Course 12: 17.05.2021

2.7 Polynomial rings (continued)

Definition 2.7.7 Let $0 \neq f \in R[X]$ be a polynomial with unique algebraic form

$$f = a_0 + a_1 X + \dots + a_n X^n \,,$$

where $a_0, \ldots, a_n \in R$ and $a_n \neq 0$. Then n is called the *degree* of f and is denoted by deg(f). By convention, the degree of the zero polynomial is $-\infty$.

Theorem 2.7.8 Let $f, g \in R[X]$. Then:

- (i) $deg(f+g) \le \max(deg(f), deg(g));$
- (ii) $deg(f \cdot g) \le deg(f) + deg(g)$;
- (iii) If R is an integral domain, then

$$deg(f \cdot g) = deg(f) + deg(g)$$
.

Proof. If f=0 or g=0, then the properties (i) and (ii) hold by assuming the conventions $-\infty+n=n+(-\infty)=-\infty, (-\infty)+(-\infty)=-\infty$ and $-\infty\leq n, \forall n\in\mathbb{N}.$

Consider now the non-trivial cases, when $f = \sum_{i=0}^{m} a_i X^i$, $g = \sum_{j=0}^{n} b_j X^j \in R[X]$, where $a_m \neq 0$ and $b_n \neq 0$. Hence $deg(f) = m \geq 0$ and $deg(g) = n \geq 0$.

(i) We may suppose that $m \geq n$. Then

$$f + g = \sum_{j=0}^{n} (a_j + b_j)X^j + \sum_{i=n+1}^{m} a_i X^i \in R[X],$$

hence $deg(f+g) \leq m$.

(ii) We have

$$f \cdot g = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + \dots + (a_m b_n) X^{m+n} \in R[X],$$

hence $deg(f \cdot g) \leq m + n$.

(iii) In the proof of (ii), notice that if $a_m b_n \neq 0$, then $deg(f \cdot g) = m + n$. But since $a_m \neq 0$, $b_n \neq 0$ and R is an integral domain, we have $a_m b_n \neq 0$ and consequently $deg(f \cdot g) = deg(f) + deg(g)$.

Example 2.7.9 (a) Let $f = 1 + X + X^2$, $g = 1 - X^2 \in \mathbb{Z}[X]$. Then f + g = 2 + X and we have $deg(f + g) = 1 < 2 = \max(deg(f), deg(g))$.

(b) Let $f = \widehat{1} + \widehat{2}X$, $g = \widehat{1} + \widehat{3}X^2 \in \mathbb{Z}_6[X]$. Then $f \cdot g = \widehat{1} + \widehat{2}X + \widehat{3}X^2$ and we have $deg(f \cdot g) = 2 \neq 3 = deg(f) + deg(g)$.

Corollary 2.7.10 If R is an integral domain, then R[X] is an integral domain.

Proof. Let $f, g \in R[X]$ with $f \neq 0$ and $g \neq 0$. Then $deg(f) \geq 0$ and $deg(g) \geq 0$. Now by Theorem 2.7.8, we have

$$deg(f \cdot g) = deg(f) + deg(g) \ge 0$$
,

whence it follows that $f \cdot g \neq 0$. Hence R[X] has no zero divisors. Clearly, $R[X] \neq 0$ is commutative and has identity. Consequently, R[X] is an integral domain.

Theorem 2.7.11 Let R be an integral domain. Then the invertible elements in the ring R[X] coincide with the invertible elements in the ring R.

Proof. First, let $f \in R[X]$ be invertible in R[X]. Then there exists $g \in R[X]$ such that $f \cdot g = 1$. It follows that $deg(f \cdot g) = 0$, whence

$$deg(f) + deg(g) = 0$$

by Theorem 2.7.8. Then deg(f) = deg(g) = 0 (note that $f \neq 0$ and $g \neq 0$), that is, $f, g \in R$. But since $f \cdot g = 1$, it follows that f is invertible in R.

Secondly, if $f \in R$ is invertible in R, then clearly f is invertible in R[X].

Corollary 2.7.12 Let K be a field. Then the invertible elements in the ring K[X] are exactly the polynomials of degree zero.

We denote by U(R) the set (group) of invertible elements in the ring R.

Example 2.7.13 (a) $U(\mathbb{Z}[X]) = U(\mathbb{Z}) = \{-1, 1\}.$

- (b) $U(\mathbb{Q}[X]) = \mathbb{Q}^*$, $U(\mathbb{R}[X]) = \mathbb{R}^*$, $U(\mathbb{C}[X]) = \mathbb{C}^*$.
- (c) $U(\mathbb{Z}_p[X]) = \mathbb{Z}_p^*$ (where p is a prime number).

