1 Rings and Ideals

Exercise 1.12. $(\mathfrak{a} : \mathfrak{b}) = \{x \in A : x\mathfrak{b} \subseteq \mathfrak{a}\}$

- i) $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- ii) $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- iii) $((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- iv) $(\bigcap_i \mathfrak{a}_i : \mathfrak{b}) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b})$
- v) $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap_{i} (\mathfrak{a}: \mathfrak{b}_{i})$

Solution. Trivial.

Exercise 1.13. $r(\mathfrak{a}) = \{x \in A : \exists n, x^n \in \mathfrak{a}\}\$

- i) $r(\mathfrak{a}) \supseteq \mathfrak{a}$
- ii) $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- iii) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- iv) $r(\mathfrak{a}) = (1) \iff \mathfrak{a} = (1)$
- v) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$
- vi) if \mathfrak{p} is a prime, $r(\mathfrak{p}^n) = \mathfrak{p}$ forall n > 0.

Solution. i) ii) Trivial.

- iii) Suppose $x^n \in \mathfrak{a}, x^m \in \mathfrak{b}$, then $x^{n+m} \in \mathfrak{ab}$, so $r(\mathfrak{a}) \cap r(\mathfrak{b}) \subseteq r(\mathfrak{ab})$. Obviously $r(\mathfrak{ab}) \subseteq r(\mathfrak{a} \cap \mathfrak{b}) \subseteq r(\mathfrak{a}) \cap r(\mathfrak{b})$.
 - iv) $1 = 1^n \in \mathfrak{a}$, hence $\mathfrak{a} = (1)$.
- v) If $x^n = u + v, u^m \in \mathfrak{a}, v^l \in \mathfrak{b}$, then by binomal theorem $x^{n(m+l-1)}$ can be written in sums of $u^a v^b$ where $a \geq m$ or $b \geq l$, hence $u^a v^b \in \mathfrak{a} + \mathfrak{b}$, and $x^{n(m+l-1)} \in \mathfrak{a} + \mathfrak{b}$.
 - vi) By iii), we have $r(\mathfrak{a}^n) = r(\mathfrak{a})$ for any n > 0; so by $r(\mathfrak{p}) = \mathfrak{p}$ we have $r(\mathfrak{p}^n) = \mathfrak{p}$.

Exercises 1.1. Sum of a nilpotent and a unit is a unit.

Solution. If $x^n = 0$ then $(1+x)(1-x+x^2-x^3+...+(-1)^{n-1}x^{n-1}) = 1$, so 1+x is a unit. If a is a unit and x is a nilpotent, then $a^{-1}x$ is a nilpotent, hence $a+x=a(1+a^{-1}x)$ is a unit. \Box

Exercises 1.2. Let $f = a_0 + a_1 x + \cdots + a_n x^n \in A[x]$. Prove:

- i) f is a unit in $A[x] \iff a_0$ is a unit in A[x], and a_1, \ldots, a_n are nilpotent.
- ii) f is nilpotent $\iff a_0, \ldots, a_n$ are nilpotent.
- iii) f is a zero-divisior \iff there exists $a \neq 0 \in A$ such that af = 0.

June 9, 2020 1 of 7

iv) f is said *primitive* if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that fg is primitive $\iff f$ and g are both primitive.

Solution.

i) \implies : Suppose $g = b_0 + b_1 x + \dots + b_m x^m$ such that fg = 1, then $a_0 b_0 = 1$ hence a_0, b_0 are both units. We Prove $a_n^{r+1} b_{m-r} = 0$ for all $0 \le r \le m$ by induction on r.

If this is true for all r' < r, consider the (n+m-r)-th coefficient of fg, we have $0 = \sum_{i=0}^r a_{n-r+i}b_{m-i}$, so $a_nb_{m-r} = \sum_{i=0}^{r-1} a_{n-r+i}b_{m-i}$. Multiply a_n^r to both side, then by induction hypothesis we get $a_n^{r+1}b_{m-r} = 0$.

In partial, $a_n^{m+1}b_0 = 0$, hence a_n is nilpotent, and so is a_nx^n . By Ex.1.1, $f - a_nx^n$ is a unit, so repeat the proof above we have a_1, \ldots, a_n are nilpotent.

 \iff : Repeat Ex.1.1 for n times.

