Касательное расслоение

Определение

Касательным расслоением гладкого многообразия M^n называется множество

$$T(M) = \bigsqcup_{p \in M} T_p(M).$$

Касательные пространства вида $T_p M$ называются слоями касательного расслоения T(M).

Теорема

T(M) является гладким многообразием размерности 2n.

Док-во: Пусть (U, φ) – карта на M. Положим

$$T(U) = \bigsqcup_{p \in U} T_p(M).$$

Зададим отображение $\Phi_U \colon T(U) \to \mathbb{R}^{2n}$: Для $v \in T_pM$, где $p \in U$, определяем

$$\Phi_U(v) = (\varphi(p), v_{\varphi}) \in \mathbb{R}^n \times \mathbb{R}^n.$$

 Φ_U биективно отображает T(U) на открытое множество $\varphi(U) \times \mathbb{R}^n$ в \mathbb{R}^{2n} .

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

2/15

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

Гладкий атлас на T(M) – это множество $\{(T(U), \Phi_U)\}$ по всем картам (U, φ) на M.

- ullet эти карты покрывают T(M).
- ullet Пусть $(T(U),\Phi_U)$ и $(T(V),\Phi_V)$ карты на T(M), порождаемые картами (U,φ) и (V,ψ) на M. Тогда функция перехода имет вид

$$\Phi_V \circ \Phi_U^{-1} = (\psi \circ \varphi^{-1}, d_{\varphi(p)}(\psi \circ \varphi^{-1})),$$

и согласованность карт в T(M) следует из согласованности карт в M.

• Φ_U – гомеоморфизм.

Дифференциал отображения в точке

Пусть M^m , N^n — гладкие многообразия, $f:M\to N$ — гладкое отображение, $p\in M$.

Определение

Дифференциал (касательное отображение) f в точке p — отображение

$$d_p f: T_p M \to T_{f(p)} N$$
,

определяемое следующим образом:

Для $v \in T_p M$, представленного кривой α , $d_p f(v)$ — вектор из $T_{f(p)} N$, представленный кривой $f \circ \alpha$.

Корректность и т.д.

Теорема

- \bigcirc $d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$.
- ullet Для карт φ и ψ в окрестностях p и f(p)

$$(d_p f(v))_{\psi} = d_{\varphi(p)} f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_p M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Корректность и т.д.

Теорема

- ullet d_pf определено корректно;
- \bigcirc $d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$.

$$(d_p f(v))_{\psi} = d_{\varphi(p)} f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_p M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Замечание

В случае, когда M и N — открытые области в \mathbb{R}^m и \mathbb{R}^n , определение дифференциала согласовано с обычным, с учетом стандартных изоморфизмов $T_p\mathbb{R}^m\cong\mathbb{R}^m$ и $T_p\mathbb{R}^n\cong\mathbb{R}^n$.

Это следует из третьего утверждения теоремы для тождественных карт.

Доказательство теоремы

Пусть $v\in T_pM$ представлен кривой $\alpha\colon (-\varepsilon,\varepsilon)\to M.$ Переходя в карты φ и ψ ,

$$\psi \circ (f \circ \alpha) = f_{\varphi,\psi} \circ (\varphi \circ \alpha)$$

так как $v_{\varphi} = (\varphi \circ \alpha)'(0)$, получаем

$$(\psi \circ (f \circ \alpha))'(0) = d_{\varphi(p)} f_{\varphi,\psi}(\nu_{\varphi}). \tag{*}$$

Правая часть не зависит от выбора α

 \implies вектор, представленный $f \circ \alpha$, не зависит от α ,

⇒ определение корректно.

Утверждение 3 следует из (*).

Утверждение 2 (линейность) следует из утверждения 3.

Лекция 3

Глобальное касательное отображение

Так как касательные пространства в разных точках не пересекаются, определено отображение

$$df: TM \rightarrow TN$$

где

$$df|_{T_pM}=d_pf$$
.

Оно позволяет «на законных основаниях» не писать p в обозначении $d_p f$.

Другое обозначение: Tf.

Замечание

df — гладкое отображение из TM в TN.

Производная композиции

Теорема

Пусть M,N,K — гладкие многообразия, $f:M\to N,g:N\to K$ — гладкие отображения. Тогда

$$d(g \circ f) = dg \circ df.$$

Или, для $p \in M$,

$$d_p(g\circ f)=d_{f(p)}g\circ d_pf$$

Доказательство.

$$(f \circ g) \circ \alpha = f \circ (g \circ \alpha).$$

Подмногообразия

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x\in M$ существует карта (U,φ) многообразия N такая, что $x\in U$ и

$$\varphi(M\cap U)=\mathbb{R}^k\cap\varphi(U).$$

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» может пропускаться.

Подмногообразия

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x\in M$ существует карта (U,φ) многообразия N такая, что $x\in U$ и

$$\varphi(M\cap U)=\mathbb{R}^k\cap\varphi(U).$$

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» может пропускаться.

Лемма

Гладкое подмногообразие размерности k является гладким многообразием размерности k.

Доказательство.

Это очевидным образом следует из того, что если (V,ψ) — карта на N, то $(V\cap M,\,\psi|_{V\cap M})$ — карта на M.

Пример: графики

Пример

Пусть $V \subset \mathbb{R}^k$ открытое, $f \colon V \to \mathbb{R}^{n-k}$ гладкое.

