F21T2A2

Sei $G \subseteq \mathbb{C}$ ein Gebiet, d.h. eine nichtleere, offene und zusammenhängende Teilmenge von \mathbb{C} . Entscheiden Sie, ob die folgenden Aussagen über alle holomorphen Funktionen $f: G \to \mathbb{C}$ gelten. Bei richtigen Aussagen geben Sie eine kurze Begründung mit Nennung aller benutzten Sätze an, bei falschen ein Gegenbeispiel.

- a) Ist $G = \mathbb{C}$ und f beschränkt, so ist f konstant.
- b) Ist $G = \mathbb{C} \setminus \{0\}$ und f beschränkt, so ist f konstant.
- c) Ist G die offene rechte Halbebene und f beschränkt, so ist f konstant.
- d) Ist G ein beschränktes Gebiet und hat f unendlich viele Nullstellen, so ist f konstant.
- e) Ist G ein beschränktes Gebiet und hat f unendlich viele Nullstellen in einer kompakten Teilmenge von G, so ist f konstant.
- f) Ist G ein beschränktes Gebiet, so ist f(G) beschränkt.

Zu a)

WAHR nach dem Satz von Liouville

Zu b)

WAHR, denn da f beschränkt ist, ist die Singularität bei 0 hebbar nach dem Riemannschen Hebbarkeitssatz; deshalb gibt es eine holomorphe Fortsetzung $F: \mathbb{C} \to \mathbb{C}$, die ebenfalls beschränkt ist und somit konstant nach dem Satz von Liouville; insbesondere ist $f = F|_{\mathbb{C}\setminus\{0\}}$ konstant.

Zu c)

FALSCH; Gegenbeispiel

 $f: \{z \in \mathbb{C}: Re(z) > 0\} \to \mathbb{C}$; $z \to e^{-z}$ ist wegen $|f(z)| = |e^{-z}| = e^{-Re(z)} < 1$ für Re(z) > 0 beschränkt, aber nicht konstant.

Zu d)

FALSCH; Gegenbeispiel:

 $f: \{z \in \mathbb{C} \setminus \{0\}: |z| < 1\} \to \mathbb{C} \; ; z \to \sin\left(\frac{1}{z}\right) \text{ ist holomorph, } f\left(\frac{1}{k\pi}\right) = \sin(k\pi) = 0 \; \text{für alle } k \in \mathbb{N},$ deshalb hat f auf $\left\{\frac{1}{k\pi}: k \in \mathbb{N}\right\}$ unendlich viele Nullstellen, ist aber nicht konstant.

Zu e)

WAHR, denn

Nach Voraussetzung gibt es eine Folge $(z_k)_{k\in\mathbb{N}}$ in $K\subseteq G$ kompakt mit $f(z_k)=0$ für alle $k\in\mathbb{N}$ und $z_k\neq z_l$ für alle $k,l\in\mathbb{N}$ mit $k\neq l$.

Da K kompakt ist, hat die Folge eine konvergente Teilfolge $(z_{k_n})_{n\in\mathbb{N}}$ $mit\ z_{k_n} \xrightarrow[n\to\infty]{} z\in K$. Da auch $(z_{k_n})_{n\in\mathbb{N}}$ paarweise verschiedene Folgenglieder besitzt, ist der Grenzwert z ein Häufungspunkt der Menge $\{z_{k_n}:n\in\mathbb{N}\}\subseteq\{z_k\in G:f(z_k)=0\}$.

Wegen $z_k \in K \subseteq G$ gilt $f(z_k) = 0$ für alle $z_k \in G$ nach dem Identitätssatz.

Zu f)

FALSCH; Gegenbeispiel wie in (d):

 $f: \{z \in \mathbb{C} \setminus \{0\}: |z| < 1\} \to \mathbb{C} \; ; z \to \sin\left(\frac{1}{z}\right) \; \text{ist holomorph und hat in 0 eine wesentliche Singularität,}$ somit ist $f(\{z \in \mathbb{C} \setminus \{0\}: |z| < 1\}) \; \text{dicht in } \mathbb{C} \; \text{nach dem Satz von Casorati-Weierstraß, also unbeschränkt.}$

 $\sin\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} \left(\frac{1}{z}\right)^{2k+1}$ ist die Laurentreihe von f um 0; diese hat im Hauptteil unendlich viele Koeffizienten ungleich 0; somit ist 0 wesentliche Singularität.