Twierdzenie

Jeżeli G jest grafem prostym, to

$$\chi(G) \leqslant \Delta(G) + 1.$$

Dowód.

Przeprowadźmy dowód indukcyjny względem liczby wierzchołków. Niech G będzie grafem prostym mającym n wierzchołków i niech $\Delta = \Delta(G)$.

Z grafu G usuwamy wierzchołek v wraz z przylegającymi do niego krawędziami.

Graf $G\setminus\{v\}$ ma (n-1) wierzchołków i $\Delta(G\setminus\{v\})\leqslant \Delta$. Z założenia indukcyjnego wynika, że $\chi(G\setminus\{v\})\leqslant \Delta+1$.

Wykonujemy $(\Delta+1)$ -kolorowanie grafu $G\setminus\{v\}$. Dodajemy do grafu wierzchołek v (z przyległymi krawędziami) i nadajemy mu inny kolor niż mają jego sąsiedzi — możemy to zrobić, bo liczba sąsiadów wierzchołka v nie przekracza Δ . W ten sposób uzyskaliśmy $(\Delta+1)$ kolorowanie grafu G.

Niech G będzie grafem i c będzie k-kolorowaniem grafu G. Kolorowanie c nazywamy **właściwym** k-**kolorowaniem** grafu G, jeżeli dla każdej pary sąsiednich wierzchołków przyjmuje ono róźne wartości:

$$\forall_{u,v \in V(G)}: \{u,v\} \in E(G) \implies c(u) \neq c(v).$$

Definicia

Graf jest k-kolorowalny, gdy istnieje właściwe k-kolorowanie tego grafu.

Przykład 1

Rozważmy graf G (na rysunku po lewej) i kolorowanie c ze zbiorem kolorów $C=\{1,\,2,\,3\}$ takie, że

$$c(v_1) = c(v_2) = c(v_4) = 1, \ c(v_3) = c(v_5) = 2, \ c(v_6) = 3.$$

Graf G z zadanym kolorowaniem c możemy przedstawić graficznie na kilka sposobów.

- Jeżeli w rozważanym kontekście opis wierzchołków jest nieistotny, to wierzchołki możemy indeksować kolorami (rysunek środkowy).
- Przymując, że kolor 1 to czerwony, kolor 2 to zielony, a kolor 3 to niebieski, wierzchołki możemy (nomen omen) pokolorować (rysunek po prawej). W tej konwencji można zachować opis wierzchołków.

2 lipca 2024

Liczbą chromatyczną $\chi(G)$ grafu prostego G nazywamy najmniejszą liczbę k taką, że istnieje kolorowanie $c:V(G)\to\{1,2,\ldots,k\}$.

Nietrudno zauważyć, że dla dowolnego grafu prostego G zachodzą nierówności

$$1 \leqslant \chi(G) \leqslant |V(n)|.$$

Przykład

Wyznaczyć liczby chromatyczne grafów P_n i C_n dla każdego n.

9/19

Stwierdzenie

- $\bullet \ \chi(G) = 1 \ \text{wtedy i tylko wtedy, gdy} \ G \ \text{jest grafem pustym}.$
- ullet $\chi(G)=|V(G)|$ wtedy i tylko wtedy, gdy G jest grafem pełnym.

Stwierdzenie

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym.

Wniosek

 $\chi(G)\geqslant 3$ wtedy i tylko wtedy, gdy G zawiera cykl długości nieparzystej.

10/19

- Jeżeli $\chi'(G) = \Delta(G)$, to G nazywamy grafem klasy I.
- ullet Jeżeli $\chi'(G)=\Delta(G)+1$, to G nazywamy grafem klasy II.

Poniższy wynik również jest autorstwa Vadima G. Vizinga.

Twierdzenie

Jeżeli graf G jest grafem klasy II, to co najmniej trzy wierzchołki tego grafu mają maksymalny stopień.

18/19

Twierdzenie

Grafy $K_{3,3}$ i K_5 nie są grafami planarnymi.

Szkic dowodu.

Każda reprezentacja graficzna $K_{3,3}$ musi zawierać cykl długości 6, a każda reprezentacja graficzna K_5 musi zawierać cykl długości 5. Wystarczy narysować te cykle i rozpatrzyć wszystkie przypadki dorysowania pozostałych krawędzi.

W teorii grafów planarnych centralną rolę ogrywa *twierdzenie Kuratowskiego*. Nie wchodząc w szczegóły, orzeka ono że dany graf nie jest planarny, jeżeli w pewnym sensie *zawiera* podgraf podobny do $K_{3,3}$ lub do K_{5} .

