Antenna design update, April 15

John Cumner, Quentin Gueuning

Elliptical dipole

Impedances for a range of diameters:

1600/1400mm

1050/1330mm (Farfields shown)

1000/800mm

Farfields broadly similar, some increased smoothness for smaller dipoles 10m ground plane

~10dB backwards, beams uniformity deteriorates at ~100MHz

Elliptical dipole

PROs	CONs
Simple design	Requires ground plane
Flat input impedance	Requires balun
Low input impedance	Beam separates at top end of frequency band
Possible to expand to second polarization	

Flat log spiral

10-20dB backwards. Closer beam uniformity, although rotational features can be seen.

Flat log spiral

PROs	CONs		
Wide sky beam	Requires ground plane		
Covers full band	Requires balun		Could be designed without have not yet looked into it
Relatively low input impedance	Beam rotates with frequency		
	Spiky input impedance		

SARAS2 monopole

Is designed to function higher than our frequency band, would need to be scaled up.
Possible -30dB S11m, and uniform farfields

Taken from Singh et al 2017 https://arxiv.org/pdf/1710.01101.pdf

SARAS2 monopole, style

PROs	CONs
Monopole, so no balun	Needs scaling to our band
Uniform farfields	Unpolarized
Match-able input impedance (at higher frequencies)	
Low feedpoint	

Conical log spiral

Conical log spiral

PROs	CONs	
Very low beam chromaticity	Matching circuit	→
No ground plane	1 pol	
Flat input impedance	Few meters high	→
Wire version (simple)		
Cover all band		

lossless broadband tapered matching circuit along the apex of the cone (e.g. coax to parallel wire transformer)

RF system on the ground inside the spiral?

Gueuning

Helical antenna

Travelling wave mode

 $(D^{\sim} \lambda/\pi)$

Helical antenna (traveling wave mode)

PROs	CONs
Smaller ground plane (directive antenna)	Bandwidth (S11=-15 dB) max 25-30 %
Input impedance potentially tunable down to 50 Ohm	1 pol
Pencil beam	

Cavity-backed flat spiral

The cavity destroy the frequency independent property of the spiral

Additional designs

Sinuous antenna

Inverted Vivaldi feed, possibly with shielding

Horn antenna

 HIBiscus antenna (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8072391)