```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
```

In [2]: data.describe()

Out[2]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

```
In [3]: datal=data.drop(['Unnamed: 0'],axis=1)
```

In [4]: data1

Out[4]:

	TV	radio	newspaper	sales
(230.1	37.8	69.2	22.1
1	l 44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	3 151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	7 177.0	9.3	6.4	12.8
198	3 283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [5]: y=data1['sales']
x=data1.drop(['sales'],axis=1)
```

```
In [6]: y
Out[6]: 0
               22.1
               10.4
                9.3
        3
               18.5
               12.9
               . . .
        195
                7.6
        196
                9.7
               12.8
        197
               25.5
        198
        199
               13.4
        Name: sales, Length: 200, dtype: float64
In [7]: from sklearn.model selection import train test split
        x train, x test, y train, y test=train test split(x,y,test size=0.33,random state=42)
```

Lasso

```
In [10]: lasso=Lasso(alpha=1)
    lasso.fit(x_train,y_train)
    y_pred_lasso=lasso.predict(x_test)

In [12]: from sklearn.metrics import mean_squared_error
    Lasso_Error=mean_squared_error(y_pred_lasso,y_test)
    Lasso_Error

Out[12]: 3.641439660278575

In [13]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_lasso)

Out[13]: 0.8589079527148957
```

```
In [14]: Results=pd.DataFrame(columns=['sales','predicted'])
    Results['sales']=y_test
    Results['predicted']=y_pred_lasso
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[14]:

	index	sales	predicted	ID	
0	95	16.9	16.523920	0	
1	15	22.4	21.058219	1	
2	30	21.4	21.624966	2	
3	158	7.3	10.745724	3	
4	128	24.7	22.188269	4	
5	115	12.6	13.243102	5	
6	69	22.3	21.161155	6	
7	170	8.4	7.454875	7	
8	174	11.5	13.541765	8	
9	45	14.9	15.197360	9	
10	66	9.5	9.058959	10	
11	182	8.7	6.647262	11	
12	165	11.9	14.415342	12	
13	78	5.3	8.949245	13	
14	186	10.3	9.655571	14	

```
In [15]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID', y='sales', data=Results.head(50))
sns.lineplot(x='ID', y='predicted', data=Results.head(50))
plt.plot()
```

Out[15]: []

In []: