Traitement de la géométrie : décomposition de maillages en variétés topologiques Spécifications

BARROSO Laura, BOUYRIE Martin, EGNER Sébastien

Encadrant : Nicolas MELLADO

Clients: Nicolas MELLADO, Loïc BARTHE

Sommaire

- Définition du besoin
- 2. Contexte
- 3. Exigences fonctionnelles
 - a. Présentation des différentes exigences fonctionnelles
 - b. Priorité des exigences fonctionnelles
 - c. Validation des fonctionnalités
- 4. Vue générale du système
- 5. Modules
- 6. Planning et diagramme de Gantt
- 7. Choix, dépendances et risques
- 8. Évolutions envisagées

Définition du besoin

Corriger les singularités topologiques d'une surface

Contexte

Contraintes:

- Utilisation de Radium Engine
- Code en C++
- Application préférablement cross-platform (Linux, macOS, Windows)
- Gitlab

Recette à rendre le 25 février (application et site Web)

Exigences fonctionnelles

• Importation et exportation des surfaces sous plusieurs formats de fichiers

Interface utilisateur

Visualisation des surfaces

Interface Web

Exigences fonctionnelles

Fonction	Description	Priorité
FP1	Importer des surfaces d'entrée	Forte
FP2	Spécifier les différents paramètres via une interface	Moyenne
FP3	Exporter les surfaces résultantes	Forte
FO1	Visualiser les surfaces	Faible
FO2	Utiliser une interface Web	Faible

FP = Fonction Principale

FO = Fonction Optionnelle

Exigences fonctionnelles

Fonction	Objectif à remplir pour la validation		
FP1	L'utilisateur pourra charger ses surfaces à partir des formats de fichiers les plus répandus, tels que le OBJ, PLY, ou encore OFF.		
FP2	L'utilisateur pourra spécifier les approches à utiliser pour la phase de cutting et stitching, ainsi que les options d'importation et d'exportation.		
FP3	L'utilisateur pourra sauvegarder la surface résultante sous les formats de fichiers sous les formats de fichiers les plus répandus.		
FO1	L'utilisateur pourra visualiser la surface résultante dans un environnement 3D, sous différents angles et selon différents éclairages.		
FO2	L'utilisateur sera en mesure de convertir ses surfaces directement depuis une interface Web.		

Vue générale du système

Modules

- Cutting
 - o approches locale et globale

- Stitching
 - approches pinching et snapping

IHM

Sérialisation

Planning

- Processus Itératif
- Lien avec l'emploi du temps :
 - 2 jours consacrés par semaine à partir du 11/01/2021
 - 3 semaines consacrées à partir du 01/02/2021
- Place importante de la réalisation du projet au mois de Février
- Démarrage du projet, Fonctions utilitaires, Mise en place de l'espace de travail à partir de mi-janvier

Diagramme de Gantt

Choix

- Division du travail en deux grandes étapes
- Etape 1 : Résultat
 - Cutting Global
 - Stitching Pinching
- Etape 2 : Résultat
 - Cutting Local
 - Stitching Snapping

Dépendances

- Cutting:
 - Éliminer les "degenerates faces"
 - Marquage singularités topologiques
- Stitching:
 - Cutting

Matrice des risques

Risque	Probabilité	Impact	Prévention	Solution
Abandon d'un membre du projet	10%	Important	Suivi écrit de nos modifications et implémentations	Reprise des modifications et implémentations par un ou plusieurs membres de l'équipe
Fonctions de prétraitement non fonctionnelles	10%	Important	S'attarder sur les tests de celles-ci	Reprise des fonctions
Prise en main difficile de Radium et OpenMesh	50%	Important	Lire la documentation et faire des tests	Lire la documentation et faire des tests, Demande d'aide à l'encadrant
Retard sur le planning et circonstances inattendues	80%	Moyen	Maintenir le planning, avance continue du projet et bonne répartition des tâches	Organisation prévoyante et réaction rapide, Abandon des fonctionnalités optionnelles
Perte de données	30%	Moyen	Sauvegarder régulièrement les versions, garder des traces	Recommencer le bout de code manquant
Mauvaise répartition des tâches et manque de communication	25%	Moyen	Réunion de groupe récurrentes	Mise en commun et adaptabilité des membres à aider un autre membre sur une tâche

Evolutions envisagées

Interface web avec Docker

Intégration à Radium

Merci de votre attention...

Des questions?