Cryptography and Network Security: Principles and Practice (5e)

by William Stallings

Chapter 9
Public-Key Cryptography and RSA

Secret-Key (Symmetric) Cryptography

- both encryption & decryption use same key
- The key is secretly shared by sender and receiver (unknown to third party)
 - Hence, secret-key crypto (a.k.a. private-key)
 - If the key is disclosed, the communications are compromised
- not protect sender from "receiver" forging a message & claiming it sent by sender

Public-Key (Asymmetric) Cryptography

- encryption and decryption use two different keys
 - One key known to everybody, called public key, for encryption
 - The other kept secretly, called private key, for decryption
- most significant advance in the 3000 year history of cryptography
 - Probably the only true revolution
- complements rather than replaces secret-key
 - Both have issues with key distribution

Chapter 9. Public-Key Cryptography and RSA

9.1 Principles of Public-Key Cryptosystems

Public-Key Cryptosystems

Applications for Public-Key Cryptosystems

Requirements for Public-Key Cryptography

Public-Key Cryptanalysis

9.2 The RSA Algorithm

Description of the Algorithm

Computational Aspects

The Security of RSA

Why Public-Key Cryptography?

- developed to address two major issues:
 - key distribution
 how to set up secure communications
 w/o having to trust a Key-Distrib.-Centre w your key
 - the first scheme by D-H was only for that purpose
 - digital signatures
 how to verify a message comes intact from the claimed sender
- Whitfield Diffie & Martin Hellman (Stanford 1976)
 - interesting to note that RSA first, then Diffie-Hellman

Public-Key for Encryption Private-Key for Decryption

Private-Key for Encryption Public-Key for Decryption

→ authentication → digital signature

Both Authentication & Secrecy

Public-Key Cryptography

Emphasize once again

- public-key / two-key / asymmetric crypto:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- asymmetric because
 - those who encrypt messages or verify signatures
 cannot decrypt messages or create signatures

Public-Key Characteristics

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - any of the two related keys can be used for encryption, for some algorithms

Public-Key Applications

- 3 categories:
 - encryption/decryption (secrecy)
 - digital signatures (authentication)
 - key exchange (of session keys)

 some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- Brute-force attack is theoretically possible
 - Keys too large (>512bits) to be computational feasible
- security relies on a large difference in difficulty btwn easy problem(encrypt/decrypt) and hard problem (to derive private key from public key)
 - trapdoor functions whose inverses are hard to get
 - e.g., multiplication is easy while its inverse, prime factorization, is very hard
 - e.g., exponentiation easy while discrete logarithm hard

Chapter 9. Public-Key Cryptography and RSA

9.1 Principles of Public-Key Cryptosystems
Public-Key Cryptosystems

Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography

Public-Key Cryptanalysis

9.2 The RSA Algorithm

Description of the Algorithm

Computational Aspects

The Security of RSA

RSA: Public Key Cryptographic Algorithm

- by Rivest, Shamir & Adleman (MIT in 1977)
- best known & widely used public-key scheme
- based on exponentiation in a finite field (Galois field) over integers modulo a prime
 - nb. exponentiation takes O((log n)³) operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - nb. factorization takes O(e log n log log n) operations (hard)

RSA Key Setup

each user generates a public / private key pair by:

- selecting two large primes at random: p,q
- computing their system modulus n=p.q
 - compute $\emptyset(n) = (p-1)(q-1)$
- selecting at random the encryption key e
 - where $1 < e < \emptyset(n)$, $gcd(e,\emptyset(n)) = 1$
- solve following equation to find decryption key d
 - where e.d = $1 \mod \emptyset(n)$
- public key: PU={e,n}, private key: PR={d,n}

RSA Encryption / Decryption

- to encrypt a message M, the sender:
 - obtains public key of recipient $PU = \{e, n\}$
 - computes: $C = M^e \mod n$, where $0 \le M < n$
- to decrypt the ciphertext C, the recipient :
 - uses own private key $PR = \{d, n\}$
 - computes: $M = C^d \mod n$
- note that the message M must be smaller than the modulus n

RSA Example - Key Setup

- 1. Select primes: p = 17 and q = 11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select: gcd(e,160)=1; e.g., e=7
- 5. Determine $de = 1 \pmod{160} \& d < 160$ get d = 23 as $23 \times 7 = 161 = 10 \times 160 + 1$
- 6. Publish public key $PU = \{e, n\} = \{7, 187\}$
- 7. Keep secret private key $PR = \{d,n\} = \{23,187\}$

