Teoria da Informação - AULA 15 parte 3 Prof^a. Verusca Severo

> Universidade de Pernambuco Escola Politécnica de Pernambuco

03 de setembro de 2021

• O que acontece quando temos a ligação de canais em cascata (série)?

• O que acontece quando temos a ligação de canais em cascata (série)?

- Simplificação dos canais compostos.
- Teremos que: I(A, C) = H(A) H(A/C)

• **Simplificando o canal composto:** a partir do diagrama de probabilidades.

• Devemos fazer a análise de cada percurso de x_i até y_j com i, j = 0, 1.

- Simplificando o canal composto: a partir do diagrama de probabilidades.
 - ① Percurso de x_0 até y_0 :
 - Há dois percursos: $x_0 \rightarrow w_0 \rightarrow y_0$ ou $x_0 \rightarrow w_1 \rightarrow y_0$, logo:

$$p(y_0/x_0) = p(w_0/x_0)p(y_0/w_0) + p(w_1/x_0)p(y_0/w_1)$$

- Simplificando o canal composto: a partir do diagrama de probabilidades.
 - 2 Percurso de x_1 até y_0 :
 - Há dois percursos: $x_1 \rightarrow w_0 \rightarrow y_0$ ou $x_1 \rightarrow w_1 \rightarrow y_0$, logo:

$$p(y_0/x_1) = p(w_0/x_1)p(y_0/w_0) + p(w_1/x_1)p(y_0/w_1)$$

- Simplificando o canal composto: a partir do diagrama de probabilidades.
 - **1** Percurso de x_0 até y_1 :
 - Há três percursos: $x_0 \to w_0 \to y_1$ ou $x_0 \to w_1 \to y_1$ ou $x_0 \to w_2 \to y_1$, logo:

$$p(y_1/x_0) = p(w_0/x_0)p(y_1/w_0) + p(w_1/x_0)p(y_1/w_1) + p(w_2/x_0)p(y_1/w_2)$$

- Simplificando o canal composto: a partir do diagrama de probabilidades.
 - Percurso de x_1 até y_1 :
 - Há dois percursos: $x_1 \rightarrow w_0 \rightarrow y_1$ ou $x_1 \rightarrow w_1 \rightarrow y_1$, logo:

$$p(y_1/x_1) = p(w_0/x_1)p(y_1/w_0) + p(w_1/x_1)p(y_1/w_1)$$

Simplificando o canal composto:

- Logo, podemos concluir que:
 - $p(y_0/x_0) = p(w_0/x_0)p(y_0/w_0) + p(w_1/x_0)p(y_0/w_1)$ $p(y_0/x_1) = p(w_0/x_1)p(y_0/w_0) + p(w_1/x_1)p(y_0/w_1)$ $p(y_0/x_1) = p(w_0/x_1)p(y_0/w_0) + p(w_1/x_1)p(y_0/w_1)$
 - $p(y_1/x_0) = p(w_0/x_0)p(y_1/w_0) + p(w_1/x_0)p(y_1/w_1) + p(w_2/x_0)p(y_1/w_2)$ • $p(y_1/x_1) = p(w_0/x_1)p(y_1/w_0) + p(w_1/x_1)p(y_1/w_1)$
- E assim, a matriz de canal AC pode ser escrita como:
 - $P_{C/A} = \begin{bmatrix} p(y_0|x_0) & p(y_1|x_0) \\ p(y_0|x_1) & p(y_1|x_1) \end{bmatrix} \Rightarrow P_{C/A} = \begin{bmatrix} p(y_0|x_0) & p(y_1|x_0) \\ p(y_0|x_1) & p(y_1|x_1) \end{bmatrix}$

• **EXEMPLO 1:** Seja a conexão de dois canais discretos em cascata, cujo diagrama de probabilidade é apresentado na figura abaixo.

Determine:

- (a) A matriz de canal P(W|X)
- **(b)** A matriz de canal P(Y|W)
- (c) Se possível, a matriz de canal P(Y|X)

- EXEMPLO 1: Seja a conexão de dois canais discretos em cascata, cujo diagrama de probabilidade é apresentado na figura abaixo.
 Determine:
 - (a) A matriz de canal P(W|X)
 - **(b)** A matriz de canal P(Y|W)
 - (c) Se possível, a matriz de canal P(Y|X)
 - SOLUÇÃO:

VER EM ANEXO!

