```
. OI _mod . mirror_object
           Territo mirror
    peration == "MIRROR_X":
    mlrror_mod.use_x = True
    "Irror_mod.use_y = False
    mlrror_mod.use_z = False
     _operation == "MIRROR_Y":
    lrror_mod.use_x = False
    mirror_mod.use_y = True
    mirror_mod.use_z = False
      operation == "MIRROR Z"
    Irror mod Numerical
      election at the end -add
      modeling of
Radio jets from
      int("please select exaction
      operator classes ----- YSOS
```

x mirror to the select
ject.mirror_mirror_x"
ror X"

, is not

Thermal + non-thermal emission from jets -0.1HH80-81 20" 0.5 40" Thermal Frequency 47'00" Credit: Ignacio Aviles Free-free emission spectrum J2000 Declination 20" 40" -(p-1)/2-0.5 -20"48"00" Non-Thermal 2.5 Flux density 20 -1 Radio waves Frequency 12" 10" Synchrotron emission spectrum Credit: http://nrumiano.free.fr

Motivation

- Develop a model to characterize the radio spectra of protostellar jets: Thermal + non-thermal emission
- Reynolds (1986) model: $S_v \propto v^\alpha$; $\alpha = +0.6$ for a spherical, isothermal, constant velocity thermal jet.
- Reynolds (1986) model limitations:
 - Only free-free emission is considered
 - Assumes that the jet is optically thick at the base and thin at farther radial distances.
 - Applicable only to narrow collimated jets
- Advantages of our model:
 - Free-free + synchrotron mechanisms
 - Incorporates generalized geometry (16–20%)
 - Incorporates intermediate optical depth (8-12%)
 - Lateral variation of ionization fraction

Reynolds (1986)

Model description

Model: Brief discussion

$$y = r \sin i$$

$$\omega = \omega_0 \left(\frac{r}{r_0}\right)^{\epsilon} = \omega_0 \left(\frac{y}{y_0}\right)^{\epsilon}$$

- Radial Variation:
 - ω , θ , x, n
- **Lateral Variation:**

Jet geometry: Inner thermal jet + thin shocked shell

Side view

Front view

The shaded region represents the thin shocked material

Model: Lateral variation in ionization fraction

Onion-like/nested velocity structure

- High velocity gas collimated into a small opening angle towards the axis of the jet/outflow
- Less collimated low velocity gas with a wide opening angle
- Assuming that ionization is a result of internal/external shocks,
 the strength of which depends on velocity
- Higher velocity regions creates stronger shocks resulting in higher ionization fraction

Model: Lateral variation in ionization fraction

Onion-like/nested velocity structure

- High velocity gas collimated into a small opening angle towards the axis of the jet/outflow
- Less collimated low velocity gas with a wide opening angle
- Assuming that ionization is a result of internal/external shocks,
 the strength of which depends on velocity
- Higher velocity regions creates stronger shocks resulting in higher ionization fraction

$$x(s) = x_a(y') \left[\frac{w(y')}{w(y') - w'(y')} \right]^{q'_x}$$

Model: LOS flux density

 $C_{1_{\nu}} n^{ff}(s)^2 + C_{2_{\nu}} n^{syn}(s)$

Region 1 & 3: Free-Free + Synchrotron

Region 2: purely Free-Free

$$I_{\nu}(y) = I_{\nu_1}^{ff+syn} e^{-(\tau_{\nu_2}^{ff} + \tau_{\nu_3}^{ff+syn})} + I_{\nu_2}^{ff+syn} e^{-\tau_{\nu_3}^{ff+syn}} + I_{\nu_3}^{ff+syn}$$

Two-fold application of the model

- YSO jets have been seen to appear as chains of welldefined knots/lobes powered by the central object, instead of being a continuous outflow
- Knots have been identified in a wide range of bands from radio to X-rays

HH 111, Raga et al. 2002

Two-fold application of the model

• Observations indicate presence of non-thermal emission from knots/lobes of few YSO jets, while in most cases the emission can be explained due to thermal free-free mechanism.

d due to thermal free-free

Inner thermal jet

Outer knots/lobes

-0.26 \pm 0.01

-0.63 \pm 0.19

(Vig et al. 2018)

