Липецкий государственный технический университет

Факультет Автоматизации и информатики Кафедра автоматизированных систем управления

КУРСОВАЯ РАБОТА

по дисциплине «Архитектура программных систем» «Разработка архитектуры распределённой программной системы»

Студента Посаженников И. А.

Группы ПИ-16

Руководитель Алексеев В. А.

Задание кафедры

Студенту Посаженникову И. А.

группы ПИ-16

Предметная область: Система распределения ресурсов.

Сформулировать техническое задание на разработку программной системы, разработать документ «Архитектура программной системы» в соответствии с моделью «4+1» и с использованием диаграмм UML, ER.

Цель работы

Изучить модели и методы проектирования и документирования архитектуры программных систем, получить навыки разработки архитектуры распределенной программной системы на примере учебного проекта.

Аннотация

С. 30 Ил. 11 Литература. 3 назв. Прил. 2;

Настоящий документ является расчетно-пояснительной запиской по проделанной курсовой работе «Разработка архитектуры распределённой программной системы».

Оглавление

Введ	ение	6
1 T	ехническое задание на программную систему	6
1.1	Общие сведения	6
1.1.1	Полное наименование системы	6
1.1.2	Краткое	6
1.1.3	Наименование организации	7
1.1.4	Порядок выполнения работ	7
1.2	Характеристика предметной области	7
1.3	Требования к системе	8
1.3.1	Внешняя среда	8
1.3.2	Функции системы	9
1.3.3	Пользователи системы	10
1.3.4	Входные и выходные данные	10
1.3.5	Требования к аппаратной и программной платформе для установки	11
1.3.6	Требования к надёжности	12
1.4	Порядок контроля и приёмки	13
1.5	Требования к документированию	14
2 Ap	хитектура системы	15
2.1	Введение	15
2.1.1	Диаграмма вариантов использования	15
2.1.2	Классовая диаграмма системы и её окружения	16
2.2	Логическое представление	17
2.2.1	Диаграмма пакетов	17
2.2.2	Классовая диаграмма системы	18
2.3	Представление разработки	18
2.3.1	Диаграмма кооперации	18
2.3.3	Диаграмма состояний	20
2.4	Процессное представление	21
2.4.1	Диаграмма кооперации	21
2.5	Представление развёртывания	23
2.6	Представление данных	24
Заклі	ючение	25
Спис	ок использованных источников	25

Приложение 1. Классовая диаграмма системы	26
Приложение 2. Спецификация классовой диаграммы	27

Введение

Вместе с непрерывным ростом плотности населения в городской местности, аварии, вызванные чрезвычайными происшествиями, становятся всё более и более серьёзными. Как правило, чрезвычайные происшествия, которые происходят в городских районах относятся к инцидентам, вызванных взаимодействием людей с окружающей средой или антропогенными системами, такие как пожары в городе, промышленные аварии, сбои связи, террористические акты и т.д. Чрезвычайные происшествия обладают четырьмя общими характеристиками: они должны быть спрогнозированными, что предварительное распределение ресурсов практически невозможным; они обычно требуют несколько видов ресурсов, которые могут быть разбросаны на большой территории, быть под разным управлением, обладать различной доступностью, мобильностью и функциональными возможностями, что осложняет процесс поиска подходящих доступных имеют строгие временные ресурсов; рамки реагирования оперативными экстренными службами и распределение ресурсов, что увеличивает сложность нахождения оптимального плана распределения ресурсов; окружающая обстановка вокруг чрезвычайных происшествий и сами происшествия динамичны, что вводит много неопределённых факторов при распределении ресурсов.

1 Техническое задание на программную систему

1.1 Общие сведения

1.1.1 Полное наименование системы

Система распределения ресурсов экстренных оперативных служб.

1.1.2 Краткое

СР РЭОС, в дальнейшем – система.

1.1.3 Наименование организации

Заказчик – Главное управление МЧС России по Липецкой области Исполнитель – определяется Договором

1.1.4 Порядок выполнения работ

Плановые сроки начала и окончания работ не более 4-ч месяцев включая разработку и внедрение.

