Exercises for Section 11.5

 $\mathbf{Ex}\ \mathbf{1.}$ Addition and multiplication tables for \mathbb{Z}_2

+	[0]	[1]	*	[0]	[1]
[0]	[0]	[1]	[0]	[0]	[0]
[1]	[1]	[0]	[1]	[0]	[1]

 $\mathbf{Ex}\ \mathbf{2.}$ Addition and multiplication tables for \mathbb{Z}_3

+	[0]	[1]	[2]	*	[0]	[1]	[2]
[0]	[0]	[1]	[2]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[0]	[1]	[0]	[1]	[2]
[2]	[2]	[0]	[1]	[2]	[0]	[2]	[1]

 \mathbf{Ex} 3. Addition and multiplication tables for \mathbb{Z}_4

+	[0]	[1]	[2]	[3]	*	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[0]	[1]	[1]	[2]	[0]	[2]	[0]	[2]
[3]	[3]	[0]	[1]	[2]	[3]	[0]	[3]	[2]	[1]

Ex 4. Addition and multiplication tables for \mathbb{Z}_6

+	[0]	[1]	[2]	[3]	[4]	[5]	*	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[4]	[5]	[0]	[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[2]	[3]	[4]	[5]	[0]	[1]	[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[3]	[4]	[5]	[0]	[1]	[2]	[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[4]	[5]	[0]	[1]	[2]	[3]	[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[5]	[0]	[1]	[2]	[3]	[4]	[5]	[0]	[5]	[4]	[3]	[2]	[1]

Ex 5.Proposition: If $[a], [b] \in \mathbb{Z}_5$ and $[a] \cdot [b] = [0]$, then [a] = [0] or [b] = [0].

Proof. (Contradiction.) Suppose $[a], [b] \in \mathbb{Z}_5, [a] \cdot [b] = [0], [a] \neq [0],$ and $[b] \neq [0].$ $[a] \neq [0]$ implies that a = 5x + r for some integers x, r where $1 \leq r \leq 4$. Likewise, $[b] \neq [0]$ implies that b = 5y + c for some integers y, c where $1 \leq c \leq 4$. Then $[a] \cdot [b] = [0]$ implies that 5 divides $a \cdot b = (5x + r)(5y + c) = 25xy + 5xc + 5yr + cr$. Thus cr must be divisable by 5. But this contradicts Euclid's lemma. Therefore it must be the case that [a] = [0] or [b] = [0].

Ex 6. For \mathbb{Z}_6 , note the counter-example for \mathbb{Z}_6 : $[2] \cdot [3] = [2 \cdot 3] = [6] = [0]$. For \mathbb{Z}_7 , the statement is true. A proof almost identical to the one above could be used to show the statement to be true.

Ex 7.

- a) [8] + [8] = [8 + 8] = [16] = [7]
- b) [24] + [11] = [24 + 11] = [35] = [8]
- c) $[21] \cdot [15] = [21 \cdot 15] = [315] = [0]$
- d) $[8] \cdot [8] = [8 \cdot 8] = [64] = [1]$

Ex 8. Proposition: If $[a], [b] \in \mathbb{Z}_n$, [a] = [a'], and [b] = [b'], then [a] + [b] = [a'] + [b'].

Proof. (Direct). Suppose $[a], [b] \in \mathbb{Z}_n$, [a] = [a'], and [b] = [b'].

Because [a] = [a'], it follows that n divides a - a', so a - a' = nx for some integer x. Likewise, [b] = [b'] implies that n divides b - b', so b - b' = ny for some integer y. Then $a + b = (nx + a') + (ny + b') \leftrightarrow (a + b) - (a' + b') = n(x + y) \leftrightarrow a + b \equiv a' + b' \pmod{n}$. Therefore [a] + [b] = [a'] + [b'].