1 Testy dla wartości oczekiwanej

Testy dla pojedynczej próby 1.1

$$H: \mu = \mu_0, \tag{1}$$

$$K : \mu \neq \mu_0$$
 (2)
 $K' : \mu < \mu_0$
 $K'' : \mu > \mu_0$.

Model 1

 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma)$, σ -znane Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}.$$
 (3)

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty),$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}],$$

$$W'''_{\alpha} = [z_{1-\alpha}, +\infty),$$
(4)

gdzie $z_{1-\frac{\alpha}{2}}$ i $z_{1-\alpha}$ są, odpowiednio, kwantylami rozkładu normalnego N(0,1) rzędów $1-\frac{\alpha}{2}$ i $1-\alpha$.

Model 2

 X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma), \sigma$ -nieznane Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n},\tag{5}$$

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -t_{1-\frac{\alpha}{2}}^{[n-1]}] \cup [t_{1-\frac{\alpha}{2}}^{[n-1]}, +\infty),$$

$$W_{\alpha}' = (-\infty, -t_{1-\alpha}^{[n-1]}],$$

$$W_{\alpha}'' = [t_{1-\alpha}^{[n-1]}, +\infty),$$
(6)

gdzie $t_{1-\frac{\alpha}{2}}^{[n-1]}$ i $t_{1-\alpha}^{[n-1]}$ są, odpowiednio, kwantylami rozkładu t-Studenta o n-1 stopniach swobody rzędów $1-\frac{\alpha}{2}$ i $1-\alpha$.

Model 3

 X_1, X_2, \dots, X_n i.i.d. rozkład nieznany, ale n- duże

Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n}.\tag{7}$$

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty),$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}],$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$
(8)

1.2 Testy dla dwóch prób niezależnych

$$H: \mu_1 = \mu_2, \tag{9}$$

$$K : \mu_1 \neq \mu_2$$
 (10)
 $K' : \mu_1 < \mu_2$
 $K'' : \mu_1 > \mu_2$.

Model 1

 X_1, \ldots, X_{n_1} i.i.d. $N(\mu_1, \sigma_1); Y_1, \ldots, Y_{n_2}$ i.i.d. $N(\mu_2, \sigma_2);$ próby niezależne, σ_1 i σ_2 znane Statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}},\tag{11}$$

gdzie \overline{X} i \overline{Y} są, odpowiednio, średnimi arytmetycznymi z pobranych próbek.

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty),$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}],$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty),$$

$$(12)$$

gdzie liczby $z_{1-\frac{\alpha}{2}}$ i $z_{1-\alpha}$ są, odpowiednio, kwantylami rozkładu N(0,1) rzędów $1-\frac{\alpha}{2}$ i $1-\alpha$.

Model 2

 X_1, \ldots, X_{n_1} i.i.d. $N(\mu_1, \sigma_1)$; Y_1, \ldots, Y_{n_2} i.i.d. $N(\mu_2, \sigma_2)$; próby niezależne, σ_1 i σ_2 nieznane, ale równe (tzn. $\sigma_1 = \sigma_2$)

Statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$
(13)

gdzie \overline{X} i S_1^2 oraz \overline{Y} i S_2^2 są, odpowiednio, średnimi arytmetycznymi i wariancjami z pobranych próbek. Obszar krytyczny:

$$W_{\alpha} = (-\infty, -t_{1-\frac{\alpha}{2}}^{[n_{1}+n_{2}-2]}] \cup [t_{1-\frac{\alpha}{2}}^{[n_{1}+n_{2}-2]}, +\infty),$$

$$W_{\alpha}' = (-\infty, -t_{1-\alpha}^{[n_{1}+n_{2}-2]}],$$

$$W_{\alpha}'' = [t_{1-\alpha}^{[n_{1}+n_{2}-2]}, +\infty),$$

$$(14)$$

gdzie liczby $t_{1-\frac{\alpha}{2}}^{[n_1+n_2-2]}$ i $t_{1-\alpha}^{[n_1+n_2-2]}$ są, odpowiednio, kwantylami rzędu $1-\frac{\alpha}{2}$ i $1-\alpha$ rozkładu t-Studenta o n_1+n_2-2 stopniach swobody.