Работы финансируются Заказчиком в порядке, определённом договором.

Требования к системе, установленные настоящим Т3, не должны ограничивать исполнителя в поиске и реализации наиболее эффективных технических и техникоэкономических решений.

Изменения к настоящему ТЗ оформляются в виде протокола или дополнения к ТЗ, согласовываются всеми заинтересованными сторонами и утверждаются Заказчиком и Исполнителем. После утверждения протокол или дополнение становятся неотъемлемой частью ТЗ.

1.2 Характеристика предметной области

На сегодняшний день большинство процессов распределения ресурсов в чрезвычайных ситуациях в городской местности всё ещё выполняется вручную, что является крайне неэффективным. Это происходит потому, что в городах спасательные ресурсы принадлежат разным экстренным службам и расположены в разных местах. Диспетчерам, ответственным за разрешение чрезвычайных происшествий, обычно сложно эффективно рассчитать наиболее оптимальный план распределения ресурсов ДЛЯ каждого происшествия из-за огромного количества вариантов и возможностей. Например, в Московском регионе, числится 1500 транспортных средств у службы скорой медицинской помощи с более чем 4000 операторами скорой помощи; около 338 пожарных станций с более чем 6500 пожарных; и более 6500 полицейских, работающих в почти 300 полицейских участках. Выбор ресурсов из такого большого пула ресурсов может легко повлечь человеческие ошибки в связи с оценкой многих факторов в очень короткий промежуток времени.

Нет никаких сомнений в том, что операторы диспетчерских служб находятся под значительным давлением, когда от эффективности их распределения ресурсов зависит ущерб и число жертв. Одним из возможных решений является автоматизация расчёта оптимального плана распределения ресурсов.

1.3 Требования к системе

1.3.1 Внешняя среда

«Система-112» является ОДНИМ ИЗ основных элементов автоматизированной информационно-управляющей единой системы государственной системы предупреждения и ликвидации чрезвычайных ситуаций (АИУС РСЧС). «Система-112», создаваемая на базе единых дежурно-диспетчерских служб (ЕЕДС) муниципальных образований, чаще всего является источником получения первичной информации о чрезвычайной ситуации, и поэтому именно с неё как правило начинается реагирование на происшествие и чрезвычайные ситуации.

Создаваемая система распределения ресурсов экстренных оперативных служб будет также являться элементом АИУС РСЧС, то есть работать совместно с «Системой-112».

В качестве внешней среды системы могут выступать ЕДДС (Единая диспетчерская служба) и ДДС (Дежурно-диспетчерская служба) различных оперативных служб.

Для унификации процессов передачи информации, повышения эффективности информационного взаимодействия дежурно-диспетчерских служб экстренных оперативных служб и обеспечения однократного ввода данных в «Систему-112» (данные должны вводиться только один раз и в одном месте и быть доступны для других приложений без их копирования

информации в «Системе-112») разработана и согласована со всеми заинтересованными федеральными органами исполнительной власти унифицированная карточка информационного обмена в «Системе-112» [3].

Карточка должна иметь единую для всех ДДС унифицированную часть и специфическую для каждой экстренной оперативной службы.

Унифицированная часть карточки информационного обмена состоит из следующих блоков:

Служебная информация;

Сведения о телефоне, с которого принят звонок (автоматическое заполнение);

Сведения об источнике информации (заявителе);

Сведения о месте происшествия;

Сведения о самом происшествии (что случилось?)

Специфическая часть карточки должна быть динамически раскрывающейся в зависимости от того, в какую службу она приходит – «01», «02», «03» и т.д.

1.3.2 Функции системы

Система должна выполнять следующие функции:

– Идентификация доступных ресурсов служб.

От оперативных экстренных служб в систему поступает информация о доступных ресурсах, которые могут быть использованы для ликвидации происшествий.

– Получение карточек происшествия.

Система получает данные о происшествиях из единой базы данных «Системы-112» при создании диспетчерами карточек происшествий.

