

FIG. 1A

	Atom	Туре	Resid	#	<u>x</u>	$\overline{\lambda}$	$\underline{\mathbf{z}}$	<u>0cc</u>	B
ATOM	1	CB	VAL	44	-1.554	11.775	58.841	1.00	44.68
ATOM	2	CG1		44	-0.373	12.518	59.504	1.00	41.59
ATOM	3		VAL	44	-2.770	12.693	58.662	1.00	38.80
ATOM	4	C	VAL	44	-0.036	11.928	56.766	1.00	45.09
MOTA	5	0	VAL	44	0.936	11.355	56.264	1.00	41.95
MOTA	6	N	VAL	44	-0.692	9.711	57.661	1.00	46.59
ATOM	7	CA.	VAL	44	-1.140	11.123	57.467	1.00	45.20
ATOM	8	N	ASP	45	-0.196	13.252	56.744	1.00	45.56
MOTA	9	CA	ASP	45	0.749	14.177	56.127	1.00	46.19
ATOM	10	CB	ASP	45	0.318	15.615	56.445	1.00	50.81
ATOM '	11	CG	ASP	45	0.477	16.559	55.257	1.00	54.31
MOTA	12	OD1	ASP	45	1.579	16.604	54.657	1.00	54.34
ATOM	13	OD2	ASP	45	-0.504	17.269	54.936	1.00	53.14
MOTA	14	C	ASP	45	2.222	13.969	56.530	1.00	45.23
ATOM	15	0	ASP	45	3.125	14.433	55.832	1.00	41.27
ATOM	16	N	ASN	46	2.459	13.286	57.654	1.00	44.70
ATOM	17	CA	ASN	46	3.816	13.018	58.127	1.00	40.32
ATOM	18	CB	ASN	46	3.821	12.654	59.616	1.00	44.41
ATOM ·	19	ÇG	ASN	46	2.903	11.483	59.953	1.00	48.13
ATOM	20	OD1	ASN ·	46	2.249	10.903	59.080	1.00	51.07
MOTA	21	ND2	ASN	46	2.836	11.147	61.233	1.00	47.12
MOTA	.22	С	ASN	46	4.511	11.933	57.311	1.00	37.04
ATOM	23	0	ASN	46	5.742	11.873	57.257	1.00	33.54
MOTA	24	N	GLN	47	3.715	11.069	56.690	1.00	31.75
MOTA	25	CA	GLN	47	4.253	10.008	55.855	1.00	32.28
ATOM	26	CB	GLN	47	3.180	8.964	55.586	1.00	32.94
ATOM	27	CG	GLN	47	2.635	8.292	56.827	1.00	35.16
ATOM	28	CD	GLN	47	1.600	7.245	56.492	1.00	37.29
MOTA	29	OE1	GLN	47	0.412	7.411	56.777	1.00	39.51
ATOM	30	NE2		47	2.042	6.161	55.861	1.00	38.10
ATOM	31	C	GLN	47	4.720	10.608	54.527	1.00	32.61
ATOM	32	0	GLN	47	5.560	10.031	53.823	1.00	34.45
MOTA	33	N	PHE	48	4.156	11.770	54.202	1.00	30.02
ATOM	34	CA	PHE	48	4.458	12.503	52.977	1.00	24.00
ATOM	35	CB	PHE	48	3.173	13.045	52.364	1.00	19.63
ATOM	36	CG	PHE	48	2.188	11.982	51.986	1.00	23.41
ATOM	37	CD1	PHE	48	1.336	11.442	52.942	1.00	18.66
MOTA	38	CD2	PHE	48	2.089	11.541	50.664	1.00	23.94
MOTA	39	CE1	PHE	48	0.391	10.471	52.596	1.00	20.60
MOTA	40	CE2	PHE	48	1.149	10.569	50.294	1.00	18.66
MOTA	41	CZ	PHE	48	0.292	10.032	51.266	1.00	23.76
MOTA	42	C	PHE	48	5.387	13.682	53.235	1.00	22.48
MOTA	43	0	PHE	48	5.876	13.876	54.346	1.00	27.78
MOTA	44	N	TYR	49	5.659	14.434	52.173	1.00	19.53
MOTA	45	CA	TYR	49	6.493	15.620	52.225		15.88
MOTA	46	CB	TYR	49	7.939	15.255	52.551	1.00	11.81
MOTA	47	CG	TYR	49	8.848	14.994	51.384	1.00	16.74
ATOM	48	CD1	TYR	49	9.885	15.869	51.093	1.00	21.41
MOTA	49	CE1	TYR	49	10.800	15.595	50.073	1.00	22.47
ATOM	50		TYR	49	8.735	13.837	50.622	1.00	20.14
MOTA	51	CE2	TYR	49	9.653	13,555	49.594	1.00	20.86
MOTA	52	CZ	TYR	49	10.681	14.436	49.332	1.00	22.92
ATOM	53	OH	TYR	49	11.617	14.156	48.361	1.00	25.56
MOTA	54	C	TYR	49	6.376	16.346	50.892	1.00	20.03
MOTA	55	0	TYR	49	6.214	15.715	49.847	1.00	21.71
MOTA	56	N	SER	50	6.441	17.673	50.934	1.00	18.79
ATOM	57	CA	SER	50	6.301	18.486	49.733	1.00	14.86

FIG. 1B

				50		5.456	19.723	50.017	1.00	15.67
ATOM	58	CB	SER	50 50		4.087	19.725	50.146	1.00	17.38
MOTA	59	OG	SER	50 50		7.577	18.909	49.048	1.00	18.39
ATOM	60	C	SER	50 50		8.606	19.149	49.685	1.00	18.03
ATOM	61	0	SER VAL	5 1		7.494	18.983	47.723	1.00	23.30
ATOM	62	N	VAL	51		8.614	19.396	46.894	1.00	27.03
ATOM	63	CA	VAL	51		9.213	18.217	46.082	1.00	27.90
ATOM	64	CB	VAL	51		10.674	18.504	45.755	1.00	30.77
ATOM	65	CG1 CG2	VAL	51		9.088	16.907	46.852	1.00	31.13
ATOM	66		VAL	51		8.104	20.459	45.931	1.00	27.87
MOTA	67 68	С 0	VAL	51		6.958	20.400	45.476	1.00	29.93
MOTA	69	И	GLU	52		8.930	21.468	45.672	1.00	29.63
ATOM	70	CA	GLU	52 52		8.543	22.538	44.757	1.00	27.26
ATOM	71	CB	GLU	52		9.072	23.897	45.221	1.00	29.95
MOTA	72	CG	GLU	52		8.638	25.037	44.300	1.00	36.89
ATOM	73	CD	GLU	52		9.302	26.360	44.619	1.00	39.00
ATOM	73 74	OE1	GLU	52		8.691	27.156	45.363	1.00	41.58
MOTA	7 5			52		10.421	26.602	44.112	1.00	35.61
MOTA	76	C	GLU	52		9.072	22.253	43.367	1.00	22.35
ATOM ATOM	77	ō	GLU	52		10.276	22.284	43.135	1.00	25.69
MOTA	78	И	VAL	53		8.167	21.946	42.450	1.00	20.71
ATOM	78 79	CA	VAL	53		8.533	21.672	41.070	1.00	22.02
MOTA	80	CB	VAL	53		8.191	20.215	40.679	1.00	21.57
ATOM	81		VAL	53		8.531	19.970	39.223	1.00	24.78
ATOM	82		VAL	53	٠	8.968	19.238	41.558	1.00	24.81
MOTA	83	C	VAL	53		7.819	22.668	40.148	1.00	23.76
ATOM	84	Õ	VAL	53		6.686	22.434	39.700	1.00	24.98
ATOM	85	N	GLY	54		8.471	23.803	39.909	1.00	15.00
ATOM	86	CA	GLY	54		7.892	24.820	39.057	1.00	12.96
ATOM	87	C	GLY	54		6.635	25.424	39.651	1.00	12.55
ATOM	88	ō	GLY	54		6.643	25.866	40.789	1.00	16.27
ATOM	89	N	ASP	55		5.557	25.462	38.870	1.00	18.77
ATOM	90	CA	ASP	55		4.285	26.024	39.335	1.00	19.62
ATOM	91	CB	ASP	55		3.300	26.271	38.176	1.00	23.42
ATOM	92	CG	ASP	55		3.773	27.322	37.175	1.00	28.63
ATOM	93		ASP	55		4.643	28.158	37.505	1.00	29.48
ATOM	94		ASP	55		3.232	27.317	36.045	1.00	24.85
ATOM	95	C	ASP	55		3.607	25.044	40.261	1.00	17.02
ATOM	96	0	ASP	55		2.596	25.368	40.876	1.00	18.70
ATOM	97	N	SER	56		4.128	23.823	40.288	1.00	19.63
ATOM	98	CA	SER	56		3.560	22.747	41.086	.1.00	20.49
ATOM	99	CB	SER	56		3.424	21.502	40.197	1.00	19.15
ATOM	100	OG	SER	56		2.680	21.805	39.034	1.00	21.54
MOTA	101	C	SER	56		4.283	22.372	42.380	1.00	14.16
ATOM	102	0	SER	56		5.471	22.639	42.565	1.00	10.18
MOTA	103	N	THR	57		3.533	21.754	43.281	1.00	11.32
MOTA	104	CA	THR	. 57	•	4.083	21.282	44.539	1.00	15.55
ATOM	105	CB	THR	57		3.360	21.910	45.778	1.00	15.32
MOTA	106	OG:	LTHR	57		3.485	23.339	45.751	1.00	17.52
ATOM	107	CG	2 THR	57		3.965	21.395	47.065	1.00	8.74
ATOM	108	C	THR	57		3.860	19.770	44.550	1.00	11.87
ATOM	109	0	THR	57		2.720	19.307	44.476	1.00	8.37
ATOM	110	N	PHE	58		4.945	19.006	44.542	1.00	9.07
ATOM	111	CA	PHE	58		4.836		44.592	1.00	15.67
ATOM	112		PHE	58		5.958			1.00	20.52
MOTA	113		PHE	58		5.601			1.00	25.17
ATOM	114		1 PHE	58		5.240			1.00	29.63
ATOM	115		2 PHE	58		5.631			1.00	29.62
MOTA	116		1 PHE	58.	•	4.914	17.411	40.160	1.00	31.71

FIG. 1C

ATOM	117	CE2	PHE	58	5.309	15.058	40.510	1.00	24.12
ATOM	118	CZ	PHE	58	4.949	16.104	39.663	1.00	25.51
MOTA	119	C	PHE	58	4.851	17.031	46.029	1.00	15.98
MOTA	120	0	PHE	58	5.895	17.015	46.684	1.00	13.06
ATOM	121	N	THR	59	3.676	16.667	46.531	1.00	18.04
MOTA	122	CA	THR	_. 59	3.524	16.115	47.878	1.00	16.76
MOTA	123	CB	THR	59	2.194	16.572	48.489	1.00	22.41
MOTA	124		THR	59	2.113	18.003	48.419	1.00	26.00
MOTA	125	CG2	THR	59	2.080	16.134	49.939	1.00	24.02
ATOM	126	С	THR	59	3.584	14.575	47.792	1.00	12.75
MOTA	127	0	THR	. 59	2.572	13.904	47.586	1.00	6.67
MOTA	128	N.	VAL	60	4.783	14.020	47.938	1.00	12.07
ATOM	129	CA	JAV	60	4.975	12.572	47.821	1.00	16.39
ATOM	130	CB	VAL	60	5.977	12.234	46.675	1.00	9.02
MOTA	131		VAL	60	5.416	12.643	45.336	1.00	11.33 2.00
MOTA	132		VAL	60	7.307	12.913	46.914	1.00	20.62
MOTA	133	C	LAV	60	5.435	11.813	49.076	1.00	
MOTA	134	0	VAL	60	5.896	12.397	50.057	1.00	24.40
ATOM	135	N	LEU	61	5.317	10.491	49.015	1.00	18.08
ATOM	136	CA	LEU	61	5.736	9.632	50.111	1.00	14.84
MOTA	137	CB	LEU	61	5.429	8.166	49.790	1.00	12.15
MOTA	138	CG	LEU	61	3.962	7.752	49.646	1.00	10.77 8.34
ATOM	139		LEU	61	3.888	6.332	49.096	1.00	5.08
MOTA	140		LEU	61	3.265	7.851	50.981	1.00	13.78
ATOM	141	C	LEU	61	7.235	9.799	50.292	1.00 1.00	15.00
MOTA	142	0	LEU	61	7.968	9.936	49.318	1.00	13.56
ATOM	143	N	LYS	62	7.683	9.750	51.541	1.00	11.45
MOTA	144	CA	LYS	62	9.088	9.903	51.888	1.00	18.13
MOTA	145	CB	LYS	62	9.232	9.898	53.408 54.072	1.00	25.67
MOTA	146	CG	LYS	62	8.642	11.124	55.587	1.00	33.51
MOTA	147	CD	LYS	62	8.801	11.061	56.243	1.00	35.54
ATOM	148	CE	LYS	62	8.556	12.419	57.734	1.00	42.33
ATOM	149	NZ	LYS	62	8.729	12.377	51.253	1.00	7.12
ATOM	150	C	LYS	62	10.068	8.918	51.362	1.00	4.58
MOTA	151	0	LYS	62	11.291	9.085	50.610	1.00	11.02
ATOM	152	N	ARG	63	9.540	7.882	49.942	1.00	10.76
MOTA	153	CA	ARG	63	10.382	6.884	49.667	1.00	9.20
MOTA	154	CB	ARG	63	9.583	5.598	48.797	1,00	10.52
MOTA	155	CG	ARG	63	8.343	5.763 4.449	48.599	1.00	13.21
MOTA	156	CD	ARG	63	7.573		47.986	1.00	9.08
ATOM	157	NE	ARG	63	8.381	3.390 2.244	47.514	1.00	8.35
ATOM	158	CZ	ARG	63	7.891	1.982	47.569	1.00	4.31
ATOM	159		ARG	63	6.594	1.344	46.992	1.00	6.68
MOTA	160		ARG	63	8.710		48.637	1.00	8.74
MOTA	161	C	ARG	63	10.943	7.453 7.115	48.229	1.00	7.79
ATOM	162	0	ARG	63	12.047		48.034	1.00	9.03
ATOM	163	N	TYR	64	10.193	8.367 9.010	46.786	1.00	11.96
MOTA	164	CA	TYR	64	10.570		46.068	1.00	7.77
MOTA	165	CB	TYR	64	9.301	9.451	45.771	1.00	2.00
ATOM	166	CG	TYR	64	8.389 8.878	8.297 7.155	45.151	1.00	2.00
MOTA	167	CD1		64		6.074	44.883	1.00	2.11
MOTA	168	CE1		64	8.058	8.328	46.120	1.00	2.00
MOTA	169	CD2		64	7.042	7.246	45.852	1.00	2.00
ATOM	170	CE2		64	6.212	6.119	45.234	1.00	6.29
ATOM	171	CZ	TYR		6.731	5.032	44.955	1.00	11.87
ATOM	172	ОН	TYR		5.931 11.455	10.202	47.081	1.00	15.27
ATOM	173	C	TYR			11.288	47.394	1.00	19.73
MOTA	174	0	TYR		10.971 12.759	10.004	46.980	1.00	17.91
ATOM	175	N	GĽN	65	14.139	10.004	20.500		

FIG. 1D

ATOM	176	CA	GLN	65	13.704	11.070	47.285	1.00	19.85
MOTA	177	CB	GLN	65	14.856	10.480	48.109	1.00	16.92
MOTA	178	CG	GLN	65	14.366	9.720	49.332	1.00	21.05
ATOM '	179	CD	GLN	65	15.462	8.956	50.046	1.00	29.96
ATOM	180	OE1	GLN	65	16.641	9.021	49.674	1.00	32.66
ATOM	181	NE2	GLN	65	15.081	8.231	51.091	1.00	32.03
MOTA	182	С	GLN	65	14.251	11.886	46.104	1.00	21.54
ATOM	183	0	GLN	65	14.269	11.430	44.966	1.00	26.33
ATOM	184	N	ALA	66	14.658	13.119	46.402	1.00	23.53
ATOM	185	CA	ALA	66	15.252	14.051	45.435	1.00	21.77
MOTA	186	CB	ALA	66	16.727	13.720	45.233	1.00	19.86
MOTA	187	C	ALA	66	14.573	14.204	44.078	1.00	17.68
ATOM	188	0	ALA	66	15.211	13.988	43.057	1.00	16.11
ATOM	189	N	LEU	67	13.322	14.656	44.061	1.00	15.00
ATOM	190	CA	LEU	67	12.600	14.829	42.805	1.00	14.02
MOTA	191	CB	LEU	67	11.111	15.059	43.056	1.00	4.58
ATOM	192	CG	LEU	67	10.370	14.361	44.185	1.00	2.00
MOTA	193		LEU	67 67	8.880	14.471	43.920	1.00	2.00 4.73
ATOM	194		LEU	67	10.789	12.921	44.291	1.00	21.98
ATOM	195	С 0	LEU	67 67	13.105 13.107	15.981 17.146	41.917 42.330	1.00	26.10
MOTA	196	N	LEU ALA	68	13.520	15.652	40.697	1.00	23.28
ATOM ATOM	197 198	CA	ALA	68	13.520	16.653	39.736	1.00	20.49
ATOM	199	CB	ALA	68	15.337	16.268	39.178	1.00	14.57
MOTA	200	C	ALA	68	12.906	16.677	38.631	1.00	23.80
ATOM	201	0	ALA	68	12.214	15.689	38.416	1.00	21.05
ATOM	202	N	PRO	69	12.707	17.826	37.966	1.00	28.37
ATOM	203	CD	PRO	69	13.222	19.182	38.224	1.00	31.49
ATOM	204	CA	PRO	69	11.687	17.858	36.914	1.00	27.06
MOTA	205	CB	PRO	69	11.486	19.359	36.669	1.00	28.04
ATOM	206	CG	PRO	69	12.005	20.022	37.932	1.00	28.91
ATOM	207	C	PRO	69	12.140	17.175	35.633	1.00	28.24
ATOM	208	Ō	PRO	69	13.341	17.043	35.364	1.00	23.40
MOTA	209	N	ILE	70	11.153	16.705	34.874	1.00	31.91
ATOM	210	CA	ILE	70	11.355	16.052	33.580	1.00	38.18
ATOM	211	CB	ILE	70	10.869	14.587	33.607	1.00	34.66
ATOM	212	CG2	ILE	70	10.114	14.234	32.338	1.00	36.72
ATOM	213	CG1	ILE	70	12.073	13.670	33.822	1.00	31.51
MOTA	214	CD1	ILE	70	11.704	12.237	34.017	1.00	29.61
ATOM	215	C	ILE	70	10.549	16.863	32.563	1.00	40.38
MOTA	216	0	ILE	70	10.937	16.993	31.402	1.00	43.43
MOTA	217	N	GLY	71	9.405	17.371	33.027	1.00	44.94
MOTA	218	CA	GLY	71	8.537	18.208	32.223	1.00	47.46
ATOM	219	C	GLY	71	7.578	17.485	31.304	1.00	48.54
ATOM	220	0	GLY	71	7.887	16.401	30.815	1.00	47.51
MOTA	221	N	SER	72	6.400	18.091	31.127	1.00	51.97
MOTA	222	CA	SER	72	5.307	17.630	30.253	1.00	53.80
MOTA	223	CB	SER	72	5.136	16.113	30.276	1.00	52.09
MOTA	224	OG	SER	72	5.997	15.516	29.320	1.00	55.01
ATOM	225	C	SER	72	3.971	18.307	30.555	1.00	53.60
ATOM	226	0	SER	72	3.776	18.723	31.719	1.00	56.25
ATOM	227	CB	GLN	75	-2.575	15.033	30.778	1.00	26.20
MOTA	228	CG	GLN	75	-2.224	13.624	31.177	1.00	27.29
ATOM	229	CD	GLN	75	-3.442	12.728	31.172	1.00	31.62
ATOM	230	OE1		75 75	-3.558	11.818	30.342	1.00	36.78
ATOM	231	NE2	GLN	75 75	-4.381	13.001	32.083	1.00	31.34
ATOM	232	C	GLN	75 75	-1.319	16.062	32.660 33.425	1.00	27.21
ATOM	233	O	GLN	75 75	-2.275	16.251	30.395	1.00	31.31
ATOM	234	N	GLN	75	-0.228	15.740	50.333	7.00	24.95

FIG. 1E

ATOM	235	CA	GLN	75	-1.501	16.040	31.140	1.00	27.33
MOTA	236	N	GLY	76	-0.114	15.722	33.081	1.00	23.74
MOTA	237	CA	GLY	76	0.247	15.754	34.480	1.00	22.16
ATOM	238	C	GLY	76	1.684	16.234	34.382	1.00	26.62
MOTA	239	0	GLY	76	2.233	16.275	33.273	1.00	31.92
MOTA	240	N	ILE	77	2.294	16.662	35.482	1.00	20.67
MOTA	241	CA	ILE	77	3.679	17.096	35.390	1.00	16.35
ATOM	242	CB	IFE	77	4.019	18.301	36.308	1.00	19.61
MOTA	243	CG2	ILE	77	5.504	18.705	36.124	1.00	12.60
MOTA	244	CG1	ILE	77	3.160	19.521	35.953	1.00	17.46
MOTA	245	CD1	ILE	77	1.659	19.354	36.135	1.00	18.13
MOTA	246	C	ILE	77	4.453	15.843	35.762	1.00	14.34
ATOM	247	0	ILE	77	3.934	14.986	36.477	1.00	15.37
ATOM	248	N	VAL	78	5.645	15.678	35.203	1.00	13.70
ATOM	249	CA	VAL	78	6.446	14.487	35.472	1.00	13.92
MOTA	250	CB	VAL	78	6.613	13.639	34.176	1.00	13.49
ATOM	251	CG1	JAV	78	7.578	12.482	34.393	1.00	11.19
ATOM	252	CG2	VAL	78	5.249	13.122	33.730	1.00	6.97
ATOM	253	C	VAL	78	7.804	14.768	36.098	1.00	15.53
MOTA	254	0	VAL	78	8.587	15.567	35.577	1.00	16.48
ATOM	255	N	CYS	79	8.097	14.038	37.176	1.00	16.79
ATOM	256	CA	CYS	79	9.345	14.181	37.923	1.00	12.30
ATOM	257	CB	CYS	79	9.063	14.590	39.375	1.00	17.48
ATOM	258	SG	CYS	79	8.724	16.334	39.667	1.00	17.95
ATOM	259	C	CYS	79	10.189	12.915	37.951	1.00	7.69
ATOM	260	0	CYS	79	9.677	11.804	37.991	1.00	10.14
ATOM	261	N	ALA	80	11.496	13.113	37.907	1.00	4.10
ATOM	262	CA	ALA	80	12.462	12.040	37.970	1.00	13.15
ATOM	263	СВ	ALA	80	13.731	12.446	37.236	1.00	12.16
MOTA	264	C	ALA	80	12.772	11.840	39.452	1.00	21.14
ATOM	265	ō	ALA	80	13.532	12.617	40.038	1.00	26.46
ATOM	266	N	ALA	81	12.211	10.798	40.055	1.00	21.98
ATOM	267	CA	ALA	81	12.458	10.536	41.472	1.00	21.56
MOTA	268	CB	ALA	81	11.139	10.221	42.180	1.00	17.84
ATOM	269	C	ALA	81	13.462	9.411	41.703	1.00	19.64
ATOM	270	ō	ALA	81	14.131	8.960	40.770	1.00	21.54
ATOM	271	N	TYR	82	13.609	9.029	42.972	1.00	20.19
ATOM	272	CA	TYR	82	14.474	7.929	43.381	1.00	20.94
MOTA	273	CB	TYR	82	15.831	8.409	43.892	1.00	21.43
ATOM	274	CG	TYR	82	16.599	7.311	44.604	1.00	25.93
ATOM	275	CD1		82	17.105	6.218	43.907	1.00	29.90
ATOM	276		TYR	82	17.756	5.178	44.573	1.00	30.94
MOTA	277	CD2	TYR	82	16.772	7.337	45.985	1.00	25.81
ATOM	278	CE2	TYR	82	17.420	6.303	46.653	1.00	23.76
ATOM	279	CZ	TYR	82	17.903	5.230	45.946	1.00	30.58
ATOM	280	OH	TYR	82	18.500	4.196	46.618	1.00	29.44
							44.480	1.00	20.67
ATOM	281	C	TYR	82	13.758	7.163 7.684	45.576	1.00	23.05
MOTA	282	O	TYR	82	13.568		44.183	1.00	
ATOM	283	N	ASP	83	13.371	5.927	45.145	1.00	17.38 15.03
ATOM	284	CA	ASP	83	12.667	5.098		1.00	
ATOM	285	CB	ASP	83	11.861	4.034	44.434		14.45
MOTA	286	CG	ASP	83	10.693	3.567	45.247	1.00	17.56
ATOM	287		ASP	83	10.777	3.604	46.496	1.00	18.87
ATOM	288		ASP	83	9.681	3.177	44.632	1.00	22.51
ATOM	289	C	ASP	83	13.648	4.432	46.088	1.00	19.10
MOTA	290	0	ASP	83	14.315	3.470	45.710	1.00	19.53
MOTA	291	N	ALA	84	13.667	4.905	47.335	1.00	18.37
ATOM	292	CA	ALA	84	14.569	4.401	48.367	1.00	13.42
ATOM	293	CB	ALA	84	14.492	5.290	49.595	1.00	16.90

FIG. 1F

ATOM 294 C ALA 84 14.264 2.967 48.737 1.00 ATOM 295 O ALA 84 15.179 2.180 48.967 1.00 ATOM 296 N VAL 85 12.963 2.622 48.754 1.00 ATOM 297 CA VAL 85 12.957 1.270 49.086 1.00 ATOM 298 CB VAL 85 11.023 1.208 49.289 1.00 ATOM 299 CG1 VAL 85 11.023 1.208 49.289 1.00 ATOM 300 CG2 VAL 85 11.0588 2.250 50.314 1.00 ATOM 301 C VAL 85 11.0588 2.250 50.314 1.00 ATOM 302 O VAL 85 12.979 0.217 48.042 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 303 N LEU 86 12.172 0.533 46.765 1.00 ATOM 304 CA LEU 86 12.144 -0.177 44.515 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.866 -1.066 44.534 1.00 ATOM 307 CDI LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD LEU 86 10.245 -1.065 45.909 1.00 ATOM 309 C LEU 86 15.020 -1.014 45.129 1.00 ATOM 310 N ASP 87 15.186 0.891 45.551 1.00 ATOM 310 N ASP 87 15.186 0.891 45.553 1.00 ATOM 311 N ASP 87 15.186 0.891 45.551 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 314 CG ASP 87 19.271 1.797 45.637 1.00 ATOM 315 ODI ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD ASP 87 17.543 0.151 45.551 1.00 ATOM 317 C ASP 87 19.271 1.797 45.637 1.00 ATOM 318 O ASP 87 17.634 0.891 45.561 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CA RG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.335 39.224 1.00 ATOM 325 CZ ARG 88 13.157 -0.335 39.224 1.00 ATOM 326 C ARG 88 15.078 3.691 41.299 1.00 ATOM 327 NIZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.073 5.716 39.951 1.00 ATOM 320 CA ARG 88 15.073 5.716 39.951 1.00 ATOM 320 CA ARG 88 15.078 3.691 41.299 1.00 ATOM 320 CA ARG 88 15.078 3.691 41.299 1.00 ATOM 320 CA ARG 88 13.451 1.185 -0.796 38.104 1.00 ATOM 320 CA ARG 88 13.481 1.152 41.185 1.00 ATOM 320 CA ARG 88 15.078 3.691 41.299 1.00 ATOM 330 CA ARG 88 13.481 1.152 41.185 1.00 ATOM 330 CA ARG 88										
ATOM 296 N VAL 85 12.583 2.622 48.754 1.00 ATOM 297 CA VAL 85 12.557 1.270 49.086 1.00 ATOM 298 CB VAL 85 11.023 1.208 49.289 1.00 ATOM 300 CG2 VAL 85 10.660 -0.176 49.738 1.00 ATOM 301 C VAL 85 10.588 2.250 50.314 1.00 ATOM 302 O VAL 85 12.979 0.217 48.042 1.00 ATOM 303 N LEU 85 12.979 0.217 48.042 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 304 CA LEU 86 12.772 0.533 46.765 1.00 ATOM 305 CB LEU 86 13.118 -0.369 45.664 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 310 O LEU 86 15.200 -1.035 44.382 1.00 ATOM 310 O LEU 86 15.200 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 15.186 0.891 45.530 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 19.836 -0.212 44.981 1.00 ATOM 315 OD1 ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 42.979 1.00 ATOM 318 O ASP 87 16.664 1.391 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.1545 1.00 ATOM 323 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 324 NE ARG 88 13.185 -0.733 39.924 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.1545 1.00 ATOM 326 NA ARG 88 15.710 2.335 41.546 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 13.083 -1.977 37.583 1.00 ATOM 330 CR ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CR ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ARG 88 13.083 -1.977 37.583 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 334 OD1 ASN 89 17.437 6.099 39.063 1.00 ATOM 335 ND2 ARG 88 13.165 -0.739 39.063 1.00 ATOM 336 C A AND 89 17.437 6.099 39.063 1.00 ATOM 337 O ARG 88 15.740 6.277 39.9063 1.00 ATOM 338 N VAL 90 11.662 8.397 38.347 1.00 ATOM 340 CB VAL 90 11.662 8.397 38.347 1.00 ATOM 340 CB VAL 90 11.662 8.397 38.347 1.00 ATOM 340		294	C	ALA	84	14.264	2.967	48.737	1.00	7.60
ATOM 299 CB VAL 85 11.557 1.270 49.086 1.00 ATOM 299 CGI VAL 85 11.0508 -0.176 49.289 1.00 ATOM 300 CG2 VAL 85 10.668 -0.176 49.289 1.00 ATOM 301 C VAL 85 10.588 2.250 50.314 1.00 ATOM 302 C VAL 85 10.588 2.250 50.314 1.00 ATOM 303 N CBU 86 12.2772 0.533 46.765 1.00 ATOM 303 N LEU 86 13.1496 -0.845 48.391 1.00 ATOM 303 N LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.245 -1.005 45.999 1.00 ATOM 307 CD1 LEU 86 10.245 -1.005 45.999 1.00 ATOM 308 CD2 LEU 86 10.245 -1.005 45.909 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 301 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.486 0.891 45.531 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 314 CG ASP 87 18.994 0.609 45.381 1.00 ATOM 315 ODI ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 17.634 0.997 42.9948 1.00 ATOM 318 O ASP 87 17.634 0.997 42.9948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 14.940 1.270 40.769 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 14.940 1.270 40.769 1.00 ATOM 324 NB ARG 88 12.473 -1.048 38.314 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 CA RG 88 13.157 -0.335 39.224 1.00 ATOM 327 NBZ ARG 88 15.078 3.691 41.299 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 334 OD ARG 88 15.078 3.691 41.299 1.00 ATOM 335 ND ARG 88 15.078 3.691 41.299 1.00 ATOM 336 C ARG 88 15.078 3.691 41.299 1.00 ATOM 337 NB ARG 88 13.157 -0.353 39.224 1.00 ATOM 338 ND ARG 88 15.078 3.691 41.299 1.00 ATOM 336 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 337 NB ARG 88 13.157 -0.353 39.224 1.00 ATOM 338 ND ARG 88 15.078 3.691 41.299 1.00 ATOM 337 NB ARG 88 15.078 3.691 41.299 1.00 ATOM 340 CB ARG 88 15.078 3.691 41.299 1.00 ATOM 340				ALA	84	15.178	2.180	48.967	1.00	
ATOM 299 CB VAL 85 12.557 1.270 49.086 1.00 ATOM 299 CG1 VAL 85 10.608 -0.176 49.738 1.00 ATOM 300 CG2 VAL 85 10.608 -0.176 49.738 1.00 ATOM 301 C VAL 85 12.979 0.217 48.042 1.00 ATOM 302 C VAL 85 12.979 0.217 48.042 1.00 ATOM 303 N LEU 86 12.979 0.333 46.765 1.00 ATOM 303 N LEU 86 12.172 0.533 46.765 1.00 ATOM 305 CB LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CB LEU 86 10.866 -1.006 44.534 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 310 O LEU 86 14.529 -0.191 45.129 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 19.836 -0.212 44.981 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CA ARG 88 14.940 1.270 40.769 1.00 ATOM 323 CD ARG 88 12.473 -1.048 39.925 1.00 ATOM 324 NB ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH ARG 88 13.157 -0.353 39.224 1.00 ATOM 337 CA ARG 88 12.473 -1.048 38.314 1.00 ATOM 320 CA ARG 88 13.157 -0.353 39.224 1.00 ATOM 321 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 322 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 323 CD ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NHZ ARG 88 13.083 -1.773 39.926 1.00 ATOM 338 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 339 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 330 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NHZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 328 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 330 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 331 CA ARG 88 13.157 -0.353 39.224 1.00 ATOM 332 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 333 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 334 CD ARG 88 13.159 -0.776 38.104 1.00 ATOM 335 ND ARG 88 13.559 9.776 39.976 31.00 AT	ATOM	296	N	VAL	85	12.983	2.622	48.754	1.00	
ATOM 299 CGI VAL 85	ATOM	297	CA	VAL	85	12.557	1.270	49.086	1.00	
ATOM 300 CG2 VAL 85 10.608 -0.176 49.738 1.00 ATOM 301 C VAL 85 10.588 2.250 50.314 1.00 ATOM 302 C VAL 85 12.979 0.217 48.042 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 305 CR LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CR LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CR LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.866 -1.006 44.534 1.00 ATOM 308 CD2 LEU 86 10.865 -1.065 45.909 1.00 ATOM 309 C LEU 86 10.245 -1.065 45.909 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.551 1.00 ATOM 312 CA ASP 87 15.186 0.891 45.551 1.00 ATOM 313 CB ASP 87 15.186 0.891 45.551 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 313 CB ASP 87 19.271 1.797 45.637 1.00 ATOM 315 ODI ASP 87 19.271 1.797 45.637 1.00 ATOM 316 ODZ ASP 87 19.836 -0.212 44.981 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 13.481 1.152 41.185 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.881 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 13.881 1.152 41.185 1.00 ATOM 326 NH1 ARG 88 13.881 1.152 41.185 1.00 ATOM 327 NH2 ARG 88 13.881 1.152 41.185 1.00 ATOM 328 C ARG 88 13.881 1.152 41.185 1.00 ATOM 329 O ARG 88 12.473 -1.048 38.314 1.00 ATOM 330 N ASN 89 15.592 4.402 40.042 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ARG 88 13.881 1.152 41.185 1.00 ATOM 333 C ARG 88 13.881 1.152 41.185 1.00 ATOM 334 C DARG 88 12.473 -1.048 38.314 1.00 ATOM 335 CD ARG 88 13.881 1.199 6.402 38.905 1.00 ATOM 336 C ARG 88 13.985 7.763 39.9224 1.00 ATOM 337 NH2 ARG 88 13.88 13.983 7.975 1.00 ATOM 338 N VAL 90 1.2740 6.277 39.003 1.00 ATOM 339 CA VAL 90 10.254 6.597 41.321 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CGI VAL 90 10.264 6.597 41.321 1.00 ATOM 342 CG2	MOTA	298	CB	VAL	85		1.208			
ATOM 301 CG2 VAL 85 10.588 2.250 50.314 1.00 ATOM 301 C VAL 85 12.979 0.217 48.042 1.00 ATOM 302 O VAL 85 13.496 -0.845 48.391 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 304 CA LEU 86 12.1712 0.533 46.765 1.00 ATOM 305 CG LEU 86 12.118 -0.369 46.765 1.00 ATOM 305 CG LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.866 -1.005 45.909 1.00 ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 309 C LEU 86 10.245 -1.055 44.382 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 16.539 1.204 45.579 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.579 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.571 1.00 ATOM 314 CG ASP 87 19.271 1.797 45.637 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.271 1.797 45.637 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 16.664 1.391 43.567 1.00 ATOM 319 N ARG 88 15.691 2.071 42.948 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 12.588 0.723 40.047.69 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.047.69 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NA HA ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NA HA ARG 88 13.157 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.157 -0.795 38.104 1.00 ATOM 326 NA HA ARG 88 13.157 -0.795 38.104 1.00 ATOM 327 NH2 ARG 88 13.157 -0.795 38.104 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CD ASN 89 15.593 4.402 39.166 1.00 ATOM 332 CD ARG 88 15.078 3.691 41.299 1.00 ATOM 333 CD ARG 88 15.078 3.691 41.299 1.00 ATOM 334 OD1 ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.592 4.402 40.297 1.00 ATOM 336 C ARG 88 15.078 3.691 41.299 1.00 ATOM 337 O ARG 88 15.078 3.691 41.299 1.00 ATOM 339 CA VAL 90 10.682 4.200 40.070 1.00 ATOM 340 CB VAL 90 10.682 4.200 40.070 1.00 ATOM 340 CB VAL 90 10.682 4.200 40.070 1	MOTA	299	CG1	L VAL	85	10.608				
ATOM 301 C VAL 85 12.979 0.217 48.042 1.00 ATOM 302 O VAL 85 13.496 -0.845 48.391 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 305 CB LEU 86 12.172 -0.539 45.664 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 305 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 10.866 -1.006 44.534 1.00 ATOM 309 C LEU 86 15.020 -0.409 43.536 1.00 ATOM 310 O LEU 86 15.020 -0.409 45.561 1.00 ATOM 311 N ASP 87 15.186 0.891 45.529 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 15.186 0.891 45.551 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 18.984 0.609 45.381 1.00 ATOM 315 ODI ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.185 1.00 ATOM 326 NH1 ARG 88 13.881 1.152 41.185 1.00 ATOM 327 NH2 ARG 88 13.881 1.152 41.185 1.00 ATOM 328 C ARG 88 13.881 1.155 41.185 1.00 ATOM 329 O ARG 88 12.588 0.723 40.042 1.00 ATOM 320 CA ARG 88 13.891 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.891 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.891 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.491 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.491 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.491 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.491 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.494 1.294 1.294 1.00 ATOM 320 CA ARG 88 13.494 1.294 1.294 1.00 ATOM 320 CA ARG 88 13.494 1.294 1.294 1.00 ATOM 320 CA ARG 88 13.891 1.192 41.192 1.00 ATOM 320 CA ARG 88 13.891 1.192 41.192 1.00 ATOM 320 CA ARG 88 13.991 1.094 4.094 1.294 1.00 ATOM 320 CA ARG 88 13.991 1.094 4.091 1.004 4.091 1.004 4.0	ATOM	300	CG2	VAL	85		2.250			11.37
ATOM 302 O VAL 85 13.496 -0.845 48.391 1.00 ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 304 CA LEU 86 12.174 -0.177 44.515 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.866 -1.006 44.534 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 309 C LEU 86 9.910 -0.409 43.536 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.590 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 19.836 -0.212 44.981 1.00 ATOM 318 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.185 1.00 ATOM 326 CA ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.157 -0.353 39.224 1.00 ATOM 328 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 329 O ARG 88 13.157 -0.353 39.224 1.00 ATOM 320 CA ARG 88 13.157 -0.353 39.224 1.00 ATOM 320 CA ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 CB ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.157 -0.353 39.224 1.00 ATOM 328 C ARG 88 13.157 -0.353 39.224 1.00 ATOM 329 O ARG 88 13.157 -0.353 39.224 1.00 ATOM 330 N ASN 89 15.592 4.402 40.0297 1.00 ATOM 330 N ASN 89 15.592 4.402 40.0297 1.00 ATOM 331 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CD ARG 88 13.157 -0.756 38.104 1.00 ATOM 333 CD ASN 89 15.093 6.402 38.905 1.00 ATOM 334 CD ASN 89 15.093 6.402 38.905 1.00 ATOM 335 ND ASN 89 15.093 6.402 38.905 1.00 ATOM 336 C ASN 89 15.094 6.402 38.905 1.00 ATOM 337 O ASN 89 15.094 6.402 38.905 1.00 ATOM 338 N VAL 90 10.662 4.240 40.702 1.00 ATOM 340 CD VAL 90 10.662 4.240 40.702 1.00 ATOM 340 CD VAL 90 10.662 4.240 40.702 1.00 ATOM 340 CD	MOTA	301								15.24
ATOM 303 N LEU 86 12.772 0.533 46.765 1.00 ATOM 304 CA LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.245 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.245 -1.006 44.534 1.00 ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 309 C LEU 86 9.910 -0.409 43.536 1.00 ATOM 310 O LEU 86 14.529 -0.191 45.129 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 15.186 0.891 45.530 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.271 1.797 45.637 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 16.664 1.391 43.567 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NHI ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 334 ND ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.592 4.402 40.297 1.00 ATOM 336 CB ASN 89 15.593 4.402 40.297 1.00 ATOM 337 NAL ARG 88 13.662 7.139 39.020 1.00 ATOM 338 N VAL 90 10.862 4.240 40.702 1.00 ATOM 336 CB ASN 89 17.437 6.099 39.063 1.00 ATOM 337 NAL 90 10.486 5.600 40.186 1.00 ATOM 340 CB VAL 90 10.486 5.600 40.186 1.00 ATOM 341 CG VAL 90 10.486 5.600 40.186 1.00 ATOM 343 C VAL 90 10.486 5.600 40.186 1.00 ATOM 344 C AALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 9.690 7.551 38.451 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984	ATOM	302								17.38
ATOM 304 CA LEU 86 13.118 -0.369 45.664 1.00 ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.866 -1.006 44.534 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 10.245 -1.065 45.909 1.00 ATOM 310 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 19.271 1.797 45.637 1.00 ATOM 315 OD1 ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.6664 1.391 43.567 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 15.710 2.335 41.546 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 15.591 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.157 -0.353 39.224 1.00 ATOM 328 C ARG 88 12.473 -1.048 38.314 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.997 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.997 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 15.073 5.716 39.951 1.00 ATOM 334 NE ARG 88 15.594 6.402 38.905 1.00 ATOM 335 ND2 ASN 89 15.593 6.402 39.063 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 CD ASN 89 13.534 4.452 38.650 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 340 CB VAL 90 10.486 5.600 40.186 1.00 ATOM 341 CG VAL 90 10.486 5.600 40.186 1.00 ATOM 342 CD ALA 91 7.457 6.997 38.444 1.00 ATOM 343 CC VAL 90 10.486 5.600 40.186 1.00 ATOM 344 C VAL 90 10.486 5.600 40.186 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 9										17.84
ATOM 305 CB LEU 86 12.144 -0.177 44.515 1.00 ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CD1 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 318 O ASP 87 16.664 1.391 43.567 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.710 2.335 41.546 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 13.481 1.152 41.185 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NHI ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.165 -0.796 88.104 1.00 ATOM 329 O ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 C ARG 88 13.165 -0.796 88.104 1.00 ATOM 320 CA ARG 88 13.165 -0.796 88.104 1.00 ATOM 321 CB ARG 88 13.165 -0.356 38.104 1.00 ATOM 322 CG ARG 88 13.165 -0.353 39.224 1.00 ATOM 323 CD ARG 88 13.165 -0.353 39.224 1.00 ATOM 324 NE ARG 88 13.165 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 13.165 -0.353 39.224 1.00 ATOM 326 NHI ARG 88 11.185 -0.796 88.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.073 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CG ASN 89 15.594 6.602 38.905 1.00 ATOM 334 O DI ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.592 4.402 40.297 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 O ASN 89 15.592 4.402 40.297 1.00 ATOM 338 C ASN 89 17.637 6.099 39.063 1.00 ATOM 334 O DI ASN 89 13.534 6.507 39.128 1.00 ATO										
ATOM 306 CG LEU 86 10.866 -1.006 44.534 1.00 ATOM 307 CDL LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 308 CD2 LEU 86 14.529 -0.191 45.129 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 17.543 0.151 45.551 1.00 ATOM 315 ODL ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 19.836 -0.212 44.981 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.185 1.00 ATOM 326 NHL ARG 88 12.473 -1.048 88.314 1.00 ATOM 327 NH2 ARG 88 13.167 -0.353 39.224 1.00 ATOM 328 C ARG 88 13.481 1.152 41.185 1.00 ATOM 329 O ARG 88 13.481 1.152 41.185 1.00 ATOM 320 CA ARG 88 13.481 1.152 41.185 1.00 ATOM 321 NB ARG 88 13.481 1.152 41.185 1.00 ATOM 322 CB ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 326 C ARG 88 13.481 1.152 41.185 1.00 ATOM 327 NH2 ARG 88 13.481 1.185 -0.796 38.104 1.00 ATOM 328 C ARG 88 13.481 1.185 -0.796 38.104 1.00 ATOM 329 C ARG 88 13.185 -0.796 38.104 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 39.186 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 15.594 6.402 38.905 1.00 ATOM 334 CD ASN 89 13.534 4.452 38.650 1.00 ATOM 335 CD ASN 89 13.534 4.452 38.650 1.00 ATOM 336 C ASN 89 15.994 6.402 38.995 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 C ASN 89 15.994 6.402 38.995 1.00 ATOM 339 CA VAL 90 10.862 4.240 40.702 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 344 C VAL 90 10.862 4.240 40.702 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 3										13.79
ATOM 307 CD1 LEU 86 10.245 -1.065 45.909 1.00 ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 309 C LEU 86 9.910 -1.035 44.382 1.00 ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 15.186 0.891 45.530 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 314 CG ASP 87 17.543 0.151 45.551 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 17.634 0.937 42.948 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 13.083 -1.977 37.583 1.00 ATOM 320 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CG ASN 89 15.592 4.402 40.297 1.00 ATOM 334 OD1 ASN 89 17.437 6.099 39.063 1.00 ATOM 335 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 O ASN 89 13.554 4.452 38.650 1.00 ATOM 339 CA ASN 89 15.592 4.402 40.0297 1.00 ATOM 331 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.437 6.099 39.063 1.00 ATOM 335 ND2 ASN 89 13.554 4.452 38.650 1.00 ATOM 336 C ASN 89 13.554 4.452 38.650 1.00 ATOM 337 O ASN 89 13.554 6.297 44.02 40.702 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 345 CB ANA 91 8.920 8.670 38.347 1.00 ATOM 346 CA ALA 91 8.924 8.924 8.971 38.270 1.00 ATOM 347 CB ALA 91 8.926 8.670 38.657 1.00 ATOM 348 C ALA 91 8.926 8.670 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.457 1.00 ATOM 349							-			12.13
ATOM 308 CD2 LEU 86 9.910 -0.409 43.536 1.00 ATOM 309 C LEU 86 14.529 -0.191 45.129 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 17.543 0.151 45.551 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 19.836 -0.212 44.981 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 14.940 1.270 40.769 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.195 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.691 41.299 1.00 ATOM 329 NA ARG 88 13.691 41.299 1.00 ATOM 320 CA ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.481 0.977 37.583 1.00 ATOM 329 NA ARG 88 13.187 -0.353 39.224 1.00 ATOM 320 NA RG 88 13.691 41.299 1.00 ATOM 330 NASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 334 OD1 ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.594 6.402 38.905 1.00 ATOM 336 C ASN 89 13.534 4.452 38.650 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.251 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.408 5.600 40.186 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C AND 90 12.740 6.277 39.021 1.00 ATOM 344 CG2 VAL 90 10.264 6.597 41.321 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 349 C CB ALA 91 8.984 8.704 37.679 1.00 ATOM 349 C CB ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.457 1.										12.71
ATOM 310 O LEU 86 14.529 -0.191 45.129 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 15.186 0.891 45.551 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 314 CG ASP 87 17.543 0.151 45.551 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 19.836 -0.212 44.981 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.691 2.071 42.979 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NH1 ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.165 -0.796 38.104 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.974 6.002 38.9951 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.594 6.402 38.9051 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 11.399 6.127 39.951 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.769 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.769 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.769 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.769 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.769 1.00 ATOM 341 CGI VAL 90 10.682 4.240 40.769 1.00 ATOM 342 CG VAL 90 10.862 4.240 40.769 1.00 ATOM 343 C VAL 90 10.862 4.240 40.769 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 8.994 8.701 39.7659 1.00 ATOM 349 O ALA 91 8.994 8.701 39.955 1.00 ATOM 349 O ALA 91 8.994 8.701 39.955 1.00 ATOM 349 O ALA 91 8.994 8.701 39.955 1.00 ATOM 349 O ALA 91 8.994 8.701 39.955 1.00										16.53
ATOM 310 O LEU 86 15.020 -1.035 44.382 1.00 ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 18.984 0.609 45.381 1.00 ATOM 316 OD2 ASP 87 18.986 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 16.664 1.391 43.567 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 12.588 0.723 40.042 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 11.185 -0.796 38.104 1.00 ATOM 329 O ARG 88 11.083 -1.977 37.583 1.00 ATOM 320 CA ARG 88 15.078 3.691 41.299 1.00 ATOM 320 NARG 88 15.078 3.691 41.299 1.00 ATOM 321 ARG 88 13.481 0.152 41.185 1.00 ATOM 322 CB ARG 88 12.473 -1.048 38.314 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 11.185 -0.796 38.104 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 14.443 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.065 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 13.534 4.452 38.650 1.00 ATOM 336 C ASN 89 13.534 4.452 38.650 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.002 1.00 ATOM 341 CGI VAL 90 10.862 4.240 40.002 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.862 4.240 40.002 1.00 ATOM 344 CGI VAL 90 10.862 4.240 40.002 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.457 1.00 ATOM 349 O ALA 91 6.900										14.81
ATOM 311 N ASP 87 15.186 0.891 45.530 1.00 ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 16.539 1.204 45.079 1.00 ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 ODL ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 C ARG 88 15.078 3.691 41.299 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CR ASN 89 15.073 5.716 39.951 1.00 ATOM 335 ND2 ASN 89 15.073 5.716 39.951 1.00 ATOM 336 C ASN 89 15.073 5.716 39.951 1.00 ATOM 337 O ASN 89 13.743 6.099 39.063 1.00 ATOM 338 N VAL 90 12.740 6.277 39.186 1.00 ATOM 339 CA VAL 90 10.408 5.600 40.186 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CGI VAL 90 10.408 5.600 40.186 1.00 ATOM 342 CG2 VAL 90 10.893 7.454 38.545 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 C VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 349 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 AT										17.04
ATOM 312 CA ASP 87 16.539 1.204 45.079 1.00 ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.185 1.00 ATOM 326 NH1 ARG 88 13.157 -0.353 39.224 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.838 4.942 39.186 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 17.838 4.942 39.186 1.00 ATOM 337 CA ASN 89 17.838 4.942 39.186 1.00 ATOM 338 N VAL 90 11.399 6.127 39.221 1.00 ATOM 339 CA VAL 90 10.462 4.240 40.070 1.00 ATOM 340 CB VAL 90 10.462 4.240 40.070 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.070 1.00 ATOM 342 CG2 VAL 90 10.465 6.697 41.321 1.00 ATOM 343 C NAL 90 10.862 4.240 40.070 1.00 ATOM 344 C VAL 90 10.862 4.240 40.070 1.00 ATOM 345 N ALA 91 8.980 7.558 8.771 38.377 1.00 ATOM 345 C ASN 89 13.576 6.997 39.263 1.00 ATOM 346 CA ALA 91 8.980 7.558 8.771 38.270 1.00 ATOM 346 CA ALA 91 8.980 7.558 8.771 38.270 1.00 ATOM 347 CB ALA 91 8.980 8.771 38.270 1.00 ATOM 348 C ALA 91 8.980 7.558 8.771 38.270 1.00 ATOM 349 O ALA 91 8.990 7.550 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00										
ATOM 313 CB ASP 87 17.543 0.151 45.551 1.00 ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 19.836 -0.212 44.981 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.481 1.152 41.185 1.00 ATOM 325 CZ ARG 88 13.481 1.152 41.08 1.00 ATOM 326 NH1 ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 12.473 -1.048 38.314 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.592 4.402 40.297 1.00 ATOM 320 CA ARG 88 15.592 4.402 40.297 1.00 ATOM 321 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.594 6.402 38.905 1.00 ATOM 334 OD1 ASN 89 15.594 6.402 38.905 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 O ASN 89 13.574 6.999 39.063 1.00 ATOM 338 N VAL 90 12.740 6.277 39.951 1.00 ATOM 338 N VAL 90 12.740 6.277 39.951 1.00 ATOM 339 CA VAL 90 10.862 4.240 40.702 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 90.669 7.500 38.212 1.00 ATOM 345 N ALA 91 90.669 7.500 38.212 1.00 ATOM 345 N ALA 91 90.669 7.500 38.212 1.00 ATOM 345 N ALA 91 90.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.701 38.657 1.00 ATOM 347 CB ALA 91 8.984 8.701 38.657 1.00 ATOM 348 C ALA 91 8.984 8.701 38.657 1.00 ATOM 349 O ALA 91 8.984 8.701 38.657 1.00 ATOM 349 O ALA 91 8.984 8.701 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00 ATOM 349 O ALA 91 6.900 7.751 38.612 1.00										18.90
ATOM 314 CG ASP 87 18.984 0.609 45.381 1.00 ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 13.083 -1.977 37.583 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CB ASN 89 15.593 6.402 38.905 1.00 ATOM 334 OD1 ASN 89 15.592 4.402 40.297 1.00 ATOM 335 ND2 ASN 89 15.593 6.402 38.905 1.00 ATOM 336 C ASN 89 17.838 4.942 39.186 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.990 7.558 8.771 38.270 1.00 ATOM 349 O ALA 91 8.990 7.558 8.771 38.275 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00										23.81
ATOM 315 OD1 ASP 87 19.271 1.797 45.637 1.00 ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NH1 ARG 88 12.588 0.723 40.042 1.00 ATOM 327 NH2 ARG 88 11.185 -0.796 38.104 1.00 ATOM 328 C ARG 88 11.185 -0.796 38.104 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.594 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.437 6.099 39.063 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 O ASN 89 17.437 6.099 39.063 1.00 ATOM 338 N VAL 90 17.437 6.099 39.063 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 331 CG ASN 89 13.716 5.447 39.344 1.00 ATOM 334 CD VAL 90 10.408 5.600 40.186 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.408 5.600 40.186 1.00 ATOM 342 CG2 VAL 90 10.408 5.600 40.186 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 8.980 7.713 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 355 N ILE 92 7.193 9.976 38.657 1.00										22.37
ATOM 316 OD2 ASP 87 19.836 -0.212 44.981 1.00 ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.691 2.071 42.979 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.437 6.099 39.063 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.534 4.452 38.650 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 C VAL 90 11.399 6.127 39.128 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.512 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.408 5.600 40.186 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 C CB VAL 90 10.862 4.240 40.702 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.980 7.751 38.412 1.00 ATOM 349 O ALA 91 8.980 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 8.990 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00									1.00	30.15
ATOM 317 C ASP 87 16.664 1.391 43.567 1.00 ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 15.710 2.335 41.546 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 13.157 -0.353 39.224 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.592 4.402 40.297 1.00 ATOM 333 CG ASN 89 15.592 4.402 38.905 1.00 ATOM 334 OD1 ASN 89 15.949 6.402 38.905 1.00 ATOM 335 ND2 ASN 89 17.437 6.099 39.063 1.00 ATOM 336 C ASN 89 17.437 6.099 39.063 1.00 ATOM 337 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.128 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 C ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.701 38.270 1.00 ATOM 349 O ALA 91 8.984 8.701 37.515 1.00 ATOM 349 O ALA 91 8.984 8.701 38.270 1.00 ATOM 349 O ALA 91 8.984 8.701 38.270 1.00 ATOM 349 O ALA 91 8.980 8.711 38.270 1.00 ATOM 349 O ALA 91 8.980 8.711 38.270 1.00 ATOM 349 O ALA 91 8.980 8.711 38.270 1.00 ATOM 349 O ALA 91 8.980 8.711 38.270 1.00 ATOM 349 O ALA 91 8.980 8.711 38.270 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00										29.63
ATOM 318 O ASP 87 17.634 0.937 42.948 1.00 ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.588 0.723 40.042 1.00 ATOM 326 NH1 ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 12.473 -1.048 38.314 1.00 ATOM 328 C ARG 88 13.083 -1.977 37.583 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.534 4.452 39.186 1.00 ATOM 337 O ASN 89 13.534 4.452 39.186 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.893 7.454 38.545 1.00 ATOM 341 CGI VAL 90 10.893 7.454 38.545 1.00 ATOM 342 CG2 VAL 90 10.893 7.454 38.545 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 343 C CA ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00										35.59
ATOM 319 N ARG 88 15.691 2.071 42.979 1.00 ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 13.481 1.152 41.185 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.588 0.723 40.042 1.00 ATOM 326 NH1 ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 11.085 -0.796 38.104 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.516 5.447 39.344 1.00 ATOM 337 O ASN 89 13.516 5.447 39.344 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CGI VAL 90 10.893 7.454 38.545 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 C VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 8.984 8.704 37.679 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 8.980 8.771 38.270 1.00 ATOM 349 O ALA 91 92 7.193 9.976 38.657 1.00						•		43.567	1.00	25.14
ATOM 320 CA ARG 88 15.710 2.335 41.546 1.00 ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 322 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 15.078 3.691 41.299 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CGI VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 C CB VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 9.609 7.500 38.312 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00							0.937	42.948	1.00	28.93
ATOM 321 CB ARG 88 14.940 1.270 40.769 1.00 ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 12.588 0.723 40.042 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 12.473 -1.048 38.314 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 13.716 5.447 39.344 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 47.702 1.00 ATOM 343 C VAL 90 10.862 4.240 47.702 1.00 ATOM 343 C VAL 90 10.862 4.240 47.702 1.00 ATOM 343 C VAL 90 10.862 4.240 47.702 1.00 ATOM 344 O VAL 90 10.862 4.240 47.702 1.00 ATOM 345 N ALA 91 9.609 7.500 38.121 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.701 38.4557 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00 ATOM 349 O ALA 91 6.900 7.751 38.657 1.00								42.979	1.00	24.77
ATOM 322 CG ARG 88 13.481 1.152 41.185 1.00 ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.592 4.402 40.297 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 1.662 8.397 38.347 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00							2.335		1.00	23.82
ATOM 323 CD ARG 88 12.588 0.723 40.042 1.00 ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.5716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 339 CA VAL 90 12.740 6.277 39.675 1.00 ATOM 340 CB VAL 90 11.399 6.127 39.128 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00						14.940	1.270		1.00	21.43
ATOM 324 NE ARG 88 13.157 -0.353 39.224 1.00 ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 8.397 38.347 1.00 ATOM 344 C CB VAL 90 10.862 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00						13.481	1.152	41.185	1.00	26.04
ATOM 325 CZ ARG 88 12.473 -1.048 38.314 1.00 ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 15.078 3.691 41.299 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.408 5.600 40.186 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 9.609 7.500 38.212 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00			CD.			12.588	0.723	40.042	1.00	35.46
ATOM 326 NH1 ARG 88 11.185 -0.796 38.104 1.00 ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.862 4.240 40.702 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00				ARG	88	13.157	-0.353	39.224	1.00	43.22
ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 5.716 39.951 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00		325			88	12.473	-1.048	38.314	1.00	43.53
ATOM 327 NH2 ARG 88 13.083 -1.977 37.583 1.00 ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.073 6.099 39.063 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 17.838 4.942 39.186 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.716 5.447 39.344 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.701 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00	ATOM	326			88	11.185	-0.796	38.104	1.00	42.29
ATOM 328 C ARG 88 15.078 3.691 41.299 1.00 ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.862 4.240 40.702 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00	ATOM	327	NH2	ARG	88	13.083	-1.977	37.583		47.38
ATOM 329 O ARG 88 14.143 4.080 41.995 1.00 ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 9.609 7.500 38.212 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00	MOTA	328	C	ARG	88	15.078	3.691			21.16
ATOM 330 N ASN 89 15.592 4.402 40.297 1.00 ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00	MOTA	329	0	ARG	88	14.143				19.00
ATOM 331 CA ASN 89 15.073 5.716 39.951 1.00 ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 10.662 8.397 38.347 1.00 ATOM 346 CA ALA 91 9.609 7.500 38.212 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.980 8.670 36.151 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00	MOTA	330	N	ASN	89					18.57
ATOM 332 CB ASN 89 15.949 6.402 38.905 1.00 ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	MOTA	331	CA	ASN	89	15.073				10.01
ATOM 333 CG ASN 89 17.437 6.099 39.063 1.00 ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 8.984 8.701 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM	332	CB	ASN	89	15.949				12.28
ATOM 334 OD1 ASN 89 17.838 4.942 39.186 1.00 ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.862 4.240 40.702 1.00 ATOM 344 O VAL 90 10.893 7.454 38.545 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM	333	CG		89					20.41
ATOM 335 ND2 ASN 89 18.262 7.139 39.020 1.00 ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM									31.61
ATOM 336 C ASN 89 13.716 5.447 39.344 1.00 ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.862 4.240 40.702 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.984 8.704 37.679 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM	335								19.05
ATOM 337 O ASN 89 13.534 4.452 38.650 1.00 ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.920 8.670 36.151 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	MOTA	336								4.86
ATOM 338 N VAL 90 12.740 6.277 39.675 1.00 ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.920 8.670 36.151 1.00 ATOM 349 O ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM	337	0							7.53
ATOM 339 CA VAL 90 11.399 6.127 39.128 1.00 ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00	ATOM	338	N							5.33
ATOM 340 CB VAL 90 10.408 5.600 40.186 1.00 ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										2.00
ATOM 341 CG1 VAL 90 10.862 4.240 40.702 1.00 ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.984 8.704 37.679 1.00 ATOM 348 C ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										4.37
ATOM 342 CG2 VAL 90 10.254 6.597 41.321 1.00 ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										
ATOM 343 C VAL 90 10.893 7.454 38.545 1.00 ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										7.02
ATOM 344 O VAL 90 11.662 8.397 38.347 1.00 ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										6.06
ATOM 345 N ALA 91 9.609 7.500 38.212 1.00 ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										4.05
ATOM 346 CA ALA 91 8.984 8.704 37.679 1.00 ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										5.57
ATOM 347 CB ALA 91 8.920 8.670 36.151 1.00 ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										2.00
ATOM 348 C ALA 91 7.589 8.771 38.270 1.00 ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										3.61
ATOM 349 O ALA 91 6.900 7.751 38.412 1.00 ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										5.67
ATOM 350 N ILE 92 7.193 9.976 38.657 1.00 ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										10.32
ATOM 351 CA ILE 92 5.889 10.198 39.257 1.00										13.32
3001										12.22
AIOM 352 CB ILE 92 6.063 10.804 40.697 1.00										13.29
	ATOM	352	CB	ILE	92	6.063	10.804	40.697	1.00	15.08

FIG. 1G

MOTA	353	CG2	ILE	92	4.800	10.584	41.536	1.00	9.12
MOTA	354	CG1	ILE	92	7.269	10.161	41.400	1.00	14.98
MOTA	355	CD1	ILE	92	7.639	10.804	42.711	1.00	17.01
ATOM	356	C	ILE	92	5.133	11.181	38.368	1.00	12.70
ATOM	357	0	ILE	92	5.749	12.012	37.702	1.00	13.94
MOTA	358	N	LYS	93	3.811	11.055	38.323	1.00	10.80
MOTA	359	CA	LYS	93	2.993	11.962	37.534	1.00	12.68
ATOM	360	CB	LYS	93	2.523	11.301	36.238	1.00	18.72
ATOM	361	CG	LYS	93	1.678	12.217	35.356	1.00	26.15
ATOM	362	CD	LYS	93	1.476	11.675	33.953	1.00	33,36
MOTA	363	CE	LYS	93	0.568	10.453	33.920	1.00	38.49
ATOM	364	NZ	LYS	93	0.554	9.814	32.569	1.00	45.17
ATOM	365	C	LYS	93	1.800	12.403	38.364	1.00	12.16
ATOM	366	Ö	LYS	93	1.090	11.582	38.936	1.00	12.27
ATOM	367	N	LYS	94	1.566	13.705	38.415	1.00	12.37
	368	CA	LYS	94	0.467	14.226	39.214	1.00	13.50
MOTA			LYS	94	0.933	15.404	40.080	1.00	11.86
ATOM	369	CB	LYS	94	-0.094	15.759	41.148	1.00	14.06
ATOM ·	370	CG				17.250	41.372	1.00	12.12
ATOM	371	CD	LYS	94	-0.275			1.00	15.03
MOTA	372	CE	LYS	94	0.889	17.881 19.124	42.073 42.737	1.00	21.64
ATOM	373	NZ	LYS	94	0.418			1.00	13.08
ATOM	374	C	LYS	94	-0.760	14.657	38.442		18.01
MOTA	375	0	LYS	94	-0.704	15.562	37.616	1.00	
MOTA	376	N	LEU	95	-1.877	14.017	38.741	1.00	14.19
MOTA	377	CA	LEU	95	-3.142	14.351	38.120	1.00	13.05
ATOM	378	CB	LEU	95	-3.913	13.090	37.718	1.00	17.09
ATOM	379	CG	LEU	95	-3.643	12.386	36.391	1.00	15.05
ATOM	380		LEU	95	-2.201	11.920	36.310	1.00	15.02
MOTA	381		LEU	95	-4.602	11.207	36.267	1.00	17.68
MOTA	382	C	LEU	95	-3.969	15.093	39.153	1.00	17.18
ATOM	383	0	LEU	95	-4.535	14.480	40.049	1.00	18.32
ATOM	384	N	SER	96	-4.030	16.412	39.035	1.00	17.90
ATOM	385	CA	SER	96	-4.814	17.212	39.958	1.00	16.67
MOTA	386	CB	SER	96	-4.283	18.645	40.036	1.00	20.30
ATOM	387	OG	SER	96	~2.903	18.681	40.351	1.00	30.22
ATOM	388	C	SER	96	~6.268	17.242	39.518	1.00	16.31
MOTA	389	0	SER	96	-6.567	17.551	38.369	1.00	23.36
ATOM	390	N	ARG	97	-7.164	16.915	40.443	1.00	13.24
MOTA	391	CA	ARG	97	-8.607	16.924	40.198	1.00	14.86
ATOM	392	CB	ARG	97	-9.164	18.349	40.326	1.00	17.53
MOTA	393	CG	ARG	97	-8.944	18.996	41.669	1.00	17.18
ATOM	394	CD	ARG	97	-9.733	20.285	41.788	1.00	19.58
MOTA	395	NE	ARG	97	-9.465	20.914	43.072	1.00	27.92
MOTĄ	396	CZ	ARG	97	-10.120	20.649	44.200	1.00	29.09
ATOM	397	NH1	ARG	97	-11.119	19.771	44.229	1.00	33.26
ATOM	398	NH2	ARG	97	-9.723	21.217	45.326	1.00	25.41
MOTA	399	C	ARG	97	-9.061	16.331	38.865	1.00	16.76
MOTA	400	0	ARG	97	-9.819	16.954	38.127	1.00	17.95
ATOM	401	N	PRO	98	-8.634	15.097	38.562	1.00	17.80
ATOM	402	CD	PRO	98	-7.815	14.196	39.385	1.00	18.27
ATOM	403	CA	PRO	98	-9.015	14.448	37.305	1.00	14.40
MOTA	404	СВ	PRO	98	-8.280	13.110	37.378	1.00	14.74
ATOM	405	CG	PRO	98	-8.172	12.843	38.838	1.00	15.84
ATOM	406	c	PRO	.98	-10.523	14.275	37.128	1.00	14.36
ATOM	407	ō	PRO	98	-11.018	14.251	36.001	1.00	18.45
ATOM	408	N	PHE	99	-11.247	14.178	38.237	1.00	11.59
MOTA	409	CA	PHE	99	-12.702	14.005	38.240	1.00	8.51
ATOM	410	CB	PHE	99	-13.166	13.512	39.625	1.00	10.76
ATOM	411	CG	PHE	99	-12.577	14.301	40.775	1.00	11.82
0	***		- ****	,					

FIG. 1H

MOTA	412	CD1	PHE	99	-11.334	13.954	41.297	1.00	9.19
ATOM	413	CD2	PHE	99	-13.211	15.456	41.248	1.00	11.64
ATOM	414	CE1	PHE	99	-10.718	14.753	42.255	1.00	10.55
MOTA	415	CE2	PHE	99	-12.604	16.266	42.210	1.00	3.04
ATOM	416	CZ	PHE	99	-11.354	15.918	42.711	1.00	3.99
MOTA	417	C	PHE	99	-13.479	15.272	37.864	1.00	9.70
ATOM	418	0	PHE	99	-14.710	15.223	37.780	1.00	4.45
ATOM	419	N	GLN	100	-12.785	16.395	37.643	1.00	14.64
MOTA	420	CA	GLN	1.00	-13.453	17.660	37.286	1.00	21.27
MOTA	421	CB	GLN	100	-12.672	18.874	37.810	1.00	21.59
MOTA	422	CG	GLN	100	-12.635	18.961	39.332	1.00	25.09
ATOM	423	CD	GLN	100	-13.299	20.216	39.918	1.00	29.38
ATOM	424		GLN	100	-12.865	20.716	40.963	1.00	26.88
ATOM	425	NE2	GLN	100	-14.380	20.695	39.285	1.00	28.47
MOTA	426	C.	GLN	100	-13.798	17.854	35.808	1.00	23.90
MOTA	427	0	GLN	100	-14.617	18.721	35.468	1.00	24.03
MOTA	428	N	asn	101	-13.181	17.054	34.942	1.00	25.19
MOTA	429	CA	ASN	101	-13.430	17.105	33.502	1.00	24.30
ATOM	430	CB	ASN	101	-12.143	17.447	32.743	1.00	28.04
ATOM	431	CG	ASN	101	-12.352	17.515	31.241	1,00	31.27
ATOM	432	OD1	ASN	101	-12.109	16.543	30.531	1.00	37.00
ATOM	433	ND2	ASN	101	-12.801	18.666	30.751	1.00	32.53
MOTA	434	C	ASN	101	-13.933	15.738	33.069	1.00	21.66
ATOM	435	0	ASN	101	-13.186	14.767	33.103	1.00	20.60
ATOM	436	N	GLN	102	-15.191	15.676	32.643	1.00	19.05
ATOM	437	CA	GLN	102	-15.824	14.430	32.210	1.00	24.39
ATOM	438	CB	GLN	102	-17.060	14.741	31.372	1.00	27.49
ATOM	439	CG	GLN	102	-17.874	13.518	31.001	1.00	36.15
ATOM	440	CD	GLN	102	-18.898	13.166	32.066	1.00	42.89
ATOM	441	OE1	GLN	102	-19.578	14.048	32.600	1.00	43.41
ATOM	442	NE2	GLN	102	-19.022	11.874	32.375	1.00	41.93
ATOM	443	C	GLN	102	-14.929	13.474	31.413	1.00	23.63
ATOM	444	0	GLN	102	-15.050	12.257	31.548	1.00	24.99
ATOM	445	N	THR	103	-14.066	14.029	30.562	1.00	20.69
ATOM	446	CA	THR	103	-13.158	13.246	29.730	1.00	17.84
ATOM	447	CB	THR	103	-12.702	14.052	28.504	1.00	17.02
ATOM	448	OG1	THR	103	-13.839	14.415	27.718	1.00	19.48
MOTA	449	CG2	THR	103	-11.724	13.253	27.665	1.00	11.85
MOTA	450	C	THR	103	-11.905	12.815	30.480	1.00	20.98
ATOM	451	0	THR	103	-11.425	11.691	30.306	1.00	24.66
ATOM	452	N	HIS	104	-11.328	13.744	31.242	1.00	20.55
MOTA	453	CA	HIS	104	-10.129	13.466	32.035	1.00	15.76
MOTA	454	CB	HIS	104	-9.617	14.751	32.678	1.00	15.65
ATOM	455	CG	HIS	104	-8.759	15.578	31.780	1.00	10.94
ATOM	456	CD2	HIS	104	-7.423	15.789	31.776	1.00	18.06
ATOM	457	NDI	HIS	104	-9.269	16.318	30.736	1.00	11.77
ATOM	458	CEI	HIS	104	-8.283	16.953	30.127	1.00	19.65
MOTA	459	NE	HIS	104	-7.151	16.650	30.738	1.00	19.90
MOTA	460	C	HIS	104	-10.464	12.452	33.127	1.00	14.82
MOTA	461	0	HIS	104	-9.615	11.667	33.546	1.00	13.77
MOTA	462	N	ALA	105	-11.728	12.469	33.536	1.00	11.82
MOTA	463	CA	ALA	105	-12.252	11.602	34.565	1.00	8.37
ATOM	464	CB	ALA	105	-13.651	12.031	34.911	1.00	6.82
ATOM	465	С	ALA	105	-12.262	10.182		1.00	10.85
MOTA	466		ALA	105	-11.449	9.353			13.46
ATOM	467		LYS	, 106	-13.141	9.944			12.30
MOTA	468		LYS	106	-13.322	8.647			10.14
MOTA	469		LYS	106	-14.186				22.07
ATOM	470			106	-14.983	7.587	30.792	1.00	32.05

FIG. 1I

ATOM	471	CD	LYS	106	-15.989	7.883	29.669	1.00	38.01
ATOM	472	CE	LYS	106	-17.129	8.834	30.090	1.00	38.61
MOTA	473	NZ	LYS	106	-16.846	10.302	29.933	1.00	32.07 7.28
MOTA	474	C	LYS	106	-11.959	8.082	32.080	1.00	8.85
MOTA	475	0	LYS	106	-11.645	6.933	32.376	1.00	7.12
MOTA	476	N	ARG	107	-11.117	8.938	31.521	1.00	7.12
MOTA	477	CA	ARG	107	-9.782	8.547	31.126	1.00	6.80
MOTA	478	CB	ARG	107	-9.051	9.740	30.503	1.00	12.16
MOTA	479	CG	ARG	107	-7.647	9.444	30.016	1.00	19.65
MOTA	480	CD	ARG	107	-7.115	10.583	29.136	1.00	28.47
ATOM	481	NE	ARG	107	-5.842	10.259	28.479	1.00	23.50
MOTA	482	\mathbf{cz}	ARG	107	-5.717	9.538	27.365	1.00	23.94
MOTA	483		ARG	107	-6.790	9.047	26.753 26.852	1.00	24.62
MOTA	484		ARG	107	-4.513	9.320	32.300	1.00	6.34
MOTA	485	C	ARG	107	-9.002	7.984 6.850	32.232	1.00	12.54
ATOM	486	0	ARG	107	-8.558	8.745	33.393	1.00	13.11
MOTA	487	N	ALA	108	-8.905	8.341	34.600	1.00	12.23
MOTA	488	CA	ALA	108	-8.160	9.452	35.612	1.00	16.56
MOTA	489	CB	ALA	108	-8.183	7.040	35.266	1.00	9.84
MOTA	490	C	ALA	108	-8.605	6.231	35.687	1.00	9.07
MOTA	491	0	ALA	108	-7.775	6.854	35.394	1.00	7.50
MOTA	492	N	TYR	109	-9.911 -10.441	5.651	36.001	1.00	13.33
MOTA	493	CA	TYR	109	-11.959	5.744	36.083	1.00	19.72
MOTA	494	CB	TYR	109	-12.603	4.518	36.669	1.00	22.28
MOTA	495	CG	TYR	109	-12.213	4.035	37.908	1.00	23.99
MOTA	496		TYR	109	-12.825	2.929	38.466	1.00	25.88
MOTA	497		TYR	109 109	-13.623	3.862	36.001	1.00	22.06
MOTA	498	CD2		109	-14.241	2.752	36.554	1.00	21.88
MOTA	499	CE2		109	-13.838	2.292	37.785	1.00	26.78
MOTA	500	CZ	TYR TYR	109	-14.460	1.200	38.341	1.00	33.91
MOTA	501	OH C	TYR	109	-10.064	4.446	35.157	1.00	17.09
ATOM	502	0	TYR	109	-9.470	3.485	35.642	1.00	18.57
MOTA	503	N	ARG	110	-10.389	4.550	33.874	1.00	19.91
MOTA	504 505	CA	ARG	110	-10.157	3.533	32.865	1.00	17.79
ATOM ATOM	505	CB	ARG	110	-10.568	4.125	31.511	1.00	29.51
ATOM	507	CG	ARG	110	-10.758	3.137	30.369	1.00	32.16
ATOM	508	CD	ARG	110	-11.271	3.829	29.095	1.00	29.67
ATOM	509	NE	ARG	110	-10.935	3.039	27.916	1.00	30.13
ATOM	510	CZ	ARG	110	-9.733	3.030	27.350	1.00	29.42
ATOM	511		LARG	110	-8.756	3.786	27.843	1.00	31.13
ATOM	512	NH2		110	-9.482	2.204	26.342	1.00	29.18
ATOM	513	C	ARG	110	-8.714	3.044	32.823	1.00	16.76
ATOM	514	ō	ARG	110	-8.458	1.842	32.828	1.00	16.62
ATOM	515	N	GLU	111	-7.766	3.973	32.798	1.00	15.33
ATOM	516	CA	GLU	111	-6.353	3.616	32.735	1.00	17.28
ATOM	517	CB	GLU	111	-5.498	4.878	32.580	1.00	21.45
ATOM	518	CG	GLU	111	-6.046	5.932	31.598	1.00	20.21
ATOM	519	CD	GLU	111	-5.777	5.641		1.00	19.30
MOTA	520		1 GLU	111	-4.670	5.984	29.672		8.75
ATOM	521	_	2 GLU	111	-6.683	5.124	29.437		22.37
ATOM	522	C	GLU	111	-5.913	2.853	33.977		
ATOM	523		GLU	111	-5.020	2.000			
ATOM	524		LEU	112	-6.538				
ATOM	525			112	-6.264				
ATOM	526			112	-6.919				
ATOM	52 7			112	-6.096				
ATOM	528		1 LEU	112	-4.658	4.299			
ATOM	529	•	2 LEU		-6.815	5.140	39.307	1.00	14.16

FIG. 1J

ATOM	530	C	LEU	112	-6.819	1.151	36.435	1.00	12.99
MOTA	531	0	LEU	112	-6.126	0.199	36.801	1.00	6.73
MOTA	532	N	VAL	113	-8.048	1.006	35.965	1.00	6.24
MOTA	533	CA	VAL	113	-8.707	-0.275	35.893	1.00	6.98
MOTA	534	CB	VAL	113	-10.187	-0.076	35.500	1.00	7.10
MOTA	535	CG1	VAL	113	-10.870	-1.409	35.272	1.00	12.66
MOTA	536	CG2	VAL	113	-10.910	0.713	36.577	1.00	12.28
MOTA	537	C	VAL	113	-8.033	-1.212	34.874	1.00	11.22
ATOM	538	0	VAL	113	-7.904	-2.414	35.114	1.00	15.98
MOTA	539	N	LEU	114	-7.554	-0.646	33.770	1.00	14.36
MOTA	540	CA	LEU	114	-6.927	-1.423	32.707	1.00	16.13
ATOM	541	CB	LEU	114	-7.010	-0.679	31.375	1.00	15.67
MOTA	542	CG	LEU	114	-8.393	-0.629	30.753	1.00	12.06
ATOM	543	CD1	LEU	114	-8.282	0.021	29.404	1.00	17.14
MOTA	544	CD2	PEA	114	-8.937	-2.036	30.614	1.00	17.36
ATOM	545	C	LEU	114	-5.500	-1.846	32.931	1.00	16.07
ATOM	546	0	LEU	114	-4.999	-2.719	32.225	1.00	21.08
ATOM	547	N	MET	115	-4.836	-1.252	33.905	1.00	16.41
MOTA	548	CA	MET	115	-3.455	-1.617	34.149	1.00	16.95
ATOM	549	CB	MET	115	-2.727	-0.509	34.895	1.00	20.21
MOTA	550	CG	MET	115	-1.350	-0.250	34.333	1.00	19.72
ATOM	551	SD	MET	115	-0.698	1.312	34.874	1.00	28.78
MOTA	552	CE	MET	115	-1.885	2.433	34.130	1.00	25.09
MOTA	553	C	MET	115	-3.335	-2.950	34.871	1.00	16.08
MOTA	554	0	MET	115	-2.244	-3.499	34.991	1.00	18.48
ATOM	555	N	LYS	116	-4.472	-3.459	35.334	1.00	18.87
MOTA	556	CA	LYS	116	-4.542	-4.744	36.015	1.00	23.57
MOTA	557	CB	LYS	116	-5.706	-4.749	37.021	1.00	26.91
ATOM	558	CG	LYS	116	-5.551	-3.731	38.161	1.00	33.65
MOTA	559	CD	LYS	116	-6.631	-3.843	39.247	1.00	35.36
ATOM	560	CE	LYS	116	-7.921	-3.092	38.909	1.00	36.42
MOTA	561	NZ	LYS	116	-8.741	-3.743	37.845	1.00	37.10
MOTA	562	C	LYS	116	-4.767	-5.825	34.956	1.00	25.45
MOTA	563	0	LYS	116	-4.443	-6.995	35.162	1.00	24.99
ATOM	564	N	CYS	117	-5.306	-5.397	33.813	1.00	22.92
MOTA	565	CA	CYS	117	-5.613	-6.267	32.689	1.00	15.45
ATOM	566	CB	CYS	117	-6.767	-5.679	31.890	1.00	12.92
MOTA	567	SG	CYS	117	-8.238	-5.322	32.853	1.00	21.59
MOTA	568	C	CYS	117	-4.451	-6.493	31.732	1.00	15.36
ATOM	569	0	CYS	117	-4.565	-7.300	30.814	1.00	20.75
MOTA	570	N	VAL	118	-3.344	-5.784	31.929	1.00	17.19
ATOM	571	CA	VAL	118	-2.185	-5.916	31.041	1.00	19.32
MOTA	572	CB	VAL	118	-2.062	-4.670	30.111	1.00	18.65
MOTA	573	CG1	L VAL	118	-0.804	-4.740	29.267	1.00	25.76
ATOM	574	CG2	ZAV S	118	-3.286	-4.556	29.217	1.00	16.20
MOTA	575	C	. VAL	118	-0.841	-6.136	31.744	1.00	19.05
ATOM	576	0	VAL	118	-0.680	-5.816	32.917	1.00	22.85
MOTA	577	N	THR	119	0.108	-6.726	31.023	1.00	17.25
ATOM	578	CA	THR	119	1.444	-6.962	31.546	1.00	18.76
MOTA	579	CB	THR	119	1.429	-8.081	32.623	1.00	18.92
ATOM	580	OG:	1 THR	119	2.769	-8.438	32.995	1.00	6.16
ATOM	581	CG:	2 THR	119	0.670	-9.301	32.129	1.00	26.90
MOTA	582	C	THR	119	2.414	-7.273	30.406	1.00	19.69
ATOM	583	0	THR	119	2.474	-8.402	29.908	1.00	25.39
MOTA	584	N	HIS	120	3.170	-6.259	29.988	1.00	17.60
MOTA	585	CA	HIS	120	4.125	-6.423	28.888	1.00	8.64
MOTA	586	CB	HIS	120	3.359	-6.285	27.568	1.00	17.21
ATOM	587	CG	HIS	120	4.074	-6.841	26.371	1.00	16.80
MOTA	588	CD	2 HIS	120	5.268	-6.531	25.816	1.00	19.94

FIG. 1K

MOTA	589	ND1	HIS	120	3.538	-7.834	25.585	1.00	14.74
ATOM	590	CE1		120	4.367	-8.115	24.598	1.00	13.09
ATOM	591	NE2	HIS	120	5.426	-7.338	24.717	1.00	15.49
ATOM	592	C	HIS	120	5.197	-5.346	28.996	1.00	2.84
MOTA	593	0	HIS	120	4.887	-4.197	29.245	1.00	2.73
ATOM	594	N	LYS	121	6.452	-5.709	28.750	1.00	2.00
MOTA	595	CA	LYS	121	7.568	-4.770	28.844	1.00	5.68
ATOM	596	CB	LYS	121	8.908	-5.490	28.616	1.00	6.54
ATOM	597	CG	LYS	121	9.144	-5.913	27.166	1.00	19.16
MOTA	598	CD	LYS	121	10.552	-6.453	26.901	1.00	25.40
ATOM	599	CE	LYS	121	11.608	-5.352	26.768	1.00	32.20
ATOM	600	NZ	LYS	121	12.953	-5.909	26.390	1.00	30.85
ATOM	601	C	LYS	121	7.477	-3.594	27.876	1.00	12.80
ATOM	602	0	LYS	121	8.339	-2.714	27.883	1.00	18.97
MOTA	603	N	asn	122	6.483	-3.613	26.995	1.00	15.97
MOTA	604	CA	ASN	122	6.310	-2.529	26.036	1.00	15.61
ATOM	605	CB	ASN	122	6.308	-3.077	24.602	1.00	22.61
ATOM	606	CG	ASN	122	7.577	-3.861	24.264	1.00	20.48
ATOM	607	OD1	ASN	122	7.516	-5.032	23.900	1.00	26.08
MOTA	608	ND2	ASN	122	8.732	-3.218	24.413	1.00	20.44 12.94
MOTA	609	С	ASN	122	5.024	-1.787	26.362	1.00	
MOTA	610	0	ASN	122	4.501	-1.023	25.554	1.00	13.23
MOTA	611	N	ILE	123	4.521	-2.034	27.561	1.00	8.08 12.42
ATOM	612	CA	ILE	123	3.325	-1.391	28.057	1.00	
MOTA	613	CB	ILE	123	2.107	-2.339	28.020	1.00	11.96 7.57
ATOM	614	CG2		123	0.891	-1.662	28.611	1.00	17.32
MOTA	615	CG1	ILE	123	1.805	-2.736	26.573	1.00	15.53
MOTA	616		ILE	123	1.385	-1.579	25.677	1.00	18.69
MOTA	617	C	ILE	123	3.623	-0.915	29.484	1.00	21.74
MOTA	618	0	ILE	123	4.462	-1.480	30.183	1.00	22.62
MOTA	619	N	ILE	124	2.966	0.164	29.895	1.00 1.00	20.00
ATOM	620	CA	ILE	124	3.174	0.763	31.208	1.00	16.67
MOTA	621	CB	ILE	124	2.404	2.106	31.338	1.00	15.34
MOTA	622	CG2		124	0.902	1.890	31.120	1.00	7.20
ATOM	623	CG1		124	2.694	2.740	32.699	1.00	11.63
MOTA	624	CD1		124	2.108	4.106	32.873 32.423	1.00	20.91
MOTA	625	C	ILE	124	2.853	-0.104	32.423	1.00	19.21
MOTA	626	0	ILE	124	1.765	-0.685	32.327	1.00	20.40
MOTA	627	N	SER	125	3.819	-0.170	34.594	1.00	19.59
MOTA	628	CA	SER	125	3.680	-0.917	34.594	1.00	23.73
MOTA	629	CB	SER	125	4.782	-1.974	34.750	1.00	31.90
MOTA	630	OG	SER	125	6.055	-1.375	35.743	1.00	13.73
MOTA	631	С	SER	125	3.794	0.086	36.075	1.00	4.90
MOTA	632	0	SER	125	4.892	0.559	36.301	1.00	6.91
MOTA	633	N	LEU	126	2.645	0.438	37.409	1.00	7.11
MOTA	634	CA	LEU	126	2.578	1.368	37.607	1.00	2.00
MOTA	635	CB	LEU	126	1.128	1.807 3.295	37.543	1.00	2.00
MOTA	636		LEU	126	0.801	3.253	36.336	1.00	2.00
ATOM	637		1 LEU	126	1.449		37.508	1.00	2.04
ATOM	638		2 LEU	126	-0.704			1.00	10.24
MOTA	639		LEU	126	3.108	_	39.112	1.00	10.27
MOTA	640		LEU	126	2.604		39.112	1.00	11.75
MOTA	641		LEU	127	4.157			1.00	10.20
MOTA	642			127	4.751			1.00	3.15
MOTA	643			127	6.199			1.00	7.77
ATOM	644			127	7.253				2.00
MOTA	645		l LEU	127	8.601				
MOTA	646		2 LEU	127	7.278				_
MOTA	647	С	LEU	127	3.995	1.143	41.//0	1.00	12.00

FIG. 1L

ATOM	648	0	LEU	127	4.147	0.488	42.809	1.00	15.93
ATOM	649	N	ASN	128	3.192	2.209	41.704	1.00	14.08
ATOM	650	CA	ASN	128	2.460	2.679	42.883	1.00	14.71
MOTA	651	CB	ASN	128	3.473	3.186	43.923	1.00	17.09
ATOM	652	CG	ASN	128	2.868	3.398	45.299	1.00	18.33
MOTA	653	OD1	ASN	128	1.686	3.131	45.530	1.00	18.44
ATOM	654	ND2	ASN	128	3.686	3.875	46.228	1.00	15.54
ATOM	655	С	ASN	128	1.482	3.800	42.523	1.00	13.51
ATOM	656	0	ASN	128	1.805	4.674	41.735	1.00	17.61
MOTA	657	N	VAL	129	0.306	3.769	43.136	1.00	12.90
ATOM	658	CA	VAL	129	-0.753	4.754	42.935	1.00	15.50
ATOM	659	CB	VAL	129	-2.024	4.065	42.385	1.00	16.54
MOTA	660	CG1	VAL	129	-3.127	5.066	42.150	1.00	14.67
MOTA	661	CG2	VAL	129	-1.703	3.312	41.127	1.00	21.62
ATOM	662	C	VAL	129	-1.091	5.342	44.311	1.00	20.34
ATOM	663	0	VAL	129	-1.519	4.607	45.206	1.00	22.82
MOTA.	664	N	PHE	130	-0.928	6.653	44.494	1.00	22.42
ATOM	665	CA	PHE	130	-1.223	7.241	45.801	1.00	17.23
MOTA	666	CB	PHE	130	-0.026	7.082	46.727	1.00	9.18
MOTA	667	CG	PHE	130	1.126	7.968	46.380	1.00	3.29
MOTA	668	CD1	PHE	130	2.221	7.451	45.710	1.00	3.28
MOTA	669	CD2	PHE	130	1.129	9.309	46.753	1.00	2.00
MOTA	670	CE1	PHE	130	3.304	8.250	45.409	1.00	6.45 2.00
ATOM	671	CE2	PHE	130	2.201	10.125	46.461	1.00	
ATOM	672	CZ	PHE	130	3.295	9.602	45.785	1.00	6.75
MOTA	673	C	PHE	130	-1.707	8.682	45.868	1.00	20.03 23.64
MOTA	674	0	PHE	130	-1.308	9.537	45.082	1.00	20.98
MOTA	675	N	THR	131	-2.511	8.949	46.892	1.00	
MOTA	676	CA	THR	131	-3.068	10.269	47.129	1.00	16.85
MOTA	677	CB	THR	131	-4.611	10.245	47.082	1.00	11.46 11.14
MOTA	678	OG1		131	-5.132	11.530	47.426	1.00 1.00	7.42
MOTA	679	CG2		131	-5.163	9.211	48.031	1.00	20.65
MOTA	680	C	THR	131	-2.637	10.770	48.498	1.00	25.07
MOTA	681	0	THR	131	-2.667	10.026	49.474	1.00	21.95
MOTA	682	N	PRO	132	-2.151	12.016	48.569	1.00	22.01
MOTA	683	CD	PRO	132	-1.729	12.903	47.472 49.868	1.00	20.75
MOTA	684	CA	PRO	132	-1.733	12.554		1.00	18.92
MOTA	685	CB	PRO	132	-0.821	13.714	49.475	1.00	22.75
MOTA	686	CG	PRO	132	-1.429	14.194	48.195	1.00	19.68
MOTA	687	C	PRO	132	-2.944	12.996	50.709	1.00	24.00
MOTA	688	0	PRO	132	-2.797	13.419	51.852 50.146	1.00	17.03
MOTA	689	N	GLN	133	-4.142	12.878	-	1.00	17.14
MOTA	690	CA	GLN	133	-5.354	13.253	50.853 49.892	1.00	
ATOM	691	CB	GLN	133	-6.425	13.764		1.00	10.35
MOTA	692	CG	GLN	133	-6.158	15.188	49.391	1.00	13.14
MOTA	693	CD	GLN	133	-5.370	15.225	48.102	1.00	3.25
ATOM	694		l GLN	133	-5.778	14.646	47.112 48.108	1.00	10.03
ATOM.	695		S GTN	133	-4.239	15.913		1.00	21.25
ATOM	696	C	GLN	133	-5.864	12.064	51.657	1.00	22.26
MOTA	697	0	GLN	133	-5.723	10.910	51.239 52.815	1.00	22.44
ATOM	698		LYS	134	-6.449	12.353	53.709	1.00	25.31
MOTA	699			134	-6.939	11.318	55.156	1.00	27.68
MOTA	700			134	-6.562	11.671		1.00	
MOTA	701			134	-5.241	11.048	55.621 54.805		
ATOM	702			134	-4.014	11.475			
ATOM	703			134	-3.590	12.911			
ATOM	704			134	-2.188	13.180			
ATOM	705		LYS	134	-8.405	10.907			
MOTA	706	0	LYS	134	-8.770	9.832	34.032	1.00	25.00

FIG. 1M

ATOM	707	N	THR	135	-9.252	11.755	53.042	1.00	27.26 29.66
MOTA	708	CA	THR	135	-10.666	11.416	52.896	1.00	31.92
MOTA	709	CB	THR	135	-11.543	12.164	53.913	1.00	37.53
MOTA	710	OG1	THR	135	-11.281	13.570	53.829 55.327	1.00	34.45
MOTA	711	CG2	THR	135	-11.257	11.676	51.499	1.00	30.80
ATOM	712	C	THR	135	-11.214	11.685 12.299	50.657	1.00	29.91
MOTA	713	0	THR	135	-10.553	12.299	51.272	1.00	31.35
MOTA	714	N	LEU	136	-12.446	11.414	49.994	1.00	30.05
MOTA	715	CA	LEU	136	-13.120 -14.418	10.611	49.955	1.00	25.71
MOTA	716	CB	LEU	136	-14.418	10.924	48.833	1.00	21.56
ATOM	717	CG	LEU	136 136	-14.746	10.754	47.477	1.00	20.38
ATOM	718		LEU	136	-16.627	10.026	48.961	1.00	19.40
MOTA	719	CDZ	LEU	136	-13.402	12.883	49.707	1.00	33.09
MOTA	720	0	LEU	136	-13.129	13.352	48.607	1.00	34.24
MOTA	721 722	И	GLU	137	-13.943	13.603	50.692	1.00	34.66
MOTA	723	CA	GLU	137	-14.244	15.019	50.500	1.00	36.88
MOTA	723	CB	GLU	137	-15.090	15.597	51.651	1.00	40.97
ATOM ATOM	725	CG	GLU	137	-14.366	15.793	52.994	1.00	45.75
ATOM	725	CD	GLU	137	-14.984	16.907	53.855	1.00	49.12
ATOM	727		GLU	137	-14.225	17.783	54.330	1.00	48.83
ATOM	728		GLU	137	-16.221	16.911	54.055	1.00	46.20
ATOM	729	c	GLU	137	-12.963	15.818	50.338	1.00	34.88
ATOM	730	Ō	GLU	137	-12.927	16.808	49.613	1.00	37.49
ATOM	731	N	GLU	138	-11.904	15.372	50.996	1.00	32.51
MOTA	732	CA	GLU	138	-10.631	16.059	50.920	1.00	33.95
ATOM	733	CB	GLU	138	-9.824	15.785	52.190	1.00	35.96
ATOM	734	CG	GLU	138	-8.508	16.532	52.268	1.00	38.62
MOTA	735	CD	GLU	138	-7.437	15.739	53.002	1.00	44.42
ATOM	736	OE1	GLU	138	-7.798	14.832	53.792	1.00	47.64
MOTA	737	OE2	GLU	138	-6.235	16.014	52.775	1.00	38.08
MOTA	738	C	GLU	138	-9.827	15.665	49.675	1.00	34.17
MOTA	739	0	GLU	138	-8.968	16.433	49.233	1.00	35.17 29.77
MOTA	740	N	PHE	139	-10.116	14.482	49.123	1.00	23.01
MOTA	741	CA	PHE	139	-9.452	13.934	47.935	1.00	17.20
ATOM	742	CB	PHE	139	-10.202	12.694	47.459	1.00	12.63
MOTA	743	CG	PHE	139	-9.651	12.103	46.186 46.033	1.00	10.00
MOTA	744	CD1		139	-8.285	11.903 11.781	45.128	1.00	7.51
MOTA	745	CD2		139	-10.500	11.406	44.848	1.00	4.34
ATOM	746		PHE	139	-7.768 -9.999	11.286	43.944	1.00	4.17
MOTA	747	CE2		139	-8.627	11.096	43.799	1.00	2.93
MOTA	748	CZ	PHE PHE	139 139	-9.359	14.946	46.792	1.00	23.97
MOTA	749		PHE	139	-10.377	15.493	46.355	1.00	25.86
ATOM	750	O	GLN	140	-8.160	15.122	46.247	1.00	21.95
ATOM	751 752	N CA	GIN	140	-7.928	16.114	45.202	1.00	23.71
MOTA	752 753	CB	GLN	140	-7.313	17.340	45.874	1.00	25.69
ATOM ATOM	754	CG	GLN	140	-6.997	18.504	44.998	1.00	33.16
ATOM	755	CD	GLN	140	-6.506	19.667	45.824	1.00	36.46
ATOM	756		L GLN	140	-7.130	20.722	45.861	1.00	40.80
MOTA	757	NE:		140	-5.402	19.464	46.533	1.00	36.20
ATOM	758	C	GLN	140	-7.035	15.631	44.052	1.00	22.46
ATOM	759	ō	GLN	140	-7.459	15.619	42.898	1.00	24.38
ATOM	760	N	ASP	141	-5.806	15.244	44.383	1.00	19.44
ATOM	761	CA		141	-4.828			1.00	13.47
ATOM	762		ASP	141	-3.531				13.18
ATOM	763			141	-3.771				17.70
ATOM	764		1 ASP	141	-3.325				
MOTA	765		2 ASP	141	-4.451	17.685	43.166	1.00	22.49

