03-27-00

		1	
•	7	t	
- 1			

			-	/ `			
S C S S S S S S S S S S S S S S S S S S	ner No. 20350 SEND and TOWNSEND nbarcadero Center, 8 th Flo	and CREW LLP	Attorney Docket No	19496-003020US			
⊷ ===m.Fra	ncisco, California 94111- 76-0200	-3834	"Express Mail" Label No	EL170263749US			
5==	TANT COMMISSIONE	R FOR PATENTS	Date of Deposit:	March 23, 2000			
Washin	ATENT APPLICATION	Y	I hereby certify that this is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above, addressed to:				
	[X] patent application [] continuation patent application of the continuation of t	application of plication of patent application of	Assistant Commissioner for Washington, D.C. 20231 By: Gentlemann)			
Invent	or(s)/Applicant Identifier	r: Stephen Eisenberg, Casey C	ase, George Cox III, Andrew Jami	eson, Edward Rebar and Qiang Lui.			
[X]	60/126,238 filed Marc 30, 1999, the disclosur Please amend this app continuation-in-part of disclosure of which is sed are: 55 Pages of Specificar	as priority from each of the fol- ch 24, 1999, 60/126,239 filed res of which are incorporated olication by adding the follow of and claims the benefit of I incorporated by reference."	by reference. ring before the first sentence: "Thi	s application is a [] continuation [60/, filed, th			
(1) (1) (1)	In view of the l Applicant req	juests deferral of the filing f	d with this application and pursue until submission of the Missing	g Parts of Application.			
	Telephone: (415) 576-0200	DO <u>NOT</u> CHARGE ² Facsimile: (415) 576-0300	THE FILING FEE AT THIS TIME Joe Liebeschuetz Reg No.: 37,505 Attorneys for Applicat				

PA 3059297 v1

PATENT APPLICATION ZINC FINGER PROTEIN COMPOSITIONS

Inventor(s):

Stephen P. Eisenberg A Citizen of the United States of America, 5664 Pennsylvania Pl. Boulder, CO 80303

Casey C. Case A Citizen of the United States of America, 605 Barroilhet Avenue San Mateo, CA 94402

George N. Cox III A Citizen of the United States of America, 678 West Willow Street Louisville, CO 80027

Andrew Jamieson A Citizen of the United Kingdom 2528 Sutter Street San Francisco, CA 94115

Edward J. Rebar A Citizen of the United States of America, 1609 Roger Court El Cerrito CA 94530

Qiang Lui A Citizen of the United States of America 55 Williams Lane Foster City CA 94404

Assignee:

Sangamo Biosciences Point Richmond Tech Center 501 Canal Blvd., Suite A100 Richmond, CA 94804

Entity: SMALL

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834 (650) 326-2400

Attorney Docket No.: 19496-003020US

ZINC FINGER PROTEIN COMPOSITIONS

CROSS-REFERENCES TO RELATED APPLICATIONS

The present application claims priority to U.S.provisional applications 60/126,238, filed March 24, 1999, 60/126,239 filed March 24, 1999, 60/146,596 filed July 30, 1999 and 60/146,615 filed July 30, 1999, all of which are incorporated by reference in their entirety for all purposes.

10

15

20

25

30

5

BACKGROUND

Zinc finger proteins (ZFPs) are proteins that can bind to DNA in a sequence-specific manner. Zinc fingers were first identified in the transcription factor TFIIIA from the oocytes of the African clawed toad, Xenopus laevis. An exemplary motif characterizing one class of these protein (C₂H₂ class) is -Cys-(X)₂₋₄-Cys-(X)₁₂-His-(X)₃₋₅-His (where X is any amino acid) (SEQ. ID. No:1). A single finger domain is about 30 amino acids in length, and several structural studies have demonstrated that it contains an alpha helix containing the two invariant histidine residues and two invariant cysteine residues in a beta turn co-ordinated through zinc. To date, over 10,000 zinc finger sequences have been identified in several thousand known or putative transcription factors. Zinc finger domains are involved not only in DNA-recognition, but also in RNA binding and in protein-protein binding. Current estimates are that this class of molecules will constitute about 2% of all human genes.

The x-ray crystal structure of Zif268, a three-finger domain from a murine transcription factor, has been solved in complex with a cognate DNA-sequence and shows that each finger can be superimposed on the next by a periodic rotation. The structure suggests that each finger interacts independently with DNA over 3 base-pair intervals, with side-chains at positions -1, 2, 3 and 6 on each recognition helix making contacts with their respective DNA triplet subsites. The amino terminus of Zif268 is situated at the 3' end of the DNA strand with which it makes most contacts. Some zinc fingers can bind to a fourth base in a target segment. If the strand with which a zinc finger protein makes most contacts is designated the target strand, some zinc finger

proteins bind to a three base triplet in the target strand and a fourth base on the nontarget strand. The fourth base is complementary to the base immediately 3' of the three base subsite.

The structure of the Zif268-DNA complex also suggested that the DNA 5 sequence specificity of a zinc finger protein might be altered by making amino acid substitutions at the four helix positions (-1, 2, 3 and 6) on each of the zinc finger recognition helices. Phage display experiments using zinc finger combinatorial libraries to test this observation were published in a series of papers in 1994 (Rebar et al., Science 263, 671-673 (1994); Jamieson et al., Biochemistry 33, 5689-5695 (1994); Choo et al, PNAS 91, 11163-11167 (1994)). Combinatorial libraries were constructed with randomized side-chains in either the first or middle finger of Zif268 and then used to select for an altered Zif268 binding site in which the appropriate DNA sub-site was replaced by an altered DNA triplet. Further, correlation between the nature of introduced mutations and the resulting alteration in binding specificity gave rise to a partial set of substitution rules for design of ZFPs with altered binding specificity.

Greisman & Pabo, Science 275, 657-661 (1997) discuss an elaboration of the phage display method in which each finger of a Zif268 was successively randomized and selected for binding to a new triplet sequence. This paper reported selection of ZFPs for a nuclear hormone response element, a p53 target site and a TATA box sequence.

A number of papers have reported attempts to produce ZFPs to modulate particular target sites. For example, Choo et al., Nature 372, 645 (1994), report an attempt to design a ZFP that would repress expression of a brc-abl oncogene. The target segment to which the ZFPs would bind was a nine base sequence 5'GCA GAA GCC3' chosen to overlap the junction created by a specific oncogenic translocation fusing the genes encoding brc and abl. The intention was that a ZFP specific to this target site would bind to the oncogene without binding to abl or brc component genes. The authors used phage display to screen a mini-library of variant ZFPs for binding to this target segment. A variant ZFP thus isolated was then reported to repress expression of a stably transfected brc-able construct in a cell line.

Pomerantz et al., Science 267, 93-96 (1995) reported an attempt to design a novel DNA binding protein by fusing two fingers from Zif268 with a homeodomain from Oct-1. The hybrid protein was then fused with a transcriptional activator for expression as a chimeric protein. The chimeric protein was reported to bind a target site

20

25

30

10

15

10

15

20

25

30

representing a hybrid of the subsites of its two components. The authors then constructed a reporter vector containing a luciferase gene operably linked to a promoter and a hybrid site for the chimeric DNA binding protein in proximity to the promoter. The authors reported that their chimeric DNA binding protein could activate expression of the luciferase gene.

Liu et al., PNAS 94, 5525-5530 (1997) report forming a composite zinc finger protein by using a peptide spacer to link two component zinc finger proteins each having three fingers. The composite protein was then further linked to transcriptional activation domain. It was reported that the resulting chimeric protein bound to a target site formed from the target segments bound by the two component zinc finger proteins. It was further reported that the chimeric zinc finger protein could activate transcription of a reporter gene when its target site was inserted into a reporter plasmid in proximity to a promoter operably linked to the reporter.

Choo et al., WO 98/53058, WO98/53059, and WO 98/53060 (1998) discuss selection of zinc finger proteins to bind to a target site within the HIV Tat gene. Choo et al. also discuss selection of a zinc finger protein to bind to a target site encompassing a site of a common mutation in the oncogene ras. The target site within ras was thus constrained by the position of the mutation.

The present application is related to commonly owned copending applications 09/229,007 filed January 12, 1999 and 09/229,037 filed January 12, 1999.

SUMMARY OF THE CLAIMED INVENTION

Tables 1-5 show the amino acid sequences of a large collection of zinc finger proteins and corresponding target sites bound by the proteins. Nucleotide sequences of target sites are shown in Col. 2. Target sites typically have 9 or 10 bases and constitute three target subsites bound by respective zinc finger components of a multifinger protein. Amino acid sequences of zinc finger components are shown in cols. 4, 6 and 8. The amino acids shown occupy positions -1 to +6 of a zinc finger. Table 6 shows consensus sequences for zinc fingers and target subsites bound by the fingers. Col. 1 shows the nucleotides occupying a target subsite. Cols. 2-4 show amino acids occupying positions -1 to +6 of zinc fingers binding to a target subsite.

Accordingly, the invention provides zinc fingers having amino acid sequences and target subsite binding specificies shown in Table 6. As an example, a zinc finger having the amino acid sequence DXSNXXR at positions –1 to +6 has a target subsite GAC. As an other example, a zinc finger having the amino acid sequence RX(D/S)NXXR at positions –1 to +6 has a target subsite of GAG. A zinc finger having an amino acid sequence TXGNXXR at positions –1 to +6 has the target subsite GAT. A zinc finger having the sequence (Q/T)XSNXXR at positions –1 to +6 binds to a target subsite GAT. A zinc finger having an amino acid sequence QXG(S/D)XXR at positions –1 to +6 binds to a target subsite GCA. A zinc finger having an amino acid sequence RXDEXXR binds to a target subsite GCG. A zinc finger having an amino acid sequence QXGS/DXXR at positions –1 to +6 binds to a target subsite GCT. A zinc finger having an amino acid sequence QX(G/A)HXXR at positions –1 to +6 binds to a target subsite GGC. A zinc finger having an amino acid sequence RXDHXXR binds to a target subsite GCC. A zinc finger having an amino acid sequence RXDHXXR at positions –1 to +6 binds to a target subsite GCC. A zinc finger having an amino acid sequence RXDHXXR at positions –1 to +6 binds to a target subsite GCG.

The invention further provides nucleic acid encoding zinc fingers, including all of the zinc fingers described above.

The invention further provides segments of a zinc finger comprising a sequence of seven contiguous amino acids as shown in any of Tables 1-5. The invention also provides nucleic acids encoding any of these segments and zinc fingers comprising the same.

The invention further provides zinc finger proteins comprising first, second and third zinc fingers. The first, second and third zinc fingers comprise respectively first, second and third segments of seven contiguous amino acids as shown in a row of Tables 1-5. The invention further provides nucleic acids encoding such zinc finger proteins.

BRIEF DESCRIPTION OF THE FIGURE

Fig. 1 shows assembly of nucleic acids encoding zinc finger binding proteins.

DEFINITIONS

A zinc finger DNA binding protein is a protein or segment within a larger protein that binds DNA in a sequence-specific manner as a result of stabilization of protein structure through cordination of a zinc ion. The term zinc finger DNA binding protein is often abbreviated as zinc finger protein or ZFP.

ת ת ת

5

10

15

20

25

30

5

10

15

20

25

30

A designed zinc finger protein is a protein not occurring in nature whose design/composition results principally from rational criteria. Rational criteria for design include application of substitution rules and computerized algorithms for processing information in a database storing information of existing ZFP designs and binding data.

A selected zinc finger protein is a protein not found in nature whose production results primarily from an empirical process such as phage display.

The term naturally-occurring is used to describe an object that can be found in nature as distinct from being artificially produced by man. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring. Generally, the term naturally-occurring refers to an object as present in a non-pathological (undiseased) individual, such as would be typical for the species.

A nucleic acid is operably linked when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it increases the transcription of the coding sequence. Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame. However, since enhancers generally function when separated from the promoter by up to several kilobases or more and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not contiguous.

A specific binding affinity between, for example, a ZFP and a specific target site means a binding affinity of at least $1 \times 10^6 \, M^{-1}$.

The terms "modulating expression" "inhibiting expression" and "activating expression" of a gene refer to the ability of a zinc finger protein to activate or inhibit transcription of a gene. Activation includes prevention of subsequent transcriptional inhibition (i.e., prevention of repression of gene expression) and inhibition includes prevention of subsequent transcriptional activation (i.e., prevention of gene activation). Modulation can be assayed by determining any parameter that is indirectly or directly affected by the expression of the target gene. Such parameters include, e.g., changes in RNA or protein levels, changes in protein activity, changes in product levels, changes in downstream gene expression, changes in reporter gene transcription (luciferase, CAT, beta-galactosidase, GFP (see, e.g., Mistili & Spector, Nature Biotechnology 15:961-964

COSTS CELEBRA

5

10

15

20

25

30

(1997)); changes in signal transduction, phosphorylation and dephosphorylation, receptorligand interactions, second messenger concentrations (e.g., cGMP, cAMP, IP3, and Ca2+), cell growth, neovascularization, in vitro, in vivo, and ex vivo. Such functional effects can be measured by any means known to those skilled in the art, e.g., measurement of RNA or protein levels, measurement of RNA stability, identification of downstream or reporter gene expression, e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, ligand binding assays; changes in intracellular second messengers such as cGMP and inositol triphosphate (IP3); changes in intracellular calcium levels; cytokine release, and the like.

A "regulatory domain" refers to a protein or a protein subsequence that has transcriptional modulation activity. Typically, a regulatory domain is covalently or non-covalently linked to a ZFP to modulate transcription. Alternatively, a ZFP can act alone, without a regulatory domain, or with multiple regulatory domains to modulate transcription.

A D-able subsite within a target site has the motif 5'NNGK3'. A target site containing one or more such motifs is sometimes described as a D-able target site. A zinc finger appropriately designed to bind to a D-able subsite is sometimes referred to as a D-able finger. Likewise a zinc finger protein containing at least one finger designed or selected to bind to a target site including at least one D-able subsite is sometimes referred to as a D-able zinc finger protein.

DETAILED DESCRIPTION

I. General

Tables 1-5 list a collection of nonnaturally occurring zinc finger protein sequences and their corresponding target sites. The first column of each table is an internal reference number. The second column lists a 9 or 10 base target site bound by a three-finger zinc finger protein, with the target sites listed in 5' to 3' orientation. The third column provides SEQ ID NOs for the target site sequences listed in column 2. The fourth, sixth and eighth columns list amino acid residues from the first, second and third fingers, respectively, of a zinc finger protein which recognizes the target sequence listed in the second column. For each finger, seven amino acids, occupying positions –1 to +6 of the finger, are listed. The numbering convention for zinc fingers is defined below. Columns 5, 7 and 9 provide SEQ ID NOs for the amino acid sequences listed in columns

10

15

20

25

30

4, 6 and 8, respectively. The final column of each table lists the binding affinity (i.e., the K_d in nM) of the zinc finger protein for its target site. Binding affinities are measured as described below.

Each finger binds to a triplet of bases within a corresponding target sequence. The first finger binds to the first triplet starting from the 3' end of a target site, the second finger binds to the second triplet, and the third finger binds the third (i.e., the 5'-most) triplet of the target sequence. For example, the RSDSLTS finger (SEQ ID NO: 646) of SBS# 201 (Table 2) binds to 5'TTG3', the ERSTLTR finger (SEQ ID NO: 851) binds to 5'GCG3' and the QRADLRR finger (SEQ ID NO: 1056) binds to 5'GCA3'.

Table 6 lists a collection of consensus sequences for zinc fingers and the target sites bound by such sequences. Conventional one letter amino acid codes are used to designate amino acids occupying consensus positions. The symbol "X" designates a nonconsensus position that can in principle be occupied by any amino acid. In most zinc fingers of the C₂H₂ type, binding specificity is principally conferred by residues -1, +2, +3 and +6. Accordingly, consensus sequence determining binding specificity typically include at least these residues. Consensus sequences are useful for designing zinc fingers to bind to a given target sequence. Residues occupying other positions can be selected based on sequences in Tables 1-5, or other known zinc finger sequences. Alternatively, these positions can be randomized with a plurality of candidate amino acids and screened against one or more target sequences to refine binding specificity or improve binding specificity. In general, the same consensus sequence can be used for design of a zinc finger regardless of the relative position of that finger in a multi-finger zinc finger protein. For example, the sequence RXDNXXR can be used to design a N-terminal, central or C-terminal finger of three finger protein. However, some consensus sequences are most suitable for designing a zinc finger to occupy a particular position in a multifinger protein. For example, the consensus sequence RXDHXXQ is most suitable for designing a C-terminal finger of a three-finger protein.

II. Characteristics of Zinc Finger Proteins

Zinc finger proteins are formed from zinc finger components. For example, zinc finger proteins can have one to thirty-seven fingers, commonly having 2, 3, 4, 5 or 6 fingers. A zinc finger protein recognizes and binds to a target site (sometimes

referred to as a target segment) that represents a relatively small subsequence within a target gene. Each component finger of a zinc finger protein can bind to a subsite within the target site. The subsite includes a triplet of three contiguous bases all on the same strand (sometimes referred to as the target strand). The subsite may or may not also include a fourth base on the opposite strand that is the complement of the base immediately 3' of the three contiguous bases on the target strand. In many zinc finger proteins, a zinc finger binds to its triplet subsite substantially independently of other fingers in the same zinc finger protein. Accordingly, the binding specificity of zinc finger protein containing multiple fingers is usually approximately the aggregate of the specificities of its component fingers. For example, if a zinc finger protein is formed from first, second and third fingers that individually bind to triplets XXX, YYY, and ZZZ, the binding specificity of the zinc finger protein is 3'XXX YYY ZZZ5'.

The relative order of fingers in a zinc finger protein from N-terminal to C-terminal determines the relative order of triplets in the 3' to 5' direction in the target. For example, if a zinc finger protein comprises from N-terminal to C-terminal first, second and third fingers that individually bind, respectively, to triplets 5' GAC3', 5'GTA3' and 5''GGC3' then the zinc finger protein binds to the target segment 3'CAGATGCGG5'. If the zinc finger protein comprises the fingers in another order, for example, second finger, first finger, third finger, then the zinc finger protein binds to a target segment comprising a different permutation of triplets, in this example, 3'ATGCAGCGG5' (see Berg & Shi, Science 271, 1081-1086 (1996)). The assessment of binding properties of a zinc finger protein as the aggregate of its component fingers may, in some cases, be influenced by context-dependent interactions of multiple fingers binding in the same protein.

Two or more zinc finger proteins can be linked to have a target specificity that is the aggregate of that of the component zinc finger proteins (see e.g., Kim & Pabo, PNAS 95, 2812-2817 (1998)). For example, a first zinc finger protein having first, second and third component fingers that respectively bind to XXX, YYY and ZZZ can be linked to a second zinc finger protein having first, second and third component fingers with binding specificities, AAA, BBB and CCC. The binding specificity of the combined first and second proteins is thus 3'XXXYYYZZZ___AAABBBCCC5', where the underline indicates a short intervening region (typically 0-5 bases of any type). In this situation, the target site can be viewed as comprising two target segments separated by an intervening segment.

15

20

25

30

Linkage can be accomplished using any of the following peptide linkers. T G E K P: (SEQ. ID. No:2) (Liu et al., 1997, supra.); (G4S)n (SEQ. ID. No:3) (Kim et al., PNAS 93, 1156-1160 (1996.); GGRRGGGS; (SEQ. ID. No:4) LRQRDGERP; (SEQ. ID. No:5) LRQKDGGGSERP; (SEQ. ID. No:6) LRQKD(G3S)2 ERP (SEQ. ID. No:7)

Alternatively, flexible linkers can be rationally designed using computer programs capable of modeling both DNA-binding sites and the peptides themselves or by phage display methods. In a further variation, noncovalent linkage can be achieved by fusing two zinc finger proteins with domains promoting heterodimer formation of the two zinc finger proteins. For example, one zinc finger protein can be fused with fos and the other with jun (see Barbas et al., WO 95/119431).

Linkage of two zinc finger proteins is advantageous for conferring a unique binding specificity within a mammalian genome. A typical mammalian diploid genome consists of 3×10^9 bp. Assuming that the four nucleotides A, C, G, and T are randomly distributed, a given 9 bp sequence is present ~23,000 times. Thus a ZFP recognizing a 9 bp target with absolute specificity would have the potential to bind to ~23,000 sites within the genome. An 18 bp sequence is present once in 3.4×10^{10} bp, or about once in a random DNA sequence whose complexity is ten times that of a mammalian genome.

A component finger of zinc finger protein typically contains about 30 amino acids and has the following motif (N-C) :

(SEQ. ID. No:8)

Cys-
$$(X)_{2-4}$$
-Cys- $X.X.X.X.X.X.X.X.X.X.X.X.X.X$ -His- $(X)_{3-5}$ -His-
$$-1 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

The two invariant histidine residues and two invariant cysteine residues in a single beta turn are co-ordinated through zinc (see, e.g., Berg & Shi, Science 271, 1081-1085 (1996)). The above motif shows a numbering convention that is standard in the field for the region of a zinc finger conferring binding specificity. The amino acid on the left (N-terminal side) of the first invariant His residues is assigned the number +6, and other amino acids further to the left are assigned successively decreasing numbers. The alpha helix begins at residue 1 and extends to the residue following the second conserved histidine. The entire helix is therefore of variable length, between 11 and 13 residues.

The process of designing or selecting a nonnaturally occurring or variant ZFP typically starts with a natural ZFP as a source of framework residues. The process of

20

30

design or selection serves to define nonconserved positions (i.e., positions -1 to +6) so as to confer a desired binding specificity. One suitable ZFP is the DNA binding domain of the mouse transcription factor Zif268. The DNA binding domain of this protein has the amino acid sequence:

5 YACPVESCDRRFSRSDELTRHIRIHTGQKP (F1) (SEQ. ID No:9) FQCRICMRNFSRSDHLTTHIRTHTGEKP (F2) (SEQ. ID. No:10) FACDICGRKFARSDERKRHTKIHLRQK (F3) SEQ. ID. No:11) and binds to a target 5' GCG TGG GCG 3' (SEQ ID No:12).

