DE

R.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-217062

(43)Date of publication of application: 19.08.1997

(51)Int.Cl.

CO9K 19/02 CO9K 19/42 GO2F 1/13

(21)Application number: 08-048111

(71)Applicant: CHISSO CORP

(22)Date of filing:

09.02.1996

(72)Inventor: SEKIGUCHI YASUKO

MURAKI KATSUYUKI TAKESHITA FUSAYUKI MATSUSHITA TETSUYA

NAKAGAWA ETSUO

(54) LIQUID CRYSTAL COMPOSITION AND LIQUID CRYSTAL DISPLAYING ELEMENT (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a chiral nematic liquid crystal composition excellent in rapid responding property and low temperature miscibility, capable of being driven by an electric voltage in a wide temperature range and low in temperature dependence of pitch thereof by containing a specific optically active compound in a specific liquid crystal composition and adjusting at a specific helical pitch. SOLUTION: This liquid crystal composition contains (A) a liquid crystal compound such as a compound of formula I [R1 is a 1-10C alkyl; Q1 is H or F; (m) is 0, 1] or formula II [R2 is R1, etc.; A1 is trans-1, 4cyclohexylene(x), etc.; Z1 is CH2CH2 or a single bond]. (B) a compound of formula III (R6, R7 are each R2; B is A1, etc.; C is A1; Z5 is Z1, etc.). formula IV (R8 is R2; R9 is R1, etc.; D is X, etc.; E is X, etc.; G is X, etc.; Z6 is Z1, Z7 is $C \equiv C$, etc.) or a formula V (R10 is R2; R11 is R9; Q2 is Q1), and (C) an optically active compound having ≥0.15m (µm.wt.%)-1

helical twisting force at 25° C and adjusted to have ≤4µm helical pitch

$$\mathbb{R}^{!} - \left(\bigcirc_{\mathbb{N}}^{\mathbb{N}} + (-\bigcirc) \rightarrow_{\mathbb{N}} + \bigcirc_{\mathbb{N}}^{\mathbb{Q}^{!}} + \mathbb{F} \right)$$

$$R^2 - \langle A^1 \rangle - Z^1 - \langle O \rangle - CN$$

$$R^6-(B)-Z^2-(C)-R^7$$

$$R^g - (D) - Z^g - (C) - Z^g - (G) \cap R^g$$

LEGAL STATUS

thereof.

[Date of request for examination]

08.01.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-217062

(43)公開日 平成9年(1997)8月19日

(51) Int.Cl. ⁶	談別記号	理番号 FI 技術表示箇所
C 0 9 K 19/02		C 0 9 K 19/02
19/42		19/42
G02F 1/13	5 0 0	G 0 2 F 1/13 5 0 0
		審査請求 未請求 請求項の数9 FD (全 24 頁)
(21)出顧番号	特願平8-48111	(71) 出願人 000002071
		チッソ株式会社
(22)出顧日	平成8年(1996)2月9日	大阪府大阪市北区中之島 3 丁目 6 番32号
		(72)発明者 関口 靖子
		千葉県市原市松ヶ島641-1
		(72)発明者 村城 勝之
		千葉県市原市五井東1丁目11番4号
		(72)発明者 竹下 房幸
		千葉県君津市中富939番地5号
		(72)発明者 松下 哲也
		千葉県袖ヶ浦市長浦駅前6丁目10番11号
		(72)発明者 中川 悦男
		千葉県市原市五井8890番地
		(74)代理人 弁理士 野中 克彦

(54) 【発明の名称】 液晶組成物および液晶表示素子

(57)【要約】

【課題】双安定スイッチング液晶表示素子に求められる 種々の特性を満たしながら、高速応答性に対応するため に低粘度であり、さらに低温相溶性に優れ、電圧駆動可 能な温度範囲を大きくし、またピッチの温度依存性の小 さいカイラルーネマチック液晶組成物を提供する。

【解決手段】ピリミジン系やベンゾニトリル系等の液晶性化合物を含有する液晶成分にH. T. P. (Herical Twisting Power: らせんねじり力)が0. $15(\mu m \cdot w t \%)$ 以上である光学活性化合物を1種以上含有させ、且つねじれのピッチが $4\mu m$ 以下に調整されていることを特徴とするカイラルネマチック液晶組成物。

【効果】双安定スイッチング液晶表示素子に求められる 種々の特性を満たしながら、高速応答性に対応するため に低粘度であり、さらに低温相溶性に優れ、電圧駆動可 能な温度範囲を大きくし、またピッチの温度依存性の小 さいカイラルーネマチック液晶組成物を提供することが できる。

【化1】

【化2】

【特許請求の範囲】

(II-a), (II-b) $\pm kt$ (II-c)

(I)

【請求項1】(1)第1成分として、一般式(1)、

$$R^1 - \bigcirc_N^N - (-\bigcirc)_m - \bigcirc_F^{Q^1}$$

(式中、 R^1 は炭素数 $1\sim 10$ のアルキル基を示し、 Q^1 はHまたはFを示し、mは0または1を示す。)

$$R^{2}-(A^{1})-Z^{1}-O$$
-CN (II-a)

$$R^3-(A^2)-(A^3)-Z^2-CN$$
 (II-b)

$$R^4$$
— $(A^4)_i - Z^3$ — $(A^5) - Z^4$ — CN

Q1

(式中、 R^6 および R^7 は各々独立して炭素数 $1\sim 100$ アルキル基または炭素数 $2\sim 8$ のアルケニル基を示す。 30 いずれにおいても基中の任意の 1 つまたは相隣接しない 2 つ以上のメチレン基($-CH_2-$)は酸素原子によって置換されても良い。Bはトランス-1, 4 - シクロへ キシレン、ピリミジン-2, 5 - ジイルまたは 1, 4 - $R^8-(D)-Z^6-(E)-Z^7-(G)-R^9$

【化5】

が F で置換されても良い 1, 4 ーフェニレンを示す。 Z^1 、 Z^2 および Z^3 は各々独立して、 $-CH_2CH_2-$ または単結合を示す。 Z^4 は-COO-、 $-CH_2CH_2-$ または単結合を示し、 Q^2 は H または F を示し、 I は Q または I を示す。)で表される化合物群から選択される化合物を少なくとも I 種含有し、 I (I) 第 I のまたは I のまたは I の I

【化3】 (III)

 $\begin{array}{c} (IV) \\ \\ R^{10} \longrightarrow \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc -R^{11} \end{array}$ (V)

(式中、R¹⁰ は炭素数 1~10のアルキル基または炭素 数2~10のアルケニル基を示す。いずれにおいても基中の任意の1つまたは相隣接しない2つ以上のメチレン基(-CH2-)は酸素原子(-O-)によって置換されても良い。R¹¹ は炭素数1~10のアルキル基、アルコキシ基またはアルコキシメチル基を示し、Q³はHまたはFを示す。)で表される化合物群から選択される少なくとも1種の化合物を含有し、(3)第3成分として25℃におけるH. T. P. (Herical Twisting Power:らせんねじり力)が0.15(μm・wt%)⁻¹以上である光学活性化合物を1種以上含有し、且つらせんのピッチが4μm以下に調整されていることを特徴とす

