Parsing top down

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

In una derivazione sinistra di una stringa, una forma di frase è necessariamente del tipo $V_T^+(V_T \cup V_N)^*$.

Esempio: la grammatica

$$\begin{array}{ccc} T & \longrightarrow & R \mid aTc \\ R & \longrightarrow & RbR \mid \varepsilon \end{array}$$

e la produzione sinistra

Nel corso di un parsing predittivo, alla forma di frase xAw, con $x \in V_T^*$, $A \in V_N$, $w \in (V_T \cup V_N)^+$, corrisponde una situazione in cui il parser ha letto il prefisso x della stringa e deve determinare, sulla base di esso, quale delle produzioni aventi A a sinistra applicare.

Se la produzione selezionata è $A \longrightarrow yBu$, con $y \in V_T^*$, $B \in V_N$, $u \in (V_T \cup V_N)^+$, la nuova forma di frase è xyBuw e il parser, letta y, deve decidere quale produzione applicare per riscrivere B.

Il parser ad ogni istante fa riferimento alla forma di frase attuale e alla parte di stringa di input ancora da leggere: all'inizio evidentemente queste informazioni sono l'assioma S e l'intera stringa σ in input

$$\begin{array}{ccc} T & \longrightarrow & R \mid aTc \\ R & \longrightarrow & RbR \mid \varepsilon \end{array}$$

letta	forma di frase	stringa	operazione
ε	<u>T</u>	<u>a</u> abbbcc	$T \longrightarrow aTc$
a	a <u>T</u> c	<u>a</u> bbbcc	$T \longrightarrow aTc$
aa	aa <u>T</u> cc	<u>b</u> bbcc	$T \longrightarrow R$
aa	aa <u>R</u> cc	<u>b</u> bbcc	$R \longrightarrow RbR$
aa	aa <u>R</u> bRcc	<u>b</u> bbcc	$R \longrightarrow RbR$
aa	aa <u>R</u> bRbRcc	<u>b</u> bbcc	$R \longrightarrow \varepsilon$
aab	aab <u>R</u> bRcc	<u>b</u> bcc	-
aab	aab <u>R</u> bRcc	<u>b</u> bcc	$R \longrightarrow \varepsilon$
aabb	aabb <u>R</u> cc	<u>b</u> cc	-
aabb	aabbcc	<u>c</u> c	$R \longrightarrow \varepsilon$
aabbc	aabbcc	<u>c</u>	-
aabbcc	aabbcc	ε	-

Parsing a discesa ricorsiva

Implementazione di parser top down: una funzione A() per ogni $A \in V_N$, con la struttura seguente. Il programma inizia da S()

```
A():
  for each A \longrightarrow X_1 X_2 \cdots X_k \in P:
     for i in range(1, k + 1):
        if X_i \in V_N:
          if X_i():
             return 1
        elif X_i uguale al prossimo simbolo a della stringa:
          avanza al simbolo successivo
        else:
          break
     return o
```

Parsing a discesa ricorsiva

- Utilizzo del backtracking: può essere molto inefficiente
- Backtracking: esplorazione ricorsiva di tutte le possibilità
- La grammatica non può essere ricorsiva sinistra

$$A \longrightarrow Aw$$

 La scelta della produzione da considerare può essere guidata dall'esame dei caratteri successivi

Grammatica

$$\begin{array}{cccc} E & \longrightarrow & TE' \\ E' & \longrightarrow & +TE' \mid \varepsilon \\ T & \longrightarrow & FT' \\ T' & \longrightarrow & *FT' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathrm{id} \end{array}$$

Stringa

id+id*id

\mathcal{E}	<u>E</u>	<u>id</u> +id*id	$E \longrightarrow TE'$
\mathcal{E}	<u>T</u> E′	<u>id</u> +id*id	$T \longrightarrow FT'$
\mathcal{E}	<u>F</u> T'E'	<u>id</u> +id*id	$F \longrightarrow id$
id	id <u>T</u> ′E′	<u>+</u> id*id	$T' \longrightarrow \varepsilon$
id	id <u>E</u> ′	<u>+</u> id*id	$E' \longrightarrow +TE'$
id+	$id+\underline{T}E'$	<u>id</u> *id	$T \longrightarrow FT'$
id+	id+ <u>F</u> T′E′	<u>id</u> *id	$F \longrightarrow id$
id+id	$id+id\underline{T}'E'$	<u>*</u> id	$T' \longrightarrow *FT'$
id+id*	$id+id*\underline{F}T'E'$	<u>id</u>	$F \longrightarrow id$
id+id*id	$id + id^* id \underline{T}' E'$	\mathcal{E}	$T' \longrightarrow \varepsilon$
id+id*id	$id+id^*id\underline{E}'$	\mathcal{E}	$E' \longrightarrow \varepsilon$
id+id*id	id+id*id	\mathcal{E}	-

