2 РОЗГАЛУЖЕНИЙ ОБЧИСЛЮВАЛЬНИЙ ПРОЦЕС

Мета: навчитись використовувати розгалужену обчислювальну структуру для розв'язку прикладних задач.

2.1 Короткі теоретичні відомості

Структура, яка забезпечує можливість вибору функціонального блоку, якому повинно бути передано керування, в залежності від виконання, або не виконання певної умови, називається *розгалуженням*. Існує два види розгалуження: повне та неповне.

а) повне розгалуження б) неповне розгалуження Рисунок 2.1 — Схема структури повного (а) та неповного (б) розгалуження

При вході до блоку данної структури аналізується умова розгалуження, що є логічним виразом. Результатом даного аналізу є логічна відповідь (істина або неправда). У випадку істиного значення умови, керування передається до функціонального блоку S_I (по гілці "так"). У випадку хибного значення умови, керування передається по гілці "ні", що регламентує виконання блоку S_2 (у випадку повного розгалуження), або невиконання жодного блоку (у випадку неповного розгалуження).

2.2 Завдання

Обчислити значення функції використовуючи розгалужену обчислювальну структуру (Завдання № 2.1). Завдання вибирати згідно свого варіанту.

$$u = \begin{cases} pt^{3} - \frac{\cos^{2} pt}{t^{2} + 1}, & ecnu & p > 0; \\ pe^{pt} + t, & ecnu & p < 0; \\ \sqrt[3]{\ln(t^{2} + 1)} + \arctan\frac{t}{2}, & ecnu & p = 0; \end{cases}$$
(2.1)

2.3 Хід роботи

2.3.1 Постановка задачі

 $Дано: x \in \mathbb{R}$; \mathbb{R}

Визначити: и∈ №.

2.3.2 Математична модель інформаційного процесу

$$u = \begin{cases} pt^{3} - \frac{\cos^{2} pt}{t^{2} + 1}, & ecnu & p > 0; \\ pe^{pt} + t, & ecnu & p < 0; \\ \sqrt[3]{\ln(t^{2} + 1)} + \arctan\frac{t}{2}, & ecnu & p = 0; \end{cases}$$

2.3.3 Метод реалізації інформаційного процесу

Безпосередні обчислення.

2.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 2.2 — Алгоритм обчислення функції z

2.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 2.1 — Таблиця ідентифікаторів

- worst											
№ 3/П	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор						
1	p	р	3	u	u						
2	t	t									

Введення тексту програми:

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
    double p, t, u;
    cout << "p = ";
    cin >> p;
    cout << "t = ";
    cin >> t;
    if (p > 0) {
        u = p * t * t * t - cos(p*t)*cos(p*t) / t*t + 1;
    else if (p == 0) {
        u = cbrt(log10(t*t + 1)) + atan(t / 2);
    }
    else {
        u = p*exp(p*t) + t;
    }
    cout << "u = " << u << endl;
    system("pause");
    return 0;
}
```

2.3.6 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" *Лист* 2 перейменовуємо на ЛР6 та виконуємо обчислення за формою:

Обчислення функції							
Вхідні дані		Отр	Отриманий результат				
p	t		•				
5	5	u =	=IF(A5>0; A5*B5^3-COS(A5*B5)^2/B5^2+1; IF(A5 = 0; LOG10(B5^2+1)^(1/3)+ATAN(B5/2); A5*EXP(A5*B5)+B5))				
0	5	u =	=IF(A6>0; A6*B6^3-COS(A6*B6)^2/B6^2+1; IF(A6 = 0; LOG10(B6^2+1)^(1/3)+ATAN(B6/2); A6*EXP(A6*B6)+B6))				
-5	5	u =					

Рисунок 2.3 — Обчислення функцій (6.2) — (6.4) у ET

2.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
p = -5
t = 5
u = 5
sh: pause: command not found
Program ended with exit code: 0
```

Рисунок 2.4 — Результат обчислень при p=-5

```
p = 5
t = 5
u = 625.018
sh: pause: command not found
Program ended with exit code: 0
```

Рисунок 2.5 — Результат обчислень при p=5

```
p = 0
t = 5
u = 2.31295
sh: pause: command not found
Program ended with exit code: 0
```

Рисунок 2.6 — Результат обчислень при p=0

Обчислення функції							
Вхідні дані		C	Отриманий результат				
p	t						
5	5	u	=	625.9607006794			
0	5	u	=	2.3129529761			
-5	5	u	=	4.999999999			

Рисунок 2.7 — Результат обчислень у електронній таблиці

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

2.4 Програми та обладнання.

Xcode, OpenOffice Calc

2.5 Висновки.

У цій лабораторній роботі я навчився використовувати розгалужену обчислювальну структуру для розв'язку прикладних задач.