256M LVTTL interface SDRAM 100 MHz 1-Mword × 64-bit × 4-bank/2-Mword × 32-bit × 4-bank PC/100 SDRAM

HITACHI

ADE-203-1014C (Z) Rev. 1.0 Oct. 1, 1999

Description

The Hitachi HM5225645F is a 256-Mbit SDRAM organized as 1048576-word × 64-bit × 4-bank. The Hitachi HM5225325F is a 256-Mbit SDRAM organized as 2097152-word × 32-bit × 4-bank. All inputs and outputs are referred to the rising edge of the clock input. It is packaged in standard 108 bump BGA.

Features

- Single chip wide bit solution (\times 64/ \times 32)
- 3.3 V power supply
- Clock frequency: 100 MHz (max)
- LVTTL interface
- Extremely small foot print: 1.27 mm pitch
 - Package: BGA (BP-108)
- 4 banks can operate simultaneously and independently
- Burst read/write operation and burst read/single write operation capability
- Programmable burst length: 4/8/full page
- 2 variations of burst sequence
 - Sequential (BL = 4/8/full page)
 - Interleave (BL = 4/8)
- Programmable CAS latency: 2/3
- Byte control by DQMB

- Refresh cycles: 4096 refresh cycles/64 ms
- 2 variations of refresh
 - Auto refresh
 - Self refresh
- Full page burst length capability
 - Sequential burst
 - Burst stop capability

Ordering Information

Type No.	Frequency	CAS latency	Package
HM5225645FBP-B60*	100 MHz	3	14 mm × 22 mm 108 bump BGA (BP-108)
HM5225325FBP-B60*	100 MHz	3	

Note: 66 MHz operation at $\overline{\text{CAS}}$ latency = 2.

Pin Arrangement (HM5225645F)

Pin Description (HM5225645F)

Pin name	Function				
A0 to A13	Address input				
	Row address A0 to A11				
	Column address A0 to A7				
	Bank select address A12/A13 (BS)				
DQ0 to DQ63	Data-input/output				
CS	Chip select				
RAS	Row address strobe command				
CAS	Column address strobe command				
WE	Write enable				
DQMB0 to DQMB7	Byte data mask*1				
CLK	Clock input				
CKE	Clock enable				
V _{cc}	Power supply				
V _{SS}	Ground				
Open	Open*2				

Note: 1. DQMB0: DQ0 to DQ7

DQMB1: DQ8 to DQ15 DQMB2: DQ16 to DQ23 DQMB3: DQ24 to DQ31 DQMB4: DQ32 to DQ39 DQMB5: DQ40 to DQ47 DQMB6: DQ48 to DQ55 DQMB7: DQ56 to DQ63

2. Don't connect. Internally connected with die.

Pin Arrangement (HM5225325F)

Pin Description (HM5225325F)

Pin name	Function				
A0 to A13	Address input				
	Row address A0 to A11				
	Column address A0 to A8				
	Bank select address A12/A13 (BS)				
DQ0 to DQ31	Data-input/output				
CS	Chip select				
RAS	Row address strobe command				
CAS	Column address strobe command				
WE	Write enable				
DQMB0 to DQMB3	Byte data mask*1				
CLK	Clock input				
CKE	Clock enable				
V _{cc}	Power supply				
V _{ss}	Ground				
Open	Open*2				
NC	No connection*3				

Note: 1. DQMB0: DQ0 to DQ7

DQMB1: DQ8 to DQ15 DQMB2: DQ16 to DQ23 DQMB3: DQ24 to DQ31

2. Don't connect. Internally connected with die.

3. Not internally connected with die.

Block Diagram (HM5225645F)

Block Diagram (HM5225325F)

Power-up Sequence and Initialization Sequence

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Note
Voltage on any pin relative to V_{ss}	$V_{\scriptscriptstyle T}$	-0.5 to V _{cc} + 0.5 (≤ 4.6 (max))	V	1
Supply voltage relative to V _{SS}	V _{cc}	-0.5 to +4.6	V	1
Short circuit output current	lout	50	mA	
Operating temperature	Topr	0 to +70 (Tj max = 110)	°C	
Storage temperature	Tstg	-55 to +125	°C	

Note: 1. Respect to V_{ss}

DC Operating Conditions (Tcase = 0 to $+70^{\circ}$ C [Tj max = 110° C])

