

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : C07F 17/00, 7/10, 5/02, C08F 10/00		A1	(11) Internationale Veröffentlichungsnummer: WO 00/35928 (43) Internationales Veröffentlichungsdatum: 22. Juni 2000 (22.06.00)
<p>(21) Internationales Aktenzeichen: PCT/EP99/10025</p> <p>(22) Internationales Anmeldedatum: 16. Dezember 1999 (16.12.99)</p> <p>(30) Prioritätsdaten: 198 58 016.9 16. Dezember 1998 (16.12.98) DE</p> <p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).</p> <p>(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): KRISTEN, Marc, Oliver [DE/DE]; Römerweg 15, D-67117 Limburgerhof (DE). BRAUNSCHWEIG, Holger [DE/DE]; Vaalserstrasse 136, D-52074 Aachen (DE). VON KOBLINSKI, Carsten [DE/DE]; Robensstrasse 11, D-52070 Aachen (DE).</p> <p>(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).</p>		<p>(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Veröffentlicht <i>Mit internationalem Recherchenbericht.</i></p>	
<p>(54) Title: METALLOCENE COMPLEXES</p> <p>(54) Bezeichnung: METALLOCENKOMPLEXE</p> <p>(57) Abstract</p> <p>Metallocene complexes of metals of the 4th, 5th or 6th subgroup of the periodic table of elements, whereby at least one substituted or unsubstituted cyclopentadienyl radical is linked to an element from group III of the periodic system of elements. Said element from group III of the periodic system of elements is a component in a binding link between the cyclopentadienyl radical and the metal ion, carrying a nitrogenide, phosphorous or sulphur organic group as the only other substituent.</p> <p>(57) Zusammenfassung</p> <p>Metallocenkomplexe von Metallen der 4., 5. oder 6. Nebengruppe des Periodensystems, bei denen mindestens ein substituierter oder unsubstituierter Cyclopentadienylrest mit einem Element der Gruppe III des Periodensystems verbunden ist, welches Element der Gruppe III des Periodensystems Bestandteil eines Brückengliedes zwischen diesem Cyclopentadienylrest und dem Metallatom ist und welches Element der Gruppe III des Periodensystems als einzigen weiteren Substituenten eine stickstoff-, phosphor- oder schwefelorganische Gruppe trägt.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

METALLOCENKOMPLEXE**Beschreibung**

5

Gegenstand der vorliegenden Erfindung sind Metallocenkomplexe von Metallen der 4., 5. oder 6. Nebengruppe des Periodensystems, bei denen mindestens ein substituierter oder unsubstituierter Cyclopentadienylrest mit einem Element der Gruppe III des Periodensystems verbunden ist, welches Element der Gruppe III des Periodensystems Bestandteil eines Brückengliedes zwischen diesem Cyclopentadienylrest und dem Metallatom ist und welches welches Element der Gruppe III des Periodensystems als einzigen weiteren Substituenten eine stickstoff-, phosphor- oder schwefelorganische 15 Gruppe trägt.

Metallocenkatalysatoren gewinnen immer mehr Bedeutung zur Polymerisation von α -Olefinen. Insbesondere zur Copolymerisation von Ethylen mit höheren α -Olefinen zeigen Metallocenkatalysatoren 20 vorteilhaftes Verhalten, da sie einen besonders gleichmäßigen Comonomereinbau in das Copolymerisat bewirken. Unter den Metallocenkatalysatoren haben insbesondere verbrückte Metallocenkomplexe besonderes Interesse hervorgerufen, da sie in der Regel eine höhere Produktivität als die unverbrückten Komplexe aufweisen, eben 25 besonders guten Comonomereinbau bewirken und außerdem zum Beispiel geeignet zur Herstellung von hochisotaktischem Polypropylen sind.

Verbrückte Metallocenkomplexe, in denen die Cyclopentadienylreste 30 durch SiMe₂- oder C₂H₄-Brücken verbunden sind, sind seit langem bekannt. Solche Metallocenverbindungen werden z.B. in EP-A-336 128 beschrieben..

Neben den Metallocenkomplexen, bei denen die Cyclopentadienylreste 35 ste durch Silizium- oder Kohlenstoffatome verbrückt sind, sind auch solche verbrückten Metallocene bekannt, in denen eines oder mehrere Boratome die Brückenfunktion übernehmen. So sind z.B. Bor-verbrückte Metallocenkomplexe bekannt, bei denen das Boratom einen Alkyl- oder Arylsubstituenten trägt (J.Organomet. Chem., 40 1997, 536-537, 361). Die Herstellung dieser Metallocenkomplexe ist jedoch sehr aufwendig; über Polymerisationen mit diesen Komplexen ist nichts bekannt.

In DE-19 539 650 werden ebenfalls verbrückte Metallocenkomplexe 45 beschrieben, die unter anderem Bor als Brückenglied enthalten können. Die Boratome mit Brückenfunktion können mit verschiedenen Resten wie Alkyl, Aryl, Benzyl und Halogenen und auch durch Al-

koxy oder Hydroxygruppen substituiert sein. Über das Polymerisationsverhalten derartiger Metallocenkomplexe ist wiederum nichts bekannt.

5 In Organometallics, 1997, 16, 4546, werden Bor-verbrückte Metallocene beschrieben, in denen das Borbrückenatom durch eine Vinylgruppe substituiert ist und zusätzlich durch eine Lewis-Base koordiniert wird. Die Ausbeuten bei der Synthese dieser Komplexe sind allerdings sehr schlecht und die Polymerisation von Ethylen
10 verläuft unbefriedigend und führt nur zu niedermolekularem Polymer.

In EP-A-0 628 566 werden verbrückte Metallocenkomplexe beschrieben, deren generische Formel als Brückennatome neben Kohlenstoff,
15 Silizium, Zinn, Germanium, Aluminium, Stickstoff und Phosphor auch Bor nennt und in denen diese Brückennatome durch eine Vielzahl von Substituenten, unter denen unter anderem die Dialkylaminogruppe genannt wird, substituiert sein können. Metallocenkomplexe mit Amino-substituierter Borbrücke werden jedoch an keiner
20 Stelle explizit genannt, noch werden Eigenschaften solcher Komplexe beschrieben.

Die im Stand der Technik bekannten Bor-verbrückten Metallocenkomplexe sind jedoch zum großen Teil schwer herstellbar und bieten
25 nicht oder nur sehr eingeschränkt die Möglichkeit, durch Elektronen drückende Substituenten am Boratom die elektronischen Verhältnisse in den Cyclopentadienylgruppen zu beeinflussen und somit Einfluß auf die katalytische Aktivität der Komplexe nehmen zu können.

30 Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Metallocenkomplexe bereitzustellen, welche die beschriebenen Nachteile nicht mehr aufweisen, die einfach herzustellen sind, und welche insbesondere die Möglichkeit bieten, die elektronischen Verhältnisse an den Cyclopentadienylresten zu beeinflussen.

Demgemäß wurden die eingangs erwähnten Metallocenkomplexe gefunden. Weiterhin wurden Verfahren zur Herstellung solcher Metallocenkomplexe sowie die Verwendung der Metallocenkomplexe als
40 Katalysatorkomponente für die Homo- und Copolymerisation von C₂-C₁₀- α -Olefinen gefunden.

Als Element der Gruppe III des Periodensystems sind besonders Bor und Aluminium zu nennen, wobei Bor besonders bevorzugt ist.

Unter dem einzigen weiteren Substituenten, der, neben den Bindungen zu einem Cyclopentadienylrest und den anderen Bestandteilen des Brückengliedes, die dritte vom Element der Gruppe III des Periodensystems ausgehende Valenz besetzt, sind besonders solche stickstoff-, phosphor- oder schwefelorganischen Gruppen zu nennen, die neben diesen Heteroatomen bis zu 20 Kohlenstoff- und bis zu 4 Siliziumatome enthalten.

Die Metallocenkomplexe der vorliegenden Erfindung können 1 oder 2 Cyclopentadienylreste enthalten. Bevorzugt sind Metallocenkomplexe der allgemeinen Formel I

15

20

in welcher die Variablen folgende Bedeutung haben:

25

M ein Metallatom der 4., 5. oder 6. Nebengruppe des Periodensystems,

30

D ein Element der Gruppe III des Periodensystems

35

R¹, R², R³, R⁴ Wasserstoff, C₁- bis C₁₀-Alkyl, 5-7-gliedriges Cycloalkyl, welches seinerseits mit einer C₁-C₁₀-Alkylgruppe substituiert sein kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei zwei benachbarte Reste R¹ bis R⁴ auch 5-7-gliedrige cyclische Gruppen bilden können, welche ihrerseits mit C₁-C₁₀-Alkylgruppen oder SiR⁶₃-Gruppen substituiert sein können oder weitere anellierte Ringsysteme enthalten können,

40

R⁵ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl oder -Arylalkyl oder C₁-C₁₀-Trialkylsilyl,

R⁶ C₁- bis C₄-Alkyl,

45

m Zahl der Nebengruppe des Metallatoms M minus 2,

4

n 2 wenn X¹ Stickstoff oder Phosphor bedeutet, 1 wenn
X¹ Schwefel bedeutet,

X¹ Stickstoff, Phosphor oder Schwefel,

5

X² Wasserstoff, C₁-C₁₀-Hydrocarbyl, N(C₁-C₁₅-Hydrocarbyl)₂ oder Halogen,

A ein Rest

10

15

oder ein Rest, welcher über ein Sauerstoff-, Schwefel-, Stickstoff- oder Phosphoratom an M koordiniert ist.

20

Als Metallatome M kommen insbesondere die Elemente der 4. Nebengruppe des Periodensystems in Frage, also Titan, Zirkonium und Hafnium, wobei Titan und Zirkonium und insbesondere Zirkonium besonders bevorzugt sind.

25

Die Cyclopentadienylgruppen in Formel I können substituiert oder unsubstituiert sein. Unter den substituierten Metallocenkomplexen zeigen besonders solche, die mit C₁- bis C₄-Alkylgruppen substituiert sind, besonders vorteilhafte Eigenschaften. Als Alkylsubstituenten sind z.B. Methyl, Ethyl, n-Propyl und n-Butyl zu nennen. Die Cyclopentadienylreste können einfach oder mehrfach substituiert sein, wobei besonders einfach und doppelt substituierte Cyclopentadienylreste sich als vorteilhaft erwiesen haben. Bevorzugt sind weiterhin solche Cyclopentadienylreste, in denen 2 benachbarte Reste R¹ bis R⁴ zu 5- bis 7-gliedrigen cyclischen Gruppen verbunden sind. Zu nennen sind beispielsweise Cyclopentadienylgruppen, die sich vom Indenyl, Tetrahydroindenyl, Benzindenyl oder Fluorenyl ableiten, wobei diese Ringsysteme ihrerseits wieder mit C₁- bis C₁₀-Alkylgruppen oder auch mit Trialkylsylylgruppen substituiert sein können.

Bei den erfindungsgemäßen Metallocenkomplexen mit 2 Cyclopentadienyleinheiten ist das Brückenatom des Elements der Gruppe III des Periodensystems direkt mit diesen beiden Cyclopentadienyleinheiten verbunden.

Unter diesen Dicyclopentadienylkomplexen sind besonders Metallocenkomplexe, in welchen

A ein Rest

5

10

ist, bevorzugt.

Im Falle von Monocyclopentadienylkomplexen ist dagegen der Rest A kein Cyclopentadienylrest, sondern ein Rest, welcher über ein
15 Sauerstoff-, Schwefel-, Stickstoff- oder Phosphoratom an M koordiniert ist. Als Gruppe A kommen insbesondere folgende Atome oder Gruppen in Betracht: -O-, -S-, -NR⁹-, -PR⁹-, oder ein neutraler 2-Elektronendonator-Ligand, wie -OR⁹, -SR⁹, -NR⁹₂ oder -PR⁹₂. R⁹ hat dabei die Bedeutung von Wasserstoff oder Alkyl-, Aryl-, Silyl-,
20 halogenierten Alkyl- oder halogenierten Arylgruppen mit bis zu 10 Kohlenstoffatomen. Besonders bevorzugt sind Metallocenkomplexe, in welchen A eine Gruppe

— ZR⁷₂ — NR⁸ —

25

ist, in welcher

Z Silizium oder Kohlenstoff und

30 R⁷, R⁸ Wasserstoff, Silyl, Alkyl, Aryl oder Kombinationen dieser Reste mit bis zu 10 Kohlenstoff- oder Siliziumatomen

bedeuten.

35 Als Reste R⁷ und R⁸ sind dabei insbesondere Wasserstoff, Trimethylsilyl, Methyl, tert. Butyl oder Ethylgruppen zu nennen. Z ist vorzugsweise ein Kohlenstoffatom.

In den erfindungsgemäßen Metallocenkomplexen ist das Brückennatom
40 des Elements der Gruppe III des Periodensystems, welches an sich lewissauren Charakter hat, mit einer Verbindung mit Lewisbasen-Charakter substituiert. Der Lewisbasen-Substituent beeinflußt durch seine Elektronendonator-Funktion die elektronischen Verhältnisse am Cyclopentadienylrest und damit auch die elektronische
45 Umgebung des Metallatoms. Der Lewisbasen-Substituent kann über ein Stickstoff-, Phosphor- oder Schwefelatom an das Brückennatom des Elements der Gruppe III des Periodensystems gebunden sein,

wobei Substituenten mit einem Stickstoffatom besonders bevorzugt sind. Das Atom X¹ kann entweder Wasserstoff, C₁- bis C₁₀-Alkylgruppen oder C₁- bis C₁₀-Trialkylsilylgruppen tragen. Als Alkylgruppen kommen dabei insbesondere C₁- bis C₄-Alkylgruppen und ganz 5 besonders Methyl- oder Ethylgruppen in Betracht.

Das Zentralatom M ist außer mit den genannten Liganden weiterhin mit Liganden X² substituiert. Als Liganden X² kommen insbesondere niedere Alkylgruppen wie Methyl und Ethyl in Betracht, bevorzugt 10 ist X² jedoch Halogen und besonders bevorzugt Chlor.