【化6】

3

るカイラルネマチック液晶組成物。

【請求項2】25℃におけるH. T. P. が0. 150

(μm・wt%) ·1以上である光学活性化合物が、下記

$$R^{12}-(K)$$
 $COO-*CH-O$ Y C_2H_5

(式中 R^{12} は炭素数 $1\sim10$ のアルキル基またはアルコキシ基を示し、K はトランスー1, 4 ーシクロヘキシレンまたは1, 4 ーフェニレンを示し、Y は水素原子また 20 は炭素数 $1\sim10$ のアルキル基を示す。)で表される光学活性化合物群から選択されることを特徴とする、請求項1 に記載の液晶組成物。

【請求項3】液晶組成物の全重量に対して

(1) 第1成分が10~65重量%、

【請求項5】液晶組成物の全重量に対して、第4成分の 含有量が50重量%以下であることを特徴とする請求項 40 4に記載のカイラルネマチック液晶組成物。

【請求項6】請求項 $1\sim5$ のいずれか1項において、一般式(II-a)、(II-b) および(II-c) における $R^1\sim R^5$ が独立に炭素数 $1\sim1$ 0のアルキル基、アルコキシ基またはアルコキシメチル基を示すことを特徴とするカイラルネマチック液晶組成物。

【請求項7】請求項1~6のいずれか1項において、一般式(III)におけるR⁶およびR⁷が各々独立して炭素数1~10のアルキル基、アルコキシ基またはアルコキシメチル基を示すことを特徴とするカイラルネマチック 50

(2) 第2成分が35~90重量%

式 (VI-a) 、 (VI-b) または (VI-c)

であること特徴とする請求項1または2に記載のカイラルネマチック液晶組成物。

【請求項4】請求項1~3のいずれかに記載の液晶組成物に加えて、さらに(4)第4成分として、一般式(VII)

【化7】

液晶組成物。

【請求項8】請求項 $1\sim7$ のいずれか1項において、一般式 (IV) における R^8 が炭素数 $1\sim1$ 0のアルキル基を示し、 R^9 が炭素数 $1\sim1$ 0のアルキル基またはアルコキシ基を示すことを特徴とするカイラルネマチック液晶組成物。

【請求項9】請求項1~8のいずれかに記載のカイラルネマチック液晶組成物を用いた液晶表示素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、透明電極を有する 2 枚の基板で形成される密閉液晶表示セル中に使用される、少なくとも1種のカイラル添加物を含むネマティック液晶組成物および、該液晶組成物を用いた液晶表示素子に関する。さらに詳しくは、2つの準安定状態のスイッチング(双安定スイッチング)を利用した単純マトリックス液晶表示素子に好適な液晶組成物および、該液晶組成物を用いた液晶表示素子に関する。

[0002]

【従来の技術】液晶表示素子(LCD)の表示方式としてツイストネマチック(TN)方式、スーパーツイスト

ネマティック(STN)方式、アクティブマトリックス(AM-LCD)方式等が提案され、次々に実用化されてきた。例えば、M.Schadt andW.Helfrichによって提案された(Appl.Phys.Lett.18(1971)127)上下の基板における液晶分子の配向を 90° ツイストさせたTN方式やT.J.Scheffer等によって提案された(Appl.Phy.Lett..45(10),1021(1984))上下の基板における液晶分子の配向を $180\sim270^{\circ}$ にツイストさせたSTN方式はメモリー効果を持たないために、電圧平均化法による単純マトリックス駆動法または各画素にトランジスタ等のアクティブ素子を設けたアクティブマトリクス駆動法によって駆動されている。

【0003】また、特開平6-230751号公報や特 開平6-235920号公報等で双安定スイッチングを 用いる方式が提案されている。これらは、配向膜が設け られた一対の透明電極基板間にカイラルネマチック液晶 を狭持し、該カイラルネマチック液晶が初期状態におい てねじれ角のねじれ構造を有し、該初期状態にフレデ リクス転移を生じさせる電圧を印加した後の緩和状態と して該初期状態とは異なる2つの準安定状態(例えば ø ±180°)を有する液晶表示素子において、フレデリ クス転移を生じさせるために印加される電圧を初期状態 および2つの準安定状態におけるしきい値以上の電圧パ ルスとし、その後に2つの準安定状態のいずれか一方を 選択するために印加される電圧を、2つの準安定状態を 生ずる臨界値を基準として選択された電圧パルスとする 液晶表示素子である。いずれかの準安定状態に選択され た状態を維持する期間に印加される電圧を2つの準安定 状態におけるしきい値以下のパルスとしてマルチプレッ クス駆動を行うことができる。

【0004】 これらの双安定スイッチング液晶表示素子 $P = 1 / (H. T. P. \times c)$

【0007】双安定スイッチング液晶表示素子に求めら れるピッチは、 $P < 4 \mu m$ と短いのが特徴的である。し たがって、このH. T. P. が小さいと、4 μ m 以下の 必要なピッチを得るために該カイラル成分をかなり高い 濃度で添加する必要が生じ、他の物質パラメーターに不 利な影響を及ぼしてしまう。例えばスメクチックーネマ チック相転移点 T SN が非常に高くなり、電圧駆動可能な 温度範囲が狭くなってしまう。また、カイラル成分の濃 40 度が高いために、カイラルーネマチック液晶組成物の粘 度が大きくなり、その結果、応答速度が大きくなってし まう。さらにH. T. P. の小さいカイラル成分を用い ると、温度の上昇につれてピッチの温度依存性も大きく なる傾向があり、電圧駆動可能な温度範囲が狭くなって 好ましくない。このように、液晶組成物は種々の目的に 合わせて鋭意検討されてはいるものの、常に新規な改善 を要求されているのが現状である。

[0008]

かには - 四下のようた蛙性が載り

に用いられる液晶組成物には、以下のような特性が求め られる。

- (1)室温を含む広い温度範囲でネマティック液晶相を 示すこと。
- (2) 双安定性と急峻なしきい値特性を両立させるため に、適当な誘電率異方性 ($\Delta \varepsilon$) をとり得ること。
- (3) 応答時間 (τ) をできるだけ小さくするために、 粘度 (η) が小さいこと。またはスプレイ弾性定数 (K μ) が大きいこと。
- (4) 高コントラスト比と高透過率を両立するために適切な屈折率異方性 (Δ n) をとり得ること。
 - (5) 電圧駆動可能な温度範囲を広げるためにピッチ
 - (P) の温度依存性が小さいこと。

などを挙げることができる。

【0005】近年の携帯用LCDの開発に伴って、屋外での使用を前提とした開発も検討されるようになってきた。屋外での使用に耐え得るには、使用環境の温度範囲を超えた領域にわたってネマチック相を呈することが要求される。通常、ネマティックーアイソトロピック相転移温度(透明点:TNI)が60℃以上、スメクチックーネマチック相転移温度(TSN)が-20℃以下であることが要求される。

【0006】また、液晶組成物に光学活性物質を微量添加することにより、液晶分子の逆ツイストを抑えて液晶分子に右回りあるいは左回りのらせん構造を与え、表示品質を保つ方法は既によく知られた手段である。カイラル成分として添加する光学活性物質の有するらせんねじりカーH. T. P. $(\mu \text{ m} \cdot \text{wt } \%)^{-1}$ はその添加濃度『c(wt %)』およびピッチ『 $P(\mu \text{ m})$ 』を用いて、下記式①で定義される。

【発明が解決しようとする課題】本発明の目的は、上記 双安定スイッチング液晶表示素子に求められる種々の特性を満たしながら、高速応答性に対応するために低粘度 であり、さらに低温相溶性に優れ、電圧駆動可能な温度 範囲を大きくし、またピッチの温度依存性の小さいカイラルーネマチック液晶組成物を提供することにある。

