

YDRAULIC AND OTHER TABLES

for purposes of

SEWERAGE & WATER-SUPPLY

^By THOMAS HENNELL

M.INST, C.E.

A S.

HYDRAULIC AND OTHER TABLES,

H.

FOR PURPOSES OF

SEWERAGE AND WATER-SUPPLY.

BY

THOMAS HENNELL,

LONDON:

E. & F. N. SPON, 16, CHARING CROSS.

NEW YORK: 35, MURRAY STREET.

1884.

9643/6/09

PREFACE.

Ir has been found that the Engineering Pocket Books in most general use give comparatively little information

ERRATA.

- P. 29, last line, for "2" in 2640 read "1" in 2640.
- P. 32, heading, for sewer 2 feet 6 inches x 1 foot "10" inches read 1 foot "8" inches.
- P. 62, heading, second line, for Hardness (columns "3, 4, and 5" read "2, 3, and 4."
- P. 65, first, weight per yard of 2-inch pipe, for "0.2.24" read "0.0.24."
 - Every precaution has been taken, as far as possible, to guard against errors both in the calculations and printing. If however, notwithstanding, any mistakes should be discovered, the author will be greatly obliged by having them pointed out to him.
 - 6, DELAHAY STREET, WESTMINSTER,
 November 1883.

PREFACE.

It has been found that the Engineering Pocket Books in most general use give comparatively little information relating to Sewerage and Water Supply. And even the large and valuable works of, the late Mr. Beardmore and others contain somewhat abridged Tables applicable to the calculations most frequently required in designing and carrying out works of moderate size.

The Tables in this book have been calculated from time to time by the author to meet his own requirements. Thinking it probable that other engineers will have experienced the same want as himself, he has now been induced to make them public. The greater part have been used in manuscript for some years; but a few additional Tables have been recently added in order to make the work more complete.

Every precaution has been taken, as far as possible, to guard against errors both in the calculations and printing. If however, notwithstanding, any mistakes should be discovered, the author will be greatly obliged by having them pointed out to him.

6, DELAHAY STREET, WESTMINSTER,
November 1883.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

CONTENTS.

Introdu	ction and Description of the Tables	7
TABLE		
I.	Quantity of Water contained in Pipes, Wells, and	
	Circular Tanks, per foot in length or depth	13
II.	Quantity of Water contained in Square Cisterns	
	or Tanks, per foot in depth	13
	Flow of Water through Sluices	14
IV.	Flow of Water over Weirs	15
V.	Flow in Circular Sewers or Conduits at various	
	depths	16-29
VI.	Flow in Egg-shaped Sewers at various depths	30-41
VII.	Flow in Pipes (running full)	42-47
VIII.	Quantity of Sewage due to Population	48
IX.	Quantity and Discharge from Areas due to Rain-	
	fall	50
X.	Annual Rainfall in British Isles	52
XI.	Monthly Rainfall in ditto	55
XII.	Daily and Hourly Maximum Rainfall in ditto	57
XIII.	Water Supply by Gravitation-Works for given	
	Populations	58
XIV.	Water Supply by Pumping-Works for given	
	Populations	60
XV.	Analysis of quality of Water used for Domestic	
	Supplies	62
XVI.	Quantity of Brickwork in Circular Sewers, Cul-	
	verts, and Wells	64
XVII.	Quantity of Brickwork in Egg-shaped Sewers	64
XVIII.	Weight of Cast-iron Pipes	65
XIX.	Weight of Lead Pipes	66

DESCRIPTION AND REMARKS ON THE USE OF THE TABLES.

Tables I. and II. show the quantities of water in gallons per foot contained in pipes, wells, tanks, &c., of given dimensions, and require no explanation.

Tables III. and IV. give the discharge in gallons per minute of water passing through sluices and over weirs under ordinary conditions. Correction is required in case of bell-mouthed or specially formed orifices, and also where there is any considerable velocity of current in approaching the outlets, but the notes at the head of the Tables, to which attention should be directed, will enable this to be made with sufficient accuracy for most practical purposes.

Table V. shows the velocity and discharge under varying conditions of flow in circular sewers and conduits, from 9 inches to 6 feet in diameter.

In designing and carrying out sewerage works, it is important to know not only the maximum carrying capacity of the sewers, but also the effect produced by the much smaller quantity which will be generally flowing through them. This is essential in order to ascertain whether flushing will be required, and if so, what quantity of water will be needed for the purpose. The Table consequently shows, not only the maximum discharge and velocity of each kind of sewer under the most favourable circumstances, but also the discharge and velocity of the same sewers when full to one-half, one quarter, and one-eighth only of their heights respectively. If a sewer

should at any time run quite full, its discharge will be somewhat less than that indicated in the fourth column, the velocity of current being in that case considerably diminished by friction against the top. With any circular conduit the velocity when full is exactly the same, and the discharge just double that when half-full; the precise figures for a sewer running full may therefore be ascertained, if required, from the third column of Table by doubling the discharge.

A velocity of 150 feet per minute, or $2\frac{1}{2}$ feet per second, is generally considered sufficient to remove all obstacles of the ordinary character found in sewers. The quantity of water required to produce this velocity in each case is given in the last column of the same Table, and will be found especially useful in designing flushing arrangements.

Table VI. gives precisely similar information for eggshaped sewers, as Table V. for circular sewers.

Table VII. gives the discharge of pipes from 3-inch to 3 feet diameter, when running full at various inclinations or pressures. It should be remembered that the velocity of water passing through a line of pipes of any considerable length depends not on the inclination of any particular section, but on the hydraulic gradient throughout, or ratio of head of water to length of pipe; the "head" being the difference of level between the surface at or above the upper end of the pipe, and that of the cistern or pond into which it delivers, or if it has a free outlet, the lower end of the pipe itself. This velocity, except for slightly increased friction at bends, is entirely independent of the course of the pipes, whether laid at a uniform inclination or otherwise, also whether commencing at or below the upper surface and discharging, if not freely, at or below the lower surface.

The formula which has been used in the calculations

for Tables V., VI., VII., is that known as Eytelwein's Formula, which is the basis of the tables contained in Beardmore's 'Manual of Hydrology.' The formula used in Neville's Tables, and those found in Hurst's and Molesworth's Pocket Books, gives generally rather higher results: varying in fact from about 20 per cent. higher in the case of the sharpest inclinations quoted in Tables V. and VI. herein to 5 per cent. in case of the flattest in the same Tables. And referring to Table VII., Neville's formula would give results varying from about 25 per cent. higher at the top, to from 2 to 5 per cent. lower at the foot of each page.

Except with very flat inclinations, it may therefore be fairly assumed that the results here given are somewhat within the mark, and this is especially the case with the

larger sewers and pipes.

Table VIII. is intended to assist in designing the capacity of sewers, and shows at a glance the quantity of sewage, irrespective of rain and surface water, which should be allowed for given populations. In certain cases (see note at foot of Table), the allowance for rain may also be calculated on the basis of population with the help of the last column of the Table, but under ordinary circumstances this should be taken in proportion to area as shown by Table IX., next following.

Table IX. shows the quantity of water due to rainfall over given areas, and the quantities in gallons per minute, when running off at different rates of flow. The latter columns of the Table are intended for calculating the capacity of sewers; and the second and third columns for estimating the quantity of water that can be collected from areas and gathering grounds for irrigation or water supply. The areas dealt with range from 100 square feet (representing the roof of a small building) to one square mile.

Tables X., XI., XII., are rainfall Tables, extracted principally from those prepared by Mr. Symons, for the Annual Reports of the Meteorological Society. That showing the monthly distribution at Edinburgh is, however, taken from figures contained in a valuable paper on the water supply of that city, by Mr. A. Leslie, C.E., which was read at the Institution of Civil Engineers last session.

Tables XIII. and XIV. are intended to facilitate the preparation of preliminary reports and rough estimates for works of water supply, and show the approximate dimensions of reservoirs, filter beds, main pipes, pumping machinery, &c., required for the supply of given populations. It is not of course asserted that the constant numbers assumed in the headings of the columns are universally applicable; and some few, e.g. 100 feet lift to be pumped, are necessarily arbitrary. But the differences due to variations in these conditions can be ascertained generally either by inspection or by a short calculation, and results may be thus arrived at with much greater facility than if the Tables were not available.

Table XV. gives results of analyses of potable waters. To engineers and others, not constantly or very frequently engaged in investigating the quality of water, the figures presented by an analysis convey little information without some readily available standard of comparison. This it is endeavoured to afford by means of this Table, which contains the results of analyses of well-known waters from nearly every description of source.

It is not proposed here to give any opinion on the much disputed question of the determination of organic matter in water. This was formerly attempted to be shown by the "loss on ignition" of the dissolved solid matters, and subsequently by the "oxygen required to oxidise oxidisable matter" therein. Both these methods have

been generally abandoned, but other two are still in use. The first of these, known as the combustion process, and adopted by Dr. Frankland and others, is to ascertain the quantities of carbon, nitrogen, and ammonia set free from the solid matter during combustion, and which are believed to be organic carbon and nitrogen. Dr. Frankland in his reports also gives always the nitrogen found in the solid residue as nitrates, which are mineral not organic substances, but are liable to have derived their origin from organic substance since disappeared.

The second method of determining the organic matter is called the "ammonia process," and eonsists in a distillation of the water by means of which the nitrogen contained in any organic substances is necessarily turned into ammonia; and this is called "free" or "albumenoid" ammonia according as it is evolved in the first or second

stage of the process.

As both these methods are still in use by eminent chemists, it is thought desirable to give results of each of them. The first nine columns of the Table accordingly contain (1) the total solid matter dissolved in the water; next the portion of this total which consists of earthy salts, commonly known as "hardness," and divided into (2) "temporary" hardness, i.e. removable by boiling the water; and (3) "permanent;" (4) the total hardness; (5) the chlorine; (6) organic carbon; (7) organie nitrogen; (8) ammonia; and (9) the nitrogen contained in nitrates: all these being obtained by the combustion process. The whole of this part of the Table is from analyses made principally by Dr. Frankland, and which have been published from time to time in the Reports of the Rivers Pollution Commissioners and other official documents. In columns 10 and 11 will be found the quantities of free and albumenoid ammonia evolved by the ammonia process, from specimens of the same waters; and for the information contained in these columns the author is indebted to Professor Wanklyn, the inventor of that process.

Tables XVI. and XVII. give the quantities of brickwork per yard in sewers, culverts, &c., and require no explanation.

Table XVIII. gives the weight per yard of east-iron pipes adapted to different pressures of water. These weights have been arrived at not by theoretical calculation, but by a careful comparison of the specifications and recent practice of experienced engineers. They agree, however, nearly with the calculated strengths as given by Mr. Box in his Hydraulic Tables. The weights for various safe heads found in Table 14 of Beardmoro's 'Manual of Hydrology,' are certainly insufficient according to recent practice.

Table XIX. gives the weights per yard of lead service pipes of five different qualities as described in the note appended to the Table.

TABLE I.—QUANTITY of WATER contained in PIPES, WELLS, and CIRCULAR TANKS, per foot in length or depth.

-							
Diam.	Contents.	Diam.	Contents.	Diam.	Contents.	Diam.	Contents.
inches.	gals. per	ft. in.	gals. per foot	feet.	gals, per foot	feet.	gals. per
3	.005	1 9	15.0	11	594	90	39,758
1	.008	2 0	19.6	12	707	100	49,088
Pico Polica Solve	.019	2 3	24.8	13	829	110	59,396
1	.034	2 3 2 6	30.7	14	962	120	70,685
11/2	.076	2 9	37.1	15	1,104	130	82,956
2	.135	3 0	44.2	16	1,256	140	96,211
21	•212	3 3	51.8	17	1,418	150	110,447
	•305	3 6	60.2	18	1,590	160	125,664
3 4 5	•54	3 9	69.0	19	1,772	170	141,862
5	.85		78.5	20	1,963	180	159,044
6	1.22	4 6	99.4	25	3,068	190	177,206
7	1.66	4 0 4 6 5 0	122.7	30	4,418	200	196,350
8	2.17	5 6	148.5	35	6,013	250	306,796
9	2.75	6 0	176.7	40	7,854	300	441,788
10	3.39	6 6	207.4	45	9,940	350	601,322
11	4.12	7 0	240.5	50	12,272	400	785,400
12	4.91	7 6	276.1	55	14,850	500	1,227,190
13	5.75	8 0	314.2	60	17,671	600	1,767,150
14	6.67	8 6	354.7	65	20,740	700	2,405,290
15	7.67	9 0	397.6	70	24,053	800	3,141,600
16	8.72	9 6	443.0	75	27,611	900	3,975,750
18	11.04	10 0	490.9	80	31,416	1000	4,908,750

Table II.—Quantity of Water contained in Square Cisterns or Tanks, per foot in depth.

Length of Side.	Contents.	Length of Side.	Contents.	Length of Side.	Contents.	Length of Side.	Contents.
ft. in. 1 0 1 6 2 0 2 6 3 0 3 6 4 0 4 6 5 0	gals. per foot 6·25 14·06 25·00 39·06 56·25 77·56 100·00 126·56 156·25	ft. in. 6 0 7 0 8 0 9 0 10 0 11 0 12 0 15 0 20 0	gals. per foot 205 306 400 506 625 756 900 1,406 2,500	feet 25 30 35 40 45 50 60 70 80	gals. per foot 3,906 5,625 7,756 10,000 12,656 15,625 20,500 30,625 40,000	90 100 125 150 200 300 400 500 1000	gals. per foot 50,625 62,500 156,250 140,625 250,000 562,500 1,000,000 1,562,500 6,250,000

TABLE III .- FLOW of WATER through SLUICES and OPENINGS.

NOTE.—The "Head of Water" in the Table must represent the depth from the surface to the centre of the opening; or if the opening be submerged, then the difference of level between the surfaces above and below.

If the opening be bell-mouthed, or be a sluice having curved side walls properly tapering inwards to the narrowest part, the discharge will be greater than that shown by the Table, to the extent of, in case of the best form of opening, about 50 per cent.

Head of Water. Discharge per Square Foot in Area of Opening.	Head of Water.	Discharge per Square Foot in Area of Opening.	Head of Water.	Discharge per Square Foot in Area of Opening.	Head of Water.	Discharge per Square Foot in Area of Opening.
ft. in. galls. per minute 382 1 1 541 1 1 663 2 765 2 1 856 3 937 3 1 1,014 4 1,082 5 1,210 6 1,326 7 1,432 8 1,530 9 1,624 10 1,712 11 1,794 1 0 1,875 1 1 2 2,025 1 3 2,096 1 4 2,165 1 5 2,231 1 6 2,296 1 9 2,480 2 0 2,651	ft. in. 2 3 2 6 9 3 0 0 3 3 3 3 3 9 4 0 4 3 4 6 4 9 9 5 5 6 6 6 6 9 9 7 7 3 7 7 6 7 9 9 0	galls, per minute 2,813 2,964 3,110 3,248 3,379 3,507 3,631 3,751 3,865 3,977 4,986 4,192 4,295 4,398 4,495 4,592 4,687 4,779 4,872 4,960 5,048 5,135 5,219 5,302	ft. in. 8 3 8 6 8 9 9 0 9 3 9 6 9 9 10 0 10 3 10 6 10 9 11 0 11 3 11 6 11 9 12 0 12 6 13 0 13 6 14 0 14 6 15 0 15 6 16 0	galla, per minute 5, 385 5, 466 5, 546 5, 525 5, 702 5, 779 5, 854 5, 929 6, 004 6, 075 6, 148 6, 219 6, 288 6, 358 6, 427 6, 495 6, 628 6, 759 6, 888 7, 015 7, 139 7, 262 7, 382 7, 502	ft. in. 16 6 17 0 17 6 18 0 18 6 19 0 19 6 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 30 0 32 0 34 0 38 0 40 0 45 0 50 0	gals, per minute 7,616 7,731 7,844 7,956 8,064 8,173 8,280 8,385 8,590 8,796 8,991 9,184 9,375 9,558 9,744 9,920 10,605 10,933 11,253 11,557 11,857 12,577 13,256

TABLE IV .- FLOW of WATER OVER WEIRS.

NOTE.—The "Depth" must represent difference in level between the sill of the weir and the surface of still water above it. If the water approaches the weir with a current having a perceptible velocity, the discharge will be greater than that shown by the Table to an extent depending on the velocity; a velocity of 2 feet per second will be equivalent generally to about half an inch, and a velocity of 3 feet per second to about three-quarters of an inch additional depth.

Depth.	Discharge per Inch in Width.	Depth.	Discharge per Inch in Width.	Depth.	Discharge per Inch in Width.	Depth.	Discharge per Inch in Width.
inches	gals. per min.	inches	gals. per min.	inches	gals. per min.	ft. in.	gals. per min.
1	•334	41	22.37	101	87.5	2 1	334
5	•467	41	23.39	$10\frac{1}{2}$	90.8	2 2	354
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.613	43 41	24.44	103	94.1	2 3	374
1/2	.944	41/2	25.49	11	97.4	2 4 2 5 2 6	395
500	1.329	45 43 44	26.56	111	100.7	2 5	417
8	1.734	44	27.64	111	104.1	$\begin{bmatrix} 2 & 6 \\ 2 & 7 \end{bmatrix}$	439
18	2.185	47/8 5	28·74 29·85	$11\frac{3}{4}$ 12	107·5 111·0	2 7 2 8	461
1	2.670	9	29.99	12	111-0	2 8	483
11	3.185	5½ 5½	30.97	121	118.0	2 9	506
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.818	54	32.12	13	125.1	2 10	529
13	4.305	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33.26	131	132.5	2 11	553
$1\frac{1}{2}$	4.905	$ 5\frac{1}{2} $	34.44	14	139.8	3 0	577
15	5.231	55	35.62	141	147.4	3 1	601
13	6.167	52	36.85	15 15½	155·1 163·0	3 2 3	625
$2^{\frac{1}{8}}$	6·855 7·552	5 7 /8	38·02 39·24	16	170.9	3 4	650 675
2	7.332	0	39 24	10	110 5	O T	019
21	8.27	61	41.72	161	179.0	3 5	701
$\frac{2\frac{1}{8}}{2\frac{1}{4}}$	9.01	$6\frac{1}{2}$	44.25	17	187.1	3 6	727
23	9.77	63	46.82	17½	195.5	3 7	753
$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	10.55	7	49.45	18	203.9	3 8	779
25	11.36	74	52.12	$18\frac{1}{2}$	212.3	3 9	806
$\frac{23}{4}$	12.18	$7\frac{1}{2}$	54.84	19	221.1	3 10	833
$\frac{2\frac{1}{8}}{3}$	13.02	73	57.61	191	229.8	3 11 4 0	860
3	13.87	8	60.41	20	255 8	4 0	888
31	14.75	81	62.54	201	247.6	4 1	915
$\frac{3\frac{1}{8}}{3\frac{1}{4}}$	15.64	81	66 · 17	21	256.9	4 2	944
33	16.55	83	69.11	211	265.9	4 3	972
350-43 51004 3 51004	17.48	9	72.09	22	275.5	4 4	1000
35	18.42	91	75.12	$22\frac{1}{2}$	284.8	4 6	1060
33	19.39	$9\frac{1}{2}$	78.18	23	294.4	4 8	1120
$\frac{3\frac{7}{8}}{4}$	20.37	93	81.29	231	303.9	4 10	1180
4	21.36	10	84 · 43	24	313.9	5 0	1240
				11		1	

