

8주차-1교시

인공지능

학습내용

- ₩ 인공지능 소개하기
- ₩ 인공지능 학문의 탄생과 정의
- ₩ 달성 목표에 따른 인공지능의 4가지 관점
- ₩ 인공지능의 역사

학습목표

① 인공지능 관련 주요 개념을 이해할 수 있다.

- ② 인공지능 학문의 탄생 배경을 이해할 수 있다.
- ③ 달성 목표에 따른 인공지능의 4가지 관점을 이해할 수 있다.

4 인공지능의 역사를 이해할 수 있다.

지난주차정리

흥 복제

- 자신과 동일한 개체를 생성하는 것
- 복제할 당시에 원형 스프라이트에 적용된 그래픽 효과도 그대로 반영하여 복제됨

- 정해진 범위 안에서 무작위로 추출된 수
- [코드] 탭-[연산] 메뉴에서 일정 범위 안에 있는 정수 또는 실수를 무작위로 생성하는 자료/변수 블록을 사용해 난수 블록을 생성

지난주차정리

응 의사 난수

■ 동일한 조건 아래 매번 동일한 배열로 생성되는 난수

빼 재귀호출

- 프로시저가 자기 자신을 호출하는 것
- 재귀 프로시저는 재귀호출을 수행하는 프로시저
- 재귀호출시 무한 호출이 발생하여 프로시저가 종료되지 않을 수 있기 때문에 재귀 프로시저는 반드시 자신을 호출하는 행동을 종료하는 조건이 존재해야 하고 언젠가 그 조건이 만족되어 재귀호출을 중단해야 함

사전학습

인공지능 소개하기

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - 영화를 통해 만날 수 있는 다양한 인공지능을 보면, 대부분 <mark>감정과 자의식을</mark> 가지고 있으며, 인간을 사랑하거나 대적하는 존재로 등장

은연중에 거부하거나 두려워할 수밖에 없음

언젠가 영화 속 인공지능도 현실에서 알 수 없는 어떤 존재로 등장한다면?

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ① 인공지능 마리아: 사람처럼 행동하여 사람을 속여라
 - 프리츠랑 감독의 영화 《메트로폴리스》에 등장
 - 메트로폴리스는 부르주아들의 낙원인 지상과 노동자들이 거주하는 지옥 같은 지하로 구분됨

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ① 인공지능 마리아: 사람처럼 행동하여 사람을 속여라
 - 인공지능 '마리아'는 노동자들을 선동하는 임무를 수행하는데, 인간을 초월하는 존재라기보다는 사람들을 얼마나 감쪽같이 속이는지가 관건인 인공지능임

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ② 인공지능 HAL 9000: 임무 완수만이 절대적인 가치
 - 스탠리 큐브릭 감독의 영화 《2001 스페이스 오디세이》에 등장

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ② 인공지능 HAL 9000: 임무 완수만이 절대적인 가치
 - 'HAL 9000'은 자신이 완벽하고 실수는 사람들이나 하는 것이라고 믿으므로, 실수를 인정하지 않으며 자신의 생존을 위협하는 인간과 대적함
 - 'HAL 9000'은 자존심이 높고 자신의 임무에 과도한 책임감을 가진 인공지능임

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ③ 인공지능 스카이넷: 자의식이 깨어난 인류 최대의 적
 - 제임스 카메론감독의 영화 《터미네이터》에 등장

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ③ 인공지능 스카이넷: 자의식이 깨어난 인류 최대의 적
 - 인류를 말살하려는 인공지능 '스카이넷'이 인류 지도자인 존 코너를 없애기 위해 'T-800'이라는 로봇을 과거로 보냄
 - '스카이넷'은 자아를 갖춘 인공지능으로, 인간을 해쳐서는 안 된다는 '로봇 3원칙'을 스스로 깨고 인간을 공격함

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ④ 인공지능 데이빗: 인간 부모의 사랑을 얻기 위해 피노키오를 꿈꾸다
 - 스티븐 스필버그 감독의 영화 《에이 아이(A.I.)》에 등장

