1135. Connecting Cities With Minimum Cost comm

Solved

Medium Topics Companies Hint

There are [n] cities labeled from [1] to [n]. You are given the integer [n] and an array connections where connections $[i] = [x_i, y_i, cost_i]$ indicates that the cost of connecting city $[x_i]$ and city $[y_i]$ (bidirectional connection) is $[cost_i]$.

Return the minimum **cost** to connect all the n cities such that there is at least one path between each pair of cities. If it is impossible to connect all the n cities, return -1,

The **cost** is the sum of the connections' costs used.

Example 1:

Input: n = 3, connections = [[1,2,5],[1,3,6],[2,3,1]]

Output: 6

Explanation: Choosing any 2 edges will connect all cities so we choose the minimum 2.

Example 2:

Input: n = 4, connections = [[1,2,3],[3,4,4]]

Output: -1

Explanation: There is no way to connect all cities even if all edges are used.

Constraints:

- 1 <= n <= 10⁴
- 1 <= connections.length <= 10⁴
- connections[i].length == 3
- 1 <= x_i, y_i <= n
- x_i!= y_i
- $0 \le \cos t_i \le 10^5$

Seen this question in a real interview before? 1/5

Yes No

Accepted **73.1K** Submissions **118K** Acceptance Rate **61.9%**

Topics

Companies	~
Hint 1	~
Hint 2	~
Hint 3	~
Hint 4	~
Hint 5	~
Hint 6	~
Similar Questions	~
Discussion (5)	

Copyright © 2024 LeetCode All rights reserved