Machine Learning

Assignment 9.2

Submitted By: Ranji Raj

January 6, 2021

a) Difference between regression and classification

Algorithm	labels/classes	attributes
Linear Regression	Continuous	Numeric
Regression Tree	Continuous	Categorical/Numeric
Locally Weighted Regression	Continuous	Numeric

Table 1: Regression algorithms

Reasoning

- For a Regression Tree algorithm the predictor/attributes can be either categorical or continuous.
- For Linear Regression and Locally Weighted Regression where there involves a mathematical computation $(\sum_{i=1}^{n} w_i x_i)$ for predicting the target value all the predictors/attributes must strictly be transformed to continuous value.

Algorithm	labels/classes	attributes
Naive Bayes	Categorical/Continuous	Categorical/Numeric
Decision Tree	Categorical	Categorical/Numeric
Logistic Regression	Categorical/Continuous	Numeric
Perceptron	Categorical/Continuous	Numeric
Neural Networks	Categorical/Continuous	Numeric
kNN	Categorical/Continuous	Numeric

Table 2: Classification algorithms

Reasoning

- For Naive Bayes algorithm the predictor/attributes can be either categorical or continuous. For handling continuous attributes there is a provision of multivariate Gaussian estimate.
- For Perceptrons, Logistic Regression and Neural Nets where there involves a mathematical computation $(\sum_{i=1}^{n} w_i x_i)$ for classifying the target value all the predictors/attributes must be strictly be transformed to continuous value.
- For Decision Tree the predictor/attributes can be either categorical or continuous. For handling continuous attributes there is a provision of discretization into bins.
- \bullet For kNN predictor/attributes must be strictly continuous because distance metrics are used for determining the nearest neighbours.

b) Estimating performance of regression and classification algorithms

- Performance of regression algorithms like linear regression can be estimated by R-squared or Adjusted R-squared values, whereas, for Regression trees can be done by Coefficient of Variation.
- Performance of classification algorithms like Naive Bayes can be determined by confusion matrix (Precision, Recall, Accuracy) etc., For perceptrons and neural nets by means of boxplots, and for kNN by means of ROC/AUC.

c) Overfitting in IB learning

- For smaller values of k instance-based algorithms like kNN suffers from overfitting and would produce a non-smooth decision surface.
- Overfitting in Decision Trees is due to lack of data with sufficient distribution.
- Overfitting in Neural nets is when training is halted when the training error is minimum which cannot generalize to unseen data.

d) Optimal k in kNN

- Cross validation run on a validation set can be used to pick the best k.
- If k is low, non-linear functions can be approximated, but also can capture noise. Low bias and high variance (underfitting).
- If k is high, output is much smoother, less sensitive to data variation. high bias and low variance (overfitting).