

±2G/±4G/±8G/±16G三轴微机械数字加速度计

描述

SC7660 是一款高精度且可靠性更高的数字三轴加速度传感器芯片,内置功能更丰富,功耗更低,体积更小,测量更精确。本电路的机械传感单元经过优化,可靠性和稳定性大幅提升。

芯片通过 I²C 接口与 MCU 通信,加速度测量数据以中断方式或查询方式获取。INT 中断管脚提供多种内部自动检测的中断信号,适应多种运动检测场合,中断源包括 6D/4D 方向检测中断信号、自由落体检测中断信号、睡眠和唤醒检测中断信号、单击和双击检测中断信号。芯片内置高精度校准模块,对传感器的失调误差和增益误差进行精确补偿。±2G、±4G、±8G 和±16G 四种可调整的全量程测量范围,灵活测量外部加速度,输出数据率1Hz和400Hz间可选。

芯片內置自测试功能允许客户系统测试时检测系统功能,省去复杂的转台测试。芯片內置产品倾斜校准功能,对贴片和板卡安装导致的倾斜进行补偿,不占系统资源,系统文件升级不影响传感器参数。

主要特点

- ◆ 宽电压范围 1.71V-3.6V
- ◆ 1.8V 兼容数字 IO □
- ◆ 低功耗模式下电源电流低至 2µA
- ◆ ±2G/±4G/±8G/±16G 动态全量程范围
- ◆ I2C 数字输出接口
- ◆ 6D/4D 方向检测
- 自由落体检测
- ◆ 单击双击检测及运动检测
- ◆ 可编程中断生成电路
- ◆ 内嵌自测试功能
- ◆ 内嵌 FIFO
- 10000g 高 G 抗击能力

应用

- ◆ 手机平板
- ◆ 室内导航
- ◆ 图像旋转
- ◆ 运动激活用户接口
- ◆ 游戏

产品规格分类

产品名称	封装形式	打印名称	材料	包装形式
SC7660TR	LGA-10-3x3x1.0	SC7660	无铅	编带

杭州士兰微电子股份有限公司 http://www.silan.com.cn

内部框图

极限参数

参数	符号	测试条件	最小值	最大值	单位
电源电压 1	Vcc	电路不损坏	-0.3	3.6	V
电源电压 2	V _P	电路不损坏	-0.3	3.6	V
任一控制管脚	V _{in}	电路不损坏	-0.3	VDDIO+0.3	V
工作温度	T _{OPR}	电路不损坏	-40	+85	°C
贮存温度	T _{STG}	电路不损坏	-55	+150	°C

机械参数(VDD=2.5V, T_A=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位	
	F _{S0}	FS=0		±2.0			
全量程测量范围	F _{S1}	FS=1		±4.0		0	
王里住侧里池田	F _{S2}	FS=2		±8.0		g	
	F _{S3}	FS=3		±16.0			
	So0	FS=0 (HR mode)		1			
 灵敏度	So1	FS=1 (HR mode)		2		ma/digit	
火蚁反	So2	FS=2 (HR mode)		4		mg/digit	
	So3	FS=3 (HR mode)		8			
温变灵敏度	T _{CSO}	FS=0		±0.01		%/°C	

参 数	符号	测试条件	最小值	典型值	最大值	单位
零漂	Ty _{Off0}	FS=0		±40		mg
温漂	TC _{Off}	与 25℃ 的最大偏差	-	±0.5	-	mg/°C
	V_{st1}	FS=0, X 轴	1	276	1	LSb
自测输出	V _{st2}	FS=0, Y 轴		276		LSb
	V _{st3}	FS=0, Z 轴		984		LSb
系统带宽	BW			ODR/2	+	Hz
工作温度	T _{OPR}		-40		+85	°C

注意: 电路 2.5V 出厂校准。电路实际工作电压 1.71V-3.6V

电气参数(VDD=2.5V, T_A=25°C)