Another suitable natural zinc finger protein as a source of framework
residues is Sp-1. The Sp-1 sequence used for construction of zinc finger proteins
corresponds to amino acids 531 to 624 in the Sp-1 transcription factor. This sequence is
94 amino acids in length. The amino acid sequence of Sp-1 is as follows:

PGKKKQHICHIQGCGKVYGKTSHLRAHLRWHTGERP

FMCTWSYCGKRFTRSDELQRHKRTHTGEKK

FACPECPKRFMRSDHLSKHIKTHQNKKG (SEQ. ID. No:13) Sp-1 binds to a target site 5'GGG GCG GGG3' (SEQ ID No: 14).

An alternate form of Sp-1, an Sp-1 consensus sequence, has the following amino acid sequence:

meklrngsgd

PGKKKQHACPECGKSFSKSSHLRAHQRTHTGERP

YKCPECGKSFSRSDELQRHQRTHTGEKP

YKCPECGKSFSRSDHLSKHQRTHQNKKG (SEQ. ID. No:15) (lower case letters are a leader sequence from Shi & Berg, *Chemistry and Biology* 1, 83-89. (1995). The optimal binding sequence for the Sp-1 consensus sequence is 5'GGGGCGGGG3' (SEQ ID No:

25 16). Other suitable ZFPs are described below.

There are a number of substitution rules that assist rational design of some zinc finger proteins (see Desjarlais & Berg, *PNAS* 90, 2256-2260 (1993); Choo & Klug, *PNAS* 91, 11163-11167 (1994); Desjarlais & Berg, *PNAS* 89, 7345-7349 (1992); Jamieson et al., supra; Choo et al., WO 98/53057, WO 98/53058; WO 98/53059; WO 98/53060). Many of these rules are supported by site-directed mutagenesis of the three-finger domain of the ubiquitous transcription factor, Sp-1 (Desjarlais and Berg, 1992; 1993). One of these rules is that a 5' G in a DNA triplet can be bound by a zinc finger incorporating arginine at position 6 of the recognition helix. Another substitution rule is

10

15

20

25

30

that a G in the middle of a subsite can be recognized by including a histidine residue at position 3 of a zinc finger. A further substitution rule is that asparagine can be incorporated to recognize A in the middle of triplet, aspartic acid, glutamic acid, serine or threonine can be incorporated to recognize C in the middle of triplet, and amino acids with small side chains such as alanine can be incorporated to recognize T in the middle of triplet. A further substitution rule is that the 3' base of triplet subsite can be recognized by incorporating the following amino acids at position -1 of the recognition helix: arginine to recognize G, glutamine to recognize A, glutamic acid (or aspartic acid) to recognize C, and threonine to recognize T. Although these substitution rules are useful in designing zinc finger proteins they do not take into account all possible target sites. Furthermore, the assumption underlying the rules, namely that a particular amino acid in a zinc finger is responsible for binding to a particular base in a subsite is only approximate. Context-dependent interactions between proximate amino acids in a finger or binding of multiple amino acids to a single base or vice versa can cause variation of the binding specificities predicted by the existing substitution rules.

The technique of phage display provides a largely empirical means of generating zinc finger proteins with a desired target specificity (see e.g., Rebar, US 5,789,538; Choo et al., WO 96/06166; Barbas et al., WO 95/19431 and WO 98/543111; Jamieson et al., supra). The method can be used in conjunction with, or as an alternative to rational design. The method involves the generation of diverse libraries of mutagenized zinc finger proteins, followed by the isolation of proteins with desired DNAbinding properties using affinity selection methods. To use this method, the experimenter typically proceeds as follows. First, a gene for a zinc finger protein is mutagenized to introduce diversity into regions important for binding specificity and/or affinity. In a typical application, this is accomplished via randomization of a single finger at positions -1, +2, +3, and +6, and sometimes accessory positions such as +1, +5, +8 and +10. Next, the mutagenized gene is cloned into a phage or phagemid vector as a fusion with gene III of a filamentous phage, which encodes the coat protein pIII. The zinc finger gene is inserted between segments of gene III encoding the membrane export signal peptide and the remainder of pIII, so that the zinc finger protein is expressed as an amino-terminal fusion with pIII or in the mature, processed protein. When using phagemid vectors, the mutagenized zinc finger gene may also be fused to a truncated version of gene III encoding, minimally, the C-terminal region required for assembly of pIII into the phage

5

10

15

20

2.5

30

particle. The resultant vector library is transformed into *E. coli* and used to produce filamentous phage which express variant zinc finger proteins on their surface as fusions with the coat protein pIII. If a phagemid vector is used, then the this step requires superinfection with helper phage. The phage library is then incubated with target DNA site, and affinity selection methods are used to isolate phage which bind target with high affinity from bulk phage. Typically, the DNA target is immobilized on a solid support, which is then washed under conditions sufficient to remove all but the tightest binding phage. After washing, any phage remaining on the support are recovered via elution under conditions which disrupt zinc finger – DNA binding. Recovered phage are used to infect fresh *E. coli*., which is then amplified and used to produce a new batch of phage particles. Selection and amplification are then repeated as many times as is necessary to enrich the phage pool for tight binders such that these may be identified using sequencing and/or screening methods. Although the method is illustrated for pIII fusions, analogous principles can be used to screen ZFP variants as pVIII fusions.

In certain embodiments, the sequence bound by a particular zinc finger protein is determined by conducting binding reactions (see, e.g., conditions for determination of K_d , infra) between the protein and a pool of randomized double-stranded oligonucleotide sequences. The binding reaction is analyzed by an electrophoretic mobility shift assay (EMSA), in which protein-DNA complexes undergo retarded migration in a gel and can be separated from unbound nucleic acid. Oligonucleotides which have bound the finger are purified from the gel and amplified, for example, by a polymerase chain reaction. The selection (i.e. binding reaction and EMSA analysis) is then repeated as many times as desired, with the selected oligonucleotide sequences. In this way, the binding specificity of a zinc finger protein having a particular amino acid sequence is determined.

Zinc finger proteins are often expressed with a heterologous domain as fusion proteins. Common domains for addition to the ZFP include, e.g., transcription factor domains (activators, repressors, co-activators, co-repressors), silencers, oncogenes (e.g., myc, jun, fos, myb, max, mad, rel, ets, bcl, myb, mos family members etc.); DNA repair enzymes and their associated factors and modifiers; DNA rearrangement enzymes and their associated factors and modifiers; chromatin associated proteins and their modifiers (e.g. kinases, acetylases and deacetylases); and DNA modifying enzymes (e.g., methyltransferases, topoisomerases, helicases, ligases, kinases, phosphatases,

15

20

25

30

polymerases, endonucleases) and their associated factors and modifiers. A preferred domain for fusing with a ZFP when the ZFP is to be used for represssing expression of a target gene is a KRAB repression domain from the human KOX-1 protein (Thiesen et al., New Biologist 2, 363-374 (1990); Margolin et al., Proc. Natl. Acad. Sci. USA 91, 4509-4513 (1994); Pengue et al., Nucl. Acids Res. 22:2908-2914 (1994); Witzgall et al., Proc. Natl. Acad. Sci. USA 91, 4514-4518 (1994). Preferred domains for achieving activation include the HSV VP16 activation domain (see, e.g., Hagmann et al., J. Virol. 71, 5952-5962 (1997)) nuclear hormone receptors (see, e.g., Torchia et al., Curr. Opin. Cell. Biol. 10:373-383 (1998)); the p65 subunit of nuclear factor kappa B (Bitko & Barik, J. Virol. 72:5610-5618 (1998)and Doyle & Hunt, Neuroreport 8:2937-2942 (1997)); Liu et al., Cancer Gene Ther. 5:3-28 (1998)), or artificial chimeric functional domains such as VP64 (Seifpal et al., EMBO J. 11, 4961-4968 (1992)).

An important factor in the administration of polypeptide compounds, such as the ZFPs, is ensuring that the polypeptide has the ability to traverse the plasma membrane of a cell, or the membrane of an intra-cellular compartment such as the nucleus. Cellular membranes are composed of lipid-protein bilayers that are freely permeable to small, nonionic lipophilic compounds and are inherently impermeable to polar compounds, macromolecules, and therapeutic or diagnostic agents. However, proteins and other compounds such as liposomes have been described, which have the ability to translocate polypeptides such as ZFPs across a cell membrane.

For example, "membrane translocation polypeptides" have amphiphilic or hydrophobic amino acid subsequences that have the ability to act as membrane-translocating carriers. In one embodiment, homeodomain proteins have the ability to translocate across cell membranes. The shortest internalizable peptide of a homeodomain protein, Antennapedia, was found to be the third helix of the protein, from amino acid position 43 to 58 (see, e.g., Prochiantz, Current Opinion in Neurobiology 6:629-634 (1996)). Another subsequence, the h (hydrophobic) domain of signal peptides, was found to have similar cell membrane translocation characteristics (see, e.g., Lin et al., J. Biol. Chem. 270:1 4255-14258 (1995)).

Examples of peptide sequences which can be linked to a ZFP of the invention, for facilitating uptake of ZFP into cells, include, but are not limited to: an 11 animo acid peptide of the tat protein of HIV; a 20 residue peptide sequence which corresponds to amino acids 84-103 of the p16 protein (see Fahraeus et al., Current

15

20

25

30

Biology 6:84 (1996)); the third helix of the 60-amino acid long homeodomain of Antennapedia (Derossi et al., J. Biol. Chem. 269:10444 (1994)); the h region of a signal peptide such as the Kaposi fibroblast growth factor (K-FGF) h region (Lin et al., supra); or the VP22 translocation domain from HSV (Elliot & O'Hare, Cell 88:223-233 (1997)). Other suitable chemical moieties that provide enhanced cellular uptake may also be chemically linked to ZFPs.

Toxin molecules also have the ability to transport polypeptides across cell membranes. Often, such molecules are composed of at least two parts (called "binary toxins"): a translocation or binding domain or polypeptide and a separate toxin domain or polypeptide. Typically, the translocation domain or polypeptide binds to a cellular receptor, and then the toxin is transported into the cell. Several bacterial toxins, including Clostridium perfringens iota toxin, diphtheria toxin (DT), Pseudomonas exotoxin A (PE), pertussis toxin (PT), Bacillus anthracis toxin, and pertussis adenylate cyclase (CYA), have been used in attempts to deliver peptides to the cell cytosol as internal or aminoterminal fusions (Arora et al., J. Biol. Chem., 268:3334-3341 (1993); Perelle et al., Infect. Immun., 61:5147-5156 (1993); Stenmark et al., J. Cell Biol. 113:1025-1032 (1991); Donnelly et al., PNAS 90:3530-3534 (1993); Carbonetti et al., Abstr. Annu. Meet. Ans. Soc. Microbiol. 95:295 (1995); Sebo et al., Infect. Immun. 63:3851-3857 (1995); Klimpel et al., PNAS U.S.A. 89:10277-10281 (1992); and Novak et al., J. Biol. Chem. 267:17186-17193 1992)).

Such subsequences can be used to translocate ZFPs across a cell membrane. ZFPs can be conveniently fused to or derivatized with such sequences. Typically, the translocation sequence is provided as part of a fusion protein. Optionally, a linker can be used to link the ZFP and the translocation sequence. Any suitable linker can be used, e.g., a peptide linker.

Production of ZFPs

ZFP polypeptides and nucleic acids encoding the same can be made using routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., *Molecular Cloning, A Laboratory Manual* (2nd ed. 1989); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel et al., eds., 1994)). In addition, nucleic acids less than about 100 bases can be custom ordered

10

15

20

25

30

from any of a variety of commercial sources, such as The Midland Certified Reagent Company (mcrc@oligos.com), The Great American Gene Company (http://www.genco.com), ExpressGen Inc. (www.expressgen.com), Operon Technologies Inc. (Alameda, CA). Similarly, peptides can be custom ordered from any of a variety of sources, such as PeptidoGenic (pkim@ccnet.com), HTI Bio-products, inc. (http://www.htibio.com), BMA Biomedicals Ltd (U.K.), Bio.Synthesis, Inc.

Oligonucleotides can be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers,
Tetrahedron Letts. 22:1859-1862 (1981), using an automated synthesizer, as described in
Van Devanter et al., Nucleic Acids Res. 12:6159-6168 (1984). Purification of
oligonucleotides is by either denaturing polyacrylamide gel electrophoresis or by reverse
phase HPLC. The sequence of the cloned genes and synthetic oligonucleotides can be
verified after cloning using, e.g., the chain termination method for sequencing doublestranded templates of Wallace et al., Gene 16:21-26 (1981).

Two alternative methods are typically used to create the coding sequences required to express newly designed DNA-binding peptides. One protocol is a PCR-based assembly procedure that utilizes six overlapping oligonucleotides (Fig. 1). Three oligonucleotides (oligos 1, 3, and 5 in Figure 1) correspond to "universal" sequences that encode portions of the DNA-binding domain between the recognition helices. These oligonucleotides typically remain constant for all zinc finger constructs. The other three "specific" oligonucleotides (oligos 2, 4, and 6 in Fig. 1) are designed to encode the recognition helices. These oligonucleotides contain substitutions primarily at positions -1, 2, 3 and 6 on the recognition helices making them specific for each of the different DNA-binding domains.

The PCR synthesis is carried out in two steps. First, a double stranded DNA template is created by combining the six oligonucleotides (three universal, three specific) in a four cycle PCR reaction with a low temperature annealing step, thereby annealing the oligonucleotides to form a DNA "scaffold." The gaps in the scaffold are filled in by high-fidelity thermostable polymerase, the combination of Taq and Pfu polymerases also suffices. In the second phase of construction, the zinc finger template is amplified by external primers designed to incorporate restriction sites at either end for cloning into a shuttle vector or directly into an expression vector.

2.5

30

10

An alternative method of cloning the newly designed DNA-binding proteins relies on annealing complementary oligonucleotides encoding the specific regions of the desired ZFP. This particular application requires that the oligonucleotides be phosphorylated prior to the final ligation step. This is usually performed before setting up the annealing reactions. In brief, the "universal" oligonucleotides encoding the constant regions of the proteins (oligos 1, 2 and 3 of above) are annealed with their complementary oligonucleotides. Additionally, the "specific" oligonucleotides encoding the finger recognition helices are annealed with their respective complementary oligonucleotides. These complementary oligos are designed to fill in the region which was previously filled in by polymerase in the above-mentioned protocol. The complementary oligos to the common oligos 1 and finger 3 are engineered to leave overhanging sequences specific for the restriction sites used in cloning into the vector of choice in the following step. The second assembly protocol differs from the initial protocol in the following aspects: the "scaffold" encoding the newly designed ZFP is composed entirely of synthetic DNA thereby eliminating the polymerase fill-in step, additionally the fragment to be cloned into the vector does not require amplification. Lastly, the design of leaving sequence-specific overhangs eliminates the need for restriction enzyme digests of the inserting fragment. Alternatively, changes to ZFP recognition helices can be created using conventional site-directed mutagenesis methods.

Both assembly methods require that the resulting fragment encoding the newly designed ZFP be ligated into a vector. Ultimately, the ZFP-encoding sequence is cloned into an expression vector. Expression vectors that are commonly utilized include, but are not limited to, a modified pMAL-c2 bacterial expression vector (New England BioLabs or an eukaryotic expression vector, pcDNA (Promega). The final constructs are verified by sequence analysis.

Any suitable method of protein purification known to those of skill in the art can be used to purify ZFPs of the invention (see, Ausubel, supra, Sambrook, supra). In addition, any suitable host can be used for expression, e.g., bacterial cells, insect cells, yeast cells, mammalian cells, and the like.

Expression of a zinc finger protein fused to a maltose binding protein (MBP-ZFP) in bacterial strain JM109 allows for straightforward purification through an amylose column (NEB). High expression levels of the zinc finger chimeric protein can be obtained by induction with IPTG since the MBP-ZFP fusion in the pMal-c2 expression

15

20

25

30

plasmid is under the control of the tac promoter (NEB). Bacteria containing the MBP-ZFP fusion plasmids are inoculated into 2xYT medium containing 10 μ M ZnCl2, 0.02% glucose, plus 50 μ g/ml ampicillin and shaken at 37°C. At mid-exponential growth IPTG is added to 0.3 mM and the cultures are allowed to shake. After 3 hours the bacteria are harvested by centrifugation, disrupted by sonication or by passage through a french pressure cell or through the use of lysozyme, and insoluble material is removed by centrifugation. The MBP-ZFP proteins are captured on an amylose-bound resin, washed extensively with buffer containing 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 5 mM DTT and 50 μ M ZnCl2, then eluted with maltose in essentially the same buffer (purification is based on a standard protocol from NEB). Purified proteins are quantitated and stored for biochemical analysis.

The dissociation constants of the purified proteins, e.g., Kd, are typically characterized via electrophoretic mobility shift assays (EMSA) (Buratowski & Chodosh, in Current Protocols in Molecular Biology pp. 12.2.1-12.2.7 (Ausubel ed., 1996)). Affinity is measured by titrating purified protein against a fixed amount of labeled double-stranded oligonucleotide target. The target typically comprises the natural binding site sequence flanked by the 3 bp found in the natural sequence and additional, constant flanking sequences. The natural binding site is typically 9 bp for a three-finger protein and 2 x 9 bp + intervening bases for a six finger ZFP. The annealed oligonucleotide targets possess a 1 base 5' overhang which allows for efficient labeling of the target with T4 phage polynucleotide kinase. For the assay the target is added at a concentration of 1 nM or lower (the actual concentration is kept at least 10-fold lower than the expected dissociation constant), purified ZFPs are added at various concentrations, and the reaction is allowed to equilibrate for at least 45 min. In addition the reaction mixture also contains 10 mM Tris (pH 7.5), 100 mM KCl, 1 mM MgCl2, 0.1 mM ZnCl2. 5 mM DTT, 10% glycerol, 0.02% BSA, (NB; in earlier assays poly d(IC) was also added at 10-100 ug/ul.)

The equilibrated reactions are loaded onto a 10% polyacrylamide gel, which has been pre-run for 45 min in Tris/glycine buffer, then bound and unbound labeled target is resolved by electrophoresis at 150V. (alternatively, 10-20% gradient Tris-HCl gels, containing a 4% polyacrylamide stacker, can be used) The dried gels are visualized by autoradiography or phosphorimaging and the apparent Kd is determined by calculating the protein concentration that gives half-maximal binding.

The assays can also include determining active fractions in the protein preparations. Active fractions are determined by stoichiometric gel shifts where proteins are titrated against a high concentration of target DNA. Titrations are done at 100, 50, and 25% of target (usually at micromolar levels).

III. Applications of Designed ZFPs

ZPFs that bind to a particular target gene, and the nucleic acids encoding them, can be used for a variety of applications. These applications include therapeutic methods in which a ZFP or a nucleic acid encoding it is administered to a subject and used to modulate the expression of a target gene within the subject (see copending application Townsend & Townsend & Crew Attorney Docket 019496-002200, filed January 12, 1999). The modulation can be in the form of repression, for example, when the target gene resides in a pathological infecting microrganisms, or in an endogenous gene of the patient, such as an oncogene or viral receptor, that is contributing to a disease state. Alternatively, the modulation can be in the form of activation when activation of expression or increased expression of an endogenous cellular gene can ameliorate a diseased state. For such applications, ZFPs, or more typically, nucleic acids encoding them are formulated with a pharmaceutically acceptable carrier as a pharmaceutical composition.

Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. (see, e.g., Remington's Pharmaceutical Sciences, 17th ed. 1985)). The ZFPs, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. Formulations suitable for parenteral administration, such as, for example, by intravenous, intramuscular, intradermal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. Compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or

10

15

20

25

30

intrathecally. The formulations of compounds can be presented in unit-dose or multidose sealed containers, such as ampules and vials. Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described

The dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time. The dose is determined by the efficacy and K_d of the particular ZFP employed, the target cell, and the condition of the patient, as well as the body weight or surface area of the patient to be treated. The size of the dose also is determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular compound or vector in a particular patient

In other applications, ZFPs are used in diagnostic methods for sequence specific detection of target nucleic acid in a sample. For example, ZFPs can be used to detect variant alleles associated with a disease or phenotype in patient samples. As an example, ZFPs can be used to detect the presence of particular mRNA species or cDNA in a complex mixtures of mRNAs or cDNAs. As a further example, ZFPs can be used to quantify copy number of a gene in a sample. For example, detection of loss of one copy of a p53 gene in a clinical sample is an indicator of susceptibility to cancer. In a further example, ZFPs are used to detect the presence of pathological microorganisms in clinical samples. This is achieved by using one or more ZFPs specific to genes within the microorganism to be detected. A suitable format for performing diagnostic assays employs ZFPs linked to a domain that allows immobilization of the ZFP on an ELISA plate. The immobilized ZFP is contacted with a sample suspected of containing a target nucleic acid under conditions in which binding can occur. Typically, nucleic acids in the sample are labeled (e.g., in the course of PCR amplification). Alternatively, unlabelled probes can be detected using a second labelled probe. After washing, bound-labelled nucleic acids are detected

ZFPs also can be used for assays to determine the phenotype and function of gene expression. Current methodologies for determination of gene function rely primarily upon either overexpression or removing (knocking out completely) the gene of interest from its natural biological setting and observing the effects. The phenotypic effects observed indicate the role of the gene in the biological system.

