ı

WO 2004/043939

What is claimed is:

1. A compound of Formula I:

$$(R^3)_k$$
 $(CR^6R^7)_m$
 $(CR^4R^5)_n$
 $(CR^8R^9)_q$
 $(CR^8R^9)_q$

5 wherein:

10

15

Z is CH, CR^3 or N, wherein when Z is CH or CR^3 , k is 0-4 and t is 0 or 1, and when Z is N, k is 0-3 and t is 0;

Y is selected from -O-, -S-, -N(\mathbb{R}^{12})-, and -C(\mathbb{R}^4)(\mathbb{R}^5)-;

W¹ is selected from C_1 - C_6 alkyl, C_0 - C_6 alkyl C_3 - C_8 cycloalkyl, aryl and Het, wherein said C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- C_0 2 R^{12} , $-C_0$ - C_6 alkyl- C_0 8 R^{12} , $-C_0$ - C_6 alkyl- C_0 8 R^{13} 8 R^{14} , $-C_0$ - R^{13} 8 R^{14} , $-C_0$ - R^{13} 8 R^{14} , $-C_0$ - R^{12} 9 R^{12} 9, $-C_0$ - R^{12} 9, $-C_0$ - R^{12} 9, $-C_0$ 9, alkyl- $-C_0$ 9

W² is selected from H, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl,

-C₀-C₆ alkyl-NR¹³R¹⁴, -C₀-C₆ alkyl-SR¹², -C₀-C₆ alkyl-OR¹², -C₀-C₆ alkyl-CO₂R¹²,

-C₀-C₆ alkyl-C(O)SR¹², -C₀-C₆ alkyl-CONR¹³R¹⁴, -C₀-C₆ alkyl-COR¹⁵,

-C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OCONR¹³R¹⁴, -C₀-C₆ alkyl-NR¹³CONR¹³R¹⁴,

-C₀-C₆ alkyl-NR¹³COR¹⁵, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and

-C₀-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or

substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkyl-CONR¹³R¹⁴,

-C₀-C₆ alkyl-CO₂R¹², -C₀-C₆ alkyl-C(O)SR¹², -C₀-C₆ alkyl-CONR¹³R¹⁴,

-C₀-C₆ alkyl-COR¹⁵, -C₀-C₆ alkyl-NR¹³R¹⁴, -C₀-C₆ alkyl-SR¹², -C₀-C₆ alkyl-OR¹²,

PCT/US2003/009461 WO 2004/043939

5

10

15

20

25

```
-C_0-C_6 \text{ alkyl-SO}_3H, -C_0-C_6 \text{ alkyl-SO}_2NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-SO}_2R^{12}, -C_0-C_6 \text{ alkyl-SOR}^{15}, -C_0-C
                 -C_0-C_6 alkyl-OCOR<sup>15</sup>, -C_0-C_6 alkyl-OC(O)NR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-OC(O)OR<sup>15</sup>,
                 -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)NR<sup>13</sup>R<sup>14</sup>, and
                 -C<sub>0</sub>-C<sub>8</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, where said C<sub>1</sub>-C<sub>8</sub> alkyl, is optionally unsubstituted or
                 substituted by one or more halo substituents;
                                                W³ is selected from the group consisting of: H, halo, C₁-C6 alkyl,
                  -C_0-C_6 alkyl-C(0)SR<sup>12</sup>, -C_0-C_6 alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-COR<sup>15</sup>,
                   -C_0-C_6 alkyl-OCOR<sup>15</sup>, -C_0-C_6 alkyl-OCONR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-NR<sup>13</sup>CONR<sup>13</sup>R<sup>14</sup>,
                   -C0-C6 alkyl-NR^{13}COR^{15}, -C0-C6 alkyl-Het, -C1-C6 alkyl-Ar and
                   -C_1-C_6 alkyl-C_3-C_7 cycloalkyl, wherein said C_1-C_6 alkyl is optionally unsubstituted or
                   substituted by one or more halo substituents;
                                                   Q is selected from C<sub>3</sub>-C<sub>8</sub> cycloalkyl, Ar and Het; wherein said C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
                    Ar and Het are optionally unsubstituted or substituted with one or more groups
                    independently selected from halo, cyano, nitro, C_1\text{-}C_6 alkyl, C_3\text{-}C_6 alkenyl,
                     C_3-C_6 alkynyl, -C_0-C_6 alkyl-CO_2R^{12}, -C_0-C_6 alkyl-C(O)SR^{12}, -C_0-C_6 alkyl-CONR^{13}R^{14},
                     -C_0-C_6 alkyl-COR<sup>15</sup>, -C_0-C_6 alkyl-NR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-SR<sup>12</sup>, -C_0-C_6 alkyl-OR<sup>12</sup>,
                     -C_{0}-C_{6} \text{ alkyl-SO}_{3}H, -C_{0}-C_{6} \text{ alkyl-SO}_{2}NR^{13}R^{14}, -C_{0}-C_{6} \text{ alkyl-SO}_{2}R^{12}, -C_{0}-C_{6} \text{ alkyl-SOR}^{15}, -C_{0}-C_{6} \text{ a
                     -C_0-C_6 alkyl-OCOR<sup>15</sup>, -C_0-C_6 alkyl-OC(O)NR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-OC(O)OR<sup>15</sup>,
                     -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)NR<sup>13</sup>R<sup>14</sup>, and
                      -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
                      substituted by one or more halo substituents;
                                                      p is 0-8;
                                                      n is 2-8;
                                                      m is 0 or 1;
                                                      q is 0 or 1;
                                                      t is 0 or 1;
                                                       each R1 and R2 are independently selected from H, halo, C1-C6 alkyl,
                        C_3-C_6 alkenyl, C_3-C_6 alkynyl, -C_0-C_6 alkyl-NR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-OR<sup>12</sup>, -C_0-C_6 alkyl-SR<sup>12</sup>,
                         -C<sub>1</sub>-C<sub>6</sub> alkyl-Het, -C<sub>1</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>1</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, or R<sup>1</sup> and R<sup>2</sup>
                         together with the carbon to which they are attached form a 3-5 membered carbocyclic
                         or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms
                          selected from N, O, and S, where any of said C<sub>1</sub>-C<sub>8</sub> alkyl is optionally unsubstituted or
                          substituted by one or more halo substituents;
                                                          each R3 is the same or different and is independently selected from halo, cyano,
35
                          nitro, C_1-C_6 alkyl, C_3-C_6 alkenyl, C_3-C_6 alkynyl, -C_0-C_6 alkyl-Ar, -C_0-C_6 alkyl-Het,
                          -C_0-C_6 \text{ alkyl-} C_3-C_7 \text{ cycloalkyl, } -C_0-C_6 \text{ alkyl-} CO_2 R^{12}, -C_0-C_6 \text{ alkyl-} C(O) SR^{12},
                           -C_{0}-C_{6} \text{ alkyl-CONR}^{13} \text{R}^{14} \text{, } -C_{0}-C_{6} \text{ alkyl-COR}^{15} \text{, } -C_{0}-C_{6} \text{ alkyl-NR}^{13} \text{R}^{14} \text{, } -C_{0}-C_{6} \text{ alkyl-SR}^{12} \text{, } -C_{0}-C_{6} \text{ alkyl-S
```

```
-C_0-C_6 \text{ alkyl-}OR^{12}, -C_0-C_6 \text{ alkyl-}SO_3H, -C_0-C_6 \text{ alkyl-}SO_2NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-}SO_2R^{12}, -C_0-C_6 \text{ alkyl-}SO_2R^{12},
              -Co-C6 alkyl-SOR15, -Co-C6 alkyl-OCOR15, -Co-C6 alkyl-OC(O)NR13R14,
              -C_0-C_6 alkyl-OC(O)OR<sup>15</sup>, -C_0-C_6 alkyl-NR<sup>13</sup>C(O)OR<sup>15</sup>, -C_0-C_6 alkyl-NR<sup>13</sup>C(O)NR<sup>13</sup>R<sup>14</sup>,
               and -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, wherein said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
               substituted by one or more halo substituents;
  5
                                  each R4 and R5 is independently selected from H, halo, C1-C6 alkyl,
               -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                                  R<sup>6</sup> and R<sup>7</sup> are each independently selected from H, halo, C<sub>1</sub>-C<sub>6</sub> alkyl,
               -Co-Ce alkyl-Het. -Co-Ce alkyl-Ar and -Co-Ce alkyl-C3-C7 cycloalkyl;
                                  R<sup>8</sup> and R<sup>9</sup> are each independently selected from H, halo, C<sub>1</sub>-C<sub>6</sub> alkyl,
10
               -C<sub>0</sub>-C<sub>6</sub> alkyl-Het, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                                  R<sup>10</sup> and R<sup>11</sup> are each independently selected from H, C<sub>1</sub>-C<sub>12</sub> alkyl,
               C<sub>3</sub>-C<sub>12</sub> alkenyl, C<sub>3</sub>-C<sub>12</sub> alkynyl, -C<sub>0</sub>-C<sub>8</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>8</sub> alkyl-Het,
                -Co-Ca alkyl-C3-C7 cycloalkyl, -Co-C8 alkyl-O-Ar, -Co-C8 alkyl-O-Het,
               -C_0-C_8 \text{ alkyl-}O-C_3-C_7 \text{ cycloalkyl, } -C_0-C_8 \text{ alkyl-}S(O)_x-C_0-C_6 \text{ alkyl, } -C_0-C_8 \text{ alkyl-}S(O)_x-Ar,
15
               -C_0-C_8 alkyl-S(O)<sub>x</sub>-Het, -C_0-C_8 alkyl-S(O)<sub>x</sub>-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -C_0-C_8 alkyl-NH-Ar,
                -C<sub>0</sub>-C<sub>8</sub> alkyl-NH-Het, -C<sub>0</sub>-C<sub>8</sub> alkyl-NH-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, -C<sub>0</sub>-C<sub>8</sub> alkyl-N(C<sub>1</sub>-C<sub>4</sub> alkyl)-Ar,
                -C<sub>0</sub>-C<sub>8</sub> alkyl-N(C<sub>1</sub>-C<sub>4</sub> alkyl)-Het, -C<sub>0</sub>-C<sub>8</sub> alkyl-N(C<sub>1</sub>-C<sub>4</sub> alkyl)-C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
                -C_0-C_8 alkyl-Ar, -C_0-C_8 alkyl-Het and -C_0-C_8 alkyl-C_3-C_7 cycloalkyl, where x is 0, 1 or 2,
                or R<sup>10</sup> and R<sup>11</sup>, together with the nitrogen to which they are attached, form a 4-7
20
                membered heterocyclic ring which optionally contains one or more additional
                heteroatoms selected from N, O, and S, wherein said C<sub>1</sub>-C<sub>12</sub> alkyl, C<sub>3</sub>-C<sub>12</sub> alkenyl, or
                C<sub>3</sub>-C<sub>12</sub> alkynyl is optionally substituted by one or more of the substituents independently
                selected from the group halo, -OH, -SH, -NH2, -NH(unsubstituted C1-C8 alkyl),
                -N(unsubstituted C<sub>1</sub>-C<sub>8</sub> alkyl)(unsubstituted C<sub>1</sub>-C<sub>8</sub> alkyl), unsubstituted -OC<sub>1</sub>-C<sub>8</sub> alkyl,
25
                -CO<sub>2</sub>H, -CO<sub>2</sub>(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl), -CONH<sub>2</sub>, -CONH(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl),
                -CON(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl)(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl), -SO<sub>3</sub>H, -SO<sub>2</sub>NH<sub>2</sub>,
                -SO<sub>2</sub>NH(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl) and -SO<sub>2</sub>N(unsubstituted C<sub>1</sub>-C<sub>6</sub> alkyl)(unsubstituted
                C<sub>1</sub>-C<sub>6</sub> alkyl);
                                    R<sup>12</sup> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar,
30
                -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                                    each R13 and each R14 are independently selected from H, C1-C6 alkyl,
                 C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and
                -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, or R<sup>13</sup> and R<sup>14</sup> together with the nitrogen to which they are
                 attached form a 4-7 membered heterocyclic ring which optionally contains one or more
 35
                 additional heteroatoms selected from N, O, and S; and
                                    R<sup>15</sup> is selected from C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>8</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar,
```

