

Department of Computer and Information Science

การวิเคราะห์ประสิทธิภาพของอัลกอริทึม Analysis of Algorithm Efficiency

อ.ลือพล พิพานเมฆาภรณ์

luepol.p@sci.kmutnb.ac.th

Content

- การวิเคราะห์ความซับซ้อนเชิงเวลา (time complexity analysis)
 - ขนาดของอินพุต (input's size)
- เทคนิคการวิเคราะห์ความซับซ้อนเชิงเวลา
 - Elementary operation counting
 - Basic operation counting
 - Worst-case, Best-case & Average-case analysis
- ลำดับการเติบโต (Order of Growth) และการเปรียบเทียบ
 - ทฤษฎีกฎ L'Hôpital
- สัญกรเชิงเส้นกำกับ (Asymptotic Notations) และการพิสูจน์นิยาม
 - สัญกรบิ๊กโอ (Big-Oh)
 - สัญกรโอเมก้า (Omega)
 - สัญกรเทต้า (Theta)

Time ccomplexity analysis

- อัลกอริทึมที่ดีไม่ใช่แค่ทำงานได้ถูกต้องเท่านั้น แต่ต้องทำงานได้อย่างมีประสิทธิภาพด้วย ดังนั้นการ ประเมินประสิทธิภาพการทำงานของอัลกอริทึม (algorithm efficiency) ถือเป็นงานที่มีความสำคัญ สำหรับโปรแกรมเมอร์
- ในการวิเคราะห์ประสิทธิภาพของอัลกอริทึม มักจะวัดในเชิงเวลาทำงานของอัลกอริทึมตั้งแต่เริ่มต้นจน จบการทำงาน
 - การวิเคราะห์เวลาโดยตรง (Empirical analysis)
 - การวิเคราะห์ทางทฤษฏี (Theoretical analysis)
- อย่างไรก็ตามการวัดเวลาทำงานของอัลกอริทึมโดยตรง อาจไม่เหมาะสมเนื่องจากมักจะขึ้นอยู่กับหลาย ปัจจัย เช่น
 - ความเร็วการทำงานของซีพียู
 - คุณภาพของตัวแปลภาษา (Complier/ Interpreter)
 - ความยาวของ machine codes

Efficiency as a function of input size

- เมื่อขนาดข้อมูลอินพุตมากขึ้น (input size) อัลกอริทึมส่วนใหญ่จะใช้เวลาทำงานมากขึ้น
- ในบางปัญหาขนาดของอินพุตไม่ได้ขึ้นอยู่กับจำนวนข้อมูลที่ถูกป้อนเข้ามา แต่อาจขึ้นอยู่กับค่าข้อมูลแทน
 - ปัญหาการทดสอบจำนวนเฉพาะ (testing prime number)

เราสามารถวัดและเปรียบเทียบประสิทธิภาพของอัลกอริทึมได้ หากทราบขนาดของอินพุต
 โดยปกติจะแทนด้วยตัวแปร n

Running time estimation

- เทคนิคที่ใช้ในการวัดประสิทธิภาพด้านเวลาของอัลกอริทึม ได้แก่
 - การนับโอเปอเรชันทั้งหมด (Elementary operation counting)
 - นับจำนวนครั้งของทุกบรรทัดคำสั่ง (operation) ของอัลกอริทึม
 - การนับโอเปอเรชันพื้นฐาน (Basic operation counting)
 - นับเฉพาะบรรทัดที่ถูก execute มากที่สุด สัมพันธ์ขนาดอินพุต n
 - การวิเคราะห์แบบ worst-case, best-case, และ average case
 - นับจำนวนครั้งของโอเปอเรชันพื้นฐาน สอดคล้องกับรูปแบบของข้อมูลอินพุต

Example: Elementary Operation Counting

```
1. ALGORITHM power (x, n)
2. product <- 1
3. for i <- 1 to n do
4. product <- product*x
5. endfor
6. return product
7. END ALGORITHM</pre>
```

