Métodos Iterativos para Solução de Sistemas Lineares INF1608 – Análise Numérica

Waldemar Celes

Departamento de Informática, PUC-Rio

Sistemas Lineares

Resolução de sistemas lineares

- ► Eliminação de Gauss
 - Método direto
 - Solução exata (teoricamente)
 - ▶ Complexidade computacional: $O(n^3)$

Sistemas Lineares

Resolução de sistemas lineares

- ► Eliminação de Gauss
 - Método direto
 - Solução exata (teoricamente)
 - ▶ Complexidade computacional: $O(n^3)$

Métodos iterativos

- Solução, em geral, aproximada
- ▶ Complexidade computacional: $m\delta$
 - ▶ m é o número de iterações
 - δ é a complexidade em cada iteração

Sistemas lineares

$$Ax = b$$

Método de Jacobi

- ► Forma de iteração de ponto fixo para sistemas de equações
- ► Aplica IPF na *i*-ésima equação para achar *x_i*

Sistemas lineares

$$Ax = b$$

Método de Jacobi

- ► Forma de iteração de ponto fixo para sistemas de equações
- ► Aplica IPF na *i*-ésima equação para achar *x_i*

Exemplo:

$$\begin{cases} 3x + y = 5 \\ x + 2y = 5 \end{cases}$$

Sistemas lineares

$$Ax = b$$

Método de Jacobi

- ► Forma de iteração de ponto fixo para sistemas de equações
- ► Aplica IPF na *i*-ésima equação para achar x_i

Exemplo:

$$\begin{cases} 3x + y = 5 \\ x + 2y = 5 \end{cases}$$

Reescrevendo:

$$\begin{cases} x = \frac{5-y}{3} \\ y = \frac{5-x}{2} \end{cases}$$

Método de Jacobi

$$\begin{cases} x = \frac{5-y}{3} \\ y = \frac{5-x}{2} \end{cases}$$

Iterando:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{3} \\ \frac{5}{2} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{6} \\ \frac{5}{3} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{10}{9} \\ \frac{25}{12} \end{bmatrix} \rightarrow \cdots$$

Método de Jacobi

$$\begin{cases} x = \frac{5-y}{3} \\ y = \frac{5-x}{2} \end{cases}$$

Iterando:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{3} \\ \frac{5}{2} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{6} \\ \frac{5}{3} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{10}{9} \\ \frac{25}{12} \end{bmatrix} \rightarrow \cdots$$

- Converge!
- Solução exata:

Método de Jacobi

Invertendo a ordem das equações

Exemplo:

$$\begin{cases} x + 2y = 5 \\ 3x + y = 5 \end{cases}$$

Método de Jacobi

Invertendo a ordem das equações

Exemplo:

$$\begin{cases} x + 2y = 5 \\ 3x + y = 5 \end{cases}$$

Reescrevendo:

$$\begin{cases} x = 5 - 2y \\ y = 5 - 3x \end{cases}$$

Método de Jacobi

Invertendo a ordem das equações

Exemplo:

$$\begin{cases} x + 2y = 5 \\ 3x + y = 5 \end{cases}$$

Reescrevendo:

$$\begin{cases} x = 5 - 2y \\ y = 5 - 3x \end{cases}$$

Iterando:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} -5 \\ 10 \end{bmatrix} \rightarrow \begin{bmatrix} 25 \\ 20 \end{bmatrix} \rightarrow \cdots$$

Método de Jacobi

► Invertendo a ordem das equações

Exemplo:

$$\begin{cases} x + 2y = 5 \\ 3x + y = 5 \end{cases}$$

Reescrevendo:

$$\begin{cases} x = 5 - 2y \\ y = 5 - 3x \end{cases}$$

Iterando:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} -5 \\ 10 \end{bmatrix} \rightarrow \begin{bmatrix} 25 \\ 20 \end{bmatrix} \rightarrow \cdots$$

Definição: Matriz Estritamente Diagonal Dominante

▶ Uma matriz $A_{n \times n}$ é estritamente diagonal dominante se:

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

 Isto é, o valor absoluto da digonal é maior que a soma dos valores absolutos dos demais elementos da linha

No exemplo:

▶ 1o caso:

▶ 2o caso:

Formulação do Método de Jacobi

$$A\mathbf{x} = \mathbf{b}$$

Decomposição da matriz

$$A = L + D + U$$

- L: matriz com os elementos abaixo da diagonal
- ▶ D: matriz com os elementos da diagonal
- ▶ *U*: matriz com os elementos acima da diagonal

Formulação do Método de Jacobi

$$A\mathbf{x} = \mathbf{b}$$

Decomposição da matriz

$$A = L + D + U$$

- L: matriz com os elementos abaixo da diagonal
- ▶ D: matriz com os elementos da diagonal
- ▶ *U*: matriz com os elementos acima da diagonal
- Reescrevendo algebricamente:

$$A\mathbf{x} = \mathbf{b}$$

$$(D + L + U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x}$$

$$\mathbf{x} = D^{-1}(\mathbf{b} - (L + U)\mathbf{x})$$

Formulação do Método de Jacobi

$$A\mathbf{x} = \mathbf{b}$$

Decomposição da matriz

$$A = L + D + U$$

- L: matriz com os elementos abaixo da diagonal
- ▶ D: matriz com os elementos da diagonal
- ▶ U: matriz com os elementos acima da diagonal
- Reescrevendo algebricamente:

$$A\mathbf{x} = \mathbf{b}$$

$$(D + L + U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = \mathbf{b} - (L + U)\mathbf{x}$$

$$\mathbf{x} = D^{-1}(\mathbf{b} - (L + U)\mathbf{x})$$

► Note que *D* tem inversa trivial

Algoritmo: Método de Jacobi

$$\mathbf{x}_0 = \text{estimativa inicial}$$

 $\mathbf{x}_{k+1} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x}_k), \quad k = 1, 2, 3, \cdots$

Algoritmo: Método de Jacobi

$$\mathbf{x}_0 = \text{estimativa inicial}$$

$$\mathbf{x}_{k+1} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x}_k), \quad k = 1, 2, 3, \cdots$$

No exemplo:

$$\left[\begin{array}{cc} 3 & 1 \\ 1 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 5 \\ 5 \end{array}\right]$$

Algoritmo: Método de Jacobi

$$\mathbf{x}_0 = \text{estimativa inicial}$$

$$\mathbf{x}_{k+1} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x}_k), \quad k = 1, 2, 3, \cdots$$

No exemplo:

$$\left[\begin{array}{cc} 3 & 1 \\ 1 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 5 \\ 5 \end{array}\right]$$

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_k \\ y_k \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \frac{5-y_k}{3} \\ \frac{5-x_k}{2} \end{bmatrix}$$

Método de Gauss-Seidel

- Iteração de Jacobi que usa valores mais recentes dentro da mesma iteração
 - Impede computação em paralelo
- Convergência mais rápida, em geral
 - ► Ainda condicionada a matriz estritamente diagonal dominante

Método de Gauss-Seidel

- Iteração de Jacobi que usa valores mais recentes dentro da mesma iteração
 - ► Impede computação em paralelo
- ► Convergência mais rápida, em geral
 - ► Ainda condicionada a matriz estritamente diagonal dominante

Exemplo:

$$\begin{cases} 3x + y = 5 \\ x + 2y = 5 \end{cases}$$

Método de Gauss-Seidel

- ► Iteração de Jacobi que usa valores mais recentes dentro da mesma iteração
 - ▶ Impede computação em paralelo
- ► Convergência mais rápida, em geral
 - ▶ Ainda condicionada a matriz estritamente diagonal dominante

Exemplo:

$$\begin{cases} 3x + y = 5 \\ x + 2y = 5 \end{cases}$$

Jacobi:

$$\begin{cases} x_{i+1} = \frac{5 - y_i}{3} \\ y_{i+1} = \frac{5 - x_i}{2} \end{cases}$$

Método de Gauss-Seidel

- Iteração de Jacobi que usa valores mais recentes dentro da mesma iteração
 - ▶ Impede computação em paralelo
- ► Convergência mais rápida, em geral
 - ► Ainda condicionada a matriz estritamente diagonal dominante

