BDA - Assignment 7

Anonymous

Contents

```
# To install aaltobda, see the General information in the assignment.
remotes::install_github("avehtari/BDA_course_Aalto", subdir = "rpackage", upgrade = "never")
## Skipping install of 'aaltobda' from a github remote, the SHA1 (38f34d35) has not changed since last
    Use `force = TRUE` to force installation
library(aaltobda)
library(rstan)
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.21.3, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## Do not specify '-march=native' in 'LOCAL_CPPFLAGS' or a Makevars file
1 Linear model: Drowing data with Stan
data("drowning")
a) Find the three mistakes
Below I marked the three errors within the Stan script.
writeLines(readLines("listing1.stan"))
## Warning in readLines("listing1.stan"): incomplete final line found on
## 'listing1.stan'
## // The corrected
## data {
##
       int<lower=0> N;
                           // number of observations
##
       vector[N] x;
                           // observations per year
##
       vector[N] y;
                           // observation number of drowned
##
       real xpred;
                           // prediction year --- ERROR 3: See below
## }
## parameters {
##
       real alpha;
##
       real beta;
```

```
##
       real<lower=0> sigma;
                                  // ERROR 1: sigma must be > 0
## }
## transformed parameters {
       vector[N] mu = alpha + beta*x;
##
## }
## model {
##
       // Priors
       beta ~ normal(0, 25);
##
##
##
       // Likelihood function
##
       y ~ normal(mu, sigma);
                                  // ERROR 2: line not ending in ";"
## }
## generated quantities {
##
      // ERROR 3: mu was not using xpred
##
      real ypred = normal_rng(alpha + beta*xpred, sigma);
## }
b)
I chose \beta \sim N(0, \sigma_{beta} = 25) since I show below that Pr(-69 < \beta < 69) is alittle above .99.
integrate(function(beta) {dnorm (beta, 0, 25)}, -69, 69)
## 0.9942199 with absolute error < 1.1e-07
c)
Below I show how I added the priors, before the likelihood function. Notice that in my Stan script, I already
have the priors added.
// Priors beta ~ normal(0, 25); alpha ~ normal(1980+143, 28)
d)
```

Because I have no information about the constant (e.g., what the value of drownings was when Jesus was borned), then I rather just keep it as uniform.

Extra:

I show if I obtain similar figures to those in the assignment.

```
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 1.39 seconds (Warm-up)
## Chain 1:
                           2.535 seconds (Sampling)
## Chain 1:
                           3.925 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'listing1' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 1.97 seconds (Warm-up)
## Chain 2:
                           3.085 seconds (Sampling)
## Chain 2:
                           5.055 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'listing1' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%]
                                            (Warmup)
```

```
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 1.772 seconds (Warm-up)
## Chain 3:
                           2.156 seconds (Sampling)
## Chain 3:
                           3.928 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'listing1' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 1.621 seconds (Warm-up)
## Chain 4:
                           2.294 seconds (Sampling)
## Chain 4:
                           3.915 seconds (Total)
## Chain 4:
## Warning: There were 914 transitions after warmup that exceeded the maximum treedepth. Increase max_t.
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
extracted <- extract(fit)</pre>
Below I show the histogram for beta:
hist(extracted$beta, breaks = 100)
```

(Warmup)

(Warmup)

Chain 3: Iteration: 200 / 2000 [10%]

Chain 3: Iteration: 400 / 2000 [20%]

Histogram of extracted\$beta

Below I show the histogram for the value in 2020:

hist(extracted\$ypred, breaks = 100)

Histogram of extracted\$ypred

2 Hierarchical model: factory data with Stan

Why strange results?

