Mathématique - Corrigé Devoir Maison n°14

Exercice 1

1. On note $f(x) = e^x + x$. f est définie et continue sur \mathbb{R} . Les fonctions $x \mapsto x$ et $x \mapsto e^x$ sont strictement croissantes sur \mathbb{R} . Alors par somme, f est strictement croissante sur \mathbb{R} .

La fonction f est continue et strictement croissante sur l'intervalle \mathbb{R} , alors f est une bijection de \mathbb{R} dans $f(\mathbb{R}) = \lim_{n \to \infty} f, \lim_{n \to \infty} f[$. On a $\lim_{n \to \infty} f = -\infty$ et $\lim_{n \to \infty} f = +\infty$. Donc f est une bijection de \mathbb{R} dans \mathbb{R} . Pour $n \in \mathbb{N}^*$, l'équation $e^x + x = n$ a donc une unique solution $u_n \in \mathbb{R}$.

Pour
$$n \in \mathbb{N}^*$$
, l'équation $e^x + x = n$ a donc une unique solution $u_n \in \mathbb{R}$.

On a f(0) = -n donc $f(u_n) > f(0)$ et comme f est strictement croissante, on en déduit que

2. On a $f(u_n) = n$ donc $u_n = f^{-1}(n)$. Et, $\lim_{x \to +\infty} f(x) = +\infty$ ce qui donne $\lim_{y \to +\infty} f^{-1}(y) = +\infty$ $\operatorname{car} \lim_{y \to +\infty} f^{-1}(y) = \lim_{x \to +\infty} f^{-1}(f(x)) = +\infty \text{ en posant } y = f(x).$

Alors
$$\lim_{n \to +\infty} f^{-1}(n) = +\infty$$
 donc $\lim_{n \to +\infty} u_n = +\infty$

3. On a $e^{u_n} = n - u_n$ soit $u_n = \ln(n - u_n)$ pour tout entier $n \in \mathbb{N}^*$. Alors $0 \le \frac{u_n}{n} \le \frac{\ln(n - u_n)}{n} \le \frac{\ln n}{n}$

On a $\lim_{n\to+\infty} \frac{\ln n}{n} = 0$, alors par le théorème d'encadrement $\frac{u_n}{n} \xrightarrow[n\to+\infty]{} 0$.

On a
$$\frac{u_n}{\ln n} = \frac{\ln(n - u_n)}{\ln n} = \frac{\ln(n(1 - \frac{u_n}{n}))}{\ln n} = 1 + \frac{\ln(1 - \frac{u_n}{n})}{\ln n}.$$

Comme
$$\frac{u_n}{n} \xrightarrow[n \to +\infty]{} 0$$
, alors $\frac{\ln(1 - \frac{u_n}{n})}{\ln n} \xrightarrow[n \to +\infty]{} 0$ et $\lim_{n \to +\infty} \frac{u_n}{\ln n} = 1$. Donc $u_n \xrightarrow[+\infty]{} \ln n$.

4. On a $v_n = u_n - \ln(n)$ et $u_n = \ln(n - u_n)$ donc $v_n = \ln(n - u_n) - \ln(n) = \ln\left(1 - \frac{u_n}{n}\right)$.

Or
$$\frac{u_n}{n} \xrightarrow[n \to +\infty]{} 0$$
 et $\ln(1-x) \underset{0}{\sim} -x$ donc $v_n \underset{+\infty}{\sim} -\frac{u_n}{n}$ soit $v_n \underset{+\infty}{\sim} -\frac{\ln n}{n}$.

5. On poursuit le calcul précédent car on a $\ln(1-x) = -x + o(x)$.

Donc $v_n = -\frac{u_n}{n} + o(\frac{u_n}{n})$. En utilisant $u_n \sim \ln(n)$, on a $u_n = \ln(n) + o(\ln(n))$.

Et, on obtient
$$v_n = -\frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$
. On revient à u_n :
$$u_n = \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$
.

Exercice 2

1. On calcule avec $\vec{a} = (1,0)$, on a $f(\vec{a}) = (0,1)$, $f^2(\vec{a}) = (-1,0)$, $f^3(\vec{a}) = (0,-1)$ et $f^4(\vec{a}) = (1,0)$. On constate donc que $f^4(\vec{a}) = \vec{a}$, que la famille $(\vec{a}, f(\vec{a}), f^2(\vec{a}), f^3(\vec{a}))$ est constituée d'éléments deux à deux distincts, et qu'elle est génératrice dans E (preuve du dernier point : par exemple parce qu'elle contient la base canonique qui, elle, est génératrice).

Donc | f est cyclique d'ordre p = 4.

