上述定义中Γ函数为:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx, \quad (\alpha > 0).$$

根据上式有 $\Gamma(1)=1, \Gamma(1/2)=\sqrt{\pi}$. τ 分布的可加性:

上述定理的证明留作习题. 特别地, 当 $\alpha = 1/2\pi\lambda = 1/2\pi$, 有

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{1}{2}} & x > 0\\ 0 & x \le 0 \end{cases}$$

例8.2. 若 $X \sim \mathcal{N}(0,1)$, 则 $X^2 \sim \Gamma(1/2,1/2)$.

解. 首先求解随机变量函数 $Y = X^2$ 的分布函数: 当y > 0时,

$$F_Y(y) = \Pr(X^2 \le y) = \Pr(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

由此得到概率密度为 $f_Y(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-\frac{y}{2}}$. 当 $y \leq 0$ 时有 $f_Y(y) = 0$. 从而得到 $X^2 \sim \Gamma(1/2, 1/2)$.

8.3 正态总体抽象分布定理

8.3.1 χ^2 分布

定义8.4. 若 X_1, X_2, \cdots, X_n 是总体为 $\mathcal{N}(0,1)$ 的一个样本,称 $Y = X_1^2 + X_2^2 + \cdots + X_n^2$ 为服从自由度为n的 χ^2 分布,记为 $Y \sim \chi^2(n)$.

根据 $X_1^2 \sim \Gamma(1/2,1/2)$, 以及 Γ 函数的可加性, 可得 $Y \sim \Gamma(n/2,1/2)$. 因此Y的概率密度为

$$f_Y(y) = \begin{cases} \frac{\left(\frac{1}{2}\right)^{\frac{n}{2}}}{\Gamma(n/2)} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}} & y > 0\\ 0 & y \le 0 \end{cases}$$

下面研究 χ^2 分布的性质:

定理8.3. 若 $X \sim \chi^2(n)$, 则E(X) = n, Var(X) = 2n; 若 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$ 且独立, 则 $X + Y \sim \chi^2(m+n)$;

Proof. 若 $X \sim \chi^2(n)$, 设 $X = X_1 + X_2 + \cdots + X_n$, 其中 X_1, X_2, \cdots, X_n 独立同分布于 $\mathcal{N}(0, 1)$, 则有

$$E[X] = E[X_1^2 + X_2^2 + \dots + X_n^2] = nE[X_1^2] = n,$$

$$Var(X) = nVar(X_1^2) = n[E(X_1^4) - (E(X_1^2))^2] = n(E(X_1^4) - 1).$$

计算

$$E(X_1^4) = \int_{-\infty}^{+\infty} \frac{x^4}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 3 \int_{-\infty}^{+\infty} \frac{x^2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 3$$

可得Var(X) = 2n.

更一般的结论: 若 $X \sim \mathcal{N}(0,1)$, 则

$$E(X^k) = \begin{cases} (k-1)!! & k 为偶数 \\ 0 & k 为奇数 \end{cases}$$

 $\sharp + (2k)!! = 2k \cdot (2k-2) \cdot \cdots \cdot 2, (2k+1)!! = (2k+1) \cdot (2k-1) \cdot \cdots \cdot 1.$

例8.3. 设 X_1, X_2, X_3, X_4 是来自于 $\mathcal{N}(0,4)$ 的样本, $Y = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$. 求a,b 取何值时, Y服从 χ^2 分布, 并求其自由度.

解. 根据正太分布的性质有 $X_1-2X_2\sim\mathcal{N}(0,20)$ 和 $3X_3-4X_4\sim\mathcal{N}(0,100)$,因此

$$\frac{X_1 - 2X_2}{2\sqrt{5}} \sim \mathcal{N}(0, 1), \qquad \frac{3X_3 - 4X_4}{10} \sim \mathcal{N}(0, 1),$$

所以当 $a = \frac{1}{2\sqrt{5}}, b = \frac{1}{10}$ 时有 $Y \sim \chi^2(2)$ 成立.

分布可加性:

- 如果 $X \sim \mathcal{N}(\mu_1, a_1^2)$ 和 $Y \sim \mathcal{N}(\mu_2, a_2^2)$,且X = Y独立,那么 $X \pm Y \sim \mathcal{N}(\mu_1 \pm \mu_2, a_1^2 + a_2^2)$;
- 如果 $X \sim B(n_1, p)$ 和 $Y \sim B(n_2, p)$, 且X = Y独立, 那么 $X + Y \sim B(n_1 + n_2, p)$;
- 如果 $X \sim P(\lambda_1)$ 和 $Y \sim P(\lambda_2)$,且X = Y独立,那么 $X + Y \sim P(\lambda_1 + \lambda_1)$;
- 如果 $X \sim \Gamma(\alpha_1, \lambda)$ 和 $Y \sim \Gamma(\alpha_2, \lambda)$, 且X = Y独立, 那么 $X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$.