HH80-81 jet, Carrasco-Gonzalez 2010

Results

Effect of jet parameters on free-free emission

- Case of a fully thermal jet
- Located close to the central YSO $(r_0 = 10-50 \text{ au})$
 - \mathbf{r}_0 : Jet injection radius
 - n_0 : Jet number density at r_0
 - q_n : Power-law index of n profile

$$n = n_0 \left(\frac{r}{r_0}\right)^{q_n} = n_0 \left(\frac{y}{y_0}\right)^{q_n}$$

 $|\mathbf{n}_0, \mathbf{q}_n, \mathbf{r}_0|$

Effect of jet parameters on free-free

emission		r ₀ , r _{LOSmax}		
Variable parameter	Value	Turnover frequencies (GHz)	Spectral indices	• • •
		1		
n_0	10^{6}	0.76	0.80; -0.09	V
	10^{7}	0.04; 6.87	1.30; 0.83; -0.09	1
(cm^{-3})	5×10^{7}	0.18; 31.17	1.57; 0.83; -0.06	r ₀ = 50
	10^{8}	0.35; 60.59	1.65; 0.84; -0.04	J
q_n	-1	1.67; 32.70	1.86; 0.36; -0.08	
	-2	0.18; 31.17	1.57; 0.83; -0.06	
	-2.5	0.03; 30.58	1.43; 1.04; -0.06	
0.				
r_0	10	14.92	0.88; -0.07	$r_0 = 10$
	50	0.18; 31.17	1.57; 0.83; -0.06	$$ $r_0 = 50$
(au)	100	0.86; 45.52	1.72; 0.76; -0.06	$r_0 = 100$ $r_0 = 500$
	500	101.35	1.71; -0.01	10 ¹⁰ 10 ¹¹
	Frequency (HZ)	Frequency (HZ)	Frequen	cy (Hz)

Effect of jet parameters on from

 10^{1}

10⁰

(a)

Effect of jet parameters on free-free

emission		LOSmax	\	
Variable parameter	Value	Turnover frequencies (GHz)	Spectral indices	0 0
n_0	10^{6}	0.76	0.80; -0.09	, and the second
2	10^{7}	0.04; 6.87	1.30; 0.83; -0.09	r ₀ = 50
(cm^{-3})	5×10^{7}	0.18; 31.17	1.57; 0.83; -0.06	10 = 30
	10^{8}	v 0.35; 60.59	1.65; 0.84; -0.04	
q_n	-1	1 .67; 32.70	1.86; 0.36; -0.08	
	-2	0.18; 31.17	1.57; 0.83; -0.06	
	-2.5	0.03; 30.58	1.43; 1.04; -0.06	
10.				
r_0	10	14.92	0.88; -0.07	$r_0 = 10$
	50	0.18; 31.17	1.57; 0.83; -0.06	$$ $r_0 = 50$
(au)	100	0.86; 45.52	1.72; 0.76; -0.06	$r_0 = 100$ $r_0 = 500$
	500	101.35	1.71; -0.01	10 ¹⁰ 10 ¹¹
	Frequency (HZ)	Frequency (HZ)	Frequen	cv (Hz)

Effect of jet parameters on free-free

emission		LOSmax		
Variable parameter	Value	Turnover frequencies (GHz)	Spectral indices	/
n_0	10^{6}	0.76	0.80; -0.09	
	10^{7}	0.04; 6.87	1.30; 0.83; -0.09	
(cm^{-3})	5×10^{7}	0.18; 31.17	1.57; 0.83; -0.06	00
	10^{8}	v 0.35; 60.59	1.65; 0.84; -0.04	
q_n	-1	1.67 ; 32.70	$1.86 \ 0.36; -0.08$	
	-2	0.18; 31.17	$1.57 \ 0.83; -0.06$	
	-2.5	0.03; 30.58	1.43 1.04; -0.06	
r_0	10	14.92	0.88; -0.07	0 = 10
	50	0.18; 31.17	1.57; 0.83; -0.06 — r	0 = 50
(au)	100	0.86; 45.52	177.076.076	$_{0} = 100$ $_{0} = 500$
	500	101.35	1.71; -0.01	10 ¹¹
	Frequency (Hz)	Frequency (Hz)	Frequency (Hz)	

