Bsc Software Design (Game Dev./Cloud Comp.) Year 1 Maths 1 Selected Taylor Series Solutions

Selected Taylor Series Solutions

Solution 1: $f(x) = \cos(x)$ about $x_0 = \pi/2$

Part (a) Calculate the first six term in the Taylor Series

Given $f(x) = \cos(x)$ and asked to determine the first six terms in the Taylor series about $x_0 = \pi/2$. i.e.

$$f(x) = \cos(x) \simeq \sum_{k=0}^{5} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 where $f^{(k)}(x) = \frac{d^k}{dx^k} f(x)$

Explicitly writing out the summation we have

$$\begin{split} f\left(x\right) &= \cos\left(x\right) \simeq & \quad \frac{f^{(0)}(x_0)}{0!} \left(x - x_0\right)^0 + \frac{f^{(1)}(x_0)}{1!} \left(x - x_0\right)^1 + \frac{f^{(2)}(x_0)}{2!} \left(x - x_0\right)^2 + \frac{f^{(3)}(x_0)}{3!} \left(x - x_0\right)^3 \\ &\quad + \frac{f^{(4)}(x_0)}{4!} \left(x - x_0\right)^4 + \frac{f^{(5)}(x_0)}{5!} \left(x - x_0\right)^5 \end{split}$$

It is apparent that the $f^{(k)}(x)$ need to be evaluated for $0 \le k \le 5$.

Then,

$$k=0 f^{(k)}(x) = f^{(0)}(x) = f(x) = \cos(x) \Rightarrow f(x_0) = f(\pi/2) = \cos(\pi/2) = 0$$

$$k=1 f^{(k)}(x) = f^{(1)}(x) = \frac{d}{dx} f(x) = \frac{d}{dx} \cos(x) = -\sin(x) \Rightarrow f^{(1)}(x_0) = f^{(1)}(\pi/2) = -\sin(\pi/2) = -1$$

$$k=2 f^{(k)}(x) = f^{(2)}(x) = \frac{d^2}{dx^2} f(x) = \frac{d}{dx} - \sin(x) = -\cos(x) \Rightarrow f^{(2)}(x_0) = f^{(2)}(\pi/2) = -\cos(\pi/2) = 0$$

$$k=3 f^{(k)}(x) = f^{(3)}(x) = \frac{d^3}{dx^3} f(x) = \frac{d}{dx} - \cos(x) = \sin(x) \Rightarrow f^{(3)}(x_0) = f^{(3)}(\pi/2) = \sin(\pi/2) = 1$$

$$k=4 f^{(k)}(x) = f^{(4)}(x) = \frac{d^4}{dx^4} f(x) = \frac{d}{dx} \sin(x) = \cos(x) \Rightarrow f^{(4)}(x_0) = f^{(4)}(\pi/2) = \cos(\pi/2) = 0$$

$$k=5 f^{(k)}(x) = f^{(5)}(x) = \frac{d^5}{dx^5} f(x) = \frac{d}{dx} \cos(x) = -\sin(x) \Rightarrow f^{(5)}(x_0) = f^{(5)}(\pi/2) = -\sin(\pi/2) = -1$$

Substituting these $f^{(k)}(x_0)$ into our series above and replacing the x_0 with $\pi/2$ we get

$$f(x) = \cos(x) \simeq \frac{0}{1} \left(x - \frac{\pi}{2}\right)^{0} + \frac{-1}{1} \left(x - \frac{\pi}{2}\right)^{1} + \frac{0}{2} \left(x - \frac{\pi}{2}\right)^{2} + \frac{1}{6} \left(x - \frac{\pi}{2}\right)^{3} + \frac{0}{24} \left(x - \frac{\pi}{2}\right)^{4} + \frac{-1}{120} \left(x - \frac{\pi}{2}\right)^{5}$$

$$= -\left(x - \frac{\pi}{2}\right)^{1} + \frac{1}{6} \left(x - \frac{\pi}{2}\right)^{3} - \frac{1}{120} \left(x - \frac{\pi}{2}\right)^{5}$$

This is the answer we seek. <u>DO NOT EXPAND</u> the $\left(x - \frac{\pi}{2}\right)^k$ terms.

