Leia as instrucões atentamente!

- Responda às questões na folha de resposta.
- Pode usar as costas do enunciado para rascunho.
- Não desagrafe o enunciado!
- A opção Outra significa que nenhuma das restantes opções está correcta
- Instruções para responder: В Е Seleccionar a resposta (A): \bigcirc) 0 Substituir a resposta (A) por (C): 0 \bigcirc

Cancelar (C) e reactivar a resposta (A): \bigcirc)

- Este exame tem 36 Questões, cada questão tem uma cotação de 200/36 pontos.
-)%.

•	DESCONTO	por	cada resposta	errada	(em p	ercentagem	aа	cotação	da resp	ectiva	questao	,
	$\sum wrong$		1 = 0%	2 =	6.25%	3 = 12	.5%	4 =	18.75%	\geq	5 = 25.0	ĺ

Nome:	Número:
NOMe:	Muneto.

Parte 1

- 1. Um dispositivo gráfico capaz de reproduzir apenas tons de cinzento armazena a informação dos pixels duma imagem agrupando sequências de 4 pixels em 3 bytes, reservando igual número de bits para cada pixel. Qual o número de cores distintas que se conseguiam representar nesse dispositivo de visualização?
 - B. Outra C. $2^4 = 16$ D. $2^{24} = 16777216$ E. $2^3 = 8$
- 2. Uma determinada placa gráfica suporta, no seu modo de mais alta resolução, o formato FullHD de 1920x1080 pixels. Cada pixel é representado por 24 bits, em formato RGB. O sistema usa ainda um z-buffer de 8 bits por pixel para eliminação das superfícies ocultas e a velocidade de refrescamente é de 120Hz. Qual a velocidade mínima de leitura que a memória da placa gráfica terá que suportar para se gerarem as imagens no dispositivo de saída?
 - A. $1920 \times 1080 \times 32 \times 60$ bytes/s
 - B. $1920 \times 1080 \times 32/60 \text{ bits/s}$
 - C. $1920 \times 1080 \times 24 \times 60$ bits/s
 - D. $1920 \times 1080 \times 24/60 \text{ bits/s}$
 - E. Nenhuma das outras
- 3. Um determinado dispositivo de visualização a operar em modo de cor indexada usa, para cada pixel, 10 bits de informação. O dispositivo é capaz de reproduzir cores com 10 bits por componente (Red, Green ou Blue). Qual o espaço necessário para armazenar uma imagem de 1920x1080 pixels?
 - A. $1920 \times 1080 \times 10$ bits
 - B. $1920 \times 1080/10 + 10 \times 30$ bits
 - C. Nenhuma das outras
 - D. $1920 \times 1080/10$ bits
 - E. $1920 \times 1080 \times 10 + 1024 \times 30$ bits

Considere o pipeline lógico duma aplicação WebGL, ilustrado pela figura ao lado.

Considere igualmente o programa GLSL constituído pelos shaders identificados como (1) e (2).

```
Listing 1: (1)
                                                          Listing 2: (2)
                                          attribute vec3 a:
varying float x;
uniform float v;
                                          uniform float v;
                                          varying float x;
void main() {
                                          void main() {
    float tmp = x * x;
                                       Page 1 x = /* expression */;
```

8.	Em que fase do pipeline se poderia executar o algoritmo de Cohen-Sutherland ou o de Sutherland-Hodgeman
	para o recorte de linhas ou de polígonos, respectivamente?

9. Em que fase do pipeline se poderia executar o algoritmo do ponto médio, para o desenho de segmentos de recta?

10. Que valores necessitaria estar armazenados em buffers WebGL?

11. A variável gl_PointCoord é uma variável acessível ao programador em que estágio?

12. A variável gl_PointSize é uma variável acessível ao programador em que estágio?

13. O algoritmo FILLAREA, usado para pintar o interior de um polígono poderia ser útil em que estágio do pipeline?

Uma aplicação WebGL deverá permitir ao utilizador visualizar o campo gravítico (força gravítica sentida por uma massa unitária) que se faz sentir num determinado local do plano gravitacional dum sistema solar. A visão do sistema solar consiste numa projeção ortogonal onde o plano de projeção é o próprio plano orbital dos planetas (vista de "cima"). O sol, planetas, luas, etc. já se encontram posicionados e são em número reduzido (< 16). O comportamento da aplicação deverá ser tal que, ao deslocar o rato sobre o canvas, uma linha será desenhada tendo como um extremo a posição do rato, sendo o outro extremo determinado pelo campo gravítico que se faz sentir no local. O comprimento da linha desenhada pode ser controlado por uma escala arbitrária controlada pela roda (wheel) do rato.

- 14. Indique como organizaria as variáveis do seu programa, quando fosse desenhar a referida linha, usando a primitiva gl.LINES, de modo a que nenhum cálculo fosse efetuado pela componente javascript da aplicação!
 - A. Outra
 - B. posições das outras massas: attribute; posição do rato: uniform; escala: uniform;
 - C. posições das outras massas: uniform; posição do rato: uniform; escala: attribute;
 - D. posições das outras massas: attribute; posição do rato: attribute; escala: uniform;
 - E. posições das outras massas: uniform; posição do rato: attribute; escala: uniform;
- 15. Indique agora de que tipo seriam as variáveis que guardam as posições das massas que representam o sol, planetas e luas, sabendo que, para os desenhar, irá usar a primitiva gl.POINTS!
 - A. attribute B. uniform C. const D. varying E. Outro
- 16. Que transformação geométrica mudará o objeto da posição A para a posição B?

A.
$$T(5, 1)$$
 . $S(1, 1/2)$. $R(90)$. $T(-1, -1)$

B.
$$T(6, 1) \cdot R(90) \cdot S(1, 1/2) \cdot T(-1, -1)$$

C.
$$T(5, 1)$$
 . $R(90)$. $S(1, 1/2)$. $T(-1, -1)$

D. Outra

E.
$$T(5, 0)$$
. $R(90)$. $S(1, 1/2)$

- 17. Considere uma aplicação 3D construída com o ThreeJS. No grafo de cena dessa aplicação, o objecto P1 surge como filho do objecto P2. Escolha a afirmação correcta!
 - A. as transformações locais armazenadas em P2 não afetam a posição do objecto P1
 - B. as transformações locais armazenadas em qualquer dos objetos alteram a posição do outro
 - C. as transformações locais armazenadas em qualquer dos objetos não alteram a posição do outro
 - D. as transformações locais armazenadas em P1 não afetam a posição do objecto P2
 - E. Outra
- 18. O ecrã dum computador tem resolução FullHD (1920 x 1080 pixels [16:9]) e vai ser usado para mostrar o conteúdo duma janela definida em coordenadas do mundo (WC) pelos seus limites $-100 \le x \le 60$ and $400 \le y \le 480$. O visor deverá estar encostado ao canto superior direito do ecrã e deverá maximizar a área de visualização. Quais as suas dimensões em pixels?
 - A. $(\frac{1080}{9} \times 16) \times 1080$ B. $(\frac{1920}{16} \times 8)$ C. $1920 \times (\frac{1920}{16} \times 9)$ D. Outra E. $(\frac{1080}{8} \times 16) \times 1080$.
- 19. Com as condições definidas na Questão 18, qual seria a sua escolha para a primeira operação da transformação da janela para o visor?
 - A. T(-1920,0) B. T(-60,-400) C. T(-60,-480) D. T(-1920,-1080) E. Outra
- 20. Uma vez mais, com as condições definidas na Questão 18, o que alteraria para visualizar o mesmo conteúdo, no mesmo local do ecrã, mas usando a totalidade da superfície do ecrã?
 - A. Outra
 - B. A translação final da transformação.
 - C. Os limites inferior e superior (ymin e yamx) da janela.
 - D. O limite (ymax) da janela.
 - E. O factor de escala incluído na transformação.