-C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;

provided that R¹⁰ and R¹¹ are not both H when Z is CH or N, Y is -O(CR⁴R⁵)-, n is 3, m is 1 and each R⁴, R⁵, R⁶, R⁷ are H, W³ is H, p is 0 or p is 1 or 2 and R¹ and R² are each H, k is 0 or k is 1 and R³ is halo or C₁-C₄ alkoxy, q is 0 or q is 1 or 2 and R⁸ and R⁹ are each H, Q is unsubstituted C₃-C₇ cycloalkyl, phenyl or Het, or phenyl substituted by one or more substituents selected from halo, -CH₃, -CH₂CH₃, -CF₃, -OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl; or provided that the compound is not:

3-[3-[[2-[3,4-bis(phenylmethoxy)phenyl]-2-hydroxyethyl](phenylmethyl)amino]propyl]-benzamide,

15

20

25

30

35

(S)-2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

5-[2-[[2-[3,5-bis(phenylmethoxy)phenyl]-2-

hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxy-benzamide,

2-hydroxy-4-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propoxy]-benzamide,

2-hydroxy-4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

(R)-2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

2-hydroxy-5-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propyl]-benzamide,

2-hydroxy-5-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzamide,

5-[2-[[2-(4-fluorophenyl)-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxy-benzamide,

5-[2-[[2-[3-(aminosulfonyl)-4-methoxyphenyl]-2-

hydroxyethyl](phenylmethyl)amino]ethoxy]-2-hydroxy-benzamide,

(R)-4-[2-[[2-hydroxy-2-[3-

(trifluoromethyl)phenyl]ethyl](phenylmethyl)amino]ethoxy]-benzeneacetamide,

(R)-4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzeneacetamide,

4-[2-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]ethoxy]-benzeneacetamide,

5-[2-[[2-(4-fluorophenyl)-2-hydroxyethyl](phenylmethyl)amino]ethoxy]-2-

PCT/US2003/009461

hydroxy-benzamine, or

WO 2004/043939

5

15

20

35

4-[2-[[2-[3,4-bis(phenylmethoxy)phenyl]-2-

hydroxyethyl](phenylmethyl)amino]ethoxy]-benzamide,

or a pharmaceutically acceptable salt or solvate thereof.

- 2. The compound according to claim 1, wherein p is 0, 1 or 2.
- 3. The compound according to claims 1 or 2, wherein t is 0.
- - 5. The compound according to any one of claims 1-4, wherein Z is CH.
 - 6. The compound according to any one of claims 1-5, wherein k is 0 or 1.
 - 7. The compound according to any one of claims 1-6, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 8. The compound according to any one of claims 1-7, wherein n is 2-4.
 - 9. The compound according to any one of claims 1-8, wherein n is 3.
- 25 10. The compound according to any one of claims 1-9, wherein q is 1.
 - 11. The compound according to any one of claims 1-10, wherein R^4 and R^5 are independently selected from H and C_1 - C_4 alkyl.
- 12. The compound according to any one of claims 1-11, wherein R¹⁰ and R¹¹ are independently selected from H and C₁-C₄ alkyl, or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N and O, wherein the substituted ring is substituted with C₁-C₄ alkyl.
 - 13. The compound according to any one of claims 1-12, wherein R¹⁰ and R¹¹ are each independently selected from H, methyl and ethyl, or R¹⁰ and R¹¹, together

with the nitrogen to which they are attached, form a azetidinly, pyrrolidinly, piperidnyl, azepanyl, N-methyl-piperazinyl, or morpholinyl group.

14. The compound according to any one of claims 1-13, wherein Q is aryl.

5

- 15. The compound according to any one of claims 1-14, wherein Q is phenyl optionally substituted with two substituents selected from halo and C_1 - C_4 haloalkyl.
- 16. The compound according to any one of claims 1-15, wherein m is 0 or m is 1 and R⁶ and R⁷ are both H.
 - 17. The compound according to any one of claims 1-16, wherein W³ is H.
- 15. The compound according to any one of claims 1-17 wherein W¹ and W² are each unsubstituted phenyl or W¹ is unsubstituted phenyl and W² is methyl.
 - 19. A compound having Formula II:

 $R^{10} \longrightarrow (CR^{1}R^{2})_{p} \longrightarrow Z \longrightarrow (CR^{4}R^{5})_{n} \longrightarrow (CR^{8}R^{7})_{m}$ $(CR^{8}R^{9})_{q} \longrightarrow (CR^{8}R^{9})_{q}$

20

wherein:

Z is CH or N, wherein k is 0, 1 or 2;

Y is -O- or -C(R^4)(R^5)-;

W¹ is selected from C₁-C₈ alkyl, C₃-C₈ cycloalkyl, aryl or Het, wherein said

C₁-C₆ alkyl, C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₄ alkyl-CO₂R¹², -C₀-C₄ alkyl-C(O)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵, -C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-SO₃H, -C₀-C₄ alkyl-SO₂NR¹³R¹⁴, -C₀-C₄ alkyl-SO₂R¹², -C₀-C₄ alkyl-SOR¹⁵, -C₀-C₄ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₄ alkyl-OC(O)OR¹⁵, -C₀-C₄ alkyl-OC(O)OR¹⁵, -C₀-C₄ alkyl-NR¹³C(O)NR¹³R¹⁴,

and -C₀-C₄ alkyl-NR¹³GOR¹⁵, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^2 is selected from H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, -C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-CO₂R¹², -C₀-C₄ alkyl-C(0)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵, 5 -C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OCONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³CONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³COR¹⁵, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl 10 are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₄ alkyl-CO₂R¹², -C₀-C₄ alkyl-C(O)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵, -C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-SO₃H, -C₀-C₄ alkyl-SO₂NR¹³R¹⁴, -C₀-C₄ alkyl-SO₂R¹², -C₀-C₄ alkyl-SOR¹⁵, 15 -C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₄ alkyl-OC(O)OR¹⁵, $-C_0-C_4$ alkyl-NR¹³C(O)OR¹⁵, $-C_0-C_4$ alkyl-NR¹³C(O)NR¹³R¹⁴, and -C₀-C₄ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

W³ is selected from the group consisting of: H, halo, C₁-C₆ alkyl,

-C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-CO₂R¹²,

-C₀-C₄ alkyl-C(O)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵,

-C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OCONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³CONR¹³R¹⁴,

-C₀-C₄ alkyl-NR¹³COR¹⁵, -C₀-C₄ alkyl-Het, -C₁-C₄ alkyl-Ar and

25 -C₁-C₄ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is phenyl or Het; wherein said phenyl or Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- $-C_0$ - $-C_4$ alkyl- $-C_0$ - $-C_0$ - $-C_4$ alkyl- $-C_0$ - $-C_$

```
p is 0-4;
n is 3;
m is 0 or 1;
```

30

q is 0 or 1;

t is 0:

5

10

each R^1 and R^2 are independently selected from H, fluoro, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- SR^{12} , $-C_1$ - C_4 alkyl-Het, $-C_1$ - C_4 alkyl-Ar and $-C_1$ - C_4 alkyl- C_3 - C_7 cycloalkyl, where any of said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- $SO_2NR^{13}R^{14}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_8 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^4 and R^5 is independently selected from H, fluoro and C_1 - C_6 alkyl; R^6 and R^7 are each independently selected from H, fluoro and C_1 - C_6 alkyl; R^8 and R^9 are each independently selected from H, fluoro and C_1 - C_6 alkyl; R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl,

- $C_3-C_8 \text{ alkenyl}, \ C_3-C_8 \text{ alkynyl}, \ -C_0-C_6 \text{ alkyl-Ar}, \ -C_0-C_6 \text{ alkyl-Het}, \\ -C_0-C_6 \text{ alkyl-}C_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-O-Ar}, \ -C_0-C_6 \text{ alkyl-O-Het}, \ -C_0-C_6 \text{ alkyl-S(O)}_x-C_1-C_8 \text{ alkyl}, \ -C_0-C_6 \text{ alkyl-S(O)}_x-Ar, \\ -C_0-C_6 \text{ alkyl-S(O)}_x-Het, \ -C_0-C_6 \text{ alkyl-S(O)}_x-C_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-NH-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Ar}, \\ -C_0-C_6 \text{ alkyl-NH-Het}, \ -C_0-C_6 \text{ alkyl-NH-C}_3-C_7 \text{ cycloalkyl}, \ -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl-NH-Let}, \ -C_0-C_6 \text{ alkyl-NH-Le$
- -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹¹ and R¹², together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₁₀ alkyl, C₃-C₁₀ alkenyl,
- C₃-C₁₀ alkynyl are optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H, -CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl), -SO₃H,
- 30 -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl);

 R^{12} is selected from H, $C_1\text{-}C_8$ alkyl, $\text{-}C_0\text{-}C_4$ alkyl-Ar, $\text{-}C_0\text{-}C_4$ alkyl-C3-C7 cycloalkyl;

each R¹³ and R¹⁴ are each independently selected from H, C₁-C₆ alkyl,

-C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴
together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

5

10

15

provided that R¹⁰ and R¹¹ are not both H when Z is CH or N, Y is -O(CR⁴R⁵)-, n is 3, m is 1 and each R⁴, R⁵, R⁶, R⁷ are H, W³ is H, p is 0 or p is 1 or 2 and R¹ and R² are each H, k is 0 or k is 1 and R³ is halo or C₁-C₄ alkoxy, q is 0 or q is 1 or 2 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or Het, or phenyl substituted by one or more substituents selected from halo, -CH₃, -CH₂CH₃, -CF₃, -OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl; or

provided that the compound is not 2-hydroxy-4-[3-[(2-hydroxy-2-phenylethyl)(phenylmethyl)amino]propoxy]-benzamide,

or a pharmaceutically acceptable salt or solvate thereof.

- The compound according to claims 1 or 19, wherein R¹, R², R³, R⁶, R⁷, 20. R⁸, R⁹ and W³ are each H; R⁴ and R⁵ are each independently selected from H and C₁-C₄ alkyl, R¹⁰ and R¹¹ are each independently selected from H, C₁-C₁₀ alkyl, 20 -C₁-C₄ alkyl-O-Ar, -S(O)₂C₁-C₄ alkyl, -S(O)₂-Ar, -C₀-C₄ alkyl-Het, where the Het group is selected from imidazolyl, thienyl (thiophenyl), morpholinyl, thiomorpholinyl, furyl, tetrahydrofuranyl, pyridyl, isoxazolyl, oxadiazolyl, triazolyl and thiazolyl; or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one additional 25 heteroatom selected from N and O, wherein the substituted ring is substituted with C1-C4 alkyl, wherein when said C0-C4 alkyl is C1-C4 alkyl, said C1-C4 alkyl is unsubstituted or substituted by -CO₂H or -CO₂(unsubstituted C₁-C₆ alkyl); Z is CH; Y is -O- or -C(R4)(R5)-; Q is a substituted phenyl group, containing two substituents selected from halo and C_1 - C_4 haloalkyl; p is 0, 1 or 2; n is 3; m is 0 or 1; q is 1; k is 0; 30 t is 0; and W^1 and W^2 are aryl or W^1 is aryl and W^2 is aryl or C_1 - C_4 alkyl; or a pharmaceutically acceptable salt or solvate thereof.
- 21. The compound according to claims 1 or 19, wherein R¹, R², R³, R⁶, R⁷, R⁸, R⁹ and W³ are each H; ; R⁴ and R⁵ are each independently selected from H and methyl; R¹⁰ and R¹¹ are each independently selected from H, methyl, ethyl, imidazol-2-yl-methyl-, 5-bromo-thiophen-2-yl-methyl- (or 5-bromo-thien-2-yl-methyl-), thiophen-2-yl-methyl- (or thien-2-yl-methyl-), 2-methoxy-ethyl-, 2-dimethylamino-ethyl-,

2-morpholin-4-yl-ethyl-, 2-methoxy-1-methyl-ethyl-, 2-methoxy-ethyl-, furan-2-yl-methyl-, 3-methyl-isoxazol-5-yl-methyl-, 2-thiomorpholin-4-yl-ethyl-, 2-pyrrolidin-1-yl-ethyl-, pyridin-3-yl-methyl-, 2-pyridin-2-yl-ethyl-, 3-phenoxy-ethyl-, 3-isopropoxy-propyl-, 3-methoxy-propyl-, 5-methyl-[1,3,4] oxadiazol-2-yl-methyl-, 4-methyl-thiazol-2-yl-methyl-, 1-thiophen-2-yl-ethyl-, thiophen-3-yl-methyl- 5-methyl-4H-[1,2,4]triazol-3-yl-methyl-, pyridin-2-yl-methyl-, tetrahydrofuran-2-yl-methyl-, 1-ethyl-pyrrolidin-2-yl-methyl-, octyl, decyl, 2-(2-hydroxy-ethoxy)-ethyl-, 1-carboxy-thiophen-2-yl-methyl- (or 1-carboxy-thien-2-yl-methyl-), phenyl, methyl-sulfonyl- (mesyl), phenyl-sulfonyl- (benzene sulfonyl), or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form an azetidinly, pyrrolidinyl, piperidnyl, azepanyl, 4-methyl-piperazin-1-yl, or morpholin-4-yl group; Z is CH; Y is -O-; Q is 2-chloro-3-(trifluoromethyl)phenyl; p is 1; n is 3; q is 1; k is 0; t is 0; m is 1; and W¹ and W² are each unsubstituted phenyl or W¹ is unsubstituted phenyl and W² is methyl; or a pharmaceutically acceptable salt or solvate thereof.

15

20

25

30

35

10

5

22. A compound selected from:

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-morpholin-4-yl-ethanone;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-methyl-acetamide;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-dimethyl-acetamide;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-piperidyn-1-yl-ethanone;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-(4-methyl-piperazin-1-yl)-ethanone;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-pyrrolidin-1-yl-ethanone;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-N-ethyl-acetamide;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxyjphenyl)-*N,N*-diethyl-acetamide;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-azetidin-1-yl-ethanone;

2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-1-azepan-1-yl-ethanone;

(S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}-phenyl)-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1H-imidazol-2-ylmethyl)-acetamide;

- N-(5-bromo-thiophen-2-ylmethyl)-2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-acetamide;
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino}-propoxy}-phenyl)-N-thiophen-2-ylmethyl-acetamide;

5

10

20

25

30

- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl amino]-propoxy}-phenyl)-N-(2-dimethylamino-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-morpholin-4-yl-ethyl)-acetamide;
- 2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-methoxy-ethyl)-N-methyl-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N,N-bis-(2-methoxy-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-furan-2-ylmethyl-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-methyl-isoxazol-5-ylmethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-thiomorpholin-4-yl-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-pyrrolidin-1-yl-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-pyridin-3-ylmethyl-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(2-pyridin-2-yl-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-phenoxy-ethyl)-acetamide;
 - 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-isopropoxy-propyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(3-methoxy-propyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(5-methyl-[1,3,4] oxadiazol-2-ylmethyl)-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(4-methyl-thiazol-2-ylmethyl)-acetamide;

- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1-thiophen-2-yl-ethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-3-ylmethyl-acetamide;