TABLE V.-VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

	Onantity	required to give Velocity of 150 Feet	per minute	gallons	:	:	:	:	30	40	09	85	125	200	:	:	:
		Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 1535	1245	1085	975	845	268	682	594	532	487	422	378	327	291
	Sewer.	Seven (Maximun	Velocity.	feet 600	490	424	380	330	300	267	232	808	190	165	148	128	116
	Depth of Flow in Proportion to Height of Sewer.	One-half. (44 Inches.)	Velocity. Discharge.	gallons.	615	530	475	415	377	330	293	261	238	207	184	158	146
nches.	oportion t	One (44 I		feet 550	447	387	346	302	275	244	213	190	173	151	134	115	106
Diameter 9 Inches.	f Flow in Pr	One-quarter. (24 Inches.)	Velocity, Discharge, Velocity, Discharge.	gallons 225	195	158	143	122	112	100	88	78	71	62	22	48	44
Dian	Depth o	One-(24 J	Velocity.	feet 420	344	596	566	230	509	187	164	146	133	115	103	83	85
		One-eighth.	Discharge.	gallons 58	48	40	37	33	30	56	22	20	18	16	1.4	12	11
	1	One-C	Velocity.	feet 300	246	212	190	166	151	134	117	105	95	83	74	64	58
		tion.		feet per mile 264	176	132	105.6	80	99	52.8	40	32	26.4	20	16	12	10
		Inclination.		1 in 20	1 30			99 " 1	08 1	001 " 1	1 , 132	1, 165	1 , 200	, 264	1, 330	1 ,, 440	1 ,, 528
								-		,					7		

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 12 Inches.

	required to give Velocity of 150 Feet	per minute.	gallons	:		55	69	135	212	320	:	:	:
	Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 2580	2235	1730	1410	1230	1000	865	780	029	615	220
ewer.	Seven (Maximun	Velocity.	feet 565	438 438	380	309	270	219	190	170	147	135	120
Depth of Flow in Proportion to Height of Sewer.	One-half. (6 It.ches.)	Velocity. Discharge.	gallons 1,275	1,100	850	069	000	490	425	380	331	300	270
portion to	One (6 J		feet 520	446 400	348	282	246	200	174	155	135	123	110
Flow in Pro	One-quarter. (3 Inches.)	Discharge.	gallons 380	330	285	212	181	145	130	7115	66	06	8
Depth of	One-6 (3 In	Velocity.	feet 396	342	268 243	220	188	151	134	119	103	94	∞ 400
	One-eighth. (1½ Inch.)	Velocity. Discharge.	gallons 98	98 20	99	53	46	388	83	53	25	23	21
	One-	Velocity.	feet 284	247 220	192	155	135	110	96	85	74	67	60
	tion.		feet per mile 176	132 105·6	80 99	52.8	04.8	26.4	ຂ	16	12	01	20
	Inclination.				99	100	132	88	, 264	, 330	, 440	, 528	099 "
			1 1	н н		1		- ^	H	٦,	-	-1	٦,
l											C		

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

	Quantity	give Velocity of 150 Feet		gallons	:	.0	000	00	92 -	106	146	027	· nee	567	:	:	:	
		Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 3900	3480	3030	27.50	0052	2140	1910	1737	1516	1390	1175	1068	954	824	-
	sewer.	Seven. (Maximun	Velocity.	feet 547	488	426	386	340	301	268	244	213	190	165	150	134	116	
	Depth of Flow in Proportion to Height of Sewer.	One-half.	Velocity. Discharge.	gallons 1900	1700	1470	1340	1201	1014	933	888	735	799	571	520	468	400	-
ncnes.	portion to	One (7\$ I.		feet 500	446	386	352	316	274	245	223	193	174	150	137	123	105	
Diameter 15 inches	Flow in Pro	One-quarter. (31 Inches.)	Velocity, Discharge.	gallons 592	526	460	418	372	325	291	263	229	206	177	162	146	126	
Diam	Depth of	One-q (3% Ir	Velocity.	feet 385	342	299	272	242	211	189	171	149	134	7.	105	95	85	
		One-eighth. (14 Inch.)	Velocity, Discharge.	gallons	135	117	105	94	82	73	67	58	52	11	41	36	32	
		One-	Velocity.	feet 978	250	218	196	176	153	137	125	109	97	60	37.	89	09	
		tion.		feet per mile	105.6	80	99	52.8	40	35	26.4	20	16	9	101	2 00	ော	
		Inclination.		A O	20	99	80	100	139	165	200	264	330		598	GEO	880	
				.5	1 :		: :			2	. :		, ,		•		2 2	
														ľ	-4 64			

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 18 Inches.

_
One-eighth. (24 Inches.)
Velocity. Discharge.
feet gallons
_
_
_
135 105
_
_
65 50

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 1 Foot 9 Inches.

Onentity	required to give Velocity of 150 Feet	per minute.	gallons	:	42	58	68	125	167	257	375	009	830	1270	;	:
	Seven-eighths. (Maximum Discharge.)	Discharge.	gallone 8150	7080	6440	5754	5012	4480	4074	3542	3162	2744	2506	2240	1932	1770
ewer.	Seven (Maximur	Velocity.	feet 582	909	460	411	358	320	291	253	226	196	179	160	138	126
Depth of Flow in Proportion to Height of Sewer.	One-half. (104 Inches.)	Discharge.	gallons 3930	3420	3115	2775	2415	2160	1965	1710	1530	1320	1207	1080	937	855
portion to	Onc.	Velocity.	feet 524	456	414	370	322	288	262	877	204	176	161	144	125	114
Flow in Pro	One-quarter. (54 Inches.)	Velocity. Discharge.	gailons 1200	1050	950	648	740	199	599	524	462	404	369	330	286	263
Depth of	One-9	Velocity.	feet 406	354	322	288	251	224	203	177	158	137	125	112	97	68
	One-eighth. (2s Inches.)	Discharge.	gallons 306	266	241	216	188	168	153	133	611	103	94	84	72	99
	One-	Velocity.	feet 292	254	230	506	179	160	146	127	113	86	89	08	69	63
	tion.		feet per mile	80	99	52.8	40	32	26.4	20	16	12	10	80	9	ō
	Inclination,		20	99	80	100	132	165	200	264	330	440	528	099	880	1056
1			1 in	1 "	1 ,,	1 ,,	1 ,,	1 ,,	1 "	1 ,,	1 ,,	1 "	1 ,,	1 ,,	1 ,,	1 "

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 2 Feet.

Inclination. One-eighth. One-parter. One-half. Ci froot.) Ci froot. Ci froot				Depth of	Fiow in Pr	oportion to	Depth of Flow in Proportion to Height of Sewer.	ewer.		Omendito
feet per mitie Feet per mitie Geoldy. Discharge. Velocity. Velocity. Discharge. Velocity.	Inclination,	One- (3 In	ighth.	One-c (6 In	narter.	One (1 F	half.	Seven (Maximu	reighths. m Discharge.)	required to give Velocity of 150 Feet
feet per mile feet gallons feet feet 492 4820 3940		Velocity.	Discharge.	Velocity.	Discharge.		Discharge.	Velocity.	Discharge.	per Minute.
66 246 38 341 120 452 40 191 262 284 1182 398 394 446 450 32 171 234 289 390 311 3048 390 26-4 155 212 284 1092 348 3410 20 135 185 189 728 246 2411 16 185 189 728 2411 3048 16 145 146 562 210 2156 10 36 131 134 515 174 1705 8 85 116 119 458 155 1519 6 68 93 95 366 133 1305 6 82 95 366 123 110 1078			gallons	feet 278	gallons	feet	gallons	feet	gallons	gallons
55.8 220 301 307 1182 398 3900 40 191 262 284 1092 348 3410 32 171 234 239 920 311 3048 26.4 155 212 217 835 282 2764 20 135 185 189 728 2411 16 165 169 650 220 2156 10 96 131 134 515 174 1705 8 8 16 10 458 155 1519 6 8 95 366 123 1205 4 60 82 84 323 110 1078			338	344	1324	446	4370	490	8820	. 45
40 191 262 284 1092 348 3410 32 171 234 239 920 311 3048 26.4 155 212 217 835 282 2764 20 135 185 189 728 246 2411 16 105 145 146 562 220 2156 10 96 131 134 515 174 1705 8 8 116 119 458 155 1519 6 68 93 95 396 133 1205 4 60 82 84 323 110 1078			301	307	1182	398	3900	438	8000	62
32 171 234 239 920 311 3048 26.4 155 212 217 835 282 2764 20 135 185 189 728 246 2411 16 121 166 169 650 220 2156 10 145 146 562 190 1862 10 131 134 515 174 1705 8 85 116 119 458 155 1519 6 68 93 95 366 123 1313 6 82 84 923 110 1078			262	584	1092	348	3410	381	6950	400
26.4 155 212 217 835 282 2764 20 135 185 189 728 246 2411 16 121 166 169 650 220 2156 10 145 146 562 190 1862 10 131 134 515 174 8 85 116 119 458 155 1519 6 68 93 95 366 123 1313 6 82 84 323 110 1078			234	239	920	311	3048	340	9029	133
20 135 215 217 252 2704 16 121 166 169 728 246 2411 10 121 166 169 650 226 2411 10 165 145 146 562 190 1862 10 131 134 515 174 1705 8 85 116 119 458 155 1519 6 74 101 103 396 134 1313 5 68 93 95 366 123 1205 4 60 82 84 323 110 1078		7,7	910	010	160	000	0000	000	202	i i
16 121 166 169 650 220 275 10 105 145 146 562 190 1862 10 131 134 515 174 1705 8 85 116 119 458 155 1519 6 68 93 95 366 123 1205 4 60 82 84 323 110 1078		135	185	189	798	207	9411	969	9640	17.1
12 105 145 146 562 190 1862 10 96 131 134 515 174 1705 8 8 74 101 103 396 134 1313 5 68 93 95 366 123 1205 4 60 82 84 323 110 1078		121	166	169	650	220	2156	241	4400	397
10 96 131 134 515 174 1705 8 , 85 116 119 458 155 1519 6 68 93 95 366 123 1313 4 60 82 84 323 110 1078		105	145	146	562	190	1862	208	3800	630
8 85 116 119 458 155 1519 6 74 101 103 396 134 1313 5 68 93 95 366 123 1205 4 60 82 84 323 110 1078		96	131	134	515	174	1705	190	3470	850
6 74 10 10 30 13 13 5 68 93 95 36 123 120 4 60 82 84 323 110 1078	1 660 8	25	116	110	450	14	0121	940	0010	7000
5 68 93 96 36 36 100 100 4 60 82 84 323 110 1078	1 880 6	74	101	103	306	124	1919	170	9700	nner
4 60 82 84 823 110 1078	1 1056 5	89	93	95	366	193	1905	134	9485	:
_	1 ,, 1320 4	9	85	848	323	110	1078	120	2200	: :
				_						:

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various deptils.

Diameter 2 Feet 3 Inches.

Onantity	required to give Velocity of 150 Feet	per minute.	gallons	48	99	101	141	187	289	419	099	880	1340	2250	:	:
	Seven-elghths.	Discharge.	galions 13, 180	11,900	10,728	9,340	8,346	7,583	6,589	5,895	5,109	4,670	4,162	3,620	3,300	2,959
ewer.	Seven (Maxlmur	Velocity.	feet 570	520	464	404	361	328	285	255	221	202	180	157	143	128
Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot 14 Inch.)	Discharge.	gallons 6420	5830	5220	1121	40 60	3677	3205	2875	2480	2270	2024	1752	1604	1431
portion to	One (1 Foot	Velocity.	feet 520	473	423	368	329	298	260	233	201	184	164	142	130	116
Flow In Pro	One-quarter. (6# Inches.)	Velocity. Discharge.	gallons 1950	1772	1587	1383	1232	1120	974	872	755	691	614	531	487	433
Depth of	One-c (6‡ I)	Velocity.	feet 400	364	326	284	253	230	200	179	155	142	126	109	100	83
	One-elghth. (3% Inch.)	Discharge.	gallons	450	403	353	314	287	248	222	193	177	160	135	123	11
	One-(3)	Velocity.	feet 286					165	143	128	111	102	95	78	7.1	- 19
	ttion,		feet per mlle	99	52.8	40	32	26.4	20	16	12	10	00	9	2	4
	Inclination,			80				200	264	330	440	528	099	880	1056	1320
1		1	1 in	1 ,,	· ·	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,,	1 "
1		4														

Velocity and Discharge per Minute in Circular Sewers, with Water flowing at various depths.

Diameter 2 Feet 6 Inches.

Onendite	required to give Velocity of 150 Feet	per minute.	gallons 42	70 106 148	197	303	000	1380	2270 3500	:	:
	Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 17,150	13,851 12,141 10,858	9,832	8,578	6,640	5,415	4,702	3,819	3,320
ewer.	Seven (Maximun	Velocity.	feet 602	426 381	345	301 269	233 213	190	165	134	116
Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot 3 Inches.)	Discharge.	gallons 8420	5955 5312	4823	4210 3766	3261 2970	2664	2296	1883	1630
portion to	One (1 Foot	Velocity.	feet 550	389	315	275 246	213 194	174	150	123	106
Flow in Pro	One-quarter. (74 Inches.)	Discharge.	gallons 2520	1797	1460	1268 1136	986 901	805	691	565	493
Depth of	One-c (7‡ I)	Velocity.	feet 422	299 267	243	211	164 150	134	115	94	82
	One-eighth. (34 Inches.)	Discharge.	gallons 650	460 411	374	325 290	251	206	176	146	125
	One-	Velocity.	feet 302	240 214 191	174	151 135	117	96	82	89	80
	tion.		feet per mile	80 80 80 80 80 80	26.4	20 16	120	œ	න <i>ත</i>	4	m
	Inclination		in 66	132	300	, 264	, 440 , 528	099 "	, 880 , 1056	, 1320	, 1760
					-		H H	H		H,	-

Velocity and Dischange per Minute in Circular Sewers, with Water flowing at various depths.

Diameter 2 Feet 9 Inches.

			Depth of	Fiow in Pro	portion to	Depth of Fiow in Proportion to Height of Sewer.	wer.		- Quantity
	One-e (4} In	One-eighth. (4½ Inches.)	One-c (8‡ In	One-quarter. (8t In.hes.)	One (1 Foot 4	One-haif. (1 Foot 44 Inches.)	Seven (Maximur	Seven-eighths. (Maximum Discharge.)	give Velocity of 150 Feet
9	Velocity.	Discharge.	Velocity.	Discharge.	Velocity.	Discharge.	Velocity.	Discharge.	
4	eet	gallons	feet	gallons	feet	galions	feet	gallons	gallons
ಣ	16	822	444	3232	276	10,675	632	21,800	:
2	58	671	360	262I	469	8,690	513	17,698	4/
22	*	582	313	2279	407	7,542	447	15,420	111
20	0	520	280	2038	365	6,763	399	13,765	155
183	3	476	255	1856	331	6,133	363	12,523	202
								000	010
15	00	411	222	1616	288	5,337	316	10,902	010
14	2	369	198	1441	258	4,781	282	9,729	450
12	+	322	172	1252	223	4,132	244	8,418	713
	12	291	157	1143	203	3,761	223	7,693	0.10
Ä	100	260	140	1019	182	3,374	200	6,900	1420
~	37	966	121	881	158	2,928	173	5,970	2300
	62	207	110	801	144	2,668	158	5,450	3300
	71	185	66	753	129	2,390	141	4,864	:
	62	166	98	626	111	2,060	122	4,210	:

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 3 Feet.

	Quantity	give Velocity of 150 Feet	Ixi winne	gallons	78	162	217	329	468	738	1000	1460	2330	3300	:	:
		Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 27,100	21,926	17,080	15,603	13,550	12,154	10,500	9,526	8,540	7,432	6.774	6,055	5,255
	wer.	Seven (Maximu	Velocity.	feet 660	534	404	380	330	296	256	232	808	181	165	148	128
	Depth of Flow in Proportion to Height of Sewer.	One-half (1 Foot 6 Inches.)	Discharge.	gallons 13,290	10,760	8,360	7,610	6,640	5,900	5,060	4,660	4,180	3,630	3,320	2,950	2,530
r eer.	portion to	One (1 Foot	Velocity.	feet 604	489	380	346	302	897	230	212	190	165	151	134	115
Diameter o reet.	Flow in Pro	One-quarter, (9 Inches.)	Discharge.	gallons 3999	3255	2458	2302	1999	1792	1549	1419	1264	1001	995	891	170
ממ	Depth of	One-o (9 lr	Velocity.	feet 462	376	328 284	566	231	202	179	164	146	126	115	103	83
		One-eighth. (41 Inches.)	Velocity. Discharge. Velocity. Discharge.	gallons 1027	832	650	588	514	458	396	363	322	281	257	229	198
		One-6 (41 I	Velocity.	feet 332	269	255	190	166	148	128	117	104	91	83	74	49
		tion.		feet per mile 80	52.8	9 8 8	26.4	30	16	12	10	0 0	9	10	4	တ
		Inclination.		99		165	200	264	330	440	528	099	880	1056	1320	1760
				1 in	, ,	- H	H	-1		 H		 	-	; ; ; , , 	 H	H

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 3 Feet 6 Inches.

3.2	One-quarter. (104 Inches.)	One-haif. (1 Foot 9 Inches.)	Seven (Maxlmun	Seven-eighths. (Maximum Discharge.)
Velocity. I	Discharge. Velocity.	ity. Discharge.	Velocity.	Discharge.
	gallons feet		fret	gallons
		-	504	28,200
	_	H	404	22,600
	2949 32	9,750	356	19,930
			319	17,850
	_		276	15,430
	-	-	252	14,100
	1856 206	6 6,180	225	12,590
	_	-	195	10,900
	_		178	9,960
			159	8,900
	1140 126	6 3,780	138	7,720
		_	126	7,050
			113	6,320

VELOGITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 4 Feet.

	Onantity	required to give Velocity of 150 Feet	per minute.	gallons	3.60	375	535	830	1100	1580	2530	2200	5100	:	:	:
		Seven-eighths, (Maximum Discharge.)	Discharge.	gailons 55.780	39,340	27,890	24,820	21,460	19,650	17,600	15,180	13,940	12,410	10,730	9,830	8,800
	ewer.	Seven (Maximur	Velocity.	feet 764	539	382	340	294	269	241	208	161	170	147	135	121
	Depth of Flow in Proportion to Height of Sewer.	One-half. (2 Feet.)	Discharge.	gallons 27,240	15,680	13,640	12,150	10,540	9,650	8,620	7,450	0,520	6,075	5,260	4,825	4,310
•	portion to	One (2	Velocity.	feet 695	492	348	310	269	246	220	130	1/4	155	134	123	110
	Flow in Pro	One-quarter. (1 Foot.)	Discharge.	gallons 8240	5720	4120	3658	3136	2860	2550	2244	2029	1829	1568	1430	1275
	Depth of	One-c (1 F	Velocity.	feet 536	372	268	238	204	186	991	146	‡eI	119	102	93	88
		One-eighth. (6 Inches.)	Discharge.	gallons 2110	1490	1055	940	814	737	665	27.0	970	473	407	368	330
		One- (6 Ir	Velocity.	feet 384				148	134	121	col	0a 	98	74	67	99
				feet per mile	40	# 08 80 80	16	12	2	20 0	o u	0	4	တ	2.2	cs.
		Inclination.						9	00 9	000	2 9	0	00	200	83	2
		Incl			, 132	, ,	33	, 440	,	, 8	30,	100	, 1320	, 176	, 211	, 264
				1 in	, H-	, , , ,	H .		, H	, H.	, -	, -	1,	, -	, H	1,
			1													

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 5 Feet.

