SoC 2023: Competitive Programming Week-6: Range Queries

Mentor: Virendra Kabra

Summer 2023

Contents

1	Range Queries	2
2	Prefix arrays	2
3	Sparse Table	2
4	Fenwick Tree	3
5	Segment Tree	4
6	Todos	4

1 Range Queries

Given an array **a** of size n, answer multiple queries of the form (l, r). Common examples are sum and minimum of a[1...r]. Some problems may also have updates to the array.

2 Prefix arrays

For an operation f, p[i] = f(a[0, ..., i]). Example: sum

a	1	3	0	-2	5
р	1	4	4	2	7

Can be used for

- Any operation with (0,r) queries. Examples: max, min of $a[0,\ldots,r]$.
- Invertible operations with (l,r) queries. Examples: $\sum_{i=l}^{r} a[i] = \sum_{i=0}^{r} a[i] \sum_{i=0}^{l-1} a[i]$, product

Above queries are O(1). Updates are costly (O(n)). Good with immutable arrays. Code.

3 Sparse Table

Reference.

	i=4 -> 0	
3	2^0	

	1	3	0	-2	5
Γ	Z	-2			
		5			

- Any number can be uniquely expressed as sum of distinct powers of two. This follows from binary representation of the number. For example, $22 = (10110)_2 = 2^4 + 2^2 + 2^1$.
- Similarly, any interval [l,r] can be expressed as union of intervals with lengths being distinct powers of two. For example, $[5,26]=[5,20]\cup[21,25]\cup[25,26]$.
- Idea of sparse tables is to precompute all range queries with length being powers of two.
- A 2-D array st is used, with st[i][j] holding the result for $[j, j + 2^i 1]$ (length 2^i).
 - For an array with n elements, $2^i 1 < j + 2^i 1 < n$, so the first dimension is $\lfloor \log_2 n \rfloor$

$$(j+2^i-1)-j+1=2^i-[j,j+2^i-1]=[j,j+2^{i-1}-1]\cup[j+2^{i-1},j+2^i-1].$$
 Recurrence:

$$st[i][j] = f(st[i-1][j], st[i-1][j+2^{i-1}])$$

Above queries are $O(\log n)$. Updates would require recomputation of st. Again, good with immutable arrays. Works with non-invertible functions. Code.

$$[2,5] = 5 - 2 + 1$$
 $[2,5] = [2,3] \cup [4,5]$

R -
$$(j+2^{i-1}) + 1 = 2^{i-1}$$

R = $j+2^{i} - 1$

4 Fenwick Tree

Aka Binary Indexed Tree (BIT). References - cp-algos, gfg.

- We saw that precomputing results of certain intervals helps in answering queries faster.
- Suppose these are computed into an array BIT. Let the interval be [g(i), i]. Then, with sum as an example, $BIT[i] = \sum_{i=q(i)}^{i} a[j]$.
- g(i) = i makes BIT = a. Costly queries.
- g(i) = 0 makes BIT = p. Costly updates.
- Pseudocode for updates and queries looks like

a[i] += delta

• As we saw, every number can be uniquely represented as a sum of distinct powers of two. Here, length of [g(i), i] is the smallest power of two in this unique representation. So, g(i) = i - (i& - i) + 1, where i& - i gives the least significant set bit of i:

$$i = (0...0)10110$$
 $i = 22$ $[g(i),i]$ $i - g(i) + 1 = i \& -i$ $i \& -i = (0...0)00010$ $i' = 01001$ $g(i) = i - (i \& -i) + 1$

We use 1-indexed implementation. Example:

$$a[1...13] = a[1...(1101)_2] = a[13...13] \cup a[9...12] \cup a[1...8]$$
 14 - 2 + 1 = 13

• Updates: We want to increase a[13] by 5. Then, we need to add 5 to all BIT[i] that have a[13] as part of their sums. For example, [g(14), 14] = [13, 14] but [g(15), 15] = [15, 15]. So, we add 5 to BIT[14]. The idea is to repeatedly add the least significant set bit:

13
$$\xrightarrow{[1101,?]}$$
 14 $\xrightarrow{[1110,?]}$ 16...
[13,r] = [g(j),j] => get j

This choice of g(i) allows both queries [1, r] and updates in $O(\log n)$. However, for queries [l, r], invertible operations are required. Code.

5 Segment Tree

Divide-and-conquer approach. References - cp-algos, gfg, CF. Example with a=[1,3,-2,8,-7]

Figure 1: Sum a[2...4]

Figure 2: Update a[2]

- Underlying data structure is an array.
- Queries and updates in $O(\log n)$. Larger constants than BIT.
- Works with non-invertible functions as well.

6 Todos

Check sheet.