

Towards Model-Based Decision-Telling: Design Evolution Through Decision Nodes

Authors: Nidhal Selmi, Jean-Michel Bruel, Sebastien Mosser, Matthieu

Crespo

University of Toulouse, McMaster University, Airbus

The Context

Airbus DDMS Digitalization Project

- Digital-first approach to design,
 manufacturing and services
- Model-Based Systems Engineering as a core element of the project

What is MBSE?

Model-Based Systems Engineering (MBSE)

emerged to manage complexity by consolidating design artifacts into a single source of truth (SSOT).

- Improves consistency and collaboration
- Strengthens traceability across design artifacts
- Reduces development time
- Better manages information overload

The Challenge

Rising Complexity

Engineered systems like
aerospace are becoming
increasingly complex,
overwhelming traditional
design approaches.

Lost Evolution

MBSE focuses on static outcomes rather than how and why models evolved through design stages.

Scattered Decisions

Decision information is decentralized across documents, trackers, and presentations - making decision revisiting and reuse impossible.

The Gap We Address

1

Current State

MBSE emphasizes static outcomes - the final model state without evolution context.

2

Missing Link

Versioning remains disconnected from reasoning and decisions that drive evolution.

-

Our Solution

Capture model evolution through decision nodes with formalized decision documentation.

Motivating Scenario: Aircraft Propulsion System Architecture

Example from ZEROe zero-emission aircraft development showing how decisions drive architecture evolution.

Initial Architecture Twin drivetrain configuration

Shift to dual battery setup

Transition to hybrid-electric system

Final Design

Initial Architecture

Twin drivetrain onfiguration

Shift to dual battery setup

Transition to hybrid-electric system

Final Design

Initial Twin Shift to dual Transition to Final Design
Architecture drivetrain battery setup hybrid-electric configuration system

Current Approach Limitations

Disconnected Tools

Presentations prepared
outside MBSE tools limit
consistency and traceability
to actual models.

Temporary Value

Presentations serve review meetings but provide no ongoing maintenance of design evolution.

Additional Workload

Creating presentations
becomes extra burden on top
of core MBSE modeling
activities.

Inefficient Revisiting

Revisiting the right decisions due to changed context is not straightforward

Proposed Solution: Integrated Decision Capture

Ensure **traceability** between system models and the underlying decisions while capturing model evolution through **decision nodes**.

Decision Documentation Template Example

In the context of A/C Drivetrain Development,

facing insufficient battery specific energy,

we decided for hybrid-electric architecture

and neglected full-electric architecture

to achieve better performance accepting higher complexity because fuel systems offer a higher specific energy.

Y-Statements: Structured Decision Capture

"In the context of [context] facing [problem], we decided for [solution] and neglected [alternatives] to achieve [benefits], accepting [trade-offs] because [additional rationale]."

O. Zimmermann, "Y-Statements: A light template for architectural decision capturing," ZIO's Blog (Medium), May 7, 2020...

Natural Language

Engineers capture reasoning in familiar, flexible format without rigid constraints.

Structured Elements

Formal knowledge representation enables automated traceability and impact analysis.

Model and Decision Drift

What if, after taking a decision:

- A requirement changes
- New opportunities arise
- The prioritization scheme of objectives evolves

→ We need to ensure **systematic revisiting** of the concerned decisions

Y-Statement Link to MBSE Concepts

In the context of <Building Block, Viewpoint, Disciplines, Design Activity>,

facing < Problem Statement: Risk/Opportunity, Task at hand>,

we decided for <Architecture and Requirement evolution> and neglected <Architecture and Requirement evolution>, to achieve <Requirement, Design Objective, Design Rule>, accepting <Design Objective, Constraint>, because <additional rationale>.

In the context of... facing...

to achieve...
accepting...
because...

Conceptual Model

Y-Statements serve as the central entity that links all the MBSE elements relevant to the decision.

Implementation

Each decision directly triggers changes in the system architecture and requirements, creating traceable evolution paths through structured Decision Nodes.

Evaluation: PoC Tool Demonstration

Same propulsion example, Y-Statements only textual

Evaluation Results

Feedback from Airbus systems engineers, modelers, and architects through tool demonstrations:

Evolution Tracking

Commit history effectively describes design evolution progression.

Enhanced Traceability

Y-Statements provide lightweight,
valuable format for capturing decision
rationale.

Cost-Value Balance

Importance of balancing effort with generated value.

Limitations & Future Work

Current Limitations

- Full mapping to MBSE not yet validated
- Only sequential decision examples considered
- Y-Statement capture can still be burdensome

Limitations & Future Work

Current Limitations

- Full mapping to MBSE not yet validated
- Only sequential decision
 examples considered
- Y-Statement capture can still be burdensome

Future Directions

- Investigate decision dependencies
- Automatic completion and suggestions
- More comprehensive costbenefit evaluation

Thank You

Questions?

Nidhal Selmi

PhD Candidate, IRIT

E-Mail: nidhal.selmi@irit.fr