[0009]

【課題を解決するための手段】本発明者らは、これらの 課題を解決すべく種々の液晶化合物を用いた組成物を鋭 意検討した結果、本発明の液晶組成物を双安定スイッチ ング液晶表示素子に使用する場合に、この目的を達成で きることを見いだした。以下、本発明を詳細に説明す る。

【0010】本発明の第1の発明は、第1成分として、一般式(I)、(II-a)、(II-b)または(II-c)

【化8】

$$R^1 - \stackrel{N}{ \bigcirc_N} - (-\stackrel{\frown}{ \bigcirc})_m - \stackrel{Q^1}{ \bigcirc} F$$
 (I)

(式中、R1は炭素数1~10のアルキル基を示し、O1 はHまたはFを示し、mは0または1を示す。)

 $R^2 - (A^1) - Z^1 -$

【化9】

$$R^3-(A^2)$$
— (A^3) — Z^2 — CN (II-b)

$$R^4$$
— $(A^4)_j$ - Z^3 — (A^5) - Z^4 — CN

$$Q^1$$
(II-c)

(式中、R2、R3、R4およびR5は各々独立して炭素数 1~10のアルキル基または炭素数2~10のアルケニ ル基を示す。いずれにおいても基中の任意の1つまたは 相隣接しない2つのメチレン基(-CH2-)は酸素原 子(-O-)によって置換されても良い。A¹、A²、A 3およびA4は各々独立してトランス-1.4-シクロへ キシレンまたは1. 4-フェニレンを示し、A⁵はトラ ンスー1, 4 - シクロヘキシレンまたは側位の1つのH

 $R^6-(B)-Z^5-(C)-R^7$

(式中、R⁶およびR⁷は各々独立して炭素数1~10の アルキル基または炭素数2~8のアルケニル基を示す。 いずれにおいても基中の任意の1つまたは相隣接しない 2つ以上のメチレン基(-CH2-)は酸素原子によっ て置換されても良い。Bはトランス-1, 4-シクロへ キシレン、ピリミジンー2、5ージイルまたは1、4ー $R^8-(D)-Z^6-(E)-Z^7-(G)-R^9$

(式中、R®は炭素数1~10のアルキル基または炭素 数2~10のアルケニル基を示す。いずれにおいても基 中の任意の1つまたは相隣接しない2つ以上のメチレン 基(-CH₂-)は酸素原子(-O-)によって置換さ れても良い。R9は炭素数1~10のアルキル基、アル コキシ基またはアルコキシメチル基を示し、Dはトラン スー1, 4ーシクロヘキシレンまたはピリミジンー2, 5 ージイルを示し、Eはトランスー1, 4 ーシクロヘキ シレンまたは側位の1つのHがFで置換されても良い 1. 4-フェニレンを示し、Gはトランス-1, 4-シ クロヘキシレンまたは 1, 4 - フェニレンを示し、 Z⁶ は $-CH_2CH_2$ -または単結合を示し、 Z^7 は-C = C-、-COO-、-CH=CH-または単結合を示し、 Q³はHまたはFを示す。)

【化12】

が F で置換されても良い 1, 4-フェニレンを示す。 Z ¹、Z²およびZ³は各々独立して、-CH₂CH₂-また は単結合を示す。Z⁴はーCOO-、-CH₂CH₂-ま たは単結合を示し、Q²はHまたはFを示し、iはOま たは 1 を示す。) で表される化合物群から選択される化 合物を少なくとも1種含有し、第2成分として一般式 (III) 、(IV) および (V)

8

【化10】 (III)

フェニレンを示し、Cはトランス-1, 4-シクロヘキ シレンまたは1, 4-フェニレンを示し、Z⁵は-C= $C - \sqrt{-COO} - \sqrt{-CH_2CH_2} - \sqrt{-CH} = CH - \sqrt{-CH}$ - CF = CF - または単結合を示す。) 【化11】

$$R^{10} \longrightarrow Q^2 \longrightarrow R^{11} \qquad (V)$$

(式中、R10は炭素数1~10のアルキル基または炭素 数2~10のアルケニル基を示す。いずれにおいても基 中の任意の1つまたは相隣接しない2つ以上のメチレン 基(-CH₂-)は酸素原子(-O-)によって置換さ れても良い。R 11 は炭素数 1 ~ 1 0 のアルキル基、アル コキシ基またはアルコキシメチル基を示し、Q3はHま たはFを示す。)で表される化合物群から選択される少 なくとも1種の化合物を含有し、第3成分として25℃ におけるH. T. P. (Herical Twisting Power:ら せんねじり力)が0.15(μm·wt%)⁻¹以上であ る光学活性化合物を1種以上含有し、且つらせんのピッ チが 4 μ m以下に調整されていることを特徴とするカイ ラルネマチック液晶組成物に関する。

【0011】本発明の第2の発明は、25℃における

10

H. T. P. が 0. 150 (
$$\mu$$
 m・w t %) ⁻¹ 以上であ たは ($VI-c$) る光学活性化合物が、下記式 ($VI-a$) 、 ($VI-b$) ま 【化 1 3】
$$R^{12}-(K) \longrightarrow COO-*CH \longrightarrow Y$$
 ($VI-a$)

$$R^{12}$$
 \longrightarrow $COO-*CH$ \longrightarrow Y (VI-b)

(式中 R^{12} は炭素数 $1 \sim 1$ 0のアルキル基またはアルコキシ基を示し、K はトランス -1 , 4 - シクロヘキシレンまたは 1 , 4 - フェニレンを示し、Y は水素原子または炭素数 $1 \sim 1$ 0のアルキル基を示す。)で表される光 20学活性化合物群から選択されることを特徴とする、上記第 1 の発明に記載の液晶組成物に関する。

【0012】本発明の第3の発明は、液晶組成物の全重

量に対して第1成分が10~65重量%、第2成分が35~90重量%であること特徴とする上記第1または第2の発明に記載のカイラルネマチック液晶組成物に関する。

【0013】本発明の第4の発明は、さらに第4成分として、一般式(VII)

(式中、 R^{13} は炭素数 $1\sim 100$ アルキル基を示し、J はトランスー1、4-シクロヘキシレンまたは側位の 1 つまたは 2つのHがFで置換されていても良い 1、4-フェニレンを示し、 Q^5 はFまたは C 1 を示し、 Q^4 および Q^6 は各々独立しては H または F を示し、 Z^8 および Z^8 は各々独立して Z^8 で表される化合物群から選択される化合物を少なくとも Z^8 1 種含有することを特徴とする上記第 Z^8 Z^8 の発明のいずれかに記載のカイラルネマチック液晶組成物に関する。

【0014】本発明の第5の発明は、液晶組成物の全重量に対して、第4成分の含有量が0~50重量%であることを特徴とする上記第1~第4の発明のいずれかに記載のカイラルネマチック液晶組成物に関する。

【0015】本発明の第6の発明は、第 $1\sim5$ の発明のいずれかにおいて、一般式(II-a)、(II-b) および(II-c) における $R^1\sim R^5$ が独立に炭素数 $1\sim10$ のアルキル基、アルコキシ基またはアルコキシメチル基を示すことを特徴とするカイラルネマチック液晶組成物に関する。

【0016】本発明の第7の発明は、第1 \sim 6の発明のいずれかにおいて、一般式(III)におけるR6およびR7が各々独立して炭素数 $1\sim$ 10のアルキル基、アルコ