Notice that the strange results come from the fact that we are predicting negative factory measurements. This seem to happen when we use weakly informative priors.

```
##
## SAMPLING FOR MODEL 'test' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
```

```
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.06 seconds (Warm-up)
## Chain 1:
                           0.056 seconds (Sampling)
## Chain 1:
                           0.116 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'test' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.061 seconds (Warm-up)
## Chain 2:
                           0.055 seconds (Sampling)
## Chain 2:
                           0.116 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'test' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
```

```
## Chain 3: Iteration: 600 / 2000 [ 30%]
                                             (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                             (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 3:
## Chain 3:
             Elapsed Time: 0.069 seconds (Warm-up)
                            0.055 seconds (Sampling)
## Chain 3:
## Chain 3:
                            0.124 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'test' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                           1 / 2000 [ 0%]
                                             (Warmup)
## Chain 4: Iteration:
                        200 / 2000 [ 10%]
                                             (Warmup)
## Chain 4: Iteration:
                        400 / 2000 [ 20%]
                                             (Warmup)
## Chain 4: Iteration:
                         600 / 2000 [ 30%]
                                             (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                             (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                             (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                             (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 4:
## Chain 4:
             Elapsed Time: 0.07 seconds (Warm-up)
## Chain 4:
                            0.053 seconds (Sampling)
## Chain 4:
                            0.123 seconds (Total)
## Chain 4:
print(test)
## Inference for Stan model: test.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
               mean se mean
                                      2.5%
                                               25%
                                                        50%
                                                                75%
                                                                      97.5% n eff
                                sd
## mu[1]
                                             -0.54
                                                               0.77
                                                                       2.10 10206
               0.12
                        0.01 1.00
                                     -1.89
                                                       0.12
## mu[2]
               0.08
                       0.01 1.02
                                     -1.91
                                             -0.63
                                                       0.08
                                                               0.79
                                                                       2.07 7961
## mu[3]
               0.10
                       0.01 1.00
                                     -1.83
                                             -0.59
                                                       0.11
                                                               0.77
                                                                       2.05 8612
## mu[4]
               0.09
                        0.01 1.01
                                     -1.86
                                             -0.62
                                                       0.09
                                                               0.78
                                                                       2.00 9841
## mu[5]
               0.09
                       0.01
                              0.98
                                     -1.85
                                             -0.57
                                                       0.11
                                                               0.74
                                                                       2.03 11445
## mu[6]
                       0.01 0.97
                                     -1.78
                                             -0.56
                                                               0.75
               0.11
                                                       0.11
                                                                       2.03 7642
## sigma[1]
              60.03
                       0.22 15.81
                                     38.44
                                             49.05
                                                      57.25
                                                              67.56
                                                                      99.00
                                                                              5378
## sigma[2]
              82.34
                       0.33 21.04
                                     52.57
                                             67.38
                                                      78.74
                                                              92.79
                                                                    133.72 4098
```

```
## sigma[3]
              67.90
                       0.24 17.04
                                    43.60
                                            55.82
                                                    65.12
                                                            76.12
                                                                   108.65
                       0.30 21.54
                                                                   137.50
## sigma[4]
              85.58
                                            70.88
                                                    81.93
                                    55.73
                                                            95.77
                                                                           5161
## sigma[5]
                                    44.58
                                                                           4633
              69.32
                       0.26 17.38
                                            57.23
                                                    66.23
                                                            77.98
                                                                   112.31
## sigma[6]
              67.03
                       0.23 16.66
                                    43.21
                                            55.05
                                                    64.22
                                                            75.91
                                                                           5482
                                                                   107.73
## ypred
               0.89
                       0.97 60.66 -121.24
                                           -37.46
                                                     0.17
                                                            39.17
                                                                   120.18
                                                                           3916
            -287.39
                       ## lp__
                                                                           1646
##
            Rhat
## mu[1]
               1
## mu[2]
               1
## mu[3]
               1
## mu[4]
               1
## mu[5]
               1
## mu[6]
               1
## sigma[1]
               1
## sigma[2]
               1
## sigma[3]
## sigma[4]
               1
## sigma[5]
               1
## sigma[6]
               1
## ypred
               1
## lp__
               1
##
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:43:55 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
testExtracted <- extract(test)</pre>
```

a) Description of models:

• Separate model

Our machine observations are assumed to come from

$$y_{ij} \sim N(\mu_j, \sigma_j)$$

where the prior distribution of the parameters are

$$\mu_j \sim N(0,1)$$

$$\sigma_i \sim N(0,1)$$

Notice here that what is happening is that the modelling discerns between observations as they come from different machines.

· Pooled model

Our machine observations are assumed to come from a common pooled distribution as defined by

$$y_i \sim N(\mu, \sigma)$$

where in addition, the prior distribution of the parameters are

$$\mu \sim N(0,1)$$

$$\sigma \sim N(0,1)$$

Notice here that what is happening is that the modelling does not discern between observations as they come from different machines; they are pooled together.

