stochastics and probability

Lecture 2

Dr. Johannes Pahlke

random variables

random variables

 $X:\Omega o J$

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$X(\omega) = x$$
 $\omega \in \Omega, x \in J$

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$X(\omega) = x$$
 $\omega \in \Omega, \quad x \in J$

event: $A \subseteq \Omega$

random variables

$$X:\Omega \to J$$

$$X(\omega) = x$$

$$X(\omega) = x$$
 $\omega \in \Omega, \quad x \in J$

event:
$$A \subseteq \Omega$$

$$P(X > x_i) :=$$

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$X(\omega) = x$$
 $\omega \in \Omega, \quad x \in J$

event:
$$A \subseteq \Omega$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

example:

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$X(\omega) = x$$
 $\omega \in \Omega, \quad x \in J$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

example:

 Ω

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega, \quad x \in J$$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

Mon.

Tue.

Wed.

Thu.

Fri.

Sat.

Sun.

example:

 Ω

 \mathbb{R}

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega, \quad x \in J$$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

Mon.

Tue.

Wed.

Thu.

Fri.

Sat.

Sun.

0

example:

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega$$
, $x \in J$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

example:

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega$$
, $x \in J$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega$$
, $x \in J$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

example:

example:

 Ω

 \mathbb{R}

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega$$
, $x \in J$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

range of X:

example:

 Ω

 \mathbb{R}

random variables

$$X:\Omega o J$$

$$X(\omega) = x$$

$$\omega \in \Omega, \quad x \in J$$

event: $A \subseteq \Omega$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

range of X: $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

$$p_X(x) = P(X = x)$$

$$p_X(x) = P(X = x)$$
 $p: J \to [0,1]$

$$p_X(x) = P(X = x)$$
 $p: J \to [0,1]$

$$\sum_{x \in J} p_X(x) =$$

$$p_X(x) = P(X = x)$$
 $p: J \to [0,1]$

$$\sum_{x \in J} p_X(x) = 1$$

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

$$P(A \cup B) = P(A) + P(B)$$
 if
$$P(A \cap B) = 0$$

$$P(X = x)$$

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\}) \qquad P(A \cup B) = P(A) + P(B) \quad \text{if } P(A \cap B) = 0$$

$$p_X(x) = P(X = x)$$

proof:

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\}) \qquad P(A \cup B) = P(A) + P(B) \quad \text{if } P(A \cap B) = 0$$

$$p_X(x) = P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x)$$

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

$$P(A \cup B) = P(A) + P(B)$$
 if $P(A \cap B) = 0$
$$P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x)$$

=1

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\}) \qquad P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

$$p_X(x) = P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x) = \sum_{x \in J} P(X = x)$$

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\}) \qquad P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

$$p_X(x) = P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x) = \sum_{x \in J} P(X = x) = \sum_{x \in J} P(\{\omega \in \Omega : X(\omega) = x\})$$

= 1

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\})$$

$$P(A \cup B) = P(A) + P(B)$$
 if
$$P(A \cap B) = 0$$

$$P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x) = \sum_{x \in J} P(X = x) = \sum_{x \in J} P(\{\omega \in \Omega : X(\omega) = x\})$$
$$= P\left(\bigcup \{\omega \in \Omega : X(\omega) = x\}\right) = 1$$

$$X: \Omega \to J$$

$$P(\Omega) = 1$$

$$P(X > x_i) := P(\{\omega \in \Omega : X(\omega) > x_i\}) \qquad P(A \cup B) = P(A) + P(B) \quad \text{if } P(A \cap B) = 0$$

$$p_X(x) = P(X = x)$$

proof:
$$\sum_{x \in J} p_X(x) = \sum_{x \in J} P(X = x) = \sum_{x \in J} P(\{\omega \in \Omega : X(\omega) = x\})$$
$$= P\left(\bigcup_{x \in J} \{\omega \in \Omega : X(\omega) = x\}\right) = P(\Omega) = 1$$

$$P(X=x)=0$$

$$P(X = x) = 0 \qquad f: \mathbb{R} \to [0, \infty]$$

$$P(X = x) = 0 f: \mathbb{R} \to [0, \infty]$$

$$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx$$

cumulative distribution function (CDF)

cumulative distribution function (CDF)

discrete

$$F_X(x)$$

$$F_X(x) = P(X \le x)$$

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t)$$

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

discrete

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

discrete

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

$$F_X(x)$$

discrete

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

$$F_X(x) = P(X \le x)$$

discrete

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(t) dt$$

discrete

$$F_X(x) = P(X \le x) = \sum_{t \le x} P(X = t) = \sum_{t \le x} p_X(t)$$

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(t) dt$$

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

$$Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

What is the range of X?