Ad ogni passo è possibile selezionare una sola produzione, guardando un solo terminale (token)

Parsing predittivo efficiente

Se per ogni simbolo non terminale da espandere i prossimi k caratteri della stringa consente di individuare la produzione da applicare, il parser è LL(k)

- Left-to-right: la derivazione è calcolata da sinistra a destra (dalla prima produzione applicata all'ultima)
- Leftmost derivation: la derivazione calcolata è sinistra
- *k* simboli (di look-ahead) da considerare

Un linguaggio CF è LL(k) se esiste un parser LL(k) che può effettuarne l'analisi sintattica

Costruzione di un parser LL: la funzione FIRST

Consideriamo il caso LL(1), per semplicità.

- Per ogni sequenza $\alpha \in (V_T \cup V_N)^+$, FIRST (α) è l'insieme dei terminali che possono comparire all'inizio di una forma di frase derivata da α
- quindi, $c \in FIRST(\alpha)$ se e solo se esiste $\beta \in (V_T \cup V_N)^*$ e $\alpha \stackrel{*}{\Longrightarrow} c\beta$

Costruzione di un parser LL: la funzione FIRST

- Siamo in particolare interessati a $FIRST(\alpha)$ se α è la parte destra di una produzione $A \longrightarrow \alpha$
- Questo perché se per un qualunque c, se $c \in FIRST(\alpha)$ e $A \longrightarrow \alpha$, allora una stringa che inizia per c potrebbe essere derivata a partire da A, in quanto $A \Longrightarrow \alpha \stackrel{*}{\Longrightarrow} c\beta$

Costruzione di un parser LL: la funzione FIRST

Date le *A*-produzioni in *P*

$$A \longrightarrow \alpha_1 | \alpha_2 | \cdots | \alpha_k$$

- se ogni terminale appartiene a non più di un insieme FIRST(α_i), allora possiamo sempre individuare quale produzione applicare per riscrivere A, esaminando il solo prossimo carattere c
- infatti, va applicata $A \longrightarrow \alpha_i$ se e solo se $c \in FIRST(\alpha_i)$
- se non esiste α_i tale che $c \in FIRST(\alpha_i)$, c'è un errore e la parte di stringa da leggere non è derivabile a partire da A

Costruzione della funzione FIRST

Per la costruzione di FIRST(α) va utilizzato il predicato Nullable(β) definito come Nullable(β) = TRUE se e solo se β è annullabile, cioè se e solo se esiste una derivazione $\beta \stackrel{*}{\Longrightarrow} \varepsilon$. Una produzione $B \longrightarrow \beta$ è annullabile se e solo se β è annullabile.

La costruzione di Nullable(β) è basata sulle seguenti proprietà

$$\begin{aligned} & \text{Nullable}(\varepsilon) = \text{TRUE} \\ & \text{Nullable}(a) = \text{False} \quad \forall a \in V_T \\ & \text{Nullable}(\alpha\beta) = \text{Nullable}(\alpha) \land \text{Nullable}(\beta) \\ & \text{Nullable}(A) = \bigvee_i \text{Nullable}(\alpha_i) \quad \forall A \in V_N, \forall A \longrightarrow \alpha_i \in P \end{aligned}$$

Costruzione della funzione FIRST

La costruzione di FIRST(α) avviene in modo simile.