One advantage of ZFP-mediated regulation of a gene relative to conventional knockout analysis is that expression of the ZFP can be placed under small molecule control. By controlling expression levels of the ZFPs, one can in turn control the expression levels of a gene regulated by the ZFP to determine what degree of repression or stimulation of expression is required to achieve a given phenotypic or biochemical effect. This approach has particular value for drug development. By putting the ZFP under small molecule control, problems of embryonic lethality and developmental compensation can be avoided by switching on the ZFP repressor at a later stage in mouse development and observing the effects in the adult animal. Transgenic mice having target genes regulated by a ZFP can be produced by integration of the nucleic acid encoding the ZFP at any site in trans to the target gene. Accordingly, homologous recombination is not required for integration of the nucleic acid. Further, because the ZFP is trans-dominant, only one chromosomal copy is needed and therefore functional knock-out animals can be produced without backcrossing.

All references cited above are hereby incorporated by reference in their entirety for all purposes.

TABLE 1

		SEQ		SEQ		SEQ		SEQ	<u>Kd</u>
SBS#	<u>TARGET</u>	ID	<u>F1</u>	ID	<u>F2</u>	ID	<u>F3</u>	ID	(nM)
249	GCGGGGGCG	17	RSDELTR	123	RSDHLSR	229	RSDELRR	335	20
250	GCGGGGGCG	18	RSDELTR	124	RSDHLSR	230	RSDTLKK	336	70
251	GCGGAGGCG	19	RSDELTR	125	RSDNLTR	231	RSDELRR	337	27.5
252	GCGGCCGCG	20	RSDELTR	126	DRSSLTR	232	RSDELRR	338	100
253	GGATGGGGG	21	RSDHLAR	127	RSDHLTT	233	QRAHLAR	339	0.75
256	GCGGGGTCC	22	ERGDLTT	128	RSDHLSR	234	RSDELRR	340	800
258	GCGGGCGGG	23	RSDHLTR	129	ERGHLTR	235	RSDELRR	341	15
259	GCAGAGGAG	24	RSDNLAR	130	RSDNLAR	236	QSGSLTR	342	250
261	GAGGTGGCC	25	ERGTLAR	131	RSDALSR	237	RSDNLSR	343	0.5
262	GCGGGGGCT	26	QSSDLQR	132	RSDHLSR	238	RSDELRR	344	20
263	GCGGGGGCT	27	QSSDLQR	133	RSDHLSR	239	RSDTLKK	345	1
264	GTGGCTGCC	28	DRSSLTR	134	QSSDLQR	240	RSDALAR	346	27
265	GTGGCTGCC	29	ERGTLAR	135	QSSDLQR	241	RSDALAR	347	600
269	GGGGCCGGG	30	RSDHLTR	136	DRSSLTR	242	RSDHLTR	348	5
270	GGGGCCGGG	31	RSDHLTR	137	ERGTLAR	243	RSDHLTR	349	52.5
272	GCAGGGGCC	32	DRSSLTR	138	RSDHLSR	244	QSGSLTR	350	20
337	TGCGGGGCAA	33	RSADLTR	139	RSDHLTR	245	ERQHLAT	351	24
338	TGCGGGGCAA	34	RSADLTR	140	RSDHLTR	246	ERDHLRT	352	8
339	TGCGGGGCAA	35	RSADLTR	141	RSDHLTT	247	ERQHLAT	353	64
340	TGCGGGGCAA	36	RSADLTR	142	RSDHLTT	248	ERDHLRT	354	48
341	TGCGGGGCAA	37	RSADLTR	143	RGDHLKD :	249	ERQHLAT	355	1000
342	TGCGGGGCAA	38	RSADLTR	144	RGDHLKD :	250	ERDHLRT	356	1000
343	TGCGGGGCAA	39	QSGSLTR	145	RSDHLTR:	251	ERQHLAT	357	8
344	TGCGGGGCAA	40	QSGSLTR	146	RSDHLTR:	252	ERDHLRT	358	6
345	TGCGGGGCAA	41	QSGSLTR	147	RSDHLTT:	253	ERQHLAT	359	96
346	TGCGGGGCAA	42	QSGSLTR	148	RSDHLTT:	254	ERDHLRT	360	64
347	TGCGGGGCAA	43	QSGSLTR	149	RGDHLKD 2	255	ERQHLAT	361	1000

				_			
348	TGCGGGGCA	44	QSGSLTR	150	RGDHLKD 256	ERDHLRT 362	1000
367	GGGGGCGGG	45	RSDHLTR	. 151	DSGHLTR 257	RSDHLQR 363	60
368	GAGGGGGCG	46	RSDELTR	152	RSDHLTR 258	RSDNLTR 364	3.5
369	GTAGTTGTG	47	RSDALTR	153	TGGSLAR 259	QSGSLTR 365	95
370	GTAGTTGTG	48	RSDALTR	154	NRATLAR 260	QSASLTR 366	300
371	GTAGTTGTG	49	RSDALTR	155	NRATLAR 261	QSGSLTR 367	175
372	GTAGTTGTG	50	RSDSLLR	156	TGGSLAR 262	QSASLTR 368	112.5
373	GTAGTTGTG	51	RSDSLLR	157	NRATLAR 263	QSASLTR 369	320
374	GCTGAGGAA	52	QRSNLVR	158	RSDNLTR 264	TSSELQR 370	3.3
375	GAGGAAGAT	53	QQSNLAR	159	QSGNLQR 265	RSDNLTR 371	85
401	GTAGTTGTG	54	RSDALTR	160	TGGSLAR 266	QSASLTR 372	80
403	GTAGTTGTG	55	RSDSLLR	161	NRATLAR 267	QSGSLTR 373	750
421	GTAGTTGTG	56	DSDSLLR	162	TGGSLAR 268	QSGSLTR 374	500
422	GTAGTTGTG	57	RSDSLLR	163	TGGSLTR 269	QSGSLTR 375	200
423	GTAGTTGTG	58	RSDALTR	164	TGGSLAR 270	QRSALAR 376	1000
424	GATGCTGAG	59	RSDNLTR	165	TSSELQR 271	TSANLSR 377	100
425	GATGCTGAG	60	RSDNLTR	166	QSSDLQR 272	QQSNLAR 378	25
426	GATGCTGAG	61	RSDNLTR	167	QSSDLQR 273	TSANLSR 379	5.5
427	GCTGAGGAA	62	QRSNLVR	168	RSDNLTR 274	QSSDLQR 380	1
428	GAAGATGAC	63	DSSNLTR	169	QQSNLAR 275	QRSNLVR 381	120
429	GAAGATGAC	64	DSSNLTR	170	TSANLSR 276	QRSNLVR 382	50
430	GATGACGAC	65	EKANLTR	171	DSSNLTR 277	QQSNLAR 383	250
431	GACGACGGC	66	DSGHLTR	172	DRSNLER 278	DSSNLTR 384	100
432	GACGACGGC	67	DSGHLTR	173	DHANLAR 279	DSSNLTR 385	1000
433	GACGACGGC	68	DSGNLTR	174	DHANLAR 280	DSSNLTR 386	1000
434	GACGGCGTA	69	QSASLTR	175	DSGHLTR 281	EKANLTR 387	152.5
435	GACGGCGTA	70	QSASLTR	176	DSGHLTR 282	ERGNLTR 388	150
436	GACGGCGTA	71	QRSALAR	177	DSGHLTR 283	EKANLTR 389	95
437	GACGGCGTA	72	QRSALAR	178	DSGHLTR 284	ERGNLTR 390	117.5
438	GAGGGGGCG	73	RSDELTR	179	RSDHLTT 285	RSDNLTR 391	62.5
440	GCCGAGGTGC	74	RSDSLLR	180	RSKNLQR 286	ERGTLAR 392	40
441	GGTGGAGTCA	75	DSGSLTR	181	QSGHLQR 287	TSGHLTR 393	250
445	GTCGCAGTGA	76	RSDSLRR	182	QSSDLQK 288	DSGSLTR 394	1000

450	GACTTGGTGC 77	RSDTLAR	183	RGDALTS 289	DRSNLTR	395	130
453	GGTGGAGTCA 78	DRSALAR	184	QSGHLQR 290	DSSKLSR	396	150
461	GAGTACTGTA 79	QRSHLTT	185	DRSNLRT 291	RSDNLAR	397	120
463	GTGGAGGAGA 80	RSDNLTR	186	RSDNLAR 292	RSDALAR	398	0.5
464	GTGGAGGAGA 81	RSDNLTR	187	RSDNLAR 293	RSDSLAR	399	0.4
466	CAGGCTGCGC 82	RSDDLTR	188	QSSDLQR 294	RSDNLRE	400	65
467	CAGGCTGCGC 83	RSDELTR	189	QSSDLQR 295	RGDHLKD	401	800
468	CAGGCTGCGC 84	RSDDLTR	190	QSSDLQR 296	RGDHLKD	402	42
469	GAAGAGGTCT 85	DRSALAR	191	RSDNLAR 297	QSGNLTR	403	13.5
472	GAGGTCTGGA 86	RSSHLTT	192	DRSALAR 298	RSDNLAR	404	80
476	GGAGAGGATG 87	TTSNLRR	193	RSDNLAR 299	QSDHLTR	405	80
477	GGAGAGGATG 88	TTSNLRR	194	RSDNLAR 300	QRAHLAR	406	100
478	GGAGAGGATG 89	TTSNLRR	195	RSDNLAR 301	QSGHLRR	407	60
479	GTGGCGGACC 90	DSSNLTR	196	RSDELQR 302	RSDALAR	408	8.5
480	GTGGCGGACC 91	DSSNLTR	197	RADTLRR 303	RSDALAR	409	5
483	GAGGGCGAAG 92	QSANLAR	198	ESSKLKR 304	RSDNLAR	410	130
484	GAGGGCGAAG 93	QSDNLAR	199	ESSKLKR 305	RSDNLAR	411	1000
485	GGAGAGGTTT 94	QSSALAR	200	RSDNLAR 306	QRAHLAR	412	110
487	GGAGAGGTTT 95	NRATLAR	201	RSDNLAR 307	QSGHLAR	413	76.9
488	TGGTAGGGGG 96	RSDHLAR	202	RSDNLTT 308	RSDHLTT	414	35
490	TAGGGGGTGG 97	RSDSLLR	203	RSDHLTR 309	RSDNLTT	415	1.5
503	GCCGAGGTGC 98	RSDSLLR	204	RSDNLAR 310	ERGTLAR	416	50
504	GCCGAGGTGC 99	RSDSLLR	205	RSDNLAR 311	DRSDLTR	417	25
505	GCCGAGGTGC 100	RSDSLLR	206	RSDNLAR 312	DCRDLAR	418	65
526	GCGGGCGGGC 101	RSDHLTR	207	ERGHLTR 313	RSDTLKK	419	8
543	GAGTGTGTGA 102	RSDLLQR	208	MSHHLKE 314	RSDHLSR	420	50
544	GAGTGTGTGA 103	RSDSLLR	209	MSHHLKE 315	RSDNLAR	421	125
545	GAGTGTGTGA 104	RKDSLVR	210	TSDHLAS 316	RSDNLTR	422	32
546	GAGTGTGTGA 105	RSDLLQR	211	MSHHLKT 317	RLDGLRT	423	500
547	GAGTGTGTGA 106	RKDSLVR	212	TSGHLTS 318	RSDNLTR	424	500
548	GAGTGTGTGA 107	RSSLLQR	213	MSHHLKT 319	RSDHLSR	425	500
549	GAGTGTGTGA 108	RSSLLQR	214	MSHHLKE 320	RSDHLSR	426	500
550	GAGTGTGTGA 109	RKDSLVR	215	TKDHLAS 321	RSDNLTR	427	20

551	GAGTGTGTGA 11	0 RSDLLQR	216	MSHHLKT 322	RSDHLSR 428	50
552	GAGTGTGTGA 11	1 RKDSLVR	217	MSHHLKT 323	RSDNLTR 429	31
553	GAGTGTGTGA 11	2 RSDSLLR	218	MSHHLKE 324	RSDNLTR 430	125
554	GAGTGTGTGA 11	3 RKDSLVR	219	TSDHLAS 325	RSDNLAR 431	62.5
558	TGCGGGGCA 11	4 QSGDLTR	220	RSDHLTR 326	DSGHLAS 432	21
559	GAGTGTGTGA 11	5 RSDSLLR	221	TSDHLAS 327	RSDNLAR 433	1000
560	GAGTGTGTGA 11	S RSSLLQR	222	MSHHLKT 328	RSDHLSR 434	500
561	GAGTGTGTGA 11	7 RKDSLVR	223	MSHHLKE 329	RSDNLAR 435	1000
562	GAGTGTGTGA 11	B RSDSLLR	224	TSGHLTS 330	RSDNLAR 436	1000
565	GATGCTGAG 11	9 RSDNLTR	225	TSSELQR 331	QQSNLAR 437	100
567	GAAGATGAC 12	EKANLTR	226	TSANLSR 332	QRSNLVR 438	47.5
568	GATGACGAC 12	L EKANLTR	227	DSSNLTR 333	TSANLSR 439	300
569	GTAGTTGTG 122	RSDSLLR	228	TGGSLAR 334	ORSALTR 440	52

TABLE 2

an a "		SEC	Σ	SEO		SEQ		SEQ	<u>Kd</u>
SBS#	TARGET	ID	F1	ID	F2	ID	F3	ID	(nM)
201	GCAGCCTTG	441	RSDSLTS	646	ERSTLTR	851	QRADLRR	1056	1000
202	GCAGCCTTG	442	RSDSLTS	647	ERSTLTR	852	QRADLAR	1057	1000
203	GCAGCCTTG	443	RSDSLTS	648	ERSTLTR	853	QRATLRR	1058	1000
204	GCAGCCTTG	444	RSDSLTS	649	ERSTLTR	854	QRATLAR	1059	1000
205	GAGGTAGAA	445	QSANLAR	650	QSATLAR	855	RSDNLSR	1060	80
206	GAGGTAGAA	446	QSANLAR	651	QSAVLAR	856	RSDNLSR	1061	1000
207	GAGTGGTTA	447	QRASLAS	652	RSDHLTT	857	RSDNLAR	1062	70
208	TAGGTCTTA	448	QRASLAS	653	DRSALAR	858	RSDNLAS	1063	1000
209	GGAGTGGTT	449	QSSALAR	654	RSDALAR	859	QRAHLAR	1064	35
210	GGAGTGGTT	450	NRDTLAR	655	RSDALAR	860	QRAHLAR	1065	65
211	GGAGTGGTT	451	QSSALAR	656	RSDALAS	861	QRAHLAR	1066	140
212	GGAGTGGTT	452	NRDTLAR	657	RSDALAS	862	QRAHLAR	1067	400
213	GTTGCTGGA	453	QRAHLAR	658	QSSTLAR	863	QSSALAR	1068	1000
214	GTTGCTGGA	454	QRAHLAR	659	QSSTLAR	864	NRDTLAR	1069	1000
215	GAAGTCTGT	455	NRDHLMV	660	DRSALAR	865	QSANLSR	1070	1000
216	GAAGTCTGT	456	NRDHLTT (661	DRSALAR	866	QSANLSR	1071	1000
217	GAGGTCGTA				DRSALAR 8	867	RSDNLAR	1072	40
219	GATGTTGAT	458	QQSNLAR (663	NRDTLAR 8	368	NRDNLSR :	L073	1000
220	GATGTTGAT	459	QQSNLAR (564	NRDTLAR 8	369	QQSNLSR :	L074	1000
221	GATGAGTAC	460	DRSNLRT	565	RSDNLAR 8	370	NRDNLAR :	L075	1000
222	GATGAGTAC	461	ERSNLRT 6	566	RSDNLAR 8	371	NRDNLAR :	1076	1000
	GATGAGTAC				RSDNLAR 8	372	QQSNLAR 1	077	105
224	GATGAGTAC	463	ERSNLRT (568	RSDNLAR 8	373	QQSNLAR 1	078	1000
225	TGGGAGGTC	464	DRSALAR 6	569	RSDNLAR 8	374	RSDHLTT 1	.079	6
	GCAGCCTTG	465	RGDALTS 6	570	ERGTLAR 8	375	QSGSLTR 1	.080	1000
	GCAGCCTTG				ERGTLAR 8	376	QSGSLTR 1	081	1000
228	GCAGCCTTG	467	RGDALTM 6	72	ERGTLAR 8	377	QSGSLTR 1	082	1000
229	GCAGCCTTG	468	RGDALTS 6	73	ERGTLAR 8	78	RSDELTR 1	083	1000

				20		
230	GCAGCCTTG	469	RGDALTV 674	ERGTLAR 879	RSDELTR 1084	1000
231	GCAGCCTTG	470	RGDALTM 675	ERGTLAR 880	RSDELTR 1085	1000
232	GGTGTGGTG	471	RSDALTR 676	RSDALAR 881	NRSHLAR 1086	50
233	GGTGTGGTG	472	RSDALTR 677	RSDALAR 882	QASHLAR 1087	100
235	GTAGAGGTG	473	RSDALTR 678	RSDNLAR 883	QRGALAR 1088	80
236	GGGGAGGG	474	RSDHLAR 679	RSDNLAR 884	RSDHLSR 1089	0.3
237	GGGGAGGCC	475	ERGTLAR 680	RSDNLAR 885	RSDHLSR 1090	0.3
238	GGGGAGGCC	476	ERGTLAR 681	RSDNLQR 886	RSDHLSR 1091	0.8
239	GGCGGGGAG	477	RSDNLTR 682	RSDHLTR 887	DRSHLAR 1092	0.4
240	GCAGGGGAG	478	RSDNLTR 683	RSDHLSR 888	QSGSLTR 1093	1
242	GGGGGTGCT	479	QSSDLRR 684	QSSHLAR 889	RSDHLSR 1094	1
243	GTGGGCGCT	480	QSSDLRR 685	DRSHLAR 890	RSDALAR 1095	75
244	TAAGAAGGG	481	RSDHLAR 686	QSGNLTR 891	QSGNLRT 1096	100
245	TAAGAAGGG	482	RSDHLAR 687	QSANLTR 892	QSGNLRT 1097	235
246	GAAGGGGAG	483	RSDNLAR 688	RSDHLAR 893	QSGNLTR 1098	2
247	GAAGGGGAG	484	RSDNLAR 689	RSDHLAR 894	QSGNLRR 1099	2
276	GCGGCCGCG	485	RSDELTR 690	ERGTLAR 895	RSDERKR 1100	90
277	GCGGCCGCG	486	RSDELTR 691	DRSSLTR 896	RSDERKR 1101	107
278	GCGGCCGCG	487	QSWELTR 692	ERGTLAR 897	RSDERKR 1102	190
279	GCGGCCGCG	488	QSWELTR 693	DRSSLTR 898	RSDERKR 1103	260
280	GCGGCCGCG	489	QSGSLTR 694	ERGTLAR 899	RSDERKR 1104	160
281	GCGGCCGCG	490	QSGSLTR 695	DRSSLTR 900	RSDERKR 1105	225
282	GCAGAAGTG	491	RGDALTR 696	QSANLTR 901	QSADLAR 1106	1000
283	GCAGAAGTG	492	RSDALTR 697	QSGNLTR 902	QSGSLTR 1107	2
284	GCGGCCGCG	493	QSGSLTR 698	RSDHLTT 903	RSDERKR 1108	1000
285	TGTGCGGCC	494	ERGTLAR 699	RSDELTR 904	SRDHLQS 1109	1000
287	GCAGAAGCG	495	RGPDLAR 700	QSANLTR 905	QSGSLTR 1110	1000
288	GCAGAAGCG	496	RGPDLAR 701	QSANLTR 906	QSGSLTR 1111	1000
289	GCAGAAGCG	497	RGPDLAR 702	QSGNLQR 907	QSGSLTR 1112	800
290	GCAGAAGCG	498	RSDELAR 703	QSANLQR 908	QSADLAR 1113	1000
292	GCAGAAGCG	499	RSDELTR 704	QSANLQR 909	QSGSLTR 1114	1000
293	GTGTGCGGC	500	DRSHLTR 705	ERHSLQT 910	RSDALTR 1115	320
296	TGCGCGGCC	501	ERGTLAR 706	RSDELTR 911	DRDHLQS 1116	1000

