Eine Woche, ein Beispiel 2.23 Schubert calculus: coh of Grassmannian

Ref: [3264] and [Fulton]

We will attempt to tackle Schubert calculus in a concise manner. The term "Schubert calculus" is often associated with intersection theory, enumerative geometry, combinatorics, Grassmannians, and more, making it a vast topic. However, I believe its core ideas can be clearly explained in just six hours. I will break the material into several parts:

- 1. H'(Gr(n,r); Z) and its combinatorics
- 2 (inside Grassmannian)
 cycles in Grassmannian, including.
 - cycle class map: $CH^{'}(Gr(n,r)) \xrightarrow{\sim} H^{'}(Gr(n,r); \mathbb{Z})$

 - a reintepretation of cycles

3. (outside Grassmannian + v.b.)

Chern class: $c: VB(X) \longrightarrow H'(X; Z)$

$$f_{\perp}^{*}$$
. $H(G_{\nu}(\infty,\nu),\mathbb{Z}) \longrightarrow H(X,\mathbb{Z})$

e.p., VB
$$(Gr(n,r))$$
 \longrightarrow $H^{*}(Gr(n,r); \mathbb{Z})$
 S^{*} \longmapsto $1+\sigma_{1}+\cdots$
 Q \longmapsto $1+\sigma_{1}+\cdots$
 T_{Gr} \longmapsto $1+\sigma_{1}+\sigma_{2}+\cdots+(-1)^{r}\sigma_{Gr}$

4 Applications

tangent space argument

1. Group structure of H'(Gr(n,r); Z)

It's well-known that $Gr(n,r) \cong GLn(\mathbb{C})/p$ has an affine paving w.r.t. Sn/s, xsn-r.

$$C_{r}(n,r) = \bigsqcup_{\omega \in S_{n/s_{r}} \times S_{n-r}} B_{\omega} P_{p} \cong \bigsqcup_{\omega \in S_{n/s_{r}} \times S_{n-r}} C^{l(\omega)}$$

$$\# S_{n/s_{r} \times S_{n-r}} = \binom{n}{r}$$

We read the diagram from top to bottom, the map from right to left.

E.g.
$$n=4 r=2$$

Hint from gp element to homology class.

E.g. n = 5, r = 2

Ex. compute wo-action (left mult) on Sn/srxSn-r, where wo= X.