Package 'iLDA'

December 8, 2018

Type Package

Version 0.1.0

two classes.

Title Integrative Linear Discriminant Analysis

Author Quefeng Li Maintainer Quefeng Li <quefeng@email.unc.edu></quefeng@email.unc.edu>			
License GPL-3			
Imports Matrix, doParallel, foreach, robustbaseReference Li, Q. and Li, L. (2018). Integrative Linear Discriminant Analysis with Guaranteed Error Rate Improvement. Biometrika, 105:917-930.			
			RoxygenNote 6.0.1
cv.iLDA	nted:		
Index	7		
classify	Classify new samples based on the integrative linear discriminant analysis rule		
Description Classify a new sample the solution of the iLI	to class 0 if and only if $\hat{\beta}^T\{x-(\hat{\mu}_0+\hat{\mu}_1)/2\}+\log(\hat{\pi}_0/\hat{\pi}_1)\geq 0$, where $\hat{\beta}$ is DA problem, x is the vector of the new sample, $\hat{\mu}_0$ and $\hat{\mu}_1$ are the estimators		

of the means of the two classes, and $\hat{\pi}_0$ and $\hat{\pi}_1$ are the estimators of the prior probabilities of the

2 cv.iLDA

Usage

```
classify(obj, new.X, balanced = T)
```

Arguments

obj an object returned by iLDA.

new.X a matrix of new samples to be classified. Rows are samples and columns are

features.

balanced a logical flag of whether the two classes have equal prior probability. If balanced = TRUE,

enforce $\hat{\pi}_0 = \hat{\pi}_1 = 1/2$; otherwise, use the estimators returned by iLDA.

Value

a vector of predicted class labels of the new samples.

cv.iLDA Cross-validation to choose the optimal tuning parameters

Description

Choose the optimal tuning parameters in the integrative linear discriminant analysis (iLDA) problem by the K-fold cross-validation.

Usage

```
cv.iLDA(Y, X, group, alpha.grid, lambda.grid, K = 5, missing = F,
robust = F, k = 1.345, tol = 0.001, max.iter = 200, balanced = T)
```

Arguments

Y a vector of class labels.

X a matrix of samples. The dimension is nobs * nvars, where nobs is the sample

size in the training set and nvars is number of features in all modalities. In

practice, cbind data from all modalities to render X.

group a list of group indices. Each element in the list is the column indices of variables

belonging to that group in X . See an example in Examples of iLDA.

alpha.grid the search grip of α . lambda.grid the search grip of λ .

K number of folds in cross-validation.

missing a logical flag of whether X contains missing values.

robust a logical flag of whether using robust estimators for μ_0 , μ_1 and Σ . If TRUE, the

Huber robust estimators will be used. For more details, please see the reference.

k robustification factor in the Huber estimator.tol tolerance level for stopping the algorithm.max.iter maximum number of iterations allowed.

balanced see definition in classify.

Value

a list with elements

 $\begin{array}{ll} \text{best.alpha} & \text{best value of } \alpha. \\ \text{best.lambda} & \text{best value of } \lambda. \end{array}$

cv.error a matrix of cross-validated misclassification rates.

iLDA

Solve the integrative linear discriminant analysis problem

Description

Solve the integrative linear discriminant analysis (iLDA) problem via a proximal gradient algorithm.

Usage

```
iLDA(Y, X, group, alpha, lambda, missing = F, robust = F, k = 1.345, tol = 0.001, max.iter = 200)
```

Arguments

Υ	a vector of class labels.
X	a matrix of samples. The dimension is $nobs*nvars$, where $nobs$ is the sample size in the training set and $nvars$ is number of features in all modalities. In practice, cbind data from all modalities to render X.
group	a list of group indices. Each element in the list is the column indices of variables belonging to that group in X . See an example in Examples of iLDA.
alpha	the tuning parameter α .
lambda	the tuning parameter λ .
missing	a logical flag of whether X contains missing values.
robust	a logical flag of whether using robust estimators for μ_0 , μ_1 and Σ . If TRUE, the Huber robust estimators will be used. For more details, please see the reference.
k	robustification factor in the Huber estimator.
tol	tolerance level for stopping the algorithm.
max.iter	maximum number of iterations allowed.

