페이지 1/2 Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-152191

(43) Date of publication of application: 07.07.1987

(51)Int.CI.

H01S 3/18 // G02B 6/42 H01S 3/133

(21)Application number : 60-293746

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

26.12.1985

(72)Inventor: ASAKURA HIROYUKI

HAGIWARA KIYOKAZU **NISHIOKA MINORU**

(54) LIGHT SOURCE FOR WAVELENGTH MULTIPLE LIGHT COMMUNICATION

(57) Abstract:

PURPOSE: To stabilize the oscillation frequency of LDs (light-emitting diodes and lasers), and to obtain a light source having high multiplicity by providing a plurality of the LDs, a plurality of optical fibers, one plane diffraction grating, one convergent rod lens and a plurality of reflecting mirrors on the outside and unifying these parts by means of an optical glass block.

CONSTITUTION: Outputs from LDs are emitted from the terminals of optical fibers 2 arranged in the y-axis direction in order to avoid a crosstalk, and made parallel with a lens 3 and projected to a diffraction grating. There is predetermined relationship among the angle of incidence α, angle of diffraction βand angle of off-plane ϕ on an X-N plane vertical to grooves for the grating and a wavelength λ , and β changes by I when α and ϕ are kept constant. When the focal distance of the lens 3 is represented by (f), Δx responds to $\Delta x = \Delta \beta$.f on a focal plane. When reflecting mirrors 6 are positioned on the focal plane, an external optical resonator is

formed only to the specified wavelength of the LDs. When the mirrors 6 are moved in an x-y plane, resonance frequency alters, thus acquiring an LD light source oscillating in a certain constant wavelength clearance as a wavelength multiple light source.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

⑩日本国特許庁(JP)

⑩特許出願公開

® 公開特許公報(A) 昭62-152191

(1) Int Cl. 4

證別記号

庁内整理番号

❸公開 昭和62年(1987)7月7日

01 S 3/18 # G 02 B 6/42 # 01 S 3/133 7377-5F 7529-2H 7377-5F

77-5F 審査請求 未請求 発明の数 1 (全4頁)

図発明の名称 波

波長多重光通信用光源

②特 類 昭60-293746

②出 頭 昭60(1985)12月26日

 ⑩発明者 朝倉 宏之

 ⑩発明者 萩原 清和

門真市大字門真1006番地 松下電器產業株式会社內門真市大字門真1006番地 松下電器產業株式会社內

砂発明者・西 岡 稔

門真市大字門真1006番地 松下電器產業株式会社内

心出 願 人 松下電器座業株式会社 門真市大字門真1006番地

砂代 理 人 弁理士 中尾 敏男 外1名

明 相 1

1、発明の名称

被長多重光通信用光源

- 2、特許請求の範囲
- (1) 複数個の半導体レーザ素子と前記半導体レー ザ常子の出力光を導波する複数本の光ファイバ - と、前記複数本の光ブァイバーからの出力光 を平行光にする1つの1/4ピッチ集束ロッド レンズと、前記1/4ピッチ集束ロッドレンズ によってコリメートされた前記複数本の光ファ イバからの出力光を、発援波長に応じた方向へ 分散させる平岡回折格子と、前紀平岡回折格子 で分散された光を選択的に前記光ファイバーの 出射部へ帰還させる反射鏡と、剪記反射鏡と上 記光ファイバーの出射端を前記1/4ピッチ集 菜ロッドレンズの同一焦点面上に配置したりト ロー型光学系とを有し、前記1/4ピッチ集束 ロッドレンズと前配平面回折指子と前記光ファ イパー、前記反射雄を光学ガラスプロックを用 いて一体化したことを特徴とする独長多重光道

信用光源。

- ② 光ファイバーからの出射光が平面回折格の線 に対する法謀に対して斜めに入射するように光 ファイバーを集束ロッドレンズの焦点面に配列 した特許請求の範囲第1項記載の波長多重温信 用光源。
- 3、発明の詳細な説明

