VCFs, Variants, and Python

John Garza

Recap: Important File Formats

- Sequences
 - FASTA, FASTQ
- Alignments
 - SAM/BAM/CRAM
- Features & Annotations
 - GTF/GFF
 - o BED
 - VCF: Variant Call Format

VCF Annotations & VEP

- Identity: Coordinates & Sequence
- Annotation: Biological & Clinical Significance
- VEP: Variant Effect Predictor
 - Genes and transcripts affected by the variants
 - Regulatory context of the variants
 - Consequence of your variants on the protein sequence
 - SIFT and PolyPhen-2 scores for changes to protein sequence
 - Many more, including custom/user defined

How VEP Works

Direct analysis

- Mutation type from sequence/amino acid change
- Regulatory context from coordinates

Database matching

- ClinVar: clinical significance
- o gnomAD: population frequency
- COSMIC: somatic mutations in cancer

Novel Analysis

Predict functional impact using computational tools

Why Annotaate?

- Hone in on significant mutations
- Clinical Applications
 - Identify pathogenic mutations
 - Select variants for further investigation
 - Precision medicine
 - Neoantigen targets for immunotherapy
- Research Applications
 - Genotype-phenotype associations
 - Discovery of novel mechanisms

Demonstration: Manipulating VCFs