2. (a) Avec $\vec{a} = (0, -1, 1)$, on détermine successivement $f(\vec{a}) = (-1, -1, 1)$, $f^2(\vec{a}) = (2, 1, 0)$ puis aussi $f^3(\vec{a}) = (0, -1, 1) = \vec{a}$.

Montrons que la famille $\mathcal{B}' = (\vec{a}, f(\vec{a}), f^2(\vec{a}))$ est libre. Partons d'une combinaison linéaire nulle.

$$r(0,-1,1)+s(-1,-1,1)+t(2,1,0)=(0,0,0) \Longleftrightarrow (-s+2t,-r-s+t,r+s)=(0,0,0)$$

$$\iff \begin{cases} -s + 2t = 0 \\ -r - s + t = 0 \end{cases} \iff \begin{cases} s = 2t \\ 2t - 2t + t = 0 \end{cases} \iff t = 0 = r = s$$
$$r = -s = -2t$$

La famille \mathcal{B}' est libre. Elle est constituée de trois vecteurs dans un espace de dimension 3.

Donc \mathscr{B}' est une base de E On en déduit qu'on a \mathscr{B}' famille génératrice de \mathbb{R}^3 , constituée d'éléments deux à deux distincts, et $f^3(\vec{a}) = \vec{a}$.

Ceci nous permet de conclure que f est cyclique d'ordre p = 3.

(b) i. L'endomorphisme nul $\overrightarrow{0}_{\mathscr{L}(\mathbb{R}^3)}$ est dans $\mathscr{C}(f)$ car $\overrightarrow{0}_{\mathscr{L}(\mathbb{R}^3)} \circ f = \overrightarrow{0}_{\mathscr{L}(\mathbb{R}^3)} = f \circ \overrightarrow{0}_{\mathscr{L}(\mathbb{R}^3)}$. Soit $g_1 \in \mathscr{C}(f)$, $g_2 \in \mathscr{C}(f)$ et $\alpha \in \mathbb{R}$.

On a $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ par définition de $g_1 + g_2$.

Puis, $(g_1 + g_2) \circ f = f \circ g_1 + f \circ g_2$ car g_1, g_2 sont dans $\mathscr{C}(f)$.

Enfin, comme f est linéaire, on a $(g_1+g_2)\circ f=f\circ (g_1+g_2)$ ce qui prouve que $g_1+g_2\in \mathscr{C}(f)$. De même, $(\alpha g_1)\circ f=\alpha(g_1\circ f)$ par définition de αg_1 . Puis $(\alpha g_1)\circ f=\alpha(f\circ g_1)$ car $g_1\in \mathscr{C}(f)$. On obtient par définition de $\alpha f:(\alpha g_1)\circ f=(\alpha f)\circ g_1$. Enfin comme f est linéaire, $(\alpha g_1)\circ f=f\circ (\alpha g_1)$ donc $\alpha g_1\in \mathscr{C}(f)$.

On en déduit que $\mathscr{C}(f)$ est non vide et stable par combinaison linéaire alors

 $\mathscr{C}(f)$ est un sous-espace vectoriel de $\mathscr{L}(\mathbb{R}^3)$

ii. On a $Id_E \circ f = f = f \circ Id_E$ donc $Id_E \in \mathcal{C}(f)$. On a $f \circ f = f^2 = f \circ f$ donc $f \in \mathcal{C}(f)$. On a $f^2 \circ f = f^3 = f \circ f^2$ donc $f^2 \in \mathcal{C}(f)$.

Comme $\mathscr{C}(f)$ est un sev, on en déduit que toutes les combinaisons linéaires de Id_E , f et f^2 sont dans $\mathscr{C}(f)$ donc $Vect(Id_E, f, f^2) \subset \mathscr{C}(f)$

iii. Soit $g \in \mathcal{C}(f)$. On a $g(\vec{a}) = \alpha \vec{a} + \beta f(\vec{a}) + \gamma f^2(\vec{a})$ soit $g(\vec{a}) = \alpha I d_E(\vec{a}) + \beta f(\vec{a}) + \gamma f^2(\vec{a})$ On applique f à cette égalité : $(f \circ g)(\vec{a}) = \alpha f(\vec{a}) + \beta f^2(\vec{a}) + \gamma f^3(\vec{a})$.

Mais, on a $g \circ f = f \circ g$ d'où $g(f(\vec{a})) = \alpha Id_E(f(\vec{a})) + \beta f(f(\vec{a})) + \gamma f^2(f(\vec{a}))$.