Die erfindungsgemäßen Metallocenkomplexe können auf unterschiedlichen Wegen hergestellt werden. Als vorteilhaft z.B. für Verbindungen mit einem Borbrückennatom hat sich ein Verfahren zur Herstellung solcher Metallocenkomplexe erwiesen, bei dem man eine 15 Verbindung R⁵_nX¹-BY₂ (II), in welcher Y Halogen bedeutet, mit einer Verbindung

20

25 in welcher M' ein Alkali- oder Erdalkalimetall bedeutet, in Gegenwart eines Metallalkyls umsetzt und dann das Reaktionsprodukt mit einer M-Halogenid-Verbindung und zuletzt mit einem Oxidationsmittel reagieren lässt.

30 In Formel (II) ist Y vorzugsweise Chlor. Die Herstellung von Verbindungen der allgemeinen Formel (II) ist z.B. in Angew. Chem. 1964, 76, 499 beschrieben. Die Synthese der erfindungsgemäßen Metallocenkomplexe nach den oben beschriebenen Verfahren ist 35 besonders einfach und kann in nur einem Reaktionsgefäß vorgenommen werden. Das Metallalkyl dient dabei als Deprotonierungsreagenz, vorzugsweise werden Alkali- oder Erdalkalialkyle und insbesondere Butyllithium eingesetzt. Als N-Halogenidverbindung sind z.B. Titantrichlorid-Derivate, besonders bevorzugt Titantrichlorid-tris-THF-addukt zu nennen. Als Oxidationsmittel in der ab- 40 schließenden Oxidationsreaktion kann beispielsweise Bleidichlorid eingesetzt werden. Der Metallocenkomplex kann nach Filtration des Reaktionsgemisches aus der Lösung isoliert werden.

Die erfindungsgemäßen Metallocenkomplexe können als Katalysator- 45 komponenten für die Homo- und Copolymerisation von C₂- bis C₁₀- α -Olefinen verwendet werden. Zur Polymerisation ist es im allgemeinen erforderlich, die Metallocenkomplexe durch geeignete Me-

talloceniumionen-bildende Verbindungen in einen kationischen Komplex zu überführen. Als geeignete Metalloceniumionen-bildende Verbindungen kommen z.B. Aluminoxane, vorzugsweise solche mit einem Oligomerisierungsgrad von 3 bis 40, besonders bevorzugt von 5 bis 30 in Betracht.

Neben den Aluminoxanen sind als kationenbildende Verbindungen insbesondere Boran- und Boratverbindungen zu nennen, die ein nichtkoordinierendes Anion darstellen oder in ein solches über-
10 führt werden können, und mit dem Metalloceniumkomplex ein Ionen-paar bilden können. Geeignete derartige Aktivierungsreagenzien für die Metallocenkomplexe sind dem Fachmann geläufig und werden beispielsweise in EP-B1-0468537 beschrieben.

15 Besonders für Polymerisationen in der Gasphase und in Suspension kann es erforderlich sein, die Metallocenkomplexe und ggf. die Aktivierungsreagenzien auf Trägermaterialien aufzubringen. Solche Trägermaterialien und Methoden zum Trägern von Katalysatorkomplexen sind dem Fachmann hinreichend bekannt. Als Trägermaterialien
20 kommen insbesondere anorganische Oxide wie Kieselgel, Aluminium-oxid oder Magnesiumsalze in Betracht.

Mit Hilfe der genannten Katalysatorsysteme lassen sich Polyolefine, insbesondere Polymerivate von Alk-1-enen herstellen. Darunter werden Homo- und Copolymerivate von C₂-C₁₀-Alk-1-enen verstanden, wobei als Monomere vorzugsweise Ethylen, Propylen, But-1-en, Ent-1-en und Hex-1-en verwendet werden. Besonders geeignet sind diese Katalysatorsysteme für die Copolymerisation von Ethylen mit But-1-en oder Hex-1-en.
30

Als Polymerisationsverfahren kommen alle bekannten Verfahren in Betracht, also beispielsweise Gasphasenverfahren, Suspensionsverfahren oder auch Polymerisationsverfahren in Lösung.

35 Eingesetzt zur Polymerisation von Ethylen und zur Copolymerisation von Ethylen mit anderen α-Olefinen zeigen die erfindungsgemäßen Metallocenkomplexe gute Polymerisationsaktivität und führen dabei zu Polymerisaten mit relativ großem Molekulargewicht. Die folgenden Beispiele erläutern die Erfindung.
40

Beispiele

Die Ligand- und Komplexsynthesen wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. Folgende Reagenzien wurden nach
45 Literaturvorschriften hergestellt: (Me₃)Si)₂NBCl₂ (Angew. Chem. 1964, 76, 499), Na(C₅H₅) (Chem. Ber. 1956, 89, 434), Ti(NMe₂)₄ (J. Chem. Soc., 1960, 3857), [TiCl₃(THF)₃] (Inorg.

Synth. 1982, 21, 135), $(C_4H_8N)_2BCl$ (Chem. Ber. 1994, 127, 1605), $(i\text{-}Pr)_2NBCl_2$ (J. Chem. Soc., 1960, 5168).

NMR: Varian Unity 500 bei 499.843 MHz (1H , interner Standard TMS),
 5 150.364 MHz (^{11}B , $BF_3\text{*OEt}_2$ in C_6D_6 als externer Standard),
 123.639 MHz ($^{13}C\{^1H\}$, APT, interner Standard TMS), wenn nicht be-
 sonders gekennzeichnet wurden alle NMR-Spektren in CD_2Cl_2 als Lö-
 sungsmittel aufgenommen. Massenspektren wurden auf einem Finnigan
 MAT 95 (70eV) aufgenommen und die Elementaranalysen (C, H, N) mit
 10 einem Carlo-Erba elemental analyzer, model 1106 erhalten.

Beispiel 1

Herstellung von $Li_2[(Me_3Si)_2NB(C_5H_4)_2]$ (1)

15 8,23 g (93,54 mmol) $Na(C_5H_5)$ wurden in 100 ml Hexan suspendiert.
 Bei Zimmertemperatur wurden eine Lösung von 11,13 g (46,05 mmol)
 $(Me_3Si)_2NBCl_2$ in 20 ml Hexan zugetropft. Nach 2-stündigem Rühren
 wurde das Reaktionsgemisch auf 0°C gekühlt. Dazu wurden 57,6 ml
 20 (92,10 mmol) einer 1,6 molaren Lösung von Butyllithium in Hexan
 tropenweise zugegeben. Sofort entstand ein weißer Niederschlag.
 Das Reaktionsgemisch wurde auf Zimmertemperatur erwärmt und dann
 noch eine Stunde gerührt. Dann wurden die flüchtigen Bestandteile
 im Vakuum entfernt und der feste Rückstand mit 150 ml Hexan über
 25 Nacht extrahiert. Die Mischung wurde filtriert und der Feststoff
 im Vakuum getrocknet.

Ausbeute: 14,13 g (98 %) weißer pyrophorner Feststoff.

