Hash algorithms

EECE 457

Hash rules

- 0. "Easy" to compute hash(X)
- 1. Given Y, "hard" to find X with Y=hash(X)
- 2. Generally "hard" to find $X_1 \neq X_2$ with hash (X_1) =hash (X_2)

But what does "hard" mean?

Hash rules

 You can always solve Y=hash(X) using brute force, which can be really easy if you are brute-forcing over a tiny space

(e.g., your password is an English word)

- "hard" means that we don't know of any reasonable algorithm—for hashes, it means that nobody knows a better method than brute force
- Need a large output length, so that brute force can be computationally unfeasible

Applications (ctd)

Password hashes

```
user:alice password:hash(asdf,alice,salt)
```

- Tamper evidence (hash as checksum for file)
- Commitments

Commitment

- 1. Alice generates secret X
- 2. Alice sends Bob: Y=hash(X)
- 3. Time passes
- 4. Alice sends Bob: X

Alice convinces Bob that she knew X as far back as step 2, and has not changed it since step 2

Commitment

- 1. Alice generates random coin flip X
- 2. Alice→Bob: Y=hash(X)
- 3. Bob→Alice: guess for value of X
- 4. Alice→Bob: X

X must be large enough to prevent brute force, e.g. a coin flip combined with a long random string: FLIP=HEADS::2b00042f7481c7b056c4b410d28f33cf

Message surrogates

- 1. Alice sends Bob: 30 page EULA X
- 2. Bob signs Y=hash(X)

"I hereby agree to the contract whose hash is 84da1f9a4a891ab7a5c873730d9e9a4e"

We will use cryptography to "sign" messages, and it's far easier to sign short ones.

"Time" stamping, forcing order of messages

- Alice publishes message A
- Bob publishes message B,hash(A)
- Carol publishes message C,hash(B,hash(A))
- Dave publishes D,hash(C,hash(B,hash(A)))

Each document must have been created after the previous one.

Proof of work (hashcash)

- Alice sends Bob message A
- Bob finds a random nonce N where hash(A,N) ends with 12 zero bits
- Bob sends Alice N
- Alice computes hash(A,N) to verify Bob's work

Bob must find N through brute force search; Alice's verification requires a single quick step

The random oracle model

- A machine M contains a random bit generator and inexhaustible memory
- Given input X:
 - If M never saw X before, set hash(X) equal to a string of 128 random bits, and output this
 - If M saw X before, output the value previously generated

This satisfies the requirements of a secure hash function

Brute force

- Suppose there are 2ⁿ hash outputs, and each one is equally likely to appear
- Given Y, every guess X has a 2⁻ⁿ probability of outputting Y
- Expected number of trials until collision is 1/(2-n)

You are "weakly collision-free" if your space of outputs is too big to brute-force!

Proof

- Event has probability p of occurring
- In repeated trials, probability that event occurs in trial K is p(1-p)^{K-1}
- Expected number of trials = $\sum_{K} K \cdot p(1-p)^{K-1}$ = $p \sum_{K} K \cdot (1-p)^{K-1}$
- Trick: $Kx^{K-1} = d/dx x^K$ $\sum Kx^{K-1} = d/dx \sum x^K$

Brute force

- Suppose there are 2ⁿ hash outputs, and each one is equally likely to appear
- Choose X₁, X₂, ... X_m, until two inputs match
- Expected number of attempts about (2^{-n/2})

This is the square root of the size of your space of outputs!

Proof

- Sample uniformly from a set of M outcomes
- If the first K outcomes are unique, the next outcome is a collision with probability K/M
- The probability of no collision with K+1 samples:

$$Pr = (1-0/M)(1-1/M)(1-2/M)...(1-K/M)$$

With M much larger than K, (1+K/M)~e^{K/M}, and

$$Pr = (e^{-0/M})(e^{-1/M})...(e^{-K/M}) = e^{-(1+2+...+K)/M} = e^{-K(K+1)/2M}$$

Or

- (1-a/M)(1-(K-a)/M) <= (1-K/2M)(1-K/2M) $Pr = (1-1/M)(1-2/M)...(1-K/M) <= (1-K/2M)^K$
- $e^x = \lim(1-x/N)^N$
- $Pr <= (1-K/2M)^K = (1-(K^2/2M)/K)^K \sim e^{-(KK/2M)}$

But how do hash algorithms work?

