

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

PAULO EDUARDO RODRIGUES WERLE

Analise de Circuitos Sequenciais

CHAPECÓ 2018.

Circuito:

Funcionamento:

Este é um Circuito Sequencial que usa Flip-flops do Tipo D, e é baseado no modelo de Morre, aonde a Saída Z depende unicamente do estado do Flip-Flop.

A Seguir temos as Equações de Excitação

$$D0 = \overline{Q1} * W * \overline{Q0}$$

$$D1 = Q0 + Q1 * W$$

Logo podemos definir as Equações de Estado para os Flip-Flop e a Equação de Saída para a Saída Z:

$$D0t+1 = Q1 * W * Q0$$

$$D1t+1 = Q0 + Q1 * W$$

$$Z = D1$$

E com essas equações conseguimos montar a seguinte tabela verdade do próximo Estado

W	D0t	D1t	D0t+1	D1t+1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

E a Tabela de Saída:

D1	Z	
0	0	
1	1	

Este Circuito Sequencial, pode variar a Saída Z dependendo do Flip- Flop D1, como vimos na Equação de Saída, o Resultado para Z é atribuído do D1, podendo ser Z = D1

Diagrama de Estados do Circuito:

