The Hitchhiker's Guide to Dynamic Ion-Solvent Clustering

(...in Differential Mobility Spectrometry)

Christian Ieritano, W. Scott Hopkins

CSC 2024 (Winnipeg)

June 3, 2024

What is differential mobility spectrometry (DMS)?

Differential mobility spectrometry (DMS) harnesses the non-linear dependence of an ion's mobility to separate analytes.

At high electric field strengths, an ion's mobility changes non-linearly with the applied field

$$\alpha(E) = \frac{K(E) - K(0)}{K(0)} \qquad K = \frac{3}{16} \sqrt{\frac{2\pi}{\mu k_B T}} \cdot \frac{q(1+\alpha)}{N \cdot \Omega(T)}$$

$$T_{eff} = T_{bath} + \frac{M}{3k_b} (KE)^2 (1 + \beta)$$

Analyst, 2019, **144**, 1660 - 1670. *Analyst*, 2023, **148**, 3257-3273.

Example: predicting the DMS separation of prototropic isomers in a pure N_2 environment via MobCal-MPI

Measured DMS ionogram

For a specific SV, every analyte will elute from the DMS cell at a characteristic CV related to its alpha function

How does DMS relate to dynamic ion solvation?

Differential mobility spectrometry (DMS) harnesses the non-linear dependence of an ion's mobility to separate analytes.

Doping the carrier gas with solvent (1.5 mol%) induces dynamic solvation/desolvation cycles

Changes to an ion's mobility upon microsolvation can be modeled

Bare ion
$$1 H_2 O$$
 $2 H_2 O$

The nature of the SV waveform ensures **dynamic** ion-solvent interactions during DMS transit

$$\Delta G_{ass} = (n \cdot G_{H_2O}) + G_{[M+H]^+} - G_{[M+H+n(H_2O)]}$$

What's so interesting about dynamic ion solvation in DMS?

1. Modifiers enhance separations of complex mixtures

Simultaneous DMS-MS measurements of 60 compounds

2. Understanding dynamic ion-solvent interactions enables predictions of DMS behaviour

From first-principles modelling

J. Am. Soc. Mass Spectrom. 2022, **33**, 535 – 547.

Phys. Chem. Chem. Phys. 2022, **24**, 20594 – 20615.

Analyst. 2023, **148**, 3257 – 3273.

J. Am. Soc. Mass Spectrom. 2023, **34**, 1417 – 1427.

$$\Delta CV_{avg} = -0.4 \text{ V}$$
 at $SV = 167 \text{ Td}$

Via machine learning (Random Forest Regression)

Analyst, 2021, **146**, 4737 - 4743. *Anal. Chem.*, 2021, **93**, 8937 - 8944.

Phys. Chem. Chem. Phys. 2022, **24**, 20594 – 20615.

 $|\Delta CV_{avg}|$ = 2.2 V at SV = 167 Td for 300+ compounds!

What's so interesting about dynamic ion solvation in DMS?

3. Correlating DMS behaviour with solution-phase properties intrinsic to the drug-design process

Hypothesis: Dynamic microsolvation processes during an ion's transit in the DMS cell mimics its solution-phase primary solvation shell.

Linear trends observed within identical compound classes for several properties but not amongst different compound classes

Machine learning enables general predictions (5-fold cross validation)

Random forest models trained using only DMS-MS data (SV/CV pairs) acquired in a MeOH modified environment using only nanograms of material.

Phys. Chem. Chem. Phys. 2022, **24**, 20594 – 20615. *Anal. Chem.* 2023, **95**, 10309 – 10321.

"Ion microsolvation" is more than a <u>buzz</u> word

4. Charge manipulation

https://phys.org/news/2015-09-brazilianwasp-venom-cancer-cells.html

Polybia-MP1

Lys Residues & N-terminus (cationic)

Addition of solvent vapour to the DMS cell alters the charge state distribution of MP1

The shift in charge state distribution is likely mediated by microsolvation

Solvation/desolvation processes can induce proton transfer

 $[PrNH₂ + H + (MeOH)₈]^+$

 $[(MeOH)_8 + H]^+$

 $[(MeOH)_8]$

J. Am. Soc. Mass Spectrom., 2021, 32, 956-968

Microsolvation facilitates ion-solvent proton transfer

Gas-phase basicity ordering: ACE > IPA > MeCN > EtOH > MeOH > H₂O

No charge transfer with aprotic modifiers because of inability to form H-bonded networks with high GPB!