Effect of jet parameters on Synchrotron emission

- Jet with both thermal and non-thermal emission
- Located farther from the YSO (r0 = 3000 au)
 - **B**₀: Magnetic field strength at **r**₀
 - $\delta\theta$: Angular thickness of shocked shell
 - p: Power-law index of number density distribution of non-thermal electrons in energy space

Effect of jet parameters on Synchrotron emission

 $\propto \tau_{\text{ff+syn}} = 1$, v_c (Govoni F., Feretti L., 2004)

•	Jet with	both t	hermal	and	non-t	hermal	emission
---	----------	--------	--------	-----	-------	--------	----------

Yet with both thermal and	Hon-thermal emission	* * * * * * * * * * * * * * * * * * *	/
Variable parameter	Value	Turnover frequencies (GHz)	Spectral indices
B_0	0.1	0.17; 100	2.20; -0.64; -1.10
	0.2	0.24; 100	2.20; -0.64; -1.1
(mG)	0.3	0.29; 100	2.31; -0.63; -1.13
n	1.8	0.03; 100	1 18: _0 40: _0 90
p	2.3	0.03, 100	$1.18; -0.40; -0.90$ $-\frac{1}{2}$ $\frac{1}{2}$ $$
	2.6	0.90; 100	2.39; -0.77; -1.23
$\delta heta$	0.1	0.17; 100	2.19; -0.63; -1.06
	0.5	0.29; 100	2.31; -0.63; -1.13
(°)	1	0.37; 100	2.19; -0.63; -1.06 $2.31; -0.63; -1.13$ $2.26; -0.64; -1.14$
	Frequency (Hz)	Frequency (Hz)	Frequency (Hz)

Effect of jet parameters on Synchrotron emission

 $\propto \tau_{\text{ff+syn}} = 1$, v_c (Govoni F., Feretti L., 2004)

•	Jet with	both t	hermal	and	non-t	hermal	emission
---	----------	--------	--------	-----	-------	--------	----------

 Jet with both thermal an 	d non-thermal emission	* * * * * *	,
Variable parameter	Value	Turnover frequencies (GHz)	Spectral indices
$\overline{B_0}$	0.1	0.17; 100	$\overline{2.20; -0.64; -1.10}$
	0.2	0.24; 100	2.20; -0.64; -1.1
(mG)	0.3	0.29; 100	2.31; -0.63; -1.13
	$\tau \propto B_0, p$	$0,\delta\theta$	
p	1.8	0.03; 100	1.18; -0.40; -0.90
	2.3	0.29; 100	$1.18; -0.40; -0.90$ $-\frac{1}{2}$ $2.31; -0.63; -1.13$
	2.6	0.90; 100	2.39; -0.77; -1.23
$\delta heta$	0.1	0.17; 100	2.19; -0.63; -1.06
	0.5	0.29; 100	2.31; -0.63; -1.13
(°)	1	0.37; 100	2.19; -0.63; -1.06 2.31; -0.63; -1.13 2.26; -0.64; -1.14
	Frequency (Hz)	Frequency (Hz)	Frequency (Hz)

Flux variation across jet length

- r0 = 3000 au
- $\theta 0 = 30^{\circ}$
- $\eta e = 10^{-5}$
- p = 2.3
- B = 0.3 mG
- $n0 = 500 \text{ cm}^{-3}$
- x0 = 0.2
- qx = -0.5
- qx = -1

Flux variation across jet length

 $j_{v,syn}, \alpha_{v,syn}, \tau_{v,syn} \propto n \times j_{v,ff}, \alpha_{v,ff}, \tau_{v,ff} \propto n^2 \times^2$

Jet radio spectrum

- To study the transition from free-free to synchrotron dominated spectrum
- Case of a jet with a combination of both free-free and synchrotron emission
- η_e : Fraction of relativistic electrons capable of emitting synchrotron
- η_e is varied to regulate the contribution of synchrotron on the overall jet spectrum

