Trường Đại học Khoa học Tự nhiên Khoa Công nghệ Thông tin

TÀI LIỆU LÝ THUYẾT KTDL & UD

KHAI THÁC MẪU PHỔ BIẾN và LUẬT KẾT HỢP (P2)

Giảng viên: ThS. Lê Ngọc Thành

Email: Inthanh@fit.hcmus.edu.vn

Nội dung

- Thuật toán FP-Growth
 - Xây dựng cây FP-Growth
 - Phát sinh mẫu phổ biến từ FP-Growth
- So sánh Fp-Growth và Apriori
- Độ do tính lý thú của LKH

Nhắc lại hạn chế Apriori

- Các hạn chế của thuật toán Apriori
 - Phải duyệt CSDL nhiều lần
 - Kiểm tra và tạo lượng lớn tập ứng viên
- Ví dụ:
 - Nếu có 10⁴ mẫu phổ biến 1-hạng mục thì cần phát sinh nhiều hơn 10⁷ ứng viên 2-hạng mục
 - Để tìm mẫu phổ biến i₁ i₂... i₁₀₀:
 - Số lần duyệt CSDL: 100
 - Số lượng ứng viên ít nhất: 2^{100} - $1 = 10^{30}$

Giới thiệu thuật toán FP-Growth

- Được đề xuất bởi J.Han, J.Pei và Y.Yin trong hội nghị SIGMOD năm 2000.
- Là thuật toán tìm kiếm theo chiều sâu (theo tư tưởng chia để trị)
- Khai thác mẫu phổ biến không sử dụng hàm tạo ứng viên.

Ý tưởng FP-Growth

Nén CSDL thành cấu trúc cây FP (Frequent Patern)

Chia dữ liệu đã nén thành các dữ liệu có điều kiện

Thực hiện khai thác trên mỗi cơ sở dữ liệu riêng rẽ

Thuật toán FP-Growth

- Input: dữ liệu giao tác D và minsup
- Output: tập mẫu phổ biến
- B1: Xây dựng cây FP
- B2: Khai thác cây FP

B1. Xây dựng FP-tree

- *B1.1:* (Duyệt CSDL lần 1) Tìm tập phổ biến 1- hạng mục. Sắp xếp tập phổ biến giảm dần vào trong F-list.
- **B1.2:** Chọn lọc và sắp xếp mỗi giao tác trong CSDL lại theo thứ tự trong F-list.
- B1.3: Khởi tạo cây với gốc là "null".
- **B1.4:** (Duyệt CSDL lần 2) Với mỗi giao tác ở B1.2, xuất phát từ gốc, lấy từng hạng mục theo thứ tự:
 - Nếu hạng mục chưa có ở vị trí con của node hiện tại thì thêm vào cây với đếm là 1.
 - Nếu hạng mục đã có ở vị trí con của node hiện tại thì tăng đếm lên 1.

Ví dụ xây dựng cây FP (1/3)

TID	Items bought	(ordered) frequen	<u>it items</u>
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	•
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	minsupp = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

B1.1: Tìm tập phổ biến 1hạng mục. Sắp xếp tập phổ biến giảm dần vào trong F-list

F-list=f-c-a-b-m-p

B1.2: Chọn lọc và sắp xếp CSDL theo F-list.

Hea	der Table
<u>Item</u>	Supp.count
$\mid f \mid$	4
c	4
a	3
b	3
$\mid m \mid$	3
p	3

Ví dụ xây dựng cây FP (2/3)

TID	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\} \qquad minsupp = 3$
300	$\{b, f, h, j, o, w\}$	$\{f,b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

B1.3: Khởi tạo cây với gốc "null"

B1.4: Với mỗi giao tác ở B1.2, xuất phát từ gốc, lấy từng hạng mục theo thứ tự:

- Nếu hạng mục chưa có ở vị trí con của node hiện tại thì thêm vào cây với đếm là 1.
- Nếu hạng mục đã có ở vị trí con của node hiện tại thì tăng đếm lên 1

c, u, m, p						
Itm	Supp	pHead	->f:1			
f	4					
c	4		> <u>c:1</u>			
а	3					
b	3		a:1			
m	3	,	 ≯ <i>m:1</i>			
p	3					
Luu	ý: lu	ru trữ	> p:1			
con trỏ pḤead						
của DSLK đề tiện						
truy cập về sau 9						

Ví dụ xây dựng cây FP (2/3)

TID	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\} \qquad minsupp = 3$
300	$\{b, f, h, j, o, w\}$	$\{f,b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$
. TZ 1. 2.	i 400 00-1-16i 00 060	1122

B1.3: Khởi tạo cây với gốc "null"

B1.4: Với mỗi giao tác ở B1.2, xuất phát từ gốc, lấy từng hạng mục theo thứ tự:

- Nếu hạng mục chưa có ở vị trí con của node hiện tại thì thêm vào cây với đếm là 1.
- Nếu hạng mục đã có ở vị trí con của node hiện tại thì tăng đếm lên 1

$\frac{f}{c}$	4			_
\overline{c}	4			_
	•		> c:2	?
а	3	,		\Box
b	3		a:2	
m	3	,	<i>m:1</i> → <i>m:1</i>	<i>b: j</i>
p	3			
		(p:1	m:

Ví dụ xây dựng cây FP (2/3)

100 { f, a, c, d, g, i, m, p } { f, c, a, m, p } 200 { a, b, c, f, l, m, o } { f, c, a, b, m } $minsupp =$	
$\{a, b, c, f, l, m, o\}$ $\{f, c, a, b, m\}$	
	3
300 $\{b, f, h, j, o, w\}$ $\{f, b\}$	J
400 $\{b, c, k, s, p\}$ $\{c, b, p\}$	
500 $\{a, f, c, e, l, p, m, n\}$ $\{f, c, a, m, p\}$	}

B1.3: Khởi tạo cây với gốc "null"

B1.4: Với mỗi giao tác ở B1.2, xuất phát từ gốc, lấy từng hạng mục theo thứ tự:

- Nếu hạng mục chưa có ở vị trí con của node hiện tại thì thêm vào cây với đếm là 1.
- Nếu hạng mục đã có ở vị trí con của node hiện tại thì tăng đếm lên 1

Itm	Supp	pHead	- f:4 $c:1$
\int	4		
С	4		$-\rightarrow c:3$ $b:1 \rightarrow b:1$
а	3		
b	3		a:3 $p:1$
m	3	,	
p	3	\	
			$p:2 \mid m:1 \mid$

Bài tập áp dụng 1

Xây dựng cây FP cho dữ liệu giao tác sau với minsup = 2 hay 22%:

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Bài tập áp dụng 1 – Đáp án

Cây FP được xây dựng:

B2. Khai thác FP-tree

 FP-tree được khai thác bằng cách gọi hàm FP_growth(FP_tree,null):

```
procedure FP_growth(Tree, \alpha)
       if Tree contains a single path P then
           for each combination (denoted as \beta) of the nodes in the path P
(2)
               generate pattern \beta \cup \alpha with support_count = minimum support count of nodes in \beta;
(3)
(4)
       else for each a; in the header of Tree {
           generate pattern \beta = a_i \cup \alpha with support_count = a_i.support_count;
(5)
(6)
           construct \beta's conditional pattern base and then \beta's conditional FP_tree Tree_{\beta};
           if Tree_{\beta} \neq \emptyset then
              call FP_growth(Tree_{\beta}, \beta); }
(8)
```