Exemplo:

$$\begin{cases} 3x + y = 5 \\ x + 2y = 5 \end{cases}$$

Jacobi:

Gauss-Seidel:
$$x_{i+1} = \frac{5-y_i}{2}$$

$$x_{i+1} = \frac{5-y_i}{2}$$

$$\begin{cases} x_{i+1} = \frac{5 - y_i}{3} \\ y_{i+1} = \frac{5 - x_i}{2} \end{cases}$$

$$\begin{cases} x_{i+1} = \frac{5 - y_i}{3} \\ y_{i+1} = \frac{5 - x_{i+1}}{2} \end{cases}$$

Exemplo:

$$\begin{cases} x = \frac{5-y}{3} \\ y = \frac{5-x}{2} \end{cases}$$

Iterações de Jacobi:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{3} \\ \frac{5}{2} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{6} \\ \frac{5}{3} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{10}{9} \\ \frac{25}{12} \end{bmatrix} = \begin{bmatrix} 1.1111 \\ 2.0833 \end{bmatrix}$$

Exemplo:

$$\begin{cases} x = \frac{5-y}{3} \\ y = \frac{5-x}{2} \end{cases}$$

Iterações de Jacobi:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{3} \\ \frac{5}{2} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{6} \\ \frac{5}{3} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{10}{9} \\ \frac{25}{12} \end{bmatrix} = \begin{bmatrix} 1.1111 \\ 2.0833 \end{bmatrix}$$

Iterações de Gauss-Seidel:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{5}{3} \\ \frac{5}{3} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{10}{9} \\ \frac{35}{18} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{55}{54} \\ \frac{215}{108} \end{bmatrix} = \begin{bmatrix} 1.0185 \\ 1.9907 \end{bmatrix}$$

Algoritmo: Método de Gauss-Seidel

$$\mathbf{x}_0 = \text{estimativa inicial}$$

$$\mathbf{x}_{k+1} = D^{-1}(\mathbf{b} - U\mathbf{x}_k - L\mathbf{x}_{k+1}), \quad k = 1, 2, 3, \cdots$$

▶ Na prática, trabalha-se com um único vetor (in place)

Relaxação sucessiva

$$\mathbf{x}_{k+1} = (1-w)\mathbf{x}_k + w$$
 [fórmula para determinar \mathbf{x}_{k+1}]

Relaxação sucessiva

$$\mathbf{x}_{k+1} = (1-w)\mathbf{x}_k + w$$
 [fórmula para determinar \mathbf{x}_{k+1}]

▶ Se w < 1, tem-se sub-relaxação (interpolação)

▶ Se w > 1, tem-se sobre-relaxação (extrapolação)

Relaxação sucessiva

$$\mathbf{x}_{k+1} = (1 - w)\mathbf{x}_k + w$$
 [fórmula para determinar \mathbf{x}_{k+1}]

- ▶ Se w < 1, tem-se sub-relaxação (interpolação)
 - Usado para convergir sistemas não convergentes ou acelerar a convergência amortecendo oscilações
- Se w > 1, tem-se sobre-relaxação (extrapolação)

Relaxação sucessiva

$$\mathbf{x}_{k+1} = (1 - w)\mathbf{x}_k + w$$
 [fórmula para determinar \mathbf{x}_{k+1}]

- ▶ Se w < 1, tem-se sub-relaxação (interpolação)</p>
 - Usado para convergir sistemas não convergentes ou acelerar a convergência amortecendo oscilações
- ▶ Se w > 1, tem-se sobre-relaxação (extrapolação)
 - Usado para acelerar convergência de um sistema convergente
 - Esta estratégia é muito usada!