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ④ 인공지능 데이빗: 인간 부모의 사랑을 얻기 위해 피노키오를 꿈꾸다
 - 인공지능 '데이빗'은 불치병에 걸린 아들을 대신하기 위해 한 부부에게 입양되지만, 버려진 후 부모의 사랑을 되찾고 진짜 사람이 되고자 여행을 떠남
 - 사람의 감정을 느낄 수 있으며 사람이 되고 싶다는 꿈을 간직한 인공지능임

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ⑤ 인공지능 앤드류: 마침내 사람이 되어 버린 인공지능
 - 크리스 콜럼버스 감독의 영화 《바이센테니얼맨》에 등장

- 1 생활 속 인공지능의 존재감
 - 1 영화에 등장한 인공지능
 - ⑤ 인공지능 앤드류: 마침내 사람이 되어 버린 인공지능
 - 인공지능 '앤드류'는 주인집 딸을 사랑하면서 로봇의 한계를 극복하려고 노력함
 - '앤드류'는 지능·호기심·사랑 뿐만 아니라 예술적 창조 능력까지 갖추고 있으며, 결국엔 인간이 되어 버린 최정점의 인공지능

- 1 생활 속 인공지능의 존재감
 - 2 뉴스에 등장한 인공지능
 - ① IBM의 딥블루: 지능적 게임에서 최초로 세계 챔피언을 이기다
 - 1997년, IBM에서 개발한 슈퍼컴퓨터 딥블루(Deep Blue)가 세계 챔피언 그랜드마스터인가리 카스파로프를 상대로 체스 대국을 치뤄, 2승 3무 1패로 승리
 - 지능적인 게임에서 인공지능이 인간을 이긴 최초의 사례
 - 단순 빠른 계산이 필요한 분야 외에도 지능이 요구되는 분야에서 인공지능을 활용할 수 있다는 점을 보여 준 중요한 사건

- 1 생활 속 인공지능의 존재감
 - 2 뉴스에 등장한 인공지능
 - ② IBM의 왓슨: 인간의 질문을 이해하고 답까지 찿아내다
 - 2011년, IBM의 인공지능 왓슨(Watson)이 미국 최장수 퀴즈쇼인〈제퍼디!〉에서 역대 최장 기간 우승자와 최다 상금 수상자를 누르고 우승을 차지함
 - 인공지능 기술이 인간의 언어로 된 질문을 이해하고 정보를 검색하여 해답을 도출하는 수준까지 도달했음을 증명함

- 1 생활 속 인공지능의 존재감
 - 2 뉴스에 등장한 인공지능
 - ③ 구글 딥마인드의 알파고: 초고수의 직관력마저 넘어서다
 - 2016년, 구글 딥마인드(Google DeepMind)가 개발한 알파고(AlphaGo)와 세계 최고의 바둑기사인 이세돌 9단과의 대결에서 알파고가 4승 1패로 승리
 - 사회적으로는 직업의 잔존 여부에 대한 불안감과 4차 산업혁명에 대한 관심을 증폭시킴

- 1 인공지능 용어와 학문의 탄생
 - 인공지능이란 용어는 1955년 다트머스 대학교의 교수 존 맥카시가 처음 사용
 - 다트머스 콘퍼런스 개최를 준비하면서 경비 마련을 위해 록펠러 재단에 후원금 요청서를 보내는데, 이 용어의 사용을 확인할 수 있음

1 인공지능 용어와 학문의 탄생

다트머스 컨퍼런스

존 맥카시가 클로드 섀넌, 마빈 민스키, 나다니엘 로체스터등과 함께 준비한 인공지능 관련 컨퍼런스로, 인공지능 역사에서 절대 빼놓을 수 없는 중요한 컨퍼런스였음

■ 이때 발표된 연구들을 통틀어 '인공지능'이라는 용어로 부르기로 하였는데, 이는 인공지능이라는 학문이 본격적으로 시작된 순간이라고 할 수 있음

- 2 인공지능의 정의
 - 1 존 맥카시의 인공지능 정의

인공지능

지능적 기계를 만들기 위한 과학과 공학

■ '지능적 기계'에 대한 정확한 개념이 따로 없다 보니 의미가 모호하다고 할 수 있음

지금도 지능이 무엇인지에 대한 완성된 정의가 없는 상태이기 때문에 인공지능 역시 정의가 다양

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - ① 존호지랜드(John Haugeland, 인지과학/현상학 분야 철학자)

"문자 그대로, 컴퓨터를 생각하도록 만드는, 마음을 갖는 기계 (Machine with Minds)를 만드는 (흥분되고 새로운) 노력을 의미합니다."

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - ② 유진 카니악(Eugene Charniak, 컴퓨터와 인지 분야 과학자)

"계산 모델(Computational Model)을 활용한 정신적 능력(Mental Faculties)에 대한 연구를 의미합니다. 여기서 계산 모델은 인공지능이 컴퓨터로 실행 가능해야 함을 뜻합니다."

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - ③ 레이 커즈와일(Ray Kurzweil, 미래학자)

"사람이 수행할 때 지능이 요구되는 기능들을 수행할 수 있는 기계를 만드는 기술을 의미합니다."

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - ④ 조지 루거(George Luger, 컴퓨터 과학자)

"지능적 행동의 자동화에 관련된 컴퓨터 과학의 한 분야를 의미합니다."

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - ⑤ 닐스 닐슨(Nils Nilsson, 컴퓨터 과학자)

"기계가 지능을 갖도록 만드는 작업을 의미하는데, 여기서 지능은 어떤 주체가 주변 환경을 파악하고 예측하며 적절하게 기능하는 것을 뜻합니다."

- 2 인공지능의 정의
 - 2 인공지능 분야의 유명 인사들이 생각하는 인공지능의 다양한 정의
 - 인공지능의 정의가 다양한 이유는 지능에 대한 완전하고 총체적인 정의가 존재하지 않기 때문이기도 하지만, 인공지능 효과라고 부르는 현상 때문이기도 함

3 달성목표에 따른 인공지능의 4가지 관점

달성 목표에 따른 인공지능의 4가지 관점

인간처럼 생각하기 (Thinking humanly)

관점2

인간처럼 행동하기 (Acting humanly)

관점3

이성적으로 생각하기 (Thinking rationally)

관점4

이성적으로 행동하기 (Acting rationally)

3) 달성 목표에 따른 인공지능의 4가지 관점

1 '인간처럼'과 '이성적으로'의 개념

개념	내용
인간처럼	상식적인 생각, 사회적인 행동, 전문지식과 논리적인 문제 해결 능력 등을 포함
이성적으로	최대의 성능과 최소의 손실로 목적을 달성하는 것을 의미

3) 달성 목표에 따른 인공지능의 4가지 관점

- 1 '인간처럼'과 '이성적으로'의 개념
 - 인간적이지만 비이성적인 것
 - '12345×67890'과 같은 계산식을 몇 분 동안 계산하고 심지어 답이 틀리는 행동
 - 손해를 감수하면서 자신보다 어려운 사람을 도와주는 행동

3) 달성 목표에 따른 인공지능의 4가지 관점

- 1 '인간처럼'과 '이성적으로'의 개념
 - 이성적이지만 비인간적것
 - 앞의 계산식을 0.01초 만에 계산해 정확한 답을 구하는 행동
 - 자신에게 손해가 되는 그 어떤 행위도 하지 않는 행동

2 '생각하기'와 '행동하기'의 개념

개념	내용
생각하기	사람이 어떻게 생각하 는 지 원리를 이해하고, 그 원리를 컴퓨터로 구현하는 것
행동하기	사람의 지능적인 사고 원리에는 관심이 없고 사람의 지능적인 행동 자체만을 흉내 내는 것