Parameter	Symbol	Min	Max	Unit	Notes
Supply voltage	V _{cc}	3.0	3.6	V	1, 2
	V_{ss}	0	0	V	3
Input high voltage	V_{IH}	2.0	$V_{cc} + 0.3$	V	1, 4
Input low voltage	V _{IL}	-0.3	0.8	V	1, 5

Notes: 1. All voltage referred to $V_{\rm SS}$

- 2. The supply voltage with all V_{cc} pins must be on the same level.
- 3. The supply voltage with all $V_{\mbox{\scriptsize SS}}$ pins must be on the same level.
- 4. V_{IH} (max) = V_{CC} + 2.0 V for pulse width \leq 3 ns at V_{CC} .
- 5. V_{IL} (min) = $V_{SS} 2.0$ V for pulse width ≤ 3 ns at V_{SS} .

DC Characteristics

(Tcase = 0 to 70°C [Tj max = 110°C]), V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0 V) (HM5225645F)

HM5225645F

		-B60				
Parameter	Symbol	Min	Max	Unit	Test conditions	Notes
Operating current (CAS latency = 2)	1		200	mA	Burst length = 1	1, 2, 3
• ,	I _{CC1}				t _{RC} = min	
(CAS latency = 3)	I _{CC1}	_	220	mA		
Standby current in power down	I _{CC2P}	_	12	mA	$CKE = V_{IL},$ $t_{CK} = 12 \text{ ns}$	6
Standby current in power down (input signal stable)	I _{CC2PS}	_	8	mA	$CKE = V_{IL},t_{CK} = \infty$	7
Standby current in non power down	I _{CC2N}	_	64	mA	CKE, $\overline{CS} = V_{IH}$, $t_{CK} = 12 \text{ ns}$	4
Standby current in non power down (input signal stable)	I _{CC2NS}	_	36	mA	$CKE = V_{IH},t_{CK} = \infty$	9
Active standby current in power down	I _{CC3P}		16	mA	$CKE = V_{IL},$ $t_{CK} = 12 \text{ ns}$	1, 2, 6
Active standby current in power down (input signal stable)	I _{CC3PS}	_	12	mA	$CKE = V_{IL},t_{CK} = \infty$	2, 7
Active standby current in non power down	I _{CC3N}	_	80	mA	CKE, $\overline{\text{CS}} = \text{V}_{\text{IH}}$, $\text{t}_{\text{CK}} = 12 \text{ ns}$	1, 2, 4
Active standby current in non power down (input signal stable)	I _{CC3NS}	_	60	mA	$CKE = V_{IH},t_{CK} = \infty$	2, 9
Burst operating current						
$(\overline{CAS} \text{latency} = 2)$	I _{CC4}		220	mA	$t_{CK} = min, BL = 4$	1, 2, 5
$(\overline{CAS} \text{latency} = 3)$	I _{CC4}	_	270	mA		
Refresh current	I _{CC5}	_	380	mA	$t_{RC} = min$	3
Self refresh current	I _{CC6}		4	mA	$V_{IH} \ge V_{CC} - 0.2 \text{ V}$ $V_{IL} \le 0.2 \text{ V}$	8
Self refresh current (L-version)	I _{CC6}	_	1.6	mA	_	
Input leakage current	Iu	-4	4	μΑ	0 ≤ Vin ≤ V _{cc}	
Output leakage current	I _{LO}	-6	6	μΑ	0 ≤ Vout ≤ V _{cc} DQ = disable	
Output high voltage	V _{OH}	2.4		V	$I_{OH} = -4 \text{ mA}$	
Output low voltage	V _{OL}		0.4	V	I _{OL} = 4 mA	

DC Characteristics

(Tcase = 0 to 70°C [Tj max = 110°C]), V_{cc} = 3.3 V \pm 0.3 V, V_{ss} = 0 V) (HM5225325F)

