ANALYSIS OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

LOGIC DIAGRAM

$$z = \bar{x}_2 y_1 + \bar{x}_1 y_1 y_2 + x_1 \bar{x}_2 y_2$$

$$Y_1 = \bar{x}_2 y_{11} + \bar{x}_1 y_{11} + \bar{x}_1 x_2 \bar{y}_2$$

$$Y_2 = x_1 y_1 + x_2 y_1 y_2 + x_1 y_2 + x_1 x_2$$

THE EXCITATION TABLE

Present state (y ₁ y ₂)		excitation/	Next stat		Output (z)			
	00	Input sta 01	te (x_1x_2) 10	11	00 I	nput state	e (x ₁ x ₂) 10	11
00	00	/10	00-	01,	0	101	0-	10
01	00	1002	(01)	-00	0	(0)	1	-0
10	10-	10	11	01	1-	-0	1	0
11	10	11)	(1)	01	1	1	1	0

THE STATE TABLE

Table 9.5 Sta Present state		Next st	Output (z) Input state (x_1x_2)					
		Input state	$e(x_1x_2)$ 10	11	00	nput sta 01	$\begin{array}{c} \text{te } (x_1 x_2) \\ 10 \end{array}$	11
	00	01		В	0	0	0	0
$00 \rightarrow A$	(A)	C	A		0	0	1	0
$01 \rightarrow B$	A	A	(B)		1	0	1	(
$10 \to C$ $11 \to D$	0	C	D	В	1	1	1	
$01 \rightarrow B$	A A C	C A ©	A) B) D	B B	0 1	0 0 1	1 1 1	

THE FLOW TABLE

Present state		Next	state			Outpu	ut (z)	
		Input sta	te (x_1x_2)	15 3 A A B	I	nput sta	te (x_1x_2)	
	00	01	10	11	00	01	10	11
A	A	С	(A)	В	0	_	0	-
В	A	C	$\bigcirc B$	(B)	-	-	1	0
C	0	0	D	В	1	0	-	-
D	C	D	D	В	10-	1	1	-

THE FLOW DIAGRAM

LOGIC DIAGRAM

$z = \bar{x}_2 y_1 + \bar{x}_1 y_1 y_2 + x_1 \bar{x}_2 y_2$

$$S_1 = x_1 \overline{Q}_2$$

$$R_1 = x_1 Q_2$$

$$S_2 = \overline{x}_1 x_2 Q_1$$

$$R_2 = \overline{x}_1 \overline{x}_2 + \overline{x}_1 \overline{Q}_1$$

EXCITATION TABLE

Present state (Q_1Q_2)			eitation $R_1, S_2 R_2$				tput z)	
		Input s	state (x_1x_2)		Input state (x_1x_2)			
	00	01	10	11	00	01	10	11
00	00,01	00,01	10,00	10,00	0	0	1	1
01	00,01	00,01	01,00	01,00	0	0	0	0
10	00,01	00,10	10,00	10,00	1	1	1	1
11	00,01	00,10	01,00	01,00	0	0	0	0

THE TRANSITION TABLE

resent state		Next stat	e			Outpu (z)		
(Q_1Q_2)		$\frac{(Q_1^+Q_2^+)}{\text{Input state }}$	(x_1x_2)	11	00	Input state	$e(x_1x_2)$ 10	11
00	00	01 00 00	10 00	10	0	0	1 0	0

EXCITATION TABLE

Present state	(00)		0 11 SIRI, SZRZ S	GR1,52R2	01 (%)	p 2		U
0 1	100		01,00	701	0.0	0	1 0	0
10	00,01	00,10	10,00	10,00	.1	1	1	1
1 R	00,01	00,10	01,00	01,00	0	0	0	0

TRANSITION TABLE

Q, Q2 00 =>	3, R1, S2R2 S1R1, S2R2 S1R1, S2R2 S1R1, S2R2 S00, 01 00, 01 10,00 10,00 nochange Reset nochange set nochange nochange Reset nochange 10
10 ->	nochange Reset worthings set set nochange Set nochange

THE STATE TABLE

Present state		Next	Output (z)					
		Input sta	Input state (x_1x_2)					
	00	01	10	11	00	01	10	11
$00 \rightarrow A$	A	(A)	С	C	0	0	1	1
$01 \rightarrow B$	A	A	B	B	0	0	0	0
$10 \rightarrow C$	0	D	0	0	1	1	1	1
$11 \rightarrow D$	C	(D)	B	B	0	0	0	0

THE FLOW TABLE

Present state		Next	ext state Output (2					(z)		
	00	Input sta 01	te (x_1x_2) 10	11	00	input sta 01	te (x_1x_2) 10	11		
A	(A)	A	C	C	0	0				
В	A	A	$\bigcirc B$	B	-	-	0	0		
C	0	D	0	0	1	-	1	1		
D	C	D	-	В	-	0		-		

THE FLOW DIAGRAM

