Logic Minimization

Deskripsi Masalah

Program minimisasi logic dengan algoritma dibebaskan. Pada tugas ini digunakan algoritma Quine-McCluskey atau bisa juga disebut metode tabular.

Algoritma Quine-McMcluskey adalah salah satu metode mimisasi ekspresi boolean. Algoritma ini dipilih karena mudah diimplementasikan dibanding karnaugh map, terutama ketika input variabelnya banyak.

Implementasi Algoritma Metode Quine-McCluskey

Minimize: $Y(A, B, C, D) = \sum m(0,1,3,7,8,9,11,15)$

Group	Minterm	Binary		
		Representation(ABCD)		
Group 0	MO	0000		
Group 1	M1, M8	0001		
		1000		
Group 2	M3, M9	0011		
		1001		
Group 3	M7, M11	0111		
		1011		
Group 4	M15	1111		

Group	Matched Pairs	Binary
		Representation(ABCD)
Group 0	M0-M1	000*
	M0-M8	*000
Group 1	M1-M3	00*1
	M1-M9	*001
	M8-M9	100*
Group 2	M3-M7	0*11
	M3-M11	*011
	M9-M11	100*
Group 3	M7-M15	*111
	M11-M15	1*11

Group	Matched Pairs	Binary		
		Representation(ABCD)		
Group 0	M0-M1-M8-M9	*00*		
	M0-M8-M1-M9	*00*		
Group 1	M1-M3-M9-M11	*0*1		
	M1-M9-M3-M11	*0*1		
Group 2	M3-M7-M11-M15	**11		
	M3-M11-M7-M15	**11		

cari matched pairs sampai tidak bisa lagi disederhanakan

Group	Matched Pairs	Binary	Minimized Form	
		Representation(ABCD)		
Group 0	M0-M1-M8-M9	*00*	$\bar{B}\bar{C}$	
	M0-M8-M1-M9	*00*		
Group 1	M1-M3-M9-	*0*1	$\bar{B}D$	
	M11	*0*1		
	M1-M9-M3-			
	M11			
Group 2	M3-M7-M11-	**11	CD	
	M15	**11		

		Minterms given in the problem							
Prime	Minterm	0	1	3	7	8	9	11	15
Implicant	Involved								
$ar{B}ar{C}$	(0,1,8,9)	\otimes	Χ			\otimes	Х		
$\bar{B}D$	(1,3,9,11)		Χ	Х			X	X	
CD	(3,7,11,15)			Х	\otimes			Х	\otimes

$$Y = \bar{B}\bar{C} + CD$$

Flowchart

Data Flow Diagram

Realisasi

Input:

- Jumlah variabel
- jumlah minterm termasuk dont care
- jumlah dont care
- indeks minterm
- indeks dont care

```
Selamat Datang di Program Minimisasi Logic.
Silakan Masukkan Informasi Mengenai Ekspresi Logic yang Ingin Diminimisasi
Masukkan Banyak Variabel: 4
Masukkan Banyak Minterm Keseluruhan (Termasuk Don't Care Minterm): 7
Masukkan Banyak Don't Care Minterm: 0
Masukkan Minterm Keseluruhan (Termasuk Don't Care Minterm)!
Masukkan Minterm ke-1 (Dalam Urutan Meningkat): 1
Masukkan Minterm ke-2 (Dalam Urutan Meningkat): 3
Masukkan Minterm ke-3 (Dalam Urutan Meningkat): 7
Masukkan Minterm ke-4 (Dalam Urutan Meningkat): 12
Masukkan Minterm ke-5 (Dalam Urutan Meningkat): 13
Masukkan Minterm ke-6 (Dalam Urutan Meningkat): 14
Masukkan Minterm ke-7 (Dalam Urutan Meningkat): 15
```

Realisasi

output:

• hasil minimisasi

Fungsi Logika Setelah Minimisasi Dalam Bentuk SOP:

A'B'D + A'CD + AB

Tekan Tombol Apapun Untuk Keluar!

Kesimpulan, Lesson Learned, serta Kendala

- Minimisasi adalah proses penyederhanaan ekspresi boolean, yang mana algoritmanya banyak dan beragam
- Algoritma Quine-McCluskey adalah salah satu algoritma logic minimization yang mudah diimplementasikan ke program karena prosesnya dilakukan berulang serta efektif jika ekspresi boolean input memiliki banyak variabel
- Masih adanya sedikit bug pada kode yang telah dibuat, dimana terkadang muncul variabel yang tidak sesuai pada bagian hasil output

Demo Program Tugas Besar

Kasus 2 Variabel

$$f(a,b) = m(0,3) + d(2)$$

Kasus 3 Variabel

$$f(a,b,c) = m(0,1,4,7) + d(3)$$

Kasus 4 Variabel

f(a,b,c,d) = m(1,3,7,12,13,14,15)

Kasus 4 Variabel

Terima kasih!

