The American University in Cairo Mathematics and Actuarial Science Linear Algebra May 14, 2020

	MACT 2132		
	Spring 2019		
	Final Exam		
Time Limit:	120 Minutes		

Name:	UID:

- This exam contains 6 pages (including this cover page).
- Answer <u>all</u> the questions.
- Unsupported answers are considered miracles and will receive little or no credit.
- Anyone caught writing after time has expired will be given a mark of zero.

Problem	Score	Points
1		20
2		20
3		14
4		18
5		20
Total		92

Problem 1. The two matrices A and B are row-equivalent.

$$A = \begin{bmatrix} 2 & -4 & 0 & 1 & 7 & 11 \\ 1 & -2 & -1 & 1 & 9 & 12 \\ -1 & 2 & 1 & 3 & -5 & -16 \\ 4 & -8 & 1 & -1 & 6 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 0 & -5 & -3 \\ 0 & 0 & 0 & 1 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) (3 pts) Find a basis for the RowSpace(A). Explain your answer.
- b) (3 pts) Are the first three columns of A linearly independent? why?
- c) (3 pts) Determine whether the columns of A spans \mathbb{R}^4 or not. Explain your answer.
- d) (3 pts) Is the last column of A in the span of the 1st, 3rd, and 4th columns? why?
- e) (4 pts) Describe the NullSpace(A).
- f) (4 pts) Find Rank(A) and Nullity(A). Justify your answer.

Problem 2. Consider the following 3×3 matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -2 & 4 \end{array} \right]$$

- a) (10 pts) Find the eigenvalues of A and the corresponding eigenspaces.
- b) (4 pts) Construct a basis for \mathbb{R}^3 consisting of eigenvectors of A. Justify your answer.
- c) (6 pts) Use Gram-Schmidt to transform the basis in part b) into an orthonormal basis.

Problem 3. Let $\mathcal{C}[-1,2]$ be the space of all continuous functions on the interval [-1,2]. Suppose that a transformation $T:\mathcal{C}[-1,2]\to\mathbb{R}$ is given by

$$T(f) = \int_{-1}^{2} f(x) dx.$$

- a) (4 pts) Show that T is a linear transformation.
- b) (4 pts) Find the images of $f(x) = \cos(\pi x)$ and $g(x) = x^3$, respectively.
- c) (6 pts) Is T one-to-one? onto? Justify your answer.

Problem 4. The set $\mathcal{M}_{2\times 2}$ of all 2×2 matrices with the operations of vectors addition and scaler multiplication defined below is a vector space.

$$\begin{bmatrix} x_1 & y_1 \\ z_1 & w_1 \end{bmatrix} \oplus \begin{bmatrix} x_2 & y_2 \\ z_2 & w_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 & y_1 + y_2 + 8 \\ z_1 + z_2 - 3 & w_1 + w_2 \end{bmatrix},$$
$$\lambda \odot \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \lambda x & \lambda y + 8\lambda - 8 \\ \lambda z - 3\lambda + 3 & \lambda w \end{bmatrix}.$$

- a) (4 pts) What is the additive identity "O" for this vector space? Explain your answer.
- b) (4 pts) For $\underline{\mathbf{v}} = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, what is the additive inverse " $-\underline{\mathbf{v}}$ "? Explain your answer.
- c) (10 pts) Verify the axioms:
 - (i) "For any $\underline{\mathbf{u}}, \underline{\mathbf{v}} \in \mathcal{M}_{2\times 2}$, and $\lambda \in \mathbb{R}, \lambda \odot (\underline{\mathbf{u}} \oplus \underline{\mathbf{v}}) = (\lambda \odot \underline{\mathbf{u}}) \oplus (\lambda \odot \underline{\mathbf{v}})$ ".
 - (ii) "For any $\underline{\mathbf{u}} \in \mathcal{M}_{2\times 2}$, and $\lambda, \mu \in \mathbb{R}$, $(\lambda \mu) \odot \underline{\mathbf{u}} = \lambda \odot (\mu \odot \underline{\mathbf{u}})$ ".

Problem 5. (5 pts each) Prove or disprove <u>four</u> of the following.

a) If $\dim(V) = n < +\infty$, then any set of n-1 vectors in V must be linearly independent.

Reason:

True False

b) If U and W are both subspaces of a vector space V, then their intersection $U\cap W$ is also a subspace.

Reason:

True False

c) The set $W = \{(x, xy, y) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$ forms a subspace of \mathbb{R}^3 .

Reason:

True False

d) Let A be an $n \times n$ matrix such that $A^2 = O$. If B is similar to A, then $B^2 = O$.

e) Reason:

True False

f) Let $V, \langle \, , \, \rangle$ be an inner product space. If $||\,\underline{\mathbf{u}}\,|| \leq 1$ and $||\,\underline{\mathbf{v}}\,|| \leq 1$, then $|\,\langle\,\underline{\mathbf{u}},\,\underline{\mathbf{v}}\,\rangle\,| \leq 1$.

Reason:

True False

g) The kernel of a linear transformation $T: V \to W$ is a subspace of V.

Reason:

True

False