# ATMOSPHERIC ENVIRONMENT

Part A: General Topics

Volume 25A 1991

List of Contents and Author Index



**PERGAMON PRESS** 

Oxford New York Seoul Tokyo

# ATMOSPHERIC ENVIRONMENT PART A

# **EXECUTIVE EDITORS**

Dr. P. Brimblecombe, Norwich, U.K. Dr. M. Benarie, Bretigny, France Prof. R. D. Bornstein, San Jose, CA (with special responsibility for Urban Atmosphere) Dr. J. P. Lodge, Jr., Boulder, CO Dr. A. S. Lefohn, Helena, MT Dr. P. J. Lioy, Piscataway, NJ Dr. H. B. Singh, Moffett Field, CA

## ASSOCIATE EDITORS

Dr. H. M. ApSimon, London, U.K. Prof. D. Azimi-Garakani, Villigen, Switzerland Prof. M. E. Berlyand, Leningrad, U.S.S.R. Dr. K. Biersteker, Wageningen,

The Netherlands
Prof. Dr. P. J. H. Builtjes, Apeldoorn, The Netherlands

Prof. T. J. Chandler, Orpington, U.K. Prof. P. K. Dasgupta, Lubbock, TX Dr. K. L. Demerjian, Albany, NY Dr. D. G. Fox, Fort Collins, CO Dr. J. A. Garland, Harwell, U.K. Dr. D. F. Gatz, Champaign, IL Dr. H. Harrison, Seattle, WA Dr. R. M. Harrison, Birmingham, U.K. Dr. H. E. Hesketh, Carbondale, IL Dr. C. S. Hirtzel, Syracuse, NY Prof. Dr. H. Horvath, Wien, Austria Dr. J. C. R. Hunt, Cambridge, U.K.

Prof. O. Hutzinger, Bayreuth, Germany Dr. D. J. Jacob, Cambridge, MA
Dr. W. Jaeschke, Frankfurt, Germany
Dr. Y. Y. Jiang, Shanghai, China
Prof. W. Klug, Darmstadt, Germany

Dr. D. Kühner, Odenthal, Germany Mr. T. V. Lawson, Bristol, U.K. Dr. O. Lindqvist, Göteborg, Sweden

Dr. A. Longhetto, Turin, Italy Prof. J. E. Lovelock, Reading, U.K. Dr. E. Mészáros, Budapest, Hungary Prof. Dr. Ir. F. T. M. Nieuwstadt, Delft, The Netherlands Mr. V. Novotny, Prague, Czechoslovakia

Dr. T. Okita, Ibaraki, Japan Dr. L. P. Prahm, Roskilde, Denmark Dr. A. G. Robins, Leatherhead, U.K.

Dr. E. Runca, Verona, Italy
Prof. V. C. Runeckles, Vancouver, Canada
Dr. S. E. Schwartz, Upton, NY
Prof. R. S. Scorer, London, U.K.
Prof. J. H. Seinfeld, Pasadena, CA Prof. M. P. Singh, New Delhi, India Dr. W. G. N. Slinn, Richland, WA Dr. F. B. Smith, Bracknell, U.K. Dr. K. Spurný, Grafschaft, Germany Dr. K. Takeuchi, Tokyo, Japan Dr. D. T. Tingey, Corvallis, OR

Prof. M. H. Unsworth, Loughborough, U.K. Dr. H. van Dop, De Bilt, The Netherlands Dr. D. M. Whelpdale, Ontario, Canada Dr. D. J. Williams, North Ryde, Australia Dr. W. E. Wilson, Research Triangle Park, NC

Dr. P. Zannetti, Milano, Italy

# FORMER EXECUTIVE EDITOR

Dr. D. J. Moore (1967-1989)

Publishing and Advertising Offices: Headington Hill Hall, Oxford OX3 0BW, U.K. Subscription rates (including postage and insurance):

Annual institutional subscription rate (1991): Part A: General Topics DM 2405.00; Part B: Urban Atmosphere DM 340.00. All subscribers to Part A will automatically receive Part B.

Two-year institutional rate (1991/1992): Part A DM 4569.50; Part B DM 646.00.

Personal subscription rate for those whose library subscribes at the regular rate (1991): Please contact your nearest Pergamon Press office.

Part A published monthly. Part B published three times a year. Prices are subject to change without notice. Subscription enquiries from customers in North America should be sent to: Pergamon Press Inc., 395 Saw Mill River Road, Elmsford, NY 10523, U.S.A., for the remainder of the world to: Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, U.K.

Subscription rates for Japan include despatch by air and prices are available on application.

Microform Subscriptions and Back Issue

Back issues of all previously published volumes, in both hard copy and on microform, are available direct from Pergamon Press offices.

Copyright © 1991 Pergamon Press pic

It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the Publisher if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature, and translations. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the converient holder.

Photocopying information for users in the U.S.A. The Item-fee Code for this publication indicates that authorization to photocopy items for internal or personal use is granted by the copyright holder for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service provided the stated fee for copying, beyond that permitted by Section 107 or 108 of the United States Copyright Law, is paid. The appropriate remittance of \$3.00 per copy per article is paid directly to the Copyright Clearance Center Inc., 27 Congress Street, Salem, MA 01970.

Permission for other use. The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Publisher for such copying.

The Item-fee Code for this publication is: 0004-6981/91 \$3.00 + 0.00.

©™ The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48–1984.

Whilst every effort is made by the Publishers and Editorial Board to see that no inaccurate or misleading data, opinion or statement appear in this Journal, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the sole responsibility of the contributor or advertiser concerned. Accordingly, the Publishers, the Editorial Board and Editors and their respective employees, officers and agents accept no responsibility or liability whatsoever for the consequences of any such inaccurate or misleading data, opinion or statement.

