Übungen zum Ferienkurs Analysis II

Implizite Funktionen und Differentialgleichungen

4.1 Umkehrbarkeit I \star

Man betrachte die durch $g(s,t)=(e^s\cos(t),e^s\sin(t))$ gegebene Funktion $g:\mathbb{R}^2\to\mathbb{R}^2$. Zeigen Sie, dass g die Bedingungen des Satzes über Umkehrfunktionen erfüllt, aber nicht injektiv ist

4.2 Umkehrbarkeit II

Zeige: die Abbildung $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2, (x,y) \mapsto (x^2 - y^2, 2xy)$ ist in allen Punkten ein lokaler \mathcal{C}^1 -Diffeomorphismus.

4.3 Implizite Funktionen I

Zeigen Sie, dass sich die Gleichung $x+y+z=\sin(xyz)$ in einer Umgebung V von $(0,0,0)\in\mathbb{R}^3$ eindeutig nach z auflösen lässt. D.h. in einer geeigneten Umgebung U von (0,0) existiert eine Funktion z=g(x,y) mit $f(x,y,z)=x+y+z-\sin(xyz)=0$.

Berechnen Sie die partiellen Ableitungen von g an der Stelle (0,0).

4.4 Implizite Funktionen II

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch

$$f(x, y, z) := x^2 + yz + z^2 - e^z$$
.

- (a) Zeigen Sie, dass in einer Umgebung des Punktes (1,0,0) eine Funktion g(x,y) existiert, die die Gleichung f(x,y,z) = 0 nach z = g(x,y) auflöst.
- (b) Wie lautet der Gradient von g im Punkt (1,0)?

$$\square \left(\begin{array}{c} 1 \\ 0 \end{array}\right) \quad \square \left(\begin{array}{c} 0 \\ 2 \end{array}\right) \quad \square \left(\begin{array}{c} 2 \\ 0 \end{array}\right) \quad \square \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \quad \square \left(\begin{array}{c} 1 \\ 2 \end{array}\right)$$

4.5 Lineare Differentialgleichungen

Gegeben ist die Differentialgleichung y''' + 7y'' + 15y' + 9y = 0.

- (a) Welche Dimension hat der Lösungsraum der Gleichung?
- (b) Welche der folgenden Funktionen von x sind Lösungen der Gleichung?
 - (i) $-\ln x$
 - (ii) 0
 - (iii) 1
 - (iv) $2e^{-x}$
 - (v) $1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$
- (c) Geben Sie ein Fundamentalsystem der Gleichung an!
- (d) Geben Sie die Menge aller reellen Lösungen der Differentialgleichung y''' + 7y'' + 15y' + 9y = 3 an!

Abgabe: 15.09.2016

4.6 Separierbare Differentialgleichung I

Gegeben ist die Differentialgleichung $\dot{x} = \sqrt{|1 - x^2|}$ mit $x(t) \in \mathbb{R}$.

- (a) Für welche Anfangswerte x(0) zur Zeit t=0 ist x(t)=x(0) für alle $t\in\mathbb{R}$ eine Lösung?
- (b) Bestimmen Sie für den Anfangswert x(0) = 0 eine auf ganz \mathbb{R} definierte Lösung. HINWEIS: $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ für $x \in [-1, 1]$.
- (c) Ist die Lösung der Differentialgleichung mit dem Anfangswert x(0) = -1 eindeutig bestimmt? Begründen Sie kurz Ihre Antwort.

4.7 Separierbare Differentialgleichung II

Gegeben ist die Differentialgleichung $\dot{x} = f(t, x)$ mit $f(t, x) = te^{t+x}$.

- (a) Geben Sie ein erstes Integral (Konstante der Bewegung) für die Differentialgleichung an.
- (b) Geben Sie eine maximale Lösung $x:I\to\mathbb{R}$ der Differentialgleichung mit dem Anfangswert x(0)=0 an.
- (c) Welche Eigenschaften besitzt die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, die hinreichend sind für die lokale Existenz und Eindeutigkeit von Lösungen obiger Differentialgleichung?

 \Box f ist stetig

 \Box f ist erstes Integral

☐ f ist stetig differenzierbar

☐ f ist lipschitzstetig

 \Box f ist lokal lipschitzstetig

(d) Ist die maximale Lösung des AWP $\dot{x} = f(t, x), x(0) = 0$ eindeutig bestimmt?

4.8 Lineares Differentialgleichungssystem *

Lösen sie das AWP $\dot{x} = Ax$ mit $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}, x(0) = \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}$.

HINWEIS: Schreiben Sie das System als eine Differentialgleichung höherer Ordnung für x_1 .

4.9 RC-Glied

Ein periodisch angeregtes RC-Glied (R=Widerstand, C=Kondensator) lässt sich in dimensionsloser Form folgenderweise darstellen.

$$\dot{x} + x = Asin(\omega t), \qquad \omega > 0$$

Lösen Sie die DGL als Summe aus allgemeiner Lösung der homogenen DGL und partikulärer Lösung der inhomogenen DGL.

4.10 Trennung der Variablen

Lösen Sie die folgenen DGLs durch Trennung der Variablen.

i)
$$y' = y^2 x$$

ii)
$$(2x-1)y' = 2y$$
 $y(0) = 3$

iii)
$$(x^2 - 1)y' = 2y$$
 $y(0) = 5$

4.11 Oszillierende Platte

Eine in der x-z-Ebene unendlich ausgedehnte dünne (2D-)Platte bei y=0 befindet sich in einem inkompressiblen Fluid (Viskosität ν) und oszilliert in x-Richtung mit der Geschwingkeit $U\cos(\omega t)$. Das Geschwindigkeitsfeld des Fluids lässt sich durch die Navier-Stokes-Gleichung beschreiben.

$$\frac{\partial v_x}{\partial t} = \nu \frac{\partial^2 v_x}{\partial y^2} \qquad v = \begin{pmatrix} v_x(y,t) \\ 0 \\ 0 \end{pmatrix}$$

Zeigen Sie, dass die DGL gelöst wird durch

$$v(y,t) = Ue^{-ky}cos(ky - \omega t), \qquad k = \sqrt{\frac{\omega}{2\nu}}$$

HINWEIS: Verwenden Sie die no-slip Bedingung (Geschwindigkeit des Fluids an der Oberfläche der Platte ist gleich der Geschwindigkeit der Platte selbst) und v=0 für $y\to\infty$ und den Ansatz $v_x=Re(f(y)e^{i\omega t})$.

4.12 Charakteristisches Polynom

Lösen Sie die DGL 3y'' + 2y' - y = 0 mit den Randbedingungen y(1)=2 und y'(1)=0 mit Hilfe des charakteristischen Polynoms.

4.13 Gradienten Systeme

- a) Seit dx/dt=f(x,y) und dy/dt=g(x,y). Zeigen Sie, dass, falls es sich um ein Gradientensystem handelt, gilt: df/dy=dg/dx
- b) Überprüfen Sie, ob es sich bei den folgenden Systemen um Gradientensysteme handelt? Konstruieren Sie gegebenenfalls eine Potentialfunktion U(x,y).

i)
$$\dot{x} = y^2 + y\cos(x)$$
, $\dot{y} = 2xy + \sin(x)$

ii)
$$\dot{x} = 3x^2 - 1 - e^{2y}$$
, $\dot{y} = -2xe^{2y}$