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

What is the range of X?

$$X:\Omega o \mathbb{R}$$

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

$$Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

What is the range of X?

$$X:\Omega o\mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$$

$$Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega
ightarrow \mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega \to \mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o \mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o\mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$F_X(x) = P(X \le x) = \int_0^x f(t) \ dt$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $\overline{Range(X)} := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o\mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$Range(X) = [0,1]$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o\mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$Range(X) = [0,1]$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases} \qquad F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } 0 \le x \le 1 \\ 1 & \text{else} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } 0 \le x \le 1 \end{cases}$$

$$1 & \text{else}$$

$F_X(x) = P(X \le x) = \int_0^x f(t) dt$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o\mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$Range(X) = [0,1]$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases} \qquad F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } 0 \le x \le 1 \\ 1 & \text{else} \end{cases}$$

$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$

How to calculate the PDF $f_X(x)$ given the CDF $F_X(x)$?

$$f_X(x) = \frac{d}{dx} F_X(x)$$

 $Range(X) := \{x \in \mathbb{R} : x = X(\omega), \omega \in \Omega\}$

What is the range of X?

$$X:\Omega o \mathbb{R}$$

$$X: \Omega \to \mathbb{R}$$
 $\Omega := [0cm, 100cm]$

$$X(\alpha \text{cm}) = \frac{\alpha}{100}$$

$$Range(X) = [0,1]$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases} \qquad F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } 0 \le x \le 1 \\ 1 & \text{else} \end{cases}$$

data-driven

data-driven

data-driven

```
data-driven { not statistical random
```

```
data-driven { not statistical random not reproducable
```

```
data-driven { not statistical random not reproducable } algorithmic {
```

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random }
```

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers

```
data-driven \begin{cases} \text{not statistical random} \\ \text{not reproducable} \end{cases} algorithmic \begin{cases} \text{statistical random} \\ \text{reproducable} \end{cases} random numbers x_1, \dots, x_n \in [0,1]
```

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers
$$x_1, \ldots, x_n \in [0,1]$$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers $x_1, \ldots, x_n \in [0,1]$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

require

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers $x_1, \ldots, x_n \in [0,1]$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

require
$$\lim_{n\to\infty} \left| \hat{F}_U(x) - F_U(x) \right|$$

random numbers $x_1, \ldots, x_n \in [0,1]$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

require
$$\lim_{n\to\infty} \left| \hat{F}_U(x) - F_U(x) \right| = \lim_{n\to\infty} \left| \hat{F}_U(x) - x \right|$$

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers $x_1, \ldots, x_n \in [0,1]$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

require
$$\lim_{n\to\infty} \left| \hat{F}_U(x) - F_U(x) \right| = \lim_{n\to\infty} \left| \hat{F}_U(x) - x \right|$$

 $x \in [0,1]$

