相关系数分析及其显著性检验

摘要

本文主要研究相关系数分析的作用和步骤。

首先,我们引入了相关系数的概念,并从整体上认识了 Pearson 相关系数、Spearman 相关系数和 Kendall 相关系数的异同。其次,我们又介绍了描述性统计的作用和意义。随后,我们分别详细介绍了三大相关系数的计算及其显著性检验。最后,以中学考试成绩的数据为例,我们进行了相关系数分析,展示和总结了前文介绍的分析流程。

关键字: 线性相关 显著性检验 置信区间 Pearson 相关系数 Spearman 相关系数

目录

- 、	相关系数简介	1
二、	描述性统计及线性关系检测	2
Ξ,	Pearson 相关系数. 3.1 正态性检验. 3.1.1 Q-Q 图. 3.1.2 Jarque-Bera 检验. 3.1.3 Shapiro-wilk 检验. 3.2 相关系数计算. 3.3 显著性检验.	2 3 4 5
四、	Spearman 相关系数. 4.1 相关系数计算. 4.2 显著性检验. .	6
五、	Kendall 相关系数. 5.1 相关系数的计算. 5.2 显著性检验.	6 7 7
六、	实例. 6.1 题目. 6.2 描述性统计. 6.3 Pearson 相关系数. 6.4 Spearman 相关系数. 6.5 Kendall 相关系数.	8 11
附录	G Matlab 代码	13
附录	H Python 代码	15

一、相关系数简介

两组数据之间,常常会显现出一种**线性相关性**。笼统地讲,数据列 A 的值上升,数据列 B 的值整体随之上升,称 A 与 B 正相关;数据列 A 的值上升,数据列 B 的值反而整体下降,称 A 与 B 负相关;数据列 A 的值上升,数据列 B 的值整体没有明显的上升或下降趋势,称 A 与 B 不相关。

特别地,若数据列 $A \setminus B$ 的值符合一条斜率为正的直线,称 $A \cup B$ **完全正相关**;若数据列 $A \setminus B$ 的值符合一条斜率为负的直线,称 $A \cup B$ **完全负相关**。

图 1 线性相关关系图示

相关系数 r 是这样一个数值,它能在一定程度上衡量两组数据间的**线性相关性的大小**,并且具有以下性质:

- 1. -1 < r < 1
- 2. r = 1 时,两组数据完全正相关;r = -1 时,两组数据完全负相关;r = 0 时,两组数据明显不具有线性相关性。
- 3. |r| 越大,两组数据的线性相关性越强;正负符号代表正负相关 常见的相关系数有三种: Pearson 相关系数、Spearman 相关系数、Kendall 相关系数。

相关系数	要求
Pearson	无明显异常值;数据为连续变量;两组数据呈 正态分布 或 近似正态分布 ;
Spearman	对数据无特殊要求
Kendall	两组数据中包含 定序变量 ;对数据分布无特殊要求

二、描述性统计及线性关系检测

在对数据进行线性相关性分析之前,我们可以先进行描述性统计,以对数据有一个整体的认识。

假设进行统计性描述的数据列为 X,则常见的统计量有

最大值:
$$\max(X) = \max\{x_1, x_2, \cdots, x_n\}$$

最小值: $\max(X) = \min\{x_1, x_2, \cdots, x_n\}$
中位数: $m_{0.5}(X) = [(X)_{sorted}]_{median}$
平均值: $\mu(X) = \frac{\sum\limits_{i=1}^{n} x_i}{n}$
标准差: $\sigma(X) = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \mu)^2}{n-1}}$
峰度: $Kurt(X) = \frac{\frac{1}{n} \sum\limits_{i=1}^{n} (x_i - \mu)^4}{[\frac{1}{n} \sum\limits_{i=1}^{n} (x_i - \mu)^2]^2} - 3$
偏度: $Skew(X) = \frac{\frac{1}{n} \sum\limits_{i=1}^{n} (x_i - \mu)^3}{[\frac{1}{n} \sum\limits_{i=1}^{n} (x_i - \mu)^2]^{\frac{3}{2}}}$