参 数	符号	测试条件	最小值	典型值	最大值	单位
供电电压	V_{DD}		1.71	2.5	3.6	V
IO 供电电压	V_{DDIO}		1.71		V _{DD} +0.1	V
供电电流	I _{DD}	T _A =25°C, ODR=100Hz		20		uA
低功耗电流	I _{DDLP}	T _A =25°C, ODR=100Hz		10		uA
掉电电流	I_{DDPdn}	T _A =25°C		0.5		uA
数字高电平输入电压	V_{IH}	-	0.8* V _{DDIO}			V
数字低电平输入电压	V_{IL}				0.2* V _{DDIO}	V
高电平输出电压	V_{OH}		0.9* V _{DDIO}			V
低电平输出电压	V _{OL}				0.1* V _{DDIO}	V
	ODR0	ODR= 1Hz		1		
	ODR1	ODR= 10Hz		10		
	ODR2	ODR= 25Hz		25		
输出数据率	ODR3	ODR= 50Hz		50		Hz
	ODR4	ODR= 100Hz		100		
	ODR5	ODR= 200Hz		200		
	ODR6	ODR= 400Hz		400		
开启时间	T_{on}	ODR= 100Hz		1		ms
工作温度	T _{opr}		-40		+85	°C

I²C 控制接口参数(=2.5V, TA=25°C)

参数	<i>55</i> □	I ² C 标准模式		I ² C 快遊	单位		
少 数	符 号	MIN MAX		MIN	MAX	半江	
SCL 时钟频率	f _(SCL)	0	100	0	400	KHz	
SCL 时钟低时间	$t_{w(\text{SCLL})}$	4.7		1.3			
SCL 时钟高时间	t _{w(SCLH)}	4.0		0.6		us	
SDA 建立时间	t _{su(SDA)}	250		100		ns	
SDA 数据保持时间	t _{h(SDA)} 0.01		3.45	0.01	0.9	us	
SDA/SCL 上升沿时间	t _{r(SDA)}		1000	20+0.1Cb	300	ns	

版本号:0.1

参数	符号	I ² C 标准模式		I ² C 快追	₩ /÷	
少 奴	1寸 写	MIN	MAX	MIN	MAX	单位
	$t_{r(SCL)}$					
SDA/SCL 下降沿时间	$t_{f(SDA)}$ $t_{f(SCL)}$		300	20+0.1Cb	300	ns
START 条件保持时间	t _{h(ST)}	4		0.6		
重复 START 条件建立时间	t _{su(SR)}	4.7		0.6		us
STOP 条件建立时间	t _{su(SP)}	4		0.6	-	
总线空闲时间	t _{w(SP:SR)}	4.7		1.3		

I²C 从设备时序图

管脚排列图

管脚描述

管脚号	符号	I/O	描述
1	NC	NC	NC

版本号:0.1

管脚号	符号	I/O	描述
2	NC	NC	NC
3	Vdd	Р	电源供电
4	GND	Р	OV供电
5	INT	0	用户编程中断输出
6	SCL	0	IIC串行时钟(SCL)
7	SDA	Ю	IIC串行数据(SDA)
8	GND	Р	OV供电
9	Vdd_IO	Р	IO管脚电源
10	NC	NC	NC

注: I=输入, O=输出, OC=集电极开路输出, P=被动外部器件, S=电源供电

功能描述

1 详细特点

SC7660 是一款极小体积、超低功耗、数字输出的 LGA 封装的 3 轴线性加速度计。完整的电路芯片包括一个机械传感单元和一个集成电路接口。集成电路接口,负责与机械传感单元接口,读取其传感器信息,并通过 I²C 接口提供到外部 MCU。

2 机械传感单元

机械传感单元,由悬吊的质量块和硅框架组成。框架是质量块的固定端,悬吊质量块通过锚点固定在框架上。悬吊质量块可在三维空间中自由移动。另外,在机械传感单元上做盖帽保护,防止封装注塑时对机械部分造成损伤。当传感器加速时,质量块会相对固定部分产生位移,从而引起差分电容不平衡变化。集成电路接口部分通过电荷积分电路对加在差分电容上的电压脉冲进行积分,以积分结果衡量差分电容大小,进而衡量位移量的大小,最终测量出对应的加速度值。

