# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

## TEORIA DA COMPUTAÇÃO N

INF05501 Turma B

Prof. Dr. Tiarajú Asmuz Diverio

Gabarito Capítulo 2

Alunos: Filipe da Silva Echevengua 00194713

Arthur Remuzzi Foscarini 00193023

#### **Respostas:**

**2.1**) No caso da linguagem C, um programa monolítico receberia desvios condicionais e incondicionais (if, else, goto...). Um programa iterativo não aceitaria mais os desvios incondicionais e permitiria laços em sua forma estruturada (for, while, do while...) e os programas recursivos seriam organizados em partes (subrotinas) responsáveis pelo controle da recursividade e execução de operações.

## 2.2)

a)P2 = ( $\{ r1: faça \sqrt{vá\_para r2} \}, r1 \}$ 



b) Composição até (programa iterativo);



c) Programa sem instrução alguma;

Não existe.

d) Programa sem instrução de parada.



2.3)

- a) V não será executado somente quando a resposta do teste T for falsa na primeira vez em que T for executado.
- b) Por definição de Programa iterativo, temos que cada identificador de operação e a

operação  $\sqrt{}$  constitui um programa iterativo. Devido a operação  $\sqrt{}$  ser a base da indução para a definição de programa iterativo, e quando se chega na base significa que acabou.

- c) Como um programa monolítico é representado claramente em fluxogramas, e também é possível transformar todas instruções de um programa iterativo para fluxograma, por isso conseguimos fazer uma tradução de um programa iterativo para monolítico sem muitas dificuldades.
- **2.4**) Para as três estruturas de programas (monolítico, iterativo e recursivo), dado um valor inicial, em uma mesma máquina, a computação será sempre a mesma (a seqüência de instruções executadas e os valores intermediários de memória, em diversas execuções do mesmo programa, para o mesmo valor de entrada, será sempre a mesma). O resultado da execução do mesmo programa, na mesma máquina, com mesmo valor inicial, será sempre o mesmo.
- **2.5**) Computação é a sequência de instruções executadas para um programa e os diferentes valores da memória ao longo de sua execução, basicamente é o histórico do funcionamento da máquina para o programa. Função computada é o resultado obtido ao fim de uma computação, desde que a computação seja finita.

2.6)

Sejam M = (V, X, Y,  $\pi_X$ ,  $\pi_Y$ ,  $\Pi_F$ ,  $\Pi_T$ ) uma máquina e  $\ P$  um programa iterativo para M.

A computação do programa iterativo P na Máquina M é uma cadeia de pares da forma:  $(X_0, v_0)(X_1, v_1)(X_2, v_2)...$  onde

- (X<sub>0</sub>, v<sub>0</sub>) é tal que X<sub>0</sub>; □ é todo o programa iterativo inicial P concatenado ao programa vazio e v<sub>0</sub> é o valor inicial armazenado na memória;
- para cada par (X<sub>j</sub>, v<sub>j</sub>) da cadeia, onde j ∈ {0, 1, 2, ...}, tem-se que X<sub>j</sub> são programas Iterativos (suponha que F é um identificador de operação, T é um identificador de teste e W, W<sub>1</sub>, W<sub>2</sub> são programas iterativos):
- a) Se  $X_j$  é da forma:  $X_j = \square$ ; W então, tem-se que:

$$\begin{aligned} \mathbf{X}_{j+1} &= \mathbf{W} \ \mathbf{e} \\ \mathbf{v}_{j+1} &= \mathbf{v}_{j} \end{aligned}$$

**b**) Se  $X_j$  é da forma:  $X_j = F$ ; W então, tem-se que:

$$X_{j+1} = \mathbf{W} e$$

$$\mathbf{v}_{i+1} = \pi_{\mathbf{F}} (\mathbf{v}_i)$$

 $\mathbf{v}_{j+1} = \pi_{F} (\mathbf{v}_{j})$ c) Se  $X_{j}$  é da forma  $\mathbf{X}_{j} = (\mathbf{W}_{1}; \mathbf{W}_{2}); \mathbf{W}$ 

então, tem-se que:

$$X_{j+1} = W_1; (W_2; W) e$$
  
 $v_{i+1} = v_i$ 

**d**) Se 
$$X_j$$
 é da forma  $X_j$  = (se  $T$  então  $W_1$  senão  $W_2$ );  $W$  então, tem-se que:

$$X_{j+1} = \mathbf{W_1}; \mathbf{W}$$
 se  $\pi_T (v_j) = \text{verdadeiro}$   
 $\mathbf{W_2}; \mathbf{W}$  se  $\pi_T (v_j) = \text{falso}$ 

$$\mathbf{e} \qquad \mathbf{v_{j+1}} = \mathbf{v_j}$$

e) Se  $X_j$  é da forma  $X_j$  = enquanto T faça  $(W_1)$ ; W

então, tem-se que:

$$X_{j+1} = W_1$$
; enquanto **T** faça ( $W_1$ ); **W** se  $\pi_T(v_j)$ = verdadeiro  $\mathbf{w}$  se  $\pi_T(v_j)$  = falso e  $\mathbf{v}_{j+1} = \mathbf{v}_j$ 

$$f$$
) Se  $X_j$  é da forma

$$X_j = até T faça (W_1); W$$

então, tem-se que:

$$\mathbf{X}_{j+1} = \mathbf{W_1}$$
; até  $\mathbf{T}$  faça  $(\mathbf{W_1})$ ;  $\mathbf{W}$  se  $\pi_{\mathbf{T}}(\mathbf{v_j}) = falso$  se  $\pi_{\mathbf{T}}(\mathbf{v_j}) = verdadeiro$  e  $\mathbf{v_{j+1}} = \mathbf{v_j}$ 

2.7)

Sejam M = (V, X, Y,  $\pi_X$ ,  $\pi_Y$ ,  $\Pi_F$ ,  $\Pi_T$ ) uma máquina e P um programa iterativo para M.

A função computada pelo programa iterativo P na máquina M denotada por:

$$\langle P, M \rangle : X \to Y$$

é uma função parcial definida para  $x \in X$  se a cadeia:

$$(X_0, v_0)(X_1, v_1)...(X_n, v_n)$$

é uma computação finita de P em M, onde  $X_n = \square$ , e o valor inicial da memória é dado pela função de entrada, ou seja,  $v_0 = \pi_X(x)$ . Nesse caso, a imagem de x é dada pela função de saída aplicada ao último valor da memória na computação, ou seja:

$$\langle \mathbf{P}, \mathbf{M} \rangle (\mathbf{x}) = \pi_{\mathbf{Y}}(\mathbf{v}_{\mathbf{n}})$$

**2.8**) A definição de computação para programas iterativos está feita no exercício 1.2.6. Precisamos apenas considerar que a cadeia de pares é finita:

$$(X_0, v_0) (X_1, v_1)...(X_s, v_s)$$

2.9)

Na máquina um\_reg, o programa a seguir tem computação infinita: ad;(até zero faça ad)

#### 2.10)

- a) Sim, o programa retorna um valor para qualquer entrada do conjunto de entrada.
- b) Nenhum, pois para todos eles a computação é infinita.
- c) Pois independentemente da entrada e independentemente da máquina, tudo o que o programa faz é chamar recursivamente sua única sub-rotina infinitamente.

#### 2.11)

a) Fluxograma 1 representado na Figura 2.24;

```
P é R1 onde
```

```
R1 def (se T1 então R2 senão R3)
```

R2 def (F; R3)

R3 def (se T2 então R4 senão R7)

R4 def (G; R5)

R5 def (se T1 então R7 senão R6)

R6 def (F; R1)

R7 def  $(\sqrt{})$ 

Simplificando:

#### P é R1 onde

R1 def (se T1 então F; R2 senão R2)

R2 def (se T2 então G; R3 senão √)

R3 def (se T1 então √ senão F; R1)

b) Fluxograma 2 representado na **Figura 2.25**;

#### P é R1 onde

```
R1 def (se T então R2 senão R3)
```

R2 def (G; R6)

R3 def (F;R4)

R4 def (se T então R6 senão R5)

```
R5 def (F; R1)
     R6 def (\sqrt{})
Simplificando:
P é R1 onde
     R1 def (se T então G; √ senão F;R2)
     R2 def (se T então √ senão F; R1)
     Fluxograma 3 representado na Figura 2.26;
c)
P é R1 onde
     R1 def (F;R2)
     R2 def (se T1 então R1 senão R3)
     R3 def (G;R4)
     R4 def (se T2 então R5 senão R1)
     R5 def (\sqrt{})
Simplificando:
P é R1 onde
     R1 def F;(se T1 então R1 senão G;R2)
     R2 def (se T2 então √ senão R1)
     Fluxograma 4 representado na Figura 2.27;
d)
P é R1 onde
     R1 def (se T então R2 senão R3)
     R2 def (F; R1)
     R3 def (\sqrt{})
Simplificando:
R1 def (se T então F; R1 senão √)
```

