#### Lesson 6 Board-work

## Plan for Lesson 6<sup>(1)</sup>

- Understanding multivariate functions and their domain.
- Visualizing functions of two variables.
- Understanding and finding partial derivatives.
- Using chain rules for multivariate functions

 $<sup>{}^{(1)}\</sup>mathrm{Image}$  source: Calculus by Anton, Bivens and Davis

**Q** 1. Find and sketch the domains of the following functions of two variables.

A. 
$$f(x,y) = \ln(y - x^2)$$

B. 
$$g(x,y) = \sqrt{x} + \sqrt{y} + \sqrt{1 - x^2 - y^2}$$

## Cross-sections, Level Curves, and Contour Plots



**Q** 2. Sketch a contour diagram (i.e. contour map) for each of the following functions by sketching several level curves. Then sketch a rough graph of the function.

A. 
$$f(x,y) = x + y$$

B. 
$$g(x,y) = x^2 + y^2$$

C. 
$$h(x,y) = x^2 - y^2$$

### Definition: Partial derivative

Given a function f(x, y), the **partial derivative with respect** to x is defined by

$$f_x(x, y) = \frac{d}{dx}f(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h},$$

provided the limit exists.

Given a function f(x, y), the **partial derivative with respect to** y is defined by

$$f_y(x, y) = \frac{d}{dy}f(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h},$$

provided the limit exists.

**Geometric Interpretation:**  $f_x(x_0,y_0)$  gives the slope of the surface in the direction of x whereas  $f_y(x_0,y_0)$  gives the slope in the direction of y.



**Q** 3. Compute the following partial derivatives.

A. 
$$\frac{\partial}{\partial v} \left( \frac{2\pi r}{v} \right)$$

B. 
$$f_x$$
, where  $f(x,y) = \sin(5x^3y - 3xy^2)$ 

C. 
$$g_y$$
, where  $g(x,y,z) = xe^{1-z^2}$ 

### Theorem: Tangent Plane

The equation of the tangent plane to the surface z = f(x,y) at the point  $(x_0, y_0, z_0)$  is given by

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

**Q** 4. Find the equation of the tangent plane to the paraboloid  $z = 2x^2 + 3y^2$  at point (1,1,5).

**Q 5.** Consider  $f(x, y, z) = \sin(xy) + e^{yz}$ .

• Find  $\frac{\partial^2 f}{\partial x \partial y}$ .

• Find  $f_{yxz}$ .

### Definition: The Chain Rule

Let  $f(x_1, \ldots, x_n)$  be a function in n variables, and let  $g_i(t_1, \ldots, t_m)$  be a function in m variables for each i. Then the composition  $f(g_1, g_2, \ldots, g_n)$  is a function in the variables  $t_1, \ldots, t_m$ . In this case the partial derivatives are given by

$$f_{t_i} = \frac{\partial f}{\partial x_1}(g_1, \dots, g_n) \cdot \frac{\partial g_1}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n}(g_1, \dots, g_n) \cdot \frac{\partial g_n}{\partial t_i}$$

**Q 6.** Find  $\frac{\partial w}{\partial u}$  at (u, v) = (1, 1) for  $w = e^{x^2yz}$  where x = 3u + 2v, y = 3u - 2v and z = uv.

**Q 7.** The radius of a right circular cone is increasing at a rate of 1.8 in/s while its height is decreasing at a rate of 2.5 in/s. At what rate is the volume of the cone changing when the radius is 120 in and the height is 140 in?

## Theorem: Implicit Differentiation

If x and y are independent variables, and z is the dependent variable given by the implicit function F(x, y, z) = C, for some constant C, then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, and  $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$ .

**Q 8.** Find  $\frac{\partial z}{\partial x}$  by using implicit differentiation:  $x^2z + \sin xyz = 0$ .

# Survey 6 (Sept. 21): Name in Capitals

**Q 9.** The level curves of the function  $f(x,y) = e^{x^2+y^2}$  are:

- (a). Parallel Lines
- (b). Concentric circles
- (c). Exponential curves
- (d). None of the above

**Q 10.** True or False: If the level curves of a function f(x,y) are all straight parallel lines, then f(x,y) must be a plane.

Indicate your level of understanding of the following by putting a number from 1 to 5.

• Computing the partial derivatives and tanget planes of a function

• Using the chain rule to compute the derivatives of a composition of multi-variate functions.