Ch.3: Functions and branching

Hans Petter Langtangen 1,2

Simula Research Laboratory 1 University of Oslo, Dept. of Informatics 2

Mar 4, 2015

Functions are one of the most import tools in programming

- Function = a collection of statements we can execute wherever and whenever we want
- Function can take input objects (arguments) and produce output objects (returned results)
- Functions help to organize programs, make them more understandable, shorter, reusable, and easier to extend

We have used many Python functions

Mathematical functions:

from math import * y = sin(x)*log(x)

Other functions:

n = len(somelist)
integers = range(5, n, 2)

Functions used with the dot syntax (called methods):

C = [5, 10, 40, 45]
i = C.index(10) # result: i=1
C.append(50)
C.insert(2, 20)

What is a function? So far we have seen that we put some objects in and sometimes get an object (result) out of functions. Now it is time to write our own functions!

Python function for implementing a mathematical function

The mathematical function

$$F(C) = \frac{9}{5}C + 32$$

can be implemented in Python as follows:

def F(C):
 return (9.0/5)*C + 32

Note:

- Functions start with def, then the name of the function, then a list of arguments (here C) the function header
- Inside the function: statements the function body
- Wherever we want, inside the function, we can "stop the function" and return as many values/variables we want

A function does not do anything before it is called def F(C): return (9.0/5)*C + 32 a = 10 F1 = F(a) # call temp = F(15.5) # call print F(a+1) # call sum_temp = F(10) + F(20) # two calls Fdegrees = [F(C) for C in [0, 20, 40]] # multiple calls (Visualize execution) Note: F(C) produces (returns) a float object, which means that F(C) is replaced by this float object. We can therefore make the call F(C) everywhere a float can be used.

```
Functions can have as many arguments as you like y(t) = v_0 t - \frac{1}{2} g t^2 \frac{\text{def yfunc}(t, v_0):}{g = 9.8!} \frac{\text{return } v_0 + t - 0.5 * g * t * * 2}{t * sample calls:} y = y \text{func}(0.1, c_0) y = y \text{func}(0.1, v_0 - 6) y = y \text{func}(v_0 - 6, t_0 - 0.1) (\text{Visualize execution})
```

Function arguments become local variables def yfunc(t, v0): g = 9.81 return v0*t - 0.5*g*t**2 v0 = 5 t = 0.6 y = yfunc(t, 3) (Visualize execution) Local vs global variables When calling yfunc(t, 3), all these statements are in fact executed: t = 0.6 # arguments get values as in standard assignments v0 = 3 g = 9.81 return v0*t - 0.5*g*t**2 Inside yfunc, t, v0, and g are local variables, not visible outside yfunc and desroyed after return. Outside yfunc (in the main program), t, v0, and y are global variables, visible everywhere.

```
Test this:

def yfunc(t):
    print '1. local t inside yfunc:', t
    g = 9.8!
    t = 0.1
    print '2. local t inside yfunc:', t
    return v0*t - 0.5*g*t**2

t = 0.6
v0 - 2
print yfunc(t)
print '1. global t:', t
print yfunc(0.3)
print '2. global t:', t
(Visualize execution)

Question

What gets printed?
```

```
Functions can return multiple values

Say we want to compute y(t) and y'(t) = v_0 - gt:

def y func(t, v0):
    g = 9.81
    y = v0*t - 0.5*g*t**2
    dydt = v0 - g*t
    return y, dydt

# call:
position, velocity = y func(0.6, 3)

Separate the objects to be returned by comma, assign to variables separated by comma. Actually, a tuple is returned:

>>> def f(x):
...
return x, x**2, x**4
...
>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type 'tuple'>
>>> x, x^2, x^4 = f(2)
# same syntax as x, y = (obj1, obj2)
```

```
The yfunc(t,v0) function took two arguments. Could implement y(t) as a function of t only:

>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> t = 0.6
>>> yfunc(t)
...
| NameError: global name 'v0' is not defined

Problem: v0 must be defined in the calling program program before we call yfunc!
>>> v0 = 5
>>> yfunc(0.6)
1.2342

Note: v0 and t (in the main program) are global variables, while the t in yfunc is a local variable.
```