2.8 Polynomial functions. Roots of polynomials

Definition 2.8.1 Let $f = a_0 + a_1X + \cdots + a_nX^n \in R[X]$ and $c \in R$.

The element

$$a_0 + a_1 c + \dots + a_n c^n \,,$$

obtained by formally replacing in f the indeterminate X by c, is called the value of the polynomial f at the point c, and is denoted by f(c).

An element $c \in R$ is called a root of f if f(c) = 0.

The function $\overline{f}: R \to R$ defined by

$$\overline{f}(c) = f(c) = a_0 + a_1 c + \dots + a_n c^n,$$

is called the *polynomial function* associated to the polynomial f.

Theorem 2.8.2 The function $\varphi: R[X] \to R^R$ defined by $\varphi(f) = \overline{f}$ is a unitary ring homomorphism between the rings $(R[X], +, \cdot)$ and $(R^R, +, \cdot)$.

Proof. Recall that R^R denotes the set of all functions $f: R \to R$.

Clearly, $f(1) = 1_R$. Let $f, g \in R[X]$. For every $c \in R$, we have:

$$\overline{(f+g)}(c) = (f+g)(c) = f(c) + g(c) = \overline{f}(c) + \overline{g}(c) = (\overline{f} + \overline{g})(c),$$

$$\overline{(f\cdot g)}(c) = (f\cdot g)(c) = f(c)\cdot g(c) = \overline{f}(c)\cdot \overline{g}(c) = (\overline{f}\cdot \overline{g})(c).$$

It follows that:

$$\varphi(f+g) = \overline{f+g} = \overline{f} + \overline{g} = \varphi(f) + \varphi(g),$$

$$\varphi(f \cdot g) = \overline{f \cdot g} = \overline{f} \cdot \overline{g} = \varphi(f) \cdot \varphi(g).$$

Hence φ is a unitary ring homomorphism.

Definition 2.8.3 With the above notation, $Im \varphi$ is a subring of the ring $(R^R, +, \cdot)$, called the *ring of polynomial functions*.

Remark 2.8.4 (1) If the ring R is finite and $R \neq \{0\}$, then the ring R[X] is infinite, while the ring R^R is finite. Hence φ is not injective, and so there are different polynomials having the same associated polynomial function.

For instance, $f = X + X^2 \in \mathbb{Z}_2[X]$ and $g = \hat{0} \in \mathbb{Z}_2[X]$ have the same associated polynomial function. Indeed, we have $\overline{f}(\hat{0}) = f(\hat{0}) = \hat{0} = g(\hat{0})$ and $\overline{f}(\hat{1}) = f(\hat{1}) = \hat{0} = g(\hat{1})$, and so $\overline{f} = \overline{g}$.

(2) Let $f \in R[X]$. Then $f \in Ker \varphi \Leftrightarrow \overline{f} = 0$ (the zero function) $\Leftrightarrow f(a) = 0, \forall a \in R$.

Theorem 2.8.5 (The Division Algorithm for polynomials) Let R be an integral domain and let $f \in R[X]$ and $g = \sum_{j=0}^{n} b_j X^j \in R[X]$ with b_n invertible in R. Then there exist unique polynomials $q, r \in R[X]$ such that

$$f = gq + r$$
, where $deg(r) < deg(g)$.

Proof. Let us first discuss two trivial cases.

If f = 0 or deg(f) < deg(g), then clearly $f = g \cdot 0 + f$, whence g = 0 and r = f.

If n = 0, then $g = b_0 \in R$ is invertible by hypothesis and we have

$$f = g \cdot (g^{-1} \cdot f) + 0,$$

whence $q = g^{-1} \cdot f$ and r = 0.

In the sequel suppose that $f \neq 0$ and $deg(f) \geq deg(g) = n \geq 1$. Let $f = \sum_{i=0}^{m} a_i X^i$ with $a_m \neq 0$. We will prove the existence of the requested $q, r \in R[X]$ by induction on m = deg(f).

If m=1, then we have m=n=1, say $f=a_0+a_1X$ and $g=b_0+b_1X$. It follows that

$$f = g \cdot (a_1b_1^{-1}) + (a_0 - b_0a_1b_1^{-1}),$$

whence $q = a_1 b_1^{-1}$ and $r = a_0 - b_0 a_1 b_1^{-1}$.

