Jeux octaux et de soustraction dans les graphes

Antoine Dailly (G-SCOP, Grenoble)

Avec Laurent Beaudou (LIMOS), Pierre Coupechoux (LAAS), Sylvain Gravier (Institut Fourier), Julien Moncel (LAAS), Aline Parreau (LIRIS), Éric Sopena (LaBRI).

Travaux réalisés dans le cadre de l'ANR GAG.

Séminaire Graphes et Optimisation, LaBRI, 1er février 2019

Définition

1. Jeux à deux joueurs

- 1. Jeux à deux joueurs
- 2. Sans hasard

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité
- 5. Le gagnant est déterminé par qui joue le dernier coup

Définition

- 1. Jeux à deux joueurs
- 2. Sans hasard
- 3. Information parfaite
- 4. Jeux finis, sans égalité
- 5. Le gagnant est déterminé par qui joue le dernier coup

Les joueurs jouent parfaitement!

 ${
m CRAM}$: Les joueurs mettent des dominos sur une grille. Le joueur qui met le dernier domino gagne.

 \Rightarrow Victoire du deuxième joueur.

 ${
m CRAM}$: Les joueurs mettent des dominos sur une grille. Le joueur qui met le dernier domino gagne.

 \Rightarrow Victoire du premier joueur.

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

 \rightarrow Ici, jeux impartiaux

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

→ Ici, jeux impartiaux

Issue

Un jeu est $\mathcal{N}\Leftrightarrow$ le premier joueur a une stratégie gagnante. Sinon, le jeu est $\mathcal{P}.$

Impartial et partisan

Un jeu est impartial \Leftrightarrow les deux joueurs ont les mêmes options. Sinon, le jeu est partisan.

→ Ici, jeux impartiaux

Issue

Un jeu est $\mathcal{N} \Leftrightarrow$ le premier joueur a une stratégie gagnante. Sinon, le jeu est \mathcal{P} .

Problématiques des jeux combinatoires

- 1. Un jeu donné est-il $\mathcal N$ ou $\mathcal P$?
- 2. Quelle est la stratégie gagnante?

Le graphe de jeu : bilan

► Complet, fini, donne issue et stratégie

Le graphe de jeu : bilan

- ► Complet, fini, donne issue et stratégie
- ► ... mais exponentiel en général!

Le graphe de jeu : bilan

- ► Complet, fini, donne issue et stratégie
- ► ... mais exponentiel en général!

 \Rightarrow Méthodes plus fines pour étudier les jeux : théorie de Sprague-Grundy

Sommer des jeux

Sommer des jeux

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Sommer des jeux

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Somme

Dans G + H, les joueurs jouent soit sur G soit sur H. Quand un des deux est fini, ils jouent sur l'autre.

Le joueur qui joue le dernier coup gagne.

Pourquoi sommer des jeux?

Proposition

Si G est \mathcal{P} , alors G+H a la même issue que H.

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

ightharpoonup Si H est $\mathcal P$:

$$G + H$$

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

ightharpoonup Si H est $\mathcal P$:

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

ightharpoonup Si H est $\mathcal P$:

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

ightharpoonup Si H est \mathcal{P} :

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

▶ Si H est \mathcal{P} :

► Si H est \mathcal{N} :

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

▶ Si H est \mathcal{P} :

▶ Si H est \mathcal{N} :

Proposition

Si G est \mathcal{P} , alors G + H a la même issue que H.

Preuve par induction

▶ Si H est \mathcal{P} :

▶ Si H est \mathcal{N} :

⇒ Définition de classes d'équivalence pour les jeux

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J$, G + J et H + J ont les mêmes issues

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J$, G + J et H + J ont les mêmes issues

Valeur de Grundy

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

$$ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $\mathcal{G}(G) = \max\{\mathcal{G}(G') \mid G' \text{ option de } G\}$

$$\mathcal{G}=1$$
 \longrightarrow $\mathcal{G}=0$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Équivalence de jeux

 $G \equiv H \Leftrightarrow \forall J, G + J \text{ et } H + J \text{ ont les mêmes issues}$