# CONTENTS OF VOLUME 25A

# Number 1

# The Nitrate Radical: Physics, Chemistry, and the Atmosphere

R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli, and H. Sidebottom

|     | Prefac  | e         |                                                                                                        | v        |
|-----|---------|-----------|--------------------------------------------------------------------------------------------------------|----------|
| I.  | Introd  | uction    |                                                                                                        | 2        |
| II. | Spectr  | oscony. s | structure, and photochemistry                                                                          | 5        |
| 11. | II A    | Spectros  | conv                                                                                                   | 5        |
|     |         |           | Visible electronic absorption spectrum                                                                 | 5        |
|     |         |           | Infrared absorption spectrum                                                                           | 11       |
|     |         |           | Fluorescence excitation and emission spectrum: laser induced                                           |          |
|     |         |           | fluorescence (LIF)                                                                                     | 14       |
|     |         | II.A.4.   | Electron spin resonance                                                                                | 19       |
|     | II.B.   | Structur  | e                                                                                                      | 21       |
|     |         | II.B.1.   | Survey of the theoretical approaches                                                                   | 22       |
|     |         |           | Experimental evidence for the structure of sym-NO <sub>3</sub>                                         | 25       |
|     |         |           | The other isomer: peroxynitrite, OONO                                                                  | 27       |
|     |         |           | Conclusions                                                                                            | 28       |
|     | II.C.   |           | chemistry                                                                                              | 30       |
|     |         |           | Heat of formation                                                                                      | 30       |
|     | TT TO   |           | Standard entropy                                                                                       | 31       |
|     | II.D.   |           | tion cross sections                                                                                    | 32       |
|     |         |           | Importance of the absorption cross section                                                             | 32<br>32 |
|     |         |           | Absorption cross section at room temperature<br>Temperature dependence of the absorption cross section | 35       |
|     |         |           | Absorption cross sections: evaluation                                                                  | 36       |
|     |         |           | Absorption coefficients of NO <sub>3</sub> in the liquid phase                                         | 39       |
|     | II.E.   |           | hemistry                                                                                               | 40       |
|     | 11.1.   |           | Photolysis of NO <sub>3</sub> : product quantum yields                                                 | 40       |
|     |         |           | Photolysis of NO <sub>3</sub> precursors                                                               | 44       |
|     | II.F.   |           |                                                                                                        | 48       |
|     |         |           | Dynamics of the excited state                                                                          | 48       |
|     |         | II.F.2.   | Vibrationally excited NO <sub>3</sub> produced in chemical systems                                     | 50       |
| Ш   | . Labo  | ratory ex | xperimental techniques                                                                                 | 50       |
|     | III.A   | . Genera  | tion of the nitrate radical                                                                            | 52       |
|     |         |           | . The reaction of NO <sub>x</sub> with ozone                                                           | 52       |
|     |         |           | . Decomposition of dinitrogen pentoxide                                                                | 53       |
|     |         |           | . Reaction of halogen atoms with nitric acid                                                           | 53       |
|     |         |           | . Reaction of hydroxyl radicals with nitric acid                                                       | 54       |
|     |         |           | . Sources involving chlorine nitrate                                                                   | 54       |
|     |         |           | . Addition of atomic oxygen to nitrogen dioxide                                                        | 55       |
|     |         |           | . Pulse radiolysis sources                                                                             | 55       |
|     | TIT D   |           | . Sources in the condensed phase                                                                       | 56       |
|     | 111.13  |           | ion of the nitrate radical                                                                             | 57<br>57 |
|     |         |           | Optical absorption in the visible region  Laser induced fluorescence (LIF)                             | 58       |
|     |         |           | . Infrared absorption                                                                                  | 60       |
|     |         |           | . Mass spectrometry                                                                                    | 60       |
|     |         |           | Determination of absolute concentrations                                                               | 60       |
|     | III     | . Kinetic |                                                                                                        | 62       |
|     | 111.0   |           | l. Absolute methods                                                                                    | 62       |
|     |         |           | 2. Relative rate measurements                                                                          | 75       |
| I   | /. Kine |           | mechanisms of chemical reactions                                                                       | 76       |
|     | IV.A    | . Inorga  | nic non-radical reactions                                                                              | 76       |
|     | IV.E    | . Organi  | ic non-radical reactions                                                                               | 94       |
|     |         |           | . Alkanes and haloalkanes                                                                              | 96       |
|     |         | IV.B.2    | . Alkenes (alkenes, dialkenes, haloalkenes,                                                            |          |
|     |         |           | cycloalkenes and terpenes)                                                                             | 100      |
|     |         | 13/13/2   | Allernas                                                                                               | 114      |

|           | IV.B.4. Oxygen-containin IV.B.5. Aromatic compo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ic compounds                                                                                                       | 116<br>119          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|
|           | IV.B.6. Sulphur-containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng organ             | ic compounds                                                                                                       | 123                 |
|           | IV.B.7. Heterocyclic orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nic com              | pounds                                                                                                             | 126                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | s containing organic compounds                                                                                     | 127                 |
|           | IV.B.9. Kinetic data: sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nmary a              | nd correlations                                                                                                    | 128                 |
| IV.C.     | Radical reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                    | 139                 |
|           | IV.C.1. Reactions of NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                    | 140                 |
|           | IV.C.2. Reactions of NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                    | 143                 |
|           | IV.C.3. Interpretations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f reactiv            | ity                                                                                                                | 149                 |
| IV.D.     | Reactions in solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                    | 150                 |
| V. The r  | itrate radical in the atmos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | phere                |                                                                                                                    | 158                 |
| V.A.      | The role of NO <sub>3</sub> in the at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mosphe               | re                                                                                                                 | 159                 |
|           | V.A.1. Atmospheric sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rces of 1            | $NO_3$                                                                                                             | 159                 |
|           | V.A.2. Atmospheric sink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cs of NO             | )3                                                                                                                 | 160                 |
|           | V.A.3. The NO <sub>3</sub> reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n manifo             | old in the atmosphere                                                                                              | 163                 |
|           | of NO, and N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                    | at and day atmospheric behaviour                                                                                   | 163                 |
|           | V.A.5. Applications of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | night-tim            | e NO <sub>3</sub> field observations to                                                                            |                     |
|           | NO <sub>3</sub> kinetic stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                    | 168                 |
|           | V.A.6. Significance of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IO <sub>3</sub> at n | ight                                                                                                               | 169                 |
| V.B.      | Field measurements and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | ental techniques                                                                                                   | 169                 |
|           | V.B.1. Experimental tec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hniques              |                                                                                                                    | 169                 |
|           | V.B.2. Stratospheric res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                                                                    | 173                 |
|           | V.B.3. Tropospheric me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | nts of NO <sub>3</sub>                                                                                             | 177                 |
| ***       | V.B.4. Atmospheric N <sub>2</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 4.4 210 11.4                                                                                                       | 179                 |
| v.C.      | Atmospheric implications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of the               | presence of the NO <sub>3</sub> radical                                                                            | 180                 |
|           | V.C.1. Measurements of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                    | 180                 |
|           | V.C.2. Laboratory studi<br>V.C.3. Model prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                    | 180                 |
|           | The state of the s |                      | equirements                                                                                                        | 181                 |
| VI. Unre  | solved issues in NO <sub>3</sub> chemi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                    | 187                 |
|           | VI.A.1. Structure, spectr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                                                                                    | 187                 |
|           | VI.A.2. Laboratory expe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                    | 188                 |
|           | VI.A.3. Kinetics and me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                    | 188                 |
| WID       | VI.A.4. The nitrate radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cal in the           | e atmosphere                                                                                                       | 190                 |
|           | . Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                    | 190                 |
| VII. Refe | rences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                    | 191                 |
| News      | and Opinions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                    |                     |
| Intro     | duction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                    | 205                 |
| Cale      | ndar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                                                                    | 205                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Num                  | ber 2                                                                                                              |                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                    |                     |
| B. J. Tur | pin and J. J. Huntzicker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 207                  | Secondary formation of organic aeros<br>Los Angeles Basin: a descriptive ar<br>organic and elemental carbon concer | nalysis of          |
| F. Joos a | and U. Baltensperger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 217                  | A field study on chemistry, S(IV) rates and vertical transport duraconditions                                      |                     |
| R. Lehm   | ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 231                  | Uncertainty analysis for a linear prog<br>model for acid rain abatement                                            | ramming             |
| L. Mølha  | ave and M. Thorsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 241                  | A model for investigations of ventile<br>tems as sources for voiatile organic co<br>in indoor climate              |                     |
| U. Bufler | r and K. Wegmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251                  | Diurnal variation of monoterpene<br>trations in open-top chambers an<br>Welzheim forest air, F.R.G.                | concen-<br>d in the |
| H. Frank  | k, W. Frank and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 257                  | Airborne C <sub>1</sub> - and C <sub>2</sub> -halocarbons                                                          | at four             |

