(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-243588

(43)公開日 平成7年(1995)9月19日

(51) Int.Cl.6

識別記号

Α

FΙ

技術表示箇所

F17C 1/14

1/00

庁内整理番号

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号

特願平6-34505

(22)出願日

平成6年(1994)3月4日

(71)出願人 000005463

日野自動車工業株式会社

東京都日野市日野台3丁目1番地1

(72)発明者 畠中 一憲

東京都日野市日野台3丁目1番地1 日野

自動車工業株式会社内

(74)代理人 弁理士 須田 正義

(54) 【発明の名称】 エアタンク

(57)【要約】

【目的】重量及び加工工数を低減でき、必要最小限のス ベースに取付けることができ、かつ取付レイアウトの自 由度を増大できる。

【構成】タンク本体14がアルミニウム又はアルミニウ ム合金を押出し成形することにより筒状に形成され、タ ンク本体内がアルミニウム又はアルミニウム合金の押出 し成形によりタンク本体と一体的に形成されかつタンク 本体の長手方向に延びる仕切板 17 により複数のエア室 21~23に区画される。アルミニウム又はアルミニウ ム合金により形成されかつタンク本体の両端の開口部を 閉止する一対の鏡板16,16のうち仕切板に対向する 位置に仕切板の横断面形状と同一形状の孔16a,16 aがそれぞれ形成される。仕切板の端部に孔を合せて鏡 板をタンク本体の両端に嵌入した後、鏡板をタンク本体 の外周面及び仕切板に溶接することにより複数のエア室 のそれぞれの気密が保たれる。

1

【特許請求の範囲】

【請求項1】 アルミニウム又はアルミニウム合金を押 出し成形することにより筒状に形成されたタンク本体(1 4)と、

アルミニウム又はアルミニウム合金により形成され前記 タンク本体(14)の両端の開口部を閉止するように前記タ ンク本体(14)の両端に溶接された一対の鏡板(16,16)と を備えたエアタンクにおいて、

タンク本体(14)内がアルミニウム又はアルミニウム合金 の押出し成形により前記タンク本体(14)と一体的に形成 10 本体の内径をあまり小さくすることができない問題点も されかつ前記タンク本体(14)の長手方向に延びる仕切板 (17)により複数のエア室(21~23)に区画され、

一対の鏡板(16,16)のうち前記仕切板(17)に対向する位 置に前記仕切板(17)の横断面形状と同一形状の孔(16a,1 6a)がそれぞれ形成され、

前記仕切板(17)の端部に前記孔(16a)を合せて前記鏡板 (16)を前記仕切板(17)に溶接することにより前記複数の エア室(21~23)のそれぞれの気密が保たれるように構成 されたことを特徴とするエアタンク。

a.41b~43b)を有するアルミニウム又はアルミニウム合 金の押出し管を長さを変えて又は長さを同一にして切断 することにより形成された複数のタンク本体(41~43) ٤.

アルミニウム又はアルミニウム合金により形成され前記 複数のタンク本体(41~43)の両端の開口部をそれぞれ閉 止するように前記複数のタンク本体(41~43)の両端にそ れぞれ溶接された複数の鏡板(44)とを備えたエアタンク であって、

前記複数のタンク本体(41~43)の外周面の前記平面(41a 30 ~43a,41b~43b)を互いに接合することにより一体化さ れたことを特徴とするエアタンク。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はトラックやバス等の大型 車両に搭載するのに適したエアタンクに関する。更に詳 しくはアルミニウム又はアルミニウム合金により形成さ れたエアタンクに関するものである。

[0002]

にまるめて互いに対向する端縁を突合せ溶接してタンク 本体が形成され、このタンク本体の内周面に鋼板製の略 **椀状の単一又は複数の仕切板を溶接することによりタン** ク本体内がこのタンク本体の長手方向に並ぶ複数のエア 室に区画され、更にタンク本体の両端に鋼板製の一対の 鏡板が溶接されたものが知られている。

【0003】しかし、上記従来の銅板製エアタンクで は、タンク本体の周面の長手方向に延びる突合せ溶接を しなければならず、圧力容器構造の荷重条件や圧力容器 設計者の長年の経験や溶接に対する信頼性等により圧力 50 両端の開口部を閉止するようにタンク本体 1 4 の両端に