On recommence et on trouve $(f^2 \circ g)(\vec{a}) = \alpha f^2(\vec{a}) + \beta f^3(\vec{a}) + \gamma f^4(\vec{a})$.

qui donne $g(f^2(\vec{a})) = \alpha I d_E((f^2(\vec{a})) + \beta f(f^2(\vec{a})) + \gamma f^2(f^2(\vec{a}))$.

iv. D'après les trois égalités précédentes, en notant $\varphi = \alpha I d_E + \beta f + \gamma f^2$ qui est un endomorphisme de \mathbb{R}^3 , on a $g(\vec{a}) = \varphi(\vec{a})$, $g(f(\vec{a})) = \varphi(f(\vec{a}))$ et $g(f^2(\vec{a})) = \varphi(f^2(\vec{a}))$.

Or il existe un et un seul endomorphisme tel que les images des vecteurs d'une base $\mathscr{B}' = (\vec{a}, f(\vec{a}), f^2(\vec{a}))$ soient fixées, par théorème, , il s'ensuit que $g = \varphi$ soit $g = \alpha I d_E + \beta f + \gamma f^2$.

On vient de démontrer que tout élément de $\mathscr{C}(f)$ est combinaison linéaire de Id_E, f et f^2 , alors $\mathscr{C}(f) \subset Vect(Id_E, f, f^2)$.

Comme on a démontré l'inclusion inverse, on a l'égalité $\mathscr{C}(f) = Vect(Id_E, f, f^2)$

3. (a) Par hypothèse, $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est un cycle de E donc $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est une famille génératrice de E.

E est de dimension finie n, alors, par théorème, une famille génératrice de E a un cardinal supérieur à la dimension de E : $p \ge n$.

(b) On observe que $\forall k \in \mathbb{N}$, $f^p(f^k(\vec{a})) = f^{p+k}(\vec{a}) = f^k(f^p(\vec{a})) = f^k(\vec{a})$.

Pour tout vecteur $\vec{x} \in E$, comme la famille $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ est génératrice, \vec{x} se décompose en combinaison linéaire des vecteurs de cette famille :

$$\vec{x} = \sum_{k=0}^{p-1} \lambda_k f^k(\vec{a}). \text{ Par linéarité, on en déduit que}: f^p(\vec{x}) = \sum_{k=0}^{p-1} \lambda_k f^p(f^k(\vec{a})) = \sum_{k=0}^{p-1} \lambda_k f^k(\vec{a}) = \vec{x}.$$

Donc
$$f^p = Id_E$$

- (c) On a montré $p \ge n$ donc $p \ge 1$. On a $f \circ f^{p-1} = Id_E$ et $f^{p-1} \circ f = Id_E$ alors f est bijective et sa réciproque est $f^{-1} = f^{p-1}$.
- 4. (a) La famille (\vec{a}) est libre car $\vec{a} \neq 0$ donc il existe des entiers naturels i tels que $(\vec{a}, f(\vec{a}), \dots, f^{i-1}(\vec{a}))$ soit libre.

Une famille libre a moins de vecteurs que la dimension de l'espace donc tous ces entiers naturels i sont majorés par n.

Un ensemble d'entiers non vide et majorée a un plus grand élément qu'on note m. Ceci prouve que m existe.

On raisonne par l'absurde :

on suppose que $f^m(\vec{a})$ n'est pas combinaison linéaire des m vecteurs $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$.

Prouvons que la famille $(\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a}), f^m(\vec{a}))$ est libre :

on suppose que $\sum_{i=0}^{m} \lambda_i f^i(\vec{a}) = \overrightarrow{0}$ avec $(\lambda_i)_{i \in [0,m]}$ des scalaires.

Alors, on peut écrire $\lambda_m f^m(\vec{a}) = \sum_{i=0}^{m-1} (-\lambda_i f^i)(\vec{a})$ mais $f^m(\vec{a})$ n'est pas combinaison linéaire des m vecteurs $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$ donc $\lambda_m = 0$.

Il reste $\sum_{i=0}^{m-1} \lambda_i f^i(\vec{a}) = \overrightarrow{0}$ qui implique $\forall i \in [[0, m-1]], \quad \lambda_i = 0$ car la famille $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$ est libre.

On en déduit que la famille $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}), f^m(\vec{a}))$ est libre.

Alors, m+1 serait un entier naturel tel que $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}), f^{(m+1)-1}(\vec{a}))$ est libre ce qui contredit le fait que m est le plus grand entier naturel qui vérifie cette propriété.

Alors, l'hypothèse que nous avons faite est fausse donc

$$f^m(\vec{a})$$
 est combinaison linéaire des m vecteurs $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$

- (b) Montrons par récurrence, que pour tout entier naturel $k \ge m$, le vecteur $f^k(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.
 - *initialisation*: Pour k = m, on a montré à la question précédente que le vecteur $f^k(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.
 - *hérédité*: On suppose la proposition vérifiée au rang k. On peut donc écrire $f^k(\vec{a}) = \sum_{i=0}^{m-1} \lambda_i f^i(\vec{a})$.