30 1H -NMR ([D_8]THF): $\delta = 0,01$ (s, 18 H, $Si(CH_3)_3$), 5,83 (m, 4H, C_5H_4),
 6,45 (m, 4H, C_5H_4).
 ^{11}B -NMR: $\delta = 46,6$ (s)
 ^{13}C -NMR: $\delta = 4,31$ (s, $Si(CH_3)_3$), 103,16, 106,63, 116,63 (C_5H_4)

Beispiel 2

35

Herstellung von $Cl_2Ti[(C_5H_4)_2BN(SiMe_3)_2]$ (2)

Methode A:

40 Wie oben beschrieben wurden 3,20 g (13,24 mmol) $(Me_3Si)_2NBCl_2$ und
 2,39 g (27,17 mmol) $Na(C_5H_5)$ zur Reaktion gebracht. Zu dem erhal-
 tenen Filtrat wurden 16,6 ml einer 1,6 molaren Lösung von Butyl-
 lithium in Hexan gegeben. Die leicht gelbe Suspension wurde 2 h
 bei Zimmertemperatur gerührt und dann auf -100°C abgekühlt. Dann
 45 wurden 4,90 g (13,24 mmol) $TiCl_3(THF)_3$ und 20 ml THF dazugegeben.
 Das Reaktionsgemisch wurde auf Zimmertemperatur erwärmt, wobei
 sich die Farbe von leicht braun nach dunkel violett änderte. Die

Suspension wurde 3 h gerührt und dann mit 1,84 g (6,62 mmol) PbCl_2 behandelt. Nach Röhren für 16 h wurden die flüchtigen Bestandteile im Vakuum entfernt. Der erhaltene Feststoff wurde mit 50 ml Dichlormethan extrahiert, dann wurde abfiltriert. Ausbeute: 4,43 g (80 %) dunkelroter Feststoff nachdem die Lösung bei -30°C gelagert wurde.

$^1\text{H-NMR}$: $\delta = 0,08$ (s, 18 H, $\text{Si}(\text{CH}_3)_3$), 5,53 (m, 4H, C_5H_4), 7,05 (m, 4H, C_5H_4).

10 $^{11}\text{B-NMR}$: $\delta = 46,6$ (s)

$^{13}\text{C-NMR}$: $\delta = 4,89$ (s, $\text{Si}(\text{CH}_3)_3$), 114,85, 133,44 (C_5H_4)

MS: m/z (%): 417 (35) (M^+), 402 (15) ($\text{M}^+ \text{-Me}$), 382 (25) ($\text{M}^+ \text{-Cl}$)
 $\text{C}_{16}\text{H}_{26}\text{NBCl}_2\text{Si}_2\text{Ti}$ (418,18): ber.: C 45,96, H 6,27, N 3,35; gef.: C 46,56, H 7,05, N 2,87

15

Beispiel 3

Herstellung von $(\text{Me}_2\text{N})_2\text{Ti}[(\text{C}_5\text{H}_4)_2\text{BN}(\text{SiMe}_3)_2]$ (3)

20 Wie oben beschrieben wurden 2,08 g (8,60 mmol) $(\text{Me}_3\text{Si})_2\text{NBCl}_2$ und 1,51 g (17,20 mmol) $\text{Na}(\text{C}_5\text{H}_5)$ zur Reaktion gebracht. Das erhaltene Filtrat wurde auf -30°C gekühlt und eine Lösung von 1,93 g (8,60 mmol) $(\text{Ti}(\text{NMe}_2)_4$ in 5 ml Hexan tropfenweise zugegeben. Das Reaktionsgemisch wurde langsam auf Zimmertemperatur erwärmt, wo-
25 bei sich die Farbe von gelb nach dunkelrot veränderte. Nach Röhren für 1 h wurden die flüchtigen Bestandteile im Vakuum entfernt und der erhaltene Feststoff in 10 ml Hexan suspendiert. Nach Filtration und anschließendem Entfernen der flüchtigen Bestandteile im Vakuum wurden 1,05 g (28 %) (3) als dunkelroter Feststoff er-
30 halten.

$^1\text{H-NMR}$: $\delta = 0,09$ (s, 18 H, $\text{Si}(\text{CH}_3)_3$), 3,14 (s, 12 H, $\text{N}(\text{CH}_3)_2$), 5,42 (m, 4H, C_5H_4), 6,73 (m, 4H, C_5H_4).

$^{11}\text{B-NMR}$: $\delta = 46,9$ (s)

35 $^{13}\text{C-NMR}$: $\delta = 4,89$ (s, $\text{Si}(\text{CH}_3)_3$), 51,11 ($\text{N}(\text{CH}_3)_2$), 112,73, 131,66 (C_5H_4)

$\text{C}_{20}\text{H}_{38}\text{N}_3\text{BSi}_2\text{Ti}$ (435,43): ber.: C 55,17, H 8,80, N 9,65; gef.: C 55,62, H 8,22, N 9,59

40 Beispiel 4

Herstellung von $(\text{Me}_2\text{N})\text{ClTi}[(\text{C}_5\text{H}_4)_2\text{BN}(\text{SiMe}_3)_2]$ (4)

Wie oben beschrieben wurden 1,09 g (4,50 mmol) $(\text{Me}_2\text{Si})_2\text{NBCl}_2$ und 45 0,88 g (10,00 mmol) $\text{Na}(\text{C}_5\text{H}_5)$ zur Reaktion gebracht. Das erhaltene Filtrat wurde auf -30°C gekühlt und eine Lösung von 1,01 g (4,50 mmol) $(\text{Ti}(\text{NMe}_2)_4$ in 5 ml Hexan tropfenweise zugegeben. Das

10

Reaktionsgemisch wurde langsam auf Zimmertemperatur erwärmt. Zu dieser Lösung wurden 0,84 g (4,50 mmol) $(C_4H_8N)_2BCl$ gegeben. Nach Rühren für 1 h wurden die flüchtigen Bestandteile im Vakuum entfernt und der erhaltene Feststoff in 20 ml Hexan suspendiert.

- 5 Nach Filtration und anschließendem Lagern bei -30°C erhielt man 0,79 g (41 %) (4) als dunkelroten kristallinen Feststoff.

1H -NMR ($CDCl_3$): $\delta = 0,28$ (s, 18 H, $Si(CH_3)_3$), 3,26 (s, 6 H, $N(CH_3)_2$), 5,08 (m, 2H, C_5H_4), 5,29 (m, 2H, C_5H_4), 6,62 (m, 2H, C_5H_4), 6,83 (m, 2H, C_5H_4).

^{11}B -NMR: $\delta = 46,4$ (s)

^{13}C -NMR: $\delta = 7,53$ (s, $Si(CH_3)_3$), 57,54 ($N(CH_3)_2$), 115,73, 117,57, 126,93, 128,54 (C_5H_4)

$C_{18}H_{32}N_2BClSi_2Ti$ (426,80): ber.: C 50,66, H 7,56, N 6,56;
15 gef.: C 50,23, H 7,59, N 6,39

Beispiel 5

Herstellung von $Cl_2Ti[(C_5H_4)_2BN(SiMe_3)_2]$ (2)

20

Methode B:

Wie für (4) beschrieben wurden 1,45 g (6,00 mmol) $(Me_3Si)_2NBCl_2$ und 1,08 g (12,30 mmol) $Na(C_5H_5)$ zur Reaktion gebracht. Zu dem erhaltenen Filtrat wurde eine Lösung von 1,34 g (6,00 mmol) $Ti(NMe_2)_4$ in 5 ml Hexan tropfenweise zugegeben. Das Reaktionsgemisch wurde anschließend mit 2,24 g (12,00 mmol) $(C_4H_8N)_2BCl$ versetzt. Man erhielt 0,38 g (15 %) (2) als dunkelroten kristallinen Feststoff.

