Problem Statement & Datasets

Problem Statement:

Synthetic-to-Real Unsupervised Domain Adaptation for Image and Video Classification

Datasets:

Images: VisDA-2017, S2RDA

Videos: RoCoG, Mixamo-Kinetics

Syn-to-Real Image Classification Datasets

VisDA-2017

- 12 classes
- Source domain: 152397 images
 - Rendered 3D CAD models
- Target domain: 55388 images
 - Images from MS-COCO

S2RDA

- 49 classes
- Source domain: 588000 images
 - Rendered 3D models from ShapeNet
- Target domain: 60535 images
 - Imagenet, objectnet, visda, web

Syn-to-Real Action Recognition Datasets

RoCoG

- 7 classes
- US Army Field Manual

Mixamo-Kinetics

14 classes

Kinetics

Subset of Kinetics dataset

Approach

- Use diffusion-based image translation to reduce domain gap between real and synthetic data
- Transfer the style of target domain (real) to source domain (syn)

Motivation

- Prior work using conventional style transfer and GAN-based image translation for domain adaptation
- Diffusion-based style transfer methods demonstrate impressive results

4DH on RoCoG

Approach to reconstruct humans and track them over time.

Real video (Action: "start") Synthetic video (Action: "Advance")

Experiment-1 – Source / Target Only

- Models: Swin-Tiny and Swin-Base
- They are trained, validated and tested on VisDA-2017 dataset without domain adaptation
- Initialized using Imagenet pretrained weights
- Use results as lower/upper bound of performance

Experiment 1: Classification using Swin-T model (without domain adaptation)

• Source only classification with Swin-T backbone on VisDA

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
75	46	84	94	57	14	77	6	74	34	86	57	60

Target only classification with Swin-T backbone on VisDA

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
91	79	85	97	82	69	80	83	95	57	85	90	84

Experiment 1: Classification using Swin-base model (without domain adaptation)

• Source only classification with Swin-B backbone on VisDA

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
85	40	81	97	58	16	80	10	77	56	83	49	62

Target only classification with Swin-B backbone on VisDA

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
93	80	84	96	86	75	84	85	96	75	87	95	87

Experiment-2: Image Translation using ControlNet (without prompt engineering)

- Control Stable Diffusion 1.5 using ControlNet.
 - Using the canny version of ControlNet, obtained canny edge maps of synthetic train images.
 - These are used as a visual prompts for Stable Diffusion.
 - Text prompts used are in the format: "a {class_name}".
 - Generated output: translated, "real" images with smaller domain gap with real target distribution
- Fine-tuned the previous Swin-base model on this "new", translated training dataset for classification.
- Tested on the real target domain images of VisDA.

Experiment-2 Image Translation using ControlNET

Using ControlNet conditioned on canny edges (without prompt engineering)

Experiment 2: Image Translation using ControlNet (without prompt engineering)

Classification using Swin Transformer model on translated VisDA images

- Source only acc (without DA): 60%
- Target only acc: 84%

Using Swin-tiny model:

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg
89	69	85	91	70	55	76	46	85	32	74	80	73

Using Swin-base model:

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg
93	70	88	95	77	51	79	53	85	28	78	73	75

- Source only acc (without DA): 62%
- Target only acc: 87%

Experiment 3: Translate synthetic VisDA images with "target prompts"

- Used samples from VisDA validation set
- Passed through BLIP captioning model to generate captions
- Then used these as "target prompts" for translation with canny version of ControlNet.

Generated image

Without "target prompts"

Generated image

With "target prompts"

Target set image

Target prompt: "a motorcycle parked on the side of a street"

Experiment 3: Classification using Swin Transformer model on translated VisDA images with "target prompts"

 Source only acc (without DA): 62%

Target only acc: 87%

Translation without target prompts: 75.14%

• Using Swin-base model:

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
93	52	88	94	74	55	81	49	86	42	80	83	76.76

- Val acc increases from
 - 69.79% (without target prompts) to
 - 74.52% (with target prompts)

Experiment-4: Capture target style using Textual Inversion

- Adding a style-based token in the embedding space of SD.
- Fine-tune the embedding of SD to create personalized images based on custom style. Instead of re-training the model, we can represent the custom style as new words in the embedding space of the model. As a result, the new word will guide the creation of new images in an intuitive way.
- Textual Inversion creates an additional "word" that is added to the base model's vocabulary so it can draw it.
- Embeddings are smart compressions of data (images, text, audio, etc) into numerical representations.
- By training new embeddings for Stable Diffusion, we can give it a new point to try to get close to as it removes noise.

