ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Выбор баз данных	Предыдущий документ	
Параметры поиска	Реферат	ие . Формула Рисунки
Формулировка запроса		Извещения об изменении правового статуса
Уточненный	Статус	прекратил действие (по данным на 27.10.2004)
запрос	(11) Номер публикации	2047069
Найденные	(13) Вид документа	C1
документы	(14) Дата публикации	1995.10.27
Корзина	(19) Страна публикации	RU
	(21) Регистрационный номер заявки	4914506/06
Сохраненные	(22) Дата подачи заявки	1991.02.27
запросы	(46) Дата публикации формулы изобретения	1995.10.27
Статистика	(516) Номер редакции МПК	6
Помощь	(51) Основной индекс МПК	F28B1/02 TOUCK MIK
Предложения	(51) Основной индекс МПК	F28B9/10 TOUCK MUK
Puren	Название	ТЕПЛООБМЕННИК-КОНДЕНСАТОР
Выход	(56) Аналоги изобретения	Авторское свидетельство СССР N 1291817, кл. F 28B 1/02, 1990.
ДОКУМЕНТ в начало в конец	(71) Имя заявителя	Омский политехнический институт Поиск
в корзину печать ТЕРМИНЫ	(72) Имя изобретателя	Стародубцев В.А.
предыдущий следующий	(72) Имя изобретателя	Жолос А.А.
	(73) Имя патентообладателя	Омский политехнический институт Пойск

Извещения об изменении правового статуса

Номер бюллетеня

Дата публикации бюллетеня

Код изменения правового статуса

ММ4А - Досрочное прекращение
действия патентов РФ из-за неуплаты в
установленный срок пошлин за
поддержание патента в силе

Реферат Описание Формула Рисунки.
Предыдущий документ

EST AVAILABLE COPY

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Выбор баз данных

Параметры поиска

Формулировка запроса

Уточненный запрос

Найденные документы

Корзина

Сохраненные запросы

Статистика

Помощь

Предложения

Выход

Предыдущий документ >

Библиография Реферат Формула Рисунки

№2047069. Описание

Изобретение относится к теплообменной аппаратуре, позволяет интенсифицировать теплообмен и может быть использовано в энергетической промышленности.

Известен теплообменник-конденсатор, выбранный за прототип и

являющийся базовым объектом, в котором для интенсификации

теплообмена используется однородное электрическое поле [1] Этот теплообменник-конденсатор содержит каналы для парогазовой среды с установленными по их оси центральными электродами, подключенными к высоковольтному источнику. В каждом канале дополнительно установлен перфорированный электрод, размещенный между центральным электродом и стенками канала. Указанный теплообменник-конденсатор работает следующим образом. При подключении центрального и перфорированного электродов к противоположным полюсам высоковольтного источника парогазовая среда поступает в канал и пар конденсируется. При подаче напряжения только на перфорированный электрод однородное поле воздействует в основном на пленку конденсата и незначительно на диффузионный слой. При одновременном подключении центрального и перфорированного электродов к различным полюсам высоковольтного источника происходит интенсификация теплообмена за счет одновременного воздействия на пленку конденсата и диффузионного пограничного слоя. Однородное электрическое поле способствует разбрызгиванию конденсата и его удалению с теплообменной поверхности.

Недостатки описанного прототипа заключаются в том, что, вопервых, центральный и перфорированный электроды принудительно не охлаждаются и, следовательно, не участвуют в теплообмене, что приводит к снижению эффективности работы теплообменникаконденсатора и, следовательно к повышению его массовогабаритных характеристик; во-вторых, однородное электрическое поле только разрушает пленку конденсата на поверхности стенок канала, поэтому требуется дополнительная энергия на его удаление из теплообменника-конденсатора.

Целью изобретения является интенсификация теплообмена при конденсации паров диэлектрической жидкости и уменьшение гидравлического сопротивления теплообменника-конденсатора.