度業上の利用分野

この発明は光通信に用いる彼長多重光通信用光 滅に関する。

従来の技術

放長多重先通信においては、多重度の数だけの 彼長の異なる光調が必要になる。彼長多重光通信 用光調としては 0.8-1.3 μm発展彼長を有 する発光ダイオードや半導体レーザ(以下 L D) の中から、各チャンネル間隔に相当する彼長のも のを選別して用いていた。

これまでに実用化している彼長多重光通信システムにおいては、多重度は2から4波長程度のものであり、光弧の彼長間隔も0.1-0.2 μm

特開昭 62-152191 (2)

関係に設定し、光瀬となる発光ダイオードやLD の組成材料比を変化させたり、材料自体をかえる ことによって希望の彼長をえている。

発光ダイオードを光源とした場合、発光ダイオ ードのスペクトル幅が約30mmと広いために脚 接チャンネル間のクロストークを考慮した場合、 発光波長間隔をせまくすることが困難である。ま た、光源に単一モード波長のLDを用いた場合、 そのスペクトル個は数10MHェ以下であるため にチャンネル間がせばめられ、多位度も飛躍的に 高めることが可能となる。

他方、わずかに異なる周期構造を有するDPB レーザ (Distributed Faedba ck しゅぁer)を1つのチップに揺積し、ア レイ化したものがある。 (ハジメ オカダ価、ジ ャパニーズ ジャーナル オブ アプライド フ ィジックス 第12巻、1984年12月 (Ha jime Okadafti JAPANESE J OUNAL OF APPLIED PHYSI CS. Vol. 12 DEC. 1984)

成プロセスが複雑であり、導彼路部に構成する得 のピッチをきわめて特密に制御しなければならず、 素子の再現性や歩裂りに大きな問題がある。また 女子がアレイ状になっているためにLDを同時駆 以下、本発明の1実施例における放長多重光源 動した場合、発热しLDの温度上昇を収ねく。従 って彼县変化や出力レベルの低下を招く。

本発明は上記問題に鑑み、LDの発掘周波数を 安定化し、多重度の高い彼長多重先通信用光源を 提供するものである。

問題点を解決するための手段

上記問題点を解決するために本発明の彼長多重 光通信用光源は複数個のLDと外部に複数本の光 ファイパーと1枚の平面回折格子と1つの単東ロ ッドレンズと複数枚の反射鏡を異信し各LDに対 して特定波長の外部光共振器を形成し、光学部品 を光学ガラスプロックを用いて一体化したもので aa.

作用

本発明は上記した排成によって、複数個のLD の発援周波数を同時に独立に安定化制御すること

第3箇にその実例をしめす。周期の差によって 彼長の異なる5つの光をえることが出来る。

発明が解決しようとする問題点

しかし現在最も多く使用されているファブリー ペロー型の構造を有するLDでは同一プロセスで 作成しても、その発促波長はバラツキを生じる。 このため、多重度の高い波長多重光過信システム を構成するためには多くのLDのサンブルの中か ら必要とする彼長のものを選別するか、投計値に 近い彼長を有するLDを温度制御して設計値の波 長にしている。このためLDの歩留りが悪くなっ てしまう。また彼長間隔を広くするとLDの歩留 りは良くなるが、各チャンネルにおいて光ファイ パーの伝送損失が異なるためにシステムとしての パワーマージンが最悪のチャンネルによって決定 されてしまう。他の光学部品においても特性の姿 化が生じる。このため部品によってはチャンネル で材料や構成を変える必要が生じ、コストアップ となってしまう。

第3図に示したDFBレーザアレイではその作

によって上記に説明した問題点を解決しようとす るものである.

事施例

信用光輝について図面を参照しながら説明する。

第1図は本発明の1実施例における波長多型光 通信用光準の構成図を示すものである。複数個の LD1からの出力光は各おの光ファイバー2に入 力される。光ファイバーの各出射端はコリメート レンズ3の焦点面(エーァ平面)上に配置する。 4 は平面回折格子で沸はY方向に切られている。 このため光ファイバー2の配列はLD間のクロス トークをさけるために、y方向では重ならないよ うにしなければならない。第1回における実施例 では、光ファイバー2はすべてり軸方向に配列し てあるが必ずしも同一×座標上に配列する必要は なく、科め方向に配列してもよい。光ファイバー 2よりでた光は、コリメートレンズ3により平行 光となって平岡回折格子4に入射される。いま、 平面四折格子4の排に対に対して低度な平面

