

Physique Niveau moyen Épreuve 2

Jeudi 10 mai 2018 (après-midi)

 N	umé	ro de	ses	sion (du ca	ndid	at	

1 heure 15 minutes

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du **recueil de données de physique** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [50 points].

165001

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. (a) Une petite balle d'une masse *m* se déplace sur un cercle horizontal sur la surface interne d'un bol hémisphérique sans frottement.

La force de réaction normale N fait un angle θ avec l'horizontale.

(i) Exprimez la direction de la force résultante sur cette balle.	[1]
	• •

(ii) Sur le diagramme ci-dessous, construisez une flèche de la longueur correcte pour représenter le poids de cette balle.

(Suite de la question 1)

(iii) Montrez que la grandeur de la force nette *F* sur cette balle est donnée par l'équation ci-dessous.

$$F = \frac{mg}{\tan \theta}$$
 [3]

(b))	L	.e	ra	yo	n (du	b	ol	es	st (8,0) n	n e	et	θ	= 2	22	۰.	D	ét	ter	mi	ine	ez	la	vi	tes	SS	e d	de	ce	ette	e b	al	le.					[4]	
																																					 	_		 _		
				٠.							-																	٠.											 -			
																																									-	ĺ

(c)	Résumez si cette balle peut se déplacer sur un trajet circulaire horizontal d'un rayon égal au rayon du bol.	[2]

[3]

(Suite de la question 1)

(d) Une deuxième balle identique est placée au fond du bol et la première balle est déplacée de manière à ce que sa hauteur par rapport à l'horizontale soit égale à 8,0 m.

La première balle est relâchée et elle finit par heurter la deuxième balle. Les deux balles restent en contact. Déterminez, en m, la hauteur maximum atteinte par ces deux balles.

- .	(a)		\times 10 ⁻⁴ m ³ , à une température de 310 K et à une pression de 5,3 \times 10 ⁵ Pa.	
		(i)	Exprimez ce qu'on entend par gaz parfait.	[1]
		(ii)	Calculez le nombre d'atomes dans ce gaz.	[1]
		(iii)	Calculez, en J, l'énergie interne de ce gaz.	[2]
	(b)		augmente le volume du gaz dans la question (a) à $6.8 \times 10^{-4} \text{m}^3$ à une température stante.	
		(i)	Calculez, en Pa, la nouvelle pression de ce gaz.	[1]
		(ii)	Expliquez, en termes de mouvement moléculaire, ce changement de pression.	[2]

3. (a) Un haut-parleur émet un son vers l'extrémité ouverte d'un tuyau. L'autre extrémité est fermée. Une onde stationnaire est formée dans ce tuyau. Le schéma ci-dessous représente le déplacement des molécules d'air dans le tuyau à un instant donné.

	(i)	Ré	sum	ez c	omr	men	t ce	ette	on	de	sta	tior	nna	ire	est	for	mé	e.								[1]
													٠.		٠.			٠.	٠.	 	٠.	٠.	٠.	٠.	٠.	
															٠.					 	٠.	٠.	٠.		٠.	

X et Y représentent les positions d'équilibre de deux molécules d'air dans le tuyau. La flèche représente le vecteur vitesse de la molécule en Y.

- (ii) Dessinez une flèche sur le schéma pour représenter la direction du mouvement de la molécule en X. [1]
- (iii) Légendez un point N pour représenter un nœud de l'onde stationnaire. [1]
- (iv) La vitesse du son est 340 m s⁻¹ et la longueur du tuyau est 0,30 m. Calculez, en Hz, la fréquence du son émis. [2]

(Suite de la question 3)

(b) Le haut-parleur dans la question (a) émet alors un son vers une interface air-eau. A, B et C sont des fronts d'onde parallèles émis par le haut-parleur. Les parties des fronts d'onde A et B dans l'eau ne sont pas montrés. Le front d'onde C n'est pas encore entré dans l'eau.

(i) La vitesse du son dans l'air est $340\,\mathrm{m\,s^{-1}}$ et dans l'eau, elle est $1500\,\mathrm{m\,s^{-1}}$. Les fronts d'onde font un angle θ avec la surface de l'eau. Déterminez l'angle maximum, θ_{max} , auquel le son émis peut entrer dans l'eau. Donnez votre réponse avec le nombre correct de chiffres significatifs.