其中,峰度和偏度的绝对值越接近0,可以初步认为数据的分布越接近于正态分布。除了描述性统计,我们还需要绘制出想要分析的两组数据对应的散点图,查看它们是否具有一定的线性相关关系。如果数据符合的是**很明显的非线性关系**,那我们就要尽早放弃使用线性相关系数分析方法了。

三、Pearson 相关系数

3.1 正态性检验

在进行 Pearson 相关系数的计算之前,首先要检验数据的正态性。方法有很多:需要大量数据的 Q-Q 图法、大样本 (n>30) 的 Jarque-Bera 检验、小样本 ($3 \le n \le 50$) 的 Shapiro-wilk 检验。

3.1.1 Q-Q 图

分位图 (quantile-quantile plot),又称 Q-Q 图,通过比较两组数据的分位数,来判断两者是否同分布。令其中一组数据为标准正态分布 N(0,1),另一组为标准化后的已知数据,这样就能够判断已知数据是否具有一定的正态性了。

如图 2所示,如果 Q-Q 图接近于一条直线 (左),可以认为数据具有较好的正态性; 否则,与一条直线有较大偏差 (右),可以认为数据的正态性较差。

值得注意的是,只有数据量较大时,Q-Q图的效果才会很明显。

3.1.2 Jarque-Bera 检验

当 $n \ge 30$ 时,可以进行 Jarque-Bera 检验。

在描述性统计中,得到的峰度 (K) 和偏度 (S) 已经能够初步检测数据的正态性了。不过为了更加准确,我们可以通过峰度和偏度构造一个新的统计量——JB 统计量。

JB 统计量:
$$JB = \frac{n}{6}(S^2 + \frac{K^2}{4})$$
 (1)

经过证明,如果数据服从正态分布,那么对应的 JB 统计量将近似服从自由度为 2 的 χ^2 分布。

自由度为 2 的
$$\chi^2$$
 分布的概率密度函数: $f(y) = \begin{cases} \frac{1}{2\Gamma(1)} e^{-\frac{y}{2}} & y > 0\\ 0 & y \le 0 \end{cases}$ (2)

据此,我们可以根据由数据计算出来的 JB^* 对数据的正态性进行假设检验。具体步骤如下:

1. **作出假设**。原假设 H_0 为"已知数据服从正态分布",备选假设 H_1 为"已知数据不服从正态分布"。

- 2. **计算 JB***。先计算峰度 (K) 和偏度 (S), 再进一步通过式 (1) 计算 JB*
- 3. **计算 p 值**。根据概率密度函数式 (2) 或其他手段计算出 $JB \geq JB^*$ 的概率,即 p 值 (此处为单侧检验)。
- 4. 选择显著性水平 α 。 $p < \alpha$ 代表在 $(1 \alpha) \times 100\%$ 的置信水平上拒绝原假设。常见的 是 $\alpha = 0.05$ 。
- 5. 得出结论。若拒绝原假设,说明数据并不服从近似的正态分布。

图 3 自由度为 2 的卡方分布的概率密度函数图像

3.1.3 Shapiro-wilk 检验

当 $3 \le n \le 50$ 时,可以进行 Shapiro-wilk 检验。

和 Jarque-Bera 检验类似,构造统计量 W,则 W 将服从一个已知分布(尚未命名)。 据此进行假设检验。

$$W = \frac{(\sum_{i=1}^{n} a_i x_i)^2}{\sum_{i=1}^{n} (x_i - \mu)^2}$$
(3)

具体步骤为:

- 1. **作出假设**。原假设 H_0 为"已知数据服从正态分布",备选假设 H_1 为"已知数据不服从正态分布"。
- 2. 计算 W。
- 3. **计算p值**。通过已有实现计算出p值。

- 4. 选择显著性水平 α 。 $p < \alpha$ 代表在 $(1 \alpha) \times 100\%$ 的置信水平上拒绝原假设。常见的 是 $\alpha = 0.05$ 。
- 5. 得出结论。若拒绝原假设,说明数据并不服从近似的正态分布。

3.2 相关系数计算

Pearson 相关系数基于协方差推导而来。

协方差
$$Cov(X,Y) = \frac{\sum\limits_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{n-1}$$
 (4)

