LM

Table 1: **Table 1. Overall Characteristics**

Characteristic	$\mathbf{N}=948^1$
Gender	
female	488 / 948 (51%)
male	460 / 948 (49%)
EthnicGroup	
group A	80 / 948 (8.4%)
group B	171 / 948 (18%)
group C	336 / 948 (35%)
group D	$237 \; / \; 948 \; (25\%)$
group E	124 / 948 (13%)
ParentEduc	
some high school	163 / 948 (17%)
high school	$176 \; / \; 948 \; (19\%)$
associate's degree	198 / 948 (21%)
some college	$252 \ / \ 948 \ (27\%)$
bachelor's degree	104 / 948 (11%)
master's degree	55 / 948 (5.8%)
LunchType	
free/reduced	331 / 948 (35%)
standard	617 / 948 (65%)
TestPrep	
completed	322 / 948 (34%)
none	626 / 948 (66%)
ParentMaritalStatus	
divorced	146 / 948 (15%)
married	565 / 948 (60%)
single	213 / 948 (22%)
widowed	24 / 948 (2.5%)
PracticeSport	
1 n / N (%); Mean (SD)	

Table 1: **Table 1. Overall Characteristics**

Characteristic	$N=948^1$
never	112 / 948 (12%)
sometimes	493 / 948 (52%)
regularly	343 / 948 (36%)
IsFirstChild	634 / 948 (67%)
NrSiblings	2 (1)
TransportMeans	
private	337 / 948 (36%)
school_bus	611 / 948 (64%)
WklyStudyHours	
< 5	253 / 948 (27%)
5-10	545 / 948 (57%)
> 10	150 / 948 (16%)
MathScore	66 (16)
ReadingScore	69 (15)
WritingScore	68 (15)

¹n / N (%); Mean (SD)

Math

Break the data into training and testing

```
data_cleaned_math <-
  data_cleaned %>%
  select(c(-ReadingScore, -WritingScore))
train.indices <- sample(nrow(data_cleaned_math), floor(nrow(data_cleaned_math)/1.5), replace = FALSE)
validation.indices <- seq(nrow(data_cleaned_math))[-train.indices]</pre>
pred.data.train <- data_cleaned_math[train.indices,]</pre>
pred.data.train \leftarrow pred.data.train[,c(1,2,3,4,5,6,7,8,9,10,11,12)]
pred.data.validation <- data_cleaned_math[validation.indices,]</pre>
pred.data.validation <- pred.data.validation[,c(1,2,3,4,5,6,7,8,9,10,11,12)]</pre>
glmnet.formula <- as.formula(MathScore ~ .)</pre>
glmnet.design.matrix <- model.matrix(glmnet.formula, data = pred.data.train)</pre>
dim(glmnet.design.matrix)
## [1] 632 23
glmnet.cv.data.out <- cv.glmnet(glmnet.design.matrix,</pre>
                      y = pred.data.train$MathScore,
                      family = c("gaussian"),
                      type.measure="mse", # the model selection criteria
                      alpha = 1) # The Lasso regression
plot(glmnet.cv.data.out)
```

Table 2: Table 2. Math score backwards stepwise model

		_
term	estimate	p.value
(Intercept)	55.976	<.001
Gendermale	4.981	<.001
EthnicGroup.L	7.401	<.001
EthnicGroup.Q	2.940	0.011
EthnicGroup.C	0.737	0.482
EthnicGroup ⁴	-0.985	0.251
ParentEduc.L	6.642	<.001
ParentEduc.Q	-0.045	0.972
ParentEduc.C	-0.300	0.806
ParentEduc^4	1.402	0.213
ParentEduc^5	-2.644	0.006
LunchTypestandard	11.155	<.001
TestPrepnone	-5.582	<.001
ParentMaritalStatusmarried	3.876	0.002
ParentMaritalStatussingle	1.102	0.444
ParentMaritalStatuswidowed	5.066	0.087
PracticeSport.L	2.514	0.015
PracticeSport.Q	-0.518	0.503
IsFirstChildyes	2.368	0.011
WklyStudyHours.L	2.621	0.008
WklyStudyHours.Q	-1.032	0.158