Custo computacional

- ▶ Custo por iteração: $O(n^2)$
 - Operação dominante: multiplicação de matriz por vetor
- ► Custo total: $mO(n^2)$

Custo computacional

- ▶ Custo por iteração: $O(n^2)$
 - Operação dominante: multiplicação de matriz por vetor
- ► Custo total: mO(n²)
- Em condições especiais
 - Sistemas esparsos
 - ► Complexidade de cada interação: O(n)
 - Sistemas coerentes (boas estimativas iniciais)
 - ▶ Número de iterações: *O*(1)
 - ► Complexidade computacional total: *O*(*n*)

Sistemas esparsos

- Matriz com a grande maioria dos elementos nulos
- Armazenar e processar apenas os elementos não nulos
 - ► Eliminação de Gauss transformaria em matriz cheia

Sistemas esparsos

- Matriz com a grande maioria dos elementos nulos
- Armazenar e processar apenas os elementos não nulos
 - ▶ Eliminação de Gauss transformaria em matriz cheia

Exemplo

$$\begin{bmatrix} 3 & -1 & 0 & \cdots & 0 & 0 & 0.5 \\ -1 & 3 & -1 & \cdots & 0 & 0.5 & 0 \\ 0 & -1 & 3 & \cdots & 0.5 & 0 & 0 \\ & & & \vdots & & & \\ 0 & 0 & 0.5 & \cdots & 3 & -1 & 0 \\ 0 & 0.5 & 0 & \cdots & -1 & 3 & -1 \\ 0.5 & 0 & 0 & \cdots & 0 & -1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 2.5 \end{bmatrix}, so$$

Sistemas esparsos

Exemplo: $n = 100\,000$

- Matriz cheia: $n^2 = 10^{10}$ valores
 - ▶ Memória: $8 \times 10^{10} = 80$ Gbytes!
 - ▶ Processamento por Eliminação de Gauss $O(n^3)$
 - ▶ 10¹⁵ operações

Sistemas esparsos

Exemplo: $n = 100\,000$

- Matriz cheia: $n^2 = 10^{10}$ valores
 - ▶ Memória: $8 \times 10^{10} = 80$ Gbytes!
 - ▶ Processamento por Eliminação de Gauss $O(n^3)$
 - ▶ 10¹⁵ operações
 - ► Suponha máquina de 10⁸ flops
 - ► Tempo de processamento: $\frac{10^{15}}{10^8} = 10^7$ segundos!
 - ▶ Um ano tem 3×10^7 segundos

Métodos Iterativos

Sistemas esparsos

Exemplo: $n = 100\,000$

- Matriz cheia: $n^2 = 10^{10}$ valores
 - ▶ Memória: $8 \times 10^{10} = 80$ Gbytes!
 - ▶ Processamento por Eliminação de Gauss $O(n^3)$
 - ▶ 10¹⁵ operações
 - Suponha máquina de 10⁸ flops
 - ► Tempo de processamento: $\frac{10^{15}}{10^8} = 10^7$ segundos!
 - ▶ Um ano tem 3×10^7 segundos
- Considerando esparsidade da matriz
 - ► Memória: 4n
 - ▶ Número de operações: $2 \times 4n = 8 \times 10^5$
 - ≈ 1 segundo por iteração!

Sistema linear

$$A\mathbf{x} = \mathbf{b}$$

Exemplo:

$$\left[\begin{array}{cc} 3 & 2 \\ 2 & 6 \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 2 \\ -8 \end{array}\right]$$

Sistema linear

$$Ax = b$$

Exemplo:

$$\left[\begin{array}{cc} 3 & 2 \\ 2 & 6 \end{array}\right] \mathbf{x} = \left[\begin{array}{c} 2 \\ -8 \end{array}\right]$$

► Solução:

$$\mathbf{x} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Sistema linear

$$A\mathbf{x} = \mathbf{b}$$

Exemplo:

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

▶ Solução:

$$\mathbf{x} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

- Interpretação geométrica
 - ► Interseção dos hiperplanos

Forma Quadrática

Equação escalar na forma:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x} + c$$

• onde c é um valor escalar (p.e. c = 0)

Métodos Iterativos para Solução de Sistemas Lineares

Forma Quadrática

► Equação escalar na forma:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x} + c$$

• onde c é um valor escalar (p.e. c = 0)