FIG. 1N

MOTA	766	C	ASP	141	-4.529	13.290	43.472	1.00	15.68
ATOM	767	0	ASP	141	-4.865	12.607	44.441	1.00	15.84
ATOM	768	N	VAL	142	-3.912	12.785	42.406	1.00	17.48
ATOM	769	CA	VAL	142	-3.516	11.379	42.296	1.00	10.30
ATOM	770	СВ	VAL	142	-4.422	10.604	41.327	1.00	6.58
ATOM	771		VAL	142	-3.933	9.181	41.198	1.00	5.29
ATOM	772		VAL	142	-5.873	10.648	41.798	1.00	6.09
MOTA	773	C	VAL	142	-2.095	11.318	41.748	1.00	9.87
ATOM	774	0	VAL	142	-1.741	12.046	40.825	1.00	14.44
ATOM	775	N	TYR	143	-1.260	10.487	42.345	1.00	7.25
ATOM	776	CA	TYR	143	0.109	10.351	41.873	1.00	8.20
ATOM	777	СВ	TYR	143	1.114	10.602	42.996	1.00	7.96
ATOM	778	CG	TYR	143	1.198	12.041	43.452	1.00	9.31
ATOM	779		TYR	143	0.144	12.645	44.136	1.00	10.72
ATOM	780		TYR	143	0.216	13.987	44.546	1.00	14.58
ATOM	781	CD2		143	2.332	12.809	43.193	1.00	7.27
ATOM	782	CE2		143	2.413	14.138	43.599	1.00	9.99
MOTA	783	CZ	TYR	143	1.352	14.725	44.273	1.00	16.33
ATOM	784	OH	TYR	143	1.442	16.047	44.664	1.00	17.53
ATOM	785	C	TYR	143	0.249	8.932	41.335	1.00	12.96
ATOM	786	Ō	TYR	143	-0.321	7.989	41.897	1.00	15.01
MOTA	787	N	LEU	144	0.916	8.807	40.188	1.00	14.02
ATOM	788	CA	LEU	144	1.143	7.520	39.530	1.00	6.63
ATOM	789	CB	LEU	144	0.498	7.521	38.147	1.00	3.96
ATOM	790	CG	LEU	144	-0.972	7.927	38.041	1.00	7.52
MOTA	791	CD1	LEU	144	-1.349	8.089	36.575	1.00	4.64
ATOM	792	CD2	LEU	144	-1.879	6.901	38.714	1.00	7.15
ATOM	793	C	LEU	144	2.649	7.352	39.384	1.00	8.82
MOTA	794	0	LEU	144	3.327	8.239	38.857	1.00	8.56 9.85
MOTA	795	N	VAL	145	3.175	6.229	39.869	1.00	10.26
MOTA	796	CA	VAL	145	4.614	5.965	39.804	1.00	4.81
MOTA	797	CB	VAL	145	5.178	5.548	41.177	1.00 1.00	2.00
MOTA	798	CG1		145	6.701	5.576	41.147 42.256	1.00	8.68
MOTA	799	CG2		145	4.633	6.460	38.769	1.00	10.28
MOTA	800	C	VAL	145	4.896	4.889	38.566	1.00	14.74
MOTA	801	0	VAL	145	4.085	3.987 4.958	38.150	1.00	12.27
MOTA	802	N	MET	146	6.068	4.936	37.085	1.00	13.67
MOTA	803	CA	MET	146	6.443	4.589	35.766	1.00	19.39
ATOM	804	CB	MET	146	5.900	3.620	34.624	1.00	28.14
ATOM	805	CG	MET	146	5.719 5.591	4.490	33.031	1.00	15.16
ATOM	806	SD	MET	146	7.177	4.095	32.403	1.00	11.15
MOTA	807	CE	MET	146 146	7.963	3.989	37.013	1.00	11.41
MOTA	808	C	MET	146	8.638	4.765	37.681	1.00	14.24
ATOM	809	0	MET	147	8.510	3.101	36.194	1.00	12.24
ATOM	810	N	GLU	147	9.958	3.026	36.057	1.00	10.39
MOTA	811	CA	GLU GLU	147	10.359	1.764	35.301	1.00	13.37
MOTA	812 813	CB CG	GLU	147	11.869	1.594	35.228	1.00	20.29
MOTA	814		GTO	147	12.306	0.436	34.356	1.00	20.99
MOTA	815		1 GLU	147	11.442	-0.188	33.700	1.00	21.78
ATOM	816			147	13.522	0.154	34.333	1.00	24.35
MOTA MOTA	817		GLU	147	10.446	4.260	35.296	1.00	7.60
MOTA	818		GLU	147	9.725	4.810	34.471	1.00	8.87
ATOM	819		LEU	148	11.678	_		1.00	
ATOM	820			148	12.229			1.00	
ATOM	821			148	13.273	6.527			
MOTA	822			148	13.777				
ATOM	823		1 LEU	148	12.635				
ATOM	824		2 LEU	148	14.917	8.373	36.224	1.00	2.00

FIG. 10

MOTA	825	C	LEU	148		12.836	5.617	33.521	1.00	14.45
ATOM	826	0	LEU	148		13.896	4.986	33.382	1.00	10.38
ATOM	827	N	MET	149		12.190	6.207	32.516	1.00	20.38
ATOM	828	CA	MET	149		12.637	6.128	31.124	1.00	18.31
MOTA	829	CB	MET	149		11.440	5.978	30.181	1.00	15.17
ATOM	830	CG	MET	149	•	10.546	4.739	30.472	1.00	13.81
MOTA	831	SD	MET	149		11.392	3.117	30.550	1.00	14.34
MOTA	832	CE	MET	149		11.336	2.605	28.796	1.00	7.98 17.37
MOTA	833	C	MET	149		13.435	7.393	30.817	1.00	14.19
MOTA	834	0	MET	149		13.161	8.458	31.382	1.00	18.71
MOTA	835	\mathbf{N} .	ASP	150		14.432	7.255	29.946	1.00	19.67
MOTA	836	CA	ASP	150		15.335	8.347	29.569	1.00	20.46
ATOM	837	CB	ASP	150		16.615	7.768	28.963	1.00	25.54
MOTA	838	CG	ASP	150		17.313	6.786	29.887 30.928	1.00	33.84
MOTA	839		ASP	150		16.738	6.394	29.572	1.00	29.63
MOTA	840	OD2	ASP	150		18.455	6.398	28.659	1.00	19.58
MOTA	841	C	ASP	150		14.823	9.462	28.742	1.00	19.97
ATOM	842	0	ASP	150		15.312	10.595	27.761	1.00	16.48
MOTA	843	N	ALA	151		13.893	9.144	26.844	1.00	12.89
MOTA	844	CA	ALA	151		13.347	10.151	25.668	1.00	13.41
MOTA	845	CB	ALA	151		14.307	10.386	26.321	1.00	9.93
ATOM	846	C	ALA	151		12.017	9.681 8.580	26.649	1.00	12.65
MOTA	847	0	ALA	151		11.587	10.555	25.615	1.00	6.98
ATOM	848	N	ASN	152		11.309 10.053	10.333	25.019	1.00	14.22
MOTA	849	CA	ASN	152			11.095	25.325	1.00	15.50
MOTA	850	CB	ASN	152		8.881 9.113	12.510	24.852	1.00	22.15
MOTA	851	CG	ASN	152		8.257		24.180	1.00	22.15
MOTA	852		ASN	152		10.232	13.098	25.253	1.00	33.84
MOTA	853		ASN	152		10.232	10.018	23.535	1.00	19.02
ATOM	854	C	ASN	152		11.479	10.301	23.114	1.00	15.48
MOTA	855	0	ASN	152		9.365	9.577	22.750	1.00	19.93
MOTA	856	N	LEU	153 153		9.561	9.371	21.316	1.00	15.53
ATOM	857	CA	LEU	153 153		8.370	8.655	20.694	1.00	11.21
MOTA	858	CB	LEU	153		8.669	7.298	20.059	1.00	8.57
ATOM	859	CG	LEU L LEU	153		7.553	7.003	19.109	1.00	3.71
MOTA	860	CD		153		10.003	7.285	19.322	1.00	6.14
MOTA	861	CD2	LEU	153		9.885	10.622	20.519	1.00	15.22
MOTA	862 863	o	LEU	153		10.859	10.635	19.777	1.00	13.43
MOTA		Ŋ	CYS	154		9.107	11.684	20.714	1.00	15.83
ATOM	864 865	CA	CYS	154		9.311	12.947	20.005	1.00	13.76
MOTA MOTA	866	CB	CYS	154		8.434	14.036	20.617	1.00	11.00
MOTA	867	SG	CYS	154		6.668	13.722	20.491	1.00	25.02
MOTA	868		CYS	154		10.771	13.407	20.011	1.00	11.62
ATOM	869	Ö	CYS	154		11.220	14.080	19.085	1.00	16.82
MOTA	870		GLN	155		11.515	13.010	21.037	1.00	13.05
ATOM	871			155		12.916	13.386	21.168	1.00	16.63
MOTA	872			155		13.311	13.454	22.652	1.00	
MOTA	873			155		13.089	14.823	23.291	1.00	
ATOM	874			155		11.746	15.429	22.921	1.00	
ATOM	875		1 GLN	155		10.697	14.911	23.299	1.00	
ATOM	876			155		11.774	16.516		1.00	
MOTA	877		GLN	155		13.823	12.436			
ATOM	878		GLN	155		14.937	12.794	20.036		
ATOM	879		VAL	156		13.324	11.227			
ATOM	880			156		14.056	10.194			
MOTA	881			156		13.539	8.759			
ATOM	882		1 VAL	156		14.570	7.709			
ATOM	883		2 VAL			13.224	8.670	21.319	1.00	14.14

FIG. 1P

							4 0	1 00	10 01
ATOM	884	C	VAL	156	13.833	10.457	17.977	1.00	10.81 10.61
ATOM	885	0	VAL	156	14.767	10.403	17.179	1.00	6.45
MOTA	886	N	ILE	157	12.607	10.838	17.628	1.00	8.99
MOTA	887	CA	ILE	157	12.221	11.141	16.260	1.00	2.57 .
MOTA	888	CB	ILE	157	10.785	11.690	16.217		2.00
MOTA	889	CG2	ILE	157	10.543	12.480	14.940	1.00 1.00	2.00
MOTA	890	CG1	ILE	157	9.795	10.541	16.387		2.00
ATOM	891	CD1	ILE	157	8.334	10.969	16.410	1.00	
ATOM	892	C	IFÉ	157	13.151	12.169	15.629	1.00	16.39 22.03
ATOM	893	0	ILE	157	13.500	12.066	14.451	1.00	16.88
MOTA	894	N	GLN	158	13.563	13.158	16.411	1.00	19.76
ATOM	895	CA	GTM	158	14.439	14.183	15.882	1.00	24.43
MOTA	896	CB.	GLN	158	14.283	15.487	16.667	1.00	29.67
ATOM	897	CG	GIN	158	13.262	16.468	16.064	1.00	33.29
MOTA	898	CD	GLN	158	13.670	17.030	14.692	1.00	32.74
ATOM	899	OE1	GLN	158	14.844	16.990	14.293	1.00	38.14
MOTA	900	NE2	GLN	158	12.691	17.568	13.971	1.00	21.28
ATOM	901	C	GTM	158	15.898	13.787	15.773	1.00	23.06
ATOM	902	0	GLN	158	16.672	14.471	15.100	1.00	
MOTA	903	N	MET	159	16.288	12.688	16.408	1.00	23.90
ATOM	904	CA	MET	159	17.679	12.256	16.333	1.00	27.52
ATOM	905	CB	MET	159 °	18.105	11.504	17.594	1.00	26.97 28.99
ATOM	906	CG	MET	159	17.551	10.111	17.752	1.00	
MOTA	907	SD	MET	159	17.963	9.398	19.365	1.00	33.77
ATOM	908	CE	MET	159	19.687	8.923	19.107	1.00	25.01 29.07
ATOM	909	C	MET	159	17.883	11.410	15.089	1.00	
ATOM	910	0	MET	159	16.944	10.796	14.592	1.00	26.59
ATOM	911	N	GLU	160	19.096	11.440	14.549	1.00	33.57
MOTA	912	CA	GLU	160	19.416	10.686	13.344	1.00	37.97
ATOM	913	CB	GLU	160	20.781	11.117	12.803	1.00	43.50 48.38
MOTA	914	CG	GLU	160	21.038	10.753	11.353	1.00	54.65
MOTA	915	CD	GLU	160	22.314	11.387	10.826	1.00	57.49
MOTA	916	OE1	. GLU	160	22.292	12.602	10.523	1.00	58.34
ATOM	917	OE2		160	23.340	10.678	10.726	1.00	40.57
ATOM .	918	C	GLU	160	19.396	9.191	13.649	1.00	41.54
MOTA	919	0	GLU	160	20.360	8.622	14.180	1.00 1.00	40.99
MOTA	920	N	LEU	161	18.255	8.578	13.358	1.00	38.14
MOTA	921	CA	LEU	161	18.055	7.156	13.595	1.00	32.66
ATOM	922	CB	LEU	161	16.623	6.870	14.057	1.00	27.51
MOTA	923	CG	LEU	161	16.120	7.358	15.409	1.00	21.09
ATOM	924		LEU	161	14.610	7.176	15.456	1.00	18.19
ATOM	925	-	LEU	161	16.808	6.606	16.542	1.00	37.38
MOTA	926	С	LEU	161	18.320	6.326	12.352 11.252	1.00	38.37
MOTA	927	0	LEU	161	17.863	6.652		1.00	34.91
ATOM	928	N	ASP	162	19.081	5.257	12.542	1.00	32.15
MOTA	929	CA	ASP	162	19.373	4.343	11.463	1.00	31.54
MOTA	930	CB	ASP	162	20.738	3.675	11.661	1.00	23.98
MOTA	931	CG	ASP	162	20.992		13.092	1.00	24.51
ATOM	932		l ASP	162	22.164		13.510	1.00	20.55
MOTA	933		2 ASP	162	20.045			1.00	30.83
MOTA	934	С	ASP	162	18.259			1.00	30.69
MOTA	935		ASP	162	17.355			1.00	28.95
MOTA	936		HIS	163	18.353			1.00	24.49
MOTA	937			163	17.344			1.00	
MOTA	938			163	17.536				
MOTA	939			163	17.233				
MOTA	940		2 HIS	163	18.047				
MOTA	941		1 HIS	163	15.944				
MOTA	942	CE	1 HIS	163	15.979	Z.34/	0.4/1	1.00	٠

FIG. 1Q

ATOM	943	NE2	HIS	163	17.242	2.720	6.122	1.00	9.38
MOTA	944	C	HIS	163	17.245	0.350	11.569	1.00	18.99 17.25
MOTA	945	0	HIS	163	16.146	0.003	11.988	1.00	16.05
MOTA	946	N	GLU	164	18.381	-0.040	12.131	1.00	21.01
MOTA	947	CA	GLU	164	18.371	-0.982	13.244	1.00	25.61
MOTA	948	CB	GLU	164	19.800	-1.348	13.671	1.00	42.31
ATOM	949	CG	GLU	164	20.871	-1.297	12.549	1.00	50.14
MOTA	950	CD	GLU	164	20.424	-1.884	11.198	1.00	53.63
ATOM	951	OE1		164	19.937	-3.038	11.151	1.00	50.34
MOTA	952	OE2	GLU	164	20.576	-1.183	10.167 14.411	1.00	20.56
MOTA	953	C	GLU	164	17.575	-0.385	14.411	1.00	18.15
ATOM	954	0	GLU	164	16.705,	-1.042	14.689	1.00	20.23
MOTA	955	N	ARG	165	17.816	0.893 1.597	15.755	1.00	16.22
MOTA	956	CA	ARG	165	. 17.123	2.948	16.028	1.00	18.25
MOTA	957	CB	ARG	165	17.782	2.940	17.264	1.00	20.28
MOTA	958	CG	ARG	165	18.675	4.370	17.504	1.00	21.80
MOTA	959	CD	ARG	165	19.244	4.370	17.180	1.00	31.00
ATOM	960	ΝE	ARG	165	20.669	5.434	16.456	1.00	32.61
MOTA	961	CZ	ARG	165	21.221	6.416	15.969	1.00	33.22
MOTA	962			165	20.470	5.437	16.234	1.00	31.30
ATOM	963	NH2	ARG	165	22.533	1.811	15.433	1.00	16.58
ATOM	964	C	ARG	165	15.651	1.606	16.290	1.00	20.41
ATOM	965	0	ARG	165	14.793 15.351	2.186	14.192	1.00	13.52
MOTA	966	N	MET	166		2.440	13.795	1.00	10.96
ATOM	967	CA	MET	166	13.968 13.900	3.213	12.477	1.00	16.45
ATOM	968	CB	MET	166	12.457	3.530	12.024	1.00	19.78
MOTA	969	CG	MET	166	12.325	4.695	10.654	1.00	7.28
ATOM	970	SD	MET	166	14.027	5.413	10.686	1.00	2.00
MOTA	971	CE	MET	166	13.107	1.193	13.701	1.00	13.90
ATOM	972	C	MET	166	11.895	1.251	13.701	1.00	10.78
ATOM	973	0	MET	166 167	13.714	0.075	13.307	1.00	12.74
MOTA	974	N	SER	167	12.972	-1.178	13.210	1.00	11.00
ATOM	975	CA	SER SER	167	13.730	-2.231	12.381	1.00	4.79
MOTA	976	CB	SER	167	15.127	-2.242	12.637	1.00	4.90
ATOM	977	OG	SER	167	12.637	-1.700	14.600	1.00	8.72
MOTA	978	C	SER	167	11.505	-2.142	14.837	1.00	9.37
ATOM	979	0	TYR	168	13.595	-1.577	15.526	1.00	10.15
ATOM	980	N	TYR	168	13.424	-2.019	16.918	1.00	11.89
MOTA	981	CA.	TYR	168	14.710	-1.851	17.723	1.00	13.12
ATOM	982	CB CG	TYR	168	14.653	-2.568	19.047	1.00	23.94
ATOM	983 984	CD1		168	14.059	-3.823	19.150	1.00	27.00
ATOM	985	CE1		168	13.986	-4.485	20.357	1.00	26.88
ATOM	986	CD2		. 168	15.177	-2.000	20.202	1.00	27.43
ATOM	987	CE2		168	15.105	-2.665	21.419	1.00	26.40
ATOM			TYR	168	14.505	-3.905	21.483	1.00	25.71
MOTA	988	CZ OH	TYR	168	14.410	-4.560		1.00	29.78
ATOM ATOM	989 990	C	TYR	168	12.309	-1.281	17.638	1.00	10.11
	991	0	TYR	168	11.514	-1.894	18.352	1.00	15.94
ATOM	991	И	LEU	169	12.280	0.039	17.479	1.00	9.20
ATOM	993	CA	LEU	169	11.250	0.870	18.083	1.00	6.55
ATOM	993	CB	LEU	169	11.512	2.365	17.796	1.00	5.56
MOTA			LEU	169	12.697	3.034	18.506	1.00	2.00
MOTA	995 996	CG	LEU	169	12.942	4.395	17.946	1.00	2.00
ATOM			2 LEU	169	12.431	3.110	20.009	1.00	2.00
ATOM	997		LEU	169	9.896	0.464	17.526	1.00	8.60
ATOM	998 999	C	LEU	169	8.966	0.175	18.289	1.00	11.07
ATOM	1000	N O	LEU	170	9.803	0.410	16.193	1.00	14.62
MOTA		N CA	LEU	170	8.563	0.035	15.516	1.00	13.43
MOTA	1001	CA	TEU	170	0.555				

FIG. 1R

										16 40
ATOM	1002	CB	LEU	170		8.679	0.192	13.992	1.00	16.49 8.13
MOTA	1003	CG	PEA	170		8.346	1.526	13.310	1.00	7.52
ATOM	1004	CD1	LEU	170		6.970	2.026	13.733	1.00	
ATOM	1005	CD2	LEU	170		9.395	2.545	13.642	1.00	12.95
ATOM	1006	C	LEU	170		8.155	-1.393	15.868	1.00	14.08
ATOM	1007	0	LEU	170		6.963	-1.695	15.974	1.00	16.12
ATOM	1008	N	TYR	171		9.139	-2.260	16.098	1.00	14.62
MOTA	1009	CA	TYR	171		8.860	-3.642	16.471	1.00	15.32
ATOM	1010	CB	TYR	171		10.156	-4.453	16.498	1.00	20.86
ATOM	1011	CG	TYR	171		10.039	-5.803	17.174	1.00	30.51
MOTA	1012	CD1	TYR	171		9.248	-6.821	16.634	1.00	29.52
ATOM	1013	CE1	TYR	171		9.120	-8.046	17.282	1.00	35.08
MOTA	1014	CD2	TYR	171		10.701	-6.054	18.375	1.00	29.23
ATOM	1015	CE2	TYR	171		10.576	-7.272	19.022	1.00	31.42
ATOM	1016	CZ	TYR	171		9.786	-8.262	18.477	1.00	34.50
MOTA	1017	OH	TYR	171		9.665	-9.464	19.133	1.00	35.71
	1017	C	TYR	171		8.174	-3.685	17.842	1.00	16.71
MOTA	1018	ō	TYR	171		7.111	-4.302	17.999	1.00	22.65
MOTA	1019	N	GLN	172		8.759	-2.993	18.820	1.00	12.16
MOTA		CA	GLN	172		8.207	-2.953	20.174	1.00	8.36
ATOM	1021		GLN	172		9.174	-2.245	21.100	1.00	7.90
MOTA	1022	CB	GLN	172		10.537	-2.885	21.101	1.00	9.40
MOTA	1023	CG		172		11.522	-2.124	21.942	1.00	16.58
MOTA	1024	CD	GLN	172		11.522	-2.214	23.169	1.00	25.77
MOTA	1025	OE1				12.382	-1.362	21.292	1.00	14.95
MOTA	1026	NE2		172		6.836	-2.305	20.237	1.00	6.06
MOTA	1027	C	GLN	172		5.990	-2.708	21.029	1.00	10.45
MOTA	1028	0	GLN	172		6.607	-1.320	19.378	1.00	3.68
MOTA	1029	N	MET	173		5.333	-0.635	19.332	1.00	2.37
MOTA	1030	CA	MET	173		5.400	0.520	18.335	1.00	10.38
MOTA	1031	CB	MET	173		5.939	1.827	18.917	1.00	14.77
MOTA	1032	CG	MET	173		5.939	3.168	17.706	1.00	15.09
MOTA	1033	SD	MET	173		7.699	3.414	17.615	1.00	2.00
MOTA	1034	CE	MET	173			-1.615	18.940	1.00	4.64
MOTA	1035	С	MET	173		4.246	-1.572	19.462	1.00	2.00
MOTA	1036	0	MET	173	,	3.129	-2.534	18.046	1.00	9.41
ATOM	1037	N	LEU	174		4.603		17.564	1.00	7.13
MOTA	1038	, CA	LEU	174		3.672	-3.558	16.220	1.00	10.84
ATOM	1039	CB	LEU	174		4.151	-4.138 -3.195	14.996	1.00	2.68
MOTA	1040	CG	LEU	174		4.139		13.942	1.00	5.45
MOTA	1041	CDI		174		5.143	-3.637	14.396	1.00	2.00
MOTA	1042	CD2		174		2.752	-3.118	18.619	1.00	3.27
MOTA	1043	C	TEA	174		3.420	-4.647		1.00	2.00
MOTA	1044	0	LEU	174		2.272	-5.064	18.825	1.00	8.94
ATOM	1045	N	CYS	175		4.476	-5.096	19.299	1.00	5.39
ATOM	1046	CA	CYS	175		4.325	-6.099	20.363	1.00	2.00
ATOM	1047	CB	CYS	175		5.656	-6.386	21.040		9.71
MOTA	1048	SG	CYS	175		6.885	-7.180	20.062	1.00	8.35
MOTA	1049	C	CYS	175		3.385	-5.518	21.420		9.82
ATOM	1050	0	CYS	175		2.448	-6.184	21.872		
MOTA	1051	N	GLY	176		3.630	-4.253	21.781		5.95
MOTA	1052	. CA	GTA	176		2.813		22.763		2.00
ATOM	1053		GLY	176		1.347		22.374		5.44
MOTA	1054		GLY	176		0.489		23.193		4.70
MOTA	1055		ILE	177		1.059		21.119		8.52
MOTA	1056		ILE	177		-0.321				9.46
MOTA	1057		ILE	177		-0.377				10.93
ATOM	1058			177		-1.791				13.45
MOTA	1059			177		0.484				
ATOM	1060		1 ILE	177		0.672	-0.392	18.023	1.00	12.58

FIG. 1S

ATOM	1061	С	ILE	177	-0.984	-4.425	20.422	1.00	9.48
MOTA	1062	0	ILE	177	-2.202	-4.583	20.610	1.00	2.00
MOTA	1063	N	LYS	178	-0.193	-5.424	20.054	1.00	8.60
ATOM	1064	CA	LYS	178	-0.748	-6.757	19.877	1.00	13.96
MOTA	1065	CB	LYS	178	0.275	-7.712	19.247	1.00	11.31
MOTA	1066	CG	LYS	178	-0.280	-9.093	19.037	1.00	8.75
MOTA	1067	CD	LYS	178	0.682	-9.999	18.302	1.00	13.40
MOTA	1068	CE	LYS	178	0.162	-11.436	18.309	1.00	6.81
MOTA	1069	NZ	LYS	178	-1.304	-11.536	18.017	1.00	8.76
MOTA	1070	С	LYS	178	-1.197	-7.236	21.261	1.00	12.95
MOTA	1071	0	LYS	178	-2.297	-7.773	21.406	1.00	11.31
MOTA	1072	N	HIS	179	-0.382	-6.959	22.282	1.00	14.07
MOTA	1073	CA	HIS	179	-0.720	-7.337	23.654	1.00	17.66
MOTA	1074	CB	HIS	179	0.411	-6.956	24.608	1.00	22.96
MOTA	1075	CG	HIS	179	0.252	-7.521	25.989	1.00	25.68
ATOM	1076	CD2	HIS	179	-0.527	-7.144	27.031	1.00	21.69
ATOM	1077	ND1	HIS	179	0.975	-8.606	26.430	1.00	27.24
ATOM	1078	CE1	HIS	179	0.653	-8.874	27.681	1.00	25.21
ATOM	1079	NE2	HIS	179	-0.258	-8.002	28.067	1.00	25.80
ATOM	1080	С	HIS	179	-2.010	-6.641	24.098	1.00	18.55
MOTA	1081	0	HIS	179	-2.891	-7.257	24.707	1.00	20.15
MOTA	1082	N	LEU	180	-2.130	-5.360	23.766	1.00	19.43
MOTA	1083	CA	LEU	180	-3.302	-4.570	24.125	1.00	18.86
MOTA	1084	CB	LEU	180	-3.061	-3.092	23.792	1.00	18.87
MOTA	1085	CG	LEU	180	-3.163	-2.022	24.885	1.00	17.95
MOTA	1086	CD1	LEU	180	-2.288	-2.388	26.063	1.00	16.08
MOTA	1087	CD2	LEU	180	-2.739	-0.672	24.323	1.00	19.02
MOTA	1088	C	LEU	180	-4.543	-5.075	23.400	1.00	17.60
MOTA	1089	0	LEU	180	-5.638	-5.078	23.966	1.00	16.24
MOTA	1090	N	HIS	181	-4.370	-5.498	22.148	1.00	18.47
MOTA	1091	CA	HIS	181	-5.476	-6.016	21.346	1.00	18.34
MOTA	1092	CB	HIS	181	-5.058	-6.209	19.888	1.00	22.03
MOTA	1093	CG	HIS	181	-5.010	-4.939	19.094	1.00	24.29
MOTA	1094		HIS	181	-5.866	-3.896	19.030	1.00	22.97
MOTA	1095		HIS	181	-3.972	-4.639	18.238	1.00	23.58
MOTA	1096		HIS	181	-4.194	-3.462	17.681	1.00	20.84
ATOM	1097		HIS	181	-5.335	-2.989	18.145	1.00	21.33
MOTA	1098	C	HIS	181	-5.947	-7.338	21.914	1.00	14.91
ATOM.	1099	0	HIS	181	-7.142	-7.629	21.911	1.00	16.18
MOTA	1100	N	SER	182	-4.999	-8.127	22.413	1.00	16.17 16.47
MOTA	1101	CA	SER	182	-5.291	-9.425	23.011	1.00	
ATOM	1102	CB	SER	182	-3.991	-10.157	23.351	1.00	12.75
MOTA	1103	OG	SER	182	-3.148	-10.271	22.215	1.00	23.12
MOTA	1104	C	SER	182	-6.094	-9.200	24.288	1.00 1.00	18.77 24.36
MOTA	1105	0	SER	182		-10.024	24.661 24.945		
ATOM	1106	N	ALA	183	-5.828	-8.070		1.00	17.65
MOTA	1107	CA	ALA	183	-6.506	-7.705	26.182 26.919	1.00	13.29 13.15
ATOM	1108	CB	ALA	183	-5.699	-6.670		1.00 1.00	16.33
MOTA	1109	C	ALA	183	-7.911	-7.183	25.911	1.00	22.38
MOTA	1110	0	ALA	183	-8.731	-7.066	26.826		
ATOM	1111	N	GLY	184	-8.189	-6.883	24.646	1.00 1.00	16.47
ATOM	1112	CA	GLY	184	-9.490	-6.371 -4.861	24.257 24.168	1.00	12.73 13.71
ATOM	1113	C	GLY	184	-9.461		24.168	1.00	14.57
MOTA	1114	0	GLY	184	-10.503	-4.223 -4.299	24.060	1.00	14.57
MOTA	1115	N	ILE	185	-8.256		24.189	1.00	17.69
ATOM	1116	CA	ILE	185	-8.047	-2.856	25.266	1.00	14.32
ATOM	1117	CB	ILE	185	-7.032	-2.418 -0.948	25.266	1.00	9.43
ATOM	1118	CG2		185	-6.662	-2.683	26.650	1.00	12.09
ATOM	1119	CG1	ILE	185	-7.635	-2.003	20.000	1.00	12.03

FIG. 1T

						0 004	07 750	1 00	2.00
MOTA	1120	CD1		185	-6.617	-2.904	27.750 22.780	1.00	21.86
MOTA	1121	C	ILE	185	-7.555	-2.353 -2.706	22.780	1.00	23.69
MOTA	1122	0	ILE	185	-6.458	-1.588	22.089	1.00	23.04
MOTA	1123	N	ILE	186	-8.401	-0.998	20.810	1.00	22.05
ATOM	1124	CA	ILE	186	-8.006		19.666	1.00	22.99
MOTA	1125	CB	ILE	186	-9.023	-1.248 -0.786	18.345	1.00	19.01
MOTA	1126	CG2	ILE	186	-8.419	-2.743	19.553	1.00	20.59
MOTA	1127	CG1	ILE	186	-9.340		18.541	1.00	15.12
MOTA	1128	CD1	ILE	186	-10.411	-3.065 0.503	21.068	1.00	18.01
MOTA	1129	C	ILE	186	-7.832	1.248	21.280	1.00	19.97
MOTA	1130	0	ILE	186	-8.794	0.906	21.250	1.00	11.89
MOTA	1131	N	HIS	187	-6.572	2.266	21.331	1.00	9.65
MOTA	1132	CA	HIS	187	-6.143	2.352	21.011	1.00	7.84
MOTA	1133	CB	HIS	187	-4.662	3.274	21.898	1.00	10.36
MOTA	1134	CG	HIS	187	-3.903	4.595	22.156	1.00	11.24
MOTA	1135		HIS	187	-4.054		22.586	1.00	13.01
MOTA	1136		HIS	187	-2.778	2.877	23.218	1.00	12.92
MOTA	1137		HIS	187	-2.263	3.912	22.975	1.00	4.76
ATOM	1138		HIS	1.87	-3.015	4.964 3.428	20.691	1.00	11.30
MOTA	1139	С	HIS	187	-6.908	4.064	21.348	1.00	13.83
ATOM	1140	0	HIS	187	-7.731	3.708	19.423	1.00	14.27
MOTA	1141	N	ARG	188	-6.606		18.648	1.00	13.77
MOTA	1142	CA	ARG	188	-7.211	4.792 4.854	18.845	1.00	13.60
MOTA	1143	CB	ARG	188	-8.724	3.753	18.170	1.00	10.20
MOTA	1144	CG	ARG	188	-9.457 -10.493	3.733	19.085	1.00	17.16
MOTA	1145	CD	ARG	188		4.112	19.212	1.00	16.20
MOTA	1146	NE	ARG	188	-11.632 -12.508	4.040	20.206	1.00	22.11
MOTA	1147	CZ	ARG	188	-12.349	3.127	21.157	1.00	22.61
MOTA	1148		ARG	188 188	-13.576	4.829	20.218	1.00	21.57
MOTA	1149		ARG ARG	188	-6.623	6.181	18.889	1.00	17.28
ATOM	1150	C	ARG	188	-7.229	7.173	18.501	1.00	21.13
ATOM	1151	N O	ASP	189	-5.444	6.264	19.502	1.00	15.55
ATOM	1152 1153	CA	ASP	189	-4.843	7.563	19.762	1.00	15.15
ATOM ATOM	1154	CB	ASP	189	-5.601	8.256	20.894	1.00	17.43
ATOM	1155	CG	ASP	189	-5.499	9.768	20.831	1.00	29.44
ATOM	1156		ASP	189	-5.155	10.316	19.759	1.00	36.43
MOTA	1157		ASP	189	-5.778	10.415	21.861	1.00	39.38
ATOM	1158	C	ASP	189	-3.361	7.474	20.087	1.00	15.20
ATOM	1159	ō	ASP	189	-2.882	8.081	21.034	1.00	16.94
ATOM	1160	N	LEU	190	-2.632	6.747	19.255	1.00	16.38
ATOM	1161	CA	LEU	190	-1.205	6.553	19.447	1.00	14.72
ATOM	1162	СВ	LEU	190	-0.753	5.278	18.741	1.00	17.54
ATOM	1163	CG	LEU	190	-0.255	4.158	19.644	1.00	12.34
ATOM	1164	CDI	LEU	190	0.027	2.938	18.825	1.00	12.26
ATOM	1165		LEU	190	1.003	4.602	20.360	1.00	13.72
ATOM	1166	C	LEU	190	-0.350	7.723	18.995	1.00	15.73
MOTA	1167	0	LEU	190	-0.118	7.906	17.805	1.00	20.11
ATOM	1168	N	LYS	191	0.098	8.527	19.954	1.00	16.43
ATOM	1169	CA	LYS	191	0.956	9.675	19.663	1.00	11.18
MOTA	1170	CB	LYS	191	0.259	10.996	20.051	1:00	15.07
MOTA	1171	CG	LYS	191	-0.201	11.126	21.516	1.00	17.28
ATOM	1172	CD	LYS	191	-1.088	12.359	21.765	1.00	10.02
MOTA	1173	CE	LYS	191	-2.531		21.321	1.00	14.89
MOTA	1174	NZ	LYS	191	-3.522	13.129	21.831	1.00	18.00
MOTA	1175	C	LYS	191	2.279		20.397	1.00 1.00	10.22 16.35
ATOM	1176	0	LYS	191	2.312		21.471		5.03
MOTA	1177	N	PRO	192	3.393	_		1.00	2.00
MOTA	1178	CD	PRO	192	3.460	10.575	10.433	1.00	2.00

FIG. 1U

MOTA	1179	CA	PRO	192	4.741	9.818	20.389	1.00	8.49
MOTA	1180	CB	PRO	192	5.612	10.513	19.342	1.00	9.05
MOTA	1181	CG	PRO	192	4.880	10.296	18.077	1.00	5.94
ATOM	1182	C	PRO	192	4.948	10.467	21.776	1.00	14.51
ATOM	1183	0	PRO	192	5.980	10.251	22.435	1.00	16.54
ATOM	1184	N	SER	193	3.991	11.294	22.192	1.00	13.30
ATOM	1185	CA	SER	193	4.051	11.984	23.473	1.00	14.80
ATOM	1186	CB	SER	193	3.120	13.207	23.461	1.00	14.49
ATOM	1187	OG	SER	193	1.785	12.862	23.103	1.00	8.59
ATOM	1188	С	SER	193	3.678	11.048	24.610	1.00	17.21
MOTA	1189	0	SER	193	4.047	11.279	25.763	1.00	21.39
MOTA	1190	N	ASN	194	2.938	9.999	24.258	1.00	15.65
MOTA	1191	CA	ASN	194	2.482	8.981	25.192	1.00	7.21
ATOM	1192	CB	ASN	194	1.043	8.593	24.865	1.00	7.91
ATOM	1193	CG	ASN	194	0.054	9.693	25.189	1.00	21.77
MOTA	1194	OD1	ASN	194	0.331	10.557	26.021	1.00	29.51
ATOM	1195		ASN	194	-1.118	9.658	24.561	1.00	18.85
ATOM	1196	С.	ASN	194	3.371	7.742	25.091	1.00	6.70
ATOM	1197	0	ASN	194	2.964	6.651	25.476	1.00	8.40
ATOM	1198	N	ILE	195	4.580	7.908	24.564	1.00	2.00
ATOM	1199	CA	ILE	195	5.507	6.798	24.397	1.00	2.73
ATOM	1200	CB	ILE	195	5.625	6.355	22.899	1.00	5.68
MOTA	1201	CG2		195	6.725	5.321	22.732	1.00	2.00
ATOM	1202	CG1		195	4.295	5.789	22.397	1.00	2.00
ATOM	1203	CD1		195	4.313	5.374	20.938	1.00	6.01
ATOM	1204	C	ILE	195	6.858	7.244	24.903	1.00	3.99
ATOM	1205	Ö	ILE	195	7.315	8.341	24.584	1.00	8.39
ATOM	1205	N	VAL	196	7.500	6.375	25.676	1.00	5.82
	1207	CA	VAL	196	8.803	6.663	26.270	1.00	11.18
MOTA		CB	VAL	196	8.682	6.901	27.805	1.00	13.47
MOTA	1208 1209		VAL	196	8.198	8.316	28.079	1.00	10.74
ATOM	1210		VAL	196	7.692	5.913	28.430	1.00	14.45
ATOM		C	VAL	196	9.829	5.574	25.971	1.00	10.32
MOTA	1211	0	VAL	196	9.479	4.403	25.825	1.00	21.42
MOTA	1212	N	VAL	197	11.089	5.971	25.808	1.00	5.51
MOTA	1213	CA	VAL	197	12.158	5.027	25.502	1.00	4.80
ATOM	1214			197	12.639	5.133	24.002	1.00	10.58
ATOM	1215	CB	VAL		11.531	5.695	23.102	1.00	6.44
ATOM	1216	·CG1		197	13.920	5.945	23.856	1.00	4.90
ATOM	1217	CG2		197	13.334	5.191	26.454	1.00	7.69
MOTA	1218	C	VAL	197	13.334	6.158	27.209	1.00	10.91
ATOM	1219	0	VAL	197		4.250	26.390	1.00	10.12
MOTA	1220	N	LYS	198	14.270		27.254	1.00	11.52
MOTA	1221	CA	LYS	198	15.442	4.243	28.149	1.00	16.60
MOTA	1222	CB	LYS	198	15.386				26.28
MOTA	1223	CG	LYS	198	16.189	3.136	29.427 30.272	1.00	31.00
MOTA	1224	CD	LYS	198	16.150	1.878		1.00	37.45
MOTA	1225	CE	LYS	198	14.768	1.615	30.854		
MOTA	1226	NZ	LYS	198	14.780	0.433	31.779	1.00	39.49
MOTA	1227	C	LYS	198	16.712	4.240	26.403	1.00	16.21
MOTA	1228	0	LYS	198	16.637	4.095	25.187	1.00	17.79
ATOM	1229	N	SER	199	17.876	4.367	27.040	1.00	17.91
ATOM	1230	CA	SER	199	19.152	4.397	26.328	1.00	18.09
ATOM	1231	CB	SER	199	20.308	4.677	27.280	1.00	17.32
ATOM	1232	OG	SER	199	20.405	6.068	27.526	1.00	22.33
MOTA	1233	C	SER	199	19.475	3.190	25.447	1.00	20.05
MOTA	1234	0	SER	199	20.301	3.285	24.548	1.00	21.63
MOTA	1235	N	ASP	200	18.864	2.045	25.727	1.00	21.10
MOTA	1236	CA	ASP	200	19.086	0.872	24.891	1.00	17.62
ATOM	1237	CB	ASP	200	19.288	-0.408	25.724	1.00	14.14

FIG. 1V

ATOM	1238	CG	ASP	200		18.209	-0.625	26.779	1.00	13.05
ATOM	1239	OD1	ASP	200		17.051	-0.223	26.574	1.00	10.97
ATOM	1240	OD2	ASP	200		18.528	-1.231	27.822	1.00	13.20
MOTA	1241	C	ASP	200		17.875	0.776	23.977	1.00	18.24 22.86
MOTA	1242	0	ASP	200		17.465	-0.298	23.559	1.00	18.66
MOTA	1243	N	CYS	201		17.283	1.936	23.723	1.00	21.37
MOTA	1244	CA	CYS	201		16.114	2.071	21.378	1.00	22.84
MOTA	1245	CB	CYS	201		16.491	1.963 3.519	20.591	1.00	22.39
MOTA	1246	SG	CYS	201		17.104	1.170	23.205	1.00	20.00
MOTA	1247	C	CYS	201		14.929 14.077	0.934	22.347	1.00	25.61
ATOM	1248	0	CYS	201		14.862	0.658	24.437	1.00	15.48
MOTA	1249	N	THR	202		13.715	-0.174	24.815	1.00	15.71
MOTA	1250	CA	THR	202 202		13.713	-0.996	26.087	1.00	15.14
MOTA	1251	CB	THR THR	202		14.531	-0.171	27.107	1.00	24.66
ATOM	1252	OG1 CG2	THR	202		14.881	-2.163	25.780	1.00	16.97
ATOM	1253	C	THR	202		12.539	0.772	24.963	1.00	12.64
ATOM	1254 1255	o	THR	202		12.694	1.884	25.454	1.00	18.75
MOTA	1256	И	LEU	203		11.370	0.343	24.513	1.00	11.71
MOTA MOTA	1257	CA	LEU	203		10.192	1.202	24.507	1.00	11.07
ATOM	1258	CB	LEU	203		9.790	1.396	23.035	1.00	7.87
MOTA	1259	CG	LEU	203		8.550	2.108	22.503	1.00	8.82
ATOM	1260		LEU	203		8.821	2.537	21.066	1.00	6.21
ATOM	1261		LEU	203		7.330	1.200	22.578	1.00	2.00
ATOM	. 1262	C	LEU	203		8.994	0.752	25.339	1.00	12.47
ATOM	1263	0	LEU	203		8.834	-0.436	25.628	1.00	17.72
MOTA	1264	N	LYS	204		8.134	1.720	25.668	1.00	3.95
ATOM	1265	CA	LYS	204	•	6.923	1.496	26.443	1.00	2.00
ATOM	1266	CB	LYS	204		7.184	1.693	27.944	1.00	3.61
MOTA	1267	CG	LYS	204		7.814	0.487	28.650	1.00	6.82
MOTA	1268	CD	LYS	204		8.128	0.807	30.098	1.00 1.00	8.75 10.28
MOTA	1269	$^{\rm CE}$	LYS	204		9.139	-0.175	30.683	1.00	8.47
MOTA	1270	NZ	LYS	204		8.520	-1.437	31.124 25.996	1.00	2.00
MOTA	1271	C	LYS	204		5.854	2.477 3.620	25.687	1.00	3.81
MOTA	1272	0	LYS	204		6.154	2.007	25.921	1.00	2.00
MOTA	1273	N	ILE	205		4.617 3.479	2.830	25.538	1.00	3.79
MOTA	1274	CA	ILE	205		2.498	2.070	24.610	1.00	6.77
ATOM	1275	CB	ILE	205		1.214	2.877	24.403	1.00	2.00
MOTA	1276	CG2		205 205		3.167	1.763	23.270	1.00	7.79
ATOM	1277	CG1		205		2.238	1.080	22.284	1.00	7.74
MOTA	1278 1279	CD.	ILE	205		2.751	3.138	26.834	1.00	11.47
ATOM ATOM	1280	Ö	ILE	205		2.189	2.244	27.462	1.00	13.38
ATOM	1281	N	LEU	206		2.667	4.418	27.165	1.00	12.52
ATOM	1282	CA	LEU	206		2.048	4.852	28.401	1.00	13.05
ATOM	1283	СВ		206		. 2.527	6.264	28.749	1.00	15.77
ATOM	1284	CG		206		4.040	6.517	28.734	1.00	16.73
ATOM	1285		1 LEU	206		4.274		28.716	1.00	17.19
ATOM	1286		2 LEU	206		4.747	5.874	29.918	1.00	14.95
ATOM	1287	C	LEU	206		0.536		28.542	1.00	14.20
MOTA	1288	0	LEU	206		0.064		29.655	1.00	19.67
MOTA	1289	N	ASP	207		-0.236		27.462	1.00	10.78 10.76
MOTA	1290	CA	ASP	207		-1.692				
MOTA	1291			207		-2.280				14.80 22.89
MOTA	1292			207		-2.281				22.44
MOTA	1293		1 ASP	207		-3.373				21.36
MOTA	1294	_	2 ASP	207		-1.204				
MOTA	1295		ASP	207		-2.507				
MOTA	1296	0	ASP	207		-1.956	2.920	20.223	1.00	

FIG. 1W

ATOM	1297	N	PHE	208	-3.819	3.776	27.179	1.00	7.76
ATOM	1298	CA	PHE	208	-4.739	2.809	26.593	1.00	7.38
MOTA	1299	CB	PHE	208	-5.458	2.005	27.688	1.00	12.69
MOTA	1300	CG	PHE	208	-4.514	1.331	28.648	1.00	11.63
MOTA	1301	CD1		208	-4.326	1.833	29.932	1.00	19.85 12.07
MOTA	1302		PHE	208	-3.753	0.251	28.240	1.00	16.31
MOTA	1303	CE1		208	-3.368	1.269	30.793 29.080	1.00	14.94
MOTA	1304		PHE	208	-2.797	-0.323 0.190	30.363	1.00	14.41
MOTA	1305	CZ	PHE	208	-2.600 -5.738	3.488	25.669	1.00	10.81
MOTA	1306	C	PHE	208 208	-6.769	2.917	25.326	1.00	7.83
ATOM	.1307	0	PHE GLY	208	-5.457	4.749	25.345	1.00	14.37
ATOM	1308	N CA	GLY	209	-6.269	5.515	24.414	1.00	11.22
ATOM	1309 1310	CA	GLY	209	-7.711	5.857	24.716	1.00	14.15
MOTA	1311	0	GLY	209	-8.073	6.130	25.864	1.00	16.16
ATOM ATOM	1312	N	LEU	210	-8.530	5.835	23.661	1.00	15.03
MOTA	1313	CA	LEU	210	-9.958	6.173	23.725	1.00	19.13
ATOM	1314	CB	LEU	210	-10.429	6.677	22.362	1.00	18.59
ATOM	1315	CG	LEU	210	-9.546	7.639	21.575	1.00	21.21
ATOM	1316		LEU	210	-10.096	7.786	20.162	1.00	21.04
MOTA	1317	CD2	LEU	210	-9.479	8.981	22.283	1.00	21.95
ATOM	1318	C	LEU	210	-10.895	5.048	24.140	1.00	23.06
MOTA	1319	0	LEU	210	-10.631	3.871	23.886	1.00	27.54 26.46
MOTA	1320	N	ALA	211	-12.023	5.428	24.730	1.00	31.93
MOTA	1321	CA	ALA	211	-13.029	4.460	25.152	1.00 1.00	33.70
MOTA	1322	CB	ALA	211	-13.833	5.013 4.200	26.324 23.954	1.00	37.57
MOTA	1323	C	ALA	211	-13.938	5.102	23.334	1.00	39.41
MOTA	1324	0	ALA	211	-14.160 -14.456	2.975	23.848	1.00	41.47
ATOM	1325	N	ALA	212 212	-15.334	2.574	22.741	1.00	44.00
MOTA	1326	CA	ALA ALA	212	-15.865	1.170	22.987	1.00	40.73
ATOM	1327 1328	CB C	ALA	212	-16.494	3.539	22.457	1.00	46.85
ATOM	1329	o	ALA	212	-16.590	4.009	21.294	1.00	45.16
MOTA MOTA	1330	CB	VAL	225	-9.000	18.138	19.811	1.00	38.33
ATOM	1331		. VAL	225	-8.808	16.791	20.485	1.00	36.84
ATOM	1332		VAL	225	-10.183	18.882	20.426	1.00	33.61
ATOM	1333	C	VAL	225	-6.661	18.403	18.962	1.00	46.33
ATOM	1334	0	VAL	225	-6.466	18.939	17.870	1.00	51.16
ATOM	1335	N	VAL	225	-7.928	20.395	19.562	1.00	45.47
MOTA	1336	CA	VAL	225	-7.699	18.972	19.928	1.00	42.53
MOTA	1337	N	THR	226	-5.978	17.340	19.378	1.00	47.37 43.20
MOTA	1338	CA	THR	226	-4.959	16.692	18.550	1.00	45.47
MOTA	1339	CB	THR	226	-3.798	16.159	19.417 20.231	1.00	44.76
MOTA	1340		LTHR	226	-3.273	17.220	18.538	1.00	41.66
MOTA	1341		2 THR	226	-2.690	15.583 15.517	17.770	1.00	41.24
MOTA	1342	C	THR	226	-5.544	14.608	18.355	1.00	41.37
MOTA	1343	0	THR	226	-6.141 -5.360	15.533	16.455	1.00	37.27
MOTA	1344	N	ALA	227	-5.862	14.461	15.610	1.00	31.23
MOTA	1345		ALA ALA	227 227	-7.220	14.841	_	1.00	23.57
ATOM	1346 1347		ALA	227	-4.868	14.132	14.500	1.00	27.64
MOTA MOTA	1347		ALA	227	-5.232	13.478	13.526	1.00	30.70
ATOM	1349		TYR	228	-3.612	14.552		1.00	24.30
ATOM	1350			228	-2.575	14.312		1.00	23.17
ATOM	1351			228	-1.246	14.990	14.007	1.00	21.58
ATOM	1352			228	-1.291	16.467		1.00	23.46
ATOM	1353		1 TYR	228	-0.197	17.108		1.00	21.86
ATOM	1354		1 TYR	228	-0.219	18.457			
ATOM	1355		2 TYR		-2.416	17.229	13.991	1.00	22.69

FIG. 1X

ATOM	1356	CE2	TYR	228	-2.448	18.587	14.265	1.00	30.74
ATOM	1357	CZ	TYR	228	-1.344	19.196	14.838	1.00	32.92
MOTA	1358	OH	TYR	228	-1.366	20.546	15.102	1.00	39.97
MOTA	1359	C	TYR	228	-2.260	12.829	13.438	1.00	24.23
MOTA	1360	0	TYR	228	-1.750	12.451	12.379	1.00	25.15
ATOM	1361	N	TYR	229	-2.525	12.000	14.449	1.00	23.04
MOTA	1362	CA	TYR	229	-2.204	10.575	14.355	1.00	17.62
MOTA	1363	CB	TYR	229	-1.270	10.177	15.503	1.00	15.95
MOTA	1364	CG	TYR	229	0.000	10.991	15.552	1.00	7.25 7.16
MOTA	1365	CD1	TYR	229	-0.005	12.295	16.034	1.00	
ATOM	1366	CE1	TYR	229	1.151	13.057	16.045	1.00	2.00
MOTA	1367	CD2	TYR	229	1.204	10.472	15.092	1.00	2.00 2.00
ATOM	1368	CE2	TYR	229	2.367	11.234	15.101	1.00	
ATOM	1369	CZ	TYR	229	2.326	12.520	15.580	1.00	3.35
ATOM	1370	OH	TYR	229	3. 451	13.286	15.593	1.00	7.73
ATOM	1371	C	TYR .		-3.410	9.647	14.305	1.00	17.31
ATOM	1372	0	TYR	229	-3.267	8.427	14.212	1.00	14.75
MOTA	1373	N	ARG	230	-4.602	10.226	14.314	1.00	19.16
MOTA	1374	CA	ARG	230	-5.818	9.426	14.268	1.00	23.52
ATOM	1375	CB	ARG	230	-6.995	10.208	14.865	1.00	23.61
ATOM	1376	CG	ARG	230	-6.688	10.667	16.293	1.00	28.96
ATOM	1377	CD	ARG	230	-7.900	11.083	17.092	1.00	30.92
MOTA	1378	NE	ARG	230	-7.468	11.590	18.395	1.00	34.96
MOTA	1379	CZ	ARG	230	-8.274	11.863	19.418	1.00	36.46
MOTA	1380		ARG	230	-9.585	11.685	19.319	1.00	37.33
ATOM	1381	NH2		230	-7.760	12.341	20.544	1.00	35.13
ATOM	1382	C	ARG	230	-6.117	8.922	12.849	1.00	26.24
MOTA	1383	0	ARG	230	-5.851	9.605	11.850	1.00	29.78
ATOM	, 1384	N	ALA	231	-6.648	7.706	12.788	1.00	22.73
ATOM	1385	CA	ALA	231	-6.968	7.037	11.531	1.00	18.49
ATOM	1386	CB	ALA	231	-7.110	5.543	11.755		15.82
ATOM	1387	C	ALA	231	-8.230	7.596	10.886	1.00	16.95
MOTA	1388	0	ALA	231	-9.102	8.128	11.567	1.00	19.43
MOTA	1389	N	PRO	232	-8.352	7.458	9.556	1.00	13.15
ATOM	1390	CD	PRO	232	-7.287	6.952	8.668	1.00	10.64
ATOM	1391	CA	PRO	232	-9.488	7.930	8.767	1.00	8.39
ATOM	1392	CB	PRO	232	-9.153	7.395	7.373	1.00	9.88
ATOM	1393	CG	PRO	232	-7.654	7.536	7.325	1.00	6.53
ATOM	1394	C	PRO	232	-10.852	7.463	9.254	1.00	9.91
ATOM	1395	0	PRO	232	-11.823	8.220	9.229	1.00	4.70
ATOM	1396	N	GLU	233	-10.908	6.223	9.744	1.00	16.52
ATOM	1397	CA	GLU	233	-12.157	5.636	10.238	1.00	17.87
ATOM	1398	CB	GLU	233	-12.083	4.097	10.278	1.00	17.61
ATOM	1399	CG	GLU	233	-11.054	3.502	11.228	1.00	24.07
ATOM	1400	CD	GLU	233	-9.764	3.091	10.545	1.00	23.95
ATOM	1401		L GLU	233	-9.227	3.891	9.762	1.00	32.58
ATOM	1402		2 GLU	233	-9.283	1.964	10.787	1.00	20.43
MOTA	1403	C	GLU	233	-12.584	6.193	11.593	1.00	21.23
ATOM	1404		GLU	233	-13.756	6.081	11.974	1.00	22.33
MOTA	1405		VAL	234	-11.636	6.786	12.319	1.00	19.53
MOTA	1406			234	-11.920	7.393	13.611	1.00	16.80
MOTA	1407			234	-10.672	7.385	14.529	1.00	15.57
ATOM	1408		1 VAL	234	-10.978	8.082	15.841	1.00	20.84
ATOM	1409		2 VAL		-10.235	5.956		1.00	17.05
MOTA	1410		VAL	234	-12.356	8.837		1.00	19.12
ATOM	1411		VAL	234	-13.415	9.268	13.798	1.00	21.96
ATOM	1412		ILE	235	-11.580			1.00	19.93
ATOM	1413			235	-11.889				14.90
	1414			235	-10.856				6.48
MOTA	7474		حدد	200					

FIG. 1Y

MOTA	1415	CG2	ILE	235		-11.216	12.918	10.742	1.00	11.04
MOTA	1416	CG1	ILE	235		-9.439	11.479	11.682	1.00	3.71
ATOM	1417	CD1	ILE	235		-8.390	11.912	10.670	1.00	2.00
MOTA	1418	C	ILE	235		-13.255	11.029	11.447	1.00	16.32 21.85
MOTA	1419	0	ILE	235		-13.968	12.015	11.618	1.00	
MOTA	1420	N	LEU	236		-13.600	10.021	10.647	1.00	20.37
MOTA	1421	CA	LEU	236		-14.871	10.025	9.921	1.00	
MOTA	1422	CB	LEU	236		-14.652	9.597	8.469	1.00	17.45
MOTA	1423	CG	LEU	236		-13.731	10.515	7.653	1.00	21.12
MOTA	1424	CD1	LEU	236		-13.497	9.937	6.275	1.00	19.91 17.10
MOTA	1425	CD2	LEU	236		-14.315	11.913	7.533	1.00	23.24
ATOM	1426	C	LEU	236		-15.990	9.212	10.566	1.00	23.76
MOŢA	1427	0	LEU	236		-17.148	9.325	10.175	1.00	29.40
MOTA	1428	N	GLY	237		-15.638	8.410	11.567	1.00	29.40
MOTA	1429	CA	GLY	237		-16.611	7.597	12.277	1.00	31.11
MOTA	1430	С	GLY	237		-17.297	6.528	11.457	1.00	
MOTA	1431	0	GLY	237		-18.505	6.598	11.220	1.00	31.67
MOTA	1432	N	MET	238		-16.530	5.528	11.034	1.00	33.24
MOTA	1433	CA	MET	238		-17.072	4.430	10.232	1.00	40.35
MOTA	1434	CB	MET	238		-16.294	4.322	8.911	1.00	42.67
MOTA	1435	CG	MET	238		-16.364	5.541	8.015	1.00	43.24
ATOM	1436	SD	MET	238		-15.094	5.451	6.744	1.00	45.00
ATOM	1437	CE	MET	238		-13.860	6.403	7.497	1.00	45.15
MOTA	1438	C	MET	238		-16.997	3.081	10.958	1.00	38.94
ATOM	1439	0	MET	238		-17.393	2.045	10.410	1.00	41.45
MOTA	1440	N	GLY	239		-16.535	3.098	12.203	1.00	35.34
MOTA	1441	CA	GLY	239		-16.375	1.855	12.935	1.00	32.28
MOTA	1442	C	GLY	239		-14.904	1.531	12.758	1.00	28.98
ATOM	1443	0	GLY	239		-14.227	2.181	11.949	1.00	31.47
ATOM	1444	N	TYR	240		-14.400	0.518	13.454	1.00	23.63
MOTA	1445	CA	TYR	240		-12.976	0.208	13.356	1.00	14.17
ATOM	1446	CB	TYR	240		-12.192	1.131	14.309	1.00	20.41
ATOM	1447	CG	TYR	240		-12.658	1.072	15.757	1.00	23.03
ATOM	1448	CD1	TYR	240		-11.957	0.341	16.711	1.00	18.92
ATOM	1449	CE1	TYR	240		-12.412	0.252	18.031	1.00	18.94
MOTA	1450	CD2	TYR	240		-13.826	1.720	16.165	1.00	22.91
MOTA	1451	CE2	TYR	240		-14.282	1.633	17.484	1.00	23.42
MOTA	1452	CZ	TYR	240		-13.573	0.896	18.405	1.00	23.41
MOTA	1453	OH	TYR	240		-14.041	0.786	19.693	1.00	31.32
MOTA	1454	C	TYR	240		-12.668	-1.236	13.699	1.00	12.19
MOTA	1455	0	TYR	240		-13.571	-2.027	14.019	1.00	10.14
ATOM	1456	N	LYS	241		-11.384	-1.572	13.613	1.00	3.54
MOTA	1457	CA	LYS	241		-10.892	-2.896	13.956	1.00	6.13
MOTA	1458	CB	LYS	241		-11.100	-3.908	12.811	1.00	8.75
ATOM	1459	CG	LYS	241		-10.067		11.690	1.00	10.54
MOTA	1460	CD	LYS	241		-10.537		10.543	1.00	11.62
MOTA	1461	CE	LYS	241		-9.530		9.401	1.00	11.38
MOTA	1462	NZ	LYS	241		-10.032		8.231	1.00	21.31
MOTA	1463	C	LYS	241		-9.430		14.368	1.00	5.59
ATOM	1464	0	LYS	241		-8.872		14.342	1.00	6.19
MOTA	1465	N	GLU	242		-8.804		14.739	1.00	9.26
MOTA	1466	CA	GLU	242		-7.423	_	15.198	1.00	12.44
ATOM	1467		GLU			-6.847		15.424	1.00	11.72
ATOM	1468		GLU			-7.788		15.179		17.26
ATOM	1469	_	GLU			-8.706				
ATOM	1470		1 GLU			-8.191				
ATOM	1471		2 GLU			-9.937				
ATOM	1472		GLU			-6.444	_			
ATOM	1473		GLU	242	,	-5.565	-2.372	14.926	1.00	21.41

FIG. 1Z

					C 507	-3.013	13.050	1.00	19.31
MOTA	1474		ASN	243	-6.587	-2.277	12.248		21.03
MOTA	1475		ASN	243	-5.613		10.799	1.00	21.90
ATOM	1476		ASN	243	-5.559	-2.800		1.00	22.02
MOTA	1477	CG	ASN	243	-6.795	-2.463	9.992		25.24
ATOM	1478	OD1	ASN	243	-7.752	-1.884	10.502	1.00	
ATOM	1479	ND2	ASN	243	-6.770	-2.811	8.713	1.00	26.83
ATOM	1480	С	ASN	243	-5.729	-0.752	12.318	1.00	19.59
ATOM	1481	0	ASN	243	-4.985	-0.033	11.651	1.00	21.35
ATOM	1482	N	VAL	244	-6.609	-0.254	13.180	1.00	16.86
ATOM	1483	CA	VAL	244	-6.764	1.183	13.322	1.00	12.16
ATOM	1484	CB	VAL	244	-8.023	1.555	14.132	1.00	6.16
ATOM	1485		VAL	244	-7.913	1.067	15.554	1.00	5.57
ATOM	1486	CG2		244	-8.271	3.048	14.067	1.00	3.91
ATOM	1487	C	VAL	244	-5.517	1.766	13.967	1.00	12.08
ATOM	1488	ō	VAL	244	-5.170	2.921	13.738	1.00	17.02
	1489	N	ASP	245	-4.800	0.934	14.714	1.00	10.69
MOTA	1490	CA	ASP	245	-3.578	1.372	15.378	1.00	7.76
ATOM		CB	ASP	245	-3.309	0.543	16.641	1.00	14.73
MOTA	1491		ASP	245	-4.325	0.794	17.735	1.00	15.38
ATOM	1492	CG		245	-4.728	1.967	17.889	1.00	14.39
MOTA	1493		ASP	245 245	-4.720	-0.170	18.426	1.00	9.85
MOTA	1494		ASP		-2.399	1.252	14.460	1.00	5.82
ATOM	1495	C	ASP	245	-1.287	1.611	14.832	1.00	8.10
MOTA	1496	0	ASP	245		0.662	13.291	1.00	11.60
MOTA	1497	N	ILE	246	-2.611 -1.529	0.502	12.318	1.00	14.99
MOTA	1498	CA	ILE	246		-0.674	11.316	1.00	1580
MOTA	1499	CB	ILE	246	-1.806		10.049	1.00	17.53
MOTA	1500	CG2		246	-0.951	-0.557	11.999	1.00	9.33
MOTA	1501	CG1		246	-1.498	-2.014		1.00	2.50
MOTA	1502	CD1	ILE	246	-0.022	-2.248	12.261	1.00	11.65
ATOM	1503	C	ILE	246	-1.310	1.847	11.599		12.98
MOTA	1504	0	ILE	246	-0.174	2.223	11.300	1.00	13.04
MOTA	1505	N.	TRP	247	-2.390	2.607	11.422	1.00	13.04
MOTA	1506	CA	TRP	247	-2.305	3.913	10.784	1.00	
ATOM	1507	CB	TRP	247	-3.670	4.593	10.747.		15.24
ATOM	1508	CG	TRP	247	-3.591	6.016	10.254	1.00	25.04
MOTA	1509	CD2	TRP	247	-3.678	6.466	8.891	1.00	29.15
MOTA	1510	CE2	TRP	247	-3.507	7.868	8.903	1.00	32.78
ATOM	1511	CE3	•	247	-3.872	5.820	7.666	1.00	27.68
ATOM	1512	CDI		247	-3.382	7.144	11.010	1.00	24.32
ATOM	1513		TRP	247	-3.332	8.254	10.209	1.00	22.09
ATOM	1514	CZ		247	-3.527	8.635	7.723	1.00	33.21
ATOM	1515	CZ		247	-3.894	6.578	6.504	1.00	23.18
ATOM	1516	CH		247	-3.721	7.967	6.538	1.00	27.77
ATOM	1517		TRP	247	-1.345	4.789	11.577	1.00	15.01
ATOM	1518	ŏ	TRP	247	-0.313	5.238	11.065	1.00	16.99
ATOM	1519		SER	248	-1.662	4.948	12.860	1.00	14.45
				248	-0.891	5.771	13.784	1.00	12.48
MOTA	1520			248	-1.533	5.716	15.168	1.00	13.86
MOTA	1521		SER	248	-2.952	5.797		1.00	13.99
MOTA	1522				0.580			1.00	11.77
MOTA	1523		SER	248	1.449			_	16.52
MOTA	1524		SER	248	0.865				11.99
ATOM	1525		VAL	249	2.247				8.92
MOTA	1526			249	2.247				11.36
MOTA	1527			249					6.01
MOTA	1528		1 VAL	249	3.735				
MOTA	1529		2 VAL	249	1.674				
MOTA	1530		VAL	249	2.901				
MOTA	1531		VAL	249	4.125				
MOTA	1532	N	GLY	250	2.065	4.121	. 11.351	. 1.00	3.71

FIG. 1AA

		G.	OT V	250	2.548	4.527	10.047	1.00	5.35
ATOM	1533	CA	GLY GLY	250	2.963	5.977	10.119	1.00	4.31
MOTA	1534	C	GLY	250	4.077	6.338	9.724	1.00	4.22
MOTA	1535	0	CYS	251	2.076	6.799	10.678	1.00	7.44
MOTA	1536	N CA	CYS	251	2.312	8.230	10.856	1.00	2.00
MOTA	1537	CB	CYS	251	1.138	8.858	11.601	1.00	2.00
MOTA	1538	SG	CYS	251	-0.474	8.661	10.799	1.00	2.78
MOTA	1539	C	CYS	251	3.616	8.467	11.631	1.00	6.97
MOTA	1540	0	CYS	251	4.438	9.292	11.231	1.00	12.60
ATOM	1541	И	ILE	252	3.823	7.706	12.709	1.00	7.61
ATOM	1542	CA	ILE	252	5.019	7.810	13.556	1.00	6.09
MOTA	1543 1544	CB	ILE	252	4.871	6.950	14.831	1.00	4.83
MOTA	1545	CG2	ILE	252	6.218	6.808	15.530	1.00	2.00
MOTA	1545	CG1	ILE	252	3.785	7.533	15.739	1.00	9.15
MOTA	1547	CD1	ILE	252	3.368	6.618	16.876	1.00	8.65
MOTA	1548	C	ILE	252	6.274	7.349	12.827	1.00	6.13
MOTA	1549	Ö	ILE	252	7.345	7.934	12.981	1.00	8.25
MOTA	1550	N	MET	253	6.147	6.255	12.083	1.00	12.21
MOTA	1551	CA	MET	253	7.260	5.700	11.321	1.00	9.31
MOTA	1552	CB	MET	253	6.843	4.378	10.689	1.00	12.07
MOTA	1553	CG	MET	253	7.951	3.710	9.911	1.00	17.77
MOTA	1554	SD	MET	253	7.378	2.346	8.895	1.00	14.25
MOTA	1555	CE	MET	253	8.981	1.704	8.404	1.00	2.00
MOTA MOTA	1556	C	MET	253	7.670	6.688	10.230	1.00	6.53
	1557	o	MET	253	8.856	6.991	10.063	1.00	6.83
ATOM ATOM	1558	N	GLY	254	6.674	7.231	9.530	1.00	7.59
ATOM	1559	CA	GLY	254	6.927	8.196	8.473	1.00	14.92
ATOM	1560	C	GLY	254	7.597	9.453	9.010	1.00	19.52
ATOM	1561	Ö	GLY	254	8.446	10.057	8.346	1.00	22.42
ATOM	1562	N	GLU	255	7.242	9.813	10.240	1.00	15.34
ATOM	1563	CA	GLU	255	7.779	10.975	10.924	1.00	8.43
MOTA	1564	CB	GLU	255	6.897	11.265	12.124	1.00	10.24
MOTA	1565	CG	GLU	255	7.168	12.568	12.834	1.00	6.53
MOTA	1566	CD	GLU	255	6.188	12.798	13.961	1.00	8.13
ATOM	1567	OE		255	4.984	12.542	13.770	1.00	11.86
ATOM	1568	OE2		255	6.616	13.241	15.034	1.00	16.77
MOTA	1569	C	GLU	255	9.219	10.734	11.369	1.00	6.94
MOTA	1570	0	GLU	255	10.010	11.670	11.503	1.00	7.55
ATOM	1571	N	MET	256	9.575	9.475	11.584	1.00	10.29
ATOM	1572	CA	MET	256	10.926	9.155	12.008	1.00	14.75
ATOM	1573	CB	MET	256	11.005	7.723	12.561	1.00	15.70
MOTA	1574		MET	256	10.308	7.560	13.918	1.00	17.40
ATOM	1575		MET	256	10.091	5.868		1.00	20.23
ATOM	1576		MET	256	11.669	5.577		1.00	5.04
ATOM	1577	C	MET	256	11.889	9.368		1.00	13.20
MOTA	1578		MET	256	13.065	9.670			15.06
ATOM	1579		VAL	257	11.383	9.226			18.22
ATOM	1580		VAL	257	12.204	9.418			17.33
MOTA	1581		VAL	257	11.888	8.413			10.85
MOTA	1582		1 VAL	257	12.854	7.265			16.21
ATOM	1583		2 VAL	257	10.486	7.908			7.85
ATOM	1584		VAL	257	12.095	10.834			18.77
MOTA	1585		VAL	257	13.087	11.405			22.01
ATOM	1586		ARG	258	10.902	11.414			17.51
ATOM	1587			258	10.687	12.76			
ATOM	1588			258	9.202	12.972			
ATOM	1589			258	8.928	14.159			
ATOM	1590			258	7.457	14.274			
MOTA	1593			258	7.054	13.46	4.72	7 1.00	28.26
011		_							

FIG. 1BB

ATOM	1592	CZ	ARG	258	5.796	13.362	4.296	1.00	26.76
MOTA	1593		ARG	258	4.824	14.004	4.930	1.00	28.87
ATOM	1594	NH2	ARG	258	5.509	12.661	3.207	1.00	24.96
ATOM	1595	C	ARG	258	11.173	13.806	8.456	1.00	25.86
ATOM	1596	0	ARG	258	11.658	14.870	8.070	1.00	32.18
MOTA	1597	N	HIS	259	11.109	13.446	9.740	1.00	24.12
MOTA	1598	CA	HIS	259	11.494	14.313	10.857	1.00	22.37
ATOM	1599	CB	\mathtt{HIS}	259	12.851	14.986	10.603	1.00	21.43
MOTA	1600	CG	HIS	259	14.019	14.066	10.746	1.00	18.22
ATOM	1601	CD2	HIS	259	15.287	14.145	10.278	1.00	24.02
MOTA	1602	ND1	HIS	259	13.946	12.882	11.446	1.00	16.87
MOTA	1603	CE1	HIS	259	15.114	12.273	11.405	1.00	22.04
MOTA	1604	NE2	\mathtt{HIS}	259	15.947	13.017	10.703	1.00	20.47
ATOM	1605	C	HIS	259	10.438	15.366	11.158	1.00	22.70
MOTA	1606	0	HIS	259	10.588	16.154	12.093	1.00	25.27
MOTA	1607	N	LYS	260	9.369	15.367	10.368	1.00	17.40
ATOM	1608	CA	LYS	260	8.294	16.332	10.524	1.00	16.56
MOTA	1609	CB	LYS	260	8.265	17.268	9.312	1.00	19.39
ATOM	1610	CG	LYS	260	9.626	17.663	8.747	1.00	20.30
MOTA	1611	CD	LYS	260	9.443	18.546	7.519	1.00	28.30
MOTA	1612	CE	LYS	260	10.776	18.964	6.903	1.00	31.46 36.52
MOTA	1613	NZ	LYS	260	10.589	19.953	5.801	1.00	
MOTA	1614	C	LYS	260	6.952	15.613	10.608	1.00	19.33 17.65
MOTA	1615	0	LYS	260	6.770	14.556	10.000	1.00	17.63
MOTA	1616	N	ILE	261	5.996	16.201	11.326	1.00 1.00	14.19
ATOM	1617	CA	ILE	261	4.668	15.602	11.449	1.00	7.20
ATOM	1618	CB	ILE	261	3.696	16.442	12.337	1.00	2.00
ATOM	1619	CG2		261	2.279	15.854	12.304 13.784	1.00	10.49
MOTA	1620	CG1		261	4.196	16.473 16.993	14.778	1.00	3.19
MOTA	1621	CD1		261	3.166	15.434	10.061	1.00	15.65
ATOM	1622	C	ILE	261	4.063 3.865	16.401	9.332	1.00	15.94
MOTA	1623	0	ILE	261	3.764	14.183	9.736	1.00	16.99
MOTA	1624	N	LEU	262 262	3.193	13.773	8.460	1.00	16.61
MOTA	1625	CA	TEA FEA	262 262	2.889	12.272	8.519	1.00	14.07
MOTA	1626	CB	LEU	262	3.555	11.337	7.510	1.00	11.45
ATOM	1627	CG	LEU	262	5.061	11.292	7.728	1.00	7.82
MOTA	1628	CD2		262	2.931	9.958	7.638	1.00	3.94
MOTA MOTA	1629 1630	CDZ	LEU	262	1.930	14.541	8.025	1.00	19.12
	1631	õ	LEU	262	1.886	15.071	6.909	1.00	20.84
ATOM	1632	И	PHE	263	0.909	14.571	8.877	1.00	19.61
ATOM ATOM	1633	CA	PHE	263	-0.344	15.263	8.556	1.00	19.23
MOTA	1634	CB	PHE	263	-1.498	14.264	8.419	1.00	20.11
ATOM	1635	CG	PHE	263	-1.123	12.991	7.714	1.00	31.62
ATOM	1636		. PHE	263	-0.890	12.976	6.343	1.00	32.52
ATOM	1637		PHE	263	-1.007	11.800	8.425	1.00	32.72
MOTA	1638		PHE	263	-0.536	11.788	5.685	1.00	31.61
MOTA	1639		PHE	263	-0.655	10.606	7.784	1.00	31.76
MOTA	1640	CZ	PHE	263	-0.418	10.600	6.407	1.00	27.52
ATOM	1641	C	PHE	. 263	-0.714	16.277	9.643	1.00	21.98
ATOM	1642	ō	PHE	263	-1.630	16.035	10.434	1.00	24.79
MOTA	1643	N	PRO	264	-0.020	17.428	9.690	1.00	22.78
ATOM	1644	CD	PRO	264	1.169	17.776	8.894	1.00	22.19
ATOM	1645	CA	PRO	264	-0.297	18.467	10.693	1.00	24.13
ATOM	1646	CB	PRO	264	1.035	19.210	10.774	1.00	21.59
ATOM	1647	CG	PRO	264	1.478	19.199	9.349	1.00	23.37
MOTA	1648	C	PRO		-1.456	19.396	10.319	1.00	24.33
ATOM	1649	ō	PRO	264	-1.250	20.502	9.817	1.00	28.26
ATOM	1650	N	GLY		-2.674	18.939	10.587	1.00	23.20
	-								

FIG. 1CC

ATOM	1651	CA	GLY	265	-3.860	19.716	10.276	1.00	31.03
ATOM	1652	C	GLY	265	-4.302	20.680	11.361	1.00	37.14
ATOM	1653	0	GLY	265	-4.579	20.264	12.488	1.00	39.17
ATOM	1654	N	ARG	266	-4.404	21.961	11.007	1.00	39.70
MOTA	1655	CA	ARG	266	-4.816	23.013	11.933	1.00	38.28
ATOM	1656	CB	ARG	266	-4.703	24.374	11.255	1.00	40.99
ATOM	1657	CG	ARG	266	-3.263	24.775	10.975	1.00	47.16
ATOM	1658	CD	ARG	266	-3.171	26.160	10.337	1.00	50.47
	1659	NE	ARG	266	-2.047	26.921	10.877	1.00	52.30
MOTA		CZ	ARG	266	-0.786	26.819	10.461	1.00	54.85
ATOM	1660	NH1		266	-0.462	25.988	9.476	1.00	54.82
MOTA	1661		ARG	266	0.165	27.528	11.061	1.00	55.46
MOTA	1662	NH2		266	-6.212	22.845	12.527	1.00	40.23
MOTA	1663	C	ARG		-6.500	23.392	13.594	1.00	42.31
MOTA	1664	0	ARG	266	-7.079	22.113	11.829	1.00	39.95
ATOM	1665	N	ASP	267		21.866	12.291	1.00	36.79
MOTA	1666	CA	ASP	267	-8.445	23.043	11.933	1.00	42.01
ATOM	1667	CB	ASP	267	-9.381		10.475	1.00	42.09
ATOM	1668	CG	ASP	267	-9.255	23.504		1.00	37.79
MOTA	1669		ASP	267	-10.263	23.420	9.734		42.40
ATOM	1670	OD2	ASP	267	-8.171	23.997	10.084	1.00	34.35
MOTA	1671	C	ASP	267	-8.989	20.531	11.776	1.00	
MOTA	1672	0	ASP	267	-8.265	19.776	11.120	1.00	35.42
ATOM	1673	N	ALA	268	-10.257	20.245	12.073	1.00	31.62
ATOM	1674	CA	ALA	268	-10.903	18.999	11.659	1.00	30.64
ATOM	1675	CB	ALA	268	-12.337	18.955	12.188	1.00	28.57
MOTA	1676	С	ALA	268	-10.907	18.852	10.138	1.00	32.52
ATOM	1677	0	ALA	268	-10.762	17.746	9.599	1.00	28.70
ATOM	1678	N	ILE	269	-11.014	19.994	9.460	1.00	33.35
MOTA	1679	CA	ILE	269	-11.055	20.071	8.003	1.00	26.07
ATOM	1680	CB	ILE	269	-11.705	21.398	7.595	1.00	24.01
ATOM	1681	CG2		269	-11.614	21.610	6.087	1.00	24.76
ATOM	1682	CG1		269	-13.149	21.403	8.105	1.00	25.34
	1683	CD1		269	-13.785	22.763	8.199	1.00	20.60
ATOM	1684	C	ILE	269	-9.682	19.927	7.367	1.00	20.53
MOTA			ILE	269	-9.492	19.133	6.459	1.00	20.91
MOTA	1685	0	ASP	270	-8.716	20.659	7.901	1.00	21.56
ATOM	1686	N		270	-7.353	20.632	7.398	1.00	20.48
MOTA	1687	CA	ASP	270	-6.531	21.735	8.057	1.00	20.75
MOTA	1688	CB	ASP		-5.205	21.970	7.366	1.00	23.84
ATOM	1689	CG	ASP	270	-5.172	21.986	6.113	1.00	28.48
ATOM	1690		ASP	270	-4.192	22.162	8.077	1.00	27.78
MOTA	1691		ASP	270		19.290	7.640	1.00	23.87
MOTA	1692	C	ASP	270	-6.685	18.962	6.971	1.00	22.94
ATOM	1693	0	ASP	270	-5.709		8.610	1.00	27.87
MOTA	1694	N	GLN	271	-7.185	18.524	8.917	1.00	26.15
MOTA	1695	CA	GLN	271	-6.611	17.213		1.00	29.33
MOTA	1696	CB	GLN	271	-7.225	16.634	10.200		30.10
MOTA	1697	CG	GLN	271	-6.560	15.344	10.683	1.00	33.24
MOTA	1698	CD	GLN	271	-5.054	15.469	10.774	1.00	
ATOM	1699	OE	L GLN	271	-4.317	14.813	10.038	1.00	30.97
ATOM	1700	NE	GLM	271	-4.588	16.345	11.655	1.00	36.55
MOTA	1701	C	GLN	271	-6.800	16.227	7.766	1.00	23.40
MOTA	1702	0	GLN	271	-5.843	15.587	7.330	1.00	17.83
ATOM	1703	N	TRP	272	-8.032	16.126	7.270	1.00	21.41
ATOM	1704	CA	TRP	272	-8.352	15.221	6.174	1.00	21.27
ATOM	1705	CB	TRP	272	-9.862		5.944	1.00	25.91
ATOM	1706	CG	TRP	272	-10.320	14.231	4.855	1.00	34.96
ATOM	1707	CD:		272	-10.216		4.856		37.63
ATOM	1708	CE		272	-10.864		3.684		39.04
ATOM	1709	CE:		272	-9.645		5.733	1.00	36.23

FIG. 1DD

ATOM	1710	CD1	TRP	272	-11.0	01	14.559	3.706	1.00	34.40
ATOM	1711	NE1	TRP	272	-11.3	333	13.420	3.004	1.00	34.42
ATOM	1712	CZ2	TRP	272	-10.9	954	10.956	3.373	1.00	38.88
ATOM	1713	CZ3	TRP	272	-9.7	733	10.504	5.427	1.00	33.36
ATOM	1714	CH2	TRP	272	-10.3	885	10.063	4.257	1.00	37.17
	1715	C	TRP	272	-7.6		15.626	4.887	1.00	23.52
MOTA			TRP	272	-7.1		14.774	4.165	1.00	25.26
MOTA	1716	0		272	-7.5		16.930	4.632	1.00	24.61
ATOM	1717	N	ASN		-6.9		17.449	3.424	1.00	20.66
ATOM	1718	CA	ASN	273			18.954	3.290	1.00	22.38
MOTA	1719	CB	ASN	273	-7.3			2.939	1.00	22.57
MOTA	1720	ÇG	ASN	273	-8.6		19.285		1.00	16.68
MOTA	1721		ASN	273	-9.:		18.551	2.192		19.51
MOTA	1722	ND2	asn	273	-9.3		20.389	3.480	1.00	
MOTA	1723	C	ASN	273	-5.4	469	17.158	3.394	1.00	18.46
MOTA	1724	0	ASN	273	-4.	893	16.944	2.326	1.00	24.72
ATOM	1725	N	LYS	274	-4.	849	17.153	4.565	1.00	17.40
ATOM	1726	CA	LYS	274	-3.	423	16.863	4.681	1.00	20.54
ATOM	1727	CB	LYS	274	-2.	946	17.126	6.117	1.00	24.00
		CG	LYS	274	-2.		18.606	6.490	1.00	23.91
MOTA	1728		LYS	274	-1.		19.229	5.890	1.00	31.69
MOTA	1729	CD		274	-1.		20.711	6.242	1.00	36.12
MOTA	1730	CE	LYS		-2.		21.581	5.504	1.00	39.86
MOTA	1731	NZ	LYS	274			15.401	4.301	1.00	19.94
MOTA	1732	C	LYS	274	-3.		15.401	3.815	1.00	17.57
MOTA	1733	0	LYS	274	-2.			4.500	1.00	21.20
MOTA	1734	N	VAL	275		188	14.561			21.22
MOTA	1735	CA	VAL	275		135	13.129	4.195	1.00	
ATOM	1736	CB	VAL	275		260	12.356	4.947	1.00	27.34
MOTA	1737	CG1	VAL	275	-5.	249	10.863	4.570	1.00	24.55
ATOM	1738	CG2	VAL	275	-5.	100	12.535	6.450	1.00	21.86
ATOM	1739	C	VAL	275	-4.	246	12.822	2.695	1.00	19.42
ATOM	1740	o	VAL	275	-3.	321	12.258	2.105	1.00	19.86
ATOM	1741	N	ILE	276	-5.	368	13.195	2.078	1.00	15.37
ATOM	1742	CA	ILE	276		561	12.949	0.655	1.00	10.70
	1743	CB	ILE	276		020	13.177	0.217	1.00	2.68
MOTA	1744	CG2		276		948	12.312	1.052	1.00	2.00
ATOM		CG1		276		393	14.642	0.337	1.00	2.00
ATOM	1745					879	14.892	0.120	1.00	2.00
MOTA	1746	CD1		276		608	13.728	-0.244	1.00	11.53
MOTA	1747	C	ILE	276			13.720	-1.378	1.00	13.01
MOTA	1748	0	ILE	276		358		0.258	1.00	17.68
MOTA	1749	N	GLU	277		034	14.810		1.00	21.93
MOTA	1750	CA	GLU	277		085	15.574	-0.546		
MOTA	1751	CB	GLU	277		609	16.805	0.228	1.00	26.73
ATOM	1752	CG	GLU	277		333	18.094	-0.107	1.00	31.15
MOTA	1753	CD	GLU	277		082	19.186	0.920	1.00	31.05
MOTA	1754	OE1	LGLU	277		907	19.418	1.278	1.00	28.67
ATOM	1755	OE2	GLU	277	-4.	066	19.805	1.378	1.00	30.92
ATOM	1756	C	GLU	277	-1.	879	14.694	-0.874	1.00	23.55
ATOM	1757	0	GLU	277	-1.	.367	14.704	-2.002	1.00	25.88
ATOM	1758	N	GLN	278	-1.	471	13.895	0.111	1.00	20.15
	1759	CA	GLN	278		310	13.018	-0.002	1.00	17.85
MOTA	1760	CB	GLN	278		412	12.945	1.335	1.00	15.48
ATOM	1761	CG	GLN	278		945	14.239	1.858	1.00	13.04
ATOM						.552	14.053	3.223	1.00	9.75
MOTA	1762	CD	GLN	278		.682	13.588	3.359	1.00	9.48
MOTA	1763		l GLN	278			14.397	4.246		12.91
MOTA	1764			278		.796			1.00	15.71
MOTA	1765		GLN	278		.591	11.592	-0.435		16.36
MOTA	1766		GLN	278		.260	10.959	-1.055	1.00	11.53
MOTA	1767		LEU	279		.753	11.078	-0.055		
MOTA	1768	CA	LEU	279	-2	. 115	9.711	-0.367	1.00	12.00

MOTA	1769	CB	LEU	279	-2.639	9.017	0.887	1.00	12.00
MOTA	1770	CG	LEU	279	-1.786	9.084	2.158	1.00	9.51
ATOM	1771		LEU	279	-2.339	8.079	3.146	1.00	6.61
MOTA	1772		LEU	279	-0.315	8.805	1.867	1.00	3.14
ATOM	1773	C	LEU	279	-3.124	9.578	-1.500	1.00	17.06
ATOM	1774	0	LEU	279	-3.161	8.562	-2.198	1.00	18.67
MOTA	1775	N	GLY	280	-3.926	10.613	-1.696	1.00	18.66
MOTA	1776	CA	GLY	280	-4.909	10.587	-2.757	1.00	15.54
MOTA	1777	C	GLY	280	-6.307	10.343	-2.251	1.00	16.01
ATOM	1778	0	GLY	280	-6.505	9.822	-1.153	1.00	18.83
ATOM	1779	N	THR	281	-7.287	10.740	-3.045	1.00	17.90
ATOM	1780	CA	THR	281	-8.676	10.558	-2.678	1.00	20.47
MOTA	1781	CB	THR	281	-9.603	11.349	-3.622	1.00	16.28
MOTA	1782	0G1		281	-9.144	12.706	-3.706	1.00	17.45
MOTA	1783	CG2	THR	281	-11.037	11.351	-3.112	1.00	17.34 26.86
ATOM	1784	C	THR	281	-8.975	9.062	-2.748 -3.712	1.00	
ATOM	1785	O N	THR	281	-8.603	8.394		1.00	31.52
ATOM ATOM	1786 1787	N CD	PRO PRO	282 282	-9.563 -9.854	8.511 9.208	-1.680 -0.418	1.00 1.00	28.38 25.29
ATOM	1788	CA	PRO	282	-9.919	7.092	-1.573	1.00	26.47
ATOM	1789	CB	PRO	282	-10.421	6.980	-0.136	1.00	21.64
ATOM	1790	CG	PRO	282	-10.421	8.351	0.155	1.00	21.04
ATOM	1791	C	PRO	282	-10.960	6.570	-2.560	1.00	25.85
ATOM	1792	o	PRO	282	-11.840	7.299	-3.022	1.00	25.44
ATOM	1793	N	CYS	283	-10.855	5.269	-2.822	1.00	25.32
ATOM	1794	CA	CYS	283	-11.722	4.532	-3.729	1.00	24.18
ATOM	1795	CB	CYS	283	-11.255	3.071	-3.727	1.00	26.45
ATOM	1796	SG	CYS	283	-11.206	2.192	-2.201	1.00	38.53
ATOM	1797	C	CYS	283	-13.171	4.600	-3.285	1.00	20.79
ATOM	1798	ō	CYS	283	-13.449	4.791	-2.113	1.00	25.27
ATOM	1799	N	PRO	284	-14.117	4.474	-4.231	1.00	21.61
ATOM	1800	CD	PRO	284	-13.890	4.378	-5.686	1.00	17.56
ATOM	1801	CA	PRO	284	~15.555	4.515	-3.926	1.00	18.26
ATOM	1802	CB	PRO	284	-16.199	4.309	-5.299	1.00	20.65
ATOM	1803	CG	PRO	284	-15.185	4.905	-6.246	1.00	17.52
ATOM	1804	C	PRO	284	-15.974	3.424	-2.943	1.00	19.06
MOTA	1805	0	PRO	284	-17.050	3.483	-2.358	1.00	20.50
MOTA	1806	N	ALA	285	-15.126	2.411	-2.788	1.00	21.71
MOTA	1807	CA	ALA	285	-15.394	1.310	-1.878	1.00	26.28
MOTA	1808	CB	ALA	285	-14.325	0.234	-2.043	1.00	26.44
MOTA	1809	C	ALA	285	-15.393	1.848	-0.446	1.00	27.71
MOTA	1810	0	ALA	285	-16.212	1.451	0.388	1.00	29.33
MOTA	1811	N	PHE	286	-14.462	2.763	-0.193	1.00	27.78
MOTA	1812	CA	PHE	286	-14.289	3.409	1.098	1.00	23.59
MOTA	1813	CB	PHE	286	-12.940	4.118	1.097	1.00	24.13
MOTA	1814	CG	PHE	286	-12.628	4.831	2.373	1.00	29.65
MOTA	1815		PHE	286	-12.212	4.123	3.494	1.00	31.45
MOTA	1816		PHE	286 ·	-12.702	6.216	2.439	1.00	31.48
ATOM	1817		PHE	286	-11.874	4.786	4.664	1.00	32.34
MOTA	1818	CE2	PHE	286	-12.368	6.891	3.598	1.00	32.31
ATOM	1819	CZ	PHE	286	-11.949	6.175	4.716	1.00	32.68
MOTA	1820	C	PHE	286	-15.401	4.425	1.284	1.00	22.60
ATOM	1821	0	PHE	286	-16.135	4.391	2.270	1.00	25.95
ATOM	1822	N	MET	287	-15.561	5.291	0.288	1.00	19.48
ATOM	1823	CA	MET	287	-16.570	6.332	0.311	1.00	16.74
ATOM	1824	CB	MET	287	-16.580	7.106	-1.017	1.00	18.72
MOTA	1825	CG	MET	287	-15.314	7.938	-1.283	1.00	20.14
MOTA	1826	SD	MET	287	-14.974	9.280	-0.078	1.00	20.20
ATOM	1827	CE	MET	287	-13.753	10.219	-0.961	1.00	24.44

FIG. 1FF

ATOM	1828	С	MET	287	-17.955	5.782	0.625	1.00	16.03
MOTA	1829	0	MET	287	-18.659	6.331	1.456	1.00	18.99
MOTA	1830	N	ALA	288	-18.317	4.662	0.013	1.00	20.90
ATOM	1831	CA	ALA	288	-19.626	4.066	0.236	1.00	26.22
ATOM	1832	CB	ALA	288	-19.826	2.875	-0.694	1.00	26.60
ATOM	1833	C	ALA	288	-19.833	3.653	1.693	1.00	28.97
MOTA	1834	ō	ALA	288	-20.966	3.584	2.165	1.00	31.30
ATOM	1835	N	LYS	289	-18.742	3.380	2.407	1.00	32.21
ATOM	1836	CA	LYS	289	-18.829	2.993	3.815	1.00	33.61
ATOM	1837	CB	LYS	289	-17.500	2.391	4.301	1.00	34.28
	1838	CG	LYS	289	-17.428	0.858	4.209	1.00	34.62
ATOM				289	-18.440	0.200	5.149	1.00	37.66
ATOM	1839	CD	LYS		-18.111	0.495	6.622	1.00	37.54
MOTA	1840	CE	LYS	289	-19.268	0.291	7.549	1.00	34.87
ATOM	1841	NZ	LYS	289		4.193	4.676	1.00	33.97
MOTA	1842	C	LYS	289	-19.230			1.00	33.49
MOTA	1843	0	LYS	289	-19.769	4.039	5.775	1.00	35.80
MOTA	1844	N	LEU	290	-18.988	5.388	4.147		
MOTA	1845	CA	LEU	290	-19.327	6.637	4.827	1.00	35.58
MOTA	1846	CB	LEU	290	-18.652	7.820	4.134	1.00	31.46
MOTA	1847	CG	LEU	290	-17.135	7.854	4.011	1.00	30.05
MOTA	1848	CD1	LEU	290	-16.721	8.881	2.970	1.00	29.96
ATOM	1849	CD2	LEU	290	-16.530	8.166	5.353	1.00	34.22
MOTA	1850	С	LEU	290	-20.831	6.874	4.759	1.00	37.04
ATOM	1851	0	LEU	290	-21.452	6.666	3.719	1.00	39.41
ATOM	1852	N .	GLN	291	-21.423	7.317	5.862	1.00	40.14
ATOM	1853	CA	GLN	291	-22.846	7.610	5.849	1.00	41.39
ATOM	1854	CB	GLN	291	-23.442	7.657	7.268	1.00	42.50
ATOM	1855	CG	GLN	291	-22.524°	8.174	8.362	1.00	45.42
ATOM	1856	CD	GLN	291	-22.640	7.367	9.650	1.00	48.95
MOTA	1857		GLN	291	-21.630	7.009	10.265	1.00	48.41
MOTA	1858	NE2		291	-23.871	7.039	10.042	1.00	46.58
ATOM	1859	C	GLN	291	-23.028	8.927	5.091	1.00	41.36
	1860	Ö	GLN	291	-22.238	9.856	5.243	1.00	37.77
MOTA		И	PRO	292	-24.047	8.990	4.221	1.00	42.77
ATOM	1861			292	-25.090	7.948	4.215	1.00	43.22
MOTA	1862	CD	PRO	292	-24.454	10.101	3.360	1.00	40.98
ATOM	1863	CA	PRO		-25.969	10.063	3.500	1.00	42.32
ATOM	1864	CB	PRO	292			3.401	1.00	41.51
ATOM	1865	CG	PRO	292	-26.226	8.589	3.662	1.00	38.85
MOTA	1866	C	PRO	292	-23.866	11.475		1.00	37.72
MOTA	1867	0	PRO	292	-23.138	12.025	2.835		36.06
MOTA	1868	N	THR	293	-24.146	11.998	4.853	1.00	30.91
MOTA	1869	CA	THR	293	-23.667	13.319	5.263	1.00	
MOTA	1870	CB	THR	293	-24.095	13.640	6.709	1.00	35.11
MOTA	1871	OG1	THR	293	-25.513	13.472	6.841	1.00	37.56
ATOM	1872	CG2	THR	293	-23.701	15.076	7.083	1.00	37.03
MOTA	1873	С	THR	293	-22.151	13.401	5.207	1.00	27.49
MOTA	1874	0	THR	293	-21.587	14.384	4.727	1.00	27.10
MOTA	1875	N	VAL	. 294	-21.496	12.382	5.749	1.00	26.19
ATOM	1876	CA	VAL	294	-20.046	12.320	5.770	1.00	23.72
ATOM	1877	CB	VAL	294	-19.549	11.159	6.675	1.00	19.37
ATOM	1878		VAL	294	-18.045	11.238	6.874	1.00	13.70
ATOM	1879		VAL	294	-20.263	11.189	8.010	1.00	15.03
ATOM	1880	C	VAL	294	-19.553	12.099	4.345	1.00	29.48
MOTA	1881	Ö	VAL	294	-18.493	12.609	3.955	1.00	33.31
MOTA	1882	N	ARG	295	-20.336	11.368	3.554	1.00	31.18
MOTA	1883	CA	ARG	295	-19.958	11.104	2.169	1.00	30.61
ATOM	1884	CB	ARG	295	-20.976	10.186	1.480	1.00	32.61
ATOM	1885	CG	ARG	295	-20.355	9.204	0.472	1.00	33.15
ATOM	1886	CD	ARG		-21.376	8.819	-0.609	1.00	41.22
MION	1000	CD	DAM	293					•

FIG. 1GG

MOTA	1887	NE	ARG	295	-21.116	7.549	-1.303	1.00	44.77
MOTA	1888	CZ	ARG	295	-20.157	7.332	-2.206	1.00	45.75
MOTA	1889		ARG	295	-19.314	8.289	-2.560	1.00	42.66
ATOM	1890		ARG	295	-20.077	6.153	-2.808	1.00	50.09
MOTA	1891	C	ARG	295	-19.893	12.458	1.461	1.00	26.05
ATOM	1892	0	ARG	295	-18.879	12.794	0.855	1.00	27.82
MOTA	1893	N	ASN	296	-20.929	13.272	1.655	1.00	25.63
ATOM	1894	CA	ASN	296	-21.011	14.600	1.048	1.00	23.53
ATOM	1895	CB	ASN	296	-22.313	15.305	1.446	1.00	24.22
ATOM	1896	CG	ASN	296	-23.551	14.648	0.858	1.00	28.67
MOTA	1897		ASN	296	-23.496	13.529	0.347	1.00	36.26
ATOM	1898		ASN ·	296	-24.684	15.345	0.928	1.00	30.43
ATOM	1899	C	ASN	296	-19.829	15.470	1.456	1.00	24.99
ATOM	1900	0	ASN	296	-19.059	15.913	0.605	1.00	26.73
ATOM	1901	N	TYR	297	-19.655	15.661	2.762	1.00	26.38
MOTA	1902	CA	TYR	297	-18.582	16.488	3.311	1.00	26.13
MOTA	1903	CB	TYR	297	-18.594	16.387	4.847	1.00	32.32
ATOM	1904	CG	TYR	297	-17.278	16.685	5.538	1.00	32.85
ATOM	1905	CD1		297	-16.755	17.972	5.580	1.00	32.13
MOTA	1906	CE1		297	-15.533	18.229	6.202	1.00	34.78
ATOM	1907		TYR	297	-16.549	15.666	6.139	1.00	34.34
ATOM	1908	CE2	TYR	297	-15.331	15.917	6.758	1.00	36.24
MOTA	1909	CZ	TYR	297	-14.829	17.194	6.785	1.00	34.88
MOTA	1910	OH	TYR	297	-13.613	17.422	7.386	1.00	40.94
MOTA	1911	C	TYR	297	-17.198	16.169	2.746	1.00 1.00	23.94 16.61
ATOM	1912 1913	O N	TYR VAL	297 298	-16.405 -16.936	17.077 14.879	2.484 2.547	1.00	26.14
ATOM	1914	N CA	VAL	298 298	-15.665	14.381	2.026	1.00	24.39
ATOM ATOM	1914	CB	VAL	298	-15.394	12.936	2.541	1.00	22.80
	1916		VAL	298	-14.102	12.362	1.941	1.00	19.07
ATOM ATOM	1917		VAL	298	-15.302	12.942	4.054	1.00	19.85
ATOM	1918	C	VAL	298	-15.573	14.411	0.497	1.00	25.08
ATOM	1919	0	VAL	298	-14.478	14.520	-0.065	1.00	26.44
MOTA	1920	N	GLU	299	-16.713	14.330	-0.179	1.00	27.22
ATOM	1921	CA	GLU	299	-16.727	14.360	-1.635	1.00	27.74
ATOM	1922	CB	GLU	299	-18.052	13.849	-2.170	1.00	28.52
MOTA	1923	CG	GLU	299	-17.887	12.975	-3.380	1.00	33.99
MOTA	1924	CD	GLU	299	-17.578	11.548	-3.000	1.00	28.84
MOTA	1925		GLU	299	-18.536	10.810	-2.703	1.00	21.31
ATOM	1926	QE2	GLU	299	-16.391	11.164	-2.994	1.00	26.35
ATOM	1927	C	GLU	299	-16.509	15.775	-2.155	1.00	26.19
MOTA	1928	0	GLU	299	-15.767	15.974	-3.113	1.00	27.10
ATOM	1929	N	ASN	300	-17.175	16.749	-1.534	1.00	24.87
ATOM	1930	CA	ASN	300	-17.063	18.148	-1.937	1.00	20.43
ATOM	1931	CB	ASN	300	-18.163	18.979	-1.273	1.00	20.76
MOTA	1932	CG	ASN	300	-18.468	20.260	-2.031	1.00	25.51
MOTA	1933		ASN	300	-17.629	20.784	-2.765	1.00	29.81
MOTA	1934		ASN	300	-19.684	20.768	-1.863	1.00	29.41
MOTA	1935	C	ASN	300	-15.692	18.645	-1.509	1.00	17.56
ATOM	1936	0	ASN	300	-15.553	19.325	-0.500	1.00	21.18
MOTA	1937	N	ARG	301	-14.684	18.282	-2.287	1.00	18.56
MOTA	1938	CA	ARG	301	-13.296	18.637	-2.022	1.00	20.80
ATOM	1939	CB	ARG	301	-12.733	17.754	-0.902	1.00	27.14
MOTA	1940	CG	ARG	301	-12.739	18.365	0.486	1.00	31.25
ATOM	1941	CD	ARG	301	-12.089	17.398	1.454	1.00	30.07
MOTA	1942	NE	ARG	301	-11.876	17.989	2.766	1.00	35.05
MOTA	1943	CZ	ARG	301	-12.796	18.034	3.721	1.00	39.13
MOTA	1944	NH1	ARG	301	-14.000	17.516	3.513	1.00	34.08
ATOM	1945	NH2	ARG	301	-12.507	18.601	4.888	1.00	42.53

FIG. 1HH

MOTA	1946	C	ARG	301	-12.518	18.332	-3.287	1.00	20.56
MOTA	1947	0	ARG	301	-12.956	17.539	-4.101	1.00	23.26
MOTA	1948	N	PRO	302	-11.349	18.948	-3.464	1.00	21.89 25.17
MOTA	1949	CD	PRO	302	-10.670	19.941	-2.619	1.00	25.44
MOTA	1950	CA	PRO	302	-10.572	18.668	-4.670 -4.559	1.00 1.00	26.64
MOTA	1951	CB	PRO	302	-9.407	19.651 19.813	-3.084	1.00	24.33
MOTA	1952	CG	PRO	302	-9.236	17.228	-4.661	1.00	29.44
MOTA	1953	С	PRO	302	-10.086	16.750	-3.637	1.00	34.61
MOTA	1954	0	PRO	302	-9.595	16.730	-5.784	1.00	28.85
MOTA	1955	N	LYS	303	-10.274	15.145	-5.927	1.00	21.63
MOTA	1956	CA	LYS	303	-9.857 -10.662	14.449	-7.034	1.00	24.46
ATOM	1957	CB	LYS	303 303	-10.849	15.266	-8.323	1.00	41.84
ATOM	1958	CG	LYS	303	-11.871	14.622	-9.290	1.00	44.46
ATOM	1959	CD	LYS LYS	303	-12.064		-10.568	1.00	45.69
MOTA	1960	CE NZ	LYS	303	-13.119		-11.491	1.00	45.06
MOTA	1961	C	LYS	303	-8.358	15.096	-6.189	1.00	20.81
MOTA	1962 1963	0	LYS	303	-7.807	15.966	-6.858	1.00	20.42
MOTA	1964	N	TYR	304	-7.685	14.130	-5.571	1.00	21.39
MOTA MOTA	1965	CA	TYR	304	-6.240	13.971	-5.710	1.00	21.82
ATOM	1966	CB	TYR	304	-5.534	14.211	-4.368	1.00	24.87
ATOM	1967	CG	TYR	304	-5.666	15.594	-3.807	1.00	23.11
ATOM	1968		TYR	304	-6.777	15.959	-3.050	1.00	23.67
ATOM	1969	CE1		304	-6.900	17.244	-2.517	1.00	20.86
ATOM	1970	CD2		304	-4.677	16.545	-4.017	1.00	26.39
MOTA	1971	CE2	TYR	304	-4.795	17.833	-3.486	1.00	24.30
ATOM	1972	\mathbf{cz}	TYR	304	-5.907	18.171	-2.742	1.00	23.26
ATOM	1973	OH	TYR	304	-6.032	19.447	-2.251	1.00	28.31 21.83
MOTA	1974	C	TYR	304	-5.891	12.563	-6.151	1.00	21.88
MOTA	1975	0	TYR	304	-6:662	11.623	-5.959	1.00 1.00	23.94
MOTA	1976	N	ALA	305	-4.714	12.429	-6.750	1.00	27.30
MOTA	1977	CA	ALA	305	-4.221	11.128	-7.189 -8.516	1.00	22.41
MOTA	1978	CB	ALA	305	-3.483	11.259	-6.106	1.00	25.62
MOTA	1979	C	ALA	305	-3.270	10.651 9.455	-5.893	1.00	28.28
MOTA	1980	0	ALA	305	-3.089 -2.641	11.617	-5.441	1.00	23.97
ATOM	1981	N	GLY	306	-1.714	11.321	-4.366	1.00	21.65
MOTA	1982	CA	GLY	306 306	-0.381	10.870	-4.891	1.00	19.70
MOTA	1983	C	GLY	306	-0.316	10.093	-5.837	1.00	21.53
ATOM	1984	0	GLY GLY	307	0.686	11.344	-4.266	1.00	18.69
MOTA	1985	N CA	LEU	307	2.036	10.987	-4.688	1.00	18.55
ATOM	1986 1987	CB	LEU	307	3.071	11.862	-3.984	1.00	15.42
ATOM ATOM	1988	CG	LEU	307	2.718	13.327	-3.740	1.00	15.82
ATOM	1989		L LEU	307	3.925	14.060	-3.185	1.00	9.35
ATOM	1990		2 LEU	307	2.258	13.958	-5.034	1.00	20.09
MOTA	1991		LEU	307	2.346	9.530	-4.390	1.00	22.25
MOTA	1992		LEU	307	1.692	8.885	-3.565	1.00	27.73
ATOM	1993		THR	308	3.328	9.000	-5.104	1.00	24.37
ATOM	1994			308	3.758	7.629		1.00	23.85
ATOM	1995		THR	308	4.552			1.00	26.19
ATOM	1996	OG:	1 THR	308	5.662				
ATOM	1997		2 THR	308	3.654			1.00	
MOTA	1998		THR	308	4.661				
MOTA	1999		THR	308	5.242				
ATOM	2000	N	PHE	309	4.806		_		
ATOM	2001	. CA		309	5.628				
MOTA	2002			309	5.510				
MOTA	2003			309	4.279			_	
ATOM	2004	CD	1 PHE	309	3.052	4.935	-0.621	1.00	2.00

FIG. 1II

MOTA	2005	CD2	PHE	309	4.328	5.363	_	1.00	3.00 2.72
MOTA	2006	CE1	PHE	309	1.875		•	1.00	2.72
MOTA	2007	CE2	PHE	309	3.161	5.391	1.904	1.00	2.00
ATOM	2008	CZ	PHE	309	1.925	5.187	1.281	1.00	14.67
ATOM	2009	C	PHE	309	7.063	6.949	-1.942		21.23
MOTA	2010	0	PHE	309	7.671	7.453	-1.003		16.62
ATOM	2011	N	PRO	310	7.658	6.661	-3.102		15.13
ATOM	2012	CD	PRO	310	7.386	5.631	-4.133		13.22
ATOM	2013	CA	PRO	310	9.053	7.110	-3.158	1.00	12.65
MOTA	2014	CB	PRO	310	9.676	6.241	-4.256	1.00	7.98
MOTA	2015	CG	PRO	310	8.523	5.838	-5.108	1.00	13.94
MOTA	2016	C	PRO	310	9.143	8.630	-3.382	1.00	16.27
MOTA	2017	0	PRO	310	10.226	9.216	-3.317 -3.628	1.00	15.44
MOTA	2018	N	LYS	311	7.996	9.257	-3.781	1.00	15.60
MOTA	2019	CA	LYS	311	7.935	10.708	-4.707	1.00	17.57
MOTA	2020	CB	LYS	311	6.795	11.132	-6.190	1.00	26.47
MOTA	2021	CG	LYS	311	7.044	10.862	-6.731	1.00	31.84
MOTA	2022	CD	LYS	311	8.243	11.638	-8.232	1.00	36.14
MOTA	2023	CE	LYS	311	8.438	11.399	-8.813	1.00	36.37
MOTA	2024	NZ	LYS	311	9.587	12.165	-2.363	1.00	18.67
MOTA	2025	C	LYS	311	7.681	11.225	-1.925	1.00	21.81
MOTA	2026	0	LYS	311	8.301	12.192 10.534	-1.641	1.00	18.78
MOTA	2027	N	LEU	312	6.793	10.864	-0.254	1.00	13.83
MOTA	2028	CA	LEU	312	6.451	10.003	0.240	1.00	2.00
MOTA	2029	CB	LEU	312	5.289	10.286	-0.301	1.00	2.00
MOTA	2030	CG	LEU	312	3.891	9.395	0.370	1.00	2.00
MOTA	2031		LEU	312	2.882	11.718	-0.037	1.00	3.52
MOTA	2032	CD2		312	3.540	10.637	0.667	1.00	15.47
MOTA	2033	C	LEU	312	7.655 7.805	11.348	1.666	1.00	19.46
MOTA	2034	0	LEU	312	8.491	9.656	0.329	1.00	13.49
MOTA	2035	N	PHE	313	9.683	9.326	1.118	1.00	14.43
MOTA	2036	CA	PHE		9.434	8.124	2.047	1.00	10.04
MOTA	2037	CB	PHE	313 313	8.287	8.327	2.997	1.00	7.55
MOTA	2038	CG	PHE	313	7.020	7.843	2.679	1.00	4.93
MOTA	2039		PHE	313	8.458	9.044	4.179	1.00	2.84
MOTA	2040		PHE	313	5.920	8.074	3.505	1.00	2.00
ATOM	2041			313	7.376	9.288	5.021	1.00	2.00
MOTA	2042	CE2		313	6.094	8.803	4.684	1.00	4.98
MOTA	2043	CZ C	PHE PHE	313	10.896	9.045	0.234	1.00	15.60
MOTA	2044		PHE	313	11.217	7.897	-0.056	1.00	23.18
ATOM	2045	о И	PRO	314	11.573	10.102	-0.217	1.00	14.26
ATOM	2046	CD	PRO	314	11.109	11.483	-0.006	1.00	17.51
MOTA	2047 2048		PRO	314	12.763	10.085	-1.067	1.00	17.53
MOTA	2048		PRO	314	13.096	11.578	-1.210	1.00	15.23
MOTA	2050			314	11.767	12.228	-1.149	1.00	13.83
MOTA	2050		PRO	314	13.937	9.357		1.00	19.49
MOTA	2051		PRO	314	14.018	9.240	0.792	1.00	20.42
MOTA	2052		ASP	315	14.877	8.924		1.00	22.24
MOTA	2053			315	16.082	8.238	-0.807	1.00	27.08
MOTA	2059			315	16.718	7.447	-1.958	1.00	36.01
MOTA	2056			315	16.063	6.099	-2.174	1.00	
MOTA	2057		1 ASP	315	15.166	6.006	-3.041	1.00	
MOTA	2058		2 ASP	315	16.449		-1.474		
MOTA	2059		ASP	315	17.099				
MOTA MOTA	2060		ASP	315	18.221	_	0.139		
MOTA	2060		SER	316	16.736	10.496			
ATOM	2062			316	17.583				_
MOTA	2063			316	17.239	12.896	-0.255	1.00	16.00
MION	200.								