Тогда график f, то есть множество

$$\Gamma_f := \{(x, f(x))\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k} \cong \mathbb{R}^n$$

является гладким подмногообразием \mathbb{R}^n размерности k.

Будем называть такие множества к-мерными графиками.

Доказательство: Напомним, что гладкая структура на \mathbb{R}^n задается одной картой (\mathbb{R}^n , id).

Пусть $U = V \times \mathbb{R}^{n-k}$, $\varphi \colon U \to \mathbb{R}^n$,

$$\varphi(x,y)=(x,y-f(x)).$$

 (U,ψ) – карта на \mathbb{R}^n , согласованная с картой $(\mathbb{R}^n,\mathrm{id})$. Следовательно, она входит в максимальный атлас на \mathbb{R}^n .

Эта карта является выпрямляющей для любой точки из Γ_f .

Локальность

Свойства

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) подмногообразие той же размерности.
- Если $M \subset N$ множество, и у каждой точки $x \in M$ есть окрестность в M, являющаяся гладким k-мерным подмногообразием, то и всё M гладкое подмногообразие.

Локальность

Свойства

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) подмногообразие той же размерности.
- Если $M \subset N$ множество, и у каждой точки $x \in M$ есть окрестность в M, являющаяся гладким k-мерным подмногообразием, то и всё M гладкое подмногообразие.

Следствие

Если $M \subset \mathbb{R}^n$ таково, что у каждой точки $x \in M$ есть окрестность в M, представимая в виде k-мерного графика (при некотором выборе координат), то M - k-мерное гладкое подмногообразие.

Легко видеть, что это условие выполняется для сферы (и многих других примеров).

Пример

Открытые полусферы $S^{n-1} - (n-1)$ -мерные графики (каждая в своей системе координат).

 $\implies S^{n-1}$ — гладкое подмногообразие \mathbb{R}^n .

Погружения и вложения

Пусть M^k , N^n — гладкие многообразия, $k \le n$.

Определение

(Гладкое) погружение — гладкое отображение $f: M \to N$ такое, что $d_p f$ инъективно (мономорфизм) для всех $p \in M$.

(Гладкое) вложение — гладкое погружение, которое является топологическим вложением (т.е. гомеоморфизмом на образ).

В случае, когда M и N — открытые области в \mathbb{R}^k и \mathbb{R}^n , это то же самое, что регулярные поверхности и простые регулярные поверхности.

Определение

Регулярная k-мерная поверхность в \mathbb{R}^n — такое гладкое отображение $f: U \to \mathbb{R}^n$, где $U \subset \mathbb{R}^k$ — открытое множество, что для любой точки $x \in U$ дифференциал $d_x f$ инъективен (условие регулярности).

Перефомулировки: rank $d_x f = k$, ker $d_x f = \{0\}$.

Простая регулярная поверхность – регулярная поверхность, которая является топологическим вложением.

Регулярные поверхности и подмногообразия

Теорема

Пусть $f:U\subset\mathbb{R}^k o\mathbb{R}^n$ — регулярная поверхность.

- **①** Локально f- вложение. Т.е. у любой $p \in U$ существует окрестность V $(p \in V \subset U)$ такая, что $f|_V-$ вложение.
- ② Если f вложение, то f(U) гладкое подмногообразие. При этом f^{-1} карта этого подмногообразия.

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k imes\mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F\colon U imes\mathbb{R}^{n-k}$:

$$F(x,y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 $d_p F$ невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W \subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi \colon F(W) \to W$.

Лекция 3

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k\times\mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F\colon U\times\mathbb{R}^{n-k}$:

$$F(x, y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 d_pF невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W\subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi\colon F(W)\to W$.

Пусть $V=W\cap \mathbb{R}^k$. Тогда $f|_V$ — вложение, и φ — выпрямляющая карта для f(V).

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k \times \mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F\colon U \times \mathbb{R}^{n-k}$:

$$F(x, y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 d_pF невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W\subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi\colon F(W)\to W$.

Пусть $V = W \cap \mathbb{R}^k$. Тогда $f|_V$ — вложение, и φ – выпрямляющая карта для f(V).

Мы доказали всё, кроме последнего утверждения теоремы $(f^{-1}$ — карта для f(U)). Оно доказано для V вместо U. Общий случай следует из локальности свойства гладкой согласованности карт.

Лекция 3

13 / 15

Характеризация подмногообразий \mathbb{R}^n

Теорема

Для множества $M \subset \mathbb{R}^n$ два свойства эквивалентны:

- ② У каждой точки $x \in M$ есть окрестность $U \subset M$, которая является образом простой регулярной k-мерной поверхности.

Определение

Если образ простой регулярной поверхности f является открытым подмножеством M, то f называется локальной параметризацией многообразия M.

Замечание

Локальные параметризации — это в точности отображения, обратные к картам (локальным координатам).

Доказательство теоремы

2 \Longrightarrow 1: из предыдущей теоремы.

 $1 \implies 2$: Пусть $\varphi \colon W \to \mathbb{R}^n$ — выпрямляющая карта для M, где W — окрестность x в \mathbb{R}^n .

Возьмём $U=W\cap M$. Тогда $(\varphi^{-1})|_{\varphi(W)\cap\mathbb{R}^k}$ — искомая регулярная поверхность

Лекция 3