```
## Error in get(genname, envir = envir) :
## Objekt 'testthat_print' nicht gefunden
```


Bachelor thesis/Project work (Study programme, max. 2 lines)

Title Title

Ken Geeler
Pascal Simon Bühler
Philipp Rieser
Marc Wildi
Mobiliar

Please fill in the title sheet taking into account the following points:

- → Please do not change the font type or font size. Text should only be written over!
- → Please use only 4 lines max. per table row!
- ullet Template: did you choose the right institute/centre? ullet Logo institute/centre
- Title: add your study programme directly after the word ,Bachelor thesis / Project work' (max. 2 lines).
- Title: overwrite the running text with your Bachelor thesis title / Project work title (max. 4 lines).
- Author: fill in your first and family name (list alphabetical > family name).
- Supervisor: fill in your supervisor/s (list alphabetical > family name).
- ullet Sup supervisor: if you do not have a sup supervisor ullet please delete this table row.
- Industrial partner: if you do not have an industrial partner → please delete this table row.
- External supervisor: if you do not have an external supervisor → please delete this table row.
- Date: please fill in current date.
- Finish: at the end please delete this description (grey) and safe the document in pdf format.

DECLARATION OF ORIGINALITY Bachelor's Thesis at the School of Engineering

By submitting this Bachelor's thesis, the undersigned student confirms that this thesis is his/her own work and was written without the help of a third party. (Group works: the performance of the other group members are not considered as third party).

The student declares that all sources in the text (including Internet pages) and appendices have been correctly disclosed. This means that there has been no plagiarism, i.e. no sections of the Bachelor thesis have been partially or wholly taken from other texts and represented as the student's own work or included without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General Academic Regulations for Bachelor's and Master's Degree courses at the Zurich University of Applied Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for disciplinary action stipulated in the University regulations.

City, Date:	Name Student:
Winterthur, 11.06.2021	Geeler Ken
Winterthur, 11.06.2021	Pascal Simon Bühler
Winterthur, 11.06.2021	Philipp Rieser

Contents

Abstract
1. Introduction
1.1. Dummy-Title
1.2. Dummy-Title
1.2.1. Dummy-Title
3. Theory
3.1. Neural network
3.1.1. Perceptron
3.1.2. Backprogation algorithm
3.1.3. Types of artificial neural networks
3.1.4. Challenges
3.2. Bitcoin
3.2.1. Historical analysis
2.3.1. historical analysis
3.3.2. SHA256 Hash
3.7. Reference
3.7.1. Figure Reference
3.7.2. Equation Reference
3.7.3. Table Reference
3.7.4. Section Reference
3.7.5. Literature Reference
4. Methodology
4.1. Data and analysis of Bitcoin
4.2. Defining train and test samples
4.3. Forecasting
4.3.1. In-sample
4.3.2. Out-of-sample
4.4. Trading strategies
4.5. Explainability
4.6. (Relationship between accuracy and market phase)
4. Results
4.1. Dummy-Title
4.2. Dummy-Title
4.2.1. Dummy-Title
5. Conclusion

	5.1. Get rich or die tryin	18
	5.2. Be GME stock, or not to be GME stock	18
5.	References	19
6.	Attachment	20

Abstract

ullamcorper velit sed ullamcorper morbi tincidunt ornare massa eget egestas purus viverra accumsan in nisl nisi scelerisque eu ultrices vitae auctor eu augue ut lectus arcu bibendum at varius vel pharetra vel turpis nunc eget lorem dolor sed viverra ipsum nunc aliquet bibendum enim facilisis gravida neque convallis a cras semper auctor neque vitae tempus quam pellentesque nec nam aliquam sem et tortor consequat id porta nibh venenatis cras sed felis eget velit aliquet sagittis id consectetur purus ut faucibus pulvinar elementum integer enim neque volutpat ac tincidunt vitae semper quis lectus nulla at volutpat diam ut venenatis tellus in metus vulputate eu scelerisque felis imperdiet proin fermentum leo vel orci porta non pulvinar neque laoreet suspendisse interdum consectetur libero id faucibus nisl tincidunt eget nullam non nisi est sit amet facilisis magna etiam tempor orci eu lobortis elementum nibh tellus molestie nunc non blandit massa enim nec dui nunc mattis enim ut tellus elementum sagittis vitae et leo duis ut diam quam nulla porttitor massa id neque aliquam vestibulum morbi blandit cursus risus at ultrices mi tempus imperdiet nulla malesuada pellentesque elit eget gravida cum sociis natoque penatibus et magnis dis parturient montes nascetur ridiculus mus mauris vitae ultricies leo integer malesuada nunc vel risus commodo viverra maecenas accumsan lacus vel facilisis volutpat est velit egestas dui id ornare arcu odio ut sem nulla pharetra diam sit amet nisl suscipit adipiscing bibendum est ultricies integer quis auctor elit sed vulputate mi sit amet mauris commodo quis imperdiet massa tincidunt nunc pulvinar sapien et ligula ullamcorper malesuada proin libero nunc conseguat interdum varius sit amet mattis vulputate enim nulla aliquet porttitor lacus luctus accumsan tortor posuere ac ut consequat semper viverra nam libero justo laoreet sit amet cursus sit amet dictum sit amet justo donec enim diam vulputate ut pharetra sit amet aliquam id diam maecenas ultricies mi eget mauris pharetra et ultrices neque ornare aenean euismod elementum nisi quis eleifend quam adipiscing vitae proin sagittis nisl rhoncus mattis rhoncus urna neque viverra justo nec ultrices dui sapien eget mi proin sed libero enim sed faucibus turpis in eu mi