稳定状态下电容结构的电容值大概是 pF级,当有加速度时,电容的最大改变量是 fF级。

3 IC 接口

电路部分的完整测量链路由电容放大器和 ADC 组成。低噪声电容放大器将机械传感单元的不平衡电容转换成模拟电压,再通过 ADC 转换成数字信号。加速度值数据可通过 I²C 接口访问,特别适合与微处理器直接接口。电路本身还设计有 RDY 信号,用以表示新的测量数据已经就绪,简化数据系统中的数据同步。另外,电路还设计了"唤醒"和"自由落体"检测功能,根据用户对寄存器的配置编程加速度触发事件来生成中断信号。

4 工厂校准补偿

电路部分设计有灵敏度(So)和零漂(Ty_{off})校准补偿功能。

校准补偿的修调值保存在电路内部的 NVM 中。当电路上电后,修调值被调入内部寄存器中以供正常操作补偿用。 该功能使用户无需更深层次的校准就可以使用电路。

5 6D/4D 检测

当检测到传感器处在设定的姿态产生中断,或者进入设定的姿态产生中断。传感器在三维空间的 6 个状态均可独立 检测。详细设置见应用说明文档。

6 自由落体检测

当检测到传感器处在自由落体状态产生中断。自由落体时,传感器质量块处于失重状态,三轴理论输出为零,传感器内置检测模块检测大三轴输出小于设定阈值则驱动中断信号产生和相应状态寄存器置位。

7 睡眠和唤醒检测

睡眠检测,传感器内置模块对输出值进行检测,当传感器输出值在某段时间内均无变化且输出值在设置阈值范围内,则判定传感器无动作,即置位相应状态信号和产生相应中断信号,通知 MCU 设置系统和传感器进入更低功耗的工作状态。详细设置见应用说明文档。

唤醒检测,传感器内置模块对输出值进行检测,当传感器输出值超过设定阈值且达到设置时间范围,则判定传感器有动作,即置位相应状态信号和产生相应中断信号,通知 MCU 设置系统和传感器进入正常工作状态。详细设置见应用说明文档。

8 单击和双击检测

传感器根据设定的阈值和时间判断输出值是否满足单击和双击条件,置位相应状态信号和产生相应中断信号。详细 设置见应用说明文档。

9 特定词汇说明

9.1 灵敏度

灵敏度是描述传感器增益的物理量,在此可用±1G 加速度输入时能准确解析的一半最大数字输出表示。实际测试中,通过重力加速度来测量。将电路需要测量的轴正对地心,记录电路的输出值 A1,再在这个轴线的任意平面上旋转180°,将该轴的另一端对准地心,记录电路的输出值 A2。再计算 A2-A1 的绝对值,绝对值除以 2 的结果就是该轴的灵敏度,该值随温度和时间的变化量很小。另外一个参数"灵敏度容差",描述了大批量电路的灵敏度范围,是衡量电路一致性的参数。

9.2 零漂

零漂(Ty_{Off})描述的是,0 加速度输入时,实际输出与理想输出的偏移程度。电路在稳定状态下,放置到水平面上时,其 X 和 Y 轴的实际加速度是零,Z 轴是 1G。理想状态下,XY 轴输出应该处在输出量程的中心位置(以二进制补码表示的 0),但实际会有很小的偏移。这种实际输出与理想输出偏移就称为"零漂"。"零漂"在某一范围内是电路上机械部分应力的结果,因此当电路焊装到 PCB 板上或者处在某个外部压力环境下时,"零漂"会有少量的改变。"零漂"随着温度偏移称为"温漂"。

