부분회귀

만약 회귀분석을 한 후에 새로운 독립변수를 추가하여 다시 회귀분석을 한다면 그 전에 회귀분석으로 구했던 가중치의 값은 변할까 변하지 않을까? 예를 들어 x_1 이라는 독립변수만으로 회귀분석한 결과가 다음과 같다고 하자.

$$y = w_1 x_1 + e$$

이 때 새로운 독립변수 x_2 를 추가하여 회귀분석을 하게 되면 이 때 나오는 x_1 에 대한 가중치 w_1' 가 원래의 w_1 과 같을까 다를까?

$$y = w_1' x_1 + w_2' x_2 + e'$$

답부터 말하자면

일반적으로 w_1' 의 값은 원래의 w_1 의 값과 다르다.

즉. 우리가 종속변수에 영향을 미치는 모든 독립변수를 회귀모형에 포함하지 않는 한 모형의 가중치는 항상 편향된(biased) 값이 된다. 이 사실은 다음과 같이 증명할 수 있다.

독립변수를 X_1, X_2 라는 두 개의 그룹으로 나눈다.

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$

만약 독립변수 X_1 만으로 회귀분석을 하면 가중치 벡터는 다음과 같다.

$$w_1 = (X_1^T X_1)^{-1} X_1^T y$$

여기에 독립변수 X_2 를 추가한 새로운 선형 회귀모형을 생각해 보자.

$$y = \hat{y} + e' = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} w'_1 \\ w'_2 \end{bmatrix} + e'$$

이 식에서 w_1' 과 w_2' 은 두 독립변수를 모두 사용한 새로운 모형의 가중치 벡터이고 e'는 새로운 모형의 잔차 벡터이다. 양변에 X를 곱하여 직교 방정식을 구하면,

$$\begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix} \begin{bmatrix} w_1' \\ w_2' \end{bmatrix} = \begin{bmatrix} X_1^T y \\ X_2^T y \end{bmatrix}$$

부분행렬의 역행렬 공식을 사용하여 이 방정식을 풀면 다음과 같은 공식을 얻을 수 있다.

$$w_1' = (X_1^T X_1)^{-1} X_1^T (y - X_2 w_2')$$

= $(X_1^T X_1)^{-1} X_1^T y - (X_1^T X_1)^{-1} X_1^T X_2 w_2'$

이 값은 독립변수 X_1 만으로 회귀분석을 한 결과와 다르다.

$$w_1' = w_1 - (X_1^T X_1)^{-1} X_1^T X_2 w_2'$$

따라서

새로운 독립변수 그룹 X_2 를 추가해서 다시 회귀분석을 한다면 기존 가중치 벡터의 값이 달라진 다.

- 단. 다음과 같은 경우에는 두가지 회귀분석의 결과가 같을 수 있다.
- (1) $w_2' = 0$. 즉 X_2 와 y의 상관관계가 없는 경우
- (2) $X_1^T X_2 = 0$. 즉 독립변수 X_1 과 독립변수 X_2 가 직교하는 경우. 독립변수 X_1 과 독립변수 X_2 이 서로 상관관계가 없으면 직교할 가능성이 높다.

FWL 정리

프리슈-워-로벨(Frisch-Waugh-Lovell) 정리 혹은 FWL 정리는 위 결과를 다른 방식으로 표현한 것이다.

- (1) 특정한 독립변수 그룹 X_1 로 종속변수 y를 선형 회귀분석하여 잔차 y^* 를 구한다.
- (2) X_1 로 다른 독립변수 x_2 를 선형 회귀분석하여 나온 잔차 x_2^* 를 구한다.
- (3) y^* 를 종속변수로하고 x_2^* 를 독립변수로 하여 선형 회귀분석하여 구한 가중치는 X_1 과 x_2 를 모두 사용하여 y를 선형 회귀분석하였을 때 x_2 에 대한 가중치와 같다.

