# 影響台灣地震之原因探討



## 研究動機

臺灣,坐落於板塊交界的特殊地理位置,地震是我們日常生活中的一部分。學習如何與地震和諧相處已然成為必修課程。我們收集的資料集來自臺灣地震與地球物理資料管理系統,透過這些寶貴數據,我們得以深入探討地震規模會被哪些因素影響,為我們打開地震與秘的大門。這份資料不僅呈現了地震的複雜性,還讓我們透過科學的方法更全面地理解地震的本質。

### 研究目的

透過這份報告,我們期望能瞭解地震規模的形成原因及其組合效應,同時洞悉重大地震的主要成因。這使我們得以追蹤重大地震的發生地點、活動型態,以及其活動的規律性。這樣的資訊有助於我們有效的預測潛在地震風險,進而將地震可能帶來的災害損失降至最低。透過深入了解地震的多重因素。

# 資料介紹

| 反應變數         | у                   | 地震的芮氏規模(ML)         |
|--------------|---------------------|---------------------|
|              | x <sub>1</sub> (屬量) | 地震的緯度(lat)          |
|              | x2(屬量)              | 地震的經度(lon)          |
|              | x <sub>3</sub> (屬量) | 震源深度(depth)         |
| 預測變數         | x4(屬量)              | 使用觀測站數量(nstn)       |
| <b>以以及</b> 致 | x <sub>5</sub> (屬量) | 最近站震央距(Dmin)        |
|              | x <sub>6</sub> (屬量) | 時間殘值之方均根誤差值(trms)   |
|              | x <sub>7</sub> (屬量) | 震央之(水平)標準差(公里)(ERH) |
|              | x <sub>8</sub> (屬質) | 品質(Quality)         |

## 屬質變數介紹

| Q | 測站數量   | 最大間隙角度 | 最小震央距               |  |
|---|--------|--------|---------------------|--|
| Α | >= 6   | <= 90  | <= Depth or 5 Km    |  |
| В | >= 6   | <= 135 | <= 2 Depth or 10 Km |  |
| С | >= 6   | <= 180 | <= 50 Km            |  |
| D | others | E#1    | 8                   |  |

深度控制,F: 未限制,即採逆推收斂至最小誤差;X:限制深度,即依據經驗給定震源深度後,該參數不為變數進行逆推收斂至最小誤差。



| 平均值  | 4.47          |
|------|---------------|
| 中位數  | 4.36          |
| 眾數   | 4.12          |
| 標準差  | 0.41          |
| 最小值  | 4.00          |
| 最大值  | 5 <b>.</b> 52 |
| 四分位距 | 0.57          |

地震芮氏規模

緯度



#### 經度



| 平均值   | 中位數   | 眾數    | 標準差  | 最小值   | 最大值   | 四分位距 |
|-------|-------|-------|------|-------|-------|------|
| 23,56 | 23.78 | 23.26 | 0.91 | 21.02 | 25.19 | 0.92 |

| 平均值    | 中位數    | 眾數     | 標準差  | 最小值    | 最大值    | 四分位距 |
|--------|--------|--------|------|--------|--------|------|
| 121.74 | 121.68 | 121.24 | 0.58 | 120.55 | 123.36 | 0.92 |



根據上述資料,最容易發生地震的地區 位於臺灣東半部及外海地區

緯度



#### 經度



#### 震源深度



| 平均值            | 中位數   | 眾數    | 標準差   | 最小值  | 最大值    | 四分位距  |
|----------------|-------|-------|-------|------|--------|-------|
| 35 <b>.</b> 33 | 24.55 | 10.97 | 34.90 | 1.82 | 194.07 | 19.15 |

#### 使用測站數

| 平均值   | 中位數   | 眾數    | 標準差   | 最小值   | 最大值   | 四分位距 |
|-------|-------|-------|-------|-------|-------|------|
| 96.51 | 99.00 | 99.00 | 12.13 | 18.00 | 99.00 | 0.00 |

