Preuve cours 1.4

• Si
$$a \equiv b[n]$$
 alors $b \equiv a[n]$.

$$a = b + m = a - k$$

$$b = a - k$$

Danc
$$\begin{cases} a = k_{1}a + b \\ a = b - k_{2}m = > k_{1}m + b - b + k_{2}m \end{cases}$$

Dane
$$\int_{C} \frac{1}{2} \frac$$

an ieta

• Si $a \equiv b[n]$ et $b \equiv c[n]$ alors $a \equiv c[n]$.

Domi
$$a = K_1 m + (K_2 m + c)$$

$$a = m(K_1 + K_2) + c$$

Si $a \equiv c[n]$ et $b \equiv d[n]$ alors $a + b \equiv c + d[n]$.

Si Q = (
$$[m]$$
 => $\exists K_1 \in \mathbb{Z} \mid Q = K_2 m + c \bigcirc$
Si $l_1 = d[m] = 7 \exists K_2 \in \mathbb{Z} \mid l_2 = K_2 m + d \bigcirc$

Propriété Soient a et b des entiers non nuls, les quotients de a et b par pged(a, b) sont des nombres premiers entre eux. Théorème de Bezont Soient a et b des entiers positifs non mils, alors il existe des entiers u et v tels que pged(a, b) = a u + b v. a et b ABNT Marient entre eux si P 6 (D (a, b) = 1 a pada (b) a b pada (a) sont fernt eux 1 2 , 15 , pg (d(12, 15) = 3) = 7 12 /3 = 9 , 15 /3 = 5 (4 t 5 nont 1er entre eux! al m da marié (de , il) ant mouvé qua : Siv (o / Ab20 (a, l)) 1 div (l/ Pl66 (a, l)) : Deterrant marient out d'obrord div (a / Ab20 (a, l)) :	(\int_{Ω}	Q٨	d	1												
Soient a et b des entiers non nuls, les quotients de a et b par $pgcd(a,b)$ sont des nombres premiers entre cux. Théorème de Bezout Soient a et b des entiers positifs non nuls, alors il existe des entiers u et v tels que $pgcd(a,b) = a u + b v$. A																	
Soient a et b des entiers non nuls, les quotients de a et b par $pgcd(a,b)$ sont des nombres premiers entre cux. Théorème de Bezout Soient a et b des entiers positifs non nuls, alors il existe des entiers u et v tels que $pgcd(a,b) = a u + b v$. A																	
Théorème de Bezout Soient a et b des entiers positifs non nuls, alors il existe des entiers u et v tels que $pgcd(a,b) = a$ $u+b$ v . a d																	
Soient a et b des entiers positifs non nuls, alors il existe des entiers u et v tels que pged $(a,b) = a$ $v + b$ v . a et b - Mant memin entre eux si a / pada, b) et b - / pada (a, b) sont 1 entre ex 12 , 15 , pa (d(12,15) = 3 =7 12 /3 = 9, 15 /3 = 5 9 ct 5 nont 1 en recent eux! of in da moné ide , il faut mouvé que: 5 iv $(a / b / b / b / b / b / b / b / b / b / $																	
a et l- nont premier entre eux ssi P66 D (a, L) = 1 a/pod(a, L) et l-/god(a, L) vont L'entreue 12, 15, pacd(12, 15) = 3 => 12/3 = 9, 15/3 = 5 9ct 5 nont 1en entre eux! of in de prové de , il fant prouvé que: bir (o/Pb20 (a, l)) 1) dir (l/Pb60 (a, l)) = £13																	
P6(D(a, l) = 1 a/pad(a, l) et b/pad(a, l) sont l'entier 12, 15, pad(12, 15) = 3 => 12/3 = 4, 15/3 = 5 (1 t 5 ront 1en entre eax! of in de provi de, il faut prouvé que: bir (0/Pb2D(a, l)) dir (b/Pb2D(a, l)) = £13	/ =	Soie	ent a et	b des e	entiers j	positifs	s non i	nuls, a	lors 11 e	xiste de	es entie	$\operatorname{rs} u \operatorname{et}$	v tels c	lue pgc	d(a,b)	= a u +	- b v.