Application of the model

Comparison of model with Observations

Determination of knot parameters from observations

$$\mathsf{size} = \theta_{\mathit{maj}}$$

 r_0 = radial distance of the knot center $-\frac{\text{size}}{2}$

$$\theta_0 = 2 \tan^{-1} \left(\frac{\theta_{min}}{2r_0} \right)$$

Comparison of model with Observations

Assumed knot parameters based on knowledge from observations and models:

•
$$T = 10^4 \text{ K}$$

• $\varepsilon = 2/3$ and 3/4 (Reynolds 1986)

$$w(y) = w_0 \left(\frac{r_a}{r_0}\right)^{\epsilon} = w_0 \left(\frac{y}{y_0}\right)^{\epsilon}$$

Best-fit model: Model grids generated

- $q_n, q_x, q_x', \delta\theta, p, \eta_e$: Physical parameters that are difficult to be constrained by observations.
- For few jets, n_0 measurement is not available: $n_0 * x_0$

Parameters	Range Explored and Grid spacing
Number density at jet base $(n_0 \text{ [cm}^{-3}])$	10^2 to 10^6 by a factor of 10
Power-law index of radial number density variation (q_n)	-4 to -1 in steps of 0.5
Power-law index of radial ionization fraction variation (q_x)	-5 to 0 in steps of 0.5
Power-law index of lateral ionization fraction variation (q'_x)	-5 to 0 in steps of 0.5
Angular thickness of shocked region $(\delta \theta \ [^{\circ}])$	0.01 to 0.5 in steps of 0.1
Power-law index of non-thermal electron population (p)	1.7 to 2.6 in steps of 0.1
Fraction of relativistic electrons (η_e^{rel})	10^{-7} to 10^{-4} by a factor of 10

Case I: HH80-81

• High mass protostar: $11-15 \overline{\mathrm{M}_{\odot}}$

• Distance: 1.4 kpc

Fernandez-Lopez et al. 2011, Anez-Lopez et al. 2020

Vig et al. 2018

Model	ε	n ₀ *x ₀	q _n	q_x	q _{x'}	δθ	р	$\eta_{ m e}$	χ ²
18162/2016	2/3	4.5 x 10 ⁴	-1	-0.2	0.0	0.10	1.7	1x10 ⁻⁴	0.87
18162/2009	2/3	3×10^5	-2	-0.5	0.0	0.10	1.7	1x10 ⁻⁴	0.60
HH80/2016	2/3	200	-2	-2.5	-3.5	0.01	2.3	1x10 ⁻⁶	0.30
HH80/1989	2/3	200	-3	-0.2	-3.0	0.01	1.7	1x10 ⁻⁶	1.07

Case II: Serpens Triple radio source

Intermediate mass protostar: $3 M_{\odot}$

• Distance: 436 pc

Hull et al. 2016, Ortiz-Leon et al. 2017

ε	n ₀ *x ₀	q _n	q _x	q _{x'}	δθ	р	$\eta_{ m e}$	χ2
2/3	1.2 × 10 ⁴	-1	-1	0	0.5	1.8	1x10 ⁻⁶	319.3

Case III: DG Tau A

Feeney Johansson et al. 2019

• Low mass protostar: $0.67 \mathrm{M}_{\odot}$

• Distance: 120 pc

Lynch et al. 2013, Bailer-Jones et al. 2018

 10^{11}

ε	n ₀ *x ₀	q _n	q _x	q _{x'}	δθ	р	$\eta_{ m e}$	χ2
3/4	500	-3	-1	0	0.2	2.25	1x10 ⁻⁵	47.8

Summary

- Features of our new model developed for protostellar jets:
 - Thermal free-free + non-thermal synchrotron emission
 - Lateral variation in ionization fraction
 - Generalized geometry and optical depth calculations
- Model can be employed to estimate physical parameters that are difficult to be constrained from observations.
- Model has been applied to few protostellar jets (HH80-81, Serpens triple radio source and DG-Tau) to estimate jet parameters that were unknown due to observational limitations.
- The estimated parameters (q_n,p,η_e) are reasonable and consistent with expected values from jet shock models etc.