1 Knockout strategies for the production of different bioproducts

Table 1 Knockouts for glutarate from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol): minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{\substack{y_{p/s} \\ \max x}} Y_{p/s}$	$\max_{max} Y_{p/s} \\ \max_{x} x$	$\minY_{p/s}$	%O2
WT	WT	123.797665	0.000000	0.000000	0.000000	0.000000	
gMCS1	$\Delta sucC\Delta sucD\Delta gcvT\Delta cysE$	91.034245	0.003131	0.181155	0.364657	0.140374	0.007900
gMCS2	$\Delta sucC\Delta sucD\Delta gcvPB\Delta cysE$	88.419923	0.003193	0.182889	0.373063	0.133772	-0.264626
gMCS3	$\Delta sucC\Delta sucD\Delta gcvPA\Delta cysE$	88.419923	0.003193	0.182889	0.373063	0.133772	-0.264626

Table 2 Knockouts for citrate from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol): minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{max} Y_{p/s}$	$\max_{} Y_{p/s}$ $\max_{} x$	$\minY_{p/s}$	%O2
WT	WT	129.105162	0.000000	0.000000	0.000000	0.000000	
gMCS1	$\Delta sucC\Delta sucD\Delta gcvT\Delta cysE$	87.219005	0.005108	0.417737	0.5812998	0.296509	-17.137945
gMCS2	$\Delta sucC\Delta sucD\Delta gcvPB\Delta cysE$	89.637501	0.005325	0.457038	0.4017063	0.296509	-15.530961
gMCS3	$\Delta sucC\Delta sucD\Delta gcvPA\Delta cysE$	89.637501	0.005325	0.457038	0.4017063	0.296509	-15.530961

Table 3 Knockouts for propionate from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol):minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{\substack{Y_{p/s}\\ \max x}}$	$\max_{x} Y_{p/s}$ $\max_{x} x$	$\minY_{p/s}$	%O2
WT	WT	129.273473	0.000000	0.000000	0.000000	0.000000	
gMCS1	Δadk	101.276523	0.002267	0.229601	0.434989	0.229576	-7.247543
gMCS2	$\Delta pckA$	119.005456	0.005918	1.662753	1.662753	0.863589	2.976452
gMCS3	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	100.911770	0.004976	0.691427	0.691427	0.607964	-5.550477
gMCS4	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	75.482776	0.007705	0.564751	0.803675	0.602840	-11.322668
gMCS5	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	76.602800	0.008522	0.617214	0.634462	0.652808	-10.721133
gMCS6	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	72.107801	0.008311	0.430139	0.894359	0.604721	-10.786028
gMCS7	$\Delta sucC\Delta sucD\Delta gcvT\Delta cysE$	109.485413	0.003255	0.322221	0.398967	0.325934	-5.225149
gMCS8	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	72.439042	0.008266	0.411042	0.743060	0.600534	-10.711785
gMCS9	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	80.736905	0.007258	0.255981	0.824580	0.586125	-9.224425
gMCS10	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	74.788120	0.008830	0.595814	0.835311	0.660459	-11.120415
gMCS11	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	73.914590	0.008077	0.596997	0.670908	0.597058	-10.450772
gMCS12	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	99.931306	0.005202	0.750878	0.750878	0.605503	-5.719020
gMCS13	$\Delta sucC\Delta sucD\Delta gcvPA\Delta cysE$	111.360014	0.003246	0.351465	0.351465	0.330028	-6.334316
gMCS14	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	71.268860	0.008496	0.605478	0.808022	0.605478	-10.982009
gMCS15	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_2259$	87.719111	0.006342	0.662541	0.424705	0.609347	-7.612266
gMCS16	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	79.523365	0.007320	0.506143	0.855230	0.582089	-9.523639
gMCS17	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	70.617844	0.008581	0.518817	0.760479	0.606055	-11.077090
gMCS18	$\Delta sucC\Delta sucD\Delta gcvPB\Delta cysE$	111.360014	0.003246	0.351465	0.351465	0.330028	-6.334316
gMCS19	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	87.694176	0.006297	0.492295	1.010914	0.503354	-7.796319
gMCS20	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	71.852210	0.008376	0.579916	0.734283	0.601869	-10.842190
gMCS21	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_RS13605$	81.947032	0.007048	0.638685	0.560789	0.609778	-8.886697
gMCS22	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	73.920228	0.008076	0.511491	0.837473	0.595448	-10.449653
gMCS23	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	78.477976	0.007262	0.588201	0.833810	0.592487	-9.500136
gMCS24	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	92.133142	0.006372	0.712641	0.712641	0.654319	-7.090176
gMCS25	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	74.668797	0.008763	0.654297	0.836644	0.654394	-11.052649
gMCS26	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	73.043820	0.008165	0.539243	0.572278	0.605535	-10.593679
gMCS27	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	97.767088	0.005282	0.673074	0.673074	0.599037	-5.714224
gMCS28	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	95.879271	0.005280	0.662352	0.662352	0.596784	-6.914364
gMCS29	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	71.382322	0.008475	0.532481	0.839393	0.605446	-10.960815

Table 4 Knockouts for acetaldehyde from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol):minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{\substack{Y_{p/s} \\ \max x}} Y_{p/s}$	$\max_{max} Y_{p/s}$ $\max_{x} x$	$\minY_{p/s}$	%O2
WT	WT	116.793442	0.000000	0.000000	0.299565	0.000000	
gMCS1	$\Delta purU$	58.087060	0.016617	0.918193	1.866614	0.963895	-3.411660
gMCS2	$\Delta pckA$	73.686576	0.010947	0.755712	0.789095	0.789954	-7.285915
gMCS3	$\Delta glyA$	108.010978	0.001024	0.110584	0.416327	0.110582	0.096274
gMCS4	$\Delta Saro_1100 \Delta Saro_2259$	131.297433	0.001140	0.177210	0.128371	0.144815	5.020273
gMCS5	$\Delta Saro_1100 \Delta Saro_RS13605$	125.005784	0.000919	0.174914	0.174914	0.146916	1.548465
gMCS6	$\Delta Saro_1100 \Delta Saro_2679$	135.180001	0.001117	0.189195	0.189195	0.146957	4.637098
gMCS7	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	93.658776	0.006048	0.522674	1.103087	0.566405	-5.319667
gMCS8	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	114.611619	0.004350	0.552923	0.552923	0.509145	0.068291
gMCS9	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	94.026945	0.006095	0.574002	0.660098	0.572482	-5.345463
gMCS10	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	101.627001	0.004695	0.480552	0.671068	0.500901	-1.760741
gMCS11	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	101.059796	0.005268	0.576964	0.576964	0.520090	-1.892817
gMCS12	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	89.015204	0.005781	0.362066	0.874982	0.515694	-4.637098
gMCS13	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	87.022763	0.005940	0.525949	0.864148	0.520075	-4.830494
gMCS14	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	104.212708	0.005015	0.532700	0.297171	0.505377	-2.083404
gMCS15	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	108.568082	0.004612	0.606638	0.606638	0.520131	-2.502665
gMCS16	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	89.014152	0.005782	0.480561	0.827543	0.505678	-4.637081
gMCS17	$\Delta pyk\Delta zwf \Delta Saro_0559 \Delta Saro_2259$	97.136714	0.004811	0.561394	0.561394	0.520075	-2.438575
gMCS18	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	105.375003	0.005132	0.594176	0.594176	0.525078	-2.461809
gMCS19	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	89.705297	0.005682	0.557930	0.485102	0.520808	-4.461411
gMCS20	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	86.909806	0.005952	0.517300	1.249282	0.517357	-4.904918
gMCS21	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	87.426403	0.005902	0.523313	0.841390	0.518567	-4.835639
gMCS22	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_RS13605$	102.923397	0.004906	0.568548	0.568548	0.514454	-1.975211
gMCS23	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	89.014319	0.005781	0.561759	1.153688	0.526108	-4.636780
gMCS24	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	86.706551	0.005999	0.420283	1.186903	0.525102	-4.960127
gMCS25	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	99.771405	0.005397	0.519385	0.598822	0.545712	-4.148006
gMCS26	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	101.833192	0.005190	0.670055	0.391970	0.566287	-3.859928
gMCS27	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	113.764834	0.005228	0.769015	0.368973	0.566472	-1.744008
gMCS28	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	90.088193	0.006157	0.533498	0.463802	0.520048	-4.384444
gMCS29	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	96.727797	0.005218	0.503811	0.807930	0.520115	-3.192147
gMCS30	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	94.680007	0.005628	0.632000	0.556112	0.516318	-3.793410

Table 5 Knockouts for glycerate from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol):minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{} Y_{p/s} \\ \max_{} x$	$\max_{} Y_{p/s} \\ \max_{} x$	$\minY_{p/s}$	%O2
WT	WT	128.214809	0.000000	0.000000	0.105931	0.000000	
gMCS1	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	84.945501	0.006665	0.238496	1.538910	0.612860	-7.182241
gMCS2	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	70.835329	0.008639	0.644727	0.639201	0.612162	-10.034408
gMCS3	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	96.423541	0.005735	0.543836	0.707742	0.608855	-5.065019
gMCS4	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	73.366454	0.008107	0.575776	0.857203	0.603652	-9.376250
gMCS5	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	95.252222	0.005923	0.746609	0.746609	0.655585	-6.526023
gMCS6	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	70.736439	0.008704	0.563686	0.994499	0.598431	-10.056422
gMCS7	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	72.929944	0.008291	0.564282	0.841001	0.593806	-9.582145
gMCS8	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	72.850545	0.008273	0.238496	1.538910	0.602683	-9.568122
gMCS9	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	78.943238	0.007645	0.659611	0.659611	0.612286	-8.689319
gMCS10	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	79.589506	0.007327	0.627106	0.650579	0.620983	-8.428183
gMCS11	$\Delta pyk\Delta zwf \Delta Saro_0559 \Delta Saro_2259$	84.356211	0.007235	1.111129	1.111129	0.654142	-8.055825
gMCS12	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	82.381100	0.006697	0.673002	0.673002	0.612198	-7.360509
gMCS13	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	79.977757	0.007308	0.238496	1.538910	0.608844	-8.431750
gMCS14	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	72.760146	0.008276	0.238496	1.538910	0.607638	-9.543404
gMCS15	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	96.010850	0.005642	0.667538	0.667538	0.608860	-5.060201
gMCS16	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_RS13605$	96.148665	0.005299	0.737490	0.737490	0.607907	-4.767246
gMCS17	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	99.424305	0.005332	0.657395	0.657395	0.608992	-4.640443
gMCS18	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	83.785020	0.007311	0.635189	0.994335	0.623293	-8.107449
gMCS19	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	82.299441	0.007522	0.795220	0.883288	0.657568	-8.478929
gMCS20	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	83.097740	0.006898	0.609788	0.810018	0.593810	-7.153749
gMCS21	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_RS09250$	72.068631	0.008422	0.565885	0.943960	0.598492	-9.729417
gMCS22	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	81.833995	0.007402	0.552057	0.672985	0.592490	-7.452928
gMCS23	$\Delta zwf \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	70.870377	0.008588	0.592880	0.756818	0.615279	-9.843727
gMCS24	$\Delta Saro_1894\Delta pyk\Delta Saro_2679\Delta Saro_0559$	89.920006	0.006596	0.238496	1.538910	0.630811	-6.962738

Table 6 Knockouts for phenol from vanillic acid. $Y_{x/s}$ (biomass yield, mgDW/mmol): biomass produced relative to substrate consumed. $Y_{p/x}$ (product yield, mmol/mgDW): product formed in relation to biomass produced. Min $Y_{p/s}$ /max x (mmol/mmol): minimum product yield at maximum growth rate. Max $Y_{p/s}$ /max x (mmol/mmol): maximum product yield at maximum growth rate. Min $Y_{p/s}$ (mmol/mmol):minimum product yield. %O2: oxygen ratio increasing (positive sign) or decreasing (negative sign) relative to wild-type. The name of the strains corresponds to the uppercase delta symbol followed by the name of the gene to be deleted.

Name	Strain	$Y_{x/s}$	$Y_{p/x}$	$\min_{\substack{Y_{p/s} \\ \max x}} Y_{p/s}$	$\max_{} Y_{p/s}$ $\max_{} x$	$\minY_{p/s}$	%O2
WT	WT	127.162223	0.000000	0.000000	0.080613	0.000000	
gMCS1	$\Delta edd \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	119.485999	0.001142	0.195937	0.195937	0.160021	-2.339371
gMCS2	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	103.964266	0.001175	0.132323	0.230804	0.141249	-3.589300
gMCS3	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	106.149334	0.001205	0.192367	0.114377	0.146219	-2.647015
gMCS4	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	114.613473	0.001288	0.188769	0.082281	0.143638	-0.957710
gMCS5	$\Delta pyk\Delta zwf \Delta Saro_2679 \Delta Saro_0559$	119.277845	0.001155	0.191721	0.191721	0.158788	-1.531620
gMCS6	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	114.187434	0.001321	0.217206	0.087427	0.160688	-3.185552
gMCS7	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2679$	95.535557	0.001611	0.155720	0.270823	0.147674	-6.265531
gMCS8	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	107.984818	0.001297	0.150079	0.166513	0.146205	-3.154356
gMCS9	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	95.430278	0.001517	0.113373	0.188971	0.140537	-5.280391
gMCS10	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	93.212840	0.001571	0.143966	0.271020	0.148514	-5.593714
gMCS11	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_2679$	110.316309	0.001393	0.167626	0.101141	0.141704	-2.757328
gMCS12	$\Delta Saro_2568 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	105.678787	0.001375	0.193114	0.083970	0.148814	-3.874161
gMCS13	$\Delta Saro_1894 \Delta pyk \Delta Saro_0559 \Delta Saro_2259$	100.824321	0.001587	0.159968	0.247441	0.159968	-5.894558
gMCS14	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2679$	92.085044	0.001587	0.135012	0.277483	0.147176	-5.657158
gMCS15	$\Delta zwf \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	95.320523	0.001528	0.149263	0.263077	0.148570	-6.266701
gMCS16	$\Delta edd \Delta pyk \Delta Saro_RS09250 \Delta Saro_2679$	104.884141	0.001294	0.155911	0.155911	0.144672	-4.770534
gMCS17	$\Delta Saro_2568 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	123.335761	0.001177	0.180010	0.180010	0.146208	-0.628852
gMCS18	$\Delta edd \Delta pyk \Delta Saro_0559 \Delta Saro_RS13605$	115.870114	0.001058	3.018327	3.018327	0.147801	-1.114820
gMCS19	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_2259$	93.002693	0.001555	0.144665	0.213650	0.144665	-5.474694
gMCS20	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_RS13605$	95.128135	0.001517	0.144345	0.279829	0.144360	-5.273795
gMCS21	$\Delta Saro_1894 \Delta pyk \Delta Saro_RS09250 \Delta Saro_2259$	114.518947	0.001414	0.207080	0.174651	0.160435	-3.184496
gMCS22	$\Delta Saro_2568 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	93.063504	0.001561	0.080410	0.287001	0.142427	-5.502059
gMCS23	$\Delta Saro_1894 \Delta pyk \Delta Saro_2679 \Delta Saro_0559$	92.582410	0.001583	0.144942	0.290362	0.146198	-5.656948
gMCS24	$\Delta pyk \Delta zwf \Delta Saro_0559 \Delta Saro_RS13605$	104.397325	0.001519	0.158524	0.233951	0.158559	-5.328470

2 Candidate overexpression genes for the production of different bioproducts

Table 7 Candidate overexpression genes for glutarate together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
Saro_2814, ligK, Saro_2819	OMA degradationase (LigK)
$Saro_2819$	PDC to OMA (LigI)
$Saro_{-}2811$	CHMS_hemiacetal to PDC (LigC)
ligA, Saro_2812	PCA ring opening (LigAB)
Saro_2861	Vanillic acid demethylation (LigM)
$Saro_2337$, $lysA$	meso-2,6-diaminoheptanedioate carboxy-lyase
$aspartate\ kinase$	ATP:L-aspartate 4-phosphotransferase
folD	5,10-Methenyltetrahydrofolate 5-hydrolase
asd	L-Aspartate-4-semialdehyde:NADP+ oxidoreductase
dapE	N-Succinyl-LL-2,6-diaminoheptanedioate amidohydrolase
dapF	LL-2,6-Diaminoheptanedioate 2-epimerase
dapB	2,3,4,5-tetrahydrodipicolinate:NAD+ 4-oxidoreductase
dapD	Tetrahydrodipicolinate N-succinyltransferase
argD	Acetylornithine transaminase
$dapA, Saro_3897$	L-aspartate-4-semialdehyde hydro-lyase

Table 8 Candidate overexpression genes for citrate together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
Saro_2814, ligK, Saro_2819	OMA degradationase (LigK)
$Saro_2819$	PDC to OMA (LigI)
$Saro_2811$	CHMS_hemiacetal to PDC (LigC)
$ligA, Saro_{-}2812$	PCA ring opening (LigAB)
$Saro_2861$	Vanillic acid demethylation (LigM)
$Saro_2032$	citrate oxaloacetate-lyase

Table 9 Candidate overexpression genes for propanoate together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
Saro_2814, ligK, Saro_2819	OMA degradationase (LigK)
Saro_2819	PDC to OMA (LigI)
Saro_2811	CHMS_hemiacetal to PDC (LigC)
ligA, Saro_2812	PCA ring opening (LigAB)
pobA	PHB hydroxyl attachment
Saro_1100	L-serine ammonia-lyase
aspartate kinase	ATP:L-aspartate 4-phosphotransferase
acs, prpE	Propanoate:CoA ligase AMP-forming
Saro_0867	acetyl-CoA:propanoyl-CoA 2-C-acetyltransferase
glyA	Serine hydroxymethyltransferase.
folD	5,10-Methenyltetrahydrofolate 5-hydrolase
$Saro_0019$	L-Homoserine:NAD+ oxidoreductase
asd	L-Aspartate-4-semialdehyde:NADP+ oxidoreductase
Saro_2511, Saro_1705, Saro_0858	S-2-methylbutanoyl-CoA:acceptor 2,3-oxidoreductase
Saro_1974	enzyme N6-(dihydrolipoyl)lysine S-(2-methylbutanoyl)transferase
ilvC	S-2-Aceto-2-hydroxybutanoate:NADP+ oxidoreductase
ilvD	R-2,3-Dihydroxy-3-methylpentanoate hydro-lyase
lpdA	Reaction lipoyllysine 2-oxidoreductase (decarboxylating)
ilvN, ilvB	pyruvate:2-oxobutanoate acetaldehydetransferase

Table 10 Candidate overexpression genes for phenol together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
tpiA	triose-phosphate isomerase
rpiB	D-ribose-5-phosphate aldose-ketose-isomerase
$Saro_1964$	beta-D-fructose-1-6-bisphosphate
rpe	D-Ribulose-5-phosphate 3-epimerase
tkt	transketolase
aro C	3-Phosphoshikimate 1-carboxyvinyltransferase
$Saro_1352$	Chorismate pyruvatemutase
$Saro_0991$	3-deoxy-7-phosphoheptulonate synthase
aroK	ATP:shikimate 3-phosphotransferase
aroE	Shikimate:NADP+ 3-oxidoreductase
aroB	3-dehydroquinate synthase
aroQ	3-Dehydroquinate hydro-lyase
aro A	3-phosphoshikimate 1-carboxyvinyltransferase
glpX	fructose-bisphosphatase class II

