

FCC PART 15 SUBPART C (15.231) ISED RSS-210 ISSUE 9: 2016 ISED RSS-GEN ISSUE 4: 2014

CERTIFICATION TEST REPORT

FOR

CARBON MONOXIDE ALARM

MODEL NUMBER*:
EiA207WOET
EiA207IWOET
EiA207DWOET
EiA207IDWOET

FCC ID: 2AHZG-EIA207W433 IC: 21362-EIA207W433

REPORT NUMBER: 11417916-E1V3

ISSUE DATE: 03/20/2018

Prepared for

oneEvent Technologies, Inc. 505 Springdale Street Mount Horeb, WI 53572

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

^{*} Model differences are explained in the body of the report.

DATE: March 20, 2018 ISED ID: 21362-EIA207W433

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	02/28/18	Initial Issue	
V2	03/02/18	Revised Transmission Time section	Frank Ibrahim
V3	03/20/18	Updated Above 1G Radiated Emissions Test Result	Vien Tran

TABLE OF CONTENTS

1. A	ATTESTATION OF TEST RESULTS	4
2. T	TEST METHODOLOGY	5
3. F	FACILITIES AND ACCREDITATION	5
4. C	CALIBRATION AND UNCERTAINTY	6
4.1	. MEASURING INSTRUMENT CALIBRATION	6
4.2	SAMPLE CALCULATION	6
4.3	B. MEASUREMENT UNCERTAINTY	6
5. E	EQUIPMENT UNDER TEST	7
5.1	. DESCRIPTION OF EUT	7
5.2	. MODEL DIFFERENCES	7
5.3	B. MAXIMUM FILED STRENGTH	7
5.4	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.5	S. SOFTWARE AND FIRMWARE	7
5.6	S. WORST-CASE CONFIGURATION AND MODE	8
5.7	Z. DESCRIPTION OF TEST SETUP	9
6. T	TEST AND MEASUREMENT EQUIPMENT	10
7. A	ANTENNA PORT TEST RESULTS	11
7.1	. 20 dB AND 99% BW	11
7.2	DUTY CYCLE	14
7.3	R. TRANSMISSION TIME	17
8. R	RADIATED EMISSION TEST RESULTS	18
a 9	SETUP PHOTOS	27

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: oneEvent Technologies, Inc.

EUT DESCRIPTION: CARBON MONOXIDE ALARM

MODEL: EiA207iDWOET

SERIAL NUMBER: 2

DATE TESTED: JULY 27, 2017 to February 02, 2018

ISED RSS-210 Issue 9

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DATE: March 20, 2018

ISED ID: 21362-EIA207W433

Complies

FCC PART 15 SUBPART C (15.231) Complies

ISED RSS-GEN Issue 4 Complies

UL Verification Services Inc tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc By:

Prepared By:

FRANK IBRAHIM **OPERATIONS LEADER**

UL Verification Services Inc.

JASON QIAN TEST ENGINEER

UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 9.

DATE: March 20, 2018

ISED ID: 21362-EIA207W433

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	
Chamber A(ISED: 2324B-1)	☐ Chamber D(ISED: 22541-1)	
Chamber B(ISED: 2324B-2)	☐ Chamber E(ISED: 22541-2)	
☐ Chamber C(ISED: 2324B-3)	Chamber F(ISED: 22541-3)	
	☐ Chamber G(ISED: 22541-4)	
	Chamber H(ISED: 22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through C are covered under ISED company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under Industry Canada company address code 22541 with site numbers 22541 -1 through 22541-5, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Worst Case Radiated Disturbance, 9kHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a low power wireless for CO and temperature detector which is intended to operate on a single fixed frequency of 433.920 MHz. This device operates from two 1.5 volt, type AAA battery.

5.2. MODEL DIFFERENCES

The RF PCB model number is OET-TX433-CO which has listed firmware and PCB revision in the report. The OET-TX433-CO is placed into the EiA207iDWOET which has all visual and audio functions enabled. This is the unit that was tested. EiA207iDWOET model is a supper set meaning functions are removed to produce lower CO models EiA207WOET, EiA207iWOET, and EiA207DWOET. Since the antenna is part of the OET-TX433-CO PCB it cannot be changed, so changing visual and audio functions in the CO models will not add gain to antenna. Also since firmware cannot be changed in OET-TX433-CO by any of the CO models the transmission characteristics you tested will not change. With no change to antenna gain or transmission characteristics there is no difference in RF between CO models.