9.3 自测试

自测试功能是允许在不做机械运动的情况下测试机械部分的功能。自测试位配置为零时,自测试功能被关闭。该自测试位为"1"时,相应功能被打开,一个驱动力被加到机械部分的质量块上,模拟出某一确切的加速度输入。此时,电路在设置好的量程范围内输出相应的数据。当自测试模式被使能后,电路的实际输出是外部加速度输入与静电驱动力输入两者的代数和。如果自测试输出信号变化在说明书的范围内,则电路工作正常。

10 数字接口

SC7660电路内部寄存器可通过I²C接口访问。

通信接口管脚描述

管脚名	管脚描述
SCL	I ² C串行时钟(SCL)
SDA	I²C串行数据(SDA)

10.1 I²C 串行接口

本电路的 I2C 总线接口是从设备。可以通过 I2C 接口写入数据到寄存器,也可从寄存器读出数据。相关的 I2C 名词说 明如下表。

串行接口管脚描述

名词	描述
发射端	发送数据到总线
接收端	从总线接收数据
主机	发起传输,生成时钟信号,终止传输
从设备	由主设备寻址访问

I²C 总线相关的两根信号线: 串行时钟线和串行数据线。串行数据线是双向通信管脚,可由主机发送数据到从设备, 也可由从设备发送到主机。两根信号线都通过上拉电阻连接的 VDDIO 端。当总线空闲时,两根数据线都为高。I2C 接口 遵循快速模式(400KHz)I²C 标准。

10.1.1 I²C 操作

总线的传输通过一个 START 信号开始。START 条件定义为: SCL 高期间,SDA 上有一个高到低的变化。之后, 总线会被认为进入占用状态。接下来的一个字节数据的高7位表示主机需要通信的寻址位,第8位表示接下来的数据传 输是主机到从设备,还是由从设备到主机。当地址被发送出去后,每个连接到该总线上的电路会比较这个地址是不是自 己的地址。如果地址配对成功,则返回 ACK 到主机。ACK 是在第 9 个 CLK 上的一个低电平。

SC7660 的从设备地址是 0011xxxb(具体地址可根据用户需求配置)。数据传输需要 ACK 信号返回方可有效。发送 端在第 9 个 CLK 上必须释放总线,接收端在第 9 个 CLK 上拉低总线,完成一个 ACK 返回。接收端必须在接收到每个 字节后返回 ACK。SC7660 的 I2C 接口是从设备接口,而且遵循近似的标准 I2C 协议(稍有不同)。START 信号之后, 主机的从设备地址发送出去。当从设备的 ACK 返回后,一个 8 位的子地址被发送出去,其低 7 位表示的是实际的寄存 器地址、最高位表示的是是否地址自增。如果最高位为"1",则之后的寄存器地址自增,可允许多数据读写。

从地址加上读写控制位构成一个完整的从设备地址。如果读写控制位为"1(读)",从设备地址和子寄存器地址发 送成功,则需要发送一个"重复 START"信号。如果读写控制位为"0(写)",则下一个字节的传输方向不变。

主机写一个字节到从设备

T-00 1 1 1	F21/7 X B							
Master	ST	SAD+W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

主机写多字节到从设备

Master	ST	SAD+W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

杭州士兰微电子股份有限公司

主机从从设备读取一个字节

Master	ST	SAD+W		SUB		SR	SAD+R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

主机从从设备读取多个字节

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

数据以字节的形式在总线上传输,每个数据传输包含 8 个位。每一次传输的次数不限制。数据传输时,最高位先发送。如果接收端正在处理其他事物,不能完整接收数据,则拉低 SCL 线迫使发送端进入等待状态。只有等到接收端不再繁忙,且释放 SCL 总线后,方可继续传输。如果从设备接收端因为实时事务不能应答从设备地址,SDA 线也不能被占用,主机会自行终止传输。SCL 为高状态时,SDA 总线上的一个低到高的跳变,定义为一个 STOP 条件。每个数据传输需要有 STOP 条件来终止。

