REGIONAL ASSESSMENT OF THE SALINE-SEEP PROBLEM AND A WATER-QUALITY INVENTORY OF THE MONTANA PLAINS

PLEASE RETURN

U.S. DOCUMENTS COLLECTION MONTANA STATE LIBRARY

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

THE OLD WEST REGIONAL COMMISSION
June 1979

JUL 2 7 1983

Montane State Library 3 0864 1003 1170 6 STATE OF MONTANA
Thomas L. Judge, Governor
BUREAU OF MINES AND GEOLOGY
S. L. Groff, Director

Open-File Report HY-78-2 1978

REGIONAL ASSESSMENT OF THE SALINE-SEEP PROBLEM AND A WATER-QUALITY INVENTORY OF THE MONTANA PLAINS

by

M. R. Miller, R. N. Bergantino, W. M. Bermel, and F. A. Schmidt Montana Bureau of Mines and Geology

and

M. K. Botz Water Quality Bureau Department of Health and Environmental Sciences

with a section on

ALGAL POPULATIONS IN SEEP-AFFECTED WATERS, WITH AN EMPHASIS ON SALINITY INDICATORS AND POTENTIALLY TOXIC SPECIES

by

L. L. Bahls and P. A. Bahls

The work upon which this report is based was supported primarily by funds provided by the

OLD WEST REGIONAL COMMISSION GRANT NO. 10570034

Supplemental funds were obtained from the MONTANA DEPARTMENT OF STATE LANDS to investigate the hydrogeological aspects of saline-seep development and from the STATE OF MONTANA (HJR 54) directing the MONTANA BUREAU OF MINES AND GEOLOGY to undertake studies related to Montana's ground-water resources.

MONTANA COLLEGE OF MINERAL SCIENCE AND TECHNOLOGY
Butte. Montana

CONTENTS

Abstract		Page i				
Introduction						
Method of Study		1				
Project Objectives		3				
Comparison of Saline-Seep Formation in Great Plains Regi	.on	4				
Regional Extent of Saline-Seep Development in Montana		9				
Algal Survey of Selected Streams and Reservoirs		11				
Water Quality and Specific Conductance Survey of the Montana Plains						
Conclusions		17				
Recommendations		18				
Literature Cited		19				
Site Location System						
Legend for map symbols						
Legend for aquifer code						
Billings 1°x 2° sheet						
Specific conductance survey maps	Billings	1				
Specific conductivity inventory	Billings	9				
Chemical analyses of selected waters Billings						
Trace elements analyses Billings						
Bozeman 1°x 2° sheet						
Specific conductance survey maps	Bozeman	1				
Specific conductivity inventory Bozeman						
Chemical analyses of selected waters Bozeman						
Choteau 1°x 2° sheet						
Specific conductance survey maps	Choteau	1				
Specific conductivity inventory	Choteau	9				
Chemical analysis of selected waters	Choteau	12				
Trace elements analyses Choteau						
Cut Bank 1°x 2° sheet						
Specific conductance survey maps	Cut Bank	1				
Specific conductivity inventory	Cut Bank	9				
Chemical analyses of selected waters	Cut Bank	16				
Trace elements analyses	Cut Bank	22				

0 0		Page
Ekalaka 1 ^o x 2 ^o sheet		
Specific conductance survey maps	Ekalaka	1
Specific conductivity inventory	Ekalaka	9
Chemical analyses of selected waters	Ekalaka	10
Forsyth 1°x 2° sheet		
Specific conductance survey maps	Forsyth	1
Specific conductivity inventory	Forsyth	9
Chemical analyses of selected waters	Forsyth	12
Trace elements analyses	Forsyth	14
Glasgow 1°x 2° sheet		
Specific conductance survey maps	Glasgow	1
Specific conductivity inventory	Glasgow	9
Chemical analyses of selected waters	Glasgow	16
Trace elements analyses	Glasgow	18
Glendive 1°x 2° sheet		
Specific conductance survey maps	Glendive	1
Specific conductivity inventory	Glendive	9
Chemical analyses of selected waters	Glendive	14
Trace elements analyses	Glendive	18
Great Falls 1°x 2° sheet		
Specific conductance survey maps	Great Falls	1
Specific conductivity inventory	Great Falls	9
Chemical analyses of selected waters	Great Falls	20
Trace elements analyses	Great Falls	22
Hardin 1°x 2° sheet		
Specific conductance survey maps	Hardin	1
Specific conductivity inventory	Hardin	9
Chemical analyses of selected waters	Hardin	18
Trace elements analyses	Hardin	28
Havre 1°x 2° sheet		
Specific conductance survey maps	Havre	1
Specific conductivity inventory	Havre	9
Chemical analyses of selected waters	Havre	20
Trace elements analyses	Havre	22

	Page
Jordan 1°x 2° sheet	
Specific conductance survey maps Jordan	1
Specific conductivity inventory Jordan	9
Chemical analyses of selected waters Jordan	12
Trace elements analyses Jordan	14
Lewistown 1°x 2° sheet	
Specific conductance survey maps Lewistown	1
Specific conductivity inventory Lewistown	9
Chemical analyses of selected waters Lewistown	16
Trace elements analyses Lewistown	20
Miles City 1°x 2° sheet	
Specific conductance survey maps Miles City	1
Specific conductivity inventory Miles City	9
Chemical analyses of selected waters Miles City	12
Trace elements analyses Miles City	14
Roundup 1°x 2° sheet	
Specific conductance survey maps Roundup	1
Specific conductivity inventory Roundup	9
Chemical analyses of selected waters Roundup	16
Trace elements analyses Roundup	20
Shelby 1°x 2° sheet	
Specific conductance survey maps Shelby	1
Specific conductivity inventory Shelby	9
Chemical analyses of selected waters Shelby	22
Trace elements analyses Shelby	26
White Sulphur Springs 1°x 2° sheet	
Specific conductance survey maps White Sulphur Springs	1
Specific conductivity inventory White Sulphur Springs	9
Chemical analyses of selected waters White Sulphur Springs	12
Wolf Point 1°x 2° sheet	
Specific conductance survey maps Wolf Point	1
Specific conductivity inventory Wolf Point	9
Chemical analyses of selected waters Wolf Point	18
Trace elements analyses Wolf Point	28

	Page
Algal Populations in Seep-Affected Waters	Al
Abstract	A2
Introduction	A3
Methods	A4
Results	A6
Discussion	A8
Conclusions and Recommendations	A10
Literature Cited	A15
Appendix A	A16
Appendix B	A17
Appendix C	A18
Appendix D	A20

ILLUSTRATIONS

res	Page
Generalized diagram illustrating the formation of saline seep.	6
Saline-seep research sites in Montana - 1978	8
Distribution of saline areas in Montana - 1978	10
Saline-seep development over a 30-year period on a 4-square mile area near Fort Benton, Montana	12
Comparison between total dissolved solids and specific conductance of water samples from Highwood Bench area	15
TARIFS	
	Generalized diagram illustrating the formation of saline seep. Saline-seep research sites in Montana - 1978 Distribution of saline areas in Montana - 1978 Saline-seep development over a 30-year period on a 4-square mile area near Fort Benton, Montana Comparison between total dissolved solids and specific

TABLES

Table							P	age
1.	Summary	of	saline	seep	assessment	results		16

ABSTRACT

The regional water-quality inventory of the Montana Plains suggests that significant water-quality deterioration has occurred in the glaciated portion of Montana where dryland farming has been practiced for many years. Several non-glaciated areas where saline seep is spreading repidly are Judith Basin, Fergus, and Stillwater counties--also in areas of dryland farming.

The regional survey of wells, springs, streams, and reservoirs was conducted over a 42-county area encompassing roughly 118,000 square miles. More than 2,800 sites were evaluated in the field and 452 water samples were collected, of which 247 were analysed for trace elements. Specific conductance of the water ranged from 1,000 and 10,000 micromhos per centimeter at 64 percent of the sites. Conductivities were considerably higher in wells penetrating Cretaceous marine aquifers than in the non-marine late Cretaceous and Tertiary aquifers. Significant concentrations of trace elements, particularly selenium and boron, were found in many of the ground-water samples. Of the 160 samples analysed for selenium, more than 30 percent had concentrations greater than 10 micrograms per liter; some had values as high as 1,800 micrograms per liter.

The aerial reconnaissance survey indicated that the previous estimate of 200,000 acres of saline seep in Montana is somewhat low. The survey showed that there were considerably more affected acres in northern and central Montana than formerly thought, and, conversely, that southern and eastern Montana contained fewer seep acres.

A survey of 100 algal specimens collected from selected stream and reservoirs revealed that 25 percent of the water samples contained potentially toxic bluegreen algae that could be responsible for some of the reported livestock kills.

INTRODUCTION

The widespread occurrence and rapid growth of saline seep on or adjacent to cultivated drylands has become one of the most serious conservation problems in the Great Plains Region (7). Dryland salinity, hardly recognized 30 years ago, has now taken roughly two million acres out of production in the plains region—Montana, North and South Dakota, Alberta, Saskatchewan, and Manitoba (13).

Since 1969, the Montana Bureau of Mines and Geology in cooperation with numerous local, state, and federal organizations has been investigating the saline-seep problem. The Bureau has emphasized and examined the hydrological, geological, and water quality aspects of the problem (1, 9). In 1974, available analyses of water collected near Fort Benton and Sidney, Montana; Mott, North Dakota; and Lethbridge, Alberta, strongly suggested that in addition to losing thousands of acres of valuable farmland to saline seeps, mineralized water was rapidly contaminating nearby reservoirs, streams, and shallow aquifers. In some cases, the water was more saline than sea water (approximately 35,000 parts per million total dissolved solids) and was unfit for domestic, livestock, and irrigation use. Reported livestock and wildlife kills in certain areas were possibly related to salinity problems.

The portion of Montana affected by saline seep is characterized by relatively thin aquifers of alluvial or glacial origin underlain by thick, virtually impervious shale formations. These shallow aquifers provide water for towns, domestic use, livestock, and are the source of numerous springs, streams, and ponds. Because ground water represents a valuable resource in this part of Montana and economic alternatives to this water supply generally do not exist, the need for a regional assessment of the saline-seep problem and related water-quality investigation became apparent. As a result, the Montana Bureau of Mines and Geology, in cooperation with the Water Quality Bureau, requested funds from the Old West Regional Commission to conduct the investigation.

METHOD OF STUDY

Because saline-seep affects domestic water supplies and because additional field personnel and analytical laboratory were available, a substantial portion of the program was subcontracted to the Water Quality Bureau, Montana Department

of Health and Environmental Sciences, Helena. The 42-county study area encompassing about 118,000 square miles (75 million acres) was divided into two general work areas with the Montana Bureau of Mines and Geology investigating northern and central Montana and the Water Quality Bureau covering the southern and eastern portion of the state.

Field information collected at each site included location, date evaluated, owner (if known), water source (stream, well, pond, etc.), water flow rate, brief site description, specific conductance, temperature, and remarks. In addition, the static water level, total depth, land surface altitude, and aquifer were also noted for wells and land surface altitude and aquifer were noted for springs. If a sample was to be sent to the lab, 4 containers of water were commonly collected—1 liter raw, 1 liter filtered (.45 μ), 250 ml filtered—acidified (HNO $_3$), and 250 ml filtered and preserved (HgCl). Biological specimens were collected in accordance with instructions outlined by Loren Bahls. Areas with extensive saline—seep development (primarily cultivated areas) were given maximum sampling effort, consequently, very few sites were evaluated in the mountains or foothills located within the study area.

The samples were analyzed by Bureau of Mines and Geology, Butte, and . Water Quality Bureau, Helena, utilizing procedures adopted by the Environmental Protection Agency and the U.S. Geological Survey. Most of the samples were analyzed for major constituents (calcium, magnesium, sodium, potassium, iron, manganese, silica, carbonate, bicarbonate, chloride, sulfate, and fluoride); nutrients (nitrate, phosphate); and selected trace elements (strontium, lithium, lead, copper, zinc, nickel, and aluminum). Many of the ground-water samples were also analyzed for arsenic, boron, mercury, antimony, beryllium, cadmium, chromium, silver, selenium, and tin. Measurements for pH and lab specific conductance and calculations for dissolved solids, total hardness, alkalinity, and sodium absorption ratio were made for each sample. All chemical and pertinent field data was computerized foe entry into state and federal data systems.

PROJECT OBJECTIVES

At the outset of the investigation two specific tasks or objectives were envisioned: (1) collecting and analyzing numerous surface- and ground-water samples; and (2) conducting a general water-quality survey utilizing historical data and comparing it to the new field data. As the program progressed during the first year several problems arose, and the following modifications and changes were implemented:

- a) The large historical ground-water database (roughly 3,000 analyses on file at the State Board of Health) collected and analyzed from 1920 to 1970 was virtually unusable because the sample-site locations were not required or requested during this period. This reduced the usable historical data file to less than 600 analyses, few of which were located in seep-affected areas. As a result, emphasis was shifted to implement an extensive, region-wide specific conductance inventory to establish current baseline salinity levels. In all, over 2,800 wells, streams, springs, and reservoirs, and ponds, were evaluated in the field (Table 1); substantially increasing travel and personnel costs. These costs were offset by supplemental funds from the Department of State Lands saline-seep program, and by reducing the number of complete chemical analyses (Task 1).
- b) Because of the absence of an extensive historical database, emphasis was placed on trying to establish and document water quality trends on existing saline-seep research sites (Fig. 2) where relatively rapid changes in water quality could be anticipated and evaluated. Specific conductance as well as water-level measurements were taken periodically (3 to 8 times per year) from each test hole and additional water quality samples were collected from selected research wells. Supplemental funds for analyses and site monitoring were obtained from the Bureau of Mines and Geology and Department of State Lands.
- c) To reduce travel time of field crews and to accurately delineate significant seep-affected areas, an aerial reconnaissance survey was conducted. Seep areas were outlined on photo-index sheets (when available) and on county highway maps; they were later transferred to base maps. The aerial reconnaissance allowed field crews to concentrate on critical areas and provided the first uniformly documented distribution of saline areas in Montana.

- d) Review of the chemical data obtained from selected ground-water samples collected during the first year revealed the presence of several trace elements—notably selenium, boron, tin, and aluminum—in concentrations greatly exceeding recommended limits. As a result, the suite of trace metals was expanded, increasing analytical costs significantly. Additional funds were obtained from the Bureau of Mines and Geology and Department of State Lands to offset the increased analytical costs.
- e) Preliminary evaluation of several ponds indicated that in addition to the high concentrations and array of dissolved constituents and nutrients that are known to be present, there may be blue-green algae that are lethal to livestock. To investigate the potential toxic species of algae, a small subcontract was given to Dr. Loren Bahls who examined and described the benthic algae at approximately 100 different sites in the project area.

With the implementation of these changes the overall project objectives were increased from two to five:

- 1. To compare saline-seep formation at selected research sites with varying agronomic, geologic, and climatic conditions.
 - 2. To assess regional extent of saline areas from aerial reconnaissance.
 - To document algal species present in selected streams and reservoirs.
- 4. To collect and analyze numerous water samples (Task 1 reduced somewhat).
- 5. To conduct a regional water-quality (specific conductance) survey (Task 2 greatly expanded).

COMPARISON OF SALINE-SEEP FORMATION IN GREAT PLAINS REGION

Because several papers that discuss the cause, formation, and development of saline seep in the northern Great Plains have appeared elsewhere in the literature (1, 6, 8, 9, 10, 11, 12), only a brief summary of saline-seep formation will be included in this report.

Saline seeps--defined as recently developed saline soils in non-irrigated areas that are wet some or all of the time, often with white salt crusts and

where crops or grass production are reduced or eliminated—are caused by landuse changes that allow an increased amount of moisture to migrate beneath the root zone, thereby disrupting the natural plant—soil—moisture regime. The major land—use change throughout the Great Plains Region is the alternate crop—fallow (summer fallow) farming system. Other factors that help aggravate the occurrence and spread of saline seep are:

- (1) Soil, subsoil, and underlying geologic formations that contain a nearly inexhaustible supply of water-soluble salts.
- (2) A climate in which a large percentage of annual precipitation occurs during the spring (April, May, and early June) before crops can utilize stored moisture effectively and before evapotranspiration is significant.
- (3) Numerous poorly drained upland "potholes" (typical of glaciated terranes) that are routinely cultivated. Once the shallow clay pan at the base of the pothole has been disturbed, water readily enters the underlying substratum.
- (4) A virtually impermeable material (shale or clay) beneath the soil profile that effectively impedes the downward movement of water, thus forming a "perched" or near-surface body of water. Such a condition retards or prevents drainage.
- (5) Development of a local ground-water flow system that allows saline ground water to migrate from upland recharge areas toward nearby discharge (saline seep) areas.

The generalized process of saline-seep formation is shown in Figure 1. The process starts by movement of water beneath the root zone but above the shallow impermeable layers, thereby forming a local ground-water flow system. The flow system moves saline water downslope to the discharge area (seep), where it evaporates, depositing the salt on the surface.

The rocks underlying the northern and eastern parts of Montana are mostly shale, siltstone, and sandstone with some widespread deposits of glacial till. The shale and till contain relatively large amounts of soluble salts that can be readily dissolved and transported by soil moisture and ground water. The salts can remain in solution underground or can be precipitated by evaporation where the water approaches or reaches the land surface. As long as a natural

Figure 1. Generalized diagram illustrating the formation of saline seep

hydrologic system remains in equilibrium, salt deposition tends to remain low because of leaching during long periods of normal ground-water movement and because of the relatively small volume of water that moves through the salt-containing zones. Increased water movement from greater recharge upsets the equilibrium and causes additional salt to be dissolved and flushed.

In the Fort Union Formation, dense shale or underclay beneath coal seams impedes downward movement of water, thus forcing the water to move laterally along the coal seams until it comes to the surface in low areas. Alternate crop-fallow (summer fallow) farming system tends to build soil and subsoil moisture to the point where moisture is not completely utilized by crops, this increases the amount of water that reaches the land surface and evaporates.

During the period 1969 to 1975, the hydrogeology of 25 research sites in 12 counties have been investigated (Fig. 2). Over 550 test holes have been drilled and logged, water samples collected from selected holes, infiltration tests conducted, and repeated water-level and specific conductance measurements taken. Evaluation of this information together with data provided by other investigations in Montana, the Dakotas, and Canada (1, 4, 6, 8, 11, 12) provided a framework for a number of comparisons:

- 1. The alternate crop-fallow (summer fallow) farming system has been extensively utilized for at least 30 years throughout the northern Great Plains thus, providing the mechanism for regional saline-seep development.
- 2. The formation and development of saline seeps are the result of local ground-water flow systems. Distances from recharge areas to discharge (seep) areas are typically less than 2,500 feet.
- 3. The concentration of water-soluble salts contained in the soil profile and underlying substratum is quite variable but is usually high throughout the region. Some of the highest salt concentrations appear to be in northcentral (triangle area) Montana.
- 4. The chemical composition of saline-seep water is remarkably uniform. During the evolution of a typical saline seep, the ground-water quality changes from calcium bicarbonate type of water with relatively low Total Dissolved Solids (1,500 to 3,000 milligrams per liter) to a sodium-magnesium sulfate type of water with high Total Dissolved Solids (4,000 to 60,000

milligrams per liter). In addition to the high Total Dissolved Solids (TDS) saline-seep water commonly contains much higher concentrations of nitrates and trace metals (1, 5, 6).

- 5. Because of the low chloride concentration in saline-seep water, seep water can be readily distinguished from deep subsurface brines.
 - 6. Intensive cropping, rotating in deep-rooted perennial crops, such as alfalfa, has been effective in stabilizing and, in some cases, reducing the size of the seep-affected area (2, 3, 4, 8). A five-year stand of alfalfa planted on one research site south of Fort Benton lowered the water table an average of 8 feet over the entire site and a 10 to 15 percent reduction in ground-water salinity has occurred.

Based on available data gathered from site-specific research test areas, it appears that specific conductance (approximation of Total Dissolved Solids) coupled with scattered chemical analyses provides useful and effective tools to assess the effect of saline seep on shallow ground-water resources and to establish regional water-quality trends.

REGIONAL EXTENT OF SALINE-SEEP DEVELOPMENT IN MONTANA

In the late 40's and early 50's a few scattered saline seeps were noted in Montana and western Canada. Since then, areas of saline seep have increased rapidly. Recent surveys (13) indicate that saline seeps have taken roughly 200,000 acres of Montana's dryland from agricultural production and that an area of roughly 2 million acres is now out of production in the Great Plains Region (Montana, North and South Dakota, Alberta, Saskatchewan, and Manitoba). The general distribution of areas in Montana that are seriously affected by salinity is shown on Fig. 2; the map is based on an aerial and field reconnaissance survey completed in 1977. Careful evaluation of the map and previous estimates suggest that the 200,000 acre figure may be somewhat low. Seepaffected areas in northern and central Montana appear to be considerably greater than previously estimated and conversely, in southern and eastern Montana the seep-affected areas appeared to be less than previous estimates.

An example illustrating saline-seep development over a 30-year period (1941-1971) in a 4-square mile area near Fort Benton, Montana, is shown in Fig. 4. On a region-wide basis, the acreage of saline seep appears to be expanding at an average rate exceeding 10 percent per year. The rate varies from year to year depending upon climate, but the general trend is toward significant increase. Expansion of seep areas by 20 to 200 percent in wet years is not uncommon, whereas expansion of only a few percent may occur in dry years.

Research indicates that fallow areas can undergo a water-table rise of 1 to 15 feet during years of average or above-average spring precipitation. The water levels gradually decline during the rest of the year but normally do not reach the low of the previous year. As a result, excess water accumulates through the years, causing expansion of the saline seeps during each succeeding wet cycle. Currently, seep development is especially rapid in areas where glacial till is less than 50 feet thick. Excess water is probably building up also in extensive areas underlain by greater thicknesses of till, but as yet the buildup is not evident at the surface.

Geological conditions favoring saline-seep development extend over vast areas of Montana, the Dakotas, and the three prairie provinces of Canada. These plains are the major grain-growing regions of North America, and the cropping system is dominantly an alternate crop-fallow rotation system. As long as all factors contributing to salinization continue, the situation can only worsen.

ALGAL SURVEY OF SELECTED STREAMS AND RESERVOIRS

As previously mentioned, 100 biological specimens were collected from scattered streams and ponds in eastern Montana and the results of this algal survey are discussed in detail in the last section of this report. Significant findings specifically related to the saline-seep problems are:

1. Potentially toxic blue-green algae were present in 25 percent of the samples analyzed and were found in water with Total Dissolved Solids varying from 368 to 23,819 milligrams per liter.

Figure 4. Saline-seep development over a 30-year period on a 4-square mile area near Ft. Benton, Montana.

 2. Diatom diversity was significant and was related inversely to specific conductance.

WATER QUALITY AND SPECIFIC CONDUCTANCE SURVEY OF THE MONTANA PLAINS

Data collected to fulfill specific Tasks 1 and 2 are presented in the following section. For uniformity of presentation and to better show the distribution of sample sites, the data was not plotted on county base maps but on $1^{\circ}x\ 2^{\circ}$ Army Map service maps with a scale of $\frac{1}{3}$ inch equals one mile.

Eighteen $1^{\circ}x\ 2^{\circ}$ maps, each covering about 6,900 square miles, were needed to encompass the Montana plains. The $1^{\circ}x\ 2^{\circ}$ maps are arranged in this section in alphabetical order instead of geographical order. The following $1^{\circ}x\ 2^{\circ}$ maps will be found in this section: Billings, Bozeman, Choteau, Cut Bank, Ekalaka, Forsyth, Glasgow, Glendive, Great Falls, Hardin, Havre, Jordan, Lewistown, Miles City, Roundup, Shelby, White Sulphur Springs, and Wolf Point. Each $1^{\circ}x\ 2^{\circ}$ map is subdivided into eight 30 minute by 30 minute page-sized sheets. The arrangement of the sheets is shown on the Location Base Map sheet that precedes each $1^{\circ}x\ 2^{\circ}$ map section.

Each site evaluated was carefully located using the site location system (Township, Range, Section, and tract) described on pages 21 and 22. Hopefully many of these sites can be re-evaluated in the future to document changes and to quantify water quality trends.

The several types of symbols used on the specific conductance survey maps refers to the sample source (spring, well, pond, etc.). The legend for these symbols is given on page 23. Two numbers generally accompany each symbol. The number in parenthesis is the map reference number. This number is repeated in the Specific Conductivity Inventory section where additional information about the site may be found. The map reference number also will be found in the Chemical Analyses of Selected Waters and Trace Elements Analyses sections if a water sample from that site was chemically analysed. The other number generally included with each symbol is the specific conductance (corrected to 25°C) of water from that site.

Specific conductance (SC) is a measurement of the waters capacity to conduct an electric current. Because it varies directly with both temperature and the overall salinity of the water, all values are converted to 25 degrees Celsius making salinity the only variable. When the SC is measured in micromhos per centimeter, it roughly equals the Total Dissolved Solids (TDS) content in milligrams per liter (mg/1). The general relationships between SC and TDS is illustrated in Fig. 5. Note that when TDS is less than 8,000 mg/1 the SC is about .8 to .9 times TDS, they are about equal when TDS is between 8,000 and 12,000 mg/1, and when the TDS is greater than 12,000 mg/1 the SC is about 1.1 to 3.0 times TDS.

Part of the project to investigate regional aspects of water quality necessitated identification of water source by aquifer. This was to help determine if water from some aquifers yielded water more suitable for human and livestock consumption and also to see if water quality changed regionally within that aquifer. The aquifer code is thus included with many sample sites. The explanation for the aquifer code will be found on pages 23 and 24.

A summary of the regional saline-seep assessment by AMS 1°x 2° sheets is tabulated in Table 1. During the project 2,876 sites were evaluated in the field, 452 water samples were collected with 247 of these analysed for trace elements. Of the 2,800 plus sites, 14 percent had SC values less than 500; 16 percent between 500 and 1,000, 64 percent between 1,000 and 10,000; and 6 percent over 10,000 micromhos per centimeter. Because of the above-average precipitation during the 2-year period of the project, the reported SC values obtained from all the surface-water sites (about 50%) were undoubtly low. Conductivity and trace-metal concentrations were considerably higher in wells penetrating the glacial and Cretaceous marine aquifers (northern and central Montana) than in the non-marine late Cretaceous and Tertiary aquifers. Chemical composition of ground water collected in glaciated portions of Montana were predominantly the sodium-magnesium sulfate type--similar to water collected from research test holes.

Significant concentrations of trace elements particularly selenium and boron, were found in many of the ground-water samples. Of the 160 samples

Figure 5.-Comparison between total dissolved solids and specific conductance of water samples from Highwood Bench area.

Table 1

			SUMMARY	SUMMARY OF SALINE SEEP ASSESSMENT RESULTS	SEEP AS	SESSMENT	RESULTS		
	NUMBER OF	NUMBER OF NUMBER OF	NUMBER OF	NUMBER OF	NUMBER OF	NUMBER OF	NUMBER OF	NUMBER OF	NUMBER OF
AMC 10× 20shaat	SITES	CHEMICAL	ANALYSES	TRACE	SITES WITH	SITES WITH	SITES WITH	SITES WITH	ALGAL
AIN 1-4 2-311661	EVALUATED	ANALYSES	COLL. 75'-78'	ANALYSES	SC < 500	SC 500-1000	SC 1000-10000	SC > 10000	SAMPLES
BILLINGS	149	73	54	24	6	16	81	28	15
BOZEMAN	18	2	5	0	11	5	2	0	0
CHOTEAU	99	-	11	5	22	21	22	-	2
CUT BANK	180	103	28	20	16	17	78	-	0
EKALAKA	26	14	11	0	0	0	26	0	0
FORSYTH	72	77	13	9	5	9	45	=	0
GLASGOW	194	29	21	21	17	44	120	2	7
GLENDIVE	132	54	37	20	9	8	95	14	9
GREAT FALLS	261	37	35	35	95	65	130	14	7
HARDIN	231	220	32	22	2	19	192	3	-
HAVRE	305	42	18	17	76	65	166	2	8
JORDAN	73	11	5	2	8	7	52	4	5
LEWISTOWN	195	95	18	18	25	33	102	9	21
MILES CITY	06	31	13	-	4	5	19	15	0
ROUNDUP	207	99	27	12	24	48	901	7	9
SHELBY	367	09	57	4.2	65	31	242	13	3
WHITE SUL. SPRINGS	51	11	7	0	21	16	12	-	0
WOLF POINT	259	168	09	2	19	32	155	07	16
TOTAL	2876	1023	452	247	376	419	1687	164	100

analysed for selenium over 30 percent had concentrations greater than 10 micrograms per liter ($\mu g/1$). Analyses of water collected from aquifers associated with the Colorado Shale, which is known to be seleniferous, showed that 59 percent of the water samples contained more than the 10 mg/l limit for potable water set by U.S. Public Health Service; some values were as high as 1,800 $\mu g/1$. Many of these wells are being used for domestic or stock watering purposes.

CONCLUSIONS

Because of the lack of a detailed historical database, it is difficult to quantify the effects of saline-seep development on the surface water and shallow ground-water resources of the area, however, presently available data suggest that significant water-quality deterioration has occurred in the glaciated portion of Montana where dryland farming has been a way-of-life for many years. Several other areas of concern are in Judith Basin, Fergus, and Still-water counties where saline seep is spreading rapidly. Undoubtedly, many other areas have local problems, but our sampling base was not dense enough to delineate them.

Numerous discussions with county agents, district conservationist, and rural leaders typically support the above statements, and probably the most convincing statements came from the landowners. Some of the more frequent statements made by farmers are:

- a) "Our well or wells went bad and we have been hauling water for years".
- b) "Over the last 5 (to 20) years we have had to drill 2 (to 4) wells, each one deeper than the last to get good water".
- c) "Three (to 5) years ago our well turned bad during the spring, and each year we have to haul water for a longer period of time".
- d) "All the wells in the area have gone bad, that is why we hooked up to the rural water distribution system".
- e) "During the last 5 (to 15) years, springs have appeared in several coulees and now the banks are sliding into the draw".
- f) "The cows will drink from the reservoir only during the spring of the year".

- g) "My reservoir used to be the best fishing in these parts, but the fish all died 1 (to 10) years ago".
- h) "I don't have any freshwater left on my place, so I guess I'll sell all my cattle and plow-up the rest of my pasture".
- i) "Over the last 2 (to 10) years I have had to pump out by basement each spring, and it seems to be getting worse".
 - j) "Last year my shelter-belt began to die".

All of these statements and many more imply that the local ground-water flow system is out of equilibrium, flushing the salts out of the profile, and is rapidly contaminating the water resources of the area.

RECOMMENDATIONS

- 1. Immediately intensify cropping practices over the entire northern plains region to hopefully get the problem stabilized.
- 2. Rotate deep-rooted legumes such as alfalfa into the cropping system, particularly on recharge areas.
- 3. Surface drainage of upland, freshwater potholes that are noramlly cultivated should be encouraged. Research on all drainage systems particularly subsurface drains, should be initiated to determine the long- and short-term benefits, if any.
- 4. Maintain an active and comprehensive monitoring and sampling network throughout the region to use for forecasting ground-water conditions in a given area; to quantify long- and short-term changes in water quality; and to evaluate the effectiveness of various cropping systems in controlling saline-seep formation (demonstration- and research-site programs).
- 5. Initiate research on the distribution, behavior, and potential for toxicity of selected trace elements in ground water of the northern Great Plains--immediate attention should be given to selenium.
- 6. Maintain and add water-quality information to data-systems to document and quantify future changes and trends. A follow-up regional inventory in 5 to 8 years utilizing many of the wells evaluated in the present study would be particularly valuable in achieving this objective.
- 7. Encourage and promote a coordinated research, education, and extension program to hopefully get control of the saline-seep problem in the shortest amount of time.

LITERATURE CITED

- 1. Bahls, L. L., and Miller, M. R., 1973, Saline seep in Montana, in Second Annual Report, Montana Environmental Quality Council, p. 35-44.
- Brown, P. L. and Cleary, E. C., 1978, Water use and rooting depths of crop for saline seep control: in Proceedings of the Subcommission of salt-Affected Soils at the 11th International Soil Science Society Congress, Edmonton, Canada, p. 7-1 to 7-7.
- Brown, P. L., Cleary, E. C., and Miller, M. R., 1976, Water use and rootings depths of crops for saline seep control; in Proceedings on Regional Saline Seep Control Symposium, Bozeman, Montana 1975: Montana Cooperative Extension Service Bulletin 1132, p. 125-136.
- 4. Brown, P. L. and Miller, M. R., 1978, Soils and crop management practices to control saline seeps in the U.S. northern plains: in Proceedings of the Subcommission on Salt-Affected Soils at the 11th International Soil Science Society Congress, Edmonton, Canada, p. 7-9 to 7-15.
- Custer, S. G., 1976, The nitrate problem in areas of saline seep a case study; in Proceedings on Regional Saline Seep Control Symposium, Bozeman, Montana, 1975: Montana Cooperative Extension Service Bulletin 1132, p. 63-85.
- Doering, E. J., and Sandoval, F. M., 1976, Hydrologic Aspects of Saline Seeps in Southwestern North Dakota; in Proceedings on Regional Saline Seep Control Symposium, Bozeman, Montana, 1975: Montana Cooperative Extension Service Bulletin 1132, p. 303-311.
- Ferguson, H., Brown, P. L., and Miller, M. R., 1972, Saline seeps on non-irrigated lands of the northern plains, <u>in</u> Proceedings on Control of Agriculture Related Pollution in the Great Plains, Lincoln, Nebraska: Great Plains Agricultural Council Publication No. 60, p. 169-191.
- 8. Halvorson, A. D., and Black, A. L., 1974, Saline-seep development in dryland soils of northeastern Montana: Jour. Soil and Water Conserv., vol. 29 (2), p. 77-81.
- 9. Miller, M. R., 1971, Hydrogeology of saline-seep spots in dryland farm areas—a preliminary evaluation, in Proceedings of Saline Seep-Fallow Workshop, Great Falls, Montana, Feb. 22-23, 1971, 12 p.
- 10. Miller, M. R., and Others, 1976, An overview of saline-seep programs in the states andprovinces of the great plains; in Proceedings on Regional Saline Seep Control Symposium, Bozeman, Montana: Montana Cooperative Extension Service Bulletin 1132, p. 4-17.
- 11. Sommerfeldt, T., 1976, Snow and water studies, Nobleford. Dryland Salinity and Seepage in Alberta Progress Report.

- 12. Thompson, G. R., and Custer, S. G., 1976, Shallow ground water salinization in dryland-farm areas of Montana: Montana University Joint Water Resources Research Center, Bozeman, Montana, Report No. 79, 212 p.
- 13. Vander Plyum, H. S. A., 1978, Extent, causes, and control of dryland saline seepage in the Northern Great Plains region of North America: in Proceedings of the Subcommission of Salt-Affected Soils at the 11th International Soil Science Society Congress, Edmonton, Canada, p. 1-48 to 1-58.

SITE LOCATION SYSTEM

The location of objects in Montana (such as wells, springs, ponds, etc.) is referenced to the legal subdivisions of public lands—that is—by Township, Range, Section, and Quarters of a section. Thus a site description of 12 N 27E designates a particular township, 6 miles on a side, that lies 12 townships north of the Montana Base Line and 27 townships east of the Montana Principal Meridian.

Each township is subdivided into 36 sections as follows:

Subdivision of T.12 N, R.27E.

6	5	4	3	2	ı	
7	8	,	10	11	12	
18	17	16		14	13	Describes a tract of
19	20	21	22	23	2.4	land 1 mile square (section 15, T.12N, R.2
30	2.9	2.8	27	26	25	MONTANA)
31	32	33	34	35	36	

The subdivision of a particular section into quarters, however, departs from legal usage in that the letters A, B, C, and D are used for the NE½, NW½, SW½, and SE½ respectively. Additionally the quartering of a section in the Site Location System begins with the largest quarter (the 160-scre tract) then proceeds to the 40-acre tract, the 10-acre tract, and the 2:5-acre tract. If, for example, a well site is described as 12N 27E 15 ABCD, the location of that well is in the SE½, SW½, NW½ of the NE½, Section 15, Township 12N, Range 27E. In the sequence ABCD, the 1st letter (A) describes the NE½, the 2nd letter (B) calls out the NW½ of the NE½, the 3rd letter (C) calls out the SW½ of the NW½ of the NE½, and the 4th letter (D) calls out the SE½ of the NW½ of the NE½.

Each section is subdivided into quarters as follows:

Subdivision of Sec. 15, T.12 N., R.27 E.

Describes a tract of land containing 2.5 acres (the SELY SWE HULL NE 1/4, Sec. 15, T.12 N., R. 27 E.,
SEC.15, T-12 N, R-27 E., MONTANA)

If more than one object is being described in a particular 2.5-scre tract, sequence numbers 1, 2, 3 . . . etc. are given to those objects to distinquish them. Thus 12N 27E 15 ABCD2 refers to object 2 in the SE½ SW½ NW½ NE½ section 15, Township 12 North, Range 27 East, Montana.

LEGEND FOR MAP SYMBOLS

\odot	creek, river, stream
\triangledown	ditch, drain
↔ +	seep
•	lake, pond, marsh
△ ▲	well
♦ •	spring

Solid symbols indicate that a chemical analysis is available

LEGEND FOR AQUIFER CODE

CODE	AGE	FORMATION
110ALVM	Quaternary	Alluvium
110CLVM	Quaternary	Colluvium
110TRRC	Quaternary	Terrace deposits
112DRFT	Pleistocene	Glacial drift
112GCLO	Pleistocene	Glacial outwash
112GLCC	Pleistocene	Glacial lake deposits
1120TSH	Pleistocene	Outwash
112TILL	Pleistocene	Glacial till
112TRRC	Pleistocene	Terrace deposits
121FLXV	Pliocene	Flaxville Formation
125FRUN	Paleocene	Fort Union Formation
125TGRV	Paleocene	Tongue River Member
125TLCK	Paleocene	Tullock Member
210CLRD	See 211CLRD	
211BRPW	Cretaceous	Bearpaw Shale
211CLGT	Cretaceous	Claggett Shale
211CLRD	Cretaceous	Colorado Group
211EGLE	Cretaceous	Eagle Sandstone
211FRNR	Cretaceous	Frontier Formation
211FXHL	Cretaceous	Fox Hills Formation
211HLCK	Cretaceous	Hell Creek Formation
211JDRV	Cretaceous	Judith River Formation
211MRSN	See 221MRSN	

CODE	AGE	FORMATION
211MSBY	Cretaceous	Mosby Sandstone
211TMDC	Cretaceous	Two Medicine Formation
211TPCK	Cretaceous	Telegraph Creek Formation
211VLCC	Cretaceous	Volcanic rocks
211VRGL	Cretaceous	Virgille Sandstone
217DKOT	Cretaceous	Dakota Sandstone
217KOTN	Cretaceous	Kootenai Formation
217LKOT	Cretaceous	Lakota Sandstone
217MDDY	Cretaceous	Muddy Sandstone
217SCCK	Cretaceous	Second Cat Creek Sandstone
221MRSN	Jurassic	Morrison Formation
221SWFT	Jurassic	Swift Formation
224PIPR	Jurassic	Piper Formation
230SPRF	Triassic	Spearfish Formation
317TSLP	Permian	Tensleep Sandstone
320AMSD	Pennsylvanian	Amsden Formation
320TSLP	See 317TSLP	
320TYLR	Pennsylvanian	Tyler Formation
331CRLS	Mississippian	Charles Formation
3 3 1HETH	Mississippian	Heath Formation
331KBBY	Mississippian	Kibbey Formation
331MDSN	Mississippian	Madison Group
331MSNC	Mississippian	Mission Canyon Limestone
337LDGP	Mississippian	Lodgepole Limestone
337MSNC	See 331MSNC	

LOCATION BASE MAP

BILLINGS 1° x 2° SHEET

IO KILOMETERS

CONTOUR INTERVAL 100 FT

BILLINGS 1" x 2" Sheet

Specific Conductivity Inventory Sheet

Owner's name						
Aquifer					211FANA 211CLAD	ZITEGLE
Well depth (ft.)				•		
Static water kevel (ft.)						
Altetude (ft.)					4600	
Lab Altitud analysis (ft.)	V 2 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$ 9 9 9 9 9 9 9	yes yes	5 5 5 7 5 5 5 5 5 5	0 0 5 5 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A	2 2 2 2 2 3 4 4
F,eld Semp.	17	<u>o</u>	18.8 16 17	20	23	
Specific conductivity at 26 C	930 12370 12000 10000 6200	12750 10700 7540 6300	1183 3780 2710 3486 16000	4650 2170 6630 6767 10500	3800 630 20390	7210 3260 2860 2450 2460
Site deterption	Located 2.2 miles E NE of Rapele Dalfman Lake, one mile E of Rapele Dylan Greek at Gourfelle Corner E of Rapele Gradi Ceek E of Rapele N end of Halfbreed Lake	Lost Creek 6 miles N NE of Bay Lake Seline seap marth Saline seap Dress of James area Oreins dryland farm area	Comenche March Stock use Stock use Located 3 miles SE of Comanthe Along road 1.8 miles N of Action Drainage datch N of Ballings	Luige seep area 2 miles N of Shepheru Marshy erea near road junction Seep area et adge of field Ruzor Creak NE of Shepherd Pompays Piller Creak	Nabbe Pond Tennate Creek Seven miles NE ol Big Timber Seven miles NE ol Big Timber Located 3.5 miles S SW of Rapetje	Three mites W SW of Ywin Butter Located 1.5 mites SW of Daliman Lake Middle Cents So of Rapale Cents Cents in highway Cents Cents S of Rapale
Flow or yield E = estimated M = massured	20 gpm (E) no slow no slow	no flow no flow	no flow 50 gpm (E) no flow	no flow 1 cfs (E) no flow 2 cfs (E) no flow	no flow 4 cfs (E) no flow	no flow 1 cfs (E) 1 cfs (E) 2 cfs (E)
Collection date Ma Day Yr Source	08 17 76 Pond 08 17 76 Lake 04 21 76 Greek 04 21 76 Greek 08 19 76 Lake	08 19 76 Creek 10 13 76 Seep 10 13 76 Seep 04 09 78 Pond	06 25 76 Pond Pond 10 04 76 Creek 04 09 76 Creek 04 08 76 Ditch	10 12 76 Seep 10 12 78 Creek 10 12 76 Marsh 04 08 76 Creek 10 12 76 Creek	10 12 76 Pond 10 27 76 Creek 11 32 Wall Well 08 16 76 Seep	08 17 78 Pond 11 26 60 Well 04 21 76 Creek 08 17 76 Creek 04 21 76 Creek
Location T R Sec Tract	03N 20E 26 CBA 03N 20E 33 03N 20E 36 AA 03N 20E 36 A8 03N 20E 36 A8	Sullwater 03N 22E 20 DCD Yellowstone 03N 23E 28 C8 Yellowstone 03N 23E 32 DD Yellowstone 03N 23E 33	reliowatione 03N 24E 20 CA reliowatione 03N 24E 23 CC reliowatione 03N 24E 27 00 reliowatione 03N 24E 38 BC reliowatione 03N 27E 19 CC	Yellowstone 03N 27E 27 DCC Yellowstone 03N 27E 32 AA Yellowstone 03N 28E 29 AA Yellowstone 03N 28E 31 BC Yellowstone 03N 30E 20 A	Vellowstone 03N 30E 29 CB Yellowstone 02N 16E 06 DDA Sweet Grass 02N 16E 23 BB Sweet Grass 02N 16E 23 BB Billwater 02N 19E 13 ADB	02N 19E 24 BA 02N 20E 04 CA 02N 20E 04 CB 02N 20E 08 A DA 02N 20E 09 BB
County	Stillwater Stillwater Stillwater Stillwater		Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone	Yellowston Yellowston Yellowston Yellowston	Yellowstone Yellowstone Sweet Grass Sweet Grass	Stillwater Stillwater Stillwater Stillwater
Map ref Field no number	1 WQB 31 2 WQB29 3 WQB6 4 WQB5 5 WDB46	6 WQB45 7 not on map 8 WQB57 9 WQB58 10 WQB30	11 WQB17 12 WQB24 13 WQB35 14 WQ823 15 WQ820	16 WQB49 17 WQB50 18 WQB48 19 WDB21 20 WQB41	21 WG842 22 WG88 23 32M0002 24 G0M0011 25 WD826	26 W0828 27 60M0002 28 W084 29 W0830 30 W083

BILLINGS 12 x 22 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name						
Aquifer	331MDSN	211FRNR	211FRNR	211FANR		
Well depth Ift.)						
Static water ievel (ft.)						
Field temp. Lab Attriude C anelysis ift.l	8	3990	3990			
Lab	0 0 4 0 0	0 # # # # # # # # # # # # # # # # # # #		2 2 8 6 0 2 4 4 4 0	y y 9 y	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		1 1 2 2 1 1	8 5 6 5	17 8	2 2	16.8
Specific conductivity at 25 °C	5050 3060 2040	7070 8500 5290 5519	2949 13500 9400 1690	12100 2850 12990 10780 8600	6850 10700 5080 13600	5250 80900 19400 3880 16600
ed Site description	I tingation dick) S of Rapelje Gurrey, Ceeks S of Rapelje Four miest S of Rapelje S ruck, Creek I mies E of Battle Butte S ruck, Creek at intersection	N of railroad track by windmill NW corner of Big Lake Between Halltreed and Big Lakes Located 1.5 miles W of Big Lake	Located 1.5 miter W of 89 Lake (E) Geenwood Cretk E of Bettle Butte A crossrood E of Battle Butte Boshma well in corrat Boshma well in field	Bookme well in field Located 26 miles N of Columbus Located 25 miles N E of 8 is Late Lots Cowel 3 miles N e 8 is Late Snut Bood in mile N o 8 is Late Bown Creat at bridge	New spins seep areas Deironge ditch at routside It) in a spins seep area On highway 3 miles NW ol Acton	Roadside ditch Saline seep pond Saline seep to Acton Near stelline seep area Small lake in saline seep area
Flow or yield E = estimated M = mestured	<1 cfs (E) 1 cfs (E) 1 cfs (E) 20 gpm (E)	no flow no flow na flow 5 cfs	0.5 cls (E) no How no How	no flow no flow 1 cfs (E)	1 cfs (E) 1 gpm (E)	no flow no flow no flow no flow
Collection date Mo Day Yr Source	04 21 76 Creek 12 56 Well 08 17 76 Creek 08 17 76 Creek 04 26 76 Creek	04 21 76 Seep 04 21 78 Seep 08 19 76 Lake 08 18 76 Creek 01 30 67 Well	10 26 68 Well 04 26 76 Creek 8 04 26 75 Sep 04 28 76 Well 08 19 76 Well	04 26 76 Well 02 05 58 Well 08 18 78 Creek 08 20 76 Seep 04 09 76 Creek	10 13 78 Olich 04 09 78 Disch 10 13 76 Ceek 04 08 76 Pond	06 24 76 Ditch 10 13 76 Sep 10 04 78 Pond 10 13 76 Marsh 10 13 76 Lake
Location T R Sec Tract	02N 20E 09 BC 02N 20E 15 BB 02N 20E 29 BB 02N 20E 36 DD 02N 20E 36 DD	02N 21E 02 0D 02N 21E 11 0D 02N 21E 23 0D0 02N 21E 24 8CC 02N 21E 27 08	OZN 21E 27 DB OZN 21E 31 AA OZN 21E 31 88B OZN 21E 31 CB OZN 21E 31 CO	02N 21E 31 CD 02N 21E 34 DB 02N 22E 15 BCC 02N 22E 18 ACO , 02N 23E 04 DD	rellowatione 02N 23E 08 A8B rellowatione 02N 23E 21 BCAC rellowatione 02N 23E 32 A0D	Yeltowatone OZN 24E 08 8B88 Yeltowatone OZN 24E 12 BCC Yeltowatone OZN 24E 12 DA Yeltowatone OZN 24E 16 AAA Yeltowatone OZN 24E 16 AAA Yeltowatone OZN 24E 17 8AA
County	Stillwater Stillwater Stillwater Stillwater	Stillwater Stillwater Stillwater Stillwater Stillwater	Schwater Stilwater Stillwater Stillwater	Stiffwater Stiffwater Stiffwater Stiffwater Yellowstone		Yellowston Yellowston Yellowston Yellowston Yellowston
Map ref. Field no. number	31 WQB2 32 WQB1 33 S6M0010 34 WQB32 35 WQB17	36 WQB10 37 WQB11 38 WQB44 39 WQB42 40 67M0001	41 66M0025 42 W0B15 43 W0B16 44 W0B19 45 W0B47	48 WOB18 47 58M0002 48 WOB41 49 WOB48 60 WOB31	51 WQB59 52 WQB32 53 WQB65 54 Not on map 56 WQB22	58 WOBB 57 WOB60 58 WOB34 59 WOB81 60 WOB64

BILLINGS 1² x 2² Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Owner's name						
Aquifer				320T5LP		
Well depth (fr.)				350		
Static Water fevel (ft.)						•
Lab Attrude nalysis (11,1				3160		
Lab Altitud	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 81 V 81	No no no	1 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Field temp.	8.61			2		
Specific Conductivity et 25 C	1814 12900 6400 1989				_	12.0
Spe condu	= 2 9 2	2 2 2 3	6750 1880 6065 36000	590 590 280	8800 6490	3580 7500 2350 7770 3347 4960
	Difficulty Greek Seline seep march Readined dich with selin elong edge IEI	0	BBWA canel, safts line bants N of Billings Andstrie brings of Single W of Snapherd Located 2 miles W of Snapherd	1 - 0 W F		
Flow or yield E = estimated M = measured	no flow no flow 0.1 cts (E) no flow	0.6 cfs (E) no flow no flow no flow no flow	no flow no flow 3 gpm (E) no flow no flow	no flow 0.1 cts [E] 6 cts [E] 1 cts [E]	1 cfs [E] 1 cfs [E] no flow no flow 10 gpm [E]	na flow 0.6 cfs [E] no flow 10 gpm [E] na flow
Collection date T R SecTract Mo Day Vr Source	10 13 76 10 13 76 06 24 76 06 25 76	02N 25E 19 CAB 06 24 76 Creek 02N 26E 13 0DDD 10 12 76 Marih 02N 26E 14 0B 05 73 Greek 02N 27E 04 AAA 10 12 76 Marih 02N 27E 04 CDD 10 12 76 Marih	10 12 76 Seep 10 12 76 Canal 04 08 76 Seep 10 12 76 Ottch 10 12 76 Seep	10 12 76 Ditch 11 45 Well 10 27 76 Creek 10 27 76 Creek 04 28 76 Creek	08 17 78 Creek 08 17 76 Creek 04 26 78 Sep 08 19 78 Sep 04 26 76 Creek	08 17 76 Pond 04 26 76 Creek 04 26 76 Seep 04 26 76 Creek 04 26 76 Seep
County T R Sec Tract	Yellowstone 02N 24E 22 ABB Yellowstone 02N 24E 22 CDD Yellowstone 02N 24E 32 CBB Yellowstone 02N 25E 07 CCC	Vellowstone 02N 25E 19 CAB Yellowstone 02N 26E 13 ODDD Yellowstone 02N 26E 14 DB Yellowstone 02N 27E 04 AAA Yellowstone 02N 27E 04 CDO	Yallowitone 02N 27E 06 AAD 10 12 18 Seep Vallowition 02N 27E 06 CCC 10 12 16 Canal Yallowitone 02N 27E 07 AA 04 08 18 Seep Yallowitone 02N 27E 08 AAA 10 12 16 Ottel Yallowitone 02N 27E 09 CGB 10 12 76 Ottel	Vellowstone 02N 27E 31 BAA Yellowstone 02N 28E 31 DB Sweet Grau 01N 15E 08 ABB Sweet Grau 01N 16E 09 BCC Stillwater 01N 20E 01 DA	01N 20E 01 DAD 01N 20E 13 DAA 01N 21E 02 BC 01N 21E 02 BCB 01N 21E 02 CC	01N 21E 08 DCD 01N 21E 07 AB 01N 21E 08 AA 01N 21E 10 AB 01N 21E 11 OC
	Yellowstone Yellowstone Yellowstone Yellowstone	Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone	Yallowstor Yallowstor Yallowston Yallowston	Yellowstone Yellowstone Sweet Grass Sweet Grass Stillwater	Stillwater Stillwater Stillwater Stillwater Stillwater	Stillwater Stillwater Stillwater Stillwater Stillwater
Map ref. Field no. number 61 WOBB	63 WOB18 64 WOB7 65 WOB18	66 WQB10 67 WQB52 68 WQB12 69 WQB47 70 WQB46	71 WQB51 72 WQB45 73 WQB19 74 WQB44 75 WQB43	76 WQ853 77 45M0001 78 WQ86 79 WQ87 80 WQ820	81 WOB33 82 WOB35 83 WOB14 84 WOB43 85 WOB13	86 W0834 87 W0821 88 W0822 89 W0823 90 W0824

BILLINGS 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name				
Aquifer	217LK0T		331MSNC 337MSNC	217LKOT 331MDSN
Well depth (ft.)				
Statec water level ftr.)				
Lab Atstude anelysis (R.)	4340		35.70 36.70	3710
-			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 4 4 2 2 2 2
Feld C C	20 19 19	17 12 13.2 12.8	11.8	
Specific conductivity et 25 C	2293 1840 28270 12780	18560 2400 4507 4247 1627	1738 3628 30600 30000 6000 3062 4298 9950 4030	24200 14600 300 300 300 100 380
Site description	Unnamed creek 1.5 miles 5 of Big Lake Located 0.25 miles Not ferm buildings Located 1.5 miles SN of Hunter Lake Located 5.0 mile Not Hunter Lake Located 1.8 miles E of Hunter Lake	Hunter Lake i mile 5 of 81g Lake On unnamed creek 3 miles 5E of Hunter Lake Conformed creek Creek Creek		To thow Very small creat. I garn [E] Small creat through saline seep eree Sold eff [E] Ton Coek 2.2 meer W of Hore Butte Oct [E] 6ag Dich Just N of Park City. 1.5 garn [M] Located 8 miles SW of 6 fillings 1.5 get [E] Groon Creak at highway bridge near Abarrokes On the [E] Purstur dean of enemyny was social river from Abarrokes On the [E] Roabed Creak at highway bridge near Abarrokes 1.5 fill Multisbird Creak at highway bridge near Abarrokes 1.6 fill Multisbird Creak at highway bridge near Abarrokes
Flow or yield E = estimated M = measured	no flow 0.1 gpm no flow no flow	no flow no flow 1 cfs (E) 1 cfs (E)	1 cts (E) 1.5 cts (E) 2 cts (E) 10 cts (E) 1 cts (E) no blow 0.5 cts (E)	1 gom [E] 0 & cts [E] 0 & cts [E] 1 & gom [M] 1 & cts [E] 1 & cts [E] 1 & cts [E] 1 & cts [E]
Collection date Mo Dey Yr Source	08 18 78 Creek 04 26 76 Seep 05 18 39 Well 08 18 76 Lake	08 18 78 Lake 08 18 76 Pond 06 24 76 Creek 06 24 76 Creek 08 24 75 Creek	06 24 76 00 22 4 76 00 25 57 00 25 57 00 10 76 10 12 76 10 13 76	10 13 76 Ceek 10 13 76 Ceek 10 13 76 Ceek 11 04 76 Ditch 07 31 41 Well 11 04 76 Ceek 11 04 76 Ceek 11 04 76 Ceek 11 04 76 Ceek
Location T R SecTract	01N 21E 17 CCD 01N 21E 15 DDD 01N 21E 24 CC 01N 22E 07 CA 01N 22E 17 D	isiliwater 01N 22E 18 Stiliwater 01N 22E 33 BAC Vellovatione 01N 23E 03 DDD Vellovatione 01N 23E 05 DDD Vellovatione 01N 23E 06 BC	velocution 01N 23E 08 DO NY 24E 15 DCA velocution 01N 24E 15 DCA velocution 01N 24E 01 BACC Sillinear 01S 14E 01 BA velocution 01S 24E 06 BAC velocution 01S 24E 06 BAC velocution 01S 24E 06 BB 08 Velocution 01S 24E 16 BB velocution 01S 24E 10 BB velocution 01S 24E 10 BB velocution 01S 24E 11 CBB 08 BB 08 24E 11 CBB 08 24E	Vellovations 015 246 22 CB 10 13 76 Cests Vellovations 015 246 22 0DD 10 13 76 Cests Sillivaters 025 226 0D A 07 13 40 Well Vellovations 025 226 0D DA 07 11 41 Well Vellovations 025 226 0D DA 07 11 41 Well Vellovations 025 226 0D DA 07 11 41 Well Sillivaters 025 186 23 DDC 11 04 76 Cests Sillivaters 025 186 28 DDC 11 04 78 Cests Sillivaters 025 186 28 DDC 11 04 78 Cests Sillivaters 025 186 28 DDC 11 04 78 Cests Sillivaters 025 186 28 DDC 11 04 78 Cests Sillivaters 025 186 21 DCC 11 04 78 Cests
County	Stillwater Stillwater Stillweter Stillweter Stillweter	Stillwater Stillwater Yellowston Yellowston	Yellowston Yellowston Yellowston Stillwater Yellowston Yellowston Yellowston Yellowston	
Map ref. Field no. number	\$1 WQB36 92 WQB12 93 39M0001 84 WQB37 95 WDB39	96 WQB38 97 WQB40 98 WQB5 100 WQB4	101 WGB1 102 WGB11 103 67M0006 104 WGB1 106 WGB2 106 WGB8 106 WGB8 106 WGB8	110 WQB67 111 WDB66 113 WQB27 113 WQB27 114 WQB627 116 44M0004 116 44M0004 117 WQB64 118 WQB62 120 WQB62

BILLINGS 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Owner's name	==					
Aquifer	217LKDT	331MDSN	331MDSN	32075LP		
Well depth 1ft.1		, .,				
Static water lavel (ft.)						
Attitude (ft.)	3440	3680	6130	4200		6280
Leb	0 0 0 5 5 X		No se	00 D	* * 2 2 2	* * o o
Field temp.				9 9	9	9 9
Specific conductivity at 25 C	630 670 890 3230 2780	3350 7980 4020 2160 7080	4260 708 588 4240	2580 1109 696	662 129 6890 2480 22100	437 760 :
Site description	Baver Creak at highway budga Dramage drich through 40 acre pasture Looted 4 miles N of Edgar Located 4 miles NW of Edgar	Located 4 miles NW of Edger March sere in saline seep Adjected to seep area Cast through seep area Saline seep area	March area along small sepo North Fork Fivenie Creek downstram from Edger North Fork Fivenie Creek upstream from Edger Locate 1 i 5 miles W of Roscoe Saline sep	Musth in a seap area Clark if or k River downstream from Bridger Lozard 11 miles SW of Egyar North Fork Dry Creak upstream from Bridger Lozared 10 miles NW of Betry	North Fork Dry Creak downstream from Bridger Near Clarks Fork River near Bettry Saline seep area Irrapation ditch Pond in a salive seep	Steridan Campground well number 2 Clarks Fork River neer Belfry (upstream) March in saline seep area Large pond in march by saline seep area
Flow or yield E = estimated M = measured	0.6 cts (E) 2 cts (E) no flow	no flow no flow 1 cfs (E) < 1 gpm (E)	no flow	no flow	no flow no flow no flow	9 spm (M) no tlow no flow
Collection date Mo Day Yr Source	11 04 76 Creek 11 04 76 Ditch 10 15 76 Seep 11 23 60 Well 03 25 57 Well	03 25 57 Well 10 14 76 Pond 10 15 76 Pond 10 15 76 Creek 10 15 76 Seep	10 14 78 Marsh 10 31 76 Creek 10 31 78 Creek 10 02 44 Well 10 14 78 Seep	10 14 78 Marsh 10 31 76 River 03 31 60 Well 10 31 76 Greek 08 08 51 Well	10 31 78 Creek 06 06 76 Canel 10 14 78 Seep 10 14 76 Pond 10 14 76 Pond	07 28 76 Well 10 31 78 River 10 14 76 Pond 10 14 76 Pond
Location T R Sec Tract	03S 19E 29 CDD 03S 20E 07 ABC 04S 22E 19 ACC' 04S 23E 02 ABA 04S 23E 08 AA	04S 23E 08 AA 04S 23E 25 AAA 04S 23E 29 BC 04S 23E 32 DCD 06S 22E 03 BD	06S 23E 11 CCC 06S 24E 04 AB 05S 24E 26 AB 06S 18E 04 8D 06S 23E 04 8A	06S 23E 22 AC 06S 23E 33 CD 06S 24E 04 DD 07S 21E 10 DA 07S 22E 07 8B	075 22E 18 CD 075 22E 26 DB 075 23E 03 CC 075 23E 05 AAA 075 23E 23 CA	08S 22E 28 DB 08S 22E 28 DB 08S 25E 04 BB 09S 25E 09 DD
County	Stiffwater Stiffwater Carbon Carbon	Carbon Carbon Carbon Carbon	Carbon Carbon Carbon Carbon	Carbon Carbon Carbon Carbon	Carbon Carbon Carbon Carbon	Carbon Carbon Carbon Carbon
Map ref. Field no number	121 WD851 122 WD849 123 WD810 124 60M0006 126 57M0004	126 S7M0012 127 WOB9 128 WD812 129 WQ813 130 WQ811	131 WDBB 132 76W2660 133 76W2659 134 44M0005 136 WQB7	136 WO86 137 76W2658 138 60M0009 139 76W2655 140 61M0002	141 76W2656 142 W0814 143 WD84 144 WQ85 145 WQ83	146 76M0932 147 76W2657 148 WQB1 149 WQB2

Chemical Analyses

Map		Collection			Magne-		Potes-		Manga-	C:11-	Bicer-	Car-	~	
ret.	Location T E Sec Tract	date Mo Day Yr	Source	Calcium (Ca)	(Mg)	Sodium (Na)	sium (K)	(Fe)	nese (Mn)		(HCD _s)	(CD2)	Chloride (Cl)	Sulfete (SO _a)
no.	I E Sec ITect	MO Day 11	Source		Livings	(144)	1147	11 01		i di Ogr	1110031	1003	1011	10041
2	03N 20E 33	08 17 76	Lake	79	596	3080	18				733	26	570	7520
3	03N 20E 36 AA	04 21 76	Creek	309	741	2500	13				604		252	8250
5	03N 21E 33 DBA	08 19 76	Lake	60	243	1400	21				153	54	190	3660
6	03N 22E 20 DCD	08 19 76	Creek	12.8	1807	2620	29				396		430	11600
11	03N 24E 20 CA	06 25 76	Pond	62	25.8	125	11.4				250		34.9	279
14	03N 24E 35 BC	04 09 76	Creek	107	143	570	5.5				463	5	80	1540
15	03N 27E 19 CC	04 08 76	Ditch	455	1922	4000	23.4				343	31	45	16200
	03N 28E 31 BC	04 08 76	Creek	329	320	1100	12.5				415		36	4020
	02N 15E 23 8B	11 32	Well			860°					1580		87	16
24	02N 15E 23 88		Well	150	45	3 60 0°					340		5800	22
25	02N 19E 13 AOB	08 18 76	Seep	368	1507	5480	15				442		510	17200
26		08 17 76	Pond	493	654	770	13				335		208	4840
	02N 20E 04 CA	11 25 60	Well	10	2	760°					830	59	630	13
	02N 20E 29 BB	12 56	Well	340	84	400°					196		110	1700
37	02N 21E 11 DD	04 21 76	Seep	353	427	1130	6				340		260	4250
38	02N 21E 23 DOD	08 18 76	Lake	50	225	1035	16				147	53	185	2750
39	02N 21E 24 BCC	08 18 76	Creek	24.8	285	945	12				197	84	150	2680
40	02N 21E 27 DB	01 30 67	Well	290	85	10000	40				769		16000	
41	02N 21E 27 DB	10 26 66	Well	370	34	9800	25				1010		15000	10
42	02N 21E 31 AA	04 22 76	Creek	132	144	336	3.4				420		45	1180
43	02N 21E 31 888	04 22 78	Seep	411	905	2750	10				626		290	9400
44	02N 21E 31 CB	04 22 76	Well	152	33	2400	5.2				317		27	5150
45	02N 21E 31 CD	08 19 76	Well	56	20.3	290	5.4				506		13	420
	02N 21E 31 CD	04 22 78	Well	431	771	1995	4.8				970		441	6850
47	02N 21E 34 DB	02 05 58	Well	31	12	630°					1050		450	
48	02N 22E 15 BCC	08 18 76	Creek	373	1112	2080	24				690		500	8750
49	02N 22E 19 ACD	08 20 78	Seep	596	737	1880	41				372		735	7110
	02N 23E 21 AC	04 09 76	Ortch	317	655	2500	25				743		516	7250
	02N 24E 02 CA	04 09 78	Pond	458	1481	2960	24.3				162	115	84	13000
56	02N 24E 08 6886	06 24 76	Ditch	148	189	818	17				488		209	2180
61	02N 24E 20 BBCB	06 24 76	Creek	75	94	125	4.9				340		41	496
	02N 24E 32 CBB	06 24 76	Creek	119	71	193	4.9				431		77	496
	02N 25E 07 CCC	06 25 78	Pond	389	6735	9310	28				807	318	38.2	50400
	02N 25E 19 CAB	06 24 76	Creek	351	506	950	10				356		66	4400
68	02N 26E 14 D8	06 25 76	Creek	70	31.5	864	4.4				738		34.3	1480
	02N 27E 07 AA	04 08 78	Seep	368	164	775	7.8				368		38	2820
	02N 27E 09 CB6	10 12 76	Seep	411	3491	8110	49				1285		260	29200
	02N 28E 31 DB	11 45	Well	53	20	890°					230		57	1800
	01N 21E 02 BC	04 22 76	Seep	281	646	1150	12				497		313	4900
84	01N 21E 02 BCB	08 19 76	Seep	297	458	1000	11				439		275	3950
	01 N 21E 02 CC	04 22 76	Creek	285	211	328	3.7				372		68	1830
	01N 21E 08 AA	04 22 78	Seep	365	607	965	15				406		145	4800
	01N 21E 10 A8	04 22 78	Creek	266	193	340	4.6				375		64	1750
	01N 21E 12 CCD	08 18 76	Creek	32.9	65	397	6.9				766	13	79	450
93	01N 21E 24 CC	05 18 39	Well			2300°					1710	58	2400	23

Note: All chemical data are given in milligrams per litter (mg/ll unless otherwise stated * Values reported as sodium plus potassium

BILLINGS 15

of Selected Waters

Mag		Fluo-		Field	Lab	Gisspived	Total	Total	Sodium		Well		Trace	
ref.	Nitrate	ride	Lab		conductance	spiids	herdness	alkalinity	adsorption	Collecting		Anuster	elements	Lab
no.	(N)	(F)	рН	C°	(µmha/cm)	(csic.)	es CaCO3	as CaCO3	retio	agency	(ft.)	code	enelyzed	
2	<.1		8.4	21	12370	12250	2650	645	26.0	WQ8			No	76W1679
3	.25		8.07	17	1 2000	12670	3820	498	17.6	WQB			No	76W0657
5	.01		8.9	19	6490	5690	1150	216	18.0	WQB			No	76W1887
6	<.1		6.0	19	12750	16720	7470	326	13.2	WQB			Yes	76W1886
11	.02		7.46	16.8	1123	666	261	212	3.4	WQS			Yes	76W1224
14	.03		6.33	18	3486	3914	857	388	8.5	WQB			Yes	76W0674
15	130		8.57	17	16000	23150	9050	333	18.3	WQ6			No	76W0567
19	.6		8.16	20	6767		2140	340	10.3	WQB			No	76W0568
23								1300		Unknown		211FRNF	No P	32M0002
24							560	279		Unknown	•	211CLRC	No No	O0MO011
25	.06		8.11	23	20390	25300	7120	362	28.3	WQB			Yes	76W1876
28	.01		8.1		7210	7144	3920	275	5.3	WQ8			No	76W1877
27			8.7				33	779		Unknown	1	211EGLE	No	60M0002
33							1190	160		Unknown	,	331MDSP	l No	56M0010
37	.06		7.85	11	8500		2640	279	9.6	MOS			No	76W0660
38	.03		9.3	17	5290	4382	1060	210	13.9	was			Yes	78W1885
39	.02		9.2	22	5519	4273	1240	302	11.7	WQB			No	76W1883
40			7.90	1			1070	631	132	Unknown		211FRNF	No	67M0001
41			7.8			25740	1060	828	131	Unknown	1	211FRNF	No.	66MQ025
42	.25		8.01		2949	2261	923	345	4.8	MOB			No	76W0663
43	2		6.01		13500	14390	4750	514	17.4	WQB			No	76W0684
44	<.01		7.28	9	9400	8099	516	260	46.0	WOB			No	76W0666
46	.03	.67	7.8	11	1690	1054	222	415	8.5	WQB			No	76W1890
48	14		7.88	9	12100	11480	4250	796	13.3	WQB			No	76W0665
47			7.0				127	861		Unknown	١	211FRNF	No.	58M0002
46	93		8.0	21	12990	10720	5510	484	12.2	MOB			No	76W1888
48	<.1	.18	7.3	17	10760	9264	4520	306	12.2	WQB			Yes	76W1889
62			7.33	15	10700	12010	3490	610	16.4	WQB			No	76W0566
66	1		9.43	12	13800	18290	7240	325	15.1	WQB			No	76W0589
56	.27	.15	7.9	15.8	5250	3806	1150	400	10.5	WQB			Yes	76W1 216
61	.49	.28	6.1	15.8	1614	886	576	279	2.3	waa			Yes	76W1215
64	9.3	.41	7.95	13.8	1829	1102	590	354	3.5	WQB			Yes	76W1214
65	.03	.83		19.8	45150	53260	28700	1030	23.9	WQ8				76W1225
66	3.8	.39			7290	6460	2960	292	7.6	WQB			Yes	76W1217
68	.06		7,86		,,,,,,	2840	305	605	21.5	WOB			Yes	76W1219
73	.3		7.96	15	5065		1590	302	8.6	WOB			No	78W0566
75	.3		7.9	12	34160	43150	15400	1050	31.9	WQB			Yes	76W2544
77							215	189		Unknow	•	320TSLP	No	45M0001
83	.29		7.82	9.5	8800	7789	3360	400	8.6	WQB			No	76W0662
84	.69	.32	0.8	16	6490	6208	2620	360	8.5	WQS			No	76W1884
85	.82		8.0	8	3098	3580	1580	306	3.6	wq8			No	76W0661
88	.21		8.17	8	7303	7770	3410	333	7.2	WQB			No	76W0667
89	.88		8.07	12	3347	2999	1460	307	3.9	WOB			No	78W0668
91	.07		8.3	20	2293	1421	350	649	9.2	WQB			No	76W1878
93								1501		Unknown		217LK01		39M0001

Chemical Analyses

Mag	,					Hect				Magne-		Potas-		Manga-		Bicar-	Car-		
rel.			-ocs			date			Calcium	sium	Socium	sium	Iron	nese	Silica	bonate		Chloride	Sulfate
no.	1	r	R S	ec Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₂)	(CD ³)	(CI)	(SO ₄)
94	01	N 2	2E (7 CA	08	18	76	Pond	389	2995	7420	13				77	108	1500	23860
95	01	N 2	2E	17 D	08	18	76	Lake	37.4	348	3424	8.3				833	146	648	6888
96	01	N 2	2E 1	В	06	18	76	Lake	352	543	5467	16				427		1620	12500
96	01	N 2	3E (3 DOD	06	24	76	Creek		378	539	6				469		62	2140
99	01	N 2	3E (05 DOD	06	24	76	Creek	204	177	581	8.7				395		126	1960
100	01	N 2	3E (06 BC	08	24	76	Creek	71	84	168	5				476		62	394
101	01	N 2	3E (06 DD	06	24	76	Creek	100	81	160	2.6				548		66	349
102	01	N 2	4E	15 DCA	06	24	76	Creek	190	209	414	10				259		45.1	1900
103	01	N 2	8E (1 BAC	03	21	57	Well	380	99	380°					370		44	1800
104	01	N 2	8E (1 BACC	03	25	57	Well	520	150	110°							52	1600
106	01	5 2	4E C	6 CAC	08	24	76	Creek	118	103	442	7.3				356		83	1240
107	01	5 2	4E 0	6 886	06	24	76	Creek	275	235	498	11				209		70	2346
115	02	5 2	BE C	7 DA	07	31	41	Well			1100°					2200	120	260	48
116	02	25 2	9E 1	7 BC	09	12	44	Well	600	150	410°					170		120	2800
124	04	S 2	3E (2 ABA	11	23	60	Well	21	6	890*					2000	133	79	30
125	04	s 2	3E 0	B AA	03	25	57	Well			750°					1620	109	90	
128	04	15 2	3E (B AA	03	25	57	Well	690	230	46°					255		100	2300
132	05	5 2	4E (4 A 6	10	31	76	Creek	46.5	30.1	57	3.5				287		7.6	115
133	05	5 2	4E 2	5 AB	10	31	76	Creek	56	28,1	20	2.6				299		4.3	46
134	06	IS 1	BE C	4 6D	10	02	44	Well	560	150	77*					45		18	2100
137	06	S 2	3E 3	I3 CD		31		River	128	41,5	63	4				195		5.4	435
138	06	S 2	4E (M 00	03	31	60	Well	260	39	1.7	.8				233		.5	620
				0 DA		31		Creek	57	13.9	.7	3				329		2.4	100
				7 68		08		Well	440	86	110°					256		51	1400
141	07	5 2	2E 1	6 CD	10	31	76	Creek	32.7	14.2	97	3				183		11	185
142	07	5 2	2E 2	6 DB	06	06	76	Canel	15.8	4.8	3.5					59		.3	12.3
146	08	S 2	0E 3	BAAD O	09	02	76	Well	11.4	2.46		1.1	.05	.01	7.1	42		.8	6.8
147	08	\$ 2	2E 2	26 DB	10	31	76	River	53	16.5	19	2.6				207		2.7	71

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated. * Values reported as sodium plue potassium.

of Selected Waters (Con't.)

					Lab									
Mep		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Weil		Trace	
ref.	Nitrate	ride		Temp.		solids	hardness	alkalinity	adsorption	Collecting	depth		elements	
no.	(N)	(F)	рΗ	c°	(µmho/cm)	(catc.)	as CaCO ₃	as CaCO ₃	ratio	agency	(ft.)	code	anely zed	numbe
94	<.1		9.4	16	28270	36320	13300	243	28.0	WQ8			Yes	76W188
95	<.1		9.1	19	12780	11910	1520	928	38.2	MGB			Yes	76W188
96	<.1		7.9	17	18560	20710	3110	350	42.6	WQB			Yes	76W188
98	19.4		7.75	12	4507	3375	1560	385	5.9	WQB			Yes	76W121
99	.78	.16	7.8	13.2	4247	3254	1240	324	7.3	WQB			Yes	76W121
100	1.8	.53	8.2	12.8	1627	1020	520	391	3.2	was			Yes	76W121
101	6.5	.95	8.15	11	1738	1036	585	449	2.9	WQB			Yes	76W121
02	.39	.43	8.05	21.5	3628	2897	1340	212	4.9	WQ8			Yes	76W121
03			7.4				1360	303		Unknown		331MDS8	No No	57M000
04			6.8				1920			Unknown		337MSN	: No	57M000
06	1.9	64	8.2	11.8	3052	2171	720	292	7.2	WQB			Yes	76W120
07	2.8	.31	8.1	11	4298	3541	1660	171	5.3	MGB			Yes	76W120
115								2000		Unknown		217LKQ1	No	41M000
16							2120	139		Unknown		331MOSP	Na Na	44M000
24			8.6				77	1860		Unknown		217LK01	No	60M000
125			8.0					1510		Unknown		211FRN6	No No	57M000
26			7.2				2670	209		Unknown		331MOSP	e No	57M001
32	2.8	.65	8.2	8	708	404	240	235		WQ8			No	76W268
133	.01	.23	8.1	5	589	306	260	245	0.5	WQ8			No	76W265
34							2020	37		Unknown		331MD\$8	No No	44M000
37	-22	.61	7.9	9	1109	773	490	160	1.2	WQB			No	76W265
38			7.2				810	191		Unknown			No	60M000
139	.13	.39	8.1	6.5	696	416	200	270	2.4	WQB			No	76W265
40							1450	210		Unknown		320TSLP	Na	51M000
41	.15	.18	8	6.5	652	433	140	150	3.6	WQ8			No	76W 265
42			7.4		129	95	59	48	0.2	wq8			No	76W102
46		<.1	7.01	3	83	51	39	35	0.1	USFS			Yes	76M093
147	.33	.18	8.2	8.5	437	266	195	170	0.6	WQB			No	76W266

ngle.

BILLINGS 1° x 2° Sheet Trace Elements Analyzes Sheet

Lab	76W1886 76W1224	76W1876	76W1B89 76W1216 76W1215 26W1214	76W1225	76W1217 76W1219 76W2544 76W1880	76W1881 76W1213 76W1211 76W1211	76W1218 76W1208 76W1209 76W0932
Zinc mg/i)	5 5 5	555	8 5 5 5	9	55555	55555	5 5 5 2
Tin Zinc Img/II Img/I							
Stron- tium Tin Zinc Img/I) Img/II Img/I)					6.3		
Silver Img/II					01.		
Selenium (µg/l)	8 ~		555°	2 2	±	- ° · ° °	21 23
Lith- Mer. Phosphate Lead ium cury Nickel (Total Img/II (mg/II)Ug/II Img/II) dissolved							
Vickel mg/ll	.12	.19	80.00	. e.	- 8 E E 6	* 8 8 8 8	A A A A A A A A A A A A A A A A A A A
Lith. Mer- ium cury Nickel Img/il/t/g/Il Img/Il	77	7 ° °	777	77	32 23	- 222	777
Lith- Mer- ium cury Img/Bl/Jg/II	5 6	8 8	2 0 0	8	4. 90 E. 90.	8 6 8 8 8	= 8 =
besd III-gm	98.0	8.8.8	8 8 8	90.0	8 8 8 8 9	× × × × × ×	A A A A A A A A A A A A A A A A A A A
Copper Lead Img/II Img/II	10.	0 10 10	5 5 5	178	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	5 5 5 5 5	5555
Ohro- mium [mg/l]	90. >	8.0	888	8 % 8 %	8.8.	8 8 8 8 8	> > > > > > > > > > > > > > > > > > >
Cad- mium (mg/l)	00. 00. 100.	0000	>.005 00.	00. 1	.00.	000.	000
Boron Img/il	o, =	62	2.1 .68 .21	38	86 86	13.6	33.
	01 >	0 0	2 2 2	0 0 V V	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Ar. senic	~ ·	a ~	~ ° °	- ~	2 = 2 2 2	2 4 4 6 4	220
Anti- Ar. Beryl- mony senic lium (mg/l) [µg/l] [µg/l]							
Alu. Anti- Ar. Beryl- minum mony senic Ilum (mg/t) (mg/t) (µg/t)							×.
Location T R Sec Tract	03N 22E 20 DCD	14 03N 24E 35 BC 25 02N 19E 13 ADB 38 02N 21E 23 DDD	49 02N 22E 19 ACD 66 02N 24E 09 BBB 61 02N 24E 20 66CB	64 02N 24E 32 CBB 65 02N 25E 07 CCC	66 02N 75E 19 CAB 68 02N 26E 14 DB 76 02N 27E 09 CBB 94 01N 22E 07 CA	96 01N 22E 18 98 01N 23E 03 DOD 99 01N 23E 06 DDD 100 01N 23E 08 BC 101 01N 23E 08 DD	108 01N 24E 16 DCA 108 01S 24E 05 CAC 107 01S 24E 06 BB6 146 08S 20E 30 DAAB
nef.	9 =	25 2 2	6 6 6 6	2 8	9 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 00	108

LOCATION BASE MAP

BOZEMAN 1° x 2° SHEET

BOZEMAN 2

BOZEMAN 5

DK LOMETERS

BOZEMAN 1° x 2° Sheet

Specific Conductivity Inventory Sheet

Owner's name																		
Aquiler																		
Well depth (ft.)																		
Static water level (Rt.)																		
Altitude (ft.)																		6415
Lab / enalysis	ě	yes	Yes	90	ę.	2	on O	90	9	9	90	9	Yes	Yes	9	9	90	, Aes
Fredd C C a																		
Specific conductivity at 25 C	3780	273	593	260	450	380	310	1030	480	099	760	640	804	324	310	370	320	98
Site description	Low swempy area	Madison River	Ray Creek near highway	Sloan Creek	Spring Creek	Ray Creak	Ranch irrigation ditch	Drain from bench near dump	Below bench, irrigation above, 0.5 mile N of dump		Nameless creek 2 miles 5 of Wilsell	Antelope Creek 2.5 miles N of Clyde Park on 289	Otter Creek irrigation return	Yellowstone River	krigation canat	Cow Creek	Duck Creek	Costonwood Creek near Iben
Flow or yield E = estimated M = measured	no flow	400 cts (E)	6 cts (E)	1 cfs (E)	4 cfs (E)	6 cfs (E)	no flow	2 cfs (E)	25 apm (E)	4 cfs (E)	0.5 cts (E)	2 cfs (E)	10 cts (E)	220 cfs (E)	2 cts (E)	1 chs (E)	2 cts (E)	125 cfs (M)
Collection date Mo Day Yr Source	11 04 75 Pond	11 05 76 River	11 05 76 Creek	11 04 78 Creek	11 04 76 Creek	11 04 76 Creek	11 04 76 Dirch	11 06 75 Drain	11 05 75 Soring	11 04 75 Stream	09 09 75 Creek	09 08 76 Creek	11 18 75 Datch	10 27 76 River	10 27 76 Canal	10 27 78 Ditch	10 27 76 Streem	06 08 77 Creek
Location T R Sec Tract	02N 01E 36 DA	_	02N 02E 28 DCC	01N 02E 15 DCC	01N 02E 16 DCB	01N 02E 16 CCD	01N 02F 07 B	015 01W 29 AD	015 01W 21 OC	015 01W 34	03N 09E 31 CD	02N 09E 08 ACD	01N 14F 07 AB	01N 13E 35 DAO	01N 13E 34 CCD	01N 13E 35 CAD	015 12E 12 ADA	03N 10E 24
County	Gellatio	Gallatio	Galletin	Gallatin	Galletin	Gallatio	Gallatio	Martinon	Madison	Madison	Park	Park	Summer Grass	Sweet Grass	Sweet Grass	Sweet Gress	Sweet Grats	Park
Field	MON	2 80 80	WOBS	WOR2	WD83	WORA	MOBG	NO BO	WORD	WOBI	WOR2	NOW.	1003	WORD	WQ84	WOB3	WOBS	76M1971 Park
Q																		

10 BOZEMAN

BOZEMAN

Chemical Analyses

Map ref. ng.	_		catio			liect late Day		Source	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	iron (Fe)	Manga- nese (Mn)		Bicar- bonete (HCO ₃)		Chlorido (CI)	Sulface (SQ _q)
2	02N	021	E 30	BAD	11	05	76	River	20.6	5.3	28	4.5				122		17	16
3	021	V 02	E 28	DCC	11	05	76	Creek	51	16.5	54	9.3				306		21	33
13	01 N	114	E 07	A6	11	18	75	Ditch	67	14.1	72	2.5				317	5		94
14	01 N	4 1 31	35	DAD	10	27	76	River	28.9	11.6	20	4.5				152		8.4	21
18	03N	10	E 24		06	08	77	Creek	7.9	.6	.9	.3	.02	<.01	4.4	27		.4	2.7

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated * Values reported as sodium plus potassium

1° x 2° Sheet

of Selected Waters

	Nitrate (N)	Fluo- ride (F)		Field Temp.	specific conductance (µmho/cm)	Dissolved solids (calc.)	Total hardness as CaCO ₃	Total aikalinity as CaCO ₃	Sodium adsorption ratio	Collecting	Well depth (ft.)	 Trace elements analyzed	
2	.01		8.0		273	150	73	100	1.4	WQ8		no	76W2667
3	.5		8.2		593	335	195	250	1.7	WQB		no	76W2666
13	.23		8.46		804	580	225	270	2.1	WQB		no	75W2284
14	.01		7.9		324	180	120	125	0.6	WQB		no	76W2649
18	.068	<.1	7.47	7	50	31	22	22	0.1	USFS		no	76M1971

LOCATION BASE MAP

CHOTEAU 1° x 2° SHEET

Owner's name																				Kaller, Gus								
Aquitar																												
Well depth (11.)																												
water level (ft.)																												
Altitude Itt.)																												
alysis	2	9	2	2	90	90	8	9	2	9	Yes	90	8	9	uo	y es	90	2	90	Yak	9	90	2	90	90	2	9	ę
Field C. a																												
Specific conductivity at 25 C	340	3160	1770	790	340	980	1560	2650	740	1050	1102	099	670	390	840	1487	420	1470	1260	1948	340	4680	390	3280	340	840	000	900
Site description	Rock Creek at hishway		Kirlay Crook at highway 287	Deadman Creek at highway	Dearborn River at highway bridge			Emerges from dryland farming area to S	Flat Crack, mostly rangeland	Unnamed creek at highway	Flat Creek near Millord Colony	Hogan Crask, several seeps lend this creek	Sampled last year (1975)	Spring led, below large saline seep area	Quivert under road	Tributary to North Fork Simms Creek		In field	deag	Gus Kallar seep	Dry Creek at bridge		Adjacent to gravel pit	Alkali along sides, dryland farming aree	Nilan Raservoir at dam	-	Willow Creek; trigeted aree with alkali	Flowersa Canal at bridge
Flow or yield E • assimated M • measured	5 5 ch (E)	no flow	1 cls IE)	wo	25 cts (E)	0.5 cfs [E]	25 apm (E)		1 cfs (E)	low	2 cfs (E)	1 cls (E)			wol	4 cfs (E)	no flow	woy	no flow	no flow	26 cfs (E)	0.5 cfs (E)	no flow	10 gom (E)	r no flow	10 gpm tEl	3 cfs (E)	60 cts (E)
Collection Location date T R Sec Tract Mo Day Yr Source	04 06 78 Comb	04 08 78 Pand	06 06 78 Creek	04 06 78 Creek	04 06 78 Rwar	05 06 76 Creek	11 20 75 Coules	11 20 75 Spring	11 20 75 Creek	04 06 76 Creek	05 06 78 Creek	11 20 75 Creek	11 20 75 Drain	11 20 76 Spring	04 06 78 Creek	04 06 76 Creek	04 06 76 Spring	04 06 76 Creek	04 06 76 Pond	05 06 76 Spring	06 06 78 Creek	11 20 76 Creek	06 06 76 Pond	11 20 76 Orain	06 06 76 Reservo	11 20 76 Spring 1	11 20 76 Creek	06 06 76 Canel
Location County T R Sec Tract	Lawis & Clark 15N 04W 24 AB			Carrie & Clark 17th Daw 34 AC	Lawis & Clark 17N 04W 27 BDO	Lowis & Clark 17N 04W 09 BB	Lawis & Clark 18N 05W 24 B	Lawis & Clark 18N 04W 20 0	Lawis & Clark 18N 04W 21 B	Lawis & Clark 18N 05W 24 BA	Lewis & Clark 18N 05W 11 CA	Lawis & Clark 1BN 05W 03	Lewis & Clark 1BN 05W 04 CB	Lawis & Clark 18N 05W 04	CDC			-	Lewis & Clark 20N 04W 20 AB	Lewis & Clark 19N 05W 07 CB	Lewis & Clark 19N 06W 11 AB	Lewis & Clark 20N 06W 34	Lewis & Clark 20N 06W 27 C	Lawis & Clark 20N 06W 34	VO		Lewis & Clark 21N 07W 26	Lawis & Clark 21N 06W 19 DA
Map ref. Freid no. number	1 not on map 2 not on map 3 WOR1		_	C WODE	2 WOR10	R WOR12	9 WOB22	10 WQB21	11 WOB20	12 WDB4	13 WOR18	14 WQB29	15 WQB23	16 WOB28	17 WOB9	18 WOBB			21 WOB5	22 WOB4	23 WOB13	24 WOB27	25 WQB15	26 WOB24	27 WOB18	28 WQB26	29 WQB25	30 WGB16

CHOTEAU 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

	Collection	000	Flow or wind		Specific	Field			-	Moli		
Location	al al		F - astimated		conductivity		4	Attiende	la val	de o	Amiler	
T R Sec Tract	Mo De	Mo Day Yr Source		Site description	et 25°C	ပ			F	171	spoo	Owner's name
Lewis & Clerk 21N 0GW 29 BB	90 90	05 06 76 Creek	1 cfs (E)	Willow Creek et Culvers	1080		9					
21N 06W 21	09 28	76 Well		Domestic use	200	22	9	4280				Harris
21N 06W 11 CBC	08 28	78 Well		Domestic use, good weter	980	12	2	4300		99		Allen
22 N 05W 29	08 28	08 28 76 Well		Domestic use	790	16	90	4500		104		Neckstad
22N 34W 06	98 38	78 Lake		Freezeout Leke	2140	24	8					
23N 04W 30	08 28	76 Well		Domestic use	800	12.6	٤	3840	35			Lear, Jack
22N 05W 27 CAD	08 28 76 1	76 Well		Stock use	1000	9		4420	38	85		Neckstad
23N 05W 02 AAA	08 28	76 Creek	5 cts	Deep Creek	360	11	90	3800				
23N 08W 02 BA6	88	08 28 76 Creek	S cfs	Tributery to Willow Creek	1100	9	ğ					
24N 06W 31	98 38	28 76 Pond			910	9	2					
24N 07W 21 BDA	92 90	28 76 Creek	2 ch	Willow Creek	340	13	90	4430				
25N 07W 28 ACD	08 25	25 76 Well		Domestic use	350	13	90	4620		30		Dison
25N 06W 30 DBD	01 18	01 18 77 Well		Domestic use	474	13	yes	4280		20	20 HIZTRAC	Crery
26N 06W 24 DDC	08 27	08 27 76 Well	10 gpm	Stock use	470	=	2	3880	Ξ	16		Pege, Roy
25N 06W 22 BCAA 08 25 76 Well	98 28	76 Well		Domestic use, some iron stein	450	7	ě	4180		58		
25N 06W 36 B	08 26	76 Reservoir	10	Eureka Reservoir	240	9	90	4120				
26N 06W 20 DCC	06 25	76 Creek	1.5 cfs	Muddy Creek	470	13	9	4120				
28N 08W 24 DDC	08 27	26 Well		Domestic use	069	15	9	3980	4	00		
25N 09W 04 DD	98 38	76 Well	12 gpm	Domestic use, good weter but a little hard	430	=	Ş	3840	10	8		
26N 06W 24 CDDD 01 17 77	01 17	77 Well		Domestic use, some Iran 17) stein	492	2	\$8.A	3890	-	32 1	32 110TRRC	
25N D4W 08	06 26	76 Well		Domestic use, good water	480	12	Ota	3920	23	30		
88	08 27	08 27 76 Well	t3 gpm	Domestic use	2220	13	9	3780	8	99		
25N 04W 12 DADD 10 13 76	10 13	76 Well	md6 g	Domestic use, Iron stein, well pumps some sand	1002		10.4	3760	16		B2 1120TSH	
25N D4W 28	98 28	08 26 76 Well		Domestic use	640	12	9	3850	=	13		
24N 04W 08 CBB	01 18	01 18 27 Well	10 gpm	Domestic use, water forms calcium deposits	864	9	48 A	3890	2		150 211CLAD	
25N DAN 26 BCC	08 27	08 27 76 Well		Domestic use	080	10	90	3720				
24N 04M 11 DCCC 08 27 76 Well	08 27	76 Well		Domestic use	1630	17.5		3760	8	46		
24N 04W 26 ABA	08 27	08 27 76 River	36 mm (E)	Teton River	780		90	3690				

CHOTEAU 1° x 2° Sheet (Con't.)
Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Ferris, James Erickson Stanley	Mulford Colony West, E.
Aquifer		
Well depth (ft.)	2 5 9 6 4 9	107
Static water level (11.)	•	8 9
Altitude (ft.)	3660 4160 3980 3740	3860 20 90
Lab	5 5 5 5 5 5 5 5 5	14.55 no 6.55 yes 6.00 yes 7.55 yes
Field C.C.	10 00 00 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	44 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86
Static Specific Field water Well conductivity temp. Lab Attrude level dapth A et 26 C C enelyss (ft.) (ft.) ft.)	1310 580 1200 1078 660	560 19500 222 223 646
Site description	Domestic use located along Teton River Domestic use Domestic use Domestic use Domestic S Cark Number 1 drain 10 gon (E) Auddy Creek	In grain field Porcupine Creak above Glidart Creak North Fork Lott Creak
Flow or yield E = estimated M = messured	10 gpm (E) 10 cfs	15 gpm
Collection Flaw or yield Location date E estimated T R Sec Tract Mo Day Yr Source M mastured	08 27 76 Well 08 28 76 Well 08 26 76 Well 11 20 75 Drein 08 26 76 Creek	08 27 76 Well 08 27 76 Pond 05 20 77 Creek 05 20 77 Creek 01 17 72 Well
Location T R Sec Tract	Taton 24N O4W 24 D6D 08 27 76 Well Tetron 27N O4W 17 AAA 08 28 76 Well Tetron 17N O4W 17 CAA 08 28 76 Well Lewis & Curk 18N 05W 03 CB 11 20 75 Drein Tetron 26N 03W 31 CCC6 08 25 76 Ceek	Zan Daw 18 DCC D8 27 76 Well Zan D3w 33 6.6 A 08 27 76 Pond Zan 18w 03 05 20 77 Creek Zan 17w 31 06 20 77 Creek Zan Oww 35 DCD 6 01 17 72 Well
County	Taton Taton Lewis & Clark Taton	Teton Lake Lake Teton
Map ref. Field no. number	62 MBMG45 Teton 62 MBMG88 Teton 63 MBMG87 Teton 64 WQB62 Lewis 8 66 MBMG20 Teton	66 MBMG34 Teton 67 MBMG58 Teton 68 76M1942 Lake 69 76M1941 Lake 70 76M1619 Teton

CHOTEAU

Chemical Analyses

Me	p				Co	ilecti	on			Magne-		Potas-		Manga-		Bicar-	Car-	Chloride	
ref		Lo	catio	on		Sate			Calcium	sium	Sodium	sium	Iron	nese	Silica	bonate	bonate	Chloride	Suifate
no.	т	R	Sec	Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(5102)	(HCO ²)	(00)	(CI)	(SO _e)
13	18N	059	11	CA	05	05	78	Creek	84	16	131	12				343		19	220
18	19N	044	08	AA	04	06	76	Creek	57	26.2	250	3.3				459	17	22	330
22	18N	054	07	CB	05	06	75	Spring	196	38.8	150	27				350		12.5	686
44	25N	064	30	DBD	01	18	77	Well	68.8	21	3.2	.5	<.01	< .01	5.8	273		17	14.7
51	25 N	054	24	0000	01	17	77	Well	22.5	47	13.9	.6	<.01	<.01	6.3	268		3.4	45.2
56	25 N	044	12	DADD	10	13	75	Well	39	32.6	144	2.2	.68	.21	7.1	466		56.4	84.3
57	24N	044	08	C88	01	18	77	Well	32.5	89	31.9	1.0	<.01	< .01	11.9	498		24.4	52
64	18N	059	03	CB	11	20	75	Drain	51	54	85	4.8				366		19	180
68	24N	189	03		05	20	77	Creek	35.4	6.7	.7	1.0	<.01	<.01	6.5	142		.1	1.7
69	25N	17W	31		05	20	77	Creek	35	7.8	.8	.3	.04	<.01	3.9	140	1	.2	3.0
70	26N	0414	36	DCDB	01	17	77	Well	43.6	23	71.5	1.9	.01	.12	8.1	346		9.6	56.8

Note: All chemical data are given in milligrame per liter (mg/l) unless otherwise stated * Values reported as sodium plus potessium

1° x 2° Sheet

of Selected Waters

Mag ref. no.	Nitrete (N)	Fluo ride (F)	Lab pH	Field Temp. C°	Lab specific conductance (µmho/cm)	Dissolved solids (catc.)	Total hardness as CaCO ₃	Total alkalinity as CaCO ₃	Sodium adsorption ratio	Collecting agency	Well depth (ft.)		Trace alements anelyzed	Lab
13	8.9		8.1	16	1102		275	281	3.4	WQB			no	76W0681
18			8.74	8	1487	1184	250	404	6.9	WQB			00	76W0564
22	.41		7.8	12	1948		650	287	2.6	WQB			00	76W0680
44	.115	.3	7.9	13	474	265	258	224	.1	MBMG	20	110TRRC		76M1625
51	2.87	.6	8.17	13	492	276	250	220	.4	MBMG	32	110TRRC		76M1621
55	<.02	.9	7.74		1002	597	231	182	4.1	MBMG	82	1120TSH	ves	76M1344
57	2.35	.4	8.09	16	864	491	447	408	.7	MBMG	150	211CLRD	,	76M1622
64	13		7.69		1079	783	374	300	1.9	WOR		ZIIICEAU		75W2295
68	.05	<.1	8.23	6.5	222	122	116	116		USFS				
69	.280	<.1	8.34	6	223	121	119	117		USF\$				76M1942 76M1941
70	.038	.7	8.04	9.5	545	386	204	284	22	MBMG	107	1120TSH	yes	75M1619

CHOTEAU 1" x 2" Sheet

Trace Elements Analyses Sheet

Map		
Alu Anii Ar. Beryi Cod- Onco Uth. Mar. Phosphere Inhophere Phosphere Bereinm Steven Phosphere Steven		76M1625 76M1621 76M1622 76M1619
Alu Anii Ar. Beryi Cod- Onco Uth. Mar. Phosphere Inhophere Phosphere Bereinm Steven Phosphere Steven	Zinc mg/l)	8 - 7 G
Alu Anii Ar. Beryi Cod- Onco Uth. Mar. Phosphere Inhophere Phosphere Bereinm Steven Phosphere	Tin (Mg/l)	8. 8. 8. ±. 8.
Alu- Anti- Ari: Brryt- God Otto Cepser Lead time cury Nickel Trotal Setession miles miles Cepser Lead time cury Nickel Trotal Setession miles miles Cepser Lead time cury Nickel Trotal Setession Cepser Ceps	Stron- thum (mg/l)	5 8 8
Alu- Anti- Ari: Brryt- God Otto Cepser Lead time cury Nickel Trotal Setession miles miles Cepser Lead time cury Nickel Trotal Setession miles miles Cepser Lead time cury Nickel Trotal Setession Cepser Ceps	Silver (mg/l)	
Also Anti Ar. Beryl: Oct- Outo Capper Lead into carry Nickst Myll Ugall Ugall Ingall Ingal Inga	Selenium (Ug/I)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Also Anti Ar. Beryl: Oct- Outo Capper Lead into carry Nickst Myll Ugall Ugall Ingall Ingal Inga	Phosphete (Total dissolved)	.028 .069 .028
Allow	Nickel (mg/l)	4 4 4 4 V
Allow	Mer cury (Le/1)	77 77
Allow	Eth.	5558
Allow	Ped (Vail)	88 88
Allow	Copper [mg/l]	
Allow	Oro- mium (mg/l)	55 55
Allow	Cad- Boron mlum (mg/if mg/il)	2 19 15 15 15 15 15 15 15 15 15 15 15 15 15
Allow	Beryt- lium (ug/l)	\$
Allow	Ar.	\$\$ \$\$
Allow	Anti- mony (mg/l)	77 77
Map. Location 100. T R SecTract 44 25W 06W 30 DBD 62 25W 06W 24 CDDD 56 25W 06W 12 OADD 57 24N 04W 66 CBB 70 26W 04W 36 DCDB	Part Part	VV VV
	Map ref. Location no. T R SecTract	44 25W 06W 30 DBD 61 25W 06W 24 CDDD 56 25N 04W 12 DADD 67 24N 04W 08 CBB 70 26N 04W 38 DCDB

LOCATION BASE MAP

CUT BANK 1° x 2° SHEET

CUT BANK 1° x 2° Sheet Specific Conductivity Inventory Sheet

Dwner's name	Swenson, Reiph Lozing, Jecob Kruger Kruger, R. Luzing, Williem	Bunyek, W. Jacobsen, Rufina Berfram, E. Brittad, G.	Bedord, W. Bedord Town of Sunburst	Town of Sunburst Town of Sunburst Gjertson, G. Gjertson, George Hulverson, B.	Hulverson, B. Rice, G. Johnson, R.	Hjerterson, Stanley Berger, Elle
Aquifer	142 211VRGL Sw 211TMDC Lo 180 Kr 133 211VRGL Kr 211TMDC Lu	172 211VRGL Bu 211TMDC Jac 185 211VRGL 64 211TMDC 84	130 211TMDC Be Be 211VLCC 475 211VRGL To	407 211VRGL To 520 211VRGL To 211TMDC Gi 460 211VRGL Gi 150	211VRGL RI 2211TMDC Jo	280 211VRGL 211TMDC HI 75 211TMDC 211VLCC Be
Static water Well level depth (ft.) (ft.)	26 26 113 73	171 1 42 1 145 1	318	28 8 2 2 8 8 2 4 4 4 5 5 1	8	¥ 8i
Itc.)	3770 4010 3750 4010	3840 3870 3860 3910	3950 3050 4130 4200 4050	4080 4090 4000 3680 4020	4020 4040 4040 4120	4080 4100 4070 5000 4110
Field Lab A C analysis	* * 0 * *		2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * 0	0 0 0 5 5 A	0 2 2 2 2
	1.77		53 @	8. 6	9 2 2 8 8.3 9.5	7.8
Specific conductivity et 25 C	1800 2870 2700 3600	900	6153	1290	1160 8060 2120 2213	3480
wid Site description	IE) Domestic and stock use Domestic and stock use Domestic use except for direking IE) Domestic and stock use Stock use	1E) Domestic and stock use Domestic and stock use Stock use Stock use Unused	Sinck use Stock use Industrial use Unused Unused	E) Municipal supply E Municipal supply Domesite and stock use E) Stock use	Domestic use Stock use M Domestic and stock use	Unused Domestic and stock use Unused Domestic end stock use
Flow or yield E = estimated M = measured	22 gpm (E) 7 gpm (E)	15 gpm (E)	250 gpm (E)	85 gpm (E) 126 gpm (E) 5 gpm (E)	oir 26 gom (M)	*
Collection date Mo Day Yr Source	01 21 49 Well 10 19 65 Well Well 10 18 65 Well 10 19 65 Well	10 18 65 Well 10 19 65 Well 10 15 65 Well 10 15 65 Well 02 14 40 Well	12 02 76 Well 08 25 76 Spring 03 18 47 Well 02 23 33 Well 03 18 64 Well	06 21 54 Well 06 21 54 Well 10 24 54 Well 09 24 55 Well 0 25 78 Well	56N G5W 14 DBB 08 25 78 Well 156N D5W 34 ACBA 08 25 76 Reservoir 26N D5W 34 ACAC 08 25 76 Reservoir 34N G5W 20 88 10 08 65 Well 36N D5W 33 CBBC 12 02 78 Well	08 25 78 Reservoir 09 12 33 Well 10 01 85 Well 07 18 33 Well 10 24 64 Well
Location T R Sec Tract	37N 06W 10 DC 37N 06W 07 AD 37N 06W 15 DDA 37N 06W 15 DA 37N 06W 19 DA	37N 06W 26 CB 37N 06W 29 DD 37N 06W 35 CD 36N 06W 04 AB 36N 06W 04 DB	36N 05W 08 BC 36N 05W 09 BC 36N 06W 12 AC 36N 06W 02 DA 36N 06W 01 DC	36N 05W 12 DC 36N 06W 13 AA 38N 05W 14 BD 36N 05W 14 AC 36N 05W 14 AC	36N 05W 14 DBB 08 25 78 35N 05W 34 ACBA 08 25 78 36N 05W 34 ACAC 08 25 76 34N 05W 20 8B 10 08 66 36N 05W 33 CBBC 12 02 78	36N 05W 34 DDC 36N 05W 04 AA 36N 05W 02 AA 36N 05W 01 CC 36N 05W 12 CC
County	Glacier Glacier Glacier Glacier	Glacier Glacier Glacier Glacier Glacier	Glacier Glacier Glacier Glacier Glacier	Glacier Glacier Glacier Glacier Glacier	Glacier Glacier Glacier Glacier	Glacier Glacier Glacier Glacier Glacier
Mup ref. Field no. number	1 49M0001 2 65M0029 3 M8MG19 4 65M0016 5 65M0028	6 66M0019 7 66M0027 8 65M0018 9 65M0022 10 40M0001	11 MBMG17 12 MBMG16 13 47M0012 14 33M0004 15 54M0005	16 54M0004 17 54M0003 18 64M0006 19 66M0017 20 MBMG14	21 MBMG15 22 MBMG12 23 MBMG13 24 SSM0G12 25 MBMG10	26 MBMG11 27 33M0001 28 65M0025 29 33M0002 30 54M0010

CUT BANK 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

																					c					
Owner's neme	Berkram	Van Alstine, 8	Montena Power	Lindberg, Glenn	Montena Power	Montane Power Johnson, P.	Quist, John		1	exaco, Inc.			DeZort, Anne	Dezori, G.	G. stern	- miles	Fugle, Don	Fugle, Dick	Dreder, E;		Vermulum, Hermen	Bittner, R.	Haglund, G.		HIGE, G.	Peterson, E. O.
Aquifer		160 211TMDC	365 211VRGL	280 211VLCC	328 211RGLC	110 327 211VRGL	ZIIVLCC	211VLCC	211VLCC	ZIIVLCC		211VLCC		101 211VRGL	72 211VHGL	TOUR IN			IBS 211VRGL	ZHIMDC		211TMDC	211VRGL	230 211VRGL		
Well depth Ift.J		160	365	280	328	327				0			9	ē :	7 60	5		176	88				202	230	124	
Static water lavel (ft.)	186		08		8		152						1	78	9 9	3		1	175		<u></u>	94	190			
Altitude Ift.1		4130	4140	3870	4130	4060	3880	3900	3850	3890		3870	3980	3974	3880	2	3890	3880	3800	3790	3810	3790	3800	3790	3780	3800
Lab Altitud enalysis (18.3	9	10 A	Yes	2 5	yes.	0 5	***	, se	sa A	7.65		Nes.	£	yes	V 910	¥ 42	2	00	Yes	¥.	¥84	\$ A	No.	181	101	9
Ped Co	73	0		13.5		15.8							11.2	6.3	7.8	9	8	13.2					7.8		6.3	16.5
Specific conductivity at 25 C	2120	3177	2050	1760	1400	1820							1610	2	810		1920	720							1	180
yaid aated Siie description	Domestic use	Domestic and stock use Stock use	35 gpm (E) Industrial use	5 gpm (E)	Domestic use	Domestic use Stock use	4000	Unused State of State	Unused	Industrial use		Unused	Domestic use	Domestic and stock use	Unused, former school well	Domestic end stock use	Domestic and stock use	Domestic use	5 gpm (E) Oomestic use	Quanto	Domestic use		Domestic use			
Flow or yield Source E estimated Source M = messured		į																	5 90							role
Collection Location date Source R Sec Tract Mo Day Yr Source	37N 05W 35 CBDA 08 25 76 Well	35N 05W 05 DDDD 12 02 76 Well 35N 05W 05 DDB 08 25 75 Breevoir	10 23 64 Well	8 08 25 76 Spring	07 22 50 Well	1A Well	8	03 30 34 Well	05 12 33 Well	10 22 65 Well		09 16 33 Well		09 30 65 Well	10 22 64 Well	10 15 65 Well	C 08 25 78 Well	34N 05W 09 AAAA 08 25 76 Well	10 15 65 Well	03 14 33 Well	10 14 66 Well	10 05 85 Well	10 05 65 Well	11 07 32 Well	10 09 66 Well	D 08 25 76 Reservole
Location T R Sec Tract	37N 05W 35 CBD	36N 05W 06 DDD	35N 05W 07 8B	35N 05W 16 CABB	35N 05W 22 CB	35N 05W 21 DADA		35N 06W 14 CB	35N 06W 15 BD	35N 06W 21 CB		35N 06W 26 CD	35N 05W 34 BBCB	35N 05W 34 AB	34N 05W 03 BB	34N 05W 03 CC	34N 05W 03 CCCC	34N 05W 09 AAA	32N 05W 11 DD	34N 06W 11 BA	34N 06W 12 CC	34N 06W 14 BC	34N 06W 14 DD	34N 06W 24 DA	34N 05W 20 BB	34N 05W 27 BBCD
County	Glacier	Glacier	Glacier	Glacier	Glacier	Glacier		Glacier	Glacier	Glacier		Glacier	Glacier	Glacier	Glacier	Glacler	Glacier	Glacier	Glecier	Glacier	Glacier	Glacier	Glacier	Glacier	Glacier	Glacier
Map ref Freld no number	31 MBMG18	32 not on map 33 MBMG8	35 64M0007	36 MBMG7	38 60M0001	39 MBMG6		41 65MD032	43 33M0003	44 65M0038	45 not on map	46 33M0005	47 MBMG5	48 65M0015	49 64M0004	S0 65M0013	51 MBMG3	52 MBMG2	53 65M0020	54 33M0006	55 65M0033	56 65M0024	57 65M0010	58 32M0001	69 65M0037	60 MBMG1

CUT BANK 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner s name	Tomscheck, Harlod Luedtke, V Dezort, Anna Johitte Peoples, E. J.	City of Cut Bank City of Cut Bank	Brenner Services Union Dil Company Christopherson, W.	Lane Stark	Lane Yeagher, Connely Eppe, L. Slezak	Netson, J. Newmiller, Ray Newmiller, Ray Rainer, Vance Widhtem, Andrew
Aquiter	137 211VRGL 140 27 112GLCC 120 211VRGL		211TMDC 211VLCC 211VLCC 211VRGL	211CLRD 211TMDC 211VRGL	140 211VRGL 7 211TPCK 40	90 211TPCK 60 160 66 211TPCK
Well depth (ft.)	160 137 140 120	238 238 238 238	311	290	140	8838
Static water level (ft.)	58 98 5		270	250 Ilowing	100 owing	
Altitude (ft.)	3750 3860 3870 3880	3750 3750 3750 3750	3680 3670 3670 3690 3880	3600 3720 3880 3250 H	3610 100 3270 flowing 3650 3600 3600	3620 3620 3620 3710
Lab analysis	2			# # # # # # # # # # # # # # # # # # #	2 0 0 2 0	20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Field C C	5 g	5	10.6	6.11	9000	0. 95 9 5
Specific f conductivity t et 25 C	1420		1600	1018 1450 1290	1347 1720 1660 12792 1270	2860 1980 1989 1810
Site description	Domestic and stock use Domestic and stock use Domestic uses Saline seep test are 3-obtilite Domestic and stock use	Municipal supply Municipal supply Municipal supply Municipal supply Municipal supply	Unused Oomestic use Industrial	Unused 6 gm IM Domestic and stock use Domestic use	Domestic and stock use Stock use Domestic use Stock use, saline seep project sample 88 Domestic use	Domestic and stock use Stock use Domestic use, water has a sulphur small Ornestic use
Flow or yield E = essimated M = measured			80 ppm (E)	(M) mos 9	10 gom (E)	6 gom (E) 10 gom (E)
Collection Location date T R Sec Trect Mo Day Yr Source	34N 05W 29 DA 10 20 64 Well 24N 05W 36 DC 10 23 65 Well 25N 05W 34 86 C3 06 25 76 Well 24N 07W 06 A8AA 04 13 76 Well 33N 05W 03 DC 10 24 64 Well	12 AA 03 18 49 Well 12 AA 08 26 64 Well 12 AA 06 03 64 Well 12 AA 09 01 66 Well 12 AA 01 29 59 Well	02 CA 01 29 59 Well 10 88 08 24 36 Well 11 8D 10 23 65 Well 21 88 10 26 64 Well 21 DA 10 12 64 Well	25 C8 06 21 36 Well 01 AC 03 17 37 Well 10 D8 05 26 34 Well 18 ADC 08 26 78 Well 33 AAA 06 26 76 Well	31N 05W 34 CCC 12 07 78 Well 20 N 05W 34 CCC 12 07 78 Well 20 N 05W 02 A D A 0 26 76 Well 20 N 05W 02 A D A 0 26 76 Well 20 N 04W 06 CBC 08 28 76 Well 20 N 04W 06 CBC 08 28 78 Well	20N D4W 10 ABBB 12 06 78 Well 20N D4W 12 AB 08 28 76 Well 20N D4W 12 ABB 08 26 76 Well 20N D4W 17 AAAA 12 08 76 Well 30N D5W 07 AADD 08 26 78 Reservoir
Location County T R Sec T	Glacier 34N 05W 29 DA Glacier 34N 05W 36 DC Glacier 36N 05W 34 8BC Blacier 34N 07W 06 AB/ Glacier 33N 05W 03 DC	Glacier 33N 06W 12 AA Glacier 33N 06W 12 AA Glacier 33N 06W 12 AA Glacier 33N 06W 12 AA Glacier 33N 06W 12 AA	Slacier 33N 06W 02 CA Slacier 33N 06W 10 88 Glacier 33N 06W 11 8D Glacier 33N 06W 21 88 Glacier 33N 06W 21 BB	Glacier 33N 06W 25 C8 Glacier 32N 06W 01 AC Glacier 32N 06W 10 D8 Pondere 31N 04W 18 ADC	Ponders 31N 05W 34 CCC Ponders 31N 05W 16 ACC Ponders 30N 05W 03 ADA Ponders 30N 04W 06 CDB Panders 30N 04W 06 CBC	Pondera 30N D4W 10 ABBB Pondera 30N D4W 12 AB Pondera 30N D4W 12 ABB Pondere 30N D4W 17 AAAA Pondera 30N D5W 07 AADD
Map ref. Field no. number C	61 64M0006 G 62 65M0009 G 63 M8MG4 G 64 75M0234 G 65 64M0001 G	66 49M0002 G 67 64M0013 G 68 64M0012 G 69 65M0036 G 70 59M0002 G	71 59M0001 G 72 36M0002 G 73 65M0026 G 74 64M0002 G 75 64M0003 G	76 36M0003 G 77 37M0002 G 78 34M0001 G 78 M8MG31 P 80 M8MG30 P	81 MBMG29 P 82 MBMG32 P 83 MBMG38 P 84 76M1469 P 85 MBMG33 P	86 76M1470 P 87 M8MG38 P 88 M8MG37 P 89 76M1476 P 90 M8MG27 P

CUT BANK 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

CUT BANK 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

ê E	Mark	00	Aibert	Dave		e £
Owner's name	Shepard Taniafferd, Mark	Lindseth, A 8	Brownell Wellensten Den Boer, Albert	McCraket, Dave Halvorsen	Hanson Swanton Ages, H. Rice, Don Rice, Don	36 Christensen 20 Skelton 890 211VRGL Chester, Ken
Aquifer				12 211TMDC 136 211TPCK	20 15 56 211CLRD 10 70	21 IVRGL
Well (ft.)	12		120	12	25 25 25 25 25 25 25 25 25 25 25 25 25 2	8 8 9
Static water lavel III.1				8	0 8 0 8	₹ 0
Attitude 1ft J	4180 4210 4430 4610	4570 4710 4700 4980	4250 4230 4270	4600 4570 4470 4150	4080 4200 3840 4000 4000	3960
Lab	2 2 2 2 2	2 2 2 2 2	2 2 2 2	2 1 2 1	2 2 2 2 2	222 \$
Field C C	10 14.5 15.8 9	12.6	11 8 10.5	18.5	15:50	2 2 2 2
Specific conductivity at 25 C	1820 770 350 730 940	450 470 1690 370 280	490 390 490 470	560 756 1256	430 2112 540 1880	620 1180 3320
rield Ste description	Domestic use Domestic use Shallow reservoir	Domestic use Sheep Creek Coly Lake Switt Reservoir	Domestic use, water has a sulphur smell Domestic use Jensen Coulee Domestic use		Domestic use Domestic use Domestic use Domestic use Lirigation and stock use	Donnestic use Donnestic use Unused, formerly used for stock
Flow or yield E = estimated M = measured	16 gpm 4 gpm	12 gpm	1 048	5 cts 11 gpm	15 gom	12 gpm
Collection Location date T R Sec Tract Mo Day Yr Source	28N 07W 23 ABD 08 26 56 56ring 28N 07W 06 DCCC 08 28 76 Well 28N 08W 20 ABD 08 28 75 Creek 28N 08W 20 ABD 08 25 76 Well 28N 09W 11 CCE 08 26 76 Reservoir	28N 08W 14 DCD6 08 26 76 Well 28N 09W 23 BA AAD 08 26 75 Creek 28N 09W 17 DCD 08 28 28 Reservoir 28N 09W 19 8BDD 08 26 75 Lake 28N 10W 22 DDD 08 26 78 Reservoir	27N 06W 09 08 25 76 Well 27N 06W 14 AAAA 08 25 76 Well 27N 07W 10 ABD 08 25 76 Greek 27N 06W 09 08 25 76 Soring	000 00088 DCBC	27N 06W 23 8CCC 08 25 78 Well 26N 05W 05 DDC 08 25 76 Well 26N 05W 13 C8B8 01 17 77 Well 26N 05W 01 C8C 08 25 78 Well 26N 05W 01 C8C 08 25 78 Well	27N D4W 21 DCCC 08 25 78 Well 27N D4W 34 A8
County	Pondera Pondera Pondera	Pondera Pondera Pondera Pondera	Teton Teton Teton	Teton Teton Teton	Teton Teton Teton Teton	Teton Teton Glecier
Map ret, Field no. number	120 M8MG13 121 M8MG8 122 M8MG7 123 M8MG6 124 M8MG9	126 MBMG6 126 MBMG4 127 MBMG3 128 MBMG2 129 MBMG1	130 MBMG14 131 MBMG13 132 MBMG7 133 not on mep	135 MBMG6 136 MBMG4 137 MBMG3 138 not on map 139 MBMG8	140 M8MG15 141 M8MG37 143 M8MG40 143 M8MG38 144 M8MG39	146 MBMG18 147 MBMG17 147 MBMG18 148 not on map 149 76M1463

CUT BANK 1° x 2° Sheet (Con'1.)

