

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu

Materials Based on electrical resistivity

Resistivity range in Ohm m ⇒ 25 orders of magnitude

Metallic materials

Semi-conductors

10-9		10-7	10-5		10-3		10-1		10-1	10^3	
Ag Cu Au	Al	Ni Pb	Sb E	Bi raphite	(d	Ge loped)	G	e		Si	

Insulators

105	107	109	1011	10 ¹³	10 ¹⁵	10 ¹⁷
Window glass Ionic conductiv ity		Bakelite	Porcelain Diamond Rubber Polyethyl ene	Lucite	PVC	SiO ₂ (pure)

Pure material semiconductors

- Group IVA materials
 e.g., Silicon & Germanium
- Compound semiconductors
 - III-V compoundse.g., GaAs & InSb
 - II-VI compoundse.g., CdS & ZnTe
 - The wider the electronegativity difference between the elements the wider the energy gap.

Charge carriers in semiconductors

Move at different speeds - drift velocities

Conduction in terms of electron and hole migration

Concept of electrons and holes:

Electrical Conductivity given by:

• for intrinsic semiconductors $n = p = n_i$

•
$$\sigma = n_i |e| (\mu_e + \mu_h)$$

Intrinsic Semiconductors: Conductivity vs T

- Data for Pure Silicon:
 - -- σ increases with T
 - -- opposite to metals

$$\sigma = n_i e \left(\mu_e + \mu_h \right)$$

$$n_i \propto e^{-E_{gap}/kT}$$

material band gap (eV)
Si 1.11
Ge 0.67
GaP 2.25
CdS 2.40

No. of electron = No. of holes in intrinsic semiconductors at any given temperature

Extrinsic semiconductors

The addition of doping elements significantly increases the conductivity of a semiconductor. In fact impurity is accidentally present in semiconductors (even in low concentrations like 1 atom in 10¹² atoms), which make it extrinsic.

Doping of Si

- \triangleright V column element (*P*, *As*, *Sb*) \rightarrow the extra unbonded electron is practically free
 - ⇒ Energy level near the conduction band
 - ⇒ n- type semiconductor
- >III column element (AI, Ga, In) \rightarrow the extra electron for bonding supplied by a neighbouring Si atom \rightarrow leaves a hole in Si.
 - ⇒ Energy level near the valence band
 - ⇒ p- type semiconductor

Ionization energies for dopants in Si & Ge (in eV)

Type	Element	In Si	In Ge	
	Р	0.044	0.012	
n-type	As	0.049	0.013	
	Sb	0.039	0.010	
	В	0.045	0.010	
n tuno	Al	0.057	0.010	
p-type	Ga	0.065	0.011	
	In	0.16	0.011	

N – type semiconductors

- Ionization Energy → Energy required to promote an electron from the Donor level to conduction band.
- $E_{lonization}$ < E_{g} ⇒ even at RT large fraction of the donor electrons are exited into the conduction band.

- Electrons in the conduction band are the majority charge carriers
- The fraction of the donor level electrons excited into the conduction band is much larger than the number of electrons excited from the valence band
- The number of holes is very small in an n-type semiconductor
- ⇒ Number of electrons ≠ Number of holes

P – type semiconductors

- At zero K the holes are bound to the dopant atom
- o As T↑ the holes gain thermal energy and break away from the dopant atom \Rightarrow available for conduction
- The level of the bound holes are called the acceptor level (which can accept
 and electron) and acceptor level is close to the valance band
- Holes are the majority charge carriers
- o Intrinsically excited electrons are small in number
- ⇒ Number of electrons ≠ Number of holes

Extrinsic Semiconductors: Conductivity vs T

- 1. Freeze out region Insufficient energy for excitation
- 2. Exhaustive region Electrons from the impurity doping
- 3. Intrinsic region Electrons from the host semiconductor

Summary

- 1. Electrons and holes are the two charge carriers in the semiconductors.
- 2. The numbers of electrons and holes are always constant in intrinsic semiconductors.
- 3. Donor and acceptor impurities have less ionization energy as compared to the band gap.
- 4. Number of electrons and holes in extrinsic semiconductors are different.