Parte 2

- 21. Considere uma visualização arbitrária duma cena composta por poliedros convexos. Sabe-se ainda que para essa cena é possível encontrar uma projeção, axonométrica, que não gera qualquer sobreposição de objetos distintos no ecrã. Qual a opção que melhor descreve a(s) técnica(s) que poderiam ser usadas para tratar de forma correcta da remoção das superfícies ocultas na referida visualização arbitrária.
 - A. z-buffer
 - B. z-buffer e back-face culling, em conjunção
 - C. back-face culling
 - D. double buffering
 - E. z-buffer ou back-face culling, bastando uma
- 22. Das projeções estudadas, escolha uma que não se pode recriar usando apenas as funções lookAt(), ortho() e perspective()!
 - A. ortogonal B. perspectiva C. Outra D. oblíqua E. axonométrica

Considere as matrizes apresentadas.

23. Das matrizes apresentadas, qual utilizaria para projec-

- B. None should be used.
- C. Qualquer das matrizes poderia ser usada.
- D. \mathbf{M}_2 .
- $E. M_1.$

$$\mathbf{M}_3 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- 24. Que matriz poderia ser usada para criar uma projeção perspetiva ou cónica, de tal forma que pudesse ser usada à esquerda da matriz devolvida pela chamada da função lookAt(eye, at, up), mantendo a semântica dos seus parâmetros?
 - A. \mathbf{M}_1 . B. $M_1 \in M_2$. C. M_2 . D. $M_1 \in M_3$. E. M_3 .
- 25. Imagine que quer implementar a projeção definida por M_2 , mas que não está autorizado a usar essa matriz. Que composição de matrizes M_1 and M_3 seria equivalente a M_2 ?
 - $\mathbf{M}_3 \cdot \mathbf{M}_1 \cdot (\mathbf{M}_3)^{-1}$. B. $(\mathbf{M}_3)^{-1} \cdot \mathbf{M}_1 \cdot \mathbf{M}_3$. C. $\mathbf{M}_1 \cdot \mathbf{M}_3 \cdot (\mathbf{M}_1)^{-1}$. D. $(\mathbf{M}_1)^{-1} \cdot \mathbf{M}_3 \cdot \mathbf{M}_1$. Α. E. Outra
- 26. Imagine um prisma rectangular (6 faces rectangulares) cujas arestas estão alinhadas com os eixos principais. Quando o prisma é projetado usando a matriz M_1 , quer as arestas inicialmente alinhadad com o eixo X, quer as arestas inicialmente alinhadas com o eixo Y, deixam de ser visualizadas como sendo paralelas. Escolha a transformação que poderia ter sido usada antes da referida projeção para produzir o efeito descrito.
 - A. $\mathbf{R}_x(\alpha), \alpha \in]0, \pi/2[$ В. OutraC. $\mathbf{R}_{y}(\alpha), \alpha \in]0, \pi/2[$. D. $\mathbf{R}_{z}(\alpha), \alpha \in]0, \pi/2[$ E. I (no transformation).

Considere o polígono P=[A,B,C,D,E,F,G,H,I,J,K,L] representado à direita. O polígono P vai ser recortado com o algoritmo de Sutherland-Hodgeman contra a janela de recorte Q=[1,2,3,4], usando a seguinte sequência de recorte: BAIXO, DIREITA, CIMA, ESQUERDA.

- 27. Quais seriam os primeiros vértices do polígono resultante da primeira fase de recorte (BAIXO)?
 - A. Outra
 - B. B, C, D, D'', E', F
 - C. A, B, C, D, D'', E'
 - D. B, C, D, D'D'', E'
 - E. B, C, D, D', E', F

- 28. Quais seriam os primeiros vértices do polígono resultante da segunda fase de recorte (DIREITA)?
 - A. Outra
 - B. B, C, C', 3, E, F
 - C. B, C, C', 3, E', F
 - D. C, C', 3, E', F, G
 - E. C, C', 3, E', F, F'

29. Quantas arestas teria o polígono final, depois de aplicadas todas as fases de recorte?

E. Outra

A. 12 B. **13** C. 11

Imagine que o polígono P (original) iria ser pintado usando o algoritmo de FILLAREA.