The Merkle Damgård construction

- Let M be a finite state machine with a very large state (hundreds of bits) that accepts m input bits per clock
- Given input X:
 - Partition X into m-bit blocks
 - Feed all input blocks to M
 - Use the state of M as the "hash"

Example

Garbled combinational circuit — represents the computation of a new FSM state from the previous state plus k bits of input (from string to be hashed)

Example: MD5

- 128+32 bit input, 128-bit state output
- A 512-bit block is blended into the state by breaking it into 16 32-bit inputs M_i
- The block is folded in 4 times, for a total of 64 stages
- Values Ki are constants, a different one per round; shift value s is different each round

Example: MD5

 Function F varies in each of the 4 passes

```
pass 1, rounds 0-15:
(B and C) or ((not B) and D)

pass 2, rounds 16-31:
(D and B) or ((not D) and C)

pass 3, rounds 32-47:
B xor C xor D

pass 4, rounds 48-63:
C xor (B or (not D))
```


Example

Garbled combinational circuit — represents the computation of a new FSM state from the previous state plus k bits of input (from string to be hashed)

The Merkle Damgård construction

- Why?
 - If we come up with a good way to hash a fixedlength input, we can use this trick to have it accept arbitrary-length inputs
 - Result can be sensitive to every bit of input
 - Downside: if we find a collision hash(X)=hash(Z), then hash(XY)=hash(ZY)!

Pseudo random generators

Pseudo-random generators

- Used to generate long string of "random-ish" data deterministically, from a small seed
- Function PRNG(seed,k) = bitk
- Requirements:
 - 0: PRNG is easy to compute
 - 1: "hard" to determine seed from output
 - 2: "hard" to predict subsequent bits from past bits

Pseudo-random generators

- Simple methods using hashes (but unnecessarily compute-intensive):
 - $bit_k = hash(seed,k)\&0x01$
 - or: S_0 =seed, S_k =hash(S_{k-1}), bit_k= S_k &0x01
- Hashes can be used for PRNGs, if a hash is all you have

Simple generators

- These are NOT CRYPTOGRAPHICALLY SECURE!
 - Linear congruential generators
 - Linear feedback shift registers (LFSRs)
 - Combinations of simple, "unsafe" generators may produce secure ones

Linear congruential generators

- X_0 = initial state; X_{k+1} = (a X_k +c) modulo m
- Example: byte $B_{k+1} = (5B_k + 1)$
- Advantage: with proper choice of a, c and m, the generator has a maximal period (m).
- Disadvantage: easy for an adversary to estimate state from output values

Linear feedback shift registers

- Select bits are tapped and XORed to produce input for shift register, output bits produce PRNG stream
- Advantage: maximal period 2ⁿ-1 if taps are chosen correctly
- Disadvantage: burps out secret seed value in n clocks

Combinations of LFSRs

- Some hopefully secure PRNGs such as Trivium (right) attempt to combine multiple LFSRs nonlinearly
- Simple example: shrinking generator
- Such designs are desirable because they would be computationally very simple, easy to realize in hardware.

Combinations of LFSRs

- Some hopefully secure PRNGs such as Trivium attempt to combine multiple LFSRs nonlinearly
- Simple example: shrinking generator (right)
- Such designs are desirable because they would be computationally very simple, easy to realize in hardware.

More complicated methods

 Salsa20: uses 16 32-bit registers, with add-xorshift operations

```
x[4] \oplus = (x[0] \oplus x[12]) <<<7;
                                           x[9] \oplus = (x[5] \oplus x[1]) <<<7;
x[14] \oplus = (x[10] \oplus x[6]) <<<7;
                                            x[3] \oplus = (x[15] \oplus x[11]) <<<7;
x[8] \oplus = (x[4] \oplus x[0]) <<<9;
                                            x[13] \oplus = (x[9] \oplus x[5]) <<<9;
x[2] \oplus = (x[14] \oplus x[10]) <<<9;
                                           x[7] \oplus = (x[3] \boxplus x[15]) <<<9;
x[12] \oplus = (x[8] \oplus x[4]) <<<13;
                                           x[1] \oplus = (x[13] \oplus x[9]) <<<13;
x[6] \oplus = (x[2] \oplus x[14]) <<<13;
                                            x[11] \oplus = (x[7] \oplus x[3]) <<<13;
x[0] \oplus = (x[12] \oplus x[8]) << 18;
                                            x[5] \oplus = (x[1] \oplus x[13]) <<<18;
x[10] \oplus = (x[6] \oplus x[2]) <<<18;
                                            x[15] \oplus = (x[11] \oplus x[7]) <<<18;
x[1] \oplus = (x[0] \oplus x[3]) <<<7;
                                            x[6] \oplus = (x[5] \oplus x[4]) << 7;
x[11] \oplus = (x[10] \oplus x[9]) <<<7;
                                            x[12] \oplus = (x[15] \oplus x[14]) <<<7;
x[2] \oplus = (x[1] \oplus x[0]) <<<9;
                                            x[7] \oplus = (x[6] \oplus x[5]) <<<9;
x[8] \oplus = (x[11] \oplus x[10]) <<<9;
                                            x[13] \oplus = (x[12] \oplus x[15]) <<<9;
x[3] \oplus = (x[2] \oplus x[1]) <<<13;
                                            x[4] \oplus = (x[7] \boxplus x[6]) <<<13;
x[9] \oplus = (x[8] \boxplus x[11]) <<<13;
                                            x[14] \oplus = (x[13] \oplus x[12]) <<<13;
x[0] \oplus = (x[3] \oplus x[2]) << 18;
                                            x[5] \oplus = (x[4] \oplus x[7]) <<<18;
x[10] \oplus = (x[9] \oplus x[8]) << 18:
                                            x[15] \oplus = (x[14] \oplus x[13]) <<<18;
```

More complicated methods

- Salsa20 setup: block of 16 words z[0]..z[15]: Z[1,2,3,4,11,12,13,14] = 256 bit key (seed) Z[0,5,10,15] = Salsa constants Z[6,7] = extra nonce (can be part of seed) Z[8,9] = block number
- Copy words into registers x[0]..x[15]
- Perform 20 rounds (right)
- Add z[i]+=x[i]
- Output z[i]

```
x[4] \oplus = (x[0] \oplus x[12]) <<<7;
                                             x[9] \oplus = (x[5] \oplus x[1]) <<<7;
x[14] \oplus = (x[10] \oplus x[6]) <<<7;
                                             x[3] \oplus = (x[15] \oplus x[11]) <<<7;
                                            x[13] \oplus = (x[9] \boxplus x[5]) <<<9;
x[8] \oplus = (x[4] \oplus x[0]) <<<9;
x[2] \oplus = (x[14] \oplus x[10]) <<<9;
                                             x[7] \oplus = (x[3] \oplus x[15]) <<<9;
x[12] \oplus = (x[8] \oplus x[4]) <<<13;
                                             x[1] \oplus = (x[13] \oplus x[9]) <<<13;
x[6] \oplus = (x[2] \oplus x[14]) <<<13;
                                             x[11] \oplus = (x[7] \oplus x[3]) <<<13;
x[0] \oplus = (x[12] \oplus x[8]) <<<18;
                                             x[5] \oplus = (x[1] \oplus x[13]) <<<18;
                                             x[15] \oplus = (x[11] \oplus x[7]) <<<18;
x[10] \oplus = (x[6] \oplus x[2]) << 18;
                                             x[6] \oplus = (x[5] \oplus x[4]) << 7;
x[1] \oplus = (x[0] \oplus x[3]) <<<7;
                                            x[12] \oplus = (x[15] \boxplus x[14]) <<<7;
x[11] \oplus = (x[10] \oplus x[9]) <<<7;
x[2] \oplus = (x[1] \oplus x[0]) <<<9;
                                             x[7] \oplus = (x[6] \oplus x[5]) <<<9;
x[8] \oplus = (x[11] \oplus x[10]) <<<9;
                                             x[13] \oplus = (x[12] \oplus x[15]) <<<9;
                                            x[4] \oplus = (x[7] \oplus x[6]) <<<13;
x[3] \oplus = (x[2] \oplus x[1]) <<<13;
x[9] \oplus = (x[8] \oplus x[11]) <<<13;
                                             x[14] \oplus = (x[13] \oplus x[12]) <<<13;
x[0] \oplus = (x[3] \oplus x[2]) <<<18;
                                             x[5] \oplus = (x[4] \oplus x[7]) << 18;
x[10] \oplus = (x[9] \oplus x[8]) << 18:
                                             x[15] \oplus = (x[14] \oplus x[13]) <<<18:
```

Why?

- Requires a constant number of register operations per block, only uses registers for rounds.
- Also allows user to "jump" to any 512-byte block in the PRNG stream

Encryption

Symmetric

Asymmetric ("public key")

Encryption

Symmetric

- Easy to compute Encrypt(M,K), Decrypt(C,K)
- Hard to determine Encrypt(M,K) or Decrypt(C,K) given M or C, but without knowledge of K
- Hard to determine K given both C and M (why?)

Encryption

Asymmetric ("public key")

- Easy to compute Encrypt(M,K_E), Decrypt(C,K_D)
- Hard to compute Decrypt(C,K_D) without K_D;
 Hard to compute Encrypt(M,K_E) without K_E;
- Thus, hard to derive K_D from K_E, and vice versa

Encryption

Asymmetric ("public key")

- Allows you to publish an encryption key, keeping a decryption key secret.
- Anyone can send you an encrypted message, without arranging a shared secret key in advance

Key management

- For everyone to communicate with symmetric cryptography, you need to manage a key for every pair of users, or develop a key management system.
- With asymmetric cryptography, you still need a way for Alice to look up Bob's public key, but:
 - Alice doesn't need a key of her own
 - The secret key is stored by a single party, and is easier to keep secure

Symmetric vs asymmetric

- Symmetric algorithms tend to be much faster
- Asymmetric algorithms are possible because of large instances of difficult computational problems—and thus require large keys, more serious computation.
- We typically use asymmetric encryption just to send a key for symmetric encryption!

Alice→Bob: EncryptAsymmetric(K_{SESSION},K_E), EncryptSymmetric(M,K_{SESSION})

Fun encryption tricks

- 1. Alice: Message M, public key K_E private key K_D
- 2. Compute H = hash(M) (message surrogate)
- 3. Compute $S = Decrypt(H, K_D)$
- 4. Wait, what?
- 5. Alice→Bob: <M,S>

Fun encryption tricks

- 1. Alice: Stores public key K_E with remote host
- 2. Alice sends login request to remote host Bob
- 3. Bob→Alice: Random string R
- 4. Alice→Bob: S=Decrypt(R,K_D)
- 5. Bob verifies that $Encrypt(S, K_E) = challenge R$

Equivalence of primitives

- Can implement PRNG using a hash
- Can implement symmetric encryption with a PRNG
- Can implement a hash using symmetric encryption

Kerckhoffs's Criterion

- A system must be designed under the assumption that an adversary will know everything about it, save for secret keys.
- Secrecy of keys (seeds, passwords, etc) provide security of overall system
- This does not mean everything else must or should be made public, but that it should remain secure if that should happen

Keys

What is a key?

A brief, portable parameter that can be generated randomly from a well-defined set/distribution, upon whose secrecy the security of a system depends in a consistent manner.

 Portability and ease of generation are important because keys can go bad, and must be replaced.

Keys

What is a key?

A brief, portable parameter that can be generated randomly from a well-defined set/distribution, upon whose secrecy the security of a system depends in a consistent manner.

 Random generation is important, so that the "secrecy" of a key can be quantified. It's not a key if you can't analyze the difficulty of guessing it!

Kerckhoffs's Criterion

- A system must be designed under the assumption that an adversary will know everything about it, save for secret keys.
- A violation of Kerckhoff's criterion is called an obscurity tactic, or "security through obscurity"
- Examples: hiding a spare key by a door, placing critical data in a "hidden" directory, hard-coding a password in an executable file

Reasons for Kerckhoffs's Criterion

- It works! Systems that violate this principle are often broken.
- Following this rule gives you quantifiable secrecy
- Non-key components (e.g. algorithms) are hard to swiftly regenerate, or randomly sample with consistent levels of security.
- Allowing an architecture to be made public allows peer review
- It is hard to control who knows your architecture.

Cryptographic protocols

- Protocols are typically short multi-step processes performed by multiple parties ("principals"), using a communications channel.
- These steps use cryptographic primitives, wrapping them up into a larger application
- Goal is to achieve some guaranteed security property (e.g. that Alice has authorization to log in)
- Difficulty: nobody trusts anyone, and people may spy, cheat, and misbehave to achieve sinister goals

Principals

Alice, Bob, Carol, Dave

Primary participants in protocol

Eve

Unseen eavesdropper, assumed to exist.

 All principals, including those we don't expressly mention, are potential adversaries.

The Dolev-Yao model

- All communication takes place over a public, modifiable channel, with no reliable indicator of a message's date, direction, or sender
- Analogy: public bulletin board
- Eve can read, modify, and forge any message.
- Sometimes described as "the adversary carries the message."

