Uso de Algoritmos de Classificação para Predição de Novos Casos de Diabetes Mellitus

Pedro Jorge de Souza Colombrino Matheus Ferreira Amaral Madeira Guilherme Vieira Rodrigues

31 de Outubro, 2024

Abstract

Este estudo apresenta a aplicação de algoritmos de aprendizado de máquina, com foco em RandomForestClassifier, para a previsão de novos casos de diabetes em mulheres. O objetivo principal é demonstrar como treinar, avaliar e implementar esses modelos na predição de uma variável dependente dicotômica $(diab\acute{e}tico)$ com base em dados clínicos e demográficos. Utilizando validação cruzada (K-Fold), identificamos o modelo mais eficaz e avaliamos sua aplicabilidade em cenários reais de saúde pública.

1 Introdução

A capacidade de prever novos casos de diabetes com base em dados clínicos é uma ferramenta valiosa para a saúde pública e medicina personalizada. Diabetes Mellitus é uma doença crônica associada a sérios riscos de complicações, sendo prevalente em mulheres devido a fatores como diabetes gestacional e alterações hormonais.

Com a crescente disponibilidade de dados clínicos, algoritmos de aprendizado de máquina destacam-se pela capacidade de identificar padrões complexos e fazer previsões precisas. Este trabalho explora a aplicação do algoritmo RandomForestClassifier para prever diabetes com base em características clínicas e demográficas, demonstrando como os modelos podem ser aplicados na prática clínica.

2 Metodologia

2.1 Conjunto de Dados

Os dados utilizados foram obtidos do Kaggle, com 768 registros de pacientes do sexo feminino, contendo 8 variáveis explicativas e uma variável alvo (*Diabético*) que indica a presença ou ausência de diabetes.

Table 1: Descrição das Variáveis do Conjunto de Dados

Variável	Descrição	Tipo de Dado
Gravidez	Número de gestações do paciente	Inteiro
Glicose	Concentração de glicose no plasma após teste	Inteiro
	oral	
PressaoSanguinea	Pressão arterial diastólica (mmHg)	Inteiro
EspessuraDaPele	Espessura da dobra cutânea tricipital (mm)	Inteiro
Insulina	Nível sérico de insulina de 2h (mu U/ml)	Inteiro
IMC	Índice de Massa Corporal (peso em	Decimal
	$kg/(altura em m)^2)$	
DiabetesPedigree	Histórico genético de diabetes	Decimal
Idade	Idade do paciente (anos)	Inteiro
Diabético	Presença de diabetes (1: Sim, 0: Não)	Inteiro

2.2 Modelo: RandomForestClassifier

RandomForestClassifier é uma abordagem baseada em árvore de decisão que usa um conjunto de árvores para melhorar a robustez e a precisão. É adequado para detectar interações não lineares entre variáveis.

2.3 Validação Cruzada com K-Fold

K-Fold A validação cruzada foi usada para avaliar o desempenho do modelo. O conjunto de dados foi dividido em 5 subconjuntos (folds), garantindo que todos os dados fossem utilizados para treinamento e teste em diferentes iterações.

- Reduz a possibilidade de overfitting.
- fornece métricas de desempenho mais confiáveis.
- garante uma avaliação mais abrangente do modelo.

3 Treinamento e Avaliação

3.1 Hiperparâmetros do RandomForestClassifier

Os hiperparâmetros de *RandomForestClassifier* controlam o comportamento e o desempenho do modelo. Aqui, adotamos uma configuração baseada em avaliação heurística, que é uma aproximação prática do problema real e é particularmente útil quando não há dados suficientes para uma busca exaustiva de hiperparâmetros.

• Número de árvores (n_estimators): Define o número de árvores na floresta. Um número maior pode melhorar a estabilidade do modelo, mas por outro lado aumenta o custo computacional. A fórmula heurística utilizada é:

$$n_estimators = 10 \times \sqrt{n}, \tag{1}$$

onde n é o número total de amostras. Este cálculo fornece um ponto de partida para um equilíbrio entre desempenho e eficiência computacional.

• Profundidade Máxima (max_depht): Este hiperparâmetro controla a profundidade em que cada árvore pode crescer. Árvores mais profundas tendem a capturar mais detalhes, mas podem levar ao *overfitting*. A profundidade é limitada pela seguinte fórmula:

$$max_{-}depth = \log_2(n), \tag{2}$$

onde n é o número total de amostras. Isso permite capturar padrões importantes sem complicar demais o modelo.

• Número mínimo de amostras para divisão (min_samples_split): Define o número mínimo de amostras necessárias para dividir um nó. Para evitar partições muito pequenas e garantir robustez usamos:

$$min_samples_split = \max(2, \frac{n}{100}),$$
 (3)

onde n é o número total de amostras.

• Amostras mínimas por folha (min_samples_leaf): Determina o número mínimo de amostras permitido em uma folha terminal. A heurística utilizada é:

$$min_samples_leaf = \max(1, \frac{n}{1000}), \tag{4}$$

garantindo que cada folha tenha um número mínimo de amostras para conclusões confiáveis.

• Número máximo de atributos por Divisão (max_features): Define quantos atributos são considerados para encontrar a melhor partição. Para problemas de classificação, as escolhas comuns são:

$$max_features = \sqrt{m},$$
 (5)

onde m é o número total de atributos no conjunto de dados.

Essas heurísticas fornecem uma base sólida para configurar o modelo antes de realizar ajustes mais avançados, como otimização de hiperparâmetros via *Grid Search* ou *Random Search*. O uso destas avaliações iniciais é amplamente aceito na prática porque proporciona um equilíbrio entre simplicidade e desempenho.

3.2 Métricas de Avaliação

O desempenho foi avaliado com a métrica de acurácia, calculada como:

$$Acurácia = \frac{\text{Número de Previsões Corretas}}{\text{Número Total de Previsões}}$$

4 Resultados

Os resultados da validação cruzada mostraram uma precisão média de 85

5 Aplicação Prática

Após treinar o modelo, use a biblioteca pickle para salvar o modelo e depois carregá-lo para prever novos casos. exemplo:

```
novo_paciente = [[5, 176, 72, 17, 24.6, 0.387, 34]]
# Carregar o modelo salvo
with open("melhor_modelo_random_forest.pkl", "rb") as f:
    modelo = pickle.load(f)
# Previsão
predicao = modelo.predict(novo_paciente)
O resultado indica se o paciente é diabético (1) ou não (0).
```

6 Conclusão

O uso de *RandomForestClassifier* demonstrou ser eficaz na previsão de diabetes em mulheres. Melhorias futuras incluem aumentar o conjunto de dados e aplicar técnicas de otimização de hiperparâmetros.