Operation	Time	Repetitions
1	t1	1
2	t2	1
3	t3	n+1
4	t4	n
5	t5	n
6	t6	1

$$T(n) = t1+t2+t3(n+1)+t4n+t5n+t6$$

$$T(n) = (t3+t4+t5)n + t1+t2+t3+t6$$

Example: Elementary Operation Counting

```
    ALGORITHM mystery (x, n)
    S = 0
    for i = 1 to n do
    for j = 1 to n do
    S = S + 1
    endfor
    endfor
    END ALGORITHM
```

$$T(n) = t1 + t2 + t3(n+1) + t4(n^2+n) + t5n^2 + t6n^2 + t7n$$

$$T(n) = (t4+t5+t6)n^2 + (t3+t4+t7)n + t1+t2$$

Operation	Time	Repetitions
1	t1	1
2	t2	1
3	t3	n+1
4	t4	n(n+1)
5	t5	n*n
6	t6	n*n
7	t7	n

```
    sum(n)
    S = 0
    i = 1
    while i <= n do</li>
    S = S + 1
    i = i + 1
    endwhile
    Return S
```

t(n)	=
~ (<i>,</i>	

Operation	Time	Repetitions
1	t1	
2	t2	
3	t3	
4	t4	
5	t5	
6	t6	
7	t7	

```
1. sum(n)
2. S = 0
3. i = 1
4. while i <= n do
5. S = S + 1
6. i = i + 1
7. endwhile
8. Return S</pre>
```

$$t(n) = t1+t2+t3+t4(n+1)+t5n+t6n+t7n$$

 $t(n) = (t4+t5+t6+t7)n+t1+t2+t3+t4$

Operation	Time	Repetitions
1	t1	1
2	t2	1
3	t3	1
4	t4	n+1
5	t5	n
6	t6	n
7	t7	n

```
1. product_matrix(a[1..m,1..n], b[1..n][1..p])
2. for i=1 to m do
3.   for j =1 to p do
4.      c[i,j] = 0;
5.      for k = 1 to n do
6.          c[i,j] = c[i,j] + a[i,k]*b[k,j]
7.      end for
8.   end for
9. end for
10. Return c[1..m,1..p]
```

Opr.	Time	Repetitions
1	t1	1
2	t2	m+1
3	t3	m.(p+1)
4	t4	m.p
5	t5	m.p.(n+1)
6	t6	m.p.n
7	t7	m.p.n
8	t8	m.p
9	t9	m

```
1. product_matrix(a[1..m,1..n], b[1..n][1..p])
2. for i=1 to m do
3.    for j =1 to p do
4.        c[i,j] = 0;
5.        for k = 1 to n do
6.            c[i,j] = c[i,j] + a[i,k]*b[k,j]
7.        end for
8.        end for
9.    end for
10. return c[1..m,1..p]
```

$$t(m, p, n) =$$

Basic operation counting Technique

- การนับทุกบรรทัดคำสั่ง ทำได้ยากและเสียเวลา
- การประมาณเวลา โดยนับเฉพาะ Basic operation ทำได้ง่าย และนิยมมากกว่า
- Basic operation คือบรรทัดคำสั่งซึ่งถูก execute มากที่สุด สัมพันธ์กับขนาดอินพุต

$$T(n) \approx C_o * C(n)$$

Co = เวลาทำงานจริงของ basic operation

C(n) = คือจำนวนครั้งของการทำงาน basic operation ขึ้นอยู่กับขนาด ของอินพุต n

Basic operation counting

สมมติว่าฟังก์ชันเวลาของอัลกอริทึมหนึ่ง คือ

$$T(n) = 60n + 5$$

สำหรับอินพุต n ที่มีขนาดใหญ่มาก T(n) จะขึ้นอยู่กับเทอม 60n เท่านั้น

n	T(n) = 60n + 5	T(n) ~ 60n	Error
10	605	600	0.826
100	6,005	6,000	0.083
1,000	60,005	60,000	0.008
10,000	600,005	600,000	0.001
100,000	6,000,005	6,000,000	0.000