Example protocol

- 1. Alice→Bob: KA_E
- 2. Bob→Alice: C=Encrypt(K_{SESSION},KA_E)
- 3. Alice \Leftrightarrow Bob: Encrypt(M,K_{SESSION})

Example protocol

- 1. Alice→Bob: KA_E
 - 1. Eve: replace KA_E with KE_E
- 2. Bob→Alice: C=Encrypt(K_{SESSION},KE_E)
 - 1. Eve: replace with Encrypt(K_{SESSION},KA_E)
- 3. Alice \Leftrightarrow Bob \Leftrightarrow Eve: Encrypt(M,K_{SESSION})

Standard Protocol Notation

- 1. Alice: [stuff] Alice has or computes [stuff]
- 2. Bob→Alice: [stuff] Bob sends Alice [stuff]
- 3. Alice ⇔ Bob: [stuff] Alice and bob share [stuff]
- 4. {M,N}_K "M,N" encrypted with K Also use Encrypt_K(M,N) or Encrypt(M,N,K)

Example protocol

- 1. Alice→Bob: { K }_{EB}
- 2. Bob→Alice: { K }_{EA}

K is a random session key, EB and EA the public encryption keys of Bob and Alice

Confirms to Alice that Bob has decrypted her message and fashioned a response — does not tell Bob that he is speaking with Alice

A simple replay attack

- 1. Alice→Bob: { K }_{EB} ←Eve records this
- 2. Bob→Alice: { K }_{EA}
- 3. Alice→Bob: { M }_K ← Eve records this

- 1. Eve(Alice)→Bob: { K }_{EB}
- 2. Bob→Alice: { K }_{EA}
- 3. Eve(Alice)→Bob: { M }_K

A simple replay attack

- 1. Alice→Bob: { K }_{EB} ←Eve records this
- 2. Bob→Alice: { K }_{EA}
- 3. Alice→Bob: { M }_K

- 1. Eve→Bob: { K }_{EB}
- 2. Bob→Eve: { K }_{EE}

Possible fixes:

- 1. Alice→Bob: { Alice, K, Date }_{EB}
- 2. Bob→Alice: { Bob, K, Date }_{EA}

We might as well expressly designate sender/receiver information in the encrypted packet

A datestamp could be used to prevent a message from being replayed far in the past. But then we have to trust in clocks, deal with clock differences, choose a cutoff time, etc.

Possible fixes:

- 1. Alice→Bob: { Alice, K }_{EB}
- 2. Bob→Alice: { Bob, K, N }_{EA}
- 3. Alice→Bob: { Alice, N }_K

Let N be a random nonce. A third step demonstrates to Bob (without a date stamp) that the packet from Alice is *fresh*.

Further complications

- 1. Alice→Bob: { Alice, **{ K }**_{EB} }_{EB}
- 2. Bob→Alice: { Bob, K, N }_{EA}
- 3. Alice→Bob: { Alice, N }_K

By the way, does it help to add an extra encryption layer? Even if it makes no difference, does it hurt at all, security-wise?

An oracle attack

- 1. Alice→Bob: { Alice, { K }_{EB} }_{EB} ←Eve records this
- 1. Eve→Bob: { Eve, { Alice, { K }_{EB} }_{EB} }_{EB}
- 2. Bob→Eve: { Bob, "Alice, { K }_{EB}", N }_{EE}

- 1. Eve→Bob: { Eve, **{ K }**_{EB} }_{EB}
- 2. Bob→Eve: { Bob, K, N }_{EE}

Some general types of attack

- Replay attack: record and resend a message from another party, to produce an unusual effect
- Reflection attack: a message from Alice is sent back to Alice, and mistaken for a message from someone else
- MITM attack: someone forwards messages and key datagrams, and is able to modify them to read traffic or later data
- Oracle attack: tricking a principal into decrypting a message or performing some task for your benefit

Weirder protocols

Secret splitting

- Want to encrypt a file and distribute to N people
- Goal: any subset of K people have the information needed to decrypt the file
 - Any subset of <K people do not have the information needed to decrypt the file
- Applications: fail-safe security polices

Authentication

- Alice: user wants to perform financial transaction
- Bob: Bank wants to authenticate Alice
- Carol: Clerk at POS terminal, initiates connection to Bob
- Database: information needed to authenticate Alice
- Eve: the eavesdropper

Simple authentication

- 1. Alice→Bob: password
- 2. Bob: checks database for hash of password.
- Bob and Carol both have information they need to impersonate Alice
- Eve can eavesdrop connection

Simple authentication

- 1. Alice→Bob: Alice
- 2. Bob→Alice: { N }_{EA}
- 3. Alice→Bob: hash[N]
- Neither Carol nor Eve can use information to impersonate Alice later
- Bob's database only needs to contain E_A

Zero-knowledge protocols

- Can you prove you know a secret without revealing it, even partially?
- In previous protocol, Alice must decrypt something that Bob can choose. Technically she provides information Bob didn't previously have
 - Bob could send Alice an encrypted message {M}that he can't read, and get back hash[M]
- A zero-knowledge protocol provably conveys no information while demonstrating that I know the secret