Zadanie: KO2

Kostka 2

Warsztaty ILO, grupa olimpijska, dzień 3. Dostępna pamięć: 128 MB.

Bitek i Barysia grają kostką n-ścienną w bardzo prostą gre – oboje wykonują po rzucie i wygrywa ten, kto wyrzuci wyższą liczbę, lub oboje jeśli wyrzucą tą samą liczbę.

Zastanawiają się oni, ile trzeba średnio wyrzucić, żeby wygrać – innymi słowy, chcemy obliczyć wartość oczekiwaną maksimum wyników z dwóch rzutów kostką.

Wartość oczekiwana pewnego doświadczenia, to suma po każdym możliwym zdarzeniu, prawdopodobieństwa tego zdarzenia przemnożonego przez wartość tego zdarzenia. Dla przykładu, dla kostki 2-ściennej mamy cztery możliwe wyniki rzutów – (1,1),(1,2),(2,1),(2,2), każdy wypadnie z prawdopodobieństwem $\frac{1}{4}$, Wartość zdarzenia to maksimum z tych dwóch rzutów, więc dla rzutów (1,1) mamy wartość 1, a dla pozostałych konfiguracji 2. Daje nam to więc wynik $1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} = 1.75$.

Wejście

Na wejściu znajduje się jedna liczba całkowita $n \ (1 \le n \le 10^6)$.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba zmiennoprzecinkowa, wypisana w formacie dziesiętnym. Aby zostać zaakceptowana powinna się różnić o co najwyżej 10^{-6} od poprawnego wyniku.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

2 1.75000000

Dla danych wejściowych: poprawnym wynikiem jest:

6 4.47222222

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 10$	20
2	$n \le 1000$	20
3	brak dodatkowych założeń	60