Gradiente da forma quadrática

$$f'(\mathbf{x}) = A\mathbf{x} - b$$

Gradiente da forma quadrática

$$f'(\mathbf{x}) = A\mathbf{x} - b$$

Ponto crítico da forma quadrática

$$f'(\mathbf{x}) = 0$$

• que equivale a achar a solução de $A\mathbf{x} = \mathbf{b}$

Métodos Iterativos para Solução de Sistemas Lineares

Gradiente da forma quadrática

$$f'(\mathbf{x}) = A\mathbf{x} - b$$

Ponto crítico da forma quadrática

$$f'(\mathbf{x}) = 0$$

- que equivale a achar a solução de $A\mathbf{x} = \mathbf{b}$
- ► Sendo A positiva definida, será sempre um **ponto de mínimo**

$$\mathbf{x}^T A \mathbf{x} > 0, \quad \forall \quad \mathbf{x} = \mathbf{0}$$

Gradiente da forma quadrática

$$f'(\mathbf{x}) = A\mathbf{x} - b$$

Ponto crítico da forma quadrática

$$f'(\mathbf{x}) = 0$$

- que equivale a achar a solução de $A\mathbf{x} = \mathbf{b}$
- ► Sendo *A* positiva definida, será sempre um **ponto de mínimo**

$$\mathbf{x}^T A \mathbf{x} > 0, \quad \forall \quad \mathbf{x} = \mathbf{0}$$

Determinar a solução de $A\mathbf{x} = \mathbf{b}$ é equivalente a encontrar o ponto mínimo de $f(\mathbf{x})$

Erro da solução

$$\mathbf{e}_k = \mathbf{x}_k - \mathbf{x}_s$$

Resíduo

$$\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k$$

Logo:

$$\mathbf{r}_k = \mathbf{b} - A(\mathbf{e}_k + \mathbf{x}_s)$$

 $\mathbf{r}_k = -A\mathbf{e}_k$

▶ O resíduo é o erro transformado por A no espaço de b

Tomar a direção inversa do gradiente

► Converge, mas resulta em muitas iterações

Métodos Iterativos para Solução de Sistemas Lineares

Buscar as direções ortogonais $\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_{n-1}$

- ightharpoonup Erro expresso como combinação linear de $\mathbf{d}_k's$
- Um passo em cada direção
 - ► Elimina cada componente do erro na direção **d**_k

Métodos Iterativos para Solução de Sistemas Lineares

Buscar as direções ortogonais $\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_{n-1}$

- ightharpoonup Erro expresso como combinação linear de $\mathbf{d}_k's$
- Um passo em cada direção
 - Elimina cada componente do erro na direção d_k

Procedimento

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

Buscar as direções ortogonais $\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_{n-1}$

- ightharpoonup Erro expresso como combinação linear de $\mathbf{d}_k's$
- Um passo em cada direção
 - Elimina cada componente do erro na direção d_k

Procedimento

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

- ightharpoonup Determinação de α_k
 - \mathbf{e}_{k+1} ortogonal a \mathbf{d}_k

$$\mathbf{d}_{k}^{T} \mathbf{e}_{k+1} = 0$$

$$\mathbf{d}_{k}^{T} (\mathbf{e}_{k} + \alpha_{k} \mathbf{d}_{k}) = 0$$

$$\alpha_{k} = -\frac{\mathbf{d}_{k}^{T} \mathbf{e}_{k}}{\mathbf{d}_{k}^{T} \mathbf{d}_{k}}$$

Métodos Iterativos para Solução de Sistemas Lineares

Buscar as direções ortogonais $\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_{n-1}$

- ► Erro expresso como combinação linear de **d**'_ks
- Um passo em cada direção
 - Elimina cada componente do erro na direção d_k

Procedimento

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

- ▶ Determinação de α_k
 - ightharpoonup \mathbf{e}_{k+1} ortogonal a \mathbf{d}_k

$$\mathbf{d}_{k}^{T}\mathbf{e}_{k+1} = 0$$

$$\mathbf{d}_{k}^{T}(\mathbf{e}_{k} + \alpha_{k}\mathbf{d}_{k}) = 0$$

$$\alpha_{k} = -\frac{\mathbf{d}_{k}^{T}\mathbf{e}_{k}}{\mathbf{d}_{k}^{T}\mathbf{d}_{k}}$$
• Mas não conhecemos \mathbf{e}_{k}

