CSCI567 Machine Learning (Fall 2017)

Prof. Fei Sha

U of Southern California

Lecture on Sept. 28, 2017

Outline

- Administration
- Review of last lecture
- 3 SVM Examples
- Decision tree

Outline

- Administration
- Review of last lecture
- SVM Examples
- 4 Decision tree

Administrative stuff

- Homework 2 Released
- Homework 1 Past Due: If you have not applied for Extension, your turn-in is considered late.

Outline

- Administration
- 2 Review of last lecture
- SVM Examples
- 4 Decision tree

Support Vector Machines

Interpretation: maximize the margin

• For separable data

$$\min_{\boldsymbol{w}} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t. $y_n[\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b] \ge 1, \quad \forall \quad n$

• For non-separable data

$$\begin{split} \min_{\boldsymbol{w}} & \quad \frac{1}{2}\|\boldsymbol{w}\|_2^2 + C\sum_n \xi_n \\ \text{s.t.} & \quad y_n[\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b] \geq 1 - \xi_n, \quad \forall \quad n \\ & \quad \xi_n \geq 0, \quad \forall \ n \end{split}$$

where C is our tradeoff (hyper)parameter.

Support Vector Machines

Interpretation: minimize loss

Minimize loss on all data

$$\min_{\boldsymbol{w},b} \sum_{n} \max(0, 1 - y_n[\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b]) + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

equivalently

$$\min_{\boldsymbol{w}, b, \{\xi_n\}} \quad C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

$$\ell^{\text{HINGE}}(f(\boldsymbol{x}), y) = \max(0, 1 - yf(\boldsymbol{x})) \quad \text{s.t.} \quad 1 - y_n[\boldsymbol{w}^{\text{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b] \leq \xi_n, \quad \forall \ n \in \mathbb{N}$$

where all ξ_n are called *slack variables*.

Primal and dual

Primal

Dual

$$\min_{\boldsymbol{w},b,\{\xi_n\}} C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \qquad \max_{\boldsymbol{\alpha}} \sum_{n} \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$
s.t.
$$1 - y_n [\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b] \leq \xi_n, \ \forall \ n$$

$$\xi_n \geq 0, \quad \forall \ n$$

$$\sum_{n} \alpha_n y_n = 0$$

Why we seek dual formulation

- We can kernelize the method by using kernel function in place of inner products
- We can discover interesting structures in solution: support vectors

Geometric interpretation of support vectors

Some α_n will become zero

$$\min_{\alpha} \sum_{n} \alpha_{n} - \frac{1}{2} \sum_{m,n} y_{m} y_{n} \alpha_{m} \alpha_{n} k(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})$$

s.t.
$$0 \le \alpha_n \le C$$
, $\forall n$

$$\sum \alpha_n y_n = 0$$

Nonzero α_n is called support vector

Support vectors are those being circled with the orange line. Removing them will change the solution.

Outline

- Administration
- Review of last lecture
- SVM Examples
 - Simple Example
 - Code Demo
- 4 Decision tree

The following toy problem

idx	x_1	x_2	y
x_1	1	0	1
x_2	-1	0	-1
x_3	2	0	1
x_4	-2	0	-1

Let us use linear kernel to solve the problem

$$k(\boldsymbol{x}_m, \boldsymbol{x}_n) = \boldsymbol{x}_m^{\mathrm{T}} \boldsymbol{x}_n$$

in other words, $\phi(x) = x$.

Guess the solution

Decision boundary by SVM

$$x_1 = 0$$

ie, the vertical axis

ullet Support vectors: $oldsymbol{x}_1$ and $oldsymbol{x}_2$

What is the dual formulation?

Kernel matrix $oldsymbol{x}_m^{\mathbf{T}} oldsymbol{x}_n$

$$\boldsymbol{K} = \begin{pmatrix} 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \\ 2 & -2 & 4 & -4 \\ -2 & 2 & -4 & 4 \end{pmatrix}$$

Dual formulation, by setting $C = +\infty$

$$\max_{\alpha} \sum_{n=1}^{4} \alpha_n - \frac{1}{2} \sum_{m=1, n=1}^{4} y_m y_n \alpha_m \alpha_n K_{mn}$$

s.t.
$$0 \le \alpha_1 \le +\infty$$

 $0 \le \alpha_2 \le +\infty$
 $0 \le \alpha_3 \le +\infty$
 $0 \le \alpha_4 \le +\infty$
 $0 \le \alpha_4 \le +\infty$
 $\alpha_1 y_1 + \alpha_2 y_2 + \alpha_3 y_3 + \alpha_4 y_4 = 0$

