# **DAC YF**

# FLOPS: Efficient On-Chip Learning for Optical Neural Networks



Jiaqi Gu, Ray T. Chen and David Z. Pan, The University of Texas at Austin

### 1. Neural Networks and Al Acceleration

ML Applications and Photonic Acceleration



# 2. Previous ONN Training Protocols

#### Software training

Limited speed (>1 s)

$$oldsymbol{W} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^*_2 = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^*_2$$

$$oldsymbol{U}(n) = oldsymbol{D} \prod^2 \prod^{i-1} oldsymbol{R}_{ij}$$

#### On-chip training

- Ultrafast (~1 ms)
- 1000x faster than SW
- Unscalable
- Limited efficiency



## 3.Proposed Method: FLOPS & FLOPS+



- Stochastic zeroth-order optimization
- Efficiency: WDM-based parallel gradient estimation
- Accuracy: Two-stage learning protocol with high accuracy
- Robustness: Robust learning under in situ device variations



- FLOPS+ with **SparseTune** 
  - Sparse coordinate-wise fine-tuning
  - Improve Accuracy via searching
  - Sparsity guarantees efficiency

### **4.Experimental Results**

2-4x higher efficiency; 10x better scalability; 3-5% higher robustness and accuracy