Solução

- Busca em direções ortogonais em A
 - ► Conjugados em *A*

$$\mathbf{d}_i^T A \mathbf{d}_j = 0$$

Método dos Gradientes Conjugados

Método Gradiente Conjugado

► Aplicado a sistema cuja matriz é simétrica positiva definida

Método dos Gradientes Conjugados

Método Gradiente Conjugado

- Aplicado a sistema cuja matriz é simétrica positiva definida
- Dada uma estimativa inicial x₀
 - ▶ Elimina, um a um, os *n* componentes ortoganais do erro

Método dos Gradientes Conjugados

Método Gradiente Conjugado

- Aplicado a sistema cuja matriz é simétrica positiva definida
- Dada uma estimativa inicial x₀
 - ▶ Elimina, um a um, os *n* componentes ortoganais do erro
- Método direto versus iterativo
 - ► Converge para solução exata após *n* iterações
 - Resultado pode ser satisfatório antes de n iterações
 - Considerando uma determinada tolerância numérica

Definição: **Produto escalar em** *A*

Sendo A uma matriz simétrica positiva definida, dois vetores \mathbf{v} e \mathbf{w} de dimensão n definem um produto escalar em A:

$$(\mathbf{v}, \mathbf{w})_A = \mathbf{v}^T A \mathbf{w}$$

▶ v e w são ortogonais em A (conjugados) se $v^T A w = 0$.

Definição: **Produto escalar em** *A*

Sendo A uma matriz simétrica positiva definida, dois vetores \mathbf{v} e \mathbf{w} de dimensão n definem um produto escalar em A:

$$(\mathbf{v}, \mathbf{w})_A = \mathbf{v}^T A \mathbf{w}$$

▶ v e w são ortogonais em A (conjugados) se $v^T A w = 0$.

Lembrando que um produto interno entre dois vetores é zero se eles forem ortogonais

Definição: Produto escalar em A

Sendo A uma matriz simétrica positiva definida, dois vetores \mathbf{v} e \mathbf{w} de dimensão n definem um produto escalar em A:

$$(\mathbf{v}, \mathbf{w})_A = \mathbf{v}^T A \mathbf{w}$$

▶ v e w são ortogonais em A (conjugados) se $v^T A w = 0$.

Lembrando que um produto interno entre dois vetores é zero se eles forem ortogonais

- ► Como A é simétrica: $(\mathbf{v}, \mathbf{w})_A = (\mathbf{w}, \mathbf{v})_A$
- ► Como A é positiva definida: $(\mathbf{v}, \mathbf{v})_A > 0 \ \forall \mathbf{v} \neq 0$

Atualização do vetor solução

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

Atualização do vetor resíduo

► Sabe-se:

$$A\mathbf{x}_{k+1} + \mathbf{r}_{k+1} = A\mathbf{x}_k + \mathbf{r}_k$$

► Então:

$$A(\mathbf{x}_k + \alpha_k \mathbf{d}_k) + \mathbf{r}_{k+1} = A\mathbf{x}_k + \mathbf{r}_k$$

$$A\mathbf{x}_k + \alpha_k A\mathbf{d}_k + \mathbf{r}_{k+1} = A\mathbf{x}_k + \mathbf{r}_k$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A\mathbf{d}_k$$

De fato:

Vimos que o resíduo é o erro transformado por A:

$$\mathbf{r}_k = -A\mathbf{e}_k$$

► Sabemos que:

$$\mathbf{e}_{k+1} = \mathbf{e}_k + \alpha \mathbf{d}_k$$

► Logo:

$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha A \mathbf{d}_k$$

Premissas

- ▶ \mathbf{d}_k deve ser ortogonal a \mathbf{r}_{k+1}
 - ▶ \mathbf{d}_k A-ortogonal a \mathbf{e}_{k+1}

$$d_k \perp r_{k+1}$$

- Próxima direção de busca
 - Conjugados em pares

$$\mathbf{d}_{k+1}A\mathbf{d}_k=0$$

Escolha de α_k

▶ Como \mathbf{d}_k deve ser ortogonal a \mathbf{r}_{k+1}

$$\mathbf{d}_{k}^{T}\mathbf{r}_{k+1} = 0$$

$$\mathbf{d}_{k}^{T}(\mathbf{r}_{k} - \alpha_{k}A\mathbf{d}_{k}) = 0$$

$$\mathbf{d}_{k}^{T}\mathbf{r}_{k} = \alpha_{k}\mathbf{d}_{k}^{T}A\mathbf{d}_{k}$$

$$\therefore \alpha_{k} = \frac{\mathbf{d}_{k}^{T}\mathbf{r}_{k}}{\mathbf{d}_{k}^{T}A\mathbf{d}_{k}}$$