```
data-driven { not statistical random not reproducable } 
algorithmic { statistical random reproducable } 
}
```

random numbers $x_1, \ldots, x_n \in [0,1]$

$$\hat{F}_U(x) := \frac{\left| \left\{ x_i \in \{x_1, \dots, x_n\} : x_i \le x \right\} \right|}{n}$$

require
$$\lim_{n \to \infty} \left| \hat{F}_U(x) - F_U(x) \right| = \lim_{n \to \infty} \left| \hat{F}_U(x) - x \right| = 0$$

$$z_{i+1} = az_i \mod m$$

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$

$$z_{i+1} = az_i \mod m$$

$$i = 1,2,3,...$$

$$x_i = \frac{z_i}{m}$$

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

$$m \in \mathbb{N}_{>0}$$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ seed:

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ seed: $z_1 \in \mathbb{N}_{>0}$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Need to choose:

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ seed: $z_1 \in \mathbb{N}_{>0}$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Need to choose:

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ seed: $z_1 \in \mathbb{N}_{>0}$

$$x_1, x_2, \ldots, x_T$$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Need to choose:

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ seed: $z_1 \in \mathbb{N}_{>0}$

$$x_1, x_2, \ldots, x_T$$
 $x_1 = x_T$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Need to choose:

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$ $m = 2^{31} - 1$ seed: $z_1 \in \mathbb{N}_{>0}$

$$x_1, x_2, \ldots, x_T$$
 $x_1 = x_T$

Lehmer generator /a Linear congruential generator (LCG)

$$z_{i+1} = az_i \mod m$$
 $i = 1,2,3,...$ $x_i = \frac{z_i}{m} \in [0,1)$

Need to choose:

$$m \in \mathbb{N}_{>0}$$
 $0 < a < m$
seed: $z_1 \in \mathbb{N}_{>0}$

$$m = 2^{31} - 1$$
 $a = 48271$

$$x_1, x_2, \dots, x_T$$
 $x_1 = x_T$

generators with lager cycle length T

generators with lager cycle length T

Mersenne Twister (1998)

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

XOR-Shift (2003)

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

XOR-Shift (2003)

XoroShiro (2018)

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

XOR-Shift (2003)

XoroShiro (2018)

parallel random number generators

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

XOR-Shift (2003)

XoroShiro (2018)

parallel random number generators

 $z_1(\text{proc id})$

generators with lager cycle length T

Mersenne Twister (1998)

Park-Miller (1988)

XOR-Shift (2003)

XoroShiro (2018)

parallel random number generators

$$z_1(\text{proc id})$$

$$T_{parallel} = \frac{T}{\text{#proc}}$$

pseudo-RNG

pseudo-RNG

quasi-RNG

pseudo-RNG

quasi-RNG

pseudo-RNG

quasi-RNG

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

$$x_{i+1} = (x_i + \alpha) \mod 1$$

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

$$x_{i+1} = (x_i + \alpha) \mod 1$$

 α irrational

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

$$x_{i+1} = (x_i + \alpha) \mod 1$$

$$\alpha$$
 irrational $\alpha = \sqrt{2} - 1$

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

$$x_{i+1} = (x_i + \alpha) \mod 1$$

$$\alpha$$
 irrational $\alpha = \sqrt{2} - 1$ $\alpha = \frac{\sqrt{5} - 1}{2}$

pseudo-RNG

quasi-RNG

Additive recurrence sequence:

$$x_{i+1} = (x_i + \alpha) \mod 1$$

$$\alpha$$
 irrational $\alpha = \sqrt{2} - 1$ $\alpha = \frac{\sqrt{5} - 1}{2}$

more modern: Sobol - sequence

$$Y=g(X)$$

$$Y = g(X)$$
 $g: J \to J'$

$$Y = g(X)$$
 $g: J \to J'$ $g: \mathbb{R} \to \mathbb{R}$

$$Y = g(X)$$
 $g: J \to J'$ $Domain(g) := J$ $g: \mathbb{R} \to \mathbb{R}$

$$Y = g(X)$$
 $g: J \to J'$ $Domain(g) := J$ $g: \mathbb{R} \to \mathbb{R}$

 $Range(X) \subseteq Domain(g)$

$$Y = g(X)$$
 $g: J \to J'$ $Domain(g) := J$ $g: \mathbb{R} \to \mathbb{R}$

 $Range(X) \subseteq Domain(g)$

inverse

$$Y = g(X)$$
 $g: J \to J'$ $Domain(g) := J$ $g: \mathbb{R} \to \mathbb{R}$

 $Range(X) \subseteq Domain(g)$