Consideriamo in primo luogo la costruzione di FIRST(X), dove X è un simbolo della grammatica, $X \in V_T \cup V_N$

- 1. Se $X \in V_T$, allora FIRST $(X) = \{X\}$
- 2. Se $X \in V_N$, per ogni $X \longrightarrow Y_1 Y_2 \cdots Y_k \in P \ (k \ge 1)$:
 - 2.1 $FIRST(Y_1) \subseteq FIRST(X)$
 - 2.2 Per $i=2,\ldots k$, se Nullable $(Y_1\cdots Y_{i-1})$ allora FIRST $(Y_i)\subseteq FIRST(X)$

Costruzione della funzione FIRST

Costruzione di $FIRST(X_1 \cdots X_n)$ da FIRST(X) per ogni X:

- $FIRST(X_1) \subseteq FIRST(X_1 \cdots X_n)$
- Per i = 2, ..., n, se Nullable $(X_1 \cdots X_{i-1})$ allora FIRST $(X_i) \subseteq \text{FIRST}(X_1 \cdots X_n)$

La funzione FIRST

Da quanto detto, se

- x = cy è la stringa da leggere
- *A* è il terminale da riscrivere

allora le possibili produzioni da applicare sono tutte le $A \longrightarrow \alpha_i$ tali che $c \in FIRST(\alpha_i)$.

Se in tutti i casi possibili c'è al più una di tali produzioni, abbiamo un parser LL(1).

La funzione FIRST

Errore! In realtà, se A è annullabile, cy potrebbe essere prodotta in modo diverso:

- Supponiamo che la forma di frase attuale sia ABw, con $w \in (V_T \cup V_N)^*$
- dato che A è annullabile, esiste una derivazione $A \stackrel{*}{\Longrightarrow} \varepsilon$

allora, x = cy potrebbe essere ancora derivabile se $c \in FIRST(B)$ (e quindi se $B \stackrel{*}{\Longrightarrow} c\beta$) in quanto

$$ABw \stackrel{*}{\Longrightarrow} Bw \stackrel{*}{\Longrightarrow} c\beta w$$

La funzione FOLLOW

Definiamo la funzione FOLLOW nel modo seguente:

- Per ogni non terminale $A \in V_N$, FOLLOW(A) è l'insieme dei terminali che possono comparire subito dopo A in una forma di frase derivata da S
- Quindi, dati $A \in V_N$ e $c \in V_T$, $c \in FOLLOW(A)$ se e solo se esistono $\alpha, \beta \in (V_T \cup V_N)^*$ tali che $S \stackrel{*}{\Longrightarrow} \alpha A c \beta$
- In realtà, la funzione FOLLOW(A) riveste interesse soltanto se Nullable(A) = TRUE, quindi se esiste una derivazione $A \stackrel{*}{\Longrightarrow} \varepsilon$

La funzione FOLLOW

Durante il parsing:

- Siano *A* il non terminale da riscrivere e *c* il simbolo attualmente letto
- Se $c \in FOLLOW(A)$ e Nullable(A) = TRUE

allora la derivazione $A \stackrel{*}{\Longrightarrow} \varepsilon$ può portare all'annullamento di A

Costruzione della funzione FOLLOW

Per tener conto del caso in cui A potrebbe essere l'ultimo simbolo di una forma di frase, cioè in cui $S \stackrel{*}{\Longrightarrow} \alpha A$, estendiamo la grammatica con:

- un non terminale \$ di fine stringa
- un nuovo assioma *S'*
- una produzione $S' \longrightarrow S$ \$

Evidentemente, A può comparire a fine stringa nella prima grammatica se e solo se $\$ \in FOLLOW(A)$ nella nuova grammatica.

Costruzione della funzione FOLLOW

FOLLOW viene costruita a partire da un insieme di vincoli derivati dalle produzioni.

- $\$ \in FOLLOW(S)$
- Se $A \longrightarrow \alpha B\beta \in P$, allora FIRST $(\beta) \subseteq$ FOLLOW(B)
- se $A \longrightarrow \alpha B\beta \in P$ e Nullable(β), allora FOLLOW(A) \subseteq FOLLOW(B)
- se $A \longrightarrow \alpha B \in P$ allora FOLLOW $(A) \subseteq$ FOLLOW(B)

Grammatica

$$\begin{array}{cccc} E & \longrightarrow & TE' \\ E' & \longrightarrow & +TE' \mid \varepsilon \\ T & \longrightarrow & FT' \\ T' & \longrightarrow & *FT' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathrm{id} \end{array}$$

Nullable(E') = Nullable(T') = TRUE

- $FIRST(F) = \{(, id)\}$
- $FIRST(T') = \{*\}$
- $FIRST(E') = \{+\}$
- $FIRST(T) = FIRST(F) = \{(, id)\}$
- $FIRST(E) = FIRST(T) = \{(, id)\}$

