Derived RA Operations

- 1) Intersection
- 2) Most importantly: Join

Set Operations: Intersection

- Difference: all tuples both in R1 and in R2
- Notation: R1∩ R2
- R1, R2 must have the same schema
- R1∩R2 has the same schema as R1, R2
- Example
 - UnionizedEmployees ∩ RetiredEmployees
- Intersection is derived:
 - $-\underline{R1} \cap \underline{R2} = \underline{R1} (\underline{R1} \underline{R2})$

- Theta join
- Natural joinEqui-join
- Semi-join
 Inner join
 Outer join
 etc.

Theta Join

- A join that involves a predicate
- Notation: $R1 \bowtie_{\theta} R2$ where θ is a condition
- Input schemas: R1(A1,...,An), R2(B1,...,Bm)
- $\{A1,...An\} \cap \{B1,...,Bm\} = \phi$
- Output schema: S(A1,...,An,B1,...,Bm)
- Derived operator:

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta}(R1 \times R2)$$

Theta-Join

- $R3 := R1 JOIN_C R2$
 - Take the product R1 * R2.
 - Then apply $SELECT_C$ to the result.
- As for SELECT, C can be any boolean-valued condition.
 - Historic versions of this operator allowed only A theta
 B, where theta was =, <, etc.; hence the name "theta-join."

Example

Sells(bar,	beer,	price)	Bars(name,	addr)
	Joe's	Bud	2.50			Joe's	Maple St.	
	Joe's	Miller	2.75			Sue's	River Rd.	
	Sue's	Bud	2.50					l
	Sue's	Coors	3.00					

 $BarInfo := Sells JOIN_{Sells.bar = Bars.name} Bars$

BarInfo(

bar,	beer,	price,	name,	addr
Joe's	Bud	2.50	Joe's	Maple St.
Joe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

Natural Join

- Notation: $R1 \bowtie R2$
- Input Schema: *R1(A1, ..., An), R2(B1, ..., Bm)*
- Output Schema: S(C1,...,Cp)
 - Where $\{C1, ..., Cp\} = \{A1, ..., An\} \ U \{B1, ..., Bm\}$
- Meaning: combine all pairs of tuples in R1 and R2 that agree on the attributes:
 - $-\{A1,...,An\} \cap \{B1,...,Bm\}$ (called the join attributes)
- Equivalent to a cross product followed by selection
- Example **Employee** Mependents

Natural Join Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependents

SSN	Dname
99999999	Emily
77777777	Joe

Employee Dependents =

 $\Pi_{\text{Name, SSN, Dname}}(\sigma_{\text{SSN=SSN2}}(\text{Employee x }\rho_{\text{SSN2, Dname}}(\text{Dependents}))$

Name	SSN	Dname
John	99999999	Emily
Tony	77777777	Joe

Natural Join

• R=	A	В
11-	X	Y
	X	Z
	Y	Z
	Z	V

=2	В	С
J —	Z	U
	V	W
	Z	V

• $R \bowtie S =$

A	В	С
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

Natural Join

- Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of $R \bowtie S$?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

Equi-join

• Most frequently used in practice:

$$R1 \bowtie_{A=B} R2$$

- Natural join is a particular case of equi-join
- A lot of research on how to do it efficiently

Summary of Relational Algebra

• Basic primitives: E := R $| OC(E) | T_{A1, A2, ..., An}(E)$ $| E1 \times E2 | E1 \cup E2$ $| E1 - E2 | P_{S(A1, A2, ..., An)}(E)$ • Abbreviations: Derivation | E1 JOIN E2 | E1 JOIN E2 | E1 JOIN E2

 $IE1 \cap E2$

Relational Algebra

- Six basic operators, many derived
- Combine operators in order to construct queries: relational algebra expressions, usually shown as trees

Behind the Scene: Other query languages?

Relational algebra:

• Join Books and Bookstores over the BookstoreID
• Restrict to tuples for the book "Gone with the Wind":

• Project over StoreName and StorePhone.

Relational calculus:

• Get StoreName and StorePhone such that there exists a title BK with

the same BookstoreID value and with a BookTitle value of "Gone

So what's the difference?

with the wind".

