A Recursive Strategy for Symbolic Execution Expressed in Coq

Alyssa Byrnes

July 2, 2018

1 Data Types

- Object E to represent set of concrete states.
- \bullet Object of type n to represent nodes on the symbolic execution tree.
- Contains initial configuration state \mathcal{T}_{Cfg} .
 - get s(n) returns s, the symbolic state.
 - get_pc(n) returns π , the path constraint.
- Object of type \mathcal{E} to represent a symbolic execution tree made of objects of type n.
 - is_leaf(\mathcal{E} , n) returns true if n is a leaf in \mathcal{E} .
 - is_root(\mathcal{E} , n) returns true if n is the root in \mathcal{E} .
 - get_root(\mathcal{E}) returns object of type n that is the root of the tree.
- Object of type φ to represent symbolic state.
 - $-B = \operatorname{sym}_{-}\operatorname{ex}(A)$, or $A \Rightarrow_{S}^{S} B$, represents symbolic execution of state A.
- Object of type γ to represent concrete state.
 - $-B = \operatorname{conc} \operatorname{ex}(A)$, or $A \Rightarrow_{\mathcal{S}} B$, represents concrete execution of state A.

Shorthand:

- $\bar{s}_{r,m} = \text{get s}(\text{get root}(\mathcal{E}_m))$
- $\pi_{r,m} = \text{get pc}(\text{get root}(\mathcal{E}_m))$
- $\bar{s}_{l,m} = \text{get } s(n_{l,m}), \text{ where } n_{l,m} \in \mathcal{E}_m.$
- $\pi_{l,m} = \text{get} _\text{pc}(n_{l,m})$, where $n_{l,m} \in \mathcal{E}_m$.

2 Accepted Knowledge

These are the properties outlined in Arusoaie et al.'s paper [ALR13].

Lemma 1 If $\gamma \Rightarrow_{\mathcal{S}} \gamma'$, and $\gamma \in [\![\varphi]\!]$, then there exists φ' such that $\gamma' \in [\![\varphi']\!]$ and $[\![\varphi]\!]_{\sim} \Rightarrow_{\mathcal{S}}^{S} [\![\varphi']\!]_{\sim}$.

Lemma 2 If $\gamma' \in \llbracket \varphi' \rrbracket$ and $\llbracket \varphi \rrbracket_{\sim} \Rightarrow_{\mathcal{S}}^{S} \llbracket \varphi' \rrbracket_{\sim}$ then there exists $\gamma' \in \mathcal{T}_{Cfg}$ such that $\gamma \Rightarrow_{\mathcal{S}} \gamma'$ and $\gamma \in \llbracket \varphi \rrbracket$. [ALR13]

Lemma 1 states that all concrete states have corresponding symbolic representations, and Lemma 2 states that if a program symbolically executes to a set of possible concrete assignments, then initial concrete assignments exist so the program can concretely execute to that state.

3 Circle Operations

These use the definitions defined in Arusoaie et al.'s paper [ALR13].

Definition 1 circle_op_1 = the set $\gamma \in \llbracket \varphi \rrbracket \ \forall \ \gamma' \in \llbracket \varphi' \rrbracket$ of a given φ' where $[\varphi]_{\sim} \Rightarrow_{\mathcal{S}}^{S} [\varphi']_{\sim}$ such that $\gamma \Rightarrow_{\mathcal{S}} \gamma'$.

Definition 2 circle_op_2 = the set $\gamma' \in \llbracket \varphi' \rrbracket \ \forall \ \gamma \in \llbracket \varphi \rrbracket$ of a given φ where $[\varphi]_{\sim} \Rightarrow_{\mathcal{S}}^{S} [\varphi']_{\sim}$ such that $\gamma \Rightarrow_{\mathcal{S}} \gamma'$.

circle_op_1 represents all concrete states that will take us down exactly one path in the symbolic execution tree. circle_op_2 represents all concrete output states of a given path in the symbolic execution tree.

4 Properties

For a given E, X = a sequence $\mathcal{E}_0, ..., \mathcal{E}_m$ such that $\forall \mathcal{E}_x, \exists n_{l,x}$ such that is_leaf $(\mathcal{E}_x, n_{l,x}) = true \rightarrow$ the conjunction of the following:

- 1. $s_0 \in \text{circle_op_1}(\bar{s}_{r,0}, \pi_{l,0})$
- 2. $E \cap \text{circle op } 2(\bar{s}_{l,m}, \pi_{l,m}) \neq \{\}$
- 3. for $j = \{0, ..., m-1\}$, circle_op_ $2(\bar{s}_{l,j}, \pi_{l,j}) \subseteq \text{circle_op}_1(\bar{s}_{r,j+1}, \pi_{l,j+1})$

References

[ALR13] Andrei Arusoaie, Dorel Lucanu, and Vlad Rusu. A generic framework for symbolic execution. In *International Conference on Software Language Engineering*, pages 281–301. Springer, 2013.