容器の溶接継手の継手効率がかなり低い値(約60~7 0%) に規定されており、タンク本体の肉厚を大きくし なければならない不具合があった。この結果、エアタン クの重量が増大する問題点があった。また、従来の鋼板 製エアタンクでは、タンク本体を円筒状にまるめて突合 せ溶接したり、仕切板をタンク本体内に溶接しなければ ならず、エアタンクの加工に多くの時間を要する問題点 もあった。更に、従来の銅板製エアタンクでは、タンク 本体内に仕切板を溶接する加工上の都合により、タンク あった。

【0004】これらの点を解消するために、アルミニウ ム又はアルミニウム合金を押出し成形することによりタ ンク本体が筒状に形成され、タンク本体の内周面にアル ミニウム又はアルミニウム合金製の略椀状の単一又は複 数の仕切板を溶接することによりタンク本体内がこのタ ンク本体の長手方向に並ぶ複数のエア室に区画され、タ ンク本体の両端に溶接される一対の鏡板がアルミニウム 又はアルミニウム合金により形成されたアルミ製エアタ 【請求項2】 外周面に少なくとも1つの平面(41a~43 20 ンクが知られている。このように構成されたアルミ製エ アタンクでは、タンク本体の周面の長手方向に延びる突 合せ溶接が不要になるので、タンク本体の溶接継手の継 手効率が1になり、タンク本体の肉厚を小さくすること により軽量化を図ることができる。

[0005]

【発明が解決しようとする課題】しかし、上記従来のア ルミ製エアタンクでは、従来の鋼板製エアタンクと比較 して加工工数を低減できるが、仕切板をタンク本体内に 溶接しなければならず、未だエアタンクの加工に比較的 多くの時間を要する不具合があった。また、従来のアル ミ製エアタンクでは、従来の鋼板製エアタンクと同様 に、タンク本体内に仕切板を溶接する加工上の都合によ り、タンク本体の直径をあまり小さくすることができな い問題点もあった。

【0006】本発明の第1の目的は、重量及び加工工数 を低減でき、直径を小さくしてタンク本体の長さを大き くすることにより同一容積のエアタンクを必要最小限の スペースに取付けることができ、かつ取付レイアウトの 自由度を増大させることができるエアタンクを提供する 【従来の技術】従来、エアタンクとして、鋼板を円筒状 40 ことにある。本発明の第2の目的は、複数のエア室のそ れぞれの容積を容易に変更できるエアタンクを提供する ことにある。

[0007]

【課題を解決するための手段】上記目的を達成するため の本発明の構成を、実施例に対応する図1及び図6を用 いて説明する。本発明の第1は、図1に示すようにアル ミニウム又はアルミニウム合金を押出し成形することに より筒状に形成されたタンク本体14と、アルミニウム 又はアルミニウム合金により形成されタンク本体14の 溶接された一対の鏡板 16.16とを備えたエアタンク の改良である。その特徴ある構成は、タンク本体14内 がアルミニウム又はアルミニウム合金の押出し成形によ りタンク本体14と一体的に形成されかつタンク本体1 4の長手方向に延びる仕切板17により複数のエア室2 1~23に区画され、一対の鏡板16,16のうち仕切 板17に対向する位置に仕切板17の横断面形状と同一 形状の孔16a, 16aがそれぞれ形成され、仕切板1 7の端部に孔16aを合せて鏡板16を仕切板17に溶 接することにより複数のエア室21~23のそれぞれの 10 気密が保たれるように構成されたところにある。

【0008】本発明の第2は、図6に示すように外周面 に少なくとも1つの平面41a~43a及び41b~4 3 b を有するアルミニウム又はアルミニウム合金の押出 し管を長さを変えて又は長さを同一にして切断すること により形成された複数のタンク本体41~43と、アル ミニウム又はアルミニウム合金により形成され複数のタ ンク本体41~43の両端の開口部をそれぞれ閉止する ように複数のタンク本体41~43の両端にそれぞれ溶 接された複数の鏡板44とを備えたエアタンクであり、 複数のタンク本体41~43の外周面の平面を互いに接 合することにより一体化されたものである。

[0009]

