EKAMENDATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op 'n elekron	е	$1.6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gasvolume by STD	V_{m}	22,4 dm³⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro se konstante	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C·mol ⁻¹

TABEL 2 CHEMIE FORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OF $c = \frac{m}{MV}$		$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ by 25 °C (298 K)					
q = It		$E_{sel}^{\theta} = E_{kato}^{\theta}$	de $^{-}$ $^{E_{anode}^{ heta}}$				
q = nF	$\mathit{E}^{ heta}_{se}$	$H = E_{\text{oksideermidd}}^{\theta}$	lel $^{-}$ E reduseermiddel				

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H					om- ıl (Z)	1	2,1	Elek negati									He
2	3 1,0 Li 7	4 1,5 Be 9			,		1 tiewe ımassa						5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3											13 1,5 Al 27	Si 28	15 2,1 P 31	S	Cℓ 35,5	Ar
4	19 0,8 K	Ca	Sc	Ti	V	24 1,6 Cr	Mn	Fe	Co	Ni	Cu	Zn	31 1,6 Ga	Ge	As	34 2,4 Se	Br	Kr
5	39 37 0,8 Rb	Sr	Υ	Zr	Nb	52 42 1,8 Mo	Тс	Ru	Rh	Pd	63,5 47 1,9 Ag	Cd	70 49 1,7 In	Sn	Sb	79 52 2,1 Te	80 53 2,5	Xe
6	85,5 55 Cs 133	56 Ba 137,3	89	91 72 Hf 178,5	93 73 Ta 181	96 74 W 184	99 75 Re 186	76 Os 190	103 77 Ir 192	106 78 Pt 195	108 79 Au 197	112 80 Hg 200,6	115 81 Te 204,4	119 82 Pb 207	121 83 Bi 209	128 84 Po	85 At	86 Rn
7	87 Fr	88 Ra		110,0	101	101	100	130	102	100	101	1200,0	<u> 204,4</u>		1200	1		<u> </u>

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
7.0		٠ -				/	J		O .		• • • •			

TABEL 4 STANDAARD ELEKTRODEPOTENSIALE

Half	reaks	ie	E ^θ /volt
Li+ + e-	=	Li	-3,05
K+ + e-		K	-2,93
Cs+ + e-	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2 ,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
Na+ + e-	\rightleftharpoons	Na	-2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H+ + 2e-	\rightleftharpoons	$H_2(g)$	0,00
S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+0,45
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻		Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻		Hg	+0,79
NO ₃ ⁻ + 2H ⁺ + e ⁻		$NO_2(g) + H_2O$	+0,80
Ag+ + e-		Ag	+0,80
NO ₃ ⁻ + 4H ⁺ + 3e ⁻		$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻		Pt	+1,20
MnO ₂ + 4H ⁺ + 2e ⁻		$Mn^{2+} + 2H_2O$	+1,21
O ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$		2Cl ⁻	+1,36
Au ³⁺ + 3e ⁻		Au	+1,42
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻		$Mn^{2+} + 4H_2O$	+1,51
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77
F ₂ (g) + 2e ⁻	=	2F-	+2,87

Toenemende reduseervermoë

Toenemende oksideervermoë