Christian Rodriguez

Algorithms HW 4

```
2. Prove that if f(n) is a polynomial of the form X_d i=1 ainx_i, for some coe_- cients ai; a2; \ldots; ad and exponents x1; x2; \ldots; xd, then f(n) = (n_{maxfx1; x2; \ldots; xdg}). Hint: you may use any property of Big-Oh notation listed in the slides. You may wish to use induction for this problem.

3. (Bonus ) Prove that 2n = (nk) for all integers k = 1.
```

Proof:

- 1. Use the formal definition of Big-Oh to prove that if f(n)=O(g(n)), then f(n)+g(n)=O(g(n))
 - Proof: Since f(n)=O(g(n)), there exists positive constants c and n_0 ($\exists c>0,n_0$) such that $f(n)<=c^*g(n)$ for sufficiently large n ($\forall n>=n_0$). We add both sides by g(n), yielding $f(n)+g(n)=c^*g(n)+g(n)$. $f(n)+g(n)<=c^*g(n)+g(n)=(c+1)^*g(n)=c_1^*g(n)$ where $c_1=c+1$ and $\forall n>=n_0$. Therefore, using the property of coefficients, f(n)+g(n)=O(g(n)).
- 2. Prove that if f(n) is a polynomial of the form

$$\sum_{i=0}^{k+1} a_i n^*(x_i)$$

for some coefficients a,a,...,a and exponents and exponents x,x,...,x, then $f(n) = \Theta(n^{\max\{x,x,...,x_d\}})$.

- Show: $f(n) = \Theta(n^{\max\{x,...,x\}})$
- Do induction of # of terms in polynomial in polynomials.
- (Base case: d=1)
 - $\circ f(n) = a_1 n^{x_1} = \Theta(n^{x_1}) = \Theta(n^{\max}(x,d))$
 - o aka: $a_1n^{x_1} \le a_1n^{x_1} \le a_1n^{x_1}$, $\forall n >= 1$
 - \circ $a_1n^{x_1} = \Theta(n^x)$
- Inductive Step:
 - o Suppose any polynomial of k terms is $\Theta(n^x)$, where x is the exponent, and consider
- $f(n) = \sum_{i=0}^{k+1} a_i n^{\prime}(X_i)$
- =g(n) + $a_{k+1}n^{x_{k+1}}$
- =g(n)= $a_1n^{x_1} + ... + a_kn^{x_k}$
- By Inductive Hypothesis, $g(n) = \Theta(n^{x...})$, $x...=max\{x_1,...,x_k\}$
- $F(n) = \Theta(n^x) + a_k$
- $\Theta(n^x)$ + $\Theta(n^{x_{k+1}})$
- $\Theta(n^x + n^x_{k+1})$
- Split into base cases:
- Case 1:
 - \circ $x >= x_{k+1}$
 - \circ $\Theta(n^x + n^x_{k+1}) = \Theta(n^x)$
 - \circ $n^{x_{k+1}}=0(n^{x})$

- \circ $x=max\{x_1,...,x_k\}$
- \circ $x=max\{x_1,...,x\}$
- o because $x > = x_{k+1}$
- Case 2:
 - \circ $x < x_{k+1}$
 - \circ $n^x=0(n^x_{k+1})$
 - $O(n^x + n^x_{k+1}) = O(n^x_{k+1})$
 - $o x_{k+1} = max \{x_1,...,x_k,x_{k+1}\}$
 - o because $x_{k+1} > \max \{x_1, ..., x_k, x_k\}$
- 3. Prove that $2^n = \Omega(n^k)$ for all integers $k \ge 1$.
 - $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that f(n) >= c*g(n) for all $n>=n_0$.
 - Since $\lim_{n\to infinity} (n^k)/(2^n)=0$ and $0<(n^k)/(2^n)<1$ for sufficiently large n, and $0< n^k<=2^n$ for all n. This matches the definition of $2^n=\Omega(n^k)$, with c=1.
 - I am citing the following website as a source. It uses Big Oh notation but I believe that it is a close enough solution to the given problem.
 - o www.math.stackexchange.com/questions/367767/how-to-prove-that-nk-o2n