• Hierarchical model

Our machine observations are assumed to come from

```
y_{ij} \sim N(\mu_i, \sigma)
```

where in addition, the prior distribution of the parameters are

$$\mu_j \sim N(0,\tau)$$

where $\tau N(0,1)$ is our hyper-parameters. The distribution of the shape parameter is drawn as:

```
\sigma \sim N(0,1)
```

Notice that here, we are restricting our parameters of location mu_j to be drawn from a common distribution whose parameter of location is, in turn, drawn from another normal distribution, a weekly hyper-prior: $\tau \sim N(0, 10)$

b) Stan scripts for each model

• Pooled model:

```
pooled <- stan(file = 'pooled.stan', data = stan data, verbose = FALSE)</pre>
## SAMPLING FOR MODEL 'pooled' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                                            (Warmup)
                        1 / 2000 [ 0%]
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.014 seconds (Warm-up)
## Chain 1:
                           0.011 seconds (Sampling)
## Chain 1:
                           0.025 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'pooled' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
```

```
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.015 seconds (Warm-up)
## Chain 2:
                           0.011 seconds (Sampling)
## Chain 2:
                           0.026 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'pooled' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.018 seconds (Warm-up)
## Chain 3:
                           0.013 seconds (Sampling)
## Chain 3:
                           0.031 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'pooled' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
                        400 / 2000 [ 20%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
```

```
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                             (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                             (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                             (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                             (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                             (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.01 seconds (Warm-up)
## Chain 4:
                            0.021 seconds (Sampling)
## Chain 4:
                            0.031 seconds (Total)
## Chain 4:
pooledExtracted <- extract(pooled)</pre>
writeLines(readLines("pooled.stan"))
## data {
##
       int<lower=0> N; // Numnber of observations per machine
##
       int<lower=0> J; // Number of machines
##
       vector[J] y[N]; // This seems to create a matrix
       vector[J*N] ypool; // pooled ys
## }
##
## parameters {
##
       real mu;
##
       real<lower=0> sigma;
## }
##
## model {
##
       // Priors
##
       mu ~ normal(0,1);
##
       sigma ~ normal(0,10);
##
##
       // Likelihood
       ypool ~ normal(mu, sigma);
##
## }
##
## generated quantities {
      real ypred6;
## // for the sixth machine
##
      ypred6 = normal_rng(mu, sigma);
## }
  • separate model:
separate <- stan(file = 'separate.stan', data = stan_data, verbose = FALSE)</pre>
##
## SAMPLING FOR MODEL 'separate' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                             (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                             (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                             (Warmup)
```

```
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.073 seconds (Warm-up)
## Chain 1:
                           0.056 seconds (Sampling)
## Chain 1:
                           0.129 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'separate' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.092 seconds (Warm-up)
## Chain 2:
                           0.077 seconds (Sampling)
## Chain 2:
                           0.169 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'separate' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
                        400 / 2000 [ 20%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
```

```
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.087 seconds (Warm-up)
## Chain 3:
                           0.054 seconds (Sampling)
## Chain 3:
                           0.141 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'separate' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.069 seconds (Warm-up)
## Chain 4:
                           0.053 seconds (Sampling)
## Chain 4:
                           0.122 seconds (Total)
## Chain 4:
separateExtracted <- extract(separate)</pre>
writeLines(readLines("separate.stan"))
## data {
##
       int<lower=0> N; // Numnber of observations per machine
       int<lower=0> J; // Number of machines
##
##
       vector[J] y[N]; // This seems to create a matrix
##
       vector[J*N] ypool; // pooled ys
## }
##
## parameters {
##
       vector[J] mu;
##
       vector<lower=0>[J] sigma;
## }
##
## model {
##
       // Priors
       for(j in 1:J) {
##
##
           mu[j] ~ normal(0,1);
```

```
##
           sigma[j] ~ normal(0,10);
##
       }
##
##
       // Likelihood
##
       for(j in 1:J) {
##
           y[,j] ~ normal(mu[j], sigma[j]);
##
## }
##
##
  generated quantities {
      real ypred6;
  // for the sixth machine
      ypred6 = normal_rng(mu[6], sigma[6]);
## }
  • Hierarchical model
hierarchical <- stan(file = 'hierarchical.stan', data = stan_data, verbose = FALSE)
## SAMPLING FOR MODEL 'hierarchical' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1:
           Elapsed Time: 0.14 seconds (Warm-up)
## Chain 1:
                           0.098 seconds (Sampling)
## Chain 1:
                           0.238 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'hierarchical' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration:
                       200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
```

```
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2:
            Elapsed Time: 0.105 seconds (Warm-up)
## Chain 2:
                           0.077 seconds (Sampling)
## Chain 2:
                           0.182 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'hierarchical' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
            Elapsed Time: 0.268 seconds (Warm-up)
## Chain 3:
                           0.098 seconds (Sampling)
## Chain 3:
                           0.366 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'hierarchical' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
                        400 / 2000 [ 20%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
```

```
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.116 seconds (Warm-up)
## Chain 4:
                           0.097 seconds (Sampling)
## Chain 4:
                           0.213 seconds (Total)
## Chain 4:
## Warning: There were 4 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quant
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
hierarchicalExtracted <- extract(hierarchical)</pre>
writeLines(readLines("hierarchical.stan"))
## data {
##
       int<lower=0> N; // Numnber of observations per machine
       int<lower=0> J; // Number of machines
##
##
       vector[J] y[N]; // This seems to create a matrix
##
       vector[J*N] ypool; // pooled ys
## }
##
## parameters {
##
       vector[J+1] mu;
                            // Notice dimensions J+1 in order to get info on the seventh mu and get pre-
       real<lower=0> sigma;
##
## // Hyper-parameter
       real<lower=0> tau;
##
## }
##
## model {
## // Hyper-priors
##
       tau ~ normal(0,1);
##
## // Priors
##
       for(j in 1:(J+1)) {
##
           mu[j] ~ normal(0,tau);
##
##
       sigma ~ normal(0,10);
## // Likelihood
##
       for(j in 1:J) {
##
           y[,j] ~ normal(mu[j], sigma);
##
## }
```

```
##
## generated quantities {
## real ypred6;
## real ypred7;
## // for the sixth machine
## ypred6 = normal_rng(mu[6], sigma);
## // for the seventh machine
## ypred7 = normal_rng(mu[7], sigma);
## }
c)
```