Suppose now that the result holds for every polynomial of degree less than m and we prove that it holds for every polynomial f of degree m. Consider

$$h = f - (a_m b_n^{-1} X^{m-n}) \cdot g.$$

Then deg(h) < m and we may apply the induction hypothesis. Hence there exist $q', r \in R[X]$ such that

$$h = gq' + r$$
, where $deg(r) < deg(g)$.

Then

$$f = h + (a_m b_n^{-1} X^{m-n}) \cdot g = g \cdot (a_m b_n^{-1} X^{m-n} + q') + r,$$

whence $q = a_m b_n^{-1} X^{m-n} + q'$. Therefore, we have proved the existence of the required $q, r \in R[X]$. Let us now prove the uniqueness. Suppose that there exist $q, q_1, r, r_1 \in R[X]$ such that

$$f = gq + r$$
, where $deg(r) < deg(g)$,

$$f = gq_1 + r_1$$
, where $deg(r_1) < deg(g)$.

Then $r_1 - r_2 = g \cdot (q_2 - q_1)$. But $deg(r_1 - r_2) < deg(g)$. Since $g \neq 0$, we get $q_2 - q_1 = 0$. Then $q_1 = q_2$ and $r_1 = r_2$, that end the proof.

Corollary 2.8.6 Let K be a field and let $f, g \in K[X]$ with $g \neq 0$. Then there exist unique polynomials $g, r \in K[X]$ such that

$$f = gq + r$$
, where $deg(r) < deg(g)$.

Corollary 2.8.7 Let R be an integral domain, $f \in R[X]$ and $c \in R$.

- (i) The remainder of the division of f by the polynomial X c is f(c).
- (ii) X c|f if and only if f(c) = 0 (Bézout).
- (iii) If $deg(f) = n \ge 0$, then f has at most n roots in R. Hence every polynomial of degree n over an integral domain R has at most n roots in R.

Proof. (i) By Theorem 2.8.5, there exist $q, r \in R[X]$ such that

$$f = (X - c)q + r,$$

where either deg(r) = 0 or $deg(r) = -\infty$. Hence $r \in R$. It follows that f(c) = r.

- (ii) Immediate by (i).
- (iii) The proof is by induction on the degree of f.

For n=0 the result holds, since polynomials of degree zero do not have any roots.

Suppose that the result holds for any polynomial of degree less than n and let us prove it for f with deg(f) = n. Let $c \in R$ be a root of f, that is, f(c) = 0. Then clearly, $f = (X - c) \cdot g$, where deg(g) < deg(f) = n. By the induction hypothesis, g has at most n - 1 roots in R. But R is an integral domain, hence the roots of g are also roots of f. It follows that f has at most f roots in f0, which completes the proof.

Theorem 2.8.8 Let R be an infinite integral domain. Then the unitary ring homomorphism $\varphi: R[X] \to R^R$ defined by $\varphi(f) = \overline{f}$ (see Theorem 2.8.2) is injective. Hence the polynomial ring R[X] is isomorphic to the ring $Im \varphi$ of polynomial functions.

Proof. Let $f \in Ker \varphi$. Then $\overline{f} =$ (the zero function), and so f(a) = 0, $\forall a \in R$. Hence f has an infinite number of roots. It follows that f = 0 by Corollary 2.8.7 (iii). Hence $Ker \varphi = 0$, and so φ is injective. By the first isomorphism theorem for rings it follows that $R[X] \cong R[X]/\{0\} \cong Im \varphi$.

Corollary 2.8.9 *Let* R *be an infinite integral domain and let* $f,g \in R[X]$ *. Then:*

$$\overline{f} = \overline{g} \Leftrightarrow f = g.$$

Example 2.8.10 (a) Let $f = X^2 - \hat{4} \in \mathbb{Z}_{12}[X]$. Then its roots are $\hat{2}$, $\hat{4}$, $\hat{8}$ and $\widehat{10}$. Hence f has more roots than its degree.

(b) If $\mathbb H$ is the quaternion division ring, then the polynomial $f=X^2+1\in\mathbb H[X]$ has an infinite number of roots. Indeed, there are infinitely many $a,b,c\in\mathbb R$ such that $a^2+b^2+c^2=1$. Then every x=ai+bj+ck is a root of f, because $f(x)=x^2+1=-(a^2+b^2+c^2)+1=0$.

We mention without proof the following result, also called the Fundamental Theorem of Algebra.

Theorem 2.8.11 (D'Alembert-Gauss) Every polynomial of degree $n \ge 1$ with complex coefficients has at least one complex root.

Corollary 2.8.12 Every polynomial of degree $n \geq 0$ with complex coefficients has exactly n complex roots.