Генерация предложений распределения ресурсов для каждой подзадачи;

На основе информации из карточек происшествия (тип происшествия, степень тяжести происшествия, местоположение происшествия, необходимые

службы для разрешения происшествия)

 Объединение всех предложений и генерация оптимального плана распределения ресурсов;

Система разбивает задачу на подзадачи (для каждой экстренной службы), генерирует на их основе разные планы распределения ресурсов и учитывая тяжесть происшествия и стоимость ресурсов для ликвидации выбирает оптимальный план распределения ресурсов.

– Информирование выбранных служб для выполнения своих задач.

После генерации оптимального плана распределения ресурсов запросы на реагирование отправляются выбранным оперативным экстренным службам.

– Мониторинг и отчетность процесса выполнения и результата.

От оперативных экстренных служб диспетчеру поступает информация о действии служб после принятия вызова (местоположение на карте, статус).

1.3.3 Пользователи системы

1 Диспетчер ЕДДС:

Получение звонков о происшествиях, заполнение информации о происшествиях, принятие решений о привлекаемых для реагирования ДДС, отвечает за организацию их взаимодействия, корректировку действий, обеспечение информацией системы мониторинга, добавление новой информации по данному происшествию.

2 Диспетчер ДДС:

Отправка информации о доступных ресурсах службы, получение информации о происшествии, организация реагирования на вызов.

1.3.4 Входные и выходные данные

Входные данные системы:

- Данные о происшествии (карточка происшествия);
- Данные о доступных ресурсах экстренных оперативных служб;

- Данные о реагировании на вызов.

Выходные данные системы:

- Запросы экстренным оперативным службам;
- Отчётные данные.

Входные данные модуля расчёта оптимального плана распределения ресурсов:

- Карта, содержащая объекты и пути между ними (внешняя интеграция);
 - Координаты происшествия (из карточки информационного обмена);
 - Тип происшествия (из карточки информационного обмена);
- Тяжесть происшествия, где 1 является наименьшим значением и 5 максимальным (из карточки информационного обмена);
- Запрашиваемые службы для ликвидации происшествия (из карточки информационного обмена);
- Информация о доступных ресурсах (динамически обновляемая информация диспетчерами дежурных служб).

Выходные данные модуля расчёта оптимального плана распределения ресурсов:

– Запросы оперативным экстренным службам на реагирование.

1.3.5 Требования к аппаратной и программной платформе для установки

Требования к программному обеспечению

- операционная система Windows 10;
- JRE 11.

Требования к аппаратному обеспечению

• тактовая частота процессора: не менее 2 Ghz;

- оперативная память (ОЗУ): не менее 2 Gb;
- жёсткий диск: не менее 256 Мb свободного дискового пространства.

1.3.6 Требования к надёжности

Показатели надежности Системы должны отвечать требованиям ГОСТ 24.701-86 ЕСС АСУ "Надежность автоматизированных систем управления. Основные положения". Обеспечение необходимого уровня надежности требует проведения специального комплекса работ, выполняемых на разных стадиях создания и эксплуатации системы.

При решении вопросов обеспечения требуемого уровня надежности системы необходимо учитывать следующие особенности:

- 1. В работе системы участвуют различные виды обеспечения, в том числе и так называемый «человеческий фактор», который может в существенной степени влиять на уровень надежности системы;
- 2. В состав системы входит большое количество разнородных элементов (включая технологический и эксплуатационный персонал). При этом в выполнении одной функции системы обычно участвуют несколько различных элементов, а один и тот же элемент может участвовать в выполнении нескольких функций системы.

Поэтому при решении вопросов, связанных с надежностью системы, количественное описание, анализ, оценка и обеспечение надежности необходимо проводить по каждой функции системы в отдельности. В обоснованных случаях необходимо использовать анализ возможности возникновения в системе аварийных ситуаций, ведущих к значительным техническим или экономическим потерям.

1.3.7 Требования по эргономике и технической эстетике

Интерфейс системы должен быть понятным и удобным, не должен быть перегружен графическими элементами и должен обеспечивать быстрое отображение экранных форм. Навигационные элементы должны быть

выполнены в удобной для пользователя форме. Средства редактирования информации должны удовлетворять принятым соглашениям в части использования функциональных клавиш, режимов работы, поиска, использования оконной системы. Ввод-вывод данных системы, прием управляющих команд и отображение результатов их исполнения должны выполняться в интерактивном режиме. Интерфейс должен соответствовать современным эргономическим требованиям и обеспечивать удобный доступ к основным функциям и операциям системы.