the posterior distribution of the mean of the quality measurements of the sixth machine — and — the predictive distribution for another quality measurement of the sixth machine — and — the posterior distribution of the mean of the quality measurements of the seventh machine

• Pooled: Below I show both statistics on the location and dispersion parameter of the pooled model, which represents the sixth and seventh machines (since they are all pooled together). I also show histograms.

```
print(pooled)
```

```
## Inference for Stan model: pooled.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                                     50%
             mean se_mean
                                    2.5%
                                             25%
                                                             75%
                                                                    97.5% n_eff Rhat
## mu
             0.72
                     0.02
                           1.01
                                   -1.25
                                            0.04
                                                    0.74
                                                            1.41
                                                                     2.74
                                                                           3857
                                   54.95
                                           59.70
                                                   62.52
                                                           65.33
                                                                    72.32
## sigma
            62.67
                     0.07 4.34
                                                                           3496
                                                                                   1
             2.06
                     1.03 62.47 -120.81 -40.16
                                                    2.24
                                                           44.24
                                                                  123.45
                                                                           3707
                                                                                   1
## ypred6
## lp__
          -174.57
                     0.02 1.03 -177.35 -174.92 -174.27 -173.86 -173.59
##
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:44:22 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
hist(pooledExtracted$mu, breaks = 100)
```

Histogram of pooledExtracted\$mu

hist(pooledExtracted\$ypred6, breaks = 100)

Histogram of pooledExtracted\$ypred6

• Separate: Below I show both statistics on the location and dispersion parameter of the separate model. Because I could not simply draw another mu, I am unable to say something about the seventh machine. I show histograms for mu_6 and notice that since this is not a distribution, then I only have one value. The predictive value for the sixth machine is also shown with negative values.