Valeur de Grundy

- $ightharpoonup \mathcal{G}(G) = 0 \Leftrightarrow G \text{ est } \mathcal{P}$
- ▶ $G(G) = \max\{G(G') \mid G' \text{ option de } G\}$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

$$G(G+H)=G(G)\oplus G(H)$$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Théorème (Sprague 1935, Grundy 1939)

$$G(G+H)=G(G)\oplus G(H)$$

 $14 \oplus 6$:

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

$$G(G+H)=G(G)\oplus G(H)$$

$$14 \oplus 6 : \frac{1110}{0110}$$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

$$G(G+H)=G(G)\oplus G(H)$$

$$14 \oplus 6:$$

$$\begin{array}{c} 1110 \\ 0110 \\ \hline 1 \end{array}$$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

$$\mathcal{G}(G+H)=\mathcal{G}(G)\oplus\mathcal{G}(H)$$

$$14 \oplus 6: \frac{1110}{0110}$$

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

$$G(G+H)=G(G)\oplus G(H)$$

Propriétés des valeurs de Grundy

Proposition

$$\mathcal{G}(G) = \mathcal{G}(H) \Leftrightarrow G + H \text{ est } \mathcal{P}$$

Théorème (Sprague 1935, Grundy 1939)

$$G(G+H)=G(G)\oplus G(H)$$

$$14 \oplus 6: \frac{1110}{0110}$$

 \rightarrow Outils puissants pour étudier les jeux impartiaux

Jeux taking-breaking

Se jouent sur des piles de jetons.

Jeux taking-breaking

Se jouent sur des piles de jetons. Deux types de coups :

► Taking : enlever des jetons

► Breaking : diviser des piles

Jeux taking-breaking

Se jouent sur des piles de jetons. Deux types de coups :

- ► Taking : enlever des jetons
- ► Breaking : diviser des piles

Exemples

- ► NIM (Bouton, 1901)
- ► WYTHOFF (Wythoff, 1907)
- ▶ Jeu de Grundy (Berlekamp, Conway, Guy, 1982)
- ► CRAM sur une ligne
- ... et plus encore!

Jeux taking-breaking

Se jouent sur des piles de jetons. Deux types de coups :

- ► Taking : enlever des jetons
- ► Breaking : diviser des piles

Exemples

- ► NIM (Bouton, 1901)
- ► WYTHOFF (Wythoff, 1907)
- ► Jeu de Grundy (Berlekamp, Conway, Guy, 1982)
- ► CRAM sur une ligne
- ▶ ... et plus encore!
- Jeux de soustraction, jeux octaux

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Exemple: $SUB(\{2,4\})$

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Exemple : $SUB(\{2,4\})$

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Exemple : $SUB(\{2,4\})$

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Exemple: $SUB({2,4})$

Jeu de soustraction SUB(S)

Jeu taking-breaking avec uniquement des coups de type taking. Enlever k jetons $\Leftrightarrow k \in S$.

Exemple: $SUB(\{2,4\})$

Problèmes de décision

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?

Problèmes de décision

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Problèmes de décision

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Remarque

Jouer sur plusieurs piles ≡ Jouer sur la somme

Problèmes de décision

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Remarque

Jouer sur plusieurs piles ≡ Jouer sur la somme

 \Rightarrow Étudier le jeu sur une pile suffit!

Problèmes de décision

- ▶ Le jeu est-il \mathcal{N} ou \mathcal{P} ?
- ► Quelle est la stratégie gagnante?
 - → Généralement difficile (PSPACE pour beaucoup de jeux)...

Remarque

Jouer sur plusieurs piles ≡ Jouer sur la somme

⇒ Étudier le jeu sur une pile suffit!

Séquence de Grundy

Liste des valeurs de Grundy pour des piles de taille 0, 1, 2, etc.

Théorème (Folklore)

Si S fini, alors la séquence de $\mathsf{SUB}(S)$ est ultimement périodique.

Théorème (Folklore)

Si S fini, alors la séquence de SUB(S) est ultimement périodique.

