Autômatos Finitos Determinísticos e Linguagens Regulares Exercícios

2016

1. Considera o AFD M = ($\{q0,q1,q2\},\{0,1\},\delta,q0,\{q1\}$), onde δ é dada por:

δ	0	1
q0	q0	q1
q1	q0	q2
q2	q2	q1

- (a) Construa o grafo de transição.
- (b) Este autômato aceita as palavras 01, 101, 00111, 11001?
- (c) Ache duas palavras que o autômato rejeita.
- 2. Considere o grafo de transição dado pela Fig. 1:
 - (a) Dê a definição do autômato, determinando a tabela da função de transição;
 - (b) Determine a linguagem aceita pelo autômato.

Figura 1: Autômato do Ex. 2

- 3. Defina um autômato que reconheça somente a sequência 10110.
- 4. Quais das seguintes cadeias 0001, 010011, 0000110 são reconhecidas pelo autômato da Fig. 2.

Figura 2: Autômato do Ex. 4

5. Considere os AFD´s definidos por M1 = ({q0}, {a,b1}, δ 1, q0, \emptyset) e M2 = ({q0}, {a,b1}, δ 2, q0, {q0}), onde:

δ1	a	b	δ2	а	b
q0	q0	q0	q0	q0	q0

- (a) Identifique as linguagens reconhecidas pelos autômatos;
- (b) Esses autômatos são equivalentes?
- 6. Determine um AFD que reconheça a linguagem L de todas as cadeias sobre o alfabeto P = {a,b} que possuam aa ou bb como subpalavra, ou seja: L = {w ∈ P | w possui aa ou bb como subpalavra}.

- 7. Determine um AFD que reconheça a linguagem L de todas as cadeias sobre o alfabeto $P = \{a,b\}$, que tenham quantidades pares de \boldsymbol{a}' s e de \boldsymbol{b}' s, isto é: $L = \{w \in P \mid w \text{ possui um número par de } \boldsymbol{a}'$ s e de \boldsymbol{b}' s $\}$.
- 8. Considere a linguagem $L = \{awa \mid w \in a,b*\}.$
 - (a) Mostre que L é regular;
 - (b) Mostra que LL também é regular.
- 9. Construa AFD que reconheça qualquer cadeia contendo um número qualquer de cópias de 001, seguido por 1 e nenhuma outra cadeia. Isto é, o AFD deve reconhecer a linguagem L1 = {w1 ∈ {0,1}* | w = (001)* para algum n ≥ 0}. As palavras reconhecidas são do tipo: 1, 0011, 0010011, 0010010011, etc.
- 10. Desenvolva AFD que reconheça as seguintes linguagens sobre o alfabeto P= {a,b}:
 - a. L1 = $\{w \in \{a,b\}* \mid w \text{ é uma cadeia consistindo somente de a's}\};$
 - b. L2 = $\{w \in \{a,b\}* \mid w \text{ \'e uma cadeia terminando com um a}\};$
 - c. L3 = $\{w \in \{a,b\}* \mid w \text{ é uma cadeia contendo um e somente um a}\}$;
 - d. L4 = $\{w \in \{a,b\}* \mid w \text{ é uma cadeia contendo no mínimo um a}\}$;
 - e. L5 = $\{w \in \{a,b\}* \mid w \text{ é uma cadeia contendo mais do que três a's}\}$;
 - f. L6 = $\{w \in \{a,b\}* \mid w \text{ possui } aaa \text{ como subpalavra}\};$
 - g. L7 = $\{w \in \{a,b\}* \mid o \text{ sufixo de } w \in aa\};$
 - h. L8 = $\{w \in \{a,b\}* \mid w \text{ possui um número par de cópias de } abb\};$
 - i. L9 = $\{w \in \{a,b\} * \mid w \text{ contém exatamente uma única cópia de } abbb\};$
 - j. L10 = $\{w \in \{a,b\} * \mid w \text{ possui um número ímpar de a's e de b's}\}$;
 - k. L11 = $\{w \in \{a,b\}* \mid w \text{ possui um número par de a's e limpar de b's ou w possui um número par de b's e limpar de a's};$