1. Introduction

Ken is testing working with Github.does it work now?

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Commodo elit at imperdiet dui accumsan sit. Tempus iaculis urna id volutpat lacus laoreet non curabitur gravida. Turpis egestas integer eget aliquet nibh praesent tristique magna. Nec ultrices dui sapien eget mi proin sed. Turpis nunc eget lorem dolor sed viverra ipsum nunc. Lorem donec massa sapien faucibus et. In hac habitasse platea dictumst vestibulum rhoncus est pellentesque. Ac tortor vitae purus faucibus ornare suspendisse sed nisi lacus. Mauris cursus mattis molestie a iaculis at erat pellentesque adipiscing.

1.1. Dummy-Title

Neque volutpat ac tincidunt vitae semper quis. At elementum eu facilisis sed odio morbi quis commodo odio. Eget dolor morbi non arcu risus quis. Gravida quis blandit turpis cursus in hac. Vehicula ipsum a arcu cursus vitae congue mauris. Id eu nisl nunc mi ipsum faucibus vitae. Ut sem viverra aliquet eget sit amet. Tempor orci eu lobortis elementum. Eu feugiat pretium nibh ipsum consequat nisl vel pretium. Vel turpis nunc eget lorem dolor sed viverra. Enim neque volutpat ac tincidunt. Eget nullam non nisi est sit amet facilisis magna. Adipiscing commodo elit at imperdiet dui accumsan sit amet. Diam vel quam elementum pulvinar etiam non. In hac habitasse platea dictumst vestibulum rhoncus. Mattis aliquam faucibus purus in massa. Netus et malesuada fames ac. In fermentum posuere urna nec tincidunt praesent. Dolor sit amet consectetur adipiscing. At in tellus integer feugiat scelerisque.

Tellus at urna condimentum mattis pellentesque id nibh. Morbi tempus iaculis urna id volutpat lacus laoreet. Sem fringilla ut morbi tincidunt augue interdum. Mauris nunc congue nisi vitae. Diam maecenas ultricies mi eget. Vel quam elementum pulvinar etiam. Aliquam faucibus purus in massa. In est ante in nibh mauris cursus. Non diam phasellus vestibulum lorem sed risus ultricies. Sed vulputate mi sit amet mauris commodo quis imperdiet massa. Lectus vestibulum mattis ullamcorper velit sed ullamcorper morbi tincidunt ornare. Pellentesque habitant morbi tristique senectus et netus et malesuada fames. Elit duis tristique sollicitudin nibh sit amet commodo. A iaculis at erat pellentesque adipiscing commodo elit. Quam viverra orci sagittis eu volutpat odio facilisis. Eros donec ac odio tempor orci dapibus ultrices in iaculis.