协方差初步体现了数据 X,Y 之间的线性相关性: 若 Cov(X,Y) 大于 0,说明 $(x_i - \bar{x})$ 和 $(y_i - \bar{y})$ 整体符号相同,也就是 X 和 Y 的变化趋势大致相同。

协方差受量纲影响较大,将协方差标准化,就可以得到 Pearson 相关系数。

$$r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$
(5)

3.3 显著性检验

有时候由于数据量大和异常值等其他原因,导致相关系数较小。我们可以通过假设 检验来判断相关系数是否显著不等于 0,从而说明两组数据间确实存在线性相关性。通 常使用 t 检验。

由 Pearson 相关系数 r 构造 t 统计量, 经证明, t 将服从自由度为 n-2 的 t 分布。

$$t = r\sqrt{\frac{n-2}{1-r^2}}\tag{6}$$

自由度为
$$n$$
 的 t 分布的概率密度函数: $f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n}\Gamma(\frac{n}{2})}(1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$ (7)

图 4 t 分布概率密度函数图像

t 检验具体步骤如下:

- 1. **作出假设**。原假设 H_0 为 "r = 0",备选假设 H_1 为 " $r \neq 0$ "。
- 2. **计算 t***。通过式 (6) 计算 t*
- 3. **计算 p 值**。根据概率密度函数式 (7) 或其他手段计算出 $|t| \ge |t^*|$ 的概率,即 **p** 值(此 处为双侧检验)。
- 4. 选择显著性水平 α 。 $p < \alpha$ 代表在 $(1 \alpha) \times 100\%$ 的置信水平上拒绝原假设。常见的是 $\alpha = 0.1(*), 0.05(**), 0.01(***)$ 。
- 5. **得出结论**。若拒绝原假设,说明 r 显著不为 0,即数据间确实具有一定的线性相关性,相关性由 r 的大小展示。

四、Spearman 相关系数

与 Pearson 相关系数相比,Spearman 相关系数对数据的要求较小。因此不满足 Pearson 相关系数的条件,均可以考虑使用 Spearman 相关系数进行分析。

4.1 相关系数计算

在进行 Spearman 相关系数计算之前,要先把两组数据分别从小到大排序,得到对应的秩(即排名),再计算每一对数据对应的秩差 d_i 。

Spearman 相关系数有两种定义。两者计算出来的值略有差异。

第一种基于 Pearson 相关系数: Spearman 相关系数是两组数据的秩的 Pearson 相关系数。

第二种基于秩差:

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} \tag{8}$$

4.2 显著性检验

显著性检验与 Spearman 的 t 检验原理和步骤差不多。各统计软件和编程语言均有实现。不在此赘述。

五、 Kendall 相关系数

Kendall 相关系数与 Spearman 相关系数类似,对数据的要求较小,通常用于分析定序数据。

5.1 相关系数的计算

Kendall 相关系数的计算与同序对数和异序对数有关。

如果两对数据的两个属性排序的方向相同,就称其为同序对。否则称为异序对。同序对和异序对对数和一般为 $C_n^2=\frac{n(n-1)}{2}$ 对。将同序对数(n_c)和异序(n_d)之差与总对数之比定义为 Kendall 相关系数。

$$r = \frac{2(n_c - n_d)}{n(n-1)} \tag{9}$$

5.2 显著性检验

Kendall 相关系数的显著性检验较为复杂,各编程语言和统计软件均有实现,调用即可。

六、实例

6.1 题目

给出数据如表 1,请进行相关性分析。(仅作为示例,数据不一定准确)

表 1 示例数据

语文	数学	英语	生物	历史	地理	政治
80	92	98	79	76	87	78
76	85	97	76	74	90	84
88	84	90.5	67	62	68	78
57	82	84.5	74	74	67	64
69	72	83	63	50	85	57
73	85	90	50	56	67	52
66	81	84	59	56	61	61
85	80	94	64	32	60	42
69	77	80	50	38	60	72
70	83	74.5	52	42	58	55
72	82	77	59	40	66	33
÷	:	:	:	:	:	:

6.2 描述性统计

首先对数据进行描述性统计,结果如表 2

表 2 描述性统计结果

	语文	数学	英语	生物	历史	地理	政治
最大值	88	92	98	79	76	90	84
最小值	4	9	25	12	8	14	6
中位数	54.5	67.5	68.75	35.5	34	48.5	33.5
平均值	52.7222	66.2778	65.7037	39.6296	35.7407	48.4444	35.0185
标准差	18.8934	15.0087	20.4887	15.9401	16.1130	17.0423	19.1425
峰度	-0.4263	2.9542	-0.9330	-0.1939	0.2080	-0.1923	-0.0275
偏度	-0.3115	-1.3363	-0.2684	0.6684	0.7244	0.2576	0.6529

紧接着绘制矩阵散点图,以整体观察数据间的相关情况。

图 5 矩阵散点图

6.3 Pearson 相关系数

各数据列均为连续变量,符合 Pearson 相关系数的基本应用条件。

首先进行正态性检验。

绘制 Q-Q 图如图 6。可以看出,各列数据 Q-Q 图都与直线有较好的拟合。在一定程度上,可以判断各列数据服从近似正态分布。

图 6 各列数据对应的 Q-Q 图

为了准确性,对各列数据进行 Shapiro-wilk 检验,得到如表 3结果。除了语文和地理两列,其余各列都以 90% 及以上的置信水平服从正态分布。

政治 学科 数学 生物 语文 英语 历史 地理 拒绝原假设 否 是 是 是 是 是 否 0.5882 0.0007 0.0778 0.0294 0.0244 0.4242 0.0368 p 值

表 3 Shapiro-wilk 检验结果

为了保持研究的统一性,这里将语文和地理两列也视作近似服从正态分布进行处理。

接下来,两两计算 Spearman 相关系数并进行显著性检验,得到结果如表 4。 为了直观性,绘制相关系数热力图如。

可以发现,各门学科之间的分数都具有很强的相关性,这说明大部分学生的各门分数都很均衡,相关性很强。尤其是语数英、政史地之间的的相关性极其突出。

表 4 Pearson 相关系数计算结果

	语文	数学	英语	生物	历史	地理	政治
语文	1.00(***)	0.75(***)	0.77(***)	0.60(***)	0.56(***)	0.71(***)	0.64(***)
数学	0.75(***)	1.00(***)	0.77(***)	0.59(***)	0.68(***)	0.73(***)	0.73(***)
英语	0.77(***)	0.77(***)	1.00(***)	0.55(***)	0.65(***)	0.69(***)	0.75(***)
生物	0.60(***)	0.59(***)	0.55(***)	1.00(***)	0.74(***)	0.71(***)	0.70(***)
历史	0.56(***)	0.68(***)	0.65(***)	0.74(***)	1.00(***)	0.76(***)	0.84(***)
地理	0.71(***)	0.73(***)	0.69(***)	0.71(***)	0.76(***)	1.00(***)	0.78(***)
政治	0.64(***)	0.73(***)	0.75(***)	0.70(***)	0.84(***)	0.78(***)	1.00(***)

注: ***、**、*分别代表 1%、5%、10% 的显著性水平

图 7 Pearson 相关系数热力图

6.4 Spearman 相关系数

表 5 Kendall 相关系数计算结果

	语文	数学	英语	生物	历史	地理	政治
语文	1.00(***)	0.82(***)	0.77(***)	0.56(***)	0.64(***)	0.69(***)	0.66(***)
数学	0.82(***)	1.00(***)	0.79(***)	0.64(***)	0.76(***)	0.74(***)	0.77(***)
英语	0.77(***)	0.79(***)	1.00(***)	0.56(***)	0.68(***)	0.68(***)	0.78(***)
生物	0.56(***)	0.64(***)	0.56(***)	1.00(***)	0.68(***)	0.65(***)	0.62(***)
历史	0.64(***)	0.76(***)	0.68(***)	0.68(***)	1.00(***)	0.74(***)	0.84(***)
地理	0.69(***)	0.74(***)	0.68(***)	0.65(***)	0.74(***)	1.00(***)	0.75(***)
政治	0.66(***)	0.77(***)	0.78(***)	0.62(***)	0.84(***)	0.75(***)	1.00(***)

