Bayesian Data Analysis, class 4a

Andrew Gelman

Chapter 4: Large-sample inference and frequency properties of Bayesian inference

Discussion of homework due beginning of Class 3b

- Theory problem
- Computing problem
- Applied problem

Theory problem

- ▶ Prove that a posterior density is proper by bounding the integral over the range $(\alpha, \beta) \in (-\infty, \infty) \times (-\infty, \infty)$
- ▶ Recall that $p(\theta) \propto 1/\theta$ has an infinite integral as $\theta \to \infty$

Computing problem

- Compute posterior density on a discrete grid:
 - Compute unnormalized log-density on the grid
 - Rescale and exponentiate
 - Normalize to sum to 1
- Make contour plot
- Sum over rows or columns to get marginal posterior density
- ► Loop 1000 times:
 - Sample from marginal, then conditional
 - Add noise to get random draw in grid box
- Graph the simulations

Applied problem

- Paired experiment on chicken brains
- How does the effect depend on frequency? Is there evidence from the data that the effect is not constant across frequencies?
- Should we use the sham data in the estimates?

Basic (Bayesian?) data analysis

Exposure has generally positive effect

Sham effects are consistent with zero effect

No correlation of sham and exposed

That sham treatment

- ► What is the role of the "sham" treatment? Why is it performed at all?
- ➤ Consider two different summaries of treatment effect: (a) mean ratios for exposed treatments vs. controls (1.036 at 1 Hz, 1.173 at 15 Hz, etc.), or (b) mean ratio for exposed treatments vs. controls, divided by mean ratio for sham treatments vs. controls (1.036/0.995 at 1 Hz, 1.173/1.013 at 15 Hz, etc.). Which of these two is a better estimate of the treatment effects? Use the data to address this question.
- Bayesian analysis

4. Large-sample inference and frequency properties

- Normal approximations to the posterior distribution
- Large-sample theory
- Counterexamples to the theorems
- Frequency evaluations of Bayesian inferences

Example posterior distribution

Contours at 0.05, 0.15, ..., 0.95

4.1. Normal approximation to the posterior distribution

Approximate log-posterior as quadratic based on mode and curvature:

$$\log p(\theta|y) = \log p(\hat{\theta}|y) - \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta|y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \dots,$$

- Normal distribution centered at $\hat{\theta}$ with inverse variance $\left[\frac{d^2}{d\theta^2}\log p(\theta|y)\right]_{\theta=\hat{\theta}}$
- Posterior density and 2-dimensional contour plots:
 - ▶ For the normal model, the log posterior density (relative to the mode) is -1/2 times a χ^2 random variable
 - ightharpoonup qchisq(.95,2) = 5.99
 - ▶ 95% of posterior mass has density above $e^{-5.99/2} = 0.05$ relative to the mode
 - ▶ Thus, take contours out to 0.05

4.2. Large-sample theory

- ▶ Data $y_1, ..., y_n \sim f(y)$, modeled as $p(y|\theta)$
- ▶ In the limit $n \to \infty$:
 - ▶ If θ is discrete and finite, $p(\theta|y)$ → point mass at the true θ (or the model closest to f)
 - ▶ If θ is continuous on a compact set, $p(\theta|y) \rightarrow$ a point mass at the true θ (or the model closest to f)
 - ▶ Under some conditions, $p(\theta|y)$ approaches a normal distribution

4.3. Counterexamples to the theorems

- ▶ Unidentified parameters (e.g., $y = \theta_1 + \theta_2$)
- Model changing with sample size
- Unbounded likelihoods, for example this mixture model:

$$p(y) = \prod_{i=1}^{n} \left(\frac{1}{2} \frac{1}{\sqrt{2\pi} \sigma_1} e^{-\frac{1}{2\sigma_1^2} (y_i - \mu_1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi} \sigma_2} e^{-\frac{1}{2\sigma_2^2} (y_i - \mu_2)^2} \right)$$

Blows up when $\sigma_1 \rightarrow 0$ and $\mu_1 = y_i$ for any i

- Improper posteriors
- Constrained priors
- Boundary estimates
- Tails

4.4. Frequency evaluations of Bayesian inferences

- ▶ Efficiency of point estimation
- Coverage of posterior intervals

4.5. Bayesian interpretations of other statistical methods

- Maximum likelihood
- Unbiased estimates
- Confidence intervals
- Hypothesis testing
- Multiple comparisons
- Classical (non-model-based) nonparametric methods

Summary of Chapter 4

- ▶ Normal approximation to the posterior distribution . . .
- ▶ ...and its limitations
- Connections to non-Bayesian ideas