30

Beispiel 6

Herstellung von $(i-Pr)_2NB(C_5H_5)_2$ (5)

35 Zu einer Suspension aus 10,0 g (113,6 mmol) $Na(C_5H_5)$ in 100 ml Hexan wurde bei 20°C eine Lösung aus 10,33 g (56,8 mmol) $(i-Pr)_2NBCl_2$ in 25 ml Hexan getropft. Nachdem die exotherme Reaktion abgeklungen war, wurde 2 d bei 20°C gerührt. Das ^{11}B -NMR-Spektrum der Reaktionslösung zeigte dann nur noch 1 Signal bei 40 etwa 40 ppm für das disubstituierte Produkt (Edukt: 31 ppm, mono-*cp*-chlor-Produkt: 35 ppm). Die Reaktionsmischung wurde von ausgefallenem $NaCl$ abfiltriert.

Zur Reindarstellung wurde das Lösungsmittel im Vakuum entfernt, 45 wobei ein gelblichorangefarbenes trübes Öl zurückblieb. Der Rückstand wurde einer fraktionierenden Destillation bei $5 \cdot 10^{-2}$ mbar unterworfen. Das Produkt wurde bei dem angegebenen Druck bei

11

72-75°C zunächst als klare, gelbliche Flüssigkeit, nach 10 min bei 20°C in Form leicht gelblicher, niedrigschmelzender Kristalle erhalten (Ausbeute 18 %, thermolabile Substanz, größtenteils Zersetzung bei der Destillation).

5

Analytik: ^{11}B -NMR (C_6D_6): 40,18 ppm, ^1H -NMR (C_6D_6): 1,06, 1,08, 1,14 (je dublett, CH_3 am iso-prop. 3 Isomere!); 2,85, 2,94, 3,04 (je multiplett, CH_2 am cp-Ring); 3,62-3,92 (3* multiplett, CH am iso-prop.); 6,2-6,8 (multipletts, CH am cp-Ring). MS (EI) (fragment, %): 241 (M^+ , 95 %), 226 ($\text{M}'\text{-CH}_3$, 95 %), 198 ($\text{M}^+\text{-iprop}$, 30 %), 176 ($\text{M}^+\text{-cp}$, 45 %) (korrig. Isotopenmuster)

10

Beispiel 7

15 Herstellung von $(\text{i-Pr})_2\text{NB}(\text{C}_5\text{H}_5)_2\text{Li}_2$ (6)

Zu dem Filtrat der Reaktionslösung von (5) wurden bei 10°C 2 Äquivalente Butyllithium-Lösung (1,6 M) zugetropft, und bei 20°C über Nacht gerührt, wobei ein schneeweisser Feststoff ausfiel. Der 20 Feststoff wurde unter Schutzgas abfiltriert und 2 mal mit je 50 ml Hexan gewaschen. Man erhielt das Dilithiosalz als weißes, stark pyrophores Pulver in quantitativer Ausbeute.

Analytik: ^1H -NMR ($\text{D}_8\text{-THF}$): 1,23 ppm (dublett, CH_3); 4,52 (multiplett, CH am isoprop.); 5,73 und 5,83 (je pseudo-triplett, CH am cp.).

^{11}B -NMR $\text{D}_8\text{-THF}$: 41,86 ppm.

Beispiel 8

30

Herstellung von $(\text{i-Pr})_2\text{NB}(\text{C}_5\text{H}_4)_2\text{Ti}(\text{Cl})\text{NMe}_2$ (7)

Eine Lösung aus 15 mmol (5) in 30 ml Hexan wurde auf -60°C gekühlt und eine Lösung aus 3,35 g (15 mmol) $\text{Ti}(\text{NMe}_2)_4$ in 10 ml Hexan zugetropft. Die Lösung wurde langsam auf 20°C erwärmt, wobei bei etwa -15°C eine deutliche tiefrote Färbung der Reaktionslösung einsetzte. Die Lösung wurde 1 h bei 20°C gerührt und mit 1,38 g (7,5 mmol) $(\text{C}_4\text{H}_8\text{N})_2\text{BCl}$ umgesetzt, weitere 2 h bei 20°C gerührt im Vakuum auf etwa 50 % eingeengt und bei -30°C zur Kristallisation 40 gelagert. Nach 1 Tag wurde der ausgefallene Feststoff abfiltriert. Ausbeute: 3,02 g (55 %).

Analytik (C_6D_6): ^{11}B -NMR: 40,3 ppm; ^1H -NMR: 1,04 (d, 12 H, CHCH_3); 3,10 (s, 6 H, $\text{N}(\text{CH}_3)_2$; 4,87, 5,43, 6,70, 6,90 (je m, je 2H, CH_{cp}); MS (EI): 366 (M^+ , 15 %), 322 ($\text{M}^+\text{-NMe}_2$, 100 %), 287 ($\text{M}^+\text{-NMe}_2\text{-Cl}$, 10 %), 176 (TiCp_2 , 10 %).

Beispiel 9

Herstellung von $(i\text{-Pr})_2\text{NB}(\text{C}_5\text{H}_4)_2\text{TiCl}_2$ (8)

5 Die Herstellung erfolgte analog zur Darstellung von (7) unter Einsatz von 5,9 mmol (5) in 20 ml Hexan, 6,0 mmol (1,36 g) $\text{Ti}(\text{NMe}_2)_4$ in 5 ml Hexan und 6,1 mmol (1,11 g) $(\text{C}_4\text{H}_8\text{N})_2\text{BCl}$

Ausbeute: 920 mg (43 %)

10 ^{11}B -NMR: 40,7; ^1H -NMR: 1,36 (d, 12H, CHCH_3); 5,61, 7,06 (je m, je 4H, CH_{cp}).

Beispiel 10

15 Herstellung von $(\text{Me}_3\text{Si})_2\text{NB}(\text{C}_5\text{H}_4)_2\text{ZrCl}_2$ (9)

Zu einer Suspension von 3,7 g (11 mmol) (1) in 30 ml Diethylether wurden bei -70°C 4,13 g (11 mmol) $\text{ZrCl}_4 \cdot 2\text{THF}$ als Feststoff zugegeben und mit 20 ml Toluol nachgespült. Die Reaktionsmischung wurde 20 im Kühlbad langsam auf Zimmertemperatur erwärmt, wobei sich die anfangs leicht gelbliche Farbe intensivierte. Danach ließ man für 16 h bei Zimmertemperatur rühren. Die Lösung wurde filtriert und dann im Vakuum auf ca. 50 % des Ausgangsvolumens eingeengt. Diese Lösung wurde bei -30°C gelagert. Nach 24 h erhielt man gelbe Kristalle. Es wurde abfiltriert und die Mutterlauge eingeengt und erneut bei -30°C gelagert. Man erhielt gelbe Kristalle. Die vereinigte Ausbeute betrug 3,92 g (86%).