5

10

15

20

25

30

- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(5-methyl-4H-[1,2,4]triazol-3-ylmethyl)-acetamide;
- 2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-pyridin-2-ylmethyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(tetrahydro-furan-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-(1-ethyl-pyrrolidin-2-ylmethyl)-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-octyl-acetamide;
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-decyl-acetamide;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-[2-(2-hydroxy-ethoxy)-ethyl]-acetamide;
- [2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-2-thiophen-2-yl-acetic acid;
- 3-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-propionic acid;
- 3-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylamino]-acetic acid;
- (R)-2-(3-[3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-2-methyl-propoxy}phenyl)-1-morpholin-4-yl-ethanone;
- 2-(3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-butoxy}-phenyl)-1-morpholin-4-yl-ethanone;
- 4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-N,N-dimethyl-benzamide;
- 1-(4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-morpholin-4-yl-methanone;
- 1-(4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-(4-methyl-piperazin-1-yl)-methanone;
- 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-N,N-dimethyl-benzamide;

3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-N-phenyl-benzamide;

- 1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-morpholin-4-yl-methanone;
- 1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-1-(4-methyl-piperazin-1-yl)-methanone;

5

10

15

20

25

- N-[1-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-methanoyl]-methanesulfonamide;
- N-[1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-methanoyl]-benzenesulfonamide;
- N-[2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoyl-methanesulfonamide;
- N-[2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoylj-benzenesulfonamide
- N-[-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl-ethanoyl]-N-methyl-benzenesulfonamide;
- N-[2-(3-[3-[(chlorotrifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanoyl]-N-methyl-methanesulfonamide;
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-1-morpholin-4-yl-ethanone;
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-N- ethyl-acetamide;
- $2-(3-\{3-\{(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy\}-phenyl)-N,N-dimethyl-acetamide;$
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)acetamide;
- 2-(3-{3-{(2-cChloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)- *N* methyl-acetamide;
- 2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)- N,N- dimethyl-acetamide,
 - and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.
 - 23. The compound according to claim 22 selected from:
- 2-(3-{3-{(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino}-propoxy}phenyl)-*N*-methyl-acetamide,
 - 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*,*N*-dimethyl-acetamide,

5

10

20

25

35

2-(3-[3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]propoxy}phenyl)-/V-ethyl-acetamide,

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}phenyl)-N,N-bis-(2-methoxy-ethyl)-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}phenyl)-N-thiophen-3-ylmethyl-acetamide;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]propoxy}-phenyl)acetamide;

2-(3-{3-{(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino}propoxy}-phenyl)-N-methyl-acetamide;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

The compound according to claim 1, wherein at least one of Y, W1, W2, 24. W^3 , t, R^1 , R^2 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} or R^{11} is defined as follows: 15

wherein:

Y is -S-, -N(R^{12})-, or -C(R^4)(R^5)-; or

W¹ is C₁-C6 alkyl or Het, optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C8 alkyl, C3-C8 alkenyl, C_3-C_6 alkynyl, $-C_0-C_6$ alkyl- CO_2R^{12} , $-C_0-C_6$ alkyl- $C(O)SR^{12}$, $-C_0-C_6$ alkyl- $CONR^{13}R^{14}$,

 $-C_0-C_6$ alkyl- COR^{15} , $-C_0-C_6$ alkyl- $NR^{13}R^{14}$, $-C_0-C_6$ alkyl- SR^{12} , $-C_0-C_6$ alkyl- OR^{12} , $-C_0-C_6$ alkyl-SO₃H, $-C_0-C_6$ alkyl-SO₂NR¹³R¹⁴, $-C_0-C_6$ alkyl-SO₂R¹², $-C_0-C_6$ alkyl-SOR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₆ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₆ alkyl-OC(O)OR¹⁵, -Co-C₆ alkyl-NR¹³C(O)OR¹⁵, -Co-C₆ alkyl-NR¹³C(O)NR¹³R¹⁴, and

-C₀-C₈ alkyl-NR¹³COR¹⁵, where said C₁-C₈ alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or

 W^2 is H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkyl-NR 13 R 14 , $-C_0-C_6 \text{ alkyl-SR}^{12}, \ -C_0-C_6 \text{ alkyl-OR}^{12}, \ -C_0-C_6 \text{ alkyl-CO}_2 \\ \text{R}^{12}, \ -C_0-C_6 \text{ alkyl-C(O)SR}^{12}, \ -C_0-C_$ $-C_0-C_6$ alkyl-CONR¹³R¹⁴, $-C_0-C_6$ alkyl-COR¹⁵, $-C_0-C_6$ alkyl-OCOR¹⁵,

 $-C_0-C_6$ alkyl-OCONR¹³R¹⁴, $-C_0-C_6$ alkyl-NR¹³CONR¹³R¹⁴, $-C_0-C_6$ alkyl-NR¹³COR¹⁵, 30 -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar or -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C_3 - C_7 cycloalkyl, Ar and Het moieties of said - C_0 - C_6 alkyl-Het, $-C_1-C_6$ alkyl-Ar and $-C_1-C_8$ alkyl- C_3-C_7 cycloalkyl are optionally unsubstituted or

substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl- CO_2 R¹², - C_0 - C_6 alkyl-C(O)SR¹², $-C_0-C_6$ alkyl-CONR¹³R¹⁴, $-C_0-C_6$ alkyl-COR¹⁵, $-C_0-C_6$ alkyl-NR¹³R¹⁴, $-C_0-C_6$ alkyl-SR¹², $-C_0-C_6 \text{ alkyl-}OR^{12}, -C_0-C_6 \text{ alkyl-}SO_3H, -C_0-C_6 \text{ alkyl-}SO_2NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-}SO_2R^{12}, -C_0-C_6 \text{ alkyl-}SO_2R^{12},$

- C_0 - C_6 alkyl- SOR^{15} , - C_0 - C_6 alkyl- $OCOR^{15}$, - C_0 - C_6 alkyl- $OC(O)NR^{13}R^{14}$, - C_0 - C_6 alkyl- $OC(O)OR^{15}$, - C_0 - C_6 alkyl- $OC(O)OR^{15}$, - C_0 - C_6 alkyl- $OC(O)OR^{15}$, - OC_6 alkyl- $OC(O)OR^{15}$, where said OC_6 alkyl- $OC(O)OR^{15}$, where said OC_6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or

 $W^3 \text{ is halo, } C_1\text{-}C_6 \text{ alkyl, } \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}SR^{12}, \\ \text{-}C_0\text{-}C_6 \text{ alkyl-}OR^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}CO_2R^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}C(O)SR^{12}, \text{-}C_0\text{-}C_6 \text{ alkyl-}CONR^{13}R^{14}, \\ \text{-}C_0\text{-}C_6 \text{ alkyl-}COR^{15}, \text{-}C_0\text{-}C_6 \text{ alkyl-}OCOR^{15}, \text{-}C_0\text{-}C_6 \text{ alkyl-}OCONR^{13}R^{14}, \\ \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}CONR^{13}R^{14}, \text{-}C_0\text{-}C_6 \text{ alkyl-}NR^{13}COR^{15}, \text{-}C_0\text{-}C_6 \text{ alkyl-}Het, \text{-}C_1\text{-}C_6 \text{ alkyl-}Ar \\ \text{or -}C_1\text{-}C_6 \text{ alkyl-}C_3\text{-}C_7 \text{ cycloalkyl, wherein said } C_1\text{-}C_6 \text{ alkyl is optionally unsubstituted or substituted by one or more halo substituents; or }$

t is 1; or

5

10

15

20

25

30

35

at least one R^1 or R^2 is halo, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_1$ - C_6 alkyl- OR^{12} , $-C_1$ - C_6 alkyl- SR^{12} , $-C_1$ - C_6 alkyl-Het, $-C_1$ - C_6 alkyl-Ar and $-C_1$ - C_6 alkyl- C_3 - C_7 cycloalkyl, or R^1 and R^2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents; or

at least one R^4 or R^5 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one R^6 or R^7 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one of R^8 or R^9 is halo, $-C_0-C_6$ alkyl-Het, $-C_0-C_6$ alkyl-Ar or $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl; or

at least one of R¹⁰ and R¹¹ is C₁-C₁₂ alkyl, C₃-C₁₂ alkenyl, C₃-C₁₂ alkynyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het, -C₀-C₈ alkyl-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-O-Ar, -C₀-C₈ alkyl-O-Het, -C₀-C₈ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-S(O)_x-C₁-C₆ alkyl, -C₀-C₈ alkyl-S(O)_x-Ar, -C₀-C₈ alkyl-S(O)_x-Het, -C₀-C₈ alkyl-S(O)_x-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-NH-Ar, -C₀-C₈ alkyl-NH-Het, -C₀-C₈ alkyl-NH-C₃-C₇ cycloalkyl,

-C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het or -C₀-C₈ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₈ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₈ alkyl), -N(unsubstituted C₁-C₈ alkyl) (unsubstituted C₁-C₆ alkyl), unsubstituted -OC₁-C₈ alkyl, -CO₂H, -CO₂(unsubstituted C₁-C₆ alkyl), -CONH₂, -CONH(unsubstituted

 C_1 - C_6 alkyl), -CON(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_6 alkyl) and -SO₂N(unsubstituted C_1 - C_6 alkyl).