Specific Conductivity Invnstory Sheet (Con't.)

Coloration Flow or violated State description Activated State description Activated Acti	- Parities	code Dwner's nama	ZIIVRGL ZIIVRGL ZIIVRGL ZIIVRGL ZIIVRGL	211VRGL 211VRGL 211VRGL 211VRGL	2117MDC Gillespie, E. 252 211VRGL Big-Wart Dil Co. 211VRGL Goeddertz, A. 20 Paoples, E. 150 211VRGL Higherson, Jacks	327 211VRGL Van Alstine, William	211TMDC 211TMDC 211CLRD 1 211VRGL Kannedy, Brady 211TMDC	211TMDC Mochardt, H. 188 211VRGL 60 211VRGL C 211VRGL C
Collection	weter	(LC)	135	11 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118 125 36	200	250	16
Collection Flow or valid Site description Managed Site description Site de	Field	temp. Lab	9 yes 10 yes 8.0 yes 7.8 yes	* * * * * *	7.8 yes 5.3 yes 8.3 yes	1 Yes 2 Yes 8.3 Yes 8.1 Yes	,	01
	Flow or yield	E = estimated M = measured	8 gpm (E) 10 gpm (E) 10 gpm (E)	250 gpm (E) 75 gpm (E) 6	Stock use Unuse 6 Stock use Stock use Domastic use	136 cfs (M) 572 cfs (M) 93 cfs (M)	Unused Domestic use	
	Collection	Location data R Sec Tract Mo Day Yr Source	37N 04W 02 DDC 12 07 78 Well 37N 03W 30 ACC 12 03 75 Vali 37N 03W 21 ACB 12 03 78 Well 37N 03W 21 DB 10 20 65 Well 37N 04W 21 CB 10 20 65 Well	56N D4W 14 A 8 02 10 54 Well 56N O4W 14 A A 09 08 50 55 Well 56N O5W 15 CA 10 21 55 Well 56N O4W 14 A C 06 30 55 Well	36N 04W 22 DC 10 20 BS Well 36N 04W 35 AS 09 24 85 Well 30N 04W 11 DD 10 22 BS Well 33N 04W 31 BD 09 23 BS Well 32N 04W 28 AB 10 16 64 Well	DON 18W 17 DCBC D4 08 77 Creek 28N 18W 17 BCBC 04 11 77 Creek 27N 17W 02 D4 11 77 Creek 28N 05W 05 D0 10 23 64 Will 32N 05W 28 DC 10 23 55 Will		28N 05W 04 DB Wall 28N 04W 11 DBC 08 25 78 Wall 37N 03W 04 AB 08 04 65 Well 37N 04W 12 DB 10 20 65 Well 36N 04W 11 DD Wall

CUT BANK

Chemical Analyses

Map			Col	llect	ion			Magne-		Potas-		Manga-		Sicar-	Car-		
ref.		Location		ate			Calcium	sium	Sodium	sium	Iron	nese	Silica	bonete	bonate	Chloride	Sulfete
no.	Т	R Sec Tract	Мо	Dey	Yr	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO3)	(CO ₃)	(CI)	(SO ₄)
1	37N	06W 10 DC	01	21	48	Well	47	31	543°					799	18	48	641
2	37N	05W 07 AD	10	19	65	Well	8	2	450°					610	66	26	388
4	37N	05W 15 DA	10	18	65	Well	70	71	495°					268		33	795
- 5	37N	06W 19 DA	10	19	65	Well	156	89	925*		18.4			1037		34	1780
		05W 26 C8		18		Well	4	1	368*					583	39	10	242
7	37N	05W 29 DD	10	19	65	Well	90	78	725*		13.6			1060		20	1185
8	37N	05W 35 CD	10	15	65	Well	62	70	68°					268		114	200
9	36N	05W 04 AB	10	15	65	Well	14	44	1130°					630	45	33	1650
10	36N	05W 04 D8	02	14	40	Well	73	30	2866°					5760		1296	
11	36N	06W 09 BC	12	02	76	Well	130	62.8	1100	5.2	.88	.18	7.7	903		32	2200
13	36N	06W 12 AC		18		Well	43	62	2735°					2825	296	1782	951
14	36N	06W 02 DA	02	23	33	Well			548°					575	37	129	464
15	36N	05W 01 DC	03	18	54	Well	3	5						506	65	23	257
16	36N	05W 12 DC	06	21	54	Well	2	4	366°		.12			488	42	12	216
17	36N	05W 13 AA	06	21	54	Well	1	2	430°		.22			814	54	38.5	38.5
18	36N	05W 14 BD	10	24	64	Well	8		322*		.24			540	21	15	218
19	36N	05W 14 AC	09	24	66	Well	2		221°		3.30			370	57	16	43
24	34N	05W 20 8B	10	06	65	Weil											
25	36N	05W 33 CB8C	12	02	76	Well	220	107	162	6.3	1,19	.43	9.2	362		52	952
27		06W 04 AA		12	33	Welf			796°					620	42	83	997
28	35N	05W 02 AA	10	01	85	Well	62	28	86°		1.64			384	15	9	97
29	35N	05W 01 CC	07	18	33	Well			844°					965		52	932
30	35N	05W 12 CC	10	24	64	Well	4		421°					874	9	26	308
33	35N	05W 05 DDDD	12	02	76	Well	5.9	1.7	771*	1.7	.04	< .01	6.6	749	9.6	30	967
35	35N	05W 07 88	10	23	64	Well	4		550°		.14			740	24	29	486
37	35N	05W 15 DC	10	22	64	Well	4		439°					677	15	22	340
38	35N	06W 22 C8	07	22	60	Well			422°					585	59	29	288
40	35N	05W 20 B8	09	28	65	Well	156	97	1020°		3.70			650		39	2330
41	35N	06W 23 CD	10	09	65	Well	8	5	950°		.10			653	18	40	1420
42	35N	06W 14 C8	03	30	34	Well			· 553°					785		109	391
43	35N	06W 15 8D	05	12	33	Well	19		1162°		19			640	24	48	1863
44	35N	06W 21 CB	10	22	65	Well	34	13	2120°		.30			265		3200	10
46	35N	06W 2B CD	09	16	33	Well			386°					665		14	268
48	35N	05W 34 AB	09	30	65	Well	46	56	106°					450			161
49	34N	05W 03 BB	10	22	64	Well	51	17	128°		8.60			393		8	135
50	34N	05W 03 CC	10	16	65	Wetl	14	9	385°					756	63	94	50
53	32N	05W 11 DD	10	15	65	Well	34	27	325*					548		9	418
54	34N	06W 11 BA	03	14	33	Well	35		4289°					1685		5667	
55	34N	06W 12 CC	10	14	65	Well	78	35	555°		.14			550	30	43	937
56		06W 14 BC			65	Weil	4	1	420°					717	45	18	229
57	34N	06W 14 DD	10	05	65	Well	34	18	570°		.80			706		116	623
58	34N	06W 24 DA	11	07	32	Well			670°					755		89	637
58	34N	05W 20 BB	10	08	65	Well	90	45	181°		1.32			494		15	378
61	34N	05W 29 DA	10	20	64	Well	51	53	184°		2.24			372		11	404
		05W 35 DC			65	Well .	370	372	492°		6.40			226		80	2880

Note: All chemical date are given in milligrams per liter (mg/l) unless otherwise stated * Values reported as sodium plus potessium

of Selected Waters

2 .407 1.1	of S	elected	Water	8											
Nitrate ride Lab Termo, conductence Colicid Security S						Lab									
rd. Nitrate ride Lab Temps. conductemore calcid. (alc.) sec2CO ₃ sec2CO ₃ retire depends on the conductemore calcid. 2 407 1.1	Man		Fluo-		Field		Dissolved	Total	Total	Sortium		Well		Trace	
No. No. No. Ph. Co. Lumbo/cml Calc. as CaCD ₃ set CaCD ₃ ratio agency (ft. code energy cac ft. code energy cac code ft. code energy cac code c		Nitrata		Lab							Collecting		Anuifer		e Lab
2 4.07 1.1 7.77 1800 25 610 USGS 211TMC No 6 6 6 8 200 USGS 133 211VRGL No 6 6 6 1.0 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 5 545 USGS 211VRGL N															
2 4.07 1.1 7.77 1800 25 610 USGS 211TMC No 6 6 6 8 200 USGS 133 211VRGL No 6 6 6 1.0 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 543 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 6 6 6 1.0 15 545 USGS 211VRGL No 5 545 USGS 211VRGL N								245	co.		Hece	142	2111/06	М-	49M0001
\$ 1.0 1.0		407	1.1		7 7	1800						142			65M0029
\$.361		.407			1.7							122			65M0016
1.0		201										133			
7 .113 8		.301			Q./	3500						120			65M0028 65M0019
8	0		1.0					15	543		0303	172	ZIIVMGI	. 140	DOMOUTS
9 520 1.3 4000 215 592 USGS 211TMOC No 6 61 10 10 10 10 10 10 10 10 10 10 10 10 10	7	.113	.8					545	869		USGS		211TMD	: No	65M0027
10	8		.2					440	220		USGS	185	211VRGI	. No	65M0018
11	8	.520	1.3			4000		215	592		USGS		211TMD	: No	65M0022
13	10							306	4720		USGS		211TMD	No.	40M0001
14	11	<.023	.7	7.62	8	\$153	3984	583	741	19.8	MBMG	130	211TMD	Yes	76M1455
14	13							383	2810		USGS			No	47M0012
15	14								533				211VLCC	No	33M0004
16								28				475			54M0005
17	16														54M004
19															54M0003
19	18		1.1			1290		20	478		Here		21171404	. No	64M0009
24					8.0	1230						450			85M0017
25			.0					4	355		0303	450			OOMOU!
27		- 022		7.43		2212	1000	000	202		*****	120			20044454
28		C.023		7.43	9.0	2213	1009	390		4.4					76M1454 33M0001
791 USGS 75 211TMOC No 32 30 2.0 7.8 1550 10 568 USGS 211VLCC No 63 31 .047 1.7 8.35 9 3177 2164 22 630 72.0 MBMG 160 211TMOC No 647 32 .090 1.9 8.3 1700 10 580 USGS 280 211VLCC No 647 38 1400 576 USGS 325 211VLCC No 647 40 1.5 7.8 810 533 USGS 327 211VLCC No 647 41 950 3.7 40 566 USGS 271VLCC No 647 42 41 1.6 1400 217 USGS 575 211VLCC No 647 42 42 50 10 10 10 10 10 10 10 10 10 10 10 10 10	21								213		0863	280	ZIIVAGI	. NO	33MUCU1
30 2.0 7.8 1550 10 568 USGS 2111/LCC No 548	28		.4		7.8			270	340		USGS		211TMD0	No.	65M0025
30	29								791		USGS	75	211TMD0	. No	33M0002
33	30		2.0		7.8	1550		10	568		USGS		211VLCC	No	64M0010
35 2050 10 647 USGS 386 211VRQL No 648	33	.047	1.7	8.35	9	3177	2164	22		72.0		160			76M1453
38	35					2050						365			64M0007
38	37	.090	1.9		8.3	1700		10	580		uses	280	211VI CC	No	64M0011
40 1.5 7.8 810 533 USGS 227 211VRGL No 68 41 950 3.7 40 684 USGS 211VLCC No 68 42 USGS 211VLCC No 74 2 11VLC No 74 2 11VLC No 75					4.4										60M0001
41 950 3.7 40 566 USGS 211VLCC No 666 444 USGS 211VLCC No 666 464 USGS 211VLCC No 666 468 USGS 101 211VRGL No 666 469 USGS 101 211VRGL No 666 469 USGS 101 211VRGL NO 666 469 USGS 105 211VRGL NO 666 469 USGS 105 211VRGL NO 666 469 USGS 216 211VRGL NO 666 469 USGS 201 21VRGL NO 66			1.5		7.8			810							65M0014
42		950			. ~							327			65M0032
44 1.6 546 USGS 676 211VLCC No 68 48 8.3 345 389 USGS 211VLCC No 68 49 .3 7.8 810 199 322 USGS 72 211VRQL No 68 53 .9 195 449 USGS 185 211VRQL No 68 54 87 1380 USGS 201 211VRQL No 68 54 87 1380 USGS 215 211VRQL No 68 55 1.3 340 501 USGS 211TMOC No 68 56 7.5 16 581 USGS 202 211VRQL No 68 57 1.6 7.8 160 581 USGS 202 211VRQL No 68 58 169 USGS 202 211VRQL No 68 59 169 USGS 202 211VRQL No 68		555													34M0002
44 1.6 1.6 140 217 USGS 676 211VLCC No 68 48 8.3 346 389 USGS 211VLCC No 63 48 8.3 346 389 USGS 211VLCL No 63 49 .3 7.8 810 199 322 USGS 72 211VRGL No 68 50 2.9 8.9 70 726 USGS 201 211VRGL No 68 53 .9 195 449 USGS 185 211VRGL No 68 54 87 1380 USGS 201 211VRGL No 68 55 1.3 340 501 USGS 211TMC No 68 56 1.5 7.8 160 581 USGS 202 211VRGL No 66 57 1.6 7.8 160 581 USGS 202 211VRGL No 68 58 159 USGS 201 211VRGL No 68															******
48															33M0003
48 8.3 369 USGS 101 211VRGL No 68 49 .3 7.8 810 199 322 USGS 72 211VRGL No 68 50 2.9 8.9 70 725 USGS 201 211VRGL No 68 53 .9 195 449 USGS 185 211VRGL No 68 54 87 1380 USGS 211TRDC No 63 55 1.3 340 501 USGS 211TRDC No 66 57 1.6 7.8 160 581 USGS 202 211VRGL No 66 56 619 USGS 202 211VRGL No 68			1.6					140				575			65M0038
49 .3 7.8 810 199 322 USGS 72 211VRGL No 64 50 2.9 8.9 70 725 USGS 201 211VRGL No 65 53 .9 195 449 USGS 185 211VRGL No 66 55 1.3 340 501 USGS 211TMOC No 28 58 7.5 15 663 USGS 211TMOC No 66 57 1.6 7.8 160 581 USGS 202 211VRGL No 66 56 1.9 USGS 201 211VRGL No 66															33M0005
50 2.9 8.9 70 725 USGS 201 211VRGL No 65 53 .9 195 449 USGS 185 211VRGL No 65 54 87 1380 USGS 211TMDC No 33 55 1.3 340 501 USGS 211TMDC No 65 57 1.6 7.8 160 581 USGS 202 211VRGL No 65 619 USGS 202 211VRGL No 65			_												65M0015
53 .9 195 449 USGS 185 211VRGL No 65 54 87 1380 USGS 211TMDC No 33 65 1.3 340 501 USGS 211TMDC No 65 55 7.5 15 663 USGS 211TMDC No 65 67 1.6 7.8 160 581 USGS 202 211VRGL No 65 689 USGS 203 211VRGL No 65 689 USGS 203 211VRGL No 65	49		.3		7.8	810		199	322		USGS	72	211VAGE	. No	64M0004
54 87 1380 USGS 211TMOC Ne 33 55 1.3 340 501 USGS 211TMOC Ne 68 58 7.5 15 663 USGS 211TMOC Ne 65 57 1.6 7.8 160 581 USGS 20 211VRGL Ne 65 56 619 USGS 230 211VRGL Ne 62					8.9										65M0013
55 1.3 340 501 USGS 211TMOC No 66 58 7.5 15 663 USGS 211TMOC No 66 57 1.6 581 USGS 202 211VRGL No 66 56 619 USGS 202 211VRGL No 62			.9									185			65M0020
58 7.5 15 663 USGS 211TMDC No 66 57 1.6 7.8 160 581 USGS 202 211VRQL No 66 56 619 USGS 230 211VRQL No 62															33M0006
57 1.6 7.8 160 581 USGS 202 211VRGL No 65 56 619 USGS 230 211VRGL No 22															85M0033
56 619 USGS 230 211VRGL No 32	58		7.5					15	663		USGS		211TMD	No.	65M0024
			1.6		7.8			160					211VRG	. No	65M0010
59 .4 8.3 410 405 USGS 124 No 65									619		USGS	230	211VAGE	. No	32M0001
	59		.4		8.3			410	405		USGS	124		No	65M0037
61 .5 8.3 1420 347 305 USGS 160 211VRGL No 64	61		.5		8.3	1420		347	305		USGS	160	211VRG	. No	64M0006
	62							2450							65M0008

18 CUT BANK CUT BANK

Chemical Analyses

											0:			
Map		Collecti	on		Magne-		Potas		Manga-		Bicar-	Car-	Chloride Chloride	Suifate
ref.	Location	date		Calcium		Sodium	sium	(Fe)	nese		bonate		(CI)	(SO _e)
no.	T R Sec Trect	Mo Day	Yr Source	(Ca)	(Mg)	(Ne)	(K)	(1-0)	(Mn)	(SIU ₂)	(HCO ₃)	(CO ²)	ICI	19081
64	34N 07W 06 ABAA	04 13	76 Well	94	49	448°	14	.25	.60	6.4	454		52	1018
65	33N 05W 03 DC	10 24	64 Well	102	81	220°		.80			360		21	705
66	33N 06W 12 AA	03 19	49 Well	316	43	358°		.2			580			549
87	33N 06W 12 AA	08 26	64 Well	90	62	623°					583		66	1220
68	33N 06W 12 AA	06 03	64 Well	101	73	735°		.14			600		53	1510
69	33N 06W 12 AA	09 01	65 Well	108	125	1375*					450	8	106	3090
70	33N 06W 12 AA	01 29	59 Well	50	56	271*		.7			556		21	437
71	33N 06W 02 CA	01 26	59 Well	47	35	24*					226		4	117
72	33N 06W 10 88	08 24	36 Well	51		255°					440		38	295
73	33N 06W 11 BD	10 23	65 Well	18	40	565°		.54			427	33	45	927
74	33N 05W 21 BB	10 26	64 Well	18	21	397*					475	33	58	452
.75	33N 05W 21 DA	10 12	64 Well	74	55	266°		.20			543		14	500
76	33N 06W 25 CB	05 21	36 Well	200		6641°					720		10150	33
72	32N 06W 01 AC	03 17	37 Well			548°					600	50	116	436
78	32N 05W 10 DB	05 26				406°					620	67	31	210
81	31N 06W 34 CCC	12 07	76 Well	.91	66.8	130	3	.09	.01	9.3	504		10.5	331
84	30N 04W 06 CDBB	12 06	76 Well	230	188	210	6.7	.16	.02	8.0	396		32	1327
88	30N 04W 10 ABBB		76 Well	53	30.8	249	3.8	1.31	.06	9.2	451		25.5	399
86	30N 04W 17 AAAA			72	68.2	825	8	1.10	.03	9.2	1140		53	1172
964	28N 03W 17 AAB8			474	3470	4720	46	.22	.20	10.6	1039		762.5	22110
968	28N 03W 17 ABD8	04 14	76 Well	141	132	190	6	.04	.01	2.0	163		60	1023.6
97	29N 04W 08 CCD	12 07		145	76.4	1280	7	.13	.03	9.4	948		67	2463
110	28N 05W 22 CA	12 07	76 Spring	306	172	230	5.6	.09	.01	10.2	511		28	1366
114	28N 06W 03 C	12 07		11.2	13.3	210	3.1	.05	<.01	9.4	569		38.5	167
136	27N 08W 13 CDD	01 18		.7	.2	175	.4	.02	<.01	7.5	307	72	8.0	7.2
139	27N 06W 34 DC8C	01 18	77 Weil	1.4	.5	324	1.2	.01	<.01	7.1	742	28.8	16	15.3
142	26N 05W 13 CBBB	01 17	77 Well	70	165	220	1.9	.05	.02	10.7	508		59	748
149	36N 06W 13 AD	12 04	76 Well		9	386	1.0	.03	<.01	6.7	941	38.4	14.5	.1
150	37N 04W 02 DDC	12 02	76 Well	62.5	32.8	935	4.2	.09	.02	7.1	633		29	1701
161	37N 03W 30 ACC	12 03	76 Well	82.4	72	560	3.8	.01	.02	6.1	607		22	1137
152	27N 03W 21 ACB	12 03	76 Well	43.2	46.4	1420	5.3	.04	.01	7.3	1524		8.0	2123
153	37N 03W 21 D6	10 20	65 Well	100	71	480°		2.14			600		16	1022
154	37N 04W 27 CB	10 22	65 Well	4		432*		.22			674	57	8	280
165	36N 04W 14 A8	02 10	54 Well	70.1	46.7	124.9°		.4			463		10	231.2
166	36N 04W 14 AA	09 06	54 Well	56	41	170°		1			488		11	247
167	36N 04W 14 AC	06 30	65 Well	28	41	259°		.24			412		g	430
158	36N 03W 19 CAA	10 21		24	42	50°		19			293	12	7	69
159	36N 04W 14 AC	06 30		28	41	259*		.24			412		9	430
160	36N 04W 22 DC	10 20		68	62	138°		1.36			342		16	392
161	36N 04W 35 AB	09 24		32	37	151*		5.72			427		8	190
162	35N 04W 11 DD	10 22	65 Well	64	28	307°		2.20			442		6	546
163	33N 04W 31 BD	09 23		12	13	333°		7.48			317		27	470
164	32N 04W 28 AB	10 16		46	48	90.		.34			250	9	22	264
165	30N 18W 17 DC8C			15.8	6.3	1.4	.5	.01	<.01	6.4	78		1.1	3.1
166	29N 18W 17 BCBC			34.7	7.2	1.2	.3	.03	<.01	4.3	134		2.5	2.5

Note: All chemical date are given in milligrams per liter (mg/l) unless otherwise stated * Volues reported as sodium plus potassium

CUT BANK 19

of Selected Waters (Con't.)

					Lab									
Mag		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Trece	
ref.	Nitrete	ride	Lab	Temp.	conductance	solids	hardness	atkalinity	adsorption	Collecting	depth	Aquiler	elements	Lab
no.	(N)	(F)	ρН	c°	(µmho/cm)	(catc.)	as CaCO ₃	as CaCO ₃	ratio	agency	(ft.)		anatyzed	number
64	.045	.2	7.30	4.0	2490	1906	438	372	9.3	MBMG	27	112GLCC	Yes	76M0234
85		.7					587	295		USGS	120	211VRGI		64M0001
66							966	478		USGS	238		No	49M0002
87	.249	1.0					480	478		USGS	238		No	64M0013
68	.158	.7					552	492		USGS	238		No	64M0012
66		1.4		8.3			785	384		USGS	228		No	65M0038
70	.09	.4					355	455		USGS	238		No	59M0002
71	.090	.1					260	185		USGS			No	59M0001
72							127	424		USGS		211TMD0		36M0002
73		1.7					210	405		USGS		211VLC0	No	65M0026
74		.8		10.6			133	445		USGS	311	211VLCC		64M0002
75		.8		12	1680		408	445		USGS	285	211VRGI		64M0003
75							499	591		USGS		211CLRC		36M0003
77							400	575		USGS		211TMD0		37M0002
78					1019			620		USGS	290	211VAGI	. No	34M0001
81	2.71	.3	7.58	8.0	1347	893	502	413	2.5	MBMG	140	211VRG	Yes	76M1471
84	14.46	.2	7.87	9.0	2792	2212	1350	325	2.5	MBMG	7	211TPCK	Yes	75M1489
88	.025	.3	7.78	7	1507	994	258	370	6.7	MBMG	90	211TPCK	Yes	76M1470
89	.057	.2	7.51	8	3989	2770	460	935	16.7	MBMG	56	211TPCK	Yes	76M1478
96A	234.946	.7	7.81	9	281 30	32340	15500	853	15.5	MBMG	54	112TILL	Yes	76M0246
968	2.169	.3	7.66	7	1792	1648	895	150	2.8	MBMG	34	112TILL	Yes	78M0246
97	4.07	<.1	7.45	18	5824	4619	677	778	21.4	MBMG	106	211VRG		76M1474
110	19.43	.2	7.42	9.0	3009	2390	1470	419	2.6	MBMG		211VAGI	Yes	76M1473
114	19.32	.4	7.69	12.0	1422	854	83	467	14.8	MBMG	90	211TDM0		78M1472
138	<.023	.4	9.60	14	766	423	3	372	47.5	MBMG	12	211TMD	Yes	76M1824
139	<.023	2.9	8.82	14	1256	765	6	667	59.8	MBMG	135	211TPCK		76M1623
142	3.343	.9	8.10	11	2112	1519	813	417	3.4	MBMG	55	211 CLAC		76M1820
149	<.023	.9	8.72	21	1484	914	5	838	70.2	MBMG	490	211VRG		76M1463
150	4.62	.4	7.95	9	4186	3089	291	519	23.8	MBMG	118	211 VRGI		76M1466
151	.215	1.8	7.72	10	3012	2186	502	498	10.9	MBMG	168	211VRGI	. Yes	76M1458
152	.510	.4	8.25	8	5874	4405	299	1250	35.7	MBMG	115	211VRGI		76M1467
153	.520	.7		7.8			540	492		USGS	117	211VRG		65M0005
154	.158	1.3					10	648		USGS	170	211 VRGI		65M0002
155							366	379		USGS	159	211VRGI		54M0001
156							309	400		USGS	174	211VRG	. No	54M0002
157		.2		7.8	•		240	338		USGS	155	211VRGI		65M0007
158		.1					230	260		USGS	150	211VRGI		65M0003
159		.2		7.8			240	338		USGS	165		No	85M0039
166	2.395	.4					425	280		USGS		211TMD0		66M0023
181				7.8			230	350		USGS	225	211VAGI	. No	65M0004
162	.181			8.3			275	363		USGS		211VAGI		65M0033
163	5.29	.5			1610		85	260		USGS	120		No	85M0036
154		.5		8.3			332	220		USGS	150	211VAGI		64M0008
165	.169	<.1	7.80	1	126	73	66	64	0.1	USFS			No	76M1684
168	.361	<.1	8.19	4	214	119	116	110		USFS			No	76M1686

20 CUT BANK

CUT BANK

Chemical Analyses

Мар						Co	liec	tion			Magne-		Potas-		Manga-		Bicar-	Car-		
ref.		Ł	oca	tion		-	date			Calcium	sium	Sodium	sium	iron	nese	Silica	bonate	bonete	Chloride	Sulfate
no.	T	F	R :	Sec 1	ract	Мо	Des	, Yr	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO3)	(CO2)	(CI)	(SO ₄)
167	27N	11	7W	02 0	всв	04	11	77	Creek	11,3	5.7	1.5	.4	.03	< .01	5.0	85		1.5	.3
168	35N	06	6W	05 C	O	10	23	64	Well	12	1	870°					705	12	34	1225
169	32N	108	5W	28 C	C	10	23	65	Well	42	22	64°		.10			214	6	12	125
170	33N	100	6W	108	8	03	17	37	Well			548°					600	50	116	436
171	32N	00	6W	01 A	C				Well										24	4960
172	33 N	00	6W	25 C	8				Well	200		6641°					720		10150	33
173	34N	0	5W	31 0	D.	10	26	65	Weil	40	28	370°		5.00			580		41	465
174	34N	1 00	6W	11 8	A				Well	35		4269°					1695		5667	
175	36N	1 0	5W	04 C	8				Well	73	30	2866°					5750		1296	
177	37N	0	3W	04 A	D	08	04	65	Well	88	64	607°					387		19	820
178	37N	10	4W	12 0	8	10	20	65	Well	75	43	228°					370	36	45	505
179				11 0					Well	64	28	307°		2.20			442		6	545
180						10	08	65	Well	90	45	191°		1.32			494		15	378

1° x 2° Sheet (Con't.)

CUT BANK 21

of Selected Waters (Con't.)

Мер		Fluo-		Field	Lab specific	Dissolved	Total	Total	Sodium		Weil		Тлесе	
ref.	Nitrete	ride	Lab	Temp.	conductance	solids	hardness	alkalinity	adsorption	Callecting	depth	Aquifer	elements	Lab
no.	(N)	(F)	pH	c°	(µmhg/cm)	(calc.)	as CaCO ₃	as CaCO3	ratio	agency	(ft.)	code	analyzed	number
167	.120	<.1	7.66	2	104	59	56	53	0.1	USFS			No	76M1685
188				8.3	3000		36	598		USGS	327	211VRG	. No	64M0005
169		.4		6.1			195	186		USGS			No	65M0030
170								575		USGS		211TMD6	: No	37M0001
171							400			USGS		211TMD	: No	00M0006
172							499	591		USGS		211CLR) No	00M0008
173		1.2					215	476		USGS	164	211VRG	. No	65M0011
174							87	1380		USGS		211 TMD	: No	00M0009
175							306	4710		USGS		211TMD0	. No	00M0007
177	249	.4			1780		485	317		USGS	186	211VAGI	. No	66M0006
178	4.292	.8		8.9			363	364		USGS	50	211VLC0	No	66M0008
178	.181			8.9	1600		275	363		USGS		211VRG1	. No	00M0010
180		.4		8.3			410	406		USGS	124	211VRGI	. No	65M0012

x 2 Sheet	Analyses Sheat
CUT BANK 1	Trace Elements

łK																							
	957	number	76M1455	76M1454	76M1453	76M0234	76M1471	76M1469	76M1470	76M1476	76M0246	76M0245	76M1474	76M1473	76M1472	76M1624	76M1623	76M1620	78M1463	76M1456	76M1458	78M1457	
	Zinc	(mg/J)	0.	11	.25	9	ğ	3	9	0.	.27	8	8	0.	12	.02	10.	61.5	6	.54	2.50	4. 10	
	Lin		13	18	.07	9	.13	36	17	.23	34	38	91.	.27	8	90.	90.				18		
iron.	tium		0.1	9.6	88	1.24	.25	66:0	20	3.43	90	.03	12	5.7	32	.01	6				3.89		
,	Silver	(mg/I) (•			_	_			• •	=			Ī		•							
		(1/64)	< 2.0	6.0	20.0	2.1	3.9	26.5	< 2.0	<2.0	740	22.0	3.8	14.9	8.9	<2.0	<2.0	0.9	< 2.0	6.6	<2.0	<2.0	
hosphete			.013	010	910	.065	.023	910	910	.033	980	871.	.160	910	910	.059	.120	108	980	.033	010	010	
4	Nickel		8	03	0.0	.02	<u>6</u>	ğ	0	8	38	.03	ş	90	0	×.01	V.01	9	0	05	õ	8	
Mer.	N Auna	(mg/ll/gg/ll (mg/ll)	ć.	.42	<.3	<.3	ć.,	ć.,	٠ .3	6.3	ć. ^	40	6.	<.3	٠,3	×.3	Ç.	<.	٠. د.ک	٧ ک	<.3	6 .	
Lith.	ium cury !	mg/Itta	8	8	00	90	69			22			.31	0.	.02	ģ	.00	.12	99	.12	8	18	
	Poor		90	80.	> 05	90: V	< 05	60	× .05	90	.67	8	99	8	90. >	× .06	90' >	90.	90. V	> 00	90. >	90. >	
	Copper	ll/Bm)	10.	10.>	10.>	05	,0. 10.	10.	10.>	0	84	.03	9	10.	8	0.0	10.	00	10.	10.	10.>	ē	
òio	_					10.>				10.>			¥.00	0.0	10.	×.01	, O.	×.01	0.0	0.0	0.0	, 0.	
	micm					×.01					.00	<.01											
		the (I/Gm)	96	27	6.3	10	4 .	42	11:	3.0	00	4	1.6	92	99	35	0.1	06	.87	0		1.7	
-tvi-	lum B	(1/64)				<5.0					· 6	, S											
Ar. 8	senic I	1 11/6 1	<2.0	<2.0	2.4	<2.0	<2.0	<2.0	2.7	<2.0	<2.0	<2.0	<2.0	<20	<2.0	11.7	<2.0	<2.0	3.0	000	<2.0	<2.0	
Anti-			7	7	< 2	< 2	×	7	7	<.2	1.53	~ '	7	2	< 2	× 2	?	0	~ 7	, °	,	7	
Alu.		(Mgm)	8			× 98	× .06	80	90	10	90 >	<.06	× 0.8				×.05	8	90	6	8	90.	
	Location	T R Sec Tract	J6N 05W 09 BC	36N 05W 33 C88C	SN OGW OS DDOD	34N 07W 06 A8AA	31N 05W 34 CCC	30N 04W 05 CD88	9	30N 04W 17 AAAA	28N 03W 17 AABB	28N 03W 17 A8DB	29N DAW OB CCD	78N OSW 22 CA	DRN DGW 03 C	27N 08W 13 CDD	27N 06W 34 DCBC	26N DSW 12 CRRR	36N 06W 13 AD	DOM DAWING DO	37N D3W 30 ACC	37N 03W 21 ACB	
Man	ě	ě					81 3			68		968 2	. 83	110	114	138 2	139 2	143 2				152 3	

LOCATION BASE MAP

EKALAKA 1° x 2° SHEET

EKALAKA 6

EKALAKA S

Specific Conductivity Inventory Sheet EKALAKA 1° x 2° Sheet

			Owners name																								Woodruff, Harry	Alderman, C	Aye, E.
		Aquifer	code									331CHLS		3371.DGP													182 125FRUN	125TGRV	125TGRV
	Well	depth	CH.																								182		
Static	water		Ξ																								128		
		Attitude	C analysis (ft.)									3400		3469													3236	3407	3474
		Lab	anelysis	2	90	90	yes	00	2	San A	9	Yes	9	4 0.5	¥ 0 \$	90	Y 0.5	\$0 A	9	Yes	90	¥ 0.5	50 A	90	9	Yes	50 A	A GE	Yes
	Freid	temp.	ွပ														4											13.7	20.1
	Specific		at 25 C	1660	1780	1420	1554	2170	2720	2074	. 6470	4940	1050	2820	1876	3110	4580	4240	6760	9999	4800	6892	1884	1580	1840	3477		1752	2181
	P)d		ed Site description	Used for stock, alkali covers area below	0.5 mile N of 5 acre seep	Little Braver Creek	Little Beaver Creek at highway	Coai Creek	Near Junked Cars	Box Eider Craek at highway	Spring Creek 0.1 mile 5 of farm	21.0 miles NE of Ekalaka	El Tie Creek	36 miles E of Broadus	Listle Missouri River	E) North Fork Thompson Creek		El Near Mizpah, pumped by windiniti	Mupah	El Crow Creek	E) Pumpkin Creek	Mizpah Creek at highway	Powder River	East Fork Creek	Belle Creek	Little Powder River	15 miles SW of Buyes	E) Lastre Creek Spring	
	Flow or yield	E = estimated	M = measured		_	3 cfs (E)	3 cfs (E)	1 ofs (E)	no flow	2 cfs (E)	2 cts (E)		0.3 cfs (E)		6 cts (E)	0.2 cts (E)	10 gpm (E)	1 gom (E)	no flow	0.2 cts (E)	0.2 cts (E)	no flow	16 cts (E)	2 cfs (E)	1 c/s (E)	3 cts (E)		2 gpm (E)	
	Collection	date	Mo Day Yr Source	10 10 75 Spring	10 10 75 Reservoir	10 10 75 Creek	10 15 76 Creek	10 15 76 Creek	10 15 76 Pond	10 15 76 Creek	10 15 76 Creek	06 29 64 Well	10 16 76 Creek	07 10 50 Well	10 16 76 River	10 16 76 Creek	10 15 75 Stream	10 19 76 Well	10 19 76 Creek	10 17 76 Creek	10 19 7B Creek	10 19 76 Creek	10 19 76 River	10 17 76 Creek	10 17 76 Creek	10 16 76 River	06 03 66 Well	06 08 77 Spring	06 08 77 Spring
		Location	T R Sec Tract	02N 58E 11	02N 5BE 31	03N 58E 34	03N 58E 34 DAB	02N 59E 26 CAA	02N 57E 34 CCC	01N 61E 17 COC	01N 61E 33 BAA	03\$ 56E 02 DC	04S 62E 22 AAB	065 57E 31 AB	075 61E 01 BOB	09S 56E 08 CCB	02N 51E 08	Powder River 015 51E 27 BCB	Powder River 02551E 04 DDC	Powder River 025 53E 01 ACA	Powter River 035 48E 21 CDO	Powder River 03\$ 50E 26 DDB	r 035 52E 32 BDA	Powder River 06S 53E 12 CCC	Powder River 085 54E 22 CCC	Powder River DBS 52E 27 DOA	M660032 Powder River 075 53E 26 CC	r 035 49E 34 ABCC	76M1976 Powder River 035 49E 21 BCCB 06 08 77 Spring
			County	Carter	Carrer	Carter	Carter	Carter	Carter	Carter	Carter	Carter	Carter	Carter	Carter	Carter	Custer	Powder Bive	Powder Bive	Powder Rive	Powter Rive	Powder Rive	Powder River	Powder River	Powder Brve	Powder Bive	Powder Rive	76M1978 Puwder River	Powder Rive
		Field	number	WOB2	WOB1	WQB3	WOBS	WOBB	WOB6	WQB9	WQB10	64M0025 Carrer	WOBII	50M0001	WOB12	WQB13	WQB1	WQB10	WO89	WOBe	WOB6	WOBB	WQB7	WOB3	WQB2	WOB1	M660032	76M1978	76M1976
	Map	ž	9	-	2	3	4	g	9	1	80	6	10	Ξ	12	13	14	15	16	17	18	19	20	21	22	23	24	52	56

EKALAKA

Chemical Analyses

Мер					Co	liecti	on			Magne-		Potas-		Manga		Bicar-	Car-		
ref.		Loi	catio	n		iate			Calcium	sium	Sodium	sium	iron	nese	Silica	bonata	bonate	Chloride	Sulfata
no.	Ť	R	Sec	Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO3)	(CO3)	(CI)	(SO ₄)
4	03 N	1588	34	DAB	10	15	76	Creek	46.1	37.6	260	7.4				445		8.5	425
7	01 N	616	17	CDC	10	15	76	Creek	34.9	32.3	430	7.7				597	6	6.8	625
9	035	58E	02	DC	06	29	64	Weil	390	72	840°					366		220	2200
11	055	57E	31	AB	07	10	50	Well	540	140	120°					194		35	1900
12	075	61 E	01	808	10	16	76	Creek	111	65	235	14				202	3	31	846
14	02 N	1518	80		10	15	75	Stream	20	114	940	8.7				439	103	11	1980
16	015	516	27	всв	10	19	76	Welf	96	96	855	10				756		18	1795
17	025	538	01	ACA	10	17	76	Creek	65	102	1250	13				532	6	21	2685
19	035	508	26	DOB	10	19	76	Creek	422	435	685	32				529		88	3650
20	035	52 E	32	BDA	10	19	76	River	100	51	240	7.9				206	6	132	565
23	085	52E	27	DDA	10	16	76	Creek	84	62	645	14				573		331	915
24	075	538	26	CC	05	03	66	Well	92	127	210*		25.4			578		8	413
25	03\$	49E	34	ABCC	05	08	77	Spring	69	60	265	6.6	.54	.15	9.0	663		8	434
26	035	498	21	вссв	06	08	77	Spring	113	78	325	7.7	.01	.09	12.6	715		8	682

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated. Values reported as sodium plus potastium.

1° x 2° Sheet

of Selected Waters

					Lab									
Mep		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Traca	
raf.	Nitrate	ride	ظها	Temp.	conductance	solida	hardness	aikalinity	adsorption	Collecting	depth	Aquifer	elements	Lab
no.	(N)	(F)	pН	c°	(µmho/cm	(catc.)	as CaCO,	as CaCO ³	ratio	agency	(ft.)	code	anslyzed	number
4	.02		8.1		1554	1002	270	365	6.9	WOB			no	76W2587
7	.04		8.3		2074	1436	220	499	12.8	WQB			no	76W2584
9			7.9				1270	300		Unknown		331 CRL5	no	64M0025
11			7.1				1920	159		Unknown		331LDGP	по	50M0001
12	.04		8.3		1875	1403	545	170	4.4	WQ8			no	76W2588
14	.1		9.4		4580	3393	520	532	17.9	WQ8			no	75W2100
15	.11		8.1		4240	3241	635	620	14.8	WQ8			no	76W2585
17			8.3		5688	4404	580	446	22.6	WQ8			no	76W2580
19	.06		8.1		5992	5573	2840	434	5.6	WQB			no	76W2583
20	.27		8.3		1884	1 205	460	179	4.9	MOS			no	76W2582
23	.03		8.1		3477	2333	465	470	13	WQB			no	76W2579
24	2.1	.5					754	474		USGS		125FRU1	i na	66M0032
25	.255	.2	7.08	13.7	1752	1179	419	544	5.8	USGS		125TGRV	/ na	76M1978
26	.441	.4	7.63	20.1	2181	1579	603	586	5.8	USGS		125TGR\	/ na	76M1976

LOCATION BASE MAP

CI		SHELBY	HAVRE	GLASGOW	WOLF POINT
Сн	OTEAU	EAT FALLS	EWISTOWN	JORDAN	GLENOIVE/
		E SULPHUR	OUNDUP	FORSYTH	MILES CITY
	80	ZEMAN #	BILLINGS	HARGIN	EKÁLAKA
ا ا					
		/ /			
	4	3	2	1	
	5	6	7	8	

FORSYTH 1° x 2° SHEET

FORSYTH 6

FORSYTH 1° x 2° Sheet Specific Conductivity Inventory Sheet

		Burngton, Wally	Batts, John		
331KBBY 217LKQT	320TYLR 320TYLR 320TYLR		337M5NC 211JDRV	331MDSN 320TYLR 331HETH 320TYLR	327MSNC 320TYLR
2690 2640 2640 3660 3000	3030 2850 3130 2950	3000 3000 3000	2980 2580 2840 2870 2800	2990 2980 2900	3040 3200 3840 3100
2 0 0 2 2 A A A A A A A A A A A A A A A	* * * * * * * * * * * * * * * * * * *	9 0 0 0 6	0 0 0 5 6		£ 0 £ 0 0
3.5	. 23				
7615 720 290	23600 30890 17000 1270	1980 6100 2050 7700 3190	1980 1700 1230 6850 5820	8240 20200 17380 16600 14830	6420 1700 6500 1820
1 Sage Hen Greek near Mooby Frozen Oog Coules Reservoir 10 mies N of Melstone Ivanhoe Donne Olf Faid Gremmert Coules	21 miles W of the Musethall River 7.5 miles W of Musethane 1. mile SW of Octard Coules 6 miles NW of Metisone 111 Musethall River at Mestione Musethall River at Mestione	Lost Horse Creek 2 miles 5 of Metitione Lost Notes Creek 2 miles 5 of Metitione Mantefellel Fiver 2 miles 5W of Metitione Overlage abong 90 acre with rese, 3.5 miles 5W of Metitione Drainage disch 5 miles 5W of Metitione	Lower Museshhell Caral 6 miles W SW of Melstone Museshalel River at highway Rastienake Greek Stenwad Oif Field, Rattles/dike Coulee	9 miles NE of Methone R attlesnake Cresk, water unued 8 miles NE of Methons 10 miles NW of Sumatre 2.2 miles W of the Muserithell River	9 milas NW of Sumerra W of Sumarra Olf field 1 mile & Olf Muschholm River 1 home Coast near the Muschholm River Upper Muschholm Canal at Metscone
	100 cfs (E)	0.5 cfs (E) 45 cfs (E) 5 cfs (E)	2 chs (E) 32 chs (E)	21 gpm (E)	036 gom (E) 0.1 cfs (E) 1 cfs (E)
03 17 76 Creek 09 02 75 Reservoir 09 02 75 Reservoir 10 25 55 Well 10 23 32 Well	05 02 56 Well 09 20 66 Well 09 30 64 Well 05 26 54 Well 09 08 75 River	10 20 76 Creek 10 20 76 Creek 10 19 75 Rwer 10 20 76 Oitch 10 20 75 Oitch	10 19 76 Canal 10 07 76 River 10 15 76 Creek 08 23 61 Well 09 20 60 Well	02 02 68 Well 11 18 71 Well 11 25 68 Well 04 18 55 Well 04 10 59 Well	09 04 98 Well 10 15 78 Canal 09 30 63 Well 10 15 76 Creek 10 19 75 Canal
14N 31E 07 DA 14N 43E 23 BC 13N 43E 23 A 11N 30E 08 ABA 11N 31E 07 CC	11N 31E 29 DB 11N 31E 32 DB 10N 31E 11 BB 10N 30E 03 ABB 10N 31E 21 BD	09N 31E 07 BAD 09N 31E 07 ADB 06N 30E 12 BBB 09N 30E 11 CDA 09N 30E 09 CAC	09N 30E 17 ABC 14N 30E 11 BBC 12N 31E 08 COC 12N 39E 09 AA 11N 31E 10	11N 31E 11 11N 32E 14 BBB 11N 32E 07 OA 11N 32E 07 OA	11N 32E 15 AB 11N 31E 26 CAC 10N 31E 11 BB 10N 31E 14 BBB 10N 31E 35 BCC
Garfield Garfield Garfield Musselshell Musselshell	Musselshell Musselshell Musselshell Musselshell	Musselshell Musselshell Musselshell Musselshell	Musselsheli Gerfæld Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud Musselshell
WQB16 WQB13 WDB12 55M0001 32M0004	56M0026 68M0005 54M0077 54M0007 WQB1	WQB18 WQB17 WQB19 WQB19	WQB12 WQB20 WQB13 61M0002 60M005	68M0007 71M0551 68M0006 55M0002	26 69M0008 27 WQB12 28 53M0007 29 WQB11 30A WQB14
- 2 6 4 9	@ ~ @ * O	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 19 19 20 20	22 22 22 25 25 25 25 25 25 25 25 25 25 2	82828
	WOB15 Gertleich 14N 31E 03 DA 03 17 75 Greek 04 cit IMI Saye Hen Greek near Mobby 7615 75 yes 2590 WOB13 Gertleich 14N 42E 23 BC DB 02 75 Reservoir Frosten Oog Coulee Reservoir 720 no 2840 Mobble Coulee Muscellant II 1N 30E DS AB 10 25 56 Well 10 mate N of Mestore 10 mate N of Mestore 10 mate N of Mestore yes 2840 32AN0004 Muscellant II IN 31E DS CC 10 23 32 Well Inventor Dome Of Field Gramment Coulee yes 3000	WOBB16 Gartield 14M 31E 00 DA 03 17 76 Greek O 4 cit kill Sige Hear Oree near Mobby 7616 75 yes 2590 MDB13 Gartield 11M 4E 23 d. 09 0.27 R Reservoir Frozen Oog Couler Reservoir 770 no 7840 MDB12 Gartield 11M 4E 23 d. 09 0.27 R Reservoir 10 mint N of Mentore 790 no 7840 3240000 Advisable III 11M 31E 07 CC 10 23 27 Well 10 mint N of Mentore 290 mint N of Mentore 7860 784 2860 SAM0005 Mauseriania III 11M 31E 37 DB 05 06 8 Well 7 mint N of Mentore 23600 787 2860 SAM0005 Mauseriania III 11M 31E 37 DB 05 06 Well 7 mint N of Mentore 30690 787 2860 SAM0005 Mauseriania III 10M 30E 03 ABB 05 06 Well 1 mint N of Mentore 30690 781 2860 SAM0005 Mauseriania III 10M 30E 03 ABB 30 06 Well 1 mint N of Mentore 3000 781 3000 SAM0005 Mauseriania III 10M 30E 03 ABB 30 06 Well	WOBING Cartination 14 N 31E OD DA Cartination 14 N 31E OD DA Cartination Cartination 14 N 31E OD DA Cartination Cartination	WOB161 Cartinal 1410 SEC DA 0.0 1 7 8 Cases O.4 of 14 MI Sape Hero Creak near Moloby 765 75 via 2560 WARD113 Gartinal 1410 ARE 12.2 A 0.0 2 7 8 Rates-nor Frozen Oog Couse Reservoir 770 no. 7840 no. 7840 SEAMOND Assatzleral 113 ARE 23.A 0.0 2 7 8 Rates-nor In miss No. In miss No. In miss No. 18 ARE 12.2 A 7840 3240	WOB151 Cartinate 141N 31E OD DA CO 27 S S Water Face on Ook Course Reservoir 750 75

FORSYTH 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner & name		Zeni, Howard	
Aquiter		320 AMSD	331CRLS
Well depth 1ft)			
Static water level o			
Leb Altitude analysis iff.!		2720	3380
Leb	no n	00 00 00 00 00 00 00 00 00 00 00 00 00	7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 7 6
Field temp C a	9.2		
Specific 1 conductivity t et 25 C	8200 12040 710 2800 12520 12520 4449 4449 490 2620	1600 1790 910 2530 1440 6100 3560 3560 3560 3040 3775 590 3740	420 2600 18640 410
Site description	Bioch use, Briefly Will lognom by Bitterlal Creek In a 100 cert ation a real easted by irrigation Beservation Cheef at highwin and Disanged circle for the simple of the simple of the simple of the particle with a 50 acre set teres Disanged circle by a pastion with a 50 acre set are a Beg description Chef the might WW of Fortyth Hammond Cheef is might WW of Fortyth Little Procuration Cocks and at it mouth Centerville Cheef 25 minst NW of Roschud Disanged citch 2 miles NW of Roschud Disanged citch 2 miles NW of Roschud	Drainage dickh in pasture with a 20 acre salt are branage dickh mear a 10 acre salt are branage dickh mear a 10 acre salt are branage dickh mear a 10 acre salt are s	Mulgians Creek at road Oranage dicth 0.2 mile N of highway bridge Alkall Creek Trigation dicth at cettle guard 23 miles S of Sumatra
Flow or yield E = estimated M = measured	20 cfs 0.5 cfs {E} 0.1 cfs {E} 1 cfs {E} 25 cfs {E} 50 cfs {E}	0.5 ch (E) 0.1 ch 7 ch (E) 0.1 ch (E) 80 gam E 90 gam E 1 ch (E) 2 ch (E) 1 ch (E)	20 cfs (E) 1 cfs (E) 1 cfs (E)
Collection date Mo Day Yr Source	10 15 76 Pond 10 14 76 Abnd 10 14 76 Creek 10 14 76 Duch 10 14 76 Duch 10 15 78 Creek 10 15 78 Creek 10 15 78 Creek 10 15 78 Creek 09 22 76 Canal 09 22 76 Canal	10 18 76 Duch 10 16 76 Duch 10 18 76 Duch 10 18 76 Ceet 10 18 76 Ceet 10 14 78 Ceet 10 14 78 Ceet 10 14 78 Ceet	09 22 76 Creek 10 14 76 Citch 09 22 76 Creek 10 14 76 Ditch 10 27 44 Well
Location T R Sec Tract	09N 35E 04 BDD 06N 39E 15 AC 06N 39E 16 CCC 06N 39E 19 CCC 06N 39E 02 CDC 06N 39E 02 CDC 06N 41E 02 ACC 06N 42E 04 CBB	06N 42E 01 ACA 06N 42E 01 DOD 06N 42E 10 DOD 06N 42E 10 ACA 06N 42E 15 DOC 06N 42E 15 DOC 06N 32E 35 CAC 06N 32E 61 CAC 06N 32E 61 CAC 06N 32E 61 CAC 06N 32E 61 AACA 06N 32E 13 AACA	Tressure 06N 35E 18 CC Tressure 06N 34E 24 DA Tressure 06N 34E 24 DA Tressure 06N 34E 24 DA Vellowstone 06N 32E 02 CC
County	Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud Rosebud Tressure Tressure Tressure Tressure Tressure Tressure Tressure	Tressure Tressure Tressure Yellowston
Map ref Field no. number	308 WOB10 31 WOB3 32 WOB4 33 WOB6 34 WOB9 36 WOB9 38 WOB15 39 WOB15	40 WCB16 41 WCB18 43 WCB19 44 WCB17 48 WCB17 48 WCB17 49 WCB17 49 WCB17 49 WCB17 50 WCB8 51 WCB8 52 WCB8 53 WCB8	64 WOB3 55 WOB6 56 WOB4 67 WOB7 68 44M0002

Specific Conductivity Inventory Sheet (Con't.)

Owner's name				Howard, Rick	_	Howard						
Aquifer	331MDSN 217LKOT	320TSLP	320AMSD		125 TGRV	126TGRV						320TY LR
Well deprh												
water Well level depth (ft.) (ft.)							99					
Mirtude (fg.)	3380	3010	3010	3100	3000	3060	3160	2920	2740	2920	2850	3050
Field w temp. Lab Attrude is C enalysis (ft)	yes	Yes	, sex	\$eA	yes	Yes	yes	yes	70 Å	Y 05	yes	Yes
Field C C				901	23	10.5		23	12	22	24	
Specific conductivity et 25 C	27120	4120	2890	2360	3237	5920	3010	1770	0909	0849	9330	
Site description	23 miles S of Sumatra 1.3 miles NW of Pompeys Piller	1.3 miles NW of Pompeys Piller 19 miles NW of Custer	19 miles NW of Custer	Domestic use	Stock use	Stock use	Stock use, I mile SE of Gillin Rench	Armetts Craek	Armetis Creek	Armells Creek	Armelis Creek	0.75 miles NE of Butts Coulee
Flow or yield E = estimated M = measured							20 gpm (M)					
Source	Well	Well	Well	Well	Spring	Well	Well	Creek	Creek	Creek	Creek	Well
Collection date Mo Day Yr	11 D4 44 Well 10 24 56 Well	10 56 Well	11 08 56 Well	06 25 73 Well	06 25 73	06 73	09 12 73	07 24 73	07 25 73	07 25 73	07 25 73 Creek	04 27 64 Well
Collection Location dete T R Sec Tract Mo Day Yr Source	rellawstone 06N 32E 02 CC rellawstone 03N 31E 04 CBB	Yellowstone 03N 31E 04 C8B	03N 31E 04 CBB	03N 37E 08 DB	03N 37E 09 ACCB	03N 37E 09 DDDD 06 73 Well	03N 40E 19 BD 09 12 73 Well	03N 41E 06 CDCA 07 24 73 Creek	04N 40E 09 BBCA 07 25 73 Creek	04N 40E 21 AABA 07 25 73 Creek	04N 40E 25 CBDB	
County	Yellowstone	Yellowstone	Yellowstone	Treasure	Treasure	Treasure	Rosebud	Rosebud	Rotebud	Rosebud	Rosebud	Musselshell
Map ref Field no number	59 44M0003 60 56M0001	61 56M0002 62 56M0006	63 56M0007	64 73M604	65 74M106	66 74M108	87 74MD040	68 73M584	69 73M585	20 73M586	71 73M587	72 64M0019

FORSYTH

Chemical Analyses

Mi	11,1						lect	ion			Magne-		Potas-		Manga-		Bicar-	Car-		
1111			Lu	санс	m	c	iate			Calcium		Sodium	sium	Iron	nese	Silica			Chloride	Sulfate
110	١.	T	Н	Sec	Truci	Mu	Day	Y f	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(5iO ₂)	(HCO ₃)	(CO ³)	(CI)	(SO _e)
		IAN	31E	07	DA	03	17	76	Creek	291	344	1300	12.6				325		47	4440
4					ABA	10	25	55	Well	300	55	3000°					370		2500	5400
			318			10	23	32	Well			550°					885	24	51	340
è			31E			05	07	66	Well	280	34	6400	30				1730		3300	8500
			31E			09	70	68	Well	76	50	7500	75				732	60	7200	5800
			3.1	34	00	03	20	•		,,,	30	. 300						•	. 200	-
8	3	10N	31E	11	88	09	30	64	Wall	16	76	460°					511	75	520	60
9	9 '	10N	30E	03	ABB	05	26	54	Well	2800	640	32000°					278		57400	2200
10	9	10N	318	21	BD	09	09	75	River	B2	54	120	3.7	.95	.10		282		11	435
15	5 (09N	30E	09	CAC	10	20	76	Ditch	94	150	500	10				573		34	1430
15	•	1 2N	398	09	AA	08	23	61	Well	500	75	890°					415		640	2200
												1700°						50	440	2500
			318			09	20	60	Wall	26	10						85	50		
21			315			02	02	68	Wall	320	40	1500°					366		1700	1500
22					BB6	11	18	71	Wall	423	1145	4120	45.3	.14	17.76	10.6	2		2826	10200
2:			326			11	25	68	Well	190	27	4500	31				988	48	2600	5600
74	4	11N	325	07	DA	04	18	55	Well	280	46	4800°					760		260	10000
25	5	11N	325	07	DA	04	10	69	Well	290	27	3500	46				854		2300	4400
71			328			09	04	69	Well	340	46	1800°					476		2100	1600
21			316			09	30	63	Well	16	76	460°					511	76	520	80
31			385			10	14	76	Pond	414	575	2410	37				1220		9.7	7330
2					ADB	10	14	76	Ditch	368	355	2890	23				472		3.2	6040
-										-									-	
3	7 (06N	415	03	ADC	10	15	76	Creek	401	136	500	52				188	6	302	2030
39	9 (06N	428	09	BBB	09	22	76	Ditch	102	30.6	490	7.5				445		19	980
45	5 (08N	368	33	AA	06	25	57	Well	760	53	390°					380		94	1200
44	В	06N	366	10	CC	10	14	76	Canel	116	89	470	10				317		32	1250
45	9 (06N	366	05	D	04	29	75	Well	102	34.5	155					285		26.3	440
																				000
50			366			09	22	76	Canal	95	49	490	9.5				410		28	925
5					CAC	10	14	76	Ditch	107	120	545	13				335		45	1430
5					BDD	10	14	76	Ditch	94	67	755	11				671		38	1490
56	-		346				22	76	Creek	98	43	5200	19	.41	.06		922		205	11450
51	8	06N	328	02	CC	10	27	44	Well	270	41	590°					275		140	1800
5,0		06N	328	02	cc	11	04	44	Well	580	68	1400°					355		280	3900
64					CBB	10	24	56	Wall	140	50	6100°					535		9400	57
6					C8B	10		56	Wall	46	11	2400°					930	118	2300	1100
6					CB6	11	05	56	Well	370	77	620°					315		120	2100
6					CBB	11	08	56	Wall	400	90	310°					340		66	1600
0.	•	03.4	3,,		COO	• •	00	50		-00	-	3.0					•			
			376			06	25	73	Well	32	33	517	6.2			9.4	525	5	22	836
63	5	03N	376	09	ACCB	06	75	73	Spring	56	238	420	6.9	.02		9.9	490	2	36	1516
6					DDDD			73	Wall	20	40	1485	7.3			7.6	716	72	11.8	2632
6			408			09	12	73	Wall	15.7	4.9	747.5	3.9	.14	.02	10.3	681		11.5	1040
6	8	03N	416	08	CDCA	07	74	73	Creek	23	44	361	3.5	.24	.14	1.1	425	26	8	594
64	9	0414	405	00	BBCA	07	25	73	Creek	97	214	1310	11.4	.05	.03	1.7	425	24	33	3405
70					AABA	07	25	73	Creek	120	203	1245	8.6	.09	.18	8.6	492		33	3270
7					CBD6	07	25	73	Creek	216	264	935	10.5	.11	.03	4.3	371		38	3165
			301			04	27		Well	29	-54	3800°	. 0.0		.00	****	738	96	3400	2800
-	۰	. 514	301	,		~	.,	-									. 30			

Note: All chemical data era given in milligrams per liter (mg/l) unless otherwise stated. Values reported as sodium plus potassium.

1° x 2° Sheet

-4	C-1	 4 14	

					Lab									
Meo		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Weil		Trace	
raf.	Nitrate	ride	Lab	Temp.	conductance	solids	hardness	alkalinity	adsorption	Callecting	depth	Aquifer	alements	Lab
no.	(N)	(F)	ρН	c°	(µmha/cm)	(calc.)	as CaCO ₃	es CaCO ₃	ratio	agency	(ft.)	code	analyzed	number
1	.24		7.86	7.5	7615	6759	2140	267	12.2	wq8			No	76W0493
4	-2-		7.00	1.3	7013	9,33	975	303		Unknown		331K86Y	No	55M0001
							3/3	766		Unknown		217LK01		32M0004
5						19400	839	1420	96.1	Unknown		320TYLE		66M0026
6			8.2											
7			8.6			21120	396	700	164	Unknown		320TYLF	No	68M0005
8			8.0				353	544		USGS		320TYLF		64M0077
9			5.4				9230	228		Unknown			No	54M0007
10	.08		8.25	23	1270	987	426	231	2.5	WQB			Yes	75W1898
15	.02		8.2		3190	2500	855	470	7.4	WG8			No	76W2598
19			6.8				1580	340	5.7	Unknown		337MSN(No	61M0002
20			8.3				106	153-	7.4	Unknown		211JDRV	No	80M0005
21			7.8				964	300	5.1	Unknown		331MOSE	No No	68M0007
22		1.9	5.3		20200	18790	5850	1	23.6	MOG			No	71M0551
73		1.3	8.2		20200	13480	588	890	80.9	Unknown		320TYLE		68M0006
24			7.2			13460	888	623	00.5	Unknown		331HETH		55M0002
**			,											
25			7.6			10980	835	700	52.7	Unknown	•	320TYLF	No	69M0007
26							1040	390	12.8	Unknown		337M5N0	: No	89M0008
28			8.0				353	544		Unknown		320TYLF	No.	63M0007
31			7.6		12040	11380	3400	1000	18.0	WOR			No	76W2590
34	.R		8.2		12570	11910	2380	387	25.8	WQB			No	78W2591
-														
37	.03		8.4		4449	3520	1560	168	5.5	WQB			No	76W2596
39	28		7.9	18.5	2620	1850	380	366	10.6	WQ8			No	76W2344
46			6.9	.0.0			887	312	6.3	Unknown		320AM50) No	57M0005
48	50		8.2		3048	2170	655	260	8.0	WOB			No	76W2595
49	.11		7.61		1320	1043	397	234	3.4	WOB			No	75W0597
49	.,,,		7.0		1320	1043	397	254	3.4	1100			140	/511055/
50	40		8.1		2885	1840	440	336	10.2	WQ8			No	76W2341
51	98		8.2		3775	2530	761	275	8.6	WOS			No	76W2594
53			8.1		3740	2790	510	550	14.5	WQ8			No	76W2593
56			8.2		18640	17470	422	756	110	WQ8			Yes	76W2343
58			0.2		10010		843	228		Unknown	•	331CRLS	No	44M0002
59							1730	291		Unknown		331MDS/	No.	44M0003
60			7.8				555	439		Unknown		217LKO		56M0001
61			8.3				160	960		Unknown			No	56M0002
62			7.1				1240	258		Unknow		320TSLP	No	56M00002
			7.1				1370	279		Unknow		320AMS		56M0007
63			12				13/0	2/9		Unknow	•	32UAMSI	J 140	38MUUU7
64			8.30			1722	217	448	15.3	M8MG			No	73M604
65	1.8	.2	8.43	2 23	3237	2777	1140	410	5.5	MBMG		125TGR1		74M106
56	.1.	.7	8.69	10.8	5920	4629	215	828	44.3	M8MG		125TGR	V No	74M106
67	.791	8	8.2		3010	2171	59	559	42.1	SCS			No	74M0040
68	877		8.75	3 27	1770	1272	242	437	10.2	USGS			Yes	73M584
69	.519	.4	8.50	5 21	6060	5302	1120	429	17.1	MBMG			Yes	73M585
70		.3	8.2		5790	5131	1150	403	18,1	MBMG			Yes	73M586
71		.3	8.0		5390	4816	1640	305	10.1	MBMG			Yes	73M587
72		.3	8.5	4-	5350	4010	72	764	10.1	Unknow		320TYL		64M0019
/2			8.5				12	/64		UNKNOW	•	3201 T C	1 140	0-m0019

Trace Elements Analyses Sheet

Lab	75W1898 76W2343 73M584 73M585 73M586	73M5B7		
Zinc mg/II	0.02 02 .02	.02		
Tin (mg/l)	·			
Silver tium Tin Zinc (ing/i) (mg/i) (mg/i) i	4.9			
5slver (mg/ll)	0.00			
Selenium (µg/l)	V 1.0			
Als. Ani: Ar. Baryl. Cad Onco Lish. Wer. Prosperiter animum may sense that aim cuy Neckel Troat Setenam Sistem, Impall legal than the common manum Coppet Lead aim cuy Neckel Troat Setenam Sistem, Impall legal legal trapil trapil trapil may Impall Impall legal Impall animum sense animum sens	03	03		
Vickel mg/II	<1.0 4 .02 .12 <0.05 .2 <0.05 .2 <0.05 .2 <0.05	2 <0.05		
. A. (%)	4 444	2		
Lith. A ium c img/l)(µ	4.0			
Lead (mg/ll)	0.06 0.06 0.06 0.06	7		
Copper [mg/1]	<0.01 <0.02 <0.02 <0.02 <0.01 <0.02 <0.01	0.		
Chro- mum (mg/l)	<0.02 <0.02 <0.02	.02		
Cad: mium (mg/il	.002 <0.006 <0.01 .01 .02	.01 .02 .01		
Boron (mg/l)	4 44 44	60		
Beryl. fium (µg/l)				
Ar. senic (µg/l)	2 41.0			
Anti- mony (mg/l)				
Alu: minum (mg/II)	<u>8</u>			
Location T R Sec Tract	10N 31E 21 BD 06N 34E 24 DA 03N 41E 06 CDCA 04N 40E 09 BBCA 04N 40E 21 AABA	71 04N 40E 25 CBDB		
Map no.	2 38 88 5	=		

LOCATION BASE MAP

	OUT BANK	SHELBY	HAVRE	GLASGOW.	WOLF POINT				
	HOTEAU		EWISTOWN	JORDAN	GLENGIVE				
	WNI	TE SULPHUR	AGUNDYP)	FORSYTH	MILES CITY				
		OZEMAN A	BILLINGS	HARDIN	EKALAKA				
1.									
,									
	4	3	2	1					
	5	6	7	8					

GLASCOW 1° x 2° SHEET

						Report
Dwner's name	Hammond Math Smonson, L. Smonson, L.	McMullen Helixe Ganter, A.	Webb Drydahi Johanesen Anderson		Dumbar Zembelman	Anderson School district Waters, D. Sleeping Buffalo Resort Morrison
Aquiter					220 211JDRV 10 25 100	36 70 25 3188 331MDSN 27
Well depth	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	280 126 403	300	287 300 300	220 2 10 25 100	36 27 27 27
Static water level of ift.]	0 e 8 6 6	267	190	230		~
Altitude Ift.)	2500 2740 2660 2680 2610	2820 2630 2750 2790	2840 2540 2950 2750	2500 2500 2850 2850 2800 2460	2460 2460 2460 2460 2230	2660 2260 2260 2230 2840
Leb	22222	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	00 00 00 00 00 00 00 00 00 00 00 00 00
Field C C S	188 228 88 12.3 17.6	12 27.2 16.5 12	19.9	11 11 11 11 11 11 11 11 11 11 11 11 11	16.5	11.9 14.3 13.7
Specific conductivity at 25 C	2400 1820 1270 2240 1000	490 3150 1550	3570 4060 760 260	1230 1060 2370 1080	2452 1240 1510 1720 3190	1896 1400 760 3915 2070
Ste description	Small creek ourgrown with weeds Domestic use except for drinking, has a bad teste Domestic and took us Stock use, won stain Domestic use, located 1500 feet S of houre	Domestic use, water is analyzed every spring Stock we and waterfood habitat Streate water supplys above high magnetium Whitevater Ceek, much sigas Abandomed well, new well 5 feer from it	Stock use at abandoned ranch Dower hault drinking water Domestic use except for drinking, rust in water Domestic use, water is soft, no filter used Stock use	Stock use Domestic and stock use, water is high in fron Domestic use, need water soltener Domestic use	Domestic use accept for drinking Domestic use, water is soft Domestic use. Whitewater Greek Stock use, water is hard	Domestic use, water taster 'funny' efter a rain of obsertic use. Domestic use, but owners hauf water in summer Recor well. Comestic use.
Flaw or yield E = estimated M = messured	a gpm 8 gpm 20 gpm	10 gpm	10 gpm 15 gpm 20 gpm			8 gpm 10 gpm
Coffection date Source Ma Day Yr Source	07 21 76 Creek 07 22 76 Well 07 22 75 Well 07 21 76 Well 07 21 76 Well	07 21 76 Wett 07 21 76 Reservoir 07 21 76 Wett 07 21 76 Creek 07 21 79 Wett	07 22 76 Well 07 22 76 Well 07 21 76 Well 07 21 76 Well 07 21 76 Reservoir	07 22 76 Well 07 22 78 Well 07 22 78 Well 07 21 78 Well 07 22 76 Well	12 19 28 Well 07 22 76 Well 07 22 76 Well 07 22 76 Creek 07 21 78 Well	12 19 78 Well 07 22 76 Well 07 22 78 Well 07 22 78 Well 07 22 78 Well
Location T R Sec Tract	36N 30E 09 BC 37N 33E 18 DAD 37N 32E 16 BAA 37N 30E 20 CB 37N 30E 30	37N 30E 24 37N 30E 33 36N 30E 02 DAA 36N 30E 09 37N 30E 06 B	37N 29E 30 ABB 37N 2BE D6 D 36N 30E 09 36N 29E 23 A DA 37N 30E 17	36N 32E 05 CAC 36N 32E 05 CAC 36N 36E 18 DD 35N 30E 18 888 36N 32E 07	36N 30E 31 36N 32E 07 36N 31E 25 36N 31E 26 30N 29E 18	36N 31E 26 36N 31E 26 DB 28N 30E 18 32N 32E 36 CDB 34N 29E 15 88
County	Philips Philips Philips	Parison Parison	Philips Philips Philips		Philips Philips Philips Philips	Philips Philips Philips
Map ref. Freid no. number	1 MBMG15 2 MBMG30 3 MBMG29 4 MBMG10 5 MBMG11	6 MBMG12 7 MBMG13 8 MBMG14 8 MBMG15 10 MBMG8	11 MBMG6 12 MBMG7 13 MBMG17 14 MBMG18 15 MBMG9	16 MBMG318 17 MBMG31A 18 MBMG22 19 MBMG23 20 MBMG368	21 MBMG24 22 MBMG36A 23 MBMG35 24 MBMG33 25 MBMG57	26 MBMG32 27 MBMG34 28 MBMG59 29 76M1859 30 MBMG26

GLASGOW

GLASGOW 1 x 2 Sheet (Con'1.)

Specific Conductivity Inventory Sheet (Con't.)

										Static			
			Collection	Flow or yield		Specific				water			
ref. Field		Location	date			conductivity	ly temp.	Lab		eve			
no. number	County	T R Sec Tract	Mo Day Yr Source	M * measured	Site description	at 25 C		analy sis	1 (1)	2	2	code	Owner s name
31 MBMG39	Phillips	34N 31E 10	07 02 76 Ditch		Along road, possible drainage from Howing well	1650	17.7	8	2410				
32 MBMG37	Phillips	34N 31E 09 DB	12 19 76 Well		Flowing well, domestic use	2553	6	× 4 8	2500		Ξ	12DAFT	Green, Jean
33 MBMG38	Phillips	34N 31E 09 DB	07 22 76 Seep		Result of flowing well			9	2480				Austin
34 MBMG80	Phillips	32N 34E 15 ACD	12 20 76 Spring		Domestic use, has bad odor and taste, filtration needed	3431	=	yes	2240				Whitaker
35 MBMG40	Phillips	34N 32E 14 DC	07 23 78 Well		Domestic use	1470	=	9	2740		90		Hanson
36 MBMG79	Phillips	32N 34E 07 DCC	12 20 76 Well	12 gpm	Stock use only, haul drinking water	2734	9	yes	2700	17	89 1	HOALVM	dmb
37 MBMG41	Phillips	34N 33E 07	07 23 76 Well	B 90m	Domestic and irrigation use	2270	10.1	00	2700		48		Olson
58 MBMG77		32N 33E 28 CCA	07 23 78 Well	5 gpm	Domestic use	830		00	2190	15	40		Hanson
39 MBMG42	Phillips	33N 31E 28 CACC						90	2200				White
40 MBMG72	Philips	32N 33E 16 BA	12 20 76 Well	16 gpm	Domestic use	1508	89	Yes	2240	10	30		Eklund, A
41 MBMG75	Phillips	32N 33E 20 DAC	07 23 76 Well	10 gom	Old stock well	150	14.4	00	2210	49	88		Costin
42 MBMG74		32N 33E 20 DAC	07 23 78 Well	10 gpm	Domestic use	9	7	00	2210	90	98		Costin
43 MBMG73	Phillips	32N 33E 17 DA	07 23 75 Well	16 gpm	Stock use	4560		00	2220	23	118		Hanson
44 MBMG43	Phillips	33N 33E 32	07 23 76 Spring		Domestic use	970	16.1	90	2320				Haynes
45 MBMG78	Phillips	32N 33E 25 BCB	12 20 78 Well	non I	Domestic use except for drinking, well yield decreasing	5290	0	Yes	2180	8	135		Caves
48 MBMG71	Phillips	32N 31E 30 DBDA	1 07 22 78 River		Milk River			9	2200				Hanson
47 MBMG45	Phillips	32N 29E 14	07 22 78 Well		Domestic and stock use, water is high in sodium	1620		90	2300				Goeet 2
48 55M0003	Phillips	29N 31E 24 DC	01 20 56 Well			3480		Yes	2400		ë	331MDSN	Ashfield
49 MBMG47	Phillips	31N 29E 02 DBA	07 22 78 Well		Domestic use	1820	14.8	90	2420	æ	10		Barnards, Howard
60 MBMG88	Phillips	31N 32E 15	07 22 78 Well	B gpm	Domestic use, use water softener, has a sulphur odor	1580	15	9	2250	6	<u> </u>		Emenuelson
51 MBMG86	Phillips	31N 32E 02 BB	12 20 78 Well		Flowing well, water is hot, has a sulphur smell	2316	28	yes	2240	flowing			Sleeping Buffato Resort
52 MBMG85	Phillips	31N 32E 02 BB	07 23 76 Well		Domestic use	1020	14.9	00	2240				
63 MBMG89	_	31N 33E 01 A	07 24 76 Ditch		frigation ditch along road	909	24	00	2180				
		32N 33E 38	07 24 76 Ditch		Irrigation ditch, much eigee	770	7	ac	2180				
65 MBMGB7	Phillips	31N 32E 13	07 22 76 Creek		Beaver Creek, N side of bridge	760	21	00	2280				
58 MBMGB1	Phillips	32N 34E 29 CCC	12 20 76 Well	16 gpm	Domestic use	2631	•	yes	2280	8	96		Albus, Jerry
67 MBMG76		32N 33E 2B	07 23 76 Ditch		Irrigation ditch	640	24.6	90	2210				Hanson
58 MBMG99		30N 34E 23	07 22 76 Creek		Larb Creek	1690	23	00	2270				Yaskas
		30N 34E 27	07 22 76 Well			1920			2270				
80 MBMGB2	Phillips	32N 34E 33 BAA	12 20 76 Well		Weter hardness at 14 grains per gallon	2114	7.6	Yes	2260		63		Albus, Emil

GLASGOW 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

									•	21316				
			Collection	Flow or yield		Specific	Field		•	water V	Well			
rel. Field		Location	date	E - estimated	9	Conductivity		3	Altıtude	level de	depth Aqu	Aquifer		
no. number	County	T R SecTract	Mo Day Yr Source	M = measured	Sits description	et 25 C	္ပပ	analysis (ft.)		EE.	(ft.) co	code C	Owner's name	
61 MBMG98	Phillips	30N 32E 08 BB	07 22 76 Creek		Full of most	1450	20	9	2260					
62 MBMG6S	Phillips	30N 31E 16	07 22 76 Well	B gom	Domestic use except for drinking	2610	=	9	2250	56	42	S	menson	
63 MBMG93	Phillips	-	07 23 76 Well		Domestic use	1360	10.4	90	3250			•	Arms	
64 MBMG91	Phillips	CAB	07 23 76 Well	6 gpvn	Domestic use, water is slightly hard with iron	1150	20.5	90	2260	98	99	>	Waters	
66 MBMG96	Phillips	30N 31E 14	07 22 76 Wall	10 gpm	Domestic use, water corrodes papes, water soltener needed	ed 2660	14.5	90	2280		80	s	Stiles, C.	
68 MBMG97	Phillips	30N 31E 14	07 22 76 Well	4 gom	Stock use	2790	~	8	2280		8		Sailes, C.	
67 MBMGB4	Phillips	31N 30E 34 BACA			Donestic use, but can't drink water even with softaner	3418	12	yes	2220		90 1104		Smith, Robert	
68 MBMG94	Phillips	30N 30E 14	07 22 76 Well		Domestic use	000	92	2	2280	50	75		Mathews, L.	
69 MBMG64	Phillips	30N 30E 09 DAC	07 23 78 Well		Domestic use	1080	11.0	2	2270		8		Sims	
70 MBMG63	Phillips	30N 30E 0B ABCC	12 20 78 Well		Domestic use except for drinking, water used for irrigation	on 3945	0	Yes	2240		300	•	Ryan	
71 MBMG62	Phillips	30N 30E 19	07 22 76 Well	. md6 8	Domestic use, needs a weter softener	2950	12	8	2700		150	~	Milk, B.	
72 MBMG60	Phillips	30N 29E 12 BCA	07 21 76 Well	~	Located 400 feet S of house, water is soft	2130	13	9	2280	7	46	_	Holman	
73 MBMGS9	Phillips	900	07 21 78 Spring	10 gorn	Located 100 feet N of house	1110	12.5	9	2280			-	Holman	
74 MBMG58	Phillips	30N 29E 22	07 21 78 Spring		Domestic and stock use, improved spring in 1974	1460	08	9	2260	91	3	J	Green, Dale	
76 MBMG101	Phillips		07 22 75 Well	20 gp·m	Stock use, heal drinking and wash water	3600	13	g	2600	98	376 211JDRV		Lundinan, G	
76 MBMG102	Phillips	29N 32E 21	07 22 78 Creek		Beaver Creek	099	22	9	2280					
77 MBMG70		29N 30E 07	07 22 76 Pond		At W side of road	650	18	9	2600					
7B MBMG103	Phillips	29N 33E 24	07 22 76 Pond	no flow	W side of road	210	2	90	2650					
79 MBMG104	Phillips	29N 33E 26	22 78	18 gpm	Domestic use	1930	2	9	2600	8	120	-	Martin, F.	
80 MBMG136	Phillips	28N 33E 04	07 22 76 Wall	3 gpm	Domestic use except for drinking and stock use	2940	=	9	2530		250	va .	Solberg, t.	
B1 MBMG136	Phillips	28N 32E 06	07 22 76 Well	12 gam		3630	13	9	2600		300	*	Henry, G.	
B2 MBMG134	Phillips	28N 31E 24	07 22 76 Well	2 gpm	Stock and domestic use	840	16	2	2550			•	Anderson	
B3 MBMG133	Phillips	28N 31E 22	07 22 76 Well	2 gpm	Damestic use except for drinking	4690	15	2	2660	9	991		Bergsagei	
B4 MBMG131	Phillips	2BN 31E 07	07 22 78 Well	1.5 gom	Domestic use	6360	81	90	2650	3	120	_	dendrickson	
BS MBMG132	Phillips	28N 31E 07	07 22 76 Well		Stock use	490	3	9	2650		13	-	dendrick son	
BS MBMG129	Phillips		07 22 76 Creek	no flow		710	18	9	2450					
B7 MBMG130		2BN 30E 24	07 22 76 Well	7.5 gpm	Domestic use	2740	7	90	2540	55	40	~	Lafdahi	
BB MBMG139	Phillips	27N 31E 35 BDB	07 23 78 Wall	mog i	Water is high in sodium and unfit for human use	7660	13.9	9		Nowing	06			
89 MBMG138	Phillips	27N 31E 2B CD	07 23 78 Pond	no flow	Seep outbreek ground pond, eigne sample taken	3660	28.5	9	2400					
90 MBMG140	Phillips	27N 31E 35 DDB	07 23 78 Well	1 gpm	Located 200 yerds S of house	6010	12.2	9	2400 flowing	wing	280			

GLASGOW 1" x 2" Sheet (Con't.)

ž		¥E				Don
Owner's name	Thompson Barthelmes Oxerert	McEwen Henderson U. 5. Customs Omvig	Ornvig Stellflug Nelson Nelson	Risa, Don Burtness Zimmer Risa, Don	Dryland Dryland Isakson Isakson Westby	Hellock Devenport, Don Floyd, Ken Floyd, Ken Floyd, Robert
Aquifer						
Well depth	600 80	40 70 300	360 300 20 8	8 8 8 8	130	2 2 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3
Static water level (ft.)	Bowing 25	4 81	165	2 2	8	228
Atritude	2400 1 2350 2500 2460 2300	2320 2250 2300 3000 3100	3100 3000 2850 2850	2840 2850 2950 3100 2850	3000 3000 3060 3100	3120 3050 2950 2950 2960
Lab	5 5 5 5 5	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	0 5 0 0 5
Feld C	10.8 14.6 18 24.9	18.2 17 17 11.9	9.6 15.1 6.7 15.3	20.5 13.1 14.1 10.3	11.6 10.1 9.2 10.4 12.7	10.1 15.2 12.1 6
Specific conductivity et 25 °C	8270 2620 200 710	3110 1310 570 600	620 1440 570 1980 2120	920 920 510 570	960 920 1220 570 630	950 768 1760 1730 3507
Site description	Located 250 yards W of house West several states and the Wards several services well located 400 feet from house Located 100 yeards 5 of section line Brever Creates at paging stetion. Water is hard	Water is unfit for drashing, her e rencid odor Domeric use Domeric use Domeric use Domeric use, very hard water, use ton exchanger Domeric use, very hard water, use ton exchanger	Stock and domettie use, forms deposits on fixtures Domestic use ecopi tor direkting, high iron conton Domestic use Domestic use Domestic use Domestic end totck use Domestic and tuck use Domestic use, weter it wery hard and bad testing	Reanwood Coulee Stock use Domeric us, were very hard Domeric and stock us, defining water litered Domeric us, weter is litered because of high iron	Donnettic use, veter in high in iron, softener used Stock use, wester here a rusty color Stock use, well is located 100 feet E of house Donnettic use	Domestic use, wester in rusty colored, in littered Domestic use, wester in moderately hand, use rust iller Domestic use, rust filter used Used for wettering leven, weter in rusty colored
Flow or yield E = estimated M = mestured	1 gpm 20 gpm no flow 17.7 cts 6 gpm	30 gom		10 germ	10 gpm	
Collection date Mo Day Yr Source	07 23 76 Well 07 23 76 Well 07 23 76 Reservoir 07 23 76 Greek 07 23 75 Well	07 23 76 Well 8 07 23 76 Well 07 21 76 Well 07 26 76 Well 07 26 76 Well	07 26 76 Well 07 26 76 Well 07 26 76 Well 07 26 76 Well 07 28 76 Well	07 26 76 Creek 07 26 76 Well 07 26 76 Well 07 26 76 Well 07 26 76 Well	07 26 76 Well 07 26 76 Well 07 26 76 Well 07 26 76 Well 07 26 76 Well	07 26 76 Well 12 17 76 Well 07 27 76 Well 07 27 76 Well 12 17 76 Well
Location T R Sec Trect	27N 31E 35 BDB 26N 32E 15 A 27N 31E 01 BBA 27N 32E 14 DDC 27N 32E 36 DBA	26N 32E 17 AB 30N 30E 03 DAD6 30N 29E 24 37N 41E 06 BAB 37N 40E 08 CC	37N 40E 08 CC 37N 40E 20 BA 37N 40E 13 CC 37N 41E 25 DD 37N 41E 25 DD	37N 42E 30 CC 37N 41E 35 BC 37N 41E 31 C 37N 41E 35 D 37N 41E 35	36N 42E 04 B6 36N 42E 04 BC 36N 40E 02 BB 36N 40E 02 BC 36N 40E 10 AD	36N 40E 22 DA 36N 39E 26 AA 36N 39E 26 BD 36N 39E 26 36N 39E 26
County	Phillips Phillips Phillips Phillips	Phillips Phillips Phillips Velley Valley	Velley Velley Velley	Valley Valley Velley Velley	Velley Velley Velley	Valley Valley Valley Valley
Map rel. Field no. number	91 MBMG141 92 MBMG146 93 MBMG137 94 MBMG142 95 MBMG143	96 MBMG144 97 MBMG92 96 MBMG61 99 MBMG10 100 MBMG11	101 MBMG12 102 MBMG14 103 MBMG13 104 MBMG15 106 MBMG15	106 MBMG21 107 MBMG20 108 MBMG17 109 MBMG16 110 MBMG19	111 MBMG32 112 MBMG33 113 MBMG23 114 MBMG22 116 MBMG24	116 MBMG26 117 MBMG28 116 MBMG27 119 MBMG28 120 MBMG31

GLASGOW 1" x 2" Sheet (Con't.)

										2000			
Q.			Collection	Flow or yield		Specific	Field						
Fueld Faeld		Location	date	E - estimated	ĕ	conductivity	tamp.	9	Aftitude		•		
-	County	T R Sec Tract	ž	M - massured	Site description	et 25 C		siskleve	Œ.	3	Ilt.] code	Owner siname	
121 MRMG29	Valley	36N 39E 26	07 27 76 Well		Stock use, focused 500 feet E of house	1750	7.8	90	2900	u	12	Floyd, Robert	
22 MBMG30	Valley	36N 39E 26	5		Domestic use, located 100 feet E of house	1420	10.1	2	2900	2	16	Floyd Rocer:	
123 MBMG1	Vailay	37N 36E 24 BC	07 27 76 Craek		West Fork Creek	490	21.1	oe o	2660				
124 MBMG2	Vellav	37N 36E 25 BB	07 27 76 Rasarvoir		Rank smell, raservoir may be autrophic	180	21.9	9	2670				
125 MBMG6	Valley	36N 36E 33 DC	07 27 76 Crask		Rock Craek, selts on banks, collected algal semple	069	21.9	90	2340				
SOME AND ACC	Valley	JO SE 386 NAC	107 27 76 Well		Sand point to basement of house, weter very hard, seep			90	2370		01	Jensen	
22 MBMGD	Valley	TAN BEE OF DR	07 27 76 Wall	6 aom	Stock use	1950	14	90	2360	23	26	Lurses	
MOMGO	Valley	24N 36F 04 DB	07 27 76 Wall		Domastic use, water very hard, has been analyzed	1290	13.2	90	2360	56		Lurass	
TOWNER OCT	Valle	24N 36F 02	07 27 76 Wall	11 anm	Domestic use, has a soda tasta	1280	6.6	9	2500		260	Johnson	
30 MBMG3	Valley	35N 35E 32 CDD	12 17 78		Domestic use except for drinking, water has been analyzed	red 5582	0	Yes	2550	210	340 211JDRV	IV Arnot, Jim	
21 MOMOGA	Valle	76 N 76F 32	12 17 78 Wall		Domestic use, water is hard, yield is small	1638		yas	2650		10 112DRFT	FT Arnot, Jun	
	Valler	31 N 75F 36	07 28 78 Well			2290	13.9	90				 Haintz, John 	
acomour co	Madle	31N 36E 33	07 36 Wall	A now	Domestic and stock use, water has been analyzed	2490	14.1	90		13	62	Heintz, John	
24 MONGOO	Valley	31N 34F 37	07 22 76 Wall		Domestic use axcapt for drinking	5880	=	2	2200		30	Beatle, B	
36 MBMG37	Valley	30N 37E 06 CADB	07 26 76	e gpm	Water is used for drinking, residents have gotten sick from it 4820	um it 4820	16.2	90	3130	9	155	Betz	
3000000	Methon	3041 305 33	1 30 30 Wall	3 deries	Domesticus	760	18.6	9	2750		9	Court	
SE MEMCSE	Asia	30N 30E 46	107 35 46 10	30 000	Domestic use except for drinking and cooking	2680	17.7	00	2120	28	83	Vandala Post Office	80
MBMG38	Valley	301 37E 10 D	07 20 TO Well	10 000	At highway rast sens	1770	13.0	9	2230	37	72	Highway Department	1000
SE MEMORE	Agilea	304 305 00 CA	17 10 76	10000	Demestic use water is roll	3076	12	V 0.5	2100		187	Lighthizer, Oscar	
140 MBMG58	Velley	31N 42E 10	07 27 78		East Fork Porcupine Creek	3140	9	9	2680				
41 MOMORO	Vallay	ST ACE NIE	07 27 78 Pond		Standing weser in a coules at roadside	1080	10	90	2700				
42 MBMG60	Valley	31N 42F 32	07 27 76 Wall	6 aom 1E)	Domestic use, weter is hard, use a softener	1760	15	90	2800	0	91	Tweteny	
42 AADAAGES	Valley	39N 42F 01	07 27 78 Well	4 anm	Donestic use axcept for drinking	4280	13	9	2760		12	Movek, Joseph	
44 MONGGO	Valley	20N 42E DA	5		Domestic use	1510	=	90	2760		46	Allman, M.	
145 MBMG63	Valley	29N 42E 04	07 27 76 Well	8 gpm (E)	Domestic use	1360	10.5	90	2760		02	Nybakre, D.	
98 346 44 34	Vallan	29N 41F 09	07 27 76 Well	16 aom 1E)	Stock use	900	10.6	90	2260		01	Hill, C.	
AT MADE AND AND	Vallay		07 27 76 Well			900	12	90	2380		7	Geer, Miles	
48 MRMG50	Vallay		07 27 76 Wall		Stock use	980	1	9	2380		20	Geer, Miles	
49 MRMG52	Valley		07 27 78 Well	3 apm	Domestic and stock use, neighbors hauf water from them	m 690	13	00	2420		160	Hill, C.	
150 MBMG51	Valley	29N 41E 15	07 27 78 Pond		Creek ponded by road		14.9	90	2410				

GLASGOW 1" x 2" Sheet (Con't.)

			Owner's name	French, John		Lauchner Bros	Miller	Lindell	Lendell	Cotton, Sidney	Bell Motel	Billingsley																				Hill, F.	Hill, F.
		Aquifer	apoo									300 211JDRV																					
;	Ver	depth	3	38		35	120	107	Ξ	225		300																				33	135
Static		level	(E)	r		18	30	86	98	un																						9	æ
		Attitude	3	2150	2200	2300	2230	2340	2340	2150	2100	2110	2600														2300	2300	2360	2380	2100	2260	3250
		ŝ	enalysis (ft.)	Y 815	9	ves	0	2	9	00	90	Y 85	9	9	90	90	9	9	2	9	ou u	90	٥	00	90	no	OU	10	ou ou	90	2	2	90
	Diei	(emb)	ပ	6	35	6	14.8	13.3	3	23.9	16.7	12	23.1	20.9	18.2	78.5	17.2	50.5	21.8	21.1	19.4	20.1	192	21.5	22	20.1	19.0	8.02	20.1	9	18	7	ĭ
	obecitic	conductivity	ot 26 °C	3261	1050	3114	940	900	960	4670	1760	4066	360	4250	340	16100	13300	270	1690	2200	340	430	8080	640	1120	730	3480	380	410	300	380	640	3610
1			d Site description	Domestic use	Porcupine Creek	3 Stock and domestic use	Domestic use and lawn watering	Stock usa	Domestic use	Well is located behind house, water contains gas and salts	Municipal well, Glasgow	Water is soft, contains natural gas	On South Fork Antelope Creek	Clear water	Moddy water	South Fork Brazil Creek, some alkali	Clear water, alkali at edges	Muddy water	Alkali around adjes	Alkali around adges	Spillway Creek		Below dem	Standing water in creek bed	Contains blue green algae	Grub Reservoir, very muddy	Standing water, elkeli around edges	South Beaver Reservoir	Itcaine Reservoir	Some elkali deposits along adges	Very silty	Stock use, yield smell	Selts uphill from well
Flour or male	row or yier	E - estimated	M - measured	8 gpm (E)		8 gpm (E)	B gpm	3 gpm	10 gpm	5 gpm		5 gpm		no Bow	no flow	no flow	no flow	0.3 efs	no flow	no flow	no flow	no flow	no flow	no flow	no flow		moll on	no flow	no flow				
Collection			T R Sec Tract Mo Day Yr Source	12 17 76 Well	07 27 76 Creek			07 24 7B Well	07 24 76 Well	07 24 76 Well	07 24 7B Well	12 18 76 Well	07 26 76 Reservoir	07 27 76 Pond	07 27 76 Pond	07 27 76 Creek	07 27 76 Pond	07 27 78 Creek	07 27 76 Pond	07 27 76 Pond	07 27 76 Creek	07 27 76 Reservoir	07 27 76 Seep	07 27 76 Creek	07 27 76 Pond	07 27 76 Reservoir	07 27 76 Creek	07 27 78 Reservoir	07 27 76 Reservoir	07 27 76 Creek	07 28 76 Pond	07 28 76 Well	07 26 76 Well
		Location	T R Sec Tract	28N 42E 05	28N 41E 01 BD	28N 42E 20	29N 40E 30 ADD	29N 40E 32 DCB	29N 40E 32 DD	29N 38E 25 CD	28N 39E 12	28N 39E 08	29N 35E 11	28N 36E 24 AC	28N 36E 24 CC	28N 36E 26 DD	28N 36E 26 DD	28N 36E 24 CC	28N 36E 26 AA	28N 36E 26 A	27N 36E 01 AAC	27N 36E 01 AD	27N 36E 01 ACC	27N 36E 12 DDA	27N 37E 18 A	26N 37E 02 AB	26N 37E 09 CC	26N 37E 09 C	26N 37E 17 BD	26N 36E 13	27N 40E 04 DBD	27N 40E 29 BB	27N 40E 29 BB
			County	Valley	Valley	Valley	Vellay	Valley	Valley	Valley	Valley	Valley	Velley	Valley	Valley	Valley	Valley	Valley	Velley	Vallay	Velley	Vellay	Valley	Valley	Valley	Vellay	Velley	Valley	Velley	Velley	Valley	Valley	Valley
	E.e.L.	DIRLA	number	MBMG109	MBMG108	153 MBMG110	154 MBMG56	MBMG58	MBMG57	157 MBMG478	158 MBMG54	159 MBMG53	MBMG36B	MBMG39	162 MBMG40	163 MBMG44	164 MBMG45	MBMG41	166 MBMG42	167 MBMG43	169 MBMG65	169 MBMG64	170 MBMGE6	171 MBMG87	172 MBMG68		MBMG71	MBMG70	176 MBMG72	177 MBMG73		MBMG96	MBMGB7
Man	1	5	ġ	151	152	153	154	155	156	153	158	158	160	191	162	163	2	99	166	16	8	2	170	171	172	173	174	175	176	177	178	179	9

GLASGOW 1" x 2" Sheet (Con't.)

Con't.)
Sheet (
Inventory
onductivity
Specific C.

