Politechnika Wrocławska	Wrocław, 2016
Wydział Budownictwa Lądowego i Wodnego	
Instalacje sanitarne domu jednore	odzinnego
Wykonał:	Sprawdzająca:
Piotr Kopka	Dr inż. Edyta Dudkiewicz

Opis techniczny

1. Przedmiot opracowania

Przedmiotem opracowania jest projekt instalacji wodociągowo – kanalizacyjnej dla domu jednorodzinnego zlokalizowanego w Bolesławcu.

2. Zakres opracowania

Opracowanie obejmuje:

- obliczenia hydrauliczne instalacji wodociągowej wody ciepłej i zimnej, kanalizacji sanitarnej i deszczowej
- rysunki wykonawcze

3. Założenia projektowe

- a) Ogólna charakterystyka budynku
- rzędna terenu w sąsiedztwie budynku: 117 m n.p.m.
- odległość od granicy działki: 4 m
- zagłębienie piwnicy: 1,84 m
- b) Uzbrojenie terenu
- Sieć wodociągowa
 - materiał: PEHD
 - średnica: 200 mm
 - zagłębienie rurociągu: h= 2,8 m
 - odległość od granicy działki: 1,9 m
- Kanał sanitarny
 - materiał: PCV
 - średnica: 0,315 m
 - spadek: 2,0 ‰
 - zagłębienie rurociągu: h= 3,1 m
 - odległość od granicy działki: 3 m
- Kanał deszczowy
 - materiał: PCV
 - średnica: 0,315 m
 - spadek: 3,0 ‰
 - zagłębienie rurociągu: h= 2,6 m
 - odległość od granicy działki: 1,1 m

4. Opis projektowanego rozwiązania instalacji wodociągowej

- a) Przyłącze wykonane z rury PE f40, ułożone ze spadkiem 2 ‰, połączone z siecią wodociągową za pomocą zasuwy kielichowej
- b) Instalacja wewnętrzna wykonana z rur z polipropylenu Aquatherm fusiotherm PN10 (SDR11), zestaw wodomierzowy umieszczony na wysokości 50 cm nad posadzką piwnicy, w którego skład wchodzą:
 - zawór ze spustem
 - zawór antyskażeniowy Danfoss EA-RV277 ¾"
 - filtr Honeywell F 76S 34"
 - wodomierz Apator JS 4-02 DN20
 - zawór odcinający

Przewody rozprowadzające prowadzone 10 cm pod stropem piwnicy, przewody wody zimnej pod przewodami wody ciepłej. Woda doprowadzana na kondygnację przy pomocy dwóch pionów.

5. Opis projektowanego rozwiązania instalacji kanalizacyjnej

- a) Kanalizacja sanitarno bytowa zaprojektowano 2 piony kanalizacyjne, jeden z nich wyprowadzony ponad dach, drugi do wysokości 50 cm nad poziom posadzki parteru z zaworem odpowietrzającym. Czyszczaki zamontowane 30 cm ponad posadzą piwnicy. Instalacja prowadzona pod podłogą, 3 wpusty podłogowe w piwnicy. Rury wykonane z PCV, kanalizacja prowadzona do studzienek z kręgów betonowych.
- b) Kanalizacja deszczowa wykonana z rur PCV, rynny systemowe Bryza 125, rury spustowe o średnicy 90 mm z czyszczakami u podstaw. Woda prowadzona do studzienek z kręgów betonowych za pomocą rur PCV pod poziomem terenu.

Obliczenia instalacji wodnej

Materialy

Materiał instalacji: rury i kształtki z polipropylenu – Aquatherm fusiotherm PN10 (SDR11)

Materiał przyłącza: PE

1. Określenie zapotrzebowania wody dla budynku

Urządzenie	Liczba [szt.]	$q_{n wz}$ [dm ³ /s]	q _{n cwu} [dm³/s]	$q_{n \text{ og}}$ [dm ³ /s]	p _w [kPa]
Zlew (Z)	1	0,07	0,07	0,14	100
Zlewozmywak (Zz)	1	0,07	0,07	0,14	100
Zmywarka (Zm)	1	0,15	0	0,15	100
Umywalka (U)	2	2x0,07	2x0,07	0,28	100
Płuczka zbiornikowa (Pł)	2	2x0,13	0	0,26	50
Wanna (W)	2	2x0,15	2x0,15	0,6	100
Pralka automatyczna (P)	1	0,25	0	0,25	100
	Σq_n	1,24	0,58	1,82	