8.3.2 t分布

定义8.5. 随机变量 $X \sim \mathcal{N}(0,1), Y \sim \chi^2(n), X$ 与Y独立,则 $T = X/\sqrt{Y/n}$ 服从自由度为n的t-分布,记 $T \sim t(n)$.

随机变量 $T \sim t(n)$, 其概率密度为

$$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{\frac{n+1}{2}} \qquad (x \in \mathbb{R}).$$

由此可知t分布的密度函数f(x)是偶函数. 当 $n \to \infty$ 时,

$$f(x) \to \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
.

因此当n足够大时, f(x)可被近似为 $\mathcal{N}(0,1)$ 的密度函数.

8.3.3 F分布

定义8.6. 设随机变量 $X\sim\chi^2(m),\,Y\sim\chi^2(n),\,$ 且X与Y独立,称 $F=\frac{X/m}{Y/n}$ 服从自由度为(m,n)的F-分布,记 $F\sim F(m,n),$

随机变量 $F \sim F(m,n)$ 的概率密度为

$$f(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{\frac{m}{2}} x^{\frac{m}{2}-1}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})(1+\frac{mx}{n})^{\frac{m+n}{2}}} & x > 0\\ 0 & x \le 0 \end{cases}$$

注: 若 $F \sim F(m, n)$, 则 $\frac{1}{F} = F(n, m)$.

课题练习:

- 1) 随机变量 X_1, X_2, \dots, X_n 相互独立, 且 $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, 求 $\sum_{i=1}^n (X_i \mu_i)^2 / \sigma_i^2$ 的分布.
- 2) 总体 $X \sim \mathcal{N}(0,9)$ 与总体 $Y \sim \mathcal{N}(0,9)$ 独立, X_1, X_2, \cdots, X_9 和 Y_1, Y_2, \cdots, Y_9 分别为来自总体X和Y的两样本,求 $(X_1 + X_2 + \cdots + X_9)/\sqrt{Y_1^2 + Y_1^2 + \cdots + Y_n^2}$ 的分布.
- 3) 设 X_1, X_2, X_{2n} 来自总体 $\mathcal{N}(0, \sigma_2)$ 的样本,求 $(X_1^2 + X_3^2 + \dots + X_{2n-1}^2)/(X_2^2 + X_4^2 + \dots + X_{2n}^2)$ 的分布.

8.3.4 正态分布的抽样分布定理

定理8.4. 设 X_1, X_2, \dots, X_n 是取自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本,则有

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}), \qquad \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

定理8.5. 随机变量 X_1, X_2, \cdots, X_n 是取自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本,设 $\bar{X} = \sum_{i=1}^n X_i / n n S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)$,则有

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$
 且 \bar{X} 和 S^2 相互独立.

此定理证明参考书的附件.

定理8.6. 设 X_1, X_2, \cdots, X_n 是取自总体 $\mathcal{N}(\mu, \sigma^2)$ 的样本,则 $\bar{X} = \sum_{i=1}^n X_i/n$ 与 $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$ 相互独立,且

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

Proof. 有前面两个定理可知 $(\bar{X}-\mu)/\sigma\sqrt{n}\sim\mathcal{N}(0,1)$ 和 $(n-1)S^2/\sigma^2\sim\chi^2(n-1)$,于是有

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} / \sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}} = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

定理8.7. 设 $X \sim \mathcal{N}(\mu_1, \sigma^2)$, $Y \sim \mathcal{N}(\mu_2, \sigma^2)$, 且X与Y独立. 设 $X_1, X_2, \cdots, X_m, Y_1, Y_2, \cdots, Y_n$ 分别来自总体X和Y的两个样本, \bar{X} , \bar{Y} 为样本均值, S_X^2 和 S_Y^2 为修正样本方差, 则

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}} \sqrt{\frac{1}{m} + \frac{1}{n}} \sim t(n_1 + n_2 - 2).$$

Proof. 对正太分布有 $\bar{X} \sim \mathcal{N}(\mu_1, \sigma^2/m)$ 和 $\bar{Y} \sim \mathcal{N}(\mu_2, \sigma^2/n)$,并 $\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_1 - \mu_2, \left(\frac{1}{m} + \frac{1}{n}\right)\sigma^2\right)$,进一步有

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sigma^2 \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim \mathcal{N}(0, 1).$$

根据定理 8.5 有 $\frac{(m-1)S_X^2}{\sigma^2}$ $\sim \chi^2(m-1)$ 和 $\frac{(n-1)S_Y^2}{\sigma^2}$ $\sim \chi^2(n-1)$,由此得到

$$\frac{(m-1)S_X^2 + (n-1)S_Y^2}{\sigma^2} \sim \chi^2(m+n-2).$$

从而完成证明.