Dwner's name	Ihnot, J	lorvik, J.				
Aquifer		311FANA 337MSNC	331CRLS	30 110ALVM	28 110ALVM 211FRNR 217KOTN 18 110ALVM	
Well depth (fr.)	550 580	8		8	8 8	
Meter level (ft.)	3					
Affinds level depth	2300	2050 2190 2844	2803	2038	2060 2451 2415 2009	
Lab	2 2	0 % A	***	0 0 8 X 98	10 A A	
Field temp.	12	22		9.4	2	
Specific Field conductivity temp, Lab Attitude at 25°C c enalysis (It.)	1750	4633	4118	950 390 1900	1780	
ied Site description	Hauf weter for domestic use Domestic use except for drinking	Stock use: 3 miles E of Saco 14.5 miles S of Richland	21.6 miles N of Frezer	On W side of road Lottsgard Reservoir	1 mile SW of Frezer Muddy weter 2.6 miles S of Frezer	
Flow or yield Source E = estimated Source M = measured				4		
Collection Flow or yried Location date Source E-estimated T R Sec Trect Mo Dey Yr Source M-measured	07 28 76 Well 07 27 78 Well	07 27 78 Well 09 28 33 Well 08 24 58 Well	07 25 68 Well	07 22 76 Pond 08 04 75 Reservoir 10 09 47 Well	09 05 83 Well 11 15 57 Well 06 20 69 Well 09 05 63 Well	
Location T R Sec Trect	26N 40E 13 ABDB 07 28 76 Well 28N 41E 36 07 27 78 Well	27N 42E 22 B 31N 34E 02 C 33N 43E 18 CA	30N 44E 07 DDD	28N 30E 07 37N 43E 16 27N 43E 31 88B	27N 44E 32 DCD 28N 36E 03 CAA 32N 31E 09 AB 26N 44E 10 BCC	
County	Valley		Velley	Philips Deniels Valley	Valley Valley Phillips McCone	
Map ref. Field no. number	181 MBMG98 182 MBMG111	183 MBMG112 184 33M0009 185 55M0016	185 68M0009	188 MBMG167 189 MBMG17 190 47M0056	191 63M0059 182 57M0003 193 69M0005 184 63M0056	

GLASGOW

Chemical Analyses

no. T R SecTract Mo Dey Yr Source (Ca) (Mg) (Na) (K) (Fe) (Man) (S 21 35M 30E 31 12 19 76 Well 76 105 362 7.1 1.46 0.01 17 28 35M 31E 26 12 19 76 Well 13 12.8 430 4.8 1.3 1.5 19 32M 37E 35 CDS 07 22 76 Well 490 174 293 25.4 1.03 .02 17 31 32 34M 31E 09 DB 12 19 76 Well 93.5 44 478 7.3 .90 .60 11 31 32.8 43 44 478 7.3 .90 .60 11 31 32.8 43 478 478 7.3 .90 .60 11 31 32 34 32M 34E 15 ACD 12 20 76 Sonny 264 182 402 7.8 .11 .01 12 36 32M 32E 35 BC 12 20 76 Well 50 28 260 5.9 .05 .07 14 53 32M 32E 35 BC 12 20 76 Well 50 28 260 5.9 .05 .07 14 53 32M 32E 35 BC 12 20 76 Well 50 28 260 5.9 .05 .07 14 48 32M 31E 24 DC 01 20 75 Well 50 28 260 5.9 .05 .07 14 53 32M 32E 35 BC 12 20 76 Well 50 28 260 5.9 .05 .07 14 53 32M 32E 25 BC 12 20 76 Well 50 28 260 5.9 .05 .07 14 68 32M 31E 24 DC 01 20 75 Well 50 150 180* 51 31M 32E 02 88 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 668 32M 34E 29 CCC 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 68 32M 34E 29 CCC 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 60 32M 34E 33 8AA 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 60 33M 34E 29 CCC 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 10 30M 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 70 30M 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 70 30M 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 70 30M 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 70 30M 30E 08 ABCC 12 17 76 Well 78 31 705 6.9 .54 .02 11 11 33 38M 38E 32 CDD 12 17 76 Well 78 31 8.6 .7 1350 5.0 .12 .00 31 31 318M 38E 32 CDD 12 17 76 Well 328 6.7 1350 5.0 .12 .00 31 31 318M 38E 32 CDD 12 17 76 Well 328 8.6 .7 1350 5.0 .12 .00 31 .11 11 33 28M 38E 14 CAAB 12 18 76 Well 32 .10 760 .20 .00 2	158 100 1900 17.5 757 39 560	3 .8
no. T R Sec Tract Mo Dey Yr Source (Ca) (Mg) (Na) (K) (Fe) (Mn) (S 21 35N 30E 31 12 19 76 Well 77 6 105 362 7.1 1.46 0.01 12 26 55N 31E 26 12 19 76 Well 13 12.8 430 48.6 1.3 1.5 14 27 32 27 32 28 CDB 07 22 78 Well 490 174 293 25.4 0.3 0.02 13 23 43N 31E 00 0.8 12 19 76 Well 32.6 44 478 7.2 3.90 .80 18 12 34 32N 34E 15 ACD 12 20 76 Senng 264 182 402 7.8 .11 0.01 13 32N 34E 15 ACD 12 20 76 Well 50 28 260 5.9 .05 0.01 10 11 13 32N 34E 15 ACD 12 00 76 Well 50 28 260 5.9 .05 0.01 10 14 13 32N 34E 15 ACD 12 00 76 Well 50 28 260 5.9 .05 0.01 10 14 15 31N 32E 28 12 20 76 Well 50 28 260 5.9 .05 0.01 10 15 31N 32E 28 12 20 76 Well 50 28 260 7.2 .10 .07 11 15 31N 32E 28 12 20 76 Well 50 28 260 7.2 .10 .07 11 17 31N 30E 28 81 22 00 76 Well 50 28 260 7.2 .10 .07 11 17 31N 30E 28 81 22 00 76 Well 50 28 260 7.2 .10 .07 11 17 31N 30E 28 81 22 00 76 Well 50 28 250 150 180 180 180 180 180 180 180 180 180 18	SiO ₂ (HCO ₃) (CO ₃) (CI) (SO ₄ 2.5 1111 3.3 478 9.2 784 19.2 66.5 244 1.7.1 151 19.5 2147 1.6.6 789 15.4 33 682 1.3.1 346 53 1834 1.2.7 742 406 2288 1.0.5 476 38 338 1.3.987 1339 1.56 100 1900 1.7.5 757 39 560	3 .8
21 35N 30E 31 12 19 76 Well 76 105 362 7.1 1.46 .01 1: 26 35N 31E 26 12 19 76 Well 13 12.8 430 4.8 .13 .15 1 29 37N 37E 35 CDS 07 22 76 Well 490 174 293 25.4 .03 .02 13 34N 31E 09 DB 12 19 76 Well 92.6 4 478 7.3 .90 .60 11 34 32N 34E 15 ACD 12 20 76 Spring 264 182 402 7.8 .11 .01 13 13 33N 34E 15 BCD 12 20 76 Well 50 28 260 5.9 .05 .07 11 40 32N 33E 16 BA 12 20 76 Well 50 28 260 5.9 .05 .07 11 45 23N 33E 25 BCB 12 20 76 Well 50 28 260 5.9 .05 .07 11 46 28N 33E 32E 3CB 12 20 76 Well 50 28 260 5.9 .05 .07 11 46 28N 33E 32E 3CB 12 20 76 Well 50 28 260 5.9 .05 .07 11 46 28N 31E 24 0C 01 25 Well 50 180°	2.5 1111 3.3 475 9.2 784 19.2 68.5 2447 17.1 151 195.5 2147 18.6 789 15.4 33 682 1.1 346 53 1834 0.5 476 38 338 4.3 987 1339 156 100 1900 7.5 757 39 560	2 4
28 58h 31E 26	9.2 784 19.2 68.5 244 17.1 151 195.5 2147 18.6 789 15.4 33 682 3.1 346 53 1834 10.2 7 742 406 2288 10.5 476 38 335 4.3 987 1339 155 100 1900 7.5 757 39 560	2
293 27N 37E 25 CDB 07 22 78 Well 490 174 293 25.4 .03 .02 17 21 23 4N 37E 08 08 12 19 76 Well 30.6 41 482 402 7.8 .11 .01 13 23 4N 37E 08 08 12 20 76 Sonng 264 182 402 7.8 .11 .01 13 36 32N 34E 07 DCC 12 20 76 Well 50 28 260 5.9 .06 .07 16 40 37N 33E 18 6N 12 20 76 Well 50 28 260 5.9 .06 .07 16 48 29N 31E 24 0C 01 20 55 Well 50 28 260 7.2 .10 .07 17 18 18 24 29 20 76 Well 50 28 260 7.2 .10 .07 17 18 18 24 29 28 260 12 20 76 Well 50 28 260 7.2 .10 .07 18 18 24 29 28 260 12 20 76 Well 50 28 260 7.2 .10 .07 18 18 24 29 28 28 28 28 28 28 28 28 28 28 28 28 28	7.1 151 195.8 2142 8.6 789 15.4 33 682 3.1 346 53 1834 12.7 742 406 2288 10.5 476 38 335 4.3 987 1339 158 100 1900 7.5 757 39 560	2
22 34N 31E 08 0 8 12 19 76 Well 31,6 44 478 7.2	8.6 769 15.4 33 682 33.1 346 53 1834 20.7 742 406 2288 20.5 476 38 338 4.3 987 1339 155 100 1900 7.5 757 39 560	
34 32N 34E 15 ACD 12 20 76 Sonney 264 182 402 7.8 .11 .01 12 363 32N 34E 07 DCC 12 20 76 Well 303 177 955 10 .12 1.53 1.7 14 .01 12 1.53 1.7 14 .01 12 1.53 1.7 15	3.1 346 53 1834 53 1834 53 1834 53 1834 54 55 55 55 55 55 55	.8
38 32N 34E 07 DCC 12 20 76 Well 50 28 260 5.9 .05 .07 11 45 32N 33E 16 8A 12 20 76 Well 50 28 260 5.9 .05 .07 11 45 32N 33E 26 8C8 12 20 76 Well 50 28 260 5.9 .05 .07 11 45 32N 33E 26 8C8 12 20 76 Well 50 28 260 6.9 .04 6 64 28N 31E 24 0C 01 20 55 Well 520 150 180° 51 31N 32E 02 8B 12 20 76 Well 55 23.2 466 7.2 .10 .07 12 66 32N 34E 33 8AA 12 20 76 Well 98 40.5 320 15 .04 12 60 32N 34E 33 8AA 12 20 76 Well 98 40.5 320 15 .04 12 60 32N 34E 33 8AA 12 20 76 Well 98 40.5 320 15 .04 12 60 15 17 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 < .01 11 17 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 < .01 11 120 38N 39E 26 12 17 76 Well 71.2 41.2 30 5.6 .04 < .01 11 130 38N 38E 32 12 1 77 76 Well 196 126 92 15.3 .01 1.1 12 133 38N 38E 32 12 1 77 76 Well 196 126 92 15.3 .01 .11 11 138 28N 38E 14 CAA8 12 18 76 Well 196 126 92 15.3 .01 .11 11 138 28N 38E 14 CAA8 12 18 76 Well 3.2 10,0 760 2.0 .02 < .00 < .01 15 120 38N 38E 14 CAA8 12 18 76 Well 3.2 10,0 760 2.0 .02 < .00 < .01 15 12 38N 38E 14 CAA8 12 18 76 Well 179 99 463 6.3 < .01 0.01 10 11 120 120 120 120 17 76 Well 179 99 463 6.3 < .01 0.01 10 11 120 120 120 120 120 120 120 120	12.7 742 406 2288 10.5 476 38 335 4.3 987 1339 158 100 1900 17.5 757 39 580	.8
40 32N 33E 18 BA 12 20 76 Well 5.8 4.0 1195 3.8 .05 .04 4 5 32N 33E 25 BCB 12 20 76 Well 5.8 4.0 1195 3.8 .05 .04 4 6 29N 31E 24 OC 01 20 55 Well 520 150 180	0.5 476 38 336 4.3 987 1339 158 100 1900 7.5 757 39 560	8.
45 37N 33E 25 8CB 12 20 76 Well 5.0 150 160 17.2 1.19 18 05 0.4 42 29N 31E 24 0.C 01 20 55 Well 520 150 160 17.2 1.10 0.07 17 18 18 18 18 18 18 18 18 18 18 18 18 18	4.3 987 1339 158 100 1900 17.5 757 39 580	8.
48 29N 31E 24 OC 01 20 55 Well 520 150 160* 51 31N 32E 02 88 12 20 76 Well 55 23.2 466 7.2 .10 .07 17 68 32N 34E 32 8CA 12 20 76 Well 99 49.5 320 7.2 .15 <.01 11 67 31N 30E 34 8ACA 12 20 76 Well 99 49.5 320 7.2 .15 <.01 11 67 31N 30E 34 8ACA 12 20 76 Well 78 31 705 6.9 .54 .43 11 70 30N 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 177 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 <.01 11 173 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 <.01 11 120 36N 39E 26 12 17 76 Well 23.8 6.7 1350 5.0 .12 .03 31 38N 38E 32 12 17 76 Well 196 126 92 15.3 .01 11 128 28N 38E 14 CAAB 12 18 76 Well 3.2 10 760 2.0 .02 <.01 11 139 29N 38E 14 CAAB 12 18 76 Well 3.2 10 760 2.0 .02 <.01 11 139 29N 38E 14 CAAB 12 18 76 Well 3.2 10 760 2.0 .02 <.01 11 139 29N 38E 14 CAAB 12 18 76 Well 3.2 10 760 2.0 .02 <.01 11 179 38 N 38E 30 68 17 76 Well 3.2 10 760 2.0 .02 <.01 11 189 29N 38E 14 CAAB 12 17 76 Well 378 99 463 6.3 <.01 0.01 10 11 189 29N 38E 14 CAAB 12 17 76 Well 378 99 463 6.3 <.01 0.01 10 10 11	158 100 1900 17.5 757 39 560)
51 31N 32E 02 88 12 20 76 Weil 55 23.2 466 7.2 .10 .07 1: 68 32N 34E 29 CCC 12 20 76 Weil 140 42 442 5.9 .24 .19 11 67 31N 30E 34 8ACA 12 20 76 Weil 96 49.5 330 7.2 .15 <.01 11 67 31N 30E 34 8ACA 12 20 76 Weil 78 31 705 6.9 .54 4.3 11 70 30N 30E 06 ABCC 12 20 76 Weil 78 31 705 6.9 .54 4.3 11 70 30N 30E 26 AA 12 17 76 Weil 78 31 310 .25.2 .34 .02 11 117 36N 39E 26 AA 12 17 76 Weil 71.2 41.2 30 36N 39E 26 12 17 76 Weil 71.2 41.2 30 36N 39E 26 12 17 76 Weil 184 31 310 .25.2 .34 .02 11 130 38N 39E 26 12 17 76 Weil 184 310 .25 .2 .34 .25 11 30 38N 39E 26 12 17 76 Weil 184 310 .25 .2 .34 .25 11 30 38N 39E 26 12 17 76 Weil 184 310 .25 .2 .35 .5 .04 .01 11 11 138 29N 39E 14 CAA8 12 18 76 Weil 196 126 92 15.3 .01 .11 11 138 29N 39E 14 CAA8 12 18 76 Weil 3.2 .10 760 2.0 .02 <.00 <.00 <.00 <.00 <.00 <.00	7.5 757 39 560	
68 32N 34E 29 CCC 12 20 76 Well 140 42 442 5.9 .24 .19 11 80 32N 34E 33 8AA 12 20 76 Well 98 49.5 320 7.2 .15 <.01 11 67 31N 30E 34 8ACA 12 20 76 Well 98 49.5 320 7.2 .15 <.01 11 70 30N 30E 08 ABCC 12 20 76 Well 78 31 705 6.9 .54 .43 11 17 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 <.01 11 17 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 <.01 11 30 35N 36E 26 12 17 76 Well 23.8 6.7 1350 5.0 .12 .03 131 35N 35E 32 12 17 76 Well 196 126 92 15.3 .01 .11 11 39 29N 38E 14 CAAB 12 18 76 Well 36 126 92 15.3 .01 .11 11 39 29N 38E 14 CAAB 12 18 76 Well 36 126 92 15.3 .01 .11 11 15 128 42E 06 12 17 76 Well 179 99 463 6.3 <.01 .01 10 11)
80 32N 34E 33 8AA 12 20 76 Well 98 49.5 320 7.2 1.5 < 0.01 1/1 76 31N 30E 34 8ACA 12 20 76 Well 78 31 705 6.9 54 4.3 1 70 30N 30E 08 ABC 12 20 76 Well 78 31 705 6.9 54 4.02 11 117 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 0.4 < 0.01 11 120 36N 39E 26 12 17 76 Well 23.8 6.7 1350 5.0 1.2 0.3 1 130 35N 36E 32 CDD 12 17 76 Well 196 126 92 15.3 0.01 1.1 11 139 29N 38E 14 CAA8 12 18 76 Well 196 126 92 15.3 0.0 1.1 11 139 29N 38E 14 CAA8 12 18 76 Well 196 126 92 5.3 0.0 0.0 0.01 11 150 28N 38E 14 CAA8 12 18 76 Well 196 126 92 5.3 0.0 0.01 0.01 11 151 28N 42E 06 12 77 76 Well 179 99 463 6.3 < 0.0 0.01 0.01 11 151 28N 42E 06 12 77 76 Well 179 99 463 6.3 < 0.0 0.01 0.01 11 179 99 463 6.3 < 0.0 0.01 0.01 11		
67 31N 30E 34 BACA 12 20 76 Weil 78 31 705 6.9 54 4.3 11 170 50N 30E 08 ABCC 12 20 76 Weil 546 164 310 5.25.2 .34 .02 11 117 36N 39E 26 AA 12 17 76 Weil 71.2 41.2 30 5.6 .04 <.01 11 120 36N 39E 26 AA 12 17 76 Weil 21.8 6.7 1350 5.0 .12 .03 131 36N 35E 32 12 17 76 Weil 21.8 6.7 1350 5.0 .12 .03 131 36N 35E 32 12 17 76 Weil 196 126 92 15.3 .01 .11 11 138 29N 38E 14 CAAB 12 18 76 Weil 3.2 1.0 760 2.0 .02 <.01 11 15 28N 38E 14 CAAB 12 18 76 Weil 3.2 1.0 760 2.0 .02 <.01 15 15 28N 42E 06 12 17 76 Weil 179 99 463 6.3 <.01 .01 10 11	8.4 724 95 716	
70 30N 30E 08 ABCC 12 20 76 Well 71.2 41.2 30 5.5 .04 <.02 11 117 36N 30E 26 AA 12 17 76 Well 71.2 41.2 30 5.5 .04 <.01 11 120 36N 39E 26 CDD 12 17 76 Well 23.8 6.7 1350 5.5 .0 12 .03 131 36N 35E 32 CDD 12 17 76 Well 196 126 92 15.3 .01 .11 13 136N 35E 32 12 17 76 Well 196 126 92 15.3 .01 .11 13 139 28N 38E 14 CAA 81 12 18 76 Well 3.2 1.0 760 2.0 .02 <.04 151 28N 38E 14 CAA 81 12 18 76 Well 196 126 92 15.3 .01 .01 11 15 15 128N 42E 10 12 17 76 Well 178 99 463 6.3 <.01 .01 11 12 151 28N 42E 10 12 17 76 Well 178 99 463 6.3 <.01 .01 11 12 12 12 12 12 12 12 12 12 12 12 12	6.2 416 118 563	
117 36N 39E 26 AA 12 17 76 Well 71.2 41.2 30 5.6 .04 < .01 11 120 36N 39E 26 12 17 76 Well 230 242 320 34.8 2.14 .85 14 130 38N 38E 32 CDD 12 17 76 Well 23.8 6.7 1350 5.0 .12 .03 131 38N 38E 32 12 17 76 Well 196 126 92 15.3 .01 .11 12 139 29N 38E 14 CAA8 12 18 76 Well 3.2 1.0 760 2.0 .02 < .01 15 128N 42E 06 12 17 76 Well 179 99 483 6.3 < .01 .01 10 11	6.5 773 74 1072	2
120 36N 39E 26 12 17 76 Well 230 242 320 34.5 2.14 .55 11 130 35N 35E 32 CDD 12 17 76 Well 23.8 6.7 1350 5.0 .12 .03 131 36N 35E 32 12 17 76 Well 196 126 92 15.3 .01 .11 138 29N 38E 14 CAAB 12 18 76 Well 3.2 1.0 760 2.0 .02 <.01 151 28N 42E 06 12 17 76 Well 179 99 463 6.3 <.01 .01 11	5.4 150 209 2184	ı
130 35N 35E 32 CDD 12 17 76 Well 23.8 6.7 1350 5.0 .12 .03 131 35N 35E 32 12 17 76 Well 196 126 92 15.3 .01 .11 11 138 29N 38E 14 CAAB 12 18 76 Well 3.2 1.0 760 2.0 .02 <.01 .15 28N 42E 06 12 17 76 Well 179 99 463 6.3 <.01 .01 11	7.8 268 30.4 136	3
131 36N 35E 32 12 17 76 Well 196 126 92 15.3 .01 .11 1: 138 29N 38E 14 CAAB 12 18 76 Well 3.2 1.0 760 2.0 .02 < .09 151 28N 42E 06 12 17 76 Well 178 99 463 6.3 < .01 .01 11	6.7 1295 79 1069	,
138 29N 38E 14 CAA8 12 18 76 Well 3.2 1.0 760 2.0 .02 <.01 151 28N 42E 06 12 17 76 Well 179 99 463 6.3 <.01 .01 16	7.4 666 126 2187	,
151 28N 42E 06 12 17 76 Well 179 99 463 6.3 <.01 .01 16	3.5 664 16.5 621	
	7.1 1179 9.6 464	.6
	6.4 362 163 1131	1
153 28N 42E 20 12 17 76 Well 114 79.2 520 9.5 .01 .01 15	5.6 301 110 1263	4
159 28N 39E 08 12 18 76 Well 6.1 1.4 950 2.5 ,07 < ,01 1	7.9 1167 823 11	.5
184 31N 34E 02 C 09 26 33 Well 59 64 3300*	310 5100	
186 33N 43E 16 CA 08 24 56 Well 430 78 840°	465 900 1500	,
186 30N 44E 07 DDD 07 26 68 Well 690 170 9600°	370 14000 3700	
190 27N 43E 31 8BB 10 09 47 Well 161 61 193 16 .30 16	6 441 25 672	2
191 27N 44E 32 DCD 09 05 63 Well 228 .35	382 660)
192 29N 36E 03 CAA 11 15 57 Well 39 18 3600°	660 74 5200 21	
193 32N 31E 09 AB 06 20 89 Well 12 1 960 15	000 /4 5200 21	3

Note: All chemical detaine given in milligrams per liter (mg/l) unless otherwise stated. * Velues reported as sodium plus potassium.

1° x 2° Sheet

of Selected Waters

						طضا									
N	Δp		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Trace	
r	ef.	Nitrate	ride	Lab	Temp.		solids	hardness	alkalinity	adsorption	Collecting	depth	Aquifer	elements	Lab
п	ю.	(N)	(F)	pН	c°	(µmho/cm)	(catc.)	as CaCO3	es CaCO ₃	ratio	agency	(ft.)	code	analyzed	number
	21	.029	.4	7,27	12	2452	1620	622	911	6.3	MBMG		211JORV	Y84	76M150
	26	.032	.8	8.57	10	1896	1186	85	875	20.3	MBMG	35		yes	76M150
	29	.039	2.9	7.38	41.3	3915	3419	1940	124	2.9	USGS	3188	331MDSN	yes	76M1859
	32	.203	.4	8.53	9	2553	1763	415	673	10.2	MBMG		1120RFT	yes	76M1510
	34	2.350	.3	7.64	11	3431	2929	1410	284	4.7	MBMG			yes	76M161
	36	<.023	.4	7.65	6	2734	4519	1480	609	10.8	MBMG	89	110ALVN	t yes	76M151
	40	.165	.4	7.88	8	1508	964	240	390	7.3	MBMG	30		Ass	76M1515
	45	<.023	.9	8.29	9	5290	3040	31	810	93.5	MBMG	135		yes	76M1612
	48			6.40				1920	128		Unknown	1	331MDSN	no 1	55M000
	51	<.023	.4	7.93	28	2315	1541	233	621	13.3	M8MG			yes	76M1510
	56	.249	.4	7.63		2531	1817	552	594	8.4	MBMG	96		y##	76M1515
		19.654	.5	7.77	7.5	2114	1396	448	341	6.6	MBMG	53		yes	78M151
	67	<.023	.6	8.25	12	3418	2366	322	634	17.1	MBMG	90	110ALVA	4 yes	76M1518
	70	<.023	3.0	7.57	0	3945	3541	2040	123	3.0	MBMG	300		yes	76M1617
1	17	4.560	.2	7.47	10	766	469	347	220	.7	MBMG	40		Ass	78M150
	20	.075	.3	7.28		3507	2623	1570	1060	3.5	MBMG	20		yes	76M150
	30	.041	.3	8.25	10	5582	4034	87	546	63.0	MBMG		211JORY		76M150
	31	.106	<.1	7.59	8	1939	1408	1010	545	1.3	M8MG		1120RFT	V01	76M150
1	39	.050	2.7	8.41	12	3076	1831	12	983	95.1	MBMG	187		yes	76M150
1	51	37.300	.1	7.78	9	3261	2293	854	297	6.9	MBMG	26		yes	76M1 494
1	53	10.620	.4	7.92	9	3114	2270	611	247	9.2	M8MG	35		yes	76M149
1	59	.038	2.3	8.28	12	4066	2380	21	957	90.2	MBMG	300	211JDRV	yes	76M150
1	84							411	254		Unknown		211FRNF	on i	33M0000
1	85			7.60				1400	381		Unknown		337MSNC	no	56M0016
1	86			7,20				2420	303		Unknown		331CRLS	no	68 M0006
1	90	1.355	.5	7.60		1900	1363	653	362	3.3	USGS	30	110ALVA	1 no	47 M0056
	91			7.70	14,4	1780		487	313	4.5	USG5	28	110ALVN	no P	63M005
	92			8.50				171	865		Unknown		211FRNF	no	57 MOOO:
1	93			8.30				34	1870		Unknown		217KOTN	l no	69M0008

GLASGOW 1" x 2" Sheet

Trace Elemants Analyses Sheet

ow																						
Cab	76M1508	76M1509	76M1859		76M1614	.82 76M1513	.25 76M1616	76M1512	.01 76M1516	76M1519		76M1518	76M1617	76M1500	76M1501	.13 76M1502	1.10 76M1503	76M1606	.26 7tM1499	76M1498	76M1507	
Zinc (I/Bul)	. 8	10 0		23 < .01	0.	.82	35	90	<u>.</u>	1.44	90		0	1.	<u>e</u>	.13	4.10	8	.26	34.	8	
Tio mg/I) (9	12		23	.64	19	9	0.	<u>e</u>	9	.24	.22	99	27	7.	9	4	9	¥	98	90:	
Stron- Silver (ium Tin Zinc (mg/l) (mg/l) (mg/l)	1.95	8	12.10	1.19	2.60	3.24	.42	.61	.87	1.18	6	1.1	12.70	99	2.60	1.14	38	2	1.31	1.69	38	
Selenium (Jb/II)	<20	V 20		<2.0	41.6	<2.0	< 2.0	\$	V 2.0	3.6	115	V2.0	V 2.0	37	<2.0	<2.0	V 2.0	V 2.0	98	62	<2.0	
Phosphete (Total dissolved)	613	264	072	0.026	.062	049	7.55	980	104	.023	.023	.033	.062	020	910	.033	910	890	910	.023	.062	
		0 >		0	6	9	0.	V.01	6	.03	V.0.	V.01	0	0.0	8	0	6	0,0	9	ó	V.01	
Mer- cury Nickel (tto/l) fme/l)	V	V		۲. ک	E : V		6 .			۲, ک				٥ ک						Ş	Ş	
Lith.		8		32	30		60			13				8		23	60	7	12:	8	18	
Leed [ma/l]		8		> 06	90	8	90°V	90° V	<0.05	V 99	>,06	V,05	2.	V:05	90	90:>	90	90. V	\ \	90'	9 0.0	
Copper [ma/II]		5 5	,	10.>	ō.	07	9.	9	V.01	V.01	0.	10.	8	.16	.02	9	<u>.</u>	6	.13	.02	9	
Cad. Ohro- mium mium fmaill fmaill	, i	, i	,	V 0		V,0	, V	V V	V.01	<u>0</u> .	V.01	0. V	0.0	10. V	V.01	V.01	٥. م	ō.	0. V	V.0	V.01	
Cad															•							
6 or on		6	9	1.7	75	1.8	45	3.3	.85	89	.62	=	3	.12	5	2.2	.20	6.2	.3	#	4.7	
Beryl.																			_			
Ar. senic	3	;	?	< 2.0	\ 2.0	V 2.0	<2.0 <	\$ \$	\$ \$	<2.0	<2.0	2.6	<2.0	V2.0	V2.0	V 2.0	A2.0	V 200	V 200	~3.0	4 20	
Anti- Ar- mony senic	,	, ·	,	5	4	4.	7	, V	Ÿ	? V			.40	× ×						Ÿ	7	
Alu- Anti- Ar- minum mony senic		9 8		8	8	80	90	50'	90.	90	V.05	8	.07	8	2	8	90	V.06	=	8	80	
Location	The second	20 N 30E 31	30N 31E 26	32N 32E 35 CDB	32N 34E 15 ACD	32N 34E 07 DCC	32N 33E 16 8A	32N 33E 25 BCB	31N 32E 02 8B	32N 34E 29 CCC	32N 34E 33 BAA	31N 30E 34 BACA	30N 30E 08 ABCC	117 36N 39E 28 AA	36N 38E 26	35N 36E 32 COD	36N 35E 32	29N 38E 14 CAAB	28N 42E 05	28N 42E 20	28N 39E 08	
Map ref.			9 8	2 22	8	36.3	40	45 3	61	56 3	80		70.3	117	120	130			191	163 2	169	

LOCATION BASE MAP

GLENDIVE 1° x 2° SHEET

IO KILOMETERS

CONTOUR INTERVAL 100 FT

SPECIFIC CONDUCTANCE SURVEY

GLENDIVE 1" x 2" Sheet

Specific Conductivity Inventory Sheet

iter Je Qwner's name
Aquiter
depth Ht.J
Altstude level
Altitue
Field temp. Leb Altitude C analysis (It.)
Specific conductivity at 25 C
Site description
Flow or Yield E = estimeted M = measured
Collection Flow or Yield Location date E-estimated T R Sec Tract Mo Day Yr Source Minmessured
Location T R Sec Trace
County
Map rat. Field no. number

		Owner's name																													
	Annibas	Code			331KBBY					331KBBY		331CRL5	331KBBY			217DK0T	320AMSD				331KBBY										
	Well	tr.1																													
Static		(fg.)																													
		(ft.)			2400					2600		2580	2680			2550	2550				2600										
		analysis (ft.)	9	8	10.	. A .	9	90	7.01	¥ 0.1	9	Yes	Ye.	2	9	Xe3	19 A	90	90	90	Yes	90	Yes	٤	Yes	2	90	8	90	Yes	
	Field	C C				6																									
		et 25 C	8300	1480	150300	099	4560	4620	1180		28000	20900	44800	3440	11800	0969	01800	3840	280	4100	18530	400	4600	8800	2094	0909	460	310	6600	2445	
	10 1	d Site description	Wolf Creek below reservoir, much elkati	Bearing on Wolf Creek alkall sloop sides	17 miles MW of Richev	1 Wolf Creak near Vide on highway 13	Cow Creek	On Hey Creek, dryland farming area		19 miles NW of Circle	Emergency discharge pit, 2 pits both full	19 miles NW of Circle	16 miles N of Circle	Stock use, rengeland	Duck Creek	18 miles N of Circle	3 miles NE of Circle	Stock use	Small reservoir in dryland ferming erea	Well and hand pump in poor condition	50 miles E of Winifred	On Lost Creek	Lost Creek Reservoir	Lost Creek, elkali elong banks, dry land ferming erea	Lost Creek et highway 13 bridge neer Circle	Lost Creek, much elkalt	Two acres in size	Small reservoir	Horse Creek, drylend ferming erea	_	
	Flow or yield	E = estimated M = measured	no flow			0.2 cfs (E)			2.7 cfs (E)						no flow										2 cfe (E)	no flow			no flow	2.7 cts (E)	
	ĸ	Mo Dey Yr Source	08 30 75 Creek	OR 20 76 Beservoir	07 23 66 Well	03 16 76 Creek	08 30 75 Creek	08 30 75 Reservoir	03 16 78 Creek	02 22 65 Well	08 30 75 Pit	09 10 66 Well	02 02 65 Well	08 30 75 Well	08 30 75 Creek	02 01 52 Well	02 10 52 Well	08 30 75 Well	08 29 75 Reservoir	08 29 75 Well	08 10 65 Well	08 29 76 Reservoir	08 29 75 Reservoir	08 29 76 Creek	03 16 76 Creek	08 28 76 Creek	08 29 75 Reservoir	08 29 76 Reservoir	08 29 75 Creek	03 16 76 River	
		T R Sec Tract	24N 48E 14	24N 49F 14	24N 50E 19 CB	24N 49E 31 BB	23N 47E 35	23N 49E 25	22N 49E 01 DA	22N 46E 22 AA	22N 47E 1B AC	22N 46E 32 AB		22N 48E 30 8B	22N 48E 30 B	22N 48E 25 BD	22N 48E 25 BD	21N 48E 05 BC	21N 48E 08	21N 47E 26 DC	21N 45E 1288	21N 47E 36 BD	21N 47E 30	20N 48E 03 BC	20N 48E 18 DA	20N 49E 19	20N 48E 27	19N 48E 03 BC	19N 48E 09 B	19N 48E 11 BA	
		County	McCone	MeCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	McCone	
	Map	no. number	31 WOB18	32 not on map	34 55M0046	35 WQB45	36 WOB15	37 WQB16	38 WQ847	39 65M0043	40 WOB14	41 65M0044	42 65M0045	43 WOB13	44 WOB12	45 52M0002	40 52M0003	47 WQB11	48 WQB8	49 WQB6	50 65M0042	51 WOB4	52 WQB7	52 WQ85	54 WOB44	55 WG89	56 WOB3	57 WQ82	58 WQ81	68 WQ843	

GLENDIVE 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name					
Aquifer	217MOOY 217MDDY 331CRL5			331MDSN	
Well depth					
Static water lavel (ft.)					
Altitude	3370 3070			2380	
del sisylen	!!!!!	2 2 2 2 3		5 2 2 5 A 2 2 5 A 2 2 5	2 2 2 2 5
Field temp. Lab A C analysis	23		6 6 6 C	9 0	
Specific conductivity at 25 C	6030 115800 5860 3638	2400 4180 400 3530 3704	2733 · 7390 6260 1827 200 4469 1200 6000 6000	9220 1118 3840 660	1120 2140 4820 2260 1300
Ste description	12 miles & of Crade On Rapeaner News, large seep area 18 miles & of Crade 22 miles W of Gendie Middle Charlie Creak	P fee acres in size 20 years from coad 5 cock ves, surrounded by seep Unused		Jeffrey Greek, elgal sample taken Frem Hay Creek, elgal sample taken Rangelsen 1 Third Hey Creek 11 miles SW of Felview	Second Hay Creek Fire Hay Creek, dryland ferming eree for the Creek, dryland ferming eree for Second Hay Creek, altest below dam Onyland farming eree frigation return canel
Flow or Yield E = estimated M = measured	2 cfs (E)	0.5 cfs (E)	5 cfs (E) 1 gam (E) no (tow 3 cfs (E) 1 cfs (E) no 11ow 0 5 cfs (E) no 11ow no 11ow	1 gpm (E) 7 cfs (E) 0.6 cfs (E)	2 cfs (E) 0.8 cfs (E) 2 cfs (E)
Collection date Mo Day Yr Source	11 02 69 Well 09 02 75 Reservoir 11 26 69 Well 03 10 52 Well 06 15 78 Creek	10 07 75 Ceek 10 09 75 Reservoir 10 07 75 Reservoir 10 07 75 Wall 12 16 76 Well	06 15 16 Creek 06 15 5 Sep 00 15 18 Creek 06 15 18 Creek 10 09 75 River 10 09 75 River 06 15 78 Creek 06 15 78 Creek 06 15 78 Creek 06 15 78 Creek	06 15 78 Creek 06 15 78 Creek 10 07 75 Reservoir 10 06 75 Creek 08 63 Well	10 08 75 Creek 10 07 75 Creek 10 07 75 Raservoir 10 07 75 Creek 10 06 75 Cansl
Location T R Sec Tract	17N 48E 01 CC 17N 46E 16 DD 16N 49E 17 DO 16N 50E 23 C8 26N 54E 36 8AA	26N 57E 35 25N 56E 07 25N 58E 14 25N 59E 18 AA 25N 58E 22 AAC	28N 58E 31 00D 28N 58E 32 000 28N 58E 32 000 28N 59E 31 000 28N 59E 32 000 24N 52E 06 24N 53E 25 88 24N 53E 26 88 24N 53E 26 88	24N 53E 36 CC 24N 58E 18 OD8 24N 58E 17 AA 24N 59E 24 24N 58E 29 BCA	24N 58E 25 24N 59E 32 A 24N 59E 32 A 23N 58E 05 C 23N 80E 06 B
County	McCone McCone Pravie Pravie Richland	Richland Richland Richland Richland	Richland Richland Richland Richland Richland Richland Richland Richland Richland	Richland Richland Richland Richland Richland	Richland Richland Richland Richland Richland
Map ret. Freid no. number	61 69M0003 62 W0841 63 69M0002 64 62M0004 66 W0848	66 WOR18 67 WOR26 68 WOR15 69 WOR16 70 WOR55	71 WOB40 72 WOB39 73 WOB34 74 WOB37 75 WOB38 76 WOB31 77 WOB29 78 WOB45 80 WOB45	81 WO844 82 WQB36 83 WQB12 84 WOB20 85 63MQ011	86 WO821 87 WO811 88 WO813 89 WO810 80 WO853

GLENDIVE 1" x 2" Sheet (Con't.)

			Owner's name	Huntof																													
		Aquiter	epoa																														
		depth	E.																														
Static			Ξ																														
		Mistude	3																														
		Lab Altitude	analysis (ft.)	y & s	Yes	y 4:5	no no	90	¥ 65		90	yas	Yes	Ne.	90	9	90	9	9	9	90	Yes	2	9	90	Yes	9	ē	2	90	90	90	9
1		temp.	U		18	18																16				91							
		_	at 25 C	1468	1205	1381	0691	4620	8210		43200	1228	1386	1363	3540	1030	940	2880	1050	6200	960	366	620	1640	2080	2146	1840	2460	7500	3980	2080	1190	1700
			Site description	Irrigation return canal	North Fork Lone Tree Creek	South Fork Lane Tree Creek, algal sample taken	Surrounded by dryland farming	Surrounded by dryland larming	East Redweler Creek, algal sample teken		Water towl management project, large alkali flat	Huntof term irrigation return	frrigation raturn	frrigation raturn near Montana-Dakota Utility substation	Bonnie Peer Creek, some dry land farming	Fox Creek at bridge	Fox Creak	O'Brien Creek, rangeland area	Sears Creek at bridge	Shadwell Creek, rangeland area	Duntop Creek	Mein irrigation raturn canel	Garden Coulee	Beef Stough Creek	On W side of highway 200, much selts	Burns Creek	Burns Creek at Nay Bridge	Smith Creek	C. S. O'eek, much alkell, rengeland area	Salts line reservoir, rangeland area	Safte line reservoir and coules	One to two acres in size	Lined with elkeli, dryland farming erea
	Flow or yield	E - estimated	M = messured	2 cfs (E)	6 cfs (E)	6 cfs (E)			11 gpm (E)			3 cfs (E)	2 cfs (E)	3 cfs (E)	<0.1 cfs (E)	20 cls (E)	6 cts (E)	150 gpm (E)	6 cfs (E)	25 gpm (E)	1 cfs (E)		1 cfs (E)	1 cfs (E)	1 cfs (E)	3 cfe (E)	6 cfs (E)	no flow	no flow				
	u	dete	Mo Day Yr Source	10 08 75 Canel	06 15 76 Creek		09 08 75 Reservoir	09 08 75 Spring	06 15 76 Creek		09 08 75 Lake	10 08 75 Canel	10 08 75 Canet		10 08 75 Creek		09 09 75 Creek	10 08 75 Cresk	06 15 78 Creek	10 08 76 Creek			09 09 75 Coules	09 06 75 Creek	09 08 75 Spring	09 08 75 Creek	06 15 76 Creek	09 03 75 Creek	09 03 75 Creek	09 03 75 Reservoir	09 75 Reservoir	09 03 76 Reservoir	09 03 75 Spring
		Location	T R Sec Tract	23N 60E 06 A	23N 57E 01 DDD	23N 57E 09 DOO	23N 56E 28 BC	23N 56E 34 AD	23N 53E 36 BBC		22N 65E 10 C	23N 59E 24 B	23N 59E Z5 A	22N 59E 08 DBB	22N BOE 1B	22N 58E 26 ADC	22N 58E 25	21N 59E 08	21N 58E 32 CAA	20N 59E 07	20N 58E 2B	20N 68E 29 ADD	20N 58E 32	19N 5BE 07	19N 58E 07 AB	18N 57E 28 CCC	19N 67E 26 CCC	19N 60E 29	18N 60E 17	17N 60E 07 D	16N 69E 20 DB	16N 59E 25 BO	18N 69E 28
			County	Richlend	Richland	Richland	Richland	Richland	Richland	_	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Richland	Wibeux	Wibeux	Withoux	Withoux	Wilbeux	Withux
		rel. Field	no. number	S1 WO852	92 WQB41	93 WQB42	94 WQB8	96 WQB9	96 WOB43	97 not on map	98 WQ87	99 WOB51	100 WQB54	101 WQB22	102 WQB23	103 WOB35	104 WQB1	105 WQ624	108 WQB34	107 WQB25	109 WQ86	108 WQ833	110 WOB5	111 WOB3	112 WQB4	113 WQB2	114 WQB32	115 WOB10	116 WO89	117 WQB8	115 WQ88	118 WQB11	120 WQB7

GLENDIVE 1° x 2° Sheet (Con't.)

	Owner's name									
	Aquifer code Ov									337MSNC
										33
STATIC	level de									
n	Field water Well temp Lab Alstidde level depth C analysis (Rt.) (Rt.) (Rt.)									
	abysis	5 Ou	2 8	2 2	Yes	es	Y 0.5	yes	yes.	1 1 A
	fueld C C an	> c	c (: c	9.0	,		22 v		20.5 y
	· vity O	00			9					
	Specific conductivity at 25 C	4820	368	500	232	3550	366	397	403	2426
	uoridizsep aris	25 gpm (E) Area surrounded by dryland farming 2 cts (E) Beaver Creek N of Wilsoux	Little Beaver Creek	Uses a hand pump, dryland farming area	Redwater River					
	Flow or Yield E = estimated M = measured	25 gpm (E) 2 cts (E)	0 5 cfs (E)							
	Collection Location date T R Sec Fract Mo Day Yr Source	09 03 75 Spring 09 03 75 Creek	09 03 75 Creek	09 03 75 Well	07 27 76 River	07 27 76 River	07 28 76 River	07 27 76 River	07 28 78 River	07 28 76 Rwer 05 16 52 Well
	Location T R Sec Tract	16N 59E 25 CD	15N 60E 14 8B	15N 60E 27 BC	25N 51E 09	20N 49E 20	20N 49E 20	25N 51E 24	25N 51E 24	25N 51E 09 23N 50E 19 BCO
	County	Wibeux	Wibaux	Wibaux	McCone	McCone	McCone	McCone	МсСопе	McCone
	Map ref Fretd no number	121 WOB12 122 WOB5	123 WDB3	125 WQB2	126 EPA RW2	127 EPA RW5	12B EPA RW5	129 EPA EF1	130 EPA EF1	131 EPA RW2 132 52M0005

Chemical Analyses

Mac		Collection			Magne-		Potes-		Mange-		Bicer-	Car-		
rei.	Location	date		Calcium		Sodium	sium	Iron	nese	Silice	bonete		Chloride	Sulfate
no.	T R Sec Tract	Mo Dey Yr	5ource	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(5:02)	(HCO ₃)	(CO ²)	(CI)	(50 _e)
1	23N 51 € 36	07 27 67	River	47.3	65	486	8.1	<.01			467	34	18	980
2	22N 50E 29	07 27 76	River	37.3	77	537	8.3	<.01			467	31	10	1096
7	19N 53E 32 CD	09 23 76	Creek	280	410	280	45				739		64	2250
12	18N 51E 15 CC	03 20 69	Well	4700	580	46000	1800				512		80000	2800
13	18N 51E 15 CC	04 10 69	Well	44	7	3200	34				1760	96	3500	630
	16N 56E 33 CD	03 15 76		56	72	250	5.5				468	2	10.3	575
	16N 56E 20 CC	03 15 76		21.2	10.7	85	6.7				181		4	145
22		07 19 60		2600	570	120000°					122		190000	2400
	26N 48E 34 CC	03 16 76		64	56	245	14,9				223		7.1	715
30	24N 47E 18 CB	11 20 66	Well	1300	180	22000°					305	42	31000	7900
	74N 50E 19 C8	07 23 56		1700	140	46000	540				146		73000	3100
	24N 49E 31 BB	03 16 78		39.8	21.5	42	12.5				132		3.7	177
	22N 49E 01 DA	03 16 78		53	39.3	135	12.3				256		3.7	375
	22N 46E 22 AA	02 22 65		560	56	3000°					173		4200	2000
41	22N 46E 32 AB	09 10 65	Well	500	64	4500	180				354		4800	4400
42	22N 47E 30 80	02 02 65	Well	1300	220	9500	200				207		16000	2800
45	22N 48E 25 BD	02, 01 52	Well	6		1900°					1960	50	1100	970
46	22N 48E 25 8D	02 10 52	Well	510	50	19000°					560		26000	7000
50	21N 45E 12 BB	09 10 65	Well	360	47	4400	70				488		3600	5000
52	71N 47E 36	08 29 75	Pond	28.5	247	800	13.1				301	170	1.5	2240
54	20N 48E 18 DA	03 16 76	Creek	36.9	68	350	15.5				368		4	810
59	19N 48E 11 BA	03 16 76	Creek	8:	93	365	10				392		9.9	1020
81	17N 48E 01 CC	11 02 69	Well	12	17	2600°					2030	24	2800	32
62	17N 46E 16 DD	09 27 75	Reservo	r 51	331	1150	18.1				178	114	12	3460
63	16N 49E 17 DD	11 26 69	Well	18	8	2400°					1980		2600	22
64	16N 50E 23 CB	03 10 52	Well	360	43	1100*					200	59	1100	1600
66	26N 54E 36 BAA	06 15 76	Creek	40.9	97	728	11	.26	.07		395	38	7.8	1610
70	25N 58E 22 AAC	12 16 78	Well	463	280	155	19				573		78	1880
71	25N S8E 31 D0D	06 15 76	Creek	196	233	139	16	<.01			357		1.8	1400
72	25N 58E 32 DOD	06 15 76	Seep	202	404	1215	78	.26	.35		781		17	4100
73	25N 68E 28 DO	10 07 75	Creek	117	184	935	18				543	13	88	2400
74	25N 59E 31 CCD	06 15 76		72	52	272	10	.46			301		7.2	700
	24N 53E 25 888	06 15 76		97	180	774	17	.33			549		7.5	2025
	24N 63E 38 CC	06 15 76		157	371	1566	20	<.01			382		8	4850
82	24N 58E 16 DD6	06 15 76	Creek	84	49.8	74	13	.54	.04		233		9.5	380
	24N 58E 29 BCA				1300	110000°					146		200000	280
	23N 60E 06 B	10 08 75		71	67	126	8				518		12.3	270
	23N 60E 08 A	10 08 75		32.0	90	175	9.4				537		12.8	360
	23N 57E 01 DOD	06 15 76		98	68	53	14	.06			220		4.2	460
93	23N 57E 09 DDD	06 15 76	Creek	110	111	38	11	.17	.06		296		10	540
	23N 53E 36 BBC	06 15 78		64	243	1940	15	.20	.06		558	18	10.5	4550
	23N 59E 24 B	10 08 75		91	67	81	9.5				467		10.9	280
	23N 59E 25 A	10 08 75		107	74	102	14				893		20.8	190
	22N 59E 08 D88	10 08 76		75	73	127	9				639		10.8	290
109	20N 58E 29 ADD	06 15 76	Creek	32.1	4.4	34	2.8	25	.70		108		5	75

Note: All chemical date are given in milligrams per liter (mg/l) unless otherwise stated. * Values reported as sodium plus potassium.

of Selected Waters

					Lab									
Mep		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Wett		Trace	
ref.	Nitrate	rida	Lab	Temp.	conductance	solids	hardness	alkalinity	adsorption	Collecting	death		elements	
no.	(N)	(F)	ρH	c°	(µmho/emi	(cate.)	as CaCO ₃	as CaCO3	ratio	agency	(ft_)	code	analy zed	number
1	.03		8.84	22	2574	1866	388	439	10.8	EPA			Yes	76W1714
2	.01		8.78	21	2760	2046	410	427	11.5	EPA			Yes	76W1715
7	.02		7.9	21	5540	3693	2390	606	2.5	WQB			No	76W2342
12			6.7			134300	14100	420	168	Unknown		337MSNC	No.	63M0010
13			8.3			8378	139	1600	118	Unknown		217MD0	Y No	69M0004
19	.09		8.42		1733	1427	434	378	5.2	WQB			No	76W0482
21	.26		7.91		593		97	132	3.6	MOS			No	7 0W 0483
22			4.40				8340	100		Unknown		320AM50	No No	80000M08
27	1.9		7.51	.2	1656		390	183	5.4	WQB			No	76W048B
30			8.8				3990	320		Unknown		331CRLS	No	66M0028
34			7.1			124600	4820	120	288	Unknown		331K88Y	No	65M0046
35	.05		7.37	.2	650		188	108	1.3	WQB			No	76W04B7
38	.37		7.63		1190	874	295	209	3.4	WQB			No	76W0486
39			7.5				1630	142		Unknown		331K8BY	No.	66M0043
41			7.4			14620	1510	290	50.4	Unknown		331CRLS	No	65M0044
42			7.5			29920	4150	170	64.2	Unknown		331K86Y	No	65M0045
45			8.0				15	1710		Unknown		217DKQ1	No	52M0002
46			6.9				1480	459		Unknown		320AMS0	No	52M0003
50			7.4			13720	1090	400	57.9	Unknown		331K66Y	No	65M0042
52	.01		9.57		4600	3802	1090	531	10.5	MGB			No	75W1761
54	.22		7.79		2094		372	302	7.9	WQB			No	76W0485
59	.05		8.07		2445		585	321	6.6	WQB			No	76W0484
61			B.2				100	1700		Unknown		217MDD	Y No	69M0003
62	.02		9.56		8030	5312	1490	334	13.0	WQB			No	75W1763
63			8.0				78	1820		Unknown		21 7MDD	Y No	69M0002
64			8.3				1080	262		Unknown		331CRLS	No	52M0004
65	.16		8.8	23	3639	2727	500	388	14.2	WQB			Yes	76W1070
70	34		7.6		3704	3189	2310	470	1,4	WQB	20		No	78W2847
71	.02	.09	7.9	16	2733	2182	1450	293	1.6	WQB			Yes	76W1064
72	.08	.09	8.1	19	7390	6401	2170	640	11.4	WQB			Yes	76W1063
73	.04		8.52		5260	4299	1050	467	12.6	WQB				75W2111
74	.05	.10		19	1827	1262	395	247	8.0	WQB				76W1062
78	.03	.08	8.1	23	4489	3351	900	450	11.2	MOB				76W1069
81	.04	.06	8.3	19	8220	7152	1920	313	15.5	MOS			Yes	76W1068
82	.08	.12	7.7	10	1116	726	415	191	1.6	MOS			Yes	75W1061
85			5.5				35300	120		Unknown		33 1MDSN		63M0011
90	2.1		8.12		1300	1072	450	423	2.6	WQB			No	75W2107
91	.17		8.18		1468	1217	452	440	3.6	MGB			No	75W2106
92	.04	.09	7.5	19	1205	806	525	180	1.0	WG8			Yes	76W1065
93	.64	.11	7.8	19	1 39 1	964	732	243	.8	WQB			Yes	76W1066
96	.07	.15	8.5	22	8210	7117	1160	490	24.8	WQB				76W1087
99	1.7		7.93		1228	1009	505	383	1.6	WQB			No	75W2106
100	.68		7.98		1386	1202	573	568	1.9	WQB			No	75W2104
101	1.1		8.07		1353	1124	486	442	2.5	WQB			No	75W2103
109	.27	.24	7.9	16	355	207	98	89	1.5	WQ8			Yes	76W1080

Chemical Analyses

Мар					Ço	ilec	ion			Magne-		Potes-		Manga-		Bicar-	Car-		
ref.		ما	CBTIC	on		late			Calcium	SILIM	Sodium	sium	iron	nese	Silica	bonate	bonate	Chloride	Sulfate
no.	т	R	Sec	Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₃)	(CO ³)	(CI)	(SD ₄)
113	198	57	E 26	CCC	06	15	76	Creek	68	104	298	11	1.7	.06		576	5	7.5	725
121	168	59	E 25	80	09	03	75	Spring	744	454	97	17.3				721		33	3220
126	25 N	151	09		07	27	76	River	52	63	429	8.5	<.05			503	12	14	863
127	201	49	20		07	27	76	River	79	114	657	9.6	<.01			565	11	13	1530
128	201	49	20		07	28	76	River	85	127	579	9.6	<.01			521	34	13	1484
129	25 N	51	E 24		07	27	76	River	55	83	834	10	<.01		·	796	15	11	1510
130	25N	151	E 24		07	28	76	River	52	96	880	10	.06			779	29	10	1692
131	25N	151	E 09		07	28	76	River	53	67	456	8.7	.02			528	13	14	898
132	238	50	E 18	BCD	05	16	52	Well	1800	280	46000°					280		72000	4200

Note: All chamical data are given in milligrams per fiter (mg/l) unless otherwise stated $^{\circ}$ Values reported as sodium plus potessium

of Selected Waters (Con't.)

Map rel. no.	Nitrate (N)	Fluo- ride (F)	Lab pH	Field Temp. C°	Lab specific conductance (µmho/cm)	Dissolved solids (calc.)	Total hardness as CaCO ₃	Total alkalinity as CaCO ₃	Sodium adsorption ratio	Collecting agency	Well depth (ft.)		Trace siements analyzed	s Lab I number
113	.06	.38	8.3	18	2146	1503	600	480	5.3	WQB			Yes	76W1059
121	.02		7.73		4820	5286	3720	591	.7	WQ8			No	75W1764
126	.08		8.4	20.5	2328	1689	388	432	9.5	EPA			Yes	76W1713
127	.01		8.34	20	3550	2693	667	481	11.1	EPA			Yes	76W1716
128	.01		8.67	23	3660	2589	736	484	9.3	EPA			Yes	76W1722
129	.01		8.48	22	3975	2909	478	677	16.8	EPA			Yes	76W1717
130	.01		8.53	24	4038	3153	525	688	16.7	EPA			Yes	76W1723
131	.02		8.46	20.5	2426	1170	410	455	9.8	EPA			Yes	76W1719
132			8.5				5650	230		Unknown	•	337MSN	C No	52M0005

GLENDIVE 1° × 2° Sheet

Trace Elements Analyses Sheet

VE																				
Lab number	76W1714	76W1715	76W1070	76W1064	76W1063	76W1062	76W 1069	76W1068	76W10G1	76W1065	76W1066	76W1067	76W1060	76W1059	76W1713	76W1716	76W1722	78W1717	76W1723	26W1719
Tin Zinc (mg/l) (mg/l)	0.	0.0	8	6	.12	10.>	V.01	10 V	10.	ē.	10.	ا ا	.12	.00	0.	0.	V.01	6 V	0.0	۷. ا
Stron- tium (mg/l)																				
Silver (mg/II)																				
Selenium (µg/I)	ī	v	•	~	v	· ·	e	6	-	<u>-</u>	7	2	·	v	·	·	V	v	V	V
Phosphete Nickel (Totel Selenium (mg/I) dissolved) (µg/I)																				
Lith- Mer- ium cury Nickel Img/III (mg/II)			90	8	.13	8	8	.13	V 08	8	, 8	=	8	8						
Lith- Mer- lum cury P mg/I)(µg/I) (2	Ç	7	?	7	7	7	7	?	7	•	~						
Lith. ium (mg/l)			90	0	8	93	90	60	03	8	8	90	8	8						
Lith- Mer- Lead lum cury (mg/il (mg/il)(µg/il)			V 05	8	98	V 95	V 05	8	V 05	8	8	8	8	8						
Copper Img/II			č	5	60	8	10 >	03	0	V.01	V > 01	20	8	0						
Chro- mium (mg/l)			38	8	8					V.06			8	80 >						
Cad. mium (mg/II)					.024	900	910	900	100 >	00	V 001									
Boron (mg/II)	-		, ;	, 7	9,	980	36		126	56	085	375	2	9	n	4				ţŊ
Beryl- Hum (Hg/l)			21.	2 5	20	9	200	1	2 5	2	2	25		2 2	,					
Anti- Ar- Beryl mony senic lium (mg/llipg/l) (ug/l)			d	0 0	9 6	,		, ,		. 60	~	0			,					
Anti- mony (mg/l)																				
Alu. Anti- Ar- Beryl- minum mony senic lium (mg/l) (mg/l)(µg/l) (µg/l)																				
Trect			***	200	000	9	000	3 6	900	000	000	200	3 6	200	3					
Location R Sec Tract	20 345 MCF	TON EDE 30	22N 505 28	20 00 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25N 58E 32 000	DEN 606 31 CCD	24N 63E 26 88B	34N E2E 26 CC	TAN EDE 18 DOD	23N 57E 01 DOD	00 12N 575 00 000	20 22N 62E 38 BBC	200 200 200 200 200 200 200 200 200 200	113 15N K7E 24 CCC	25N 61E 09	00 300 NOC	12/ ZUN 49E 20	160 404 49E 40	7 310	51E 08
-	Nec		2000	2000	25N 5	3 14 36	24M S	2461	340	23N 5	3 NCC	2 JAN E	1	TON	25N E		2000		NOT	26N
Map of .	•		7 8	8 ;	72	7.0	2	2 6		82	60	9 0	9 6	3 5	126		200	9 9	2 5	3 5

LOCATION BASE MAP

GREAT FALLS 1° x 2° SHEET

CONTOUR INTERVAL 100 FT

111°00' R 6 E

47°30' 2 75

T20N .

TION

TIBN

TI7N

111000

IO KILOMETERS

			. aw			DWer																							Montana Highway Department	(3.	FA	LL	.s	9
			Dwner's name			Mantana Pawer																							Montana H						
		Aquiter	code																																
	Wei		(1)																																
239110	water	a level	[H.]																																
		Lab Alanude level	Ē	3410	3620	3020	2930	3304	3620	3680	3490	3360	3580	3680	3640	3540	3530	3690	200	3560	3660	3500	3470	3440	3620		4100		3610	3690	3920	4000	3900		
			analysis (ft.)	9	9	90	90	2	9	9	90	9	9	8	90	90	90	90	g	90	2	9	9	90	9	90	90	90	90	90	90	90	90		
	Field	dwal	ပ	7	14.8	15.8	14.9	17.1	8.8	9	11.8	10	9.5	8 8	=	10.2	8.2	11.9	10.4	27	9	12	23	18.8	16.2	:	14.9	14.5	12.8	11	16	91	91		
	Specific	Conductivity	at 25 C	3090	3460	860	906	980	3130	989	280	13400	17510	9840	9490	1680	470	26620	6130	48000	1060	2560	830	2740	820	2060	740	330	350	360	480	750	999		
	pi .		5d Site description	Black Horse Lake	Benion Lake, shallow with much vegetation		Water is from drinking fountain at Montana Power Park	Small reservoir with much vegetation			Small creek formed by irrigation runoff	Four Mila Creek	Four Mile Creek, alkali deposits on aither side	Four Mile near source	Unnanied creek	Small crask on N side of road	1 Irrigation canal	Small pond about 10 feet in diameter, algal sample taken 26620	Small creek	Reservoir on Muddy Creek, algal sample taken	Birdiail Creek	Little Muddy Creek below junction with St John Creek	Small creek	Roger Coules Creek, alkali present	Middle Willow Creak	Small, cleer craek	Small, elow-flowing creek	Little Balt Greek	Located at highway rest area	Bale Creek	Number Five Coules Creak	Gritten Coulee	Ming Coulee Creek		
	Flow or yield	E = estimated	M = measured						1.5 cfs	30 cts	25 cts						5 cfs						0.2 cts	30 gpm	90 gpm	10 gom	0.5 cfs	3 cls	0.5 gpm	300 cfs	2 gpm	2 gpm	B gom		
	Callection	dase	R SecTract Ma Day Yr Source	08 25 76 Lake	08 26 76 Lake	08 26 75 Spring	08 25 75 Aiver	08 26 76 Reservair	08 27 76 Creek	08 27 78 Creek	08 27 76 Creek	08 27 76 Creak	08 27 76 Creek	08 27 76 Creek	08 27 76 Creek	08 27 75 Creek	08 27 76 Canal	08 27 75 Pond	08 27 78 Creak	08 25 78 Reservoir	08 26 76 Creek	08 27 76 Creek	08 25 76 Crask	06 26 75 Creek	08 28 76 Creek	08 26 78 Creek	08 28 78 Creek	08 28 76 Creek	08 25 78 Wall	08 26 78 Creek		08 25 78 Creak	06 25 78 Creek		
		L'Ocation	T R SecTract	22N 04E 33 DDDD 08 25 76 LAKE	22N 03E 25 ADA	21N 05E 17 DCC	21N 05E 17 CD	21N 04E 13 ADC	21N 02E 31 ADC	21N 02E 31 CB	21N 01W 28 DA	20N 01E 09 CDC	20N 01E 17 ADA	20N 01E 17 CDD	20N 01E 15 DCC	20N01W 15 DCC	20N 01W 19 DB	20N 02W 25 CA	 19N 02W 02 A	19N 02W 08	19N 02W 17 AC	19N 02W 14 AC	19N 01W 31 CC	20N 06E 17 CBA	19N 07E 03 BDC	20N 07E 15 ACC	18N 08E 18 ABB	19N 08E 22 ACC	18N 07E 06 DA	18N 06E 01 DDC	18N 04E 23 ACCC	18N 04E 22 DBC	18N 04E 31 BDB		
			County	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade		
		rel Field	no. number	1 MBMG17	2 MBMG15	3 MBMG20	4 MBMG19	5 MBMG18	6 MBMG2	7 MBMG3	8 MBMG1	9 MBMG4	10 MBMG5	11 MBMG6	12 MBMG8	13 MBMG7	14 MBMG9	15 M8MG10	15 MBMG11	17 MBMG12	18 MBMG13	19 MBMG14	20 MBMG15	21 MBMG21	22 MBMG23	23 MBMG22	24 MBMG25	25 MBMG26	26 MBMG27	27 MBMG24	28 MBMG28	29 MBMG29	30 MBMG30		

GREAT FALLS 12 x 22 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

State detecration	Flow
412°C C cantyres (16.1 (11.1) cooke (16.0	E = estimated
110 17 10 1440	
1500 15	Small reservoir in Bo
1300 18 no 3459 1370 18 no 3459 1370 18 no 3459 1370 18 no 3459 1370 24 no 3780 1370 21 no 3780 270 21 no 4260 270 21 no 4260 270 21 no 2860 270 18 no 2860 1400 10 no 3800 1400 10 no 3800 1400 223 no 2860 1400 206 no 3900	28 cfs Boston Coulee Creek
1370 15 no 3380 830 17 no 3780 830 17 no 3780 830 17 no 3780 460 21 no 3780 270 21 no 4180 200 18 no 2860 1400 18 no 2860 1400 18 no 2860 1400 19 no 3770 1100 12 no 2860 170 112 no 2860 170 112 no 2860 170 112 no 2860 170 112 no 2860 170 1149 no 2780 170 114 no 2860 170 115 no 2860 170 115 no 2860 170 116 no 3770 170 117 no 2860 170 118 no 3770 170 118 no 3770 170 118 no 3780 170 12 no 3860 170 12 no 3700 170 12 no 3	\$20 cfs Smith River
4440 24 no 2780 8120 24 no 2780 8120 24 no 2780 8120 21 no 2850 220 18 no 2850 220 18 no 2850 230 18 no 2850 1400 10 no 2850 1400 10 no 2850 1400 11 no 2850 1400 11 no 2850 1400 12 no 2850 148 no 2780 1400 20 no 3000 1400 20 no 3000 1400 20 no 3000 148 no 2780 1400 20 no 3000 1400 20 no 3000 1400 20 no 3000 1400 12 no 3000 1400 20 no 3000	Flat Creek
120 17 10 120	Small reservoir fed by i
4120	80 nom Spanish Coutee Creek
460 21 no 25570 270 21 no 4260 280 21 no 4260 280 21 no 4260 290 18 no 2860 200 18 no 2860 200 18 no 2860 200 18 no 2860 200 19 no 2860 200 21 no 2860 200 200 200 200 200 200 200 200 200 200	
270 21 no 4280 280 21 no 4580 280 19 no 4580 280 18 no 2880 280 18 no 2880 1400 11 no 2880 1400 21 no 2890 1700 112 no 2890 1700 214 no 2780 1700 20 no 2890 1700 20 no	
250 21 no 4050 200 18 no 2880 200 18 no 2880 200 18 no 2880 200 18 no 2880 200 19 no 2880 200 21 no 2880 200 200 200 200 200 200 200 200 200 200 200	0.4 cft Lepley Creek
220 19 no 24160 200 18 no 24160 1400 16 no 24900 1400 10 1 no 24900 1800 27 no 24900	3 cls Bird Creek
1400 16 no 2660 15 20 460 16 10 260 16 10 260 15 20 460 17 10 260 15 20 460 17 10 260	0.8 cls West Fork Hound Creek
1460 18 no 2860 15 20 490 21 no 2860 15 20 1020 19 no 2860 15 20 1030 19 no 2770 6 1040 10.2 no 2960 1860 22.3 no 2960 1860 22.9 no 2960 1870 12 no 2960 1870 12 no 2960 1870 12 no 2960 1870 20.8 no 2790 2790 20.8 no 2790 2790 20.8 no 2790 2790 270 2700 2790 20.8 no 2790 2790 2780 2780 2790 2790 2780 2790 2780 2780 2790	In a wheat field
490 21 no 2869 6 1020 1030 19 no 2869 6 1030 19	Domestic and stock use
1020 19 no 2770 6 1400 103 no 2770 6 1500 223 no 2900 1770 112 no 2900 1770 112 no 2900 1770 1149 no 2780 1770 144 no 2800 17	Stock use
1400 10.2 no 2010 25 11.2 no 2010 25 11.2 no 2010 15 11.2 no 2	2 gpm Domestic use
1850 22.3 no 2800 1870 22 no 2800 1770 112 no 2800 1860 22.9 no 2800 3100 23.6 no 2800 1700 24.7 no 2800 1700 24.7 no 2800 1700 24.7 no 2800 1700 25.8 no 3000 2700 2700 2700 2700 2700 2700 2700 2700	
1820 27 no 2990 1950 122 no 2990 1950 23.9 no 2940 1950 24.9 no 2960 1970 184 no 2780 1970 184 no 2780 1970 184 no 2780 1970 258 no 2900 1970 258 no 3900 1970 258 no 3900 1970 258 no 3900 1970 258 no 3900 276 276 276 276 276 276 276 276 277 276 278 277 277 276 278 277 276 278 277 276 278 277 276 278 277 276 278 277 2	
1170 11.2 no 2940 35 1160 21.9 no 2940 35 1160 21.9 no 2940 46 50 11700 21.0 no 2950 46 50 11700 21.0 no 2950 46 50 11700 20.5 no 2940 21700 217	
1320 14.9 no 2860 35 3120 14.9 no 2780 1700 23.6 no 2800 1700 12.4 no 2900 1100 20.6 no 3900 1130 19 no 3170 340 22.6 no 3190 340 22.6 no 3190 340 22.6 no 3190 341 22.7 no 3190	5 acm Stock use
3130 14.9 no 2780 1300 23.6 no 2800 11000 20.5 no 2800 11000 20.5 no 2700 1130 19 no 3170 340 22.6 no 3190 340 22.6 no 3190 341 24 no 3170 341 24 no 3170 341 24 no 3170 341 24 no 3170 341 34 no 341 34 no 3	Ē
3100 23.6 no 2840 1720 18.4 no 2800 48 50 11000 20.8 no 3040 1130 19 no 3170 3749 9 yet 3010 75 185 214CLRD 1 340 22.8 no 3130 347 12 no 3130	10 gpm (E)
1720 184 no 2860 46 50 11000 205 no 3040 1130 19 no 3170 3180 340 325 no 3130 35 185 347 12 no 3130 347 12 no 3	
11000 20.6 no 2000 1130 19 no 3170 3149 9 yes 2010 75 186 340 22.6 no 3130 347 13 no 1170	Water is hard, saline seeps on farm
11000 205 no 3040 1130 19 no 3170 3749 9 yes 3010 75 185 340 225 no 3130 347 12 no 3130 347 12 no 3130	Unused
1130 19 no 3170 186 3749 9 yes 3010 75 186 340 225 no 3130 840 24 no 2550 347 13 ne 3170 1818	Reservoir contains much algae
3749 9 yes 3010 75 185 340 22.5 no 3130 840 24 no 2950 3478 12 yes 1130 1818	Reservoir contains much algae
340 22.6 no 3130 840 24 no 2850 3478 13 ves 3170 1858	Stock use
347 12 on 2950	Contains much vegetation
3476 12 ves 3170 1818	Contains much vegetation
	35 apm Domestic, stock, and lawn watering use

GREAT FALLS 1; x 2; Sheet (Con'1.)
Specific Conductivity Inventory Sheet (Con'1.)

			Owner's name			-			ner			pro	Highfill, Tony			9			Netty, John	Velly, John	ns, J					nos	nos							1	200	plane	plend	
			Owne			recber	2000	2000	Huttman			Crawford	High	Olsen	Cline	o equal	2	2	Yelly.	, .	Hankins, J.				Office	Ackerson	Ackerson			d	Oso	Wood		,	2	MecDoneld	MacDonald	
		Aguster	code																					40,000	1-MC128 7707													
	Well	deoth	2						16						185	ā	!	*30	2 2	3				2000	7707	9				00	3	2	28	ac	: :	56	1208	
State	water	level													92									-	- Swing	20				9	9	30				35		
		Ahitude	E	3060	3000	2530	3440	2440	3620	3430	2450	7900	3070	2960	2900	2930	3460	02.00	1270	0000	3100	2410	3310			3200	3160	3040	3600	2000	0007	2580	2560	2830		9	2810	
		Leb		8	? :	2 :	2 1	2	00	8	2	9	2	8	9	2	2	2 2	2 2	2	2	9		2	ŝ	2	2	9	2 2	2 2	2	ę	9	9		9	e e	
	Field	temp.	ွပ	15.6	9	2	2 :	,	6.9	œ	3 5	9	2		11.8	13	16	9	13.6		53	21	, ,	2 4	2 5	2 9		22				٩	13	90		2 :	2	
	Specific	conductivity	er 25 °C	028	260	2000	230	250	009	1040	00000	000	10840	1310	2020	370	8140	2310	1810	0000	7900	840	1460	2862	9000	01/0	0960	0181	30	1060	000	96/	1340	670	0000	7300	3260	
			Site description	Taton River	Contains much alose				Water is not used for drinking	About 100 verds long by 25 vards wide	Alos sample takes	The section of the se	Criginally e stock reservoir, now is unused		Domestic use except for drinking	Domestic use	Brd Coulee	Stock use	Dumestic use	Company and account for Ariston	Comment are except to difficulty	Stock reservoir	Shonkin Creek		-	About 8 acres to size	BARCH SALES IN SALES	Stock reservoir	Domestic use		Well is located 35 with M of house	STROUGH CO. DOLLOUGH IN TO MOUNT IN THE PARTY IN THE PART	Domestic use	Domestic use	Housed	Street and demands are former to	Stock and definition are recept for drinkings	
	Flow or yield	E = estimated	M = measured	180 cfs											15 gpm			20 gpm	0.3 gam	i			16 cfs											3 gpm		60 mm		
	Collection	date	R Sec Tract Mo Day Yr Source	76 River	76 Reservoir	76 Orten	76 Reservoir	11 11	/o well	76 Pond	76 Reservoir	Je D.	100	10 Well	76 Well	76 Well	76 Creek	76 Well	76 Well	76 Soring		76 Reservoir	76 Creek	01 16 77 Well	76 Well	76 Reservoir		76 Reservoir	76 Well	76 Well	78 Well		/o Well	78 Well	78 Well	76 Well		
			T R Sec Tract	25N 04E 34 DADC	24N 04E 22 BAC	23N 04E 03 DDDC	23N 04E 03 DDDB	238, 045 16 000A	CON USE 15 DUDA	23N 06E 07 DDDD	23N 06E 18 ACBC	23N 025 20 040	2000 20 250 240	74N U/E 2/ CBDB	24N 08E 29 8BCC	24N 08E 34 BADC	23N 08E 19 CACA	23N 09E 28 DADB	23N 09E 2B DADB	23N 09E 08 ABBC		23N 09E 24 DBCB	24N 09E 18 CDBC	24N 09E 28 DDAA 01 16 77 Well	24N 10F 31 CCCC	24N 09E 36 DABD		24N 09E 24 ABAC	25N 09E 31 DDDD	26N 09E 27 BCCC	26N 08E 12 BOAA	- Can of 10t Mac	ZON TOE 18 CAUA	25N 10E 31 CCD8	26N 10E 24 CDBD	25N 10F 24 CDRA		
			County	Chouteau	Chouseau	Chouteau	Chouteau	Charten	npannon	Chouteau	Chouteau	Chambasa		Contreso	Chouteau	Chouteau	Chouteau	Chouteau	Chouteau	Chouteau		Chouteau	Chouteau	Chouteau	Chouseau			Chouteau	Chouteau	Chouteau	Chouteau		Cloures	Choutesu	Chouteen	Chouteeu		
;	Multiple Control		no number	61 MBMG13	62 MBMG84	63 MBMGB9	64 MBMG90	65 MRMG91	-	66 MBMG92	67 MBMG93	68 MBMG94	900	and working and	70 MBMG102	71 MBMG103	72 MBMG120	73 MBMG123	74 MBMG124	75 MBMG121		76 MBMG122	77 MBMG104	78 MBMG105	79 MBMG108	BO MBMG107		B1 MBMG106	B2 MBMG54	83 MBMG53	84 MBMG63	96 14014061	and	86 MBMG52	-			90 not on mep

GREAT FALLS 1" x 2" Sheet (Con't.)

Specific Conductivity Invantory Sheet (Con't.)

											Static			
Map				Collection	Flow or yield		Specific							
nef.	Field		Location	date	E = estimated		conductiv ty	quat		Attitude	fevel		Aguiter	
no.	number	County	T R Sec Tract	T. R. Sec Tract. Mo Day Yr. Source	M = measured	Site description	at 25 C	ပ		analysis (ft.)	Ξ	(1)	code	Dwnei s name
91 no	not on map													
92 M	92 MBMG112	Chouteau	24N 10E 23 BBB	76 Well		Domestic use	1310	15	00	3300		160		Nagengast
93 M	93 MBMG114		24N 11É 18 BCDD	7B Well		Domestic use	2160	13	9	3180	8	204		MacFarland, W. D.
94 M	94 MBMG118	Chouteau	24N 11E 17 AADA				2250	8	90	3020				MacFarland, W. D.
95 M	MBMG11S		24N 11E 1B BCDD	76 Well		Stock use	3510	Ξ	9	3180		203		MacFarland, W. D.
W 96	MBMG117	Chouteau	24N 11F 22 DCCD	76 Wet		Domestic use except for drinking	3490	45	9	3200	144	150		Fultz, Basil
97 M	MRMC118	_	24N 11F 35 DADD	92	26 anm	Domestic use	1120	5	8	3250	55	115		Сатегов
98 M	MRMG129		23N 11F 17 ARAC	36	Banin	Domestic use	1370	9	9	3230		120		Pointdexter
W 66	MBMG113		24N 10E 27 CBB	3/2		Wildlife reservoir	1000	8	9	3300				
100 M	MBMG125	_	23N 10E 03 BCB	76 Well		Domestic use	800	Ξ	8	3350		140		Hampton, Wayne
101 M	MBMG127	Chouteau	23N 10E 13 BBDD			Harwood Lake	6160	21.5	9	3210				Chaney, H. W
102 M	MBMG128		23N 10E 13 CDDB			Used for watering fawn	17040	19	9	3210	9	12		Chaney, H W
103 M	MBMG130		23N 11E 24 CDDA 01	9	3 gpm (E)	Domestic use except for drinking	3890	12	Yes	3160	75	135 21	135 211CLRD	Farmer, Bob
104 M	MBMG131	_	23N 11E 36 BCBC			Domestic use except for drinking	3550	15	9	3120		06		Anderson
105 M	MBMG132	Chouteau	23N 12E 29 DDAB	76 Well		Domestic use, water is corrosive	2870	=	9	3110	40	501		Schlemmer, B
106 M	MBMG134	Chouteau	23N 12E 14 BABB	78 Well		Domestic use except for drinking	4840	13	9	3060		225		Rosenburg
107 M	107 MBMG133	Chouteau	23N 12E 02 CDDA 01	. 01 15 77 Well	3 9pm	Stock and domestic use fexcept for drinking?	6768	9	Yes	3120	120	184 21	FGLE	Corder
108 M	MBMG119	Chouteau	24N 12E 22 AAAD 01 15 77	1 01 15 77 Well	2.5 gpm	Domestic use except for drinking	3737	20	Yes	3220	8	481		Clark
M 601	MBMG47	Chouteeu	25N 12E 27 ABCB	01 15 77 Well	8 gpm	Stock and domestic use fexcept for drinkings	3722	14	Yes	3070	190	302		Trunk, Andrew
110 nc	not on map													
M 111	BMG182	111 MBMG182 Chouteau	23N 13E 11 D888	76 Well		Domestic and stock use	1540	12	9	3020	8	09		Ludeman
112 חנ	112 not on mep													
213 M	213 MBMG165	Chouteau	23N 13E 28	78 Well		Domestic use except for cooking and drinking	3780	11.6	ę	3130	38	38		Judeman
114 M	114 MBMG163	Chouteau	23N 13E 20 DADC			Stock use	1460	18	00	3140		2800		Judeman
116 M	MBMG140	Chouteau.	22N 12E 01 CCDC			Flat Creek, salts along edges	6840	2	9	2980				
110 M	MBMG141	Chouteau	22N 12E 03 CDCA			Domestic and stock use	1670	13	90	3160		110		Farbanks
117 M	MBMG170	Chouteau	22N 13E 17 BBBC			Domestic use	1080	19	90	3060				Wishman
116 M	MBMG171		22N 13E 22 CCB	76 Well		Domestic use	3350	13	9	3060		110		Rowland
119 M	MBMG172		22N 13E 27 CCDA	76 Well		Domestic use except for drinking	3960	12	9	3040		45		Clark, Torn
120 M	120 MBMG173		22N 13E 32 DBDA			Domestic use	1430	18	ě	3100		2160		Dwen, L.

GREAT FALLS 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Biyth, Fred Myers Tade, Vick	Patterson, William Katzenberger	Rettig Forder	Geay ,	Robert, Bill Big Seg Cettle Co.	Big Sag Cattle Co. Big Sag Cattle Co. Davis, N, G. Goldhahn, C. Goodhart, J.
ZIICLAD					90 17 112DRFT 30
818 07 81	1311	750	=		8 1 8
20 9 9 9	1251	450	2		α3.
3000 3180 3180 3180	3310	2930 3360 3240 3320 3680	3400 4000 3350	3750 4080 3200 3320	3200 3230 3390 3120
0 0 0 5 0	8 8	0 0 0 0 5	2 2 2 2	2 2 2 2 2	2 2 2 5 2
23 20 12 6	14 23	20 21 15 15 6.2	21 22 24 24 24	16 17 18 15	26 11.5 13 7
3750 3850 770 2909 1880	1150	600 200 1280 1400 677	420 320 290 770	670 430 560 230 670	9790 4890 5560 3671 890
Fist Creek, contains much vegetation Stock use Domeste and stock use, water has a suplur smell Stock and domestic use fascept for druking Domestic and stock use	Domestic and stock use Domestic and stock use	Highwood Crek Stock reservoir Domestic and stock use Domestic use except for drinking	Domestic use Spring Creek, contains much wegstation Tributory to Spring Creek Say Creek	Tribusery to Wast Brench Shonkin Creek Domestic use Lepley Creek	Kingsbury Lake; satts along shore Stock use Domestic use axcept for definking Stock and domestic use faccept for drinking) Domestic use
			0.5 cts 1 cts 0.1 cts	0.1 cts	30 gum (E)
75 Creek 75 Well 76 Well 01 15 77 Well 75 Well	76 Spring 75 Well	76 Creek 76 Reservoii 78 Wall 78 Well 02 18 77 Spring	76 Wett 75 Creek 76 Creek 76 Creek	76 Creek 78 Well 76 Pond 76 Pond 76 Creek	78 Vell 78 Well 78 Well 01 15 77 Well 76 Well
22N 12E 37 CCCC 22N 12E 33 AAAC 22N 11E 22 CCCC 22N 11E 15 BCCB 22N 10E 14 DDBB	22N 10E 09 CCCA 22N 07E 07 BCCA	22N 06E 23 CDCA 22N 06E 34 DBBC 21N 06E 07 ACAB 21N 06E 01 ACDB 21N 07E 13 BAAA	21N 06E 17 DBB 21N 06E 21 ACA 21N 08E 27 CAA 21N 09E 05 AAC	21N 09E 18 DCC 21N 09E 35 ABC 21N 10E 31 BAB 21N 10E 02 DDB 21N 10E 15 ACC	21N 11E 1B DDD 21N 11E 1B BBCA 21N 11E 03 DCCC 21N 13E 07 BBBC 21N 13E 26 DCBA
Chouteau Chouteau Chouteau Chouteau	Chouteau	Chouteau Chouteau Chouteau Chouteau	Chouteau Chouteau Chouteau Chouteau	Chouteeu Chouteeu Chouteeu Chouteeu	Chouteau Chouteau Chouteau Chouteau
121 MBMG142 122 MBMG143 123 MBMG139 124 MBMG138 125 MBMG137	126 MBMG136 127 not on map 128 MBMG95 129 not on map 130 not on map	131 MBMG97 132 MBMG99 133 MBMG101 134 MBMG100 135 75M1642	136 not on map 137 MBMG144 138 MBMG145 139 MBMG146 140 MBMG147	141 MBMG148 142 MBMG149 143 MBMG152 144 MBMG151 145 MBMG151	146 MBMG154 147 MBMG155 148 MBMG153 149 MBMG177 150 MBMG178
	WBMG112 Chouseau ZAN 12E 27 CCC 75 Ceek Flat Creek , contains much wegstation 3750 23 no 3000 MBMG144 Chouseau ZAN 10E 23 AAAC 75 Well Stock use Stock use 3860 13 no 3060 20 MBMG149 Chouseau ZAN 11E 22 CCCC 76 Well Dominatic and stock use is and sometric use feacept for drawing 70 no 1918 MBMG137 Chouseau ZAN 11E 18 GCCB 115 77 Well Stock and downers care teacept for drawing 2969 6 yet 3130 26 70 211CLRD MBMG137 Chouseau ZAN 10E 14 DDB8 75 Well Domestic and stock use 1860 12 no 3180 6 18	Chouses 22A 12E 27 CCC 76 Oseth Fig 1 Oseth, containt much wageration 3750 A 23 no. 3000 A 3000 A Obsoures 22A 12E 27 CCC 76 Well Dominist and stock use A 1150 A 23 no. 3800 A 19 IB Chouses 22A 10E 09 CCC 76 Spring Domestic and stock use and stock use A 1150 A 1150 A 1310 A 18 II Chouses 22A 10E 09 CCC 76 Well Domestic and stock use A 1150 A 13 II 13 II 13 II	Chouses ZN 12E 27 CCCC 18 Ceak File Ceak, containt much vegetation 3360 23 no 3000 Chouses ZN 11E 28 CCCC 18 Well Constitut much vegetation 3360 13 no 3060 Chouses ZN 11E 28 CCCC 18 Well Constitut much vegetation 3360 13 no 3060 Chouses ZN 11E 28 CCC 18 Well Constitut much interest to the west of the containt was a subplum smell 230 6 red 3180 18 Chouses ZN 10E 10 CCC 18 Well Constitut and stock use a subplum smell 1150 20 no 3180 6 18 Chouses ZN 10E 09 CCC 78 Spring Constitut and stock use 1150 23 no 3180 6 18 Chouses ZN 10E 09 CCC 78 Spring Constitut and stock use 1190 14 no 3110 1251 1311 Chouses ZN 10E 09 CCC 78 Well Constitut and stock use 120 CCC 120 CCC 130	Dictations 22N 12E 27 CCCC 18 Coest Pis Coest Contains much vagetation 3760 23 no 3000	Dictories 22N 12E 27 CCCC 18 Well Dictories 23N 12E 27 CCCC 18 Well Dictories Dictories 23N 12E 27 CCCC 18 Well Dictories 23N 12E 27 CCC 18 Well Dictories Dictories

Static

GREAT FALLS 1' x 2' Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

																											**		_		
		Owner's name	Goodhart			Vestel, Hush	Brinkman	_	_	McDonald			Sketton	Liland	Backa		Pollar	Mythonatic			Kolar				Busch		Boon, Conrad	Harlow	Evans, Gerald		
	Aguiter	code					24 110THRC	28 110TRRC																							
Weil	depth	(36)	80				24	56	16						1100		1135	52										969	200		
water	level	Ē				Nowing	8	9	80												1125 Howing								\$200 flowing		
	Altitude	(fr.)	3360	3600	4050					3800	4880	4700	4520	4520	4000	3800	3800	4000	4200	4150	4125	4400	4200	4340	4300	4400	4410	4200	4200	4200	4000
	Lab	analysis (ft.)	0 0	9	9	0	yes	ves	9	9	9	ē	9	9	0	9	9	9	9	9	9	9	90	9	2	2	9	90	90	90	9
Field	temp	ņ	2 2	13	21.5	-	3	91	13	7	15	18	18	12	14.5	18	12	16	16.5	54	12	11	16	18	13	11	16.7	=	13	9	22
Specific	Conductivity	at 25 C	3390	220	230	810	3910	1270	4910	017	330	340	400	740	999	2950	380	730	069	1280	07.0	920	1110	630	380	360	390	200	1180	970	850
		Site description			reek		7 20 D 61	R 11 D 60	ir drinking									r corrodes pipes							E of house						
pi	p _a		Stock use Alost samole taken	Municipal use	Upper Highwood Creek	Domestic use	Unused, test well BR 20 D 61	Unused, test well BR 11 D 60	Water is not used for drinking	Domestic use	Davis Creek	Cora Creek	Domestic use	Stock reservoir	Domestic use		Domestic use	Domestic use, water corrodes pipes	Arrow Creek		Domestic use	Hay Craek	Domestic use	Bear Coules	Located 100 yards NE of house			Domestic use		Stock reservoir	Surprise Creek
Flow of vield	E = estimated		Stock use Alast sample taken	Municipal use	35 cfs Upper Highwood C	Domestic use	Unused, test well BI	Unused, test well B	Water is not used fo	Domestic use	1.5 cfs Davis Creek	0.25 cts Core Creek	Domestic use				7 gpm Domestic use	Domestic use, wate	2 cfs Arrow Creek			0.6 cfs Hay Craek	Domestic use	0.25 cfs Bear Coules	Located 100 yards N			30 nom Domestic use			1.6 cfs
Collection Flow or vield		M = measured	76 Well Stock use	_	35 cfs L	_		-	-	_	_	0.25 cts	Spring	oir		76 Reservoir	7 gpm	76 Well Domestic use, wate	2 cfs	76 Reservoir		0.6 cfs	78 Well Domestic use	0.25 cfs E	_	76 Spring	76 Sprine	30 mm	E aom		•
				76 Spring	35 cfs	_		09 21 76 Well	76 Well	76 Spring	76 Creek 1.5 cfs	76 Creek 0.25 cts	76 Spring	76 Reservoir	76 Well	76	76 Well 7 gpm	76 Well	76 Creek 2 cfs	18N 11E 31	18N 10E 32 76 Well	76 Creek 0.6 cfs	78 Well	18N 08E 28 76 Creek 0.25 cfs E	76 Spring	92		76 Well 30 com	Z6 Wall 6 som	76 Reservoir	76 Creek 1.5 cfs
	date	R Sec Tract Mo Day Yr Source Milmeasured	76 Well	20N 12E 10 76 Spring	78 Creek 35 cts	76 Well	09 21 78 Wetl	19N 13E 29 BCBD 09 21 76 Well	18N 13E 27 DC 76 Well	Basin 19N 10E 28 76 Spring	76 Creek 1.5 cfs	0.25 cts		76 Reservoir	76 Well	76	7 gpm	76 Well	18N 10E 24 76 Creek 2 cfs		76 Well	0.6 cfs	_	76 Creek 0.25 cfs 6	_	Judith Besin 17N 08E 10 AA 76 Spring	Audith Basin 17N 08E 18 CDDC 78 Soring	76 Well 30 com	76 Wall Goom	76 Reservoir	76 Creek 1.5 cfs
	Field Location date	T R Sec Tract Mo Day Yr Source Mit measured	21N 13E 26 DCBD 76 Well 21N 13E 14 RADB 76 Pood	Chouseau 20N 12E 10 76 Spring	Chouteau 20N 08E 15 DBD 76 Creek 35 cls	19N 13E 12 CD 76 Well	19N 13E 29 AAA 09 21 76 Wett	Ferous 19N 13E 29 BCBD 09 21 76 Well	Feraus 18N 13E 27 DC 76 Well	MBMG2 Judith Basin 19N 10E 28 76 Spring	Judith Basin 19N 09E 27 76 Creek 1.5 cfs	76 Creek 0.25 cts	76 Spring	Judith Basin 18N 09E 12 76 Reservoir	Judith Basin 18N 10E 13 76 Well	1 Judith Basin 18N 12E 15 76	76 Well 7 gpm	Judish Basin 18N 12E 34 76 Well	Judith Basin 18N 10E 24 76 Creek 2 cfs	Judith Basin 18N 11E 31	Judirli Basin 18N 10E 32 76 Well	76 Creek 0.6 cfs	78 Well	18N 08E 28 76 Creek 0.25 cfs E	Judith Basin 17N 08E 05 76 Spring	Judith Besin 17N 06E 10 AA 76		Ludish Bosin 17N 10F 09 76 Well 30 mm	Lighth Basin 12N 10E 12 R Wall Goom	Judith Basin 17N 11E 17 76 Reservoir	Judith Basin 17N 11E 01 76 Creek 1.5 cfs

GREAT FALLS 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Sintic Alithuck Ali	123 O.Keele, John
State W	123
State W	123
Aber 1111 1111	
1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	pwing
3 3223 33 346444 464 464 464 464 464 464 464	3440 3680 3700 Bowing
Annual Altricol Annual	2 2 2
Fed C C C C C C C C C C C C C C C C C C C	8 8
Specific conductivity, at 25°C. 730 730 740 740 740 740 750 760 760 760 760 760 760 760 760 760 76	210 210 570
	Muddy Creek Domestic use
	5
Collection date 1 Mo Day '' Source 26 Well 76 Well 76 Well 76 Well 76 Well 76 Well 76 Well 77 Serving 78 Well	76 Reservoir 78 Well
	26N 02W 32 25N 03W 03
County Judith Basin Judith Basi	Teton
181 MBMG27 182 MBMG27 183 MBMG28 184 MBMG28 186 MBMG36 186 MBMG36 189 MBMG36 180 MBMG37 180 MBMG37	208 M8MG22 209 not on map 210 M8MG21

GREAT FALLS 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Larson Reveare	Lock, Frank Goodell	Schultz	Toeckes, E Keel	Netson Netson Hagen Hagen	Bouma, Ed Anderson, Richard Dirkes, Richard	Gettel, Amold Verick Meyer, Al	Krause Andrews Gaarder Oakness
Aquifer					10 90 211CLHD			
Static water Well level depth (ft.) (ft.)	149	14	50	108	06 06	16	8 9 0 0	25
Static water ievel	49	01			^		2 0 2	9
Static Field water Well remp Lab Altitude ievel depth C analysis (ft.) (ft.)	3740	3580	3760	3600	3780 3760 3880 3880	4040 4060 3680 3700	3740 3660 3690 3940	4000 3936 3960 3820
Lab	8 8	2 2	9	7 o	8 8 8 8	2 8 8 8	2 2 2 2 2	2 2 2 2
	0 61	5 4	91	12	16 17 7	10 15	17 12.5 16 16	14.6 12 12
Specific conductivity at 25 C	920	3250	1340	3960	2990 2740 3690 6495	3570 600 1870	720 980 640 490 420	850 400 950 1210
d d Sire description	Domestic use Domestic use	Stock use Donnestic use	Domestic use except for drinking	Domestic use (?) except for drinking Domestic use except for drinking	Stock use Stock reservoir Domestic use except for drinking Stock use	Not in use Stock and domestic use fexcept for drinking? Gie Muddy Creek	Muddy Ceet Donnestic use Donnestic use Used for watering garden Donnestic use	Domestic use Domestic use Domestic use Domestic use
Flow or yield Source E = estimated Source M = measured					2 gom		10 cfs 20 gpm	
Collection Flow or yield Location date Source E-estimated T R Sec Trect Mo Day Yi Source M*meaured	75 Well 76 Well	76 Well 76 Well	76 Well	01 17 76 Well 76 Well	76 Well 76 Reservoir 76 Well 12 08 78 Well	76 Spring 76 Well 76 Well 76 Creek	26 Creek 78 Well 76 Well 76 Well 76 Well	78 Weil 76 Weil 76 Weil
Location T R Sec Tract	25N 03W 16 25N 03W 14	24N 01E 12 DDB 24N 02E 1B	24N 02E 30 CAB	23N 01W 03 AAC 24N 01W 32 CDC	23N 02W 03 DAB 23N 02W 03 BBC 24N 02W 32 ADC 24N 02W 32 ADC	23N 03W 04 DDA 23N 03W 10 DDA 23N 02W 24 BBB 23N 01W 19 BBC	23N 01W 34 BAA 22N 01W 04 DDA 22N 02W 17 686 22N 02W 17 866 22N 03W 11 CCC	22N 03W 33 22N 03W 25 BAB 22N 02W 33 BCC 22N 02W 35 BBB
County	Teton	Teton	Teton	Teton	Teton Teton Teton	Teton Teton Teton	Teton Teton Teton Teton	Teton Teton Teton
Mup ref. Field no. number	211 MBMG27 212 MBMG26	214 MBMG74 215 MBMG75	216 MBMG7B 217 not on map	216 MBMG47 219 MBMG48 220 not on map	221 MBMG50 222 MBMGS1 223 MBMG52 224 76M1477 225 not on map	226 MBMG54 227 M6MG55 226 not on map 229 MBMG60 230 MBMG61	231 MBMG62 232 MBMG63 233 MBMG67 234 MBMG66 235 MBMG68	236 not on mep 237 MBMG86 238 MBMG70 239 MBMG70 240 M6MG71

GREAT FALLS 1° x 2° Sheet (Con't.)