2. Dobór średnic przewodów i wyznaczenie strat ciśnienia na odcinkach wody zimnej

Nr odc.	Wyszczególnienie	L	Σq _n	q	D _z x g	٧	R	Δρι
TTT GGC.	vv y 32 c2 c g o i i i c i i c	[m]	[dm³/s]	[dm³/s]	[mm]	[m/s]	[kPa/m]	[kPa]
1	W	7,00	0,15	0,15	20x1,9	0,78	0,587	4,11
2	U	0,15	0,07	0,07	20x1,9	0,34	0,140	0,02
3	1+2	2,30	0,22	0,21	20x1,9	1,02	0,912	2,10
4	Pł	0,40	0,13	0,13	20x1,9	0,63	0,386	0,15
5	4+3	3,20	0,35	0,29	20x1,9	1,41	1,720	5,50
6	W	5,90	0,15	0,15	20x1,9	0,73	0,498	2,94
7	U	0,15	0,07	0,07	20x1,9	0,34	0,140	0,02
8	6+7	2,40	0,22	0,21	20x1,9	1,02	0,912	2,19
9	Pł	0,40	0,13	0,13	20x1,9	0,63	0,386	0,15
10	8+9	0,15	0,35	0,29	20x1,9	1,41	1,720	0,26
11	5+10	1,40	0,7	0,44	25x2,3	1,34	1,078	1,51
12	Zm	4,95	0,15	0,15	20x1,9	0,73	0,498	2,47
13	Zz	0,15	0,07	0,07	20x1,9	0,34	0,140	0,02
14	12+13	3,40	0,22	0,21	20x1,9	1,02	0,912	3,10
15	Р	3,60	0,25	0,25	20x1,9	1,07	0,956	3,44
16	11+15	5,80	0,95	0,53	32x3,0	0,99	0,481	2,79
17	Z	4,65	0,07	0,07	20x1,9	0,34	0,140	0,65
18	CWU	1,80	0,58	0,39	32x3,0	0,73	0,298	0,54
19	17+18	0,50	0,65	0,42	32x3,0	0,79	0,321	0,16
20	14+19	1,45	0,87	0,50	32x3,0	0,94	0,454	0,66
21	16+20	3,35	1,82	0,75	40x3,7	0,9	0,317	1,06
22 (P)	21	8,35	1,82	0,75	PE f40	0,99	0,340	2,84

3. Dobór średnic przewodów i wyznaczenie strat ciśnienia na odcinkach wody ciepłej

Nr odc.	Wyszczególnienie	L [m]	Σq _n [dm³/s]	q [dm³/s]	D₂ x g [mm]	v [m/s]	R [kPa/m]	Δp _l [kPa]
1	W	6,95	0,15	0,15	20x1,9	0,78	0,587	4,08
2	U	0,25	0,07	0,07	20x1,9	0,34	0,140	0,04
3	1+2	5,00	0,22	0,21	20x1,9	1,02	0,912	4,56
4	W	6,00	0,15	0,15	20x1,9	0,78	0,587	3,52
5	U	0,25	0,07	0,07	20x1,9	0,34	0,140	0,04
6	4+5	2,25	0,22	0,21	20x1,9	1,02	0,912	2,05
7	3+6	1,45	0,44	0,33	25x2,3	1,01	0,648	0,94
8	7	7,35	0,44	0,33	32x3,0	0,63	0,204	1,50
9	Zz	3,65	0,07	0,07	20x1,9	0,34	0,140	0,51
10	8+9	0,50	0,51	0,36	32x3,0	0,68	0,222	0,11
11	Z	4,75	0,07	0,07	20x1,9	0,34	0,140	0,67
12	10+11	2,15	0,58	0,39	32x3,0	0,73	0,298	0,64

4. Wyznaczenie najniekorzystniej usytuowanego punktu czerpalnego (npcz) w instalacji wody zimnej i ciepłej oraz wyznaczenie wymaganego ciśnienia wody w miejscu przyłączenia do sieci

Dla wody zimnej najbardziej niekorzystnie usytuowanym punktem czerpalnym jest wanna na poddaszu

Straty linowe

$$\begin{split} \Delta_{pl} &= \Delta_{pl1Z} + \Delta_{pl3Z} + \Delta_{pl5Z} + \Delta_{pl11Z} + \Delta_{pl16Z} + \Delta_{pl21Z} + \Delta_{plP} \\ &= 4.11 + 2.10 + 5.50 + 1.51 + 2.79 + 1.06 + 2.84 = 19.91 \ kPa \end{split}$$

Straty miejscowe

$$\Delta_{pm} = 0.5 * \Delta_{pl} = 0.5 * 19.91 = 9.96$$
 kPa

Straty całkowite

$$\Delta_p = \Delta_{pl} + \Delta_{pm} = 19,91 + 9,96 = 29,87 \ kPa$$

Dla wody ciepłej najbardziej niekorzystnie usytuowanym punktem czerpalnym jest wanna na poddaszu

