2.5 函数的微分

2.5 函数的微分

- 2.5.1 微分的概念
- 2.5.2 微分与导数的关系
- 2.5.3 微分的几何意义
- 2.5.4 微分公式与微分运算法则
- 2.5.5 微分在近似计算中的应用

2.5.1 微分的概念

要求研究当自变量发生微小改变时所引起的相应的函数值的改变.

 $y = x^2$

如果边长由 x_0 变到 $x_0 + \Delta x$,

则正方形面积改变量为

$$\Delta y = (x_0 + \Delta x)^2 - x_0^2$$

$$= 2x_0 \cdot \Delta x + (\Delta x)^2.$$
(I)

(1) $2x_0\Delta x$ 为 Δx 的线性函数,为 Δy 的主要部分。 线性主部

$$(2)(\Delta x)^2$$
, 当 $\Delta x \to 0$ 时, $(\Delta x)^2 = o(\Delta x)$.

当 $|\Delta x|$ 很微小时,可以忽略不计。

故正方形的面积改变的近似值为 $2x_0\Delta x$.

M

定义1 设函数 y = f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在此区间内,如果函数的增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为

$$\Delta y = A \cdot \Delta x + o(\Delta x)$$

其中 A是不依赖于 Δx 的常数,那么称函数 y = f(x)在 $a \in x_0$ 处可微,并称 $a \cdot \Delta x$ 为函数 y = f(x) 在 $a \cdot \Delta x$ 为函数 $a \cdot \Delta x$ 为函数 $a \cdot \Delta x$ 为函数 $a \cdot \Delta x$ 之。

$$|dy|_{x=x_0} = A\Delta x| \vec{\mathfrak{D}} |df(x_0) = A\Delta x.$$

10

2.5.2 微分与导数的关系

函数f(x)在点 x_0 可微 $\Leftrightarrow f(x)$ 在点 x_0 可导,且 $A = f'(x_0)$.

证 (1) 必要性 设f(x)在点 x_0 可微,

$$\mathbb{P}\Delta y = A \cdot \Delta x + o(\Delta x),$$

則
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{o(\Delta x)}{\Delta x} \right) = A.$$

故函数 f(x)在点 x_0 可导, 且 $A = f'(x_0)$.

(2) 充分性::函数f(x)在点 x_0 可导,: $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$,

$$\mathbb{P}\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha, \quad \left(\lim_{\Delta x \to 0} \alpha = 0\right)$$

从而
$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot \Delta x$$
,
= $f'(x_0) \cdot \Delta x + o(\Delta x)$,

故函数 f(x)在点 x_0 可微,且 $f'(x_0) = A$.

故
$$dy = f'(x_0)\Delta x$$

re.

注: (1) 函数 y = f(x) 在点 x_0 处的微分就是当自变量 x 产生增量 Δx 时,函数 y 的增量 Δy 的主要部分. (此时 $A = f'(x_0) \neq 0$)

由于 $dy = A\Delta x$ 是 Δx 的线性函数,故称微分 dy 是 Δy 的线性主部.

在 Δx 很小时, $\Delta y \approx dy$.

◆ 因为当 $f'(x_0) \neq 0$ 时,有

$$\lim_{\Delta x \to 0} \frac{\Delta y}{dy} = \lim_{\Delta x \to 0} \frac{\Delta y}{f'(x_0)\Delta x} = \frac{1}{f'(x_0)} \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1.$$

- (2) 函数 y = f(x) 的可导性与可微性是等价的,故求导法又称微分法.
- (3)y=f(x)在任意点x的微分,称为函数的微分 记作 dy或 df(x),即 $dy=f'(x)\Delta x$.

通常把自变量x的增量 Δx 称为自变量的微分,记作 dx,即 $dx = \Delta x$.

因此,函数 y = f(x) 的微分可以写成

$$dy = f'(x)dx$$
 或 $df(x) = f'(x)dx$.

