Introduction à la théorie de la ruine

P.O. Goffard¹

¹Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille pierre.olivier.goffard@gmail.com pierreolivier.goffard@axa.fr

Février 2014 /Master IMSA

Outlines

- Introduction
- 2 Les distributions composées
- 3 Le modèle de ruine de Cramer-Lundberg
- 4 Perspectives et utilité de la théorie de la ruine

Qu'est ce que la théorie de la ruine?

Modélisation des réserves financières d'une compagnie d'assurance non vie.

- → Stochastique
- → Dynamique
- → Portefeuille de contrat non vie

Objectif : Définir un cadre pour une bonne gestion financière d'un portefeuille de contrat.

- → Un niveau de prime périodique

L'analyse statistique permet la calibration en quantifiant le risque supporté par le portefeuille.

- Loi des montants de sinistres
 - → Portefeuille dit **homogène**
- Loi pour la fréquence des sinistres

The essence, the basics

Le résultat d'un assureur non-vie associé à une branche d'activité sur exercice (durée=1 an) s'écrit

$$R = Produit Technique + Produit Financier$$

= $(P - S) + 2\% \times FP + 3\% \times P - 1.5\% \times S$

оù,

- R est le résultat de l'exercice
- P est le montant des cotisations payées par les assurés (investi au taux 3%)
- S est la charge totale induite par le règlement des prestations
 - → Règlement des prestations à la mi-année
- FP est le montant des capitaux propres (investi au taux 2%)
 - → Compromis entre rentabilité et viabilité du business

La probabilité de ruine : une mesure de risque désuette

Le chargement de sécurité

Le chargement de sécurité $\eta>0$, souvent exprimé en pourcentage, est défini par

$$P = E(S)(1+\eta) \tag{1}$$

→ De combien le cumul annuel des primes doit excéder la charge moyenne liée aux prestations sur l'année.

Probabilité de ruine

La probabilité de ruine est la probabilité que le montant *FP* soit insufisant pour compenser un résultat annuel déficitaire

$$\psi(FP) = P(R < -FP). \tag{2}$$

Mesures de risque plus actuelles

Value-at-Risk

La Value-at-Risk est un quantile de la distribution du résultat annuel définie par

$$P(R > -VaR_{\alpha}(R)) = \alpha \Rightarrow VaR_{\alpha} = \inf\{x; P(R > -x) = \alpha\}$$

Tail Value-at-Risk or Expected Shortfall

La Tail Value-at-Risk est égale à la valeur moyenne du résultat sachant qu'il est inférieur à la VaR

$$TVaR_{\alpha}(R) = E(-R|R < -VaR_{\alpha}(R))$$

= $VaR_{\alpha}(R) + E(-R - Var_{\alpha}(R)|R < -VaR_{\alpha}(R))$

- \hookrightarrow Solvabilité II $\Rightarrow VaR_{99.5\%}$
- \hookrightarrow Swiss Solvency Test $\Rightarrow TVaR_{99\%}$

Et l'aléa dans tout ça?

FIGURE : Distribution de la charge totale et du résultat à l'issu de plusieurs exercices

$$\psi(FP) = P\left(S > \frac{P \times 1.03 + FP \times 1.02}{1.015}\right) \tag{3}$$

→ Comment modéliser la charge totale ?

Modèle Individuelle V.S. Modèle Collectif

Modèle individuel

Soit un portefeuille de contrat comprenant n polices. La charge totale est définie par :

$$S^{Ind} = \sum_{i=1}^{n} I_i U_i$$

- $\bullet I_i \stackrel{i.i.d.}{\sim} B(p)$
- U_i variable aléatoire continue positive i.i.d. indépendante de I_i
- → Lorsque le nombre de contrats est grand les calculs sont difficiles à effectuer

Modèle Individuelle V.S. Modèle Collectif

Modèle Collectif

La charge totale est définie par :

$$S^{Col} = \sum_{i=1}^{N} U_i$$

- N variable aléatoire discrète à valeur entière.
- U_i variable aléatoire continue positive i.i.d. indépendante de N

Théorème : Approximation du modèle individuel par un modèle collectif

- n grand
- Portefeuille homogène

$$S^{Ind} \sim S^{Col}$$

Processus de réserve et de surplus

On note $\{R_t; t \ge 0\}$ le processus de réserves, et $u = R_0$ la réserve initiale. On fait les hypothèses suivantes :

