Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik Wintersession 2022

Prof. Ueli Maurer

Exam Diskrete Mathematik

25. Januar 2022

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt.
- 2.) Falls nicht explizit ausgeschlossen dürfen Resultate (z.B. Lemmas oder Theoreme) aus dem Skript mit entsprechendem Verweis (z.B. "Lemma Skript"; die Nummer ist nicht notwending falls klar ist welches Resultat gemeint ist) ohne Beweis verwendet werden. Resultate aus der Übung dürfen nicht ohne Beweis verwendet werden.
- 3.) Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 4.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 5.) Die Antwortfelder unter den Aufgaben sind jeweils grosszügig bemessen. Es ist oft nicht die Erwartung, dass eine Antwort das ganze Feld füllt.
- 6.) Bitte verwenden Sie einen dokumentenechten Stift (also keinen Bleistift) und nicht die Farben Rot oder Grün.
- 7.) Bitte legen Sie die Legi für die Ausweiskontrolle auf den Tisch.
- 8.) Sie dürfen bis 10 Minuten vor Ende der Prüfung vorzeitig abgeben und den Raum still verlassen.
- 9.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Standby) und dürfen nicht am Körper getragen werden.

Prüfungs-Nr.			
StudNr.:			

Korrektur:

		Punkte	Unter	schrift
Aufgabe	Max	Erreicht	Korr.	Ver.
1	31			
2	20			
3	25			
4	28			
Total	104			

Ta	ask 1. Sets, Relations and Functions		31 Points
a)	Short Questions. Each correct answer gives the indicated number of question gives zero points. For each wrong answer , the indicated number of Overall, at least 0 points are given for the whole task. No justification is	er of points are	
	1.) The sets $\emptyset \times \emptyset$ and $\{\emptyset\} \times \{\emptyset\}$ are equal.		(1 Point)
		\square True	\square False
	2.) The set $\{\emptyset, \{\emptyset\}\}$ is a subset of $\{\emptyset\}$.		(1 Point)
	, , , , , , , , , , , , , , , , , , , ,	□ True	□ False
	3.) For any two finite sets A and B we have $ A \cup B = A + B $.		(1 Point)
		□ True	□ False
	4.) For any two sets A and B there exists a set C such that		
	,		
	$A = B \cap C$ or $B = A \cap C$.		
			(1 Point)
		\square True	□ False
	5.) For any set A, we have $A \cap \mathcal{P}(A) = \emptyset$.		(1 Point)
		□ True	□ False
	6.) The relation $\rho = \{(1,2),(2,1)\}$ is transitive.		(1 Point)
	((1,2),(2,1)) is diameter.	□ True	□ False
	7.) The composition of two reflexive relations on some set A is always		(1 Point)
	1.) The composition of two renexive relations on some set A is always	□ True	\Box False
	(0.00000000000000000000000000000000000		
	8.) 72 is the least upper bound of $\{4, 6, 9\}$ in the poset $(\{4, 6, 9, 18, 24, 48\})$		
	(0) The $(0 - (0.1)$ $\mathbb{N} + (0.1)$ (0.1)	□ True	□ False
	9.) The set $\{f \in \{0,1\}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \mid f(2n) = f(4n)\}$ is countable.	- m	(2 Points)
		□ True	□ False
	10.) If the transitive closure of a binary relation ρ is uncountable, the	n ρ must be u	
		- m	(2 Points)
		□ True	□ False
b)	(\star) Let ρ and σ be relations on some non-empty set A. Prove or dispro	ve:	
	If a is antisymmetric and - is antisymmetric than a a - is		
	If ρ is antisymmetric and σ is antisymmetric, then $\rho \circ \sigma$ is	иниѕуттенис.	
			(4 Points)

c) (*)	Let A and B be two sets.
(i)	Describe the set $(A \setminus B) \cup (B \setminus A)$ with the two sets
	$A \cap B$ and $A \cup B$
	in an expression which contains only $A\cap B,\ A\cup B$, parentheses, as well as the symbols \cup , \cap and \times . Each of $A\cap B$ and $A\cup B$ is allowed to appear at most twice. No justification is required. (1 Point)
(ii)	We fix an arbitrary element x . Phrase the statement that x is in the set $(A \setminus B) \cup (B \setminus A)$ is and only if it is in the set described in your answer of (i) as an equivalence of two propositional formulas F and G . Use only two atomic formulas U and V , where U being true is interpreted as $x \in A$ and V being true is interpreted as $x \in A$. No justification is required. (2 Points)
(iii)	Prove that the two formulas described in (ii) are equivalent. (2 Points)

	$a \rho b \wedge b \rho c \implies c \rho a$	
for any $a, b, c \in A$. Prove t	that ρ is an equivalence relation.	(4 Points