キシ基またはアルコキシメチル基を示すことを特徴とするカイラルネマチック液晶組成物に関する。

【0017】本発明の第8の発明は、第 $1\sim7$ の発明のいずれかにおいて、一般式 (IV) における R^8 が炭素数 $1\sim1$ 0のアルキル基を示し、 R^9 が炭素数 $1\sim1$ 0のアルキル基またはアルコキシ基を示すことを特徴とするカイラルネマチック液晶組成物に関する。

【0018】本発明の第9の発明は、上記第1~第8の 発明のいずれかに記載のカイラルネマチック液晶組成物 を用いた液晶表示素子に関する。

【0019】以下、本発明の液晶組成物を構成する液晶化合物について説明する。本発明の第1成分である、一般式(I)および/または(II-a)~(II-c)で表される化合物としては、好ましくは以下の化合物を挙げることができる。

【化15】

【化16】

12

11

11		
$R - \bigcirc_N^N - \bigcirc_F$	(I-1)	
$R - \bigcirc_N^N - \bigcirc_F^F$	(I-2)	
$R - \bigcirc N - \bigcirc - F$	(I-3)	
R-CO-CN	(II-a-1)	
ROR'——O-CN	(11-2-2)	10
R-(O)(O)-CN	(II-a-3)	
ROR'O-O-CN	(II-a-4)	
$R - CH_2CH_2CO$ -CN	(II-a-5)	
$R \longrightarrow \bigcirc $	(II-b-1)	
$R \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	(II-b-2)	20
R-(O)-(O)-CN	(II-b-3)	20
$R-CH_2CH_2CO-CN$	(II-b-4)	
R-CN-CN	(II-c-1)	

30

(II-c-2)

(Rはアルキル基またはアルケニル基、R' はアルカン ジイルまたはアルケンジイルを示す。)

【0020】 これらの第1成分の化合物のなかでは、式(I-1)、(I-2)、(I-3)、(II-a-1)、(II-a-2)、(II-a-3)、(II-b-1)、(II-c-1)、(II-c-5)、(II-c-6)、(II-c-11) または(II-c-13)で表される化合物が本発明において特に好ましく用いられる。【0021】 これら第1成分の化合物は誘電率異方性が

正の化合物で特にその値が大きく、主としてしきい値電圧を小さくする目的およびSTN特性として重要な急峻性を改善する目的で使用される。低電圧駆動を行うためには誘電率異方性の大きいこれらの化合物は不可欠な成分となる。

【0022】第2成分の、一般式(III)、(IV)および(V)で表される化合物として、好ましくは以下の化合物を挙げることができる。

【化17】

(III-8)

$$RO - COO \bigcirc -R'$$
 (III-10)
 $R - \bigcirc -OC_2H_4OR'$ (III-11)

$$R - \bigcirc - CH_2CH_2 \bigcirc - OC_2H_4OR'$$
 (III-12)

$$R - \bigcirc - C = C - \bigcirc - R'$$
 (III-13)

$$R - \bigcirc - C \equiv C - \bigcirc - OR'$$
 (III-14)

$$R - \bigcirc -C \equiv C - \bigcirc -0C_2H_4OR'$$
 (III-15)

【化18】

$$R - \bigcirc - CH = CH - \bigcirc - R'$$

$$R - \bigcirc - CH = CH - \bigcirc - OR'$$

$$R - \bigcirc - R'$$

$$(III-16)$$

$$R - \bigcirc - CH = CH - \bigcirc - OR'$$

$$(III-18)$$

$$R = \bigcirc_{i,j}^{N} = \bigcirc_{i}^{N} = \bigcirc_{i}^{N}$$
 (III-19)

【化19】

(RおよびR'は各々独立してアルキル基またはアルケ ニル基を示す。)

【化20】

【0023】これらの中で、式(III)で表される化合 物としては、式(III-1)、(III-4)、(III-6) 、(III-7) 、(III-8) 、(III-10) 、(I II-13) 、 (III-14) 、 (III-18) または (II I-19)で表される化合物が本発明において特に好ま しく用いられる。また、式(IV)で表される化合物とし 50 び(V)の化合物は、誘電率異方性が負かまたは弱い正

ては、式 (IV-2)、 (IV-5)、 (IV-6)、 (IV-8) 、 (IV-11) 、 (IV-12) または (IV-14) で表される化合物が本発明において特に好ましく用いら れる。式(V)で表される化合物としては(V-2)で 表される化合物が本発明において特に好ましく用いられ る。

(V-1)

(V-2)

(V-3)

【0024】第2成分の、一般式(III)、(IV)およ

の化合物である。一般式(III)の化合物は主として粘度低下および/または Δ n 調整の目的で使用される。また、一般式(IV)の化合物は透明点を高くする等のネマチックレンジを広げる目的および/または Δ n 調整、粘度調整の目的で使用される。

0. 150 (μ m・w t %) · 以上の光学活性化合物の内、式 (VI-a)、 (VI-b) または (VI-c) で表される光学活性化合物として、好ましくは以下の光学活性化合物を挙げることができる。

【化21】

【0025】本発明の第3成分である、H. T. P. が

【化22】

$$R - \bigcirc - \bigcirc - COO - ^{\bullet}CH - \bigcirc$$
 (VI-b-1)

$$R - \bigcirc - \bigcirc - COO - *CH - \bigcirc - R \qquad (VI-b-2)$$

$$RO - \bigcirc -COO - *CH - \bigcirc$$
 (VI-b-3)

$$RO - \bigcirc - COO - *CH - \bigcirc - R \qquad (VI-b-4)$$

$$CH_3$$

$$\begin{array}{c} \text{R-}\bigcirc\bigcirc -\text{COO} -\text{*CH-}\bigcirc\bigcirc \\ \text{CH}_3 \stackrel{\text{C}}{\text{CH}_3} \end{array} \tag{VI-c-1}$$

(式中R、R'はそれぞれ炭素数1~10のアルキル基 30 を示す。)

【0026】 これらの化合物の中では、式 (VI-a-1)、(VI-a-7)、(VI-b-2)、(VI-b-3) および (VI-c-3) の化合物が本発明において特に好ましく用いられる。第3成分である、一般式 (VI-1)

a) ~ (VI-c) の光学活性化合物は、カイラル成分としてらせんのピッチ長を調整するために用いられる。 【0027】本発明の第4成分である一般式 (VII) で

表される化合物として、好ましくは以下の化合物を挙げることができる。

【化23】

23

R-	>-coo-{○}-F	(VII-1)
\	/ ()	

$$R - \bigcirc -COO - \bigcirc F$$
 (VII-3)

$$R - \bigvee_{\mathbf{r}} \mathbf{F}$$
 (VII-9)

$$R - \bigcirc F$$
 (VII-10)

$$R - COO - F$$
 (VII-11)

【化24】

【化25】

27	
$R - CH_2CH_2 - CI$	(VII-24)
$R - CH_2CH_2 - CI$	(VII-25)
$R - CH_2CH_2 - CI_F$	(VII-26)
$R-CH_2CH_2O-F$	(V11-27)
$R - \bigcirc - \bigcirc - \bigcirc - \bigcirc + \bigcirc F$	(VII-28)
$R - CH_2CH_2 \bigcirc F$	(VII-29)
$R-CH_2CH_2CH_2CI$	(VII-30)
$R-CH_2CH_2-F$ CI	(VII-31)
$R - \bigcirc - \bigcirc - CH_2CH_2 \bigcirc F$ CI	(VII-32)
$R-CH_2CH_2$ F	(VII-33)
$R-CH_2CH_2$ F	(VII-34)
$R - CH_2CH_2 - F_F$	(VII-35)
【化26】	