B2. Khai thác FP-tree

- FF Với mỗi mẫu phổ biến a_i trong bảng header (từ dưới lên)
- procedure FP_growth 1. Tạo mẫu hậu tố β bằng cách kết hợp mẫu a; với mẫu điều kiện α trước đó và đếm trợ = đếm trợ của ai if Tree contains
 - Xây dựng cơ sở mẫu điều kiện β
 - for each con 3. Xây dựng cây FP điều kiện β
- generate 4. Gọi đệ quy hàm cho cây FP-điều kiện β nếu cây tồn tại (3)
- (4)**else for each** a; in the header of *Tree* {
- (5)generate pattern $\beta = a_i \cup \alpha$ with support_count = a_i .support_count;
- construct β 's conditional pattern base and then β 's conditional FP_tree $Tree_{\beta}$; (6)
- if $Tree_{\beta} \neq \emptyset$ then

(2)

call FP_growth($Tree_{\beta}, \beta$); }

B2.1.Tạo mẫu điều kiện β

Với mỗi hạng mục phổ biến a_i trong bảng header (từ dưới lên)

 Tạo mẫu điều kiện β bằng cách kết hợp hạng mục a_i với mẫu điều kiện trước đó và đếm trợ = đếm trợ của a_i

β	Supp
p	3
m	3
b	3
a	3
С	4
f	4

Tạo mẫu điều kiện

B2.2. Xd cơ sở mẫu điều kiện β

- Dựa trên FP-tree và theo kết nối của mỗi mẫu.
- Gom tất cả đường dẫn tiền tố biến đổi (transformed prefix) của mẫu để tạo cơ sở mẫu điều kiện

Itm	Supp	pHead	$\longrightarrow f:4 \longrightarrow c:1$
f	4		
c	4		$-\rightarrow c:3/b:1\rightarrow b:1$
a	3		
b	3		a:3 p:1
m	3	,	<i>m</i> :2 <i>b</i> :1 /
p	3	\	
B	ång hea	ıder	p:2' m:1

β	Supp	Cond.Pattern Base
p	3	{fcam:2}, {cb:1}
m	3	
b	3	
а	3	
c	4	
f	4	

B2.2. Xd cơ sở mẫu điều kiện β

- Dựa trên FP-tree và theo kết nối của mỗi mẫu.
- Gom tất cả đường dẫn tiền tố biến đổi (transformed prefix) của mẫu để tạo cơ sở mẫu điều kiện

			{}
Itm	Supp	pHead	$\longrightarrow f:4 \longrightarrow c:1$
$\int f$	4	_	
c	4	_	$ \Rightarrow c:3 $ $b:1 \Rightarrow b:1$
a	3		
b	3	_	a:3 $p:1$
m	3	_	<u> </u>
p	3		
В	ång hed	ader	p:2

β	Supp	Cond.Pattern Base
p	3	{fcam:2}, {cb:1}
m	3	{fca:2}, {fcab:1}
b	3	
а	3	
c	4	
f	4	

B2.2. Xd cơ sở mẫu điều kiện β

- Dựa trên FP-tree và theo kết nối của mỗi mẫu.
- Gom tất cả đường dẫn tiền tố biến đổi (transformed prefix) của mẫu để tạo cơ sở mẫu điều kiện

			U
Itm	Supp	pHead	$-\rightarrow f:4$ $\rightarrow c:1$
$\int f$	4	_	
c	4	_	$ \Rightarrow c:3 \not b:1 \Rightarrow b:1$
a	3	_	
b	3	_	a:3 $p:1$
m	3	_	m:2 $b:1$
p	3	_	
В	ång hea	ıder	$p:2 \mid m:1 \mid$

β	Supp	Cond.Pattern Base
p	3	{fcam:2}, {cb:1}
m	3	{fca:2}, {fcabm:1}
b	3	{fca:1}, {f:1}, {c:1}
а	3	{fc:3}
С	4	{f:3}
f	4	{ }

B2.3. Xd FP-tree điều kiện β

- Xem cơ sở mẫu điều kiện như là những giao tác.
- Thực hiện xây dựng cây FP-tree cho từng cơ sở như bước B1 (chọn lọc hạng mục phổ biến, x/d) cây từ mỗi giao tác đã chọn lọc minsupp = 3

