Suppose your learning algorithm's cost J, plotted as a function of the number of



iterations, looks like this:

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

正确

Jan 2nd:  $heta_2 10^o C$ 

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

~

5. Suppose the temperature in Casablanca over the first three days of January are the same:

/ 1

Jan 1st:  $heta_1 = 10^oC$ 

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta=0.5$  to track the temperature:  $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2=10$ ,  $v_2^{corrected}=10$
- $v_2=7.5$ ,  $v_2^{corrected}=7.5$

正确

 $v_2=10$ ,  $v_2^{corrected}=7.5$ 

~

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 $\bigcirc$   $\alpha = e^t \alpha$ 

正確

- $\alpha = \frac{1}{\sqrt{t}}\alpha_0$
- $\alpha = rac{1}{1+2*t}lpha_0$
- $lpha = 0.95^t lpha_0$

~

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . The red line below was computed using  $\beta=0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)







未选择的是正确的

Increasing  $\boldsymbol{\beta}$  will shift the red line slightly to the right.

正确

True, remember that the red line corresponds to  $\beta=0.9.$  In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

Decreasing  $\boldsymbol{\beta}$  will create more oscillation within the red line. 

正确

True, remember that the red line corresponds to eta=0.9. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations.

Increasing  $\beta$  will create more oscillations within the red line.

未选择的是正确的

Consider this figure:



These plots were generated with gradient descent; with gradient descent with  $% \left( 1\right) =\left( 1\right) \left( 1$ momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small eta). (3) is gradient descent with momentum (large  $\beta$ )

正确

- (1) is gradient descent. (2) is gradient descent with momentum (large  $\beta$ ) . (3) is gradient descent with momentum (small eta)
- (1) is gradient descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large eta)

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function  $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]}).$  Which of the following techniques could help find parameter values that attain a small value for  $\mathcal{J}$ ? (Check all that apply)

Try initializing all the weights to zero

未选择的是正确的







Adam combines the advantages of RMSProp and momentum

 $eta_1 = 0.9, eta_2 = 0.999, arepsilon = 10^{-8})$ 

We usually use "default" values for the hyperparameters  $eta_1, eta_2$  and arepsilon in Adam (