- ii) \implies If $f^k = 0$, then consider nk-th coefficient of f^k we have $a_n^k = 0$. Then $f a_n x^n$ is also nilpotent, hence a_0, a_1, \ldots, a_n are all nilpotent.
 - \Leftarrow : f is sums of n nilpotents, also a nilpotent.
- iii) \implies : Choose $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0, then $a_n b_m = 0$, so $a_n g$ is of at most degree m 1. But $a_n g f = 0$, by the choice of g we have $a_n g = 0$. Then we prove $a_{n-r}g = 0$ by induction on r. For r = 1 it's proved above, and if it is true for $0, 1, \ldots, r 1$, then we have $a_{n-r}b_m = 0$, so similarly $a_{n-r}g = 0$. So we have $b_m f = 0$.

 \iff : Trivial.

iv) \Longrightarrow : if all coefficients of f are in an ideal $\mathfrak{a} \neq (1)$, then obviously all coefficients of fg are also in \mathfrak{a} , so fg is not primitive.

 \Leftarrow Left $f = a_0 + a_1 x + \dots + a_n x^n$ and $g = b_0 + b_1 x + \dots + b_m x^m$ both primitive. Suppose $fg = c_0 + c_1 x + \dots + c_{n+m} x^{n+m}$ is not primitive, that is, $(c_0, c_1, \dots, c_{n+m}) = \mathfrak{c} \neq (1)$. Let \mathfrak{p} be a prime ideal contains \mathfrak{c} , and let i, j be the least number that $a_i \notin \mathfrak{p}, b_j \notin \mathfrak{p}$ (cause f, g are primitive, these number exist), then $a_i b_j = c_{i+j} - \sum_{k=0}^{i-1} a_i b_{i+j-k} - \sum_{k=0}^{j-1} a_{i+j-k} b_k \in \mathfrak{p}$, contradiction.

Exercises 1.3. Generate results in Ex.1.2 to a ring $A[x_1, x_2, \ldots, x_n]$ with several indeterminates.

Solution. Just consider $A[x_1, x_2, ..., x_n]$ as a polynomial ring over $A[x_1, x_2, ..., x_{n-1}]$. Repeat the proof above, we have: if $f, g \in A[x_1, x_2, ..., x_n]$, then

- i) f is a unit \iff the constant term of f is a unit, all other coefficients are nilpotent.
- ii) f is nilpotent \iff all coefficients of f are nilpotent.
- iii) f is a zero-divisior \iff there exists $a \neq 0 \in A$ such that af = 0

June 9, 2020 2 of 7

iv) fg is primitive $\iff f, g$ are both primitive.

Exercises 1.4. In the ring A[x], the Jacobson radical is equal to nilradical.

Solution. Let $f \in A[x]$ belong to Jacobson radical, then for all $g \in A[x]$, 1 - fg is a unit. In particular, 1 - xf is a unit, hence any coefficient of f is nilpotent, and f is nilpotent, i.e. f belongs to nilradical of A[x].

Exercises 1.5. Let A[[x]] be the ring former power series over A, and let $f = \sum_{n=0}^{\infty} a_n x^n \in A[[x]]$. Show that

- i) f is a unit of $A[[x]] \iff a_0$ is a unit of A.
- ii) If f is nilpotent, then a_n is nilpotent for all $n \geq 0$. Is the converse true? (See Chapter 7, Exercise 2.)
- iii) f belongs to Jacabson radical of $A[[x]] \iff a_0$ belongs to Jacabson radical of A.
- iv) The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x.
- v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Solution.