特開昭 62-152191 (3)

(X - N回) での光人射角、回折角をα、βとし、 またオフプレイン角をβとすると波長人の光は、

 $d \cdot c \circ s \phi \cdot (s \ln \alpha + s \ln \beta)$

m d

を満たす。但し、4 は溝間隔、mは次数である。 もし、入射角とオフプレイン角が一定ならば、入 射光の波長メが変化すると関折角度が変化する。

Δ β 変化すると 筆光レンズ 3 の 焦点面では Δ x - Δ β · ſに対応する。

「は爆光レンズ3の焦点距離である。LD1の出力光は光ファイバー2を通りレンズ3で平行光となって平面回折格子4で回折される。回折された光は、爆光レンズ3の焦点面上で被長に対応、発促可能な役モードが複数本存在するので、特定放長に対応する、レンズ3の焦点面上の位置に反射は6を配置すると、LD1においてその特定被長に対してだけ外部光共侵器が形成される。従ってLD1の発援波長は(1)式によって幾何学的に決定される。また、レンズ3の焦点面の反射線6

れる。第2図のa,b,c,d,eのスペクトルは、第1図のLD1a,b,c,d,eの発光スペクトルに対応している。

なお、本実施例では、平面回折格子 4 での 1 次の回折光の帰還にはレンズ 3 と反射線 6 によって 構成されたキャッツアイ光学系を用いているため に安定した光帰還が行える。

また、LDIの出力光は光ファイバー 2 によって外部光共級器に導かれているために、LDアレイとは異なり、各LDiを独立に温度制御することが可能となる。

また、本実施例においてはコリメートレンズ3 に集束ロッドレンズを用いているため、レンズの 一端面が焦点面になっており、光ファイバー2及 び帰還用反射鏡6はこの鏡面に所定の位置で接着 すればよい。さらに平面回折格子4及び集束ロッドレンズ3を光学ガラスブロック10に繋外経硬 化樹脂等を用いて接着すると光学系はしっかりと 固定され機械のな振動や衝撃に対して強くなるし、 光ファイバー2や反射鏡6の焦点方向の四壁も不

の(x-y)面内の位置を変えることによって、 共振周波数が変化し、LDIの発提周波数も利得 の粒頭内で変化させることができる。 従って、彼 長多重光道信用光波としてある一定の波長間隔で 免損するしD光源が必要な場合、第1図に示され るように反射銃6を複数個を必要な彼長位置に配 列し、しかも光ファイバーの出射端をy軸方向に 分似して配置することにより各LDIの回折光を 集光レンズ5の焦点関上においてy 軸方向に分散 して結復させ、各しD1の利得の広がりによって 生ずるスペクトルの猫の重りをレンズ5の焦点面 上で回避しながら、前記反射鏡8をx‐y回にお いて 2 次元的に配列し、外部光共優器を形成して やればよい。第2図にレンズ3の焦点面での各 LD1の結像スペクトルを示す。各LDが縦マル チモードで発掘していると1つのLD1の発温ス ベクトルは×方向に分散して結像される。特定の **塩モードスペクトルの結集点に反射線 6 を配置す** ると、反射線を上に結像された発援スペクトル像 7を光源として再び元の光路を通り LDへ帰還さ

要となる。

発明の効果

以上のように本発明は複数個のLDの外部に、 1 つのレンズと一枚の平面回折格子と、的配LD からの出力光を導く光ファイバーと、複数個の反 射鏡を具備し、LD外部に周波数選択性のある光 共振器を構成し、複数個のLDを独立にかつ選択 的に単一モード発振させることによって、周波数 を安定化し、周波数間隔が狭く多速度の高い被長 多重光通信用の光源を提供することができうる。

4、図面の簡単な説明

第1図は本発明の一契約例における被長多宜光 遺信用光線の構成図、第2図はレンズの焦点面上 のしりの発光スペクトル図、第3図は従来の光線 の斜視図である。

特開昭 62-152191 (4)

第 3 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.