Straty liniowe

$$\begin{split} \varDelta_{pl} &= \varDelta_{pl1C} + \varDelta_{pl3C} + \varDelta_{pl7C} + \varDelta_{pl8C} + \varDelta_{pl10C} + \varDelta_{pl12C} + \varDelta_{pl18Z} + \varDelta_{pl19Z} + \varDelta_{pl20Z} + \varDelta_{pl21Z} \\ &+ \varDelta_{plP} \\ &= 4,08 + 4,56 + 0,94 + 1,50 + 0,11 + 0,64 + 0,54 + 0,16 + 0,66 + 1,06 + 2,84 \\ &= 17,09 \; kPa \end{split}$$

Straty miejscowe

$$\Delta_{pm} = 0.5 * \Delta_{pl} = 0.5 * 17.09 = 8.55 \text{ kPa}$$

Straty całkowite

$$\Delta_p = \Delta_{pl} + \Delta_{pm} = 17,09 + 8,55 = 25,64 \text{ kPa}$$

5. Dobór wodomierza

Przepływ obliczeniowy na odcinku montażu wodomierza

$$q = 0.75 \frac{dm^3}{s} = 2.7 \frac{m^3}{h}$$

Dobrano wodomierz jednostrumieniowy skrzydełkowy suchobieżny JS 4-02 firmy Apator:

Przepływ ciągły
$$Q_3 = 4 \, \frac{m^3}{h} < q = 2$$
,7 $\frac{m^3}{h}$

Średnia wodomierza $DN = 20 \ mm$

Przepływ obliczeniowy $\varDelta_{p\ wod.}=27\ kPa<50\ kPa$

6. Dobór zaworu antyskażeniowego

Dobrano zawór antyskażeniowy EA-RV277 firmy Danfoss o średnicy $\frac{3''}{4}$:

Strata ciśnienia $\varDelta_{pza}=$ 0,054 bar= 5,4 kPa

Wykres przepływu

7. Dobór filtra

Dobrano filtr F 76S firmy Honeywell o średnicy $\frac{3''}{4}$:

Strata ciśnienia $\varDelta_{pza}=$ 0,31 bar= 31 kPa

Wykres wartości k_{vs}

8. Wyznaczenie wymaganego ciśnienia wody w budynku

Woda zimna

$$p_{wym,wz} = h_g * g + \varDelta_{pc,wz} + p_{wyl} + \varDelta_{pwod} + \varDelta_{pza} + \varDelta_{pf}$$

Woda ciepła

$$p_{wym,cwu} = h_g * g + \Delta_{pc,cwu} + p_{wyl} + \Delta_{pwod} + \Delta_{pza} + \Delta_{pf} + \Delta_{pw,cwu}$$

$$h_g = 7,91 m$$

$$g = 9,81 \frac{m}{s^2}$$

$$\Delta_{pc,wz}=29,87~kPa$$

$$\Delta_{pc,cwu} = 25,64 \, kPa$$

$$p_{wyl} = 100 \, kPa$$

$$\Delta_{pwod} = 27 \ kPa$$

$$\Delta_{pza} = 5.4 \ kPa$$

$$\Delta_{pf} = 31 \, kPa$$

$$\Delta_{pw,cwu} = 8 kPa$$

$$\begin{aligned} p_{wym,wz} &= h_g * g + \Delta_{pc,wz} + p_{wyl} + \Delta_{pwod} + \Delta_{pza} + \Delta_{pf} \\ &= 7.91 * 9.81 + 29.87 + 100 + 27 + 5.4 + 31 = 270.87 \ kPa = 27.61 \ mH_2O \end{aligned}$$

$$\begin{split} p_{wym,cwu} &= h_g * g + \Delta_{pc,cwu} + p_{wyl} + \Delta_{pwod} + \Delta_{pza} + \Delta_{pf} + \Delta_{pw,cwu} \\ &= 7.91 * 9.81 + 25.64 + 100 + 27 + 5.4 + 31 + 8 = 274.64 \; kPa = 28.00 \; mH_2O \end{split}$$

Wymagane ciśnienie w miejscu przyłączenia projektowanej instalacji do sieci

$$p_{wym} = \max \left\{ p_{wym,wz}; p_{wym,cwu} \right\} = \max \{ 27,61; 28,00 \} = 28 \; mH_2O$$