#### 震源深度



r=0.16478

#### 使用測站數



r=-0.06485

大多數的地震都為極淺層地震及較為淺層地震

#### 最近站震央距



| 平均值   | 中位數   | 眾數   | 標準差   | 最小值  | 最大值   | 四分位距  |
|-------|-------|------|-------|------|-------|-------|
| 19.75 | 13.25 | 3.40 | 16.88 | 2.00 | 82.20 | 19.10 |

#### 震央之(水平)標準差(公里)



| 平均值  | 中位數  | 眾數   | 標準差  | 最小值  | 最大值  | 四分位距 |
|------|------|------|------|------|------|------|
| 0,22 | 0,20 | 0.10 | 0,23 | 0.10 | 2.10 | 0.10 |

最近站震央距



#### 震央之(水平)標準差(公里)



r=0.08088

r=0.04735

#### 時間殘值之方均根誤差值



| 平均值  | 中位數  | 眾數   | 標準差  | 最小值  | 最大值  | 四分位距 |
|------|------|------|------|------|------|------|
| 0.35 | 0.35 | 0.29 | 0.07 | 0.22 | 0.61 | 0.10 |



品質

時間殘值之方均根誤差值



r=-0.10450

## 共線性檢測

| 變數        | DF         | 参數估計值      | 標準誤差          | t <b>值</b> | Pr >  t | 變異數膨脹   |
|-----------|------------|------------|---------------|------------|---------|---------|
| Intercept | 1 -0.76733 |            | 9.83975       | -0.08      | 0.9379  | 0       |
| lat       | 1          | -0.03527   | 0.05108       | -0.69      | 0.4907  | 2.60952 |
| lon       | 1          | 0.05325    | 0.08812       | 0.60       | 0.5464  | 3.17139 |
| depth     | 1          | 0.00155    | 0.00105       | 1.48       | 0.1410  | 1.60032 |
| nstn      | 1          | -0,00219   | 0.00307 -0.71 |            | 0.4775  | 1.66149 |
| dmin      | 1          | 0.00074931 | 0.00280       | 0.27       | 0.7895  | 2.67569 |
| trms      | 1          | -0.80250   | 0.53234       | -1.51      | 0.1333  | 1.58366 |
| ERH       | 1          | -0.07920   | 0.19234       | -0.41      | 0.6810  | 2.30381 |
| IND       | 1          | 0.04800    | 0.09915       | 0.48       | 0.6289  | 1.15721 |
| IND1      | 1          | 0.06569    | 0.06260       | 1.05       | 0.2953  | 1.12097 |

### 模型配適

|           |           |    | 參數估計值      |         |       |         |
|-----------|-----------|----|------------|---------|-------|---------|
| 變數        | 標籤        | DF | 參數估計值      | 標準誤差    | t 值   | Pr >  t |
| Intercept | Intercept | 1  | -0.76733   | 9.83975 | -0.08 | 0.9379  |
| lat       | lat       | 1  | -0.03527   | 0.05108 | -0.69 | 0.4907  |
| lon       | lon       | 1  | 0.05325    | 0.08812 | 0.60  | 0.5464  |
| depth     | depth     | 1  | 0.00155    | 0.00105 | 1.48  | 0.1410  |
| nstn      | nstn      | 1  | -0.00219   | 0.00307 | -0.71 | 0.4775  |
| dmin      | dmin      | 1  | 0.00074931 | 0.00280 | 0.27  | 0.7895  |
| trms      | trms      | 1  | -0.80250   | 0.53234 | -1.51 | 0.1333  |
| ERH       | ERH       | 1  | -0.07920   | 0.19234 | -0.41 | 0.6810  |
| IND       | IND       | 1  | 0.04800    | 0.09915 | 0.48  | 0.6289  |
| IND1      | IND1      | 1  | 0.06569    | 0.06260 | 1.05  | 0.2953  |

原始模型:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \beta_8 x_8 + \beta_9 x_9 + \varepsilon_i$$