Escolha da nova direção de busca

ightharpoonup Resíduo é expresso por uma combinação linear de \mathbf{d}_k 's

$$\mathbf{d}_{k+1} = \mathbf{r}_{k+1} + \beta_k \mathbf{d}_k$$

Direções são conjugadas entre si

$$\mathbf{d}_{k+1}A\mathbf{d}_k=0$$

► Assim, pré-multiplicando por $\mathbf{d}_k^T A$:

$$\mathbf{d}_{k}^{T} A \mathbf{d}_{k+1} = \mathbf{d}_{k}^{T} A \mathbf{r}_{k+1} + \beta_{k} \mathbf{d}_{k}^{T} A \mathbf{d}_{k} = 0$$
$$\therefore \beta_{k} = \frac{\mathbf{d}_{k}^{T} A \mathbf{r}_{k+1}}{\mathbf{d}_{k}^{T} A \mathbf{d}_{k}}$$

Algoritmo: Gradiente Conjugado (versão inicial)

$$\begin{aligned} \mathbf{x}_0 &= \text{estimativa inicial} \\ \mathbf{d}_0 &= \mathbf{r}_0 = \mathbf{b} - A\mathbf{x} \\ \text{for } k &= 0, 1, \cdots, n-1 \text{ do} \\ \text{if } ||\mathbf{r}_k||_2 < tol \text{ then} \\ \text{stop} \\ \alpha_k &= \frac{\mathbf{d}_k^T \mathbf{r}_k}{\mathbf{d}_k^T A \mathbf{d}_k} \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \alpha_k \mathbf{d}_k \\ \mathbf{r}_{k+1} &= \mathbf{r}_k - \alpha_k A \mathbf{d}_k \\ \beta_k &= \frac{\mathbf{d}_k^T A \mathbf{r}_{k+1}}{\mathbf{d}_k^T A \mathbf{d}_k} \\ \mathbf{d}_{k+1} &= \mathbf{r}_{k+1} + \beta_k \mathbf{d}_k \end{aligned}$$

Forma alternativa de determinar α

► Vimos que:

$$\alpha_k = \frac{\mathbf{d}_k^T \mathbf{r}_k}{\mathbf{d}_k^T A \mathbf{d}_k}$$

► Temos:

$$\mathbf{d}_k = \mathbf{r}_k + \beta_k \mathbf{d}_{k-1}$$
$$\mathbf{d}_k - \mathbf{r}_k = \beta_k \mathbf{d}_{k-1}$$

▶ Como $\mathbf{d}_{k-1} \perp \mathbf{r}_k$, podemos pré-multiplicar por \mathbf{r}_k^T :

$$\mathbf{r}_k^T \mathbf{d}_k - \mathbf{r}_k^T \mathbf{r}_k = \beta_k \mathbf{r}_k^T \mathbf{d}_{k-1} = 0$$
$$\mathbf{r}_k^T \mathbf{d}_k = \mathbf{r}_k^T \mathbf{r}_k = 0$$

▶ Logo, α_k pode ser obtido por:

$$\alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{d}_k^T A \mathbf{d}_k}$$

Forma alternativa de determinar β

Vimos que:

$$\beta_k = \frac{\mathbf{d}_k^T A \mathbf{r}_{k+1}}{\mathbf{d}_k^T A \mathbf{d}_k}$$

Que pode ser re-escrito como:

$$\beta_k = \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k}$$

Algoritmo: Gradiente Conjugado

$$\begin{aligned} \mathbf{x}_0 &= \text{estimativa inicial} \\ \mathbf{d}_0 &= \mathbf{r}_0 = \mathbf{b} - A\mathbf{x} \\ \text{for } k &= 0, 1, \cdots, n-1 \text{ do} \\ \text{if } ||\mathbf{r}_k||_2 < tol \text{ then} \\ \text{stop} \\ \alpha_k &= \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{d}_k^T A \mathbf{d}_k} \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \alpha_k \mathbf{d}_k \\ \mathbf{r}_{k+1} &= \mathbf{r}_k - \alpha_k A \mathbf{d}_k \\ \beta_k &= \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k} \\ \mathbf{d}_{k+1} &= \mathbf{r}_{k+1} + \beta_k \mathbf{d}_k \end{aligned}$$