Onantity		Discharge	gallons gallons 97, 180			,590 420	_	620	,320 1,220	550	450	300		.860 9.040		15,275
л,	Seven-eighths.	Velocity, Disci	feet gal						301 34,	_	_			165 18	_	
Depth of Flow in Proportion to Height of Sewer.	One-half. (2 Feet 6 Inches).	Discharge.	gallons 47,300	33,400	27,180	23,650	21,210	18,280	16,700	15,000	12,980	11,820	10.600	9,140	8,350	7,500
portlou t	On (2 Feet	Velocity.	feet 776	248	446	388	348	300	274	246	213	194	174	150	137	123
Flow in Pro	One-quarter. Foot 3 Inches.)	Velocity. Discharge.	gallons 14,400	10,150	8,220	7,200	6,430	5,530	5,075	4,540	3,945	3,600	3.215	2,765	2,540	2,270
Depth of	One-c	Velocity.	feet 600	422	342	300	268	230	211	189	164	150	134	115	105	90
	One-eighth. (74 Inches.)	Discharge.	gallons 3680	5600	2115	1840	1670	1430	1300	1170	1000	920	835	715	650	585
	One- (74 I	Velocity.	feet 428					166	151	136	117	107	97	83	75	89
	tlon.		feet per mile 80	40	26.4	50	91	12	10	00	9	Q.	4	တ	2.2	લ
	Inclination.					264		440		099	880	1056	1320	1760	2112	2640
		1	1 in	1 ,,	, ,		۳ "	1,	, ,	٠ د س		ц ,	1,		7	

VELOCITY and DISCHARGE per MINUTE in CIRCULAR SEWERS, with Water flowing at various depths.

Diameter 6 Feet.

	Onantity		rge.	ons gallons	100	•	500 455	_	130 980	-	290 1,890	2	ີຕ ົ	_	560 9,340	_	
		Seven-eighths. (Maximum Discharge,	Discharge.	gallons	108,	88	76,	68	59	54	48,290	41,	38	34	29,560	27.	24.
	sewer.	Seve (Maximu	Velocity.	feet 932	099	536	466	418	360	330	294	254	233	808	180	165	147
	Depth of Flow in Proportion to Height of Sewer,	One-half. (3 Feet.)	Velocity. Discharge.	gallons 75,200	53,120	43,060	37,600	33,535	29,120	26,560	23,830	20,480	18,800	16.770	14,560	13,280	11,915
- 000	portion to	(3)		feet 852	602	488	456	380	330	301	270	732	212	190	165	150	135
Transport of Feet	Flow in Pro	One-quarter. (I Foot 6 Inches.)	Velocity. Discharge.	gallous 22, 580	16,000	13,140	11,290	10,040	8,720	8,000	7,200	6,160	5,645	5.020	4,360	4,000	3,600
	Depth of	One-c (I Foot		feet 652	462	385	326	290	252	232	208	178	162	145	126	116	104
		One-eighth. (9 Inches.)	Discharge.	gailons 5790	4110	3340	2895	2610	2250	2055	1830	1600	1448	1300	1126	1027	917
		One-(9 Ir	Velocity.	feet 468					182	166	148	129	117	105	91	83	74
		tion.		feet per mile	40	26.4	02.	16	12	10	0 0	9	2	4	တ	2.2	લ્ય
		Inclination.		in 66	,, 132	2000	** 264	,, 330	,, 440	,, 528	,, 660	,, 880	,, 1056	., 1320	,, 1760	,, 2112	,, 2640
-				-	-		٦,	~	-	-		۲,	-	-	-	-	

Table VI.—Velocity and Dischange per Minute in Egg-shaped Sewers, with Water flowing at various depths.

	Onantity	required to give Velocity of 150 Feet	per Minute.	gallons	: :	380	09	80	120	210	330	620	920	:	:	:	:
		Seven-eighths. (Maximum Discharge.)	Discharge.	gallons	5440	4430	3850	3450	3138	2720	2440	2115	1925	1725	1490	1360	1220
	ewer.	Seven (Maximur	Velocity.	feet	468	381	331	297	270	234	210	182	166	148	120	117	105
ches.	Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot.)	Velocity. Discharge.	gaffons	2360	1951	1674	1496	1360	1180	1056	918	838	748	919	290	527
ot 4 Ir	portion to	Onc (1)		feet 480	417	339	295	264	2.40	208	186	162	148	132	114	104	93
Sewer 2 Feet x 1 Foot 4 Inches.	Flow in Pro	One-quarter. (6 Inches.)	Discharge.	gallons	989	556	486	436	395	346	305	268	243	216	189	172	153
er 2 Fe	Depth of	One-c (6 In	Velocity.	feet 380	331	268	234	210	100	166	148	128	117	105	91	83	74
Sew		One-eighth. (3 Inches.)	Velocity. Discharge.	gallons	196	160	139	124	112	98	88	26	69	62	53	47	44
		One-	Veiocity.	feet 295	257	210	183	163	148	129	116	66 -	91	81	20	1 9	58
		tion.		feet per mile	80	52.8	40	32	26.4	20	16	12	10	00	9	0	ď
		Inclination.		50	99	100	132	165	200	264	330	440	528	099	880	1056	1320
				1 in	1 ,	1 ,,	1 ,,	1 ,,	1 ,,	1 ,	,	, T		1 ,,	1 ,,	1 ,	1 "

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 2 Feet 3 Inches × 1 Foot 6 Inches.

				Depth of	Flow in Pr	oportion to	Depth of Flow in Proportion to Height of Sewer.	sewer.		Ouantity
Inclination.	on.	One-e	One-eighth. (3\frac{3}{8} Inches.)	One-6 (6‡ Ii	One-quarter. (6‡ Inches.)	One. (1 Foot	One-half. (1 Foot 14 Inch.)	Seven (Maximut	Seven-eighths. (Maximum Discharge.)	give Velocity of 150 Feet
		Velocity.	Velocity. Discharge.	Velocity.	Discharge.	Velocity.	Discharge.	Velocity.	Discharge.	
1	et per mile	feet	gallons	feet	gallons	feet	galions	feet 579	gallons 8400	gallons
ni 50	9.001	971	096	350	1001	443	3900	497	7310	: :
	52.8	221	212	285	747	360	3175	404	5940	41
	40	192	185	248	650	314	2770	352	5180	
	32	172	167	222	585	280	2470	314	4620	80
006	9.8.4	156	150	201	527	254	2240	286	4200	120
264	202	135	130	176	460	222	1960	248	3650	210
330	16	121	116	156	409	198	1750	222	3265	330
440	12	105	101	136	356	172	1512	192	2824	610
528	12	97	93	124	325	156	1380	176	2590	006
000	o	90	60	111	066	140	1235	157	2310	2000
880	o cc	74	35	96	250	121	1067	126	2000	:
1056	, rd	89	65	88	230	111	980	124	1824	:
1320	4	61	59	78	204	66	874	111	1633	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 2 Feet 6 Inches × 1 Foot 10 Inches.

					Depth o	f Flow in p	roportion to	Depth of Flow in proportion to Height of Sewer.	Sewer.		:
	Inclination.		One-e (3‡ fr	One-eighth. (3f inches.)	One-q (74 ti	One-quarter.	One (1 Foot	One-half. (1 Foot 3 Inches.)	Seven (Maximun	Seven-eighths. (Maximum Discharge.)	required to give Velocity of 150 Feet
			Velocity.	Velocity. Discharge.	Velocity.	Velocity. Discharge. Velocity. Discharge.	Velocity.	Discharge.	Velocity.	Discharge.	per Minute.
	feet	per mile	feet	gallons	feet	gailons	feet	galions	feet	gallons	gallons
-		08	280	338	371	1203	467	4138	522	9500	
		25.8	226	272	301	972	369	3350	424	7700	43
	,, 132 4	40	198	238	261	846	330	2924	369	0029	65
		32	176	214	236	764	296	2620	330	0009	90
		26.4	160	193	212	687	268	2375	300	5450	125
		00	140	169	186	601	933	9069	1961	4750	910
	,, 330 1	16	124	150	165	534	209	1852	235	4280	335
		12	108	131	143	463	180	1598	202	3670	009
		10	66	120	131	424	165	1462	185	3350	890
	099 "	œ	88	107	118	382	148	1311	165	3000	1500
	,, 880	9	77	93	101	328	128	1132	143	2600	
	,, 1056	2	70	84	92	300	117	1034	131	2380	: :
	,, 1320	4	62	7.4	82	266	105	926	118	2140	
	,, 1760	တ	54	65	71	230	06	800	. 101	1834	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 2 Feet 9 Inches x 1 Foot 10 Inches.

				Depth of	Flow in Pro	oportion to	Depth of Flow in Proportion to Height of Sewer.	ewer.		Onantite
Incli	Inclination.	One-6 (4 ¹ / ₈ In	One-eighth.	One-q (1 \$8)	One-quarter. (8t Inches.)	One (1 Foot 4	One-half. (1 Foot 4‡ inches.)	Seven (Maximur	Seven-cighths. (Maximum Discharge.)	required to give Velocity of 150 Feet
		Velocity.	Discharge.	Velocity.	Discharge.	Velocity.	Velocity. Discharge.	Velocity.	Discharge.	ber minne
i i 66	feet]	feet 300	galions 439	feet 387	gallons	feet 489	gallons 5930	feet 550	gallons 12,050	gallons
100	0 52.8	243	350	313	1230	402	4300	446	9,800	455
		212	305	274	1077	345	3690	389	8,550	202
		190	274	244	926	308	3300	348	7,720	100
ž		172	248	222	870	284	3040	316	6,950	130
,, 26	•	150	216	194	260	244	2610	274	6,020	215
., 330	0 16	134	192	172	674	218	2333	246	5,400	345
., 44	•	116	168	150	588	190	2033	214	4,700	588
. , 52		106	153	137	538	172	1840	194	4,270	880
., 66		95	137	122	478	154	1650	174	3,860	1440
., 88	9 0	83	118	106	411	133	1420	150	3.300	3300
, 105	6 5	22	108	97	380	122	1310	137	3,010	:
,, 1320	0 4	67	96	98	337	109	1166	123	2,700	:
, 176		58	84	75	59 1	95	1016	101	2,350	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 3 Feet × 2 Feet.

					Depth of	Flow in Pro	portion to	Depth of Flow in Proportion to Height of Sewer.	ewer.		Onentity
	Inclination	lon.	One-eighth. (44 Inches.)	ighth.	One-c (9 In	One-quarter. (9 Inches.)	One (1 Foot	One-baif. (1 Foot 6 Inches.)	Seven (Maximun	Seven-eighths. (Maxlmum Discharge.)	required to give Velocity of 150 Feet
			Velocity.	Velocity. Discharge	Velocity.	Discharge.	Velocity.	Velocity. Discharge.	Velocity.	Discharge.	The minner
1 in	99	feet per mile 80	feet 313	gallons 5.10	feet 404	gallons 1880	feet 510	gallons' 6500	feet 574	gallons 14.900	gailons
,,	100	52.8	255	437	322	1504	414	5280	467	12,120	:
7	132	40	221	380	286	1335	361	4600	407	10,550	75
	165	32	198	338	256	1200	324	4130	364	9,450	100
1 ,	200	26.4	180	309	828	1064	293	3735	330	8,570	135
	800	00	t ii	070	000	040	G H	0206	000	N AEO	210
4 1	707	02	/01	270	202	940	200	0020	200	0.400	C12
1 "	330	91	139	238	180	840	27.8	2910	222	6,680	350
1 ,,	440	12	121	508	156	728	198	2525	222	5,770	230
1 ,,	528	10	111	190	143	899	180	2300	203	5,270 •	870
1 ,,	099	œ	66	169	128	009	162	2065	182	4,725	1400
-	880	9	98	147	111	517	140	1785	157	4.075	2800
1	1056	2	78	135	101	470	128	1620	143	3,730	:
1 ,,	1320	4	70	120	90	420	114	1455	128	3,340	;
1 ,,	1760	တ	61	105	78	364	66	1262	111	2,885	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

	Quantity	required to give Velocity of 150 Feet		gallons.	75	135	220	350	590 865	1390	2700	4550	:	:
		Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 18,240	12,870	11,530	9,120	8,140	6,435	5,765	4,940	4,560	4,055	3,540
	sewer.	Seven (Maximun	Velocity.	feet 598	490	378	299	267	232	189	162	150	133	116
Sewer 3 Feet 3 Inches × 2 Feet 2 Inches.	Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot 74 Inches.)	Discharge.	gallons 7975	6475 5635	5040	3990	3565	2800	2520	2170	1995	1785	1540
2 Feet	oportion t	One (1 Foot	Velocity.	feet 532	432 376	336	99%	238	206 187	168	145	133	119	103
Inches ×	Flow in Pr	One-quarter. (91 Inches.)	Velocity. Discharge.	gallons 2300	1865 1630	1455	1150	. 1023	897	727	- 630	574	511	448
Feet 3	Depth o	One-(94 I	Velocity.	feet 421	341 298	266	910	187	164	133	115	105	93	85
Sewer 3		One-eighth. (4½ Inches.)	Velocity. Discharge.	gallons 655	531 462	416	394	287	253 231	207	179	163	144	127
		One-c (4½ Ii	Velocity.	feet 326	264 230	207	161	143	126	103	89	81	17	83
		tion.		feet per mile	52.8	32	2 6	16	12	, ao	9	20	4	တ
		Inclination.		99		165	200	330	440	099	880	1056	1320	1760
				l in	, r		; - ,	 	: :: :=!:=	4 				
				1								^		

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Inches.
4
Feet
CS.
×
Inches
8
Feet
3
Sewer

Quantity	required to give Velocity of 150 Feet		gallons	80	110	140	220	355	009	865	1380	2550	4900	2007	:	:	:
	Seven-eighths. (Maximum Discharge.)	Discharge.	gallons 17,950	15,660	14,030	12,700	11,100	9,900	8,600	7,830	7,015	6,050	2 500	0,000	4,950	4,300	3,510
ewer.	Seven (Maximur	Velocity.	feet 504	440	394	357	312	278	242	220	197	170	187	101	139	121	86
Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot 9 Inches.)	Discharge.	gallons 7760	0929	0009	2490	4780	4280	3730	3380	3000	2620	0000	0007	2140	1870	1500
portion to	One (1 Foot	Velocity.	feet 448	390	350	317	275	247	215	195	175	151	001	100	124	108	87
Flow in Pro	One-quarter. (104 Inches.)	Discharge.	gallons 2260	1900	1740	1600	1370	1240	1080	950	870	092	000	060	623	540	437
Depth of	One(104]	Velocity.	feet 355	300	276	251	218	196	170	154	138	120	00	607	86	85	69
	One-eighth. (54 Inches.)	Discharge.	gallons 642	260	200	455	396	355	308	280	250	217	00,	138	177	154	124
	One-(Velocity.	feet 275	240	214	195	170	159	132	120	107	93	à	85	92	99	53
	ion.		feet per mile	40	32	56.4	20	16	6	12	000	9	,	2	4	00	R
	Inclination		20	132	165			330	440	528	660	880	1	1056	1320	1760	2640
			l ii	-	-	-		-	4					1	-	-	1 total

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

	Ouantity	required to give Velocity of 150 Feet	Per minne.	gallons	115	225	360	865	2550	3850		: •
		Seven-eighths. (Maximum Discharge.)	Discharge.	21,200	16,470	13,050	11,670	9,230	7,155	6,520	5,060	4,120
o di	ewer.	Seven (Maximun	Velocity.	feet 521	405	321	287	227	176	160	124	102
Sewer 3 Feet 9 Inches × 2 Feet 6 Inches.	Depth of Flow in Proportion to Height of Sewer.	One-half. (1 Foot 10‡ Inches.)	Velocity. Discharge.	gallons 9190	7130	5645	5050	4000	3090	2830	2525	1782
2 Feet	portion to	One (1 Foot 1		feet 464	360	285	255	202	156	143	127	06
Inches ×	Flow in Pro	One-quarter. (114 Inches.)	Discharge.	gallons 2665	2075	1640	1460	1160	901	820	730	515
Feet 9	Depth of	One-9 (114 J	Velocity.	feet 367	286 286	226	201	160	143	113	101	12
Sewer 3		One-eighth. (5# Inches.)	Velocity. Discharge.	gailons 758	592 536	467	418	331	256 256	234	209	148
	-	One-(5# I)	Velocity.	feet 284	222 901	175	157	124	96	87	28 8	55
		tion.	-	feet per mile 52.8	32	28	16	12	ထ ထ	70	4 6	. જ
		Inclination.		in 100	", 165 165 165	264	, 330	528		, 1056	1320	, 2640
				1,1			-		HH	H		

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 4 Feet x 2 Feet 8 Inches.

					Depth of	Flow in Pro	oportion to	Depth of Flow in Proportion to Height of Sewer.	ewer.		Onantity
	Inclination.	ttion.	One-e (6 In	One-eighth. (6 Inches.)	One-q (1 F	One-quarter. (1 Foot.)	One (2 I	One-balf. (2 Feet.)	Seven (Maximur	Seven-eighths. (Maximum Discharge.)	give Velocity of 150 Feet
			Velocity.	Velocity. Discharge.	Velocity.	Velocity. Discharge.		Velocity. Discharge.	Velocity.	Discharge.	Pei minne.
	3	feet per mile	1	gallons	feet	gallons	feet	galions	feet	gallons	gallons
	189	22.20		780	330	9740	417	9.440	468	21,760	.80
-		35		089	295	2450	372	8,420	420	19,500	120
-		26.4		635	268	2220	339	7,675	380	17,670	150
-		20	181	550	234	1940	295	089,9	332	15,430	225
1	330	16	162	490	208	1725	264	5,980	297	13,800	360
-	440	12	140	430	180	1500	228	5,160	256	11,900	610
-	528	10	128	390	165	1350	208	4,720	234	10,880	098
-	099	80	113	340	148	1230	186	4,210	210	9,750	1350
-	., 880	9	66	300	128	1065	162	3,668	182	8,460	2500
-	1056	22	90	275	117	970	148	3,340	166	7,720	4000
-	1320	4	81	245	104	863	132	2,990	148	6,900	:
-	1760	က	70	210	90	750	114	2,580	128	6,950	:
-	,, 2640	63	57	170	74	615	93	2,105	105	4,880	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewer 4 Feet 6 Inches × 3 Feet.

Onantite	00	Discharge.	gallons gallons		_	20,720 235			_	11,300 2400		10,360 3550	_	3,000	6,530
Sewer.	Seven-eighths. (Maximum Discharge.	Velocity.	feet 570	497	405	352	314	272	248	192		176	107	136	=======================================
Height of	One-half. (2 Feet 3 Inches.	Discharge.	galions 14,540	12,650	11,320	8,930	8,000	6,920	6,325	2,660		4,465	4,000	3,460	2,834
oportion to	One (2 Feet	Velocity.	feet 508	442	360	312	280	242	221	171		156	140	171	n n
Depth of Flow in Proportion to Height of Sewer.	One quarter. (1 Foot 14 Inch.)	Velocity. Discharge.	gallons 4300	3740	3360 3040	2655	2375	2055	1870	1680		1330	1130	1030	840
Depth of	One q (1 Foot		feet 402	350	314	248	222	192	175	136		124	111	200	8
	One-eighth. (64 Inches.)	Discharge.	gallons 1230	1050	27.0 28.0 38.0	740	664	572	525	463		372	334	280	722
	One-e (64 Ir	Velocity.	feet 314				172	148	136	105	. 6	96	90	# 6	20
	Inclination.		1 in 100 feet per mile 52.8		1 , 165 32					1 ,, 660 8		1 ,, 1056 5		1 " 1760 3	

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

02
Ф
.cl
Inches.
- 23
н
44
м
Feet
0
0
Fr.
3
X
4
<u>w</u>
9
Feet
10
802
ers
0
Ь
Sew
0
CD
34

					Depth of	Flow in Pr	oportion to	Depth of Flow in Proportion to Height of Sewer.	ewer.		Quantity
	Inclination.	tion.	One-c (7# Ir	One-cighth (7# Inches.)	One-q (1 Foot	One-quarter, (1 Foot 3 Inches.)	One (2 Feet 6	One-balf. (2 Feet 6 Inches.)	Seven (Maximur	Seven-eighths. (Maximum Discharge.)	give Velocity of 150 Feet
			Velocity.	Velocity. Discharge.	Velocity.	Velocity. Discharge.	Velocity.	Velocity. Discharge.	Velocity.	Discharge.	
1		feet per mile	feet	galions	feet	gallons	feet	gallons	feet	gallons	gailons
 	in 100	52.8	322	1554	424	0100	957 466	16,520	522	37,900	06:
٠,	165	0.50	959	1905	332	4300	418	14.800	466	33,840	130
4 -	200	98.4	866	1092	300	3890	380	13,470	424	30,800	165
	,, 264	202	198	950	260	3370	330	11,700	368	26,800	250
-	930	10	177	848	666	3000	296	10,500	331	24,040	380
٠,	440	19	124	738	202	2620	255	9,040	286	20,175	630
4 -	,, TEO	35	140	670	182	2400	233	8,260	261	18,950	865
4	660	× ×	126	603	166	2150	209	7,400	233	16,920	1,360
	., 880	9	109	522	143	1855	181	6,420	202	14,670	2,350
_	1056	ıc	66	475	130	1690	165	5,850	184	13,380	3,500
-	1320	4	89	425	116	1500	148	5,250	166	12,020	5,700
-	1760	00	77	370	101	1310	127	4,500	143	10,390	:
-	2640	63	63	301	83	1075	104	3,700	116	8,466	:

VELOCITY and DISCHARGE per MINUTE in EGG-SHAPED SEWERS, with Water flowing at various depths.

