

CSC 384 Introduction to Artificial Intelligence

Uncertainty 4
Variable Elimination Algorithm

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

- 1. Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- 2. Describe/trace/implement the variable elimination algorithm for calculating a prior or posterior probability given a Bayesian network.

Outline

- 1. An Example to Motivate VEA
- 2. Variable Elimination Algorithm
- A VEA Example

AN EXAMPLE TO MOTIVATE VEA

An Example to Motivate VEA

Calculate $P(A|\neg w)$

If Dr. Watson does not call what is the probability that the alarm is ringing?

The Probability Tables

Goal is to calculate $P(A | \neg w)$.

P(B)

P(b)	0.5
$P(\neg b)$	0.5

P(A|B)

P(a b)	0.3
$P(\neg a b)$	0.7
$P(a \neg b)$	0.4
$P(\neg a \neg b)$	0.6

P(W|A)

P(w a)	0.1
$P(\neg w a)$	0.9
$P(w \neg a)$	0.2
$P(\neg w \neg a)$	0.8

Restrict W

Goal is to calculate $P(A | \neg w)$.

P(b)	0.5
$P(\neg b)$	0.5

P(a b)	0.3
$P(\neg a b)$	0.7
$P(a \neg b)$	0.4
$P(\neg a \neg b)$	0.6

P(w a)	0.1
$P(\neg w a)$	0.9
P(w a)	0.2
$P(\neg w \neg a)$	0.8

$P(\neg w a)$	0.9
$P(\neg w \neg a)$	0.8

Calculate the Joint Probabilities

Goal is to calculate $P(A | \neg w)$.

$$P(B \land A \land \neg w) = P(B)P(A|B)P(\neg w|A)$$

P(b)	0.5
$P(\neg b)$	0.5

 $P(b \land \neg a \land \neg w)$ = $P(b) P(\neg a|b) P(\neg w| \neg a)$ = 0.5 * 0.7 * 0.8 = 0.28

P(a b)	0.3
$P(\neg a b)$	0.7
$P(a \neg b)$	0.4
$P(\neg a \neg b)$	0.6

$P(b \wedge a \wedge \neg w)$	0.135
$P(b \land \neg a \land \neg w)$	0.28
$P(\neg b \wedge a \wedge \neg w)$	0.18
$P(\neg b \land \neg a \land \neg w)$	0.24

$P(\neg w a)$	0.9
$P(\neg w \neg a)$	8.0

Sum Out B

Goal is to calculate $P(A | \neg w)$.

$$P(A \land \neg w) = \sum_{B} P(B) P(A|B) P(\neg w|A)$$

$$P(a \wedge \neg w) = P(b \wedge a \wedge \neg w) + P(\neg b \wedge a \wedge \neg w)$$

= 0.135 + 0.18 = 0.315

$P(b \wedge a \wedge \neg w)$	0.135
$P(b \land \neg a \land \neg w)$	0.28
$P(\neg b \wedge a \wedge \neg w)$	0.18
$P(\neg b \land \neg a \land \neg w)$	0.24

$P(a \wedge \neg w)$	0.315
$P(\neg a \land \neg w)$	0.52

Normalize the Probabilities

$$P(a|\neg w) = \frac{P(a \land \neg w)}{P(a \land \neg w) + P(\neg a \land \neg w)} \text{ and } = \frac{0.315}{0.315 + 0.52} = 0.377$$

$$P(\neg a|\neg w) = \frac{P(\neg a \land \neg w)}{P(a \land \neg w) + P(\neg a \land \neg w)} = 1 - P(a|\neg w)$$

$P(a \land \neg w)$	0.315	
$P(\neg a \land \neg w)$	0.52	

$P(a \neg w)$	0.377
$P(\neg a \neg w)$	0.623

A Summary of the Calculations

$$P(A|\neg w) = \frac{P(A \land \neg w)}{P(a \land \neg w) + P(\neg a \land \neg w)}$$

To calculate $P(A|\neg w)$, it is sufficient to

- 4) Calculate the joint probabilities $P(A \land \neg w)$ and
- 5) Normalize them.

$$P(A \land \neg w) = \sum_{B} P(B)P(A|B)P(\neg w|A)$$

To calculate $P(A \land \neg w)$, we need to

- 1) Restrict the observed variables,
- 2) Calculate the joint probability of all variables, and
- 3) Sum out the hidden variables.

