Adversarial examples in Deep Neural Networks

Luiz Gustavo Hafemann Le Thanh Nguyen-Meidine

Agenda

Introduction

Attacks and Defenses

NIPS 2017 adversarial attacks competition

Demo

Discussion

Introduction

Adversarial examples:

Examples that are similar to examples in the true distribution, but that fool a classifier

* Note: most examples in this presentation are for images, but the problem applies to other domains, such as speech

Examples

https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/robust-adversarial-examples/iphone.mp4

http://www.labsix.org/media/2017/10/31/video.mp4

Introduction

Adversarial examples pose a security concern for machine learning models

- An attack created to fool one network also fools other networks. Szegedy et al. (2013)
- Attacks also work in the physical word. Kurakin et al (2016), Athalye et al (2017)
- For Deep Neural networks, it is very easy to generate adversarial examples but this issue affects other ML classifiers.

Introduction

Adversarial examples pose a security concern for machine learning models

- Although many defense strategies have been proposed, they all fail against strong attacks, at least in the white-box scenario.
- Even detecting if an image is an adversarial is hard. (Carlini and Wagner, 2017)

Definitions

An example $ilde{X}$ is said adversarial if:

• It is close to a sample in the true distribution:

$$D(X, \tilde{X}) \le \epsilon$$

It is misclassified

$$\operatorname{argmax} P(\mathbf{y}|\tilde{X}) \neq y_{\text{true}}$$

• It belongs to the input domain. E.g. for images:

$$0 \le \tilde{X} \le 255$$

Notion of "similarity"

To measure the similarity between samples:

- A good measure between samples is still an active area or research. Commonly, researchers use:
- L_2 norm (euclidean distance):

$$\left\| \tilde{X} - X \right\|_2$$

• L_infinity norm (maximum change to any pixel in the image):

$$\left\| \tilde{X} - X \right\|_{\infty} = \max_{ij} \left| \tilde{X}_{ij} - X_{ij} \right|$$

Threat model

We need to consider the attacker's:

- Capability
- Goal
- Knowledge

Types of attack

According to the attacker's goal:

Non-targeted attacks: attacker tries to fool a classifier to get any incorrect clas

$$\operatorname{argmax} P(\mathbf{y}|\tilde{X}) \neq y_{\text{true}}$$

Targeted attacks: attacker tries to fool a classifier to predict a particular class

$$\operatorname{argmax} P(\mathbf{y}|\tilde{X}) = y_{\text{target}}$$

Threat model

According to the attacker's knowledge:

- White-box attacks: attacker has full knowledge of the classifier (e.g. weights for a neural network)
- **Black-box attacks**: attacker does not have access to the target classifier. In this case, the attacker trains its own classifier (using data from the same distribution), and creates attacks based on this version.

Recap

Adversary wants to fool the classifier

- ullet By crafting a noise δ such that $X+\delta$ is misclassified
- ullet With a small δ
- With full knowledge (white-box) or not (black-box)

Attacks

Box constrained optimization (Szegedy et al):

Minimize $\|\delta\|_2$ subject to $\operatorname{argmax}_j P(y_j|X+\delta) \neq y_i$

$$0 \le X + \delta \le 255$$

> Generates adversarial images that are *very* close to the original samples

Attacks

Examples

Attacks

Fast gradient sign (Goodfellow et al):

This article shows that adversarial examples occupy halfspaces of the input space, and not small pockets.

They also show that the output of the network has a very (piecewise)-linear nature:

$$\tilde{X} = X + \epsilon \operatorname{sign}(\nabla J(x, y))$$

Failed defenses

"It's common to say that obviously some technique will fix adversarial examples, and then just assume it will work without testing it" - Ian Goodfellow

What does not solve the problem:

- Ensembles
- Voting after multiple saccades (e.g. crops of the image)
- Denoising with an autoencoder

Defenses that somewhat work

Adversarial training (goodfellow et al, 2015)

Train the network with both "clean" and "adversarial" examples:

$$J(\tilde{\theta,X}) = \alpha J(\theta,X) + (1-\alpha)J(\theta,X + \epsilon \mathrm{sign}(\nabla J(\theta,X))$$
 Original Loss of misclassifying an adversarial example

Defenses that somewhat work

Ensemble adversarial training

Adversarial training has a problem that it uses the model under training to generate the adversarial samples.

For ensemble training, use multiple networks to generate the adversarial samples:

$$\tilde{J}(\theta, X) = \alpha J(\theta, X) + (1 - \alpha)J(\theta, x_{\text{adv}})$$

Where x_{adv} is generated (in each step) by a different model.

- 3 competitions: targeted, non-targeted attacks, defenses
- All attack submissions are run against all defense submissions (in three "development rounds" plus a final round)
- Time constraints (500s to process 100 images, 1 GPU available). No internet access
- Attack constraints: maximum $\|\delta\|_{\infty}$

Our submission

- Re-formulate the optimization problem to constraint on δ , instead of minimizing it. Minimize $P(y_{true}|\tilde{X})$ instead
- Generate attacks using box-constrained optimization
- Attack an ensemble of models

Non-targeted attack

Minimize
$$\log P(y_{\rm true}|X+\delta)$$

subject to $\|\delta\|_{\infty} \le \epsilon$
 $0 \le X + \delta \le 255$

Non-targeted attack

Minimize
$$\log P(y_{\text{true}}|X+\delta)$$
 subject to
$$\max(0-X,-\epsilon) \leq \delta \leq \min(255-X,\epsilon)$$

Targeted attack

Minimize
$$-\log P(y_{\text{target}}|X+\delta)$$
 subject to
$$\max(0-X,-\epsilon) \le \delta \le \min(255-X,\epsilon)$$

- Attacked an ensemble of networks:
 - Inception v3, v4
 - Adversary trained inception_v3, inception_resnet_v2
 - Ensemble Adversary trained inception resnet v2
 - DenseNet
- Instead of minimizing log probabilities, minimize the logits (network output before softmax)

1st round:

- 4th place on non-targeted attacks (44 teams)
- 6th place on targeted attacks (27 teams)

Final round:

- 12th place on non-targeted attacks (91 teams)
- 13th place on targeted attacks (66 teams)

Some thoughts:

It is a game:

attacker needs to model "what defenses will be in place" **defense** needs to model "what knowledge and capability does the attacker have."

Defending is hard!

We tried several ideas (ensembles, input transformations such as random crops, rotations) and at best we still got 30% of error in white-box attacks

Demo

Code available in

https://github.com/luizgh/adversarial_examples

References

- C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, arXiv:1312.6199 [cs]ArXiv: 1312.6199.
- A. Kurakin, I. Goodfellow, S. Bengio, Adversarial Machine Learning at Scale, arXiv:1611.01236 [cs,stat]ArXiv: 1611.01236.
- A. Athalye, L. Engstrom, A. Ilyas, K. Kwok. "Synthesizing robust adversarial examples." arXiv preprint arXiv:1707.07397 (2017).
- N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: Security and Privacy (SP), 2017 IEEE Symposium on, IEEE, 2017, pp. 39-57
- F. Tramr, A. Kurakin, N. Papernot, D. Boneh, P. McDaniel, Ensemble Adversarial Training: Attacks and Defenses, arXiv:1705.07204 [cs, stat]ArXiv: 1705.07204.
- I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and Harnessing Adversarial Examples, arXiv:1412.6572 [cs, stat]ArXiv: 1412.6572.
- I. J. Goodfellow, "Adversarial examples" talk in the Deep Learning Summer School 2015, Montreal. http://www.iro.umontreal.ca/~memisevr/dlss2015/goodfellow adv.pdf