Sewers 6 Feet × 4 Feet.

TABLE VII. - DISCHARGE Of PIPES (running full).

NOTE.—The relocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

	24 Inches. (*212 Galls, per Ft.)	galls. per min. 274·8 194·4 159·7 137·4	122.8 112.2 103.7 97.1 91.6 87.0	73.5 68.7 64.8 61.3
	2 Inches. (*135 Galls. per Ft.)	galls. per min. 157.2 111.2 91.3 78.6	70.3 559.3 527.4 49.7	45.4 37.1 37.1 35.2
	14 Inch. (*076 Galls, per Ft.)	galls, per min. 54 · 23 44 · 54 38 · 33	31.29 28.93 27.09 24.26	22·16 20·50 19·16 18·10 17·15
Diameter of Pipe.	14 Inch. (*053 Galls. per Ft.)	in.	21:70 19:81 18:32 17:15 16:18 15:36	14.30 13.00 12.14 11.44 10.85
Dlame	1 Inch. (*034 Galls. per Ft.)	galls, per min. 27:75 19:63 16:13 13:87	11.33 10.47 9.81 9.25 8.78	8.02 7.44 6.94 6.53 6.21
	tinch. (*019 Galls, per Ft.)	galls, per min. 13.52 9.56 7.86 6.76	5.00 5.10 4.78 4.28	3.91 3.38 3.13 3.03
	† Inch. (*008 Galls. per Ft.)	galls, per min. 4.91 3.47 2.85 2.46	2.20 2.00 1.85 1.73 1.64	1.42 1.32 1.23 1.17 1.10
	# Inch. (.005 Gails. per Ft.)	galls. per min. 2:39 1:70 1:38 1:19	.97 .90 .85 .80 .80	. 69 . 60 . 55 . 55 . 55
Ratio of	Head of Water to Length of Pipe.	5 5 102247	1	1,, 12 1,, 14 1,, 16 1,, 18 1,, 20

NOTE.—The velocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

Dations				Diame	Diameter of Pipe.			
Head of Water to Length of Pipe.	# Inch. (*005 Gails. per Ft.)	† Inch. (*008 Galls. per Ft.)	4 Inch. (*019 Galls. per Ft.)	1 Inch. (**034 Galls. per Ft.)	14 Inch. (.053 Galls. per Ft.)	14 Inch. (*076 Galls, per Ft.)	2 Inches. (*135 Galls. per Ft.)	24 Inches. (*212 Galis. per Ft.)
1 to 25	galls. per min.	gia	gall	galls, per min. 5.55	galls, per min.	gails, per min. 15.33	galls, per min. 31 · 4	galls, per min. 55·0
1 ,, 30	44.	06.	2.48	2.08	8.90	14.05	29.3	50.0
1 , 35	9.588	22.	2.78	4.40	02.20	21.21	24.9	43.4
1 ,, 45	98.	.73	2.05	4.14	7.23	11.42	23.4	41.0
1 ,, 50	.33	69.	1.92	3.93	98.9	10.80	22.2	38.9
1, 60	.31	•64	1.76	3.60	6.30	06-6	20.4	32.6
1 ,, 70	.28	.59	1.62	3.35	5.80	9.16	18.8	32.8
	.27	.55	1.50	3.10	5.40	09.8	17.5	30.7
1 ,, 100	-54.	.49	1.34	2.77	4.86	99-2	15.7	27.5
1 ,, 120	.21	.44	1.23	2.52	4.40	6.95	14.3	24.9
1 ,, 150	•19	.40	1.11	2.27	3.96	6.26	12.8	22.4
1 ,, 200	.17	.35	96.	96.1	3.43	5.45	11.1	19.4
1 ,, 250	.15	.31	.85	1.75	3.07	4.85	6.6	17.4
1 ,, 300	•14	.29	62.	1.61	2.83	4.45	9.1	16.0
			-					

DISCHARGE of PIPES (running full).

NOTE.—The velocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

	l d			
10 Inches. (3:39 Galls per Ft.)	galls, per mi 3933 2780	1967 1759	1606 1487 1391 1311	1136 1051 983 927 879
9 Inches. (2.75 Galls. per Ft.)	galls. per min. 3020 2138	1511	1234 1142 1069 1007 956	873 808 756 712 676
8 Inches. (2·17 Galls. per Ft.)	galls, per min. 2253 1592	1126	920 851 796 751	650 594 563 536 503
7 Inches. (1.66 Galls. per Ft.)	galls. per min. 1613 1140	806 721	658 610 570 538	466 431 403 380 360
6 Inches. (1.22 Galls. per Ft.)	galls, per min 1097 776		448 415 388 366	203 203 274 258 245
5 Inches. (*85 Galls. per Ft.)	galls, per min. 695 491		283 246 232 229	201 186 174 164 155
4 Inches. (.54 Galls, per Ft.)	alls. per min 398 281	199	162 150 141 133	115 106 99 94 89
3 Inches. (-305 Galls. per Ft.)	galls. per min. 193	97 86	£ £ 8 4 5	255 256 48 48 48 48 48
Head of Water to Length of Pipe.			11111 200 300 300 300 300 300 300 300 300 300	1,, 60 1,, 70 1,, 80 1,, 90 1,, 100
	3 Inches. 4 Inches. 5 Inches. (*36 Galls. (*26 Galls. (*2.17 Galls. (*2.	3 Inches. 4 Inches. 5 Inches. 6 Inches. 7 Inches. 8 Inches. 9 In	Comparison of the comparison	Control of the cont

NOTE.—The velocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

Ratio of				Diame	Diameter of Pipe.			
Head of Water to Length of Pipe.	3 Inches. (·305 Galls. per Ft.)	4 Inches. (*54 Galls. per Ft.)	5 Inches. ('85 Galls. per Ft.)	6 Inches. (1.22 Galls. per Ft.)	7 Inches. (1.66 Galls. per Ft.)	8 Inches. (2·17 Galls. per Ft.)	9 Inches. (2·75 Galls. per Ft.)	10 Inches. (3.39 Galls, per Ft.)
1 , 125	galls. per min.	galls, per min	alls. per mir 139	alls, per min.	galls, per min.	galls, per min. 450	galls, per min.	galls
1 " 175		679	117	183	273	380	202 210	
1 ,, 200 1 ,, 250		62 56	00 86 88	173	262 227	352	478 426	622 554
1 , 300	25	51	0.88	142	208	291 270	390	508
1 ,, 400	21	44.6	782	123	180	252	338 819	440
1 ,, 500	19	19	69	011	191	225	302	393
1 ,, 600	18	36	63	100	147	206	276	360
1 ,, 700 1 ,, 800	17	# 55	55	93 87	136 127	191	256 239	332 320
1 ,, 900	15	29	52	85	120	168	226	293
1 ,1000	14	87	49	82	114	159	214	278

NOTE.—The velocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

0								
				Diame	Diameter of Pipe.			
Ratio of Head of Water to Length of Pipe.	12 Inches. (4.91 Galls. per Ft.)	15 Inches. (7.67 Galls, per Ft.)	18 Inches. (11·04 Galls. per Ft.)	21 Inches. (15 Galls. per Ft.)	24 Inches. (19.6 Galls. per Ft.)	27 Inches. (24.8 Galls. per Ft.)	30 Inches. (30.7 (falls. per Ft.)	36 Inches. (44.2 Galls. per Ft.)
1 to 20	ü	galls. per min. 5,420	galls. per min 8,551	galls, per min.	galls. per min. 17,552	galls. per min. 23,360	galls. per min. 30,660 97,499	galls, per min. 48,365
1 ,, 25	2,775	4,848	7,648	10,262			25,034	39,490
1, 40		3,833	6,047	8,888			21,680	34,200
1 ,, 50		3,428	5,408	7,950			10,000	000,000
1 60	1 799	3 130	4.937	7,257	10,133	13,600	17,704	27,926
1 , 20	1,660	2,897	4.571	6,717	9,382	12.593	16,390	25,854
2 %	1,551	2,710	4,276	6,284	8,776	11,943	15,330	24,182
1 30	1,462	2,555	4,032	5,925	8,274	11,105	14,452	00,72
1 ,, 100	1,387	2,424	3,824	5,621	7,850	10,535	15,712	070,17
201	1 041	0 168	3 490	5 027	7.021	9,423	12,264	19,346
021 " 1	1,211	1,080	2,102	4 591	6,411	8,605	11,200	17,665
00I " I	1,155	1,200	9,120	4 950	5,933	7,964	10,365	16,350
C/I " I	1,040	1,002	9,698	3.974	5,538	7,450	9,695	15,294
1 ,, 200	874	1,527	2,410	3,542	4,946	6,638	8,640	13,628
202 16 4	;							

NOTE.—The velocity in feet per minute may be ascertained in each case by dividing the discharge by the number of gallons contained in each lineal foot of the pipe as given at the top of the column.

	30 Inches. 36 Inches. (30.7 Galls. per Ft.)	galls. per min. galls. per min. 12,488 11,560 6,856 10,814 6,464 10,198 6,132 9,675	5,597 8,830 5,182 8,174 4,848 7,647 7,240 4,336 6,840	3,878 6,118 3,540 5,585 3,066 4,836 2,503 3,949 1,939 3,059
	27 Inches. (24.8 Galls. (3	galls, per min. gal 6,083 5,567 5,268 4,966 4,712	4,300 3,725 3,725 3,512 3,332	2,980 2,720 2,356 1,924 1,490
Diameter of Pipe.	24 Inches. (19·6 Galls. per Ft.)	galls. per min. 4,532 4,196 3,925 3,700 3,510	3,204 2,971 2,775 2,616 2,482	2,220 2,027 1,755 1,433 1,110
Diamet	21 Inches. (15 Galls. per Ft.)	galls, per min. 3, 245 3, 004 2,810 2,650 2,514	2,295 2,124 1,987 1,873 1,777	1,590 1,451 1,257 1,026 795
	18 Inches. 11.04 Galls. per Ft.)	galls. per min. galls. per min. 2, 208 3, 245 3, 204 1, 912 2, 810 1, 803 2, 650 1, 710 2, 514	1,561 1,445 1,352 1,275 1,210	1,081 987 855 698 541
	15 Inches. (7.67 Galls. per Ft.)	galls. per min. 1,400 1,296 1,212 1,143	990 916 857 808 766	684 627 542 443 343
	12 Inches. (4.91 Galls. per Ft.)	galls. per mln. 80.1 742 694 654 620	566 524 490 462 439	392 358 310 253 196
Ratio of	Head of Water to Length of Pipe.	1 to 300 1 " 350 1 " 400 1 " 450 1 " 500	1,, 600 1,, 700 1,, 800 1,, 900 1,, 1000	1 " 1250 1 " 1500 1 " 2000 1 " 3000 1 " 5000

TABLE VIII.-QUANTITY OF SEWAGE due to POPULATION.

Population.	Average	Average Flow during 24 hours.	24 hours.	Maximur	Maximum Flow, half in 6 hours.	6 hours.	Allowance fo 100 per acre	Allowance for Rainfall for Population of 100 per acre, or 435 super. feet of area per inhabitant.	Population of feet of area
	At 20 Galls. per Head.	At 30 Galls. per Head.	At 50 Galls. per Head.	At 20 Galls, per Head.	At 30 Galls. per Head.	At 50 Galls, per Head.	At 4 Inch in 24 Hours.	At † Inch in 24 Hours.	At 1 Inch in 24 hours.
500	galls. per mln.	galls, per min. 10	galls. per mln.	galls per min.	galls. per mln. 21	galls, per min. 35	galls. per min. 19·6	galls, per min. 39-3	Cau
000,	14	21	32		42 83	139	39	157	
3,000	42 56	83 83	139		125 167	208 278	118	236 315	472 629
000,	88	104	174	139	208	347	196	393	787
2,000	97	146	243	194	255 238 338	486 556	275	551	1,101
,000	125	187	312	250	375	625	353	208	1,416
000,	139	208	347	278	417	469	393	787	1,573
0000,	278	417	169	555	833	1,389	787	1,573	3,146
30,000	555	6229	1,041	1.110	1,250	2,033	1,179	3,146	6,292
,000	694	1,042	1,736	1,389	2,083	3,472	1,966	3,932	7,865

QUANTITY of SEWAGE due to POPULATION.

1	l a	
Population of feet of area	At 1 Inch ic 24 Hours.	galls. per min. 9,434 11,009 12,584 14,157 15,729
Allowance for Rainfall for Population of 100 per arce, or 435 super, feet of area per inhabitant,	At f Inch in 24 Hours. 24 Hours.	galls. per min. 4,717 5,504 6,292 7,079 7,865
Allowance fo	At t Inch in 24 Hours.	galls, per min. 2,358 2,652 3,146 3,539 3,932
6 bours.	At 50 Galls. per Head.	galls per min. 4,166 4,860 5,556 6,250 6,914
Maximum Flow, half in 6 bours.	At 30 Galls. per Head.	galls. per min. 2,500 2,916 3,334 3,750 4,166
Maximur	At 20 Galls. per Head.	galls. per min. 1,666 1,944 2,220 2,500 2,778
24 hours.	At 20 Galls. At 30 Galls. At 50 Galls. per Head.	galls, per min. 2,083 2,430 2,778 3,125 3,472
Average Flow during 24 hours.	At 30 Galls. per Head.	galls. per min. 1,250 I,458 1,667 1,875 2,083
Average	At 20 Galls. per Head.	galls. per min. 833 972 1,110 1,250 1,389
Population.		60,000 70,000 80,000 90,000 100,000

be provided for in the Lower Thames Valley and Darenth Valley Main Sewerage Districts. This is understood to include 250 gallons per inhabited house, being about 44 gallons per head, is the quantity prescribed by Act of Parliament to some allowance for rainfall.

Rainfall should not be taken on the basis of population, as in the third column, unless either the whole area to be provided for is continuously built upon, or the separate system is adopted and rain not admitted to the sewers except in

close proximity to houses.

the ratio to 100; thus, for population of 200 per acre divide by 2, for 150 per acre take two-thirds, &c., and similarly for 50 per acre multiply by 2, &c. In the former case, if the population be greater than is assumed, the figures in the Table must obviously be divided by

be adopted or will require modification, according as the result arrived at compares with the assumption of 435 super feet to On the other hand, if the system to be adopted is that of excluding the rain water, the average area pertaining to each inhabited house must first be ascertained and the number of persons per house; and the figures in the third column may each individual,

TABLE IX.-QUANTITY and DISCHARGE from AREAS due to RAINFALL.

	finch in 24 bours.	galls. per min.	0.002	0.013	810	0.055	05	60	0.13	18	22	0.45	0	o :	ත	o.	00
į	4 In 24 b						0	0	<u>.</u>	Ö	0	0	2.0	<u>ن</u>		-	6
	t Inch in 24 hours.		0.000				60.0	0.18	0.27	0.36	0.45	06.0	3.9	7.9	8.11	15.7	9.61
Rates.	Inch in 24 hours.	galls. per min.	0.018	0.054	0.072	060.0	0.18	98.0	0.54	0.72	06.0	1.81	6.2	15.7	23.6	31.5	39.3
t following	1 Inch in 24 hours.	galls.	0.036	0.108	0.144	0.181	0.36	0.72	1.08	1.44	1.81	3.62	15.7	31.5	47.2	63.0	78.7
Quantity running off at following Rates	Inch in an hour.	galls, per min.	0.11	0.35	0.43	0.24	1.1	2.5	3.5	4.3	5.4	8.01	47	94	142	189	236
Quantity ru	t Inch in an hour.	galls, per min.	0.22	0.65	0.87	1.08	2.5	4.3	6.5	2.8	10.8	21.7	9-4	189	284	378	472
	I Inch Hour. in an hour.	galls, per min.	0.43	1.30	1.74	2.17	4.3	8.7	13.0	17.4	21.7	43.4	189	377	266	755	944
		galls, per mfn.	0.87	2.60	3.47	4.34	8.7	17.4	26.0	34.7	43.4	8.98	377	755	1,132	1,510	1,887
Equivalent	throughout the Year.	gallons	0.14	0.43	0.57	0.71	1.4	8.5	4.3	2.4	7.1	14.2	62	124	186	248	310
	to 1 Inch of Rain over Surface,	gallons	104	156	208	260	520	1.040	1,560	2,080	2,600	5,200	22,651	45,302	67,954	90,605	113,256
	Area.		100 sup. feet		400				3,000		5,000 ,,	10,000 "	1 acre	2 acres	33		

QUANTITY and DISCHARGE from AREAS due to RAINFALL.

	Quantity equal	Equivalent			Quantity r	Quantity running off at following Rates.	t foliowing	Rates.		
Area.		throughout the Year.	1 Inch fn an hour.	1 Inch de Inch in an hour.	t Inch in an hour.	FInch in	1 Inch in 24 hours.	FInch in 24 hours.	t Inch in 24 hours.	Finch in 24 hours.
10 acres	gallons 226.512	gallons 620	galls. per min.	galls. per min.	galls, per min.	galls. per min. 472	galls. per min.	galls. per min.	galls. per min.	gails. per min.
30 ":	453,025 679,537	1,241	7,550	3,775	1,888	944	315	157	79	2000
40 " 50 "	906,049 1,132,561	2,482 3,103	15,101 18,876	7,550	3,776	1,888	629	315	157	98
200 "; 300 ";	2,265,122 4,530,245 6,795,367	6,206 12,412 18,618	37,752 75,504 113,256	18,876 37,752 56,628	9,438 18,876 28,314	4,719 9,438 14,152	1,573 3,146 4,717	787 1,573 2,358	393 787 1,179	196 393 589
500 "	11,325,612	31,029	151,008 188,760	75,504	37,752 47,190	18,876 23,595	7,865		1,573	787
1 square mile	14,496,770	39,717	241,613	241,613 120,806 60,403	60,403	30,201	10,067	5,033	2,516	1,258

It is estimated that on an average four-fifths of the Rain runs off slated roofs, one-half off streets and paved No surfaces; and one-eighth part off the surface of cultivated land, within an hour of falling, whenever the fall is considerable.

TABLE X.—ANNUAL RAINFALL.

(1) Mean Annual Rainfall during thirty years (1850-1879) at forty-six Stations in British Isles.

