Einführung in die Algebra

BLATT 6

Jendrik Stelzner

22. November 2013

Aufgabe 5.1.

Es sei n > 1 so dass

$$a^n = a \text{ für alle } a \in R,$$
 (1)

und $\mathfrak p$ ein Primideal in R. Da $\mathfrak p$ ein Primideal ist, ist $R/\mathfrak p$ ein Integritätsring, sowie $R/\mathfrak p \neq 0$, da $\mathfrak p$ von R verschieden ist. Da R kommutativ ist, ist es auch $R/\mathfrak p$, und es ist offensichtlich, dass die Bedingung (1) auf $R/\mathfrak p$ vererbt wird. Da für alle $r \in R/\mathfrak p$ mit $r \neq 0$

$$r \cdot r^{n-1} = r^n = r = r \cdot 1,$$

folgt, wie bereits letzte Woche gezeigt, wegen der Nullteilerfreiheit von R/\mathfrak{p} , dass $r^{n-1}=1$ für alle $r\in R/\mathfrak{p}$. Als ist für alle $r\in R/\mathfrak{p}$ mit $r\neq 0$

$$rr^{n-2} = r^{n-1} = 1,$$

d.h. alle $r \in R/\mathfrak{p}$ mit $r \neq 0$ sind multiplikativ invertierbar. Zusammen mit der Kommutativität von R/\mathfrak{p} und $R/\mathfrak{p} \neq 0$ zeigt dies, dass R/\mathfrak{p} ein Körper ist. Dies ist äquivalent dazu, dass \mathfrak{p} ein maximales Ideal ist.

Aufgabe 5.2.

Für alle $a \in \ker \varphi$ ist 1-a multiplikativ invertierbar: Für $n \geq 1$ mit $a^n = 0$ ergibt sich, dass

$$(1+a+a^2+\ldots+a^{n-1})(1-a)=1-a^n=1$$
 und
 $(1-a)(1+a+a^2+\ldots+a^{n-1})=1-a^n=1.$

Folglich ist

$$1+\ker\varphi=1-\ker\varphi\subseteq R^*.$$

Wir bemerken auch, dass

$$x \in 1 + \ker \varphi \Leftrightarrow \varphi(x) = 1$$
,

denn da $1 \in \varphi^{-1}(\{1\})$ ist $1 + \ker \varphi$ als Nebenklasse von 1 bezüglich $\ker \varphi$ die Faser $\varphi^{-1}(\{1\})$ von $1 \in S$ unter φ .

Bekanntermaßen induziert φ einen Gruppenhomomorphismus $\varphi_{|R^*}:R^*\to S^*$ der entsprechenden Einheitengruppen. Die Surjektivität von φ vererbt sich dabei auf $\varphi_{|R^*}$: Für $s\in S^*$ gibt es $r,r'\in R$ mit $\varphi(r)=s$ und $\varphi(r')=s^{-1}$. Es ist

$$\varphi(rr') = \varphi(r)\varphi(r') = ss^{-1} = 1,$$

also wie oben bemerkt $rr' \in 1 + \ker \varphi \subseteq R^*.$ Es ist nun nach den obigen Beobachtungen

$$\ker \varphi_{\mid R^*} = \{x \in R^* : \varphi(x) = 1\} = R^* \cap \varphi^{-1}(\{1\}) = R^* \cap (1 + \ker \varphi) = 1 + \ker \varphi.$$

Folglich ist $1+\ker\varphi$ ein Normalteiler von R^* und

$$R^*/(1 + \ker \varphi) \cong S^*$$
.