A Book of Abstract Algebra (2nd Edition)

	Chapter 28, Problem 2EE	Bookmark	Show all steps: ON
Problem			
	Let U and V be finite-dimensional vector spaces over a field F , and let $h:U\to V$ be a linear transformation. Prove part: The range of h is a subspace of V . (It is called the <i>range space</i> of h .)		
Step-by-step solution			
	Step 1 of 4 It is already known that U and V are vector spaces and so they satisfies all conditions for vector space.		
	Comment		
	Step 2 of 4 Given subset of V is set of all elements of V which are map of vectors of U .		
	Comment		
Step 3 of 4			
	Or given subset is		
	$\{\mathbf{r} \in V \mid h(\mathbf{u}) = \mathbf{r} \text{ for } \mathbf{u} \in U\}$		

Step 4 of 4

A 2 step check is needed to determine if given subset is a subspace. First determine if any linear combination of functions in subset is closed under given operation. Second, determine if 0 satisfies given conditions.

STEP 1: For any 2 elements a and b in V,

$$h(\mathbf{u}_1) = \mathbf{r}_1$$

$$h(\mathbf{u}_2) = \mathbf{r}_2 \tag{2}$$

Combining above 2 equations, s(1) + t(2) gives

(1)

$$s \cdot h(\mathbf{u}_1) + t \cdot h(\mathbf{u}_2) = s\mathbf{r}_1 + t\mathbf{r}_2$$

As *h* is a linear transformation,

$$s \cdot h(\mathbf{u}_1) + t \cdot h(\mathbf{u}_2) = s\mathbf{r}_1 + t\mathbf{r}_2$$

$$\Rightarrow h(s\mathbf{u}_1) + h(t\mathbf{u}_2) = s\mathbf{r}_1 + t\mathbf{r}_2$$

$$\Rightarrow h(s\mathbf{u}_1 + t\mathbf{u}_2) = s\mathbf{r}_1 + t\mathbf{r}_2$$

Thus linear combination of 2 elements in subset lies in subset.

STEP 2: Check if 0 vector satisfies given condition,

$$h(\mathbf{0}_u) = \mathbf{0}_v$$
 {As h is a linear transformation}

Hence given set or range represents a subspace

Comment