297	TGCGCGGCC	502	ERGTLAR 707	RSDELRR 912	DRSHLQT 1117	500
298	GCTTAGGCA	503	QTGELRR 708	RSDNLQK 913	TSGDLSR 1118	4000
299	GCTTAGGCA	504	QTSDLRR 709	RSDNLQK 914	QSSDLQR 1119	4000
300	GCTTAGGCA	505	QTADLRR 710	RSDNLQR 915	QSSDLSR 1120	400
301	GCTTAGGCA	506	QSADLRR 711	RSDNLQT 916	QSSDLSR 1121	350
302	GCTTAGGCA	507	QSGSLTR 712	RSDNLQT 917	QSSDLSR 1122	75
303	GCTTAGGCA	508	QTGSLTR 713	RSDNLQT 918	QSSDLSR 1123	135
304	GCTTAGGCA	509	QTADLTR 714	RSDNLQT 919	QSSDLSR 1124	230
305	GCTTAGGCA	510	QTGDLTR 715	RSDNLQT 920	QSSDLSR 1125	230
306	GCTTAGGCA	511	QTASLTR 716	RSDNLQT 921	QSSDLSR 1126	280
307	GAAGAAGCG	512	RSDELRR 717	QSGNLQR 922	QSGNLSR 1127	50.5
308	GAAGAAGCG	513	RSDELRR 718	QSANLQR 923	QSANLQR 1128	1000
309	GGAGATGCC	514	ERSDLRR 719	QSSNLQR 924	QSGHLSR 1129	4000
310	GGAGATGCC	515	DRSDLTR 720	NRDNLQT 925	QSGHLSR 1130	1000
311	GGAGATGCC	516	DRSTLTR 721	NRDNLQR 926	QSGHLSR 1131	170
312	GGAGATGCC	517	ERGTLAR 722	NRDNLQR 927	QSGHLSR 1132	2000
313	GGAGATGCC	518	DRSDLTR 723	QRSNLQR 928	QSGHLSR 1133	1000
314	GGAGATGCC	519	DRSSLTR 724	QSSNLQR 929	QSGHLSR 1134	117.5
315	GGAGATGCC	520	ERGTLAR 725	QSSNLQR 930	QSGHLSR 1135	265
316	GGAGATGCC	521	ERGTLAR 726	QRDNLQR 931	QSGHLSR 1136	3000
318	TAGGAGATGC	522	RSDALTS 727	RSDNLAR 932	RSDNLAS 1137	100
319	GGGGAAGGG	523	KTSHLRA 728	QSGNLSR 933	RSDHLSR 1138	125
320	GGGGAAGGG	524	RSDHLTR 729	QSGNLSR 934	RSDHLSR 1139	5
321	GGCGGAGAT	525	TTSNLRR 730	QSGHLQR 935	DRSHLTR 1140	200
323	GGCGGAGAT	526	TTSNLRR 731	QSGHLQR 936	DRDHLTR 1141	600
324	GGCGGAGAT	527	TTSNLRR 732	QSGHLQR 937	DRDHLTR 1142	200
325	GTATCTGCT	528	NSSDLTR 733	NSDVLTS 938	QSDVLTR 1143	1000
326	GTATCTGTT	529	NSDALTR 734	NSDVLTS 939	QSDVLTR 1144	1000
327	TCTGCTGGG	530	RSDHLTR 735	NSADLTR 940	NSDDLTR 1145	1000
328	TCTGTTGGG	531	RSDHLTR 736	NSSALTS 941	NSDDLTR 1146	1000
349	GGTGTCGCC	532	DCRDLAR 737	DSGSLTR 942	TSGHLTR 1147	1000
350	TCCGAGGGT	533	TSGHLTR 738	RSDNLTR 943	DCRDLTT 1148	332
351	GCTGGTGTC	534	DSGSLTR 739	TSGHLTR 944	TLHTLTR 1149	1000

352	GGAGGGGTG	535	RSDSLLE	740	RSDHLTR 945	OSDHLTR 1150	26
353						TSGALTR 1151	
354					2		1000
355						QRSNLVR 1152	28
356					RSDNLTR 948	QRSNLVR 1153	20
357					RSDHLTK 949	DSDHLSR 1154	1000
358					RSDHLTK 950	DSDHLSR 1155	1000
					RSDHLTK 951	DSSHLSR 1156	225
361					QSSALTR 952	RSDHLTR 1157	130
363					QSSVLTR 953	RSDHLTR 1158	200
364	GTGTCCGAAG	544	RSDNLTR	749	DSAVLTT 954	RSDSLTR 1159	1000
365	GGTGCTGGT	545	QASHLTR	750	QASVLTR 955	QASHLTR 1160	600
366	GAGGGTGCT	546	QASVLTR	751	QASHLTR 956	RSDNLTR 1161	1000
367	GGGGGCGGG	547	RSDHLTR	752	DSGHLTR 957	RSDHLQR 1162	60
368	GAGGGGGCG	548	RSDELTR	753	RSDHLTR 958	RSDNLTR 1163	3.5
369	GTAGTTGTG	549	RSDALTR	754	TGGSLAR 959	QSGSLTR 1164	95
370	GTAGTTGTG	550	RSDALTR	755	NRATLAR 960	QSASLTR 1165	300
371	GTAGTTGTG	551	RSDALTR	756	NRATLAR 961	QSGSLTR 1166	175
372	GTAGTTGTG	552	RSDSLLR	757	TGGSLAR 962	QSASLTR 1167	112.5
373	GTAGTTGTG	553	RSDSLLR	758	NRATLAR 963	QSASLTR 1168	320
374	GCTGAGGAA	554	QRSNLVR	759	RSDNLTR 964	TSSELQR 1169	3.3
375	GAGGAAGAT	555	QQSNLAR	760	QSGNLQR 965	RSDNLTR 1170	85
377	GTGTTGGCAG	556	QSGSLTR	761	RGDALTS 966	RSDALTR 1171	89
378	GCCGAGGAGA	557	RSDNLTR	762	RSDNLTR 967	DRSSLTR 1172	31
379	GCCGAGGAGA	558	RSDNLTR	763	RSDNLTR 968	ERGTLAR 1173	3
380	GAGTCGGAAG	559	QSANLAR	764	RSDELTT 969	RSDNLAR 1174	1000
381	GCAGCTGCGC	560	RSDELTR	765	QSSDLQR 970	QSGDLTR 1175	1.5
383	TGGTTGGTAT	561	QSATLAR	766	RGDALTS 971	RSDHLTT 1176	1000
384	GTGGGCTTCA	562	DRSALTT	767	DRSHLAR 972	RSDALAR 1177	60
385	GGGGCGGAGC	563	RSDNLTR	768	RSDTLKK 973	RSDHLSR 1178	1.2
386	GGGGCGGAGC	564	RSDNLTR	769	RSDELQR 974	RSDHLSR 1179	0.4
387	GGCGAGGCAA	565	QSGSLTR	770	RSDNLAR 975	DRSHLAR 1180	2.5
388	GGCGAGGCAA	566	QSGDLTR	771	RSDNLAR 976	DRSHLAR 1181	28
390	GTGGCAGCGG	567	RSDTLKK	772	QSSDLQK 977	RSDALAR 1182	20

392	GTGGCAGCGG	568	RSDELTR 77	3 QSSDLQK 978	RSDALAR 1183	1000
396	GCGGGAGCAG	569	QSGSLTR 77	4 QSGHLQR 979	RSDTLKK 1184	18.8
397	GCGGGAGCAG	570	QSGDLTR 77	5 QSGHLQR 980	RSDTLKK 1185	25
400	TCAGTGGTGG	571	RSDALAR 77	6 RSDSLAR 981	QSGDLRT 1186	40
405	GCGGCCGCA	572	RSDELTR 77	7 ERGTLAR 982	RSDERKR 1187	110
406	GCGGCCGCA	573	RSDELTR 77	8 DRSSLTR 983	RSDERKR 1188	110
407	GCGGCCGCA	574	QSWELTR 77	9 ERGTLAR 984	RSDERKR 1189	410
408	GCGGCCGCA	575	QSWELTR 78	DRSSLTR 985	RSDERKR 1190	380
409	GCGGCCGCA	576	QSGSLTR 78	1 ERGTLAR 986	RSDERKR 1191	50
410	GCAGAAGTC	577	RSDALTR 78:	2 QSGNLTR 987	QSGSLTR 1192	3
411	GCGGCCGCA	578	QSGSLTR 78	RSDHLTT 988	RSDERKR 1193	1000
412	GCGTGGGCG	579	QSGSLTR 78	4 RSDHLTT 989	RSDERKR 1194	5
413	GCGTGGGCA	580	QSGSLTR 78	RSDHLTT 990	RSDERKR 1195	5
414	GCAGAAGCA	581	RSDELTR 786	S QSANLQR 991	QSGSLTR 1196	1000
415	GTGTGCGGA	582	DRSHLTR 78	7 ERHSLQT 992	RSDALTR 1197	1000
416	TGTGCGGCC	583	ERGTLAR 788	RSDELRR 993	DRSHLQT 1198	1000
493	GGGGTGGCGG	584	RSDTLKK 789	RSDSLAR 994	RSDHLSR 1199	300
494	GCCGAGGAGA	585	RSDNLTR 790	RSDNLTR 995	DRSSLTR 1200	90
496	GGTGGTGGC	586	DTSHLRR 791	L TSGHLQR 996	TSGHLSR 1201	1000
497	GTTTGCGTC	587	ETASLRR 792	DSAHLQR 997	TSSALSR 1202	1000
498	GAAGAGGCA	588	QTGELRR 793	RSDNLQR 998	QSGNLSR 1203	30
499	GCTTGTGAG	589	RTSNLRR 794	TSSHLQK 999	DTDHLRR 1204	1000
500	GCTTGTGAG	590	RSDNLTR 795	QSSNLQT 1000	DRSHLAR 1205	1000
501	GTGGGGGTT	591	NRATLAR 796	RSDHLSR 1001	RSDALAR 1206	8
502	GGGGTGGGA	592	QSAHLAR 797	RSDALAR 1002	RSDHLSR 1207	60
507	GAGGTAGAGG	593	RSDNLAR 798	QRSALAR 1003	RSDNLAR 1208	10
508	GAGGTAGAGG	594	RSDNLAR 799	QSATLAR 1004	RSDNLAR 1209	10
509	GTCGTGTGGC	595	RSDHLTT 800	RSDALAR 1005	DRSALAR 1210	100
510	GTTGAGGAAG	596	QSGNLAR 801	RSDNLAR 1006	NRATLAR 1211	100
511	GTTGAGGAAG	597	QSGNLAR 802	RSDNLAR 1007	QSSALAR 1212	100
512	GAGGTGGAAG	598	QSGNLAR 803	RSDALAR 1008	RSDNLAR 1213	10
513	GAGGTGGAAG	599	QSANLAR 804	RSDALAR 1009	RSDNLAR 1214	1.5
514	TAGGTGGTGG	600	RSDALTR 805	RSDALAR 1010	RSDNLTT 1215	10

515	TGGGAGGAGT	601	RSDNLTR 806	RSDNLTR 1011	RSDHLTT 1216	0.5
516	GGAGGAGCT	602	TTSELRR 807	QSGHLQR 1012	QSGHLSR 1217	700
517	GGAGCTGGGG	603	RTDHLRR 808	TSSELQR 1013	QSGHLSR 1218	50
518	GGGGGAGGAG	604	QTGHLRR 809	QSGHLQR 1014	RSDHLSR 1219	30
519	GGGGAGGAGA	605	RSDNLAR 810	RSDNLSR 1015	RSDHLSR 1220	0.3
520	GGAGGAGAT	606	TTANLRR 811	QSGHLQR 1016	QSGHLSR 1221	300
521	GCAGCAGGA	607	QTGHLRR 812	QSGELQR 1017	QSGELSR 1222	1000
522	GATGAGGCA	608	QTGELRR 813	RSDNLQR 1018	TSANLSR 1223	200
527	GGGGAGGATC	609	TTSNLRR 814	RSSNLQR 1019	RSDHLSR 1224	2
528	GGGGAGGATC	610	TTSNLRR 815	RSSNLQR 1020	RSDHLSR 1225	10
529	GAGGCTTGGG	611	RTDHLRK 816	TSAELQR 1021	RSSNLSR 1226	1000
531	GCGGAGGCTT	612	TTGELRR 817	RSSNLQR 1022	RSDELSR 1227	160
532	GCGGAGGCTT	613	QSSDLQR 818	RSSNLQR 1023	RSDELSR 1228	100
533	GCGGAGGCTT	614	QSSDLQR 819	RSDNLAR 1024	RSADLSR 1229	7
534	GCGGAGGCTT	615	QSSDLQR 820	RSDNLAR 1025	RSDDLRR 1230	10
535	GCAGCCGGG	616	RTDHLRR 821	ESSDLQR 1026	QSGELSR 1231	1000
538	GCAGAGGCTT	617	QSSDLQR 822	RSDNLAR 1027	QSGSLTR 1232	70
540	TGGGCAGGCC	618	DRSHLTR 823	QSGSLTR 1028	RSDHLTT 1233	55
541	GGGGAGGAT	619	TTSNLRR 824	RSSNLQR 1029	RSDHLSR 1234	3
570	GGGGAAGGCT	620	DSGHLTR 825	QRSNLVR 1030	RSDHLTR 1235	20
571	GTGTGTGTGT	621	RSDSLTR 826	QRSNLVR 1031	RSDSLLR 1236	1000
572	GCATACGTGG	622	RSDSLLR 827	DKGNLQS 1032	QSDDLTR 1237	1000
573	GCATACGTG	623	RSDSLLR 828	DKGNLQS 1033	QSGDLTR 1238	1000
574	TACGTGGGGT	624	RSDHLTR 829	RSDHLTR 1034	DKGNLQT 1239	25
575	TACGTGGGCT	625	DFSHLTR 830	RSDHLTR 1035	DKGNLQT 1240	472
576	GAGGGTGTTG	626	NSDTLAR 831	TSGHLTR 1036	RSDNLTR 1241	200
577	GGAGCGGGGA	627	RSDHLSR 832	RSDELQR 1037	QSDHLTR 1242	200
579	GGGGTTGAGG	628	RSDNLTR 833	NRDTLAR 1038	TSGHLTR 1243	200
580	GGTGTTGGAG	629	QRAHLAR 834	NRDTLAR 1039	TSGHLTR 1244	1000
581	TACGTGGGTT	630	QSSHLTR 835	RSDSLLR 1040	DKGNLQT 1245	382
583 (GTAGGGGTTG	631	NSSALTR 836	RSDHLTR 1041	QSASLTR 1246	46
584 (GAAGGCGGAG	632	QAGHLTR 837	DKSHLTR 1042	QSGNLTR 1247	1000
585 (GAAGGCGGAG	633	QAGHLTR 838	DSGHLTR 1043	QSGNLTR 1248	1000

587	GGGGGTTACG	634	DKGNLQT 839	TSGHLTR 1044	RSDHLSK 1249	500
588	GGGGGGGGG	635	RSDHLSR 840	RSDHLTR 1045	RSDHLSK 1250	30
589	GGAGTATGCT	636	DSGHLAS 841	QSATLAR 1046	QSDHLTR 1251	1000
595	TGGTTGGTAT	637	QRGSLAR 842	RGDALTR 1047	RSDHLTT 1252	73.3
597	TGGTTGGTA	638	QNSAMRK 843	RGDALTS 1048	RSDHLTT 1253	1000
598	TGGTTGGTA	639	QRGSLAR 844	RDGSLTS 1049	RSDHLTT 1254	1000
599	TGGTTGGTA	640	QNSAMRK 845	RDGSLTS 1050	RSDHLTT 1255	1000
600	GAGTCGGAA	641	QSANLAR 846	RSDELRT 1051	RSDNLAR 1256	206.7
601	GAGTCGGAA	642	RSANLTR 847	RLDGLRT 1052	RSDNLAR 1257	606.7
602	GAGTCGGAA	643	RSANLTR 848	RQDTLVG 1053	RSDNLAR 1258	616.7
603	GAGTCGGAA	644	QSGNLAR 849	RSDELRT 1054	RSDNLAR 1259	166.7
606	GGGGAGGATC	645	TTSNLRR 850	RSDNLQR 1055	RSDHLSR 1260	0.2

TABLE 3

		SEO		SEQ		SEQ		SEQ	Kd
SBS#	TARGET	ID	F1	ID	F2	ID	F3	<u>ID</u>	(nM)
897	GAGGAGGTGA	1261	RSDALAR	1347	RSDNLAR	1433	RSDNLVR	1519	0.07
828	GCGGAGGACC	1262	EKANLTR	1348	RSDNLAR	1434	RSDERKR	1520	0.1
884	GAGGAGGTGA	1263	RSDSLTR	1349	RSDNLAR	1435	RSDNLVR	1521	0.15
817	GAGGAGGTGA	1264	RSDSLTR	1350	RSDNLAR	1436	RSDNLAR	1522	0.31
666	GCGGAGGCGC	1265	RSDDLTR	1351	RSDNLTR	1437	RSDTLKK	1523	0.5
829	GCGGAGGACC	1266	EKANLTR	1352	RSDNLAR	1438	RSDTLKK	1524	0.52
670	GACGTGGAGG	1267	RSDNLAR	1353	RSDALAR	1439	DRSNLTR	1525	0.57
801	AAGGAGTCGC	1268	RSADLRT	1354	RSDNLAR	1440	RSDNLTQ	1526	0.85
668	GTGGAGGCCA	1269	ERGTLAR	1355	RSDNLAR	1441	RSDALAR	1527	1.13
895	ATGGATTCAG	1270	QSHDLTK	1356	TSGNLVR	1442	RSDALTQ	1528	1.4
799	GGGGGAGCTG	1271	QSSDLQR	1357	QRAHLER	1443	RSDHLSR	1529	1.85
798	GGGGGAGCTG	1272	QSSDLQR	1358	QSGHLQR	1444	RSDHLSR	1530	3
842	GAGGTGGGCT	1273	DRSHLTR	1359	RSDALAR	1445	RSDNLAR	1531	5.4
894	TCAGTGGTAT	1274	QRSALAR	1360	RSDALSR	1446	QSHDLTK	1532	6.15
892	ATGGATTCAG	1275	QSHDLTK	1361	QQSNLVR	1447	RSDALTQ	1533	6.2
888	TCAGTGGTAT	1276	QSSSLVR	1362	RSDALSR	1448	QSHDLTK	1534	14
739	GCGGGCGGGC	1277	RSDHLTR	1363	ERGHLTR	1449	RSDDLRR	1535	16.5
850	CAGGCTGTGG	1278	RSDALTR	1364	QSSDLTR	1450	RSDNLRE	1536	17
797	GCAGAGGCTG	1279	QSSDLQR	1365	RSDNLAR	1451	QSGDLTR	1537	17.5
891	TCAGTGGTAT	1280	QSSSLVR	1366	RSDALSR	1452	QSGSLRT	1538	18.5
887	TCAGTGGTAT	1281	QRSALAR	1367	RSDALSR	1453	QSGDLRT	1539	23.75
672	TCGGACGTGG	1282	RSDALAR	1368	DRSNLTR	1454	RSDELRT	1540	24
836	GGGGAGGCCC	1283	ERGTLAR	1369	RSDNLAR	1455	RSDHLSR	1541	24.25
674	GCGGCGTCGG	1284	RSDELRT	1370	RADTLRR	1456	RSDTLKK	1542	27.5
849	GGGGCCCTGG	1285	RSDALRE	1371	DRSSLTR	1457	RSDHLTQ	1543	29.05
825	GAATGGGCAG	1286	QSGSLTR	1372	RSDHLTT	1458	QSGNLTR	1544	37.3
673	GCGGGTGTCT	1287	DRSALAR	1373	QSSHLAR	1459	RSDTLKK	1545	48.33
848	GGGGAGGCCC	1288	DRSSLTR	1374	RSDNLAR	1460	RSDHLSR	1546	49.5

662	AGAGCGGCAC 1289	QTGSLTR 1375	RSDELQR 1461	QSGHLNQ 1547	50
667	GAGTCGGACG 1290	DRSNLTR 1376	RSDELRT 1462	RSDNLAR 1548	50
803	GCAGCGGCTC 1291	QSSDLQR 1377	RSDELQR 1463	QSGSLTR 1549	57.5
671	TCGGACGAGT 1292	RSDNLAR 1378	DRSNLTR 1464	RSDELRT 1550	64
851	GAGATGGATC 1293	QSSNLQR 1379	RRDVLMN 1465	RLHNLQR 1551	74
804	GCAGCGGCTC 1294	QSSDLQR 1380	RSDDLNR 1466	QSGSLTR 1552	82.5
669	GACGAGTCGG 1295	RSDELRT 1381	RSDNLAR 1467	DRSNLTR 1553	90
682	GCTGCAGGAG 1296	RSDHLAR 1382	QSGDLTR 1468	QSSDLSR 1554	90
845	GAGATGGATC 1297	QSSNLQR 1383	RSDALRQ 1469	RLHNLQR 1555	112.5
663	AGAGCGGCAC 1298	QTGSLTR 1384	RSDELQR 1470	KNWKLQA 1556	115
738	GCGGGGTCCG 1299	ERGTLTT 1385	RSDHLSR 1471	RSDDLRR 1557	120
664	AGAGCGGCAC 1300	QTGSLTR 1386	RADTLRR 1472	ASSRLAT 1558	125
833	GACTAGGACC 1301	EKANLTR 1387	RSDNLTK 1473	DRSNLTR 1559	136
685	GCTGCAGGAG 1302	RSDHLAR 1388	QSGSLTR 1474	QSSDLSR 1560	150
835	TAGGGAGCGT 1303	RADTLRR 1389	QSGHLTR 1475	RSDNLTT 1561	150
847	TAGGGAGCGT 1304	RSDDLTR 1390	QSGHLTR 1476	RSDNLTT 1562	150
818	GAATGGGCAG 1305	QSGSLTR 1391	RSDHLTT 1477	QSSNLVR 1563	167
834	GACTAGGACC 1306	EKANLTR 1392	RSDHLTT 1478	DRSNLTR 1564	186
837	GGGGCCCTGG 1307	RSDALRE 1393	DRSSLTR 1479	RSDHLSR 1565	222
764	GCAGAGGCTG 1308	TSGELVR 1394	RSDNLAR 1480	QSGDLTR 1566	255
774	GCAGCGGTAG 1309	QRSALAR 1395	RSDELQR 1481	QSGDLTR 1567	258
765	GCCGAGGCCG 1310	ERGTLAR 1396	RSDNLAR 1482	ERGTLAR 1568	262.5
766	GCCGAGGCCG 1311	ERGTLAR 1397	RSDNLAR 1483	DRSDLTR 1569	262.5
775	GCAGCGGTAG 1312	QSGALTR 1398	RSDELQR 1484	QSGDLTR 1570	265
763	GCAGAGGCTG 1313	TSGELVR 1399	RSDNLAR 1485	QSGSLTR 1571	275
838	GGGGCCCTGG 1314	RSDALRE 1400	DRSSLTR 1486	RSDHLTA 1572	300
841	GAGTGTGAGG 1315	RSDNLAR 1401	QSSHLAS 1487	RSDNLAR 1573	300
770	TTGGCAGCCT 1316	DRSSLTR 1402	QSGSLTR 1488	RSDSLTK 1574	325
767	GGGGGAGCTG 1317	QSSDLAR 1403	QSGHLQR 1489	RSDHLSR 1575	335
800	TTGGCAGCCT 1318	ERGTLAR 1404	QSGSLTR 1490	RSDSLTK 1576	400
832	GACTAGGACC 1319	EKANLTR 1405	RSDNLTT 1491	DRSNLTR 1577	408
844	GAGATGGATC 1320	QSSNLQR 1406	RSDALRQ 1492	RSDNLQR 1578	444
683	GCTGCAGGAG 1321	QSGHLAR 1407	QSGSLTR 1493	QSSDLSR 1579	500