(Con't.)
Sheet
Inventory
Conductivity
Specific

			Dwner's name	Hadley		Madle	County	5		Dahiman	Jones	Craig	,		Clark	Brawer W								Brewer, W.	Brewer, W.	Browner W	Clark	,		Ployhar, T.	Brinkman	Brinkman	Brinkman	Hanlord	Builden B	Holzer	10101
		Aquifer	eode								112DHFT	96				26 211CLRD			13 112TILL			112TILL	112TILL		211CLRD		2152116 05	000000	ou no	2215WFT	110TRRC	33 110TRRC	HOTARC	33 1127111	22 11041 1/14	21101 80	
:	Š	depth	3	20	2	2	3 8	:			27	98			96	25	290		13					56			90	2			2	33	2	2	3	8	
Static			Ē	,		-	•				œ					4	~	•									22	:			~	9					
		temp. Lab Aititude	analysis (ft.)	3810	3860	3200	37.75	37.20	0000	2/00	3760	3020	2940		3000	3200	3240		3310		-	3300		3130	3200	3180	3060		-	2400				3250	2970		
		ĝ.	analysis	9		2 8	2 8	2		2	Yes	9	90	ě	9	7.65	200	yes	Yes			Yes	761	Yes	yes	Š				y es	Yes	Yes	Yes	202		, sex	
1	200	temp.	ú	90	12	12.6		27	;		9	9	16	13	=	151	8	16	40	16.4		2	9	18	22.6	90	22	::	:		9		õ	10	•	19	
		ı,	o E	980	1210	580	450	9600	0000	0700	6340	4910	870	3690	2270	9579	7354	3368	34630	31,2000	0000	3048	40120	3927	4706	8563	4346	823		200	7486	1877	1462	24060	1606	13180	
T 1			ired bite description	Domestic use	Domestic use	Domestic use	Domestic use		Edose of secure hand secure of section	Court of the court	Certes Jones test well	Stock use		Domestic use except for drinking	Domestic and stock use	Unused domestic well	Uhused	Unused, Geraldine test well	Davis test well	Davis lest well 23			Long test well	Railroad well	Brewer Reservoir	Brewer Reservoir	Domestic and stock use	Municipal supply			Brinkman test well D10 B2 74	Unused, Brinkman test well	Brinkman test well D16 B7 74	0.2 gpm (E) Hanford test well, F140 H18 70		Holzer test well HB 9D 56	
Flow or voted		E = estimated						0.1 cts						2 gpm	2 gpm						0 2 .4.	0.6 018				_			36 and 161	1000				0.2 gpm			
Collection		Location date	MO Day 11 Source	76 Well	76 Well	76 Well	76 Well	76 Creek	78 Reservoir	94 16 76		/O Well	92		76 Well		04 07 76 Well	21N 11E 01 DBDD 04 07 76 Well	04 06 76 Well	08 20 72 Well	04 06 38 Wall	10 00 00 miles	ZN DE 34 AABB D4 D8 78 Well	22N 11E 30 DDBB 04 07 78 Well	07 18 76 Reservoir	22N 11E 31 ADAC 04 07 78 Reservoir	01 16 77 Well		OF 11 72 Well	20 00 00 00	04 07 /8 Well	04 10 78 Well	04 07 76 Well	04 06 78 Well	07 14 27 Well	09 21 78 Well	
	- Constitution	T B Sec Trace	17811 196	22N 02W 13 BBB	22N 01W 30 DDA	22N 01W 11 CCD	22N 01W 36 DBC	23N 01E 21 AAB	23N 01E 10 DDB	22N 02E 07 BCCB	2411 000 00 0000	משנת חסב חז פרר	22N 06E 23	23N 10E 13 CCDB	23N 13E 30 CCCC	21N 11E 06B	21N 11E 06 BBCC	21N 11E 01 DBDC	22N 08E 04 DD88	22N 08E 09 A	22N DR 26 AACC DA 06 38 WALL	221 005 24 4 00	ZZN OGE 34 AABB	22N 11E 30 DDBB	22N 11E 31 A	22N 11E 31 ADAC	22N 13E 27 CCDC	18N 13E 26 DDD	19N 13F 22 BAC	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IBN ISE 49 BCAA	19N 13E 29 BABB 04 10 78 Well	19N 13E 29 BCCC	23N 08E 22 DCAC 04 06 78 Well	24N 06E 10 BCBA 07 14 77	Judith Basin 16N 13E 01 DDBD 09 21 78 Well	
		County		Teton	Teton	Teton	Teton	Teton	Teton	Cascade		Caroutedu	-	Chouteau	-	Chouteau	Chouteau	Chouteau	Chouteau	Chouteau	Chouteau		Chouteau	Chouteau	Chouteau	Chouteau	Chouteau	Fergus	Fernis		1000	Fergus	Fergus	Chouteau	Chouteau	Judith Basin	
Map	Part B			241 MBMG66	242 MBMG72	243 MBMG64	244 MBMG73	245 MBMG78	246 MBMG77	247 J6M0261	340 44040.00	COOMING OF A	Z49 MBMG96	250 MBMG126	251 MBMG166	252 75M1762	253 76M0224	254 76M0227	255 76M0222	256 72M0636	257 76M0221	000000000000000000000000000000000000000	0770W0/ 007	259 76M0226	260 75M1761	261 76M0225	262 76M1612	263 76M1236	264 72MOOR3	266 3640230	6770W07 007	266 76M0238	267 76M022B	268 76M0223	269 76M1602	270 76M1242	

GREAT FALLS 12 x 22 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	VM Hotzer 3D Hotzer Smith, David Smith, George	
Aquifer	23 110CLVM 3 28 211CLRD 2000 131	
Weti depth (ft.)	23 28 2000 131	
Static water level (ft.)	80	Housing
Attitude (ft.)	3800	
Lab	n o v es	8
Field temp	9 15 12 11.5	
Specific Field water Well conductivity temp Lab Attitude feel depth Aquifer at 25°C C analysis (ft.) (ft.) (ft.) code	8051 9 vet 13830 15 yet 570 12 no 1430 11.5 no	810 13 no
Site description	Holen test well DS6 HB4 75 Holen test well HB 11D 55 Domein use Stock use	Domestic
Flow or yield E = estimated M = messured		
Collection date No Day Yr Source	04 09 76 Well 09 21 76 Well 76 Well 78 Well	78 Well
Collection Flo Field Location date E = number County T R SecTract Mo Day Yr Source M	227 7840723 Audith Bain Hall Hall DA O4 09 36 Weil 227 7841721 Audith Bain 1814 14E 07 8008 09 21 36 Weil 227 MBMG022 Judith Bain 171 13E 28 6 78 09 18 18 18 18 18 18 18 18 18 18 18 18 18	19N 13E 12 CD
County	Judith Basin Judith Basin Judith Basin	Fergus
Map ref. Field no. number	271 76M0235 272 76M1241 273 MBMG32 274 MBMG33 275 not on mee	276 MBM684 Fergus 19N 13E 12 CD

20 GREAT FALLS

GREAT FALLS Chemical Analyses

Мар					Co	Hect				Magne-		Potas-		Mange-		Bicar-	Car-		
ref.			atio			dat			Calcium	sium	Sodium	SHUTT	iron	nese		bonete		Chloride	Sulfete
no.	Т	A	Sec	Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₃)	(HCO ₃)	(CO ³)	(CI)	(SO _e)
				DCCA					32.2	23.8	975	5.5	.09	.08	5.8	741		26	1346
				DCCD					464	154	232	34.8	3.8	.08	9.8	279		134	1613
				DOAA					207	108	253	34.4	.09	.23	11.8	620		94	1164
				CDDA					277	164	548	9.9	2.17	.51	21.2	698		46	1875
107	23N	12E	02	CDDA	01	15	77	Well	102	115	1570	7.5	.03	.06	12.5	1533		198	2442
				AAAD					19.4	16	885	3.3	.03	.01	7.5	702	10.1	146	1174
109	25N	1 12E	27	A8C8	01	15	77	Well	6.1	2.1	925	2.4	.01	.01	8.5	1041	10.6	116	932
				BCCB					21.4	65	442	6.1	3.33	.42	18,2	448		26	1305
								Spring	58	41	28	3.4	.01	.01	19.6	349	1.0	4.2	39.9
149	21 N	4 13E	07	вввс	01	15	77	Well	394	186	339	9.3	.23	.11	11.6	551		83	1840
156	198	1136	20	AAA	09	21	76	Well	64.5	123	750	2.9	.22	.03	10.8	663	3.8	90	1608
157	19N	4 13E	29	BCBD	09	21	76	Well	52.5	79.5	125	1.7	.16	.01	15.8	455		7.5	275.5
187	181	V 14E	07	BOAA	09	21	76	Well	164	258	346	13.6	.11	.13	10.3	383		49	1909
218	23N	1017	4 03	AAC	01	17	76	Well	390	1975	4500	28	.14	.10	10.5			200	16623
224	24N	1 02V	¥ 32	ADC	12	06	76	Well	525	560	480	23.9	.11	.04	7,1	366		199	3341
247	22N	02E	07	вссв	04	15	76	Well	426	592	340	6.7	.40	13.0	52.1			178	4980
252	21 N	4 11E	06	В	07	18	75	Well	430	850	898	35.4	.16	.28	16.5	492		14.4	4758
253	21 N	N 115	06	88CC	04	07	76	Well	90	712	880	25	.10	.28	1.0	184		81	4672
254	21N	116	01	0800	04	07	78	Weil	214	154	420	35	.26	.10	17.2	507		10.0	1634
265	22N	1 086	04	DDB8	04	06	76	Well	424	6700	5350	45	.21	.32	8.8	539		266	36735
256	22N	1 086	094		06	20	72	Well	446	6295	5600	45.0	1.4	1.1	16	546			36730
257	22N	1 08E	25	AACC	04	06	76	Well	410	116	220	8.7	.15	1.35	18.8	331		35	1618
258	221	N 088	34	AABE	04	06	78	Well	460	4160	9800	100	.19	1.57	8.8	1452		128	36010
250	22N	1116	30	DDB8	04	07	76	Well	77	114	700	30	.70	.13	24.1	718		13	1576
260	22 N	4 11E	314	4	07	18	75	Reservoir	235	326	530	24.4	.08	.06	3.0	36	13.4	203.4	2291
261	22 N	4 11E	31.	ADAC	04	07	78	Reservoir	436	732	1120	35	.19	.03	1.0	378		243	4913
262	22 N	1 1 3 5	27	CCDC	01	16	77	Weil	61	56.5	1010	5.5	.18	.02	9.7	1000		48	1587
263	181	4 1 3E	25	DDD	09	21	76	Spring	40.2	44.6	32.9	1.4	.03	<.01	10.6	294		.4	45.3
264	191	4 13E	22	BAC	06	11	72	Well	44	18	73	6.5		.01	12.2	265	14	3.5	105
265	191	N 13E	29	BCAA	04	07	76	Well	135	380	1400	1.7	.37	.03	9.3	817		120	3854
266	191	N 13E	29	BASS	04	10	76	Well	91	107	160	4.	.05	<.01	11.2	383		33	564.5
267	190	1 136	29	BCCC	04	07	78	Well	56.3	78.5	160	3.2	.12	<.01	12.2	498		8.0	321.9
288	231	N 088	22	DCAC	04	06	78	Well	396	3000	4100	50	.13	.39	8.2	1182		266	19360
269	245	1 08E	10	ECEA	01	14	77	Well	97.5	84	149	3.1	.02	.06	4.6	374		32	600
270	186	N 13E	01	0080	08	21	78	Well	415	1420	1950	23.2	.10	.03	11,4	600		180	9518
271	168	V 146	07	BBDA	04	09	76	Well	474	590	1100	8.6	.18	.30	8.4	385		73	5361
272	168	4 14E	07	8DD8	09	21	78	Well	294	1865	1730	30	.84	.41	9.3	627		180	11031
-	-			_	-		-												

Note All chemical data are given in milligrams per liter (mg/l) unless otherwise stated

of Selected Waters

					100										
		Fluo-		Field	Lab	Dissolved	Total	Total	Sodium		Well		Trace		
Mep	Misses-		Lab	Temp.		solide	hardness	alkalinity	adsorption	Collecting		Anuifer	elements	Lab	
ref.	Nitrate (N)	ride (F)	pH	C°	(umhofem)		as CaCD ₂	as CaCO ₁	ratio	agency	(ft.)	code		number	
			pri	•	. umnotem)			_ 55003			.,,,,,		,		
57	.249	1.0	8.16	9	3749	2681	178	608	28.5	MBMG	185	211CLRE	Yes	75M1601	
60	.368	1.7	7.51	12	3478	2985	1790	229	2.4		1618	217KOT!		76M1603	
78	.023		7.38		2862	2253	1260	509	3.1	MBMG	2022	221 SWFT		76M1616	
103	.029	.5	7.49		3890	3288	1370	572	6.5	MBMG	135	211CLR		76M1517	
107	6.777	.4	7.63	6	6768	5209	728	1250	25.3	MBMG	184	211EGLE	Yes	76M1813	
108	.032	1.2	8.45	20	3737	2608	114	593	36.0	MBMG	481	211EGLE	Yes	76M1614	
106	.156	1.8	8.43	14	3722	2517	24	871	82.4	MBMG	302	211EGLE	Yes	76M1615	
124	.108	.9	7.70	- 5	2909	2302	802	367	6.8	MBMG	20	211 CLR	Yes	76M1609	
135	10.844	.5	8.33	5.2	677	379	316	288	0.7	MBMG		211M58Y	No No	76M1642	
149	.156	.3	7.48	7	3871	3135	1750	452	3.5	MBMG	17	112DRF1	Yes	76M1610	
158	.565	6.1	8.32	14	3910	2937	667	468	12.5	MBMG	24	110TRR	Yes	76M1248	
157	12,990	2.2	7.87	16	1270	797	458	373	2.5	MBMG	28	110TRR	Yes	76M1247	
187	.054		7.22	15	3475	2839	1470	314	3.9	MBMG	28	211CLRD	Yes	76M1240	
218	82.803		7.20		21700	24230	9100	729	20.5	MBMG	97	210CLRD	Yes	76M1618	
224	158.14	.2	7.53	7	6495	5475	3870	300	3.5	MBMG	90	211CLRE	Yes	76M1477	
247	10,392	.3	4.08	8	6340		3500		2.5	MBMG	27	1120RF	Yes	76M0251	
252	237.300		7.98		9579	7281	4570	492	1.1	MBMG	25	211 CLAC	Yes	75M1762	
253	25,189		7.75		7354	6478	3150	151	8.8	MBMG	290		Yes	76M0224	
264	.228		7.81	15	3368	2736	117C	416	5.3	MBMG			Yes	76M0227	
255	255.730	.8	7.27	8	34630	50050	26600	442	13.8	MBMG	13	112TILL	Yes	76M0222	
256	918	.9	7.45	18.4	317000	5088C	447	27100	14.8	MBMG			Yes	72M0636	
257	.188	.4	7.80	13	3048	2592	1500	271	2.5	MBMG		112TILL	Yes	76M0221	
258	397,602	.5	7.69	18	401 20	51780	18310	119C	31.5	MBMG		112TILL	Yes	76M0220	
259	4.609	.5	7.73	18	3927	2897	661	589	11.8	M6MG	25		Yes	76M0226	
260	106.672	.2	8.62	22.5	4705	3751	1930	49	1.9	MBMG	1	211CLRC	Yes	75M1781	
261	205.126	.1	7.66	15	9563	7871	410C	308	7.0	MBMG	1		Yes	76M0225	
262	.029	1.1	7.87	12	4345	3272	385	820	22.4	MBMG	70	211EGLE	Yes	76M1612	
283	16.491	1.5	7.92	11	672	338	284	241	0.8	MBMG		110TRR	Yes	76M1236	
264		-2	8.41		638	400	175	256	2.4	USGS		221 SWF1	No.	72M0083	
265	2.824	2.5	7.98	5	7486	6309	1900	670	14.0	MBMG	13	110TRRC	Yes	76M0229	
266	9,443	2	8.10	8	1677	1161	668	314	2.5	MBMG	33	110TRR	Yes	76M0238	
287	12.719	2	8.15	10	1462	900	464	408	3.2	MBMG	33	110TRRC	Yes	76M0228	
268	133.852	.6	7.68	10	24060	27890	13300	969	16.4	MBMG	33	112TILL	Yes	76M0223	
269	.578	.4	8.12	9	1606	1056	589	307	2.7	MBMG	27	110ALV		76M1602	
270	97,593	.6	7.74	15	13160	13910	6880	492	10.2	MBMG	28	211CLR	Yes Yes	76M1242	
271	3.219	.6	7.64	9	8051	7809	3810	315	8.0	M8MG	23	110CLVA		76M0235	
272	<.023	.9	7.17	15	13830	15430	8410	514	8.2	M6MG	28	211CLRC	Yes	76M1241	

	Ale:	Anti	Ar.			ġ	ė			Lith- Mer-	Aer-	_	Phosphete			Stron-				
	_	Mony			Boron		minm	Copper	Lead	ium cury Nickel	uy N		(Tote)	Selenium	Silver	tinu	Tip	Zinc	9	
no. T R SecTrect	(mg/II)	(I/Bul)	(1/64) (1/64)		(I/Bm) (I/Bm)		(mg/)	(Mg/l)	(mg/I) (mg/I)(mg/II)	4)(I)(m	4 11/6	p (I/6m)	dissolved	(1/64)	(I/6w)	III/6ma)	[I/6m] {I/6m]	(I/gm)	unmber	
57 26N 06E 35 DCCA	> 0.0	? : >	< 2.0		0.1		V.01	<.01	×.06	20		×.01	191	< 2.0		1.0	×.05	90	76M1601	
24N 05E 28 DCCD			< 2.0		18		V.01	.02	× 05	53		03	028	< 2.0		8.50	53	< 01	76M18G3	
24N 09E 28 DDAA			<2.0		2		10.0	10.	V 05	57		0	020	< 2.0		2.00	1.32	ō	76M1515	
03 23N 11E 24 CDDA			<2.0		88		<.01	×.01	8		7	03	990	< 2.0		5.45	18	Š	76M1617	
23N 12E 02 CDDA	> 0.08	<.2	<2.0		2.1		<.01	0	<.05	94	 	.02	270.	31.8		3.62	1.20	1.59	76M1613	
08 24N 12E 22 AAAD	<.05	? >	<2.0		1.5		0.0	99	> 0.0	5	6.	10.>	10	< 2.0		8	1.26	1.25	76M1614	
25N 1ZE 27 ABCB		5.2	<2.0		2.6		0.0	.07	<.05	7	ç	10.>	020	< 3.0		20	1.43	90	76M1515	
	90	×.	<2.0		74		, 0.	0	90.	.12		20.	980	< 2.0		2.16	99	8	76M1609	
	_	×.2	<2.0		34		¥.0.	8	8	10		.03	088	< 2.0		4.31	1.23	1.0	76M1510	
56 19N 13E 29 AAA	48	<.2	2.0		2.8		, 0, 0	0.	.07	2		0.	720.	< 2.0		1.61	ç	9	76M1248	
	.27	2 ×	<2.0		1.1		\$0.×	0.	<.06	Ε.		.02	160	7.8		#	5	.02	76M1247	
	66	6.2	<2.0		.83		, 0.	<u>0</u>	01.	12	6.3	8	.170	16.2		1.16	3	.12	76M1240	
118 23N 01W 03 AAC	×.08	.87	<2.0		6		ğ	90	6	4.10	7	.26	990	220	_	9.11	9.76	40	76M1518	
224 24N 02W 32 ADC	8	8	< 2.0		2		0	8	20	64	6.5	9.	.023	713		6.9	98	2.00	76M1477	
22N 02E 07 BCCB	178.7	.26	< 2.0	74	œ.	ş	0.	.07	9.	4.16	8	3.5	.153	4.0		.23	,55	7.30	76M0251	
752 21N 11E 06 B			<2.0		.23	.00			6	.00			.166			2.51			76M1762	
263 21N 11E 06 BBCC	×.06	5	<2.0	9 >	•	8	.02	.02	1.0	91	<.3 <.3	80	920	126		.87	.67	.03	76M0224	
21N 11E 01 DBDD	•	×.2	< 2.0	9 >		0	¥.01	0.	90	.15	ć.,	Š	920	< 2.0		3.68	ď	6	76M0227	
90		2.0	< 3.0	9 >	2.7	80	.12	.12	.37	1.40	6.2	94	306	089		8.9	4.12	13	76M0222	
32N 08E 08 A	2.0					9	Ŗ	13	1.3	8		4			13	1.7		<u>e</u>	72M0636	
22N 08E 25 AACC	×.08	7		v		5	6	8	8	0.0		8	970			4.03	9	6	78M0221	
22N 08E 34 AA68	9.	2.3	<2.0	\$ 0	1.3	8	E	Ξ	ž	4.51		ē	940	906		12.6	3.04	8	26M0220	
22N 11E 30 DD88	.16	7 ×	<4.6	9	1.2	ē	0.	6	90.	.27	6.5	.03	990	6.3		2.86	16	.03	76M0226	
22N 11E 31 A			<2.0		.27	10.			.00	.13			.023	633		2.06			75M1761	
22N 11E 31 ADAC	.	7	<2.0	9	ъę	g	.03	ģ	Z,	38	5	Ξ	.048			6.76	.85	90	78M0225	
22N 13E 27 CCDC	٧	<.2	<2.0		2.3		0.	V.01	> 00		6.5	9	.033	< 2.0		3.27	.57	90	76M1612	
18N 13E 26 DDD		7	<2.0	9	6	, 0.	, 0.	10.	90.	9	6.0	0	030	_	10.>	7.	.16	ō.	76M1236	
19N 13E 29 BCAA		7 ×	<2.0	9	2.9	0	5	6	9.	15	Ş	0.	104	10.9		3.39	.45	90	76M0229	
2	.07	7	<2.0	ب	9	6	0.	0.	90.	80	6.5	.02	147	8.3		1.68	ç	.03	76M0238	
19N 13E 29 BCCC		7	<2.0	9	0.	V.01	, 0.	6	×.08	8	5	8	.033	166		1.62	Ξ.	ģ	76M0228	
23N 08E 22 DCAC	Ť	1.36	<2.0	9	2.2	8	.00	8	.50	4.73	6.3	2	.033	1600		8.3	3.74	90	76M0223	
24N 08E 10 BCBA	~	~7	< 3.0		2.		10,0	6	90'>	90	6.5	¥.01	<.007	< 2.0		1.06	90.	.12	76M1802	
16N 13E 01		90	<2.0		3.8		g	90	ş	1.60	Ş	91.	.072	760		9.66	3.16	ğ	76M1242	
16N 14E 07	~	7	<2.0	9	1.6	.02	ō	.03	16	.00	ŋ	Ŧ.	.039	8		1.72	99	.16	76M0236	
272 16N 14E 07 0DDB	.07	90	4.3		3.3		8	90	8	8	9	.17	946	2.0		3.52	3.42	9	78M1241	

LOCATION BASE MAP

HARDIN 1° x 2° SHEET

CONTOUR INTERVAL 100 FT

CONTOUR INTERVAL 100 FT

OKILOMETERS

9

HARDIN 1° x 2° Sheet Specific Conductivity Inventory Sheet

Owner's name	Wason Goedert, Clarence	Dowlin, M. G.	Wilson May, Charles	Hays Hays	Howard Farley Cass Cass, F. Cass, F.	Ashenhurst Ashenhurst Dowlin, M. G. Dowlin, M. G. Dowlin, M. G.
Aquifer	125TGRV	235 126TLCK 202 211HLCK 81 211HLCK	126TGRV	126TGAV 125TGAV 125TGAV 125TGAV 125TGAV	1261GRV 1261GRV 1261GRV	126TGHV 110ALVM 126TGHV 126TGHV 125TGHV
Well depth [ft.]		235 202 81				140
Static water kevet (11.)		12 25				15 86 60
Altertude (ft.)	3300 3200 3240	3130 3040 2820 2860	2820 3270 3090 3200	3300 3420 3310 3400	3420 3600 3460 3500	3210 3170 3160 3360 3250
Lab A analysis	0 0 1 8 8 A	o c c c c c c c c c c c c c c c c c c c	% % % % % % % % % % % % % % % % % % %	2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 4 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5	ves ves
Fueld temp.	12 1,2 29	13.5	13.6 10.5 1.1	10 21 23 9	10 10 11 13 0	.11 13.5 13.5 27
Specific conductivity at 25 C	690 810 638 1530 3330	1390 6170 2160 4000 1010	2320 790 1230 2530 2640	1270 1750 2274 1522 4440	2600	2210 663B 1250 1240 3030
yeld since Sire description	(E) Legain regation return (E) Irrigation return Omestic and stock use Stock use Stock use	2 gpm (E) Stock use Stock use Domestic use Domestic use Domestic use no stow Thirty acre saline pond	(E) irrapation return Domestic use Stock use	Stock use Stock use Stock use Domeric use Stock use	Stock use Stock use Stock use gam (E) Stock use gam (M) Stock use	B gom (M) Stock use 0.1 gom (M) Stock use 12 gom (M) Domestic use Stock use
Flow or yield E = estimated irce M = measured	ch 15 cts (E) ch 15 cts (E) t 1		Well 15 cfs (E) Canal 15 cfs (E) Spring Well	Weti Spring Spring Weti Spring	9.9	
Collection date Location date T R Sec Tract Mo Day Yr Source	O2N 33E 35 ACD 09 15 76 Duch O3N 33E 35 DBD 09 15 76 Duch O3N 37E 58 DACD 06 27 73 Well O3N 37E 35 CDB 06 59 73 Well O3N 37E 36 CDB 09 03 73 Spring O3N 37E 36 CDB 09 03 73 Spring	03N 39E 36 BACD 07 26 73 Well 03N 41E 78 CCD 07 24 73 Cresk 02N 33E 10 DD 10 17 21 Well 02N 33E 10 BD 10 17 14 Well 02N 33E 10 CD 09 15 76 Pond	OZN 33E 35 CD Well OZN 33E 27 DAA 09 15 76 Canal OZN 37F 01 A DBA Soring OZN 37F 20 A DBD 06 25 73 Well OZN 37F 20 A DBD 06 26 73 Well	02N 38E 07 DCCC Well 02N 38E 16 ADAC 03 15 3 Spring 02N 38E 16 ADAC 03 15 74 Spring 02N 38E 18 ADAC 03 15 3 Well 02N 38E 18 ADAC 03 17 3 Spring	OZN 38E 20 BDAC 07 73 Well OZN 38E 22 BBAB 07 02 73 Well OZN 38E 20 AABD 07 09 73 Spring OZN 38E 30 BCCC 10 05 73 Spring OZN 38E 32 ABDB 07 10 73 Well	02N 39E 05 BCBD 09 13 73 Well 02N 39E 05 DDDC 09 13 73 Well 02N 39E 12 CCCB 11 10 72 Well 02N 39E 23 CARB 07 25 73 Well 02N 39E 24 CDAB 07 25 73 Well 02N 39E 24 CDAB 07 25 73 Well 02N 39E 24 CDAB 07 25 73 Well
County	Big Horn Big Horn Treasure Treasure	Rosebud Rosebud Big Horn Big Horn	Big Hurn Big Horn Treasure Treasure Big Horn	Treasure Treasure Treasure Treasure	Treasure Treasure Treasure Treasure	Rosebud Rosebud Rosebud Rosebud
Majo ryl. Field nu. number	1 WD88 2 WQ89 3 74M109 4 73M600 5 74M0029	6 73M661 7 73M583 8 21M0103 9 14M0003 10 WQ86	11 00M0024 12 WGB7 13 73M0596 14 74M20 15 73M0601	16 73M598 17 74M125 18 74M120 19 74M21 20 73M597	21 74M0030 22 74M119 23 74M124 24 74M0220 25 74M221	26 73M807 27 73M800 28 73M14 29 73M662 30 73M664

HARDIN 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Dwner's name	Snider, D Sloan, S Sloan, S Pinkerton, W Pankerton, W	Dowlin, M. Dowlin, M. Dowlin, M. Snider, D. Hinrichs, W.	Fadhl, G. J. Wimer, T. Wimer, T. Streeter, C.	Seward, 1.		Winer, T. Winer, T. Winer, T. Cornwell Land and Livestock Co.
Aquifer	125TGRV 125TGRV 125TGRV 125TGRV 125TGRV	1251LCK 1251GRV 1261GRV 1251GRV 1251GRV	125TGRV 125TGRV 125TGRV 125TGRV	125TGRV 125TGRV 125TGRV 125TGRV		1251GRV 1251GRV 1251GRV 1261GRV
Well depth (ft.)			237			
Static water level (ft.)	27 26 26 26	72	146	33	2 %	28 88 82 62
Altitude (ft.)	3280 3620 3520 3440 3470	3170 3240 3270 3630 3390	3420 3150 3170 3100	3120 3180 3450 3200 3360	3240 3230 3240 3250 3250	3250 3010 3070 3140 3020
Lab			5 5 5 5 5		****	
Feld	12.5	E 2 4 E	11.5 11.5 23 13	10 10 13 13 13	26.5 18.5	11.6
Specific conductivity at 25 C	5060 3760 3990 2940 2050	2840 3700 3360 1740 991	2670 876 3290 4230 1790	2798 3350 1371 3790 3076	2220 2881 3560 3770 3510	1786 2058 2072 1680 4390
ed Site description	E) Stock use M) Stock use Stock use Stock use E) Oomerist use E) Domerist and stock use	7 gom (E) Stock use 3.2 gom (M) Stock use 6 gom (M) Domestic use	Mi Stock use Stock use Stock use Stock use El Stock use	Stock use 1.5 grant (E) Armelt Creek I gom (E) Stock use	Six pr Creek Arnells Creek Sixpy Creek Sixpy Creek Rosebud mine spoil area research well Rosebud mine spoil area research well	Roebud mine spoil are research well stock use Stock use Stock use Al Stock use Al Stock use Al Stock use
Flaw or yield E = estimated M = meesured	4 gpm (E) B gpm (M) 6 gpm (E) 6 gpm (E)	7 gpm (E) 3.2 gpm (M) 12 gpm (E) 6 gpm (M)	2 gorn IMB 10 gum (E)	20 gram (E) 1.5 gram (E) 11 gram (E)		4 gpm [M] 6 gpm [M]
Collection Location date T R Sec Tract Mo Day Yr Source	02N 39E 25 ACDC 07 12 73 Well 02N 39E 31 CBCD 10 04 72 Skring 02N 39E 32 DODD 07 11 73 Well 02N 39E 34 ADBB 07 10 73 Well 02N 39E 34 DADB 07 10 73 Well 02N 39E 34 DADB 07 10 73 Well	02N 40E 06 CBCB 07 25 73 Web 02N 40E 18 DABD 10 06 72 Syring 02N 40E 02 DBAAC 07 13 73 Well 02N 40E 31 DCCD 11 09 72 Well 02N 40E 32 BBAB 07 21 73 Well	02N 40E 35 DDCD 07 13 73 Well 02N 41E 01 DBA 40B 30 73 Well 02N 41E 02 DBBA 11 01 72 Well 02N 41E 09 BCBC 07 24 73 Creek 02N 41E 10 BCBC 07 18 73 Well	02N 41E 17 ADAD 10 03 73 Spring 02N 41E 21 CADA 11 09 72 Well 02N 41E 24 CADA 06 11 75 Well 02N 41E 27 BCCC 09 13 73 Creek 02N 41E 30 DDAA 10 02 73 Well	02N 41E 33 DODD 08 12 72 Creek 02N 41E 48 6CA 08 12 72 Creek 02N 41E 34 6CA 08 12 72 Creek 02N 41E 35 DABD 09 25 73 Well 02N 41E 35 DABD 09 26 73 Well	02N 41E 35 DABO 02 04 74 Well 02N 42E 64 DACA 08 30 73 Well 02N 42E 05 CABO 08 30 73 Well 02N 42E 06 CBOD 11 01 72 Well 02N 43E 12 AC 10 03 72 Spring
County	Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud
Map ref. Field no. number	31 73MG52 32 72M760 33 73M650 34 73M649 35 73M648	36 73M663 37 72M761 38 73M654 39 73M13 40 73M651	41 73M653 42 73M604 43 73M10 44 73M582 45 73M656	46 74M17 47 73M12 48 75M0589 49 73M581 60 74M224	61 72M623 52 73M680 53 72M622 54 73M745 55 74M206	56 74M205 67 73M806 68 73M805 59 73M9 60 72M759

HARDIN 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

	nd Rench			Handie
Owner's name	Gartield Diamond Ranch Gartield, G. M.	Gerfield, G. M. Dodge, J	Davidson Redding Redding	Cox, Metie Orville, John Orville, John Orville, John Stoen, S. Broadus, H.
Aquiler	125TGRV 125TGRV 126TGRV	126TGRV 126TGRV 125TGRV 190 211BRPW	12 110ALVM	1261GRV 1261GRV
Well depth (ft.)		190	22	
Static water tavel (ft.)	73	2 2 2	9, 9	23
Altitude (ft.)	3010 2850 2920 2910 2910	2920 2960 2890 2850	2850 2860 2960 3480 3430 3270 3650 3400	3500 3480 3470 3440 3460 3620 3630 4000
Field tab. Lab C analysis	:::::	2 2 2 2 2 4 A A A A A A A A A A A A A A	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Field C C	11 12 13 13	11.0	9 17 8 10.6 12 12	13.6 10 10 8 20.5 20.5 1.4
Specific conductivity et 25 C	3660 4841 1660 2800 1843	2030 4360 4766 3690	630 5470 1100 2010 2074 1450 4950 810 3426	1960 818 826 1620 1340 742 1360 657 2160
Flow or yield E estimated Site description	0.3 gom (E) Stock use 2 gom (E) Stock use (B gom (M) Stock use 6 gom (M) Stock use 2.5 gom (M) Stock use	Stock use Stock use Stock use Stock use OS cit (E) Fiy Creek at Hay Greek Unused	29 cfs (E) Domestic use no flow Stock use Stock use Quent (E) Stock use Unused Castle great pool Chaused Castle great pool Chaused Castle great pool	10 grown (E) Donnessis and stock use 4 grown (E) Donnessis use 4 grown (E) Donnessis use 9 grown (E) Donnessis use 9 grown (E) Unused 0.6 grown (E) Unused 2 grown (E) Unused 2 grown (E) Stock use 6 grown (E) Stock use
Collection Location date T R Sec Tract Mo Dey Yr Source	02N 43E 12 CBAC 10 03 73 Weil 02N 43E 18 AAAC 06 12 76 Weil 02N 43E 20 CABB 10 02 73 Weil 02N 43E 27 CBC 10 13 72 Weil 02N 43E 30 BDDA 06 12 75 Weil	OZN 44E 21 DDDC 10 26 72 Well OZN 44E 32 DAGC 10 20 72 Well OZN 44E 33 DDAC 09 13 73 Well 01N 30E 35 BCA 09 15 76 Creek OIN 33E 16 AD 09 09 16 Well	01N 33E 27 A8B Const 01N 33E 28 CD Well 01N 33E 28 CD Well 01N 32E 20 CD 09 15 76 Pond 01N 32E 20 CD 07 27 27 Well 01N 37E 32 COAD 07 29 72 Well 01N 37E 32 CAC 07 29 72 Well	01N 38E 2 CCCC 07 18 72 Well 01N 38E 20 ACCA 07 17 Well 01N 38E 20 ACCA 07 17 Well 01N 38E 20 ACCA 07 17 Well 01N 38E 20 DADD 07 17 SWell 01N 38E 30 DADD 07 30 72 Sering 01N 38E 30 DADD 07 30 77 Sering 01N 38E 30 DADD 07 30 77 Well 01N 38E 30 DADD 07 37 Well
County T	Rosebud 02N 43E Rosebud 02N 43E Rosebud 02N 43E Rosebud 02N 43E Rosebud 02N 43E	Rosebud 02N 4- Rosebud 02N 4- Rosebud 02N 4- Big Horn 01N 36	899 Horn 01N 899 H	899 Horn 01N 899 Horn 01N 890 Horn 01N 890 Horn 01N 890 Horn 01N 890 Horn 01N

Specific Conductivity Inventory Sheet (Con't.) HARDIN 1 x 2 Sheet (Con't.)

Dwner's name Fedhl, G Fadhl, G	Farriey, 0	Snider, J	McRee, D. Snider, J. W Peabody Coal Co. Klaver, E. M.
Aquiler code D 125TGRV F		60 125FBUN 60 125FBUN 125TGRV Sr 60 125FBUN 130 126FBUN 130 126FBUN 148 125FBUN	1251GRV McRes, D. 1261GRV Soider, J.M. 126126FRUM Petaloody Coa
Well depth Rt.J	001 195 195	60 1 50 1 130 1 148 1	225 1
0 -	20 20 01 103 10	18 36 39 23 23 23 10 110	33 101 101 45 45 18
Lab Altitude nalysis (ft.) yes 3440 yes 3510	3510 3480 3480 3440 3460 3460	3500 3490 3240 3240 3220 3330 3340	3320 3010 3290 3410 3230 3220 3220 3240 3250 3250
Lab Altitud analysis (ft.) yes 3440 yes 3510			
Field Temp. C an	13.5 13.5 28 28 28 28 28 28 28 28 28 28 28 28 28	23 23 24 25 24 27 27 27 27 27 27 27 27 27 27 27 27 27	15.5 yes 18.6 yes 13.5 yes 13.6 yes yes yes yes yes yes
Specific conductivity at 25 C 2930 483	1258 1660 2943 2326 1344 1542 1543 3130	2179 1305 2350 23140 2770 1240 2637 1160 2493 2930	1300 2110 2110 1234 2644 3800 3800 3808 3800 3800 3800 3180
Stre description Stock use Donestic use	Goch use Soch use Thread Dometic use Soch use Injused	hbussed blussed blussed blussed Armells Creek Armells Creek blussed blussed blussed blussed	housed filted: use filted use full and use f
	Stock ur Stock ur Unused Domesti Stock ur Stock ur Unused	Unused Unused Unused Unused Stock use Unused Stock use Unused Unused	Stock use Used for w Unused Industrial i Unused Unused Unused Unused Unused
Flow or yield E = estimated M = measured O 6 gpm IMI 4.8 gpm IMI	20 gom (E) 4.3 gom (M) 0.5 gom (M) 50 gom (E) 60 gom (E)	3 gom (M) 6 gom (E) 12.5 gom (M) 0.2 gom (M)	2.3 gpm IMI 8 gpm IEI 2.4 gpm IMI 15 gpm (E)
Collection date T R Sec Tract Mo Day Yr Source OIN 40E 02 BABD 07 24 73 Spring	01N 40E 12 COBA 1 10 27 27 Well 01N 40E 12 COBA 1 10 27 Well 01N 40E 13 COBA 0 25 27 Well 01N 40E 14 COBA 0 25 27 Well 01N 40E 14 COBA 0 25 27 Well 01N 40E 15 GBOA 0 25 37 Well 01N 40E 15 GBOA 0 25 37 Well	OIN 40E IS BOBBO OS 16 55 Well OIN 40E IS BOBBO OS 16 55 Well OIN 41E OI ACAS 60 25 53 Well OIN 41E OI OLOAC 60 25 53 Well OIN 41E OI OLOAC 60 25 53 Well OIN 41E OI OS 60 50 50 Well OIN 41E OI OS 60 16 55 Well OIN 41E OI ACAS 60 16 35 Well OIN 41E OI ACAC 65 16 35 Well OIN 41E OI ACAC 65 16 35 Well OIN 41E OI ACAC 65 16 35 Well	01N 41E 12 AGD0 03 55 73 Weel 01N 41E 12 AGD0 03 55 73 Weel 01N 41E 13 AGD0 07 10 73 Weel 01N 41E 13 AGD0 07 10 73 Weel 01N 41E 27 AGD0 05 07 47 Weel 01N 41E 27 AGD0 07 07 47 Weel
- 200			
		Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud	Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud Rosebud
Map ref. Field no. number 91 73M658 92 73M657	94 73M11 95 75M014 96 75M0417 87 74M0213 98 74M212 99 73M589 100 75M0309	102 73M/142 103 73M/142 104 73M/143 105 73M/689 107 73M/689 107 73M/69 108 74M/215 110 75M/0418	111 734/149 112 734/665 113 734/665 114 754/0313 115 734/209 117 744/209 118 744/207 119 744/207

HARDIN 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

	Owner s name				McRae, D	Curren, J	Curran, J.	McRae, W.	McRae, W.	McRae, W.	Kluver, E. M.	McRae, W. D.		Gartield, G. M.	Dodge, J	Hart Ranch	Dodge, J.	Dodge, J	Dodge, J.	O'Brian, L.											
Aquiler	9000				126TGRV	125TGRV	126TGRV	125TGRV	126TGRV	126TGHV	125TGRV	78 110ALVM	126TGRV	126TGRV	125TLCK	125TLCK	125TGRV	HOALVM	126TGRV	126TGHV						331MDSN					
Well	Ē											78																			
Static water level	3	33	4	4	7		7	17	21	4	39	18	22	46			3		e												
Altitude	analysis (It.)	3050	3280	3040	3130	3060	2930	2990	2970	2960	2900	2980	2890	2960	2760	2730	2900	2950	3030	2810			3060			3000	2890	2890	2910		
3	PARIYS18	yes	Yes	, es	Yes	¥ 0.5	¥0.4	101	Yes	\$0.A	s A	\$ A	Yes	10A	7 0 £	Yes	¥ 83	80 A	Yes	Yes	yes	Yes	\$0.A	yes	90	X 0.5	\$0 X	Yes	\$0 A	2	ş,
Field					=	=		9	01		10.6	10.6	13	=	91	14.5	=	19.6	13	11.6	13	23		2				9	1		58
Specdic		2173	2820	2720	1510	4696	4000	1906	3490	2420	2050	1410	6436	4530	1998	1994	1946	4400	1552	2830	72200	14740	3040	4710	.069		0699	6830	3380	6400	89970
	Site description	Unused	Unused	Unused	Stock use	Stock use	Domestic use	Grock use	Stock use		Stock use	Stock use	Stock use	Stock use	Domestic use	Domestic use	Stock use	Stock use	Stock use	Stock use		Near 100 acre seep		Irrigation ditch seep	Leggins Canal					About 10 acres in size	
	M = measured				8 gpm (E)				13.3 gpm (M)		4 gprn (M)		0.1 gpm (E)								no flow			no llow	30 cfs (E)					26 gpm (E)	woll on
Collection Location date	Mo Day Yr Source	02 04 74 Well	09 25 73 Well	02 04 74 Well	08 02 73 Well	09 06 73 Well	09 06 73 Well	08 09 73 Well	09 28 72 Well	02 01 73 Well	10 18 72 Well	10 01 73 Well	06 13 75 Well	11 29 72 Well	09 12 73 Well		09 13 73 Well	09 13 73 Well	09 13 73 Well	09 29 72	09 16 76 Seep	Du 16 76 Pond	Well	09 16 76 Ditch	09 16 76 Canal	11 23 37 Well	Well	Well	Well	11 18 76 Seep	09 16 76 Seap
Location	H Dec 1/3ct	01N 42E 17 BDDC 02 04 74 Well	01N 42E 18 AAAB 09 25 73 Well	01N 42E 18 AAAB	01N 42E 19 DBBA 08 02 73 Well	01N 42E 22 CABD	01N 42E 25 BCDD	01N 42E 28 BDDC 08 09 73 Well	01N 42E 33 ADBC 09 28 72 Well	01N 42E 34 ACAB	01N 43E 17 AACA	01N 43E 33 BBBB 10 01 73 Well	01N 44E 04 DABO 06 13 75 Well	01N 44E 07 AADA 11 29 72 Well	01N 44E 12 CBCA	01N 44E 14 BBDC	01N 44E 29 ACBD 09 13 73 Well	01N 44E 30 BDCA 09 13 73 Well	01N 44E 31 AABA 09 13 73 Well	01N 44E 34 DCCB	01S 31E 14 ABD	01S 31E 16 DA	01S 32E 23 BD	01S 33E 02 DDB	01S 33E 03 CAB	01\$ 33E 13 DD	015 33E 14 AB	01S 33E 14 DB	01S 33E 16 DD	01S 33E 18 B	01S 33E 18 BDD
	County	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rosebud	Hosebud	Rosebud	Rosebud	Rosebud	Rosebud	Rusebud	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn	Big Horn
Field	uninger	121 74M201	122 73M740	123 74M200	124 73M6G8	125 73M794	126 73MB02	127 73M801	128 72M755	129 73M60	130 73MI	131 73M824	132 75M0592	133 73M1S	134 73MB08	73M814	136 73MB10	137 73M812	138 73MB11	139 72M757	140 WQB15	141 WOB16	142 00M0028	143 WOB2	144 WOB3	145 37M0003	146 DOMO028	147 00M0030	148 00M0031	149 WOB21	150 WDB14
Map ref.	9	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	14	142	143	4	145	146	147	148	149	200

HARDIN 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's neme		Peters, Joe Peters Cox	Corra	Bailey, D. Bailey, D. Bailey, J. Golder, J.	Golder, J. Golder, J. McRae, D. McRee, D.	McRae, W. D.
Aquifer	37 110ALVM 18 1107RRC	125TGRV 125TGRV		125TGRV 110ALVM 125TGRV 125TGRV 125TGRV	248 125TGRV 126TGRV 125TGRV 125TGRV 125TGRV	125TGRV 125TGRV 21 110TRRC
Well depth (ft.)	18				248	21
Static water level fft.1	8 5	S	1.7	38	22 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	2 2 2
Altitude (It.) 3040	3040 2900 2910 3040	3490	3520 3508 3520	3770 3890 3580 3150	3070 3160 3010 3010	3110 2920 3080
Lab , analysis no yes		Y 25 27 74 75 75 75 75 75 75 75 75 75 75 75 75 75				
Feeld C C	==	2 = =	1 0 0 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	13 13 12.5 10.6	12.5 1.7 11.6	11 22
Specific conductivity et 25 C 6300 1600	1200 7010 2190	2380	1230 1730 1780	1424 2906 2226 2348 2420	1820 3220 1870 4820 3970	1740 2060 8330
Site description		Unused Stock use	Stock use Domestic use Stock use	Stock use Stock use Stock use Stock use Stock use	Donnstic use Stock use Donnstic use Used for watering grass	Stock use Stock use Domestic use
Flow or yield E = estimated M = measured			_	1 gpm IE) Stock use 0.25 gpm IE) Stock use 2 gpm IM) Stock use Stock use 5 gpm IM) Stock use	3 gpm (M) S	0002
Collection date Mo Day Yr Source 11 17 75 Seep Well	Well Well 10 20 21 Well 10 10 21 Well	09 11 73 Well 09 11 73 Well 06 27 73 Well	07 18 72 Well 07 18 72 Well 08 01 72 Well 08 01 72 Well	09 12 73 Spring 09 12 73 Spring 09 12 73 Well 09 07 73 Well 12 01 72 Well	02 27 76 Well 10 27 72 Well 10 27 72 Well 08 01 73 Well 08 01 73 Well	11 29 72 Well 09 28 72 Well 10 11 21 Well 09 18 78 Pand
Ē.			015 38E 09 ACBB 07 18 72 Well 015 38E 09 BADD 07 18 72 Well 015 38E 09 BADD 08 01 72 Well	U15 J9E 17 UCBA U9 12 73 Spring 18 40E 06 BBDB U9 12 73 Spring U15 40E 07 DADA U9 12 73 Well U15 40E 08 AABB U9 09 07 73 Well U15 41E 02 AABB U9 U15 41E 17 DAAA 12 01 72 Well U15 41E 17 DAAA 12 01 72 Well	Owder River 01S 41E 23 BACB 0 Totalbud 01S 41E 32 CA6A 1 Nosebud 01S 41E 33 DBCB 1 Totalbud 01S 42E 04 DCAB 0 Rombud 01S 42E 04 DCA 0	015 43E 11 CACB 1 015 44E 08 DCAD 0 025 37E 26 A 1
County Big Horn Big Horn	Big Horn Big Horn Big Horn Big Horn	Big Horn Big Horn	Big Horn Big Horn Big Horn	Rosebud Rosebud Rosebud Rosebud	Powder River Rosebud Rosebud Rosebud	Rosebud Rosebud Big Horn
Map rel. Freid no. number 151 WQB1B 152 00M0037	153 00M0033 154 00M0034 155 00M0036 156 21M0104 157 21M0105	159 74M0116 160 74M0105	161 /2M0420 162 72M0419 163 72M0403 164 72M0404	166 73M797 167 73M798 168 73M796 169 73M795 770 73M18	71 76M0119 172 73M6 173 73M7 174 73M665 175 73M666	176 73M18 177 72M756 178 21M0106 179 WQ812

HARDIN 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

						is fac.
Dwner's nam;	McRae, D Owen, J. F Owen, J. F		ŝ			Imperial Minerals Inc.
Aquifer	126TGRV 125TGHV 125TGRV 217LKDT 331MDSN		300 372 125TGHV	45 110ALVM		331MDSN 320AMSD 331MDSN
Well depth (ft.)		123	300	\$		
Static water level (ft.)	138	0	9	*		
Lab Altitude analysis (fr.)	3430 3000 3240 3490	3000 3100 3080 3060	2940 2980 3010 3180	3060 3060 3060 3100	3140 3160 3160	3120 3360 3620 3640 3440
Lab analysis	2 2 2 2 3 A A A A A A A A A A A A A A A		yes yes	Y 62 22 22 Y 62 Y 62 Y 62 Y 62 Y 62 Y 6	2 2 2 2 2	2 2 2 2 2 A A A A A A A A A A A A A A A
Field C C	11.5	22 11 10 28	11.6	23 12 10 10.6	11.6 20 9 10	9 2
Specific conductivity at 25°C	4800 1190 1020 3106	6454 7620 2667 ;	1545 1610 1318 1390 6670	2635 2720 3780 2130	2690 2689 825 1180 6030	1640
eld ed Sire description ed	Stock use M Stock use M) Stock use	E) Woody Creek et bridge 	M) Domestic use M) Stock use Domestic use	Brauves Greek	Otter Ocea	O 6 gym (M) Stock use O gon (E) 2 gon (E)
Flow or yield E = estimated M = measured	4 ஓபா (M) 1 ஓபா (M)	0.1 cfs (E) 75 gpm (M)	30 gpm (M) 12 gpm (M)	1 cfs [E]	2 ch (E)	0.5 gpm (6) 290 gpm (E) 2 gpm (E)
Collection Location date R Sec Tract Mo Day Yr Source	11 30 72 Well 09 21 72 Spring 08 21 72 Spring 12 31 69 Well 06 18 SS Well	09 16 76 Creek Well Well 06 28 77 Well 06 28 77 River	09 16 76 Pond 04 29 75 Well 06 05 75 Well 02 26 76 Well Well	09 16 76 Creek Wull 10 18 21 Well Well	Well 10 18 76 Creek Well Well	Well 0S 01 75 Creek 10 06 67 Well 08 07 61 Well 08 08 61 Well
Location T R SecTract	025 41E 02 DABC 025 44E 12 BCCA 025 44E 14 CB 035 31E 21 AC 035 31E 34 BC	035 32E 27 AAC 035 33E 08 8D 035 35E 18 DC 035 35E 18 DC8 035 35E 18 DC08	03S 35E 30 ADD 03S 44E 11 BCAD 03S 44E 33 BDAA 03S 45E 32 DDA 04S 32E 02 AA	045 32E 16 DBB 045 32E 23 DC 045 32E 23 DC 045 32E 26 BD 045 32E 36 BD	045 32E 36 BD 045 45E 04 BDA 055 31E 35 CC 055 31E 36 DB 065 32E 11 BB	06S 32E 20 BA 06S 43E 16 DDCC 06S 32E 27 CD 06S 32E 34 ABB 06S 32E 34 ACC
County	Rosebud Rosebud Rosebud Big Harn Big Harn	Big Horn Big Horn Big Horn Big Horn	Big Horn Rosebud Rosebud Powder River Big Horn	Big Horn Big Horn Big Horn Big Horn	Big Horn Powder River Big Horn Big Horn	Big Horn Rosebud Big Horn Big Horn
Mup ref. Freid no. number	181 73M17 182 72M753 183 72M765 184 69M0006 185 55M0006	186 WQB10 187 00M0035 188 00M0037 189 78M0002 190 78M0003	192 75M0194 192 75M0194 193 75M0603 184 76M0114 185 00M0038	196 WQ811 197 00M0016 198 21M0107 199 00M0017 200 00M0018	201 00M0019 202 WQB5 203 00M0020 204 00M0021 205 00M0022	206 00M0023 207 76M0192 208 67M0006 209 61M0001 210 61M0003

HARDIN 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con'1.)

Static	Field water Well	temp. Lab Altitude level depth Aquiller		1330 yet	1250 no	24 5 yes 3		1647 yes 3900 337M5NC		2020 yes 3500 45 125FRUN	yes 3500 46	46	2520 yes 3500 60 207 125FHUN	630 yes. 3490 61 136 125FRUN	41 207	81 135	_	620 12.5 yes 3490 60 135 125FRUN	90 135	1590 yes 3490 60 135 126FRUN	24 yes	1740 10.9 yes 3520	5350 yes	
		•	sured Site description at 25 C	South Fork Good Luck Creek	North Fork Good Luck Creek	Hanging Woman Creek	One mile NE of landing area	-	Chused	Unused				16 Paramet		Unused			(Inused		River at Decker Bridge	Domestic use	Deer Creek	
	Collection Flow or yield	Location date E . estimated	T R Sec Tract Mo Day Yr Source Mameasured	D6S 34F 13 11 18 75 Creek 25 som (E)	11 18 76 Creek	DD 06 01 72 Creek	38 05 01 75 Cent	085 46E 11 AA 06 16 64 Well	04S 40F 15 DCR 05 27 72 Dich 2 cls (E)	A 06 21 72 Well			06 21 72 Well	DOE 40E to ABCO OR 21 72 Well	06 21 72 Well	D6 21 72 Well			005 40F 18 ABCD D6 22 22 Well		095 40E 22 DBAD 07 27 72 River	09S 40E 29 CCAD 07 27 72 Well	095 41E 10 CC 06 10 76 Creek no llow	
	Map	ret. Field		211 WOR19 Rig Horn					216 22M0147 Rus Horn			210 7244026 Bin House		AND AND AND MANAGE BOX MANAGE	222 12440235 Big Hoon		-		STATE OF THE PROPERTY OF THE P		-			

Мар				C	oliect	tion			Magne-		Potas-		Manga-		Bicar-	Car-		
ret.		Loc	ation		date			Calcium	sium	Sodium	sium	iron	nese	Silica	bonate		Chloride	Sulfate
na.	Т	Я	Sec Trec	t Mc	Day	y Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO3)	(CO ³)	(CI)	(SO ₄)
3	03N	376	26 DAC	0 06	27	73	Well	7.9	20	109.5	2.6				237	43	6.2	55
4	03N	37E	35 CDB	06	25	73	Well	4.4	1.6	378	1.7			7.9	534	15	8.9	344
5	03N	378	36 CDD	4 09	03	73	Spring	40	40.8	28.8	1.4			1.6	190	82	30	1938
6	03N	39E	36 BAC	07	26	73	Well	4.4	.5	378	2	.01		8.6	785	19	42	99
7	03N	41 E	28 CCD	0.	24	73	Creek	284	549	838	16.4	.14	3.08	16.1	616		36	4100
В	02N	33 E	10 00	10	17	21	Well	73	50	372	5.6	.07		25	521		20	725
9	02N	33E	15 B8	10	17	14	Well	33	22					48	654		12	527
3.1	02N	33E	35 CD				Well	175	59	304	6.1	.42		24	432		31	933
			01 ADB				Spring	57	119	63	4.8			12.5	327		6.4	463
14	02N	37E	08 ADD	06	25	73	Well	22	46	491	6.3			9.6	471	19	22	850
			20 ABD		26	73	Well	6.4	3.8	704	3.1			7.6	805	34	13.8	782
			07 DCC				Well	58	108	97.8	4.8			10.7	358		5.1	482
17	02N	386	08 ACD	4 07	03	73	Spring	18.8	74	281	8.3	.01	.01	9.7	290	36	7.0	655
18	02N	388	16 ADA	C 03	15	74	Spring	110	218	127.5	7.1			10.5	520		14.7	1004
19	02N	386	18 ABB	3 06	26	73	Well	89	131	97	5.3		.01	11.8	417		12.0	557
20	02N	386	19 ACD	A 07	,	73	Spring	434	403	357	33		.01	14.6	386		4.6	3060
21	02N	386	20 8 DA	C 07	,	73	Well	11.1	57	525	6.5			1.7	365	18	7.7	1062
22	02 N	38E	22 BBA	B 07	22	73	Well	25	126	64	4.3			15.7	405		4.7	385
23	02N	38 E	30 AABI	0 07	09	73	Spring	36	45	11.2	, 1.2			14.9	296		1.9	53
24	02N	38 E	30 BCC	0 10	05	73	Spring	24	64	27	2.7			12.7	302	14	4.8	80
25	02N	38E	32 A8D	B 07	10	73	Well	184	248	222.5	8.4		.10	12.7	727		8.2	1317
26	02N	398	05 BCB	0 09	13	73	Well	54	108	317.5	5.9		.06	9.5	323		7.5	980
27	02N	39E	05 DDD	09	13	73	Well	249	553	905	13.2	.01	.06	10.7	703		27	4184
28	02N	39E	12 CCCI	3 11	10	72	Well	2.4	.8	330	1	.09	.01	11	739	15	30	42
29	02 N	39E	23 CAA	3 07	26	73	Well	51	97	108.4	5.7	.01	.15	14	523		4.3	330
30	02 N	39E	24 CDA	B 07	25	73	Well	144	162	450	7.9	.02		9.6	508		9.8	1552
31	02N	398	25 ACD	C 07	12	73	Well	277	464	55.2	10.9	.04	.02	6.8	673		22	3130
32	02N	39 E	31 C8C	0 10	04	72	Spring	196	387	330	13	.05	.02	18	571		11.7	2232
33	02 N	39E	32 DDD	0 07	11	73	Well	204	306	310	10.6	.14	.2	19	514		10.5	1945
34	02N	396	34 ADB	07	10	73	Well	157	327	179	8.5	.02	.05	11	721		11.5	1482
35	02N	396	34 DADE	3 07	10	73	Well	169	180	92	5.3	.93	.13	14	484		7.3	960
36	02N	40E	06 CBC	B 07	25	73	Well	22	13.5	694	3.4	.08	.03	8.6	507	14	12.2	1134
			18 DAB		06		Spring	115	304	478	15	.12	.01	11	734		18.6	1884
36	02 N	40E	30 BAA	C 07	13	73	Well	77	108	662	5.9	4.3	.09	7.5	449		12.3	1656
39	02N	406	31 DCC	D 11	09	72	Well	162	136	78	4.5	.51	.05	22	479		7.8	703
40	02N	40E	32 88A	B 07	21	73	Well	83	86	24.3	2.4	.16	.02	11	483		3.1	209
			35 DDC			73	Well	256	215	170	6.2	.63	.43	14	781		9.9	1216
			01 086			73	Well	31	92	27.6	3.7		.03	11.5	220	19	5.5	274
			02 088				Well	218	109	512	8.7	3.0	.10	10	376		9.9	1736
			09 BC8				Creek	162	395	471	26.6	.06	.02	1.1	282	29	56	2615
45	02N	416	10 BC86	. 01	19	73	Well	169	98	55	6.3	.50	.03	11	363		6.5	620
			17 ADA				Spring	169	250	218	24		.01	15.7	529	19	21	1368
			21 CAD				Well	172	173	486	8.5	1,50	.10	14	544	. 3	12.9	1680
			24 CAA				Well	129	91	23.7	4	.02	.03	15.3	702		3.6	177
			27 8CC		13		Creek	228	378	310	16	.05	.02	3	460		43	2280
-10	2214				, 13		and an		0.0	310		.00	.02	•	400			2200

Note. All chemical date ere given in milligrems per liter (mg/l) unless otherwise stated

of Selected Waters

of S	elected \	Water	\$											
					دنها									
Map		Fluo-		Field	specific	Dissolved	Total	Total	Sogium		Weil		Trace	
ret.	Nitrate	Toties	Lab	Temp.	conductance	solicis	hardness	aikalinity	adsorption	Collecting	depth	Aquifar	elements	Lab
no.	(N)	(F)	рН	C	(µmho/cm)	(calc.)	as CaCO,	as CaCO ₃	ratio	agency	(ft.)	code		number
3	3.6	-4	9.04	12	638	376	105	338	4.7	MBMG			No	74M109
4	203	1.2	8.63		1530	1027	18	487	39.0	MBMG			No	73M600
5	.384	.1	8.97		3330	2258	1810	429	3.0	MBMG		125TGRV		74M0029
6	.045		8.34		1390	944	13	708	45.6	USGS	235	125TLCK		73M661
7	.043	.2	8.18		6170	8146	3000	505	6.7	MBMG	233	1251668	Yes	73M583
8			7,40		21.52									
9		.6	7.40	11	2160	1528	388	427	8.2	USGS	202	211HLCK		21M0103
11		-	7.00	14	2220		173	536		USGS	81	21 1 H LCK		14M0003
		.7	7.20		2320	1746	680	354	5.1	USGS			No	OOM0024
13	1.355		8.06		1230	888	693	268	1,1	MBMG			No	73M0596
14	3.0	1.5	8.73	10.5	2530	1702	244	451	13.7	M8MG		125TGRV	No.	74M20
15	.068	1.3	8.73		2640	1953	32	773	54.5	MBMG			No	73M0601
16	.858	.1	8.00		1270	946	594	292	1.8	M8MG		125TGR\	/ No	73M598
17	1.1	.1	8.78		1750	1 232	350	358	6.6	MBMG		125TGR\	/ No	74M125
18		.2	8.02	23	2274	1748	1180	426	1.6	MBMG		125TGRV	/ No	74M120
19	21.3	.2	8.17	9	1522	1130	768	342	1.5	MBMG		125TGRV	/ No	74M21
20	.023	.3	7.77		4440	4487	2750	300	3.0	MBMG		125TGRV	/ No	73M597
21		.t	8.49	10	2600	1870	268	358	14.1	MBMG		125TGRY		74M0030
22	3.1	.1	8.27		1232	827	590	332	1.2	MBMG			No	74M119
23	.7	.2	8.12			309	275	242	.3	MBMG			No	74M124
24	14.4	.2	8.61	11		393	330	295	.7	MBMG		125TGRV		74M0220
25	3.3		7.64	13.0	2890	2362	1490	597	2.5	MBMG		125TGRV	/ No	74M221
26	.271	5.9	8.29	11	2210	1648	585	265	5.7	USGS		125TGRV	/ No	73M807
27			7.95	13.5	6838	6288	2940	576	7.3	USGS		110ALVA		73M800
28	.068	4.2	8.55		1250	801	9	858	46.8	MBMG		125TGRV		73M14
29	.406		7.98		1240	869	534	429	2.1	USGS		125TGRV		73M662
									•					73,111,002
30	.045	3	8.10		3030	2588	1040	417	6.1	USGS	140	125TGRV	' No	73M664
31	.067	-4	7.83		5060	4797	2630	552	4.7	USGS		125TGRV	/ No	73M652
32	.768	.3	7.85	12	3760	3470	2110	468	3.1	USGS		125TGRV	/ No	72M760
33	.768	.3	8.03	12.5	3990	3060	1780	422	3.2	USG5		125TGRV	/ No	73M650
34	.225	.2	7.93		2940	2532	1760	592	1.9	USGS		125TGRV	/ No	73M649
35	.113	.1	7.89	16	2050	1657	1170	397	1.2	USGS		125TGRV	/ No	73M648
36	.090	.5	8.39	11	2840	2152	110	464	28.8	USGS		125TLCK		73M663
37	.068	.1	8.02	13	3700	3188	1560	602	5.3	USGS		125TGRV		72M781
38	.045	.5	8.06		3360	2755	640	369	11,4	USGS		125TGRV		73M654
39		.1	7.63		1740	1350	968	393	1.1	USGS		125TGRV		73M13
40	.067	.3	7.93		991	657	566	396	.4	USGS		125TGRV	. No	73M651
41	.225	.3	7.87	11.5	2670	2274	1530	641	1.9	USGS		125TGRV		73M651 73M653
42	2.055		8.60		878	575	462	244	.6	USGS				
43	.023	.3	8.02									125TGRV		73M804
44			5.02		3290	2792	994	309	7.1	USGS	237	125TGRV		73M10
44	.271	.7		23	4230	3896	2060	327	4.5	M8MG			Yes	73M582
45	1.581	.2	7.88		1790	1147	826	298	.8	n scs		125TGRV		73M656
46	2.869	.3	8.49		2798	2348	1450	466	2.5	M8MG		125TGRV		74M17
47	.023	.5	7.96		3350	2816	1150	446	6.3	USGS		125TGRV		73M12
48	.16	.3	7.49	10	1371	790	700	576	.4	USGS		125TGR V		75 M0588
49	.136	.4	8.21	23	3790	3485	2150	377	2.9	MBMG			Yes	73M581

Mag			Coll		on			Magne-		Potas-		Manga-		Bicar-	Car-		_
ret.		Location		late			Calcium	sium	Sodium	SHUM	iron	nese	Silica	bonate		Chloride	Suifete
no.	Т	R Sec Tract	Mo I	Dey	Yr	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCD3)	(CO ³)	(CI)	(SO ₈)
50	02N	41 E 30 DDAA	10	02	73	Well	316	247	149.5	20	.03	.01		350		22	1767
51		41 E 33 DODD	08	12	72	Creek	110	218	145	13	.03	.01	20	342		12.5	1150
52		41E 34 B	07			Creek	136	308	211	9.9	.16	.09	10.3	472		13	1612
53		41E 34 BCCA				Creek	335	319	286	5.6	.04	.01	25	499		29	2208
54			09			Well	467	351	114	9			16	483		15.9	2418
55		41 E 35 DABD				Well	421	306	118.8	9.9			17.2			14.3	2166
56		41E 35 DABD		04		Weil	1 39	104	156	8.9			15.3			5.9	652
57		42E 04 DACA		30		Well	28	35	412.5	6.7	1.51		11.3		15	8.8	832
58		42E 05 CABB		30		Well	117	206	106.8	7.7		.02	16	220		9.5	1136
59	02 N	42E 06 C8CD	11	01	72	Well	107	161	77	5.2	1.45	.30	17	429		6.0	718
60	02N	43E 12 AC	10	03	72	Spring	286	422	396	17.5	.06	.02	20	556		11.7	2750
61	02 N	43E 12 CBAC	10	03	73	Well	236	345	312	17.2	.02	.02	18.3	501		11.4	2236
.62	02N	43E 18 AAAC	06	12	75	Well	91	57	890	5.9	.04	.06	6.4	634		49	1766
63	02N	43E 20 CA88	10	02	73	Well	54	41	290	6.1		.02	9.6	336		3.8	623
64	02N	43E 27 CCBC	10	19	72	Well	133	123	390	6.2	.15	.06	10	397		34	1247
65	024	43E 30 8 DDA	06	12	76	Well	2.7	.7	399	1.8			7.5	839		147	1
66		44E 21 DDDC	10			Well	312	33	173	4.2	1.2	.08	16	349		12.5	957
67		44E 32 DAAC	10			Well	79	47	950	4.7	.79	.06	10	669		23	1800
68		44E 33 DDAC	09			Weil	42	16.4	1140	6.4	./9	.04	7.5			21	2092
70		33E 16 AD		09		Well	62	18	1706*	0.4		.04	18	396		2480	105
/0	UIN	13E 10 MD	V9	Ug.	10	*****	02	10	1700				10	390		2400	100
72	01 N	33E 27 B	09	18	16	Well	183	23	72°		2.4		22	317		28	392
73	01 N	33E 28 CD				Well	190	101	1060	18	.17		25	338		136	2700
74	01 N	33E 28 DDD	09	15	76	Pond	56	22.6	140	13				144		10.5	400
75	01 N	33E 32 A8				Well	188	81	193	4.1	.12		21	347		21	900
76	01 N	37E 06 ACAD	07	09	73	Well	4.4	188	227	6	.01		12.1	383	76	6.5	830
77	01N	37E 13 CCAD	07	29	72	Spring	138	95	62	14.5	.05	.01	24.	222		6.9	650
78		37 E 16 C		21	73		78.8	515	644	29.6	.02	.02	17.3		139	26	2242
79		37 E 24 CACC				Well	65	66	22	1.8			13	444		7.1	97
80		38E 22 CADD			73	Creek	105	276	395	11.9	.02	.01	15.4	579		5.8	1736
81		38E 22 CCCC	07		72	Well	81	106	235	4.8	3.08	.39	8	439		10.7	767
		38E 29 ADÇA				Well	57	70	21.8	2.9	.05	.10	10	431		7.8	120
83		38E 29 ADCA		21	72	Well	50	88	26	2.7	.67	.04	11	395		32	160
84		38E 29 ADDA		31	72	Well	- 80	146	81	3		.01	9	486		10.3	540
85		38E 29 D968		11		Spring	75	138	48	10.1	.03	.01	4.1			11.1	291
86	01 N	38E 30 DADO	07	30	72	Spring	24	73	49	2.7		.02	11	444	10	1.7	76
87	01 N	38E 30 DDAD	07	30	72	Well	55	130	51	2.6			11	272		69	273
88	01 N	38E 30 DOBD	07	30	72	Well	25	68	23	2.3			11	357		3.7	86
89	01N	39E 05 CCB	07	05	73	Well	20	8.2	745	4.1	.08	.03	6.4	4 258		12.6	1402
90		39E 22 DDDC	07	25	73	Spring	121	249	76.4	12.6	.02	.01	15	685		5.5	918
91		40E 02 8ABD			73	Spring	380	270	65.4	10.5	.04	.02	19	352		13.2	1852
97	0121	40E 02 BCAB	07	19	77	Well	46	34	5.5	1.9	.02	.01	11	234		7.0	58
93		40E 02 CDCC		02		Well	110	107	36.8	3.9	.02	.0.	124			3.7	463
94		40E 12 CBBA		02		Well	105	160	78	5.8	.08	.01	29	447		4.6	690
		40E 13 CCDC		14		Well	265	277	138	7.9	02	.02	19.			6.5	1474
		40E 13 CCDC				Well	243	202	76	7.4	.02	.14	15.			6.7	1037
90	UIN	-00 13 0000	00	-3				202					. 0				

Note: All chemical data are given in milligrems per liter (mg/l) unless otherwise steted. Values reported es sodium plus potassium.

1" x 2" Sheet (Con't.)

					Lab									
Map		Fluo		Field	specific	Dissolved	Total	Total	Sodium		Well		Trace	
rest.	Nitrate	rate	Lab	Temp.	conductance	solids	hardness	aikalinity	adsorption	Collecting	depth		elements	
no.	(N)	(F)	рН	C	(µmho/em)	(catc.)	as CaCO ₃	as CaCO ₃	ratio	agency	(ft.)	code	analy zed	number
50	.858	.3	7.66	13	3076	2695	1810	287	1.5	M8MG		125TGRV	/ No	74M224
51	.271	.2	8.09	20	2220	1838	1180	280	1.8	MBMG			No	72M623
52	.067	.2	8.23	25.5	2881	2533	1630	387	2.3	M8MG			Yas	73M580
53	4.292	.2	7.88	18	3560	3458	2160	409	2.7	MBMG			No	72M622
54	2.259		7.87		3770	3632	2620	396	1.0	M8MG			No	73M745
55	2.259		7.69)	3510	3220	2320	273	1.1	MBMG			No	74M206
56	.068		7.84	ı	1786	1348	776	445	2.4	MBMG			No	74M205
57	.067		8.45	11.5	2058	1485	. 217	274	1 2.2	MBMG		125TGRV		73M806
58	.067	.1	8.29	11	2072	1708	1150	180	1.4	USG5		125TGRV		73M805
59	.158		7.69	12	1680	1304	938	352	1,1	USGS		125TGRV	/ No	73M9
60	2.485	.3	7.79		4390	4182	2470	456	3.5	USGS		125TGRV		72M759
61	.746		7.73		3660	3424	2030	411	3.0	USGS			No	73M831
62	3.61	.9	7.83	11	4841	3181	464	520	18.0	USGS		125TGRV	/ No	75M0591
63	1,107		7.87		1650	1194	304	276	7.2	USGS			No	73M828
64	2.937	.4		13	2800	2142	841	326	5.9	USGS		125TGRV	/ No	73M3
65	.32	3.8	8.25		1843	977	10	689	56.0	USGS		125TGR		75M0590
66	.068	.6	7.80	11	2030	1682	900	286	2.5	USGS		125TGAV		73M3
67	.090		7.82		4360	3245	391	548	20.9	USGS		125TGAV		73M5
68	1.784	.3	8.26	12.5	4766	3607	173	465	37.7	USGS		125TGR		73M813
70							229	325		USGS	190	2118RPV	/ No	18M0017
72							552	260		USGS	12	110ALV		16M0018
73		.5	7.50		5470	4396	890	277	15.5	USGS			No	00M0026
74	.05		7.40		1100	712	230	118	4.0	WQB			Yes	76W2216
75		.5	7.30		2010	1580	804	285	3.0	USGS			No	00M0027
76	.068		9.00)	2074	1539	801	567	3.5	MBMG			No	74M0121
77	2.485		7.87		1450	1104	738	182	1.0	MBMG			No	72M0394
78	6.777		8.70		4950	4333	2320	1520	5.8	MBMG			No	73M0591
79	.587		8.23		810	490	436	364	.5	MBMG			No	72M0396
80		.2	8.12		3425	2831	1420	475	4.6	MBMG			No	74M0118
81		.3	7.94	6	1960	1432	643	360	4.0	MBMG			No	72M0423
82	.678		8.07		816	503	435	353	.5	MBMG			No	72M0424
83	4.857		8.06		925	570	493	324	.5	M8MG			No	72M0425
84	.565		7.95		1520	1110	809	398	1.2	M8MG			No	72M0421
85	.633		8.21		1340	908	763	548	.8	M8MG			No	72M0618
88	.813	.1	8.54	•	742	467	365	397	1.1	MBMG			Na	72M0401
87	49.700		8.21			775	680	223	.9	MBMG			No	72M0399
88	1.107		8.21			396	349	293	.5	M8MG			No	72M0398
89	.045		8.18		3140	2326	84	211	35.4	MBMG		125TGRY		73M647
90	.067		8.05		2160	1735	1340	592	.9	USGS		125TGR		73M660
91	.135	.3	7.47	7 17	2930	2784	2060	289	.6	USGS		125TGR	√ No	73M658
92			7.87		483	282	257	192	.1	USGS		125TGR		73M657
93	.158		8.09		1258	923	720	309	.6	MBMG	100	125TGR		74M0225
94	3.61	.2	7.83		1660	1296	930	367	1.1	USGS		125TGR		73M11
95	.23		7.87		2943	2520	1810	552	1.4	MBMG	195	125FRU		75M0314
96	.29	.1	7.17	7 13	2326	1883	1440	493	.9	MBMG	149	125FRUI	No No	75M0417

Мар					Col	lecti	on			Magne-		Poras-		Manga-		Sicer-	Car-			
ret.		Loca	ition		d	ate			Calcium	sium	Sodium	sum	Iron	nese	Silica	bonate	bonate	Chloride	Sulfate	
no.	т	R :	Sec 1	rect	Мо	Day	٧r	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₂)	(CO ³)	(CI)	(SO ₄)	
97 0	11 N 4	ЮE	148	BBB	10	03	73	Well	33	136	79.3	7.6			13.5	354		8.9	499	
98 0	11 N 4	IOF.	14 B	888	10	03	73	Well	57	145	93.8	8			12.7	420			585	
99 0	12 N 4	4OE	15 B	AC8	07	25	73	Creek	40	403	230	19.5	.23	2.53	14,1	584		12.0	1722	
100 0	IIN	40E	15 B	BDA	05	16	75	Well	243	265	192.5	11	.05	.37		707		25	1423	
101 0	11 N 4	OE	15 8	088	05	16	75	Well	137	182	134.5	11.2	.07	.21	19.9	645		28	782	
102 0	11 84 .	a∩E	15.6	nen	06	16	75	Well	60	77	117.5	11.5	2.30	.06	36.2	25		17.5	664	
103 0						25		Well	73	72	420	10.3			11.1	597		7.9	870	
104 0						25		Well	349	246	127	25.1	.08	.08	22.9	154		10.5	2008	
105 0						25		Creek	188	270	180	15.5	.29	.78	18.8	586		13	1426	
106 0								Well	12.8	145	63.4	5	2.7	.22	9.6	256	18	8.6	490	
107 0	1181	415	04.4	400	05	16	76	Well	217	199	160	7.7	.01	.12	20.6	594		10.9	1139	
10B 0						03		Well	118	89	27.3	3.9	.08	.06	39.5	283	9	5.1	427	
109 0								Well	141	288	93	6.1	.01	.16	12	923		7.0	919	
110 0						28		Well	284	193	220	13.1	.01	.17	11.1	815		8.9	1280	
111 0						25		Well	109	92	56.8	5.1	.06	.11	14.7	383		6.5	444	
111 0	,,,,,	416	12 /		09	25	13	******	109	92	50.5	3.1	.00		14.7	363		0.0		
112 0	1 N	41 E	12 0	808	08	02	73	Weil	62	184	320	7.4	.10	.05	12	303		12.0	1300	
113 0	1N 4	41 E	130	DCD	07	18	73	Well	154	177	132	8	2.9	.21	13	555		5.0	926	
114 0	nn e	41E	16 6	AB	05	13	75	Well	73	68	121.5	5.3			14.1	562		4.1	269	
115 0)1 N	41E	23 E	CDC	08	09	73	Well	108	237	208.3	8.5	.28	.13	15.9	244	5	13.0	1428	
116 0	11 N	41E	27 4	VAD8	02	04	74	Well	302	384	209	4.2	.02	.02	16.1	437		13	2320	
117 0	11 N	41 E	27 4	ADD	02	04	74	Well	402	924	500	7.8	.07	.03	15.4	334		33	5394	
118 0	nn.	41 E	27 [DAAC	02	04	74	Well	346	426	173	9	.02	.06	13.9	530		23	2456	
119 0	1N	€2E	07 0	BA	02	04	74	Well	341	486	325	3.5		.02	21.8	377		56	3112	
120 0	nn.	42E	10 0	CDC	10	18	72	Well	246	325	182	8.2	.14	.01	22	319		16.5	1998	
121 0)1 N	42E	178	DOC	02	04	74	Well	175	232	33.5	5.5		.07	17.2	801		7.4	935	
122 0	11 N	42E	18 /	AAB	09	25	73	West	317	269	60.4	8.8	3.0	1.05	17	724		9.2	1440	
123 0						04		Well	250	281	57.3	7.8	.04	.03	16.2	530		8.2	1404	
124 0	11N	42E	19 0	BBA	08	02	73	Well	45	109	170	5.5	.33	.08	12	369		8.5	568	
125 0	11N	42E	22 (ABD	09	06	73	Well	253	380	513.8	11	1.77	.23	10.7	477		16.9	2790	
126 0								Well	113	102	817.5	12.7	.01		9.7	518	4	16.8	1920	
127 0)1 N	42F	28 6	anne.	OR	09	73	Well	38	145	202	7	.70	.08	11.8	321	15	9.9	834	
128 0							72	Well	171	122	820	12	3.08	.14	28	515		15.8	1642	
129 0					02		73	Well	30	9.5	490	5	.02	.03	9	454		10.2	758	
130 0						18		Well	5.0	2.1	440	1,4	.28	.01	9	480		13.2	565	
131 0						01		Well	89	125	73	8		.01	25.2	294		4.6	642	
132 0	31 N.	445	04.5	0.880	06	12	76	Welt	29	15.7	1220	5.8	.02	.04	5.9	796		42	1982	
133 0						29		Well	280	400	470	5.9	.68	.56	11	479		30	2815	
134 0					09	12		Well	2.5	5	507.5	1.7	.00		10.1	1042	39	83	73	
135 0						25		Well	3.1	.5	510	1.6		.01	8.7	981	53	115	66	
136 0						13		Well	114	98	210	9.5		.01	11.1	203	32	10.3	948	
									224	449	427.5	24		.02	14.7	315	8	26	2992	
137 0					09		73	Well	3.2		383.8	1.7		.02	8.9	449	34	13.9	332	
						13		Well	110	134	383.8 442	1.7	.27	.12	13	555	34	9.2	1278	
139 0						16		Well Seep		0500	25300	210	.46	.12	. 7	1556		2530	73000	
140 0						16		Pond	257	366	3890	62	.20	.96		215		1215	6350	
141 (113	11E	15 0	A	03	15	/5	rond	257	366	2890	0.2	.20	.08		215		1215	9350	

Note. All chemical data are given in milligrams per liter (mg/l) unless otherwise stated

Mag		Fluo		Freisi	Lab	Dissolved	Total	Total	Sodium		Weil		Trace		
ret.		ruser	Lab	Temp.	conductance	solicis	hardness	aikeimity	adsorption	Collecting	depth	Aquifer	elements	Lab	
no.	(N)	(F)	рН	c°	(µmho/cm)	(cate.)	as CaCO	as CaCO,	ratio	agency	(ft.)	code	analyzed		
9/	4.18	2	0.19		1344	956	651	290	14	мвмд		125TGRV	/ No	74M0213	
98	2.281	.2	8.04		1524	1111	750	344	1.5	MBMG		125TGRV		74M212	
99	.971	.3	8.27	26	3130	2732	1790	479	2.4	MBMG				73M589	
100	.11	.3	7.44	6	3113	2509	1710	580	2.0	MBMG		125FRUN		75M0309	
101	.34	.2	7.48		2179	1613	1100	529	1.8	MBMG		125FRUN		75M0308	
102	.56		5.42	9	1305	999	469	21	2.4	мвмс		125FRUN	i No	75M0307	
103	.271	.2	7.89		2350	1759	483	490	8.3	M8MG				73M742	
104	.158		7.95		3140	2865	1890	126	1,3	MBMG				73M743	
105	.497		8.11	23	2770	2403	1590	481	2.0	MBMG				73M588	
106			8.49		1240	882	642	271	1.1	USGS		125TGRV		73M669	
107	.23	.2	7.46	9.5	2537	2047	1370	488	1.9	мвмс		125FRUN	l No	75M0306	
108	4,518		8.48		1160	864	663	400	.5	MBMG		125TGRV		74M215	
109			7.55		2493	1921	1560	757	1.0	M8MG		125FRUN		75M0315	
110			7.70			2412	1500	868	2.5	MBMG		125FRUN		75M0418	
	.135	-	7.91	10	2930	920						Zarnun		73M749	
111	.135	.3	7.91		1300	920	652	314	1.0	M8MG			MO	/3M/49	
112	.564		8.10	15.5	2540	2047	925	249	4.6	USGS		12STGRV	/ No	73M667	
113	.045	.2	7.64	16	2110	1693	1120	456	1.7	USGS		125TGRV	/ No	73M655	
114	.13	.1	7.73	13.5	1234	827	466	453	2.5	MBMG		125FRUN	i No	75M0313	
115	.542		8.36	19	2544	2143	1260	217	2.5	USGS			No	73M803	
116	4.518	.2	7.74		3800	3468	2350	358	1.9	MBMG			No	74M208	
117	7,161		8.17		7247	7450	4860	274	3.1	мвмд			No	74M209	
118			7.66		3948	3709	2540	435	1.5	MBMG				74M207	
119			7.72		4980	4531	2880	309	2.6	MBMG				74M203	
120		.4	7.97		3160	2955	1970	261	1.8	USGS		125TGRV		73M2	
121	.271		7.79		2173	1703	1410	493	.4	MBMG		1231 911		74M 201	
121	.271		7.79		2173	1703	1470	433		DIMONIA			.40	74181201	
122	.293	.1	7.67		2920	2482	1910	594	.8	MBMG			Yes	73M740	
123	113	1.	7.67		2720	2286	1790	435	.8	MBMG			No	74M200	
124	.067	.2	8.42	11	1510	1116	567	354	3.1	USGS		125TGRV	/ No	73M668	
1 25	.203	.2	8.02	11	4696	4213	2220	391	4.8	USGS		125TGR\	/ No	73M794	
126	.045	.6	8.34			3250	703	438	13.4	USGS		125TGRV	/ No	73M802	
127	.112	.2	8.68	10	1906	1422	704	313	3.3	usgs		125TGRV	/ No	73M801	
128			8.16		3490	2808	786	422	9.7	USGS		125TGRV		72M755	
129			7.94		2420	1537	112	372	20.1	USGS		125TGRV		73M60	
130			8.05		2050	1275	21	394	41.6	USGS		125TGRV		73M1	
131		.1	7.85		1410	1112	745	241	1.2	USGS	79	110ALVA		73M824	
132	1.94	.9	7.98	12	5436	3696	138	652	45.2	USGS		125TGRV	/ No	75M0592	
133			7.73		4530	4252	2370	393	4.2	USGS		125TGRV		73M15	
134			8.63		1998	1237	2370	986	76.2	USGS		125TLCK		73M808	
135			8.54		1994	1247	10	982	70.2	USGS		125TLCK		73M814	
136			8.28		1946	1503	692	167	3.5	USGS		125TGRV		73M810	
														7011010	
137			8.49		4400	4319	2430	279	3.8	USGS		110ALVA		73M812	
138			8.88		1552	481	10	481	49.1	USGS		125TGRV		73M811	
139		.5	7.90		2830	2274	831	458	8.7	USGS		125TGRV		72M757	
	510		8.20		72200	113200	44300	1276	52.3	WQ8				76W2218	
141	.30		7.40	23	14740	12250	21 50	177	36.5	MOB			Yes	76W2217	

Мар				Co	ilect	non			Magne-		Potas-		Manga-		Bicar-	Car-		
ref		Loca	tion		date			Calciun		Sodium	sium	iron	nese	Silica	bonate		Chloride	Sulfate
no.	т		ec Tract			Yr.	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)		(HCO ₃)	(CO ₂)	(CI)	(SO ₄)
	015						Well	665	136		24	1.5		18	180		4	1980
			2 DD8		15		Ditch	91	150	1015	17				797		73	2300
145	015	33E 1	3 DD	-11	23	37	Well	650	170	53°					92		10	2200
146	01\$ 3	33E 1	4 AB				Well	470	235	1020	13	.11		26	603		143	3580
147	015	33E 1	4 08				Well	439	198	908	13	.03		27			116	3250
148	015	33F 1	s DD				Well	249	124	410	88	.13		27	290		33	1730
150			8 8DD	09	16	76	Seep		17600	49090	255	.57	.33		1307		1650	120000
							Well	138	583	109°				20	316		80	365
	015						Well	112	28	122*		1.2		37	406		43	249
154	015						Well	315	137	1380	20	.82		28	415		280	3580
	0.3.	336 2	400				*****	315	137	1360	20	.02		20	413		200	JOHN
155	015	33E 2	6 C8				Well	142	50	300	7.8			26	347		30	885
					20		Well	103	39	329°		.12		28	325		43	771
157	015	33E 3	30 A	10	10	21	Well	74	35	70°		1.3		30	270		20	202
158	0153	37E (1 BAAC	09	11	73	Well	120	75	378	11.3			8.6	358		8.2	1090
159	015	37 E C	1 BAAD	09	11	73	Well	67	61	632.5	6			8.3	337		15.5	1476
160	015	38 F (3 CACC	06	27	73	Well	25	51	21.8	3.2			2	284	1	2.4	84
			9 ACBB	07			Well	70	97	45	2.4	2.1	.08	13	510		4.7	238
			9 BADD		18		Well	82	96	82	4.3	1.2	.09	15	433		7.6	364
163			9 8DDA		01		Well	104	140	143	7.4	*	.01	11	256		8.8	901
			9 CAAA		01		Well	90	65	182	4.3		.02	16	517		4.1	441
104	013.	38 C (S CAM	UB	01	12	AAGII	90		102	4.3		.02	10	517		4.1	441
165	015	39E 1	2 DC8A	09	12	73	Spring	83	147	136	\$.1	.70	.07	14.1	644		4.8	596
166	015	40E (68806	09	12	73	Spring	14.7	132	119	10.8	1.35	.03	19.9	350	30	5.4	495
167	015	40E (7 DADA	09	12	73	Well	42	122	435	7.6			12.1	235		5.5	1442
168	015	40E	8 AAAC	09	12	73	Spring	54	215	180	11.9	.33	.03	18.2	372	19	7.6	1048
169	015	41E (72 AA68	09	07	73	Well	143	195	158.5	10.1		.10	16.8	424		9.9	1112
170	0154	41E 1	7 DAAA	12	01	72	Well	120	161	295	4.8	.08	.01	19	404		10.0	1214
171	015	41 E 2	3 8 ACB	02	27	76	Well	\$.8	2.0	410	2.1	<.01	.01	7.1	396		9.0	570.6
172	0154	41 E 3	2 CASA	10	27	72	Well	191	284	290	9.1	1.1	.14	18	329		9.6	1930
173	015 4	41E :	33 D8C8	10	27	72	Well	6.7	1.7	410	2.1		.02	10	400		8.0	549
174	015	42E (4 DCA8	08	01	73	Weil	87	255	870	20.2	.09	.18	25	557	20	33	2536
176	0154	12F (4 DCA	na na	01	73	Well	53	157	746	27	.11	.29	24	438	24	27	1920
			1 CACE	11	-		Well	132	119	140	5	.04	.05	22	470		7.1	706
177			8 DCAD	09			Well	127	135	200	15	1.15	.13	20	376		8.5	971
178	02S				11		Well	91	54	215*		.12		35	285		22	630
			9 8CC		16		Pond	210	435	1850	35			30	379		110	5350
1/3	023.	346 (A OCC	US	10	70	rond	210	455	1800	30				3/3			3330
			2 8A8A		28		Spring	28	19.5	27.4	3	.05		24	183		3.8	51
181			2 DABC	11		72	Well	259	313	714	28.6	.04	.28	16	648		20	2840
182			2 BCCA	09			Spring	45	47	175	8.6			17	603		5.6	265
183				09	21	72	Spring	61	73	77.5	6.2		.01	21	512		4.4	188
184	035	31 E 2	1 AC	12	31	69	Well			570°					1240		80	94
185	035	31E :	34 8C	06	18	55	Well	630	130	39*					305		14	1800
186			7 AAC	09		76	Creek	366	191	1570	17				306		180	3900
	035						Well	428	273	1290	19	.08		28	493		111	4400
188	035						Weil	12	9	625*		1.0		11	393	36	32	954
			8 DC8	06	28	77	Well	4.8	1.3	640	1.6	.08	.01	9.2	436	12	25.9	940
				30	-0			4.0		540	1.0	.00	.01	34	-		_0.0	540

Note: All chemical data ere given in milligrams per liter (mg/l) unless otherwise stated * Velues reported as sodium plus potassium.

1° x 2° Sheet (Con't.)

					Lab									
Map		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Trace	
ref.	Nitrate	ride	Lab	Temp.		solids	hardness	alkalinity	adsorption	Callecting	depth	Aquifer	elements	Lab
na.	(N)	(F)	рН	c°	(µmho/cm)	(caic.)	as CaCD ₃	as CaCO ₃	ratio	agency	(ft.)	code	analyzed	number
142		4.0	7.6		3040		2220	148	1.3	USGS			No	00M0028
143	<.01		7.8	20	4710	4038	845	653	15.2	WQ8			No	76W2223
145							2320	75		M8MG		331MDSN	No.	37M0003
146		.3	7.1	8	6590	5784	2140	495	9.6	USGS			No	00M0029
147		.4	7.0	10	5830	4951	1910		9.0	USGS			No	00M0030
148		.4	7.3	7	3380	2804	1130	238	5.3	USGS			No	00M0031
150	186		7.9	29	89970	18990	7370	1070	78.7	WQ8			Yes	76W2219
152					1600		583	259		USGS			No	00M0032
153					1200		395	333		USGS			No	00M0033
154			7.2	11	7010	5946	1350	340	16.3	USGS			No	00M0034
155		.7	7.2	11	2190	1754	562	285	5.5	USGS			No	00M0036
156		.,	1.2		2130	1734	417	267	. 02	USGS	37	110ALVA		21M0104
157							328	221		USGS	18	110TRR		21M0105
158	1.243	1	7.99	11	2380	1869	611	294	6.7	MBMG		125TGR\		74M0037
159	.407		8.20		2360	2433	421	276	13.4	MBMG		125TGRV		74M0116
												1231 0111		
160	.926	.2	8.3		578	331	274	237	.6	MBMG			No	74M0105
161		.1	8.2	7 9.2	1060	724	579	418	.8	M8MG			No	72M0420
162			7.8	6 10	1230	846	604	355	1.1	M8MG			No	72M0419
163	.655	8	8.04	4 10	1780	1448	843	210	2.2	MBMG			No	72M0403
164	.361	.1	8.13	2 11	1370	1056	493	424	3.6	MBMG			No	72M0404
165	.135	.2	7.8	7 13	1834	1304	818	528	2,1	USGS		125TGR\	/ No	73M799
166	.,,	.1	8.70		1424	1 001	592	389	2,1	USGS		110ALVA		73M797
167	.745		8.2		2906	2233	735	193	7.0	USGS		125TGR\		73M798
168	.564		8.4			1738	1030	367	2.5	USGS		110ALV		73M796
169	.361		8.0		2348	1854	1170	347	2.0	USGS		125TGR		73M795
170			7.9			2024	970	331	4.1	USGS		125TGRV		73M18
171	.553	.5	8.2	4 12,5		1203	23	325	37.4	USGS		125TGRY		76M0119
172		.2	7.8	9 12	3220	2895	1660	270	3.1	USGS		125TGRY		73M6
173	.181	.9	7.8	3	1870	1186	24	328	36.6	USGS		125TGRV		73M7
174	9.036	.5	8.3	3 11.5	4820	41 29	1290	524	10.6	USGS		125TGR	/ No	73M665
175			8.6		3970	3200	791	440	11.6	USGS		125TGR		73M666
176			7.9			1364	824	386	2.1	USGS		125TGR		73M16
177	.023	.6	7.8	6 11	2050	1662	876	308	2.9	USGS		125TGR		72M756
178							449	234			21	110TRR		21 M01 06
179	<.01		8.0	22	8330	8163	2320	311	14.9	MØ8			No	76W2221
180		1.4	7.6	6 8	377	248	149	150	1.0	USGS		125TGR1	/ No	72M754
181			7.6			4511	1950	531	7.1	USGS		125TGR		73M17
182			8.0			812	307	412	4.4	USGS		125TGR		72M753
183		1.0	7.9		1020	684	453	420	1.6	USGS		125TGR		72M752
184		7.0	8.2		.010	304	400	1020		MBMG		217LK0		69M0006
185			7.1		3106		2110	250		мвмс		331MOS		55 M0005
186	<.01		8.1	22	8454	6561	1700	251	18.6	WQ8			No	76W2222
187		.5	7.1	11	7520	6792	2190	404	12.0	USGS			No	00M0035
138							67	381		USGS			Na	00M0037
189		.2	8.6	6 10	2667	1849	17	377	66.9	USGS			No	78MQ002

Мар			Co	Hec	non			Magne-		Potas-		Manga-		8icar-	Car-		
ref.	L	cation		date			Calcium	sium	Sodium	eum	Iron	nese	Silica	bonate	bonete	Chloride	Sulfate
no.		Sec Tract			Yr.	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)		(HCO ₂)	(CO ₃)	(CI)	(SO ₄)
		E 18 DCD8				River	54	26	23.8	1.8	.22	.01	5.5	216	3.1	1.7	99
		E 11 BCAD				Well	3.6	.3	404	2	.01		7.7	947		80	.2
		E 33 BDAA				Well	2.2	.4	327.5	1.7			7.7	842		34	.1
		E 32 DDA	02	26	78	Well	.8	1.5	348	1.7	.04	<.01	7.6	834		69.1	.5
195	04S 32	E 02 AA				Well	524	2249	1000	10	.09		27	455		155	3930
196	045 32	E 16 DBB	09	16	76	Creek	244	85	79	5.4				139		8.5	960
		E 23 DC				Well	419	84	200	6.8	1.3		22	446		24	1360
198	045 32	E 23 DC	10	18	21	Well	286	114	275*		1.8		24	425		22	1380
199	04S 32	E 28 BO				Well	213	189	490	9.2	.14		26	471		38	1930
		E 38 80				Well	259	82	168	5.9	.34		20	457		16	938
201	045 32	E 36 BD				Well	377	121	197	6.8	.17		24	516		19	1330
202	045 45	E 04 BOA	10	18	76	Creek	43.7	170	380	20				520		18	1130
		E 35 CC				Well	.3	.4	186	.9	.3		10	319		7.9	125
204	055 31	E 36 D8				Well	55	41	148	3.3	.08		25	304		11	365
205	055 32	E 11 8B				Well	458	282	775	14	.16		30	430		65	3450
		E 20 BA				Well	168	71	118	4.5	.18		27	458		17	550
		E 16 DDCC				Creek	58	62	60	9.1	.01		12.8	367	17	4.5	190
		E 27 CD				Well	230	75	5*					190		12	700
		E 34 A68				Weil	640	70	37*					253		16	1700
210	06S 32	E 34 ACC	08	08	61	Well	170	64	11*					190		12	610
211	06S 34	E 13	11	18	75	Creek	240	227	553	6.9				544		22.5	2160
213	06S 43	E 19 DD	06	01	72	Creek	98	152	405	15	.01	.16	12	624		15	1212
214	06S 43	E 26 AADB	05	01	75	Creek	69	50	68.5	7.7	.02	.01	15.9	410		3.7	161
215	085 46	E 11 AA	06	16	84	Well	230	34	110°					232		40	860
216	095 40	E 15 DCB	05	27	72	Ditch	26	29	587	6.8	.26	3	22.7	1088	6	16.5	560
		E 16 A8CA				Well	13.6	5.8	515	8.1	.14			1258	70	10.6	21
		E 16 A8CA				Well	11.2	3.8	524	5.6	.02			1412		11.7	19
		E 16 A8CA				Well	9.7	3.7	525	5.6	.09			1241	77	8.2	17.2
		E 16 ABCD				Well	7.4	10.9	664	7.2		.01		1568	62	13	127
221	095 40	E 18 A8CD	06	21	72	Well	5.5	2.1	450	3.9			8.5	1003	83	5.2	14.6
		E 16 ABCD				Well	3.6	1	393	3.7			8.5	987	31	5.5	8.6
223	095 40	E 16 ABCD	06	21	72	Well	4.4	1.9	438	3.8		.01	8.6	1174		6.1	.6
224	095 40	E 16 A8CD	06	21	72	Well	21	8.8	659	6.9	.1			1560	61	14.2	101
225	095 40	E 16 ABCD	06	22	72	Well	3.4	1.6	434	3.6		.02	8.6	1166		6.3	3.8
226	09\$ 40	E 16 ABCD	06	22	72	Well	18.8	8.3	682	7.1	.04	.02	12.8	1742		16.9	113
227		E 16 A8CD			72	Well	3.4	1.5	427	3.6		.01	6.5	1137		5.7	2.2
		E 22 DBAD			72		47	41	42	3.5			5	173	12	4.5	19B
		E 29 CCAO			72		3.2	1.6	455	3.7			В	985	102	14.4	22
		E 10 CC				Creek	222	297	730	16	1.1	.16		476		15	2830
231	095 44	E 2	06	01	72	Reservoir	81	83	118	6				200	7	5	607

Note: All chemical date are given in milligrams per liter (mg/l) unless otherwise stated $^\circ$ Values reported as sodium plus potessium

1° x 2° Sheet (Con't.)

Mao		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Weil		Trece		
ref.	Nitrata	ride	Lab	Temp.	conductance	solids	hardness	aikatinity	adsorption	Collecting	depth	Aquifer		Lab	
no.	(N)	(F)	oH	c°	(umho/em)	(caic.)	as CaCO	as CaCO	ratio	agency	(ft.)			number	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,								
190	<.023	.1	8.41	28	518	322	242	182	.7	USGS			No	78M0003	
192	.068	4.7	8.21	11	1810	969	10	777	54.5	USFS			Yes	75M0194	
193	.090	1.5	8.19	12.5	1318	790	7	690	53.1	USGS	300		No	75M0603	
194	.086		8.15	i	1390	842	8	684	52.8	USGS	372	125TGRV	No	76M0114	
195		.5	7.0	13	6670	8120	2330	373	4.2	USGS			No	00M0038	
196	.10		7.8	23	2535	1451	960	114	1.1	WQB			No	76W2220	
197		.6	7.0	12	2720	2337	1390	3375	2.3	USGS			No	00M0016	
198							1180	349		USGS	45	110ALVN		21 MO1 07	
199		.7	7.3	10	3780	31 28	1310	386	5.9	USGS			No	00M0017	
200		.5	7.1	10.5	2130	1715	982	375	2.3	USGS			No	00M0018	
201		.6	6.9	11.5	2690	2330	1440	423	2.3	USGS			No	00M0019	
202			8.5		2689	2033	810	459	5.8	WQB			No	76W2581	
203		1.4	8.0	20	825	488	2	262	52.3	USGS				00M0020	
204		.7	7.5	9	1180	799	304	249	3.7	USGS			No	00M0021	
205		.6	7.1	10	6030	5287	2300	353	7.0	USGS			No	00M0022	
200				_											
208		.4	7.2	9	1640	1182	712	378	1.9	USGS				00M0023	
207	.045	1.4	8.6	13	917	597	405	359	1.3	USFS				75M0192	
208			7.6				883	158		MBMG		331MDSN		67M0005	
209			7.7				1890	208		MBMG		320AMSD		61 M0001	
210			7.6				668	156		MBMG		331MDSN	No	61M0003	
211	.45		8.2		4330	3744	1540	446	6.1	wos			No	75W2282	
213	,43	1.0	8.28	24.5	2845	2218	877	512	6.0	USGS			No	72M239	
214	.316		8.21		925	599	378	336	1.5	USFS				75M0191	
215	.070		8.2	٠	1647	300	714	190	1.3	MBMG		337MSNC		64M0026	
216	.203	1.2	8.52		2670	1790	168	912	18.7	MBMG			No	72M0147	
					20.0										
217	3.615	2.0	8.8		2020	1282	58	1260	29.4	MaMG		12SFRUN	No	72M0252	
218	.068	2.5	8.16		1850	1286	43	1160	34.5	MBMG		125FRUN	No	72M0256	
219	4.292	2.5	8.8		1920	1275	39	1 280	36.3	MBMG	135	125FRUN	No	72M0262	
220	5.422	.9	8.53		2520	1684	64	1490	38.3	M8MG	207	125FRUN	No	72M0252	
221		3.5	8.97		1830	1075	22	1100	41.4	MBMG	135	125FRUN	No	72M0254	
222	2.937	4.6	8.37		1480	949	13	912	47.1	M8MG	207	125FRUN		72M0225	
223	.068	3.6	8.17		1660	1046	19	963	44.0	M8MG	135	125FRUN		72M0257	
224	.068		8.78		2520	1655	89	1480	30.4	M8MG		125FRUN		72M0259	
225	.045		8.19		1620	1039	15	957	48.4	M8MG	135	125FRUN		72M0260	
226	.068	1.4	8.03		2610	1718	80	1430	33.1	M8MG	136	125FRUN	No	72M0261	
227	.587	3.6	8.2		1590	1014	15	933	48.3	MBMG	135	12SFRUN	No	72M0264	
228	.181		8.8	24	669	439	288	182	1.1	MBMG		123111014		72M0397	
229		2.2	9.5	10.9	1740	1097	14	1150	52.2	MBMG				72M0396	
230	.04	.3	7.7		5350	4345	1780	389	7.5	WQB				76W1003	
231			8.6	20.5	1380	1006	547	189	2.2	USGS				72M0235	
		.50					•								

HARDIN 1" x 2" Sheet

Trace Elamants Analyses Sheat

Lab	73M583 73M582 73M581 73M580 76W2216	73M589 73M742 73M743 73M588	76W2218 76W2217 76W2219 75M0194	76M0191 76W1003
Zinc mg/l]	0 5 5 5	0 0 0 0	9 2 8 5	10. ^
Tin Zinc (mg/l) [mg/l)				
Stron. tium (mg/l)	39		8 4 4 8	3.4
Silver fmg/ll (×.08		4 8 8	
F				<1.0
Phosphate (Total dissolved)	5 7 50 6	£ 50 60 50 V		
Vickel Img/II	80. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	8 8 8 8 8	.12 <.05 <.05	
Lish. Mer. Lead ium cury Nickel (Total Selenius Img/II) (mg/II) (mg/II) dissolved) (tig/II)	3,2777	\$ \$	777	6.2
Lead Img/II t	2: -: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	- 00 - 00	60. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	× -:
Copper [mg/II]	8 5 5 5 5	6 6 6 6	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10.>
Chro- mium (mg/l)	8 8 8 8	88888		
Cad- mium (mg/l)	9 9 9 9 9	5 5 5 5 5 5 5 5 5 5) 00. ^ 00. ^ 10.	<.01 <.00.>
Boron r (mg/l) to	6 5 4	123		989
				×10
Ar- Beryl- senic lium (µg/I) (µg/I)	~		<1.0 33 1 <2.0	2.6
Anti- mony (mg/l)				
Alu: minum (mg/f)				
Location T R Sec Tract	7 03N 41E 28 CCDD 44 02N 41E 09 BCBC 49 02N 41E 27 BCC 52 02N 41E 34 B 74 01N 33E 28 DDD	99 01N 40E 15 BACB 103 01N 41E 01 ACAB 104 01N 41E 01 DDAC 105 01N 41E 03 BBBB	140 015 31E 14 ABD 141 015 31E 16 DA 150 015 33E 18 BDD 192 03S 44E 11 BCAD 207 05S 43E 16 DDCC	214 06S 43E 25 AADB 230 09S 41E 10 CC
	03N 4 02N 4 02N 4 02N 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	015 3 015 3 015 3 035 4 055 4	06S 4
A F S	44 49 52 74	99 103 105 122	140 150 192 207	214

LOCATION BASE MAP

HAVRE 1° x 2° SHEET

SPECIFIC CO UCTANCE SURVEY

IO KILOMETERS

CONTOUR INTERVAL 100 FT

SPECIFIC CONDUCTA E SURVEY

SPECIFIC CONDUCTANCE SURVEY

HAVRE 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con's.)

_						
Owner's name		Welty Welty Pursley Pursley Deny, L.	Khunists, E Lotton	Kuhr Ketke Dorcheus Oorcheus Widderkind	Dorcheus Hansen	
Aquiler						
Well depth		8 88	260		20 20	
Static water level (ft.)					ø	
Alistude (ft.)	3920 3980 3400 3580 3500	3620 3480 3210 3210 3460	2760 2640 2680 2600 2630	2600 2600 2680 2700 2640	2610 2600 2870 2670 2680	2510 2740 2720 2770 2770
Lab Aintue enelysis (ft.)	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2
Field C C	20 21 16 17	9.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	132	16 11.5 20.6 13.5 10.2	10.8 16 14.1	14 13 9 16.6 26.5
Specific conductivity at 25 C	660 710 490 410 960	1190 1090 2070 960 1510	1460 1690 1180 3010 2960	1280 3110 1900 1420 2220	2350 3360 1080 2220	1280 160 330 270 800
d 3 Site déscription	Burch Creek Recharged by Lritle Burch Creek Eagle Creek Well is located 100 yards N of house	Stock and domestic use lexcept for drinking). Where is payed 1.1 miles to residence. West is focused 10 feet E of house. Well is focused 50 feet E of house. Well is focused 50 feet E of house. Domestic use except for drinking.	Stock use Small creek Bandy Creek Domestic use Domestic use	Domestic use Located at the base of a stock dam Stock reservoir, seeps focated downstream Domestic use	Stock reservair Basver Creek Donrestic use	Frano Rearvoir Stock reservoir Stock reservoir Stock reservoir Stock reservoir
Flow or yield E = estimated M = measured	B cts no How no How 1 cts (M)	1.5 gpm 6 gpm	0.7 cfs 4 gpm	6 gom	6 cfs 40 cfs	
Collection Location date T R SecTract Mo Day Yr Source	27N 16E 25 ABCC 08 10 76 Cresh 27N 16E 27 66C8 08 10 76 Pond 26N 15E 09 DAA 08 10 76 Pond 27N 15E 33 6ACD 08 10 76 Cresh 28N 14E 21 CBCC 08 10 75 Well	28N 14E 21 CCB. 08 10 76 Well 28N 14E 18 DADC 08 10 76 Spring 28N 14E 18 DADC 08 10 76 Well 28N 14E 18 DADC 08 10 76 Well 30N 15E 30 D6CD 04 12 76 Well	31N 14E 36 AAAC 04 12 78 Walt 31N 14E 27 DAAA 04 12 76 Caek 31N 14E 16C 04 12 76 Caek 31N 14E 16 8 04 12 78 Walt 31N 14E 12 6C 04 12 78 Walt	22N 16E 25 6BDD 04 11 76 Spring 22N 16E 30 AAAC 04 11 76 Well 22N 16E 18 DCAC 04 11 76 Sep 22N 16E 18 DDB 04 11 76 Sep 32N 16E 22 CDCD 04 11 76 Well	32N 18E 18 DCAA 04 11 76 Reservoir 32N 16E 19 DGBD 04 11 76 Creek 32N 16E 19 DGBD 04 11 76 Well 32N 18E 08 CDDB 04 11 76 Well 32N 18E 08 DAAA 04 11 76 Well	33N 14E 18 DDB Reservoir 33N 16E 50 BDD Q 41 17 B Reservoir 33N 16E 17 DACB Q4 11 7B Reservoir 33N 16E 17 CBCC Q4 11 7B Reservoir 33N 16E 17 CCAB Q4 11 7B Reservoir
County	Chouteau Chouteau Chouteau Chouteau	Chouteau Chouteau Chouteau Chouteau	11111	11111	12111	11111
Field	MBMG71 C MBMG70 C MBMG72 C MBMG69 C MBMG67 C	MBMG68 MBMG66 MBMG64 MBMG65 MBMG174 H	MBMG166 H MBMG165 H MBMG164 H MBMG163 H	MBMG164 M6MG148 MBMG150 MBMG152 M6MG155	MBMG149 MBMG156 MBMG161 MBMG147 MBMG146	MBMG134 H MBMG163 H MBMG100 H MBMG98 H MBMG99 H
Mag. 1. 0	- 2 4 4 0	9 6 0	= 5 5 4 5	16 18 198	204 22 23 23	28 28 28 28 28 28 28 28 28 28 28 28 28 2

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Mork	Mork	Knudson	Knudson		Mc Slay	Morse		Morse	Springer	Draeger	Vereptoegen			Keiler		Dian, W			Romain			Whaley	Wheley	Whaley	Velk		Shrauger		Knudson
Aquifer																				75 211JDRV								112DRFT		
Well depth	91		18			406	166		410	340					15		13			75			15		130	30				
Static water level (ft.)	00									40	14																			
Altitude Ift.)	2760	2760	2640	2840	2660	2710	2720	2700	2850	2720	2900	2820	2707	2600	2600		2600	2820		2620	2700	2720	2840	2650	2850	2840	2710	2720	2723	2780
Lab analysis	8	00	9	9	ē	٤	00	90	90	sa.k	9	S	9	2	ę		9	90		Yes	9	9	90	00	90	9	90	39 A	2	90
Fe to C	22	13.5	9	14.9	11.8	15	14.9	15.6	12.9	2	9.6	96	7	16.9	13		9.9	11.4		9	14.8	19	14.9	12.1	12.6	9	11.8	=	11	8.2
Specific conductivity at 25 C	006	180	2780	120	2020	4020	6200	210	3600	4306	1110	240	470	1370	580		2830	3350		5645	200	260	980	200	2660	1160	470	2023	210	7370
Sile description	Domestic end stock use	Stock reservair	Stock use prior to 1975, unused since	Stock reservoir		Domestic use except for drinking	Domestic use except for drinking	Kiehns Coulee	Domestic use except for drinking	Domestic and stock use	Domestic use	Stock reservoir	Cosi Creek	Redrock Coulee	Damestic use		Stock use	Redrock Coulee		Stock and domestic use texcept for drinking!	Wildlife reservoir	Redrock Coules	Domestic use except for drinking		Stock use	2000		Domestic use	Lohman Coules	Stock use
Flow or yield E = estimated M = massured										10 gpm							16 gpm													
Coffection date t Mo Day Yr Source	04 11 76 Well		B 04 13 76 Well		C 04 13 76 Creek	8 04 13 76 Well	D 04 13 76 Well	B 04 13 78 Creek	C 04 13 76 Well	D 01 11 77 Well	34N 14E 14 AADC 04 12 76 Well	04 12 76 Reservoir					2	04 11 76 Creek		: 01 11 77 Well	A 04 11 76 Reservoir	35N 14E 35 DADD 04 12 76 Creek	A 04 12 76 Well	C 04 12 76 Reservoir	8 04 12 76 Well	C 04 12 76 Well	04 12 78 Creek	36N 16E 16 ADDS 11 11 77 Well	04 11 76 Creek	
Location T R Sec Trect	33N 16E 06 DDD	33N 16E 06 DDC	33N 15E 09 CCCB	33N 16E 09 CDCC	33N 14E 12 DCCC	33N 14E 10 ABAB	33N 14E 03 CABD	33N 14E 04 BBAB	34N 14E 34 AABC	34N 14E 26 CDDD	34N 14E 14 AAC	34N 15E 34 CAD	34N 16E 32 8CB	34N 16E 28 ACC	34N 16E 26 DBA		34N 16E 07 DDB	34N 16E 06 CBC		36N 16E 33 ADC	35N 17E 30 BCBA	35N 14E 35 DAD	36N 16E 19 DDB	36N 16E 19 DAC	36N 15E 19 CBAB	36N 15E 19 CACC	36N 16E 23 ADD	36N 16E 16 ADE	35N 16E 10 ABA	36N 15E 01 CDC
County	H	Hill	H	H	Hill	Him	Hill	H	H	H	Hill	Hill	H	His	Hill		H	Hii		Hin	Hill	Hill	Hill	Him	H	H	Hill	Hill	HH	=
Field	29A MBMG97	298 M8MG105	M8MG104	MBMG96	M8MG95	MBMG94	WBMG93	MBMG92	MBMG84	WBMG63	WBMG85	MBMG91	MBMG58	M8MG89	WBMG90	not on map	MBMG87	M8MG86	not on map	M8MG67	MBMG88	MBMG56	M8MG62	MBMG61	WBMG59	W8MG60	MBMG63	MBMG64	MBMG66	WBMG57
Map ref no. n	29A	362	30	_	35		34		96	33	88	8	9	=	5	43		-		47	48	48	_	_	25	_		99		67

HAVRE 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

		Owner's name	McIntosh	Dusek	Maisem	Maisam	Cox	Çox						Schellin		Gilmore	Lybeck		Lybeck	Pridgeon	Liston	Gardipes		Johnson		Finch	Finch	Finch	Disen, H. W.	Olsen, H. W.		Davis Ranch
	Aguiler	code							112DRFT	10																		14 112DRFT				
Modi	•	3	17	30	30	447	9	90	24	9	09			Ξ					300		160			120	168		7	7				
Static	level	3												1							30			0	90		9	7				
	Altitude	3	2780	2800	2880	2880	2860	2860	2810	2780	2770	2700	3160	2610	2600	2660	2600	2700	2600	2440	2440	2440	2490	2440	2880	2880	2900	2900	2960	2960	3680	3830
	del		9	00	ou	90	ao a	00	Vas	2	90	no	00	no	00	uo u	2	90	OU OU	2	9	9	9	90	ou	90	00	Yes	90	00	90	9
3	temp.	ပ	11.2	9.8	14.1	13	12	12			œ	21.2	22	14.5	22		23	23	13	91	13	13	23.5	91	13		on.	00	50	50	15	2
Coordin	conductivity	et 25 °C	330	1170	920	1560	3650	8720	4110	0691	1240	420	2610	1240	210		320	280	9890	760	2880	910	820	3820	6540	18770	7380	8854	720	1100	390	380
3	2 2	d Site description	Domestic use	Domestic use	Domestic use	Stock use	Stock use	Donnestic use except for drinking	Domestic use			Choteau Coutes		Domestic use, perhaps contains high nitrates	Lodge Creek			Stock use	Not used for drinking	Domestic use	Domestic use	Domestic use		Domestic use	Stock and domestic use (except for drinking)			Stock use but cattle won't drink it		Doniestic use		Domestic use
Flow or vield	E = estimated	M = messured												0.5 gpm					10 gpm		md6 09		20 gpm	2 gpm	m d6 9		6 gpm	8 gpm (E)	0.5 cds		20 gpm	
Collection	Location date Source	T R SecTract Mo Day Yr	36N 15E 14 DDDD 04 12 78 Well	36N 16E 19 AABB 04 11 76 Well	36N 13E 14 BOBB 04 13 76 Well	36N 13E 14 BCAD 04 13 76 Well	36N 14E 04 DCDD 04 12 75 Well	36N 14E 04 DCDA 04 12 78 Well	37N 14E 20 DDDD 01 11 77 Well	37N 20E 22 BB 07 07 78 Well	BA	35N 20E 07 07 07 76 Creek	31N 18E 21 CCC 07 08 78 Pond			07 07	34N 16E 30 CDAA 07 07 76 Pond	34N 20E 18 DD8 07 08 76 Reservoir	33N 18E 06 D8CD 07 07 76 Well	33N 18E 16 CASC 07 07 76 Well	34N 19E 35 CCB 07 07 78 Well	33N 1BE 29 DBBD 07 07 76 Well	33N 18E 33 CCAA 07 07 78 Creek		32N 18E 29 BBCB 07 07 76 Well		32N 18E 34 A 07 07 76 Well	32N 18E 34 A 12 22 76 Well		2088 07	07 08 78	30N 18E 33 CA 07 08 76 Well
		County	_			H	E	H	Ħ	Blaine	Blaine	Blaine	Staine	Blaine	Blaine	Blaine	Bleine	Blame	Blaine		_	Blanne		Blaine	Blaine	Blaine	Blaine	Blaine	Blaine	Blaine	Bleine	acres a
Mao	ref. Field	ao. number	58 MBMG51	59 MBMG52	60 MBMG45	51 MBMG45	62 MBMG48	63 MBMG49	64 MBMG43	65 MBMG09		67 MBMG12	68 MBMG40	69 MBMG1	70 MBMG2		72 MBMG27	73 MBMG11	74 MBMG28	75 MBMG29	76 MBMG04	77 MBMG30	78 MBMG32	78 MBMG31	60 MBMG33		B2 MBMG34	B3 76M1530	84 MBMG37	B5 MBMG36	BB MBMG51	B7 MBMG50

HAVRE 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

;										in	Static		
			Collection	Flow or yield		91	Specific	Field		*	water Well	=	
ref. Field						000	conductivity		Lab	Altitude le	level depth	th Aquifer	
no. number	County	T A Sec Tract	Mo Day Yr Source	M = messured	Site description	•	et 25 °C	ွပ	-				Dwner.s neme
88 76M1525	Blaine	32N 19E 02	12 31 78 Spring		Domestic use		1554	1		2450		211JDRV	Swenson
89 MBMG59	Blaine	32N 18E 01	07 09 76 Creek		Black Coules		410		9	3400			
90 76M1526	Blaine	31N 19E 13	12 22 78 Well	4 gpm	Domestic use		2204		587	2980	1:	70 211DRV	Wachurton
	Bleine	32N 19E 24	07 09 76 Well	3 gpm	Domestic use		066	9	0	2750		73 211JDRV	-
92 MBMG73	Blainy	32N 20E 08	07 09 76 Well		Domestic use		9360		9	2430		125	
93 MBMG78	Blaine	32N 20E 09	8		Domestic use		2360		9	9410	1	9	Grabar
94 MBMG74	Blaine	32N 30E 04 A	36		Domestic use		2260			2380	. =	2 9	D. mercen
95 MBMG75	Blaine	32N 20E 04 A	8		Domestic use		0001		2 1	2380		3 5	Contrast
96 MBMG77	Bisine	32N 20F 03 B	07 09 78 Well	16 anm	Domestic		2000		2	0000		2 2	CVercasi
97 76M1524	Bleine	32N 20E 03 B	12 21 76 Well		Domestic use		2740			380	- :	20 311 100	Lowell
							6/43			000	-	VAULITY OF	Lowell
98 MBMG78	Blaine	32N 20E 03	07 09 76 Well		Domestic use		3400	6	ou	2380	20 16	99	McNeill
99 76M1522	Blaine	33N 21E 31	12 21 76 Well		Domestic use		2342	13		2380	_	50 110ALVM	Benson
	Blaine	33N 21E 30	07 11 78 Well		Domestic use except for drinking		3270	40	00	2380			Delvin
	Bleine	33N 21E 30	07 11 76 Well		Domestic use except for cooking and drinking	aking	3890			2380			Hissins
102 MBMG80	Blaine	33N 21E 31	07 09 76 Well		Domestic use except for cooking and drinking	phing	2420	13		2380			Benson
	Blainy	33N 31E 32	07 11 76 Well		Domestic use		2650	12.6	9	3380		95	Berns
104 MBMG79	Bleine	32N 31E 05	07 09 76 Well	4 apm	Domestic use		2430			0.00	20	9	Marhandon
105 MBMG81	Blaine	32N 21E 07	07 10 76 Well				1980	101		2380	-	3 15	Scholinen
	Blaine	32N 21E 1B	07 10 76 Reservoir				1740			2400			Schnissen
107 MBMG83	Blaine	32N 21E 19	07 10 76 Well	3 gpm			4130			2530	18	38	Hebbleman
108 MBMG84	Blaine		07 10 78 Well	10 gprn			2200	00	0	2540	30	300	Hebbleman
109 76M1523	Blaine		12 21 76 Well		Domestic use except for drinking		2969	13	SA.A	380		110ALVM	Delvin, T.
110 MBMG86	Distre	31N 30E 01 DBC	07 10 78				1000	*		37.20	16 1	16	Schillene
	Bieine	8	07 10 76 Creek		Snake Creek		1660	15.6	9	0992			
112 MBMG71	Blaine	32N 20E 34 CB	12 31 76 Well	10 gpm	Stock use		3111				350 42	120 211JDRV	Warburton, W.
113 MBMG61	Blaine	31N 20E 06 BCA	97 60 70	B gpm	Domestic use		1980	01	9	2900	_	3	Dehi
114 MBMG62	Blaine	31N 20E 06 9DC	07 09 76 Well	7 gpm	Stock use		3120	10	04	088	75 16	99	Dehi
TID MBMGB3	Bisine	31N 19E 13 AAAC 07 09 76 Well	107 09 76 Well	4 gpm	Domestic use		2190				_	00 211JDRV	Werburton
/ZGIWO/ OII	Bisine	31N 19E 13 AAAC 12 23 78 Well	12 32 78 Well	4 gorn	Domestic use		1624		, my	2980	100	150 211JDRV	Warburton, L.
III MBMG84	Blaine	31N 19E 13 AAAD 07 09 78 Well	07 09 78 Well	4 gom	Lawn irrigation use		1550	0				150 211JDRV	Werburton

HAVRE 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Dwner's name	Vercruyssen Vercruyssen Paulsen Ramberg	Vercruyssen Paulsen, E. Paulsen, E.	Ross Ross Erskine	S-B Ranch S-B Ranch Guzzie Kuhr Livestock Swank	Swank Swank Gordon Cattle Co Gordon Cattle Co.	Werk, D. Friede Johnson Norhem Parnell
Aquiler		211JDRV 211JDRV				
Well depth	30 15 15 25		8 8	1000	186	120 220 300 230
Static water level (1t.)	8 7		50	4 0	4 4	90 40
Lab Ahrtude inalysis (ft.)	2960 3070 3200 3070	3040 3080 3080 3760 2780	3730 3720 3600 3030	3060 3060 3180 3300	3100 3020 3020 3180 3180	2370 2360 2370 2430 2360
	2 2 2 2 2	3 4 4 5 0	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	8 8 8 8 8
Field Temp. C	24 16 10 15	20 4 24 23.5	8 5 11 23	13 11.6 9	14 8.3 22 12	14 8 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Specific conductivity at 25°C	920 1720 2120 870 790	610 2621 2913 190 1010	480 430 2010 1210 830	1400 390 1560 1450 420	1790 1860 310 180 420	2340 2080 2130 2550 1840
erd Site description	Domestic use Stock use	Clear Creek, algal sample taken Domestic use except for diniking Slock use	Domestic use Grashopper Reservoir	Stock use Domestic use Domestic use	Domestic use except for drinking Domestic use except for drinking Water four habitat, possible stock use Stock reservoir Domestic use	Dometile use Dometile use Dometile use
Flow or yield E = estimated M = messured	5 gpm	1-1.5 cfs 10 gpm		3 gom 25 gom		8 gpm
Collection Location date R Sec Tract Mo Day Yr Source	07 09 76 Reservoir 07 08 76 Well 07 08 76 Well 07 08 76 Well 07 08 76 Well	07 08 78 Cresk 12 22 76 Well 12 22 76 Well 07 08 76 Pond 07 08 76 Pond	07 08 76 Well 07 08 76 Spring 07 08 76 Pond Well Reservoir	Well 07 08 76 Spring 07 09 76 Well 07 09 76 Well 07 08 76 Hetervoar	07 08 76 Well 07 08 76 Well 07 08 76 Reservoir 07 08 76 Reservoir 07 08 78 Well	07 10 76 Well 07 10 76 Well 07 10 76 Well 07 10 76 Well 07 10 76 Well
Location T R Sec Fract	31N 19E 26 BAC 31N 18E 19 31N 18E 19 31N 18E 30 31N 18E 30	31N 18E 20 BCC 31N 18E 21 31N 18E 21 30N 18E 18 D8	30N 17E 36 AD 30N 17E 36 AD 30N 18E 23 31N 18E 20 D 21N 19E 28 C888	31N 19E 33 BA 31N 19E 33 30N 21E 18 BCC 30N 21E 31 CCDU 36N 21E 04 C	36N 21E 04 B 36N 21E 04 BD 37N 21E 22 CC 37N 22E 1B AB 27N 22E 14	32N 21E 01 CBAD 07 10 76 Well 22N 32E 07 CACC 07 10 76 Well 32N 22E 18 ABBB 07 10 78 Well 32N 21E 25 AAB 07 10 76 Well 32N 32E 21 BABA 07 10 76 Well
County	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine
Map ref Field no number	118 MBMG65 119 MBMG41 120 MBMG42 121 MBMG45 122 MBMG44	123 MBMG43 124 MBMG39 125 MBMG38 126 MBMG46 127 MBMG47	128 MBMG49 129 MBMG48 130 MBMG52 131 MBMG56 132 MBMG56	133 MBMG54 134 MBMG53 136 MBMG67 136 MBMG66 137 MBMG23	136 MBMG21 139 MBMG22 140 MBMG24 141 MBMG26 142 MBMG25	143 MBMG94 144 MBMG93 145 MBMG92 148 MBMG91 147 MBMG90

HAVRE 12 x 2 Sheet (Con't.)