inverse
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

 $P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$

given

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

 $P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$

given p_X ,

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

 $P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$

given
$$p_X$$
, $Y = g(X)$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

given
$$p_X$$
, $Y = g(X)$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

given
$$p_X$$
, $Y = g(X)$

$$p_{Y}(y)$$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

given
$$p_X$$
, $Y = g(X)$

$$p_Y(y) = P(Y = y)$$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

given
$$p_X$$
, $Y = g(X)$

$$p_Y(y) = P(Y = y) = P(g(X) = y)$$

$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$$

given
$$p_X$$
, $Y = g(X)$

 $g^{-1}(y) := \{x \in J : g(x) = y\}$

 $P(A \cup B) = P(A) + P(B)$ if $P(A \cap B) = 0$

$$p_Y(y) = P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y))$$

given
$$p_X$$
, $Y = g(X)$

 $g^{-1}(y) := \{x \in J : g(x) = y\}$

 $P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$

$$p_Y(y) = P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y))$$

$$= P \left(\bigcup_{x \in g^{-1}(y)} \{X = x\} \right)$$

given
$$p_X$$
, $Y = g(X)$

 $g^{-1}(y) := \{x \in J : g(x) = y\}$

 $P(A \cup B) = P(A) + P(B) \quad \text{if} \quad P(A \cap B) = 0$

$$p_Y(y) = P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y))$$

$$= P\left(\bigcup_{x \in g^{-1}(y)} \{X = x\}\right) = \sum_{x \in g^{-1}(y)} p_X(x)$$

 Ω

Mon.

Tue.

Wed.

Thu.

Fri.

Sat.

Sun.

$$y(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

 \mathbb{B}

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_X(x) = \frac{1}{7}$$
 $x \in \{1,...,7\}$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_X(x) = \frac{1}{7}$$
 $x \in \{1,...,7\}$

derive:

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_X(x) = \frac{1}{7} \qquad x \in \{1, ..., 7\}$$

derive: $p_Y(1) =$

$$p_X(x) = \frac{1}{7}$$
 $x \in \{1,...,7\}$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_{Y}(y) = \sum_{x \in g^{-1}(y)} p_{X}(x)$$
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

derive: $p_Y(1) =$

$$p_X(x) = \frac{1}{7}$$
 $x \in \{1,...,7\}$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_{Y}(y) = \sum_{x \in g^{-1}(y)} p_{X}(x)$$
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

derive:
$$p_{Y}(1) = \sum_{x \in g^{-1}(1)} p_{X}(x)$$

$$p_X(x) = \frac{1}{7} \qquad x \in \{1, ..., 7\}$$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_{Y}(y) = \sum_{x \in g^{-1}(y)} p_{X}(x)$$
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

derive:
$$p_Y(1) = \sum_{x \in g^{-1}(1)} p_X(x) = \sum_{x \in \{6,7\}} p_X(x)$$

$$p_X(x) = \frac{1}{7} \qquad x \in \{1, ..., 7\}$$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_{Y}(y) = \sum_{x \in g^{-1}(y)} p_{X}(x)$$
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

derive:
$$p_Y(1) = \sum_{x \in g^{-1}(1)} p_X(x) = \sum_{x \in \{6,7\}} p_X(x) = p_X(6) + p_X(7)$$

Mon.
$$Y$$
Tue. 0
Thu. Fri. Sat. $g(X)$

$$g(x) = \begin{cases} 0 & \text{for } x \in \{1, ..., 5\} \\ 1 & \text{for } x \in \{6, 7\} \end{cases}$$

$$p_{Y}(y) = \sum_{x \in g^{-1}(y)} p_{X}(x)$$
$$g^{-1}(y) := \{x \in J : g(x) = y\}$$

$$p_X(x) = \frac{1}{7} \qquad x \in \{1, ..., 7\}$$

derive:
$$p_Y(1) = \sum_{x \in g^{-1}(1)} p_X(x) = \sum_{x \in \{6,7\}} p_X(x) = p_X(6) + p_X(7) = \frac{2}{7}$$

given

given f_X ,

given f_X , Y = g(X)

$$f_X$$

$$Y=g(X)$$

given f_X , Y = g(X) with g increasing in Range(X)

given f_X , Y = g(X)

$$Y=g(X)$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

given f_X , Y = g(X)

$$Y=g(X)$$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_{Y}(y)$$

given
$$f_X$$
, $Y = g(X)$