						ĺ	
County.	Place.	Height above Sea.	Mean Annual Rainfall.	County.	Place.	Height above Sea.	Mean Annual Rainfall.
England— Kent	Greenwich	feet 155	inches 25.2	ENGLAND (contd.)— Cornwall	Bodmin	feet 315	inches 47.7
Sussex	Uckfleld	149	30.8	Lancashire	Ormskirk	38	35.0
	Chichester	284	33.5	** ***	Stonyhurst	376	46.9
Hertford	Hitchin	238	25.0	:	Bolton, The Fold	286	46.7
:	Berkhampstead	370	29.5		Bolton, Belmont	481	55.9
Bucks	High Wycombe	225	24.9	Yorkshire	Leeds	94	22.9
Northampton	Northampton	310	23.5	:	Redmires	1100	40.1
Bedford	Cardington	106	23.1		Standidge	1100	51.6
Norfolk	Norwich	137	8.27	Northumberland	Whittle Dean	9	25.4
Lincoln	Spalding	20	24.5	Cumberland	Keswick	270	58.8
Shropshire	Shiffnal	353	26.5	:	Seathwaite	422	138.7
Worcester	Tenbury	200	91.0	Westmoreland	Kendal	156	20.0
Devon	Exeter	140	31.1				

ANNUAL RAINFALL.

(1) Mean Annual Rainfall during thirty years (1850-1879) at forty-six Stations in British Isles.

	Mean Annual Rainfall.	inches 36.0	24.1	25.1	31.9	38.1	25.9			35.1	40.8	27.8	30.4	
	Height above Sea.	feet 50	28	104	040	355	127			30	400	235	208	
		:	:	:	:	:	:			:	:	:	:	
	Place.	Dundee	Cromarty	Inverness	Barrahead	Cape Wrath	Noss Head			Cork	Woodstock	Tullamore	Armagh	
		丁:	:	:	:	:	:			:	:	:	:	
	County.	Scotland (contd.)— Forfar	Ross	Inverness	:	Sutherland	Caithness		IRELAND-	Cork	Kilkenny	King's County	Armagh	
	Mean Annual Rainfall.	inches 32.80	44.18			28.0	38.3	29.5	47.4	38.4	41.9	43.5	33.2	43.2
0	Height above Sea.	feet. 99	39			30	787	146	280	55	37	82	74	279
	Place.	Llandudno	Cardiff			Inveresk	Glencorse	Bothwell Castle	Waulk Glen	Pladda	Lismore	Ardnamurchan	Rhinns of Islay	Mull of Cantire
		:	:			:	:	:	:	:	:	:	:	:
	County.	WALES—Carnarvon	Glamorgan			Edinburgh	:	Lanark	Renfrew	Bute	Argyle	:	:	:

ANNUAL RAINFALL.

(2) Mean Maximum and Minimum Annual Rainfall during fifty-two years (1830-82) at ten Stations in England.

Avcrage ree Vears.	inches 20.1	27.9	22.4	18.8	25.4	21.4	8.02	18.7	41.5	40.0
Minimum Average of Three Consecutive Years.	(1856-8)	(1854-6)	(1862-4)	\$	(1844-6)	(1854-6)	33	(1853-5)	(1855-7)	(1854-6)
	80 44	~~~			_		~	~	<u>د</u>	10
num Year.	inches 16.4	21.8	17.0	14.8	20.7	18.1	16.2	13.8	34.6	34.5
Minimum in one Year,	(1864)	(1854)	(1864)		(1854)	8	(1874)	(1854)	(1844)	(1855)
				-					_	
rum Year.	inches 34.0	50.9	41.1	35.5	45.4	46.0	37.1	34.4	62.3	69.2
Maximum in one Year.	(1852)	\$	s.	2	\$	(1872)	(1880)	\$	(1831)	(1872)
Mean Annual Rainfall.	fnches 24.8	33.6	26.8	23.4	30.0	30.3	25.6	22.7	47.4	51.5
	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:
Place.	:	:	pstca	:	:	:	:	:	:	:
Pla	Greenwich	Chichester	Hemel Hempstcad	Oxford	Tenbury	Exeter	Spalding	Boston	Bolton	Kendal

Table XI.—Monthly Rainfall.
(1) Observations at Greenwich, 1841 to 1879.

Minimum Falls in any Three, Four, and Six consecutive Months.		(April, May, June, 1870), 1·14 in.	(Feb., Mar., April, 1863), 1.65 in.	Minimum in four months:-	(Dec., 1873, to Mar., 1874), 2 · 70 in.	(Feb. to Mur., 1905), 2.30 III.	Minimum in six months:-	(Jan. to June, 1870), 5.22 in.						
Minimum Fall in any One Year.	inches (1861) 0.55	(1857) 0.30	(1852) 0.17	(1855) -0.09	(1844) 0.30	. (1849) 0.30	(1864) 0.27	(1849) 0.45	(1865) 0.16	92.0 (6281)	(1867) 0.42	(1873) 0.31	(1864) 16.38	
Maximum Fall in any One Year.	inches (1877) 4·35	(1866) 4.03	(1851) 4.05	(1878) 4.31	(1865) 4.37	(1860) 5.80	(1867) 5.81	(1878) 5.38	(1871) 4·12	(1841) 5.95	(1852) 6.00	(1876) 5.76	(1852) 34.01	
Mean Fall during Thirty- nine Years.	inches 2·12	1.44	1.47	1.66	2.07	2.05	2.40	2.49	2.25	2.82	2.23	1.76	24.76	
Month.	January	February	March	April	May	June	July	August	September	October	November	December	Whole year	

(2) Observations at Glencorse, Edinburgh, 700 feet above sea, 1852 to 1882.

	Minimum Falls in any Three, Four, and Six consecutive Months.		(Feb. Mar. April. 1873). 3:30 in.	(Feb., Mar., April, 1865), 3.55 in.	Minimum in four months:-	(March to June, 1873), 5.05 in.	(May to August, 1864), 6.55 in.	Minimum of six months :-	(Feb. to July, 18/3), 10'30 in. (Apr. to Sept., 1864), 10'50 in.					
	Minimum Fall in any One Year.	inches (1879) 1·70	(1874) 1.20	(1863) 0.95	(1865-73) 0.40	(1871) 0.70	(1865) 0.40	(1868) 0.55	(1864) 0.40	(1865) 0.70	(1866) 1.45	(1867) 0.25	(1870) 2.40	(1870) 27·70
	Maximum Fall in any One Year.	inches (1863) 9·40	(1868) 6.00	(1876) 6·10	(1880) 5.00	(1865) 6.00	(1879) 6.20	(1879) 11.00	09.6 (1811)	(1872) 6·15	06.6 (1811)	(1872-5) 5.75	(1882) 8.45	(1877) 54.30
,	Mean Fall during Twenty- one Years.	inches 4·20	3.03	2.87	2.58	5.69	2.67	3.57	4.04	3.55	4.02	3.63	3.78	40 63
		:	:	:	:	:	:	:	:	:	:	:	:	:
-	Month.	January	February	March	April	May	June	July	August	September	October	November	December	Whole year

TABLE XII.—DAILY and HOURLY MAXIMUM RAINFALL.

rlod.	Greatest Ordinary Heavy Fail (as defined by Me- teorological Society, all beyond this being recorded as "Extraordinary").	Extraordinary Falls recorded during the
hours	2 inches, where the total fall during the year exceeds 33 iuches 6 per cent. of the fall during the year, where it does not exceed 33 inches	fall during the year. [5·42 at Sligachan, Skye 115·41 4·99 at Seathwaite 130·58 [Falls of 6·41 and 6·70 have been recorded at this Station in previous years.] 4·85 at Bridgend, Glamorgan 121·12 4·17 at Aberdare 98·83 3·91 at Neath 85·83 [3·80 at Cambridge, being 12·3 p. c. of 30·96 3·75 at Huntingdon , 11·8 , 31·89 3·30 at Upwell , 11·7 , 28·14 3·57 at Stockton , 11·4 , 31·31 3·54 at Northallerton , 10·8 , 32·66 3·20 at Aboyne , 10·6 , 30·01
2 13 11 11 11 1	{*83 inch, or at rate} of '42 per hour } {*82 inch, or at rate} of '49 per hour } {*78 inch, or at rate} of '52 per hour } {*75 inch, or at rate} of '60 per hour } {*76 inch	{3 inches = 1½ per hour. Rotherham, Sept. 15, 1880. {1.42 inches = .94 per hour. Ross, Aug. 23, 1881. {3.07 inches = 2.45 per hour! Athlone, June
min. 45	(*60 inch, or at rate) of *80 per hour	
30 25	<pre>(*50 inch, or at rate) (of 1 in. per hr.) (*44 inch, or at rate) (of 1 *06 in. per hr.)</pre>	2.90 inches = 5.80 per hour! Cowbridge, South Wales, July 22, 1880. 1.18 inches = 2.18 per hour. Llandudno, May 26, 1881.
20	(*40 inch, or at rate) of 1.20 in. per hr.	1.48 inches = 4.44 per hour! Barnstaple, June 30, 1879.
15	(35 inch, or at rate) of 1.40 in. per hr.)	('41 inch = 2.46 per hour. Darlington,
10	\$\frac{30 \text{ inch, or at rate}}{\text{ of 1.80 in. per hr.}}\$\$\$\$ \frac{20 \text{ inch, or at rate}}{\text{ of 2.40 in. per hr.}}\$\$\$\$\$\$\$	51 inch = 3.40 per hour. Midmar (Aberdeen), Aug. 23, 1879. (31 inch in 5 minutes = 3.72 per hour. Sheffield, Aug. 17, 1879.

TABLE XIII.—WATER SUPPLY by GRAVITATION—
NOTE.—Dimensions of Service Reservoirs and Distributing

Population.	Supply Re at 20 Gallo Head	ns per	Area of Gathering Ground for	Sto	rage Reserv	oir to]	Hold	
1 Opamion.	Daily.	Equiva- lent per Minute.	12 Inches Available Rainfall.		Supply for 1			
	gallons	gallons	acres					
500	10,000	7	13½	175 ft	t. diam. by	7 10 f	t. dee	p
1,000	20,000	14	27	226	"	12	"	
2,000	40,000	28	53 <u>1</u>	320	,,	12	"	1
3,000	60,000	42	801	${391 \choose 2\frac{3}{4}}$	acres by	12 12	"	}
5,000	100,000	70	134	33	"	15	"	
6,000	120,000	84	161	41/2	77	15	,,	
8,000	160,000	112	215	6	"	15	"	
10,000	200,000	139	268	$\left\{\begin{array}{c} 7\frac{1}{2} \\ 5\frac{1}{2} \end{array}\right.$	27 22	15 20	"	}
20,000	400,000	278	536	$\left\{\begin{array}{c}15\\11\end{array}\right.$	" "	15 20	"	}
30,000	600,000	417	805	161	"	20	11	
50,000	1,000,000	694	1340	271	17	20	27	
60,000	1,200,000	833	1610	33	22	20	"	
80,000	1,600,000	1,111	2145	44	27	20	"	
100,000	2,000,000	1,389	sq. miles	{ 55 44	"	20 25	3° 23	}
500,000	10,000,000	6,944	21	{220 183	" "	25 30	22 22	}
1,000,000	20,000,000	13,889	42	{440 367	"	25 30	"	}

Works for Given Population.

Mains same as for Pumping Works. (See next page.)

	Filter Beds to Pass 600 Gallons per Super. Yard in 24 Hours, allowing for one not in use.								Main Conduit to Pass Supply in 24 Hours, flowing continuously.							
	No.	2,	each	15 f	t. by	10	ft.	$\left\{egin{array}{c} rac{1rac{1}{2}}{2} \end{array} ight.$	inch,	loss of head	1 in 1 ,,	120 400				
1	,,		"	20	,,	15	"	$\left\{ egin{array}{c} 2 \\ 3 \end{array} \right.$	"	"	$\overset{1}{1}$ "	$\begin{array}{c} 120 \\ 1000 \end{array}$				
	No.	3,	,,	30	2)	10	,,	$\begin{cases} 3 \\ 4 \end{cases}$	"	39 39	1 " 1 "	$\begin{array}{c} 240 \\ 1000 \end{array}$				
	19		2)	30	"	15	99	$\begin{cases} 4 \\ 5 \end{cases}$	"););	1 " 1 "	450 1200				
	"		,,	50	"	15	"	$\begin{cases} 4 \\ 6 \end{cases}$	"	"	1 ,,	160 1200				
	"		"	50	19	18	"	$\begin{cases} 5 \\ 6 \end{cases}$	"	"	1 " 1 "	350 900				
	,,		,,	60	,,	20	99	$\left\{ egin{array}{l} 6 \\ 7 \end{array} ight.$	"	"	1 ,, 1 ,,	500 1000				
	No.	4,	or	50 32 ft.	»,	20	" }	$\begin{cases} 6 \\ 8 \end{cases}$))))	"	1 ,,	300 1250				
	No.	4,	each	45 ft	. squ	are	••	{ 9 10	"	» »	1 ,,	600 1000				
	22		"	55	,,			${10 \atop 12}$	"	22 K	1 ,, 1 ,,	450 1000				
	,,		"	70	- 99			${12}{15}$	"	"	1 ,, 1 ,,	400 1200				
	"		"	76	"				"))))	1 ,,	275 - 850				
	99		"	90	"		••	{15 {18	"	"	1 ,, 1 ,,	480 1200				
	No.	6	99	$77\frac{1}{2}$	>>		••	${18}\atop{21}$	» »	"	1 ,, 1 ,,	750 1700				
	"		"	173	"			$\left\{\begin{array}{c}2\frac{1}{2}\\3\end{array}\right.$	feet,	"	1 ,, 1 ,,	400 1000				
	,,		"	245	"	,	••	$\begin{cases} 3 \\ 4 \end{cases}$	"	>> >> 19	1 "	250 1000				

TABLE XIV.—WATER SUPPLY by PUMPING—

					_
Population.	Supply Required a per Hea	at 20 Gallons d.	Hours during which it is proposed	Net Horse- power to raise to 100 Feet	
	Daily.	Equivalent per Minute.	to Pump.	Elevation.	
500	gailons 10,000	gallons 7	4	11	
1,000	20,000	14	6	13	
2,000	40,000	28	10	2	
3,000	60,000	42	10	3	
5,000	100,000	70	10	5	
6,000	120,000	84	10	6	
8,000	160,000	112	10	8	
10,000	200,000	139	10	10 <u>1</u>	
20,000	400,000	278	18	111	
30,000	600,000	417	24	123	
50,000	1,000,000	694	24	21	
60,000	1,200,000	833	24	251	
80,000	1,600,000	1,111	24	331	
100,000	2,000,000	1,389	24	42	
500,000	10,000,000	6,944	24	210	
1,000,000	20,000,000	13,889	24	421	

WORKS for GIVEN POPULATION.

of Provided No.	Dimensions of Single Pump, working 10 Strokes per Minute.						servoir to ays' Supp		Pipe t	Delivery o Pass at f One-half or Hours.
Diam	Stro	ke.	Diam.	Loss of Head.					Diam.	Loss of Head.
in. 8	ft. 2	in.	in. 3	1 in 110	22 f	. sq.	b y 10 ft	. deep	in.	1 in 400
9	2	0	4	1 ,, 450	31	,,	10	,,	4	1 ,, 450
10	2	0	5	1 " 500	40	,,	12	"	5	1 ,, 350
12	2	1	5	1 ,, 240	49	,,	12	11	6	1 ,, 380
14	2	6	6	1 " 220	56 <u>1</u>	,,	15	"	8	1 " 580
15	2	8	7	1 ,, 330	62	"	15	"	8	1 ,, 400
16	3	0	8	1 ,, 350	711/2	"	15	,,	9	1 ,, 400
18	3	1	9	1 ,, 400	80	"	15	"	10	1 ,, 450
18	3	$4\frac{1}{2}$	9	1 ,, 335	98	"	20	,,	15	1 " 850
18	3	9	10	1 " 450	120	,,	20	"	15	1 " 440
21	5	0	12	1 ,, 400	155	"	20	,,	18	1 ,, 340
24	4	3	15	1 " 850	170	,,	20	"	21	1 ,, 500
24	5	8	15	1 ,, 475	196	"	20	,,	24	1 ,, 570
24	7	0	18	1 ,, 770	220	"	20	,,	27	1 ,, 650
3.9	10	0	ft. in. 2 6	1 " 385	438	,,	25	,,	ft. in. 4 0	1 ,, 500
5.0	11	4	3 0	1 ,, 245	620	"	25	"	6 0	1 ,, 880

TABLE XV.—ANALYSIS OF WATER.

Results in parts per 100,000. To convert the figures in columns 1 to 6 into grains per gallon (which is a usual measure with these substances), multiply by seven-tenths. Grains per gallon of Hardness (columns 3, 4, and 5) are generally described as "degrees of hardness."

1	Albuminold Am- monla by Distil-	
	Free Ammonia by	
	Nitrogen in Mitrates.	.000 .000 .000 .000 .000 .000 .000 .00
	S .slnommA	.000 .000 .000 .000 .000 .000 .000 .00
	Organic Nitrogen.	0115 014 014 017 017 018 000 000 001 014 014
	Organic Carbon.	.070 .132 .638 .042 .043 .020 .243 .18 .00 .166 .200
	Chlorine.	00000000000000000000000000000000000000
	Total Hardness.	0.141141 1.00.141.
I	Permanent Hard- 😅 ,	13.9 13.9
i	Temporary Hard- S.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	Total Solid Matter E	22.24 26.44 26.22 26.44 20.22 27.12 26.32 26.33
	Source or Description of Water.	Rain Water (average)

		3.0	_
0000 : :000 : : :		.102	
.366 .041 .000 .000 .551 .130	0000 1178 0000 212 0000 182 0000 4475	.17 .71 .00 .375	
000000000000000000000000000000000000000		3.00 0.13 .006	
.038 .080 .0443 .024 .010 .010	.021 .023 .018 .026 .017	.03 .33 1.58 0.13	
.041 .432 .405 .219 .620 .168 .400 .036 .036	.138 .158 .073 .115 .042	.30 1.17 2.51 0.64 0.28	
9.8 3.4 10.0 3.5 10.0 3.5 10.7 2.0 28.5 2.7 10.3 5.15 22.0 26.2 1.39 26.2 1.39 20.910.0	19.2 1.50 19.9 1.55 19.9 1.55 19.6 1.70 28.7 2.60 5.9 16.5	1.8 9.6 1.2 2.7 0 1975	
26.6 28.5 28.5 28.5 26.5 26.5 20.9	19.0 19.0 19.0 5.3 5.9	27 23 32 27 797	
9.7 10.0 15.0 15.0 1.7 1.7 1.7 7.1	2::::2	748	
18.8 0.15 9.7 30.921.3 5.3 19.3 0.0 10.0 16.8 5.0 3.7 47.913.5 15.0 57.8 8.6 1.7 32.012.9 9.1 28.6 22.9 3.3 8.2 0.0 3.2 43.1 13.8 7.1	2:::::	:::::::::::::::::::::::::::::::::::::::	
188 3009 1168 1168 1168 1168 1168 1168 1168 116	25.29.4 26.7.2 27.2 26.7.3 83.4 83.4	34 55 46* 38	_
	::::::	:: :: :	
stone	::::::	:: :: :	
d Sand	::::::	:: :: :	
ted for the state of the state	883- in in i	:: :: :	
ew I	The The Sque	Earl :	
n New zn zn zn zn zn zn zn zn zn z	mes) nall and ea) hall	e : : : : : : : : : : : : : : : : : : :	
Seventin (Charles by Shi in (Cha	uly Charles Lea	on Bridge (raw) ng Sewage	
Win in Second			
P is see of the see of	ex (Text) of Value (River) (River) (River) (Hist)	on] (ra,	:
(deep iver W r (Rive ver De ver Ou on (dee ver wells vells soften)	dlesex (Juleses Juleses (Juleses (Jules	London liford	
lead (deep bury (River De River De (River De (River Do on (deep wells) deep wells fter softeni	Companies, Ju Middlesex (Tuwark and Va River (River London (River (deep wells i	at London It Salford Sewage (rayfter passing	
Birkenhead (deep well in New Red Sandstone) Norwich (River Wensum) Tewkesbury (River Severn) Chester (River Dee) Bedford (River Ouse) Northampton (deep wells in Lias Limestone) Croydon (deep wells in Chalk) Tring (deep wells in Chalk) Ditto, after softening by Clark's process Eastbourne (deep well in Hastings Sand)	London Companies, July to Oct. 1883— West Middlesex (Thames) Southwark and Vauxhall (Thames) New River (River Lea and Wells) East London (River Lea) Kent (deep wells in Chalk) Artesian Well, Trafalgar Square)	Thames at London Bridge Irwell at Salford Croydon Sewage (raw) Ditto, after passing Sewage Farm	

* These figures are exclusive of suspended matter.