Con't.)
Sheet (
Inventory
Conductivity
Specific (

C analysis (11) 16 30 no 2380 45 no 2370 23 no 2340 14 no 2560	115 C C analytis (II.) 1810 30 no 2380 1470 45 no 2380 1470 145 no 2370 430 14 no 2540 430 145 no 2720 700 1 no 2720	11.5 C C analytis (II.1) 1810 30 no 2380 1470 45 no 2380 170 18 no 2390 420 23 no 2390 420 14 no 2520 700 105 no 2700 700 25 no 2700	41.5 C C analytis (11) 1810 30 no 2380 1410 45 no 2380 1700 18 no 2370 2420 105 no 2540 2420 105 no 2550 2420 105 no 2700 700 1 no 2700 700 25 no 2700 1000 25 no 2700	C analysis (11) 30 no 2380 45 no 2380 18 no 2340 14 no 2550 105 no 2720 25 no 2450 256 no 2930	C analysis (11) 30 no 2380 45 no 2380 18 no 2370 19 no 2240 10 no 2700 25 no 2700 26 no 2700 2700 28 no 2700	C analysis (11) 30 no 2380 18 no 2350 18 no 2370 19 no 2590 10 no 2700 25 no 2700 25 no 2700 26 no 2450 2700 2880 11 no 2880	C analysis (11) 30 no 2380 18 no 2380 18 no 2340 14 no 2550 105 no 2720 25 no 2720 276 no 2720 277 no	C analysis (11) 30 no 2380 18 no 2380 18 no 2370 19 no 2740 11 no 2760 11 no 2880 11 no 2880 11 no 2880 11 no 2880	C analysis (11) 30 no 2380 18 no 2380 19 no 2360 19 no 2240 10 no 2250 25 no 2700 25 no 2450 2700 28 no 2450 2	C analysis (11) 30 no 2380 18 no 2380 18 no 2360 114 no 2560 105 no 2720 105 no 2720 272 no 2720 118 no 2880 118 no 2880 119 no 2880 111 no 2880 113 no 2880	C analysis (11) 30 no 2380 18 no 2380 18 no 2370 19 no 2740 10 no 2700 22 no 2460 22 no 2700 23 no 2700 24 no 2860 11 no 2860 11 no 2860 11 no 2860 11 no 2860	C analysis (11) 3 0 no 2380 18 no 2380 19 no 2360 19 no 2240 10 5 no 2700 25 no 2700 25 no 2700 26 no 2880 14 no 2880 148 no 2880 149 no 2880 141 no 2880 142 no 2880 143 no 2880 143 no 2880 144 no 2880 145 no 2880	C analysis (11) 30 no 2380 18 no 2380 18 no 2370 14 no 2550 10 no 2720 22 no 2720 22 no 2720 22 no 2720 22 no 2880 14 no 2880 148 no 2880 148 no 2880 141 no 2880 143 no 2880 155 no 2810 155 no 2820 155 no 2820 155 no 2820	C analysis (11) 3 0 no 2380 18 no 2380 18 no 2370 19 no 2240 22 no 2700 22 no 2700 22 no 2700 22 no 2880 118 no 2880	C analysis (11) 45 no 2380 18 no 2380 19 no 2340 19 no 2340 19 no 2340 19 no 2360 11 no 2880	C analysis (11) 30 no 2380 18 no 2380 18 no 2370 19 no 2240 10 no 2750 22 no 2450 11 no 2880	7. Analysis (11) 3.0 no. 2380 18 no. 2380 18 no. 2370 19 no. 2540 22 no. 2720 22 no. 2720 22 no. 2720 23 no. 2720 24 no. 2880 11 no. 2880	11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11
1810 30 1470 45 700 18 700 18 720 23 830 12 430 105	1810 30 1470 4 5 700 18 420 23 3830 14 420 10 5	30 23 14 10 10 10 10 10 10	30 4 4.5 11 4 10 5 25 25	30 4.5 118 123 23 25 25 25 26	30 23 25 25 26 8 8 8 8 8	30 23 23 25 25 25 26 26 10 10 10 10 10 10 10 10 10 10 10 10 10	30 4 4 1 1 2 3 8 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	30 23 25 25 25 25 25 26 26 10 10 10 10 10 10 10 10 10 10 10 10 10	30 4 5 18 19 10 25 25 25 26 27 8 4 11 11 14 16 10	30 18 18 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 4.5 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	30 4.5 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	30 4 5 18 14 14 10 10 10 10 10 10 10 10 10 10 10 10 10	30 4 5 1 8 1 8 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 4 5 5 2 5 2 5 3 5 4 6 4 6 7 6 8 7 8 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8	30 4 5 1 4 4 1 1 4 5 2 2 2 3 2 2 4 5 2 3 6 3 4 7 3 6 7 3 6 7 3 7 3 8 7 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7				***************************************	
	,	181 147 70 70 883 883 70 70 70	181 107 70 70 70 80 80 80 70 70 100	181 147 100 100 100 100 100 100 100 100 100 10	181 142 142 183 183 184 195 196 198 198 198	181 147 70 70 183 183 184 70 70 70 70 70 70 70 70 70 70 70 70 70	181 147 142 442 442 70 70 100 100 29 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	181 1447 70 283 843 70 70 70 70 70 70 70 70 70 70 70 70 70	191 144 70 70 83 83 84 70 70 70 70 70 70 70 70 70 70 70 70 70	181 147 142 143 143 143 143 144 143 144 144 144 144	181 147 70 70 70 70 70 70 70 70 70 70 70 70 70	181 147 143 183 183 193 100 100 100 100 100 100 100 100 100 10	181 70 70 70 70 70 70 70 70 70 70 70 70 70	181 147 170 170 170 170 170 170 170 170 170 17	1477 1477 1477 1477 1477 1477 1477 1477	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000 00000 00000 00000 0000	00000 00000 00000 00000 00000			
	_															- ंत ४ मा लयतम्य मक्षता छ्रता	1470 1470 1830 1830 1930 1930 1930 1930 1930 1930 1930 19	1470 7470 7420 7420 7420 7420 7420 7420 7			
	-		-	-	-		•					=	-	•	•	•				•	5
-	35 gpm Stock well 36 gpm At Snake Butte campground	-	-		-		•						-	-	•	5	£	E	E	E	35 gpm 20 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm 16 gpm
3.5 gpm	3.5 gpm 36 gpm	35 gpm	3.5 gpm	35 gpm	35 gom 35 gom 20 gom	35 gom 35 gom 20 gom 10 gom	35 gom 35 gom 20 gom 10 gom 5 gom	36 gpm 36 gpm 20 gpm 10 gpm 10 gpm	3.5 gpm 3.5 gpm 10 gpm 10 gpm 10 gpm	3.5 gpm 3.6 gpm 2.0 gpm 1.0 gpm 1.5 gpm 2.4 cfs	35 gom 36 gom 20 gom 10 gom 10 gom 2.4 cts	26 gpm 20 gpm 10 gpm 10 gpm 10 gpm 10 gpm 2.4 cfs 10 gpm	3 6 gpm 36 gpm 10 gpm 10 gpm 10 gpm 10 gpm 10 gpm 10 gpm 10 gpm	26 gpm 20 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm	2 5 gpm 20 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm	26 gpm 20 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 5 gpm 5 gpm	3 6 gom 20 gom 10 gom 10 gom 10 gom 10 gom 15 gom 15 gom 16 gom 16 gom	2 5 gpm 20 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm	2 6 gpm 20 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm	3 5 gpm 35 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm	2 5 gpm 3 5 gpm 10 gpm 10 gpm 10 gpm 10 gpm 15 gpm 15 gpm 15 gpm 15 gpm 15 gpm 16 gpm 16 gpm 16 gpm 16 gpm 17 gpm
2E 31 AADA 07 10 76 Well	31N 22E 31 AADA 07 10 76 Well 31N 22E 35 CBCA 07 11 76 Spring	31N 22E 31 AADA 07 10 76 Well 31N 22E 35 CBCA 07 11 76 Spring 31N 22E 35 8DDB 07 11 76 Pond	31N 22E 31 AADA 07 10 76 Well 31N 22E 36 CBCA 07 11 76 Spring 31N 22E 36 BDDB 07 11 76 Fond 31N 23E 20 BBA 07 11 76 Creek	31N 22E 31 AADA 07 10 76 Weil 31N 22E 35 GBCA 07 11 76 Spring 31N 22E 35 BDDB 07 11 76 Pond 31N 23E 20 BBA 07 11 76 Creek 36N 20E 01 CC 07 08 76 Creek															31N 22E 31 AADA 31N 22E 56 69CA 31N 22E 56 69CA 31N 22E 50 69 1CA 31N 22E 10 DOCC 32N 22E 33 33N 22E 13 AA 33N 23E	3111 22E 31 ADDA 3111 22E 36 600-60 311 22E 36 600-60 311 22E 30 600-60 10C 311 22E 10 DOCC 311 22E 10 DOCC 311 22E 10 DOCC 311 22E 10 ADDA 32D 22E 22 C8 32D 22E 23 C8 32D 23E 23 C8 32D 23E 23 C8 32D 23E 23E 23E 23 32D 23E	3111 22E 31 AADA 3111 22E 56 690 A3 311 23E 56 690 A3 311 23E 56 690 A3 311 22E 690 A3 311 22E 10 DDCC 371 22E 13 311 23E 13E 32E 33 311 23E 13E 33 311 23E 33 31 23E 33 31 23E 33 31 23E 33
2	31N 22	31N 22 31N 22 31N 22	31N 228 31N 221 31N 221	31N 22R 31N 22R 31N 22R 36N 20R						Blaine Blaine Blaine Blaine Blaine Phillips Phillips Phillips Phillips	Blaine Blaine Blaine Blaine Blaine Blaine Phillips Phillips Phillips Phillips Phillips				Blaine Blaine Blaine Blaine Blaine Blaine Phillips	Blaine Blaine Blaine Blaine Blaine Blaine Phillips	Blaine Blaine Blaine Blaine Blaine Blaine Phillips	Baince Baince Baince Baince Baince Baince Baince Prailigo	Blaine Blaine Blaine Blaine Blaine Blaine Phillips	Baince	Blaine Blaine Blaine Blaine Blaine Blaine Phillips
	35 gpm	35 gom	36 gpm	36 gpm	36 gp·m 20 gp·m	36 gpm 20 gpm 10 gpm	BCA 07 11 76 Spring 35 gpm IDDB 07 11 76 Creek CC 07 08 76 Creek NDC 07 22 76 Well 10 gpm IAC 07 22 78 Well 10 gpm IAC 07 22 78 Well 15 gpm	28CA 07 17 76 Spring 35 gam 18A 07 11 76 Spring 35 gam 18A 07 11 76 Creek 25 07 08 76 Creek 18A 07 27 27 8 Well 10 gam 10 27 27 28 Well 10 gam 10 27 27 8 Well 10 gam 10 27 27 27 27 27 27 27 27 27 27 27 27 27	BBCA 01 17 15 Spring 35 gpm BA 07 11 76 Creek \$\times\$ 07 10 18 Creek \$\times\$ 07 10 18 Creek AC 07 22 78 Well 20 gpm AC 07 22 78 Well 10 gpm 07 22 76 Well 10 gpm 07 22 76 Well 10 gpm	BBCA 01 17 15 Spring 35 gpm BA 07 11 76 Creek C 07 08 16 Creek AC 07 22 56 Well 10 gpm 1AC 07 22 76 Well 10 gpm 07 22 76 Well 10 gpm 07 22 76 Well 10 gpm 07 22 76 Well 10 gpm	BBA 07 11 76 Spring 35 gam 180 07 11 76 Spring 35 gam 180 07 11 76 Creek 25 07 12 76 Well 20 gam 180 07 22 78 Well 10 gam 17 27 78 Well 10 gam 180 07 27 78 Well 180 07 27 78	28.0. 71 75 Spring 35 garm 18.0. 71 75 Creek 5. 07 08 76 Creek 5. 07 22 78 Well 10 garm AC 07 22 78 Well 10 garm AC 07 22 78 Well 10 garm 07 27 76 Well 10 garm	28.0. 17 17 55 Spring 35 gpm 18.0. 17 17 55 Spring 35 gpm 18.0. 17 17 56 Creek 2.0. 17 17 56 Creek 2.0. 17 17 56 Creek 18.0. 17 17 56 Creek 19.0. 17 17 18.0. 17 18.0	28.0. 17 17 55 Spring 35 gpm 18.0. 17 17 55 Spring 35 gpm 18.0. 17 17 56 Creek 2.0. 10 106 19.0. 17 10 Spring 19.0. 17 16 Well 10 Spring 19.0. 17 16 Well 10 Spring 19.0. 17 16 Well 15 Spring 10 Spring	28.C. of 17.17 S Spring 35 gam 18.0. of 17.17 S Spring 35 gam 18.0. of 17.0. of 17.0	26. 7 17 76 Spring 35 gpm 18. A 07 17 76 Spring 35 gpm 17. B 07 17 76 Creek 2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	BBA 07 11 76 Spring 35 gam 18 A 07 11 76 Creek 20 Coek	28.C. of 17.17 is Spring. 35 garin. 18.A. of 11.76 Creek. 2.C. of 12.76 Creek. 2.C. of 12.76 Creek. 2.C. of 12.76 Weel. 3.C. of 12	28.0. 17 76 Spring 35 gamm 18.0. 17 77 17 56 Spring 18.0. 17 76 Creek 2.0. 17 76 Creek 18.0. 17 76 Creek 19.0. 17 76 Creek 19.0. 17 72 76 Weel 19.0. 17 72 76 Weel 19.0. 17 72 76 Weel 19.0. 17 75 77 76 Weel 19.0. 17 76 Creek 19.0	BCA 07 11 76 Spring 35 gamm BA 07 11 76 Creek BCC 07 12 76 Well 20 gamm CC 07 22 76 Well 10 gamm AC 07 27 77 77 77 77 77 77 77 77 77 77 77 77	BBA 07 11 76 Spring 35 gam 18 A 07 11 76 Creek 25 Creek 25 Creek 25 Creek 26 Creek 27 Creek 2

HAVRE 1° x 2° Sheet (Con't.)
Specific Conductivity Inventory Sheet (Con't.)

Doner's name Taylor Dott Bletter Granlund	Grabotsky Tume Dusek Hould, D	Taylor, R. Witke	Klutzbuecher Klutzbuecher Stephens, J.	Stephens, J. Stephens, J.	Swenson, H. E.
puth Aquiter It.I code 350	300 186 30	300	9		۰
≤ 8 =			-		7100
Sta We Jev	173	8			
Altitude (ft.) 2700 2550 2550 2550 2550 2850 2850	3070 2500 2440 2800 2480	2600 2600 2620 2650 2440	2660 2700 2690 2760 2760 2750	2780 2770 2730 2730 2850	2430 3240 3240 3240
Lab analysis no no no	2 2 2 2 2	2 8 8 8 8	8 8 8 8 8	9 9 9 9 9	no n
Freid tempt. °C a 16 25 12 8.8	18.2 16.8 22.6 9	22 B 25 28 25 25 25 25 25 25 25 25 25 25 25 25 25	24 11 18 22.9 22	20 22.1	12 4.4 6 7.7
Specific conductivity at 25 C 3300 4360 260 670 1190	2460 2580 2330 840 1000	200 2740 5060 830	1120 930 930 190 260	420 260 260 390 370	2820 34 15 11
y weld Sue description Donestic use Thresphone reservoir	n Domestic use cls Small creek Stock use n Domestic use	n Domestic and stock use n Domestic and stock use Irrgation ditch	Domestic use Stock reservoir Stock reservoir	Corral Coulee Tributary to Corral Coulee Tributary to Corral Coulee	Domestic use Lookout Greak Lookout Greak Lookout Greak Lookout Greak
Flow or yield E * estimated M * measured 13 gpm r 8 gpm 25 gpm	10 gpm 3.6 gpm 0.75 cts 4 gpm	6 gpm 12 gpm			
Location date T R SecTract Mo Day Y Source 1792.72.25 179.72.25 17	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	07 23 76 Creek 07 23 76 Creek 07 23 76 Well 07 21 76 Well 07 07 76 Duch	07 07 76 Creek 07 07 76 Well 07 07 76 Creek 07 08 76 Reservoir 07 08 78 Reservoir	07 08 76 Creek 07 08 76 Raservoir 07 08 78 Creek 07 08 78 Spring 07 08 76 Creek	07 08 76 Well 01 23 76 Creek 05 19 74 Creek 08 11 74 Creek 06 18 74 Creek
Location T R Sec Tract 27N 27E 26 28N 28E 35 28N 28E 35 28N 28E 30 38N 28E 30	35N 25E 03 ADA 31N 29E 30 CDDD 31N 29E 31 BDBC 36N 16E 19 AABB 29N 28E 09	28N 28E 01 28N 28E 22 27N 28E 33 29N 27E 11 CCA 34N 19E 35 CCA	36N 19E 08 36N 19E 10 36N 19E 10 36N 20E 32 35N 20E 04	36N 20E 09 36N 20E 08 36N 20E 06 36N 20E 06 36N 20E 06	33N 19E 34 29N 14E 02 B 29N 14E 02 B 29N 14E 02 B 29N 14E 02 B
County Prolitos Prolitos Prolitos Prolitos Prolitos	Philips Philips Philips Hill Philips	Philips Philips Philips Philips Blane	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine Blaine	Blain Hill Hill Hill
Maj) rel Field no number 178 M8MG110 179 M8MG109 180 M8MG109 181 M8MG109 182 M8MG109	183 MBMG20 184 MBMG48 185 MBMG49 186 MBMG53 187 MBMG68	188 MBMG105 189 MBMG106 190 MBMG113 191 MBMG65 192 MBMG5	193 MBMG6 194 MBMG7 195 MBMG8 196 MBMG13 187 MBMG14	198 MBMG16 199 MBMG16 200 MBMG17 201 MBMG18 202 MBMG19	203 MBMG57 204 75M0040 205 74M0445 206 74M0562 207 74M0600

HAVRE 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheat (Con't.)

an, B	Œ	Great Northern R R	
Owner sname Hansen Chamberlain, B	Pitch, G Ekegren, R Modic, L	Great Nor	Bruell, T.
eli Aquiler 11 code 59 211CLGT 45 110ALVM	100 110 ALVM 70 110 ALVM 70 110 ALVM 70 110 ALVM 70 110 ALVM 720 110 ALVM 740 110 ALVM 751 110 A	49 121FLXV 225 21HLCK 39 121 FLXV	
Well depth (ft.) S9 S9 145	100 130 120 120 1210 1210	32.56	8
Static water level (11.7 43 43	a 8	2 3 8 38	flowing
Attitude (ft l 3240 3240 2730 2330 2290	2300 2340 2340 2320 2320 3320 3080	3000 3000 3000 3000 3000 3000	
Lab enalysis yes yes yes yes			2 2 2 2 2 2
Field temp C C T 10 14 8.3 8.3	8.3 10 10 10 10 10 10 10 10	9.9 7.2 7.2 8.3 8.3 7.7	23.1 23.1 28.9 28.9
Specific conductivity et 25 C 14 16 7730 4120 3960	5470 4420 3300 5220 5220 605	2080 852 880 880 850 8310 1180 2900	3650 3650 250 450 80 80
Flow or yaild Site detcription M.* meabured Lookout Great Lookout J. mies SE of Goburg	Located 2.7 mites \$E of Cobung Located 3.8 mites \$E of Cobung Located 3.8 mites \$E of Histern Located 3.8 mites \$C of Histern Located 5.2 mites \$C of Histern Located 5.2 mites \$C of Histern Located 3.7 mites \$C of Histern Located 3.7 mites \$C of Histern Located \$1.8 mites \$C of Histern Located \$1	16 gpm Located 2 milet E of Hogeland Located 5.5 milet W of Hogeland Located 5.5 milet E SE of Turner Located 8.5 milet N W of Hogeland Alkali Lake Located 6.5 milet N of Turner 2 gpm Stock we at HOSCS seams station	
			Ā
Collection date 1 Mo Day Yr Source 07 28 74 Creek 08 15 74 Creek 10 58 Well C 10 59 Well	47 Well 59 Well 65 Wel	59 59 59 58 58 58 58 58	02 07 76 Well 07 07 07 76 Reservoir 02 07 76 Greek 07 07 78 Reservoir 07 07 78 Reservoir 07 07 07 78 Reservoir 07 07 07 98 Reservoir
Cod Location 6 29 N 14E 02 B 07 29N 14E 02 B 08 21N 14E 02 B 08 21N 24E 01 DA 10 31N 25E 13 ACCC 10	31N 25E 21 AD 02 32N 22E 26 BC 10 32N 22E 26 BC 10 32N 22E 31 AB 10 32N 22E 31 AB 2N 24E 31 BC 10 32N 24E 13 BC 10 33N 24E 13 BC 10 33N 24E 13 BC 10 33N 24E 10 BB 10 33N 24E 10 BB 10 33N 25E 72 DD 10 10	0.8	
County Hull Hull Blaine Blaine	Blane Blane Blane Blane Blane Blane	Blaine Blaine Blaine Blaine PAINIDS	B Baine B Baine B Baine
no number no number 208 74N0805 210 76M0239 211 59M0003	213 47M0025 214 59M0005 215 59M0006 216 59M0000 217 48M0003 217 48M0008 218 59M0009 222 59M0010	223 59M0012 224 59M0013 225 59M0014 226 59M0016 227 59M0016 228 59M0017 229 24M0144 230 MBMG230	231 MBMG231 232 MBMG232 233 MBMG233 234 MBMG234 235 MBMG236 236 MBMG236

HAVRE 1 x 2" Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Holeli, P			Gibbs	Horn	Reed Cross Flynn Bros, Ranch Flynn Bros, Ranch
Aquifer						
Well depth (ft.)				180	0.	4 00
Static water level (ft.)						20
Field temp. Lab Attitude C analysis (11.1	31B0 3290	4400 4220 4060 4060	3860	2630	2320 2600 2520 2620 2510	
Leb	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	9 0 0 0 0	2 2 2 2 2	2 2 2 2 2
Field temp.	24.9 12.5 23 22 22	12.6 18.2 21 19 19.1	27.6 22.9 25.6 25.	35 24 25.1 17.8 17.9	26.8 31.5 30.5	17.7 20.8 8.8 9.9
Specific conductivity at 25 C	230 860 990 730 1310	310 400 460 600 420	1090 950 1690 1280 820	250 810 860 2700 1720	5620 280 23990 690 1080	1620 380 2220 3740 780
Site description	Punam Lake Stock use Stock use Stock reservoir	Batte Creek Irreption use Battle Creek	Black Coulee Did Woman Reservor Populs Creek Populs Creek Stock reservor	Stock reservoir Doniestik use Three Mile Creek	bonestic use Stock reservoir	Domesric use trigation diteh Stock and domestic use lexcept for drinkingl
Flow or yield E = astumated M = measured	Putha 10 gpm (M) Stock 3 cfs Paopl Stock	l cfs (E) Battle Irraga 1.6 cfs (E) Battle 6.6 cfs	30 gom Black Did M 1.25 cls Peopl 60 cls Peopl Stock	Stock 0.14 cts Donne Three	Dome Stock	50 gpm Dome. Irrigas Stock
Collection FI Location date E: R SecTract Mo Day Yr Sourca M	8 07 07 76 Laka 8 07 07 76 Well 07 07 76 Craek 07 08 76 Reservoir 07 08 76 Reservoir	29N 18E 14 CAA 07 08 76 Caek 28N 18E 05 CDB 07 08 76 Caek 28N 18E 01 CADO 07 08 76 Regerver 28N 17E 02 DDBA 07 08 76 Caek 28N 17E 02 DDBA 07 08 76 Caek	07 08 76 Creek 07 09 76 Reservoir 07 09 76 Creek 07 09 76 Creek 07 09 76 Reservoir	27N 24E 20 ACCD 07 09 76 Reservoir 77N 24E 17 DDC0 07 09 76 Creek 8N 23E 31 07 09 78 Creek 90N 25E 03 009 07 10 78 Weil 31N 23E 16 07 10 76 Creek	07 10 76 Wall 3 07 10 76 Reservoir 07 10 76 Pond 07 10 76 Cesk	07 09 76 Well 56 07 09 76 Dich 07 09 76 Well 07 09 78 Well 07 09 78 Creek
۰	28N 22E 20 BDDB 29N 21E 36 BBDB 29N 20E 01 AAA 30N 19E 34 CDB 29N 19E 06 CAB	29N 18E 14 CAA 28N 18E 05 CDB 28N 18E 01 CADC 28N 17E 02 DOBA 28N 17E 02 DOBA	26N 18E 08 B 29N 23E 01 BACA 29N 25E 18 DBCD 29N 25E 11 CDBA 29N 25E 26 CCBC	27N 24E 20 A CCD 07 09 76 27N 24E 17 DDCD 07 09 76 28N 23E 31 07 09 78 30N 32E 03 DDB 07 10 78 31N 23E 16 07 10 76	31N 24E 03 29N 24E 12 AABB 30N 24E 23 CAC 30N 24E 23 CBAD 30N 24E 23 DB	33N 19E 23 33N 19E 24 33N 19E 25 33N 20E 28 33N 20E 28
County	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Biame	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine
Map rel Field no. number	23B MBMG23B 239 MBMG239 240 MBMG240 241 MBMG241 242 MBMG241	243 MBMG243 244 MBMG244 245 MBMG245 246 MBMG246 247 MBMG246	248 MBMG248 249 MBMG249 250 MBMG250 251 MBMG251 252 MBMG251	253 MBMG253 254 MBMG254 255 MBMG255 256 MBMG256 257 MBMG256	25B MBMG259 259 MBMG259 260 MBMG260 261 MBMG261 262 MBMG261	263 MBMG263 264 MBMG264 265 MBMG265 266 MBMG266 267 MBMG266

HAVRE 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owners name		Lanhards Maller Malker Green Green	Benbo Perkins Miller Miller	Murphy Murphy Cowell	Neder degger Snider Snider	Johnson Baker, D. E. Modic Modic
Aquifer						90 33 1240 112JDRV 90
Well depth (ft.)		170	350 168 80 120	120	8	90 1240 90
Static water level			^			
Lab Altitude analysis (ft.)			Howing			
	0 2 2 2 2	2 2 2 2 2	9 9 9 9	0 0 0 0 0	2 2 2 2 2	2 2 2 2 2
Field temp	21 24 7 21 21.6 17.2	14 5 21 21 11 5 19 8	9 12.2 9.4 6.8 22.2	13.2 13 20.8 13 21.8	22 13.2 20 9.6 11.5	11 B 22.2 16.5 13
Specific conductivity at 25°C	370 350 460 400 330	600 2350 360 2040 450	1660 2030 2440 2410 900	1690 2060 410 440 260	310 1070 380 620 580	530 390 2950 2380 2790
eld bed sed Site d'escription	Stock reservoir Stock reservoir Stock reservoir	Domestic use Water has a sulptiur smell furgation canal Domestic use frigation canal	Domettic and stock use Domettic use Domettic use accept for drinking Battle Creek	Domestic use except for drinking Stock use frigation canal Stock reservoir	Domestic and stock use Domestic use Domestic use	Domestic use Domestic use Domestic and stock use Stock use
Flow or yield E = estimated M = measured			40 gpm			
Collection Location date R Sec Tract Mo Day Yr Source	07 09 76 Creek 07 09 76 Reservoir 07 09 76 Reservoir 07 09 76 Creek	07 09 76 Well 07 09 76 Well 07 09 76 Canel 07 09 76 Well 07 09 76 Canel	07 09 76 Well 07 09 76 Well 07 09 76 Well 07 09 76 Well 07 09 76 Creek	07 10 76 Well 07 10 76 Well 07 10 76 Canel 07 10 78 Well 07 10 76 Reservoir	07 10 76 Raservoir 07 10 78 Spring 07 10 76 Reservoir 07 10 76 Well 07 10 76 Spring	07 10 78 Well 07 10 76 Reservoir 07 11 76 Well 07 11 78 Well 07 11 78 Well
Location T R Sec Tract	33N 21E 30 33N 21E 07 34N 20E 36 34N 21E 31 34N 21E 20	33N 21E 27 33N 21E 27 33N 21E 35 32N 22E 04 32N 22E 04	32N 22E 0A 32N 22E 05 33N 22E 31 33N 22E 31	32N 22E 11 32N 22E 11 32N 22E 11 32N 22E 12 33N 22E 04	33N 22E 03 34N 23E 14 36N 23E 20 35N 23E 20 CBDD 36N 23E 09	35N 23E 08 35N 23E 09 31N 24E 01 ADA 34N 24E 13
County	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blaine Blaine Blaine Blaine	Blains Blains Blaine Blaine	Blaine Blaine Blaine Blaine
Map ref Freld no. number	268 MBMG268 269 MBMG269 270 MBMG270 271 MBMG271 272 MBMG272	273 MBMG273 274 MBMG274 275 MBMG275 276 MBMG276 277 MBMG277	278 MBMG278 279 MBMG279 280 MBMG280 281 MBMG281 282 MBMG281	283 MBMG283 284 MBMG284 285 MBMG286 286 MBMG286 287 MBMG287	288 MBMG28B 299 MBMG289 290 MBMG290 291 MBMG291 292 MBMG281	293 MBMG293 294 MBMG294 295 MBMG295 296 MBMG296 297 MBMG297

HAVRE 1 x 2 Shaet (Con't.)

Spacific Conductivity Inventory Sheet (Con't.)

Dwnaf's name	Johnson Warburton Nelson Warburton Tilleman	
Aquiter	2810 24 112DRFT 2840 16 20 211CLGT 2840 16 20 112TILL 2760 15wing 135 211JDRV	
Well depth	24 20 20 135	25
Static water level (ft.)	16 16 10wing	10
Altitude	2810 2840 2840 2840 2760 t	2800 3010 3120
ge 1	10 ves 2	13 no 30.2 no 24.6 no
Field temp	6 10 12.5	13 30.2 24 6
Static Specific Field Attitude level depth Aqui at 26 C C analysis (it.) (it.) (it.) coc	7472 1601 1380 1690 2170	1960 1170 260
Site description	Stock use Dometic use Dometic use Dometic use	Domestic use Pool in creek bed Small reservoir
Flow or yiek E = estimated M = measured	10 gpm 16 gpm 3.5 gpm	
Collection Flow or yield Location date E stimated T R Sec Treet Mo Day Yr Source Minmeasured	37N 14E 20 DDDA 01 11 77 Well 32N 20E 04 12 21 76 Well 31N 20E 05 DDA 07 09 76 Well 32N 30E 34 CC 07 09 76 Well 31N 20E 09 DAD 07 09 76 Well	31N 20E 03 AB 07 09 76 Well 26N 22E 08 ADD 07 07 78 Creek 26N 22E 03 DADB 07 07 76 Reservoir
County	Hill 3 Bleine 3 Bleine 3 Bleine 3	Blaine 3 Blaine 2 Blaine 2
Map ref. Field no number	298 MBMG44 299 76M1520 300 MBMG69 301 MBMG70 302 MBMG68	303 MBMG72 304 MBMG11 305 MBMG10

Chemical Analyses

											_							
Mag				Co	ilec			_	Magne-		Potes-		Manga-		8 car-	Car-		
re1_			пент		date		_	Calcium	sium	Sodium	SIMM	Iron	nese		bonate		Chloride	Sulfate
110	т	R :	Sec Trect	Mo	Day	, Y,	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCD3)	(CO ₃)	(CI)	(504)
37			28 CDDO		11		Well	31	16.2	1000	3.7	.24	.03	9.4	986		221	1198
47			33 AUC	01		77	Well	15.1	3.1	1215	3.6	.03	.02	72	428		1725	1.9
55			18 ADDB			77	Well	251	56	143	6.3	.09	.42	19.6	454		155	527
64			20 DOOD		11		Well	421	158	438	6.4	.19	.78	35.7	159		124	2232
83	32N	18E	34 A	12	22	76	Well	514	364	1570	7.4	.07	.01	15	325		147	5203
		198			21			180	60	87.5	5	.01	.2	16.5	319		46	541
		19E			22		Well	130	128	200	5.3	<.01	.01	12.2	587		110	515
		206			21		Well	4.1	1.1	705	2	.04	<.01	8.1	950	17.8	121	540
		21 E			21		Well	2.5	.5	552	4	.11	.03	8.6	955	19.7	41	.3
109	33N	21€	30	12	21	76	Well	235	110	362	5.4	.02	.09	17.2	649		70	1120
112	32N	20E	34 C8	12	21	76	Well	6.5	5.8	516	1.7	< .01	< .01	5.8	900	24	295	232
116	31 N	19€	13 AAAC		22		Well	78	81.5	160	2.7	.42	.05	13.1	600		93.5	244
		185			22		Well	207	163	214	18.5	6.4	3.94	10.3	531		46	1130
		18E				76	Well	254	228	203	3.8	.14	.09	17.6	720		33	1299
204	29N	148	02 8	01	23	75	Creek								34			
205	29N	14E	02 8	05	19	74	Creek								7			
206	29N	14E	02 8	06	11	74	Creek								5			
207	29N	146	02 8	06	18	74	Creek								5			
		146			28		Creek								7			
209	29N	14E	07 8	08	16	74	Creek								8			
			25 BOOB		11		Well	396	148	1475	18	28	.03	12.7	532		117	3881
21 1	31N	24E	01 DA	10		58	Well	60	26	898	5.3	5.9		18	1030		287	976
212	31N	25E	13 ACCC	10		59	Well	15	7.4	930	4.5	2.2		10	919		221	1030
Z13	31N	25 E	21 AD	02		47	Well	76	26	1298°		.4		31	732		160	2190
214	32N	23€	26 BC	10		59	Wett	185	133	1050	7.5	9.4		20	964		115	2320
215	32N	23E	26 CC	10		59	Well	19	5.5	1070	7.5	3.3		8.4	999		134	1390
216	32N	23E	31 A8	10		59	Well	69	34	685	6.6	6.9		19	710		51	1160
217	32 N	23E	36 AC	06		48	Well	68	37	897*		5.0		144	915		68	1314
718	32N	24E	33 DC	10		59	Well	19	6	1250	4.9	1.8		7.5	582		69	2200
719	34N	736	01 AB	04		47	Well	20	8	325°	4.0	.8		15	406		51	318
									-			_			400		3,	310
			13 CD	10		59	Well	2.4	1.9	609	2.4	.5		10.	953		166	279
			10 86	10		59	Well	27	30	37	3.4	.02		17	253		7.4	52
			27 DD	10		58	Well	87	46	69	5.4	.14		21	318		24	229
			25 AD	10		59	Well	75	88	266	5.2	.4		16	310		85	737
224	3614	23E	30 A C	10		59	Well	58	48	200	5.7	3.2		12	252		11	210
225	36N	26N	33 DA	10		59	Well	46	39	89	5.2	.12		20	316		31	161
726	37N	23E	12 C8	10		59	Spring	39	30	99	6.2	.08		13	252		16	205
227	37N	23E	13 D8	10		59	Lake	5	38	1850	171	.01		4.2	650		1060	2340
778	37N	258	35 BD	10		59	Creek	39	40	169	6.4	.02		13	466		20	239
229	32N	78E :	34 CBD	11	09	73	Well	20	4.4	695	5.9	.01	.04	8.6	1066		11.5	709
200	274.																	
			20 DDDA		11		Well	424	164	1345	16	.84	7.7	32.3	4		296	3962
299	32N	20E :	54	12	21	/6	Well	270	57	22.2	3.8	.01	.03	13.7	352		23	584

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated $^{\circ}$ Values reported as sodium plus potassium

of Selected Waters

Maga		Fluo-		Field	specific	Dissolved	Total	Total	Sogium		Well		Trace	
rel.	Natrate	ricle	Lab	temp.	conductance	solids	hardness	alkalinity	adsorption	Collecting		Aquiler	elements	Lab
nn.	(N)	(F)	pН	c"	(µmho/cm)	(catc.)	as CaCD,	as CaCD ₃	ratio	agency	(ft.)	code		numbe
37	.38	.3	7.77		4306	2966	144	809	36.3	мвмд	340		Yas	76M157
47	.061	1.7	7.78	6	5645	3248	50	351	74.4	M8MG	75	211JDRV	Yas	76M158
55	5.422	.2	7.5	11	2023	1388	857	372	2.1	MBMG		1120RF1	Yes	76M158
64	16.943	.7	6.4	10	4110	3512	1700	130	4.6	M8MG	24	112DRF1	Yes	76M157
83	83,135	1.1	7.78	8	8854	8065	2780	267	13	Mamg	14	112DRFT	Yes	76M153
88	2.214	.3	7.45	13	1554	1096	696	262	1.4	мвмс		21 IJDRV	Yes	76M152
90	26.544	.2	7.62	12	2204	1416	851	481	3	M8MG	120	211JDRV	Yes	76M152
97	.949	2.9	8.52	8	2749	1871	15	809	79.8	M8MG	120	211JDRV	Yes	76M152
99	.316	3.8	8.55	13	2342	1103	8	816	83.4	M8MG	150	110ALVN	4 Yes	76M152
109	2.078	.5	7.69	13	2969	2242	1040	532	4.9	M8MG		110ALVA	1 Yes	76M152
112	1.039	9	8.63	8	2111	1532	41	778	35.3	Mamg	420	211JDRV	Yes	76M152
116	2.937	.3	7.38	9	1624	972	530	492	3.0	M8MG	150	211JDRV	Yes	76M152
124	.059	.3	7.79	4	2621	2059	1190	436	2.7	M8MG		211JDRV	Yes	76M152
125	1.005	.5	7.74	8	2913	2395	1570	591	2.2	MBMG		211JDRV	Yes	76M152
204			6.67	30	34			28		Unknow	1		No	75M004
05			6.48	4.4	15			6		Unknown	,		No	74M04
06			7.25	5	11			4		Unknown	•		No	74M05
07			7.11	7.7	8			4		Unknow			No	74M06
108			7.18	12	14			8		Unknown	1		No	74M08
209			7.47	10	18			7		Unknown	•		No	74M081
110	45.634	.5	7.96	14	7725	6356	1600	436	16.1	M8MG	59	211CLGT	Yes	76M023
111		1.0	7.6	8.3		2787	258	845	24	USGS	145	110ALVN		59M000
13		3.2	7.6	8.3	3960	2678	68	754	49	USGS	167	211JDRV	No	59M000
14		.7	7.3	8.3			297	600		USGS	100	110ALVN		47 MOO:
		.,	7.3	8.1	5470	4316	1010	791	14	USGS	70	110ALVN	No.	59M000
115		1	7.8	10	4420	3131	70	819	58	USGS	130	110ALVN	No.	59M000
16		1.6	7.7	10	3300	2383	312	582	17	USGS	70	110ALVN	No I	59M00
17							301	750		USGS	120	110ALVM	No.	48M00
18		.6	7.70	8.3	5220	3845	72	477	64	USG\$	240	110ALVN	Na I	59M000
19							830	333		USGS	240	211HLCK	No	47M00
20		4.5	8.00	10.6	2420	1545	14	782	71	USGS	1210	211JDRV	Na	59M000
21		.6	7.6	7.7	505	299	190	208	29	USGS	49	121FLXV	No	59M00
22		.4	7.3	8.9	1000	639	406	261	1.5	USGS	22	121FLXV	No	59M00
23		.6	7.5	9.4	2080	1426	549	254	4.9	USGS	49	121FLXV	No	59M00
24		.3	7.1	7.2	852	672	341	207	4.7	USGS	225	211HLCK	No	59M001
25		.8	7.5	7.8	883	548	274	259	2.3	USGS	39	121FLXV	No	59M001
26		4	7.1	8.3	852	533	221	207	2.9	USGS		110ALVM	No	59M001
27		.3	8.7	8.3	8310	5789	168	533	61	USGS			No	59M001
28		.6	8	4.4	1180	756	264	381	4.5	USGS			No	59M001
229	8.9	.5	8.17	7.7	2900	25	68	874	36.6	Private			No	74MQ14
298	40.89	1.8	4.69	8	7472	6292	1730	3	14.1	M8MG	24	112DRFT	Yes	76M157
299	11.07	.2	7.86	10	1601	1158	909	289	.J	M8MG	20	211CLGT	Yes	76M152

HAVRE 1° x 2° Sheet

Trace Elements Analyses Sheet

Lab	76M1577	76M1581	76M1580	76M1578	76M1530	76M1525	76M1526	76M1524	76M1522	76M1523	76M1521	76M1527	76M1529	76M1528	76M0239	76M1579	26M1520
Zinc ma/i)	. 62	0.	20	98	16	5 50	Ξ	0.		0.4		.24	8	4.30	90	44	5
Ten Zenc (ma/i) (ma/i)	- 1	12	52	99	1.27	35	.62	<.05	80	.50	0	38	99	94	9	85	.34
Stron- tium	- 6	.58	1 47	1.79	8.20	1.28	3.35	.23	90	1.92	8	2.18	1.61	2.55	4.69	2.56	69
Silver (ma/l)																	
Selenium (Mari)	<u> </u>	< 2.0	< 20	42.5	79	3.1	140	< 2.0	<20	<20	< 2.0	2.8	< 2.0	< 2.0	188	112	< 2.0
Phosphate (Total	910	910	.023	014	036	150	.033	0.1	176	.023	.052	430	130	.026	.033	660	140
Nickel (ma/l)		×.01	0.	.15	.00	0.	0	6	0.0	03	V.01	6	.03	.03	8	.67	.03
Mer. cury P		?	ć.,	<.3	.3	6.3	<.3	°.3	c. ^	£. ^	.3	6.5	<.3	 	₹.	.3	6.
Lith: Mer- tum cury (ma/))(tla/i)	92	.23	91.	40	1.92	90	18	5	2	34	13	.13	18	39	6.	1.01	0.
Lead fma/il (c		×.05	<.05	020	15	90.>	×.05	< .05	<.05	8	8	×.05	90.	10	90		<.05
Copper (ma/II)	. 0.	0.	10	.02	.02	.03	.03	8	10	0	10.>	10.>	<.01	10	0.	91	.03
Chro-	. 0.	×.01	¥.01	<.01	<.01	0.	0.	10.>	10.>	<.01	0.	0.	<.01	×.01	6	0 >	10.>
Cad-				×.01											9.	×.01	
Boron (ma/l)		4.	.15	.20	.82	.28	.32	8.1	1.8	5.1	90	.27	.21	.43	1.3	.52	90
Beryl- lium (uo/l)				<6.0											\$	<5.0	
Ar.	<2.0	< 2.0	< 2.0	< 2.0	<2.0	<2.0	<2.0	< 2.0	< 2.0	<2.0	2.1	< 2.0	< 2.0	<2.0	< 2.0	<2.0	< 2.0
Anti-	. ?	~:>	~	~	35	2 '>	×.2	~	~	2 .	2 '	<.2 <	2 .>	~:>	7	<.2	۲.
Minum I		<.05 <.2	< .05	9	99	×.06	×.05	<.05 <.2	8	×.05	90	>.06	×.05	90	.13	8.35	90
Location T R Sec Tract	34N 14E 28 CDDD	35N 16E 33 ADC	35N 16E 18 ADDB	37N 14E 20 DDDD	32N 18E 34 A	32N 19E 02	31N 19E 13	32N 20E 03 B	33N 21E 31	33N 21E 30	32N 20E 34 CB	IN 18E 13 AAAC	31N 18E 21	31N 18E 21	31N 21E 25 BDDB	37N 14E 20 DDDA	32N 20E 34
Map ref.			55 36		83 32	88 33	90 31		99 33	109 33		118 31	124 31	125 31	210 31		298 32

LOCATION BASE MAP

Cu	OTEAU GREWHITE		HAVRE	GLASGOW JORDAN FORSYTH	GLENOIVE MILES CITY
	4	3	2	1	
	5	6	7	8	

JORDAN 1° x 2° SHEET

JORDAN 2

JORDAN 1" x 2" Sheet

Specific Conductivity Inventory Sheet

Owner's name		,				Orehood Orehood Orehood Orehood
Aquiler				331CRLS	331CRLS	
Well depth (ft.)						590 20 671
Statoc water level (ft.)						36 50 25
Altitude [ft.]				3110	2540	2440 2420 2350 2380
Lab	* 5 5 5 5	2 2 2 2 2	# # # 9 9 9 8 4 4 9	0 0 0 5 A	2 2 2 2 2	2 2 2 2 2
Feed of Co	7				8	13.1 14.8 14.8
Specific conductivity at 25 C	1190 480 330 520 5100	3200 280 1660 1870	9670 8896 1272 1560	3990 2340 1360 684	1870 10110 4500 5400	6600 1210 4360 810 2770
d Sse description	Call Creek near Sand Springs Rengeland Rengeland F.F. Peck Reservoir at Hell Creek State Park Hell Creek	Coulee at the edge of the Missouri breaks Reservoir along Bear Creek, dryland farming area Fall Creek Stock tank, in river valley, dryland farming area Rengeland, alkeli along reservoir and below	9 By Dry Creek at highway near Jordan, Algal sample Little Dry Creek By Dry Creek	Sand Creek at highway In a coulee bellow dryland ferming area LU All Coek South Fork Lodge Creek at Sand Syrings	in back of leves below Three Forks Desention Reservoir boards Service in size 65 miles NE of Localen Netson Creek, respeland Coules, respeland	Timber Cresh, rengeland Donestic use, hard weter, K000 feet SW of house Stock use, high in action Stock use, well located 200 feet NW of section corner Stock use, well located NE of house
Flow or yield E = estimated M = massured	0.8 cfs (M) 60 gpm (E)		1.6 cts (M) 2 cts (E) 2 cts (E)	0.6 cls (E)	25 gpm (E) no tlow	50 gpm (E) 1 gpm [E) 10 gpm 6 gpm (E) 10 gpm
Collection date Ma Day Yr Source	03 17 78 Creek 09 01 75 Reservoir 09 01 75 Reservoir 09 01 75 Creek	09 01 75 Reservoir 09 01 75 Reservoir 09 01 75 Creek 09 01 75 Spring 09 01 75 Reservoir	04 25 69 Well 04 29 69 Well 03 17 76 Creek 09 01 75 Creek 09 01 76 Creek	10 07 76 Creek 09 14 53 Well 09 02 75 Well 09 02 75 Creek 03 17 76 Creek	07 24 76 Pond 09 01 75 Reservoir 01 11 66 Well 09 01 75 Creek 09 01 75 Sep	09 01 75 Creek 07 23 78 Well 07 23 76 Well 07 23 78 Well 07 23 76 Well
Location T R Sec Tract	15N 32E 21 CB 21N 42E 07 CD 21N 41E 32 C 21N 38E 06 21N 37E 14 DB	21N 37E 26 20N 37E 24 20N 42E 10 D 20N 42E 27 A 19N 38E 18	19N 34E 32 BDC 18N 34E 32 BDC 18N 40E 09 DB 18N 42E 04 DD 18N 42E 03	17N 38E 02 CCC 16N 36E 28 CA 16N 43E 04 B 15N 43E 09 15N 33E 02 AA	26N 36E 27 23N 43E 24 BC 22N 44E 18 BB 21N 43E 36 19N 43E 12 BA	18N 43E 13 26N 32E 26 AC 26N 32E 25 AC 26N 32E 21 DD 26N 32E 04 88B
County	Garfield Garfield Garfield Gerfield Garfield	Garfield Garfield Garfield Garfield Garfield	Garfield Garfield Garfield Garfield Garfield	Garfield Garfield Garfield Garfield Garfield	Valley McCone McCone McCone McCone	McCone Phillips Phillips Phillips
Map ret. Field no. number	1 WQB17 2 WQB5 3 WQB6 4 WQB11 5 WQB10	6 W089 7 W088 8 W084 8 W083 10 W087	11 69M0011 12 69M0010 13 WOB18 14 WOB1 15 WOB2	16 WOB19 17 53M0001 18 WOB16 19 WOB14 20 WOB21	21 MBMG74 22 WOB37 23 66M0027 24 WOB38 25 WOB39	26 WQB40 McCond 27 MBMG148 Phillips 28 MBMG147 Phillips 294 MBMG146 Phillips 296 MBMG149 Phillips

JORDAN 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Blunt, Alfred Barnhard Koss Koss Koss Wedrick Weidrick		Srebley
Aquiler	211JDRV 211JDRV 211JDRV 211JDRV 211JDRV 211JDRV		211JBRV
Well depth (ft.)	1100 1100 10 850 300 800 800		8
Static water level (ft.)	2550 110 2550 260 2390 6 2350 Howing 2900 60 2300 Howing 10wing		
Altitude	2600 2550 2350 2350 2450 2200 2300 2300	2250 2250 2250 2450 2460 2260 2350 2350	2500 2480 2480 2480 2480 2400 2400 2250
Lab analysis	2222 2222	22222 22222	2 2 2 2 2 2 2 2 2 2
Field C. C.	17 17.3 13.2 13.2 13.2 22	26.2 23 30 23 20 20 20 20 20 20 20 20 20 20 20 20 20	16 22 22 19 19 22 22 23 25 21 21 23 25
Specific conductivity et 25 C	2500 2830 3200 2970 3030 1740 2630 540	9910 1780 1300 1890 1110	5650 3470 7070 3410 5680 1070 12890 1090
Sita description	Domestic and stock use Nester is soft, bad of denking Had weer, resident do not use a filter Domestic use, located 500 feet 5W of house Sick use, located 55 miles 5W of house Sitts seath Salts seath Domestic use, high in socient and lucaine Domestic use, high in socient content At entence to U. L. Band Wriddis Reluge	At bridge South Leek in prairie dog town Small creek in prairie dog town Reservoir in tereth dry, much alkeli on its banks Reservoir in dared, alkeli bellow dam Reservoir in dared, alkeli bellow dam IT tiple Costing Reservoir, algost sample taken Reservoir in omed Messivoir come and bellow dam Reservoir in omed My tood Stock reservoir on Lond Tee Creek Gastlon Reservoir, one algose Castlon Reservoir, come algose	Stock us, clinical pearer is haired in Fisials Reservoir, clear seller, much most, white Seap sees below, reservoir, white sell or out Sea forms a hick white creat Selver point a Sea forms and Sear seller pearer in Sear seller sees seeps for clinical search sees for clinical search seeps for clinical search seeps for clinical search seeps for Clinical Search S
Flaw or Yield E = estimated M = neesured	20 gom 10 gom 7 gom 2 gom 10 gom 8 gom	2 gpm (E)	
Collection date Mo Day Yr Source	07 23 76 Well 07 24 76 Well	07 24 78 Creek 07 24 15 Creek 07 26 78 Reservoir 07 26 78 Reservoir 07 27 78 Creek 07 27 78 Creek 07 27 78 Reservoir 07 27 78 Reservoir 07 27 78 Reservoir 07 27 78 Reservoir	07 27 76 Wall 07 27 78 Reservoir 07 27 76 Craek 07 27 76 Craek 07 27 78 Fond 07 27 76 Spring 07 26 76 Reservoir 07 26 76 Creek 07 27 76 Creek
Location T R Sec Tract	26N 30E 31 CD 24N 37E 34 CBC 24N 37E 34 CBC 34N 31E 19 CBC 24N 31E 19 CBC 32N 35E 04 CBC 32N 31E 19 CBC 32N 31E 32 CBC 32N 31E 32 CBC 32N 31E 32	274 31E 07 21N 28E 02 25A 38E 11 25N 38E 11 25N 38E 10 26N 36E 05 88D 25N 36E 06 25N 36E 06 25N 36E 06 25N 36E 06 25N 36E 07 25N 36E 06	24N 34E 05 25N 35E 09 D88 25N 36E 06 25N 36E 06 25N 36E 09 25N 35E 09 26N 40E 19 24N 38E 14 25N 38E 17
County	Philips Philips Philips Philips Philips Philips Philips Philips	Philipps Philipps Valley	Valley
Map ref Freld no. number	30 MBMG150 31 MBMG183 32 MBMG182 33 MBMG181 35 MBMG89 36 MBMG89 38 MBMG184 39 MBMG185 39 MBMG186	40 MBMG183 42 MBMG179 42 MBMG103 44 MBMG103 45 MBMG75 47 MBMG75 48 MBMG75 48 MBMG75 49 MBMG84	50 MBMG96 51 MGMG81 52 MBMG80 53 MBMG80 54 MBMG82 65 MBMG82 66 MBMG82 67 MBMG107 68 MBMG107 68 MBMG107 69 MBMG107

JORDAN 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Munger, A Rorvick, J.	Handley Burke, D.	Burke, D
Aquiter			331CRLS 217LKDT
Well depth (IL.)	8		
Statuc water level (ft.)			
Static water Attitude level (ft.)	2400 2300 2200 2060 2600	2400 2500 2600 2900 2350	2850 2480 2490 2427
Lab	2 2 2 2 2	0 0 0 5 0 2 0 5 0 0	yes yes
Fueld C C	26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 8 3 7 3	31 7
Specific conductivity at 26 C	1130 200 1060 4830 260	25400 8670 180 1447 6720	1882 2800 66000
nerd Site description	Stock ure, muddy Domestic use Stock use		Beaver Creek, salts present Mosby dome - Cat Creek oul field
Collection Flow or yield Location date E-estimated T R Sec Tract Mo Day Yr Source M=measured	07 27 76 Reservoir 07 26 76 Reservoir 07 26 76 Spring 07 26 78 Well 07 26 76 Reservoir	26 76 Pond 26 78 Ceek 26 76 Pond 26 76 Spring 26 76 Pond	12 18 76 Spring 07 23 76 Creek 07 30 71 Well 01 06 26 Well
Coll. Location d T R Sec Tract Mo D	56N 39E 18 D 07 26N 38E 27 07 24N 38E 19 07 27N 42E 22 07 24N 36E 23 07	24N 37E 12 07 26 76 Pond 4AN 36E 30 07 26 76 Ceek 2AN 36E 30 07 28 76 Pond 2AN 35E 09 DCCD 07 26 76 Spring 24N 37E 06 BCAA 07 26 76 Pond	23N 35E 10 12 26N 29E 26 07 23N 41E 04 DC 07 15N 30E 21 CA 01
County		Valley Valley Valley Valley Valley	Velley Phillips Valley Valley
Map ref Field no. number	60 MBMG106 Valley 61 MBMG100 Valley 62 MBMG105B Valley 63 MBMG112 Valley 64 MBMG89 Valley	65 MBMGBB 66 MBMG91 67 MBMG90 68 MBMG92 69 MBMG87	70 MBMG94 71 MBMG116 72 71M5002 73 26M0002

JORDAN

Chemical Analyses

Map	,				Ço	Hect	on			Magne-		Potas		Mange-		Bicar-	Car-		
ref.		ما	CBTH	on		date			Calcium	sium	Sodium	SILITO	Iron	11010	Silica	bonete	bonate	Chloride	Sulfate
no.	т	R	Sec	Tract	Mo	Den	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₃)	(CO3)	(CI)	(SO ₄)
1	16N	326	21	C8	03	17	76	Creek	35.7	11.2	220	4.4				218		3.5	415
11	19N	346	32	BDC	04	25	69	Well	500	120	1600°					560		2000	1800
12	19N	348	32	BDC	04	29	69	Well	390	69	1300°					450		1500	1800
13	18N	40E	09	DB	03	17	76	Creek	31.5	12.4	225	4.5				275		6.5	370
17	18N	368	28	CA	09	14	53	Well	480	90	1500°					523		1600	2300
20	15N	336	02	AA	03	17	78	Creek	43.4	23.4	67	9.6				257		13	125
23	22N	446	18	88	01	11	66	Well	370	76	2300°					296	37	1500	3700
68	22 N	356	04	DCCO	07	26	78	Spring	31.9	24.8	300	1.9	.10	.92	11.4	871		14	86.1
70	23N	35E	10	BCAA	12	18	76	Spring	15	6.6	445	2.0	.23	.03	11.4	853		11.5	300
72	23N	416	04	DC	07	30	71	Well	44	5.9	1900°					490		560	2900
73	15N	308	21	CA	01	06	26	Well			850°					938		750	13

Note: All chemical data ere given in milligrams per liter (mg/l) unless otherwise stated * Velues reported as sodium plus potassium

1° x 2° Sheet

of Selected Waters

Map ref. no.	Nitrate (N)	Fluo ride (F)	Lab pH	Field Temp.	Lab specific conductance (//mho/cm)	Dissolved solids (celc.)	Total hardness as CaCO ₃	Total alkalinity as CaCO ₃	Sodium adsorption ratio	Collecting agency	Well depth (ft.)		Traca alaments analyzed	
1	.07		7.9	3.2	1190		135	111	8.2	WQB			no	76W0492
- 11			7.1				1740	459		Unknown		331CRLS		69M0011
12			7.3				1260	369		Unknown		337MSNC		69M0010
13	.23		8.2	2.5	1272		130	225	8.6	MOB			no	76W0490
17							1570	429		Unknown		331 CRLS		53M0001
20	.06		7.63	2.3	684		205	211	2.0	WQ8			no	76W0491
23			8.8				1240	304		Unknown		331CRLS		66M0027
68	.095	.5	7.74	9	1447	901	182	714	9.7	M8MG		211HLCK		76M1504
70	.357	.3	8.19	7	1882	1213	65	700	24.1	MBMG		211FXHL		76M1505
72			7.8		56000		134	402		Unknown		311CRLS	,	71M5002
73								769		Unknown		217LKQT	no	26M0002

Trace Elements Analyses Sheet

Lab	.21 .16 1.43 76M1504 .20 .17 .01 76M1506
Zinc (mg/l)	1.43
Tin (mg/l)	31.
Stron- tium (mg/l)	2, %
Silver [mg/l]	
Selenium (µg/I)	<2.0 <2.0
Phosphate [Total dissolved]	910.
Nickel Img/II	, 0.
Court (Fe/A)	^ \ \
Lith- tum (mg/l)	.05 5
Lead (I/Bul)	A.06
Copper (mg/l)	. 01 < .06 .05 < .3 < .01 < .05 < .05 < .01 < .01 < .00 < .05 < .01 < .01 < .00 < .05 < .01 < .00 < .05 < .01 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .00 < .0
Chro- mlum fmg/ll	10.>
Alu- Anti- Ar Beryt- Cad- Chro- Lith-Mar. Phosphete Stron- minum mony senic llum Boron mium mlum Copper Lead ium cury Nickel (Total Selenium Silver tum Tin Zinc Lab Impili Jugili Lighli Impili Imgili Imgili Imgili Imgili Imgili Imgili Ingili Ingili Imgili Imgili Imgili Imgili number	30
Beryl- flum B (Joh) fr	
senic (Le/I)	<2.0 <2.0 <2.0
Anti- mony Img/II	??
Alu- minum (mg/l)	.06 <.2 <2.0 .05 <.2 <2.0
Map ref. Location no. T R Sec Trect	68 22N 35E 04 DCCD 70 23N 35E 10 BCAA
Mag.	8 2

LOCATION BASE MAP

LEWISTOWN 1° x 2° SHEET

IO KILOMETERS

CONTOUR INTERVAL 100 FT

LEWISTOWN 1° x 2° Sheet Specific Conductieity Invnetory Sheet

Page	-									n				
State Stat			- Control	Collection	DISK OF WOLL		Specific			_				
Part		,			E = estimated		conductivity					-	urger	
Button 2NY 18E 51 DCG 00 00 18 United that the Courter a byain sample taken Donaste and SAN 18E 51 DCG 00 00 18 Wate 5 spm Stock use Contained 28 spm Stock use 5 cft Milliow treat claim banks 1 1300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		County			M = measured	Site description	et 25 C	Ç					ode	Owner's name
Choiseau	1 MBMG26	Blame	25N 19E 34 DDC	87 80	0.3 gpm	Bushwacker Coulee, eigal sample taken	9830	22	90					
Observation 28N 14E 20 ACO Go Do 78 Spring Concessor 1310 13 no. 3400 no.	2 MBMG74	Choteau	25N 15E 03 DCB	08 08 78 Well	2.5 gpm	Stock use	3840	Œ	9	3320	_	15		Cook Buchard
Choiseau 28N 14E 20 ACC 08 to 0 78 Spring Choiseau 28N 14E 20 ACC 08 to 0 78 Spring Choiseau 28N 14E 20 ACC 08 to 0 78 Spring Choiseau 28N 14E 20 ACC 08 to 0 78 Spring Choiseau 28N 14E 20 ACC 08 to 0 78 Will Choiseau 28N 14E 12 ACC 08 to 0 78 Will Choiseau 28N 14E 13 ACC 08 To 0 78 Will Choiseau 28N 14E 13 ACC 08 To 0 78 Will Choiseau 28N 14E 13 ACC 08 To 0 78 Will Choiseau 28N 14E 13	3 MBMG75	Choteau	26N 15E 03 CDD	08 08 76 Well	2 apm	Domestic use	1310	2	2	3320		32		Cook Bichard
Choiseau 28N 14E 23 AAC 60 60 78 Series O.5 series in teason of the Choiseau 28N 14E 52 AAC 60 60 78 Series O.5 series in teason of the Choiseau 28N 14E 52 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series in teason of the Choiseau 28N 14E 53 AAC 60 60 76 Series O.5 series	4 MBMG73	Choteau	26N 17E 29 BCC	08 10 76 Creek	Scfs	Willow trees along banks	1280	18	9	3400				
Choise 28N 14E 13 ADB 08 08 18 Well Domestic use, water forms white deposits on fixtures 1730 18 18 no 3120 10	5 MBMG76	Choteau	26N 14E 32 AAC	08 06 78 Spring	0.25 cts	On Sheep Coulee	2280	8.5	5	3120				Buther, E. C.
Choiseau 28N 14E 18 A.DR 60 80 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 A.DR 60 80 76 Wait Choiseau 28N 14E 18 B.DR 60 80 76 Wait Choiseau 18D 60 80 76 Wait Choi	6 MBMG77	Choteau	26N 14E 32 ADB	08 08 78		Domestic use, water forms white deposits on fixtures		CE .	9	3120	54	84		Burler F. C.
Choiseau 28N 14E 19.6.00 60 00 00 00 00 00 00 00 00 00 00 00 00	7 MBMG78	Choteau	25N 14E 09	08 06 76 Seep		0.5 acre in size			9	3100	;			
Choiseau 28/145 36 08 00 76 Severy Choiseau 28/145 36 10 00 76 00 76 Severy Choiseau 28/145 36 10 00 76 Severy Choiseau 28/145 36 26 36 36 36 Severy Choiseau 28/145 36 36 36 36 Severy Choiseau 28/145 36 36 36 36 Severy Choiseau 28/145 36 36 36 36 36 36 Severy Choiseau 28/145 36 36 36 36 36 36 Severy Choiseau 28/145 36 36 36 36 36 36 36 36 36 36 36 36 36	B MBMG79	Choteau	25N 14E 16 ADB	96 76	1 chs	Eagle Creek	1000	20	9	2900				
Choiseau	9 MBMGB0	Choteau	25N 14E 13 ADC	92 90 80		Domestic use, water leaves rust stains	680	11	00	3100	1	36		Vices
Choiseau 25N 15E 31 CBA 08 06 07 B Reservorr 10 a wheart tield 10 a wheart t	0 MBMG81	Choteau	25N 14E 36	92 90		0.5 acre in size			9			ì		ł
Choiseau 2NI 18E 31 CR8 06 06 05 New Hole Domestic use, water formy white deposit on fitures 234 0 15 0 0 286 0 90	1 MBMGB3	Choteau		08 06 78 Reservoir		In a wheat field	680	19	9	2950				Besler, Lours
Choiceau	2 MBMG82	_	25N 15E 31 CCB	08 06 76 Well		Domestic use, water forms white deposits on features		15	9	2950		90		Beeler, Louis
Choiseau 21N ISE 21 DAGE (08 Do 78 Will 2) open	3 MBMG159	-	24N 14E 10 BCBA	A 08 08 76 Reservoir		In wheat field, most and vegetation in reservoir	420	30	90	2850				
Choiseau 21N 15E 03 BAAC 60 b 07 b Well Choiseau 21N 15E 03 BAAC 60 b 07 b Well Choiseau 21N 15E 03 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 60 b 07 b Well Choiseau 22N 15E 05 BAAC 23D 15B Well Choiseau 23D 15B Well 23D 15B Well Choiseau 23D 15B Well Choiseau 23D 15B Well Choiseau 23D 15B Well 23D 15B Well Choiseau 23D 15B Well 23D	4 MBMG160	•	24N 15E 21 DDAC	C 08 06 78 Well	20 gpm	Domestic use, weter is rusty, forms white deposits	1640	14.5	90	2900	22	28		Orga, Frank
Choise C	5 MBMG187	Choteau	23N 15E 03 BAAC	92 90 90		Domestic use, water is rusty colored	1340	12	90	2940	4			Ноде
Choiseau 22N 14E 08 CAA 08 06 78 WHH 19 gam Domestic us, water leaves from deposit on listures 1795 14 no 244 25	B MBMG168	_	23N 16E 15 BBBC	: 08 06 78 Well		Stock use	390	9	9	2480				
Choiseau ZN 14E 88 CAA GB 05 78 Well Choiseau Choiseau ZN 14E 88 CAB GB 78 Well Choiseau ZN 14E 88 CAB GB 78 Well Choiseau ZN 14E 88 CAB GB 78 Well Choiseau ZN 14E 98 CAB GB 78 Well Choiseau Choiseau ZN 14E 98 CAB GB 78 Well Choiseau Choiseau ZN 14E 98 CAB GB 78 Well Choiseau CAB GB 78	7 MBMG169	_	23N 16E 25 BAAA	A 08 06 75 Well	19 gpm	Domestic use, water leaves fron deposits on liatures	1790	14	98	2440		36		
Domestic Value 20 80 67 88 Sep Approximately one sers in size A	S MBMG174	_	22N 14E 08 CAAA	A 08 05 75 Well		Domestic use	1830	13	90	3020				Mittal
Cholesus ZNN 14E 30 BCA 68 06 76 Well Domestic use scopt for drinking 4420 18 no. 3390 10 15 Cholesus 2NN 20E 02 08 20 76 Well 300-04 was writer constant eight 6599 8 yes 300 114 120 10 15 Fergus 2NN 20E 02 08 20 76 Well Domestic us, water continue quest 689 17 yes 300 310 JLDRV Fergus 2NN 20E 22 08 20 776 Well 3gm Domestic us, kearle of Ministred 2668 14 yes 350 11.DRV Fergus 2NN 17E 36 AC 09 22 76 Well 1 gpm 1E) Domestic us, kearle of Ministred 2668 14 yes 350 11.DRV Fergus 2NN 17E 36 AC 09 22 78 Well 3gm Used for vestering lawn 7662 12 yes 360 30 Fergus 2NN 17E 30 AC 08 22 78 Well 3gm Domestic us, coated to miles well willighted 1483 17 yes 360 30 Fergus 2NN 17E 30 AC <td>MBMG175</td> <td>_</td> <td>22N 14E 18</td> <td>08 06 78 Seep</td> <td></td> <td>Approximately one acre in size</td> <td></td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td></td>	MBMG175	_	22N 14E 18	08 06 78 Seep		Approximately one acre in size			90					
Domestic 2017 16 C 10 C	MBMG176	_	22N 14E 30 BCA	92 90		Domestic use except for drinking	4420	18	90	3390	0	15		Cartwright, B.
Fingus 22N 20E 22 B 02 23 76 Well Domestic use, solared gains NE of Vinited Gain 2 Ver 3080 360 21 LIDRY 2 CAN 12E 28 C 02 23 76 Well Domestic use, located 18 miles NE of Winited 348 17 vrs 356 14 vrs 356 15 Vrs 356 14 vrs 356 15 Vrs 356 14 vrs 356 15 V	MBMG190	Choteau	21N 14E 07 BCDC	01 16 78		Stock use, weter contains elkeli	5199	49	Yes	3220		20		Dostel, Elmer
Fergus 22N 176 5A C 00 22 30 Well 3upm Domestic and Journal of Ministral 258 17 yet 3190 Fergus 22N 176 5A C 00 22 30 Well 1 3upm 16 Domestic and Journal of Ministral 258 10 5 yet 3190 Fergus 2N 176 50 CA 00 22 30 Well 1 3pm 16 Domestic and Journal of Ministral 258 10 5 yet 360 20 Fergus 2N 176 50 CA 00 22 30 Well 3 spm 16 Domestic and Journal of Ministral 258 10 5 yet 360 20 Fergus 2N 176 50 CA 00 22 30 Well 5 spm 16 Domestic and Located Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Domestic and Located Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Worldwindred 148 17 yet 200 30 Fergus 2N 176 50 CA 00 22 30 Well Counted Inchinate Wor	2 76M1254	Fergus	22N 20E 02	09 23 76 Well		Domestic use, water contains natural gas	4889	12	yes	3080	e		DRV	Ford. Tom
Fingus 21N 15E 36 AC 09 22 78 Well 3 gam Domestic use, land dug well 266 14 yes 3260 20 Fingus 22N 15E 10 AC 09 22 78 Well 3 gam Load for watering lawn 7662 12 yes 3 gat 0 20 Fingus 21N 15E 30 CA 08 22 78 Well 5 gam Load for watering lawn 7662 12 yes 3 gat 0 23 Fingus 21N 15E 30 CA 08 22 78 Well 5 gam Domestic use, located 10 milas W of Winiting 1482 17 yes 2800 300 Fingus 22N 12E 30 GBA 09 13 78 gat 0 Located Io milas W of Winiting 1482 17 yes 2800 300 Fingus 22N 12E 30 09 13 78 gat 0 Located Io milas W of Winiting 1482 17 yes 2800 300 Fingus 200 22E 30 08 13 78 gat 0 Located Io milas W of Winiting 1482 17 yes 2800 300	3 76M1255	Fergus	22N 20E 22 B	08 23 76 Well		Domestic use, located 18 miles NE of Winifred	3483	1	×88	3360				Obie. Ken
Fingura 201 ISE 28 CA 69 22 78 Well 1 apon (E) Domestic and stock use 268 2 10.5 yes 3500 20 Pergua 201 ISE 10 AC 09 22 78 Well 3 gm Used for vestering lawn 766 21 2 yes 301 23 Fergua 21N ISE 30 CA 09 22 78 Well 5 gm (E) Domestic use 1483 17 yes 300 Fergua 21N ISE 30 DBA 08 22 78 Well Domestic use, located 10 miles Wol Winifeed 1483 17 yes 280 30 Fergua 201 27 25 Se 09 13 75 Sepp Located In the lilow listid, seep 2 zeros in size 6647 13 yes 230 21JJDRV	1 76M1253	Fergus	22N 17E 35 AC	09 22 76 Well	3 gpm	Domestic use, hand dug well	2666	7	, say	3350				Heosen
Fergus 2011 EE LAC 69 22 78 Well 3-gom Used for watering lawn 7862 12 yes 3610 23 13 C	5 76M1250	Fergus	21N 15E 26 CA	09 22 78 Well	1 gpm (E)	Domestic and stock use	2582	10.5	Yes	3600		20		Martin, Melvin
Fingus 2NN 17E 30 CA 69 22 78 Well 5 spon (E) Domestic use 2348 13 yes 2800 300 (1 Fingus 2NN 17E 30 Day 62 27 78 Well Domestic use, located 10 miles W of Windfield 1483 17 yes 2800 90 (1 Fingus 2NN 19E 13 08 23 18 Well Domestic use, located the hillow field, seep 2 screek in size 647 13 yes 3200 2111.DRV yes 200 22 62 Well Located fire in hillow field, seep 2 screek in size 6 09 13 76 Seep	3 76M1249	Fergus	20N 15E 10 AC	09 22 78 Well	3 gpm	Used for wetering lawn	7662	12	705	3610		23		Ellis, Floyd
Fingus 21N 175 0.08A 0.02 27.8 Well Domestic use, located 10 miles W of Windfred 1483 17 yes 2820 90 1 Fingus 21N 126 13 00 23.18 Well Domestic use, located in a hillow lied, seep 2 acces in site 647 13 yes 3200 211JDRV Fingus 20N 225 36 08 11 79 Seep Located in a hillow lied, seep 2 acces in site 647 13 yes 3200 211JDRV 3	7 75M1252	Forgus	21N 17E 30 CA	09 22 78 Well	5 gpm (E)	Domestic use	2348	2	yes	2800	6	00		Boyce, Merle
Fergus 21N 19E 13 09 23 78 Well Domestic use Fergus 20N 22E 36 09 13 76 Seep Located in a hillow field, map 2 acre in size 6647 13 yes 3200 211JDRV , Fergus 20N 22E 36 09 13 76 Seep Located in a hillow field, map 2 acre in size no 3160	8 76M1251	Fergus	21N 17E 30 DBA	08 22 78 Well		Domestic use, located 10 miles W of Winifred	1483	13	Yes	2820		96		Demars, Tom
Fergus 20N 22E 36 08 13 76 Seep Located in a fallow field, seep 2 acres in size no 3160	3 76M1256	Fergus	21N 18E 13	08 23 78 Well		Domestic use	6647	13	184	3200		2117	DRV	Johnston Grea
	O MBMG60	Fergus	20N 22E 36	09 13 76 Seep		Located in a fallow field, seep 2 acres in size			2	3160				

LEWISTOWN 1° x 2° Sheet (Con't.)
Specific Conductivity Inventory Sheet (Con't.)

																																	_			
		4	Owner's name			Campbell Bac	Complete Den	Campban, pen			Barber	Barker, Notan	Barker, Nolan	Barber	Berber		Cmish Stanban	Smith Stephen	Smith, Stephen		Smith, Stephen		Morris, Edward	Morris, Edward	Berber, L. E.	Marrie Educate				Morris, Edward			Wicken, Francis	Morris, Edwerd	Morris, Edward	
		Aquiter	apoo			30 3116.016	11000	•																												
	Well	depth	Ξ			130	2	15			27	300	86	8	95		86	2	18		2		2	20	91	4	?							1712		
Static	weter		3								100			1	12		-	•			4												Swing	guive		
			H.	3100	3130	36.70	3660	3500	20	2000	3800	3800	3800	3800	3820	3780	3600	3600	3850		3820	3600	3860	3700	3700	3200	3200	300	3300	3730	3360	2000	3700 116	3560 #	3670	3010
		٩	analysis	2	2	2 1	: :	2	,	9	yes	ê	9	104	× 6 ×	9	6	9	9		2	o e	9	ě	ě	9			2	90	8	2	2	90	9	90
1	Field	emp.	υ	9	2	2 2	:	: =	:		2	0	9	ca	=	20	7	24	14.5		0.5	15.5	12	15	Ĭ	12		16.6	2 2	15.5	:		9	9	16	30.2
	Specific	Conductivity	et 25 C	8530	4460	1780	1930	6110	400	0041	104	2150	5220	3038	575	37810	4850	4690	1240		7710	5570	2290	1310	5240	1810	2560	6.780	Ben	4920	285.0	010	870	3720	12470	1170
3			Site bescription	Stock use	Stock use, surrounded by seen	Domestic and stock use	Stock use	Unused	1000		Contract, perper test site 6A.3, U.53	DOLLARIA DE EXCEPT FOR CHINATING	Stock use only	Unused, Barber test site BA-B, D-58	Unused, Berber test site 8A-18, D-57	Road ditch	Unused	Ponded water in coulee	Domestic use		COCK DES SIGN SERVICES IN SPECIAL			· Domestic use	Domestic use except for drinking	Stock use			W of reservoir	Stock use	George Grand	Domestic use	Domestic use	Unused, water has a sulphur smell	Dunsed	Pool in creek bed
Element of the state	LIOW OF YARID			_												no flow		no flow	7 gpm	() mm		ECOS :	Edi +			4 gpm	1 spm	1 apm	no flow	2 gpm	no flow	136 000	and ac	mos ny		
Collection	date	Mo Den Yr Source	annon II Ann	09 13 76 Reservoir	13 76 Reservoir	11 16 71 Well	76 Well	76 Well	75 Socine	9	76 Well			21 76 Well	09 21 78 Well	76 Dutch	76 Well	Coulee	Well	Well		ž .	Builde	Spring	Well	Spring	Spring	Spring	Coulee	Spring	Oitch	Well	100	10 10	/6 Well	07 07 76 Creek
2	3			8	8		60	8	8			3 8	3	69 51		8	90 V	4															8	8 8		
	Location	T R SecTract		19N 22E 01	19N 22E 15	19N 14E 06 DDA	19N 14E 08 BB	19N 14E 20 A	19N 14E 20 A	19N 14F 28 CCCB	19N 14F 32 AB	1000	1011 14E 32 AB	19N 14E 33 888	19N 14E 33BCBD	18N 14E 07 DDA	18N 14E 25 AAAA 09	18N 14E 25 ADAA	18N 14E 35 AD	18N 14F 36 AD	00 00 34 t MO1	13N 141 OC D	0000	IVI 4E US AB	18N 14E 08 AA	17N 14E 08 A	17N 14E 08 A	17N 14E 08 A	17N 14E 09 CB	17N 14E 09 CC	17N 14E 15 88	17N 14E 15 AA	17W 16E 07	10000	IVI DE OV	26N 22E 08 ADD
		County		Forgus	Fergus	Fergus	Fergus	Fergus	Fergus	Forder	Ferans		toff in	rergos	Fergus	Fergus	Fergus	Fergus	Fergus	Ferent	Farmin	Section 2	100	and so a	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	Ferens	Farms		and a	a Ciero
	Field	number		MBMG61	MBMG59	72M0001	MBMG83	MBMG80	MBMG81	76M1246	MBMG78	AARAG 70	2000000	/DM1245	76M1244	MBMG85	MBMG65	MBMG88	MBMG63	MBMG64	MRAGET	MBMC7e	200000	1 Divide	MBMG77	MBMG73	MBMG74	MBMG76	MBMG 70	MBMG72	MBMG69	MBMGGB	MRAICR?	4004000	000000000000000000000000000000000000000	MOMO
Mao	ē	90		31				35A	358							_	_		43 34	438	44				804		478 A	-		49	20	_			3 4	

LEWISTOWN 1° x 2° Sheet (Con't.)

7
900
Shees
nventon
Sinist
Cont
Specif

			Collection	ion	Flow or yield			Specific	Field			Static	Well		
8	County	Location T R SecTract		date Mo Day Yr Source		S	Site description	et 26 C	E. o	Lab	Altitude (ft.)	E C .		Aquifer	Owner's name
-	Blaine	26N 22E 03 DADB 07 07 76 Reservoir	07 07	76 Reservo	.ts	Small reservoir		250	24 6	9	3120				
8	Staine	26N 21E 34 AAAD 07 07 76 Well	07 07	76 Well	0.8 gpm	Stock use		8	7	2	3320				Liddle Frank
8	Staine	26N 22E 04 ACAD 07 07 76 Reservoir	07 07	76 Reservo	ii.	Large reservoir		300	25.1	9	3380				
•	Slaine	25N 22E 10 BABC	07 07	07 07 76 Reservoir	i.	Small reservoir		340	28.5	9	3400				
4	Staine	25N 23E 07 AABC 07 07 78	07 07	76 Spring	20 gpm (M)	Brochie Spring		510	12.8	8	3490				Hawley, David
_	ergus	1BN 22E 03	09 13	13 76 Well		Domestic use, wate	Domestic use, water forms white deposits and is corrosive	2010	91	90	3500		12		Siroky, John
	Fergus	18N 22E 20	90	09 10 76 Well		Domestic and stock use	use	1470	7	90	3640		2		Emery, Floyd
	Fergus	18N 22E 32	09 13	09 13 76 Spring		Domestic use		1390	14.5	9	3650				Knox
	Fergus	19N 23E 13	09 13	76 Well		Domestic and stock	Domestic and stock use, water forms white deposits	2110	16.5	90	3000		=		Siroky, John
	Fergus	17N 21E 35 DCC	8	76 Creek				620	9	9	3830				
	Fergus	16N 21E 08 DCC	01 60	09 10 78 Creek				740	91	9	5380				
	Fergus	15N 22E 09	09 10	09 10 76 Reservoir		Abandoned, algal sample taken	imple taken	48950	56	9	3970				
	Fergus	16N 22E 12	97 01 60	76 Well		Domestic use		1190	91	9	3650		780		Fitzgerald, Lester
	Petroleum	16N 29E 14 AB		Well		Domestic use		1640	17.5	ě	2850		1400 211MSBY	1MSBY	Continental Did Co.
	Fargus	15N 23E 33	60 60	76 Creek		Backet Creek		1480	18.5	ē	3800				
	Fergus	14N 21E 06 BCDA	90 60	09 09 76 Well		Domestic use, wate	Domestic use, water has a high iron contant	1450	13.2	ē	4190	*	56		Charbonneeu, Amos
	Fergus	15N 21E 17 CDBC	09 10	26 Well		Domestic and stock	Domestic and stock use, water contains much iron	670	11.6	9	4000		480		Gallas
_	Fergus	15N 20E 15 DDC8	00 10	76 Creek				1280	ĭ	9	4100				
_	Fergus	16N 20E 27 DBCD	09 10 76 V	26 Well		Domestic and stock use	use	270	13	9	4320		400		Poetta, George
	Fergus	16N 20E 14 CABD	00 10	76 Well		Domestic use		1200	91	ē	4250		36		Duffy, C. L.
	Fargus	16N 19E 28 ABDD	01 60	09 10 76 Spring		Domestic use		200	7	2	4770				Reitt
	Fergus	16N 19E 34 ABDA	8	76 Well		Domestic use		480	8	90	4520		6		Wicken, James
	Fergus	15N 18E 03 ABBB	8	10 76 Creek	3 cfs	Boyd Creek		096	=	9	4400				
	Fergus	15N 19E 24 DBBB		Spring		Domestic use		240	01	90	4700				Heath
	Petroleum	14N 28E 02		Well		Domestic use, water	Domestic use, water has a sulphur smell	6360	=	9	2900		1000 211MSBY	1MSBY	Soif
	Fargus	14N 19E 06 CCAB		09 19 78 Creek	6 cfs			460	13.6	9	4170				
	Fergus	16N 18E 09 8BA	03 29	03 29 67 Well	60 gpm (M)	Stock use			10	Yes	4000		614 21	614 212KDTN	Cline, Earl
	Fergus	16N 18E 09 CAD	90 90	04 05 62 Well		Stock use			8	, A	4160	80	-	ZKOTN	Phillips. Robert
	Fargus	16N 17E 18 BDD	20	04 04 67 Well	100 gpm (M)		Rocks in area steined red from this weter		16.6	7.81	3630			NEDTN	Hutterite Colony
_	Fergus	16N 17E 18 8AD	20	67 Well	1 gpm (E)		ttarite Colony			Y Br	3620		311 21	311 211CLRD	

LEWISTOWN 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

			Collection	tion	Flow or wield	Plein		Specific	Field			Static	Well		
		Location	date	9	E = estimated	mated		conductivity		Lab	Atritude	lavel		Aguster	
ပိ	County	T R Sec Tract		Mo Day Yr Source		pernse	Site description	et 25 °C	္ပံပ	analysis	THE	3			Owner's neme
E i	Fargus	18N 17E 17 BCD		04 04 B7 Well		gom IE1	1 gorn IE3 Located 3.1 miles NW of Hanover		:	¥ 8 8	3810		1100 2178	217KOTN P	Hutterite Colony
ě	Ferens	16N 17E 28 A88		03 29 67 Well	-	O onn: (M)	Located 1.4 miles two of nendoes Water contains anough Burnicle to mostle teeth		. 4	19A	3680	Howing	R50 217K		Anderson P
F	Fergus	15N 17E 02 CDCC		Well			Domestic use, weller smells of sulphur	400	13						Jenn. Gerry
ě	Fergus	15N 17E 32 BBD	03 29 67	9 67 Well		13 gpm (M)	Seismic shot hole converted to a water well		8 3	¥ 8 ×		flowing	42 2110	211CLRD Y	Yeager, J.
T.	Fergus	14N 17E 01 DDDA	⋖	Creek		.75 cfs	Cottonwood Creek	. 210	9	9	4220				
ě	Fergus	15N 15E 25 CDD		03 29 67 Well		27 apm IMI	Domestic and stock use		14.4	50 A		flowing	1596 217KOTN		Wichman, J
Ē	Fergus	15N 15E 34 ADD		9 87 Well					191	, A 8 5	4030		1470 217KOTN		Wichman, W
å	Petroleum	15N 27E 31 C		Well			Domestic use	3450	11	90	3000			8	Bauer
3	dith Basin	Judith Basin 15N 14E 07 BDAA 09 21 75	A 09 2	1 75 Well			Unused, Holzer test site	3475	6	yes		60	28 211CLRD		Holzer
3	dith Basin	Judish Basin 14N 14E 02 ACDB		Spring	94		Located 20 leet S of house	480	13	9	4120			۵.	Puring
ű.	Fargus	15N 15E 11 BBBD 09 10 75 Well	31 60 C	1 78 Well			Damestic use, weter produces slight rust steins	099	12.5	90	3800	9	10	w	Ellison, R
ŭ.	Fergus	15N 16E 09 ADDD 09 10 76 Well	0 09 10	1 76 Well	_		Domestic use	400	5	90	3790	œ	9	2	Martin
ű.	ergus	15N 16E 29 DADC	ç	Spring	ing 1 gpm		Damestic use	540	13.5	9	3880			•	Joseph George
3	Judith Basin	16N 15E 02 CCBB 09	60 8	76 Pond	D		Contains much vegetation	4340	20	9	3730				
- 2	dith Besin	hudith Besin 16N 15E 15 BCAA	•	Spring	ing 0.5 gpm		Stock use	1160	8	9	3940	60			
ĕ	Jith Basin	hudith Basin 16N 15E 12 CA		Creek	*		ndian Creek	1250	9	ę	3690				
š	Judith Besin	16N 15E 13 BABA	4	Well			Domestic use	720	18.5	9	3720 4	flowing	2600	\$	Wrobetz, Lavry
ž	Jith Besin	hudith Besin 15N 16E 16 CDDA	•	Sprk	mgg 4 gpm		Discharges to an unnamed creek	420	12	90	4000			0	Demars, P.
3	dith Basin	ludith Basin 15N 15E 27 CDDA	<	Rive	m 45 cfs		Judith River	430	9	9	3940				
-3	Judith Besin	16N 14E 02 BDAD	٥	Creek	sk Scfs		Sage Creek	1890	18	Ş	3700				
3	dith Besin	Audith Besin 15N 15E 31 BCCC	.,	Well			Domestic use, water is hard	820	13	90	4060	9	12		
곡	Judith Basin		Q	Creek	sk 1 cfs		Contains much aquetic vegetation	068	18.6	9	4050				
å	Petroleum	19N 27E 29		Well	_	•	Abandoned	10220	=	P.	2950			-	verson, Lee
ě	etroleum	18N 27E 03 BB		Well			Abandoned, water smells of sulphur	1000	12.2	90	2850			-	Iverson, Lee
- 2	Petroleum	18N 28E 31		Rese	Reservoir			980	1	9	3000				
Z	Petroleum	17N 28E 34		Rese	Reservoir			320	15.8	2	3000				
ď,	Petroleum	17N 27E 06		Pond	d no flow	low		960	*	90	2880				
č	Petroleum	17N 26E 31 C		Rese	Reservoir		Stock use	1430	16	90	3100				
2	Patroleum	17N 25E 27		Well	15 gpm	_	Domestic use	1810	12	2	3050	45	120	_	Lewis

LEWISTOWN 1° x 2° Shert (Con't.)

Con't.
Sheet
Inventory
onductivity
Specific Co

9			.5		ند	
Owner's name		Posse, Joe Pesse, Joe	Haintz, Marvin	Bohn Kipl, Vick Stew, Gene Stevenson	Hajenga, I. Cummings, R.	Milks, B. Milks, B. Strand, Clift Itcaina
Aquifer	337MSNC 320TSLP	217LKOT 217KOTN	217KOTN 337MSNC 217LKOT			
Well depth	3221	90	< 15	200 200 88	470	00 00
Static water level (ft.)				125	flowing 44	200
Altitude (ht.)	3100 2890 3250 3100 2900	2840 2800 2810 3050 2800	2850 2850 2810 2850 4210	2880 2900 2880 2870 3920	2600 2590 2750 4260 2900	2910 2910 2820 2780 2980
del	2 0 0 5 0 0 0 4 0	# 0 0 # 0 0 0 # 0	7 kg 0	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2
Pied Office Offi	91 4	12 10.8 15	10.8	12.5 17 12 12 12 12	25 23 18 12.5	12 28 21
Specific conductivity at 25 C	1370 5480 3030 290	1680 5950 810	1920 12090 1690 1150	5630 4290 2560 5850 470	230 3130 1680 1690 2020	2750 190 670 8240 890
Sire description	Located 38 miles NE of Lewistown Foods Creek War Horse Lake Located mile NE of War Horse Lake Stock use	Located 12 miles E of War Hore Lake Dornestic use Dock Lue, shall below Stock use, shall below Stock use	Stock was, salls below dam Located 24 miles SE ol War Horse Lake Located 28 miles SE ol War Horse Lake High water table	Domestic use, water is corrosive Stock use Domestic use scapt for dranking Box Elder Crest Domestic use, water leaves white deposits on faucets	Stock uss Beaver Creek Domestic use, weter leaves white deposits on faucers Domestic use, seep nearby	Donestic and stock use Muddy Stock use, large seep nearby Water it not used for drinking
Flow or yield E = estimated M = measured		32 gpm (M)		36 gpm 30 gpm 5 cfs	3 gpm	
Collection date Mo Dey Yr Source	07 10 83 Well Creek Lake 03 16 46 Well Reservoir	03 05 48 Well Well Spring 04 28 Well Reservoir	Asservoir 01 07 28 Watt 10 14 68 Wett 12 04 68 Wett Wett	Well Well Creek	07 23 76 Reservoir 07 23 76 Creek 07 23 76 Well Well 07 23 76 Well	07 23 76 Welt 07 23 76 Pond 07 24 76 Reservoir 07 24 76 Well 07 24 76 Well
Location T R Sec Tract	17N 24E 17 CC 16N 25E 18 DA 16N 25E 29 A 16N 26E 08 AD 16N 27E 09	16N 27E 26 BB 16N 28E 10 AD 16N 28E 15 16N 28E 26 CC 16N 28E 34 AD	15N 29E 06 15N 29E 09 AC 15N 29E 11 DD 15N 29E 14 AD 16N 14E 22 CCCC	14N 28E 06 C 15N 27E 11 CA 15N 27E 15 C 15N 27E 15 15N 15E 11 AADA	25N 29E 01 25N 28E 15 BCA 26N 28E 20 BDB 15N 14E 07 ABAD 26N 29E 29 BBB	26N 28E 32 CCO 26N 29E 32 CCA 26N 27E 34 CCC8 26N 27E 34 BAD 26N 26E 14 DA
County	Petroleum Petroleum Petroleum Petroleum	Petroleum Petroleum Petroleum Petroleum	Petroleum Petroleum Petroleum Petroleum Judith Basin	Petroleum Petroleum Petroleum Petroleum Judith Besin	Philips Philips Philips Judith Basin Philips	
Map ref. Field no. number	115 63M0009 116 MBMG11 117 MBMG12 118 46M0015 119 MBMG10	120 46M0014 121 MBMG23 122 MBMG22 123 28M0001 124 MBMG21	125 MBMG20 126 25M0001 127 68M0008 128 68M0003 129 MBMG67	130 MBMG17 131 MBMG9 132 MBMG7 133 MBMG6 134 MBMG64	135 MBMG121 136 MBMG122 137 MBMG123 138 MBMG53 139 MBMG125	140 MBMG127 141 MBMG128 142 MBMG120 143 MBMG119 144 MBMG118

LEWISTOWN 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Collection Flow or Yield data E - estimated	p p		Specific		3	Altitude	water ide level	well death	Aquifer
Yr Source		Site description	at 75 C	ů	-	18.			code
97 24 78 Well 5 gpm Domestic and stock use	estic and	stock usa	1250	15	2	3130			
_	rel pond	Vatural pond in a coulee bottom	9070	30	9	3000	0		
_	estic use	Domestic use, weter has a soda taste	2500	8	2	3250			
oir no flow 9	k use, re	Stock use, reservoir surrounded by seep	009	35	9	3320	0		
•	on ban	Salts on bank below reservoir	0.88	53	9	3280	0		
25 76 Pond	orust are	Salt crust around antire pond	6689	52	8	3780			
97 25 75 Well 10 gpm Not used for drinking	used for	drinking	1410	10	0	3500			
25 76 Well 30 gpm	estic use		780	10	92	4000	0 15	170	
Spring Stock use, spri	k use, spri	Stock use, spring is directly below reservoir	6400	18	90	3820	0		
D7 25 76 Reservoir Stock use	* use		720	23	2	3600	0	15	
25 75 Well 3 gom Not used for drinking	used for dri	nking	3080	6.5	9	3600	01, 0	96	
	k use, seep	stock use, seep downstream from dam	830	23	90	3100	0		
07 24 76 Reservoir Stock use	t use		1480	92	9	3200	0		
	k use, seep of	Stock use, seep downstream from dam	280	23	90	3000	0		
•	nearby		1679	73	9	2850	0		
07 24 76 Well Domestic end st	estic end st	Domestic and stock use, water is corrotive	2070	91	9	3040	0 89	900	
Reservoir Stock use	k use		280	11	9	3840	0		
07 23 76 Well Domestic and stock use	vertic and s	tock use	3660	17	9	2760	135	750	
97 23 76 Reservoir Stock reservoir	k reservoir		110	98	90	2900			
07 23 76 Walf Domestic and stock use	s pue sisse	lock use	3740	15	9	2840	326	920	
_	for municip	Used for municipal supply in Zortman	460	91	9	4000	0		
24 76 Reservoir	k use		140	22	90	2900	0		
24 76 Spring Piped 2.5 miles from source	d 2.5 miles	from source	280	14.5	9	3200	0		
24 76 Creek no flow			980	92	9	2789	0		
24 76 Well 12 gpm Domestic end stock use	estic end at	ock use	3660	16	9	2660	0 100	006	
rvoir	k and gards	Stock and garden irrigation use	450	58	9	2660			
07 24 76 Well			2130	13	9	2700	0	56	
07 24 76 Reservoir no How Stock use			9	2	-	-			
07 24 76 Welf Domestic use	k use		2	ę	000	2800	,		
07 23 76 Well 10 gpm Water is corrosive, contains salts and soda	k use settic use		1860	€ 2	9 2	787			

LEWISTOWN 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Static

Map			Collection	uoi	Flow or yield		Specific	Field			Weler	Well		
ref. Field	9		date	X. Course	Location date E stimated	Contra reset and	Yanductivity at 25 C	emp.	Leb	Altritude	level	depth (fr.)	Aquitar	Owner's name
			act mo Del	-				,						
175 MBMG177	5177 Phillips	23N 29E 33	07 24 76	76 Well		Domessic use, water encrusts papes	1530	7	90	2560				Sandvick, H.
176 MBMG18	318 Fergus	14N 17E 06 DDAC	DAC	Well		Domestic use	490	9	0	4200				Otten, John M.
177 MBMG45		15N 22E 14		Spring		Stock use	7480	15	90					
178 not on map	dem t													
179 MBMG86	386 Fergus	17N 15E 07 AD	0	Spring			43520	15	90					Morris, E.
			:				OFOL				9	3		
180 76M0236	_	17N 14E 06	04 08	04 09 78 Wall		Unused, Melton test area	19/8/	ο !	×a\$		۰ م	ň		
181 76M1243	243 Fergus	17N 14E 06	09 21	78 Well		Unused, Melton test site, M9D53	4046	2	A as		-	3		
182 73M0845	845 Fergus	17N 18E 19	08 17	08 17 73 Spring		Brooks warm spring	1754	2	y as	3800		•	331MDSN	
183 76M0237	_	19N 14E 33 BBCD		04 09 76 Well		Unused, Barber test area D48, BA19-74	4106	12	yes		19	33		
184 76M1238	_	``		09 22 76 Wall		Unused	3618	13	Yes			40		Gilkey
185 76M1237	237 Fergus	20N 16E 24 BD		76 Spring	30 gpm (E)	Unused	0.00	16	yes					Gulkey
186 64M0014	014 Fergus	17N 18E 01 ACC		04 03 67 Well	S gpm (M)	Domestic and stock use		8.3	30 Å	3700	6	695 2	695 211EGLE	Wichman, E.
187 64M0013		1BN 16E 01 A DB		67 Well		Domestic and stock use			yes	4000		174 2	174 211EGLE	Devine, H L.
18B 64M0007	_	18N 16E 23 CBD	8D 04 04 67	67 Well	2 gpm (E)	Stock use			yes	3830	4	300	211EGLE	Conrad, Robert
189 64M000B		18N 17E 21 ABC	BC 04 04	67 Well		Domestic use			yes	3900		7	211EGLE	Hunnewell, A
190 64M0010	010 Ferous	18N 18E 12 ACA	CA 04 03 67	67 Well	6 gom (M)	Domestic and seack use			Yes	3770		376 2	376 211EGLE	Arntzen, Ken
191 64M0017	Ī	18N 19E 08 8CD		67 Well	i	Domestic and stock use		12.8	Yes	3800		551 2	651 211EGLE	Benes, W. J.
192 72M0066	_			04 10 72 Well		Unused, Mont 26C, USGS wall 5-34	1017	26.6	yes	4060		~	217SCCH	Cardinal Petroleum Co
193 72MO	_	1BN 20E 34 BC		72 Well		Unused, Mont 25C, USG5	3420		yes	4060		(7)	331MD5N	Cardinal Petroleum Co
194 72M0002	_		•	71 Well		Stock use, Mont 25C, USGS	9999	106	Yes	3400		~	211EGLE	Gless, Cherles
195 MBMG34		Judith Basin 17N 14E 33 DARB	488	Well	3.5 gpm	Domestic use, water is soft	810		9	3880		1578		Carver
196 MBMG39		Judith Basin 16N 14E 09 BDDC	poc	Well		Domestic use	740	12	90	3800		1350		Boeck
197 MBMG41		Judith Başin 16N 14E 13 BCDC	coc	Creek	0.25 cfs		900	61	90	3990				
198 MBMG46		Judith Basin 16N 15E 24 ABBA	88A	Spring		Stock use, water contains iron	830	5	9	3850		a		

LEWISTOWN

Chemical Analyses

Mau						lecte	on			Magne-		Potes-		Manga-	ent.	Sicar-	Car-	Ohlows	
ref			catio			lare			Calcium	sium	Sodium	sium	Iron	nese		bonate		Chloride	Sulfate
no.	Т	R	Sec	Tract	Ma	Dey	Y	Source	(Ca)	{Mg}	(Na)	(KI	(Fe)	(Mn)	(5)(02)	(HCO ₃)	(CO ²)	(CI)	(SO _e)
71	711	N 14	E 07	8CDC	01	15	76	Well	340	190	845	11.5	.73	1.28	11.8	553		25	2855
22	72h	¥ 201	02		09	23	76	Well	7.3	1.8	1100	2.8	.25	.01	6.7	544		1445	5.8
73	221	V 20	22	8	09	73	76	Well	5.4	1.5	890	2.3	.12	.01	7.6	1221	13	119.5	766
		V 17			09	22	76	Well	233	123	215	3.2	.05	.01	11.5	451		100	964
25	211	V 15	26	CA	09	22	76	Well	82	238	199	1.9	.06	< .01	13.6	616		80	926
76	201	V 15	10	AC	09	72	76	Well	408	780	875	12	.07	.02	15.1	446		116	5270
27	218	N 17	E 30	CA	09	22	76	Well	2.4	.5	545	1.3	.03	.01	7.5	441	32.6	96.5	637
28	211	N 17	30	A8D	09	72	78	Well	163.5	57.5	94.5	4.1	.03	< .01	7.9	390		13	511
29	210	V 19	13		09	23	76	Well	63	14.9	1630	3.9	.13	.05	7.6	1075		325	2318
33	198	V 14	05	DDA	11	16	71	Well	161	125	107	4.7	.02		16.0	240		16.3	879
36	191	V 141	28	CCCB	09	21	76	Well	424	292	282	9.1	.04	.27	12.7	506		102	2236
38	191	V 14	33	888	09	21	76	Welf	394	177	175	7.7	.08	.01	12.8	407		104	1497
				CBD	09	21	76	Well	66	29	15.2	1.5	.14	< .01	13.3	334		8.4	33.2
				88A	03	29	67	Well	39	19	66°					281		4	54
82	161	V 18	08	CAD	04	05	67	Well	63	29	60°		.44			403		4	38
83	168	N 17	18	800	04	04	67	Well	8	4	262*		.26			323		12	316
84	161	V 17	18	DAB	04	04	67	Well			812*		.24			872		23	910
				8CD	04	04	67	Weil	8	4	251°		.08			317		11	294
				ADD	03	29	67	Well	48	18	117*					311		8	176
87	161	W 171	28	A88	03	29	67	Well	4		164*		.15			384		6	41
89	151	v 17	32	88D	03	29	67	Well	65	42	39°					238		14	- 192
91	151	V 16	25	CDD	03	29	87	Well	28	15	82°					293		4	60
92	151	V 16	34	ADD	03	29	67	Weil	4		159*					335		4	51
				BOAA		21	76	Well	164	259	346	13.6	.11	.13	10.3	383		49	1809
115	178	N 24	E 17	CC	07	10	63	Well	810	210	2200	40				159		3000	3200
118	168	v 26	E 08	AD	03	16	46	Well	44	28	320°					230	24	59	580
120	168	¥ 27	26	88	03	05	46	Well			450°					450	12	59	480
123	168	N 28	E 28	CC	04		28	Well			350°					415		35	350
126	151	N 29	09	AC	01	07	26	Well			470°					810	53	28	240
127	158	N 29	E 11	DD	10	14	68	Well	620	210	2100*					380		2800	2600
128	150	N 29	E 14	AD	12	04	68	Well	2	1	500	2				598		24	300
180	178	N 14	E 06	i	04	09	76	Well	216	128	1800	3.8	.06	.01	9.6	1003		128	3767
181	170	N 14	06	,	09	21	76	Well	171.5	87	780	8.0	.12	.68	13.8	688		108	1672
182	171	V 18	E 19	1	08	17	73	Spring	114	39	3.6	1.4			<.1	127		4	319
183	191	N 14	33	98CD	04	09	76	Well	458	388	164	14	.12	.03	12.3	393		26	2699
184	201	v 16	E 24		09	22	76	Well	115	150	535	3.5	.04	<.01	11.1	539		1.7	1536
		N 16			09	22	76	Spring	426	450	1040	6.8	.06	.02	11.2	316		12.2	4532
				ACC	04	03	67	Well	126	71	520°		1.96			500		43	1200
				ADB	04	04	67	Well			437*					552		7	405
180	194		E 22	CBD	04	04	67	Well	171	171	403°		4.38			772		18	1285

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated * Velues reported as sodium plus potassium

1° x 2° Sheet

of Selected Waters

no. (1) 21 22 23 24 19 25 15 28 26 27 28 29 33 4 36 9 38 15	197 .052 .113 9.99 5.814 6.206 .029 .452 .260 4.744	Fluo- ride (F) .4 2.6 1.8 .2 3.4 .8 .5	7.89 7.81 8.36 7.62 7.71	Field Temp. C° 8 12 17 14 10.5	Lab specific conductance (µmho/cm) 5199 4889 3483 2565	Oissolved solids (calc.) 4553 2840	Total hardness as CaCO ₃ 1630	Total alkelinity as CaCO ₃	Sodium adsorption ratio	Collecting agency	Well depth (ft.)		Trace elements analyzed	
ref. Name. (1) 21 22 23 24 19 25 15 28 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85	.197 .052 .113 9.99 5.814 6.206 .029 .452 .260	.4 2.6 1.8 .2 3.4	7.89 7.81 8.36 7.62 7.71	Temp. C° 8 12 17 14	conductance (µmho/cm) 5199 4889 3483	(catc.) 4553 2840	as CaCO ₃		adsorption					
no. (1) 21 22 23 24 19 25 15 26 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85	.197 .052 .113 9.99 5.814 6.206 .029 .452 .260	.4 2.6 1.8 .2 3.4	7.89 7.81 8.36 7.62 7.71	8 12 17	(µmho/cm) 5199 4889 3483	(catc.) 4553 2840	as CaCO ₃							
22 23 24 19 25 15 26 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	.052 .113 9.99 5.814 6.206 .029 .452 .260	2.6 1.8 .2 3.4 .8 .5	7.81 8.36 7.62 7.71 7.56	12 17 14	4889 3483	2840								
22 23 24 19 25 15 26 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	.052 .113 9.99 5.814 6.206 .029 .452 .260	2.6 1.8 .2 3.4 .8 .5	7.81 8.36 7.62 7.71 7.56	12 17 14	4889 3483	2840		454	9.1	MBMG	120		yes	76M1811
23 24 19 25 15 28 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	.113 9.99 5.814 6.206 .029 .452 .260	1.8 .2 3.4 .8 .5	8.36 7.62 7.71 7.56	17 14	3483		26	446	94.5	MBMG		211JORY		78M1254
24 19 25 15 28 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	9.99 5.814 6.206 .029 .452 .260	.2 3.4 .8 .5	7.62 7.71 7.56	14		2409	20	1020	87.4	MBMG			Ves	76M1255
25 15 28 26 27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	5.814 6.206 .029 .452 .260	3.4 .8 .5	7.71 7.56			1892	1090	370	2.8	MBMG				76M1253
27 28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	.029 .452 .260	.5			2582	1864	1180	505	2.5	MBMG	20			76M1250
28 29 33 4 36 9 38 15 39 81 82 83 64 85 86	.452 .260			12	7652	7723	4230	366	5.9	мвма	23		yes	76M1249
29 33 4 36 9 38 15 39 81 82 83 64 85 86	.260	.8	8.96	13	2348	1541	8	416	83.7	MBMG	300		yes	76M1252
33 4 36 9 38 15 39 81 82 83 64 85 86			7.51	17	1463	1045	645	320	1.6	MBMG	90		yes	78M1251
38 9 38 15 39 81 82 83 64 85 86	4.744	1.9	7.97	13	6547	4894	219	881	48.0	MBMG		211JORV		76M1256
38 15 39 81 82 83 64 85 86		.5	8.04	10	1780	1434	918	197	1.5	USGS	120	211EGLE	ng	72M0001
39 81 82 83 64 85 86	9.714	.2	7.52	15	4104	3618	2260	415	2.8	MBMG	27		yes	76M1246
81 82 83 64 85 86	5.25	.5	8.91	9	3038	2584	1710	334	1.8	MBMG	33		yes	76M1245
82 83 64 85 86	.746	.7	7.48	11	575	331	284	274	0.4	MBMG	35		yes	76M1244
83 64 85 86		.6		10			173	230		USG5	614	217KOTN	l no	64M0019
64 85 86		9		8.3			275	331		USGS	1100	217KOTN	l no	54M0009
85 86		1.4		16.6			36	265		USGS	1240	217KOTN	d no	54M0006
86		1.4						715		USGS	311	211CLRD	no l	64M0011
		1.5					36	260		USGS		217KOTN		64M0016
87		1.3		11,1			194	255		USGS		217KOTN		64M0018
		2.4		9.4			10	315		USGS	850	217KOTN	l no	64M0024
89		.8		8.3			337	195		USGS		211CLRC		64M0015
91		1.2		14.4			133	240		USGS		217KOTN		54M0022
92		1.2		16.1			10	275		USGS		217KOTN		64M0023
94	.054	.6	7.22	15	3475	2839	1470	314	3.9	MBMG	28	211CLRD		76M1240
115			7.3			9538	2290	130	17.8	Unknown		337MSNC	no	63M0009
116							225	229		Unknown		320TSLP		46M0016
120								389		Unknown		217KOTN		46M0014
123								340		Unknown		217KOTN		28M0001
126 127			6.9				2410	753 312		Unknown		217KOTN 337MSNC		26M0001 68M0008
						1124	9	490				2171 207		68M0003
128			8.2	-	20.20				72.1	Unknown		217LK01		
	1.509	2.0	7.96	5	7978	6550	1070	823	24.0	MBMG	50 63		yes	76M0236
181 4	4.179	5.2 1.4	7.40	15	4046 1754	3187 545	788 442	564 104	12.1	MBMG	63	331MOSN	yes	76M1243 73M0845
	1.649	.2	7.74	12	1754 4106	3957	2740	323	1.4	MBMG	33	331MUSN		73M0846 76M0237
184 6	6.213	.8	7.55	12	3518	2625	905	442	7.7	MBMG	40		yes	76M1238
	4.564	6	7.70	16	7670	6669	2920	259	8.4	M6MG			Ass	76M1237
186		1.0		8.3	,870		607	410	0.4	USGS	695	211EGLE		54M0014
187		1.0		0.3			007	453		USGS	174	211EGLE		64M0013
188								633		USGS		211EGLE		·

18 LEWISTOWN

LEWISTOWN

Chemical Analyses

Map						Hect				Magne-		Potes-		Manga-		Bicar-	Car-		
						onect date	ion		Calcium	SILITO	Sodium	sium	lane.		Priling.			~	
ref.			CBIK										iron	nese	Silica	bonate		Chloride	Sulfate
no.	T	R	Sec	Tract	Mo	Day	, Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ²)	(CO ³)	(CI)	(SO ₄)
189	18N	175	21	ABC	04	04	67	Well	43	14	217*		.64			409		6	279
190	18N	186	12	ACA	04	03	67	Well	16	5	380°		.29			226		22	625
191	18N	196	08	BCD	04	03	67	Well	24	14	193°		.08			366		12	208
197	18N	20E	34	BC	04	10	72	Well	7.1	1.6	219	5.4	4.09	.04	103.0	487	14	18.8	60
193	18N	20E	34	BC	04	29	72	Well	706	161	89	15.5	.22	.41	17.4	146		13.2	2405
194	19N	166	11	888	11	16	71	Well	386	422	679	10.2	.05	.01	16.0	276		219	3505

Note: All chirmical data are given in milligrams per liter (mg/l) unless otherwise stated * Velues reported as sodium plus potessium

1° x 2" Sheet (Con't.)

of Selected Waters (Con't.)