Obliczenia instalacji kanalizacyjnej sanitarnej

Materialy

Materiał instalacji: PCV

1. Dobór średnic podejść i pionów

a) Pion P1

- Podejście pojedyncze

Draubár	Liczba	DU	DN
Przybór	[szt.]	[l/s]	[m]
Wanna (W)	2	2x0,8	0,07
Umywalka (U)	2	2x0,5	0,04
Miska ustępowa (Mu)	2	2x2,5	0,1
	ΣDU	7,6	

- Podejście zbiorowe

W+U –
$$\Sigma DU = 1,3\ l/s$$
, $Q_{ww} = K * \sqrt{\Sigma DU} = 0,5 * \sqrt{1,3} = 0,57\ l/s$
Ponieważ $DU_{max} = 0,8\ l/s$, to $Q_{ww} = 0,8\ l/s$, przyjęto $DN = 0,07\ m$

- Pion P1

$$Q_{ww}=K*\sqrt{\Sigma DU}=0.5*\sqrt{7.6}=1.38\ l/s$$
 Ponieważ $DU_{max}=2.5\ l/s$, to $Q_{ww}=2.5\ l/s$, przyjęto $DN=0.1\ m$

b) Pion P3

- Podejście pojedyncze

Draubár	Liczba	DU	DN
Przybór	[szt.]	[l/s]	[m]
Zlewozmywak (Zz)	1	0,8	0,07
Zmywarka (Zm)	1	0,8	0,07
	ΣDU	1,6	

- Podejście zbiorowe

Zz+Zm –
$$\Sigma DU=1,6\ l/s,\ Q_{ww}=K*\sqrt{\Sigma DU}=0,5*\sqrt{1,6}=0,63\ l/s$$
 Ponieważ $DU_{max}=0,8\ l/s,$ to $Q_{ww}=0,8\ l/s,$ przyjęto $DN=0,07\ m$

- Pion P3

$$Q_{ww}=K*\sqrt{\Sigma DU}=0.5*\sqrt{1.6}=0.63~l/s$$
 Ponieważ $DU_{max}=0.8~l/s$, to $Q_{ww}=0.8~l/s$, przyjęto $DN=0.07~m$

2. Dobór średnic przewodów odpływowych

	ΣDU	DII	\cap	DN	ı	:	D	R_k
Odc.		DU _{max}	Q _{ww}		l	[0/]	R_p	
	[l/s]	[l/s]	[l/s]	[m]	[m]	[%]	[m n.p.m.]	[m n.p.m.]
P3-Tr1	1,6	0,8	0,8	0,07	0,70	2	114,99	114,98
Wp3-Tr2	1,5	1,5	1,5	0,07	2,10	2	115,04	115,00
P-Tr4	0,8	0,8	0,8	0,07	1,35	2	115,18	115,15
P1-Tr4	7,6	2,5	2,5	0,1	0,45	2	115,16	115,15
Tr4-Tr3	8,4	2,5	2,5	0,1	6,90	2	115,15	115,01
Wp2-Tr5	1,5	1,5	1,5	0,07	1,00	2	115,07	115,05
Wp1-Tr6	1,5	1,5	1,5	0,07	1,45	2	115,14	115,11
Z-Tr6	0,8	0,8	0,8	0,07	0,45	2	115,12	115,11
Tr6-Tr5	2,3	1,5	1,5	0,07	2,90	2	115,11	115,05
Tr5-Tr3	3,8	1,5	1,5	0,07	2,15	2	115,05	115,01
Tr3-Tr2	12,2	2,5	2,5	0,1	0,55	2	115,01	115,00
Tr2-Tr1	13,7	2,5	2,5	0,1	1,00	2	115,00	114,98
Tr1-St1	15,3	2,5	2,5	0,1	2,50	2	114,98	114,80
St1-St2	15,3	2,5	2,5	0,15	3,00	15	114,80	113,90

Obliczenia instalacji kanalizacyjnej deszczowej

Materialy

Materiał instalacji: PCV

Dach dwuspadowy powierzchni rzutu $A=115\ m^2$

Natężenie ścieków deszczowych $Q_r = C*A*r = 1*\frac{115}{2}*0,03 = 1,73~l/s$

Dobrano system rynnowy Cellfast Bryza 125

Dobrano średnicę rur spustowych 90 mm

Dobór średnic przewodów odpływowych

Oda	DN L i		R_p	R_k	
Odc.	[m]	[m]	[%]	[m n.p.m.]	[m n.p.m.]
Rs1-Tr7	0,1	9,65	2	115,16	114,97
Rs2-Tr7	0,1	0,90	2	114,99	114,97
Tr7-St3	0,1	1,30	2	114,97	114,80
St3-St4	0,15	1,10	2	114,80	114,40