FIG. 1JJ

ATOM	2064	OG	SER	316	15.835	13.079	-0.336		14.43
MOTA	2065	С	SER	316	17.360	11.549			16.95
ATOM	2066	0	SER	316	18.211	11.999	2.625		19.02 11.69
MOTA	2067	N	LEU	317	16.191	11.062	2.273		10.42
MOTA	2068	CA	LEU	317	15.827	10.956	3.671		6.04
ATOM	2069	CB	LEU	317	14.329	10.732	3.816	1.00	7.50
MOTA	2070	CG	LEU	317	13.428	11.848	3.325	1.00	2.00
MOTA	2071	CD1	LEU	317	11.977	11.478	3.602	1.00	9.21
MOTA	2072	CD2	LEU	317	13.826	13.131	4.033	1.00	14.46
ATOM	2073	C	LEU	317	16.546	9.771	4.306	1.00	22.75
MOTA	2074	0	LEU	317	17.018	9.876	5.432	1.00	14.45
ATOM	2075	N	PHE	318	16.581	8.643	3.596	1.00	10.89
ATOM	2076	CA	PHE	318	17.224	7.424	4.083	1.00	6.43
ATOM	2077	CB	PHE	318	16.590	6.191	3.452	1.00	2.63
MOTA	2078	CG	PHE	318	15.095	6.168	3.504	1.00	2.00
ATOM	2079		PHE	318	14.351	6.728	2.482		7.53
ATOM	2080		PHE	318	14.431	5.531	4.544	1.00 1.00	2.00
MOTA	2081		PHE	318	12.958	6.658	2.479	1.00	6.05
ATOM	2082	CE2	PHE	318	13.034	5.450	4.561	1.00	3.68
ATOM	2083	cz	PHE	318	12.294	6.017	3.517	1.00	15.81
ATOM	2084	С	PHE	318	18.689	7.388	3.700	1.00	24.20
MOTA	2085	0	PHE	318	19.110	8.087	2.789		17.34
ATOM	2086	N	PRO	319	19.505	6.625	4.443	1.00	13.79
ATOM	2087	CD	PRO	319	19.258	6.115	5.805	1.00	20.27
MOTA	2088	CA	PRO	319	20.931	6.546	4.089	1.00	19.75
ATOM	2089	CB	PRO	319	21.579	6.029	5.378	1.00	15.80
ATOM	2090	CG	PRO	319	20.472	5.258	6.058	1.00	24.31
MOTA	2091	С	PRO	319	21.077	5.556	2.913	1.00	21.99
ATOM	2092	0	PRO	319	20.155	4.782	2.648	1.00	26.79
ATOM	2093	N	ALA	320	22.196	5.599	2.185	1.00	27.80
ATOM	2094	CA	ALA	320	22.375	4.695	1.045	1.00	27.57
ATOM	2095	CB	ALA	320	21.552	5.183	-0.148	1.00	29.97
ATOM	2096	C	ALA	320	23.818	4.473	0.620	1.00	25.49
ATOM	2097	0	ALA	320	24.100	4.274	-0.561	1.00	34.44
ATOM	2098	N	ASP	321	24.738	4.488	1.575	1.00 1.00	38.90
ATOM	2099	CA	ASP	321	26.145	4.267	1.246		42.26
ATOM	2100	CB	ASP	321	27.056	4.965	2.269	1.00	48.36
MOTA	2101	CG	ASP	321	26.867	4.424	3.672	1.00	50.98
ATOM	2102	OD:	1 ASP	321	25.821		4.293	1.00	52.03
MOTA	2103	OD:	2 ASP	321	27.759	3.683	4.144	1.00	37.24
ATOM	2104	C	ASP	321	26.445		1.195	1.00 1.00	36.84
ATOM	2105	0	ASP	321	27.601		1.349		28.45
MOTA	2106	N	SER	322	25.404				25.68
ATOM	2107		SER	322	25.560		0.924	1.00	27.15
MOTA	2108	CB	SER	322	25.780		2.322	1.00	23.17
ATOM	2109		SER	322	24.576	-0.068			22.83
MOTA	2110	C	SER	322	24.345				23.80
ATOM	2111		SER	322	23.264				
ATOM	2112		GLU	323	24.505				18.89 18.36
ATOM	2113		GLU	323	23.406				
MOTA	2114			323	23.899				15.88
ATOM	2115			323	23.139				16.76
ATOM	2116			323	23.509			_	13.21 8.62
MOTA	2117		I GLU	323	24.719				
MOTA	2118		2 GLU		22.593		:		16.00
MOTA	2119		GLU		22.400				
MOTA	2120		GLU	•	21.19	4 -2.595			
ATOM	212		HIS		22.91				
ATOM	212				22.09	6 -2.938	2.868	3 1.00	12.46
111011									

FIG. 1KK

								4 105	1.00	18.88
MOTA	2123	CB	HIS	324		22.981	-3.132	4.105 5.366	1.00	19.65
ATOM	2124	CG	HIS	324		22.200	-3.360	5.845	1.00	15.42
MOTA	2125	CD2		324		21.581	-4.464	6.261	1.00	19.17
MOTA	2126	NDI		324		21.924	-2.347	7.230	1.00	20.86
MOTA	2127	CE1		324		21.160	-2.815	7.230	1.00	17.26
MOTA	2128	NE2	HIS	324		20.937	-4.097	3.115	1.00	11.45
MOTA	2129	C	HIS	324		21.151	-1.782	3.338	1.00	12.09
MOTA	2130	0	HIS	324		19.954	-1.980	3.065	1.00	12.08
MOTA	2131	N	ASN	325		21.689	~0.568	3.063	1.00	15.82
MOTA	2132	CA	ASN	325		20.875	0.626	3.403	1.00	18.70
MOTA	2133	CB	ASN	325		21.758	1.876	4.746	1.00	14.57
MOTA	2134	CG	ASN	325		22.479	1.960	5.777	1.00	20.65
MOTA	2135		ASN	325		21.934	1.558	4.742	1.00	8.45
MOTA	2136		ASN	325		23.702	2.489	2.186	1.00	17.97
ATOM	2137	C	ASN	325		19.820	0.802	2.130	1.00	18.10
MOTA	2138	0	ASN	325		18.671	1.166	0.943	1.00	17.49
MOTA	2139	N	LYS	326		20.197	0.498	-0.189	1.00	13.39
MOTA	2140	CA	LYS	326		19.279	0.599	-1.496	1.00	13.97
MOTA	2141	CB	LYS	326		20.015	0.328 1.471	-1.948	1.00	13.26
MOTA	2142	CG	LYS	326		20.891	1.471	-3.118	1.00	16.38
MOTA	2143	CD	LYS	326		21.753		-3.628	1.00	18.48
ATOM	2144	CE	LYS	326		22.596 23.721	2.202 1.752	-4.511	1.00	20.03
MOTA	2145	NZ	LYS	326		18.111	-0.367	-0.043	1.00	12.95
MOTA	2146	C	LYS	326			0.008	-0.263	1.00	17.37
MOTA	2147	0	LYS	326		16.955 18.402	-1.599	0.365	1.00	8.13
ATOM	2148	N	LEU	327		17.362	-2.605	0.549	1.00	6.10
MOTA	2149	CA	LEU	327		17.302	-3.973	0.798	1.00	10.78
ATOM	2150	CB	LEU	327 327		17.045	-5.113	1.171	1.00	5.81
ATOM	2151	CG	LEU	327 327		16.166	-5.466	-0.012	1.00	8.81
ATOM	2152		LEU	327		17.852	-6.305	1.610	1.00	2.24
ATOM	2153	CD2	LEU	327		16.438	-2.251	1.708	1.00	7.31
MOTA	2154 2155	o	LEU	327		15.217	-2.409	1.609	1.00	9.49
ATOM ATOM	2156	И	LYS	328		17.026	-1.785	2.809	1.00	5.63
ATOM	2157	CA	LYS	328		16.252	-1.402	3.985	1.00	5.88
ATOM	2158	CB	LYS	328		17.166	-1.179	5.191	1.00	10.06
ATOM	2159	CG	LYS	328		17.780	-2.465	5.720	1.00	11.60
ATOM	2160	CD	LYS	328		16.679	-3.468	6.024	1.00	8.26
ATOM	2161	CE	LYS	328		17.231	-4.789	6.516	1.00	7.01
MOTA	2162	NZ	LYS	328		16.118	-5.682	6.946	1.00	9.67
ATOM	2163	C	LYS	328		15.422	-0.165	3.725	1.00	5.26
ATOM	2164	0	LYS	328		14.284	-0.064	4.193	1.00	5.47
ATOM	2165	N	ALA	329		15.981	0.763	2.954	1.00	4.26
MOTA	2166	ÇA	ALA	329		15.291	1.997	2.624	1.00	5.46
ATOM	2167	CB	ALA	329		16.196	2.911	1.825	1.00	8.76
MOTA	2168	С	ALA	329		14.024	1.676	1.845	1.00	8.00
ATOM	2169	0	ALA	329		12.987	2.308	2.054	1.00	12.88
MOTA	2170	N	SER	330		14.095	0.665	0.975		12.20
ATOM	2171	CA	SER	330		12.933	0.244	0.184		12.36
MOTA	2172	CB	SER	330		13.363	-0.524	-1.070		14.81 19.19
ATOM	2173	QG	SER	330		14.281		-0.770		9.23
MOTA	2174	С	SER	330		11.929		1.019		
MOTA	2175	0	SER	330		10.715		0.841		
MOTA	2176		GLN	331		12.439		1.966		
MOTA	2177			331		11.580		2.861		_
MOTA	2178			331		12.409		3.608		
MOTA	2179			331		12.776		2.764		
MOTA	2180			331		13.811		3.417 4.232		
MOTA	2181	. OE	1 GLN	331	,	14.614	-4.868	4.434	1.00	2,.20

FIG. 1LL

							c 500	3.037	1.00	24.53
MOTA	2182		GLN	331		13.811	-6.577	3.037		10.18
MOTA	2183		GLN	331		10.835	-1.211 -1.460	4.199		11.53
MOTA	2184		GLN	331		9.673	-0.135	4.275	1.00	6.48
MOTA	2185		ALA	332		11.490	0.809	5.194	1.00	4.04
MOTA	2186		ALA	332		10.876	1.849	5.605	1.00	2.00
MOTA	2187		ALA	332		11.871		4.451	1.00	10.26
MOTA	2188	C	ALA	332		9.734	1.456	4.900	1.00	10.60
MOTA	2189	0	ALA	332		8.584	1.433	3.246	1.00	15.77
MOTA	2190	N	ARG	333		10.055	1.927	2.351	1.00	13.48
MOTA	2191	CA	ARG	333		9.110	2.584	1.104	1.00	14.31
MOTA	2192	CB	ARG	333		9.848	3.065	0.204	1.00	12.38
MOTA	2193	CG	ARG	333		9.063	3.999	-1.017	1.00	11.06
ATOM	2194	CD	ARG	333		9.895	4.319		1.00	10.28
MOTA	2195	NE	ARG	333		11.106	5.055	-0.679	1.00	17.30
MOTA	2196	CZ	ARG	333		12.307	4.814	-1.194	1.00	23.65
MOTA	2197	NHl	ARG	333		12.477	3.847	-2.082	1.00	18.12
MOTA	2198	NH2	ARG	333		13.350	5.539	-0.809	1.00	13.96
MOTA	2199	C	ARG	333		7.979	1.620	1.984		15.40
MOTA	2200	0	ARG	333		6.823	2.038	1.867	1.00	10.58
MOTA	2201	N	ASP	334		8.300	0.328	1.854	1.00	11.35
MOTA	2202	CA	ASP	334		7.302	-0.696	1.538	1.00	20.54
MOTA	2203	CB	ASP	334		7.970	-2.037	1.211	1.00	24.07
MOTA	2204	CG	ASP	334		6.956	-3.141	0.915	1.00	30.63
MOTA	2205	OD1	ASP	334		6.077	-2.941	0.046	1.00	26.21
MOTA	2206	OD2	ASP	334		7.037	-4.213	1.553	1.00	9.90
MOTA	2207	C	ASP	334		6.358	-0.877	2.722	1.00	10.84
MOTA	2208	0	ASP	334		5.140	-0.961	2.560	1.00	9.79
MOTA	2209	N	LEU	335		6.922	-0.950	3.920	1.00	8.58
MOTA	2210	CA	LEU	335		6.111	-1.095	5.116	1.00	
ATOM	2211	CB	LEU	335		7.019	-1.148	6.335	1.00	11.28 7.73
MOTA	2212	CG	LEU	335		6.454	-1.421	7.728	1.00	4.16
ATOM	2213	CD1	LEU	335		5.444	-2.553	7.731	1.00	6.63
ATOM	2214	CD2	LEU	335		7.624	-1.740	8.626	1.00	6.79
ATOM	2215	C	LEU	335		5.173	0.099	5.197	1.00	8.39
ATOM	2216	0	LEU	335		3.965	-0.062	5.362	1.00	4.95
MOTA	2217	N	LEU	336		5.738	1.287	4.993	1.00	5.17
ATOM	2218	CA	LEU	336		4.996	2.548	5.016	1.00	2.00
MOTA	2219	CB	LEU	336		5.933	3.713	4.691	1.00	3.17
ATOM	2220	CG	LEU	336		6.763	4.238	5.867	1.00	2.00
MOTA	2221	CD1	L LEU	336		8.067	4.872	5.418	1.00	2.00
MOTA	2222	CD2	2 LEU	336		5.907	5.210	6.658	1.00	7.82
MOTA	2223	С	LEU	336		3.829	2.527	4.044	1.00	7.70
MOTA	2224	0	LEU	336		2.728		4.380	1.00 1.00	12.67
MOTA	2225	N	SER	337		4.061		2.861		16.08
ATOM	2226	CA	SER	337		3.035		1.831	1.00	17.25
MOTA	2227	CB	SER	337		3.653		0.524	1.00	16.83
MOTA	2228	OG	SER	337		3.994		0.602	1.00	17.26
MOTA	2229	C	SER	337		1.909		2.245		
MOTA	2230	0	SER	337		0.786		1.743		19.04
MOTA	2231	N	LYS	338		2.227		3.128		17.99
ATOM	2232	CA	LYS	338		1.256		3.617		10.96
MOTA	2233	CB		338		1.965		4.091		12.91
MOTA	2234	CG		338		2.830		3.070		11.53 11.57
MOTA	2235		LYS			2.082				
MOTA	2236	CE	LYS	338		3.033				
ATOM	2237	NZ	LYS	338		4.347				
MOTA	2238	C	LYS	338		0.460				
ATOM	2239	0	LYS	338		-0.73				
MOTA	2240	N	MET	339)	1.128	0.262	5.655	1.00	10.30

FIG. 1MM

ATOM	2241	CA	MET	339	0.476	0.842	•		12.6 4 13.33
ATOM	2242	CB	MET	339	1.505	1.161	7.921		
MOTA	2243	CG	MET	339	2.181	-0.061	8.514	_	13.21
ATOM	2244		MET	339	3.475	0.357	9.675	1.00	17.84
MOTA	2245	CE	MET	339	3.218	-0.864	10.884	1.00	20.59
MOTA	2246	C	MET	339	-0.347	2.082	6.530	1.00	10.81
ATOM	2247		MET	339	-1.512	2.168	6.930	1.00	11.79
ATOM	2248	N	LEU	340	0.257	3.029	5.813	1.00	10.89
ATOM	2249	CA	LEU	340	-0.415	4.271	5.454	1.00	9.27
MOTA	2250	CB	LEU	340	0.598	5.366	5.118	1.00	7.51
ATOM	2251	CG	LEU	340	1.311	5.939	6.344	1.00	7.71
ATOM	2252	CD1		340	2.511	6.771	5.938	1.00	7.14
ATOM	2253	CD2		340	0.336	6.747	7.179	1.00	6.71
MOTA	2254	C	LEU	340	-1.390	4.082	4.310	1.00	10.12
ATOM	2255	ō	LEU	340	-1.132	4.510	3.187	1.00	13.32
ATOM	2256	N	VAL	341	-2.528	3.465	4.624	1.00	5.63
MOTA	2257	CA	VAL	341	-3.581	3.205	3.656	1.00	4.39
ATOM	2258	CB	VAL	341	-3.689	1.693	3.360		7.19
	2259		VAL	341	-4.868	1.408	2.461	1.00	8.69
ATOM	2260		VAL	341	-2.399	1.195	2.714	1.00	8.14
MOTA	2261	C	VAL	341	-4.891	3.718	4.227	1.00	5.17
MOTA	2262	0	VAL	341	-5.314	3.288	5.290	1.00	15.43
MOTA	2262	N	ILE	342	-5.557	4.599	3.491	1.00	6.54
MOTA	2263	CA	ILE	342	-6.812	5.218	3.922	1.00	8.56
MOTA	2265	CB	ILE	342	-7.260	6.324	2.923	1.00	7.43
MOTA	2266	CG2		342	-8.616	6.906	3.297	1.00	2.37
MOTA	2267		ILE	342	-6.209	7.432	2.881	1.00	10.85
MOTA	2268		ILE	342	-6.577	8.551	1.933	1.00	13.32
MOTA	2269	C	ILE	342	-7.947	4.244	4.159	1.00	12.09
MOTA MOTA	2270	ō	ILE	342	-8.858	4.534	4.930	1.00	18.08
ATOM	2271	N	ASP	343	-7.910	3.097	3.500	1.00	19.41
ATOM	2272	CA	ASP	343	-8.972	2.117	3.688	1.00	20.62
MOTA	2273	CB	ASP	343	-9.398	1.538	2.336	1.00	23.24
ATOM	2274	CG	ASP	343	-10.671	0.714	2.422	1.00	24.40
ATOM	2275		ASP	343	-11.556	1.024	3.248	1.00	28.91
ATOM	2276		ASP	343	-10.805	-0.243	1.638	1.00	33.68
ATOM	2277	C	ASP	343	-8.516	1.006	4.630	1.00	20.89
ATOM	2278	ō	ASP	343	-7.448	0.417	4.446	1.00	24.41
ATOM	2279	N	PRO	344	-9.295	0.747	5.686	1.00	18.88
ATOM	2280	CD	PRO	344	-10.522	1.442	6.107	1.00	18.84
MOTA	2281	CA	PRO	344	-8.952	-0.306	6.641	1.00	17.35
MOTA	2282	СВ	PRO	344	-10.148	-0.290	7.595	1.00	16.82
ATOM	2283	CG	PRO	344	-10.594		7.571	1.00	9.78
MOTA	2284	C	PRO	344	-8.865	-1.640			19.67
ATOM	2285		PRO	344	-7.942	-2.422	6.152	1.00	20.89
ATOM	2286		ALA	345	-9.811	-1.851		1.00	20.12
ATOM	2287			345	-9.916				15.83
MOTA	2288			345	-11.200	-3.071	3.363		9.24
MOTA	2289		ALA	345	-8.726	-3.394	3.301		12.79
ATOM	2290		ALA	345	-8.619	-4.503	2.781		
ATOM	2291		LYS	346	-7.853	-2.416	3.098		
MOTA	2291			346	-6.661				
ATOM	2293			346	-6.628				
ATOM	2293			346	-7.759		0.123		
MOTA				346	-7.699		-0.950	1.00	
MOTA				346	-8.808		-1.970		
ATOM				346	-8.612			•	
ATOM			LYS	346	-5.428		3.159		
ATOM			LYS	346	-4.313			1.00	14.60
WI OM	427	, ,		J 42 J					

FIG. 1NN

						_			1 00	18.46
ATOM	2300	N	ARG	347	-5.637	_	018	4.403	1.00	15.01
ATOM	2301	CA	ARG	347	-4.544		820	5.352	1.00	
ATOM	2302	CB	ARG	347	-4.935		811	6.433	1.00	13.75
MOTA	2303	CG	ARG	347	-3.733		158	7.128	1.00	9.99
MOTA	2304	CD	ARG	347	-4.17	ο.	743	8.272	1.00	8.39
ATOM	2305	NE	ARG	347	-5.122	2 1.	755	7.812	1.00	11.90
ATOM	2306	CZ	ARG	347	-6.130	2.	242	8.529	1.00	14.87
ATOM	2307			347	-6.35) 1.	821	9.765	1.00	20.10
ATOM	2308	NH2	ARG	347	-6.94	53.	137	7.995	1.00	13.60
ATOM	2309	C	ARG	347	-4.07	4 -3.	.133	6.003	1.00	15.98
ATOM	2310	o	ARG	347	-4.86	3 -4.	.024	6.321	1.00	18.25
	2311	N	ILE	348	-2.76	4 -3.	.221	6.204	1.00	12.17
MOTA	2312	CA	ILE	348	-2.08	3 -4	.367	6.802	1.00	10.44
MOTA	2312	CB	ILE	348	-0.55		.152	6.681	1.00	2:00
MOTA		CG2	ILE	348	-0.09		.082	7.655	1.00	4.05
ATOM	2314		ILE	348	0.19		.444	6.951	1.00	2.00
MOTA	2315	CG1		348	1.70		.293	6.822	1.00	3.75
MOTA	2316	CD1	ILE		-2.44		.519	8.286	1.00	15.07
MOTA	2317	C	ILE	348	-2.90		.565	8.912	1.00	24.64
ATOM	2318	0	ILE	348	-2.22		.708	8.848	1.00	17.85
MOTA	2319	N	SER	349			.961	10.265	1.00	12.24
MOTA	2320	CA	SER	349	-2.50		.288	10.435	1.00	18.76
MOTA	2321	CB	SER	349	-3.24		.380	10.114	1.00	24.15
MOTA	2322	OG	SER	349	-2.40			11.093	1.00	13.20
MOTA	2323	C	SER	349	-1.20		.990	10.548	1.00	8.49
MOTA	2324	0	SER	349	-0.08		.901		1.00	11.30
MOTA	2325	N	VAL	350	-1.35		.169	12.407	1.00	4.95
MOTA	2326	CA	VAL	350	-0.22		.196	13.338	1.00	11.43
MOTA	2327	CB	VAL	350	-0.71		.298	14.829		8.45
MOTA	2328	CG1	VAL	350	0.45		.071	15.780	1.00	7.42
MOTA	2329	CG2	VAL	350	-1.82		.269	15.122	1.00	2.00
MOTA	2330	C	VAL	350	0.73		.336	13.037	1.00	2.70
MOTA	2331	0	VAL	350	1.95		.153	12.998	1.00	
MOTA	2332	N	ASP	351	0.19		.513	12.763	1.00	8.23
ATOM	2333	CA	ASP	351	1.09		.648	12.484	1.00	10.61
ATOM	2334	CB	ASP	351		34 -10		12.555	1.00	18.49
MOTA	2335	CG	ASP	351		LO -11		13.964	1.00	18.11
ATOM	2336	OD1	ASP	351		77 -11		14.470	1.00	22.45
ATOM	2337	OD2	ASP	351	-0.89	99 -11	495	14.546	1.00	14.05
ATOM	2338	С	ASP	351	1.8	53 -9	.567	11.212	1.00	9.41
ATOM	2339	0	ASP	351	3.0	54 -9	9.841	11.221		11.00
ATOM	2340	N	ASP	352	1.2	22 -9	9.189	10.114		10.25
ATOM	2341	CA	ASP	352	1.9	50 -9	069	8.857		12.98
ATOM	2342	СВ	ASP	352	1.0	10 -8	3.664	7.725		10.96
ATOM	2343	CG	ASP	352	-0.2	27 -9	9.525	7.649	1.00	12.21
MOTA	2344		L ASP	352	-0.1	31 -10	0.756	7.855	1.00	12.96
MOTA	2345		2 ASP	352	-1.3		3.959	7.374	1.00	15.38
MOTA	2346		ASP	352	3.0		7.994	9.045	1.00	15.26
	2347		ASP	352	4.1	50 -8	8.133	8.569	1.00	18.07
MOTA	2347		ALA	353	2.6		6.958	9.805	1.00	14.96
MOTA	2349		ALA	353	3.5		5.846	10.092	1.00	10.83
MOTA			ALA	353	2.7		4.737	10.805		14.35
MOTA	2350		ALA	353	4.7		6.332	10.927		10.55
MOTA	2351		ALA	353	5.8		5.892	10.716		10.08
MOTA	2352			353 354	4.4		7.282	11.831		
MOTA	2353		LEU		5.5		7.848	12.683		
ATOM	2354			354 354	4.9		8.549	13.900		_
MOTA	2355			354	4.5		7.702	15.136		_
MOTA	2356			354	3.4		8.329	15.909		
MOTA	2357		1 LEU	354	5.7		7.506	16.029		
MOTA	2358	CD	2 LEU	354	J./	U -	, . 500	10.02		

FIG. 100

							0 0 2 4	11.906	1.00	7.39
MOTA			LEU	354	6.400			12.116	1.00	2.00
MOTA	2360		LEU	354	7.616			10.979	1.00	9.55
MOTA	2361		GLN	355	5.763 6.438			10.144	1.00	13.96
MOTA	2362		GLN	355	5.440		_	9.672		13.47
MOTA	2363		GLN	355	4.848		2.460	10.767		12.65
MOTA	2364		GLN	355	4.848	-1	3.716	11.003		19.49
MOTA	2365	CD	GLN	355	6.837		3.668	11.318		21.81
ATOM	2366	OE1		355	4.997		4.859	10.842		21.15
MOTA	2367			355	7.107		9.893	8.925		15.16
MOTA	2368	C .	GLN	355	7.107		0.561	8.228		16.20
MOTA	2369	0	GLN	355	6.837		8.614	8.675		15.76
MOTA	2370	N	HIS	356	7.388		7.889	7.530	1.00	9.95
MOTA	2371	CA	HIS	356	6.817		6.469	7.534	1.00	7.19
MOTA	2372	CB	HIS	356	7.175		5.666	6.320	1.00	5.18
MOTA	2373	CG	HIS	356	6.426		5.261	5.277	1.00	2.47
MOTA	2374		HIS	356	8.45		5.216	6.076	1.00	3.37
MOTA	2375		HIS	356	8.48		4.577	4.923	1.00	8.01
MOTA	2376		HIS	356	7.26		4.587	4.416	1.00	9.88
MOTA	2377		HIS	356	8.92		-7.838	7.558	1.00	11.50
MOTA	2378	C	HIS	356	9.50		-7.569	8.597	1.00	15.45
MOTA	2379	0	HIS	356	9.59		-8.064	6.409	1.00	14.61
MOTA	2380	N	PRO	357	8.97	_	-8.395	5.114	1.00	16.32
MOTA	2381	CD	PRO	357	11.06		-8.045	6.276	1.00	12.00
MOTA	2382	CA	PRO	357	11.28		-8.137	4.756	1.00	14.38
MOTA	2383	CB	PRO	357	9.95		-7.764	4.152	1.00	16.33
MOTA	2384	CG	PRO	357	11.82		-6.863	6.889	1.00	13.41
MOTA	2385	C	PRO	357 357	13.03	_	-6.957	7.112	1.00	16.91
MOTA	2386	0	PRO	35 <i>7</i> 358	11.14		-5.739	7.113	1.00	15.19
MOTA	2387	N	TYR	358	11.77		-4.570	7.737	1.00	16.88
MOTA	2388	CA	TYR	358	11.05		-3.251	7.379	1.00	11.17
MOTA	2389	CB	TYR	358	11.80		-2.025	7.881	1.00	7.46
MOTA	2390	CG	TYR	358	13.14		-1.848	7.585	1.00	5.18
MOTA	2391	CD1		358	13.87	0	-0.783	8.112	1.00	8.86
ATOM	2392	CEI		358	11.19		-1.084	8.718	1.00	9.39
MOTA	2393	CD2		358	11.91		-0.010	9.252	1.00	2.00
ATOM	2394	CE		358	13.25		0.126	8.944	1.00	4.61
MOTA	2395	CZ	TYR	358	14.00		1.150	9.469	1.00	4.98
MOTA	2396	OH	TYR	358	11.78		-4.733	9.271	1.00	17.22
MOTA	2397	C.	TYR TYR	358	12.69		-4.272	9.949	1.00	16.24
MOTA	2398		· ILE	359	10.7		-5.432	9.789	1.00	16.60
ATOM	2399			359	10.5		-5.650	11.217		14.11
MOTA	2400			359	9.0		-5.480	11.579	1.00	16.20
MOTA	2401		2 ILE	359	8.8		-5.617	13.084		19.56
MOTA	2402		1 ILE	359	8.5		-4.143	11.074		5.87
MOTA	2403		1 ILE	359	9.2		-2.942			13.16
ATOM	2404		ILE	359	11.0		-6.996			15.39
ATOM	2405		ILE	359	11.6		-7.037	12.842		16.24
ATOM	2406		ASN	360	10.6		-8.091			14.64
MOTA	2407			360	10.9		-9.445			9.97
MOTA	2408			360			-10.494	10.644		7.20
MOTA	2409			360	11.1	33	-10.506	9.304		3.95
MOTA	2410		ASN ASN	360	12.3	59	-10.382	9.213		2.00
MOTA	2411 2412		2 ASN	360	10.3	69	-10.723	8.259		2.26
MOTA			ASN ASN	360	12.4	01	-9.83	7 12.00		
MOTA	2413		ASN ASN		12.6	10	-10.963	12.44		
MOTA	2414		VAL		13.3		-8.949	11.86		
MOTA	241: 241:				14.7		-9.29			
MOTA					15.8		-8.27	B 11.76	в 1.00	19.18
MOTA	24 1	, CI	, vau	201						

FIG. 1PP

								1 00	23.78
ATOM	2418	CG1	VAL	361	15.998	-8.423	10.277		
MOTA	2419	CG2	VAL	361	15.412	-6.860	12.104		11.95
MOTA	2420	C.	VAL	361	14.829	-9.400	13.803		24.53
MOTA	2421	0	VAL	361	15.733	-10.048	14.341	1.00	28.66
ATOM	2422	N	TRP	362	13.886	-8.758	14.496	1.00	23.87
MOTA	2423	CA	TRP	362	13.835	-8.778	15.960	1.00	18.58
	2424	CB	TRP	362	13.483	-7.392	16.521	1.00	12.66
MOTA	2425	CG	TRP	362	14.272	-6.282	15.991	1.00	4.45
ATOM		CD2		362	15.653	-6.011	16.254	1.00	4.23
MOTA	2426		TRP	362	15.987	-4.843	15.536	1.00	2.00
MOTA	2427			362	16.631	-6.646	17.017	1.00	2.00
MOTA	2428	CE3	TRP		13.836	-5.301	15.162	1.00	2.00
MOTA	2429		TRP	362		-4.431	14.881	1.00	2.00
MOTA	2430		TRP	362	14.860	-4.289	15.568	1.00	2.00
MOTA	2431	CZ2	TRP	362	17.270	-6.100	17.051	1.00	7.07
MOTA	2432	CZ3	TRP	362	17.901		16.324	1.00	8.63
ATOM	2433		TRP	362	18.212	-4.930		1.00	20.11
MOTA	2434	С	TRP	362	12.742	-9.730	16.425	1.00	19.34
ATOM	2435	0	TRP	362	12.514	-9.871	17.626		15.68
ATOM	2436	N	TYR	363		-10.363	15.488	1.00	
MOTA	2437	CA	TYR	363		-11.246	15.851	1.00	12.75
ATOM	2438	CB	TYR	363		-11.853	14.611	1.00	4.47
ATOM	2439	CG	TYR	363		-12.294	14.820	1.00	7.70
ATOM	2440	CD1		363	8.582	-13.571	15.297	1.00	6.58
MOTA	2441	CE1		363	7.240	-13.975	15.468	1.00	2.00
	2442	CD2		363	7.837	-11.441	14.523	1.00	2.00
MOTA	2443	CE2		363		-11.836	14.688	1.00	5.09
ATOM		CZ	TYR	363		-13.100	15.158	1.00	4.18
ATOM	2444			363		-13.484	15.291	1.00	15.76
MOTA	2445	OH	TYR	363		-12.336	16.812	1.00	16.54
MOTA	2446	C	TYR			-13.057	16.556	1.00	20.38
MOTA	2447	0	TYR	363		-12.380	17.962	1.00	15.31
MOTA	2448	N	ASP	364		-13.366	18.999	1.00	10.29
MOTA	2449	CA	ASP	364		-12.765	20.134	1.00	12.82
MOTA	2450	CB	ASP	364			21.222	1.00	13.30
MOTA	2451	CG	ASP	364	12.145	-13.764	21.823	1.00	11.59
MOTA	2452		LASP	364	11.196	-14.281	21.472	1.00	14.16
MOTA	2453	OD2	2 ASP	364		-14.040		1.00	9.97
ATOM	2454	C	ASP	364		-13.658	19.458		14.45
MOTA	2455	0	ASP	364		-12.772	19.943	1.00	9.41
ATOM	2456	N	PRO	365		3 -14.907	19.316	1.00	
ATOM	2457	CD	PRO	365		5 -16.099	18.829	1.00	3.16
MOTA	2458	CA	PRO	365		2 -15.234	19.735	1.00	5.93
ATOM	2459	CB	PRO	365		5 -16.668	19.238	1.00	2.73
ATOM	2460	CG	PRO	365	9.03	1 -17.222	19.340	1.00	2.00
MOTA	2461	C	PRO	365	7.47	2 -15.053	21.217	1.00	5.07
ATOM	2462		PRO	365	6.29	9 ~15.029	21.603	1.00	3.26
	2463		ALA	366		9 -14.888	22.040	1.00	5.56
ATOM				366		2 -14.690		1.00	13.27
MOTA	2464			366		9 -14.902		1.00	16.70
ATOM	2465			366		8 -13.284		1.00	14.41
MOTA	2466		ALA			2 -13.107		1.00	19.61
MOTA	2467		ALA	366		5 -12.302		1.00	15.02
MOTA	2468		GLU	367		9 -10.883			5.43
MOTA	2469			367					2.00
MOTA	2470	CB		367	9.12				
ATOM	2471	. CG		367		6 -10.213			
MOTA	2472	CD	GLU	367	11.56				
MOTA	2473	OE	1 GLU	367	12.72				
MOTA	2474	OE	2 GLU	367	11.28			_	
ATOM	2475		GLU	367		2 -10.599	22.398		
ATOM	2476		GLU	367	5.87	5 -9.878	22.881	1.00	2.04
		-							

FIG. 1QQ

								1 00	7 07
MOTA	2477	N	VAL	368		-11.197 -10.995		1.00 1.00	7.87 7.65
MOTA	2478	CA	VAL	368		-10.995			12.19
MOTA	2479	CB	VAL	368		-11.532		1.00	9.04
MOTA	2480		VAL	368		-10.684	18.169	1.00	2.75
ATOM	2481	CG2	VAL	368		-11.656	20.998	1.00	7.96
MOTA	2482	C	VAL	368		-11.042	21.109	1.00	15.88
MOTA	2483	0		368		-12.901	21.428	1.00	17.86
MOTA	2484	N	ALA	369		-13.640	22.039	1.00	25.19
MOTA	2485	CA	ALA	369 369		-15.013	21.382	1.00	23.81.
MOTA	2486	СВ	ALA	369		-13.774	23.572	1.00	30.10
MOTA	2487	C	ALA ALA	369		-14.814	24.096	1.00	36.36
MOTA	2488	O N	ALA	370		-12.706	24.275	1.00	27.76
ATOM	2489	N	ALA	370		-12.678	25.731	1.00	23.19
MOTA	2490	CA CB	ALA	370		-11.564	26.236	1.00	19.06
ATOM	2491	C	ALA	370		-12.411	26.105	1.00	25.30
MOTA	2492	o	ALA	370		-11.327	25.856	1.00	28.84
MOTA	2493 2494	N	PRO	371		-13.398	26.695	1.00	30.05
MOTA	2494		. PRO	371		-14.670	27.208	1.00	30.56
MOTA	2495	CA	PRO	371		-13.238	27.085	1.00	30.50
MOTA	2490	CB	PRO	371		-14.618	27.647	1.00	29.26
MOTA	2497	CG	PRO	371		-15.060	28.275	1.00	31.17
MOTA	2499	C	PRO	371		-12.117	28.109	1.00	29.61
ATOM	2500	o	PRO	371		-11.801	28.895	1.00	28.65
MOTA MOTA	2501	И	PRO	372		-11.473	28.065	1.00	29.10
ATOM	2502	CD	PRO	372		-11.710	27.024	1.00	31.05
ATOM	2502	CA	PRO	372	-2.347	-10.381	28.954	1.00	32.89
MOTA	2504	СВ	PRO	372	-3.551		'28.208	1.00	26.47
ATOM	2505	CG	PRO	372	-4.159	-11.002	27.577	1.00	27.14
ATOM	2506	C	PRO	372	-2.733		30.363	1.00	37.35
ATOM	2507	ō	PRO	372	-3.280	-11.974	30.476	1.00	41.20
ATOM	2508	СВ	ALA	382	-17.334		28.970	1.00	45.07
ATOM	2509	C	ALA	382	-19.469		30.278	1.00	43.41
ATOM	2510	0	ALA	382	-20.418		29.516	1.00	43.69
ATOM	2511	N	ALA	382	-18.413		29.750	1.00	45.59
ATOM	2512	CA	ALA	382	-18.152		30.082	1.00	44.95
MOTA	2513	N	ALA	383	-19.519		31.291	1.00	40.49
MOTA	2514	CA	ALA	383	-20.721		31.581	1.00	37.23 35.88
MOTA	2515	CB	ALA	383	-21.499		32.734	1.00	35.44
ATOM	2516	C	ALA	383	-20.408		31.888	1.00	33.54
MOTA	2517	0	ALA	383	-19.252		32.105	1.00	33.22
MOTA	2518	И	GLU	384	-21.450		31.885	1.00 1.00	35.14
ATOM	2519	CA	GLU	384	-21.306		32.161	1.00	39.93
ATOM	2520	CB		384	-22.190		31.209	1.00	44.06
MOTA	2521			384	-21.976			1.00	47.10
ATOM	2522			384	-20.563			1.00	47.81
ATOM	2523		1 GLU	384	-19.986			1.00	50.85
ATOM	2524		2 GLU	384	-20.029			1.00	34.52
MOTA	2525	·C	GLU	384	-21.689			1.00	_
MOTA	2526	0	GLU	384	-22.774				_
ATOM	2527		HIS	385	-20.783				
MOTA	2528			385	-21.02				
ATOM	2529			385	-20.07				
MOTA	2530			385	-20.09				
MOTA	2531		D2 HIS	385	-19.11	_			
MOTA	2532		D1 HIS	385	-21.26				
MOTA	2533		E1 HIS	385	-20.98				
MOTA	2534		E2 HIS	385	-19.69 -20.86				_
MOTA	2535	5 C	HÌS	385	-20.88			_,,,,	

FIG. 1RR

MOTA	2536	0	HIS	385	-20.400	11.993	35.143	1.00	31.45
ATOM	2537	N	THR	386	-21.234	11.673	37.211	1.00	24.31
MOTA	2538	CA	THR	386	-21.111	13.067	37.594	1.00	17.05
ATOM	2539	CB	THR	386	-22.149	13.439	38.661	1.00	18.48
ATOM	2540	OG1	THR	386	-21.927	12.653	39.835	1.00	26.84
MOTA	2541	CG2	THR	386	-23.557	13.185	38.152	1.00	14.58
ATOM	2542	С	THR	386	-19.713	13.286	38.147	1.00	18.26
MOTA	2543	0	THR	386	-18.908	12.358	38.198	1.00	16.54
MOTA	2544	N	ILE	387	-19.425	14.514	38.560	1.00	22.20
MOTA	2545	CA	ILE	387	-18.127	14.854	39.120	1.00	24.81
MOTA	2546	CB	ILE	387	-18.003	16.371	39.363	1.00	26.15
ATOM	2547	CG2	ILE	387	-16.738	16.690	40.164	1.00	20.29
MOTA	2548		ILE	387	-18.015	17.107	38.023	1.00	26.13
MOTA	2549	CD1	ILE	387	-18.028	18.611	38.164	1.00	30.51
MOTA	2550	С	ILE	387	-17.978	14.144	40.446	1.00	29.13
ATOM	2551	0	ILE	387	-16.919	13.591	40.744	1.00	36.90
MOTA	2552	N	ALA	388	-19.049	14.151	41.235	1.00	28.74
MOTA	2553	CA	ALA	388	-19.028	13.504	42.539	1.00	27.98
MOTA	2554	CB	ALA	388	-20.269	13.869	43.331	1.00	24.16
MOTA	2555	С	ALA	388	-18.913	12.000	42.356	1.00	27.08
ATOM	2556	0	ALA	388	-18.120	11.351	43.035	1.00	28.54
MOTA	2557	N	GLU	389	-19.647	11.461	41.385	1.00	27.57
ATOM	2558	CA	GLU	389	-19.611	10.025	41.102	1.00	25.55
ATOM	2559	CB	GLU	389	-20.753	9.637	40.169	1.00	20.07
MOTA	2560	CG	GLU	389	-22.115	9.902	40.776	1.00	17.01
MOTA	2561	CD	GLU	389	-23.257	9.727	39.794	1.00	22.78
MOTA	2562	OE1	GLU	389	-23.013	9.643	38.572	1.00	24.62
ATOM	2563	OE2	GLU	389	-24.417	9.690	40.245	1.00	26.31
ATOM	2564	С	GLU	389	-18.265	9.572	40.530	1.00	27.33
MOTA	2565	0	GLU	389	-17.818	8.461	40.819	1.00	35.55
MOTA	2566	N	TRP	390	-17.611	10.438	39.756	1.00	24.95
MOTA	2567	CA	TRP	390	-16.309	10.124	39.179	1.00	22.08
ATOM	2568	CB	TRP	390	-15.975	11.055	37.995	1.00	26.49
MOTA	2569	CG	TRP	390	-16.480	10.612	36.619	1.00	31.67
ATOM	2570	CD2	TRP	390	-16.260	9.335	35.968	1.00	29.90
ATOM	2571	CE2	TRP	390	-16.914	9.391	34.714	1.00	28.93
ATOM	2572	CE3	TRP	390	-15.580	8.164	36.323	1.00	27.49
MOTA	2573	CD1	TRP	390	-17.229	11.356	35.747	1.00	31.50
ATOM	2574	NE1	TRP	390	-17.493	10.630	34.606	1.00	32.29
ATOM	2575	CZ2		390	-16.903	8.316	33.819	1.00	29.75
MOTA	2576	CZ3	TRP	390	-15.569	7.102	35.437	1.00	29.76
ATOM	2577	CH2		390	-16.229	7.183	34.198	1.00	31.94
MOTA	2578	C	TRP	390	-15.207	10.266	40.227	1.00	21.39
ATOM	2579	0	TRP	390	-14.144	9.661	40.100	1.00	26.37
ATOM	2580	N	LYS	391	-15.453	11.085	41.245	1.00	19.83
ATOM	2581	CA	LYS	391	-14.484	11.323	42.314	1.00	16.84
ATOM	2582	CB	LYS	391	-14.925	12.544	43.132	1.00	14.49
ATOM	2583	CG	LYS	391	-13.951	13.006	44.213	1.00	10.70
ATOM	2584	CD	LYS	391	-14.510	14.218	44.963	1.00	13.44
MOTA	2585	CE	LYS	391	-13.478	14.846	45.906	1.00	8.99
ATOM	2586	NZ	LYS	391	-14.038	16.018	46.657	1.00	9.86
ATOM	2587	C	LYS	391	-14.328	10.102	43.231	1.00	18.26
ATOM	2588	ō	LYS	391	-13.214	9.769	43.654	1.00	15.87
ATOM	2589	N	GLU	392	-15.451	9.443	43.522	. 1.00	20.49
MOTA	2590	CA	GLU	392	-15.483	8.267	44.386	1.00	23.22
MOTA	2591	CB	GLU	392	-16.924	7.953	44.777	1.00	26.59
MOTA	2592	CG	GLU	392	-17.050	6.956	45.911	1.00	36.07
MOTA	2593	CD	GLU	392	-18.359	7.099	46.663	1.00	41.89
MOTA	2593		L GLU	392	-18.310	7.239		1.00	41.27
777 014	ムンフセ	Ju.							

FIG. 1SS

			OT 11	202		-19.432	7.071	46.018	1.00	50.99
MOTA		OE2		392 392		-14.840	7.052	43.737	1.00	22.68
ATOM	2596	C	GLU	392		-14.103	6.304	44.389	1.00	23.88
MOTA	2597	0	GLU	393		-15.137	6.853	42.455	1.00	20.40
ATOM	2598	N	LEU	393		-14.583	5.746	41.693	1.00	14.24
ATOM	2599	CA		393		-15.141	5.763	40.280	1.00	9.57
ATOM	2600	CB	LEU	393		-16.578	5.266	40.243	1.00	13.19
MOTA	2601	CG		393		-17.203	5.553	38.884	1.00	5.67
MOTA	2602		LEU	393		-16.579	3.772	40.580	1.00	12.28
ATOM	2603			393		-13.067	5.846	41.648	1.00	15.60
MOTA	2604	C	LEU	393		-12.369	4.894	41.995	1.00	21.88
MOTA	2605	0	ILE	394		-12.566	7.022	41.278	1.00	15.30
MOTA	2606	N	ILE	394		-11.133	7.280	41.183	1.00	13.08
MOTA	2607	CA	ILE	394		-10.856	8.709	40.595	1.00	12.22
MOTA	2608	CB		.394		-9.353	9.003	40.512	1.00	6.65
MOTA	2609	CG2	ILE	394		-11.476	8.825	39.199	1.00	10.42
MOTA	2610	CG1	ILE			-11.308	10.181	38.555	1.00	13.03
MOTA	2611	CD1		394		-10.465	7.145	42.545	1.00	10.70
MOTA	2612	C	ITE	394		-9.296	6.751	42.624	1.00	8.46
MOTA	2613	0	ILE	394		-11.198	7.470	43.612	1.00	13.66
MOTA	2614	N	TYR	395			7.377	44.966	1.00	13.63
MOTA	2615	CA	TYR	395		-10.652	8.160	45.957	1.00	15.60
MOTA	2616	CB	TYR	395		-11.518	8.313	47.328	1.00	16.11
MOTA	2617	CG	TYR	395	•	-10.902	8.867	47.496	1.00	10.10
MOTA	2618	CD1		395		-9.631	8.992	48.756	1.00	17.16
MOTA	2619	CE1		395		-9.063		48.463	1.00	21.34
MOTA	2620	CD2		395		-11.585	7.891	49.729	1.00	21.42
MOTA	2621	CE2	TYR	395		-11.024	8.012	49.723	1.00	22.71
MOTA	2622	cz	TYR	395		-9.767	8.559	51.133	1.00	19.28
MOTA	2623	OH	TYR	395		-9.233	8.648	45.366	1.00	13.33
MOTA	2624	C	TYR	395		-10.560	5.915		1.00	11.26
MOTA	2625	0	TYR	395		-9.488	5.432	45.741		12.67
ATOM	2626	N	LYS	396		-11.667	5.196	45.209	1.00	20.01
MOTA	2627	CA	LYS	396		-11.718	3.783	45.536	1.00	26.69
MOTA	2628	CB	LYS	396		-13.112	3.220	45.276	1.00	25.29
ATOM	2629	CG	LYS	396		-14.136	3.554	46.350	1.00	28.95
MOTA	2630	CD	LYS	396		-15.474	2.913	46.019	1.00	
ATOM	2631	CE	LYS	396		-16.543	3.291	47.026	1.00	28.60
ATOM	2632	NZ	LYS	396		-17.906	2.976	46.513	1.00	33.35
ATOM	2633	С	LYS	396		-10.690	2.989	44.747	1.00	22.43
ATOM	2634	0	LYS	396		-10.143	2.010	45.250	1.00	26.83
ATOM	2635	N	GLU	397		-10.402	3.420		1.00	19.52
MOTA	2636	CA		397		-9.427	2.720		1.00	18.90
ATOM	2637	CB		397		-9.590	3.106			19.12
ATOM	2638	CG		397		-9.221	2.003			18.47
ATOM	2639			397		-10.160	0.826		1.00	18.19
ATOM	2640		1 GLU	397		-9.669	-0.323			27.13
ATOM	2641		2 GLU	397		-11.390	1.044	40.384		14.60
MOTA	2642		GLU	397		-8.004	3.014	43.197		20.33
ATOM	2643		GLU	397		-7.128	2.156	43.119		
ATOM	2644		VAL	398		-7.792	4.211	43.741		
	2645			398		-6.478			1.00	
MOTA				398		-6.339		44.207	1.00	
ATOM	2646		VAL	398		-4.986				
ATOM	2647					-6.520			1.00	
MOTA	2648		2 VAL			-6.175			1.00	26.11
MOTA	2649		VAL			-5.001				22.73
MOTA	2650		VAL			-7.230				
MOTA	2651		MET			-7.236				
MOTA	2652					-8.149				
MOTA	2653	3 CE	B MET	399		3.213	3.120.			

FIG. 1TT

MOTA	2654	CG	MET	399	-7.994	5.465	48.863	1.00	29.75
MOTA	2655	SD	MET	399	-6.663	5.989	50.009	1.00	40.78
ATOM	2656	CE	MET	399	-5.137	5.902	49.010	1.00	35.81
ATOM	2657	C	MET	399	~7.015	1.820	47.942	1.00	36.50
MOTA	2658	0	MET	399	-6.886	1.323	49.063	1.00	38.05
MOTA	2659	N	ASN	400	-7.108	1.092	46.829	1.00	41.19
MOTA	2660	CA	ASN	400	7.040	-0.371	46.835	1.00	41.87
MOTA	2661	CB	ASN	400	-8.265	-0.971	47.538	1.00	46.04
ATOM	2662	CG	ASN	400	~9.575	-0.383	47.044	1.00	45.40
MOTA	2663	OD1	ASN	400	-10.103	-0.785	46.009	1.00	46.19
MOTA	2664	ND2	ASN	400	-10.118	0.567	47.800	1.00	45.31
MOTA	2665	C	ASN	400	-6.917	-0.953	45.422	1.00	43.13
ATOM	2666	0	ASN	400	-5.967	-0.562	44.708	1.00	38.80
ATOM	2667	C1	4040	1001	5.651	10.641	30.742	1.00	17.40
MOTA	2668	01	4040	1001	4.293	10.841	30.577	1.00	20.93
MOTA	2669	N1		1001	3.768	10.022	31.594	1.00	14.28
MOTA	2670	C4		1001	4.658	9.392	32.346	1.00	11.79
ATOM	2671	C5	4040	1001	5.954	9.761	31.740	1.00	10.46
MOTA	2672	N2		1001	8.425	9.939	31.690	1.00	2.00
MOTA	2673	C7		1001	7.307	9.217	31.952	1.00	4.18
MOTA	2674	C16	4040		7.364	7.912	32.368	1.00	2.00
MOTA	2675	C10		1001	8.638	7.390	32.499	1.00	2.00
ATOM	2676	N5		1001	9.698	8.129	32.226	1.00	8.25
MOTA	2677	C18		1001	9.607	9.366	31.841	1.00	3.21
MOTA	2678	C15		1001	4.715	7.838	35.779	1.00	4.77
MOTA	2679	C8		1001	3.449	7.244	35.771	1.00	12.75
ATOM	2680	C17			2.585	7.298	34.670	1.00	12.33
ATOM	2681		4040		3.005	7.982	33.528	1.00	14.72
MOTA	2682	C13		1001	4.278	8.594	33.526	1.00	16.11
ATOM	2683	C19		1001	5.137	8.524	34.637	1.00	13.87
ATOM	2684	C2		1001	6.629	11.300	29.783	1.00	18.40
MOTA	2685	N3		1001	10.830	10.011	31.601	1.00	4.47
MOTA	2686	C6		1001	10.987	10.898	30.601	1.00	6.40
MOTA	2687	C3		1001	12.407	11.197	30.263	1.00	6.89
MOTA	2688	04		1001	10.094	11.460	29.962	1.00	16.54
ATOM	2689	OH2		1		24.580	40.355	1.00	26.43
MOTA	2690	OH2		2	16.034	17.889	35.924	1.00	21.43
MOTA	2691	OH2		3	6.638	2.227	44.181	1.00	32.16
MOTA	2692	OH2		4		1.594	42.414	1.00	32.35
MOTA	2693	OH2		5		2.019	38.588	1.00	47.80
ATOM	2694	OH2		6	21.365	7.894	38.349	1.00	53.39
MOTA	2695	OH2		7		14.917	35.305	1.00	39.74
MOTA	2696		TIP3	8		15.176	34.969	1.00	34.63
MOTA	2697	_	TIP3	9	-2.647	9.079	29.753	1.00	21.81
ATOM	2698		TIP3	10		8.716	29.985	1.00	22.90
MOTA	2699		TIP3	11		2.103	42.120	1.00	35.98
MOTA	2700		TIP3	12		-3.182	34.789	1.00	43.00 31.31
MOTA	2701		TIP3	13		-2.129	37.570	1.00	
MOTA	2702		TIP3	14		-5.557	22.223	1.00	35.31
ATOM	2703		TIP3			-0.706	32.084	1.00	27.78
MOTA	2704		TIP3	16		17.134	45.988	1.00	17.70
ATOM	2705		TIP3	17		15.635	16.157	1.00	43.57
ATOM	2706		TIP3	18		21.090	15.391	1.00	31.70 12.99
ATOM	2707		TIP3	19		-0.572	11.478	1.00	
MOTA	2708		TIP3	20		11.090	10.729 11.831	1.00	35.00
ATOM	2709		TIP3	21		12.127 13.923	0.070	1.00	20.04 19.05
ATOM	2710		TIP3	22		2.564	4.041	1.00 1.00	35.33
MOTA	2711		TIP3			7.521	-8.142	1.00	32.42
ATOM	2712	UHZ	TIP3	24	8.047	1.341	-0.142	1.00	34.44

FIG. 1UU

MOTA	2713	OH2	TIP3	25	-16.704	19.733	2.447	1.00	18.06
MOTA	2714	OH2	TIP3	26	-19.392	7.013	8.226	1.00	26.38
MOTA	2715	OH2	TIP3	27	-2.939	14.818	-7.342	1.00	38.07
ATOM	2716	OH2	TIP3	28	18.620	3.235	3.927	1.00	31.48
ATOM	2717	OH2	TIP3	29	19.922	-2.960	-2.057	1.00	25.96
MOTA	2718	OH2	TIP3	30	23.569	-0.799	-6.475	1.00	42.59
ATOM	2719	OH2	TIP3	31	-14.080	-0.324	3.982	1.00	11.72
ATOM	2720	OH2	TIP3	32	-1.880	-10.669	10.357	1.00	36.98
ATOM	2721	OH2	TIP3	33	-3.231	-7.645	6.430	1.00	19.85
ATOM	2722	OH2	TIP3	34	2.195	-13.454	10.124	1.00	35.78
ATOM	2723	OH2	TIP3	35	-0.645	-13.187	10.089	1.00	19.79
ATOM	2724	OH2	TIP3	36	0.013	-10.801	22.565	1.00	30.67
ATOM	2725	OH2	TIP3	37	6.286	12.972	26.252	1.00	38.52
					END				

FIG. 2A

	Aton	Тур	e Res	id	<u>#</u>	x	<u>¥</u>	z	<u>0cc</u>	<u>B</u>
ATOM	1.	N	ASP	A	45	21.903	8.714	61.519	1.00	34.40
ATOM	2	CA		A	45	21.423	9.997	62.113	1.00	36.18
ATOM	3 ·	C	ASP	Α	45	20.75	10.818	61.005	1.00	33.68
ATOM	4	0	ASP	Α	45	19.516	5 10.888	60.905	1.00	33.15
MOTA	5	CB	ASP	A	45	22.625	10.759	62.697	1.00	38.37
ATOM	6	CG	ASP	A	45	22.249	11.690	63.845	1.00	39.28
MOTA	7	OD1	ASP	Α	45	21.044		64.033	1.00	40.07
MOTA	8	OD2	ASP		45	23.183		64.563	1.00	39.46
MOTA	9	N	asn		46	21.576		60.150	1.00	31.22
ATOM	10	CA	ASN		46	21.053		59.046	1.00	31.07
MOTA	1.1	С	ASN		46	20.660		57.849	1.00	26.75
MOTA	12	0	ASN		46	21.383		57.490	1.00	23.97
MOTA	13	CB	ASN		46	22.08		58.623	1.00	33.86
MOTA	14	.CG	ASN		46	21.55		57.572	1.00	34.70 33.29
ATOM	15		ASN		46	20.36		57.559	1.00	34.56
MOTA	16	ND2	ASN		46	22.43		56.681	1.00 1.00	24.40
ATOM	17	N	GLN		47	19.50		57.251 56.101	1.00	23.13
ATOM	18	CA	GLN		47	18.99		54.902	1.00	20.34
ATOM	19	C	GLN		47	19.96		53.962	1.00	21.47
MOTA	20	0	GLN		47	19.77 17.64		55.632	1.00	26.85
MOTA	21	CB	GLN		47 47	16.47		56.641	1.00	30.76
MOTA	22	CD	GLN GLN		47	15.21		56.123	1.00	33.08
MOTA	23		GLN		47	14.07		56.488	1.00	27.93
MOTA	24	NE2	GLN		47	15.42		55.276	1.00	34.46
MOTA	25 26	NEZ	PHE		48	21.00		54.951	1.00	15.81
MOTA MOTA	27	CA	PHE		48	21.95		53.859	1.00	15.50
ATOM	28	C	PHE		48	23.31		54.197	1.00	17.92
ATOM	29	0	PHE		48	23.60		55.343	1.00	26.00
ATOM	30	CB	PHE		48	22.12		53.429	1.00	12.30
MOTA	31	CG	PHE		48	20.83		53.069	1.00	12.37
MOTA	32		PHE		48	20.01		54.047	1.00	9.42
ATOM	33		PHE		48	20.41		51.755	1.00	14.72
MOTA	34		PHE		48	18.80	4 14.882	53.751	1.00	9.25
ATOM	35	CE2			48	19.17	5 14.471	51.434	1.00	12.23
ATOM	36	CZ	PHE	Α	48	18.37	0 14.938	52.442	1.00	11.80
MOTA	37	N	TYR	A	49	24.15	8 11.165	53.177	1.00	16.03
ATOM	38	CA	TYR	A	49	25.52	1 10.713	53.326	1.00	14.96
MOTA	39	C	TYR	Α	49	26.26	1 11.256	52.109	1.00	16.51
MOTA	40	0	TYR	A	49	25.63		51.120	1.00	18.27
MOTA	41	CB	TYR	Α	49	25.57			1.00	16.48
ATOM	42	CG	TYR		49	25.59			1.00	11.73
MOTA	43	CD1	TYR	Α	49	26.79			1.00	14.86
MOTA	44		TYR		49	24.42			1.00	10.50
MOTA	45		TYR		49	26.82			1.00	16.30
MOTA	46		TYR		49	24.44			1.00	15.61
ATOM	47	CZ	TYR		49	25.65			1.00	16.51
MOTA	48	ÒН	TYR		49	25.70			1.00	22.01 20.81
MOTA	49	N	SER		50	27.58			1.00 1.00	24.35
MOTA	50	CA	SER		50	28.34			1.00	26.61
ATOM	51	C	SER		50	29.40			1.00	26.11
MOTA	52	0	SER		50	30.12			1.00	25.23
MOTA	53	CB	SER		50 50	29.03 28.13			1.00	26.92
ATOM	54 55	OG	SER		50 51	29.52			1.00	25.44
ATOM ATOM	55 56	N	VAL VAL		51	30.53			1.00	27.28
AT ON	20	CA	بتهم	~		50.55				

FIG. 2B

ATOM	57	C	VAL	Α	51	31.308	10.831	47.408	1.00	29.13
ATOM	58	0	VAL	A	51	30.775	11.655	46.669	1.00	28.02
ATOM	59	CB	VAL	A	51	30.026	8.784	47.960	1.00	25.85
ATOM	60	CG1	VAL	Α	51	30.678	7.644	48.762	1.00	23.20
MOTA	61	CG2	VAL		51	28.508	8.712	47.981	1.00	22.29
ATOM	62	N	GLU		52	32.589	10.494	47.352	1.00	32.44
ATOM	63	CA	GLU		52	33.502	11.018	46.361	1.00	37.43
ATOM	64	C	GLU		52	33.277	10.302	45.019	1.00	41.03
ATOM	65	0	GLU		52	34.044	9.393	44.658	1.00	44.17
ATOM	66	CB	GLU		52	34.952	10.787	46.815	1.00	40.23
MOTA	67	CG	GLU		52	35.354	11.489	48.122	1.00	44.49
MOTA	68	CD	GLU		52	36.712	11.021	48.646	1.00	45.39
ATOM	69	OE1	GLU		52	37.699	11.075	47.886	1.00	46.92
ATOM	70		GLU		52	36.792	10.577	49.814	1.00	47.73
MOTA	71	N	VAL		53	32.211	10.676	44.306	1.00	39.71
MOTA	72	CA	VAL		53	31.918	10.099	42.992	1.00	36.87
MOTA	73	C	VAL		53	32.786	10.847	41.986	1.00	38.00
ATOM	74	0	VAL		53	32.397	11.899	41.459	1.00	36.09
MOTA	75	CB	VAL		53	30.435	10.252	42.576	1.00	34.18
MOTA	76	CG1			53	30.230	9.650	41.203	1.00	33.97 28.11
ATOM	77	CG2	VAL		53	29.524	9.566	43.571	1.00	
ATOM	78	N	GLY		54	34.005	10.349	41.806	1.00	39.05 41.22
ATOM	79	CA	GLY		54	34.931	10.956	40.871	1.00	42.09
ATOM	80	C	GLY		54	35.621	12.226	41.322	1.00	43.69
ATOM	81	0	GLY		54	36.625	12.185	42.036	1.00 1.00	42.82
ATOM	82	N	ASP		55	35.111	13.357 14.659	40.847 41.166	1.00	44.27
ATOM	83	CA	ASP		55	× 35.690	15.489	41.100	1.00	43.69
ATOM	84	C	ASP		55 55	34.681	16.665	42.244	1.00	44.83
MOTA	85	0	ASP		55 55	34.921 36.056	15.392	39.862	1.00	44.71
ATOM	86 87	CB. CG	ASP ASP		55	37.208	16.379	40.034	1.00	45.70
ATOM	88		ASP		55	37.987	16.245	41.006	1.00	43.88
MOTA	89		ASP		55	37.345	17.278	39.173	1.00	45.77
ATOM	90	N	SER		56	33.546	14.869	42.264	1.00	41.87
ATOM ATOM	91	CA	SER		56	32.471	15.529	42.999	1.00	39.15
ATOM	92	C	SER		56	32.064	14.830	44.319	1.00	36.42
ATOM	93	0	SER		56	32.708	13.878	44.772	1.00	34.35
ATOM	94	CB	SER		56	31.255	15.715	42.070	1.00	40.76
ATOM	95	OG	SER		56	30.999	14.554	41.292	1.00	44.70
ATOM	96	Ŋ	THR		57	31.060	15.397	44.977	1.00	31.87
ATOM	97	CA	THR		57	30.531	14.855	46.211	1.00	28.23
ATOM	98	C	THR		57	29.044	14.683	45.999	1.00	26.15
ATOM	99	Õ	THR		57	28.341	15.636	45.741	1.00	28.09
ATOM	100	СВ	THR		57	30.790	15.802	47.406	1.00	25.55
ATOM	101		THR		57	32.143	15.650	47.861	1.00	22.73
ATOM	102	CG2			57	29.860	15.499	48.530	1.00	22.34
ATOM	103	N	PHE		58	28.561	13.463	46.135	1.00	26.71
ATOM	104	CA	PHE		58	27.148	13.206	45.925	1.00	27.96
ATOM	105	C	PHE		58	26.303	12.971	47.177	1.00	28.42
ATOM	106	ō	PHE		58	25.740	11.892	47.379	1.00	34.14
ATOM	107	CB	PHE		58	26.963	12.040	44.960	1.00	24.54
MOTA	108	CG	PHE		58	26.701	12.457	43.533	1.00	20.20
ATOM	109		PHE		58	27.761	12.719	42.659	1.00	18.70
ATOM	110		PHE		58	25.394	12.511	43.051	1.00	17.72
ATOM	111		PHE		58	27.520	13.023	41.326	1.00	6.16
ATOM	112	CE2			58	25.143	12.816	41.716	1.00	6.65
ATOM	113	CZ	PHE		58	26.210	13.069	40.862	1.00	7.99
MOTA	114	N	THR		59	26.095	14.025	47.941	1.00	26.25
ATOM	115	CA	THR		59	25.305	13.932	49.153	1.00	20.51

FIG. 2C

ATOM	116	С	THR A		59	23.921	13.489	48.769	1.00	18.74
ATOM	117	0	THR A		59	23.123	14.273	48.293	1.00	20.15 18.08
ATOM	118	CB	THR A		59	25.244	15.284	49.863	1.00	17.42
ATOM	119	OG1	THR A		59	26.585	15.707	50.146	1.00	
ATOM	120	CG2	THR F	7	59	24.450	15.190	51.151	1.00	17.08
ATOM	121	N	VAL F	1	60	23.647	12.208	48.953	1.00	17.47 15.56
MOTA	122	CA	VAL A	A.	60	22.344	11.668	48.611	1.00	9.70
ATOM	123	C	VAL A	4	60	21.676	10.974	49.764	1.00	11.46
ATOM	124	0	VAL A	¥	60	22.300	10.636	50.742	1.00	17.14
ATOM	125	CB	VAL A	4	60	22.447	10.666	47.399	1.00	16.49
ATOM	126	CG1	VAL A	4	60	22.985	11.395	46.174	1.00	13.46
MOTA	127	CG2	VAL A	A	60	23.379	9.471	47.739	1.00	12.17
MOTA	128	N	LEU A	A	61	20.380	10.780	49.637	1.00	19.00
MOTA	129	CA	LEU A	A	61	19.609	10.070	50.642	1.00	21.44
ATOM	130	C	LEU 3	A	61	20.217	8.665	50.711	1.00 1.00	24.40
MOTA	131	0	LEU 2	A	61	20.570	8.091	49.680	1.00	17.94
MOTA	132	CB	LEU :	Α	61	18.130	9.991	50.207	1.00	16.60
MOTA	1.33	CG	LEU .		61	17.263	11.258	50.276	1.00	13.63
ATOM	134	CD1	LEU .	A	61	16.002	11.052	49.448		16.01
ATOM	135	CD2	LEU	A	61	16.908	11.606	51.740	1.00	23.01
MOTA	136	N	LYS	A	62	20.357	8.127	51.917	1.00	21.23
ATOM	137	CA	LYS	Α	62	20.951	6.803	52.133	1.00	19.20
ATOM	138	C	LYS	Α	62	20.420	5.611	51.334	1.00	17.05
ATOM	139	0	LYS	Α	62	21.134	4.627	51.177	1.00	22.99
ATOM	140	CB	LYS	Α	62	20.926	6.471	53.627	1.00	22.99
ATOM	141	CG	LYS	Α	62	22.037	7.137	54.381	1.00	23.25
ATOM	142	CD	LYS	Α	62	21.743	7.287	55.857	1.00	23.25
ATÓM	143	CE	LYS	Α	62	22.916	8.006	56.539	1.00	20.22
ATOM	144	NZ	LYS		62	22.712	8.217	58.005	1.00	
ATOM	145	N	ARG	Α	63	19.167	5.677	50.877	1.00	17.63 17.67
ATOM	146	CA	ARG	Α	63	18.548	4.610	50.083	1.00	20.60
ATOM	147	С	·ARG	Α	63	19.300	4.304	48.780	1.00	
ATOM	148	0	ARG	A	63	19.006	3.288	48.146	1.00	25.79 13.35
ATOM	149	CB	ARG	A	63	17.097		49.745	1.00	11.45
ATOM	150	CG	ARG	A	63	16.953		49.069	1.00	7.72
ATOM	151	CD	ARG	A	63	15.512		48.897	1.00	6.68
MOTA	152	NE	ARG	A	63	14.811		47.963	1.00	7.81
MOTA	153	CZ	ARG	Α	63	13.529		47.671	1.00	13.19
ATOM	154	NH	1 ARG	Α	63 ·	12.801		48.229		13.13
MOTA	155	NH	2 ARG	A	63	12.949		46.851		21.13
ATOM	156		TYR	Α	64	20.246		48.385		16.30
ATOM	157		TYR	Α	64	21.052		47.167		
MOTA	158		TYR			22.460	4.551			17.65
ATOM	159		TYR	A	64	23.174				19.10
ATOM	160					21.081				12.30
ATOM	161					19.691				7.10
ATOM	162		1 TYR			18.815	6.113			6.87
ATOM	163		2 TYR			19.235	8.040			5.16
MOTA	164		1 TYR			17.523	L 6.572	45.031		2.99
MOTA	165		2 TYR			17.932				3.57
MOTA	166					17.079	7.767			5.43
ATOM	167					15.773	8.195			6.01
MOTA	168					22.820	3.364			20.73
ATOM	169					24.09				18.99
ATOM	170					24.88				19.39
ATOM	173					24.35				23.28
	173	-				. 23.82		2 48.110		23.17
MOTA	173					22.95				26.90
MOTA	174					21.66			1.00	33.61
MOTA	Τ/,	- CI	- 311		. 05					

FIG. 2D

ATOM	175	OE1	GLN .	A	65	20.649	1.243	48.714	1.00	37.34
ATOM	176	NE2	GLN .	A	65	21.690	-0.306	50.016	1.00	29.61
ATOM	177	N	ASN	A	66	26.155	2.131	46.303	1.00	20.73
ATOM	178	CA	ASN .	A	66	27.040	1.837	45.205	1.00	22.18
ATOM	179	C	ASN .		66	26.912	2.829	44.044	1.00	23.64
ATOM	180	0	ASN	A	66	26.592	2.442	42.915	1.00	21.80
MOTA	181	CB	ASN		66	26.807	0.423	44.711	1.00	23.36
MOTA	182	CG	ASN		66	28.104	-0.320	44.454	1.00	23.74
ATOM	183	OD1	ASN	Α	66	28.102	-1.548	44.360	1.00	30.68
ATOM	184	ND2	ASN		66	29.217		44.365	1.00	19.97
MOTA	185	N	LEU		67	27.195	4.105	44.329	1.00	26.13
ATOM	186	CA	LEU -		67	27.125	5.169	43.321	1.00	26.96
MOTA	187	C	LEU		67	28.303	5.048	42.370	1.00	27.05
MOTA	188	0	LEU		67	29.454	4.966	42.806	1.00	23.63
ATOM	189	CB	LEU		67	27.167	6.560	43.963	1.00	27.02
MOTA	190	CG	LEU		67	26.214	6.979	45.083	1.00	26.97
MOTA	191		LEU		67	25.953	8.482	44.896	1.00	23.30 22.27
MOTA	192		LEU		67	24.905	6.196	45.058	1.00	27.57
MOTA	193	N	LYS		68	28.012	5.049	41.075	1.00	27.90
MOTA	194	CA	LYS		68	29.052	4.935	40.063	1.00	26.86
MOTA	195	C	LYS		68	28.769	6.004	39.015	1.00 1.00	29.53
MOTA	196	0	LYS		68	27.631	6.206	38.628	1.00	31.18
ATOM	197	CB	LYS		68	29.002	3.532	39.445 38.466	1.00	41.51
ATOM	198	CG	LYS		68	30.135	3.254	37.930	1.00	45.53
ATOM	199	CD	LYS		68	30.117	1.819 1.443	37.291	1.00	48.89
ATOM	200	CE	LYS		68	31.469	-0.040	37.231	1.00	50.37
ATOM	201	NZ	LYS		68	31.615	6.701	38.539	1.00	27.17
MOTA	202	N	PRO		69	29.804	7.756	37.532	1.00	26.52
ATOM	203	CA	PRO		69	29.622 29.270	7.730	36.140	1.00	25.11
ATOM	204	C	PRO		69	29.270	6.336	35.617	1.00	25.86
ATOM	205	0	PRO		69 69	30.989	8.443	37.511	1.00	26.89
MOTA	206	CB	PRO PRO		69	31.938	7.293	37.725	1.00	28.83
ATOM	207 208	CG CD	PRO		69	31.231	6.524	38.863	1.00	28.51
ATOM	208	И	ILE		70	28.259	7.899	35.556	1.00	24.95
ATOM ATOM	210	CA	ILE		70	27.845	7.586	34.202	1.00	25.17
ATOM	211	C	ILE		70	27.639	8.877	33.415	1.00	26.56
ATOM	212	0	ILE		70	28.656	9.620	33.256	1.00	26.71
ATOM	213	CB	ILE		70	26.571	6.732	34.181	1.00	26.02
ATOM	214	CG1			70	25.377	7.530	34.653	1.00	24.95
ATOM	215	CG2			70	26.747	5.528	35.114	1.00	32.72
ATOM	216	CD1			70	24.131	6.680	34.823	1.00	26.64
ATOM	217	N	GLY		73	29.035	15.317	33.639	1.00	45.08
ATOM	218	CA	GLY		73	28.781	16.123	32.424	1.00	45.96
ATOM	219	C	GLY		73	28.701	17.625	32.656	1.00	47.11
ATOM	220	ō	GLY		73	28.688	18.097	33.804	1.00	47.57
ATOM	221	N	ALA		74	28.619	18.359	31.544	1.00	46.79
ATOM	222	CA	ALA		74	28.545	19.825	31.525	1.00	45.55
ATOM	223	C	ALA		74	27.288	20.405	32.169	1.00	44.71
ATOM	224	ō	ALA		74	27.337	21.484	32.763	1.00	44.95
ATOM	225	CB	ALA		74	28.685	20.340	30.092	1.00	46.21
ATOM	226	N	GLN		75	26.154	19.721	32.031	1.00	42.77
MOTA	227	CA	GLN		75	24.920	20.209	32.648	1.00	42.40
MOTA	228	C	GLN		75	24.456	19.391	33.880	1.00	40.14
MOTA	229	ō	GLN		75	23.268	19.350	34.229	1.00	41.54
ATOM	230	CB	GLN		75	23.819	20.353	31.596	1.00	41.18
MOTA	231	CG	GLN		75	23.758	19.231	30.590	1.00	42.08
MOTA	232	CD	GLN		75	22.721	18.190	30.950	1.00	44.75
ATOM	233		GLN		75	23.036	17.003	31.044	1.00	46.19
							•			

FIG. 2E

								•		
ATOM	234	NE2	GLN A	A	75	21.472	18.630	31.148	1.00	43.10
ATOM	235	N	GLY 2	A	76	25.427	18.818	34.585	1.00	36.77
ATOM	236	CA	GLX :	A	76	25.122	18.032	35.756	1.00	32.12
MOTA	237		GLY 3		76	25.867	16.726	35.649	1.00	29.10
MOTA	238	0	GLY :	A	76	26.264	16.315	34.568	1.00	28.74
MOTA	239	N	ILE 2	A	77	26.126	16.107	36.791	1.00	29.23 26.79
MOTA	240	CA	ILE .	A	77	26.826	14.831	36.830	1.00	
ATOM	241	C	ILE :	A	77	25.793	13.741	37.052	1.00	23.44 22.33
MOTA	242	0	ILE .	A	77	24.843	13.928	37.808	1.00	28.83
ATOM	243	CB	ILE .	A	77	27.894	14.797	37.949	1.00	30.10
MOTA	244	CG1	ILE .	A	77	28.438	16.221	38.246	1.00	23.11
ATOM	245	CG2	ILE .	A	77	28.991	13.796	37.571	1.00	
MOTA	246	CD1			77	28.853	17.081	37.009	1.00	30.30
MOTA	247	N	VAL		78	25.932	12.632	36.335	1.00	20.94
MOTA	248	CA	VAL	A	78	24.982	11.534	36.467	1.00	19.24 17.37
MOTA	249	C ·	VAL	A	78	25.671	10.326	37.115	1.00	14.75
MOTA	250	0	VAL		78	26.851	10.069	36.884	1.00	
MOTA	251	CB	VAL	Α	78	24.352	11.159	35.088	1.00	18.14 19.05
MOTA	252	CG1	VAL		78	23.139	10.244	35.275	1.00	19.03
MOTA	253	CG2	VAL		78	23.926	12.422	34.357	1.00	16.64
MOTA	254	N	CYS		79	24.922	9.618	37.954	1.00	16.84
MOTA	255	CA	CYS		79	25.417	8.453	38.681	1.00	14.35
MOTA	256	C	CYS		79	24.441	7.314	38.618	1.00	15.11
MOTA	257	0	CYS		79	23.231	7.516	38.538	1.00	16.44
ATOM '	258	CB	CYS		79	25.643	8.780	40.166	1.00	30.72
MOTA	259	SG	CYS		79	27.336	9.176	40.532	1.00 1.00	14.50
MOTA	260	N	ALA		80	24.987	6.108	38.571	1.00	17.43
MOTA	261	CA	ALA		80	24.177	4.900	38.582	1.00	15.98
MOTA	262	C	ALA		80	24.150	4.520	40.066	1.00	16.01
MOTA	263	0	ALA		80	25.122	4.761	40.795	1.00	14.56
MOTA	264	CB	ALA		80	24.849		37.763	1.00	16.06
MOTA	265	N	ALA		81	23.038	3.966	40.527 41.920	1.00	15.59
MOTA	266	CA	ALA		81	22.962	3.573	42.147	1.00	15.48
MOTA	267	C	ALA		81	21.836	2.609	41.323	1.00	15.11
MOTA	268	0	ALA		81	20.914	2.498 4.791	42.814	1.00	12.88
ATOM	269	CB	ALA		81	22.775		43.297	1.00	18.71
MOTA	270	N	TYR		82	21.926	1.933 0.961	43.765	1.00	16.44
ATOM	271	CA	TYR		82	20.930	1.596	44.823	1.00	14.14
MOTA	272	C	TYR		82	20.013	2.140	45.800	1.00	14.37
ATOM	273	0_	TYR		82	20.476	-0.273	44.354	1.00	15.08
MOTA	274	CB	TYR		82.	21.641	-1.255	45.001	1.00	16.38
MOTA	275	CG	TYR		82	20.690	-1.782	44.288	1.00	13.31
MOTA	276	CD1			82	19.617 20.809	-1.782	46.352	1.00	14.38
ATOM	277	CD2			82		-2.597	44.903	1.00	16.69
MOTA	278		TYR		82	18.684	-2.408	46.973	1.00	9.96
ATOM	279	CE2			82	19.867	-2.891	46.253	1.00	11.01
MOTA	280	CZ	TYR		82	18.809 17.791	-3.550	46.886	1.00	10.41
MOTA	281	OH	TYR		82		1.517	44.623	1.00	15.81
MOTA	282	N	ASP		83	18.713 17.777	2.073	45.567	1.00	15.84
MOTA	283	CA	ASP		83	17.777	0.958	46.418	1.00	16.76
MOTA	284	C	ASP		83		0.256	46.004	1.00	13.18
ATOM	285	0	ASP		83	16.277	2.802	44.838	1.00	17.74
ATOM	286	CB	ASP		83	16.647 15.647	3.428	45.786	1.00	19.13
ATOM	287	CG	ASP		83	14.588	3.863	45.315	1.00	22.66
ATOM	288		ASP			15.914	3.500	46.997	1.00	23.77
ATOM	289		ASP		83	17.697	0.876	47.645		16.89
ATOM	290	N	ALA			17.280	-0.126	48.609		14.73
ATOM	291	CA	ALA			15.804		48.879		13.83
MOTA	292	С	ALA	. A	84	70.004	0.0.5			_

FIG. 2F

						_				49.071	1.00	18.36
MOTA	293		ALA A		84		5.166			49.872	1.00	15.67
MOTA	294		ALA A		84		8.055		0.049		1.00	13.99
ATOM	295	N	VAL A	A	85		5.229		1.107	48.818	1.00	13.29
ATOM	296	CA	VAL A	A	85		3.815		1.235	49.074		19.89
ATOM	297	C	VAL 2	A	85	1	2.962		0.722	47.926	1.00	
MOTA	298	0	VAL .	Α	85·	1	1.956		0.041	48.142	1.00	24.83
ATOM	299	CB	VAL.	Α	85	1	3.440		2.694	49.366	1.00	11.26
ATOM	300		VAL		85	1	1.928		2.839	49.531	1.00	8.90
MOTA	301		VAL		85	1	4.186		3.165	50.597	1.00	9.72
	302	N	LEU		86	1	.3.373		1.011	46.696	1.00	22.18
MOTA		CA	LEU		86	1	12.579		0.598	45.548	1.00	20.84
MOTA	303	C	LEU		86		3.108		-0.720	45.005	1.00	20.77
ATOM	304		LEU		86		12.406		-1.382	44.256	1.00	24.37
MOTA	305	O.	LEU		86		L2.634		1.692	44.481	1.00	20.31
MOTA	306	CB					11.450		2.248	43.687	1.00	18.86
MOTA	307	CG	LEU		86		10.348		2.823	44.545	1.00	19.36
MOTA	308		LEU		86		12.019		3.330	42.829	1.00	15.44
MOTA	309		LEU		86				-1.113	45.427	1.00	19.59
MOTA	310	N	ASP		87		14.311		-2.360	44.991	1.00	24.37
MOTA	311	CA	ASP	A	87		14.952			43.495	1.00	27.94
ATOM	312	C	ASP		87		15.287		-2.340		1.00	30.01
ATOM	313	0	ASP	Α	87		15.411		-3.393	42.852		23.50
MOTA	314	CB	ASP	A	87		14.030		-3.558	45.301	1.00	20.28
MOTA	315	CG	ASP	A	87		14.741		-4.908	45.226	1.00	
ATOM	316	OD1	ASP	A	87		15.985	i	-4.965	45.357	1.00	18.88
ATOM	317		ASP		87		14.030)	-5.924	45.052	1.00	20.73
MOTA	318	N	ARG		88		15.390)	-1.132	42.947	1.00	27.96
MOTA	319	CA	ARG		88		15.695	;	-0.918	41.535	1.00	24.53
ATOM	320	. C	ARG		88		17.006	5	-0.164	41.452	1.00	22.72
	321	Õ	ARG		88		17.534		0.272	42.465	1.00	21.23
MOTA	322	СВ	ARG		88		14.601		-0.058	40.884	1.00	26.06
ATOM		CG	ARG		88		13.243		-0.708	40.833	1.00	31.50
MOTA	323		ARG		88		12.104		0.309	40.666	1.00	37.98
MOTA	324	CD	ARG		88		12.189		1.086	39.426	1.00	44.46
MOTA	325	NE			88		11.270		1.970	39.018	1.00	47.83
MOTA	326	CZ	ARG				10.176		2.189	39.746	1.00	46.37
MOTA	327		L ARG		88		11.452		2.659	37.886	1.00	46.81
MOTA	328	NH2			88				-0.121	40.257		21.96
MOTA	329	N	ASN		89		17.584		0.635	40.015		17.98
MOTA	330	CA	ASN		89		18.799		1.862	39.394		17.64
ATOM	331	С	ASN				18.17		1.736	38.610		16.27
MOTA	332	0	ASN		89		17.225		1.736	38.976		21.06
MOTA	333	CB	ASN		89		19.669		-0.033			22.14
MOTA	334		ASN				20.24		-1.324	39.448		24.48
MOTA	335	OD:	1 ASN	J A	89		21.29		-1.353	40.064		24.86
MOTA	336	ND:	2 ASN	J A	. 89		19.56		-2.413	39.142		16.48
ATOM	337		VAI	A	90		18.65	5	3.042			
MOTA	338						18.13	8	4.317			8.72
ATOM	339		VAI				19.31	2	5.100			7.86
ATOM	340		VAI		_		20.44	6	4.734			6.68
	341						17.50	6	5.169	40.433		8.10
MOTA			1 VA				16.30		4.488	41.040	1.00	7.17
MOTA	342		2 VA				18.55		5.489		1.00	8.82
MOTA	343		AL				19.02		6.207		1.00	10.32
ATOM	344						20.06		7.112			14.10
MOTA	345						19.82		8.402			10.46
MOTA	346		AL						8.815			10.39
MOTA	347			A F			18.67					11.77
MOTA	348	B CE		A A	_		19.91		7.349			13.28
MOTA	349	И		E A			20.88		8.967			14.22
MOTA	350	CP		E A			20.81		10.215			10.61
MOTA	35:	L C	IL	E 2	A 92		21.68	3 L	11.322	37.13		

