On the Fully Bayesian Treatment of Latent Gaussian Models using Stochastic Simulations

Maurizio Filippone

School of Computing Science University of Glasgow maurizio.filippone@glasgow.ac.uk

April 2nd, 2012

Outline of the talk

- Motivating application
- 2 Latent Gaussian Models
- 3 Inference in Latent Gaussian Models
- Results on Neuroimaging data

Parkinson syndromes data

- 62 subjects
- Early stage prediction of development of
 - Parkinson Syndromes
 - Multiple System Atrophy
 - Progressive Supranuclear Palsy
- Given neuroimages

Probabilistic Modeling

- which sources carry the most discriminative information?
- how do we assess which regions of the brain are responsible for the three diseases?
- how do we compare different models?
- how do we incorporate knowledge by experts?
- how can we attach confidence intervals to our predictions and parameter estimates?

Probabilistic modeling offers an answer to these questions

Inference and model selection

Parameters and data are viewed as random variables

• Inference - Bayes theorem:

$$p(\operatorname{Par}|\operatorname{Data}) = \frac{p(\operatorname{Data}|\operatorname{Par})p(\operatorname{Par})}{\int p(\operatorname{Data}|\operatorname{Par})p(\operatorname{Par})d\operatorname{Par}}$$

- Denominator: model evidence used for model comparison
- Usually analytically intractable!

Relevance of the problem

Inference and predictions

Predictions for new data Data*

$$p(\text{Data}_*|\text{Data}) = \int p(\text{Data}_*|\text{Par})p(\text{Par}|\text{Data})d\text{Par}$$

• requires the posterior distribution p(Par|Data)

Approximate integration

- Approximations to solve analytically intractable integrals:
 - Deterministic: Laplace approximation, Variational Approximations (Expectation Propagation)
 - Stochastic: Markov chain Monte Carlo (MCMC)

Deterministic approximations

Variational Approximations (Expectation Propagation)

Deterministic approximations

• Multimodalities can be a problem

Stochastic approximations - Monte Carlo integration

Predictions for new data Data* is an expectation

$$p(Data_*|Data) = \int p(Data_*|Par)p(Par|Data)dPar$$

Monte Carlo approximation:

$$E[f(x)] = \int f(x)p(x)dx \simeq \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

with x_i drawn from p(x)

- the variance of $\mathrm{E}[f(x)] o 0$ in O(1/N)
- this requires independence of the x_i

Stochastic approximations - MCMC

• Explore the parameter space according to the density

Stochastic approximations - MCMC

• Exploration of the space according to the density

Stochastic approximations - MCMC

- MCMC needs the density up to a normalization constant
- Random walk sampler accept a proposal with probability

$$\min\left(1, \frac{p(\operatorname{Par}'|\operatorname{Data})}{p(\operatorname{Par}|\operatorname{Data})}\right)$$

by Bayes' theorem

$$p(\text{Par}|\text{Data}) = \frac{p(\text{Data}|\text{Par})p(\text{Par})}{\int p(\text{Data}|\text{Par})p(\text{Par})d\text{Par}}$$

Therefore:

$$\min\left(1, \frac{p(\text{Data}|\text{Par}')p(\text{Par}')}{p(\text{Data}|\text{Par})p(\text{Par})}\right)$$

Stochastic approximations - Monte Carlo integration

Random walk can be inefficient, so why not use

- gradient information Hybrid Monte Carlo (Neal 1995),
 Langevin diffusion (Roberts and Stramer 2002)
- curvature information (Fisher Information) Manifold methods (Girolami and Calderhead 2011)

A class of hierarchical models

- Models can have more complex structures
- For example:

```
p(Data|latent state) p(latent state|Par) p(Par)
```

Coal mine disasters data

191 accidents between 1851 and 1962

Coal mine disasters data

191 accidents between 1851 and 1962

Latent Gaussian Models - (LGM)

$$\begin{array}{c|c} p(\theta) & \text{prior } \theta \\ p(\mathbf{f}|\theta) = \mathcal{N}(\mathbf{f}|\mathbf{0},K) & \text{prior latent } \mathbf{f} \\ p(\mathbf{y}|\mathbf{f}) = \mathcal{E}(\mathbf{y}|\boldsymbol{\zeta}(\mathbf{f})) & \text{likelihood} \end{array}$$

Squared exponential covariance function

$$k(\mathbf{x}_i, \mathbf{x}_j | \boldsymbol{\theta}) = \alpha \exp \left[-\frac{1}{2} (\mathbf{x}_i - \mathbf{x}_j)^{\mathrm{T}} A (\mathbf{x}_i - \mathbf{x}_j) \right]$$