증명은 다음과 같다. 모든 독립변수를 사용한 회귀분석 모형에서 X_1 에 대한 가중치 벡터 w_1 는 원래 다음 관계에서 구해야 한다.

$$y = \begin{bmatrix} X_1 & x_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + e$$

이 때 직교 방정식은 다음과 같다.

$$\begin{bmatrix} X_1^T X_1 & X_1^T x_2 \\ x_2^T X_1 & x_2^T x_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} X_1^T y \\ x_2^T y \end{bmatrix}$$

이 식의 아랫 부분만 쓰면 다음과 같다.

$$x_2^T X_1 w_1 + x_2^T x_2 w_2 = x_2^T y$$

여기에 앞에서 구했던 w_1 값을 대입하면,

$$w_1 = (X_1^T X_1)^{-1} X_1^T y - (X_1^T X_1)^{-1} X_1^T x_2 w_2$$

이 식을 정리하면

$$x_2^T X_1 (X_1^T X_1)^{-1} X_1^T y - x_2^T X_1 (X_1^T X_1)^{-1} X_1^T x_2 w_2 + x_2^T x_2 w_2 = x_2^T y$$

$$x_2^T (I - X_1 (X_1^T X_1)^{-1} X_1^T) x_2 w_2 = x_2^T (I - X_1 (X_1^T X_1)^{-1} X_1^T) y$$

여기에 X_1 으로 선형 회귀분석하였을 때의 잔차 행렬 M_1

$$M_1 = I - X_1 (X_1^T X_1)^{-1} X_1^T$$

을 적용하면,

$$x_2^T(M_1x_2)w_2 = x_2^T(M_1y)$$

이다. 잔차 행렬의 성질을 이용하면,

$$(M_1x_2)^T(M_1x_2)w_2 = (M_1x_2)^T(M_1y)$$

가 된다.

 M_1x_2 는 X_1 으로 x_2 를 회귀분석한 잔차 벡터이고 M_1y 는 X_1 으로 y를 회귀분석한 잔차 벡터이므로

$$x_2^{*T} x_2^* w_2 = x_2^{*T} y^*$$

따라서 x_2^* 를 독립변수, y^* 를 종속변수로 선형 회귀분석한 결과와 같아진다.

평균 제거 데이터

상수항이 결합된 독립변수 행렬에서 상수항 부분과 다른 부분을 분리하여 생각해보자. 상수항만 사용하여 회귀 분석을 하면 평균을 제거하는 것과 같아진다. 따라서 FWL 정리를 적용하면 다음과 같은 결과를 얻을 수 있다.

독립변수에서 평균을 제거한 데이터와 종속변수에서 평균을 제거한 데이터로 얻은 회귀분석 결과는 상수항을 포함하여 구한 회귀분석 결과와 같다.

평균을 제거한 데이터를 사용하는 경우에는 독립변수에 상수항을 포함하지 않는다는 점에 주의한다.

부분회귀 플롯

독립변수의 갯수가 많을 때 특정한 하나의 독립변수의 영향력을 시각화하는 방법이 부분회귀 플롯(Partial Regression Plot)이다. Added Variable Plot이라고도 한다.

부분회귀 플롯을 그리기 위해서는 3번의 선형 회귀분석을 해야 한다.

- 1. 특정한 독립변수 x_2 를 제외한 나머지 독립변수 X_1 들로 종속변수 y를 선형 회귀분석하여 잔차 y^* 를 구한다.
- 2. 특정한 독립변수 x_2 를 제외한 나머지 독립변수 X_1 들로 특정한 독립변수 x_2 를 선형 회귀분석하여 잔차 x_2^* 를 구한다.
- 3. 잔차 x_7^* 를 독립변수로, 잔차 y^* 를 종속변수로 하여 선형 회귀분석한다.

이렇게 구한 x_3^* , y^* 의 스캐터 플롯과 회귀분석 결과를 나타낸 것이 부분회귀 플롯이다.

보스턴 데이터를 예로 들어보자.

In [1]:

```
from sklearn.datasets import load_boston

boston = load_boston()

dfX0 = pd.DataFrame(boston.data, columns=boston.feature_names)

dfX = sm.add_constant(dfX0)

dfy = pd.DataFrame(boston.target, columns=["MEDV"])

df = pd.concat([dfX, dfy], axis=1)

model_boston = sm.OLS(dfy, dfX)
 result_boston = model_boston.fit()
```

단순하게 AGE라는 독립변수와 MEDV 종속변수간의 관계를 살펴보면 마치 음의 상관관계가 있는 것처럼 보인다.