- 5 25. The compound according to claim 1, wherein at least one of R^4 , R^5 , R^{10} , R^{11} , or W^2 is defined as follows, wherein at least one of R^4 , R^5 , R^{10} or R^{11} is not H, or W^2 is C_1 - C_4 alkyl or Het.
- The compound according to claim 1, provided that R¹⁰ and R¹¹ are not both H when: Z is CH, CR3 or N, wherein when Z is CH or CR3, k is 0-4 and when Z is 10 N, k is 0-3; Y is -O-; W^1 and W^2 are each independently C_3 - C_8 cycloalkyl or aryl; wherein said C₃-C₈ cycloalkyl and Ar are optionally unsubstituted or substituted as defined herein; Q is C₃-C₈ cycloalkyl, Ar or 4-8 membered Het; wherein said C₃-C₈ cycloalkyl, Ar or Het are optionally unsubstituted or substituted as defined herein; W^3 is H; p is 0-6; n is 2-8; m is 0 or 1; q is 0 or 1; t is 0; each R^1 and R^2 are 15 independently H, C₁-C₆ alkyl, -OC₁-C₆ alkyl or -SC₁-C₆ alkyl; each R³ is the same or different and is independently halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, -OC₁-C₆ alkyl, -C₀-C₆ alkyl-CO₂R¹², -COR¹⁵, -SR¹², -SOR¹⁵, -SO₂R¹² (where R¹² is H, C_1 - C_6 alkyl or C_3 - C_6 alkenyl and R^{15} is C_1 - C_6 alkyl or C_3 - C_6 alkenyl), -OCOC₁- C_6 alkyl, -OC(O)NR¹³R¹⁴, -CONR¹³R¹⁴, -Co-Co alkyl-NR¹³R¹⁴ (where each R¹³ and each R¹⁴ are 20 independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, and C₃-C₆ alkynyl) or a 5-6 membered Het; each R⁴, R⁵, R⁶, R⁷ and R⁸ are H; and R⁹ is H or C₁-C₆ alkyl;
- 27. A pharmaceutical composition comprising a compound according to any one of claims 1-26.
 - 28. The pharmaceutical composition according to claim 27 further comprising a pharmaceutically acceptable carrier or diluent.
- 30 29. A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula I-A:

$$(R^{3})_{k}$$

$$(CR^{6}R^{7})_{m}$$

$$(CR^{4}R^{5})_{n}$$

$$(CR^{6}R^{7})_{q}$$

$$(CR^{6}R^{9})_{q}$$

$$(CR^{6}R^{9})_{q}$$

$$(CR^{6}R^{9})_{q}$$

wherein:

5

10

15

20

Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and t is 0 or 1, and when Z is N, k is 0-3 and t is 0;

Y is selected from -O-, -S-, -N(\mathbb{R}^{12})-, and -C(\mathbb{R}^4)(\mathbb{R}^5)-;

 W^1 is selected from C_1 - C_6 alkyl, C_0 - C_6 alkyl C_3 - C_8 cycloalkyl, aryl and Het, wherein said C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2 R¹², $-C_0$ - C_6 alkyl-C(O)SR¹², $-C_0$ - C_6 alkyl- $CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- COR^{15} , $-C_0$ - C_6 alkyl- COR^{15} , $-C_0$ - C_6 alkyl- COR^{12} , $-C_0$ - C_6 alkyl- COR^{12} , $-C_0$ - C_6 alkyl- COR^{12} , $-C_0$ - C_6 alkyl- COR^{15} , $-C_0$ - C_6 alkyl- $COCOR^{15}$, where said C_1 - C_6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

 W^2 is selected from H, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_6 alkyl- SR^{12} , $-C_0$ - C_6 alkyl- OR^{12} , $-C_0$ - C_6 alkyl- CO_2R^{12} , $-C_0$ - C_6 alkyl- CO_2R^{13} , wherein said CO_2R^{13} alkyl- CO_2R^{13} alkyl- CO_2R^{13} , and $-CO_2R^{13}$ alkyl- $-CO_3R^{13}$, and $-CO_3R^{13}$ alkyl- $-CO_3$

are optionally unsubstituted or substituted with one or more groups independently

25 selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- C_6

-C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹³R¹⁴, -C₀-C₆ alkyl-SO₂R¹², -C₀-C₆ alkyl-SOR¹⁵,

 $-C_0-C_6$ alkyl-OCOR¹⁵, $-C_0-C_6$ alkyl-OC(O)NR¹³R¹⁴, $-C_0-C_6$ alkyl-OC(O)OR¹⁵,

30 -C₀-C₆ alkyl-NR¹³C(O)OR¹⁵, -C₀-C₆ alkyl-NR¹³C(O)NR¹³R¹⁴, and -C₀-C₆ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

```
W<sup>3</sup> is selected from the group consisting of: H, halo, C<sub>1</sub>-C<sub>8</sub> alkyl.
                      -C_0-C_6 \text{ alkyl-NR}^{13} R^{14}, -C_0-C_6 \text{ alkyl-SR}^{12}, -C_0-C_6 \text{ alkyl-OR}^{12}, -C_0-C_6 \text{ alkyl-CO}_2 R^{12}, -C_0-C_6 \text{ alkyl-NR}^{13} R^{14}, -C_0-C_6 \text{ alkyl-NR}^{12}, -C_0-C_6 \text
                       -Cn-C6 alkyl-C(0)SR<sup>12</sup>, -C0-C6 alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C0-C6 alkyl-COR<sup>15</sup>,
                       -Co-C6 alkyl-OCOR<sup>15</sup>, -Co-C6 alkyl-OCONR<sup>13</sup>R<sup>14</sup>, -Co-C6 alkyl-NR<sup>13</sup>CONR<sup>13</sup>R<sup>14</sup>,
                      -Co-Ce alkyl-NR<sup>13</sup>COR<sup>15</sup>, -Co-Ce alkyl-Het, -C1-Ce alkyl-Ar and
    5
                     -C_1-C_6 alkyl-C_3-C_7 cycloalkyl, wherein said C_1-C_6 alkyl is optionally unsubstituted or
                       substituted by one or more halo substituents;
                                                  Q is selected from C<sub>3</sub>-C<sub>8</sub> cycloalkyl, Ar and Het; wherein said C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
                       Ar and Het are optionally unsubstituted or substituted with one or more groups
                       independently selected from halo, cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl,
10
                       C_3-C_6 alkynyl, -C_0-C_6 alkyl-CO_2R^{12}, -C_0-C_6 alkyl-C(O)SR^{12}, -C_0-C_6 alkyl-CONR^{13}R^{14},
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>12</sup>,
                       -C_0-C_6 alkyl-SO<sub>3</sub>H, -C_0-C_6 alkyl-SO<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, -C_0-C_6 alkyl-SO<sub>2</sub>R<sup>12</sup>, -C_0-C_6 alkyl-SOR<sup>15</sup>,
                       -Co-C6 alkyl-OCOR15, -Co-C6 alkyl-OC(O)NR13R14, -Co-C6 alkyl-OC(O)OR15,
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(O)NR<sup>13</sup>R<sup>14</sup>, and
15
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, where said C<sub>1</sub>-C<sub>8</sub> alkyl is optionally unsubstituted or
                     substituted by one or more halo substituents;
                                                  p is 0-8;
                                                  n is 2-8;
20
                                                  m is 0 or 1;
                                                  q is 0 or 1;
                                                  t is 0 or 1:
                                                  each R<sup>1</sup> and R<sup>2</sup> are independently selected from H, halo, C<sub>1</sub>-C<sub>6</sub> alkyl,
                       C_{3}-C_{6} \text{ alkenyl, } C_{3}-C_{6} \text{ alkynyl, } -C_{0}-C_{6} \text{ alkyl-NR}^{13}R^{14}, \text{ } -C_{0}-C_{6} \text{ alkyl-OR}^{12}, \text{ } -C_{0}-C_{6} \text{ alkyl-SR}^{12}, \text{ } -C_{0}-C_{6} \text
                       -C<sub>1</sub>-C<sub>6</sub> alkyl-Het, -C<sub>1</sub>-C<sub>6</sub> alkyl-Ar and -C<sub>1</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, or R<sup>1</sup> and R<sup>2</sup>
 25
                       together with the carbon to which they are attached form a 3-5 membered carbocyclic
                        or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms
                       selected from N, O, and S, where any of said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
                        substituted by one or more halo substituents;
                                                   each R<sup>3</sup> is the same or different and is independently selected from halo, cyano,
 30
                       nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkyl-Het,
                        -C_0-C_6 alkyl-C_3-C_7 cycloalkyl, -C_0-C_6 alkyl-CO_2R^{12}, -C_0-C_6 alkyl-C(O)SR^{12},
                        -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SR<sup>12</sup>,
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>12</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>3</sub>H, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>12</sup>,
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-SOR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)NR<sup>13</sup>R<sup>14</sup>,
 35
                       -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(0)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(0)OR<sup>15</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>C(0)NR<sup>13</sup>R<sup>14</sup>.
                        and -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>13</sup>COR<sup>15</sup>, wherein said C<sub>1</sub>-C<sub>8</sub> alkyl is optionally unsubstituted or
```

substituted by one or more halo substituents;

