

Principles of Autonomy and Decision Making

(AI_PrincAutonomy_2808)

Week 4: Markov Decision Processes (MDPs)

Team:

- · Prof. Dr. rer. nat. Lenz Belzner
- Chidvilas Karpenahalli Ramakrishna, M.Eng.
- · Adithya Mohan, M.Eng.
- Zahra Zeinaly, Ph.D.

Week 3 Recap: Uninformed and Informed Search

- Uninformed Search
 - Depth-first search (DFS)
 - No cost consideration
 - Breadth-first search (BFS)
 - No cost consideration
 - Uniform cost search (UCS)
 - Cost is considered
- Informed Search
 - Greedy search
 - Heuristic function
 - A* search
 - Heuristic + cost function
- What have we not considered?
 - Uncertainty
 - The above algorithms work in deterministic environments

Fig. 1 A* algorithm

Decision Making Under Uncertainty

- Deterministic search:
 - Same input always produces the same output
 - No uncertainty in outcomes i.e. P(s'|s,a) = 1
 - Example: Frozen Lake-v1 without randomness (is_slippery=False)
- Non-deterministic search:
 - Same input does not always produce the same output
 - Uncertainty in outcomes i.e. $P(s'|s,a) \neq 1$
 - Example: Frozen Lake-v1 with randomness (is_slippery=True)
- How do we formulate non-deterministic search problems?
 - Markov Decision Process (MDPs)

Fig. 1 Probabilisitc Frozen lake with consecutive downward actions

Markov Decision Processes (MDPs)

4

Definition:

"MDP is a mathematical framework used for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker. "

Markov property:

- Action outcomes depend only on the current state i.e. history is irrelevant
- $P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$
- All relevant information of history is embedded in the current state s_t

Fig. 1 Andrey Markov

Markov Decision Processes (MDPs)

- Components of an MDP:
 - States:
 - *s* ∈ *S*
 - A Start state s_0
 - A Terminal state (optional)
 - Actions:
 - \bullet $a \in A$
 - Reward function:
 - R(s, a, s') or R(s, a)
 - In MDPs, costs and/or heuristics are called rewards
 - "Living reward" and "Termination" rewards
 - Transition function:
 - Here, T(s, a, s') = P(s'|s, a)
 - Models the uncertainty

Fig. 1 Agent-environment interaction cycle

MDP: Rewards

- Rewards:
 - \blacksquare R(s,a,s')
 - Positive, negative or zero
 - "Living" reward and "termination" reward
- Rewards influence the outcome
- Exercise:
 - Let's consider a simple grid-world as shown in Fig. 1 with a start state, a goal state and some hell-states
 - Aim: To gather the most rewards possible before termination
 - Decide a path in the 5x5 grid based on the following reward structures. Which path would you take?
 - Reward structure 1: goal=+10, hell-state=-1
 - Reward structure 2: goal=+10, living reward=-0.01, hell-state=-1
 - Reward structure 3: goal=+10, living reward=-3, hell-state=-1

Fig. 1 A simple grid-world

MDP: Transition Function

- Definition:
 - "A transition function in an MDP describes the probability of moving from one state to another state given an action. It quantifies the dynamics of the environment. "
 - Also called as the "model" or the "dynamics"
- A transition is denoted as (s, a, s')
- A transition function is denoted as T(s, a, s')
 - T(s,a,s') = P(s'|s,a)
- After transition, the agent gets a reward R(s, a, s')

Fig 1. MDP search tree

MDP: Policy

- Definition:
 - "A policy is a strategy used by an agent to decide the action to take in each state of an environment.
- Policies differentiate search problems from MDPs
 - A plan is a sequence of actions. It works in a search problem as everything is deterministic.
 - We cannot have a plan in MDP because it may work or may not work
 - In MDPs something analogous to a plan is what we call as a "policy"
- For an MDP, we need an optimal policy denoted as $\pi^*: S \to A$
- The objective of a policy is to maximize the cumulative reward the agent receives over time
- Policy can be
 - Deterministic (one action for a state)
 - Stochastic (action sampled from a distribution)

Fig 1. Agent-environment interaction cycle

Utilities of Sequences

- Utility definition:
 - "The cumulative reward that an agent receives through a sequence of actions, states, and transitions."
- We usually discount the rewards over time as we prefer immediate rewards over future rewards discount factor (γ)
 - Stochastic environment
 - We use an exponential decay of rewards
- Exercise 1: Which sequence should the agent choose if the reward sequence is [1,2,3] or [3,2,1]?
- Exercise 2: Calculate the discounted cumulative reward from state $s_{(4,2)}$ following a policy π highlighted in yellow for the grid-world shown in Fig. 1
 - Let $\gamma = 0.1$, T(s, a, s') = 1 and the reward structure be goal=+100, living reward=-1, hell-state=-10?

Fig. 1 A simple grid-world

Solving MDPs

4

- What do we want?
 - Input: MDP
 - Output: An optimal policy $\pi^*(s)$
- Definition of optimal quantities:
 - Optimal value of a state $V^*(s)$: Expected utility starting in state s and acting optimally
 - Optimal Q-value of a state-action pair $Q^*(s, a)$: Expected utility starting in state s and taking an action a and acting optimally thereafter
 - Optimal policy $\pi^*(s)$: Optimal strategy from state s

Fig 1. MDP search tree

Solving MDPs: Value of a State

- What is the optimal value $V^*(s)$?
 - $V^*(s) = max_a Q^*(s, a)$

•
$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

Bellman equation:

•
$$V^*(s) = max_a \sum_{s'} P(s'|a,s) [R(s,a,s') + \gamma V^*(s')]$$

- How to solve the Bellman equation?
 - Value-iteration and policy-iteration (week 5)
 - Dynamic programming (week 6)
 - Reinforcement Learning (week 8 to week 11)

Fig 1. MDP search tree