

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES

Enero de 2020 - Examen de teoría A

Apellidos y nombre:	Grupo:
TEST (2 puntos): Cada 3 respuestas incorrectas resta 1 respuesta co	orrecta del test.

- 1. En relación a TCP/IP, qué afirmación es incorrecta:
 - a) El modelo de referencia TCP/IP es independiente de la tecnología de la red subyacente
 - b) En TCP/IP al igual que en el modelo OSI hay comunicación real y virtual
 - c) En la capa de transporte los protocolos TCP ó UDP implican interacciones salto a salto.
 - d) En la capa de red el protocolo IP es no orientado a conexión.
- 2. Cuando un cliente (a través de un resolver local) solicita una resolución de nombres a su servidor puede ocurrir que (señale la respuesta verdadera):
 - a) El servidor no tenga autoridad sobre la zona en la que se encuentra el nombre solicitado, pero lo tiene en la cache y por tanto nos devuelve una respuesta sin autoridad.
 - b) El servidor no conozca la respuesta y termina la petición, devolviendo como respuesta un mensaje de error.
 - Que el servidor no conozca la respuesta y pregunte al servidor autoridad de la zona en la que se encuentra el nombre solicitado.
 - d) El servidor tenga autoridad sobre la zona en la que se encuentra el nombre solicitado y responda obteniendo de su cache la respuesta correspondiente al nombre solicitado.
- 3. El protocolo HTTP (señale la respuesta verdadera):
 - a) Es state-less, no orientado a texto y puede ser persistente
 - b) Es state-full, orientado a texto y puede ser no persistente
 - c) Es state-less, orientado a texto y puede ser persistente
 - d) Es state-full, no orientado a texto y puede ser no persistente
- 4. El tiempo de transmisión (señale la respuesta verdadera):
 - a) Se mide en metros por segundo, depende de cada salto, no depende del número de bits a transmitir
 - b) Se mide en metros por segundo, depende de cada salto, depende del número de bits a transmitir
 - c) Se mide en bits por segundo, depende de la distancia, no depende del número de bits a transmitir
 - Se mide en bits por segundo, depende de cada salto, depende del número de bits a transmitir
- 5. En Internet (señale la respuesta verdadera)
 - a) El puerto origen para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino si cambian en la ruta, las direcciones físicas no cambian salto a salto
 - El puerto destino para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino no cambian en la ruta, las direcciones físicas cambian salto a salto
 - El puerto origen para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino no cambian en la ruta, las direcciones físicas no cambian salto a salto
 - El puerto destino para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino cambian en la ruta, las direcciones físicas cambian salto a salto

6. ¿Cuál es la dirección de broadcast (difusión) en la red 192.168.1.0/25?

- a) 192.168.1.192
- b) 192.168.255.255
- c) 192.168.1.127
- d) 192.168.1.0

7. Dado el siguiente esquema de red con la asignación de direcciones que se muestra, ¿cuáles serían las direcciones de red de cada subred?