Simplify a bit

$$\min_{\alpha} \frac{1}{2} \sum_{m=1, n=1}^{4} y_m y_n \alpha_m \alpha_n K_{mn} - \sum_{n=1}^{4} \alpha_n$$

s.t.
$$0 \le \alpha_1$$

$$0 \le \alpha_2$$

$$0 \le \alpha_3$$

$$0 \le \alpha_4$$

$$\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 = 0$$

Intuition (due to symmetry

$$\alpha_1=\alpha_2$$
 and $\alpha_3=\alpha_4$

Note that the linear equality in the constraint is automatically satisfied now.

Putting the value of the kernel matrix in

$$\begin{aligned} & \min_{\alpha_1,\alpha_3} & 2(\alpha_1^2 + 4\alpha_1\alpha_3 + 4\alpha_3^2 - \alpha_1 - \alpha_3) \\ & \text{s.t.} & 0 \leq \alpha_1 \\ & 0 \leq \alpha_3 \end{aligned}$$

The objective function is (after removing the prefactor of 2)

$$\left(\alpha_1 + 2\alpha_3 - \frac{1}{2}\right)^2 - \frac{1}{4} + \alpha_3 \ge \alpha_3 - \frac{1}{4}$$

How to solve α_1 and α_3 ?

Since α_3 is always nonnegative, thus, to minimize the objective function, we have to set

$$\alpha_3 = 0$$

and set

$$\alpha_1 = \frac{1}{2}$$

We have shown now

$$\alpha_1 = \alpha_2 = 1/2, \quad \alpha_3 = \alpha_4 = 0$$

- ullet Namely, $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are support vectors
- x_3 and x_4 are removable without changing solution obviously from the graph!
- ullet x_1 and x_2 contribute equally intuitively true too!

$$w = \sum_{n} \alpha_n y_n \phi(x_n) = \frac{1}{2} (x_1 - x_2) = (1 \ 0)^T$$

Thus, the decision boundary $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x})+b=0$ is

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b = x_1 = 0$$

(I will leave out as an exercise to show b = 0).

Importance of support vectors

If we remove them, say x_2

and obviously the optimal decision boundary changes (to the dashed line)

Demo of SVM

- Binary classification problem
- Nonlinear kernel

$$k(\boldsymbol{x}_m, \boldsymbol{x}_n) = e^{-\|\boldsymbol{x}_m - \boldsymbol{x}_n\|_2^2/2\sigma^2}$$

Outline

- Administration
- Review of last lecture
- SVM Examples
- Decision tree
 - Examples
 - Algorithm

Many decisions are tree structures

Medical treatment

Salary in a company

What is a Tree?

Special Names for Nodes in a Tree

A tree partitions the feature space

Learning a tree model

Three things to learn:

- The structure of the tree.
- 2 The threshold values (θ_i) .
- The values for the leafs (A, B, \ldots) .

A tree model for deciding where to eat

Choosing a restaurant

(Example from Russell & Norvig, AIMA)

Example	Attributes									Target	
Literapie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	<i>T</i>	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	<i>T</i>	F	<i>T</i>	T	Full	\$	F	F	Thai	10–30	T
X_5	<i>T</i>	F	<i>T</i>	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	<i>T</i>	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	<i>T</i>	F	Full	\$	T	F	Burger	>60	F
X_{10}	<i>T</i>	T	<i>T</i>	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	<i>T</i>	T	Full	\$	F	F	Burger	30–60	T

Classification of examples is positive (T) or negative (F)

First decision: at the root of the tree

Which attribute to split?

Patrons? is a better choice—gives information about the classification

Idea: use information gain to choose which attribute to split

How to measure information gain?

Idea:

Gaining information reduces uncertainty

Use to entropy to measure uncertainty

If a random variable X has K different values, a_1 , a_2 , ... a_K , it is entropy is given by

$$H[X] = -\sum_{k=1}^{K} P(X = a_k) \log P(X = a_k)$$

the base can be 2, though it is not essential (if the base is 2, the unit of the entropy is called "bit")

Examples of computing entropy

Entropy

Which attribute to split?

