Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант<u> 18</u>

Виконав	студент	111-13 Паламарчук Олександр Олександрович
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
		(прізвище ім'я по батькові)

Лабораторна робота 2

Дослідження алгоритмів розгалуження

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 18

3'ясувати, чи ϵ вектор \boldsymbol{a} , заданий координатами a1, a2, a3, і вектор \boldsymbol{b} , заданий координатами b1, b2, b3, колінеарними.

• Постановка задачі

Задані координати вектора a, та координати вектора b, з'ясувати чи ϵ вони колінеарними. Вивести отриманий результат логічного типу.

◆ Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Призначення
Задана координата а1	Дійсне	Початкове дане
Задана координата а2	Дійсне	Початкове дане
Задана координата а3	Дійсне	Початкове дане
Задана координата <i>b1</i>	Дійсне	Початкове дане
Задана координата b2	Дійсне	Початкове дане
Задана координата <i>b3</i>	Дійсне	Початкове дане
Отримане число	Дійсне	Проміжкове значення
firstDivision		
Отримане число	Дійсне	Проміжкове значення
secondDivision		
Отримане число	Дійсне	Проміжкове значення
thirdDivision		
Отриманий результат	Логічний	Кінцеве дане
result		

- 1) *firstDivision* знаходимо за формулою *firstDivision* = b1/a1.
- 2) secondDivision знаходимо за формулою secondDivision = b2 / a2.
- 3) *thirdDivision* знаходимо за формулою *thirdDivision* = b3 / a3

• Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми

- Крок 1. Визначимо основні дії
- Крок 2. Деталізуємо знаходження firstDividion
- Крок 3. Деталізуємо знаходження secondDividion
- Крок 4. Деталізуємо знаходження thirdDividion
- Крок 5. Знайдемо *result*

◆ Псевдокод алгоритму

Крок 1.

Початок

Введення а1,а2,а3,b1,b2,b3

Обчислення firstDivision

Обчислення second Division

Обчислення third Division

Знаходження result

Виведення result

Кінець

Крок 2.

Початок

Введення а1,а2,а3,b1,b2,b3

firstDivision = b1 / a1

Обчислення second Division

Обчислення third Division

Знаходження result

Виведення result

Кінепь

```
Крок 3.
```

```
Початок
```

Введення а1,а2,а3,b1,b2,b3

firstDivision = b1 / a1

secondDivision = b2 / a2

Обчислення third Division

Знаходження result

Виведення result

Кінець

Крок 4.

Початок

Введення а1,а2,а3,b1,b2,b3

firstDivision = b1 / a1

secondDivision = b2 / a2

thirdDivision = b3 / a3

Знаходження result

Виведення result

Кінець

Крок 5.

Початок

Введення а1,а2,а3,b1,b2,b3

firstDivision = b1 / a1

secondDivision = b2 / a2

thirdDivision = b3 / a3

Якщо firstDivision == secondDivision && firstDivision == thirdDivision

To *result* = true

Інакше

result = false

Все якщо

Виведення result

Кінець

◆ Блок схема алгоритму

◆ Випробовування алгоритму

Блок	Дія
	Початок
1	Введення: <i>a1</i> =1, <i>a2</i> =2, <i>a3</i> =3, <i>b1</i> =4, <i>b2</i> =8, <i>b3</i> =12.
2	firstDivision = 1/4
3	secondDivision = 2/8
4	thirdDivision = 3/12
5	0.25 == 0.25 && 0.25 == 0.25
6	<i>result</i> = true
7	Вивід: true
	Кінець

Блок	Дія
	Початок
1	Введення: <i>a1</i> =1, <i>a2</i> =2, <i>a3</i> =3, <i>b1</i> =5, <i>b2</i> =10, <i>b3</i> =12.
2	firstDivision = 1/5
3	secondDivision = 2/10
4	thirdDivision = 3/12
5	0.2 == 0.2 && 0.2 == 0.25
6	<i>result</i> = false
7	Вивід: false
	Кінець

• Висновок

На цій лабораторній роботі було декомпозовано задачу на такі етапи: визначення основних кроків, обчислення *firstDevision*, *secondDevision*, *thirdDevision*, визначення логічної змінної *result* та виведення результату. Було досліджено подання керувальної дії чергування у вигляді умовної та альтернативної форм та набуто практичних навичок їх використання під час складання програмних специфікацій.