K 11/8

МЕХАНИЧЕСКИЕ ВОЛНЫ

Волна

Поперечные волны___

__Продольные волны

<u>116;58</u> волна

$$v_{s}=rac{\lambda}{T}=\lambda\cdot
u$$

$$v_{\scriptscriptstyle{ extit{B}}} = f$$
(св-в среды $)$

$$u = f($$
источника $)$

Волны в среде

плоская

 $E_1=const$

кольцевая

$$E_1 \sim rac{1}{r}$$

Интерференция волн — наложение когерент. волн

$$\Delta d$$
 — разность хода

Если
$$\Delta d = 2n \frac{\lambda}{2}$$
 — max усилен. (\star)

Если
$$\Delta d=2n\frac{\lambda}{2}$$
 — max усилен. (\bigstar) $\Delta d=(2n+1)\frac{\lambda}{2}$ — max ослаб. ($ullet$)

$$\left.egin{aligned} B_{2} & au & au = rac{CB}{v} \ AD = au \cdot v \end{aligned}
ight\} \Rightarrow CB = AD$$

$$\triangle ABD = \triangle ACB \Rightarrow \alpha_1 = \beta_1$$

Но
$$\left. egin{array}{l} lpha_1 = lpha \ eta_1 = eta \end{array}
ight\} \Rightarrow eta = lpha$$
 (1 з-н отр.)

2 закон: луч падающий, луч отраженный, ot лежат в одной плоскости

Дифракция волн

Звуковые волны

Акустический резонанс:

примечание