Map ref. no.	Nitrate (N)	Fluo- rida (F)	Lab pH	Field Tamp.	Lab specific conductance (µmho/cm)	Dissolved solids (calc.)	Total hardness se CaCO ₃	Total alkalinity as CaCO ₃	Sodium adsorption ratio	Callecting agency	Well depth (ft.)		Trace elements anelyzed	Lab number
189		1.0					163	335		USGS		211EGLE	no	64M0008
190		.7					61	185		USGS	376	211EGLE	no	64M0010
191		.6		12.8			117	300		USGS	551	211EGLE	no	64M0017
192	.294	6.1	8.52	28.6	1017	679	24	445	19.4	USGS		217SCCR	ng	72M0066
193		4.8	7.47		3420	3484	2410	120	.8	USGS		331 MOSA	l no	72M0067
194	11.973	-4	7.94	10.5	5680	5386	2720	226	5.7	USGS		211EGLE	no	72M0002

Trace Elaments Analyses Sheet LEWISTOWN 1° x 2° Sheet

	STOWN	number	21 76M1811	<.01 76M1254	SM1255	SM1253	6M1250	.02 76M1249	<.01 76M1252	.02 76M1251	C.01 76M1256	76M1246	.04 76M1245	.02 76M1244	6M1240	76M0236	76M1243	07 75M0237	.03 76M1238	76M1237
			21 7	0.	0	22 7	8	.02	10.	.02	7.01.7	90.	3	.02	.12	90	.02	07	03	98
	5	7 (1/Bu		0.			22		, v	19	90	28	42	5	2	.24	¥	45	52	7
	Stron- tium T	ng/II/gm		.43	38	2.15	2.36	9.2	15	2.18	2.72	1.8	3.06	.64	1.16	1.06	1.12	7.4	2.97	8.7
	Stron-	(mg/l) (mg/l) (mg/l)										-							10. V	6
	2 2	(1/64)	<20	<2.0	<20	29.4	21.3	899	< 2.0	<20	<20	58.8	194	6.3	18.2	7.3	6.7	*	7.1	8
	Phosphate (Total	(paylossip	176	980	176	990	.036	188	960	880	042	840	.055	186	170	160	1.043	.013	048	048
			8	0	.02	.03	8	9	10.>	03	8	8	8	8	8	0	8	0.	.03	0.
ě	Mer. Cury Nickel	(I/6w) (I/6n)		٧ ک	۲. د.ک	E ∨	6		, ,	٠ ک	× 3	×.	V .	V .3	× 3	×	۲. ۲.	, ,	V	?
es Sh	Ę Ę	(Mgm)	58	2	19	21	19				32			03			19	8	8	2
Trace Elaments Analyses Sheet		(I/6m)	.07	\ \	< N	8	90	.22	× 9	V 05	> 05	11	14	V 08	10	90	F.	< 10.	< 05 05	18
Jamen	Copper	(mg/i)	0	10.	10.	05	.02	3	10.>	0	6	05	8	ō	6	03	.03	8	5	0.0
race		(Mg/A)		10/				03	<.01	0	0	0.	10 >	0 >	0 >	0	0.0	0	2	6
	Cad. Chro	fl/6m														10		5	5	6
	Cad. Chro- Boron mium mium	(mg/l) (mg/l) (mg/l)	73	2.8	4.0	40	99	99	49	22	2.0	.83	13	9	9	2 8 2	2.8	œ		00
	Bery F.	(I/Br/)														8	į			9 9
			200	23	<20	< 2.0	<2.0	< 2.0	220	220	200	<250 <20	20	200	200	200	<2.0 <2.0	220	200	V30
	Anti- Ar- mony senic	(I/6rl) (I/6m)	2					48	22		,	7	,	, ,	,	, 8	V	75	,	. 8
	Alu- Anti- Ar- minum mony senic	(Mg/l)	8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	90	8	7	90	8	3 2	9 9	8	3 4	8	8 8	8			90
	Location	T R Sec Tract	21N 145 07 BCDC	2N 20E 02	2N 20F 22 B	2N 17E 36 DC	25 21N 16E 26 CA	20N 15F 10 AC	21N 12E 20 CA	21M 17E 30 DBA	21N 10E 13	19N 14E 28 CCCB	000 00 141 100 00	18N 14E 33 868	101 14E 33 BCBD	04 10N 14E 00	17N 14E 06	CO 000 145 32 000 000	1914 14E 33 BBCD	20N 16F 24 BD
	Map ref.	ē.		200	32	74.7	25.2	200	2 6		9 9	36		9 8		5 8	2 2		3	88

LOCATION BASE MAP

MILES CITY 1° x 2° SHEET

•			

CONTOUR INTERVAL 100 FT

IO KILOMETERS

CONTOUR INTERVAL 100 FT

104°30

46°30'

T7 N

T6N

T 5 N

T3 N

18 46°00'

104000

Specific Conductivity Inventory Sheet MILES CITY 1° x 2° Sheet

Owner's name				Bowdell, Ben		
Aquifer		337MSNC				
Well depth (ft.)				99		
Static weter level (ft.)						
Altitude Ift.)						
Lab	0 0 0 4 4 0	0 7 4 8 5 0 0	5 2 2 2 2 2 2 3 4	2 2 2 2 4	2 2 2 2 2	2 2 2 2 2
Field						
Specific conductivity at 25 C	5980 480 3580 2274 1930	3800 1878 25860 1440 870	2360 1830 2420 2920 13500	10600 460 2300 21400 4150	2690 780 2820 2380 3460	3449 3600 8340 1520 3020
ucitoratep alig	O'F allon Creek O.1 mile N ol Medicine Rocks at highway Wintery Creek Pumped by wnichmill Powder River	Irrigation canal Irrigation canal at highway amies W of Upper Magne Reservoir Chart Creek Creeket Box Creek	Bad Route trigation return, insed with salts Bad Route Creek, Insed with alkeil Baser Creek NW of Olia Fork of Basver Creek In Coulee	Stock tank Satit below dam Fork of Barver Creek In coulee	Shallow and muddy 10 acte restrovoir Bogys and Utill of cattelit, area once larmed 0.5 mile N ol 6 acte seep Pennel Creek	O'Felion Creek Sandstone Creek South Forts, Sandstone Creek 17 acres Low, boggy are
Flow or yield E = estimated M = messured	1 cfs (E) no flow 0.1 cfs (E) 290 cfs (E)	0.1 cfs [E] 5 cfs [E] 3 cfs [E] 2 cfs [E]	2 cfs (E) 6 cfs (E) 3 cfs (E) 2 cfs (E)	* - ×	ir ir >1 cls (E)	1 cts (E) 0.5 cts (E) 50 gpm (E) 10 gpm (E)
Collection Location date T. R. Sec Tract. Mo Day Vr. Source	10 15 76 Creek 10 15 78 Creek 11 17 76 Creek 11 17 78 Well 11 17 75 River	11 18 78 Canel 11 17 78 Canel 10 20 69 Well 09 07 75 Creek 09 07 75 Creek	09 D7 75 Canel 09 D7 75 Creek 10 H1 75 Creek 10 H1 75 Creek 10 H1 75 Seep	10 11 75 Spring 10 11 75 Reservoir 10 11 75 Creek 10 11 75 Seep 10 11 75 Well	10 11 75 Reservoir 10 11 75 Reservoir 10 11 75 Sep 10 12 75 Well 10 12 75 Creek	10 14 75 Ceek 10 13 75 Ceek 10 13 75 Ceek 10 13 75 Seep 10 13 75 Seep
Location T R Sec Trect	04N 56E 15 BBB 03N 58E 01 DAC 09N 53E 35 BAB 08N 54E 07 CAC 08N 51E 25 ABB	09N 48E 05 DAD 09N 48E 29 ACC 14N 55E 27 CD 14N 54E 14 14N 54E 31	13N 53E 14 C 13N 53E 15 A 1DN 60E 23 AD 09N 60E 01 DC 09N 60E 22 BA	09N 60E 15 BC 09N 60E 10 CC 08N 60E 09 CC 08N 60E 08 AD 09N 60E 19 AA	09N 59E 25 AA 09N 59E 25 BC 09N 57E 20 AA 09N 56E 11 DC 09N 56E 04 DD	06N 56E 29 DB 06N 58E 31 A 08N 58E 31 DB 06N 58E 14 DB 06N 58E 13 A
County	Carter Carter Custer Custer	Custer Custer Dewson Dewson	Dawson Dawson Fallon Fallon Fallon	Fellon Fallon Fallon Fellon	Fellon Fellon Fellon Fellon	Fellon Fellon Fellon Fellon
Field	WOB7 WOB4 WDB5 WDB3	WOB6 WOB2 69M0009 WOB17 WOB16	WQB15 WQB19 WQB19 WQB13	WOB14 WOB15 WOB18 WOB17	WOB10 WOB9 WDB11 WOB22	WQB35 WQB27 WQB28 WQB26 WQB25
d w o	~ 0 0 4 0	0 ~ 0 0 0	5 2 2 4 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	22222	32.58.23

MILES CITY 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name																											Morris		
Aquiter																211JORV						211FXHL							
Wall depth Ift.1																													
Static water level [11.]																													
Altıtude (1t.)																3000						2750							
Lab / analysis	2 2	2	9 9	2	90	9	9	384	¥ A	2	ou	9	no	1ek	٤	yes	2	2	¥84	2	Yes	V 83	8	9	90	90	90	90	20
Feeld S C a																													
Specific conductivity at 25 C	2820	21000	21400	20000	780	28000	1660	0999	39000	1810	23000	19100	42200	3170	3600		1180	2500	2300	2250	1890		1880	1200	2850	2640	9150	6360	0096
Sile description	Stock use On Pannel Creek	٠,	19 acres in size, erea is severally proded	Crews to the E	Small reservoir, wheat Itelds 0.5 mile to the N	NW of Baker, less than I acra in size	Smell reservoir W of an oil rig	Located in a saep area	Low stas, pond above	Baker Laka Reservoir	Surrounded by croplend and rangeland	Low eras surrounded by rolling hills	20 acres in size, steep hill side	Large reservoir not fully constructed	Low valley with farmland	15 miles SE of Baker	Little Beaver Creek	Coder Creek 5 miles N of Terry on highway	O'Falton Creek at bridge on 1:94	Irrigation return via Ash Creek at 1-94	Powder River at bridge on 1-94	18 miles E of Fallon	Located in a coulee 5 of cultivated area		Diversion ditch for seline weter	Lame Steer Creek Wildlife Refuge	Stock use		300 feet long by 20 feet wide
Flow or yield E = estimated M = measurad		25 gpm (E)															3 che (E)	no flow	0.5 cfs (E)	0.3 cts (E)	40 cfe (E)							26 gpm (E)	5 gpm (E)
Collection date Mo Day Yr Source	10 13 75 Well 10 11 75 Reservoir	10 11 75 Oresk	10 11 75 Seep	10 11 75 Seep	10 11 75 Reservoir	10 13 75 Seep	10 11 75 Reservoir	10 10 75 Well	10 10 75 Seep	10 10 75 Reservoir	10 13 75 Seep	10 13 75 Seep	10 13 75 Seep	10 13 75 Reservoir	10 13 75 Reservoir	10 14 75 Well	10 14 75 Creek	10 17 75 Creek	10 16 75 Creek	10 16 75 Canel	10 18 75 River	08 09 31 Wall	09 03 75 Well	09 04 75 Well	09 04 75 Ditch	09 04 75 Reservoir	09 04 75 Well	09 04 75 Creek	09 04 75 Seep
Location T R Sec Tract	08N 59E 07 CCC 09N 59E 35 AD	09N 59E 38 CD	08N 60E 06 CC	08N 60E 20 888	08N 60E 23 BD	09N 59E 35 A	D7N 60E 04 DC	07N 60E 24 CC	97N 60E 28 BOD	07N 59E 13 BD	07N 58E 12 CA	07N 68E 23 BC	07N 5BE 22 BC	07N 58E 29 AC	07N 57E 27 D	05N 60E 10 DA	06N 60E 13 DD	13N 51E 30 CBD	12N 52E 02 BAD	12N 51E 14 DBA	11N 50E 04 DAA	12N 58E 02 C	14N 60E 04 CC	12N S1E 05 AA	11N 59E 26	12N 60E 15	12N 60E 22 DD	12N 60E 25 88	12N 80E 28 AB
County	Fallon	Fellon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fallon	Fellon	Fallon	Fellon	Preirie	Prairie	Pratrie	Prairie	Prairie	Wibeux	Wibanx	Wibaux	Wibaux	Wibeun	Withsux	Wibsun
Field number	WO824 WO820	WOBB	WOB7	MOBB	WOBS	WOB23	W084	WQ82	WOB1	WOB3	WQ829	WOB33	WQB32	WOB31	WQ830	42MD001	WQB34	WQ84	W083	WQ82	WOBI	31 M0001	WQB1	W0827	W0828	W0828	WQ823	WOB24	WO822
Mag Pa Po O	33	33	8	R	38	37	98	39	40	4	42	43	4	45	40	47	48	48	2	20	62	83	54	90	50	57	28	99	9

Specific Conductivity Inventory Sheet (Con't.) MILES CITY 1" x 2" Sheet (Con'L.)

Owner's name																														Job, J.
Aquiter										337MSNC	211JDRV	230SPRF							211FXHL	211FXHL	211FXHL	211FXHL	211FXHL	211FXHL	211FXHL	211FXHL	211JORV	211FXHL	217 MDDY	125FRUN Job, J.
Well																			648	1178	13 1100	396		463	487	988				
Static weter level																			43		13	14	130							
Altitude										2700	2883	2940											2772					2300	2712	2800
9 5	2	2	y 05	2	9	2	ou ou	90	2	yes	¥ 65	yes	9	yes	2	9	705	Yes	7.05	304	90A	¥04	Y 0.5	¥04	Yes	90 %	X 06	¥ 0.5	Yes	Yes
F seld temp.	,																		13	9	15.6		13			12				
Specific conductivity et 25 C	2380	3480	1760	1380	320	410	1110	3340	2920	22600		185300	2400	1820	2750	2220	1909	1410	166	1450	1260	2940	2800	3060	3400	1240			149000	1000
Site description	Located in low, b	Surrounded by rengeland	200 feet long by 50 feet wide on a hillside	Located just balow the seep	Located in hilly terrain, dryland farming area	New reservoir, selts cover the ground	Cedar Creek, rengeland area	Large reservoir below Pine Unit Oil Fields	Small coules lined with salts	25 miles NW of Baker	33 miles SN of Wibaux	30 miles SW of Wibaux	Beaver Creek	Ash Creek near Terry	Ouck Creek, seep eree at its head	Beever Creek at Withaux	National Fish Hatcheries well no. 1	National Fish Hatcheries well no. 2			3	9	50 gpm (M) USGS observation well					10 miles E of Hoyt School		
Flow or yield E = estimated M = messured							no flow		5 gpm (E)				2 cfs (E)		no flow				18.1 gpm (M)		3.5 gpm (M)	53.5 gpm (M)	50 gpm (M		35 gpm (M					12 gpm (M)
Collection Flow or yeald Location date E estimated R SecTrect Mo Day Yr Source M emeasured	09 04 75 Pond	09 04 75 Spring	09 04 75 Seep	09 04 75 Reservoir	09 04 75 Reservoir	09 04 75 Reservoir	09 04 75 Creek	09 04 75 Reservoir	09 04 75 Coules	04 13 56 Well	08 18 27 Well	10 03 56 Well	09 04 75 Creek	11 11 78 Creek	09 04 75 Creek	09 03 75 Creek	01 21 78 Well	01 21 76 Well	08 04 63 Well	08 30 63 Well	08 30 63 Well	01 18 82 Well	08 72	23	04 28 61 Weti	08 30 63 Well	OB 18 27 Well	08 09 31 Well	10 29 69 Well	03 11 74 Well
Location T R Sec Treet		12N 59E 12	12N 5BE 03	12N 59E 09	12N 59E 22	12N 59E 28 8A	12N 57E 16	12N 57E 29 AC	12N 57E 29	11N 57E 09 AC	11N 57E 10 CC	11N 57E 15 AA	12N 60E 31	12N S1E 14 AC	13N 60E 36	14N 59E 18	07N 47E 08 A	07N 47E 08 A	06N 56E 17 DD	08N 58E 30 BO	08N 55E 27 BB	10N 68E 18 CD	10N 58E 18 CD	10N 58E 32 DB	10N 58E 33 DB	11N 54E 29 CA	11N 57E 10 CC	12N 56E 02 C	14N 62E 17 BC	14N 58E 10 CDA
County	Wibaux	Wibaux	Withenx	Wibaux	Wibeux	Wibaux	Wibaux	Wibaux	Wibsux	Wibaux	Wibaux	Webaux	Wibaux	Prairie	Wibaux	Wibsux	Custer	Custer	Custer	Fallon	Fellon	Custer	Fallon	Fallon	Fallon	Prairie	Wibaux	Preirie	Dawson	Wibeux
	92	330	WQ818	WQB17	WQB19	NGB21	WGB14	VQ815	WOB16	56M0011	27M0001	56M0004	WQB25	WQ823	WO828	WQB13	2600W95	9600M9Z	63M0064	9900WE9	63M0066	62M0018	72M0071	58M0010	9000W19	63M0067	27M0002	31M0015	69M0001	74M0301
Field	WOB 20	WQB30	Š	3	3	3	š	ž	š	26	-27	55	š	š	š	3	26	9	63	3	63	62	72	58	5	- 29	371	=	69	4

MILES CITY

Мас	,				Co	Hecti	an			Magne		Potes-		Manga-		Bicer-	Car-		
ref		Loc	atio	n		ate			Calcium	SHUTTI	Sodium	sium	iron	nese	Silica	bonete		Chloride	Sulfate
no.	Т	R	Sec	Tract	Мо	Day	٧r	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ²)	(CO ²)	(CI)	(SO ₄)
4	08N	54E	07	CAC	11	17	76	Weil	166	166	185	6.3				476		8.0	980
7	09N	48 E	29	ACC	11	17	76	Canel	66	38.9	335	11				506		10	620
8	14N	568	27	CD	19	20	69	Well	860	140	5100°					525		8800	940
11	13N	53E	14	С	09	07	75	Creek	106	130	272	9.8				555		11	880
20	09N	60E	19	AA	10	11	75	Well	460	321	246	13				78		19.2	2840
39	07N	60E	24	CC	10	10	75	Well	399	671	490	38				261		65	4400
40	07N	60E	26	800	10	10	75	Seep	410	202.0	9200	97				217		79	28600
45	07N	58E	29	AC	10	13	75	Reservos	r 85	155	500	16				600	14	13.7	1380
47	05N	60E	10	DA	10	14	42	Well	79	22	3000°					205		4700	44
50	12N	52E	02	DAS	10	16	76	Creek	75	78	375	13				488		10	895
52	11N	50E	04	DAA	10	16	78	River	100	49	230	11				222	4	81	620
53	12N	568	02	С	08	09	31	Well			340°					440		24	320
63	12N	59€	03		09	04	75	Seep	397	381	1320	11	.93	2.0					6500
70	11N	57E	09	AC	04	13	56	Well	1300	100	14000°					313		21000	3700
71	11N	57 E	10	cc	80	18	27	Well	120	30	3500°					220		7000	
72	11N	57E	15	AA	10	03	56	Well	1800	260	80000°					76		120000	3000
74	12N	516	14	AC	11	11	76	Creek	49.1	39.5	280	11				586		17	380
77	07N	47E	06	A	01	21	76	Well	2.8	4.3	426	1.5				874	34	21	160
78	07N	47E	08	A	91	21	76	Well	4.8		338	.89				705	40	19.2	80
79	05N	56E	17	QQ	00	04	63	Well	.3	.6	247	.8	.08	.05	14	522		2.9	103
80	OBN	58E	30	BO -	08	30	63	Well	1.7	2	365	1.0	.01	.01	12	575	50	38	165
81	09N	55E	27	86	08	30	63	Well	1.1	.2	318	.8	.06		12	654		14	126
82	10N	58E	16	CD	91	16	62	Well	9	4	765					1098		16	749
63	10N	58E	16	CD	02	08	72	Well	9.6	2.5	650	2.0	.01		17.4	1032		6.1	573
64	10N	58 E	32	DB	10	27	58	Well	13	5	877					1049	60	14	942
85	10N	586	32	08	04	26	61	Well	6	3	840					793	109	40	934
86	11N	54E	29	CA	08	30	63	Weil	1.8	.4	315				11	645	22	16	85
87	11N				08	18	27	Well	120	30	3200°					220		7000	
	12N				08	09	31	Well			770°					1000	109	180	41Ò
89	14N	52E	17	BC	10	29	88	Well	12	12	3000°					21 60		3400	18
90	14N	696	10	CDA	03	11	74	Well	107	60	35.9	4.1			9.5	416		6.2	246

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated. Velues reported as sodium plus potassium.

1° x 2° Sheet

of Calaman Monage

					Lab									
Asp		Fluo-		Field	specific	Dissolved	Total	Total	Sadium		Well		Trace	
ef.	Nitrata	LIGS	طها		conductance	solids	hardness	alkalinity	adsorption	Collecting	depth	Aquifer	siements	Lab
0.	(N)	(F)	ρН	c°	(µmho/cm)	(catc.)	as CaCO ₃	as CaCO ₃	ratio	agency	(ft.)	code	bes yiens	numbe
4	.48		8.00		2274	1050	1100	390	2.4	WQB			na	76W275
7	2.1		8.20		1878	881	325	415	8.1	WOB			na	76W275
8			6.10				2720	431		Unknown		337MSNC	no	68M00
11	8.5		7.94		2260	1972	798	455	4.2	WQ8			no	75W19
20	.93		5.81		4150	3980	2470	64	2.2	MOS			no	75W21
9	.02		7.08		6660	6324	2760	214	2.5	WQB			no	75W21
0	1.1		7.47		39000	40520	9340	178	41.4	WGS			no	75W21
5	.02		8.51	7	2170	2744	852	515	7.5	WQB			no	75W21
7							288	168		Unknown		211JDRV	no	42M00
0	2.0		8.10		2200	984	510	400	7.2	WQB	. ~		no	76W25
2	.52		8.40		1890	880	461	189	4.7	WQ8			no	76W2
3								361		Unknown		211FXH	. no	31 MO
3	2.6		4.44		7760	7819	2560		11.4	WQB			y98	75W19
0			8.30				3660	257		Unknown		337MSN0	na	56M0
1							422	180		Unknown	•	21 IJDRV	na	27MO
2			6.50				5560	62		Unknown	,	230SPRF	ng	56M00
4			8.00		1620	207	285	480	7.2	WQ8			no	76W2
7			8.79		1909	1522	25	772	27.4	NFH			no	76W0
8			8.94		1410	1188	12	644	42.1	NFH			no	75W0
9	.2	.6	8.00	13	997	627	3	428	52	Unknown	•	211FXH	. no	63M0
0	.2	.9	8.40	18	1450	917	5	555	71	Unknown		211FXH1		63M0
t		1.4	8.20	15.5		795	4	536	69	Unknown		211FXH1		63M0
2			7.60		2940	2083	39	901	53	Unknown		211FXH		62M0
2	.723		8.02	12	2800	1770	34	847	48.4	Unknown		211FXH1		72M0
4			8.70		3050	2428	52	960	52	Unknown	•	211FXHI	. no	58 MO
5			8.30		3400	2324	23	821	65	Unknown		211FXH		61 MO
6	.1	1.5	8.60	12	1240	771	6	566	58	Unknown		211FXH		63M0
7							422	180		Unknown		211JOR V		27 MO
8								1000		Unknown		211FXH1		21M0
9			7.80				79	1770		Unknown	•	217MDD	Y no	69MO
ю		0.3	7.47	5.5	1000	575	515	342	0.7	SCS		125FRU	a no	74M0

MILES CITY 1° x 2° Sheet Trace Elements Analyses Sheet

	9	Il number	50 75W1900
	Ziuc	em j	20
	£	Val.	
Stron	tica	(mg/	
	Silver	(VBV)	
	Selenium	(/ ₆ / ₁)	
Phosphate	(Total	dissolved	
	Nickel	(I/6m)	
Mer.	cury	Š	
Ė	Ē	(mg/)	
	Pearl	(mg/l)	.03 .05
	Copper	(I/6m)	.03
ģ	HOLE	(mg/l)	
ġ	mium	(I/Bu)	.02
	Boron	(mg/)	
Beryl-	lium	(V617)	
ķ	senic	11/64)	
Anti-	Mony	[I/6m)	
Alu-	minum	(I/6m)	
	Location	no. T R SecTract (mg/l)	13 12N 59E 03
0		۲.	3 12h
ž	5	5	9

LOCATION BASE MAP

ROUNDUP 1° x 2° SHEET

IO KILOMETERS

ROUNOUP 4

1:250,000

₹ 46°00'

109°30'

ROUNDUP 1° x 2° Sheet Specific Conductivity Inventory Sheet

		Owner's name	Lodman	Burck, Lee	Luvinus	Chapel	Gervais, Don	McCollum, Fay	Арріе, G.	Jennings, Clark			Bricker, Don	Melichar, Les	Borcherding	Wichman	Wichman	Stevenson	Pospisid	Shane	Pospisal		Wetson		Eve, Jerry	Stevenson	Shane		Horan	Hannen, Weyne	Hannan, Wayne	Wright, Holand
	Aguifer	epoo							121 217KOTN																							
30	depth	Ē	90		250	132			121	200				90					12						160				9			
Stetic		3							3																							
	Attitude	(1)	4550	4340	4360	4630	4220	4370	4370	4400	4200	4170	4150	4230	4280	4040	4040	4110	4240	4150	4270	4330	4210	4230	4240	4250	4160		4200	4280	4280	4390
	ŝ	enely sis							y 015																							
1	temp.	္မပ	=	2	91	7	16	16.2		=	7	2	=	15	9	Ξ	15	13	7	=	7	24	14.9	11	13	7	12.8		6 9	2	97:	=
Considia	conductivity	et 25 °C	2820	1140	015	910	280	340		430	640	1170	480	430	480	1510	1430	099	099	1320	490	460	400	430	640	620	1690		1230	920	019	200
		Site description	Domestic use, weter forms white deposits	Domestic use, water forms white deposits	Stock use	Domestic use, water forms white deposits	Domestic use, water contains much iron	Domestic and stock use	Stock use, well lacated 3.9 miles SE of Glengary	Domestic use		East Fork Big Spring Creek	Domestic and stock use	Domestic use	Domestic use	Stock use and lawn srigation, weter is soft	Domestic use, water is soft, well is in house	Domestic use	Well is located 50 feet NE of house	Well is located 20 feet S of house	Spring is located 30 feet S of sheep shed	Many catterls growing on E and W tranks	Well is in basement, weter is hard	Water is clear	Well is often pumped dry when wetering lawn		Spring is located 90 feet NE of house		Stock use and lawn irrigation, water is hard	Domestic use	Domestic use except for drinking	Domestic use
Flour or Vieta	E = estimated	M = measured			20 gpin				12 gpm		0.6 cts			50 gpm				,	•					132 cts								
of the state of th	dete	R Sec Trect Mo Day Yr Source	Well	Well	Well	Well	Spring	Spring	03 28 67 Well	Well	Creek	Creek	Spring	Well	Well	Well	Well	Well	Well	Well	Spring	Pond	Well	Creek	Well	West	Spring		Well	Well	Well	A see
,	Location	T R SecTrect N	14N 20E 28 BBAC	14N 19E 11 BCAB	14N 18E 11 CBBB	14N 18E 21 DABB	14N 18E 09 BDCA	14N 18E 18 BDAB	14N 18E 18 BDB (14N 17E 34 BDCB	14N 17E 10 CC	14N 19E 05 DCBB	14N 16E 10 DADB	14N 16E 27 888B	14N 16E 33 DADA	14N 1SE 28 BBAB	ludith Basin 14N 1SE 28 BBAB .	Judith Basin 14N 15E 18 DDAA	Judith Basin 14N 14E 24 BDAB	Judith Basin 13N 15E 23 CBCD	Judith Basin 14N 14E 23 ACDD	Judith Basin 14N 14E 36 BCBO	Judith Basin 14N 14E 09 DABB	Judith Besin 14N 14E 08 DCAC	Judith Basin 14N 14E 17 ABAD	Judith Basin 14N 14E 15 DAAA	Judich Basin 13N 16E 23 CBCD		Judith Basin 13N 15E 34 AAAB	13N 16E 18 DDD	13N 16E 18 DCDD	13N 16E 30 DCDD
		County	Fergus	F ergus	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	Fergus	F argus	F ergus	Judith Besin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin	Judith Basin		Judith Basin	Fergus	Fergus	Fergus
i	ret Field	_	1 MBMG28	2 MBMG27	3 MBMG24	4 MBMG22	S MBMG23	6 MBMG21	7 64M0021	8 MBMG1S	9 MBMG17	10 MBMG28	11 MBMG19	12 MBMG1	13 MBMG2	14 MBMG71	15 MBMG72	16 MBMG70	17 MBMG69	18 MBMG74	19 MBMG68	20 MBMG73	21 MBMG66	22 MBMG65	23 MBMG64	24 MBMG67	25 MBMG75	26 not on map	27 MBMG76	28 MBMG5	29 MBMG4	30 MBMC11

518110

ROUNDUP 1' x 2' Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

	Owner s name	Hannan, Wayne Peters, Levern Waters, Harlic Watker, R	Columbus, Reg Erickson Erickson Abbat, Derrell	Finkbeiner Lemmon, Leo Elliot, Glen Gibbs, Lee	Eliot, Glen Peterson Peterson McDoneld	Gibbs, Lee Cromer Gibbs, Lee McKinlay McKinlay	McKinlay
Aguster	apoo	175 217KDTN					
Well	3	175		68	1000	9 6	17
water		12			Buima	5 ming	m
Altitude	Ē	4160 4380 4600 4590 5000	4600 4600 4650 5000	4350 4385 4900 4450 4350	4450 4400 4390 flowing 4500 4340	4620 Howing 4600 7 4520 7 4710	4710
P. P.	analy sis	8					
	္ပ	12 12 13 13	8 13 15 15.5 16.5	9 11.0 9 12.5	12.5 12.8 11 12 18.3	01 01 00 00	11.6
Specific	at 25°C	510 480 520 . 470	580 1820 1000 1200 880	520 - 1010 1100 2900 660	2250 2760 1240 2430 820	1650 2890 1400 790 650	940
	Site description	Domestic ue Domestic and stock use Domestic and stock use	Domestic use Stack use Domestic use, water forms green deposits Stack use Domestic use	Formed by road contruction Dometric use Universed Dometric use	Domestic use, well is located by creak. Water it high in ton Well is located 120 feet N of house Probably used for stockt, water contains much iron. West Builtielo Creek	Well is located 300 feet 5 of house, seep is nearby Stock use, well is located 75 feet 5 of house before it on the seep seep that is a house Domestic use, well contains much iron. Stock use, speting is located 75 years from house	Stock use, well is located 75 yards W of house Stock use
Flow or yield	M = measured	0.7 cfs 4.5 gpm	3 gom	3 gpm 3 gpm	1 cls		
Collection	Mo Day Yr Source	Creek Well Well 03 28 87 Well Spring	Spring Reservoir Spring Reservoir Spring	Spring Pond Wett Wett	Wett Wett Wett Creek	Wett Wett Wett Spring	Weit Reservoir
O GOSTOO I	1361	13N 16E 08 AD 13N 17E 10 ADD 13N 17E 05 CDO 13N 17E 05 CDC 13N 17E 05 CDC	13N 18E 06 DBCA 13N 20E 02 BBBB 13N 20E 02 BBBB 13N 21E 14 BCDA 13N 21E 35	13N 23E 06 13N 22E 24 12N 16E 02 BCC 12N 18E 32 DDO 12N 16E 07 DDDD	Locith Besin 12N 16E 32 DDD Judith Besin 12N 15E 22 CBAA Judith Besin 12N 15E 22 BCDD Judith Besin 12N 15E 34 BBBB Judith Besin 12N 15E 04 CDDD	budith Basin 12N 14E 12 BBCC budith Basin 12N 14E 24 DAAD budith Basin 12N 14E 11 BBBC budith Basin 12N 14E 09 DCAD budith Basin 12N 14E 09 DDCD	Judith Basin 12N 14E 09 DCDA
	County	Fergus Fergus Fergus Fergus	Fergus Fergus Fergus Fergus	Fergus Fergus Fergus Fergus Fergus	Fergus Judith Be Judith Be Judith Be	Judith Ba Judith Ba Judith Ba Judith Ba	
A Pier	number	MBMG3 MBMG12 MBMG13 64M0020 MBMG14	MBMG16 MBMG30 MBMG32 MBMG32 MBMG33	MBMG35 MBMG34 MBMG8 MBMG8 MBMG10	MBMG7 MBMG86 MBMG87 MBMG88	MBMGB3 MBMGB5 MBMG79 MBMG79	MBMGB0 not on map not on map MBMGB
Map		33 33 33 33 33 33 33 33 33 33 33 33 33	88838	4 6 ± 5 £	2 & 8 4 8	50 51 53 53	55 58 58 58

RDUNDUP 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Owner's name						
Aquifer code O	320AMSD	211MRSN 320AMSD	320AMSD	217LKOT 331CRLS		
Well depth				,		
Static water level (1t.)	4400 4100 Howing 4070 4000 4180	,				
Attitude Ht.1	4400 4100 4070 4000 4180	4380 4700 4700 3900 4030	4060 3700 3600 3510 3500	3670 3670 3600 3800 3750	3800	3800 3800 3700
Lab Attitud analysis Ht.1	*	8 8 A A	* * * * *	× × × × × × × × × × × × × × × × × × ×	:	* o *
Field C C						
Specific conductivity at 25°C	670 4100 490 7800 4280	410 1560 320 2710 5700	4400 1515 6450 5600	7670 4450 6730 380 3360	2300 1230 5447	620 1160 556 890 831
uondiosap aig	Near road Junction of Twin and Athley Coulect Near Merrill Springs 0.5 mile NE of Merrill Springs Creek	Swenning Woman Greek NE of Ryegate Roed One ace in site, located NE of Ryegate Road One mile NW of Ory Lake	One male NW of Dry Lake Currant Creek, SB males N of U.S. 12 Stock tank 2.2 miles N of Lavna Stock tank one mile N of Lavna	Three miles E of Ory Lake 1.2 miles N of U.S. 12, Jensen A well NE of Ryegate Near relinoad treats by Frankin Pond	NW of Ryegate, 0.5 mile from highway Gareless Creek at budge N of Ryegate Careless Creek N of Ryegate	3.2 miles N of Barber 2.2 miles W of Regate Fish Creek S of Pregate Fish Creek S of Pregate Muselshell River at Rregate gaging station
Flow or yield E = estimated Nt = measured			.75 gom		s cts	6 cls 0.5 cls 50 cls 8 cls 1490 cls (M)
Collection date Mo Day Yr Source	09 11 75 Pond 09 11 75 Well 09 11 75 Creek 09 11 75 Spring 04 01 65 Well	09 11 75 Creek 09 11 75 Pond 09 11 75 Pond 03 17 65 Weil 04 05 49 Weil	04 29 64 Weil 09 00 75 Creek 10 28 78 Creek 04 28 75 Pond 04 28 75 Pond	09 08 60 Well 09 08 60 Well 10 28 76 Well 09 11 75 Sep 09 11 75 Pond 09 11 75 Pond	09 11 75 Ouch 09 11 75 Creek 10 28 76 Creek	10 28 76 Ouch 10 28 76 Duch 05 09 75 Creek 09 11 75 Creek 05 09 75 Rwer
Location County T R Sec Tract	Galden Valley DBN 20E 24 CC Galden Valley DBN 20E 27 AD Galden Valley DBN 20E 36 D Galden Valley DBN 20E 31 CC Galden Valley DBN 20E 31 BD	Golden Valley 10N 19E 21 CC Golden Valley 08N 20E 08 AB Golden Valley 08N 20E 02 BA Golden Valley 08N 20E 14 CC Golden Valley 08N 21E 29 CA	Golden Valley 08N 21E 2B CB Golden Valley 08N 22E 32 DD Golden Valley 07N 22E 01 BBC Golden Valley 07N 22E 23 DD Golden Valley 07N 22E 26 DD	Golden Valley DTN 22E 27 CA Golden Valley DTN 22E 27 CA Golden Valley DTN 22E 26 OA Golden Valley DTN 20E 28 Golden Valley DTN 20E 33 Golden Valley DTN 20E 18 88	Golden Valley 07N 20E 19 B.D. Golden Valley 07N 20E 1B Golden Valley 07N 20E 1B OBC	Golden Valley 07N 19E 20 CDB Golden Valley 06N 19E 02 OCB Golden Valley 06N 20E 07 DO Golden Valley 06N 20E 07 DD Golden Valley 06N 20E 07 CD
Map ref. Freid no. number	59 WOB18 60 WOB16 61 WOB17 62 WOB15 63 65MO041	64 WQB19 65 WQB13 66 WQB14 67 65M0040 68 49M003	69 64M0016 70 WQB5 71 WQB29 72 WQB23 73 WQB22	74 64M0004 75 60M0010 76 WQ830 77 WQ87 78 WQ86 79 WQ812	80 not on map 81 WQB10 82 WQB11 83 WQB27	64 WOB26 BS WOB25 B6 WOB20 87 WOB8 A8 WOB21

ROUNDUP 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

	Collection	Flow or vialed		Specific	110		Steric	C Wall		
Location date		E - estimated		conductivity	temp.	ab Ait	Attitude level	-	Aquifer	
T R Sec Tract Mo Day Yr Source		M = meesured	Site description	et 25°C	C enalysis		(In) In)	EHE.	apos	Owner's name
Jolden Velley 06N 20E 32 CC 09 11 75 Pond	-		E of road, N of Ryegate	530	c	no 40	010			
				3300	c	•	000			
A 09 09 75 Coules		3 cfs	Big Coulee	2670	-	no 40	0001			
	_		Musselshell River at Lavine	1224	>		3500			
Solden Valley 06N 22E 11 C 09 09 75 River	_		Musselshell River et Laving	096	c	no 38	3500			
			One mile E of Belmon!		>	yes 36	0996		211F RNR	
Solden Valley 06N 23E 15 AD 09 09 75 Creek		1 cfs	Painted Robe Creek	3150	c	no 36	9990			
3olden Valley 05N 22E 01 CBD 10 28 78 Creek		4 cfs	Painted Robe Creek at highway	3530	e	.,	0696			
: 10 28 78 Creek		5 cls	Big Coulee et bridge	2800	c	no 28	2800			
Golden Valley 05N 20E 19 AA 03 26 46 Well 0		NJ moti /	0.7 gpm (M) Ten miles 5 of Ryegate		^	yes 37	3700		217KDTN	
Solden Valley 11N 29E 01 CA 06 01 48 Well			Nine miles N of Musselshell River		>	yes 25	2980		331KBBY	
11N 23E 20 AAB 07 01 33 Well 1240	1240	1240 gpm1M1	Thirty miles NW of Roundup		_		1920		217LKOT	
			2.5 miles SE of Lake Mason		^	yes 38	1910		320TSLP	
ION 22E 09 AC Well			2.5 miles SE of Lake Mason		^		9600		320AMSD	
ION 25E 09 DD 02 20 33 Well					>		3500		217KDTN	
			Four miles SW of Roundup	22700	^	yes 31	3110		320TYLR	
A 10 19 78 Pond	_		Stock pand below North Willow Creek	870	c	00				
07 30 68 Well		2 gpm fMl	Ten miles NE of Musselshell	4630	^	yes 30	080		217KOTN	
D 10 19 78 Ditch		.1 cfs	Weter dreins from a pond below an oil weti	20000	^		3000			
39N 26E 21 CA 10 05 64 Well 16 gr		16 gpm (E)	One mile NE of Roundup		>	36	3570		320AMSD	
09N 25E 09 Creek			South Willow Creek	2300	c	no 36	3650			
09N 23E 21 BB 01 31 64 Well				2030	*	yes 36	0996		211LK0T	
09N 23E 20 AA 08 14 68 Well					`	yes 36	0896		211EGLE	
08N 24E 02 B 08 31 64 Well					-	.,	9630		217LK0T	
10 18 78 Creek		1 cfs (E)	.01 cfs (E) Carneron Creek on Highway 12	6030	c	No 35	3550			
DBN 25E 23 CCC 10 19 78 Creek 1		1.2 cfs (E)	Helf Breed Creek near its mouth	1250	e	00 36	3650			
10 19 76 Creek 0	0	05 cts (E)	Willow Creek one mile E of Roundup	3600	c		3650			
			Goulding Creek at its mouth	0099	c	NO.				
D7N 23E 35 DC 10 19 76 Creek	_		Dean Creek et bridge on Highway 12	3720	c	uo u				

ROUNDUP 13 x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

			Owner's name				Lowen			Mik Tony			Raund, Bob					Johnkin, Jim			Crewtord			Wilcox	Wilcox									
		Aduiter	apoo				211EGLE		320AMSD					211EGLE			40 HOALVM	110 211EGLE	320TSLP	217KOTN	331MDSN	337MSNC								320AMSD				
	Ne :	depth	3												240	2 9	\$	-																
Static	water	leve	=										9000 flawing																					
			3	3900	3950	3900	2900	2790	3160	3200	3200	3200	3000	3200	2100	200	3750	3230	3880	4220	4500	4380	44B0	4000	4000	2000	4780	4450	4500	3690	9000	9000	4000	9000
		9	enafy sis	e	ye.	90	9	ē			2 0	2	2	¥		2	2	9	yes	× 0 ×	7.05	Yes	90	ye.	yes	Yes	92	9	yes.	\$ 0 Å	9	9	oe G	90
	Field	temp.	٠ د				18.5	91			9	13.8	61			: :	35	13																
			et 26 C	8200	2800	3850	0069	6860	7830	2810	2130	2440	2390		4000	4030	780	1440				4830	770	23000	7336	296	190	230	304		380	420	3060	1190
			Site description	Pert of swamp that occupies most of TSN, R24E	Drein from swemp in TSN, R24E	Issues from swemp in TSN, R24E	Domestic use except for drinking, werer is corrosive	Above Flat Willow Creek	S. miles NF of Boundary	There is the best of the second		Flas Wellers Cook		S.v. males SF of Patrolis I ake		Stock use	Stock use	Domestic use	Approximately 4.5 miles NW of Roundup	Fifteen miles S of Avegate					Stock tenk	Sweet Gress Creek on U.S. 191	Cayuse Greek		Glesston Lake (lower reservoir)	Fourteen miles N of Bullings	Otter Creek	Wheeler Creek	One mile S of Jim Hosglund's place	West Galloway Creek
	Flow or yield	E - estimated	M = measured									3 24.				mdg or				4 aom (E)	290 anm (F)		0.1 cts (E)	2 cfs (E)		10 cts (E)	2 cts (E)	0.1 cts (E)	į		3 cts (E)	2 cfs (E)		
	Collection	date	R Sec Trace Mo Day Yr Source	10 18 76 Pond	10 19 76 Ditch	10 19 78 Spring	09 07 76 Well	08 76 Coules	10 00 50 Well	3	Gereran	Contract	Well	16 38 Well		Met	Well	Well	Well	03 26 46 Well	11 28 Well	12 22 54 Well	10 27 76 Creek	Creek	Tenk	10 27 76 Creek	10 27 76 Duch	10 27 76 Ditch	10 27 76 Reservoir	09 04 44 Well	10 27 75 Creek	10 27 76 Creek	deag	09 11 75 Creek
			T R Sec Tract	06N 25E 19 ADA					136 AC BO	130 200 04 00	130 265 15	130 205 34 04	13N 26E 01	134 28E 32 0	200.000	12N 2/E 03 AA	12N 27E 07	12N 27E 06	12N 25E 05 DC	04N 19E 13 DB	03N 19F 17 CD	03N 19E 07 DA	03N 1SE 09 CDD	03N 21E 18 BD	03N 21E 18 BD	04N 14E 24 CBC	04N 15E 28 DDA	03N 15E 03 BCC	03N 15E 14 BAA	04N 16E 15 DC	04N 14E 35 BDD	03N 14E 11 CBD	03N 21E 06 CB	11N 17E 34
			County	Musselsheil	Musselshell	Musselshell	Petroleum	Petroleum	Breezelen			Date of the contract of the co	Petroleum	Barrolania	Tell Clarent	Petroleum	Petroleum	Petroleum	Petroleum	Srillwarer	Stillmater	Stillheater	Sweet Grass	Stillwater	Stillwater	Sweet Grass	Sweet Grass	Sweet Grass	Sweet Grass	Sweet Gress	Sweet Gress	Sweet Grass	Stillwater	Wheetland
		ref. Field	no. number	119 WD89	120 WOBB	121 WDB7	122 MBMG15	123 MBMG16	20000000	125 140 140 20	SZOWBW CZI	OZDWOWO CZ	128 MBMG31	100000000000000000000000000000000000000	1000MBC 671	130 MBMG26	131 MBMG24	132 MBMG25	133 00M0014	134 46M0012	135 2940001	136 SAMOOO6	137 WOB9	138 WOBB	139 WQB7	140 WDB13	141 WOB12	142 WQB11	143 WQB10	144 44M0001	145 WOB14	146 WQB15	147 WOB9	148 WOB9

ROUNDUP 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

		Owner's name																														
	Aquiler	code																											217LKQT	320AMSO	320AMSD	
	-	(11)																														
259	-	Ē																														
		2	2000	4800	4800	4780	4690	4640	4780	4600	4600	4610	4800	2000	2000	2000	4850												4990	2090	4800	
		analysis	2	9	9	9	2	9	9	2	0	9	2	90	9	90	9	9	90	90	9	9	2	90	90	90	2	2	yes	70X	Nes .	
	Field temp. Lab	U																														
	Specific	at 25 C	999	086	740	730	2110	750	099	6170	240	340	820	520	870	450	068	910	1400	9960	2920	980	1590	7790	2290	086	460	920	1440	1480	3690	
	i	Site description	Blake Creek	Stephens Gulch	Roberts Creek	Rengeland and croplend		Rappelland	Boherts Creek	Lined with alkali	Water from well a turbid	Rengeland seep	Gettowey Creek	Timber Creek	Bercails Creek	Careless Creek	Little Careless Creek	Careless Creek	Oryland farming area	Saline pond near Harlowton airport	Orainage from dryland farming area	Musselshell River at Herlowton	Antelope Creek	Antelope Creek	Roberts Creek	Weeping Wall, 3 miles E of Shawmut	American Fork, rengeland	Lebo Creek	Twelve miles SW of Harlowton	0.5 miles NW of Fish Creek	0.5 miles SE of American Fork	
	Flow or yield	M = measured	1 cfs (E)	5 gpm (E)	0.5 cfs (E)								1 cfs (E)	2 cfs	1 cfs (E)	5 cfs (E)	1 cft (E)	4 cfs (E)	1 cfs (E)		0.5 cfs (E)		2 cfs (E)				8 cfs (E)	5 cfs (E)				
	Collection	T R Sec Trect Mo Day Yr Source	09 11 75 Creek	09 11 75 Creek	09 11 75 Creek	09 11 75 Asservor	09 11 75 Reservoir	09 11 75 Reservoir	09 11 75 Creek	08 11 75 Reservoir	09 11 75 Well	09 11 75 Seep	09 11 75 Creek	09 11 75 Creek	09 11 75 Coulee	09 11 75 Pond	09 11 75 Orain	09 12 75 River	08 11 75 Creek	09 11 75 Creek	09 11 76 Creek	09 11 75 Spring	09 11 75 Creek	09 11 75 Creek	04 29 56 Well	04 29 56 Well	04 29 56 Well					
	Location	T R Sec Trect	11N 17E 33	11N 15E 36 AC	11N 15E 32	10N 15E 09 BO	11N 15E 36 DD	10N 18E 06 B	10N 15E 34 AO	10N 16E 18	10N 16E 17	10N 15E 18 A	10N 17E 02	10N 17E 01	10N 18E 08	10N 18E 11	10N 18E 09	10N 18E 20 DA	08N 15E 21 BA	08N 15E 21 AC	08N 15E 22 8B	08N 16E 27	08N 15E 23	08N 15E 11 A	08N 18E 17	•	02N 15E 12	07N 15E 12	06N 14E 20 BAA	08N 14E 20 BAA	08N 15E 02 BOC	
		County	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheetland	Wheatland	Wheatland	Wheatland	Wheatland	Wheetland	Wheatland	Wheatland	Wheetland	Wheetland	Wheetland	Wheatland	Wheatland	Wheatland	Wheatland	Wheatland	Wheetland	Wheatland	Wheatland	Wheetland	
	Map ref. Freid	no. number	149 WQBB	150 WQB2	151 WQB3	152 WQB4	153 WQB5	154 WOB1	155 WQ828	156 WQB7	157 WQBB	158 WQB27	159 WQB10	160 WQB11	161 WQB12	162 WQB14	163 WOB13	164 WQB28	165 WQ821	168 WQB19	167 WQB20	168 WQB22	169 WQB18	170 WOB29	171 WQB15	172 WQB30	173 WGB16	174 WOB17	176 S6M0003	176 58M0008	177 56M009	

ROUNDUP 12 x 2² Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

Owner's name				Formerly 1178 Formerly 1288 Formerly 1888
Aquifer	ZITEGLE	221MR5N	23 110CLVM 320TLSP 53 110CLVM 38 110CLVM 16 110CLVM 320AMSO	331MDSN
Well depth (It.)			23 38 18	
Static water level i			30 38	
Altitude (ft.)	4300 3950 3900 3800 3800 3780 3780	3820 3810 3810 3790 3560	3770 3760 4260	3150 3800
Lab	s s s s s s s s s s s s s s s s s s s	2 2 2 2 2 2	************	2 5 5 5 2 5 5 5
Field C				53
Specific conductivity at 25 C	2040 8000 8760 4880 3320 2910 16300 7608	9700 2450 6320 4080	2910 4184 2344 7112 7547 8745 6436 12680 4690	2536 6450 in 43330 6460
Site description		Ore make to absolve we have a select seen a select seen a select seen a consect of make 5 of Broadwew Commande Creek, banks lined with selt One hall mile N of crossocials. Small creek one quarter mile 5 of crossocials.	Small step North Fort Crooked Creek Birchty, Test Area: Rapelle R108:74 Twenty five milet MW oil Billings Brown Creek at bridge Birchty, Test Area: Rapelle R13-85-74 Birchty, Test Area: Rapelle R13-85-74 Hougland Test Area: Rapelle R2-H2-74	gom (E) Ourtes Spring, 45 miles S ol Bar Rench 2538 08 cit (E) Ourner Ceek on Highway 12 Courte Courte Sading by Yellow Westr Ceek, eigel ample taken 4330 ol low in a saline seep crea
Flow or yield E = estimated M = measured	no flow 1.6 cfs (E) 0.5 cfs (E) no flow < 1 ypm	no flow no flow c 0.5 cts (E) 2 cts (E) no flow 15 gpm (E)	4 gom (E)	1 gpm (E) .08 cls (E) no flow
Collection date Mo Day Yr Source	06 25 76 Creek 06 25 76 Creek 10 04 76 Creek 06 25 76 Creek 06 25 76 Creek 07 76 Creek 07 76 Creek 07 76 Creek 07 76 Creek	10 13 76 Pond 10 13 76 Pond Creek 10 13 76 Creek 06 28 40 Well 10 04 76 Seep 10 04 78 Creek	06 25 76 Spring 06 26 78 Duch 06 25 78 Creek 04 08 76 Well 04 09 78 Well 04 08 76 Well	08 15 73 Spring 10 18 76 Creek 09 13 76 Coulee 10 13 76 Creek
Location T R Sec Tract	06N 16E 31 CC 04N 2SE 09 CDC 04N 2SE 06 CO 04N 24E 17 CC 04N 24E 17 BB 04N 23E 12 DD 04N 23E 24 BB 04N 23E 24 BB	04N 23E 0S DD 04N 23E 28 CC 03N 23E 08 DD 03N 23E 08 DD 03N 23E 18 BD 04N 24E 34 CB	03N 24E 10 CB 65 25 36 Span 03N 24E 11 CC 66 25 90 Dect 03N 20E 23 CA 64 60 76 WHI 03N 20E 23 CA 64 60 76 WHI 03N 21E 05 BC 61 27 46 WHI 03N 22E 04 00 64 69 78 WHI 04N 20E 53 CACA 64 08 78 WHI 04N 20E 52 CACA 64 08 78 WHI 04N 21E 22 CACA 64 08 78 WHI 04N 21E 22 CACA 64 08 78 WHI 04N 22E 20 CAA 64 08 78 WHI 05N 20 C	12N 22E 13 DD 07N 25E 07 GCD 13N 26E 02 COC 03N 23E 08 BAA
County	Wheatland Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone	Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone Yellowstone	Yellowstone Yellowstone Tellowstone Stillwater Sweet Grass Yellowstone Stillwater Stillwater Stillwater Stillwater	Fergus Musselshell Petroleum Yellowstone
Map ref. Field no. number	179 60M003 180 WQB15 181 WQB15 182 WQB36 183 WQB16 184 WQB27 186 WQB39	187 WQ840 188 WQ854 190 WQ856 191 40M0002 192 WQ837 193 WQ837	194 WOB25 195 WOB26 196 WOB13 187 K6M0231 199 K6M0215 199 K6M0273 200 F6M0230 201 F6M0232 202 K6M0233 203 64M0017	204 73M0842 205 WQ84 206 M8MG30 207 WQ855

Chemical Analyses

Maga		Collection		Magne-		Potes-		Manga-	***	Bicer-	Car-		- 4
ref.	Location	rlate	Calcu		Sodium (Ne)	sium (K)	(Fe)	nese (Mn)		bonate		(CI)	Sulfete
190	T R Sec Trect	Mo Day Yr	Source (C	a) (Nig)	(168)	IK)	11-61	(tours)	121051	(HCD ₃)	(CO ²)	(CI)	(SQ ₄)
7 1	4N 18E 18 8DB	03 28 67	Well 39	25	20°		.22			171		4	74
34 1	3N 17E 05 COC	03 28 67	Well 55	10	73*		.75			220		3	144
63 (9N 20E 31 BD	04 01 65	Well 8	3	1100	10				1650	180	270	500
	08N 20E 14 CC	03 17 65	Well 9	3	790	10				1930		130	
	08N 21E 29 CA	04 05 49	Well 470	120	730°					695		370	2100
69 (08N 21E 28 CB	04 29 64	Well 570	110	560°					485		300	2200
71 (07N 22E 01 BBC	10 28 76	Creek 92	64	165	5.6				262		12	680
	07N 22E 23 DO	04 28 75	Pond 46.1		1780					1060	10	19.5	3020
73 (07N 22E 26 DO	04 28 75	Pond 10.8		1530					905		33	2560
74 (07N 22E 27 CA	09 08 60	Well 11	2	2100°					3660		1200	15
					380°					305		160	2200
	07N 22E 27 CA	09 08 60	Well 570 Well 19.8	120	1415	5				855	17	36	2260
	07N 22E 26 DA 07N 20E 18 DBC	10 28 76	Creek 488	190	590	72				226	17	335	2600
	06N 20E 07 DD	05 09 75	Creek 39.4		46	2				185		6.5	110
	06N 20E 03 CA	05 09 75	Creek 57	26.5	63	2				211		6.5	190
08 (JON 20E US CA	US US 75	Creek 57	20.5	63	- 4				211		0.5	190
92 (06N 22E 11 C	09 09 75	River 85	53	119	3.6				296		10	420
94 (06N 22E 28 DDC	02 09 32	Well 43	17	4700°					775		7000	
98 (05N 20E 19 AA	03 26 46	Well		2300°					1830	109	2400	
99	11N 29E 01 CA	06 01 48	Well 290	54	2000°					280	109	1300	2800
100	11N 23E 20 AAB	07 01 33	Well 15		280°					600		11	140
	11N 23E 29 A		Well 280	79	1000°					305		7600	5900
	10N 22E 09 AC	49	Well 64	39	1900°					4850	121	160	
	10N 25E 09 DD	02 20 33	Well		1200°					1220		1200	45
	ION 28E 17 AA	10 60	Well 400	60	6100°					805		2700	9600
106	10N 29E 18 8D	07 30 68	Well 3	2	1200°					1650	165	570	190
107	10N 29E 23 DDD	10 19 76	Ditch 224	58	5490	51				1586		2069	6180
	09N 26E 21 CA	10 05 64	Well 170	26	4400°	3,				813		2100	6200
	09N 23E 21 8B	01 31 64	Well 9	2	1500°					2800	185	460	0.00
	09N 23E 20 AA	08 14 68	Well 2	10	630°					514		64	870
	08N 24E 02 B	08 31 64	Well 6	12	2300*					2310	337	1700	140
											-		
120 (05N 24E 33 AAD	10 19 78	Ditch 273	189	1030	13				470		274	2860
124	13N 26E 04 BD	10 06 58	Well 83	37	2000°					671	60	190	3700
129	13N 28E 22 D	09 18 38	Well		770°					1000	109	180	410
133	12N 25E 05 DC		Well 60	34	520°					440		18	1000
134 (04N 19E 13 DB	03 26 46	Well		1700°					1860	96	1400	
120	0241 105 13 00	11 29	Well 350	64	330°					350		220	1300
	03N 19E 17 CD 03N 19E 07 DA	11 29	Well 350 Well 590	130	530°					600		340	2100
	03N 19E 07 0A	04 21 76	Creek 221	1797	2660	19				195	61	365	13000
	03N 21E 18 DB	04 21 76	Tenk 461	449	1000	9				810	01	138	4200
	04N 14E 24 CBC	10 27 76	Creek 37.		11.0	1.8				189		1.3	14
0		.0 27 76	J. 48% 37.		17.0	7.0							
143 (03N 15E 14 BAA	10 27 76	Reservoir 30.5	10.4	18.0	3.1				165		3.2	2
	04N 16E 15 DC	09 04 44	Well 270	46	500°					325		75	1500
	06N 14E 20 BAA	04 29 56	Well 8	7	480°					740	84	53	260
	06N 14E 20 BAA	04 29 56	Well 12	40	300°					645		39	260
177	08N 15E 02 BDC	04 26 56	Well 240	130	520°					465		67	1700

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated. Values reported as sodium plus potassium.

of Selected Waters

Мар		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Weil		Trace	
ref.	Nitrate	rida	Lab	Tamp.		solids	hardness	alkalinity	adsorption		depth		elements	Lab
no.	(M)	(F)	рН	C	(umho/cm)	(cetc.)	as CaCO ₃	as CaCO ₃	ratio	agency	(ft.)	code	analyzed	numbe
7		.4		10			199	140		USGS	121	217KOTN	No	64MQ02
34		.7		10			179	180		USGS	195	217KOTN	No	64M002
63			8.8			2884	32	1650	84.2	Unknown		320AMSC	No.	65M004
67			8.3				35	1580	58.3	Unknown		211MRSN	l No	65M004
68			6.9				1670	570		Unknown		320A MSC		49M000
69							1880	398		Unknown		320AMSC) No	64M001
71	<.01		8.1		1515	1149	495	215	3.2	WQ8			No	76W265
72	.12		8.37	10	6450	5948	163	865	60.7	WOB			No	75W060
73	.32		8.16	10	5600	5056	82	742	73.5	WQB			No	75W060
74			7.9				36	3000		Unknown		217LKOT		60M000
75			7.9				1920	250		Unknown		331CRLS	No	60M001
78	.58		8.4		5730	41 79	70	729	73.6	WQB			No	76W265
83	.49		7.8		5447	4387	2000	185	5.7	WOS				76W265
86	.37	.24	7.87		556	408	172	152	1.5	WQ8				75W062
68	.25	.25	7.88		831	556	251	173	1.7	WQ8				75W063
92	.02		8.29	18	1224	987	430	243	2.5	was			No	75W190
94							177	636	4	Unknown		211FRNB		32M000
98								1680		Unknown		217KOTN		46M001
99			8.1				946	411		Unknown		331K88Y		48M000
100							37	492		Unknown		217LKOT		33M000
101							1020	250		Unknown		320TSLP	No	00M001
102			7.5				320	4160		Unknown		320A MSO	No	49M000
103								1000		Unknown		217KOTN		33M000
104			7.4				1256	660		Unknown		320TYLR		60M000
106			8.9	58.3			16	1660		Unknown		217KOTN		68M000
107	.02		7.9		20010	14850	800	1300	84.5	WD8			Yas	76W259
108			7.7				532	667		Unknown		320A MSO	No	84M001
110			8.8				31	2600		Unknown		217LKOT		64M001
112			7.8				46	422		Unknown		211EGLE		68M000
113			9.2				84	2460		Unknown		217LKOT		64M001
120	.03		8.2		5800	4870	1460	385	11.7	WQB			Na	76W259
124			8.8				360	650		Unknown		320A MSD		58M000
129								1000		Unknown		211EGLE		38M000
133							290	361		Unknown		320TSLP		DOMOO1 -
134			8.3					1690		Unknown		217KDTN		46M001
135				69.4			1140	287		Unknown		331MOSN	No	29M000
136			7.5				2010	492		Unknown		337MSNC		54M000
138	.28		8.98	15	23000	18410	8200	261	12.7	WQ8		343146		76W0651
139	24		7.64	11	7336	6891	3000	500	7.9	WQ6				76W0658
140	.08		8.2		296	170	140	155	.4	MOS				76W2654
143	<.01		8.1		304	167	120	135	.7	WO8			No	76W265
144					-54		884	267	.,	Unknown		320AM50		44M0001
			8.3				49	747		Unknown		217LKOT		56M000
175													110	MOUNT.
175			6.3				195	529		Unknown		320AMSO	No !	56M000E

Chemical Analyses

Mag	,				Ca	Hect	ion			Magne-		Potas-		Manga-		Bicar-	Car-		
ref.		Lo	catio	es		iate			Calcium	sium	Sodium	sium	Iron	nese	Sitica	bonete	bonate	Chloride	Sulfate
110	T	R	Sec	Tract	Mo	Day	٧r	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ²)	(CO ²)	(C1)	(SD ₄)
1 78	00.1				07	08	57	Well			410°					200	217	83	240
	06N				08		60	Well	6	2	570°					1200	59	83	54
180	04N	258	09	CDC	06	25	76	Creek	345	590	1060	9.5				470		399	4480
181	04N	256	06	co	06	25	76	Pool	359	494	424	26.2				544		293	2900
183	04N	246	17	BB	06	25	76	Creek	138	168	386	7.6				486		278	1036
186	04N	236	10	D	04	09	76	Seep	337	456	1140	13.0				571		360	4100
187	04N	23E	05	DD	10	04	76	Pond	320	7610	29000	125				508		3300	71000
	03N					09		Creek	401	869	2950	13.4				532		480	9650
191	03N	236	18	BD	05	28	40	Well			1300°					3120		260	
195	03N	246	11	cc	04	09	76	Ditch	168	133	700	7.8				607	7	279	1550
196	03N	286	11	ccc	06	25	76	Creek	36.1	6.2	500	8.2				682		34	569
				ADBA	04	90	76	Well	440	490	920	14	.20	.05	7.4	326		38	4611
	03N				03	27	46	Well	510	130	340°					330		57	1900
199	03N	236	04	ΦĐ	04	09	76	Creek	313	301	1300	8.8				450	4	196	3980
200	04N	20€	35	ACAA	04	08	76	Well	376	324	720	8.4	.32	.02	7.6	219		24	3540
201	04N	206	36	ССВА	04	80	76	Well	472	356	460	16	.12	.11	7.8	318		302	2759
202	04N	216	32	ACAA	04	08	76	Well	196	1064	2250	14	.20	.18	7.1	498		260	8644
203	09N	236	20	AA	04	80	64	Well	42	8	1300°					2680		470	110
204	12N	226	13	DD	08	15	73	Spring	533	185	14	3.2	.09	.02	<.1	59		4.1	1872

Note: All chemical data are given in milligrems per liter (mg/l) unless otherwise stated. Velues reported as sodium plus potassium.

of Selected Waters

Mao		Flug-		Field	Lab	Dissolved	Total	Total	Sodium		Well		Trace	
raf.	Nitrata	ride	Lab	Temp.	conductance	solids	hardness	alkalinity	adsorption	Collecting	depth	Aquifer	elements	Lab
no.	(N)	(F)	ρН	c°	(µmho/cm)	(calc.)	as CaCO,	as CaCO,	ratio	agency	(ft.)	code	analyzed	number
178			9.4					526		Unknown		217KDTN	l No	57M0002
179			8.2				23	1080		Unknown		211EGLE	No	60M0003
180	.13	.18	7.85	14,1	8000	7115	3290	385	8.0	WQB			Yes	76W1221
181	.02	.06	7.45	14.8	5760	4765	2930	447	3.4	MOS			Yes	76W1222
183	1.6	.24	8.0	14	3320	2255	1040	398	5.2	WO8			Yes	76W1223
186	.5		7.99	15	7608	6978	2720	468	9.5	WQB			No	76W0571
187			7.7		73600	111600	32100	415	70.4	MGB			Yes	76W2510
190	1		7.8	20	12450	14900	4580	436	19.0	WQ8			No	76W0572
191								2560		Unknown		221 MRSN	No	40M0002
195	.3		8.3	17	4184	3452	968	509	9.8	MGB			No	76W0570
196	.06	.85	8.25	13.8	2344	1490	115	559	20.3	WQB			Yes	76W1220
197	5.704	.3	7.63	10.5	7112	6687	3120	268	7.2	MBMG	23	110CLVM	Yes	76M0231
198							1810	271		Unknown		320TSLP	No	46M0015
199	3.2		8.27	17	7547	6555	2020	375	12.6	WQB			No	78W0573
200	.865	.4	7.91	11	5745	5109	2270	179	8.8	MBMG	53	110CLVM	Yes	76M0230
201	17.169	.1	7.75	12	5436	4547	2640	261	3.9	MBMG	38	110CLVM	Yes	76M0232
202	26.431	.5	7.95	7	12680	12710	4870	408	14.0	MBMG	18	110CLVM	Yes	76M0233
203			8.4				138	2200		Unknown		320AMSC	No	64M0017
204		1.8	8.08		2535	2622	2000	48	.1	M8MG		331MDSN	No	73M0842

ROUNDUP 1° x 2° Sheet

Sheet
salyses
nts A
Elema
1308

Lab	75W0627 75W0633 76W1221 76W1221	76W1223 76W2510 76W1220 76W0231 76M0230	76M0232 76M0233
	## P P P P P P P P P P P P P P P P P P	7 10.>	60.
Silver trum Tin Zinc fmg/l) (mg/l) (mg/l) (mg/l)	V V	86.	4. 0.1
Stron- tium (mg/l)	7.8	7.3	14.8
Silver fmg/I)	.02	9	
Selanium (µg/l)	7 < 1.0	1.0	1220
Phosphate Total descolved		013	016
vickel mg/Il	8 = 8,	> 0.05 88.05 89.09.	8 =
Mar. cury I	33	7 777	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ium ium mg/ll(0.00	03 <.2 .01 <.2 .70 <.3 .48 <.3	.23 .84
Lith- Mar- Laad ium cury Nickel (mg/I) tmg/II/tlg/II Img/II	> > > 8 8 8	> > > > > > > > > > > > > > > > > > >	4 5
Copper Img/II	95 03	6 5 6 6	9; 3 ;
	.016 < .05	C.10 .007 <.05 16 <.001 <.05 8 .02 .01 10. 7	93
Cad. Onco- mum mium (mg/I) (mg/I)	.000 .000 .016	00. 00. 00. 00.	0.02
Boron mg/II	08 .10 .15		0, 1,
Beryl- lium (µg/l)	01 >	3 <10 <1.0 8 <10 <2.0 < 5 <2.0 < 6	<2.0 < 5 <2.0 < 5
Ar- senic (t/g/1)	7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 <1.0 <2.0 <2.0	<2.0 <2.0
Anti- mony (mg/l)		₹ 7	27 43
Alu- minum (mg/l)		31.	.27
Location T R Sec Tract	86 06N 20E 07 DD 88 06N 20E 03 CA 107 10N 29E 23 0DD 180 04N 25E 09 CDC 181 04N 25E 06 CD	182 04N 24E 17 88 187 04N 23E 05 DD 186 03N 26E 11 CCC 187 03N 20E 02 ADBA 200 04N 20E 35 ACAA	201 04N 20E 36 CCBA 202 04N 21E 32 ACAA
Map	88 00 10 00 11 00 00 11 00 00 11 00 00 11 00 00	187 0 188 0 189 0 200 0	201 0

LOCATION BASE MAP

SHELBY 1° x 2° SHEET

IO KILOMETERS

CONTOUR INTERVAL 100 FT

IO KILOMETERS

CONTOUR INTERVAL 100 FT

SHELBY 1°x 2°Sheet Specific Conductivity Inventory Sheet

			Owner s name	Ramberg	Jamperg		Femple, J.	Mansfield, E.		Rudolph	ΑJS	Wolery, D	Ak.	ž	A specon A	Notery, L	Patrick Cirtiord	Particle A lo of	Patrick 1 to 4	,	Solum. D.	Wolerv	Chvilicek, L.	Fields	ingweaver		Bengs	Packer, B.	Chvilicak	Tolefson	incoln		Peterson, Ralph	McFadden	Cady, Lonnie	Anderson, R.	Hatt	
			Š	Ram	Ran		Tem	Man		_			Servik	Seusar	A	Wo						_	_	_	_		_	_	_	_	Ľ			_	_	-	쿤	
		Aquiter	epoo								280 211JDRV						TABLET OF	107	7000	AUGISTIC DOL	VACILITIES OF		211JDRV	100			VROLLIS I	211JDRV	226 211JDRV		•		166 211JDRV		20 112DRFT	.0		
	Wei	depth	3	20			230	8		226		275					•				·		240	100	120	•		300		Ξ	300			124	74	16		
Static	vater	level	3								180						00	3	2	3	900	3					80		90				80					
		Altitude	21	3100	3100	3060	3240	3260		3240	3190	3300	3130	3100		2130	200	2880	2970	2970	0400	3000	3960	2000	0000	2050	3070	3050	2910	2960	2940		3160	3180	3120	3150	3220	
		9	analysis	9	04	2	9	90		90	100	0	ě	2		2	2	yes	9	¥ 0.5		y es	2		2	2	200			2	2	2	Yes	2	¥8\$	00	90	
	Field	temp.	ပ	13.9	12.8	207	11.8	14.2		13	0	14.8	16.8	14.2		19.5	0	OR .	10.8	13			2 :	2 9	2	13.1	=	. •	· :	: :	2 9	2	œ	11.8	18	18.5	13	!
	Specific	conductivity	at 25°C	470	2500	1230	0608	4820		3930	2740	6100	2020	4170		2530	nenz.	3440	450	6170		2060	2970	0077	2110	2510	3380	2240	3540	9000	070		6170	8390	2330	2340	98.30	
	,		Site description		Domestic use	Domestic use	Kennedy Coulee	Water has unpleasant odor and is discounted	Water is not used for drinking		Domestic use	Domestic use	Water is not used for driffiching	Domestic use, water is discovered		Milk River		Domestic use	Domestic use	Water is not used for drinking		_	Water is not used for drinking		Water is not used for drinking	Water is not used for drinking				_	Domestic use	Domestic use	A Second Contraction	Water is not used to dimking	Confidence of the Confidence o	Water is not used for difficulty	Water is not used for drinking	
		Flow or yield	M = messured																			22 gpm (E)						1 gpm (E)		6 gom(M)								
		Collection	date Mo Day Yr Source		94 75	08 04 75 Well	06 04 75	08 04 75	08 04 75 Well		08 04 75 Well	01 13 77 Well	08 04 75	08 04 75 Well	3	08 06 75 River	00 04 75	3 8	17 77 10	9 5 5		O1 12 77 Well	08 05 75	01 12 77	08 OF 75 Well	08 03 76			1 01 13 77 Well	5		8			75	5	92 90	D 08 03 75 Well
			Location T R Sec Tract		37N 08E 02 C	37N 08E 02 C	37N 08E 05 DDD	37N 08E 07 ADBA	37N 08E 07 CBBC		37N 08E 20 BCCC 08 04 75	37N 08E 20 DDDC	37N 08E 19 CBCB	37N 08E 35 BCDB	37/4 (06 33 5000)	32N 10F 09	000000000000000000000000000000000000000	JON ORE OF DECL	36N 10E US DDCC	36N 10E 21 BD	SON TOE 21 BOR	26N DOE 28 ABAR	36N 09E 27 BDDC	36N 10F 32 DAAA	36N 00E 34 CBCB	36N 08E 22 CCCA		36N 08E 26 BBBC	36N 08E 01 ABBB	36N 10E 04 CBC	36N 09E 15 CCBB	36N 10E 17 DDAC 08		36N 08E 23 DAAA 01 13 77	34N 08E 09 DDDD 08	34N 08E 23 BBCD	34N 09E 21 DDDA 08	34N 08E 32 DDDD 08
			No. of		Heli	Hill	H	HH	Hill		H	His	H	7	Ē			Ī	H	H	Ē					1		100	Hill	Hitt	7	=		=	Hill	Hill	Hill	H
		Map	ref. Field	no.	1 MBMG1	2 MBMG2	3 MBMG3	4 MBMG4	5 MBMG5		8 MBMG7	7 MBMGB	8 MBMG6	9 MBMG10	10 MBMG9		II MBMCI	12 MBMG14	13 MBMG20	14 MBMG22	15 MBMG21	0.01000	16 MBMG18	TOWNEY OF	15 MBMGZ3	19 MBMG18	CIDWOW OF	ST MRMG16	22 MARAGOA	22 MRMG27	24 MBMG26	25 MBMG12		26 MBMG25	27 MBMG28	28 MRMG33	28 MBMG32	30 MBMG34

Shetlay 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

			me																												puou		
			Owner's neme	Bakke	DeMartian	VenWechel	Pallington	Michaelson		Stephenson	Stephenson	Stephenson	Trecht	Huntley	Anderson	Welsh	Welsh	Good, Roy				Woeppel						Donoven	Donoven	Knule	Vogel, Reymond		
		Aquifer	apoo	230 211JDRV			211JDRV	20		68 112DRFT		17 112DRFT					205 211JDRV	211JDRV															
	Well	depth	12	230	90		15	50		89		17		100	190	195	206											365			210		
Static	weter	level	12	80			30			9		7		m	m		137																
		Altitude	(11)	3250	3010	3040	2760	2990	2760	2860	2880	2880	3040	3030	3030	2940	2950	2800	2730	2700	2730	2700	2680	2680	2600	2550	2630	2700	2750	2760	2720		5
		Lab	anely sis	, es	00	9	101	2	9	yes	90	yes	9	9	90	90	***	xo.k	9	00	90	90	20	9	00	00	0.0	90	2	ou	00		
	Field		, C	g)	6.9		6	15.8	8.8		17.5		12.9		14.1	13.9	16	60	Ξ	16.6	14.9	91	10.2	13.6	6.5	14.4	13.9	8.9	16.5	8	=		000
	Specific	conductivity		3748	3120	1810	2690	1580	260	2710	48B0	2230	2780	3600	1690	3620	4540	5739	170	260	140	260	200	130	4040	130	160	10020	6040	4510	4780		02.5
	P	9	5rte description	Donnettic use	Domestic use	Water is not used for drinking	Domestic use	Water is not used for drinking	Domestic use			Domestic use	Domestic use	Water is not used for drinking	Water has an unpleasant odor	Domestic use except for drinking	Stock use	Domestic use except for drinking		Archie Coulee		Stock reservoir			Domestic use except for drinking	Chein of Lakes	Reservoir in Dry Lake Coulee	Stock use, water is corrosive	Domestic use except for drinking, water is corrosive	Stock use	I person	Outrain	
	Flow or yield	E - estimated																				4				-	-						
	Collection	chale	ž	A 01 13 27 Well	08 04 75 Well			A 06 06 75 Well	A D4 11 76 Well	01 12 77	08 08 75	01 12 77	77 50 80	O 08 04 75 Well	08 05 75	04 13 78	01 12 77	01 11 77	34N 12E 05 DDDD 04 14 76 Bearvoir	C 04 14 78 Creek	A 04 14 75 Reservoir	A 04 14 76 Reservoir	C 04 14 78 Well	B 04 14 76 Reservoir	A 04 14 78 Well	A 04 14 78 Reservoir	8 04 14 78 Reservoir	04 14 78	33N 12E 04 ADDD 04 14 76 Well	13N 13E 24 DDAC OF 12 28 Beservoir	D 04 12 76 Mall	10 17 10 Main	
		Location	T R Sec Tract	12N DOF OF BRAD 01 13 27	14N OOF O4 BRBB OR O4 75	MAN DOF DADORS DE	34N 12F 18 BOB	34N 10E 07 ADDA 06 06 75	24N 12E 19 BCBA	34N 10E 14 8CAB	34N 10F 14 BCAA	34N 10E 14 BCAA	34N 09E 15 CCC	JAN DOF 13 CDCD	34N 09E 27 BRAB	35N 11E 31 DCCB	SEN LIF 31 DCCC	34N 11E 24 CDDD	34N 12F 05 DDD	34N 12E 04 CACC	34N 12E 16 DADA	34N 12E 15 ADDA 04 14 76	34N 12E 23 DDCC	34N 12E 23 DDCB	34N 13E 20 CDCA	34N 12E 25 ABBA	34N 12E 36 DADB	34N 13E 27 ABC	33N 12E 04 ADD	33M 13E 24 DDA	324 135 24 5000	23N 13C 61 DDA	
			County	3	100	1	ğ	1	1940	=	Hell	1	H	1	H	=	Hill	Ŧ	=	1	Hill	H	H	===	Нін	Him	Hell	H	1	-		HIL	
	Mac	ref Field	-	31 MBMC106	22 MARKETE	22 MBAG 36	34 MRMG69	35 MBMG40	26 MBMC20	37 76M1584	38 MRMG41		40 MBMG37	AL MRAGES	42 MRMG 39	43 MRMG54	44 MRMG56		46 MRMG23	47 MBMG72	48 MBMG74	49 MBMG75		51 MRMG77	52 MBMG80		64 MBMG79		S6 MBMG82	67 MBMG121	SO MONOISI		

SHELBY 1° x 2° Sheet (Con't.)
Specific Conductivity Inventory Sheet (Con't.)

-	Dwnar's name		Smiz, Jim		Domire				Spicher, Bill	Voss	Zentäis	Domire					Rolston, W.	Rolston, W.	Johnson, Keta	Johnson, Kate				Alex, John			Curty, Lee	Ourty, Lee	Curty, Loe	Doloh, Dan L.
Aquitar	code	183 211JDRV			90 112DRFT																									
Well	Ξ	183			90				30	185	509	90					130		206		128	173		5			30		30	
	=	20			8																	OWING								126
	Ē	3090	3060	2880	2840	2850	2840	2840	3040	3090	3260	3100	2810	2820	2740	2840	2880	2880	2920	2920	2750	2780 Howing	3020	3060	3040	2870	2860	2850	2850	0300
9	analysis	707	an O	9	yas	90	90	90	9	9	ē	90	DQ.	00	90	9	9	9	90	00	2	9	9	9	9	2	9	ē	9	
Field gemp	Ü	os.		2	2	20		23	5	13	10.6	13.8	13	12	15.5	13	=	17					13.5	13	17.1	10	6.1	9.1	11.5	
Specific	at 25 C	14110		009	. 2840	15790		2740	2320	5460	3640	3190	0909	8720	2630	870	4740	1060	1540	6150	4030	3330	320	1860	999	1410	1350	4780	8180	0000
	ed Site description	Water is not used for drinking			Domestic and stock use			Marshy area around spring	Unused	Water is not used for drinking	Unused	Domesticuse		Reservoir on tributary to Sage Creek		Stock reservoir	Domestic use	Used for irrigation					Reservoir on East Fork Black Coutea	Domestic use	Stagnant water in a ditch		Stock use	Stock use	Domestic use except for drinking	
Flow or yield E = attimated	M * messured							1 qum	1 upm					_															B aom	,
Collection	T R Sec Tract Mo Day Yr Source	01 12 17 Well	04 15 76 Well	04 14 76 Seep	01 12 77 Well	04 14 76 Seep	33N 11E 31 DCD8 04 14 78 Beservoir	04 14 78 Spring	04 14 78 Well	08 04 75 Well	08 03 75 Wall	08 04 76 Well	04 14 76 Creek	32N 11E 16 DADA 04 14 76 Reservoir	04 13 76 Craak	04 12 76 Reservoir	04 12 76 Well	04 12 78 Reservoir	Well	Well	Well	Well	04 14 76	04 14 76 Well	04 14 76 Pond	04 14 78 Creek	04 13 76 Well	04 13 78 Well	04 13 78 Well	
Location	T R Sec Tract	33N 09E 15 8BCC	33N 10E 16 DCCD 04 15 76 Well	33N 10E 36 DDAB 04 14 76 Seep	33N 09E 28 DDA	33N 11E 31 CDDC 04 14 76	33N 11E 31 DCDB	32N 11E 05 8ABD	32N 10E 03 BADA	33N 09E 15 88C	33N 08E 15 CCAC 08 03 75 Well	33N 08E 28 DDA	32N 11E 15 CBCB	32N 11E 16 DADA	32N 12E 18 CAAB 04 13 76 Craak	32N 13E 18 CDCC	32N 13E 17 CBAC 04 12 76 Well	32N 13E 17 CBAB	32N 12E 22 8ABB	32N 12E 22 BABC	32N 12E 33 AAAA	32N 12E 32 AAAA	31N 10E 08 CBDA	31N 10E 15 BACD 04 14 76 Well	31N 10E 15 CCCC	31N 11E 15 88BC	31N 11E 24 BABD 04 13 76 Well	31N 11E 13 ABAA	31N 11E 24 AACD 04 13 78 Well	
	County	Ī	Ŧ	Hell	Hill	FER	Hai	Ŧ	Ī	Hill	Hill	H	Ŧ	Hill	Ħ	H	H	Hall	Hill	Ŧ	H	Hell	7	1511	H	Ŧ	H	Hill	Hill	
Map raf. Freid	no. number	61 MBMG108	62 M8MG111	63 MBMG113	64 M8MG109	65 M8MG112	66 M8MG114	67 M8MG117	68 MBMG115	69 M8MG108	70 MBMG107	71 M8MG109	72 M8MG113	73 MBMG119	74 M8MG135	75 MBMG142	75 MBMG140	77 M8MG141	78 MBMG136	79 MBMG137	80 MBMG139	81 MBMG138	82 M8MG121	83 MBMG122	84 MBMG123	85 M8MG120	85 M8MG126	87 M8MG124	RB MBMG125	

SHELBY 12 x 22 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

			Owner's name	Carpenter, Earl	Huem, Chris	Michels, rardid	Goodian		Steward, Jim	Michels, H		Bitz			Cowen	Cowen	1	Boog	Kulbeck	Haakensen	Farley	Ven Dessell	Van Dessell	Van Dessell	Robo, Gustav	Hodges	Rudolph	Graff	Skari		Cady	Pimley, Don		McAlpine, C.	McAlpine, C.
		Aquiler	eoge				246 211CLG1											136 211EGLE	MO 211EGLE	32 112DRFT	500 211EGLE	60 112GCDF	60 112GCDF	112GCDF	12 112GCDF	VRUITE	80 211JORY	20 211JDRV	112GCDF		211JDRV	211JDRV			
	Well	depth	Ξ	160	8	187	246		20	20 V		30	}				-	436	340	32	200	8	8	36	12	125	80	130	3	5	90	280			
			3				137		õ	22						34	-	225			8	1	24	9	9		20	02	23		80	180			
•			3	2780		2660	2770	2830		2710	2630	2840	2630	2020	2840	2840		2880	2880	2940	2760	3130	3180	3130			3240	3380	3330	255	3300	3360	3400	3400	3360
			analysis	90	2	0	9	9	90	9	8	2	2 2	2	90	9		yes	Yes	yes	Ve2	**	101	/es	***					5	7.04 7.04	707	9	90	ē
	Field	dual		10.8	0	9	12		12	7		17	: :	2	7	12.5		9	13	7	7	7.1	12	8.1	111			8.2	9	0	52	9	1.5	2.5	•
			at 25 C	4440	4130	3980	\$700		1480	1810	4870	1570	2740	00/1	4860	910		3180	2960	1130	6480	920	280	930	3350	2490	2470	6140	1310		2940	6320	6330	1560	200
			Site description	Domestic use except for drinking	Domestic use	Stock use	Domestic use except for drinking		Domestic use		4	negavon is surrounded by sens	Comestic 45			Fourteen Mile Coulee					Stock use	Van Dassel Test Area	Van Dassel Test Aces	Van Dessel Test Area		Constitution of the	Compatible use	Water is not used for demaning		Skeri Test Area No S-12, SK2-74	Water is not used for drinking	Domestic use except for drinking & cooking		Stock see only	Reservoir frozen over
	Flaw or yreld	E = estimated	M = messured	6 gpm		7 apm	ı														& course							mon /	a gom im					1 mm (E)	
	Collection F		ract Mo Day Yr Source	31N 12E 28 8BCD 04 13 78 Well	31N 12E 24 CDDB 04 12 76 Well	31N 13F 32 BAAA 04 12 76 Well	31N 13E 31 CDDD 04 12 76 Well	30N 12E 02 DDDC 04 13 76 Well	11-M of 70 to 0000 to 200 1000	3 3	04 77 10			30N 13E 28 CCCD 04 12 78 Pond	30N 11E 22 DCCC 04 14 78 Well	30N 10E 25 ADAD 04 14 76 Creek		29N 10E 18 CCD8 01 14 77 Well	29N 10E 28 CBBD 01 14 77 Well	20N 11E 22 BCAD 01 14 22 Well		2011 07E 03 0CCC 01 14 77 Well	36N O/E US BOAR ON 12 78 Well	36N 07E 03 BDAD 04 12 76 Well		36N 0/E 24 CBCA 12 04 /6 Well	36N 0/E 34 CCCD 12 04 /8 Well	34N D/E 12 BCCC 12 US /8 Well	340 U/E 18 AABA 12 04 /8 Well	34N 06E 30 BABB 04 12 76 Well	34N 07E 27 DAAB 12 06 78	324 035 24 DADO 12 06 26 Wall	33N 07E 41 DADC 12 09 70 mm	27N 02N 12 DO 12 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20	37N 03W 23 DDDA 12 30 76 Reservole
			County	1	Hill	Hell	H	Hall		1911	H	Time I	H	H	2.2	H		Chouteeu	Chouteau	-	Chouleau	Choureeu	Liberty	Liberty		Liberty	Liberty	Liberty	Liberty	Liberty	1 iberty	1	Look	1001	Toole
	Mao	ref Field	number		-		_	-		98 MBMC139	9/ MBMG181	M8MG169	MBMG168	100 MBMG171	OC LONGS TO	102 MBMG129	103 not on map	104 76M1607		900 30000	500 MWI 001	107 76M1508	108 /bw0240	110 76M0241		111 76M1461	112 76M1464	113 76M1466	114 76M1465	115 76M0243	118 76M1467	200 100 100	119 4494630	or Contract of the	120 MBMG12

Specific Conductivity Invantory Sheet (Con't.)

			Dwner's name		Feugue	Byrne, W	Dehl, Bill	Johannsen			Jones, Tom	Finlayson		Matheson	Matheton	Matheson	Anderson	Meuli	Gutcher	Gutcher	Gutcher	Good	Flesch	Clawiter	Barbie		McCann	Packer, B.				Fink	Fink
		Aguiter	code						211CL.RD								34 112DRFT	112GCL0					27 112DRFT	237 112DRFT									
	Well	depth	3									3		36			3		98		16		23	237				200					
State			3														=	7	flowing		89		Ξ	20									
-		~	3	3420	3480	3480	3450	3440	3200	3490	3400	3510	3300	3310	3310	3320	3620			3170	3170	2740	3430	2690	3160	3260	3200	3060	3070	3020	3060	3080	3080
		q	enaly tis	9	5	00	9	¥ 0.2	10Å	90	ou	ou	9	yes	9	9	yes	761	9	9	9	9	yeı	Yes	9	9	uo	8	00	90	ou	90	9
	Field	dwes		•	2	0.3	9.0	1.7	1.3					21			7	89	0,	13	12.5		=	18	11.6	23	135	13	19.6	23.1	20.7	11.2	10.2
	Specific	>	at 25 C	12600	280	130	430	5140	3660	440	280	096	1090	3070	150	4720	16310	1700	6290	6260	2230	1000	5440	3080	1500	320	370	2550	1120	1560	1200	3080	3920
	Flow or yield	E = estimated	M = massured Site description	Reservoir frozen over	Reservoir froatn over	Reservoir Trozen over	Reservoir frozen over	Domestic use	Willow Creek			Domestic use	Domessic use	Domestic use			Anderson test erea	Meuli test orea				Domestic use	Seline seep test well	Domettic.	Domestic	D'Brian Creek		Water is not used for drinking	Lattle Sage Greek	14 cts Big Saye Creek	Kennedy Coulee	Domestic use	Domessic use
	Collection		T R Sec Trect Mo Day Yr Source	26N 02W 22 000 12 30 75 Beservoir	SEN COM OR BAAC 12 30 75 Bearing	JEN DOW 25 AAA 12 30 75 Beservoir	35N 62W 26 ACC 12 30 75 Reservoir	12 03 76	32N 02E 01 CCCC 12 03 76 Creek	30N 02W 07 ACD OR 29 76 Reservoir	29N 01W 20 ACA 08 29 78 Reservoir	29N 03E 34 CDCA 08 29 78 Well	27N 01W 02 BAAA 08 29 78 Well	28N 02F 31 BCCC 12 07 26 Well	28N 02F 31 CBRA 08 29 76 Sound	28N 02E 32 CADA 08 29 76 Seco	28N 02W 27 BADA 04 14 76 Well	28N 01W 36 ADBC 04 14 76 Well	34N OBE 20 CCCB OB 03 75 Well	34N 08E 19 DDDA 08 03 75 Well	34N 08E 19 DDAD 08 03 76 Well	34N 12E 20 CCCA 04 14 76 Well	35N 02W 02 DCCA 04 13 76 Well		34N 08E 27 DBAB 07 30 75 Well	34N BBE 31 DCDC 07 30 75 Creek	34N 08E 07 DDD 07 30 75 Well		36N 08E 22 BCBB 07 30 75 Creek	36N GBE 28 AAAA 07 30 75 Creek	37N 08E 06 DDDA 08 04 76 Creek	36N 08E 26 BBBB 08 04 75 Well	
			County	Tools	Tools	Took	Toole	Toole	Tools	Populara	Ponders	Pundera	Pondera	Pondera	Pondara	Pondera	Pondera	Pondere	H	H	Ī	H	Loole	Chouteau	H	7	FI	FF	Ī	H	H	H	Ŧ.
	Wao	Field	no. number	9100000	21 MBMG12	22 MOMO 12	24 AABAAG19	26 76M1459	26 36M1460	22 MRMG40	28 MBMG41	29 MBMG46	30 MBMG42	21 AABAAGA3	22 MBMG44	33 MBMG45	134 76M0247	35 76M0248	136 MBMG29	37 MRMG30	38 MBMG31	39 MBMG21	140 MBMG43	41 26M1604	142 MBMG142	43 MBMG143	44 MBMG144	45 MBMG145	46 MBMG146	147 MBMG147	14B MBMG14B	149 MBMG149	150 MBMG150

SHELBY 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

			Owner's name	Bredbury	Stark, D.	VanWechel	Berge, 5.	Langel, A. C.		Spicher	Spinler	Pester	Sterny	Spinler		Chinadale	Farnick	Jackson	Greytak	Good, Phyllis		Schumacker	Brain	Henke	Pertek	Bubnash		Butnesh	Nehrgang	Gagnon, N.	Gagnon, Francis	Englund		Seidlitz	Wolfe	Hendrickson	Dahinden, M	Dahinden	
		Aquiler	code																																				
	Well	depth	3	33				1014			285	1064		150		180	26						225	180	230	285			168			365		260	160			196	
Static		level	3																				25						80					20				155	
	•	Altıtude	3	3040	3040	3020	2990	2000		3060	3060	3070	3040	3000		3060	2940	2960		2000	4990	3060	2980	2960	2980	2000			2820	2990	30.20	;		3160	3160		3100		
		Lab	analysis	90	00	9	2	2	2	90	9	9	9	2	2	9	90	2		2	8	90	9	00	9	2	?	9	90	2	2			90	00		9	ę	
	Field	Groat	ູ່ບ	13	13.8	16	: :	: ;	*7	16.7	15.7	22	15.3	14.2		14.8	12.2	9			9	21.8	=		12	: :	:	36	12	2	:			10.2	13	8	2	2 2	
	Specific	conductivity	er 25°C	3780	3100	2170	920	00.47	0001	2460	2710	1980	230	0201		1530	810	1500	4010	0164	3080	1950	5840		0880	1040		2730	3390	290	3			1970	6040	390	330	2080	
	3		od Site description	Wasse to not been for dealing		Domestic use	Domestic use	Domestic use except for drinking	Domestic and stock use		Domestic use	Domestic use except for drinking		Domestic use	Domestic use	411	Domestic use	Domestic use	Domestic use	Domestic use				Stock use	Domestic and stock use	Domestic and stock use	Domestic and stock use				Located in I welve Mile Course		Unused					Located in Black Course	
	Flour or weld		M = messured																		Dir		110						JI O		oir						oje		
			Location date T R Sec Fract Mo Day Yr Source			08 05 75	08 05 75	37N 09E 10 CCC 08 05 75 Well	36N 09E 23 CCCA 08 05 75 Well		08 06 75	08 06 75	08 06 75	08 06 75	34N 10E 32 CDCC 08 06 75 Well	20 00	34N 10E 29 DDAB 08 06 75 Well	8	<	37N 10E 32 A 08 06 75 Well	29N 06E 12 CDBA 07 24 75 Reservoir		29N 06E 11 ABBB 07 24 75 Heservoir	30N 07E 30 BCBB 07 24 75 Well	30N 07E 20 DDAA 07 24 75 Well	07 24 75	30N 07E 22 BAAD 07 24 75 Well		30N 07E 22 BAAC 07 24 75 Heservoir	29N 07E 02 CBBD 07 24 75 Well	30N 06E 05 CDDC 07 25 75 Reservoir	30N 06E 09 CBBC 07 25 75 Well	31N 06E 26 BBAA 07 25 75 Well		31N 07E 29 BBAD 07 25 75 Well	30N 06E 28 BABB 07 25 75 Well	31N 06E 28 ADCA 07 25 75 Reservoir	31N 07E 24 CCCC 07 26 75 Pond	32N 07E Z8 AABA 07 25 75 Well
			County		Hill	Hill	HIII	Hill	Hill		Hill	Hill	Hill	HIII	= I		Hill	Hill	Hill	Hill	Liberty		Liberty	Liberty	Liberty	Liberty	Liberty		Liberty	Liberty	Liberty	Liberty	Liberty		Liberty	Liberty	Liberty	Liberty	Liberty
			ref. Field		-	-	153 MBMG153	154 MBMG154	155 MBMG155		158 MBMG156	157 MBMG157	158 MBMG158	159 MBMG159	160 MBMG160		161 MBMG161	162 MBMG162	163 MBMG183	164 MBMG164	165 MBMG165		166 MBMG166	167 MBMG167	168 MBMG168	169 MBMG159	170 MBMG170		171 MBMG171	172 MBMG172	173 MBMG173	174 MBMG174	175 MBMG175		176 MBMG178	177 MBMG177	178 MBMG178	179 MBMG179	180 MBMG180

SHELBY 1° x 2° Sheet (Con't.) Specific Conductivity Inventory Sheet (Con't.)

			Owner's name	Serdiirz	Jeppesen, H.	Jeppesen, H.	Jeppesen, H.	Anderson, Enach	Cicon, Jernes	Murrey, Ai		Cicon, J.	Cicon	Otten, J.	Temple, Ed	Temple, Ted	Kidd	Temple, Ernest	Temple, Ernest	Hodges, Dean	Gillord, A.	Wood, Thomas	Laird, Robert	Gunderson, Ed	Schaeler, D.	Jensen	Joy, F.	Robo	Richter		McDowell, J.	McDowell, J.	Marteon A.
		Aquiter	apoo																														
	Wei	depth	th.)	195									8	152	206	120	180	820		147	31		120	98		94	119				145	9	28
Static	weter	level	ih.											20						20	12		90	75		9	8		30		8	89	-
		Lab Altitude	Ξ		4030	4120	3680	4000	3750	3620	3620	3480	3480	3480	3410	3360		3400	3370	3260	3260	3240	3320	3480	3480	3420	3230	3300	3270	3240	3380	3370	3460
		3	analysis (11.)	9	90	90	9	Q	2	8	90	90	9	9	90	90	90	9	9	9	S	9	9	9	2	S	8	9	Q.	2	ě	9	
	Field	temp.	ပ	12	8	21	18.5	20	7	22	13	9	7	16.5	16	15.5	19.3	16.6	24	13	16	16.6	12	15.6	11	7	9.61	10.8	Ξ	51	7	9.9	7
	Specific		ai 25°C	1340	260	310	470	370	440	620	610	1220	1780	4300	2620	3060	2430	1440	1800	1860	2610	1970	1770	19110	4100	0109	1830	4850	1400	8970	2810	1460	1070
	eld	per	Site description																	IMI							Stock use		Domestic use except for drinking		Domestic use except for drinking		
	Flaw or yield	E . estimeted	M = measured											3 apm						40 gpm [M]													
	Collection	date	R Sec Tract Mo Day Yr Source	IBB 07 25 75 Well	188 07 26 75 Spring	D6 07 28 75 Reservoir			8A 07 28 75 Creek	36N 06E 28 CADA 07 26 75 Reservoir	36N 06E 28 CADA 07 28 75 Creek	CA 07 26 75 Well	36N 06E 27 ADCA 07 28 76	36N 06E 26 BBBA 07 26 75 Well	AC 07 28 75 Well	1DD 07 26 75 Well	CB 07 26 75 Well	36N 07E 30 ACAD 07 26 75 Well	36N 07E 30 ADBD 07 26 75 Reservoir	38 07 27 75 Well	BA 07 27 75 Well	CC 07 27 75 Well	36N 07E 17 AAAB 07 27 75 Well	ABB 07 27 75 Well	ICC 07 27 75 Well	35N 06E 35 ADAB 07 27 75 Well	DD 07 27 75 Well	36N 07E 35 ACCC 07 28 75 Well	35N 07E 14 BAAA 07 28 75 Well	36N 07E 14 CBBD 07 28 75 Spring	35N 07E 18 ABBD 07 28 75 Well	35N 07E 18 BAAA 07 28 75 Well	34N OSE 03 BRAD 07 28 75 Well
		Location	T R Sec Tra	32N 07E 34 ABBB	35N 05E 17 DBBB	35N 05E 17 BAD6	35N 05E 28 DBCC	36N 05E 24 CAAB	36N 06F 29 CB	36N 06E 28 CA	36N 06E 28 CA	36N 06E 27 AD	36N 06E 27 AD	36N 06E 26 BB	36N 07E 31 BD	35N 06E 06 BD	36N 07E 03 BB	36N 07E 30 AC	36N 07E 30 AD	36N 07E 12 DC	36N 07E 13 CB	35N 07E 23 AA	36N 07E 17 AA	35N 06E 23 BABB	35N 06E 26 CBCC	35N 06E 35 AD	35N 07E 21 CC.	36N 07E 35 AC	35N 07E 14 BA	36N 07E 14 CB.	35N 07E 18 AB	35N 07E 18 BA	34M OGE 03 BU
			County	Laberty	Liberty	Laboray	Liberty	Liberty	t shorts	Liberty	Laberty	Liberty	Liberty	Liberty	Liberty	Laberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	Laberty	Liberty	Liberty	- theretare
		Field	ununper	MBMG181	MBMG182	B3 MBMG1B3	84 MBMG184	MBMG185	MBMG186	87 MBMG187	88 MBMG188	MBMG189	90 MBMG190	191 MBMG191	92 MBMG192	193 MBMG1B3	194 MBMG194	MBMG195	96 MBMG196	197 MBMG197	198 MBMG198	199 MBMG199	MBMG200	201 MBMG201	202 MBMG202	203 MBMG203	MBMG204	205 MBMG205	206 MBMG206	207 MBMG207	208 MBMG208	209 MBMG209	0100770010
	Map	ref.	9	181	182	183	184	185	186	187	188	189	190	161	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210

Specific Conductieity Inventory Sheet (Con't.) SHELBY 1" x 2" Sheet (Con't.)