【作用】図1に示されるエアタンクでは、タンク本体1 4の周面の長手方向に延びる突合せ溶接が不要になるの で、溶接継手の継手効率を100%にすることができ、 タンク本体14の肉厚を小さくできる。またタンク本体 14内に仕切板17を溶接する必要がなくなり、エアタ ンク13の加工工数を低減することができる。更にタン ク本体14の直径を小さくできるので、タンク本体14 の肉厚を更に小さくでき、エアタンク13の重量を更に 低減できる。図6に示されるエアタンクでは、アルミニ ウム又はアルミニウム合金の押出し管の切断長さを変更 することにより、複数のタンク本体41~43のそれぞ れの容積を容易に変更できる。

[0010]

【実施例】次に本発明の第1実施例を図面に基づいて詳 しく説明する。図5に示すように、エアタンク13はこ の例ではトラック10のシャシフレーム11から突設さ れたブラケット12上に載置される。図1~図4に示す ように、エアタンク13はアルミニウム又はアルミニウ ム合金を押出し成形することにより筒状に形成されたタ ンク本体14と、アルミニウム又はアルミニウム合金に より形成されタンク本体14の両端の開口部を閉止する ようにタンク本体14の両端に溶接された一対の鏡板1 6, 16とを備える。タンク本体14内は、アルミニウ ム又はアルミニウム合金の押出し成形によりタンク本体 14と一体的に形成されかつタンク本体14の長手方向 に延びる仕切板17により、複数のエア室21~23に 50 る。また、タンク本体14と仕切板17がアルミニウム

区画される。仕切板17はこの例では横断面がタンク本 体14の中心からタンク本体14の内周面に向って放射 状に延びる3枚の第1~第3板片17a~17cにより 構成され、これらの板片17a~17cによりタンク本 体14内は3つの第1~第3エア室21~23に区画さ れる(図1及び図3)。

【0011】鏡板16は略椀状に形成され、タンク本体 14の両端にそれぞれ嵌入可能に形成される。鏡板16 のうち仕切板17の端部に対向する位置には仕切板17 の横断面形状と同一形状の孔16 aが形成される。この 孔16aは鏡板16の中心から3方に放射状に延びる溝 状の孔である。鏡板16はアルミニウム板又はアルミニ ウム合金板を打抜き加工及びプレス加工することにより 形成される。仕切板17の端部に孔16aを合せて鏡板 16をタンク本体14の端部に嵌入した後、鏡板16の 端面をタンク本体14の端面近傍の外周面に重ねすみ肉 溶接し、更に鏡板16の孔16aにみぞ型プラグ溶接す ることにより第1~第3エア室21~23のそれぞれの 気密が保たれるようになっている。第1エア室21を区 画する第1板片17a及び第2板片17bのなす角度は 80度であり、第2エア室22を区画する第2板片17 b及び第3板片17cのなす角度と、第3エア室23を 区画する第3板片17c及び第1板片17aのなす角度 はともに140度である。従って、第2及び第3エア室 22,23の容積は同一であり、第1エア室21の容積 は第1及び第2エア室21,22の容積より小さい(図 1及び図3)。

【0012】またトラック10には図示しないがエンジ ンにより駆動されるエアコンプレッサと、前輪18を制 ク本体14内への仕切板17の溶接の不要により、タン 30 動する前輪用エアブレーキ装置と、後輪を制動する後輪 用エアブレーキ装置が搭載される。第1エア室21は図 示しない逆止弁及びエアフィルタを介してエアコンプレ ッサに接続され、第2エア室22は前輪用エアブレーキ 装置のエアチャンバ(図示せず)に接続され、第3エア 室23は後輪用エアブレーキ装置のエアチャンバ(図示 せず)に接続される。第1エア室21及び第2エア室2 2間と、第1エア室21及び第3エア室23間は逆止弁 (図示せず)を介してそれぞれ互いに連通される。第1 エア室21及び第2エア室22間と、第1エア室21及 40 び第3エア室23間とにそれぞれ設けられた逆止弁は第 1エア室21から第2及び第3エア室22、23への圧 縮エアの流れを許容し、第2及び第3エア室22,23 から第1エア室21への圧縮エアの流れを阻止するよう になっている。