为了能更快传输数据,可使用批量读取或批量写入来加快。子地址最高位为1,表示地址自增的批量读写模式。

11 寄存器列表

下表列出了SC7660所有的寄存器及地址和初值。

下农州山 1 307000 州 有 的 可 行		寄存器	居地址	5.6.11	
Name	Type	Hex	Binary	Default	Comment
Reserved (do not modify)		00-0B			Reserved
OUT_TEMP_L	r	0C	0001100	output	
OUT_TEMP_H	r	0D	0001101	output	
Reserved (do not modify)		0E			Reserved
WHO_AM_I	r	0F	000 1111	00010001	
Reserved (do not modify)		10-12			Reserved
USER_CAL		13-1A			
Reserved (do not modify)		1B-1D			Reserved
NVM_WR	rw	1E	001 1110	00000000	
TEMP_CFG	rw	1F	001 1111	output	
CTRL_REG1	rw	20	010 0000	00000111	
CTRL_REG2	rw	21	010 0001	00000000	
CTRL_REG3	rw	22	010 0010	00000000	
CTRL_REG4	rw	23	010 0011	00000000	
CTRL_REG5	rw	24	010 0100	00000000	
CTRL_REG6	rw	25	010 0101	00000000	
REFERENCE	rw	26	010 0110	00000000	
STATUS_REG	rw	27	010 0111	00000000	
OUT_X_L	r	28	010 1000	output	
OUT_X_H	r	29	010 1001	output	
OUT_Y_L	r	2A	010 1010	output	
OUT_Y_H	r	2B	010 1011	output	
OUT_Z_L	r	2C	010 1100	output	

	_	寄存器	居地址		_
Name	Type	Hex	Binary	Default	Comment
OUT_Z_H	r	2D	010 1101	output	
FIFO_CTRL_REG	rw	2E	010 1110	00000000	
FIFO_SRC_REG	r	2F	010 1111		
INT1_CFG	rw	30	011 0000	00000000	
INT1_SOURCE	r	31	011 0001	00000000	
INT1_THS	rw	32	011 0010	00000000	
INT1_DURATION	rw	33	011 0011	00000000	
Reserved (do not modify)		34			Reserved
Reserved (do not modify)		35			Reserved
Reserved (do not modify)		36			Reserved
Reserved (do not modify)		37			Reserved
CLICK_CFG	rw	38	011 1000	00000000	
CLICK_SRC	r	39	011 1001	00000000	
CLICK_THS	rw	3A	011 1010	00000000	
TIME_LIMIT	rw	3B	011 1011	00000000	
TIME_LATENCY	rw	3C	011 1100	00000000	
TIME_WINDOW	rw	3D	011 1101	00000000	
ACT_THS	rw	3E	011 1110		
ACT_DURATION	rw	3F	011 1111		

标识为"保留"的,在使用中不要更改,可能会引起永久性破坏。

在"引导启动"时加载到寄存器中的内容不要改变。这些内容包含了工厂校准补偿的信息,能掉电保存和自动加载。

12 寄存器描述

12.1 控制寄存器 1(20h)

B7	B6	B5	B4	B3	B2	B1	B0
ODR3	ODR2	ODR1	ODR0	LPen	Zen	Yen	Xen

ODR3-0	数据率选择,默认值: 0000。
LPen	低功耗使能,默认值为 0。
	(0: 正常工作模式, 1: 低功耗模式)
Zen	Z 轴使能, 默认值为 1。
·	(0: Z 轴禁止, 1: Z 轴使能)
Yen	Y 轴使能, 默认值为 1。
	(0: Y 轴禁止, 1: Y 轴使能)
Xen	X 轴使能, 默认值为 1。
	(0: X 轴禁止, 1: X 轴使能)

