

Fundamentos de Bacos de Dados

Transformação entre modelos

Transformações entre modelos

- Vimos que a abordagem ER é voltada à modelagem de dados de forma independente do SGBD e é adequada para construção do modelo conceitual.
- Já a abordagem relacional modela os dados a nível de SGBD relacional.
- Um modelo neste nível de abstração é chamado de modelo lógico.

Transformações entre modelos

• O modelo lógico resulta da transformação de um modelo ER em um modelo lógico.

Modelo relacional (lógico)

- Um modelo ER pode ser implementado através de vários modelos lógicos.
- O modelo lógico deve ser implementado buscando:
 - Uma melhor performance do banco de dados;
 - Uma maior facilidade de desenvolvimento e manutenção do banco de dados.

- Existem algumas regras de transformação de um diagrama ER(modelo conceitual) para a abordagem relacional(modelo lógico).
- As regras são baseadas na experiência acumulada por muitos autores no projeto de muitas bases de dados diferentes.

• Estas regras refletem um consenso de como deve ser projetado um banco de dados eficiente.

 O modelo produzido através destas regras deve ser considerado como um modelo relacional inicial.

• O modelo inicial pode passar por diversas adequações até que se atinja um modelo relacional satisfatório, ou seja, que atenda os requisitos de performance do BD projetado.

Transformação ER – Relacional

- As regras de transformação do modelo ER para o Relacional foram definidas tendo em vista os seguintes objetivos:
 - •Obter um BD com boa performance para consulta(SELECT) e alteração do BD(INSERT, UPDATE e DELETE);
 - •Obter simplicidade para o desenvolvimento de aplicações e facilidade para a manutenção.

Transformação ER – Relacional

- A transformação de um modelo ER para um modelo relacional dá-se nos seguintes passos:
 - 1. Tradução inicial de entidades e respectivos atributos;
 - 2. Tradução de relacionamentos e respectivos atributos;
 - 3. Tradução de generalizações/especializações.

Cada entidade é traduzida para uma tabela;

 Cada atributo da entidade é traduzido para uma coluna desta tabela;

 Os atributos identificadores da entidade correspondem às colunas que compõem da chave primária da tabela.

• É uma tradução inicial que ainda poderá se modificar através da tradução dos relacionamentos e hierarquias de generalização/especialização.

Pessoa (CodigoPess, Nome, Endereço, DataNasc, DataAdm)

Pessoa (CodigoPess, Nome, Endereço, DataNasc, DataAdm)

- Não é indicado apenas transcrever os nomes dos atributos para nomes de colunas.
- Estes nomes serão referenciados frequentemente por programas.
- Nomes de colunas não podem conter espaços em branco;
- Nomes de atributos compostos por diversas palavras devem ser abreviados.

- Abreviaturas comuns:
 - Cod para um código;
 - No ou Num para um número.

Entidade Fraca

 A tabela que foi gerada através de uma entidade fraca terá como parte da chave primária a chave primária da entidade a qual ela está vinculada.

Entidade Fraca

Dependente (<u>CodEmp,NoSeq</u>,Nome,Parentesco)

Tradução de relacionamentos

- Fator determinante para a tradução cardinalidade (mínima e máxima).
- Existem 3 formas básicas para a tradução de relacionamentos:
 - Tabela própria;
 - Colunas adicionais dentro de tabela de entidade;
 - Fusão de tabelas de entidade.

 Relacionamento implementado através de uma tabela própria que contém as colunas:

 Colunas que correspondem aos identificadores das entidades relacionadas;

• Colunas correspondentes aos atributos do relacionamento.

 A chave primária desta tabela é o conjunto das colunas correspondentes aos identificadores das entidades relacionadas.

 Cada conjunto de colunas que corresponde ao identificador de uma entidade é chave estrangeira em relação a tabela que implementa a entidade referenciada.

Engenheiro (CodEng, Nome)

Projeto (CodProj, Título)

Atuação (CodEng,CopProj,Função)

CodEng referencia Engenheiro

CodProj referencia Projeto

- Inserção de colunas em uma tabela correspondente a uma das entidades que participam do relacionamento.
- Esse tipo de tradução somente é possível quando uma das entidades que participa do relacionamento tem cardinalidade máxima um.

- Inserção das seguintes colunas no relacionamento com cardinalidade máxima 1:
 - Colunas correspondentes ao identificador da outra entidade;
 - Colunas correspondentes aos atributos do relacionamento.

- Inserção das seguintes colunas no relacionamento com cardinalidade máxima 1:
 - Colunas correspondentes ao identificador da outra entidade;

- Inserção das seguintes colunas no relacionamento com cardinalidade máxima 1:
 - Colunas correspondentes aos atributos do relacionamento.

Departamento (<u>CodDept</u>, Nome)
Empregado (<u>CodEmp</u>, Nome, **CodDept, DataLota**)
CodDept referencia Departamento

Fusão de tabelas de entidades

- Fusão das tabelas referentes as entidades envolvidas no relacionamento.
- Esse tipo de tradução somente é possível quando o relacionamento é de tipo 1:1.

Fusão de tabelas de entidades

• A tradução consiste em implementar todos os atributos de ambas as entidades, bem como os atributos do relacionamento em uma única entidade.

