# Assignment 2: Research Proposal Presentation

Prepared by:

Mohamed Ahmed Mohamed Elmokhtar Ahmed, 1191102491

Ahmed Hassan Mohammed Salem, 1191102340

Mohammad Wathiq Soualhi, 1191102425

Peravenkumar A L Sivan, 1191102236

Multimedia University

# Presentation - Part 1 : Research Proposal



## **Abstract**

#### Research Problem:

• Users lose interest in using mHealth after a certain period of time

#### State-of-the-art reseach:

- mHealth has the potential to improve the health lifestyle for individuals by positively affecting health behaviours.
- Not many studies have been conducted to engage the users in the development process of the mHealth application to achieve long-term support and encouragement to continue using the application.

#### Expected outcome:

 Multi step release process technique develop an improvement towards the mHealth application as it identifies the users needs



### Introduction

#### Mhealth definition:

 mHealth (Mobile Health) can be defined as a public health and medical practice that utilises mobile devices

#### State-of-the-art research work:

- mHealth applications are considered to be products and just like any other
  product, the research and study of users and their interaction with mHealth is
  important to develop a successful mHealth application [Biduski et al., 2020]
- The new mHealth solutions can be seen to substantially depend on the acceptance of users in order to achieve the intended frequent and long-term use of mHealth [Madeira et al., 2018]

## Motivation Of The Research

The motives that led us to study factors that helps developers meet user requirement are :

- Users loose interest in using mHealth after using it for a period of time [Biduski et al., 2020]
- Meeting users requirements is a critical factor that determines the success of the mHealth application [Holdener et al., 2020]
- Only few of the studies described how mHealth application developers can engage users in the development process



# Research Objectives

#### The objective of this research is:

- To identify how current mHealth app developers are meeting user requirements
- To identify factors that may affect user acceptance
- To allow developers meet user requirements for the success of mHealth.



## Literature Review

- Applications for health care purposes are identified as a growing industry with great potential to improve the health condition for individuals [Santos-Vijande et al., 2022]
- Users tend to show a positive interest in applications that focus on fitness, diabetes and meditations rather than applications that focus on cancers.
   [Pai and Alathur, 2018]
- The 4 attributes that contribute to user engagement are perceived usability, aesthetic appeal, reward, and focus attention. [Holdener et al., 2020]
- Mhealth applications store sensitive data hence, the healthcare providers must adopt an appropriate transfer protocol as it is an essential factor to convince potential users. [Schwab et al., 2021]



## Research Method

- Qualtrics tool was used to identify the required sample size to achieve 99 % confidence level and 4 % error margin
- 1037 candidates from different age groups ranging from 16 to 65 years old were selected
- Each candidate was given a clinic healthcare app to use for 6 months
- Feedback from the users was collected on a monthly basis to study their usage behaviour changes and their intention to continue using the app
- Revuze tool was used to analyse the data.
- The output data was carefully inspected to understand and identify the design features that must be included in mHealth apps to meet user requirements.



# **Expected Outcome**

- Multi-step release process will gather insights related to designing an effective mHealth application based on meeting user requirements.
- This technique will allow the developers to design high-rate performance application, easy handle UI, an efficiency application that cycles in a fast time and well integrated application.
- Multi step release technique will ensure that the application meet user requirements to achieve user acceptance and long term engagement.



## References



Biduski, D., Bellei, E. A., Rodriguez, J. P. M., Zaina, L. A. M., and De Marchi, A. C. B. (2020).

Assessing long-term user experience on a mobile health application through an in-app embedded conversation-based questionnaire.

Computers in Human Behavior, 104:106169.



Holdener, M., Gut. A., and Angerer, A. (2020).

Applicability of the user engagement scale to mobile health: A survey-based quantitative study. JMIR Mhealth Uhealth, 8(1):9.



Madeira, R. N., Germano, H., Macedo, P., and Correia, N. (2018).

Personalising the user experience of a mobile health application towards patient engagement. Procedia Computer Science, 141:428-433.



Pai, R. R. and Alathur, S. (2018).

Assessing mobile health applications with twitter analytics. International Journal of Medical Informatics, 113:72-84.



Santos-Vijande, M. L., Gómez-Rico, M., Molina-Collado, A., and Davison, R. M. (2022).

Building user engagement to mhealth apps from a learning perspective: Relationships among functional, emotional and social drivers of user value.

Journal of Retailing and Consumer Services, 66:102956.



Schwab, J. D., Schobel, J., Werle, S. D., Fürstberger, A., Ikonomi, N., Szekely, R., Thiam, P., Hühne, R., Jahn, N., Schuler, R., Kuhn, P., Holderried, M., Steger, F., Reichert, M., Kaisers, U. X., Kestler, A. M. R., Seufferlein, T., and Kestler, H. A. (2021).

Perspective on mhealth concepts to ensure users' empowerment-from adverse event tracking for covid-19 vaccinations to oncological treatment.

IEEE Access, 9:13.

# Presentation - Part 2: Statistical Data Analysis



# Methods Used For Statistical Data Analysis

First of all, we would like to identify methods used in calculating distance between each of the 1000 vaccine-es and all the ppv centers. The methods used are as follows:

- Vincenty's formulae: two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid
- **Haversine formula:** determines the great-circle distance between two points on a sphere given their longitudes and latitudes
- Numpy & DataFrame: Changing list to numpy and reading data from csv to a dataframe instead of a file reader



# Computer used in Execution time Comparison

| Specification | Computer 1               | Computer 2               |
|---------------|--------------------------|--------------------------|
| RAM           | 16 GB                    | 4 GB                     |
| Hard Disk     | 1 TB SSD                 | 500 GB SSD               |
| CPU           | AMD Ryzen 7 4800 2.9 GHz | Intel Core i5 th Gen GHz |

# Execution Time Comparison using 2 Computers

The research team ran **Haversine formula** on Computer 1 and Computer 2. The number of times the method was executed is 50 times for each computer. The average run time was then recorded:

| Computer               | Average Running Time (Seconds) |
|------------------------|--------------------------------|
| Computer 1 1.796667322 |                                |
| Computer 2             | 2.152936726                    |

As a result of the experiment conducted, Haversine formula had a faster running time in Computer  $\boldsymbol{1}$ 

# Shaded density plot to show the distribution difference between Computer 1 and 2 using Haversine formula



## Execution Time Comparison for 3 Different Methods

The research team ran the 3 methods on Computer 1. The program ran 50 times for each method. After that, the shaded density plot was used to show the distribution difference:



## Acknowledgment

The research team would like to thank Dr Ting for his continuous support in this project. The research team have been working in this project for a long time. Different challenges have been crossed to obtain the intended results which is the reason why this presentation slide is here.