FIG. 2G

						00 070	11.142	38.980	1.00	9.03
MOTA	352	0	ILE A		92	22.872		41.221	1.00	17.15
MOTA	353	CB	ILE F		92	21.312	10.010			16.75
ATOM	354	CG1	ILE A	A.	92	20.709	8.742	41.845	1.00	13.54
ATOM	355	CG2	ILE A	A.	92	20.994	11.260	42.062	1.00	
ATOM	356	CD1	ILE A	Ą	92	21.240	8.459	43.256	1.00	20.93
ATOM	357	N	LYS A	A	93	21.095	12.483	38.889	1.00	14.77
ATOM	358	CA	LYS A		93	21.851	13.604	38.327	1.00	12.79
	359	C	LYS A		93	21.946	14.804	39.309	1.00	9.97
ATOM			LYS A		93	20.943	15.280	39.825	1.00	11.17
ATOM	360	0			93	21.203	14.056	37.019	1.00	14.33
MOTA	361	CB	LYS A			21.203	15.238	36.389	1.00	18.76
ATOM	362	CG	LYS 2		93		15.230	35.332	1.00	23.53
MOTA	363	CD	LYS .		93	21.078		34.067	1.00	22.04
MOTA	364	CE	LYS :		93	21.054	15.110		1.00	28.29
MOTA	365	NZ	LYS	A	93	20.001	15.633	33.164		10.00
ATOM	366	N	LYS .	Α	94	23.154	15.298	39.533	1.00	
ATOM	367	CA.	LYS .	A	94	23.388	16.427	40.425	1.00	11.97
ATOM	368	С	LYS	A	94	23.396	17.765	39.688	1.00	13.01
ATOM	369	ō	LYS		94	24.211	17.978	38.794	1.00	8.56
		СВ	LYS		94	24.756	16.268	41.106	1.00	9.16
MOTA	370		LYS		94	25.102	17.296	42.205	1.00	5.83
ATOM	371	CG				26.621	17.217	42.451	1.00	4.53
MOTA	372	CD	LYS		94	27.109	18.149	43.574	1.00	7.98
MOTA	373	CE	LYS		94		18.218	43.640	1.00	4.59
MOTA	374	NZ	LYS		94	28.612		40.077	1.00	17.90
MOTA	375	N	LEU		95	22.481	18.653		1.00	17.86
ATOM	376	CA	LEU	A	95	22.395	20.013	39.530	1.00	16.55
ATOM	377	С	LEU	Α	95	23.158	20.951	40.488		20.96
ATOM	378	0	LEU	A	95	22.586	21.431	41.449	1.00	
ATOM	379	CB	LEU	A	95	20.926	20.486	39.432	1.00	18.23
MOTA	380	CG	LEU		95	20.238	20.496	38.065	1.00	12.58
MOTA	381		LEU		95	20.349	19.122	37.454	1.00	14.99
	382		LEU		95	18.786	20.976	38.161	1.00	5.98
MOTA		N	SER		96	24.449		40.257	1.00	17.33
MOTA	383		SER		96	25.250		41.103	1.00	21.25
MOTA	384	CA				24.932		40.877	1.00	23.71
MOTA	385	C	SER		96	25.244		39.811	1.00	24.71
ATOM	386	0	SER		96			40.848	1.00	19.80
ATOM	387	CB	SER		96	26.737		40.793	1.00	25.39
MOTA	388	OG	SER		96	27.057		41.903	1.00	24.38
ATOM	389	N	ARG	A	97	24.358			1.00	24.92
MOTA	390	CA	ARG	Α	97	24.007		41.831		25.58
ATOM	391	C	ARG	Α	97	23.288		40.511	1.00	29.24
ATOM	392	0	ARG	Α	97	23.861		39.579	1.00	
ATOM	393	CB	ARG	A	97	25.280	26.410	41.829	1.00	22.33
ATOM	394				97	26.001	26.460	43.136	1.00	23.30
ATOM	395				97	25.280	27.362	44.068	1.00	23.60
	396					26.226	28.057	44.926	1.00	27.02
ATOM						25.915			1.00	22.30
MOTA	397					24.676			1.00	19.93
MOTA	398		1 ARG			26.841				2955
MOTA	399		2 ARG			22.061	_			24.73
MOTA	400		PRO							24.14
MOTA	401					21.325				26.34
MOTA	402	C	PRC) A		20.880				27.05
MOTA	403	0	PRC) A		20.65				21.07
ATOM	404	CE	PRC) A	. 98	20.142				
MOTA	405	G CG	PRC) A	. 98	19.91	5 24.461			20.34
ATOM	406					21.31				20.62
ATOM	407		PHE			20.81				25.58
ATOM	408					20.40	4 29.079			22.88
MOTA	409		PHE			21.62	8 29.978	39.658		23.17
ATOM	410		PHE			21.51		39.873	1.00	27.58
MION	47(

FIG. 2H

MOTA	411	CB	PHE A	99	19.7	701	29.418	41.073	1.00	19.95
MOTA	412	CG	PHE A	99	20.4		28.882	42.262	1.00	24.21
ATOM	413	CD1	PHE A	99	19.9	984	27.698	42.866	1.00	25.78
ATOM	414	CD2	PHE A	99	21.5	579	29.480	42.698	1.00	23.29
ATOM	415	CE1	PHE A	99	20.7	708	27.127	43.894	1.00	26.74
ATOM	416	CE2	PHE A	99	22.3	319	28.929	43.723	1.00	27.03
ATOM	417	CZ	PHE A	99	21.8	393	27.736	44.320	1.00	26.84
ATOM	418	N	GLN A	100	22.	790	29.411	39.329	1.00	20.86
ATOM	419	CA	GLN A	100	23.9	998	30.196	39.203	1.00	19.24
ATOM	420	C	GLN A	100	23.9	933	31.238	38.081	1.00	23.28
MOTA	421	0	GLN A	100	24.0	548	32.240	38.123	1.00	23.81
ATOM	422	CB	GLN A	100	25.3		29.309	39.086	1.00	16.82
ATOM	423	CG	GLN A	100	25.3	359	28.536	37.827	1.00	16.73
ATOM	424	CD	GLN A	100	26.	782	28.575	37.334	1.00	20.50
ATOM	425	OE1	GLN A	100	27.	087	29.215	36.325	1.00	29.92
ATOM	426	NE2	GLN A	100	27.	674	27.945	38.062	1.00	21.47
MOTA	427	N	ASN A	101	23.	110	30.972	37.064	1.00	23.78
ATOM	428	CA	ASN A	101	22.		31.892	35.958	1.00	18.93
ATOM	429	С	ASN A	101	21.	527	31.586	35.318	1.00	19.15
MOTA	430	0	ASN A	101	20.	894	30.576	35.635	1.00	16.93
MOTA	431	CB	ASN A	101	24.	078	32.051	34.981	1.00	19.19
ATOM	432	CG	ASN A	101	24.		30.812	34.145	1.00	19.46
ATOM	433		ASN A		23.		30.291	33.428	1.00	23.89
ATOM	434	ND2	ASN A	101	25.	670	30.417	34.146	1.00	15.74
ATOM	435	N	GLN A			022	32.521	34.523	1.00	21.89
MOTA	436	CA	GLN A	102		701	32.356	33.922	1.00	23.21 22.40
ATOM	437	С	GLN A			533	31.258	32.888	1.00	21.56
MOTA	438	0	GLN A			412	30.837	32.617	1.00 1.00	29.90
MOTA	439	CB	GLN A			199	33.682	33.361	1.00	31.93
ATOM	440	CG	GLN A			154	34.804	34.390 33.894	1.00	34.84
ATOM	441	CD	GLN A			372	36.001	33.899	1.00	36.18
MOTA	442		GLN A			132	35.990 37.040	33.437	1.00	33.10
MOTA	443	NE2				.090 .634	30.821	32.289	1.00	22.92
MOTA	444	N	THR A			.591	29.745	31.312	1.00	24.22
MOTA	445	CA	THR A			342	28.483	32.154	1.00	23.67
ATOM	446	C	THR A			. 277	27.882	32.069	1.00	26.93
MOTA	447	0	THR A			.934	29.672	30.553	1.00	27.86
MOTA	448	CB	THR A			.235	30.966	29.994	1.00	24.55
ATOM	449	OGI				.871	28.622	29.427	1.00	28.78
MOTA	450	CG2				.292	28.141	33.024	1.00	25.35
MOTA	451	N	HIS A			.158	27.002	33.947	1.00	23.26
MOTA	452	CA		A 104 A 104		.839	27.086	34.677	1.00	20.46
MOTA	453	C				.115	26.113	34.763	1.00	24.89
MOTA	454	0		A 104 A 104		.237	27.041	35.044	1.00	23.44
MOTA	455			A 104		.612	26.709	34.567	1.00	22.14
MOTA	456		HIS I			.912	25.515	33.950		27.61
MOTA	457 458		2 HIS			.775		34.648	1.00	23.89
MOTA MOTA	459		1 HIS .			.201		33.674	1.00	21.83
	460		2 HIS			.748		34.087	1.00	21.86
MOTA				A 105		.506		35.156	1.00	18.99
ATOM	461 462			A 105 A 105		.295				16.67
ATOM ATOM	463			A 105		.977				15.43
ATOM	464			A 105		.984				15.84
ATOM	465			A 105		.391				19.42
ATOM	466			A 106		.923	28.806			18.41
ATOM	467			A .106		.614	_	33.312		20.15
ATOM	468			A 106		.360		32.720		18.69
ATOM	469			A 106	14	.232	26.949	32.474	1.00	20.92
				-	•					

FIG. 2I

		an T	va 3 106		15.590	29.792	32.202	1.00	23.44
MOTA			YS A 106		14.173	30.098	31.717	1.00	27.12
MOTA	471		YS A 106		14.060	31.508	31.132	1.00	33.79
MOTA	472		YS A 106		15.141	31.794	30.090	1.00	35.65
MOTA	473		YS A 106		14.827	31.086	28.854	1.00	35.14
MOTA	474		YS A 106		16.477	26.670	32.441	1.00	19.73
MOTA	475		RG A 107		16.392	25.293	31.985	1.00	19.95
MOTA	476		RG A 107		16.047	24.354	33.148	1.00	18.65
MOTA	477	_	RG A 107		15.202	23.476	33.053	1.00	17.46
MOTA	478		RG A 107		17.754	24.918	31.383	1.00	22.01
MOTA	479		RG A 107		18.130	23.452	31.608	1.00	30.96
MOTA	480		ARG A 107		19.475	23.098	30.938	1.00	39.76
MOTA	481		ARG A 107		19.261	22.209	29.788	1.00	43.62
MOTA	482		ARG A 107		20.326	21.919	29.013	1.00	45.78
MOTA	483		ARG A 107		21.516	22.423	29.297	1.00	43.52
MOTA	484		ARG A 107		20.170	21.115	27.957	1.00	46.85
MOTA	485		ARG A 107		16.771	24.554	34.265	1.00	16.31
MOTA	486		ALA A 108		16.500	23.766	35.467	1.00	16.08
MOTA	487	-	ALA A 108			23.705	35.919	1.00	18.41
ATOM	488		ALA A 108		15.036	22.907	36.070	1.00	22.63
MOTA	489		ALA A 108		14.317	24.262	36.580	1.00	14.86
MOTA	490	-	ALA A 108		17.430 14.616	25.143	36.183	1.00	16.47
MOTA	491		TYR A 109			25.374	36.642	1.00	16.30
MOTA	492		TYR A 109		13.242	24.806	35.658	1.00	16.15
ATOM	493		TYR A 109		12.210	24.267	36.041	1.00	13.54
MOTA	494		TYR A 109		11.180	26.888	36.802	1.00	20.39
MOTA	495		TYR A 105		13.042	27.186	37.284	1.00	25.65
MOTA	496		TYR A 109		11.659	26.891	38.598	1.00	25.78
MOTA	497		TYR A 10:		11.298	27.786	36.433	1.00	26.01
ATOM	498		TYR A 10		10.728	27.700	39.057	1.00	24.75
MOTA	499		TYR A 10		10.021	28.087	36.892	1.00	26.22
MOTA	500		TYR A 10		9.452	27.792	38.196	1.00	27.05
ATOM	501	CZ	TYR A 10		9.097	28.116	38.668	1.00	28.89
MOTA	502	OH	TYR A 10		7.837	24.995	34.370	1.00	17.31
MOTA	503	N	ARG A 11		12.540 11.619	24.594	33.311	1.00	17.38
MOTA	504	CA	ARG A 11		11.619		33.279	1.00	14.31
MOTA	505	C	ARG A 11		10.316		33.158	1.00	12.85
MOTA	506	0	ARG A 11		10.316		31.983	1.00	19.68
MOTA	507	CB	ARG A 11		11.223				21.51
MOTA	508	CG	ARG A 11		11.719				21.69
MOTA	509	CD	ARG A 11						23.64
MOTA	510	NE	ARG A 11		10.778 10.989				25.84
MOTA	511	CZ	ARG A 11		12.011				26.19
MOTA	512		ARG A 11						29.07
MOTA	513		ARG A 11		10.170				16.41
MOTA	514		GLU A 11		12.559		_	_	17.69
MOTA	515		GLU A 11		12.480	20.833			16.80
ATOM	516		GLU A 11		11.636				17.49
MOTA	517		GLU A 11		10.875				20.48
MOTA	518		GLU A 1		13.908				22.16
MOTA	519		GLU A 1		14.890				22.88
MOTA	520		GLU A 1		14.926				27.95
MOTA	521		GLU A 1		15.010				22.77
MOTA	522		GLU A 1		14.874				19.48
MOTA	523		LEU A 1		11.830				17.81
MOTA	524		LEU A 1		11.076				16.62
MOTA	525		LEU A 1		9.560				19.18
MOTA	526		LEU A 1		8.833				21.80
MOTA	527		LEU A 1		11.46				
MOTA	528	3 CG	LEU A 1	12	12.51	9 21.20	39.02		•

FIG. 2J

ATOM	529		L LEU 2			20.357	40.131	1.00	25.56
ATOM	530		E LEU 2	A 112	13.549	20.323	38.326	1.00	21.91
ATOM	531	N		A 113	9.097	22.047	36.280	1.00	20.17
ATOM	532	CA	VAL 2		7.651	22.287	36.184	1.00	20.67
MOTA	533	C	VAL 1		7.012	21.573	34.990	1.00	20.99
ATOM	534	0	VAL A		5.802	21.406	34.909	1.00	21.37
MOTA	535	CB	VAL A		7.417	23.792	36.067	1.00	22.41
MOTA	536		VAL A		7.918	24.497	37.324	1.00	25.86
ATOM	537	CG2			8.155	24.340	34.857	1.00	27.52
ATOM	538	N	LEU A		7.823	21.155	34.025	1.00	21.23
MOTA	539	CA	LEU A		7.302	20.468	32.852	1.00	23.13
ATOM	540	С	LEU .		6.944	19.040	33.187	1.00	22.69
ATOM	541	0	LEU A		5.970	18.517	32.679	1.00	25.58
MOTA	542	CB	LEU A		8.309	20.510	31.707	1.00	20.01
MOTA	543	CG	LEU A		8.123	21.779	30.910	1.00	16.34
ATOM	544		. LEU A		9.019	21.785	29.697	1.00	16.53
MOTA	545	CD2			6.658	21.846	30.529	1.00	20.85
ATOM	546	N	MET A		7.687	18.454	34.114	1.00	26.23
MOTA	547	CA	MET A		7.454	17.093	34.540	1.00	26.25
ATOM	548	C	MET A	115	6.331	16.986	35.580	1.00	29.91
ATOM	549	0	MET A		6.521	16.426	36.655	1.00	31.74
ATOM	550	CB	MET A		8.745	16.503	35.082	1.00	25.69
ATOM	551	CG	MET A		9.885	16.626	34.109	1.00	25.24
MOTA	552	SD	MET A		11.294	15.590	34.512	1.00	26.61
MOTA	553	CE	MET A		12.674	16.742	34.691	1.00	24.00
ATOM	554	N	LYS A		5.207	17.627	35.295	1.00	28.61
ATOM	555	CA	LYS A	116	4.016	17.560	36.128	1.00	30.99
MOTA	556	C	LYS A		2.825	17.626	35.157	1.00	33.26
MOTA	557	0	LYS A		1.662	17.676	35.566	1.00	33.76
ATOM	558	CB	LYS A	116	3.947	18.731	37.115	1.00	33.30
MOTA	559	CG	LYS A		4.682	18.522	38.427	1.00	33.99
MOTA	560	CD	LYS A	116	6.146	18.859	38.298	1.00	39.13
MOTA	561	CE	LYS A		6.956	18.386	39.509	1.00	42.12
ATOM	562	NZ	LYS A		6.576	19.050	40.806	1.00	42.79
MOTA	563	N	CYS A		3.137	17.548	33.865	1.00	35.37
ATOM	564	CA	CYS A		2.141	17.640	32.801	1.00	39.11
MOTA	565	C	CYS A		2.464	16.718	31.628	1.00	38.05
ATOM	566	0	CYS A		1.953	16.893	30.509	1.00	38.49
ATOM	567	CB	CYS A		2.122	19.070	32.300	1.00	40.82
ATOM	568	SG	CYS A		3.811	19.677	32.161	1.00	52.18
MOTA	569	N	VAL A	118	3.357	15.772	31.877	1.00	33.83
ATOM	570	CA	VAL A	118	3.745	14.819	30.869	1.00	29.05
ATOM	571	C	VAL A	118	3.762	13.424	31.467	1.00	29.19
ATOM	572	0	VAL A	118	4.564	13.130	32.350	1.00	. 32.10
ATOM	573	CB	VAL A		5.115	15.167	30.286	1.00	22.96
ATOM	574	CG1	VAL A	118	5.005	16.461	29.515	1.00	23:45
MOTA	575	CG2	VAL A	118	6.169	15.270	31.382	1.00	21.58
ATOM	576	N	THR A	119 -	2.805	12.594	31.071	1.00	28.43
MOTA	577	CA	THR A		2.773	11.232	31.580	1.00	26.35
ATOM	578	C	THR A		2.964	10.272	30.401	1.00	21.80
ATOM	579	0	THR A	119	2.026	9.812	29.759	1.00	17.32
ATOM	580	CB	THR A	119	1.499	10.962	32.474	1.00	29.38
MOTA	581		THR A	119	1.657	9.720	33.177	1.00	28.88
ATOM	582	CG2	THR A	119	0.187	10.966	31.656	1.00	28.91
ATOM	583	N	HIS A		4.229	10.043	30.077	1.00	21.71
ATOM	584	CA	HIS A		4.538	9.181	28.971	1.00	18.80
MOTA	585	C	HIS A		5.749	8.329	29.189	1.00	19.60
ATOM	586	0	HIS A		6.767	8.795	29.673	1.00	18.49
ATOM	587	CB	HIS A		4.714	9.979	27.697	1.00	22.81

FIG. 2K

	MOTA	588	CG	HIS A			9.182	26.457	1.00	19.79
	ATOM	589		HIS A			8.948	25.993	1.00	20.77
	ATOM	590		HIS A			8.571	25.595	1.00	21.10
	ATOM	591	CEl	HIS A	120	3.236	8.229	24.887	1.00	20.93
	ATOM	592	NE2	HIS A	120	4.507	7.984	24.623	1.00	22.50
	ATOM	593	N	LYS A	121	5.632	7.093	28.702	1.00	21.55
	MOTA	594	CA	LYS A	121	6.652	6.069	28.798	1.00	.18.22
	MOTA	595	C	LYS A	121	7.858	6.406	27.956	1.00	15.50
	ATOM	596	0	LYS A	121	8.958	5.894	28.204	1.00	13.13
	ATOM	59 7	CB	LYS A	121	6.061	4.700	28.425	1.00	23.17
	ATOM	598	CG	LYS A	121	5.211	4.668	27.137	1.00	24.31
	MOTA	599	CD	LYS A	121	4.637	3.295	26.862	1.00	23.40
	MOTA	600	CE	LYS A	121	5.738	2.249	26.709	1.00	27.84
	MOTA	601	NZ	LYS A	121	5.208	0.856	26.420	1.00	31.61
	ATOM	602	N	ASN A	122		7.328	27.008	1.00	17.11
	MOTA	603	CA	ASN A			7.778	26.123	1.00	17.46
	ATOM	604	C	ASN A			9.120	26.527	1.00	17.20
	MOTA	605	0	ASN A			9.589	25.898	1.00	16.39
	ATOM	606	CB	ASN A			7.788	24.675	1.00	15.86
	MOTA	607	CG	ASN A			6.435	24.232	1.00	12.87
	ATOM	608		ASN A		6.661	6.282	23.774	1.00	11.71
	ATOM	609	ND2				5.430	24.435	1.00	11.51
	ATOM	610	N	ILE A			9.717	27.590	1.00	18.46
	ATOM	611	CA	ILE A		9.346	10.980	28.131	1.00	20.03
	ATOM	612	C	ILE A		9.827	10.696	29.557	1.00	19.81
	ATOM	613	ō	ILE A		9.234	9.878	30.269	1.00	19.83
	ATOM	614	CB	ILE A		8.274	12.111	28.216	1.00	16.40
	ATOM	615		ILE A		7.667	12.431	26.837	1.00	18.54
	ATOM	616	CG2	ILE A		8.889	13.316	28.880	1.00	14.23
	ATOM	617	CD1			8.676	12.778	25.747	1.00	14.50
	ATOM	618	N	ILE A		10.885	11.382	29.982	1.00	21.80
	ATOM	619	CA	ILE A		11.444	11.194	31.320	1.00	21.44
	ATOM	620	C	ILE A			11.441	32.440	1.00	20.65
	ATOM	621	ō	ILE A		9.611	12.360	32.384	1.00	17.78
	ATOM	622	СВ	ILE A		12.681	12.089	31.552	1.00	23.19
	ATOM	623	CG1			13.191	11.918	32.985	1.00	21.54
	ATOM	624	CG2	ILE A		12.343	13.531	31.233	1.00	22.16
	ATOM	625	CD1			14.248	12.902	33.409	1.00	25.57
	ATOM	626	N	SER A		10.479	10.549	33.428	1.00	25.24
	ATOM	627	CA	SER A		9.622	10.584	34.629	1.00	25.57
,	ATOM	628	C	SER A		10.533	10.584	35.852	1.00	22.29
	ATOM	629	Ö	SER A		11.474	9.799	35.943	1.00	19.83
	ATOM	630	CB	SER A		8.734	9.328	34.726	1.00	29.09
	ATOM	631	OG	SER A		7.709		33.751		39.45
	ATOM	632	N	LEU A		10.225	11.425	36.819	1.00	21.25
	ATOM	633	CA	LEU A		11.059	11.458	37.995	1.00	21.80
	ATOM	634	C	LEU A		10.529	10.576	39.140	1.00	20.60
	ATOM	635	ō	LEU A		9.315	10.470	39.376	1.00	15.37
	ATOM	636	CB	LEU A		11.276	12.907	38.418	1.00	26.09
	ATOM	637	CG	LEU A		12.013	13.745	37.363	1.00	24.09
	ATOM	638		LEU A		12.074	15.165	37.840	1.00	27.50
	ATOM	639		LEU A		13.421	13.246	37.149	1.00	21.86
	ATOM	640	N	LEU A		11.449	9.843	39.759	1.00	19.81
	ATOM	641	CA	LEU A		11.119	8.960	40.878	1.00	16.92
	ATOM	642	C	LEU A		11.264	9.740	42.183	1.00	17.28
	ATOM	643	0	LEU A		10.511	9.740	43.135	1.00	18.90
	ATOM	644	CB	LEU A		12.098	7.793	40.924	1.00	11.43
	ATOM	645	CG	LEU A		11.998	6.826	39.769	1.00	7.89
	ATOM	646		LEU A		13.068	5.751	39.765	1.00	
		010	CDI	א טעע	/	73.000	J. /SI	39.013	1.00	4.22

FIG. 2L

MOTA	647	CD2	LEU	A	127	10.606	6.278	39.816	1.00	8.16
MOTA	648	N	ASN	A	128	12.231	10.654	42.192	1.00	16.69
MOTA	649	CA	ASN	Α	128	12.539 [.]	11.446	43.353	1.00	18.74
MOTA	650	С	ASN	Α	128	13.351	12.676	42.968	1.00	18.70
ATOM	651	0	ASN	A	128	14.103	12.660	41.991	1.00	18.08
ATOM	652	CB	ASN	Α	128	13.353	10.584	44.330	1.00	19.51
ATOM	653	CG	ASN	Α	128	13.348	11.125	45.753	1.00	17.80
ATOM	654	OD1	ASN	A	128	14.249	10.836	46.542	1.00	17.49
MOTA	655	ND2	ASN	Α	128	12.307	11.863	46.100	1.00	12.82
ATOM	656	N	VAL	Α	129	13.135	13.748	43.732	1.00	19.15
ATOM	657	CA	VAL	Α	129	13.838	15.033	43.600	1.00	18.43
MOTA	658	C	VAL	Α	129	14.154	15.415	45.038	1.00	14.75
MOTA	659	0	VAL	Α	129	13.290	15.335	45.902	1.00	16.11
MOTA	660	CB	VAL	A	129	12.923	16.178	43.039	1.00	17.78
MOTA	661	CG1	VAL	A	129	13.751	17.457	42.790	1.00	17.05
ATOM	662	CG2	VAL	Α	129	12.207	15.726	41.790	1.00	17.58
MOTA	663	N	PHE	Α	130	15.367	15.830	45.321	1.00	12.66
ATOM	664	CA	PHE			15.631	16.194	46.680	1.00	14.68
ATOM	665	C	PHE			16.845	17.095	46.773	1.00	14.31
ATOM	666	0	PHE	Α	130	17.567	17.283	45.802	1.00	14.60
ATOM	667	CB	PHE			15.835	14.914	47.533	1.00	11.21
MOTA	668	CG	PHE			17.098	14.147	47.199	1.00	6.13
MOTA	669		PHE			17.060	13.050	46.351	1.00	5.37
MOTA	670		PHE			18.311	14.555	47.690	1.00	2.00
ATOM	671		PHE			18.212	12.387	46.016	1.00	2.00
ATOM	672		PHE			19.468	13.894	47.358	1.00	2.88
ATOM	673	CZ			130	19.409	12.807	46.506	1.00	2.00
ATOM	674	N			131	17.019	17.705	47.940	1.00	14.01
ATOM	675	CA			131	18.182	18.530	48.197	1.00	9.41
ATOM	676	C			131	18.618	18.323	49.616	1.00	8.55
ATOM	677	ō			131	17.817	18.310	50.526	1.00	8.61
ATOM	678	СВ			131	17.948	20.064	47.962	1.00	11.54
ATOM	679		THR			19.126	20.772	48.335	1.00	8.08
ATOM	680	CG2			131	16.781	20.604	48.770	1.00	5.13
ATOM	681	N			132	19.902	18.071	49.806	1.00	10.38
ATOM	682	CA			132	20.434	17.872	51.149	1.00	13.25
MOTA	683	C			132	20.595	19.173	51.959	1.00	17.66
MOTA	684	0			132	21.428	19.233	52.856	1.00	21.50
ATOM	685	CB			132	21.798	17.237	50.865	1.00	11.28
ATOM	686	CG	PRO	Α	132	22.169	17.744	49.510	1.00	7.43
ATOM	687	CD			132	20.873	17.659	48.785	1.00	8.12
ATOM	688	N			133	19.841	20.223	51.642	1.00	17.79
ATOM	689	CA			133	19.971	21.483	52.373	1.00	14.40
ATOM	690	C			133	18.638	21.805	52.969	1.00	15.53
ATOM	691	ō			133	17.619	21.718	52.292	1.00	15.63
ATOM	692	СВ			133	20.452	22.599	51.460	1.00	15.11
ATOM	693	CG			133	21.948	22.515	51.141	1.00	7.56
ATOM	694	CD			133	22.230	21.958	49.781	1.00	6.70
ATOM	695		GLN			23.330	21.479	49.511	1.00	5.45
MOTA	696	NE2			133	21.243	22.024	48.901	1.00	6.69
MOTA	697	N			134	18.638	22.169	54.249	1.00	21.20
ATOM	698	CA			134	17.385	22.410	54.949	1.00	23.36
ATOM	699	C			134	16.695	23.726	54.799	1.00	23.18
ATOM	700	ō			134	15.473	23.792	54.976	1.00	23.37
ATOM	701	CB			134	17.472	22.008	56.440	1.00	25.32
ATOM	702	CG			134	18.752	22.374	57.183	1.00	33.07
ATOM	703	CD			134	18.695	21.936	58.677	1.00	37.91
MOTA	704	CE			134	19.020	20.435	58.888	1.00	39.95
ATOM	705	NZ			134	18.837	19.935	60.304	1.00	40.52

FIG. 2M

						24 76	7 54.465	1.00	24.81
MOTA	706		THR A		17.456			1.00	22.85
MOTA	707		THR A		16.879			1.00	22.80
MOTA	708		THR A		17.225			1.00	21.61
MOTA	709		THR A		18.295			1.00	23.37
MOTA	710	CB	THR A		17.400			1.00	21.29
MOTA	711		THR A		18.801			1.00	23.04
MOTA	712		THR A		17.145			1.00	23.87
ATOM	713	N	LEU A		16.357			1.00	24.40
ATOM	714	CA	LEU A		16.553 17.903			1.00	26.61
MOTA	715	C	LEU A		18.569			1.00	30.85
ATOM	716	0	LEU A		15.436			1.00	25.03
MOTA	717	CB	LEU A		15.414			1.00	24.06
MOTA	718	CG	LEU A		13.97			1.00	24.03
ATOM	719	-	LEU A		16.30			1.00	17.83
MOTA	720		LEU A		18.33			1.00	25.92
ATOM	721	N	GLU A		19.62			1.00	25.21
ATOM	722	CA	GLU A		20.75			1.00	22.62
MOTA	723	C	GLU A		21.84			1.00	24.90
MOTA	724	0	GLU A		19.78			1.00	29.36
MOTA	725	CB	GLU A		18.95				30.88
MOTA	726	CG	GLU A		17.49				33.67
MOTA	727	CD	GLU A		17.13				36.89
MOTA	728		GLU A		16.70				37.00
MOTA	729	OE2	GLU A		20.54	·			23.41
ATOM	730	N	GLU P		21.62				23.74
MOTA	731	CA	GLU F		21.70	_			20.15
MOTA	732	C	GLU F		22.77				15.33
MOTA	733	0	GLU 1		21.48				28.37
ATOM	734	CB	GLU A		21.65				34.15
MOTA	735	CG	GLU A		21.17				39.34
MOTA	736	CD	GLU A		19.94			1.00	41.01
ATOM	737	OE2			22.03			1.00	44.64
MOTA	738			A 139	20.56			1.00	20.75
MOTA	739	N CA		A 139	20.36			1.00	22.38
ATOM	740	CA		A 139	21.47	-		1.00	22.59
ATOM	741	o		A 139	21.90				22.05
MOTA	742	CB		A 139	19.08			1.00	22.29
MOTA	743	CG		A 139	18.68			3 1.00	26.18
ATOM	744 745		PHE		18.79			2 1.00	27.65
MOTA			PHE .		18.1		275 46.27	6 1.00	27.40
MOTA	746 747		PHE		18.4		20 46.08	3 1.00	26.62
MOTA	748	CE		A 139	17.7		23 45.09	7 1.00	27.97
ATOM ATOM	749	CZ		A 139	17.9		250 45.00	3 1.00	24.56
	750			A 140	21.9		790 47.66		23.18
MOTA	751			A 140	22.9		792 46.64	8 1.00	20.44
MOTA MOTA	752			A 140	22.6		338 45.50	7 1.00	19.37
ATOM	752			A 140	22.6		250 44.34		18.41
	754			A 140	24.3		427 47.25		15.98
MOTA	755			A 140	24.9		536 48.07		23.25
MOTA MOTA	756			A 140	26.3		358 48.28		30.69
ATOM	757		1 GLN		. 26.8		443 48.99		35.70
ATOM	758		2 GLN		27.1				
ATOM	759			A 141	22.3		578 45.87		
ATOM	760			A 141	22.1		511 44.91		
ATOM	761			A 141	20.7	63 20.			
ATOM	762			A 141	20.0	69 20.			
ATOM	763			A 141	23.2		490 45.04		
ATOM	764			A 141	24.5		127 45.09	6 1.00	13.36
111011	,								

FIG. 2N

MOTA	765			A 141	25.429	20.722	45.911	1.00	17.82
MOTA	766			A 141	24.820	22.072	44.340	1.00	18.36 14.47
MOTA	767	N		A 142	20.394	20.421	43.638	1.00	12.88
ATOM	768	CA		A 142	19.157	19.705	43.324	1.00	13.98
MOTA	769	C		A 142	19.522	18.335	42.744 41.807	1.00	13.92
ATOM	770	0		A 142	20.330	18.222	42.321	1.00	15.25
ATOM	771	CB		A 142	18.319	20.492	41.822	1.00	8.68
MOTA	772			A 142	17.143	19.650 21.802	42.988	1.00	13.03
ATOM	773	CG2		A 142	17.858 18.957	17.285	43.339	1.00	13.49
ATOM	774	N		A 143	19.254	15.907	42.929	1.00	10.05
ATOM	775	CA		A 143	18.036	15.312	42.298	1.00	8.26
ATOM	776	С 0		A 143 A 143	16.963	15.333	42.875	1.00	8.82
MOTA	777	CB		A 143	19.726	15.043	44.119	1.00	5.83
MOTA	778 779	CG		A 143	21.153	15.323	44.558	1.00	2.00
MOTA	780			A 143		16.389	45.400	1.00	3.10
ATOM ATOM	781	CD2		A 143	22.202	14.537	44.139	1.00	2.00
ATOM	782	CE1		A 143		16.647	45.794	1.00	2.00
ATOM	783	CE2		A 143		14.799	44.546	1.00	2.00
ATOM	784	CZ		A 143		15.869	45.382	1.00	2.00
ATOM	785	OH		A 143		16.177	45.802	1.00	5.05
ATOM	786	N		A 144		14.841	41.069	1.00	12.03
ATOM	787	CA		A 144		14.260	40.328	1.00	12.86
ATOM	788	C		A 144		12.773	40.197	1.00	9.40
ATOM	789	ō		A 144		12.304	40.029	1.00	10.24
ATOM	790	CB	LEU	A 144	16.960	14.915	38.936	1.00	12.95
ATOM	791	CG	LEU	A 144	16.637	16.413	38.922	1.00	14.49
MOTA	792	CD1	LEU	A 144	. 17.061	16.992	37.585	1.00	15.65
MOTA	793	CD2	LEU	A 144	15.152	16.691	39.211	1.00	10.66
ATOM	794	N	VAL	A 145	16.201	12.033	40.273	1.00	9.00
MOTA	795	CA	VAL	A 145	16.275	10.587	40.177	1.00	7.36
MOTA	796	C		A 145		10.023	39.164	1.00	2.00
ATOM	797	0		A 145		10.461	39.112	1.00	2.00
MOTA	798	CB		A 145		9.942	41.578	1.00	8.11
MOTA	799			A 145		8.459	41.449	1.00	6.36
MOTA	800	CG2		A 145		10.268	42.535	1.00	10.32 6.09
MOTA	801	N		A 146		9.060	38.360	1.00	11.90
MOTA	802	CA		A 146		8.380	37.351	1.00	12.67
MOTA	803	C		A 146		6.891	37.270	1.00 1.00	16.93
MOTA	804	0		A 146		6.533	37.681 35.958	1.00	13.21
ATOM	805	CB		A 146		8.995 8.650	35.322	1.00	14.34
MOTA	806	CG		A 146		9.005	33.522	1.00	17.24
ATOM	807	SD		A 146		8.091	32.828	1.00	8.30
ATOM	808	CE		A 146		6.027	36.720	1.00	13.63
ATOM	809	N		A 14'		4.614	36.616	1.00	16.06
MOTA	810	CA		A 14'		4.564	35.742	1.00	16.39
MOTA	811 812	C O		A 14'		5.299	34.772	1.00	18.15
MOTA MOTA	813	СВ		A 14'		3.769	36.015	1.00	22.30
ATOM	814	CG		A 14'		4.118	34.575	1.00	25.11
ATOM	815	CD		A 14	•	2.894	33.729	1.00	25.31
ATOM	816			A 14		2.106	33.394	1.00	30.02
ATOM	817			A 14		2.723	33.368	1.00	23.23
ATOM	818	N		A 14		3.733	36.096	1.00	14.22
ATOM	819	CA		A 14	8 18.251	3.652	35.343	1.00	14.03
MOTA	820	C		A 14		3.001	33.953	1.00	19.58
ATOM	821	ō		A 14		1.954	33.772	1.00	17.45
ATOM	822	CB		A 14	8 19.315	2.944	36.172	1.00	11.14
MOTA	823	CG		A 14		2.855	35.560	1.00	11.21

FIG. 20

ATOM	824	CD1	LEU F	148	21.	451	4.189	35.640	1.00	13.69
ATOM	825		LEU A		21.	464	1.797	36.305	1.00	12.65
ATOM	826		MET A		18.	820	3.619	32.988	1.00	18.65
ATOM	827	CA	MET A	149	18.	820	3.148	31.618	1.00	14.79
ATOM	828	C	MET A	149	20.	130	2.454	31.345	1.00	13.07
ATOM	829	0	MET A	A 149	21.	072	2.559	32.123	1.00	11.86
MOTA	830	CB	MET A	A 149	18.	658	4.327	30.640	1.00	14.73
MOTA	831	CG	MET A	A 149		373	5.086	30.763	1.00	5.61
MOTA	832	SD	MET A	A 149		962	4.060	30.627	1.00	10.51
MOTA	833	CE	MET A	A 149		493	4.372	28.976	1.00	9.66
MOTA	834	N	ASP A	A 150		207	1.802	30.184	1.00	14.05
MOTA	835	CA		A 150		413	1.085	29.787	1.00	11.22
MOTA	836	C		A 150		380	1.845	28.922	1.00	10.09
MOTA	837	0		A 150		575	1.506	28.898	1.00	10.09
MOTA	838	CB		A 150		037	-0.230	29.130	1.00	16.26
MOTA	839	CG		A 150		243	-1.117	30.037	1.00	13.51
MOTA	840		ASP A			675	-1.305	31.189	1.00	21.61
MOTA	841	OD2		A 150		177	-1.594	29.635	1.00	14.13
MOTA	842	N		A 151		892	2.860	28.203	1.00	12.49 11.41
MOTA	843	CA		A 151		.895	3.532	27.362	1.00	6.60
MOTA	844	C	_	A 151		.325	4.780	26.650	1.00	9.62
MOTA	845	0		A 151		.144	5.071	26.685	1.00	15.41
MOTA	846	CB		A 151		.395	2.525	26.321	1.00	8.84
MOTA	847	N		A 152		.255	5.559	26.017		12.68
MOTA	848	CA		A 152		.834	6.768	25.269	1.00	14.17
MOTA	849	С		A 152		.463	6.411	23.827	1.00 1.00	12.97
MOTA	850	0		A 152		.850	5.384	23.299	1.00	15.88
ATOM	851	CB		A 152		.018	7.753	25.259	1.00	21.57
MOTA	852	CG		A 152		.540	9.137	25.583 25.598	1.00	22.60
ATOM	853			A 152		.347	9.428	25.847	1.00	22.95
MOTA	854			A 152		.517	10.021 7.294	23.186	1.00	15.15
MOTA	855	N		A 153		.664	7.234	21.769	1.00	15.28
MOTA	856	CA		A 153		.356	7.073	20.909	1.00	17.68
MOTA	857	C		A 153		.606	6.709	19.820	1.00	21.55
MOTA	858	0		A 153		.734	8.089	21.339	1.00	15.66
MOTA	859	CB		A 153		.278 .170	7.451	20.478	1.00	17.15
MOTA	860	CG		A 153		.727	8.359	19.327	1.00	10.86
MOTA	861			A 153		.602	6.127	19.840	1.00	16.75
MOTA	862			A 153		.616	7.963	21.398	1.00	20.01
ATOM	863	N		A 154 A 154		.877	8.139	20.688	1.00	21.31
ATOM	864	CA		A 154		.586	6.786	20.532	1.00	24.69
ATOM	865	C		A 154		.235	6.509	19.517	1.00	23.42
MOTA	866	0				.806	9.047	21.498	1.00	21.53
ATOM	867	CB SG		A 154 A 154		.188	10.670	21.924	1.00	19.73
MOTA	868			A 155		.515	5.985	21.587		24.09
MOTA	869	N		A 155		.140	4.682	21.615		22.22
ATOM	870	CA C		A 155		.415	3.715	20.676		21.75
MOTA	871	o		A 155		.062	2.949	19.958		20.49
MOTA	872	CB		A 155		.139	4.153	23.053		22.67
MOTA	873					.081	3.791	20.654		20.79
ATOM	874 875	N CA		A 156 A 156		.256	2.936	19.800		19.64
ATOM	876	CA		A 156		.401	3.318	18.324		21.10
ATOM		0		A 156		.276	2.463	17.456		22.67
ATOM	877 878	CB		A 156		.757	3.013	20.202		18.09
MOTA	879			A 156		.898	2.256	19.209		18.46
ATOM	880			A 156		552	2.450	21.586		18.31
MOTA	881	N		A 157		.665	4.597	18.046		21.10
ATOM	882	CA		A 157		.832	5.101	16.681		21.62
MOTA	002	CA	TUE	W TO	2.					

FIG. 2P

ATOM	883	С	ILE A	A 157	25.082	4.471	16.108	1.00	21.87
MOTA	884	0	ILE A	A 157	25.191	4.226	14.898	1.00	20.25
MOTA	885	CB	ILE A	A 157	24.016	6.669	16.641	1.00	21.74
MOTA	886	CG1	ILE A	A 157	22.662	7.363	16.670	1.00	20.08
MOTA	887	CG2	ILE 2	A 157	24.737	7.106	15.372	1.00	22.36
MOTA	888	CD1	ILE A	A 157	22.762	8.840	16.733	1.00	21.43
MOTA	889	N	GLN A	A 158	26.031	4.228	16.998	1.00	20.23
ATOM	890	CA	GLN A	A 158	27.278	3.643	16.622	1.00	19.49
MOTA	891			A 158	27.186	2.171	16.296	1.00	21.66
MOTA	892	-		A 158	28.176	1.580	15.856	1.00	24.62 22.75
MOTA	893	CB		A 158	28.276	3.816	17.732	1.00 1.00	25.62
MOTA	894			A 158	28.931	5.157	17.809	1.00	28.38
MOTA	895	CD		A 158	30.303	5.003	18.384 17.687	1.00	29.99
MOTA	896			A 158	31.220	4.555	19.677	1.00	29.10
MOTA	897			A 158	30.449	5.292 1.540	16.571	1.00	19.31
MOTA	898	N		A 159	26.054	0.139	16.250	1.00	19.50
MOTA	899	CA		A 159	25.972	-0.138	15.011	1.00	23.14
MOTA	900	C		A 159	25.159 24.439	0.720	14.505	1.00	24.42
MOTA	901	0		A 159 A 159	25.515	-0.695	17.439	1.00	15.90
MOTA	902	CB		A 159 A 159	24.179	-0.404	17.999	1.00	14.14
ATOM	903	CG		A 159	24.233	-0.841	19.784	1.00	23.46
ATOM	904	SD CE		A 159	22.592	-1.324	19.992	1.00	14.23
MOTA	905 906	N		A 160	25.355	-1.325	14.469	1.00	24.45
ATOM	907	CA		A 160	24.657	-1.738	13.283	1.00	25.01
ATOM ATOM	908	C		A 160	23.360	-2.398	13.709	1.00	28.90
ATOM	909	Ö		A 160	23.375	-3.495	14.260	1.00	32.36
ATOM	910	CB		A 160	25.531	-2.727	12.536	1.00	23.25
ATOM	911	CG		A 160	25.228	-2.838	11.093	1.00	27.17
ATOM	912	CD		A 160	26.211	-3.734	10.392	1.00	26.17
MOTA	913	OE1		A 160	26.054	-4.957	10.529	1.00	27.98
ATOM	914			A 160	27.143	-3.226	9.725	1.00	31.36
ATOM	915	N	LEU	A 161	22.240	-1.701	13.551	1.00	29.29
MOTA	916	CA	LEU	A 161	20.970	-2.295	13.937	1.00	29.26
ATOM	917	C	LEU	A 161	20.017	-2.532	12.780	1.00	28.20
ATOM	918	0	LEU	A 161	20.024	-1.820	11.769	1.00	29.99
MOTA	919	CB	LEU	A 161	20.270	-1.519	15.066	1.00	31.73
MOTA	920	CG	LEU	A 161	19.907	-0.042	15.005	1.00	30.31
MOTA	921			A 161	19.055	0.288	16.210	1.00	29.64
MOTA	922	CD2		A 161	21.170	0.803	15.010	1.00	35.08
MOTA	923	N		A 162	19.212	-3.566	12.948	1.00	24.93 23.67
MOTA	924	CA		A 162	18.233	-3.967	11.968	1.00 1.00	21.63
MOTA	925	С		A 162	17.157	-2.910	11.812 12.315		24.12
MOTA	926	0		A 162	17.296		12.315	1.00	21.90
MOTA	927	CB		A 162	17.622	-5.284	13.848	1.00	20.75
MOTA	928	CG		A 162	17.261	-5.276	14.151	1.00	24.78
ATOM	929			A 162	16.067	-5.078 -5.442	14.680	1.00	23.53
ATOM	930			A 162	18.175 16.106	-3.247	11.070	1.00	23.69
MOTA	931	N		A 163	14.984	-2.340	10.815	1.00	24.26
ATOM	932	CA		A 163	13.937	-2.378	11.898	1.00	24.23
MOTA	933	C		A 163 A 163	13.153	-1.435	12.051	1.00	25.59
ATOM	934	O		A 163	14.324	-2.664	9.454	1.00	25.62
ATOM	935	CB CG		A 163	15.174	-2.305	8.272	1.00	27.11
ATOM	936 937			A 163	15.328	-1.005	7.831	1.00	24.70
MOTA MOTA	937			A 163	15.945	-3.070	7.462	1.00	28.10
ATOM	939			A 163	16.157	-0.987	6.804	1.00	24.28
ATOM	940			A 163	16.546	-2.226	6.559	1.00	26.23
MOTA	941	N		A 164	13.915	-3.474	12.649	1.00	25.49
	J 11				-				

FIG. 2Q

				• 4	12.936	-3.650	13.720	1.00	23.13
ATOM	942		GLU A 16		13.295	-2.753	14.904	1.00	15.55
ATOM	943	C	GLU A 16		12.427	-2.141	15.513	1.00	14.60
MOTA	944	0	GLU A 16			-5.124	14.129	1.00	29.26
MOTA	945	CB	GLU A 16		12.883	-6.092	12.934	1.00	37.97
MOTA	946	CG	GLU A 16		12.827		13.074	1.00	43.81
MOTA	947	CD	GLU A 16		13.817	-7.263	12.326	1.00	45.99
MOTA	948		GLU A 1		14.826	-7.294	13.935	1.00	44.01
MOTA	949	OE2	GLU A 1		13.589	-8.150		1.00	12.40
ATOM	950	N	ARG A 1		14.584	-2.672	15.189	1.00	15.54
MOTA	951	CA	ARG A 1		15.110	-1.846	16.261	1.00	18.06
ATOM	952	C	ARG A 1	65	15.050	-0.355	15.857	1.00	17.13
MOTA	953	0	ARG A 1		14.479	0.488	16.556	1.00	14.64
MOTA	954	CB	ARG A 1		16.563	-2.228	16.498	1.00	18.72
ATOM	955	CG	ARG A 1		16.793	-3.685	16.735	1.00	21.86
MOTA	956	CD	ARG A 1		16.848	-4.072	18.198	1.00	26.60
MOTA	957	NE	ARG A 1		16.861	-5.527	18.362	1.00	27.31
MOTA	958	CZ	ARG A 1		17.943	-6.293	18.269		30.44
MOTA	959	NH1	ARG A 1		19.135	-5.752	18.028	1.00	27.82
MOTA	960	NH2			17.820	-7.609	18.351	1.00	18.91
MOTA	961	N	MET A 1	66	15.642	-0.066	14.701	1.00	16.85
ATOM	962	CA	MET A 1		15.702	1.257	14.121	1.00	16.83
ATOM	963	C	MET A 1		14.330	1.897	14.082	1.00	17.46
MOTA	964	0	MET A 1		14.147	3.007	14.573	1.00	21.41
MOTA	965	CB	MET A 1		16.276	1.147	12.716	1.00	24.12
ATOM	966	CG	MET A 1		16.493	2.449	11.988	1.00	32.52
MOTA	967	SD	MET A 1	.66	18.115	2.432	11.226	1.00 1.00	32.32
MOTA	968	CE	MET A 1		18.074	0.866	10.278	1.00	14.77
MOTA	969	N	SER A 1		13.343	1.187	13.559	1.00	14.86
MOTA	970	CA	SER A 1		11.996	1.716	13.487 14.805	1.00	17.43
MOTA	971	C	SER A I		11.204	1.763	14.803	1.00	18.84
MOTA	972	0	SER A		10.276	2.576 0.953	12.437	1.00	18.44
MOTA	973	CB	SER A		11.195	-0.404	12.823	1.00	21.45
MOTA	974	OG	SER A		11.017	0.859	15.764	1.00	17.75
MOTA	975	N	TYR A		11.483	0.868	17.047	1.00	14.06
MOTA	976	CA	TYR A		10.768		17.785	1.00	12.00
MOTA	977	C	TYR A		11.286		18.400	1.00	12.54
MOTA	978	0	TYR A		10.531 11.026		17.879	1.00	14.32
ATOM	979	CB	TYR A		10.261		19.200	1.00	10.40
ATOM	980	CG	TYR A		8.896		19.247	1.00	14.66
MOTA	981	CD:			10.905		20.401	1.00	12.40
MOTA	982	CD:			8.196		20.467		14.22
MOTA	983	CE:			10.208				6.91
MOTA	984	CE:			8.865		21.648		11.44
MOTA	985	CZ	TYR A		8.174		22.854		15.18
MOTA	986	OH	TYR A		12.586				10.99
MOTA	987	N	LEU A		13.221				13.26
MOTA	988	CA			12.631				15.32
MOTA	989	C	LEU A		12.190				14.97
MOTA	990		LEU A		14.719				10.60
MOTA	991				15.513				11.30
ATOM	992				16.999				12.03
ATOM	993		1 LEU A		15.166				9.04
ATOM	994		2 LEU A LEU A		12.592				17.54
ATOM	995				12.05				17.32
MOTA	996		LEU A		10.598				18.92
MOTA	997		LEU A		10.169				21.34
MOTA	998				12.180				15.04
MOTA	999 1000				13.436				16.49
MOTA	TOOL	, c	א הפת א	- , 0					

FIG. 2R

ATOM	1001	CD1	LEU A 170		13.849		14.238	1.00	15.81
ATOM	1002		LEU A 170		14.565		13.628	1.00	19.02 16.52
ATOM	1003		TYR A 171		9.842	5.163	16.177	1.00	16.52
MOTA	1004	CA	TYR A 171		8.416	5.198	16.541	1.00	
ATOM	1005		TYR A 171		8.178	5.805	17.964	1.00	12.63 9.35
ATOM	1006		TYR A 171		7.165	6.463	18.240	1.00	9.35
ATOM.	1007		TYR A 171		7.853	3.760	16.462	1.00	
MOTA	1008	CG	TYR A 171		6.505	3.587	17.120	1.00	4.84 5.95
ATOM	1009		TYR A 171		5.366	4.162	16.584	1.00	6.08
ATOM	1010		TYR A 171		6.389	2.939	18.338	1.00	4.75
MOTA	1011	CE1	TYR A 171		4.153	4.109	17.246	1.00	3.46
ATOM	1012	CE2	TYR A 171		5.173	2.891	19.010	1.00	3.40
MOTA	1013	CZ	TYR A 171		4.065	3.479	18.458	1.00	8.68
ATOM	1014	OH	TYR A 171		2.864	3.467	19.127	1.00	14.87
MOTA	1015	N	GLN A 172		9.099	5.503	18.875	1.00	14.72
ATOM	1016	CA	GLN A 172		9.030	5.963	20.249	1.00	14.72
ATOM	1017	C	GLN A 172		9.357	7.460	20.384	1.00	12.03
ATOM	1018	0	GLN A 172		8.767	8.168	21.226	1.00	14.49
ATOM	1019	CB	GLN A 172		9.956	5.107	21.112	1.00	15.16
ATOM	1020	CG	GLN A 172		9.403	3.735	21.412	1.00	15.71
ATOM	1021	CD	GLN A 172		10.305	2.948	22.334	1.00	13.46
MOTA	1022	OE1	GLN A 172		10.043	2.854	23.533	1.00	16.53
ATOM	1023	NE2			11.376	2.364	21.776	1.00	16.38
ATOM	1024	N	MET A 173		10.303	7.915	19.555	1.00	16.01
MOTA	1025	CA	MET A 173		10.719	9.307	19.498	1.00	18.08
MOTA	1026	C	MET A 173		9.526	10.136	19.014	1.00 1.00	21.67
MOTA	1027	0	MET A 173		9.413	11.309	19.365	1.00	13.67
MOTA	1028	CB	MET A 173		11.879	9.495	18.527 18.907	1.00	12.28
MOTA	1029	CG	MET A 173		13.172	8.828	17.676	1.00	18.92
ATOM	1030	SD	MET A 173		14.465	9.098		1.00	11.44
ATOM	1031	CE	MET A 173		15.565	7.839	17.983 18.210	1.00	15.57
MOTA	1032	N	LEU A 174		8.646	9.524	17.696	1.00	12.84
MOTA	1033	CA	LEU A 174		7.453	10.191	18.663	1.00	14.56
MOTA	1034	C	LEU A 174		6.272	10.134	18.649	1.00	14.93
MOTA	1035	0	LEU A 174		5.423	11.013	16.359	1.00	15.43
MOTA	1036	CB	LEU A 174		7.007	9.591	15.061	1.00	19.44
MOTA	1037	CG	LEU A 174		7.818	9.716	13.999	1.00	14.81
MOTA	1038	CD1			7.204	8.752 11.174	14.554	1.00	14.90
ATOM	1039	CD2			7.844		19.407	1.00	14.52
MOTA	1040		CYS A 175		6.131	9.043 8.950	20.377	1.00	16.46
MOTA	1041		CYS A 175		5.054	9.995	21.451	1.00	17.66
MOTA	1042	C	CYS A 175		5.372	10.702	21.915	1.00	20.36
MOTA	1043		CYS A 175		4.485		21.033	1.00	19.53
MOTA	1044		CYS A 175		5.036	7.567 6.190	19.979		20.01
ATOM	1045		CYS A 175		4.596	10.052			16.83
ATOM	1046	N	GLY A 176		6.645				19.04
MOTA	1047	CA	GLY A 176		7.097	11.000			18.61
MOTA	1048	C	GLY A 176		6.873	12.419			20.79
ATOM	1049	0	GLY A 176		6.121	13.169			20.33
MOTA	1050	N	ILE A 177		7.450	12.761			20.67
MOTA	1051	. CA	ILE A 177		7.296	14.098			21.19
MOTA	1052		ILE A 177		5.822	14.417			25.02
ATOM	1053		ILE A 177		5.403	15.566			20.27
MOTA	1054	E CB			8.080	14.265		1.00	16.70
MOTA	1055	5 CG	1 ILE A 177		9.566	14.447			16.17
MOTA	1056	s CG	2 ILE A 177		7.588	15.460			22.15
MOTA	1057				9.865	15.683			
MOTA	1058	3 N	LYS A 178	3	5.011				
ATOM	1059	9 CA	LYS A 178	3	3.603	13.659	, 13.33		20.00

FIG. 2S

ATOM ·	1060		LYS A 178		3.021	14.122	21.278	1.00	21.67
ATOM	1061	0 1	LYS A 178		2.264	15.090	21.324	1.00	22.72 22.57
ATOM	1062	CB I	LYS A 178		2.882	12.385	19.453	1.00	
MOTA	1063	CG 1	LYS A 178		1.342	12.466	19.385	1.00	23.42
ATOM	1064	CD 3	LYS A 178	1	0.831	13.317	18.231	1.00	23.55 25.60
MOTA	1065		LYS A 178		-0.664	13.641	18.369	1.00	30.22
ATOM	1066	NZ]	LYS A 178	}	-0.937	14.847	19.258	1.00	21.34
ATOM	1067		HIS A 179		3.438	13.470	22.360	1.00	19.74
MOTA	1068		HIS A 179		2.928	13.780	23.692	1.00	20.78
MOTA	1069		HIS A 179		3.300	15.203	24.066 24.469	1.00	19.29
MOTA	1070		HIS A 179		2.459	16.017		1.00	19.07
MOTA	1071		HIS A 179		3.518	12.803	24.714 26.024	1.00	18.62
MOTA	1072		HIS A 179		2.790	12.784	26.024	1.00	19.00
MOTA	1073		HIS A 179		1.458	12.440		1.00	16.10
MOTA	1074		HIS A 179		3.217	13.032	27.281 27.400	1.00	16.49
MOTA	1075		HIS A 179		1.098	12.478	28.118	1.00	16.27
MOTA	1076		HIS A 179		2.148	12.831	_	1.00	22.10
MOTA	1077		LEU A 18		4.574	15.498	23.882	1.00	22.49
MOTA	1078		LEU A 18		5.122	16.807	24.166	1.00	24.20
ATOM	1079		LEU A 18		4.254	17.916	23.528	1.00	26.51
MOTA	1080	0	LEU A 18		3.833	18.847	24.212 23.643	1.00	14.03
MOTA	1081	CB	LEU A 18		6.556	16.849	24.674	1.00	12.96
MOTA	1082	CG	LEU A 18		7.665	16.998	25.911	1.00	14.52
MOTA	1083		LEU A 18		7.396	16.215		1.00	11.14
MOTA	1084	CD2	LEU A 18		8.981	16.643	24.071 22.258	1.00	26.53
ATOM	1085	N	HIS A 18		3.888	17.745	21.535	1.00	24.04
ATOM	1086	CA	HIS A 18		3.090	18.731		1.00	24.90
MOTA	1087	C	HIS A 18		1.671	18.824	22.031 21.866	1.00	25.57
MOTA	1088	0	HIS A 18		1.023	19.864	20.046	1.00	22.90
MOTA	1089	CB	HIS A 18		3.057	18.398	19.384	1.00	19.53
MOTA	1090	CG	HIS A 18		4.388	18.473	18.171	1.00	20.99
MOTA	1091		HIS A 18		4.648	17.875	19.745	1.00	20.47
MOTA	1092		HIS A 18		5.533	19.087	17.812	1.00	19.62
MOTA	1093		HIS A 18		5.891	18.127 18.863	18.750	1.00	21.72
MOTA	1094		HIS A 18		6.452	17.745	22.634	1.00	26.36
MOTA	1095	N	SER A 18		1.176	17.714	23.121	1.00	25.41
MOTA	1096	CA	SER A 18		-0.200	18.611	24.326	1.00	23.05
MOTA	1097	C	SER A 18		-0.377	19.099	24.578	1.00	23.50
MOTA	1098	0	SER A 18		-1.474	16.281	23.410	1.00	25.02
MOTA	1099	CB	SER A 18		-0.671 0.088	15.684	24.441	1.00	22.43
MOTA	1100	OG	SER A 18		0.730	18.860	25.026	1.00	25.30
MOTA	1101	N	ALA A 18		0.761	19.724	26.222	1.00	23.47
MOTA	1102	CA	ALA A 1		1.369	21.090	25.884	1.00	21.12
MOTA	1103	C	ALA A 1		1.817		26.757	1.00	19.62
MOTA	1104	0	ALA A 1		1.541		27.368	1.00	23.94
MOTA	1105	CB	ALA A 1		1.393			_	21.16
ATOM	1106		GLY A 1		1.906				19.99
MOTA	1107		GLY A 1		3.398				20.18
MOTA	1108		GLY A 1		3.924				27.13
MOTA	1109		GLY A 1		4.092				19.83
MOTA	1110		ILE A 1		5.534				17.77
MOTA	1111		ILE A 1		6.106		_		19.73
MOTA	1112		ILE A 1		5.691				20.08
MOTA	1113		ILE A 1		6.044				16.71
MOTA	1114		ILE A 1		5.433				15.07
ATOM	1115				7.557				15.10
MOTA	1116				5.470				17.54
MOTA	1117		L ILE A 1		6.983				20.86
MOTA	1118	N	ILE A 1	86	0.503	, 44.400	, 22.3/-		

FIG. 2T

MOTA	1119	CA	ILE	A	186		7.665	22.044	21.306	1.00	22.18
MOTA	1120	C	ILE				9.151	22.138	21.659	1.00	21.75
MOTA	1121	0	IFE				9.658	23.179	22.081	1.00	27.20
MOTA	1122	CB	ILE				7.214	23.015	20.153	1.00	24.64
MOTA	1123	CG1	ILE				5.732	22.796	19.843	1.00	23.72
MOTA	1124	CG2	ILE				8.000	22.750	18.861	1.00	17.81
MOTA	1125	CDI	ILE				5.268	23.484	18.577	1.00	27.86
MOTA	1126	N	HIS				9.799	20.981	21.587	1.00	19.52
ATOM	1127	CA	HIS				11.207	20.786	21.931	1.00	18.54
MOTA	1128	C	HIS				12.210	21.732	21.268	1.00	18.78
MOTA	1129	0	HIS				12.834	22.542	21.932	1.00	20.80
ATOM	1130	CB	HIS				11.576	19.330	21.601	1.00	10.73
ATOM	1131	CG	HIS				12.629	18.740	22.481	1.00	3.47
MOTA	1132		HIS				13.960	19.081	22.396	1.00	6.36
MOTA	1133		HIS				12.555	17.774	23.424	1.00	2.00
MOTA	1134		HIS				14.661	18.349	23.239	1.00	2.00
MOTA	1135		HIS				13.829	17.547	23.872	1.00	2.00
ATOM	1136	N	ARG				12.411	21.534	19.968	1.00	19.66
MOTA	1137	CA	ARG				13.348	22.293	19.146	1.00	16.52
ATOM	1138	C	ARG				14.836	22.006	19.298	1.00	15.80
MOTA	1139	0	ARG				15.639	22.568	18.560	1.00	15.23
ATOM	1140	CB	ARG				13.045	23.789	19.177	1.00	14.87
ATOM	1141	CG	ARG				11.829	24.129	18.351	1.00	18.15 22.53
MOTA	1142	CD	ARG				10.890	25.057	19.053	1.00	27.78
MOTA	1143	NE	ARG				11.487	26.372	19.211	1.00	33.29
ATOM	1144	CZ	ARG				11.650	26.963	20.387	1.00	41.12
ATOM	1145		ARG				11.251	26.333 28.151	21.491	1.00	27.48
ATOM	1146	NH2	ARG				12.242	21.138	20.473 20.236	1.00	15.50
MOTA	1147	N	ASP				15.222	20.780	20.236	1.00	13.83
ATOM	1148	CA. C	ASP ASP				16.638 16.861	19.314	20.579	1.00	15.26
MOTA	1149 1150	0	ASP				17.738	18.965	21.453	1.00	16.82
ATOM ATOM	1151	СВ	ASP				17.733	21.650	21.396	1.00	14.00
ATOM	1152	CG	ASP				18.880	21.538	21.266	1.00	12.97
ATOM	1153		ASP				19.366	21.256	20.151	1.00	16.34
ATOM	1154		ASP				19.595	21.720	22.270	1.00	20.60
ATOM	1155	N	LEU				16.061	18.458	20.071	1.00	18.38
ATOM	1156	CA	LEU				16.156	17.017	20.260	1.00	17.27
ATOM	1157	C	LEU				17.489	16.511	19.704	1.00	17.59
ATOM	1158	ō	LEU				17.781	16.718	18.529	1.00	19.56
ATOM	1159	CB	PEA				15.028	16.339	19.497	1.00	18.00
ATOM	1160	CG	LEU				14.039	15.459	20.236	1.00	19.47
ATOM	1161	CD1	LEU				13.442	14.528	19.206	1.00	24.47
ATOM	1162		LEU				14.706	14.649	21.343	1.00	17.28
ATOM	1163	N	LYS				18.316	15.907	20.550	1.00	14.84
ATOM	1164	CA	LYS				19.586	15.365	20.112	1.00	13.20
ATOM	1165	С	LYS				19.767	13.973	20.714	1.00	15.81
MOTA	1166	0	LYS				19.235	13.671	21.772	1.00	15.29
MOTA	1167	CB	LYS				20.744	16.280	20.480	1.00	11.69
ATOM	1168	CG	LYS				20.654	16.909	21.812	1.00	15.09
MOTA	1169	CD	LYS	Α	191		21.862	17.810	22.036	1.00	22.46
MOTA	1170	CE	LYS				21.492	19.282	22.275	1.00	25.84
ATOM	1171	NZ	LYS				22.702	20.087	22.680	1.00	33.38
ATOM	1172	N	PRO	A	192		20.533	13.105	20.049	1.00	19.16
MOTA	1173	CA	PRO				20.703	11.735	20.539	1.00	17.61
ATOM	1174	С	PRO	A	192		21.294	11.682	21.964	1.00	14.91
MOTA	1175	0	PRO	A	192		21.023	10.783	22.747	1.00	13.47
ATOM	1176	CB	PRO				21.619	10.990	19.574	1.00	17.17
ATOM	1177	CG	PRO	A	192	,	22.287	12.021	18.680	1.00	19.74

FIG. 2U

ATOM	1178	CD	PRO			21.274		. 253	18	.799	1	.00	1	9.71
MOTA	1179	N	SER			22.168	12	.663	22	.270	1	.00	1	.4.53
MOTA	1180	CA	SER	A :	193	22.816	12	.651	23	.581		.00	1	4.67
ATOM	1181	C	SER	A :	193	21.814		.886	24	.719	1	.00	1	4.06
ATOM	1182	0	SER	A :	193	22.076	12	.622	25	.884	1	.00	1	.7.22
ATOM	1183	CB	SER	A :	193	23.900	13	.738	23	.598		.00	1	0.46
ATOM	1184	OG	SER			23.286	15	.023	23	.592	1	.00	1	.5.44
ATOM	1185	N	ASN			20.642	13	.441	24	.347	1	.00	1	.3.38
MOTA	1186	CA	ASN			19.607		.678	25	.352	1	.00	1	.4.45
MOTA	1187	C	ASN			18.522		.602		.303	1	.00	1	.3.47
ATOM	1188	0	ASN			17.419		.761		.804		.00		.4.24
ATOM	1189	СВ	ASN			18.994		.055		.096		.00		0.06
ATOM	1190	CG	ASN			19.928		.118		.614		.00		8.16
ATOM	1191		ASN			19.977		.242		.116		.00		.8.33
MOTA	1192	ND2				20.694		740		.648		.00		9.86
ATOM	1193	N	ILE .			18.864		.489		.626		.00		.3.73
ATOM	1194	CA	ILE .			17.953		.351		.592		.00		1.13
ATOM	1195	C	ILE .			18.644		.085		.085		.00	1	0.38
ATOM	1196	0	ILE .			19.810		.829		.817		.00	_	7.75
ATOM	1197	CB	ILE .			17.484		.152		.154		.00		3.28
ATOM ATOM	1198 1199	CG1				16.719		.378		.669		.00		3.74
ATOM	1200	CG2	ILE .			16.533		.942		.077		.00		0.53
ATOM	1200	N	VAL .			16.405		.306		.176		.00		5.83
ATOM	1201	CA	VAL .			17.892 18.456		.297		.865		.00	.1	0.18
ATOM	1202	CA	VAL .			17.579		.062		.387		.00		6.55
ATOM	1203	0	VAL .			16.385		. 860 . 983		.027		.00		5.22
ATOM	1205	СВ	VAL :			18.555		195		.907		.00		3.87
ATOM	1206		VAL .			19.804		994		.284		.00		2.00
ATOM	1207		VAL			17.328		908		.440		.00		2.00
ATOM	1208	N	VAL .			18.236		710		.026		.00	1	3.84
ATOM	1209	CA	VAL			17.573		445		.675		.00		5.82
ATOM	1210	C	VAL .			17.879		253		.626		.00		7.01
ATOM	1211	Õ	VAL			18.991		119		.152		.00		7.00
ATOM	1212	CB	VAL :			18.008		045		.251		.00		6.24
ATOM	1213	CG1				17.798		222		.286		.00		2.09
MOTA	1214	CG2	VAL 3			19.488		637		.266		.00		0.94
ATOM	1215	N	LYS 2			16.885	1.	405		.856		. 00		5.55
ATOM	1216	CA	LYS 2			17.107	0.	232		.681		. 00		0.15
MOTA	1217	C	LYS 2	A 1	L98	17.396	-0.	899	26	.689	1	. 00	2	1.33
MOTA	1218	0	LYS 2	A 1	L98	16.948	-0.	853		.554	1	.00		3.61
MOTA	1219	CB	LYS 2	A 1	L98	15.901	-0.	075	28	.585		.00	2	1.73
MOTA	1220	CG	LYS 2	A 1	L98	16.229	-1.	021	29	.758	1.	.00	2	2.90
ATOM	1221	CD	LYS A	A 1	L98	15.484	-0.	642	31	.034	1.	.00	1	9.80
ATOM	1222	CE	LYS A			14.013		900	30	.851	1.	.00	2	4.82
MOTA	1223	NZ	LYS A	A 1	198	13.122	-0.	205	31	.823	1.	.00	2	8.63
ATOM	1224	N	SER A			18.175	-1.	888	27	.110	1.	.00	2	1.24
MOTA	1225	CA	SER A			18.575		002	26	.260	1.	.00	2	1.97
MOTA	1226	C	SER A			17.421	-3.	694	25	.529	1.	.00	1	9.69
MOTA	1227	0	SER A			17.620	-4.	306		.490	1.	.00	2	1.65
MOTA	1228	CB	SER A			19.448		005		.040		.00	2	4.60
MOTA	1229	OG	SER A			18.742		608	28	.113	1.	.00	2	8.88
ATOM	1230	N	ASP A			16.210		541		.045		.00		0.67
ATOM	1231	CA	ASP A			15.024		119		.418		.00		0.33
ATOM	1232	C	ASP A			14.504		197		.316		.00		1.43
ATOM	1233	0	ASP A			13.393		377		.816		.00		1.33
ATOM	1234	CB	ASP A			13.915		434		.458		.00		2.61
ATOM	1235	CG	ASP A	1 2	00	13.503		219		.329		00		7.20
MOTA	1236	ODI	ASP A	1 2	00	14.060	-2.	103	27	.160	1.	00	2	8.10

FIG. 2V

ATOM	1237		ASP			12.593	3	-3.382	28.	.186	1.0		.74
ATOM	1238	N	CYS			15.317		-2.198	23.	.967	1.0	00 21	96
ATOM	1239	CA	CYS			15.007	7	-1.218	22.	926	1.0	00 22	2.56
ATOM	1240	C	CYS			14.060		-0.069	23.	.309	1.0		.96
MOTA	1241	0	CYS			13.800		0.829		496	1.0	0 22	.78
ATOM	1242	CB	CYS			14.463		-1.936		.689	1.0		.72
ATOM	1243	SG	CYS			14.878		-1.138		161	1.0		.78
ATOM	1244	N	THR			13.501		-0.117		516	1.0		58
ATOM	1245	CA	THR			12.588		0.931		960	1.0		.40
ATOM ATOM	1246	C	THR			13.402		2.212		086	1.0		.04
ATOM	1247	0	THR			14.630		2.158		289	1.0		.40
MOTA	1248 1249	CB	THR			11.768		0.539		245	1.0		.86
ATOM	1250	CG2				12.641 10.927		0.277		353	1.0		.39
ATOM	1251	N	LEU			12.737		-0.699 3.352		955	1.0		.91
ATOM	1252	CA	LEU			13.443		4.638		882	1.0		.72
ATOM	1253	C	LEU			12.799		5.783		849	1.0		.61
ATOM	1254	Õ	LEU			11.594		5.818		608 771	1.0		.44
ATOM	1255	СВ	LEU			13.593		5.026		370	1.0		.74
ATOM	1256	CG	LEU			14.053		6.392		862	1.0		.72
ATOM	1257		LEU		-	14.565		6.168		459	1.0		.05
ATOM	1258		LEU			12.885		7.421		904	1.0		.57
ATOM	1259	N	LYS			13.603		6.768		986	1.0		.90
ATOM	1260	CA	LYS			13.083		7.931		703	1.0		.48
MOTA	1261	C	LYS			13.830		9.241		369	1.0		.43
ATOM	1262	0	LYS	A 20)4	15.060		9.254		260	1.0		.08
MOTA	1263	CB	LYS	A 20)4	13.149		7.676		215	1.0		.82
ATOM	1264	CG	LYS			12.225		6.562		723	1.0		.27
MOTA	1265	CD	LYS	A 20)4	12.577	,	6.186		146	1.0		.47
ATOM	1266	CE	LYS	A 20	4	11.544	;	5.243	30.	730	1.0	0 13	.58
ATOM	1267	NZ	LYS	A 20	4	10.268	,	5.952	31.	015	1.0	0 18	.54
MOTA	1268	N	ILE			13.084	:	10.323	26.	134	1.0	0 15	.04
MOTA	1269	CA	ILE			13.696		11.626	25.	872	1.0	0 15	.29
MOTA	1270	C	ILE			13.928		12.237	27.	262	1.0	0 14	.25
ATOM	1271	0	ILE			13.017		12.326	28.		1.0		.09
ATOM	1272	CB	ILE .			12.756		12.543	25.		1.0		.47
ATOM	1273		ILE .			12.417		11.891	23.		1.0		.00
ATOM	1274	CG2	ILE .			13.418		13.919	24.		1.0		.93
ATOM ATOM	1275 1276	CD1	ILE .			11.256		12.571	22.		1.0		.77
ATOM	1276	N CA	LEU .			15.144		12.664	27.		1.0		.06
ATOM	1278	C	LEU .			15.450 15.181		13.206	28.		1.0		.79
ATOM	1279	0	LEU .			15.034		14.704 L5.108	29.		1.0		.48
ATOM	1280	CB	LEU :			16.898		L2.901	30. 29.		1.0		.24
ATOM	1281	CG	LEU :			17.372		11.468	29.		1.0		.74 .09
ATOM	1282		LEU 2			18.854		11.500	29.		1.0		.65
ATOM	1283		LEU			16.585		10.585	30.		1.00		.68
ATOM	1284	N	ASP Z			15.091		15.521	28.		1.00		.50
ATOM	1285	CA	ASP Z			14.878		16.961	28.		1.00		.68
ATOM	1286	C	ASP Z			13.672		17.490	27.4		1.00		.35
ATOM	1287	0	ASP Z			13.002		6.735	26.		1.00		.08
ATOM	1288		ASP Z			16.133		7.713	27.		1.00		.59
MOTA	1289	CG	ASP A			16.380		.7.644	26.3		1.00		.58
MOTA	1290		ASP A			15.808		.6.778	25.		1.00		.34
MOTA	1291		ASP A			17.184		8.471	25.		1.00		.59
MOTA	1292	N	PHE A			13.433		8.799	27.6		1.00		. 65
MOTA	1293	CA	PHE A	A 20	8	12.293		.9.456	26.9		1.00		
MOTA	1294	C	PHE A	¥ 20	8	12.623		0.581	25.9		1.00	12.	. 22
ATOM	1295	0	PHE ?	1 20	8	11.741	2	1.317	25.5	523	1.00	11.	. 22

FIG. 2W

ATOM	1296		PHE A			19.929	28.019	1.00	12.75
MOTA	1297		PHE A			18.812	28.840	1.00	17.68
MOTA	1298		L PHE A			18.431	30.045	1.00	19.52
ATÖM	1299		2 PHE A			18.131	28.405	1.00	18.93
ATOM	1300		L PHE A		10.791		30.799	1.00	20.99
ATOM	1301				9.056	17.082	29.145	1.00	16.66
MOTA	1302		PHE A		9.658	16.704	30.349	1.00	19.20
ATOM	1303	N	GLY F		13.884	20.668	25.524	1.00	12.18
MOTA	1304		GLY A		14.293	21.671	24.553	1.00	20.92
ATOM	1305		GLY A		14.480	23.061	25.135	1.00	26.49
ATOM	1306	0	GLY A		14.911	23.199	26.284	1.00	29.37
ATOM	1307	N	LEU A		14.154	24.094	24.355	1.00	27.55
MOTA	1308	CA	LEU A		14.280	25.481	24.814	1.00	26.38
ATOM	1309	C	LEU A		12.963	26.193	24.894	1.00	24.27
ATOM	1310	0	LEU A		11.948	25.683	24.436	1.00	22.45
MOTA	1311	CB	LEU A		15.227	26.293	23.931	1.00	26.72
ATOM	1312	CG	LEU A		15.635	25.794	22.557	1.00	22.25
ATOM	1313		LEU A		16.559	24.611	22.704	1.00	24.06
ATOM	1314	CD2			14.405	25.463	21.764	1.00	
MOTA MOTA	1315	N	ALA A		12.996	27.391	25.474	1.00	25.71
ATOM	1316	CA	ALA A		11.805	28.209	25.631	1.00	25.90
ATOM	1317 1318	C O	ALA A ALA A		11.182	28.524	24.272	1.00	27.49
ATOM	1319	CB	ALA A		9.971	28.839	24.259	1.00	30.18
ATOM	1320		THR A		12.162	29.490	26.358	1.00	28.03
ATOM	1321	CA	THR A		21.725	33.846	24.927	1.00	39.03
ATOM	1322	C	THR A		21.912	33.243	26.279	1.00	40.85
ATOM	1323	Ö	THR A		23.409	33.084	26.550	1.00	40.53
ATOM	1324	CB	THR A		24.163 21.211	32.693	25.645	1.00	41.22
ATOM	1325	OG1			21.739	31.869 31.013	26.349	1.00	42.09
ATOM	1326	CG2			19.702	32.032	25.325 26.133	1.00	43.36
ATOM	1327	N	PHE A		23.835	33.382	27.782	1.00 1.00	42.14
ATOM	1328	CA	PHE A		25.252	33.288	28.137	1.00	38.09 35.72
ATOM	1329	C	PHE A		25.639	32.253	29.213	1.00	36.31
ATOM	1330	ō	PHE A		24.816	31.823	30.033	1.00	34.01
ATOM	1331	CB	PHE A		25.775	34.666	28.537	1.00	33.12
ATOM	1332	CG	PHE A		27.274	34.800	28.417	1.00	28.01
ATOM	1333	CD1	PHE A		28.028	35.285	29.469	1.00	23.49
MOTA	1334		PHE A		27.920	34.458	27.244	1.00	26.30
ATOM	1335		PHE A		29.397	35.418	29.364	1.00	23.12
MOTA	1336	CE2	PHE A	218	29.297	34.589	27.125	1.00	25.69
MOTA	1337	CZ	PHE A		30.037	35.076	28.192	1.00	24.92
MOTA	1338	N	MET A	219	26.913	31.875	29.184	1.00	37.55
MOTA	1339	CA	MET A	219	27.485	30.905	30.098	1.00	37.63
ATOM	1340	С	MET A	219	29.007	31.004	30.025	1.00	35.79
ATOM	1341	0	MET A	219	29.556	31.607	29.105	1.00	33.20
MOTA	1342	CB	MET A		27.068	29.491	29.673	1.00	41.36
ATOM	1343	CG	MET A		25.906	28.887	30.439	1.00	44.77
MOTA	1344	SD	MET A	219	26.233	27.124	30.636	1.00	50.51
MOTA	1345	CE	MET A	219	24.764	26.343	29.870	1.00	48.78
ATOM	1346	N	MET A		29.679	30.412	31.006	1.00	38.17
ATOM	1347	CA	MET A		31.138	30.400	31.048	1.00	40.05
ATOM	1348	C	MET A		31.621	28.954	30.873	1.00	42.28
MOTA	1349	0	MET A		32.507	28.471	31.587	1.00	40.47
ATOM	1350	СВ	MET A		31.651	31.017	32.357	1.00	40.79
MOTA	1351	CG	MET A		31.507	32.545	32.443	1.00	34.52
ATOM	1352	SD	MET A		32.795	33.453	31.587	1.00	36.04
ATOM	1353	CE	MET A		33.047	34.823	32.693	1.00	36.91
ATOM	1354	N	THR A	221	31.059	28.309	29.853	1.00	45.09

FIG. 2X

MOTA	1355	CA			221		345	2	6.924	:	29.501	L	1.00		47.82
ATOM	1356	С			221	32	.628	2	6.629	:	28.710)	1.00		48.65
ATOM	1357	0	THR	Α	221	33	.056	2	7.421	. :	27.855	5	1.00		46.82
MOTA	1358	CB			221	30	.188	2	6.313	:	28.685	5	1.00		48.78
MOTA	1359	OG1	THR	A	221	30	.476	2	4.938	:	28.415	5	1.00		50.50
MOTA	1360	CG2	THR	Α	221	30	.014	2	7.066		27.349)	1.00		47.96
ATOM	1361	N	PRO	Α	222	33	.262	2	5.480	:	29.019	•	1.00		50.08
MOTA	1362	CA	PRO	Α	222	34	.496	2	4.999		28.379		1.00		49.33
MOTA	1363	C	PRO	A	222	34	.168		4.251		27.066		1.00		49.92
ATOM	1364	0			222		.051		1.019		26.210		1.00		49.18
ATOM	1365	CB			222		.078		1.038		29.437		1.00		49.23
ATOM	1366	CG			222		.485		1.523		30.752		1.00		46.35
ATOM	1367	CD			222		.064		1.795		30.320		1.00		49.40
ATOM	1368	N			223		.896		3.879		26.917		1.00		48.31
ATOM	1369	CA			223		.430		3.153		25.734		1.00		46.87
MOTA	1370	C	TYR				.998		3.481		25.293		1.00		45.04
ATOM	1371	Ō	TYR				.047		3.432		26.080		1.00		42.04
ATOM	1372	CB	TYR				.605		1.636		25.916		1.00		49.32
ATOM	1373	CG	TYR				.831		1.187		27.343		1.00		50.28
ATOM	1374		TYR				.108		0.822		27.784 27.784		1.00		
ATOM	1375		TYR				.769		1.108		28.241		1.00		49.70
ATOM	1376		TYR				.322		3.394		29.088				51.00
ATOM	1377		TYR				.973						1.00		50.13
ATOM	1378	CZ	TYR				.251).677).325		29.546		1.00		53.18
ATOM	1379	ОН	TYR				.447				29.961 31.262		1.00		53.33
ATOM	1380	N	VAL				.882		9.933				1.00		54.87
ATOM	1381	CA			224				3.786		24.002		1.00		44.41
ATOM	1382	C	VAL				.635		1.157		23.321		1.00		42.98
ATOM	1383	0	VAL				.495		3.131		23.349		1.00		41.44
ATOM	1384	CB	VAL				.700		.949		23.629		1.00		43.91
ATOM	1385		VAL				.915		.441		21.804		1.00		42.37
ATOM	1386						.677		739		21.615		1.00		38.65
ATOM	1387	N	VAL				.709		281		21.212		1.00		41.83
ATOM	1388	CA	VAL				.292		.596		3.025		1.00		38.56
ATOM	1389	CA	VAL				.127		.725		2.943		1.00		36.29
ATOM	1390	0	VAL				.143		.062		1.549		1.00		35.78
ATOM	1391	CB	VAL				.917		.446		0.678		1.00		37.18
ATOM	1392		VAL				.808		.519		3.095		1.00		34.26
ATOM	1393		VAL				.687		.060		4.485		1.00		35.01
ATOM	1394	N	THR				.755		.650		2.095		1.00		32.35
ATOM	1395	CA	THR				.302		.061		1.341		1.00		34.31
ATOM	1396	CA					.249		.390		0.051		1.00		30.66
ATOM	1397	0	THR THR				.110 .986		.025		9.276		1.00		27.91
ATOM									.086		9.767		1.00		28.96
ATOM	1398	CB	THR				.978		.896		0.233		1.00		31.72
ATOM	1399		THR				.066		.305		0.955		1.00		34.08
	1400		THR				.793		.203		8.893		1.00		32.43
MOTA	1401	N	ARG				.394		.484		8.062		1.00		25.75
ATOM ATOM	1402	CA	ARG				.378		.135		7.243		1.00		22.62
	1403	C	ARG				.056		.467		5.895		1.00		20.44
MOTA	1404	0	ARG				.197		.943		5.163		1.00		17.13
ATOM	1405	CB	ARG				.785		.589		7.021		1.00		23.83
ATOM	1406	CG	ARG				. 284		.761		6.796		1.00		29.07
ATOM	1407	CD	ARG .				.649		.158		6.294		1.00		31.42
ATOM	1408	NE	ARG .				.951		.581		6.797		1.00		32.03
ATOM	1409	CZ	ARG .				.110		.308		7.898		1.00		34.19
ATOM	1410		ARG .				.044		.693		8.591		1.00		34.90
ATOM	1411		ARG .				.330		.592		8.346		1.00		35.55
MOTA	1412	N	TYR .				678		.320		5.625		1.00		20.52
MOTA	1413	CA	TYR .	A	228	23.	.505	19	.574	1	4.359		1.00	-	15.46

FIG. 2Y

ATOM	1414	C	TYR	A	228	22.097	19.099	14.023	1.00	14.11
MOTA	1415	0	TYR	A	228	21.764	18.866	12.848	1.00	10.68
MOTA	1416	CB	TYR			24.418	18.355	14.376	1.00	12.40
MOTA	1417	CG	TYR			25.780	18.697	14.827	1.00	11.72
MOTA	1418	CD1	TYR			26.455	17.908	15.734	1.00	16.45
MOTA	1419	CD2	TYR			26.403	19.830	14.351	1.00	16.21
MOTA	1420	CE1	TYR			27.717	18.241	16.155	1.00	17.57
ATOM	1421	CE2	TYR			27.661	20.177	14.761	1.00	20.39
MOTA	1422	CZ	TYR			28.321	19.384	15.663	1.00	18.76
ATOM	1423	ОН	TYR			29.585	19.751	16.061	1.00	21.49
ATOM	1424	N	TYR			21.272	18.977	15.058	1.00	11.87
ATOM	1425	CA	TYR			19.911	18.450	14.918	1.00	7.71
ATOM	1426	C	TYR			18.831	19.492	14.854	1.00	6.14
ATOM	1427	0	TYR			17.652	19.167	14.735	1.00	7.31
ATOM	1428	CB	TYR			19.660	17.434	16.048	1.00	5.39
ATOM	1429	CG	TYR			20.809	16.455	16.151	1.00	2.00
ATOM	1430	CD1	TYR			21.961	16.799	16.835	1.00	2.00
ATOM	1431	CD2	TYR			20.810	15.252	15.434	1.00	2.00
ATOM	1432	CE1	TYR			23.089	16.004	16.800	1.00	6.24
ATOM	1433	CE2	TYR			21.957	14.428	15.399	1.00	2.47
ATOM	1434	CZ	TYR			23.091	14.813	16.080	1.00	6.64
ATOM ATOM	1435 1436	OH	TYR ARG			24.253	14.055	16.090	1.00	9.24
ATOM		N CA	ARG			19.253	20.751	14.831	1.00	7.71
ATOM	1437 1438	C	ARG			18.322 17.800	21.869 22.111	14.789	1.00	9.82
ATOM	1439	0	ARG			18.558	22.111	13.373 12.417	1.00	7.41 9.37
ATOM	1440	CB	ARG			18.991	23.119	15.368	1.00	11.31
ATOM	1441	CG	ARG			19.147	23.119	16.877	1.00	13.87
ATOM	1442	CD	ARG			20.032	24.125	17.445	1.00	18.40
ATOM	1443	NE	ARG			19.874	24.196	18.899	1.00	19.51
ATOM	1444	CZ	ARG			20.665	24.879	19.725	1.00	18.86
ATOM	1445	-	ARG			21.703	25.583	19.272	1.00	22.89
ATOM	1446	NH2	ARG			20.436	24.827	21.024	1.00	14.81
ATOM	1447	N	ALA			16.501	22.379	13.286	1.00	6.42
ATOM	1448	CA	ALA			15.803	22.613	12.046	1.00	10.20
ATOM	1449	C	ALA			16.222	23.941	11.442	1.00	17.23
ATOM	1450	0	ALA			16.794	24.784	12.138	1.00	22.34
ATOM	1451	CB	ALA			14.336	22.607	12.290	1.00	4.17
ATOM	1452	N	PRO			15.987	24.141	10.126	1.00	18.56
ATOM	1453	CA	PRO	Α	232	16.349	25.392	9.446	1.00	17.77
MOTA	1454	C ·	PRO	Α	232	15.590	26.590	10.010	1.00	16.05
ATOM	1455	0	PRO	A	232	16.117	27.689	10.069	1.00	14.76
ATOM	1456	CB	PRO	A	232	15.992	25.094	7.994	1.00	18.18
ATOM	1457	CG	PRO	A	232	16.259	23.599	7.902	1.00	17.27
ATOM	1458	CD	PRO	A	232	15.575	23.130	9.142	1.00	16.24
ATOM	1459	N	GLU			14.364	26.347	10.457	1.00	16.97
ATOM	1460	CA	GLU	Α	233	13.523	27.366	11.068	1.00	18.57
MOTA	1461	С	GLU	Α	233	14.315	27.897	12.248	1.00	21.78
ATOM	1462	0 '	GLU	A	233	14.164	29.041	12.663	1.00	20.00
MOTA	1463	CB	GLU	A	233	12.264	26.735	11.674	1.00	20.90
ATOM	1464	CG	GLU	Α	233	11.251	26.109	10.711	1.00	22.80
MOTA	1465	CD	GLU			11.250	24.582	10.742	1.00	16.28
ATOM	1466		GLU			12.276	23.999	10.381	1.00	16.01
ATOM	1467	OE2	GLU	A	233	10.223	23.969	11.102	1.00	16.64
ATOM	1468	N	VAL			15.125	27.008	12.824	1.00	22.90
MOTA	1469	CA	VAL			15.929	27.326	13.987	1.00	18.86
MOTA	1470	C	VAL			17.315	27.818	13.599	1.00	20.44
ATOM	1471		VAL			17.802	28.788	14.179	1.00	23.91
ATOM	1472	CB	VAL	A	234	16.029	26.091	14.953	1.00	15.02

FIG. 2Z

ATOM	1473	CG1	VAL	Α	234		17.058	26.342	16.042	1.00	12.77
MOTA	1474	CG2	VAL	A	234		14.655	25.740	15.535	1.00	7.69
MOTA	1475	N	ILE	A	235		17.942	27.197	12.604	1.00	21.11
ATOM	1476	CA	ILE	Α	235		19.272	27.633	12.183	1.00	22.08
MOTA	1477	C	ILE				19.196	29.001	11.519	1.00	20.93
MOTA	1478	ō	ILE				20.153	29.755	11.543	1.00	20.86
ATOM	1479	CB	ILE				19.907	26.676	11.153	1.00	22.94
									11.766	1.00	25.93
MOTA	1480		ILE				20.131	25.300			
ATOM	1481	CG2	ILE				21.231	27.237	10.634	1.00	21.62
MOTA	1482		ILE				20.584	24.253	10.739	1.00	27.78
MOTA	1483	N	LEU				18.038	29.324	10.963	1.00	22.79
ATOM	1484	CA	PEA				17.861	30.578	10.236	1.00	24.54
MOTA	1485	C	LEU	А	236		16.960	31.601	10.911	1.00	25.47
MOTA	1486	0	LEU	Α	236		16.815	32.720	10.442	1.00	26.22
MOTA	1487	CB	LEU	Α	236		17.346	30.288	8.822	1.00	21.25
MOTA	1488	CG	LEU	Α	236		18.229	29.497	7.860	1.00	16.01
MOTA	1489	CD1	LEU				17.449	29.276	6.594	1.00	13.14
ATOM	1490		LEU				19.524	30.222	7.583	1.00	10.90
ATOM	1491	N	GLY				16.315	31.198	11.987	1.00	27.03
	1492	CA	GLY				15.474	32.124	12.691	1.00	25.56
MOTA									11.869	1.00	29.33
MOTA	1493	C			237		14.283	32.531			33.24
MOTA	1494	0	GLY				14.386	33.402	10.993	1.00	
MOTA	1495	N	MET				13.184	31.808	12.070	1.00	24.71
MOTA	1496	CA	MET				11.924	32.095	11.417	1.00	23.68
MOTA	1497	C	MET	Α	238		10.871	31.472	12.289	1.00	22.36
MOTA	1498	0	MET	A	238		11.155	31.078	13.422	1.00	25.57
MOTA	1499	CB	MET	Α	238		11.876	31.559	9.980	1.00	24.38
MOTA	1500	CG	MET	Α	238		11.982	30.099	9.845	1.00	25.41
MOTA	1501	SD	MET	A	238		12.673	29.699	8.252	1.00	26.30
MOTA	1502	CE	MET	A	238		14.271	29.479	8.685	1.00	25.04
ATOM	1503	N			239		9.638	31.433	11.815	1.00	24.46
ATOM	1504	CA			239		8.589	30.833	12.621	1.00	24.89
ATOM	1505	C			239		8.709	29.320	12.620	1.00	25.61
ATOM	1506	ō			239		9.503	28.756	11.863	1.00	22.94
ATOM	1507	N			240		7.930	28.666	13.481	1.00	27.47
		CA			240		7.944	27.213	13.569	1.00	26.10
ATOM	1508										26.67
MOTA	1509	C			240		6.608	26.662	14.028	1.00	
MOTA	1510	0			240		5.804	27.373	14.650	1.00	27.55
MOTA	1511	CB			240		9.070	26.715	14.514	1.00	27.69
MOTA	1512	CG			240		8.888	27.004	16.000	1.00	24.07
ATOM	1513		TYR				7.908	26.360	16.736	1.00	21.50
MOTA	1514	CD2	TYR	A	240		9.666	27.973	16.650	1.00	24.16
MOTA	1515	CE1	TYR	Α	240		7.688	26.673	18.083	1.00	26.09
ATOM	1516	CE2	TYR	A	240		9.453	28.300	17.995	1.00	23.28
ATOM	1517	CZ	TYR	Α	240		8.454	27.645	18.703	1.00	26.50
ATOM	1518	ОН			240		8.158	27.979	20.006	1.00	24.58
ATOM	1519	N			241		6.377	25.396	13.680	1.00	24.48
MOTA	1520	CA			241		5.194	24.662	14.082	1.00	22.48
MOTA	1521	C			241		5.682	23.335	14.673	1.00	21.15
ATOM	1521	0			241		6.874	23.130	14.902	1.00	19.54
							4.222		12.920	1.00	23.83
MOTA	1523	CB			241			24.448	11.627	1.00	29.40
ATOM	1524	CG			241		4.858	23.957			
MOTA	1525	CD			241		3.786	23.829	10.535	1.00	32.26
ATOM	1526	CE			241		4.387	23.628	9.150	1.00	31.23
MOTA	1527	NZ			241		3.361	23.218	8.134	1.00	31.87
MOTA	1528	N			242		4.755	22.442	14.939	1.00	21.53
MOTA	1529	CA			242		5.078	21.173	15.531	1.00	22.17
MOTA	1530	C	GLU	Α	242		6.051	20.289	14.741	1.00	22.70
ATOM	1531	0	GLU	Α	242		6.770	19.486	15.340	1.00	22.12
						,					

FIG. 2AA

		~-	OT 17 7	242	3.780	20.433	15.830	1.00	27.33
MOTA	1532	CB	GLU A		2.964	21.028	17.004	1.00	31.09
MOTA	1533	CG	GLU A			22.345	16.700	1.00	29.61
MOTA	1534	CD		1 242	2.268	23.358	16.428	1.00	31.84
MOTA	1535		GTA 1		2.950	22.375	16.797	1.00	30.30
ATOM	1536	OE2	GLU 2		1.027		13.420	1.00	20.30
MOTA	1537	N		A 243	6.117	20.447	12.638	1.00	17.12
MOTA	1538	CA		A 243	7.026	19.607	12.598	1.00	15.56
MOTA	1539	C		A 243	8.465	20.066		1.00	13.73
MOTA	1540	0		A 243	9.279	19.540	11.835	1.00	20.39
ATOM	1541	CB		A 243	6.481	19.286	11.239		24.62
MOTA	1542	CG		A 243	6.467	20.479	10.310	1.00	26.15
ATOM	1543	OD1	ASN	A 243	6.777	21.609	10.706	1.00	20.34
MOTA	1544	ND2	ASN	A 243	6.116	20.227	9.045	1.00	
MOTA	1545	N	VAL	A 244	8.799	21.022	13.457	1.00	15.14
ATOM	1546	CA	VAL	A 244	10.181	21.493	13.565	1.00	14.03
ATOM	1547	C		A 244	11.041	20.365	14.182	1.00	15.20
ATOM	1548	Ó		A 244	12.250	20.263	13.938	1.00	17.55
ATOM	1549	CB		A 244	10.282	22.752	14.468	1.00	10.37
ATOM	1550			A 244	9.645	22.489	15.827	1.00	8.35
	1551	CG2	VAT	A 244	11.723	23.180	14.615	1.00	10.44
MOTA	1552	N		A 245	10.396	19.513	14.979	1.00	15.01
MOTA	1552	CA		A 245	11.075	18.408	15.637	1.00	12.69
MOTA	1554	C		A 245	11.262	17.229	14.704	1.00	14.61
ATOM	_	0		A 245	12.185	16.435	14.878	1.00	18.18
MOTA	1555			A 245	10.300	18.002	16.892	1.00	13.55
ATOM	1556	CB		A 245	10.383	19.052	18.000	1.00	4.57
ATOM	1557	CG		A 245	11.487	19.485	18.364	1.00	6.51
MOTA	1558			A 245	9.330	19.449	18.487	1.00	8.18
MOTA	1559			A 245	10.427	17.165	13.668	1.00	16.73
MOTA	1560	N			10.499	16.125	12.654	1.00	14.31
MOTA	1561	CA		A 246	11.872	16.194	12.007	1.00	15.62
MOTA	1562	C		A 246	12.530	15.176	11.817	1.00	17.28
MOTA	1563	0		A 246	9.393	16.331	11.592	1.00	16.60
MOTA	1564	CB		A 246	8.039	15.958	12.185	1.00	9.64
MOTA	1565			A 246	9.643	15.492	10.337	1.00	15.94
MOTA	1566			A 246			12.576	1.00	14.00
MOTA	1567			A 246	7.967		11.814	1.00	13.79
MOTA	1568			A 247	12.382		11.176	1.00	9.95
MOTA	1569			A 247	13.675			1.00	8.10
MOTA	1570	С		A 247	14.777				11.11
MOTA	1571	. 0		A 247	15.716				6.79
ATOM	1572	CE		A 247	13.959				2.00
ATOM	1573	CG		A 247	15.372				2.00
MOTA	1574	CE		A 247	16.453				2.85
MOTA	1575			A 247	15.874			_	3.34
MOTA	157€			A 247	17.596				2.00
ATOM	1577	CE	E2 TRE	A 247	17.267				10.65
MOTA	1578	B. CE	E3 TRE	A 247	15.283				6.33
ATOM	1579) C2	22 TRE	A 247	18.087				6.91
ATOM	1580) C2	Z3 TRI	A 247	16.096				7.13
MOTA	1583	L CI	12 TRE	A 247	17.480	19.792			
ATOM	1582		SEE	A 248	14.657				11.35
ATOM	1583			A 248	15.636				8.73
ATOM	1584			A 248	15.624				4.47
MOTA	158			A 248	16.670				4.57
MOTA	158			A 248	15.328				8.62
ATOM				R A 248	15.183				7.78
MOTA				A 249	14.43				6.41
ATOM				A 249	14.24				10.37
MOTA				L A 249	14.85	2 12.459	5 12.918	3 1.00	11.86
AIOM		_		- 1					_

FIG. 2BB

MOTA	1591	0	VAL A		15.450	11.377	12.894	1.00	15.92
MOTA	1592	CB	VAL A		12.739	12.588	14.254	1.00	9.24
MOTA	1593		VAL A		12.540	11.091	13.913	1.00	5.95
MOTA	1594	CG2	VAL A		12.132	12.955	15.616	1.00	6.23
MOTA	1595	N	GLY A		14.705	13.246	11.853	1.00	11.69
ATOM	1596	CA	GLY A		15.257	12.897	10.568	1.00	2.74 7.06
MOTA	1597	С	GLY A		16.762	12.859	10.608	1.00	
ATOM	1598	0	GLY A		17.374	11.962	10.016	1.00	7.35 8.01
MOTA	1599	N	CYS A	251	17.379	13.821	11.297	1.00	6.02
ATOM	1600	CA	CYS A		18.843	13.892	11.413	1.00	6.13
ATOM	1601	C	CYS A		19.438	12.748	12.224	1.00	6.13
MOTA	1602	0	CYS A		20.620	12.427	12.076	1.00	11.97
MOTA	1603	CB	CYS A		19.295	15.214	12.055	1.00	16.32
MOTA	1604	SG	CYS A		19.073	16.713	11.101	1.00	6.86
MOTA	1605	N	ILE A		18.663	12.224	13.166	1.00	9.70
MOTA	1606	CA	ILE A	252	19.097	11.104	14.008	1.00	6.47
MOTA	1607	С	ILE A		18.945	9.808	13.172	1.00	
ATOM	1608	0	ILE A		19.870	9.012	13.062	1.00	6.74
ATOM	1609	CB	ILE A		18.204	10.998	15.303	1.00	11.46
ATOM	1610	CG1			18.478	12.181	16.277	1.00	6.35
MOTA	1611		ILE A		18.420	9.645	15.968	1.00	9.02
ATOM	1612	CD1	ILE A	252	17.278	12.498	17.206	1.00	2.00
ATOM	1613	N	MET A	253	17.802	9.672	12.520	1.00	4.24
MOTA	1614	CA	MET A	253	17.524	8.532	11.678	1.00	10.23
MOTA	1615	C	MET A	253	18.559	8.343	10.566	1.00	13.46
ATOM	1616	0	MET A	253	18.941	7.219	10.273	1.00	16.51
ATOM	1617	CB	MET A	253	16.144	8.675	11.061	1.00	10.85
MOTA	1618	CG	MET A	253	15.864	7.657	9.994	1.00	11.51
MOTA	1619	SD	MET A	253	14.242	7.881	9.425	1.00	14.35
ATOM	1620	CE	MET A	253	14.050	6.430	8.483	1.00	14.56
ATOM	1621	N	GLY A	254	18.977		9.923	1.00	14.30
ATOM	1622	CA	GLY A	254 .	19.964	9.351	8.855	1.00	8.44
MOTA	1623	C	GLY A	254	21.354	9.118	9.385	1.00	9.82
ATOM	1624	0	GLY A	254	22.254	8.642	8.672	1.00	9.43
MOTA	1625	N	GLU A		21.582	9.533	10.625	1.00	12.87
ATOM	1626	CA	GLU A		22.873	9.291	11.247	1.00	11.63
ATOM	1627	C	GLU A	255	22.967	7.802	11.649	1.00	11.63
ATOM	1628	0	GLU A	255	24.057		11.708	1.00	12.64
ATOM	1629	CB	GLU A	255	23.070	10.171	12.468	1.00	11.82
ATOM	1630	CG	GLU A	255	24.429	9.969	13.135	1.00	. 9.96
ATOM	1631	CD	GLU A	255	24.688		14.267	1.00	11.66
ATOM	1632	OE:	L GLU A	255	23.835	11.819	14.516	1.00	16.47
ATOM	1633	OE	GLU A	255	25.749		14.906	1.00	15.14
ATOM	1634	N	MET A	256	21.832		11.966	1.00	12.10
ATOM	1635	CA	MET A	256	21.807		12.330	1.00	14.61
ATOM	1636	C	MET A		22.287	4.926	11.108	1.00	16.74
MOTA	1637	0	MET A		23.138		11.240	1.00	21.09
MOTA	1638	CB	MET A		20.387	5.342	12.784		12.40
ATOM	1639	CG			20.029	5.634	14.253	1.00	12.89
MOTA	1640	SD			18.257	5.851	14.578		23.36
ATOM	1641	CE			18.048		16.025		16.21
ATOM	1642	N	VAL A		21.816	5.282	9.916		17.44
ATOM	1643	CA			22.184				18.71
ATOM	1644	C	VAL A		23.534		8.106		20.14
ATOM	1645		VAL A		24.335				23.29
ATOM	1646				21.108				19.20
ATOM	1647		1 VAL A		19.684		8.093		14.26
ATOM	1648		2 VAL A		21.304	6.110			21.30
ATOM	1649		ARG A		23.808	6.343	8.102	1.00	19.80
111011									

FIG. 2CC

										40.00
MOTA	1650	CA	ARG A	258		057	6.854	7.559	1.00	19.39
MOTA	1651	С	ARG A	258	26.	292	6.724	8.448	1.00	22.54
ATOM	1652	0	ARG A	258	27	426	6.741	7.952	1.00	25.87
MOTA	1653	CB	ARG A	258	24	.880	8.314	7.149	1.00	19.45
ATOM	1654	CG	ARG A	258	26	.141	8.897	6.558	1.00	21.22
ATOM	1655	CD	ARG A	258	26	.013	10.368	6.322	1.00	24.45
ATOM	1656	NE	ARG A	258	25	.130	10.640	5.202	1.00	28.85
ATOM	1657	CZ	ARG A		25	.013	11.829	4.629	1.00	30.35
ATOM	1658		ARG A		25	.737	12.844	5.097	1.00	33.58
ATOM	1659		ARG A		24	.192	12.005	3.591	1.00	26.26
ATOM	1660	N	HIS A			.068	6.557	9.750	1.00	25.71
ATOM	1661	CA	HIS A			.118	6.449	10.785	1.00	27.73
	1662	C	HIS A			.103	7.621	10.883	1.00	28.00
MOTA	1663	0	HIS A			.309	7.469	11.103	1.00	29.52
MOTA	1664	CB	HIS A			.805	5.055	10.818	1.00	26.36
ATOM		CG	HIS A			.879	3.943	11.229	1.00	22.98
ATOM	1665		HIS A			.446	3.763	12.527	1.00	22.41
ATOM	1666		HIS A			.213	3.021	10.492	1.00	20.61
ATOM	1667		HIS A			.549	2.795	12.566	1.00	19.01
MOTA	1668		HIS A			.387	2.329	11.347	1.00	16.47
MOTA	1669		LYS A			.539	8.801	10.696	1.00	29.63
MOTA	1670	N				.243	10.066	10.819	1.00	30.40
MOTA	1671	CA	LYS A			.206	11.193	10.863	1.00	26.07
MOTA	1672	C	LYS A			.077	11.041	10.380	1.00	24.49
ATOM	1673	0	LYS A				10.267	9.721	1.00	33.87
MOTA	1674	CB	LYS A			.291	10.237	10.297	1.00	40.62
ATOM	1675	CG	LYS A			.720	11.271	11.428	1.00	46.13
ATOM	1676	CD.	LYS A			.871	10.641	12.733	1.00	48.31
MOTA	1677	CE	LYS A			.363		13.894	1.00	47.46
MOTA	1678	NZ	LYS A			799	11.393	11.542	1.00	22.60
MOTA	1679	N	ILE A			.532	12.283	11.642	1.00	19.96
MOTA	1680	CA	ILE A			5.578	13.381	10.272	1.00	17.51
MOTA	1681	С	ILE A			.353	14.027		1.00	17.46
ATOM	1682	0	ILE A			7.286	14.420	9.585 12.719	1.00	18.47
MOTA	1683	CB	ILE A			7.007	14.436		1.00	15.26
MOTA	1684	CG1				7.110	13.771	14.090	1.00	20.19
ATOM	1685	CG2				5.959	15.561	12.833	1.00	19.17
MOTA	1686	CD1				3.022	14.488	15.024	1.00	17.50
ATOM	1687	N	LEU P			5.095	14.045	9.871		18.94
ATOM	1688	CA	LEU A			1.659	14.617	8.607	1.00	20.67
MOTA	1689	С	LEU A			5.138	16.066	8.372	1.00	22.13
ATOM	1690	0	LEU A			5.938	16.328	7.466	1.00	13.08
MOTA	1691	CB	LEU A			3.128	14.559	8.550	1.00	14.46
MOTA	1692	CG	LEU A			2.423	13.385	7.868	1.00	14.40
MOTA	1693	CDI				2.952	12.062	8.369	1.00	
MOTA	1694	CD2	LEU A	A 262		0.942	13.488	8.066	1.00	7.56
MOTA	1695	N		A 263		4.702	16.986	9.226		20.64
ATOM	1696	CA	PHE A	A 263		5.034	18.397	9.069		20.07
MOTA	1697	C	PHE	A 263	2	5.969	18.969	10.151		20.50
MOTA	1698	0		A 263		5.579		10.959		20.92
ATOM	1699	CB	PHE	A 263		3.719		8.998		18.23
MOTA	1700	CG	PHE	A 263		2.697		8.022		14.68
ATOM	1701	CD:	1 PHE	A 263	2	2.953		6.653		12.98
ATOM	1702	CD:	2 PHE	A 263		1.484		8.473		9.26
ATOM	1703	CE	1 PHE .	A 263	2	2.016		5.760		8.44
ATOM	1704		2 PHE	A 263	2	0.551		7.584		5.41
ATOM	1705			A 263	2	0.824		6.222		3.79
ATOM	1706			A 264	2	7.229	18.528	10.159	1.00	19.70
ATOM	1707			A 264	2	8.184	19.012	11.160		23.64
ATOM	1708			A 264	2	8.643	20.436	10.950	1.00	25.18
		_								

FIG. 2DD

ATOM	1709	0	PRO	Α	264	28.040	21.173	10.185	1.00	25.01
MOTA	1710	CB	PRO	Α	264	29.339	18.026	11.024	1.00	22.88
MOTA	1711	CG	PRO	A	264	29.272	17.638	9.570	1.00	20.00
MOTA	1712	CD	PRO	A	264	27.814	17.464	9.341	1.00	19.45
ATOM	1713	N	GLY			29.741	20.807	11.606	1.00	27.92
ATOM	1714	CA	GLY			30.254	22.160	11.447	1.00	32.00
ATOM	1715	C	GLY			31.038	22.802	12.586	1.00	32.60
ATOM	1716	ō	GLY			32.079	22.306	13.047	1.00	33.24
		N	ARG			30.571	23.976	12.985	1.00	31.55
ATOM	1717								1.00	32.94
ATOM	1718	CA	ARG			31.197	24.726	14.058		
MOTA	1719	С	ARG			30.200	25.778	14.485	1.00	33.00
ATOM	1720	0	ARG			30.019	26.043	15.670	1.00	31.47
MOTA	1721	CB	ARG	A	266	32.486	25.401	13.576	1.00	34.09
MOTA	1722	CG	ARG	А	266	32.327	26.393	12.414	1.00	33.36
MOTA	1723	CD	ARG	А	266	33.694	26.964	12.003	1.00	31.74
ATOM	1724	NE	ARG	Α	266	33.653	27.527	10.659	1.00	30.39
ATOM	1725	$\mathbf{C}\mathbf{Z}$	ARG	Α	266	34.718	27.748	9.900	1.00	24.25
MOTA	1726	NH1	ARG	A	266	35.935	27.483	10.346	1.00	25.66
ATOM	1727	NH2	ARG	А	266	34.552	28.132	8.648	1.00	25.54
ATOM	1728	N	ASP			29.513	26.327	13.491	1.00	33.80
ATOM	1729	CA	ASP			28.532	27.358	13.714	1.00	30.50
ATOM	1730	C	ASP			27.459		12.656	1.00	26.92
			ASP			27.676	26.614	11.627	1.00	26.99
ATOM	1731	0							1.00	37.49
ATOM	1732	CB	ASP			29.198	28.723	13.611		
MOTA	1733	CG	ASP			28.284	29.820	14.030	1.00	40.83
MOTA	1734		ASP			27.949	30.663	13.175	1.00	44.75
MOTA	1735		ASP			27.844	29.799	15.202	1.00	44.89
ATOM	1736	N	TYR	A	268	26.330	27.875	12.907	1.00	25.13
MOTA	1737	CA	TYR	A	268	25.173	27.877	12.030	1.00	24.71
MOTA	1738	С	TYR	Α	268	25.444	28.208	10.557	1.00	25.16
MOTA	1739	0	TYR	Α	268	24.569	28.030	9.715	1.00	26.18
ATOM	1740	CB	TYR	Α	268	24.173	28.889	12.551	1.00	23.88
ATOM	1741	CG	TYR	Α	268	23.318	28.454	13.701	1.00	25.55
MOTA	1742	CD1	TYR	Α	268	23.505	27.243	14.348	1.00	24.78
MOTA	1743		TYR			22.257	29.242	14.100	1.00	28.07
MOTA	1744		TYR			22.629	26.834	15.367	1.00	26.43
ATOM	1745		TYR			21.395	28.852	15.101	1.00	29.67
ATOM	1746	CZ	TYR			21.576	27.652	15.734	1.00	28.32
ATOM	1747	OH			268	20.679	27.306	16.720	1.00	30.67
			ILE			26.610	28.772	10.261	1.00	25.39
MOTA	1748	N				26.971	29.136	8.891	1.00	24.88
ATOM		CA			269					24.23
MOTA	1750	C			269	27.425	27.850	8.230	1.00	
MOTA	1751	0			269	26.853	27.412	7.235	1.00	23.59
MOTA	1752	CB	ILE			28.196	30.118	8.842	1.00	24.89
MOTA	1753		ILE			27.904	31.463	9.519	1.00	24.46
ATOM	1754		ILE			28.638	30.324	7.411	1.00	25.64
MOTA	1755	CD1	ILE	A	269	26.977	32.369	8.767	1.00	21.32
MOTA	1756	N	ASP	Α	270	28.468	27.268	8.823	1.00	24.17
MOTA	1757	CA	ASP	A	270	29.099	26.020	8.374	1.00	26.59
ATOM	1758	С	ASP	A	270	28.009	24.978	8.119	1.00	26.04
ATOM	1759	0	ASP			27.804	24.492	7.003	1.00	26.38
MOTA	1760	CB	ASP			30.058	25.526	9.483	1.00	25.96
MOTA	1761	CG	ASP			31.198	24.667	8.959	1.00	23.06
ATOM	1762	•	ASP			32.246	24.588	9.624	1.00	19.74
ATOM	1763		ASP			31.055	24.060	7.880	1.00	31.30
ATOM	1764	N			271	27.234	24.764	9.168	1.00	25.91
ATOM	1765	CA			271	26.133	23.820	9.211	1.00	24.57
						25.089	24.056	8.121	1.00	23.81
MOTA	1766	C			271					
MOTA	1767	0	GLN	A	271	24.563	23.103	7.549	1.00	25.98

FIG. 2EE

MOTA	1768			A 271	2	5.501	23.926	10.593	1.00	25.83
MOTA	1769			A 271		4.574	22.818	10.984	1.00	27.68
MOTA	1770		I	A 271		4.013	23.050	12.357	1.00	26.89
MOTA	1771			A 271		4.725	23.485	13.281	1.00	23.91
ATOM	1772			A 271		2.726	22.781	12.504	1.00	25.73
MOTA	1773			A 272		4.763	25.311	7.830	1.00	22.13
MOTA	1774			A 272		3.783	25.576	6.788	1.00	19.21
ATOM	1775			A 272		4.419	25.204	5.457	1.00	18.17 16.56
ATOM	1776			A 272		23.751	24.749	4.534	1.00 1.00	17.37
MOTA	1777			A 272		23.358	27.037 27.377	6.775 5.686	1.00	13.75
ATOM	1778			A 272		22.364 22.557	28.269	4.659	1.00	15.40
ATOM	1779			A 272 A 272		21.006	26.884	5.535	1.00	15.21
ATOM	1780 1781			A 272		21.412	28.374	3.897	1.00	16.90
ATOM				A 272		20.446	27.542	4.408	1.00	14.39
ATOM	1782 1783			A 272		20.217	25.965	6.241	1.00	14.65
MOTA MOTA	1784			A 272		19.130	27.298	3.971	1.00	14.28
ATOM	1785			A 272		18.909	25.725	5.808	1.00	13.40
MOTA	1786	CH2		A 272		18.377	26.391	4.686	1.00	16.96
MOTA	1787	N		A 273		25.729	25.353	5.377	1.00	19.02
MOTA	1788			A 273		26.408	25.013	4.146	1.00	22.48
MOTA	1789	C		A 273		26.158	23.544	3.866	1.00	22.47
ATOM	1790	Ō		A 273	:	25.748	23.187	2.759	1.00	22.01
MOTA	1791	CB	ASN	A 273	:	27.912	25.316	4.238	1.00	22.52
MOTA	1792	CG	ASN	A 273	:	28.227	26.798	4.062	1.00	21.44
MOTA	1793	OD1	ASN	A 273	1	27.348	27.621	3.781	1.00	21.70
ATOM	1794	ND2	ASN	A 273		29.488	27.143	4.209	1.00	24.93
MOTA	1795	N	LYS	A 274	:	26.278	22.719	4.914	1.00	23.46
MOTA	1796	CA	LYS	A 274		26.072	21.271	4.805	1.00	18.10
MOTA	1797	С		A 274		24.626	20.942	4.475	1.00	18.00
MOTA	1798	0		A 274		24.361	19.937	3.833	1.00	22.35
ATOM	1799	CB		A 274		26.451	20.566	6.093	1.00	15.27 14.30
MOTA	1800	CG		A 274		27.811	20.904	6.600	1.00	19.69
MOTA	1801	CD		A 274		28.900	20.434	5.691 6.502	1.00 1.00	24.70
MOTA	1802	CE		A 274		30.186	20.267 19.327	5.896	1.00	31.99
ATOM	1803	NZ		A 274		31.204	21.770	4.898	1.00	18.18
MOTA	1804	N		A 275		23.680 22.286	21.770	4.581	1.00	20.59
ATOM	1805	CA		A 275 A 275		21.968	21.762	3.110	1.00	23.32
MOTA	1806	C O		A 275		21.204	21.023	2,486	1.00	25.67
MOTA	1807 1808	CB		A 275		21.282	22.310	5.449	1.00	17.97
ATOM ATOM	1809			A 275		19.836	21.995	5.045	1.00	15.19
MOTA	1810			A 275		21.498	22.025	6.928	1.00	19.77
ATOM	1811	N		A 276		22.580	22.801	2.547	1.00	23.82
MOTA	1812	CA		A 276		22.320	23.168	1.164	1.00	20.92
ATOM	1813	C		A 276		23.120		0.147	1.00	20.60
MOTA	1814	ō		A 276		22.640		-0.952	1.00	23.64
MOTA	1815	CB		A 276		22.506		0.926	1.00	18.18
MOTA	1816			A 276		23.916	25.139	1.336	1.00	18.15
ATOM	1817			A 276		21.429		1.643	1.00	9.12
MOTA	1818	CD1	ILE	A 276		24.426		0.674	1.00	16.28
MOTA	1819	N	GLU	A 277		24.313		0.511	1.00	20.50
MOTA	1820	CA		A 277		25.091			1.00	23.41
MOTA	1821	C		A 277		24.653				28.35
MOTA	1822	0		A 277		25.080		-1.468		34.25
MOTA	1823	CB		A 277		26.572		-0.117		19.67
MOTA	1824	CG		A 277		27.058				24.35
MOTA	1825	CD		A 277		28.553		1.136		30.31 35.18
MOTA	1826	OE1	GLU	A 277		29.232	19.510	1.313	1.00	33.10

FIG. 2FF

7 III OM	1027	OE2	GLU A 277	29.050	21.704	1.058	1.00	28.91
MOTA	1827 1828	N	GLN A 278	23.795	19.245	0.350	1.00	26.32
ATOM	1829	CA	GLN A 278	23.316	17.880	0.283	1.00	22.89
ATOM ATOM	1830	C	GLN A 278	21.888	17.806	-0.235	1.00	22.44
ATOM	1831	ō	GLN A 278	21.580	16.978	-1.089	1.00	23.76
ATOM	1832	СВ	GLN A 278	23.422	17.212	1.649	1.00	23.63
ATOM	1833	CG	GLN A 278	24.850	17.022	2.111	1.00	25.91
MOTA	1834	CD	GLN A 278	24.918	16.301	3.446	1.00	29.41
ATOM	1835	OE1		24.521	15.139	3.552	1.00	26.75
ATOM	1836	NE2	GLN A 278	25.407	16.993	4.476	1.00	30.71
MOTA	1837	N	LEU A 279	21.018	18.676	0.263	1.00	20.12
ATOM	1838	CA	LEU A 279	19.628	18.681	-0.171	1.00	20.56
ATOM	1839	C	LEU A 279	19.369	19.804	-1.200	1.00	20.66
ATOM	1840	0	LEU A 279	18.273	19.908	-1.758	1.00	20.40
ATOM	1841	CB	LEU A 279	18.678	18.852	1.036	1.00	19.86
ATOM	1842	CG	LEU A 279	18.904	18.176	2.405	1.00	19.25
ATOM	1843	CD1	LEU A 279	17.786	18.595	3.383	1.00	12.82
ATOM	1844	CD2	LEU A 279	18.967	16.661	2.278	1.00	17.53
MOTA	1845	N	GLY A 280	20.365	20.663	-1.402	1.00	21.53
MOTA	1846	CA	GLY A 280	20.243	21.768	-2.338	1.00	21.98
MOTA	1847	C	GLY A 280	19.735	23.072	-1.749	1.00	24.54
MOTA	1848	0	GLY A 280	19.401	23.165	-0.569	1.00	26.75
MOTA	1849	N	THR A 281	19.648	24.095	-2.585	1.00	24.49
MOTA	1850	CA	THR A 281	19.174	25.394	-2.145	1.00	28.73
MOTA	1851	C	THR A 281	17.633	25.347	-2.013	1.00	30.15 31.24
MOTA	1852	0	THR A 281	16.956	24.708	-2.818	1.00	
MOTA	1853	CB	THR A 281	19.675	26.539	-3.129	1.00	30.04 29.30
MOTA	1854	OG1		21.040	26.284	-3.514	1.00	31.80
MOTA	1855	CG2		19.649	27.912	-2.450	1.00 1.00	30.63
MOTA	1856	N	PRO A 282	17.074	25.969	-0.951 -0.742	1.00	31.39
MOTA	1857	CA	PRO A 282	15.621	25.973	-1.860	1.00	35.04
MOTA	1858	C	PRO A 282	14.790	26.593	-2.442	1.00	34.15
MOTA	1859	0	PRO A 282	15.137	27.622 26.736	0.576	1.00	27.71
MOTA	1860	CB	PRO A 282	15.465	26.411	1.309	1.00	28.19
MOTA	1861	CG	PRO A 282	16.711	26.542	0.215	1.00	26.87
ATOM	1862	CD	PRO A 282	17.763	25.954	-2.102	1.00	39.56
MOTA	1863	N	CYS A 283	13.651 12.678	26.348	-3.116	1.00	42.11
ATOM	1864	CA	CYS A 283	12.300	27.819	-3.079	1.00	41.47
ATOM	1865	C	CYS A 283 CYS A 283	12.033	28.363	-2.022	1.00	39.65
ATOM	1866	O	CYS A 283	11.401	25.508	-2.936	1.00	45.67
ATOM	1867	CB	CYS A 283	10.669	25.546	-1.228	1.00	49.59
ATOM	1868	SG N	PRO A 284	12.415	28.507	-4.220	1.00	43.20
ATOM	1869	CA	PRO A 284	12.071	29.933	-4.341	1.00	43.55
MOTA	1870 1871	CA	PRO A 284	10.618	30.191	-3.925	1.00	43.04
ATOM	1872	0	PRO A 284	9.676	30.140	-4.735	1.00	43.04
ATOM ATOM	1873	CB	PRO A 284	12.321	30.241	-5.826	1.00	44.13
ATOM	1874	CG	PRO A 284	12.722	28.883	-6.460	1.00	47.78
MOTA	1875	CD	PRO A 284	13.306	28.106	-5.318	1.00	44.72
ATOM	1876	N	ALA A 285	10.471	30.388	-2.619	1.00	40.82
MOTA	1877	CA	ALA A 285	9.196	30.634	-1.951	1.00	39.42
ATOM	1878	C	ALA A 285	9.559	30.601	-0.465	1.00	39.31
ATOM	1879	ō	ALA A 285	9.146	31.462	0.307		41.09
ATOM	1880	СВ	ALA A 285	8.193		-2.275		39.41
ATOM	1881	N	PHE A 286	10.356	29.591	-0.096		36.13
MOTA	1882	CA	PHE A 286	10.840		1.261		29.31
MOTA	1883	C	PHE A 286	11.473		1.819		29.93
ATOM	1884	o	PHE A 286	11.137		2.923		27.02
MOTA	1885	CB	PHE A 286	11.869	28.251	1.237	1.00	25.30

FIG. 2GG

					32 446	27.931	2.581	1.00	18.21
MOTA	1886		PHE A		12.446	27.531	3.624	1.00	18.09
MOTA	1887		PHE A		11.621		2.805	1.00	15.83
MOTA	1888		PHE A 2		13.811	28.035		1.00	18.38
MOTA	1889		PHE A		12.154	27.245	4.887	1.00	18.25
MOTA	1890		PHE A		14.357	27.754	4.052		15.03
MOTA	1891	CZ	PHE A	286	13.533	27.357	5.097	1.00	32.98
MOTA	1892	N	MET A	287	12.340	31.256	1.019	1.00	35.50
MOTA	1893	CA	MET A	287	13.021	32.485	1.411	1.00	
MOTA	1894	С	MET A	287	12.110	33.659	1.797	1.00	35.57
ATOM	1895	0	MET A	287	12.566	34.586	2.456	1.00	36.21
ATOM	1896		MET A		13.986	32.935	0.312	1.00	37.48
ATOM	1897		MET A	287	15.377	32.320	0.388	1.00	38.29
ATOM	1898		MET A		15.506	30.652	-0.248	1.00	42.69
ATOM	1899		MET A		15.218	30.918	-1.938	1.00	39.17
MOTA	1900	N	LYS A		10.833	33.607	1.428	1.00	36.32
	1901	CA	LYS A		9.895	34.678	1.753	1.00	37.98
ATOM	1901	C	LYS A		9.604	34.812	3.251	1.00	41.25
MOTA			LYS A		9.347	35.919	3.748	1.00	42.92
ATOM	1903	0	LYS A		8.573	34.480	1.004	1.00	39.11
ATOM	1904	CB	LYS A		8.479	35.161	-0.371	1.00	42.11
ATOM	1905	CG			9.372	34.565	-1.463	1.00	44.65
MOTA	1906	CD	LYS A		9.066	35.248	-2.815	1.00	47.02
MOTA	1907	CE	LYS A		9.881	34.775	-3.985	1.00	45.67
MOTA	1908	NZ	LYS A			33.691	3.969	1.00	41.56
MOTA	1909	N	LYS A		9.611	33.722	5.407	1.00	40.78
MOTA	1910	CA	LYS A		9.345	33.722	6.206	1.00	39.17
MOTA	1911	С	LYS A		10.626		7.452	1.00	38.50
MOTA	1912	0	LYS A		10.643	33.955	5.850	1.00	43.27
MOTA	1913	CB	LYS A		8.692	32.415	5.330	1.00	47.51
ATOM	1914	CG	LYS A		7.262	32.219		1.00	51.55
MOTA	1915	CD	LYS A		6.305	33.345	5.782	1.00	52.02
MOTA	1916	CE	LYS A		6.180	33.475	7.313	1.00	54.69
ATOM	1917	NZ	LYS A		7.275	34.267	7.960	1.00	36.37
MOTA	1918	N	LEU A		11.670	34.336	5.462		36.82
MOTA	1919	CA	LEU A	290	12.992	34.622	6.001	1.00	37.74
ATOM	1920	C	LEU A		13.167	36.136	6.198	1.00	
MOTA	1921	0	LEU A	290	13.092	36.896	5.227	1.00	39.91
MOTA	1922	CB	LEU A	290	14.013	34.103	4.993	1.00	32.06
ATOM	1923	CG	LEU A	290	15.236	33.276	5.380	1.00	32.32
ATOM	1924	CD1	LEU A	290	15.046	32.512	6.675	1.00	28.02
MOTA	1925	CD2	LEU A	290	15.564	32.341	4.224	1.00	27.96
ATOM	1926	N	GLN A	291	13.399	36.583	7.438	1.00	39.04
MOTA	1927	CA	GLN A		13.584	38.021	7.711	1.00	38.20
MOTA	1928	C	GLN A		14.561	38.548	6.664	1.00	37.52
ATOM	1929	ō	GLN A		15.495	37.839	6.267	1.00	36.29
	1930	СВ	GLN A		14.142	38.280	9.123	1.00	39.70
MOTA	1931	CG	GLN A		14.008		9.641	1.00	43.34
ATOM		CD	GLN A		12.729		10.459	1.00	43.23
ATOM	1932		GLN A		12.426		11.375	1.00	45.26
MOTA	1933				11.989		10.137		40.70
ATOM	1934		PRO A		14.339		6.193		35.64
MOTA	1935				15.129		5.179		34.65
ATOM	1936		PRO A		16.634		5.292		35.33
MOTA	1937		PRO A		17.325		4.287		33.35
ATOM	1938		PRO A				5.353		35.18
MOTA	1939		PRO A		14.665		5.638		34.12
MOTA	1940		PRO A		13.221		6.702		35.37
MOTA	1941		PRO A		13.282		6.510		37.57
MOTA	1942		THR A		17.146		6.697		39.75
MOTA	1943				18.585		6.627		39.13
MOTA	1944	C	THR A	293	19.050	38.772	0.02/	1.00	وید. رو
						•			

FIG. 2HH

MOTA	1945	0	THR	Α	293	20.210	38.506	6.289	1.00	37.75
ATOM	1946	CB	THR	Α	293	19.043	40.827	8.035	1.00	42.63
MOTA	1947	OG1	THR	A	293	1,8.061	41.766	8.512	1.00	47.19
ATOM	1948	CG2	THR	A	293	20.419	41.515	7.852	1.00	40.06
MOTA	1949	N	VAL	A	294	18.159	37.843	6.988	1.00	36.77
MOTA	1950	CA	VAL	Α	294	18.464	36.413	6.956	1.00	34.85
MOTA	1951	C	VAL	Α	294	18.343	35.930	5.536	1.00	33.86
MOTA	1952	0	VAL			19.169	35.154	5.060	1.00	33.38
MOTA	1953	CB	VAL			17.450	35.566	7.738	1.00	34.91
MOTA	1954		VAL			17.953	34.144	7.816	1.00	35.42
MOTA	1955		VAL			17.213	36.124	9.127	1.00	37.51
MOTA	1956	N	ARG			17.297	36.404	4.867	1.00	33.96
ATOM	1957	CA	ARG			17.020	36.035	3.492	1.00	34.52
MOTA	1958	С	ARG			18.099	36.552	2.544	1.00	36.07
MOTA	1959	0	ARG			18.361	35.940	1.502	1.00	37.40
MOTA	1960	CB	ARG			15.636	36.534	3.070	1.00	34.81 36.10
MOTA	1961	CG	ARG			15.619	37.953	2.559	1.00 1.00	30.72
MOTA	1962	CD	ARG			14.402	38.189	1.706		26.85
MOTA	1963	NE	ARG			13.204	38.284	2.511	1.00 1.00	30.88
ATOM	1964	CZ	ARG			11.981	38.371	2.008	1.00	33.56
MOTA	1965				295 ·	11.790	38.366 38.518	0.694 2.822	1.00	34.68
ATOM	1966		ARG			10.946		2.822	1.00	35.96
ATOM	1967	N			296	18.736 19.790	37.666 38.224	2.072	1.00	33.95
MOTA	1968	CA			296 296	20.923	37.225	1.996	1.00	33.60
ATOM	1969	C				21.366	36.868	0.899	1.00	34.00
MOTA	1970	O			296 296	20.333	39.510	2.680	1.00	36.06
ATOM	1971	CB CG			296	21.513	40.050	1.906	1.00	35.72
MOTA	1972 1973		ASN			21.333	40.659	0.858	1.00	36.39
MOTA	1974		ASN			22.732	39.772	2.381	1.00	34.76
ATOM ATOM	1975	NDZ			297	21.408	36.802	3.172	1.00	31.97
ATOM	1976	CA			297	22.498	35.819	3.309	1.00	29.60
MOTA	1977	C			297	22.218	34.521	2.549	1.00	28.11
MOTA	1978	ō			297	23.084	34.020	1.840	1.00	28.70
MOTA	1979	СВ			297	22.740	35.481	4.795	1.00	26.28
ATOM	1980	CG			297	23.722	34.341	5.021	1.00	26.96
ATOM	1981		TYR			25.091	34.533	4.887	1.00	25.56
MOTA	1982		TYR			23.277	33.061	5.346	1.00	27.53
MOTA	1983	CE1			297	25.986	33.486	5.061	1.00	25.70
ATOM	1984	CE2	TYR	A	297	24.169	32.012	5.518	1.00	26.17
ATOM	1985	CZ	TYR	Α	297	25.520	32.229	5.367	1.00	25.43
MOTA	1986	OH	TYR	A	297	26.406	31.179	5.452	1.00	28.49
MOTA	1987	N	VAL	Α	298	21.006	33.996	2.711	1.00	28.24
MOTA	1988	CA	VAL	A	298	20.569	32.750	2.102	1.00	27.73
MOTA	1989	C	VAL	A	298	20.413	32.855	0.589	1.00	29.27
MOTA	1990	0	VAL	A	298	20.990	32.055	-0.158	1.00	28.77
MOTA	1991	CB	VAL	A	298	19.238	32.288	2.758	1.00	26.32
MOTA	1992	CG1	VAL	A	298	18.614	31.158	1.992	1.00	29.24
MOTA	1993	CG2	VAL	A	298	19.490	31.872	4.209	1.00	29.06
MOTA	1994	N	GLU	A	299	19.687		0.131	1.00	30.27
MOTA	1995	CA			299	19.452	34.088	-1.295	1.00	28.19
MOTA	1996	C			299	20.767	34.320	-1.981	1.00	27.95
MOTA	1997	0			299	20.897		-3.171	1.00	29.01
MOTA	1998	CB			299	18.562	35.302	-1.539	1.00	28.56
MOTA	1999	CG			.299	17.151		-0.992	1.00	32.18
MOTA	2000	CD			299	16.093		-1.971	1.00	36.34
MOTA	2001		GLU			14.993		-1.516	1.00	37.16
MOTA	2002		GLU			16.356		-3.199 -1 218	1.00	37.87
ATOM	2003	N	ASN	A	300	21.746	34.799	-1.218	1.00	29.48

FIG. 2II

							. 545	1 00	27 06
MOTA	2004	CA	ASN A		23.067	35.083	-1.747	1.00	27.96 26.74
ATOM	2005	C	ASN A	300	24.104	34.004	-1.491	1.00	27.37
MOTA	2006	0	ASN A	300	25.291	34.304	-1.451	1.00	
MOTA	2007	CB	ASN A	300	23.581	36.412	-1.191	1.00	32.01
ATOM	2008	CG	ASN A	300	22.759	37.609	-1.649	1.00	34.99
ATOM	2009	OD1	ASN A	300	22.608	38.572	-0.908	1.00	40.39
MOTA	2010	ND2	ASN A	300	22.236	37.560	-2.874	1.00	40.11
ATOM	2011	N	ARG A	301	23.675	32.754	-1.323	1.00	29.11
ATOM	2012	CA	ARG A	301	24.618	31.646	-1.070	1.00	29.04
ATOM	2013	C	ARG A	. 301	24.922	30.886	-2.369	1.00	28.33
MOTA	2014	0	ARG A	301	24.077	30.856	-3.272	1.00	25.54
ATOM	2015	CB	ARG A	301	24.026	30.593	-0.083	1.00	25.95
ATOM	2016	CG	ARG A	301	23.797	31.018	1.342	1.00	21.29
ATOM	2017	CD	ARG A	301	25.069	31.501	1.958	1.00	20.39
ATOM	2018	NE	ARG A	301	26.164	30.562	1.784	1.00	20.66
ATOM	2019	CZ	ARG A	301	27.443	30.867	1.989	1.00	26.05
ATOM	2020		ARG A	301	27.775	32.094	2.365	1.00	29.37
ATOM	2021	NH2	ARG A		28.397	29.946	1.873	1.00	27.83
ATOM	2022	N	PRO A		26.152	30.314	-2.489	1.00	29.03
MOTA	2023	CA	PRO A		26.561	29.535	-3.668	1.00	31.83
ATOM	2024	C	PRO A		25.470	28.465	-3.932	1.00	34.72
ATOM	2025	ō	PRO P		25.181	27.637	-3.054	1.00	36.10
ATOM	2026	CB	PRO P		27.894	28.877	-3.225	1.00	29.18
MOTA	2027	CG	PRO F		28.211	29.449	-1.841	1.00	27.99
MOTA	2028	CD	PRO F		27.323	30.659	-1.666	1.00	27.00
MOTA	2029	N	ALA A		24.825	28.519	-5.100	1.00	35.33
ATOM	2030	CA	ALA A		23.756	27.574	-5.425	1.00	32.36
ATOM	2031	C	ALA A		24.194	26.103	-5.551	1.00	32.18
ATOM	2032	<u>o</u> .	ALA A		25.361	25.784	-5.874	1.00	28.91
ATOM	2033	CB		A 303	22.960	28.038	-6.637	1.00	31.16
ATOM	2034	N		A 304	23.245	25.230	-5.188	1.00	33.00
ATOM	2035	CA		A 304	23.394	23.765	-5.163	1.00	29.61
ATOM	2036	C	TYR A	A 304	22.126	23.055	-5.655	1.00	29.37
ATOM	2037	0	TYR A	A 304	21.004	23.459	-5.333	1.00	27.81
ATOM	2038	CB	TYR A	A 304	23.666	23.284	-3.731	1.00	24.77
ATOM	2039	CG	TYR Z	A 304	25.116	23.200	-3:363	1.00	24.50
ATOM	2040	CD1	TYR A	A 304	25.752	24.240	-2.702	1.00	25.72
MOTA	2041	CD2	TYR I	A 304	. 25.857	22.065	-3.661	1.00	26.30
MOTA	2042	CE1	TYR	A 304	27.095	24.153	-2.345	1.00	29.74
ATOM	2043	CE2	TYR	A 304	27.194	21.962	-3.317	1.00	28.89
ATOM	2044	CZ	TYR 3	A 304	27.817	23.012	-2.659	1.00	32.70
ATOM	2045	OH	TYR .	A 304	29.171	22.939	-2.356	1.00	33.67
ATOM	2046	N	ALA .	A 305	22.305	22.025	-6.478	1.00	29.27
ATOM	2047	CA	ALA .	A 305	21.167	21.253	-6.968	1.00	28.38
MOTA	2048	C		A 305	20.752	20.290	-5.867	1.00	26.04
ATOM	2049	0	ALA .	A 305	19.581	19.934	-5.738	1.00	23.89
ATOM	2050	CB		A 305	21.562	20.478	-8.210	1.00	29.32
ATOM	2051	N		A 306	21.755	19.857	-5.106	1.00	24.87
ATOM	2052	CA		A 306	21.553	18.937	-4.005	1.00	27.80
MOTA	2053	С		A 306	21.401		-4.503	1.00	27.75
MOTA	2054	0		A 306	20.829	17.320	-5.572	1.00	30.73
MOTA	2055	N	LEU	A 307	21.908		-3.751		25.91
ATOM	2056	CA		A 307	21.812		-4.162		22.59
MOTA	2057	C		A 307	20.478		-3.831		23.95
MOTA	2058	0		A 307	19.732		-2.958		24.98
MOTA	2059	CB		A 307	22.854		-3.478		18.77
MOTA	2060	CG		A 307	24.229				20.81
MOTA	2061	CD:	1 LEU	A 307	25.034		-2.584		22.83
ATOM	2062	CD	2 LEU	A 307	24.864	15.284	-4.571	1.00	23.95

FIG. 2JJ

ATOM	2063	N	THR A		0.179	13.429	-4.529	1.00	24.56
MOTA	2064	CA	THR A		.8.945	12.702	-4.269	1.00 1.00	22.19 17.31
MOTA	2065	C	THR A		.9.191	11.838	-3.028 -2.657	1.00	13.75
MOTA	2066	0	THR A		20.331	11.552	-5.461	1.00	24.54
MOTA	2067	CB	THR A		8.511	11.774	-5.778	1.00	24.50
MOTA	2068	OG1	THR A		19.560	10.851	-6.681	1.00	21.46
ATOM	2069	CG2	THR A		18.121	12.590	-2.425	1.00	17.90
MOTA	2070	N	PHE A		18.111	11.383	-1.248	1.00	23.22
MOTA	2071	CA	PHE A		L8.235	10.560 9.257	-1.457	1.00	25.08
MOTA	2072	C	PHE A		L8.974	8.804	-0.542	1.00	25.85
MOTA	2073	0	PHE A		L9.653	10:374	-0.578	1.00	21.29
MOTA	2074	CB	PHE A		16.887 16.452	11.591	0.164	1.00	22.18
MOTA	2075	CG	PHE A		15.864	12.659	-0.510	1.00	21.34
MOTA	2076		PHE A		16.736	11.723	1.517	1.00	21.79
ATOM	2077	CD2	PHE A		15.572	13.856	0.158	1.00	22.53
MOTA	2078		PHE A		16.452	12.909	2.195	1.00	22.27
ATOM	2079	CE2 CZ	PHE A		15.866	13.979	1.514	1.00	22.02
ATOM	2080 2081	N	PRO A		18.841	8.625	-2.640	1.00	25.50
ATOM		CA	PRO A		19.543	7.364	-2.888	1.00	22.46
MOTA	2082 2083	C	PRO A		21.041	7.566	-2.970	1.00	22.40
ATOM	2083	0	PRO A		21.806	6.678	-2.613	1.00	24.00
ATOM ATOM	2085	CB	PRO A		18.961	6.900	-4.218	1.00	25.65
ATOM	2085	CG	PRO A		17.537	7.358	-4.127	1.00	26.81
ATOM	2087	CD	PRO A		17.721	8.776	-3.602	1.00	27.78
ATOM	2088	N	LYS A		21.468	8.722	-3.459	1.00	26.43
ATOM	2089	CA	LYS A		22.901	9.004	-3.540	1.00	26.72
ATOM	2090	C	LYS A		23.311	9.641	-2.232	1.00	24.76
ATOM	2091	0	LYS A	311	24.503	9.699	-1.918	1.00	24.86
MOTA	2092	CB	LYS A	311	23.260	9.885	-4.744	1.00	29.52
ATOM	2093	CG	LYS A	311	22.367	11.086	-4.950	1.00	32.23
MOTA	2094	CD	LYS A	311	22.797	11.902	-6.187	1.00	35.53
ATOM	2095	CE	LYS A	311	22.506	11.184	-7.503	1.00	34.62
MOTA	2096	NZ	LYS A	311	21.041	11.064	-7.750	1.00	33.92 24.19
MOTA	2097	N	LEU 2	1 312	22.305	10.090	-1.467	1.00	22.42
MOTA	2098	CA		A 312	22.505	10.685	-0.137	1.00	22.08
MOTA	2099	C		A 312	22.626	9.531	0.856	1.00 1.00	22.80
MOTA	2100	0		A 312	23.504		1.724 0.253	1.00	18.83
MOTA	2101	CB		A 312	21.313	11.563	0.253		15.41
MOTA	2102	CG		A 312	21.589		0.492	1.00	12.74
MOTA	2103	CD:			20.376		0.944		13.01
MOTA	2104	CD		A 312	22.791 21.782		0.643		21.73
MOTA	2105	N		A 313	21.762		1.453		21.11
MOTA	2106			A 313	21.686		0.565		21.89
MOTA	2107			A 313	20.628				23.17
MOTA	2108			A 313 A 313	20.477				20.42
MOTA	2109			A 313	20.457				21.54
MOTA	2110		1 PHE		19.446				21.51
MOTA	2111		2 PHE		21.471				18.24
MOTA	2112 2113		1 PHE		19.451				23.36
MOTA MOTA	2114		2 PHE		21.497				20.28
MOTA	2115			A 313	20.485	10.687	5.079	1.00	19.77
MOTA	2116			A 314	22.862				22.26
ATOM	2117			A 314	23.081				27.78
ATOM	2118			A 314	22.453	3.171			29.90
ATOM	2119			A 314	22.210	3.069	1.006		29.70
MOTA	2120			A 314	24.599				28.60
MOTA	2121			A 314	25.054	5.722	-0.677	7 1.00	23.83

FIG. 2KK

								- 00	24 26
MOTA	2122		RO A 314		24.138	6.290	0.380	1.00 1.00	24.26 32.62
MOTA	2123		SP A 315		22.234	2.190	-1.059 -0.641	1.00	35.70
MOTA	2124		SP A 315		21.627	0.937	0.173	1.00	33.22
MOTA	2125		SP A 315		22.591	0.064 -0.826	0.921	1.00	32.53
MOTA	2126		SP A 315		22.176	0.194	-1.864	1.00	41.44
MOTA	2127		SP A 315		21.080	-0.767	-1.504	1.00	47.92
MOTA	2128		SP A 315		19.948	-0.303	-1.389	1.00	48.99
MOTA	2129		SP A 315		18.782	-1.986	-1.335	1.00	50.65
MOTA	2130		SP A 315		20.228	0.368	0.041	1.00	32.70
MOTA	2131		ER A 316		23.878 24.945	-0.321	0.753	1.00	32.11
MOTA	2132		SER A 316		24.943	0.046	2.234	1.00	33.20
ATOM	2133		SER A 316		25.765	-0.494	3.008	1.00	33.99
MOTA	2134		SER A 316		26.296	0.025	0.116	1.00	33.15
MOTA	2135		SER A 31		26.322	1.361	-0.365	1.00	32.59
MOTA	2136		LEU A 31		24.110	0.996	2.610	1.00	33.53
MOTA	2137		LEU A 31		23.996	1.446	3.993	1.00	33.28
MOTA	2138		LEU A 31		22.946	0.626	4.721	1.00	35.30
MOTA	2139		LEU A 31		23.066	0.385	5.917	1.00	37.21
ATOM	2140 2141		LEU A 31		23.603	2.923	4.054	1.00	30.83
MOTA	2141		LEU A 31		24.645	3.949	3.619	1.00	29.13
MOTA	2142		LEU A 31		24.099	5.348	3.856	1.00	26.44
MOTA MOTA	2144	CD2	LEU A 31	.7	25.933	3.718	4.399	1.00	28.48
ATOM	2145		PHE A 31		21.901	0.237	3.999	1.00	36.65
ATOM	2146		PHE A 31		20.817	-0.550	4.570	1.00	35.98
ATOM	2147		PHE A 31		21.016	-2.003	4.175	1.00	39.10 39.40
ATOM	2148		PHE A 31		21.696	-2.303	3.192	1.00	32.24
MOTA	2149	CB	PHE A 31		19.446	-0.135	4.030	1.00	29.76
MOTA	2150	CG	PHE A 31		19.156	1.326	4.131	1.00 1.00	30.03
ATOM	2151		PHE A 3		19.675	2.211	3.192	1.00	29.55
MOTA	2152		PHE A 31		18.272	1.800	5.087 3.191	1.00	30.88
MOTA	2153		PHE A 3		19.320	3.562 3.147	5.107	1.00	32.47
ATOM	2154		PHE A 3		17.902	4.038	4.147	1.00	29.56
MOTA	2155	CZ	PHE A 3		18.423 20.423	-2.923	4.950	1.00	41.02
MOTA	2156	N	PRO A 3		20.423	-4.370	4.763	1.00	40.92
MOTA	2157	CA	PRO A 3		19.664		3.523	1.00	40.26
MOTA	2158	C	PRO A 3		18.445		3.474	1.00	40.41
ATOM	2159	0	PRO A 3		19.817		6.046	1.00	40.44
MOTA	2160	CB	PRO A 3		20.171		7.054	1.00	38.98
MOTA	2161	CG CD	PRO A 3		19.834		6.266	1.00	42.72
MOTA	2162 2163	N	ALA A 3		20.347		2.550		39.10
MOTA	2163	CA	ALA A 3		19.712	-5.783	1.315		39.58
MOTA MOTA	2165		ALA A 3		19.866				39.61
ATOM	2166		ALA A 3		20.040	-7.727			41.72
ATOM	2167		ALA A 3		20.320				43.99
MOTA	2168		ASP A 3		19.806				36.36
MOTA	2169		ASP A. 3		19.962	-9.520		_	31.72 29.16
MOTA	2170		ASP A 3		18.675	-10.243	1.709		33.72
ATOM	2171	_	ASP A 3	321	18.680	-11.233	0.980		29.58
ATOM	2172	CB	ASP A 3	321		-10.134	3.263		26.63
MOTA	2173	CG	ASP A 3	321	20.024				28.64
MOTA	2174		ASP A 3		18.840				27.21
MOTA	2175	OD2	ASP A		20.75				23.95
MOTA			SER A 3		17.57				21.48
MOTA	. 2177		SER A		16.29				
MOTA			SER A		15.28	-			
MOTA			SER A		15.50				
ATOM	2180	CB	SER A	322	15.76	5 -10.20			

FIG. 2LL

2181	OG	SER A	322	15	.116	-9.994	4.117	1.00	29.61
2182	N			14	.168	-9.929	0.955		18.90
2183	CA	GLU A	323	13	.113	-9.134	0.376		20.38
2184	C	GLU A	323						20.46
2185	0	GLU A	323			-7.373			21.68
2186	CB	GLU A	323						17.47
2187	CG	GLU A	323						24.16
2188	CD	GLU A	323						26.03
2189	OE1	GLU A	323						28.72
2190	OE2	GLU A	323						23.50
2191	N								22.03
2192	CA	HIS A	324						19.77
2193	С								15.64
2194	0								14.85
2195	CB	HIS A	324						18.59
2196	CG								17.00 15.47
2197									16.90
2198									14.50
2199									15.07
2200									15.06
2201	N								18.56
2202									21.93
2203									26.00
									19.57
									21.82
									21.71
									17.20
									21.92
									17.60
									15.87
									15.12
									18.74
									19.18
									18.11
									19.55
								1.00	25.56
								1.00	13.43
								1.00	14.62
							2.302	1.00	17.67
							2.196	1.00	19.98
							1.246	1.00	10.36
				_			1.262	1.00	12.10
							0.021	1.00	15.96
							1.328	1.00	12.46
		LYS	A 328	3			3.396	1.00	17.49
							4.542	1.00	16.76
							4.269	1.00	14.85
							4.647	1.00	15.55
				1	L2.49	7 -2.723	5.784	1.00	13.97
				1	11.38	1 -3.476	6.440	1.00	12.37
							6.773		15.62
									18.22
							7.511		27.89
				:	14.13	5 -1.131			11.88
				:	15.18				13.33
				:	14.69				14.85
		ALA	A 329			0 2.010			11.99
		ALA	A 329	. :	16.34	0 -0.927	2.592	1.00	12.09
	2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2201 2202 2203 2204 2205 2207 2208 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2221 2221 2221 2221 2221	2182 N 2183 CA 2184 C 2185 O 2186 CB 2187 CG 2188 CD 2189 OE1 2190 OE2 2191 N 2192 CA 2193 C 2194 O 2195 CB 2196 CG 2197 ND1 2198 CD2 2201 N 2200 CA 2201 CA 2202 CB 2204 CD 2210 CA 2211 C 2212 O 2213 CB 2214 CG 2211 C 2212 CB 2214 CG 2215 CD 2216 CE 2217 NZ 2218 N 2219 CA 2210 C 2211 C 2212 CB 2214 CG 2215 CD 2216 CE 2217 NZ 2218 N 2219 CA 2210 C 2221 CB 2221 CB 2221 CB 2221 CG 2	2182 N GLU A 2183 CA GLU A 2184 C GLU A 2186 CB GLU A 2187 CG GLU A 2188 CD GLU A 2190 OE2 GLU A 2191 N HIS A 2192 CA HIS A 2193 C HIS A 2194 O HIS A 2195 CB HIS A 2196 CG HIS A 2197 ND1 HIS A 2199 CE1 HIS A 2201 N ASN A 2202 CA ASN A 2203 C ASN A 2204 O ASN A 2205 CB ASN A 2206 <td>2182 N GLU A 323 2184 C GLU A 323 2185 O GLU A 323 2186 CB GLU A 323 2187 CG GLU A 323 2188 CD GLU A 323 2190 OE2 GLU A 323 2191 N HIS A 324 2192 CA HIS A 324 2193 C HIS A 324 2193 C HIS A 324 2194 O HIS A 324 2195 CB HIS A 324 2196 CG HIS A 324 2197 ND1 HIS A 324 2199 CE1 HIS A 325 2200 CA ASN A</td> <td>2182 N GLU A 323 2183 CA GLU A 323 2184 C GLU A 323 2185 O GLU A 323 2186 CB GLU A 323 2187 CG GLU A 323 2188 CD GLU A 323 2189 OE1 GLU A 323 2189 OE1 GLU A 323 2190 OE2 GLU A 323 2191 N HIS A 324 2192 CA HIS A 324 2193 C HIS A 324 2194 O HIS A 324 2195 CB HIS A 324 2196 CG HIS A 324 2197 ND1 HIS A 324 2197 ND1 HIS A 324 2199 CE1 HIS A 324 2200 NE2 HIS A 324 2200 NE2 HIS A 324 2201 N ASN A 325 2202 CA ASN A 325 2203 C ASN A 325 2204 O ASN A 325 2205 CB ASN A 325 2206 CG ASN A 325 2206 CG ASN A 325 2207 OD1 ASN A 325 2208 ND2 ASN A 325 2209 N LYS A 326 2211 C LYS A 326 2212 O LYS A 326 2214 CG LYS A 326 2215 CD LYS A 326 2216 CE LYS A 326 2217 NZ LYS A 326 2217 NZ LYS A 326 2218 N LEU A 327 2222 CB LEU A 327 2221 O LEU A 327 2222 CB LEU A 327 2222 CB LEU A 327 2222 CB LEU A 327 2223 CG LEU A 327 2224 CD1 LEU A 327 2222 CB LEU A 327 2223 CG LEU A 327 2224 CD1 LEU A 327 2225 CD2 LEU A 327 2226 N LYS A 328 2231 CG LYS A 328 2231 CG LYS A 328 2231 CG LYS A 328 2232 CD LYS A 328 2233 CB LYS A 328 2234 NZ LYS A 328 2235 N ALA A 329 2236 CA ALA A 329 2237 C ALA A 329 2236 CA ALA A 329 2237 C ALA A 329 2236 CA ALA A 329 2237 C ALA A 329</td> <td>2182 N GLU A 323 14.168 2183 CA GLU A 323 13.113 2184 C GLU A 323 12.404 2185 O GLU A 323 11.669 2186 CB GLU A 323 12.715 2188 CD GLU A 323 12.778 2188 CD GLU A 323 12.708 2189 OE1 GLU A 323 12.758 2190 OE2 GLU A 323 12.358 2191 N HIS A 324 12.589 2192 CA HIS A 324 11.954 2193 C HIS A 324 12.814 2194 O HIS A 324 12.814 2195 CB HIS A 324 11.832 2196 CG HIS A 324 11.832 2197 ND1 HIS A 324 11.420 2197 ND1 HIS A 324 11.420 2197 ND1 HIS A 324 10.200 2198 CD2 HIS A 324 10.200 2199 CE1 HIS A 324 10.399 2201 N ASN A 325 15.046 2203 C ASN A 325 15.046 2203 C ASN A 325 15.046 2204 O ASN A 325 15.172 2204 O ASN A 325 15.618 2205 CB ASN A 325 15.618 2206 CG ASN A 325 15.416 2210 CA LYS A 326 14.891 2211 C LYS A 326 14.891 2212 O LYS A 326 13.714 2212 O LYS A 326 13.715 2214 CG LYS A 326 14.891 2215 CD LYS A 326 16.363 2217 NZ LYS A 326 16.286 2211 C LYS A 326 15.025 2214 CG LYS A 326 16.286 2217 NZ LYS A 326 17.666 2218 N LEU A 327 10.160 2222 CB LEU A 327 10.160 2233 CG LEU A 327 10.160 2234 CD LYS A 328 11.992 2235 CD LYS A 328 11.992 2236 C LYS A 328 11.992 2237 C ALAA 329 14.13 2236 CA ALAA 329 14.13 2237 C ALAA 329 14.13 2238 O ALAA 329 15.579 2238 O ALAA 329 15.579 2238 O ALAA 329 15.579</td> <td>2182 N GLU A 323</td> <td>2182 N GLU A 323</td> <td>2182 N GLU A 323</td>	2182 N GLU A 323 2184 C GLU A 323 2185 O GLU A 323 2186 CB GLU A 323 2187 CG GLU A 323 2188 CD GLU A 323 2190 OE2 GLU A 323 2191 N HIS A 324 2192 CA HIS A 324 2193 C HIS A 324 2193 C HIS A 324 2194 O HIS A 324 2195 CB HIS A 324 2196 CG HIS A 324 2197 ND1 HIS A 324 2199 CE1 HIS A 325 2200 CA ASN A	2182 N GLU A 323 2183 CA GLU A 323 2184 C GLU A 323 2185 O GLU A 323 2186 CB GLU A 323 2187 CG GLU A 323 2188 CD GLU A 323 2189 OE1 GLU A 323 2189 OE1 GLU A 323 2190 OE2 GLU A 323 2191 N HIS A 324 2192 CA HIS A 324 2193 C HIS A 324 2194 O HIS A 324 2195 CB HIS A 324 2196 CG HIS A 324 2197 ND1 HIS A 324 2197 ND1 HIS A 324 2199 CE1 HIS A 324 2200 NE2 HIS A 324 2200 NE2 HIS A 324 2201 N ASN A 325 2202 CA ASN A 325 2203 C ASN A 325 2204 O ASN A 325 2205 CB ASN A 325 2206 CG ASN A 325 2206 CG ASN A 325 2207 OD1 ASN A 325 2208 ND2 ASN A 325 2209 N LYS A 326 2211 C LYS A 326 2212 O LYS A 326 2214 CG LYS A 326 2215 CD LYS A 326 2216 CE LYS A 326 2217 NZ LYS A 326 2217 NZ LYS A 326 2218 N LEU A 327 2222 CB LEU A 327 2221 O LEU A 327 2222 CB LEU A 327 2222 CB LEU A 327 2222 CB LEU A 327 2223 CG LEU A 327 2224 CD1 LEU A 327 2222 CB LEU A 327 2223 CG LEU A 327 2224 CD1 LEU A 327 2225 CD2 LEU A 327 2226 N LYS A 328 2231 CG LYS A 328 2231 CG LYS A 328 2231 CG LYS A 328 2232 CD LYS A 328 2233 CB LYS A 328 2234 NZ LYS A 328 2235 N ALA A 329 2236 CA ALA A 329 2237 C ALA A 329 2236 CA ALA A 329 2237 C ALA A 329 2236 CA ALA A 329 2237 C ALA A 329	2182 N GLU A 323 14.168 2183 CA GLU A 323 13.113 2184 C GLU A 323 12.404 2185 O GLU A 323 11.669 2186 CB GLU A 323 12.715 2188 CD GLU A 323 12.778 2188 CD GLU A 323 12.708 2189 OE1 GLU A 323 12.758 2190 OE2 GLU A 323 12.358 2191 N HIS A 324 12.589 2192 CA HIS A 324 11.954 2193 C HIS A 324 12.814 2194 O HIS A 324 12.814 2195 CB HIS A 324 11.832 2196 CG HIS A 324 11.832 2197 ND1 HIS A 324 11.420 2197 ND1 HIS A 324 11.420 2197 ND1 HIS A 324 10.200 2198 CD2 HIS A 324 10.200 2199 CE1 HIS A 324 10.399 2201 N ASN A 325 15.046 2203 C ASN A 325 15.046 2203 C ASN A 325 15.046 2204 O ASN A 325 15.172 2204 O ASN A 325 15.618 2205 CB ASN A 325 15.618 2206 CG ASN A 325 15.416 2210 CA LYS A 326 14.891 2211 C LYS A 326 14.891 2212 O LYS A 326 13.714 2212 O LYS A 326 13.715 2214 CG LYS A 326 14.891 2215 CD LYS A 326 16.363 2217 NZ LYS A 326 16.286 2211 C LYS A 326 15.025 2214 CG LYS A 326 16.286 2217 NZ LYS A 326 17.666 2218 N LEU A 327 10.160 2222 CB LEU A 327 10.160 2233 CG LEU A 327 10.160 2234 CD LYS A 328 11.992 2235 CD LYS A 328 11.992 2236 C LYS A 328 11.992 2237 C ALAA 329 14.13 2236 CA ALAA 329 14.13 2237 C ALAA 329 14.13 2238 O ALAA 329 15.579 2238 O ALAA 329 15.579 2238 O ALAA 329 15.579	2182 N GLU A 323	2182 N GLU A 323	2182 N GLU A 323

FIG. 2MM

ATOM	2240	N	SER A	330	13.663	0.621	1.559	1.00	16.65
ATOM	2241	CA	SER A		13.046	1.568	0.647	1.00	20.24
MOTA	2242	C	SER A	330	12.014	2.374	1.430	1.00	19.37
ATOM	2243	0	SER A	330	11.680	3.503	1.075	1.00	20.59
MOTA	2244	CB	SER A		12.361	0.820	-0.510	1.00	19.48
MOTA	2245	OG	SER A	330	11.717	1.714	-1.396	1.00	23.75
MOTA	2246	N	GLN A	331	11.460	1.762	2.462	1.00	18.23
ATOM	2247	CA	GLN A	331	10.494	2.442	3.290	1.00	19.23
MOTA	2248	C	GLN A		11.219	3.484	4.124	1.00	19.62
ATOM	2249	0	GLN A		10.726	4.586	4.308	1.00	19.08 15.77
ATOM	2250	CB	GLN A		9.787	1.451	4.191	1.00	16.36
MOTA	2251	CG	GLN A		8.474	1.061	3.629	1.00	14.43
MOTÁ	2252	CD	GLN A		8.030	-0.292	4.087	1.00 1.00	23.19
MOTA	2253	OE1	GLN A		8.762	-0.994	4.763 3.718	1.00	12.76
MOTA	2254		GLN A		6.829	-0.673	4.562	1.00	19.54
MOTA	2255	N	ALA A		12.422	3.133	5.384	1.00	19.46
MOTA	2256	CA	ALA A		13.249	3.994	4.623	1.00	21.75
MOTA	2257	С	ALA A		13.761	5.205	5.203	1.00	22.56
MOTA	2258	0	ALA A		13.957	6.266 3.207	5.932	1.00	14.44
ATOM	2259	CB	ALA A		14.421	5.045	3.331	1.00	21.94
MOTA	2260	N	ARG A		14.003	6.142	2.536	1.00	22.76
ATOM	2261	CA	ARG A		14.509 13.390	7.123	2.259	1.00	22.62
MOTA	2262	C	ARG A		13.589	8.332	2.216	1.00	22.94
MOTA	2263	0	ARG A		15.079	5.628	1.222	1.00	25.59
MOTA	2264	CB	ARG A		16.450	6.149	0.922	1.00	26.01
ATOM	2265	CG	ARG A		16.778	5.976	-0.524	1.00	25.64
ATOM	2266	CD		A 333	18.026	5.255	-0.680	1.00	32.29
MOTA	2267	NE CZ		A 333	18.108	3.936	-0.831	1.00	35.86
MOTA	2268		ARG		17.000	3.191	-0.847	1.00	36.93
ATOM	2269 2270		ARG		19.299	3.362	-0.992	1.00	39.62
MOTA MOTA	2270	N		A 334	12.191	6.594	2.128	1.00	20.64
ATOM	2272	CA		A 334	11.054	7.423	1.846	1.00	21.35
ATOM	2273	C		A 334	10.724	8.307	3.028	1.00	22.23
MOTA	2274	ō		A 334	10.322	9.451	2.846	1.00	24.26
ATOM	2275	СВ		A 334	9.867	6.547	1.526	1.00	22.69
ATOM	2276	CG		A 334	8.780	7.294	0.836	1.00	21.51
ATOM	2277		ASP .		8.988	7.667	-0.344	1.00	25.96
ATOM	2278		ASP		7.720	7.485	1.469	1.00	23.53
ATOM	2279	N	LEU	A 335	10.852	7.762	4.235	1.00	21.61
ATOM	2280	CA	LEU	A 335	10.564	8.522	5.441	1.00	19.50
ATOM	2281	C		A 335	11.643	9.582	5.571	1.00	18.55
ATOM	2282	0	LEU	A 335	11.348	10.746	5.840	1.00	17.43
MOTA	2283	CB		A 335	10.537	7.617	6.681	1.00	17.26
MOTA	2284	CG		A 335	10.015	8.264	7.977		16.18
MOTA	2285		LEU		8.588	8.746	7.786		16.01
MOTA	2286	CD	2 LEU		10.076	7.276	9.131		14.68 16.64
MOTA	2287	N		A 336	12.887	9.179	5.336		16.93
MOTA	2288	CA		A 336	14.005	10.086	5.407		19.18
MOTA	2289	С		A 336	13.807	11.218	4.413		24.01
MOTA	2290	0		A 336	14.043	12.382	4.736		14.09
ATOM	2291			A 336	15.299	9.358	5.071		16.94
ATOM	2292	CG		A 336	16.249		6.179 5.565		10.16
MOTA	2293		1 LEU	A 336	17.503		7.102		13.20
MOTA	2294		2 LEU	A 336	16.599		3.226		17.20
MOTA	2295			A 337	13.315		2.184		14.95
MOTA	2296			A 337	13.114		2.559		13.10
MOTA	2297			A 337	12.032				15.70
MOTA	2298	0	SER	A 337	12.090	14.025	2.130		

FIG. 2NN

ATOM	2299	СВ	SER A		337	12.837	11.222	0.800	1.00	9.08
ATOM	2300	OG	SER A			11.455	11.067	0.520	1.00	6.87
ATOM	2301	N	LYS A			11.060	12.421	3.344	1.00	12.04
ATOM	2302	CA	LYS A			9.962	13.281	3.764	1.00	12.08
MOTA	2303	C	LYS A			10.242	14.118	5.032	1.00	14.69
ATOM	2304	ō	LYS 2			9.586	15.131	5.295	1.00	11.13
ATOM	2305	CB	LYS A			8.733	12.429	3.990	1.00	12.09
ATOM	2306	CG	LYS A			8.203	11.758	2.763	1.00	12.08
ATOM	2307	CD	LYS I			7.002	10.919	3.111	1.00	12.89
MOTA	2308	CE	LYS 2			6.220	10.601	1.882	1.00	20.87
ATOM	2309	NZ	LYS 2			7.157	10.324	0.750	1.00	24.91
ATOM	2310	N	MET 2			11.216	13.666	5.814	1.00	16.21
ATOM	2311	CA	MET 2	A	339	11.600	14.310	7.046	1.00	16.11
ATOM	2312	C	MET	A	339	12.691	15.354	6.832	1.00	16.02
MOTA	2313	0	MET .	A	339	12.602	16.458	7.374	1.00	17.20
ATOM	2314	CB	MET .	A	339	12.075	13.260	8.066	1.00	17.91
ATOM	2315	CG	MET .			11.016	12.221	8.487	1.00	15.40
MOTA	2316	SD	MET .			11.399	11.344	10.070	1.00	11.13
MOTA	2317	CE	MET			9.803	10.977	10.535	1.00	4.76
ATOM	2318	N	LEU .	A	340	13.745	14.995	6.102	1.00	13.03
ATOM	2319	CA	LEU	A	340	14.815	15.942	5.847	1.00	9.12
ATOM	2320	С	LEU	A	340	14.414	16.893	4.749	1.00	9.02
ATOM	2321	0	LEU	Α	340	14.950	16.822	3.655	1.00	11.54
MOTA	2322	CB	LEU	Α	340	16.112	15.232	5.464	1.00	10.00
MOTA	2323	CG	LEU	A	340	16.730	14.338	6.536	1.00	13.72
ATOM	2324	CD1	LEU	A	340	18.045	13.775	6.031	1.00	13.72
ATOM	2325	CD2	LEU	A	340	16.945	15.144	7.815	1.00	12.06
ATOM	2326	N	VAL	A	341	13.399	17.708	5.002	1.00	10.15
ATOM	2327	CA	VAL	Α	341	12.947	18.693	4.029		16.38
MOTA	2328	C	VAL	A	341	13.129	20.074	4.642	1.00	18.38
MOTA	2329	0	VAL	A	341	12.477	20.393	5.620	1.00	20.26
MOTA	2330	CB	VAL			11.472	18.547	3.681	1.00	15.80
MOTA	2331	CG1	VAL	Α	341	11.198	19.269	2.396	1.00	12.46
MOTA	2332	CG2	VAL	Α	341	11.086	17.106	3.565	1.00	21.60
MOTA	2333	N	ILE	A	342	13.968	20.909	4.040	1.00	21.30
ATOM	2334	CA	ILE	A	342	14.224	22.252	4.559	1.00	23.13
MOTA	2335	С	ILE	A	342	12.966	23.094	4.698	1.00	22.57
MOTA	2336	0	ILE	A	342	12.845	23.856	5.650	1.00	24.81
ATOM	2337	CB			342	15.260	23.013	3.704	1.00	24.58
MOTA	2338	CG1			342	16.591	22.252	3.691	1.00	21.38
MOTA	2339	CG2			342	15.415	24:473	4.213	1.00	28.32 21.55
MOTA	2340	CD1	ILE			17.637	22.857	2.776	1.00	20.64
MOTA	2341	N			343	12.004	22.931	3.801	1.00 1.00	18.43
MOTA	2342	CA	ASP	Α	343	10.797	23.719	3.911 4.789	1.00	19.72
MOTA	2343	С			343	9.741			1.00	22.83
MOTA	2344	0			343	9.096		4.364	1.00	19.98
MOTA	2345	CB			343	10.249		2.514	1.00	22.57
MOTA	2346	CG			343	9.077		2.510	1.00	23.19
ATOM	2347		L ASP			8.332		3.492 1.508	1.00	26.66
MOTA	2348	OD2	2 ASP			8.872				20.20
MOTA	2349	N			344	9.475		5.990		16.72
MOTA	2350	CA			344	8.470		6.894 6.304		18.97
ATOM	2351	C			344	7.086		6.854		19.62
ATOM	2352	0			344	6.211		8.075		17.59
MOTA	2353	CB			344	8.479		7.461		17.94
MOTA	2354				344	8.911		6.574		18.08
MOTA	2355				344	10.034		5.235		19.74
ATOM	2356				345	6.862		4.548		18.23
ATOM	2357	CA	ALA	Α	345	5.583	23.694	4.340	2.00	20.20

FIG. 200

ATOM	2358	C	ALA	A 345		5.453	22.445	3.724	1.00	17.55
ATOM	2359	0	ALA	A 345		4.350	22.043	3.381	1.00	19.09
ATOM	2360	CB	ALA .	A 345		5.458	24.927	3.659	1.00	18.19
MOTA	2361	N	LYS .	A 346		6.589	21.831	3.420	1.00	18.76
MOTA	2362	CA	LYS .	A 346		6.635	20.590	2.653	1.00	22.13
MOTA	2363	C	LYS .	A 346		7.160	19.356	3.444	1.00	22.18
MOTA	2364	0	LYS .	A 346		7.104	18.231	2.952	1.00	22.05
MOTA	2365	CB	LYS	A 346		7.468	20.811	1.385	1.00	26.61
MOTA	2366	CG	LYS	A 346		6.903	21.904	0.471	1.00	33.55
ATOM	2367	CD	LYS	A 346		7.743	22.051	-0.789	1.00	38.48
MOTA	2368	CE	LYS	A 346		7.883	20.707	-1.515	1.00	43.70
MOTA	2369	NZ	LYS	A 346		8.631	20.765	-2.819	1.00	47.82
MOTA	2370	N	ARG	A 347		7.648	19.575	4.664	1.00	19.68
ATOM	2371	CA	ARG	A 347		8.174	18.519	5.527	1.00	17.00
MOTA	2372	C	ARG	A 347		7.004	17.683	6.064	1.00	16.03
ATOM	2373	0	ARG	A 347		5.874	18.151	6.082	1.00	15.59
MOTA	2374	CB		A 347		8.956	19.158	6.678	1.00	16.04
ATOM	2375	CG	ARG	A 347		9.829	18.222	7.483	1.00	15.84
MOTA	2376	CD		A 347		10.449	18.926	8.675	1.00	16.35
ATOM	2377	NE		A 347		11.419	19.939	8.266	1.00	17.58
MOTA	2378	CZ		A 347		11.472	21.176	8.757	1.00	16.09
MOTA	2379			A 347		10.606	21.553	9.680	1.00	18.02
MOTA	2380	NH2		A 347	•	12.385	22.042	8.319	1.00	14.89
MOTA	2381	N		A 348		7.254	16.437	6.466	1.00	16.76
MOTA	2382	CA		A 348		6.180	15.575	6.984	1.00	16.86
ATOM	2383	C		A 348		5.909	15.867	8.466	1.00	17.05
ATOM	2384	0		A 348		6.805	16.319	9.180	1.00	18.30
MOTA	2385	CB		A 348		6.484	14.031	6.734	1.00	18.03
MOTA	2386			A 348		5.235	13.195	6.988	1.00	19.19
MOTA	2387	CG2		A 348		7.610	13.523	7.608	1.00	12.85
MOTA	2388			A 348		5.455	11.731	6.750	1.00	22.05 15.54
MOTA	2389	N		A 349		4.666	15.651	8.901	1.00	15.42
ATOM	2390	CA		A 349		4.257	15.912	10.273	1.00 1.00	18.21
ATOM	2391	C		A 349		4.443	14.695	11.187	1.00	19.66
MOTA	2392	0		A 349		4.959	13.665 16.395	10.748 10.297	1.00	13.74
MOTA	2393	CB		A 349		2.808		9.984	1.00	15.03
ATOM	2394	OG		A 349		1.896	15.362	12.460	1.00	20.51
MOTA	2395	N		A 350		4.047	14.821 13.738	13.447	1.00	18.94
MOTA	2396	CA		A 350		4.198 3.147	12.664	13.230	1.00	16.49
ATOM	2397	C		A 350			11.478	13.336	1.00	18.02
MOTA	2398	0		A 350		3.446 4.083	14.250	14.941	1.00	19.83
MOTA	2399	CB		A 350 A 350		4.553	13.183	15.922	1.00	14.18
MOTA	2400			A 350		4.893	15.506	15.153	1.00	19.35
MOTA	2401			A 350		1.928		12.912	1.00	15.82
MOTA	2402	N		A 351		0.821	12.167	12.696	1.00	19.48
MOTA	2403	CA C		A 351		0.886	11.383	11.404	1.00	21.44
MOTA	2404			A 351		0.288	10.322	11.289	1.00	24.24
MOTA MOTA	2405	0		A 351		-0.517	12.896	12.802	1.00	19.34
	2406	CB CG		A 351		-0.818	13.346	14.216	1.00	22.25
MOTA	2407			A 351		-1.880	13.959	14.447	1.00	21.31
ATOM ATOM	2408 2409			A 351		0.014	13.083	15.108	1.00	23.43
MOTA	2410	N		A 352		1.568	11.922	10.409	1.00	21.74
ATOM	2410	CA		A 352		1.699	11.221	9.152	1.00	20.56
ATOM	2412	CA		A 352		2.953	10.380	9.214	1.00	19.06
ATOM	2412	0		A 352		3.059	9.378	8.516	1.00	20.14
ATOM	2414	СВ		A 352		1.797	12.191	7.967	1.00	21.74
MOTA	2415	CG		A 352		0.504	12.922	7.680	1.00	20.06
ATOM	2415			A 352		-0.591	12.512	8.148	1.00	19.05
111011	5-3-10	001	. ADP				· •			

FIG. 2PP

MOTA	2417	OD2	ASP	Α	352		0.597	13.925	6.961	1.00	21.55
ATOM	2418	И.	ALA	A	353		3.925	10.819	10.002	1.00	16.38
MOTA	2419	CA	ALA	A	353		5.154	10.082	10.141	1.00	15.27
MOTA	2420	C	ALA				4.845	8.814	10.954	1.00	18.82
ATOM	2421	0	ALA	A	353		5.497	7.791	10.778	1.00	20.49
ATOM	2422	CB	ALA	A	353		6.240	10.943	10.789	1.00	9.63
MOTA	2423	N	PE	А	354		3.791	8.854	11.766	1.00	19.59
MOTA	2424	CA	LEU	A	354		3.397	7.699	12.567	1.00	20.91
MOTA	2425	C	LEU				2.625	6.687	11.738	1.00	22.39
MOTA	2426	0	LEU				2.633	5.487	12.044	1.00	22.66
ATOM	2427	CB	LEU				2.581	8.144	13.782	1.00	20.28
MOTA	2428	CG	LEU				3.366	8.623	15.027	1.00	22.16
MOTA	2429		LEU				2.518	9.564	15.886	1.00	18.21 18.64
MOTA	2430		LEU				3.837	7.427	15.847	1.00	25.01
ATOM	2431	N	GLN				1.974	7.189	10.682	1.00 1.00	24.82
ATOM	2432	CA	GLN				1.193	6.385	9.732	1.00	24.02
MOTA	2433	C	GLN				1.964	6.083	8.427	1.00	23.85
MOTA	2434	0	GLN				1.387	5.761	7.391 9.446	1.00	26.02
MOTA	2435	CB	GLN				-0.165	7.040	10.653	1.00	31.50
MOTA	2436	CG	GLN				-1.104	7.110 5.738	11.190	1.00	37.67
MOTA	2437	CD	GLN				-1.522	4.777	11.217	1.00	41.39
ATOM	2438		GLN			•	-0.731 -2.758	5.654	11.670	1.00	41.86
MOTA	2439		GLN HIS				3.283	6.231	8.494	1.00	24.42
MOTA	2440	N			356		4.169	5.916	7.385	1.00	22.45
ATOM	2441	CA			356		4.396	4.424	7.609	1.00	24.49
ATOM	2442	C			356		4.648	3.996	8.729	1.00	24.40
MOTA	2443	O			356		5.504	6.643	7.550	1.00	18.90
MOTA	2444	CB CG			356		6.447	6.466	6.397	1.00	19.41
ATOM	2445		HIS				6.368	7.226	5.249	1.00	17.71
MOTA MOTA	2446 2447		HIS				7.524	5.665	6.243	1.00	16.97
ATOM	2448		HIS				7.359	6.902	4.439	1.00	13.61
ATOM	2449		HIS				8.075	5.960	5.020	1.00	17.38
ATOM	2450	N			357		4.337	3.619	6.544	1.00	25.58
ATOM	2451	CA			357		4.538	2.170	6.656	1.00	22.18
ATOM	2452	C			357		5.804	1.715	7.393	1.00	19.11
ATOM	2453	Õ			357		5.829	0.608	7.939	1.00	23.70
ATOM	2454	CB	PRO	Α	357		4.542	1.711	5.187	1.00	23.59
ATOM	2455	CG	PRO	A	357		4.997	2.946	4.429	1.00	23.68
ATOM	2456	CD	PRO	A	357		4.204	4.025	5.136	1.00	24.01
ATOM	2457	N	TYR	Α	358		6.855	2.523	7.407	1.00	13.73
ATOM	2458	CA	TYR	A	358		8.066	2.108	8.086	1.00	10.20
ATOM	2459	C	TYR	A	358		7.921	2.208	9.627	1.00	15.75
MOTA	2460	0			358		8.742		10.365	1.00	14.80
MOTA	2461	CB			358		9.233	2.964	7.622	1.00	6.07
MOTA	2462	CG			358		10.577	2.532	8.168		6.30
MOTA	2463		TYR				11.287	1.528	7.563		8.94
MOTA	2464		TYR				11.151	3.145	9.282		8.80
MOTA	2465	CE	LTYR				12.534		8.043		9.47
MOTA	2466	CE			358		12.409	2.746	9.773	1.00	8.25
MOTA	2467	CZ			358		13.094	1.735	9.144		5.06
MOTA	2468	OH			358		14.339	1.288	9.583	1.00	4.74
MOTA	2469				359		6.863				15.98 16.40
ATOM	2470				359		6.613		11.511		18.15
MOTA	2471				359		5.243				24.14
MOTA	2472				359		5.088				15.03
MOTA	2473				359		6.714				11.94
ATOM	2474		l ILE				8.015				11.43
MOTA	2475	CG:	2 ILE	F	1 359		6.567	4.874	13.332		

FIG. 2QQ

MOTA	2476	CD1	ILE A	A :	359	9.183	4.972	12.216	1.00	12.83
MOTA	2477	N	ASN A	1 :	360	4.240	2.632	11.136	1.00	19.28
MOTA	2478	CA	ASN A	<i>A</i> :	360	2.912	2.249	11.601	1.00	21.24
MOTA	2479	C	ASN A	4	360	2.808	0.778	12.026	1.00	19.53
ATOM	2480	0	ASN A			1.857	0.391	12.691	1.00	21.14
MOTA	2481	CB	ASN A			1.798	2.659	10.602	1.00	24.74
MOTA	2482	CG	ASN A	Α :	360	1.637	1.685	9.438	1.00	28.99
MOTA	2483	OD1.	ASN A	Α :	360	2.619	1.150	8.913	1.00	34.08
MOTA	2484	ND2	ASN A	Α.	360	0.396	1.473	9.016	1.00	28.15
MOTA	2485	N	VAL A	A.	361	3.805	-0.033	11.702	1.00	18.76
ATOM	2486	CA	VAL A	A	361	3.753	-1.434	12.112	1.00	23.04
MOTA	2487	C	VAL 2	A.	361	3.727	-1.557	13.641	1.00	26.35
ATOM	2488	0	VAL 2	A	361	3.186	-2.523	14.171	1.00	29.64
ATOM	2489	CB	VAL 2	A.	361	4.954	-2.258	11.594	1.00	19.01
MOTA	2490	CG1	VAL 2	A	361	5.002	-2.250	10.067	1.00	20.77
MOTA	·2491	CG2	VAL 2	A	361	6.240	-1.751	12.205	1.00	18.11
ATOM	2492	N	TRP 2	A.	362	4.279	-0.561	14.342	1.00	28.15
ATOM	2493	CA	TRP 2	A	362	4.333	-0.541	15.811	1.00	24.02
ATOM	2494	C	TRP 2	A.	362	3.253	0.314	16.440	1.00	22.25
MOTA	2495	0	TRP .	A	362	3.133	0.352	17.650	1.00	28.38
ATOM	2496	CB	TRP .	A	362	5.643	0.060	16.272	1.00	19.04
ATOM	2497	CG	TRP .			6.805	-0.610	15.778	1.00	19.63
ATOM	2498		TRP .	A	362	7.701	-0.128	14.872	1.00	21.93
ATOM	2499		TRP .			7.343	-1.829	16.281	1.00	21.65
ATOM	2500	NE1				8.790	-0.961	14.801	1.00	21.62
ATOM	2501	CE2				8.597	-2.014	15.659	1.00	22.35
ATOM	2502	CE3				6.900	-2.769	17.206	1.00	20.16
MOTA	2503	CZ2				9.416	-3.113	15.957	1.00	20.95
ATOM	2504	CZ3		Α	362	7.706	-3.841	17.498	1.00	16.39
ATOM	2505	CH2				8.949	-4.010	16.880	1.00	15.82
ATOM	2506	N	TYR			2.479	1.003	15.627	1.00	22.86
ATOM	2507	CA	TYR			1.453	1.910	16.095	1.00	24.69
MOTA	2508	C	TYR			0.492	1.297	17.097	1.00	28.12
ATOM	2509	0	TYR	Α	363	0.109	0.134	16.954	1.00	30.75
MOTA	2510	CB	TYR			0.704	2.489	14.892	1.00	26.24
MOTA	2511	CG	TYR			-0.318	3.529	15.234	1.00	26.14
ATOM	2512	CD1	TYR	Α	363	-1.647	3.188	15.408	1.00	26.69
ATOM	2513	CD2				0.043	4.856	15.405	1.00	28.71
ATOM	2514	CE1	TYR	Α	363	-2.579	4.129	15.740	1.00	27.93
ATOM	2515	CE2	TYR	A	363	-0.898	5.809	15.744	1.00	26.78
ATOM	2516	CZ	TYR	Α	363	-2.198	5.432	15.905	1.00	25.74
MOTA	2517	OH	TYR	Α	363	-3.151	6.353	16.213	1.00	33.01
MOTA	2518	N	ASP	A	364	0.072	2.115	18.074	1.00	28.98
ATOM	2519	CA	ASP	A	364	-0.834	1.718	19.152	1.00	26.46
ATOM	2520	C	ASP	A	364	-1.577	2.952	19.654	1.00	26.25
ATOM	2521	0	ASP			-0.975	3.880	20.160	1.00	29.14
ATOM	2522	CB	ASP			-0.019	1.089	20.295	1.00	24.81
ATOM	2523	CG	ASP			-0.881	0.569	21.439	1.00	27.58
ATOM	2524		ASP			-2.074	0.932	21.541	1.00	28.14
ATOM	2525		ASP			-0.355	-0.201	22.268	1.00	34.84
ATOM	2526	N	PRO			-2.897	2.968	19.534	1.00	· 25.78
ATOM	2527	CA	PRO			-3.661	4.119	20.000	1.00	28.64
ATOM	2528	C	PRO			-3.331	4.580	21.408	1.00	30.94
ATOM	2529	ō	PRO			-2.838	5.690	21.581	1.00	33.56
ATOM	2530	СВ	PRO			-5.098	3.641	19.849	1.00	27.83
ATOM	2531	CG			365	-5.014	2.875	18.555	1.00	27.49
ATOM	2532	CD			365	-3.752	2.049	18.773	1.00	28.07
ATOM	2533	N	ALA			-3.539	3.725	22.406	1.00	33.50
ATOM	2534	CA	ALA			-3.254	4.086	23.802	1.00	34.17
						_				

FIG. 2RR

									24 01
MOTA	2535	C	ALA A 366		-1.828	4.610	23.995	1.00	34.01 33.18
MOTA	2536	0	ALA A 366		-1.583	5.519	24.792 24.701	1.00	38.15
MOTA	2537	CB	ALA A 366		-3.490	2.885 4.046	23.215	1.00	34.87
ATOM	2538	N	GLU A 367		-0.913	4.384	23.223	1.00	35.12
MOTA	2539	CA	GLU A 367		0.508	5.663	22.429	1.00	36.01
ATOM	2540	С	GLU A 367		0.799	6.286	22.597	1.00	34.03
MOTA	2541	0	GLU A 367		1.846	3.229	22.607	1.00	36.74
MOTA	2542	CB	GLU A 367		1.283	2.921	23.231	1.00	37.45
MOTA	2543	CG	GLU A 367		2.622 3.323	1.742	22.543	1.00	37.93
MOTA	2544	CD	GLU A 367		3.323	1.476	21.340	1.00	34.38
ATOM	2545		GLU A 367		4.148	1.082	23.206	1.00	38.70
ATOM	2546	OE2	GLU A 367		-0.136	6.058	21.572	1.00	37.78
ATOM	2547	N	VAL A 368 VAL A 368		0.034	7.262	20.774	1.00	38.83
ATOM	2548	CA C	VAL A 368		-0.925	8.387	21.186	1.00	39.06
MOTA	2549		VAL A 368		-0.473	9.434	21.642	1.00	41.85
MOTA	2550	O CB	VAL A 368		-0.076	6.978	19.243	1.00	37.06
MOTA	2551		VAL A 368		-0.058	8.277	18.463	1.00	37.21
MOTA	2552 2553		VAL A 368		1.072	6.123	18.786	1.00	35.19
MOTA	2554	N N	GLU A 369		-2.233	8.197	21.011	1.00	40.22
ATOM	2555	CA	GLU A 369		-3.195	9.241	21.377	1.00	42.42
ATOM	2556	C	GLU A 369		-3.801	9.073	22.753	1.00	42.83
ATOM ATOM	2557	ō	GLU A 369		-4.960	8.673	22.915	1.00	42.26
ATOM	2558	CB	GLU A 369		-4.294	9.438	20.319	1.00	44.75
MOTA	2559	CG	GLU A 369		-5.014	8.180	19.855	1.00	45.12
ATOM	2560	CD	GLU A 369		-4.439	7.620	18.561	1.00	46.29
MOTA	2561		GLU A 369		-3.313	8.031	18.196	1.00	44.38
MOTA	2562	OE2			-5.115	6.774	17.922	1.00	44.39
ATOM	2563	N	ALA A 370		-3.013	9.494	23.731	1.00	44.29
ATOM	2564	CA	ALA A 370		-3.378	9.420	25.126	1.00	45.80
ATOM	2565	C	ALA A 370		-3.316	10.812	25.750	1.00	46.17
MOTA	2566	0	ALA A 370		-2.472	11.639	25.373	1.00	44.23
ATOM	2567	CB	ALA A 370		-2.430	8.464	25.860	1.00	47.56
MOTA	2568	N	PRO A 371		-4.234	11.086	26.695	1.00	47.08
ATOM	2569	CA	PRO A 371		-4.333	12.370	27.412	1.00	47.97 47.33
MOTA	2570	C	PRO A 371		-3.001	12.746	28.091	1.00	48.84
MOTA	2571	0	PRO A 371		-2.308	11.887	28.651	1.00 1.00	47.47
MOTA	2572	CB	PRO A 371		-5.446	12.091	28.438	1.00	46.69
MOTA	2573	CG	PRO A 371		-6.343	11.117	27.704 27.119	1.00	46.13
MOTA	2574	CD	PRO A 371		-5.312	10.173	27.119	1.00	44.53
MOTA	2575	N	PRO A 372		-2.584	14.030	28.557	1.00	43.72
MOTA	2576	CA	PRO A 372		-1.351	14.560 14.823	30.092	1.00	43.15
MOTA	2577	C	PRO A 372		-1.247	14.025	30.755	1.00	38.33
MOTA	2578	0	PRO A 372		-0.392 -1.060	15.805	27.692	1.00	42.06
MOTA	2579	CB	PRO A 372		-2.418	16.198	27.182	1.00	43.54
MOTA	2580	CG	PRO A 372		-3.031	14.874	26.844	1.00	41.44
MOTA	2581	CD	PRO A 372 PRO A 373		-2.124	15.680	30.688	1.00	45.40
MOTA	2582	N	_		-1.991	15.905	32.142	1.00	48.11
MOTA	2583	CA	PRO A 373		-2.838	14.972	33.035		48.84
ATOM	2584	C	PRO A 373		-3.957	15.358			47.99
ATOM	2585 2586	O CB			-2.406	17.394	32.305	1.00	48.09
ATOM	2587	CG			-2.950	17.835	30.926		45.71
MOTA MOTA	2587 2588	CD			-3.203	16.528			46.49
ATOM	2589	N	ALA A 379		5.622	28.512	36.170		42.15
MOTA	2590	CA			4.671	27.944			45.12
MOTA	2590 2591	C	ALA A 379		5.052	28.375		1.00	47.76
ATOM	2592		ALA A 379		5.397	27.528	32.908		47.42
MOTA	2593				3.230	28.364	35.511	1.00	42.23
111011	2373		HIM H J.J	,					

FIG. 2SS

								20 404	7 00	40 52
MOTA	2594	N	LEU A		5.0		29.690	33.494	1.00	48.53 46.22
ATOM	2595	CA	LEU A		5.3		30.273	32.190	1.00	48.02
ATOM	2596	C	LEU A	380	6.8		30.312	32.046	1.00	
ATOM	2597	0	LEU A	380	7.5		31.138	32.662	1.00	47.82
MOTA	2598	CB	LEU A	380	4.7		31.685	32.081	1.00	43.91
MOTA	2599	CG	LEU A	380	3.2		31.846	31.837	1.00	41.45
ATOM	2600	CD1	LEU A	380	2.8		31.153	30.529	1.00	43.02
MOTA	2601	CD2	LEU A	380	2.4		31.288	32.988	1.00	37.93
ATOM	2602	N	ASP A	381	7.3	98	29.437	31.194	1.00	51.88
ATOM	2603	CA	ASP A	381	8.8		29.317	31.012	1.00	53.94
MOTA	2604	С	ASP A	381	9.5	-	29.929	29.770	1.00	54.51
ATOM	2605	0	ASP A	A 381	10.0		29.214	28.892	1.00	53.90
MOTA	2606	CB	ASP A	A 381	9.2	63	27.839	31.152	1.00	57.15
ATOM	2607	CG	ASP A	A 381	8.5	20	27.109	32.277	1.00	58.25
ATOM	2608	OD1	ASP A	A 381	8.7	731	27.455	33.464	1.00	61.41
ATOM	2609	OD2	ASP 2	A 381	7.7	735	26.177	31.974	1.00	54.54
ATOM	2610	N	ALA 2	A 382	9.6	16	31.254	29.747	1.00	54.88
ATOM	2611	CA	ALA	A 382	10.2	269	32.050	28.702	1.00	53.46
MOTA	2612	C	ALA	A 382	10.3	336	33.434	29.382	1.00	54.54
ATOM	2613	0	ALA .	A 382	10.2	287	34.510	28.755	1.00	53.71
ATOM	2614	CB	ALA .	A 382	9.4	105	32.084	27.459	1.00	55.53
ATOM	2615	N	ARG .	A 383	10.4	181	33.331	30.700	1.00	52.53
ATOM	2616	CA	ARG .	A 383	10.5	518	34.404	31.679	1.00	48.12
ATOM	2617	C	ARG .	A 383	11.8	368	35.088	31.895	1.00	45.65
ATOM	2618	0	ARG .	A 383	12.8	317	34.867	31.135	1.00	43.32
ATOM	2619	CB	ARG	A 383	10.0		33.784	32.991	1.00	48.15
ATOM	2620	CG	ARG	A 383	10.7	757	32.453	33.300	1.00	47.01
ATOM	2621	CD	ARG	A 383	9.8	897	31.495	34.099	1.00	45.98
ATOM	2622	NE	ARG	A 383	9.3	381	32.145	35.294	1.00	46.34
MOTA	2623	CZ	ARG	A 383	8.2	271	31.795	35.935	1.00	45.23
MOTA	2624	NH1	ARG	A 383	7.5	531	30.776	35.516	1.00	46.97
MOTA	2625	NH2	ARG	A 383	7.8	863	32.517	36.969	1.00	45.75
MOTA	2626	N	GLU	A 384	11.9	908	35.937	32.932	1.00	43.92
ATOM	2627	CA	GLU	A 384	13.3		36.688	33.357	1.00	41.03
ATOM	2628	C	GLU	A 384	13.	135	36.865	34.895	1.00	
ATOM	2629	0	GLÜ	A 384	12.3		37.306	35.505	1.00	34.88
ATOM	2630	CB	GLU	A 384	13.3		38.080	32.742	1.00	45.48
ATOM	2631	CG	${ t GLU}$	A 384	12.		38.134	31.257	1.00	49.70
MOTA	2632	CD	GLU	A 384	12.		39.535	30.785	1.00	50.64
ATOM	2633	OE1	GLU	A 384	11.		40.279	31.567	1.00	47.57
MOTA	2634	OE2		A 384	12.		39.874	29.625	1.00	53.02
MOTA	2635	N		A 385	14.		36.521	35.504	1.00	34.45
ATOM	2636	CA	HIS	A 385	14.		36.644	36.950	1.00	30.28
MOTA	2637	C		A 385	15.		36.683	37.261	1.00	28.54
MOTA	2638	0		A 385	16.		36.326	36.445	1.00	24.90
MOTA	2639	CB		A 385	13.		35.454	37.737	1.00	27.07
ATOM	2640	CG		A 385	12.		35.211	37.565		26.81 27.05
ATOM	2641			A 385	11.		35.855	38.314		28.23
ATOM	2642			A 385		790	34.342	36.766		31.75
MOTA	2643			A 385		304	35.396	37.990		30.36
MOTA	2644			A 385		452	34.475	37.053		32.82
MOTA	2645	N		A 386		226	37.132	38.468		35.29
ATOM	2646	CA		A 386		602	37.177	38.935		33.04
MOTA	2647	C		A 386		958	35.861	39.623		30.47
MOTA	2648	0		A 386		071	35.101	40.016		37.45
MOTA	2649	CB		A 386		880	38.345	39.907		43.91
ATOM	2650			A 386		164	38.132	40.515		36.33
ATOM	2651	CG2		A 386		801	38.441	40.989		31.86
MOTA	2652	N	ILE	A 387	19.	257	35.644	39.823	1.00	21.00

