

Bloque IV: El nivel de red

Tema 10: IPv6

Índice

- Bloque IV: El nivel de red
 - Tema 10: IPv6
 - Limitaciones de IPv4
 - Características de IPv6
 - Cabecera IPv6
 - Direccionamiento IPv6
 - DNS e ICMPv6
 - Transición IPv4 a IPv6

Lecturas recomendadas:

- Capítulo 4, sección 4.4.4, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- "IPv6 Essentials", Silvia Hagen, O'Reilly.

Limitaciones de IPv4

- "Pocas" direcciones (32 bits 4000 millones):
 - Estructura de dos niveles (id. de red y de host):
 - Usar un id. de red → reservar todos sus id. de host.
 - Gran proliferación de redes (crecimiento exponencial de Internet).
 - Uso de TCP/IP en nuevas tecnologías (móviles, tablets, TV...)
 - Múltiples IP por ordenador.
- Saturación del espacio de direcciones:
 - Limita el crecimiento de Internet.
 - Enrutamiento ineficiente (tablas de enrutamiento muy grandes en la red troncal) → Tiempos de respuesta grandes.
 - Uso de NAT (Network Address Translation).
- Soporte inadecuado para aplicaciones con restricciones de calidad de servicio:
 - No garantiza anchos de banda, tiempos de respuesta, seguridad.
- Se requieren mecanismos de seguridad en la capa de red:
 - No fue diseñado para ser seguro.
 - Seguridad en los niveles superiores: SSL, HTTPS, IPsec.

Características de IPv6

- Espacio de direcciones ampliado y mecanismos de autoconfiguración:
 - Direcciones de 128 bits → Incremento en 2⁹⁶.
 - Permite una arquitectura jerárquica de direcciones → Agregación de direcciones en el backbone.
 - Autoconfiguración (plug&play) de los equipos.
 - Mejora de multicast (concepto de ámbito) e introducción de las direcciones anycast.
- Simplificación del formato de la cabecera:
 - Tamaño fijo de 40 bytes: dos direcciones IP de 16 bytes y 6 campos más.
 - Procesamiento más rápido y barato en los routers.
- Soporte mejorado de extensiones y opciones usando Cabeceras de Extensión.
- Seguridad intrínseca en el núcleo del protocolo: soporta autenticación y dispone de extensiones para la integridad y confidencialidad de los datos.
- Capacidad para etiquetado de flujos:
 - Paquetes del mismo flujo de datos pueden ser etiquetados en origen → Calidad de Servicio (QoS).

Datagrama IPv6

Cabecera IPv6
Cabecera de extensión
...
Cabecera de extensión

Datos transporte

40 bytes

0 ó más

- Sólo se requiere una cabecera: Cabecera IPv6 (40 bytes)
- Y se definen varias cabeceras de extensión (opcionales):
 - Cabecera de opciones salto-a-salto
 - Cabecera de encaminamiento
 - Cabecera de fragmentación
 - Cabecera de las opciones para el destino
 - Cabecera de autenticación
 - Cabecera Encapsulating Security Payload (ESP)

Lim. saltos

31

Cabecera IPv6

0	8	16		31	0 4	4	12	16		
Versión Long. Cabec.	TOS	Longitud total			Versión	Clase tráfico		Etiqueta de	flujo	
	ficación	Flags	Offset de frag	 .	L	ongitud carg	ja	Cabec. sig.	Lim. s	
TTL	Protocolo	Che	ecksum cabecer	a						
	Dir. IP origen					Dir ID avisan				
	Dir. IP destino				Dir. IP origen					
Opciones (opcional y variable)										
Cabece	era IPv4									

- 20 bytes
- 12 campos
- Hasta 40 bytes de opciones

Modificado

Borrado

Dir. IP destino

Cabecera IPv6 (RFC 2460)

- 40 bytes y 8 campos
- Cabeceras de extensión ilimitadas (opciones)

- Versión (4 bits): versión del protocolo (6).
- Clase de tráfico (1 byte): identifica diferentes clases o prioridades de paquetes (sustituye al campo TOS de IPv4) → DS (6 bits) + ECN (2 bits).
- **Etiqueta de flujo** (20 bits): permite diferenciar aquellos paquetes que requieren un tratamiento similar.
 - Especialmente útil para tráfico multimedia y en tiempo real.
 - Etiqueta de flujo + clase de tráfico: mecanismo potente de control de flujo y de asignación de prioridades diferenciadas según los tipos de servicios.
- Longitud de carga (2 bytes): longitud del paquete después de la cabecera IP (cabeceras extensión + datos).
 - En IPv4, el campo Longitud incluía la longitud de la cabecera + datos
 - En IPv6, no se considera la cabecera IPv6 (tamaño fijo), y las cabeceras de extensión se consideran parte de la carga.
 - Máximo tamaño de carga: 2¹⁶= 64Kbytes
 - IPv6 permite la definición de Jumbogramas: paquetes de más de 64 KB, que sólo tienen sentido si el MTU del nivel de enlace es superior a 64 KB.

- Cabecera siguiente (1 byte): identifica el tipo de cabecera que sigue a la cabecera IPv6.
 - Las cabeceras deben ser procesadas en el orden riguroso en que aparecen.
 - Las sucesivas cabeceras no son examinadas en cada nodo de la ruta, sino sólo en el nodo o nodos destino finales (excepto cuando se trata de la cabecera de opciones salto a salto).