Model 3

 X_1, \ldots, X_{n_1} i.i.d. $N(\mu_1, \sigma_1); Y_1, \ldots, Y_{n_2}$ i.i.d. $N(\mu_2, \sigma_2);$ próby niezależne, σ_1 i σ_2 nieznane Statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}.$$
 (15)

$$W_{\alpha} = (-\infty, -c(1 - \frac{\alpha}{2}, n_1, n_2)] \cup [c(1 - \frac{\alpha}{2}, n_1, n_2), +\infty),$$

$$W'_{\alpha} = (-\infty, -c(1 - \alpha, n_1, n_2)],$$

$$W''_{\alpha} = [c(1 - \alpha, n_1, n_2), +\infty),$$
(16)

gdzie

$$c(\xi, n_1, n_2) \simeq \frac{\frac{S_1^2}{n_1} t_{\xi}^{[n_1 - 1]} + \frac{S_2^2}{n_2} t_{\xi}^{[n_2 - 1]}}{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}},$$
(17)

przy czym $t_{\xi}^{[n_1-1]}$ i $t_{\xi}^{[n_2-1]}$ są kwantylami rozkładu t-Studenta rzędu ξ , odpowiednio, o n_1-1 i n_2-1 stopniach swobody.

Model 4

 X_1,\ldots,X_{n_1} i.i.d.; Y_1,\ldots,Y_{n_2} i.i.d.; próby niezależne; rozkłady nieznane, ale licznościach n_1 i n_2 duże Statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}.$$
 (18)

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty),$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}],$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$
(19)

1.3 Test dla obserwacji parami zależnych

 X_1,\dots,X_{n_1} i.i.d. $N(\mu_1,\sigma_1);\,Y_1,\dots,Y_{n_2}$ i.i.d. $N(\mu_2,\sigma_2);$ próby parami zależne Statystyka testowa:

$$T = \frac{\overline{Z}}{S_Z} \sqrt{n},\tag{20}$$

gdzie \overline{Z} oraz S_Z jest, odpowiednio, średnią i odchyleniem standardowym z próby Z_1,\ldots,Z_n , przy czym $Z_i=X_i-Y_i$

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -t_{1-\frac{\alpha}{2}}^{[n-1]}] \cup [t_{1-\frac{\alpha}{2}}^{[n-1]}, +\infty),$$

$$W_{\alpha}' = (-\infty, -t_{1-\alpha}^{[n-1]}],$$

$$W_{\alpha}'' = [t_{1-\alpha}^{[n-1]}, +\infty).$$
(21)

2 Testy dla wariancji

2.1 Testy dla pojedynczej próby

$$H: \sigma^2 = \sigma_0^2, \tag{22}$$

$$K : \sigma^{2} \neq \sigma_{0}^{2}$$
 (23)
 $K' : \sigma^{2} < \sigma_{0}^{2}$
 $K'' : \sigma^{2} > \sigma_{0}^{2}$.

Model 1

 X_1, X_2, \dots, X_n i.i.d. $N(\mu, \sigma)$, μ -znane Statystyka testowa:

$$T = \frac{n\tilde{S}^2}{\sigma_0^2},\tag{24}$$

Obszary krytyczny

$$W_{\alpha} = (0, \chi_{\frac{\alpha}{2}, n}^{2}] \cup [\chi_{1-\frac{\alpha}{2}, n}^{2}, +\infty)$$

$$W_{\alpha}' = (0, \chi_{\alpha, n}^{2}]$$

$$W_{\alpha}'' = [\chi_{1-\alpha, n}^{2}, +\infty),$$
(25)

przy czym $\chi^2_{\beta,n}$ jest kwantylem rzędu β rozkładu chi-kwadrat o n stopniach swobody.

Model 2

 X_1, X_2, \dots, X_n i.i.d. $N(\mu, \sigma)$, μ -nieznane Statystyka testowa:

$$T = \frac{(n-1)S^2}{\sigma_0^2},\tag{26}$$

Obszary krytyczny

$$W_{\alpha} = (0, \chi_{\frac{\alpha}{2}, n-1}^{2}] \cup [\chi_{1-\frac{\alpha}{2}, n-1}^{2}, +\infty)$$

$$W_{\alpha}' = (0, \chi_{\alpha, n-1}^{2}]$$

$$W_{\alpha}'' = [\chi_{1-\alpha, n-1}^{2}, +\infty),$$
(27)

przy czym $\chi^2_{\beta,n-1}$ jest kwantylem rzędu β rozkładu chi-kwadrat o n-1 stopniach swobody.