HM5225325F

		-B60				
Parameter	Symbol	Min	Max	Unit	Test conditions	Notes
Operating current					Burst length = 1	1, 2, 3
$(\overline{CAS} \text{latency} = 2)$	I _{CC1}		180	mA	t _{RC} = min	
$(\overline{CAS} atency = 3)$	I _{CC1}	_	200	mA		
Standby current in power down	I _{CC2P}		12	mA	$CKE = V_{IL},$ $t_{CK} = 12 \text{ ns}$	6
Standby current in power down (input signal stable)	I _{CC2PS}		8	mA	$CKE = V_{IL},t_{CK} = \infty$	7
Standby current in non power down	I _{CC2N}		64	mA	CKE, $\overline{CS} = V_{IH}$, $t_{CK} = 12 \text{ ns}$	4
Standby current in non power down (input signal stable)	I _{CC2NS}		36	mA	$CKE = V_{IH},t_{CK} = \infty$	9
Active standby current in power down	I _{CC3P}		16	mA	$CKE = V_{IL},$ $t_{CK} = 12 \text{ ns}$	1, 2, 6
Active standby current in power down (input signal stable)	I _{CC3PS}		12	mA	$CKE = V_{IL},t_{CK} = \infty$	2, 7
Active standby current in non power down	I _{CC3N}	_	80	mA	CKE, $\overline{\text{CS}} = V_{\text{IH}}$, $t_{\text{CK}} = 12 \text{ ns}$	1, 2, 4
Active standby current in non power down (input signal stable)	I _{CC3NS}	_	60	mA	$CKE = V_{IH},t_{CK} = \infty$	2, 9
Burst operating current						
$(\overline{CAS} \text{latency} = 2)$	I _{CC4}	_	200	mA	$t_{CK} = min, BL = 4$	1, 2, 5
$(\overline{CAS} \text{latency} = 3)$	I _{CC4}	_	250	mA		
Refresh current	I _{CC5}		380	mA	$t_{RC} = min$	3
Self refresh current	I _{CC6}		4	mA	$V_{IH} \ge V_{CC} - 0.2 \text{ V}$ $V_{IL} \le 0.2 \text{ V}$	8
Self refresh current (L-version)	I _{CC6}	_	1.6	mA	_	
Input leakage current	I _{LI}	-4	4	μΑ	0 ≤ Vin ≤ V _{cc}	
Output leakage current	I _{LO}	-6	6	μΑ	0 ≤ Vout ≤ V _{cc} DQ = disable	
Output high voltage	V _{OH}	2.4	_	V	$I_{OH} = -4 \text{ mA}$	
Output low voltage	V _{OL}	_	0.4	V	I _{OL} = 4 mA	

Notes: 1. I_{cc} depends on output load condition when the device is selected. I_{cc} (max) is specified at the output open condition.

- 2. One bank operation.
- 3. Input signals are changed once per one clock.
- 4. Input signals are changed once per two clocks.
- 5. Input signals are changed once per four clocks.
- 6. After power down mode, CLK operating current.
- 7. After power down mode, no CLK operating current.
- 8. After self refresh mode set, self refresh current.
- 9. Input signals are V_{IH} or V_{IL} fixed.

Capacitance (Ta = 25°C, V_{CC} = 3.3 V ± 0.3 V)

Parameter	Symbol	Min	Max	Unit	Notes
Input capacitance (CLK)	C _{I1}	10	14	pF	1, 2, 4
Input capacitance (Input except DQM)	C ₁₂	10	14	pF	1, 2, 4
Input capacitance (DQM)	C ¹³	2.5	5	pF	1, 2, 4
Output capacitance (DQ)	C _o	3	5	pF	1, 2, 3, 4

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

- 2. Measurement condition: f = 1 MHz, 1.4 V bias, 200 mV swing.
- 3. $DQMB = V_{IH}$ to disable Dout.
- 4. This parameter is sampled and not 100% tested.

AC Characteristics

(Tcase = 0 to 70°C [Tj max = 110°C]), V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0 V)

