${\it Class 12-Physics-CBSE-Exam-Formulas}$

October 18, 2025

Chapter	Concept	Formula / Key Point
Electric Charges and Fields	Coulomb's Law	$F = k \frac{q_1 q_2}{r^2} \ k = \frac{1}{4\pi\varepsilon_0}$
	_	— ⇒
	Electric Field —	$ec{E} = rac{ec{F}}{q} = rac{kQ}{r^2}$
	Electric Dipole	$E_{\text{axial}} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2p}{r^3}$
Electrostatic Potential and Capacitance	Potential Due to Point Charge	$V = \frac{kQ}{r}$
	Capacitance	$C = \frac{Q}{V} C_{\text{parallel plate}} = \varepsilon_0 \frac{A}{d}$
	Series & Parallel	$C_{\text{series}}^{-1} = C_1^{-1} + C_2^{-1} + \dots \ C_{\text{parallel}} = C_1 + C_2 + \dots$
Current Electricity	Ohm's Law	V = IR
	Resistance & Resistivity	$R = \rho \frac{l}{A}$
	Series & Parallel	$R_{\rm series} = R_1 + R_2 + \dots R_{\rm parallel}^{-1} = R_1^{-1} + R_2^{-1} + \dots$
	Power	$P = VI = I^2R = \frac{V^2}{R}$
Moving Charges and Magnetism	Magnetic Force	$F = qvB\sin\theta \ F = IlB\sin\theta$
	Magnetic Field (Wire, Loop)	Straight wire: $B = \frac{\mu_0 I}{2\pi r}$ Loop: $B = \frac{\mu_0 I}{2R}$
	Ampere's Law	$ \oint \vec{B} \cdot d\vec{l} = \mu_0 I $

Chapter	$\mathbf{Concept}$	Formula / Key Point
Magnetism and Matter	Magnetic Dipole Moment	$M = m \times 2l \ U = -\vec{M} \cdot \vec{B}$
	Gauss's Law for Magnetism	$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$ (No magnetic monopoles)
Electromagnetic Induction	Faraday's Law	$e = -\frac{d\Phi}{dt}$
	Lenz's Law	Direction of induced current opposes cause —
	Self Inductance	$e = -L\frac{di}{dt}$ Energy: $U = \frac{1}{2}LI^2$
Alternating Current	AC Voltage	$V = V_0 \sin \omega t \text{ RMS: } V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$
	Reactance & Impedance	$X_L = \omega L, X_C = \frac{1}{\omega C} Z = \sqrt{R^2 + (X_L - X_C)^2}$
	Power in AC	$P = VI\cos\phi$ (cos = power factor)
Electromagnetic Waves	Speed of EM Waves	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \ c = 3 \times 10^8 \ \text{m/s}$
	EM Spectrum	Radio < Microwave < Infrared < Visible < UV < X-rays < Gamma rays
Ray Optics and Optical Instruments	— Mirror Formula	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u} \ m = \frac{h'}{h} = \frac{-v}{u}$
	Lens Formula	$\frac{\overline{\frac{1}{f}}}{\overline{f}} = \frac{1}{v} - \frac{1}{u} \ m = \frac{v}{u}$
	Power of Lens	$P = \frac{100}{f(\text{cm})}$
Wave Optics	Young's Double Slit Experiment	Fringe width: $\beta = \frac{\lambda D}{d}$
	— Diffraction	Central maximum width $\frac{\lambda}{a}$
	— Polarization	Only transverse waves show polarization
Dual Nature of Radiation and Matter	De Broglie Wavelength	$\lambda = \frac{h}{mv}$
		_

Chapter	Concept	Formula / Key Point
	Photoelectric Equation	$E_k = h\nu - \phi$
Atoms	Radius (Bohr Model)	$\overline{r_n} = n^2 \cdot a_0, a_0 = 0.529 \; \text{Å}$
	Energy Levels	$E_n = -13.6 \frac{Z^2}{n^2} \text{ eV}$
Nuclei	Binding Energy —	$BE = [Zm_p + (A-Z)m_n - m_{\rm nucleus}]c^2$ —
	Radioactive Decay	$N = N_0 e^{-\lambda t} \ t_{1/2} = \frac{0.693}{\lambda}$
Semiconductors	Diode Current	$I = I_0(e^{\frac{eV}{kT}} - 1)$
	— Logic Gates	— AND, OR, NOT, NAND, NOR — Truth tables