Experiment-4: Method

- Using a few images from all classes of VisDA val set, we trained a new embedding for Stable Diffusion.
 - o initializer_word = ["realism", "style"]
 - placeholder token= "*"
- Loaded this new generated embedding (describing the style of real domain) in the Stable Diffusion ControlNet Pipeline.

Experiment-4: Method

Source Image (synth)

Translated with textual inversion

Experiment 5: Classification using Swin-Transformer on translated VisDA images with "target prompts" and Textual Inversion

 Source only acc (without DA): 62%

• Target only acc: 87%

Translation without target prompts: 75.14%

Translation with target prompts: 76.76%

Using Swin-base model:

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
91	59	89	96	82	50	87	47	91	49	73	84	76.78

- Val acc increases from
 - 74.52% (with target prompts) to
 - 76.51% (with target prompts+TI)

Experiment-6: Capture target style using Dreambooth

- Used all the val set images to fine-tune stable diffusion v1-5 model.
- Tested this model with a few "target prompts". An example:
 - Prompt: "a person skiing in the style of sks object". (sks is the placeholder token/identifier)
 - Generated Images:

Experiment-7: Translation of VisDA synthetic images using CN+dreambooth

- Translated VisDA synth images with new, fine-tuned "personalized" SD v1-5 model without captions or TI embedding.
- Prompts used: "a {class_name} in the style of sks object".
- Some generated examples:

Experiment-8: Translation of VisDA synthetic images using CN+TI+dreambooth

- Generated new TI embedding by training it on all val images for the personalized model as base model.
- Loaded new embedding into the embedding space of the personalized SD v1-5 model.
- Translated visDA synth images with personalized stable diffusion model with new textual inversion token for more conditioning.
- Some generated examples:
 - Prompt: "a {class_name} in the style of sks object, in the style of valid"
 - Generated images:

Experiment 9: Classification using Swin-Transformer on translated VisDA images with CN+TI+dreambooth

 Source only acc (without DA): 62%

• Target only acc: 87%

Translation without target prompts: 75.14%

Translation with target prompts: 76.76%

Translation with target prompts+TI: 76.78%

Using Swin-base model:

plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg (%)
93	64	86	95	88	58	87	46	93	29	72	84	77.2

Additional Steps

- Hyperparameter tuning in classification task.
- Varying guidance scale to incorporate variation in training Stable Diffusion.
- Running Text-to-image generation using: basic label, hard engineered, language enhanced prompts (T5-base fine-tuned on CommonGen).

Crafting Prompts

Number	Variations
(1)	high quality, low quality, blurred, bad, old, closeup
(2)	person, car, truck, bus, bicycle, motorcycle
(3)	on a street, on a road, in a forest, in a city, on the sidewalk, on the highway

Label	HE	LE
A photo of a person	A (1) photo of a (2) (3)	person with some kind of cd and
A photo of a car	A (1) photo of a (2) (3)	car coming out of the garage
A photo of a truck	A (1) photo of a (2) (3)	several trucks are out in the wind
A photo of a bus	A (1) photo of a (2) (3)	A school bus in a rural area travelling
A photo of a motorcycle	A (1) photo of a (2) (3)	woman riding a motorcycle with her
A photo of a bicycle	A (1) photo of a (2) (3)	A group of bicycles is in the shop

Experiment 10: Translation of RoCog Synthetic frames using MultiControlNet + Dreambooth

- We can effortlessly combine ControlNet with fine-tuning. For example, we can fine-tune a model with DreamBooth, and use it to render images into different scenes.
- Fine-tuned stable diffusion v1-5 model on the real frames of RoCoG and used this personalized model in the StableDiffusionControlNet pipeline.
- Used a MultiControlNet model with two conditionings of: edge and pose.
 - o Prompt used: "a person in the style of sks person" —> 'sks' is the placeholder token (identifier).
 - Some Results:

Real frame sample used for fine-tuning SD

Control-A-Video: Controllable Text-to-Video Generation with Diffusion Models

- A controllable T2V framework that is capable of generating videos conditioned on text prompts and control maps.
- Introduce a residual-based noise initialization strategy that incorporates motion from the input video into the diffusion process, resulting in the generation of videos that are less flickering and motion-aligned.
- Present a novel first-frame conditioning strategy that not only empowers the model to generate videos generalized from the image domain but also to generate arbitrary-length videos auto-regressively.
- Experiments demonstrate that this framework is capable of generating higher-quality, more consistent videos using fewer training resources.

Method

Results

frozen city, high-quality, realistic.