Exercises in Marine Ecological Genetics

09. DNA barcoding

- Extract barcodes from Sanger reads
- Match sequence to BOLD database
- Evaluate id quality using genetic distances

Foto: dpa

Martin Helmkampf

https://github.com/mhelmkampf/meg25

#fischdetektive

Where does our seafood come from, and is it labeled correctly?

Citizen science project at GEOMAR (2017) with over 700 participants (10–14 years)

Thorsten Reusch, GEOMAR

Matching

COI barcode

Approx. 650 bp in 5' region of cytochrome c oxidase subunit I (COI)

>MN604318.1 Oncorhynchus keta cytochrome c oxidase subunit I gene, complete cds; mitochondrial GTGGCAATCACACGATGATTCTTCTCAACCAACCACAAAGACATTGGCACCCTCTATTTAGTATTTGGTGCCTGAGCCGGGATAGTAGGCACCGCCCTG AGCCTACTAATTCGGGCAGAACTAAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCGTTACAGCCCATGCCTTCGTTATAATT ATAAGCTTCTGACTCCTACCTCCGTCCTTCCTCCTCCTTCTTCATCTGGAGTTGAAGCCGGCGCTGGTACCGGGTGGACAGTTTATCCCCCTCTA ACGACCATTATCAACATAAAACCCCCAGCTATTTCTCAGTACCAAACCCCGCTTTTTGTCTGAGCTGTACTAATCACTGCTGTACTTCTACTATTATCA CAACACCTCTTTTGATTCTTCGGTCACCCAGAGGTCTATATTCTGATCCTCCCAGGCTTTGGTATAATTTCACATATCGTTGCATATTACTCTGGTAAG AAAGAACCTTTCGGGTACATAGGAATAGTGTGAGCTATAATAGCCATCGGCTTGTTAGGATTTATCGTTTGAGCCCACCACACATATTTACTGTCGGGATG GACGTGGACACTCGTGCCTACTTTACATCTGCCACCATAATTATCGCTATCCCCACAGGAGTAAAAGTATTTAGCTGACTAGCTACACTGCACGGAGGC TCGATCAAATGAGAGACACCACTTCTCTGAGCCCTAGGATTTATCTTCCTATTTACAGTGGGCGGATTAACGGGCATCGTCCTTGCTAACTCCTCATTA GACATTGTTTTACATGACACTTATTACGTAGTCGCCCATTTCCACTACGTACTCTCAATAGGAGCTGTATTTGCCATTATGGGCGCTTTCGTACACTGA TTCCCCCTATTCACAGGGTACACCCTTCACAGCACATGAACCAAAATCCATTTTGGAATTATATTTATCGGTGTAAATTTAACCTTTTTCCCACAGCAT TTCCTAGGCCTCGCAGGGATACCACGACGGTACTCTGACTACCCGGACGCCTACACGCTATGAAACACTGTATCCTCAATCGGATCCCTTGTCTCCTTA GTAGCTGTAATTATGTTCCTATTTATTCTTTGAGAGGCTTTTGCTGCCAAACGAGAAGTAGCATCAATCGAAATAACTTCAACAAACGTAGAATGACTA CACGGATGCCCCCCCCCCCACCACACACTTCGAGGAACCAGCATTTGTCCAAGTACGAACGTACTAA

Sanger sequencing

Estevezj, CC BY-SA 3.0

G A T G T T C G A A G A G A C C - T C G - T

Arranges nucleotide or amino acid sequences so that the number of mismatches are minimized

- Accomplished by introducing gaps (–), which represent insertions or deletions (indels)
 and account for sequence length differences due to mutations over time
- Computationally complex, often requires heuristic solutions
- Reveals evolutionary or functional relationships between sequences (e.g. homology)
- Key to variant calling, sequence assembly, species identification and phylogenetics

Barcode Index Number (BIN)

- Clusters of similar COI barcodes
- Clustering is based on genetic similarity, independent of formal taxonomy
- Represent operational taxonomic units (OTUs) that often correspond to species
- Enable species identification and biodiversity assessments

Uncorrected or *p*-distance:

Proportion of nucleotides at which two sequences differ

$$p = 13 / 50 = 0.26$$

Does not correct for multiple substitutions (repeated mutations of the same site) or transition / transversion bias (> K2P distance, Kimura 1980)

Barcode gap

Comparing genetic distances within BIN and to nearest neighbor (NN) BIN

Comparison	Typical p-distance (COI)
Within species	< 2 %
Between species	> 2–3 %
Between genera	10–20 %

Large barcode gap

Oncorhynchus keta

Small barcode gap *Gadus chalcogrammus*

#fischdetektive results

Mislabeling seems to be only a moderate problem in Germany in frozen and fresh fish (but may be higher in Sushi-grade fish and processed fish products)

Portable 3rd gen sequencing

Oxford Nanotechnologies MinION

96-well plate

Indexing during PCR Library preparation

whatech.com

blogs.nature

Summary

DNA barcoding

```
seqkit subseq -r start:end input.fas > output.fas
seqkit seq -r -p input.fas > output.fas
merger -asequence forward.fas -bsequence reverse.fas ... -outseq consensus.fas
```

- Accurate barcodes like COI can be extracted from high-quality Sanger reads after careful processing, including trimming and consensus formation
- Matching to a reference database like BOLD allows to assign samples to species,
 but results depend on sequence quality and database completeness
- Identification reliability may be assessed using sequence similarity and genetic distance to nearest-neighbor ("barcode gap")

Evaluation — please participate!

https://elearning.uni-oldenburg.de/plugins.php/unizensusplugin/show?cid=3660d16e8eb3daf479389cf8233c12fb