β	Supp	Cond.Pattern Base	<i>p-conautonat</i> FP-tree
p	3	{fcam:2}, {cb:1}	Bång header {}
m	3	{fca:2}, {fcab:1}	Itm Supp pHead
b	3	{fca:1}, {f:1}, {c:1}	c 3> c:3
a	3	{fc:3}] f,a,m,b không thỏa minsup
C	4	{ <i>f</i> :3}	f,a,m,b không thỏa minsup nên bị loại
f	4	{ }	20

B2.3. Xd FP-tree điều kiện β

 Xem cơ sở mẫu điều kiện như là những giao tác.

 Thực hiện xây dựng cây FP-tree cho từng cơ sở như bước B1 (chọn lọc hạng mục phổ biến, x/d) cây từ mỗi giao tác đã chọn lọc

c:3

a:3

chọn lọc minsupp = 3

β	Supp	Cond.Pattern Base	Cond.FP-Tree
p	3	{fcam:2}, {cb:1}	< <i>c:3</i> >
m	3	{fca:2}, {fcab:1}	<f:3,c:3,a:3></f:3,c:3,a:3>
b	3	{fca:1}, {f:1}, {c:1}	
a	3	{fc:3}	
c	4	{ <i>f</i> : <i>3</i> }	
f	4	{ }	

B2.3. Xd FP-tree điều kiện β

- Xem cơ sở mẫu điều kiện như là những giao tác.
- Thực hiện xây dựng cây FP-tree cho từng cơ sở như bước B1 (chọn lọc hạng mục phổ biến, x/d) cây từ mỗi giao tác đã chọn lọc
 minsupp = 3

β	Supp	Cond.Pattern Base	Cond.FP-Tree
p	3	{fcam:2}, {cb:1}	< <i>c:3</i> >
m	3	{fca:2}, {fcab:1}	<f:3,c:3,a:3></f:3,c:3,a:3>
b	3	{fca:1}, {f:1}, {c:1}	<>
a	3	{fc:3}	<f:3,c:3></f:3,c:3>
c	4	{f:3}	<f:3></f:3>
f	4	{ }	<>

B2. Khai thác FP-tree

 FP-tree được khai thác bằng cách gọi hàm FP_growth(FP_tree,null):

```
procedure FP_growth(Tree, \alpha)
      f Tree contains a single path P then
         for each combination (denoted as \beta) of the nodes in the path P
(2)
            generate pattern \beta \cup \alpha with support_count = minimum support count of nodes in \beta;
(3)
(4)
      else for each Néu cây FP chứa một nhánh đơn P
                         Với mỗi cách kết hợp các node trong nhánh P (kí hiệu β)
         generate p i.
(5)
                          Phát sinh mẫu phổ biến = mẫu β hợp với mẫu điều kiện
                         α trước đó và độ trợ = độ trợ của node nhỏ nhất trong β
         construct,
         if Tree_{\beta} \neq \emptyset then
```

call FP_growth($Tree_{\beta}, \beta$); }

B2.i. Phát sinh mẫu phổ biến

- Nếu cây FP chỉ có một nhánh thì phát sinh mẫu phổ biến bằng cách kết hợp các tổ hợp trên nhánh với mẫu điều kiện.
 - Độ trợ của mẫu là độ trợ nhỏ nhất trong tổ hợp
 - Lưu ý: với tổ hợp rỗng thì mẫu phổ biến chính là mẫu điều kiện và độ trợ bằng độ trợ mẫu điều kiện
- Nếu cây FP có nhiều nhánh thì quá trình đệ qui như các bước trước (x/d mẫu điều kiện, cơ sở mẫu điều kiện, cây FP điều kiện)

