In [1]:

- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns

In [2]:

1 mydata=pd.read_csv('C:Downloads/houseprice.csv')

In [3]:

1 mydata.head()

Out[3]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	,

5 rows × 81 columns

In [4]:

1 mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
	•		-
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual		-
		1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
			int64
37	BsmtUnfSF	1460 non-null	
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
J ±	Dear Composal	T.00 HOH HULL	-11CO-

			_
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60	GarageFinish	1379 non-null	object
61	GarageCars	1460 non-null	int64
62	GarageArea	1460 non-null	int64
63	GarageQual	1379 non-null	object
64	GarageCond	1379 non-null	object
65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64
78	SaleType	1460 non-null	object
79	SaleCondition	1460 non-null	object
80	SalePrice	1460 non-null	int64
dtype	es: float64(3),	int64(35), object	ct(43)
	nv usnas 024 A	· VD	

memory usage: 924.0+ KB

In [5]:

1 mydata.describe()

Out[5]:

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	Ye
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.0
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.;
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.2
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.0
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.0
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.0
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.0
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.0

8 rows × 38 columns

```
In [6]:
  1 mydata.isnull().sum()
Out[6]:
Ιd
                   0
MSSubClass
MSZoning
LotFrontage
                 259
LotArea
                   0
MoSold
YrSold
                   0
SaleType
SaleCondition
SalePrice
Length: 81, dtype: int64
```

Label Encoder

```
In [8]:
   from sklearn.preprocessing import LabelEncoder
In [9]:
 1 LE = LabelEncoder()
In [11]:
 1 | mydata_obj = mydata.select_dtypes(include = 'object').columns
 2 print(mydata_obj)
Index(['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilitie
       'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
       'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
       'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation',
       'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType
2',
       'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
       'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQua
1',
       'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature',
       'SaleType', 'SaleCondition'],
      dtype='object')
In [12]:
    for columns in mydata obj:
 1
 2
        mydata[columns]=LE.fit_transform(mydata[columns].astype(str))
```

Checking the converted data types

In [14]:

```
1 mydata.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	int32
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	int32
6	Alley	1460 non-null	int32
7	LotShape	1460 non-null	int32
8	LandContour	1460 non-null	int32
9	Utilities	1460 non-null	int32
10	LotConfig	1460 non-null	int32
11	LandSlope	1460 non-null	int32
12	Neighborhood	1460 non-null	int32
13	Condition1	1460 non-null	int32
14	Condition2	1460 non-null	int32
15	BldgType	1460 non-null	int32
16	HouseStyle	1460 non-null	int32
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	int32
22	RoofMatl	1460 non-null	int32
23	Exterior1st	1460 non-null	int32
24	Exterior2nd	1460 non-null	int32
25	MasVnrType	1460 non-null	int32
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	int32
28	ExterCond	1460 non-null	int32
29	Foundation	1460 non-null	int32
30	BsmtQual	1460 non-null	int32
31	BsmtCond	1460 non-null	int32
32	BsmtExposure	1460 non-null	int32
33	BsmtFinType1	1460 non-null	int32
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1460 non-null	int32
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	
	_		int32
40	HeatingQC CentralAir	1460 non-null 1460 non-null	int32
41	Electrical		int32
42		1460 non-null	int32
43	1stFlrSF	1460 non-null	int64
44 45	2ndFlrSF	1460 non-null	int64
45 46	LowQualFinSF	1460 non-null	int64
46 47	GrLivArea	1460 non-null	int64
47 48	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64