Patrons? is a better choice—gives **information** about the classification

Patron vs. Type?

By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie, smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of 1 bit.

Thus, we choose Patron over Type.

Uncertainty if we go with "Patron"

For "None" branch

$$-\left(\frac{0}{0+2}\log\frac{0}{0+2} + \frac{2}{0+2}\log\frac{2}{0+2}\right) = 0$$

For "Some" branch

$$-\left(\frac{4}{4+0}\log\frac{4}{4+0}+\frac{4}{4+0}\log\frac{4}{4+0}\right)=0$$

For "Full" branch

$$-\left(\frac{2}{2+4}\log\frac{2}{2+4} + \frac{4}{2+4}\log\frac{4}{2+4}\right) \approx 0.9$$

For choosing "Patrons"

weighted average of each branch: this quantity is called conditional entropy

$$\frac{2}{12} * 0 + \frac{4}{12} * 0 + \frac{6}{12} * 0.9 = 0.45$$

Conditional entropy

Definition. Given two random variables X and Y

$$H[Y|X] = \sum_{k} P(X = a_k)H[Y|X = a_k]$$

In our example

X: the attribute to be split

Y: Wait or not

When H[Y] is fixed, we need only to compare conditional entropy

Relation to information gain

$$GAIN = H[Y] - H[Y|X]$$

Conditional entropy for Type

For "French" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1}+\frac{1}{1+1}\log\frac{1}{1+1}\right)=1$$

For "Italian" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1} + \frac{1}{1+1}\log\frac{1}{1+1}\right) = 1$$

For "Thai" and "Burger" branches

$$-\left(\frac{2}{2+2}\log\frac{2}{2+2} + \frac{2}{2+2}\log\frac{2}{2+2}\right) = 1$$

For choosing "Type"

weighted average of each branch:

$$\frac{2}{12} * 1 + \frac{2}{12} * 1 + \frac{4}{12} * 1 + \frac{4}{12} * 1 = 1$$

Type?

Burger

00

next split?

00000 Patrons? Some 0000

We will look only at the 6 instances with Patrons == Full

rations — ruii												
Example	Attributes								Target			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	Т	F	F	T	Some	\$\$\$	F	T	French	0–10	T	
X_2	Т	F	F	T	Full	\$	F	F	Thai	30–60	F	
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	T	
X_4	Т	F	T	T	Full	\$	F	F	Thai	10–30	T	
X_5	Т	F	T	F	Full	\$\$\$	F	T	French	>60	F	
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T	
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F	
X_8	F	F	F	Τ	Some	<i>\$\$</i>	T	T	Thai	0–10	T	
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F	
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F	
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F	
X_{12}	Т	T	T	T	Full	\$	F	F	Burger	30–60	T	
	X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}										$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Classification of examples is positive (T) or negative (F)

Do we split on "Non" or "Some"?

No, we do not

The decision is deterministic, as seen from the training data

Greedily we build the tree and get this

How deep should we continue to split?

We should be very careful about this

Eventually, we can get all training examples right. But is that what we want?

The maximum depth of the tree is a hyperparameter and should not be tuned by training data — this is to prevent overfitting (we will discuss later)

Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly.

More importantly, how do we classify a new instance?

We label the leaves of this smaller tree with the majority of training samples' labels

Example

Example

We stop after the root (first node)

Splitting and Stopping Criteria

For every leaf m, define the node impurity $\mathcal{Q}(m)$ as:

$$\begin{array}{ll} \text{Misclassification error} & \frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk}. \\ \text{Gini Index} & \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}). \\ \text{Cross-entropy} & - \sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}. \end{array}$$

The **Misclassification Error** is less sensitive to changes in class probability:

- \Rightarrow Use Gini Index or Cross-entropy for growing T_0 ,
- \Rightarrow Use Misclassification Error for pruning T_0 and finding T.

Summary of learning trees

Other ideas in learning trees

- There are other ways of splitting attributes, such as Gini index.
- There are other fast ways of learning tree models.
- There are approaches of learning an ensemble of tree models (more on this later)

Advantages of using trees

- The models are transparent: easily interpretable by human (as long as the tree is not too big)
- It is parametric thus compact: unlike NNC, we do not have to carry our training instances around