1.2. Dummy-Title

Dui id ornare arcu odio ut sem nulla. Quam nulla porttitor massa id neque aliquam vestibulum morbi. Nulla at volutpat diam ut venenatis. Diam in arcu cursus euismod quis viverra nibh cras pulvinar. Pellentesque pulvinar pellentesque habitant morbi tristique senectus et netus. Posuere lorem ipsum dolor sit. Mus mauris vitae ultricies leo integer malesuada nunc. Lorem donec massa sapien faucibus et molestie ac feugiat. Erat pellentesque adipiscing commodo elit at imperdiet dui. Id diam maecenas ultricies mi eget. Dui ut ornare lectus sit amet est placerat in egestas. Commodo sed egestas egestas fringilla phasellus faucibus scelerisque eleifend. Morbi blandit cursus risus at ultrices mi. Mollis nunc sed id semper risus. Egestas sed sed risus pretium quam vulputate dignissim suspendisse in. Vitae justo eget magna fermentum iaculis. Pellentesque pulvinar pellentesque habitant morbi tristique. Pharetra magna ac placerat vestibulum lectus. In hac habitasse platea dictumst quisque sagittis. Sapien nec sagittis aliquam malesuada bibendum arcu vitae elementum curabitur.

1.2.1. Dummy-Title

Velit euismod in pellentesque massa placerat duis ultricies lacus. Senectus et netus et malesuada fames. Fringilla ut morbi tincidunt augue interdum velit. Faucibus scelerisque eleifend donec pretium vulputate sapien nec sagittis aliquam. Duis at consectetur lorem donec massa sapien faucibus et. Lacus luctus accumsan tortor posuere ac. Nunc id cursus metus aliquam eleifend mi in nulla. Quis risus sed vulputate odio ut enim

blandit. Ullamcorper eget nulla facilisi etiam dignissim diam quis enim. Commodo ullamcorper a lacus vestibulum sed arcu non. Sit amet commodo nulla facilisi nullam vehicula ipsum. Risus quis varius quam quisque. Velit egestas dui id ornare arcu odio ut sem nulla. At in tellus integer feugiat scelerisque varius morbi enim. Pharetra magna ac placerat vestibulum lectus mauris ultrices eros in.

Magnis dis parturient montes nascetur ridiculus mus mauris vitae ultricies. Viverra suspendisse potenti nullam ac tortor vitae purus faucibus ornare. Eget gravida cum sociis natoque penatibus et magnis dis parturient. Sit amet porttitor eget dolor morbi non arcu risus quis. Fermentum et sollicitudin ac orci phasellus egestas tellus. Risus viverra adipiscing at in tellus integer feugiat scelerisque. Pulvinar pellentesque habitant morbi tristique senectus et netus. Lacus sed viverra tellus in. Massa sed elementum tempus egestas sed. Euismod lacinia at quis risus sed vulputate odio ut. Sed libero enim sed faucibus. Tempor orci eu lobortis elementum.

3. Theory

The following chapter is intended to provide the theoretical foundations necessary for our work. It is divided into a part that provides an overview of artificial neural networks. Followed by section 2.3. that shows the background and the ecosystem of Bitcoin. This knowledge should be kept in mind, which should help in understanding the price formation of Bitcoin.

3.1. Neural network

In the context of this work, artificial neural networks are used to answer supervised learning questions that focus on classification of data. This means that a neural network finds a correlation between the data and their labels and optimizes its parameters in order to minimize the error for the next try. This process is called supervised training and is performed with a test data sample. An application example of classification is that a neural network is used for face recognition after it has learned the classification of different faces in the process of supervised training. Predictive analysis works similarly to the classification of labeled data. It estimates future values based on past events and can be trained with historical data. On the other hand, unsupervised learning (clustering) is applied to detect patterns from unlabeled data. Based on these patterns, for example, anomalies can be detected that are relevant in the fight against fraud (fraud detection). Unsupervised learning is not discussed further in this paper.

Section 3.1.1. will demonstrate the functioning of a neural network using a simple perceptron.

3.1.1. Perceptron

The construction of an artificial neural network is demonstrated using a perceptron. It is a simple algorithm for supervised learning of binary classification problems. This algorithm classifies patterns by performing a linear separation. Although this discovery was anticipated with great expectations in 1958, it became increasingly apparent that these binary classifiers are only applicable to linearly separable data inputs. This was only later addressed by the discovery of multiple layer perceptrons (MLP).

(Rosenblatt, 1958)

Basically, a perceptron is a single-layer neural network and consists of the following five components and can also be observed in ??.

- 1. Inputs
- 2. Weights
- 3. Bias
- 4. Weighted sum
- 5. Activation function

Inputs are the information that is fed into the model. In the case of econometric time series, it is mostly the current and historical log returns (lags). These are multiplied by the weights and added together with the bias term to form the weighted sum. This weighted sum is finally passed on to the non-linear activation function, which determines the output of the perceptron.