print(separate)

```
## Inference for Stan model: separate.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
                                                  25%
                                                           50%
##
                mean se_mean
                                  sd
                                        2.5%
                                                                    75%
                                                                          97.5% n_eff
                                                          0.25
## mu[1]
                0.24
                         0.01
                               1.00
                                       -1.72
                                                -0.47
                                                                   0.93
                                                                           2.14
                                                                                 7787
## mu[2]
                                                                           2.24
                0.24
                         0.01
                               1.00
                                       -1.74
                                                -0.43
                                                          0.26
                                                                   0.91
                                                                                  8218
  mu[3]
                         0.01
                                                -0.45
                                                                           2.20
                                                                                  9392
##
                0.24
                               1.00
                                       -1.70
                                                          0.24
                                                                   0.91
                                                -0.42
##
   mu[4]
                0.26
                         0.01
                               1.01
                                       -1.70
                                                          0.26
                                                                   0.95
                                                                           2.22 10444
  mu[5]
                0.24
                         0.01
                               1.01
                                                -0.46
                                                                   0.93
                                                                           2.19
##
                                       -1.76
                                                          0.25
                                                                                  8262
## mu[6]
                0.25
                         0.01
                               1.00
                                       -1.68
                                                -0.45
                                                          0.26
                                                                   0.93
                                                                           2.21
                                                                                  9248
                                                36.39
                                                                 42.70
                                                                          49.93
## sigma[1]
               39.72
                         0.06
                               4.81
                                       31.12
                                                        39.50
                                                                                  7220
                                       38.64
## sigma[2]
               47.09
                         0.05
                               4.64
                                                43.83
                                                         46.84
                                                                 50.24
                                                                          56.78
                                                                                  7922
## sigma[3]
               42.59
                         0.05
                               4.72
                                       34.26
                                                39.19
                                                         42.35
                                                                 45.74
                                                                          52.53 10501
  sigma[4]
               48.33
                         0.05
                               4.83
                                       39.55
                                                44.89
                                                        48.08
                                                                 51.40
                                                                          58.39
                                                                                  8563
##
## sigma[5]
               43.02
                         0.05
                               4.77
                                       34.41
                                                39.66
                                                         42.78
                                                                 46.02
                                                                          53.19
                                                                                  8343
## sigma[6]
               42.28
                         0.05
                               4.67
                                       34.22
                                                38.98
                                                         41.95
                                                                 45.38
                                                                          52.35
                                                                                  8425
## ypred6
                0.56
                         0.74 43.34
                                      -86.82
                                               -27.31
                                                          0.48
                                                                 28.52
                                                                          86.67
                                                                                  3410
## lp__
             -222.87
                               2.33 -228.30 -224.20 -222.58 -221.21 -219.19
                         0.06
                                                                                  1604
##
             Rhat
```

```
## mu[1]
               1
## mu[2]
               1
## mu[3]
## mu[4]
## mu[5]
## mu[6]
               1
## sigma[1]
## sigma[2]
               1
## sigma[3]
## sigma[4]
               1
## sigma[5]
               1
## sigma[6]
               1
## ypred6
               1
## lp__
               1
##
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:44:53 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
hist(separateExtracted$mu[6], breaks = 100)
```

Histogram of separateExtracted\$mu[6]

hist(separateExtracted\$ypred6, breaks = 100)

Histogram of separateExtracted\$ypred6

• Hierarchical: Below I show both statistics on the location and dispersion parameter of the hierarchical model. Because I could simply draw another mu, I am able to say something about the seventh machine. I show histograms for mu_6 and notice that since this is not a distribution, then I only have one value. The predictive value for the sixth and seventh machine is also shown with negative values.

print(hierarchical)

```
## Inference for Stan model: hierarchical.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
                                     2.5%
                                                        50%
                                                                       97.5% n_eff Rhat
##
              mean se_mean
                               sd
                                               25%
                                                                 75%
## mu[1]
                                                                        2.65
              0.10
                      0.02
                             1.13
                                    -2.17
                                             -0.41
                                                       0.05
                                                               0.55
                                                                               4040 1.00
## mu[2]
                                    -2.05
              0.17
                      0.02
                             1.12
                                             -0.37
                                                       0.08
                                                               0.60
                                                                        2.90
                                                                               2912 1.00
  mu[3]
                                    -2.18
                                                                        2.81
##
              0.11
                      0.02
                             1.15
                                             -0.39
                                                       0.04
                                                               0.55
                                                                               3995 1.00
##
  mu[4]
              0.16
                      0.02
                             1.15
                                    -2.10
                                             -0.37
                                                       0.06
                                                               0.63
                                                                        2.82
                                                                               4343 1.00
## mu[5]
              0.13
                      0.02
                             1.16
                                    -2.23
                                                       0.07
                                                                        2.84
                                             -0.38
                                                               0.59
                                                                               3958 1.00
## mu[6]
              0.15
                      0.02
                             1.19
                                    -2.24
                                             -0.40
                                                       0.07
                                                               0.63
                                                                        2.95
                                                                               4519 1.00
## mu[7]
              0.02
                      0.02
                             1.11
                                    -2.42
                                             -0.46
                                                       0.02
                                                               0.50
                                                                        2.46
                                                                               4183 1.00
## sigma
             62.98
                      0.11
                             4.32
                                    54.84
                                             59.98
                                                      62.88
                                                               65.83
                                                                       71.70
                                                                               1492 1.00
  tau
              0.95
                      0.03
                             0.61
                                     0.18
                                              0.46
                                                       0.82
                                                                1.32
                                                                        2.40
                                                                                337 1.01
             -0.45
                      0.99 62.51 -120.96
                                            -42.71
                                                      -0.64
                                                               42.43
                                                                      121.45
                                                                               3949 1.00
##
   ypred6
              0.51
                      0.99 64.16 -127.12
                                            -43.15
                                                       0.71
                                                               44.98
                                                                      124.14
##
   ypred7
                                                                               4211 1.00
           -176.86
                             5.22
                                  -186.92 -180.58 -177.02 -173.04 -167.33
                                                                                260 1.02
##
   lp__
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:45:26 2022.
```