TABLE XVI.—QUANTITY OF BRICKWORK IN CIRCULAR SEWERS, CULVERTS, OF WELLS.

NOTE.—The quantity of earth displaced will be the sum of the contents and brickwork added together.

	rnal	Contents of One		ork per Yard.	Inte		Contents of One	Brickwork per Lineal Yard.		
Dian	ieter.	Lineal Yard.	41 Inches Thick.	9 Inches Thick.	Diam	eter.	Lineal Yard.	9 Inches Thick.	14 Inches Thick.	
ft.	in.	cub. ft.	cub. ft.	cub. ft.	ft.	in.	cub. ft.	cub. ft.	cub. ft.	
1	6	5.3	6.6	15.9	6	0	84.8	47.7	75.6	
1	9	7.2	7.5	17.7	6	6	99.5	51.2	80.8	
2	0	9.4	8.4	19.4	7	0	115.5	54.8	86.1	
2	3	11.9	9.3	21.2	7	6	132.5	58.3	91.5	
2	6	14.7	10.1	23.0	8	0	150.8	61.8	96.8	
2	9	17.8	11.0	24.7	8	6	170.2	65.4	102.1	
3	0	21.2	11.9	26.5	9	0	190.9	68.9	107.4	
3	3	24.9	12.7	28.3	9	6	212.6	72.4	112.7	
3	6	28.9	13.7	30.0	10	0	235.6	76.0	118.0	
3	9	33.1	14.6	31.8	11	0	285.1	83 · 1	128.5	
4	0	37.6	15.5	33.6	12	0	339.3	90.0	139 · 1	
4	6	47.7	17.2	37.1	13	0	398.2	97.2	149.8	
5	Õ	58.9	19.0	40.6	14	0	461.8	104.2	160.35	
5	6	71.3	20.7	44.2	15	Õ	530 · 1	111.3	171.0	

TABLE XVII.—QUANTITY OF BRICKWORK IN EGG-SHAPED SEWERS.

Internal	Contents of Oue		ork per l Yard.	Internal	Contents of One		ork per Yard.
Dimensions.	Lineal Yard.	41 In. Thick.	9 In. Thick.	Dimensions.	Lineal Yard.	41 In. Thick.	9 In. Thick.
ft, in. ft. in. 2 0×1 4 2 3×1 6 2 6×1 8 2 9×1 10 3 0×2 0 3 3×2 2	6.0 8.2 9.4 11.4 13.6	cub. ft. 7·4 8·1 8·8 9·5 10·2 10·9	cub. ft. 16·5 18·8 20·1 21·4 22·7 24·0	7, in, ft, in, 3 6×2 4 3 9×2 6 4 0×2 8 4 6×3 0 5 0×3 4 6 0×4 0	18·5 21·2 24·2 32·9 37·7	cuh. ft. 11·6 12·4 13·0 14·4 15·8 18·8	cub. ft. 25·5 26·9 28·3 31·1 34·0 39·4

In egg-shaped sewers about one-seventh part of the brickwork forms the invert, three-sevenths the top, and three-sevenths the sides. The two former should generally be built with radiating bricks of the radius required in each case.

TABLE XVIII.-WEIGHT OF CAST-IRON PIPES.

NOTE.—The weight includes proportion due to sockets, pipes of 2 and 2½ inches diameter being in 6-feet lengths, pipes 3 to 12 inches inclusive in 9-feet lengths, and those of larger size in 12-feet lengths, exclusive of socket.

	_			_		_				_				
Internal	ex	For P	resst ng 1	re n 50 F	ot eet.		or Pr				For P exceed			
Diameter of Pipe.	nes	ick- s of etal.		Weig er Y		nes	ick- s of etal.		Veig r Y	tht ard.	Thick- ness of Metal.		Veig	ght ard.
inches 2		ch	cwt.	qrs	s. lbs. 24		ch	cwt.	qrs 0	3. lbs.		cwt.	qrs	3. lbs.
21/2	32	K	0	1	0	18	11	0	1	2	32	0	1	6
3	g	16	0	1	5	11	32	0	1	9	3 8	0	1	14
4	16	11	0	1	22	32	3	0	1	26	3 8	0	2	5
		32	0	2	14	7	8	0	2	21	1 10	0	3	4
5	3		U	Z	14	18		"	Z	21	1/4	0	0	4
6		3 8	0	2	21		7	0	3	5	1/2	0	3	21
7	7	0	0	3	24	1/2	10	1	0	12	9 16	1	1	0
8	10	7	1	0	12		1/2	1	1	0	9 16	1	1	21
9	1/2	10	1	1	12	10	-	1	2	2	5 8	1	2	21
10	-	1	1	2	0	10	9	1	2	21	5 5	1	3	14
-		-					10							
12	16		2	0	0	5 8		2	0	25	11	2	1	21
14		5	2	2	18		11	2	3	21	34	3	0	21
15	38		2	3	7	$\frac{11}{16}$.3	0	10	13	3	2	14
16		5 8	3	0	0		84	3	2	9	7 8	4	0	21
18	11		3	3	0	34		4	0	0	15 16	4	3	21
				_		,								
21		16	4	1	0		18	5	0	0	1	6	1	14
24	34		5	1	0	7 8		6	1	0	11/8	8	0	.0
27		84	6	0	0		15	7	2	0	$1\frac{3}{16}$	9	1	0
30	78		7	3	14	1		8	3	21	11/4	11	1	0
36		1	10	2	21		118	11	2	14	11/2	15	3	14

TABLE XIX.-WEIGHT of LEAD PIPES.

The "common" are available only for pipes with open ends, the "middling" for very slight pressures, and the NOTE .- Columns 1, 2, and 3 are the pipes usually known as "common," "middling," and "strong" respectively the figures in parenthesis show the weights per length of the coil according to which they are generally specified

Column 4 are the weights prescribed by the Metropolis Water Act, 1871, and by the regulations of very many towns, "strong" for pressure of about 50 feet.

Column 5 are those prescribed at Norwich and some other towns where the pressure is unusually great. and are available for pressures up to 200 feet or thereabouts.

Internal		Weight pe	Weight per Yard in Lbs.		
lpe.	No. 1.	No. 2.	No. 3.	No. 4.	No. 5.
a inch	:	:	:	55	55
	33 (16 lbs. to 15 ft.)	4½ (22 lbs. to 15 ft.)	5½ (26 lbs. to 15 ft.)	9	7
, 66	•	:	:	73	6
13	4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	53 (28 lbs. to 15 ft.)	7½ (36 lbs. to 15 ft.)	C	111
"	6 (30 lbs. to 15 ft.)	8 (40 lbs. to 15 ft.)	93 (46 lbs. to 15 ft.)	12	16
*	9 (36 lbs. to 12 ft.)	11 (44 lbs. to 12 ft.)	13 (53 lbs. to 12 ft.)	16	223
,,	12 (48 lbs. to 12 ft.)	14 (56 lbs. to 12 ft.)	17½ (70 lbs. to 12 ft.)	24	83

BOOKS RELATING

TO

APPLIED SCIENCE

PUBLISHED BY

E. & F. N. SPON,

LONDON: 125, STRAND.

NEW YORK: 35, MURRAY STREET.

A Pocket-Book for Chemists, Chemical Manufacturers, Metallurgists, Dyers, Distillers, Brewers, Sugar Refiners, Photographers, Students, etc., etc. By Thomas Bayley, Assoc. R.C. Sc. Ireland, Analytical and Consulting Chemist and Assayer. Third edition, with additions, 437 pp., royal 32mo, roan, gilt edges, 5s.

SYNOPSIS OF CONTENTS:

Atomic Weights and Factors—Useful Data—Chemical Calculations—Rules for Indirect Aualysis—Weights and Measures—Thermometers and Barometers—Chemical Physics—Boiling Points, etc.—Solubility of Substances—Methods of Obtaining Specific Gravity—Conversion of Hydrometers—Strength of Solutions by Specific Gravity—Analysis—Gas Analysis—Water Analysis—Qualitative Analysis and Reactions—Volumetric Analysis—Manipulation—Mineralogy—Assaying—Alcohol—Beer—Sugar—Miscellaneous Technological matter relating to Potash, Soda, Sulphuric Acid, Chlorine, Tar Products, Petroleum, Milk, Tallow, Photography, Prices, Wages, Appendix, etc., etc.

The Mechanician: A Treatise on the Construction and Manipulation of Tools, for the use and instruction of Young Engineers and Scientific Amateurs, comprising the Arts of Blacksmithing and Forging; the Construction and Manufacture of Hand Tools, and the various Methods of Using and Grinding them; the Construction of Machine Tools, and how to work them; Machine Fitting and Erection; description of Hand and Machine Processes; Turning and Screw Cutting; principles of Constructing and details of Making and Erecting Steam Engines, and the various details of setting out work, etc., etc. By CAMERON KNIGHT, Engineer. Containing 1147 illustrations, and 397 pages of letter-press. Third edition, 4to, cloth, 18s.

B

- On Designing Belt Gearing. By E. J. COWLING WELCH, Mem. Inst. Mech. Engineers, Author of 'Designing Valve Gearing.' Fcap. 8vo, sewed, 6d.
- A Handbook of Formula, Tables, and Memoranda, for Architectural Surveyors and others engaged in Building. By J. T. HURST, C.E. Thirteenth edition, royal 32mo, roan, 5s.

"It is no disparagement to the many excellent publications we refer to, to say that in our opinion this little pocket-book of Hurst's is the very best of them all, without any exception. It would be useless to attempt a recapitulation of the contents, for it appears to contain almost everything that anyone connected with building could require, and, best of all, made up in a compact form for carrying in the pocket, measuring only 5 in. by 3 in., and about 4 in. thick, in a limp cover. We congratulate the author on the success of his laborious and practically compiled little book, which has received unqualified and deserved praise from every professional person to whom we have shown it."—The Dublin Builder.

Tabulated Weights of Angle, Tee, Bulb, Round, Square, and Flat Iron and Steel, and other information for the use of Naval Architects and Shipbuilders. By C. H. JORDAN, M.I.N.A. Fourth edition, 32mo, cloth, 2s. 6d.

Quantity Surveying. By J. Leaning. With 42 illustrations, crown 8vo, cloth, 9s.

A complete Explanation of the London | Schedule of Prices. General Instructions.
Order of Taking Off.
Modes of Measurement of the various Trades. Use and Waste. Ventilation and Warming. Credits, with various Examples of Treatment. Abbreviations. Squaring the Dimensions. Abstracting, with Examples in illustration of each Trade. Billing.

Examples of Preambles to each Trade.

Form for a Bill of Quantities.

Do. Bill of Crediss.

Do. Bill for Alternative Estimate.

Restorations and Repairs, and Form of Bill.

Variations before Acceptance of Tender. Errors in a Builder's Estimate.

Form of Schedule of Prices. Analysis of Schedule of Prices. Adjustment of Accounts.
Form of a Bill of Variations.
Remarks on Specifications,
Prices and Valuation of Work, with Examples and Remarks upon each Trade. The Law as it affects Quantity Surveyors,

with Law Reports. Taking Off after the Old Method. Northern Practice.

The General Statement of the Methods recommended by the Manchester Society of Architects for taking Quantities.

Examples of Collections.

Examples of "Taking Off" in each Trade. Remarks on the Past and Present Methods of Estimating.

- A Practical Treatise on Heat, as applied to the Useful Arts; for the Use of Engineers, Architects, &c. By TH MAS Box. With 14 plates. Third edition, crown Svo, cloth, 12s. 6d.
- A Descriptive Treatise on Mathematical Drawing Instruments: their construction, uses, qualities, selection, preservation, and suggestions for improvements, with hints upon Drawing and Colouring. By W. F. STANLEY, M.R.I. Fifth edition, with numerous illustrations, crown Svo, cloth, 5s.

- Spons' Architects' and Builders' Pocket-Book of Prices and Memoranda. Edited by W. Young, Architect. Royal 32mo, roan, 4s. 6d.; or cloth, red edges, 3s. 6d. Published annually. Eleventh edition. Now ready.
- Long-Span Railway Bridges, comprising Investigations of the Comparative Theoretical and Practical Advantages of the various adopted or proposed Type Systems of Construction, with numerous Formulæ and Tables giving the weight of Iron or Steel required in Bridges from 300 feet to the limiting Spans; to which are added similar Investigations and Tables relating to Short-span Railway Bridges. Second and revised edition. By B. BAKER, Assoc. Inst. C.E. Plates, crown 8vo, cloth, 5s.
- Elementary Theory and Calculation of Iron Bridges and Roofs. By August Ritter, Ph.D., Professor at the Polytechnic School at Aix-la-Chapelle. Translated from the third German edition, by H. R. SANKEY, Capt. R.E. With 500 illustrations, 8vo, cloth, 15s.
- The Builder's Clerk: a Guide to the Management of a Builder's Business. By Thomas Bales. Fcap. 8vo, cloth, 1s. 6d.
- The Elementary Principles of Carpentry. By THOMAS TREDGOLD. Revised from the original edition, and partly re-written, by John Thomas Hurst. Contained in 517 pages of letterpress, and illustrated with 48 plates and 150 wood engravings. Third edition, crown 8vo, cloth, 18s.

Section I. On the Equality and Distribution of Forces—Section II. Resistance of Timber—Section III. Construction of Floors—Section IV. Construction of Roofs—Section V. Construction of Domes and Cupolas—Section VI. Construction of Partitions—Section VII. Scaffolds, Staging, and Gantries—Section VIII. Construction of Centres for Bridges—Section IX. Coffer-dams, Shoring, and Strutting—Section X. Wooden Bridges and Viaducts—Section XI. Joints, Straps, and other Fastenings—Section XII. Timber.

Our Factories, Workshops, and Warehouses: their Sanitary and Fire-Resisting Arrangements. By B. H. THWAITE, Assoc. Mem. Inst. C.E. With 183 wood engravings, crown 8vo, cloth, 9s.

Gold: Its Occurrence and Extraction, embracing the Geographical and Geological Distribution and the Mineralogical Characters of Gold-bearing rocks; the peculiar features and modes of working Shallow Placers, Rivers, and Deep Leads; Hydraulicing; the Reduction and Separation of Auriferous Quartz; the treatment of complex Auriferous ores containing other metals; a Bibliography of the subject and a Glossary of Technical and Foreign Terms. By Alfred G. Lock, F.R.G.S. With numerous illustrations and maps, 1250 pp., super-royal 8vo, cloth, 21, 12s, 6d.

- A Practical Treatise on Coal Mining. By GEORGE G. Andrew, F.G.S., Assoc. Inst. C.E., Member of the Society of Engineers. With 82 lithographic plates. 2 vols., royal 4to, cloth, 3% 12s.
- Iron Roofs: Examples of Design, Description. Illustrated with 64 Working Drawings of Executed Roofs. By ARTHUR T. WALMISLEY, Assoc. Mem. Inst. C.E. Imp. 4to, half-morocco, £2 12s. 6d.
- A History of Electric Telegraphy, to the Year 1837. Chiefly compiled from Original Sources, and hitherto Unpublished Documents, by J. J. Fahte, Mem. Soc. of Tel. Engineers, and of the International Society of Electricians, Paris. Crown 8vo, cloth, 9s.
- Spons' Information for Colonial Engineers. Edited by J. T. Hurst. Demy 8vo, sewed.

No. 1, Ceylon. By ABRAHAM DEANE, C.E. 2s. 6d.

CONTENTS:

Introductory Remarks—Natural Productions—Architecture and Engineering—Topography, Trade, and Natural History—Principal Stations—Weights and Measures, etc., etc.

No. 2. Southern Africa, including the Cape Colony, Natal, and the Dutch Republics. By HENRY HALL, F.R.G.S., F.R.C.I. With Map. 35. 6d.

CONTENTS:

General Description of South Africa—Physical Geography with reference to Engineering Operations—Notes on Labour and Material in Cape Colony—Geological Notes on Rock Formation in South Africa—Engineering Instruments for Use in South Africa—Principal Public Works in Cape Colony: Railways, Mountain Roads and Passes, Harbour Works, Bridges, Gas Works, Irrigation and Water Supply, Lighthouses, Drainage and Sanitary Engineering, Public Buildings, Mines—Table of Woods in South Africa—Animals used for Draught Purposes—Statistical Notes—Table of Distances—Rates of Carriage, etc.

No. 3. India. By F. C. DANVERS, Assoc. Inst. C.E. With Map. 45.6d.

CONTENTS:

Physical Geography of India—Building Materials—Roads—Railways—Bridges—Irrigation—River Works—Harbours—Lighthouse Buildings—Native Labour—The Principal Trees of India—Money—Weights and Measures—Glossary of Indian Terms, etc.

- A Practical Treatise on Casting and Founding, including descriptions of the modern machinery employed in the art. By N. E. Spretson, Engineer. Third edition, with 82 plates drawn to scale, 412 pp., demy 8vo, cloth, 18s.
- Steam Heating for Buildings; or, Hints to Steam Fitters, being a description of Steam Heating Apparatus for Warming and Ventilating Private Houses and Large Buildings, with remarks on Steam, Water, and Air in their relation to Heating. By W. J. BALDWIN. With many illustrations. Fourth edition, crown 8vo, cloth, 10s. 6d.

- The Depreciation of Factories and their Valuation. By Ewing Matheson, M. Inst. C.E. 8vo, cloth, 6s.
- A Handbook of Electrical Testing. By H. R. Kempe, M.S.T.E. Third edition, revised and enlarged, crown 8vo, cloth, 15s.
- Gas Works: their Arrangement, Construction, Plant, and Machinery. By F. Colver, M. Inst. C.E. With 31 folding plates, 8vo, cloth, 24s.
- The Clerk of Works: a Vade-Mecum for all engaged in the Superintendence of Building Operations. By G. G. Hoskins, F.R.I.B.A. Third edition, fcap. 8vo, cloth, 1s. 6d.
- American Foundry Practice: Treating of Loam, Dry Sand, and Green Sand Moulding, and containing a Practical Treatise upon the Management of Cupolas, and the Melting of Iron. By T. D. West, Practical Iron Moulder and Foundry Foreman. Second edition, with numerous illustrations, crown Svo, cloth, 10s. 6d.
- The Maintenance of Macadamised Roads. By T. Codrington, M.I.C.E, F.G.S., General Superintendent of County Roads for South Wales. Svo, cloth, 6s.
- Hydraulic Steam and Hand Power Lifting and Pressing Machinery. By Frederick Colver, M. Inst. C.E., M. Inst. M.E. With 73 plates, 8vo, cloth, 18s.
- Pumps and Pumping Machinery. By F. Colver, M.I.C.E., M.I.M.E. With 23 folding plates, 8vo, cloth, 12s. 6d.
- The Municipal and Sanitary Engineer's Handbook.

 By H. Percy Boulnois, Mem. Inst. C.E., Borough Engineer, Portsmouth. With numerous illustrations, demy 8vo, cloth, 12s. 6d.

