

EXAMPLE OF BISECTION AND FALSE POSITION METHODS

Raqeebir Rab

BISECTION METHODS

Bisection method Steps (Rule)				
Step-1:	Find points a and b such that $a < b$ and $f(a) \cdot f(b) < 0$.			
Step-2:	Take the interval [a, b] and find next value $x0=(a+b)/2$			
Step-3:	If $f(x0)=0$ then $x0$ is an exact root, else if $f(\alpha)\cdot f(x0)<0$ then $b=x0$, else if $f(x0)\cdot f(b)<0$ then $\alpha=x0$.			
Step-4:	Repeat steps 2 & 3 until f(xi)=0 or f(xi) ≤Accuracy			

EXAMPLE OF BISECTION METHOD

Find a root of an equation $f(x) = x^3 - x - 1$ using Bisection method for the interval [0,2] and given predefined relative error $\in_r = 0.01$

Solution:

1st iteration:

Here
$$f(1) = -1 < 0$$
 and $f(2) = 5 > 0$

: Now, Root lies between 1 and 2

$$x_0 = \frac{1+2}{2} = 1.5$$

$$f(x_0) = f(1.5) = 0.875 > 0$$

relative error =
$$\left| \frac{1.5-1}{1.5} \right| = 0.33$$

2^{nd} iteration:

Here
$$f(1) = -1 < 0$$
 and $f(1.5) = 0.875 > 0$

 \therefore Now, Root lies between 1 and 1.5

$$x_1 = \frac{1+1.5}{2} = 1.25$$

$$f(x_1) = f(1.25) = -0.29688 < 0$$

relative error =
$$\left| \frac{1.25 - 1.5}{1.25} \right| = 0.2$$

 3^{rd} iteration:

Here
$$f(1.25) = -0.29688 < 0$$
 and $f(1.5) = 0.875 > 0$

 \therefore Now, Root lies between 1.25 and 1.5

$$x_2 = \frac{1.25 + 1.5}{2} = 1.375$$

$$f(x_2) = f(1.375) = 0.22461 > 0$$

Relative error =
$$\left| \frac{1.375 - 1.25}{1.375} \right| = 0.09$$

4th iteration:

Here
$$f(1.25) = -0.29688 < 0$$
 and $f(1.375) = 0.22461 > 0$

 \therefore Now, Root lies between 1.25 and 1.375

$$x_3 = \frac{1.25 + 1.375}{2} = 1.3125$$

$$f(x_3) = f(1.3125) = -0.05151 < 0$$

Relative error =
$$\left| \frac{1.3125 - .375}{1.3125} \right| = 0.04$$

 5^{th} iteration:

Here
$$f(1.3125) = -0.05151 < 0$$
 and $f(1.375) = 0.22461 > 0$

∴ Now, Root lies between 1.3125 and 1.375

$$x_4 = \frac{1.3125 + 1.375}{2} = 1.34375$$

$$f(x_4) = f(1.34375) = 0.08261 > 0$$

Relative error =
$$\left| \frac{1.34375}{1.34375} \right| = 0.02$$

6th iteration:

Here
$$f(1.3125) = -0.05151 < 0$$
 and $f(1.34375) = 0.08261 > 0$

 \therefore Now, Root lies between 1.3125 and 1.34375

$$x_5 = \frac{1.3125 + 1.34375}{2} = 1.32812$$

$$f(x_5)=f(1.32812) = 0.01458 > 0$$

Relative error =
$$\left| \frac{1.32812 \quad .3437}{1.32812} \right| = 0.01$$

7th iteration:

Here f(1.3125) = -0.05151 < 0 and f(1.32812) = 0.01458 > 0 ∴ Now, Root lies between 1.3125 and 1.32812

$$x_6 = \frac{1.3125 + 1.32812}{2} = 1.32031$$

$$f(x_6) = f(1.32031) = -0.01871 < 0$$

Relative error =
$$\left| \frac{1.32031 - 1.32812}{1.32031} \right| = 0.005$$

Relative error is <0.01 after 7^{th} iteration, so approximation root is: 1.32031 Iteration Table for Bisection Method:

itr	а	f(a)	Ь	f(b)	$c = \frac{a+b}{2}$	f(c)	Update	Relative error
1	1	-1	2	5	1.5	0.875	b=c	0.33
2	1	-1	1.5	0.875	1.25	-0.29688	a=c	0.2
3	1.25	-0.29688	1.5	0.875	1.375	0.22461	b=c	0.09
4	1.25	-0.29688	1.375	0.22461	1.3125	-0.05151	a=c	0.04
5	1.3125	-0.05151	1.375	0.22461	1.34375	0.08261	b=c	0.02
6	1.3125	-0.05151	1.34375	0.08261	1.32812	0.01458	b=c	0.01
7	1.3125	-0.05151	1.32812	0.01458	1.32031	-0.01871	a=c	0.005