Table 11 Candidate overexpression genes for acetaldehyde together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
coaE	ATP:dephospho-CoA 3'-phosphotransferase
pyk, ndk	ATP:GDP phosphotransferase
ald	L-alanine:NAD+ oxidoreductase deaminating
cysN	ATP:adenylylsulfate 3'-phosphotransferase
cysN, cysD	ATP:sulfate adenylyltransferase
Saro_2558	hydrogen-sulfide:NADP+ oxidoreductase
rpiB	D-ribose-5-phosphate aldose-ketose-isomerase
purF	diphosphate phospho-alpha-D-ribosyltransferase (glutamate-amidating)
Saro_1309	1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole AMP-lyase
purH	5'-phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase
purA	IMP:L-aspartate ligase GDP-forming
panB	3-methyl-2-oxobutanoate hydroxymethyltransferase
rpe	D-Ribulose-5-phosphate 3-epimerase
tkt	transketolase (tkt)
cysH	phosphoadenylyl-sulfate reductase
Saro_3896, Saro_3892, Saro_RS08405	R-Pantoate:NADP+ 2-oxidoreductase
panC	R-Pantoate:beta-alanine ligase AMP-forming
coaX	ATP:pantothenate 4'-phosphotransferase
coaD	ATP:pantetheine-4'-phosphate adenylyltransferase
coaBC	R-4'-phosphopantothenate:L-cysteine ligase
purD	phosphoribosylamine-glycine ligase
purM	phosphoribosylformylglycinamidine cyclo-ligase
purN	phosphoribosylglycinamide formyltransferase
purL, purS, purQ	Phosphoribosyl-N-formylglycinamide
purC	phosphoribosylaminoimidazolesuccinocarboxamide synthase
purK	protein=5-(carboxyamino)imidazole ribonucleotide synthase
purE	protein=5-(carboxyamino)imidazole ribonucleotide mutase

Table 12 Candidate overexpression genes for glycerol together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
Saro_0085, Saro_2442, gpsA	sn-Glycerol-3-phosphate:NAD+ 2-oxidoreductase

Table 13 Candidate overexpression genes for 1-hexadecanol together with the name of the reaction they control. Reactions are named according to KEGG REACTION Database.

Gene name	Reaction name
folD fabZ Saro_3306, fabI fabG fabF gpsA, Saro_2617 fabH	5,10-Methenyltetrahydrofolate 5-hydrolase (3R)-hydroxymyristoyl acyl carrier protein dehydrase hexadecanoyl-[acp]:NAD+ trans-2-oxidoreductase 3-oxoacyl-[acyl-carrier-protein] reductase malonyl-[acyl-carrier-protein] C-acyltransferase carbonate hydro-lyase carbon-dioxide-forming malonyl-[acyl-carrier-protein] C-acyltransferase

3 Scoring of genetic interventions

We adopted those scoring criteria that best fit the characteristics and available information of our model. To obtain an overall quantitative measure Si for each intervention strategy i, an overall score is calculated from the individual scores $S_{i,j}$ for each of the ten criteria j=1...10. The score for each criterion $S_{i,j}$ can take normalised values between 0 and 1. Intervention strategy i that takes the most unfavourable value on criterion j is scored $S_{i,j}=0$ and strategy k with the most favourable value is scored $S_{k,j}=1$.

Specifically, if a high value $U_{i,j}$ of a specific criterion j (e.g. minimum product yield) is desirable, the score of strategy i is determined by of strategy i is determined by:

$$S_{i,j} = \frac{U_{i,j} \cdot U_{j,\min}}{U_{j,\max} \cdot U_{j,\min}} \tag{1}$$

In the case of a preferably low value $U_{i,j}$, the term is:

$$S_{i,j} = \frac{U_{j,\text{max}} \cdot U_{i,j}}{U_{j,\text{max}} \cdot U_{j,\text{min}}} \tag{2}$$

Criteria with a preferably low value are the number of interventions, oxygen consumption and the number of accessible metabolites. The total score S_i for an intervention strategy i is then a weighted sum of its scores for the criteria:

$$S_i = \sum_j S_{i,j} \tag{3}$$

Figure 1: Scoring the intervention strategies for bioproducts.