- \bullet T_i v.a. positive i.i.d. égales aux temps inter-arrivée des sinistres
- $\sigma_n = \sum_{i=1}^n T_i$ instant d'occurence du n^{ieme} sinistre
- $N_t = max\{n \in \mathbb{N}; \sigma_n \le t\} = max\{n \in \mathbb{N}; \sigma_{n+1} \ge t\}$ processus de comptage
- U_i v.a. positive i.i.d. égales aux montants des sinistres indépendants de N(t)
- p flow de prime générée par le portefeuille par unité de temps

Ce qui donne:

$$R_t = u + pt - \sum_{i=1}^{N_t} U_i$$

On définit également le processus de surplus $\{S(t); t \ge 0\}$:

$$S_t = u - R_t$$

Visualisation graphique

FIGURE : Evolution de la réserve et du surplus au cours du temps

Définition de la probabilité de ruine

Probabilité de ruine à horizon de temps infini

$$\psi(u) = P\left(\inf_{t \ge 0} R_t < 0; R_0 = u\right)$$

Probabilité de ruine à horizon de temps fini

$$\psi(u,T) = P\left(\inf_{t \in [0,T]} R_t < 0; R_0 = u\right)$$

Probabilité de non ruine à horizon de temps fini et infini

$$\phi(u) = 1 - \psi(u) \qquad \phi(u, T) = 1 - \phi(u, T)$$

Définition alternative de la probabilité de ruine

Instant de ruine et maximum du processus de surplus

$$\tau_u = \inf\{t \ge 0 : R_t < 0\} = \inf\{t \ge 0 : S_t > u\}$$

$$M = \sup_{t \ge 0} S_t \quad M_T = \sup_{t \in [0,T]} S_t$$

Probabilité de ruine à horizon de temps fini et infini

$$\psi(u) = P(\tau_u < \infty) = P(M > u)$$

$$\psi(u, T) = P(\tau_u < T) = P(M_T > u)$$

Le chargement de sécurité

Soit ρ défini par

$$\frac{1}{t} \sum_{k=1}^{N_t} U_k \underset{t \to +\infty}{\to} \rho$$

Chargement de sécurité

Le chargement de sécurité, noté η , est défini par

$$p = (1 + \eta)\rho$$

- Si $\eta < 0$ alor $\psi(u) = 1$
- Si $\eta > 0$ alor $\psi(u) < 1$

Quelques rappels

Une variable aléatoire S suit une distribution composée (N, F_U) si :

$$S = \sum_{k=1}^{N} U_i$$

- N est une variable de comptage caractérisée par $p_k = P(N = k)$
- $(U_i)_{i\geq 0}$ suite de variables positives i.i.d. indépendantes de N et de fonction de répartition F_U

Fonction de répartition

$$F_S(x) = \sum_{n \in \mathbb{N}} p_n F_U^{*n}(x)$$

Quelques propriétés sur les moments

Fonction génératrice des moments

$$\widehat{F_S}(s) = E(e^{sS}) = \int_0^{+\infty} e^{sx} dF_S(x) = G_N(\widehat{F_U}(s))$$

• $G_N(s) = E(s^N)$ la fonction génératrice des probabilités de N

Espérance et Variance de S

$$E(S) = E(N).E(U)$$

$$Var(S) = E(N).Var(U) + E(U)^{2}Var(N)$$

Distribution du nombre de sinistres

• $N \sim Pois(\lambda)$

$$\forall k \in \mathbb{N}, \ p_k = \frac{e^{-\lambda} \lambda^k}{k!}$$

• $N \sim Bin(n,q)$

$$\forall 0 \le k \le n, \ p_k = \binom{n}{k} q^k (1-q)^k$$

• $N \sim NegBin(\alpha, q)$

$$\forall k \in \mathbb{N}, \ p_k = {\alpha + k - 1 \choose k} q^k (1 - q)^{\alpha}$$

Famille de Panjer

Soit N une variable aléatoire à valeurs entières caractérisées par $\{p_k\}_{k\geq 0}$ telle que

$$\exists a < 1, \ b \in \mathbb{R}, \ \forall k \in \mathbb{N}^*, \ p_k = \left(a + \frac{b}{k}\right) p_{k-1}$$

Caractérisation de la famille de Panjer

Les seules lois de probabilité vérifiant la relation de récurrence de Panjer sont

- la loi de Poisson,
- la loi Binomiale,
- la loi Binomiale Négative.

Un méthode d'évaluation itérative

$$S = \sum_{i=1}^{N} U_i,$$

où

- N est une variable de comptage caractérisée par $p_k = P(N = k)$ vérifiant la relation de récurence de Panjer,
- $(U_i)_{i\geq 0}$ suite de variables i.i.d. à valeurs entières indépendantes de N et caractérisées par $q_k = P(U = k)$.