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at ## convergence, Rhat=1).

hist(hierarchicalExtracted\$mu[6], breaks = 100)

Histogram of hierarchicalExtracted\$mu[6]

hist(hierarchicalExtracted\$ypred6, breaks = 100)

Histogram of hierarchicalExtracted\$ypred6

hist(hierarchicalExtracted\$ypred7, breaks = 100)

Histogram of hierarchicalExtracted\$ypred7

d)

First, we create the function to report the mean with the 90% true intervals, but also notice that we do not have negative predictions, implying that prior matter a lot!:

```
estIntervals <- function(sims) {
    est <- mean(sims)
    low <- quantile(sims, .05)
    upp <- quantile(sims, .95)

value <- list(
    est = est,
    low = low,
    upp = upp
    )

    return(value)
}</pre>
```

• Pooled model:

```
pooledv2 <- stan(file = 'pooledv2.stan', data = stan_data, verbose = FALSE)

##
## SAMPLING FOR MODEL 'pooledv2' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds</pre>
```

```
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.02 seconds (Warm-up)
## Chain 1:
                           0.012 seconds (Sampling)
                           0.032 seconds (Total)
## Chain 1:
## Chain 1:
##
## SAMPLING FOR MODEL 'pooledv2' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.022 seconds (Warm-up)
## Chain 2:
                           0.017 seconds (Sampling)
## Chain 2:
                           0.039 seconds (Total)
## Chain 2:
## SAMPLING FOR MODEL 'pooledv2' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
```

```
1 / 2000 [ 0%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3:
             Elapsed Time: 0.019 seconds (Warm-up)
## Chain 3:
                           0.008 seconds (Sampling)
## Chain 3:
                           0.027 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'pooledv2' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration:
                        400 / 2000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration:
                        800 / 2000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.029 seconds (Warm-up)
## Chain 4:
                           0.013 seconds (Sampling)
## Chain 4:
                           0.042 seconds (Total)
## Chain 4:
print(pooledv2)
## Inference for Stan model: pooledv2.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                   2.5%
                                            25%
                                                    50%
                                                             75%
                                                                   97.5% n_eff Rhat
            mean se_mean
                             sd
## mu
           85.54
                    0.08 3.26
                                  78.33
                                          83.57
                                                  85.71
                                                          87.78
                                                                   91.40 1749
                                                                   20.22 1839
           16.09
                    0.04 1.81
                                  13.05
                                          14.80
                                                  15.92
                                                           17.14
                                                                                  1
## sigma
                    0.26 16.39
                                          74.34
                                                  85.03
                                                                          3940
## ypred
           85.20
                                  52.82
                                                          96.15
                                                                  117.21
                                                                                  1
## lp__
         -155.52
                    0.02 1.02 -158.35 -155.91 -155.21 -154.79 -154.55 1755
                                                                                  1
```

```
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:45:56 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
pooledv2Extracted <- extract(pooledv2)</pre>
estIntervals(pooledv2Extracted$mu)
## $est
## [1] 85.54127
##
## $low
##
         5%
## 79.84953
##
## $upp
##
        95%
## 90.57616
  • separate model:
separatev2 <- stan(file = 'separatev2.stan', data = stan_data, verbose = FALSE)</pre>
## Warning in readLines(file, warn = TRUE): incomplete
## final line found on 'C:\Users\noe.nava\OneDrive -
## USDA\Drive\courses\vehtari_bayesian_data_analysis\BDA_course_Aalto\navaAssignments\assignment
## 7\separatev2.stan'
## SAMPLING FOR MODEL 'separatev2' NOW (CHAIN 1).
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
                        1 / 2000 [ 0%]
## Chain 1: Iteration:
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 1: Iteration:
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.313 seconds (Warm-up)
## Chain 1:
                           0.112 seconds (Sampling)
## Chain 1:
                           0.425 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'separatev2' NOW (CHAIN 2).
```

```
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                        1 / 2000 F 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.276 seconds (Warm-up)
## Chain 2:
                           0.138 seconds (Sampling)
## Chain 2:
                           0.414 seconds (Total)
## Chain 2:
## SAMPLING FOR MODEL 'separatev2' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 3: Iteration:
                                            (Warmup)
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.299 seconds (Warm-up)
                           0.131 seconds (Sampling)
## Chain 3:
                           0.43 seconds (Total)
## Chain 3:
## Chain 3:
## SAMPLING FOR MODEL 'separatev2' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
```

```
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                           1 / 2000 [ 0%]
                                              (Warmup)
                         200 / 2000 [ 10%]
                                              (Warmup)
## Chain 4: Iteration:
## Chain 4: Iteration:
                         400 / 2000 [ 20%]
                                              (Warmup)
## Chain 4: Iteration:
                         600 / 2000 [ 30%]
                                              (Warmup)
## Chain 4: Iteration:
                         800 / 2000 [ 40%]
                                              (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                              (Warmup)
                                              (Sampling)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                              (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                              (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                              (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                              (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                              (Sampling)
## Chain 4:
## Chain 4:
             Elapsed Time: 0.266 seconds (Warm-up)
## Chain 4:
                            0.121 seconds (Sampling)
## Chain 4:
                            0.387 seconds (Total)
## Chain 4:
print(separatev2)
## Inference for Stan model: separatev2.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                       2.5%
                                                 25%