注: ***、**、* 分别代表 1%、5%、10% 的显著性水平

图 8 Spearman 相关系数热力图

Spearman 相关系数擅长于分析未知分布的定序变量数据。条件满足。操作步骤和结果与 Pearson 相关系数类似。

6.5 Kendall 相关系数

表 6 Kendall 相关系数计算结果

	语文	数学	英语	生物	历史	地理	政治
语文	1.00(***)	0.64(***)	0.59(***)	0.42(***)	0.49(***)	0.52(***)	0.49(***)
数学	0.64(***)	1.00(***)	0.61(***)	0.47(***)	0.58(***)	0.57(***)	0.61(***)
英语	0.59(***)	0.61(***)	1.00(***)	0.42(***)	0.50(***)	0.51(***)	0.59(***)
生物	0.42(***)	0.47(***)	0.42(***)	1.00(***)	0.52(***)	0.49(***)	0.46(***)
历史	0.49(***)	0.58(***)	0.50(***)	0.52(***)	1.00(***)	0.57(***)	0.67(***)
地理	0.52(***)	0.57(***)	0.51(***)	0.49(***)	0.57(***)	1.00(***)	0.59(***)
政治	0.49(***)	0.61(***)	0.59(***)	0.46(***)	0.67(***)	0.59(***)	1.00(***)

注: ***、**、*分别代表 1%、5%、10% 的显著性水平

图 9 Kendall 相关系数热力图

Kendall 相关系数擅长于分析未知分布的定类和定序变量数据。条件满足。操作步骤和结果与 Pearson 相关系数类似。

附录 G Matlab 代码

代码 1: 描述性统计

```
function result = DescriptiveStat(data)
% 描述性统计
% 各行分别为最大值,最小值,中位数,平均值,标准差,峰度,偏度
Max = max(data);
Min = min(data);
Median = median(data);
Mean = mean(data);
Std = std(data);
Kurt = kurtosis(data)-3;
Skew = skewness(data);
result = [Max;Min;Median;Mean;Std;Kurt;Skew];
end
```

代码 2: 相关系数分析示例

```
clc, clear
   % 描述性统计
    data = readmatrix("data\相关系数示例.csv","NumHeaderLines",1);
    n = size(data, 2);
    result = DescriptiveStat(data);
    disp(result);
    %% 绘制散点图矩阵
    figure(1);
    MatrixScatter(data);
    %% 绘制Q-Q图
    figure (2)
    for i=1:n
       subplot(2,4,i);
       qqplot(data(:,i));
       xlabel("");
       ylabel("");
       title("");
    end
   %% 正态性检验
    % Jarque-Bera 检验
    % jb H = ones([n,1]);
     % jb_P = ones([n,1]); 
    % for i=1:n
28 % [jb_h,jb_p] = jbtest(data(:,i),0.1);
```

```
% jb_H(i,1)=jb_h;
   % jb P(i,1)=jb p;
    % end
    % disp([jb_H,jb_P]);
    % Shapiro-wilk 检验
    sw_H = ones([n,1]);
    sw P = ones([n,1]);
    for i=1:n
       [sw h, sw p] = swtest(data(:,i),0.1);
38
       sw H(i,1)=sw h;
       sw_P(i,1)=sw_p;
    end
    disp([sw_H,sw_P]);
    % 计算Pearson相关系数
    [Rp, Pp] = corrcoef(data);
    disp(Rp);
    disp(Pp);
    % 绘制相关系数热力图
    figure (3);
    names = ["语文","数学","英语","生物","历史","地理","政治"];
    heatmap(names, names, Rp);
    colormap("jet");
    %% 计算Spearman相关系数
    [Rs,Ps] = corr(data, "type", "Spearman");
    disp(Rs);
   disp(Ps);
    % 绘制相关系数热力图
    figure (4);
    names = ["语文","数学","英语","生物","历史","地理","政治"];
    heatmap(names, names, Rs);
    colormap("jet");
    %% 计算Kendall相关系数
    [Rk,Pk] = corr(data,"type","Kendall");
    disp(Rk);
    disp(Pk);
    % 绘制相关系数热力图
    figure(5);
    names = ["语文","数学","英语","生物","历史","地理","政治"];
    heatmap(names, names, Rk);
    colormap("jet");
```