$$Y = g(X)$$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y)$$

given
$$f_X$$
, $Y = g(X)$

$$Y = g(X)$$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

$$f_{Y}(y)$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y))$$

given
$$f_X$$
, $Y = g(X)$

with g increasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y))$$

= $F_X(g^{-1}(y))$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

given

given f_X ,

given f_X , Y = g(X)

$$f_X$$

$$Y=g(X)$$

given f_X , Y = g(X) with g decreasing in Range(X)

given
$$f_X$$
, $Y = g(X)$

$$Y = g(X)$$

given f_X , Y = g(X)

What is f_Y ?

given f_X , Y = g(X)

$$Y = g(X)$$

What is f_Y ?

$$F_{Y}(y)$$

given f_X , Y = g(X)

$$Y = g(X)$$

What is f_Y ?

$$F_Y(y) = P(Y \le y)$$

given
$$f_X$$
, $Y = g(X)$

What is f_Y ?

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$

given f_X , Y = g(X)

$$Y = g(X)$$

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$

given f_X , Y = g(X)

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
 $P(\bar{A}) = 1 - P(A)$

$$P(\overline{A}) = 1 - P(A)$$

$$f_X$$

given
$$f_X$$
, $Y = g(X)$

Final is
$$f_Y$$
:
$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$

$$= 1 - P(X \le g^{-1}(y))$$

with
$$g$$
 decreasing in $Range(X)$
 $\rightarrow g^{-1}$ is a function * not the full story

given f_X , Y = g(X)

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
$$= 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

$$P(\overline{A}) = 1 - P(A)$$

$$f_X$$

given
$$f_X$$
, $Y = g(X)$

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
$$= 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

$$P(\overline{A}) = 1 - P(A)$$

$$f_X$$

given
$$f_X$$
, $Y = g(X)$

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
$$= 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

$$P(\overline{A}) = 1 - P(A)$$

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

$$f_X$$

given
$$f_X$$
, $Y = g(X)$

with g decreasing in Range(X) \rightarrow g^{-1} is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
$$= 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

$$P(\overline{A}) = 1 - P(A)$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = -\frac{d}{dy} F_X(g^{-1}(y))$$

given f_X , Y = g(X)

with g decreasing in Range(X) $\rightarrow g^{-1}$ is a function * not the full story

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \ge g^{-1}(y))$$
$$= 1 - P(X \le g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$

$$P(\overline{A}) = 1 - P(A)$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = -\frac{d}{dy} F_X(g^{-1}(y)) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$f_{Y}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

decreasing g

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

derive:

$$f_{Y}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$g^{-1}(y) = 1 - y$$

$$f_{Y}(y)$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$g^{-1}(y) = 1 - y$$

$$f_Y(y) = -f_X(1-y)\frac{d}{dy}(1-y)$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$g^{-1}(y) = 1 - y$$

$$f_Y(y) = -f_X(1-y)\frac{d}{dy}(1-y) = -f_X(1-y)(-1)$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$g^{-1}(y) = 1 - y$$

$$f_Y(y) = -f_X(1-y)\frac{d}{dy}(1-y) = -f_X(1-y)(-1)$$

$$= \begin{cases} 1 & \text{for } 0 \le 1-y \le 1 \\ 0 & \text{else} \end{cases}$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$X \sim \mathcal{U}(0,1)$$

$$f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$Y = g(X) = 1 - X$$

derive:

$$g^{-1}(y) = 1 - y$$

$$f_Y(y) = -f_X(1-y)\frac{d}{dy}(1-y) = -f_X(1-y)(-1)$$

$$= \begin{cases} 1 & \text{for } 0 \le 1-y \le 1 \\ 0 & \text{else} \end{cases} = \begin{cases} 1 & \text{for } 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

increasing g

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$

$$Y = g(X)$$

$$Y = g(X) := F_X(X)$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$F_{Y}(y)$$