Example - Regression with Gaussian processes

Example - Regression with Gaussian processes

Example - Regression with Gaussian processes

LGM - Logistic regression example

Latent Gaussian models - Other examples

- Log-Gaussian Cox model (Møller et al. 1998)
- Gaussian copula process volatility model (Wilson and Ghahramani 2010)
- Gaussian processes for ordinal regression (Chu and Ghahramani 2005)

Challenges

• computation of the likelihood is in $O(n^3)$ (same complexity for approximate methods) as the likelihood contains:

$$\log |K| \qquad \mathbf{f}^{\mathrm{T}} K^{-1} \mathbf{f}$$

• conditional distributions $p(\mathbf{f}|\theta, \mathbf{y})$ and $p(\theta|\mathbf{f}, \mathbf{y})$ are such that Gibbs sampler updates require a Metropolis acceptance step

Model structure and efficient sampling

The structure of the model poses a serious challenge to MCMC methods for efficiently sampling from posterior distributions

Reparametrization for MCMC in hierarchical models

- Efficiency of parametrizations in strong/weak data limits (Papaspiliopoulos et al. 2007, Murray and Adams 2010)
- Yu and Meng (2011) combining different parametrizations to boost MCMC efficiency

ASIS for LGMs

Reparametrization for LGMs:

$$f|y, \theta \longrightarrow \theta|y, f \longrightarrow \theta|y, \nu$$

Schematic view

Parkinson syndromes data

Multiclass classification with multiple sources

- Parkinson Syndromes
- Multiple System Atrophy
- Progressive Supranuclear Palsy
- Healthy controls

Results - Parkinson syndromes data

• latent variables $f_c(x)$ with GP prior with covariance

$$cov(f_c(x_1), f_c(x_2)) = \sum_{s=1}^q w_{cs} C_s(x_1, x_2)$$

Multinomial likelihood

$$p(\text{disease} = c|\text{Sources}) = \frac{\exp(f_c(x))}{\sum_{r=1}^{m} \exp(f_r(x))}$$

• this problem is aka Multiple Kernel Learning

Parkinson syndromes data

Table: Predictive accuracy (multi-source classifier)

Method	Accuracy
GP classifier	0.598
SimpleMKL	0.418

Parkinson syndromes data - multi source

Parkinson syndromes data

Analysis of brain regions

- for this analysis we used only the GM data modality
- we used an anatomical template as in Shattuck et al. 2008 to parcellate the GM images into:
 - brainstem
 - bilateral cerebellum
 - bilateral caudate
 - bilateral middle occipital gyrus
 - bilateral putamen
 - all other regions

Parkinson syndromes data

Table: Predictive accuracy (multi-region classifier)

Method	Accuracy
GP classifier	0.614
SimpleMKL	0.229

Parkinson syndromes data - multi region

Conclusions and ongoing work

- benefits of a fully Bayesian treatment in the descriptive power of the model
- recent advances in inference in hierarchical models allow to make a step forward into fully Bayesian inference in LGMs
- complexity is in $O(n^3)$ same for deterministic approximations

References

- [1] M. Filippone, A.F. Marquand, C.R.V. Blain, S.C.R. Williams, J. Mourão-Miranda, and M. Girolami. **Probabilistic prediction of neurological disorders with a statistical** assessment of neuroimaging data modalities. *Annals of Applied Statistics. To appear.*
- [2] M. Filippone, M. Zhong, and M. Girolami. On the fully Bayesian treatment of latent Gaussian models using stochastic simulations. Technical Report TR-2012-329, School of Computing Science. University of Glasgow. February 2012.

References

Thank you!

Questions?

Vocal/Non vocal Data

- Experiments reported here are with a single subject listening passively to vocal and non-vocal stimuli
- Preprocessing: time correction, spatial smoothing, masking, normalization, and voxel reduction (t-test)
- We have 200 samples with 4,436 covariates (number of voxels remaining after the t-test)
- classes: 1 vocal and 0 non-vocal stimuli

Results - Experimental setting

- binary Logistic Regression with GP prior
- Support Vector Machines (SVM)
 - tested with both linear and radial basis function kernel
 - parameters (C and kernel bandwidth) were optimized using 10-fold cross validation
- GPC and non-linear SVMs use isotropic covariance/kernel functions

Results - Classification accuracy

Classification result using 4-fold validation

Method	Accuracy (std err)
SVM (lin)	75.5% (5.9%)
SVM (rbf)	76% (1.4%)
GPC	78.5% (3.8%)

- we can use the predictive distribution for finer decision rules
- by doing so we achieve 92.8% accuracy on 90 samples