Conferência (CodConf, Nome, DataInstComOrg, EnderComOrg)

Regras para tradução de relacionamentos

	Regra de implementação		
Tipo de relacionamento	Tabela	Adição	Fusão
	própria	coluna	tabelas
Relacionamentos 1:1			
(0,1)	±		<u>.</u>
(0,1)	D. D.	±	
(1,1) (1,1)	0.	±	

Alternativa preferida

± Pode ser usada

Regras para tradução de relacionamentos

Tipo de relacionamento	Regra de implementação		
	Tabela	Adição	Fusão
	própria	coluna	tabelas
Relacionamentos 1:n			
(O,1) (O,n)	±		D D .
(O,1) (1,n)	±		D- D-
(1,1) (O,n)	<u> </u>		0.0.
(1,1) (1,n)	<u>.</u>		<u>.</u>

Alternativa preferida

± Pode ser usada

Regras para tradução de relacionamentos

Tipo de relacionamento	Regra de implementação		
	Tabela	Adição coluna	Fusão tabelas
Relacionamentos n:n	própria	Colulia	tabelas
(O,n) (O,n)		<u>.</u>	0.0.
(O,n) (1,n)		<u>.</u>	0 0.
(1,n) (1,n)		0. 0.	0.0.

Alternativa preferida

± Pode ser usada

Não usar

Relacionamentos 1:1

1. Ambas entidades têm participação opcional

Relacionamentos 1:1

1. Ambas entidades têm participação opcional

OPÇÃO 1

Mulher (<u>IdentM</u>,Nome,IdentH,Data,Regime)

IdentH referencia Homem

Homem (<u>IdentH</u>,Nome)

Relacionamentos 1:1

1. Ambas entidades têm participação opcional

OPÇÃO 2

Mulher (<u>IdentM</u>, Nome)

Homem (<u>IdentH</u>,Nome)

Casamento (<u>IdentM,IdentH</u>,Data,Regime)

IdentM referencia Mulher IdentH referencia Homem

- 1. Ambas entidades têm participação opcional
- A primeira opção é a preferida, pois minimiza a necessidade de junções.
- A desvantagem da primeira opção é a de basear-se no uso de colunas que admitem valores vazios(null).
- Nem todas as mulheres estarão casadas e por isso quando tivermos essa situação IdentH, Data e Regime assumirão valores nulos.

2. Uma entidade tem participação opcional e a outra tem participação obrigatória:

2. Uma entidade tem participação opcional e a outra tem participação obrigatória:

OPÇÃO 1

Correntista (CodCorrent, Nome, CodCartão, DataExp)

2. Uma entidade tem participação opcional e a outra tem participação obrigatória:

OPÇÃO 2

Correntista (CodCorrent, Nome)

Cartão(CodCartão, DataExp, CodCorrent)

CodCorrent referencia Correntista

- 2. Uma entidade tem participação opcional e a outra tem participação obrigatória:
- Neste caso, a tradução preferida é através da fusão das tabelas correspondentes às duas entidades.
- Alternativamente, poderia ser considerada a tradução através da adição de colunas à tabela correspondente à entidade com cardinalidade mínima 1.

3. Ambas entidades tem participação obrigatória:

3. Ambas entidades tem participação obrigatória:

Conferência (CodConf,Nome,DataInstComOrg,EnderComOrg)

- A alternativa preferida de implementação é a adição de colunas.
- A entidade com cardinalidade máxima 1 recebe o atributo identificador da entidade relacionada como uma chave estrangeira.

Edifício (<u>CódigoEd</u>, Endereço)

Apartamento (<u>CódigoEd,NúmeroAp</u>,ÁreaAp)

CódigoEd referencia Edifício

 No caso da entidade com cardinalidade máxima 1 ser opcional, isto é, possuir cardinalidade mínima o, poderia ser considerada uma implementação alternativa.

OPÇÃO 1

Financeira (<u>CodFin</u>, Nome)

Venda (IdVend, Data, CodFin, NoParc, TxJuros)

CodFin referencia Financeira

OPÇÃO 2

Financeira (CodFin, Nome)

Venda (<u>IdVend</u>,Data)

Fiancia (<u>IdVend,CodFin,NoParc,TxJuros</u>)
IdVend referencia Venda
CodFin referencia Financeira

• A única vantagem que a implementação por tabela própria apresenta é o fato de nela haver campos que são opcionais em certas linhas e obrigatórios em outras.

• Alguns autores tomam como regra que quando houver um relacionamento 1:N e este relacionamento contenha atributos próprios o ideal é que se crie uma tabela própria.

 Sendo que a chave primária será formada pelo atributo identificador vindo da entidade que tem participação máxima de 1 no relacionamento.

Financeira(CodFin, Nome)

Venda(IdVend, Nome)

Financia(<u>IdVend, CodFin</u>, NoParc, TxJuros)
IdVend referencia Venda
CodFin referencia Financeira

• Independentemente da cardinalidade mínima, relacionamentos n:n, são sempre implementados através de uma tabela própria.

(O,n) (O,n)	Tabela própria	Adição coluna	Fusão tabelas
-------------	-------------------	---------------	------------------

Pais(CodPais, Nome)
Produto(CodProd, Nome)
Exporta(CodPais, CodProd, Quantidade)
CodPais referencia Pais
CodProd referencia Produto