5.3. MAXIMUM FILED STRENGTH

The transmitter has the maximum peak and average radiated electric field strengths as follows:

Fundamental	Mode	Field Strength	Field Strength
Frequency (MHz)		Peak	Average
		(dBuV/m)	(dBuV/m)
433.92	Normal	100.21	79.80

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna, with a maximum gain of -3 dBi.

5.5. SOFTWARE AND FIRMWARE

The typical factory firmware installed in the EUT during testing was 100032_FW_EI_433_CO_TRANSMITTER_0.18.Hex

The firmware installed in the EUT to allow continuous transmit during testing was OET-CO CW.Hex

5.6. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in each of its three orthogonal axes. All radiated testing was performed in the worse-case axis, which was found to be the "X-axis". See photos for details.

The EUT operates at a single channel of 433.92 MHz.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

NONE

I/O CABLES

NONE

TEST SETUP

The EUT was tested as a standalone device.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	T Number	Cal Date	Cal Due		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	907	02/07/2017	02/07/2018		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	908	04/28/2017	04/28/2018		
PSA Series Spectrum Analyzer, 3Hz - 26.5GHz	Agilent	E4446A	99	06/22/2017	06/22/2018		
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800- 25-S-42	493	06/23/2017	06/23/2018		
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	15	08/14/2017	08/14/2018		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	863	06/09/2017	06/09/2018		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	130	10/16/2017	10/16/2018		
Loop Antenna	ETS-LINDGREN	6502	1683	02/17/2017	02/17/2018		

Test Software List							
Description Manufacturer Model Version							
Radiated Software	Radiated Software UL UL EMC Ver 9.5, Dec 01, 2016						

NOTE: Testing was completed before equipment calibration expiration date.

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

LIMITS

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

DATE: March 20, 2018

ISED ID: 21362-EIA207W433

RSS-210 A.1.3

The 99% bandwidth of monetarily operated devices shall be less or equal to 0.25% of the center frequency for devices operating between 70MHz and 900MHz. For devices operating above 900MHz, the 99% bandwidth shall be less or equal to 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10: 2013

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 1% to 5% of OBW. The VBW is set to 3 times the RBW. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin	
(MHz)	(kHz)	(kHz)	(kHz)	
433.92	51	1084.8	-1033.8	

99% Bandwidth

Frequency 99% Bandwidth		Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.92	667.14	1084.8	-417.66

7.2. DUTY CYCLE

LIMITS

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

DATE: March 20, 2018

ISED ID: 21362-EIA207W433

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

RESULTS

One	Long Pulse	# of	Short Pulse	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)

ONE PERIOD

PULSE WIDTHS

NUMBER OF PULSES

Page 16 of 31

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

RSS-210 A.1.1 (b)

2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is set to 20 seconds and the span is set to 0 Hz.

RESULTS

Note: When the batteries are installed the device sends some power up signal, after which it sends the first supervisory message, which is initiated automatically by the EUT.

8. RADIATED EMISSION TEST RESULTS

LIMITS

FCC §15.231 (b) RSS-210 A.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	90-1.705 24000/F(kHz) 30				
1.705-30.0	30	30			
30-88	100**	3			
88-216	150**	3			
216-960	200**	3			
Above 960	500	3			

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150 cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and add duty cycle factor for average measurements. Please refer to test report section 7.2 for duty cycle factor information. Note: The pre-scan measurements above 1GHz the VBW is set to 30 kHz.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

