Integers

Definition

The set of *Integers*, denoted \mathbb{Z} , are the positive and negative whole numbers and 0:

$$\mathbb{Z} = \{n | n \in \mathbb{N}\} \cup \{-n | n \in \mathbb{N}\} \cup \{0\} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Closure Property

 $\forall n, m \in \mathbb{Z}$:

- 1). $n+m\in\mathbb{Z}$
- 2). $nm \in \mathbb{Z}$

Definition

To say that an integer n divides an integer m, denoted n|m, means $\exists k \in \mathbb{Z}, m = kn$.

Definition

To say that an integer n is even mean that 2|n. Otherwise n is said to be odd. Thus, $\forall n \in \mathbb{Z}$:

- 1). n even $\iff \exists k \in \mathbb{Z}, n = 2k$
- 2). n odd $\iff \exists k \in \mathbb{Z}, n = 2k+1$

Theorem

 $\forall n, m \in \mathbb{Z}$:

- 1). n even and m even $\implies n+m$ even.
- 2). n odd and m odd $\implies n+m$ even
- 3). n even and m odd $\implies n+m$ odd

Proof

Assume $n, m \in \mathbb{Z}$.

1). Assume n even and m even

$$\exists k \in \mathbb{Z}, n = 2k \\ \exists j \in \mathbb{Z}, m = 2j \\ n+m = 2k+2j = 2(k+j) \\ \text{But by closure, } k+j \in \mathbb{Z}.$$

 $\therefore n + m$ is even.

2). Assume n odd and m odd

$$\exists k \in \mathbb{Z}, n = 2k + 1 \exists j \in \mathbb{Z}, m = 2j + 1 n + m = (2k + 1) + (2j + 1) = 2k + 2j + 2 = 2(k + j + 1)$$

But by closure,
$$k+j+1 \in \mathbb{Z}$$
. $\therefore n+m$ is even.

3). Assume n even and m odd

$$\begin{aligned} &\exists k \in \mathbb{Z}, n = 2k \\ &\exists j \in \mathbb{Z}, m = 2j+1 \\ &n+m = 2k+2j+1 = 2(k+j)+1 \\ &\text{But by closure, } k+j \in \mathbb{Z}. \\ &\therefore n+m \text{ is odd.} \end{aligned}$$

Theorem

 $\forall n, m \in \mathbb{Z}$:

- 1). n even and m even $\implies nm$ even.
- 2). n odd and m odd $\implies nm$ odd
- 3). n even and m odd $\implies nm$ even

Proof

Assume $n, m \in \mathbb{Z}$.

1). Assume n even and m even

$$\exists k \in \mathbb{Z}, n = 2k$$

$$\exists j \in \mathbb{Z}, m = 2j$$

$$nm = (2k)(2j) = 2(2kj)$$
 But by closure, $2kj \in \mathbb{Z}$.
$$\therefore nm \text{ is even.}$$

2). Assume n odd and m odd

$$\exists k \in \mathbb{Z}, n = 2k+1 \\ \exists j \in \mathbb{Z}, m = 2j+1 \\ nm = (2k+1)(2j+1) = 4kj+2k+2j+1 = 2(2kj+k+j)+1 \\ \text{But by closure, } 2kj+k+j \in \mathbb{Z}. \\ \therefore nm \text{ is odd.}$$

3). Assume n even and m odd

$$\exists k \in \mathbb{Z}, n = 2k$$

$$\exists j \in \mathbb{Z}, m = 2j + 1$$

$$nm = (2k)(2j + 1) = 2(2kj + k)$$

But by closure, $2kj + k \in \mathbb{Z}$.

$$\therefore nm \text{ is even.}$$

Theorem

 $\forall n \in \mathbb{Z}$:

1). n even $\iff n^2$ even

2). $n \text{ odd} \iff n^2 \text{ odd}$

Proof

- 1). Assume $n \in \mathbb{Z}$.
 - \implies Assume n is even. $\exists k \in \mathbb{Z}, n = 2k$

$$\exists k \in \mathbb{Z}, n = 2k$$
$$n^2 = (2k)^2 = 4k^2 = 2(2kk)$$

But by closure, $2kk \in \mathbb{Z}$.

 $\therefore n^2$ is even.

- \longleftarrow Assume n^2 is even. Contrapositive of (2).
- 2). Assume $n \in \mathbb{Z}$.
 - \implies Assume n is odd.

$$\exists k \in \mathbb{Z}, n = 2k + 1$$

 $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2kk+2k) + 1$

But by closure, $2kk + 2k \in \mathbb{Z}$.

 $\therefore n^2$ is odd.

 \iff Assume n^2 is odd.

Contrapositive of (1).