1.4 Порядок контроля и приёмки

Для системы устанавливаются следующие этапы испытаний:

- Предварительные испытания;
- Опытная эксплуатация;
- Приемочные испытания.

Предварительные испытания Системы проводятся для определения ее работоспособности и возможности приемки Системы в Опытную эксплуатацию. Предварительные испытания организует Заказчик, и проводит их совместно с Разработчиком.

В сводном Протоколе испытаний приводится заключение о возможности приемки системы в Опытную эксплуатацию, а также перечень необходимых доработок и сроки их выполнения. Работа завершается оформлением Акта приемки в Опытную эксплуатацию.

Продолжительность Опытной эксплуатации - не менее двух месяцев. Во время Опытной эксплуатации Системы ведут Рабочий журнал, в который заносят:

- Сведения о продолжительности функционирования Системы;
- Сведения об отказах, сбоях, аварийных ситуациях;
- Сведения об изменениях параметров объекта автоматизации;

Сведения о проведенных корректировках программного обеспечения и документации;

Приёмочные испытания системы проводят для определения соответствия техническому заданию и документации проекта. Приёмочную комиссию образуют приказом по предприятию. В состав комиссии входят представители заказчика и разработчика

1.5 Требования к документированию

Документация должна соответствовать требованиям к содержанию документов, разрабатываемых при создании автоматизированной системы, установлены указаниями РД 50-34.698-90 «Автоматизированные системы. Требования к содержанию документов», а также соответствующему государственному стандарту ЕСПД «Единой системы программной документации».

Содержание документов при необходимости, может дополняться разработчиком в зависимости от особенностей конкретно создаваемой Системы. Допускается включать в документы дополнительные разделы и сведения, объединять и исключать разделы.

Вся рабочая документация, разработанная применительно к данному конкретному проекту, должна быть на русском языке. Стандартная техническая документация иностранных фирм должна быть представлена и на английском, и на русском языках.

2 Архитектура системы

2.1 Введение

2.1.1 Диаграмма вариантов использования

Диаграмма вариантов использования представлена на рисунке 1.

Рисунок 1 – Диаграмма вариантов использования

Спецификация:

Диспетчер ЕДДС:

Приём вызова, опрос абонента, заполнение полей карточки обращения, анализ обращения, инициализация карточки происшествия, принятие решений о привлекаемых для реагирования ДДС, организация взаимодействия различных оперативных экстренных служб.

Диспетчер ДДС:

Отправка информации о доступных ресурсах службы, получение информации о происшествии, организация реагирования на вызов.

2.1.2 Классовая диаграмма системы и её окружения

Классовая диаграмма, представляющая систему в рамках объектноориентированного подхода, представлена на рисунке 2.

Рисунок 2 - Классовая диаграмма

2.2 Логическое представление

2.2.1 Диаграмма пакетов

Диаграмма пакетов системы представлена на рисунке 3.

Рисунок 3 – Диаграмма пакетов

Спецификация пакетов:

имя: Environment

Стереотип: -

Зависимость: -

Список классов, входящих в данный пакет: CityMap, FacilityResources, MobileResources, EmergencyEvents.

Список пакетов входящих в данный пакет: -

Описание: Содержит внешние сущности, с которыми взаимодействует система.

имя: ComputerModule

Стереотип: -

Зависимость Environment

Список классов, входящих в данный пакет: TaskIdentification, ResourceIdentification, ProposalExecution, ProposalGeneration, OptimalAllocation.

Список пакетов входящих в данный пакет: -

Описание: Содержит классы, ответственные за распределение ресурсов.

2.2.2 Классовая диаграмма системы

Классовая диаграмма системы представлена в приложении 1.

Спецификация классовой диаграммы системы приведена в приложении

2.3 Представление разработки

2.3.1 Диаграмма кооперации

Диаграмма кооперации системы представлена на рисунке 4.