```
51
    BedroomAbvGr
                   1460 non-null
                                   int64
    KitchenAbvGr
                   1460 non-null
                                   int64
 53
    KitchenQual
                   1460 non-null
                                   int32
 54 TotRmsAbvGrd
                   1460 non-null
                                   int64
55 Functional
                   1460 non-null
                                   int32
56 Fireplaces
                   1460 non-null
                                   int64
57
    FireplaceQu
                   1460 non-null
                                   int32
58 GarageType
                   1460 non-null
                                  int32
59 GarageYrBlt
                   1379 non-null
                                  float64
60 GarageFinish
                                  int32
                   1460 non-null
61 GarageCars
                   1460 non-null
                                   int64
62 GarageArea
                   1460 non-null
                                  int64
63 GarageQual
                   1460 non-null
                                  int32
64 GarageCond
                   1460 non-null
                                   int32
65
    PavedDrive
                   1460 non-null
                                  int32
    WoodDeckSF
                   1460 non-null
                                  int64
    OpenPorchSF
67
                   1460 non-null
                                  int64
    EnclosedPorch 1460 non-null
                                   int64
69
    3SsnPorch
                   1460 non-null
                                  int64
70 ScreenPorch
                   1460 non-null
                                  int64
71 PoolArea
                   1460 non-null
                                  int64
72 PoolOC
                   1460 non-null
                                  int32
73
    Fence
                   1460 non-null
                                  int32
74 MiscFeature 1460 non-null
                                  int32
75
                   1460 non-null
    MiscVal
                                   int64
76 MoSold
                   1460 non-null
                                  int64
77 YrSold
                  1460 non-null
                                  int64
78 SaleType
                   1460 non-null
                                  int32
79
    SaleCondition 1460 non-null
                                   int32
                   1460 non-null
80 SalePrice
                                   int64
dtypes: float64(3), int32(43), int64(35)
```

memory usage: 678.8 KB

Filling the null values

In [16]:

```
mydata['LotFrontage']=mydata['LotFrontage'].fillna(0)
   mydata['BsmtQual']=mydata['BsmtQual'].fillna(0)
   mydata['BsmtCond']=mydata['BsmtCond'].fillna(0)
   mydata['BsmtExposure']=mydata['BsmtExposure'].fillna(0)
   mydata['BsmtFinType1']=mydata['BsmtFinType1'].fillna(0)
   mydata['BsmtFinType2']=mydata['BsmtFinType2'].fillna(0)
 7
   mydata['GarageType']=mydata['GarageType'].fillna(0)
   mydata['GarageYrBlt']=mydata['GarageYrBlt'].fillna(0)
   mydata['GarageFinish']=mydata['GarageFinish'].fillna(0)
   mydata['GarageQual']=mydata['GarageQual'].fillna(0)
10
   mydata['Electrical']=mydata['Electrical'].fillna(mydata.Electrical.mean())
11
12
   mydata['GarageCond']=mydata['GarageCond'].fillna(0)
13
   mydata['MasVnrType']=mydata['MasVnrType'].fillna(0)
   mydata['MasVnrArea']=mydata['MasVnrArea'].fillna(0)
14
15
   mydata['FireplaceQu']=mydata['FireplaceQu'].fillna(0)
   mydata['FireplaceQu']=mydata['FireplaceQu'].fillna(0)
```

In [17]:

mydata.isnull().sum().head(41)

Out[17]:

Ιd 0 MSSubClass 0 MSZoning 0 LotFrontage 0 LotArea 0 Street 0 Alley 0 LotShape 0 LandContour 0 Utilities 0 LotConfig 0 LandSlope 0 Neighborhood 0 Condition1 0 Condition2 0 BldgType 0 HouseStyle 0 OverallQual 0 OverallCond 0 YearBuilt 0 YearRemodAdd 0 RoofStyle 0 RoofMat1 0 Exterior1st 0 Exterior2nd 0 MasVnrType 0 MasVnrArea 0 ExterQual 0 0 ExterCond Foundation 0 **BsmtQual** 0 **BsmtCond** 0 BsmtExposure 0 BsmtFinType1 0 BsmtFinSF1 0 BsmtFinType2 0 BsmtFinSF2 0 **BsmtUnfSF** 0 TotalBsmtSF 0 Heating 0 HeatingQC 0 dtype: int64