−CH₂CH₂〈 ` (O)-a (VII-36)

CH₂CH₂≺ (VII-37)

(VII-38)

·CH₂CH₂∢() (VII-39)

(VII-40)

(VII-41)

(VII-42)

(VII-43)

(VII-44)

(VII-45)

(VII-46)

【化27】

$$R - \bigvee_{\mathbf{F}} \mathbf{F} \qquad \qquad (V\Pi - 48)$$

(Rはアルキル基を示す。)

【0028】一般式(VII)で表される第4成分の化合 物としては、式(VII-1)、(VII-5)、(VII-6) (VII-7) (VII-8) (VII-9) (VII 40 - 10), (VII-11), (VII-12), (VII-1 5), (VII-16), (VII-17), (VII-18), (VII-19), (VII-20), (VII-22) (VII-29) (VII-34) (VII-35) (VII-37) (VII-41) (VII-45) \(\text{(VII-46)}\) \(\text{(VII-47)}\) \(\text{ \$\text{\$t\$}\$}\) \(\text{(VII-4}\) 8) で表される化合物が好ましく用いられ、さらにこれ 5の中で、 (VII-1) 、 (VII-5) 、 (VII-7) 、 (VII-8), (VII-9), (VII-11), (VII-12) (VII-15) (VII-19) (VII-20)

50 または (VII-29) で表される化合物が本発明におい

て特に好ましく用いられる。一般式(VII)の化合物は 誘電率異方性が正の化合物であり、特にしきい値電圧を 小さくする目的やその温度依存性を改善する目的で使用 される。また、粘度調整、 Δ n 調整、透明点を高くする 等のネマチックレンジを広げる目的にも使用される。

【0029】本発明で使用される第1成分の混合割合は、液晶組成物の全重量に対して10~65%が好ましい。より好ましくは15~60%である。第2成分の混合割合は35~90%が好ましい。より好ましくは40~85%である。第4成分の混合割合は0~50%が好 10ましい。

【0030】本発明の液晶組成物は使用される液晶表示素子の目的に応じて、上記一般式(I)~(VII)で表される化合物の他、しきい値電圧、ネマティックレンジ、Δn、誘電率異方性、粘度等を調整する目的で、他の化合物を本発明の目的を害さない範囲で適当量含有することができる。

【0031】本発明の液晶組成物は、それ自体慣用な方法で調整される。一般には、種々の成分を高い温度で互いに溶解させる方法がとられている。また、本発明の液 20 晶材料は、適当な添加物によって意図する用途に応じた改良がなされ、最適化される。このような添加物は当業者によく知られており、文献等に詳細に記載されてい

30

る。また、本発明の液晶組成物は、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系およびテトラジン系等の二色性色素を添加してゲストホスト(GH)モード用の液晶組成物としても使用できる。あるいは、ネマチック液晶をマイクロカプセル化して作製したNCAPや液晶中に三次元網目状高分子を作製したポリマーネットワーク液晶表示素子(PNLCD)に代表されるポリマー分散型液晶表示素子(PNLCD)用の液晶組成物としても使用できる。その他、複屈折制御(ECB)モードや動的散乱(DS)モード用の液晶組成物としても使用できる。

[0032]

【実施例】以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、比較例、実施例に使用した液晶化合物は「表1」に基づいて記号で表し、光学活性化合物は「表2」に示した略号で表し、それらの組成比は液晶成分については全て重量%で示す。ただし、第3成分である光学活性化合物については、光学活性化合物以外の液晶組成物100重量部に対する重量部で示す。

【表1】

表1 記号を用いた化合物の表記方法

$$R - (A_1) - Z_1 - (A_n) - X$$

1) 左末端基 R-	 記号		3) 結合基 -Z1-, -Zn-	- 記号
C _n H _{2n+1} —	n —			
C _n H _{2u+1} O-	nO		—СH ₂ СH ₂ —	2
C _n H _{2n+1} OC _m H _{2m} —	nOm-	_	coo	E
CH ₂ = CHC _n H _{2n} —	Vn	•	c≡c	т
C _n H _{2n+1} CH = CHC _m H _{2m} —	n∨m-	_	—сн=сн—	v
C _n H _{2n+1} CH-CHC _m H _{2m} CH-CHC _k H	_{2k} — nvmv	′k—		CF2O
				OCF2
2) 環構造 (A1) , (An) -	記号	4) 右	<u> </u>	記号
	* ***		—F	— F
	В		_cı	—CL
√ Ø	B(F)		-CN	—c
, F			-CF ₃	—CF3
→	B(F,F)		-OCF ₃	-OCF3
F			−OCF ₂ H	— OCF2H
i	н		$-C_nH_{2n+1}$	— n
⟨o⟩	Ру		OC _n H _{2n+1}	—On
	_		—соосн ₃	—EMe
	D		$-C_nH_{2n}CH=CH_2$ $-C_mH_{2m}CH=CHC_nH_{2n+1}$	— n ∨ — m∨n
→ ~	Ch		— cm112m-1111112n+t	111 411
5) 記号例				
例 1 3-H2B(F,F)B(F)-F		例3	1V2-BEB(F,F)-C	F
C1H2-CH2CH2-CF	∑_F	СН	3CH=CHCH2CH2 — O - COO-	€ CN
例2 3-HB(F)TB-2				
C ₃ H ₇ -	⊢C₂H₅			

【表2】

表2 光学活性化合物の略号一覧

構造式	略号
C ₈ H ₁₇ O-O-COO-*CH-O C ₂ H ₅	8OBBE1*(Et)B
C_5H_{11} — C_2H_5	5HBE1*(Et)B
C ₈ H ₁₇ O-O-COO-*CH-O CH ₃	8OBBE1(Me)B
C_6H_{13} $C_0C_2H_5$ C_2H_3	6BBE1*(Me)B2
C ₆ H ₁₃ —(O)—(O)—COO—*CH—(O) CH ₃ CH ₃	6BBE1*(t-Bu)B
C ₂ H ₅ *CH·CH ₂ O	21*(Me)1OBBC
C ₂ H ₅ -*CH·CH ₂	21*(Me)1BBC
C ₆ H ₁₃ —COO—COO—*CH-C ₆ H ₁₃ CH ₃	6BEBE1*(Me)6
CH ₃	CN

ック転移点)を Txi [℃]、スメクティックーネマティ ック転移点(またはネマチック相の下限)をTsN [℃] (TsN は、0℃、-10℃、-20℃、-30℃の各々 のフリーザー中に30日間放置した後の液晶相で判断し た)、20℃における粘度をη20 [mPa·s]、25

$$\delta P = \frac{2 (P_{20} - P_{50})}{P_{20} + P_{50}}$$

【0033】尚、透明点(ネマティックーアイソトロピ 40 ℃におけるらせんピッチ長をP25 [μm]、式①に基づ きPzs と光学活性化合物の添加量から導かれるらせんね じり力をH. T. P. [μm⁻¹・w t %⁻¹] で示し、ら せんピッチ長の温度依存性δPを示すパラメーターとし て、式②を定義する。