The Appointment and Duties of the Town Surveyor—Traffic—Macadamised Roadways—Steam Rolling—Road Metal and Breaking—Pitched Pavements—Asphalte—Wood Pavements
—Footpaths—Kerbs and Gutters—Street Naming and Numbering—Street Lighting—Sewers—Gutilation of Sewers—Disposal of Sewage—House Drainage—Disinfection—Gas and Water Companies, &c., Breaking up Streets—Improvement of Private Streets—Borrowing Powers—Artizans' and Labourers' Dwellings—Public Conveniences—Scavenging, including Street Cleansing—Watering and the Removing of Snow—Planting Street Trees—Deposit of Plans—Dangerous Buildings—Hoardings—Obstructions—Improving Street Lines—Cellar Openings—Public Pleasure Grounds—Cemeteries—Mortuaries—Cattle and Ordinary Markets—Public Slaughter-houses, etc.—Giving numerous Forms of Notices, Specifications, and General Information upon these and other subjects of great importance to Municipal Engineers and others engaged in Sanitary Work.

- Tables of the Principal Speeds occurring in Mechanical Engineering, expressed in metres in a second. By P. Keeraveff, Chief Mechanic of the Obouchoff Steel Works, St. Petersburg; translated by Sergius Kern, M.E. Fcap. Svo, sewed, 6d.
- A Treatise on the Origin, Progress, Prevention, and Cure of Dry Rot in Timber; with Remarks on the Means of Preserving Wood from Destruction by Sea-Worms, Beetles, Ants, etc. By Thomas Allen Britton, late Surveyor to the Metropolitan Board of Works, etc., etc. With 10 plates, crown Svo, cloth, 75. 6d.
- Metrical Tables. By G. L. Molesworth, M.I.C.E. 32mo, cloth, 1s. 6d.

General—Linear Measures—Square Measures—Cubic Measures—Measures of Capacity—Weights—Combinations—Thermometers.

- Elements of Construction for Electro-Magnets. By Count TH. DU MONCEL, Mem. de l'Institut de France. Translated from the French by C. J. Wharton. Crown Svo, cloth, 4s, 6d.
- Electro-Telegraphy. By FREDERICK S. BEECHEY, Telegraph Engineer. A Book for Beginners. Illustrated. Fcap. 8vo, sewed, 6d.
- Handrailing: by the Square Cut. By JOHN JONES, Staircase Builder. Fourth edition, with seven plates, 8vo, cloth, 3s. 6d.
- Handrailing: by the Square Cut. By JOHN JONES, Staircase Builder. Part Second, with eight plates, 8vo, cloth, 3s. 6d.
- Practical Electrical Units Popularly Explained, with numerous illustrations and Remarks. By JAMES SWINBURNE, late of J. W. Swan and Co., Paris, late of Brush-Swan Electric Light Company, U.S.A. 18mo, cloth, 1s. 6d.
- Philipp Reis, Inventor of the Telephone: A Biographical Sketch. With Documentary Testimony, Translations of the Original Papers of the Inventor, &c. By SILVANUS P. THOMPSON, B.A., Dr. Sc., Professor of Experimental Physics in University College, Bristol. With illustrations, 8vo, cloth, 7s. 6d.
- A Treatise on the Use of Belting for the Transmission of Power. By J. H. Cooper. Second edition, illustrated, 8vo, cloth, 15s.

A Pocket-Book of Useful Formulæ and Memoranda for Civil and Mechanical Engineers. By GUILFORD L. MOLESWORTH. Mem. Inst. C.E., Consulting Engineer to the Government of India for State Railways. With numerous illustrations, 744 pp., Twenty-first edition, revised and enlarged, 32mo, roan, 6s.

SYNOPSIS OF CONTENTS:

Surveying, Levelling, etc.—Strength and Weight of Materials—Earthwork, Brickwork, Masonry, Arches, etc.—Strength and Weight of Materials—Earthwork, Roofing, and Roof Trusses—Girders, Bridges, etc.—Railways and Roads—Hydraulic Formulæ—Canals, Sewers, Waterworks, Docks—Irrigation and Breakwaters—Gas, Ventilation, and Warming—Heat, Light, Colour, and Sound—Gravity: Centres, Forces, and Powers—Millwork, Teeth of Wheels, Shafting, etc.—Workshop Recipes—Sundry Machinery—Animal Power—Steam and the Steam Engine—Water-power, Water-wheels, Turbines, etc.—Wind and Windmills—Steam Navigation, Ship Building, Tonnage, etc.—Gunnery, Projectiles, etc.—Weights, Measures, and Money—Trigonometry, Conic Sections, and Curves—Telegraphy—Mensuration—Tables of Areas and Circumference, and Arcs of Circles—Logarithms, Square and Cube Roots, Powers—Reciprocals, etc.—Useful Numbers—Differential and Integral Calculus—Algebraic Signs—Telegraphic Construction and Formulæ.

Spons' Tables and Memoranda for Engineers; selected and arranged by J. T. Hurst, C.E., Author of 'Architectural Surveyors' Handbook,' 'Hurst's Tredgold's Carpentry,' etc. Fifth edition, 64mo, roan, gilt edges, 1s.; or in cloth case, 1s. 6d.

This work is printed in a pearl type, and is so small, measuring only 2½ in. by 1½ in. by 1 in. thick, that it may be easily carried in the waistcoat pocket.

"It is certainly an extremely rare thing for a reviewer to be called upon to notice a volume measuring but 2½ in. by 1½ in., yet these dimensions faithfully represent the size of the handy little book before us. The volume—which contains 118 printed pages, besides a few blank pages for memoranda—is, in fact, a true pocket-book, adapted for being carried in the waist-coat pocket, and containing a far greater amount and variety of information than most people would imagine could be compressed into so small a space. . . . The little volume has been compiled with considerable care and judgment, and we can cordially recommend it to our readers as a useful little pocket companion."-Engineering.

- A Practical Treatise on Natural and Artificial Concrete, its Varieties and Constructive Adaptations. By HENRY REID, Author of the 'Science and Art of the Manufacture of Portland Cement.' New Edition, with 59 woodcuts and 5 plates, 8vo, cloth, 15s.
- Hydrodynamics: Treatise relative to the Testing of Water-Wheels and Machinery, with various other matters pertaining to Hydrodynamics. By JAMES EMERSON. With numerous illustrations, 360 pp. Third edition, crown 8vo, cloth, 4s. 6d.
- Electricity as a Motive Power. By Count TH. Du MONCEL, Membre de l'Institut de France, and FRANK GERALDY, Ingénieur des Ponts et Chaussées. Translated and Edited, with Additions, by C. J. WHARTON, Assoc. Soc. Tel. Eng. and Elec. With 113 engravings and diagrams, crown 8vo, cloth, 7s. 6d.
- Hints on Architectural Draughtsmanship. By G. W. TUXFORD HALLATT. Fcap. 8vo, cloth, 1s. 6d.

- Treatise on Valve-Gears, with special consideration of the Link-Motions of Locomotive Engines. By Dr. Gustav Zeuner. Professor of Applied Mechanics at the Confederated Polytechnikum of Zurich. Translated from the Fourth German Edition, by Professor J. F. Klein, Lehigh University, Bethlehem, Pa. Illustrated, 8vo, cloth, 12s. 6d.
- The French-Polisher's Manual. By a French-Polisher; containing Timber Staining, Washing, Matching, Improving, Painting, Imitations, Directions for Staining, Sizing, Embodying, Smoothing, Spirit Varnishing, French-Polishing, Directions for Repolishing. Third edition, royal 32mo, sewed, 6d.
- Hops, their Cultivation, Commerce, and Uses in various Countries. By P. L. SIMMONDS. Crown Svo, cloth, 4s. 6d.
- A Practical Treatise on the Manufacture and Distribution of Coal Gas. By WILLIAM RICHARDS. Demy 4to, with numerous wood engravings and 29 plates, cloth, 28s.

SYNOPSIS OF CONTENTS:

Introduction—History of Gas Lighting—Chemistry of Gas Manufacture, by Lewis Thompson, Esq., M.R.C.S.—Coal, with Analyses, by J. Paterson, Lewis Thompson, and G. R. Hislop, Esqrs.—Retorts, Iron and Clay—Retort Setting—Hydraulic Main—Condensers—Exhausters—Washers and Scrubbers—Purifiers—Purifiero—History of Gas Holder—Tanks, Brick and Stone, Composite, Concrete, Cast-iron, Compound Annular Wrought-iron—Specifications—Gas Holders—Station Meter—Governor—Distribution—Mains—Gas Mathematics, or Formulæ for the Distribution of Gas, by Lewis Thompson, Esq.—Services—Consumers' Meters—Regulators—Burners—Fittings—Photometer—Carburization of Gas—Air Gas and Water Gas—Composition of Coal Gas, by Lewis Thompson, Esq.—Analyses of Gas—Influence of Atmospheric Pressure and Temperature on Gas—Residual Products—Appendix—Description of Retort Settings, Buildings, etc., etc.

- Practical Geometry, Perspective, and Engineering Drawing; a Course of Descriptive Geometry adapted to the Requirements of the Engineering Draughtsman, including the determination of cast shadows and Isometric Projection, each chapter being followed by numerous examples; to which are added rules for Shading, Shade-lining, etc., together with practical instructions as to the Lining, Colouring, Printing, and general treatment of Engineering Drawings, with a chapter on drawing Instruments. By George S. Clarke, Capt. R.E. Second edition, with 21 plates. 2 vols., cloth, 10s. 6d.
- The Elements of Graphic Statics. By Professor Karl Von Ott, translated from the German by G. S. Clarke, Capt. R.E., Instructor in Mechanical Drawing, Royal Indian Engineering College. With 93 illustrations, crown 8vo, cloth, 5s.
- The Principles of Graphic Statics. By George Sydenham Clarke, Capt. Royal Engineers. With 112 illustrations. 4to, cloth, 12s. 6d.
- Dynamo-Electric Machinery: A Manual for Students of Electro-technics. By SILVANUS P. THOMPSON, B.A., D.Sc., Professor of Experimental Physics in University College, Bristol, etc., etc. Illustrated, 8vo, cloth, 12s. 6d.

- The New Formula for Mean Velocity of Discharge of Rivers and Canals. By W. R. Kutter. Translated from articles in the 'Cultur-Ingénieur,' by Lowis D'A. Jackson, Assoc. Inst. C.E. 8vo, cloth, 12s. 6d.
- Practical Hydraulics; a Series of Rules and Tables for the use of Engineers, etc., etc. By Thomas Box. Fifth edition, numerous plates, post 8vo, cloth, 5s.
- A Practical Treatise on the Construction of Horizontal and Vertical Waterwheels, specially designed for the use of operative mechanics. By WILLIAM CULLEN, Millwright and Engineer. With 11 plates. Second edition, revised and enlarged, small 4to, cloth, 12s. 6d.
- Tin: Describing the Chief Methods of Mining,
 Dressing and Smelting it abroad; with Notes upon Arsenic, Bismuth and
 Wolfram. By ARTHUR G. CHARLETON, Mem. American Inst. of
 Mining Engineers. With plates, 8vo, cloth, 12s. 6d.
- Perspective, Explained and Illustrated. By G. S. CLARKE, Capt. R.E. With illustrations, 8vo, cloth, 3s. 6d.
- The Essential Elements of Practical Mechanics; based on the Principle of Work, designed for Engineering Students. By OLIVER BYRNE, formerly Professor of Mathematics, College for Civil Engineers. Third edition, with 148 wood engravings, post 8vo, cloth, 7s. 6d.

Chap. I. How Work is Measured by a Unit, both with and without reference to a Unit of Time—Chap. 2. The Work of Living Agents, the Influence of Friction, and introduces one of the most beautiful Laws of Motion—Chap. 3. The principles expounded in the first and second chapters are applied to the Motion of Bodies—Chap. 4. The Transmission of Work by simple Machines—Chap. 5. Useful Propositions and Rules.

- The Practical Millwright and Engineer's Ready Reckoner; or Tables for finding the diameter and power of cog-wheels, diameter, weight, and power of shafts, diameter and strength of bolts, etc. By THOMAS DIXON. Fourth edition, 12mo, cloth, 3s.
- Breweries and Maltings: their Arrangement, Construction, Machinery, and Plant. By G. SCAMELL, F.R.I.B.A. Second edition, revised, enlarged, and partly rewritten. By F. COLYER, M.I.C.E., M.I.M.E. With 20 plates, 8vo, cloth, 18s.
- A Practical Treatise on the Manufacture of Starch, Glucose, Starch-Sugar, and Dextrine, based on the German of L. Von Wagner, Professor in the Royal Technical School, Buda Pesth, and other authorities. By Julius Frankel; edited by Robert Hutter, proprietor of the Philadelphia Starch Works. With 58 illustrations, 344 pp., 8vo, cloth, 18s.

1: 3

- A Practical Treatise on Mill-gearing, Wheels, Shafts, Riggers, etc.; for the use of Engineers. By Thomas Box. Third edition, with 11 plates. Crown Svo, cloth, 7s. 6d.
- Mining Machinery: a Descriptive Treatise on the Machinery, Tools, and other Appliances used in Mining. By G. G. André, F.G.S., Assoc. Inst. C.E., Mem. of the Society of Engineers. Royal 4to, uniform with the Author's Treatise on Coal Mining, containing 182 plates, accurately drawn to scale, with descriptive text, in 2 vols., cloth, 3/. 122.

Machinery for Prospecting, Excavating, Hauling, and Hoisting-Ventilation-Pumping-Treatment of Mineral Products, including Gold and Silver, Copper, Tin, and Lead, Iron. Coal, Sulphur, China Clay, Brick Earth, etc.

- Tables for Setting out Curves for Railways, Canals, Roads, etc., varying from a radius of five chains to three miles. By A. KENNEDY and R. W. HACKWOOD. Illustrated, 32mo, cloth, 2s. 6d.
- The Science and Art of the Manufacture of Portland Cement, with observations on some of its constructive applications. With 66 illustrations. By HENRY REID, C.E., Author of 'A Practical Treatise on Concrete,' etc., etc. 8vo, cloth, 18s.
- The Draughtsman's Handbook of Plan and Map Drawing; including instructions for the preparation of Engineering, Architectural, and Mechanical Drawings. With numerous illustrations in the text, and 33 plates (15 printed in colours). By G. G. André, F.G.S., Assoc. Inst. C.E. 4to, cloth, 9s.

CONTENTS:

The Drawing Office and its Furnishings—Geometrical Problems—Lines, Dots, and their Combinations—Colours, Shading, Lettering, Bordering, and North Points—Scales—Plotting—Civil Engineers' and Surveyors' Plans—Map Drawing—Mechanical and Architectural Drawing—Copying and Reducing Trigonometrical Formulæ, etc., etc.

- The Boiler-maker's and Iron Ship-builder's Companion, comprising a series of original and carefully calculated tables, of the utmost utility to persons interested in the iron trades. By James Foden, author of 'Mechanical Tables,' etc. Second edition revised, with illustrations, crown 8vo, cloth, 5s.
- Rock Blasting: a Practical Treatise on the means employed in Blasting Rocks for Industrial Purposes. By G. G. ANDRÉ, F.G.S., Assoc. Inst. C.E. With 56 illustrations and 12 plates, 8vo, cloth. 10s. 6d.
- Painting and Painters' Manual: a Book of Facts for Painters and those who Use or Deal in Paint Materials. By C. L. CONDIT and J. SCHELLER. Illustrated, Svo, cloth, 10s. 6d.

- A Treatise on Ropemaking as practised in public and private Rope-yards, with a Description of the Manufacture, Rules, Tables of Weights, etc., adapted to the Trade, Shipping, Mining, Railways, Builders, etc. By R. Chapman, formerly foreman to Messrs. Huddart and Co., Limehouse, and late Master Ropemaker to H.M. Dockyard, Deptford. Second edition, 12mo, cloth, 3s.
- Laxton's Builders' and Contractors' Tables; for the use of Engineers, Architects, Surveyors, Builders, Land Agents, and others. Bricklayer, containing 22 tables, with nearly 30,000 calculations. 4to, cloth, 5s.
- Laxton's Builders' and Contractors' Tables. Excavator, Earth, Land, Water, and Gas, containing 53 tables, with nearly 24,000 calculations. 4to, cloth, 5s.
- Sanitary Engineering: a Guide to the Construction of Works of Sewerage and House Drainage, with Tables for facilitating the calculations of the Engineer. By Baldwin Latham, C.E., M. Inst. C.E., F.G.S., F.M.S., Past-President of the Society of Engineers. Second edition, with numerous plates and woodcuts, Svo, cloth, 11. 10s.
- Screw Cutting Tables for Engineers and Machinists, giving the values of the different trains of Wheels required to produce Screws of any pitch, calculated by Lord Lindsay, M.P., F.R.S., F.R.A.S., etc. Cloth, oblong, 2s.
- Screw Cutting Tables, for the use of Mechanical Engineers, showing the proper arrangement of Wheels for cutting the Threads of Screws of any required pitch, with a Table for making the Universal Gas-pipe Threads and Taps. By W. A. MARTIN, Engineer. Second edition, oblong, cloth, 1s., or sewed, 6d.
- A Treatise on a Practical Method of Designing Slide-Valve Gears by Simple Geometrical Construction, based upon the principles enunciated in Euclid's Elements, and comprising the various forms of Plain Slide-Valve and Expansion Gearing; together with Stephenson's, Gooch's, and Allan's Link-Motions, as applied either to reversing or to variable expansion combinations. By Edward J. Cowling Welch, Memb. Inst. Mechanical Engineers. Crown 8vo, cloth, 6s.
- Cleaning and Scouring: a Manual for Dyers, Laundresses, and for Domestic Use. By S. Christopher. 18mo, sewed, 6d.
- A Handbook of House Sanitation; for the use of all persons seeking a Healthy Home. A reprint of those portions of Mr. Bailey-Denton's Lectures on Sanitary Engineering, given before the School of Military Engineering, which related to the "Dwelling," enlarged and revised by his Son, E. F. Bailey-Denton, C.E., B.A. With 140 illustrations, 8vo, cloth, 8s. 6d.

- A Glossary of Terms used in Coal Mining. By WILLIAM STUKELEY GRESLEY, Assoc. Mem. Inst. C.E., F.G.S., Member of the North of England Institute of Mining Engineers. Illustrated with numerons woodcuts and diagrams, crown 8vo, cloth, 5s.
- A Pocket-Book for Boiler Makers and Steam Users, comprising a variety of useful information for Employer and Workman, Government Inspectors, Board of Trade Surveyors, Engineers in charge of Works and Slips, Foremen of Manufactories, and the general Steamusing Public. By MAURICE JOHN SEXTON. Second edition, royal 32mo, roan, gilt edges, 55.
- The Strains upon Bridge Girders and Roof Trusses, including the Warren, Lattice, Trellis, Bowstring, and other Forms of Girders, the Curved Roof, and Simple and Compound Trusses. By Thos. CARGILL, C.E.B.A.T., C.D., Assoc. Inst. C.E., Member of the Society of Engineers. With 64 illustrations, drawn and worked out to scale, 8vo, cloth, 12s. 6d.
- A Practical Treatise on the Steam Engine, containing Plans and Arrangements of Details for Fixed Steam Engines, with Essays on the Principles involved in Design and Construction. By ARTHUR RIGG, Engineer, Member of the Society of Engineers and of the Royal Institution of Great Britain. Demy 4to, copiously illustrated with woodcuts and 96 plates, in one Volume, half-bound morocco, 2l. 2s.; or cheaper edition, cloth, 25s.

This work is not, in any sense, an elementary treatise, or history of the steam engine, but is intended to describe examples of Fixed Steam Engines without entering into the wide domain of locomotive or marine practice. To this end illustrations will be given of the most recent arrangements of Horizontal, Vertical, Beam, Pumping, Winding, Portable, Seniportable, Corliss, Allen, Compound, and other similar Engines, by the most entering the Great Britain and America. The laws relating to the action and precautions to be observed in the construction of the various details, such as Cylinders, Pistons, Piston-rods, Conscience Tods, Cross-heads, Motion-blocks, Eccentrics, Simple, Expansion, Balanced, and Equilibrium Slides-valves, and Valve-gearing will be minutely dealt with. In this connection will be found articles upon the Velocity of Reciprocating Parts and the Mode of Applying the Indicator, Heat and Expansion of Steam Governors, and the like. It is the writer's desire to draw illustrations from every possible source, and give only those rules that present practice deems correct.