> 【0013】 このように構成されたエアタンク13で は、タンク本体14の周面の長手方向に延びる突合せ溶 接が不要になるので、溶接維手の維手効率を100%に することができる。この結果、タンク本体 1 4 の肉厚を 小さくできるので、タンク本体 1 4 の重量を低減でき

又はアルミニウム合金の押出し成形により一体的に形成 されるので、仕切板17をタンク本体14内に溶接する 必要がなくなり、エアタンク13の加工工数を低減でき

【0014】また、タンク本体14内への仕切板17の 溶接作業の不要により、タンク本体14の直径を小さく できるので、タンク本体14の肉厚を更に小さくでき、 エアタンク13の重量を更に低減できる。更に、タンク 本体14の直径を小さくしかつタンク本体14の長さを 大きくすることにより、同一容積のエアタンク13を必 10 要最小限のスペースに取付けることができ、かつエアタ ンク13の取付レイアウトの自由度を増大させることが できる。

【0015】図6~図8は本発明の第2実施例を示す。 図6~図8において上記第1実施例と同一符号は同一部 品を示す。この例では、アルミニウム又はアルミニウム 合金の押出し管を所定の長さに1本切断することにより 第1タンク本体41が形成され、第1タンク本体41よ り大きい長さにかつ互いに同一の長さに2本切断するこ とにより第2及び第3タンク本体42、43が形成され る。これらのタンク本体41~43の横断面は同一の扇 状に形成され、とれらの外周面には単一の円弧面41 c ~43cと2つの平面41a~43a及び41b~43 bとがそれぞれ形成される。2つの平面41a~43a 及び41b~43bのなす角度は120度である。タン ク本体41~43の両端にアルミニウム又はアルミニウ ム合金により形成された鏡板44をタンク本体41~4 3の両端の開口部をそれぞれ閉止するようにそれぞれ溶 接することにより、第1~第3タンク本体41~43内 の第1~第3エア室51~53の気密がそれぞれ保たれ る。またこれらのタンク本体41~43の2つの平面4 1a~43a及び41b~43bを互いに接着剤により 接合することにより一体化されたエアタンク33が形成 され、このエアタンク33は略円筒状に形成される。エ アタンク33の外周面には2つのバンド46,46が巻 付けられる(図6及び図8)。上記接着剤による接合に よりタンク本体41~43の接合面の腐食を防止できる ようになっている。このように構成されたエアタンク3 3では、アルミニウム又はアルミニウム合金の押出し管 の切断長さを変更するだけでタンク本体41~43のそ 40 れぞれの容積を容易に変更できる。

【0016】なお、上記第1及び第2実施例では第2及 び第3エア室を同一の大きさに形成し、第1エア室を第 2及び第3エア室より小さく形成したが、これは一例で あって第1エア室を第2及び第3エア室より大きく形成 したり、或いは全てのエア室をそれぞれ異なる大きさに 形成してもよい。また、上記第1実施例では仕切板によ りタンク本体内を3つのエア室に区画したが、これに限 らず図9に示すように一直線状の仕切板により2つの第 台、一対の鏡板66,66には一直線状の孔66a,6 6aがそれぞれ形成される。図9において図1と同一符 号は同一部品を示す。またタンク本体内を仕切板により 4つ以上のエア室に区画してもよい。また、上記第1実 施例では一対の鏡板を略椀状に形成してタンク本体の両 端に嵌入した後にすみ肉溶接したが、図10に示すよう に仕切板17の横断面形状と略同一形状の孔86a, 8 6aがそれぞれ形成された一対の鏡板86,86を略円 板状に形成してタンク本体14の両端に直角突合せ溶接 してもよい。図10において図4と同一符号は同一部品 を示す。また、上記第1実施例ではトラックに搭載され たエアタンクを挙げたが、バス、鉄道車両、産業用機械 又はその他の機械に本発明のエアタンクを搭載してもよ

