Forward problem

from elastic tensor to P and S observables

stress
$$\sigma_{ij}=C_{ijkl}arepsilon_{kl}$$
 strain displacement $arepsilon_{kl}=rac{1}{2}(\partial_k u_l+\partial_l u_k)$ $ho\ddot{u}_i=\partial_i\sigma_{ij}$

momentum equation

plane wave displacement

$$\mathbf{u}(\mathbf{x},t) = \mathbf{a}e^{-i\omega(t-\mathbf{s}\cdot\mathbf{x})}$$

slowness vector s is unit vector divided by phase velocity c $\rho a_i = a_k C_{ijkl} s_j s_l$ $M_{ij} := rac{1}{
ho} C_{ijkl} \hat{s}_j \hat{s}_l$

3x3 symmetric eigenproblem

$$\mathbf{M} \cdot \mathbf{a} = c^2 \mathbf{a}$$

 $\mathbf{M} \cdot \mathbf{a} = c^2 \mathbf{a}$ eigenvalues: phase velocities (P_n, P, SKS) eigenvectors: polarizations (SKS, P_{pol})