Assignment on Churn Prediction

DeepQ-AI Assignment 1 – AI Engineer Internship

Presented by Sayan Maity Email: sayanmaity2003@gmail.com

Important Links:

Github: https://github.com/Sayanmaity2003/Churn-Preditor-App

Model Training Link: https://colab.research.google.com/drive/1 dJv4pJAt6B9pR8XI70w1FYGjdygE9rj?usp=sharing

Streamlit App Deployed Link: https://churn-preditor-app.streamlit.app/

Sample Dataset for Testing App: https://docs.google.com/spreadsheets/d/1itBMEI8YPWBYd2CNm8kLvmh-o0PBPsn7/edit?usp=sharing&ouid=115032625014685945138&rtpof=true&sd=true

Project Objective

- Develop a classification model to predict the probability of user churn.
- Develop a classification model to predict the probability of user churn.
- Handle imbalanced classes and improve model robustness.
- Deploy an interactive web UI for prediction using Streamlit.

Dataset Overview

Our dataset included UID, 215 anonymized features (X0-X215) and the target variable: Target_ChurnFlag. Sample ScreeShort given below

¢	df.head	d()																				
∑		UID	X0	X1	X2	хз	Х4	X 5	Х6	х7	Х8	X206	X207	X208	X209	X210	X211	X212	X213	X214	X215	
	0	1003904- 3746	14 month lease	1103.0	2015-01- 08	2016-02- 28	2015-07- 30	2015-01- 08	2015-01- 08	2015-07- 30	2015-07- 01	-1.000000	-1.000000	-1.0	-1.000000	-1.000000	1.0	1.544818	1.000000	1.6625	0.600000	
	1	1003904- 3751	12 month lease	1136.0	2015-01- 24	2016-01- 17	NaN	2003-09- 11	2003-09- 11	NaN	NaN	0.013575	0.538462	0.0	1.307692	0.076923	1.0	1.591036	1.000000	1.6625	0.142857	
	2	1003904- 3756	12 month lease	1382.0	2015-02- 20	2016-02- 21	2016-02- 21	2015-02- 20	2015-02- 20	NaN	NaN	-1.000000	-1.000000	-1.0	-1.000000	-1.000000	1.0	1.303774	0.666667	1.6625	0.769231	
	3	1003904- 3759	14 month lease	2417.0	2015-02- 06	2016-04- 03	2016-04- 04	2015-02- 06	2015-02- 06	2016-04- 04	2016-03- 02	-1.000000	-1.000000	-1.0	-1.000000	-1.000000	1.0	1.589636	1.000000	1.6625	0.750000	
	4	1003904- 3766	12 month lease	1405.0	2015-01- 10	2016-01- 03	NaN	2014-01- 10	2014-01- 10	NaN	NaN	0.583333	3.000000	0.0	3.000000	1.000000	1.0	1.349664	1.000000	1.6625	0.700000	
Ę	5 rows >	× 217 columns																				

Data Preprocessing

- Dropped columns with >50% missing values.
- Converted date columns to year, month, and day parts.
- Label encoded categorical columns.
- Filled remaining nulls using median imputation.
- Split data into Train (80%) and Test (20%) using Stratified Sampling.
- Applied SMOTE to balance training classes.

Model Building & Selection

Model Chosen: Random Forest Classifier

Why Random Forest?

It's a powerful ensemble algorithm that works well with large datasets and mixed feature types. It also naturally handles overfitting better than a single decision tree.

Advantages:

- Can handle both numeric and categorical variables.
- Provides feature importance out-of-the-box.
- Robust to noisy data and outliers.

Evaluation Metrics

```
→ Classification Report:
                 precision recall f1-score support
                     0.87
                                         0.92
                                                  1214
                                         0.92
                                                  2851
        accuracy
                     0.92
                               0.93
                                        0.92
                                                  2851
      macro avg
                     0.93
                               0.92
    weighted avg
                                                  2851
    ROC-AUC Score: 0.965
    Model training and evaluation complete.
```

Explanation of Metrics:

- The model performs reliably for non-churned customers, with high recall (0.90) and F1-score (0.93).
- Churned customers are harder to classify, with lower recall (0.49), but we improved results using SMOTE and class weighting.
- Overall, the model achieves a ROC-AUC of 0.965, showing decent class separation a good baseline for further tuning.

Key Model Insights

- Cleaned & Engineered Data Enabled Better Learning: Dropped irrelevant and sparse columns (e.g., UID, X16). Transformed date columns into year, month, day components, enriching the feature set.
- Model Performance Improved with SMOTE: Imbalanced classes (0 vs 1)

 addressed using SMOTE, creating synthetic churned examples. Helped to improve recall and F1-score for minority class.
- **Feature Importance:** Dropped irrelevant and sparse columns (e.g., UID, X16). Transformed date columns into year, month, day components, enriching the feature set.Top features: X31, X85, X98, X5, X6, and X102.

Model Deployment with Streamlit

The churn prediction model was deployed using Streamlit, enabling real-time predictions through a simple and user-friendly interface

Thank You!