Building Complex Expressions

- Algebras allow us to express sequences of operations in a natural way.
- Example
 - in arithmetic algebra: (x + 4)*(y 3)
 - in stack "algebra": T.push(S.pop())
- Relational algebra allows the same.
- Three notations, just as in arithmetic:
 - 1. Sequences of assignment statements.
 - 2. Expressions with several operators.
 - 3. Expression trees.

Sequences of Assignments

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- Example: $R3 := R1 \text{ JOIN}_C R2$ can be written:

R4 := R1 * R2

 $R3 := SELECT_C(R4)$

Expressions with Several Operators

- Example: the theta-join R3 := R1 JOIN_C R2 can be written: R3 := SELECT_C (R1 * R2)
- Precedence of relational operators:
 - 1. Unary operators --- select, project, rename --- have highest precedence, bind first.
 - 2. Then come products and joins.
 - 3. Then intersection.
 - 4. Finally, union and set difference bind last.
- But you can always insert parentheses to force the order you desire.

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
- Interior nodes are operators, applied to their child or children.

Example

• Given Bars(name, addr), Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

Q: How to do this?

• Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.

More Queries

Product (<u>pid</u>, name, price, category, maker-cid) Purchase (buyer-ssn, seller-ssn, store, pid) Company (<u>cid</u>, name, stock price, country) Person(<u>ssn</u>, name, phone number, city)

Note:

- •in Purchase: buyer-ssn, seller-ssn are **foreign keys** in Person, pid is **foreign key** in Product;
- •in Product maker-cid is a foreign key in Company

Find phone numbers of people who bought gizmos from Fred.

Find telephony products that somebody bought

Expression Tree Iname, phone? buyer-ssn=ssn pid=pid seller-ssn=ssn oname=fred Person Purchase Person Product 48

Exercises

Product (<u>pid</u>, name, price, category, maker-cid) Purchase (buyer-ssn, seller-ssn, store, pid) Company (<u>cid</u>, name, stock price, country) Person(<u>ssn</u>, name, phone number, city)

- Ex #1: Find people who bought telephony products.
- Ex #2: Find names of people who bought American products
- Ex #3: Find names of people who bought American products and did not buy French products
- Ex #4: Find names of people who bought American products and they live in Champaign.
- Ex #5: Find people who bought stuff from Joe or bought products from a company whose stock prices is more than \$50.

Operations on Bags (and why we care)

- Union: $\{a,b,b,c\}$ U $\{a,b,b,b,e,f,f\}$ = $\{a,a,b,b,b,b,b,c,e,f,f\}$
 - add the number of occurrences
- Difference: $\{a,b,b,b,c,c\} \{b,c,c,c,d\} = \{a,b,b\}$
 - subtract the number of occurrences
- Intersection: $\{a,\underline{b},\underline{b},\underline{c},c,c\}$ $\{\underline{b},\underline{b},c,c,c,c,d\} = \{\underline{b},\underline{b},c,c\}$
 - minimum of the two numbers of occurrences
- Selection: preserve the number of occurrences
- Projection: preserve the number of occurrences (no duplicate elimination)
- Cartesian product, join: no duplicate elimination

Read the book for more detail

Summary of Relational Algebra

- Why bother? Can write any RA expression directly in C++/Java, seems easy.
- Two reasons:
 - Each operator admits sophisticated implementations (think of \bowtie , σ_{C})
 - Expressions in relational algebra can be rewritten: optimized

Glimpse Ahead: Efficient Implementations of Operators

- $\sigma_{(age \ge 30 \text{ AND } age \le 35)}(Employees)$
 - Method 1: scan the file, test each employee
 - Method 2: use an index on **age**
 - Which one is better? Depends a lot...

• Employees ⋈ Relatives

- Iterate over Employees, then over Relatives
- Iterate over Relatives, then over Employees
- Sort Employees, Relatives, do "merge-join"
- "hash-join"
- etc

Glimpse Ahead: Optimizations

Product (<u>pid</u>, name, price, category, maker-cid) Purchase (buyer-ssn, seller-ssn, store, pid) Person(<u>ssn</u>, name, phone number, city)

• Which is better:

$$\sigma_{price>100}(Product) \bowtie (Purchase \bowtie \sigma_{city=sea} Person) \\ (\sigma_{price>100}(Product) \bowtie Purchase) \bowtie \sigma_{city=sea} Person$$

• Depends! This is the optimizer's job...