ODR<3:0> 用来设置电源模式和数据率的选择。下表通过设置 ODR<3:0>的值来设置频率。

数据输出率的配置

ODR3	ODR2	ODR1	ODR0	电源模式选择
0	0	0	0	电源关断模式
0	0	0	1	正常 I / 低功耗模式 (1 Hz)
0	0	1	0	正常 I / 低功耗模式(10 Hz)
0	0	1	1	正常 I / 低功耗模式(25 Hz)
0	1	0	0	正常 I / 低功耗模式(50 Hz)
0	1	0	1	正常 I / 低功耗模式(100 Hz)
0	1	1	0	正常 I / 低功耗模式(200 Hz)
0	1	1	1	正常 I / 低功耗模式(400 Hz)
1	0	0	0	低功耗模式 (1.6 KHz)
1	0	0	1	正常工作模式 (1.25 KHz) / 低功耗模式(5 KHz)

12.2 控制寄存器 2 (21h)

B7	B6	B5	B4	B3	B2	B1	B0
HPM1	HPM0	HPCF2	HPCF1	FDS	HPCLICK	HPIS2	HPIS1

HPM1-HPM0	高通模式选择。默认值: 00
	参考"高通模式配置"
HPCF2 -HPCF1	高通截止频率选择
FDS	数据滤波选择。默认值: 0
	(0: 跳过内部滤波; 1: 内部滤波以后的数据输出到数据寄存器或 FIFO
HPCLICK	CLICK功能高通滤波使能。
	(0: 滤波禁止; 1: 滤波使能)
HPIS2	中断 2 AOI 功能高通滤波使能。
	(0: 滤波禁止; 1: 滤波使能)
HPIS1	中断 1 AOI 功能高通滤波使能。
	(0: 滤波禁止; 1: 滤波使能)

高通模式配置

HPM1	HPM0	高通滤波模式			
0	0	正常模式 (读高通滤波自动复位)			
0	1	滤波参考信号			
1	0	正常模式			
1	1	中断事件自动复位			

版本号:0.1

12.3 控制寄存器 3(22h)

B7	B6	B5	B4	B3	B2	B1	B0
I1_CLICK	I1_AOI1	I1_AOI2	I1_DRDY1	I1_DRDY2	HI1_WTM	I1_OVERRUN	

I1_CLICK	CLICK 中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)
I1_AOI1	AOI1 中断在 on INT1。 默认值: 0
	(0: 禁止; 1: 使能)
I1_AOI2	AOI2 中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)
I1_DRDY1	DRDY1 中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)
I1_DRDY2	DRDY2 中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)
I1_WTM	FIFO 水印中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)
I1_OVERRUN	FIFO 溢出中断在 INT1 上。默认值: 0
	(0: 禁止; 1: 使能)

12.4 控制寄存器 4(23h)

B7	B6	B5	B4	B3	B2	B1	B0
BDU	BLE	FS1	FS0	HR	ST1	ST0	SIM

BDU	块数据更新。默认值: 0
	(0: 连续更新; 1: 输出数据寄存器不更新直到 MSB 和 LSB 被读取)
BLE	大端/小端数据选择。默认值: 0
	(0: 低字节数据在低地址; 1: 高字节数据在低地址)
FS1-FS0	全量程选择。默认值: 00
	(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR	高精度输出模式选择。默认值: 0
	(0: 高精度禁止; 1: 高精度使能)
ST1-ST0	自测试使能。默认值: 00
	(00: 自测试禁止; 其他: 参考"自测试模式配置")
SIM	SPI 串行接口模式配置。默认值: 0
	(0:4线接口; 1:3线接口)

自测试模式配置

ST1	ST0	测试模式
0	0	正常模式
0	1	自测试 0
1	0	自测试 1
1	1	

12.5 控制寄存器 5(24h)