D. 14

- 30. Quantas entradas não vazias teria a tabela de arestas (TA)?
 - A. 7 B. Outra C. 5 D. 6 E.
- 31. Qual o número máximo de arestas activas atingido durante o preenchimento?
 - A. 2 B. Outra C. 4 D. 5 E. 3
- 32. Qual seria o conteúdo da tabela de arestas activas (TAA) imediatamente antes de pintar a linha de varrimento que passa pelo vértice F?
 - A. $\overline{AL} \to \overline{KJ} \to \overline{EF} \to \overline{BC}$
 - B. Outra
 - C. $\overline{AL} \to \overline{KJ} \to \overline{BC} \to \overline{GH}$
 - D. $\overline{KJ} \to \overline{AL} \to \overline{EF} \to \overline{BC} \to \overline{GH}$
 - E. $\overline{KJ} \to \overline{AL} \to \overline{BC} \to \overline{GH}$
- 33. Um determinado polígono foi pintado/preenchido usando o algoritmo scanline/fillarea com uma dada cor A. O fundo era inicialmente todo de cor branca. De seguida, as arestas desse mesmo polígono foram desenhadas com espessura 1 e com a cor B, usando-se para tal o algoritmo do ponto médio (ou o algoritmo de Bresenham). Escolha a frase correcta!
 - A. Todos os pixels pintados com a cor B, estavam pintados anteriormente com a cor A.
 - B. Independentemente da posição relativa de cada aresta, em relação ao polígono, todos os pixels duma mesma aresta (pintados com a cor B) ou estavam todos pintados com a cor do fundo, ou estavam todos pintados da cor A.
 - C. Dependendo da posição relativa de cada aresta em relação ao polígono, todos os pixels duma mesma aresta (pintados com a cor B) ou estavam todos pintados com a cor do fundo, ou estavam todos pintados da cor A.
 - D. Nenhum dos pixels pintados com a cor B tinha anteriormente a cor A.
 - E. Outra

Considere o modelo de iluminação de Phong sem atenuação, implementado de acordo com a expressão abaixo, aplicado apenas num contexto de iluminação direta:

$$\mathbf{I} = \mathbf{I}_a \mathbf{K}_a + \mathbf{I}_p [\mathbf{K}_d \cos \alpha + \mathbf{K}_s \cos^n \phi].$$

- 34. Considere a esfera apresentada na figura da esquerda, iluminada de acordo com o modelo de iluminação de Phong, por uma única fonte de luz. Indique o que é necessário alterar para se produzir o resultado apresentado na figura do lado direito.
 - A. Aumentar o valor de n
 - B. Aumentar o valor de K_d
 - C. Outra
 - D. Aumentar o valor de I_p
 - E. Aumentar o valor de K_s

- 35. Imagine que pretende iluminar um objeto sem espessura (tal como um rectângulo, um quadrado ou um parabolóide). As normais definidas nos vértices da malha de triângulos, usada para modelar o objeto, apontam, de forma sistemática, para um mesmo lado da superfície. Que modificação faria nos shaders por forma a iluminar tal objeto? Admita que N, L e V são variáveis que representam vetores de comprimento com o significado habitual na literatura (normal, direção para a luz e direção para a câmara, respetivamente).
 - A. Substituiria dot(N,L) * Kd * Ip por abs(dot(N,L)) * Kd * Ip
 - B. Introduziria o seguinte pedaço de código antes de proceder ao cálculo da iluminação: if(dot(N,
 L) < 0.0) N = -N;
 - C. Substituiria max(0.0, dot(N,L)) * Kd * Ip por <math>max(0.0, abs(dot(N,L))) * Kd * Ip
 - D. Introduziria o seguinte pedaço de código antes de proceder ao cálculo da iluminação: if(dot(N, V) < 0.0) N = -N;
 - E. Outra
- 36. Se a iluminação for monocromática e considerando $I_a = I_p = 1$, n = 1 e $K_a = K_d = K_s$, os valores da iluminação em 3 pontos equidistantes A, P e B (ver figura), de uma superfície com um determinado material, são tais que
 - A. reflexão difusa em A < reflexão difusa em P
 - B. reflexão especular em A > reflexão especular em B

C.
$$I(A) > I(P) > I(B)$$

D.
$$I(P) > I(A) = I(B)$$

E.
$$I(P) > I(A) > I(B)$$

Boa Sorte!