		54			
805	GCAGCGGTAG 1322	QRSALAR 1408	RSDELQR 1494	QSGSLTR 1580	500
839	GAGTGTGAGG 1323	RSDNLAR 1409	TSDHLAS 1495	RSDNLAR 1581	625
840	GAGTGTGAGG 1324	RSDNLAR 1410	MSHHLKT 1496	RSDNLAR 1582	625
830	GGAGAGTCGG 1325	RSDELRT 1411	RSDNLAR 1497	QRAHLAR 1583	683
831	GGAGAGTCGG 1326	RSDDLTK 1412	RSDNLAR 1498	QRAHLAR 1584	700
684	GCTGCAGGAG 1327	RSAHLAR 1413	QSGSLTR 1499	QSSDLSR 1585	850
846	GAGATGGATC 1328	QSSNLQR 1414	RRDVLMN 1500	RSDNLQR 1586	889.5
819	AAGTAGGGTG 1329	QSSHLTR 1415	RSDNLTT 1501	RSDNLTQ 1587	1000
820	ACGGTAGTTA 1330	QSSALTR 1416	QRSALAR 1502	RSDTLTQ 1588	1000
821	ACGGTAGTTA 1331	NRATLAR 1417	QRSALAR 1503	RSDTLTQ 1589	1000
822	GTGTGCTGGT 1332	RSDHLTT 1418	ERQHLAT 1504	RSDALAR 1590	1000
823	GTGTGCTGGT 1333	RSDHLTK 1419	ERQHLAT 1505	RSDALAR 1591	1000
824	GTGTGCTGGT 1334	RSDHLTT 1420	DRSHLRT 1506	RSDALAR 1592	1000
885	GTGTGCTGGT 1335	RSDHLTK 1421	DRSHLRT 1507	RSDALAR 1593	1000
886	TCAGTGGTAT 1336	QSSSLVR 1422	RSDALSR 1508	QSGDLRT 1594	1000
889	ATGGATTCAG 1337	QSGSLTT 1423	QQSNLVR 1509	RSDALTQ 1595	1000
890	CTGGTATGTC 1338	QRSHLTT 1424	QRSALAR 1510	RSDALRE 1596	1000
896	AAGTAGGGTG 1339	TSGHLVR 1425	RSDNLTT 1511	RSDNLTQ 1597	1000
898	ACGGTAGTTA 1340	NRATLAR 1426	QSSSLVR 1512	RSDTLTQ 1598	1000
899	CTGGTATGTC 1341	QRSHLTT 1427	QSSSLVR 1513	RSDALRE 1599	1000
900	CTGGTATGTC 1342	MSHHLKE 1428	QSSSLVR 1514	RSDALRE 1600	1000
901	CTGGTATGTC 1343	MSHHLKE 1429	QRSALAR 1515	RSDALRE 1601	1000
773	GCAGCGGTAG 1344	QSGALTR 1430	RSDELQR 1516	QSGSLTR 1602	1250
768	GGGGGAGCTG 1345	QSSDLAR 1431	QRAHLER 1517	RSDHLSR 1603	2000
681	GCTGCAGGAG 1346	RSAHLAR 1432	QSGDLTR 1518	QSSDLSR 1604	3000

TABLE 4

		SEO	F1	SEO	F2	SEO	F3	SEO	<u>Kd</u>
SBS#	TARGET	ID		ID		ID		ID	(nM)
607	AAGGTGGCAG	1605	QSGDLTR	1707	RSDSLAR	1809	RLDNRTA	1911	6.5
608	TTGGCTGGGC	1606	GSWHLTR	1708	QSSDLQR	1810	RSDSLTK	1912	8
611	GTGGCTGCAG	1607	QSGDLTR	1709	QSSDLQR	1811	RSDALAR	1913	11.5
612	GTGGCTGCAG	1608	QSGTLTR	1710	QSSDLQR	1812	RSDALAR	1914	0.38
613	TTGGCTGGGC	1609	RSDHLAR	1711	QSSDLQR	1813	RGDALTS	1915	1.45
614	TTGGCTGGGC	1610	RSDHLAR	1712	QSSDLQR	1814	RSDSLTK	1916	2
616	GAGGAGGATG	1611	QSSNLQR	1713	RSDNLAR	1815	RSDNLQR	1917	0.08
617	AAGGGGGGG	1612	RSDHLSR	1714	RSDHLTR	1816	RKDNMTA	1918	1
618	AAGGGGGGG	1613	RSDHLSR	1715	RSDHLTR	1817	RKDNMTQ	1919	0.55
619	AAGGGGGGG	1614	RSDHLSR	1716	RSDHLTR	1818	RKDNMTN	1920	1.34
620	AAGGGGGG	1615	RSDHLSR	1717	RSDHLTR	1819	RLDNRTA	1921	0.54
621	AAGGGGGG	1616	RSDHLSR	1718	RSDHLTR	1820	RLDNRTQ	1922	0.75
624	ACGGATGTCT	1617	DRSALAR	1719	TSANLAR	1821	RSDTLRS	1923	7
628	TTGTAGGGGA	1618	RSDHLTR	1720	RSDNLTT	1822	RGDALTS	1924	130
629	TTGTAGGGGA	1619	RSSHLTR	1721	RSDNLTT	1823	RGDALTS	1925	150
630	CGGGGAGAGT	1620	RSDNLAR	1722	QSGHLQR	1824	RSDHLRE	1926	37.5
646	TTGGTGGAAG	1621	QSGNLAR	1723	RSDALAR	1825	RGDALTS	1927	35
647	TTGGTGGAAG	1622	QSANLAR	1724	RSDALAR	1826	RGDALTS	1928	40
651	GTTGTGGAAT	1623	QSGNLSR	1725	RSDALAR	1827	NRATLAR	1929	67.5
652	TAGGAGGCTG	1624	QSSDLQR	1726	RSDNLAR	1828	RSDNLTT	1930	1.5
653	TAGGAGGCTG	1625	TTSDLTR	1727	RSDNLAR	1829	RSDNLTT	1931	5.5
654	TAGGCATAAA	1626	QSGNLRT	1728	QSGSLTR	1830	RSDNLTT	1932	105
655	TAGGCATAAA	1627	QSGNLRT	1729	QSSTLRR	1831	RSDNLTT	1933	1000
656	TAGGCATAAA	1628	QSGNLRT	1730	QSGSLTR	1832	RSDNLTS	1934	540
657	TAGGCATAAA	1629	QSGNLRT	1731	QSSTLRR	1833	RSDNLTS	1935	300
660	GAGGGAGTTC	1630	NRATLAR	1732	QSGHLTR	1834	RSDNLAR	1936	8.25
661	GAGGGAGTTC	1631	TTSALTR	1733	QSGHLTR	1835	RSDNLAR	1937	1.73
665	GCGGAGGCGC	1632	RSDDVTR	1734	RSDNLTR	1836	RSDDLRR	1938	12.5

689	AAGGCGGAGA 1633	RSDNLTR	1735	RSDELQR	1837	RLDNRTA 1939	82.5
692	AAGGCGGAGA 1634	RSDNLTR	1736	RSDELQR	1838	RSDNLTQ 1940	51
693	AAGGCGGAGA 1635	RSDNLTR	1737	RADTLRR	1839	RLDNRTA 1941	95
694	AAGGCGGAGA 1636	RSDNLTR	1738	RADTLRR	1840	RSDNLTQ 1942	28.5
695	GGGGCGAGC 1637	RSSNLTR	1739	DRSHLAR	1841	RSDHLTR 1943	850
697	TGAGCGGCGG 1638	RSDELTR	1740	RSDELSR	1842	QSGHLTK 1944	200
698	TGAGCGGCGG 1639	RSDELTR	1741	RSDELSR	1843	QSHGLTS 1945	300
699	GCGGCGGCAG 1640	QSGSLTR	1742	RSDDLQR	1844	RSDERKR 1946	21.5
700	GCGGCGGCAG 1641	QSGDLTR	1743	RSDDLQR	1845	RSDERKR 1947	45
701	GCAGCGGAGC 1642	RSDNLAR	1744	RSDELQR	1846	QSGSLTR 1948	50.5
702	GCAGCGGAGC 1643	RSDNLAR	1745	RSDELQR	1847	QSGDLTR 1949	73.5
704	AAGGTGGCAG 1644	QSGDLTR	1746	RSDSLAR	1848	RSDNLTQ 1950	5
705	GGGGTGGGGC 1645	RSDHLAR	1747	RSDSLAR	1849	RSDHLSR 1951	0.01
706	GGGGTGGGGC 1646	RSDHLAR	1748	RSDSLLR	1850	RSDHLSR 1952	0.05
708	GAGTCGGAA 1647	QSANLAR	1749	RQDTLVG	1851	RSDNLAR 1953	300
709	GAGTCGGAA 1648	QSANLAR	1750	RKDVLVS	1852	RSDNLAR 1954	400
710	GAGTCGGAA 1649	QSGNLAR	1751	RLDGLRT	1853	RSDNLAR 1955	400
711	GAGTCGGAA 1650	QSGNLAR	1752	RQDTLVG	1854	RSDNLAR 1956	400
712	GGTGAGGAGT 1651	RSDNLAR	1753	RSDNLAR	1855	MSDHLSR 1957	9.5
713	GGTGAGGAGT 1652	RSDNLAR	1754	RSDNLAR	1856	MSHHLSR 1958	0.15
714	TGGGTCGCGG 1653	RSDELRR	1755	DRSALAR	1857	RSDHLTT 1959	200
715	TGGGTCGCGG 1654	RADTLRR	1756	DRSALAR	1858	RSDHLTT 1960	0.46
716	TTGGGAGCAC 1655	QSGSLTR	1757	QSGHLQR	1859	RGDALTS 1961	200
717	TTGGGAGCAC 1656	QSGSLTR	1758	QSGHLQR	1860	RSDALTK 1962	150
718	TTGGGAGCAC 1657	QSGSLTR	1759	QSGHLQR	1861	RSDALTR 1963	107.5
719	GGCATGGTGG 1658	RSDALTR	1760	RSDALTS	1862	DRSHLAR 1964	20
720	GAAGAGGATG 1659	TTSNLAR	1761	RSDNLAR	1863	QSGNLTR 1965	1.6
722	ATGGGGGTGG 1660	RSDALTR	1762	RSDHLTR	1864	RSDALRQ 1966	0.7
724	GGCATGGTGG 1661	RSDALTR	1763	RSDALRQ	1865	DRSHLAR 1967	2.5
725	GCTTGAGTTA 1662	QSSALAR	1764	QSGHLQK	1866	QSSDLQR 1968	3000
726	GAAGAGGATG 1663	QSSNLAR	1765	RSDNLAR	1867	QSGNLTR 1969	1.5
727	GCGGTGGCTC 1664	QSSDLTR	1766	RSDALSR	1868	RSDTLKK 1970	0.1
728	GGTGAGGAGT 1665	RSDNLAR	1767	RSDNLAR	1869	DSSKLSR 1971	15

729 GGAGGGGAGT 1666 RSDNLAR 1768 RSDHLSR 1870 QSGHLAR 1972 1000 730 TGGGTCGCGG 1667 RSDDLTR 1769 DRSALAR 1871 RSDHLTT 1973 1000 731 GTGGGGGAGA 1668 RSDNLAR 1770 RSDHLSR 1872 RSDALAR 1974 12 732 GCGGGTGGGG 1669 RSDHLAR 1771 OSSHLAR 1873 RSDDLTR 1975 22.5 733 GCGGGTGGGG 1670 RSDHLAR 1772 OSSHLAR 1874 RSDTLKK 1976 0.32 734 GGGGCTGGGT 1671 RSDHLAR 1773 OSSDLSR 1875 RSDHLSR 1977 0.25 735 GCGGTGGCTC 1672 OSSDLTR 1774 RSDALSR 1876 RSDERKR 1978 0.05 736 GAGGTGGGGA 1673 RSDHLAR 1775 RSDALSR 1877 RSDNLSR 1979 0.47 737 GGAGGGGAGT 1674 RSDNLAR 1776 RSDHLSR 1878 ORGHLSR 1980 1000 740 AAGGTGGCAG 1675 QSGSLTR 1777 RSDALAR 1879 RSDNRTA 1981 12.5 741 AAGGCTGAGA 1676 RSDNLTR 1778 OSSDLOR 1880 RSDNLTO 1982 15 742 ACGGGGTTAT 1677 ORGALAS 1779 RSDHLSR 1881 RSDTLKO 1983 29 743 ACGGGGTTAT 1678 ORGALAS 1780 RSDHLSR 1882 RSDTLTO 1984 10 744 ACGGGGTTAT 1679 RSDHLSR 1883 RSDTLKQ 1985 8.33 ORSALAS 1781 745 ACGGGGTTAT 1680 QRSALAS 1782 RSDHLSR 1884 RSDTLTQ 1986 12.5 746 CTGGAAGCAT 1681 QSGSLTR 1783 OSGNLAR 1885 RSDALRE 1987 2.07 747 CTATTTTGGG 1682 RSDHLTT 1784 OSSALRT 1886 OSGALRE 1988 2000 748 TTGGACGGCG 1683 DSGHLTR 1785 DRSNLER 1887 RGDALTS 1989 112.3 749 TTGGACGGCG 1684 DRSHLTR 1786 DSSNLTR 1888 RGDALTS 1990 11.33 750 GAGGGAGCGA 1685 RSDELTR 1787 OSAHLAR 1889 RSDNLAR 1991 52 751 GGTGAGGAGT 1686 RSDNLAR 1788 RSDNLAR 1890 NRSHLAR 1992 7 752 GAGGTGGGGA 1687 RSHHLAR 1789 RSDALSR 1891 RSDNLSR 1993 31 757 CGGGCGGCTG 1688 RSDELQR 1892 RSDHLRE 1994 14.5 OSSDLRR 1790 758 CGGGCGGCTG 1689 QSSDLRR 1791 RADTLRR 1893 RSDHLRE 1995 16.5 759 TTGGACGGCG 1690 DSGHLTR 1792 DSSNLTR 1894 RGDALTS 1996 37 760 TTGGACGGCG 1691 DRSHLTR 1793 DRSNLER 1895 RGDALTS 1997 148.5 761 GCGGTGGCTC 1692 OSSDLOR 1794 RSDALSR 1896 RSDERKR 1998 762 GCGGTGGCTC 1693 QSSDLQR 1795 RSDALSR 1897 RSDTLKK 1999 1.8 776 ATGGACGGGT 1694 RSDHLAR 1796 DRSNLER 1898 RSDSLNO 2000 0.4 777 ATGGACGGGT 1695 RSDHLAR 1797 DRSNLTR 1899 RSDALSA 2001 3.4 779 CGGGGAGCAG 1696 OSGSLTR 1798 OSGHLTR 1900 RSDHLAE 2002 0.5 780 CGGGGAGCAG 1697 OSGSLTR 1799 QSGHLTR 1901 RSDHLRA 2003 0.5 781 GGGGAGCAGC 1698 RSSNLRE 1800 RSDNLAR 1902 RSDHLTR 2004 4.25

783	TTGGGAGCGG 1699	RSDELTR	1801	QSGHLQR	1903	RGDALTS 2005	2000
785	TTGGGAGCGG 1700	RSDTLKK	1802	QSGHLQR	1904	RSDALTS 2006	50
786	TTGGGAGCGG 1701	RSDTLKK	1803	QSGHLQR	1905	RGDALRS 2007	2000
787	AGGGAGGATG 1702	QSDNLAR	1804	RSDNLAR	1906	RSDHLTQ 2008	4
826	GAGGGAGCGA 1703	RSDELTR	1805	QSGHLAR	1907	RSDNLAR 2009	2.75
827	GAGGGAGCGA 1704	RADTLRR	1806	QSGHLAR	1908	RSDNLAR 2010	1.2
882	GCGTGGGCGT 1705	RSDELTR	1807	RSDHLTT	1909	RSDERKR 2011	0.01
883	GCGTGGGCGT 1706	RSDELTR	1808	RSDHLTT	1910	RSDERKR 2012	1

TABLE 5

		SEQ		<u>SEO</u>		SEQ		SEQ	<u>Kd</u>
SBS#	TARGET	$\underline{\text{ID}}$	<u>F1</u>	ID	<u>F2</u>	<u>ID</u>	<u>F3</u>	<u>ID</u>	(nM)
903	ATGGAAGGG	2013	RSDHLAR	2513	QSGNLAR	3013	RSDALRQ	3513	1.027
904	AAGGGTGAC	2014	DSSNLTR	2514	QSSHLAR	3014	RSDNLTQ	3514	1
905	GTGGTGGTG	2015	RSSALTR	2515	RSDSLAR	3015	RSDSLAR	3515	1.15
908	AAGGTCTCA	2016	QSGDLRT	2516	DRSALAR	3016	RSDNLRQ	3516	50
909	GTGGAAGAA	2017	QSGNLSR	2517	QSGNLQR	3017	RSDALAR	3517	16.4
910	ATGGAAGAT	2018	QSSNLAR	2518	QSGNLQR	3018	RSDALAQ	3518	0.03
911	ATGGGTGCA	2019	QSGSLTR	2519	QSSHLAR	3019	RSDALAQ	3519	0.91
912	TCAGAGGTG	2020	RSDSLAR	2520	RSDNLTR	3020	QSGDLRT	3520	0.135
914	CAGGAAAAG	2021	RSDNLTQ	2521	QSGNLAR	3021	RSDNLRE	3521	1.26
915	CAGGAAAAG	2022	RSDNLRQ	2522	QSGNLAR	3022	RSDNLRE	3522	45.15
916	GAGGAAGGA	2023	QSGHLAR	2523	QSGNLAR	3023	RSDNLQR	3523	1.3
919	TCATAGTAG	2024	RSDNLTT	2524	RSDNLRT	3024	QSGDLRT	3524	250
920	GATGTGGTA	2025	QSSSLVR	2525	RSDSLAR	3025	TSANLSR	3525	4
921	AAGGTCTCA	2026	QSGDLRT	2526	DPGALVR	3026	RSDNLRQ	3526	11
922	AAGGTCTCA	2027	QSHDLTK	2527	DRSALAR	3027	RSDNLRQ	3527	4
923	AAGGTCTCA	2028	QSHDLTK	2528	DPGALVR	3028	RSDNLRQ	3528	2
926	GTGGTGGTG	2029	RSDALTR	2529	RSDSLAR	3029	RSDSLAR	3529	7.502
927	CAGGTTGAG	2030	RSDNLAR	2530	TSGSLTR	3030	RSDNLRE	3530	3.61
928	CAGGTTGAG	2031	RSDNLAR	2531	QSSALTR	3031	RSDNLRE	3531	25
929	CAGGTAGAT	2032	QSSNLAR	2532	QSATLAR	3032	RSDNLRE	3532	1.3
931	GAGGAAGAG	2033	RSDNLAR	2533	QSSNLVR	3033	RSDNLAR	3533	2
932	ATGGAAGGG	2034	RSDHLAR	2534	QSSNLVR	3034	RSDALRQ	3534	797
933	GACGAGGAA	2035	QSANLAR	2535	RSDNLAR	3035	DRSNLTR	3535	500
934	ATGGAAGAT	2036	QSSNLAR	2536	QSGNLQR	3036	RSDALTS	3536	0.07
935	ATGGGTGCA	2037	QSGSLTR	2537	QSSHLAR	3037	RSDALTS	3537	0.91
937	GTGGGGGCT	2038	QSSDLTR	2538	RSDHLTR	3038	RSDSLAR	3538	0.03
938	GTGGGGGCT	2039	QSSDLRR	2539	RSDHLTR	3039	RSDSLAR	3539	0.049
939	GGGGGCTGG	2040	RSDHLTT	2540	DRSHLAR	3040	RSDHLSK	3540	0.352

