I2-TD1 (JORDAN CANONICAL FORMS)

1. Find all eigenvalues and their corresponding eigenspaces of the following matrix.

(a)
$$\begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} -8 & -3 & -6 \\ 4 & 0 & 4 \\ 4 & 2 & 2 \end{pmatrix}$

2. Find the characteristics and the minimal polynomial of the following matrices over \mathbb{R} , then deduce the their corresponding Jordan Canonical Form J.

(a)
$$\begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -1 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 2 & -5 & -1 & 6 \\ 1 & -3 & -2 & 6 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & -1 & 1 & 1 \end{pmatrix}$

3. The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L

- 4. Determine all possible Jordan canonical forms for a linear operator L whose characteristic polynomial is $p(\lambda) = (\lambda 3)^3(\lambda 4)^2$.
- 5. Determine all possible Jordan canonical forms J for a matrix of order 6 whose minimal polynomial is $m(\lambda) = (\lambda 1)^3 (\lambda 3)^2$.
- 6. Find all possible Jordan canonical forms for those matrices whose characteristics polynomial $p(\lambda)$ and minimal polynomial $m(\lambda)$ are as follows:

(a)
$$p(\lambda) = (\lambda - 3)^4 (\lambda - 2)^2$$
 and $m(\lambda) = (\lambda - 3)^2 (\lambda - 2)^2$

(b)
$$p(\lambda) = (\lambda - 5)^7$$
 and $m(\lambda) = (\lambda - 5)^2$

(c)
$$p(\lambda) = (\lambda - 3)^4 (\lambda - 2)^4$$
 and $m(\lambda) = (\lambda - 3)^2 (\lambda - 2)^2$

- 7. Let $A \in \mathcal{M}_n(\mathbb{R})$ and $m_A(\lambda)$ be its minimal polynomial. Let f be a polynomial satisfies f(A) = 0. Show that $f(\lambda)$ is divisible by $m_A(\lambda)$.
- 8. Let $A \in \mathcal{M}_6(\mathbb{R})$ be an invertible matrix satisfies $A^3 4A^2 + 3A = 0$ and tr(A) = 8. Find the characteristics polynomial of A.
- 9. Let $A \in \mathcal{M}_n(\mathbb{R})$ and $\lambda_1, \lambda_2, \dots, \lambda_n$ (no need distinct) be eigenvalues of A. Show that

(a)
$$\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A).$$
 (b)
$$\prod_{i=1}^{n} \lambda_i = |A|.$$

- 10. Let $A \in \mathcal{M}_3(\mathbb{R})$ with $\operatorname{tr}(A) = 9$. Suppose that $\lambda = 2$ is an eigenvalue of A and E_2 spanned by (1,0,1) and (-1,1,3). Find |A|.
- 11. Find $A \in \mathcal{M}_n(\mathbb{R})$ such that

$$A^3 - 4A^2 + 4A = 0$$
 and $tr(A) = 0$.

- 12. Let A be a square matrix defined by $A = \begin{pmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{pmatrix}$. Find the minimal polynomial of A. Then express A^4 and A^{-1} in terms of A and I.

14. Let $a \in \mathbb{R}^*$ and $A = \begin{pmatrix} 0 & a & a^2 \\ a^{-1} & 0 & a \\ a^{-2} & a^{-1} & 0 \end{pmatrix}$.

- (a) Show that $A^2 = A + 2I$.
- (b) Deduce that A is diagonalizable.
- 15. Determine the value of a so that $\lambda = 2$ is an eigenvalue of

matrix M in canonical form which is similar to A.

$$A = \left(\begin{array}{ccc} 1 & -1 & 0 \\ a & 1 & 1 \\ 0 & 1+a & 3 \end{array}\right)$$

then show that A is diagonalizable and diagonalize it.

16. Let A be a 2×2 matrix defined by $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show that A is diagonalizable if $(a-d)^2 + 4bc \neq 0$.

- 17. Let A be a square matrix defined by $A = \begin{pmatrix} 3 & 2 \\ 3 & -2 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Show that A is diagonalizable then diagonalize it.
 - (c) Write A^n in term of n.
- 18. Let A be a square matrix defined by $A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Show that A is diagonalizable then diagonalize it.
 - (c) Write A^n in term of n.
- 19. Let *A* be a square matrix defined by $A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Show that A is diagonalizable then diagonalize it.
 - (c) Write A^n in term of n.
- 20. Let A be a square matrix defined by $A = \begin{pmatrix} -8 & -3 & -6 \\ 4 & 0 & 4 \\ 4 & 2 & 2 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues and eigenspaces of A.
 - (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.
 - (d) Write A^n in terms of I, A, A^2 and n.
- 21. Let *A* be a square matrix defined by $A = \begin{pmatrix} -2 & -1 & -5 \\ 2 & 2 & 3 \\ 4 & 2 & 6 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues and eigenspaces of A.
 - (c) Show that A is not diagonalizable, but it is triangularizable, then triangularize A.
 - (d) Find the three real sequences $(a)_n, (b)_n, (c)_n$ satisfying

$$\begin{cases} a_{n+1} = -2a_n - b_n - 5c_n, & a_0 = 1 \\ b_{n+1} = 2a_n + 2b_n + 3c_n, & b_0 = 0 \\ c_{n+1} = 4a_n + 2b_n + 6c_n, & c_0 = 1 \end{cases}$$

22. Let *A* be a square matrix defined by $A = \begin{pmatrix} -1 & -2 & -1 & 3 \\ -6 & -5 & 1 & 6 \\ -6 & -4 & 0 & 6 \\ -6 & -7 & 1 & 8 \end{pmatrix}$ and its characteristics polynomial $p(\lambda) = (\lambda + 1)^2 (\lambda - 2)^2$.