6

【0017】また、上記第2実施例では3つのタンク本 体が角度120度をなす2つの平面を有する横断面略扇 状にそれぞれ形成され、これらのタンク本体を上記2つ の平面を互いに接合することにより略円筒状になるよう に一体化したが、図11に示すように2つの第1及び第 20 2エア室101,102が必要な場合には、2つの第1 及び第2タンク本体91,92が単一の平面91a,9 2aを有する横断面略半月状に形成され、これらのタン ク本体91,92を上記単一の平面91a,92aを互 いに接合することにより略円筒状になるように一体化し てもよい。96は鏡板であり、46はバンドである。ま た図12に示すように4つの第1~第4エア室121~ 124が必要な場合には、4つの第1~第4タンク本体 111~114が角度90度をなす2つの平面111a ~114a及び111b~114bを有する横断面略扇 30 状にそれぞれ形成され、これらのタンク本体111~1 14を上記2つの平面111a~114a及び111b ~114bを互いに接合することにより略円筒状になる ように一体化してもよい。116は鏡板であり、46は バンドである。更に、5つ以上のエア室が必要な場合に は、5つ以上のタンク本体が所定の角度(360/エア 室の数)をなす2つの平面を有する横断面略扇状にそれ ぞれ形成され、これらのタンク本体を上記2つの平面を 互いに接合することにより略円筒状になるように一体化 してもよい。

[0018]

【発明の効果】以上述べたように、本発明によれば、タ ンク本体内をアルミニウム又はアルミニウム合金の押出 し成形によりタンク本体と一体的に形成されかつタンク 本体の長手方向に延びる仕切板により複数のエア室に区 画し、一対の鏡板のうち仕切板に対向する位置に仕切板 の横断面形状と同一形状の孔をそれぞれ形成し、仕切板 の端部に孔を合せて鏡板を仕切板に溶接することにより 複数のエア室のそれぞれの気密を保つように構成したの で、従来の鋼板製エアタンクと比較して、本発明ではタ 1及び第2エア室41,42に区画してもよい。この場 50 ンク本体の周面の長手方向に延びる突合せ溶接が不要に 7

なり、溶接継手の継手効率を100%にすることができ る。との結果、タンク本体の肉厚を小さくできるので、 タンク本体の重量を低減できる。また、タンク本体内に 仕切板を溶接する必要がなくなるので、エアタンクの加 工工数を低減することができる。

【0019】また、仕切板の溶接の不要により、タンク 本体の直径を小さくできるので、タンク本体の肉厚を更 に小さくでき、エアタンクの重量を更に低減できる。ま た、タンク本体の直径を小さくしかつタンク本体の長さ を大きくすることにより、同一容積のエアタンクを必要 10 最小限のスペースに取付けることができ、かつエアタン クの取付レイアウトの自由度を増大させることができ る。更に、外周面に少なくとも1つの平面を有するアル ミニウム又はアルミニウム合金の押出し管を長さを変え て又は長さを同一にして切断することにより複数のタン ク本体を形成し、アルミニウム又はアルミニウム合金に より形成された複数の鏡板を複数のタンク本体の両端の 開口部をそれぞれ閉止するように複数のタンク本体の両 端にそれぞれ溶接し、複数のタンク本体の外周面の平面 を互いに接合することにより複数のタンク本体を一体化 20 21,71 第1エア室 すれば、複数のタンク本体のそれぞれの容積を容易に変 更できる。

【図面の簡単な説明】

【図1】本発明第1実施例のエアタンクの一対の鏡板を タンク本体に溶接する前の状態を示す斜視図。

【図2】一対の鏡板をタンク本体に溶接した後の状態を 示す斜視図。

【図3】図2のA-A線断面図。

【図4】図3のB-B線断面図。

*【図5】そのエアタンクを搭載したトラックの要部斜視

【図6】本発明の第2実施例のエアタンクの斜視図。

【図7】図6のC-C線断面図。

【図8】図7のD-D線断面図。

【図9】本発明の第3実施例を示す図1に対応する斜視

【図10】本発明の第4実施例を示す図4に対応する断 面図。

【図11】本発明の第5実施例を示す図6に対応する斜 視図。

【図12】本発明の第6実施例を示す図6に対応する斜 視図。

【符号の説明】

13,33 エアタンク

14 タンク本体

16, 44, 66, 86, 96, 116 鏡板

16a, 66a, 86a 7L

17.67 仕切板

22,72 第2エア室

23 第3エア室

41, 91, 111 第1タンク本体

41a~43a, 41b~43b, 91a, 92a, 1

lla~114a, lllb~114b 平面

42,92,112 第2タンク本体

43.113 第3タンク本体

114 第4タンク本体

【図1】

(図2)

