Linealidad en el modelo de regresión lineal múltiple

Econometría 2021-2022

GRADO INGENIERÍAS & ADE

Linealidad del Modelo

$$Y = X\beta + u$$

Los modelos de regresión lineal necesitan que la relación entre la variables dependientes e independientes sea lineal.

¿Cómo chequear la linealidad? Con nubes de puntos:

➤ Valores observados vs. Valores Predichos. Los puntos deberían estar simétricamente distribuidos alrededor de la diagonal.

Linealidad del Modelo

Residuos vs. Valores predichos. Los puntos deberían estar situados alrededor de una línea horizontal con una varianza casi constante.

0

- ► Si la variable dependiente es estrictamente positiva y el gráfico Residuos v.s Predicha indica que el tamaño de los errores es proporcional al tamaño de las predicciones ⇒ transformar variables a su logaritmo.
- ★ El modelo es claramente no lineal...

Modelos No Lineales

$$y_i=eta_0+eta_1rac{1}{1-\mathrm{e}^{x_i}}+u_t$$

$$\sqrt{y_i} = eta_0 + eta_1 \mathrm{e}^{x_i} + eta_2 \sqrt[3]{\sin(z_i)} + u_t$$

$$\sqrt{y_i} = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + u_t$$

$$y_i = \beta_0 + x_i^{\beta_1} + u_t$$

Ajustes Polinomiales

Ū

Nos quedaríamos con el modelo tal que \overline{SCR} sea más pequeño.

Tests de Hipótesis: Harvey-Collier

$$U_j = rac{y_j - x_j \hat{eta}_j}{\sqrt{1 + x_j (X_j^{\,t} X_j) x_h}}, j = k+1, \ldots, n.$$

donde $x_j = [1X_{1j} \dots X_{kj}], X_j = [x_1 \dots x_j] \hat{\beta}_j$ coeficientes estimados para las j primeras observaciones.

$$\xi = rac{\displaystyle\sum_{j=1}^{k+1} U_j}{\sqrt{(n-k)(n-k-1)\sum_{j=k+1}^{n} (U_j - \overline{U}_j)^2}} \sim t_{n-k+1}$$

 H_0 : El modelo de regresión es lineal (F-test) statsmodels.stats.diagnostic.linear_harvey_collier(mco)

$$y = X\beta + \gamma_2 \hat{y}^2 + \gamma_3 \hat{y}^3 + \dots + \gamma_k \hat{y}^k + u$$

$$H_0: \gamma_2 = \cdots = \gamma_k = 0 \quad (F-test)$$

import statsmodels.stats.outliers_influence as oi
statsmodels.stats.outliers_influence.reset_ramsey(mco,
degree=k)

Cobb-Douglas

$$P = f(K, L)$$

donde:

- 🗗 P: Producción de un bien (en unidades monetarias).
- L: Trabajadores (número de personas/horas trabajadas). labor input (the total number of person-hours worked in a year)
- K: Coste de instalaciones, maquinaria, equipamientos.

Hipótesis:

- f(0,0) = 0.
- 2 La productividad marginal de L debe ser proporcional a la cantidad producidad por unidad de trabajo
- 3 La productividad marginal de K debe ser proporcional a la cantidad producidad por unidad de maquinaria.

$$P = f(K, L)$$

- **1** f(0,0) = 0.
- ② La productividad marginal de L debe ser proporcional a la cantidad producidad por unidad de trabajo
- 3 La productividad marginal de K debe ser proporcional a la cantidad producidad por unidad de maquinaria.
- **1** f(0,0) = 0.
- 3 $\frac{\partial K}{\partial L} = \beta \frac{K}{L} \Rightarrow P = C_2(L)K^{\beta}$

$$P = \kappa L^{\alpha} K^{\beta}$$

Cobb-Douglas

$$P = \kappa L^{\alpha} K^{\beta}$$

- \mathbb{R} α y β son las elasticidades de la mano de obra de la tecnología, respectivamente.
- \bot Las elasticidades miden la respuesta a la producción a cambios en L o K, ceteris paribus.
- $A + \beta = 1$: Retorno constante a escala \rightarrow Si L y K incrementan en a%, entonces P incrementa a%.
- \mathbf{X} α y β se pueden interpretar como la proporción de productividad que comparten K y L.

¿Cómo estimar α y β ?

$$\log(P) = \log(\kappa) + \alpha \log(L) + \beta \log(K)$$

$$P' = \kappa + \alpha L' + \beta K' + u$$