配適模型:
$$\hat{y} = -0.7673 - 0.0353x_1 + 0.0533x_2 + 0.0016x_3 - 0.0022x_4 + 0.0007x_5 - 0.8025x_6 - 0.0792x_7 - 0.048x_8 + 0.0657x_9$$

### 假設檢定

 $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = 0$ 

 $H_1$ :至少一 $\beta_j$ 不等於 0, j = 1,2,3,4,5,6,7,8,9

因為 p 值為 0.3447,所以不拒絕 $H_0$ ;地震的震級與地震的緯度(lat)

地震的經度(lon)、震源深度(depth)、使用觀測站數量 (nstn)、

最近站震央距 (Dmin)、時間殘值之方均根誤差值 (trms)、震央之

(水平)標準差(公里)(ERH)、IND、IND1 之間沒有線性關係。

| 變異數的分析 |     |          |         |      |        |  |  |  |  |
|--------|-----|----------|---------|------|--------|--|--|--|--|
| 來源     | DF  | 平方和      | 均方      | F值   | Pr > F |  |  |  |  |
| 模型     | 9   | 1.68869  | 0.18763 | 1.13 | 0.3447 |  |  |  |  |
| 誤差     | 190 | 31.60086 | 0.16632 |      |        |  |  |  |  |
| 己校正的總計 | 199 | 33.28955 |         |      |        |  |  |  |  |

## 殘差分析

誤差項需滿足三大假設:

1.常態性(Normality):可採用常態機率圖跟Shapiro-Wilk常態性檢定做檢查。

2.獨立性(Independency):當樣本遠大於參數個數時,殘差之間的相依性可以忽略,此時誤差獨立性的假設成立。

3.變異數均質性(Constant Variance):變異數若不相等會導致自變數無法有效估計應變數。

### 常態性(Normality)



常態機率圖近似直線,沒有違反誤差的常態假設,但還是需要進一步做檢定

#### 常態性檢定

 $H_0$ :誤差符合常態分佈

 $H_1$ :誤差不符合常態分佈

由下表可得知因為 p-vaule 很小,有充分證據顯示誤差不服從常態分配。

| 常態性檢定              |      |          |                                       |         |  |  |  |  |  |
|--------------------|------|----------|---------------------------------------|---------|--|--|--|--|--|
| 檢定                 |      | 統計值      | P值                                    |         |  |  |  |  |  |
| Shapiro-Wilk       | W    | 0.860089 | Pr <w< th=""><th>&lt;0.0001</th></w<> | <0.0001 |  |  |  |  |  |
| Kolmogorov-Smirnov | D    | 0.149598 | Pr>D                                  | <0.0100 |  |  |  |  |  |
| Carmer-von Mises   | W-Sq | 0.557593 | Pr>W-Sq                               | <0.0050 |  |  |  |  |  |
| Anderson-Darling   | A-Sq | 3.301743 | Pr>A-Sq                               | <0.0050 |  |  |  |  |  |

#### 變異數均質性(Constant Variance)



殘差隨機分佈在0的附近,表示誤差變異數可能為均質

### 變異數均質性檢定

H<sub>0</sub>:誤差符合均質變異數的假設

H<sub>1</sub>:誤差符合異質變異數的假設

p-value=0.6329,不拒絕 $H_0$ ,

因此我們推斷誤差符合均質變異數的假設。

| Residua               | Residual變異數均齊性的Brown和Forsythe檢定來自群組中位數之絕對差的ANOVA |        |        |      |        |  |  |  |  |  |
|-----------------------|--------------------------------------------------|--------|--------|------|--------|--|--|--|--|--|
| 來源 DF 平方和 均方 F值 Pr>F  |                                                  |        |        |      |        |  |  |  |  |  |
| Group                 | 1                                                | 0.0177 | 0.0177 | 0.23 | 0.6329 |  |  |  |  |  |
| 誤差 198 15.2826 0.0772 |                                                  |        |        |      |        |  |  |  |  |  |



