Lista zadań. Nr 1.

2 marca 2024

ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

- 1. (1pkt) Napisz rekurencyjne funkcje, które dla danego drzewa binarnego T obliczają:
 - liczbę wierzchołków w T,
 - $\bullet\,$ maksymalną odległość między wierzchołkami w T.
- 2. (1pkt) Napisz w pseudokodzie procedury:
 - przywracania porządku
 - usuwania minimum
 - usuwania maksimum

z kopca minimaksowego. Przyjmij, że elementy tego kopca pamiętane są w jednej tablicy (określ w jakiej kolejności). Użyj pseudokodu na takim samym poziomie szczegółowości, na jakim zostały napisane w Notatce nr 2 odpowiednie procedury dla zwykłego kopca.

- 3. (1pkt) Porządkiem topologicznym wierzchołków acyklicznego digrafu G=(V,E) nazywamy taki liniowy porządek jego wierzchołków, w którym początek każdej krawędzi występuje przed jej końcem. Jeśli wierzchołki z V utożsamimy z początkowymi liczbami naturalnymi to każdy ich porządek liniowy można opisać permutacją liczb 1,2,...,|V|; w szczególności pozwala to na porównywanie leksykograficzne porządków.
 - Ułóż algorytm, który dla danego acyklicznego digrafu znajduje pierwszy leksykograficznie porządek topologiczny.
- 4. (1pkt) Niech u i v będą dwoma wierzchołkami w grafie nieskierowanym G = (V, E; c), gdzie $c: E \to R_+$ jest funkcją wagową. Mówimy, że droga z $u = u_1, u_2, \ldots, u_{k-1}, u_k = v$ z u do v jest sensowna, jeśli dla każdego $i = 2, \ldots, k$ istnieje droga z u_i do v krótsza od każdej drogi z u_{i-1} do v (przez długość drogi rozumiemy sumę wag jej krawędzi).
 - Ułóż algorytm, który dla danego G oraz wierzchołków u i v wyznaczy liczbę sensownych dróg z u do v.
- 5. (1pkt) Ułóż algorytm, który dla zadanego acyklicznego grafu skierowanego G znajduje długość najdłuższej drogi w G. Następnie zmodyfikuj swój algorytm tak, by wypisywał drogę o największej długości (jeśli jest kilka takich dróg, to Twój algorytm powinien wypisać dowolną z nich).
- 6. (1,5pkt) Dany jest niemalejący ciąg n liczb całkowitych dodatnich $a_1 \leq a_2 \leq \ldots \leq a_n$. Wolno nam modyfikować ten ciąg za pomocą następującej operacji: wybieramy dwa elementy a_i, a_j spełniające $2a_i \leq a_j$ i wykreślamy je oba z ciągu. Ułóż algorytm obliczający, ile co najwyżej elementów możemy w ten sposób usunąć.
- 7. (1,5pkt) Dany jest nieskierowany graf ważony G=(V,E;c) z $c:E\to R_+$ oraz ciąg v_1,v_2,\ldots,v_k różnych wierzchołków z V. Niech D_j ($0\le j\le k$) będzie sumą długości najkrótszych ścieżek między wszystkimi parami wierzchołków pozostającymi w G po usunięciu wierzchołków v_1,v_2,\ldots,v_j (wraz z wierzchołkiem usuwamy wszystkie incydentne z nim krawędzie).
 - Ułóż algorytm obliczający wartości D_0, D_1, \ldots, D_k .

- 8. (1pkt) Ułóż algorytm, który dla danych k uporządkowanych niemalejąco list L_1, \ldots, L_k liczb całkowitych znajduje najmniejszą liczbę r, taką że w przedziale [a, a+r] znajduje się co najmniej jedna wartość z każdej z list L_i , dla pewnej liczby a.
 - Twój algorytm nie może modyfikować list L_i i powinien być pamięciowo oszczędny (no i oczywiście jak najszybszy).
- 9. (\mathbb{Z} 2pkt) Skonstruuj algorytm, który wypisze k największych elementów znajdujących się w podanym kopcu binarnym. Załóż, że kopiec jest przechowywany w tablicy, więc możemy w czasie stałym dobrać się do dowolnego elementu, oraz że największy element znajduje się w korzeniu. Elementy można wypisać w dowolnej kolejności, niekoniecznie od największego do k-tego największego. Algorytm powinien działać w czasie $O(k \log \log k)$ lub mniej.
- 10. (**Z** 2pkt) Rozważmy kopiec binarny przechowujący n elementów, w którego korzeniu znajduje się największy element. Wiemy, że zarówno wstawienie nowego elementu jak i usunięcie największego elementu mogą być wykonane w czasie $O(\log n)$. Skonstruuj strukturę danych, która umożliwia wstawienie nowego elementu w czasie stałym, oraz wykonuje k-tą operację usunięcia największego elementu w czasie $O(f(n) + \log k)$, gdzie $f(n) = o(\log n)$.