Théorème (Albert, Nowakowski, Wolfe, 2007)

Si S fini, alors la séquence de $SUB(\mathbb{N} \setminus S)$ est ultimement arithmétique périodique.

Théorème (Folklore)

Si S fini, alors la séquence de SUB(S) est ultimement périodique.

Théorème (Albert, Nowakowski, Wolfe, 2007)

Si S fini, alors la séquence de SUB($\mathbb{N} \setminus S$) est ultimement arithmétique périodique.

Problèmes ouverts

- ▶ Périodicité de SUB(S) pour S quelconque?
- Un jeu est-il périodique ou ultimement périodique?

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ▶ Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Jeu octal

Jeu taking-breaking dont les règles sont définies par un code octal.

Dans $\mathbf{d_0}.\mathbf{d_1}\mathbf{d_2}\mathbf{d_3}...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Retirer *i* jetons $\Leftrightarrow d_i \neq 0$
- ▶ Vider la pile $\Leftrightarrow b_i^0 = 1$
- ► Laisser une pile non-vide $\Leftrightarrow b_i^1 = 1$
- ► Couper la pile en deux $\Leftrightarrow b_i^2 = 1$

Des exemples connus

- ► NIM est **0.33333**...
- ▶ Les jeux de soustraction : $d_i \in \{0,3\}$
- ► CRAM sur une ligne est **0.07**

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

Problème : c'est beaucoup plus compliqué!

- ► Séquence de Grundy de **0.7** : période 2
- ► Séquence de Grundy de **0.07** : prépériode 68, période 34
- ► Séquence de Grundy de **0.007** : 2²⁸ valeurs calculées, pas de régularité détectée!

Étudier les jeux octaux

Comme pour les jeux de soustraction : la séquence de Grundy.

Problème : c'est beaucoup plus compliqué!

- ► Séquence de Grundy de **0.7** : période 2
- ► Séquence de Grundy de **0.07** : prépériode 68, période 34
- ► Séquence de Grundy de **0.007** : 2²⁸ valeurs calculées, pas de régularité détectée!

Conjecture (Guy 1982)

Un jeu octal fini a une séquence de Grundy ultimement périodique.

Généraliser les jeux octaux

Deux façons :

Généraliser les jeux octaux

Deux façons :

1. Diviser une pile en plus de sous-piles ightarrow Jeux hexadécimaux

Généraliser les jeux octaux

Deux façons :

- 1. Diviser une pile en plus de sous-piles ightarrow Jeux hexadécimaux
- 2. Travailler sur d'autres structures que les piles de jetons

Généraliser les jeux octaux

Deux façons :

- 1. Diviser une pile en plus de sous-piles \rightarrow Jeux hexadécimaux
- 2. Travailler sur d'autres structures que les piles de jetons
 - ⇒ Jouer à des jeux octaux... sur des graphes! (enfin!)

Observation

Observation

 $\blacktriangleright \ \, \text{Retirer des jetons} \, \to \, \text{Supprimer un sous-graphe connexe}$

Observation

ightharpoonup Retirer des jetons ightarrow Supprimer un sous-graphe connexe

Observation

- lacktriangle Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe

Observation

- ▶ Retirer des jetons → Supprimer un sous-graphe connexe
- lackbox Diviser une pile ightarrow Déconnecter un graphe

Observation

- lacktriangle Retirer des jetons ightarrow Supprimer un sous-graphe connexe
- ightharpoonup Diviser une pile ightharpoonup Déconnecter un graphe

Jeu octal sur des graphes (BCDGMPS 2018)

Dans $d_0.d_1d_2d_3...$, soit $d_i = b_i^0 + 2b_i^1 + 4b_i^2$:

- ▶ Supprimer une composante connexe d'ordre $i \Leftrightarrow d_i \neq 0$
- ▶ Vider le graphe $\Leftrightarrow b_i^0 = 1$
- ► Laisser un graphe non-vide $\Leftrightarrow b_i^1 = 1$
- ▶ Déconnecter le graphe $\Leftrightarrow b_i^2 = 1$