Twierdzenie Erdősa-Wilsona (1975)

Niech Gr(n) oznacza zbiór wszystkich grafów prostych mających n wierzchołków i niech $Cl_I(n)$ oznacza zbiór wszystkich grafów prostych klasy I mających n wierzchołków. Wtedy

$$\lim_{n \to \infty} \frac{|Cl_I(n)|}{|Gr(n)|} = 1.$$

19/19

Twierdzenie o czterech barwach (Appel, Haken, 1976)

Jeżeli G jest planarnym grafem prostym, to

$$\chi(G) \leqslant 4$$
.

Indeksem chromatycznym $\chi'(G)$ grafu prostego G nazywamy najmniejszą liczbę k taką, że istnieje kolorowanie krawędziowe $c': E(G) \to \{1,2,\ldots,k\}$.

Przykład

Wyznaczyć indeks chromatyczny grafu $K_{1,n}$ dla każdej liczby całkowitej dodatniej n.

Graf $K_{1,n}$ nazywany bywa gwiazdą S_{n-1} .

Stwierdzenie

Dla każdego grafu prostego G zachodzi

$$\chi'(G) \geqslant \Delta(G)$$
.

Uwaga!

Powszechnie przyjęte nazewnictwo: **graf półeulerowski**, **graf półhamiltonowski** jest trochę niefortunne, bo sugeruje, że każdemu z tych grafów dużo brakuje do bycia "pełnymi" grafami eulerowskimi lub hamiltonowskimi, podczas gdy w każdym przypadku wystarczy w tym celu do grafu dodać tylko jedną krawędź.

Przykład

W poniższym grafie znaleźć najkrótsze drogi z wierzchołka B do pozostałych wierzchołków korzystając z algorytmu Dijkstry.

	A	C	D	E	F	G
B_0	6_B	∞	1_B	∞	∞	7_B
BD_1	6_B	4_D	_	∞	5_D	7_B
BDC_4	5_C	_	_	9_C	5_D	7_B
BDF_5	5_C	_	_	8_F	_	6_F
$BDCA_5$	_	_	_	8_F	_	6_F
$BDFG_6$	_	_	_	8_F	_	_
$BDFE_8$	_	_	_	_	_	_

W pierwszej kolumnie zapisane są najkrótsze drogi (w indeksie każdej z nich jest waga).

Elementy tabeli to wagi dróg z wierzchołka B do danego wierzchołka (w indeksach są wierzchołki bezpośrednio poprzedzające dany).

Symbol "—" oznacza, że do danego wierzchołka już określono najkrótszą drogę. W sytuacji, gdy w wierszu mamy więcej niż jedną drogę o najmniejszej wadze ($\mathbf{5}_C$ do A i $\mathbf{5}_D$ do F w wierszu czwartym), wybieramy dowolną z nich.

Znajdowanie cyklu Eulera - algorytm Fleury'ego

Zaczynając od dowolnego wierzchołka, tworzymy cykl Eulera dodając do niego kolejne krawędzie w taki sposób, że dodajemy do cyklu most tylko wtedy, gdy nie ma innej możliwości.

Przykład

Wyznaczyć cykl Eulera w grafie $K_{2,4}$.

Drzewa przeszukiwań

- Metoda przeszukiwania wszerz (breadth-first search, BFS)
 Odwiedzamy wszystkich sąsiadów aktualnego wierzchołka, zanim przejdziemy do następnego wierzchołka.
- Metoda przeszukiwania w głąb (deapth-first search, DFS) Po odwiedzeniu sąsiada v_{k+1} wierzchołka v_k , przechodzimy do nieodwiedzonego sąsiada v_{k+2} wierzchołka v_{k+1} albo w przypadku braku nieodwiedzony sąsiadów cofamy się do wierzchołka v_k i powtarzamy.

W BFS zanim zagłębimy się bardziej w drzewo, zagładamy do tak wielu wierzchołków jak to możliwe, a w DFS zagłębiamy się tak daleko, jak tylko jest to możliwe, zanim zajrzymy do innych wierzchołków sąsiednich.

Problem komiwojażera

Podamy dwie wersje problemu:

- Mając daną listę miast i odległości między tymi miastami, znaleźć najkrótszą drogę przechodzącą przez wszystkie miasta (przez każde tylko raz) i powracającą do punktu wyjścia.
- Znaleźć najoptymalniejszy cykl Hamiltona w ważonym grafie pełnym.