Table 3: Table 3. Reading score backwards stepwise model

term	estimate	p.value
(Intercept)	68.495	<.001
Gendermale	-7.282	<.001
EthnicGroup.L	4.149	0.001
EthnicGroup.Q	1.438	0.203
EthnicGroup.C	-0.471	0.645
EthnicGroup ⁴	-0.942	0.261
ParentEduc.L	7.638	<.001
ParentEduc.Q	1.535	0.22
ParentEduc.C	0.566	0.635
ParentEduc^4	1.547	0.158
ParentEduc^5	-3.033	0.001
LunchTypestandard	7.494	<.001
TestPrepnone	-6.972	<.001
ParentMaritalStatusmarried	4.113	0.001
ParentMaritalStatussingle	1.275	0.363
ParentMaritalStatuswidowed	4.645	0.106
IsFirstChildyes	2.446	0.007
WklyStudyHours.L	1.431	0.135
WklyStudyHours.Q	-0.933	0.191

Table 4: Table 4. Writing score backwards stepwise model

term	estimate	p.value
(Intercept)	69.347	<.001
Gendermale	-9.209	<.001
EthnicGroup.L	4.673	<.001
EthnicGroup.Q	0.627	0.569
EthnicGroup.C	-1.891	0.058
EthnicGroup ⁴	-1.649	0.043
ParentEduc.L	9.983	<.001
ParentEduc.Q	1.365	0.265
ParentEduc.C	0.289	0.803
ParentEduc^4	1.715	0.109
ParentEduc^5	-3.106	0.001
LunchTypestandard	8.388	<.001
TestPrepnone	-9.629	<.001
ParentMaritalStatusmarried	4.135	0.001
ParentMaritalStatussingle	1.056	0.44
ParentMaritalStatuswidowed	3.950	0.16
PracticeSport.L	2.251	0.022
PracticeSport.Q	-0.708	0.335
IsFirstChildyes	2.208	0.012
WklyStudyHours.L	1.338	0.152
WklyStudyHours.Q	-0.960	0.167


```
print(paste("The lasso regression chose", dim(chosen.vars)[1]-1,
           "variables and 1 intercept"))
## [1] "The lasso regression chose 10 variables and 1 intercept"
print(saved.coef)
## 24 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                              60.8697817
## (Intercept)
## Gendermale
                               2.3359560
## EthnicGroup.L
                               4.2382787
## EthnicGroup.Q
                               1.5305757
## EthnicGroup.C
## EthnicGroup<sup>4</sup>
## ParentEduc.L
                              3.6264123
## ParentEduc.Q
                             -0.3094388
## ParentEduc.C
## ParentEduc^4
## ParentEduc^5
                              -1.3195352
## LunchTypestandard
                             8.8646036
## TestPrepnone
                              -2.4242864
## ParentMaritalStatusmarried 0.6615177
## ParentMaritalStatussingle
## ParentMaritalStatuswidowed .
## PracticeSport.L
## PracticeSport.Q
## IsFirstChildyes
## NrSiblings
## TransportMeansschool_bus
## WklyStudyHours.L
                               0.7982227
## WklyStudyHours.Q
Math Scores Regression Tree
tree.out.1 <-rpart(MathScore ~ ., data = pred.data.train,</pre>
                   parms = list(split="information"),
                   control = rpart.control(minsplit=20))
#Create a plot of the classification tree.
#Code to plot the tree.
plot(tree.out.1, uniform=TRUE, branch=0.2, margin=0.02)
text(tree.out.1, all=TRUE, use.n=TRUE)
title("Math Scores Regression Tree")
```

Math Scores Regression Tree

Use Random Forest to see if we can model it better

data.train.rf

we see lunch type is skewing the data so we need to get rid of it and train the random forest again.

Plot of Predictions vs. Actual for Math Score

Reading scores data_cleaned_read <data_cleaned %>% select(c(-MathScore, -WritingScore)) train.indices <- sample(nrow(data_cleaned_read), floor(nrow(data_cleaned_read)/1.5), replace = FALSE) validation.indices <- seq(nrow(data_cleaned_read))[-train.indices]</pre> pred.data.train <- data_cleaned_read[train.indices,]</pre> pred.data.train \leftarrow pred.data.train[,c(1,2,3,4,5,6,7,8,9,10,11,12)] pred.data.validation <- data_cleaned_read[validation.indices,]</pre> pred.data.validation <- pred.data.validation[,c(1,2,3,4,5,6,7,8,9,10,11,12)] glmnet.formula <- as.formula(ReadingScore ~ .)</pre> glmnet.design.matrix <- model.matrix(glmnet.formula, data = pred.data.train)</pre> dim(glmnet.design.matrix) ## [1] 632 23 glmnet.cv.data.out <- cv.glmnet(glmnet.design.matrix,</pre> y = pred.data.train\$ReadingScore, family = c("gaussian"), type.measure="mse", # the model selection criteria alpha = 1) # The Lasso regression

plot(glmnet.cv.data.out)