- (a) Find the minimal polynomial of A.
- (b) Deduce that A is not diagonalizable, but it is triangularizable, then triangularize A.
- (c) Write A^n in terms of n.
- 23. Let A be a square matrix defined by $A = \begin{pmatrix} 6 & 2 & 3 \\ -3 & -1 & -1 \\ -5 & -2 & -2 \end{pmatrix}$ and L be a map from \mathbb{R}^3 into \mathbb{R}^3 by L(v) = Av.
 - (a) Show that L is a linear operator on \mathbb{R}^3 .
 - (b) Find the characteristic polynomial of L with respect to standard basis for \mathbb{R}^3 . Derive the determinant of L then deduce that L is invertible.
 - (c) Find the eigenvalues and eigenspaces of L.
 - (d) Show that L is not diagonalizable, but it is triangularizable, then triangularize L.
 - (e) Write L^n in term of n, where $L^n = L(L(\ldots(L)\ldots))$, the n compositions of L.
- 24. Let $B_1 = \{(2, 1, 1, 1), (1, 1, 1, 1), (1, 1, 2, 1)\}$ and $B_2 = \{(2, 1, 2, 2)\}$ be two subsets of \mathbb{R}^4 , E_1 be a subspace spanned by B_1 , E_2 be a subspace spanned by B_2 , and L be a linear operator on \mathbb{R}^4 defined by

$$L(v) = (-w + 4x - y + z, -w + 3x, -w + 2x + y, -w + 2x + z), v = (w, x, y, z).$$

- (a) Show that B_1 is a basis for E_1 and B_2 is a basis for E_2 .
- (b) Show that E_1 and E_2 are L-invariant. Find the matrices $A_1 = [L_{E_1}]_{B_1}$ and $A_2 = [L_{E_2}]_{B_2}$
- (c) Show that \mathbb{R}^4 is a direct sum of E_1 and E_2 .
- (d) Find the characteristic and minimal polynomials of A_1 and A_2 .
- (e) Let A be the matrix representation of L with respect to the standard basis for \mathbb{R}^4 . Show that A is similar to a block diagonal matrix to be specified.
- (f) Deduce the characteristic and minimal polynomials of L.

25. Let
$$T \in \mathcal{L}(\mathbb{R}^3)$$
 defined by $T(x_1, x_2, x_3) = (-4x_1 - x_2 - 2x_3, 4x_1 + x_2 + 3x_3, -x_2 - x_3)$

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues of A. Show that A is not diagonalizable over \mathbb{R} .
- (c) Show that A is diagonalizable over \mathbb{C} . Find the eigenspaces. Diagonalize A.
- (d) Express T^n in the form of $a_nT^2 + b_nT + c_nI$ where a_n, b_n and c_n are real sequences to be specified, and $T^n = T(T(\ldots(T)\ldots))$, the *n* compositions of *T*.
- 26. Let *A* be a square matrix defined by $A = \begin{pmatrix} -3 & -1 & -3 \\ 5 & 2 & 5 \\ -1 & -1 & -1 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the eigenvalues of A. Show that A is not diagonalizable over \mathbb{R} .
 - (c) Show that A is diagonalizable over \mathbb{C} . Find the eigenspaces. Diagonalize A.

- (d) Express A^n in the form of $a_nA^2 + b_nA + c_nI_n$ where (a_n) , (b_n) and (c_n) are real sequences to be specified.
- 27. Let A be a symmetric matrix defined by $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$ and S be the surface

$$x^{2} + 2y^{2} + z^{2} - 2xy - 2yz + 2x + y = 1.$$

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues and eigenspaces of A. Show that A is diagonalizable over \mathbb{R} .
- (c) Find an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (d) Does the surface S have a center? If any, specify its coordinates.
- (e) Determine the type of the surface S.
- 28. Let A be a symmetric matrix defined by $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 2 \\ -1 & 2 & 3 \end{pmatrix}$ and S be the surface of

$$2x^2 + 3y^2 + 3z^2 + 2xy + 4yz - 2xz + 2x + 14y = 2.$$

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues and eigenspaces of A. Show that A is diagonalizable over \mathbb{R} .
- (c) Find an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (d) Does the surface S have a center? If any, specify its coordinates.
- (e) Determine the type of the surface S.
- 29. Determine the nature of the surface (S)

$$(x-y)^2 + (y-z)^2 + (z-x)^2 = \lambda, \quad \lambda \in \mathbb{R}.$$

30. Given the following matrices and their corresponding characteristics polynomials, Jordanize them over \mathbb{C} .

(a)
$$\begin{pmatrix} 5 & 4 & -5 \\ 3 & 6 & -5 \\ 5 & 8 & -7 \end{pmatrix}$$
 and $p(\lambda) = -\lambda^3 + 4\lambda^2 - 6\lambda + 4$

(b)
$$\begin{pmatrix} 3 & 2 & 2 & -4 \\ 3 & 4 & 2 & -5 \\ -2 & 7 & 7 & -9 \\ 1 & 5 & 4 & -6 \end{pmatrix} \text{ and } p(\lambda) = (\lambda^2 - 4\lambda + 5)^2$$
(c)
$$\begin{pmatrix} 3 & 1 & 2 & -3 \\ 4 & 1 & 1 & -2 \\ -2 & 6 & 7 & -8 \\ 2 & 2 & 3 & -3 \end{pmatrix} \text{ and } p(\lambda) = (\lambda^2 - 4\lambda + 5)^2$$

(c)
$$\begin{pmatrix} 3 & 1 & 2 & -3 \\ 4 & 1 & 1 & -2 \\ -2 & 6 & 7 & -8 \\ 2 & 2 & 3 & -3 \end{pmatrix}$$
 and $p(\lambda) = (\lambda^2 - 4\lambda + 5)^2$