IOWA STATE UNIVERSITY

College of Engineering

Energy-Aware Real-Time Scheduling: Comparing EDF, Static EDF, and Cycle-**Conserving EDF** Algorithms

Christy Mettry

Justin Wenzel

12/11/24

Problem Statement

Challenge of Energy-Efficient Real-Time Scheduling

- Real-time systems (e.g., IoT devices, automotive systems, etc.) operate with **strict deadlines**
- Current Issues:
 - High energy consumption in real-time scheduling
 - EDF is effective for ensuring deadlines are met, but energy-inefficient due to fixed worse-case execution time (WCET) assumptions
- Goal: Explore EDF algorithms variances to balance energy efficiency and deadline adherence

Solution: Enhancing EDF for Energy Efficiency

Challenge:

EDF is not energy efficient due to WCET and high-frequency operation

Approach:

- Extend EDF with Static EDF and CC-EDF to optimize energy usage
- Introduce frequency scaling (Static EDF) and dynamic adjustment (CC-EDF)

Ideal Outcomes:

- Reduced Energy Consumption: through frequency scaling and slack utilization
- Maintain Deadlines: Real-time performance preserved
- Improved Adaptability: Response to real-time task execution

Solution: Algorithm Overview

Static EDF:

- Fixed frequency scaling based on task utilization
- Balances energy and deadlines but lacks adaptability

CC-EDF:

- Dynamically frequency adjustments based on real-time slack
- Maximizes energy saving but introduces

Feature	EDF	Static EDF	CC-EDF
Frequency Scaling	None	Fixed	Dynamic
Adaptability	None	Limited	High
Energy Efficiency	Low	Moderate	High
Implementation	Simple	Simple	Complex

Implementation: Architecture

Programming Language: Python

Modules Developed:

- config.py: Task definitions, simulation settings, frequency & power settings
- task.py: Define task attributes (name, period, WCET, etc.)
- edf.py: Implements EDF, Static EDF, and CC-EDF algorithm assistance functions
- main.py: Controls simulation workflow and collects results
- interafce.py: GUI interaction for users

Design Principles:

Modular design for easy maintenance

Implementation – Technical Implementation Features

Task Class (task.py):

- Execute: Reduces remaining time
- Reset: Prepares task for next period

Scheduler Class (edf.py):

- Manages a priority queue (heapq) for tasks
- Adjusts CPU frequency dynamically for CC-EDF

Config.py Example

Tracks metrics: energy usage, idle time, missed deadlines

Configurable Settings (config.py):

- Frequency and power levels for CPU scaling
- Execution time variability for CC-EDF (user-adjustable)

Main and Interface:

GUI for usability and visual results

IOWA STATE UNIVERSITY College of Engineering

Testing/Evaluation – Simulation

Workload Categories:

Low, medium, high utilization

Task Sets:

15 total set (5 per category)

Metrics Evaluated:

- Energy Consumption
- Idle Time (CPU Inactive)
- Missed Deadlines

Simulator GUI

Simulator Setup:

Parameter	Value		
Time Quantum	0.1 units		
Simulation Duration	1000 units		
Idle Power	15 units		
CC-EDF Variability	Tasks finish in 50-80% of their WCET		

IOWA STATE UNIVERSITY College of Engineering

Testing/Evaluation – Results

Conclusion

Basic EDF:

High energy consumption and idle time

Static EDF:

- Reduced energy consumption compared to Basic EDF
- Lower idle time with fixed frequency scaling

CC-EDF:

• Achieve the **lowest energy consumption** with dynamic adjustment

Key Takeaways:

- All algorithms met deadlines across the workload
- **CC-EDF** is the most efficient for energy savings, especially with high utilization
- Static EDF reduces idle time significantly at times

Learning and Takeaways

Further Real-Time Scheduling:

- Learned scheduling algorithms in depth (CC-EDF)
- Explored frequency scaling affects with energy consumption and idle time

Key Insights:

- Dynamic adjustments can make a major impact in achieving optimal energy savings
- Trade-offs exist in each algorithms for energy efficienty, idle time, and balancing system needs

Practical Experiences:

- Designed and tested a simulator to evaluated real-time scheduling algorithms
- Insights toward power-aware computing and real-time scheduling