frac{1}{\alpha_k} (r_k - r_{k+1}) \\ &= \frac{1}{\alpha_k} (r_k^T r_k - r_k^T r_{k+1}) \quad \text{because } p_{k-1} \text{ is orthogonal to } r_k \text{ and } r_{k+1} \\ &= \frac{1}{\alpha_k} r_k^T r_k \\ &= \frac{1}{\alpha_k} \|r_k\|_2^2. \end{aligned}$$

(c) Plug these expressions into (1) to get a technique for evaluating the next basis vector for the residual space without any applications of the matrix A.

$$p_{k+1} = r_{k+1} - \left(-\frac{\|r_{k+1}\|_2^2}{\alpha_k}\right) \left(\frac{\alpha_k}{\|r_k\|_2^2}\right) p_k$$
$$= r_{k+1} + \left(\frac{\|r_{k+1}\|_2}{\|r_k\|_2}\right)^2 p_k.$$

- 2) Consider a sparse 500×500 matrix A constructed as follows.
 - Put a 1 in each diagonal entry.
 - In each off-diagonal entry put a random number from the uniform distribution on [-1, 1] but make sure to maintain symmetry. Then replace each off-diagonal entry with $|A_{ij}| > \tau$ by 0, where τ for $\tau = 0.01, 0.05, 0.1$, and 0.2.

Take the right hand side to be a random vector b and set the tolerance to 10^{-10} .

- (a) Write the Steepest Descent (SD) and Conjugate Gradient (CG) solver.

 My code is given at the end of the document
- (b) Apply SD to solve each of the linear systems ad plot the residual for each iteration $||r_n||$ versus the iteration n on a *semilogy* scale.

- (c) Apply CG to solve each of the linear systems ad plot the residual for each iteration $||r_n||$ versus the iteration n on a semilogy scale.
- (d) What do you observe about the convergence of these methods? If the methods do not converge for any choices of τ explain what's happening.
- (e) How do the residual compare with the error bounds provided in class?
- 3) Suppose CG is applied to a symmetric positive definite matrix A with the result $||e_0||_A = 1$, and $||e_{10}||_A = 2 \cdot 2^{-10}$, where $||e_k||_A = ||x_k x^*||_A$ and x^* is the true solution. Based solely on this data,
 - (a) What bound can you give on $\kappa(A)$?
 - (b) What bound can you give on $||e_{20}||_A$?
- 4) Consider the task of solving the following system of nonlinear equations.

$$f_1(x,y) = 3x^2 + 4y^2 - 1 = 0$$
 and $f_2(x,y) = y^3 - 8x^3 - 1 = 0$

for the solution α near (x, y) = (-0.5, 0.25).

(a) Apply the fixed point iteration with

$$g(x) = x - \begin{pmatrix} 0.016 & -0.17 \\ 0.52 & -0.26 \end{pmatrix} \begin{pmatrix} 3x^2 + 4y^2 - 1 \\ y^3 - 8x^3 - 1 \end{pmatrix}.$$

You can use (-0.5, 0.25) as the initial condition. How many steps are needed to get an approximation to 7 digits of accuracy?

Using my code, the fixed point iteration converges to the answer of (x, y) = (-0.49725134, 0.25407856) which is surprisingly fast! My code is given at the end of the document.

(b) Why is this a good choice for q(x).

To understand why this is a good choice for g(x), let's look at the Jacobian of f_1 and f_2 at (-0.5, 0.25):

$$J = \begin{pmatrix} -3 & 2\\ -6 & 3/16 \end{pmatrix}.$$

Then, inverting J yields

$$J^{-1} = \begin{pmatrix} 1/61 & -32/183 \\ 32/61 & -16/61 \end{pmatrix} \approx \begin{pmatrix} 0.016393 & -0.174863 \\ 0.52459 & -0.262295 \end{pmatrix}.$$

Thus, J^{-1} is the almost exactly the same as the 2×2 matrix in g(x). Furthermore, the vector function in g(x) is just the vector function formed from f_1 and f_2 . All of this together implies that g(x) is sort of Newton's Method but with a fixed inverse Jacobian. Then, because our initial solution guess is close to the true solution, g(x) should almost have quadratic convergence to the solution because it is like a local Newton's method.