Uso de precondicionadores

- ▶ Diminuir o número de condicionamento de A
- ► Acelerar convergência

$$A\mathbf{x} = \mathbf{b}$$
$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

▶ onde M é o precondicionador

Uso de precondicionadores

- ▶ Diminuir o número de condicionamento de A
- ► Acelerar convergência

$$A\mathbf{x} = \mathbf{b}$$

$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

▶ onde M é o precondicionador

Escolha do precondicionador

- O mais próximo de A possível
 - ▶ Para M⁻¹A resultar numa matriz bem condicionada
- ► Fácil de inverter

Uso de precondicionadores

- ▶ Diminuir o número de condicionamento de A
- Acelerar convergência

$$A\mathbf{x} = \mathbf{b}$$

$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

▶ onde M é o precondicionador

Escolha do precondicionador

- O mais próximo de A possível
 - ▶ Para M⁻¹A resultar numa matriz bem condicionada
- ► Fácil de inverter

Escolhas extremas

- ightharpoonup M = A, resultaria na identidade
- ightharpoonup M = I, teria inversa trivial

Algoritmo: Gradiente Conjugado com Precondicionador

$$x_0 = \text{estimativa inicial}$$

$$r_0 = b - Ax$$

$$d_0 = z_0 = M^{-1}r_0$$
for $k = 0, 1, \dots, n-1$ do
if $||r_k||_2 < tol$ then
stop
$$\alpha_k = \frac{r_k^T z_k}{d_k^T A d_k}$$

$$x_{k+1} = x_k + \alpha_k d_k$$

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$z_{k+1} = M^{-1}r_{k+1}$$

$$\beta_k = r_{k+1}^T z_{k+1} / r_k^T z_k$$

$$d_{k+1} = z_{k+1} + \beta_k d_k$$

Precondicionador de Jacobi

$$M = D$$

▶ Bom quando a matriz é estritamente diagonal dominante

Precondicionador de Jacobi

$$M = D$$

▶ Bom quando a matriz é estritamente diagonal dominante

Precondicionador simétrico sucessivo com sobrerelaxação (Symmetrix Successive Over Relaxation – SSOR)

$$M = (D + wL)D^{-1}(D + wU)$$

- ▶ com $w \in [0,2]$
 - Se w = 0, tem-se Jacobi
 - Se w = 1, tem-se Gauss-Seidel

Precondicionador de Jacobi

$$M = D$$

▶ Bom quando a matriz é estritamente diagonal dominante

Precondicionador simétrico sucessivo com sobrerelaxação (Symmetrix Successive Over Relaxation – SSOR)

$$M = (D + wL)D^{-1}(D + wU)$$

- ▶ com $w \in [0,2]$
 - Se w = 0, tem-se Jacobi
 - Se w = 1, tem-se Gauss-Seidel

Resolução de Mz = r

▶ Precondiconador SSOR é um produto de matrizes triangulares

$$(I + wLD^{-1})(D + wU)$$

Exercícios propostos

- 1. Qual a diferença entre o Método de Jacobi e o Método de Gauss-Seidel para solução iterativa de sistemas lineares?
- 2. No Método Gradiente Conjugado, qual a importância do uso de pré-condicionadores? O pré-condicionador de Jacobi é dado por M = D; em que situações ele é adequado?
- 3. Sabe-se que o Método Gradiente Conjugado garantidamente converge após n iterações. Como cada iteração tem complexidade $O(n^2)$, devido às operações de multiplicação de matriz por vetor, garante-se que o método chega a solução do sistema em $O(n^3)$. O método de Eliminação de Gauss também tem complexidade $O(n^3)$. Descreva um cenário onde o método Gradiente Conjungado apresenta ordem de complexidade linear (O(n)).