Przykładowe rozwiązania

- Brute force: Znajdujemy wszystkie cykle Hamiltona i wybieramy najodpowiedniejszy.
- Algorytm najbliższego sąsiada: Zaczynamy od dowolnego wierzchołka i poruszamy się zawsze wzdłuż krawędzi o najmniejszych wagach. (jest to rozwizanie przybliżone, średnio o 25% gorsze od optymalnego).

Problem chińskiego listonosza

Sformułowanie

Znalezienie cyklu (niewłaściwego) zawierającego każdą krawędź danego grafu co najmniej raz i mającego jak najmniejszy koszt (czyli liczbę krawędzi lub, w przypadku grafu ważonego, sumę wag krawędzi).

Rozwiązanie problemu chińskiego listonosza

- ullet Jeżeli graf G jest eulerowski to znajdujemy dowolny cykl Eulera.
- Jeżeli graf nie jest eulerowski to dublujemy niektóre krawędzie, aby otrzymać graf eulerowski i wtedy szukamy ścieżki Eulera. Aby otrzymać najoptymalniejsze (najkrótsze) ścieżki
 - b dla grafów nieważonych wystarczy przeszukać graf wszerz,
 - ▶ dla grafów z nieujemnymi wagami można skorzystać np. z algorytmu Dijkstry,
 - dla grafów z dowolnymi wagami można skorzystać np. z algorytmu Bellmana-Forda.

Twierdzenie (Euler, 1741)

Niech G będzie grafem spójnym. Graf G jest eulerowski wtedy i tylko wtedy, gdy każdy wierzchołek ma stopień parzysty.

Dowód. (1/2)

 (\Rightarrow)

Niech d będzie cyklem Eulera w grafie G i niech $v \in V(G)$. Każde przejście cyklu d przez wierzchołek v zwiększa udział krawędzi należących do tego cyklu w stopniu wierzchołka v o v. Każda krawędź występuje w grafie v0 dokładnie raz, więc stopień każdego wierzchołka musi być liczbą parzystą.

Dowód (2/2)

(⇔)

Dowód indukcyjny względem liczby krawędzi grafu G. G jest grafem spójnym, w którym stopień każdego wierzchołka jest liczbą parzystą, więc $\delta(G)\geqslant 2$. Zatem, na mocy Lematu 1, w G istnieje cykl c.

- ullet Jeżeli c zawiera każdą krawędź grafu G, to twierdzenie jest udowodnione.
- Jeżeli c nie zawiera każdej krawędzi grafu G, to usuwamy z grafu G wszystkie krawędzie należące do cyklu c, otrzymując graf $G\backslash\{c\}$, który ma mniej krawędzi niż G. Z założenia indukcyjnego każda składowa spójności grafu $G\backslash\{c\}$ posiada cykl Eulera. Ze spólności G wynika, że każda składowa spójności grafu $G\backslash\{c\}$ ma co najmniej jeden wierzchołek wspólny z cyklem c. Zatem w grafie G można stworzyć cykl Eulera poprzez połączenie cyklu c z cyklami Eulera wszystkich składowych spójności grafu $G\backslash\{c\}$ poprzez wierzchołki wspólne.

Problem mostów królewieckich

Czy można przejść dokładnie jeden raz przez każdy z siedmiu mostów przedstawionych na poniższym rysunku i powrócić do punktu wyjścia?

[Źródło: https://pl.wikipedia.org/wiki/Królewiec#/media/Plik:Image-Koenigsberg, Map by Merian-Erben 1652.jpg, 13.05.2024]

Lemat 1

Jeżeli $\delta(G) \geqslant 2$, to graf G zawiera cykl.

Dowód.

Jeżeli G zawiera pętle lub krawędzie wielokrotne, to lemat jest trywialny. Załóżmy zatem, że G jest grafem prostym i że $v \in G$ jest dowolnym wierzchołkiem G.

Tworzymy trasę

$$v \to v_1 \to v_2 \to \dots$$

tak aby v_{k+1} był sąsiadem v_k różnym od v_{k-1} (zawsze jest to możliwe ze względu na założenie, że stopień każdego wierzchołka wynosi co najmniej 2). Graf G ma skończenie wiele wierzchołków, więc po skończonej liczbie kroków na trasie musi pojawić się wierzchołek v_K , który pojawił się na niej już wcześniej. Fragment trasy

$$v_K \to \ldots \to v_K$$

jest szukanym cyklem.