Model 3

 X_1, X_2, \dots, X_n i.i.d. rozkład nieznany, ale n- duże Statystyka testowa:

$$T = \sqrt{\frac{2nS^2}{\sigma_0^2}} - \sqrt{2n-3} , \qquad (28)$$

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty)$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}]$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$

$$(29)$$

2.2 Testy dla dwóch prób niezależnych

 X_1,\ldots,X_{n_1} i.i.d. $N(\mu_1,\sigma_1);\,Y_1,\ldots,Y_{n_2}$ i.i.d. $N(\mu_2,\sigma_2);$ próby niezależne

$$H: \sigma_1^2 = \sigma_2^2, \tag{30}$$

$$K'': \sigma_1^2 > \sigma_2^2 \ . \tag{31}$$

Statystyka testowa:

$$T'' = \frac{S_1^2}{S_2^2} \tag{32}$$

Obszar krytyczny

$$W_{\alpha} = [F_{1-\alpha}^{[n_1-1,n_2-1]}, +\infty), \tag{33}$$

gdzie $F_{1-\alpha}^{[n_1-1,n_2-1]}$ jest kwantylem rzędu $1-\alpha$ rozkładu F-Snedecora o (n_1-1,n_2-1) stopniach swobody. Dla

$$K': \sigma_1^2 < \sigma_2^2, \tag{34}$$

statystyka testowa:

$$T' = \frac{1}{T''} = \frac{S_2^2}{S_1^2},\tag{35}$$

obszar krytyczny

$$W_{\alpha} = [F_{1-\alpha}^{[n_2-1,n_1-1]}, +\infty), \tag{36}$$

gdzie $F_{1-\alpha}^{[n_2-1,n_1-1]}$ jest kwantylem rzędu $1-\alpha$ rozkładu F-Snedecora o (n_2-1,n_1-1) stopniach swobody. Dla

$$K: \sigma_1^2 \neq \sigma_2^2, \tag{37}$$

statystyka testowa:

$$T = \begin{cases} T' & \text{gdy } S_1^2 > S_2^2, \\ T'' & \text{gdy } S_2^2 > S_1^2, \end{cases}$$
 (38)

obszar krytyczny:

$$W_{\alpha} = \begin{cases} [F_{1-\alpha}^{[n_1-1,n_2-1]}, +\infty) & \text{gdy } S_1^2 > S_2^2, \\ [F_{1-\alpha}^{[n_2-1,n_1-1]}, +\infty) & \text{gdy } S_2^2 > S_1^2. \end{cases}$$
(39)

3 Testy dla wskaźnika struktury

3.1 Testy dla pojedynczej próby

$$H: p = p_0, \tag{40}$$

$$K : p = p_0,$$
 (41)
 $K' : p < p_0,$
 $K'' : p > p_0.$

Model 1

 X_1, X_2, \dots, X_n i.i.d. Bern(p); n- duże Statystyka testowa

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}},\tag{42a}$$

gdzie

$$\widehat{p} = \frac{k}{n},$$

przy czym gdzie k jest liczbą elementów wyróżnionych (sukcesów) w próbie o liczności n. Obszar krytyczny

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty),$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}],$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$
(43)

Model 2

 X_1, X_2, \dots, X_n i.i.d. Bern(p); n- nieduże

Statystyka testowa:

$$T = 2\left(\arcsin\sqrt{\hat{p}} - \arcsin\sqrt{p_0}\right)\sqrt{n},\tag{44}$$

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty)$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}]$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$

$$(45)$$

3.2 Testy dla dwóch niezależnych prób

$$H: p_1 = p_2, (46)$$

$$K : p_1 \neq p_2,$$
 (47)
 $K' : p_1 < p_2,$
 $K'' : p_1 > p_2.$

Model 1

 X_1,\ldots,X_{n_1} i.i.d. $Bern(p_1);\,Y_1,\ldots,Y_{n_2}$ i.i.d. $Bern(p_2);$ próby niezależne; n_1 i n_2- duże Statystyka testowa:

$$T = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\frac{p^*(1-p^*)}{n^*}}},\tag{48}$$

gdzie $\hat{p}_1 = \frac{k_1}{n_1}$ oraz $\hat{p}_2 = \frac{k_2}{n_2}$, przy czym k_1 i k_2 oznaczają liczbę zaobserwowanych sukcesów, odpowiednio, w pierwszej i drugiej próbie, natomiast

$$p^* = \frac{k_1 + k_2}{n_1 + n_2},\tag{49}$$

$$n^* = \frac{n_1 n_2}{n_1 + n_2}. (50)$$

Obszar krytyczny:

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty)$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}]$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$
(51)

Model 2

 X_1, \ldots, X_{n_1} i.i.d. $Bern(p_1); Y_1, \ldots, Y_{n_2}$ i.i.d. $Bern(p_2);$ próby niezależne; n_1 oraz n_2 – nieduże Statystyka testowa:

$$T = 2\left(\arcsin\sqrt{\widehat{p}_1} - \arcsin\sqrt{\widehat{p}_2}\right)\sqrt{n^*},\tag{52}$$

$$W_{\alpha} = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, +\infty)$$

$$W'_{\alpha} = (-\infty, -z_{1-\alpha}]$$

$$W''_{\alpha} = [z_{1-\alpha}, +\infty).$$
(53)