Convergence Tests of Infinite Series

Vikhyat Korrapati

September 4, 2011

This document can be viewed in HTML format at http://vikhyat.net/articles/convergence_tests/.

1 Positive Term Series

1.1 Integral Test

Let $\sum a_n$ be a positive term series, and let $a_n = f(n)$ such that f(n) decreases as n increases. Then $\sum a_n$ converges or diverges if $\int_1^\infty f(x)dx$ is finite or infinite respectively.

1.2 p-Series Test

Let $\sum a_n$ be a positive term series given by $a_n = \frac{1}{n^p}$. Then, $\sum a_n$ is convergent if p > 1, and divergent if $p \leq 1$.

1.3 Comparison Test

Let $\sum a_n$ be a positive term series, then:

- 1. $\sum a_n$ is convergent if $\sum b_n$ is another convergent series with $a_n \leq b_n$.
- 2. $\sum a_n$ is divergent if $\sum d_n$ is another divergent series with $a_n \geq d_n$.

1.4 Limit Comparison Test

Let $\sum a_n$ and $\sum b_n$ be two positive term series.

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ is a finite and non-zero positive quantity, then $\sum a_n$ and $\sum b_n$ will converge and diverge together.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ is convergent, then $\sum a_n$ is also convergent.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ is divergent, then $\sum a_n$ is also divergent.

1.5 D'Alembert's Ratio Test / Ratio Test

Let $\sum a_n$ be a positive term series, and let $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r$.

- 1. The series is convergent if r < 1.
- 2. The series is divergent if r > 1 or if r is infinite.
- 3. The test fails if r = 1.

1.6 Cauchy's Root Test / Root Test

Let $\sum a_n$ be a positive term series, and $\lim_{n\to\infty} (a_n)^{\frac{1}{n}} = r$.

- 1. The series is convergent if r < 1.
- 2. The series is divergent if r > 1.
- 3. The test fails if r = 1.

1.7 Raabe's Test

Let $\sum a_n$ be a positive term series, and $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=k$.

- 1. The series is convergent if k > 1.
- 2. The series is divergent if k < 1.
- 3. The test fails if k = 1.

1.8 Logarithmic Test

Let $\sum a_n$ be a positive term series, and $\lim_{n\to\infty} n\log\left(\frac{a_n}{a_{n+1}}\right) = k$.

- 1. The series is convergent if k > 1.
- 2. The series is divergent if k < 1.
- 3. The test fails if k = 1.

2 Alternating Series

2.1 Leibniz's Test

If the series $\sum (-1)^n a_n$ is an alternating series, then the series is convergent if:

- 1. Each term is numerically lesser than the preceding term. $(|a_{n+1}| < |a_n|)$
- 2. $\lim_{n\to\infty} a_n$ must equal 0.