Homework 15: Orthogonal Bases

- 1. §6.2, #42.
- 2. §6.3, #10, 14, 38, 42(b).

Note. For problem 42(b), you should use the fact that the Legendre polynomials are orthogonal with respect to the inner product given in the first sentence of Example 9.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be rotation by θ about the line through $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ (counterclockwise, as viewed from the tip of $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$). Let \mathcal{B} be the the following basis of \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ rac{1}{\sqrt{2}} \\ rac{-1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} 0 \\ rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{bmatrix}
ight\}.$$

Let $\mathcal{B}' = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, the standard basis for \mathbb{R}^3 .

- (a) Confirm that \mathcal{B} is an orthonormal basis for \mathbb{R}^3 .
- (b) Find $[T]_{\mathcal{B}}$.
- (c) Use the change of basis formula to find $[T]_{\mathcal{B}'}$, the standard matrix for T.
- (d) Using (c), find the rotation of $\begin{bmatrix} 3\\4\\5 \end{bmatrix}$ by $\pi/3$ about the line through $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

Note. For this problem, you should use the Euclidean inner product (i.e., the dot product) on \mathbb{R}^3 .