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow **0.07**

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow **0.07**

CRAM est 0.07 sur les grilles

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow **0.07**

 ${
m CRAM}$ est 0.07 sur les grilles

GRIM (Adams et al., 2015)

Supprimer un sommet non-isolé $\Rightarrow 0.6$

ARC-KAYLES (Schaefer, 1978)

Supprimer 2 sommets adjacents \Rightarrow 0.07

Cram est 0.07 sur les grilles

GRIM (Adams et al., 2015)

Supprimer un sommet non-isolé $\Rightarrow 0.6$

Node-Kayles (Schaefer, 1978)

Supprimer un sommet et tous ses voisins \Rightarrow Pas un jeu octal

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} P_k =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

- ► Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} \stackrel{\bullet}{P_k} =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux!

- ▶ Jeux octaux → séquence de Grundy
- ▶ Jeux octaux sur les graphes \rightarrow ?

Idée

Étudier l'évolution des valeurs de Grundy quand on attache un chemin à un sommet donné.

$$G \stackrel{\bullet}{u} P_k =$$
 (etc)

 \rightarrow Approche déjà utilisée pour NODE-KAYLES (Fleischer et Trippen, 2004) et ARC-KAYLES (Huggan et Stevens, 2016)

Difficile pour les jeux octaux ! \Rightarrow Nous étudions les jeux de soustraction connexes CSG(S)

lou	Graphe et sommet <i>u</i>	Régularité	Référence
Jeu	Graphic et sommet a	ricgularite	Reference

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Arc-Kayles 0.07	k		Huggan et Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Arc-Kayles 0.07	°	Ultime périodicité conjecturée	Huggan et Stevens, 2016

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
ARC-KAYLES 0.07	o k o l o l o l o l o l o l o l o o o o o o o o o o	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Arc-Kayles 0.07	°	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
$CSG(S),$ $S = \{1,, N\}$	Étoile $K_{1,n},\ u$ sommet central	Période N + 1	D., Moncel,
	° k ° ℓ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Période N + 1 Prépériode 0 ou N + 1	Parreau (2018+)

Jeu	Graphe et sommet <i>u</i>	Régularité	Référence
Arc-Kayles 0.07	$\overset{k}{\circ}\overset{\ell}{\circ}\overset{\ell}{\circ}$	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
CSG(S),	Étoile $K_{1,n},\ u$ sommet central	Période N + 1	D., Moncel, Parreau (2018+)
$S = \{1,, N\}$	$\overset{k}{\circ}\overset{\ell}{\circ}\overset{\ell}{\circ}$	Période N + 1 Prépériode 0 ou N + 1	
$S = \{1, 2, 3\}$	Toute étoile subdivisée, <i>u</i> sommet central ou feuille	Période $N+1=4$	D., Moncel, Parreau (2018+)
$CSG(S)$ $S = \{1, 2\}$		Période $N+1=3$	BDGMPS (2018)

Jeu	Graphe et sommet u	Régularité	Référence
Arc-Kayles 0.07	$\overset{k}{\circ}\overset{\ell}{\circ}\overset{\ell}{\circ}$	Ultime périodicité conjecturée	Huggan et Stevens, 2016
Tout CSG (S fini)	Tout graphe G , tout sommet u	Ultime périodicité	D., Moncel, Parreau (2018+)
$CSG(S),$ $S = \{1,, N\}$	Étoile $K_{1,n}$, u sommet central	Période N + 1	D., Moncel, Parreau (2018+)
	$\overset{k}{\circ}\overset{\ell}{\circ}\overset{\ell}{\circ}$	Période $N+1$ Prépériode 0 ou $N+1$	
$S = \{1, 2, 3\}$	Toute étoile subdivisée, <i>u</i>	Période $N+1=4$	D., Moncel, Parreau (2018+)
$CSG(S)$ $S = \{1, 2\}$	sommet central ou feuille	Période	Beaudou, D., Gravier,
	Toute biétoile subdivisée, <i>u</i> sommet central ou feuille	N + 1 = 3	Moncel, Parreau, Sopena (2018)