Algorithme de Panjer

$$P(S=j) = p_j^S = \begin{cases} G_N(q_0), & j=0\\ (1-aq_0)^{-1} \sum_{k=1}^{j} \left(a + \frac{bk}{j}\right) q_k p_{j-k}^S, & j>0 \end{cases}$$

Distribution pour les montants : La loi exponentielle

Propriétés de la loi exponentielle

 $X \sim Exp(\delta)$ alors

$$f_X(x) = \delta e^{-\delta x} \mathbf{1}_{\mathbb{R}^+}(x), \quad F_X(x) = 1 - \delta e^{-\delta x}$$

$$E(X) = \frac{1}{\delta}, \quad Var(X) = \frac{1}{\delta^2}$$

Loi loi de $Erlang(n, \delta)$

Soit $(X_i)_{i>0}$ i.i.d. de loi exponentielle de paramètre δ , alors

$$S_n = \sum_{i=1}^n X_i \sim Erlang(n, \delta),$$

la densité associée est

$$f_{S_n}(x) = \frac{e^{-\delta x} \delta^n x^{n-1}}{\Gamma(n)} \mathbf{1}_{\mathbb{R}^+}(x).$$

Distribution pour les montants : Les lois *Phase-Type* Processus de Markov homogène et absorbant

Un processus de Markov homogène et absorbant $\{J_t\}_{t\geq 0}$ est caractérisé par

- Un espace d'état $E \cup \{\Delta\}$
- Une loi initiale α avec $P(J_0 = j) = \alpha_j$
- Une fonction de transition $P_t(i,j) = P(J_t = j|J_0 = i) = e^{\mathbf{A}t}$

Distribution Phase-Type

 $U \sim Phase - Type$ alors,

$$F_U(x) = P(\zeta < x),$$

avec $\zeta = Inf\{t \ge 0 : J_t = \Delta\}.$

Distribution pour les montants : Les lois *Phase-Type* Propriétés d'un processus de Markov

Soit $\mathbf{A} = (a_{ij})_{i,j \in E \cup \{\Delta\}}$ le générateur du procesus de Markov

Loi du temps de séjour dans l'état i

$$P_i(T_1 > t) = e^{a_{ii}t}$$

Loi d'entrée dans le complémentaire de l'état i

$$P_i(J_{T_1}=j)=-\frac{a_{ij}}{a_{ii}}$$

A noter que

$$\sum_{j \in E \cup \{\Delta\}/\{i\}} P(X_{T_1} = j) = 1 \quad \Rightarrow \quad \sum_{j \in E \cup \{\Delta\}/\{i\}} a_{ij} = -a_{ii}$$

Distribution pour les montants : Les lois *Phase-Type* Formalisme *Phase-Type*

 $U \sim Phase - Type(\alpha, \mathbf{T}, E)$ avec

$$\mathbf{A} = \begin{pmatrix} \mathbf{T} & \mathbf{t} \\ \hline 0 & 0 \end{pmatrix}.$$

où $\mathbf{t} = -\mathbf{T}\mathbf{1}_l$, l est le nombre d'état de E.

Quelques propriétés

- (i) La fonction de répartition de U est $F_U(x) = 1 \alpha' e^{\mathbf{T}x} \mathbf{1}_l$,
- (ii) La densité de U est $f_U(x) = \alpha' e^{\mathbf{T}x} \mathbf{t}$,
- (iii) La fonction génératrice des moments est

$$\widehat{m}_U(s) = \int_0^{+\infty} e^{sx} dF_U(x) = \alpha'(-s\mathbf{I} - \mathbf{T})^{-1} \mathbf{t}.$$

Exemple 1 : Loi HyperExponentielle

$$f(x) = \sum_{i=1}^{n} \alpha_i \delta_i e^{-\delta_i x} \mathbf{1}_{\mathbb{R}^+}(x),$$

avec $\sum_{i=1}^{n} \alpha_i = 1$. Le schéma associé est le suivant

Exemple 2: Loi Erlang

$$f(x) = \frac{e^{-\delta x} \delta^n x^{n-1}}{\Gamma(n)} \mathbf{1}_{\mathbb{R}^+}(x),$$

Le schéma associé est le suivant

Une propriété fondamentale

Un comportement exponentiel asymptotiquement

Soit $U \sim Phase - Type(\alpha, \mathbf{T}, E)$,

- η la valeur propre de **T** ayant la plus grande partie réelle
- ν' et **h** vecteur propre ligne et colonne associé à η tels que ν' **h** = 1

On a alors

$$\overline{F_U}(x) \stackrel{x \to +\infty}{\sim} Ce^{-\eta x}$$

avec $C = \alpha' \nu' . \mathbf{h} \mathbf{1}_l$.