B2.i. Phát sinh mẫu phổ biến

- Nếu cây FP chỉ có một nhánh thì phát sinh mẫu phổ biến bằng cách kết hợp các tổ hợp trên nhánh với mẫu điều kiện.
 - Độ trợ của mẫu là độ trợ nhỏ nhất trong tổ hợp
 - Lưu ý: với tổ hợp rỗng thì mẫu phổ biến chính là mẫu điều kiện và độ trợ bằng độ trợ mẫu điều kiện

α	Supp	Cond.Pattern Base	Cond.FP-Tree	Frequent Patterns
p	3	{fcam:2}, {cb:1}	< <i>c:3</i> >	{ <i>p:3</i> },
				{ <i>cp:3</i> }
m	3	{fca:2}, {fcab:1}	<f:3,c:3,a:3></f:3,c:3,a:3>	
b	3	{fca:1}, {f:1}, {c:1}	<>	
a	3	{fc:3}	<f:3,c:3></f:3,c:3>	
c	4	{ <i>f</i> : <i>3</i> }	<f:3></f:3>	
f	4	{ }	<>	25

B2.i. Phát sinh mẫu phổ biến

α	Supp	Cond.Pattern Base	Cond.FP-Tree	Frequent Patterns
p	3	{fcam:2}, {cb:1}	< <i>c:3</i> >	{p:3}, {cp:3}
m	3	{fca:2}, {fcab:1}	<f:3,c:3,a:3></f:3,c:3,a:3>	{m:3}, {fm:3}, {cm:3}, {am:3}, {fcm:3}, {fam:3}, {cam:3}, {fcam:3}
b	3	{fca:1}, {f:1}, {c:1}	<>	{b:3}
a	3	{fc:3}	<f:3,c:3></f:3,c:3>	{a:3}, {fa:3}, {ca:3}, {fca:3}
c	4	{ <i>f</i> : <i>3</i> }	<f:3></f:3>	{c:4}, {fc:3}
f	4	{ }	<>	{ <i>f</i> :4}

Bài tập áp dụng 2

Tìm mẫu phổ biến từ cây FP đã xây dựng trong bài tập 1 (minsup = 2):

Bài tập áp dụng 2 – Đáp án

Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	⟨I2: 2, I1: 2⟩	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
<u>I4</u>	{{I2, I1: 1}, {I2: 1}}	⟨I2: 2⟩	{I2, I4: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	$\langle I2: 4, I1: 2 \rangle$, $\langle I1: 2 \rangle$	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	⟨I2: 4⟩	{I2, I1: 4}

Cây triển khai tiếp từ I3

So sánh Apriori và FP-Growth

Data set T25I20D10K

Nội dung

- Thuật toán FP-Growth
 - Xây dựng cây FP-Growth
 - Phát sinh mẫu phổ biến từ FP-Growth
- So sánh Fp-Growth và Apriori
- Độ do tính lý thú của LKH

Vấn đề khi phát sinh luật

 Thuật toán khai thác LKH có xu hướng sinh ra quá nhiều luật khi minsup và minconf thấp.

 Trong đó có nhiều luật không hay hoặc bị thừa, thậm chí là sai.

Ví dụ 1 về v/đ phát sinh luật

Thống kê số giao tác/hóa đơn của một cửa hàng bán nước:

	Coffee	\overline{Coffee}	Σ_{dong}
Теа	15	5	20
Tea	75	5	80
$\Sigma_{\text{cột}}$	90	10	100

Luật kết hợp: Tea → Coffee [sup = 15%; conf = 75%] → Mặc dù độ tin cậy cao nhưng luật gây ra sự hiểu lầm vì thực tế P(coffee) = 90% còn cao hơn conf của luật.

$$P(coffee|\overline{tea}) = \frac{75}{80} = 0.9375$$

Ví dụ 2 về v/đ phát sinh luật

Thống kê về mối liên hệ giữa SV chơi bóng rổ và ăn sáng với ngũ cốc:

	Chơi bóng	Ko chơi bóng	$\Sigma_{ ext{dong}}$
Ăn	4000	3500	7500
<i>Ko</i> ăn	2000	500	2500
$\Sigma_{ ext{c\^ot}}$	6000	4000	10,000

LKH:Chơi bóng rổ → Ăn ngũ cốc [sup=40%; conf=66%]

- Ta thấy, phần trăm SV ăn ngũ cốc P(Ăn ngũ cốc) = 75% lại còn cao hơn cả conf của luật.
- Thực tế, LKH: Chơi bóng rổ → Không ăn ngũ cốc [20%; 34%] chính xác hơn.

