

Predicting Who Will Seek Mental Health Treatment in the Tech Workplace

Kevin Hahn

May is Mental Health Month

Mental Health Facts

Fact: 43.8 million adults experience mental illness in a given year.

Context

- Prevalence
 - National Alliance on Mental Illness (NAMI)
 and National Institute of Mental Health (NIMH)
 reported that 60% of adults with mental illness
 received no treatment services in the past year
 - In 2015, estimated 43.4 million (17.9% of U.S. adults) had a mental illness (NIMH, 2015)

Context

- Impact
 - CDC (2017): From 1981 to 2015, suicide is tenth leading cause of death for all adults
 - Insel (2008): In 2002 alone, Serious Mental Illness cost \$317.6 billion in disability benefits, healthcare expenditures, and lost earnings

Context

- Impact in the workplace (Mental Health America, 2017)
 - Depression as most common and costly disorder
 - Employees may
 not seek out
 treatment due to
 fear of effect on job

Dataset

- Open Sourcing Mental Illness (OSMI) 2014 Mental Health in Tech Survey
 - Believed to be largest survey on mental health in tech industry at that time
 - Measures "attitudes toward mental health and frequency of mental health disorders in the tech workplace"

Research Question

What factors predict whether tech employees will seek mental health services?

Variables

	Timestamp	Age	Gender	Country	State	Self- Employed	Family History	Work Interfere	Treatment
Data Type	Timestamp	Integer	String	String	String	Binary	Binary	Categorical	Binary
Has NaNs?					Yes	Yes			
Cleaned?		Yes	No*					No*	
N	1259	1259	1259	1259	744	1241	1259	995	1259

Variables

	Number Employees	Remote Work	Tech Company	Benefits	Care Options	Wellness Program	Seek Help	Anonymity	Leave
Data Type	Categorical	Binary	Binary	Categorical	Categorical	Categorical	Categorical	Categorical	Categorical
N	1259	1259	1259	1259	1259	1259	1259	1259	1259

	MH Consequences	PH Consequences	Coworkers	Supervisor	MH Interview	PH Interview	Mental vs. Physical	Observed Consequences	Comments
Data Type	Categorical	Categorical	Categorical	Categorical	Categorical	Categorical	Categorical	Binary	String
Has NaNs?									Yes
N	1259	1259	1259	1259	1259	1259	1259	1259	164

Initial Model

- N = 989
 - Dropped observations with ages below 18 and over 200
 - Dropped observations containing NaNs (work_interfere)
- Features = 22
 - Dropped features with highly imbalanced classes (Gender, Country, self_employed)
 - Dropped features with high frequency of missing data (US State, Comments)
 - Dropped Timestamp
 - Added 2 engineered features (US/non-US, Age < 40)</p>
- Outcome = Have you sought treatment for a mental health condition? (yes/no)

Initial Model

- Nobservations = 989, p predictors = 22
- Applied seven classifier methods:
 - Logistic Regression (LR)
 - Linear Discriminant Analysis (LDA)
 - K-Nearest Neighbor Classifier (KNN)
 - Decision Tree Classifier (DTC)
 - Random Forest Classifier (RFC)
 - Naive Bayes (NB)
 - Support Vector Machines Classifier (SVM)
- Used 10 k-folds cross-validation with mean accuracy (standard deviation accuracy)

```
LR: 0.767460 (0.044854)
LDA: 0.771490 (0.044511)
KNN: 0.689579 (0.032945)
DTC: 0.696650 (0.047240)
RFC: 0.739167 (0.029265)
NB: 0.753278 (0.037355)
SVM: 0.758328 (0.040090)
```

Initial Model

Revised Initial Model

- *N* = 1251
 - Removed work_interfere feature which increased N
- Features = 21
 - Dropped work_interfere feature (264 N/As):
 - If you have a mental health condition, do you feel that it interferes with your work? (Never, Rarely, Sometimes, Often)
 - Item is confusing and potentially misleading
 - Another way of stating outcome variable, or confirming participant mental illness?
- Outcome = Have you sought treatment for a mental health condition? (yes/no)

Revised Initial Model

Feature Reduction

Reduced-Features Model

- N = 1259
 - Maximum N: Used only features that all participants answered
- Features = 6
 - (1) Number of employees, (2) ease of taking MH leave,
 - (3) knowledge about available MH care options, (4) MH benefits,
 - (5) availability of workplace wellness program, (6) employerprovided resources to seek help
 - Includes generally "actionable" features (e.g., employee education, workplace factors)
- Outcome = Have you sought treatment for a mental health condition?

Reduced-Features Model

Boosting Models

Hyperparameter Tuning

- Tuned select classifiers in reduced-features model:
 - Logistic Regression
 - Random Forest
 - SVM Classifier
- Minimal increases in performance
- Kept Logit, Naive Bayes, and SVM Classifier for final model

Comparison of Initial, Revised, and Reduced-Features Models

Test Group vs. Full Dataset

Outcome

The size of the organization, ease of taking leave, employees' knowledge about available mental health care options, availability of mental health benefits, availability of a workplace wellness program, and employee-provided mental health resources may predict which tech employees will seek mental health services with approximately 60-65% accuracy.

Methodological Concerns

- Directionality/Causality
 - Does seeking mental health services predict having workplace benefits? Vice versa?
- Survey Items
 - Comments from participants about needing N/A or I don't Know for certain items (e.g., family history)
 - Words used interchangeably: Condition, Diagnosis, Illness

Extensions

- Compare to OSMI's 2016 dataset (data collection still in progress!)
 - Validate model against similar outcome variable
 - Correlate responses using Likert-type scales
- Perform Text Analysis
 - Employ other text analyses (e.g., n-grams, NLP)
 - Determine how text supports or fails to support model

Conclusion

- Providing employee education about mental health care options and offering a workplace wellness program may predict tech employees' behaviors to seek mental health treatment
- Other factors such as the size of the organization and availability of mental health benefits may also predict which tech employees will seek mental health treatment
- These findings may or may not be representative for employees in other fields

Questions?

Predicting Who Will Seek Mental Health Treatment in the Tech Workplace

https://github.com/KevinHahnMTBC/
Mental-Health-and-Tech