This truncated Taylor series is often called a n^{th} order Taylor Polynomial, $T_n(x)$. In our example n would be 5 and so

$$T_5(x) = -\left(x - \frac{\pi}{2}\right)^1 + \frac{1}{6}\left(x - \frac{\pi}{2}\right)^3 - \frac{1}{120}\left(x - \frac{\pi}{2}\right)^5$$

Part (b) Calculate the Error in $T_5(x)$ for $\cos(\pi/6)$ about $x_0 = \pi/2$

The second part of this problem is to use this result to estimate the error in $T_5(x)$ for $\cos(\pi/6)$.

We do this by replacing the x in $T_5(x)$ with $\pi/2$ where $\pi=3.141592653587...$

Then

$$T_5\left(\frac{\pi}{6}\right) = -\left(\frac{\pi}{6} - \frac{\pi}{2}\right)^1 + \frac{1}{6}\left(\frac{\pi}{6} - \frac{\pi}{2}\right)^3 - \frac{1}{120}\left(\frac{\pi}{6} - \frac{\pi}{2}\right)^5 \approx 0.8663$$

To four significant digits after the decimal place

$$\cos(\pi/6) \approx 0.8660$$

Our error $E_5(x)$ is the difference between the actual function, $\cos(x)$ and our approximation to this function $T_5(x)$:

$$E_5\left(\frac{\pi}{6}\right) = \left|\cos\left(\frac{\pi}{6}\right) - T_5\left(\frac{\pi}{6}\right)\right| = |0.8660 - 0.8663| = 0.0003$$

Solution 2: $f(x) = \cos(x)$ about $x_0 = 0$

Calculate the first six term in the Taylor Series

Given $f(x) = \cos(x)$ and asked to determine the first six terms in the Taylor series about $x_0 = 0$. i.e.

$$f(x) = \cos(x) \approx \sum_{k=0}^{5} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 where $f^{(k)}(x) = \frac{d^k}{dx^k} f(x)$

Explicitly writing out the summation we have

$$f(x) = \cos(x) \simeq \frac{f^{(0)}(x_0)}{0!} (x - x_0)^0 + \frac{f^{(1)}(x_0)}{1!} (x - x_0)^1 + \frac{f^{(2)}(x_0)}{2!} (x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x - x_0)^3 + \frac{f^{(4)}(x_0)}{4!} (x - x_0)^4 + \frac{f^{(5)}(x_0)}{5!} (x - x_0)^5$$

It is apparent that the $f^{(k)}(x)$ need to be evaluated for $0 \le k \le 5$.

Then, k=0 $f^{(k)}(x) = f^{(0)}(x) = f(x) = \cos(x)$ $\Rightarrow f(x_0) = f(0) = \cos(0) = 1$ k=1 $f^{(k)}(x) = f^{(1)}(x) = \frac{d}{dx} f(x) = \frac{d}{dx} \cos(x) = -\sin(x)$ $\Rightarrow f^{(1)}(x_0) = f^{(1)}(0) = -\sin(0) = 0$ k=2 $f^{(k)}(x) = f^{(2)}(x) = \frac{d^2}{dx^2} f(x) = \frac{d}{dx} - \sin(x) = -\cos(x)$ $\Rightarrow f^{(2)}(x_0) = f^{(2)}(0) = -\cos(0) = -1$ k=3 $f^{(k)}(x) = f^{(3)}(x) = \frac{d^3}{dx^3} f(x) = \frac{d}{dx} - \cos(x) = \sin(x)$ $\Rightarrow f^{(3)}(x_0) = f^{(3)}(0) = \sin(0) = 0$ k=4 $f^{(k)}(x) = f^{(4)}(x) = \frac{d^4}{dx^4} f(x) = \frac{d}{dx} \sin(x) = \cos(x)$ $\Rightarrow f^{(4)}(x_0) = f^{(4)}(0) = \cos(0) = 1$ k=5 $f^{(k)}(x) = f^{(5)}(x) = \frac{d^5}{dx^5} f(x) = \frac{d}{dx} \cos(x) = -\sin(x)$ $\Rightarrow f^{(5)}(x_0) = f^{(5)}(0) = -\sin(0) = 0$

Substituting these $f^{(k)}(x_0)$ into our series above and replacing the x_0 with 0 we get

$$f(x) = \cos(x) \approx \frac{1}{1}(x-0)^{0} + \frac{0}{1}(x-0)^{1} - \frac{1}{2}(x-0)^{2} + \frac{0}{6}(x-0)^{3} + \frac{1}{24}(x-0)^{4} + \frac{0}{120}(x-0)^{5}$$

$$= 1 - \frac{1}{2}(x)^{2} + \frac{1}{24}(x)^{4}$$

This is the answer we seek.