Instead, retention of high charge states that otherwise fragment during DMS-transit

The +3 ion re-emerges at high bath gas temperatures and high SV fields

Speaking of proton transfers ...

5. Harnessing the separation power of dynamic microsolvation and HDX

Humulone: A brewer's best friend

Tautomer resolution requires detection as silver adduct (*i.e.*, $[M + Ag]^+$ and 1.5 mol% of IPA doped into the curtain gas.

HDX reagent (e.g., D₂O) is bubbled into the DR gas line, but the excess IPA would destroy any HDX reagent by back-exchange

Retro-HDX: Deuterate pre-ESI, then watch back-exchange with protic modifier

HDX events happen only at points of solvent accretion (i.e., the charge site!)

Speaking of proton transfers ...

5. Harnessing the separation power of dynamic microsolvation and HDX

Humulone: A brewer's best friend

Tautomer resolution requires detection as silver adduct (*i.e.*, $[M + Ag]^+$ and 1.5 mol% of IPA doped into the curtain gas.

HDX reagent (e.g., D₂O) is bubbled into the DR gas line, but the excess IPA would destroy any HDX reagent by back-exchange

UVPD: DMS-select each tautomer, then interrogate w/ tunable output of the YAG-pumped OPO

FACULTY

OF SCIENCE

WaterFEL – A Canadian Free Electron Laser (FEL) Facility

What is an FEL?

Linear accelerator-based light sources provide **tunable**, **high-power**, **narrow bandwidth IR light from 20 – 4000 cm**⁻¹

2023 CFI award for \$10M to construct a Canadian FEL at the University of Waterloo (UW)

With matching funding from Ontario and additional contributions from UW and other institutions

$\bar{\nu}$ / cm ⁻¹	Energy per pulse (mJ; 10 Hz)	Bandwidth ($\Delta \bar{\nu} / \text{cm}^{-1}$)
3900*	20 - 30*	± 8.3*
3000	50	± 6.75
2000	60	±5.625
1000	75	±2.25
500	50	±1.125
100	>100	±0.225

*not shown; hot off the presses at FHI!

WaterFEL – A Canadian Free Electron Laser (FEL) Facility

What is an FEL?

Linear accelerator-based light sources provide **tunable**, **high-power**, **narrow bandwidth IR light from 20 – 4000 cm⁻¹**

2023 CFI award for \$10M to construct a Canadian FEL at the University of Waterloo (UW)

With matching funding from Ontario and additional contributions from UW and other institutions

WaterFEL instrumentation

Facility open to the global community, with beam-time being awarded based on merit of proposals

First user proposals for early 2029

WaterFEL – Some of the many applications

Site-specific information about biological modifications

...combined with bottom-up approaches enable sequencing w/ unambiguous PTM assignment

Unambiguous distinction of "indistinguishable" isobars

3,3,2,2-tetrafluoropropionic acid

Arthur Lee

Combine IRMPD and AI for molecular fingerprinting

Tuesday 4:00 – 4:20pm (IN, MT, PTC) Modern Spectroscopic Approaches for Deciphering Complex Phenomena

Acknowledgements

The Brain Trust

Prof. W. Scott Hopkins

Dr. Alexander Haack

Hopkins Group

Dr. Neville Coughlan
Dr. Nour Mashmoushi
Dr. Joshua Featherstone
Dr. Jeff Crouse
Dr. Dan Rickert
Dr. Steve Walker
Justine Bissonnette
Chris Ryan
Cailum Steinstra
Patrick Thomas
Arthur Lee

SCIEX Gurus

Dr. J. C. Yves Le Blanc Dr. Brad Schneider Dr. Mircea Guna

Academic friends

Dr. John Janiszewski (NIH)
Dr. Gilles Goetz (Pfizer)
Dr. Larry Campbell
(Bedrock)

For more information on our work, see:

The Hitchhiker's Guide to Dynamic Ion-Solvent Clustering

Phys. Chem. Chem. Phys, 2022, 24, 20594-20615.

Resources and Funding

Digital Research Alliance of Canada

Alliance de recherche numérique du Canada