- i) \implies : Trivial. \iff : Let $g = \sum_{n=0}^{\infty} b_n x^n$ where $b_0 = a_0^{-1}, b_n = -a_0^{-1} \sum_{i=1}^n a_i b_{n-i}$, then gf = 1, so f is a unit.
- ii) Induction on n. if a_0, \ldots, a_{n-1} is nilpotent, then so is $f_n = \sum_{m=0}^{\infty} a_{n+m} x^m$ (Cause $f a_0 a_1 x \cdots a_{n-1} x^{n-1} = x^n f_n$). So there exists k such that $f_n^k = 0$, hence $a_n^k = 0$.
- iii) Suppose f belongs to Jacabson radical of A[[x]], then for all g, 1 fg is a unit. In particular for all $b \in A$, 1 bf is a unit, so by i) $1 a_0b$ is a unit, so a_0 belongs to Jacabson radical of A; and vice versa.
- iv) If $\mathfrak{m}^c \subseteq \mathfrak{a} \neq (1)$, then $\mathfrak{a} + (x)$ is a ideal of A[[x]], which contains all series of constant term $\in \mathfrak{a}$, so $\mathfrak{a} + (x) \supset \mathfrak{m}$, hence $\mathfrak{a} + (x) = \mathfrak{m}$ and $\mathfrak{a} = \mathfrak{m}^c$.
- v) Let \mathfrak{p} be a prime ideal of A, then \mathfrak{p} is the contraction of $\mathfrak{p} + (x)$. So it is sufficient to prove $\mathfrak{p} + (x)$ is a prime ideal of A[[x]].
 - If $f = \sum_{n=0}^{\infty} a_n x^n$, $g = \sum_{n=0}^{\infty} b_n x^n$, and $fg \in \mathfrak{p} + (x)$, i.e. $a_0 b_0 \in \mathfrak{p}$, then either a_0 or b_0 belongs to \mathfrak{p} . So either f or g belongs to $\mathfrak{p} + (x)$, hence $\mathfrak{p} + (x)$ is a prime ideal of A[[x]].

June 9, 2020 3 of 7

Exercises 1.6. Let A be a ring such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.

Solution. If the Jacobson radical is not contained in the nilradical, then there exists a nonzero idempotent e belongs to the Jacobson radical, so 1 - e = 1 - 1e is a unit. but $e^2 = e$, hence (1 - e)e = 0, so e = 0, contradiction.

Exercises 1.7. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1. Show that every prime ideal of A is maximal.

Solution. Let \mathfrak{p} be a prime ideal, then we have A/\mathfrak{p} is a intergal domain, and for all \bar{x} there exists n > 1 such that $\bar{x}^n = \bar{x}$, hence $(\bar{x}^{n-1} - 1)\bar{x} = 0$. If $\bar{x} \neq 0$, then $\bar{x}^{n-1} - 1 = 0$, so \bar{x} is a unit. Hence A/\mathfrak{p} is a field, and \mathfrak{p} is maximal.

Exercises 1.8. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with repect to inclusion.

Solution. For all chains of prime ideals $\mathfrak{p}_1 \supseteq \mathfrak{p}_2 \supseteq \ldots$, if we let $\mathfrak{p} = \bigcap_{n=1}^{\infty} \mathfrak{p}_n$, then \mathfrak{p} is an ideal. Suppose $xy \in \mathfrak{p}$, then for all n we have $xy \in \mathfrak{p}_n$, hence either x or y belongs to \mathfrak{p}_n , so at least one of them belongs to infinite \mathfrak{p}_n , hence belongs to all \mathfrak{p}_n , i.e. either x or y belongs to \mathfrak{p} . So all chains of prime ideals of A has a lower bound, so by Zorn's Lemma there exists a minimal elements along them.

Exercises 1.9. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \iff \mathfrak{a}$ is an intersection of prime ideals.

Solution. \Longrightarrow : Let \mathfrak{b} be the intersection of all prime ideals containing \mathfrak{a} . If $x \in \mathfrak{b}$, then in A/\mathfrak{a} , \bar{x} belongs to all prime ideals, so $\bar{x}^n = 0$ for some n > 0, i.e. $x \in r(\mathfrak{a}) = \mathfrak{a}$. so $\mathfrak{a} = \mathfrak{b}$ is a intersection of prime ideals.

$$\Leftarrow$$
: If $\mathfrak{a} = \bigcap_{\alpha} \mathfrak{p}_{\alpha}$, then $r(\mathfrak{a}) = \bigcap_{\alpha} r(\mathfrak{p}_{\alpha}) = \bigcap_{\alpha} \mathfrak{p}_{\alpha} = \mathfrak{a}$.

Exercises 1.10. Let A be a ring, \Re its nilradical. Show that the following are equivalent:

- i) A has exactly one prime ideal.
- ii) every element of A is either a unit of nilpotent.
- iii) A/\Re is a field.

Solution. i) \implies ii): If $a \notin \mathfrak{R}$ is not a unit, then there exists a prime ideal \mathfrak{p} containing a, so \mathfrak{p} is the onlyprime ideal. But then $\mathfrak{R} = \mathfrak{p}$, contradiction.