附录 H Python 代码

代码 3: 初始化

```
## 导包
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from scipy import stats
import statsmodels.api as sm

np.set_printoptions(suppress=True)

plt.rcParams["font.sans-serif"] = ["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"] = False # 解决图像中的 "-" 负号的乱码问题

## 数据初始化
data = pd.read_csv("../data/相关系数示例.csv", encoding="gbk")
n = data.shape[1]
D = data.to_numpy()
display(data)
```

代码 4: 相关系数分析示例

```
## 矩阵散点图
for i in range(n):
 for j in range(n):
   plt.subplot(n, n, n * i + j + 1)
   plt.xticks([])
   plt.yticks([])
   if i != j:
      plt.scatter(D[:, i], D[:, j], 2)
 ## 描述性统计
result0 = stats.describe(data)
result = [result0.minmax[1], result0.minmax[0], data.median(), result0.mean,
    data.std(), result0.kurtosis,
      result0.skewness]
 result = pd.DataFrame(result, columns=data.columns,
               index=["最大值", "最小值", "中位数", "平均值", "标准差", "峰度",
                   "偏度"])
display(result)
## Pearson相关系数
 # Q-Q图
plt.figure(figsize=(10, 5))
```

```
for i in range(n):
        sub ax = plt.subplot(2, 4, i + 1)
        sm.qqplot(D[:, i], ax=sub ax, line='45', fit=True, markersize=4, marker="x")
        sub_ax.set_xlabel(None)
        sub ax.set ylabel(None)
       sub ax.set xticks([])
       sub_ax.set_yticks([])
27
       plt.subplots adjust(wspace=0.1, hspace=0.1)
     # 正态性检验
     #jbtest result = []
    #for i in range(n):
        #jb, jb p = stats.jarque bera(D[:, i])
        #jbtest result.append([jb, jb p])
     #jbtest result = pd.DataFrame(jbtest result, columns=["jb值", "p值"],
        index=data.columns)
     #display(jbtest result)
    swtest result = []
    for i in range(n):
       W, sw_p = stats.shapiro(D[:, i])
        swtest result.append([W, sw p])
    swtest result = pd.DataFrame(swtest result, columns=["W@u", "p@u"],
        index=data.columns)
    display(swtest result)
     # 相关系数计算
    Rp = np.ones((n, n))
    Pp = np.ones((n, n))
    for i in range(n):
       for j in range(n):
           rp, pp = stats.pearsonr(D[:, i], D[:, j])
          Rp[i, j] = rp
          Pp[i, j] = pp
    Rp = pd.DataFrame(Rp, columns=data.columns, index=data.columns)
     Pp = pd.DataFrame(Pp, columns=data.columns, index=data.columns)
    display(Rp)
    display(Pp)
     sns.heatmap(Rp, xticklabels=data.columns, yticklabels=data.columns, annot=True,
        cmap="jet", fmt=".4f")
    plt.show()
     ## Spearman相关系数
     # 相关系数计算
    Rs = np.ones((n, n))
```

```
Ps = np.ones((n, n))
 for i in range(n):
    for j in range(n):
       rs, ps = stats.spearmanr(D[:, i], D[:, j])
       Rs[i, j] = rs
       Ps[i, j] = ps
 Rs = pd.DataFrame(Rs, columns=data.columns, index=data.columns)
 Ps = pd.DataFrame(Ps, columns=data.columns, index=data.columns)
 display(Rs)
 display(Ps)
 # 热力图
 sns.heatmap(Rs, xticklabels=data.columns, yticklabels=data.columns, annot=True,
     cmap="jet", fmt=".4f")
 plt.show()
 ## Kendall 相关系数
 # 相关系数计算
 Rk = np.ones((n, n))
 Pk = np.ones((n, n))
 for i in range(n):
    for j in range(n):
       rk, pk = stats.kendalltau(D[:, i], D[:, j])
       Rk[i, j] = rk
       Pk[i, j] = pk
 Rk = pd.DataFrame(Rk, columns=data.columns, index=data.columns)
 Pk = pd.DataFrame(Pk, columns=data.columns, index=data.columns)
display(Rk)
 display(Pk)
 # 热力图
 sns.heatmap(Rk, xticklabels=data.columns, yticklabels=data.columns, annot=True,
     cmap="jet", fmt=".4f")
 plt.show()
```