                                                         50%
                                                                        97.5% n_eff
               mean se mean
                                 sd
                                                                  75%
## mu[1]
               50.53
                        0.15 8.99
                                      31.75
                                              44.44
                                                       51.25
                                                                56.99
                                                                        66.44
                                                                               3450
## mu[2]
                        0.23 12.22
                                              40.46
                                                       48.64
                                                               57.13
                                                                        73.85
               48.95
                                      25.84
                                                                               2859
## mu[3]
               58.79
                        0.23 11.90
                                      34.00
                                              50.64
                                                       59.53
                                                                67.72
                                                                        79.05
                                                                               2715
## mu[4]
               47.66
                        0.22 12.25
                                      23.65
                                              39.52
                                                       47.39
                                                                55.96
                                                                        72.11
                                                                               3087
## mu[5]
               61.08
                        0.23 12.44
                                      35.96
                                              52.70
                                                       61.61
                                                                70.38
                                                                        82.35
                                                                               2932
## mu[6]
                        0.19 10.58
                                                                        70.69
               51.31
                                      29.64
                                              44.20
                                                       51.94
                                                               58.96
                                                                               3224
## sigma[1]
                        0.06 3.33
                                              13.52
                                                       15.76
                                                               18.04
                                                                        23.08
                                                                               3370
               15.96
                                      10.37
## sigma[2]
               24.67
                        0.09 4.50
                                      16.07
                                              21.72
                                                       24.69
                                                                27.72
                                                                        33.41
                                                                               2624
## sigma[3]
                        0.08 4.48
                                              12.62
                                                                        25.73
               15.96
                                       8.49
                                                       15.59
                                                                18.87
                                                                                2815
                              4.53
                                      17.76
                                              23.31
                                                                        35.60
## sigma[4]
               26.46
                        0.08
                                                       26.40
                                                                29.47
                                                                               3151
                        0.09
                              4.76
                                                                        25.45
## sigma[5]
               15.67
                                       7.46
                                              12.18
                                                       15.37
                                                                18.85
                                                                                2672
## sigma[6]
                        0.07
                              3.88
                                              15.78
                                                       18.35
                                                                21.18
                                                                        26.86
                                                                               3508
               18.59
                                      11.71
## ypred
               50.77
                        0.30 18.73
                                       9.79
                                              39.18
                                                       51.90
                                                                63.72
                                                                        84.55
                                                                               3966
## lp__
            -347.01
                        0.06
                              2.37 -352.41 -348.44 -346.70 -345.27 -343.34
                                                                               1782
##
            Rhat
## mu[1]
                1
## mu[2]
                1
## mu[3]
## mu[4]
                1
## mu[5]
## mu[6]
                1
## sigma[1]
                1
## sigma[2]
                1
## sigma[3]
                1
## sigma[4]
                1
## sigma[5]
                1
## sigma[6]
                1
## ypred
                1
```

```
## lp__
##
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:46:26 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
separatev2Extracted <- extract(separatev2)</pre>
estIntervals(separatev2Extracted$mu[1])
## $est
## [1] 41.94509
##
## $low
##
         5%
## 41.94509
##
## $upp
##
        95%
## 41.94509

    Hierarchical model

hierarchicalv2 <- stan(file = 'hierarchicalv2.stan', data = stan_data, verbose = FALSE)
##
## SAMPLING FOR MODEL 'hierarchicalv2' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.33 seconds (Warm-up)
## Chain 1:
                           0.139 seconds (Sampling)
## Chain 1:
                           0.469 seconds (Total)