	Th	nere ex	xists a	a stric	tly in	creas	ing fu	nctio	n $g: \mathbb{I}$	$\mathbb{N} \to \mathbb{N}$	such	that	$f \circ g$ is	s cons	tant.	
															(6 F	$Points_j$
										e) for						
Hint:	A fu	inction	n h:	$\mathbb{N} o$	N is	stric	tly in	creas	ing if	x < y	\rightarrow	h(x)	< h(y)) for a	any x, y	$j \in \mathbb{N}$

Task 2. Number Theory
a) Short Questions. Each correct answer gives the indicated number of points. An unanswered question gives zero points. For each wrong answer, the indicated number of points are deducted. Overall, at least 0 points are given for the whole task. No justification is required.
1.) For any $n \in \mathbb{N} \setminus \{0\}$ and any $x, y, z \in \mathbb{Z}$: $x + y \equiv_n z$ if and only if $x \equiv_n z$ and $y \equiv_n z$. (1 Point) \Box True \Box False
2.) For any $a, b \in \mathbb{N} \setminus \{0\}$ and any $x, y \in \mathbb{Z}$: $x \equiv_{ab} y$ if and only if $x \equiv_{a} y$ and $x \equiv_{b} y$. (1 Point) \Box True \Box False
3.) For any $a, b \in \mathbb{Z}$: If there exist $u, v, d \in \mathbb{Z}$ such that $ua + vb = d$, then $gcd(a, b) = d$. (1 Point) \Box True \Box False
b) (*) Prove that for any $a, b \in \mathbb{Z}$ such that $a^2 = b^3 + 2$, we have $a^2 = 4q + 1$ for some $q \in \mathbb{Z}$. (4 Points)

(ii) $(c) \subseteq S$ for any $c \in S$. Prove that there exists $u \in S$ such that $(u) = S$.	(6 Poin
Hint: Recall that for any $d \in \mathbb{Z}$, we have $(d) = \{l \cdot d \mid l \in \mathbb{Z}\}$	$\{\mathbb{Z}_{i}\}.$

	$ab = cd \implies$	a+b+c+d is not prime.	
			(7 Points)

d) $(\star \star \star)$ Prove that for any $a,b,c,d \in \mathbb{N} \setminus \{0\}$ we have

Ta	sk 3. Algebra	2	5 Points
a)	Short Questions. Each correct answer gives the indicated number of question gives zero points. For each wrong answer , the indicated number Overall, at least 0 points are given for the whole task. No justification is	of points are o	
	1.) The polynomial $x + 5$ in $\mathbb{Z}_7[x]$ is irreducible.	□ True	$(1 Point)$ \Box False
	2.) For any ring R : If there exist $a,b\in R\setminus\{0\}$ such that $a\cdot b=0$, then R	is not a field. □ True	(1 Point) □ False
	3.) The polynomial $x + 1$ divides the polynomial $x^7 + x^4 + x^2 + 4$ in the	ring $\mathbb{Z}_5[x]$. \square True	(1 Point) □ False
	4.) In the ring $\mathbb{Z}_2[x]$, the polynomials $x^2 + 1$ and $x + 1$ are equal.	□ True	(1 Point) □ False
	5.) Let $G = \langle g \rangle$ be an infinite cyclic group. For any $i, j \in \mathbb{Z}$ with $i \neq j$ we	e have $g^i \neq g^j$. \Box True	(1 Point) □ False
b)	(*) Compute the inverse of x in the group $\mathbb{Z}_5[x]_{x^2+1}^*$.		(1 Point)
c)	(\star) Let $\langle G; \cdot, ^{-1}, e \rangle$ be a commutative group and fix an arbitrary element algebra $\langle G; \star \rangle$ with $a \star b \stackrel{\mathrm{def}}{=} z \cdot (a \cdot b) \qquad \text{for any } a, b \in G.$	ent $z \in G$. Con	nsider the
	Prove that there exists $e' \in G$ such that $\langle G; \star, e' \rangle$ is a monoid.	((4 Points)

