

< Return to Classroom

Multifactor Model

REVIEW
CODE REVIEW
HISTORY

Meets Specifications

Excellent work

Your code is excellent and you have clearly demonstrated your understanding of the project I'm impressed and at the same time satisfied with the understanding and grasp of concepts demonstrated in this project

It was a pleasure reviewing your work, and we look forward to seeing future submissions from you.

keep up the good work and stay udacious

for further reading

- https://corporatefinanceinstitute.com/resources/knowledge/other/multi-factor-model/
- https://www.investopedia.com/terms/m/multifactor-model.asp

Statistical Risk Model

The function | fit_pca | fits the PCA model with returns.

Good job fitting the PCA model.

The function | factor_betas | gets the factor betas from the PCA model.

Excellent work calculating the factor betas!

The function factor_returns gets the factor returns from the PCA model.

Nice job calculating the factor returns

The function factor_cov_matrix gets the factor covariance matrix.

Good job calculating the factor covariance matrix!

The function idiosyncratic_var_matrix gets the idiosyncratic variance matrix.

Keep up the good work!

The function idiosyncratic_var_vector gets the idiosyncratic variance vector.

Excellent job calculating the idiosyncratic variance vector.

The function predict_portfolio_risk gets the predicted portfolio risk.

Nice! I like that you converted the variable names to match the formula.

Create Alpha Factors

The function <code>mean_reversion_5day_sector_neutral</code> <code>generates</code> the mean reversion 5 day sector neutral factor.

Simple and correct code!

2021. 8. 30. Udacity Reviews

The function mean_reversion_5day_sector_neutral_smoothed generates the mean reversion 5 day sector neutral smoothed factor.

Good job calculating the smoothed factor!

Evaluate Alpha Factors

The function sharpe_ratio gets the sharpe ratio for each factor for the entire period.

That's right! You'll notice that the smoothed factors have a lower sharpe ratio.

The student correctly mentions what would happened if you smooth the momentum factor and why.

That's perfect

Optimal Portfolio Constrained by Risk Model

The function OptimalHoldings._get_obj returns the correct objective function.

The function OptimalHoldings._get_constraints returns the correct list of constraints.

Nice job with all the constraints!

The function OptimalHoldingsRegualization._get_obj returns the correct objective function.

The function | OptimalHoldingsStrictFactor._get_obj | returns the correct objective function.

Good job with the objective function!

I DOWNLOAD PROJECT

2021. 8. 30. Udacity Reviews

RETURN TO PATH

Rate this review

START