This is the 5th order Taylor Polynomial, $T_5(x)$, for $f(x) = \cos(x)$ about $x_0 = 0$ $T_5(x) = 1 - \frac{1}{2}(x)^2 + \frac{1}{24}(x)^4$

Exercise:

Estimate the Error, $E_5(x)$, in $T_5(x)$, for $\cos(\pi/6)$ about $x_0=0$.

Solution 3: $f(x)=e^x$ about $x_0=1$

Part (a) Calculate the first six term in the Taylor Series

Given $f(x)=e^x$ and asked to determine the first six terms in the Taylor series about $x_0=1$. i.e.

$$f(x) = e^x \simeq \sum_{k=0}^{5} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 where $f^{(k)}(x) = \frac{d^k}{dx^k} f(x)$

Explicitly writing out the summation we have

$$f(x) = e^{x} \simeq \frac{f^{(0)}(x_{0})}{0!} (x - x_{0})^{0} + \frac{f^{(1)}(x_{0})}{1!} (x - x_{0})^{1} + \frac{f^{(2)}(x_{0})}{2!} (x - x_{0})^{2} + \frac{f^{(3)}(x_{0})}{3!} (x - x_{0})^{3} + \frac{f^{(4)}(x_{0})}{4!} (x - x_{0})^{4} + \frac{f^{(5)}(x_{0})}{5!} (x - x_{0})^{5}$$

It is apparent that the $f^{(k)}(x)$ need to be evaluated for $0 \le k \le 5$.

Then,
$$k=0$$
 $f^{(k)}(x) = f^{(0)}(x) = f(x) = e^x$ $\Rightarrow f(x_0) = f(1) = e^1 = e$ $k=1$ $f^{(k)}(x) = f^{(1)}(x) = \frac{d}{dx} f(x) = \frac{d}{dx} e^x = e^x$ $\Rightarrow f^{(1)}(x_0) = f^{(1)}(1) = e^1 = e$ $k=2$ $f^{(k)}(x) = f^{(2)}(x) = \frac{d^2}{dx^2} f(x) = \frac{d}{dx} e^x = e^x$ $\Rightarrow f^{(2)}(x_0) = f^{(2)}(1) = e^1 = e$ $k=3$ $f^{(k)}(x) = f^{(3)}(x) = \frac{d^3}{dx^3} f(x) = \frac{d}{dx} e^x = e^x$ $\Rightarrow f^{(3)}(x_0) = f^{(3)}(1) = e^1 = e$ $k=4$ $f^{(k)}(x) = f^{(4)}(x) = \frac{d^4}{dx^4} f(x) = \frac{d}{dx} e^x = e^x$ $\Rightarrow f^{(4)}(x_0) = f^{(4)}(1) = e^1 = e$ $k=5$ $f^{(k)}(x) = f^{(5)}(x) = \frac{d^5}{dx^5} f(x) = \frac{d}{dx} e^x = e^x$ $\Rightarrow f^{(5)}(x_0) = f^{(5)}(1) = e^1 = e$

Substituting these $f^{(k)}(x_0)$ into our series above and replacing the x_0 with 1 we get

$$f(x) = e^{x} \simeq \frac{e}{1}(x-1)^{0} + \frac{e}{1}(x-1)^{1} + \frac{e}{2}(x-1)^{2} + \frac{e}{6}(x-1)^{3} + \frac{e}{24}(x-1)^{4} + \frac{e}{120}(x-1)^{5}$$

$$= e\left(1 + (x-1) + \frac{1}{2}(x-1)^{2} + \frac{1}{6}(x-1)^{3} + \frac{1}{24}(x-1)^{4} + \frac{1}{120}(x-1)^{5}\right)$$

This is the answer we seek. As before DO NOT EXPAND the $(x-1)^n$ terms.

This is the 5th order Taylor Polynomial,
$$T_5(x)$$
, for $f(x) = e^x$ about $x_0 = 1$
$$T_5(x) = e \left(1 + (x-1) + \frac{1}{2}(x-1)^2 + \frac{1}{6}(x-1)^3 + \frac{1}{24}(x-1)^4 + \frac{1}{120}(x-1)^5 \right)$$

Part (b) : Calculate the Error in $T_5(x)$ for e^2 about $x_0=1$

The second part of this problem is to use this result to estimate the error in $T_5(x)$ for e^2 .

We do this by replacing the x in $T_5(x)$ with 2.