Example: Basic operation counting

```
// t1
1. ALGORITHM power (x, n)
  product <- 1
                                  // t2
3. for i \leftarrow 1 to n do
                               // t3
       product <- product *x // t4
4.
                                          Basic
5. endfor
                                         Operation
                                  // t5
6.
                                // t6
           return product
7. END ALGORITHM
                                  // t7
```

```
T(n) ~ t4n
```

Example: Basic operation counting

```
1. ALGORITHM mystery (x, n) // t1
2. S = 0 // t2
3. for i = 1 to n do // t3
4. for j=1 to n do // t4
5. S = S + 1 // t5
6. endfor // t6
7. endfor // t7
8. END ALGORITHM // t8
```

```
T(n) \sim t5n^2
```

Example: Basic operation counting

```
    sum(n)
    S = 0
    i = 1
    while i <= n do</li>
    S = S + 1
    i = i + 1
    endwhile
    Return S
```

Basic operation สามารถจะเป็นบรรทัดที่ 4, 5, หรือ 6 ก็ได้ เนื่องจากมี จำนวนรอบทำงานไม่แตกต่างกันมากนัก

$$T(n) = t5*n$$

Basic operation counting

- ในทางปฏิบัติ ถึงแม้ว่าเราไม่ทราบค่าที่แท้จริงของ Co แต่เราอาจหาเวลาการทำงานที่ เพิ่มขึ้นหรือลดลง เมื่อขนาดของอินพุตเปลี่ยนแปลงได้ เช่น
 - สมมติว่าอัลกอริทึมหนึ่ง $C(n) = C_o * n^2$ หากจำนวนอินพุตเพิ่มขึ้นเป็น 2 เท่าเวลา ทำงานของอัลกอริทึมนี้จะเป็นเท่าไร

$$\frac{T(2n)}{T(n)} = \frac{C_o * (2n)^2}{C_o * (n)^2} = \frac{4n^2}{n^2} = 4$$

Analysis of Sequential Search

```
1. Sequential_Search (A[0..n-1], K)
2.     i := 0
3.     while A[i] ≠ k do
4.         i := i + 1
5.         if i < n then return i
6.         else return -1</pre>
```

What is the time complexity of the algorithm?

Best-case, average-case, worst-case Analysis

- นอกจากขนาดอินพุต n แล้ว ในบางอัลกอริทึมเวลาในการทำงานจะขึ้นอยู่ลักษณะของ
 ข้อมูลด้วย
- เพื่อให้ง่ายในการวิเคราะห์เวลา เราแบ่งการวิเคราะห์ออกเป็น 3 กรณี ได้แก่
 - <u>กรณีเลวร้ายสุด (Worst Case)</u> W(n) คือเวลาการทำงานที่มากที่สุดที่
 เป็นไปได้ สำหรับข้อมูลอินพุต n
 - <u>กรณีดีที่สุด (Best Case)</u> B(n) คือเวลาการทำงานที่น้อยที่สุดที่เป็นไปได้ สำหรับข้อมูลอินพุต n
 - <u>กรณีเฉลี่ย (Average Case)</u> A(n) คือเวลาการทำงานเฉลี่ย สำหรับข้อมูล อินพุต n

Best-case, average-case, worst-case

- Problem: กำหนดให้มีชุดข้อมูลใน array จำนวน n ชุด ให้หาชุดข้อมูลที่มี ค่าเท่ากับ K
- Algorithm: ทำการตรวจสอบข้อมูลที่ละตัวไปเรื่อยๆ ว่ามีตัวใดมีค่าเท่ากับ K จนกว่าจะพบ (successful search) หรือจะหมดข้อมูลที่จะทำการค้นหา (unsuccessful search)
- Worst case : $t_w(n) = n$
- Best case: $t_h(n) = 1$
- Average case : $t_a(n) = ?$