$$Y = g(X) := F_X(X)$$

$$F_X: \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$Y = g(X) := F_X(X)$$

$$F_X: \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$Y = g(X) := F_X(X)$$

$$F_X: \mathbb{R} \to [0,1]$$

$$F_{Y}(y) = P(Y \le y)$$

$$= P\left(F_{X}(X) \le y\right)$$

$$= P\left(X \le F_{X}^{-1}(y)\right)$$

$$Y = g(X) := F_X(X)$$

$$F_X: \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P\left(F_X(X) \le y\right)$$

$$= P\left(X \le F_X^{-1}(y)\right)$$

$$= F_X\left(F_X^{-1}(y)\right)$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$F_{Y}(y) = P(Y \le y)$$

$$= P\left(F_{X}(X) \le y\right)$$

$$= P\left(X \le F_{X}^{-1}(y)\right)$$

$$= F_{X}\left(F_{X}^{-1}(y)\right)$$

$$= y$$

$$Y = g(X) := F_X(X)$$

$$F_X : \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y \longrightarrow Y \sim \mathcal{U}(0,1)$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y \qquad \longrightarrow Y \sim \mathcal{U}(0,1)$$

$$U \sim \mathcal{U}(0,1)$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y \qquad \longrightarrow Y \sim \mathcal{U}(0,1)$$

$$U \sim \mathcal{U}(0,1)$$

$$X = F_X^{-1}(U)$$

$$Y = g(X) := F_X(X) \qquad F_X : \mathbb{R} \to [0,1]$$

$$F_Y(y) = P(Y \le y)$$

$$= P(F_X(X) \le y)$$

$$= P(X \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y \qquad \longrightarrow Y \sim \mathcal{U}(0,1)$$

$$U \sim \mathcal{U}(0,1)$$

$$X = F_X^{-1}(U) \longrightarrow X \text{ has the CDF } F_X(x)$$

$$y = F_X(x)$$

$$y = F_X(x) = 1 - e^{-\lambda x}$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$
$$e^{-\lambda x} = 1 - y$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$
$$e^{-\lambda x} = 1 - y$$
$$-\lambda x = \ln(1 - y)$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

exponential distribution $Exp(\lambda)$

 $Y \sim \mathcal{U}(0,1)$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

$$V \sim \mathcal{U}(0,1) \qquad \longrightarrow \qquad U := 1 - Y \sim \mathcal{U}(0,1)$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

$$Y \sim \mathcal{U}(0, 1) \qquad \longrightarrow \qquad U := 1 - Y \sim \mathcal{U}(0, 1)$$

$$X = -\frac{1}{\lambda} \ln(U)$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

$$Y \sim \mathcal{U}(0, 1) \qquad \longrightarrow \qquad U := 1 - Y \sim \mathcal{U}(0, 1)$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0, 1)$$

$$y = F_X(x) = 1 - e^{-\lambda x} \qquad x \ge 0$$

$$e^{-\lambda x} = 1 - y$$

$$-\lambda x = \ln(1 - y)$$

$$x = -\frac{1}{\lambda} \ln(1 - y)$$

$$Y \sim \mathcal{U}(0, 1) \qquad \longrightarrow \qquad U := 1 - Y \sim \mathcal{U}(0, 1)$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0, 1)$$

$$X \sim Exp(\lambda)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$
 $R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

exercise:

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0,1)$$
$$X \sim Exp(\lambda)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

$$R^2 = -2 \ln(U_1)$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0,1)$$
$$X \sim Exp(\lambda)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

$$R^2 = -2\ln(U_1)$$

$$\Theta = 2\pi U_2$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0,1)$$
$$X \sim Exp(\lambda)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

$$R^2 = -2\ln(U_1)$$

$$\Theta = 2\pi U_2$$

$$X_1 = \cos(2\pi U_2) \cdot \sqrt{-2\ln(U_1)}$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0,1)$$
$$X \sim Exp(\lambda)$$

standard Gaussian/ normal distribution $\mathcal{N}(0,1)$

Box-Muller Transform

$$X_1, X_2 \sim \mathcal{N}(0,1)$$

$$R^2 = X_1^2 + X_2^2 \sim Exp\left(\frac{1}{2}\right)$$

$$\Theta \sim \mathcal{U}(0,2\pi)$$

$$R^2 = -2\ln(U_1)$$

$$\Theta = 2\pi U_2$$

$$X_1 = \cos(2\pi U_2) \cdot \sqrt{-2\ln(U_1)}$$

$$X_2 = \sin(2\pi U_2) \cdot \sqrt{-2\ln(U_1)}$$

$$X = -\frac{1}{\lambda} \ln(U) \qquad U \sim \mathcal{U}(0,1)$$
$$X \sim Exp(\lambda)$$

end