从而有
$$\frac{dy}{dx} = f'(x)$$
 或 $\frac{df(x)}{dx} = f'(x)$. 导数又称微商

[5] 1
$$y = x^2$$
, (1) dy ; (2) $dy \Big|_{x=3}$; (3) $x = 3$, $\Delta x = 0.01$, $dy = 5\Delta y$.

$$\mathbf{\hat{R}} (1) \, \mathrm{d}y = (x^2)' dx = 2x dx$$

(2)
$$dy|_{x=3} = 2x|_{x=2} dx = 6dx$$

(3)
$$dy \Big|_{\substack{x=3\\ \Delta x=0.01}} = 2x\Delta x \Big|_{\substack{x=3\\ \Delta x=0.01}} = 0.06.$$

$$\Delta y = (3 + 0.01)^2 - 3^2 = 0.0601.$$

2.5.3 微分的几何意义

曲线 y = f(x)上点 $M(x_0, y_0)$, $\Delta x N(x_0 + \Delta x, y_0 + \Delta y)$. 过点 M 作曲线的切线 MT 它的倾斜角为 α ,

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

$$= NQ,$$

$$\frac{dy}{dx} = f'(x_0)\Delta x = \tan \alpha \cdot \Delta x$$
$$= \frac{PQ}{\Delta x} \Delta x = \frac{PQ}{\Delta x}.$$

微分的几何意义:

曲线y = f(x) 在点M的切线MT 的纵坐标的增量PQ.

2.5.4 微分公式与微分运算法则

基本初等函数的微分公式

$$(1) dC = 0 (C 为常数)$$

$$(3) d(a^x) = a^x \ln a dx$$

$$(5) d(\log_a x) = \frac{1}{x \ln a} dx$$

$$(7) d(\sin x) = \cos x dx$$

$$(9) d(\tan x) = \sec^2 x dx$$

$$(11) d(\sec x) = \sec x \tan x dx$$

$$(13) d\left(\arcsin x\right) = \frac{1}{\sqrt{1-x^2}} dx$$

(15)
$$d\left(\arctan x\right) = \frac{1}{1+v^2} dx$$
 (16) $d\left(\operatorname{arc}\cot x\right) = -\frac{1}{1+v^2} dx$

$$(2) d(x^{\mu}) = \mu x^{\mu-1} dx$$

$$(4) d(e^x) = e^x dx$$

$$(6) d(\ln x) = \frac{1}{x} dx$$

$$(8) d(\cos x) = -\sin x dx$$

$$(10) d(\cot x) = -\csc^2 x dx$$

$$(12) d(\csc x) = -\csc x \cot x dx$$

$$(14) d\left(\arccos x\right) = -\frac{1}{\sqrt{1-x^2}} dx$$

(16)
$$d(\operatorname{arc}\cot x) = -\frac{1}{1+x^2}dx$$

2.5.4 微分公式与微分运算法则

2. 微分的运算法则

设函数 u = u(x) 和 v = v(x)都可导,则

$$(1) d(u \pm v) = du \pm dv;$$

$$(2) d(u \cdot v) = vdu + udv;$$

$$(3) d(C \cdot u) = Cdu(C 为常数);$$

$$(4) d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2} \quad (v \neq 0);$$

例2 设
$$y = \ln(x + e^{x^2})$$
, 求dy.

例3 设
$$y = (x^2 - 2)^3$$
, 求 dy .

P
$$\frac{dy}{dx} = 3(x^2 - 2)^2 \cdot 2x$$
 $\therefore dy = 6x(x^2 - 2)^2 dx$

例4 设
$$y = \sin(x^2 + e^x + 1)$$
 求 dy .

$$\therefore \frac{dy}{dx} = (2x + e^x)\cos(x^2 + e^x + 1)$$
$$\therefore dy = (2x + e^x)\cos(x^2 + e^x + 1)dx$$

3. 复合函数的微分法

设函数
$$y = f(u)$$
,

- (1) 若u是自变量时, dy = f'(u)du;
- (2) 若y = f(u), u = g(x),则复合函数y = f(g(x))的微分:

$$dy = y_x' dx = f'(u)g'(x)dx = f'(u)du.$$

结论:无论 u 是自变量还是中间变量,函数 y=f(u)的微

分形式总是
$$dy = f'(u)du$$

一阶微分形式的不变性

例5 设 $y = \sin(2x+1)$, 求dy.

(法二)利用微分形式不变

解 $:: y = \sin u, u = 2x + 1.$

$$\therefore dy = \cos u du = \cos(2x+1)d(2x+1) = 2\cos(2x+1)dx.$$

例6 设 $y = e^{-ax} \sin bx$, 求dy.