- 1	J.
-	_

[2]

(ii) Dessinez des droites sur le schéma pour compléter les fronts d'onde A et B dans l'eau pour θ < θ_{\max} .

[2]

4. Le schéma ci-dessous montre un circuit diviseur de tension utilisé pour mesurer la f.é.m. E d'une pile X. Les deux piles ont une résistance interne négligeable.

(a) Exprimez ce qu'on entend par la f.é.m. d'une pile.

(b) AB est un fil d'une section transversale uniforme et d'une longueur de 1,0 m. La résistance du fil AB est $80\,\Omega$. Lorsque la longueur de AC est 0,35 m, le courant dans la pile X est nul.

	(i)		Ī	Иc	on'	tre	Z	q	ue) 	a I	ré	si	st	aı	nc	е	d	u	fil	A	С	e	st	2	30	Ω.													ļ	[2]
											_																								_	_	 		 _		
	 	٠.	-		٠.	•	٠.	•		•	٠.		•		•	-		٠	٠.		٠.	•	٠.			•	٠.	•	٠.	•	٠.		 -	 ٠.		٠.	 	 •	 •		
	 															-												-						 			 	 -			

(ii) Déterminez *E*. [2]

[2]

5. Dans une centrale hydroélectrique à réserve pompée, de l'eau est accumulée dans un barrage d'une profondeur de 34 m.

L'eau quittant le lac supérieur descend d'une distance verticale de 110 m et fait tourner la turbine d'une génératrice avant de sortir dans le lac inférieur.

- (a) L'eau s'écoule hors du lac supérieur à un débit de $1,2\times10^5\,\text{m}^3$ par minute. La densité de l'eau est $1,0\times10^3\,\text{kg}\,\text{m}^{-3}$.
 - (i) Estimez l'énergie spécifique de l'eau dans ce centrale hydroélectrique à réserve pompée, en donnant une unité appropriée pour votre réponse.

•	•	•	•	 -	•				-	•	•	•	•		•	•	•	-	•	•	-	•		-	-			•	•			•			•		•	•			 •					•	•	•	•	-	•	•		
								_		_	_		_	_	_	_			_			_	_	_			 				_	_	_	_		_	_	_	_	_			_		_									

(Suite de la question 5)

(ii) Montrez que le taux avec lequel l'énergie potentielle gravitationnelle de l'eau diminue est de 2,5 GW.	[3]
(iii) Ce système à accumulation produit 1,8GW de puissance électrique. Détermine: le rendement global de ce centrale hydroélectrique à réserve pompée.	z [1]
(b) Après que le lac supérieur a été vidé, il doit être rempli à nouveau d'eau provenant du lac inférieur et cela nécessite de l'énergie. Suggérez comment les exploitants de ce centrale hydroélectrique à réserve pompée peuvent quand même faire un profit.	[1]

6.	(a)	Rutherford construisit un modèle de l'atome en se basant sur les résultats de l'expérience de la diffusion des particules alpha. Décrivez ce modèle.	[2]
	(b)	Le rhodium 106 $\binom{106}{45}$ Rh) se désintègre en palladium 106 $\binom{106}{46}$ Pd) par la désintégration bêta moins (β^-). L'énergie de liaison par nucléon de rhodium est 8,521 MeV et celle du palladium est 8,550 MeV.	
		(i) Exprimez ce qu'on entend par l'énergie de liaison d'un noyau.	[1]
		(ii) Montrez que l'énergie libérée par la désintégration eta^- du rhodium est environ 3 MeV.	[1]

(Suite de la question 6)

(c) La désintégration β^- est décrite par le diagramme de Feynman incomplet suivant.

/:\	Decelor (Deleg 17 mend for men men 174 men die men men de Fermanne	[1]
(1)	Dessinez une flèche légendée pour compléter ce diagramme de Feynman.	111
(')	Described and neone regended pour completer of diagramme de l'eymnam.	1 1 1

(ii) Identifiez la particule V.									[1]