Then

$$T_{5}(x) = e \left(1 + (2-1) + \frac{1}{2} (2-1)^{2} + \frac{1}{6} (2-1)^{3} + \frac{1}{24} (2-1)^{4} + \frac{1}{120} (2-1)^{5} \right)$$

$$= e \left(1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} \right)$$

$$\approx 2.716666 e$$

$$\approx 7.3847$$

To four significant digits after the decimal place

$$e^2 \simeq 7.3891$$

Our error $E_5(x)$ is the difference between the actual function, e^2 and our approximation to this function $T_5(x)$:

$$E_5(2) = |e^2 - T_5(2)| = |7.3891 - 7.3847| = 0.005$$

Solution 4: $f(x)=\ln|x|$ about $x_0=1$

Part (a) Calculate the first six term in the Taylor Series

Given $f(x) = \ln |x|$ and asked to determine the first six terms in the Taylor series about $x_0 = 1$. i.e.

$$f(x) = e^x = \sum_{k=0}^{5} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 where $f^{(k)}(x) = \frac{d^k}{dx^k} f(x)$

Explicitly writing out the summation we have

$$\begin{split} f\left(x\right) = & \ln|x| \simeq \quad \frac{f^{(0)}(x_0)}{0!} \left(x - x_0\right)^0 + \frac{f^{(1)}(x_0)}{1!} \left(x - x_0\right)^1 + \frac{f^{(2)}(x_0)}{2!} \left(x - x_0\right)^2 + \frac{f^{(3)}(x_0)}{3!} \left(x - x_0\right)^3 \\ & \quad + \frac{f^{(4)}(x_0)}{4!} \left(x - x_0\right)^4 + \frac{f^{(5)}(x_0)}{5!} \left(x - x_0\right)^5 \end{split}$$

It is apparent that the $f^{(k)}(x)$ need to be evaluated for $0 \le k \le 5$.

Then,
$$k=0$$
 $f^{(k)}(x) = f^{(0)}(x) = f(x) = \ln |x|$ $\Rightarrow f(x_0) = f(1) = \ln |1| = 0$ $k=1$ $f^{(k)}(x) = f^{(1)}(x) = \frac{d}{dx} f(x) = \frac{d}{dx} \ln |x| = \frac{1}{x}$ $\Rightarrow f^{(1)}(x_0) = f^{(1)}(1) = \frac{1}{1} = 1$ $k=2$ $f^{(k)}(x) = f^{(2)}(x) = \frac{d^2}{dx^2} f(x) = \frac{d}{dx} \frac{1}{x} = -\frac{1}{x^2}$ $\Rightarrow f^{(2)}(x_0) = f^{(2)}(1) = -\frac{1}{1^2} = -1$ $k=3$ $f^{(k)}(x) = f^{(3)}(x) = \frac{d^3}{dx^3} f(x) = \frac{d}{dx} \left(-\frac{1}{x^2} \right) = \frac{2}{x^3}$ $\Rightarrow f^{(3)}(x_0) = f^{(3)}(1) = \frac{2}{1^3} = 2$ $k=4$ $f^{(k)}(x) = f^{(4)}(x) = \frac{d^4}{dx^4} f(x) = \frac{d}{dx} \frac{2}{x^3} = -\frac{6}{x^4}$ $\Rightarrow f^{(4)}(x_0) = f^{(4)}(1) = -\frac{6}{1^4} = -6$ $k=5$ $f^{(k)}(x) = f^{(5)}(x) = \frac{d^5}{dx^5} f(x) = \frac{d}{dx} \left(-\frac{6}{x^4} \right) = \frac{24}{x^5}$ $\Rightarrow f^{(5)}(x_0) = f^{(5)}(1) = \frac{24}{1^5} = 24$

Substituting these $f^{(k)}(x_0)$ into our series above and replacing the x_0 with 1 we get

$$f(x) = \ln|x| \simeq \frac{0}{1}(x-1)^{0} + \frac{1}{1}(x-1)^{1} - \frac{1}{2}(x-1)^{2} + \frac{2}{6}(x-1)^{3} - \frac{6}{24}(x-1)^{4} + \frac{24}{120}(x-1)^{5}$$

$$= (x-1) - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \frac{1}{4}(x-1)^{4} + \frac{1}{5}(x-1)^{5}$$

This is the answer we seek. As before DO NOT EXPAND the $(x-1)^n$ terms.

This is the 5th order Taylor Polynomial, $T_5(x)$, for $f(x) = \ln|x|$ about $x_0 = 1$ $T_5(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5$