A Summary of the Steps

- 1) Write down the probability tables.
- 2) Restrict the observed variables.
- 3) Calculate the joint probability of all variables.
- 4) Sum out the hidden variables.
- 5) Normalize the probabilities.

VARIABLE ELIMINATION ALGORITHM

Variable Elimination Algorithm

To compute $P(Q|e_1 \land \cdots \land e_N)$

- Categorize the variables: query, evidence, and hidden.
- Create a factor for each node in the Bayesian network.
- Restrict each evidence variable to its observed value.
- Eliminate the hidden variables $h_1, \dots, h_j, \dots, h_M$.
 - For each hidden variable h_j
 - Multiply all the factors that contain h_j to create a new factor f_j .
 - Sum out h_i from factor f_i .
- Multiply the remaining factors.
- Normalize the remaining factor.

Create a Factor

Convert each conditional probability table to a factor.

P(w a)	0.8
$P(\neg w a)$	0.2
$P(w \neg a)$	0.4
$P(\neg w \neg a)$	0.6

W	а	0.8
$\neg w$	а	0.2
W	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

P(b)	0.1
$P(\neg b)$	0.9

b	0.1
$\neg b$	0.9

Restrict a Factor

Restrict each evidence variable to its observed value.

W	а	0.8
$\neg w$	а	0.2
	ıũ	0.4
<u></u> ;w	$\neg a$	0.6

Restrict *A* to be true

- VV	0.8
$\neg w$	0.2

Restrict W to be false

Restrict a Factor

Restrict each evidence variable to its observed value.

W	а	0.8
$\neg w$	а	0.2
W	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

Restrict *A* to be true

W	0.8
$\neg w$	0.2

Restrict W to be false

0.2

Sum out a Variable

Sum out a hidden variable from a factor.

W	а	0.8
$\neg w$	а	0.2
W	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

Sum out $A_{0.8+0.4=1.2}$

W	1.2
$\neg w$	0.8

Sum out W 0.2+0.6=0.8

Sum out a Variable

Sum out a hidden variable from a factor.

W	а	0.8
$\neg w$	а	0.2
W	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

Sum out A

W	1.2
$\neg w$	0.8

Sum out W

2.0

Multiply Factors

Multiply factors in an element-wise fashion.

W	а	8.0
$\neg w$	а	0.2
w	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

g	а	0.4
$\neg g$	а	0.6
g	$\neg a$	0.04
$\neg g$	$\neg a$	0.96

а	g		
а	g		
$\neg a$	g	0.4×0	.04
$\neg a$	g		
а	$\neg g$		
а	$\neg g$		
$\neg a$	$\neg g$		
$\neg a$	$\neg g$		
	 a ¬a ¬a a a ¬a 	$ \begin{array}{c cc} a & g \\ \hline \neg a & g \\ \hline \neg a & g \\ a & \neg g \\ \hline a & \neg g \\ \hline \neg a & \neg g \\ \hline \neg a & \neg g \\ \hline \end{array} $	$ \begin{array}{c cccc} a & g \\ $

Multiply Factors

Multiply two factors in an element-wise fashion.

w	а	0.8
$\neg w$	а	0.2
W	$\neg a$	0.4
$\neg w$	$\neg a$	0.6

g	а	0.4
$\neg g$	а	0.6
g	$\neg a$	0.04
$\neg g$	$\neg a$	0.96

W	а	g	0.32
$\neg w$	а	g	0.08
W	$\neg a$	g	0.016
$\neg w$	$\neg a$	g	0.024
W	а	$\neg g$	0.48
$\neg w$	а	$\neg g$	0.12
W	$\neg a$	$\neg g$	0.384
$\neg w$	$\neg a$	$\neg g$	0.576

Normalize a Factor

Convert a factor to a probability distribution.

$$1.2/(1.2+0.8) = 0.6$$

W	0.6
$\neg w$	0.4

Normalize a Factor

Convert a factor to a probability distribution.

W	1.2
$\neg w$	8.0

W	0.6
$\neg w$	0.4

A FULL VEA EXAMPLE

A VEA Example

Calculate $P(A|\neg w)$ using variable elimination algorithm.