FIG. 2TT

										•
MOTA	2653	CA	ILE	A	387	19.776	34.421	40.423	1.00	33.58
MOTA	2654	C	ILE	Α	387	19.300	34.068	41.830	1.00	33.37
MOTA	2655	0	ILE	Α	387	19.481	32.932	42.285	1.00	31.92
MOTA	2656	CB	ILE			21.315	34.393	40.388	1.00	35.68
MOTA	2657	CG1	ILE			21.903	35.487	41.286	1.00	33.18
MOTA	2658	CG2				21.789	34.535	38.940	1.00	35.90
MOTA	2659	CD1				23.412	35.408	41.424	1.00	29.75
MOTA	2660	N	GLU			18.756	35.049	42.545	1.00	33.15
MOTA	2661	CA	GLU			18.247	34.784	43.873	1.00	30.07
MOTA	2662	C	GLU			16.758	34.593	43.744	1.00	28.18
MOTA	2663	0	GLU			16.124	33.879	44.518	1.00	26.25
MOTA	2664	CB	GLU			18.650	35.897	44.828	1.00	35.56 42.10
MOTA	2665	CG	GLU			20.174	35.911	45.063	1.00 1.00	45.57
MOTA	2666	CD	GLU			20.759	34.510	45.329 46.358	1.00	49.57
MOTA	2667		GLU			20.380	33.900	44.521	1.00	49.11
MOTA	2668	OE2				21.599 16.202	34.017 35.192	42.708	1.00	25.49
ATOM	2669	N	GLU				34.998	42.700	1.00	25.44
ATOM	2670	CA	GLU			14.795 14.595	33.610	41.785	1.00	23.41
MOTA	2671	C	GLU			13.521	33.016	41.896	1.00	22.43
ATOM	2672	0	GLU			14.270	36.103	41.549	1.00	27.39
ATOM	2673	CB	GLU			13.547	37.123	42.355	1.00	31.98
MOTA	2674	CD CD	GLU			12.863	38.134	41.501	1.00	37.60
MOTA	2675 2676		GLU			11.630	37.982	41.322	1.00	40.54
ATOM	2677	OE2				13.547	39.082	41.024	1.00	36.37
MOTA MOTA	2678	N			390	15.640	33.113	41.124	1.00	18.95
ATOM	2679	CA	TRP			15.605	31.808	40.491	1.00	17.65
ATOM	2680	C			390	15.715	30.735	41.576	1.00	17.48
ATOM	2681	ō			390	14.966	29.767	41.597	1.00	19.35
ATOM	2682	CB			390	16.772	31.673	39.516	1.00	15.00
ATOM	2683	CG			390	16.485	32.149	38.147	1.00	12.48
MOTA	2684	CD1			390	17.300	32.923	37.376	1.00	13.71
ATOM	2685	CD2			390	15.310	31.882	37.357	1.00	11.84
ATOM	2686	NE1		Α	390	16.706	33.166	36.157	1.00	13.62
ATOM	2687	CE2	TRP	A	390	15.485	32.538	36.118	1.00	11.97
MOTA	2688	CE3	TRP	A	390	14.142	31.151	37.569	1.00	14.72
MOTA	2689	CZ2	TRP	Α	390	14.529	32.486	35.104	1.00	11.62
MOTA	2690	CZ3	TRP	Α	390	13.186	31.099	36.553	1.00	14.87
MOTA	2691	CH2	TRP	A	390	13.386	31.759	35.338	1.00	11.15
MOTA	2692	N	LYS	A	391	16.651	30.941	42.490	1.00	20.23
MOTA	2693	CA			391	16.888	30.049	43.607	1.00	20.65
MOTA	2694	C			391	15.601	29.802	44.400	1.00	22.95
MOTA	2695	0			391	15.301	28.654	44.748	1.00	24.92
ATOM	2696	CB			391	17.988	30.651	44.471	1.00	21.29
ATOM	2697	CG			391	18.444	29.831	45.640	1.00	20.35
MOTA	2698	CD			391	19.809	30.312	46.095	1.00	20.38 24.61
MOTA	2699	CE			391	20.072	29.882	47.532	1.00	26.71
ATOM	2700	NZ			. 391	21.393	30.332	48.051	1.00 1.00	22.91
ATOM	2701	N			. 392	14.824 13.567	30.849	44.682 45.412	1.00	23.21
ATOM	2702	CA			392		30.648	44.599	1.00	23.80
ATOM	2703	C			392	12.548	29.870	45.135	1.00	24.12
MOTA	2704	0			392	11.810 12.926	29.039 31.967	45.135	1.00	23.58
MOTA	2705	CB			392	11.470	31.792	46.377	1.00	27.62
MOTA	2706	CG			392	11.219	32.416	47.762	1.00	30.72
ATOM	2707	CD			392	12.080	33.184	48.243	1.00	34.21
MOTA MOTA	2708 2709	OE1			392	10.157	32.158	48.370	1.00	30.26
MOTA	2709	N N			393	12.436	30.212	43.322	1.00	22.69
MOTA	2711	CA			393	11.498	29.527	42.450	1.00	19.67
ATOM	Z / 11	CA	TEU	24	دور					

FIG. 2UU

MOTA	2712	С			393	11.862	28.036	42.415	1.00	16.28
ATOM	2713	0			393	11.010	27.163	42.580	1.00	16.68
MOTA	2714	CB	LEU	Α	393	11.600	30.104	41.040	1.00	16.32
ATOM	2715	CG	LEU	Α	393	10.942	31.443	40.796	1.00	11.54
ATOM	2716	CD1	LEU	Α	393	11.522	32.077	39.540	1.00	11.13
ATOM	2717	CD2	LEU	Α	393	9.453	31.217	40.635	1.00	12.66
ATOM	2718	N	ILE	Α	394	13.148	27.771	42.261	1.00	14.10
ATOM	2719	CA			394	13.672	26.430	42.174	1.00	18.89
ATOM	2720	C			394	13.479	25.615	43.449	1.00	24.26
ATOM	2721	ō			394	12.862	24.540	43.426	1.00	23.76
ATOM	2722	CB			394		26.499	41.738	1.00	17.71
						15.140				
ATOM	2723	CG1			394	15.191	26.982	40.280	1.00	17.72
MOTA	2724	CG2			394	15.835	25.173	41.915	1.00	20.38
MOTA	2725	CD1			394	16.539	26.785	39.598	1.00	17.90
MOTA	2726	N			395	13.974	26.145	44.567	1.00	26.90
ATOM	2727	CA			395	13.845	25.497	45.868	1.00	27.68
ATOM	2728	C			395	12.365	25.241	46.140	1.00	29.10
ATOM	2729	0	TYR	Α	395	11.984	24.213	46.697	1.00	30.47
MOTA	2730	CB	TYR	A	395	14.426	26.414	46.943	1.00	26.11
MOTA	2731	CG	TYR	A	395	14.492	25.831	48.330	1.00	23.85
ATOM	2732	CD1	TYR	Α	395	15.527	24.995	48.701	1.00	20.88
MOTA	2733	CD2			395	13.568	26.186	49.292	1.00	25.32
ATOM	2734	CE1			395	15.648	24.530	49.993	1.00	25.62
ATOM	2735	CE2			395	13.680	25.728	50.609	1.00	28.23
ATOM	2736	CZ			395	14.717	24.906	50.950	1.00	27.68
ATOM	2737	OH			395	14.814	24.469	52.245	1.00	33.57
ATOM					396					31.19
	2738	N				11.524	26.166	45.697	1.00	
ATOM	2739	CA			396	10.089	26.072	45.874	1.00	29.83
ATOM	2740	C			396	9.520	24.805	45.222	1.00	29.47
ATOM	2741	0			396	8.622	24.168	45.783	1.00	31.87
MOTA	2742	CB			396	9.451	27.297	45.236	1.00	31.22
ATOM	2743	CG			396	8.555	28.104	46.129	1.00	34.16
ATOM	2744	CD	LYS	Α	396	9.323	28.880	47.193	1.00	36.62
ATOM	2745	CE	LYS	Α	396	8.449	29.995	47.763	1.00	36.94
MOTA	2746	NZ	LYS	Α	396	8.227	31.096	46.745	1.00	38.25
MOTA	2747	N	GLU	Α	397	10.012	24.458	44.030	1.00	26.39
ATOM	2748	CA	GLU	A	397	9.524	23.280	43.308	1.00	23.47
ATOM	2749	С	GLU	Α	397	10.077	21.984	43.863	1.00	19.67
ATOM	2750	0			397	9.398	20.968	43.869	1.00	18.33
ATOM	2751	СВ	GLU			9.851	23.372	41.806	1.00	27.02
ATOM	2752	CG	GLU			8.703	23.869	40.887	1.00	27.93
ATOM	2753	CD			397	7.601	22.839	40.651	1.00	27.60
ATOM	2754	OE1	GLU			7.891	21.632	40.652	1.00	26.85
MOTA	2755	OE2	GLU			6.433	23.233	40.451	1.00	30.96
ATOM	2756	N	VAL			11.332	22.003	44.276	1.00	19.84
ATOM	2757	CA	VAL			11.966	20.822	44.833	1.00	23.53
ATOM	2758	С	VAL			11.255	20.413	46.119	1.00	26.29
ATOM	2759	0	VAL			11.114	19.217	46.400	1.00	29.23
ATOM	. 2760	CB	VAL			13.466	21.068	45.127	1.00	23.54
ATOM	2761		VAL			14.140	19.801	45.608	1.00	18.61
MOTA	2762	CG2	VAL	A	398	14.157	21.618	43.883	1.00	25.50
ATOM	2763	N	MET			10.789	21.404	46.884	1.00	28.85
ATOM	2764	CA	MET			10.081	21.137	48.135	1.00	31.54
ATOM	2765	C	MET			8.612	20.924	47.867	1.00	34.05
ATOM	2766	ō	MET			7.892	20.478	48.753	1.00	36.36
MOTA	2767	СВ	MET			10.242	22.287	49.129	1.00	29.76
ATOM	2768	CG	MET			11.666	22.576	49.515	1.00	32.50
ATOM	2769	SD	MET			12.612	21.136	50.101	1.00	34.26
ATOM	2770	CE	MET			12.505	21.419	51.848	1.00	42.05
	2,,0	CE	PLE	_	J J J	12.303	21.717	JT.040	4.00	-2.03

FIG. 2VV

ATOM	2771	N	ASN A 400	8.185	21.209	46.636	1.00	38.05
ATOM	2772	CA	ASN A 400	6.782	21.075	46.197	1.00	42.57
MOTA	2773	C	ASN A 400	5.706	20.912	47.262	1.00	44.57
MOTA	2774	0	ASN A 400	4.935	21.885	47.424	1.00	46.32
MOTA	2775	CB	ASN A 400	6.585	20.032	45.047	1.00	44.49
ATOM	2776	CG	ASN A 400	7.320	18.689	45.274	1.00	46.24
MOTA	2777	OD1	ASN A 400	6.968	17.908	46.161	1.00	46.77
MOTA	2778	ND2	ASN A 400	8.289	18.390	44.401	1.00	44.05
ATOM	2779	C5	5184A1001	21.681	10.532	31.356	1.00	27.28
MOTA	2780	C6	5184A1001	22.457	11.213	30.225	1.00	28.05
MOTA	2781	01	5184A1001	23.279	10.622	29.499	1.00	24.49
MOTA	2782	N1	5184A1001	22.218	12.549	30.129	1.00	26.81
MOTA	2783	C2	5184A1001	21.369	13.245	30.873	1.00	25.98
MOTA	2784	из	5184A1001	20.662	12.674	31.791	1.00	28.30
ATOM	2785	C4	5184A1001	20.874	11.283	32.149	1.00	25.17
MOTA	2786	02	5184A1001	21.212	14.442	30.751	1.00	28.54
MOTA	2787	C11	5184A1001	21.776	9.055	31.557	1.00	28.26
MOTA	2788	04	5184A1001	21.021	8.534	32.380	1.00	29.45
ATOM	2789	N4	5184A1001	22.670	8.379	30.822	1.00	28.04
MOTA	2790	C1	5184A1001	23.707	4.452	30.694	1.00	24.51
MOTA	2791	C12	5184A1001	24.236	5.340	29.725	1.00	24.47
MOTA	2792	C3	5184A1001	23.837	6.674	29.834	1.00	25.42
ATOM	2793	C14	5184A1001	22.957	7.050	30.868	1.00	25.69
MOTA	2794	C7	5184A1001	22.454	6.120	31.816	1.00	25.22
MOTA	2795	C9	5184A1001	22.836	4.784	31.730	1.00	20.54
MOTA	2796	N2	5184A1001	20.058	10.764	33.215	1.00	24.72
MOTA	2797	C16	5184A1001	18.674	11.516	36.553	1.00	14.97
MOTA	2798	C13	5184A1001	19.542	11.079	35.546	1.00	19.43
ATOM	2799	C17	5184A1001	19.290	11.368	34.202	1.00	23.47
ATOM	2800	C15	5184A1001,	18.143	12.127	33.889	1.00	25.12
MOTA	2801	C8	5184A1001	17.248	12.570	34.935	1.00	24.24
MOTA	2802	C10	5184A1001	17.543	12.248	36.274	1.00	15.35
ATOM	2803	OH2	TIP3B 1	19.519	6.665	33.090	1.00	11.81
ATOM	2804	OH2	TIP3B 2	14.148	22.210	28.179	1.00	20.00
ATOM	2805	OH2	TIP3B 3	16.487	15.191	32.609	1.00	20.00
				END				

FIG. 3A

	Atom	Туре	e Resid	<u>#</u>		<u>x</u>	<u>¥</u>	<u>z</u>	<u>0cc</u>	<u>B</u>
MOTA	1	СВ	ASP	45		19.290	11.912	62.876	1.00	82.67
ATOM	2	CG	ASP	45		20.511	12.303	63.724	1.00	82.67
MOTA	3	OD1	ASP	45		21.632	12.419	63.162	1.00	82.67
ATOM	4	OD2	ASP	45		20.347	12.500	64.956	1.00	82.67
ATOM	5	C	ASP	45		19.675	12.871	60.534	1.00	40.50
ATOM	6	0	ASP	45		19.435	13.632	59.587	1.00	82.67
ATOM	7	N	ASP	45	•	17.424	12.934	61.581	1.00	40.50
MOTA	8	CA	ASP	45		18.894	13.005	61.859	1.00	40.50
ATOM	9	N	ASN	46		20.618	11.939	60.468	1.00	17.90
ATOM	10	CA	ASN	46		21.385	11.740	59.249	1.00	17.90
ATOM	11	CB	ASN	46		22.723	11.074	59.552	1.00	34.81
MOTA	12	CG	ASN	46		23.710	12.021	60.171	1.00	34.81
MOTA	13	OD1	ASN	46		23.339	13.104	60.639	1.00	34.81
ATOM	14		ASN	46		24.976	11.627	60.190	1.00	34.81
ATOM	15	C	ASN	46		20.650	10.894	58.227	1.00	17.90
ATOM	16	0	ASN	46		20.826	9.675	58.195	1.00	34.81
MOTA	17	N	GLN	47		19.813	11.534	57.410	1.00	2.36
ATOM	18	CA	GLN	47		19.079	10.827	56.360	1.00	2.36
ATOM	19	CB	GLN	47		17.776	11.552	55.999	1.00	25.20
ATOM	20	CG	GLN	47		16.591	11.308	56.965	1.00	25.20
MOTA	21	CD	GLN	47		15.309	12.062	56.565	1.00	25.20
MOTA	22		GLN	47		14.200	11.509	56.578	1.00	25.20
MOTA	23	NE2		47		15.462	13.338	56.226	1.00	25.20
ATOM	24	C	GLN	47		20.005	10.791	55.149	1.00	2.36
MOTA	25	Ö	GLN	47		19.903	9.907	54.306	1.00	25.20
MOTA	26	N	PHE	48		20.976	11.704	55.137	1.00	2.00
ATOM	27	CA	PHE	48		21.929	11.832	54.040	1.00	2.00
ATOM	28	CB	PHE	48		22.025	13.288	53.588	1.00	2.00
	29	CG	PHE	48		20.701	13.893	53.274	1.00	2.00
MOTA MOTA	30		PHE	48		19.915	14.404	54.296	1.00	2.00
MOTA	31		PHE	48		20.197	13.869	51.976	1.00	2.00
ATOM	32	CE1		48		18.638	14.876	54.054	1.00	2.00
ATOM	33	CE2		48		18.918	14.337	51.707	1.00	2.00
ATOM	34	CZ	PHE	48		18.128	14.845	52.760	1.00	2.00
MOTA	35	C	PHE	48		23.314	11.359	54.369	1.00	2.00
MOTA	36	ō	PHE	48		23.672	11.164	55.529	1.00	2.00
ATOM	37	N	TYR	49		24.098	11.171	53.320	1.00	2.00
ATOM	38	CA	TYR	49		25.465	10.754	53.478	1.00	2.00
ATOM	39	CB	TYR	49		25.572	9.230	53.557	1.00	7.42
MOTA	40	CG	TYR	49		25.519	8.504	52.242	1.00	7.42
ATOM	41		1 TYR	49		24.305	8.195	51.643	1.00	7.42
ATOM	42		1 TYR	49		24.255	7.486	50.442	1.00	7.42
ATOM	43		2 TYR	49		26.684	8.085	51.619	1.00	7.42
MOTA	44			49		26.641	7.380	50.416	1.00	7.42
ATOM	45			49		25.426	7.084	49.841		7.42
ATOM	46			49		25.387	6.407	48.655	1.00	7.42
ATOM	47		TYR	49		26.250	11.304	52.311	1.00	2.00
ATOM	48		TYR	49		25.746	11.416	51.202	1.00	7.42
MOTA	49		SER	50		27.484		52.585	1.00	12.70
ATOM	50			50		28.346	12.240	51.569	1.00	12.70
ATOM	51			50		29.144			1.00	44.73
ATOM	52			50		28.278			1.00	44.73
ATOM	53		SER	50		29.303			1.00	12.70
ATOM	54		SER	50		29.989				44.73
ATOM	55		VAL	51		29.343			1.00	12.81
MOTA	56			51		30.238				12.81
MOTA	57			51		29.531				2.00
AIOM	٠, ر		420							

FIG. 3B

ATOM 59 CG2 VAL 51 30.557 7,887 48.125 ATOM 60 C VAL 51 30.898 10.933 47.828 ATOM 61 O VAL 51 30.898 10.933 47.828 ATOM 62 N GLU 52 32.222 10.801 47.753 ATOM 63 CA GLU 52 32.222 10.801 47.753 ATOM 64 CB GLU 52 34.479 11.575 47.151 ATOM 65 CG GLU 52 34.479 11.575 47.151 ATOM 66 CD GLU 52 34.838 14.037 46.631 ATOM 67 OE1 GLU 52 34.838 14.037 46.631 ATOM 68 OE2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 33.710 9.760 45.127 ATOM 69 C GLU 52 33.710 9.760 45.127 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.0228 10.287 42.885 ATOM 74 CG1 VAL 53 30.022 10.287 42.885 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 36.150 12.291 1.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 80 C GLY 54 36.150 12.291 1.234 40.617 ATOM 81 O GLY 54 36.150 12.291 1.3611 40.767 ATOM 85 CG ASP 55 35.257 14.881 41.056 ATOM 86 OD1 ASP 55 35.557 15.616 39.784 ATOM 87 OD2 ASP 55 36.461 16.602 39.952 ATOM 88 C ASP 55 36.461 16.602 39.952 ATOM 89 O ASP 55 34.617 17.303 42.334 ATOM 99 N SER 56 31.666 15.067 44.207 ATOM 90 N SER 56 31.666 15.067 44.207 ATOM 91 CA SER 56 30.177 17.303 42.334 ATOM 96 N THR 57 30.724 15.856 47.663 ATOM 97 CA THR 57 30.724 15.856 47.663 ATOM 98 CB THR 57 31.153 15.856 47.663 ATOM 99 OG1 THR 57 30.724 15.856 47.663 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 90 N SER 56 31.666 15.067 44.207 ATOM 91 CC PHE 58 26.690 12.677 43.841 ATOM 100 CG2 THR 57 30.724 15.856 46.246 ATOM 101 C THR 57 30.724 15.856 46.246 ATOM 102 CD THR 57 30.724 15.856 46.246 ATOM 103 N PHE 58 26.690 12.677 43.841 ATOM 104 CA PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 27.731 13.123 43.030 ATOM 107 CD PHE 58 27.731 13.123 43.030 ATOM 108 CD PHE 58 27.731 13.123 43.030 ATOM 109 C			
ATOM	rom		2.00
ATOM 61 O VAL 51 30.242 11.660 47.076 ATOM 62 N GLU 52 32.222 10.801 47.753 ATOM 63 CA GLU 52 32.222 10.801 47.753 ATOM 64 CB GLU 52 34.479 11.575 47.151 ATOM 65 CG GLU 52 34.479 11.575 47.151 ATOM 66 CD GLU 52 34.838 14.037 46.631 ATOM 67 OE1 GLU 52 34.838 14.037 46.635 ATOM 68 OE2 GLU 52 34.719 14.388 47.824 ATOM 68 OE2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.022 9.701 41.480 ATOM 74 CG1 VAL 53 30.022 9.701 41.480 ATOM 75 CG2 VAL 53 30.022 9.701 41.480 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 79 CA GLY 54 36.150 12.291 41.758 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 36.481 16.802 39.952 ATOM 84 CB ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.481 16.802 39.952 ATOM 89 O ASP 55 36.481 16.802 39.952 ATOM 99 CR SER 56 30.865 16.086 42.060 ATOM 99 CR SER 56 30.865 16.086 42.060 ATOM 99 CR THR 57 30.767 14.991 48.931 ATOM 99 CR THR 57 30.7967 14.991 48.931 ATOM 100 CR THR 57 30.7967 14.991 48.931 ATOM 101 C THR 57 30.7967 14.991 48.931 ATOM 102 O THR 57 30.7967 14.991 48.931 ATOM 103 N PHE 58 27.731 13.123 43.030 ATOM 106 CR PHE 58 27.731 13.123 43.030 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 26.690 12.677 43.841 ATOM 109 CE1 PHE 58 26.690 12.677 43.841 ATOM 109 CE1 PHE 58 27.526 13.302 41.1.190			2.00
ATOM 62 N GLU 52 32.222 10.801 47.753 ATOM 63 CA GLU 52 33.013 11.448 46.709 ATOM 64 CB GLU 52 33.013 11.448 46.709 ATOM 65 CG GLU 52 33.4.679 11.575 47.151 ATOM 66 CD GLU 52 34.479 14.388 47.824 ATOM 67 OE1 GLU 52 34.719 14.388 47.824 ATOM 68 OE2 GLU 52 34.719 14.388 47.824 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.941 10.409 43.266 ATOM 73 CB VAL 53 30.028 10.287 42.885 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 32.471 11.190 42.175 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 79 CA GLY 54 35.125 12.430 41.670 ATOM 79 CA GLY 54 35.125 12.430 41.089 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 35.125 12.430 41.089 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 84 CB ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 17.303 42.346 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 36.110 17.895 39.466 ATOM 90 N SER 56 32.089 15.876 42.974 ATOM 90 N SER 56 30.855 16.632 42.914 ATOM 90 N SER 56 31.861 13.852 44.254 ATOM 90 C SER 56 30.177 17.303 42.334 ATOM 90 C SER 56 30.855 16.632 42.914 ATOM 90 C SER 56 30.855 16.086 42.060 ATOM 90 C SER 56 30.855 16.086 42.060 ATOM 90 C SER 56 30.855 16.086 42.076 ATOM 100 C SER 56 30.855 16.086 42.076 ATOM 101 C THR 57 29.208 14.995 46.171 ATOM 100 C SER 56 30.855 16.096 12.077 43.841			2.81
ATOM 63 CA GLU 52 33.013 11.448 46.709 ATOM 64 CB GLU 52 34.479 11.575 47.151 ATOM 65 CG GLU 52 34.479 11.575 47.151 ATOM 66 CD GLU 52 35.286 12.607 46.355 ATOM 67 OEI GLU 52 34.838 14.037 46.631 ATOM 67 OEI GLU 52 34.719 14.388 47.824 ATOM 68 OEZ GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.028 10.287 42.885 ATOM 74 CGI VAL 53 30.028 10.287 42.885 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 78 N GLY 54 36.150 12.291 41.758 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 35.257 14.881 41.106 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 86 CD ASP 55 36.481 16.802 39.952 ATOM 86 ODI ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.481 16.802 39.952 ATOM 89 O ASP 55 36.481 16.802 39.952 ATOM 89 C ASP 55 36.481 16.802 39.952 ATOM 90 N SER 56 31.666 15.067 42.271 ATOM 91 CA SER 56 31.666 15.067 42.271 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 CA THR 57 31.159 15.856 47.663 ATOM 96 N THR 57 31.159 15.856 47.663 ATOM 97 CA THR 57 30.967 14.991 48.931 ATOM 99 OGI THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.442 ATOM 102 O THR 57 30.967 14.991 48.931 ATOM 104 CA PHE 58 27.731 13.123 46.617 ATOM 105 CB PHE 58 27.526 13.382 41.671 ATOM 106 CG PHE 58 27.526 13.382 41.671 ATOM 107 CDI PHE 58 27.526 13.382 41.671 ATOM 109 CEI PHE 58 25.128 12.765 41.930	rom		2.00
ATOM 64 CB GLU 52 34.479 11.575 47.151 ATOM 65 CG GLU 52 35.286 12.607 46.355 ATOM 66 CD GLU 52 34.888 14.037 46.631 ATOM 67 OE1 GLU 52 34.888 14.037 46.631 ATOM 68 OE2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 82 N ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 86 ODL ASP 55 36.481 16.802 39.952 ATOM 87 ODL ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 36.481 16.802 39.952 ATOM 86 ODL ASP 55 36.481 16.802 39.952 ATOM 87 ODL ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.481 16.802 39.952 ATOM 89 O ASP 55 36.481 16.802 39.952 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.177 17.303 42.334 ATOM 92 CB SER 56 30.177 17.303 42.334 ATOM 99 OGI THR 57 31.153 15.856 47.683 ATOM 100 CG2 THR 57 32.532 16.234 47.561 ATOM 101 C THR 57 32.532 16.234 47.561 ATOM 100 CG2 PHE 58 26.690 12.677 43.841 ATOM 100 CG2 PHE 58 26.690 12.677 43.841 ATOM 100 CG2 PHE 58 26.690 12.677 43.841 ATOM 100 CG2 PHE 58 26.525 13.382 41.671 ATOM 100 CG2 PHE 58 25.125 12.514 43.303 ATOM 100 CD2 PHE 58 25.125 12.514 43.303	TOM		6.73
ATOM 65 CG GLU 52 35.286 12.607 46.355 ATOM 66 CD GLU 52 34.838 14.037 46.631 ATOM 66 CD GLU 52 34.719 14.388 47.824 ATOM 68 0E2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 69 C GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.022 10.287 42.885 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 34.329 11.234 40.617 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 85 CG ASP 55 35.557 14.881 41.006 ATOM 86 CA ASP 55 35.557 15.616 39.784 ATOM 86 CD1 ASP 55 36.481 16.802 39.952 ATOM 86 CD1 ASP 55 36.481 16.802 39.952 ATOM 86 CA ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 36.110 17.895 39.466 ATOM 91 CA SER 56 30.865 16.632 40.524 ATOM 92 CB SER 56 30.865 16.632 40.524 ATOM 94 CS SER 56 30.865 15.067 44.207 ATOM 94 C SER 56 31.861 15.856 42.907 ATOM 95 CG SER 56 31.861 15.852 42.404 ATOM 96 N THR 57 31.153 15.856 47.663 ATOM 99 OR1 THR 57 31.153 15.856 47.663 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 99 CB THR 57 31.153 15.856 47.663 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 99 CC SER 56 31.861 15.879 42.214 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 99 CC SER 56 31.861 15.879 42.214 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 99 CC SER 56 31.861 15.852 44.254 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 99 OR1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 T	TOM		6.73
ATOM 66 CD GLU 52 34.838 14.037 46.631 ATOM 67 OEL GLU 52 34.719 14.388 47.824 ATOM 68 OE2 GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 32.921 10.677 45.388 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.0228 10.287 42.885 ATOM 74 CG1 VAL 53 30.0228 10.287 42.885 ATOM 75 CG2 VAL 53 30.021 10.287 42.885 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 36.150 12.291 41.758 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 36.4617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.481 16.802 39.952 ATOM 88 OD ASP 55 36.481 15.730 41.969 ATOM 89 O ASP 55 34.669 15.773 39.466 ATOM 90 N SER 56 31.866 15.067 44.297 ATOM 90 N SER 56 31.866 15.067 44.297 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.177 17.303 42.314 ATOM 95 O SER 56 31.686 15.067 44.297 ATOM 96 N THR 57 31.59 15.751 45.213 ATOM 97 CA THR 57 31.59 15.751 45.213 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 99 OG THR 57 32.532 16.234 47.561 ATOM 99 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 32.532 16.234 47.561 ATOM 101 C THR 57 32.532 16.234 47.561 ATOM 102 O THR 57 29.208 14.991 48.931 ATOM 104 CA PHE 58 26.690 12.677 43.841 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 25.198 12.765 41.930 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286	rom		3.83
ATOM 67 OE1 GLU 52 34.719 14.388 47.824 ATOM 68 OE2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.028 10.287 42.885 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 32.471 11.190 42.175 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.91 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.557 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 34.617 13.611 40.767 ATOM 87 OD2 ASP 55 34.617 13.611 40.767 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 O ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 O ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 90 N SER 56 30.177 17.303 42.214 ATOM 90 N SER 56 30.865 16.086 42.060 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.865 16.086 42.060 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.727 15.085 46.428 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 30.967 14.991 48.931 ATOM 102 O THR 57 30.967 14.995 46.444 ATOM 103 N PHE 58 28.721 13.749 46.171 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.721 13.122 43.030 ATOM 108 CD2 PHE 58 26.690 12.677 43.841 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 26.625 13.302 41.671	TOM		3.83
ATOM 68 OE2 GLU 52 34.605 14.804 45.666 ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 30.228 10.287 42.885 ATOM 74 CG1 VAL 53 30.228 10.287 42.885 ATOM 75 CG2 VAL 53 30.228 10.287 42.885 ATOM 75 CG2 VAL 53 30.228 10.287 42.885 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 80 C GLY 54 33.554 10.603 41.670 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 37.585 16.632 40.524 ATOM 89 O ASP 55 34.617 13.611 40.767 ATOM 89 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.617 17.303 41.969 ATOM 90 N SER 56 30.177 17.303 42.214 ATOM 90 N SER 56 30.865 16.086 42.974 ATOM 90 CA SER 56 30.865 16.086 42.2974 ATOM 91 CA SER 56 30.865 16.086 42.206 ATOM 99 CA SER 56 30.865 16.086 42.206 ATOM 99 CA SER 56 30.865 16.086 42.206 ATOM 99 CA SER 56 31.686 15.067 44.207 ATOM 99 CA THR 57 30.724 15.085 46.428 ATOM 99 CB THR 57 30.724 15.085 46.428 ATOM 99 CG1 THR 57 30.967 14.991 48.991 ATOM 100 CG2 THR 57 30.967 14.991 48.991 ATOM 10	TOM		3.83
ATOM 69 C GLU 52 32.921 10.677 45.388 ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.948 11.054 44.562 ATOM 73 CB VAL 53 31.741 10.409 43.266 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 34.669 16.829 42.404 ATOM 88 C ASP 55 34.669 16.829 42.404 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 32.089 15.876 42.974 ATOM 90 N SER 56 31.861 13.852 44.254 ATOM 94 C SER 56 30.865 16.086 42.060 ATOM 99 CB SER 56 31.861 13.852 44.254 ATOM 99 CB THR 57 31.159 15.751 45.213 ATOM 99 CG THR 57 30.774 15.085 46.428 ATOM 99 CG THR 57 30.967 14.991 48.931 ATOM 99 CG THR 57 30.967 14.991 48.931 ATOM 99 CG THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 32.532 16.234 47.561 ATOM 102 O THR 57 32.532 16.234 47.561 ATOM 103 N PHE 58 28.721 13.749 46.171 ATOM 104 CA PHE 58 26.690 12.677 43.841 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286	TOM	-	3.83
ATOM 70 O GLU 52 33.710 9.760 45.127 ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.028 10.287 42.885 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 29.496 9.401 43.878 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.865 16.086 42.060 ATOM 95 O SER 56 30.865 16.086 42.060 ATOM 96 N THR 57 30.724 15.085 44.227 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OGI THR 57 30.724 15.085 46.428 ATOM 99 CA THR 57 30.724 15.085 46.428 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.995 46.444 ATOM 102 O THR 57 32.532 16.234 47.663 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.694 12.309 45.281 ATOM 106 CG PHE 58 27.526 13.382 41.671 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.302 41.619	TOM		3.83
ATOM 71 N VAL 53 31.948 11.054 44.562 ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 76 C VAL 53 32.9496 9.401 43.878 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 35.257 14.881 41.106 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 84 CB ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.110 17.895 39.466 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.617 13.611 40.969 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.617 13.034 2.214 ATOM 90 N SER 56 32.089 15.876 42.974 ATOM 90 SER 56 30.865 16.086 42.060 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.865 16.086 42.074 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 30.724 15.085 44.207 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 90 N PHE 58 25.132 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.428 ATOM 102 O THR 57 29.208 14.955 46.424 ATOM 104 CA PHE 58 26.690 12.677 43.841 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671	TOM		6.73
ATOM 72 CA VAL 53 31.741 10.409 43.266 ATOM 73 CB VAL 53 30.228 10.287 42.885 ATOM 74 CGI VAL 53 30.228 10.287 42.885 ATOM 75 CG2 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.557 15.616 39.784 ATOM 86 CB ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.110 17.895 39.466 ATOM 87 OD2 ASP 55 34.669 16.829 42.404 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 30.177 17.303 42.334 ATOM 95 O SER 56 30.177 17.303 42.334 ATOM 96 N THR 57 30.724 15.085 46.428 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 99 CB THR 57 30.724 15.085 46.428 ATOM 90 N SER 56 31.861 13.852 44.251 ATOM 90 O THR 57 32.532 16.234 47.561 ATOM 90 O THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 27.526 13.3494 46.171 ATOM 104 CA PHE 58 26.690 12.677 43.841 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.362 41.673 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286	TOM		23.83
ATOM 73 CB VAL 53 30.228 10.287 42.885 ATOM 74 CG1 VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 29.496 9.401 43.878 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.557 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 90 N SER 56 30.865 16.086 42.060 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 90 N PHE 58 28.721 13.749 46.171 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.448 ATOM 102 O THR 57 29.208 14.955 46.478 ATOM 103 N PHE 58 27.290 13.494 46.171 ATOM 104 CA PHE 58 27.290 13.494 46.173 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.6793 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.6770 ATOM 100 CG2 PHE 58 25.425 12.514 43.286	TOM		31.39
ATOM 74 CGI VAL 53 30.072 9.701 41.480 ATOM 75 CG2 VAL 53 29.496 9.401 43.878 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD2 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.410 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.865 16.086 42.060 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 42.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 99 OGI THR 57 30.724 15.085 46.428 ATOM 99 OGI THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 32.532 16.234 47.561 ATOM 103 N PHE 58 26.690 12.677 43.801 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.203 ATOM 106 CG PHE 58 26.690 12.677 43.203 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.673 ATOM 109 CE1 PHE 58 27.526 13.387 41.119	TOM		31.39
ATOM 75 CG2 VAL 53 29.496 9.401 43.878 ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 36.150 12.291 41.758 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 85 CG ASP 55 36.481 16.802 39.784 ATOM 86 OD1 ASP 55 36.481 16.802 39.784 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.666 15.193 42.214 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.865 16.086 42.060 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 30.724 15.085 44.284 ATOM 97 CA THR 57 30.724 15.085 44.284 ATOM 99 OGI THR 57 30.724 15.085 46.428 ATOM 99 OGI THR 57 30.724 15.085 46.428 ATOM 99 OGI THR 57 30.724 15.085 46.428 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.484 ATOM 102 O THR 57 29.208 14.955 46.684 ATOM 103 N PHE 58 26.942 12.309 46.173 ATOM 104 CA PHE 58 27.731 13.123 43.030 ATOM 106 CG PHE 58 26.525 13.207 41.119	TOM		19.10
ATOM 76 C VAL 53 32.471 11.190 42.175 ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.110 17.895 39.466 ATOM 87 OD2 ASP 55 34.611 17.895 39.466 ATOM 88 C ASP 55 34.610 17.895 39.466 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.866 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.680 ATOM 102 O THR 57 29.208 14.955 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.252 13.207 41.119	TOM		19.10
ATOM 77 O VAL 53 32.073 12.305 41.814 ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 85 CG ASP 55 35.557 15.616 39.784 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.481 16.802 39.952 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 30.865 16.086 42.060 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.865 16.086 42.074 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.686 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 31.159 15.751 45.213 ATOM 99 OG2 THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.484 ATOM 102 O THR 57 29.208 14.955 46.484 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.731 13.123 43.030 ATOM 106 CG PHE 58 27.731 13.123 43.030 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 26.252 13.207 41.119	MOT		19.10
ATOM 78 N GLY 54 33.554 10.603 41.670 ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671	MOT		31.39 L9.10
ATOM 79 CA GLY 54 34.329 11.234 40.617 ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 93 OG SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.686 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.290 13.494 46.171 ATOM 108 CD2 PHE 58 26.525 13.207 41.119	MOT		28.22
ATOM 80 C GLY 54 35.125 12.430 41.089 ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.310 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 31.686 15.067 44.207 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 30.967 14.991 48.931 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.171 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CE2 PHE 58 25.425 12.514 43.286 ATOM 101 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119	MOT		28.22
ATOM 81 O GLY 54 36.150 12.291 41.758 ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CG2 PHE 58 27.526 13.382 41.671 ATOM 101 C E2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119			28.22
ATOM 82 N ASP 55 34.617 13.611 40.767 ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.865 16.086 42.060 ATOM 94 C SER 56 30.865 16.086 42.074 ATOM 95 O SER 56 31.686 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			37.37
ATOM 83 CA ASP 55 35.257 14.881 41.106 ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.686 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 100 CG2 PHE 58 25.198 12.765 41.930			24.29
ATOM 84 CB ASP 55 35.557 15.616 39.784 ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 36.481 16.802 39.952 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 36.110 17.895 39.466 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.686 15.067 44.207 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.644 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.198 12.765 41.930 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 100 CG2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			24.29
ATOM 85 CG ASP 55 36.481 16.802 39.952 ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.317 15.730 41.969 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 30.724 15.085 46.428 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 100 CG2 PHE 58 25.198 12.765 41.930 ATOM 101 C CE2 PHE 58 25.198 12.765 41.930 ATOM 101 CE2 PHE 58 25.198 12.765 41.930			45.10
ATOM 86 OD1 ASP 55 37.585 16.632 40.524 ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 90 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.198 12.765 41.930 ATOM 109 CE1 PHE 58 27.526 13.382 41.671			45.10
ATOM 87 OD2 ASP 55 36.110 17.895 39.466 ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.861 13.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			45.10
ATOM 88 C ASP 55 34.317 15.730 41.969 ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			45.10
ATOM 89 O ASP 55 34.669 16.829 42.404 ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			24.29
ATOM 90 N SER 56 33.126 15.193 42.214 ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.690 12.677 43.841 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930			45.10
ATOM 91 CA SER 56 32.089 15.876 42.974 ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 26.252 13.207 41.119			28.43
ATOM 92 CB SER 56 30.865 16.086 42.060 ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.526 13.382 41.671 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 26.252 13.207 41.119			28.43
ATOM 93 OG SER 56 30.177 17.303 42.334 ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119			50.26
ATOM 94 C SER 56 31.686 15.067 44.207 ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119			50.26
ATOM 95 O SER 56 31.861 13.852 44.254 ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 29.208 14.955 46.444 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 100 CE2 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 26.252 13.207 41.119			28.43
ATOM 96 N THR 57 31.159 15.751 45.213 ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 27.526 13.382 41.671 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119			50.26
ATOM 97 CA THR 57 30.724 15.085 46.428 ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	21.09
ATOM 98 CB THR 57 31.153 15.856 47.683 ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 25.198 12.765 41.930 ATOM 110 CE2 PHE 58 26.252 13.207 41.119		1.00	21.09
ATOM 99 OG1 THR 57 32.532 16.234 47.561 ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	27.49
ATOM 100 CG2 THR 57 30.967 14.991 48.931 ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	27.49
ATOM 101 C THR 57 29.208 14.955 46.444 ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	27.49
ATOM 102 O THR 57 28.498 15.934 46.680 ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119			21.09
ATOM 103 N PHE 58 28.721 13.749 46.173 ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	27.49
ATOM 104 CA PHE 58 27.290 13.494 46.171 ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	33.68
ATOM 105 CB PHE 58 26.942 12.309 45.281 ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	33.68
ATOM 106 CG PHE 58 26.690 12.677 43.841 ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
ATOM 107 CD1 PHE 58 27.731 13.123 43.030 ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
ATOM 108 CD2 PHE 58 25.425 12.514 43.286 ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
ATOM 109 CE1 PHE 58 27.526 13.382 41.671 ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
ATOM 110 CE2 PHE 58 25.198 12.765 41.930 ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
ATOM 111 CZ PHE 58 26.252 13.207 41.119		1.00	8.44
		1.00	8.44
ATOM 112 C PHE 58 26.790 13.230 47.584			33.68
ATOM 113 O PHE 58 27.306 12.360 48.283		1.00	8.44
ATOM 114 N THR 59 25.836 14.045 48.017	MOTA	1.00	2.00
ATOM 115 CA THR 59 25.235 13.913 49.331	MOTA	1.00	2.00
ATOM 116 CB THR 59 25.238 15.234 50.117	MOTA	1.00	2.11

FIG. 3C

ATOM	117	OG1	THR	59	26.579	15.724	50.239	1.00	2.11
ATOM	118	CG2		59	24.658	15.016	51.488	1.00	2.11
ATOM	119	C	THR	59	23.803	13.478	49.095	1.00	2.00
MOTA	120	0	THR	59	22.910	14.290	48.899	1.00	2.11
MOTA	121	N	VAL	60	23.598	12.174	49.091	1.00	16.21
MOTA	122	CA	VAL	60	22.281	11.629	48.857	1.00	16.21
ATOM	123	CB	VAL	60	22.316	10.642	47.669	1.00	12.96
ATOM	124	CG1	VAL	60	22.576	11.384	46.380	1.00	12.96
MOTA	125	CG2	VAL	60	23.409	9.597	47.883	1.00	12.96
MOTA	126	C	VAL	60	21.700	10.933	50.078	1.00	16.21
ATOM	127	0	VAL	60	22.367	10.773	51.098	1.00	12.96
MOTA	128	N	LEU	61	20.423	10.577	49.964	1.00	2.00
MOTA	129	CA	LEU	61	19.689	9.868	51.001	1.00	2.00
ATOM	130	CB	LEU	61	18.228	9.724	50.591	1.00	19.79
ATOM	131	CG	LEU	61	17.323	10.947	50.539	1.00	19.79
ATOM	132	CD1	LEU	61	16.195	10.678	49.580	1.00	19.79
MOTA	133	CD2	LEU	61	16.787	11.243	51.919	1.00	19.79
ATOM	134	C	LEU	61	20.271	8.471	51.136	1.00	2.00
ATOM	135	ō	LEU	61	20.721	7.889	50.163	1.00	19.79
ATOM	136	N	LYS	62	20.179	7.903	52.328	1.00	37.57
ATOM	137	CA	LYS	62	20.713	6.567	52.597	1.00	37.57
ATOM	138	CB	LYS	62	20.514	6.215	54.080	1.00	12.42
ATOM	139	CG	LYS	62	21.129	7.196	55.073	1.00	12.42
ATOM	140	CD	LYS	62	22.637	7.031	55.239	1.00	12.42
MOTA	141	CE	LYS	62	23.193	8.033	56.258	1.00	12.42
	142	NZ	LYS	62	22.571	7.914	57.624	1.00	12.42
ATOM	142	C	LYS	62	20.184	5.431	51.708	1.00	37.57
MOTA	144	0	LYS	62	20.898	4.467	51.448	1.00	12.42
MOTA		N	ARG	63	18.942	5.543	51.250	1.00	5.93
MOTA	145		ARG	63	18.334	4.516	50.406	1.00	5.93
MOTA	146	CA	ARG	63	16.890	4.912	50.057	1.00	2.00
MOTA	147	CB		63	16.779	6.198	49.253	1.00	2.00
ATOM	148	CG	ARG ARG	63	15.381	6.764	49.236	1.00	2.00
ATOM	149	CD	ARG	63	14.458	5.942	48.467	1.00	2.00
ATOM	150	NE		63	13.205	6.281	48.192	1.00	2.00
ATOM	151	CZ	ARG	63	12.718	7.423	48.625	1.00	2.00
ATOM	152		ARG	63	12.718	5.465	47.500	1.00	2.00
ATOM	153		ARG		19.140	4.295	49.129	1.00	5.93
ATOM	154	C	ARG	63 63	19.239	3.168	48.640	1.00	2.00
MOTA	155	0	ARG	63	19.715	5.384	48.615	1.00	12.13
ATOM	156	N	TYR	64	20.516	5.377	47.391	1.00	12.13
MOTA	157	CA	TYR	64	20.516	6.764	46.721	1.00	2.00
MOTA	158	CB	TYR	64		7.169	46.288	1.00	2.00
ATOM	159	CG	TYR	64	19.066		45.361	1.00	2.00
MOTA	160	CD:		64	18.358	6.407 6.724	45.011	1.00	2.00
ATOM	161		LTYR	64	17.052		46.844	1.00	2.00
MOTA	162		2 TYR	64	18.422	8.275		1.00	2.00
ATOM	163	CE		64	17.109	8.599	46.487 45.571	1.00	2.00
MOTA	164	CZ	TYR	64	16.432	7.810		1.00	2.00
MOTA	165			64	15.118	8.058	45.230		12.13
ATOM	166		TYR	64	21.951	4.968	47.710		2.00
MOTA	167		TYR	64	22.691	5.711	48.360		
ATOM	168		GLN	65	22.349		47.242		2.00
ATOM	169			65	23.675		47.538		2.00
ATOM	170			65	23.582		48.631		32.87
MOTA	171			65	22.537		48.353		32.87
MOTA	172			65	21.813				32.87
MOTA	173		1 GLN	65	21.091				32.87
MOTA	174	NE	2 GLN	65	21.990				32.87
ATOM	175	C	GLN	65	24.468	2.770	46.347	1.00	2.00

FIG. 3D

ATOM	176	0	GLN	65	23.912	2.442	45.298	1.00	32.87
ATOM	177	N	ASN	66	25.783	2.677	46.550	1.00	28.78
ATOM	178	CA	ASN	66	26.745	2.207	45.561	1.00	28.78
ATOM	179	CB	ASN	66	26.528	0.746	45.218	1.00	23.20
ATOM	180	CG	ASN	66	27.649	0.186	44.374	1.00	23.20
ATOM	181	OD1	ASN	66	27.409	-0.590	43.449	1.00	23.20
ATOM	182	ND2	ASN	66	28.879	0.591	44.668	1.00	23.20
MOTA	183	C	ASN	66	26.680	3.054	44.319	1.00	28.78
ATOM	184	0	ASN	66	26.403	2.566	43.225	1.00	23.20
ATOM	185	N	LEU	67	26.961	4.335	44.514	1.00	28.28
MOTA	186	CA	LEU	67	26.928	5.310	43.442	1.00	28.28
MOTA	187	CB	LEU	67	27.105	6.717	44.014	1.00	5.06
MOTA	188	CG	LEU	67	26.056	7.332	44.932	1.00	5.06
ATOM	189	CD1	LEU	67	25.803	8.741	44.446	1.00	5.06
MOTA	190	CD2	LEU	67	24.758	6.538	44.949	1.00	5.06
ATOM	191	C	LEU	67	28.000	5.065	42.389	1.00	28.28
ATOM	192	0	LEU	67	29.169	4.878	42.717	1.00	5.06
MOTA	193	N	LYS	68	27.584	4.986	41.134	1.00	4.06
ATOM	194	CA	LYS	68	28.520	4.828	40.029	1.00	4.06
MOTA	195	CB	LYS	68	28.249	3.541	39.233	1.00	30.89
ATOM	196	CG	LYS	68	28.684	2.239	39.906	1.00	30.89
MOTA	197	CD	LYS	68	27.651	1.114	39.714	1.00	30.89
MOTA	198	CE	LYS	68	27.352	0.852	38.225	1.00	30.89
MOTA	199	NZ	LYS	68	26.455	-0.335	37.986	1.00	30.89
MOTA	200	С	LYS	68	28.269	6.044	39.143	1.00	4.06
MOTA	201	0	LYS	68	27.130	6.316	38.761	1.00	30.89
MOTA	202	N	PRO	69	29.319	6.841	38.874	1.00	44.94
MOTA	203	CD	PRO	69	30.714	6.698	39.337	1.00	33.19
MOTA	204	CA	PRO	69	29.156	8.027	38.023	1.00	44.94
ATOM	205	CB	PRO	69	30.492	8.752	38.196	1.00	33.19
MOTA	206	CG	PRO	69	31.475	7.618	38.394	1.00	33.19
ATOM	207	C	PRO	69	28.925	7.587	36.576	1.00	44.94 33.19
ATOM	208	0	PRO	69	29.574	6.657	36.090	1.00	
ATOM	209	N	ILE	70	27.943	8.198	35.922	1.00	11.68
MOTA	210	CA	ILE	70	27.612	7.848	34.544	1.00	11.68 15.82
MOTA	211	CB	ILE	70	26.421	6.854	34.506	1.00 1.00	15.82
MOTA	212	CG2		70	26.794	5.535	35.192	1.00	15.82
ATOM	213		ILE	70	25.222	7.453	35.236	1.00	15.82
MOTA	214		ILE	70	23.924	6.747	34.955	1.00	11.68
MOTA	215	C	ILE	70	27.230	9.078	33.713	1.00	15.82
ATOM	216	0	ILE	70	26.365	8.989	32.837	1.00	53.07
ATOM	217	N	GLY	71	27.884	10.214	33.959 33.218	1.00	53.07
MOTA	218	CA	GLY	71	27.544	11.425	33.210	1.00	53.07
MOTA	219	C	GLY	71	28.586	12.527 12.471	32.147	1.00	47.75
MOTA	220	0	GLY	71	29.419 28.502	13.543	33.938	1.00	33.54
MOTA	221	N	SER	72	29.400	14.711	33.924	1.00	33.54
ATOM	222	CA	SER	72	30.878	14.711	33.924	1.00	47.06
MOTA	223	CB	SER	72 72	31.592	14.895	34.997	1.00	47.06
ATOM	224	OG	SER	72	29.135	15.607	32.716	1.00	33.54
ATOM	225	C	SER	72 72		16.563	32.710	1.00	47.06
ATOM	226	O	SER		28.349	15.379	37.733	1.00	14.51
ATOM	227	CB	ILE	77 77	27.336 28.188	14.104	37.638	1.00	14.51
ATOM	228		ILE	77 7 7	28.188	16.653	37.434	1.00	14.51
ATOM	229		LILE	77 77	29.294	16.653	38.389	1.00	14.51
ATOM	230 231	C CD1		77 77	25.294	14.058	37.115	1.00	32.22
ATOM	231	0	ILE	77 77	25.290	13.978	38.207	1.00	14.51
MOTA MOTA	232	N	ILE	77 77	25.299	16.530	36.838	1.00	32.22
ATOM	234	CA	ILE	77		15.291	36.771	1.00	32.22
ALON	234	CA	شلند	• •	20.134		· · · -		

FIG. 3E

ATOM	235	N	VAL	78	25.197	13.114	36.177	1.00	2.00
ATOM	236	CA	VAL	78	24.407	11.907	36.396	1.00	2.00
ATOM	237	CB	VAL	78	23.839	11.313	35.083	1.00	6.06
ATOM	238	CG1	VAL	78	22.756	10.284	35.408	1.00	6.06
ATOM	239	CG2	VAL	78	23.279	12.411	34.177	1.00	6.06
ATOM	240	C	VAL	78	25.198	10.845	37.133	1.00	2.00
MOTA	241	0	VAL	78	26.419	10.736	36.983	1.00	6.06
ATOM	242	N	CYS	79	24.484	10.048	37.918	1.00	14.03
ATOM	243	CA	CYS	79	25.112	9.016	38.713	1.00	14.03
ATOM	244	CB	CYS	79	25.565	9.636	40.024	1.00	23.50
ATOM	245	SG	CYS	79	26.799	8.691	40.861	1.00	23.50
ATOM	246	C	CYS	79	24.178	7.836	38.975	1.00	14.03
ATOM	247	o	CYS	79	23.128	7.996	39.581	1.00	23.50
ATOM	248	N	ALA	80	24.578	6.649	38.524	1.00	14.88
ATOM	249	CA	ALA	80	23.782	5.438	38.707	1.00	14.88
MOTA	250	CB	ALA	80	24.281	4.360	37.783	1.00	19.57
MOTA	251	C	ALA	80	23.831	4.956	40.147	1.00	14.88
ATOM	252	ō	ALA	80	24.850	5.100	40.820	1.00	19.57
ATOM	253	N	ALA	81	22.728	4.401	40.634	1.00	5.14
ATOM	254	CA	ALA	81	22.703	3.909	42.005	1.00	5.14
ATOM	255	СВ	ALA	81	22.560	5.055	42.962	1.00	20.04
ATOM	256	C	ALA	81	21.593	2.916	42.246	1.00	5.14
ATOM	257	ō	ALA	81	20.689	2.771	41.425	1.00	20.04
ATOM	258	N	TYR	82	21.676	2.227	43.382	1.00	10.44
ATOM	259	CA	TYR	82	20.672	1.251	43.787	1.00	10.44
ATOM	260	CB	TYR	82	21.365	0.005	44.330	1.00	17.29
ATOM	261	CG	TYR	82	20.477	-0.907	45.132	1.00	17.29
ATOM	262	CD1		82	19.335	-1.475	44.572	1.00	17.29
MOTA	263		TYR	82	18.509	-2.330	45.311	1.00	17.29
MOTA	264	CD2		82	20.780	-1.212	46.450	1.00	17.29
ATOM	265	CE2		82	19.964	-2.069	47.197	1.00	17.29
ATOM	266	CZ	TYR	82	18.832	-2.623	46.619	1.00	17.29
ATOM	267	ОН	TYR	82	18.049	-3.479	47.351	1.00	17.29
ATOM	268	C	TYR	82	19.763	1.830	44.861	1.00	10.44
ATOM	269	o	TYR	82	20.246	2.290	45.885	1.00	17.29
ATOM	270	N	ASP	83	18.457	1.830	44.623	1.00	5.91
ATOM	271	CA	ASP	83	17.525	2.325	45.624	1.00	5.91
ATOM	272	CB	ASP	83	16.299	2.969	44.989	1.00	26.75
ATOM	273	CG	ASP	83	15.358	3.573	46.021	1.00	26.75
ATOM	274	OD1	ASP	83	15.707	3.588	47.211	1.00	26.75
ATOM	275	OD2	ASP	83	14.269	4.050	45.656	1.00	26.75
ATOM	276	C	ASP	83	17.088	1.131	46.466	1.00	5.91
ATOM	277	0	ASP	83	16.418	0.217	45.972	1.00	26.75
ATOM	278	N	ALA	84	17.415	1.181	47.755	1.00	3.12
MOTA	279	CA	ALA	84	17.099	0.113	48.680	1.00	3.12
ATOM	280	CB	ALA	84	17.949	0.249	49.920	1.00	15.64
MOTA	281	C	ALA	84	15.626	0.049	49.043	1.00	3.12
ATOM	282	0	ALA	84	15.123	-1.025	49.355	1.00	15.64
ATOM	283	N	VAL	85	14.923	1.176	48.979	1.00	2.05
ATOM	284	CA	VAL	85	13.503	1.203	49.320	1.00	2.05
ATOM	285	CB	VAL	85	13.012	2.652	49.634	1.00	2.17
ATOM	286	CG1	VAL	85	11.487	2.690	49.830	1.00	2.17
ATOM	287	CG2	VAL	85	13.718	3.172	50.883	1.00	2.17
ATOM	288	C	VAL	85	12.625	0.586	48.243	1.00	2.05
ATOM	289	0	VAL	85	11.834	-0.321	48.510	1.00	2.17
MOTA	290	N	LEU	86	12.784	1.094	47.026	1.00	6.01
MOTA	291	CA	LEU	86	12.030	0.649	45.859		6.01
MOTA	292	CB	LEU	86	12.116	1.726	44.784	1.00	19.18
ATOM	293	CG	LEU	86	10.838	2.271	44.158	1.00	19.18

FIG. 3F

MOTA	294	CD1	LEU	86	9.901	2.763	45.248	1.00	19.18
ATOM	295	CD2	LEU	86	11.203	3.392	43.186	1.00	19.18
MOTA	296	C	LEU	86	12.585	-0.655	45.307	1.00	6.01
MOTA	297	0	LEU	86	11.890	-1.369	44.591	1.00	19.18
ATOM	298	N	ASP	87	13.837	-0.948	45.649	1.00	2.44
ATOM	299	CA	ASP	87	14.539	-2.147	45.199	1.00	2.44
ATOM	300	CB	ASP	87	13.928	-3.445	45.782	1.00	23.73
MOTA	301	CG	ASP	87	14.691	-4.710	45.341	1.00	23.73
MOTA	302	OD1	ASP	87	15.932	-4.794	45.560	1.00	23.73
ATOM	303	OD2	ASP	87	14.045	-5.612	44.751	1.00	23.73
MOTA	304	C	ASP	87	14.650	-2.228	43.674	1.00	2.44
ATOM	305	0	ASP	87	14.020	-3.071	43.017	1.00	23.73
MOTA	306	N	ARG	88	15.468	-1.339	43.130	1.00	6.10
MOTA	307	CA	ARG	88	15.734	-1.260	41.700	1.00	6.10
MOTA	308	CB	ARG	88	14.490	-0.823	40.902	1.00	16.86
ATOM	309	CG	ARG	88	13.796	0.433	41.398	1.00	16.86
ATOM	310	CD	ARG	88	12.410	0.571	40.797	1.00	16.86
MOTA	311	NE	ARG	88	12.349	1.547	39.706	1.00	16.86
ATOM	312	$\mathbf{C}\mathbf{Z}$	ARG	88	11.238	2.182	39.327	1.00	16.86
MOTA	313	NHl	ARG	88	10.089	1.943	39.956	1.00	16.86
MOTA	314	NH2	ARG	88	11.263	3.057	38.326	1.00	16.86
MOTA	315	C	ARG	88	16.845	-0.258	41.537	1.00	6.10
MOTA	316	0	ARG	88	17.301	0.340	42.512	1.00	16.86
ATOM	317	N	ASN	89	17.315	-0.100	40.311	1.00	21.92
MOTA	318	CA	ASN	89	18.378	0.848	40.067	1.00	21.92
MOTA	319	CB	ASN	89	19.448	0.232	39.178	1.00	6.92
MOTA	320	CG	ASN	89	20.210	-0.864	39.884	1.00	6.92
MOTA	321	OD1	ASN	89	21.057	-0.588	40.718	1.00	6.92
ATOM	322	ND2	ASN	89	19.891	-2.114	39.578	1.00	6.92
MOTA	323	C	ASN	89	17.821	2.144	39.510	1.00	21.92
MOTA	324	0	ASN	89	16.824	2.156	38.782	1.00	6.92
MOTA	325	N	VAL	90	18.433	3.237	39.950	1.00	2.00
MOTA	326	CA	VAL	90	18.044	4.579	39.567	1.00	2.00
MOTA	327	CB	VAL	90	17.273	5.295	40.721	1.00	2.00
MOTA	328		VAL	90	15.944	4.612	40.995	1.00	2.00
MOTA	329	CG2	VAL	90	18.112	5.324	41.985	1.00	2.00
MOTA	330	C	VAL	90	19.246	5.441	39.153	1.00	2.00
MOTA	331	0	VAL	90	20.409	5.041	39.299	1.00	2.00
MOTA	332	N	ALA	91	18.935	6.609	38.590	1.00	2.00
MOTA	333	CA	ALA	91	19.920	7.584	38.140	1.00	2.00
MOTA	334	CB	ALA	91	19.749	7.871	36.659	1.00	2.00
MOTA	335	C	ALA		19.680	8.844	38.952	1.00	2.00
MOTA	336	0	ALA	91	18.565	9.335	39.027	1.00	2.00
MOTA	337	N	ILE	92	20.731	9.343	39.583	1.00	12.92 12.92
MOTA	338	CA	ILE	92	20.646	10.544	40.401	1.00	
MOTA	339	CB	ILE	92	21.263	10.298	41.817		2.00
MOTA	340		: ILE	92	21.166	11.566	42.671		2.00
MOTA	341		LILE	92	20.583	9.100	42.502		2.00 2.00
MOTA	342		LILE	92	21.274	8.619	43.742		
MOTA	343	C	ILE	92	21.397	11.673	39.702		12.92
MOTA	344	0	ILE	92	22.570	11.534	39.361		2.00
MOTA	345	N	LYS	93	20.726	12.803	39.539		9.99
MOTA	346	CA	LYS	93	21.313	13.946	38.870		9.99
MOTA	347	CB	LYS	93	20.419	14.349			19.91
MOTA	348	CG	LYS	93	20.968	15.445			19.91
MOTA	349	CD	LYS	93	19.986	15.786			19.91
MOTA	350	CE	LYS	93	20.615	16.681			19.91
MOTA	351	NZ	LYS	93	19.611				19.91
MOTA	352	C	LYS	93	21.506	15.130	39.817	1.00	9.99

FIG. 3G

							40.000	1 00	30 01
MOTA	353	0	LYS	93	20.538	15.702	40.322	1.00	19.91
ATOM	354	N	LYS	94	22.763	15.491	40.056	1.00	7.04
ATOM	355	CA	LYS	94	23.086	16.609	40.931	1.00	7.04
ATOM	356	CB	LYS	94	24.434	16.381	41.605	1.00	2.00
ATOM	357	CG	LYS	94	24.823	17.501	42.548	1.00	2.00
		CD	LYS	94	26.242	17.356	43.019	1.00	2.00
ATOM	358							1.00	2.00
MOTA	359	CE	LYS	94	26.594	18.461	43.976		
ATOM	360	NZ	LYS	94	27.975	18.303	44.477	1.00	2.00
MOTA	361	C	LYS	94	23.138	17.944	40.191	1.00	7.04
MOTA	362	0	LYS	94	24.036	18.167	39.374	1.00	2.00
ATOM	363	N	LEU	95	22.197	18.834	40.503	1.00	2.00
ATOM	364	CA	LEU	95	22.129	20.168	39.913	1.00	2.00
MOTA	365	CB	LEU	95	20.664	20.608	39.757	1.00	2.18
ATOM	366	CG	LEU	95	19.934	20.373	38.438	1.00	2.18
	367		LEU	95	20.243	19.003	37.867	1.00	2.18
ATOM						20.557	38.649	1.00	2.18
ATOM	368		LEU	95	18.445				
ATOM	369	C	LEU	95	22.863	21.150	40.829	1.00	2.00
ATOM	370	0	LEU	95	22.262	21.753	41.717	1.00	2.18
MOTA	371	N	SER	96	24.168	21.305	40.606	1.00	21.89
MOTA	372	CA	SER	96	25.009	22.206	41.414	1.00	21.89
ATOM	373	CB	SER	96	26.497	21.998	41.101	1.00	46.05
ATOM	374	OG	SER	96	26.868	20.628	41.129	1.00	46.05
ATOM	375	C	SER	96	24.675	23.679	41.215	1.00	21.89
ATOM	376	ō	SER	96	24.844	24.223	40.122	1.00	46.05
ATOM	377	Ŋ	ARG	97	24.166	24.312	42.266	1.00	23.50
				97.	23.831	25.734	42.214	1.00	23.50
ATOM	378	CA	ARG					1.00	38.04
ATOM	379	CB	ARG	97	25.128	26.553	42.134		
ATOM	380	CG	ARG	97	25.891	26.663	43.424	1.00	38.04
MOTA	381	CD	ARG	97	25.228	27.665	44.345	1.00	38.04
MOTA	382	NE	ARG	97	26.077	27.967	45.493	1.00	38.04
ATOM	383	CZ	ARG	97	25.800	28.884	46.422	1.00	38.04
MOTA	384	NH1	ARG	97	24.686	29.619	46.351	1.00	38.04
ATOM	385	NH2	ARG	97	26.643	29.058	47.439	1.00	38.04
ATOM	386	C	ARG	97	22.964	26.037	40.991	1.00	23.50
ATOM	387	ō	ARG	97	23.340	26.838	40.150	1.00	38.04
ATOM	388	N	PRO	98	21.798	25.384	40.871	1.00	46.09
		CD	PRO	98	21.195	24.520	41.896	1.00	35.22
ATOM	389						39.736	1.00	46.09
ATOM	390	CA	PRO	98	20.873	25.573			
MOTA	391	CB	PRO	98	19.630	24.787	40.166	1.00	35.22
ATOM	392	CG	PRO	98	19.723	24.759	41.683	1.00	35.22
MOTA	393	C	PRO	98	20.528	27.027	39.400	1.00	46.09
ATOM	394	0	PRO	98	20.320	27.376	38.228	1.00	35.22
ATOM	395	N	PHE	99	20.507	27.865	40.430	1.00	24.90
MOTA	396	CA	PHE	99	20.192	29.286	40.306	1.00	24.90
MOTA	397	CB	PHE	99	19.490	29.740	41.585	1.00	11.96
MOTA	398	CG	PHE	99	20.122	29.194	42.831	1.00	11.96
ATOM	399		PHE	99	21.164	29.879	43.454	1.00	11.96
ATOM	400		PHE	99	19.724	27.964	43.338	1.00	11.96
						29.348	44.556	1.00	11.96
ATOM	401		PHE	99	21.804				11.96
MOTA	402		PHE	99	20.353	27.418	44.439	1.00	
ATOM	403	\mathbf{cz}	PHE	99	21.401	28.108	45.053	1.00	11.96
MOTA	404	C	PHE	99	21.420	30.169	40.058	1.00	24.90
MOTA	405	0	PHE	99	21.334	31.381	40.173	1.00	11.96
ATOM	406	N	GLN	100	22.555	29.588	39.695	1.00	11.02
ATOM	407	CA	GLN	100	23.751	30.394	39.462	1.00	11.02
ATOM	408	CB	GLN	100	24.942	29.520	39.089	1.00	30.87
ATOM	409	CG	GLN	100	24.666	28.644	37.920	1.00	30.87
ATOM	410	CD	GLN	100	25.797	27.707	37.635	1.00	30.87
ATOM	411		GLM	100	26.602	27.945	36.736	1.00	30.87
ALON		OET	GTTIA	100	20.002				

FIG. 3H

MOTA	412	NE2	GLN	100	25.870	26.622	38.399	1.00	30.87
ATOM	413	C	GLN	100	23.531	31.470	38.397	1.00	11.02
ATOM	414	0	GLN	100	24.109	32.553	38.495	1.00	30.87
MOTA	415	N	ASN	101	22.746	31.144	37.363	1.00	17.49
MOTA	416	CA	ASN	101	22.414	32.077	36.288	1.00	17.49
ATOM	417	CB	ASN	101	23.525	32.176	35.220	1.00	4.38
ATOM	418	CG	ASN	101	24.074	30.827	34.774	1.00	4.38
ATOM	419	OD1	ASN	101	23.393	30.060	34.095	1.00	4.38
ATOM	420	ND2	ASN	101	25.337	30.564	35.100	1.00	4.38
ATOM	421	C	ASN	101	21.044	31.739	35.699	1.00	17.49
ATOM	422	0	ASN	101	20.607	30.602	35.759	1.00	4.38
ATOM	423	N	GLN	102	20.363	32.750	35.167	1.00	9.50
ATOM	424.	CA	GLN	102	19.019	32.597	34.603	1.00	9.50
ATOM	425	CB	GLN	102	18.500	33.916	34.018	1.00	10.21
ATOM	426	CG	GLN	102	18.213	35.035	34.991	1.00	10.21
ATOM	427	CD	GLN	102	17.250	36.039	34.397	1.00	10.21
ATOM	428		GLN	102	16.111	35.689	34.091	1.00	10.21
MOTA	429	NE2	GLN	102	17.699	37.288	34.210	1.00	10.21
ATOM	430	C	GLN	102	18.886	31.546	33.531	1.00	9.50
MOTA	431	ō	GLN	102	17.784	31.107	33.256	1.00	10.21
ATOM	432	N	THR	103	19.978	31.228	32.844	1.00	2.00
ATOM	433	CA	THR	103	19.922	30.202	31.812	1.00	2.00
ATOM	434	СВ	THR	103	21.194	30.227	30.920	1.00	25.55
ATOM	435	OG1		103	21.433	31.565	30.460	1.00	25.55
ATOM	436	CG2		103	21.022	29.327	29.693	1.00	25.55
ATOM	437	C	THR	103	19.754	28.863	32.538	1.00	2.00
ATOM	438	o	THR	103	18.848	28.088	32.232	1.00	25.55
ATOM	439	N	HIS	104	20.574	28.656	33.570	1.00	2.12
ATOM	440	CA	HIS	104	20.525	27.455	34.412	1.00	2.12
ATOM	441	CB	HIS	104	21.704	27.415	35.382	1.00	27.31
ATOM	442	CG	HIS	104	22.953	26.854	34.794	1.00	27.31
ATOM	443		HIS	104	23.166	25.754	34.034	1.00	27.31
ATOM	444		HIS	104	24.186	27.434	34.984	1.00	27.31
ATOM	445	CE1	HIS	104	25.109	26.712	34.373	1.00	27.31
ATOM	446	NE2	HIS	104	24.513	25.687	33.788	1.00	27.31
ATOM	447	C	HIS	104	19.252	27.426	35.231	1.00	2.12
ATOM	448	0	HIS	104	18.685	26.371	35.460	1.00	27.31
ATOM	449	N	ALA	105	18.812	28.590	35.669	1.00	2.00
ATOM	450	CA	ALA	105	17.626	28.687	36.482	1.00	2.00
ATOM	451	CB	ALA	105	17.581	30.013	37.154	1.00	17.66
MOTA	452	C	ALA	105	16.348	28.433	35.710	1.00	2.00
MOTA	453	0	ALA	105	15.419	27.836	36.240	1.00	17.66
MOTA	454	N	LYS	106	16.307	28.827	34.444	1.00	11.55
MOTA	455	CA	LYS	106	15.109	28.606	33.635	1.00	11.55
MOTA	456	CB	LYS	106	15.102	29.507	32.392	1.00	26.36
ATOM	457	CG	LYS	106	14.999	31.015	32.716	1.00	26.36
MOTA	458	CD	LYS	106	14.630	31.862	31.518	1.00	26.36
ATOM	459	CE	LYS	106	13.149	31.713	31.135	1.00	26.36
ATOM	460	NZ	LYS	106	12.724	30.333	30.676	1.00	26.36
ATOM	461	C	LYS	106	14.982	27.132	33.251	1.00	11.55
ATOM	462	0	LYS	106	13.892	26.554	33.326	1.00	26.36
ATOM	463	N	ARG	107	16.109	26.516	32.898	1.00	16.17
ATOM	464	CA	ARG	107	16.131	25.111		1.00	16.17
ATOM	465	CB	ARG	107	17.491	24.743		1.00	38.14
MOTA	466	CG	ARG	107	17.492	23.395		1.00	38.14
MOTA	467	CD	ARG	107	18.669	23.246		1.00	38.14
MOTA	468	NE	ARG	107	18.425	22.252			38.14
MOTA	469	CZ	ARG	107	17.632				38.14
MOTA	470	NH:	1 ARG	107	16.979	23.593	28.034	1.00	38.14

FIG. 3I

ATOM	471	NH2	ARG	107	17.533	21.479	27.296	1.00	38.14
ATOM	472	C	ARG	107	15.790	24.179	33.697	1.00	16.17
ATOM	473	0	ARG	107	14.959	23.275	33.551	1.00	38.14
MOTA	474	N	ALA	108	16.441	24.396	34.844	1.00	17.90
MOTA	475	CA	ALA	108	16.218	23.606	36.058	1.00	17.90
ATOM	476	CB	ALA	108	17.224	23.987	37.114	1.00	2.00
ATOM	477	C	ALA	108	14.796	23.753	36.609	1.00	17.90
ATOM	478	0	ALA	108	14.223	22.790	37.115	1.00	2.00
ATOM	479	N	TYR	109	14.219	24.944	36.502	1.00	2.00
ATOM	480	CA	TYR	109	12.875	25.158	36.987	1.00	2.00
ATOM	481	CB	TYR	109	12.548	26.642	37.069	1.00	6.75
. ATOM	482	CG	TYR	109	11.139	26.885	37.544	1.00	6.75
MOTA	483	CD1	TYR	109	10.791	26.671	38.871	1.00	6.75
ATOM	484	CE1	TYR	109	9.487	26.868	39.314	1.00	6.75
ATOM	` 485	CD2	TYR	109	10.146	27.308	36.668	1.00	6.75
MOTA	486	CE2	TYR	109	8.840	27.511	37.106	1.00	6.75
ATOM	487	CZ	TYR	109	8.518	27.290	38.430	1.00	6.75
ATOM	488	OH	TYR	109	7.235	27.513	38.878	1.00	6.75
MOTA	489	С	TYR	109	11.857	24.463	36.100	1.00	2.00
MOTA	490	0	TYR	109	10.923	23.840	36.589	1.00	6.75
ATOM	491	N	ARG	110	12.027	24.630	34.793	1.00	20.21
ATOM	492	CA	ARG	110	11.162	24.042	33.771	1.00	20.21
ATOM	493	CB	ARG	110	11.536	24.628	32.414	1.00	16.32
ATOM	494	CG	ARG	110	10.586	24.328	31.279	1.00	16.32
ATOM	495	CD	ARG	110	10.990	25.137	30.058	1.00	16.32
ATOM	496	NE	ARG	110	10.184	24.829	28.884	1.00	16.32
MOTA	497	CZ	ARG	110	10.648	24.190	27.817	1.00	16.32
MOTA	498		ARG	110	11.915	23.799	27.780	1.00	16.32
MOTA	499		ARG	110	9.846	23.940	26.788	1.00	16.32
MOTA	500	C	ARG	110	11.314	22.521	33.754	1.00	20.21
MOTA	501	0	ARG	110	10.361	21.793	33.482	1.00	16.32
MOTA	502	N	GLU	111	12.525	22.046	34.019	1.00	2.00
MOTA	503	CA	GLU	111	12.800	20.620	34.078	1.00	2.00
ATOM	504	CB	GLU	111	14.287	20.396	34.387	1.00	23.79
MOTA	505	CG	GLU	111	14.728	18.938	34.585	1.00	23.79
MOTA	506	CD	GLU	111	16.264	18.775	34.635	1.00	23.79
MOTA	507		GLU	111	16.753	17.651	34.352	1.00	23.79 23.79
MOTA	508	OE2		111	16.974	19.772	34.948	1.00	23.79
MOTA	509	C	GLU	111	11.932	20.029	35.189	1.00	23.79
ATOM	510	0	GLU	111	11.141	19.127	34.954	1.00 1.00	21.88
ATOM	511	N	LEU	112 112	12.045 11.288	20.599 20.171	36.384 37.559	1.00	21.88
ATOM ATOM	512 513	CA CB	LEU LEU	112	11.518	21.150	38.701	1.00	6.65
ATOM	514			112	12.563	20.834	39.746	1.00	6.65
ATOM	515	CG	LEU	112	12.811	22.079	40.558	1.00	6.65
MOTA	516		LEU	112	12.065	19.700	40.605	1.00	6.65
ATOM	517	CD2	LEU	112	9.792	20.105	37.333	1.00	21.88
ATOM	518	0	LEU	112	9.156	19.092	37.609	1.00	6.65
ATOM	519	N	VAL	113	9.239	21.212	36.851	1.00	2.68
ATOM	520	CA	VAL	113	7.812	21.344	36.614	1.00	2.68
ATOM	521	CB	VAL	113	7.452	22.784	36.139	1.00	23.11
ATOM	522		VAL	113	5.945	22.958	36.101	1.00	23.11
ATOM	523		VAL	113	8.092	23.836	37.059	1.00	23.11
ATOM	524	C	VAL	113	7.239	20.321	35.639	1.00	2.68
ATOM	525	ō	VAL	113	6.336	19.569	35.991	1.00	23.11
ATOM	526	N	LEU	114	7.800	20.251	34.437	1.00	19.44
ATOM	527	CA	LEU	114	7.321	19.327	33.413	1.00	19.44
ATOM	528	CB	LEU	114	7.894	19.701	32.054	1.00	5.29
ATOM	529	CG	LEU	114	7.360	21.018	31.517	1.00	5.29

FIG. 3J

ATOM	530	CD1	LEU	114	8.103	21.355	30.254	1.00	5.29
ATOM	531	CD2	LEU	114	5.862	20.915	31.278	1.00	5.29
ATOM	532	С	LEU	114	7.606	17.869	33.714	1.00	19.44
MOTA	533	0	LEU	114	6.760	17.000	33.488	1.00	5.29
ATOM	534	N	MET	115	8.793	17.590	34.227	1.00	2.00
MOTA	535	CA	MET	115	9.128	16.227	34.565	1.00	2.00
ATOM	536	CB	MET	115	10.598	16.115	34.949	1.00	7.04
ATOM	537	CG	MET	115	11.196	14.779	34.598	1.00	7.04
ATOM	538	SD	MET	115	12.885	14.586	35.145	1.00	7.04
ATOM	539	CE	MET	115	13.731	15.695	34.061	1.00	7.04
ATOM	540	C	MET	115	8.239	15.774	35.727	1.00	2.00
MOTA	541	0	MET	115	8.217	14.597	36.067	1.00	7.04
ATOM	542	N	LYS	116	7.515	16.716	36.335	1.00	7.50
ATOM	543	CA	LYS	116	6.624	16.408	37.443	1.00	7.50
MOTA	544	CB	LYS	116	6.748	17.443	38.561	1.00	25.41
ATOM	545	CG	LYS	116	7.889	17.235	39.557	1.00	25.41
ATOM	546	CD	LYS	116	7.633	18.102	40.780	1.00	25.41
MOTA	547	CE	LYS	116	8.655	17.895	41.893	1.00	25.41
ATOM	548	NZ	LYS	116	8.311	18.681	43.125	1.00	25.41
ATOM	549	C	LYS	116	5.161	16.296	37.044	1.00	7.50
ATOM	550	0	LYS	116	4.409	15.572	37.692	1.00	25.41
ATOM	551	N	CYS	117	4.764	16.993	35.978	1.00	18.55
ATOM	552	CA	CYS	117	3.368	16.987	35.509	1.00	18.55
MOTA	553	CB	CYS	117	2.865	18.421	35.322	1.00	28.53
MOTA	554	SG	CYS	117	3.668	19.290	33.963	1.00	28.53
ATOM	555	C	CYS	117	3.083	16.188	34.225	1.00	18.55
ATOM	556	0	CYS	117	1.919	15.914	33.908	1.00	28.53
ATOM	557	N	VAL	118	4.135	15.847	33.482	1.00	13.50
ATOM	558	CA	VAL	118	4.005	15.086	32.242	1.00	13.50
ATOM	559	CB	VAL	118	5.103	15.475	31.230	1.00	25.80
ATOM	560		VAL	118	4.988	14.640	29.972	1.00	25.80
MOTA	561		VAL	118	5.014	16.942	30.906	1.00	25.80
MOTA	562	C	VAL	118	4.163	13.604	32.528	1.00	13.50
MOTA	563	0	VAL	118	5.118	13.199	33.201	1.00	25.80
MOTA	564	N	THR	119	3.244	12.784	32.021	1.00	29.88
MOTA	565	CA	THR	119	3.346	11.344	32.239	1.00	29.88
ATOM ATOM	566 567	CB	THR	119	2.433	10.845	33.386	1.00	46.17
ATOM	568	CG2	THR	119	2.862	9.540	33.795	1.00	46.17
ATOM	569	CGZ	THR	119	0.954	10.796	32.961	1.00	46.17
ATOM	570		THR	119	3.153	10.534	30.966	1.00	29.88
ATOM	570 571	O N	THR HIS	119 120	2.049	10.406 9.982	30.424	1.00	46.17 11.14
ATOM	571 572	CA	HIS	120	4.264 4.270	9.200	30.498 29.278	1.00	11.14 11.14
ATOM	572 573	CB	HIS	120	4.422	10.139		1.00	
ATOM	574	CG	HIS	120	4.469	9.443	28.094	1.00 1.00	12.95
ATOM	575		HIS	120	5.426	9.387	26.767 25.825	1.00	12.95 12.95
ATOM	576		HIS	120	3.416	8.680	26.302	1.00	12.95
ATOM	577		HIS	120	3.737	8.183	25.118	1.00	12.95
ATOM	578		HIS	120	4.947	8.594	24.805	1.00	12.95
ATOM	579	C	HIS	120	5.432	8.227	29.351	1.00	11.14
ATOM	580	0	HIS	120	6.454	8.526	29.351	1.00	12.95
ATOM	581	И	LYS	121	5.271	7.071	28.717	1.00	2.00
ATOM	582	CA	LYS	121	6.294	6.036	28.717	1.00	2.00
ATOM	583	CB	LYS	121	5.700	4.697	28.281	1.00	11.42
ATOM	584	CG	LYS	121	5.028	4.721	26.918	1.00	11.42
ATOM	585	CD	LYS	121	4.423	3.362	26.545	1.00	11.42
ATOM	586	CE	LYS	121	5.478	2.269	26.451	1.00	11.42
ATOM	587	NZ	LYS	121	6.495	2.546	25.396	1.00	11.42
ATOM	588	C	LYS	121	7.550	6.349	27.928	1.00	2.00
		_		مقد فئت بعد			220	2.00	2.00

FIG. 3K

ATOM	589	0	LYS	121	8.584	5.713	28.124	1.00	11.42
ATOM	590	N	ASN	122	7.475	7.370	27.073	1.00	13.02
ATOM	591	CA	ASN	122	8.605	7.763	26.220	1.00	13.02
MOTA	592	CB	asn	122	8.180	7.770	24.753	1.00	2.00
MOTA	593	CG	ASN	122	7.642	6.432	24.295	1.00	2.00
MOTA	594	OD1	ASN	122	6.520	6.337	23.812	1.00	2.00
MOTA	595	ND2	ASN	122	8.438	5.385	24.470	1.00	2.00
MOTA	596	C	ASN	122	9.242	9.089	26.592	1.00	13.02
ATOM	597	0	ASN	122	10.095	9.596	25.863	1.00	2.00
MOTA	598	N	ILE	123	8.788	9.647	27.715	1.00	11.02
MOTA	599	CA	ILE	123	9.282	10.903	28.283	1.00	11.02 2.63
MOTA	600	CB	ILE	123	8.175	11.965	28.434	1.00	2.63
MOTA	601	CG2	ILE	123	8.750	13.204	29.091	1.00 1.00	2.63
MOTA	602	CG1	ILE	123	7.588	12.333	27.074	1.00	2.63
ATOM	603	CD1	ILE	123	8.553	13.063	26.168	1.00	11.02
MOTA	604	C	ILE	123	9.759	10.514	29.671	1.00	2.63
MOTA	605	0	ILE	123	9.046	9.825	30.397	1.00	18.75
MOTA	606	N	ILE	124	10.932	10.998	30.070		18.75
MOTA	607	CA	ILE	124	11.501	10.629	31.368	1.00 1.00	5.83
MOTA	608	CB	ILE	124	12.940	11.205	31.577	1.00	5.83
MOTA	609	CG2	ILE	124	12.891	12.679	31.928	1.00	5.83
MOTA	610	CG1		124	13.693	10.418	32.650	1.00	5.83
MOTA	611	CD1	ILE	124	14.175	9.055	32.209	1.00	18.75
MOTA	612	C	ILE	124	10.602	10.926	32.569	1.00	5.83
MOTA	613	0	ILE	124	9.856	11.916	32.604 33.505	1.00	32.81
MOTA	614	N	SER	125	10.626	9.978	34.740	1.00	32.81
MOTA	615	CA	SER	125	9.846	10.012	34.740	1.00	33.06
MOTA	616	CB	SER	125	9.218	8.631	35.025	1.00	33.06
MOTA	617	OG	SER	125	10.203	7.594	35.025	1.00	32.81
ATOM	618	С	SER	125	10.698	10.393	36.126	1.00	33.06
MOTA	619	0	SER	125	11.807	9.881 11.299	36.742	1.00	19.68
MOTA	620	N	LEU	126	10.163	11.761	37.937	1.00	19.68
ATOM	621	CA	LEU	126	10.849	13.246	38.161	1.00	2.00
ATOM	622	CB	LEU	126	10.559		39.195	1.00	2.00
MOTA	623	CG	LEU	126	11.407		39.085	1.00	2.00
MOTA	624		LEU	126	12.855 11.254		38.982	1.00	2.00
MOTA	625		LEU	126 126	10.387		39.127	1.00	19.68
MOTA	626	C	LEU		9.218		39.503	1.00	2.00
MOTA	627	0	LEU	126 127	11.311		39.659	1.00	23.39
ATOM	628	N	LEU	127	11.040		40.794	1.00	23.39
MOTA	629	CA	LEU	127	11.991		40.765	1.00	2.00
MOTA	630	CB	LEU	127	11.746		39.773	1.00	2.00
ATOM	631	CG	LEU	127	12.846		39.958	1.00	2.00
ATOM	632		LEU	127	10.390		40.018	1.00	2.00
MOTA	633	CD2	LEU	127	11.111		42.182		23.39
ATOM	634	0	LEU	127	10.273		43.044		2.00
MOTA	635		ASN	128	12.098		42.387		2.00
ATOM	636	N	ASN	128	12.267		43.668		2.00
ATOM	637	CA CB	ASN	128	12.896		44.659		16.49
MOTA	638 639	CB	ASN	128	12.913		46.077		16.49
MOTA			L ASN	128	12.031		_		16.49
ATOM	640 641		2 ASN	128	13.903				16.49
ATOM			ASN		13.128				2.00
ATOM	642		ASN		14.205		42.957		16.49
ATOM	643		VAL		12.649				19.28
MOTA	644 645				13.376				19.28
MOTA	645 646				12.480				10.22
ATOM ATOM	647		1 VAL		13.34				10.22
ATOM	04/	CG.	* ^¥T		20.54			-	

FIG. 3L

ATOM	648	CG2	VAL	129	11.543	15.699	42.478	1.00	10.22
ATOM	649	C	VAL	129	13.769	15.374	45.504	1.00	19.28
MOTA	650	0	VAL	129	12.944	15.238	46.401	1.00	10.22
ATOM	651	N	PHE	130	15.020	15.765	45.733	1.00	13.60
ATOM	652	CA	PHE	130	15.440	16.107	47.084	1.00	13.60
MOTA	653	CB	PHE	130	15.681	14.838	47.923	1.00	3.04
MOTA	654	CG	PHE	130	16.870	14.036	47.487	1.00	3.04
ATOM	655	CD1		130	18.136	14.317	47.987	1.00	3.04
ATOM	656	CD2		130	16.721	13.012	46.566	1.00	3.04
MOTA	657		PHE	130	19.238	13.595	47.575	1.00	3.04
MOTA	658	CE2	PHE	130	17.810	12.279	46.140	1.00	3.04
MOTA	659	CZ	PHE	130	19.078	12.572	46.645	1.00	3.04
MOTA	660	C	PHE	130	16.637	17.038	47.182	1.00	13.60
MOTA	661	0	PHE	130	17.422	17.179	46.244	1.00	3.04 2.00
MOTA	662	N	THR	131	16.746	17.677	48.345	1.00	
ATOM	663	CA	THR	131	17.831	18.588	48.643	1.00	2.00 12.19
ATOM	664	CB	THR	131	17.365	20.080	48.645	1.00	
MOTA	665	OG1	THR	131	18.444	20.930	49.036	1.00	12.19
ATOM	666	CG2	THR	131	16.190	20.301	49.583	1.00	12.19
MOTA	667	C	THR	131	18.424	18.243	50.001	1.00	2.00
MOTA	668	0	THR	131	17.706	17.952	50.957	1.00	12.19
ATOM	669	N	PRO	132	19.753	18.182	50.072	1.00	3.54 3.20
ATOM	670	CD	PRO	132	20.704	18.219	48.952	1.00 1.00	3.54
MOTA	671	CA	PRO	132	20.447	17.875	51.315		
MOTA	672	CB	PRO	132	21.815	17.428	50.827	1.00	3.20 3.20
MOTA	673	CG	PRO	132	22.045	18.285	49.661	1.00	3.54
ATOM	674	C	PRO	132	20.545	19.130	52.189	1.00	3.20
ATOM	675	0	PRO	132	21.321	19.164	53.141	1.00 1.00	4.78
ATOM	676	N	GLN	133	19.817	20.183	51.825 52.594	1.00	4.78
ATOM	677	CA	GLN	133	19.837	21.417		1.00	4.25
ATOM	678	CB	GLN	133	20.255	22.593 22.500	51.726 51.244	1.00	4.25
MOTA	679	CG	GLN	133	21.706	22.300	49.776	1.00	4.25
MOTA	680	CD	GLN	133	21.842	21.782	49.313	1.00	4.25
ATOM	681		GLN	133	22.938	22.158	49.031	1.00	4.25
ATOM	682	NE2		133	20.740 18.491	21.664	53.261	1.00	4.78
MOTA	683	C	GLN	133 133	17.438	21.627	52.614	1.00	4.25
ATOM	684	0	GLN	134	18.543	21.913	54.570	1.00	33.73
ATOM	685	N CA	LYS LYS	134	17.347	22.134	55.373	1.00	33.73
MOTA	686	CB	LYS	134	17.641	21.862	56.857	1.00	32.87
MOTA MOTA	687 688	CG	LYS	134	17.725	20.379	57.225	1.00	32.87
ATOM	689	CD	LYS	134	16.352	19.667	57.154	1.00	32.87
ATOM	690	CE	LYS	134	16.477	18.156	57.418	1.00	32.87
ATOM	691	NZ	LYS	134	17.282	17.463	56.353	1.00	32.87
ATOM	692	C	LYS	134	16.658	23.482	55.220	1.00	33.73
ATOM	693	o	LYS	134	15.423	23.541	55.152	1.00	32.87
ATOM	694	N	THR	135	17.445	24.558	55.169	1.00	47.73
ATOM	695	CA	THR	135	16.883	25.905	55.046	1.00	47.73
ATOM	696	CB	THR	135	17.509	26.874	56.046	1.00	14.84
ATOM	697	OG1		135	18.863	27.134	55.663	1.00	14.84
ATOM	698	CG2		135	17.472	26.278	57.447	1.00	14.84
ATOM	699	C	THR	135	16.987	26.548	53.673	1.00	47.73
ATOM	700	Ö	THR	135	17.947	26.333	52.935	1.00	14.84
ATOM	701	И	LEU	136	16.040	27.442	53.412	1.00	2.00
ATOM	702	CA	LEU	136	15.947	28.175	52.161	1.00	2.00
MOTA	702	CB	LEU	136	14.675	29.013	52.200	1.00	7.33
MOTA	704	CG	LEU	136	14.233	29.957	51.082	1.00	7.33
ATOM	705		LEU	136	14.722	29.512	49.713	1.00	7.33
ATOM	706		LEU	136	12.702	30.046	51.146	1.00	7.33
	. 00			-50	12.702				

FIG. 3M

MOTA	707	С	LEU	136	17.183	29.042	51.963	1.00	2.00
MOTA	708	0	LEU	136	17.423	29.556	50.879	1.00	7.33
MOTA	709	N	GLU	137	17.952	29.217	53.034	1.00	31.36
MOTA	710	CA	GLU	137	19.174	29.997	52.971	1.00	31.36
MOTA	711	CB	GLU	137	19.468	30.699	54.311	1.00	31.26
ATOM	712	CG	GLU	137	18.689	31.988	54.571	1.00	31.26
MOTA	713	CD	GLU	137	17.217	31.746	54.824	1.00	31.26
MOTA	714	OE1	GLU	137	16.874	31.316	55.954	1.00	31.26
MOTA	715	OE2	GLU	137	16.408	31.995	53.897	1.00	31.26
MOTA	716	C	GLU	137	20.308	29.046	52.643	1.00	31.36
MOTA	717	0	GLU	137	21.187	29.365	51.843	1.00	31.26
MOTA	718	N	GLU	138	20.296	27.885	53.290	1.00	18.21
MOTA	719	CA	GLU	138	21.323	26.876	53.059	1.00	18.21
MOTA	720	CB	GLU	138	21.201	25.760	54.080	1.00	15.04
MOTA	721	CG	GLU	138	21.529	26.161	55.492	1.00	15.04
MOTA	722	CD	GLU	138	21.167	25.065	56.475	1.00	15.04
MOTA	723	OE1	GLU	138	20.996	25.388	57.667	1.00	15.04
MOTA	724	OE2	GLU	138	21.046	23.881	56.049	1.00	15.04
MOTA	725	C	GLU	138	21.215	26.264	51.668	1.00	18.21
ATOM	726	0	GLU	138	22.184	25.693	51.167	1.00	15.04
MOTA	727	N	PHE	139	20.026	26.381	51.078	1.00	16.05
ATOM	728	CA	PHE	139	19.706	25.843	49.766	1.00	16.05
MOTA	729	CB	PHE	139	18.343	26.391	49.310	1.00	31.29
MOTA	730	CG	PHE	139	17.847	25.800	48.009	1.00	31.29
MOTA	731	CD1	PHE	139	17.879	24.422	47.802	1.00	31.29
MOTA	732	CD2	PHE	139	17.385	26.619	46.982	1.00	31.29
MOTA	733	CE1	PHE	139	17.467	23.867	46.588	1.00	31.29
MOTA	734	CE2	PHE	139	16.967	26.082	45.760	1.00	31.29
ATOM	735	CZ	PHE	139	17.008	24.703	45.561	1.00	31.29
ATOM	736	C	PHE	139	20.786	26.105	48.709	1.00	16.05
MOTA	737	0	PHE	139	21.061	27.256	48.350	1.00	31.29
MOTA	738	N	GLN	140	21.414	25.036	48.231	1.00	2.00
ATOM	739	CA	GLN	140	22.466	25.157	47.241	1.00	2.00
ATOM	740	CB	GLN	140	23.820	24.911	47.898	1.00	31.26
MOTA	741	CG	GLN	140	24.966	25.054	46.954	1.00	31.26
MOTA	742	CD	GLN	140	26.264	25.266	47.672	1.00	31.26
MOTA	743	OE1	GLN	140	26.386	26.183	48.482	1.00	31.26
MOTA	744	NE2	GLN	140	27.253	24.416	47.386	1.00	31.26
MOTA	745	С	GLN	140	22.287	24.258	46.020	1.00	2.00
MOTA	746	0	GLN	140	22.262	24.757	44.894	1.00	31.26
MOTA	747	N	ASP	141	22.185	22.946	46.230	1.00	10.22
MOTA	748	CA	ASP	141	22.022	22.008	45.125	1.00	10.22
MOTA	749	CB	ASP	141	23.152	20.980	45.123	1.00	13.10
MOTA	750	CG	ASP	141	24.524	21.613	45.146	1.00	13.10
MOTA	751	OD1	ASP	141	24.732	22.666	44.515	1.00	13.10
MOTA	752	OD2	ASP	141	25.418	21.070	45.815	1.00	13.10
MOTA	753	C	ASP	141	20.684	21.285	45.179	1.00	10.22
ATOM	754	0	ASP	141	19.991	21.323	46.199	1.00	13.10
ATOM	755	N	VAL	142	20.308	20.675	44.055	1.00	6.00
ATOM	756	CA	VAL	142	19.070	19.901	43.923	1.00	6.00
ATOM	757	CB	VAL	142	18.043	20.631	43.043	1.00	2.00
ATOM	758	CG1	. VAL	142	16.789	19.783	42.866	1.00	2.00
MOTA	759		VAL	142	17.696	21.962	43.672	1.00	2.00
MOTA	760	C	VAL	142	19.425	18.552	43.296	1.00	6.00
ATOM	761	0	VAL	142	20.270	18.486	42.412	1.00	2.00
ATOM	762	N	TYR	143	18.814	17.475	43.789	1.00	3.45
ATOM	763	CA	TYR	143	19.089	16.130	43.289	1.00	3.45
ATOM	764	CB	TYR	143	19.607	15.227	44.405	1.00	2.80
MOTA	765	CG	TYR		20.990	15.557	44.878	1.00	2.80