Диаграмма кооперации системы представлена на рисунке 4.

Рисунок 4 – Диаграмма кооперации системы и её окружения

Спецификация:

2.

Диспетчеры оперативных экстренных служб отправляют информацию о текущих доступных ресурсах своих служб в систему.

Из единой диспетчерской службы в систему поступают карточки происшествий; производится анализ происшествия и формируется оптимальный план распределения ресурсов; производится запрос на реагирование оперативным экстренным службам, диспетчеры оперативных экстренных служб

2.3.2 Диаграмма последовательности сообщений

Диаграмма последовательности сообщений системы представлена на рисунке 5.

Рисунок 5 – Диаграмма последовательности сообщений системы и её окружения

Спецификация:

Диспетчеры ДДС отправляют в систему информацию о доступных ресурсах и обновляют её по мере необходимости

Диспетчеры ЕДДС принимают вызов, опрашивают абонента, выполняют консультацию.

Диспетчеры ЕДДС во время принятия вызова заполняют карточку происшествия, которая из системы диспетчерской службы передаётся в систему распределения ресурсов. Производится расчёт оптимального плана распределения ресурсов. Запросы на реагирования отправляются оперативным экстренным службам. Диспетчеры ДДС соответствующих служб видят запрос, отправляют на место происшествия запрашиваемые ресурсы и, в случае необходимости, координируют работу между собой вместе с диспетчером ЕДДС. Во время реагирования на вызов от каждой оперативной экстренной службы в систему поступает информация о действии

служб. Дальше информация о действиях служб поступает оператору ответственному за вызов.

2.3.3 Диаграмма состояний

Диаграмма состояний системы и её спецификация представлена на рисунке 6.

Рисунок 6 - Диаграмма состояний системы

2.4 Процессное представление

2.4.1 Диаграмма кооперации

На рисунке 7 представлена диаграмма кооперации системы при получении информации о доступных ресурсах.

Рисунок 7 — Диаграмма кооперации при получении информации о доступных ресурсах

Спецификация:

Количество элементов: 3

Количество связей: 2

Описание: Диаграмма кооперации, описывающая процесс получения информации о доступных ресурсах от служб.

На рисунке 8 представлена диаграмма кооперации системы при получении информации о новом происшествии.

Рисунок 8 — Диаграмма кооперации при получении информации о новом происшествии

Спецификация:

Количество элементов: 3

Количество связей: 2

Описание: Диаграмма кооперации, описывающая процесс получения информации о новом происшествии

На рисунке 9 представлена диаграмма кооперации системы при завершении составления оптимального плана распределения ресурсов.

Рисунок 9 — Диаграмма кооперации при завершении составления оптимального плана распределения ресурсов

Спецификация:

Количество элементов: 3

Количество связей: 2

Описание: Диаграмма кооперации, описывающая процесс передача данных диспетчерских службам. А именно запросы экстренным оперативным службам и информацию о реагировании служб на место происшествия.

2.5 Представление развёртывания

На рисунке 10 представлены элементы и компонентов системы, существующих на этапе ее исполнения.

Разработано с помощью Java Agent Development Framework (JADE).

Рисунок 10 – Представление развёртывания

2.6 Представление данных

Среда реализации постоянного хранения данных: реляционная база данных (единая база данных системы «Системы-112», к которой система распределения ресурсов имеет доступ).

Диаграмма сущность-связь представлена на рисунке 11.

Рисунок 11 – Диаграмма сущность-связь

Примечание: Данная диаграмма не является точным представлением базы данных, с которой взаимодействует система (единая база данных «Системы-112»), а только демонстрирует ту её часть с которой непосредственно взаимодействует система распределения ресурсов экстренных оперативных служб.

Заключение

В результате выполнения курсовой работы была построена архитектура системы распределения ресурсов экстренных оперативных служб в соответствии с моделью «4+1».

Были разработаны следующие представления:

- Логическое представление;
- Представление разработки;
- Процессное представление;
- Представление развёртывания;
- Представление данных.