3

달성 목표에 따른 인공지능의 4가지 관점

- 2 '생각하기'와 '행동하기'의 개념
 - 지능적인 행동의 예
 - 바둑 인공지능
 - 알파고는 이세돌을 이겼지만, 사실 실제 인간의 사고 원리를 바탕으로 수를 계산한 것은 아님
 - 기계번역
 - 사람의 경우 문장과 문맥을 이해하고 이를 바탕으로 번역하지만, 기계는 문장과 문맥을 전혀 이해하지 않은 상태에서 어느 정도 만족할 만한 번역을 수행

- 2 '생각하기'와 '행동하기'의 개념
 - 지능적인 행동의 예
 - 사람의 지능과 생각하는 원리의 모든 것이 샅샅이 밝혀져 컴퓨터로 구현되지 않는 이상, 인공지능이 달성해야 할목표는 '인간처럼 행동하기'와 '이성적으로 행동하기'에 한정될 것

- 2 '생각하기'와 '행동하기'의 개념
 - 지능적인 행동의 예

'이성적으로 행동하기'를 목표로 개발된 인공지능의 예

미국 퀴즈쇼〈제퍼디!〉에서 우승한 왓슨과 바둑 대결에서 이세돌을 이긴 알파고등이 있음

'인간처럼 행동하기'를 목표로 삼은 대표적인 예

튜링 테스트(Turing Test)

- 3 약인공지능과 강인공지능
 - 🚺 약인공지능(Weak Al)
 - <mark>미리 정의된 작업을</mark> 상황에 맞게 수행하여 최선의 결과를 도출하는 인공지능
 - 수행해야 할 작업 외 다른 작업에는 사용할 수 없어, 협소한 인공지능(Narrow AI)이라고 부르기도 하는데, 현재 개발된 인공지능은 모두 약인공지능

- 3 약인공지능과 강인공지능
 - 2 강인공지능(Strong AI)
 - 사람의 지능에 도달하거나 이를 뛰어넘는 인공지능으로, 자신만의 지능과 자유의지를 갖춤
 - 어떤 작업이든 인간처럼 지능을 활용하고 학습을 통해 처리할 수 있어 <mark>일반적 인공지능(General AI)</mark>이라고 부르기도 하는데, 강인공지능은 아직까지 만들어진 적이 없음

3 약인공지능과 강인공지능

구분	특징	예
약인공지능	 인간의 지능, 마음 구현과 상관없음 미리 프로그램된 조건과 행동 내에서 최상의 성과 달성이 목적임 특정 작업만 수행 가능 	딥블루, 알파고, 왓슨, 기계번역, 자연어 처리, 자율주행 인공지능, 영화/음악 추천 인공지능 등
강인공지능	 인간 또는 그 이상의 지능소유 자유의지, 자각 능력 보유 모든 작업 수행 가능 아직까진 SF영화, 애니메이션만 등장함 	영화 〈터미네이터〉의 스카이넷, 〈에이 아이〉의 데이빗, 〈바이센테니얼 맨〉의 앤드류 등

4 인공지능의역사

1 인공지능의 봄과 겨울

 인공지능은 1956년 다트머스 컨퍼런스에서 하나의 학문 분야로 출범한 후, 현재까지 3번의 봄과 2번의 겨울을 지나옴

봄

새로운 인공지능 기술의 발전, 성공적인 연구 성과, 적극적인 투자 등이 이루어진 부흥기

겨울

인공지능 기술의 한계 직면, 실망스러운 연구 결과, 투자 중단 등으로 인한 <mark>침체기</mark>

2 인공지능의 역사 1

• 1956~1987년, 인공지능의 탄생~두번째 봄

1956년

인공지능 탄생	• 다트머스 컨퍼런스 개최
	• 인공지능 프로그램으로 대수학, 기하학 문제 해결
	• 탐색추리, 자연어 처리 분야 성공 사례 등장
	• 인공지능용 프로그래밍 언어 LISP 개발
	• 머신러닝 개발
첫 번째 봄	• 인공신경망을 구현한 퍼셉트론 이론 발표
	• 낙관적인 견해 팽배
	- 10년 이내에 컴퓨터가 체스 세계 챔피언이 될 것
	- 20년 이내에 기계가 사람의 모든 일을 대체할 것
	- 20세기 내 AI 구현에 관한 대부분의 문제가 해결될 것