(7)						
好ましい。				2 - B T B - 1	7.0%	
【0034】比較例1				2 - B T B - 3	4.0%	
次に示す組成の液晶組成物を調製した。				2 - H 2 B T B - 2	4.0%	
3 — H B — C		0 %		2-H2BTB-3	4.0%	
5 — H B — C		0 %		2 — H 2 B T B — 4	4.0%	
7 — H B — C		0 %			4.0%	
5 – H B B – C				3 - H 2 B T B - 3	4.0%	
8 O B B E 1 * (E t) B	1.	0部		3 - H 2 B T B - 4	4.0%	
この液晶組成物の諸物性値は次の通りであ	った。			3 - HB (F) TB - 2	6.0%	
$T_{NI} = 7.0. 5 [^{\circ}C]$			10	2 - P y B - 2	3.3%	
$T SN \leq -20 \ [C]$				3 - P y B - 2	3.4%	
$\eta_{20} = 36.4 \text{ [mPa·s]}$				4 - P y B - 2	3.3%	
$P_{25} = 3.9 [\mu m]$				2 - P y B H - 3	3.0%	
H. T. P. = 0. 256 [μ m ⁻¹ · w t	% ⁻¹]			8 O B B E 1 * (M e) B	5.0部	
$\delta P = 0.09$				この液晶組成物の諸物性値は次の通りであった。		
【0035】比較例2				$T_{NI} = 7.8.9 \ [^{\circ}C]$		
次に示す組成の液晶組成物を調製した。				$T_{SN} \leq -30 \ [^{\circ}C]$		
3-HB-C	24.	0 %		$\eta_{20} = 2.6.8 \text{ [mPa \cdot s]}$		
5 — H B — C	36.	0 %		$P_{25} = 1. \ 0 \ [\mu m]$		
7 — H B — C	25.	0 %	20	H. T. P. = 0. 200 [μ m ⁻¹ · w t %	1]	
5 — H B B — C	15.	0 %		$\delta P = 0.21$		
21* (Me) 10BBC	20.	8 0 部		上記の液晶組成物は、比較例に較べて、TNIが上昇する		
この液晶組成物の諸物性値は次の通りであ	った。			一方、TSNが低下してネマティック液晶範囲が顕著に拡		
$T_{N1} = 6.3.1 \ [^{\circ}C]$				大された。また、粘度も著しく低下し、比較化	列2、3に	
$T sn \leq 0 $ [°C]				較べてδΡも優れている。		
$\eta_{20} = 40.2 [mPa \cdot s]$				【0038】実施例2		
$P_{25} = 3.6 [\mu m]$				次に示す組成の液晶組成物を調製した。		
H. T. P. = 0. 014 [μ m ⁻¹ · w t	% ⁻¹]			V 2 — H B — C	12.0%	
$\delta P = 0$. 92				1 V 2 — H B — C	12.0%	
【0036】比較例3			30	3 - H B - C	8.0%	
次に示す組成の液晶組成物を調製した。				2 - H H B - C	6.0%	
3 — H B — C	24.	0 %		3 - H H B - C	6.0%	
5 — H B — C	36.	0 %			6.0%	
7 — H B — C	25.	0 %		5 — H H B — C	6.0%	
5 — H B B — C	15.	0 %		3 - H B - O 2	12.0%	
6 O B E B E 1 * (M e) 6	2.	2部			11.0%	
この液晶組成物の諸物性値は次の通りであ	った。			3-H2BTB-2	5.0%	
$T_{NI} = 6.9.8 \ [^{\circ}C]$				3-H2BTB-3	4.0%	
$T_{SN} \leq -10$ [°C]				3-H2BTB-4	4.0%	
$\eta_{20} = 4 \ 2. \ 5 \ [m P a \cdot s]$			40	3-HB (F) $TB-2$	8.0%	
$P_{25} = 3.9 [\mu m]$				6 B B E 1 * (t - B u) B	2.5部	
H. T. P. = 0. 1 1 7 [μ m ⁻¹ • w t % ⁻¹]				この液晶組成物の諸物性値は次の通りであった。		
$\delta P = 0.31$				$T_{NI} = 1 \ 0.8.8 \ [\%]$	-0	
【0037】実施例1				$T_{SN} \leq -30 \ [^{\circ}C]$		
次に示す組成の液晶組成物を調製した。				$\eta_{20} = 3.0.9 \text{ [mPa \cdot s]}$		
V 2 — H B — C	13.	0 %		$P_{25} = 1$. 2 [μ m]		
1 V 2 — H B — C		0 %		H. T. P. = 0. 333 [μ m ⁻¹ · w t % ⁻¹	ıη	
3 — H B — C		0 %		$\delta P = 0. 18$	-	
1 O 1 -HH-3		0 %		上記の液晶組成物は、比較例に較べて、TNI	が上昇する	
3 — H H — 4			50	一方、TSNが低下してネマティック液晶範囲が		
	- 0.	- /0		73. Come in the control of the contr		

11.0%

4.0%

1.0部

37 $\eta_{20} = 23.2 \text{ [mPa \cdot s]}$ 大された。また、粘度も著しく低下し、比較例2、3に 較べてδPも優れている。 $P_{25} = 3.7 [\mu m]$ 【0039】実施例3 H. T. P. = 0. 338 [μ m⁻¹ · w t %⁻¹] 次に示す組成の液晶組成物を調製した。 $\delta P = 0.15$ V2-HB-C11.0% 【0041】実施例5 1 V 2 - H B - C 11.0% 次に示す組成の液晶組成物を調製した。 3 - H B - C16.0% 301 - BEB (F) - C12.0% 5 - H B - C6.0% 1 V 2 - H B - C 7.0% 101-HB-C 4.0% 2-BTB-O18.0% 2 - H H B - C4.0% 10 3 - B T B - O 1 8.0% 5.0% 3 - H H B - C4 - B T B - O 18.0% 4 - H H B - C3.0% 4 - B T B - O 28.0% 3 - HH - 2VI10.0% 5 - B T B - O 19.0% 101-HH-5 9.0% 2 - H 2 B T B - 24.0% 2 - B T B - O 111.0% 2 - H 2 B T B - 33.0% 3-HB (F) VB-22.0% 2 - H 2 B T B - 43.0% 3-HB (F) TB-24.0% 3 - H 2 B T B - 24.0% 3-HB (F) TB-34.0% 3-H2BTB-3 4.0% 6 B B E 1 * (Me) B 2 1.5部 3 - H 2 B T B - 44.0% この液晶組成物の諸物性値は次の通りであった。 3 - HB (F) TB - 26.0% $T_{NI} = 7.8.7$ [°C] 3 - HB (F) TB - 36.0% $T_{SN} \leq -30$ [°C] 6.0% 3 - HB (F) TB - 4この液晶組成物の諸物性値は次の通りであった。 $\eta_{20} = 29.8 \text{ [mPa \cdot s]}$ $P_{25} = 2.9 [\mu m]$ $T_{NI} = 88.7 \ [\%]$ H. T. P. = 0. 230 [μ m⁻¹ · w t %⁻¹] $T_{SN} \leq -30$ [°C] $\delta P = 0.17$ $\eta_{20} = 40.8 \text{ [mPa \cdot s]}$ 上記の液晶組成物は、比較例に較べて、TNIが上昇する $P_{25} = 3. \ 3 \ [\mu m]$ 一方、TSNが低下してネマティック液晶範囲が顕著に拡 H. T. P. = 0. 202 [μ m⁻¹ · w t %⁻¹] 大された。また、粘度も著しく低下し、比較例2、3に $\delta P = -0.08$ 較べてSPも優れている。 【0042】 実施例6 【0040】実施例4 次に示す組成の液晶組成物を調製した。 次に示す組成の液晶組成物を調製した。 3 - P y B (F) - F12.0% V2-HB-C13.0% 5 - P y B (F) - F7.0% 1 V 2 - H B - C 13.0% 3 - P y B B - F10.0% 3 - HB - C12.0% 4 - P y B B - F10.0% 2-HB-C10.0% 5 - P y B B - F10.0% 3 - HH - 43.0% 2 - P y B - 22.6% 2 - B T B - 110.0% 3 - P y B - 22. 7% 2 - B T B - 37.0% 4 - P y B - 22. 7% 2 - H 2 B T B - 24. 0% 40 3-HB-O215.0% 2 - H 2 B T B - 34.0% 8.0% 3 - H H B - 13 - H 2 B T B - 24.0% 3 - HHB - O15.0%