IPv6 Header TCP Header		Application Data				
Next = TCP						
IPv6 Header	Fragment Hdr	Security Hdr	TCP Header	Data		
Next = Frag	Next = Security	Next = TCP		Frag		

- Límite de saltos (1 byte): número restante de saltos permitidos.
 - Análogo al campo TTL.
- **Dirección origen** (16 bytes)
- Dirección destino (16 bytes): normalmente, dirección IP del destino del paquete.
 - Puede no ser el último destinatario del paquete, si está presente la cabecera de enrutamiento.

- Se eliminan 5 campos de la cabecera IPv4:
 - Longitud cabecera: necesario en IPv4 al incluirse las opciones en la cabecera (longitud entre 20 y 60 bytes).
 - Inútil en IPv6 (cabecera fija de 40 bytes + cabeceras de extensión).
 - Identificación, flags y offset de fragmentación: necesarios para la fragmentación en IPv4.
 - Si es necesaria, se realiza extremo a extremo (Path MTU Discovery), utilizando la cabecera de extensión para fragmentación.
 - ¡Los routers no fragmentan!
 - Checksum cabecera: eliminado para mejorar el rendimiento → Así, los routers no tienen que calcular y actualizar el checksum.
 - Ya se realiza en el nivel de enlace (probablemente) y en el nivel de transporte.
 - IP no es fiable → Fiabilidad en los niveles superiores.

Direccionamiento IPv6: Notación

- Dirección IPv6: 128 bits = 16 bytes
- Se representa mediante 8 bloques de 16 bits en hexadecimal, separados por ":"
 - FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 - FE80:0000:0000:0000:0202:B3FF:FE1E:8329
- Se pueden eliminar los ceros por la izquierda en cada bloque
 - FE80:0:0:0:202:B3FF:FE1E:8329
- Se eliminan bloques consecutivos de ceros utilizando el carácter "::"
 - FE80::202:B3FF:FE1E:8329
 - Sólo puede aparecer una vez en la dirección
 - CAFF:CA01:0000:0056:0000:ABCD:EF12:1234
 - CAFF:CA01::56:0:ABCD:EF12:1234
 - CAFF:CA01:0:56::ABCD:EF12:1234

Direccionamiento IPv6: Tipos

- Especificado en el RFC 2373 (que deja obsoleto el RFC 1884).
- Hay tres tipos de direcciones:
 - Unicast: identifica unívocamente una interfaz de un nodo IPv6. Un paquete dirigido a una dirección unicast se envía a la interfaz asociada a esa dirección.
 - Multicast: identifica un grupo de interfaces IPv6. Procesado por todos los miembros del grupo (sustituye a las direcciones de broadcast). Prefijo FFxx/8.
 - Anycast: se asigna a múltiples interfaces (típicamente en múltiples nodos).
 Enviado a sólo una de esas interfaces (normalmente, la más próxima).
- Las direcciones IP se asignan a interfaces (como en IPv4): cada interfaz necesita, al menos, una dirección unicast y puede tener asignadas múltiples direcciones de cualquier tipo.
- Unicast global (2000::/3 rango asignable actualmente): similares a las IPv4 públicas y enrutables en Internet.
 - Consta de tres partes: prefijo de enrutamiento global (~ IPv4 id. red), identificador de subred (~ IPv4 id. subred) e identificador de interfaz (~ IPv4 id. host).
- Link-local (FE80::/10): utilizadas en un mismo enlace local y limitada a un único enlace
- Local única (FC00::/7 FDFF::/7): similares a las IPv4 privadas → Se usan para direccionamiento dentro de un sitio o entre una cantidad limitada de sitios
- Loopback (::1/128) y dirección sin especificar (::/128)

IPv6: DNS e ICMPv6

- DNS: se requieren unos cambios para resolver las peticiones de direcciones IPv6 → RFC 1886.
 - Petición DNS IPv6: AAAA
 - A partir de un nombre, obtendrá la dirección IPv6 asociada.
 - dig @8.8.8.8 www.udc.es AAAA
- ICMPv6: se define una nueva versión del protocolo en el RFC 4443.
 - Reorganiza los tipos y códigos existentes, y define nuevos tipos.
 - Incorpora funciones de IGMP (Internet Group Management Protocol).
 - Introduce el protocolo NDP (Neighbor Discovery Protocol)
 - Incorpora funciones ARP.
- Autoconfiguración: dos mecanismos
 - Stateless Address Autoconfiguration (SLAAC)
 - DHCPv6.

Transición IPv4 a IPv6

- IPv6 e IPv4 van a coexistir durante muchos años.
- Se han definido múltiples técnicas para la transición, que se agrupan en tres categorías:
 - Pila dual: permiten a IPv4 e IPv6 coexistir en los mismos dispositivos y redes. Soporte completo de las dos versiones de los protocolos en los nodos.
 - Tunneling: permiten transportar tráfico IPv6 sobre infraestructuras IPv4 existentes. El tráfico IPv6 se encapsula en paquetes IPv4.
 - NAT: permiten a los nodos IPv6 puros comunicarse con los nodos IPv4 puros. Traduce una dirección IPv6 en una dirección IPv4.
- Estas técnicas pueden (y deben) utilizarse de manera combinada.
- Definidas en el RFC 2893 "Transition Mechanisms for IPv6 Hosts and Routers".