## Chain 1:
## SAMPLING FOR MODEL 'hierarchicalv2' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
```

```
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 2000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.196 seconds (Warm-up)
## Chain 2:
                           0.103 seconds (Sampling)
## Chain 2:
                           0.299 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'hierarchicalv2' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                        1 / 2000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%]
                                            (Warmup)
                       400 / 2000 [ 20%]
## Chain 3: Iteration:
                                            (Warmup)
## Chain 3: Iteration:
                        600 / 2000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.222 seconds (Warm-up)
## Chain 3:
                           0.109 seconds (Sampling)
## Chain 3:
                           0.331 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'hierarchicalv2' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%]
                                            (Warmup)
```

```
## Chain 4: Iteration:
                        200 / 2000 [ 10%]
                                            (Warmup)
                        400 / 2000 [ 20%]
## Chain 4: Iteration:
                                            (Warmup)
                        600 / 2000 [ 30%]
## Chain 4: Iteration:
                                            (Warmup)
                        800 / 2000 [ 40%]
## Chain 4: Iteration:
                                            (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4:
             Elapsed Time: 0.193 seconds (Warm-up)
## Chain 4:
                           0.682 seconds (Sampling)
## Chain 4:
                           0.875 seconds (Total)
## Chain 4:
## Warning: There were 498 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quant
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
print(hierarchicalv2)
## Inference for Stan model: hierarchicalv2.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
                                               25%
                                                        50%
##
               mean se_mean
                                sd
                                      2.5%
                                                                75%
                                                                      97.5% n_eff
## mu[1]
              77.97
                       0.33
                             6.28
                                             74.39
                                                     78.16
                                                              82.74
                                                                      88.43
                                     64.15
                                                                              365
## mu[2]
              88.59
                       0.82 9.48
                                     73.91
                                             81.68
                                                     86.97
                                                              95.65
                                                                     107.75
                                                                              134
## mu[3]
                       0.38 5.73
                                                              85.92
                                                                              228
              82.22
                                     71.16
                                             78.14
                                                     82.44
                                                                      93.75
## mu[4]
              90.44
                       0.96 11.04
                                     74.17
                                             81.75
                                                     87.83
                                                              99.33
                                                                     112.81
                                                                              133
## mu[5]
              82.96
                       0.41 5.78
                                     72.25
                                             78.96
                                                     82.89
                                                              86.74
                                                                      94.60
                                                                              199
## mu[6]
              81.57
                       0.34 5.47
                                     70.62
                                             77.87
                                                     81.88
                                                              85.16
                                                                      92.01
                                                                              262
                       0.29 3.69
## sigma
              18.32
                                     12.29
                                             15.59
                                                     17.90
                                                              21.05
                                                                      26.38
                                                                              165
## tauMu
              75.20
                       0.61 10.16
                                     48.95
                                             71.09
                                                     77.45
                                                              82.24
                                                                      87.71
                                                                              278
## tauSigma
               6.77
                       0.51 6.36
                                      0.69
                                              1.43
                                                      4.05
                                                              11.25
                                                                      21.46
                                                                              156
## ypred
              77.71
                       0.39 19.83
                                     39.34
                                             64.84
                                                     77.50
                                                              90.61 118.18
                                                                             2631
            -150.03
                       0.51 5.10 -158.26 -153.90 -151.29 -145.74 -141.05
## lp__
##
            Rhat
## mu[1]
            1.01
## mu[2]
            1.02
## mu[3]
            1.02
## mu[4]
            1.02
## mu[5]
            1.02
## mu[6]
            1.02
```

sigma

1.02

```
## tauMu
            1.01
## tauSigma 1.01
           1.00
## ypred
## lp__
            1.02
## Samples were drawn using NUTS(diag_e) at Wed Mar 30 15:46:56 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
hierarchicalv2Extracted <- extract(hierarchicalv2)</pre>
estIntervals(hierarchicalv2Extracted$mu[1])
## $est
## [1] 71.53446
##
## $low
##
         5%
## 71.53446
##
## $upp
        95%
##
## 71.53446
```