		Owner's name	imith, C.	Aildram, L.	Ohnson, V	Milnar, L.	Wilner, L.	Milnar, L	Milnar, E.	Mildrum, F	Wildram, F	May	Kınyon, H.	Lalum, P.	Green, Charles	Kanfield, D.	Heydon, C.	Sundgram, W	Miller	Miller	Dielman	Sundgran, A.	Foster, R.	.yle, D.	Anderson, M.	Minnehan, J.	4e imbernar	histman, A.	Shattel, A.	Shettel, A.	Swmnk. 8
	Aquiter		S	M	of	W	W	Z	×	M	ž	ž	¥	3	Ö	ž	Ī	ď	Σ	Σ	F	ซ์	ī	2	₹	2	Í	į.	8	S	0
Mail				90	98	12	20		115				112		670	200	9	110	240		280		25	285	28	300	450	310	23	009	
Static Market W.					15	9	8		40				5			150					180					200	96	180	15	300	
v 3			3400	3390	3340	3320	3320	3200	3320	3240	3250	3240	3240	3240	3300	3320	00	3400	3470	3470	3360	3360	3420	3340	390	3340	3190	300	3260	3260	000
	Lab Altitude	analysis (.,		.,	.,	•	.,	•••		•			.,					•		.,			• •	.,		.,		.,		•
3		C anel	5 2	90	15.B no	.5 no	.4 no	9		.5 no	10.6 no	90		28.8 no	13.9 no	13.1 no		10.5 no	9	19.5 no	-	2	8.5 no	00	10.3 no	11.8 no	11,7 no	9	9	90	
300			10.2			15.5	18.4		15	25.5		12					9					23						-			
S. S	conductivity	at 25 °C	2530	2860	2570	1360	0809	9200	9360	360	5350	6170	9400	310	1310	2090	2680	3080	3240	290	4890	250	950		6910	2360	4030	2430			
		ption																													
		Site description																													
		co.																											the domestic well	nestic use	
1	v or yield		udb					.5 apm			.5 gpm				mon	1 gpm		uda u			andb .								Former domestic well	Domestic use	
	Flow of yield	M - measured	3 gpm					4.5 apm		YOR	2.5 gpm			ryoir	13 gpm	13 gpm		8 mon		rvoir	5 gpm	voir									
		M - measured	Well	Well	S Well		5 Well	Well		5 Raservoir		6 Well	15 Well	5 Reservoir	Ī	Vell	16 Well	Well	Well	15 Reservoir		voir	Na Well	Well will	E Well	Texas State of the	16 Well	Well	Well	Well	
		M - measured	Well	Well			7 28 75 Well	Well		7 28 75 Raservoir		7 28 76 Well	7 28 75 Well	7 28 75 Reservoir	Ī	Vell	7 29 76 Well	Well	Well	7 29 78 Reservoir		voir	7 29 75 Well	17 29 76 Well	7 29 75 Well	7 29 75 Well	7 30 75 Well	7 30 75 Well	Well	Well	
	u C	Mo Day Yr Source M-measured	Well	07 28 75 Well	07 28 75	07 28 75	07 28 75	07 28 75 Well		38 07 28 75 Reservoir		DDD 07 28 76 Well	DDD 07 28 75 Well	DDC 07 28 75 Reservoir	Ī	07 28 75 Well	07 29 76	07 28 75 Well	07 29 75 Well	DDC 07 29 78 Reservoir		voir	DDC 07 29 75 Well	DDA 07 29 75 Well	DDD 07 29 75 Well	88D 07 29 75 Well	07 30 76	DAA 07 30 75 Well	Well	Well	
	Collection	Mo Day Yr Source M-measured	Well	07 28 75 Well	07 28 75	07 28 75	07 28 75	07 28 75 Well		E 02 8C88 07 28 75 Raservoir		E 11 DDDD 07 28 76 Well	E 13 CDDD 07 28 75 Well	E 12 DDDC 07 28 75 Reservoir	Ī	07 28 75 Well	07 29 76	07 28 75 Well	07 29 75 Well	E 06 DDDC 07 29 78 Reservoir		voir	E 17 ADDC 07 29 75 Well	E 23 D D D A 07 29 76 Well	E 26 DDDD 07 29 75 Well	E 15 ABBD 07 29 75 Well	07 30 76	E 35 ADAA 07 30 75 Well	Well	Well	
		act Mo Day Yr Source M-measured		Well	07 28 75	07 28 75	07 28 75	Well	07 28 75 Well	34N 07E 02 BCBB 07 28 75 Raservoir		34N 07E 11 DDDD 07 28 76 Well	34N 07E 13 CDDD 07 28 75 Well	34N 07E 12 DDDC 07 28 75 Reservoir	Ī	Vell	34N 07E 17 DDDB 07 29 76 WeH	Well	07 29 75 Well	33N 07E 05 DDDC 07 29 78 Reservoir		voir	33N 07E 17 ADDC 07 29 75 Well	33N 07E 23 D D D A 07 29 75 Well	33N 07E 26 DDDD 07 29 75 Well	22N 07E 15 ABBD 07 29 75 Well	07 30 76	33N DGE 35 ADAA 07 30 75 Well		Well	
	Collection	T R Sec Tract Mo Day Yr Source M-measured	Well	35N 07E 31 CCCB 07 28 75 Well	34N 07E 05 ADAA 07 28 75	34N 07E 04 ACBC 07 28 75	34N 07E 04 ACBC 07 28 75	07 28 75 Well	36N 07E 33 DDDD 07 28 75 Well	34N 07E 02 BCBB	34N 07E 03 ADAA 07 28 75 Well	Liberty 34N 07E 11 DDDD 07 28 76 Well	Seriv 34N 07E 13 CDDD 07 28 75 Well	34N 07E 12 DDDC 07 28 75	33N 06E 22 BCCC 07 28 76 Well	07 28 75 Well	07 29 76	07 28 75 Well	33N 07E 06 DDAD 07 29 75 Well		33N 07E 10 DDDB 07 28 75 Well	33N 07E 03 DADB 07 28 76 Reservoir	Sherty 33N 07E 17 ADDC 07 29 75 Wall	33N 07E 23 D DDA 07 29 76	33N 07E 26 DDDD 07 29 75	32N 07E 15 ABBD 07 29 75	32N 06E 14 BBBB 07 30 75	therry 33N 06F 35 ADAA 07 30 75 Well	72N DEF 01 88AA 07 30 76 Well	32N 06E 01 08AA 07 30 75 Well	
	Location data	County T R Sec Tract Mo Day Yr Source Mameasured	Liberty 34N 06E 01 AAAB 07 28 75 Well	Liberty 35N 07E 31 CCCB 07 28 75 Well	Liberty 34N 07E 05 ADAA 07 28 75	Liberty 34N 07E 04 ACBC 07 28 75	Liberty 34N 07E 04 ACBC 07 28 75	Liberty 34N 07E 04 ACBD 07 28 75 Well	Liberty 35N 07E 33 DDDD 07 28 75 Well	Liberty 34N 07E 02 BCBB	Liberty 34N 07E 03 ADAA 07 28 75 Well	Liberty 34N 07E 11 DDDD 07 28 76	Liberty	Liberty 34N 07E 12 DDDC 07 28 75	Liberty 33N 06E 22 BCCC 07 28 76 Well	Liberty 33N 06E 18 ADAC 07 28 75 Well	Liberty 34N 07E 17 DDDB 07 29 76	Liberty 34N 07E 29 CCDC 07 29 75 Well	Liberty 33N 07E 06 DDAD 07 29 75 Well	Liberty	Liberty 33N 07E 10 DDDB 07 28 75 Well	Liberty 33N 07E 03 DADB 07 29 76 Reservoir	1 decty 33N 07E 17 ADDC 07 29 75	Liberty 33N 07E 23 DDDA 07 29 76	Liberty 33N 07E 26 DDDD 07 29 75	Liberty 32N 07E 15 ABBD 07 29 75	Liberty 32N 06E 14 BBBB 07 30 76	1 therry 33N DSE 35 ADAA 07 30 75	Liberto TON DEF DI BRAA O7 30 76 Well	Liberty 32N 08E 01 8BAA 07 30 76 Well	
	Collection	number County T R Sec Tract Mo Day Yr Source M-measured	34N 05E 01 AAAB 07 28 75 Well	Liberty 35N 07E 31 CCCB 07 28 75 Well	Liberty 34N 07E 05 ADAA 07 28 75	Liberty 34N 07E 04 ACBC 07 28 75	Liberty 34N 07E 04 ACBC 07 28 75	34N 07E 04 ACBD 07 28 75 Well	Liberty 35N 07E 33 DDDD 07 28 75 Well	Liberty 34N 07E 02 BCBB	Liberty 34N 07E 03 ADAA 07 28 75 Well	34N 07E 11 DDDD 07 28 76	ABMG221 Liberty	ABMG222 Liberty 34N 07E 12 DDDC 07 28 75	Liberty 33N 06E 22 BCCC 07 28 76 Well	ABMG224 Liberty 33N 06E 18 ADAC 07 28 75 Well	48MG225 Liberty 34N 07E 17 DDDB 07 29 76	MBMG22B Liberty 34N 07E 29 CCDC 07 29 76 Well	MBMG227 Liberty 33N 07E 06 DDAD 07 29 75 Well	Liberty	MBMG229 Liberty 33N 07E 10 DDDB 07 28 75 Well	MBMG230 Liberty 33N 07E 03 DADB 07 28 76 Reservoir	MBMG231 Liberty 33N 07E 17 ADDC 07 29 75	MBMG232 Liberty 33N 07E 23 DDDA 07 29 76	WBMG233 Liberty 33N 07E 26 DDDD 07 29 76	Liberty 32N 07E 15 ABBD 07 29 75	MBMG235 Liberty 32N 06E 14 BBBB 07 30 76	33N D6F 35 ADAA 07 30 75	URANGOUT LINEAU TON DEF DI BRAA OF 20 76 Well	Liberty 32N 08E 01 8BAA 07 30 76 Well	

ShetlBY 1° x 2° Sheet (Can't.) Specific Conductivity inventory Sheet (Con't.)

å						5 .
Owner's name	Van Dassel Van Dassel Van Dessel Jochim, A. Rugtredt	Teinstram Meyer, R. Meyer, R. Jachim, M. Jachim, M.	Anderson Revermen Lynch Gatezmer Moog	Holland, D. Hun Schrouder Scnronsins	Schrouder Solum Solum Holland	Diemert McKechnie, J. McIntyre Ostrem, C. Kinyon, B.
Aquifer						
Well depth (ft.)	061	160	26 134 100 100	240	26	8
Static weter level (ft.)						
Alterude (ft.1	3300	3300 3240 3240 3200 3210	3120 3140 3060 3140	3190 2940 2940 2880 2860	2880 2980 2980 2880 2880	2880 3300 3220 3140 3210
Lab	2 2 2 2 2	22222	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2
Field c c	11.8 26 23 11.6 12.5	2 2 3 3 3 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.5 14 13 1.6 18.6	6 81 8.5 1	9.7 3.6 3.6 3.2	6.6 17 17.8 16 16
Specific conductivity at 25 C	2210 45000 36570 4350	400 4220 250 4280 390	4950 3830 1960 360 4080	410 3860 3720 390 420	880 1690 440	640 230 240 320
d Site description	Dometic use except for drinking Dometic use except for drinking	Reservoir frozen over Domestic use Theservoir frozen over Domestic use except for cooking and drinking Reservoir frozen over	Domestic use Domestic use accept for drinking Reservoir frozen over Domestic use except for drinking	Domestic use except drinking Domestic use Reservoir frozen over Reservoir frozen over	Pond frozen over Domestic use Barevoir frozen over Domestic use East Fork Creek	Domestic and stock use Stock reservoir
Flow or yield E = estimated M = measured			12 gpm	e e e e e e e e e e e e e e e e e e e		
Collection Location date T R Sec Tract Mo Day Yr Source	36N 07E 04 DDCA 07 30 75 Well 36N 07E 03 BC8 07 30 75 Seep 36N 07E 03 BCA 07 30 75 Seep 32N 08E 16 AAAA 01 01 76 Well 32N 08E 14 CCC 01 01 76 Well	32N 08E 30 CBBD 01 01 78 Reservoir 32N 08E 28 CBAC 01 01 76 Well 32N 08E 38 CCC 01 01 76 Reservoir 32N 08E 72 CGC 01 01 76 Well 32N 08E 27 CGR 01 01 76 Well	32N 08E 24 DCCC 01 01 78 Weil 32N 08E 28 DDDA 01 01 76 Weil 31N 08E 08 AAAA 01 01 78 Weil 31N 08E 34 CCDD 01 01 76 Reservoir 31N 08E 08 AAAD 01 02 78 Weil	31N 0BE 16 AADC 01 02 78 Reservoir 29N 0BE 06 AABD 01 02 76 Well 30N 0BE 31 CCBD 01 02 75 Well 29N 0BE 23 01 02 76 Reservoir 29N 0BE 24 CBBD 01 02 76 Reservoir	28N 08E 14 ACAD 01 02 76 Pond 30N 08E 12 B8BA 01 02 78 Well 30N 08E 12 B8BA 01 02 78 Well 30N 08E 14 DADB 01 02 78 Well 30N 08E 34 BCCC 01 02 78 Ceek	30N 10E 31 BDDD 01 02 78 Well 31N 01W 01D AAB 09 10 76 Reservoir 31N 03E 02 ABA 08 10 75 Reservoir 32N 03E 32 BDCC 09 10 76 Reservoir 32N 03E 16 CCAD 09 10 76 Reservoir
County	Liberty Liberty Hill Hill	11111	11111	11111	11111	Hill Toole Toole Toole
Map rel. Field no. number (241 MBMG241 242 MBMG242 243 MBMG243 244 MBMG244 245 MBMG246	246 MBMG246 247 MBMG247 248 MBMG248 249 MBMG249 250 MBMG250	251 MBMG251 262 MBMG252 253 MBMG253 254 MBMG254 255 MBMG255	256 MBMG256 1 257 MBMG257 1 258 MBMG259 1 258 MBMG259 2 260 MBMG250 1	261 MBMG261 1 262 MBMG262 1 263 MBMG263 1 264 MBMG264 1 266 MBMG265 1	266 MBMG266 P 267 MBMG267 1 268 MBMG269 1 269 MBMG269 2 270 MBMG270 1

SHELBY 1° x 2° Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Burd, M Hellinger, Deen Hellinger, R Bussell, D Bussell, D	Harwood, R. Snutter, D. Childers, E. Akelsted, D.	Hanson, B. Hanson, B. Kerning, L. Bussel Stewart, B. F.	Stewert, B. F. Hagen, A. Hagen, A. Kaltleisch Mcleen	Sisk, R. Diemert, D. Benjamin, J. Heptrer, K. Nickol, P.	Nickol, P. Nickol, P. Nickol, P. Judisch, J. Russel, Cliff
Aquifer				2	
Well (ft.)				-	
Stetic water level (ft.)				-	
Leb Altitude (It.) no 3220 no 3230 no	3130 3320 3120 3260	3340 3340 3240 3240	3370 3360	3080 3240 3300 3400	3480 3480 3480 3670 3680
Leb no no no no	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2
freld c C C C 17.1 18.2 14.8 14.2	13.8 15.7 14.9 15.2	17 92 18.2 17.2 16.5	13.8 16 12.5 16 17.5	14.2 10.1 13.5 18.2	16.5 17 12.8 10.4
Specific conductivity et 25 C 420 550 880 430 690	2060 680 2050 290 190	1390 450 390 340 400	330 370 1260 1450 300	240 200 4210 1280 4990	6090 23190 18010 1980 700
end See description	Willow Creek	Domestic use Unused			
Collection flow or veld Location date E-estimated T R Sec Trest Mo Day Yr. Source M-messured 22N OZE 12 A DAY 69 12 75 Reservoir 22N OZE 62 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir 22N OZE 69 A DAY 69 12 75 Reservoir	33N QZE 36 AABA 09 12 75 Creek 33N QZE 28 BBDA 09 12 76 Reservoir 32N QZE QZBODA 09 12 78 Well 22N QSE GCCC 09 12 75 Reservoir 32N QSE 12 CDCD 09 12 75 Reservoir	33N 03E 22 BC8C 09 13 75 Well 32N 03E 22 BC8A 09 13 75 Well 32N 01E 11 AGAB 09 13 75 Reservoir 33N 01E 35 CDAB 09 13 75 Reservoir 33N 01E 08 BC9C 09 13 75 Reservoir	23N 01E 24 CCDD 09 13 75 Reservoir 33N 01E 22 C8C8 09 13 76 Reservoir 31N 01E 22 C6C0 09 13 76 Reservoir 31N 02W 01 CABC 09 14 75 Reservoir 31N 01W 03 C8B8 09 14 75 Reservoir	31N 03E 24 ACAC 09 14 75 Reservoir 30N 03E 03 CCCC 09 14 76 Reservoir 30N 03E 03 CCCC 09 14 75 Well 30N 01W 11 DDBS 09 14 75 Well 29N 02E 21 ADBD 09 15 75 Reservoir	29N 02E 22 BCDB 09 16 75 Well 29N 02E 21 BCBC 09 16 75 Spring 29N 01E 08 BAB 09 15 75 Spring 29N 01E 08 BAB 09 15 75 Well 30N 01E 11 CACC 09 18 75 Well
County Toole Toole Toole Toole	Toole Toole Toole Toole	Toole Toole Toole Toole	Toole Toole Toole Toole	Toole Toole Toole Toole	Toole Toole Toole Toole
Map ref. Field 70 number 271 MBMG272 273 MBMG272 274 MBMG272 275 MBMG274 275 MBMG274	278 MBMG278 277 MBMG277 278 MBMG278 279 MBMG279 280 MBMG280	281 M8MG281 262 M8MG282 283 M8MG283 284 M8MG284 285 M8MG285	286 MBMG286 287 MBMG287 288 MBMG288 289 MBMG289 290 MBMG290	291 MBMG291 292 MBMG292 293 MBMG293 294 MBMG294 296 MBMG295	296 MBMG296 297 MBMG297 298 MBMG298 299 MBMG299 300 MBMG300

SHELBY 12 x 22 Sheet (con't.) Specific Conductivity Inventory Sheet (Con't.)

						<u>*</u>							. F				_																
			Owner's name	Russel, Cliff	Russel, Cliff	Korkan-Stevens	Korkan	Robertson, M.	Dunning, W	McCarter	Nesbo, J.	Roark, Louis	Benjamin, H. F. Jr	Collier	Johansen, Jay		Akelstad, Gary	Markuson, H.	Markuson, H.	Hanwood, T.				Witt	Witt	With	Will	Willey	Boehm	Horel	Bold	Hansens	Petersen
		Aquiter	code																														
	Well	depth	Ē	12	8.8	24	6.6	71				12.5		36				13.7	21	30				88				20	220	350	431	350	450
Static	weter	level	Ξ	9	-	15	9	13				9						9	15												200		90
		⋖	7	3560	3560	3250	3160	3220	3300	3320			3300	3480	3300	3300	3620	3430	3420	3380	3170	3220	3230	3400	3210	3290	3250	3360	2880	2890	2980	2900	2890
		Lab	analysis	90	9	90	90	9	9	9	90	90	90	90	9	0	90	9	Q.	00	no	90	90	g	90	90	90	2	9	90	9	9	90
	Field	temp.	ပ	11.5	108	13.2	13.3	=	18.7	10.7	9.91	8.6	13	9.5	7	16.8	15.8	13	11.3	6 6	21	50	50	11.5	8.8	1.6	10.8	13.3	Ξ	81	11.8	11.4	13
	Specific	Conductivity	et 25 C	670	2470	1320	2460	1050	300	5810	3580	6300	9290	1020	620	1910	1440	6420	1300	6440	190	220	260	1780	16310	1870	9680	4650	2340	2040	3370	4160	4840
	rield		ured Site description													Willow Creek						Reservoir contains much vegetation						Domestic use	_	Domestic use			Domestic use except for drinking
	Flow or yield		ce M * measured						VOIL		VOIF		VOIF								voir	voir	VOI		voir				4 gpm	2 gpm			3 gpm
	Collection	dete	Mo Day Yr Source	09 16 75 Well	09 16 75 Well	09 16 75 Well	09 1B 75 Well	09 16 75 Well	09 15 75 Reservoir	09 16 75 Well	09 17 75 Reservoir	09 17 75 Well	09 17 75 Reservoir	10 17 75 Well	08 17 75 Well	09 17 75 Crest	09 17 76 Well	09 17 75 Well	09 17 75 Well	09 17 75 Well		08 04 76	08 04 76 Reservoir	08 05 78 Well		08 05 78 Well	08 05 76 Sprin	08 08 76 Well	09 09 78 Well	08 09 76 Well	08 09 78 Well	08 09 76 Well	08 09 76 Well
		Location	T H Sec Tract	30N 01E 31 CACC	30N 01E 31 CCCB	30N 01E 01 CBCC	30N 01E 11 BACA	30N 02E 04 CCDC	31N 02E 31 ABDA	32N 01W 11 DCBA 09 16 75	33N 02W 26 AAAD 09 17 75	34N 02W 16 DDDB	33N 01W 26 CBBB	34N 01W 26 ACCC	34N 01E 24 CBCC	34N 02E 16 CDDD	34N 03E 20 ABBA	33N 03E 01 CBCD	33N 03E 01 CCBD	33N 03E 23 ACDD	27N 07E 04 DDCC	27N 07E 11 CDAC	27N 07E 21 BDDB	26N 06E 08 BBBB	27N 05E 25 ACDC	27N 05E 26 CBCD	27N 05E 35 BCCC	26N 04E 08 ABBC	29N 09E 08 CCCC	29N 09E 06 AABA	29N 10E 18 CCCC	29N 09E 18 CBBC	29N 10E 26 CCCD
			County	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Toole	Chouseau	Chouteau	Chouteeu	Chouteeu	Chouteau	Chouteeu							
			no number	301 MBMG301	302 MBMG302	303 MBMG303	304 MBMG304	305 MBMG305	305 MBMG306	307 MBMG307	30B MBMG308	309 MBMG309	310 MBMG310	311 MBMG311	312 MBMG312	313 MBMG313	314 MBMG314	315 MBMG315	316 MBMG316	317 MBMG317	318 MBMG318	319 MBMG319	320 MBMG320	321 MBMG321	322 MBMG322	323 MBMG323	324 MBMG324	325 MBMG325	326 MBMG326	327 MBMG327	328 MBMG328	329 MBMG329	330 MBMG330

SHELBY 1" x 2" Sheet (Con't.)

5
20000
2
and diese
2
å

					7	fac.
Dwner's name	Breun Breun	Sorenson	Robertson, A	Brew Nepil Urton Urton	Ames Good, P. Layton Spicher, Deryl	Flesch, Lester Skarl James Farms fnc. Skarl
Aquifer				80 211CLRO 90 112ORFT 211CLRD	211CLAD 112DRFT	27 112GLCO 00 59 211CLGT 59 211CLGT
S 8 =	3200	225	250	280	236	200 200 59
2 3 3 = =	2 2	88		220		£ 4 m
	2860 2720 2670 2900 2720	2780 2940 2980 3080	2730 2860 2840 2940 3120	2900 3240 3330 3360	3330 2760 3150	3420 3280 3300 3320
d d d d d d d d d d d d d d d d d d d	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	0 0 5 5 6		
	21 21 21 21 21 21 21 21 21 21 21 21 21 2	12.7 20 14.4 15.5	16 20 20 10.4	51=0=	10 10 16.2	10.5
Specific conductivity et 25 C	1480 3590 870 11980	9360 1330 2250 2240 460	1020 2310 250 290 1120	330 1660 380 1960 1280	330 5590 2950 15110 1510	6280 870 23360 1330 4900
eld Site description	Located in a creek bed Big Sandy Creek	Stock use Stock use	Stock use Domestic use accept for drinking Stock reservoir Stock reservoir Stock reservoir Weter in not used for drinking	Domestic and stock use Salina seop project area Salina seep test erea Salina seep test erea	Stock use Unused Unused Pool in Dunkirk Coulee	Saline seep test ense LF-5. Saline seep test area Unvued Salina seep test area SK-4. Salina seep test area SK-8.
Flow or yield Source E estimated Source M * messured	24 cfs	7 gpm		30 gpm	10 m	
Collection Location date Source T R Sec Trect Mo Day Yr Source	29N 13E 21 AAAA 08 09 76 Well 28N 13E 10 ABBA 08 10 76 Well 28N 13E 05 DCD 08 10 76 Pord 28N 11E 12 DDAA 08 09 76 Well 28N 13E 29 DCBA 08 07 76 Creek	27N 12E O5 BAAA 08 07 76 Well 27N 12E O7 AAAO 08 09 76 Feservos 27N 05E 02 BBEC 08 07 78 West 27N 09E 03 BCCA 08 08 76 West 27N 13E 27 DDAC 08 10 76 Pool	27N 13E 30 CABC 08 09 76 Reservoir 27N 11E 19 COBD 08 09 76 Well 27N 10E 25 BOAR 08 09 78 Reservoir 26N 10E 03 OCCD 08 09 78 Reservoir 27N 09E 21 CCCB 08 09 76 Well	26N 10E IR ADAB 08 08 16 Reservoir 26N 13E 11 DAAD 08 09 78 Well 28N 04E 02 CCC 08 17 75 Pond 28N 04E 03 DBDB 04 15 78 Well 28N 04E 03 DDA 09 17 75 Pond	27N Q4E 38 CDDC 08 17 75 Pond 29N 06E 02 ACAD 07 24 76 Spring 31N 06E 58 BAAC 07 25 75 Well 32N 10E 28 BACA 08 13 75 Pond 32N 10E 21	33N 02W 02 0DCC 12 03 74 Well 33N 05E 01 CD0C 07 14 75 Well 33N 07E 01 BC8A 07 29 75 Well 34N 05E 24 ADDO 07 14 75 Well 34N 05E 25 ABBB 07 14 75 Well
County	Chouteau Chouteau Chouteau Chouteau	Chouteau Chouteau Chouteau Chouteau	Chouteau Chouteau Chouteau Chouteau	Chouteau Chouteau Chouteau Chouteau Chouteau	Chouteau Liberty Liberty Toole Hill	Toole Liberty Liberty Liberty
Map raf. Field no. number	331 MBMG331 332 MBMG332 334 MBMG334 334 MBMG334	336 MBMG336 337 MBMG337 338 MBMG338 339 MBMG339 340 MBMG340	341 MBMG341 342 MBMG342 343 MBMG343 344 MBMG345 345 MBMG345	346 MBMG346 347 MBMG347 348 76M1670 349 76M0250 350 75M1669	361 75M1672 362 75M1142 353 75M1141 364 75M1378 355 75W0426	356 75M0002 367 76M0830 358 75M1143 359 75M0829 360 75M0831

SHELBY 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name	Skari Skari Skari Robo, Gustav	Duncan Ranch	U. S. Government Dye, Homer
Aquiter	59 211CLGT Ska 69 112GLCO Ska 59 112GLCO Ska 8 112GCDF Rol	211JORV	180 211VRGL 600 211VRGL
Well depth (ft.)	59 89		990
Static water level (h.)	16 10		8
Altitude (ft.)	3320 16 5 3310 22 6 3300 10 5	3160	3526 3586
Lab	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	¥8.	9 5
Field c C	=		8.8
Specific Field Weller Well Society semp. Lab Altitude level depth Aquiter at 25 C C analysis (1;) (1;) code	1730 1360 1360	1220	
ite description	۰		
	Saline seep test area, SK-6 Saline seep test area, SK-7 Saline seep test area, SK-10	(E) Irrigation use	Unused Stock use
low or yield estimated measured		20 gpm (E) freigation use	Unused Stock use
low or yield estimated measured			37N 03W 02 A8 02 18 36 Well Unused 37N 03W 02 CA 10 18 65 Well Stock use
		37N 07E 31 B 10 18 75 Spring	
Collection Flow or yeld Location date E estimated T R SecTract Mo Day Yr Source M = meaured	34N 05E 28 AA8A 07 14 75 Well 34N 05E 26 DDDC 07 14 75 Well 34N 05E 28 BAAA 07 14 75 Well 34N 07E 24 CRCA 17 04 35 Well	Liberty 37N 07E 31B 10 18 75 Spring	37N 03W 02 A8 02 18 36 Well 37N 03W 02 CA 10 18 65 Well

22 SHELBY

Chamical Analyses

Map				Co	Hect	ıon			Magne-		Potes-		Mange-		Bicar-	Car-		
rel.		Loc	ition		dete			Calcium	sium	Sodium	sum	Iron	nese		ponete		Chloride	Sulfate
no.	Т	R	Sec Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₃)	(CO ³)	(CI)	(SO ₄)
7	37N	OBE	20 DOOC	01	13	77	Well	7.8	1,9	666	1.8	.02	.01	8.3	1090	2.4	24	520
13			06 DDCC		12		Well	9.8	2.8	875	2.6	.23	< .01	8.4	1454		36	653
15	36N	10E	21 8D8A	01	12	77	Well	95.4	39.4	1145	6	.04	.02	8.3	724	11	78	2070
16	36N	09€	28 AB AB	01	12	77	Well	3.3	.9	520	1.5	.04	.01	8.0	1144		152	6.8
18	36N	106	32 DAAA	01	12	77	Well	3.9	.9	548	1.8	.06	.01	8.1	934		221	116
21	36N	08E	26 888C	01	13	77	Well	10.8	2.8	870	2.4	.03	.01	9.2	1780		196	154
22	35N	08 E	01 A888	01	13	77	Well	5.2	1.4	745	1.7	.26	.01	8.1	834		658	8.8
23	35N	10E	04 CBCD	01	12	77	Well	60.4	19.9	800	3.4	.02	.01	8.5	756		31	1243
26	35N	08 E	33 DAAA	01	13	77	Well	17.9	8.4	1325	3.2	.11	.01	8.8	1553		78	1525
28	34N	08E	22 88CD	01	13	77	Well	160	154	196	17.5	.21	3.65	8.6	731		14	822
31	33N	08E	05 88 AA	01	13	77	Well	8.7	2.2	846	2	.18	.01	8.3	544	20	203	1062
34	34N	12E	19 8 CBD	01	11	77	Well	11.4	5.5	596	3.8	.05	< .01	10.3	541	10.1	46	674
37	34N	106	14 8CA8	01	12	77	Well	94	41	468	5.4	.84	.07	10.3	471		19	909
39	34N	10E	14 8CAA	01	12	77	Well	84.5	45	390	2.8	.07	.05	12.0	512		16	706
44	35N	116	31 DCCC	01	12	77	Well	17.4	4.6	1095	3.4	.05	< .01	9.8	842		47	1667
45	34N	116	24 0000	01	11	77	Well	27.4	16.9	1390	50.8	.23	< .01	25.9	1235	71.5	27	1930
60	33N	106	07 D	01	13	77	Well	5.8	2.2	1105	3	.05	< .01	8.9	717		1340	1.5
61	33N	09E	15 88CC	01	12	77	Well	254	193	3430	11.9	.05	.07	4.7	484		459	7335
64	33N	09€	28 DDA	01	12	77	Wett	7.2	1.9	680	1.8	.06	.02	8.7	888		20	709
104	29N	10E	18 CCD8	01	14	77	Well	3.8	1	740	1.8	.08	< .01	9.0	876		657	.6
105	29N	106	28 CB8D	01	14	77	Well	5.5	1.5	870	1.9	.32	.01	7.2	605		1035	1.6
106	28N	116	22 8 CAD	01	14	77	Well	153	52	16.3	9.1	.09	.01	13.3	375		26	207
107	28N	126	33 CCCC	01	14	77	Well	8.2	2.3	1220	3.1	.52	.02	7.8	677		1524	2.1
108	36N	07E	03 BDAB	04	12	76	Well	58	37	84	2.9	.02	.07	4.0	167		25	308.3
109	36N	07E	03 8 CDO	04	12	76	Well	47.6	24	41.4	2.2	.04	.01	3.4	158		11	155
110	36N	07E	03 8DAD	04	12	78	Well	51.5	35.5	95	2.9	.04	.05	3.5	161		21	316.7
111	36N	07E	24 CBCA	12	04	76	Well	515	136	218	5.2	.07	.08	11.5	352		118	1769
112			34 CCCD		04		Well	10.6	3.4	860	2.5	.06	.01	8.4	1013		10	1053
113			12 8CCC		06		Well	47.8	19.8	1920	5.5	.14	.02	10.9	1795		43	2805
114	34N	07E	18 AABA	12	04	76	Well	42.8	14	1500	4.4	.45	.02	8.1	802		97	2718
			30 BAB8		12		Well	119	51,8	200	9	.10	.91	8.8	1303		22	258
116			27 DAAB		05		Well	27	13.2	1600	4.4	.05	.01	13.0	3065		18	1060
117			21 DADC		05		Well	26	11.2	1570	3.8	.06	.02	7.5	588		184	2668
125			21 DAAA			78	Well	39	37.2	1250	5.6	.08	.01	7.7	1184		117	1766
126	32N	026	01 0000	12	03	76	Creek	235	166	482	25.4	2.30	2.60	15.2	976		71	1407
131			31 8000			76	Well	485	95	145	7.1	.OB	.76	13.2			252	1240
134			27 BADA			76	Well	390	1610	2350	12	-22	.04	6.5	425		974	10410
135			36 ADB0		14		Well	152	107	62	8.5	.15	.55	9.2	342		26	556.3
140			02 DCA4			76	Well	692	368	258	16	.13	.45	8.8	811		193	2099
141	29N	13E	34 A8C8	01	14	77	Well	25.4	13	710	7.1	.06	.14	21.4	912	9.6	156	617
			02 CCC		17		Pond	40.1	22.4	3.6	8.1	.04	< .01	14.5	234		1.46	8.2
349			03 0808		15		Weil	153	104	160	16	.07	.10	8.0			48	917.8
350			03 DDA		17		Pond	78.1	78.1	74.5	32.2	< .01	< .01	2.1	126		9.3	580.5
351			36 CDDC		17		Pond	20.9	12.5	16.4	21.4	.03	.01	3.9	162		10.2	11.2
352	29N	06E	03 VCVD	07	24	76	Spring	257.9	88.2	1228	10	.03	.01	13.0	659		177.5	2815

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated

of Selected Waters

Map		Fluo-		Field	Lab specific	Dissolved	Total	Total	Sodium		Well		Trace	
raf.	Nitrate	ride	Lab	Temp.	conductance	solids	hardness	alkalinity	adsorption	Collecting			siements	Lab
no.	(N)	(F)	pH	c°	(µmho/cm)	(calc.)	es CaCD ₃	ss CaCO ₃	ratio	agency	(ft.)	code	enetyzed	number
7	.312	1.8	8.33	10	2743	1771	27	898	55.5	MBMG	280	211JDRV	Yes	76M1599
13	.158	.9	8.2	9	3437	2306	36	1190	63.5	MBMG	120	112DRF1	Yes	78M1590
15	12.199	.4	8.38	13	5170	3826	400	612	24.9	MBMG	160	211JDRV	Yes	76M1589
16	.542	1.8	8.24	9	2053	1258	12	938	65.5	MBMG	270	211JDRV	Yes	76M1591
18	.111	3	8.08	12	2246	1360	13	766	64.8	MBMG	240	211JDRV	Yes	76M1588
21	.7	-6	8.09	11	3362	2123	38	1460	61.0	MBMG	200	211JDBV	Yes	76M1598
22	.029	.8	8.03	4	3242	1840	19	684	74.9	MBMG	200	211JDBV	Yes	76M1597
23	4,179	1.2	8.12	11	3593	2544	233	620	22.8	MBMG	226	211JDRV	Yes	76M1587
26	<.023	.4	8.08	9	5168	3730	71	1270	68.4	MBMG	165	211JDRV	Yes	76M1596
28	.043	.2	7.92	16	.2328	1736	1920	600	2.7	MBMG	20	112DRF1	Yes	76M1595
31	.106	1.0	8.70	9	3748	2420	31	480	66.3	M6MG	230	211JDRV	Yes	76M1594
34	8.246	.7	8.49	9	2688	1633	51	461	36.3	MBMG	75	211JDRV	Yes	76M1582
37	.025	.3	7.69	9	2708	1780	403	386	10.1	M6MG	68	112DRF1	Yes	76M1584
39	.056	.6	8.03	9	2228	1509	396	420	8.5	MBMG	17	112DRF1	Yes	76M1685
44	.328	.4	6.09	18	4544	3250	62	691	60.3	MBMG	205	211JDRV	Yes	76M1686
45	20.322	.3	8.80	9	5739	4169	138	1130	51.5	MBMG		211JDRV	Yes	76M1583
60	<.023	1.8	8.25	8	4929	2922	24	588	99.1	MBMG	1077		Yes	76M1600
61	89.008	.4	8.23	9	14110	12020	1430	397	39.5	MBMG	183	211JDRV	Yes	76M1692
64	.032	1.4	8.22	10	2837	1868	26	728	58.3	MBMG	90	1120RF1	Yes	76M1593
104	.070	3.0	8.22	10	3184	1848	14	718	87.3	MBMG	436	211EGLE	Yes	76M1607
105	.063	2.9	8.00	12	2956	2224	20	496	84.9	MBMG	340	211EGLE	Yes	76M1606
106	19.202	.1	8.14	14	1126	681	598	308	0.3	M6MG	32 -	112DRF1	Yes	76M1605
107	.041	1.8	8.11	14	5475	3103	30	555	97.0	MBMG	500	211EGLE	Yes	76M1608
108	.151	.2	7.74	7.1	920	610	317	137	2.1	MBMG	60	112DRFT	Yes	76M0240
109	.043	.2	7.71	12	575	362	218	129	1.2	MBMG	60	112DRF1	Yes	76M0242
110	.219	.2	7.93	8.1	933	606	275	132	2.5	MBMG	35	112DRF1	Yes	76M0241
111	11.63	.2	6.96	13.3	3346	2956	1850	289	2.2	MBMG	12	112DRF1	Yes	76M1461
112	1.02	.7	8.10	5	3494	2449	40	821	58.8	M6MG	125	211JDRV	Yes	76M1464
113	.136	<.1	7.75	14	7473	5737	201	1470	59.0	MBMG	80	211JDRV	Yes	76M1466
114	<.023	.3	7.64	9.2	8138	4680	164	494	50.9	MBMG	120	211JDRV	Yes	76M1465
115	<.023	.5	7.79	9.5	1706	1313	510	1070	3.9	MBMG	54	112DRF1	Yes	76M0243
116	.129	.1	7.59	25	5936	4246	122	2510	63.1	MBMG	100	211JDRV	Yes	76M1467
117	1,446	.4	8.02		6323	4762	111	482	64.8	MBMG	280	211JDRV	Yes	76M1468
125	.041	.6	8.07	7.7	5138	3807	250	971	34.4	MBMG				76M1459
126	.095	.4	7.25	1.3	3657	2888	1270	800	5.9	MBMG		211CLRC	Yes	76M1460
131	72.5	.a	7.43		3070	2399	1600	230	1.6	MBMG	35	112DRFT	Yes	76M1475
134	35.920	2	7.88	7	16310	15600	7600	349	11.7	MBMG	34	112DRFT	Yes	76M0247
135	15.814	.3	7.75	8	1702	1108	820	280	0.9	MBMG	35	112DTSH	Yes	76M0246
140	236.754	.3	7.40		5439	4173	3240	501	2.0	MBMG	27	112DRFT		76M0244
141	.422	1.9	8.36	16	3076	2011	117	.764	28.6	M8MG	237	112DRFT	Yes	76M1604
348	2.554	.1	7.38	11	384	214	192	234	0.1	MBMG		211CLR0		75M1670
349	.129	.2	7.47	6	1948	1501	810	158	2.4	MBMG	90	112DRFT		76MQ250
350	.138	.2	8.01	11	1278	917	517	126	1.0	MBMG		211 CLR0		75M1588
351	2.011	.1	7.27	10	329	178	104	162	1.0	MBMG		211CLRD		75M1672
352	1.808	.6	7.98	16	5585	4916	1010	659	7.1	MEMG			No	75M1142

SHELBY

_	 - 4	

				Co	liect	ion			Magne-		Potas-		Menga-		Bicsr-	Car-		
	Loc	etion	1		date			Calcium	SIUM	Sodium	sium	Iron	nese	Silics	bonete	bonate	Chloride	Sulfate
Т	R	Sec 1	Tract	Мо	Day	٧r	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(5iO ₂)	(HCO ²)	(CO ²)	(CI)	(SO ₄)
31N	06E	35 E	BAAC	07	25	75	Well	4.2	.5	748	4.3	.14	< .01	5.3	1300	253	188	79
32N	01 E	28 6	BACA	09	13	75	Pond	17.5	10.6	4370	19.1	.14	.01	1.5	1225	667	280.5	7022
32N	10E	21		03	17	75	Well	2.6	.8	390					961		39.3	10
33N	02W	02 0	DDCC	12	03	74	Well	706	461	307	26.7	.06	.27	18.3	474		183	2706
33N	05E	01 0	DOC	07	14	75	Well	85.9	31.2	59.5	2.7	.03	<.01	10.5	338		4.15	183.5
33N	07E	01 6	CBA	07	29	75	Well	358.0	1124.9	6920	26.3	.16	12.50	5.4	1113		107.6	16170
34N	058	24 4	OOO	07	14	75	Well	148.4	53.1	90	5	.44	.77	11.7	361		7.7	448.2
34N	05E	25 A	4888	07	14	76	Well	348.4	347.4	523.8	3.5	.56	.85	23.7	337		35.8	3012
34N	05E	28 4	ABA	07	14	75	Well	156.5	74.4	143	4.7	.66	.91	10.5	371		13.6	676
34N	05 E	26 0	000C	07	14	75	Well	188.6	132.6	974	8	.54	.86	12.5	482		15.65	2552
34N	05E	36 8	AAA	07	14	75	Well	138.5	60.7	87	3.9	.18	.64	10.7	334		10.55	477.2
36N	07E	24 C	8CA	12	04	76	Well	475	1408	8550	7	.18	.07	9.5	890		464	20340
37 N	07E	31 8	3	10	18	75	Spring	50.2	48.4	143	4.4	< .01	< .01	10.7	165	24.5	9.2	447.5
37N	03W	02 /	8.4	02	18	36	Well	28	17	428°					666		25.5	464
37 N	03%	02 (CA	10	19	65	Well	88	13	925*		4			740		18	1410
	31N 32N 32N 33N 33N 34N 34N 34N 34N 36N 37N 37N	1 Loc T R 31N 06E 32N 01E 32N 02M 33N 05E 34N 05E 34N 05E 34N 05E 34N 05E 34N 05E 34N 05E 34N 05E 34N 05E 36N 07E 37N 07E	Location T R Sec: 31N 06E 35 E 32N 01E 28 E 32N 10E 21 33N 05E 01 C 33N 05E 01 C 34N 05E 26 A 34N 05E 26 A 34N 05E 26 B 34N 05E 26 B	Location T R Sec Tract 31N 09E 35 BAACA 32N 10E 28 BACA 32N 10E 21 33N 09E 01 DDCC 33N 09E 01 DDCC 33N 09E 01 DDCC 34N 09E 24 ADDO 34N 09E 24 ADDO 34N 09E 25 ABBA 34N 09E 37N 09E 31 B 37	Location T R Sec Treet Mo 31N 086 35 8 AAC 07 32N 01E 28 8ACA 09 32N 10E 21 33N 02F 01 CDC 07 33N 07F 01 6 CDC 07 33N 07F 01 6 CDC 07 34N 05E 25 A886 07 34N 05E 26 CDC 07 34N 05E 36 SAAS	Location date T R Sec Tract Mo Den 31N 086 25 8AAC 07 25 32N 01E 28 8ACA 09 13 32N 01E 28 8ACA 09 13 32N 07E 21 20 31 7 33N 07E 01 8CBA 07 29 34N 05E 24 ADDO 07 14 34N 05E 25 ABB8 07 14 34N 05E 25 ABB8 07 14 34N 05E 25 C	Location date T R Sec Trect Mo Dev Y: 31N 06E 35 8AAC 07 25 75 32N 01E 28 8ACA 09 13 75 32N 01E 28 8ACA 09 13 75 32N 07E 21 203 74 33N 07E 01 8CBA 07 29 75 33N 07E 01 8CBA 07 29 75 34N 05E 24 ADDO 07 14 75 34N 05E 25 ABBB 07 14 75 34N 05E 25 ABBB 07 14 75 34N 05E 26 BDDC 07 14 75 34N 05E 26 BDDC 07 14 75 34N 05E 36 8ABA 07 14 75 34N 05E 36 8AAB 07 14 75 34N 05E 36 8AAB 07 14 75 37N 07E 31 8 10 18 75	Location date T R Set Tract Mo Day Yr Source 31N 08E 35 BAAC 07 25 75 Well 32N 01E 28 BACA 09 13 75 Pond 32N 10E 21 30 17 75 Well 33N 07E 07 DOC 1 2 03 74 Well 33N 05E 07 DOC 07 14 75 Well 34N 05E 24 ADDO 07 14 75 Well 34N 05E 24 ADDO 07 14 75 Well 34N 05E 25 ABB8 07 14 76 Well 34N 05E 25 ABB8 07 14 75 Well 34N 05E 25 ABB8 07 14 75 Well 34N 05E 26 DOC 07 14 75 Well 34N 05E 26 DOC 07 14 75 Well 34N 05E 26 TOC 07 14 75 Well 34N 05E 36 ADA 07 14 75 Well 34N 05E 36 TOC 07 14 75 Well 34N 05E 36 BACA 07 14 75 Well 34N 05E 36 BACA 10 16 76 Well 37N 07E 31 8 10 18 75 Sonng 37N 03W 02 AB 02 18 5 Sonng Well	Losation date T Received Mo Day Vr Source (Ca) 31N OSE 35 8AAC 07 25 75 Well 4.2 32N 01E 28 8ACA 09 13 75 Pond 17.5 32N 10E 21 03 17 75 Well 2.8 32N 02P 027 DDCC 12 03 77 Well 85.9 33N 0SE 01 CDDC 07 14 75 Well 85.9 33N 0SE 01 CDDC 07 14 75 Well 148.4 34N 0SE 24 ADDO 07 14 75 Well 148.4 34N 0SE 25 ABSB 07 14 76 Well 348.4 34N 0SE 25 ABSB 07 14 75 Well 188.6 34N 0SE 25 ABSB 07 14 75 Well 188.6 34N 0SE 26 DDCC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 188.6 34N 0SE 26 CDC 07 14 75 Well 189.6	Location Location	The Costion of Leave The Course Calicum sum sum Sodium (Ne) 31N OSE 35 SAAC 07 25 75 Well 17.5 10.6 4370 32N OSE 25 SABC 07 25 75 Well 17.5 10.6 4370 32N OSE 21 03 17 75 Well 2.6 .8 380 33N OZW 0Z DDCC 12 03 74 Well 2.6 .8 380 33N OZW 0Z DDCC 12 03 74 Well 85.9 31.2 59.5 33N OZW 0Z DDCC 12 03 75 Well 85.9 31.2 59.5 33N OZW 0Z DDCC 14 75 Well 85.9 31.2 59.5 33N OZW 0Z ABC 07 14 75 Well 184.8 53.1 99.0 34N OSE 25 ABBB 07 14 75 Well 184.8 53.1 92.3 34N OSE 25 ABBB 07 14 75 Well 188.6 132.6 974 34N OSE 25 DDCC 07 14 75 Well 188.6 132.6 974 34N OSE 25 CON 17 14 75 Well 188.6 132.6 974 34N OSE 25 CON 17 14 75 Well 188.6 132.6 974 34N OSE 25 CON 17 14 75 Well 188.6 152.6 974 34N OSE 26 CON 17 14 75 Well 188.6 152.6 974 34N OSE 26 CON 12 04 76 Well 175 1408 8550 37N OZY 0Z AB 02 18 36 Well 375 1408 8550 37N OZY 0Z AB 02 18 36 Well 375 1408 8550	Cacation Cate Calcum Sum Sodium Sum Calcum Sum Calcum Sum Sodium Sum Calcum Sum C	The Coation of Lease The Coati	Location date	Location date T Rec Trace Mo Dev Yr Source (Ca) (Mp) Sodium Sium Iron need Silica T R Sec Trace Mo Dev Yr Source (Ca) (Mp) Sodium Ikun Iron need Silica (Mn) (SiO ₂) 31N OSE 35 8AAC 07 25 75 Well 4.2 5.7 488 4.3 14 5.01 1.3 32N OTE 21 03 17 75 Well 7.5 10.6 4370 19.1 1.4 0.01 1.5 32N OTE 21 03 17 75 Well 2.6 8.8 390 313 07W 072 DDCC 12 03 74 Well 76.8 461 307 26.7 0.6 2.27 18.3 33N OTE 01 CDDC 07 14 75 Well 85.9 31.2 59.5 2.7 0.03 5.01 10.5 33N OTE 01 CDDC 07 14 75 Well 148.4 53.1 90 5. 44 2.77 11.7 34N OSE 25 ABB8 07 14 76 Well 348.4 347.4 523.8 3.5 56 .85 23.7 34N OSE 25 ABB8 07 14 75 Well 188.6 132.6 974 8.3 5.5 5.6 8.5 23.7 34N OSE 25 DDCC 07 14 75 Well 188.6 132.6 974 8.3 5.4 .86 12.5 34N OSE 25 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 25 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 132.6 974 8. 5.4 .86 12.5 34N OSE 26 ABB8 07 14 75 Well 188.6 14 14 3 4.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	Location date Calcium sum Sodium live in Republic Calcium Sum Sodium In Republic Calcium	Location date Calcum sum Sodium Iron need (SiL) bonate bonate T R Sec Tract Mo Dey Yr Source (Cal My) (Ne) (Ne) (R) (Fe) (Mn) (SiQ) (ROQ)	Costion Caste Ca

of Selected Waters (Con't.)

Mac		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Trace	
ref.		ride	Lab	Temo.		solids	hardness	aikalinity	adsorption	Callecting	depth	Aquifer	elements	1.00
	(N)	(F)	oН	C.	conductance									طعا
no.	1141	10.7	pm	C .	(µmho/cm)	(cate.)	as CaCO3	as CaCO3	ratio	agency	(ft.)	code	anelyzed	number
353	.452	2.3	9.14	9.5	2945	1906	13	1550	319	M8MG			No	75M1141
354	4.294	1.1	9.72	18.2	15110	13000	87	1890	312	M8MG		112DRFT	No	75M1378
355	.63		8.30		1510	1407	9	786	56.8	Unknown			No	75W0428
356	1020	.8	7.17		6275	5903	389	389	2.2	Unknown			No	75M0002
357	.226	.5	7.29		866	545	343	338	1.0	MBMG		1120TSH	No	75M0830
358	244.645	.4	6.64	10.5	23350	27520	5520	1110	8.3	MBMG	200		No	75M1143
359	.203	.5	6.90		1333	944	589	361	0.9	M8MG		211CLGT	No	75M0828
360		.8	7.02		4904	4463	2300	337	1.5	MBMG		211 CLGT	No	75M0831
381	1.13	.8		6.8	1732	1265	697	371	1.2	MBMG		211CLGT	No	75M1756
362	5.243	.4	6.88		5006	4126	1010	482	6.1	MBMG		1120TSH	No	75M0829
363	.138	.5	6.79		1352	954	596	334	0.9	M8MG		1120TSH	No	75M0832
364	971	.3	8.24	11	30420	32670	6980	730	44.5	M8MG		112DRFT	Yes	78M1 462
365	.362	.3	6.43		1219	820	325	190	2.9	MBMG		211JORY	No	75M1671
366							140	546		USGS	180	211VRGL	. No	36M0001
367	2.169	1.0		8.9			105	607		USGS	600	211VRGL	. No	65M0001

Trace Elements Analyses Sheet

	or o	unuper	76M1599	78M1590	26M1589	76M1581	76M1588	76M1598	76M1597	76M1587	76M1596	76M1595	76M1594	76M1582	76M1584	76M1585	76M1586	75M1583	76M1600	76M1592	7BM1593	76M1607	76M1606	76M1606	76M1608	76M0240	76M0242	76M0241	76M1461	76M1464	76M1466	78M1466
	Zinc	mg.13	80	21	96	8	80	12	10	9	.62	.18	.03	8	8	.13	8	4	9	99	17	03	.42	3.00	60	8	0.	70	54	8	61	Ξ
	Tin Zinc	(mg/II (mg/I)	27	30	55	80	90. >	90: >	11	11	90° ×	69	5	7	9	5	.00	90. >	74	1.35	90. ^	0.	£	.55	.63	16	90° >	80	52	9.	=	90
Stron-	E E	(I/6m)	83	38	1.67	8	=	45	24	1.39	1.07	7	.42	93	1 38	1.18	7.	92	19:	7.1	ų	Ŗ	E	8	.76	58	\$	No.	8	*	2.92	5.18
	Silver	(l/6m) /6m)																														
		(1/01)	< 2.0	17.1	140	7	< 2	2.5	< 2.0	4.5	< 2.0	< 2.0	< 20	150	< 2.0	< 2.0	33	13.6	< 2.0	916	< 2.0	< 2.0	80	9.9	< 2.0	3.3	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Phosphats	(Total Selenium	(penjossip	189	190	810	152	.072	13	.202	.036	.049	960	218	.023	.062	9.00	980	284	026	.033	990	.033	.036	920	.042	010	910	.012	.042	137	900	.062
۵.			0.	0	03	0. ^	, 0.	5	ō	, 10.	0	6	, O. >	0.	<u>0</u>	.02	5	8	0. ^	8	6	v. 01	. v	6	۸ 9	.00	.0	8	8	8	90	8
Lith- Mer-	num cury Nickel	(1/6m) (1/6rf)(1/6m) (1/6m)	11 < .3	.18 < .3	29 < .3	07 < .3	.10 < .3	.12 < .3	.07 < .3	19 < .3	.17 < .3	09 < .3	. > 80.	.16 < .3	.11 < .3	60 < 3	.25 < .3	.53 < .3	.16 < .3	.30 < .3	.12 < .3	.09 < .3	.08 < .3	.04 < .3	.14<.3	.04	.02 < .3	> 60.	. > 30	.12 < .3	.40 < .3	. 19 < .3
	Lead	(I/6m)	8	90. >	8	90.	90 >	90 >	90° ×	89.	90° ×	90.	90.	90. >	90° >	90. ^	× .06	90. >	> 06	.13	90.	90. >	8	90.	> 06	90. ^	90° >	8	12	90. V	90' >	< '05
	Copper	(I/6m)	6	10.	22	0	2	10. >	5	8	10.	6	6	10 >	10. >	10. >	0. ^	8	0. >	05	0.	0.	8	6	5	8	6	6	8	10. ^	10	10. >
Chro	meum	(mg/i)	0.	0.	10. >	0. ^	10 . ^	5	0.	0. ^		, 10. ×	, 0.	5		5		0, >		6			0.	0. ^	0.		, 9				0. ^	
Cad	-	(I/Bul)																								0.	,00 0	ō				
	Boron	(I/Bm)	1.2	1.3	۹.	1.5	1.4	8	1.6	0.1	2.2	7	1.8	C.	4	₹.	-	*	4.0	=	7.	3.7	2.2	=	2.5	-	=	=	Ģ	6.1	2.9	3.5
Baryt.	senic lium	(1/6r/) (1/6r/)																								9 >	9	9				
¥r.			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.0	2.5	2.8	< 2.0
Anti-	mony	(II/6m)	2		7	×	7	× 2	× ×	×	05 < 2	7	× ×	<.2	<.2	× .2	7	× 22	× ×	ď	< ×	2 '>	< ×		× .2	× .2	? >	< >	ď	× .2	7	.05 < .2
Alu-	minum	(l/bm)		8	8		.05	× 08	8	8	90 >	> .05	> 0.05	90.	8	,06	×	90	× 08	90.	× 06	× .86	> 06		90.	> 00	90.	A.06	90	00	.00	> .05
	Location	T R Sec Tract	37N 08E 20 DDDC	36N 10E 06 DDCC	36N 10E 21 BDBA	36N 09E 28 ABAB	36N 10E 32 DAAA	36N 08E 26 BBBC	35N 08E 01 ABBB	35N 10E 04 CBCD	35N 08E 33 DAAA	34N 08E 22 8BCD	33N 08E 05 BBAA	34N 12E 19 BCBD	34N 10E 14 BCAB	34N 10E 14 BCAA	35N 11E 31 DCCC	34N 11E 24 CDDD	33N 10E 07 O	33N 08E 15 BBCC	33N 09E 28 DDA	29N 10E 18 CCDB	29N 10E 29 C88D	22	28N 12E 33 CCCC	36N 07E 03 BDAB	36N 07E 03 BCDD	36N 07E 03 BDAD	36N 07E 24 CBCA	36N 07E 34 CCCD	34N 07E 12 BCCC	34N 07E'18 AABA
Map	-		7 37		15 36					23 36				34 34				46.34		61 33						108 36		110 36	111 36	112 36		

SHELBY 1° x 2° Sheet (Con't.)

7
3
Sheet
7305
Anal
ants
Elem
Trace

	2 2 2 2 2	2 C B Z Z	9.2
Lab	76M0243 76M1487 76M1469 76M1469	76M1674 76M0247 76M0248 76M0244 76M1604	76M0250 76M1452
Zunc mg/I)	8 = 4 6 8	00 00 00 00 00 00 00 00 00 00 00 00 00	8 9
Tin Zuc Img/ii (mg/ii)	13 13 86 14	14 5 18 18 18 18 18 18 18 18 18 18 18 18 18 1	2.63
Stron- tium (mg/t)	1.60	2.49 8.60 1.28 6.45 .67	1.81
Sidver (mg/ll)			
Selensum (µg/1)	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.9 620 8.8 87.5 < 2.0	15.8
Phosphete Totel dissolvedi	4.303 .059 .033	.023 .086 .039 .127	.046
Nickel (mg/l)	2 2 8 2 2	00 1. 1. 02 1. 1. 0. 04	8 5
Mer. cury (µg/II)	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	0.00	A < A
Lith.	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 2 8 5 5	8 8
Lead mg/il	8 8 8 9 9	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< .06 .08 < .3 < .38 1.04 < .3
Lith: Mer- Copper Lead ium cury Nickel Img/il (mg/l) (mg/l) (mg/l)		25 00 00 00 00 00 00 00 00 00 00 00 00 00	10.
Chro- mum mg/th	55555		10. >
bed in	10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	20 × 20 × 20 × 20 × 20 × 20 × 20 × 20 ×	10. > 10. >
ii. Ar. Beryl. y senic tium Boron m /ii (µg/ii) (µg/ii) (mg/ii) (n	7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.84.4.7	2.1
Beryl- lium (µg/l)	vs V	V V V	۷ ۷
Ar- senic (µg/l)	4 2 0 0 2 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<pre></pre>	< 2.0
Anti- mony (mg/II)		d g d g d	
Alu- minum (mg/ii)	06 6 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	× 50 0 2	< .06 < .2 .06 1.6
Location T R Sec Tract	34N 06E 30 BABB 34N 07E 27 DAAB 33N 07E 21 DADC 34N 01E 21 DAAA 32N 02E 01 CCCC	28N 02E 31 8CCC 28N 02W 27 8ADA 28N 01W 36 AD8C 36N 02W 02 DCAA 29N 13E 34 ABCB	26N 04E 03 DBDB 36N 07E 24 CBCA
Map ref.	116 117 125 126	136 137	349

LOCATION BASE MAP

WHITE SULPHUR SPRINGS 1° x 2° SHEET

IO KILOMETERS

CONTOUR INTERVAL 100 FT

CONTOUR INTERVAL 100 FT

WHITE SULPHUR SPRINGS 1" x 2" Sheet

Specific Conductivity Inventory Sheet

Owner's name						
Own		OJA				
Aquifer						221MR5N 217LKOT 331MDSN 320AMSD
Well depth fn.1		56				
Static water level (ft.)						
Lab Attitude malysis IIt.I		4338				9689 9689 9689
Lab	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	88888	2 2 2 2 2	0 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Field temp. Lab C enalysis		11.5				
Specific conductivity at 25 C	270 320 340 490	110 160 440 430	870 360 380 560 3900	290 610 730 1380 4830	620 320 900 1420	920 1360 1320 3480
Site description	Montene Canel 3 males MW of Townsend Broadwater Canal 1.5 males SE of Townsend Small warm apring 0.25 male N of Gregion Creek Deep Creek at highway 287 Dicto deasing alkali laid	Cow Creek 2 miles E of Toston Toston Canal 4.5 miles E6 of Toston Warm Strong Creek at highway 287 Domestic well, moderestly hard water Water hard, residents us water soltenar	1 cts (E) Heigna Valley, alkali along sides no licos Sicrizaudiol by age brush amongst rolling hills S cts (E) Newland Creek, remplemed with come crop land 0.25 cts (E) Boggy partice with buffel out and Canadian this let 1 cts (E) Boggy, near liet of wild hay	Irrigation return Irrigation into North Fox Smith River North Fox & Smith River, bottom land hay meadow Branch of Loon Willow Cleak Branch of Loon Willow Cleak Bog serrounded by preirie gresses, irrigation ditch	From hills W of Martinedals Reservoir, all rengeland From hills W of Martinedals Reservoir, all rengeland set Martinedals Reservoir, citieg hills, hay, magaland South Fot Smith River Southeast Fork Massishall River	Originates in dryland ferming area to E 15 miles SE of Loweth
Flow or yield E * estimated M * measured	60 cls (E) 40 cls (E) 4 ch (E) 40 cls (E) 1 cls (E)	10 cts (E) 4 cts (E) 12 cts (E)	1 cts (E) no flow 5 cts (E) 0.25 cts (E) 1 cfs (E)	1 cfs (E) 1 cfs (E) 2.5 cfs (E) 1 cfs (E) no flow	25 grm 10 grm 2 cls (E) no flow	25 gom (E)
Collection Location date R Sec Tract Mo Day Yr Source	09 08 76 Ditch 09 07 76 Ditch 09 08 76 Spring 09 07 76 Creek 09 07 76 Ditch	09 08 76 Creek 09 08 76 Duch 09 08 76 Creek Well	11 20 75 Drain 09 09 76 Pond 11 03 76 Stream 09 08 76 Stream 09 98 78 Stream	11 03 76 Duch 10 16 75 Dich 09 08 78 Stream 09 01 76 Stream 09 09 76 Pond	11 04 75 Spring 11 04 75 Spring 09 09 76 Pond 11 04 76 River 09 01 76 River	11 04 75 Spring 09 02 58 Well 09 02 58 Well 09 10 58 Well 09 02 58 Well
Location T R Sec Tract	07N 02E 09 DCC 06N 02E 10 BAA 06N 02E 21 BAB 06N 02E 08 DBD 06N 02E 08 CAB	06N 02E 19 ADD 06N 02E 06 BBA 05N 02E 26 BDC 14N 13E 11 DDDC 14N 13E 15 CCDC	Avagher 10N 05W 21 Nagher 10N 06E 03 BB Avagher 10N 06E 36 Avagher 09N 06E 07 CA Avagher 09N 06E 07 AC	08N 06E 12 B 08N 06E 22 B 09N 06E 13 CCC 08N 06E 24 BB 09N 10E 24 BB	08N 11E 24 D D8N 11E 23 A D8N 11E 10 D8 D8N 07E 32 07N 07E 09 DDQ	07N 08E 32 B 07N 08E 23 AA 07N 08E 23 AA 07N 08E 23 AA 07N 08E 23 AA
d County	4 Broadwater 5 Broadwater 5 Broadwater 1 Broadwater 2 Broadwater	WDB7 Broadwater WQB8 Broadwater WQB6 Broadwater MBMG63 Judith Basin MBMG62 Judith Basin	22222	Meagher Masgher Magher Meagher Meagher Meagher	4 Meagher 5 Meagher 13 Meagher 8 Meagher 17 Meagher	WOB7 Meagher SBM0004 Meagher SBM0003 Meagher SBM0007 Meagher SBM0005 Meagher
Field	WOB3 WOB3 WOB1 WOB1	WOB7 WOB6 WBWG MBWG	WQB15 WQB15 WQB2 WQB11	WOB3 WOB1 WOB12 WOB16	WOB4 WOB13 WOB13 WOB17	58M00 58M00 58M00 58M00 68M00
Mag party party	- 46 4 6	0 / 8 8 0	= 2 2 2 2 9	2 2 2 2 2 2 2	8 2 2 2 2	82828

WHITE SULPHUR SPRINGS 1" x 2" Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

11 WORS Meapher OTN DSE 31 DA 22 WORS Meapher GRN DSE 12 BD 23 WORS WORS 12 WORS WORS 12 WORS WORS 12 WHEN	Location de T R Sec Tract Mo D:	dete dete Mo Day Yr Source	E = estimeted M = meesured	Site description	conductivity temp.	c c	temp. Lab A C enalysis	ltitude (ft.)	level depth (ft.) (ft.)	th Aquifer	Owner's name
		11 04 75 Sorine	(cds IE)	From hills and hay meadows	620	-	9				
		11 04 75 Stream		From Higgins Reservoir	4000		yes				
		09 01 76 Stream	O.S. cts IEI	Unnamed creek one mile N of Ringling	2874		yes				
	8	Of 76 Stream		Sixteen Mile Creek in Ringling	009		ou ou				
	8	09 09 76 Pand		On tributery of Potter Creek on highway 89	640		2				
		79 09 78 Biver	30 cts (E)	Shields River 3.5 miles N of Wilsell	260		90				
		09 08 78 Dirch	_	Irrigation ditch 2 miles N of Wilsell	620		90				
		00 00 78 Drain	0.25 cfs (E)	0.25 cfs (E) Outlet of Cottomood Reservoir on highway 89	710		2				
		Do Do 78 Reservoir		Cottonwood Reservoir 3.3 miles N of Wilsell	620		20				
		09 09 76 Creek	0.5 cls (E)	Cottonwood Creek above raservoir on highway 89	0111		٤				
		On On 28 Creak	4 cls (E)	Posser Creek above outles of Costonwood Reservoir	919		9				
		10 16 76 Dich	Sels (F)	frigation return	2260		Yes				
		04 12 76 Creek	0.5 cls (E)	Aikali Creek at Two Dot	2030		2				
		09 12 75 Creek	20 cts (E)	Elk Creek	450		90				
		09 12 75 Reservoir		Labo Reservoir, much algae bloom	200		9				
	AACD	Well		Domestic well, feirly hard water	360	7	8	4940	29		Hollenbeck
		04 27 75 Seen		Saline seep above Hauser Lake	24400		Yes				
	999	Well		Residents use water softener	240	13.6	9	4840			Olson
Jehinge Bet		OR 07 77 Creek	58.4 cfs (M)	Deep Creek at Shields River Road crossing	79	9	Yes	6350			
76M1970 Park		06 07 77 River	10 cfs (E)	Shleids River above Turkey Creek	3	0	Yes	0999			
51 76M1969 Park 05N 11E 1B CCC		06 07 77 River	103.4 cfs (M)	103.4 c/s (M) Shields River below Crendell Creek	5	1	Yex	8340			

WHITE SULPHUR SPRINGS

Chemical Analyses

Мер				Co	liecti	on			Magne-		Potes		Menge-	-	Sicar-	Car-	mi. 14.	Sulfate
ref.		Loc	ation		date			Caicium	stum	Sodium	sium	iron	1998	Silica	bonate		Chloride	
no.	т	A	Sec Tract	Мо	Day	Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(5iO ₂)	(HCO ³)	(00,1	(CI)	(SO _e)
27	07N	ORE	23 AA	09	02	58	Well	11	1	350°					671	84	20	76
			23 AA	09	02	58	Well	10	2	320°					588	132	20	
			23 AA	09	10	58	Well	670	95	130°					159		18	2100
			23 AA	09		58	Well	630	100	82°					183		20	1900
			12 8D	11		75	Streem	175	226	480	15				244		182	1670
22	OSN	075	12 CC	09	01	76	Streem	188	180	315	7				610		68	1230
			09 A	10	-	75	Ditch	216	134	125	9.8				401		30.8	960
	11N			04		75	Seen	677	897	16500					653	62	11000	7650
			26 DBA	06		77	Creek	13.4	1.0	1.4	.3	.03	< .01	5.7	46		.5	3.6
			16 DC	06	07	77	River	16.6	1.4	1.5	.5	.1	< .01	6.7	55		.2	3.8
51	05N	116	16 CCC	06	07	77	River	15.9	1.2	1.4	.4	.07	< .01	6.3	51		A	4

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated * Values reported as sodium plus potassium

1° x 2° Sheet

of Selected Waters

					Lab									
Map		Fluo		Field	specific	Dissolved	Total	Tatal	Sodium		Well		Traca	
ref.	Nitrate	ride	طها	Temp.	conductance	solids	hardness	aikalinity	adsorption	Callecting	depth	Aquifer	alements	Lab
no.	(N)	(F)	ρН	c°	(µmho/cm)	(calc.)	as CaCO ₃	as CaCD ₃	ratio	agency	(ft.)	code	analy zed	number
27			8.6				32	690		Unknown		221MRSN	no	58M0004
28			8.4				33	711		Unknown		217LKOT	no	58M0003
29			7.0				2060	130		Unknown		331MDSN	no	58M0007
30			7.0				1980	150		Unknown		320A MSC	no	58M0005
32	.07		7.69		4000	3192	1370	200	5.8	MOS			ng	75W2257
33	.02		8.0	22	2874	2289	1211	500	3.9	WQ6			ng	76W2060
42	.89		8.05	8	2260	1877	1090	329	1.6	WQ8			no	75W2101
47	< .01		8.61	15	24400	39440	5380	639	110	WQB			ng	75W0547
49	.059	<.1	7.45	5	79	48	38	37	.1	USFS			no	76M1968
50	.113	<.1	7.85	9	94	56	45	46	.1	USFS			no	76M1970
ST	.045	<.1	7.81	7	91	54	45	42	a	USFS			no	76M1969

LOCATION BASE MAP

	CUT BANK	SHELBY	HAVRE	GLASGOV	WOLF POINT
	CHOTEAU GI	TEAT FALLS	EWISTOWN	BORDAN	GLENDIVE
	WHI	TE SULPHUR	ROUNDUP	FOREYTH	MILES CITY
1		OZEMAN !	BILLINGS	HAROIN	
1					
		/	/		
	4	3	2	1	
	5	6	7	8	

WOLF POINT 1° x 2° SHEET

SPECIFIC CONDUCTANCE SURVEY

WOLF POINT 1° x 2° Sheet Specific Conductivity Inventory Sheet

Owner I rame	Richarden	Dennison, Terry	Hughes, Frank	Lund, Anne		
Aquiter	211JDRV		211JDRV			331CRLS 337M5NC
Well depth (ft.)	125	120		128		
Static water level (ft.)						
Altitude (It.)	2563		2552			2423
Lab Altituq analysis (81.)	7 0 4 0 4 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0	9 9 9 9 9	9 4 9 9 4 5	2 2 2 2	7 0 0 0 4 V 10 0 0 4	
Field C C	0.5					
Specific conductivity at 25°C	449 180 1365 870 11120	5300 1840 1400 1000 520	940 825 2000 500 13720	720 1160 1420 680 360	1107 1260 1600 450 1088	201 596 34210
unidizelapets	Outlet Creek Pond in faild Eart Popler River at Canadan Border At ranh 10 miles NE of Peerless	About 2 to 3 acres in itse on rengeland Cattle tank N of Madoc, dryland farming area Whitesail Ret., dryland farming area	Whitesail Creek Domestic Creek S of Whitesail Domestic well Fish and Geme reservoir 12 miles MM of Scubey	Suram W of Four Buttes Butte Creek on Daniet Co. highway 248 South Fork of Matternach Coulee Hattled Reservoir at NE edge of Flawille Bench	Eagle Creek S of Flavville Eagle Creek School houre spring leep) on Flavville Bench Daniston Reservoir, dryland lerming area Smoke Creek	Popler River above Wass Fork, S. ol Scobey Popler River near Scobey 1.8 miles NE of Bredstee 1.2 miles NE of Bredstee
Flow or yield E = estimated M = measured	2 gpm (E) no flow		no flow 2 cfs (E)	100 gom (E) 3 cfs (E)	1 cfs (E) no flow 50 gpm [E] no flow	25 ch (E) 100 cfs (E)
Collection date Mo Day Yr Source	06 17 76 Creek 06 17 76 Pond 03 17 76 River 08 03 75 Well 07 10 70 Well	08 04 75 Pond 08 03 75 Tank 08 03 75 Well 08 03 75 Pond 08 04 75 Reservoir	08 04 75 Creek 06 17 76 Creek 08 03 76 Well 08 03 75 Reservoir 07 31 70 Well	08 03 75 Stream 06 17 76 Creek 08 03 75 Well 08 03 76 Creek 08 04 75 Reservoir	06 17 76 Greek 08 04 76 Creek 08 04 75 Spring 08 03 76 Reservoir 06 17 76 Greek	03 18 78 River 03 17 78 River 10 22 56 Wett 08 03 53 Wett
Location T R SecTract	37N 49E 16 DD 37N 49E 02 CC 37N 46E 05 AA 37N 45E 08 BC 37N 46E 32 88	37N 46E 26 B 37N 46E 25 C 37N 47E 35 D 36N 49E 11 B 36N 50E 10	36N 50E 22 C 36N 50E 22 CCC 36N 48E 22 AC 36N 47E 23 C 36N 47E 18 B	36N 46E 01 36N 47E 12 ADD 36N 48E 33 C 35N 49E 30 BAB 35N 51E 17	36N 50E 27 CBB 34N 50E 01 D 34N 50E 27 8AB 34N 49E 22 AC 33N 50E 03 CB	32N 48E 04 CC 32N 48E 01 CC 32N 49E 13 DA 32N 50E 19 BC
County	Daniels Daniels Daniels Daniels	Daniets Daniets Oaniets Daniets Daniets	Daniets Daniets Daniets Daniets Daniets	Qaniels Oaniels Daniels Deniels	Daniels Daniels Daniels Daniels	Roosevelt Roosevelt Roosevelt
Map ref. Freid no. number	1 WOB20 2 WOB21 3 WOB25 4 WOB5 5 70M5002	6 WQB18 7 WQB3 8 WQB1 9 WQB9 10 WQB16	11 WOB15 12 WOB19 13 WOB8 14 WOB7 16 70M5001	16 WOB6 17 WOB24 18 WOB2 19 WOB10 20 WOB14	21 W0822 22 WQB13 23 WQB12 24 WQB11 25 WQB23	26 not on map 27 WQB30 28 WQB31 29 55M0004 30 53M0002

WOLF POINT 12 x 22 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Owner's name				Lien, Bud		
	331CHLS 331CHLS	337MSNC 337MSNC	320AM5D 320AMSD 331MD5N	331CRL5 331CRL5 331CRL5 211JDRV		
Well depth (ft.)						
Static water level ift.J						1
Altriude (ft.)	2650 2650 2670	2603	2295 2285 2286	2400 2400 2620		
Lab Altitud anelyses (ft.)	* * * * * * * * * * * * * * * * * * * *	* * * * *	2 2 2 2 2	7	2 2 2 2	7 4 6 7 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Field C	- 6					ē 5
Specific conductivity at 25 C	12930 231700 119 847	252700 74130 275 262 1417	75646 76646 241700 1186 1780	89500 28511 152300 1753 50000	170 196 420 2400	1380 2407 1150 3600 2287
Site description	10 miles SE ol Bredette 10 miles SE ol Bredette Lucinda Creek No I Popur Popus River below West Fork 8.5 miles SW of Bredette	4 B mules E of Volt 17 miles N of Popiar 101 Creek a Hokniere Inghway 16 bridge A send of paved rode Sand Creek at bridge	11 miles SE of Medicine Lake 10 miles SE of Medicine Lake 25 miles NE of Medicine Lake Sheep Creek et Montens highway 18 bridge Popter River	14.6 miles NE of Pooler 12 miles N of Pooler 13.5 miles NW of Pooler Old domestic well Flows down coulee	Badger Creek Reservoir, drykand ferming eres 0,5 mile W of North Dakote border Abing road at North Dakote border Little Maddy Creek at US highway 2	Little Muddy Creek Red Bank Creek By Sholgun Reserved Shongun Creek MW of Beinville, selte on bank Near restroad crossing
Flow or yield E = estimated M = measured	15 cls (El 2 gpm (El	10 cfs (E) no flow no flow	3 cfs (E)	10 gom	100 gpm (E)	3 cts (E) 1 cts (E) no flow 0.5 cts (E) no flow
Collection date Mo Day Yr Source	08 02 67 Well 06 03 66 Well 03 16 75 Creek 03 16 78 River 03 30 66 Well	11 10 64 Well 01 30 57 Well 06 16 76 Creek 08 15 76 Seep 06 16 76 Creek	03 02 64 Well 03 23 83 Well 04 08 63 Well 06 16 76 Creek 08 07 75 River	01 24 56 Well 01 24 56 Well 10 06 54 Well 08 07 75 Well 08 07 75 Well	08 07 75 Reservoir 06 18 76 Pond 06 16 76 Pond 08 05 75 Creek	06 16 78 Creak 06 16 76 Creak 06 16 76 Canal 08 06 75 Creak 06 18 76 Pond
Location T H Sec Tract h	31N 51E 04 AA 31N 51E 03 BC 31N 51E 29 DCDD 31N 50E 27 CD 31N 48E 25 BC	31N 47E 33 AC 30N 48E 20 DD 30N 56E 07 88B 30N 57E 14 DD 30N 58E 14 DCC	30N SBE 27 BC 30N 57E 35 BB 30N 57E 35 BB 30N 56E 30 BBB 29N 51E 09 D	29N 51E 08 CC 29N 50E 15 BB 29N 50E 05 CC 29N 51E 17 DD 29N 51E 18	29N 51E 28 D 29N 59E 09 BAA 29N 59E 18 DAA 28N 59E 28 D	28N 59E 28 DCC 28N 59E 32 AAC 28N 58E 16 8BC 28N 58E 21 D 28N 58E 20 DDD
County	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt
Mao ref. Fwld no. number	31 57M0004 32 65M0049 33 WD829 34 WD828 35 66M0029	36 64M0023 37 57M0008 38 WD826 39 WD824 40 W0823	41 54M0020 42 63M0008 43 63M0012 44 W0825 45 W089	46 S6A40014 47 S6A40013 48 S4A40009 49 WQB27 50 WQB14	51 WQB10 52 not on map 53 WQB22 54 WQB21 55 WDB2	56 WOB18 57 WQB20 58 WQB18 59 WQB3 60 WQB17

WOLF POINT 1 × 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

Divier's name	Bovers, Edya'		
Aquiler Code [331CHLS 331MDSN 337MSNC 331CHLS 331KEBY 331KETH	VHQLITS	331CRLS
Well depth (41.)	=		
Static water fevel (ft.)			
Static water Attitude level	2111 2110 2123 2123 2168 2168 2155	1980	1948
Lab Atmud analysis (ft.)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 00 00 00 00 00 00 00 00 00 00 00 00 0
Freig C a	2	2	23 29
	963 17297 5100 7390 9400 9430 2300		
Specific conductivity at 25 C	963 1297 195100 67390 179400 85540 79430 2300	~	15 1800 5200 2282 205900 2400 1700 6017 4940 7800
Site description		Woll Death Val Creek Mod Ceee, Jale John John Val Sand Ceee, Jale John John Val Sand Ceee, Jale John John Val Sand Ceee, Jale John John Val Low ere purrounded by dryland laming Seeps on two law of the dryland laming area Boggs ree on dryland laming area Bodgs veep on dryland laming area Lard Creek Lard Creek	Small, I show reservoir at the foot of Radwater R. bindi. 1800 Seep from bailt along Redwater River 2 282 Retwater River at in mooth 2025 2 main E of Poplar 2025 2 main E of Poplar 2025 2 main E of Poplar 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Flow orly eld Elestimated Malmessured	6 ypm (E) no flow	1 cfs (E) 1 cfs (E) 5 cfs (E) 5 cfs (E) 5 gpm (E)	0.6 cts 2 cts (E) 2 cts (E) no How <1 cts (E)
Collection date Mo Day Yr Source	06 16 76 Sep 08 06 75 Well 09 14 64 Well 12 09 54 Well 01 09 67 Well 01 09 67 Well 01 24 56 Well 01 27 55 Ceek	08 07.75 Creek 08 31.75 Creek 08 31.75 Creek 08 31.75 Pond 08 31.75 Pond 08 31.75 Pond 08 31.75 Reservoir 08 31.75 Creek	08 30 75 Reservoir 08 30 75 Seep 12 27 65 Well 10 07 76 Stream 10 09 75 River 08 06 75 Creek 06 15 6 Creek 10 09 75 Creek 10 09 75 Creek
Location T R Sec Tract	28N 56E 27 ADD 28N 56E 27 ADD 28N 56E 27 28N 51E 12 CC 28N 51E 12 CC 28N 51E 12 CC 28N 51E 25 AC 28N 51E 25 AC 28N 51E 25 AC 28N 51E 25 AC 28N 51E 27 AC 28N 51E 28N 5	27N 47E 17 28N 49E 32 26N 46E 12 0 26N 48E 03 CA 26N 48E 03 CA 26N 48E 02 CB 26N 49E 03 26N 49E 03 26N 49E 03 27N 48E 35	26N 50E 18 BC 26N 50E 18 27N 50E 18 27N 50E 18 27N 50E 28 DDO 26N 57E 35 27N 52E 29 28N 55E 21 CC 26N 54E 16 BB 26N 54E 16 56N 55E 01
County	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt	Hoosevelt Roosevelt McCone McCone McCone McCone McCone McCone McCone	McCone McCone McCone Rossevelt Richland Rossevelt Richland Rossevelt Richland Richland
Map ref Fresid no. number	61 WQB16 52 WQB4 63 64M0027 64 54M0008 65 52M0006 66 67M0002 67 67M0003 68 56M0012	70 WUB 11 73 WUB 11 73 WUB 23 74 WUB 29 75 WUB 28 76 WUB 28 77 WUB 26 78 WUB 26 78 WUB 26 78 WUB 26 79 WUB 26 70 WUB	81 WQ821 82 WQ820 83 WQ822 84 65MQ347 85 WQ819 86 WQ88 87 WQ88 88 WQ88 89 WQ838 90 WQ828

WOLF POINT 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

2		=	Jem	
Qweers name	Panasuk, G.	Leete, Robert	Keldsten, Kenne Nordhagen, Jrm	Nordhagen
Aguifer code	NSOWIEE			
Since Anticode the Jensey Mein Annaysts fft; ift; ift; ift; ift hos	100			
State nater evel				
A titude	2200		,	
Lab Arritude analysis (ft.) yes no	00 00 00 00 00 00 00 00 00 00 00 00 00	2 5. 5 5 5 5 5 5 5	2 2 2 3 3 4	yes 00
field temo C e				
Specific conductivity at 25 °C 3749 a980	240 240 3000 2400 300 110000	200 200 2600 4600 2050 1700 1700 18040	620 260 2420 2813 2560	26000 50000 24000
Site description Herdscrabbe Creek at bridge In Matour builts	Or flood plan of Matouri Neer, Givland Jaming great Surrounded by what ferming a state of the Surrounded by the seep, pool at abilities, assure effect Bannier mancals supply, reported lasative effect in talk Muddy Cheek below, confluence of Singen Creek in coulet Giv Bannier, are surrounded by range 12 Binites N of McEkoy.		Harry Creek, angeland Raymond Reservoir, trocked by Fish & Game Dept. Stallow, averounded by range and dryland larming Onchange pit. A rold wall itse Simpled where it emerges from discharge pit	Natural take below state feese Discharge trench on state lease Seep along coule
Flow or yield E = estimated M = meatured 10 cfs (E)	25 gom	1 cfs (E) 1 5 cfs (E)	very low	25 gpm (E)
_	10 07 75 Creek 08 06 75 Reservoir 08 05 75 Well 08 05 75 Creek 08 08 75 Pond 09 28 66 Well	08 01 75 Lake 08 01 75 Pond 08 01 75 Spring 08 01 75 Spring 08 01 75 Creek 08 01 75 Greek 08 01 75 Reservoir 08 02 75 Pet	08 01 75 Steam 08 01 75 Reservoir 07 31 75 Pond 07 30 75 Pit 07 30 76 Spring 07 30 76 Spring	07 30 75 Lake 07 30 75 Trench 08 03 75 Stream
Location T R Sec Tract 26N 55E 01 DBB 26N 58E 07 A	26N 59E 07 D 28N 59E 33 28N 59E 32 28N 59E 01 27N 59E 08 37N 59E 06	37N 56E 31 8 36N 58E 06 AA 37N 51E 26 AA 37N 51E 28 A 37N 51E 36 A 36N 52E 06 AD 36N 52E 08 A 36N 52E 19 B 36N 53E 19 B	36N 54E 15 AC 36N 56E 18 36N 56E 13 CC 35N 58E 28 36N 58E 26 36N 58E 26	36N 58E 36 36N 58E 36 36N 58E 33 0
County Richland	Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Roosevelt Sheriden	Sheridan Sheridan Sheridan Sheridan Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan
Map ref Field no number 91 WOBS0 92 WQB18	94 WOB17 95 WOB6 96 WOB7 97 WOB1 98 WOB15 99 WOB5	101 WQB18 102 WQB17 103 WQB27 104 WQB23 105 WQB24 107 WQB21 109 WQB31	110 WGB20 111 WQB19 112 WQB16 113 WQB12 114 WQB8	116 WOB7 117 WQBB 118 WQB49

WOLF POINT 1 x 2 Sheet (Con't.)

	3	
3	3	
4		
	2	
*		
	2	
;		
	į	
•	9	֡
	2	;
•	9	

Owner & name	Helm) Netson, But Netson, But	Lagerquist Netson, Bill			Garner, Cecil	
Aquifer						337MSNC
West depth ift.1	120		shallow		- - - <u>-</u>	
Static water (eval						
Lab Attitude analysis ift.i						2229
Lab	× × × × × × × × × × × × × × × × × × ×	2 4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 2 2 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 % 8 8	y a a a a a a	2 1 1 1 1
Field S.C.					91	
Specific conductivity at 25°C	1384 4310 2044 2822	17300 19400 14000 2560 1420	920 2140 1088 2850 1704	1660 2050 1704 2100 2500	2315 5280 1050 3160 4600	2400 956 1360 452 179400
uongi Disp ali S	Below tank battery Natural pond Domestic wall Stock well	Brins pond balow tank batteries at state lease Unimed discharge port N of house Terregency delaying put Wall water after it anters a put Box Elsar Creek, how rolling country, dry and larning	Box Elder Reservoir at Plentywood An Pennywood Cantagound below reservoir McCoy Creak at Sherdan County Inghway 5 bridge McCoy Creak at Sherdan County Inghway 5 bridge Plentywood Creak at Sherdan County Inghway 5 bridge	Plentywood Coak Coay How Coak, surcounded by rangeland Coay House Creek at bridge Along Sharidan County Highway 5 at culvert Big Muddy Coak at Archer	Redisone Creek at Sherdah County highway 5 bridge Redisona Creek man Redisona Nooth Ecuk By Muddy Creek Balow Flaxulle Banch Stock lank	Wolf Creek, area surrounded by dryland Isrming Mercon Creek at Monitera highway 16 bridge Ronald Creek at bridge Antalope Creek at Culvert 38 miles 5E of Antalope
Flow or yield E = estimated M = massured		wolf on	10 cfs (E) 0 S cfs (E) 10 cfs (E)	1 cls (E) no How 20 cls (E) 3 cls (E)	3 cls (E) no flaw 2 cls (E)	0.5 cfs (E) 1 cfs (E) na flow no flow
Collection Location date R. Sec Tract. Mo Day Yr. Source	07 31 75 Pand 07 30 75 Pand 07 30 75 Well 07 30 75 Well	07 30 75 Pond 07 30 76 Pri 07 30 76 Pri 07 30 76 Pond 07 31 75 Creek	08 02 76 Razervoir 07 29 75 Wall 06 17 76 Creak 08 01 75 Creek 06 17 76 Creek	08 01 75 Creek 08 01 75 Creek 06 17 76 Creek 06 17 76 Seep 08 01 75 Creek	06 17 76 Creek 08 02 75 Creek 06 17 76 Creek 08 03 75 Reservoir 08 03 75 Well	08 03 76 Creek 06 16 76 Creek 06 16 76 Craek 06 16 76 Craek 08 30 57 Well
Location T R Sec Tract	36N 58E 32 35N 58E 17 35N 58E 17 35N 58E 17	35N S8E 09 35N 58E 17 CA 35N 58E 19 36N 58E 26 35N 56E 26	36N 55E 17 36N 55E 18 C 36N 55E 14 8BC 36N 54E 15 BB 35N 54E 16 CDA	35N 54E 16 AA 35N 54E 29 35N 54E 29 BCA 35N 53E 14 B 36N 53E 16	35N 52E 09 BAD 35N 52E 09 A 35N 51E 01 BDB 34N 52E 03 DA 34N 52E 03 DD	33N 53E 18 BC 36N 55E 21 CDD 36N 55E 27 DDD 34N 56E 10 DDD 33N 56E 05 AB
County	Sheridan Sheridan Sheridan Sharidan	Sheridan Sharidan Sharidan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan
Map rat. Freid no number	121 not on map 122 WQB13 123 WQB11 124 WQBS 125 WQB4	126 WQB10 127 WQB3 128 WQB2 129 WQB67 130 WQB15	131 WOB42 132 WOB1 133 WQB57 134 WQB29 135 WQB58	136 WQB28 137 WQB27 138 WQBS9 139 WQB60 140 WQB26	141 WQB61 142 WQB42 143 WQB62 144 WQB44 145 WQB45	146 W0B46 147 W0B56 148 W0B55 149 W0B54 150 S7M0011

WOLF POINT 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

ev E					
Owner s name					Netron
Aguifer	331MDSN	337M5NC	21 7MODY	337MSNC 337MSNC	331CRLS 125TGRV
Well depth (ft.)		shallow 3	Shallow		
Static Nater Plevel					
Attriade	2220	2070	2145	2890	2745
OBJ anatysis	2 0 0 0 % Ve 3 0 0 0 %	0 0 0 0 0 0	7 6 0 0 0 A Y 8 3		
Field Temp					99
Specific conductivity at 25 C	247100 4400 1630 800 846	2200 1560 80 4100	2366 2400 48000 960 748	1012 690 587 1403 1296 1900 1500 79430 32700	226900 30200 1803 2212 580
Site description	6 B mies 5E of Anterlope Otte Crept, banks Interd with self 8 g Muckhy Creek, Hood plain has mann ethal spots Well und by local restorets who have to had water 8-g Muddy Creek at road	Late Creak before it enters Medicine Lake At Brush Late Campy ound Marker pood, dryland farming to its edge Praise pood adjacent to sikah list, much seep nearby 8.3 misks SE of Dagmar	10 milet E of Medicine Lake Lake Creek Natural pond, dryland farming to 115 edge for marthy bottom near widdlife refuge Medicine Lake	Medicine Lake Medicine Lake Medicine Lake and Medicine Lake at Wend Medicine Lake at Wend Creak at bridge 8-g Medicy Coek at Homestead Lake Lost Creak at it enter Homestead Lake 6 Onnies ME of Lustre 6 Onnies ME of Lustre	8 miles St. Col food Lake 10 miles St. Col Lustre Course below 6F sighed lease Nelson farm 7 miles SW of Westoy Redouter Relow 8 are surrounded by dryland farming
Flow or yield E * estimated M * measured	5 gom (E) 2 cfs (E) 30 cfs (E)	na flow 3 gpm (E)	<1 cfs (E)	16 cts (E) 2 cts 1E)	<u>.</u>
Collection Location date T. R. Sec Tract. Mo Day Yr. Source	09 14 64 Well 08 02 75 Creek 08 02 75 Creek 08 02 75 Well 08 16 76 Creek	08 02 75 Creek 08 02 75 Weil 08 02 75 Pond 08 01 75 Pond 10 26 60 Weil	03 20 56 Well 08 02 75 Creek 08 02 75 Pond 08 01 75 Well 04 09 78 Lake	05 06 76 Lake 06 18 76 Lake 06 18 76 Lake 06 16 76 Lake 06 16 76 Ceek 08 03 75 Ceek 01 31 57 Well	03 02 56 Well 03 16 56 Well 07 30 75 Sep 03 07 77 Well 07 27 76 River 08 03 75 Creek
Location T R Sec Tract	33N 56E 03 CC 33N 55E 25 88 33N 55E 28 CC 32N 56E 05 D 32N 55E 27 8AA	32N 57E 27 88 33N 58E 22 D 33N 58E 35 CC 32N 59E 06 CD 32N 59E 29 A	32N 59E 32 CD 32N 58E 27 C 32N 58E 35 C 32N 57E 27 A 32N 57E 30	32N 57E 31 A 32N 56E 36 32N 56E 31 CCB 32N 56E 31 CCB 32N 56E 31 CCB 32N 55E 30 ODD 31N 55E 35 31N 45E 23 AA 31N 45E 23 AA	30N 45E 24 AD 30N 45E 27 AD 36N 58E 27 36N 58E 17 ADD 27N 50E 35
County	Sheridan Sheridan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan	Shardan Sheridan Sheridan Sheridan	Sheridan Sheridan Sheridan Sheridan Sheridan Valley	Valley Sheridan Sheridan McCone Danlels
Map ref. Field no. number	151 64M0024 152 W0834 153 W0833 154 W0841 155 W0852	158 WQB35 157 WQB30 158 WQB38 159 WQB38 160 60M0011	161 68M0004 162 WQB36 163 WQB37 164 WQB40 165 WQB65	166 WQ866 187 WQ863 168 WQ861 170 WQ853 171 WQ847 172 WQ846 173 57M0010	175 56M0005 178 56M016 177 WQ89A 178 76M1648 178 EPA RW1 180 WQ84

WOLF POINT 1' x 2' Sheet (Con't.) Specific Conductivity Inventory Sheet ICon't.)

Owner start						
Aquiter	18 110ALVM 48 110ALVM	63 110ALVM 106 110ALVM 331MDSN 90 110ALVM	21 110ALVM 42 110ALVM 80 110ALVM 73 110ALVM 106 110ALVM	93 110ALVM 100 110ALVM 100 110ALVM 94 110ALVM	54 110ALVM 20 110ALVM 20 110ALVM 61 110ALVM 48 110ALVM	68 110ALVM 62 110ALVM 36 110ALVM 65 110ALVM
Well depth (ft.)	8 8	3 6 6 8	21 42 80 73 106	8 0 1 0 9	20 20 84	36 68
Static water sevel (ft.)					21.2	19.8 20.0 11.6
Lab Attrude enalysis (fg.)	2050 2009 2010	2005 1995 2250 2104 1940	2010 2000 1995 1996 1980	1985 1985 1985 1980 1980	1986 1988 2000 1991	1980 2000 1980 1980 2000
Lab	5 0 5 5 A					
Field temp C e	17.2	13.3	7.8 8.3 9.5	8.9 7.8 7.8 8.3	8.5 16.1 8.3 7.2	7.2 7.2 7.8 7.8 20.6
Specific conductivity at 25°C	524 14200 648 1150 2800	686 2190 1960 3610	2670 614 2090 1950 2150	1740 1890 1630 1590	1430 1900 1820 3700 3880	2540 3340 1500 982 655
d Site description	All Nuckwall Creek near Wolf Point Below Missour bluff, used for stock 3 miss 9W of Wolf Point 2.5 miles 5 of Fazer 1 mile 5 of Davego	5 miles 5 of Dawago 7 miles 5W of Wolf Point I miles 5W of Wolf Point 9 miles 5E of Popler 4 miles NW of Nohly Centery	2.5 miles SW of Davego 6 miles SW of Worl Point 6 miles SW of Wolf Point 8 miles SW of Wolf Point 1 mile E of Wolf Point	Weit Point Weit Point Weit Point Weit Point Weit Point	2 males SW of Wolf Point export Pleasent Valley community half Pleasent Valley community half 15 milet E of Macon 0.5 mile N Wolf Point International Auport	10.5 mile N Wolf Point International Auroport 1.5 miles E of Macon 0.7 mile 5 of Macon 0.7 mile 10.1 Levia and Clark Park Wolf Point
Flow or yield E = estimated M = measured	1.1 cfs (M)					500 gpm (E) 680 gpm (E) 1000 gpm (E) 80 cts (E)
Collection date R SecTract Mo Day Yr Source	03 16 76 Creek 08 31 75 Pond 09 06 63 Canal 09 05 63 Well 09 06 63 Well	09 09 63 Well 11 06 63 Well 10 22 63 Well 07 28 64 Well 04 15 64 Well	10 09 47 Well 11 17 63 Well 10 08 63 Well 10 22 63 Well 10 18 63 Well	10 10 17 Well 10 15 47 Well 10 16 64 Well 10 16 64 Well 10 16 64 Well	07 23 64 Well 09 05 83 Well 10 10 47 Well 10 15 64 Well 09 07 63 Well	09 07 63 Well 09 07 64 Well 10 10 47 Well 09 06 63 Well 09 06 63 Canal
Location T R SecTract	26N 48E 15 CB 26N 45E 19 26N 44E 01 CCB 26N 44E 10 8CC 26N 45E 03 AAA	26N 45E 07 ADA 26N 46E 02 D8B 26N 46E 02 DCD 26N 52E 06 CD 26N 58E 01 BAD	27N 45E 33 CDD 27N 46E 26 ABA 27N 46E 26 DDC 27N 46E 35 DCD 27N 47E 14 CC	27N 47E 15 AC 27N 47E 15 CB 27N 47E 15 DCC 27N 47E 21 AAD 27N 47E 22 8BD	27N 47E 24 CCC 27N 47E 25 DD 27N 47E 26 DD 27N 48E 02 DCA 27N 48E 07 8DB	27N 48E 07 DCD 27N 48E 11 ACB 27N 48E 10 CB 27N 48E 20 DBA 27N 48E 28 D
County	McCone McCone McCone McCone	McCone McCone McCone Richland	Valley Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt Roosevelt Roosevelt	Roosevelt Roosevelt McCone McCone	McCone McCone McCone McCone Rossevell
Map ret Field 19. number	181 WO846 182 WD834 183 63M0025 184 63M0056 185 63M0057	186 63M0058 187 63M0053 188 63M0026 189 64M0021 190 64M0054	191 47M0057 192 63M0060 193 63M0061 194 63M0062 195 63M0052	196 47M0054 197 47M0055 198 64M0045 199 64M0046 200 64M0047	201 64M0039 202 63M0043 203 47M0061 204 64M0053 205 63M0044	206 63M0055 207 64M0052 208 47M0052 209 63M0054 210 63M0036

WOLF POINT 1 x 2 Sheet (Con't.)

Specific Conductivity Inventory Sheet (Con't.)

		Owner's name																															
	Aquifer	code O	HOALVM	110ALVM	110ALVM	110ALVM	110ALVM		85 TIOALVM	05 110ALVM	60 110ALVM	90 110ALVM	HOALVM	86 110ALVM			96 110ALVM	110ALVM	73 110ALVM	HOALVM	20 110ALVM	HOALVM	110ALVM	HOALUM		109 110ALVM	110ALVM	110ALVM	90 110ALVM	57 110ALVM	115 110ALVM	110ALVM	110ALVM
Weti	deoth	Ē	9	63	64	97	97	1	60	8	9	06	98	98		66	96	65	73	9	20	11	75			109	98	126	90	157	115	26	8
Static	ievei	1	9 91	161	238					29 0																							
	Altıtude	(#)	1980	1480	1980	1960	1960		1960	1985	1975	1970	1965	1965	2000	1960	1960	1955	1952	1990	1981	2000	1980	1934	2000	1900	1900		1161	1900	2000	1890	2200
	Lab	analysis (ft.)	ves	Yes	yes	yes	ver		ves	yes	yes	yes	yes	yes	yes	yes	yes	761	Yes	y 0.5	104	765	y 6.5	Yes	yes	Yes	yes	Yes	ves	Yes	yes	yes	ves.
Field	temo	, O	6.9		83	8.9	8.3		83	7.8	8.3		8 3	8.9	22.8		9.01	13.9	8.9	8.9	12.2	13.8	11.7	8 8		8.9	9.6	9.5	8.3	8.3			
Socific			2920	3710	2090	1010	982		1170	1480	1470	1740	988	1030	1310	1170	1400	1350	2130	1470	1210	2930	1120	3360	902	3070	3000	3030	3050	2690		985	1210
		Site description	1.6 miles S of Wolf Point International Airport	1 mile N Pleasant Valley Community Hell	0.2 mile N Pleasant Vatley Community Hall		4 miles N of Nickwall		4 miles N of Nickwall	Chelsee	8 miles NW of Nickwall	8.5 miles NW of Nickwell	5 miles NW of Nickwell	4 miles NW of Nickwell	Popler River near Poplar	Popler	Poplar	1 mile 5 of Popter	1.5 miles 5 of Popler	5 miles SE of Poplar	3 miles SE of Pooler	O 5 mile S of Poptar	7 miles NW of Haysteck Butte	1.5 miles 5 of Brockton	Missouri River 6 miles E of Popler	3.3 miles 5 of Culbertson	3.3 miles 5 of Culbertson		3.6 miles 5 of Culbertson	7 miles W of Cuthertson	5 of Cultertson	21 miles N of Fairview	4 miles SE of Culbertion
Flour or coate	F - estimated	M - messured	450 apm IE)	550 gpm (E)	1100 com (E)					820 cpm (M)					5 cts (E)													700 gpm (M)					
Collector	date	R Sec Tract Mo Day Yr Source	07 23 64 Well	10 14 64 Well	08 29 64 Well	10 10 63 Well	10 10 63 Well		10 28 63 Well	09 02 64 Well	10 14 47 Well	09 07 83 Well		11 05 63 Well	09 07 63 Stream	10 15 64 Well		09 07 83 Well	10 07 64 Well		3	2	23	10 08 64 Well	2	04 30 64 Well	04 30 64 Well	05 14 64 Well	05 05 64 Well	11 14 63 Well		09 20 63 Well	23 63
	Location	T R Sec Tract	27N 48E 30 A 8A	27N 48E 30 BBA	27N 48E 30 CAD	27N 49E 01 ADA	27N 49E 01 ADA		27N 49E 01 DAD	27N 49E 03 AAB	27N 49E 03 CA	27N 49F 09 DRC	27N 49E 12 ADD	27N 49E 13 AAC	27N 50E 01 D	27N 50E 12 AB	27N 50E 12 ADD	27N 50E 13 BDD	27N 51F 18.8C	27N 51F 14 8DC	27N 51F 21 BBA	27N 51E 29 ABB	27N 52E 17 88	27N 63E 06 BCD	27N 55E 01 AA	27N 55E 01 AAD	27N 55E 01 AAD	27N 55E 01 AAD	27N 56E 03 CAB	27N SAF OS CDA	27N 56F 06 ARR	27N 58E 35 AAB	27N 58E 36 8CD
		County	McCone	McCone	McCune	Roosevell	Roosevelt		Roosevelt	Roosevelt	Roosevelt	Roosevelt	Roosevelt	Roosevelt	Roosevelt	Roosevelt	Roptevelt	Roosevelt	Ronevell	Roosevelt	Roomett	Roosevell	Roosevelt	Richland	Richland	Richland	Richtend	Richland	Richland	Richtend	Bichland	Roosevell	Roosevels
	Cal E.a.d	c	211 64M0050	212 64M0049	213 64M004R	214 63MOO45	215 63M0046		218 63M0047	217 64M0031	218 47M0053	219 638/0048	220 63M0049	221 B3M0050	222 63M0037	223 64M0042	224 64M0041	225 63M0051	226 64M0044	227 GAMADO43	228 64M004D	229 B3M0036	230 B3M0041	231 64M0035	232 64M0033	233 64M0036	234 64M0037	235 84M0028	236 64M0038	217 63M0042	238 62M0017	239 63M0040	240 63M0027

WOLF POINT 1° x 2° Sheet (Con'l.)
Specific Conductivity Inventory Sheet (Con'l.)

