Shadow Mapping

Idea

Idea

- What can be seen from the point-of-view of the light source is lit
- What is invisible from the point-of-view of the light source is in shadow
- How can we decide for a point if it is (in)visible to the light source?

Point Visibility

- Tranform each point from the eye into the space of the light source
- Is the point farther away then the point seen from the light?
 - Then this point is in shadow

Shadow Mapping – First Pass

Render scene from light-view and save depth values

Shadow Mapping – Second Pass

- Render scene from eye-view
 - Transform each fragment to light source space
 - Compare z_{eye} with z_{light} value stored in shadow map

Why Shadow Maps?

- Independent of scene complexity
 - Not as fill-rate limited as shadow volumes
- Only one additional (depth only) render pass
- Handle self-shadowing correctly
- Handle arbitrary shadow caster/receiver constellations
- Problems?

Shadow Mapping

Aliasing

Shadow Map as Signal Reconstruction

- Initial sampling: shadow map rendering
- Reconstruction: nearest neighbor, PCF, ...

Shadow Map as Signal Reconstruction

- Shadow map samples only correct at center
- Wrong results too little sampling information in shadow map

Main Types of Error

Undersampling
Too low initial
sampling frequency

OversamplingNo band-limiting

Reconstruction error
Staircase artifacts

Undersampling – Perspective Aliasing

- Sufficient resolution far from the observer
- Insufficient resolution near the observer

Undersampling - Projection Aliasing

Shadow receiver ~ orthogonal to shadow map

Shadow Mapping

Fighting Undersampling – Focusing

- Only include relevant objects
 - Shadow casters
 - Light source frustum
 - View frustum
- Better use of shadow map resolution
- Brabec et al. 2002

Point light

Unfocused

Focused

- Commonly used
- Better use of shadow map resolution
- One cause for temporal aliasing
- lacktriangle Temporal aliasing noticeable because of insufficient resolution ightarrow warping

Shadow Mapping

Fighting Undersampling – Warping

Solution for Perspective Aliasing

Insufficient resolution near the observer

Solution for Perspective Aliasing

- Insufficient resolution near the observer
- Redistribute values in shadow map

Solution for Perspective Aliasing

- Sufficient resolution near the observer
- Redistribute values in shadow map

Shadow Map Warping