In [2]:

sns.regplot(x="AGE", y="MEDV", data=df)
plt.show()

statsmodels 패키지의 sm.graphics.plot_partregress 명령을 쓰면 부분회귀 플롯을 그릴 수 있다. 이 때 다른 변수의 이름을 모두 지정해 주어야 한다.

plot_partregress(endog, exog_i, exog_others, data=None, obs_labels=True, ret_coords=False)

• endog: 종속변수 문자열

• exog_i : 분석 대상이 되는 독립변수 문자열

• exog_others: 나머지 독립변수 문자열의 리스트

• data: 모든 데이터가 있는 데이터프레임

• obs_labels:데이터 라벨링 여부

• ret_coords : 잔차 데이터 반환 여부

부분회귀 플롯으로 살펴보면 AGE 변수와 종속변수는 상관관계가 없다는 것을 알 수 있다.

In [3]:

```
others = list(set(df.columns).difference(set(["MEDV", "AGE"])))
p, resids = sm.graphics.plot_partregress(
    "MEDV", "AGE", others, data=df, obs_labels=False, ret_coords=True
)
plt.show()
```


부분회귀 플롯에서 가로축의 값은 독립변수 자체의 값이 아니라 어떤 독립변수에서 다른 독립변수의 영향을 제거한 일종의 "순수한 독립변수 성분"을 뜻한다.

sm.graphics.plot_partregress_grid 명령을 쓰면 전체 데이터에 대해 한번에 부분회귀 플롯을 그릴 수 있다.

result : 회귀분석 결과 객체fig: plt.figure 객체

plot_partregress_grid(result, fig)

```
fig = plt.figure(figsize=(8, 20))
sm.graphics.plot_partregress_grid(result_boston, fig=fig)
fig.suptitle("")
plt.show()
```


CCPR 플롯

CCPR(Component-Component plus Residual) 플롯도 부분회귀 플롯과 마찬가지로 특정한 하나의 변수의 영향을 살펴보기 위한 것이다.

다음과 같은 회귀 모형이 있다고 가정하자.

$$y = \hat{y} + e = w_1 x_1 + w_2 x_2 + \dots + w_i x_i + \dots + w_K x_K + e$$

CCPR 플롯은 이 성분 중에서

- x_i 를 가로축으로
- $w_i x_i + e$ 을 세로축으로

그린 스캐터 플롯이다.

statsmodels 패키지의 sm.graphics.plot_ccpr 명령으로 CCPR 플롯을 그릴 수 있다.

plot_ccpr(result, exog_idx)

• result : 회귀분석 결과 객체

• exog_idx: 분석 대상이 되는 독립변수 문자열

In [5]:

sm.graphics.plot_ccpr(result_boston, "AGE")
plt.show()

CCPR 플롯에서는 부분회귀 플롯과 달리 독립변수가 원래의 값 그대로 나타난다.

마찬가지로 sm.graphics.plot_ccpr_grid 명령을 쓰면 전체 데이터에 대해 한번에 CCPR 플롯을 그릴 수 있다. plot_ccpr_grid 명령은 모든 독립변수에 대해 CCPR 플롯을 그려준다.

plot_ccpr_grid(result, fig)

result : 회귀분석 결과 객체fig: plt.figure 객체

In [6]:

```
fig = plt.figure(figsize=(8, 15))
sm.graphics.plot_ccpr_grid(result_boston, fig=fig)
fig.suptitle("")
plt.show()
```


plot_regress_exog 명령은 부분회귀 플롯과 CCPR을 같이 보여준다.

plot_regress_exog(result, exog_idx)

• result : 회귀분석 결과 객체

• exog_idx : 분석 대상이 되는 독립변수 문자열

In [7]:

```
fig = sm.graphics.plot_regress_exog(result_boston, "AGE")
plt.tight_layout(pad=4, h_pad=0.5, w_pad=0.5)
plt.show()
```

Regression Plots for AGE