B7	B6	B5	B4	B3	B2	B1	B0
BOOT	FIFO_EN			LIR_INT1	D4D_INT1	LIR_INT2	D4D_INT2

BOOT	重载修调值。默认值: 0
	(0: 正常模式; 1: 重载修调值)
FIFO_EN	FIFO 使能。默认值: 0
	(0: FIFO 禁止; 1: FIFO 使能)
LIR_INT1	锁存中断 1 配置寄存器上指定的中断响应。
	通过读中断 1 配置寄存器可以清除相应的中断锁存信号。默认值: 0
	(0: 不锁存中断信号; 1: 锁存中断信号)
D4D_INT1	4D 使能: 在 INT1 管脚上使能 4D 检测,同时要把中断 1 配置寄存器中的 6D 为置 1。
LIR_INT2	锁存中断2配置寄存器上指定的中断响应。
	通过读中断 2 配置寄存器可以清除相应的中断锁存信号。默认值: 0
	(0: 不锁存中断信号; 1: 锁存中断信号)
D4D_INT2	4D 使能:在 INT2 管脚上使能 4D 检测,同时要把中断 2配置寄存器中的 6D 为置 1。

12.6 控制寄存器 6(25h)

B7	B6	B5	B4	B3	B2	B1	В0
I2_CLICK	I2_INT2	0	BOOT_I2	0		H_LACTIVE	

I2_CLICK	CLICK 中断在 INT2 上。默认值: 0
	(0: 禁止; 1: 使能)
I2_AOI2	AOI2 中断在 on INT2。 默认值: 0
	(0: 禁止; 1: 使能)
BOOT_I2	BOOT 状态在 INT2 上。 默认值: 0
	(0: 禁止; 1: 使能)
H_LACTIVE	0: 高电平触发中断; 1: 低电平触发中断

版本号:0.1

12.7 状态寄存器(27h)

B7	B6	B5	B4	B3	B2	B1	B0
ZYXOR	ZOR	YOR	XOR	ZYXDA	ZDA	YDA	XDA

ZYXOR	X,Y和Z三个轴的新数据至少有一个已经覆盖老的数据。 默认值: 0
	(0: 三个轴中没有一个轴的新数据覆盖老的数据;
	1: 三个轴中至少有一个轴的新数据已经覆盖了老的数据)
ZOR	Z 轴的新数据已经覆盖老的数据。 默认值: 0
	(0: Z 轴的新数据尚未覆盖老的数据;
	1: Z轴的新数据覆盖了老的数据)
YOR	Y 轴的新数据已经覆盖老的数据。 默认值: 0
	(0: Y轴的新数据尚未覆盖老的数据;
	1: Y轴的新数据覆盖了老的数据)
XOR	X 轴的新数据已经覆盖老的数据。 默认值: 0
	(0: X 轴的新数据尚未覆盖老的数据;
	1: X 轴的新数据覆盖了老的数据)
ZYXDA	X,Y和 Z 三个轴的新数据全都转换完成。默认值: 0
	(0: 三轴中至少某一轴的数据尚未转换完成; 1: 三个轴的新数据全都转换完成)
ZDA	Z 轴的新数据到来。 默认值: 0
	(0: Z轴的新数据尚未转换完成;
	1: Z轴的新数据转换完成)
YDA	Y 轴的新数据到来。 默认值: 0
	(0: Y轴的新数据尚未转换完成;
	1: Y轴的新数据转换完成)
XDA	X 轴的新数据到来。 默认值: 0
	(0: X轴的新数据尚未转换完成;
	1: X轴的新数据转换完成)

12.8 OUT_X_L(28h), OUT_X_H (29h)

X 轴加速度计值。 这个值以 2 的补码的形式输出。

12.9 OUT_Y_L (2Ah),OUT_Y_H (2Bh)

Y 轴加速度计值。 这个值以 2 的补码的形式输出。

12.10 OUT_Z_L (2Ch),OUT_Z_H (2Dh)

Z 轴加速度计值。 这个值以 2 的补码的形式输出。

12.11 中断 1 配置 (30h)