Géométrique composée

Soit
$$S = \sum_{i=1}^{N} U_i$$
 où $N \sim Geom(p)$ avec $p \in (0, 1)$,

$$F_S = \sum_{k=0}^{+\infty} (1 - p) p^k F_U^{*k}$$

Montant exponentiel

Si
$$U_i \stackrel{i.i.d.}{\sim} Exp(\delta)$$
, alors

$$\overline{F_S}(x) = pe^{-\delta(1-p)x}$$

Géométrique composée

Soit
$$S = \sum_{i=1}^{N} U_i$$
 où $N \sim Geom(p)$ avec $p \in (0, 1)$,

$$F_S = \sum_{k=0}^{+\infty} (1 - p) p^k F_U^{*k}$$

Montant exponentiel

Si
$$U_i \stackrel{i.i.d.}{\sim} Exp(\delta)$$
, alors

$$\overline{F_S}(x) = pe^{-\delta(1-p)x}$$

Approximation de Cramer-Lundberg

Le coefficient d'ajustement

Le coefficient d'ajustement γ est l'unique solution positive de l'équation suivante,

$$\widehat{m}_U(s) = \frac{1}{p}$$

Cette equation est l'équation fondamentale de Cramer-Lundberg.

Comportement asymptotiquement exponentiel

Soit *S* une variable aléatoire ayant une distribution géométrique composée, alors

$$\overline{F_S}(x) \underset{x \to \infty}{\sim} Ce^{-\gamma x}$$

Géométrique composée avec des montants *Phase-Type*

Zero-modified Phase-Type

Soit S une variable aléatoire ayant une distribution géométrique composée.

 $U_i \overset{i.i.d.}{\sim} Phase\text{-Type}(\alpha, \mathbf{T}, E)$ alors S admet une distribution *p-zero modified Phase Type* telle que :

$$S = I.V$$

où

- $V \sim Phase Type(\alpha, \mathbf{T} + p\mathbf{t}\alpha', E),$
- $I \sim \mathbb{B}(p)$

A noter que

$$\mathbf{t}\alpha' = \begin{pmatrix} t_1 \\ \dots \\ t_l \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 & \dots & \alpha_l \end{pmatrix} = \begin{pmatrix} t_1\alpha_1 & \dots & t_1\alpha_l \\ \dots & \dots & \dots \\ t_l\alpha_1 & \dots & t_l\alpha_l \end{pmatrix}$$

Géométrique composée avec des montants *Phase-Type*

Géométrique composée avec des montants *Phase-Type*

Corollaire

Soit S une variable aléatoire ayant une distribution géométrique composée.

 $U_i \overset{i.i.d.}{\sim} Phase-Type(\alpha, \mathbf{T}, E)$ alors

(i)

$$\overline{F_S}(x) = p\alpha.e^{(\mathbf{T} + p\mathbf{t}\alpha')x}.\mathbf{1}_l$$

(ii)

$$\overline{F_S}(x) \underset{t\to +\infty}{\sim} Ce^{-\eta_+ x},$$

avec $-\eta_+$ la valeur propre de $\mathbf{T} + p\mathbf{t}.\alpha'$ ayant la plus grande partie réelle.

Définition du modèle

Le processus stochastique régissant l'évolution des réserves financières est supposé être de la forme

$$R_t = u + pt - \sum_{i=1}^{N_t} U_i.$$

Le processus de surplus associé est de la forme

$$S_t = \sum_{i=1}^{N_t} U_i - pt.$$

Les hypothèses du modèle de ruine de Cramer-Lundberg sont les suivantes

- u > 0 est la réserve initiale de la compagnie d'assurance,
- p > 0 le taux de prime reçues continuement dans temps
- N_t est un processus de Poisson homogène d'intensité β
- $(U_i)_{i>0}$ suite de variables aléatoires, strictement positives, i.i.d. de fonction de répartition F_U , de moyenne μ finie, et indépendantes de N_t

Rappel autour du processus de Poisson

Définition

Soit $T_i \stackrel{i.i.d.}{\sim} Exp(\beta)$ et $\sigma_n = \sum_{i=1}^n T_i$ Le processus de comptage $\{N_t\}_{t \geq 0}$ défini par

$$N_t = \sum_{n \geq 1} \mathbf{1}_{\{\sigma_n < t\}}$$

est un processus de Poisson.

