Школа анализа данных Восстановление зависимостей Домашнее задание №1

Кошман Дмитрий

Задача 1

Пусть $C = A^T A + \alpha B^T B$ Поскольку B имеет полный ранг по столбцам, то $Bx \neq 0 \ \forall x \Rightarrow ||Bx|| > 0$. Тогда $x^T C x = x^T A^T A x + \alpha x^t B^T B x = ||Ax|| + \alpha ||Bx|| > 0 \forall x$ Значит, $Cx \neq 0 \ \forall x$ и C не вырождена.

Задача 2

Интегральное уравнение:

$$\int_0^x f(t)dt = u(x); \ u(0) = 0$$

Его решение с точностью до константы:

$$f(x) = u'(x)$$

Рассмотрим случай наблюдаемой функции $u(x) = \sin(2\pi x)$ и ее возмущение функциями

$$\delta_n(x) = \frac{\sin(n^2(x))}{n}; \; ||\delta_n(x)|| \to 0 \; \mathrm{при} \; n \to \infty :$$

$$\int_{0}^{x} f_{n}(t)dt = u(x) + \delta_{n}(x) \Rightarrow f_{n}(x) = u'(x) + \delta'_{n}(x) = 2\pi \cos(2\pi x) + 2n \cos(n^{2}x)$$

Рассмотрим для разных n возмущенную наблюдаемую функцию и ее решение:

Задача 3

Будем численно вычислять производную как $u'(x) \approx \hat{u}(x) = \frac{u(x+h)-u(x-h)}{2h}$, причем выбирать шаг дискретизации как $h = \sqrt{\delta}$, где δ - величина возмущения.

Покажем, что численная аппроксимация сходится к истинной производной:

$$||\hat{u} - u|| = \max_{x} \left| \frac{u(x+h) - u(x-h)}{2h} - u'(x) \right| = \max_{x} \left| \frac{u'(t) \cdot 2h}{2h} - u'(x) \right| = \max_{x} |u'(t) - u'(x)|,$$

Где $t \in (x - h, x + h)$. Значит, если производная равномерно непрерывна, то $u'(t) \to u'(x)$ при $h \to 0$ и $\hat{u} \to u$.

Также можно оценить погрешность, если вторая производная существует и ограничена: если |u''(x)| < c, то

$$||\hat{u} - u|| = \max_{x} |u'(t) - u'(x)| \le 2ch$$

Покажем, что \hat{u} устойчива к возмущениям известной величины δ :

$$||\hat{u} - u'|| = ||\frac{\tilde{u}(x+h) - \tilde{u}(x-h)}{2h} - u'(x)|| \le ||\frac{u(x+h) - u(x-h)}{2h} - u'(x)|| + |\frac{2\delta}{2h}| = \max |u'(t) - u'(x)| + \sqrt{\delta}$$

Где $t \in (x-\delta,x+\delta)$. Значит, если $\delta \to 0$, то $||\hat{\hat{u}}-u'|| \to 0$, и решение устойчиво. Проиллюстрируем это графически, выбирая $h=\min\{0.1,\sqrt{\delta}\}$:

