## Cuestión de tiempo

Alberto Almagro Juan Carlos Llamas Jaime Martínez Santiago Mourenza Pedro Palacios Enrique Rey

#### Resumen

En este estudio analizamos tanto teóricamente como experimentalmente la eficiencia de dos algoritmos que resuelven el problema 316 - Racha afortunada, uno de ellos con solución TLE (Time Limit Exceeded) y el otro AC (Accepted).

### 1. Análisis teórico

#### 1.1. Solución ineficiente

Algoritmo 1: Solución ineficiente (TLE)

```
void resolverCaso() {
    int lista[100000]; int cont;
    cin >> cont;
    for (int i = 0; i < cont; i++)</pre>
        cin >> lista[i];
    int max = 0, p, q;
    for (int i = 0; i < cont; i++) {</pre>
        for (int j = i; j < cont; j++) {
             int suma = 0;
            for (int k = i; k <= j; k++) {</pre>
                 suma += lista[k];
                   (suma > max) && (lista[i] != 0) &&
                   (lista[j] != 0) ){
                 max = suma; p = i; q = j;
            }
        }
    }
    cout << p + 1 << " " << q + 1 << endl;
}
```

Veamos a que orden pertenece T(n), el orden del algoritmo, cuyo tamaño se mide en n := cont:

$$T(n) \in \Theta\left(\sum_{i=0}^{n-1} 1 + \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1\right) = \Theta\left(n + \frac{1}{6}n\left(n^2 + 3n + 2\right)\right) = \Theta\left(n^3\right)$$

Por tanto, el algoritmo ineficiente tiene coste cúbico, muy superior al lineal esperado por el juez, por lo que obtenemos el resultado TLE.

#### 1.2. Solución eficiente

Algoritmo 2: Solución eficiente (AC)

```
void resolverCaso() {
    int cont, num, ini = 1, fin = cont;
    int i, f, hasta = -10001, hasta2 = -10001;
    cin >> cont;
    for (int j = 0; j < cont; j++) {</pre>
        cin >> num;
        if (hasta <= 0) {</pre>
             hasta = num; fin = ini = j + 1;
        } else {
             hasta += num; fin++;
        } if (hasta2 < hasta) {</pre>
             hasta2 = hasta; i = ini; f = fin;
                     (fin - f < ini - i) &&
        } else if(
                     (hasta == hasta2) ) {
             i = ini; f = fin;
    cout << i << " " << f << endl;
}
```

Veamos a que orden pertenece T(n), el orden del algoritmo, cuyo tamaño se mide en n := cont:

$$T(n) \in \Theta\left(\sum_{i=0}^{n-1} 1\right) = \Theta(n)$$

Por tanto, el algoritmo eficiente tiene coste lineal, lo esperado por el juez, por lo que obtenemos el resultado AC.

# 2. Análisis experimental

Hemos generado vectores aleatorios de tamaño  $n \in \{100i: 1 \le i \le 20\}$  y hemos ejecutado ambos algoritmos con 5 repeticiones para eliminar posible ruido estadístico. Los datos obtenidos son los siguientes:

| Tamaño del vector | Tiempo eficiente (ms) | Tiempo ineficiente (ms) |
|-------------------|-----------------------|-------------------------|
| 100               | 0.021842              | 0.293704                |
| 200               | 0.015466              | 1.94641                 |
| 300               | 0.020868              | 6.27136                 |
| 400               | 0.026655              | 14.7729                 |
| 500               | 0.032554              | 35.7921                 |
| 600               | 0.040884              | 62.5808                 |
| 700               | 0.044481              | 89.6352                 |
| 800               | 0.050529              | 123.741                 |
| 900               | 0.058400              | 165.654                 |
| 1000              | 0.063282              | 220.49                  |
| 1100              | 0.070667              | 294.425                 |
| 1200              | 0.076716              | 380.805                 |
| 1300              | 0.080629              | 482.429                 |
| 1400              | 0.100300              | 600.234                 |
| 1500              | 0.094642              | 738.071                 |
| 1600              | 0.100410              | 901.872                 |
| 1700              | 0.119105              | 1071.45                 |
| 1800              | 0.112296              | 1274.85                 |
| 1900              | 0.147598              | 1523.1                  |
| 2000              | 0.123992              | 1738.03                 |

Figura 1: Tiempo de ejecución algoritmo eficiente



Figura 2: Tiempo de ejecución algoritmo ineficiente



Figura 3: Comparación entre los tiempos de ejecución



## 3. Conclusión

Como muestran los datos, el tiempo de ejecución del algoritmo cúbico crece radicalmente más rápido que el tiempo de ejecución del algoritmo lineal a medida que crece el tamaño del vector de entrada. Por tanto, queda patente la importancia de la obtención de algoritmos eficientes.