使用觀測站數量、震央之(水平)標準差(公里)較不符合線性關係,其餘7個變數都符合線性關係,表示他們適合放在模型中。

# 變數選取

#### 向前選取

| 步階 | 己輸入變數      | 變數數目 | 偏R平方   | 模型R平方  | C(p)    | F 值          | Pr > F |
|----|------------|------|--------|--------|---------|--------------|--------|
| 1  | <b>x</b> 3 | 1    | 0.0272 | 0.0272 | -1.2813 | <b>5.</b> 53 | 0.0197 |
| 2  | <b>x</b> 4 | 2    | 0.0107 | 0.0379 | -1.4271 | 2.20         | 0.1400 |
| 3  | IND1       | 3    | 0.0034 | 0.0412 | -0.0985 | 0.69         | 0.4086 |
| 4  | <b>x</b> 6 | 4    | 0.0034 | 0.0446 | 1.2242  | 0.69         | 0.4069 |

選取的變數有震源深度 $(x_3)$ 、使用測站數量 $(x_4)$ 、時間殘值之方均根誤差值 $(x_6)$ 及虛擬變數(IND1)。

#### 向前選取

#### 考量虚擬變數只剩一個,因此我們將虛擬變數加入與剔除進行比較

| 模型中的數目 | 調整的R<br>平方 | R平方    | C(p)   | AIC       | BIC       | MSE     | SSE      | 模型中的變數            |
|--------|------------|--------|--------|-----------|-----------|---------|----------|-------------------|
| 3      | 0.0256     | 0.0403 | 0.0797 | -358.8494 | -356.5229 | 0.16299 | 31.94675 | x3 x4 x6          |
| 5      | 0.0217     | 0.0463 | 2.8864 | -356.0957 | -353.5274 | 0.16365 | 31.74829 | x3 x4 x6 IND IND1 |

只有x<sub>3</sub>、x<sub>4</sub>、x<sub>6</sub>三個變數時表現較佳,因此選擇 此模型作為向前選取的最佳模型。

#### 向後刪除

| 步階 | 己移除變數 | 變數數目 | 偏R 平方  | 模型R 平方 | C(p)    | F 值  | Pr > F |
|----|-------|------|--------|--------|---------|------|--------|
|    |       |      |        |        |         |      |        |
| 1  | dmin  | 8    | 0.0004 | 0.0504 | 8.0715  | 0.07 | 0.7895 |
| 2  | ERH   | 7    | 0.0006 | 0.0497 | 6.2016  | 0.13 | 0.7181 |
| 3  | IND   | 6    | 0.0016 | 0.0482 | 4.5156  | 0.32 | 0.5741 |
| 4  | nstn  | 5    | 0.0020 | 0.0461 | 2.9247  | 0.41 | 0.5205 |
| 5  | IND1  | 4    | 0.0033 | 0.0428 | 1.5819  | 0.67 | 0.4149 |
| 6  | lat   | 3    | 0.0040 | 0.0388 | 0.3794  | 0.81 | 0.3687 |
| 7  | lon   | 2    | 0.0010 | 0.0379 | -1.4271 | 0.20 | 0.6575 |
| 8  | trms  | 1    | 0.0107 | 0.0272 | -1.2813 | 2.20 | 0.1400 |

選取的變數只有震源深度(x<sub>3</sub>), 其餘皆被刪除。

$$\hat{y} = 4.40498 + 0.00193x_3$$

|    | 變數       | 參數估計值   | 標準誤差       | 類型 II SS   | F值           | Pr>F   |
|----|----------|---------|------------|------------|--------------|--------|
| Ir | ntercept | 4.40498 | 0.04074    | 1911.82805 | 11688.6      | <.0001 |
|    | x3       | 0.00193 | 0.00082144 | 0.90387    | <b>5.</b> 53 | 0.0197 |