15 ^1H -NMR (C_6D_6): $\delta = 0,11$ (s, 18 H, SiMe_3), 5,16, 6,62 (pseudo-t, 30 4 H CpH)

^{13}C -NMR (C_6D_6): $\delta = 5,0$ (s, SiMe_3), 109,6, 124,9 (2s, CpH)

^{11}B -NMR (C_6D_6): $\delta = 47,4$ (s)

MS: m/z (%): 461 (5, M^+), 446 (3, $\text{M}^+ \text{-Me}$), 91 (80, Zr^+), 66 (40, Cp^+)

35

Beispiel 11

Herstellung von $[i\text{Pr}_2\text{NB}(\text{C}_5\text{H}_5)\text{C}_6\text{H}_5\text{NH}]$ (10)

40

Zu einer Suspension von 2,64 g (30 mmol) Cyclopentadienylnatrium in 25 ml Hexan wurde bei 0°C eine Lösung von 5,4 g (30 mmol) $i\text{Pr}_2\text{NBCl}_2$ in 10 ml Hexan getropft. Man ließ die Mischung auf Raumtemperatur kommen und rührte für weitere 2 Stunden. Das 45 ausgefallenen NaCl wurde abfiltriert und das Filtrat langsam zu einer Suspension aus 3,15 g (32 mmol) Li-anilid in 20 ml Toluol bei 0°C getropft. Man ließ die Reaktion auf Raumtemperatur

erwärmten und rührte zur Vervollständigung der Reaktion noch über Nacht weiter. Dann wurde das Lösungsmittel am Vakuum entfernt und der verbliebene gelbe Rückstand in 20ml Benzol aufgenommen, filtriert und das Filtrat vom Lösungsmittel befreit. Der so erhaltene Feststoff wurde bei 85°C im Hochvakuum sublimiert. Man erhielt 7,91 g (*i*Pr₂NB(C₅H₅)(C₆H₅NH) in nahezu quantitativer Ausbeute.

¹H-NMR (499,658 MHz, CD₂Cl₂) : δ = 1,23 (br. d, 12 H, CHCH₃),
 10 2,86 (m, 2H, C₅H₅), 3,59 (m, 2H, CHCH₃), 5,08 (br. s, 1H, NH),
 6,2 - 7,2 (m, 8H, C₅H₅, C₆H₅)
¹¹B-NMR (160,310 MHz, CD₂Cl₂) : δ = 30,06.
¹³C-NMR (125,639 MHz, CD₂-Cl₂) : δ = 23,96, 45,71, 43,44,
 46,58 (br), 133,28 (cp), 135,50 (cp), 137,74 (cp),
 15 118,70, 119,64, 128,78, 146,10.
 MS (EI) [m/z, %] : 268 [M⁺, 20], 253 [M⁺-Me, 50], 93 [C₆H₅NH₂⁺, 100],
 65 [C₅H₅⁺, 30]. Korrekte Elementaranalyse.

20 Beispiel 12

Herstellung von [*i*Pr₂NB(C₅H₅)C₆H₅N{Ti(NMe₂)₂}] (11)

0,83 g (3,09 mmol) (10) wurden in 15 ml Toluol gelöst und bei
 25 -78°C mit 0,69 g (3,09 mmol) [Ti(NMe₂)₄] in 5 ml Toluol versetzt. Nach 20 min Rühren bei -78°C, ließ man das Reaktionsgemisch langsam auf Raumtemperatur erwärmen und rührte für weitere 2 Stunden bei Raumtemperatur und eine weitere bei 40°C. Die flüchtigen Anteile wurden im Vakuum entfernt, der orange-rote
 30 Rückstand in 20 ml Hexan aufgenommen und die so erhaltene Lösung über Nacht bei -30°C zum Kristallisieren gekühlt. Man erhielt 0,97 g (78 %) des Titankomplexes (11) als orangen Feststoff.

¹H-NMR (499,658 MHz, CD₂Cl₂) : δ = 0,90 (br., 6H, CHCH₃), 1,45
 35 (br., 6H, CHCH₃), 2,97 (s, 12H, NMe₂), 3,31 (br., 2H, CHCH₃),
 5,94 (m, 2H, C₅H₄), 6,44 (m, 2H, C₅H₄), 6,73 (m, 2H, C₆H₅),
 6,83 (m, 1H, C₆H₅).
¹¹B-NMR (160,310 MHz, CD₂Cl₂) : δ = 27,76
¹³C-NMR (125,639 MHz, CD₂Cl₂) : δ = 21,36 (br), 27,01 (br),
 40 44,62 (br), 46,11 (br), 47,90 (NMe₂), 120,95 (cp),
 124,00 (cp), 115,81, 119,99, 128,16, 155,48.
 MS (EI) [m/z, %] : 402 [M⁺, 45], 387 [M⁺-Me, 5], 358 [M⁺-NMe₂, 65],
 314 [M⁺-2 NMe₂, 100], 93 [C₆H₅NH₂⁺, 95], 64 [C₅H₄⁺, 45]. Korrekte Elementaranalyse.

Beispiel 13

Herstellung von [*i*Pr₂NB(C₅H₄)C₆H₅N{TiCl₂}] (12)

- 5 Zu einer Lösung von 0,17 g (0,42 mmol) des Titankomplexes (11) in 10 ml Hexan wurde 0,50 g (4,60 mmol) (CH₃)₃SiCl in 2 ml Hexan bei 0°C zugegeben. Die Lösung wurde langsam auf Raumtemperatur erwärmt und über Nacht gerührt. Der ausgefallene gelbe Niederschlag wurde durch abdekantieren der überstehenden Lösung isoliert und zweimal 10 mit je 10 ml Hexan gewaschen. Der so erhaltene Feststoff wurde am Vakuum getrocknet. Man erhielt 0,16 g des Titankomplexes (12) in nahezuquantitativer Ausbeute.
- 10-15 ¹H-NMR (499,658 MHz, CD₂Cl₂) : δ = 0,90 (d, 6H, J³ = 6,71 Hz, CHCH₃), 1,54 (d, 6H, J³ = 6,71 Hz, CHCH₃), 3,14 (m, 1H, J³ = 6,71 Hz, CHCH₃), 3,41 (m, 1H, CHCH₃), 6,44 (m, 2H, C₅H₄), 7,08 (m, 2H, C₅H₄), 6,91 (m, 2H, C₆H₅), 7,14 (m, 1H, C₆H₅), 7,38 (m, 2H, C₆H₅).
- 15-20 ¹¹B-NMR (160,310 MHz, CD₂Cl₂) : δ = 28.39.
- 20 ¹³C-NMR (125,639 MHz, CD₂Cl₂) : δ = 21,40, 27,72, 45,20, 47,28, 122,52 (cp), 124,32, 127,21, 129,62, 152,39.
- 25 MS (El) [m/z, %] : 384 [M⁺, 15], 369 [M⁺-Me, 30], 348 [M⁺-Cl, 50], 333 [M⁺-Cl-2 Me, 20], 93 [C₆H₅NH₂⁺, 70], 64 [C₅H₄, 25]. Korrekte Elementaranalyse.