			Dividen's name																			
		Aquifer	code	118 110ALVM	68 110ALVM	55 110ALVM	18 110ALVM	90 110CLUM	82 110ALVM	106 112DRFT	88 110ALVM	100 110ALVM	30 110ALVM	78 110ALVM		100 110ALVM	15 110ALVM	16 110ALVM	80 110ALVM	147 112DRFT	19 110ALVM	337M5NC
	Well	depth	Ξ	118	99	25	18	90	82	901	88	100	30	92		901	15	91	80	147	19	
Static	valdr		Ξ																29.7	479		
		Altırude	3	2200	2000	2000	2100	2170	2175	2180	2250	2250	2000	2000	2000	1930	1920	1960	2430	2200	2000	2684
		Lab	analysis		7.05	V 8.5	y es	yes	ve.	Ves	yes	yes	ves	ves.	yes	yes	yes	yes	yes	yes	yes	Yes
	Field	dwai	ပ	9.6	68	7 8	8 3	83	Ξ		9.6	106		11.7	25 0		1.2	9 6	7.8	8 3	7.8	
	Specific	conductivity	er 25 C	2550	2360	2520	2330	3750	1990	1280	2220	1750	1990	1280	1820	3490	3230	689	3000	2160	1240	
	q	70	d 5ite description	4 miles SE of Culbertson	In Chelses	In Cheisee	0.7 mile N of Poptar	2 miles W of Gulbertson	3 miles W of Culbertson	3 miles W of Culbertson	3 inites W of Culbertson	3 miles W of Culbertson	1 4 miles W of Cuthertson	1 4 miles W of Culbertson	Big Muddy Creek, 6 miles W of Culbertson	0.7 mile W of Culbertson	0.7 mile W of Culbertson	Culbertson	0.5 mile N of Culbertson	1) 2 miles W of Culbertson	1 mile E of Culbertson	4.3 miles N of Bredette
	Flow or yield	E * estimated	M = measure																650 gpm	800 grum (M1		
	Collection	date	Mo Day Yr Source Mameasured	09 09 63 Well	11 06 63 Well	04 30 64 Well	09 07 63 Well	10 14 47 Well	10 05 63 Well	10 08 64 Well	10 24 63 Weti	10 07 63 Well	09 09 63 Well	09 09 63 Well	09 10 63 Stream	09 09 63 Well	10 13 47 Well	09 10 63 Well	10 12 64 Well	10 12 64 Well	10 13 47 Well	05 16 56 Well
		Location	T A Sec Tract	27N 58E 36 CD8	28N 49E 36 CAA	28N 49E 36 C8A	28N 51E 19 ABB	28N 53E 25 D8	28N 53E 29 DAC	28N 63E 30 DA	28N 53E 32 ADB	28N 53E 32 DCD	28N 54E 35 CAA	28N 54E 35 CAA	28N 55E 21 ACC	28N 55E 32 AC	28N 55E 33 DAD	28N 56E 27 BD	28N 56E 29 CD	28N 57E 25 ACA	28N 57E 32 DB	33N 49E 34 CB
			County	Roosevelt	Richland	Richland	Richland	Richland	Richland	Richland	Bichland	Richland	Rightend	Bichland	Roosevelt	Richland	Richland	Richland	Richland	Richland	Richland	Danuels
	Map	ref. Field	no. number	241 63M002B	242 63M0024	243 64M0027	244 63M0020	245 47M0048	246 63M0029	247 64M0032	248 63M0031	249 63M0030	250 63M0032	251 63M0033	252 63M0039	253 63M0034	254 47M0049	255 63M0035	256 64M0030	257 64M0029	258 47M0050	259 56M0017

WOLF POINT

Chemical Analyses

Maga				Co	llecti	លា			Magne-		Potas-		Manga-		Bicar-	Car-			
101		Loc	ation		late			Calcium	sium	Sodium	sium	iron	nese	Silica	bonate		Chloride	Sulfate	
1967.	ſ	H	Sec Tract	Мо	Day	Yı	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₃)	(CO)	(CI)	(SO ₄)	
1	376	49E	16 DD	06	17	76	Creek	70	3.6	2	14.8	2.1	.05		214		7	13.1	
3	37N	48E	05 AA	03	17	76	River	65	33	200	7.3	.45	.11		565		23	220	
			32 88	07	10	70	Well	900	110	1400°					890		1600	2800	
			22 CCC	06	17	76	Creek	72	42.1	28	6.3	.24	.06		453		3.1	39	
15	361	47E	19 8	07	31	70	Well	88	24	3000					195		4800	60	
17			12 ADD	06	17	76	Creek	41.3	22.5	175	8.5	3.6	.16		477		8	180	
21	351	4 50E	27 CB8	06	17	76	Creek	51	75	68	7.5	.19	.03		493		?	164	
25			03 CB	06	17	76	Creek	21	52	64	10.2	.23	.04		405		13.9	185	
27			D4 CC	03	16	76	River	27.3	2.9	4	9.2				65		22	11	
78	32N	48E	01 CC	03	17	76	River	20.4	11.9	82	7.9				154		4.6	150	
29	321	49E	13 DA	10		55	Well	840	210	16000°					294		24000	2900	
30	321	1 50E	19 8C	80	03	53	Well	540	95	8400 4					231		11000	3800	
31			04 AA	08	02	67	Well	1400	200	39000	580				378		61000	2500	
32			03 8C	06	03	65	Well	2200	240	110000	1400				146		120000	3000	
33	311	1516	29 D COO	03	16	76	Creek	16.8	4.4	1	8.1				57		1.5	15	
34	310	4 50E	27 CD	03		76	River	32.4	21.4	145	8.3	.55	.04		434		8.2	122	
35			25 BC	03	30	66	Well	620	1 30						279		10000	2400	
36			33 AC	11	10	64	Well		300	110000	600				146		170000	3700	
37	301	48E	20 DD	01	30	57	Well	880	130	21000°					551	85	31000	4400	
38	300	4 56E	07 888	06	16	76	Creek	35.7	6.1	4.1	9.7	2.1	.14		117		1.7	35	
39	301	N 57E	14 DD	06		76	Seep	42.1	4,4	1.7	13	1.2	.14		152		1.2	13	
40			14 DCC	06	16	76	Creek	74	49.8	167	14	.10	.28		570		12	280	
41			27 8C	03	02	64	Well	4500	340						610		170000	1800	
42			25 88	03		63	Weil			90000°					195		140000	1900 540	
43	301	N 578	35 88	04	08	63	Well	7800	950	84000	3000				195		150000	540	
44	301	V 568	30 888	06	16	76	Creek	90	66	69	10.6	1.8	.09		167		12.2	484	
46	29#	¥ 516	08 CC	01	24	56	Well	1200	300	20000°					145		33000	120	
47	291	N 50E	15 88	01	24	56	Well	260	110	6800°					205		9000	3000	
48	291	V 508	05 CC	10		54	Well	5300	810	75000°					121		130000	2100	
49	291	N 518	17 DD	08	07	75	Well			95					577		103	190	
50	291	N 516	19	08	07	75	Well			70000							12250	4200	
56			28 DCC	06		76	Creek	44.1	20.6		9	.46			518		11	300	
5/	281	N 598	32 AAC	06		76	Creek	53	64	500	15	.19	.12		750		10	860	
			20 DDD	06		76	Pond	28.1	70	502	13	.03			732		9.5	793	
61	281	N 561	27 ADD	06	16	76	Seep	72	13.6	111	15	.19	.08		287		6.8	250	
		N 561		08		75	Well			85					414		6	380	
163		N 51		09		64	Well	970	120	73000	500				207		110000	2200	
64			12 CC	12		54	Well	1000	140	77000°					239		120000	2800	
Gér			18 AC	05		52	Well	890	130	18000°					262		28000	2400	
GE	28	N 511	25 AC	01	09	67	Welt	1000	150	63000	500				378		98000	1500	

Note: All chemical data are given in milligrams per liter (mg/l) unless otherwise stated. Vulsies reported as sodium plus porassium.

1" x 2" Sheet

of Selected Waters

M.u,		Flun-		Field	طفا specific	Dissolved	Total	Total	Sodium		Well		Trace	
ret_	Nitrate	rate	Lab	Temp.	conductance	solids	hardness	aikelinity	adsorption	Collecting	depth		elements	Lab
и.	(N)	(F)	рН	c°	(µmha/cm)	(catc.)	as CaCO3	as CaCO ₃	ratio	agency	(ft.)	code	analy zed	number
1	1.7	.05	7.6		449	218	190	176	.1	was			yes	76W1092
3	1.9	22	7.94	.5	1366	829	300	463	5	WQ8			yes	76W0499
5			7.0				2700	730		Unknawn		211JDRV	no.	70M5002
12	13	.42			825	413	352	372	.6	WQ8			yes	76W1091
15			6.9				319	160		Unknown		211JDRV	no	70M5001
17	.12	.46	8.2		1160	670	196	391	5.4	WQB			yes	76W1095
21	.17	.42			1107	616	436	404	1,4	WQB			yes	76W1093
25	.03	.19	7.85		1088	595	391	332	1,4	WQB			yes	76W1094
27	.51	.05	7.55		201		80	53	.2	WQ8			no	76W0495
28	.31	.08	7.42		595		100	126	3.6	WQ8			no	76W0500
29							2960	241		Unknown	1	331CRLS		55M0004
30			6.4				1740	189		Unknown		337MSN		53M0002
31			7.7			104900	4320	310	258	Unknown		331 CRLS		67 M0004
32			8.4			285500	6480	120	595	Unknown		331CRLS	no	65M0049
33	.51	.08	7.19	1	119		60	47	.1	WQB			na	76W0498
34	.07	23	7.96	.1	. 947	772	169	358	4	WQB			yes	76W049
35			7.5				2080	229		Unknown		331CRL5		66M0029
36			7.0				1240	120	1382	Unknown		337MSN(64M002
37			8.9				2730	594		Unknown	1	337MSN	no	57110000
38	.11	.06	7.6		275	150	114	96	.2	WQ8			yes	76W1080
39	.04	.06	7.6		262	151	123	125	.1	WQB			yes	76W1078
40	.01		8.0		1417	877	389	468	3.7	WQ8			yes	76W 107
41			7.7				12600	500		Unknown		320AM50		64M002
47			7.6					160		Unknown		320AMS		63M000
43			6.5			243400	23400	160	239	Unknown	•	331MDS	d no	63M0013
44	.44	.08	7.7		1186	814	496	137	1.3	WQB			yes	76W1079
46			6.5				4230	119		Unknowe		331CRLS		58M001
41			8.5				1100	168		Unknown		331CRLS		56M001
48 49			5.7 7.97	,	1753		16600	99 473		Unknown WQB	•	331CRLS	no	54M0009
										wos				70042 6 44
50			3.98		50000	000				WG8			no	75W144
56	.05	.17	8.2	18	1380	889	195	425 615	7.8 10.9	MG8			yes	76W1079
57	.03	.27	8.0 7.7		2407 2297	1872 1776	398 357	600	11.6	MOB			yes	76W107
60 61	.05	.21 .07	7.7	19 17	963	610	235	235	3.2	MOB			AGZ	76W107
62			7.84		1297			339		was			no	75W144
63			8.1		1231	186900	2920	170	588	Unknown		331CRL		64M0027
64			0.1			. 30300	3070	196	500	Unknown		331MOSI		54M000E
65			7.4				2760	215		Unknown		337M5N		52M000
66			6.8			164300	3110	310	491	Unknown		331CRLS		67M0007

WOLF POINT

Chemical Analyses

Map					Hect	(31)			Magne-		Potes-		Manga-		Bicar-	Car-		
191			utton		tore				muse	Sodium	sium	Iron	nese	Silica			Chloride	Sullet
1964	Ŧ	13	Sec Tract	Ma	Day	Y Y r	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(SiO ₂)	(HCO ₃)	(00)	(CI)	(504
67	28N :	51 E	25 AC	01	09	67	Well	820	85	22000	650				439		35000	2200
68	28N	51E	27 AC	01	24	56	Well	1400	230	22000°					475		36000	1400
71	2/N	47E	15				Well	18		1900°					980		2400	
37	26N	48 E	02 CA	08	31	75	Seep	389	634	5800	19.3				935		137	14400
83	27N	50E	35	80	30	75	River	55	54	424	8.5	< .01			504	8	14	815
84	27N	51E	06 DDD	12	27	65	Well	8900	1400	68000°					37		120000	670
88	26N	54E	15 888	06	15	76	Creek	63	204	1028	11	< .01	.06		506		21	2700
91	26N	55E	01 DBB	06	15	76	Creek	124	178	566	15	01	.03		362		10	1926
100	37N	58E	05 CA	09	28	66	Well	5000	890	110000°					173		180000	770
108	36N	53E	18 DB	08	02	75	Pit			1500					146		2875	770
109	36N !	53E	198	08	02	75	Pit			2500					194		3850	55
113	35N	58E	28	07	30	75	Pit			422					294		750	11
114	36N	58E	26	07	30	75	Spring			525					1027		24	580
115	36N	58E	26	07	30	75	Spring			525					972		.5	580
116	36N	58E	36	07	30	75	Lake			8950					2045	778	850	12900
117	36N	58E	36	07	30	75	Trench			29200					1298		4600	1200
119	36N	SBE	27 DA	07	31	75	Pond			8500					152		1200	300
122	36N	SAE	32	07	31	75	Pond			278					242	42	257	15
	35N			07	30	75	Pond			700					329	2	721	1100
124	35N	58 E	17	07	30	75	Well			198					748		7	530
125	35 N	58E	17	07	30	75	Well			338					917		15	920
126	35N	58E	09	07	30	75	Pond			3600					326		6840	20
127	35N	588	17 CA	07	30	75	Pit			3800					117		7450	160
128	35N	58E	19	07	30	75	Pit			4000					119		5850	80
133	35N	55E	14 BBC	06	17	76	Creek	68	45.4	116	10.3	43	.05		365		6.5	301
135	35N	54E	16 CDA	06	17	76	Creek	40.9	27.7	155	8.1	1.5	11		447		6.7	168
138	35N	54E	29 BCA	06	17	76	Creek	41.7		72	9.4	14	.30		267		3.5	188
141	35N	52€	09 BAD	06	17	76	Creek	59	48.2	443	15.3	1.3	08		521		12.1	843
145	34N	52E	03 DD	08	03	75	Well			820					1100		35	1900
147	35N	55E	21 CDD	06	16	76	Creek	90	48.2	34	8.9	.23	.07		387		5.7	172
148	35N	55E	27 DDD	06	18	76	Creek	117	72	80	13.8	.32	.20		516		22.9	310
149	34N	56E	10 DDD	06	16	76	Creek	60	3.5	8.6	9.4	.84	.14		170		2.5	52
150	33N	56E	05 AB	08	30	57	Well	1400	320	62000°					356		96000	3400
151	33N	56E	03 CC	09	14	64	Well	750	140	110000	3500				232		180000	840
155	32N	55E	27 8AA	06	16	76	Creek	47.	34	91	10.5	2.6	.14		264		6	231
160	32N	59E	29 A	10	26	60	Well	12000	1600	110000	4200				110		200000	290
161	32N	59E	32 CD	03	20	68	Well	170	36	5700	100				2560		7800	68
165	32N	57E	30	04	09	76	Lake	34.8	23.8	110					322		6.2	162
166	32N	57E	31 A	05	06	76	Lake	34.	39.3	150					345		9.1	264
167	32N	55E	36	04	09	76	Lake	40.8	19.5	96					281		4.4	162

Note: All chemical date are given in milligrems per liter (mg/l) unless otherwise steted. * Values reported as sodium plus potessium.

1° x 2° Sheet (Cont.)

of Selected Waters (Cont.)

					Lab									
hp		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Well		Trace	
-1	Nitrate	ricks	Lah	Temp.	conductance	solids	hardness	aikalimity	edsorption	Collecting	depth	Aquifer	elements	Lab
o.	(N)	(F)	ρН	c°	(µmho/cm)	(catc.)	as CaCO,	as CaCO ₃	ratio	agency	(ft.)	code	analy zed	numbe
67			7.1			60970	2400	360	196	Unknown		331K88Y	no	67M00
8			6.6				4440	390		Unknown		331HETH	no	56M00
1							45	804		Unknown		211JORV	no	42M00
7	< 10		8.02	17	21000	22310	3580	766	42.2	WQB			no	75W17
3	02		8.35	15	2287	1626	360	426	9.7	WQB			A62	76W17
4			6.3				28000	30		Unknown		331CRLS	no	65 MOC
В	07	78	9.1	73	5017	4277	997	415	14.2	WQB			yes	76W10
ı	.05	08	0.8	Z1	3749	2998	1040	297	7.6	WQB			yes	76W10
0			5.5				16100	142		Unknown		331MOSN	no	66M00
В			6.9		8040			120		MOB			no	75W14
9			7.48		12000			159		was			ng	75W1
3			7.65		2420			241		MOB			no	75W1
4			7.97		2613			843		WQB			no	75W 1
5			80.8		2560			797		MOB			no	75W1
6			9.44		26000			2970		WQB			no	75W1
,			6.6		50000			1060		WQB			no	75W 1
9			7.48		35600			125		WQB			no	75W 1
2			9.31		1384			268		WQ8			no	75W1
3			8.35		4310			274		MOB			no	75W1
4			7.37		2044			613		WOB			no	75W1
5			7.65		2822			752		WQS			ng	75W1
6			8.1		17300			267		WQ8			na	75W1
7			7.97		19400			96		WQB			no	75W1
в			7.67		1 4000			98		WQB			ng	75W1
3	.04	12	8.0		1088	725	256	299	2.7	WQB			yes	76W1
5	04	22	8.2		1704	676	216	367	4.6	WQB			yes	76W 1
ł	11	12	7.85		1704	484	260	219	1.9	MQB			yes	76W 1
1	.04	.12	0.8		2315	1677	345	427	10.4	WQB			yes	76W1
5			7.8	16	4600			903		WQB			no	75W14
7	03	.11	7.9		956	550	424	317	.7	WQB			y es	76W1
3	07	12	0.8		1350	870	590	423	1.4	WQB			yes	76W 1
9	.04	.08	7.4		452	220	165	139	.3	WQB			yes	76W10
0			6.3				4810	292		Unknown		337MSNC	no	57 MOI
t			7.3			291800	2450	190	967	Unknown		331MD5N	no	64M0
5	.09	.11	7.8		846	549	258	Z16	2.5	WQ8			yes	76W10
0			6.8			323900	36600	90	250	Unknown		337MSNC		юмов
ı			7.8			15140	573	2100	104	Unknown		217M001		68M0
5					748		185		3.5	MF&G			ng	02W00
6			7.72		1012	842	247	283	4.2	MF&G			no	75W06
7			7.53		690		182		3.1	MF&G			no	02W00

WOLF POINT

Chemical Analyses

Magi						Hecti	on			Magne-		Potas-		Manga-		Bicar-	Car-		
ref.			atto			iate			Calcium		Sodium	sium	iron	nese		bonate		Chloride	Suffete
MO.	Ť	A	Sec	Tract	Mo	Day	Yr	Source	(Ca)	(Mg)	(Ne)	(K)	(Fe)	(Mn)	(5,02)	(HCO ₃)	(CO3)	(CI)	(SO ₄)
168	32N					16	76	Lake	40.4	20	54					228		4.9	104
169	32N				06	16	76	Lake	34.5	36.5		16.4	1.3	.06		424	24	16.1	351
170				000	06	16	76	Creek	81	55	130	12.8	.43	.07		327		6.7	393
	31N				01	31	57	Well	1300	240	23000°					551		35000	4200
174	31N	45E	23	AA	01	01	57	Weil	480	190	9200°					259	64	14000	2300
175	30N	45 E	24	AD	03	02	56	Well	760	150	13000*					346		18000	4300
	30N			AD	03	16	56	Well	10000	2000	110000°					162		190000	510
177	36N				07	30	75	Seep			5800					382		12100	103
178				ADD	03	07	77	Well	164	88	177	6.8	.07	.55	22.8	732		6.5	527
179	27N	50E	35		07	27	76	River	55	62	405	8.4	< .05			478	16	13	803
	26N				03		76	Creek	33.2	18.7		9.7				125		5.1	145
	26N				09	06	63	Canel	56	20	50	4.1	.08			189		8.4	162
	26N				09	05	63	Well	76	2.8		3.9	3.5	2.1	14	377		13	296
	26N				09	06	63	Well	179	59	422	7.4	7.0	2.8	19	482		33	1160
186	26N	45 E	07	ADA	09	09	63	Well			56		3.1			256			140
	26N				11		63	Well	132	46	360	7.0	9.5	1.2	20	685		13	665
188	26N				10	22	63	Well		,	402		1.6			627			522
189	26N				07	28	64	Well	1100	130	15000	260				537		24000	2800
	26N				04	15	64	Well	256	102	544	16	.97		20	1060		24	1400
191	27N	45E	33	CDD	10	09	47	Weil	14	45	589	18	2.1		12	524		26	1010
	27N				11	17	63	Well	22	6.1	115	2.7			17	322		4	61
	27N				10	08	63	Well	108	45	354	5.2	4.4	1.5	17	718		14	572
	27N				10			Well	103	34	342	5.4	3.5	.53	18	720		16	487
	27N					18	63	Well	85	32	402	5.4	5.1	.53	20	659		12	635
196	27N	47E	15	AC	10	10	47	Well	106	36	220	8.0	2.8		16	412		11	529
197	27N	478	15	C8	10	15	47	Well	74	33	359	2.4	1.5		25	532		18	572
198	77N	47E	15	DCC	10	16	64	Well	56	26	310	5.8	5.1		18	684		30	314
199	27N	478	21	AAD	10	16	64	Well	60	30	288	5.3	5.8		17	623		8.6	360
200	77N	478	22	BBD	10	16	64	Well	49	24	310	5.1	3.1		18	576		10	390
201	27N	47E	24	ccc	07	23	64	Well	100	55	162	7.1	8.8		19	486		9.3	402
202	27N	478	25	DD	09	05	63	Well	124	63	200	36	.04	1.2	12	442		48	473
203	27N	47 E	25	DD	10	10	47	Well	174	56	240	3.2	.10		16	688		29	503
204	27N	486	02	DCA	10	15	64	Well	113	62	726	7.6	3.5		18	546		30	1560
205	27N	48E	07	BD8	09	07	63	Well			750		3.3			746			1560
206	27N	48E	07	DCD	09	07	63	Well	95	51	447	5.7	2.8	1.4	18	722		14	815
207	27N	48E	11	ACB	09	07	64	Well	156	71	603	7.2	7.0		17	716		30	1320
208	27N	488	10	CB	10	10	47	Well	100	40	197	11	2.3		14	662		6	288
209	27N	486	20	DBA	09	06	63	Well	75	27	115	3.5	3.5	.11	18	436		7.1	178
210	27N	48 8	28	D	09	06	63	Canal			53		.14			190			168
211	27N	488	30	ABA	07	23	64	Well	211	118	376	7.8	15		18	555		26	1270

Note: All chemical data are given in milligrems per liter (mg/l) unless otherwise steted.* Values reported as sodium plus potessium.

1" x 2" Sheet (Cont.)

of Selected Waters (Cont.)

Mag		Fluo-		Field	Lab specific	Dissolved	Totel	Total	Sodium		Well		Trace	
ref.		ride	طها	Temp.		solids	hardness	alkalinity	adsorption	Collecting	depth	Aquiter	elements	Lab
no.	(N)	(F)	рH	c°	(µmho/cm)	(caic.)	as CaCO ₃	as CaCO3	ratio	agency	(ft.)	code	analy zed	number
168			7.47		587	336	183	187		MF&G			no	7SW063
169	.20	.19	8.7		1403	923	236	388	8.7	wQ8			yes	76W108
170	.05	.09	8.1		1296	820	380	268	2.9	WQ8			yes	76W108
173			6.7				4230	452		Unknown		337MSNC	no	57M001
174			8.0				1200	319	2.4	Unknown		337MSN	no	\$7M000
175			6.6				2520	284		Unknown		224PIPR	na	56M000
176			8.0				33200	133		Unknown		331CRLS	no	56M001
177			7.45	-	30200			313		WQ8			no	76W143
178		.1	7.35		1903	1355	772	600	2.9	Private	70	125TGR\	/ no	76M164
179	.02		8.4	20	2212	1842	393	419	8.9	EPA			Ass	76W171
181	.47		7.25		524	382	160	103	1.5	WQ8			no	76W048
83	.226	.8	7.7	17.2		403	221	155	1.5	USGS			no	63 MOO
84	.023	.5	7.9		1150	742	304	309	3.6	USGS	18	110ALVA	A no	63M005
85	.158	4	8.0	16.1	2800	2127	689	395	7.0	USGS	48	110ALVA	on h	63M006
86			7.6	13.3	686		244	210	1.6	USGS	63	110ALVA	A no	63M005
87	1.627	.7	7.0		2190	1594	519	562	6.7	USGS	106	TIGALVA	no h	63M00
88			7.8	10.8	1960		173	514	13.0	USGS	105	110ALVA	A no	63M00
89			7.0			43350	3280	440	114	Unknown		331MDSN	on 1	64M00
90	2.711	.7	7.8	8.9	3610	2888	1060	869	7.3	USGS	90	110ALVA	A no	64M00
91	.497	.8	7.3	7.8	2670	1974	220	430	17.0	USGS	21	110ALVA	A no	47 MOO!
92	.068	1.4	8.0	8.3		388	80	264	5.8	USGS	42	110ALVA	f na	63M00
93	858	.5	7.8		2090	1476	455	589	7.2	USGS	80	110ALVA	A no	63M00
94	.294	.7	7.9	9.5	1950	1365	396	591	7.5	USGS	73	110ALVA		63M00
95	.294	.8	7.7		2150	1523	344	540	9.4	USGS	106	110A LV		63M00
96	.565	.2	7.9	8.9	1740	1132	412	338	4.7	USGS	93	110ALVA	d no	47M00
97	.904	.8	8.3	10.6		1349	320	436	8.7	USGS	100	110ALVA	f no	47M00
98	.090	1.1	7.9	7.8	1630	1103	248	561	8.6	U\$GS	110	110ALVA		64M00
99	.158	.9	8.0	7.8	1590	1083	272	511	7.6	USGS	100	110ALVA		64M00
00	.226	1.0	8.0	8.3		1094	223	472	9.1	USGS	94	110ALVA		64M00
101	.520	.7	7.8	9.5	1430	1004	477	399	3.2	USGS	54	110ALVA	no h	64M00
	33.661	3	7.5	16.1	1900	1209	568	363	3.6	USGS	20	110ALVA		64M00
	22.591	.3	7.7	8.3		1383	664	564	4.0	USGS	20	110ALVA	no n	47 MOO:
04	.565	.9	8.1	7.2	3700	2790	536	448	14.0	USGS	51	110ALVN		64M00
05			7.6	7.8			540	612	14.0	USGS	48	110ALVA	no h	63M004
206	1.265	.7	7.9	7 2	2540	1808	447	592	9.2	USGS	58	110ALVA	1 no	63M00
07	.610	.8	7.9	7 2		2565	679	S87	10.0	USGS	52	110ALVA		64M00
208	.904	.8	7.6	7.8	1500	986	414	543	4.2	USGS	36	110ALVN		47 MO05
209	.045	6	7.9		982	643	300	358	2.9	USGS	85	110ALVN		63M005
210			7.6	20.6			221	156	16	USGS				63M003
211	.949	6	7.9	8.9	2920	2317	1010	455	5.1	USGS	60	110ALVN	no l	64M005

WOLF POINT

Chemical Analyses

Map				c	ollect	ion			Magne-		Potas-		Manga-		8icar-	Car-		
rel.			ation		date			Calcium		Sodium	SHLIM	Iron	nese		bonate		Chloride	Sulfete
no	Т	R	Sec Trec	t Me	Da	y Yr	Source	(Ca)	(Mg)	(Na)	(K)	(Fe)	(Mn)	(5iO ₂)	(HCD ₃)	(CO3)	(CI)	(SO ₄)
			30 88A		14	64	Well	362	152	436	15	25		17	630		48	1750
			30 CAD	08	29	64	Well	80	56	358	5.0	4.3		20	704		8.5	582
			01 ADA	10			Well			148					311			261
			01 ADA		10	63	Well			95		.68			349			237
216	27N	498	01 DAD	10	28	63	Well	49	17	193	3.5			18	377		8.4	292
			03 AAB	09		64	Well	70	35	224	4.2	-06		13	430		13	424
			03 CA	10	14	47	Well	58	25	255	10	.34		11	534		12	345
219	27N	49E	09 DBC	09	07	63	Well			342		2.6			782			360
220	27N	49E	12 ADD	10	31	63	Well	85	42	82	2.4			16	380		12	226
271	27N	49E	13 AAC	11	05	63	Well	89	31	107	4.8	7.4	.88	22	453		8.8	187
			01 D		07		Streem			258					550			177
			12 AB	10		64	Well	28	15	234	4.6	.02		18	559		9.7	177
			12 ADD	10		64	Weil	39	21	267	7.0	.05		18	575		16	271
			13 8DD	09		63	Well	54	31	214	4.7	.67	.39	9.9	541		9.2	281
226	27N	1518	18 8C	10	07	64	Well	183	59	279	7.0	.07		19	803		21	568
			14 8DC	10		64	Well	146	61	125	6.3	.02		17	804		9.6	208
			21 BBA	10		64	Well	115	56	93	6.8	.01		16	688		9.0	134
			29 A88	09		63	Weti	7.1	23	617	9.2	.26	.03	2.9	588	20	16	900
			17 88	09		63	Well			150		2.2			463			227
231	27N	53E	06 8 CD	10	08	64	Well	222	88	540	9.4	.08		19	R64		44	1260
			01 AA	05		64	Streem	59	19	65	4.2	.07		8.9	189		9.1	189
			01 AAD	-		64	Well			663°					976			912
			01 AAD	04			Well	90	23	652	4.4	.30		17	976		6.2	870
			01 AAD	05		64	Well	75	33	664	4.4	3.2		25	984		6.8	900
236	27N	56E	03 CA8	05	05	64	Well	204	95	448	8.2	.32		18	948		16	1060
			05 CDA	11			Well	120	44	495	7.2	7.6	.12	22	758		6.2	890
			06 888	10			Well	71	19	495		4.0			735		14	680
			35 A A8	09		63	Well	69	24	128	3.0	.02		18	391		8.2	210
			36 8 CD	09			Well	84	33	156	4.8			18	574		7.6	203
241	27N	58E	36 CD8	09	09	63	Well	160	70	384	8.6			24	738		15	875
			36 CAA	11		63	Well			402		2.9			490			875
			36 CBA	04		64	Well			408°					512			968
			19 A88	09		63	Well	164	88	244	15	.22	.03	19	758		137	320
			25 D8	10		47	Well	105	111	697	22	3.4		14	1130		8.0	1270
746	28 N	538	29 DAC	10	05	63	Well	4.6	1.1	518	1.5	.09	.02	11	1050	32	112	27
			30 DA	10		64	Well	30	16	260	1.5	.02		12	620		8.5	180
			32 ADB	10		63	Well			550		.30			1050	33		8
			32DCD	10		63	Well			436					928	12		71
			35 CAA	09		63	Well	185	67	193	6.4	1.6	.94	21	576		20	650
251	2RN	548	35 CAA	09	09	63	Well	96	42	118	6.8	2.9	.11	7.6	408		24	323

Note: All chemical date ere given in milligrems per liter (mg/l) unless otherwise steted. Values reported as sodium plus potessium.

1" x 2° Sheet (Cont.)

of Selected Waters (Cont.)

					Lab									
Mao		Fluo-		Field	specific	Dissolved	Total	Total	Sodium		Wall		Trace	
rel.	Nitrate	ricie	Leb		conductance	solids	hardness	alkalinity	adsorption	Callecting	dapth	Aquifar	elements	Lab
no.	(N)	(F)	pН	c°	(µmho/cm)	(calc.)	as CaCO	as CaCO	ratio	agency	(ft.)		analy zed	
	****			-	,,			,						
212	1.649	.7	7.7		3710	3118	1530	517	4.9	USG5	83	110ALVA	no h	64M0049
213	.407	7	8.0	8.3	2090	1462	428	577	7.5	USGS	64	110ALVA	f na	64M0048
214			7.7	8.9	1010		198	255	4.6	USGS	97	TIGALVA		63M0045
215			7.7	8.3	982		332	288	2.3	USGS	97	110ALVA		63M0046
216	.023	.6	7.9	8.3		765	194	309	6.0	USGS	85	TIOALVA		63M0047
210	.02.5			0.9		.00	.54	303	0.0	0000	0.5			00.1110011
217	.023	.6	8.1	7.8	1480	996	318	353	5.5	USGS	105	110ALVA	A na	64M0031
218	.407		7.8	8.3	1470	980	248	438	7.1	USGS	80	110ALVA		47M0053
219	.407		8.0	0.5	1740	300	280	841	8.9	USGS	90	110ALVA		63M0048
220	.023	.4	7.8	8.3	988	653	383	312	1.8	USGS	98	110ALVA		63M0049
221	.023	.6	7.3	8.9	1030	682	350	372	2.5	USGS	86	110ALVA		63M0050
221	.045	.0	7.3	0.3	1030	002	150	3/2	2.5	0303	80	TOMEVA		03/4/0000
222			8.0	22.8	1310		140	451	9.5	USGS			no	63M0037
223	.294	1.0	7.9	22.0	1170	763	131	458	8.9	USGS	99	110ALVA		64M0042
224	.384	.8	8.0	10.6	1400	924	184	472	8.5	USGS	96	110ALVA		64M0041
							262	444		USGS	65	110ALVA		63M0051
225	.023	.5	7.8	13.9	1350	872			5.8		73			64M0044
226	1.333	.8	8.0	8.9	2130	1534	700	659	4.6	USGS	/3	110ALVA	no l	04MUU44
227	1.175	.7	7.8	8.9	1470	971	616	659	2.2	usgs	30	TIGALVE	A no	64M0043
227			7.9		1210	770	516	564	1.8	USGS	20	110ALVA		64M0040
228	.158	.6		12.2										
229	2.937	.6	8.4	13.9	2930	1889	111	516	25.0	USGS	77	110ALVA		63M0038
230			8.1	11.7	1120		289	380	3.8	USGS	75	110ALVA		63M0041
231	.090	.7	8.0	8.9	3360	2609	915	2610	7.8	USGS		110ALVA	A no	64M0035
232	.045	.8	7.5		706	448	224	155	1.9	USGS			no	64M0033
	.045	.0				446	308	800						64M0036
233			8.0	8.9	3070				16.0	USGS	109	110ALVA		
234	.090	1.5	7.8	9.5	3000	2145	319	800	16.0	USGS	36	110ALVA		64M0037
235	.045	16	7.8	9.5	3030	2198	323	807	16.0	USGS	126	110ALVA		64M0028
236	.023	.8	7.5	8.3	3050	2317	900	778	3.2	USGS	90	110ALVA	d no	64M0038
237	1.694	.9	7.4	8.3	2690	1968	479	622	9.8	USGS	157	110ALVA	d no	83M0042
238	.113	.8	7.4	0.5	2000	1646	256	603	13.0	USGS	115	110ALVA		62M0017
239	.090	.7	7.8		985	652	271	321	3.3	USGS	58	110ALVA		63M0040
240	.090	.7	7.9		1210	790	344	471	3.7	USGS	80	110ALVA		63M0027
741	.023	.5	7.7	9.5	2550	1901	688	605	6.4	USGS	118	110ALVA		63M0027
/41	.023	.5	1.1	9.5	2550	1901	988	905	6.4	0363	110	HUALVA	n no	63MUU28
247			7.4	8.9	2360		416	402	8.6	USGS	68	110ALVN	A no	63M0024
243			7.8	7.8	2520		540	420	7.6	USGS	55	110ALVN		64M0027
	46.989	.5	8.0	8.3		1409	769	622	3.8	USGS	18	110ALVA		63M0020
245	.113	.6	7.8	8.3		2788	718	927	11.0	USGS	90	110CLVA		47M0048
746	.452	5.4	8.5	11.1	1990	1230	16	915	56.0	USGS	82	TIOALVA		63M0029
740	.452	3.4	0.0	(1.1	1330	1230	10	310	50.0	0303	02			Caupition
247	.587	1.0	8.1		1280	815	142	509	9.5	USGS	106	112DRF1	no	64M0032
248			8.4	9.5			31	916	43.0	USGS	88	110ALVA	no l	83M0031
249			8.3	10.6			12	781	55.0	USGS	100	110ALVA		63M0030
250	.226	.6	7.5		1990	1430	739	472	3.1	USGS	30	110ALVA		63M0032
751		.5	7.4	11.7		822	434	335	2.5	USGS	78	110ALVA		63M0033

WOLF POINT

Chemical Analyses

Maga	Location T. R. Sec Tract	Collection date Mo Day Yr	Calcium Source (Ca)	Magne- sium (Mg)	Sodium (Na)	Potes- sium (K)	Iron (Fe)	Manga- nese (Mn)	Silica (SiO ₂)	Bicar- bonate (HCO ₃)	 Chloride (CI)	Sulfete (SO ₄)
254 259	28N 55E 21 ACC 28N 55E 32 AC 28N 55E 33 DAD 28N 56E 27 BD 28N 56E 29 CD	09 10 63 09 09 63 10 13 47 09 10 63 10 12 64	Stream Well Well 229 Well 58 Well 153	103 24 71	341 469 467 81 519	14 31 76	3.6 .05 .02	.17	12 19 22	628 997 1190 385 770	26 2.0 8.7	474 1380 971 60 1110
258	28N 57E 25 ACA 28N 57E 32 D0 33N 49E 34 CB	10 12 64 10 13 47 05 16 56	Well 75 Well 158 Well 1600	24 59 280	438 13 29000*	10 10	16 10		23 21	784 351 259	5.7 57 45000	548 293 3400

Note: All chemical istra are given in milligrams per liter (mg/i) unless otherwise stated. * Values reported as softium plus potassium.

1" x 2" Sheet (Cont.)

of Selected Waters (Cont.)

Map ref. no.	Nitrete (N)	Fluo- ride F)	Lab pH	Field Temo. C°	Lab specific conductance (µmho/cm)	Dissolved solids (calc.)	Total hardness as CaCO ₃	Total alkalinity as CaCO ₃	Sodium adsorption ratio	Collecting agency	Well depth (ft.)		Trace elemants analyzed	
252			7.7	25.0	1820		241	515	9.8	USGS			no	83M0039
253			7.4		3490		1200	816	5.9	USGS	100	110ALVA	A no	63M0034
254	1.401		7.1	7.2	3230	2413	995	976	6.4	USGS	15	110ALVA	A no	47M0049
255	.520	.3	7.4	9.5	689	418	244	316	1.7	USGS	16	110ALVN	A no	63M0035
256	4.066	1.0	8.0	7.8	3000	2278	672	632	8.7	USGS	80	110ALVA	A no	64M0030
257	.249	1.0	8.0	8.3	2160	1511	285	643	11.0	usgs	147	1120RFT	no	64M0029
258	1.355	.1	8.1	7.8	1240	788	637	288	.2	USGS	19	110ALVA	A no	47M0050
259			6.2				5150	212		Unknown		337MSNC	on :	56M0017

WOLF POINT 1° x 2° Sheet

Trace Elements Analyses Sheet

Lab	76W1092	76W0499	1601W97	76W1095	76W1093	76W1094	76W0497	76W1080	36W1078	76W1077	76W1079	76W1075	76W1076	76W1074	76W1073	76W1718	16W1071	76W1072	76W 1087	76W1088	76W 1089	76W1090	76W1086	76W1085	76W1084	76W1082	76W 1081	76W1083	76W1712
Tin Zinc (mg/II lmg/II)	.02	01.	0	05	V.01	V.01	V.01	V.01	.03	(0)	10'>	0.	0.	V.01	99	<.01	\ 0.	0.	V.01	0.	90.	ō V	8	V 10.	8	90	0	.07	V.0
Tin (mg/l)																													
Silver from Tin Zinc (mg/l) (mg/l) (mg/l) (mg/l)																													
Selanum (µg/l)	-		-		- V	- V		-	-	-	-	_	V	_	2	-	-	_	v	-	2	ī	<u>-</u>	v	Ÿ	· \	V	Ţ	ī
Onco- Lith- Mer Phosphate mem Capper Lead inn cury Nickel (Total Selanum ling/I) (mg/I) (mg/I) (mg/I) (mg/I) (mg/I) (mg/I)		030																											
Nickel Ing/I)	> 00	< N	99	<.05	<. 0.05	8	99. V	90	90.	8	.03	%	90	9. V	V 90:		80	90	90: >	V:09	99.	8	90.	90.	99 V	%	<.05 <	90.	
Mer cury I	<.>	5.6	~ V	<. V	?	<.>	? >	1.3	89	2.2	1.5			7			7	۲ ۷	7	< 2	< 2	?	2 ×	2 ′	?	2	1.8	₹.	
Lith: Mer ium cun, (mg/l) (µg/s	\ 0.0		10.	90	.02	.02		0.	01.7	90	.042	96	8	90	.02		.07	.07	8	9	.02	9	80	90	V 10.	.03	8	8	
Lead (mg/l)	0.05	SO. >	8	> 05	> 06	8	%	8	< 0.0	<.05	>00	8	8	%	9 V		8	9. V	50.05	>.05	8	50.05	90.	90: V	×.98	90	99.	8	
Ohro- mum Capper Lead (mg/l) (mg/l) (mg/l)	0.	10.	10.	10.>	V >	10.	ō	10. >	10.>	V.01	0.	10 >	10.	V.01	V.01		0	10	10.>	V.01	10	10.	0	V.01	V.01	6	0	0.0	
Ohro- mg/l)				<0.05	<.05	90.>	SO: V	\$0. V	< .05	<.05	8	8	90 >	SO: V	Se		8.0	90:			8		× 05	90.		90:>	90'>	8.08	
mium (mg/l)	¥00° >	00.	100.	100.	V.001	>.00	, 100.		> 00.	100	8	100		.003			910	0.		003	×.001	.003	003			00		90	
Boron (mg/I)	01.	6	.12			01.>	01.>	01.7	01.>	13	.12	235	.268	.27	.255	30	.23	.245	.29	34	.27	54	14	.20	01.>	.26	38	36	30
	01 >		01>	010	V > 10	01 >		017		O1 >	01 >	0 V	010	01×	V 10		01 >	01 V	V > 10	V > 10	01 V	O1 >	010	01 V	V 10	01 >	010	0 V	
Alu. Anti: Ar. Beryl: minum mony senc lium (mg/l) (mg/l) (µg/l) (µg/l)	2	ß	2	9	7	9	2	4	9	4	-	e	٣	9	e		6	2	2		4	4	6	9	6	e	1	9	
Antt-																													
Alu- minum (mg/l)		.15					.15																						
Location R Sec Tract	00	AA	000	ADD	C88	8	8	888	QQ	DCC	888	Doc	AAC	DOD	ADD		888	880	8BC	CDA	BCA	BAD	CDD	000	000	BAA	CCB	DDD	
Location R Sec T	37N 49E 16 DD	37N 48E 05 AA	36N 50E 22 CCC	35N 47E 12 ADD	35N 50E 27 C8B	33N 50E 03 CB	31N 50E 27 CD	30N 56E 07 8BB	30N 57E 14 DD	30N 58E 14 DCC	30N 56E 30 888	28N 59E 28 DGC	28N 59E 32 AAC	28N 58E 20 DDD	28N 56E 27 ADD	27N 50E 35	26N 54E 15 BBB	26N 55E 01 DB8	35N 55E 14 8BC	35N 54E 16 CDA	35N 54E 29 BCA	35N 52E 09 BAD	35N 55E 21 CDD	35N 55E 27 DDD	34N 56E 10 DDD	32N 55E 27 BAA	32N 56E 31 CCB	55E 30	27N 50E 35
-		37N 4	36N 5	35N 4	35N 5	33N S	31N S												36N S						34N 5			32N S	27N B
Map ref.	-	۳	12	17	21	25	75	8	39	40	4	56	57	8	19	83	88	91	133	135	138	7	147	148	148	166	169	1,0	179

AN ALGAL SURVEY OF SURFACE WATERS IN EASTERN MONTANA SUSPECTED TO BE INFLUENCED BY SALINE SEEP, WITH SPECIAL EMPHASIS ON SALINITY INDICATORS AND POTENTIALLY TOXIC SPECIES

Ву

Loren L. Bahls and Peggy A. Bahls

CONTENTS

ABSTRACT

INTRODUCTION

METHODS

RESULTS

Non-diatom Algae

The Diatom Flora

Salinity and the Diatom Community

DISCUSSION

CONCLUSIONS AND RECOMMENDATIONS

TABLES AND FIGURES

LITERATURE CITED

APPENDICES

Appendix A. Sample locations and dates

Appendix B. Genera of non-diatom algae

Appendix C. Diatom abundance and frequency

Appendix D. Diatom diversity and water salinity

ABSTRACT

One hundred samples of benthic algae were collected from surface waters in eastern Montana suspected of being influenced by dryland salinity. class Bacillariophyceae (diatoms) was the most abundant and diverse group. dominating 62 percent of the samples and represented by 291 distinct taxa in 38 genera. Diatom species diversity was inversely correlated with specific conductance and the relationship was significant to the 1 percent level of probability. Several taxa with documented brackish water affinities were among the more common diatoms encountered. The spectrum of salinity values for the waters surveyed (332-42519 mg/1 TDS) eclipsed the maximum and minimum tolerances for many of the diatom taxa described. Although blue-green algae comprised a relatively minor portion of the total flora, potentially toxic taxa were present in 25 of the 100 collections. A determination of the immediate threat to livestock from consumption of waters containing these algae and documentation of possible toxic algae blooms in stockponds across eastern Montana could not be accomplished given the methods employed in this survey. Proposals are made for educating ranchers on the potential toxic algae problem and for establishing a biological salinity impact monitoring network.

INTRODUCTION

This report describes the attached or benthic algae (phycoperiphyton) found at 100 different sites on a variety of surface waters in eastern Montana suspected of being influenced by dryland salinity. Most of the waters sampled were small first and second-order streams, however they ranged in size from tiny spring seeps to the Missouri River at the Fred Robinson Bridge. An assessment is made of the susceptibility of livestock and wildlife to potentially toxic blue-green algae encountered in these waters. Diatom taxa useful as salinity indicators are identified and their respective salinity tolerances are described.

Salinity in surface and ground waters is a well-known and long-standing problem in eastern Montana. In recent years salinity levels in certain waters have been increasing (5, 15). It is believed that a major contributor to this growing problem is the process called saline seep (4, 9, 20).

Salinization of surface waters used by livestock has been implicated in recent reports of cattle deaths near stock ponds in saline seep areas (29). These waters, in addition to the high concentrations and array of dissolved minerals and nutrients they are known to contain, may harbor strains of bluegreen algae that are lethal to livestock and wildlife following water blooms (7, 19, 22, 31). Species containing suspected toxic strains are known to occur in a broad band across the northern United States and southern Canada, and may be found in waters having a total dissolved solids content of up to 20,000 mg/l (25, 26).

The primary objective of this survey was originally to determine whether potentially toxic blue-green algae regularly form water blooms in reservoirs frequented by livestock and, if they do, what factors contribute to such blooms. Their occurrence in waters affected by irrigation or dryland salinity may present an additional and unsuspected operating hazard to eastern Montana livestock producers. Small streams in eastern Montana are often intermittent and cannot be relied on as a source of stock water the year round. Impounded in reservoirs, water is available for all of the ice-free season. Most potentially toxic species of blue-green algae are planktonic and realize their full lethality only following a bloom in the open, standing water of lakes and reservoirs (7). It was therefore proposed initially that at least 50 of the 100 algae samples be taken from the plankton of stock-watering reservoirs (3). Unfortunately, due to time and access limitations, only a handful of samples (eight) were collected from such waters; all were taken from the periphyton and none were taken from the plankton. Consequently, the results from this phase of the survey are inconclusive.

However, another useful purpose has been served by completion of this survey. Algae, particularly diatoms, are useful as monitors of water quality. Because they directly utilize dissolved minerals and nutrients in their metabolic processes, they are orders of magnitude more sensitive to changes in the ambient concentrations of these elements than either invertebrates or fish. They reproduce much faster than invertebrates or fish, hence their

response is more immediate. They are also less mobile and less able to evade the consequences of pollution. As biological organisms they integrate the effects of all the various physical and chemical factors to which they are exposed. The environmental requirements and pollution tolerance of many freshwater diatoms have been documented (17). The absence, or when present the relative abundance, of certain species and varieties may indicate specific water quality conditions.

The waters sampled in this survey vary in salinity from levels typical of freshwater to and exceeding those of sea water. Given such a broad range in total ionic load, the correlation of dissolved solids and electrical conductivities of these waters with the relative abundances of their more common diatom taxa will make it possible to identify certain species and varieties that may serve as salinity indicators. Such taxa may be used in lieu of or in concert with physicochemical analyses as markers of salinization in surface waters of eastern Montana.

One incidental benefit will accrue from completion of this survey. It will enhance our knowledge of the distribution of diatoms in Montana and will represent a significant contribution to a statewide diatom flora now in initial stages of preparation.

METHODS

One hundred samples of benthic (attached) algae were collected from 100 different sites in eastern Montana by personnel of the Water Quality Bureau (Montana Department of Health and Environmental Sciences), the Montana Bureau of Mines and Geology, and by this writer. Dates and locations of algae samples are listed in Appendix A. Collectors were instructed to sample macroscopic algae in proportion to their abundance at a given site and to scrape microscopic algae from natural substrates roughly in proportion to the importance of each substrate (rocks, mud, etc.) at each site, thus giving a representative composite sample (2). Substrates were scraped with a carefully cleaned scalpel or pocket knife. Samples were labelled, preserved with Lugol's (IKI) solution and shipped to Helena for microscopic analysis. In most cases a water sample was collected on the same date as the algae sample. Water samples were analyzed for dissolved solids and electrical conductivity at the Department of Health laboratory in Helena. In some cases, field conductivity measurements accompanied the algae sample.

Algae samples were analyzed microscopically as follows. Macroscopic filamentous algae were placed on a glass slide roughly in proportion to their abundance in the sample. The sample was then agitated and an aliquot of suspended microscopic algae was pipetted onto the same slide. A coverslip was added and this "wet mount" was scanned under low magnification (100X) to estimate the relative importance of algal taxa in the sample. (A magnification of 400X was used for critical identification of taxa.) Whenever possible the more common taxa were assigned an order of rank. At this stage diatoms were

The salinity of an inland water may be regarded as the concentration of all the ionic constituents present, according to Hutchinson (13).

considered as a group and all other algae were identified and ranked at the level of genus.

The remainder of the sample was then "cleaned" in a mixture of concentrated sulfuric acid and potassium dichromate. This process effectively oxidizes all the organic contents of the ornamented silica diatom frustules, which is necessary for accurate identification and enumeration. Following repeated decantation and dilution with distilled water, the cleaned sample was thoroughly mixed and a few drops pipetted onto a coverslip. When all moisture on the coverslip had evaporated, a permanent mount was prepared by inverting the coverslip on a heated glass slide containing two drops of a high refractive lndex mounting medium. The slide was labelled and then stored to await detailed diatom analysis.

The permanent diatom slide was scanned, first under low dry (100X) and then under oil immersion (1,000X), and a list was prepared of those taxa that could be found within a reasonable length of time, usually 30 minutes. Diatoms were identified to species, and to variety and form where appropriate and possible using available keys (10, 23, 24). Once a diatom flora was prepared for the site, the slide was examined under oil immersion beginning at one edge of the coverslip until at least 100 frustules were identified and enumerated. Work by McIntire and Overton (18) indicated that 100 is about the smallest sample size that one can use and still yield diversity and relative abundance values reasonably representative of the diatom association as a whole. Percent relative abundance values were calculated for each taxon and two diversity indexes were calculated for each sample:

Margalef's index (8)

$$D = \frac{S - 1}{\ln N}$$

and Simpson's index (28)

$$SD = 1 - \sum_{i=1}^{S} \left(\frac{n_i}{N} \right) 2$$

where S is the number of species, N is the total number of individuals in the sample, and n_i is the number of individuals in the i-th species. Percent relative abundance and frequency or occurrence were calculated for each taxon over all 100 samples. These two statistics were then multiplied giving an abundance-occurrence index, which is directly related to the chances of finding that particular taxon at any one of the 100 sites (1).

At those sites where water samples were taken, species relative abundance and diversity statistics were correlated with specific conductance (SC) values. Salinity optima and ranges of the more common taxa were expressed in terms of total dissolved solids (TDS). Only these two estimators of ionic load were selected for comparison because it is unlikely, over the wide range of salinity encountered, that any other water quality parameters would be as effective at determining species diversity or relative abundance. Temperature and nutrients, considered initially (3) because they are known to be significant

In promoting blooms of blue-green algae (14), were not used in this analysis because (i) the plankton community was not sampled, (ii) no known water blooms were sampled, (iii) blue-green algae were only a small fraction of the entire flora, and (iv) spot temperature measurements could not have been used with confidence because of temperature's tendency to undergo marked diurnal fluctuation.

RESULTS

Non-diatom Algae

Non-diatom algae in six major groups and 57 genera were encountered in the periphyton at the 100 localities sampled. A complete list of genera is in Appendix B. Because the plankton community was not sampled, the great majority of these genera are attached forms, however a few incidental plankters were encountered.

Table 1 gives the rank frequency of the most prominent non-diatom algal genera. As a group the green algae were the most important among the non-diatoms, and <u>Cladophora</u> was the most abundant non-diatom genus. Following the greens, the blue-greens, chrysophytes, euglenoids, red algae, and cryptomonads were the other non-diatom groups in descending order of abundance. Besides <u>Cladophora</u>, other significant non-diatom genera were <u>Rhizoclonium</u> and <u>Spirogyra</u> among the greens, and Oscillatoria and Phormidium among the blue-greens.

The freshwater blue-green algae suspected of producing strains toxic to wildlife or livestock are listed in Table 2. Six of the genera included on this list (Anabaena, Aphanizomenon, Gomphosphaeria, Lyngbya, Nodularia, and Nostoc) were encountered in 25 of the 100 samples (see Appendix A). Four of these genera—Anabaena, Aphanizomenon, Lyngbya, and Nostoc—were important enough to be ranked in Table 1. None was present in the massive concentrations typical of a bloom, however, verification of the presence or absence of a bloom cannot be accomplished without sampling the plankton community or without some record of the collector's visual observations. Nevertheless, potentially toxic blue greens apparently comprised a relatively minor portion of the overall algal flora in the waters sampled.

Only one suspected toxic blue-green alga-Aphanizomenon flos-aquae-was identified conclusively to species. A. flos-aquae was found in two of the eight standing waters sampled (Appendix A). It ranked second both times although the colonies were fragmented and appeared to be in a sensecent condition. Samples at these locations may have been taken shortly after the peak of a water bloom when many colonies of this ordinarily planktonic species had sunk to the bottom. Of the species thought to produce toxic strains, there is less evidence to implicate A. flos-aquae than any of the others; it is not known with certainty whether this taxon can be toxic (7).

The Diatom Flora

Diatoms representing 38 genera in 291 distinct taxa were identified in the 100 periphyton collections. Many additional taxa were recognized but could not be identified using available keys. About 60 percent of these taxa were the same as those reported by Hustedt from a number of saline lakes in

Europe (11, 12). As a group, diatoms ranked among the first three most tmportant algae in 96 of the 100 samples; diatoms ranked first 62 times, second 22 times, and third 12 times. Overall, it was the most abundant and diverse group of algae in the waters that were sampled. (See Table 1 and Appendix B for abundance and diversity of other algae groups.)

Percent relative abundance, percent frequency of occurrence, and the abundance-occurrence index for each of the 291 diatom taxa are listed in Appendix C. Relative abundance values are based on a total count of 15,185 individual frustules (cells); frequency values are based on a total of 100 samples. Achnanthes minutissima had the highest relative abundance value, contributing slightly less than 10 percent (9.53 percent) of all the frustules counted. Nitzschia palea was the most frequently occurring diatom, found in 90 of the 100 samples. The maximum possible abundance-occurrence value would be 100 percent relative abundance times 100 percent frequency equals 10,000. N. palea ranked first in abundance-occurrence (607.60) and A. minutissima ranked second (409.79). In all, only 18 taxa had abundance-occurrence values greater than 50. These taxa are given in Table 3. They may be considered the most common taxa in waters subject to saline seep in eastern Montana. Except for those with a broad ecological amplitude, they are also the ones most amenable for comparison with water quality parameters and the ones most useful as indicators of surface water salinization.

Salinity and the Diatom Community

Specific conductance (SC) measurements, either field or laboratory, were available for 94 of the 100 waters sampled. Total dissolved solids (TDS) measurements were available for 57 of those same 94 waters. Because water - use criteria for livestock, irrigation, and human consumption are more commonly expressed in TDS rather than SC, it was desirable to convert SC to TDS in those instances where TDS values were not available and SC values were. Assuming a linear relationship exists between the two parameters a regression equation was calculated using the 57 pair of measurements:

$$TDS = 0.85 SC + 19$$

The remaining SC values were then entered individually and the equation solved for TDS.

Margalef (D) and Simpson (SD) diversity indexes were calculated for the 97 diatom associations that were enumerable (diatoms in three collections were too sparse to count). Values for these indexes, along with measured SC values and measured and calculated TDS values, are listed in Appendix D.

Simple correlation coefficients (r) were then computed between SC and each of the two diversity indexes for the 91 sites having both diversity and salinity data. The following correlation coefficients were obtained:

$$r_{DSC} = -0.451$$

$$r_{SDSC} = -0.468$$

Both of these values are significant to the I percent level of probability, indicating there is a significant inverse relationship between salinity and diatom diversity in the waters sampled.

Simple correlation coefficients between species relative abundance and SC values were also calculated for the 18 most common diatom taxa listed in Table 3. None of the coefficients obtained (Table 4) proved to be significant, even to the 5 percent level of probability. Two factors might account for this: (i) the relationship may not be linear, and/or (ii) other parameters may be more important in determing relative abundance over the range of salinity values for a given species.

To test the former hypothesis, the percent relative abundance values of two species were plotted as a function of SC. Figure 1 shows that within the salinity ranges of these two species, the relationship is more bell-shaped than linear, with an optimum lying somewhere between the two extremes. Consequently, a significant linear relationship could be expected only on one or both sides of the optimum. Over the entire salinity range, any positive and negative coefficients on either side of the optimum could be expected to cancel one another, thus at least partly explaining the low r values in Table 4.

Maximum, minimum, and mean TDS values for 25 of the more frequently occurring taxa are also listed in Table 4. Extreme TDS values well beyond the normal range of a taxon and represented by only one cell were eliminated from consideration to discount any possible chance occurrence. The maximum and minimum values therefore delineate the normal salinity range for each taxon in the waters that were sampled. The mean TDS value is intended as an estimator of the optimum salinity level for each taxon.

DISCUSSION

Maximum allowable salinity levels in water depend on what the water is to be used for. For human consumption salinity should not exceed 500 mg/l TDS (6). For irrigation it should not exceed 5,000 mg/l TDS (6), although detrimental effects may begin at around 1,500 mg/l TDS (30). For stock water for beef cattle it should not exceed 10,000 mg/l TDS (6), although water in excess of 4,000 mg/l TDS may be unsatisfactory (21).

The value of a diatom as a water quality indicator is primarily a function of its ecological amplitude. A taxon found over a broad range of salinity values is not as useful for this purpose as one with a relatively narrow tolerance. To illustrate, the mean and extreme salinity levels of the taxa listed in Table 4 are superimposed over the maximum permissible levels for the water uses discussed above (Figure 2). In making this comparison, a number of points become evident. First, three species are relatively valueless as indicators because of their broad salinity range, which matches the range of TDS for all 91 samples. Second, none of the taxa can be used affirmatively as an indicator of water suitable for human consumption. The most salinity intolerant form—Nitzschia dissipata—indicates water that is suitable for livestock and most irrigation applications. At the other end of the scale,

Amphora coffeiformis is indicative of water that is unsuitable for drinking, most irrigation, and probably stock watering as well. In between these two taxa are 23 others with varying salinity ranges and means.

Kolbe (16) devised a halobion spectrum for circumscribing salinity preferences of diatom taxa. Although it was originally intended to apply only to chlorides, it is generally understood to reflect total salt concentration in its present usage. Kolbe's halobion spectrum is presented in Table 5.

Lowe (17), Patrick and Reimer (23, 24), and others have summarized the salinity preferences of a great many diatom taxa from a large number of published reports. Reported salinity preferences for the 25 taxa in Table 4 and Figure 2 are given in Table 6. These descriptions are generally in agreement with salinity ranges and means associated with these taxa in eastern Montana.

The wealth of published information on salt preferences for most common freshwater diatoms offers an excellent opportunity for devising a biological system for rating salinity effects in surface waters. To begin with, the spectral designations in Table 5 could be scaled as follows:

oligohalohous	1.0
beta-mesohalobous	2.0
alpha-mesohalobous	3.0
euhalobous	4.0
polyhalobous	5.0

Next, a diatom sample is collected from a water in question. The sample is counted and percent relative abundance values are determined for all taxa. Then each taxon is assigned to one of the above spectral designations and weighted according to its relative abundance, which is multiplied by the scaled value of that designation. These products are added and then divided by 100, which puts the final value within range of the scale described above. A rating of less than 2.0 would indicate fresh (oligohalobous) water with TDS less than 500 mg/l. A rating between 2 and 3 would indicate brackish (betamesohalobous) water with TDS between 500 and 10,000, and so on.

To further illustrate how this rating system might work, an example is taken from the present survey. Sample 0211A had six species distributed as follows:

Navicula pygmaea	43.9%	х	2.0 =	87.8
N. cincta var. rostrata	10.7	x	2.0 =	21.4
N. protracta	5.0	x	2.0 =	10.0
N. odiosa	0.8	x	2.0 =	1.6
Amphora coffeiformis	38.8	x	3.0 =	116.4
Navicula tenelloides	0.8	x	3.0 =	2.4
	100.0			239.6

The first four listed taxa are considered beta-mesohalobous and should be scaled with a value of 2.0 as indicated. The last two taxa may be considered alpha-mesohalobous and should be scaled with a value of 3.0. The sum of products divided by 100 gives a biological salinity rating of 2.4 or somewhere about midway between 500 and 10,000 mg/l TDS. The TDS value at this site, estimated from SC, was 6,394 mg/l.

The value of a system such as this, however, is not its ability to estimate TDS. Even assuming it is reasonably accurate at doing so, it would be much simpler to measure TDS directly. Its real value lies in its numerical representation of the collective response of a significant portion of the biological community to a given category of stress applied over a period of time. After refinement and testing, such a scaling system could be used for monitoring the biological response to surface water salinization in eastern Montana.

CONCLUSIONS AND RECOMMENDATIONS

This survey has established the potential of algal toxicity to livestock and wildlife in one quarter of the waters sampled. However, for a variety of reasons repeated below, no statement can be made regarding the immediate danger to such animals posed by possibly toxic algae consumed in waters subject to saline seep in eastern Montana:

- Most of the samples were collected in the spring of the year, a time when blue-green algae do not reach their full growth potential.
- 2. Water blooms, responsible for most cases of algal toxicity, ordinarily develop only in the plankton of standing waters. Such waters (reservoirs) are also the most dependable water supplies for livestock and wildlife. Standing waters accounted for only 8 of the 100 collections and the plankton community was not sampled in any of these.
- Taxonomic identification does not confirm the presence or absence of a toxic algae problem. Different strains of the same species, undistinguishable under the microscope, can form blooms that are deadly or merely obnoxious.
- 4. About 85 percent of the samples were collected by individuals unfamiliar with algal growth forms and sampling techniques. Although unlikely, these individuals may have overlooked concentrations or blooms or potentially toxic algae.

Nevertheless, the potential is significant enough to warrant an effort to educate livestock producers of the problem. Ranchers should be warned to refrain from watering their livestock with waters having a green "pea soup" appearance, which may develop from late summer into autumn. Ranchers, county extension agents, and other local agricultural people should be advised to send samples of such waters to the Water Quality Bureau for analysis. If the sample contains a potentially toxic species in concentrations typical of a bloom, the water should be tested in laboratory animals following standard clinical procedures. Ranchers should also be advised to submit for analysis

samples of any waters suspected of causing death or sickness in livestock regardless of the water's appearance. All samples should be submitted as soon as possible after toxic effects become apparent or a bloom appears. A pint or quart jar of water scooped from near shore would be a sufficient sample for diagnosis of a toxic algae problem.

A statistically significant relationship exists between high salinity levels and low biological diversity in the waters sampled. More subtle changes in species relative abundance and gradual replacement of less tolerant species also accompanied salinization. The diatom component of the periphyton community may prove to be a sensitive monitor of the biological effects of salinity increases in surface waters of eastern Montana. Most of the species encountered are widely distributed and their salinity preferences have been well documented. Enough information on the autecology of various species exists for constructing a salinity impact rating system based on salinity preferences and species relative abundance.

This consultant proposes establishing a biological salinity impact monitoring network composed of 10 to 20 stations on a few key waterways in eastern Montana. Existing water quality monitoring stations of the USGS or Water Quality Bureau could be adopted and new stations set up where there is significant evidence of increasing salinization. In addition to the standard physical and chemical water-quality parameters, the network would emphasize periodic measurements of diatom community response, including species diversity, species relative abundance, and periphyton biomass accrual on artificial substrates.

Table 4. Mank frequency of distrant and president non-diston genera in the pertphyton of surface maters suspected to be influenced by saline neep in neutral Montana.

		2	ank 3	4	5
	1		_	2	2
Batoma (Bacillarinphyceme)	62	22	12		
Ortorophyta	24	15	2	5	2
Own	1				
Chiles presentation				1	
Chalephorn	10	1			
Clostarium		1		1	
Knteromorphe	1			1	
Glonocyntin		1			
Normadam		1			1
Hougeof La		1	3		
i limite approve li nati	1	1			
I'In Lymones	2	ža.	1		
Hhisoclonium	4	4	1	1	1
Option control of the			_	1	
Upil rowyra	4	1	2		
Higgorianium	1	-	1		
Mothrix		3	1		
Z yeg tweeth to		1			
Cyanophyta	7 1	17	10	3	
*Annhuenn	1	1	1		
*Aplant someon		2			
*Lyngbya.	1				
*Nont no		_	1		
Onelllataria	4	7	3 2		
Phora Id I un	1	1	2	1 2	
Rivelaria				2	
Spleulina		1	3		
Tolypothe 1x		1			
Girynnihyta	6 1 2	1	1		
(Зэг умилисоця	1				
Ti-1 bonoma	2	1	1		
Vaurher1s	3				
Mar i mnophyta	1	1	1		1
Naciona	ī	1 1	1		1
Rhestophyta		1 1			
Antonianila		1			

Missioners containing species of blue-green algae suspected of producing strains that are tests to livesteek or mildlife.

Table 2. Freshwater blue-preen algae suspected of producing strains that are toxic to wildlife or livestock.

Taxon	Neferences			
Anabaena	19. 22			
A. nireinalis	22			
A. fine-aquae	7, 22, 31			
A. Immermannii	7, 22, 31			
Amanyatia (Microryatia)	19, 22			
A. anruginose	7, 19, 31			
A. IIVANA	22			
Aphanisomenon flos-aquas	7, 19, 22, 31			
Coelosphastius	19			
C. kutalmelanus	7, 31			
Glomotrichia	19			
G. mobimulata	7, 22, 31			
Complication of the	19			
G. lametria	22			
Lyngtyn	19			
la montaria	22			
Nedmiaria	19			
N. syumigens	7, 19, 22, 31			
Noates rivulare	19			

Table 5. Percent relative abundance, percent frequency (occurrence), and abundance-requiremes index for the 18 most common diatom taxa.

Nank	Taxon	Abundance (%)	Frequency (%)	Abundance- Occurrence (max.=10,000)
1	Nitzechia pales	6.75	90	607.50
2	Achnanthee sinutissins	9+53	43	409.79
1	Mavicula cincta var. rostrata	5.62	66	370.92
14	Mitsechia frustulum	4.23	69	291.87
5	M. F. var. subsalina	4.02	54	217.08
4.	Naviouls tenelloides	3.20	62	198.40
7	Surirella ovate	2.16	51	110.16
В	Amphora goffelfermin	3.79	29	109.91
9	Distona tenue var. slongatum	2.82	36	107.16
10	Mitsechia acicularia	2.15	48	103.20
11	Cyclotella meneghiniana	2.13	46	97.98
12	Symedra famelics	2.77	34	94.18
1.1	Navioula gryptocephala	1.29	62	79.98
1/4	R. O. var. veneta	1.49	52	77.48
15	Mitmouhia disminate	1.91	39	74.49
16	Mavicula secreta var. apiculata	1.38	49	67.62
17	Comballa minuta	1.78	37	65.86
18	Mitaechia communia	1.52	43	65.36

Table 4. Mean and range of TDS values and shaple correlation energy clasts $\{r_{g_n}\}$ for 25 common diatom than from waters multiplet to saline Seep in mantern Montana.

1 31 30 44 37 34 42 41	922 1286 1598 1711 1791 1710 2360 2427	Banes 436 - 2596 368 - 6410 436 - 7303 368 - 6642 368 - 14394 332 - 7244 332 - 12669 332 - 8094	E30 -0.020 0.039 0.13* 0.16* -0.083 0.174 -0.151
30 44 37 34 42 41	1286 1598 1711 1791 1710 2360 2427	368 = 6410 436 = 7303 368 = 6642 368 = 14396 332 = 7244 332 = 12669 332 = 8094	-0.020 0.039 0.13* 0.16* -0.083 0.174 -0.151
37344242	1798 1711 1791 1710 2360 2427	436 - 7303 368 - 6642 368 - 14394 332 - 7244 332 - 12669 332 - 8094	0.039 0.13° 0.16° -0.083 0.174 -0.151
37 34 42 42 41	1711 1791 1710 2360 2427	436 - 7303 368 - 6642 368 - 14394 332 - 7244 332 - 12669 332 - 8094	0.16° -0.083 0.174 -0.151
34 54 42 41	1791 1710 2360 2427	3/8 -14394 332 - 7244 332 -12669 332 - 8094	-0.083 0.174 -0.151
54 42 42 41	1791 1710 2360 2427	332 - 7244 332 -12669 332 - 8094	-0.083 0.174 -0.151
42 42 41	1710 2760 2427	332 - 7244 332 -12669 332 - 8094	0.174
42	2427	332 - 8094	-0.151
41	2427	332 - 8094	
	20112		-0.107
		3/6 -16169	-0.179
24	1027	944 -12669	
23		144 - 16849	
33	3799	196 - 14469	0.20
50	4124	478 -23819	-0.128
48	4305	368 -42519	
82	4560		-0.137
45	4980		0.224
33	5002	684 -23819	
61	5119	332 -42519	0.214
63	5325	332 -42519	-0.022
26	5332	944 -42519	
19	6434	844 -23819	-
57	6839	654 -42519	0.281
31	7240	746 -42519	27222
40	7530	866 -42519	0.147
23	11190	1311 -42519	0.224
91	5245	332 -42519	
	24 23 33 50 48 82 45 33 61 63 26 19 57 31 40 23	24 J02) 23 3660 33 3799 50 4124 48 4305 82 4560 45 4980 33 5002 61 5119 63 5325 26 5332 19 6434 57 6839 31 7240 40 7550 23 11190	24 1922 944 -125/90 131 172 132 136 146 168 131 179 17

Table 5. Halobion (salinity) spectrum modified from Kolbe (16) as reported by Lowe (17).

Presheater (Disposalobous) < 500 mg/l TDS
Alophobous down not tolerate small amounts of salt
indifferent: tolerates small amounts of salt
halophilous: staulated by small amounts of salt

Brackish water (Mesohalobous) 5 bets range: 500 - 10,000 mg/1 TDS alpha range: 10,000 - 30,000 mg/1 TDS 500 - 30,000 mg/1 TDS

Marine (Buhalobous) 30,000 - 40,000 mg/1 TDS >40,000 mg/1 TDS Extra-marine (Polyhalobous)

Buryhalinous (Buryhalobous): occurs over a broad range of sait con-centrations, encompassing two or more large spectral designations.

Table 6. Reported salinity preference waters subject to saline see	e for common diston taxa from p in eastern Hontans.
Texton	Salinity Preference
Mitsechia dissipata	indifferent (17)
Cymbella minuta	indifferent (17), oligonalobous (2-
Ravicula cryptocephala var. veneta	indifferent to mesonalobous (17)
	fresh to brackish water (23)
Achnanthes minutissins	indifferent (17)
	oligonalobous (23)
Diatoma tenue var. elongatum	halophilous (17)
The same of the sa	fresh to slightly brackish (23)
Navicula cryptocephala	indifferent (17)
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	fresh to elightly brackish (23)
H. secreta var. aniculata	fresh water of high mineral contest
Surirella ovata	indifferent (17)
Cyclotella meneghiniana	halophilous (17)
Pleurosigna delicatulum	fresh to brackleh (23)
Mavicula permerina	esso halobous (17)
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	brackish (23)
Synedra famelica	high eineral content (23)
Nitzachia frustulum var. subsalina	weakly saline water (10)
N. spiculata	suschalabous (17)
N. pales	indifferent (17)
N. acicularis	indifferent (17)
Antomoneis paludosa	meschaloboum (17)
THE PERSON NAMED IN COLUMN	moderately high conductivity (24)
Navicula cincte var. rostrata	total hardness 376 mg/1 (27)
Mitsschia frustulum	halophilous to indifferent and
	euryhalobouo (17)
Synedra fasciculata	high conductivity, slightly bracking
Navicula pygmaea	hard fresh to brackish (23)
N. tenelloides	serophil (23)
N. salinarum	hard fresh to brack1sh (23)
Mitsechia communis	indifferent (17)
Amphora coffeifornia	meschalobous (17)
	high conductivity (24)

- Pahin, L. L. 1971. "Boology of the diston community of the upper East Gallatin River, Montana with In situ experiments on the offect of current velocity on features of the <u>Aufrancia</u>." Ph.D. Thesia, Montana State University, Roseman.
- Sanis, L. L. 1973. "Diatos community response to primary wastewater efficient." <u>Journal Vater Poll. Contr. Fed.</u> 45(1):134-144.
- Phile, J. L. Nay 1975, "A proposal for a toxic algae survey of selected attock-settering "essevoirs in seatern fontane," Submitted to the Veter Chailty Bureau, Hontane Department of Health and Environmental Sciences, Holonds.
- Rable, L. L. and M. N. Riller. 1973. "Caline seep in Montana." Environmental Quality Council, <u>Joseph Annual Report</u>.
- Bets, N. K. 1976. "Salisity in hydrological systems in Montana." Proressings of the Segional Saline Seep Control Symposium, December 9-f1, 1975. Montana State University, Boseman. Cooperative Extension Dervice Bulletin (122).
- Federal Vater Pollution Control Administration. 1968. Vater Quality Criteria. Report of the Mational Teornical Advisory Committee, Wash., D.C.
- Gorman, P. R., 1969. "Toxto algae." In Jackson, D. F., et. Algae and Mag. Plenus Press, R. Y.
- H. Hairston, R. G. 1959. "Species ebundance and community organisation." <u>Spology</u> 10:1406-0416.
- Harlow, H. 1976. "Environmental impacts of saline seep is Montana." Environmental Quality Council, Melena.
- Hustedt, F. 1930. The Freshwater Flore of Hiddle Burone. Part 10: The Diatons. Gustav Fischer, Jona.
- Muetedt, F. 1959. "Die Diatomeen flora des Neumiedler Seem im Deterreichischen Burgenland." <u>Opterwichischen Botanischen Zeitschwift</u>, Bondersbärund aus Band 106, Neft 5. Springer Verlag, Viso.
- Mustert, F. 1999. "Die Diatomeenflore des Salaiackengebistes in Osterreichischen Burgenland." Aus des Sitzungsberichtes der Osterr-Acadesig der Vissenschaften. Mathem.-nature. 20. Abt. 1, 105. Ma., 8 und 5 Noft. Springer Variag. Vison.
- Sutchinson, G. S. 1957. <u>A Treatise on Lisnology. Volume I. Geography, Physics, and Chemistry</u>. John Wiley & Sons, Inc. New York.
- Matchicacon, G. E. 1967. A Treatise on Limelory. Johns III. Introduction to Lake Biology and the Limpolantion. John Viley & Sons, Inc. fow lork.

- Kaiper, J., P. Gorman and M. K. Bots. 1975. "Investigation of salinity in hydrological systems in Montans." Veter Quality Bureau, Department of Health and Shvironmental Sciences, Helena.
- Kolbe, R. V. 1927. "The ecology, morphology, and systematics of the brackish-water diatoms." <u>Prlansenforschung</u> 7:1-146.
- Lowe, R. L. 1976. <u>Environmental Requirements and Collution Tolerance of Presidenter Distons</u>. Shriromental Routering Series. SPA-670/h-70-005.
- Meintire, C. D. and V. S. Overton. 1971. "Distributional patterns in assemblages of attached distone from Laquina Estuary, Oregon." Socioty 52(5):178-777.
- McKee, J. E. and H. V. Volf, eds. 1963. <u>Vater Quality Criteria</u>. California State Veter Quality Control Board, Sacramento.
- Montana Department of Neelth and Brvironmental Sciences. 1975. "Montana Veter Pollution Control Program Plan for Fiscal Year 1976." Vatac Quality Bureaus, Britonmental Sciences Division, Helson.
- 21. Montana Department of Livestock. 1973. "Official Directive No. 1. Water for Livestock Use." Animal Health Division.
- Palser, C. H. 1962. Aleas in Vater Supplies. Public Health Service. U. S. Department of Health, Education, and Velfare, Cincinnati.
- 2). Petrick, R. and C. V. Reimer. 1966. The Diatons of the United States.

 Volume 1. Academy of Natural Sciences of Philadelphia, Monograph
 Ro. 1).
- Patrick, R. and C. V. Reimer. 1975. The <u>Platoms of the United States</u>. <u>Volume 2. Part 1</u>. Academy of Returnl Sciences of Philadelphia, Ronograph No. 13.
- Prescott, G. V. (Phycologist, Tellow Bay Biological Station, University of Montarm, Flathend Lake.) Remarks to the Flathend Lianology Symposium at Mellow Bay, Pobruary 12, 1978.
- Raymon, D. S. and J. E. Houre. 1944. "The saline lakes of Sankatchewan." Canadian Journal of Research 22:141-201.
- Reimer, C. V. 1961. "Some aspects of the diatom flora of Cabin Greek Raised Bog, Randolph Co., Indians." <u>Proc. Indiana Acad. Sci.</u> 71:105-119.
- 28. Simpson, E. M. 1949. "Heasurement of diversity." Nature 163:688.
- Sohl, B. 1976. "Kiwanians told saline seep spreading." Great Falls Tribune, August 31.
- U. S. Department of Agriculture. 1976. <u>Diagnosis and improvement of saling and alkali solis</u>, Agriculture Massbook No. 50, U. S. Government Printing Office.
- U. S. Environmental Protection Agency. 1973. Vater Quality Criteria 1972. Ecological Research Series, EPA-83-73-033.

Appendix A. Sample locations and dates.

Number	Site	Date
00164	Big Spring Greek, N. of Lewistown, 15N.1BE.5DA	9-12-74
0017A *0018A	Big Spring Greek, N. of Lewistown, 15M.1BE.5DA Musemishell H., above Harlouton Assrtings Fk., E. of Marlouton on gravel rd.,	9-13-74 9-13-74
00104	OTH.15E.5CH	9-13-74
0019A	Plateillow Gr., # FAS 500, 148.308.33CB	9-9-74
0020A 0021A	Judith H., # Highway Ry	9-9-74 10-16-74 10-17-74
OUNC IN	OFM.18.433 Philips Gr., @ FAN 700, 18N,308.33CB Justith M., @ Highway RV Justith M., @ Highway RV Justith M., Medicatures near Ution, gravel rd. 3E of Ution @ brings, 18N,352.28289 1.3128. Wars Sorting Cr. @ Highway 275, 178,1782.7240 Cottonwood Gr. near Lewistows @ Highway 87, 15N,178,225.	10-17-74
0022A	AFTON Cr. @ Highway 230, 198.12E.13BA	10-16-74
0023A 0024A	Warm Spring Cr. @ Highway 235, 17R.17E.17AD	10-16-74 10-16-74 10-16-74
01/244	15%,17%,22%	10-16-74
00215A	Judith N., Niddle Pk., U. of Utlem 3 el. 14N.12K.)5ND	10-17-74
00374	14W-12K-15RD	
DOTHA	History H. & PH Payer, 238, 16E, 25BA	11-7-74
OO JOA	Little Caraleas Cr. Graval Rd. sear Harlowton,	11-8-74
OOMO A	Husselshell Basis, Wheatland Co., 10W.16E.09AA	
	Judith N. at south ownr Highway 236, 23R.16E.25M. Minsouri H. 6 Ph Ferry, 23R.16E.25M. Minsouri H. 6 Ph Ferry, 23R.16E.25M. Little Carpless Cr. Graval Md. near Marlowton, Manacinvell Basin, Whestland Co., 10N.16E.05M. Judith N. between Hobsone & Ution (Hwy 239), Judith Basin Co., 10N.16E.10M. Patrick Machine Cr. 57 of Laten Dawn 14 March 24 Machine Co.	11-7-74
0041A	heals Co. 184,168,103A Patetal Robe Cr. SE of Lavina near south (1 mi. S. 5 mi. N. Colsen Valley Co. 238,68.15 Mg Sht Cr., So. of Two Det (10t farmhouse), Necetland Co., 138,38.25 Nameslabril R. & Malstone Wolf Cr. & Deston Walth R. et Ucca	, 11-21-74
0042A	Mg Elk Cr., So, of Two Dot (1st farmhouse)	11-21-2h
	Wheetland Co., 13E.SW.26	11-21-7-
0043A 0109A	Museelshell H. @ Helstone	11-20-74
0110A	Judith R. @ Utica	9-26-75
* O111A	Seep 1 el. W. of Judith in big mag, Pergus Co.,	9-24-75
** 0112A	Arkley Lake. St of Hebren	0.06.00
0113A	Arrow Cr. @ Houth, 15E.23N.	9-26-75
0114A	Sage Cr., Judith Basin Co., 16814E.bcc	9-24-75
*0137A 01384	Cou Gr. # Hery 13 mear Civele	3-17-76 3-16-76
0179A	Big Dry Cr. @ Hey 200, Jordan	3-17-76
0140A 0141A	Reductor R. @ Circle	3-16-76
O I M I M	Justith R. e Utjes Seep 1s1. V. of Judith in big mag, Pergus Co., 22H, 165, 1002 World Hobmon Arrow Cr. e Routh, 15E,29N Jace Dr., Judith Basin Co., 16H;k.bec Caif Cr. Mithews 200 near Sand Springe Cou Cr. e New 13 near Circle Big Upy Cr. e New 13 Depart Circle Big Upy Cr. e New 12 Department World Cr. e New 12 Department Co., 18 Depa	4-9-76
* 0142A	03M.28.11CC Felowatone Co., 03M.28E.93SC Feton H. H. of Pt. Burton on New 233 Nertan H. & confluence w? Feton H. & Loma Hig Gandy Gr., 3 el. E. of Big Sandy., S. off Ney on gravel rd. j el. Hik H., 13 el. E. of Nerre W Lohman under bridge Thresmile Gr., So. of Harles on New 376 Fylan Gr. & & el. Corner E. of Rapelja, 01M.20E./AD.	4-9-76 4-23-76 4-23-76 4-23-76
0143A 0144A	Teton R. H. of Pt. Benton on Ney 233	4-23-76
0141A	Hig Gandy Gr., 3 et. E. of Big Sandy, S. off How	4-23-76
	on gravel rd. ; et.	
0147A	Threamile Cr. So of Maries on New 776	4-24-76
*014HA	Pylan Cr. # 4 el. Corner E. of Rapelja,	4-21-76
01494	OSH, 20K, MAA.	
	Figure 17. 4 4 51. Corner E. of Rapelja, DWN, POLY, MAAA, LWN by Windaill E. of BN tracke, Stillwater Co., OZR. 218.1100 Seep t al. E. of farm buildings, Stillwater Co., 018.218.0280	4-21-76
0150A	Seep t mi. H. of farm buildings, Stilluster Co.,	4-22-76
0151A	Luke Cr. behind Wilson house, Stillwater Co., 03H,21E,18ED	4-21-76
*0152A	Novem Cr. 6 miles Sattinger C. 042 042 102	
0153A	Nopex Cr. 6 culvert, Stillunter Co., 01R.21E.10AB Seep 8 crossroads E. of Bottle Botte, Stillunter Co 02R.21E.31RBS	4-22-76
015WA	02H,21E,3(38B	
	Seep 9 sl. E. of farm buildings (sample No. 11), 01H.21E.08AA	4-22-76
*0155A 0156A 0157A 0159A	White Bear Cr. So. of Harles on May 376	4-24-76
01 57A	Hissouri R. & James Eigen State Res Anne D.C. 404	4-24-76
0159A 90168A	Small pond S. of Scobey in saline seep area	4-24-76 5-25-26
0169A	Deer Cr. near Decker, Big Horn Co.	6-10-76
	Ull-Ziz.GBAM Hitto Bear Cr. So. of Marles on Ney 376 Pooples Cr. S hwy 376 So. or Marles Hissouri R. o. James Lipp State Ben. Area., D.S. 191 Small pond S. of Soebey in maline seep area Descr Cr. mear Decker, Sig Morri Co. Lome Tree Cr., South Fr., Richland Co., 278, 578.0981	6-15-76
*0170A		
*8171A	Hardacrabble Cr., Highland Co., 262 ccm canno	
	Eagle Cr., Daniale Co., 35N, 50E, 27CER	6-15-76
90173A 0174A	Plentywood Cr. @ bridge, Sheridan Co., 35H.54E.16CD	6-17-76
0175A	Big Maidy Cr. @ road, Sporten Co. 358, 52E,09BAD	6-17-76
*0176A	R. Ft. E. Redunter Cr., Richland Co., 20H, 51E.2 SERR	6-15-26
0177A *0178A	Antelope Cr., Sheridan Co., 34H, 56E, 10000	6-16-76
0179A 0180A	Jeffrey Cr., Richland Co., 26H, 57E, 36EP	6-15-76
0180A	Seep 3 at, E. of Culbertson, Roosevelt Co.	6-16-76
0181A	238.532.5638C Authorisation of the Control of the	
0182A =0183A	Seep E. of May 16, Michigant Co., 25M, SRE, 1600B	6-15-76
	Piret New Cr., H. Pk., Highland Co., 25R. 98E. 31000	6-15-26
0185A 0186A	Red Bank Cr., Received t Co., 28R, 99E.28DDC	6-16-76
0186A	Butte Cr. 6 bridge, Daniele Co., 35H,47E.12ADD	0-10-76 6-17-76
0187A 0188A 0189A	Sheep Cr. 6 New 16 Manager 158.55E.21CDD	6-16-76
0189A	Lost Cr. # Hey 16, Rossevelt Co., 30R. 56E. 78EB	6-16-76
0190A	288, 562, 27ADD First Kay Cr. 8 bridge, Hobland Co., 204, 582, 16DDB Seep R. of Ney 16, Hichland Co., 238, 582, 12DDD First Kay Cr., R. R., Hichland Co., 228, 582, 12DDD Little Raddy Cr., Rosewelt Co., 288, 592, 12ADC Hed Bark Cr., Rosewelt Co., 288, 592, 12ADC Rotte Cr. 8 bridge, Bankels Co., 398, 192, 12ADD Rosep Cr. 8 hey 16, Rosewelt Co., 308, 582, 12DD Rosep Cr. 8 hey 16, Rosewelt Co., 308, 582, 20BB Ports St. 197, 198, 198, 198, 198, 198, 198, 198, 198	6-16-76
0191A	284.95.20DD Sand Cr., Roosewalt Co., 30N.95E,16DCC MoGoy Cr. # Nwy 5, Smartdam Co., 35M.94E,16EBC Crail Cr., 1210ewtone Co., 18.22E,05DD No Mane Cr., Yallowstone Co., 18.22E,05DD Stream seep. Yallowstone Co., 18.22E,05DC "No. 21". Stilleater Co., 18.22E,05DC Creek, 1210ewtone Co., 18.24E,15CDC Creek, 1210ewtone Co., 22.24E,12CDS	6-16-26
0192A 0193A 0194A	McCoy Cr. @ Hwy 5, Sheridan Co., 35N.54E.14BBC	6-17-76
0194A *0195A	No Name Cr., Yellowstons Co., 18.23E.05DDD	6-24-76
*0195A 0196A	Streen seep, Yellowstone Co., 48.25E.09CDC	6-25-76
0190A 0197A	Cove Cr., Yallowster Co., 1W.23E.06DD	6-24-76
0197A 0198A *0199A	Creek, Yellowstone Co., 28.24E, 32CEB	6-24-76
-01994	Small pundle, Yellowatone Co., 48.25E.06CD	6-25-76
	A	16

keference	Site	Date
Munber		
0200A	Carle Cr., Stillwater Co., IM.23E.06BC	6-24-26
A1050	N. Fk. Fivemile Cr., Yellowstone C., 28,252,19CAB	6-24-76
0202A	Chouteau Co., 24H.9E.3/	B-5-76
0203A	Chouteau Co., 21W.12E, WARDD	8-7-7.
0204A	Bird Coules, Chouteau Co., 2'JN.BE. 19 HDD	8-8-76
0205A	Crawford Ranch, Chowteau Co., 238,68,18	H.D.
0206A	Clear Cr., BlaineCo. Vercruyasen property, 31N.18E.20	7-8-76
0207A	Bullumacker Coulse, Blaine Co., 268,192,35	7-8-76
0208A	Hemervoir, Maine Co., 34N.21E.31C	7-9-76
0209A	Saline seep area, Valley Co., 23N. 37E, 12DAA	7-26-76
0210A	Pond in seep area, Phillips Co., 27N.31E.26	7-23-76
0211A	Phillips Co., 248.24E.22	7-25-76
0212A	Valley Co., 25M.36E.5BBD	7-27-76
0213A	Natural saline seep, Valley Co., 24N. 78E. 14ADD	7-26-76
0214A	Whitewater Cr. under bridge, Phillips Co., 36N.30E.9	7-20-70
0215A	Hock Cr., Valley Co., 35M.36E,33DC	7-27-76
0219A	Reservoir, Cascade Co., 198.028.08ED	6-25-76
0220A	Pond, Teton Co., 23N.3W.33BRB	8-28-76
0221A	Fergus Co., 15H,22E,09B	9-10-76
0222A	Crown Butte Cr., Cascade Co., 20R.02W.25CA	8-27-76
0223A	Petroleum Co., 13R,26E,2CDC	9-13-76
0224A	Fergus Co., 19N.22E.05EED	
0225A	Cascade Co., 178,02E,17C	9-13-76
		8-28-76

^{*} Nature containing genera of blue-group algae that include species suspected of producing strains toxic to livestock or wildlife.

[&]quot;Weters coatelaing a species of blue-green eigas (aphanisomson flor-sques) suspected of producing strains that are texts to livestock or elidlife.

```
Appendix B. Genera of non-dintom wigam found in the periphytom of nurface exterm suspected to be influenced by nation none in eastern Montana.
Chlorophia (groen algae) 25 Genera
Ankilarvoe mus
Bulbochaete
Chara
Chara
Chioroporus
Chio
            Buclenomhyta (suglemoid algae) 3 Genera
Buglena
Phacus
Vestella
            Chrrechtia (golden-brown algae) 8 Genera
Chrrechtmulina
Chryschromulina
Chryschromes
Blatome
Blatome
Distoren
Odhromonda
Tribomes
Vageheria
      Vaucheria
Crascotta (blue-green algae) 19 Genera
*Aphaniscement
*Arthrosgirs
Calothris
Chrococcous
*Gomphospheria
Reterrobregenium
Ryulia
*Lyndys
*Gomphospheria
*Gottaria
*Gott
```

*Genera containing species of blue-green algae suspected of producing strains that are tests to livesteek or middife.

Rhodophyta (red algae) 1 Genus Audouinella

Crystophycese (algae of uncertain position) 1 Genus Rhodosomas

Appendix C. Percent relative abundance, percent frequency (occurrence), and abundance-occurrence index for distons taxe identified from surface waters suspected to be influenced by ealine seep.

TAKON		Prequency (%)	Occurrence (max,=10,000)	Taxon	Abundance (%)	Prequency (%)	Occ.
manthee affinia	0.37	3	1.11	Gomphonema acuminatum var. ?	0.02	1	
deflem	0.01	1 8	0.01	G. affine G. angustatum	0.02	26	5
deflem flexells	0.14	2		G. angustatum var. productus	0.02	1	
hauckiana var. rostrata	0.01	2	0.02	G. angustatum var. productum G. angustatum var. ?	t	1	
lanceolate	0.24	24	5.76	G. bohamious	0.07	6	(
lapponion var. ninokel	0.11	1	0.99	G. consector G. dichotosum	0.01	4	
linearis f. ouris	0.11	9	0.99	G. gracile	0.05	1	
sinutimaina	9.53	43	409.79	G. Intricatus	0.09	12	-
FD.	0.05	5 26	0.25	G. clivaceum	1.47	23):
phiploura pellucida	3.79	26	8.84	G. olivaceum var. calcarea	0.05	7	
phore coffeiformia	3.79	29	109.91	G. parvulum G. terrestioum	0.49	39	19
ovalis	0.03	8	0.24	G. turgestions G. trupestum	0.01	1	
ovalia var. affinia ovalie var. pedimulus	0.38	19	7.22	C. ap.	0.02	10	-
veneta	0.42	14	5.88	Gyrosiana acuminatum	0.01	5	-
ap.	t	1		G. attornatus	0.01	1	
momomein contata	0.01	1 4	0.04	G. exilis	0.01	1	
spheerophore		2		G. peisonis	0.21	17	į
vitres	0.07	5	0.35	G. spenosrii	0.05	16	
mp.	0.01	3	0.03	G. spenosrii var. ourvula	0.01	2 7	1
erionella formose illaria paradoxa	0.01	2	0.03	G. sp. Mastaschia amphioxys	0.07	23	
oncia amphistanna	0.01	10	0.10	H. amphioxym var. major Mastogloia elliption var. denseil	*	1	
bacillus	0.11	11	1.21	Mastogloia elliptica var. danseil	0.01	5	
becilium hymline	0.05	1	0.05	N. muithii	0.17	2	
ventriooss var. alpins	1	1	***	H. emithii var. lacustria	t	2	
rentrices var. sinuta		2	0.10	H. op.	0.01	2	
rentricoma var. truncatula	0.07	7	0.49	Helonira granulata var. angustissisa H. varians	•	4	
op. etoosroe elacrei	0.02	3	0.42	H. sp.	0.03		
econt a mediculus	2.19	19	41.61	Meridion circulare	0.02	3 7	
consis pediculus placentula	0.65	29	18.85	Mavicula acconcta	0.09	8	
placentula var. suglypta	1.09	13	14.17	H. arvensis	0.06	?	
placentula var. limaata	0.03	4	0.12	I, atomis	0.72	18	
lotella gloserata	0.01	3	0.03	N. suriculata N. biconica	0.01	1	
cutsingiana menaghiniana	0.28	6	1.68		0.01	2	
neneghiniana	2.13	46	97,98 0,03	N. capitata N. capitata var. hungarica	0.13	14	
sp. indretheca gracilla	0.12	15	1.80	N. cincta	0.66	15	
tenieura anima	0.01	ii	0.13	N. cincta var. heufleri	t		
atopleura solma bella affinio	0.80	22	17.60	N. cincts var. rostrata	5.62	66	3
amphicephala	0.01	5 9	0.05	N. circunterta	0.05	12	
ctatule	0.01	9	0.09	H. oryptocephala	1.29	62	
cymbiformis var. nonpunctata	t	1		N. orygtocophala f. terrestria	0.16	1 2	
delicatula	0.22	5		N. cryptocephala var. exilia	1.49	2	
bella luneta	0.01	3	0.03	H. cryptocephals var. cxilis H. cryptocephals var. veneta H. cryptocephals var. ?	0.16	32	
neziosna alcrocephala	0.01	23	0.05 30.36	Navioula cumpidata	0.02	14	
ainuta	1.32	37	65-86	N. cuspidata var. obtues	0.01	1	
auelleri	0.01	- 2	65.86	W. wortlanding	0.01	ż	
DATVA	0.03	2 2	0.06	N. gracilotine	0.07	124	
prostrata pusilla	0.01	4	0.04	N. halophila	0.02	7 2	
punilla	0.74	20	14.80	N. halophila var. tenuirostria	0.01	2	
rupicola	0.03	.3	0.09	N. houfleri	0.05	7	
simuata iriangulus	0.16 0.01	10	1.60	H. heufleri var. leptocephala	0.18	15	
tunida	0.01	2	0.01	N. integra N. jangil	0.16	18	
ep.	0.01		0.03	H. lasvissima	0.02		
timia elecane	0.07	7	0.49	N. lanceolata	0.01	5	
subtills	0.01	8	0.08	N. menisculus var. upsaliensis	0.03	1	
mp.	0.05	12	0.60	N. oinima	0.01	2	
toes temme		1	100.16	H. alnnewaukonensia	0.03	2 .	
Lenue var. elongatum	2.82	38	107.16	N. almuscula	0.03	3	
vulgare var. breve	0.01	22	7.48 0.02	N. outles	0.03	11	
vulgare var. secoton	0.01	1	0.02	N. autica var. undulata N. autica var. ?	0.01	5 2	
RD.	0.01	i	0.01	N. oblonga	0.01	2	
lonein elliption	0.03	1	0.03	N. cdloss	0.01	2	
ruella.	0.07	8	0.56	N. pelliculoss	0.01	1	
ep.	0.02	6	0.12	N. peregrina	0.05	24	
mennels ornata	0.17	17	2.89	N. protracta	0.04	7	
paludosa rebunta	0.67	34	22.78	N. pupula	0.01	7	
rounts		1 4		N. pupula var. capitata N. pyguasa	0.56	20	
themis admata var. samonica	0.09	3	0.27	N. radiosa	0.90		
argus	0.01	1	0.01	H, radiosa var. parvs	0.03	7 8	
sorex	1.13	11	12.43	N. rhynchocephala	0.34	4	
turgida	0.03	7	0.27	H. rhymchocephala var. germain11	0.26	2	
ep.	0.03	7	0.21	H. calinarum	1.22	33	
otla ourvata	t '	2		H, salinarum var. intermedia	4.20	1	
gilaria brevietriata var. inflata brevietriata var. ?	į	1	*****	H. secreta var. apiculata	1.38	6	
dapucina	0.05	1 2	0.10	H, simpler	0.22	2	
capucina var. secolepta	1.16	2	2.32	N. symmetrics N. tamellotdes	3.20	62	:
construens	0.03	6	0.18	N. tenera		2	
construens var. subsalina	0.01	1	0.01	N. tripunctata	0.83	36	
construens var, venter	0.03	8	0.24	N. tripunctata var. schisonsmoldes	0.01	2	
crotonenala	0.18	6	1.08	N. ventralia var. chilonoia	0.01	1	
isptostauron	1.01	122	33.33	W. viridule	0.01	13	
vaucherias sp.	0.11	33 7	33.33 0.77	N. viridula var. svenacea	0.82	13	
mphoneis herculeans	0.01	í	0.01	N. viridula var. rostellata	0.74	46	
mnones acusinatus	0.01	ż	0.02	H. mp. Heidlum affine var. amphirhymchus	0.01	2	
		-		N. binode	0.01	1	
				N. bisuleatum	0.01		

A-18

Amounts C. (Continued)

apparents of (continues)			Abundanem
Taxon	Abuntanos (X)	Prequency (\$)	(max10.000)
Mitsoohia soioularie	2.15	48	103.20
T. souta	0.04	5	0.20
S. ambibia	0.18	20	9.60
I angustata var. aguta	0.04	1 2 54 1 5	0.02
N. animilata	0.43 0.02 0.05 0.03	54	23.22 0.02
N. bulnbelmiana S. capitallata	0.02	5	0.25
N. clausii	0.03	3	0.09
N. closterium N. communia	1,52	1 43 39 8 1	65.36
W. dametonia	1.52	j	65.36 0.03 74.49
N. discipata N. spiphytica N. spithesioidea	0.08	,79 8	0.64
N. spithemicides	t	İ	
N. fasciculata N. filiformia	0.32	- 3	4.48
N. fonticols	0.32	8	0.56 291.87
N. frustulos	4.23	14 6 69 54 1	291.07 217.08
N. frustulum var. subsalina N. frustulum var. subsalina N. frustulum var. ? N. gandersheimlemais N. graeilis	t	ĩ	
N. gandersheinlennis	. t	1 20	25 50
	0.85 0.01 0.13 0.60	30 2 30 3 3 8	25.50 0.02 3.90 1.80
N. hungarica	0.13	30	3.90
N. ignorata N. igutuingiana	0.33	á	
N. linearis	0.12	18 16	2.16 8.96 0.01
H. longiseina var. reversa H. lorensiana	0.56	10	10.0
N. lorensiana var. subtilis	0.01	1 2	
A. microcephalm	0.12	12	
N. obtusa N. ovalis N. pales N. palesces N. recta	0.12 0.09 0.95 6.75	12 6 32 90 28	30.40
S, pales	6.75 0.90	90	607.50 25.20 0.84
S. recta	0.07	12	0.84
N. TORANA	0.07 0.07 0.07	15	1.05
R. aigma R. aigmaidea	0.07	16	0.98
N. atamarus		12 15 14 16 3 3	
H. sublinearis	0.04	3	0.12
8. tryblionella 8. tryblionella var. debilis 8. tryblionella var. levidensis 8. tryblionella var. victoriae 8. tryblionella var. ? 8. valdestriata	0.03	í,	0.12
N. tryblionalla var. levidensis	ŧ	1	
N. tryblionella var. ?	ŧ	i	
S. valdestriata S. vermioularia	0.03	1 2 2 3	0.06
Stannaka vitras	0.01	- 1	
Sitssohia vitrea N. vitrea var. salinarium	0.06	12	0.72
N. vivas N. vivas var. ?	0.01	1	0.01
N. ep.	0.09	17	1.53
H. op. Pinnularia borealis	0.01	1	
P. laptonoma P. solaria	0.01	8	0.08
P. viridia	0.03	9	0.27
P. sp. Pleurosigna delicatulum	0.03	24	6.24
P. ep.	1 13	33	13.99
Rhopelodie gibbs	0.11	28	3.08
P. sp. Hhoicosphenia curvata Rhopelodie gibba R. gibba var. ventriocea R. sibharula	0.11 0.01 0.01 0.05 0.01	1 17 5 1 8 1 9 24 1 33 28 2 2 1 1 2 2 1	33.99 3.08 0.02 0.03
H. musculus	0.05	11	0.55
Stauroneis emithii Siephanodiscus astraea		2	
	0.01	1 1	0.01
S, sinutus	0.62	17	10.54
5. aunum 5. minutus 5. piaeriata var. bifrons 5. biaeriata var. bifrons 5. brightwellii	•	17 14 1 2	
H. brightwellit	0.19 0.03 0.01	13	0.38
S. lowensia N. ovalia	0.01	13 5 51 4	0.05
	2.16 0.01	51	110.16
S. ovata var. pinnata S. spiralis	0.01	5	0.05
	0.07	5 3 8	0.56
Symmetra acus N. affinis	0.07		0.,0
3. delicatinama 5. famelica 5. famelica var. 7 5. famelicalta		1 3 34	94.18
S. famelios var. ?	2.77 1.02 0.94 0.25	1	1.02
S. femotoulata	0.94	30	28,20
S. famniculata var. ? S. simuscula	0.499	1 4	1.96
S. parasitics	t	1 8	1.04
H. pulchella H. pulchella var. lacerata	0.13	1	
3. radians	0.07	10	0.70
S. rumpena S. ulna	1.22	33	40.26
S. ulna var. amphirhymohus	t	1 7	
3. rumpuna 3. ulna 3. ulna var. emphirhynohus 3. ulna var. contracta 3. ulna var danina	0.06	7	0.42
S. sp. Thalessicaira fluviatilia	0.01	6	0.01 0.18 7.35
Thelessicaire fluviatilis	0.49	15	7.35

t - trace

Appendix B. Margalaf diversity (B), Slapeon diversity (SB), into identively solids (TES), and specific conjustance (SS) at the 100 alter seaples.

	man piet.			
	0	<u>un</u>	TIKU	20
Jennie No.	2 44	.845 .865 .866	W78	GDU
0016A	4.94	845	983	1197
0017A	5.91	.885	368	502
0019A	6.17	.886	2596	3006
0020A	5. 18	.869	451	536
0021A	2.79	.806 846	1722	1910
0022A	3.86	-612	693	1071
00234	4.04	,729	457	559
002 5A	2.59	.831	420	529
0037A	3.91	.882	800 401	RAL
0038A	5-17	876	626	706
00394	5.15	.854	450	560
0041A	3,59	.648	4672	5270
0042A	5.76	.862	615	760
0043A	i. die	202	1778	20920
0109A	2.40	- 599	458	578
0110A	2.26	.719	14469+	17000
0112A	4.78	.748		22000
01134	0.50	.020	3210	19000#
0114A	2.41	.736	10314	1190
01374	3.53	.739	874	1190
0139A	2.90	.726	1100+	1272
0140A	2.46	,709	2097+	2445
0141A	3.61	•795	2014	3486
0142A	3.62	.678	6540	7950
01444	3.65	.812	4670	579°
0145A	3.26	.840	699+	8000
0146A	2.12	- 557	4,00	-70
0147A	3.60	.818	12669	12000
0149A	2.23	.786	72440	8 500
01 50A	2.09	.677	7789	8800
0151A	1.28	. 536	19407	1347
01 52A	3.00	.862	94394	13500
01534	2.65	.725	7303	7770
01 55A	4.40	.849		2000
0156A	3.60	.870	7844	6299
0157A	3.97	722	3106	3550
0159A	5. 56	.892	507 5°	5380*
0169A	4.16	.856	1201+	1391
0170A	3,30	.619	7400	8210 .
0171A	5.12	.900	3206+	1107
0172A	3.93	880	853	1704
0173A	5-51 4-68	.902	1942	2315
0175A	6,65	.884	684	846
0176A	4,30	.891	3630	4469
0177A		000	306	5017
0178A	4.55	-241	7346	8220
0180A	4.88	.863	755	963
0181A	5.64	.902	Blids	1116
0182A	1.91	.700	0798	2773
0183A	4.42	.788	11.52	1380
0185A	4.57	.846	2253	2407
0186A	7.26	.872	912	1160
0187A	5.46	.915	746	1186
0188A	5,34	.901	6410°	9910°
0190A	1.65	.268	2148	2297
0191A	4.98	.894	1166	1417
0192A	6.71	,886	20.50	1080 h2h7
0193A	5.49	-915	3613	4507
0195A	1.50	.826	***	
0196A	2.24	.694	1314	1736
0197A	3.15	.690 242	3025	1989
0198A	2.31	.871	5061	5760
0199A	4.02	.865	1262	1627
0201A	2.33	,461	6642	7290
0205Y	3.19	.665	5119*	15000#
0203A	1.29	.313	6394+	7500#
02054	1.46	.601	-37	
0206A	6.13	.936		4000
0207A	2.90	.768	7074+	3500
0206A	3.05	.700	23819+	(30) 197: 190: 190: 190: 190: 190: 190: 190: 190
0209A	2.54	, 588	3343+	3910#
0211A	1.04	.644	6394+	7500#
0212A	2.91	. 589	8094+	9500#
0213A	4.13	.818	13110	1520#
02154	7.24	.910	1031+	1190#
0219A	0.84	. 516	42519+	50000#
G220A	1.07	.430	14469+	17000#
0221 A	3-19	.774	16840+	19800#
00114A 0019A 0020A 0021A 0021A 0021A 0022A 0022A 0022A 0022A 0023A 0023A 0024A 0024A 0019A 0112A 0113A 0113A 0115A		.780	### 1999 ### 1999	33100#
09204				12000#
0224A 0225A	2.55		11069+ 5119+	50000# 19800# 33100# 13000# 6000#

"Water sample taken on a different date than algae sample, aither at the same site or a nearby site on the same water.

Field conductivity measurement.

+TDS estimated from SC based on the regression equation I = 0.85T + 19, where I is TDS and Y is SC.

