PLP - 18 TOPIC 18—INDUCTION

Demirbaş & Rechnitzer

INDUCTION

INDUCTION

Mathematical induction is a specialised technique for proving

$$\forall n \in \mathbb{N}, P(n)$$

It breaks the proof into 2 simpler steps

base case

prove that P(1) is true

inductive step

show that
$$P(k) \implies P(k+1)$$

- base case = step onto bottom rung of ladder
- inductive step = from the current rung you can reach the next rung
- so you can climb the ladder as high as you want

AN EXAMPLE

PROPOSITION:

For all $n\in\mathbb{N}$, $n^2+\overline{5n-7}$ is odd

scratch work

- ullet base case when n=1 we have 1+5-7=-1 which is odd
- inductive step need to prove

$$(k^2+5k-7 ext{ is odd}) \implies ((k+1)^2+5(k+1)-7 ext{ is odd})$$

• The inductive step is a sub-proof inside our proof

INDUCTIVE STEP "SUB PROOF"

$$orall k \in \mathbb{N}, (k^2+5k-7 ext{ is odd}) \implies ((k+1)^2+5(k+1)-7 ext{ is odd})$$

scratch work

- ullet so we assume $k^2+5k-7=2\ell+1$
- need to show $(k^2 + 2k + 1) + 5(k + 1) 7 = \underbrace{(k^2 + 5k 7)}_{2\ell + 1} + (2k + 6)$ is odd.
- ullet Since $k^2+5k-7=2\ell+1$ we know

$$(k+1)^2 + 5(k+1) - 7 = 2(\ell + k + 3) + 1$$

and since $\ell+k+3\in\mathbb{Z}$ we are done.

Of course we still need to put the two parts of the proof together.

PRINCIPLE OF MATHEMATICAL INDUCTION

THEOREM: MATHEMATICAL INDUCTION.

For all $n \in \mathbb{N}$ let P(n) be a statement. Then if

- P(1) is true, and
- $P(k) \Longrightarrow P(k+1)$ is true for all $k \in \mathbb{N}$ then P(n) is true for all $n \in \mathbb{N}$.

Warnings

- Induction is not "adding the next term to both sides"
- Induction does not prove all statements the law of the instrument
- Tell your reader if you use induction in your proof

COMPLETING OUR PROOF

For all
$$n\in\mathbb{N}$$
 , n^2+5n-7 is odd

PROOF.

We prove the result by induction.

- ullet Base case: When n=1 we have 1+5-7=-1 which is odd.
- ullet Inductive step: Assume that k^2+5k-7 is odd, so we can write

$$k^2+5k-7=2\ell+1$$
 for some $\ell\in\mathbb{Z}$ and so $(k+1)^2+5(k+1)-7=2(\ell+k+3)+1$

and since $\ell+k+3\in\mathbb{Z}$, it follows that $(k+1)^2+5(k+1)-7$ is odd.

Since the base case and inductive step hold, the result follows by induction.

ANOTHER EXAMPLE

PROPOSITION:

For every natural number n, $3 \mid (4^n - 1)$

Scratch work

- ullet When n=1, easy $3\mid (4-1)$
- ullet Assume $3\mid (4^k-1)$, so $4^k-1=3\ell$.
- ullet Writing $4^k=3\ell+1$ shows

$$4^{k+1} = 12\ell + 4$$
 so $4^{k+1} - 1 = 12\ell + 3$

done!

WRITE IT UP NICELY

For every natural number n, $3 \mid (4^n-1)$

PROOF.

We prove the result by induction.

- ullet Base case: When n=1 we have $3\mid (4-1)$, so the result holds.
- ullet Inductive step: Assume that $3\mid (4^k-1)$, so $4^k=3\ell+1$ for some $\ell\in\mathbb{Z}$. Then

$$4^{k+1}-1=4(3\ell+1)-1=3(4\ell+1)$$

and so $3 \mid (4^{k+1}-1)$ as required.

Since the base case and inductive step hold, the result follows by induction.