Độ đo tính lý thú của luật

- Luật thế nào là tốt/lý thú (interesting)?
- → tùy vào dữ liệu và mang tính chủ quan (lý thú với người này nhưng lại không lý thú với người khác)
- → Một cách tương đối, bằng pp thống kê hướng đến loại bỏ các luật không lý thú.
- Các độ đo lý thú là gì?
 - Độ đo tương quan giữa tiền đề và kết luận (correlation)
 - Độ đo khả năng dẫn xuất (implication)

Các độ đo mối tương quan

			formula
symbol	measure	range	Formula $P(A,B)-P(A)P(B)$
φ	ϕ -coefficient	-11	$\frac{T(A,B)-T(A)T(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
Q	Yule's Q	-1 1	$P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)$
- C	Tule s Q	-11	$P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)$
Y	Yule's Y	-1 1	$\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}$
			$ \sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)} P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B}) $
k	Cohen's	-11	$\frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.250.25	P(A,B) - P(A)P(B)
F	Certainty factor	-1 1	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	-0.5 1	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	0 1	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
			$\sum_{k} P(A_{j}) - max_{k} P(B_{k})$ $P(A_{i}, B_{j})$
M	Mutual Information	0 1	$\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) - \frac{P(A_{i}, B_{j})}{P(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}) - \sum_{i} \underline{P(B_{i})} \log P(B_{i}) \log P(B_{i})}$
J	J-Measure	0 1	$\max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(B A)}{P(B)}))$
			F(B)
			$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	0 1	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
s	support	0 1	P(A,B)
c	confidence	0 1	max(P(B A), P(A B))
L	Laplace	0 1	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	0 1	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	01	P(A,B)
α	all_confidence	01	P(A)+P(B)-P(A,B) $P(A,B)$
α			$\frac{\max(P(A), P(B))}{P(A, B)P(\overline{A}, \overline{B})}$
0	odds ratio	0 ∞	$\overline{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \dots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	0 ∞	$\frac{P(A,B)}{P(A)P(B)}$
S	Collective strength	0 ∞	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
χ^2	χ^2	0 ∞	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Thảo luận độ đo *lift* (1/2)

Độ đo *lift* cho luật A→ B:

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

- Thể hiện hạng mục A có xảy ra độc lập với hạng mục B hay không?
 - Nếu độc lập: P(A,B) = P(A).P(B), hay lift (A,B) = 1.
 - Tương quan nghịch (negatively correlated): lift (A,B) < 1
 nghĩa là cái này xảy ra dẫn đến cái kia sẽ không xảy ra.
 - Tương quan thuận (positively correlated): lift (A,B) > 1,
 nghĩa là cái này xảy ra dẫn đến cái kia cũng xảy ra.

Thảo luận độ đo lift (1/2)

- Nói cách khác:
 - A tăng cường hay "nâng" (*lift*) khả năng xảy ra của B với hệ số là giá trị của biểu thức *lift*(A,B)

$$lift(A,B) = \frac{P(A,B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{conf(A \to B)}{sup(B)}$$

Ví dụ độ đo *lift*

	Chơi bóng	Ko chơi bóng	$\Sigma_{ ext{dong}}$
Ăn	4000	3500	7500
<i>Ko</i> ăn	2000	500	2500
$\Sigma_{ m c\^{o}t}$	6000	4000	10,000

lift (Chơi bóng rổ → Ăn ngũ cốc) =
$$\frac{P(Chơi bóng, Ăn)}{P(Chơi bóng) \times P(Ăn)} = \frac{\frac{4000}{10000}}{\frac{6000}{10000} \times \frac{7500}{10000}} = 0.89 < 1$$

lift (Chơi bóng rồ $\rightarrow \check{A}n \ ng \~u \ c\~oc=?$

Bài tập áp dụng 3

- Phát sinh các luật dựa trên các mẫu phổ biến trong bài tập 2 thỏa minsup = 22% và minconf = 70%
- Tính độ đo *lift* của từng luật trên.