a) Subred A: 172.16.0.0/16 y B:192.168.100.0/24

b) Subred A: 172.16.0.0/24 y B:192.168.100.0/22

c) Subred B: 172.16.0.0/16 y A:192.168.100.0/24

d) Subred A: 172.16.0.0/24 y B:192.168.100.0/24

8. En el control de congestión TCP Tahoe (señale la respuesta verdadera)

- a) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a 1 MSS y que el valor de dicho time-out se duplica
- b) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a la mitad y que el valor de dicho time-out se duplica
- c) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a la mitad y que el valor de dicho time-out se actualiza con el RTT (Round Trip Time) actual
- d) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a 1 MSS y que el valor de dicho time-out se actualiza con el RTT (Round Trip Time) actual
- 9. En caso de una fragmentación en IP
 - a) Los fragmentos se ensamblan en siguiente *router*, , usando el campo comprobación (check-sum) y TTL
 - b) Los fragmentos se ensamblan en siguiente *router*, usando el campo offset (desplazamiento) y MF
 - c) Los fragmentos se ensamblan en el host destino, usando el campo offset (desplazamiento) y MF
 - d) Los fragmentos se ensamblan en el host destino, usando el campo comprobación (check-sum) y TTL
- 10. En el control de errores en TCP
 - a) Se usan confirmaciones (ACK) negativas y acumulativas, el campo puntero del segmento y se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - b) Se usan confirmaciones (ACK) positivas y no acumulativas, el campo puntero del segmento y no se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - c) Se usan confirmaciones (ACK) negativas y acumulativas, el campo secuencia del segmento y no se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - d) Se usan confirmaciones (ACK) positivas y acumulativas, el campo secuencia del segmento y se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino

RESPUESTAS:

1	2	3	4	5	6	7	8	9	10

Apellidos y nombre:	Grupo:
---------------------	--------

1. *(1 pto)* Explique el servicio de correo electrónico, incluyendo las entidades y protocolos implicados, así como las debilidades más relevantes en el envío de correo entre dominios distintos.

Apellidos y nombre:	Grupo:
---------------------	--------

- 3. (1 pto) Al inicio de una conexión TCP, en una línea sin congestión con 10 ms de tiempo de propagación y 10 Mbps de velocidad de transmisión, ¿cuánto tiempo se emplea en enviar y recibir confirmación de 20 KB con las siguientes asunciones (añada cualquier asunción adicional que crea conveniente)? Realice el diagrama de tiempos de la transmisión.
 - a) Ventana ofertada de control de flujo de 12 KB continuada.
 - b) Inicio lento configurado para comenzar a 2MSS
 - c) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - d) Umbral de congestión de 8 KB

Respuesta ACK retardada en el receptor de acuerdo a la teoría.

4. (2 pto) Dada la topología de la siguiente imagen, asigne las direcciones de red a las diferentes subredes y complete las tablas de encaminamiento para los routers R1 y R3. Hágalo considerando como criterio de optimización el menor número de entradas en las tablas de encaminamiento.

Test

	1	2	3	4	5	6	7	8	9	10
Tipo A	C	A	C	D	B	C	D	A	C	D
Tipo B	A	C	C	B	D	C	D	c	A	D
Tipo C	D	B	В	A	C	B	C	В	D	B
Tipo D	B	D	B	D	A	B	C	D	B	C

- es dear 300PCs. Por tanto necessarios trabajar con 123, que nos permite direccionar hasta 512-2'=510 direcciones.
- existér varia soluciones.
- Tablas de Rs y Rs ya reducidas y optimizadas an Ni de entradas

(RI) DO	M	53	(P3)	DD	M	22
192.168.16.0	123	-		142.168.16.0	123	
200.100.206.0	130	(10.0)		192,168, 8,0	123	
192,168, 0,0	121	197,168,16.7 (R2)		192.168.0.0	121	192.68.16.2(12)
192,168,18.0	123	(92.68.16.3(R3)		192 168 - 18.0	/23	(92.168.16.4.(124)
0, 0, 0,0	10	200.200.2002. LINI		192. 168.14.0	123	192.168.12.2(N8) 192.168.8.1 (R7)
				(92.168.10.0	123	(92.168.16.1 (R))

- es deux 300 PCs. Por tanto necessaros trabajar con /23, que nos permite direccioner haste 512-2'=510 direcciones.
- existér varia soluciones. Para el Resto de Redes usamos 124.
- Tablas de Rs y Rs ya reducidas y optimizadas en N: de entradas

192.168.10.0 200.100.200.0 192.168.0.0	124 130 122 122	192.168.10.2 (122)	193 DD 192.168.18.0 192.168.4.0 192.168.4.0	124 124 124 122	
192.168.8.0	123 10	(92.68.10.3(R3) 192.68.10:4 (R4) 200.200-2002.(Thi)	192. 168. 81.0 192. 168. 4.0 (92.168. 7.0	124 124 124	192.168.10.4.(124)