HM5225645F/HM5225325F

-B60

Parameter	HITACHI Symbol	PC/100 Symbol	Min	Max	- Unit	Notes
System clock cycle time						
$(\overline{CAS} \text{latency} = 2)$	t _{CK}	Tclk	15	_	ns	_1 _
(CAS latency = 3)	t _{CK}	Tclk	10		ns	
CLK high pulse width	t _{CKH}	Tch	3	_	ns	1
CLK low pulse width	t_{CKL}	Tcl	3	_	ns	1
Access time from CLK (CAS latency = 2)	t _{AC}	Tac	_	8	ns	1, 2
$(\overline{CAS} \text{latency} = 3)$	t _{AC}	Tac	_	6	ns	_
Data-out hold time	t _{oh}	Toh	3		ns	1, 2
CLK to Data-out low impedance	t _{LZ}		2	_	ns	1, 2, 3
CLK to Data-out high impedance (CAS latency = 2, 3)	t _{HZ}		_	6	ns	1, 4
Input setup time	$\begin{aligned} &t_{\text{AS}},t_{\text{CS}},t_{\text{DS}},\\ &t_{\text{CES}} \end{aligned}$	Tsi	2	_	ns	1, 5, 6
CKE setup time for power down exit	t _{CESP}	Tpde	2	_	ns	1
Input hold time	$\begin{array}{c} \boldsymbol{t}_{\mathrm{AH}},\boldsymbol{t}_{\mathrm{CH}},\boldsymbol{t}_{\mathrm{DH}},\\ \boldsymbol{t}_{\mathrm{CEH}} \end{array}$	Thi	1	_	ns	1, 5
Ref/Active to Ref/Active command period	t _{RC}	Trc	70	_	ns	1
Active to Precharge command period	t _{RAS}	Tras	50	120000	ns	1
Active command to column command (same bank)	t _{RCD}	Trcd	20	_	ns	1
Precharge to active command period	t _{RP}	Trp	20	_	ns	1
Write recovery or data-in to precharge lead time	t _{DPL}	Tdpl	10	_	ns	1
Active (a) to Active (b) command period	t _{RRD}	Trrd	20	_	ns	1
Transition time (rise and fall)	t _T		1	5	ns	
Refresh period	t _{REF}		_	64	ms	

Notes: 1. AC measurement assumes $t_T = 1$ ns. Reference level for timing of input signals is 1.5 V.

- 2. Access time is measured at 1.5 V. Load condition is CL = 50 pF.
- 3. t_{LZ} (min) defines the time at which the outputs achieves the low impedance state.
- 4. $t_{\rm HZ}$ (max) defines the time at which the outputs achieves the high impedance state.
- 5. t_{CES} define CKE setup time to CLK rising edge except power down exit command.
- $6. \ \ t_{\text{AS}}/t_{\text{AH}}\text{: Address, } t_{\text{CS}}/t_{\text{CH}}\text{: } \overline{\text{CS}}\text{, } \overline{\text{RAS}}\text{, } \overline{\text{CAS}}\text{, } \overline{\text{WE}}\text{, DQM}.$

 $t_{\text{DS}}/t_{\text{DH}}$: Data-in, $t_{\text{CES}}/t_{\text{CEH}}$: CKE

Test Conditions

- Input and output timing reference levels: 1.5 V
- Input waveform and output load: See following figures

Package Dimensions

HM5225645FBP Series HM5225325FBP Series (BP-108)

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.ip/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F. Hung Kuo Building, No.167 Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	Feb. 1, 1999	Initial issue	S. Hatano	S. Hatano
0.1	Feb. 19, 1999	Pin arrangement Correct pin No. to JEDEC standard	S. Hatano	S. Hatano
		Package dimenssion Correct illustration and indexes		
0.2	Apr. 1, 1999	Ordering information Correct error of type No.	S. Hatano	S. Hatano
1.0	Oct. 1, 1999	Programmable CAS latency: 3 to 2/3		
		Ordering information Addition of note		
		Pin description Addition of note 1		
		DC Characteristics (HM5225645F) $I_{CC1} \text{ max (CL = 2): } 280 \text{ mA to } 200 \text{ mA}$ $I_{CC1} \text{ max (CL = 3): } 300 \text{ mA to } 220 \text{ mA}$ $I_{CC4} \text{ max (CL = 2): } 280 \text{ mA to } 220 \text{ mA}$ $I_{CC4} \text{ max (CL = 3): } 360 \text{ mA to } 270 \text{ mA}$ $I_{CC5} \text{ max: } 460 \text{ mA to } 380 \text{ mA}$		
		DC Characteristics (HM5225325F) $I_{CC1} \text{ max (CL} = 2): 260 \text{ mA to } 180 \text{ mA}$ $I_{CC1} \text{ max (CL} = 3): 280 \text{ mA to } 200 \text{ mA}$ $I_{CC4} \text{ max (CL} = 2): 260 \text{ mA to } 200 \text{ mA}$ $I_{CC4} \text{ max (CL} = 3): 320 \text{ mA to } 250 \text{ mA}$ $I_{CC5} \text{ max: } 460 \text{ mA to } 380 \text{ mA}$		
		Capacitance C_{11} max: 16 pF to 14 pF C_{12} max: 20 pF to 14 pF C_{0} min: 4 pF to 3 pF C_{0} max: 6.5 pF to 5 pF		
		Package dimension Change tolerance of height		