(https://images.deepai.org/glossary-terms/perceptron-6168423.jpg)

The perceptron can also be represented as a function. Analogous to the representation above, the inputs x_i are multiplied by the weights w_i in a linear combination. Then an error term is added so that the whole can be packed into the non-linear activation function g(S). \hat{y} is the binary output of this perceptron. With the aid of an activation function, a binary output is obtained. The Heaviside step function shown in figure ?? is

Figure 1: Schematic diagram of a perceptron.

usually only used in single layer perceptrons, which recognize linear separable patterns. For the multi layer neural networks presented later, step functions are not an option, because in the course of the backprogation algorithm the gradient descent has to be minimized. This requires derivatives of the activation function, which in the case of this Heaviside step function equals 0. Because the foundation for the optimization process is missing, functions like the sigmoid function or the hyperbolic tangent function are used. More about this topic is discussed in chapter ??.

$$\hat{y} = g(w_0 + \sum_{i=1}^{n} x_i w_i) \tag{1}$$

(Anthony and Bartlett, 1999)

As just mentioned, the aim is to feed the perceptron with the training set and change the weights w_i with each cycle so that the prediction becomes accurate. The output value is compared to the desired value. Finally, the sign of the difference $y - \hat{y}$ determines whether the inputs of that iteration are added to or subtracted from the weights. Ideally, the weights will gradually converge and provide us with an usable model.

3.1.2. Backprogation algorithm

- Backprogatation algo
- Gradient descent

3.1.3. Types of artificial neural networks

- MLP / DNN (explain nodes and layers)
- Recurrent neural networks (RNN)
- Long-short term memory (LSTM)

3.1.4. Challenges

- Early stopping required to avoid overfitting to in-sample data
- Gradient vanishing problem
- Dying Relu Problem (?)

3.2. Bitcoin

In this section bitcoin as a cryptocurreny is introduced. The historical data is analyzed and commentend. Further the technology in and around cryptocurrencies is briefly explained. A detailed explanation would require a paper itself, therefore the explanation is done as simple as possible.

In the following work bitcoin as a cryptocurreny is mentionend in its short term BTC, by the meaning of US Dollars per Bitcoin.

3.2.1. Historical analysis

2.3.1. historical analysis — Bitcoin was first introduced in 2009 as the leader of a new era of cryptocurrencies. Firstly the recognition wasnt very high due to the fact of a non established technology. At the end of 2016 things began to change, more volume was flushed in the market and the price of BTC began to slowly ascend. in 2017 the real rally began and the BTC rose up to nearly 20k USD / BTC. In the following years until 2020 BTC had a lot of different phases from rising and falling to a price at the end in 2020 around 10000 USD per BTC. Most recent events topped everything before, as the BTC rose up to 58000 US Dollar after companies like Tesla and Signal bought in with high volume.

3.3.2. SHA256 Hash

- Block
- Blockchain
- Distributed Blockchain

- Token
- Coinbase Transaction
- Public/Private Key -> Signing
- Signature (sign, verify)Transaction

- 3.7. Reference
- 3.7.1. Figure Reference

3.7.2. Equation Reference GARCH-formula can be seen in 2

$$\epsilon_t = \log(x_t) - \log(x_{t-1})$$

$$\epsilon_t = \sigma_t u_t$$

$$\sigma_t^2 = c\sigma^2 + \sum_{j=1}^n \alpha_j \sigma_{t-j}^2 + \sum_{k=1}^m \beta_k \epsilon_{t-k}^2$$
(2)

3.7.3. Table Reference

3.7.4. Section Reference Here we can see a wild section, which will reference to itself: 2.7.4. Or reference to the Bitcoin-section 2.3.

3.7.5. Literature Reference Add bibliography reference in the .bib-file in the add folder.

Here I make a reference to the original bitcoin paper [1] [@bitcoin] or to the specific page on the NN financial trading paper [2, pp. 6-8] -> [@nnfin, pp. 6-8]

4. Methodology

The focus of this thesis is to predict historical prices of bitcoin using the models listed in Chapter XX. The predictive accuracy of these obtained predictions are compared using loss functions (Annualized Sharpe, Diebold Mariano Test, MAE, MSE, RMSE, Mincer-Zarnowitz Regressions). Then, based on the best models with the most accurate predictions, trading strategies are worked out to compare with a buy-and-hold strategy. Finally, we would like to venture into the topic of explainability and attempt to explain why the chosen models lead to these outcomes. The procedure of this quantitative study is described in this chapter.

