Lógica

Mauro Polenta Mora

Ejercicio 4

Consigna

Considere φ, ψ, σ pertenecientes a PROP.

- (a) Pruebe las siguientes consecuencias lógicas:
- 1. $\varphi \models \varphi$
- 2. $\varphi \lor \psi, \neg \psi \models \varphi$
- 3. $(\varphi \wedge \psi), (\psi \wedge \sigma) \models (\varphi \wedge \sigma)$
- (b) Demuestre que:
- 1. Si $\varphi \models \psi \lor \psi \models \sigma$, entonces $\varphi \models \sigma$
- 2. Si $\models \varphi \rightarrow \psi$, entonces $\varphi \models \psi$
- 3. Si $\models \neg \varphi$ y $\psi \models \varphi$, entonces $\models \neg \psi$
- 4. Si $\Gamma \models \varphi \setminus \Gamma \models \neg \psi$, entonces $\Gamma \models \neg (\neg \varphi \lor \psi)$ (donde $\Gamma \subseteq PROP$)

Resolución (parte a)

Para esta parte usamos la definición de valuación para determinar si las fórmulas dadas son tautologías. Podríamos usar de forma alternativa el concepto de Tableau Semántico.

1.
$$\varphi \models \varphi$$

Sea v una valuación tal que $v(\varphi) = 1$, luego:

$$v(\varphi)$$
= (hipótesis)

Como cualquier valuación dada en este contexto cumple que $v(\varphi)=1$, podemos concluir que $\varphi \models \varphi$

2. $\varphi \lor \psi, \neg \psi \models \varphi$

Sea v una valuación tal que $v(\varphi \lor \psi) = 1$ y $v(\neg \psi) = 1$, luego:

PARTE 1: $v(\varphi \lor \psi) = 1$

$$\begin{split} v(\varphi \lor \psi) \\ &= (\text{definición de valuación}) \\ \max \{v(\varphi), v(\psi)\} \\ &= (\text{hipótesis}) \\ 1 \end{split}$$

PARTE 2: $v(\neg \psi) = 1$

$$\begin{aligned} v(\neg \psi) &= 1 - v(\psi) \\ &\iff \text{(hipótesis)} \\ 1 - v(\psi) &= 1 \\ &\iff \text{(despeje)} \\ v(\psi) &= 0 \end{aligned}$$

Entonces ahora juntando con la primer parte, tenemos que:

$$\begin{split} v(\varphi \lor \psi) \\ &= (\text{definición de valuación}) \\ \max\{v(\varphi), v(\psi)\} \\ &= (\text{por parte 2}) \\ \max\{v(\varphi), 0\} \\ &= (\text{hipótesis}) \\ 1 \end{split}$$

Entonces $v(\varphi)=1$, por lo que podemos concluir que $\varphi\vee\psi,\neg\psi\models\varphi$

3.
$$(\varphi \wedge \psi), (\psi \wedge \sigma) \models (\varphi \wedge \sigma)$$

Sea v una valuación tal que $v(\varphi \wedge \psi) = 1$ y $v(\psi \wedge \sigma) = 1$, luego:

PARTE 1: $v(\varphi \wedge \psi) = 1$

$$\begin{split} v(\varphi \wedge \psi) &= (\operatorname{definici\acute{o}n} \operatorname{de valuaci\acute{o}n}) \\ \min \{v(\varphi), v(\psi)\} &= (\operatorname{hip\acute{o}tesis}) \\ 1 &\Rightarrow (\operatorname{despeje}) \\ v(\varphi) &= 1; v(\psi) = 1 \end{split}$$

PARTE 2: $v(\psi \wedge \sigma) = 1$

$$\begin{split} v(\psi \wedge \sigma) &= (\text{definición de valuación}) \\ &= (\text{definición de valuación}) \\ &= min\{v(\psi), v(\sigma)\} \\ &= (\text{hipótesis}) \\ 1 \\ &\Rightarrow (\text{despeje}) \\ v(\psi) &= 1; v(\sigma) = 1 \end{split}$$

Ahora juntando ambas partes, tenemos que:

$$\begin{split} v(\varphi \wedge \sigma) \\ &= (\text{definición de valuación}) \\ \min\{v(\varphi), v(\sigma)\} \\ &= (\text{parte 1 y 2}) \\ \min\{1, 1\} \\ &= (\text{despeje}) \\ 1 \end{split}$$

Como cualquier valuación dada en este contexto cumple que $v(\varphi \wedge \sigma) = 1$, podemos concluir que $(\varphi \wedge \psi), (\psi \wedge \sigma) \models (\varphi \wedge \sigma)$

Resolución (parte b)

Para esta parte usaremos el concepto de absurdo combinado con la definición de valuación.