解
$$dy = e^{-ax} \cdot \cos bx d(bx) + \sin bx \cdot e^{-ax} d(-ax)$$

 $= e^{-ax} \cdot \cos bx \cdot bdx + \sin bx \cdot e^{-ax} \cdot (-a)dx$
 $= e^{-ax} (b\cos bx - a\sin bx)dx.$

例7 设
$$y = e^{\sin(x^2 + \sqrt{x})}$$
 录 dy .
$$dy = e^{\sin(x^2 + \sqrt{x})} d\sin(x^2 + \sqrt{x})$$

$$= e^{\sin(x^2 + \sqrt{x})} \cos(x^2 + \sqrt{x}) d(x^2 + \sqrt{x})$$

$$= e^{\sin(x^2 + \sqrt{x})} (2x + \frac{1}{2\sqrt{x}}) \cos(x^2 + \sqrt{x}) dx$$

例8 设
$$y = e^{ax+bx^2}$$
, 求 $dy|_{x=0}$.

解 用微分形式不变性

$$dy = e^{ax+bx^2} d(ax+bx^2) = e^{ax+bx^2} \cdot (a+2bx) dx$$

$$\therefore dy|_{x=0} = adx.$$

例 (1) d() =
$$x dx$$
; (2) d() = $\cos \omega t dt$;

解
$$(1)d(x^2) = 2xdx$$
 : $xdx = \frac{1}{2}d(x^2) = d(\frac{x^2}{2})$
 $d(\frac{x^2}{2} + C) = xdx$. (C为任意常数)

$$(2)d(\sin wt) = w\cos wtdt,$$

$$\cos wtdt = \frac{1}{w}d(\sin wt) = d(\frac{\sin wt}{w}),$$

$$d(\frac{\sin wt}{w} + C) = \cos wt dt. (C$$
为任意常数)

2.5.5 微分在近似计算中的应用

如果函数y = f(x)在点 x_0 处的导数 $f'(x_0) \neq 0$,且 $|\Delta x|$ 很小时,那么有 $\Delta y \approx dy = f'(x_0) \Delta x$. (1)

(1)式可改写为

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x, \qquad (2)$$

或
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$
. (3)

在(3)式中令 $x = x_0 + \Delta x$,即 $\Delta x = x - x_0$,则可得

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0).$$
 (4)

м

若在(4)式中令 $x_0 = 0$,则有

$$f(x) \approx f(0) + f'(0)x. \tag{5}$$

从而,当|x|= $|\Delta x|$ 很小时,可用(5)式推得以下几个常用的近似公式:

 $(1) \sin x \approx x;$

(2) $\tan x \approx x$;

(3) $\arcsin x \approx x$;

 $(4) e^x \approx 1 + x;$

$$(5) \ln(1+x) \approx x;$$

(6)
$$\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x$$
.

应用

(1) 求f(x)在点 $x = x_0$ 附近的近似值

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

(2) 求f(x)在点x = 0附近的近似值

$$\therefore f(x) \approx f(0) + f'(0) \cdot x.$$

 $(1) \sin x \approx x;$

(2) $\tan x \approx x$;

(3) $\arcsin x \approx x$;

 $(4) e^x \approx 1 + x;$

$$(5) \ln(1+x) \approx x;$$

(6)
$$\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x$$
.

v.

例11 计算 ∛1003 的近似值.

解 设
$$f(x) = \sqrt[3]{x}$$
, 则 $f'(x) = \frac{1}{3\sqrt[3]{x^2}}$.

取 $x_0 = 1000, \Delta x = 3$,则

$$\sqrt[3]{1003} = f(1000+3) \approx f(1000) + f'(1000) \Delta x$$
$$= 10 + \frac{1}{300} \cdot 3 = 10.01.$$

例12 求∛1.021的近似值.

解 由公式
$$\sqrt{1+x} \approx 1 + \frac{1}{n}x$$
 1.021 = 1 + 0.021 $\pi \sqrt[3]{1.021} = \sqrt[3]{1+0.021} \approx 1 + \frac{1}{3} \times 0.021 = 1.007$

w

内容小结

- 1. 微分的概念.
- 2. 函数的可微性与可导性是等价的.
- 3. 微分公式与微分运算法则.

微分形式不变性 df(u) = f'(u)du.

4. 微分在近似计算中的应用.