940 GGGGGCTGG 2041 RSDHLTK 2541 DRSHLAR 3041 RSDHLSK 3541 1.5 941 GGGGCTGGG 2042 RSDHLAR 2542 OSSDLRR 3042 RSDKLSR 3542 0.077 942 GGGGCTGGG 2043 RSDHLAR 2543 OSSDLRR 3043 RSDHLSK 3543 0.13 943 GGGGCTGGG 2044 RSDHLAR 2544 TSGELVR 3044 RSDKLSR 3544 0.067 944 GGGGCTGGG 2045 RSDHLAR 2545 TSGELVR 3045 RSDHLSK 3545 0.027 GGTGCGGTG 2046 RSDSLTR 2546 RADTLRR 3046 MSHHLSR 3546 0.027 GGTGCGGTG 2047 RSDSLTR 2547 RSDVLOR 3047 MSHHLSR 3547 0.027 947 GGTGCGGTG 2048 RSDSLTR 2548 RSDELOR 3048 OSSHLAR 3548 0.013 GGTGCGGTG 2049 RSDSLTR 2549 RSDVLOR 3049 OSSHLAR 3549 0.017 962 GAGGCGGCA 2050 OSGSLTR 2550 RSDELOR 3050 RSDNLAR 3550 0.015 963 GAGGCGGCA 2051 QSGSLTR 2551 RSDDLQR 3051 RSDNLAR 3551 0.015 964 GCGGCGGTG 2052 RSDALAR 2552 RSDELQR 3052 RSDERKR 3552 0.041 965 GCGGCGGCC 2053 ERGDLTR 2553 RSDELQR 3053 RSDERKR 3553 3.1 966 GAGGAGGCC 2054 ERGTLAR 2554 RSDNLSR 3054 RSDNLAR 3554 0.028 967 GAGGAGGCC 2055 DRSSLTR 2555 RSDNLSR 3055 RSDNLAR 3555 0.055 968 GAGGCCGCA 2056 QSGSLTR 2556 DRSSLTR 3056 RSDNLAR 3556 969 GAGGCCGCA 2057 QSGSLTR 2557 DRSDLTR 3057 RSDNLAR 3557 0.275 970 GTGGGCGCC 2058 ERGTLAR 2558 DRSHLAR 3058 RSDALAR 3558 1.859 971 GTGGGCGCC 2059 DRSSLTR 2559 DRSHLAR 3059 RSDALAR 3559 0.144 972 GTGGGCGCC 2060 ERGDLTR 2560 DRSHLAR 3060 RSDALAR 3560 1.748 973 GCCGCGGTC 2061 DRSALTR 2561 RSDELQR 3061 ERGTLAR 3561 974 GCCGCGGTC 2062 DRSALTR 2562 RSDELOR 3062 DRSDLTR 3562 0.038 975 CAGGCCGCT 2063 QSSDLTR 2563 DRSSLTR 3063 RSDNLRE 3563 1.1 976 CAGGCCGCT 2064 OSSDLTR 2564 DRSDLTR 3064 RSDNLRE 3564 4.12 977 CTGGCAGTG 2065 RSDSLTR 2565 QSGSLTR 3065 RSDALRE 3565 0.017 978 CTGGCAGTG 2066 RSDSLTR 2566 QSGDLTR 3066 RSDALRE 3566 1.576 979 CTGGCGGCG 2067 RSSDLTR 2567 RSDELOR 3067 RSDALRE 3567 1.59 980 CTGGCGGCG 2068 RSDDLTR 2568 RSDELQR 3068 RSDALRE 3568 2.2 981 CAGGCGGCG 2069 RSDDLTR 2569 RSDELOR 3069 RSDNLRE 3569 0.375 982 CCGGGCTGG 2070 RSDHLTT 2570 DRSHLAR 3070 RSDELRE 3570 0.03 983 CCGGGCTGG 2071 RSDHLTK 2571 DRSHLAR 3071 RSDELRE 3571 1.385 984 GACGGCGAG 2072 RSDNLAR 2572 DRSHLAR 3072 DRSNLTR 3572 985 GACGGCGAG 2073 RSDNLAR 2573 DRSHLAR 3073 EKANLTR 3573 0.965

986 GGTGCTGAT 2074 QSSNLQR 2574 QSSDLQR 3074 MSHHLSR 3574 GGTGCTGAT 2075 QSSNLQR 2575 QSSDLQR 3075 TSGHLVR 3575 33.55 GGTGCTGAT 2076 TSGNLVR 2576 OSSDLOR 3076 MSHHLSR 3576 989 GGTGAGGGG 2077 RSDHLAR 2577 RSDNLAR 3077 MSHHLSR 3577 990 AAGGTGGGC 2078 DRSHLTR 2578 RSDSLAR 3078 RSDNLTQ 3578 5.35 991 AAGGTGGGC 2079 DRSHLTR 2579 SSGSLVR 3079 RSDNLTQ 3579 0.06 993 GGGGCTGGG 2080 RSDHLAR 2580 TSGELVR 3080 RSDHLSR 3580 3.1 994 GGGGGCTGG 2081 RSDHLTK 2581 DRSHLAR 3081 RSDHLSR 3581 995 GGGGAGGAA 2082 OSANLAR 2582 RSDNLAR 3082 RSDHLSK 3582 0.08 CAGTTGGTC 2083 DRSALAR 2583 RSDALTS 3083 RSDNLRE 3583 9.6 996 997 AGAGAGGCT 2084 QSSDLTR 2584 RSDNLAR 3084 QSGHLNQ 3584 998 ACGTAGTAG 2085 RSANLRT 2585 RSDNLTK 3085 RSDTLKQ 3585 0.23 999 AGAGAGGCT 2086 OSSDLTR 2586 RSDNLAR 3086 QSGKLTQ 3586 0.6 1000 CAGTTGGTC 2087 DRSALAR 2587 RSDALTR 3087 RSDNLRE 3587 11.15 1001 GGAGCTGAC 2088 EKANLTR 2588 OSSDLSR 3088 ORAHLAR 3588 1002 GCGGAGGAG 2089 RSDNLVR 2589 RSDNLAR 3089 RSDERKR 3589 0.028 1003 ACGTAGTAG 2090 RSANLRT 2590 RSDNLTK 3090 RSDTLRS 3590 0.118 1004 ACGTAGTAG 2091 RSDNLTT 2591 RSDNLTK 3091 RSDTLRS 3591 1006 GTAGGGGCG 2092 RSDDLTR 2592 RSDHLTR 3092 ORASLTR 3592 0.898 1007 GAGAGAGAT 2093 OSSNLOR 2593 OSGHLTR 3093 RLHNLAR 3593 1008 GAGATGGAG 2094 RSDNLSR 2594 RSDSLTO 3094 RLHNLAR 3594 0.4 1009 GAGATGGAG 2095 RSDNLSR 2595 RSDSLTQ 3095 RSDNLSR 3595 1.9 1010 GAGAGAGAT 2096 OSSNLOR 2596 OSGHLTR 3096 RSDNLAR 3596 1011 TTGGTGGCG 2097 RSADLTR 2597 RSDSLAR 3097 RSDSLTK 3597 0.03 1012 GACGTAGGG 2098 RSDHLTR 2598 OSSSLVR 3098 DRSNLTR 3598 0.032 1013 GAGAGAGAT 2099 QSSNLQR 2599 QSGHLNQ 3099 RSDNLAR 3599 1014 GACGTAGGG 2100 RSDHLTR 2600 OSGSLTR 3100 DRSNLTR 3600 0.01 1015 GCGGAGGAG 2101 RSDNLVR 2601 RSDNLAR 3101 RSDTLKK 3601 0.008 1016 CAGTTGGTC 2102 DRSALAR 2602 RSDSLTK 3102 RSDNLRE 3602 0.09 1017 CTGGATGAC 2103 EKANLTR 2603 TSGNLVR 3103 RSDALRE 3603 0.233 1018 GTAGTAGAA 2104 OSANLAR 2604 OSSSLVR 3104 QRASLAR 3604 1019 AGGGAGGAG 2105 RSDNLAR 2605 RSDNLAR 3105 RSDHLTQ 3605 0.022 1020 ACGTAGTAG 2106 RSDNLTT 2606 RSDNLTK 3106 RSDTLKQ 3606 0.69

1022 GAGGAGGTG 2107 RSDALAR 2607 RSDNLAR 3107 RSDNLAR 3607 0.01 1024 GGGGAGGAA 2108 QSANLAR 2608 RSDNLAR 3108 RSDHLSR 3608 0.08 1025 GAGGAGGTG 2109 OSSALTR 2609 OSSSLVR 3109 RSDTLTO 3609 0.115 1026 GTGGCTTGT 2110 MSHHLKE 2610 OSSDLSR 3110 RSDALAR 3610 0.076 1027 GCGGCGGTG 2111 RSDALAR 2611 RSDELOR 3111 RSDELOR 3611 0.054 1032 GGTGCTGAT 2112 TSGNLVR 2612 OSSDLOR 3112 TSGHLVR 3612 0.52 1033 GTGTTCGTG 2113 RSDALAR 2613 DRSALTT 3113 RSDALAR 3613 685.2 1034 GTGTTCGTG 2114 RSDALAR 2614 DRSALTK 3114 RSDALAR 3614 14.55 1035 GTGTTCGTG 2115 RSDALAR 2615 DRSALRT 3115 RSDALAR 3615 56 1037 GTAGGGGCA 2116 QSGSLTR 2616 RSDHLSR 3116 QRASLAR 3616 0.05 1038 GTAGGGGCA 2117 OTGELRR 2617 RSDHLSR 3117 ORASLAR 3617 0.152 1039 GGGGCTGGG 2118 RSDHLSR 2618 TSGELVR 3118 RSDHLTR 3618 1.37 1040 GGGGCTGGG 2119 RSDHLSR 2619 QSSDLQR 3119 RSDHLSK 3619 1041 TCATAGTAG 2120 RSDNLTT 2620 RSDNLRT 3120 OSHDLTK 3620 1043 CAGGGAGAG 2121 RSDNLAR 2621 QSGHLTR 3121 RSDNLRE 3621 0.16 1044 CAGGGAGAG 2122 RSDNLAR 2622 QRAHLER 3122 RSDNLRE 3622 1.07 1045 GGGGCAGGA 2123 QSGHLAR 2623 QSGSLTR 3123 RSDHLSR 3623 1046 GGGGCAGGA 2124 QSGHLAR 2624 QSGDLRR 3124 RSDHLSR 3624 1047 GGGGCAGGA 2125 QRAHLER 2625 QSGSLTR 3125 RSDHLSR 3625 1048 CAGGCTGTA 2126 QSGALTR 2626 QSSDLQR 3126 RSDNLRE 3626 1.387 1049 CAGGCTGTA 2127 ORASLAR 2627 OSSDLOR 3127 RSDNLRE 3627 1050 CAGGCTGTA 2128 QSSSLVR 2628 QSSDLOR 3128 RSDNLRE 3628 0.125 1051 GAGGCTGAG 2129 RSDNLTR 2629 OSSDLOR 3129 RSDNLVR 3629 1052 TAGGACGGG 2130 RSDHLAR 2630 EKANLTR 3130 RSDNLTT 3630 1053 TAGGACGGG 2131 RSDHLAR 2631 DRSNLTR 3131 RSDNLTT 3631 0.025 1054 GCTGCAGGG 2132 RSDHLAR 2632 QSGSLTR 3132 QSSDLQR 3632 0.033 1055 GCTGCAGGG 2133 RSDHLAR 2633 OSGSLTR 3133 TSGDLTR 3633 18.73 1056 GCTGCAGGG 2134 RSDHLAR 2634 QSGSLTR 3134 QSSDLQR 3634 0.045 1057 GCTGCAGGG 2135 RSDHLAR 2635 OSGDLTR 3135 TSGDLTR 3635 0.483 1058 GGGGCCGCG 2136 RSDELTR 2636 DRSSLTR 3136 RSDHLSR 3636 6.277 1059 GGGGCCGCG 2137 RSDELTR 2637 DRSDLTR 3137 RSDHLSR 3637 0.152 1060 GCGGAGGCC 2138 ERGTLAR 2638 RSDNLAR 3138 RSDERKR 3638 0.69 1061 GTTGCGGGG 2139 RSDHLAR 2639 RSDELQR 3139 QSSALTR 3639 0.165

1062 GTTGCGGGG 2140 RSDHLAR 2640 RSDELOR 3140 TSGSLTR 3640 0.068 1063 GTTGCGGGG 2141 RSDHLAR 2641 RSDELOR 3141 MSHALSR 3641 1064 GCGGCAGTG 2142 RSDALTR 2642 QSGSLTR 3142 RSDERKR 3642 0.453 1065 TGGGGCGGG 2143 RSDHLAR 2643 DRSHLAR 3143 RSDHLTT 3643 1066 GAGGGCGGT 2144 OSSHLTR 2644 DRSHLAR 3144 RSDNLVR 3644 1067 GAGGGCGGT 2145 TSGHLVR 2645 DRSHLAR 3145 RSDNLVR 3645 1068 GCAGGGGC 2146 DRSHLTR 2646 RSDHLTR 3146 QSGDLTR 3646 2.05 1069 GCAGGCGGT 2147 DRSHLTR 2647 RSDHLTR 3147 OSGSLTR 3647 0.1 1070 GGGGCAGGC 2148 DRSHLTR 2648 OSGSLTR 3148 RSDHLSR 3648 0.456 1071 GGGGCAGGC 2149 DRSHLTR 2649 QSGDLTR 3149 RSDHLSR 3649 0.2 1072 GGATTGGCT 2150 OSSDLTR 2650 RSDALTT 3150 ORAHLAR 3650 1073 GGATTGGCT 2151 OSSDLTR 2651 RSDALTK 3151 ORAHLAR 3651 1075 GTGTTGGCG 2152 RSDELTR 2652 RSDALTK 3152 RSDALTR 3652 0.915 1076 GCGGCAGCG 2153 RSDELTR 2653 OSGSLTR 3153 RSDERKR 3653 1077 GCGGCAGCG 2154 RSDELTR 2654 QSGDLRR 3154 RSDERKR 3654 6.2 1078 GGGGGGGCC 2155 ERGTLAR 2655 RSDHLSR 3155 RSDHLSR 3655 0.2 1079 GGGGGGGCC 2156 ERGDLTR 2656 RSDHLSR 3156 RSDHLSR 3656 4.1 1080 CTGGAGGCG 2157 RSDELTR 2657 RSDNLAR 3157 RSDALRE 3657 1.37 1081 GGGGAGGTG 2158 RSDALTR 2658 RSDNLTR 3158 RSDHLSR 3658 0.05 1082 CTGGCGGCG 2159 RSDELTR 2659 RSDELTR 3159 RSDALRE 3659 0.152 1083 CTGGTGGCA 2160 QSGDLTR 2660 RSDALSR 3160 RSDALRE 3660 0.152 1084 GGTGAGGCG 2161 RSDELTR 2661 RSDNLAR 3161 MSHHLSR 3661 1085 GGTGAGGCG 2162 RSDELTR 2662 RSDNLAR 3162 QSSHLAR 3662 0.46 1086 GGGGCTGGG 2163 RSDHLSR 2663 QSSDLQR 3163 RSDHLTR 3663 0.1 1087 CGGGCGGCC 2164 ERGDLTR 2664 RSDELQR 3164 RSDHLAE 3664 1088 CGGGCGGCC 2165 ERGDLTR 2665 RSDELQR 3165 RSDHLRE 3665 0.905 1089 GACGAGGCT 2166 QSSDLRR 2666 RSDNLAR 3166 DRSNLTR 3666 0.171 1090 AAGGCGCTG 2167 RSDALRE 2667 RSDELQR 3167 RSDNLTO 3667 30.3 1091 GTAGAGGAC 2168 DRSNLTR 2668 RSDNLAR 3168 ORASLAR 3668 0.085 1092 GCCTTGGCT 2169 QSSDLRR 2669 RGDALTS 3169 DRSDLTR 3669 2.735 1093 GCGGAGTCG 2170 RSADLRT 2670 RSDNLAR 3170 RSDERKR 3670 0.046 1094 GCGGTTGGT 2171 TSGHLVR 2671 QSSALTR 3171 RSDERKR 3671 12.34 1095 GGGGGAGCC 2172 ERGDLTR 2672 QRAHLER 3172 RSDHLSR 3672 0.395 1096 GGGGGAGCC 2173 DRSSLTR 2673 ORAHLER 3173 RSDHLSR 3673 0.019 1097 GAGGCCGAA 2174 QSANLAR 2674 DCRDLAR 3174 RSDNLAR 3674 0.77 1098 GCCGGGGAG 2175 RSDNLTR 2675 RSDHLTR 3175 DRSDLTR 3675 0.055 1099 GCGGAGTCG 2176 TSGHLVR 2676 TSGSLTR 3176 RSDERKR 3676 0.45 1100 GTGTTGGTA 2177 QSGALTR 2677 RGDALTS 3177 RSDALTR 3677 1101 ATGGGAGTT 2178 TTSALTR 2678 ORAHLER 3178 RSDALRO 3678 0.065 1102 AAGGCAGAA 2179 QSANLAR 2679 QSGSLTR 3179 RSDNLTQ 3679 8.15 1103 AAGGCAGAA 2180 QSANLAR 2680 QSGDLTR 3180 RSDNLTQ 3680 1104 CGGGCAGCT 2181 QSSDLRR 2681 QSGSLTR 3181 RSDHLRE 3681 0.08 1105 CTGGCAGCC 2182 ERGDLTR 2682 OSGDLTR 3182 RSDALRE 3682 1106 CTGGCAGCC 2183 DRSSLTR 2683 QSGDLTR 3183 RSDALRE 3683 1107 GCGGGAGTT 2184 QSSALAR 2684 QRAHLER 3184 RSDERKR 3684 1108 CAGGCTGGA 2185 QSGHLAR 2685 TSGELVR 3185 RSDNLRE 3685 0.007 1109 AGGGGAGCC 2186 ERGDLTR 2686 QRAHLER 3186 RSDHLTQ 3686 0.347 1110 AGGGGAGCC 2187 DRSSLTR 2687 ORAHLER 3187 RSDHLTO 3687 0.095 1111 CTGGTAGGG 2188 RSDHLAR 2688 OSSSLVR 3188 RSDALRE 3688 0.095 1112 CTGGTAGGG 2189 RSDHLAR 2689 OSATLAR 3189 RSDALRE 3689 0.125 1113 CTGGGGGCA 2190 QSGDLTR 2690 RSDHLTR 3190 RSDALRE 3690 0.06 1114 CAGGTTGAT 2191 QSSNLAR 2691 TSGSLTR 3191 RSDNLRE 3691 2.75 1115 CAGGTTGAT 2192 QSSNLAR 2692 QSSALTR 3192 RSDNLRE 3692 0.7 12.3 1116 CCGGAAGCG 2193 RSDELTR 2693 OSSNLVR 3193 RSDELRE 3693 1117 GCAGCGCAG 2194 RSSNLRE 2694 RSDELTR 3194 QSGSLTR 3694 1118 TAGGGAGTC 2195 DRSALTR 2695 QRAHLER 3195 RSDNLTT 3695 1.4 1119 TGGGAGGGT 2196 TSGHLVR 2696 RSDNLAR 3196 RSDHLTT 3696 1120 AGGGACGCG 2197 RSDELTR 2697 DRSNLTR 3197 RSDHLTQ 3697 2.735 1121 CTGGTGGCC 2198 ERGDLTR 2698 RSDALTR 3198 RSDALRE 3698 1122 CTGGTGGCC 2199 DRSSLTR 2699 RSDALTR 3199 RSDALRE 3699 0.101 1123 TAGGAAGCA 2200 OSGSLTR 2700 QSGNLAR 3200 RSDNLTT 3700 0.065 1124 GTGGATGGA 2201 QSGHLAR 2701 TSGNLVR 3201 RSDALTR 3701 0.101 1126 TTGGCTATG 2202 RSDALTS 2702 TSGELVR 3202 RGDALTS 3702 0.46 1127 CAGGGGGTT 2203 QSSALAR 2703 RSDHLTR 3203 RSDNLRE 3703 1128 AAGGTCGCC 2204 ERGDLTR 2704 DPGALVR 3204 RSDNLTQ 3704 5.45 1130 GGTGCAGAC 2205 DRSNLTR 2705 QSGDLTR 3205 MSHHLSR 3705

1131 GTGGGAGCC 2206 ERGDLTR 2706 QRAHLER 3206 RSDALTR 3706 0.95 1132 GGGGCTGGA 2207 QSGHLAR 2707 TSGELVR 3207 RSDHLSR 3707 0.055 1133 GGGGCTGGA 2208 QRAHLER 2708 TSGELVR 3208 RSDHLSR 3708 1134 TGGGGGTGG 2209 RSDHLTT 2709 RSDHLTR 3209 RSDHLTT 3709 0.067 1135 GCGGCGGGG 2210 RSDHLAR 2710 RSDELQR 3210 RSDERKR 3710 0.025 1136 CCGGGAGTG 2211 RSDALTR 2711 QRAHLER 3211 RSDTLRE 3711 0.225 1137 CCGGGAGTG 2212 RSSALTR 2712 QRAHLER 3212 RSDTLRE 3712 0.085 1138 CAGGGGGTA 2213 OSGALTR 2713 RSDHLTR 3213 RSDNLRE 3713 0.027 1139 ACGGCCGAG 2214 RSDNLAR 2714 DRSDLTR 3214 RSDTLTQ 3714 0.535 1140 AAGGGTGCG 2215 RSDELTR 2715 QSSHLAR 3215 RSDNLTQ 3715 1141 ATGGACTTG 2216 RGDALTS 2716 DRSNLTR 3216 RSDALTQ 3716 1148 TTGGAGGAG 2217 RSDNLTR 2717 RSDNLTR 3217 RGDALTS 3717 0.006 1149 TTGGAGGAG 2218 RSDNLTR 2718 RSDNLTR 3218 RSDALTK 3718 0.004 1150 GAAGAGGCA 2219 OSGSLTR 2719 RSDNLTR 3219 QSGNLTR 3719 0.004 1151 GTAGTATGG 2220 RSDHLTT 2720 QRSALAR 3220 QRASLAR 3720 1152 AAGGCTGGA 2221 QSGHLAR 2721 TSGELVR 3221 RSDNLTQ 3721 1.605 1153 AAGGCTGGA 2222 QRAHLAR 2722 TSGELVR 3222 RSDNLTO 3722 1154 CTGGCGTAG 2223 RSDNLTT 2723 RSDELQR 3223 RSDALRE 3723 1156 ATGGTTGAA 2224 QSANLAR 2724 QSSALTR 3224 RSDALRQ 3724 1157 ATGGTTGAA 2225 QSANLAR 2725 TSGSLTR 3225 RSDALRQ 3725 0.885 1158 AGGGGAGAA 2226 QSANLAR 2726 QSGHLTR 3226 RSDHLTQ 3726 1159 AGGGGAGAA 2227 QSANLAR 2727 QRAHLER 3227 RSDHLTQ 3727 0.555 1160 TGGGAAGGC 2228 DRSHLAR 2728 QSSNLVR 3228 RSDHLTT 3728 0.415 1161 GAGGCCGGC 2229 DRSHLAR 2729 DRSDLTR 3229 RSDNLAR 3729 0.45 1162 GTGTTGGTA 2230 QSGALTR 2730 RADALMV 3230 RSDALTR 3730 0.465 1163 GTGTGAGCC 2231 ERGDLTR 2731 QSGHLTT 3231 RSDALTR 3731 1164 GTGTGAGCC 2232 ERGDLTR 2732 OSVHLQS 3232 RSDALTR 3732 15.4 1165 GCGAAGGTG 2233 RSDALTR 2733 RSDNLTQ 3233 RSDERKR 3733 1166 GCGAAGGTG 2234 RSDALTR 2734 RSDNLTQ 3234 RSSDRKR 3734 0.195 1167 GCGAAGGTG 2235 RSDALTR 2735 RSDNLTO 3235 RSHDRKR 3735 0.95 1168 AAGGCGCTG 2236 RSDALRE 2736 RSSDLTR 3236 RSDNLTQ 3736 1169 GTAGAGGAC 2237 DRSNLTR 2737 RSDNLAR 3237 QSSSLVR 3737 0.053 1170 GCCTTGGCT 2238 QSSDLRR 2738 RADALMV 3238 DRSDLTR 3738 2.75

1171 GCGGAGTCG 2239 RSDDLRT 2739 RSDNLAR 3239 RSDERKR 3739 0.18 1172 GCCGGGGAG 2240 RSDNLTR 2740 RSDHLTR 3240 ERGDLTR 3740 0.01 1173 GCTGAAGGG 2241 RSDHLSR 2741 QSGNLAR 3241 QSSDLRR 3741 0.008 1174 GCTGAAGGG 2242 RSDHLSR 2742 QSSNLVR 3242 QSSDLRR 3742 0.018 1175 AAGGTCGCC 2243 DRSDLTR 2743 DPGALVR 3243 RSDNLTO 3743 1176 GTGGGAGCC 2244 DRSDLTR 2744 QRAHLER 3244 RSDALTR 3744 1177 CCGGGCGCA 2245 QSGSLTR 2745 DRSHLAR 3245 RSDTLRE 3745 1178 GAGGATGGC 2246 DRSHLAR 2746 TSGNLVR 3246 RSDNLAR 3746 0.085 1179 GCAGCGCAG 2247 RSSNLRE 2747 RSSDLTR 3247 QSGSLTR 3747 2.735 1180 AAGGAAAGA 2248 QSGHLNQ 2748 QSGNLAR 3248 RSDNLTQ 3748 4.825 1181 TTGGCTATG 2249 RSDALRQ 2749 TSGELVR 3249 RGDALTS 3749 1182 CAGGAAGGC 2250 DRSHLAR 2750 QSGNLAR 3250 RSDNLRE 3750 1.48 1183 CAGGAAGGC 2251 DRSHLAR 2751 QSSNLVR 3251 RSDNLRE 3751 1.935 1184 AAGGAAAGA 2252 KNWKLOA 2752 OSGNLAR 3252 RSDNLTQ 3752 2.785 1185 AAGGAAAGA 2253 KNWKLQA 2753 QSHNLAR 3253 RSDNLTQ 3753 5.25 1186 GCCGAGGTG 2254 RSDSLLR 2754 RSKNLQR 3254 ERGTLAR 3754 27.5 1187 CTGGTGGGC 2255 DRSHLAR 2755 RSDALTR 3255 RSDALRE 3755 0.006 1188 GTAGTATGG 2256 RSDHLTT 2756 QSSSLVR 3256 QRASLAR 3756 1189 ATGGTTGAA 2257 QSANLAR 2757 TSGALTR 3257 RSDALRQ 3757 1.51 1190 ATGGCAGTG 2258 RSDALTR 2758 QSGDLTR 3258 RSDSLNQ 3758 1.484 1191 ATGGCAGTG 2259 RSDALTR 2759 QSGSLTR 3259 RSDSLNQ 3759 5.325 1192 ATGGCAGTG 2260 RSDALTR 2760 QSGDLTR 3260 RSDALTQ 3760 2.364 1193 ATGGCAGTG 2261 RSDALTR 2761 QSGSLTR 3261 RSDALTQ 3761 3.125 1194 GAGAAGGTG 2262 RSDALTR 2762 RSDNRTA 3262 RSDNLTR 3762 2.19 1195 GAGAAGGTG 2263 RSDALTR 2763 RSDNRTA 3263 RSSNLTR 3763 1197 GAAGGTGCC 2264 ERGDLTR 2764 MSHHLSR 3264 QSGNLTR 3764 1199 ATGGAGAAG 2265 RSDNRTA 2765 RSDNLTR 3265 RSDALTQ 3765 3.428 1200 ATGGAGAAG 2266 RSDNRTA 2766 RSSNLTR 3266 RSDALTQ 3766 16.87 1201 ATGGAGAAG 2267 RSDNRTA 2767 RSHNLTR 3267 RSDALTQ 3767 14.8 1202 CTGGAGTAC 2268 DRSNLRT 2768 RSDNLTR 3268 RSDALRE 3768 2.834 1203 GGAGTACTG 2269 RSDALRE 2769 QRSALAR 3269 QRAHLAR 3769 2.945 1204 GGAGTACTG 2270 RSDALRE 2770 QSSSLVR 3270 QRAHLAR 3770 4.38 1205 CGGGCAGCT 2271 QSSDLRR 2771 QSGDLTR 3271 RSDHLRE 3771

1206 GCGGGAGTT 2272 TTSALTR 2772 ORAHLER 3272 RSDERKR 3772 0.034 1207 CAGGCTGGA 2273 ORAHLER 2773 TSGELVR 3273 RSDNLRE 3773 0.45 1209 CCGGAAGCG 2274 RSDELTR 2774 OSSNLVR 3274 RSDTLRE 3774 19.28 1211 GCAGCGCAG 2275 RSDNLRE 2775 RSDELTR 3275 OSGSLTR 3775 1212 CAGGGGGTT 2276 TTSALTR 2776 RSDHLTR 3276 RSDNLRE 3776 0.05 1213 GAAGAAGAG 2277 RSDNLTR 2777 OSSNLVR 3277 OSGNLTR 3777 12.3 1214 ATGGGAGTT 2278 TTSALTR 2778 QRAHLER 3278 RSDALTQ 3778 0.46 1215 GTGGGGGCT 2279 QSSDLRR 2779 RSDHLTR 3279 RSDALTR 3779 0.003 1217 GAAGAGGCA 2280 QSGSLTR 2780 RSDNLTR 3280 QSANLTR 3780 0.004 1218 GCGGTGAGG 2281 RSDHLTQ 2781 RSQALTR 3281 RSDERKR 3781 0.46 1219 AAGGAAAGG 2282 RSDHLTO 2782 OSHNLAR 3282 RSDNLTO 3782 1220 AAGGAAAGG 2283 RSDHLTO 2783 OSGNLAR 3283 RSDNLTO 3783 0.175 1221 AAGGAAAGG 2284 RSDHLTQ 2784 QSSNLVR 3284 RSDNLTQ 3784 1222 CAGGAGGGC 2285 DRSHLAR 2785 RSDNLAR 3285 RSDNLRE 3785 0.155 1223 ATGGACTTG 2286 RSDALTK 2786 DRSNLTR 3286 RSDALTQ 3786 7 1224 ATGGACTTG 2287 RADALMV 2787 DRSNLTR 3287 RSDALTO 3787 1227 GAATAGGGG 2288 RSDHLSR 2788 RSDHLTK 3288 OSGNLAR 3788 25 1228 ACGGCCGAG 2289 RSDNLAR 2789 DRSDLTR 3289 RSDDLTO 3789 12 1229 AAGGGTGCG 2290 RSDELTR 2790 MSHHLSR 3290 RSDNLTO 3790 1230 AAGGGAGAC 2291 DRSNLTR 2791 QSGHLTR 3291 RSDNLTO 3791 0.383 1231 AAGGGAGAC 2292 DRSNLTR 2792 ORAHLER 3292 RSDNLTO 3792 0.213 1232 TGGGACCTG 2293 RSDALRE 2793 DRSNLTR 3293 RSDHLTT 3793 0.113 1233 TGGGACCTG 2294 RSDALRE 2794 DRSNLTR 3294 RSDHLTT 3794 0.635 1234 GAGTAGGCA 2295 QSGSLTR 2795 RSDNLTK 3295 RSDNLAR 3795 0.101 1236 GAGTAGGCA 2296 OSGSLTR 2796 RSDHLTT 3296 RSDNLAR 3796 0.065 1237 GAAGGAGAG 2297 RSDNLAR 2797 QRAHLER 3297 QSGNLAR 3797 0.065 1238 CTGGATGTT 2298 OSSALAR 2798 TSGNLVR 3298 RSDALRE 3798 0.313 1239 CAGGACGTG 2299 RSDALTR 2799 DPGNLVR 3299 RSDNLKD 3799 0.144 1240 GGGGAGGCA 2300 OSGSLTR 2800 RSDNLTR 3300 RSDHLSR 3800 0.056 1241 GAGGTGTCA 2301 QSHDLTK 2801 RSDALAR 3301 RSDNLAR 3801 0.027 1242 GGGGTTGAA 2302 QSANLAR 2802 TSGSLTR 3302 RSDHLSR 3802 0.02 1243 GGGGTTGAA 2303 QSANLAR 2803 QSSALTR 3303 RSDHLSR 3803 0.101 1244 GTCGCGGTG 2304 RSDALTR 2804 RSDELQR 3304 DRSALAR 3804 0.044

1245 GTCGCGGTG 2305 RSDALTR 2805 RSDELOR 3305 DSGSLTR 3805 0.102 1246 GTGGTTGCG 2306 RSDELTR 2806 TSGSLTR 3306 RSDALTR 3806 0.051 1247 GTGGTTGCG 2307 RSDELTR 2807 TSGALTR 3307 RSDALTR 3807 0.117 1248 GTCTAGGTA 2308 OSGALTR 2808 RSDNLTT 3308 DRSALAR 3808 5.14 1249 CCGGGAGCG 2309 RSDELTR 2809 OSGHLTR 3309 RSDTLRE 3809 0.26 1250 GAAGGAGAG 2310 RSDNLAR 2810 QSGHLTR 3310 QSGNLAR 3810 0.31 1252 CCGGCTGGA 2311 ORAHLER 2811 OSSDLTR 3311 RSDTLRE 3811 0.153 1253 CCGGGAGCG 2312 RSDELTR 2812 QRAHLER 3312 RSDTLRE 3812 0.228 1255 ACGTAGTAG 2313 RSDNLTT 2813 RSDNLTK 3313 RSDTLKQ 3813 0.69 1256 GGGGAGGAT 2314 QSSNLAR 2814 RSDNLQR 3314 RSDHLSR 3814 2 1257 GGGGAGGAT 2315 TTSNLAR 2815 RSDNLOR 3315 RSDHLSR 3815 1 1258 GGGGAGGAT 2316 OSSNLRR 2816 RSDNLOR 3316 RSDHLSR 3816 1259 GAGTGTGTG 2317 RSDSLLR 2817 DRDHLTR 3317 RSDNLAR 3817 1260 GAGTGTGTG 2318 RLDSLLR 2818 DRDHLTR 3318 RSDNLAR 3818 1261 TGCGGGGCA 2319 QSGDLTR 2819 RSDHLTR 3319 RRDTLHR 3819 1262 TGCGGGGCA 2320 OSGDLTR 2820 RSDHLTR 3320 RLDTLGR 3820 3 1263 TGCGGGGCA 2321 OSGDLTR 2821 RSDHLTR 3321 DSGHLAS 3821 21 1264 AAGTTGGTT 2322 TTSALTR 2822 RADALMV 3322 RSDNLTQ 3822 0.21 1265 AAGTTGGTT 2323 TTSALTR 2823 RSDALTT 3323 RSDNLTQ 3823 0.077 1266 CAGGGTGGC 2324 DRSHLTR 2824 OSSHLAR 3324 RSDNLRE 3824 1267 TAGGCAGTC 2325 DRSALTR 2825 QSGSLTR 3325 RSDNLTT 3825 1268 CTGTTGGCT 2326 OSSDLTR 2826 RADALMV 3326 RSDALRE 3826 1269 CTGTTGGCT 2327 QSSDLTR 2827 RSDALTT 3327 RSDALRE 3827 12.3 1270 TTGGATGGA 2328 QSGHLAR 2828 TSGNLVR 3328 RSDALTK 3828 1271 GTGGCACTG 2329 RSDALRE 2829 OSGSLTR 3329 RSDALTR 3829 0.915 1272 CAGGAGTCC 2330 DRSSLTT 2830 RSDNLAR 3330 RSDNLRE 3830 0.04 1273 CAGGAGTCC 2331 ERGDLTT 2831 RSDNLAR 3331 RSDNLRE 3831 1274 GCATGGGAA 2332 QSANLSR 2832 RSDHLTT 3332 QSGSLTR 3832 0.306 1275 GCATGGGAA 2333 ORSNLVR 2833 RSDHLTT 3333 OSGSLTR 3833 0.326 1276 TAGGAAGAG 2334 RSDNLAR 2834 QRSNLVR 3334 RSDNLTT 3834 0.685 1277 GAAGAGGGG 2335 RSDHLAR 2835 RSDNLAR 3335 QSGNLTR 3835 0.421 1278 GAGTAGGCA 2336 QSGSLTR 2836 RSDNLRT 3336 RSDNLAR 3836 0.019 1279 GAGGTGTCA 2337 QSGDLRT 2837 RSDALAR 3337 RSDNLAR 3837 0.025 1282 TCGGTCGCC 2338 ERGDLTR 2838 DPGALVR 3338 RSDELRT 3838 74.1 1287 GTGGTAGGA 2339 QSGHLAR 2839 QSGALAR 3339 RSDALTR 3839 0.152 1288 CAGGGTGGC 2340 DRSHLTR 2840 QSSHLAR 3340 RSDNLTE 3840 1289 TAGGCAGTC 2341 DRSALTR 2841 OSGSLTR 3341 RSDNLTK 3841 1.37 1290 GTGGTGATA 2342 QSGALTQ 2842 RSHALTR 3342 RSDALTR 3842 24.05 1291 GTGGTGATA 2343 QQASLNA 2843 RSHALTR 3343 RSDALTR 3843 20.55 1292 TTGGATGGA 2344 QSGHLAR 2844 TSGNLVR 3344 RSDALTT 3844 4.12 1293 AAGGTAGGT 2345 TSGHLVR 2845 OSGALAR 3345 RSDNLTO 3845 0.457 1294 AAGGTAGGT 2346 MSHHLSR 2846 OSGALAR 3346 RSDNLTO 3846 2.75 1295 CAGGAGTCC 2347 DRSSLTT 2847 RSDNLAR 3347 RSDNLTE 3847 0.116 37 1296 CAGGAGTCC 2348 ERGDLTT 2848 RSDNLAR 3348 RSDNLTE 3848 1297 TAGGAAGAG 2349 RSDNLAR 2849 ORSNLVR 3349 RSDNLTK 3849 0.05 1298 CAGGACGTG 2350 RSDLATR 2850 DPGNLVR 3350 RSDNLTE 3850 0.05 1300 GTCTAGGTA 2351 OSGALTR 2851 RSDNLTK 3351 DRSALAR 3851 0.46 1302 CCGGCTGGA 2352 QSGHLTR 2852 QSSDLTR 3352 RSDTLRE 3852 0.05 1303 TAGGAGTTT 2353 ORSALAS 2853 RSDNLAR 3353 RSDNLTT 3853 0.088 1306 CTGGCCTTG 2354 RSDALTT 2854 DCRDLAR 3354 RSDALRE 3854 2.285 1308 TGGGCAGCC 2355 ERGTLAR 2855 OSGSLTR 3355 RSDHLTT 3855 0.305 1309 TAGGAGTTT 2356 QSSALAS 2856 RSDNLAR 3356 RSDNLTT 3856 0.184 1310 TAGGAGTTT 2357 TTSALAS 2857 RSDNLAR 3357 RSDNLTT 3857 0.075 1311 TGGGCAGCC 2358 ERGDLAR 2858 QSGSLTR 3358 RSDHLTT 3858 0.91 1312 GGGGCGTGA 2359 QSGHLTK 2859 RSDELQR 3359 RSDHLSR 3859 0.23 1313 GGGGCGTGA 2360 QSGHLTT 2860 RSDELQR 3360 RSDHLSR 3860 0.09 1314 GTACAGTAG 2361 RSDNLTT 2861 RSDNLRE 3361 QSSSLVR 3861 3.09 1315 GTACAGTAG 2362 RSDNLTT 2862 RSDNLTE 3362 QSSSLVR 3862 9.27 1318 ATGGTGTGT 2363 TSSHLAS 2863 RSDALAR 3363 RSDALAQ 3863 0.048 1319 ATGGTGTGT 2364 MSHHLTT 2864 RSDALAR 3364 RSDALAQ 3864 0.228 1320 TTGGGAGAG 2365 RSDNLAR 2865 ORAHLER 3365 RSDALTT 3865 0.044 1321 TTGGGAGAG 2366 RSDNLAR 2866 ORAHLER 3366 RADALMV 3866 0.127 1322 GTGGGAATA 2367 OSGALTO 2867 QSGHLTR 3367 RSDALTR 3867 0.799 1323 GTGGGAATA 2368 QLTGLNQ 2868 QSGHLTR 3368 RSDALTR 3868 0.744 1324 GTGGGAATA 2369 QQASLNA 2869 QSHHLTR 3369 RSDALTR 3869 18.52 1325 TTGGTTGGT 2370 TSGHLVR 2870 TSGSLTR 3370 RSDALTK 3870 0.306 1326 TTGGTTGGT 2371 TSGHLVR 2871 OSSALTR 3371 RSDALTK 3871 4.385 1327 TTGGTTGGT 2372 TSGHLVR 2872 TSGSLTR 3372 RSDALTT 3872 0.566 1328 TTGGTTGGT 2373 TSGHLVR 2873 QSSALTR 3373 RSDALTT 3873 7.95 1329 CTGGCCTGG 2374 RSDHLTT 2874 DRSDLTR 3374 RSDALRE 3874 0.68 1330 GAGGTGTGA 2375 OSGHLTT 2875 RSDALTR 3375 RSDNLAR 3875 0.175 1331 CTGGCCTGG 2376 RSDHLTT 2876 DCRDLAR 3376 RSDALRE 3876 0.388 1334 CCGGCGCTG 2377 RSDALRE 2877 RSSDLTR 3377 RSDDLRE 3877 0.31 1335 GACGCTGGC 2378 DRSHLTR 2878 OSSDLTR 3378 DSSNLTR 3878 1.4 1336 CGGGCTGGA 2379 OSGHLAR 2879 OSSDLTR 3379 RSDHLAE 3879 1337 CGGGCTGGA 2380 OSSHLAR 2880 OSSDLTR 3380 RSDHLAE 3880 0.235 1338 GGGATGGCG 2381 RSDELTR 2881 RSDALTO 3381 RSDHLSR 3881 1.04 1339 GGGATGGCG 2382 RSDELTR 2882 RSDSLTQ 3382 RSDHLSR 3882 0.569 1340 GGGATGGCG 2383 RSDELTR 2883 RSDALTO 3383 RSHHLSR 3883 0.751 1341 GGGATGGCG 2384 RSDELTR 2884 RSDSLTQ 3384 RSHHLSR 3884 1342 CAGGCGCAG 2385 RSDNLRE 2885 RSSDLTR 3385 RSDNLTE 3885 0.68 1343 CAGGCGCAG 2386 RSDNLTT 2886 RTSTLTR 3386 RSDNLTE 3886 37.04 1344 CCGGGCGAC 2387 DRSNLTR 2887 DRSHLAR 3387 RSDTLRE 3887 2.28 1346 GATGTGTGA 2388 QSGHLTT 2888 RSDALAR 3388 TSANLSR 3888 0.153 1347 CAGTGAATG 2389 RSDALTS 2889 QSHHLTT 3389 RSDNLTE 3889 8.23 1348 GGGTCACTG 2390 RSDALTA 2890 QAATLTT 3390 RSDHLSR 3890 2.58 1350 CAGTGAATG 2391 RSDALTO 2891 OSGHLTT 3391 RSDNLTE 3891 1351 GGGTCACTG 2392 RSDALRE 2892 QSHDLTK 3392 RSDHLSR 3892 0.234 1352 GTGTGGGTC 2393 DRSALAR 2893 RSDHLTT 3393 RSDALTR 3893 0.023 1353 CTGGCGAGA 2394 QSGHLNQ 2894 RSDELQR 3394 RSDALRE 3894 56.53 1354 CTGGCGAGA 2395 KNWKLOA 2895 RSDELQR 3395 RSDALRE 3895 20.85 1355 GCTTTGGCA 2396 QSGSLTR 2896 RSDALTT 3396 QSSDLTR 3896 0.172 1356 GCTTTGGCA 2397 QSGSLTR 2897 RADALMV 3397 QSSDLTR 3897 0.034 1357 GACTTGGTA 2398 QSSSLVR 2898 RSDALTT 3398 DRSNLTR 3898 0.032 1358 GACTTGGTA 2399 QSSSLVR 2899 RADALMV 3399 DRSNLTR 3899 0.05 1360 CAGTTGTGA 2400 QSGHLTT 2900 RADALMV 3400 RSDNLTE 3900 41.7 1361 AAGGAAAAA 2401 QKTNLDT 2901 QSGNLQR 3401 RSDNLTQ 3901 0.835 1362 AAGGAAAAA 2402 QSGNLNQ 2902 QSGNLQR 3402 RSDNLTQ 3902 0.332 1363 AAGGAAAAA 2403 QKTNLDT 2903 QRSNLVR 3403 RSDNLTQ 3903 74.1