Details

The function solves a regularized minimization problem

$$\hat{\beta} = \operatorname{argmin}_{\beta} \frac{1}{2} \beta^T \hat{\Sigma} \beta - (\hat{\mu}_0 - \hat{\mu}_1)^T \beta + \lambda \left(\sum_{j \in \mathcal{N}} ||\beta_{S_j}||_1 + \sum_{j \in \mathcal{M}} ||\beta_{S_j}||_G \right),$$

where $\hat{\Sigma}$ is the pooled estimator of covariance of the two classes, $\hat{\mu}_0$ and $\hat{\mu}_1$ are the estimators of the means of the two classes. \mathcal{N} is the set of variables appearing in only one modality. An L_1 penalty is imposed on these variables. \mathcal{M} is the set of variables appearing in multiple modalities. A sparse group Lasso penalty imposed on these variables. Such a penalty is defined as

$$||\beta_{S_i}||_G = (1-\alpha)||\beta_{S_i}||_1 + \alpha||\beta_{S_i}||_2, \quad \alpha \in [0,1].$$

Value

a list with elements

```
beta
                     solution of the iLDA problem.
                     estimator of \mu_0.
mu0
                     estimator of \mu_1.
mu1
                     estimator of (\mu_0 + \mu_1)/2.
mu
Sigmahat
                     estimator of \Sigma.
                     estimator of log odds of the prior probabilities of the two classes, i.e. \log(\hat{\pi}_0/\hat{\pi}_1).
w0
                     actual number of iterations.
iter.count
converge
                     a logical flag of whether the algorithm converges.
```

Examples

```
## Not run:
## A toy simulation
library(MASS)
           <- 50
n
                                          # sample size
           <- 100
                                          # number of variables in each modality
р
          <- 3
                                          # number of modalities
percentage <- 0.2
         <- p * percentage
Sigma <- matrix(1, M * p, M * p)
                                   # true covariance matrix
for (i in 1:(M * p)) {
  for (j in 1:(M * p)) {
    Sigma[i, j] \leftarrow 0.8^{(abs(i - j))}
  }
}
beta.1 <- c(rep(c(rep(0.3, 2), rep(0, share - 2)), M),
            rep(0.3, 4), rep(0, 2 * share - 4))
beta <- rep(beta.1, M)
                                         # true beta
delta <- Sigma %*% beta
group <- vector('list', 2 * p)</pre>
                                        # generate group indices
# modality 1
for (i in 1:(M * share)) {
 group[[i]] <- i
for (i in (4 * share + 1):(6 * share)) {
  group[[i]] \leftarrow i - share
# modality 2
for (i in 1:(2 * share)) {
  group[[i]] \leftarrow c(group[[i]], p + i)
for (i in (M * share + 1):(4 * share)) {
 group[[i]] \leftarrow p - share + i
for (i in (6 * share + 1):(8 * share)) {
  group[[i]] \leftarrow p - M * share + i
```

```
# modality M
for (i in 1:share) {
  group[[i]] \leftarrow c(group[[i]], 2 * p + i)
for (i in (2 * share + 1):(4 * share)) {
 group[[i]] \leftarrow c(group[[i]], 2 * p - share + i)
for (i in (8 * share + 1):(10 * share)) {
 group[[i]] \leftarrow 2 * p - 5 * share + i
}
group.ind <- vector('list', p)</pre>
for (i in 1:p) {
  group.ind[[i]] <- i</pre>
}
## searching grid of (alpha, lambda)
alpha \leftarrow seq(0, 1, len = 2)
lambda <- 2^seq(-4, 1, len = 3)
## generate training set
X.trn <- rbind(mvrnorm(n, mu = rep(0, M * p), Sigma = Sigma),</pre>
                mvrnorm(n, mu = -delta, Sigma = Sigma))
Y.trn <- c(rep(0, n), rep(1, n))
## generate test set
X.tst \leftarrow rbind(mvrnorm(n, mu = rep(0, M * p), Sigma = Sigma),
                mvrnorm(n, mu = -delta, Sigma = Sigma))
Y.tst < c(rep(0, n), rep(1, n))
## cv and fit
cv <- cv.iLDA(Y.trn, X.trn, group, alpha, lambda)</pre>
fit <- iLDA(Y.trn, X.trn, group,</pre>
             alpha = cv$best.alpha,
             lambda = cv$best.lambda)
## prediction
Y.prd <- classify(fit, X.tst)
(error.rate <- sum((Y.tst - Y.prd)^2) / length(Y.tst))</pre>
## generate training set with block missing values
missing.prob <- 0.05
X.trn.missing <- cbind(X.trn[, 1:p] * ifelse(rbinom(n, 1, missing.prob) == 1, NA, 1),</pre>
                    X.trn[, (p + 1):(2 * p)] * ifelse(rbinom(n, 1, missing.prob) == 1, NA, 1),
                    X.trn[, (2 * p + 1):(3 * p)] * ifelse(rbinom(n, 1, missing.prob) == 1, NA, 1))
## cv and fit
cv <- cv.iLDA(Y.trn, X.trn.missing, group, alpha, lambda, missing = T)</pre>
fit <- iLDA(Y.trn, X.trn.missing, group,</pre>
             alpha = cv$best.alpha,
             lambda = cv$best.lambda,
             missing = T)
## prediction
Y.prd <- classify(fit, X.tst)</pre>
(error.rate <- sum((Y.tst - Y.prd)^2) / length(Y.tst))</pre>
```

End(Not run)

Index

```
classify, 1, 2
cv.iLDA, 2
```

iLDA, 2, 3, 3