Analysis of average-case of sequential search

- เพื่อที่จะวิเคราะห์อัลกอริทึมในกรณีเฉลี่ย เราจำเป็นจะต้องหาความน่าจะเป็นของอินพุต ทุกรูปแบบเป็นไปได้ทั้งหมด จากนั้นทำการหาค่าเฉลี่ยเวลาของการทำงาน
- ตัวอย่างเช่น อัลกอริทึม Sequential Search มีอินพุตทั้งหมด 2 รูปแบบคืออินพุตไม่ ปรากฏข้อมูล k และไม่ปรากฏข้อมูล k
 - เราทราบว่าหากไม่พบข้อมูล k แสดงว่าเราต้องเปรียบเทียบคีย์ต้องแต่สมาชิกตัวแรกยันตัว สุดท้าย ซึ่งใช้เวลา n เสมอ
 - หากเราพบข้อมูล k ในอาร์เรย์ ก็ขึ้นอยู่ตำแหน่งที่พบ เช่น ถ้าพบ k ในตำแหน่งแรก เวลาทำงาน จะเป็น 1 แต่ถ้าพบในตำแหน่ง n เวลาทำงานจะเป็น n
 - กำหนดให้ p คือความน่าจะเป็นที่ค่า k ปรากฏในข้อมูลอินพุต ดังนั้น (1-p) จะหมายถึงความ น่าจะเป็นที่ไม่พบค่า k ในอินพุต
 - ดังนั้น p/n คือความน่าจะเป็นเฉลี่ยที่จะพบ k ในแต่ละตำแหน่ง สำหรับข้อมูลอินพุตขนาด n

21

Average case analysis of sequential search

ให้ j เป็นลำดับของอินพุตใน sequential search โดยที่ j = 1... m

$$\vec{n} j = m tm(n) = m$$

$$T_{avg}(n) = \frac{1+2+3+4....+m}{m}$$

แต่เนื่องจาก m = n

$$T_{avg}(n) = \frac{\frac{n(n+1)}{2}}{n}$$

$$T_{avg}(n) = \frac{n(n+1)}{2n} = \frac{(n+1)}{2}$$

Exercise

 หา worst-case, best-case, และ average case ของอัลกอริทึม ต่อไปนี้

Order of growth

สมมติว่าอัลกอริทึม A และ B สัมพันธ์กับฟังก์ชันเวลาคือ f(n) = 400n + 23
 และ g(n) = 2n²-1 ตามลำดับ อัลกอริทึมใดทำงานดีกว่า ?

Order of growth

• เรียงลำดับฟังก์ชันเวลาต่อไปนี้ 2ⁿ, n², n, log₂ n จากเติบโตช้าไปเร็วเมื่อ อินพุต n มีขนาดใหญ่

การเติบโตของฟังก์ชันเวลา เมื่อ n เพิ่มขึ้น

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Effect of coefficient term

• พิจารณาฟังก์ชันเวลาของอัลกอริทึม ต่อไปนี้

$$T1(n) = 100n, T2(n) = 0.01n^2$$

$$T1(n) = 1,000*log n, T2(n) = n$$

ฟังก์ชันใดทำงานเติบโตได้รวดเร็วและช้ากว่ากัน

Example 1

Example T1(n) = 100n, $T2(n) = 0.01n^2$

Input size	Ta(n) = 100n	$Tb(n) = 0.01n^2$
100	10,000	100
500	50,000	2,500
1,000	100,000	10,000
5,000	500,000	250,000
10,000	1,000,000	1,000,000
15,000	1,500,000	2,250,000

$$T_2(n) \succ T_1(n)$$

T2(n) growth faster than T1(n)

Example 2

Example T1(n) = 1000*log n, T2(n) = n

Input size	$Ta(n) = 1000 \log n$	Tb(n) = n
50	1,699	50
100	2,000	100
500	2,699	500
1,000	3,000	1,000
5,000	3,699	5,000
10,000	4,000	10,000

$$T_1(n) \prec T_2(n)$$

T1(n) growth lower than T2(n)

ทฤษฏี L'Hôpital's rule

• วิธีการที่สะดวกและรวดเร็วกว่าในการเปรียบเทียบลำดับการเติบโตของฟังก์ชันเวลา คือ ทฤษฎีลิมิตของโลปิตา

• กำหนดให้ f(n) และ g(n) เป็นฟังก์ชันเวลาของอัลกอริทึม

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & f(n) < g(n) \\ c & f(n) \equiv g(n) \\ \infty & f(n) > g(n) \end{cases}$$

• จะเห็นได้ว่า เราสนใจเปรียเทียบเวลา เมื่ออินพุตมีขนาดเข้าใกล้ infinity

การหา Derivative ของฟังก์ชั่น

สมมติว่า
$$\lim_{n \to \infty} f(n) = \infty$$
 และ $\lim_{n \to \infty} g(n) = \infty$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

by f'(n) and g'(n) are derivative of f(n) and g(n)

ตัวอย่างการเปรียบเทียบเวลา โดย L'Hôpital's rule

Example T1(n) = 100n, T2(n) = $0.01n^2$

$$\lim_{n \to \infty} \frac{100n}{0.01n^2} = 10,000 \lim_{n \to \infty} \frac{n}{n^2} = 10,000 \lim_{n \to \infty} \frac{1}{n} = 10,000 \lim_{n \to \infty} \frac{1}{\infty} = 10,000 \lim_{n \to \infty} 0 = 0$$

Therefore $T1(n) \prec T2(n)$

Example $T1(n) = 1,000 \log n$, T2(n) = n

$$\lim_{n\to\infty} \frac{1000 \cdot \log n}{n} = 1,000 \lim_{n\to\infty} \frac{\log n}{n} = 1,000 \lim_{n\to\infty} \frac{\log \infty}{\infty} = 1,000 \lim_{n\to\infty} \frac{\infty}{\infty} = \frac{\infty}{\infty}$$

ตัวอย่างการเปรียบเทียบเวลา โดย L'Hôpital's rule

$$=1,000 \lim_{n\to\infty} \frac{\log_{10} e^{\frac{1}{n}}}{1} = 1,000 \lim_{n\to\infty} \frac{1}{n} = 1,000 \lim_{n\to\infty} \frac{1}{\infty} = 1,000 \lim_{n\to\infty} 0 = 0$$

Therefore $T1(n) \prec T2(n)$

Example T1(n) =
$$1/2*n*(n-1)$$
, T2(n) = n^2

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2}\lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2}\lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

Therefore $T1(n) \equiv T2(n)$

Asymptotic Notation and Basic efficiency class

ในบางครั้งประสิทธิภาพของอัลกอริทึมอาจถูกอธิบายอยู่ในรูปแบบที่เข้าใจได้ง่าย ผ่านการใช้สัญกรเชิงเส้นเพื่อประมาณเวลาที่ใกล้เคียงในการทำงานของอัลกอริทึม

- สัญกรเชิงเส้นกำกับ (Asymptotic notation) โดยทั่วไปมีสามประเภทหลัก
- \bigcirc O(g(n)): class of functions t(n) that grow <u>no faster</u> than g(n)
- oxdot Θ (g(n)): class of functions t(n) that grow <u>at same rate</u> as g(n)
- \square $\Omega(g(n))$: class of functions t(n) that grow <u>at least as fast</u> as g(n)

โดยที่ t(n) คือฟังก์ชั่นเวลาของอัลกอริทึม และ g(n) คือ basic efficiency class

34

Basic asymptotic efficiency class g(n)

1	constant
log n	logarithmic
n	linear
n log n	n log n
n^2	quadratic
n^3	cubic
2 ⁿ	exponential
n!	factorial

Big-Oh

$$t(n) \in O(g(n))$$

 O(g(n)) is the set of all functions with a smaller or same order of growth as g(n)

$$t(n) \in O(g(n))$$

iff.
$$t(n) \prec O(g(n))$$

By f(n) is a algorithm 's basic operation, g(n) is a basic efficiency class

$$n \in O(n^2)$$

$$100n + 5 \in O(n^2)$$

$$\frac{1}{2}n(n-1) \in O(n^2)$$

but

$$n^3 \notin O(n^2)$$

$$0.00001n^3 \notin O(n^2)$$

$$n^3 + n + 1 \notin O(n^2)$$

Omega

$$t(n) \in \Omega(g(n))$$

• $\Omega(g(n))$ is the set of all functions with <u>a larger or same order</u> of growth as g(n)

$$t(n) \in \Omega(g(n))$$

iff.
$$t(n) \succ \Omega(g(n))$$

Ex.

$$n^3 \in \Omega(n^2)$$

$$\frac{1}{2}n(n-1) \in \Omega(n^2)$$

$$0.00001n^4 \notin \Omega(n^3)$$

but

$$1,000n + 5 \notin \Omega(n^2)$$

$$n^2 + 50 \log n \notin \Omega(n^3)$$

Theta

$$t(n) \in \Theta(g(n))$$

• $\theta(g(n))$ is the set of all functions that have same order of growth as q(n)

$$t(n) \in \Theta(g(n))$$

iff.
$$t(n) \approx \Theta(g(n))$$

Ex.

$$\frac{1}{2}n(n-1) \in \Theta(n^2) \qquad n^2 + \sin n \in \Theta(n^2) \qquad n^2 + \log n \in \Theta(n^2)$$

$$n^2 + \sin n \in \Theta(n^2)$$

$$n^2 + \log n \in \Theta(n^2)$$

but

$$n^2 + \sin n \notin \Theta(n)$$
 1,500 $n^2 \notin \Theta(n^3)$

$$1,500n^2 \notin \Theta(n^3)$$

Example prove that
$$100n + 5 \in O(n^2)$$

$$100n + 5 \le c.n^2$$
 for all $n \ge n_0$ (1)

Divide by
$$n^2$$

$$\frac{100}{n} + \frac{5}{n^2} \le c$$

Assume n=1
$$100 + 5 \le c$$

$$105 \le c$$

Replace c=105 in (1)
$$100n + 5 \le 105n^2$$
 for all $n \ge 1$

$$c = 105$$
 $n \ge 1$

• จะเห็นได้ว่าเมื่อคูณ 105 เข้ากับ n² เมื่อ n >= 1 ฟังก์ชัน 100n+5 จะโตช้ากว่า n² เสมอ

$$0.1n^3 \in \Omega(n^2)$$

$$0.1n^3 \le c.n^2$$
 for all $n \ge n_0$

$$n \ge n_0$$

(1)

Divide by n^2

$$0.1n \le c$$

Assume n=1

$$0.1(1) \le c$$

$$0.1 \le c$$

Replace c=0.1 in (1) $0.1n^3 \le 0.1n^2$ for all $n \ge 1$

$$0.1n^3 \le 0.1n^2$$

Example prove that
$$\frac{1}{2}n(n-1) \in \Theta(n^2)$$

Upper bound prove
$$\frac{1}{2}n(n-1) \le c1.n^2$$

for all
$$n \ge n_0$$

assign
$$c1 = 1/2$$

assign c1 = 1/2
$$\frac{n^2}{2} - \frac{n}{2} \le \frac{1}{2}n^2$$

for all
$$n \ge 0$$

Lower bound prove
$$\frac{1}{2}n(n-1) \ge c2.n^2$$

$$\frac{2}{n^2} n \qquad \qquad 2$$

$$\frac{n^2}{2} - \frac{n}{2} \ge c2.n^2$$

Assume n=2

$$\frac{1}{2} - \frac{1}{2n} \ge c2$$

$$\frac{1}{2} - \frac{1}{4} \ge c2$$

$$\frac{1}{4} \ge c2$$

$$c1 = \frac{1}{2}, c2 = \frac{1}{4}$$
 at n=0 and n=2

Workshop: Asymptotic Notation

• ตรวจสอบฟังก์ชันเวลาต่อไปนี้ว่าเป็นจริงหรือไม่

$$1,000n \in O(n^2)$$

$$\sqrt{n} \in O(n)$$

$$\frac{n}{2}.\log(\frac{n}{2}) \in \Omega(n.\log n)$$

$$2n^2 + 500n + 1,000 \log n \in \Theta(n^2)$$

Mathematical analysis of non-recursive algorithms

- ระบุขนาดของข้อมูล (<u>input size)</u> และ basic operation ของอัลกอริทึม
 - Basic operation มักที่อยู่ในลูปชั้นในสุด
- พิจารณาว่าอัลกอริทึมมี <u>worst, average</u>, and <u>best</u> case หรือไม่
 - จำนวนครั้งการทำงานของ basic operation แตกต่างกันเมื่อข้อมูลต่างกัน แม้ขนาดข้อมูลเท่ากัน
- ตั้งสมการ summation ของ basic operation
- แก้สมการเพื่อหา Order of growth

Useful Summation Formulas and Rules

$$\Box \sum_{i=1}^{n} 1 = 1 + 1 + \dots + 1 = n \in \Theta(n)$$

$$\Box \sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \in \Theta(n^2)$$

$$\Box \sum_{i=1}^{n} i^{k} = 1 + 2^{k} + \dots + n^{k} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

$$\Box \sum_{i=1}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \in \Theta(a^{n})$$

$$\Box \sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} c \, a_i = c \sum_{i=1}^{n} a_i$$

Find Maximum

```
MaxElement (A[1...n])
  Maxval:= A[1]
  for i:= 2 to n do
    if A[i] > maxval then
        maxval:= A[i]
  return maxval
```

$$T(n) = \sum_{i=2}^{n} 1$$

$$T(n) = \sum_{i=2}^{n} 1 = n - 2 + 1 = n - 1 \in \Theta(n)$$

$$T(n) \in \Theta(n)$$

Matrix multiplication

```
MatrixMultiplication (A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])
for i \leftarrow 0 to n-1 do
   for j \leftarrow 0 to n-1 do
         C[i, j] \leftarrow 0.0
          for k \leftarrow 0 to n-1 do
                   C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]
return C
```

Selection Sort algorithm

Insertion Sort Algorithm

```
Algorithm InsertionSort( A[0..N-1] ) Example: for i-1 to n-1 do  v \leftarrow A[i]  31 | 25 | 12 | 22 | 11  j \leftarrow i-1  25 | 31 | 12 | 22 | 11  while \ j \geq 0 \ and \ A[j] > v \ do  12 | 25 | 31 | 22 | 11  A[j+1] \leftarrow A[j]  12 | 22 | 25 | 31 | 11  j \leftarrow j-1  A[j+1] \leftarrow v
```

BitCount algorithm

```
algorithm BitCount(m)

// Input: A positive integer m

// Output: The number of bits to encode m

count \leftarrow 1

while m > 1 do

count \leftarrow count + 1

m \leftarrow \lfloor m/2 \rfloor

return count
```

Mathematical Analysis of recursive algorithms

- Plan for analysing recursive algorithms
 - Decide on parameter n indicating input size.
 - Identify algorithm's basic operation(s).
 - Determine worst, average, and best cases for input of size n.
 - Set up a recurrence relation expressing the basic operation count.
 - Solve the recurrence (at least determine it's order of growth).

52

Recurrence for Factorial Function

```
algorithm Factorial(n)

// Computes n! recursively

// Input: A nonnegative integer n

// Output: The value of n!

if n=0 then return 1

else return Factorial(n-1)*n

Input Size: Use number n (actually n has about \log_2 n bits)

Basic Operation: multiplication
```

```
Let M(n)= multiplication count to compute Factorial(n). M(0)=0 \ \ \text{because no multiplications are performed to compute } Factorial(0). If n>0, then Factorial(n) performs recursive call plus one multiplication. M(n)=M(n-1)+1 to compute to multiply Factorial(n-1) Factorial(n-1) \ \ \text{by } n
```

53

Solving the Factorial Recurrence

- Forward substitution : M(1) = M(0) + 1 = 1
 - -M(2) = M(1) + 1 = 2
 - -M(3) = M(2) + 1 = 3
- Backward substitution : M(n) = M(n-1) + 1
 - [M(n-2) + 1]+ 1 = M(n-2) + 2
 - [M(n-3) + 1]+ 2 = M(n-3) + 3
- Solve the general recurrence:
 - Assume K is the iteration. At K = n
 - $M(n-k) + k = M(n-n) + n = M(0) + n = n \in O(n)$

Recurrence of BitCount

```
algorithm BitCount(n) // Input: A positive integer n // Output: The number of bits to encode n if m=1 then return 1 else return BitCount(\lfloor n/2 \rfloor)+1
```

Input Size: Use number n (actually n has about $\log_2 n$ bits) Basic Operation: division by 2

```
Let D(n) = \text{division count to compute } BitCount(n).

D(1) = 0 \text{ because no divisions are performed to compute } BitCount(1).

If n > 1, \text{ then } BitCount(n) \text{ performs recursive call on } \lfloor n/2 \rfloor \text{ plus one division.}
D(n) = D(\lfloor n/2 \rfloor) + 1
\text{to compute} \qquad \text{to compute}
BitCount(\lfloor n/2 \rfloor) \qquad \lfloor n/2 \rfloor
```

Recurrence of find minimum

```
algorithm findmin (A[], i, j)
  if i=j then
    return A[i];
  mid = (i+j)/2;
  m1 = findmin(A, i, mid);
  m2 = findmin(A, mid+1, j);
return m1<m2? m1:m2;</pre>
```

Recurrence of MoveDisk algorithm

$$T(n) = T(n-1) + 1 + T(n-1)$$
 n > 1
 $T(1) = 1$

Recurrence of MoveDisk algorithm

$$T(n) = 2T(n-1)+1$$

$$T(n) = 2.[2T(n-2)+1]+1 = 2^{2}T(n-2)+2^{1}+1$$

$$T(n) = 2^{2}[2T(n-3)+1]+2^{1}+1$$

$$T(n) = 2^{3}T(n-3)+2^{2}+2^{1}+1$$

$$T(n) = 2^{n-1}.T(n-(n-1))+2^{n-2}+2^{n-3}+....+2^{1}+2^{0}$$

$$T(n) = 2^{n-1}T(1)+2^{n-2}+2^{n-3}+....+2^{1}+2^{0}$$

$$T(n) = \sum_{i=0}^{n-1} 2^{i} = \sum_{i=0}^{n} 2^{i}-2^{n} = \frac{2^{n+1}-1}{2-1}-2^{n}$$

$$T(n) = 2^{n}[2-1]-1=2^{n}-1 \in \Theta(2^{n})$$
 Exponential !!

Exercise

(1)
$$x(n) = x(n-1) + 5$$
 for $n > 1$, $x(1) = 0$

(2)
$$x(n) = 3x(n-1)$$
 for $n > 1$, $x(1) = 4$

(3)
$$x(n) = x(n/2) + n$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$)

Homework

```
Consider the following recursive algorithm for computing the sum of the first n cubes: S(n) = 1^3 + 2^3 + ... + n^3.

Algorithm S(n)
//Input: A positive integer n
//Output: The sum of the first n cubes if n = 1 return 1 else return S(n-1) + n * n * n
```

```
Algorithm Parallel-Product(A[1..n]);
  if n = 1 then return;
  for i := 1 to n/2 do
     A[i] := A[i]*A[i+n/2];
  call Parallel-Product(A[1..n/2]);
```

Homework

```
Algorithm Q(n)

//Input: A positive integer n

if n = 1 return 1

else return Q(n-1) + 2 * n - 1
```

b. Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.

61