4.0%

4.0%

7.0%

5.0%

0.8部

この液晶組成物の諸物性値は次の通りであった。

 $T_{NI} = 7.3.7 [\%]$

6BBE1*(t-Bu)B

3 - H 2 B T B - 3

3 - H 2 B T B - 4

3 - H H B - O 1

3-HHB-1

 $T_{SM} \leq -30$ [°C]

 $T_{NI} = 84.9 \ [\%]$

 $T_{SN} \leq -30$ [°C]

 $\eta_{20} = 41.9 [mPa \cdot s]$

8 O B B E 1 * (E t) B

この液晶組成物の諸物性値は次の通りであった。

50 $P_{25} = 3.9 [\mu m]$

3 - H H B - 3

3-HHB-F

```
T_{SN} \leq -30 [°C]
H. T. P. = 0. 256 [\mu m^{-1} \cdot w t \%^{-1}]
\delta P = 0.09
                                             \eta_{20} = 28.3 \text{ [mPa·s]}
上記の液晶組成物は、比較例1と同じ光学活性化合物を
                                             P_{25} = 3.8 [\mu m]
添加しているが、TNIが上昇する一方、TSNが低下して
                                             \delta P = 0.14
ネマティック液晶範囲が顕著に拡大された。また、TNI
                                             【0045】実施例9
                                            次に示す組成の液晶組成物を調製した。
が高い割には粘度も低く、δPも優れている。
【0043】実施例7
                                             3 - HB - C
                                                                            16.0%
次に示す組成の液晶組成物を調製した。
                                             1 O 1 - H B - C
                                                                            10.0%
3 - P \vee B (F) - F
                               12.0%
                                             3 - HB (F) - C
                                                                              5.0%
5-PyB(F)-F
                                 7. 0\% 10 3-PyBB-F
                                                                              5.0%
3 - P y B B - F
                               10.0%
                                             2 - B T B - 1
                                                                              3.0%
4 - P y B B - F
                               10.0%
                                             3 - HH - 4
                                                                              5.0%
5 - P y B B - F
                               10.0%
                                             3 - HHB - 1
                                                                              8.0%
2 - P y B - 2
                                 2.6%
                                             3-HHB-O1
                                                                              2.0%
3 - P y B - 2
                                 2. 7%
                                             3-HB (F) TB-2
                                                                              3.0%
4 - P y B - 2
                                 2. 7%
                                             3-HB (F) TB-3
                                                                              3.0%
3 - HB - O2
                               15.0%
                                             2-HHB(F)-F
                                                                            12.0%
3 - H H B - 1
                                 8.0%
                                                                            12.0%
                                             3-HHB(F)-F
3 - H H B - O 1
                                 5.0%
                                             5-HHB(F)-F
                                                                            12.0%
3 - H H B - 3
                               11.0% 20 3-HHB-F
                                                                              4.0%
3-HHB-F
                                 4.0%
                                             6 B B E 1 * (Me) B 2
                                                                              3.0部
6 B B E 1 * (Me) B 2
                                 1. 0部
                                            この液晶組成物の諸物性値は次の通りであった。
この液晶組成物の諸物性値は次の通りであった。
                                            T_{NI} = 89.3 [°C]
T_{NI} = 84.5 [°C]
                                             T_{SN} \leq -30 [°C]
T_{SN} \leq -30 [°C]
                                             \eta_{20} = 2.7.8 \text{ [m P a \cdot s]}
\eta_{20} = 34.6 \text{ [mPa·s]}
                                             P_{25} = 1.5 [\mu m]
P_{25} = 2.5 [\mu m]
                                            H. T. P. = 0. 222 [\mu m<sup>-1</sup> • w t %<sup>-1</sup>]
H. T. P. = 0. 200 [\mu m<sup>-1</sup> · w t %<sup>-1</sup>]
                                             \delta P = 0.21
\delta P = 0.19
                                             【0046】実施例10
【0044】実施例8
                                         30 次に示す組成の液晶組成物を調製した。
次に示す組成の液晶組成物を調製した。
                                             3 - H B - C
                                                                            10.0%
2-HHB(F)-C
                               6.0%
                                             5 - HB - C
                                                                            20.0%
3-HHB(F)-C
                               6.0%
                                             3 - H H B - O 1
                                                                              5.0%
2 - H B - C
                               8.0%
                                             3 - H H B - 1
                                                                            10.0%
3 - HB - C
                               8.0%
                                             3-HHB-3
                                                                            16.0%
2 - P y B - F
                             14.0%
                                             101HBBH-3
                                                                              2.0%
3 - H H B - 1
                               8.0%
                                             5-HEB-F
                                                                            13.0%
3-HHB-3
                               5. 5%
                                             7 - H E B - F
                                                                            13.0%
2 - P y B H - 3
                               5.0%
                                             3-HHEB-F
                                                                              3.0%
3 - P y B H - 3
                               5.0%
                                         40 5-HHEB-F
                                                                              3.0%
4 - P y B H - 3
                               5.0%
                                            3-HHB-F
                                                                              5.0%
2 - P y B - 2
                               2. 5%
                                             80BBE1* (Me) B
                                                                              2. 5部
                                            この液晶組成物の諸物性値は次の通りであった。
3 - P y B - 2
                               2. 5%
4 - P y B - 2
                               2. 5%
                                            T_{NI} = 84.1  [°C]
2-HHB(F)-F
                             11.0%
                                            T_{SN} \leq -30 [°C]
3-HHB(F)-F
                              11.0%
                                             \eta_{20} = 29.7 \text{ [mPa \cdot s]}
80BBE1* (Et) B
                               1. 5部
                                            P_{25} = 2.0 [\mu m]
C N
                               0.5部
                                            H. T. P. = 0. 200 [\mu m<sup>-1</sup> · w t %<sup>-1</sup>]
この液晶組成物の諸物性値は次の通りであった。
                                             \delta P = -0.12
T_{NI} = 83.3 [°C]
                                             【0047】実施例11
```