인공지능의 역사

2 인공지능의 역사 1

1956~1987년, 인공지능의 탄생~두번째 봄

• 퍼셉트론의 한계 발견(연산자 XOR 문제 해결 못함) 1974년 폭발적인 조합 수를 고려해야 하는 문제 해결 실패 • 현실적인 문제에 적용할 수 없으며 실험실 수준에만 머물고 첫 번째 겨울 있는 인공지능 개발 상황에 실망한 미 고등연구계획국(DARPA), 국립연구위원회(NRC) 등 기관의 지원금 중단 1980년

2 인공지능의 역사 1

• 1956~1987년, 인공지능의 탄생~두번째 봄

1980년 (첫 번째 겨울	
		• 신경망 인공지능의 부활
		- 다층(Multi-Layer) 퍼셉트론으로 XOR 문제 해결
		- 다층 신경망 학습방법 발견 : 역전파 알고리즘
	두 번째 봄	• 산업계 주도로 전문가 시스템(Expert System) 개발
		 전문가 시스템 : 특정 분야에서 전문가 또는 그 이상의 문제 해결 능력을 갖추도록 한 시스템
		• 정부 주도의 대규모 투자 재개
1987년		- 일본의 5세대 컴퓨터(인공지능형 컴퓨터) 프로젝트

3 인공지능의 역사 2

• 1987~미래, 두 번째 겨울~미래

1987년		• 전문가 시스템의 실패
	두 번째 겨울	- 지식 추출의 병목 현상 : 해결할 문제가 커지고 복잡해짐에 따라 전문가 물색과 지식 추출이 어려워짐
		- 시스템 성능 업데이트와 유지보수의 어려움
		- 성능 대비 과도한 하드웨어 비용
		• 일반 PC의 급격한 성능 향상(인공지능 컴퓨터의 몰락)
		• 일본의 5세대 컴퓨터 프로젝트 실패
400014		• 실용주의적 정부 정책 강화(장기적인 전략적 과제 부재)
1993년 🖠		
2006년 🖠		

3 인공지능의 역사 2

• 1987~미래, 두 번째 겨울~미래

2006년			• 인공신경망 기반 딥러닝 기술 발전
			• 인공지능 학습에 적합한 데이터의 폭발적 증가
		세 번째 봄	- IoT와 빅데이터 처리 기술 발전
			• 인공지능의 몸통인 로보틱스 기술 발전
			• 주목할 만한 성공 사례 등장
			- 2011년, IBM의 인공지능 왓슨이 퀴즈쇼〈제퍼디!〉에서 우승
			- 2012년, 구글과 앤드류 응 박사가 딥러닝 기술로 유튜브 영상 속 고양이 얼굴인식에 성공
현재		- 2016년, 구글 딥마인드의 알파고가 바둑기사 이세돌 9단에게 승리	

3 인공지능의 역사 2

• 1987~미래, 두 번째 겨울~미래

현재

	• 레이 커즈와일(Ray Kurzweil)
	- 2045년경 인공지능 기술이 급격하게 팽창하는 특이점이 올 것이라 예고
미래 전망	- 인공지능과 인간의 두뇌가 자연스럽게 하나가 될 것으로 전망
미네 선정	• 스티븐 호킹(Stephen Hawking)
	 인공지능은 자신을 개량하고 도약할 수 있지만, 인간은 생물학적 진화속도가 느리다고 지적
	- 결국 인간은 인공지능과 경쟁할 수 없고 대체되고 말 것이라 경계

3 인공지능의 역사 2

• 1987~미래, 두 번째 겨울~미래

현재

미래 전망

- 빌게이츠(Bill Gates)
 - 노동시장이 인공지능의 빠른 발전 속도를 따라가는 것은 어려울 것으로 판단
 - 노동자들을 어떻게 재교육하고 인공지능 경제의 성과를 어떤 식으로 배분할지가 미래의 도전과제라고 지적

교육용프로그래밍언어기초(스크래치)