Simplificando o canal composto:

• Temos que:

$$P_{B/A} = \begin{bmatrix} p(w_0|x_0) & p(w_1|x_0) & p(w_2/x_0) \\ p(w_0|x_1) & p(w_1|x_1) & p(w_2/x_1) \end{bmatrix}$$

Simplificando o canal composto:

• Temos que:

$$P_{C/B} = \begin{bmatrix} p(y_0|w_0) & p(y_1|w_0) \\ p(y_0|w_1) & p(y_1|w_1) \\ p(y_0|w_2) & p(y_1|w_2) \end{bmatrix}$$

Simplificando o canal composto:

Vejamos qual o resultado do produto:

$$P_{B/A} \times P_{C/B} \Rightarrow P_{B/A_{2\times3}} \times P_{C/B_{3\times2}} = P_{2\times2} = \begin{bmatrix} P_{0,0} & P_{0,1} \\ P_{1,0} & P_{1,1} \end{bmatrix}$$

$$P = \begin{bmatrix} p(w_0|x_0) & p(w_1|x_0) & p(w_2/x_0) \\ p(w_0|x_1) & p(w_1|x_1) & p(w_2/x_1) \end{bmatrix} \times \begin{bmatrix} p(y_0|w_0) & p(y_1|w_0) \\ p(y_0|w_1) & p(y_1|w_1) \\ p(y_0|w_2) & p(y_1|w_2) \end{bmatrix}$$

$$P_{0,0} = p(w_0|x_0)p(y_0|w_0) + p(w_1|x_0)p(y_0|w_1) + p(w_2|x_0)p(y_0|w_2)$$

$$P_{0,1} = p(w_0|x_0)p(y_1|w_0) + p(w_1|x_0)p(y_1|w_1) + p(w_2|x_0)p(y_1|w_2)$$

$$P_{1,0} = p(w_0|x_1)p(y_0|w_0) + p(w_1|x_1)p(y_0|w_1) + p(w_2|x_1)p(y_0|w_2)$$

$$P_{1,1} = p(w_0|x_1)p(y_1|w_0) + p(w_1|x_1)p(y_1|w_1) + p(w_2|x_1)p(y_1|w_2)$$

Simplificando o canal composto:

- Comparando com o canal composto que foi simplicado
 - $p(v_0/x_0) = p(w_0/x_0)p(v_0/w_0) + p(w_1/x_0)p(v_0/w_1)$
 - $p(y_0/x_1) = p(w_0/x_1)p(y_0/w_0) + p(w_1/x_1)p(y_0/w_1)$
 - $p(y_1/x_0) = p(w_0/x_0)p(y_1/w_0) + p(w_1/x_0)p(y_1/w_1) + p(w_2/x_0)p(y_1/w_2)$
 - $p(y_1/x_1) = p(w_0/x_1)p(y_1/w_0) + p(w_1/x_1)p(y_1/w_1)$

Temos:

$$p(y_0|x_0) = P_{0,0} \text{ com } p(w_2|x_0) = 0$$

$$p(y_0|x_1) = P_{0,1} \text{ com } p(w_2|x_0) = 0$$

$$p(y_1|x_0) = P_{1,0}$$

$$p(y_1|x_1) = P_{1,1} \text{ com } p(w_2|x_1) = 0$$

Simplificando o canal composto:

- Isso quer dizer que:
 - A matriz de transição global dos canais em cascata é igual ao produto das matrizes de transição individual, ou seja:

$$P_{C|A} = P_{B|A} \times P_{C|B}$$

 Obs.: Só é possível se o número de saídas do primeiro canal for igual ao número de entradas do segundo canal.

Simplificando o canal composto:

- Isso quer dizer que:
 - A matriz de transição global dos canais em cascata é igual ao produto das matrizes de transição individual, ou seja:

$$P_{C|A} = P_{B|A} \times P_{C|B}$$

 Obs.: Só é possível se o número de saídas do primeiro canal for igual ao número de entradas do segundo canal.

• EXEMPLO 2: Refaça a letra (c) do EXEMPLO 1 pelo método do produto das matrizes.

- EXEMPLO 2: Refaça a letra (c) do EXEMPLO 1 pelo método do produto das matrizes.
 - SOLUÇÃO:

VER EM ANEXO!