FIG. 3N

ATOM	766	CD1	TYR	143	21.217	16.619	45.739	1.00	2.80
ATOM	767	CE1	TYR	143	22.493	16.932	46.171	1.00	2.80
MOTA	768	CD2	TYR	143	22.078	14.813	44.459	1.00	2.80
ATOM	769	CE2	TYR	143	23.362	15.120	44.882	1.00	2.80
MOTA	770	CZ	TYR	143	23.567	16.184	45.736	1.00	2.80
MOTA	771	OH	TYR	143	24.849	16.513	46.129	1.00	2.80
MOTA	772	C	TYR	143	17.848	15.509	42.691	1.00	3.45
MOTA	773	0	TYR	143	16.846	15.331	43.376	1.00	2.80
MOTA	774	N	LEU	144	17.915	15.193	41.401	1.00	20.45
ATOM	775	CA	LEU	144	16.789	14.578	40.694	1.00	20.45
MOTA	776	CB	LEU	144	16.635	15.173	39.284	1.00	5.98
MOTA	777	CG	LEU	144	16.571	16.690	39.101	1.00	5.98
MOTA	778		LEU	144	16.787	17.000	37.651	1.00	5.98
MOTA	779	CD2		144	15.246	17.268	39.574	1.00	5.98
ATOM	780	C	LEU	144	17.032	13.078	40.575	1.00	20.45
MOTA	781	0	LEU	144	18.152	12.639	40.286	1.00	5.98
MOTA	782	N	VAL	145	15.991	12.294	40.835	1.00	6.79
MOTA	783	CA	VAL	145	16.102	10.841	40.738	1.00	6.79
ATOM	784	CB	VAL	145	15.889	10.161	42.113	1.00	2.00
MOTA	785		VAL	145	15.824	8.671	41.951	1.00	2.00
MOTA	786		VAL	145	17.015	10.525	43.056	1.00	. 2.00
ATOM	787	C	VAL	145	15.124	10.269	39.720	1.00	6.79
ATOM	788	0	VAL	145	13.911	10.416	39.853	1.00	2.00
MOTA	789	N	MET	146	15.652	9.658	38.671	1.00	19.74
ATOM	790	CA	MET	146	14.792	9.060	37.657	1.00	19.74 10.11
ATOM	791	CB	MET	146	14.943	9.773	36.319	1.00	10.11
ATOM	792	CG	MET	146	14.723	11.253	36.405	1.00 1.00	10.11
ATOM	793	SD	MET	146	16.115	12.116	35.673	1.00	10.11
MOTA	794	CE	MET	146	17.511	11.529	36.681 37.533	1.00	19.74
ATOM	795	C	MET	146	15.189	7.607	38.329	1.00	10.11
MOTA	796	0	MET	146	15.972	7.101 6.934	36.526	1.00	2.00
MOTA	797	N	GLU	147 147	14.654 14.961	5.531	36.312	1.00	2.00
MOTA	798	CA	GLU		13.923	4.906	35.419	1.00	35.81
ATOM	799	CB	GLU	147 147	12.537	5.132	35.881	1.00	35.81
ATOM	800	CG CD	GLU	147	11.530	4.438	35.011	1.00	35.81
ATOM ATOM	801 802		GLU	147	11.914	3.602	34.152	1.00	35.81
ATOM	803		GLU	147	10.338	4.732	35.201	1.00	35.81
ATOM	804	C	GLU	147	16.299	5.352	35.658	1.00	2.00
ATOM	805	0	GLU	147	16.846	6.274	35.067	1.00	35.81
ATOM	806	И	LEU	148	16.801	4.135	35.720	1.00	2.00
ATOM	807	CA	LEU	148	18.060	3.847	35.097	1.00	2.00
ATOM	808	CB	LEU	148	18.962	3.091	36.052	1.00	2.00
ATOM	809	CG	LEU	148	20.399	3.148	35.568	1.00	2.00
ATOM	810		LEU	148	20.940	4.544	35.769	1.00	2.00
ATOM	811		LEU	148	21.228	2.139	36.303	1.00	2.00
ATOM	812	C	LEU	148	17.872	3.066	33.792	1.00	2.00
ATOM	813	Ö	LEU	148	17.317	1.963	33.759	1.00	2.00
ATOM	814	N	MET	149	18.305	3.698	32.711	1.00	12.82
ATOM	815	CA	MET	149	18.251	3.120	31.387	1.00	12.82
ATOM	816	CB	MET	149	18.097	4.207	30.335	1.00	5.88
ATOM	817	CG	MET	149	16.934	5.107	30.610	1.00	5.88
ATOM	818	SD	MET	149	15.478	4.137	30.863	1.00	5.88
ATOM	819	CE	MET	149	14.727	4.271	29.246	1.00	5.88
ATOM	820	C	MET	149	19.585	2,434	31.218	1.00	12.82
ATOM	821	o	MET	149	20.474	2.572	32.065	1.00	5.88
ATOM	822	N	ASP	150	19.741	1.723	30.106	1.00	5.65
ATOM	823	CA	ASP	150	20.971	0.996	29.856	1.00	5.65
ATOM	824	CB	ASP	150	20.631	-0.351	29.256	1.00	4.35
				•		- ·			

FIG. 30

ATOM	825	CG	ASP	150	19.680	-1.122	30.110	1.00	4.35
ATOM	826	OD1	ASP	150	19.847	-1.096	31.342	1.00	4.35
MOTA	827	OD2	ASP	150	18.746	-1.729	29.575	1.00	4.35
MOTA	828	C	ASP	150	22.042	1.695	29.067	1.00	5.65
MOTA	829	0	ASP	150	23.211	1.326	29.168	1.00	4.35
MOTA	830	N	ALA	151	21.654	2.701	28.292	1.00	2.00
MOTA	831	CA	ALA	151	22.595	3.461	27.474	1.00	2.00
ATOM	832	CB	ALA	151	23.152	2.568	26.364	1.00	2.00
MOTA	833	C	ALA	151	21.920	4.673	26.855	1.00	2.00
MOTA	834	0	ALA	151	20.741	4.914	27.071	1.00	2.00
MOTA	835	N	ASN	152	22.692	5.445	26.100	1.00	23.78
MOTA .	836	CA	ASN	152	22.163	6.613	25.401	1.00	23.78
MOTA	837	CB	ASN	152	23.103	7.832	25.525	1.00	36.42
ATOM	838	CG	ASN	152	24.481	7.596	24.918	1.00	36.42
ATOM	839		ASN	152	24.621	6.905	23.910	1.00	36.42
ATOM	840	ND2	ASN	152	25.499	8.190	25.524	1.00	36.42
MOTA	841	C	ASN	152	21.906	6.262	23.921	1.00	23.78
MOTA	842	0	ASN	152	22.289	5.186	23.446	1.00	36.42
MOTA	843	N	LEU	153	21.282	7.182	23.193	1.00	11.01
MOTA	844	CA	PEA	153	20.984	6.954	21.783	1.00	11.01
MOTA	845	CB	LEU	153	19.923	7.924	21.297	1.00	2.00
MOTA	846	CG	LEU	153	18.761	7.314	20.526	1.00	2.00
MOTA	847		LEU	153	18.173	8.369	19.610	1.00	2.00
ATOM	848		LEU	153	19.220	6.129	19.727	1.00	2.00
MOTA	849	C	LEU	153	22.208	7.056	20.872	1.00	11.01
MOTA	850	0	LEU	153	22.203	6.504	19.783	1.00	2.00
MOTA	851	N	CYS	154	23.260	7.728	21.330	1.00	12.15
MOTA	852	CA	CYS	154	24.462	7.890	20.532	1.00	12.15
MOTA	853	CB	CYS	154	25.243	9.131	20.964	1.00	53.10
ATOM	854	SG	CYS	154	26.248	8.917	22.444	1.00	53.10
MOTA	855	C	CYS	154	25.337	6.645	20.589	1.00	12.15
ATOM	856	0	CYS	154	26.325	6.538	19.862	1.00	53.10
ATOM	857	N	GLN	155	24.971	5.713	21.466	1.00	2.99
ATOM	858	CA	GLN	155	25.683	4.455	21.604	1.00	2.99
ATOM	859	CB	GLN	155	25.533	3.913	23.016	1.00	16.88 16.88
ATOM	860	CG	GLN	155	26.518	4.461	24.027	1.00	
MOTA	861	CD	GLN	155	26.286	3.868	25.414	1.00	16.88
ATOM	862	OE1		155	25.385	4.292	26.139	1.00	16.88 16.88
MOTA	863	NE2		155	27.088	2.872	25.777	1.00	2.99
ATOM	864	С	GLN	155	25.033	3.488	20.635	1.00	16.88
ATOM	865	0	GLN	155	25.693	2.638	20.055	1.00	12.86
ATOM	866	N	VAL	156	23.721	3.637	20.484	1.00 1.00	12.86
MOTA	867	CA	VAL	156	22.916	2.816	19.579	1.00	2.00
MOTA	868	CB	VAL	156	21.399	3.055	19.839	1.00	2.00
MOTA	869		VAL	156	20.539	2.462	18.731 21.181	1.00	2.00
MOTA	870		VAL	156	20.999	2.484	18.123	1.00	12.86
ATOM	871	C	VAL	156	23.249	3.203	17.175	1.00	2.00
ATOM	872	0	VAL	156	22.997	2.460		1.00	10.11
ATOM	873	N	ILE	157	23.834	4.380	17.970 16.683	1.00	10.11
MOTA	874	CA	ILE	157	24.213	4.893		1.00	8.01
ATOM	875	CB	ILE	157 157	24.291 25.350	6.432	16.755	1.00	8.01
MOTA	876	CG2		157		6.997	15.812		8.01
ATOM	877		. ILE	157	22.904 22.730	6.994	16.453 16.893	1.00 1.00	8.01
ATOM	878	CD1		157	25.520	8.386	16.893	1.00	10.11
ATOM	879	C	ILE	157		4.263		1.00	8.01
ATOM	880	0	ILE	157	25.806 26.286	4.196	15.039 17.184	1.00	2.00
ATOM	881	N	GLN	158	26.286 27.551	3.743	16.853	1.00	2.00
ATOM	882	CA	GLN	158	28.533	3.106	18.005	1.00	52.31
MOTA	883	CB	GLN	158	40.535	3.251	10.005	1.00	22.31

FIG. 3P

MOTA	884	CG	GLN	158	29.150	4.613	18.169	1.00	52.31
MOTA	885	CD	GTM	158	30.188	4.613	19.276	1.00	52.31
MOTA	886	OE1		158	31.112	3.786	19.272	1.00	52.31
MOTA	887	NE2	GLN	158	30.034	5.521	20.246	1.00	52.31
ATOM	888	C	GLN	158	27.396	1.628	16.507	1.00	2.00 52.31
ATOM	889	0	GLN	158	28.381	0.886	16.483	1.00	-
MOTA	890	N	MET	159	26.159	1.190	16.298	1.00	2.84 2.84
ATOM	891	CA	MET	159	25.890	-0.197	15.956	1.00	12.08
ATOM	892	CB	MET	159	25.516	-0.978	17.203	1.00	12.08
ATOM	893	CG	MET	159	24.130	-0.673	17.736	1.00	12.08
MOTA	894	SD	MET	159	24.057	-0.915	19.488	1.00	12.08
MOTA	895	CE	MET	159	22.779	-2.121	19.575	1.00	2.84
MOTA	896	C	MET	159	24.760	-0.265	14.937	1.00 1.00	12.08
ATOM	897	0	MET	159	23.749	0.428	15.059	1.00	2.00
MOTA	898	N	GLU	160	24.921	-1.118	13.937	1.00	2.00
ATOM	899	CA	GLU	160	23.916	-1.254	12.899	1.00	23.86
MOTA	900	CB	GLU	160	24.518	-1.933	11.663	1.00	23.86
MOTA	901	CG	GLU	160	25.306	-3.189	11.973	1.00	23.86
MOTA	902	CD	GLU	160	25.643	-3.988	10.730		23.86
MOTA	903	OE1	GLU	160	26.618	-3.623	10.031	1.00 1.00	23.86
ATOM	904	OE2	GLU	160	24.938	-4.987	10.471	1.00	23.00
MOTA	905	C	GLU	160	22.711	-2.032	13.396	1.00	23.86
MOTA	906	0	GLU	160	22.847	-3.137	13.899	1.00	5.79
MOTA	907	N	LEU	161	21.530	-1.443	13.254	1.00	5.79
MOTA	908	CA	PEA	161 ·	20.292	-2.074	13.713	1.00	13.20
ATOM	909	CB	LEU	161	19.462	-1.071	14.510 15.703	1.00	13.20
MOTA	910	CG	LEU	161	20.034	-0.330		1.00	13.20
MOTA	911		LEU	161	19.066	0.772	16.064 16.857	1.00	13.20
MOTA	912	CD2		161	20.249	-1.293	12.598	1.00	5.79
MOTA	913	C	LEU	161	19.392	-2.600		1.00	13.20
MOTA	914	0	LEU	161	19.435	-2.113 -3.582	11.466 12.933	1.00	7.84
ATOM	915	N	ASP	162	18.559	-4.121	11.977	1.00	7.84
ATOM	916	CA	ASP	162	17.606	-5.477	12.449	1.00	9.47
MOTA	917	CB	ASP	162	17.054 16.717	-5.502	13.942	1.00	9.47
MOTA	918	CG	ASP	162	17.654	-5.665	14.759	1.00	9.47
ATOM	919		ASP	162	15.517	-5.390	14.292	1.00	9.47
MOTA	920		ASP	162	16.478	-3.083	11.857	1.00	7.84
ATOM	921	C	ASP	162	16.405	-2.161	12.667	1.00	9.47
ATOM	922	0	ASP	162	15.629	-3.202	10.836	1.00	22.67
ATOM	923	N	HIS	163	14.513	-2.265	10.642	1.00	22.67
ATOM	924	CA CB	HIS HIS	163 163	13.807	-2.537	9.322	1.00	13.35
ATOM	925 926	CG	HIS	163	14.651	-2.254	8.127	1.00	13.35
ATOM			HIS	163	14.985	-3.032	7.069	1.00	13.35
MOTA	927 928		HIS	163	15.260	-1.038	7.916	1.00	13.35
ATOM	928 929		HIS	163	15.932	-1.074	6.783	1.00	13.35
ATOM			HIS	163	15.783	-2.275	6.249	1.00	13.35
ATOM	930 931	C	HIS	163	13.471	-2.255	11.764	1.00	22.67
MOTA		o	HIS	163	12.824	-1.238	11.987	1.00	13.35
ATOM	932 933	И	GLU	164	13.316	-3.379	12.465	1.00	21.78
MOTA	933	CA	GLU	164	12.345	-3.498	13.564	1.00	21.78
ATOM	935	CB	GLU	164	12.221	-4.960	14.005	1.00	11.17
ATOM		CG	GLU	164	11.194	-5.786	13.232	1.00	11.17
ATOM	936	CD	GLU	164	11.437	-5.819	11.734	1.00	11.17
ATOM	937 938		GLU.	164	10.452	-5.639	10.989	1.00	11.17
MOTA		OE2			12.595	-6.035	11.294	1.00	11.17
ATOM	939	C		164	12.721	-2.631	14.760	1.00	21.78
ATOM	940 941	0	GLU	164 164	11.955	-1.782	15.206	1.00	11.17
ATOM			GLU	164	13.926	-2.845	15.257	1.00	2.00
ATOM	942	N	ARG	165	13.740	-2.043	10.201	1.00	2.00

FIG. 3Q

ATOM	943	CA	ARG	165	14.439	-2.094	16.373	1.00	2.00
MOTA	944	CB	ARG	165	15.839	-2.582	16.714	1.00	23.45
MOTA	945	CG	ARG	165	15.866	-3.907	17.467	1.00	23.45
MOTA	946	CD	ARG	165	17.304	-4.246	17.862	1.00	23.45
MOTA	947	NE	ARG	165	17.397	-5.350	18.807	1.00	23.45
MOTA	948	CZ	ARG	165	17.137	-6.622	18.516	1.00	23.45
MOTA	949	NH1	ARG	165	16.759	-6.984	17.297	1.00	23.45
MOTA	950	NH2	ARG	165	17.260	-7.542	19.454	1.00	23.45
MOTA	951	C	ARG	165	14.480	-0.624	16.017	1.00	2.00
MOTA	952	0	ARG	165	13.924	0.201	16.728	1.00	23.45
MOTA	953	N	MET	166	15.120	-0.310	14.897	1.00	2.00
MOTA	954	CA.	MET	166	15.252	1.061	14.407	1.00	2.00
MOTA	955	CB	MET	166	15.915	1.046	13.031	1.00	28.00
MOTA	956	CG	MET	166	16.291	2.401	12.473	1.00	28.00
MOTA	957	SD	MET	166	16.936	2.244	10.786	1.00	28.00
MOTA	958	CE	MET	166	18.697	1.770	11.111	1.00	28.00
MOTA	959	С	MET	166	13.897	1.781	14.340	1.00	2.00
ATOM	960	0	MET	166	13.766	2.913	14.809	1.00	28.00
ATOM	961	N	SER	167	12.887	1.106	13.790	1.00	12.38 12.38
ATOM	962	CA	SER	167	11.537	1.655	13.666	1.00	11.87
MOTA	963	CB	SER	167	10.715	0.830	12.683	1.00	
MOTA	964	OG	SER	167	10.651	-0.522	13.100	1.00 1.00	11.87 12.38
MOTA	965	C	SER	167	10.788	1.746	14.996		11.87
MOTA	966	0	SER	167	9.874	2.568	15.129	1.00	2.00
ATOM	967	N	TYR	168	11.130	0.891	15.962 17.266	1.00 1.00	2.00
MOTA	968	CA	TYR	168	10.481	0.938		1.00	4.15
ATOM	969	CB	TYR	168	10.763	-0.322 -0.389	18.088 19.328	1.00	4.15
ATOM	970	CG	TYR	168	9.916	-0.389	19.263	1.00	4.15
ATOM	971		TYR	168	8.543	-0.133	20.406	1.00	4.15
ATOM	972	CE1		168 168	7.750 10.479	-0.629	20.571	1.00	4.15
MOTA	973 974	CD2	TYR	168	9.692	-0.625	21.733	1.00	4.15
MOTA	974 975	CEZ	TYR	168	8.325	-0.381	21.642	1.00	4.15
MOTA MOTA	975 976	OH	TYR	168	7.544	-0.357	22.780	1.00	4.15
ATOM	977	C	TYR	168	11.007	2.162	18.004	1.00	2.00
ATOM	978	Ö	TYR	168	10.250	2.911	18.626	1.00	4.15
ATOM	979	N	LEU	169	12.317	2.352	17.919	1.00	4.07
ATOM	980	CA.	LEU	169	12.970	3.482	18.526	1.00	4.07
ATOM	981	CB	LEU	169	14.482	3.400	18.292	1.00	4.89
ATOM	982	CG	LEU	169	15.256	2.291	19.009	1.00	4.89
ATOM	983		LEU	169	16.746	2.558	18.881	1.00	4.89
ATOM	984		LEU	169	14.864	2.262	20.477	1.00	4.89
ATOM	985	C	LEU	169	12.379	4.759	17.915	1.00	4.07
ATOM	986	ō	LEU	169	11.830	5.595	18.634	1.00	4.89
ATOM	987	N	LEU	170	12.373	4.843	16.587	1.00	2.00
ATOM	988	CA	LEU	170	11.834	6.008	15.888	1.00	2.00
ATOM	989	СВ	LEU	170	12.027	5.869	14.382	1.00	5.04
ATOM	990	CG	LEU	170	13.257	6.551	13.776	1.00	5.04
ATOM	991		LEU	170	13.065	8.058	13.715	1.00	5.04
MOTA	992		LEU	170	14.485	6.194	14.585	1.00	5.04
ATOM	993	C	LEU	170	10.359	6.268	16.198	1.00	2.00
ATOM	994	0	LEU	170	9.949	7.421	16.334	1.00	5.04
ATOM	995	N	TYR	171	9.573	5.205	16.351	1.00	22.09
ATOM	996	CA	TYR	171	8.151	5.340	16.669	1.00	22.09
ATOM	997	CB	TYR	171	7.452	3.981	16.530	1.00	9.28
ATOM	998	CG	TYR	171	6.110	3.846	17.219	1.00	9.28
ATOM	999	CDI		171	4.939	4.328	16.634	1.00	9.28
MOTA	1000	CE1	LTYR	171	3.696	4.181	17.278	1.00	9.28
MOTA	1001	CD2	YYR	171	6.009	3.209	18.460	1.00	9.28

FIG. 3R

MOTA	1002	CE2	TYR	171	4.777	3.063	19.110	1.00	9.28
ATOM	1003	CZ	TYR	171	3.628	3.551	18.515	1.00	9.28
MOTA	1004	OH	TYR	171	2.412	3.411	19.152	1.00	9.28
ATOM	1005	C	TYR	171	7.982	5.915	18.081	1.00	22.09
ATOM	1006	0	TYR	171	7.074	6.717	18.337	1.00	9.28
ATOM	1007	N	GLN	172	8.879	5.529	18.986	1.00	2.00
ATOM	1008	CA	GLN	172	8.830	6.020	20.346	1.00	2.00
ATOM	1009	CB	GLN	172	9.698	5.164	21.251	1.00	13.55
ATOM	1010	CG	GLN	172	9.162	3.775	21.454	1.00	13.55
ATOM	1011	CD	GLN	172	10.033	2.976	22.376	1.00	13.55
ATOM	1012	OE1	GLN	172	9.758	2.867	23.576	1.00	13.55
ATOM	1012	NE2	GLN	172	11.109	2.424	21.834	1.00	13.55
ATOM	1013	C	GLN	172	9.244	7.479	20.411	1.00	2.00
ATOM	1015	0	GLN	172	8.676	8.254	21.183	1.00	13.55
	1015	И	MET	173	10.202	7.871	19.582	1.00	4.17
MOTA	1016	CA	MET	173	10.642	9.255	19.569	1.00	4.17
ATOM			MET	173	11.800	9.452	18.612	1.00	2.80
MOTA	1018	CB		173	13.130	9.233	19.241	1.00	2.80
MOTA	1019	CG	MET	173	14.412	9.163	18.023	1.00	2.80
ATOM	1020	SD	MET		14.412	7.494	18.142	1.00	2.80
ATOM	1021	CE	MET	173	9.487	10.128	19.144	1.00	4.17
MOTA	1022	C	MET	173		11.218	19.672	1.00	2.80
MOTA	1023	0	MET	173	9.307	9.637	18.195	1.00	6.58
MOTA	1024	N	LEU	174	8.696		17.711	1.00	6.58
MOTA	1025	CA	LEU	174	7.544	10.387		1.00	2.00
MOTA	1026	CB	LEU	174	7.069	9.857	16.346		2.00
ATOM	1027	CG	LEU	174	8.065	9.936	15.177	1.00	2.00
MOTA	1028		LEU	174	7.532	9.144	13.998	1.00	
MOTA	1029		LEU	174	8.336	11.393	14.784	1.00	2.00
MOTA	1030	C	LEU	174	6.395	10.426	18.730	1.00	6.58
MOTA	1031	0	LEU	174	5.728	11.456	18.881	1.00	2.00
MOTA	1032	N	CYS	175	6.181	9.332	19.455	1.00	4.87
ATOM	1033	CA	CYS	175	5.118	9.310	20.450	1.00	4.87
ATOM	1034	CB	CYS	175	4.966	7.909	21.033	1.00	2.00
MOTA	1035	SG	CYS	175	4.104	6.748	19.992	1.00	2.00
MOTA	1036	C	CYS	175	5.411	10.321	21.564	1.00	4.87
MOTA	1037	0	CYS	175	4.552	11.119	21.943	1.00	2.00
MOTA	1038	N	GLY	176	6.659	10.315	22.027	1.00	2.00
MOTA	1039	CA	GLY	176	7.093	11.207	23.076	1.00	2.00
ATOM	1040	C	GLY	176	7.004	12.652	22.651	1.00	2.00
ATOM	1041	0	GLY	176	6.575	13.497	23.425	1.00	28.56
ATOM	1042	N	ILE	177	7.373	12.935	21.410	1.00	14.73
MOTA	1043	CA	ILE	177	7.336	14.293	20.882	1.00	14.73
MOTA	1044	CB	ILE	177	8.222	14.419	19.643	1.00	2.00
ATOM	1045	CG2	ILE	177	8.085	15.773	19.020	1.00	2.00
ATOM	1046	CG1	ILE	177	9.676	14.229	20.040	1.00	2.00
MOTA	1047	CD1	ILE	177	10.542	13.878	18.869	1.00	2.00
ATOM	1048	C	ILE	177	5.911	14.721	20.562	1.00	14.73
ATOM	1049	0	ILE	177	5.592	15.908	20.584	1.00	2.00
ATOM	1050	N	LYS	178	5.034	13.758	20.311	1.00	2.00
ATOM	1051	CA	LYS	178	3.659	14.107	20.027	1.00	2.00
ATOM	1052	CB	LYS	178	2.906	12.991	19.310	1.00	12.67
ATOM	1053	CG	LYS	178	1.564	13.501	18.827	1.00	12.67
ATOM	1054	CD	LYS	178	0.546	12.434	18.593	1.00	12.67
ATOM	1055	CE	LYS	178	-0.785	13.112	18.357	1.00	12.67
ATOM	1056	NZ	LYS	178	-1.854	12.145	18.059	1.00	12.67
MOTA	1057	C	LYS	178	2.944	14.456	21.311	1.00	2.00
MOTA	1058	ō	LYS	178	2.028	15.263	21.304	1.00	12.67
MOTA	1059	И	HIS	179	3.343	13.833	22.411	1.00	2.00
ATOM	1060	CA	HIS	179	2.729	14.110	23.708	1.00	2.00

FIG. 35

								1 00	5.57
MOTA	1061	CB	HIS	179	3.168	13.074	24.740	1.00	5.57
ATOM	1062	CG	HIS	179	2.349	13.086	25.993	1.00	
ATOM	1063	CD2	HIS	179	2.678	13.396	27.267	1.00	5.57
ATOM	1064	ND1	HIS	179	1.014	12.743	26.011	1.00	5.57
ATOM	1065	CE1		179	0.554	12.849	27.243	1.00	5.57
ATOM	1066	NE2		179	1.545	13.240	28.026	1.00	5.57
ATOM	1067	C	HIS	179	3.178	15.497	24.147	1.00	2.00
ATOM	1068	ō	HIS	179	2.405	16.278	24.697	1.00	5.57
ATOM	1069	N	LEU	180	4.437	15.799	23.871	1.00	2.00
	1070	CA	LEU	180	5.002	17.086	24.193	1.00	2.00
ATOM		CB	LEU	180	6.438	17.165	23.674	1.00	5.28
MOTA	1071	CG	LEU	180	7.537	17.357	24.713	1.00	5.28
MOTA	1072		LEU	180	7.412	16.299	25.773	1.00	5.28
MOTA	1073		LEU	180	8.892	17.305	24.063	1.00	5.28
ATOM	1074				4.151	18.154	23.509	1.00	2.00
MOTA	1075	C	LEU	180	3.695	19.095	24.143	1.00	5.28
MOTA	1076	0	LEU	180	3.883	17.958	22.225	1.00	2.00
MOTA	1077	N	HIS	181		18.901	21.458	1.00	2.00
MOTA	1078	CA	HIS	181	3.092		19.976	1.00	9.13
MOTA	1079	CB	HIS	181	3.194	18.578		1.00	9.13
MOTA	1080	CG	HIS	181	4.602	18.599	19.449	1.00	9.13
ATOM	1081		HIS	181	5.768	18.916	20.034		9.13
ATOM	1082		HIS	181	4.895	18.279	18.144	1.00	
ATOM	1083	CE1	HIS	181	6.196	18.407	17.950	1.00	9.13
MOTA	1084	NE2	HIS	181	6.752	18.792	19.077	1.00	9.13
ATOM	1085	C	HIS	181	1.626	18.934	21.877	1.00	2.00
ATOM	1086	0	HIS	181	0.941	19.937	21.662	1.00	9.13
ATOM	1087	N	SER	182	1.151	17.857	22.501	1.00	38.18
ATOM	1088	CA	SER	182	-0.235	17.762	22.970	1.00	38.18
ATOM	1089	CB	SER	182	-0.630	16.305	23.248	1.00	31.08
ATOM	1090	OG	SER	182	0.004	15.791	24.408	1.00	31.08
ATOM	1091	C	SER	182	-0.413	18.612	24.227	1.00	38.18
ATOM	1092	Ō	SER	182	-1.520	19.065	24.534	1.00	31.08
ATOM	1093	N	ALA	183	0.690	18.799	24.951	1.00	14.47
ATOM	1094	CA	ALA	183	0.711	19.609	26.159	1.00	14.47
ATOM	1095	CB	ALA	183	1.670	19.014	27.160	1.00	4.36
ATOM	1096	C	ALA	183	1.104	21.057	25.830	1.00	14.47
MOTA	1097	ŏ	ALA	183	1.148	21.919	26.712	1.00	4.36
MOTA	1098	N	GLY	184	1.382	21.316	24.554	1.00	2.00
	1098	CA	GLY	184	1.766	22.644	24.113	1.00	2.00
MOTA		C	GLY	184	3.262	22.893	24.181	1.00	2.00
MOTA	1100	0	GLY	184	3.691	24.046	24.081	1.00	17.40
MOTA	1101	И	ILE	185	4.047	21.826	24.370	1.00	2.00
MOTA	1102	CA	ILE	185	5.511	21.894	24.464	1.00	2.00
ATOM	1103		ILE	185	6.041	20.899	25.514	1.00	4.90
ATOM	1104	CB		185	7.532	21.128	25.750	1.00	4.90
MOTA	1105		2 ILE		5.244	21.006	26.808	1.00	4.90
ATOM	1106		1 ILE	185		19.851	27.766	1.00	4.90
MOTA	1107		1 ILE	185	5.464	21.541	23.153	1.00	2.00
MOTA	1108	C	ILE	185	6.205	20.468	22.613	1.00	4.90
MOTA	1109	0	ILE	185	5.973	22.423	22.666	1.00	7.82
ATOM	1110	N	ILE	186	7.077		21.428	1.00	7.82
MOTA	1111	CA		186	7.823	22.185			17.50
MOTA	1112	CB		186	7.435			1.00 1.00	17.50
MOTA	1113		2 ILE	186	8.323	22.972			
MOTA	1114		1 ILE	186	5.983	_			17.50
MOTA	1115	CD	1 ILE	186	5.434				17.50
MOTA	1116	C	ILĖ	186	9.326				7.82
ATOM	1117	0	ILE	186	9.962				17.50
ATOM	1118	N	HIS	187	9.872				22.00
ATOM	1119	CA		187	11.277	20.752	22.148	1.00	22.00

FIG. 3T

ATOM	1120	СВ	HIS	187	11.575	19.297	21.774	1.00	3.84
ATOM	1121	CG	HIS	187	12.554	18.623	22.682	1.00	3.84
ATOM	1122	CD2	HIS	187	12.384	17.652	23.602	1.00	3.84
MOTA	1123	ND1	HIS	187	13.895	18.941	22.699	1.00	3.84
MOTA	1124	CE1	HIS	187	14.509	18.191	23.594	1.00	3.84
ATOM	1125	NE2	HIS	187	13.614	17.400	24.157	1.00	3.84
MOTA	1126	C	HIS	187	12.310	21.680	21.518	1.00	22.00
MOTA	1127	0	HIS	187	12.891	22.526	22.197	1.00	3.84
MOTA	1128	N	ARG	188	12.508	21.499	20.216	1.00	6.22
ATOM	1129	CA	ARG	188	13.463	22.242	19.401	1.00	6.22
ATOM	1130	CB	ARG	188	13.201	23.739	19.445	1.00	27.37
MOTA	1131	CG	ARG	188	11.932	24.159	18.755	1.00	27.37
MOTA	1132	CD	ARG	188	11.856	25.658	18.715	1.00	27.37
MOTA	1133	NE	ARG	188	11.646	26.237	20.043	1.00	27.37
ATOM	1134	\mathbf{cz}	ARG	188	12.366	27.234	20.560	1.00	27.37
MOTA	1135	NH1	ARG	188	13.368	27.775	19.875	1.00	27.37
ATOM	1136	NH2	ARG	188	12.038	27.749	21.742	1.00	27.37
MOTA	1137	C	ARG	188	14.944	21.950	19.652	1.00	6.22
MOTA	1138	0	ARG	188	15.799	22.651	19.123	1.00	27.37
MOTA	1139	N	ASP	189	15.250	20.919	20.445	1.00	12.44
MOTA	1140	CA	ASP	189	16.646	20.543	20.705	1.00	12.44
MOTA	1141	CB	ASP	189	17.240	21.367	21.859	1.00	15.30
MOTA	1142	CG	ASP	189	18.767	21.294	21.907	1.00	15.30
ATOM	1143	OD1	ASP	189	19.413	21.349	20.835	1.00	15.30
MOTA	1144	OD2	ASP	189	19.320	21.164	23.017	1.00	15.30
ATOM	1145	С	ASP	189	16.879	19.035	20.933	1.00	12.44
MOTA	1146	0	ASP	189	17.730	18.635	21.731	1.00	15.30
MOTA	1147	N	LEU	190	16.139	18.202	20.208	1.00	2.00
MOTA	1148	CA	LEU	190	16.293	16.757	20.327	1.00	2.00
MOTA	1149	CB	LEU	190	15.263	16.035	19.467	1.00	11.08
ATOM	1150	CG	LEU	190	13.848	16.009	20.029	1.00	11.08
MOTA	1151		LEU	190	12.872	16.076	18.889	1.00	11.08
ATOM	1152	CD2	LEU	190	13.618	14.777	20.900	1.00	11.08
MOTA	1153	C	LEU	190	17.680	16.353	19.860	1.00	2.00
MOTA	1154	0	LEU	190	18.072	16.672	18.755	1.00	11.08
MOTA	1155	N	LYS	191	18.432	15.680	20.715	1.00	2.00
MOTA	1156	CA	LYS	191	19.764	15.222	20.357	1.00	2.00
MOTA	1157	CB	LYS	191	20.829	16.200	20.852	1.00	15.76
MOTA	1158	CG	LYS	191	20.620	16.731	22.261	1.00	15.76
MOTA	1159	CD	LYS	191	21.700	17.727	22.660	1.00	15.76
MOTA	1160	CE	LYS	191	21.478	19.088	22.025	1.00	15.76
MOTA		. NZ	LYS	191	22.411	20.123	22.562	1.00	15.76 2.00
MOTA	1162	C	LYS	191	19.932	13.829	20.941	1.00	
MOTA	1163	0	LYS	191	19.342	13.518	21.954	1.00	15.76
MOTA	1164	N	PRO	192	20.669	12.944	20.259	1.00	8.42
MOTA	1165	CD	PRO	192	21.359	13.131	18.973	1.00	6.93
ATOM	1166	CA	PRO	192	20.872	11.579	20.756	1.00	8.42
MOTA	1167	CB	PRO	192	21.939	11.032	19.809	1.00	6.93
ATOM	1168	CG	PRO	192	21.594	11.704	18.522	1.00	6.93
MOTA	1169	C	PRO	192	21.318	11.529	22.205	1.00	8.42
ATOM	1170	0	PRO	192	20.848	10.697	22.985	1.00	6.93
MOTA	1171	N	SER	193	22.190	12.464	22.576	1.00	15.86
MOTA	1172	CA	SER	193	22.699	12.527	23.935	1.00	15.86
MOTA	1173	CB	SER	193	23.830	13.569		1.00	24.60
MOTA	1174	OG	SER	193	23.439	14.886			24.60
ATOM	1175	C	SER	193	21.582	12.804			15.86
MOTA	1176	0	SER		21.705	12.459			24.60
MOTA	1177	N	ASN		20.475	13.372	24.453		5.51
MOTA	1178	CA	asn	194	19.327	13.685	25.306	1.00	5.51

FIG. 3U

ATOM	1179	CB	ASN	194	18.844	15.115	25.057	1.00	7.93
MOTA	1180	CG	ASN	194	19.824	16.151	25.558	1.00	7.93
ATOM	1181	OD1	ASN	194	20.810	15.821	26.222	1.00	7.93
ATOM	1182	ND2		194	19.567	17.406	25.251	1.00	7.93
ATOM	1183	C	ASN	194	18.173	12.701	25.156	1.00	5.51
MOTA	1184	0	ASN	194	17.006	13.050	25.369	1.00	7.93
MOTA	1185	N	ILE	195	18.509	11.487	24.738	1.00	2.00
MOTA	1186	CA	ILE	195	17.549	10.414	24.570	1.00	2.00
ATOM	1187	CB	ILE	195	17.168	10.196	23.094	1.00	11.94
MOTA	1188	CG2	ILE	195	16.066	9.167	23.015	1.00	11.94
ATOM	1189	CG1	ILE	195	16.701	11.496	22.446	1.00	11.94
.ATOM	1190	CD1	ILE	195	16.189	11.344	21.041	1.00	11.94
MOTA	1191	С	ILE	195	18.260	9.174	25.074	1.00	2.00
ATOM	1192	0	ILE	195	19.418	8.931	24.738	1.00	11.94
ATOM	1193	N	VAL	196	17.584	8.402	25.909	1.00	2.00
ATOM	1194	CA	VAL	196	18.175	7.192	26.463	1.00	2.00
ATOM	1195	CB	VAL	196	18.364	7.288	28.004	1.00	2.00
MOTA	1196	CG1	VAL	196	19.559	8.175	28.334	1.00	2.00
ATOM	1197		VAL	196	17.104	7.831	28.680	1.00	2.00
ATOM	1198	С	VAL	196	17.379	5.948	26.100	1.00	2.00
ATOM	1199	0	VAL	196	16.164	6.010	25.887	1.00	2.00
ATOM	1200	N	VAL	197	18.083	4.816	26.018	1.00	25.26
ATOM	1201	CA	VAL	197	17.466	3.529	25.669	1.00	25.26
ATOM	1202	CB	VAL	197	17.871	3.056	24.250	1.00	3.01
ATOM	1203		VAL	197	17.301	3.987	23.196	1.00	3.01
MOTA	1204		VAL	197	19.386	2.944	24.131	1.00	3.01
ATOM	1205	C	VAL	197	17.711	2.382	26.652	1.00	25.26
ATOM	1206	0	VAL	197	18.615	2.422	27.492	1.00	3.01
ATOM	1207	N	LYS	198	16.841	1.382	26.563	1.00	8.42
ATOM	1208	CA	LYS	198	16.924	0.191	27.393	1.00	8.42
ATOM	1209	CB	LYS	198	15.583	-0.091	28.070	1.00	30.51
ATOM	1210	CG	LYS	198	15.690	-0.379	29.574	1.00	30.51
MOTA	1211	CD	LYS	198	14.314	-0.471	30.219	1.00	30.51
ATOM	1212	CE	LYS	198	13.538	0.837	30.039	1.00	30.51
ATOM	1213	NZ	LYS	198	12.062	0.708	30.271	1.00	30.51
ATOM	1214	C	LYS	198	17.305	-0.950	26.462	1.00	8.42
MOTA	1215	0	LYS	198	17.233	-0.812	25.238	1.00	30.51
MOTA	1216	N	SER	199	17.688	-2.082	27.041	1.00	12.70
ATOM	1217	CA	SER	199	18.096	-3.247	26.260	1.00	12.70
ATOM	1218	CB	SER	199	18.808	-4.261	27.154	1.00	2.13
MOTA	1219	OG	SER	199	20.040	-3.730	27.628	1.00	2.13
ATOM	1220	C	SER	199	16.929	-3.898	25.518	1.00	12.70
ATOM	1221	0	SER	199	17.110	-4.445	24.440	1.00	2.13
ATOM	1222	N	ASP	200	15.730	-3.795	26.091	1.00	2.00
ATOM	1223	CA	ASP	200	14.526	-4.362	25.484	1.00	2.00
ATOM	1224	CB	ASP	200	13.440	-4.653	26.536	1.00	13.93
ATOM	1225	CG	ASP	200	12.980	-3.410	27.300	1.00	13.93
ATOM	1226		ASP	200	12.159	-3.554	28.228	1.00	13.93
ATOM	1227	OD2	ASP	200	13.434	-2.294	26.997	1.00	13.93
MOTA	1228	C	ASP	200	13.968	-3.444	24.424	1.00	2.00
MOTA	1229	0	ASP	200	12.801	-3.553	24.054	. 1.00	13.93
ATOM	1230	N	CYS	201	14.794	-2.475	24.027	1.00	34.23
ATOM	1231	CA	CYS	201	14.459	-1.494	23.002	1.00	34.23
ATOM	1232	CB	CYS	201	14.047	-2.221	21.712	1.00	23.39
ATOM	1233	SG	CYS	201	14.806	-1.561	20.216	1.00	23.39
ATOM	1234	C	CYS	201	13.427	-0.417	23.384	1.00	34.23
ATOM	1235	0	CYS	201	12.812	0.196	22.521	1.00	23.39
ATOM	1236	N	THR	202	13.205	-0.203	24.671	1.00	5.40
ATOM	1237	CA	THR	202	12.267	0.841	25.065	1.00	5.40

FIG. 3V

MOTA	1238	CB	THR	202	11.569	0.533	26.393	1.00	3.53
MOTA	1239	OG1	THR	202	12.519	0.015	27.325	1.00	3.53
ATOM	1240	CG2	THR	202	10.450	-0.470	26.181	1.00	3.53
MOTA	1241	C	THR	202	13.026	2.154	25.122	1.00	5.40
ATOM	1242	0	THR	202	14.192	2.184	25.519	1.00	3.53
ATOM	1243	N	LEU	203	12.375	3.231	24.696	1.00	6.11
ATOM	1244	CA	LEU	203	13.022	4.537	24.641	1.00	6.11
MOTA	1245	CB	LEU	203	13.267	4.898	23.160	1.00	2.00
ATOM	1246	CG	LEU	203	13.898	6.228	22.739	1.00	2.00
ATOM	1247		LEU	203	14.745	6.067	21.485	1.00	2.00
ATOM	1248		LEU	203	12.805	7.260	22.537	1.00	2.00
	1249	CDZ	LEU	203	12.318	5.678	25.384	1.00	6.11
MOTA			LEU	203	11.093	5.743	25.440	1.00	2.00
MOTA	1250	0		203	13.126	6.580	25.943	1.00	2.00
MOTA	1251	N	LYS			7.749	26.679	1.00	2.00
MOTA	1252	CA	LYS	204	12.640		28.189	1.00	15.81
MOTA	1253	CB	LYS	204	12.649	7.484			15.81
ATOM	1254	CG	LYS	204	11.461	6.691	28.713	1.00	
MOTA	1255	CD	LYS	204	11.669	6.344	30.176	1.00	15.81
MOTA	1256	CE	LYS	204	10.467	5.612	30.739	1.00	15.81
ATOM	1257	NZ	LYS	204	9.735	6.418	31.772	1.00	15.81
MOTA	1258	C	LYS	204	13.473	9.003	26.386	1.00	2.00
ATOM	1259	0	LYS	204	14.664	8.929	26.077	1.00	15.81
ATOM	1260	N	ILE	205	12.822	10.155	26.457	1.00	2.00
ATOM	1261	CA	ILE	205	13.467	11.437	26.222	1.00	2.00
ATOM	1262	СВ	ILE	205	12.566	12.327	25.335	1.00	4.27
MOTA	1263	CG2	ILE	205	13.193	13.713	25.165	1.00	4.27
ATOM	1264	CG1	ILE	205	12.375	11.623	23.978	1.00	4.27
ATOM	1265		ILE	205	11.334	12.228	23.067	1.00	4.27
ATOM	1266	C	ILE	205	13.746	12.082	27.578	1.00	2.00
		o	ILE	205	12.885	12.099	28.454	1.00	4.27
ATOM	1267		LEU	205	14.966	12.590	27.744	1.00	9.54
MOTA	1268	N		206	15.401	13.212	28.995	1.00	9.54
ATOM	1269	CA	LEU		16.916	13.212	29.149	1.00	2.00
ATOM	1270	CB	LEU	206		11.665	29.133	1.00	2.00
ATOM	1271	CG	LEU	206	17.509		29.282	1.00	2.00
ATOM	1272		LEU	206	19.016	11.740	30.240		2.00
ATOM	1273		LEU	206	16.895	10.831		1.00	9.54
ATOM	1274	C	LEU	206	14.975	14.669	29.236	1.00	
MOTA	1275	0	LEU	206	14.370	14.961	30.265	1.00	2.00
MOTA	1276	N	ASP	207	15.279	15.568	28.298	1.00	2.00
MOTA	1277	CA	ASP	207	14.922	16.984	28.433	1.00	2.00
MOTA	1278	CB	ASP	207	16.142	17.877	28.130	1.00	21.09
MOTA	1279	CG	ASP	207	16.622	17.795	26.672	1.00	21.09
MOTA	1280	OD1	ASP	207	16.316	16.816	25.946	1.00	21.09
ATOM	1281	OD2	ASP	207	17.334	18.734	26.248	1.00	21.09
ATOM	1282	С	ASP	207	13.694	17.442	27.628	1.00	2.00
ATOM	1283	0	ASP	207	13.144	16.682	26.834	1.00	21.09
MOTA	1284	N	PHE	208	13.258	18.680	27.872	1.00	10.73
ATOM	1285	CA	PHE	208	12.107	19.280	27.180	1.00	10.73
ATOM	1286	CB	PHE	208	11.056	19.774	28.182	1.00	2.16
ATOM	1287	CG	PHE	208	10.493	18.678	29.054	1.00	2.16
			PHE	208	11.197	18.236	30.183	1.00	2.16
ATOM	1288			208	9.297	18.052	28.720	1.00	2.16
ATOM	1289		PHE			17.173	30.968	1.00	2.16
MOTA	1290		PHE	208	10.727		29.493	1.00	2.16
ATOM	1291		PHE	208	8.809	16.986			2.16
ATOM	1292	CZ	PHE	208	9.528	16.539	30.622	1.00	
ATOM	1293	C	PHE	208	12.592	20.403	26.268	1.00	10.73
MOTA	1294	0	PHE	208	11.814	21.161	25.688	1.00	2.16
MOTA	1295	N	GLY	209	13.915	20.484	26.177	1.00	5.67
ATOM	1296	CA	GLY	209	14.591	21.435	25.325	1.00	5.67

FIG. 3W

ATOM	1297	С	GLY	209	14.420	22.917	25.544	1.00	5.67
ATOM	1298	ō	GLY	209	14.431	23.427	26.673	1.00	33.44
MOTA	1299	N	LEU	210	14.299	23.604	24.413	1.00	21.09
ATOM	1300	CA	LEU	210	14.155	25.052	24.363	1.00	21.09
ATOM	1301	СВ	LEU	210	14.411	25.531	22.928	1.00	15.39
ATOM	1302	CG	LEU	210	15.869	25.761	22.500	1.00	15.39
ATOM	1303	CD1		210	16.791	24.688	23.048	1.00	15.39
ATOM	1304	CD2	LEU	210	15.967	25.854	20.987	1.00	15.39
ATOM	1305	C	LEU	210	12.806	25.553	24.868	1.00	21.09
ATOM	1306	0	LEU	210	11.781	24.872	24.740	1.00	15.39
ATOM	1307	N	ALA	211	12.825	26.740	25.466	1.00	12.93
ATOM	1308	CA	ALA	211	11.616	27.358	25.993	1.00	12.93
ATOM	1309	CB	ALA	211	11.970	28.365	27.092	1.00	26.16
ATOM	1310	C	ALA	211	10.851	28.049	24.873	1.00	12.93
ATOM	1311	0	ALA	211	11.504	28.842	24.167	1.00	26.16
ATOM	1312	СВ	THR	217	20.244	32.345	26.028	1.00	51.78
ATOM	1313	OG1		217	20.882	31.058	26.017	1.00	51.78
ATOM	1314	CG2	THR	217	20.335	32.984	24.649	1.00	51.78
ATOM	1315	c	THR	217	22.426	33.123	27.062	1.00	44.85
ATOM	1316	ō	THR	217	23.008	32.685	26.058	1.00	51.78
MOTA	1317	N	THR	217	20.488	34.675	26.939	1.00	44.85
ATOM	1318	CA	THR	217	20.902	33.255	27.103	1.00	44.85
ATOM	1319	N	PHE	218	23.063	33.473	28.176	1.00	53.03
ATOM	1320	CA	PHE	218	24.512	33.400	28.273	1.00	53.03
ATOM	1321	CB	PHE	218	25.091	34.820	28.360	1.00	30.03
ATOM	1322	CG	PHE	218	26.582	34.867	28.555	1.00	30.03
ATOM	1323		PHE	218	27.446	34.687	27.474	1.00	30.03
ATOM	1324		PHE	218	27.121	35.110	29.820	1.00	30.03
MOTA	1325		PHE	218	28.833	34.748	27.644	1.00	30.03
ATOM	1326		PHE	218	28.509	35.174	30.014	1.00	30.03
ATOM	1327	CZ	PHE	218	29.374	34.992	28.919	1.00	30.03
ATOM	1328	C	PHE	218	24.960	32.523	29.453	1.00	53.03
ATOM	1329	0	PHE	218	24.265	32.409	30.478	1.00	30.03
MOTA	1330	N	MET	219	26.104	31.871	29.261	1.00	33.01
ATOM	1331	CA	MET	219	26.713	30.992	30.251	1.00	33.01
ATOM	1332	CB	MET	219	26.383	29.529	29.945	1.00	57.60
ATOM	1333	CG	MET	219	25.102	28.960	30.517	1.00	57.60
MOTA	1334	SD	MET	219	25.090	27.161	30.128	1.00	57.60
MOTA	1335	CE	MET	219	24.715	27.219	28.251	1.00	57.60
ATOM	1336	С	MET	219	28.215	31.132	30.085	1.00	33.01
MOTA	1337	0	MET	219	28.694	31.476	29.001	1.00	57.60
MOTA	1338	N	MET	220	28.962	30.879	31.154	1.00	36.45
ATOM	1339	CA	MET	220	30.408	30.920	31.035	1.00	36.45
ATOM	1340	CB	MET	220	31.052	31.852	32.063	1.00	15.11
MOTA	1341	CG	MET	220	31.584	33.117	31.410	1.00	15.11
MOTA	1342	SD	MET	220	32.595	34.145	32.466	1.00	15.11
MOTA	1343	CE	MET	220	31.381	35.216	33.043	1.00	15.11
MOTA	1344	C	MET	220	30.983	29.497	31.070	1.00	36.45
ATOM	1345	0	MET	220	32.078		31.590	1.00	15.11
MOTA	1346	N	THR	221	30.234		30.473	1.00	39.69
ATOM	1347	CA	THR	221	30.647		30.381	1.00	39.69
MOTA	1348	CB	THR	221	29.474		29.943	1.00	47.10
ATOM	1349		1 THR	221	28.223			1.00	47.10
ATOM	1350	CG:	2 THR	221	29.705		30.474	1.00	47.10
MOTA	1351	C	THR	221	31.756			1.00	39.69
ATOM	1352	0	THR	221	31.746				47.10
MOTA	1353	CB		224	30.615				24.68
MOTA	1354		1 VAL	224	30.847				24.68 24.68
MOTA	1355	CG	2 VAL	224	29.898	24.679	21.524	1.00	24.00

FIG. 3X

ATOM	1356	С	VAL	224		28.536	22.979	23.715	1.00	32.19
ATOM	1357	0	VAL	224		28.480	21.788	24.050	1.00	24.68
ATOM	1358	N	VAL	224		30.614	23.160	25.007	1.00	32.19
ATOM	1359	CA	VAL	224		29.818	23.776	23.904	1.00	32.19
ATOM	1360	N	VAL	225		27.504	23.661	23.220	1.00	31.51
ATOM	1361	CA	VAL	225		26.195	23.055	22.963	1.00	31.51
ATOM	1362	CB	VAL	225		25.057	24.106	23.005	1.00	14.81
ATOM	1363	CG1	VAL	225		23.715	23.408	23.114	1.00	14.81
ATOM	1364		VAL	225		25.258	25.091	24.153	1.00	14.81
ATOM	1365	C	VAL	225		26.178	22.405	21.578	1.00	31.51
ATOM	1366	0	VAL	225		26.782	22.923	20.630	1.00	14.81
MOTA	1367	N	THR	226		25.475	21.279	21.466	1.00	28.04
MOTA	1368	CA	THR	226		25.375	20.564	20.198	1.00	28.04
MOTA	1369	CB	THR	226		25.213	19.042	20.412	1.00	35.95
MOTA	1370	OG1	THR	226		26.259	18.568	21.278	1.00	35.95
ATOM	1371	CG2	THR	226		25.305	18.308	19.069	1.00	35.95
MOTA	1372	C	THR	226		24.206	21.128	19.390	1.00	28.04
ATOM	1373	0	THR	226		23.057	21.100	19.831	1.00	35.95
MOTA	1374	N	ARG	227		24.511	21.597	18.184	1.00	20.49
MOTA	1375	CA	ARG	227		23.518	22.220	17.320	1.00	20.49
MOTA	1376	CB	ARG	227		24.025	23.611	16.944	1.00	27.34
MOTA	1377	CG	ARG	227	•	25.440	23.563	16.354	1.00	27.34 27.34
MOTA	1378	CD	ARG	227		26.164	24.869	16.543	1.00	
MOTA	1379	NE	ARG	227		25.948	25.423	17.877	1.00	27.34
ATOM	1380	CZ	ARG	227		25.822	26.721	18.134	1.00	27.34 27.34
ATOM	1381		ARG	227		25.902	27.605	17.149	1.00	27.34
ATOM	1382	NH2	ARG	227		25.567	27.140	19.370	1.00	20.49
MOTA	1383	C	ARG	227		23.236	21.450	16.041	1.00 1.00	27.34
MOTA	1384	0	ARG	227		22.315	21.793	15.293	1.00	2.02
MOTA	1385	N	TYR	228		24.020	20.410	15.803 14.584	1.00	2.02
MOTA	1386	CA	TYR	228		23.890	19.634	14.504	1.00	15.88
MOTA	1387	CB	TYR	228		24.819	18.421 18.676	15.146	1.00	15.88
MOTA	1388	CG	TYR	228		26.211	19.926	15.055	1.00	15.88
MOTA	1389	CD1		228		26.807	20.141	15.518	1.00	15.88
ATOM	1390	CE1		228		28.102	17.651	15.713	1.00	15.88
ATOM	1391		2 TYR	228		26.945 28.233	17.854	16.171	1.00	15.88
ATOM	1392		2 TYR	228		28.808	19.095	16.075	1.00	15.88
ATOM	1393	CZ	TYR	228		30.087	19.273	16.550	1.00	15.88
MOTA	1394	ОН	TYR	228 228		22.482	19.151	14.242	1.00	2.02
MOTA	1395	C	TYR			22.194	18.887	13.081	1.00	15.88
MOTA	1396	0	TYR TYR	228 229		21.597	19.060	15.229	1.00	16.06
ATOM	1397	N CA	TYR	229		20.248	18.540	14.976	1.00	16.06
ATOM	1398	CB		229			17.421	15.992		7.45
ATOM	1399 1400	CG		229		21.065	16.473	16.273	1.00	7.45
MOTA	1400		1 TYR	229		22.113	16.850	17.116	1.00	7.45
MOTA	1401		1 TYR	229		23.219		17.305		7.45
MOTA	1402			229		21.155	15.231	15.641		7.45
MOTA	1404			229		22.266		15.833		7.45
MOTA	1405			229		23.292	14.822	16.663		7.45
MOTA	1406			229		24.428				7.45
MOTA MOTA	1407		TYR	229		19.159				16.06
MOTA	1407		TYR	229		17.972				7.45
MOTA	1409		ARG	230		19.559				14.21
MOTA	1410			230		18.604				14.21
MOTA	1411			230		19.234				40.21
MOTA	1412			230		19.643		16.726		40.21
MOTA	1413			230		19.970			1.00	40.21
ATOM	1414					20.596				40.21
ATOM.							/ -			

FIG. 3Y

ATOM	1415	CZ	ARG	230	19.948	24.518	19.802	1.00	40.21
ATOM	1416		ARG	230	18.635	24.720	19.805	1.00	40.21
ATOM	1417	NH2	ARG	230	20.624	24.522	20.950	1.00	40.21
ATOM	1418	C	ARG	230	17.996	22.210	13.311	1.00	14.21
ATOM	1419	0	ARG	230	18.669	22.095	12.283	1.00	40.21
ATOM	1420	N	ALA	231	16.715	22.570	13.317	1.00	2.00
MOTA	1421	CA	ALA	231	15.966	22.843	12.097	1.00	2.00
ATOM	1422	CB	ALA	231	14.489	22.874	12.386	1.00	3.97
ATOM	1423	C	ALA	231	16.423	24.164	11.494	1.00	2.00
MOTA	1424	0	ALA	231	17.041	24.978	12.170	1.00	3.97
ATOM	1425	N	PRO	232	16.145	24.391	10.202	1.00	19.85
MOTA	1426	CD	PRO	232	15.491	23.457	9.272	1.00	34.15
MOTA	1427	CA	PRO	232	16.529	25.618	9.494	1.00	19.85
ATOM	1428	CB	PRO	232	16.128	25.306	8.041	1.00	34.15
ATOM	1429	CG	PRO	232	16.156	23.797	7.967	1.00	34.15
MOTA	1430	С	PRO	232	15.756	26.809	10.018	1.00	19.85
MOTA	1431	0	PRO	232	16.247	27.936	10.034	1.00	34.15
ATOM	1432	N	GLU	233	14.532	26.539	10.453	1.00	5.93
MOTA	1433	CA	GLU	233	13.657	27.567	10.984	1.00	5.93
MOTA	1434	CB	GLU	233	12.210	27.056	11.092	1.00	20.38
MOTA	1435	CG	GLU	233	12.010	25.814	11.959	1.00	20.38
ATOM	1436	CD	GLU	233	11.421	24.626	11.190	1.00	20.38
MOTA	1437	OE1	GLU	233	12.204	23.889	10.554	1.00	20.38
ATOM	1438	OE2	GLU	233	10.181	24.432	11.234	1.00	20.38
MOTA	1439	C	GLU	233	14.164	28.053	12.333	1.00	5.93
ATOM	1440	0	GLU	233	13.616	29.000	12.909	1.00	20.38
MOTA	1441	N	VAL	234	15.222	27.404	12.820	1.00	2.00
ATOM	1442	CA	VAL	234	15.855	27.745	14.079	1.00	2.00
MOTA	1443	CB	VAL	234	15.972	26.501	15.002	1.00	7.29
MOTA	1444		VAL	234	17.045	26.718	16.071	1.00	7.29
MOTA	1445	CG2	VAL	234	14.620	26.203	15.671	1.00	7.29
ATOM	1446	C	VAL	234	17.253	28.275	13.769	1.00	2.00
ATOM	1447	0	VAL	234	17.700	29.254	14.353	1.00	7.29
MOTA	1448	N	ILE	235	17.936	27.632	12.833	1.00	32.07
MOTA	1449	CA	ILE	235	19.272	28.046	12.433	1.00	32.07 7.32
MOTA	1450	CB	ILE	235	19.878	27.013	11.476	1.00	7.32
MOTA	1451	CG2		235	21.224	27.486	10.939	1.00	7.32
ATOM	1452	CG1		235	20.041	25.692	12.229	1.00	
MOTA	1453	CD1	LILE	235	20.523	24.554	11.381	1.00	7.32
MOTA	1454	C	ILE	235	19.236	29.422	11.784	1.00	32.07
MOTA	1455	0	ILE	235	20.216	30.166	11.832	1.00	7.32 29.90
MOTA	1456	N	LEU	236	18.088	29.759	11.199	1.00	29.90
MOTA	1457	CA	LEU	236	17.893	31.043	10.535	1.00	29.90
MOTA	1458	CB	LEU	236	17.501	30.818	9.081	1.00	2.52
MOTA	1459	CG	LEU	236	18.477	29.992	8.248		2.52
ATOM	1460		1 LEU	236	17.772	29.595	6.969		
MOTA	1461	CD:	2 LEU	236	19.779		7.965		2.52 29.90
MOTA	1462	C	LEU	236	16.810		11.244		29.50
MOTA	1463	0	LEU	236	16.445		10.808		27.32
MOTA	1464	N	GLY	237	16.267		12.308		27.32
MOTA	1465	CA		23 7	15.236				
MOTA	1466		GLY	237	14.135				27.32
ATOM	1467	0	GLY	237	14.138				32.38
MOTA	1468		MET	238	13.193				36.62 36.62
MOTA	1469	CA			12.087				
MOTA	1470				12.134				19.68
MOTA	1471				11.861				19.68 19.68
MOTA	1472				12.644				19.68
MOTA	1473	CE	MET	238	14.336	29.930	8.549	1.00	19.08

FIG. 3Z

MOTA	1474	С	MET	238	10.718	32.091	11.662	1.00	36.62
MOTA	1475	0	MET	238	9.679	32.428	11.076	1.00	19.68
ATOM	1476	N	GLY	239	10.718	31.487	12.844	1.00	3.52
ATOM	1477	CA	GLY	239	9.470	31.105	13.472	1.00	3.52
ATOM	1478	C	GLY	239	9.390	29.604	13.327	1.00	3.52
MOTA	1479	0	GLY	239	10.337	28.988	12.832	1.00	6.91
ATOM	1480	N	TYR	240	8.294	28.998	13.773	1.00	2.00
ATOM	1481	CA	TYR	240	8.168	27.546	13.686	1.00	2.00
MOTA	1482	CB	TYR	240	9.241	26.864	14.570	1.00	15.34
MOTA	1483	CG	TYR	240	9.198	27.170	16.070	1.00	15.34
ATOM	1484	CD1	TYR	240	8.368	26.452	16.932	1.00	15.34
ATOM	1485	CE1	TYR	240	8.326	26.731	18.303	1.00	15.34
ATOM	1.486	CD2	TYR	240	9.992	28.178	16.626	1.00	15.34
ATOM	1487	CE2	TYR	240	9.954	28.466	17.997	1.00	15.34
ATOM	1488	CZ	TYR	240	9.117	27.740	18.825	1.00	15.34
ATOM	1489	OH	TYR	240	9.049	28.041	20.164	1.00	15.34
ATOM	1490	C	TYR	240	6.802	27.005	14.070	1.00	2.00
ATOM	1491	0	TYR	240	5.915	27.751	14.481	1.00	15.34
ATOM	1492	N	LYS	241	6.626	25.704	13.888	1.00	2.00
MOTA	1493	CA	LYS	241	5.406	25.036	14.298	1.00	2.00
ATOM	1494	CB	LYS	241	4.376	24.928	13.166	1.00	9.47
ATOM	1495	CG	LYS	241	4.863	24.349	11.851	1.00	9.47
MOTA	1496	CD	LYS	241	3.667	24.134	10.930	1.00	9.47
ATOM	1497	CE	LYS	241	4.050	23.720	9.511	1.00	9.47
ATOM	1498	NZ	LYS	241	2.830	23.442	8.669	1.00	9.47
MOTA	1499	C	LYS	241	5.789	23.682	14.900	1.00	2.00
MOTA	1500	0	LYS	241	6.960	23.436	15.184	1.00	9.47
ATOM	1501	N	GLU	242	4.811	22.818	15.128	1.00	3.20
MOTA	1502	CA	GLU	242	5.065	21.503	15.720	1.00	3.20
MOTA	1503	CB	GLU	242	3.767	20.703	15.885	1.00	26.25
ATOM	1504	CG	GLU	242	2.465	21.471	15.649	1.00	26.25
MOTA	1505	CD	GLU	242	2.189	22.526	16.708	1.00	26.25
MOTA	1506	OE1	. GLU	242	1.730	22.153	17.820	1.00	26.25
MOTA	1507	OE2	GLU	242	• 2.414	23.727	16.410	1.00	26.25
ATOM	1508	C	GLU	242	6.054	20.642	14.946	1.00	3.20
MOTA	1509	0	GLU	242	6.743	19.818	15.539	1.00	26.25
MOTA	1510	N	ASN	243	6.106	20.812	13.629	1.00	11.35
ATOM	1511	CA	ASN	243	7.002		12.799	1.00	11.35
ATOM	1512	CB	ASN	243	6.471	19.940	11.356	1.00	19.67
ATOM	1513	CG	ASN	243	6.636		10.578	1.00	19.67
ATOM	1514		LASN	243	7.122		11.098	1.00	19.67 19.67
MOTA	1515		2 ASN	243	6.253	21.219	9.312	1.00	
MOTA	1516	C	ASN	243	8.482		12.805	1.00	11.35 19.67
MOTA	1517	0	ASN	243	9.248		11.989	1.00	6.71
ATOM	1518	N	VAL		8.890		13.707	1.00	6.71
MOTA	1519	CA	VAL		10.291		13.785	1.00	2.00
MOTA	1520	CB	VAL		10.478		14.569	1.00	
MOTA	1521		l VAL		9.830		15.941	1.00	2.00
MOTA	1522	CG:	2 VAL		11.958		14.676	1.00	2.00 6.71
MOTA	1523	C	VAL		11.133		14.411	1.00	2.00
MOTA	1524	0	VAL		12.359		14.265	1.00	
ATOM	1525	N	ASP		10.470		15.103	1.00	6.59 6.59
MOTA	1526	CA			11.154		15.738	1.00	3.97
MOTA	1527				10.385		16.988	1.00	3.97
MOTA	1528				10.553		18.151	1.00	3.97
MOTA	1529	•	1 ASP		11.703		18.438	1.00	3.97
MOTA	1530		2 ASP		9.542		18.780	1.00	
ATOM	1531		ASP		11.327			1.00	6.59
MOTA	1532	0	ASP	245	12.221	16.510	14.960	1.00	3.97

FIG. 3AA

MOTA	1533	N	ILE	246	1.	0.485	17.286	13.740	1.00	9.45
ATOM	1534	CA	ILE	246	1	0.551	16.235	12.724	1.00	9.45
ATOM	1535	CB	ILE	246		9.405	16.375	11.676	1.00	2.00
ATOM	1536	CG2	ILE	246		9.767	15.693	10.375	1.00	2.00
ATOM	1537	CG1	ILE	246		8.093	15.809	12.238	1.00	2.00
MOTA	1538	CD1	ILE	246		8.085	14.298	12.471	1.00	2.00
ATOM	1539	C	ILE	246	1	1.913	16.295	12.028	1.00	9.45
ATOM	1540	ō	ILE	246		2.474	15.271	11.649	1.00	2.00
ATOM	1541	N	TRP	247	1	2.461	17.500	11.917	1.00	2.00
MOTA	1542	CA	TRP	247	ב	.3.753	17.696	11.297	1.00	2.00
ATOM	1543	CB	TRP	247	1	4.049	19.183	11.127	1.00	2.00
ATOM	1544	CG	TRP	247	. 1	5.459	19.469	10.711	1.00	2.00
ATOM	1545	CD2	TRP	247	1	.5.952	19.627	9.377	1.00	2.00
ATOM	1546	CE2	TRP	247	3	17.341	19.837	9.466	1.00	2.00
MOTA	1547		TRP	247	3	15.352	19.599	8.116	1.00	2.00
ATOM	1548		TRP	247	1	L6.547	19.600	11.530	1.00	2.00
ATOM	1549		TRP	247	1	L7.678	19.820	10.793	1.00	2.00
ATOM	1550		TRP	247	1	L8.145	20.018	8.339	1.00	2.00
MOTA	1551	CZ3	TRP	247	:	16.147	19.779	6.998	1.00	2.00
ATOM	1552	CH2	TRP	247	:	17.528	19.982	7.113	1.00	2.00
ATOM	1553	C	TRP	247	:	14.830	17.070	12.161	1.00	2.00
ATOM	1554	o	TRP	247		15.710	16.386	11.659	1.00	2.00
ATOM	1555	N	SER	248		14.767	17.327	13.463	1.00	10.46
MOTA	1556	CA	SER	248		15.744	16.804	14.417	1.00	10.46
ATOM	1557	CB	SER	248	;	15.475	17.351	15.836	1.00	2.00
ATOM	1558	OG	SER	248	;	15.486	18.772	15.908	1.00	2.00
MOTA	1559	C	SER	248	:	15.677	15.271	14.411	1.00	10.46
MOTA	1560	0	SER	248		16.712	14.605	14.460	1.00	2.00
ATOM	1561	N	VAL	249		14.464	14.723	14.304	1.00	6.38
MOTA	1562	CA	VAL	249		14.250	13.275	14.267	1.00	6.38
MOTA	1563	CB	VAL	249		12.728	12.902	14.189	1.00	2.90
MOTA	1564	CG1	VAL	249		12.550	11.404	14.200	1.00	2.90 2.90
MOTA	1565	CG2		249		11.948	13.520	15.342	1.00	6.38
ATOM	1566	C	VAL	249		14.970	12.667	13.050	1.00 1.00	2.90
ATOM	1567	0	VAL	249		15.586	11.606	13.150	1.00	2.00
ATOM	1568	N	GLY	250		14.906	13.357	11.914	1.00	2.00
MOTA	1569	CA	GLY	250		15.545	12.883	10.698 10.710	1.00	2.00
ATOM	1570	С	GTA	250		17.060	12.971	10.710	1.00	20.96
MOTA	1571	0	GLY	250		17.732	12.207	11.482	1.00	11.18
MOTA	1572	N	CYS	251		17.600	13.908	11.597	1.00	11.18
ATOM	1573	CA	CYS	251		19.047	14.109 15.372	12.409	1.00	6.78
MOTA	1574	CB	CYS	251		19.359 19.017	16.935	11.612	1.00	6.78
ATOM	1575	SG	CYS	251 251		19.623	12.934	12.336	1.00	11.18
ATOM	1576		CYS			20.796		12.177		6.78
ATOM	1577	0	CYS	251 252		18.784		13.196		22.98
MOTA	1578		ILE	252 252		19,134	_	14.005		22.98
ATOM	1579		ILE	252 252		18.260				2.00
MOTA	1580		ILE	252		18.472		15.970		2.00
MOTA	1581			252		18.583				2.00
ATOM	1582		1 ILE	252		17.732			_	2.00
MOTA	1583		ILE	252		18.972				22.98
ATOM	1584 1585		ILE	252		19.930				2.00
MOTA MOTA	1585		MET	252		17.783			_	2.00
MOTA	1586			253		17.538			_	2.00
ATOM	1588		MET	253		16.152			_	4.75
ATOM	1589			253		15.880			_	4.75
MOTA	1590			253		14.288				4.75
ATOM	1591					14.189				4.75
0.1										

FIG. 3BB

		_		050	18.582	8.364	10.758	1.00	2.00
ATOM	1592		MET	253		7.264	10.436	1.00	4.75
MOTA	1593		MET	253	19.000			1.00	4.43
MOTA	1594	N	GLY	254	18.996	9.490	10.189		4.43
MOTA	1595	CA	GLY	254	19.992	9.481	9.136	1.00	
MOTA	1596	C	GLY	254	21.359	9.089	9.655	1.00	4.43
MOTA	1597	0	GLY	254	22.172	8.552	8.915	1.00	19.89
MOTA	1598	N	GLU	255	21.605	9.360	10.933	1.00	26.96
ATOM	1599	CA	GLU	255	22.863	9.030	11.599	1.00	26.96
MOTA	1600	CB	GLU	255	23.051	9.943	12.817	1.00	19.79
MOTA	1601	CG	GLU	255	24.434	9.872	13.477	1.00	19.79
MOTA	1602	CD	GLU	255	24.713	11.057	14.392	1.00	19.79
ATOM	1603	OE1	GLU	255	23.824	11.922	14.531	1.00	19.79
ATOM	1604	OE2	GLU	255	25.821	11.136	14.952	1.00	19.79
MOTA	1605	C	GLU	255	22.872	7.551	12.017	1.00	26.96
ATOM	1606	ō	GLU	255	23.920	6.903	11.997	1.00	19.79
ATOM	1607	N	MET	256	21.697	7.020	12.359	1.00	22.99
MOTA	1608	CA	MET	256	21.554	5.615	12.746	1.00	22.99
ATOM	1609	CB	MET	256	20.112	5.311	13.217	1.00	4.42
	1610	CG	MET	256	19.741	5.871	14.594	1.00	4.42
MOTA		SD	MET	256	17.982	5.762	15.032	1.00	4.42
ATOM	1611			256	17.978	4.420	16.092	1.00	4.42
ATOM	1612	CE	MET	256	21.873	4.754	11.514	1.00	22.99
MOTA	1613	C	MET			3.586	11.636	1.00	4.42
ATOM	1614	0	MET	256	22.243	5.358	10.336	1.00	2.00
MOTA	1615	N	VAL	257	21.744		9.057	1.00	2.00
MOTA	1616	CA	VAL	257	21.982	4.700		1.00	9.27
ATOM	1617	CB	VAL	257	20.998	5.237	7.975		9.27
MOTA	1618		VAL	257	21.367	4.728	6.585	1.00	9.27
MOTA	1619	CG2		257	19.580	4.853	8.327	1.00	
ATOM	1620	С	VAL	257	23.403	4.929	8.554	1.00	2.00
MOTA	1621	0	VAL	257	24.148	3.987	8.291	1.00	9.27
MOTA	1622	N	ARG	258	23.765	6.197	8.409	1.00	14.20
MOTA	1623	CA	ARG	258	25.076	6.575	7.907	1.00	14.20
MOTA	1624	CB	ARG	258	25.033	8.020	7.391	1.00	18.38
MOTA	1625	CG	ARG	258	25.598	8.182	6.001	1.00	18.38
ATOM	1626	CD	ARG	258	24.941	9.313	5.239	1.00	18.38
ATOM	1627	NE	ARG	258	25.581	10.606	5.471	1.00	18.38
MOTA	1628	CZ	ARG	258	25.359	11.703	4.740	1.00	18.38
ATOM	1629	NHl	ARG	258	24.515	11.676	3.714	1.00	18.38
ATOM	1630	NH2	ARG	258	25.963	12.844	5.055	1.00	18.38
ATOM	1631	C	ARG	258	26.196	6.398	8.926	1.00	14.20
ATOM	1632	0	ARG	258	27.369	6.369	8.566	1.00	18.38
MOTA	1633	N	HIS	259	25.828	6.243	10.195	1.00	6.43
ATOM	1634	CA	HIS	259	26.805	6.088	11.269	1.00	6.43
ATOM	1635	СВ	HIS	259	27.510	4.740	11.163	1.00	14.61
MOTA	1636	CG	HIS	259	26.601	3.576	11.387	1.00	14.61
ATOM	1637		HIS	259	26.413	2.445	10.665	1.00	14.61
ATOM	1638		HIS	259	25.714	3.510	12.438	1.00	14.61
ATOM	1639		HIS	259	25.023	2.396	12.362	1.00	14.61
	1640		HIS	259	25.423	1.727	11.293	1.00	14.61
ATOM			HIS	259	27.809	7.230	11.294	1.00	6.43
ATOM	1641	C			28.983	7.059	11.643	1.00	14.61
ATOM	1642	O	HIS	259 260	27.326	8.391	10.869	1.00	7.67
MOTA	1643	N	LYS	260		9.627	10.848	1.00	7.67
ATOM	1644	CA	LYS	260	28.085		9.530	1.00	21.52
MOTA	1645	CB	LYS	260	28.850	9.789		1.00	21.52
ATOM	1646	CG	LYS	260	30.252	9.148	9.536	1.00	21.52
ATOM	1647	CD	LYS	260	31.112	9.537	8.315		
MOTA	1648	CE	LYS	260	30.605	8.933	7.012	1.00	21.52
MOTA	1649	NZ	LYS	260	31.486	9.290	5.853	1.00	21.52
ATOM	1650	C	LYS	260	27.043	10.723	11.024	1.00	7.67

FIG. 3CC

ATOM	1651	0	LYS	260	2	25.866	10.520	10.691	1.00	21.52
MOTA	1652	N	ILE	261		27.437	11.838	11.638	1.00	2.00
MOTA	1653	CA	ILE	261		26.515	12.950	11.844	1.00	2.00
ATOM	1654	CB	ILE	261		27.091	14.053	12.767	1.00	15.02
ATOM	1655	CG2	ILE	261		25.959	14.937	13.284	1.00	15.02
ATOM	1656	CG1	ILE	261		27.848	13.462	13.960	1.00	15.02
MOTA	1657	CD1	ILE	261		28.606	14.516	14.778	1.00	15.02
ATOM	1658	C	ILE	261		26.306	13.575	10.475	1.00	2.00
MOTA	1659	0	ILE	261		27.271	13.922	9.798	1.00	15.02
MOTA	1660	N	LEU	262		25.047	13.726	10.081	1.00	22.16 22.16
MOTA	1661	CA	LEU	262		24.700	14.298	8.777	1.00	
MOTA	1662	CB	LEU	262		23.187	14.270	8.605	1.00	12.98
MOTA	1663	CG	LEU	262		22.463	12.931	8.609	1.00	12.98
MOTA	1664		LEU	262		21.008	13.190	8.267	1.00	12.98 12.98
MOTA	1665	CD2	LEU	262		23.091	12.011	7.588	1.00	
MOTA	1666	C	LEU	262		25.237	15.724	8.471	1.00	22.16
MOTA	1667	0	LEU	262		25.986	15.922	7.498	1.00	12.98 2.00
MOTA	1668	N	PHE	263		24.841	16.707	9.280	1.00	2.00
ATOM	1669	CA	PHE	263		25.275	18.100	9.085	1.00	7.82
MOTA	1670	CB	PHE	263		24.065	19.009	8.802	1.00	
MOTA	1671	CG	PHE	263		22.949	18.344	8.049	1.00	7.82
MOTA	1672	CD1	PHE	263		23.136	17.886	6.752	1.00	7.82 7.82
MOTA	1673	CD2		263		21.693	18.203	8.640	1.00	
MOTA	1674		PHE	263		22.092	17.288	6.045	1.00	7.82
MOTA	1675	CE2		263		20.639	17.609	7.950	1.00	7.82 7.82
MOTA	1676	CZ	PHE	263		20.836	17.151	6.645	1.00	2.00
MOTA	1677	C	PHE	263		26.037	18.718	10.275	1.00 1.00	7.82
MOTA	1678	0	PHE	263		25.507	19.592	10.956	1.00	18.59
MOTA	1679	N	PRO	264		27.296	18.305	10.516	1.00	14.60
MOTA	1680	CD	PRO	264		28.074		9.787	1.00	18.59
MOTA	1681	CA	PRO	264		28.076	18.857	11.636 11.540	1.00	14.60
MOTA	1682	CB	PRO	264		29.412	18.102	10.112	1.00	14.60
MOTA	1683	CG	PRO	264		29.493	17.689	11.663	1.00	18.59
MOTA	1684	C	PRO	264		28.234	20.406	12.223	1.00	14.60
MOTA	1685	0	PRO	264		27.384	21.096 20.942	11.100	1.00	26.76
MOTA	1686	N	GLY	265		29.324	22.387	11.085	1.00	26.76
MOTA	1687	CA	GLY	265		29.525	23.014	12.425	1.00	26.76
MOTA	1688	C	GLY	265		29.901 29.130	22.947	13.381	1.00	2.00
MOTA	1689	0	GLY ARG	265 266		31.090	23.622	12.487	1.00	2.58
ATOM	1690	N		266		31.630	24.273	13.687	1.00	2.58
ATOM	1691	CA CB	ARG ARG	266		32.986	24.273	13.394	1.00	31.96
ATOM	1692	CG	ARG	266		33.982	24.111	12.570	1.00	31.96
MOTA	1693 1694	CD	ARG	266		34.966	25.050	11.846	1.00	31.96
MOTA		NE	ARG	266		34.293	25.983	10.928	1.00	31.96
ATOM	1695 1696	CZ	ARG	266		34.322	27.317	11.024	1.00	31.96
ATOM	1697		ARG	266		34.995	27.922	12.003		31.96
ATOM	1698		ARG	266		33.678	28.057	10.127		31.96
MOTA		C	ARG	266		30.744	25.388	14.224		2.58
MOTA	1699 1700	0	ARG	266		30.895	25.791	15.375		31.96
ATOM		N	ASP	267		29.913	25.963	13.359		30.47
ATOM ATOM	1701 1702	CA	ASP	267		29.020				30.47
ATOM	1702	CB	ASP	267		29.768				28.71
ATOM	1703	CG	ASP	267		30.417				28.71
ATOM	1704		1 ASP	267		31.125				28.71
ATOM	1705		2 ASP	267		30.237				28.71
ATOM	1705		ASP	267		27.827				30.47
MOTA	1707		ASP			27.903				28.71
ATOM	1709		TYR			26.761				13.24
TTOM.	J. 1 U J									

FIG. 3DD

								7 00	72 24
MOTA	1710	CA	TYR	268	25.538	27.933	12.455	1.00	13.24
ATOM	1711	CB	TYR	268	24.605	29.009	13.023	1.00	26.47
ATOM	1712	CG	TYR	268	23.570	28.524	14.025	1.00	26.47
MOTA	1713	CD1	TYR	268	23.432	27.170	14.343	1.00	26.47
ATOM	1714	CE1	TYR	268	22.499	26.737	15.321	1.00	26.47
ATOM	1715	CD2	TYR	268	22.750	29.432	14.692	1.00	26.47
ATOM	1716	CE2	TYR	268	21.820	29.012	15.663	1.00	26.47
ATOM	1717	CZ	TYR	268	21.700	27.668	15.978	1.00	26.47
ATOM	1718	OH	TYR	268	20.804	27.293	16.968	1.00	26.47
ATOM	1719	C	TYR	268	25.842	28.275	11.004	1.00	13.24
	1720	Ö	TYR	268	25.073	27.934	10.121	1.00	26.47
ATOM				269	26.969	28.932	10.750	1.00	27.51
ATOM	1721	N	ILE		27.340	29.299	9.383	1.00	27.51
ATOM	1722	CA	ILE	269		30.302	9.351	1.00	26.87
ATOM	1723	CB	ILE	269	28.529			1.00	26.87
ATOM	1724	CG2	ILE	269	28.970	30.546	7.911	1.00	26.87
MOTA	1725	CG1		269	28.165	31.601	10.073		
MOTA	1726		ILE	269	26.945	32.267	9.541	1.00	26.87
ATOM	1727	C	ILE	269	27.790	28.055	8.633	1.00	27.51
MOTA	1728	0	ILE	269	27.300	27.754	7.547	1.00	26.87
MOTA	1729	N	ASP	270	28.758	27.369	9.231	1.00	5.20
MOTA	1730	CA	ASP	270	29.347	26.161	8.692	1.00	5.20
ATOM	1731	CB	ASP	270	30.495	25.750	9.617	1.00	33.24
ATOM	1732	CG	ASP	270	31.302	24.588	9.078	1.00	33.24
MOTA	1733	OD1	ASP	270	31.141	24.228	7.891	1.00	33.24
ATOM	1734		ASP	270	32.119	24.025	9.838	1.00	33.24
ATOM	1735	C	ASP	270	28.304	25.045	8.624	1.00	5.20
ATOM	1736	ō	ASP	270	28.338	24.183	7.746	1.00	33.24
	1737	N	GLN	271	27.351	25.093	9.543	1.00	25.51
ATOM			GLN	271	26.307	24.086	9.643	1.00	25.51
ATOM	1738	CA				24.244	10.990	1.00	9.91
ATOM	1739	CB	GLN	271	25.621		11.713	1.00	9.91
MOTA	1740	CG	GLN	271	25.393	22.960	11.694	1.00	9.91
MOTA	1741	CD	GLN	271	23.953	22.572		1.00	9.91
MOTA	1742		GLN	271	23.133	23.178	12.380		9.91
ATOM	1743		GLN	271	23.623	21.567	10.904	1.00	
MOTA	1744	C	GLN	271	25.290	24.156	8.515	1.00	25.51
MOTA	1745	0	GLN	271	24.834	23.130	8.025	1.00	9.91
MOTA	1746	N	TRP	272	24.920	25.371	8.129	1.00	2.00
MOTA	1747	CA	TRP	272	23.961	25.582	7.059	1.00	2.00
ATOM	1748	CB	TRP	272	23.501	27.034	7.055	1.00	2.00
ATOM	1749	CG	TRP	272	22.639	27.413	5.902	1.00	2.00
ATOM	1750	CD2	TRP	272	21.261	27.040	5.670	1.00	2.00
ATOM	1751	CE2	TRP	272	20.849	27.675	4.487	1.00	2.00
ATOM	1752	CE3		272	20.353	26.236	6.366	1.00	2.00
ATOM	1753	CD1	TRP	272	22.982	28.232	4.862	1.00	2.00
ATOM	1754		TRP	272	21.915	28.395	4.012	1.00	2.00
ATOM	1755	CZ2		272	19.550	27.524	3.966	1.00	2.00
ATOM	1756		TRP	272	19.068	26.088	5.851	1.00	2.00
ATOM	1757		TRP	272	18.676	26.732	4.665	1.00	2.00
			TRP	272	24.600	25.214	5.726	1.00	2.00
ATOM	1758	C			23.912	24.844	4.769	1.00	2.00
ATOM	1759	0	TRP	272			5.683	1.00	9.70
ATOM	1760	N	ASN	273	25.927	25.299	4.489	1.00	9.70
MOTA	1761	CA	ASN	273	26.686	24.971			
MOTA	1762	CB	ASN	273	28.162	25.319	4.672	1.00	18.64
MOTA	1763	CG	ASN	273	28.395	26.809	4.841	1.00	18.64
MOTA	1764		. ASN	273	29.434	27.219	5.338	1.00	18.64
ATOM	1765	ND2	ASN	273	27.430	27.627	4.423	1.00	18.64
MOTA	1766	C	ASN	273	26.532	23.493	4.208	1.00	9.70
MOTA	1767	0	ASN	273	26.176	23.100	3.098	1.00	18.64
ATOM	1768	N	LYS	274	26.704	22.685	5.247	1.00	3.97

FIG. 3EE

MOTA	1769	CA	LYS	274	26.578	21.239	5.140	1.00	3.97
ATOM	1770	CB	LYS	274	26.883	20.593	6.491	1.00	14.41
MOTA	1771	CG	LYS	274	28.160	21.077	7.123	1.00	14.41
ATOM	1772	CD	LYS	274	29.332	20.845	6.200	1.00	14.41
ATOM	1773	CE	LYS	274	29.818	19.414	6.283	1.00	14.41
MOTA	1774	NZ	LYS	274	30.453	19.182	7.591	1.00	14.41
MOTA	1775	С	LYS	274	25.167	20.838	4.701	1.00	3.97
MOTA	1776	0	LYS	274	25.002	19.940	3.880	1.00	14.41
MOTA	1777	N	VAL	275	24.161	21.537	5.224	1.00	11.35
MOTA	1778	CA	VAL	275	22.754	21.272	4.922	1.00	11.35 13.06
MOTA	1779	CB	VAL	275	21.819	22.227	5.715	1.00	13.06
MOTA	1780	CG1		275	20.365	22.029	5.313 7.191	1.00 1.00	13.06
ATOM	1781			275 .	21.993	21.993	3.446	1.00	11.35
MOTA	1782	C	VAL	275	22.410	21.417	2.877	1.00	13.06
MOTA	1783	0	VAL	275	21.724	20.569 22.523	2.851	1.00	34.01
MOTA	1784	N	ILE	276	22.852	22.803	1.446	1.00	34.01
MOTA	1785	CA	ILE	276	22.595 22.666	24.326	1.152	1.00	6.67
MOTA	1786	CB	ILE	276		25.023	1.810	1.00	6.67
MOTA	1787	CG2		276 276	21.498 24.022	24.894	1.595	1.00	6.67
MOTA	1788	CG1 CD1		276 276	24.022	26.346	1.194	1.00	6.67
ATOM	1789		ILE	276	23.550	22.040	0.529	1.00	34.01
MOTA	1790	0	ILE	276	23.224	21.748	-0.618	1.00	6.67
MOTA MOTA	1791 1792	И	GLU	277	24.706	21.670	1.061	1.00	2.00
ATOM	1793	CA	GLU	277	25.694	20.930	0.302	1.00	2.00
ATOM	1794	CB	GLU	277	26.978	20.857	1.110	1.00	11.08
ATOM	1795	CG	GLU	277	28.227	20.945	0.298	1.00	11.08
ATOM	1796	CD	GLU	277	29.395	20.231	0.959	1.00	11.08
MOTA	1797		GLU	277	29.651	20.473	2.171	1.00	11.08
ATOM	1798		GLU	277	30.043	19.407	0.263	1.00	11.08
ATOM	1799	C	GLU	277	25.207	19.508	-0.002	1.00	2.00
ATOM	1800	ō	GLU	277	25.833	18.784	-0.767	1.00	11.08
MOTA	1801	N	GLN	278	24.101	19.108	0.622	1.00	7.26
ATOM	1802	CA	GLN	278	23.533	17.775	0.450	1.00	7.26
ATOM	1803	CB	GLN	278	23.559	17.012	1.768	1.00	6.70
ATOM	1804	CG	GLN	278	24.939	16.832	2.353	1.00	6.70
ATOM	1805	CD	GLN	278	24.913	16.050	3.640	1.00	6.70
MOTA	1806	OE1	GLN	278	24.207	15.048	3.752	1.00	6.70
MOTA	1807	NE2		278	25.689	16.499	4.625	1.00	6.70
ATOM	1808	C	GLN	278	22.108	17.799	-0.054	1.00	7.26
MOTA	1809	0	GLN	278	21.830	17.340	-1.138	1.00	6.70
MOTA	1810	N	LEU	279	21.198	18.328	0.743	1.00	20.28 20.28
MOTA	1811	CA	PEA	279	19.796	18.364	0.352	1.00	12.10
ATOM	1812	CB	LEU	279	18.901	18.628	1.581 2.944	1.00	12.10
MOTA	1813	CG	LEU	279	19.274	18.001	3.985	1.00	12.10
MOTA	1814		LEU	279	18.256 19.386	18.392 16.480	2.881	1.00	12.10
MOTA	1815		FEU	279	19.386	19.393	-0.769	1.00	20.28
MOTA	1816	C	LEU	279	18.573	19.393	-1.511	1.00	12.10
MOTA	1817	0	LEU	279	20.467	20.354	-0.913	1.00	2.00
MOTA	1818	N	GLY	280 280	20.350	21.385	-1.941	1.00	2.00
MOTA	1819 1820	CA.	GLY GLY	280	19.768	22.717	-1.489	1.00	2.00
ATOM			GLY	280	19.066	22.779	-0.482	1.00	11.83
ATOM ATOM	1821 1822	N O	THR	280 281	20.046	23.787	-2.231	1.00	2.00
ATOM	1822	CA	THR	281	19.549	25.139	-1.917	1.00	2.00
MOTA	1824	CB	THR		20.145	26.205	-2.923	1.00	13.34
ATOM	1825		L THR		21.582	26.144	-2.906	1.00	13.34
ATOM	1826	CG:			19.701	27.628	-2.573	1.00	13.34
ATOM	1827	C	THR		17.999	25.181	-1.922	1.00	2.00
-11-014	102/	_	7111	201					

FIG. 3FF

ATOM	1828	0	THR	281	17.374	24.830	-2.920	1.00	13.34
ATOM	1829	N	PRO	282	17.375	25.631	-0.811	1.00	17.13
MOTA	1830	CD	PRO	282	17.997	26.220	0.386	1.00	3.54
MOTA	1831	CA	PRO	282	15.910	25.707	-0.698	1.00	17.13
MOTA	1832	CB	PRO	282	15.708	26.350	0.673	1.00	3.54
ATOM	1833	CG	PRO	282	16.915	27.164	0.859	1.00	3.54
MOTA	1834	C	PRO	282	15.172	26.484	-1.787	1.00	17.13 3.54
MOTA	1835	0	PRO	282	15.706	27.440	-2.357	1.00	2.45
MOTA	1836	N	CYS	283	13.934	26.072	-2.059	1.00	2.45
MOTA	1837	CA	CYS	283	13.110	26.728	-3.060	1.00 1.00	32.82
MOTA	1838	CB	CYS	283	11.796	25.953	-3.298 -1.999	1.00	32.82
MOTA	1839	SG	CYS	283	10.506	26.042	-2.664	1.00	2.45
MOTA	1840	C	CYS	283	12.835 12.799	28.175 28.512	-1.488	1.00	32.82
MOTA	1841	0	CYS	283		29.059	-3.658	1.00	29.31
MOTA	1842	N	PRO	284	12.705	28.755	-5.094	1.00	30.81
ATOM	1843	CD	PRO	284	12.845	30.486	-3.464	1.00	29.31
ATOM	1844	CA	PRO	284	12.442 12.120	30.488	-4.885	1.00	30.81
ATOM	1845	CB	PRO	284	13.079	30.125	-5.696	1.00	30.81
ATOM	1846	CG	PRO	284 284	11.324	30.801	-2.467	1.00	29.31
ATOM	1847	C	PRO		11.324	31.734	-1.667	1.00	30.81
ATOM	1848	O N	PRO	284	10.251	30.008	-2.486	1.00	17.96
MOTA	1849	N CA	ALA ALA	285 285	9.144	30.230	-1.572	1.00	17.96
MOTA	1850	CB	ALA	285	8.084	29.158	-1.767	1.00	9.64
ATOM	1851	C	ALA	285	9.679	30.246	-0.124	1.00	17.96
ATOM	1852	0	ALA	285	9.308	31.119	0.660	1.00	9.64
ATOM	1853 1854	N	PHE	286	10.630	29.358	0.176	1.00	4.52
ATOM	1855	CA	PHE	286	11.236	29.277	1.502	1.00	4.52
ATOM ATOM	1856	CB	PHE	286	12.185	28.079	1.578	1.00	4.64
ATOM	1857	CG	PHE	286	12.941	27.992	2.878	1.00	4.64
ATOM	1858		PHE	286	12.324	27.494	4.019	1.00	4.64
ATOM	1859		PHE	286	14.269	28.412	2.958	1.00	4.64
ATOM	1860		PHE	286	13.014	27.412	5.228	1.00	4.64
ATOM	1861		PHE	286	14.976	28.339	4.158	1.00	4.64
ATOM	1862	CZ	PHE	286	14.351	27.839	5.299	1.00	4.64
ATOM	1863	C	PHE	286	11.982	30.565	1.871	1.00	4.52
ATOM	1864	ō	PHE	286	11.848	31.067	2.997	1.00	4.64
ATOM	1865	N	MET	287	12.748	31.100	0.915	1.00	19.98
ATOM	1866	CA	MET	287	13.511	32.333	1.097	1.00	19.98
MOTA	1867	CB	MET	287	14.371	32.602	-0.131	1.00	23.24
MOTA	1868	CG	MET	287	15.853	32.633	0.139	1.00	23.24
ATOM	1869	SD	MET	287	16.574	30.987	0.341	1.00	23.24
MOTA	1870	CE	MET	287	17.149	30.610	-1.343	1.00	23.24
MOTA	1871	C	MET	287	12.569	33.516	1.327	1.00	19.98
MOTA	1872	0	MET	287	12.876	34.423	2.114	1.00	23.24
MOTA	1873	N	LYS	288	11.419	33.493	0.657	1.00	9.91
MOTA	1874	CA	LYS	288	10.433	34.547	0.805	1.00	9.91
ATOM	1875	CB	LYS	288	9.204	34.256	-0.057	1.00	54.51
MOTA	1876	CG	LYS	288	9.363	34.698	-1.501	1.00	54.51
MOTA	1877	CD	LYS	288	8.116	34.431	-2.319	1.00	54.51
MOTA	1878	CE	LYS	288	8.376	34.747	-3.776	1.00	54.51
MOTA	1879	NZ	LYS	288	7.226	34.380	-4.654	1.00	54.51
MOTA	1880	C	LYS	288	10.021	34.703	2.259	1.00	9.91
MOTA	1881	0	LYS	288	9.599	35.778	2.680	1.00	54.51
ATOM	1882	N	LYS	289	10.180	33.631	3.028	1.00	48.86
MOTA	1883	CA	LYS	289	9.829	33.628	4.450	1.00	48.86
MOTA	1884	CB	LYS	289	9.502	32.196	4.896	1.00	28.25
MOTA	1885	CG	LYS	289	8.343	31.538	4.169	1.00	28.25
MOTA	1886	CD	LYS	289	8.255	30.064	4.554	1.00	28.25
				•					

FIG. 3GG

ATOM	1887	CE	LYS	289	6.927	29.444	4.131	1.00	28.25
ATOM	1888		LYS	289	6.843	28.016	4.540	1.00	28.25
ATOM	1889		LYS	289	10.949	34.195	5.351	1.00	48.86
ATOM	1890	0	LYS	289	10.723	34.521	6.519	1.00	28.25
ATOM	1891		LEU	290	12.143	34.336	4.791	1.00	16.09
ATOM	1892	CA	LEU	290	13.290	34.822	5.547	1.00	16.09
MOTA	1893	CB	LEU	290	14.585	34.379	4.870	1.00	23.78
MOTA	1894	CG	LEU	290	14.680	32.948	4.334	1.00	23.78
ATOM	1895	CD1	LEU	290	15.998	32.748	3.571	1.00	23.78
ATOM	1896	CD2	LEU	290	14.535	31.958	5.498	1.00	23.78
ATOM	1897	C	LEU	290	13.326	36.334	5.702	1.00	16.09 23.78
MOTA	1898	0	LEU	290	13.092	37.053	4.736	1.00	23.76
ATOM	1899	N	GLN	291	13.631	36.815	6.912	1.00	22.36
ATOM	1900	CA	GLN	291	13.741	38.257	7.177	1.00 1.00	39.09
MOTA	1901	CB	GLN	291	14.099	38.514	8.651	1.00	39.09
MOTA	1902	CG	GIM	291	14.582	39.946	8.993	1.00	39.09
MOTA	1903	CD	GLN	291	13.469	41.005	9.052	1.00	39.09
MOTA	1904	OE1	GLN	291	12.300	40.730	8.741	1.00	39.09
MOTA	1905	NE2		291	13.841	42.229	9.445	1.00	22.36
MOTA	1906	C	GLN	291	14.834	38.788	6.253	1.00	39.09
ATOM	1907	0	GLN	291	15.871	38.163	6.085	1.00	11.17
MOTA	1908	N	PRO	292	14.603	39.946	5.634 5.878	1.00	16.09
MOTA	1909	CD	PRO	292	13.414	40.780	4.703	1.00	11.17
MOTA	1910	CA	PRO	292	15.517	40.619	4.703	1.00	16.09
MOTA	1911	CB	PRO	292	15.015	42.058	4.834	1.00	16.09
MOTA	1912	CG	PRO	292	13.542	41.867	4.998	1.00	11.17
MOTA	1913	C	PRO	292	17.012	40.530	4.078	1.00	16.09
MOTA	1914	0	PRO	292	17.811	40.364 40.618	6.266	1.00	4.79
MOTA	1915	N	THR	293	17.393	40.513	6.611	1.00	4.79
ATOM	1916	CA	THR	293	18.810	41.301	7.945	1.00	13.45
ATOM	1917	CB	THR	293	19.140	41.301	8.170	1.00	13.45
MOTA	1918	0G1		293	20.558 18.408	40.668	9.117	1.00	13.45
MOTA	1919	CG2		293	19.363	39.166	6.640	1.00	4.79
MOTA	1920	C	THR	293	20.577	38.978	6.577	1.00	13.45
ATOM	1921	0	THR	293	18.467	38.190	6.770	1.00	44.45
MOTA	1922	N	VAL	294	18.822	36.766	6.790	1.00	44.45
MOTA	1923	CA	VAL VAL	294	17.930	35.976	7.779	1.00	21.86
MOTA	1924	CB	VAL L VAL	294 294	18.343	34.522	7.801	1.00	21.86
MOTA	1925	CG2		294 294	18.022	36.592	9.172	1.00	21.86
MOTA	1926		VAL VAL	294	18.624	36.181	5.383	1.00	44.45
ATOM	1927	C	VAL	294	19.312	35.224	4.984	1.00	21.86
ATOM	1928	о И	ARG	295	17.686		4.642	1.00	2.00
MOTA	1929			295	17.369		3.274	1.00	2.00
ATOM	1930	CB	ARG	295	16.106		2.794		35.93
ATOM	1931 1932	CG		295	15.364		1.664	1.00	35.93
ATOM	1932	CD	ARG	295	14.280		1.010		35.93
MOTA	1933			295	13.376		1.980	1.00	35.93
ATOM ATOM	1935			295	12.132		1.717	1.00	35.93
ATOM	1935		1 ARG	295	11.610		0.499	1.00	35.93
MOTA	1937		2 ARG	295	11.418		2.675	1.00	35.93
	1937	_	ARG	295	18.544		2.381	1.00	2.00
MOTA MOTA	1939		ARG	295	18.817		1.378	1.00	35.93
MOTA	1940		ASN	296	19.267		2.783	1.00	23.98
ATOM	1940			296	20.415		2.031	1.00	23.98
ATOM	1942			296	20.920		2.600	1.00	20.87
ATOM	1942			296	21.628		1.560	1.00	20.87
MOTA	1944		1 ASN		20.986		0.865	1.00	20.87
ATOM	1945		2 ASN		22.929		1.371	. 1.00	20.87
AION	£230								