P6(D(a, l) = 1 a/pad(a, l) et b/pad(a, l) sont l'entier 12, 15, pad(12, 15) = 3 => 12/3 = 4, 15/3 = 5 (1 t 5 ront 1en entre eax! of in de provi de, il faut prouvé que: bir (0/Pb2D(a, l)) dir (b/Pb2D(a, l)) = £13																	
P6(D(a, l) = 1 a/pad(a, l) et b/pad(a, l) sont l'entier 12, 15, pad(12, 15) = 3 => 12/3 = 4, 15/3 = 5 (1 t 5 ront 1en entre eax! of in de provi de, il faut prouvé que: bir (0/Pb2D(a, l)) dir (b/Pb2D(a, l)) = £13		\cap	0		1 an		11 U l	im	00 N	tro		0.11	XX				
12, 15, pg cd(12, 15) = 3 =7 12/3 = 4, 15/3 = 5 (9ct 5 nont 1en entre eux! of in do prové clo, il Pout prouvé que: Sir (0/4620(0, l)) 1 div (b/9600(0, e)) = £13		صر ا	//	<i>N</i>	/(00.	07		S	003	0, ,	~	(Mr	,,,				
12, 15, pg cd(12, 15) = 3 =7 12/3 = 4, 15/3 = 5 (9ct 5 nont 1en entre eux! of in do prové clo, il Pout prouvé que: Sir (0/4620(0, l)) 1 div (b/9600(0, e)) = £13	\setminus	,	ロレ) دا) (OL)	, X- J		7									
12, 15, pg cd(12, 15) = 3 =7 12/3 = 4, 15/3 = 5 (9ct 5 nont 1en entre eux! of in do prové clo, il Pout prouvé que: Sir (0/4620(0, l)) 1 div (b/9600(0, e)) = £13		f		,		,	0 \	,	ſ	/	ı	<u></u>	\cap			000	1
=7 12/3 = 9, 15/3 = 5 9ct 5 rout 1en entre eux! of in de prové de , il Pout prouvé que: bir (0/Pb2D60, l))) dir (l/Pb2D60, l) = £13			Q	1/1	a co	la o	\-\ \-	\mathcal{Q}	()	5 /)	ng cd	lar) No	at i	L en	rtieve
=7 12/3 = 9, 15/3 = 5 9ct 5 rout 1en entre eux! of in de prové de , il Pout prouvé que: bir (0/Pb2D60, l))) dir (l/Pb2D60, l) = £13				\	\bigcirc						U						
=7 12/3 = 9, 15/3 = 5 9ct 5 rout 1en entre eux! of in de prové de , il Pout prouvé que: bir (0/Pb2D60, l))) dir (l/Pb2D60, l) = £13																	
=7 12/3 = 9, 15/3 = 5 9ct 5 rout 1en entre eux! of in de prové de , il Pout prouvé que: bir (0/Pb2D60, l))) dir (l/Pb2D60, l) = £13	(ノ	\sim	, -	15		~ a	رل ,	149	15	() .	- ਪ੍					
of in de prosé de , il Pout prouvé que: di 1 (0/P62D(0, b)) 1) di 1 (b/P660(a, b)) = £13			5	<i></i>		/	116		_ d	, ۱–	, , _	ر_,_					
of in de prosé de , il Pout prouvé que: di 1 (0/P62D(0, b)) 1) di 1 (b/P660(a, b)) = £13								. —	(0				<i>(</i>				20
d'in de prosué cele, il Pout prosué que: d'in (0/P62D (0, b))) d'in (b/P660(2, c)) = £13	7	-7	1	<u>上</u> /	13	= 4		15	لو`` /	_ =	り		Λ				01
													ent	- re	ew	_ \	
		\sqrt{Q}	. ~		00	٨٨١	o ⁽ /		0	$\left(\right)_{a}$	A.	MAG)107/6				
			/	90		NOW	L 0	11	ν. 1 Λ	\triangleleft	/	7/1	م ر	- 6	سو لرز	·	12
Determinant tout d'abord div (a/PbZD (a,b)):	_(ें ए	v C	Q [166	100	a /b))(1) d	iv C	61	196	, U (ل) ہو	.]]	= 2	T.
Determinant out d'abord d'iv (a/P62D (a,b)):														`			
		كو	eva	y we	m	T Que	+ 6	s'al	919	\Diamond	ίγ	(a/	Pb	2D	La 1	(\mathcal{L})	