Categorize the Variables

Calculate $P(A | \neg w)$

- Query variables: A
- Evidence variables: W
- Hidden variables: B

Define the Factors

Define factor $f_1(B)$

b	0.5
$\neg b$	0.5

Define factor $f_2(B, A)$

b	а	0.3
b	$\neg a$	0.7
$\neg b$	а	0.4
$\neg b$	$\neg a$	0.6

Define factor $f_3(A, W)$

а	W	0.1
а	$\neg w$	0.9
$\neg a$	W	0.2
$\neg a$	$\neg w$	0.8

Restrict the Factors

Restrict factor $f_3(A, W)$ to $\neg w$ produce factor $f_4(A)$

а	W	0.1
а	$\neg w$	0.9
$\neg a$	W	0.2
$\neg a$	$\neg w$	0.8

а	0.9
$\neg a$	0.8

The remaining factors are $f_1(B)$, $f_2(B,A)$, $f_4(A)$.

b	0.5
$\neg b$	0.5

b	а	0.3
b	$\neg a$	0.7
$\neg b$	а	0.4
$\neg b$	$\neg a$	0.6

а	0.9
$\neg a$	0.8

Eliminate the Hidden Variable B

Multiply $f_1(B)$ and $f_2(B,A)$ to produce factor $f_5(B,A)$.

b	0.5
$\neg b$	0.5

b	а	0.15
b	$\neg a$	0.35
$\neg b$	а	0.2
$\neg b$	$\neg a$	0.3

The remaining factors are $f_4(A)$, $f_5(B,A)$.

Eliminate the Hidden Variable B

Sum out B from $f_5(B, A)$ to produce factor $f_6(A)$.

b	а	0.15
b	$\neg a$	0.35
$\neg b$	а	0.2
$\neg b$	$\neg a$	0.3

а	0.35
$\neg a$	0.65

The remaining factors are $f_4(A)$, $f_6(A)$.

а	0.9
$\neg a$	0.8

а	0.35
$\neg a$	0.65

Multiply the Remaining Factors

Multiply $f_4(A)$ and $f_6(A)$ to produce factor $f_7(A)$.

а	0.315
$\neg a$	0.52

а	0.35
$\neg a$	0.65

The remaining factor is $f_7(A)$.

Normalize the Factor

Normalize $f_7(A)$ to produce factor $f_8(A)$.

а	0.315
$\neg a$	0.52

а	0.377
$\neg a$	0.623

What Did VEA Really Do?

Revisiting the Learning Goals

By the end of this lecture, you should be able to

- 1. Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- 2. Describe/trace/implement the variable elimination algorithm for calculating a prior or posterior probability given a Bayesian network.

AN EXTRA EXAMPLE ON VEA

A VEA Example

Calculate $P(W|\neg g)$ using the variable elimination algorithm.

Categorize the Variables

Calculate $P(W|\neg g)$

- Query variables: W
- Evidence variables: *G*
- Hidden variables: A

Define the Factors

Define factor $f_1(A)$

а	0.5
$\neg a$	0.5

Define factor $f_2(A, W)$

а	W	0.1
а	$\neg w$	0.9
$\neg a$	W	0.2
$\neg a$	$\neg w$	0.8

Define factor $f_3(A, G)$

а	g	0.3
а	$\neg g$	0.7
$\neg a$	g	0.4
$\neg a$	$\neg g$	0.6

Restrict the Factors

Restrict factor $f_3(A, G)$ to $\neg g$ produce factor $f_4(A)$

а	0.7
$\neg a$	0.6

The remaining factors are $f_1(A)$, $f_2(A, W)$, $f_4(A)$.

Eliminate the Hidden Variable A

Multiply $f_1(A)$, $f_2(A, W)$, and $f_4(A)$ to produce factor $f_5(A, W)$.

а	W	0.035
а	$\neg w$	0.315
$\neg a$	W	0.06
$\neg a$	$\neg w$	0.24

Sum out A from $f_5(A, W)$ to produce factor $f_6(W)$.

W	0.095
$\neg w$	0.555

The remaining factor is $f_6(W)$.

Multiply and Normalize

No need to multiply since there is one factor remaining.

Normalize factor $f_6(W)$ to get factor $f_7(W)$.

W	0.146
$\neg w$	0.854

That is, $P(w|\neg g) = 0.146$ and $P(\neg w|\neg g) = 0.854$.