次に示す組成の液晶組成物を調製した。 V2-HB-C9.0% 2 - B B - C12.0% 3 - HB - O27.0% 4 - B B - C8.0% 3 - HH - 49.0% 5 - B B - C4.0% 3 - H H B - 18.0% 2 - HHB - C4.0% 3 - HHB - O15.0% 6.0% 3-HHB-C8.0% 3-HHB-32-HB-C10.0% 3 - H 2 B T B - 24.0% 5 - P y B - F8.0% 3 - H 2 B T B - 34.0% 101 - HH - 38.0% 3 - H 2 B T B - 44.0% 101 - HH - 58.0% 10 2 - H 2 B T B - 2 2.0% 5.0% 3 - H H B - 18.0% 3-HHEB-F3 - H H B - 310.0% 5-HHEB-F5.0% 3-HHB-O14.0% 3-HHB-F4.0% 4.0% 3-HHB-F5 H B E 1 * (E t) B 0.8部 3-HBEB-F4.0% この液晶組成物の諸物性値は次の通りであった。 5 H B E 1 * (E t) B 1. 0部 $T_{NI} = 89.7 \ [\%]$ この液晶組成物の諸物性値は次の通りであった。 $T_{SN} \leq -30$ [°C] $T_{NI} = 80.5 \ [\%]$ $\eta_{20} = 33.8 \text{ [mPa \cdot s]}$ $T_{SN} \leq -30$ [°C] $P_{25} = 3.6 [\mu m]$ $\eta_{20} = 28.8 \text{ [mPa \cdot s]}$ 20 H. T. P. = 0. 3 4 7 $[\mu m^{-1} \cdot w t \%^{-1}]$ $P_{25} = 3. \ 0 \ [\mu m]$ $\delta P = 0.19$ H. T. P. = 0. 333 [μ m⁻¹ · w t %⁻¹] 【0050】実施例14 $\delta P = 0.25$ 次に示す組成の液晶組成物を調製した。 【0048】実施例12 3-HB (F) EB (F) -C7.0% 次に示す組成の液晶組成物を調製した。 3 - HB (F) - C3.0% 3-HB-C22.0% 2-HHB(F)-C5.0% 2 - HB - C10.0% 3 - HB - O210.0% 3 - H H B - 13 - HH - 46.0% 10.0% 3-HHB-O14.0% 3 - H H B - 15.0% 3 - HHB - 312.0% 30 3-HHB-O1 5.0% 2-HBB(F)-F6.0% 5.0% 3-HHB-33-HBB(F)-F6.0% 5 - HB - CL4.0% 5-HBB(F)-F12.0% 7 - HB - CL3.0% 3-HHEB(F, F)-F10.0% 2-HHB(F)-F5.0% 4-HHEB (F, F) -F3.0% 3-HHB (F) -F5.0% 5-HH2B(F, F)-F3.0% 5-HHB (F) -F5.0% 3-HHB (F, F) -F6.0% 3-HH2B(F, F)-F10.0% 6BBE1*(t-Bu)B2.0部 5-HH2B(F, F)-F5.0% この液晶組成物の諸物性値は次の通りであった。 3-HHB (F, F) -F10.0% $T_{NI} = 85.5 [\%]$ 40 3-HHB-CL 3.0% $T_{SN} \leq -30 \ [\%]$ 2. 0部 8OBBE1*(Et)B $\eta_{20} = 28.9 \text{ [mPa \cdot s]}$ この液晶組成物の諸物性値は次の通りであった。 $P_{25} = 1.5 [\mu m]$ $T_{NI} = 83.1$ [°C] H. T. P. = 0. 333 [μ m⁻¹ · w t %⁻¹] $T_{SN} \leq -30 \ [\%]$ $\eta_{20} = 21.3 \text{ [mPa \cdot s]}$ $\delta P = 0.16$ 【0049】実施例13 $P_{25} = 1.9 [\mu m]$ 次に示す組成の液晶組成物を調製した。 H. T. P. = 0. 263 [μ m⁻¹ · w t %⁻¹] 201 - BEB(F) - C4.0% $\delta P = 0.14$ 301 - BEB (F) - C15.0% 【0051】実施例15 1V2-BEB(F, F)-C9.0% 50 次に示す組成の液晶組成物を調製した。

7.0%

7.0%

7.0%

6.0%

6.0%

8.3%

6.3%

6.3%

4. 9%

3.9%

8.3%

8.0%

4.0%

6.0%

1.8部

11.0%

43

2 - H B - C8.0% 3 - H B - C14.0% 3-PyB(F)-F12.0% 5-PyB(F)-F8.0% 2 - H H B - C4.0% 5.0% 3-HHB-C3 - P y B H - 23.0% 2 - P y B H - 36.0% 3 - P y B H - 36.0% 4 - P y B H - 34 - P y B B - 2 3.0% 3-HB (F) TB-25.0% 3-HB (F) TB-34.0% 3 - H H B - 16.0% 3-HHB-O14.0% 3 - H H B - 36.0% 5 H B E 1 * (E t) B 2. 0部

この液晶組成物の諸物性値は次の通りであった。

 $T_{NI} = 9.7.8 \ [^{\circ}C]$ $T_{SN} \leq -30 \ [\%]$

 $\eta_{20} = 3.7.7 \text{ [m P a \cdot s]}$

 $P_{25} = 1.5 [\mu m]$

H. T. P. = 0. 333 [μ m⁻¹ · w t %⁻¹]

 $\delta P = 0.30$

【0052】実施例16

次に示す組成の液晶組成物を調製した。

V2-HB-C1 V 2 - H B - C 3-HB-C5 - HB - C1 O 1 - H B - C2-HHB-C3 - H H B - C4 - HHB - C3 - HH - 2V1101 - HH - 52 - B T B - O 13-HB (F) VB-23-HB (F) TB-23-HB (F) TB-380BBE1* (Et) B 21* (Me) 10BBC

この液晶組成物の諸物性値は次の通りであった。

 $T_{NI} = 7.8.5$ [°C]

 $T_{SN} \leq -30$ [°C]

 $\eta_{20} = 26.8 \text{ [mPa·s]}$

 $P_{25} = 2. \ 2 \ [\mu m]$

 $\delta P = 0.19$

以上の比較例および実施例の透明点と粘度の関係を「図 1」のグラフで表した。比較例1~3に較べて実施例1 50 し、またピッチの温度依存性の小さいカイラルーネマチ

3 - H B - C

1 O 1 - H B - C

201 - HB - C2-HHB-C

3-HHB-C

10-BEB-2

3 - H E B - O 4

4-HEB-O2 5-HEB-01

6. 0% 10 3-HEB-O2

5-HEB-O2

4 - H E B - O 4

3 - H H B - 1

3 - H + B - O 13-HHB-3

6 B B E 1 * (Me) B 2

この液晶組成物の諸物性値は次の通りであった。

44

 $T_{NI} = 82.6$ [°C]

 $T_{SN} \leq -30$ [°C]

20 $\eta_{20} = 36.2 \text{ [mPa·s]}$

 $P_{25} = 2.5 [\mu m]$

H. T. P. = 0. 222 [μ m⁻¹ · w t %⁻¹]

 $\delta P = 0.23$

【0053】実施例17

次に示す組成の液晶組成物を調製した。

11.0%

11.0%

16.0%

6.0%

4.0%

4.0%

5.0%

3.0%

10.0%

9.0%

11.0%

2.0%

4.0%

4.0%

0.05部

0.50部

~17の液晶組成物が透明点が高い割には粘度が低いこ とが、顕著に表れている。

[0054]

【発明の効果】実施例に示したように、双安定スイッチ ング液晶表示素子に求められる種々の特性を満たしなが ら、高速応答性に対応するために低粘度であり、さらに 低温相溶性に優れ、電圧駆動可能な温度範囲を大きく

ック液晶組成物を提供することができる。 【図面の簡単な説明】 【図 1 】本発明の実施例および比較例の液晶組成物の透明点と粘度の関係を示すグラフ。

46

【図1】

図1 透明点と粘度の関係