RSA Example - En/Decryption

• given message M = 88 (nb. 88<187)

encryption:

$$C = 88^7 \mod 187 = 11$$

decryption:

$$M = 11^{23} \mod 187 = 88$$

The Correctness of RSA

by Fermat (Little) Theorem
 Chinese Remainder Theorem

RSA:

hence:

```
C^{d} = M^{e \cdot d} = M^{1+k \cdot o(n)} \pmod{n}
```

Proof of $M^{1+k \cdot o(n)} \mod n = M$

- First, consider M^{1+k·ø(n)} mod p
- There are two cases:

```
Case 1: gcd(M,p)\neq 1 meaning M = 0 \pmod{p}
         then M \mod p = M^{1+k \cdot o(n)} \mod p
Case 2: gcd(M,p)=1, then Fermat applies:
M^{1+k \cdot o(n)} \mod p
= \mathbf{M}^{1} \cdot (\mathbf{M}^{p-1} \bmod p)^{k(q-1)}
                                mod p
= M^{1} \cdot (1)^{k(q-1)} \mod p
                                          by Fermat's
= M \mod p
```

Correctness (cont')

Therefore, we always have

```
M^{1+k \cdot o(n)} \mod p = M \mod p
```

• Similarly,

```
M^{1+k \cdot o(n)} \mod q = M \mod q
```

By Chinese Remainder Theorem:

```
M^{1+k \cdot o(n)} \mod p \cdot q = M \mod p \cdot q
```

Finally, notice that 0 ≤ M < n,

```
C^{d} \mod n = M^{e \cdot d} \mod n = M^{1+k \cdot o(n)} = M \mod n = M
```

How to generate Key efficiently

- determine two primes p, q at random
 Miller-Rabin probabilistic primality test
 p,q must not be easily derived from n = p,q
- Select e such that gcd(e,Ø(n))=1
 probability that two random numbers relatively prime 0.6
- compute d such that e.d = 1 (mod Ø(n))
 Extended Euclidean Algorithm finds inverses

How: Modular Exponentiation

- the Square and Multiply Algorithm for efficient exponentiation a^b
- takes O(log₂ b) multiplications for a^b, simple eg:

```
-7^{5} = 7^{4} \cdot 7^{1} = 3 \cdot 7 = 10 \pmod{11}
-3^{129} = 3^{128} \cdot 3^{1} = 5 \cdot 3 = 4 \pmod{11}
```

- Algorithm with exponent b in binary
 - repeatedly squaring the base a
 - multiplying the base a for the ones in exponent b

Modular Exponentiation

• Let $\langle b_k, ..., b_0 \rangle$ binary representation of b

$$b = \sum_{b_i \neq 0} 2^i$$

$$a^b \bmod n = \left[\prod_{b_i \neq 0} a^{(2^i)}\right] \bmod n$$

$$= \left(\prod_{p, \neq 0} \left[a^{(2^i)} \bmod n \right] \right) \bmod n$$

The Algorithm

```
MODULAR-EXPONENTIATION(a,b,n)
c = 0; d = 1;
Let \langle b_k, ..., b_0 \rangle binary representation of b
for i = k \text{ downto } 0
do c = 2 \cdot c;
     d = (d \cdot d) \mod n;
     if b_i == 1
     then c = c + 1;
              d = (d \cdot a) \mod n;
return d; /*d = ac for understanding*/
```

Efficient Encryption

- efficient modular exponentiation to power e
 - if e is small, it will be even faster often choose $e = 65537 (2^{16}-1)$
 - but, not too small otherwise it is vulnerable to attack

Efficient Decryption

- efficient modular exponentiation to power d
 - d is likely large, insecure if not
- One who does decryption usually is the owner of private key (knowing p & q) can
 - compute (mod p) and (mod q) separately
 - then combine to get desired answer
 - approx 4 times faster than doing directly

Efficient Version of Miller-Rabin PrimalityTest

- Fermat's theorem
- Square root of 1
- Trying ln(n) times could find a prime near n
- Error rate at most $(\frac{1}{2})^s$

```
MILLER-RABIN(n, s)
  for j = 1 to s do
    a = RANDOM(1, n-1)
    if WITNESS(a, n)
    then return COMPOSITE
  return PRIME
```

• Where WITNESS tells if n is composite

```
WITNESS(a,n)
  d = 1
  Let \langle b_k, ..., b_0 \rangle binary representation of n-1
  for i = k downto 0 do
     x = d
     d = (d \cdot d) \mod n
     if d==1 and x\neq 1 and x\neq n-1
                                  // sqrt(1)
     then return TRUE
     if b_i == 1
     then d = (d \cdot a) \mod n
  if d≠1 then return TRUE // Fermat
  return FALSE
```

Implementation based on Modular Exponentiation

Probabilistic Considerations

- if WITNESS returns true, the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is <¼ (err)
- If repeat test with different random a then chance n
 is prime after s tests is
 - Pr(n prime after s tests) = $1 (\frac{1}{4})^{s}$
 - eg. for s=10 this probability is > 0.99999

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)
 - timing attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)