Beispiel 14

Herstellung von [*i*Pr₂NB(C₅H₅)tBuNH] (13)

- 30 Zu einer Suspension von 3,96 g (45 mmol) Cyclopentadienylnatrium in 50 ml Hexan wurde bei 0°C eine Lösung von 8,19 g (45 mmol) ipr₂NBCl₂ in 30 ml Hexan getropft. Man ließ die Mischung auf Raumtemperatur kommen und rührte für weitere 16 Stunden. Das 35 ausgefallenen NaCl wurde abfiltriert und das Filtrat langsam zu einer Suspension aus 3,52 g (45 mmol) LitBuNH in 20 ml Toluol bei 0°C getropft. Man ließ die Reaktion auf Raumtemperatur erwärmen und rührte zur Vervollständigung der Reaktion noch über Nacht weiter. Dann wurde das Lösungsmittel am Vakuum entfernt und der 40 verbliebene gelbe Rückstand in 50 ml Benzol aufgenommen, filtriert und das Filtrat vom Lösungsmittel befreit. Der so erhaltene Feststoff wurde im Hochvakuum getrocknet. Man erhielt 8,83 g (*i*Pr₂NB(C₅H₅)(tBuNH) (13) (79 %).
- 45 ¹H-NMR (499,658 MHz, C₆D₆) : δ = 1,08 (br. d, 6H, CHCH₃), 1,12 (br d, 6H, CHCH₃), 1,11 (s, 9H, C(CH₃)₃), 1,18 (s, 9H, C(CH₃)₃), 3,24 (m, 2H, CHCH₃), 3,37 (m, 2H, CHCH₃), 2,86 (m, 2H, CH₂cp),

15

3,05 (m, 2H, CH₂cp), 6,40 - 6,76 (m, 6H, C₅H₄).
¹¹B-NMR (160,310 MHz, C₆D₆) : δ = 29,82

¹³C -NMR (125.639 MHz, C₆D₆): δ = 23,30, 33,31, 33,74, 33,96,
 5 43,12, 46,9, 49,37, 49,64, 131,82, 133,82, 135,39.
 MS (EI) [m/z, %] : 248 [M⁺,10], 233 [M⁺-Me, 45]. Korrekte
 Elementaranalyse.

Beispiel 15

10

Herstellung von [iPr₂NB(C₅H₄)tBuN{Ti(NMe₂)₂}] (14)

0,71 g (2,87 mmol) ipr₂NB(cp)tBuNH (13) wurden in 10 ml Toluol
 gelöst und bei -78°C mit 0,64 g (2,87 mmol) [Ti(NMe₂)₄] gelöst in
 15 5 ml Toluol versetzt. Nach 20 min Rühren bei -78°C, ließ man das
 Reaktionsgemisch langsam auf Raumtemperatur erwärmen und rührte
 für weitere 2 Stunden bei Raumtemperatur und eine weitere bei
 40°C. Die flüchtigen Anteile wurden im Vakuum entfernt, der
 orange-rote Rückstand in 20 ml Hexan aufgenommen und die so
 20 erhaltene Lösung über Nacht bei -30°C zum Kristallisieren gekühlt.
 Man erhielt 0,90 g (82 %) des Titankomplexes (14) als orangen
 Feststoff.
¹H-NMR(499,658) MHz, C₆D₆) : δ = 1,17 (br d, 12H, CHCH₃),
 3,19 (s, 12H, NMe₂), 3,62 (m, 2H, CHCH₃), 5,92(m, 2H, C₅H₄), 6,49
 25 (m, 2H, C₅H₄), 6,73 (m, 2H, C₆H₅), 6,83 (m, 1H, C₆H₅), 7,14
 (m, 2H, C₆H₅).
¹¹B-NMR(160,310 MHz, C₆D₆) : δ = 29,82.

MS(EI) [m/z,%]: 382 [M⁺,5], 339 [M⁺-NMe₂,60], 248 [M⁺-Ti-2NMe₂,35],
 30 233 [M⁺-Ti 2NMe₂-Me,100].

Beispiel 16

35

Herstellung von [iPr₂NB(C₅H₄)tBuN{TiCl₂}] (15)

Zu einer Lösung von 0,45 g (1,18 mmol) des Titankomplexes (14) in
 10 ml Hexan wurden 0,65 g (6 mmol) (CH₃)₃SiCl in 2 ml Hexan bei
 0°C zugegeben. Die Lösung wurde langsam auf Raumtemperatur erwärmt
 und für weitere 4 Stunden gerührt. Der ausgefallene gelbe
 40 Niederschlag wurde durch Abdekantieren der überstehenden Lösung
 isoliert und zweimal mit je 10 ml Hexan gewaschen. Der so
 erhaltene Feststoff wurde am Vakuum getrocknet. Man erhielt
 0,38 g des Titankomplexes (15) (88 %).

45

16

¹H-NMR (499,658 MHz, C₆D₆) : δ = 0,85 (d, 6H, J³ = 6,71 Hz, CHCH₃), 1,32 (d, 6H, J³ = 6,71 Hz, CHCH₃), 3,04 (m, 1H, CHCH₃), 4,03 (m, 1H, CHCH₃), 6,22 (m, 2H, C₅H₄), 6,83 (m, 2H, C₅H₄).

5 ¹¹B-NMR (160,310 MHz, C₆D₆) : δ = 32,25.

MS (EI) [m/z, %] : 365 [M⁺, 5], 350 [M⁺-Me, 45], 322 [M⁺-iPr, 50].

Beispiel 17

10 Ethylen Polymerisation:

Allgemeine Polymerisationsvorschrift:

In einem mit Inertgas gespülten 250 ml-Autoklaven wurde das Metallocen (mit dem Zentralmetall M = Ti oder Zr) in den in Tabelle 1 angegebenen Mengen in wenig Toluol gelöst. Dazu wurde

15 dann die entsprechende Menge MAO (Methylalumoxan 10 Gew.% in Toluol) (Al:M = 100:1) zugegeben. Man erreichte so ein Gesamtvolumen von ca. 100 ml. Danach wurde Ethylen bis auf einen Druck von 5 bar aufgepreßt. Die Polymerisation wurde bei 20°C für 15 min durchgeführt. Anschließend wurde der Autoklav entspannt

20 und das Polymer abfiltriert. Weitere Daten sind der Tabelle 1 zu entnehmen.

Tabelle 1:

25

Kompl ex	Al:M (mol:mol)	Temp. (°C)	Polym. zeit (min)	Ein- waage (mg/g)	Ausbeu te (g)	Activität (gPE/ gcat.*h)	eta- Wert (dl/g)
7	100	20	15	18,6	24,4	5250	3,35
9	1000	20	15	24,4	17,04	3777	n.d.
9	650	60	5	10,2	7,74	9106	n.d.
12	1000	60	10	15,2	1,80	711	1,52
15	1000	60	30	13,2	0,98	148	0,93

n.d.: not determined

35

40

45

Patentansprüche

1. Metallocenkomplexe von Metallen der 4., 5. oder 6. Nebengruppe des Periodensystems, bei denen mindestens ein substituierter oder unsubstituierter Cyclopentadienylrest mit einem Element der Gruppe III des Periodensystems verbunden ist, welches Element der Gruppe III des Periodensystems Bestandteil eines Brückengliedes zwischen diesem Cyclopentadienylrest und dem Metallatom ist und welches Element der Gruppe III des Periodensystems als einzigen weiteren Substituenten eine Stickstoff-, Phosphor- oder Schwefelorganische Gruppe trägt.