- Data and Analysis of Bitcoin (BTC/USD)
- Defining the train and test samples (including description about calm and volatile phases).
- Calculate predictions with the defined models (AR, NN, RNN, LSTM).
- Compare Predictions with Realized Data (Annualized Sharpe, Diebold Mariano Test, MAE, MSE, RMSE, Mincer-Zarnowitz Regressions)
- Explain trading strategies
- Explainability for the best models
- (Backup: Which models work well in which market phases?)

4.1. Data and analysis of Bitcoin

The data in this paper is accessed via yahoofinance provided by coinmarket https://coinmarketcap.com/. We use the daily "closing price" of bitcoin in US Dollars with the ticker BTC-USD. Cryptoassets are tradeble 24 hours a day 256 days a year, there is no real "closing price" for the bitcoin, therefore the "closing-Price" is just the last price of the day evaluated at last timestamp with timeformat UTC.

In chapter 3.3. the bitcoin price is visualized. For processing and analyzing the data in order to fullfill the weak stationarity assumptions we transform the data into logreturns

$$LogReturn = log(x_t) - log(x_{t-1})$$

By computing the autocorrelation of the log_returns, there is still dependence visible in lag 6 and 10. This indicates dependency in volatility-cluster, to cancel out the effect an ARMA-GARCH model is fitted to the data and the residuals are standardized by the model standard-deviation.

To check the dependencies the standardized

Series log_ret_sd^2

4.2. Defining train and test samples

- Describe different phases
- Explain why we set train and test sample like this
- Describe stable and volatile phases and why we should keep that in mind for predictions

4.3. Forecasting

- Autoregressive process (AR)
- Deep learning neural network / multi layer percepton
- Recurrent neural network (RNN)
- Long short-term memory (LSTM)

4.3.1. In-sample

• Compare Predictions with Realized Data (Annualized Sharpe, Diebold Mariano Test, MAE, MSE, RMSE, Mincer-Zarnowitz Regressions)

4.3.2. Out-of-sample

• Compare Predictions with Realized Data (Annualized Sharpe, Diebold Mariano Test, MAE, MSE, RMSE, Mincer-Zarnowitz Regressions)

4.4. Trading strategies

- Define trading strategies
- Define realistic fee structure for trading (Coinbase Pro, Binance, Kraken etc.)

4.5. Explainability

- Performing the predictions with the two (?) best models
- Include variations to find possible starting points for explainability (number of nodes, layers)

4.6. (Relationship between accuracy and market phase)

• Test

4. Results

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Commodo elit at imperdiet dui accumsan sit. Tempus iaculis urna id volutpat lacus laoreet non curabitur gravida. Turpis egestas integer eget aliquet nibh praesent tristique magna. Nec ultrices dui sapien eget mi proin sed. Turpis nunc eget lorem dolor sed viverra ipsum nunc. Lorem donec massa sapien faucibus et. In hac habitasse platea dictumst vestibulum rhoncus est pellentesque. Ac tortor vitae purus faucibus ornare suspendisse sed nisi lacus. Mauris cursus mattis molestie a iaculis at erat pellentesque adipiscing.

4.1. Dummy-Title

Neque volutpat ac tincidunt vitae semper quis. At elementum eu facilisis sed odio morbi quis commodo odio. Eget dolor morbi non arcu risus quis. Gravida quis blandit turpis cursus in hac. Vehicula ipsum a arcu cursus vitae congue mauris. Id eu nisl nunc mi ipsum faucibus vitae. Ut sem viverra aliquet eget sit amet. Tempor orci eu lobortis elementum. Eu feugiat pretium nibh ipsum consequat nisl vel pretium. Vel turpis nunc eget lorem dolor sed viverra. Enim neque volutpat ac tincidunt. Eget nullam non nisi est sit amet facilisis magna. Adipiscing commodo elit at imperdiet dui accumsan sit amet. Diam vel quam elementum pulvinar etiam non. In hac habitasse platea dictumst vestibulum rhoncus. Mattis aliquam faucibus purus in massa. Netus et malesuada fames ac. In fermentum posuere urna nec tincidunt praesent. Dolor sit amet consectetur adipiscing. At in tellus integer feugiat scelerisque.

