Exercise 2.8: Groups and Algebraic Structures Cheatsheet

1. Group

Definition: A set G with operation * satisfying:

- Closure: $a * b \in G$.
- Associativity: (a * b) * c = a * (b * c).
- **Identity**: Exists $e \in G$: a * e = e * a = a.
- **Inverse**: For each $a \in G$, exists $a^{-1} \in G$: $a * a^{-1} = a^{-1} * a = e$.

Formulas:

- Closure: $a * b \in G$.
- Associativity: (a * b) * c = a * (b * c).
- Identity: a * e = e * a = a.
- Inverse: $a * a^{-1} = a^{-1} * a = e$.

Analogy: A team where tasks stay within the team, grouping doesn't matter, a neutral task exists, and tasks are reversible.

Example (Q.1): Set $G = \{0, 1\}$ with \oplus :

$$\begin{array}{c|cccc} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

- Closure: All entries in G.
- Associativity: Holds (e.g., $(0 \oplus 1) \oplus 1 = 0 \oplus (1 \oplus 1)$).
- Identity: $0 \ (1 \oplus 0 = 1)$.
- Inverse: $1^{-1} = 1 \ (1 \oplus 1 = 0)$.

2. Abelian Group

Definition: A group where a * b = b * a.

Formula: a * b = b * a.

Analogy: A team where collaboration order doesn't matter. **Example** (Q.2): Set $\{0, 1, 2, 3\}$ with \oplus (addition modulo 4):

(\oplus	0	1	2	3
	0	0	1	2	3
	1 2	1	2	3	0
	2	0 1 2	3	2 3 0	1
	3	3	0	1	2

- Commutative: Symmetric table.
- Group properties: Identity 0, inverses $(1^{-1} = 3)$.

3. Semigroup

Definition: A set with a closed, associative operation.

Formulas:

- Closure: $a * b \in G$.
- Associativity: (a * b) * c = a * (b * c).

Analogy: A club where interactions stay within and grouping is consistent.

Example (Q.9): Set $\{a, b, c\}$ with *:

- Closure: All entries in set.
- Associativity: Ensured by completing table.

4. Monoid

Definition: A semigroup with an identity element.

Formula: a * e = e * a = a.

Analogy: A club with a neutral member.

Example (Q.8): Power set P(S) with intersection (\cap):

- Closure: $A \cap B \in P(S)$.
- Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$.
- Identity: $S (A \cap S = A)$.

5. Group Properties Over Specific Sets

Definition: Verifying if a set with an operation forms a group.

Analogy: Auditing a system for all group rules,

Example (Q.3):

- \mathbb{Q} with +: Group (identity 0, inverses -a).
- \mathbb{Q} with \times : Not a group (no inverse for 0).
- \mathbb{Q}^+ with \times : Group (identity 1, inverses $\frac{1}{a}$).

6. Solving Equations in Groups

Definition: Solve a * x = b or x * a = b in a group.

Formulas:

- $-a*x = b \implies x = a^{-1}*b.$
- $-x * a = b \implies x = b * a^{-1}.$

Analogy: Solving a puzzle by reversing operations.

Example (Q.6):

- a * x = b: $x = a^{-1} * b$.
- -x*a = b: $x = b*a^{-1}$.

7. Non-Abelian Group

Definition: A group where $a * b \neq b * a$ for some a, b.

Analogy: A team where task order matters.

Example (Q.10): 2×2 non-singular matrices over reals with multiplication:

- Non-commutative: $A \cdot B \neq B \cdot A$.
- Group: Closure, associativity, identity I_2 , inverses.

8. Special Sets and Operations

Definition: Analyzing unique sets for group properties. **Analogy**: Checking a special system for group structure. **Example** (Q.5): Set $\{1, \omega, \omega^2\}$, $\omega^3 = 1$, with multiplication:

	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

- Abelian group: Commutative, identity 1, inverses $(\omega^{-1} = \omega^2)$.

Example (Q.7): Set $\{a + \sqrt{3}b \mid a, b \in \mathbb{Q}\}$ with addition:

- Abelian group: Identity $0 + \sqrt{30}$, inverses $-(a + \sqrt{3}b)$.