Returning errors as well from the L(x, n) function We can return more: 1) the first neglected term in the sum and 2) the error (ln(1+x) - L(x;n)): def L2(x, n): x = float(x) s = 0 for i in range(1, n+1): s += (1.0/i)*(x/(1+x))**i value_of_sum = s first_neglected_term = (1.0/(n+1))*(x/(1+x))**(n+1) from math import log exact_error = log(1+x) - value_of_sum return value_of_sum, first_neglected_term, exact_error # typical call: x = 1.2; n = 100 value, approximate_error, exact_error = L2(x, n)

def somefunc(obj): print obj return_value = somefunc(3.4) Here, return_value becomes None because if we do not explicitly return something, Python will insert return None.

```
Make a table of L(x;n) vs. ln(1 + x):

def table(x):
    print '\nx='\g, ln(1+x)='\g' \nabla (x, log(1+x))
    for n in [1, 2, 10, 100, 500]:
        value, next, error = L2(x, n)
        print '\n=\nabla 4 \nabla - log (next term: \nabla 8 \nabla e '\nabla error: \nabla 2 e '\nabla error: \nabla 2 e '\nabla error: \nabla 8 \nabla e '\nabla error: \nabla 4 \nabla e \nabla error: \nabla 6 \nabla error: \nabla 6 \nabla error: \nabla 6 \nabla error: \nabla 6 \nabla e \nabla error: \nabla 6 \nabla e \nabla error: \nabla 6 \nabla e \nabla error: \nabla 6 \nabla error: \n
```

```
Keyword arguments are useful to simplify function calls and help document the arguments

Functions can have arguments of the form name=value, called keyword arguments:

def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
    print arg1, arg2, kwarg1, kwarg2
```

```
Examples on calling functions with keyword arguments

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2

>>> somefunc('Hello', [1,2])  # drop kwarg1 and kwarg2
Hello [1, 2] True 0  # default values are used

>>> somefunc('Hello', [1,2], kwarg1='Hi')
Hello [1, 2] Hi 0  # kwarg2 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi  # kwarg1 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi', kwarg1=6)
Hello [1, 2] 6 Hi  # specify all args

If we use name=value for all arguments in the call, their sequence
can in fact be arbitrary:
>>> somefunc(kwarg2='Hello', arg1='Hi', kwarg1=6, arg2=[2])
Hi [2] 6 Hello
```

```
How to implement a mathematical function of one variable, but with additional parameteres?

Consider a function of t, with parameters A, a, and \omega:

f(t; A, a, \omega) = Ae^{-at}\sin(\omega t)

Possible implementation

Python function with t as positional argument, and A, a, and \omega as keyword arguments:

from math import pi, exp, sin

def f(t, A-1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2)
v2 = f(0.2, omega=1)
v2 = f(0.2, a)
v3 = f(0.2, a)
v3 = f(0.2, a)
v3 = f(0.2, a)
v4 = f(1.8=6, a=0.1, omega=1, b=1.3)
v5 = f(t=0.2, A=0)
v6 = f(t=0.2, 9)
# illegal: keyword arg before positional
```

Doc strings are used to document the usage of a function

Important Python convention:

Document the purpose of a function, its arguments, and its return values in a doc string - a (triple-quoted) string written right after the function header.

```
def C2F(C):
          """Convert Celsius degrees (C) to Fahrenheit."""
def line(x0, y0, x1, y1):
       Compute the coefficients a and b in the mathematical expression for a straight line y=a*x+b that goes through two points (x0,\ y0) and (x1,\ y1).
       x0, y0: a point on the line (floats).
x1, y1: another point on the line (floats).
return: a, b (floats) for the line (y=a*x*b).
       a = (y1 - y0)/(x1 - x0)

b = y0 - a*x0
       return a. b
```

