Problem 4

A schematic diagram of a rotor mounted in bearings is shown in Fig. 4. The moment of inertia of the rotor about the axis of rotation is $J=0.31~kgm^2$. Let us assume that at t=0 the rotor is rotating at the angular velocity $\omega(0)=\omega_0=121~\frac{rad}{sec}$. We also assume that the friction in bearings is viscous friction, where the coefficient of friction is $b=0.02\,\frac{Nm}{L_{2}3}$

Figure 4: Input signal nad rotor mounted in bearings

Assume that the input to the system is the external applied torque n(t) (Nm) in the form of a pulse signal shown in Fig. 4, while the output is the angular velocity $\omega(t)$ $(\frac{rad}{s})$. Find and plot free y_{free} , forced y_{forced} , and total response y_{total} of the system. Calculate the total response y_{total} for time t = 20 s.

Answer:
$$y_{total}(t = 20) = 69.5379 \begin{bmatrix} v > 0 \\ 5 \end{bmatrix}$$

For the system shown in Fig. 5, find the output, y(t), if the input r(t) is a unit step, where $G(s)=\frac{13}{s(s+2)}$. Plot the response and provide y(t) for $t=0.9069\ s$.

Answer: y(t = 0.9069) = 1.4038

Figure 5: Feedback control system

Problem	No. 1	No. 2	No. 3	No. 4	No. 5	Total
Points						

⁶The problem set has been generated November 3, 2020 r., g. 13:52:28