FIG. 3HH

							0 000	1 00	22 00
MOTA	1946	C	ASN	296	21.553	37.299	2.066	1.00	23.98 20.87
ATOM	1947	0	ASN	296	22.239	37.097	1.068	1.00	14.54
ATOM	1948	N	TYR	297	21.765	36.710	3.238	1.00	14.54
ATOM	1949	CA	TYR	297	22.823	35.738	3.463	1.00	
MOTA	1950	CB	TYR	297	22.878	35.396	4.955	1.00	12.06
MOTA	1951	CG	TYR	297	23.853	34.309	5.295	1.00	12.06
MOTA	1952	CD1	TYR	297	25.221	34.513	5.171	1.00	12.06
MOTA	1953	CEl	TYR	297	26.133	33.509	5.481	1.00	12.06
ATOM	1954	CD2	TYR	297	23.411	33.070	5.739	1.00	12.06
MOTA	1955	CE2	TYR	297	24.318	32.056	6.050	1.00	12.06
MOTA	1956	CZ	TYR	297	25.678	32.284	5.918	1.00	12.06
ATOM	1957	OH	TYR	297	26.579	31.288	6.223	1.00	12.06
ATOM	1958	С	TYR	297	22.646	34.464	2.648	1.00	14.54
ATOM	1959	0	TYR	297	23.561	34.036	1.941	1.00	12.06
ATOM	1960	N	VAL	298	21.449	33.892	2.747	1.00	4.63
ATOM	1961	CA	VAL	298	21.088	32.656	2.077	1.00	4.63
MOTA	1962	CB	VAL	298	19.723	32.124	2.581	1.00	42.51
ATOM	1963	CG1		298	19.304	30.882	1.785	1.00	42.51
ATOM	1964	CG2		298	19.790	31.802	4.064	1.00	42.51
ATOM	1965	C	VAL	298	21.010	32.784	0.565	1.00	4.63
ATOM	1966	ō	VAL	298	21.485	31.898	-0.163	1.00	42.51
MOTA	1967	N	GLU	299	20.388	33.859	0.080	1.00	21.61
ATOM	1968	CA	GLU	299	20.264	34.064	-1.361	1.00	21.61
ATOM	1969	CB	GLU	299	19.329	35.220	-1.671	1.00	40.37
MOTA	1970	CG	GLU	299	17.884	34.920	-1.312	1.00	40.37
ATOM	1971	CD	GLU	299	16.986	36.142	-1.378	1.00	40.37
ATOM	1972	OE1		299	17.464	37.260	-1.076	1.00	40.37
ATOM	1973	OE2		299	15.802	35.984	-1.722	1.00	40.37
ATOM	1974	C	GLU	299	21.632	34.301	-1.973	1.00	21.61
	1975	0	GLU	299	21.957	33.735	-3.015	1.00	40.37
ATOM	1976	N	ASN	300	22.455	35.104	-1.310	1.00	5.94
ATOM	1970	CA	ASN	300	23.790	35.372	-1.818	1.00	5.94
ATOM	1978	CB	ASN	300	24.185	36.816	-1.512	1.00	39.13
ATOM	1979	CG	ASN	300	23.274	37.827	-2.201	1.00	39.13
ATOM	1980		ASN	300	23.558	38.274	-3.314	1.00	39.13
ATOM	1981		ASN	300	22.163	38.168	-1.558	1.00	39.13
MOTA	1982	C	ASN	300	24.743	34.356	-1.193	1.00	5.94
ATOM	1983	0	ASN	300	25.658	34.706	-0.441	1.00	39.13
ATOM		N	ARG	301	24.494	33.087	-1.505	1.00	26.43
MOTA	1984	CA	ARG	301	25.280	31.956	-1.005	1.00	26.43
MOTA	1985	CB	ARG	301	24.505	31.286	0.153	1.00	45.38
ATOM	1986	CG	ARG	301	25.323	30.477	1.138	1.00	45.38
ATOM	1987 1988	CD	ARG	301	25.484	31.225	2.445	1.00	45.38
ATOM	1989	NE	ARG	301	26.760	30.897	3.071	1.00	45.38
ATOM	1990	CZ	ARG	301	27.869	31.633	2.959	1.00	45.38
MOTA			L ARG	301	27.870	32.759	2.249	1.00	45.38
ATOM	1991 1992		ARG	301	29.001	31.208	3.510	1.00	45.38
MOTA	1993	C	ARG	301	25.469	30.955	-2.158	1.00	26.43
MOTA		0	ARG	301	24.525	30.686	-2.903	1.00	45.38
MOTA	1994			302	26.684	30.392	-2.315	1.00	7.81
MOTA	1995	И	PRO	302	27.840	30.490	-1.414	1.00	9.65
ATOM	1996	CD	PRO	302	26.953	29.424	-3.387	1.00	7.81
ATOM	1997	CA	PRO		28.326	28.860	-3.009	1.00	9.65
ATOM	1998	CB	PRO	302 302	28.420	29.106	-1.534	1.00	9.65
ATOM	1999	CG	PRO	302	25.885	28.348	-3.432	1.00	7.81
ATOM	2000	C	PRO		25.600	27.715	-2.419	1.00	9.65
ATOM	2001	0	PRO	302	25.279	28.166	-4.604	1.00	38.56
MOTA	2002	N	LYS	303	24.195	27.191	-4.785	1.00	38.56
ATOM	2003	CA		303 303	23.260	27.131	-5.923	1.00	37.34
ATOM	2004	CB	LYS	303	23.200	21.021	٠.٧.٠	2.00	

FIG. 3II

										27 24
MOTA	2005	CG	LYS	303		22.529	28.920	-5.637	1.00	37.34
ATOM	2006	CD	LYS	303		21.645	29.313	-6.794	1.00	37.34
ATOM	2007	CE	LYS	303		21.230	30.779	-6.697	1.00	37.34
ATOM	2008	NZ	LYS	303		20.640	31.268	-7.995	1.00	37.34
MOTA	2009	C	LYS	303		24.587	25.738	-4.989	1.00	38.56
ATOM	2010	0	LYS	303		25.719	25.429	-5.367	1.00	37.34
ATOM	2011	N	TYR	304		23.626	24.859	-4.692	1.00	20.93
ATOM	2012	CA	TYR	304		23.768	23.405	-4.834	1.00	20.93
ATOM	2013	СВ	TYR	304		24.093	22.741	-3.501	1.00	13.21
MOTA	2014	CG	TYR	304 .		25.503	22.977	-3.082	1.00	13.21
ATOM	2015	CD1	TYR	304		26.536	22.201	-3.585	1.00	13.21
ATOM	2016	CE1	TYR	304		27.853	22.469	-3.252	1.00	13.21
ATOM	2017	CD2	TYR	304		25.814	24.013	-2.219	1.00	13.21
ATOM	2017	CE2	TYR	304		27.120	24.291	-1.876	1.00	13.21
	2019	CZ	TYR	304		28.141	23.522	-2.391	1.00	13.21
ATOM	2020	OH	TYR	304		29.441	23.858	-2.075	1.00	13.21
ATOM	2021	C	TYR	304		22.492	22.796	-5.388	1.00	20.93
ATOM		0	TYR	304		21.395	23.037	-4.878	1.00	13.21
MOTA	2022		ALA	305		22.645	22.006	-6.446	1.00	21.50
MOTA	2023	N				21.513	21.354	-7.096	1.00	21.50
MOTA	2024	CA	ALA	305		21.991	20.549	-8.290	1.00	20.54
MOTA	2025	CB	ALA	305		20.815	20.454	-6.102	1.00	21.50
MOTA	2026	C	ALA	305			20.350	-6.103	1.00	20.54
MOTA	2027	0	ALA	305		19.593	19.836	-5.230	1.00	20.44
MOTA	2028	N	GLY	306		21.613	18.937	-4.213	1.00	20.44
ATOM	2029	CA	GLY	306		21.093		-4.628	1.00	20.44
ATOM	2030	C	GLY	306		21.169	17.482	-5.778	1.00	20.50
MOTA	2031	0	GLY	306		20.868	17.134		1.00	6.20
MOTA	2032	N	LEU	307		21.615	16.640	-3.703 -3.939	1.00	6.20
MOTA	2033	CA	LEU	307		21.729	15.209		1.00	18.44
MOTA	2034	CB	LEU	307		22.836	14.598	-3.085	1.00	18.44
MOTA	2035	CG	LEU	307		24.157	15.349	-2.934		18.44
MOTA	2036		LEU	307		25.127	14.529	-2.083	1.00 1.00	18.44
MOTA	2037		LEU	307		24.744	15.651	-4.303		6.20
MOTA	2038	С	LEU	307		20.413	14.550	-3.562	1.00	18.44
MOTA	2039	0	LEU	307		19.789	14.910	-2.561	1.00	
MOTA	2040	N	THR	308		19.993	13.589	-4.379	1.00	50.96
MOTA	2041	CA	THR	308		18.753	12.861	-4.133	1.00	50.96
MOTA	2042	CB	THR	308	•	18.299	12.053	-5.389	1.00	9.59
MOTA	2043	OG1	THR	308		19.303	11.094	-5.751	1.00	9.59
MOTA	2044	CG2	THR	308		18.040	12.992	-6.557	1.00	9.59
ATOM	2045	C	THR	308		18.953	11.929	-2.928	1.00	50.96
ATOM	2046	0	THR	308		20.082	11.559	-2.596	1.00	9.59
ATOM	2047	N	PHE	309		17.856	11.538	-2.289	1.00	9.28
ATOM	2048	CA	PHE	309		17.953	10.679	-1.123	1.00	9.28
ATOM	2049	CB	PHE	309		16.612	10.561	-0.421	1.00	35.97
MOTA	2050	CG	PHE	309		16.280	11.795	0.378	1.00	35.97
ATOM	2051	CDI	PHE	309		16.772	11.950	1.675	1.00	35.97
ATOM	2052	CD2	2 PHE	309		15.577	12.854	-0.203	1.00	35.97
ATOM	2053		L PHE	309		16.575	13.149	2.387	1.00	35.97
ATOM	2054		2 PHE	309		15.373	14.062	0.497	1.00	35.97
ATOM	2055	CZ	PHE	309		15.875	14.205	1.796	1.00	35.97
ATOM	2056		PHE	309		18.637	9.355	-1.354	1.00	9.28
ATOM	2057		PHE	309		19.450			1.00	35.97
MOTA	2058		PRO	310		18.371			1.00	38.48
ATOM	2059		PRO	310		17.483				23.38
ATOM	2060			310		19.075				38.48
MOTA	2061			310		18.467				23.38
ATOM	2062			310		18.106				23.38
ATOM	2062		PRO	310		20.584				38.48
ATOM	2003	_	FRU	210				_ · ·		

FIG. 3JJ

									•
3 EIOM	2064	0	PRO	310	21.373	6.834	-2.378	1.00	23.38
MOTA	2064 2065		LYS	311	20.971	8.846	-3.308	1.00	13.04
MOTA	2065	CA	LYS	311	22.385	9.214	-3.465	1.00	13.04
MOTA MOTA	2067	CB	LYS	311	22.523	10.463	-4.342	1.00	34.06
ATOM	2068	CG	LYS	311	22.808	10.195	-5.807	1.00	34.06
ATOM	2069	CD	LYS	311	24.240	9.693	-6.011	1.00	34.06
ATOM	2070	CE	LYS	311	24.521	9.395	-7.494	1.00	34.06
ATOM	2071	NZ	LYS	311	25.967	9.063	-7.743	1.00	34.06
ATOM	2072	C	LYS	311	23.019	9.494	-2.105	1.00	13.04
ATOM	2073	ō	LYS	311	24.187	9.171	-1.865	1.00	34.06
ATOM	2074	N	LEU	312	22.234	10.137	-1.241	1.00	30.77
ATOM	2075	CA	LEU	312	22.635	10.500	0.118	1.00	30.77
ATOM	2076	СВ	LEU	312	21.673	11.556	0.665	1.00	12.53
ATOM	2077	CG	LEU	312	21.900	13.005	0.240	1.00	12.53
MOTA	2078		LEU	312	20.660	13.854	0.540	1.00	12.53
ATOM	2079		LEU	312	23.134	13.523	0.958	1.00	12.53
ATOM	2080	С	LEU	312	22.658	9.285	1.060	1.00	30.77
ATOM	2081	0	LEU	312	23.514	9.193	1.953	1.00	12.53
ATOM	2082	N	PHE	313	21.709	8.376	0.860	1.00	9.82
MOTA	2083	CA	PHE	313	21.600	7.167	1.668	1.00	9.82
MOTA	2084	CB	PHE	313	20.302	7.155	2.486	1.00	19.45
ATOM	2085	CG	PHE	313	20.168	8.307	3.440	1.00	19.45
ATOM	2086	CD1	PHE	313	21.030	8.435	4.522	1.00	19.45
ATOM	2087	CD2	PHE	313	19.182	9.268	3.235	1.00	19.45
MOTA	2088		PHE	313	20.930	9.493	5.385	1.00	19.45
MOTA	2089	CE2	PHE	313	19.056	10.349	4.085	1.00	19.45
MOTA	2090	\mathbf{cz}	PHE	313	19.938	10.468	5.172	1.00	19.45
MOTA	2091	C	PHE	313	21.559	5.977	0.718	1.00	9.82 19.45
MOTA	2092	0	PHE	313	20.501	5.371	0.525	1.00	17.77
MOTA	2093	N	PRO	314	22.709	5.608	0.128	1.00 1.00	21.65
MOTA	2094	CD	PRO	314	24.077	6.031	0.454	1.00	17.77
MOTA	2095	CA	PRO	314	22.726	4.474	-0.797 -1.168	1.00	21.65
MOTA	2096	CB	PRO	314	24.203	4.367	0.098	1.00	21.65
MOTA	2097	CG	PRO	314	24.881	4.791	-0.114	1.00	17.77
MOTA	2098	С	PRO	314	22.227	3.213	1.111	1.00	21.65
ATOM	2099	0	PRO	314	22.160	3.142 2.215	-0.919	1.00	38.72
MOTA	2100	N	ASP	315	21.889	0.941	-0.422	1.00	38.72
MOTA	2101	CA	ASP	315	21.380	0.026	-1.610	1.00	47.92
MOTA	2102	CB	ASP	315	21.078	0.687	-2.626	1.00	47.92
MOTA	2103	CG	ASP	315	20.157	0.386	-2.604	1.00	47.92
ATOM	2104		1 ASP	315	18.939 20.646	1.517	-3.434		47.92
ATOM	2105		2 ASP	315	20.040	0.248	0.568		38.72
MOTA	2106		ASP	315	21.888		1.600		47.92
MOTA	2107		ASP	315	23.623		0.301		22.14
MOTA	2108		SER	316	24.645				22.14
MOTA	2109			316 316	26.022	_			41.15
ATOM	2110			316	26.118				41.15
ATOM	2111				24.587				22.14
ATOM	2112		SER	316 316	25.207				41.15
ATOM	2113		SER	317	23.846				35.08
MOTA	2114		LEU LEU		23.741				35.08
MOTA	2115				23.445				17.46
MOTA	2116				24.520				17.46
ATOM	2117		1 LEU		24.047				17.46
ATOM	2118 2119		2 LEU		25.812				17.46
ATOM	2119		LEU		22.659				35.08
MOTA	2121		LEU		22.862				17.46
MOTA	2122		PHE		21.531				4.02
MOTA	2122	,	rne	210					

FIG. 3KK

ATOM	2123	CA	PHE	318	20.392	-0.278	4.954	1.00	4.02
ATOM	2124	CB	PHE	318	19.113	0.147	4.230	1.00	16.56
ATOM	2125	CG	PHE	318	18.903	1.640	4.201	1.00	16.56
MOTA	2126	CD1	PHE	318	18.133	2.268	5.174	1.00	16.56
ATOM	2127	CD2	PHE	318	19.514	2.420	3.216	1.00	16.56
ATOM	2128	CE1	PHE	318	17.977	3.655	5.175	1.00	16.56
ATOM	2129	CE2	PHE	318	19.373	3.805	3.201	1.00	16.56
ATOM	2130	CZ	PHE	318	18.602	4.430	4.182	1.00	16.56
MOTA	2131	C	PHE	318	20.591	-1.758	4.744	1.00	4.02
ATOM	2132	0	PHE	318	21.200	-2.172	3.761	1.00	16.56
ATOM	2133	N	PRO	319	20.151	-2.578	5.708	1.00	31.17
MOTA	2134	CD	PRO	319	19.637	-2.218	7.040	1.00	52.46
ATOM	2135	CA	PRO	319	20.289	-4.029	5.574	1.00	31.17
ATOM	2136	CB	PRO	319	19.834	-4.543	6.951	1.00	52.46
MOTA	2137	CG	PRO	319	18.905	-3.478	7.455	1.00	52.46
ATOM	2138	С	PRO	319	19.339	-4.452	4.451	1.00	31.17
ATOM	2139	0	PRO	319	18.128	-4.225	4.536	1.00	52.46
MOTA	2140	N	ALA	320	19.881	-5.025	3.384	1.00	10.87
ATOM	2141	CA	ALA	320	19.059	-5.424	2.257	1.00	10.87
ATOM	2142	CB	ALA	320	19.248	-4.435	1.107	1.00	25.21
ATOM	2143	C	ALA	320	19.414	-6.826	1.808	1.00	10.87
MOTA	2144	0	ALA	320	19.881	-7.020	0.685	1.00	25.21
MOTA	2145	N	ASP	321	19.203	-7.804	2.685	1.00	47.66
ATOM	2146	CA	ASP	321	19.521	-9.181	2.338	1.00	47.66
MOTA	2147	CB	ASP	321	20.236	-9.900	3.483	1.00	64.42
ATOM	2148	CG	ASP	321		-11.050	2.986	1.00	64.42
ATOM	2149	OD1	ASP	321	21.230	-11.200	1.744	1.00	64.42
ATOM	2150	OD2	ASP	321	21.630	-11.811	3.820	1.00	64.42
ATOM	2151	C	ASP	321	18.294	-9.956	1.891	1.00	47.66
ATOM	2152	0	ASP	321	18.337	-10.675	0.893	1.00	64.42
ATOM	2153	N	SER	322	17.222	-9.840	2.661	1.00	3.49
ATOM	2154	CA	SER	322	15.970	-10.494	2.337	1.00	3.49
ATOM	2155	СВ	SER	322	15.264	-10.922	3.612	1.00	13.00
ATOM	2156	OG	SER	322	15.170	-9.836	4.520	1.00	13.00
ATOM	2157	C	SER	322	15.094	-9.500	1.589	1.00	3.49
ATOM	2158	0	SER	322	15.394	-8.315	1.528	1.00	13.00
ATOM	2159	N	GLU	323	13.978	-9.983	1.070	1.00	2.00
ATOM	2160	CA	GLÜ	323	13.051	-9.146	0.331	1.00	2.00
ATOM	2161	CB	GLU	323	12.168	-10.007	-0.567	1.00	23.86
ATOM	2162	CG	GLU	323	11.838	-9.356	-1.886	1.00	23.86
ATOM	2163	CD	GLU	323	12.668	-9.902	-3.036	1.00	23.86
ATOM	2164		L GLU	323	12.195	-10.834	-3.713	1.00	23.86
ATOM	2165	OE2	2 GLU	323	13.781	-9.396	-3.284	1.00	23.86
ATOM	2166	C	GLU	323	12.194	-8.306	1.276	1.00	2.00
ATOM	2167	0	GLU	323	11.431	-7.448	0.837	1.00	23.86
ATOM	2168	N	HIS	324	12.283	-8.598	2.570	1.00	17.95
ATOM	2169	CA	HIS	324	11.560	-7.852	3.605	1.00	17.95
ATOM	2170	CB	HIS	324	11.312	-8.750	4.834	1.00	5.49
ATOM	2171	CG		324	10.841	-8.010	6.060	1.00	5.49
ATOM	2172		2 HIS	324	9.611	-7.862	6.596	1.00	5.49
ATOM	2173		1 HIS	324	11.713	-7.370	6.917	1.00	5.49
ATOM	2174		1 HIS	324	11.036	-6.861	7.928	1.00	5.49
ATOM	2175		2 HIS	324	9.759		7.763	1.00	5.49
ATOM	2176	C	HIS	324	12.466	-6.686	3.969	1.00	17.95
ATOM	2177	ō	HIS	324	12.003		4.224	1.00	5.49
ATOM	2178	N	ASN	325	13.767		3.993	1.00	2.00
ATOM	2179			325	14.774		4.293	1.00	2.00
ATOM	2180			325	16.103		4.656	1.00	16.84

FIG. 3LL

ATOM	2181	CG	ASN	325	16.090	-7.208	6.039	1.00	16.84
ATOM	2182	OD1	ASN	325	15.032	-7.379	6.645	1.00	16.84
MOTA	2183		ASN	325	17.263	-7.517	6.558	1.00	16.84
ATOM	2184	C	ASN	325	14.984	-5.004	3.122	1.00	2.00
ATOM	2185	0	ASN	325	15.645	-3.982	3.246	1.00	16.84
ATOM	2186	N	LYS	326	14.468	-5.386	1.964	1.00	23.08
ATOM	2187	CA	LYS	326	14.582	-4.552	0.791	1.00	23.08
ATOM	2188	CB	LYS	326	14.644	-5.405	-0.475	1.00	28.36
ATOM	2189	CG	LYS	326	15.917	-6.240	-0.575	1.00	28.36
ATOM	2190	CD	LYS	326	15.960	-6.997	-1.888	1.00	28.36
	2191	CE	LYS	326	17.085	-8.035	-1.946	1.00	28.36
ATOM	2192	NZ	LYS	326	18.456	-7.449	-2.017	1.00	28.36
ATOM		C	LYS	326	13.387	-3.608	0.766	1.00	23.08
MOTA	2193		LYS	326	13.531	-2.426	0.465	1.00	28.36
ATOM	2194	0	LEU	327	12.220	-4.107	1.150	1.00	2.00
ATOM	2195	И		327	11.028	-3.277	1.165	1.00	2.00
ATOM	2196	CA	LEU		9.772	-4.119	1.385	1.00	8.67
MOTA	2197	CB	LEU	327		-3.402	1.491	1.00	8.67
MOTA	2198	CG	LEU	327	8.421	-2.695	0.196	1.00	8.67
MOTA	2199		LEU	327	8.096	-4.379	1.836	1.00	8.67
MOTA	2200		LEU	327	7.319		2.249	1.00	2.00
ATOM	2201	C	LEU	327	11.150	-2.229		1.00	8.67
MOTA	2202	0	LEU	327	10.984	-1.047	1.993	1.00	2.57
MOTA	2203	N	LYS	328	11.489	-2.656	3.452		2.57
MOTA	2204	CA	LYS	328	11.634	-1.739	4.570	1.00	9.10
ATOM	2205	CB	LYS	328	11.946	-2.510	5.852	1.00	9.10
ATOM	2206	CG	LYS	328	10.761	-3.238	6.441	1.00	
MOTA	2207	CD	LYS	328	9.688	-2.273	6.894	1.00	9.10
MOTA	2208	CE	LYS	328	8.459	-3.009	7.391	1.00	9.10
ATOM	2209	NZ	LYS	328	7.431	-2.129	8.011	1.00	9.10
MOTA	2210	C	LYS	328	12.703	-0.680	4.324	1.00	2.57
ATOM	2211	0	LYS	328	12.585	0.441	4.802	1.00	9.10
ATOM	2212	N	ALA	329	13.716	-1.029	3.541	1.00	13.58
MOTA	2213	CA	ALA	329	14.804	-0.117	3.230	1.00	13.58
MOTA	2214	CB	ALA	329	15.970	-0.865	2.596	1.00	16.18
ATOM	2215	C	ALA	329	14.337	0.997	2.317	1.00	13.58
ATOM	2216	0	ALA	329	14.899	2.079	2.341	1.00	16.18
MOTA	2217	N	SER	330	13.330	0.726	1.491	1.00	11.09
MOTA	2218	CA	SER	330	12.785	1.737	0.593	1.00	11.09
MOTA	2219	CB	SER	330	12.081	1.100	-0.611	1.00	11.72
MOTA	2220	OG	SER	330	10.754	0.706	-0.292	1.00	11.72
MOTA	2221	C	SER	330	11.806	2.581	1.404	1.00	11.09
MOTA	2222	0	SER	330	11.557	3.743	1.093	1.00	11.72
MOTA	2223	N	GLN	331	11.266	1.986	2.461	1.00	2.00
MOTA	2224	CA	GLN	331	10.333	2.679	3.335	1.00	2.00
MOTA	2225	CB	GLN	331	9.517	1.664	4.131	1.00	6.13
MOTA	2226	CG	GLN	331	8.571	0.855	3.293	1.00	6.13
ATOM	2227	CD	GLN	331	7.766	-0.121	4.097	1.00	6.13
MOTA	2228	OE1	GLN	331	8.024	-0.337	5.265	1.00	6.13
MOTA	2229	NE2	GLN	331	6.795	-0.740	3.463	1.00	6.13
MOTA	2230	C	GLN	331	11.058	3.617	4.298	1.00	2.00
MOTA	2231	0	GLN	331	10.513	4.639	4.717	1.00	6.13
MOTA	2232	N	ALA	332	12.277	3.235	4.660	1.00	5.63
MOTA	2233	CA	ALA	332	13.102	3.992	5.583	1.00	5.63
MOTA	2234	CB	ALA	332	14.277	3.151	6.043	1.00	19.90
MOTA	2235	C	ALA	332	13.603	5.241	4.909	1.00	5.63
ATOM	2236	0	ALA	332	13.528	6.333	5.459	1.00	19.90
MOTA	2237	N	ARG	333	14.053	5.080	3.676	1.00	2.00
MOTA	2238	CA	ARG	333	14.575	6.186	2.902	1.00	2.00

FIG. 3MM

ATOM	2239	СВ	ARG	333	15.351	5.665	1.703	1.00	16.50
MOTA	2240	CG	ARG	333	16.331	6.648	1.131	1.00	16.50
MOTA	2241	CD	ARG	333	16.800	6.190	-0.246	1.00	16.50
MOTA	2242	NE	ARG	333	17.762	5.090	-0.231	1.00	16.50 16.50
MOTA	2243	CZ	ARG	333	17.581	3.920	-0.842	1.00	16.50
MOTA	2244	NH1	ARG	333	16.452	3.680	-1.502	1.00	16.50
MOTA	2245	NH2	ARG	333	18.572	3.028	-0.877	1.00	2.00
MOTA	2246	C	ARG	333	13.442	7.095	2.461	1.00	16.50
ATOM	2247	0	ARG	333	13.655	8.281	2.266	1.00	2.00
MOTA	2248	N	ASP	334	12.229	6.561	2.349	1.00	2.00
MOTA	2249	CA	ASP	334	11.095	7.377 6.522	1.953 1.588	1.00	11.10
ATOM	2250	CB	ASP	334	9.887	7.341	0.973	1.00	11.10
MOTA	2251	CG	ASP	334	8.753 8.940	7.907	-0.137	1.00	11.10
MOTA	2252	OD1		334		7.412	1.594	1.00	11.10
MOTA	2253		ASP	334	7.670 10.712	8.286	3.110	1.00	2.00
MOTA	2254	C	ASP	334	10.309	9.425	2.904	1.00	11.10
ATOM	2255	0	ASP	334 335	10.803	7.756	4.325	1.00	2.00
ATOM	2256	N	LEU	335	10.486	8.491	5.536	1.00	2.00
MOTA	2257	CA	LEU	335	10.486	7.523	6.717	1.00	2.00
MOTA	2258	CB	LEU	335	10.094	7.963	8.118	1.00	2.00
MOTA	2259	CG	LEU	335	8.660	8.436	8.151	1.00	2.00
ATOM ATOM	2260 2261		LEU	335	10.295	6.800	9.052	1.00	2.00
ATOM	2262	CDZ	LEU	335	11.555	9.561	5.700	1.00	2.00
ATOM	2262	0	LEU	335	11.239	10.719	5.931	1.00	2.00
ATOM	2264	N	LEU	336	12.814	9.181	5.511	1.00	2.14
ATOM	2265	CA	LEU	336	13.925	10.111	5.611	1.00	2.14
MOTA	2266	CB	LEU	336	15.250	9.392	5.335	1.00	8.04
ATOM	2267	CG	LEU	336	16.116	8.862	6.472	1.00	8.04
ATOM	2268		LEU	336	17.147	7.889	5.941	1.00	8.04
ATOM	2269		LEU	336	16.786	10.022	7.172	1.00	8.04
MOTA	2270	C	LEU	336	13.775	11.280	4.625	1.00	2.14
ATOM	2271	0	LEU	336	14.096	12.423	4.968	1.00	8.04
ATOM	2272	N	SER	337	13.277	10.995	3.419	1.00	2.00
ATOM	2273	CA	SER	337	13.098	12.009	2.386	1.00	2.00
ATOM	2274	CB	SER	337	12.788	11.367	1.024	1.00	2.98
ATOM	2275	OG	SER	337	11.543	10.693	1.022	1.00	2.98
MOTA	2276	C	SER	337	12.022	13.024	2.722	1.00	2.00
ATOM	2277	0	SER	337	11.999	14.103	2.151	1.00	2.98
MOTA	2278	N	LYS	338	11.110	12.658	3.616	1.00	3.30
MOTA	2279	CA	LYS	338	10.031	13.539	4.030	1.00	3.30
MOTA	2280	CB	LYS	338	8.796	12.733	4.438	1.00	10.86
MOTA	2281	CG	LYS	338	8.340	11.631	3.484	1.00	10.86
MOTA	2282	CD	LYS	338	7.473	12.142	2.349	1.00	10.86 10.86
MOTA	2283	CE	LYS	338	6.938	10.996	1.524	1.00	10.86
MOTA	2284	NZ	LYS	338	6.052	10.123	2.334	1.00	3.30
MOTA	2285	C	LYS	338	10.488	14.372	5.225	1.00 1.00	10.86
MOTA	2286	0	LYS	338	10.169	15.553	5.329	1.00	2.00
MOTA	2287	N	MET	339	11.242	13.752	6.123 7.316	1.00	2.00
ATOM	2288	CA	MET	339	11.725	14.425 13.396	8.375	1.00	2.00
MOTA	2289	CB	MET	339	12.139	12.536	8.901	1.00	2.00
MOTA	2290	CG	MET	339	10.999 11.504	11.362	10.161	1.00	2.00
ATOM	2291	SD CE	MET MET	339 339	10.004	11.147	10.101	1.00	2.00
MOTA	2292 2293	CE	MET	339	12.868	15.396	7.064	1.00	2.00
ATOM	2293	0	MET	339	12.906	16.483	7.638	1.00	2.00
ATOM ATOM	2294	N	LEU		13.806	15.012	6.213	1.00	2.00
ATOM	2296	CA	LEU		14.915	15.894	5.930	1.00	2.00
ATOM	2297	CB	LEU		16.172	15.110	5.603	1.00	7.41
AIOM	4471	CD	, Lev	240	10.1.2	0	2.00		• • • -

FIG. 3NN

							c 015	1 00	7.41
MOTA	2298	CG	LEU	340	16.789	14.652	6.915	1.00	7.41
MOTA	2299	CD1		340	18.085	13.954	6.639	1.00	7.41
MOTA	2300	CD2	LEU	340	17.013	15.839	7.837	1.00	
ATOM	2301	C	LEU	340	14.600	16.919	4.867	1.00	2.00
MOTA	2302	0	LEU	340	15.307	17.051	3.882	1.00	7.41
ATOM	2303	N	VAL	341	13.535	17.668	5.111	1.00	12.82
MOTA	2304	CA	VAL	341	13.080	18.721	4.226	1.00	12.82
ATOM	2305	CB	VAL	341	11.574	18.576	3.963	1.00	9.51
ATOM	2306	CG1	VAL	341	11.089	19.709	3.100	1.00	9.51
ATOM	2307		VAL	341	11.294	17.253	3.300	1.00	9.51
ATOM	2308	C	VAL	341	13.383	20.063	4.914	1.00	12.82
ATOM	2309	ō	VAL	341	13.079	20.238	6.093	1.00	9.51
ATOM	2310	N	ILE	342	14.000	20.996	4.190	1.00	4.21
ATOM	2311	CA	ILE	342	14.364	22.298	4.748	1.00	4.21
ATOM	2312	CB	ILE	342	15.462	22.984	3.900	1.00	6.31
MOTA	2312		ILE	342	15.799	24.360	4.452	1.00	6.31
ATOM	2314	CG1		342	16.719	22.108	3.900	1.00	6.31
	2315	CD1		342	17.843	22.656	3.067	1.00	6.31
MOTA		CDI	ILE	342	13.182	23.224	4.975	1.00	4.21
ATOM	2316		ILE	342	13.117	23.883	6.016	1.00	6.31
ATOM	2317	0		343	12.236	23.255	4.041	1.00	2.00
MOTA	2318	N	ASP		11.065	24.108	4.191	1.00	2.00
MOTA	2319	CA	ASP	343 343	10.494	24.501	2.823	1.00	21.74
MOTA	2320	CB	ASP		9.258	25.414	2.926	1.00	21.74
MOTA	2321	CG	ASP	343		26.183	3.915	1.00	21.74
ATOM	2322		ASP	343	9.113	25.366	1.998	1.00	21.74
MOTA	2323		ASP	343	8.421	23.390	5.026	1.00	2.00
MOTA	2324	C	ASP	343	10.009		4.654	1.00	21.74
MOTA	2325	0	ASP	343	9.532	22.328	6.191	1.00	12.51
MOTA	2326	N	PRO	344	9.661	23.949	6.751	1.00	16.37
MOTA	2327	CD	PRO	344	10.281	25.161		1.00	12.51
ATOM	2328	CA	PRO	344	8.660	23.408	7.120		16.37
MOTA	2329	CB	PRO	344	8.633	24.449	8.234	1.00	16.37
MOTA	2330	CG	PRO	344	9.997	25.012	8.214	1.00	12.51
MOTA	2331	С	PRO	344	7.269	23.236	6.516	1.00	16.37
MOTA	2332	0	PRO	344	6.469	22.473	7.040	1.00	11.95
ATOM	2333	N	ALA	345	6.960	23.979	5.455	1.00	
MOTA	2334	CA	ALA	345	5.657	23.872	4.816	1.00	11.95
ATOM	2335	CB	ALA	345	5.416	25.044	3.881	1.00	9.14
MOTA	2336	C	ALA	345	5.515	22.558	4.070	1.00	11.95
MOTA	2337	0	ALA	345	4.420	22.018	3.967	1.00	9.14
ATOM	2338	N	LYS	346	6.634	22.036	3.580	1.00	2.00
MOTA	2339	CA	LYS	346	6.655	20.776	2.840	1.00	2.00
MOTA	2340	CB	LYS	346	7.534	20.923	1.595	1.00	15.05
ATOM	2341	CG	LYS	346	6.984	21.930	0.601	1.00	15.05
ATOM	2342	CD	LYS	346	8.067	22.442	-0.340	1.00	15.05
ATOM	2343	CE	LYS	346	7.529	23.576	-1.222	1.00	15.05
ATOM	2344	NZ	LYS	346	7.093	24.764	-0.427	1.00	15.05
ATOM	2345	C	LYS	346	7.131	19.597	3.695	1.00	2.00
ATOM	2346	0	LYS	346	7.046	18.442	3.279	1.00	15.05
ATOM	2347	N	ARG	347	7.602	19.900	4.903	1.00	2.00
ATOM	2348	CA	ARG	347	8.081	18.881	5.828	1.00	2.00
ATOM	2349	CB	ARG	347	8.913	19.498	6.939	1.00	3.45
ATOM	2350	CG		347	9.801	18.490	7.598	1.00	3.45
MOTA	2351	CD		347	10.512	19.071	8.775	1.00	3.45
ATOM	2352			347	11.486		8.377	1.00	3.45
ATOM	2352			347	11.548		8.893	1.00	3.45
MOTA	2354		1 ARG	347	10.686		9.833	1.00	3.45
ATOM	2355		2 ARG	347	12.452		8.450		3.45
ATOM	2356		ARG	347	6.906		6.431	1.00	2.00
ALON	0 د د م	_	- 11.0		2.230				

FIG. 300

ATOM	2357	0	ARG	347	5.832	18.694	6.614	1.00	3.45
ATOM	2358	N	ILE	348	7.120	16.860	6.732	1.00	2.29
MOTA	2359	CA	ILE	348	6.088	15.991	7.288	1.00	2.29
MOTA	2360	CB	ILE	348	6.431	14.489	7.057	1.00	2.00
MOTA	2361	CG2	ILE	348	7.530	14.026	8.012	1.00	2.00
ATOM	2362	CG1	ILE	348	5.174	13.639	7.234	1.00	2.00
MOTA	2363	CD1	ILE	348	5.351	12.213	6.784	1.00	2.00
ATOM	2364	C	ILE	348	5.821	16.240	8.758	1.00	. 2.29
MOTA	2365	0	ILE	348	6.733	16.518	9.532	1.00	2.00
ATOM	2366	N	SER	349	4.550	16.127	9.127	1.00	5.28
MOTA	2367	CA	SER	349	4.106	16.351	10.494	1.00	5.28
MOTA	2368	CB	SER	349	2.612	16.722	10.515	1.00	14.72 14.72
MOTA	2369	OG	SER	349	1.814	15.800	9.786	1.00	5.28
ATOM	2370	C	SER	349	4.357	15.122	11.350	1.00	14.72
MOTA	2371	0	SER	349	4.721	14.067	10.839	1.00	20.79
MOTA	2372	N	VAL	350	4.146	15.251	12.653	1.00 1.00	20.79
MOTA	2373	CA	VAL	350	4.357	14.140	13.561	1.00	18.92
MOTA	2374	CB	VAL	350	4.321	14.594	15.044	1.00	18.92
MOTA	2375		VAL	350	4.677	13.434	15.953 15.269	1.00	18.92
MOTA	2376		VAL	350	5.296	15.740	13.325	1.00	20.79
MOTA	2377	C	VAL	350	3.296	13.071	13.340	1.00	18.92
MOTA	2378	0	VAL	350	3.606	11.883 13.495	13.340	1.00	2.00
MOTA	2379	N	ASP	351	2.063	12.568	12.827	1.00	2.00
MOTA	2380	CA	ASP	351	0.953	13.321	12.900	1.00	23.45
MOTA	2381	CB	ASP	351	-0.371 -0.559	14.012	14.234	1.00	23.45
ATOM	2382	CG	ASP	351	-0.339	15.234	14.320	1.00	23.45
MOTA	2383		ASP	351	-0.261	13.316	15.198	1.00	23.45
ATOM	2384		ASP	351 351	1.024	11.760	11.545	1.00	2.00
MOTA	2385	C	ASP	351 351	0.484	10.661	11.468	1.00	23.45
MOTA		0	ASP ASP	352	1.674	12.315	10.531	1.00	17.97
ATOM		N CA	ASP	352	1.829	11.616	9.263	1.00	17.97
ATOM ATOM		CB	ASP	352	1.957	12.598	8.108	1.00	2.54
ATOM		CG	ASP	352	0.642	13.267	7.759	1.00	2.54
ATOM			LASP	352	-0.436	12.730	8.135	1.00	2.54
ATOM			2 ASP	352	0.695	14.329	7.118	1.00	2.54
ATOM		C	ASP	352	3.024	10.699	9.314	1.00	17.97
ATOM		ō	ASP	352	3.035	9.667	8.648	1.00	2.54
ATOM		N	ALA	353	4.011	11.064	10.129	1.00	2.00
ATOM		CA	ALA	353	5.224	10.270	10.310	1.00	2.00
ATOM		СВ	ALA	353	6.289	11.079	11.024	1.00	13.93
ATOM		C	ALA	353	4.884	9.014	11.107	1.00	2.00
ATOM		0	ALA	353	5.600	8.024	11.044	1.00	13.93
ATOM		N	LEU	354	3.769	9.063	11.831	1.00	2.00
MOTA			LEU	354	3.300	7.942	12.629	1.00	2.00
ATOM		CB	LEU	354	2.517	8.458	13.827	1.00	10.71
ATOM	2403	ÇG	LEU	354	3.359		14.967	1.00	10.71
ATOM	2404	CD:	1 LEU	354	2.548	10.017			10.71
ATOM	1 2405	CD:	2 LEU	354	3.860		15.853		10.71
ATOM	1 2406	C	LEU	354	2.431		11.811		2.00
ATOM	2407	0	LEU		2.219		12.198		10.71
ATOM	1 2408	N	GLN		1.889		10.709		2.00
ATOM					1.049		9.806		2.00
ATOM	1 2410				-0.143		9.331		23.61
ATOM					-1.341		10.258		23.61
ATOM					-1.835				23.61
ATOM			1 GLN		-2.113				23.61 23.61
ATOM			2 GLN		-1.951		9.419		
ATOM	1 2415	. G	GLN	355	1.854	6.263	8.613	1.00	2.00

FIG. 3PP

ATOM 2416 O GLN 355										- 00	02 61
ATOM 2418 CA HIS 356	MOTA	2416	0	GLN	355		1.308	5.669	7.686	1.00	23.61
ATOM 2419 CB HIS 356	ATOM	2417	N	HIS	356		3.157				
ATOM 2419 CB HIS 356 5.407 6.747 7.735 1.00 10.92 ATOM 2421 CD2 HIS 356 6.262 6.667 6.510 1.00 10.92 ATOM 2422 ND1 HIS 356 7.183 5.756 6.117 1.00 10.92 ATOM 2423 CEI HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NB1 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NB2 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NB2 HIS 356 7.094 4.553 7.711 1.00 2.14 ATOM 2425 C HIS 356 4.186 4.553 7.711 1.00 2.14 ATOM 2426 O HIS 356 4.341 4.040 8.808 1.00 10.92 ATOM 2427 N PRO 357 4.132 3.818 6.590 1.00 13.41 ATOM 2428 CD PRO 357 4.262 2.356 6.619 1.00 13.41 ATOM 2429 CA PRO 357 4.262 2.356 6.619 1.00 13.41 ATOM 2430 CB PRO 357 4.261 3.289 4.432 1.00 36.38 ATOM 2431 CG PRO 357 4.691 3.289 4.432 1.00 36.38 ATOM 2431 CG PRO 357 5.476 1.836 7.397 1.00 13.41 ATOM 2432 C PRO 357 5.476 1.836 7.397 1.00 13.41 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2434 N TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CDI TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2439 CEI TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2430 CT TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2430 CT TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2431 CT TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2430 CT TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2430 CT TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2440 CDZ TYR 358 11.218 3.143 8.897 1.00 6.75 ATOM 2441 CCZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2443 CT TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2445 C B TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2445 C B TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2446 C B LLE 359 6.597 3.387 11.487 1.00 2.05 ATOM 2447 CA LLE 359 6.597 3.387 11.487 1.00 2.05 ATOM 2448 CD TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2445 C B LLE 359 6.507 3.387 11.497 1.00 2.05 ATOM 2446 C B LLE 359 6.507 3.387 11.498 1.00 2.05 ATOM 2446 C B LLE 359 6.507 3.387 11.498 1.00 2.05 ATOM 2447 CA LLE 359 6.507 3.387 1.499 1.00 1.591 ATOM 2448 C B LLE 359 6.507 3.387 1.1996 1.00 2.05 ATOM 2449 CG2 LLE 359 6.507 3.387 1.1996 1.00 2.00 ATOM 2450 C ANN 360 1.589 4.900 2.299		2418	CA	HIS	356		4.042				
ATOM 2421 CC HIS 356 6.262 6.667 6.117 1.00 10.92 ATOM 2422 ND1 HIS 356 7.183 5.756 6.117 1.00 10.92 ATOM 2422 ND1 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NE2 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NE2 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2425 C HIS 356 4.186 4.553 7.711 1.00 10.92 ATOM 2426 0 HIS 356 4.186 4.553 7.711 1.00 10.92 ATOM 2427 N PRO 357 4.132 3.818 6.590 1.00 10.92 ATOM 2428 CD PRO 357 3.937 4.297 5.213 1.00 36.38 ATOM 2429 CA PRO 357 4.262 2.356 6.619 1.00 13.41 ATOM 2429 CP PRO 357 4.262 2.356 6.619 1.00 36.38 ATOM 2430 CB PRO 357 4.321 1.981 5.134 1.00 36.38 ATOM 2431 CG PRO 357 4.521 1.981 5.134 1.00 36.38 ATOM 2431 CG PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2433 O PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2435 CA TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.370 1.00 6.75 ATOM 2437 CG TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CEI TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CEZ TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2442 CZ TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2443 CT TYR 358 12.865 2.533 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.865 1.369 8.905 1.00 6.75 ATOM 2443 CD TYR 358 12.865 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 12.866 1.369 8.905 1.00 6.75 ATOM 2445 C TYR 358 12.865 1.369 8.905 1.00 6.75 ATOM 2446 C B TYR 358 12.865 1.369 8.905 1.00 6.75 ATOM 2447 CG ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2448 C C ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2448 C C ILE 359 6.502 1.385 10.396 1.000 6.75 ATOM 2449 CG2 ILE 359 6.507 3.387 11.457 1.00 20.57 ATOM 2440 C C TYR 358 1.2.865 1.369 10.300 1.00 20.57 ATOM 2445 C C ILE 359 6.502 3.381 1.381 1.00 2.00 ATOM 2445 C C ILE 359 6.502 3.381 1.381 1.00 2.00 ATOM 2446 C C ASN 360 1.359 1.385 1.314 1.00 2.00 ATOM 2447 CA ILE 359 6.502 3.387 1.387 1.00 1.591 ATOM 2468 O VAL 361 3.61 3.677 2.235 11.496 1.00 11.591 ATOM 2469 C C ASN 360 1.361 3.00 1.170 1.250 1.00 1.591 ATOM 2469 C C ASN 360 1.36		2419	CB	HIS	356						
ATOM 2421 CD2 HIS 356			CG	HIS	356		6.262	6.667	6.510		
ATOM 2423 CB1 HIS 356 6.227 7.626 5.523 1.00 10.92 ATOM 2424 NE2 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NE2 HIS 356 7.686 6.180 4.915 1.00 10.92 ATOM 2426 O HIS 356 4.186 4.553 7.711 1.00 2.14 ATOM 2427 N PRO 357 4.312 3.818 6.590 1.00 13.41 ATOM 2428 CD PRO 357 4.312 3.818 6.590 1.00 36.38 ATOM 2428 CD PRO 357 4.232 3.818 6.590 1.00 36.38 ATOM 2429 CA PRO 357 4.262 2.356 6.619 1.00 36.38 ATOM 2429 CA PRO 357 4.261 3.289 4.422 1.00 36.38 ATOM 2430 CB PRO 357 4.261 3.289 4.422 1.00 36.38 ATOM 2431 CG PRO 357 4.691 3.289 4.422 1.00 36.38 ATOM 2431 CG PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2432 C PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2434 N TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2435 CA TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2439 CB1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CB1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2443 CT TYR 358 11.218 3.143 8.897 1.00 6.75 ATOM 2443 CT TYR 358 11.218 3.143 8.897 1.00 6.75 ATOM 2444 CT TYR 358 11.218 3.143 8.897 1.00 6.75 ATOM 2444 CT TYR 358 11.218 3.143 8.897 1.00 6.75 ATOM 2444 CT TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT TYR 358 12.866 1.369 8.905 1.00 6.75 ATOM 2444 CT TYR 358 12.866 1.369 8.905 1.00 6.75 ATOM 2444 CT TYR 358 12.866 1.369 8.905 1.00 6.75 ATOM 2445 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 C TYR 358 7.503 2.210 9.604 1.00 6.75 ATOM 2446 N ILE 359 6.357 3.387 11.457 1.00 2.05 ATOM 2447 CA ILE 359 6.357 3.387 11.457 1.00 2.05 ATOM 2448 CB ILE 359 6.357 3.387 11.457 1.00 1.591 ATOM 2445 C ANN 360 2.291 1.00 3.00 1.00 2.05 ATOM 2455 C ANN 360 2.290 1.00 6.75 ATOM 2456 C ANN 360 2.594 1.310 8.974 1.00 1.591 ATOM 2457 C ANN 360 3.343 3.040 1.1249 1.00 1.591 ATOM 2458 O VAL 361 3.59 4.890 2.225 1.3070 1.00 2.05 ATOM 2459 ND ANN 360 2.554 1.310 8.974 1.00 1.591 ATOM 2459 ND ANN 360 2.594 1.310 3.316 1.00 2.00 ATOM 2459 ND ANN 360 2.595 1.310 0.316 11.670 1.00 2.00 ATOM 2450 C A					356		7.183	5.756			
ATOM 2424 NE2 HIS 356 7.094 7.311 4.577 1.00 10.92 ATOM 2424 NE2 HIS 356 7.686 6.180 4.915 1.00 10.92 ATOM 2425 C HIS 356 4.186 4.553 7.711 1.00 2.14 ATOM 2426 O HIS 356 4.341 4.040 8.888 1.00 10.92 ATOM 2427 N PRO 357 4.132 3.818 6.590 1.00 13.41 ATOM 2428 CD PRO 357 4.132 3.818 6.590 1.00 13.41 ATOM 2429 CA PRO 357 4.297 5.213 1.00 36.38 ATOM 2429 CA PRO 357 4.626 2.356 6.619 1.00 13.41 ATOM 2430 CB PRO 357 4.691 3.289 4.322 1.00 36.38 ATOM 2431 CG PRO 357 4.691 3.289 4.322 1.00 36.38 ATOM 2432 C PRO 357 5.476 1.836 7.397 1.00 13.41 ATOM 2433 O PRO 357 5.395 0.788 8.042 1.00 36.38 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2435 CA TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2438 CDI TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CDI TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2439 CEI TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2441 CE2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 CT2 TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 CT3 TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2444 CT3 TYR 358 7.503 2.210 9.604 1.00 5.95 ATOM 2445 O TYR 358 8.002 1.335 1.0356 1.00 2.05 ATOM 2446 CB ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2446 CB ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2446 CB ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 11.478 1.00 2.00 ATOM 2448 CB ILE 359 6.357 3.387 11.478 1.00 2.00 ATOM 2449 CG2 ILE 359 6.402 4.917 11.829 1.00 2.05 ATOM 2446 CB ILE 359 6.402 4.917 11.829 1.00 2.05 ATOM 2447 CA AIN 360 3.943 3.004 11.299 1.00 2.05 ATOM 2450 CB AIN 360 3.943 3.004 11.299 1.00 2.05 ATOM 2450 CB AIN 360 3.638 7.754 5.527 11.478 1.00 15.91 ATOM 2450 CB AIN 360 3.638 7.754 5.527 11.478 1.00 15.91 ATOM 2450 CB AIN 360 3.636 3.742							6.227	7.626	5.523		
ATOM 2424 NE2 HIS 356 7.686 6.180 4.915 1.00 10.92 ATOM 2425 C HIS 356 4.186 4.553 7.711 1.00 2.14 ATOM 2426 O HIS 356 4.181 4.040 8.808 1.00 10.92 ATOM 2427 N PRO 357 4.312 3.818 6.590 1.00 13.41 ATOM 2428 CD PRO 357 4.297 5.213 1.00 36.38 ATOM 2429 CA PRO 357 4.262 2.356 6.619 1.00 13.41 ATOM 2429 CD PRO 357 4.262 2.356 6.619 1.00 36.38 ATOM 2430 CB PRO 357 4.221 1.981 5.134 1.00 36.38 ATOM 2431 CG PRO 357 4.221 1.981 5.134 1.00 36.38 ATOM 2432 C PRO 357 4.261 1.862 7.397 1.00 13.41 ATOM 2432 C PRO 357 5.476 1.836 7.397 1.00 36.38 ATOM 2433 O PRO 357 5.476 1.836 7.397 1.00 36.38 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2435 CA TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CEI TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2440 CDZ TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2440 CDZ TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CEZ TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2442 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 8.906 2.936 9.247 1.00 6.75 ATOM 2444 C TYR 358 12.465 2.553 9.245 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2445 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2447 C A ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 C TILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 C Z ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2450 C ILE 359 6.352 3.385 11.996 1.00 2.00 ATOM 2451 C DI ILE 359 6.352 3.387 11.457 1.00 20.57 ATOM 2452 C TLE 359 6.352 3.387 11.459 1.00 15.91 ATOM 2455 C A ASN 360 1.553 1.720 9.513 1.00 15.91 ATOM 2456 C A SN 360 1.553 1.720 9.513 1.00 15.91 ATOM 2457 C A ASN 360 1.585 1.720 9.513 1.00 15.91 ATOM 2458 O VAL 361 3.415 0.318 11.670 1.00 43.19 ATOM 2458 O							7.094	7.311	4.577	1.00	
ATOM 2425 C HIS 356							7.686	6.180	4.915	1.00	
ATOM 2426 O HIS 356							4.186		7.711	1.00	
ATOM 2427 N PRO 357							4.341	4.040	8.808	1.00	10.92
ATOM 2428 CD PRO 357								3.818	6.590	1.00	13.41
ATOM 2429 CA PRO 357								4.297	5.213	1.00	36.38
ATOM 2430 CB PRO 357									6.619	1.00	13.41
ATOM 2431 CG PRO 357									5.134	1.00	36.38
ATOM 2432 C PRO 357 5.476 1.836 7.397 1.00 13.41 ATOM 2433 O PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2435 CA TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CD1 TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2441 CE2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2442 CZ TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.465 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2445 O TYR 358 6.6672 3.169 10.330 1.00 20.57 ATOM 2446 N ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 C B ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 C B ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 C JILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 O GI ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 N SILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 N SILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 CG ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 CG ILE 359 6.357 3.87 11.457 1.00 20.57 ATOM 2445 N SILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2445 CG ILE 359 6.357 3.87 11.457 1.00 2.05 ATOM 2450 CG1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 6.357 3.887 11.457 1.00 2.05 ATOM 2454 N SIN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2455 CA ASIN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASIN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2456 CB ASIN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2456 CB ASIN 360 1.581 2.869 9.270 1.00 15.91 ATOM 2456 CB ASIN 360 1.581 0.386 1.2871 1.00 15.91 ATOM 2468 O VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2468 O VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2467 C VAL 361 3.400 1.280 13.565 1.00 4.01 ATOM 2468 O VAL 361 3.400 1.280 13.565 1.00 4.01 ATOM 2468 O VAL 361 3.400 1.280 13.565 1.00 4.01 ATOM 2469 N TRP 362 3.794 0.0325 1										1.00	36.38
ATOM 2433 O PRO 357 5.395 0.788 8.043 1.00 36.38 ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2436 CB TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2436 CB TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2437 CG TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CEI TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2441 CE2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2443 OH TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2443 OH TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2444 C TYR 358 6.6672 3.169 10.303 1.00 20.57 ATOM 2445 N ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 CB ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2450 CG1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2450 CG1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2451 CD1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2450 CG1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2450 CG1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2451 CD1 ILE 359 6.357 3.387 11.457 1.00 2.00 ATOM 2451 CD1 ILE 359 6.357 3.387 11.457 1.00 2.00 2.57 ATOM 2450 CG1 ILE 359 6.357 3.387 11.457 1.00 2.00 2.57 ATOM 2451 CD1 ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2451 CD1 ILE 359 4.980 2.229 13.070 1.00 2.00 15.91 ATOM 2450 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2450 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2450 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2456 CB ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2456 CG ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2456 CG ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2456 CG ASN 360 1.581 0.886 9.870 1.00 15.91 ATOM 2466 CG2 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2											13.41
ATOM 2434 N TYR 358 6.590 2.563 7.371 1.00 5.90 ATOM 2435 CA TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CD1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CEL TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2441 CEZ TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2441 CEZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2444 C TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2447 CA ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2449 CG2 ILE 359 6.402 4.917 11.829 1.00 20.57 ATOM 2449 CG2 ILE 359 6.402 4.917 11.829 1.00 20.57 ATOM 2449 CG2 ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2450 CG1 ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2451 CD1 ILE 359 6.837 3.387 11.457 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 2.00 ATOM 2453 O ILE 359 5.022 2.835 11.996 1.00 2.05 ATOM 2455 CA ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 1.557 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 1.557 1.720 9.513 1.00 15.91 ATOM 2450 C ASN 360 1.557 1.720 9.513 1.00 15.91 ATOM 2450 C ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2450 C ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.551 1.720 9.513 1.00 43.19 ATOM 2467 CB YAL 361 3.400 1.728 11.860 1.00 43.19 ATOM 2468 O VAL 361 3.415 0.494 1.280 11.860 1.00 43.19 ATOM 2468 O VAL 361 3.61 3.400 1.280 1											36.38
ATOM 2435 CA TYR 358 7.765 2.113 8.098 1.00 5.90 ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CD1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CEL TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CE2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2443 OH TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2448 CB ILE 359 6.457 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.153 5.121 3.318 1.00 2.00 ATOM 2450 CG1 ILE 359 6.153 5.121 3.318 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 8.974 1.00 15.91 ATOM 2458 OD1 ASN 360 0.338 1.198 8.974 1.00 15.91 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 0.338 1.198 8.974 1.00 15.91 ATOM 2458 OD1 ASN 360 0.338 1.198 8.974 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.587 1.720 9.513 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 1.581 0.386 1.2871 1.00 15.91 ATOM 2467 C VAL 361 3.415 0.316 1.198 1.00 43.19 ATOM 2468 O VAL 361 3.415 0.316 1.398 1.00 43.19 ATOM 2469 N TRP 362 3.794 -0.325 15.766 1.00 4.01 ATOM 2469 N TRP 362 3.794 -0.325 15.766 1.00 4.01 ATOM 2471 CB TRP 362 5.14											
ATOM 2436 CB TYR 358 8.996 2.933 7.709 1.00 6.75 ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CD1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CE1 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CE2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2443 OH TYR 358 12.826 1.369 8.995 1.00 6.75 ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.402 4.917 11.829 1.00 20.57 ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 20.57 ATOM 2449 CG2 ILE 359 6.153 5.121 3.318 1.00 2.00 ATOM 2450 CGI ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CDI ILE 359 5.022 2.835 11.996 1.00 2.05 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 2.05 ATOM 2453 N ASN 360 3.943 3.040 11.249 1.00 2.05 ATOM 2455 CA ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 ODI ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2450 CR ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2450 CR ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2450 CR ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2450 CR ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.587 1.70 9.513 1.00 15.91 ATOM 2458 ODI ASN 360 1.587 1.70 9.513 1.00 15.91 ATOM 2450 CR ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2456 CB ASN 360 1.587 1.70 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.587 1.70 9.513 1.00 15.91 ATOM 2458 ODI ASN 360 1.581 1.98 9.270 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.386 1.2871 1.00 15.91 ATOM 2467 CC ATSN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2468 O VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2469 N TRP 362 3.794 -0.325 15.766 1.00 43.19 ATOM 2468 O VAL 361 3.407 -1.280 13.565 1.00 43.19 ATOM 2469 N TRP 362 3.794 -0.325 15.766 1.00 40.1 ATOM 2470 CA TRP 362 5.143 0.178											
ATOM 2437 CG TYR 358 10.315 2.361 8.174 1.00 6.75 ATOM 2438 CD1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CE1 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2430 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CE2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2442 CZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2443 OH TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 10.056 1.00 6.75 ATOM 2449 CB ILE 359 6.457 3.387 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2449 CG1 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.05 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 6.900 2.229 13.070 1.00 2.05 ATOM 2455 CA ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2458 OD1 ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2459 ND2 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2458 OD1 ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2458 OD1 ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 -8.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 3.386 1.98 9.270 1.00 15.91 ATOM 2459 ND2 ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2456 CB ASN 360 1.587 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2467 C VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2468 N TRP 362 3.744 -0.325 15.766 1.00 2.00 ATOM 2469 N TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2460 C TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2467 C TRP 362 3.794 -0.325 15.766 1.00 4.01											
ATOM 2438 CD1 TYR 358 10.694 1.069 7.851 1.00 6.75 ATOM 2439 CE1 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CZ2 TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2442 CZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2443 OH TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2448 CB ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 2.57 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 15.91 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2450 C ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2451 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2455 CA ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2457 CG ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2467 C VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2468 O VAL 361 3.415 0.318 11.670 1.00 43.19 ATOM 2466 CB VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 C TRP 362 3.742 -0.235 15.766 1.00 2.00 ATOM 2470 CA TRP 362 3.742 -0.235 15.766 1.00 2.00 ATOM 2471 CB TRP 362 3.742 -0.235 15.766 1.00 4.01 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01											
ATOM 2439 CEI TYR 358 11.943 0.571 8.214 1.00 6.75 ATOM 2440 CD2 TYR 358 11.218 3.143 8.877 1.00 6.75 ATOM 2441 CEZ TYR 358 12.465 2.653 9.245 1.00 6.75 ATOM 2441 CEZ TYR 358 12.465 2.653 9.247 1.00 6.75 ATOM 2442 CZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2443 OH TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2443 OH TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2446 N ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CB ILE 359 6.402 4.917 11.829 1.00 20.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 12.50 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2450 CASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2451 O ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2452 C ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2457 CA ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2457 CA ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2458 OD1 ASN 360 3.943 3.040 11.249 1.00 15.91 ATOM 2458 OD1 ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2458 OD1 ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2459 ND2 ASN 360 1.581 0.836 12.871 1.00 43.19 ATOM 2460 CA VAL 361 3.415 0.318 11.670 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C TARP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2467 C TARP 362 3.794 -0.325 15.766 1.00 40.1 ATOM 2467 C TARP 362 3.794 -0.325 15.766 1.00 4.01 ATOM 2470 CA TRP 362 3.794 -0.325 15.704 1.00 4.01 ATOM 2471 CB TRP 3	MOTA										
ATOM 2449 CB1 TIR 358	MOTA	2438	_								
ATOM 2441 CB2 TYR 358	MOTA										
ATOM 2441 CEZ TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2442 CT TYR 358 12.826 1.369 8.905 1.00 6.75 ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2448 CB ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 11.50 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2450 CA SN 360 1.581 1.720 9.513 1.00 15.91 ATOM 2450 CA ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2456 CB ASN 360 1.587 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.587 1.720 9.513 1.00 15.91 ATOM 2456 CB ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2460 C ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2461 O ASN 360 3.415 0.318 11.670 1.00 2.00 ATOM 2462 CA VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2466 CG2 VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2467 C VAL 361 3.415 0.316 11.670 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.555 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.555 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2467 C VAL 361 3.400 -1.280 13.555 1.00 4.01 ATOM 2470 CA TRP 362 6.316 -0.475 1	MOTA	2440									
ATOM 2442 CZ TYR 358 14.074 0.902 9.247 1.00 6.75 ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2444 C TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2449 CG2 ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.57 ATOM 2456 CB ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2461 O ASN 360 3.341 0.336 11.670 1.00 2.00 ATOM 2462 N VAL 361 3.341 0.318 1.00 15.91 ATOM 2463 CA VAL 361 3.374 -1.083 12.051 1.00 15.91 ATOM 2466 CG2 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2467 C VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2466 CG2 VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C RAP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 40.11 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2470 CA TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	ATOM	2441									
ATOM 2444 C TYR 358 7.503 2.210 9.604 1.00 5.90 ATOM 2445 O TYR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 20.57 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2461 O ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 15.91 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2467 C VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2468 CG VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2468 O VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2468 O VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2470 CA TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2471 CB TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	ATOM	2442	CZ			•					
ATOM 2444 C ITR 358 8.002 1.385 10.356 1.00 6.75 ATOM 2446 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2445 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2450 CG1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2451 CD1 ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2467 C VAL 361 3.475 -1.914 11.398 1.00 43.19 ATOM 2468 O VAL 361 3.490 -1.280 13.565 1.00 2.00 ATOM 2467 C VAL 361 3.497 -1.886 9.872 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2467 CB TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 CB TRP 362 5.143 0.178 15.704 1.00 4.01 ATOM 2470 CB TRP 362 5.143 0.178 15.704 1.00 4.01 ATOM 2471 CB TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	MOTA	2443	OH	TYR							
ATOM 2445 N ILE 359 6.672 3.169 10.030 1.00 20.57 ATOM 2447 CA ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.057 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2455 CA ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2450 C ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2461 O ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.836 12.871 1.00 15.91 ATOM 2463 CA VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2464 CB VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG2 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG2 VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 C VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2470 CA TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	MOTA	2444	C	TYR							
ATOM 2448 R ILE 359 6.357 3.387 11.457 1.00 20.57 ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2455 CA ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2450 C ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2464 CB VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG2 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG2 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2468 O VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.235 15.766 1.00 2.00 ATOM 2470 CA TRP 362 3.742 -0.235 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	ATOM	2445	0	TYR							
ATOM 2448 CB ILE 359 6.402 4.917 11.829 1.00 2.00 ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2459 ND2 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 15.91 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2466 CG2 VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01	MOTA	2446	N	ILE	359						
ATOM 2449 CG2 ILE 359 6.153 5.121 13.318 1.00 2.00 ATOM 2450 CG1 ILE 359 7.754 5.527 11.478 1.00 2.00 ATOM 2451 CD1 ILE 359 8.870 5.038 12.334 1.00 2.00 ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2455 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2458 OD1 ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2464 CB VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2465 CG1 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2465 CG1 VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2465 CG1 VAL 361 3.497 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2470 CA TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.316 -0.475 15.704 1.00 4.01	MOTA	2447	CA	ILE	359						
ATOM 2450 CG1 ILE 359	ATOM	2448	CB	ILE	359		6.402				
ATOM 2451 CD1 ILE 359	ATOM	2449	CG2	ILE	359		6.153				
ATOM 2451 CD1 ILE 359	ATOM	2450	CG1	LILE	359		7.754				
ATOM 2452 C ILE 359 5.022 2.835 11.996 1.00 20.57 ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.316 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2466 CG2 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 2.00 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.938 -1.674 16.168 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 15.168 1.00 4.01		2451	CD	LILE	359		8.870	5.038			
ATOM 2453 O ILE 359 4.980 2.229 13.070 1.00 2.00 ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2465 CG1 VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2466 CG2 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2467 CR TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2470 CA TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2471 CB TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2472 CG TRP 362 6.938 -1.674 16.168 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01		2452	C	ILE	359		5.022	2.835			
ATOM 2454 N ASN 360 3.943 3.040 11.249 1.00 11.50 ATOM 2455 CA ASN 360 2.600 2.617 11.647 1.00 11.50 ATOM 2456 CB ASN 360 1.587 2.863 10.519 1.00 15.91 ATOM 2457 CG ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2450 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2465 CG1 VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.007 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01				ILE	359		4.980	2.229			
ATOM 2455 CA ASN 360		2454	N	ASN	360		3.943	3.040	11.249		
ATOM 2456 CB ASN 360			CA	ASN	360		2.600	2.617	11.647	1.00	
ATOM 2457 CG ASN 360 1.535 1.720 9.513 1.00 15.91 ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01					360		1.587	2.863	10.519		
ATOM 2458 OD1 ASN 360 2.554 1.310 8.974 1.00 15.91 ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01					360		1.535	1.720	9.513	1.00	
ATOM 2459 ND2 ASN 360 0.338 1.198 9.270 1.00 15.91 ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01							2.554	1.310	8.974	1.00	
ATOM 2460 C ASN 360 2.490 1.170 12.110 1.00 11.50 ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01					360		0.338	1.198	9.270	1.00	
ATOM 2461 O ASN 360 1.581 0.836 12.871 1.00 15.91 ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01					360		2.490	1.170	12.110	1.00	
ATOM 2462 N VAL 361 3.415 0.318 11.670 1.00 2.00 ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01								0.836	12.871	1.00	
ATOM 2463 CA VAL 361 3.374 -1.083 12.050 1.00 2.00 ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01									11.670	1.00	2.00
ATOM 2464 CB VAL 361 4.517 -1.914 11.398 1.00 43.19 ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01								-1.083	12.050	1.00	2.00
ATOM 2465 CG1 VAL 361 4.397 -1.886 9.872 1.00 43.19 ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											
ATOM 2466 CG2 VAL 361 5.885 -1.429 11.860 1.00 43.19 ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01									9.872	1.00	43.19
ATOM 2467 C VAL 361 3.400 -1.280 13.565 1.00 2.00 ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											43.19
ATOM 2468 O VAL 361 3.067 -2.357 14.051 1.00 43.19 ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											2.00
ATOM 2469 N TRP 362 3.742 -0.234 14.311 1.00 2.00 ATOM 2470 CA TRP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											43.19
ATOM 2459 N 1RP 362 3.794 -0.325 15.766 1.00 2.00 ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											
ATOM 2471 CB TRP 362 5.143 0.178 16.285 1.00 4.01 ATOM 2472 CG TRP 362 6.316 -0.475 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											
ATOM 2471 CB TRP 362 5.143 0.275 15.704 1.00 4.01 ATOM 2473 CD2 TRP 362 6.938 -1.674 16.168 1.00 4.01											
ATOM 2472 CG TRP 362 6.938 -1.674 16.168 1.00 4.01											
ATOM 2473 CD2 TRF 302 0.335 1.000 15 371 1.00 4.01											
ATOM 24/4 CE2 TRP 362 8.0/6 -1.690 13.3/1 1.00 1.00											
	MOTA	2474	E CE	Z TRP	362		0.076	-1.030	20.0/4		4 •

FIG. 3QQ

ATOM	2475	CE3	TRP	362	6.643	-2.580	17.189	1.00	4.01
ATOM	2476	CD1		362	7.074	-0.028	14.666	1.00	4.01
ATOM	2477	NE1	TRP	362	8.135	-0.872	14.459	1.00	4.01
ATOM	2478	CZ2	TRP	362	8.928	-2.987	15.566	1.00	4.01
ATOM	2479	CZ3	TRP	362	7.482	-3.662	17.383	1.00	4.01
ATOM	2480	CH2	TRP	362	8.614	-3.85 7	16.578	1.00	4.01
MOTA	2481	C	TRP	362	2.716	0.497	16.454	1.00	2.00
ATOM	2482	0	TRP	362	2.496	0.329	17.641	1.00	4.01
ATOM	2483	N	TYR	363	2.039	1.362	15.706	1.00	9.42
MOTA	2484	CA	TYR	363	1.013	2.268	16.228	1.00	9.42
ATOM	2485	CB	TYR	363	0.181	2.843	15.073	1.00	9.22
MOTA	2486	CG	TYR	363	-0.775	3.962	15.439	1.00	9.22
MOTA	2487	CD1	TYR	363	-2.064	3.688	15.899	1.00	9.22 9.22
MOTA	2488	CE1	TYR	363	-2.966	4.716	16.182	1.00	9.22
MOTA	2489	CD2	TYR	363	-0.409	5.296	15.278	1.00	9.22
MOTA	2490	CE2	TYR	363	-1.300	6.331	15.568	1.00	9.22
MOTA	2491	CZ	TYR	363	-2.577	6.031	16.016	1.00	9.22
MOTA	2492	OH	TYR	363	-3.485	7.023	16.296	1.00	9.42
MOTA	2493	C	TYR	363	0.091	1.694	17.301	1.00	9.42
MOTA	2494	0	TYR	363	-0.451	0.590	17.150	1.00	23.57
ATOM	2495	N	ASP	364	-0.073	2.461	18.381	1.00 1.00	23.57
MOTA	2496	CA	ASP	364	-0.923	2.100	19.516	1.00	8.62
MOTA	2497	CB	ASP	364	-0.078	1.494	20.651	1.00	8.62
MOTA	2498	CG	ASP	364	-0.916	0.800	21.737	1.00	8.62
MOTA	2499		ASP	364	-2.053	1.246	22.034	1.00	8.62
MOTA	2500		ASP	364	-0.420	-0.191	22.309 19.971	1.00	23.57
MOTA	2501	С	ASP	364	-1.579	3.399	20.268	1.00	8.62
MOTA	2502	0	ASP	364	-0.894	4.376 3.433	20.200	1.00	26.34
MOTA	2503	N	PRO	365	-2.918	2.313	19.698	1.00	36.54
MOTA	2504	CD	PRO	365	-3.819	4.616	20.429	1.00	26.34
ATOM	2505	CA	PRO	365	-3.676 -5.117	4.102	20.455	1.00	36.54
MOTA	2506	CB	PRO	365	-5.117	3.016	19.417	1.00	36.54
MOTA	2507	CG	PRO	365	-3.252	5.043	21.824	1.00	26.34
MOTA	2508	C	PRO PRO	365 365	-3.252	6.224	22.099	1.00	36.54
ATOM	2509	0	ALA	366	-3.084	4.049	22.691	1.00	34.81
ATOM	2510	N CA	ALA	366	-2.691	4.273	24.067	1.00	34.81
MOTA	2511	CB	ALA	366	-2.627	2.952	24.811	1.00	23.80
ATOM ATOM	2512 2513	C	ALA	366	-1.357	4.979	24.143	1.00	34.81
ATOM	2514	Ö	ALA	366	-1.198	5.915	24.924	1.00	23.80
	2514	N	GLU	367	-0.418	4.577	23.292	1.00	15.56
MOTA MOTA	2516	CA	GLU	367	0.911	5.181	23.301	1.00	15.56
MOTA	2517	CB	GLU	367	1.942	4.223	22.707	1.00	54.26
	2518	CG	GLU	367	2.018	2.895	23.446	1.00	54.26
MOTA MOTA	2519		GLU	367	2.873	1.832	22.736	1.00	54.26
MOTA	2520		1 GLU	367	3.056	1.883	21.492	1.00	54.26
MOTA	2521		2 GLU	367	3.357		23.431	1.00	54.26
ATOM	2522		GLU	367	0.941		22.549	1.00	15.56
ATOM	2523	_	GLU	367	1.694		22.897	1.00	54.26
ATOM	2524		VAL	368	0.080		21.550	1.00	52.58
ATOM	2525			368	0.056	7.812	20.736	1.00	52.58
MOTA	2526			368	-0.258				22.16
MOTA	2527		1 VAL	368	-0.404	8.721			22.16
ATOM	2528		2 VAL	368	0.850				22.16
MOTA	2529		VAL	368	-0.931				52.58
ATOM	2530		VAL	368	-0.549	9.931			22.16
ATOM	2531		GLU	369	-2.206				23.43
MOTA	2532			369	-3.300				23.43
MOTA	2533			369	-4.561	8.988	20.707	1.00	53.35
			· · · -						

FIG. 3RR

ATOM	2534	CG	GLU	369	-4.450	9.125	19.182	1.00	53.35 53.35
MOTA	2535	CD	GLU	369	-4.518	10.581	18.692	1.00	53.35
MOTA	2536	OE1	GLU	369	-4.879	11.498	19.474	1.00	53.35
MOTA	2537	OE2	GLÜ	369	-4.208	10.816	17.503	1.00	23.43
MOTA	2538	C	GLU	369	-3.566	9.381	22.987	1.00	53.35
MOTA	2539	0	GLU	369	-4.699	9.155	23.424	1.00	27.26
MOTA	2540	N	ALA	370	-2.516	9.615	23.770	1.00	27.26
MOTA	2541	CA	ALA	370	-2.618	9.660	25.228	1.00	10.16
MOTA	`2542	CB	ALA	370	-1.253	9.371	25.858 25.640	1.00	27.26
MOTA	2543	С	ALA	370	-3.123	11.050	24.912	1.00	10.16
MOTA	2544	0	ALA	370	-2.923	12.021 11.159	26.824	1.00	34.01
MOTA	2545	N	PRO	371	-3.773	10.062	27.792	1.00	40.77
MOTA	2546	CD	PRO	371	-3.949 -4.325	12.420	27.362	1.00	34.01
MOTA	2547	CA	PRO	371		11.950	28.619	1.00	40.77
MOTA	2548	CB	PRO	371	-5.076	10.810	29.103	1.00	40.77
MOTA	2549	CG	PRO	371	-4.226	13.483	27.699	1.00	34.01
MOTA	2550	C	PRO	371	-3.266 -2.400	13.403	28.559	1.00	40.77
MOTA	2551	0	PRO	371		14.638	27.011	1.00	14.63
MOTA	2552	N	PRO	372	-3.331 -4.378	14.030	26.018	1.00	28.09
MOTA	2553	CD	PRO	372	-2.420	15.770	27.183	1.00	14.63
MOTA	2554	CA	PRO	372	-2.420	16.769	26.143	1.00	28.09
ATOM	2555	CB	PRO	372	-4.418	16.447	26.055	1.00	28.09
MOTA	2556	CG	PRO	372	-2.499	16.334	28.598	1.00	14.63
ATOM	2557	C	PRO	372	-3.589	16.532	29.141	1.00	28.09
MOTA	2558	0	PRO	372 373	-1.335	16.504	29.245	1.00	51.40
ATOM	2559	И	PRO PRO	373	-0.041	16.052	28.704	1.00	51.87
MOTA	2560	CD	PRO	373 373	-1.181	17.035	30.609	1.00	51.40
MOTA	2561	CA	PRO	373 373	0.241	16.601	30.982	1.00	51.87
MOTA	2562	CB	PRO	373	0.963	16.653	29.668	1.00	51.87
ATOM	2563	CG C	PRO	373	-1.353	18.567	30.635	1.00	51.40
MOTA	2564	0	PRO	373	-0.819	19.271	29.765	1.00	51.87
ATOM	2565 2566	Ŋ	ALA	374	-2.120	19.071	31.613	1.00	42.06
ATOM ATOM	2567	CA	ALA	374	-2.381	20.507	31.726	1.00	42.06
ATOM	2568	CB	ALA	374	-3.811	20.734	32.250	1.00	31.44
ATOM	2569	C	ALA	374	-1.350	21.373	32.499	1.00	42.06
ATOM	2570	ō	ALA	374	-1.519	22.592	32.621	1.00	31.44
ATOM	2571	N	ALA	375	-0.290	20.751	33.010	1.00	38.52
ATOM	2572	CA	ALA	375	0.761	21.480	33.735	1.00	38.52
MOTA	2573	CB	ALA	375	1.602	22.327	32.752	1.00	29.54
ATOM	2574	C	ALA	375	0.182	22.364	34.848	1.00	38.52
MOTA	2575	ō	ALA	375	0.312	23.594	34.798	1.00	29.54
ATOM	2576	N	TYR	376	-0.385	21.710	35.874	1.00	47.67
ATOM	2577	CA	TYR	376	-1.024	22.369	37.024	1.00	47.67
ATOM	2578	CB	TYR	376	-0.030	23.174	37.857	1.00	78.81
ATOM	2579	CG	TYR	376	-0.681	23.843	39.065	1.00	78.81
ATOM	2580	CD	1 TYR	376	-0.993		40.207	1.00	78.81
ATOM	2581		1 TYR	376	-1.555	23.703	41.345	1.00	78.81
MOTA	2582	CD	2 TYR	376	-0.954		39.085	1.00	78.81
MOTA	2583	CE	2 TYR	376	-1.520		40.228		78.81
ATOM	2584	CZ	TYR	376	-1.813		41.350		78.81
MOTA	2585	OH	TYR	376	-2.336		42.493		78.81
ATOM	2586	C	TYR	376	-2.129		36.564		47.67
MOTA	2587	0	TYR	376	-3.319		36.729		78.81
ATOM	2588		ALA	377	-1.714		36.029		45.97
MOTA	2589			377	-2.621		35.526		45.97
MOTA	2590			377	-2.819				46.05 45.97
MOTA	2591		ALA	377	-1.996				
MOTA	2592	0	ALA	377	-2.274	25.555	33.138	1.00	46.05

FIG. 3SS

									45 80
MOTA	2593	N	ALA	378	-1.112	27.019	34.430	1.00	45.78
MOTA	2594	CA	ALA	378	-0.422	27.673	33.312	1.00	45.78
MOTA	2595	CB	ALA	378	-1.391	28.607	32.545	1.00	26.15
MOTA	2596	C	ALA	378	0.814	28.450	33.785	1.00	45.78
MOTA	2597	0	ALA	378	1.016	29.599	33.400	1.00	26.15
MOTA	2598	N	ALA	379	1.645	27.807	34.607	1.00	29.23
ATOM	2599	CA	ALA	379	2.866	28.434	35.106	1.00	29.23
MOTA	2600	CB	ALA	379	3.634	27.463	36.003	1.00	29.46
ATOM	2601	C	ALA	379	3.730	28.822	33.902	1.00	29.23
MOTA	2602	0	ALA	379	4.216	27.940	33.183	1.00	29.46
ATOM	2603	N	LEU	380	3.862	30.128	33.644	1.00	45.66
ATOM	2604	CA	LEU	380	4.681	30.608	32.522	1.00	45.66
ATOM	2605	CB	LEU	380	4.506	32.117	32.319	1.00	31.66
ATOM	2606	CG	LEU	380	3.081	32.622	32.111	1.00	31.66
ATOM	2607		LEU	380	3.140	33.905	31.285	1.00	31.66
MOTA	2608	CD2		380	2.240	31.568	31.385	1.00	31.66
ATOM	2609	C	LEU	380	6.167	30.299	32.691	1.00	45.66
ATOM	2610	o	LEU	380	6.924	31.141	33.173	1.00	31.66
ATOM	2611	N	ASP	381	6.586	29.114	32.248	1.00	30.99
	2612	CA	ASP	381	7.983	28.706	32.378	1.00	30.99
MOTA		CB	ASP	381	8.162	27.266	31.901	1.00	18.50
MOTA	2613		ASP	381	7.219	26.300	32.596	1.00	18.50
ATOM	2614	CG		381	6.254	25.858	31.935	1.00	18.50
MOTA	2615		ASP		7.442	25.975	33.785	1.00	18.50
ATOM	2616			381		29.639	31.678	1.00	30.99
ATOM	2617	C	ASP	381	8.982	29.642	32.019	1.00	18.50
MOTA	2618	0	ASP	381	10.175		30.676	1.00	60.09
MOTA	2619	N	ALA	382	8.505	30.385	29.951	1.00	60.09
MOTA	2620	CA	ALA	382	9.324	31.366	28.520	1.00	18.75
MOTA	2621	CB	ALA	382	8.879	31.475			60.09
ATOM	2622	C	ALA	382	9.055	32.684	30.706	1.00	18.75
MOTA	2623	0	ALA	382	8.280	33.536	30.250	1.00	31.28
MOTA	2624	N	ARG	383	9.678	32.803	31.883	1.00	31.28
ATOM	2625	CA	ARG	383	9.516	33.940	32.794	1.00	
MOTA	2626	CB	ARG	383	8.867	33.415	34.072	1.00	38.51
MOTA	2627	CG	ARG	383	9.491	32.070	34.526	1.00	38.51
MOTA	2628	CD	ARG	. 383	8.900	31.514	35.807	1.00	38.51
ATOM	2629	NE	ARG	383	7.524	31.050	35.649	1.00	38.51
MOTA	2630	CZ	ARG	383	6.556	31.266	36.536	1.00	38.51
MOTA	2631	NH1	ARG	383	6.808	31.946	37.653	1.00	38.51
MOTA	2632	NH2	ARG	383	5.334	30.791	36.321	1.00	38.51
MOTA	2633	C	ARG	383	10.873	34.547	33.143	1.00	31.28
ATOM	2634	0	ARG	383	11.902	33.911	32.932	1.00	38.51
ATOM	2635	N	ALA	384	10.885	35.765	33.687	1.00	38.58
MOTA	2636	CA	ALA	384	12.148	36.409	34.067	1.00	38.58
ATOM	2637	CB	ALA	384	12.397	37.634	33.209	1.00	22.57
ATOM	2638	C	ALA	384	12.268	36.762	35.555	1.00	38.58
ATOM	2639	0	ALA	384	11.458	37.519	36.107	1.00	22.57
ATOM	2640	N	HIS	385	13.297	36.211	36.195	1.00	13.25
ATOM	2641	CA	HIS	385	13.545	36.434	37.618	1.00	13.25
ATOM	2642	CB	HIS	385	13.005	35.283	38.447	1.00	5.73
ATOM	2643	CG	HIS	385	11.537	35.076	38.326	1.00	5.73
ATOM	2644		HIS	385	10.803	34.416	37.402	1.00	5.73
ATOM	2645		HIS	385	10.651	35.516	39.281	1.00	5.73
ATOM	2646		HIS	385	9.430	35,126	38.958	1.00	5.73
ATOM	2647		HIS	385	9.496	34.456	37.820	1.00	5.73
ATOM	2648	C	HIS	385	15.024	36.533	37.906	1.00	13.25
ATOM	2649	ō	HIS	385	15.859	36.234	37.065	1.00	5.73
ATOM	2650	N	THR	386	15.351	36.946	39.114	1.00	13.73
ATOM	2651	CA	THR		16.744	37.043	39.494	1.00	13.73
111011	~ ~ ~ ~		~***/	230					

WO 03/060102

FIG. 3TT

MOTA	2652	CB	THR	386	17.000	38.204	40.462	1.00	34.39
MOTA	2653	OG1	THR	386	15.920	38.298	41.406	1.00	34.39
MOTA	2654	CG2	THR	386	17.157	39.506	39.699	1.00	34.39
ATOM	2655	C	THR	386	17.138	35.762	40.185	1.00	13.73
MOTA	2656	0	THR	386	16.287	34.920	40.469	1.00	34.39
ATOM	2657	N	ILE	387	18.433	35.641	40.469	1.00	7.70
ATOM	2658	CA	ILE	387	19.008	34.499	41.162	1.00	7.70
ATOM	2659	CB	ILE	387	20.492	34.743	41.442	1.00	16.33
MOTA	2660	CG2	ILE	387	21.076	33.621	42.300	1.00	16.33
MOTA	2661	CG1	ILE	387	21.255	34.893	40.126	1.00	16.33
ATOM	2662	CD1	ILE	387	22.736	35.136	40.334	1.00	16.33
MOTA	2663	C	IPĖ	387	18.286	34.300	42.491	1.00	7.70
MOTA	2664	0	ILE	387	17.898	33.188	42.815	1.00	16.33
MOTA	2665	N	ALA	388	18.098	35.379	43.247	1.00	2.00
MOTA	2666	CA	ALA	388	17.404	35.299	44.521	1.00	2.00
MOTA	2667	CB	ALA	388	17.384	36.658	45.183	1.00	28.05
MOTA	2668	C	ALA	388	15.984	34.762	44.363	1.00	2.00
MOTA	2669	0	ALA	388	15.559	33.901	45.128	1.00	28.05
MOTA	2670	N	GLU	389	15.264	35.246	43.353	1.00	18.37
MOTA	2671	CA	GLU	389	13.880	34.818	43.095	1.00	18.37
ATOM	2672	CB	GLU	389	13.183	35.797	42.161	1.00	30.68
MOTA	2673	CG	GLU	389	13.070	37.191	42.725	1.00	30.68
MOTA	2674	CD	GLU	389	12.680	38.226	41.684	1.00	30.68
MOTA	2675	OE1		389	12.475		40.503		30.68
MOTA	2676		GLU	389	12.583	39.408	42.051	1.00	30.68
MOTA	2677	С	GLU	389	13.800	33.431	42.483	1.00	18.37
MOTA	2678	0	GLU	389	12.827	32.704	42.706	1.00	30.68
MOTA	2679	N '	TRP	390	14.803	33.086	41.684	1.00	13.76
ATOM	2680	CA	TRP	390	14.858	31.786	41.044	1.00	13.76
MOTA	2681	CB	TRP	390	15.978	31.743	40.006	1.00	7.41
ATOM	2682	CG	TRP	390	15.576	32.219	38.639	1.00	7.41
ATOM	2683	CD2	TRP	390	14.552	31.663	37.790	1.00	7.41 7.41
ATOM	2684	CE2	TRP	390	14.564	32.401	36.591	1.00	7.41
ATOM	2685	CE3	TRP	390	13.619	30.632	37.935	1.00	7.41
ATOM	2686	CD1		390	16.149	33.229	37.932	1.00	7.41
ATOM	2687	NE1	TRP	390	15.554	33.341	36.701 35.530	1.00 1.00	7.41
ATOM	2688	CZ2	TRP	390	13.692	32.121		1.00	7.41
ATOM	2689	CZ3	TRP	390	12.750	30.358	36.883	1.00	7.41
ATOM	2690	CH2	TRP	390	12.789	31.104 30.733	35.700 42.110	1.00	13.76
ATOM	2691	C	TRP	390	15.116	29.707	42.110	1.00	7.41
ATOM	2692	0	TRP	390 391	14.447 16.074	31.011	42.144	1.00	3.15
MOTA	2693 2694	N	LYS LYS	391	16.415	30.116	44.076	1.00	3.15
MOTA	2695	CA CB	LYS	391	17.491	30.768	44.945	1.00	17.74
ATOM ATOM	2695	CG	LYS	391	17.794	30.788	46.246	1.00	17.74
ATOM	2697	CD	LYS	391	19.069	30.592	46.886	1.00	17.74
ATOM	2698	CE	LYS	391	19.494	29.775	48.113	1.00	17.74
MOTA	2699	NZ	LYS	391	20.841	30.179	48.640	1.00	17.74
ATOM	2700	C	LYS	391	15.140	29.861	44.881	1.00	3.15
ATOM	2701	Ö	LYS	391	14.837	28.719	45.242	1.00	17.74
ATOM	2702	N	GLU	392	14.372	30.920	45.119	1.00	2.00
ATOM	2702	CA	GLU	392	13.126	30.814	45.859	1.00	2.00
ATOM	2703	CB	GLU	392	12.483	32.190	45.996	1.00	47.37
ATOM	2704	CG	GLU	392	11.075	32.162	46.601	1.00	47.37
ATOM	2705	CD	GLU	392	11.088	32.382	48.104	1.00	47.37
ATOM	2707		GLU	392	11.463	33.502	48.526	1.00	47.37
ATOM	2708		GLU	392	10.726	31.447	48.860	1.00	47.37
ATOM	2709	C	GLU	392	12.151	29.896	45.141	1.00	2.00
ATOM	2710	ō	GLU	392	11.522	29.027	45.757	1.00	
	0	_							

FIG. 3UU

ATOM	2711	N	LEU	393	12.018	30.118	43.835	1.00	3.75
MOTA	2712	CA	LEU	393	11.114	29.356	42.990	1.00	3.75
MOTA	2713	CB	LEU	393	11.083	29.958	41.594	1.00	2.00
ATOM	2714	CG	LEU	393	10.159	31.146	41.373	1.00	2.00
MOTA	2715	CD1	LEU	393	10.352	31.661	39.962	1.00	2.00
MOTA	2716	CD2	LEU	393	8.727	30.707	41.598	1.00	2.00
MOTA	2717	C ´	LEU	393	11.487	27.894	42.882	1.00	3.75
ATOM	2718	0	LEU	393	10.620	27.029	42.840	1.00	2.00
ATOM	2719	N	ILE	394	12.787	27.632	42.857	1.00	11.25
ATOM	2720	CA	ILE	394	13.343	26.291	42.734	1.00	11.25
ATOM	2721	CB	ILE	394	14.839	26.396	42.406	1.00	2.00
ATOM	2722	CG2	ILE	394	15.516	25.028	42.423	1.00	2.00
ATOM	2723	CG1	ILE	394	14.969	27.090	41.050	1.00	2.00
MOTA	2724	CD1	ILE	394	16.345	27.169	40.524	1.00	2.00
ATOM	2725	С	ILE	394	13.104	25.456	43.980	1.00	11.25
MOTA	2726	0	ILE	394	12.649	24.313	43.901	1.00	2.00
ATOM	2727	N	TYR	395	13.391	26.058	45.127	1.00	24.41
ATOM	2728	CA	TYR	395	13.194	25.437	46.422	1.00	24.41
ATOM	2729	CB	TYR	395	13.752	26.378	47.492	1.00	24.18
ATOM	2730	CG	TYR	395	13.750	25.851	48.903	1.00	24.18
ATOM	2731		TYR	395	14.749	24.997	49.355	1.00	24.18
ATOM	2732		TYR	395	14.784	24.574	50.685	1.00	24.18
ATOM	2733		TYR	395	12.787	26.267	49.810	1.00	24.18
ATOM	2734	CE2		395	12.816	25.854	51.138	1.00	24.18
ATOM	2735	CZ	TYR	395	13.811	25.013	51.570	1.00	24.18
ATOM	2736	ОН	TYR	395	13.823	24.643	52.892	1.00	24.18
ATOM	2737	C	TYR	395	11.696	25.153	46.638	1.00	24.41
ATOM	2738	ō	TYR	395	11.329	24.060	47.040	1.00	24.18
ATOM	2739	N	LYS	396	10.824	26.100	46.312	1.00	7.12
ATOM	2740	CA	LYS	396	9.387	25.887	46.486	1.00	7.12
ATOM	2741	CB	LYS	396	8.596	27.142	46.099	1.00	14.43
ATOM	2742	CG	LYS	396	8.648	28.257	47.134	1.00	14.43
ATOM	2743	CD	LYS	396	7.966	29.513	46.634	1.00	14.43
ATOM	2744	CE	LYS	396	7.873	30.571	47.723	1.00	14.43
ATOM	2745	NZ	LYS	396	7.321	31.859	47.188	1.00	14.43
MOTA	2746	C	LYS	396	8.851	24.689	45.711	1.00	7.12
ATOM	2747	ō	LYS	396	7.824	24.118	46.082	1.00	14.43
ATOM	2748	N	GLU	397	9.549	24.318	44.640	1.00	27.91
ATOM	2749	CA	GLU	397	9.146	23.197	43.790	1.00	27.91
ATOM	2750	CB	GLU	397	9.576	23.428	42.330	1.00	25.61
ATOM	2751	CG	GLU	397	9.153	22.327	41.339	1.00	25.61
ATOM	2752	CD	GLU	397	7.720	22.464	40.856	1.00	25.61
MOTA	2753		GLU	397	7.134	23.535	41.111	1.00	25.61
ATOM	2754		GLU	397	7.183	21.526	40.213	1.00	25.61
ATOM	2755	C	GLU	397	9.752	21.901	44.309	1.00	27.91
ATOM	2756	ō	GLU	397	9.094	20.855	44.301	1.00	25.61
ATOM	2757	N	VAL	398	11.003	21.976	44.761	1.00	19.14
ATOM	2758	CA	VAL	398	11.701	20.813	45.296	1.00	19.14
ATOM	2759	CB	VAL	398	13.206	21.106	45.592	1.00	2.00
ATOM	2760		VAL	398	13.200	19.825	45.941	1.00	2.00
ATOM	2761		VAL	398	13.857	21.769	44.402	1.00	2.00
ATOM	2762	C	VAL	398	11.016	20.382	46.594	1.00	19.14
ATOM	2763	ō	VAL	398	10.810	19.185	46.829	1.00	2.00
ATOM	2764	N	MET	399	10.642	21.366	47.420	1.00	22.42
ATOM	2765	CA	MET	399	9.969	21.114	48.693	1.00	22.42
ATOM	2766	CB	MET	399	10.111	22.305	49.635	1.00	20.89
ATOM	2767	CG	MET	399	10.111	21.968	50.854	1.00	20.89
ATOM	2768	SD	MET	399	12.603	21.419	50.367	1.00	20.89
ATOM	2769	CE	MET	399	13.360	21.155	52.002	1.00	20.89
	05						22.000		-0.05

WO 03/060102

FIG. 3VV

ATOM	2770	С	MET	399	8.504	20.808	48.455	1.00	22.42
ATOM	2771	0	MET	399	7.891	20.052	49.210	1.00	20.89
ATOM	2772	N	ASN	400	7.948	21.403	47.406	1.00	28.60
MOTA	2773	CA	ASN	400	6.565	21.150	47.049	1.00	28.60
MOTA	2774	CB	ASN	400	6.481	19.736	46.459	1.00	81.18
MOTA	2775	CG	ASN	400	5.100	19.387	45.951	1.00	81.18
MOTA	2776	OD1	ASN	400	4.599	18.282	46.199	1.00	81.18
MOTA	2777	ND2	ASN	400	4.479	20.318	45.219	1.00	81.18
MOTA	2778	C	ASN	400	5.629	21.282	48.257	1.00	28.60
MOTA	2779	0	ASN	400	5.257	22.426	48.589	1.00	81.18
MOTA	2780	C5	3400	1001	22.736	4.627	31.172	1.00	20.00
ATOM	2781	C2	3400	1001	22.276	5.904	31.111	1.00	20.00
MOTA	2782	N1	3400	1001	23.156	6.818	30.322	1.00	20.00
MOTA	2783	C4	3400	1001	24.235	6.108	29.848	1.00	20.00
MOTA	2784	S1	3400	1001	24.123	4.375	30.081	1.00	20.00
ATOM	2785	C15	3400	1001	27.483	6.454	27.874	1.00	20.00
MOTA	2786	из	3400	1001	27.589	7.776	27.927	1.00	20.00
MOTA	2787	C17	3400	1001	26.749	8.622	28.538	1.00	20.00
MOTA	2788	C11	3400	1001	25.618	8.113	29.190	1.00	20.00
MOTA	2789	C13	3400	1001	25.444	6.726	29.175	1.00	20.00
MOTA	2790	C19	3400	1001	26.367	5.887	28.516	1.00	20.00
MOTA	2791	C1	3400	1001	20.021	10.016	32.442	1.00	20.00
MOTA	2792	C9	3400	1001	19.766	8.582	32.361	1.00	20.00
MOTA	2793	C3	3400	1001	18.521 ·		32.868	1.00	20.00
MOTA	2794	C12	3400	1001	17.569	9.048	33.425	1.00	20.00
MOTA	2795	C20	3400	1001	17.887	10.433	33.471	1.00	20.00
MOTA	2796	C6	3400	1001	19.111	11.000	32.997	1.00	20.00
MOTA	2797	C7	3400		20.961	6.391	31.694	1.00	20.00
MOTA	2798	03	3400	1001	20.137	5.549	32.029	1.00	20.00
MOTA	2799	N2	3400	1001	20.762	7.730	31.764	1.00	20.00
MOTA	2800	C8	3400	1001	19.395	12.627	33.166	1.00	20.00
ATOM	2801	F3	3400		20.299	13.330	32.210	1.00	20.00
ATOM	2802	F2	3400	1001	20.027	12.609	34.486	1.00	20.00
ATOM	2803	F1	3400	1001	18.169	13.443	33.069	1.00	20.00
					END		•		

FIG.4

FIG. 5

FIG.6

FIG.7

FIG.8

FIG.9

FIG. 11