Théorème (D., Moncel, Parreau 2018+)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathsf{u}} {\overset{\bullet}{\mathsf{P}}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Théorème (D., Moncel, Parreau 2018+)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathsf{u}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

1. $|G| \in \{0,1\}$: cas des chemins

Théorème (D., Moncel, Parreau 2018+)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbb{U}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |L|$ coups différents
 - 2.2 Jouer sur G sans supprimer $u \to au$ plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |L| \text{ coups différents}$

Théorème (D., Moncel, Parreau 2018+)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \overset{\bullet}{-} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |L|$ coups différents
 - 2.2 Jouer sur G sans supprimer $u \to au$ plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |L| \text{ coups différents}$

$$\Rightarrow \mathcal{G}(G) \leq C$$

Théorème (D., Moncel, Parreau 2018+)

Si S est fini, alors pour tout graphe G et sommet u la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbb{U}} P_k)$ pour $\mathsf{CSG}(S)$ est ultimement périodique.

Idée de la preuve

Induction sur |G|.

- 1. $|G| \in \{0,1\}$: cas des chemins
- 2. Sinon, trois types de coups possibles :
 - 2.1 Jouer sur $P_k \rightarrow |L|$ coups différents
 - 2.2 Jouer sur G sans supprimer $u \to au$ plus $2^{|G|-1}$ coups différents
 - 2.3 Vider $G \rightarrow \text{au plus } |L| \text{ coups différents}$

$$\Rightarrow \mathcal{G}(G) \leq C$$

Chaque coup emmène vers une séquence périodique, par calcul du mex on a le résultat.

Questions

- 1. Quelle période pour un jeu de soustraction?
- 2. Quels jeux sont purement périodiques, sur quels graphes?
- 3. Et les jeux $CSG(\mathbb{N} \setminus S)$?

Questions

- 1. Quelle période pour un jeu de soustraction?
- 2. Quels jeux sont purement périodiques, sur quels graphes?
- 3. Et les jeux $CSG(\mathbb{N} \setminus S)$?

La famille $CSG(\{1, ..., N\})$

Retirer de 1 à ${\it N}$ sommets connectés, sans déconnecter le graphe.

La famille $CSG(\{1, ..., N\})$

Retirer de 1 à N sommets connectés, sans déconnecter le graphe.

Théorème (Folklore)

La séquence de Grundy des chemins est $\overline{0,1,2,\ldots,N}$.

La famille $CSG(\{1,\ldots,N\})$

Retirer de 1 à N sommets connectés, sans déconnecter le graphe.

Théorème (Folklore)

La séquence de Grundy des chemins est $\overline{0,1,2,\ldots,N}$.

Question

Y a-t-il des familles pour lesquelles la séquence des $\mathcal{G}(G \overset{\bullet}{u} P_k)$ a période N+1?

On étudie l'issue de $G + G \overset{\bullet}{\mathbf{u}} P_{N+1} \to \text{est-elle } \mathcal{P}$?

On étudie l'issue de $G + G \overset{\bullet}{\longrightarrow} P_{N+1} \rightarrow \text{est-elle } \mathcal{P}$?

Méta-lemme

Si:

- 1. $G + G \overset{\bullet}{\cup} P_{N+1}$ est \mathcal{N}
- 2. $H + H \overset{\bullet}{u} P_{N+1}$ est \mathcal{P} pour tout sous-graphe H de G contenant u

Alors les coups gagnants sont dans la composante G, suppriment u et laissent au moins 2 sommets.

On étudie l'issue de $G + G \circ P_{N+1} \to \text{est-elle } \mathcal{P}$?

Méta-lemme

Si:

- 1. $G + G \overset{\bullet}{\cup} P_{N+1}$ est \mathcal{N}
- 2. $H + H \overset{\bullet}{u} P_{N+1}$ est \mathcal{P} pour tout sous-graphe H de G contenant u

Alors les coups gagnants sont dans la composante G, suppriment u et laissent au moins 2 sommets.

Preuve

▶ Jouer sur P_{N+1} → Réponse vers G + G

On étudie l'issue de $G + G \circ P_{N+1} \to \text{est-elle } \mathcal{P}$?

