Mobile Price Prediction

By Devesh Samant

Introduction

- Mobile price prediction aims to determine the price range of a mobile phone based on its specifications. Accurate price prediction helps manufacturers, retailers, and consumers make informed decisions.
- The dataset contains various features related to mobile specifications such as battery power, RAM, and camera quality. The target variable is the price range categorized into four classes (0 to 3).

Data Exploration

- Basic Statistics and Data Types:
- The dataset contains 2000 entries

and 21 columns.

Data types and summary
 Statistics are provided.

∓ *	ł	oattery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores		px_height	px_width	ran	sc_h	sc_w	talk	6 7
	count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000		2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.0	8 9
	mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046500	0.501750	140.249000	4.520500		645.108000	1251.515500	2124.213000	12.306500	5.767000	11.0	16 13
	std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145715	0.288416	35.399655	2.287837		443.780811	432.199447	1084.732044	4.213245	4.356398	5.4	12
	min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000000	0.100000	80.000000	1.000000		0.000000	500.000000	256.000000	5.000000	0.000000	2.0	13 14
	25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000000	0.200000	109.000000	3.000000		282.750000	874.750000	1207.500000	9.000000	2.000000	6.0	19
	50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000000	0.500000	141.000000	4.000000		564.000000	1247.000000	2146.500000	12.000000	5.000000	11.0	16 17
	75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000000	0.800000	170.000000	7.000000		947.250000	1633.000000	3064.500000	16.000000	9.000000	16.0	18 19
	max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000000	1.000000	200.000000	8.000000		1960.000000	1998.000000	3998.000000	19.000000	18.000000	20.0	26
8 rows × 21 columns																dty mer			

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):
     Column
                     Non-Null Count
                                     Dtype
     battery power
                    2000 non-null
                                      int64
                                      int64
     blue
                     2000 non-null
    clock speed
                     2000 non-null
                                     float64
    dual sim
                     2000 non-null
                                     int64
                     2000 non-null
                                     int64
     four g
                     2000 non-null
                                     int64
     int_memory
                     2000 non-null
                                      int64
     m dep
                     2000 non-null
                                     float64
     mobile wt
                     2000 non-null
                                      int64
                     2000 non-null
                                      int64
     n cores
                     2000 non-null
                                      int64
     pc
     px height
                     2000 non-null
                                      int64
    px width
                     2000 non-null
                                      int64
                     2000 non-null
                                      int64
     ram
    sc h
                     2000 non-null
                                      int64
                                      int64
     SC W
                     2000 non-null
    talk time
                                      int64
                     2000 non-null
    three g
                                      int64
                     2000 non-null
    touch screen
                                      int64
                     2000 non-null
    wifi
                     2000 non-null
                                      int64
     price range
                     2000 non-null
                                      int64
  ypes: float64(2), int64(19)
  mory usage: 328.2 KB
```


1.0

0.8

- 0.6

- 0.4

0.2

0.0

Correlation Analysis

- A correlation matrix helps in understanding the relationships between different features.
- Features highly correlated with the target variable are identified.

```
# Correlation matrix

correlation = df.corr()

plt.figure(figsize=(18, 15))

sns.heatmap(correlation, cmap='coolwarm', annot=True)

plt.show()
```

Visualization of Key Features

 Boxplots and pie charts are used to visualize the distribution of key features like RAM, WiFi support, and the target variable.

Boxplot

Pie Charts

Feature Engineering and Selection

- Feature engineering involves creating new features or modifying existing ones to improve the model's performance.
- Feature selection is the process of choosing the most relevant features for training the model.

```
data=df.copy()
data.drop(['n_cores', 'm_dep','four_g','three_g','blue','clock_speed','sc_w','sc_h'], axis=1, inplace=True)
X = data.drop(['price_range', axis=1])
Y = data['price_range']
```

Data Preprocessing

 Data preprocessing steps include handling missing values, encoding categorical variables, and scaling numerical features.

Model Training

- Random Forest classifier is chosen for training due to its robustness and accuracy.
- The model is trained and evaluated using various metrics.

```
Accuracy of RF: 0.9065217391304348
Precision 14
Accuracy 14
Train_Score 12
Test_Score 14
dtype: int64
```

Hyperparameter Tuning

Hyperparameter tuning is a crucial step in optimizing the performance of a machine learning model. It involves adjusting the parameters that govern the training process to find the optimal set of values that yield the best model performance.

Importance of Hyperparameter Tuning:

- •Enhances Model Accuracy: Proper tuning can significantly improve the model's accuracy and predictive power.
- •Prevents Overfitting: By finding the right balance, hyperparameter tuning helps in preventing the model from overfitting to the training data.
- •Optimizes Performance: It ensures the model is both efficient and effective in its predictions.

Method Used: Custom Tuning with Random Forest

We implemented a custom hyperparameter tuning method for the Random Forest classifier. The code iteratively tests different values for the max_depth parameter, which controls the maximum depth of each tree in the forest.

Process:

- **1.Parameter Initialization**: We initialized the Random Forest classifier with a fixed random state to ensure reproducibility.
- **2.Train-Test Split**: The data was split into training and testing sets with a test size of 23%.
- **3.Iterative Training and Evaluation**: For each value of max_depth from 1 to 30,the model was trained and evaluated using precision, accuracy, training score, and testing score.
- **4.Result Collection**: The performance metrics for each max_depth value were collected and analyzed.

Model Evaluation Metrics

- The accuracy score, confusion matrix, and other relevant metrics are used to evaluate the model's performance.
- Metrics such as precision, recall, and F1 score are considered.

```
Mean Cross-Validation Accuracy: 88.80000000000001
Cross-Validation Score Standard Deviation: 0.0058118652580542145
Mean Cross-Validation Precision: 88.93276123278646
Cross-Validation Precision Standard Deviation: 0.005565916673537844
Mean Cross-Validation Recall: 88.8000000000001
Cross-Validation Recall Standard Deviation: 0.0058118652580542145
Mean Cross-Validation F1 Score: 88.80555545675986
Cross-Validation F1 Score Standard Deviation: 0.005598555492589874
```

Confusion Matrix

 The confusion matrix provides insights into the model's performance in predicting each

class.

WiFi

Predict

Result

Conclusion

This study aimed to develop a robust model to predict mobile price ranges based on various features. Through comprehensive data exploration, feature engineering, and rigorous model training and evaluation, we achieved significant insights and results.

Key Findings:

- •Data Exploration: We identified key features such as RAM, battery power, and pixel resolution that are highly correlated with the price range.
- •Visualization: Boxplots and pie charts provided a clear understanding of feature distributions and their impact on the target variable.
- Model Training: A Random Forest classifier was used, achieving high accuracy and robust performance metrics.
- •Evaluation: The model was evaluated using accuracy, precision, recall, and F1 score, confirming its reliability.

Future Work:

- •Feature Enhancement: Including more advanced features such as user reviews and market trends could improve the model.
- •Model Optimization: Experimenting with other machine learning algorithms and deep learning techniques could enhance prediction accuracy.
- •Deployment: Developing a user-friendly application for real-time price prediction could provide practical benefits for consumers and manufacturers.