D'où:
$$f^{k+1}(\vec{a}) = f(f^k(\vec{a})) = f\left(\sum_{i=0}^{m-1} \lambda_i f^i(\vec{a})\right) = \sum_{i=0}^{m-1} \lambda_i f^{i+1}(\vec{a}) = \sum_{i=1}^{m-1} \lambda_{i-1} f^i(\vec{a}) + \lambda_{m-1} f^m(\vec{a})$$

Mais $f^m(\vec{a})$ est lui-même combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$, ce qui permet d'obtenir que :

le vecteur $f^{k+1}(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.

Donc, on a montré par récurrence que :

 $\forall k \ge m$, le vecteur $f^k(\vec{a})$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.

(c) La famille $(\vec{a}, f(\vec{a}), \dots, f^{p-1}(\vec{a}))$ un cycle de E donc c'est une famille génératrice de E.

Chacun de ses vecteurs : $f^k(\vec{a})$ avec $k \in [[0, p-1]]$ est combinaison linéaire des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.

Donc tous les vecteurs de E sont combinaisons linéaires des m vecteurs $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$.

Ceci prouve que <u>la famille</u> $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$ est génératrice de E.

On sait, par construction, que <u>la famille</u> $\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a})$ est libre.

Il s'ensuit que la famille $(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$ est une base de E.

Et, par suite dim $E = m = \text{Card}(\vec{a}, f(\vec{a}), \dots, f^{m-1}(\vec{a}))$ soit m = n

(d) On peut démontrer que $\mathscr{C}(f)$ est un s.e.v. de $\mathscr{L}(E)$, exactement comme on l'a fait à la question 2.(b).i

D'une part, pour tout entier naturel k, on a $f^k \circ f = f^{k+1} = f \circ f^k$.

Donc les applications $Id_E, f, f^2, \ldots, f^{n-1}$ sont des éléments de $\mathscr{C}(f)$, et, par combinaison linéaire, tout élément de $Vect(Id_E, f, f^2, \ldots, f^{n-1})$ appartient à $\mathscr{C}(f)$.

On a donc l'inclusion suivante $Vect(Id_E, f, f^2, ..., f^{n-1}) \subset \mathscr{C}(f)$.

Réciproquement, soit g une application de $\mathscr{C}(f)$. Le vecteur $g(\vec{a})$ peut s'exprimer dans la base

$$(\vec{a}, f(\vec{a}), \dots, f^{n-1}(\vec{a}))$$
 sous la forme : $g(\vec{a}) = \sum_{i=0}^{n-1} \alpha_i f^i(\vec{a})$.

Montrons par récurrence finie sur $k \in [[0, n-1]]$ que $g(f^k(\vec{a})) = \sum_{i=0}^{n-1} \alpha_i f^i(f^k(\vec{a}))$

• initialisation pour k = 0

C'est notre hypothèse
$$g(f^{0}(\vec{a})) = g(\vec{a}) = \sum_{i=0}^{n-1} \alpha_{i} f^{i}(\vec{a}) = \sum_{i=0}^{n-1} \alpha_{i} f^{i}(f^{0}(\vec{a})).$$

• hérédité Supposons la proposition établie au rang $k \in [[0, n-1[[$ alors, sachant que $g \circ f = f \circ g$:

$$g(f^{k+1}(\vec{a})) = g(f(f^{k}(\vec{a}))) = f\left(g(f^{k}(\vec{a}))\right) = f\left(\sum_{i=0}^{n-1} \alpha_{i} f^{i}(f^{k}(\vec{a}))\right) = \sum_{i=0}^{n-1} \alpha_{i} f\left(f^{i}(f^{k}(\vec{a}))\right)$$

$$= \sum_{i=0}^{n-1} \alpha_{i} f^{i}(f^{k+1}(\vec{a})) \quad \text{Car } f \circ f^{i} \circ f^{k} = f^{i+k+1} = f^{i} \circ f^{k+1}$$

Ce qui prouve la proposition au rang k + 1.

On a donc montré par récurrence sur $k \in [[0, n-1]]$ que $g(f^k(\vec{a})) = \sum_{i=0}^{n-1} \alpha_i f^i(f^k(\vec{a}))$

Les images par l'application g et par l'application $\sum_{i=0}^{n-1} \alpha_i f^i$ sont les mêmes pour tous les vecteurs

de la base $(\vec{a}, f(\vec{a}), \dots, f^{n-1}(\vec{a}))$. Par théorème on a $g = \sum_{i=0}^{n-1} \alpha_i f^i$.

On vient de montrer l'inclusion réciproque $\mathscr{C}(f) \subset \text{Vect}(Id_E, f, f^2, \dots, f^{n-1})$ et on peut conclure à l'égalité :

$$\mathscr{C}(f) = \text{Vect}(Id_E, f, f^2, \dots, f^{n-1})$$