4.4 A First Look at Eigenvalues and Eigenvectors

Theorem (Fixed points)

If A is an $n \times n$ matrix, then the followings are equivalent:

- (a) A has nontrivial fixed points.
- (b) I A is singular.
- (c) $\det(I A) = 0$.

Problem

If *A* is an $n \times n$ matrix, for what values of the scalar λ , if any, are there nonzero vectors in \mathbb{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$?

Definition

If A is an $n \times n$ matrix, then the scalar λ is called an eigenvalue of A if there is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. If λ is an eigenvalue of A, then every nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ is called an eigenvector of A corresponding to λ .

Eigenvalues and Eigenvectors

Theorem

If A is an $n \times n$ matrix and λ is a scalar, the followings are equivalent:

- (a) λ is an eigenvalue of A.
- (b) The linear equation $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solution.
- (c) λ is a solution of $det(\lambda I A) = 0$.

Definition

The equation $det(\lambda I - A) = 0$ is called the characteristic equation of A.

Eigenvalues and Eigenvectors

Example

Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

Eigenvalues of triangular matrices

Theorem

If A is a triangular matrix, then the eigenvalues of A are the entries on the main diagonal of A.

Eigenvalues of powers of a matrices

Theorem

If λ is an eigenvalue of A and \mathbf{x} is a corresponding eigenvector, and if k is any positive integer, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.
- 9. $\det(A) = \neq 0$.
- 10. $\lambda = 0$ is not an eigenvalues of A.

Expressions for determinant and trace in terms of eigenvalues

Theorem

If A is an $n \times n$ matrix with $\lambda_1, \lambda_2, ..., \lambda_n$, then

- (a) $det(A) = \lambda_1 \lambda_2 ... \lambda_n$
- (b) $tr(A) = \lambda_1 + \lambda_2 + ... + \lambda_n$