# 실험 3. 디코더와 멀티플렉서

20210774 김주은

### 1. 개요

이번 실습의 목표는 multiple-output 회로를 대표하는 'decoder'와 multiple-input 회로를 대표하는 'multiplexer'의 기능을 이해하고 이를 사용해 회로를 구성하는 것이다.

첫번째 실습은 Active-low decoder을 확장하는 이론에 대해 이해한 후 이를 구현하는 것이다. 이번 실습에서는 2 to 4 decoder들을 가지고 4 to 16 decoder을 만든다. 그리고 두번째 실습은 특수 목적의 decoder을 구현한다. 이번 실습에서는 두 개의 decoder을 구현하게 되는데 하나는 소수 판별을 해주는 기능, 다른 하나는 배수 검출 기능이다. 마지막 실습은 멀티플렉서의 데이터 선택 기능을 이해하고 이를 활용하여 majority function을 구현하는 것이다.

### 2. 이론적 배경

#### 1) decoder

디코더는 n개의 입력을 받고 2^n개의 출력을 하는 회로라고 할 수 있다. 여기서 2^n개의 출력 중 단 한 개만 1이다. 디코더는 'minterm generator'이라고 불리는데 이는 각 출력이 minterm 에 따라 출력되기 때문이다. 디코더의 형태는 다음과 같다.



디코더는 Enable input을 가지는데 이 EN의 경우 1일 때는 decoder가 활성화되고, EN이 0일 때는 decoder가 비활성화된다. 즉, EN은 decoder을 켜고 끄는 기능을 가진다. Decoder의 경우 다양한 목적으로 다양하게 활용되는 회로이다. 이번 실습에서도 두 가지의 목적을 위해 사용되는데 소수 판별과 배수 검출의 목적이다. EN을 가지는 decoder는 demultiplexer로 기능하기도 한다.

### 2) decoder 확장

디코더의 확장은 디코더들을 연결하고, 그런 디코더들의 EN을 다른 디코더로 조절함으로써 더 많은 수의 입력과 출력을 가지는 디코더로 확장할 수 있다는 개념이다. 예를 들어, 2 to 4 디코더

를 두 개 사용하여 3 to 8 디코더를 구성해야 한다면, 아래와 같이 될 것이다.



## 3) multiplexer

멀티플렉서는 입력 신호들이 여러 개가 있을 때 그 중 하나를 선택하여 출력하는 회로라고 할수 있다. 2^n개의 입력 신호가 들어온다면 n개의 selection 신호에 따라 어떤 출력 신호가 나올지 결정된다. 회로의 형태는 다음과 같다.



멀티플렉서를 활용하면 다양한 함수 표현도 가능하다. Minterm과 입력들이 곱해진 것의 SUM의 형태로 표현할 수 있으므로 이를 활용하여 다양한 함수 표현을 할 수 있다.

Output = 
$$\sum_{k=0}^{2^{n}-1} m_k I_k$$

### 3. 실험 준비

Lab 3-1)



Decoder을 확장한 형태는 다음과 같다.

Lab 3-2)

# 1) 소수 판별기



먼저 truth table을 그리고 이를 바탕으로 k-map을 통해 단순화를 진행한다.

# 2) 배수 검출기



| (D = 144. |       |       |   |        |    | (1 | 194 时 |       |      |    |    |  |
|-----------|-------|-------|---|--------|----|----|-------|-------|------|----|----|--|
| 5,52      |       |       |   |        |    |    | 2,2,2 | 00    | ଚା   | Ü  | 10 |  |
| DO        | 0     | D     | D | D      |    |    | 00    | 0     | D    | D  | D  |  |
| 0         | O     | D     |   | Ó      |    |    | ١٥    | O     | D    | 0  | Ó  |  |
| 71        | 0     | 0     | D | Q      |    |    | 11    | 0     | 0    | D  | ٥  |  |
| ۱۵        | 0 0 0 | 0     | D | D      |    |    | ۱۵    | 0 0 0 | 0    |    | D  |  |
| ⇒         | 23,2  | 25150 | + | 535255 | 10 |    |       | 7 9   | 352' | 27 |    |  |

먼저 truth table을 그리고 이를 바탕으로 k-map을 통해 단순화를 진행한다.

Lab 3-3)