15 2. Metallocenkomplexe nach Anspruch 1 der allgemeinen Formel I

in welcher die Variablen folgende Bedeutung haben:

- 30 M ein Metallatom der 4., 5. oder 6. Nebengruppe des Periodensystems,
- D ein Element der Gruppe III des Periodensystems,
- 35 R¹, R², R³, R⁴ Wasserstoff, C₁- bis C₁₀-Alkyl, 5-7-gliedriges Cycloalkyl, welches seinerseits mit einer C₁-C₁₀-Alkylgruppe substituiert sein kann, C₆-bis C₁₅-Aryl oder Arylalkyl, wobei zwei benachbarte Reste R¹ bis R⁴ auch 5-7-gliedrige cyclische Gruppen bilden können, welche ihrerseits mit C₁-C₁₀-Alkylgruppen oder SiR⁶₃-Gruppen substituiert sein können oder weitere anellierte Ringsysteme enthalten können,
- 40 R⁵ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl oder -Arylalkyl oder C₁-C₁₀-Trialkylsilyl,

18

 R^6 C_1 - bis C_4 -Alkyl, m Zahl der Nebengruppe des Metallatoms M minus 2,5 n 2 wenn X^1 Stickstoff oder Phosphor bedeutet, 1 wenn X^1 Schwefel bedeutet, X^1 Stickstoff, Phosphor oder Schwefel,10 X^2 Wasserstoff, C_1 - C_{10} -Hydrocarbyl, $N(C_1$ - C_{15} -Hydrocarbyl)₂ oder Halogen,

A ein Rest

20 oder ein Rest, welcher über ein Sauerstoff-, Schwefel-, Stickstoff- oder Phosphoratom an M koordiniert ist.

25 3. Metallocenkomplexe nach Anspruch 1 oder 2, in welchen

A ein Rest

35 ist.

4. Metallocenkomplexe nach den Ansprüchen 1 bis 3, in welchen A eine Gruppe

40 — ZR^7_2 — NR^8 —

ist, in welcher

45 Z Silizium oder Kohlenstoff und

19

R^7, R^8 Wasserstoff, Silyl, Alkyl, Aryl oder Kombinationen dieser Reste mit bis zu 10 Kohlenstoff- oder Siliziumatomen

5 bedeuten.

5. Metallocenkomplexe nach den Ansprüchen 1 bis 4, in welchen X^1 Stickstoff bedeutet.
- 10 6. Metallocenkomplexe nach den Ansprüchen 1 bis 5, in welchen R^5 Trialkylsilyl bedeutet.
7. Verfahren zur Herstellung von Metallocenkomplexen gemäß Anspruch 3, dadurch gekennzeichnet, daß man eine Verbindung
15 $R^5_n X^1 \cdot BY_2$ (II), in welcher Y Halogen bedeutet, mit einer Verbindung

20

in welcher M' ein Alkali- oder Erdalkalimetall bedeutet, in
25 Gegenwart eines Metallalkyls umsetzt und das Reaktionsprodukt dann mit einer M -Halogenid-Verbindung und zuletzt mit einem Oxidationsmittel reagieren läßt.

8. Verwendung der Metallocenkomplexe gemäß den Ansprüchen 1 bis
30 7 als Katalysatorkomponenten für die Homo- und Copolymerisation von $C_2 \cdot C_{10} \cdot \alpha$ -Olefinen.

35

40

45

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 99/10025

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	C07F17/00	C07F7/10	C07F5/02	C08F10/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07F C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 132, Columbus, Ohio, US; abstract no. 78649, BRAUNSCHWEIG, HOLGER ET AL: "Synthesis and structure of '1!borametallocenophanes of titanium, zirconium, and hafnium" XP002133658 abstract & EUR. J. INORG. CHEM. (1999), (11), 1899-1904 ,</p> <p style="text-align: center;">—</p> <p style="text-align: center;">-/-</p>	1-6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search	Date of mailing of the International search report
21 March 2000	04/04/2000
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Rinkel, L

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 99/10025

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 131, Columbus, Ohio, US; abstract no. 73736, ASHE, ARTHUR J., III ET AL: "Aminoboranediy1-Bridged Zirconocenes: Highly Active Olefin Polymerization Catalysts" XP002133659 abstract & ORGANOMETALLICS (1999), 18(12), 2288-2290 ,</p> <p>—</p>	1-8
X	<p>CHEMICAL ABSTRACTS, vol. 130, Columbus, Ohio, US; abstract no. 182572, BRAUNSCHWEIG, HOLGER ET AL: "Synthesis and structure of the first '1!boratitanocenophanes'" XP002133660 abstract & EUR. J. INORG. CHEM. (1999), (1), 69-73 ,</p> <p>—</p>	1-5
A	<p>REETZ, MANFRED T. ET AL: "Donor complexes of bis(1-indenyl)phenylborane dichlorozirconium as isospecific catalysts in propene polymerization" CHEM. COMMUN. (CAMBRIDGE) (1999), (12), 1105-1106 , XP002133657 the whole document</p> <p>—</p>	1-8
A	<p>CHEMICAL ABSTRACTS, vol. 127, Columbus, Ohio, US; abstract no. 248187, STELCK, DANIEL S. ET AL: "Novel ansa-Metallocenes with a Single Boron Atom in the Bridge: Syntheses Reactivities, and X-ray Structures of (Ph(L)B(.eta.5-C5H5)2)ZrCl2 (L = SMe2, PMe3)" XP002133661 abstract & ORGANOMETALLICS (1997), 16(21), 4546-4550 , cited in the application</p> <p>—</p>	1-8
A	<p>EP 0 628 566 A (PHILLIPS PETROLEUM COMPANY) 14 December 1994 (1994-12-14) cited in the application claims</p> <p>—</p>	1,8
A	<p>DE 195 39 650 A (STUDIENGESELLSCHAFT KOHLE MBH) 30 April 1997 (1997-04-30) cited in the application claims</p> <p>—</p>	1,8

INTERNATIONAL SEARCH REPORT

Information on patent family members			Int'l Application No
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 628566 A	14-12-1994	US 5399636 A US 5466766 A AU 669442 B AU 6454794 A BR 9402391 A CA 2124731 A,C FI 942744 A JP 7149781 A NO 942193 A SG 52550 A US 5565592 A US 5616752 A US 5710224 A	21-03-1995 14-11-1995 06-06-1996 02-02-1995 02-05-1995 12-12-1994 12-12-1994 13-06-1995 12-12-1994 28-09-1995 15-10-1996 01-04-1997 20-01-1998
DE 19539650 A	30-04-1997	WO 9715581 A EP 0866795 A JP 2000500435 T US 5962718 A	01-05-1997 30-09-1998 18-01-2000 05-10-1999