Tellus at urna condimentum mattis pellentesque id nibh. Morbi tempus iaculis urna id volutpat lacus laoreet. Sem fringilla ut morbi tincidunt augue interdum. Mauris nunc congue nisi vitae. Diam maecenas ultricies mi eget. Vel quam elementum pulvinar etiam. Aliquam faucibus purus in massa. In est ante in nibh mauris cursus. Non diam phasellus vestibulum lorem sed risus ultricies. Sed vulputate mi sit amet mauris commodo quis imperdiet massa. Lectus vestibulum mattis ullamcorper velit sed ullamcorper morbi tincidunt ornare. Pellentesque habitant morbi tristique senectus et netus et malesuada fames. Elit duis tristique sollicitudin nibh sit amet commodo. A iaculis at erat pellentesque adipiscing commodo elit. Quam viverra orci sagittis eu volutpat odio facilisis. Eros donec ac odio tempor orci dapibus ultrices in iaculis.

4.2. Dummy-Title

Dui id ornare arcu odio ut sem nulla. Quam nulla porttitor massa id neque aliquam vestibulum morbi. Nulla at volutpat diam ut venenatis. Diam in arcu cursus euismod quis viverra nibh cras pulvinar. Pellentesque pulvinar pellentesque habitant morbi tristique senectus et netus. Posuere lorem ipsum dolor sit. Mus mauris vitae ultricies leo integer malesuada nunc. Lorem donec massa sapien faucibus et molestie ac feugiat. Erat pellentesque adipiscing commodo elit at imperdiet dui. Id diam maecenas ultricies mi eget. Dui ut ornare lectus sit amet est placerat in egestas. Commodo sed egestas egestas fringilla phasellus faucibus scelerisque eleifend. Morbi blandit cursus risus at ultrices mi. Mollis nunc sed id semper risus. Egestas sed sed risus pretium quam vulputate dignissim suspendisse in. Vitae justo eget magna fermentum iaculis. Pellentesque pulvinar pellentesque habitant morbi tristique. Pharetra magna ac placerat vestibulum lectus. In hac habitasse platea dictumst quisque sagittis. Sapien nec sagittis aliquam malesuada bibendum arcu vitae elementum curabitur.

4.2.1. Dummy-Title

Velit euismod in pellentesque massa placerat duis ultricies lacus. Senectus et netus et malesuada fames. Fringilla ut morbi tincidunt augue interdum velit. Faucibus scelerisque eleifend donec pretium vulputate sapien nec sagittis aliquam. Duis at consectetur lorem donec massa sapien faucibus et. Lacus luctus accumsan tortor posuere ac. Nunc id cursus metus aliquam eleifend mi in nulla. Quis risus sed vulputate odio ut enim blandit. Ullamcorper eget nulla facilisi etiam dignissim diam quis enim. Commodo ullamcorper a lacus

vestibulum sed arcu non. Sit amet commodo nulla facilisi nullam vehicula ipsum. Risus quis varius quam quisque. Velit egestas dui id ornare arcu odio ut sem nulla. At in tellus integer feugiat scelerisque varius morbi enim. Pharetra magna ac placerat vestibulum lectus mauris ultrices eros in.

Magnis dis parturient montes nascetur ridiculus mus mauris vitae ultricies. Viverra suspendisse potenti nullam ac tortor vitae purus faucibus ornare. Eget gravida cum sociis natoque penatibus et magnis dis parturient. Sit amet porttitor eget dolor morbi non arcu risus quis. Fermentum et sollicitudin ac orci phasellus egestas tellus. Risus viverra adipiscing at in tellus integer feugiat scelerisque. Pulvinar pellentesque habitant morbi tristique senectus et netus. Lacus sed viverra tellus in. Massa sed elementum tempus egestas sed. Euismod lacinia at quis risus sed vulputate odio ut. Sed libero enim sed faucibus. Tempor orci eu lobortis elementum.

5. Conclusion

Best Trading Algorithm ever!

5.1. Get rich or die tryin

Neque volut
pat ac tincidunt vitae semper quis. At elementum eu facilisis sed odio morbi quis commodo odio. Eget dolor

5.2. Be GME stock, or not to be GME stock

Tellus at urna condimentum mattis pellentesque id nibh. Morbi tempus iaculis urna id volutpat lacus laoreet. Sem fringilla

5. References

- [1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system. online: www.bitcoin.org, 2008, p. 9.
- [2] R. R. Georgios Sermpinis Andreas Karathanasopoulos, Neural networks in financial trading. online: Springer Science+Business Media, 2019, p. 16.

6. Attachment

This project work is created with R-4.0.2 , RS tudio Version 1.4.904 and RMarkdown in collaborative working via ${\rm Git}$ / ${\rm Github}$