```
In [18]:
```

```
1 mydata.isnull().sum().tail(40)
```

Out[18]:

CentralAir 0 Electrical 0 1stFlrSF 0 2ndFlrSF 0 LowQualFinSF 0 GrLivArea 0 BsmtFullBath 0 BsmtHalfBath 0 0 FullBath HalfBath 0 BedroomAbvGr 0 KitchenAbvGr 0 KitchenQual 0 ${\tt TotRmsAbvGrd}$ 0 Functional 0 0 Fireplaces FireplaceQu 0 GarageType 0 GarageYrBlt 0 GarageFinish 0 0 GarageCars 0 GarageArea GarageQual 0 GarageCond 0 PavedDrive 0 WoodDeckSF 0 OpenPorchSF 0 EnclosedPorch 0 3SsnPorch 0 ScreenPorch 0 0 PoolArea PoolQC 0 0 Fence 0 MiscFeature MiscVal 0 0 MoSold YrSold 0 0 SaleType SaleCondition 0 SalePrice

Correlation

dtype: int64

```
In [20]:
```

```
1 mydata_corr = mydata.corr()
```

In [21]:

1 mydata_corr

Out[21]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
ld	1.000000	0.011156	-0.006096	-0.019761	-0.033226	0.008916	-0.001530
MSSubClass	0.011156	1.000000	0.035900	-0.215023	-0.139781	-0.024969	-0.105995
MSZoning	-0.006096	0.035900	1.000000	-0.051250	-0.034452	0.087654	-0.052039
LotFrontage	-0.019761	-0.215023	-0.051250	1.000000	0.100739	-0.025107	0.025087
LotArea	-0.033226	-0.139781	-0.034452	0.100739	1.000000	-0.197131	0.060105
MoSold	0.021172	-0.013585	-0.031496	0.018942	0.001205	0.003690	0.013094
YrSold	0.000712	-0.021407	-0.020628	-0.012094	-0.014261	-0.025043	0.020944
SaleType	0.019773	0.012464	0.097437	-0.043808	0.012292	0.014339	0.008205
SaleCondition	-0.005806	-0.024940	0.009494	0.054221	0.034169	0.006064	0.035717
SalePrice	-0.021917	-0.084284	-0.166872	0.209624	0.263843	0.041036	0.139868

81 rows × 81 columns

In [22]:

```
plt.figure(figsize=(100,80))
sns.heatmap(mydata_corr, annot = True, cmap = 'coolwarm')
```

Out[22]:

<AxesSubplot:>

In [23]:

#Visualizing the data

In [24]:

sns.jointplot(x='SaleCondition', y='SalePrice', data=mydata)

Out[24]:

<seaborn.axisgrid.JointGrid at 0x20539ead8e0>

In [25]:

1 sns.barplot(x='YrSold', y='SalePrice', data=mydata);

In [26]:

```
1 sns.boxplot(x='MoSold', y='SalePrice', data=mydata);
```


In [27]:

sns.catplot(x='SaleType', y='SalePrice',kind='point', data=mydata);

In [28]:

```
1 sns.scatterplot(x='YrSold',y='SalePrice', data=mydata);
```


In [29]:

1 x_ind = mydata.drop('SalePrice',axis=1)

```
In [30]:
```

1 x_ind

Out[30]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	3	65.0	8450	1	2	3	
1	2	20	3	80.0	9600	1	2	3	
2	3	60	3	68.0	11250	1	2	0	
3	4	70	3	60.0	9550	1	2	0	
4	5	60	3	84.0	14260	1	2	0	
1455	1456	60	3	62.0	7917	1	2	3	
1456	1457	20	3	85.0	13175	1	2	3	
1457	1458	70	3	66.0	9042	1	2	3	
1458	1459	20	3	68.0	9717	1	2	3	
1459	1460	20	3	75.0	9937	1	2	3	

1460 rows × 80 columns

→

In [31]:

1 y_dep = mydata.SalePrice

Before Normalization

In [33]:

1 x_ind = mydata.drop('SalePrice', axis = 1)