Для этого в теплообменнике-конденсаторе, содержащем плоский канал для паровой рабочей среды, являющийся зоной конденсации, находящийся между полостями для охлаждающей жидкости, отделенный от последних металлическими пластинами, являющимися электродами, в свою очередь отделенными друг от друга посредством диэлектрических вставок и подключенными к противоположным полюсам высоковольтного источника, одна из которых может быть заземлена, пластины-электроды содержат полости для охлаждения диэлектрическими жидкостями независимо от величины подведенного к пластинам-электродам потенциала, причем пластины-электроды со стороны канала для паровой рабочей среды выполнены ступенчатыми и каждая ступень пластин-электродов расположена под углом к осевой линии канала таким образом, что канал в продольном сечении представляет собой ряд чередующихся участков клиновидной формы.

В канале подобного вида создается неоднородное электрическое поле. абсолютное значение напряженности которого растет с

уменьшением расстояния между электродами и достигает максимального значения при минимальном расстоянии между электродами. Как известно, сила, действующая на единицу объема диэлектрика, которыми являются и конденсат, и пар, в неоднородном электрическом поле равна:

 $f = \frac{\varepsilon - 1}{8\pi}$ √E² где € диэлектрическая проницаемость вещества;

Е напряженность электрического поля, и определяется как напряженностью электрического поля и его градиентом (эти условия для рабочей среды одинаковы), так и диэлектрической проницаемостью вещества є, которая для пара и жидкости различна. Для большинства жидких диэлектриков є по абсолютному значению превосходят є парообразных диэлектриков, например для фреонов значения є для жидкости и пара следующие:

€ _{пар} €_{жид.}

Фреон-113 1,0024 2,42

Фреон-114 1,0024 2,2

Фреон-12 1,0016 2,13

Следовательно, электрические силы будут действовать неодинаково на частицы жидкого и парообразного диэлектриков при всех прочих равных условиях. Частицы конденсата будут двигаться в сторону увеличения напряженности электрического поля с большей скоростью, чем частицы еще не сконденсировавшегося пара, вытесняя последние. Таким образом, создается направленное движение конденсата, в результате которого возникает прокачивающий эффект, в значительной степени компенсирующий гидравлическое сопротивление теплообменника-конденсатора. Вместе с тем благодаря вышеупомянутому эффекту частицы

конденсата интенсивно удаляются с теплообменной поверхности пластин-электродов в одну сторону, освобождая место частицам пара и тем самым интенсифицируя теплообмен.

В случае, когда электроды теплообменника-конденсатора выполнены в виде внутренней и наружной концентрических втулок, причем внешняя поверхность внутренней, а внутренняя поверхность наружной втулок образуют кольцевой канал, и когда внутренняя втулка-электрод подключена к высокому потенциалу высоковольтного источника, а наружная втулка-электрод заземлена, эксплуатация теплообменника-конденсатора может осуществляться в более безопасных условиях, чем в случае, когда теплообменник-конденсатор имеет канал плоского типа, поскольку высоковольтная втулка-электрод со всех сторон окружена заземленным экраном, которым является наружная втулка-электрод.

На фиг.1 изображен предлагаемый теплообменник-конденсатор с плоским каналом, продольное сечение; на фиг.2 сечение А-А на фиг.1; на фиг.3 теплообменник-конденсатор с кольцевым каналом, продольное сечение; на фиг.4 сечение Б-Б на фиг.3.

Плоский канал 1 и 2 (фиг.1 и 2) имеет переменное поперечное сечение и сформирован с двух сторон пластинами-электродами 2, а с двух других сторон диэлектрическими вставками 3. Пластины-электроды 2 со стороны вышеупомянутого канала выполнены ступенчатыми. Каждая ступень 4 пластин-электродов расположена под углом к осевой линии канала, образуя таким образом ряд чередующихся участков 5 клиновидной формы. Пластины-электроды 2 содержат полости 6 для охлаждающей диэлектрической жидкости и могут быть подключены к противоположным полюсам высоковольтного источника 7. Одна из пластин-электродов может быть заземлена.

