Curriculum Vitae

Education

2014–2018 **B.S. Computer Science, Mathematics**, *California Institute of Technology*, Pasadena, GPA: 4.0.

The computer science degree involves courses in systems, algorithms, functional programming, and complexity theory. I supplemented these courses with electives in computer graphics and advanced algorithms. The math degree involves courses in abstract algebra, differential geometry, and analysis. I supplemented these courses with electives in algebraic topology.

Work and Research Experience

Fall 2017 **Teaching Assistant for CS 171, Introduction to Computer Graphics**, *Caltech*.

Under Professor Alan Barr, graded problem sets, held weekly office hours, delivered recitation lectures

Summer 2017 Arthur R. Adams Undergraduate Researcher, Caltech.

Under Professor Peter Schröder, implemented an energy-preserving integrator for 2D MHD on grids and proved its conservation properties

- Analyzed conservation behavior of the algorithm using discrete differential geometry
- Implemented algorithm in Houdini
- Summer 2016 Arthur R. Adams Undergraduate Researcher, Caltech.

Under Professor Mathieu Desbrun, developed a new algorithm for computing polymer conformation using dimensionality reduction techniques.

- Implemented algorithm in C++
- Experimented with applying the algorithm to point cloud denoising
- Jan. 2016 **Undergraduate Researcher**, *Caltech*.
 - 2017 Under Professor Alan Barr, explored applications of interval analysis to root-finding and solving differential equations
 - Implemented interval analysis library in Haskell
 - Implemented graphical viewer for interval root-finding and minimization algorithms
- Spring 2017, Teaching Assistant for CS 38, Introduction to Algorithms, Caltech.
- Spring 2016 Under Professor Leonard Schulman, graded problem sets and held weekly office hours
- Summer 2015 **Software Engineering Intern**, Google.

Prototyped new credit card entry interface for Android library. Developed in Java

Programming Languages

C/C++, Python, Java, Mathematica, Matlab, Haskell, Ocaml, LATEX

Talks Given

Oct. 2017	Day.
	15 minute presentation on the results of my summer research
Sept. 2017	Combinatorics and the Probabilistic Method, Westfield High School Seminar in College
	Mathematics.
	30 minute presentation to a high school math class. Gave an introduction to elementary combinatorics and presented some simple applications of the probabilistic method
Mar. 2017	Continuous and Discrete Mechanics for Variational Integrators, Caltech CS 177b.
	1.5 hour final presentation for a computer graphics class. Gave an overview of Hamiltonian/Lagrangian mechanics and how to discretize them to produce variational time integrators
Dec. 2016	Measurement in Quantum Mechanics , Westfield High School Seminar in College Mathematics.
	30 minute presentation to a high school math class. Gave an introduction to projective measurements in Quantum Mechanics, working through the example of the Stern-Gerlach device
Oct. 2016	Computing Chromosome Embedding from Contact Frequencies , <i>Caltech Summer Research Seminar Day</i> .
	15 minute presentation on the results of my summer research
	Selected Classes Taken
CS 177ab	Discrete Differential Geometry discrete study of: differential forms, deRham cohomology, Poisson problems, variational mechanics
CS 176	Introduction to Computer Graphics Research geometry processing, data visualization, vector fields and flows
CS 171	Introduction to Computer Graphics Laboratory shaders, geometry processing, physical simulation, ray tracing
Ma 109bc	Introduction to Geometry and Topology manifolds, vector fields, Gauss-Bonnet theorem, geodesics, differential forms
Ma 151a	Algebraic Topology fundamental groups, covering spaces, homology
CS 150	Probability and Algorithms analysis of probabilistic algorithms, the probabilistic method
CS 139	Analysis and Design of Algorithms streaming algorithms, experts algorithm, SDPs, spectral graph theory
CS 151	Complexity Theory nondeterminism, nonuniform circuits, randomized algorithms, polynomial hierarchy, interactive proofs, approximation
Ma 120a	Abstract Algebra graduate course in commutative algebra
	Awards/Fellowships
Summers 2016, 2017	Arthur R Adams SURF Fellow Fellowship to fund my summer research
	SIGGRAPH ACM Turing Award Celebration Grant I was one of 10 students sponsored by SIGGRAPH to attend the ACM Turing Award Celebration
2016	William Lowell Putnam Mathematics Competition 31 points (rank: 365/3214)