1. Si $\varphi \models \psi$ y $\psi \models \sigma$, entonces $\varphi \models \sigma$

(H)
$$\varphi \models \psi y \psi \models \sigma$$

(I)
$$\varphi \models \sigma$$

Usando las hipótesis tenemos que:

PARTE 1

$$\varphi \models \psi$$
 \iff (definición de consecuencia lógica)
$$(\forall v \in Val) \mid \text{Si } v(\varphi) = 1, \text{ entonces } v(\psi) = 1$$

PARTE 2

$$\psi \models \sigma$$
 \iff (definición de consecuencia lógica)
$$(\forall v \in Val) \mid \text{Si } v(\psi) = 1, \text{ entonces } v(\sigma) = 1$$

Queremos probar que para una valuación v cualquiera se cumple la tesis, partamos de que $v(\varphi)=1$:

$$v(\varphi) = 1$$

 \Rightarrow (por parte 1)
 $v(\psi) = 1$
 \Rightarrow (por parte 2)
 $v(\sigma) = 1$

Entonces, como cualquier valuación dada en este contexto cumple que $v(\varphi) = 1$ implica $v(\sigma) = 1$, podemos concluir que $\varphi \models \sigma$

2. Si $\models \varphi \rightarrow \psi$, entonces $\varphi \models \psi$

En este caso podemos trabajar con absurdo ya que tenemos una sola hipótesis.

Veamos que pasa si $\varphi \not\models \psi$:

$$\begin{array}{l} \varphi \not\models \psi \\ \iff (\text{definición de consecuencia lógica}) \\ (\exists v_1 \in Val) \mid v_1(\varphi) = 1; v_1(\psi) = 0 \\ \Rightarrow (\text{definición de valuación}) \\ v_1(\varphi \to \psi) = 0 \\ \Rightarrow (\text{hipótesis}) \\ \text{ABSURDO!} \end{array}$$

Esto es absurdo porque por hipótesis sabemos que $\models \varphi \rightarrow \psi$.

Entonces, tenemos que si $\models \varphi \rightarrow \psi$, entonces $\varphi \models \psi$.

3. Si
$$\models \neg \varphi$$
 y $\psi \models \varphi$, entonces $\models \neg \psi$

(H)
$$\models \neg \varphi \ y \ \psi \models \varphi$$

(I)
$$\models \neg \psi$$

Usando las hipótesis tenemos que:

PARTE 1

$$\models \neg \varphi \\ \iff \text{(definición de tautología)} \\ (\forall v \in Val) \mid v(\neg \varphi) = 1 \\ \Rightarrow \text{(definición de valuación)} \\ (\forall v \in Val) \mid v(\varphi) = 0 \\$$

PARTE 2

$$\begin{array}{l} \psi \models \varphi \\ \iff (\text{definición de consecuencia lógica}) \\ (\forall v \in Val) \mid \text{Si } v(\psi) = 1, \text{ entonces } v(\varphi) = 1 \\ \Rightarrow (\text{por parte 1: } v(\varphi) = 0) \\ (\forall v \in Val) \mid v(\psi) \neq 1 \\ \Rightarrow (\text{definición de valuación}) \\ (\forall v \in Val) \mid v(\psi) = 0 \end{array}$$

Queremos probar que para una valuación v cualquiera se cumple la tesis:

$$\models \neg \psi \\ \iff \text{(definición de tautología)} \\ (\forall v \in Val) \mid v(\neg \psi) = 1 \\ \Rightarrow \text{(definición de valuación)} \\ (\forall v \in Val) \mid v(\psi) = 0 \\$$

Donde esto último se cumple para toda valuación v por la parte 2.

4. Si
$$\Gamma \models \varphi$$
 y $\Gamma \models \neg \psi$, entonces $\Gamma \models \neg (\neg \varphi \lor \psi)$

(H)
$$\Gamma \models \varphi \ y \ \Gamma \models \neg \psi$$

(I)
$$\Gamma \models \neg (\neg \varphi \lor \psi)$$

Usando las hipótesis tenemos que las valuaciones v cumplen que:

PARTE 1

$$\begin{split} \Gamma \models \varphi \\ &\iff \text{(definición de consecuencia lógica)} \\ (\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\varphi) = 1 \\ &\implies \text{(definición de valuación)} \\ (\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\neg \varphi) = 0 \end{split}$$

PARTE 2

$$\begin{split} \Gamma &\models \neg \psi \\ \iff & (\text{definición de consecuencia lógica}) \\ & (\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\neg \psi) = 1 \\ \Rightarrow & (\text{definición de valuación}) \\ & (\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\psi) = 0 \end{split}$$

Veamos que pasa por absurdo si $\Gamma \not\models \neg (\neg \varphi \lor \psi)$:

$$\Gamma \not\models \neg(\neg \varphi \lor \psi)$$
 \iff (definición de consecuencia lógica)
$$(\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\neg(\neg \varphi \lor \psi)) = 0$$
 \Rightarrow (definición de valuación)
$$(\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } v(\neg \varphi \lor \psi) = 1$$
 \Rightarrow (definición de valuación)
$$(\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } \min\{v(\neg \varphi), v(\psi)\} = 1$$
 \Rightarrow (por parte 1 y parte 2)
$$(\forall v \in Val) \mid \text{Si } (\forall \alpha \in \Gamma) v(\alpha) = 1, \text{ entonces } \min\{0, 0\} = 1$$
 \Rightarrow (operatoria) ABSURDO!

Entonces si $\Gamma \models \varphi$ y $\Gamma \models \neg \psi$, entonces $\Gamma \models \neg (\neg \varphi \lor \psi)$