На фиг. З и 4 канал 1 имеет переменное поперечное кольцевое сечение и сформирован внутренней и наружной концентрическими втулками 2 и диэлектрическими вставками 3. Внешняя поверхность внутренней и внутренняя поверхность наружной втулок-электродов выполнены ступенчатыми. Каждая ступень 4 втулок-электродов расположена под углом к осевой линии втулок, образуя таким образом два симметричных относительно осевой линии втулок ряда участков 5 клиновидной формы. Втулки-электроды 2 содержат полости 6 для охлаждающей диэлектрической жидкости и могут быть подключены к противоположным полюсам высоковольтного источника 7. Одна из втулок может быть заземлена.

Теплообменник-конденсатор работает следующим образом.

В каналы 1 подаются пары диэлектрической жидкости, а в полости 6 охлаждающая диэлектрическая жидкость. Включается источник напряжения 7, и на электроды 2 подается напряжение. Возникающее при этом между электродами 2 неоднородное электрическое поле, во-первых, разрушает пленку конденсата на поверхности электродов, во-вторых, вызывает силы, действующие на частицы конденсата в большей степени, чем на частицы еще не сконденсировавшегося пара, за счет большей по абсолютному значению величины диэлектрической проницаемости у жидких диэлектриков по сравнению с парообразными диэлектриками при всех прочих равных условиях. Эти силы действуют в сторону большей напряженности электрического поля, т. е. в сторону сужения участков 5 канала 1. В результате этого действия частицы конденсата движутся в зоны максимальной напряженности электрического поля, одновременно освобождая теплообменную поверхность частицами пара, и затем выбрызгиваются по ходу движения под действием поляризационных и инерционных сил.

Достоинствами предлагаемого теплообменника-конденсатора по сравнению с прототипом являются:

уменьшение массогабаритных характеристик за счет охлаждения высоковольтного электрода;

увеличение интенсивности теплообмена при конденсации и компенсация гидравлического сопротивления за счет создания направленного движения образующегося конденсата.

Библиография Реферат Формула Рисунки;
Предыдущий документ

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Выбор баз данных Параметры поиска Формулировка запроса Уточненный запрос Найденные документы Корзина Сохраненные запросы Статистика Помощь Предложения

№2047069. Формула

 ТЕПЛООБМЕННИК-КОНДЕНСАТОР, содержащий плоский канал. для паровой рабочей среды, являющийся зоной конденсации, находящийся между полостями для охлаждающей жидкости, отделенный от последних металлическими пластинами, являющимися электродами, в свою очередь, отделенными друг от друга посредством диэлектрических вставок и подключенными к противоположным полюсам высоковольтного источника напряжения, одна из которых может быть заземлена, отличающийся тем, что, с целью интенсификации теплообмена и уменьшения гидравлического сопротивления теплообменника-конденсатора, пластины-электроды содержат полости для охлаждения диэлектрическими жидкостями независимо от величины подведенного к пластинам-электродам потенциала, причем пластины-электроды со стороны канала для паровой рабочей среды выполнены ступенчатыми и каждая ступень пластин-электродов расположены под углом к осевой линии канала таким образом, что канал в продольном сечении представляет собой ряд чередующихся участков клиновидной формы.

2. Теплообменник-конденсатор по п. 1, отличающийся тем, что электроды выполнены в виде внутренней и наружной концентрических втулок, причем внешняя поверхность внутренней, а внутренняя поверхность наружной втулок выполнены ступенчатыми и образуют кольцевой канал, причем каждая ступень втулок-электродов расположена под углом к осевой линии канала таким образом, что канал в продольном сечении представляет собой два

ДОКУМЕНТ
в начало
в конец
в корзину

Выход

симметричных относительно осевои линии втулок ряда чередующихся участков клиновидной формы, а в поперечных сечениях различных участков упомянутый канал представляет собой кольца с различной площадью.

Библиография Реферат Описание Рисунки Рисунки

9

Фиг. З

Фиг. 4

U 2047069 C

-6-