#### 逐步選取法

| 步階 | 己輸入變數      | 偏R 平方  | 模型R 平方 | C(p)    | F值           | Pr > F |
|----|------------|--------|--------|---------|--------------|--------|
| 1  | <b>x</b> 3 | 0.0272 | 0.0272 | -1.2813 | <b>5.</b> 53 | 0.0197 |
| 2  | <b>x</b> 6 | 0.0107 | 0.0379 | -1.4271 | 2,20         | 0.1400 |

選取的變數有震源深度 $(x_3)$ 、時間殘值之方均根誤差值 $(x_6)$ 。

$$\hat{y} = 4.62372 + 0.00192x_3 - 0.61967x_6$$

| 變數         | 參數估計<br>值 | 標準誤差       | 類型 II SS  | F 值          | Pr > F |
|------------|-----------|------------|-----------|--------------|--------|
| Intercept  | 4.62372   | 0.15313    | 148.23386 | 911.74       | <.0001 |
| <b>x</b> 3 | 0.00192   | 0.00081898 | 0.89725   | <b>5.</b> 52 | 0.0198 |
| <b>x</b> 6 | -0.61967  | 0.41825    | 0.35689   | 2.20         | 0.1400 |

| 模型中的數目 | 調整的R平方 | R平方    | C(p)    | AIC       | BIC       | MSE     | SSE      | 模型中的變數         |
|--------|--------|--------|---------|-----------|-----------|---------|----------|----------------|
| 1      | 0.0222 | 0.0272 | -1.2813 | -360.1202 | -358.0132 | 0.16356 | 32,38568 | <b>x</b> 3     |
| 3      | 0.0256 | 0.0403 | 0.0797  | -358.8494 | -356.5229 | 0.16299 | 31.94675 | x3<br>x4<br>x6 |
| 2      | 0.0281 | 0.0379 | -1.4271 | -360.3364 | -358.1080 | 0.16258 | 32.02879 | x3<br>x6       |

我們認為最適合的模型為透過逐步選取法篩選出來的:

 $\hat{y} = 4.62372 + 0.00192x_3 - 0.61967x_6$ 

#### 新模型之常態性檢定

 $H_0$ :誤差符合常態分佈

H<sub>1</sub>:誤差不符合常態分佈

由下表可得知因為 p-vaule 很小,有充分證據顯示誤差不服從常態分配。

| 常態性檢定              |          |          |                                       |         |  |  |  |  |  |
|--------------------|----------|----------|---------------------------------------|---------|--|--|--|--|--|
| 檢定                 | <b>%</b> | 充計值      | P值                                    |         |  |  |  |  |  |
| Shapiro-Wilk       | W        | 0.887105 | Pr <w< th=""><th>&lt;0.0001</th></w<> | <0.0001 |  |  |  |  |  |
| Kolmogorov-Smirnov | D        | 0.136903 | Pr>D                                  | <0.0100 |  |  |  |  |  |
| Carmer-von Mises   | W-Sq     | 0.964692 | Pr>W-<br>Sq                           | <0.0050 |  |  |  |  |  |
| Anderson-Darling   | A-Sq     | 5.68057  | Pr>A-<br>Sq                           | <0.0050 |  |  |  |  |  |

### 新模型之變異數均質性檢定

H<sub>0</sub>:誤差符合均質變異數的假設

H<sub>1</sub>:誤差符合異質變異數的假設

p-vaule=0.676, 不拒絕 $H_0$ 

我們發現新模型的誤差一樣符合均質變異數的假設。

| Residual變異數均齊性的Brown和Forsythe檢定來自群組中位數之絕對差的ANOVA |     |         |        |      |        |  |  |  |  |
|--------------------------------------------------|-----|---------|--------|------|--------|--|--|--|--|
| 來源                                               | DF  | 平方和     | 均方     | F值   | Pr>F   |  |  |  |  |
| Group                                            | 1   | 0.0141  | 0.0141 | 0.18 | 0.6760 |  |  |  |  |
| 誤差                                               | 198 | 15.9141 | 0.0804 |      |        |  |  |  |  |



