Assignment 3 Solutions

Aaron Cahn University of Wisconsin-Madison cahn@cs.wisc.edu

March 8, 2015

1 Solutions

1.1 Question 1

Listing 1: Matlab Commands

```
function [P] = find_vectors(m, n, s)

% create the x and y ranges
x = (1:m);
y = (1:n);

% create the meshgrid (x,y) coordinates
[X,Y]=meshgrid(x,y);

% create (x,y) pairs in form [j;k]
A=[X(:)';Y(:)'];

% solve each s*[p;o]=[j;k] for all [j;k]
B=s\A;

% find columns with integer solutions
cols=all(mod(B,1)==0);

% return [j;k]'s with integer [p;o]'s
P=A(:,cols);
end
```

1.1.1 Part A

```
Listing 2: Matlab Commands
s = [2, 0; 0, 2];
find_vectors (4,6,s)
ans =
      2
             2
                    2
                           4
                                  4
                                          4
      2
             4
                           2
                    6
                                   4
                                          6
```

1.1.2 Part B

```
Listing 3: Matlab Commands
s = [1, 1; 1, -1];
find_vectors (5,6,s)
ans =
 1
     1
        1
            2
                2
                  2
                      3 3
                               3 4 4 4
                                             5 5
                                                    5
            2
                           3
                               5 2
                                                      5
 1
     3
        5
                4
                    6
                                           6
```

1.2 Question 2


```
Listing 4: Matlab Commands

\% \ max/min \ for \ f(x) \\
x(\mathbf{find}(yi(x) == \mathbf{max}(yi(x)))) \\
\mathbf{ans} = \\
-0.5051 \quad 0.5051 \\
x(\mathbf{find}(yi(x) == \mathbf{min}(yi(x)))) \\
\mathbf{ans} = \\
-1.7172 \quad 1.7172
```

Listing 5: Matlab Commands

```
x = linspace(-10, 10);
y=sym('x^2*exp(-3*x^2)+(x/40)^2')
x^2*exp(-3*x^2) + x^2/1600
dy = diff(y)
dy =
x/800 + 2*x*exp(-3*x^2) - 6*x^3*exp(-3*x^2)
ddy = diff(dy)
ddy =
2*\exp(-3*x^2) - 30*x^2*\exp(-3*x^2) + 36*x^4*\exp(-3*x^2) + 1/800
yi = inline(y);
dyi=inline(dy);
ddyi=inline(ddy);
subplot
% Plot f(x)
subplot (2, 2, 1);
plot(x, yi(x));
title('f(x)');
xlabel('x');
ylabel('f(x)');
% Plot f(x)
subplot (2, 2, 2);
plot(x, dyi(x));
title('f(x)''');
xlabel('x');
ylabel('f(x)''');
% Plot f(x)'
subplot (2, 2, 3);
plot(x, ddyi(x));
title('f(x)'''');
xlabel('x');
ylabel('f(x)'''');
```

1.3 Question 3

1.3.1 Part C

The claim made from assignment 2 question 3 part B was as follows:

$$||A^{-1}||_2 = \max_{s_A \in s(A)} \left\{ \frac{1}{s_a} \right\} \tag{1}$$

We must find a formula for the condition number of A, $c_2(A)$, in terms of $\sigma(A'A)$. Note, we know $||A||_2 = \max\{s(A)\}$ where s(A) are the singular values of A. The formula for the condition number of A is as follows:

$$c_2(A) = ||A||_2 ||A^{-1}||_2 \tag{2}$$

Therefore, to define $c_2(A)$ in terms of the $\sigma(A'A)$ we simply substitute our formulas for $||A||_2$ and $||A^{-1}||_2$ into (2). This yields,

$$c_2(A) = \max\{s(A)\} \max_{s_A \in s(A)} \{\frac{1}{s_a}\}$$
 (3)

1.3.2 Part D

The claim made from assignment 2 question 2 part E was as follows:

$$s(A) = \{ |\lambda| : \lambda \in \sigma(A), \lambda \neq 0 \}$$
(4)

Stated, this says "The singular values of a matrix A are the absolute values of the non-zero eigenvalues of A, where A is symmetric".

The formula for the condition number of a symmetric matrix A is the same as the formula stated in part C. The only change in definition is that of the singular values of A. The fore the formula, using the definition of s(A) from 4, is,

$$c_2(A) = \max\{s(A)\} \max_{s_A \in s(A)} \{\frac{1}{s_a}\}$$
 (5)

1.3.3 Part E

Listing 6: Matlab Commands

```
% Check for general matrix A
A = [1,2;-1,2];
[P,D] = eig(A'*A);
singA = sqrt(diag(D));
a_norm = max(singA);
inva\_norm = max(1./singA);
a\_norm*inva\_norm
ans =
     2
cond(A,2)
ans =
    2.0000
% Check for a symmetric matrix A
A = [-92,144;144,-8];
[P,D] = eig(A);
singA = abs(diag(D));
a_norm = max(singA);
inva\_norm = max(1./singA);
a\_norm*inva\_norm
ans =
    2.0000
cond(A,2)
ans =
    2.0000
```

1.4 Question 4

1.4.1 Part A

```
Listing 7: Matlab Commands

function [A] = q4_partA(T,k)
    [exp, base]=meshgrid(0:k,T);
    A=base.^exp;
end
```

1.4.2 Part B

```
Listing 8: Matlab Commands

function [p] = q4_partB(f, a, b, m, k)

T=linspace(a, b, m);

p = polyfit(T, f(T), k);

end
```

1.4.3 Part C

Question 5 1.5

1.5.1 Part A

We must prove that a matrix A with a real Cholesky factorization is symmetric positive definite. Therefore we must prove two things. The first is that A is positive definite. The second is that A is symmetric. To this end we know A = C'C.

Therefore we can prove positive definiteness simply as follows,

$$(Av,v) \geq 0 \tag{6}$$

$$(C'Cv,v) \geq 0 \tag{7}$$

$$(Cv,Cv) > 0 (8)$$

This concludes the proof for positive definiteness.

Next, we will prove that A is symmetric. Note, a matrix A is symmetric if A = A'. The proof is a simple substitution as follows,

$$A = A' (9)$$

$$C'C = (C'C)'$$

$$C'C = C'C$$
(10)

$$C'C = C'C (11)$$

This concludes the proof that A is symmetric. The proof that A is symmetric positive definite is complete.

- 1.5.2 Part B
- 1.5.3 Part C
- 1.5.4 Part D

1.6 Question 6