B7	B6	B5	B4	B3	B2	B1	B0
AOI	6D	ZHIE/	ZLIE/	YHIE/	YLIE/	XHIE/	XLIE/
		ZUPE	ZDOWNE	YUPE	YDOWNE	XUPE	XDOWNE

AOI	与/或中断事件。默认值: 0。参考"中断模式"
6D	6 个方向检测功能使能。默认值: 0。参考"中断模式"
ZHIE/	Z 轴高事件中断或者 Z 轴方向检测中断使能。默认值: 0
ZUPE	(0: 禁止中断; 1: 使能中断)
ZLIE/	Z 轴低事件中断或者 Z 轴方向检测中断使能。默认值: 0
ZDOWNE	(0: 禁止中断; 1: 使能中断)
YHIE/	Y 轴高事件中断或者 Y 轴方向检测中断使能。默认值: 0
YUPE	(0: 禁止中断; 1: 使能中断)
YLIE/	Y 轴低事件中断或者 Y 轴方向检测中断使能。默认值: 0
YDOWNE	(0: 禁止中断; 1: 使能中断)
XHIE/	X 轴高事件中断或者 X 轴方向检测中断使能。默认值: 0
XUPE	(0: 禁止中断; 1: 使能中断)
XLIE/	X 轴低事件中断或者 X 轴方向检测中断使能。默认值: 0
XDOWNE	(0: 禁止中断; 1: 使能中断)

AOI	6D	中断模式
0	0	或中断事件
0	1	6个方向运动识别
1	0	与中断事件
1	1	6 个方向位置检测

12.12 中断 1 状态寄存器 (31h)

B7	B6	B5	B4	B3	B2	B1	В0
0	IA	ZH	ZL	YH	YL	XH	XL

IA	中断激活。默认值: 0
	(0: 中断没有产生; 1: 一个或多个中断已经产生)
ZH	Z 轴高。 默认值: 0
	(0: 没有中断, 1: Z轴高事件已经产生)
ZL	Z 轴低。默认值: O
	(0: 没有中断, 1: Z轴低事件已经产生)
YH	Y 轴高。 默认值: 0
	(0: 没有中断, 1: Y轴高事件已经产生)

YL	Y 轴低。默认值: 0
	(0: 没有中断, 1: Y轴低事件已经产生)
XH	X 轴高。 默认值: 0
	(0: 没有中断, 1: X 轴高事件已经产生)
XL	X 轴低。默认值: 0
	(0: 没有中断, 1: X 轴低事件已经产生)

12.13 中断 1 阈值寄存器 (32h)

B7	B6	B5	B4	В3	B2	B1	B0
0	THS6	THS5	THS4	THS3	THS2	THS1	THS0

THS6 - THS0	中断 1 阈值。 默认值: 000 0000
	1LSB=16mg @ FS=2g
	1LSB=32mg @ FS=4g
	1LSB=64mg @ FS=8g
	1LSB=128mg @ FS=16g

12.14 中断 1 持续时间 (33h)

B7	B6	B5	B4	В3	B2	B1	В0
0	D6	D5	D4	D3	D2	D1	D0

D6 - D0	持续时间计数值。默认值	直: 000 0000

D6 - D0 位可设置从识别到中断 1 事件的最小持续时间。持续时间寄存器的最大时间和时间步进是以 ODR 为时钟的。

杭州士兰微电子股份有限公司

典型应用电路图

电路的核心部分以 V_{dd} 供电,IO接口部分以 $V_{dd,IO}$ 供电。电源解耦滤波电容(100nF陶瓷电容,10uF铝电解电容)尽量放到电路P3的旁边。为了保证正常功能,所有的电源上电时间相同。如果撤去 V_{dd} 而保留 $V_{dd,IO}$,通信接口功能正常,但测试链路不工作。

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- ◆ 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

http://www.silan.com.cn

版本号:0.1

产品	名称:	SC7660	文档类型:	说明	书		
版	权:	杭州士兰微电子股份有限公司	公司主页:	http:	//www.s	silan.com.cn	
版	本:	0.1		作	者:	董建青	
修改	记录:						
	1. 初稿	į					