| 2                | 53          | S           | Si          | S. | F                          |          |
|------------------|-------------|-------------|-------------|----|----------------------------|----------|
| 0000000000000000 | 0 0         | 0000        | 0           | Ó  | 0 0 0 0 0 0                |          |
| 0                | 0           | 0           | 0           | 1  | 0                          | <b>N</b> |
| 0                | 0           | 0           |             | 0  | 0                          | 0        |
| 0                | 0 0 0       |             | 1           | -1 | 0                          |          |
| 0                | 0           | 1           | O           | 0  | 0                          |          |
| 0                | 0           | 1           | 0           | 1  | 0                          | SiS.     |
| 0                | 0           | 1           | 1           | 0  | 0                          | 7170     |
| 0                | 0           | 1           | 1           | 0  | /                          |          |
| 0                | 1           | 0           | 0           | 0  | 0                          |          |
| 0                | 1           | 0           | 0           | 1  | 0                          | 5,50     |
| 0                | /           | 0           | 1           | 0  | 0                          | 7130     |
| 0                | /           | 0 0 0       | I           |    | 0 0 / 6 / / /              |          |
| 0                | 1           |             | 0           | 0  | 6                          |          |
| 0                | 1           | 1           |             |    |                            | Si+S.    |
| U                | ,           | 1           | 1           | 0  | (/)                        | 01130    |
| 0                | -/-         | 1           | 1           | 1  | V                          |          |
| //               | 0 0 0 0 0 0 | 0 0 0 0     | 0           | 0  | 0 0                        |          |
| 1                | 0           | 0           | 0           | l  | 0                          | 5,50     |
|                  | 0           | 0           | 1           | 0  | 0                          | 2170     |
| 1                | 0           | 0           |             | L) | 1                          |          |
| 1                | 0           | - [         | 0           | 0  | 0                          |          |
| 1                | 0           | 1           |             | 1  | 1                          | 5,+50    |
| /                | 0           | 1           | 1           | 0  | 1                          | 71470    |
|                  | 0           | 1           | 1           | 0  | /<br>0<br>/<br>/<br>0<br>/ | -        |
| /                | 1           | 0           | 0<br>0<br>1 |    | 0                          |          |
| 1                | 1           | 0           | Ō           | 1  | /                          | S1+S.    |
| 1                | 1           | 0           |             | 0  | /                          | 31170    |
| /                | /           | 0           | 1           |    | /                          |          |
| /                | /           | 0 0 0 0 1 1 | 0<br>0      | 0  | 1                          |          |
| 1,               | ,           | I           |             |    | /                          | 1        |
| 1                | 1 1 1 1     | 1           | 1           | 0  | 1                          | <b>'</b> |
|                  | /           | 1           | 1           | 1  | J                          |          |



먼저 truth table을 그리고 단순화를 진행한다.

# 4. 결과

Lab 3-1)







| Name          | Value | <br>16,000 ns | 18,000 ns | 20,000 ns | 22,000 ns | 24,000 ns | 26,000 ns | 28,000 ns | 30,000 ns |
|---------------|-------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>6</b> [13] | 1     |               |           |           |           |           |           |           |           |
| 16 [12]       | 1     |               |           |           |           |           |           |           |           |
| Ta [11]       | 1     |               |           |           |           |           |           |           |           |
| ¹⊌ [10]       | 1     |               |           |           |           |           |           |           |           |
| 18 [9]        | 1     |               |           |           |           |           |           |           |           |
| 18 [8]        | 1     |               |           |           |           |           |           |           |           |
| 18 [7]        | 1     |               |           |           |           |           |           |           |           |
| <b>¼</b> [6]  | 1     |               |           |           |           |           |           |           |           |
| 16 [5]        | 0     |               |           |           |           |           |           |           |           |
| 16 [4]        | 1     |               |           |           |           |           |           |           |           |
| 16 [3]        | 1     |               |           |           |           |           |           |           |           |
| 16 [2]        | 1     |               |           |           |           |           |           |           |           |
| 16 [1]        | 1     |               |           |           |           |           |           |           |           |
| 16 [0]        | 1     |               |           |           |           |           |           |           |           |
|               |       |               |           |           |           |           |           |           |           |
|               |       |               |           |           |           |           |           |           |           |







### Lab 3-2)





#### Lab 3-3)







# 5. 논의

3-1)

2 to 4 decoder을 4 to 16 decoder을 만드는 과정은 이미 시험 기간에 많은 연습을 했기에 덜 어려웠다. 이미 만들어진 decoder 모듈을 활용하여 4 to 16 decoder을 이론적인 게 아닌 직접 베릴로그 코딩을 해보면서 더 와 닿을 수 있었다.

하지만 decoder 모듈을 직접 어떻게 활용해야 하는지에 대한 베릴로그 문법에 익숙하지 않아 조금 고생하였던 것 같다. 그 중 가장 시간을 투자했던 부분은 decoder의 경우 input과 output이모두 벡터형이었는데 이를 매개변수로 어떻게 넘겨줘야 하는지에 대한 부분이었다. 처음에는 예를 들어 out[15:0] 중 15~12 만 쓰기 위하여 out[15:12] 라는 식의 코드로 구현을 해봤지만 오류가 뜨고 실패하였고 다시 열심히 찾아보아 모색한 방법이 중괄호를 쓰는 방법이었다. 그래서 {out[15],out[14],out[13],out[12]} 으로 구현하여 구현에 성공하였다.

소수 판별기와 배수 검출기는 단순히 진리표를 그린 다음 단순화를 한 다음에 회로를 구현하였는데 이전 decoder의 실습보다는 난이도가 높지 않았다. 하지만 진리표가 꽤나 복잡했는데 이는 output이 총 5개였던 것이 원인이었던 것 같다. 그래서 각 output에 대해 구현하느라 많이 힘들기는 하였지만 이보다 더 효율적이고 최적화된 방법을 모색하여 찾는다면 그 방법을 선택하는 것이 좋을 것 같다고 생각하였다.

### 3-3)

Multiplexer은 decoder보다 훨씬 난이도가 낮았고 덜 어려웠다. 그리고 2<sup>5</sup>개에 대한 truth table 을 그리는 과정이 조금 번거롭고 귀찮긴 했지만 난이도는 훨씬 낮았던 것 같다.