- ii) \implies iii): Every elements $\notin \mathfrak{R}$ is a unit, so every elements of A/\mathfrak{R} is a unit, therefore A/\mathfrak{R} is a field.
- iii) \implies i): \mathfrak{R} is a maximal ideal and the intersection of all prime ideals. So the only prime ideal of A is \mathfrak{R} itself.

Exercises 1.11. A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

June 9, 2020 4 of 7

- i) 2x = 0 for all $x \in A$.
- ii) every prime ideal \mathfrak{p} is maximal, and A/\mathfrak{p} is a field with two elements.
- iii) every finitely generated ideal in A is principal.

Solution. i) $x + 1 = (x + 1)^2 = x^2 + 2x + 1 = 3x + 1$, so 2x = 0 for all $x \in A$.

- ii) Suppose $x \notin \mathfrak{p}$. By $x(1-x) = x x^2 = 0 \in \mathfrak{p}$ we have $1-x \in \mathfrak{p}$. So $A = \mathfrak{p} \cup (1-\mathfrak{p})$, and A/\mathfrak{p} only contains two elements, hence is a field, and \mathfrak{p} is maximal.
- iii) For any $a_1, a_2, \ldots, a_n \in A$, let $a = 1 \prod_{i=1}^n (1 a_i)$, then $a_i a = a_i a_i (1 a_i) \prod = a_i$, so $(a_1, a_2, \ldots, a_n) = (a)$.

Exercises 1.12. A local ring contains no idempotent $\neq 0, 1$.

Solution. Let \mathfrak{m} be the only maximal ideal of A. For any idempotent e, if e is a unit then $e = e^{-1}e^2 = e^{-1}e = 1$. If e is not unit, then $e \in \mathfrak{m} = \mathfrak{R}$ (the Jacabson radical of A), so 1 - e is a unit. but $(1 - e)^2 = 1 - 2e + e^2 = 1 - e$ is also idempotent, so 1 - e = 1, therefore e = 0.

Exercises 1.13. K field, Σ the set of all irreducible monic polynomials f of one indeterminate with coefficients in K. Let A be the polynomial ring over K generated bt indeterminates x_f , one for each $f \in \Sigma$. Let \mathfrak{a} be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\mathfrak{a} \neq (1)$.

Let \mathfrak{m} be a maximal ideal of A containing \mathfrak{a} , and let $K_1 = A/\mathfrak{m}$. Then K_1 is an extension field of K in which each $f \in \Sigma$ has a root. Repeat the construction with K_1 in place of K, obtaining a field K_2 , and so on. Let $L = \bigcup_{n=1}^{\infty} K_n$, Then L is a field in which each $f \in \Sigma$ splits completely into linear factors. Let \bar{K} be the set of all elements of L which are algebraic over K. Then \bar{K} is an algebraic closure of K.

Solution. Let $1 \in \mathfrak{a}$, then 1 can be written in a finite sum of finite products of $f(x_f)$ -s. Choose one form containing least f-s, suppose it contains $a_1 = f_1(x_{f_1}), a_2 = f_2(x_{f_2}), \ldots, a_n = f_n(x_{f_n})$. then $(a_1, a_2, \ldots, a_{n-1}) \neq (1)$ but $(a_1, a_2, \ldots, a_{n-1}) + (a_n) = (1)$.

Hence $(a_1, a_2, ..., a_{n-1})(a_n) = (a_1, a_2, ..., a_{n-1}) \cap (a_n)$, so $a_n \in (a_1, a_2, ..., a_{n-1})(a_n)$, i.e. exists $b \in (a_1, a_2, ..., a_{n-1})$ such that $ba_n = a_n$. Obviously A is an intergal domain, so b = 1; but then $(a_1, a_2, ..., a_{n-1}) = (1)$, contradiction.

If $f \in \Sigma$, then $f(x_f) \in \mathfrak{a}$, so $f(\bar{x_f}) = 0$ in $K_1 = A/\mathfrak{m}$, and f can be written as $f(x) = (x - x_f)f_1(x)$. Repeat this progress then in $K_{\deg(f)}$, f splits into linear factors. \square

Exercises 1.14. In a ring a, let Σ be all ideals in which every element is a zero-divisior. Show that the set Σ has maximal elements, and every maximal element of Σ is a prime ideal. Hence the set of zero-divisiors in A is a union of prime ideals.

Solution. For every chain in Σ $\{\mathfrak{a}_{\alpha}\}_{\alpha}$, it has a upperbound $\bigcup_{\alpha} \mathfrak{a}_{\alpha}$. So by Zorn's Lemma Σ has maximal elements.

Suppose \mathfrak{m} is a maximal element of Σ , and $xy \in \mathfrak{m}$. Consider $\mathfrak{m} + (x)$ and $\mathfrak{m} + (y)$. If neither belongs to Σ , then there exists $a, b \in \mathfrak{m}, u, v \in A$ such that a + ux, b + vy are both

June 9, 2020 5 of 7

not zero-divisior. But $(a + ux)(b + vy) \in \mathfrak{m}$ is a zero-divisior, contradiction. So at least one of $\mathfrak{m} + (x), \mathfrak{m} + (y)$ belongs to Σ , i.e. $x \in \mathfrak{m}$ or $y \in \mathfrak{m}$.

Exercises 1.15. Let A be a ring and let X be the set of all prime ideals of A. For eah subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- i) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- ii) $V(0) = X, V(1) = \emptyset$.
- iii) if $(E_i)_{i\in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i)$$

iv) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$.

Solution.

- i) If $E \subseteq \mathfrak{p}$ then also is $\mathfrak{a} = (E)$. If $\mathfrak{a} \subseteq \mathfrak{p}$ and $x^n \in \mathfrak{a} \subseteq \mathfrak{p}$ then by definition $x \in \mathfrak{p}$, so $r(\mathfrak{a}) \subseteq \mathfrak{p}$. The inverse is trivial.
- ii) Trivial.
- iii) Trivial.
- iv) If $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ then $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$. So $V(\mathfrak{a} \cap \mathfrak{p}) \subseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$. \supseteq -s are triival.

Exercises 1.16. Draw pictures of $Spec(\mathbb{Z}), Spec(\mathbb{R}), Spec(\mathbb{Z}[x]), Spec(\mathbb{R}[x]), Spec(\mathbb{Z}[x])$. *Solution.*

- i) In $Spec(\mathbb{Z})$ there is countable infinite closed points (p_i) , and a generic point 0.
- ii) Cause R is a field, it have only one prime ideal 0. So $Spec(\mathbb{R})$ is a trivial topology space with only one point.
- iii) In $\mathbb{C}[x]$ a prime ideal is 0 or (x-z) with $z \in \mathbb{C}$, it's similar to $Spec(\mathbb{Z})$ but with uncountable infinite points.
- iv) In $\mathbb{R}[x]$ a prime ideal is 0, (x-r) or (x^2+px+q) with $p^2-4q<0$, actually it's isomorphic to $\mathrm{Spec}(\mathbb{C}[x])$
- v) In $\mathbb{Z}[x]$ there are three sorts of prime ideals: 0 or (p); (F(x)) where F is a irreducible polynomial over $\mathbb{Z}[x]$ (or equivalently irreducible polynomial over $\mathbb{Q}[x]$); (p, F(x)) where F(x) is a monic irreducible polynomial over $\mathbb{Z}/p\mathbb{Z}$. For the Zariski topology, there is a closed base of it: $\{(p, F(x))|F(x) \text{ irreducible over } \mathbb{Z}_p[x]\}$ for all p; $\{(p, G(x))|G(x) \text{ divides } F(x) \text{ over } \mathbb{Z}_p[x]\} \cup \{(F(x))\}$ for all irreducible $F(x) \in \mathbb{Z}[x]$; $\{(p, F(x))\}$ for all F(x) irreducible over $\mathbb{Z}_p[x]$.

June 9, 2020 6 of 7

Exercises 1.17. For each $f \in A$, let X_f denote the complement of V(f) in X = Spec(A). The sets X_f are open. Show that they form a basis of the Zariski topology, and that

- i) $X_f \cap X_g = X_{fg}$.
- ii) $X_f = \emptyset \iff f$ is nilpotent.
- iii) $X_f = X \iff f$ is a unit.
- iv) $X_f = X_g \iff r((f)) = r((g)).$
- v) X is quasi-compact (every open covering of X has a finite sub-covering)
- vi) More generating, each X_f is quasi-compact.
- vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f . The sets X_f are called basic open sets of X = Spec(A).

June 9, 2020 7 of 7