انتگرال گیری

1- الگوريتم شلپ shelep

نمودار f(x) را در geogebra رسم می کنیم.

ym. پس الگوریتم را کمی تغییر می دهیم. و شره می شود که تابع در بازه انتگرال گیری تماما منفی است، پس الگوریتم را کمی تغییر می دهیم و با به y > f(x) به y < f(x) بخییر می دهیم. و شرط y < f(x) به می دهیم. و میدیم. سپس نمودار اختلاف مقدار انتگرال از مقدار واقعی را برحسب y < f(x) را رسم می کنیم. مقدار واقعی انتگرال y < f(x) است.

مشاهده می شود که در 20 قدم اول خطا به به شدت کم شده و با افزایش N به صفر میل می کند.

2- نمونه برداری ساده و هوشمند sampling

الگوریتم نمونه برداری ساده نیازی به توضیح ندارد و بسیار ساده است. برای الگوریتم نمونه برداری هوشمند ابتدا از روش فصل قبل، رندوم جنریتوری با تابع توزیع نمایی می سازیم. تابع random gen g.

$$y = -\ln(x)$$
, $x: random(0,1)$

برای اینکه ببینیم تابع خوب کار می کند، تابع توزیع آن را رسم می کنیم.

تابع توزیع به خوبی کار می کند. برای الگوریتم انتگرال گیری در تابع importance_sampling تا زمانی تابع a, b بدهد. و random_gen_ را کال می کنیم که به مال عددی بین a, b بدهد. پس از حلقه اصلی، میانگین a, b را باید در یک ضریب نرمالیز اسیون ضرب کنیم که همان انتگرال a است

$$\int_0^2 g(x) dx = 1 - e^{-2}$$

در نهایت با استفاده از کتابخانه tablulate، جدول خواسته شده را پرینت می کنیم.

+ I N	+ Is	+ Ii	sigma s	 sigma i	delta s	delta i		error i	runtime s	runtime i
+======	- <u>-</u> - +========	+======+		-======+				-=======+	-=======	
+	+	0.853339 ++	0.35668/	i			0.018023 		0.010356 +	0.000521
1000 +	0.900969 +	0.878000 ++	0.346924	0.316540	0.010971	0.010010	0.018888 	0.004081	0.003663	0.004850
5000	0.878801	0.878158	0.343583	0.307203	0.004859	0.004345	0.003280	0.003924	0.018234	0.025099
10000	0.877474	0.884253	0.342695	0.305954	0.003427	0.003060	0.004608	0.002172	0.035954	0.049562
25000	0.886267	0.883900	0.344309	0.305372	0.002178	0.001931	0.004186	0.001819	0.090534	0.134039
50000	0.878926	0.882192	0.344190	0.307316	0.001539	0.001374	0.003155	0.000110	0.180022	0.254245
75000	0.881957	0.882897	0.344960	0.307075	0.001260	0.001121	0.000125	0.000816	0.286776	0.412538
100000	0.884790	0.881694	0.345134	0.308708	0.001091	0.000976	0.002709	0.000388	0.350999	0.502113
250000 	0.884357 +	0.882163	0.344777	0.307850	0.000690	0.000616	0.002276	0.000082	0.877087	1.288833
500000	0.881438	0.882352	0.344521	0.307370	0.000487	0.000435	0.000643	0.000270	1.780965	2.574312
750000 	0.882886	0.882217 	0.344945	0.307563	0.000398	0.000355	0.000804	0.000135	2.658196	3.754341
1000000	0.881053	0.882312	0.344639	0.307505	0.000345	0.000308	0.001028	0.000230	3.553251	4.933444

اندیس importance sampling :i اندیس simple sampling :s

ستون error اختلاف مقدار محاسبه شده از مقدار واقعی است. در نگاه اول برای یک N مشخص، الگوریتم هوشمند کندتر از الگوریتم ساده عمل می کند. ولی با دقت بیشتر می بینیم که الگوریتم هوشمند با N کمتر، به جواب بهتر می رسد. برای مثال برای هایلایت آبی داریم:

 $error_i \approx erorr_s \approx 0.0008$

simple: $N_s = 750,000$, $t_s = 2.66$ *importance*: $N_i = 75,000$, $t_i = 0.41$

بنابراین الگوریتم هوشمند هم سریع تر است و هم نتیجه بهتری می دهد. برای درک بهتر، نمودارهای دو الگوریتم برای N های متفاوت رسم شده است.

Comparison of Monte Carlo Methods

به نظر مى رسد الگوريتم هوشمند، واريانس كمترى دارد.

3- انتگرال چندگانه multiple_integrals

ابندا چگالی را بدست می آوریم. فرض می کنیم شعاع کره واحد است و مقدار چگالی در بالاترین نقطه کره 1 و در پایین ترین نقطه کره 0.5 است. همچنین چگالی تابعیت خطی دارد.

$$R = 1$$

$$\rho(z = R) = 1 \quad , \quad \rho(z = -R) = 0.5$$

$$\rho(z) = 0.25 \ z + 0.75$$

مختصات را به دستگاه قطبی تبدیل می کنیم.
$$z=rcos(\theta)\rightarrow \rho(r,\theta)=0.25\ rcos(\theta)+0.75$$

برای محاسبه Zcm داریم:

$$Z_{cm} = \frac{\int z \rho dV}{\int \rho dV}$$

تعریف: $Z \equiv \int z \rho dV$, $M \equiv \int \rho dV$

حال كافي است به روش مونت كارلو دو انتكرال Z و M را محاسبه كنيم.

$$\rho dV = \rho . r^2 \sin(\theta) dr d\theta d\phi$$
$$z\rho dV = z . \rho . r^2 \sin(\theta) dr d\theta d\phi$$

دوتابع زیر را تعریف می کنیم که انتگرالده Z و M هستند.

def dm: $\rho . r^2 \sin(\theta)$ def z_dm: $z . \rho . r^2 \sin(\theta)$

باید در حلقه اصلی میانگین این دوتابع را نسبت به r, θ محاسبه کنیم. باید توجه داشت که $\int d\phi = 2\pi$ از انتگرال های دیگر جدا می شود و در آخر باید ضرب شود. در حلقه اصلی M, Z را با میانگین گیری از dm, z_d بدست می آوریم. باید توجه داشت که ضریب نرمالیز اسیون یا همان (b-a) برای این دو انتگرال به صورت زیر است.

$$norm\ const = (1-0)(\pi-0) \ . \int d\phi = 2\pi^2$$

$$Z_{cm} = \frac{Z}{M}$$

همچنین واریانس $Z_{f}M$ را محاسبه می کنیم و از قانون پخش خطا، واریانس مرکز جرم را بدست می آوریم.

$$\sigma_z = Z_{cm} \sqrt{\left(\frac{\sigma_Z}{Z}\right)^2 + \left(\frac{\sigma_M}{M}\right)^2}$$
$$\Delta = \frac{\sigma_z}{\sqrt{N}}$$

در نهایت مرکز جرم به صورت زیر بدست می آید.

 $Z_{cm} = 0.066327 \pm 0.000033$