## e) Fluxograma 5 representado na **Figura 2.28.**

### P é R1 onde

R1 def (se T então R2 senão R4)

R2 def (F; R3)

R3 def (se T então R1 senão R4)

R4 def  $(\sqrt{})$ 

## Simplificando:

#### P é R1 onde

R1 def (se T então F; R2 senão √)

R2 def (se T então R1 senão √)

## 2.12)

a)



```
b) 1: Se T1 então vá-para 2 senão vá-para 6
    2: Se T2 então vá-para 3 senão vá-para 6
    3: Se T3 então vá-para 2 senão vá-para 4
    4: Faça V vá-para 5
    5: Faça W vá-para 3
2.13) Duas soluções:
Solução 1:
até T faça √
enquanto T faça (F; G; (se T então (F; até T faça \sqrt{\ }) senão faça \sqrt{\ }))
Solução 2:
(até T faça √);
       F;
       G:
       (enquanto T
       faça
               (F:
               (até T faça √);
```

- **2.14**) Se a máquina  $M_2$  simula a máquina  $M_1$ , sabe-se que qualquer programa P' que tenha uma computação finita em  $M_2$  também o terá em  $M_1$ . Logo, suas funções computadas em ambas as máquinas serão iguais, se P' for construído a partir de P em  $M_2$ . Pode ocorrer, entretanto, que um programa Q tenha uma computação finita em  $M_2$ , mas não em  $M_1$ . Neste caso, a computação de Q em  $M_1$  pode não ser definida ou estar em loop. O poder computacional de  $M_1$  não necessariamente é menor do que  $M_2$ . Os novos testes e operações de  $M_1$  simplesmente facilitam a programação, mas não possibilitam a resolução de um novo problema.
- **2.15**) Sejam  $\mathbf{M} = (\mathbf{V}, \mathbf{X}, \mathbf{Y}, \mathbf{\Pi}_{\mathbf{X}}, \mathbf{\Pi}_{\mathbf{Y}}, \mathbf{\Pi}_{\mathbf{Y}}, \mathbf{\Pi}_{\mathbf{Y}})$  uma máquina e  $\mathbf{P}$  um programa monolítico para  $\mathbf{M}$ . A função computada por  $\mathbf{P}$  em  $\mathbf{M}$  é uma função parcial definida para  $\mathbf{x} \in \mathbf{X}$  se a cadeia  $(s_0, v_0)(s_1, v_1)...(s_n, v_n)$  é uma computação finita de  $\mathbf{P}$  em  $\mathbf{M}$  e todo  $v_k$  definido por  $v_k = \pi_{\mathbf{F}}(v_{k-1})$ , sendo  $\pi_{\mathbf{F}} \in \mathbf{\Pi}_{\mathbf{F}}$ , tem  $\pi_{\mathbf{F}}$  definida em  $v_{k+1}$  sendo  $v_0 = \pi_{\mathbf{X}}(\mathbf{x})$ . Nesse caso, a imagem de  $\mathbf{x}$  é dada por  $\pi_{\mathbf{F}}(v_n)$ .

```
2.16)
```

```
W1:
P é R1 onde
R1 def (Se T então F; R2 senão √)
R2 def (Se T então R1 senão G; R1)
```

F;G;))

## W2:

P é R1 onde

R1 def (Se T então F; R2 senão  $\sqrt{\ }$ ) R2 def (Se T então F; R2 senão G; R1)

## Gabarito das questões 2.17 até 2.30

| Exercício 2.17 | D |
|----------------|---|
| Exercício 2.18 | E |
| Exercício 2.19 | D |
| Exercício 2.20 | A |
| Exercício 2.21 | D |
| Exercício 2.22 | В |
| Exercício 2.23 | В |
| Exercício 2.24 | D |
| Exercício 2.25 | D |
| Exercício 2.26 | В |
| Exercício 2.27 | C |
| Exercício 2.28 | D |
| Exercício 2.29 | В |
| Exercício 2.30 | В |