each R4 and R5 is independently selected from H, halo, C1-C8 alkyl, - C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl-Ar and - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl; R⁶ and R⁷ are each independently selected from H, halo, C₁-C₆ alkyl, - C_0 - C_6 alkyl-Het, - C_0 - C_6 alkyl-Ar and - C_0 - C_8 alkyl- C_3 - C_7 cycloalkyl; R⁸ and R⁹ are each independently selected from H, halo, C₁-C₆ alkyl, 5 -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; R¹⁰ and R¹¹ are each independently selected from H, C₁-C₁₂ alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} alkynyl, - C_0 - C_8 alkyl-Ar, - C_0 - C_8 alkyl-Het, -Co-Ca alkyl-C3-C7 cycloalkyl, -C0-C8 alkyl-O-Ar, -C0-C8 alkyl-O-Het, $-C_0-C_8 \text{ alkyl-}O-C_3-C_7 \text{ cycloalkyl, } -C_0-C_8 \text{ alkyl-}S(O)_x-C_0-C_6 \text{ alkyl, } -C_0-C_8 \text{ alkyl-}S(O)_x-Ar,$ 10 $-C_0-C_8$ alkyl-S(O)_x-Het, $-C_0-C_8$ alkyl-S(O)_x-C₃-C₇ cycloalkyl, $-C_0-C_8$ alkyl-NH-Ar, -C₀-C₈ alkyl-NH-Het, -C₀-C₈ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₈ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₈ alkyl-Ar, -C₀-C₈ alkyl-Het and -C₀-C₈ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form a 4-7 15 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₁₂ alkyl, C₃-C₁₂ alkenyl, or C₃-C₁₂ alkynyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH2, -NH(unsubstituted C1-C6 alkyl), -N(unsubstituted C_1 - C_6 alkyl)(unsubstituted C_1 - C_6 alkyl), unsubstituted -OC1- C_6 alkyl, 20 -CO₂H, -CO₂(unsubstituted C₁-C₆ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₆ alkyl), -CON(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₆ alkyl) and -SO₂N(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl); R¹² is selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, 25 -C₀-C₆ alkyi-Het and -C₀-C₆ alkyi-C₃-C₇ cycloalkyi; each R13 and each R14 are independently selected from H, C1-C6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl-Ar, - C_0 - C_6 alkyl-Het and $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more 30 additional heteroatoms selected from N, O, and S; and R¹⁵ is selected from C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; provided that R10 and R11 are not both H when Z is CH or N, Y is -O(CR4R5)-, n is 3, m is 1 and each R^4 , R^5 , R^6 , R^7 are H, W^3 is H, p is 0 or p is 1 or 2 and R^1 and R^2 35 are each H, k is 0 or k is 1 and R3 is halo or C1-C4 alkoxy, q is 0 or q is 1 or 2 and R8 and R9 are each H, Q is unsubstituted C3-C7 cycloalkyl, phenyl or Het, or phenyl

substituted by one or more substituents selected from halo, -CH3, -CH2CH3, -CF3,

-OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl; or a pharmaceutically acceptable salt or solvate thereof.

5

15

20

- 30. The method according to claim 29, wherein p is 0 or 1 and q is 1.
- - 32. The method according to any one of claims 29-31, wherein Z is CH.
 - 33. The method according to any one of claims 29-32, wherein k is 0 or 1.
 - 34. The method according to any one of claims 29-33, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 35. The method according to any one of claims 29-34, wherein n is 3.
 - 36. The method according to any one of claims 29-35, wherein R^{10} is H or C_1 - C_4 alkyl.
 - 37. The method according to any one of claims 29-36, wherein Q is phenyl optionally substituted with two substituents selected from halo and C₁-C₄ haloalkyl.
- 38. The method according to any one of claims 29-37 wherein W^1 and W^2 are unsubstituted phenyl.

39. A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula II-A:

5 wherein:

Z is CH or N, wherein k is 0, 1 or 2; Y is -O- or -C(\mathbb{R}^4)(\mathbb{R}^5)-;

W¹ is selected from C₁-C₆ alkyl, C₃-C₈ cycloalkyl, aryl or Het, wherein said C₁-C₆ alkyl, C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₄ alkyl-CO₂R¹², -C₀-C₄ alkyl-C(O)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-SO₃H, -C₀-C₄ alkyl-SO₂NR¹³R¹⁴, -C₀-C₄ alkyl-SO₂R¹², -C₀-C₄ alkyl-SO₈H, -C₀-C₄ alkyl-SO₂NR¹³R¹⁴, -C₀-C₄ alkyl-SO₂R¹², -C₀-C₄ alkyl-SO₈H, -C₀-C₄ alkyl-OC(O)NR¹³R¹⁴, alkyl-OC(O)OR¹⁵, -C₀-C₄ alkyl-NR¹³C(O)OR¹⁵, -C₀-C₄ alkyl-NR¹³C(O)NR¹³R¹⁴, and -C₀-C₄ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

W2 is selected from H, halo, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, -C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², -C₀-C₄ alkyl-CO₂R¹². -C₀-C₄ alkyl-C(0)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵, 20 -C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OCONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³CONR¹³R¹⁴, -C₀-C₄ alkyl-NR¹³COR¹⁵, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C3-C7 cycloalkyl, Ar and Het moieties of said -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-Ar and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl 25 are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, -C₀-C₄ alkyl-CO₂R¹², -C₀-C₄ alkyl-C(0)SR¹², -C₀-C₄ alkyl-CONR¹³R¹⁴, -C₀-C₄ alkyl-COR¹⁵, -C₀-C₄ alkyl-NR¹³R¹⁴, -C₀-C₄ alkyl-SR¹², -C₀-C₄ alkyl-OR¹², $-C_0-C_4 \text{ alkyl-SO}_3\text{H, } -C_0-C_4 \text{ alkyl-SO}_2\text{NR}^{13}\text{R}^{14}, -C_0-C_4 \text{ alkyl-SO}_2\text{R}^{12}, -C_0-C_4 \text{ alkyl-SOR}^{15},$ 30 -C₀-C₄ alkyl-OCOR¹⁵, -C₀-C₄ alkyl-OC(O)NR¹³R¹⁴, -C₀-C₄ alkyl-OC(O)OR¹⁵, $-C_0-C_4$ alkyl-NR¹³C(O)OR¹⁵, $-C_0-C_4$ alkyl-NR¹³C(O)NR¹³R¹⁴, and

- C_0 - C_4 alkyl-NR¹³COR¹⁵, where said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^3 is selected from the group consisting of: H, halo, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- SR^{12} , $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- CO_2R^{12} , $-C_0$ - C_4 alkyl- $CO_2R^{13}R^{14}$, $-C_0$ - C_4 alkyl- CO_2R^{15} , $-C_0$ - $-C_0R^{15}$, $-C_0$ - $-C_0$, alkyl- $-C_0$ - $-C_0$, alkyl- $-C_0$, alkyl- $-C_0$ - $-C_0$, alkyl- $-C_0$, al

Q is phenyl or Het; wherein said phenyl or Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- CO_2R^{12} , $-C_0$ - C_4 alkyl- $C(O)SR^{12}$, $-C_0$ - C_4 alkyl- $COR^{13}R^{14}$, $-C_0$ - C_4 alkyl- COR^{15} , $-C_0$ - C_4 alkyl- $COR^{13}R^{14}$, $-C_0$ - C_4 alkyl- COR^{15} , $-C_0$ - C_4 alkyl- $COR^{15}R^{14}$, and $-C_0$ - C_4 alkyl- $COR^{15}R^{14}R^{14}$, where said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents,

p is 0-4;
20 n is 3;
m is 0 or 1;
q is 0 or 1;
t is 0;

5

10

15

25

30

35

each R^1 and R^2 are independently selected from H, fluoro, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- SR^{12} , $-C_1$ - C_4 alkyl-Het, $-C_1$ - C_4 alkyl-Ar and $-C_1$ - C_4 alkyl- C_3 - C_7 cycloalkyl, where any of said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{13}R^{14}$, $-C_0$ - C_4 alkyl- OR^{12} , $-C_0$ - C_4 alkyl- $SO_2NR^{13}R^{14}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R^4 and R^5 is independently selected from H, fluoro and C_1 - C_6 alkyl; R^6 and R^7 are each independently selected from H, fluoro and C_1 - C_6 alkyl; R^8 and R^9 are each independently selected from H, fluoro and C_1 - C_6 alkyl; R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl,

$$\begin{split} &C_3\text{-}C_8 \text{ alkenyl, } C_3\text{-}C_8 \text{ alkynyl, } \text{-}C_0\text{-}C_6 \text{ alkyl-Ar, } \text{-}C_0\text{-}C_6 \text{ alkyl-Het,} \\ &-C_0\text{-}C_6 \text{ alkyl-}C_3\text{-}C_7 \text{ cycloalkyl, } \text{-}C_0\text{-}C_6 \text{ alkyl-O-Ar, } \text{-}C_0\text{-}C_6 \text{ alkyl-O-Het, } \text{-}C_0\text{-}C_6 \text{ alkyl-O-C_0-C_0-Bellyl-S(O)_x-C_1-C_0-Bellyl, } \text{-}C_0\text{-}C_0 \text{ alkyl-S(O)_x-Ar,} \end{split}$$