- $\$ \in FOLLOW(E)$
- $FIRST(E') = \{+\} \subseteq FOLLOW(T)$
- $FIRST(T') = \{*\} \subseteq FOLLOW(F)$
- $FIRST(')' = \{\} \subseteq FOLLOW(E)$
- $FOLLOW(E) \subseteq FOLLOW(E')$
- $FOLLOW(E) \subseteq FOLLOW(T)$
- $FOLLOW(T) \subseteq FOLLOW(T')$
- $FOLLOW(E') \subseteq FOLLOW(T)$
- $FOLLOW(T') \subseteq FOLLOW(F)$

Da cui deriva

- $FOLLOW(E) = \{\$, \}$
- $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
- $FOLLOW(T) = FOLLOW(E) \cup \{+\} = \{\$, \}, +\}$
- $FOLLOW(T') = FOLLOW(T) = \{\$, \}, +\}$
- $FOLLOW(F) = FOLLOW(T') \cup \{*\} = \{\$, \}, +, *\}$

Tabella di parsing predittivo

Associa ad ogni coppia (a, X), $a \in V_T$, $X \in V_N$, un insieme di produzioni (1 se LL(1)) da applicare nel caso in cui X sia il non terminale da riscrivere e a sia il simbolo letto in input.

Costruzione della tabella M:

Per ogni produzione $A \longrightarrow \alpha \in P$:

- se $\alpha \neq \varepsilon$, per ogni $a \in FIRST(A)$ aggiungi $A \longrightarrow \alpha$ a M[A, a]
- se Nullable(α), per ogni $b \in \text{FOLLOW}(A)$ aggiungi $A \longrightarrow \alpha$ a M[A,b]

Per la grammatica precedente

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \to \varepsilon$	$T' \rightarrow *FT'$		$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F o \mathrm{id}$			$F \rightarrow (E)$		

Utilizza uno stack (pila) in modo esplicito, invece che implicitamente , simulando una derivazione sinistra della stringa.


```
input.first()
stack.push(S$)
while stack.top()! = \$:
  if stack.top() == input.current():
     stack.pop()
     input.next()
  elif table[stack.top(), input.current()]! = Null:
     Let table[stack.top(),input.current()] be X \to Y_1 \cdots Y_k
     output stack.top() \longrightarrow Y_1 \cdots Y_k
     stack.pop()
     stack.push(Y_1 \cdots Y_k)
  else:
     error
```

Esempio di parsing di id + id * id

Matched	Stack	Input	Action
	E\$	id+id*id\$	
	TE'\$	id+id*id\$	output $E \rightarrow TE'$
	FT'E'\$	id+id*id\$	output $T \rightarrow FT'$
	idT'E'\$	id+id*id\$	output $F \rightarrow id$
id	T'E'\$	+id*id\$	match id
id	E'\$	+id*id\$	output $T' \to \varepsilon$
id	+TE'\$	+id*id\$	output $E' \rightarrow +TE'$
id+	TE'\$	id*id\$	match +
id+	FT'E'\$	id*id\$	output $T \rightarrow FT'$
id+	idT'E'\$	id*id\$	output $F \rightarrow id$
id+id	T'E'\$	*id\$	match id

Matched	Stack	Input	Action
id+id	*FT'E'\$	*id\$	output $T' \rightarrow *FT'$
id+id*	FT'E'\$	id\$	match *
id+id*	idT'E'\$	id\$	output $F \rightarrow id$
id+id*id	T'E'\$	\$	match id
id+id*id	E'\$	\$	output $T' \to \varepsilon$
id+id*id	\$	\$	output $E' \to \varepsilon$

Ne risulta la derivazione sinistra

$$E \Longrightarrow TE' \qquad \Longrightarrow FT'E'$$

$$\Longrightarrow idT'E' \qquad \Longrightarrow idE'$$

$$\Longrightarrow id + TE' \qquad \Longrightarrow id + FT'E'$$

$$\Longrightarrow id + idT'E' \qquad \Longrightarrow id + id * FT'E'$$

$$\Longrightarrow id + id * idT'E' \qquad \Longrightarrow id + id * idE'$$

$$\Longrightarrow id + id * id$$

E l'albero sintattico