Méta-lemme

Si:

- 1. $G + G \overset{\bullet}{\cup} P_{N+1}$ est \mathcal{N}
- 2. $H + H \overset{\bullet}{u} P_{N+1}$ est \mathcal{P} pour tout sous-graphe H de G contenant u

Alors les coups gagnants sont dans la composante G, suppriment u et laissent au moins 2 sommets.

Preuve

- ▶ Jouer sur P_{N+1} → Réponse vers G + G
- ▶ Jouer sur G sans supprimer $u \to \mathsf{R\'eponse}$ vers $H + H \overset{\bullet}{\mathsf{u}} \overset{\bullet}{\mathsf{P}} P_{N+1}$

On étudie l'issue de $G + G \circ P_{N+1} \to \text{est-elle } \mathcal{P}$?

Méta-lemme

Si:

- 1. $G + G \overset{\bullet}{\cup} P_{N+1}$ est \mathcal{N}
- 2. $H + H \overset{\bullet}{u} P_{N+1}$ est \mathcal{P} pour tout sous-graphe H de G contenant u

Alors les coups gagnants sont dans la composante G, suppriment u et laissent au moins 2 sommets.

Preuve

- ▶ Jouer sur P_{N+1} → Réponse vers G + G
- ▶ Jouer sur G sans supprimer $u \to \mathsf{R\'eponse}$ vers $H + H \overset{\bullet}{\mathsf{u}} \overset{\bullet}{\mathsf{P}} P_{N+1}$
- ▶ Laisser 0 ou 1 sommet \rightarrow Réponse vers P_{N+1} ou $P_1 + P_{N+2}$

Des étoiles plein les jeux!

Théorème (D., Moncel, Parreau, 2018+)

Si G est une étoile, alors la séquence des $\mathcal{G}(G \overset{\bullet}{u} P_k)$ est périodique de période N+1.

Des étoiles plein les jeux!

Théorème (D., Moncel, Parreau, 2018+)

Si G est une étoile, alors la séquence des $\mathcal{G}(G \overset{\bullet}{u} P_k)$ est périodique de période N+1.

Théorème (D., Moncel, Parreau, 2018+)

Si $G = S_{1,\ell}$ et u est le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} - P_k)$ est ultimement périodique de période N+1.

Des étoiles plein les jeux!

Théorème (D., Moncel, Parreau, 2018+)

Si G est une étoile, alors la séquence des $\mathcal{G}(G \overset{\bullet}{u} P_k)$ est périodique de période N+1.

Théorème (D., Moncel, Parreau, 2018+)

Si $G = S_{1,\ell}$ et u est le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathbf{u}} \overset{\bullet}{\mathbf{P}} P_k)$ est ultimement périodique de période N+1.

Remarque

Périodique pour certaines valeurs de ℓ , prépériode N+1 pour d'autres.

Les étoiles subdivisées?

Problème : beaucoup de cas de base à considérer...

Les étoiles subdivisées?

Problème : beaucoup de cas de base à considérer...

Théorème (BCDGMPS, 2018)

Si G est une étoile subdivisée et u est une feuille ou le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \overset{\bullet}{-} P_k)$ est périodique de période 3 pour $\mathsf{CSG}(\{1,2\})$.

Théorème (D., Moncel, Parreau, 2018+)

Si G est une étoile subdivisée et u est une feuille ou le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \overset{\bullet}{-} P_k)$ est périodique de période 4 pour $\mathsf{CSG}(\{1,2,3\})$.

Les étoiles subdivisées?

Problème : beaucoup de cas de base à considérer...

Théorème (BCDGMPS, 2018)

Si G est une étoile subdivisée et u est une feuille ou le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \overset{\bullet}{-} P_k)$ est périodique de période 3 pour $\mathsf{CSG}(\{1,2\})$.

Théorème (D., Moncel, Parreau, 2018+)

Si G est une étoile subdivisée et u est une feuille ou le sommet central, alors la séquence des $\mathcal{G}(G \overset{\bullet}{\mathfrak{u}} \bullet P_k)$ est périodique de période 4 pour $\mathsf{CSG}(\{1,2,3\})$.

