Seminár z algoritmizácie a programovania 1

Martin Bobák Ústav informatiky Slovenská akadémia vied

Obsah prednášky

Vedecké výpočty

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

Motivácia

- vysokovýkonné počítanie
 - obrovské množstvo dát
 - extrémne výpočtové nároky

Čierna diera

SeiSol - Numerická simulácia seizmických vĺn

ClimEx – Skúmanie vplyvu klimatických zmien

Reprezentácia funkcia

- spojitá funkcia na obore reálnych čísiel
- počítač pracuje "nad diskrétnou matematikou"
 - reálne čísla sú reprezentované ako zlomky v dvojkovej sústave (1/10 a 1/3)
- neviem ju vyjadriť v analytickom tvare
 - reprezentujeme ju hodnotami vo vybraných bodoch -> diskrétna reprezentácia funkcie (napr. výstup experimentu, pozorovania)
 - chceme určiť hodnotu v ľubovoľnom bode

(Ne)presnosť

- čísla s ktorými pracujú výpočty v počítači sú nepresné
- presnosť je konečná
 - zaokrúhľovanie

Riešenie systému lineárnych rovníc

Vstup: matica A mxn a vektor mx1.

systém m lineárnych rovníc s n neznámymi

Výstup: vektor x taký, že Ax = b

 základný problém riešený numerickými algoritmami, ktorý má veľmi široké použitie

Riešenie systému lineárnych rovníc

Knižnice sú postavené na Gaussovej eliminačnej metóde

Časová zložitosť: O(n3)

Základné črty/problémy:

- zaokrúhľovanie a numerická stabilita
- riedka matica

Numerické riešenie nelineárnych rovníc

Vstup: funkcia f(x), ktorá je spojitá na intervale <a,b>

Výstup: f(x) = 0

korene funkcie f

Metóda bisekcie:

- $F(a_1)$ $F(a_2)$ $F(b_2)$ $F(b_1)$ $Zdroj: https://en.wikipe dia.org/wiki/Bise ction_method$
- interval rozdelíme na polovicu a pozrieme sa kde leží koreň (sledujeme f(a)f(c), kde c je stred intervalu)
- delenie intervalu opakujeme, kým nenájdeme koreň s dostatočnou presnosťou.

Numerické riešenie nelineárnych rovníc

rozdelenie definičného oboru f na intervaly, ktoré obsahujú práve jeden koreň

Základné prístupy postavené na separácii koreňov:

- Newtonova metóda
- Metóda sečníc
- Mullerova metóda

Newtonova metóda

- na vyriešenie f(x)=0 sa využije derivácia funkcie f
- počiatočné ohraničenie intervalom musí byť dostatočne blízko hľadaného koreňa
 - konverguje kvadraticky

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

musíme poznať f(x) a f'(x)

Newtonova metóda

Zdroj: https://en.wiki pedia.org/wiki/ Newton %27s_method

11

Newtonova metóda

Problémy:

- f'(x) -> 0 (pomalá konvergencia)
- lokálne minimum (nasledujúca iterácia bude veľmi ďaleko)
- nekonverguje pri asymetrických funkciách
 - f(a+x) = -f(a-x)

 používa sa ak chceme nájsť lepšie korene (t.j. dostali sme odhady z iných metód napr. zaťažené zaokrúhľovacími chybami)

Metóda sečníc

- používa sa keď derivácia funkcie je náročná (t.j. Newtonova metóda je neefektívna)
- nelineárna funkcia f je aproximovaná pomocou lineárnej funkcie g – sečnica, ktorej koreň (priesečník s osou x) je nová aproximácia koreňa nelineárnej funkcie f

Metóda sečníc

$$c = a - \frac{f(a)}{f(b) - f(a)}(b - a)$$

First three iterations of the secant method

Metóda sečníc

Porovnanie s Newtonovou metódou:

 ak potrebujeme na vyhodnotenie f'(x) menej ako 43% zdrojov v porovnaní s vyhodnotením f(x), potom je efektívnejšia Newtonova metóda (Jeeves)

Násobenie matíc

Vstup: matica A mxn a matica B nxo.

Výstup: matica C m_x o taká, že C = A_xB

- podproblém pri mnohých úlohách z lineárnej algebry
 - robotika a počítačová grafika

Násobenie matíc

Základný algoritmus je postavený na troch vnorených cykloch.

Časová zložitosť: O(n³)

Pomocou techniky rozdeľ a panuj je možné dosiahnuť zrýchlenie.

- Strassenov algoritmus O(n^{2.81}) zrýchlenie sa prejaví pri veľkých maticiach
- najrýchlejší algoritmus (teoreticky): François Le Gall https://en.wikipedia.org/wiki/Coppersmith %E2%80%93Winograd_algorithm

17

Determinant matice

Vstup: matica A mxn

Výstup: vektor x taký, že Ax = b

využíva sa pri práci s maticami:

- singularita matice
- body a priamka/rovina (poloha, rozmer)

Determinant matice

Naivná implementácia (vychádzajúca z definície determinantu) má časovú zložitosť O(n!)

• je možné vypočítať determinant matice v čase O(n³)

Námety na semestrálnu prácu

- vyberte si jednu tému z vyššie spomínaných oblastí (nie nutne) numerických algoritmov a porovnajte zložitosti jednotlivých prístupov
- vyberte si vedecký projekt a vysvetlite/popíšte základné algoritmy a výsledky, ktoré boli s nimi dosiahnuté.

Zdroje

https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignManual.pdf

Ďakujem vám za pozornosť!

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

