Video

5.7_Probability_Inequalities

POLL

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

RESULTS

Linda is a bank teller

- 74%
- Linda is a bank teller and is active in the feminist movement 26%

Results gathered from 39 respondents.

FEEDBACK

It is more probable that Linda is a bank teller than Linda is both a bank teller and an activist.

1 (Graded)

2/2 points (graded)

Which of the following holds for all events $m{A}$ and $m{B}$

a. in any probability space:

$$|A| \ge |B| \longrightarrow P(A) \ge P(B)$$

$$\square P(A) \ge P(B) \longrightarrow |A| \ge |B|$$

Explanation

- 1. $A \supseteq B \longrightarrow P(A) = P(B) + P(A \setminus B) \ge P(B)$.
- 2. A and B can be nonempty and disjoint with $P(A) \geq P(B)$, then A does not contain B.
- 3. \boldsymbol{B} can be a singleton with higher probability than a set \boldsymbol{A} with two elements.
- 4. Similar counter-example to 3.
- b. in any **uniform** probability space:

$$|A| \ge |B| \longrightarrow P(A) \ge P(B)$$

$$ightharpoonup P(A) \ge P(B) \longrightarrow |A| \ge |B|$$

Explanation

- 1. Follows from the result for general spaces.
- 2. Similar counter-example to part a.
- 3. I uniform sample spaces S, for any event E, $P\left(E\right)=|E|/|S|$, hence

$$|A| \ge |B| \longrightarrow P(A) \ge P(B).$$

4. Again, follows since for any event E, P(E) = |E|/|S|.

Submit

You have used 2 of 4 attempts

1 Answers are displayed within the problem

2 (Graded)

2/2 points (graded)

Let Ω be any sample space, and A,B are subsets of Ω . Which of the following statements are always true?

$$oxed{ \ }$$
 If $|A|+|B|\geq |\Omega|$, then $P\left(A\cup B
ight)=1$

$$oxed{ \ }$$
 If $|A|+|B|\geq |\Omega|$, then $P\left(A
ight)+P\left(B
ight)\geq 1$

$$lacksquare$$
 If $P\left(A
ight)+P\left(B
ight)>1$, then $A\cap B
eq\emptyset$

$$oxed{ \ }$$
 If $P\left(A
ight)+P\left(B
ight)>1$, then $P\left(A\cup B
ight)=1$

Explanation

Let $\Omega=\{1,2,3\}$, and $P\left(1\right)=P\left(2\right)=0.1,P\left(3\right)=0.8.$

- False. Let $A=B=\{1,2\}$. $|A|+|B|=4>|\Omega|$, but $P\left(A\cup B
 ight)=0.2$.
- False. Let $A=B=\{1,2\}$. $|A|+|B|=4>|\Omega|$, but P(A)+P(B)=0.4.
- True.
- False. Let $A=B=\{3\}$. $P\left(A\right)+P\left(B\right)=1.6>1$, but $P\left(A\cup B\right)=0.8$.

Submit

You have used 2 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 5 / Poker

Add a Post

Show all posts

by recent activity 🗸

There are no posts in this topic yet.

×