PNV 3321 – MÉTODOS DE OTIMIZAÇÃO APLICADOS A SISTEMAS DE ENGENHARIA

PROBLEMAS DE MODELAGEM - 2024

Questão 13 - Uma empresa de geração de energia elétrica fez uma projeção da demanda por energia para 5 anos futuros, em 10⁶ kWh, a saber: 80, 100, 120, 140, 160. A empresa possui 4 formas de suprir esta demanda, a partir da construção de usinas, tendo os seguintes custos e capacidades:

Usina	Capacidade (10 ⁶ kWh)	Custo de Construção (10 ⁶ \$)	Custo Anual de Operação (10 ⁶ \$)
1	70	20	1,5
2	50	16	0,8
3	60	18	1,3
4	40	14	0,6

- a) Formule um modelo de programação matemática para atender a demanda dos 5 anos a um custo mínimo.
- b) Suponha que no começo do ano 1 todas estão abertas e que a empresa gestora poderá fechar qualquer uma das usinas ao final de um ano ou abrir uma usina fechada no início de um ano, mediante os custos abaixo mostrados. Como ficaria o modelo, para atender a demanda dos 5 anos a um custo mínimo?

Usina	Custo de Re- abrir (10 ⁶ \$)	Custo de fechar (10 ⁶ \$)
1	1,9	1,7
2	1,5	1,2
3	1,6	1,3
4	1,2	1,4

Parte a

Conjuntos e índices

$$I = \{1,2,3,4\} - indice i$$

 $T = \{1,2,3,4,5\} - indices t, g$

Parâmetros

 d_t demanda por energia no ano t

 cap_i capacidade da usina i

 $egin{array}{ll} c_i^{\it C} & ext{custo de construção da usina } i \ c_i^{\it O} & ext{custo de operação da usina } i \end{array}$

Variáveis de decisão

 $x_{it} \in \{0,1\}$ – variável que assume valor 1 se a usina i for aberta no ano t, e 0 em caso contrário.

 $y_{it} \in \{0,1\}$ – variável que assume valor 1 se a usina i estiver em funcionamento no ano t, e 0 em caso contrário.

Restrições

Usinas em operação

$$y_{it} = \sum_{g=1}^{t} x_{ig} \qquad \forall i, \forall t$$

$$y_{i1} = x_{i1} \quad \forall i$$

$$y_{i2} = x_{i1} + x_{i2} \quad \forall i$$

$$y_{i3} = x_{i1} + x_{i2} + x_{i3} \quad \forall i$$

$$y_{i4} = x_{i1} + x_{i2} + x_{i3} + x_{14} \quad \forall i$$

$$y_{i5} = x_{i1} + x_{i2} + x_{i3} + x_{14} + x_{15} \quad \forall i$$

Atendimento da demanda

$$\sum_{i=1}^{4} y_{it} cap_i \ge d_t \quad \forall t$$

Função Objetivo

$$\min C = \sum_{i=1}^{4} \sum_{t=1}^{5} c_i^C x_{it} + c_i^O y_{it}$$

Parte b

Parâmetros adicionais

 c_i^F custo de fechar a usina i c_i^A custo de reabrir a usina i

Variáveis adicionais

 $z_{it} \in \{0,1\}$ – variável que assume valor 1 se a usina i for fechada ao final do ano t, e 0 em caso contrário. $w_{it} \in \{0,1\}$ – variável que assume valor 1 se a usina i for reaberta no início do ano t, e 0 em caso contrário.

Restrições

Todas as usinas estão abertas no ano 1

$$x_{i1} = 1 \quad \forall i$$

Usinas em operação

$$y_{i1} = x_{i1} \quad \forall i$$

$$y_{i2} = y_{i1} - z_{i1} \quad \forall i$$

$$y_{i3} = y_{i2} - z_{i2} + w_{i3} \quad \forall i$$

 $y_{i4} = y_{i3} - z_{i3} + w_{i4} \quad \forall i$
 $y_{i5} = y_{i4} - z_{i4} + w_{i5} \quad \forall i$

$$y_{it} = y_{it-1} - z_{it-1} + w_{it} \quad \forall i, \forall t \text{: 3,4,5}$$

Função Objetivo

$$\min C = \sum_{i=1}^{4} \sum_{t=1}^{5} c_i^O y_{it} + c_i^F z_{it} + c_i^A w_{it}$$