1 收敛定义

$$\begin{aligned} &(i)\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U^0_+(a,\delta) \quad st: \left| \int_a^{a+x} f(x) dx \right| < \varepsilon \\ &(ii)\forall \varepsilon > 0, \exists A > 0, \forall x > A \quad st: \left| \int_A^{+\infty} f(x) dx \right| < \varepsilon \\ &(iii)\forall \varepsilon > 0 \ , N > 0, \forall n > N \quad st: \left| \sum_n^{\infty} a_n \right| < \varepsilon \end{aligned}$$

2 柯西等价

$$(i)\forall \varepsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in U^0_+(a, \delta) \quad st : \left| \int_{x_1}^{x_2} F(x) dx \right| < \varepsilon$$

$$(ii)\forall \varepsilon > 0, \exists A > 0, \forall x_1, x_2 > A \quad st : \left| \int_{x_1}^{x_2} f(x) dx \right| < \varepsilon$$

$$(iii)\forall \varepsilon > 0, \exists N > 0, \forall m, n > N \quad st : \left| \sum_{m=0}^{n} a_i \right| < \varepsilon$$

3 比较原则(对于正项级数适用)

$$(i)$$
若 $0 \le f(x) \le g(x)$, $\int_a^b g(x) dx$ 收敛,则: $\int_a^b g(x) dx$ 收敛 (ii) 若 $0 \le f(x) \le g(x)$, $\int_a^{+\infty} g(x) dx$ 收敛,则: $\int_a^{+\infty} g(x) dx$ 收敛 (iii) 若 $0 \le u_n \le v_n$, $\sum_{1}^{+\infty} v_n$ 收敛则: $\sum_{1}^{+\infty} u_n$ 收敛

4 绝对收敛

$$(i)$$
若 $\int_a^b |f(x)| dx$ 收敛,则: $\int_a^b f(x) dx$ 收敛
 (ii) 若 $\int_a^{+\infty} |f(x)| dx$ 收敛,则: $\int_a^{+\infty} f(x) dx$ 收敛
 (iii) 若 $\sum_{1}^{+\infty} |u_n|$ 收敛则: $\sum_{1}^{+\infty} u_n$ 收敛

5 A-D判则

$$(i)$$
若 $g(x)$ 单调有界, $\int_a^b f(x)dx$ 收敛,则: $\int_a^b f(x)g(x)dx$ 收敛 若 $g(x)$ 单调趋于 0 , $F(x) = \int_x^b f(t)dt$ $(x \in (a,b])$ 有界,则: $\int_a^b f(x)g(x)$ 收敛 (ii) 若 $g(x)$ 单调有界, $\int_a^{+\infty} f(x)dx$ 收敛,则: $\int_a^{+\infty} f(x)g(x)dx$ 收敛 若 $g(x)$ 单调趋于 0 , $F(x) = \int_a^x f(t)dt$ $(x \in (a,+\infty])$ 有界,则: $\int_a^{+\infty} f(x)g(x)dx$ 收敛 (iii) 若 u_n 单调有界, $\sum_1^{+\infty} v_n$ 收敛,则: $\sum_1^{+\infty} u_n v_n$ 收敛 若 u_n 单调趋于 u_n 0, u_n 0, u_n 0 以 u_n 1 计 u_n 2 以 u_n 3 以 u_n 4 以 u_n 4 以 u_n 4 以 u_n 5 以 u_n 6 以 u_n 7 以 u_n 8 以 u_n 8 以 u_n 9 以 u_n

6 级数特殊审敛法

(i)交错级数

若
$$u_n$$
单调趋于 0 ,则: $\sum_{1}^{+\infty} (-1)^n u_n$ 收敛

(ii)达朗贝尔判别法(正项级数!)

(i)
$$\rho < 1$$
, 收敛

若
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho$$
 (ii) $\rho > 1$ 发散 (iii) $\rho = 1$ 无法判断

(iii)柯西判别法(正项级数!)

(i)
$$\rho < 1$$
, 收敛

若
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$$
 (ii) $\rho > 1$ 发散 (iii) $\rho = 1$ 无法判断

(iv)函数判别法(正项级数!)

若 $\exists f(x)st$:

- (i) f(x)单调递减
- (ii) $f(n) = u_n$

(iii)
$$\int_{1}^{+\infty} f(x)dx$$
收敛

则:
$$\sum_{1}^{\infty} u_n$$
收敛

(v)交换律、结合律

- (i) 若 $\sum_{1}^{\infty} |u_n|$ 收敛,则任意重排后仍然绝对收敛
- (ii) 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 u_n 的任意结合收敛

(iii) 若
$$|U|=\sum_1^\infty |u_n|, |V|=\sum_1^\infty |v_n|$$
收敛,则 $|UV|=\sum u_iv_j$ 绝对收敛