|                                                                                                                                                            | Con | TO THE STATE OF TH |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K. Jylhä                                                                                                                                                   | 263 | Empirical scavenging coefficients of radioactive substances released from Chernobyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E. R. Byron, R. P. Axler and C. R. Goldman                                                                                                                 | 271 | Increased precipitation acidity in the central Sierra Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J. J. Erbrink                                                                                                                                              | 277 | A practical model for the calculation of $\sigma_y$ and $\sigma_z$ for use in an on-line Gaussian dispersion model for tall stacks, based on wind fluctuations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>K. Yamaguchi, T. Tatano,</li><li>F. Tanaka, M. Nakao,</li><li>M. Gomyoda and H. Hara</li></ul>                                                     | 285 | An analysis of precipitation chemistry measurements in Shimane, Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| W. Baeyens and H. Dedeurwaerder                                                                                                                            | 293 | Particulate trace metals above the Southern<br>Bight of the North Sea—I. Analytical pro-<br>cedures and average aerosol concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T. J. Butler and G. E. Likens                                                                                                                              | 305 | The impact of changing regional emissions on precipitation chemistry in the eastern United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| J. W. Grimm and J. A. Lynch                                                                                                                                | 317 | Statistical analysis of errors in estimating wet deposition using five surface estimation algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A. Sirois                                                                                                                                                  | 329 | The relationship between mean and standard deviation in precipitation chemistry measurements across Eastern North America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C. S. Potter and H. L. Ragsdale                                                                                                                            | 341 | Dry deposition washoff from forest tree leaves by experimental acid rainfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. R. MacKenzie, R. M. Harrison,<br>I. Colbeck and C. N. Hewitt                                                                                            | 351 | The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| K. C. Jones, C. Symon,<br>P. J. L. Taylor, J. Walsh<br>and A. E. Johnston                                                                                  | 361 | Evidence for a decline in rural herbage lead levels in the U.K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F. N. Mouzakis and G. Bergeles                                                                                                                             | 371 | Pollutant dispersion over a triangular ridge: a numerical study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D. H. Bache                                                                                                                                                | 381 | Characterizing plume dispersion in the diabatic surface layer by trajectory analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul><li>K. G. Anlauf, H. A. Wiebe,</li><li>E. C. Tuazon, A. M. Winer,</li><li>G. I. Mackay, H. I. Schiff,</li><li>T. G. Ellestad and K. T. Knapp</li></ul> | 393 | Intercomparison of atmospheric nitric acid measurements at elevated ambient concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R. Lehmann                                                                                                                                                 | 401 | On properties of linear programming models for acid rain abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C. S. Fung, P. K. Misra,<br>R. Bloxam and S. Wong                                                                                                          | 411 | A numerical experiment on the relative importance of $H_2O_2$ and $O_3$ in aqueous conversion of $SO_2$ to $SO_4^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| J. M. Pacyna, S. Larssen and A. Semb                                                                                                                       | 425 | European survey for $NO_x$ emissions with emphasis on Eastern Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. R. Cass, W. W. Nazaroff, C. Tiller and P. M. Whitmore                                                                                                   | 441 | Protection of works of art from damage due to atmospheric ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Interannual variability in acidic deposition on

B. R. Appel, Y. Tokiwa, V. Povard 525 The measurement of atmospheric hydrochloric and E. L. Kothny acid in Southern California News and Opinions

Introduction 529 Calendar 529

Book Review (J. P. Lodge, Jr) 531

New Patents

Preparation of Papers iii

Contents of Chemosphere Volume 21, Numbers 6 and 7, 1990

# Number 3/4

International Conference on Aerosols and Background Pollution

v Participants at the Conference

vii Preface

### Aerosol Climatology

Review Article J. W. Fitzgerald

533 Marine aerosols: a review

| General Papers M. H. Smith, P. M. Park and I. E. Consterdine                                                       | 547 | North Atlantic aerosol remote concentrations measured at a Hebridean coastal site                                              |
|--------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
| S. G. Jennings, C. D. O'Dowd,<br>T. C. O'Connor and<br>F. M. McGovern                                              | 557 | Physical characteristics of the ambient aerosol at Mace Head                                                                   |
| T. C. O'Connor and<br>F. M. McGovern                                                                               | 563 | Aerosol climatology measurements with a Nolan-Pollak counter                                                                   |
| M. J. Harvey, G. W. Fisher,<br>I. S. Lechner, P. Isaac, N. E. Flower<br>and A. L. Dick                             | 569 | Summertime aerosol measurements in the Ross<br>Sea region of Antarctica                                                        |
| P. Brand, J. Gebhart, M. Below, B. Georgi and J. Heyder                                                            | 581 | Characterization of environmental aerosols on Heligoland Island                                                                |
| S. Bürgermeister and HW. Georgii                                                                                   | 587 | Distribution of methanesulfonate, nss sulfate and dimethylsulfide over the Atlantic and the North Sea                          |
| J. C. H. Van der Hage                                                                                              | 597 | Background aerosol and electric conductivity of marine Atlantic air                                                            |
| W. R. Leaitch and G. A. Isaac                                                                                      | 601 | Tropospheric aerosol size distributions from 1982 to 1988 over eastern North America                                           |
| J. Heintzenberg, J. Ström,<br>J. A. Ogren and HP. Fimpel                                                           | 621 | Vertical profiles of aerosol properties in<br>the summer troposphere of central Europe,<br>Scandinavia and the Svalbard region |
| Aerosol Instrumentation U. Baltensperger, H. W. Gäggeler, D. T. Jost, M. Emmenegger and W. Nägeli                  | 629 | Continuous background aerosol monitoring with the epiphaniometer                                                               |
| A. D. Clarke                                                                                                       | 635 | A thermo-optic technique for in situ analysis of size-resolved aerosol physicochemistry                                        |
| P. H. Kaye, N. A. Eyles,<br>I. K. Ludlow and J. M. Clark                                                           | 645 | An instrument for the classification of airborne particles on the basis of size, shape, and count frequency                    |
| P. C. S. Devara and P. Ernest Raj                                                                                  | 655 | Study of atmospheric aerosols in a terrain-<br>induced nocturnal boundary layer using<br>bistatic lidar                        |
| Aerosol Composition and Removal<br>I. Borbély-Kiss, L. Bozó, E. Koltay,<br>E. Mészáros, Á. Molnár<br>and Gy. Szabó | 661 | Elemental composition of aerosol particles under background conditions in Hungary                                              |
| C. A. Pio, I. M. Santos,<br>T. D. Anacleto, T. V. Nunes<br>and R. M. Leal                                          | 669 | Particulate and gaseous air pollutant levels at the Portuguese west coast                                                      |
| G. J. Keeler, J. D. Spengler and R. A. Castillo                                                                    | 681 | Acid aerosol measurements at a suburban Connecticut site                                                                       |
| J. van Daalen                                                                                                      | 691 | Air quality and deposition of trace elements in the province of South-Holland                                                  |
| J. R. Stedman                                                                                                      | 699 | Measurements of background sulphur and<br>scavenging ratios at a site in the west of<br>Northern Ireland                       |
|                                                                                                                    |     |                                                                                                                                |

| J. Porstendörfer, G. Butterweck<br>and A. Reineking | 709 | Diurnal variation of the concentrations of radon and its short-lived daughters in the atmosphere near the ground                                                                               |
|-----------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R. S. Hamilton and T. A. Mansfield                  | 715 | Airborne particulate elemental carbon: its sources, transport and contribution to dark smoke and soiling                                                                                       |
| H. Horvath                                          | 725 | Spectral extinction coefficients of background aerosols in Europe, North and South America: a comparison                                                                                       |
| E. Remoudaki, G. Bergametti and R. Losno            | 733 | On the dynamic of the atmospheric input of copper and manganese into the western Mediterranean Sea                                                                                             |
| B. Lim, T. D. Jickells<br>and T. D. Davies          | 745 | Sequential sampling of particles, major ions and total trace metals in wet deposition                                                                                                          |
| R. Losno, G. Bergametti, P. Carlier and G. Mouvier  | 763 | Major ions in marine rainwater with attention to sources of alkaline and acidic species                                                                                                        |
| K. W. Nicholson, J. R. Branson and P. Giess         | 771 | Field measurements of the below-cloud scavenging of particulate material                                                                                                                       |
| L. Levkov, D. P. Eppel and H. Graßl                 | 779 | Modelling the atmospheric transport of trace metals including the role of precipitating clouds                                                                                                 |
| B. T. McGann and S. G. Jennings                     | 791 | The efficiency with which drizzle and precipitation sized drops collide with aerosol particles                                                                                                 |
| D. A. Bell and C. P. R. Saunders                    | 801 | The scavenging of high altitude aerosol by small ice crystals                                                                                                                                  |
| T. Schumann                                         | 809 | Aerosol and hydrometeor concentrations and<br>their chemical composition during winter pre-<br>cipitation along a mountain slope—III. Size-<br>differentiated in-cloud scavenging efficiencies |
| News and Opinions Introduction                      | 825 |                                                                                                                                                                                                |
| Calendar                                            | 825 |                                                                                                                                                                                                |
| Conference Report                                   | 826 |                                                                                                                                                                                                |
|                                                     |     |                                                                                                                                                                                                |

# Number 5/6

| L. H. J. M. Janssen, F. Van Haren,<br>P. Bange and H. Van Duuren | 829 | Measurements and modelling of reactions o nitrogen oxides in power-plant plumes at nigh   |
|------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------|
| W. W. Nazaroff and G. R. Cass                                    | 841 | Protecting museum collections from soiling<br>due to the deposition of airborne particles |
| D. P. Chock                                                      | 853 | A comparison of numerical methods for solving the advection equation—III                  |
| E. Buijsman, P. J. Jonker,<br>W. A. H. Asman and T. B. Ridder    | 873 | Chemical composition of precipitation collected on a weathership on the North Atlanti     |

IX

| H. C. Rodean                                                                                                                                                                                                                     | 885  | A structure for models of hazardous materials with complex behavior                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J. Beer, R. C. Finkel, G. Bonani,<br>H. Gäggeler, U. Görlach, P. Jacob,<br>D. Klockow, C. C. Langway, Jr,<br>A. Neftel, H. Oeschger,<br>U. Schotterer, J. Schwander,<br>U. Siegenthaler, M. Suter,<br>D. Wagenbach and W. Wölfli | 899  | Seasonal variations in the concentration of $^{10}\text{Be, Cl}^-,NO_3^-,SO_4^{2^-},H_2O_2,^{210}\text{Pb},^3\text{H},\text{mineral}$ dust, and $\delta^{18}\text{O}$ in Greenland snow |
| H. Tsukada, J. Ishida and O. Narita                                                                                                                                                                                              | 905  | Particle-size distributions of atmospheric $^{129}\mathrm{I}$ and $^{127}\mathrm{I}$ aerosols                                                                                           |
| M. A. Al-Zanaidi, M. P. Singh and M. El-Karim                                                                                                                                                                                    | 909  | Traffic co-dispersion pattern in Kuwait                                                                                                                                                 |
| N. Berg, P. Dunn and M. Fenn                                                                                                                                                                                                     | 915  | Spatial and temporal variability of rime ice and snow chemistry at five sites in California                                                                                             |
| M. T. Morandi, P. J. Lioy and<br>J. M. Daisey                                                                                                                                                                                    | 927  | Comparison of two multivariate modeling approaches for the source apportionment of inhalable particulate matter in Newark, NJ                                                           |
| R. Kamens, C. Lee, R. Wiener and D. Leith                                                                                                                                                                                        | 939  | A study to characterize indoor particles in three non-smoking homes                                                                                                                     |
| M. M. Millán, B. Artíñano,<br>L. Alonso, M. Navazo and M. Castro                                                                                                                                                                 | 949  | The effect of meso-scale flows on regional and long-range atmospheric transport in the west-ern Mediterranean area                                                                      |
| F. Desiato and M. G. Ciminelli                                                                                                                                                                                                   | 965  | Plume dispersion investigated by LANDSAT imagery                                                                                                                                        |
| C. N. Hewitt and M. B. Rashed                                                                                                                                                                                                    | 979  | The deposition of selected pollutants adjacent to a major rural highway                                                                                                                 |
| R. R. Yaaqub, T. D. Davies,<br>T. D. Jickells and J. M. Miller                                                                                                                                                                   | 985  | Trace elements in daily collected aerosols at a site in southeast England                                                                                                               |
| S. N. Pandis, S. E. Paulson,<br>J. H. Seinfeld and R. C. Flagan                                                                                                                                                                  | 997  | Aerosol formation in the photooxidation of isoprene and $\beta$ -pinene                                                                                                                 |
| G. O. Rubel                                                                                                                                                                                                                      | 1009 | Partitioning of partially soluble volatiles between the vapor and liquid aerosol phase                                                                                                  |
| C. S. Sloane, J. Watson, J. Chow,<br>L. Pritchett and L. W. Richards                                                                                                                                                             | 1013 | Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver                                                                      |
| F. A. A. M. De Leeuw and<br>H. J. Van Rheineck Leyssius                                                                                                                                                                          | 1025 | Sensitivity of oxidant concentrations on changes in u.v. radiation and temperature                                                                                                      |
| V. Kumar, H. S. Vora, T. N. Das, M. N. Kumbhare and R. Koul                                                                                                                                                                      | 1033 | Microprocessor-based air analyzer unit for sub<br>parts per billion level measurements of hydro-<br>gen peroxide                                                                        |
| SC. Tsay, G. L. Stephens and T. J. Greenwald                                                                                                                                                                                     | 1039 | An investigation of aerosol microstructure on visual air quality                                                                                                                        |
| A. Febo and C. Perrino                                                                                                                                                                                                           | 1055 | Prediction and experimental evidence for high<br>air concentration of nitrous acid in indoor<br>environments                                                                            |
| J. Arey, A. M. Winer, R. Atkinson,<br>S. M. Aschmann, W. D. Long and<br>C. L. Morrison                                                                                                                                           | 1063 | The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species                                                                |
|                                                                                                                                                                                                                                  |      |                                                                                                                                                                                         |

W. Baeyens and H. Dedeurwaerder 1077 Particulate trace metals above the Southern Bight of the North Sea-II. Origin and behaviour of the trace metals S. F. Mueller 1093 Estimating cloud water deposition to subalpine spruce-fir forests-I. Modifications to an existing model 1105 Estimating cloud water deposition to subalpine S. F. Mueller, J. D. Joslin, Jr and M. H. Wolfe spruce-fir forests-II. Model testing Technical Notes T. J. Dean and J. D. Johnson 1123 Proportional-plus-integral control of experimental ozone concentrations in a large opentop chamber B. Y. Underwood 1127 Conditioned particle motion in the 'collision' model of turbulent dispersion Discussions B. Y. Underwood 1129 An interpretation of Taylor's statistical analysis of particle dispersion B. Y. Underwood 1130 Pollution transfer to moor by occult deposition News and Opinions Introduction 1131 Calendar 1131

# Number 7

# The Fourth International Workshop on Wind and Water Tunnel Modelling of Atmospheric Flow and Dispersion

| A. Robins                                                 | 1133 | Introduction                                                                                                   |
|-----------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------|
| W. Bächlin, W. Theurer and<br>E. J. Plate                 | 1135 | Wind field and dispersion in a built-up area—a comparison between field measurements and wind tunnel data      |
| W. F. Dabberdt and<br>W. G. Hoydysh                       | 1143 | Street canyon dispersion: sensitivity to block shape and entrainment                                           |
| K. Kitabayashi                                            | 1155 | Wind tunnel simulation of airflow and pollutant diffusion over complex terrain                                 |
| R. A. Waters, D. J. Hall<br>and T. Masood                 | 1163 | The performance of extraction booths subject to draughts—a wind tunnel study                                   |
| B. Sevruk, JA. Hertig<br>and R. Spiess                    | 1173 | The effect of a precipitation gauge orifice rim on the wind field deformation as investigated in a wind tunnel |
| M. Poreh and J. E. Cermak                                 | 1181 | Wind tunnel measurements of line integrated concentration                                                      |
| G. König-Langlo and<br>M. Schatzmann                      | 1189 | Wind tunnel modeling of heavy gas dispersion                                                                   |
| A. H. Huber, S. Pal Arya,<br>S. A. Rajala and J. W. Borek | 1199 | Preliminary studies of video images of smoke dispersion in the near wake of a model building                   |

|                                                                                      | Cor  | itents                                                                                                     |
|--------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------|
| J. T. Lee, D. L. Call,<br>R. E. Lawson, Jr, W. E. Clements<br>and D. E. Hoard        | 1211 | A video image analysis system for concentration measurements and flow visualization in building wakes      |
| K. Okabayashi, Y. Ide,<br>H. Takahashi, N. Kane,<br>S. Okamoto and K. Kobayashi      | 1227 | A new wind tunnel technique for investigating gas diffusion behind a structure                             |
| A. H. Huber                                                                          | 1237 | Wind tunnel and Gaussian plume modeling of building wake dispersion                                        |
| M. Poreh, M. Rau and E. J. Plate                                                     | 1251 | Design considerations for wind tunnel simulations of diffusion within the convective boundary layer        |
| M. Rau, W. Bächlin and E. J. Plate                                                   | 1257 | Detailed design features of a new wind tunnel for studying the effects of thermal stratification           |
| R. Morel, E. Alcaraz, M. Ayrault, R. Zegadi and P. Mejean                            | 1263 | Effects of thermal stable stratification on turbulent boundary layer characteristics                       |
| B. Lehmann and J. Mante                                                              | 1271 | Laser-Doppler measurement of the dynamics of large turbulent structures with a scanning technique          |
| K. Marotzke                                                                          | 1277 | Spectra of longitudinal turbulence measured in a boundary layer wind tunnel                                |
| General Papers                                                                       |      |                                                                                                            |
| L. Mølhave, J. G. Jensen and S. Larsen                                               | 1283 | Subjective reactions to volatile organic compounds as air pollutants                                       |
| C. M. Berkowitz                                                                      | 1295 | The response of sulfate linearity and precipitation chemistry to gas-phase profiles                        |
| P. Hurley and W. Physick                                                             | 1313 | A Lagrangian particle model of fumigation by breakdown of the nocturnal inversion                          |
| J. M. Waldman, SK. C. Liang,<br>P. J. Lioy, G. D. Thurston<br>and M. Lippmann        | 1327 | Measurements of sulfate aerosol and its acidity in the SO <sub>2</sub> source region of Chestnut Ridge, PA |
| P. D. Capel, C. Leuenberger and W. Giger                                             | 1335 | Hydrophobic organic chemicals in urban fog                                                                 |
| W. H. Snyder, L. H. Khurshudyan, I. V. Nekrasov, R. E. Lawson, Jr and R. S. Thompson | 1347 | Flow and dispersion of pollutants within two-<br>dimensional valleys                                       |
| J. Arey, S. B. Corchnoy<br>and R. Atkinson                                           | 1377 | Emission of linalool from Valencia orange blossoms and its observation in ambient air                      |
| Y. Akutsu, F. Toyoda, K. Tomita, F. Yoshizawa, M. Tamura and T. Yoshida              | 1383 | Effect of exhaust from alcohol fuel on ozone formation in the atmosphere                                   |
| D. P. Eppel, G. Petersen,<br>P. K. Misra and R. Bloxam                               | 1391 | A numerical model for simulating pollutant transport from a single point source                            |
| C. Anastasi, L. Hopkinson and V. J. Simpson                                          | 1403 | Natural hydrocarbon emissions in the United Kingdom                                                        |

### Short Communication

- S. Fujita, Y. Ichikawa, R. K. Kawaratani and Y. Tonooka
- 1409 Preliminary inventory of sulfur dioxide emissions in East Asia

# News and Opinions

Introduction

1413

Calendar

- 1413
- Contents of *Időjárás*, Volume 94, Number 5, 1990
- 1414
- Book Review (J. P. Lodge, Jr)
- 1415

New Patents

i

# Number 8

- S. K. Kjærgaard, L. Mølhave and O. F. Pedersen
- 1417 Human reactions to a mixture of indoor air volatile organic compounds
- K. N. Rayner and I. D. Watson
- 1427 Operational prediction of daytime mixed layer heights for dispersion modelling
- H. Hakola, S. Joffre, H. Lättilä and P. Taalas
- 1437 Transport, formation and sink processes behind surface ozone variability in North European conditions
- G. D. Rolph and R. S. Artz
- 1449 A paired comparison of two precipitation chemistry sites in east-central Mississippi
- R. Simó, M. Colom-Altés, J. O. Grimalt and J. Albaigés
- 1463 Background levels of atmospheric hydrocarbons, sulphate and nitrate over the western Mediterranean

E. A. Betterton

- 1473 The partitioning of ketones between the gas and aqueous phases
- H. Sievering, J. Boatman, J. Galloway, W. Keene, Y. Kim, M. Luria and J. Ray
- 1479 Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution
- M. Luria and H. Sievering
- 1489 Heterogeneous and homogeneous oxidation of SO<sub>2</sub> in the remote marine atmosphere
- M. W. M. Hisham and D. Grosjean 1497
  - 1497 Sulfur dioxide, hydrogen sulfide, total reduced sulfur, chlorinated hydrocarbons and photochemical oxidants in southern California museums
- A. H. Knap and K. S. Binkley
- 1507 Chlorinated organic compounds in the troposphere over the western North Atlantic Ocean measured by aircraft
- K. Weston and D. Fowler
- 1517 The importance of orography in spatial patterns of rainfall acidity in Scotland
- M. Martín, J. Plaza, M. D. Andrés, J. C. Bezares and M. M. Millán
- 1523 Comparative study of seasonal air pollutant behavior in a Mediterranean coastal site: Castellón (Spain)

| C. L. Benner, D. J. Eatough,<br>N. L. Eatough and P. Bhardwaja                                                           | 1537 | Comparison of annular denuder and filter pack collection of HNO <sub>3</sub> (g), HNO <sub>2</sub> (g), SO <sub>2</sub> (g), and particulate-phase nitrate, nitrite and sulfate in the south-west desert |
|--------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W. H. White and E. S. Macias                                                                                             | 1547 | Chemical mass balancing with ill defined sources: regional apportionment in the California desert                                                                                                        |
| R. A. Carhart and A. J. Policastro                                                                                       | 1559 | A second-generation model for cooling tower plume rise and dispersion—I. Single sources                                                                                                                  |
| M. Böhm, B. McCune and T. Vandetta                                                                                       | 1577 | Diurnal curves of tropospheric ozone in the western United States                                                                                                                                        |
| I. Grgić, V. Hudnik, M. Bizjak and J. Levec                                                                              | 1591 | Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions                                                                                                                                          |
| S. Wunderli and R. Gehrig                                                                                                | 1599 | Influence of temperature on formation and stability of surface PAN and ozone. A two year field study in Switzerland                                                                                      |
| A. Hashem and C. S. Parkin                                                                                               | 1609 | A simplified heavy particle random-walk model for the prediction of drift from agricultural sprays                                                                                                       |
| P. J. Hanson and S. E. Lindberg                                                                                          | 1615 | Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements                                                                                                      |
| D. Olivari and E. Palli                                                                                                  | 1635 | Investigation of fluctuating properties of a neutral plume using digital image analysis techniques                                                                                                       |
| C. C. Travis, P. H. Craig and J. C. Bowers                                                                               | 1643 | Characterization of human exposure to ambient levels of benzene using pulmonary 'wash-out' data                                                                                                          |
| L. J. Thibodeaux, K. C. Nadler,<br>K. T. Valsaraj and D. D. Reible                                                       | 1649 | The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols—competitive adsorption theory predictions                                                     |
| D. S. Sheppard, J. E. Patterson and M. K. McAdam                                                                         | 1657 | Mercury content of Antarctic ice and snow: further results                                                                                                                                               |
| R. G. Derwent and M. E. Jenkin                                                                                           | 1661 | Hydrocarbons and the long-range transport of ozone and PAN across Europe                                                                                                                                 |
| J. M. Davis                                                                                                              | 1679 | An evaluation of the delta-Eddington contrast transmission model                                                                                                                                         |
| J. Padro, G. den Hartog and<br>H. H. Neumann                                                                             | 1689 | An investigation of the ADOM dry deposition module using summertime O <sub>3</sub> measurements above a deciduous forest                                                                                 |
| J. D. Kahl, R. C. Schnell,<br>P. J. Sheridan, B. D. Zak,<br>H. W. Church, A. S. Mason,<br>J. L. Heffter and J. M. Harris | 1705 | Predicting atmospheric debris transport in real-<br>time using a trajectory forecast model                                                                                                               |
| Short Communications H. Hoß, H. Elias and K. J. Wannowius                                                                | 1715 | Sulfur(IV) oxidation by hydrogen peroxide in aqueous suspensions of SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , TiO <sub>2</sub> and zeolite                                                     |

| R. M. Harrison and A. G. Allen           | 1719 | Scavenging ratios and deposition of sulphur, nitrogen and chlorine species in eastern England |
|------------------------------------------|------|-----------------------------------------------------------------------------------------------|
| Discussion                               |      |                                                                                               |
| D. J. Thomson, H. Kaplan and<br>N. Dinar | 1725 | Diffusion of an instantaneous cluster of particles in homogeneous turbulence                  |
| News and Opinions                        |      |                                                                                               |
| Introduction                             | 1729 |                                                                                               |
| Calendar                                 | 1729 |                                                                                               |
| Conference Report                        | 1730 |                                                                                               |
| Book Reviews (J. P. Lodge, Jr)           | 1733 |                                                                                               |
| New Patents                              | i    |                                                                                               |

# Number 9

# International Conference on the Generation of Oxidants on Regional and Global Scales

| S. A. Penkett                                                      | 1735   | An overview                                                                                                                              |
|--------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| Ozone Measurements, including Trends<br>J. Staehelin and W. Schmid | 1739   | Trend analysis of tropospheric ozone concentrations utilizing the 20-year data set of ozone balloon soundings over Payerne (Switzerland) |
| R. Reiter                                                          | 1751   | On the mean daily and seasonal variations of the vertical ozone profiles in the lower troposphere                                        |
| H. Puxbaum, K. Gabler,<br>S. Smidt and F. Glattes                  | 1759   | A one-year record of ozone profiles in an Alpine valley (Zillertal/Tyrol, Austria, 600–2000 m a.s.l.)                                    |
| M. J. Gay                                                          | 1767   | Meteorological and altitudinal influences on the concentration of ozone at Great Dun Fell                                                |
| U. Feister and K. Balzer                                           | 1781   | Surface ozone and meteorological predictors on a subregional scale                                                                       |
| R. Girgždiene                                                      | 1791   | Surface ozone measurements in Lithuania                                                                                                  |
| P. G. Simmonds and R. G. Derwent                                   | 1795   | Measurements of ozone and other radiatively active gases at Mace Head in the Republic of Ireland                                         |
| Modelling Studies of Tropospheric Ox                               | idants | and their Precursors                                                                                                                     |
| F. A. A. M. De Leeuw and<br>H. J. Van Rheineck Leyssius            | 1809   | Calculation of long-term averaged and episodic oxidant concentrations for The Netherlands                                                |
| A. M. Hough and C. E. Johnson                                      | 1819   | Modelling the role of nitrogen oxides, hydro-<br>carbons and carbon monoxide in the global<br>formation of tropospheric oxidants         |
| A. M. Thompson, M. A. Huntley and R. W. Stewart                    | 1837   | Perturbations to tropospheric oxidants, 1985-2035: 2. Calculations of hydrogen peroxide in chemically coherent regions                   |

|                                                                                                                                                                               | 00.       | A                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
| A. Ya. Pressman, M. V. Galperin,<br>V. A. Popov, O. G. Afinogenova,<br>S. R. Subbotin, S. A. Grigoryan<br>and I. S. Dedkova                                                   | 1851      | A routine model of chemical transformations and transport of nitrogen compounds, ozone and PAN within a regional scale       |
| K. S. Law and J. A. Pyle                                                                                                                                                      | 1863      | Modelling the response of tropospheric trace species to changing source gas concentrations                                   |
| J. F. Austin and M. J. Follows                                                                                                                                                | 1873      | The ozone record at Payerne: an assessment of the cross-tropopause flux                                                      |
| Laboratory Studies of Oxidation Reac                                                                                                                                          | etions in | the Transcahare                                                                                                              |
| O. Horie and G. K. Moortgat                                                                                                                                                   |           | Decomposition pathways of the excited<br>Criegee intermediates in the ozonolysis of<br>simple alkenes                        |
| N. R. Jensen, J. Hjorth, C. Lohse,<br>H. Skov and G. Restelli                                                                                                                 | 1897      | Products and mechanism of the reaction between $NO_3$ and dimethylsulphide in air                                            |
| Measurements of Reactive Nitrogen (                                                                                                                                           | ompour    | nds                                                                                                                          |
| B. A. Ridley                                                                                                                                                                  |           | Recent measurements of oxidized nitrogen compounds in the troposphere                                                        |
| A. J. Gair, S. A. Penkett<br>and P. Oyola                                                                                                                                     | 1927      | Development of a simple passive technique for the determination of nitrogen dioxide in remote continental locations          |
| N. Tsalkani, P. Perros,<br>A. L. Dutot and G. Toupance                                                                                                                        | 1941      | One-year measurements of PAN in the Paris basin: effect of meteorological parameters                                         |
| F. Flocke, A. Volz-Thomas and D. Kley                                                                                                                                         | 1951      | Measurements of alkyl nitrates in rural and polluted air masses                                                              |
| M. F. Shepherd, S. Barzetti and D. R. Hastie                                                                                                                                  | 1961      | The production of atmospheric $NO_x$ and $N_2O$ from a fertilized agricultural soil                                          |
| Measurements of Hydrocarbons and                                                                                                                                              | their Ox  | cidation Products                                                                                                            |
| J. Mowrer and A. Lindskog                                                                                                                                                     | 1971      |                                                                                                                              |
| Ø. Hov, N. Schmidbauer and M. Oehme                                                                                                                                           | 1981      | C2-C5 hydrocarbons in rural south Norway                                                                                     |
| P. B. Shepson, D. R. Hastie,<br>H. I. Schiff, M. Polizzi,<br>J. W. Bottenheim, K. Anlauf,<br>G. I. Mackay and D. R. Karecki                                                   | 2001      | Atmospheric concentrations and temporal variations of $C_1$ – $C_3$ carbonyl compounds at two rural sites in central Ontario |
| Measurements of Reactive Hydrogen                                                                                                                                             | Compo     | unds                                                                                                                         |
| A. Hofzumahaus, HP. Dorn,<br>J. Callies, U. Platt and D. H. Ehhal                                                                                                             | 2017      |                                                                                                                              |
| L. I. Kleinman and P. H. Daum                                                                                                                                                 | 2023      | Oxidant limitation to the formation of $\rm H_2SO_4$ near a $\rm SO_2$ source region                                         |
| M. W. Gallagher, T. W. Choularton<br>R. Downer, B. J. Tyler,<br>I. M. Stromberg, C. S. Mill,<br>S. A. Penkett, B. Bandy,<br>G. J. Dollard, T. J. Davies<br>and B. M. R. Jones | , 2029    | Measurements of the entrainment of hydrogen peroxide into cloud systems                                                      |
| G. J. Dollard, B. M. R. Jones and T. J. Davies                                                                                                                                | 2039      | Measurements of gaseous hydrogen peroxide and PAN in rural southern England                                                  |
|                                                                                                                                                                               |           |                                                                                                                              |

News and Opinions Introduction

2055

Calendar

2055

Conference Report

2057

Book Reviews (J. P. Lodge, Jr)

2061

# Number 10

- R. Ohba, S. Kakishima and S. Ito

  2063 Water tank experiment of gas diffusion from a stack in stably and unstably stratified layers under calm conditions
- G. R. Carmichael, L. K. Peters and R. D. Saylor