1364 ATGGGTGAA 2404 QSANLSR 2904 QSSHLAR 3404 RSDALAQ 3904 1.22 1365 ATGGGTGAA 2405 ORSNLVR 2905 OSSHLAR 3405 RSDALAQ 3905 0.152 1366 ATGGGTGAA 2406 OSANLSR 2906 TSGHLVR 3406 RSDALAQ 3906 22.63 1367 ATGGGTGAA 2407 ORSNLVR 2907 TSGHLVR 3407 RSDALAQ 3907 1.028 1368 CTGGGAGAT 2408 QSSNLAR 2908 QRAHLER 3408 RSDALRE 3908 0.051 1369 CTGGGAGAT 2409 QSSNLAR 2909 QSGHLTR 3409 RSDALRE 3909 0.227 1373 GTGGTGGGC 2410 DRSHLTR 2910 RSDALSR 3410 RSDALTR 3910 0.025 1374 CCGGCGGTG 2411 RSDALTR 2911 RSDELQR 3411 RSDELRE 3911 0.003 1375 CCGGCGGTG 2412 RSDALTR 2912 RSDDLQR 3412 RSDELRE 3912 0.008 1376 CCGGCGGTG 2413 RSDALTR 2913 RSDERKR 3413 RSDELRE 3913 0.858 1377 CCGGCGGTG 2414 RSDALTR 2914 RSDELQR 3414 RSDDLRE 3914 0.012 1378 CCGGCGGTG 2415 RSDALTR 2915 RSDDLQR 3415 RSDDLRE 3915 0.012 1379 CCGGCGGTG 2416 RSDALTR 2916 RSDERKR 3416 RSDDLRE 3916 0.25 1380 GCCGACGGT 2417 QSSHLTR 2917 DRSNLTR 3417 ERGDLTR 3917 0.076 1381 GCCGACGGT 2418 OSSHLTR 2918 DPGNLVR 3418 ERGDLTR 3918 0.23 1382 GCCGACGGT 2419 QSSHLTR 2919 DRSNLTR 3419 DCRDLAR 3919 1383 GCCGACGGT 2420 OSSHLTR 2920 DPGNLVR 3420 DCRDLAR 3920 1.74 1384 GGTGTGGGC 2421 DRSHLTR 2921 RSDALSR 3421 MSHHLSR 3921 0.013 1385 TGGGCAAGA 2422 QSGHLNO 2922 QSGSLTR 3422 RSDHLTT 3922 0.229 1386 TGGGCAAGA 2423 ENWKLQA 2923 QSGSLTR 3423 RSDHLTT 3923 0.193 1389 CTGGCCTGG 2424 RSDHLTT 2924 DCRDLAR 3424 RSDALRE 3924 0.175 1393 TGGGAAGCT 2425 OSSDLRR 2925 QSGNLAR 3425 RSDHLTT 3925 0.1 1394 TGGGAAGCT 2426 OSSDLRR 2926 QSGNLAR 3426 RSDHLTK 3926 0.04 1395 GAAGAGGGA 2427 QSGHLQR 2927 RSDNLAR 3427 QSGNLAR 3927 0.025 1396 GAAGAGGGA 2428 QRAHLAR 2928 RSDNLAR 3428 QSGNLAR 3928 0.107 1397 GAAGAGGGA 2429 OSSHLAR 2929 RSDNLAR 3429 QSGNLAR 3929 0.14 1398 TAATGGGGG 2430 RSDHLSR 2930 RSDHLTT 3430 QSGNLRT 3930 0.065 1399 TGGGAGTGT 2431 TKOHLKT 2931 RSDNLAR 3431 RSDHLTT 3931 1400 CCGGGTGAG 2432 RSDNLAR 2932 QSSHLAR 3432 RSDDLRE 3932 0.371 1401 GAGTTGGCC 2433 ERGTLAR 2933 RADALMV 3433 RSDNLAR 3933 0.167 1402 CTGGAGTTG 2434 RGDALTS 2934 RSDNLAR 3434 RSDALRE 3934 0.15 1403 ATGGCAATG 2435 RSDALTQ 2935 QSGSLTR 3435 RSDALTQ 3935 0.07 1404 GAGGCAGGG 2436 RSDHLSR 2936 QSGSLTR 3436 RSDNLAR 3936 0.022 1405 GAGGCAGGG 2437 RSDHLSR 2937 OSGDLTR 3437 RSDNLAR 3937 0.045 1406 GAAGCGGAG 2438 RSDNLAR 2938 RSDELTR 3438 OSGNLAR 3938 0.025 1407 GCGGGCGCA 2439 OSGSLTR 2939 DRSHLAR 3439 RSDERKR 3939 0.585 1408 CCGGCAGGG 2440 RSDHLSR 2940 OSGSLTR 3440 RSDELRE 3940 0.305 1409 CCGGCAGGG 2441 RSDHLSR 2941 QSGSLTR 3441 RSDDLRE 3941 0.153 1410 CCGGCGGCG 2442 RSDELTR 2942 RSDELQR 3442 RSDELRE 3942 0.814 1411 TGAGGCGAG 2443 RSDNLAR 2943 DRSHLAR 3443 OSGHLTK 3943 0.282 1412 CTGGCCGTG 2444 RSDSLLR 2944 ERGTLAR 3444 RSDALRE 3944 0.172 1413 CTGGCCGCG 2445 RSDELTR 2945 DRSDLTR 3445 RSDALRE 3945 0.152 1414 CTGGCCGCG 2446 RSDELTR 2946 ERGTLAR 3446 RSDALRE 3946 0.914 1415 GCGGCCGAG 2447 RSDNLAR 2947 DRSDLTR 3447 RSDELOR 3947 0.102 1416 GCGGCCGAG 2448 RSDNLAR 2948 ERGTLAR 3448 RSDELOR 3948 0.153 1417 GAGTTGGCC 2449 ERGTLAR 2949 RGDALTS 3449 RSDNLAR 3949 1.397 1418 CTGGAGTTG 2450 RADALMV 2950 RSDNLAR 3450 RSDALRE 3950 0.241 1422 GGGTCGGCG 2451 RSDELTR 2951 RSDDLTT 3451 RSDHLSR 3951 0.064 1423 GGGTCGGCG 2452 RSDELTR 2952 RSDDLTK 3452 RSDHLSR 3952 0.034 1424 CAGGGCCCG 2453 RSDELRE 2953 DRSHLAR 3453 RSDNLRE 3953 1.37 1427 CAGGGCCCG 2454 RSDDLRE 2954 DRSHLAR 3454 RSDNLTE 3954 0.271 1428 TGAGGCGAG 2455 RSDNLAR 2955 DRSHLAR 3455 OSVHLOS 3955 0.102 1429 TGAGGCGAG 2456 RSDNLAR 2956 DRSHLAR 3456 OSGHLTT 3956 0.074 1430 TCGGCCGCC 2457 ERGTLAR 2957 DRSDLTR 3457 RSDDLTK 3957 0.352 1431 TCGGCCGCC 2458 ERGTLAR 2958 DRSDLTR 3458 RSDDLAS 3958 6.17 1432 TCGGCCGCC 2459 ERGTLAR 2959 ERGTLAR 3459 RSDDLTK 3959 1.778 1434 CTGGCCGTG 2460 RSDSLLR 2960 DRSDLTR 3460 RSDALRE 3960 0.051 1435 TAATGGGGG 2461 RSDHLSR 2961 RSDHLTT 3461 OSGNLTK 3961 0.057 1436 TGGGAGTGT 2462 TSDHLAS 2962 RSDNLAR 3462 RSDHLTT 3962 0.026 1439 GGAGTGTTA 2463 QRSALAS 2963 RSDALAR 3463 QSGHLQR 3963 0.075 1440 GGAGTGTTA 2464 OSGALTK 2964 RSDALAR 3464 OSGHLOR 3964 0.035 1441 ATAGCTGGG 2465 RSDHLSR 2965 QSSDLTR 3465 QSGALTQ 3965 0.262 1442 TGCTGGGCC 2466 ERGTLAR 2966 RSDHLTT 3466 DRSHLTK 3966 0.36 1443 TGGAAGGAA 2467 OSGNLAR 2967 RSDNLTO 3467 RSHHLTT 3967 0.22 1444 TGGAAGGAA 2468 QSGNLAR 2968 RSDNLTQ 3468 RSSHLTT 3968 0.09 1445 TGGAAGGAA 2469 OSGNLAR 2969 RLDNLTA 3469 RSHHLTT 3969 0.182 1446 TGGAAGGAA 2470 QSGNLAR 2970 RLDNLTA 3470 RSSHLTT 3970 0.42 1454 GGAGAGGCT 2471 OSSDLRR 2971 RSDNLAR 3471 OSGHLQR 3971 1455 CGGGATGAA 2472 QSANLSR 2972 TSGNLVR 3472 RSDHLRE 3972 0.043 1456 GGAGAGGCT 2473 QSSDLRR 2973 RSDNLAR 3473 QRAHLAR 3973 0.016 1457 GCAGAGGAA 2474 QSANLSR 2974 RSDNLAR 3474 QSGSLTR 3974 0.014 1460 TTGGGGGAG 2475 RSDNLAR 2975 RSDHLTR 3475 RADALMV 3975 0.007 1461 GACGAGGAG 2476 RSANLAR 2976 RSDNLTR 3476 DRSNLTR 3976 0.014 1462 CGGGATGAA 2477 QSGNLAR 2977 TSGNLVR 3477 RSDHLRE 3977 0.05 1463 GAGGCTGTT 2478 TTSALTR 2978 QSSDLTR 3478 RSDNLAR 3978 0.003 1464 GACGAGGAG 2479 RSDNLAR 2979 RSDNLTR 3479 DRSNLTR 3979 0.002 1465 CTGGGAGTT 2480 TTSALTR 2980 QSGHLQR 3480 RSDALRE 3980 0.018 1466 CTGGGAGTT 2481 NRATLAR 2981 QSGHLQR 3481 RSDALRE 3981 0.017 1468 GGTGATGTC 2482 DRSALTR 2982 TSGNLVR 3482 MSHHLSR 3982 1469 GGTGATGTC 2483 DRSALTR 2983 TSGNLVR 3483 TSGHLVR 3983 0.28 1470 GGTGATGTC 2484 DRSALTR 2984 TSGNLVR 3484 QRAHLER 3984 0.156 1471 CTGGTTGGG 2485 RSDHLSR 2985 QSSALTR 3485 RSDALRE 3985 0.09 1472 TTGAAGGTT 2486 TTSALTR 2986 RSDNLTO 3486 RADALMV 3986 1473 TTGAAGGTT 2487 TTSALTR 2987 RSDNLTQ 3487 RSDSLTT 3987 1474 TTGAAGGTT 2488 OSSALAR 2988 RSDNLTQ 3488 RADALMV 3988 1475 TTGAAGGTT 2489 QSSALAR 2989 RSDNLTQ 3489 RLHSLTT 3989 0.39 1476 TTGAAGGTT 2490 QSSALAR 2990 RSDNLTQ 3490 RSDSLTT 3990 0.305 1477 GCAGCCCGG 2491 RSDHLRE 2991 DRSDLTR 3491 QSGSLTR 3991 2.31 1479 GAAAGTTCA 2492 QSHDLTK 2992 MSHHLTQ 3492 QSGNLAR 3992 37.04 1480 GAAAGTTCA 2493 NKTDLGK 2993 TSGHLVQ 3493 QSGNLAR 3993 62.5 1481 GAAAGTTCA 2494 NKTDLGK 2994 TSDHLAS 3494 RSDELRE 3994 37.04 1482 CCGTGTGAC 2495 DRSNLTR 2995 TSDHLAS 3495 RSDELRE 3995 111.1 1483 CCGTGTGAC 2496 DRSNLTR 2996 MSHHLTT 3496 RSDELRE 3996 20.8 1484 GAAGTGGTA 2497 OSSSLVR 2997 RSDALSR 3497 QSGNLAR 3997 0.01 1485 AAGTGAGCT 2498 OSSDLRR 2998 QSGHLTT 3498 RSDNLTQ 3998 1.537 1486 GGGTTTGAC 2499 DRSNLTR 2999 TTSALAS 3499 RSDHLSR 3999 0.085 1487 TTGAAGGTT 2500 TTSALTR 3000 RSDNLTQ 3500 RLHSLTT 4000 0.188 1488 AAGTGGTAG 2501 QSSDLRR 3001 QSGHLTT 3501 RLDNRTQ 4001 5.64 1490 CTGGTTGGG 2502 RSDHLSR 3002 TSGSLTR 3502 RSDALRE 4002 0.04

 1491 AAGGGTTCA
 2503 NKTDLGK 3003 DSSKLSR 3503 RLDNRTA 4003 4.12

 1492 AAGTGGTAG
 2504 RSDNLTT 3004 RSDHLTT 3504 RSDNLTQ 4004 1.37

 1493 AAGTGGTAG
 2505 RSDNLTT 3005 RSDHLTT 3505 RLDNRTQ 4005 15.09

 1494 GGGTTGAC
 2506 DRSNLTR 3006 QRSALAS 3506 RSDHLSR 4006 0.255

 1496 TTGGGGGAG
 2507 RSDNLAR 3007 RSDHLTR 3507 RSDALTT 4007 0.065

 1497 GAGGCTCTT
 2508 QSSALAR 3008 QSSDLTR 3508 RSDNLAR 4008 0.007

 1498 GAGGTTGAT
 2509 QSSNLAR 3009 QSSALTR 3509 RSDNLAR 4009 0.101

 1499 GAGGTTGAT
 2510 QSSNLAR 3010 TSGALTR 3510 RSDNLAR 4010 0.02

 1500 GCAGAGGAA
 2511 QSGNLAR 3011 RSDNLAR 3511 QSGSLTR 4011 0.003

 1522 GCAATGGGT
 2512 TSGHLVR 3012 RSDALTQ 3512 QSGDLTR 4012 0.008

55 **TABLE 6**

	FINGER (N → C)					
TRIPLET (5'→3')	F1	F2	F3			
AGG			RXDHXXQ			
ATG			RXDAXXQ			
CGG			RXDHXXE			
GAA		QXGNXXR				
GAC	DXSNXXR		DXSNXXR			
GAG	RXDNXXR	RXSNXXR RXDNXXR	RXDNXXR			
GAT	QXSNXXR TXSNXXR TXGNXXR	TXGNXXR				
GCA	QXGSXXR	QXGDXXR				
GCC	EXGTXXR					
GCG	RXDEXXR	RXDEXXR	RXDEXXR RXDTXXK			
GCT	QXSDXXR	TXGEXXR QXSDXXR				
GGA		QXGHXXR	QXAHXXR			
GGC	DXSHXXR	DXSHXXR				
GGG	RXDHXXR	RXDHXXR	RXDHXXR RXDHXXK			
GGT			TXGHXXR			
GTA		QXGSXXR QXATXXR				
GTG	RXDAXXR RXDSXXR	RXDAXXR	RXDAXXR			
TAG		RXDNXXT				
TCG	RXDDXXK					
TGT		TXDHXXS				

5

10

15

WHAT IS CLAIMED IS:

- A zinc finger which binds to a target subsite wherein amino acids –
 through +6 of the zinc finger and the nucleotide sequence of the target subsite are as specified in Table 6.
- A zinc finger according to claim 1 wherein amino acids –1 through
 +6 of the zinc finger have the sequence DXSNXXR and the nucleotide sequence of the
 target subsite is GAC.
 - A zinc finger according to claim 1 wherein amino acids -1 through +6 of the zinc finger have the sequence RX(D/S)NXXR and the nucleotide sequence of the target subsite is GAG.
 - 4. A zinc finger according to claim 1 wherein amino acids –1 through +6 of the zinc finger have the sequence TXGNXXR and the nucleotide sequence of the target subsite is GAT.
 - 5. A zinc finger according to claim 1 wherein amino acids –1 through +6 of the zinc finger have the sequence (Q/T)XSNXXR and the nucleotide sequence of the target subsite is GAT.
 - 6. A zinc finger according to claim 1 wherein amino acids -1 through +6 of the zinc finger have the sequence QXG(S/D)XXR and the nucleotide sequence of the target subsite is GCA.
- 20 7. A zinc finger according to claim 1 wherein amino acids -1 through +6 of the zinc finger have the sequence RXDEXXR and the nucleotide sequence of the target subsite is GCG.
- A zinc finger according to claim 1 wherein amino acids -1 through
 +6 of the zinc finger have the sequence QXDSXXR and the nucleotide sequence of the
 target subsite is GCT.

10

15

- 9. A zinc finger according to claim 1 wherein amino acids –1 through +6 of the zinc finger have the sequence QX(G/A)HXXR and the nucleotide sequence of the target subsite is GGA.
- A zinc finger according to claim 1 wherein amino acids –1 through
 +6 of the zinc finger have the sequence DXSHXXR and the nucleotide sequence of the target subsite is GGC.
 - 11. A zinc finger according to claim 1 wherein amino acids -1 through +6 of the zinc finger have the sequence RXDHXXR and the nucleotide sequence of the target subsite is GGG.
 - 12. A zinc finger according to claim 1 wherein amino acids -1 through +6 of the zinc finger have the sequence RXDAXXR and the nucleotide sequence of the target subsite is GTG.
 - A nucleic acid encoding a polypeptide wherein the polypeptide comprises a zinc finger according to claim 1.
 - A segment of a zinc finger comprising a sequence of seven contiguous amino acids as shown in any of Tables 1-5.
 - A nucleic acid encoding a polypeptide wherein the polypeptide comprises a segment of a zinc finger according to claim 14.
- 16. A zinc finger protein comprising first, second and third zinc
 20 fingers, wherein the zinc fingers comprise respectively first, second and third segments of seven contiguous amino acids as shown in a row of Tables 1-5.
 - A nucleic acid encoding a zinc finger protein according to claim

ABSTRACT OF THE DISCLOSURE

The invention provides nonnaturally occurring zinc finger proteins, and corresponding target sites bound by the proteins. Consensus amino acid sequences for design of zinc fingers having a given target substite binding specificity are also provided.

PA 3058355 v2

5

^{*} PCR amplification scheme for production of ZFP-encoding synthetic genes.

FIG. 1

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I declare that:

My residence, post office address and citizenship are as stated below next to my name; inventor (if only one name is listed below) or an original, first and joint inventor (if plural matter which is claimed and for which a patent is sought on the invention entitled: ZINC	inventors are named below) of the subject FINGER PROTEIN COMPOSITIONS
the specification of which X is attached hereto or was filed on if applicable).	as Application No and

I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56. I claim foreign priority benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Country	Application No.	Date of Filing	Priority Claimed Under 35 USC 119

hereby claim the benefit under Title 35, United States Code § 119(e) of any United States provisional application(s) listed below:

123
UT
100
72
D
E
0
111

Application No.	Filing Date
60/126,238	March 24, 1999
60/126,239	March 24, 1999
60/146,596	July 30, 1999
60/146,615	July 30, 1999

Edaim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Application No.	Date of Filing	Status

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Joe Liebeschuetz, Reg. No. 37,505 William M. Smith, Reg. No. 30,223

Send Correspondence to:	Direct Telephone Calls to:
Joe Liebeschuetz	(Name, Reg. No., Telephone No.)
TOWNSEND and TOWNSEND and CREW LLP	Name: Joe Liebeschuetz
Two Embarcadero Center, 8th Floor	Reg. No.: 37,505
San Francisco, California 94111-3834	Telephone: 650-326-2400

Full Name of	Last Name: EISENBERG	First Name: STEPHEN		Middle Name or Initial: P.		
Inventor 1: Residence &	City:	State/Foreign Country:	Country of Citizer			
Citizenship:	Boulder	CO	United States			
Post Office	Post Office Address: 5664 Pennsylvania	City: Boulder	State/Country:	Postal Code: 80303		
Address:						
Full Name of Inventor 2:	Last Name: CASE	First Name: CASEY	Middle Name or I	nitial:		
Residence & Citizenship:	City: San Mateo	State/Foreign Country: CA	Country of Citizer United States			
Post Office Address:	Post Office Address: 605 Barroilhet Avenue	City: San Mateo	State/Country: CA	Postal Code: 94402		
Full Name of Inventor 3:	Last Name: COX III	First Name: GEORGE	Middle Name or I	nitial:		
Residence & Citizenship:	City: Louisville	State/Foreign Country: CO	Country of Citize United States	nship:		
Post Office Address:	Post Office Address: 678 West Willow Street	City: Louisville	State/Country: CO	Postal Code: 80027		
Full Name of Inventor 4:	Last Name: JAMIESON	First Name: ANDREW	Middle Name or l	nitial:		
Residence & Citizenship:	City: San Francisco	State/Foreign Country: CA	Country of Citize United Kingd	nship: lom		
Post Office Address:	Post Office Address: 2528 Sutter Street	City: San Francisco	State/Country: CA	Postal Code: 94115		
Full Name of Inventor 5:	Last Name: REBAR	First Name: EDWARD	Middle Name or J.	Initial:		
Residence & Citizenship:	City: Berkeley	State/Foreign Country: CA	Country of Citize United States			
Post Office Address:	Post Office Address: 815 Regal Road	City: Berkeley	State/Country: CA	Postal Code: 94708		
Full Name of Inventor 6:	Last Name:	First Name: QIANG	Middle Name or	Initial:		
Residence & Citizenship:	City: Foster City	State/Foreign Country: CA	Country of Citize United States	nship:		
Post Office Address:	Post Office Address: 55 Williams Lane	City: Foster City	State/Country: CA	Postal Code: 94404		

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature of Inventor 1	Signature of Inventor 2	Signature of Inventor 3
STEPHEN P. EISENBERG	CASEY C. CASE	GEORGE N. COX III
Date	Date	Date
Signature of Inventor 4	Signature of Inventor 5	Signature of Inventor 6
ANDREW JAMIESON	EDWARD J. REBAR	QIANG LUI
Date	Date	Date

0

PA-3058856 v1