```
In [34]:
```

```
1 sns.distplot(x_ind)
```

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[34]:

<AxesSubplot:ylabel='Density'>

Standardizing the data

```
In [36]:
```

1 | from sklearn.preprocessing import StandardScaler

In [37]:

```
1 norm = StandardScaler()
```

In [38]:

```
1 x_norm = norm.fit_transform(x_ind)
```

After Normalization

In [40]:

```
1 | sns.distplot(x_norm)
```

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[40]:

<AxesSubplot:ylabel='Density'>

Perform using PCA

In [42]:

1 **from** sklearn.decomposition **import** PCA

In [43]:

1 PCA_Red = PCA()

In [44]:

1 x_new = PCA_Red.fit_transform(x_norm)

```
In [45]:
```

Covariance Matrix

```
In [47]:
 1 cov_mat = np.cov(x_norm.T)
In [48]:
   cov_mat
Out[48]:
array([[ 1.00068540e+00, 1.11641249e-02, -6.10029226e-03, ...,
         7.12281881e-04, 1.97869611e-02, -5.80978086e-03],
       [ 1.11641249e-02, 1.00068540e+00, 3.59246662e-02, ...,
       -2.14217103e-02, 1.24727778e-02, -2.49566714e-02],
       [-6.10029226e-03, 3.59246662e-02, 1.00068540e+00, ...,
       -2.06417083e-02, 9.75040488e-02, 9.50002094e-03],
       7.12281881e-04, -2.14217103e-02, -2.06417083e-02, ...,
         1.00068540e+00, -2.32888954e-03, 3.88308594e-03],
       [ 1.97869611e-02, 1.24727778e-02, 9.75040488e-02, ...,
       -2.32888954e-03, 1.00068540e+00, 1.84192716e-01],
       [-5.80978086e-03, -2.49566714e-02, 9.50002094e-03, ...,
         3.88308594e-03, 1.84192716e-01,
                                          1.00068540e+00]])
```

In [49]:

```
1 eigen_vals,eigen_vecs=np.linalg.eig(cov_mat)
```

```
In [50]:
```

```
eigen vals
Out[50]:
array([ 1.03757329e+01,
                                                           2.99064240e+00,
                         4.09658578e+00,
                                          3.53972317e+00,
        2.51045091e+00,
                         2.21509055e+00,
                                          2.06147584e+00,
                                                           1.96343414e+00,
        1.74781555e+00,
                         1.74105361e+00,
                                          1.68844926e+00,
                                                           1.60883397e+00,
        1.53053749e+00,
                         1.43857915e+00,
                                          1.36917018e+00,
                                                           1.31619820e+00.
        1.26039559e+00,
                         1.22084408e+00,
                                          1.16857879e+00,
                                                           1.16127888e+00,
                         1.11748859e+00,
                                          1.09547489e+00,
                                                           1.06229245e+00,
        1.12265006e+00,
        1.04290051e+00,
                         1.02147613e+00,
                                          9.95231266e-01,
                                                           9.63671413e-01,
        9.42010269e-01,
                         9.36497863e-01,
                                          9.13436997e-01,
                                                           8.89980560e-01,
        8.70609143e-01,
                         8.52353859e-02,
                                          9.22938892e-02,
                                                           1.02178053e-01,
        1.08869919e-01,
                         1.20943792e-01,
                                          1.34865637e-01,
                                                           8.48673357e-01,
        8.37233936e-01,
                         7.95763304e-01,
                                          7.94145660e-01,
                                                           1.64828088e-01,
        7.74649006e-01,
                        2.04170463e-01,
                                          2.10365541e-01,
                                                           2.16480428e-01,
        2.26677344e-01,
                         7.48746262e-01,
                                          7.28191438e-01,
                                                           7.21971249e-01,
        7.05003515e-01,
                         6.78549212e-01,
                                          6.61743313e-01,
                                                           6.51897435e-01,
        6.22724155e-01.
                        6.11218017e-01,
                                         5.98339143e-01,
                                                           2.52321808e-01,
        2.58570000e-01, 5.72502582e-01, 5.46911757e-01,
                                                           5.34237438e-01,
        5.22921738e-01, 2.98114139e-01, 4.73492459e-01,
                                                           3.15280804e-01,
        3.25241599e-01, 3.34617291e-01,
                                         3.57324607e-01,
                                                           3.63345644e-01,
        3.74536214e-01, 3.89215067e-01, 4.09902227e-01,
                                                           4.43835692e-01,
        4.25705953e-01, 4.32406966e-01, 4.56990613e-16, -1.19025200e-16])
```

In [51]:

```
1 eigen_vecs
```

Out[51]:

```
array([[ 1.60397423e-03, -8.21556757e-03, -1.52141219e-03, ..., -2.59941281e-03, -1.36802163e-17, 5.17668257e-17], [ 1.35033094e-02, -9.95792167e-02, -1.70350440e-01, ..., -4.10969164e-02, -4.45513068e-16, 1.86463804e-16], [ 7.64075276e-02, -6.32197546e-03, 9.15562253e-02, ..., -2.32997158e-02, 1.18915833e-17, 7.46703019e-17], ..., [ 8.46853346e-03, 3.53687555e-02, -1.37606833e-02, ..., -5.83108403e-02, -1.03224292e-16, 2.70554910e-17], [ 2.01082635e-02, 1.10200748e-03, -1.07807074e-03, ..., 6.27508140e-02, -1.27331082e-16, -6.38745929e-17], [ -7.60624410e-02, 9.00457286e-04, -8.00080128e-02, ..., -7.79934286e-02, 9.79184071e-17, 7.17849763e-17]])
```

Explained Variance

```
In [53]:
```

```
1 explained_variance = PCA_Red.explained_variance_ratio_
```

In [54]:

```
1 explained_variance
```

Out[54]:

```
array([1.29607827e-01, 5.11722488e-02, 4.42162337e-02, 3.73574252e-02,
       3.13591428e-02, 2.76696671e-02, 2.57507983e-02, 2.45261165e-02,
       2.18327302e-02, 2.17482639e-02, 2.10911598e-02, 2.00966503e-02,
       1.91186147e-02, 1.79699228e-02, 1.71029050e-02, 1.64412087e-02,
       1.57441538e-02, 1.52500985e-02, 1.45972299e-02, 1.45060436e-02,
       1.40235140e-02, 1.39590399e-02, 1.36840571e-02, 1.32695606e-02,
       1.30273274e-02, 1.27597061e-02, 1.24318700e-02, 1.20376421e-02,
       1.17670632e-02, 1.16982053e-02, 1.14101419e-02, 1.11171373e-02,
       1.08751604e-02, 1.06011509e-02, 1.04582561e-02, 9.94022826e-03,
       9.92002156e-03, 9.67648031e-03, 9.35291778e-03, 9.09615846e-03,
       9.01845935e-03, 8.80650794e-03, 8.47605566e-03, 8.26612580e-03,
       8.14313662e-03, 7.77872040e-03, 7.63499218e-03, 7.47411651e-03,
       7.15138071e-03, 6.83171450e-03, 6.67339402e-03, 6.53204465e-03,
       5.91460186e-03, 5.54414618e-03, 5.40138496e-03, 5.31767966e-03,
       5.12026840e-03, 4.86185601e-03, 4.67849603e-03, 4.53870972e-03,
       4.46349830e-03, 4.17985126e-03, 4.06273538e-03, 3.93831073e-03,
       3.72387438e-03, 3.22991122e-03, 3.15186232e-03, 2.83152607e-03,
       2.70415193e-03, 2.62776819e-03, 2.55038275e-03, 2.05893991e-03,
       1.68466579e-03, 1.51076192e-03, 1.35994188e-03, 1.27635085e-03,
       1.15288343e-03, 1.06471257e-03, 2.55606370e-32, 1.13956272e-33])
```

In [55]:

```
plt.figure(figsize=(20,10))
plt.bar(range(80),explained_variance,label='Info gained by each PCA')
plt.xlabel('PCA')
plt.ylabel('Data')
plt.title('PCA vs Data')
```

Out[55]:

Text(0.5, 1.0, 'PCA vs Data')

We can take PCA n_components = 78 because by adding the 78 values from the above array output we get 95.010256% approx by checking with the explained variance ratio.

² For considering n components, the PCA percentage should be around 95%

```
In [58]:
 pca = PCA(n_components = 78)
In [59]:
 1 x_new_info=pca.fit_transform(x_norm)
In [60]:
 1 x_new_info
Out[60]:
array([[ 1.89763883, 0.48562786, -1.83851418, ..., -0.08217073,
        -0.0911645 , -0.07564575],
       [ 0.36141033, -2.07014506,
                                  1.03480822, ..., 0.01345269,
        0.05654119, 0.01196032],
       [2.46368699, 0.23642157, -1.42909507, ..., 0.28245711,
        -0.05897354, -0.28603852],
       . . . ,
       [1.65623646, 2.35781195, 1.39842345, ..., -0.515532]
        0.20210621, -0.30253249,
       [-2.64296338, -2.99174153, 1.50298924, ..., -0.2169645]
         0.08330945, -0.02911065],
       [-0.63957985, -2.85748153, 1.30219476, ..., -0.28326542,
        -0.06648037, 0.06691095]])
```

Performing Train Test split using x_new_info

```
In [61]:

1    from sklearn.model_selection import train_test_split

In [62]:

1    x_train,x_test,y_train,y_test=train_test_split(x_new_info,y_dep,train_size=0.8,random_s)

1    After compressing the dataset, we can now further perform machine learning by training our data using Random Forest
```

Random Forest

```
In [64]:
1    from sklearn.ensemble import RandomForestRegressor

In [65]:
1    model_RF = RandomForestRegressor()
```

```
In [66]:
```

```
model_RF.fit(x_train,y_train)
```

Out[66]:

RandomForestRegressor()

In [67]:

```
1 y_pred = model_RF.predict(x_test)
```

In [68]:

1 y_pred

Out[68]:

```
array([210228.93, 164991.96, 115111.16, 91583.5 , 154239.59, 326404.1 ,
       280639.17, 152666.12, 199659.66, 260622.69, 174379.35, 62318.22,
       225188.99, 317035.25, 243540.91, 110974.91, 118027.24, 133944.74,
       203614.3 , 140341.66, 114734.73, 133180.01, 230250.86, 346067.04,
       102930.85, 194953.04, 161196.1 , 171553.5 , 454035.09, 132063.85,
       116431.33, 118300.08, 119741.65, 90548.22, 165665.79, 355504.83,
       135791.64, 92309.5, 267066.96, 110470.62, 142519.73, 145577.33,
       97688.41, 126681.51, 174214.32, 171283.5 , 116666.58, 187586.62,
       251158.39, 208244.26, 94800.22, 239533.19, 129077.02, 231422.39,
       192267.87, 115501.34, 117675. , 173954.25, 118787.92, 189997.22,
       154056.01, 244629.65, 112319.38, 134689.21, 153447.41, 130548.78,
       120356. , 201975.99, 158139.52, 156310.87, 163624.53, 91332.65,
       363191.83, 149471.23, 161255. , 219057.25, 176467.07, 143897.75,
       440355.99, 232092.76, 212752.7, 118005.59, 136680.31, 157197.1,
       166875. , 148794.14, 152599.11, 170178.5 , 200905.55, 170675.35,
       243496.52, 214628.95, 99422.5, 101823.63, 124943.74, 149051.5,
       117010.71, 119332.48, 143053.17, 151617.5 , 179755.57, 140459.
       118794.24, 122487.75, 137782.5 , 152456.24, 183168.16, 158750.53,
       119537.97, 318808.73, 146578.48, 178682.57, 145108.1 , 197242.63,
       243623.05, 182181.04, 239143.05, 133662.2 , 182818. , 260753.54,
       134001.53, 246340.15, 327194.68, 158329.25, 210537.53, 157741.73,
       385087.55, 116410.23, 206993.62, 225976.42, 268750.82,
                                                              89217.1
       129291.64, 117477.87, 91944.5, 202367.79, 459419.63, 382823.61,
       232921.35, 139187.75, 87385.72, 281944.87, 209202.49, 200958.15,
       73832.88, 198651.84, 92210.2, 196840.02, 207596.92, 122418.08,
       167993.5 , 158949.02, 119729.87, 182709.33, 191013.75, 368577.22,
       69954.71, 135345.53, 77032.04, 139188.7, 68286.72, 111169.12,
       159788.5 , 143073.44 , 134702.6 , 126404.25 , 164153.5 , 120544.08 ,
       151485.4 , 101158.95, 242670.45, 144145.96, 214496.84, 273770.22,
       187799.28, 137980.79, 164775.59, 203557.87, 137397.14, 164722.02,
       134629.5 , 211758.03, 142270.13, 145310.59, 315298.44, 127260.11,
       374830.7 , 300611.89, 160596.25, 132219.39, 115004.7 , 142555.5 ,
       99081. , 199803.04, 136867.01, 251772.72, 196961.26, 154906.1 ,
       142111.75, 98129.5, 197663.25, 252187.47, 160272., 169765.
       250437.27, 99849.76, 199347.9, 307177.83, 198342.72, 327467.63,
       193437.4 , 111568. , 191303.77, 127745.22, 308037.65, 252922.74,
       117413.58, 88342.72, 219286.62, 98522. , 412771.5 , 124407.79,
       164010.02, 193002.34, 115306.46, 123227.25, 203593.99, 160684.9 ,
       187558.99, 173079.85, 125741.08, 191623.45, 96498.72, 120742.08,
       349381.4 , 130918.21, 296824.8 , 126287.16, 139664.31, 291401.64,
       355118.96, 155322.88, 141660.96, 146752.6 , 143271.75, 113241.97,
       142885.13, 139390.32, 168612.6 , 167014.02, 142929.13, 132323.76,
       189082.84, 161362.87, 90534.61, 125950.77, 170053.29, 83835.5,
       356338.5 , 134438.25 , 223418.02 , 159922.4 , 210624.9 , 189600.44 ,
       136526.92, 164831. , 118667.84, 200539.1 , 146920.62, 102099.37,
       166319.02, 159866. , 80215.72, 109463.92, 192059.25, 79308.72,
       123233.73, 120249.92, 158695.28, 142609.1 , 116308.5 , 136046.32,
       117078.65, 148827.27, 233877. , 239391.89, 126243.59, 91278.
       250753.42, 118400.24, 85877.65, 306389.1 ])
```

```
In [69]:
 1 model_RF.score(x_test,y_test)
Out[69]:
0.8488148068531223
In [70]:
   #Mean Square error
In [71]:
 1 from sklearn.metrics import mean_squared_error
In [72]:
 1 MSE = mean_squared_error(y_test,y_pred)
In [73]:
 1 MSE
Out[73]:
1078244236.892512
In [74]:
 1 #Root mean square
In [75]:
 1 root_mean_sqr = np.sqrt(MSE)
In [76]:
 1 root_mean_sqr
Out[76]:
32836.62949957733
In [77]:
 1 f_comp = pd.DataFrame({'Actual':y_test,'Machine_Pred':y_pred})
```

```
In [79]:
```

```
1 f_comp
```

Out[79]:

	Actual	Machine_Pred
258	231500	210228.93
267	179500	164991.96
288	122000	115111.16
649	84500	91583.50
1233	142000	154239.59
163	103200	91278.00
47	249700	250753.42
1432	64500	118400.24
98	83000	85877.65
409	339750	306389.10

292 rows × 2 columns

Residual

```
In [81]:
```

```
1 Residual = y_test-y_pred
```

In [82]:

1 Residual #Difference of error between actual and machine predicted values

Out[82]:

```
258
        21271.07
        14508.04
267
288
         6888.84
649
        -7083.50
1233
       -12239.59
        11922.00
163
47
        -1053.42
1432
       -53900.24
98
        -2877.65
409
        33360.90
Name: SalePrice, Length: 292, dtype: float64
```

In [84]:

```
comp_graph = f_comp.head(80)
```

In [86]:

```
comp_graph.plot(kind='bar',figsize=(30,20));
```

Out[86]:

<AxesSubplot:>

In [87]:

```
sns.distplot(f_comp['Actual'])
sns.distplot(f_comp['Machine_Pred'])
plt.legend(['Actual','Machine_Pred'])
```

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[87]:

<matplotlib.legend.Legend at 0x2053098b550>

Split without using PCA

In [89]:

from sklearn.model_selection import train_test_split

In [90]:

1 X_train,X_test,Y_train,Y_test=train_test_split(x_norm,y_dep,train_size=0.2,random_state

In [91]:

1 from sklearn.ensemble import RandomForestRegressor

```
In [93]:
 1 model_rf = RandomForestRegressor()
In [94]:
 1 model_rf.fit(X_train,Y_train)
Out[94]:
RandomForestRegressor()
In [95]:
 1 Y_pred_rf = model_rf.predict(X_test)
In [96]:
 1 Y_pred_rf
Out[96]:
array([207735.1 , 169960.09, 117147.94, ..., 138603.25, 190443.07,
       305025.8 ])
In [97]:
 1 model_rf.score(X_test,Y_test)
Out[97]:
0.8175697853303188
In [98]:
   #Mean Squared error
In [99]:
 1 from sklearn.metrics import mean_squared_error
In [100]:
   mse = mean_squared_error(Y_test,Y_pred_rf)
    mse
Out[100]:
1181803761.1816185
In [101]:
 1 #Root mean square
In [102]:
 1 Root_mean_SQR = np.sqrt(mse)
```

```
In [103]:
```

```
1 Root_mean_SQR
```

Out[103]:

34377.37280802037

In [105]:

```
1 F_comp = pd.DataFrame({'Actual':Y_test,'Machine_Pred':Y_pred_rf})
```

In [106]:

```
1 F_comp
```

Out[106]:

	Actual	Machine_Pred
258	231500	207735.10
267	179500	169960.09
288	122000	117147.94
649	84500	92477.00
1233	142000	143800.25
1317	208900	187983.38
1107	274725	216897.12
230	148000	138603.25
652	191000	190443.07
70	244000	305025.80

1168 rows × 2 columns

In [107]:

```
sns.distplot(F_comp['Actual'])
sns.distplot(F_comp['Machine_Pred'])
plt.legend(['Actual','Machine_Pred'])
```

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[107]:

<matplotlib.legend.Legend at 0x205311c3670>

Conclusion

- In this project, we have compared the score and also used a comparison graph to show the difference between using PCA and without using PCA.
- 2 The score we got after using PCA is 84%
- 3 And the score before using PCA is 81%
- 4 Thus we can clearly see the PCA boosts the performance of the model by removing the outliers and performing high dimension reduction.