Список использованных источников

- 1. Денис Иванов, Федор Новиков Документирование архитектуры программных систем средствами UML / http://uml3.ru/library/architecture_via_uml.pdf
- 2. Э. Браудэ Технология разработки программного обеспечения / Э. Браудэ. СПб.: Питер, 2004. 655 с.
- 3. P. Clements Documenting Software Architectures. Views and Beyond. Second Edition / Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo Merson, Robert Nord, Judith Stafford. Addison Wesley, 2010. 540 c.

Приложение 1. Классовая диаграмма системы

Рисунок 1 – Классовая диаграмма

Приложение 2. Спецификация классовой диаграммы

Спецификация:

Количество классов: 11

Количество ассоциация: 2

Количество композиций: 6

Количество обобщений: 0

Количество уровней наследования: 0

Количество уровней агрегации: 1

Спецификация классов:

Имя класса: CityMap

Имя файла: CityMap.class

Имя пакета: Environment

Множественность: 1

Сохраняемость: да

Отношения:

- Ассоциация с EmergencyEvent
- Ассоциация с Resource

Описание: На карте есть набор объект V и набор путей E, соединяющих объекты. В системе карта представлена в виде графа, по которому решается транспортная задача.

Имя класса: EmergencyEvents

Имя файла: EmergencyEvents.class

Имя пакета: Environment

Множественность: 1

Сохраняемость: да

Отношения:

- Агрегация с EmergencyEvent

Описание: Агрегирующий класс для происшествий

Имя класса: EmergencyEvent

Имя файла: EmergencyEvent.class

Имя пакета: Environment

Множественность: много

Сохраняемость: да

Отношения:

- Агрегируется в EmergencyEvents

Описание: Класс, описывающий происшествие.

Имя класса: Resource

Имя файла: Resource.class

Имя пакета: Environment

Множественность: много

Сохраняемость: да

Отношения:

- Агрегируется в FacilityResources
- Агрегируется в MobileResources

Описание: Класс, описывающий ресурс

Имя класса: FacilityResources

Имя файла: FacilityResources.class

Имя пакета: Environment

Множественность: 1

Сохраняемость: да

Отношения:

- Агрегация с Resources

Описание: Неподвижные типы ресурсов (больницы, пожарные станции и т.д.)

Имя класса: MobileResources

Имя файла: MobileResources.class

Имя пакета: Environment

Множественность: 1

Сохраняемость: да

Отношения:

- Агрегация с Resources

Описание: Подвижные типы ресурсов (экипажи скорой помощи, пожарные, полицейские и т.д.)

Имя класса: TaskIdentification

Имя файла: TaskIdentification.class

Имя пакета: ComputerModule

Множественность: 1

Сохраняемость: нет

Отношения:

- Ассоциация с ResourceIdentification

Описание: При получении информации о новом происшествии производится анализ полученных данных. Задача на ликвидацию происшествия подразделяется на подзадачи для каждой службы отдельно.

Имя класса: ResourceIdentification

Имя файла: ResourceIdentification.class

Имя пакета: ComputerModule

Множественность: 1

Сохраняемость: нет

Отношения:

- Ассоциация с ProposalGeneration

Описание: Составление запросов к экстренным оперативным службам.

Имя класса: ProposalGeneration

Имя файла: ProposalGeneration.class

Имя пакета: ComputerModule

Множественность: 1

Сохраняемость: нет

Отношения:

- Ассоциация с OptimalAllocation

Описание: Генерация планов распределения ресурсов на основе доступных ресурсов.

Имя класса: OptimalAllocation

Имя файла: Optimal Allocation. class

Имя пакета: ComputerModule

Множественность: 1

Сохраняемость: нет

Отношения:

- Ассоциация с ProposalExecution

Описание: Генерация оптимального плана распределения ресурсов. Создание запросов на реагирование оперативным экстренным службам.

Имя класса: ProposalExecution

Имя файла: ProposalExecution.class

Имя пакета: ComputerModule

Множественность: 1

Сохраняемость: нет

Отношения: -

Описание: Отправка запросов на реагирование оперативным экстренным службам. Получение информации о действии служб и передача её диспетчеру ЕДДС.