⇒ Réduction des chemins dans les étoiles subdivisées.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Chemins

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

Réduction des chemins dans les biétoiles Périodicité ⇒ réduction des chemins des étoiles. Réduction du chemin central.

Réduction de chemins pour $CSG(\{1,2\})$

$CSG(\{1,2\})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

$CSG({1,2})$ sur les arbres?

Proposition

La réduction des chemins n'est pas valable pour les arbres :

Question ouverte

Quelle période pour les arbres?

Jouer sur le graphe

... sauf en jouant sur le départ de l'isthme !

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

 \Rightarrow L'isthme est atteignable à la toute fin

Jouer sur le graphe

Jouer sur les deux sous-graphes

- ... sauf en jouant sur le départ de l'isthme !
- ⇒ Possible de définir une pseudo-somme?

Application : $CSG(\{1,2\})$ sur les biétoiles subdivisées

 \Rightarrow L'isthme est atteignable à la toute fin

 \Rightarrow Deux pseudo-sommes et raffinements des valeurs de Grundy

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 1 :

	0	1	1*	2	2*	2□	3	3□
0	\oplus							
1	\oplus							
1*	\oplus	\oplus	2	\oplus	0	\oplus	\oplus	\oplus
2	\oplus							
2*	\oplus	\oplus	0	\oplus	1	1	\oplus	0
2^{\square}	\oplus	\oplus	\oplus	\oplus	1	\oplus	\oplus	\oplus
3	\oplus							
3	\oplus	\oplus	\oplus	\oplus	0	\oplus	\oplus	\oplus

où \oplus est la nim-somme.

La valeur de Grundy de la biétoile en fonction des valeurs affinées des deux étoiles quand le chemin central est de longueur 2 :

	0	0*	1	1*	$\mid 1^{\square}$	2	2*	2□	3	3□
0	\oplus	\oplus_1	\oplus	2	\oplus_1	\oplus	0	\oplus_1	\oplus	\oplus_1
0*	\oplus_1	\oplus_1	\oplus_1	2	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	\oplus_1
1	\oplus	\oplus_1	\oplus	3	\oplus_1	\oplus	1	\oplus_1	\oplus	\oplus_1
1*	2	2	3	0	3	0	1	1	1	0
1^{\square}	\oplus_1	\oplus_1	\oplus_1	3	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	\oplus_1
2	\oplus	\oplus_1	\oplus	0	\oplus_1	\oplus	2	\oplus_1	\oplus	\oplus_1
2*	0	0	1	1	1	2	2	2	3	3
2^{\square}	\oplus_1	\oplus_1	\oplus_1	1	\oplus_1	\oplus_1	2	0	\oplus_1	1
3	\oplus	\oplus_1	\oplus	1	\oplus_1	\oplus	3	\oplus_1	\oplus	\oplus_1
3□	\oplus_1	\oplus_1	\oplus_1	0	\oplus_1	\oplus_1	3	1	\oplus_1	0

où \oplus est la nim-somme et $x \oplus_1 y$ signifie $x \oplus y \oplus 1$.

Au final

Conclusion

- ► Généralisation des jeux octaux aux graphes
- ► Résultats de régularité pour les jeux de soustraction
- ► Pseudo-somme pour les biétoiles

Au final

Conclusion

- Généralisation des jeux octaux aux graphes
- Résultats de régularité pour les jeux de soustraction
- ► Pseudo-somme pour les biétoiles

Perspectives

- ► CSG : même période que les jeux de soustraction classiques ?
- ► Explorer d'autres familles de jeux octaux sur des graphes
- Complexité

Au final

Conclusion

- ► Généralisation des jeux octaux aux graphes
- ► Résultats de régularité pour les jeux de soustraction
- ► Pseudo-somme pour les biétoiles

Perspectives

- ► CSG : même période que les jeux de soustraction classiques ?
- ► Explorer d'autres familles de jeux octaux sur des graphes
- Complexité