-			
Item	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	(I2: 2, I1: 2)	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	(I2: 2)	{I2, I4: 2}
13	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	(I2: 4, I1: 2), (I1: 2)	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	(I2: 4)	{I2, I1: 4}

So sánh các độ đo tương quan

Đọc thêm trong phần 6.3.2 và 6.3.3 cuốn Data Mining: Concepts and Techniques (3rd Edition, J.Han) để nắm các độ đo tương quan khác và việc đánh giá các độ đo này.

Road-map lĩnh vực khai thác mẫu

 Đọc thêm chương 7 cuốn Data Mining: Concepts and Techniques (3rd Edition, J.Han) để nắm thêm các hướng nghiên cứu liên quan đến khai thác mẫu.

Bài tập tổng hợp 1

Cho CSDL sau và minsup = 50%, minconf = 80%

TID	Date	Items_bought
100	15/1/03	K, A, D, B, C, I
200	15/1/03	D, A, C, E, B
300	19/1/03	C, A, B, E, D
400	25/1/03	B, A, D, I

- a. Tìm tất cả các tập phổ biến, tập phổ biến tối đại, tập phổ biến đóng sử dụng thuật toán Apriori và FP-Growth
- b. Xây dựng LKH thỏa minsup và minconf
- c. Tính độ đo tương quan lift của các luật tìm được ở câu b

Bài tập tổng hợp 2

Transaction	Items
t_1	Blouse
t_2	Shoes, Skirt, TShirt
t_3	Jeans, TShirt
t_4	Jeans, Shoes, TShirt
t_5	Jeans, Shorts
t_6	Shoes, TShirt
t_7	Jeans,Skirt
t_8	Jeans, Shoes, Shorts, TShirt
t_9	Jeans
t_{10}	Jeans, Shoes, TShirt
t_{11}	TShirt
t_{12}	Blouse, Jeans, Shoes, Skirt, TShirt
t_{13}	Jeans, Shoes, Shorts, TShirt
t_{14}	Shoes, Skirt, TShirt
t_{15}	Jeans, TShirt
t_{16}	Skirt, TShirt
t_{17}	Blouse,Jeans,Skirt
t_{18}	Jeans, Shoes, Shorts, TShirt
t_{19}	Jeans
t_{20}	Jeans, Shoes, Shorts, TShirt

- Cho CSDL bên và minsup=30%, minconf=50%.
- Yêu cầu tương tự bài tập tổng hợp 1

Tóm tắt

- Các hạn chế của Apriori
- Thuật toán FP-Growth giảm thiếu việc duyệt dữ liệu nhiều lần bằng cách hình thành cây FP, dựa trên cây FP để chia dữ liệu thành các vùng nhỏ để tìm mẫu phổ biến.
- Các luật sinh ra có thể thừa hay gây nhầm lẫn, việc loại bỏ nó thông qua đánh giá các độ đo tương quan.

Tài liệu tham khảo

- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00, 1-12, Dallas, TX, May 2000
- 2. Improvements on FP-growth, http://www.cs.sfu.ca/CourseCentral/741/jpei/slides/FP-growth-Improvements.pdf
- 3. J.Han, M.Kamber, Chương 6 Mining Frequent Patterns, Associations, and Correlations và Chương 7 Advanced Pattern Mining cuốn "Data mining: Basic Concepts and Methods", 3rd edition

Hỏi & Đáp