  The STEM-II regional scale acid deposition and photochemical oxidant model—I. An overview of model development and applications
- A. Eldering, P. A. Solomon, L. G. Salmon, T. Fall and G. R. Cass

  Hydrochloric acid: a regional perspective on concentrations and formation in the atmosphere of Southern California
- L. Haszpra, I. Szilágyi, A. Demeter, 2103 Non-methane hydrocarbon and aldehyde T. Turányi and T. Bérces measurements in Budapest, Hungary
- B. R. T. Simoneit, Guoying Sheng,
  Xiaojing Chen, Jiamo Fu,
  Jian Zhang and Yuping Xu

  Molecular marker study of extractable organic matter in aerosols from urban areas of China
- A. Ebel, H. Hass, H. J. Jakobs,
  M. Laube, M. Memmesheimer,
  A. Oberreuter, H. Geiss
  and Y.-H. Kuo
- A. G. Proyou, G. Toupance 2145 A two-year study of ozone behaviour at rural and P. E. Perros and forested sites in eastern France
- T. J. Kelly and D. V. Kenny

  2155 Continuous determination of dimethylsulfide at part-per-trillion concentrations in air by atmospheric pressure chemical ionization mass spectrometry
- K. K. Yeung, W. L. Chang, B. Wan, 2161 Simulation of boundary layer flow in Hong F. Kimura and T. Yoshikawa Kong
- G. T. Wolff, M. S. Ruthkosky,
  D. P. Stroup and P. E. Korsog

  2173 A characterization of the principal PM-10 species in Claremont (summer) and Long
  Beach (fall) during SCAQS
- D. B. Turner, L. W. Bender,
  J. O. Paumier and P. F. Boone

  2187 Evaluation of the TUPOS air quality dispersion model using data from the EPRI Kincaid field study
- A. Bytnerowicz, P. J. Dawson,
  C. L. Morrison and M. P. Poe

  2203 Deposition of atmospheric ions to pine branches and surrogate surfaces in the vicinity of Emerald Lake Watershed, Sequoia National Park
- J. H. Galbraith and F. J. Hingston 2211 Application of a directional dust gauge to measurement of impaction of atmospheric salt

|                                                                                       | Con  | AVII                                                                                                                                                    |
|---------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Th. Papenbrock and F. Stuhl                                                           |      | Measurement of gaseous nitric acid by a laser-photolysis fragment-fluorescence (LPFF) method in the Black Forest and at the North Sea coast             |
| J. F. Pankow                                                                          | 2229 | Common y-intercept and single compound regressions of gas-particle partitioning data vs $1/T$                                                           |
| J. F. Pankow and T. F. Bidleman                                                       | 2241 | Effects of temperature, TSP and per cent non-exchangeable material in determining the gas-particle partitioning of organic compounds                    |
| E. Brorström-Lundén<br>and G. Lövblad                                                 | 2251 | Deposition of soot related hydrocarbons<br>during long-range transport of pollution to<br>Sweden                                                        |
| C. A. Pio, M. L. Salgueiro<br>and T. V. Nunes                                         | 2259 | Seasonal and air-mass trajectory effects<br>on rainwater quality at the south-western<br>European border                                                |
| B. A. Bodhaine, N. C. Ahlquist and R. C. Schnell                                      | 2267 | Three-wavelength nephelometer suitable for aircraft measurement of background aerosol scattering coefficient                                            |
| A. Fried, B. Henry, D. D. Parrish,<br>J. R. Carpenter and M. P. Buhr                  | 2277 | Intercomparison of tunable diode laser and gas filter correlation measurements of ambient carbon monoxide                                               |
| J. G. Hudson and P. R. Frisbie                                                        | 2285 | Surface cloud condensation nuclei and condensation nuclei measurements at Reno, Nevada                                                                  |
| NH. Lin and V. K. Saxena                                                              | 2301 | In-cloud scavenging and deposition of sulfates and nitrates: case studies and parameterization                                                          |
| P. Bange, L. H. J. M. Janssen,<br>F. T. M. Nieuwstadt, H. Visser<br>and J. J. Erbrink | 2321 | Improvement of the modelling of daytime nitrogen oxide oxidation in plumes by using instantaneous plume dispersion parameters                           |
| R. D. Diab, S. Common<br>and L. M. Roberts                                            | 2329 | Power line insulator pollution and power dips in Natal, South Africa                                                                                    |
| C. Papastefanou and A. Ioannidou                                                      | 2335 | Depositional fluxes and other physical characteristics of atmospheric beryllium-7 in the temperate zones (40°N) with a dry (precipitation-free) climate |
| B. B. Hicks, R. P. Hosker, Jr,<br>T. P. Meyers and J. D. Womack                       | 2345 | Dry deposition inferential measurement techniques—I. Design and tests of a prototype meteorological and chemical system for determining dry deposition  |
| T. P. Meyers, B. B. Hicks,<br>R. P. Hosker, Jr, J. D. Womack<br>and L. C. Satterfield | 2361 | Dry deposition inferential measurement techniques—II. Seasonal and annual deposition rates of sulfur and nitrate                                        |
| B. Shi and J. H. Seinfeld                                                             | 2371 | On mass transport limitation to the rate of reaction of gases in liquid droplets                                                                        |
| M. T. Odman and A. G. Russell                                                         | 2385 | A multiscale finite element pollutant transport<br>scheme for urban and regional modeling                                                               |
| L. R. Martin and T. W. Good                                                           | 2395 | Catalyzed oxidation of sulfur dioxide in sol-<br>ution: the iron-manganese synergism                                                                    |

| K. N. Bower, T. A. Hill, H. Coe and T. W. Choularton                              | 2401 | SO <sub>2</sub> oxidation in an entraining cloud model with explicit microphysics             |
|-----------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|
| Technical Note A. A. Al-Arainy, M. S. El-Shobokshy, N. H. Malik and M. I. Qureshi | 2419 | Design of an environmental chamber for high voltage testing in simulated dust and sand storms |
| Discussion D. G. Ross, I. N. Smith, R. Mathur and L. K. Peters                    | 2425 | Adjustment of wind fields for application in air pollution modeling                           |
| News and Opinions<br>Introduction                                                 | 2429 |                                                                                               |
| Calendar                                                                          | 2429 |                                                                                               |
| Book Reviews (S. E. Schwartz<br>and J. P. Lodge, Jr)                              | 2431 |                                                                                               |
| New Patents                                                                       | i    |                                                                                               |

# Number 11

# Symposium on Global Climatic Effects of Aerosols

| Symposium on G                                                                          | toout C | umatic Effects of Aerosots                                                                                 |
|-----------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------|
| J. E. Penner and G. W. Mulholland                                                       | 2433    | An overview                                                                                                |
| S. Twomey                                                                               | 2435    | Aerosols, clouds and radiation                                                                             |
| O. Preining                                                                             | 2443    | Aerosol and climate—an overview                                                                            |
| T. L. Anderson and R. J. Charlson                                                       | 2445    | Geophysiology of natural marine sulfate aerosols                                                           |
| J. G. Hudson                                                                            | 2449    | Observations of anthropogenic cloud condensation nuclei                                                    |
| P. A. Durkee, F. Pfeil, E. Frost and R. Shema                                           | 2457    | Global analysis of aerosol particle characteristics                                                        |
| W. G. N. Slinn                                                                          | 2473    | Hints of another gremlin in the greenhouse: anthropogenic sulfur                                           |
| S. M. Kreidenweis, F. Yin,<br>SC. Wang, D. Grosjean,<br>R. C. Flagan and J. H. Seinfeld | 2491    | Aerosol formation during photooxidation of organosulfur species                                            |
| S. M. Kreidenweis, J. E. Penner, F. Yin and J. H. Seinfeld                              | 2501    | The effects of dimethylsulfide upon marine aerosol concentrations                                          |
| D. J. Erickson, III, J. J. Walton, S. J. Ghan and J. E. Penner                          | 2513    | Three-dimensional modeling of the global atmospheric sulfur cycle: a first step                            |
| A. D. A. Hansen, W. H. Benner and T. Novakov                                            | 2521    | Sulfur dioxide oxidation in laboratory clouds                                                              |
| W. G. Finnegan, R. L. Pitter<br>and L. G. Young                                         | 2531    | Preliminary study of coupled oxidation-<br>reduction reactions of included ions in growing<br>ice crystals |
| M. J. Molina                                                                            | 2535    | Heterogeneous chemistry on polar strato-<br>spheric clouds                                                 |