(3 Poin

d) (\star) **Disprove** the following claim:

							ord((x) = 0	$\operatorname{ord}(\psi$	(x)).							
															((4 Po	ints)
Hint:	You	can	use	the j	fact	that j	for ar	y x	$\in G$	and a	any i	$\in \mathbb{Z}$	we	have	$\psi(x^i)$	$=\psi$	$y(x)^i$
(* *)	Prove	or d	ispro	ove: I	Γher	e exis	ts an	inject	ive ho	omom	orphi	sm fr	om 2	\mathbb{Z}^*_{14} to	$\mathbb{Z}_{14}.$	(4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ . ((4 Po	ints)
(* *)] <i>Hint:</i>													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ . ((4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ . ((4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to) Z ₁₄ . ((4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom Z	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to) Z ₁₄ .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to	\mathbb{Z}_{14} .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to	\mathbb{Z}_{14} .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to	\mathbb{Z}_{14} .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to	\mathbb{Z}_{14} .	(4 Po	ints)
													rom 2	\mathbb{Z}_{14}^* to	\mathbb{Z}_{14} .	(4 Po	ints,

p(1) = x and $p(x) = x + 1$.	
	(4 Points)

f) (*) Consider the ring $R = \mathbb{Z}_2[x]_{x^2+x+1}[y]$. Find a polynomial $p(y) \in R$ of degree 1 such that

Τa	.sk 4	. Logic	• • • • • • • • • • • • • •	. 28 Points
a)	ques	ort Questions. Each correct answer gives the indicated number stion gives zero points. For each wrong answer, the indicated number rall, at least 0 points are given for the whole task. No justification	per of points are	
	1.)	The formulas $\exists x P(x) \lor \exists y Q(y)$ and $\exists x \exists y (Q(x) \lor P(y))$ are equiva-	lent. □ True	$(1 \ Point)$ \Box False
	2.)	For any formula F , the formulas $\forall xF$ and $\forall yF$ are equivalent.	□ True	$(1 \ Point)$ \Box False
	3.) For any formula F , the formula $\exists xF$ is satisfiable if and only if F is satisfiable. \Box True			$(1 \ Point)$ \Box False
	4.)	The statement		
		$F \wedge G$ is satisfiable — if and only if — F is satisfiable and	d G is satisfiable	e
		is true for any formulas F and G .	□ True	$(1 \ Point)$ \Box False
	5.)	The following derivation rule		
		$\varnothing \vdash F \to (\neg F \to \neg G)$		
		for a propositional calculus is correct (sound).	□ True	(1 Point) □ False
	6.)	The following derivation rule		
		$F \vdash \neg G \to \neg (F \to G)$		
		for a propositional calculus is correct (sound).	□ True	$(1 \ Point)$ \Box False
b)	the you	Consider the universe $U = \mathbb{Z}$. Express each of the following statemer only predicates appearing are less, equals and prime (instead of less can write $n < m$ and $n = m$ accordingly). You can also use the sition and multiplication, and you can use constants (e.g., $0, 1, \ldots$).	$\operatorname{ess}(n,m)$ and esymbols $+$ and	$\operatorname{quals}(n,m)$ \cdot to denote
	i)	The sum of two primes is never a prime.		
	ii)	Every integer that is divisible by 3 and greater than 2 is the produ	act of two prim	es.

$\exists z \forall y \ \big(P(z, f(y), x) \land \neg \exists x Q(x) \big) \ \lor \ \neg \exists z \forall x \ \neg I$	R(z, g(x, z)).
Give an equivalent formula in prenex form.	(4 Point
Calculation. You will get full points if the answer above is correct. points for the calculation in this box.	Otherwise, you may get partie

d)	(*) Let $\Pi_1 = (\mathcal{S}_1, \mathcal{P}_1, \tau_1, \phi_1)$ and $\Pi_2 = (\mathcal{S}_2, \mathcal{P}_2, \tau_2, \phi_2)$ be two proof systems. We combine Π_1 and Π_2 into a third proof system
	$\Pi_3 = (\mathcal{S}_1 \times \mathcal{S}_2, \mathcal{P}_1 \times \mathcal{P}_2, \tau_3, \phi_3),$
	where
	$ \tau_3(s_1, s_2) = 1 \stackrel{\text{def}}{\iff} \tau_1(s_1) = 1 \text{ or } \tau_2(s_2) = 1, $
	and
	$\phi_3((s_1, s_2), (p_1, p_2)) = 1 \stackrel{\text{def}}{\iff} \phi_1(s_1, p_1) = 1 \text{ or } \phi_2(s_2, p_2) = 1.$
	Prove or disprove: If Π_3 is complete, then Π_1 or Π_2 is complete. (4 Points)

	$\{F o G, F\}$	$ \begin{array}{ccc} & \vdash_{R_1} \\ & \vdash_{R_2} \\ & \vdash_{R_3} \end{array} $	G $F \to (G \to F)$ $(\neg F \to \neg G) \to ((\neg F \to G) - \Box)$	$\rightarrow F)$
Formally derive	$B \text{ from } \{A, \neg A\}$	in the c	alculus.	(5 Points

e) (*) Consider the calculus consisting of the following three derivation rules:

$F \models \exists x F.$	
Use the definition of \models and the semantics of predicate logic.	(5 Points