Vincent Vercruyssen¹

Wannes Meert¹

Gust Verbruggen¹

Koen Maes²

Ruben Bäumer²

Jesse Davis¹

Semi-supervised anomaly detection with an application to water analytics

Detecting abnormal water usage

GIVEN: Colruyt Group records water consumption in retail stores

DO: detect periods of anomalous water consumption in time series

Why automatic anomaly detection?

• Unusual water consumption in a store carries costs

Early detection of anomalies helps reducing said costs

Challenge: infrequent normal behavior

- Colruyt currently employs a rule-based detection system
- BUT what about infrequent normal behaviour?

Normal behavior linked to maintenance (water softener)

Flagged as anomaly by rule-based system

Challenge: heterogeneous signal

BUT what about heterogeneous quality of the signal?

Both patterns are normal behavior!

Top normal, bottom anomaly!

Challenge: large number of stores

Colruyt operates hundreds of stores in Belgium

Typical approach: unsupervised learning

- GIVEN: a dataset without label information
- **DO**: construct a model to detect anomalies in the dataset

- Requires an assumption about anomalies to detect them
 - Geometric: anomalies are far away from normals
 - Statistical: anomalies lie in low-density region
- ✓ Requires no labels
- X Strong assumptions about the nature of anomalies
- X Difficult to evaluate

Typical approach: supervised learning

- GIVEN: a dataset with label information
- DO: construct a model to detect anomalies in the dataset

Requires all data points to be labeled

- ✓ Generally good performance
- ✓ No assumptions about the nature of anomalies
- ✓ Easy to evaluate
- X Requires a prohibitive number of labeled examples

Our approach: semi-supervised learning & active learning

- Ground detection in the unsupervised learning paradigm
- Ask the expert for simple feedback to improve the model

Is this normal or anomalous behaviour?

Semi-supervised detection of outliers (SSDO)

- 1. Compute an initial unsupervised anomaly score for each data point
 - → low-density regions of the instance space are anomalous

- 2. Propagate the known labels through the data
 - > points that are close to each other likely have the same label

- 3. Active learning to query the user for additional label information
 - improve the model where it is uncertain

Toy example

1. (Constrained) clustering score

Cluster the data

Use constraints to guide the clustering

lacktriangle Derive the initial anomaly score for each point f

$$score(x) \sim \frac{point_deviation(x) \times cluster_deviation(x)}{cluster_size(x)}$$

2. Label propagation

- Known labels are propagated through the data
 - 2 points close to each other likely share the same label
 - Labels influence near points more than far off points

lacktriangle Derive the final anomaly score for each point x

$$S(x) = \frac{1}{Z} \left[score(x) + \alpha \sum_{x_i \in L_a} g(d(x, x_i)) \right]$$

normalization

initial score

label propagation score

3. Active learning

• Query the user for additional label information

• Uncertainty sampling queries the example with the least certain predicted label

Use SSDO for water usage data

- 1. Divide time series into one-hour non-overlapping windows
 - Colruyt expert can only label one hour
 - Ease of communicating and interpreting anomalies
- 2. Transform each window to feature vector
- 3. Run SSDO on the feature vector representation
- 4. Go back to original time series to indicate anomalous periods

2. Transform window to feature vector

- 1. Time is an essential feature \rightarrow windows of one hour
- 2. General behavior \rightarrow summary statistics
- 3. Normal during week, not weekend \rightarrow time-of-day, day-of week...

2. Transform window to feature vector

4. Fixed patterns \rightarrow shape features capturing the pattern

3. SSDO predicts anomalies

4. SSDO queries the user

Results of the deployed system in 2 stores

Did we solve the challenges?

Take-away

- 1. Semi-supervised anomaly detection with an active learning loop
- 2. Accurately describing time series data requires a heterogeneous feature representation
- 3. Deployed system that outperforms existing approaches

Questions?