| E. M. Patterson, R. M. Duckworth,<br>C. M. Wyman, E. A. Powell<br>and J. W. Gooch | 2539 | Measurements of the optical properties of the<br>smoke emissions from plastics, hydrocarbons,<br>and other urban fuels for nuclear winter studies |
|-----------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| N. P. Bryner and G. W. Mulholland                                                 | 2553 | Smoke emission and burning rates for urban structures                                                                                             |
| M. F. Iskander, H. Y. Chen<br>and J. E. Penner                                    | 2563 | Resonance optical absorption by fractal agglomerates of smoke aerosols                                                                            |
| C. F. Rogers, J. G. Hudson,<br>J. Hallett and J. E. Penner                        | 2571 | Cloud droplet nucleation by crude oil smoke and coagulated crude oil/wood smoke particles                                                         |
| D. E. Hagen, M. B. Trueblood and J. Podzimek                                      | 2581 | Combustion aerosol scavenging                                                                                                                     |
| J. Podzimek, M. B. Trueblood<br>and D. E. Hagen                                   | 2587 | Condensation nuclei activation or deactivation by deposited insoluble particles                                                                   |
| N. L. Miller and P. K. Wang                                                       | 2593 | A theoretical determination of the collection rates of aerosol particles by falling ice crystal plates and columns                                |
| T. F. Harvey and L. L. Edwards                                                    | 2607 | A parametric investigation of electrical effects on aerosol scavenging by droplets over large fires                                               |
| S. J. Ghan                                                                        | 2615 | Chronic climatic effects of nuclear war                                                                                                           |
| D. P. Bacon and R. A. Sarma                                                       | 2627 | Agglomeration of dust in convective clouds initialized by nuclear bursts                                                                          |
| L. C. Rosen and J. Ipser                                                          | 2643 | Scattering of ground based lasers by aerosols in an atmosphere with enhanced particle content                                                     |
| News and Opinions                                                                 |      |                                                                                                                                                   |
| Introduction                                                                      | 2653 |                                                                                                                                                   |
| Calendar                                                                          | 2653 |                                                                                                                                                   |
| Contents of <i>Időjárás</i> , Volume 94,<br>Number 6, 1990                        | 2655 |                                                                                                                                                   |
| New Patents                                                                       | i    |                                                                                                                                                   |
|                                                                                   |      |                                                                                                                                                   |

# Number 12

| E. Ganor                                                       | 2657 | The composition of clay minerals transported to Israel as indicators of Saharan dust emission |
|----------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|
| E. Ganor, H. A. Foner,<br>S. Brenner, E. Neeman and<br>N. Lavi | 2665 | The chemical composition of aerosols settling in Israel following dust storms                 |
| A. G. Allen, R. M. Harrison and K. W. Nicholson                | 2671 | Dry deposition of fine aerosol to a short grass surface                                       |
| R. W. Gillett and G. P. Ayers                                  | 2677 | The use of thymol as a biocide in rainwater samples                                           |
| C. Veldt                                                       | 2683 | Emissions of SO <sub>x</sub> , NO <sub>x</sub> , VOC and CO from East European countries      |

| 761                                                                                           | Col  | itelits                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E. Atlas                                                                                      | 2701 | Observation of possible elemental sulfur in the marine atmosphere and speculation on its origin                                                                                                             |
| L. A. Smith and A. S. Lefohn                                                                  | 2707 | Co-occurrence of ozone and wet deposited hydrogen ion in the United States                                                                                                                                  |
| G. Zhang, P. K. Dasgupta and YS. Cheng                                                        | 2717 | Design of a straight inlet diffusion scrubber.<br>Comparison of particle transmission with other<br>collection devices and characterization for<br>the measurement of hydrogen peroxide and<br>formaldehyde |
| A. S. Wexler and J. H. Seinfeld                                                               | 2731 | Second-generation inorganic aerosol model                                                                                                                                                                   |
| B. Y. Underwood                                                                               | 2749 | Deposition velocity and the collision model of atmospheric dispersion—I. Framework and application to cases with constant turbulent velocity scale                                                          |
| B. Y. Underwood                                                                               | 2761 | Deposition velocity and the collision model of atmospheric dispersion—II. Extension to cases with variable turbulent velocity scale                                                                         |
| W. P. L. Carter and<br>F. W. Lurmann                                                          | 2771 | Evaluation of a detailed gas-phase atmospheric reaction mechanism using environmental chamber data                                                                                                          |
| F. Raes, C. Tassone, G. Grippa,<br>N. Zarimpas and G. Graziani                                | 2807 | Updating long-range transport model pre-<br>dictions using real-time monitoring data in<br>case of nuclear accidents with release to the<br>atmosphere                                                      |
| R. R. Draxler, R. Dietz,<br>R. J. Lagomarsino and G. Start                                    | 2815 | Across North America Tracer Experiment (ANATEX): sampling and analysis                                                                                                                                      |
| W. H. Snyder and<br>R. E. Lawson, Jr                                                          | 2837 | Fluid modeling simulation of stack-tip downwash for neutrally buoyant plumes                                                                                                                                |
| S. T. Trudgill, H. A. Viles,<br>R. U. Cooke, R. J. Inkpen,<br>A. L. Heathwaite and J. Houston | 2851 | Trends in stone weathering and atmospheric pollution at St Paul's Cathedral, London, 1980–1990                                                                                                              |
| D. T. Mylonas, D. T. Allen,<br>S. H. Ehrman and S. E. Pratsinis                               | 2855 | The sources and size distributions of organo-<br>nitrates in Los Angeles aerosol                                                                                                                            |
| D. Camuffo, A. Bernardi and<br>P. Bacci                                                       | 2863 | Transboundary transport of atmospheric pollutants through the eastern Alps                                                                                                                                  |
| R. D. Saylor, L. K. Peters and R. Mathur                                                      | 2873 | The STEM-II regional-scale acid deposition and photochemical oxidant model—III. A study of mesoscale acid deposition in the lower Ohio River Valley                                                         |
| Technical Note J. J. Colls, P. A. Geissler and C. K. Baker                                    | 2895 | Long-term performance of a field-release<br>system for the intermittent exposure of agri-<br>cultural crops to sulphur dioxide                                                                              |
| Short Communication M. D. Cheng, P. K. Hopke, S. Landsberger and L. A. Barrie                 | 2903 | Distribution characteristics of trace elements<br>and ionic species of aerosol collected at<br>Canadian High Arctic                                                                                         |
| Discussions G. W. Gross, W. G. Finnegan and R. L. Pitter                                      | 2911 | Preliminary study of coupled oxidation-<br>reduction reactions of included ions in growing<br>ice crystals                                                                                                  |
|                                                                                               |      |                                                                                                                                                                                                             |

Contents

XXI

| J. Dignon                                      | 2915 | Perturbations to tropospheric oxidants 1985-2035:2. Calculations of hydrogen peroxide in chemically coherent regions |
|------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|
| News and Opinions                              |      |                                                                                                                      |
| Introduction                                   | 2917 |                                                                                                                      |
| Calendar                                       | 2917 |                                                                                                                      |
| New Patents                                    | i    |                                                                                                                      |
| Volume Contents and Author Index to Volume 25A | I    |                                                                                                                      |