定理8.8. 设 $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, 且X与Y独立. 设 $X_1, X_2, \cdots, X_m, Y_1, Y_2, \cdots, Y_n$ 分别来自总体X和Y的两个样本, S_X^2 和 S_Y^2 为样本的修正样本方差,则有

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1, n-1).$$

Proof. 根据定理 8.5有 $\frac{(m-1)S_X^2}{\sigma_X^2} \sim \chi^2(m-1)$ 和 $\frac{(n-1)S_Y^2}{\sigma_Y^2} \sim \chi^2(n-1)$,所以

$$\frac{\frac{(m-1)S_X^2}{\sigma_X^2}/(m-1)}{\frac{(n-1)S_Y^2}{\sigma_Y^2}/(n-1)} \sim F(m-1, n-1).$$

课题练习题:

- 1) 若 $X \sim t(n)$, 求 $Y = X^2$ 的分布.
- 2) 若总体 $X \sim \mathcal{N}(0,1), X_1, X_2, \cdots, X_5$ 为一样本. 设 $Y = c_1(X_1 + X_3)^2 + c_2(X_2 + X_4 + X_5)^2$. 求常数 c_1, c_2 使Y服从 χ^2 分布.
 - 3) 设 X_1, X_2 是总体 $\mathcal{N}(0, \sigma^2)$ 的样本, 求 $\frac{(X_1 + X_2)^2}{(X_1 X_2)^2}$ 的分布.
- 4) 设 X_1, X_2, \dots, X_{10} 是总体 $\mathcal{N}(\mu, \frac{1}{4})$ 的样本, i) 若 $\mu = 0$, 求 $\Pr(\sum_{i=1}^{10} X_i^2 \ge 4)$; ii) 若 μ 未知, 求 $\Pr(\sum_{i=1}^{10} (X_i \bar{X})^2 \ge 2.85)$.
- 5) 设 X_1, X_2, \dots, X_{25} 是总体 $\mathcal{N}(12, \sigma^2)$ 的样本, i) 若 $\sigma = 2$, 求 $\Pr(\frac{1}{25} \sum_{i=1}^{25} X_i \ge 12.5)$; ii) 若 σ 未知, 求 $\Pr(\frac{1}{25} \sum_{i=1}^{25} X_i \ge 12.5)$ (此时样本方差 $S^2 = 5.57$).

8.3.5 分位数(点)

定义8.7. 设X为一随机变量, 给定 $\alpha \in (0,1)$, 称满足 $\Pr(X > \lambda_{\alpha}) = \alpha$ 的实数 λ_{α} 为上侧 α 分位数(点).

正态分布的分位点: $X \sim \mathcal{N}(0,1)$, 对给定 $\alpha \in (0,1)$, 满足 $\Pr(X > \mu_{\alpha}) = \int_{\mu_{\alpha}}^{\infty} f(x) dx = \alpha$ 的点 μ_{α} 称为正态分布上侧 α 分位点. 由对称性可知 $\mu_{1-\alpha} = -\mu_{\alpha}$.

 $\chi^2(n)$ 分位点: $X \sim \chi^2(n)$, 对给定 $\alpha \in (0,1)$, 满足 $\Pr(X \geq \chi^2_{\alpha}(n)) = \alpha$ 的点 $\chi^2_{\alpha}(n)$ 称为 $\chi^2(n)$ 分布上侧 α 分位点. 当 $n \to \infty$ 时, 有 $\chi^2_{\alpha}(n) \approx \frac{1}{2}(\mu_{\alpha} + \sqrt{2n-1})^2$, 其中 μ_{α} 表示正态分布上侧 α 分位点.

t分布的分位点: $X \sim t(n)$, 对给定 $\alpha \in (0,1)$, 满足 $\Pr(X > t_{\alpha}(n)) = \alpha$ 的点 $t_{\alpha}(n)$ 称为t(n)分布上侧 α 分位点. 由对称性可知 $t_{(1-\alpha)}(n) = -t_{\alpha}(n)$.

F分布的分位点: $X \sim F(m,n)$, 对给定 $\alpha \in (0,1)$, 满足 $\Pr[X > F_{\alpha}(m,n)] = \alpha$ 的点 $F_{\alpha}(m,n)$ 称为F(m,n)分布上侧 α 分位点. 对于F分布, 我们有如下性质:

引理8.2. 对F分布的分位点有 $F_{(1-\alpha)}(m,n) = \frac{1}{F_{\alpha}(n,m)}$.

Proof. 设 $X \sim F(m,n)$, 根据定义有

$$1 - \alpha = \Pr(X > F_{1-\alpha}(m, n)) = \Pr\left(\frac{1}{X} < \frac{1}{F_{1-\alpha}(m, n)}\right) = 1 - \Pr\left(\frac{1}{X} \ge \frac{1}{F_{1-\alpha}(m, n)}\right).$$

再根据 $1/X \sim F(n,m)$,结合上式有

$$\alpha = \Pr\left(\frac{1}{X} \ge \frac{1}{F_{1-\alpha}(m,n)}\right) = \Pr\left(\frac{1}{X} > \frac{1}{F_{1-\alpha}(m,n)}\right)$$

于是有 $F_{\alpha}(n,m) = \frac{1}{F_{1-\alpha}(m,n)}$.