BELOW 1GHZ RADIATED EMISSIONS

FUNDAMENTAL FIELD STRENGTH AND HARMONICS SPURIOUS EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	66.4319	32.31	Pk	12.1	-26.8	17.61	40	-22.39	0-360	100	Η
2	70.0454	35	Pk	12.1	-26.7	20.4	40	-19.6	0-360	100	V
7	79.9929	32.53	Pk	11.5	-26.6	17.43	40	-22.57	0-360	100	Н
8	79.9929	32.08	Pk	11.5	-26.6	16.98	40	-23.02	0-360	100	V
3	433.9304	105.02	Pk	20.6	-25.1	100.21	100.82	-0.61	108	239	Н
			Av			79.8	80.82	-1.02	108	239	Н
4	433.9304	98.42	Pk	20.6	-25.1	94.32	100.82	-6.5	212	230	V
			Av			73.91	80.82	-6.91	212	230	V
6	**867.7868	59.48	Pk	25.9	-23.2	60.16	80.82	-20.66	1	185	Н
			Av			39.75	60.82	-21.07	1	185	Н
5	**867.8868	52.71	Pk	25.9	-23.2	55.21	80.82	-25.61	274	193	V
			Av			34.8	60.82	-26.02	274	193	V

Pk - Peak detector

Refer to section 7.2 for duty cycle factor calculation (-20.41dB).

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF.

^{*} Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is 0.095 (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T.

^{**} Harmonics of fundamental 433.92MHz

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

ABOVE 1GHZ RADIATED EMISSIONS

HARMONICS SPURIOUS EMISSIONS

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T863 (dB/m)	Amp/Cbl (dB)	Correcte d Reading (dBuV/m)	Class B Avg Limit (dBuV/m)	Av(CISPR)Mar gin (dB)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
***1.302	63.14	Pk	28.9	-34.5	57.54	-	-	74	-16.46	285	215	Н
		Av			37.13	54	-16.87	-	-			
1.736	70.36	Pk	29.5	-33.8	66.06	-	-	80.83	-14.77	24	205	Н
		Av			45.65	60.83	-15.18	-	-			
2.17	62.01	Pk	31.4	-33.2	60.21	-	-	80.83	-20.62	110	208	V
		Av			39.8	60.83	-21.03	-	-			
2.604	61.59	Pk	32.6	-32.7	61.49	-	-	80.83	-19.34	24	235	Н
		Av			41.08	60.83	-19.75	-	-			
3.038	52.71	Pk	32.9	-32.4	53.21	-	-	80.83	-27.62	192	114	Н
		Av			32.8	60.83	-28.03	-	-			
3.471	63.27	Pk	32.7	-32	63.97	-	-	80.83	-16.86	75	186	V
		Av			43.56	60.83	-17.27	-	-			
***3.905	67.86	Pk	33.5	-31.3	70.06	-	-	74	-3.94	240	104	Н
		Av			49.65	54	-4.38	-	-			
***4.339	59.07	Pk	33.6	-31.6	61.07	-	-	74	-12.93	261	336	V
		Av			40.66	54	-13.34	-	-			
***4.774	61.71	Pk	34.3	-31.3	64.71	-	-	74	-9.29	341	355	Н
		Av			44.3	54	9.7	-	-			

Pk - Peak detector

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is 0.095 (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T duty cycle factor calculation is -20.41dB.

Refer to section 7.2 for duty cycle factor calculation (-20.41dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF.

*** Indicates frequency in CFR15.205/RSS-Gen 8.10 -Restricted Band

RBW = 1MHz, VBW = 3MHz for the final Peak and Average readings

HARMONICS AND TX SPURIOUS EMISSIONS BELOW 30MHz

NOTE: KDB 414788 OATS and Chamber Correlation Justification

- Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.
- OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

BELOW 30MHz RADIATED EMISSIONS

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
5	.03573	40.43	Pk	13.2	1.4	-80	-24.97	56.52	-81.49	36.52	-61.49	0-360
1	.06028	41.11	Pk	12	1.4	-80	-25.49	51.98	-77.47	31.98	-57.47	0-360
6	.18669	46.87	Pk	11.6	1.5	-80	-20.03	42.2	-62.23	22.2	-42.23	0-360
2	.24634	45.57	Pk	11.6	1.5	-80	-21.33	39.78	-61.11	19.78	-41.11	0-360

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	.64975	36.24	Pk	11.6	1.5	-40	9.34	31.36	-22.02	0-360
7	1.02869	31.45	Pk	11.6	1.5	-40	4.55	27.38	-22.83	0-360
4	2.49152	22.13	Pk	11.7	1.5	-40	-4.67	29.5	-34.17	0-360
8	2.52087	25.28	Pk	11.6	1.5	-40	-1.62	29.5	-31.12	0-360

Pk - Peak detector