FALSE POSITION/REGULA FALSI METHOD

False Position method (regula falsi method) Steps				
Step-1:	Find points x0 and x1 such			
	that $x0 \le x1$ and $f(x0) \cdot f(x1) \le 0$.			
Step-2:	Take the interval $[x0, x1]$ and			
	find next value $x2 = x0 - (f(x0)(x1 - x0)) / (f(x1) - f(x0))$			
	(×O))			
Step-3:	If $f(x2)=0$ then $x2$ is an exact root,			
	else if $f(x0) \cdot f(x2) < 0$ then $x1 = x2$,			
	else if $f(x2) \cdot f(x1) \le 0$ then $x0 = x2$.			
Step-4:	Repeat steps 2 & 3 until $f(xi)=0$ or $ f(xi) \le Accuracy$			

EXAMPLE OF FALSE POSITION METHOD

Find a root of an equation $f(x) = x^3 - x - 1$ using False Position method for the interval [0,2] and given predefined relative error $\in_r = 0.01$

Solution:

 1^{st} iteration : Here f(1) = -1 < 0 and f(2) = 5 > 0

 \therefore Now, Root lies between x0=1 and x1=2

$$x2 = x0 - f(x0) \cdot (x1 - x0)/f(x1) - f(x0)$$

$$x2 = 1 - (-1) \cdot 2 - 15 - (-1)$$

$$x2 = 1.16667$$

$$f(x2) = f(1.16667) = -0.5787 < 0$$

Relative error =
$$\left| \frac{1.16667 - 1}{1.16667} \right| = 0.14$$

2^{nd} iteration:

Here
$$f(1.16667) = -0.5787 < 0$$
 and $f(2) = 5 > 0$
 \therefore Now, Root lies between $x0 = 1.16667$ and $x1 = 2$
 $x3 = x0 - f(x0) \cdot (x1 - x0)/f(x1) - f(x0)$
 $x3 = 1.16667 - (-0.5787) \cdot 2 - 1.166675 - (-0.5787)$
 $x3 = 1.25311$
 $f(x3) = f(1.25311) = -0.28536 < 0$
Relative error $= \left| \frac{1.25311 - 1.166675}{1.25311} \right| = 0.06$

3^{rd} iteration:

Here
$$f(1.25311) = -0.28536 < 0$$
 and $f(2) = 5 > 0$

∴ Now, Root lies between
$$x0 = 1.25311$$
 and $x1 = 2$
 $x4 = x0 - f(x0) \cdot (x1 - x0)/f(x1) - f(x0)$
 $x4 = 1.25311 - (-0.28536) \cdot 2 - 1.253115 - (-0.28536)$
 $x4 = 1.29344$
 $f(x4) = f(1.29344) = -0.12954 < 0$

Relative error =
$$\left| \frac{1.29344 \quad .25311}{1.29344} \right| = 0.03$$

Relative error is <0.01 after 5^{th} iteration, so approximation root is: 1.31899 lteration Table for False Position Method:

n	x0	f(x0)	<i>x</i> 1	f(x1)	<i>x</i> 2	f(x2)	Update	Relative Error
1	1	-1	2	5	1.16667	-0.5787	x0=x2	0.14
2	1.16667	-0.5787	2	5	1.25311	-0.28536	x0=x2	0.06
3	1.25311	-0.28536	2	5	1.29344	-0.12954	x0=x2	0.03
4	1.29344	-0.12954	2	5	1.31128	-0.05659	x0=x2	0.01
5	1.31128	-0.05659	2	5	1.31899	-0.0243	x0=x2	0.005

GRAPHICAL REPRESENTATION OF THE POLYNOMIAL $f(x) = x^3 - x - 1$