Convention for input and output data in functions

- A function can have three types of input and output data:
 - input data specified through positional/keyword arguments
 - input/output data given as positional/keyword arguments that will be modified and returned
 - output data created inside the function
- All output data are returned, all input data are arguments

```
def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
    # modify io4, io5, io7; compute o1, o2, o3
    return o1, o2, o3, io4, io5, io7
```

The function arguments are

- pure input: i1, i2, i3, i6
- input and output: io4, io5, io7

The main program is the set of statements outside functions

```
from math import *
                                  # in main
def f(x):
                                  # in main
    e = exp(-0.1*x)
s = sin(6*pi*x)
     return e*s
                                  # in main
y = f(x) # in main
print 'f(%g)=%g' % (x, y) # in main
```

The execution starts with the first statement in the main program and proceeds line by line, top to bottom

def statements define a function, but the statements inside the function are not executed before the function is called.

Python functions as arguments to Python functions

- Programs doing calculus frequently need to have functions as arguments in other functions, e.g.,
 - numerical integration: $\int_a^b f(x) dx$ numerical differentiation: f'(x)
- numerical root finding: f(x) = 0
- All three cases need f as a Python function f(x)

Example: numerical computation of f''(x)

$$f''(x) \approx \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

No difficulty with f being a function (more complicated in Matlab, C, C++, Fortran, Java, ...).

Application of the diff2 function

def g(t): return t**(-6) # make table of g''(t) for 13 h values: for k in range(1,14): h = 10**(-k) print 'h=%.0e: %.5f' % (h, diff2(g, 1, h))

```
Output (g''(1) = 42):
h=1e-01: 44.61504
 h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
 h=1e-05: 41.99999
 h=1e-06: 42.00074
 h=1e-07: 41.94423
 h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
 h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939
```

Round-off errors caused nonsense values in the table

- For $h < 10^{-8}$ the results are totally wrong!
- We would expect better approximations as h gets smaller
- Problem 1: for small h we subtract numbers of approx equal size and this gives rise to round-off errors
- Problem 2: for small h the round-off errors are multiplied by a big number
- Remedy: use float variables with more digits
- Python has a (slow) float variable (decimal.Decimal) with arbitrary number of digits
- ullet Using 25 digits gives accurate results for $h \leq 10^{-13}$
- Is this really a problem? Quite seldom other uncertainies in input data to a mathematical computation makes it usual to have (e.g.) $10^{-2} < h < 10^{-6}$

def f(x): return x**2 - 1 The lambda construction can define this function in one line: f = lambda x: x**2 - 1 In general, somefunct = lambda a1, a2, ...: some_expression is equivalent to def somefunc(a1, a2, ...): return some_expression Lambda functions can be used directly as arguments in function calls: value = someotherfunc(lambda x, y, z: x*y*3*z, 4)

```
Old code:

def g(t):
    return t+*(-6)

dgdt = diff2(g)
    print dgdt

New, more compact code with lambda:
    dgdt = diff2(lambda t: t+*(-6))
    print dgdt
```

```
If tests for branching the flow of statements

Sometimes we want to peform different actions depending on a condition. Example: f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \text{otherwise} \end{cases}
A Python implementation of f needs to test on the value of x and branch into two computations: from math import \sin pi def f(x):

If 0 \le x \le pi:

Teturn 0

Print f(0, 5)

Print f(0, 5)
```

```
Example on multiple branching N(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & x \ge 2 \end{cases}
Python implementation with if-branching \begin{cases} \text{def } N(x): & \text{if } x < 0: & \text{return } 0 \\ & \text{elif } 0 \le x < 1; & \text{return } x < 0: & \text{retu
```

```
Inline if tests for shorter code

A common construction is

if condition:
    variable = value1
else:
    variable = value2

This test can be placed on one line as an expression:
    variable = (value1 if condition else value2)

Example:

def f(x):
    return (sin(x) if 0 <= x <= 2*pi else 0)
```