兩個變數都呈現線性關係,表示它們適合放在模型中。

#### 離群值

| 觀測值 | Student | RStudent |
|-----|---------|----------|
| 5   | 5.29463 | 5.71944  |
| 22  | 2.11307 | 2.13271  |
| 59  | 2.57379 | 2.61296  |
| 95  | 2.52490 | 2.56158  |
| 159 | 2.52658 | 2.56336  |
| 172 | 2.62611 | 2.66805  |
| 176 | 2.45183 | 2.48499  |

Studentized residual跟R-student residual 的絕對值大於2,代表可能為離群值。

### 影響點

COOK's D的準則為: $D_i > \frac{4}{n} = \frac{4}{200} = 0.02$  當 $D_i$ 大於 0.02 時,即為影響點;其影響點為: $5 \times 17 \times 22 \times 43 \times 54 \times 100$ 

72 \ 74 \ 121 \ 130 \ 159 \ 172 \ 176 \ 197 \ 198 \ \cdots

### 影響點

DFFITS的準則為: $|DFFITS_i| > 2\sqrt{\frac{p}{n}} = 2\sqrt{\frac{3}{200}} = 0.2449489743$ 當|DFFITS<sub>i</sub>|大於 0.2449489743 時,即為影響點; 其影響點為:5、7、12、16、17、22、23、24、40、42、43、45、 54 \ 59 \ 63 \ 64 \ 67 \ 69 \ 72 \ 74 \ 80 \ 91 \ 95 \ 102 \ 118 \ 121 \ 130 \ 139 \ 148 \ 159 \ 172 \ 174 \ 176 \ 189 \ 192 \ 197 \ 198 \ 199 °

#### 影響點

### 透過這兩種影響點的方法,我們發現有14筆資料有重複, 而以DFFITS為標準則找出較多的影響點。

| 觀測值 | СООК    | DFFITS   | 觀測值 | СООК    | DFFITS   |
|-----|---------|----------|-----|---------|----------|
| 5   | 0.17549 | 1.43100  | 121 | 0.02147 | 0.46682  |
| 17  | 0.02209 | -0.46991 | 130 | 0.02447 | -0.49603 |
| 22  | 0.02752 | 0.52946  | 159 | 0.09686 | 0.99851  |
| 43  | 0.03850 | 0.62288  | 172 | 0.02781 | 0.53579  |
| 54  | 0.04014 | -0.63474 | 176 | 0.02478 | 0.50453  |
| 72  | 0.02566 | 0.50859  | 197 | 0.02337 | -0.48381 |
| 74  | 0.02467 | -0.49700 | 198 | 0.06115 | 71       |

### 預測

使用此迴歸模型來預測: $\hat{y} = 4.62372 + 0.00192x_3 - 0.61967x_6$  另外選擇三筆資料來觀察模型的預測能力,我們使用的迴歸模型 跑出來之地震規模預測值為  $4.43 \times 4.52 \times 4.54$ ,而實際上的地震規模分別為  $4.23 \times 4.65 \times 4.15$ ,可以看出迴歸模型的預測能力與 真實地震規模非常接近。

| 觀察值 | 應變數 | 預測值    | 標準誤差<br>平均值預<br>測 | 95%CL平均值      | 95%CL預測       | 殘差 |
|-----|-----|--------|-------------------|---------------|---------------|----|
| 201 | •   | 4.4289 | 4.3299            | 4.3299 4.5280 | 3.6276 5.2302 | •  |
| 202 | •   | 4.5198 | 4.4537            | 4.4537 4.5859 | 3.7219 5.3177 | •  |
| 203 | •   | 4.5386 | 4.4436            | 4.4436 4.6337 | 3.7378 5.3394 | •  |

### 結論

經過變數選取後,選出了 $x_3 \times x_6$ 這兩個解釋變數較適合放入模型中,加上預測能力不錯,於是選用的模型為:  $\hat{y} = 4.62372 + 0.00192x_3 - 0.61967x_6$ 

最後得知震源深度和時間殘值之方均根誤差值這 兩個變數會影響地震的規模,相較於其他變數較為 顯著。