

Conjugate Gradient in Large-Scale Optimization

Ronald Nap, Cristian Espinosa

April 30, 2024

Motivation

- Universal Challenge: Optimization seeks to find the best solution to a problem given some constraints.
- Broad Applications: Applications range from machine learning to data mining and image processing.
- Challenge of Scale: As datasets grow exponentially, traditional optimization methods struggle to keep up. This drives the need for innovative algorithms that can efficiently handle massive scales of data and high-dimensional spaces without compromising on performance.

Problem Description

Objective

The objective is to evaluate the performance of various optimization algorithms taught in class on large-scale problems, comparing their effectiveness to the Conjugate Gradient (CG) method, which is introduced as a suitable algorithm for large-dimensional data.

Quadratic Function

Defined as $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$ where:

- $A \in \mathbb{R}^{5000 \times 5000}$ is a symmetric positive-definite matrix.
- $b \in \mathbb{R}^{5000}$ is a vector.
- c is a scalar.

Rosenbrock Function

A non-convex function given by $g(x) = \sum_{i=1}^{n-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$

• We test with n = 1000 to test optimization performance.

Method

Conjugate Gradient Method

- Efficiently optimizes quadratic forms, especially when A is large and sparse.
- Requirements for Convergence:
 - The matrix A must be symmetric positive definite.

Pseudocode

- 1 Initialize x_0 , compute $r_0 = b Ax_0$, set $p_0 = r_0$
- 2 For $k = 0, 1, 2, \dots$ until convergence:
 - $\bullet \ \alpha_k = \frac{r_k^I r_k}{p_k^T A p_k}$
 - $\bullet x_{k+1} = x_k + \alpha_k p_k$
 - $\bullet \ r_{k+1} = r_k \alpha_k A \underline{p}_k$
 - $p_{k+1} = r_{k+1} + \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} p_k$

Conjugate Gradient Method: Pros and Cons

```
conjugate_gradient(A, b, x0, max_iter=50, tol=1e-6):
x = x0 # Initial quess
r = b - torch.mv(A, x) # Initial residual
p = r # Initial search direction
rs_old = torch.dot(r, r) # Square of residual norm
for iter in range(max_iter):
    Ap = torch.mv(A, p) # Calculate Ap
    alpha = rs old / torch.dot(p, Ap) # Step size
    x += alpha * p # Update the solution
    r -= alpha * Ap # Update the residual
    # Compute the new residual norm squared
    rs_new = torch.dot(r, r)
    if torch.sqrt(rs new) < tol:
       break
    # Update the search direction
    p = r + (rs_new / rs_old) * p
    # Set up for the next iteration
    rs old = rs new
return x, iter
```

Pros

- Efficiently handles large, sparse matrices
- Only requires matrix-vector products
- No need for matrix storage
- Potentially faster than other methods for certain problems

Cons

- Convergence can be slow for ill-conditioned systems
- Performance is heavily dependent on preconditioning
- Not as robust as more modern algorithms in certain contexts

Preconditioning

Preconditioning and Condition Number

Preconditioning (1) is a technique used to transform a given problem into a form that is more amenable to numerical methods. It involves modifying the system of equations:

$$Ax = b$$
 to $M^{-1}Ax = M^{-1}b$ (1) $\kappa(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$ (2)

where M is the preconditioner. The objective is to select a preconditioner M so that $M^{-1}A$ possesses a lower condition number compared to A. The condition number given by (2) quantifies the numerical instability when solving Ax = b.

- Solving Ax = b: The CG method efficiently solves the equation Ax = b, where A is a symmetric positive definite. This method iteratively approaches the solution by minimizing the residual, which depends crucially on the characteristics of A.
- Digits of Accuracy: The number of digits of accuracy achievable is given by:

Digits of Accuracy
$$\approx -\log_{10}(\kappa(A))$$
 (3)

This formula implies that a higher condition number results in fewer digits of accuracy in the solution, underscoring the need for a low condition number.

Review of Optimization Methods

Method	Pros	Cons	Convergence
Steepest	-Requires only function and	Slow convergence	Linear
Descent	gradient evaluations		
Newton's	-Quadratic convergence	Requires second-order	Quadratic
Method	-Handles non-linear problems	derivatives; computa-	
		tion heavy for large	
		systems	
Trust	-Robust;	-More parameters to	Superlinear
Region	-Handles non-linear problems;	tune;	
	-Does not rely on line search	-Requires Hessian or	
		its approximation	
BFGS	-Avoids Hessian computation	-High memory needed;	Superlinear
	using secant updates; -Good	-Convergence not	
	practical performance	guaranteed for non-	
		convex functions	

Numerical Results

Function	Method	Iterations	Time (s)	Rel. Error
	Conjugate Gradient	3	0.0088	5.81×10^{-7}
Quadratic	Preconditioned CG	2	1.4007	3.12×10^{-9}
	Steepest Descent	50	7.9327	6.71×10^{-7}
	Newton's Method	2	1.1769	3.59×10^{-15}
Quadratic	BFGS	5	87.0257	1.71×10^{-7}
	Trust Region	50	139.0355	7.32×10^{-7}
	$Trust\;Region+CG$	50	0.7868	1.44×10^{-7}
	Conjugate Gradient	2	0.0046	0.999
	Preconditioned CG	2	0.2504	0.999
	Steepest Descent	50	19.0641	0.916
Rosenbrock	Newton's Method	50	44.8113	0.657
Rosenbrock	BFGS	50	29.2694	0.979
	Trust Region	50	11.8806	0.575
	TrustRegion+CG	50	4.4343	0.726

Discussion of Numerical Results

Key Findings

- **Efficiency:** Conjugate Gradient stands out in both functions for significantly reducing the number of iterations and computational time.
- Accuracy: Newton's Method achieves the lowest relative error for the quadratic function and obtained the secondest lowest relative error on the rosenbrock function demonstrating high accuracy despite higher computational time.
- Trade-offs: BFGS and Steepest Descent show mixed results, Trust Region demonstrates efficiency and relatively low error, suggesting a balanced approach.

Implications

- The choice of optimization method should consider the specific demands of the problem, weighing the need for speed against accuracy.
- For rapid convergence in less complex or well-conditioned problems, Conjugate Gradient might be preferable, while Newton's Method is recommended for situations where high accuracy is critical.
- Trust Region + CG could be a versatile choice, offering a good compromise between convergence speed and accuracy.