We shall write special test functions to verify functions

```
def double(x): # some function
return 2*x

def test_double(): # associated test function
x = 4
exact = 8 # expected result from function double
computed = double(x)
success = computed = exact # boolean value: test passed
msg = 'computed %s, expected %s' % (computed, exact)
assert success, msg
```

Rules for test functions:

- name begins with test_
- no arguments
- must have an assert success statement, where success is True if the test passed and False otherwise (assert success, msg prints msg on failure)

Test functions with many tests

```
def double(x):  # some function
    return 2*x

def test_double2():  # test function
    tol = 1E-14  # tolerance for float comparison
    x_values = [3, 7, -2, 0, 4.5, 'hello']
    exact_values = [6, 14, -4, 0, 9, 'helloello']
    for x, exact in zip(x_values, exact_values):
        computed = double(x)
        msg = '\%s != \%s' \% (computed, exact)
        assert abs(exact - computed) < tol, msg

A test function will run silently if all tests pass. If one test above fails, assert will raise an AssertionError.
```

Why write test functions according to these rules?

- Easy to recognize where functions are verified
- Test frameworks, like nose and pytest, can automatically run all your test functions (in a folder tree) and report if any bugs have sneaked in

Terminal> nosetests -s Terminal> pytest -s .

Unit tests

A test function as test_double() is often referred to as a *unit* test since it tests a small unit (function) of a program. When all unit tests work, the whole program is supposed to work.

Summary of if tests and functions

```
If tests:
    if x < 0;
        value = -1
    elif x >= 0 and x <= 1:
        value = x
    else:
        value = 1

User-defined functions:
    def quadratic_polynomial(x, a, b, c)
        value = a*xx + b*x + c
        derivative = 2*a*x + b
        return value, derivative

# function call:
    x = 1
    p, dp = quadratic_polynomial(x, 2, 0.5, 1)
    p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:
    def f(x, A=1, a=1, v=pi):
        return A*exp(-a*x)*sin(v*x)</pre>
```

A summarizing example for Chapter 3; problem

An integral

$$\int_{a}^{b} f(x) dx$$

can be approximated by Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} \left(f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(a+(2i-1)h) + 2 \sum_{i=1}^{n/2-1} f(a+2ih) \right)$$

Problem: make a function Simpson(f, a, b, n=500) for computing an integral of f(x) by Simpson's rule. Call Simpson(...) for $\frac{3}{2}\int_0^\pi \sin^3 x dx$ (exact value: 2) for n=2,6,12,100,500.

The program: function for computing the formula

```
def Simpson(f, a, b, n=500):
    Return the approximation of the integral of f
    from a to b using Simpson's rule with n intervals.
    h = (b - a)/float(n)
    sum! = 0
    for i in range(1, n/2 + 1):
        sum! += f(a + (2*i-1)*h)

sum2 = 0
    for i in range(1, n/2):
        sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
    return integral
```

The program: function, now with test for possible errors def Simpson(f, a, b, n=500): if a > b: print 'Error: a=%g > b=%g' % (a, b) return None # Check that n is even if n % 2 != 0: print 'Error: n=%l is not an even integer!' % n n = n+1 # make n even # as before... ... return integral

```
The program: verification (with test function)

Property of Simpson's rule: 2nd degree polynomials are integrated exactly!

def test_Simpson():  # rule: no arguments
    """Check that quadratic functions are integrated exactly."""
    a = 1.5
    b = 2.0
    n = 8
    g = lambda x: 3*x**2 - 7*x + 2.5  # test integrand
    G = lambda x: x**3 - 3.5*x**2 + 2.5*x # integral of g
    exact = G(b) - G(a)
    approx = Simpson(g, a, b, n)
    success = abs(exact - approx)
    msg = 'exact*/g, approx='g' % (exact, approx)
    assert success, msg

Can either call test_Simpson() or run nose or pytest:

Terminal> pytest -s Simpson.py
Terminal> pytest -s Simpson.py
Ran i test in 0.005s

OK
```

###