 $-C_0-C_6 \text{ alkyl-S(O)}_x\text{-Het, }-C_0-C_6 \text{ alkyl-S(O)}_x-C_3-C_7 \text{ cycloalkyl, }-C_0-C_6 \text{ alkyl-NH-Ar.}$ $-C_0-C_6 \text{ alkyl-NH-Het, } -C_0-C_6 \text{ alkyl-NH-} -C_3-C_7 \text{ cycloalkyl, } -C_0-C_6 \text{ alkyl-N(} C_1-C_4 \text{ alkyl)-} Ar,$ $-C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-Het, } -C_0-C_6 \text{ alkyl-N(C}_1-C_4 \text{ alkyl)-C}_3-C_7 \text{ cycloalkyl,} \\$ $-C_0-C_6$ alkyl-Ar, $-C_0-C_6$ alkyl-Het and $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl, where x is 0, 1 or 2, or R¹¹ and R¹², together with the nitrogen to which they are attached, form a 4-7 5 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C_1 - C_{10} alkyl, C_3 - C_{10} alkenyl, $C_3\text{-}C_{10}$ alkynyl are optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C_1 - C_4 alkyl), -N(unsubstituted C_1 - C_4 alkyl)(unsubstituted C_1 - C_4 alkyl), unsubstituted 10 -OC1-C4 alkyl, -CO2H, -CO2(unsubstituted C1-C4 alkyl), -CONH2, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C_1 - C_4 alkyl)(unsubstituted C_1 - C_4 alkyl);

 R^{12} is selected from H, C_1 - C_6 alkyi, $-C_0$ - C_4 alkyi-Ar, $-C_0$ - C_4 alkyi-Het and $-C_0$ - C_4 alkyi- C_3 - C_7 cycloalkyi;

15

20

25

30

35

each R^{13} and R^{14} are each independently selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl, or R^{13} and R^{14} together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{15} is selected from $C_1\text{--}C_6$ alkyl, $\text{--}C_0\text{--}C_4$ alkyl-Ar, $\text{--}C_0\text{--}C_4$ alkyl-C $_3\text{--}C_7$ cycloalkyl;

provided that R¹⁰ and R¹¹ are not both H when Z is CH or N, Y is -O(CR⁴R⁵)-, n is 3, m is 1 and each R⁴, R⁵, R⁶, R⁷ are H, W³ is H, p is 0 or p is 1 or 2 and R¹ and R² are each H, k is 0 or k is 1 and R³ is halo or C₁-C₄ alkoxy, q is 0 or q is 1 or 2 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or Het, or phenyl substituted by one or more substituents selected from halo, -CH₃, -CH₂CH₃, -CF₃, -OC₁-C₄ alkyl, -OCH₂CH₂OH, -OCF₃, -OCF₂H, -SCH₃, -SCF₃, -SO₂CH₃, -CO₂H, -CO₂CH₃, -OH, -OCH₂CO₂H, -CH₂CONH₂, -NO₂, -CN, -N(CH₃)₂, and -NHC(O)CH₃, or Het substituted by one or more substituents selected from: -C₁-C₃ alkyl, -OC₁-C₄ alkyl, -CH₂OH, -CO₂H, -CO₂CH₂CH₃, -CO₂-tert-C₄H₉ alkyl, -CO₂CH₂-phenyl, -CONH₂, -C(O)phenyl, -C(O)CH₃, -CH₂CH₂-phenyl, and oxo, t is 0, and W¹ and W² are each independently selected from unsubstituted cyclohexyl and unsubstituted phenyl;

or a pharmaceutically acceptable salt or solvate thereof.

40. The method according to claims 29 or 39, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and W^3 are each H; R^4 and R^5 are each independently selected from H and

 C_1 - C_4 alkyl, R^{10} and R^{11} are each independently selected from H, C_1 - C_{10} alkyl, $-C_1$ - C_4 alkyl-O-Ar, $-S(O)_2C_1$ - C_4 alkyl, $-S(O)_2$ -Ar, $-C_0$ - C_4 alkyl-Het, where the Het group is selected from imidazolyl, thienyl (thiophenyl), morpholinyl, thiomorpholinyl, furyl, tetrahydrofuranyl, pyridyl, isoxazolyl, oxadiazolyl, triazolyl and thiazolyl; or R^{10} and R^{11} , together with the nitrogen to which they are attached, form a substituted or unsubstituted 4-7 membered heterocyclic ring which optionally contains one additional heteroatom selected from N and O, wherein the substituted ring is substituted with C_1 - C_4 alkyl, wherein when said C_0 - C_4 alkyl is C_1 - C_4 alkyl, said C_1 - C_4 alkyl is unsubstituted or substituted by $-CO_2$ H or $-CO_2$ (unsubstituted C_1 - C_6 alkyl); Z is CH; Y is -O- or $-C(R^4)(R^5)$ -; Q is a substituted phenyl group, containing two substituents selected from halo and C_1 - C_4 haloalkyl; P is 0, 1 or 2; P is 3; P is 0; and P are aryl or P is aryl and P is aryl or P alkyl; or a pharmaceutically acceptable salt or solvate thereof.

5

10

- The method according to claims 29 or 39, wherein R¹, R², R³, R⁶, R⁷, 15 41. R⁸, R⁹ and W³ are each H; ; R⁴ and R⁵ are each independently selected from H and methyl: R10 and R11 are each independently selected from H, methyl, ethyl, imidazol-2-yl-methyl-, 5-bromo-thiophen-2-yl-methyl- (or 5-bromo-thien-2-yl-methyl-). thiophen-2-yl-methyl- (or thien-2-yl-methyl-), 2-methoxy-ethyl-, 2-dimethylamino-ethyl-, 2-morpholin-4-yl-ethyl-, 2-methoxy-1-methyl-ethyl-, 2-methoxy-ethyl-, furan-2-yl-methyl-, 20 3-methyl-isoxazol-5-yl-methyl-, 2-thiomorpholin-4-yl-ethyl-, 2-pyrrolidin-1-yl-ethyl-, pyridin-3-yl-methyl-, 2-pyridin-2-yl-ethyl-, 3-phenoxy-ethyl-, 3-isopropoxy-propyl-, 3-methoxy-propyl-, 5-methyl-[1,3,4] oxadiazol-2-yl-methyl-, 4-methyl-thiazol-2-ylmethyl-, 1-thiophen-2-yl-ethyl-, thiophen-3-yl-methyl- 5-methyl-4H-[1,2,4]triazol-3-ylmethyl-, pyridin-2-yl-methyl-, tetrahydrofuran-2-yl-methyl-, 1-ethyl-pyrrolidin-2-yl-25 methyl-, octyl, decyl, 2-(2-hydroxy-ethoxy)-ethyl-, 1-carboxy-thiophen-2-yl-methyl- (or 1carboxy-thien-2-yl-methyl-), phenyl, methyl-sulfonyl- (mesyl), phenyl-sulfonyl- (benzene sulfonyl), or R¹⁰ and R¹¹, together with the nitrogen to which they are attached, form an azetidinly, pyrrolidinyl, piperidnyl, azepanyl, 4-methyl-piperazin-1-yl, or morpholin-4-yl group; Z is CH; Y is -O-; Q is 2-chloro-3-(trifluoromethyl)phenyl; p is 1; n is 3; q is 1; 30 k is 0; t is 0; m is 1; and W^1 and W^2 are each unsubstituted phenyl or W^1 is unsubstituted phenyl and W2 is methyl; or a pharmaceutically acceptable salt or solvate thereof.
- 35 42. The method according to claims 29 or 39, wherein at least one of Y, W¹, W², W³, t, R¹, R², R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ or R¹¹ is defined as follows:

 wherein:

Y is -S-, -N(R^{12})-, or -C(R^4)(R^5)-; or

W1 is Het optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, $C_3 - C_6 \text{ alkyl-} C_0 - C_6 \text{ alkyl-} CO_2 R^{12}, - C_0 - C_6 \text{ alkyl-} C(O) SR^{12}, - C_0 - C_6 \text{ alkyl-} CONR^{13} R^{14},$ $-C_0-C_6$ alkyl-COR¹⁵, $-C_0-C_6$ alkyl-NR¹³R¹⁴, $-C_0-C_6$ alkyl-SR¹², $-C_0-C_6$ alkyl-OR¹², $-C_0-C_6 \text{ alkyl-SO}_3H, -C_0-C_6 \text{ alkyl-SO}_2NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-SO}_2R^{12}, -C_0-C_6 \text{ alkyl-SO}R^{15}, -C_0-C_6 \text{ alkyl-SO}_2R^{12}, -C_0-C_6 \text{ alkyl-SO}_2R^{12}$ 5 $-C_0-C_6$ alkyl-OCOR¹⁵, $-C_0-C_6$ alkyl-OC(O)NR¹³R¹⁴, $-C_0-C_6$ alkyl-OC(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)OR¹⁵, $-C_0-C_6$ alkyl-NR¹³C(O)NR¹³R¹⁴, and -C₀-C₆ alkyl-NR¹³COR¹⁵, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or W^2 is H, halo, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, - C_0 - C_6 alkyl- $NR^{13}R^{14}$, 10 $-C_0-C_6 \text{ alkyl-SR}^{12}, -C_0-C_6 \text{ alkyl-OR}^{12}, -C_0-C_6 \text{ alkyl-CO}_2 \\ R^{12}, -C_0-C_6 \text{ alkyl-C(O)SR}^{12}, -C$ -C₀-C₆ alkyl-CONR¹³R¹⁴, -C₀-C₆ alkyl-COR¹⁵, -C₀-C₆ alkyl-OCOR¹⁶, $-C_{0}-C_{6} \text{ alkyl-OCONR}^{13} \text{R}^{14}, \ -C_{0}-C_{6} \text{ alkyl-NR}^{13} \text{CONR}^{13} \text{R}^{14}, \ -C_{0}-C_{6} \text{ alkyl-NR}^{13} \text{COR}^{15},$ -C0-C6 alkyl-Het, -C1-C6 alkyl-Ar or -C1-C6 alkyl-C3-C7 cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, 15 and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2 R¹², $-C_0$ - C_6 alkyl-C(O)SR¹², $-C_{0}-C_{6} \text{ alkyl-CONR}^{13} \text{R}^{14}, -C_{0}-C_{6} \text{ alkyl-COR}^{15}, -C_{0}-C_{6} \text{ alkyl-NR}^{13} \text{R}^{14}, -C_{0}-C_{6} \text{ alkyl-SR}^{12}, -C_{0$ 20 $-C_0-C_6 \text{ alkyl-} \\ OR^{12}, -C_0-C_6 \text{ alkyl-} \\ SO_3H, -C_0-C_6 \text{ alkyl-} \\ SO_2NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-} \\ SO_2R^{12}, -C_0-$ -C₀-C₆ alkyl-SOR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₈ alkyl-OC(O)NR¹³R¹⁴, $-C_0-C_6 \text{ alkyl-OC(O)OR}^{15}, -C_0-C_6 \text{ alkyl-NR}^{13} C(O)OR^{15}, -C_0-C_6 \text{ alkyl-NR}^{13} C(O)NR^{13}R^{14}, -C_0-C_6 \text{ alkyl-NR}^{15} C(O)NR^{15}R^{14}, -C_0-C_6 \text{ alkyl-NR}^{15} C(O)NR^{15}R^{15}, -C_0-C_6 \text{ alkyl-NR}^{15} C(O)NR^{15}R$ and - C_0 - C_6 alkyl-NR¹³COR¹⁵, where said C_1 - C_6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents; or 25 W^3 is halo, C_1 - C_6 alkyl, - C_0 - C_6 alkyl- $NR^{13}R^{14}$, - C_0 - C_6 alkyl- SR^{12} , $-C_0-C_6$ alkyl $-OR^{12}$, $-C_0-C_6$ alkyl $-CO_2R^{12}$, $-C_0-C_6$ alkyl $-C(O)SR^{12}$, $-C_0-C_8$ alkyl $-CONR^{13}R^{14}$, -C₀-C₆ alkyl-COR¹⁵, -C₀-C₆ alkyl-OCOR¹⁵, -C₀-C₈ alkyl-OCONR¹³R¹⁴, $-C_0-C_6 \text{ alkyl-NR}^{13} \text{CONR}^{13} \text{R}^{14}, -C_0-C_6 \text{ alkyl-NR}^{13} \text{COR}^{15}, -C_0-C_6 \text{ alkyl-Het, } -C_1-C_6 \text{ alkyl-Ar}$ or - C_1 - C_6 alkyl- C_3 - C_7 cycloalkyl, wherein said C_1 - C_6 alkyl is optionally unsubstituted or 30 substituted by one or more halo substituents; or t is 1; or

at least one R¹ or R² is halo, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-NR¹³R¹⁴, -C₁-C₆ alkyl-OR¹², -C₁-C₆ alkyl-SR¹², -C₁-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹ and R² together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where

said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; or

at least one R^4 or R^5 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl-Ar or $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one R^6 or R^7 is halo, C_1 - C_6 alkyl, $-C_0$ - C_6 alkyl-Het, $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl; or

at least one of R^8 or R^9 is halo, -C0-C6 alkyl-Het, -C0-C6 alkyl-Ar or -C0-C6 alkyl-C3-C7 cycloalkyl; or

at least one of R^{10} or R^{11} is $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkynyl,

10 $-C_0-C_6$ alkyl-Ar, $-C_0-C_6$ alkyl-Het, $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl, $-C_0-C_6$ alkyl-O-Ar,

-C₀-C₆ alkyl-O-Het, -C₀-C₆ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-S(O)_x-C₁-C₆ alkyl,

 $-C_0-C_6 \text{ alkyl-}S(O)_x-Ar, -C_0-C_6 \text{ alkyl-}S(O)_x-Het, -C_0-C_6 \text{ alkyl-}S(O)_x-C_3-C_7 \text{ cycloalkyl,}\\$

- C_0 - C_6 alkyl-NH-Ar, - C_0 - C_6 alkyl-NH-Het, - C_0 - C_6 alkyl-NH- C_3 - C_7 cycloalkyl,

 $-C_0-C_6$ alkyl-N(C₁-C₄ alkyl)-Ar, $-C_0-C_6$ alkyl-N(C₁-C₄ alkyl)-Het,

5

20

25

30

35

C₁-C₆ alkyl).

- C_0 - C_6 alkyl-N(C_1 - C_4 alkyl)- C_3 - C_7 cycloalkyl, - C_0 - C_6 alkyl-Ar, - C_0 - C_6 alkyl-Het or - C_0 - C_6 alkyl- C_3 - C_7 cycloalkyl, where x is 0, 1 or 2, or

 R^{10} and R^{11} , together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C_1 - C_6 alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C_1 - C_6 alkyl), -N(unsubstituted C_1 - C_6 alkyl) (unsubstituted C_1 - C_6 alkyl), unsubstituted -OC₁- C_6 alkyl, -CO₂H, -CO₂(unsubstituted C_1 - C_6 alkyl), -CONH₂, -CONH(unsubstituted C_1 - C_6 alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C_1 - C_6 alkyl) and -SO₂N(unsubstituted C_1 - C_6 alkyl) (unsubstituted

- 43. The method according to claims 29 or 39, wherein at least one of R^4 , R^5 , R^{10} , R^{11} , or W^2 is defined as follows, wherein at least one of R^4 , R^5 , R^{10} or R^{11} is not H, or W^2 is C_1 - C_4 alkyl or Het.
 - The method according to claims 29 or 39, provided that R^{10} and R^{11} are not both H when: Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3; Y is -O-; W¹ and W² are each independently C_3 - C_8 cycloalkyl or aryl; wherein said C_3 - C_8 cycloalkyl and Ar are optionally unsubstituted or substituted as defined herein; Q is selected from C_3 - C_8 cycloalkyl, Ar and 4-8 membered Het; wherein said C_3 - C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted as defined herein; W³ is H; p is 0-6; n is 2-8; m is 0 or 1; q is 0 or 1; t is 0; each R^1 and R^2 are

independently H, C_1 - C_6 alkyl, $-OC_1$ - C_6 alkyl or $-SC_1$ - C_6 alkyl; each R^3 is the same or different and is independently halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, $-OC_1$ - C_6 alkyl, $-C_0$ - C_6 alkyl- CO_2R^{12} , $-COR^{15}$, $-SR^{12}$, $-SOR^{15}$, $-SO_2R^{12}$ (where R^{12} is H, C_1 - C_6 alkyl or C_3 - C_6 alkenyl and R^{15} is C_1 - C_6 alkyl or C_3 - C_6 alkenyl), $-OCOC_1$ - C_6 alkyl, $-OC(O)NR^{13}R^{14}$, $-CONR^{13}R^{14}$, $-C_0$ - C_6 alkyl- $NR^{13}R^{14}$ (where each R^{13} and each R^{14} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, and C_3 - C_6 alkynyl) or a 5-6 membered Het; each R^4 , R^5 , R^6 , R^7 and R^8 are H; and R^9 is H or C_1 - C_6 alkyl;

5

10

15

20

- 45. A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound selected from:
 - 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-*N*-methyl-acetamide,
 - 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-N,N-dimethyl-acetamide,
 - 2-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}phenyl)-N-ethyl-acetamide,
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N,N-bis-(2-methoxy-ethyl)-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-N-thiophen-3-ylmethyl-acetamide;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)acetamide;
 - 2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-*N*-methyl-acetamide;
 - and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.
- 46. The method according to any one of claims 29-39, wherein said LXR mediated disease or condition is cardiovascular disease.
 - 47. The method according to any one of claims 29-39 wherein said LXR mediated disease or condition is atherosclerosis.
- 35 48. The method according to any one of claims 29-39, wherein said LXR mediated disease or condition is inflammation.

49. A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of a compound according to any one of claims any one of claims 29-39.

- 5 50. A method for inhibiting cholesterol absorption, said method comprising administering a therapeutically effective amount of a compound according to any one of claims 29-39.
- 51. A compound according to any one of claims 1-26 for use as a medicament.
 - 52. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for the prevention or treatment of an LXR mediated disease or condition.
 - 53. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for the prevention or treatment of cardiovascular disease.
 - 54. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for the prevention or treatment of atherosclerosis.
 - 55. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for the prevention or treatment of inflammation.
- 25 56. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for increasing reverse cholesterol transport.
 - 57. Use of a compound according to any one of claims 1-26 for the preparation of a medicament for inhibiting cholesterol absorption.
 - 58. A pharmaceutical composition comprising a compound according to any one of claims 1-26 for use in the prevention or treatment of an LXR mediated disease or condition.

35

30

15