22 22 22 22 21 21 20 18 14 9 6 5 3

[1] "The lasso regression chose 6 variables and 1 intercept"
print(saved.coef)

```
## 24 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                               70.773685
## (Intercept)
                               -4.538111
## Gendermale
## EthnicGroup.L
                                1.903624
## EthnicGroup.Q
## EthnicGroup.C
## EthnicGroup<sup>4</sup>
## ParentEduc.L
                                2.983446
## ParentEduc.Q
## ParentEduc.C
## ParentEduc^4
## ParentEduc^5
## LunchTypestandard
                                3.964257
## TestPrepnone
                               -4.162460
## ParentMaritalStatusmarried 1.016629
## ParentMaritalStatussingle
## ParentMaritalStatuswidowed
## PracticeSport.L
## PracticeSport.Q
```

Reading Scores Regression Tree


```
Gender
                                             ParentEduc
TestPrep
                                             NrSiblings
ParentEduc
                                             EthnicGroup
ParentMaritalStatus
                                             ParentMaritalStatus
EthnicGroup
                                             Gender
WklyStudyHours
                                             WklyStudyHours
PracticeSport
                                             TestPrep
TransportMeans
                                             PracticeSport
IsFirstChild
                                             IsFirstChild
NrSiblings
                                             TransportMeans
                       0
                            10
                                  20
                                                                  0
                                                                         10000
                                                                   IncNodePurity
                         %IncMSE
optimum <- which.max(data.train.rf2$importance[,"%IncMSE"])</pre>
opt.var <- data.train.rf2$importance[optimum,0,drop=FALSE]</pre>
print("The most predictive variable with regard to Reading Score is:")
## [1] "The most predictive variable with regard to Reading Score is:"
print(opt.var)
##
## Gender
val.preds.rf <- predict(data.train.rf2, # The forest</pre>
newdata = pred.data.validation, # The values of x to do prediction at type = c("response")
# Code to plot the predictions against the actual values
plot(val.preds.rf, pred.data.validation$ReadingScore,
     main = "Plot of Predictions vs. Actual for Reading Score",
     xlab = "Predicted Reading Score",
    ylab = "Actual Reading Score")
```

Plot of Predictions vs. Actual for Reading Score

Predicted Reading Score

```
Writing Scores
data_cleaned_writing <-</pre>
  data_cleaned %>%
  select(c(-MathScore,-ReadingScore))
train.indices <- sample(nrow(data_cleaned_writing), floor(nrow(data_cleaned_writing)/1.5), replace = FA
validation.indices <- seq(nrow(data_cleaned_writing))[-train.indices]</pre>
pred.data.train <- data_cleaned_writing[train.indices,]</pre>
pred.data.train \leftarrow pred.data.train[,c(1,2,3,4,5,6,7,8,9,10,11,12)]
pred.data.validation <- data_cleaned_writing[validation.indices,]</pre>
pred.data.validation <- pred.data.validation[,c(1,2,3,4,5,6,7,8,9,10,11,12)]</pre>
glmnet.formula <- as.formula(WritingScore ~ .)</pre>
glmnet.design.matrix <- model.matrix(glmnet.formula, data = pred.data.train)</pre>
dim(glmnet.design.matrix)
## [1] 632 23
glmnet.cv.data.out <- cv.glmnet(glmnet.design.matrix,</pre>
                      y = pred.data.train$WritingScore,
                      family = c("gaussian"),
                      type.measure="mse", # the model selection criteria
                      alpha = 1) # The Lasso regression
plot(glmnet.cv.data.out)
```


[1] "The lasso regression chose 9 variables and 1 intercept"
print(saved.coef)

```
## 24 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                               71.90795878
## (Intercept)
## Gendermale
                               -7.23653258
## EthnicGroup.L
                                3.66757305
## EthnicGroup.Q
                               -0.08088078
## EthnicGroup.C
## EthnicGroup<sup>4</sup>
## ParentEduc.L
                                5.08461348
## ParentEduc.Q
## ParentEduc.C
## ParentEduc^4
                                0.06579273
## ParentEduc^5
                               -0.59198668
## LunchTypestandard
                                5.93534763
## TestPrepnone
                               -7.11723690
## ParentMaritalStatusmarried 1.41084907
## ParentMaritalStatussingle
## ParentMaritalStatuswidowed
## PracticeSport.L
## PracticeSport.Q
```

Writing Scores Regression Tree

Plot of Predictions vs. Actual for Writing Score

We can conclude that the most important variables running the random forest model for prediction was the Test Prep category to sort the means the of the test scores.