- Barlow's Tables of Squares, Cubes, Square Roots, Cube Roots, Reciprocals of all Integer Numbers up to 10,000. Post 8vo, cloth, 6s.
- Camus (M.) Treatise on the Teeth of Wheels, demonstrating the best forms which can be given to them for the purposes of Machinery, such as Mill-work and Clock-work, and the art of finding their numbers. Translated from the French, with details of the present practice of Millwrights, Engine Makers, and other Machinists, by ISAAC HAWKINS. Third edition, with 18 plates, 8vo, cloth, 5s.

A Practical Treatise on the Science of Land and Engineerin Surveying, Levelling, Estimating Quantities, etc., with a general description of the several Instruments required for Surveying, Levelling, Plotting, etc. By H. S. MERRETT. Third edition, 41 plates with illustrations and tables, royal 8vo, cloth, 12s. 6d.

PRINCIPAL CONTENTS:

PRINCIPAL CONTENTS:

Part I. Introduction and the Principles of Geometry. Part 2. Land Surveying; comprising General Observations—The Chain—Offsets Surveying by the Chain only—Surveying Hilly Ground—To Survey an Estate or Parish by the Chain only—Surveying with the Theodolite—Mining and Town Surveying—Railroad Surveying—Mapping—Division and Laying out of Land—Observations on Enclosures—Plane Trigonometry. Part 3. Levelling—The Level Book—Parliamentary Plan and Section—Levelling with a Theodolite—Gradients—Wooden Curves—To Lay out a Railway Curve—Setting out Widths. Part 4. Calculating Quantities generally for Estimates—Cuttings and Embankments—Tunnels—Brickwork—Iromovck—Timber Measuring. Part 5. Description and Use of Instruments in Surveying and Plotting—The Improved Dumpy Level—Troughton's Level—The Prismatic Compass—Proportional Compass—Box Sextant—Vernier—Pantagraph—Merrett's Improved Quadrant—Improved Computation Scale—The Diagonal Scale—Straight Edge and Sector. Part 6. Logarithms of Numbers—Logarithmic Sines and Co-Sines, Tangents and Co-Tangents—Natural Sines and Co-Sines—Tables for Earthwork, for Setting out Curves, and for various Calculations, etc., etc.,

- Saws: the History, Development, Action, Classification, and Comparison of Saws of all kinds. By ROBERT GRIMSHAW. With 220 illustrations, 410, cloth, 12s. 6d.
- A Supplement to the above; containing additional practical matter, more especially relating to the forms of Saw Teeth for special material and conditions, and to the behaviour of Saws under particular conditions. With 120 illustrations, cloth, 9s.
- A Guide for the Electric Testing of Telegraph Cables. By Capt. V. Hoskicer, Royal Danish Engineers. With illustrations, second edition, crown 8vo, cloth, 4s. 6d.
- Laying and Repairing Electric Telegraph Cables. By Capt. V. Hoskicer, Royal Danish Engineers. Crown Svo, cloth,
- A Pocket-Book of Practical Rules for the Proportions of Modern Engines and Boilers for Land and Marine purposes. By N. P. BURGH. Seventh edition, royal 32mo, roan, 4s. 6d.
- The Assayer's Manual: an Abridged Treatise on the Docimastic Examination of Ores and Furnace and other Artificial Products. By BRUNO KERL. Translated by W. T. BRANNT. With 65 iliustrations, 8vo, cloth, 12s. 6d.
- The Steam Engine considered as a Heat Engine: a Treatise on the Theory of the Steam Engine, illustrated by Diagrams, Tables, and Examples from Practice. By JAS. H. COTTERILL, M.A., F.R.S., Professor of Applied Mechanics in the Royal Naval College, 3vo, cloth, 12s. 6d.

- Electricity: its Theory, Sources, and Applications. By J. T. Sprague, M.S.T.E. Second edition, revised and enlarged, with numerous illustrations, crown 8vo, cloth, 15s.
- The Practice of Hand Turning in Wood, Ivory, Shell, etc., with Instructions for Turning such Work in Metal as may be required in the Practice of Turning in Wood, Ivory, etc.; also an Appendix on Ornamental Turning. (A book for beginners.) By Francis Campin. Third edition, with wood engravings, crown Svo, cloth, 6s.

On Lathes—Turning Tools—Turning Wood—Drilling—Screw Cutting—Miscellaneous Apparatus and Processes—Turning Particular Forms—Staining—Polishing—Spinning Metals -Materials-Ornamental Turning, etc.

- Health and Comfort in House Building, or Ventilation with Warm Air by Self-Acting Suction Power, with Review of the mode of Calculating the Draught in Hot-Air Flues, and with some actual Experiments. By J. DRYSDALE, M.D., and J. W. HAYWARD, M.D. Second edition, with Supplement, with plates, demy 8vo, cloth, 7s. 6d.
- Treatise on Watchwork, Past and Present. By the Rev. H. L. NELTHROPP, M.A., F.S.A. With 32 illustrations, crown Svo, cloth, 6s. 6d. CONTENTS:

Definitions of Words and Terms used in Watchwork—Tools—Time—Historical Summary—On Calculations of the Numbers for Wheels and Pinions; their Proportional Sizes, Trains, etc.—Of Dial Wheels, or Motion Work—Length of Time of Going without Winding up—The Verge—The Horizontal—The Duplex—The Lever—The Chronometer—Repeating Watches—Keyless Watches—The Pendulum, or Spiral Spring—Compensation—Jewelling of Pivot Holes—Clerkenwell—Fallacies of the Trade—Incapacity of Workmen—How to Choose and Use a Watch, etc.

- Notes in Mechanical Engineering. Compiled principally for the use of the Students attending the Classes on this subject at the City of London College. By HENRY ADAMS, Mem. Inst. M.E., Mem. Inst. C.E., Mem. Soc. of Engineers. Crown 8vo, cloth, 2s. 6d.
- Algebra Self-Taught. By W. P. Higgs, M.A., D.Sc., LL.D., Assoc. Inst. C.E., Author of 'A Handbook of the Differential Calculus,' etc. Second edition, crown 8vo, cloth, 2s. 6d.

CONTENTS:

Symbols and the Signs of Operation—The Equation and the Unknown Quantity—Positive and Negative Quantities—Multiplication—Involution—Exponents—Negative Exponents—Roots, and the Use of Exponents as Logarithms—Logarithms—Tables of Logarithms and Proportionate Parts—Transformation of System of Logarithms—Common Uses of Common Logarithms—Compound Multiplication and the Binomial Theorem—Division, Fractions, and Ratio—Continued Proportion—The Series and the Summation of the Series—Livio Exercises—Livio Exercise Action 1987. Limit of Series-Square and Cube Roots-Equations-List of Formulæ, etc.

Spons' Dictionary of Engineering, Civil, Mechanical, Military, and Naval; with technical terms in French, German, Italian, and Spanish, 3100 pp., and nearly 8000 engravings, in super-royal 8vo, in 8 divisions, 51. 8s. Complete in 3 vols., cloth, 51. 5s. Bound in a superior manner, half-morocco, top edge gilt, 3 vols., 61. 12s.

A SUPPLEMENT

SPONS' DICTIONARY OF ENGINEERING.

EDITED BY ERNEST SPON, MEMB. Soc. ENGINEERS.

Coke Ovens. Copper.

Dredging Machinery.

chines.

Dynamometers.

Dynamo - Electric and

Magneto-Electric Ma-

Abacus, Counters, Speed Coal Mining. Indicators, and Slide Coal Cutting Machines. Rule. Agricultural Implements Docks. Drainage. and Machinery. Air Compressors. Animal Charcoal Machinery. Antimony. Axles and Axle-boxes. Barn Machinery. Belts and Belting. Blasting. Boilers. Brakes. Brick Machinery. Bridges. Cages for Mines. Calculus, Differential and Integral. Canals. Carpentry. Cast Iron. Cement. Concrete. Limes, and Mortar. Chimney Shafts.

Coal Cleansing

Washing.

and

Electrical Engineering, Telegraphy, Electric Lighting and its practicaldetails, Telephones Engines, Varieties of. Explosives. Fans. Founding, Moulding and the practical work of the Foundry. Gas, Manufacture of. Hammers, Steam and other Power. Heat. Horse Power. Hydraulics. Hydro-geology. Indicators, Iron. Lifts, Hoists, and Elevators.

Lighthouses, Buoys, and Beacons. Machine Tools. Materials of Construction. Meters. Ores, Machinery and Processes employed to Dress. Piers. Pile Driving. Pneumatic Transmis sion. Pumps. Pyrometers. Road Locomotives. Rock Drills. Rolling Stock. Sanitary Engineering. Shafting. Steel. Steam Navvy. Stone Machinery. Tramways. Well Sinking.

London: E. & F. N. SPON, 125, Strand. New York: 35, Murray Street.

NOW COMPLETE.

With nearly 1500 illustrations, in super-royal Svo, in 5 Divisions, cloth. Divisions 1 to 4, 13s. 6d. each; Division 5, 17s. 6d.; or 2 vols., cloth, £3 10s.

SPONS' ENCYCLOPÆDIA

OF THE

INDUSTRIAL ARTS, MANUFACTURES, AND COMMERCIAL PRODUCTS.

EDITED BY C. G. WARNFORD LOCK, F.L.S.

Among the more important of the subjects treated of, are the following:-

Acids, 207 pp. 220 figs. Alcohol, 23 pp. 16 figs. Alcoholic Liquors, 13 pp. Alkalies, 89 pp. 78 figs. Alloys. Alum. Assaying. Beverages, 89 pp. 29 figs. Bleaching Powder, 15 pp. Bleaching, 51 pp. 48 figs. Candles, 18 pp. 9 figs. Carbon Bisulphide. Celluloid, 9 pp. Cements. Clay. Coal-tar Products, 44 pp. 14 figs. Cocoa, 8 pp. Coffee, 32 pp. 13 figs. Cork, 8 pp. 17 figs. Cotton Manufactures, 62 pp. 57 figs. Drugs, 38 pp. Dyeing and Calico Printing, 28 pp. 9 figs. Dyestuffs, 16 pp. Electro-Metallurgy, 13 Explosives, 22 pp. 33 figs. Feathers. Fibrous Substances, 92 pp. 79 figs. Floor-cloth, 16 pp. 21 Food Preservation, 8 pp. Fruit, 8 pp.

Fur, 5 pp. Gas, Coal, 8 pp. Gems. Glass, 45 pp. 77 figs. Graphite, 7 pp. Hair, 7 pp. Hair Manufactures. Hats, 26 pp. 26 figs. Honey. Hops. Horn. Ice, 10 pp. 14 figs. Indiarubber Manufactures, 23 pp. 17 figs. Ink, 17 pp. Ivory. Jute Manufactures, 11 pp., II figs. Knitted Fabrics — Hosiery, 15 pp. 13 figs. Lace, 13 pp. 9 figs. Leather, 28 pp. 31 figs. Linen Manufactures, 16 pp. 6 figs. Manures, 21 pp. 30 figs. Matches, 17 pp. 38 figs. Mordants, 13 pp. Narcotics, 47 pp. Nuts, 10 pp. Oils and Fatty Substances, 125 pp. Paper, 26 pp. 23 figs.

Photography, 13 pp. 20 Pigments, 9 pp. 6 figs. Pottery, 46 pp. 57 figs. Printing and Engraving, 20 pp. 8 figs. Rags. Resinous and Gummy Substances, 75 pp. 16 Rope, 16 pp. 17 figs. Salt, 31 pp. 23 figs. Silk, 8 pp. Silk Manufactures, 9 pp. II figs. Skins, 5 pp. Small Wares, 4 pp. Soap and Glycerine, 39 pp. 45 figs. Spices, 16 pp. Sponge, 5 pp. Starch, 9 pp. 10 figs. Sugar, 155 pp. 134 figs. Sulphur. Tannin, 18 pp. Tea, 12 pp. Timber, 13 pp. Varnish, 15 pp. Vinegar, 5 pp. Wax, 5 pp. Wool, 2 pp. Woollen Manufactures, 58 pp. 39 figs.

London: E. & F. N. SPON, 125, Strand. New York: 35, Murray Street.

Parassin, 8 pp. 6 sigs. Pearl and Coral, 8 pp.

Perfumes, 10 pp.

WORKSHOP RECEIPTS,

BY ERNEST SPON.

SYNOPSIS OF CONTENTS.

Bookbinding. Bronzes and Bronzing. Candles. Cement. Cleaning. Colourwashing. Concretes. Dipping Acids. Drawing Office Details. Drying Oils. Dynamite. Electro - Metallurgy -(Cleaning, Dipping, Scratch-brushing, Batteries, Baths, Deposits of every description). Enamels. Engraving on Wood, Copper, Gold, Silver, Steel, and Stone. Etching and Aqua Tint. Firework Making -(Rockets, Stars, Rains, Gerbes, Jets, Tour-billons, Candles, Fires, Lances, Lights, Wheels, Fire-balloons, and minor Fireworks). Fluxes. Foundry Mixtures.

Freezing. Fulminates. Furniture Creams, Oils, Polishes. Lacquers, and Pastes. Gilding. Glass Cutting, Cleaning, Frosting, Drilling, Darkening, Bending, Staining, and Painting. Glass Making. Glues. Gold. and Graining. Gums. Gun Cotton. Gunpowder. Horn Working. Indiarubber. Japans, Japanning, and kindred processes. Lacquers. Lathing. Lubricants. Marble Working. Matches. Mortars. Nitro-Glycerine.

Paper. Paper Hanging. Painting in Oils, in Water Colours, as well as Fresco, House, Transparency, Sign, and Carriage Painting. Photography. Plastering. Polishes. Pottery-(Clays, Bodies, Glazes, Colours, Oils, Stains, Fluxes, Enamels, and Lustres). Scouring. Silvering. Soap. Solders. Tanning. Taxidermy. Tempering Metals. Treating Horn, Mothero'-Pearl, and like substances. Varnishes, Manufacture and Use of. Veneering. Washing. Waterprofing. Welding.

Besides Receipts relating to the lesser Technological matters and processes, such as the manufacture and use of Stencil Plates, Blacking, Crayons, Paste, Putty, Wax, Size, Alloys, Catgut, Tunbridge Ware, Picture Frame and Architectural Mouldings, Compos, Cameos, and others too numerous to mention.

London: E. & F. N. SPON, 125, Strand. New York: 35, Murray Street.

WORKSHOP RECEIPTS. SECOND SERIES.

BY ROBERT HALDANE.

SYNOPSIS OF CONTENTS.

Acidimetry and Alkali- Disinfectants. metry. Albumen. Alcohol. Baking-powders. Bleaching. Boiler Incrustations. Cements and Lutes. Cleansing. Confectionery.

Copying.

Dyeing, Staining, and Ivory substitutes. Colouring. Essences. Extracts. Fireproofing. Gelatine, Glue, and Size. Paper. Glycerine. Gut. Hydrogen peroxide. Iodine. Iodoform.

Isinglass. Leather. Luminous bodies. Magnesia. Matches. Parchment. Perchloric acid. Potassium oxalate. Preserving.

Pigments, Paint, and Painting: embracing the preparation of Pigments, including alumina lakes, blacks (animal, bone, Frankfort, ivory, lamp, sight, soot), blues (antimony, Antwerp, cobalt, corruleum, Egyptian, manganate, Paris, Péligot, Prussian, smalt, ultramarine), browns (bistre, hinau, sepia, sienna, umber, Vandyke), greens (baryta, Brighton, Brunswick, chrome, cobalt, Douglas, emerald, manganese, mitis, mountain, Prussian, sap, Scheele's, Schweinfurth, titanium, verdigris, zinc), reds (Brazilwood lake, carminated lake, carmine, Cassius purple, cobalt pink, cochineal lake, colcothar, Indian red, madder lake, red chalk, red lead, vermilion), whites (alum, baryta, Chinese, lead sulphate, white lead—by American, Dutch, French, German, Kremnitz, and Pattinson processes, precautions in making, and composition of commercial samples—whiting, Wilkinson's white, zinc white), yellows (chrome, gamboge, Naples, orpiment, realgar, yellow lakes); Paint (vehicles, testing oils, driers, grinding, storing, applying, priming, drying, filling, coats, brushes, surface, water-colours, removing smell, discoloration; miscellaneous paints-cement paint for carton-pierre, copper paint, gold paint, iron paint, lime paints, silicated paints, steatite paint, transparent paints, tungsten paints, window paint, zinc paints); Painting (general instructions, proportions of ingredients, measuring paint work; carriage painting-priming paint, best putty, finishing colour, cause of cracking, mixing the paints, oils, driers, and colours, varnishing, importance of washing vehicles, re-varnishing, how to dry paint; woodwork painting).

London: E. & F. N. SPON, 125, Strand.

New York: 35, Murray Street.

JUST PUBLISHED.

Crown Svo, cloth, 480 pages, with 183 illustrations, 5s.

WORKSHOP RECEIPTS, THIRD SERIES.

By C. G. WARNFORD LOCK.

Uniform with the First and Second Series.

SYNOPSIS OF CONTENTS.

Indium. Rubidium. Allovs. Ruthenium. Aluminium. Iridium. Iron and Steel. Antimony. Selenium. Barium. Lacquers and Lacquering. | Silver. Beryllium. Lanthanum. Slag. Bismuth. Lead. Sodium. Lithium. Cadmium. Strontium. Lubricants. Cæsium. Tantalum. Magnesium. Calcium. Terbium. Thallium. Cerium. Manganese. Thorium Chromium. Mercury. Tin. Cobalt. Mica. Molybdenum. Titanium Copper. Didymium. Nickel. Tungsten. Electrics. Uranium. Niobium. Enamels and Glazes. Vanadium. Osmium. Yttrium. Erbium. Palladium. Gallium. Zinc. Platinum. Zirconium. Glass. Potassium Gold. Rhodium. Aluminium.

London: E. & F. N. SPON, 125, Strand.

New York: 35, Murray Street.

JUST PUBLISHED.

In demy 8vo, cloth, 600 pages, and 1420 Illustrations, 6s.

SPONS'

MECHANIC'S OWN BOOK

A MANUAL FOR HANDICRAFTSMEN AND AMATEURS.

CONTENTS.

Mechanical Drawing—Casting and Founding in Iron, Brass, Bron and other Alloys-Forging and Finishing Iron-Sheetmetal Worki -Soldering, Brazing, and Burning-Carpentry and Joinery, embraci descriptions of some 400 Woods, over 200 Illustrations of Tools a their uses, Explanations (with Diagrams) of 116 joints and hinges, a Details of Construction of Workshop appliances, rough furnitu Garden and Yard Erections, and House Building-Cabinet-Maki and Veneering - Carving and Fretcutting - Upholstery - Painting Graining, and Marbling-Staining Furniture, Woods, Floors, a Fittings-Gilding, dead and bright, on various grounds-Polishi Marble, Metals, and Wood-Varnishing-Mechanical movement illustrating contrivances for transmitting motion-Turning in Wo and Metals-Masonry, embracing Stonework, Brickwork, Terracot and Concrete-Roofing with Thatch, Tiles, Slates, Felt, Zinc, &c. Glazing with and without putty, and lead glazing-Plastering a Whitewashing-Paper-hanging-Gas-fitting-Bell-hanging, ordina and electric Systems - Lighting - Warming - Ventilating - Road Pavements, and Bridges - Hedges, Ditches, and Drains - Wa Supply and Sanitation-Hints on House Construction suited to n

London: E. & F. N. SPON, 125, Strand.

New York: 35, Murray Street.

TEH Hen 96437 Title Hydraulic and other tables. Hennell, Thomas

UNIVERSITY OF TORONTO LIBRARY

Do not remove the card from this Pocket.

Acme Library Card Pocket Under Pat. "Ref. Index File." Made by LIBRARY BUREAU