Caractérisation du processus de Poisson

Si $\{N_t\}$ est un processus de Poisson homogène d'intensité β alors

- (i) $N_0 = 0$ presque surement.
- (ii) $N_t \sim Pois(\beta t)$
- (ii) N_t est un processus à accroissement stationnaires et indépendants

La probabilité de ruine ultime est définie par

$$\psi(u) = P\left(\inf_{t\geq 0} R_t < 0 : R_0 = u\right),\,$$

la probabilité complémentaire ou probabilité de non ruine ultime est définie par

$$\phi(u) = 1 - \psi(u)$$

Net Benefit condition

Dans le cadre du modèle de Cramer-Lundberg $\rho=\beta\mu$, la condition $\eta>0$ équivaut à

$$p > \beta \mu$$

Une équation intégro-différentielle

$$\phi'(u) = \frac{\beta}{p} \left(\phi(u) - \int_0^u \phi(u - y) dF_U(y) \right)$$

Une équation intégrale

$$\phi(u) = \phi(0) + \frac{\beta}{p} \int_0^u \phi(u - y) \overline{F_U}(y) dy$$

Avec
$$\phi(0) = 1 - \frac{\beta \mu}{p}$$
.

La formule de Pollaczeck-Khinchine

$$\psi(u) = \left(1 - \frac{\beta\mu}{p}\right) \sum_{n=1}^{+\infty} \left(\frac{\beta\mu}{p}\right)^n \overline{F_{U}^{*n}}(u),$$

avec $F_{U^I}(x) = \frac{1}{\mu} \int_0^x \overline{F_U}(y) dy$ l'integrated tail distribution de U.

Or
$$\psi(u) = P(M > u)$$
 où $M = \sup_{t>0} S_t$.

$$M = \sum_{i=1}^{N} U_i^I$$
, avec,

- $N \sim Geom\left(\frac{\beta\mu}{p}\right)$
- U_i^I variables aléatoires positives i.i.d. de fonction de répartition F_{U^I}

Approximation de la probabilité de ruine

L'approximation de Cramer-Lundberg

Sous réserve que la fonction génératrice des moments $\widehat{m}_U(s)$ de U soit définie pour une valeur de s>0 alors

$$\psi(u) \underset{u \to +\infty}{\sim} Ke^{-\gamma u},$$

avec γ solution positive de l'équation $\beta + ps = \beta \widehat{m}_U(s)$.

Avec des montants de distribution *Phase-Type*

Supposons que les $(U_i)_{i\geq 0}$ possède une distribution *Phase-Type* de représentation (α, \mathbf{T}, E) alors la probabilité de ruine vérifie

(i)
$$\psi(u) = \alpha_+ e^{(\mathbf{T} + \mathbf{t}\alpha'_+)} \cdot \mathbf{1}_l$$
 avec $\alpha_+ = -\beta \alpha' \mathbf{T}^{-1}$

(ii)
$$\psi(u) \sim Ce^{-\eta_+ x}$$
,

avec $-\eta_+$ la valeur propre de $\mathbf{T} + \mathbf{t}\alpha'_+$ ayant la plus grande partie réelle.

Le rapprochement de la réalité et de la pratique

- S'affranchir de la vision 0-1
 - → Déficit à la ruine
 - ightarrow Le temps passé dans le rouge
- Dans le cadre de la Solvency 2 ⇒ probabilité de ruine à horizon de temps T=1 an.
- Ajout de taux d'intérêt et de taux d'inflation

$$\begin{cases} dR_t = pe^{\delta t}dt + R_t i dt - e^{\delta t} X_{N_t} dt \\ R_0 = u \end{cases}$$

- → Taux aléatoire voire égaux à des processus stochastiques.
- → Modélisation en univers Markovien. Définition d'une chaine de Markov où chaque état est caractérisé par un environnement économique différent.
- Faire une tarification dépendante du niveau des réserves.
- Modélisation conjointe des réserves associées à deux portefeuilles.
 Interaction entre les deux portefeuilles et probabilité de ruine multivariée.
- Versement de dividende aux actionnaires. Maximisation de la moyenne des dividendes versées avant la ruine.

La stratégie du type barrière

Les variantes et généralisations possibles de modélisation

 Approximation de la charge totale générée par les sinistres via un mouvement Brownien

$$R_t = u + pt - B_t$$

avec
$$\{B_t, t \geq 0\}$$
 et $B_t \sim \mathbf{N}(0, \sigma^2 t)$.

- N_t processus de Naissance/Mort ou Poisson non homogène
- Inclure de la dépendance entre les montants de sinistres.
- Inclure une dépendance entre le temps inter-arrivée entre les sinistres et les montant de sinistres.
 - → Séisme V.S. Inondations

Les deux ouvrages de référence [?],[?].

References