# APPLICATIONS OF ANALYTIC CONTINUATION TO THE SOLUTION OF BOUNDARY VALUE PROBLEMS

BY

#### P. R. GARABEDIAN

TECHNICAL REPORT NO. 16

NOVEMBER 20, 1953

PREPARED UNDER CONTRACT Nonr-225(11)
(NR-041-086)
FOR
OFFICE OF NAVAL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

## APPLICATIONS OF ANALYTIC CONTINUATION TO THE SOLUTION OF BOUNDARY VALUE PROBLEMS

Вy

#### P. R. Garabedian

A better analysis of special solutions of particular boundary value problems is of considerable importance in the theory of partial differential equations, especially for equations of fourth order, because very few explicit solutions are known in this case. The present work was motivated by interest in the non-linear Navier-Stokes equation

$$\Psi_{zz\bar{z}\bar{z}} = \Psi_{z}\Psi_{z\bar{z}\bar{z}} - \Psi_{\bar{z}}\Psi_{zz\bar{z}}$$

governing the steady two-dimensional flow of an incompressible viscous fluid, but the results have application in other fields, such as elasticity. We develop methods based on analytic continuation which yield for certain special plane domains the solution of the basic boundary value problems for the equations  $\Delta \phi = \phi$  and  $\Delta \Delta \Psi = 0$ . The methods, which consist either in the introduction of independent complex variables z = x + iy and  $z^* = x - iy$  or in a suitable exploitation of the analytic function G(z) such that the equation  $\overline{z} = G(z)$  represents the boundary of the domain, are of themselves interesting, since they provide formulas for the reflection of solutions of these partial differential equations across analytic boundaries. We are thus able, for example, to study the solution of the Oseen equation  $\Delta \Delta \Psi = \Delta \Psi$  near the end of a slit.

Let  $P(z,\overline{z})$  be a fixed real analytic function of x and y, and let  $\varphi(z,\overline{z})$  be a real solution of the linear elliptic partial differential equation

(1) 
$$\varphi_{z\overline{z}}(z,\overline{z}) = P(z,\overline{z}) \varphi(z,\overline{z})$$

in a plane domain D, where

$$\Phi_{z\bar{z}} = \frac{\partial^2 \varphi}{\partial z \partial \bar{z}} , \quad \frac{\partial}{\partial z} = \frac{1}{2} (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}) , \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$$

We denote by  $A(z,z^*;t,t^*)$  the Riemann function of the corresponding hyperbolic equation

(2) 
$$\frac{\partial^2 \varphi}{\partial z \partial z^*} = P(z, z^*) \varphi$$

in two independent complex variables z and  $z^*$ . In other words, A is, as a function of z and  $z^*$ , a solution of (2) which satisfies the boundary conditions  $A(z,t^*;t,t^*) = A(t,z^*;t,t^*) = 1$ . If we continue the solution  $\varphi(z,\overline{z})$  of (1) analytically into the domain of complex values of x and y, it becomes a solution  $\varphi(z,z^*)$  of (2). It is clear by Stokes' theorem that because  $\varphi$  and A solve (2), the line integral

(3) 
$$\int \left\{ \Phi \frac{\partial \mathbf{A}}{\partial \mathbf{z}} \, \mathbf{d} \mathbf{z} + \mathbf{A} \, \frac{\partial \varphi}{\partial \mathbf{z}^*} \, \mathbf{d} \mathbf{z}^* \right\}$$

is independent of the path of integration between given limits. We make use of this result to derive a dual pair of useful formulas expressing  $\varphi$  in terms of A.

The required formulas are

(4) 
$$\varphi(t,t^*) = \varphi(t,\bar{t}) - \int_{\bar{x}}^{t} \left\{ \varphi(z,\bar{z}) \frac{\partial \hat{a}(z,\bar{z};t,t^*)}{\partial z} dz + \hat{a}(z,\bar{z};t,t^*) \frac{\partial \varphi(z,\bar{z})}{\partial \bar{z}} d\bar{z} \right\},$$

where the path of integration runs from  $\bar{t}^*$  to t in the real plane domain D, and [1]

and (1)
$$(5) \quad \varphi(t,\bar{t}) = \varphi(\bar{t}^*,t^*) A(\bar{t}^*,t^*;t,\bar{t}) + \int_{\bar{t}}^{\bar{t}} A(z,t^*;t,\bar{t}) \frac{\partial \varphi(z,t^*)}{\partial z} dz$$

$$\bar{t}^* \quad \bar{t} \quad + \int_{\bar{t}}^{\bar{t}} A(\bar{t}^*,z^*;t,\bar{t}) \frac{\partial \varphi(\bar{t}^*,z^*)}{\partial z^*} dz$$

$$t^* \quad \bar{t}^* \quad \bar{t} \quad \bar{t}^* \quad$$

The first formula is derived by evaluating the integral (3) over a closed circuit consisting of a curve in the real plane  $z = \overline{z}$  from  $\overline{t}$  to t, plus a curve in the characteristic plane z = t from  $z = \overline{t}$  to  $z = \overline{t}$ , plus a curve in the characteristic plane z = t from z = t to  $z = \overline{t}$ , for the integrals in the characteristic planes simplify by virtue of the boundary conditions satisfied by A. In a similar way, formula (5) follows by evaluation of (3) over a closed path made up of the four arcs which join, respectively, the points  $z = \overline{t}$  and z = t in the plane z = t, the points z = t and  $z = \overline{t}$  in the plane z = t in the plane z = t. Finally, since  $\varphi(z, \overline{z})$  and  $A(z, \overline{z}; t, \overline{t})$  are real, (5) reduces to

(6) 
$$\varphi(t,\bar{t}) = \varphi(\bar{t}^*,t^*)A(\bar{t}^*,t^*;t,\bar{t}) + 2 \operatorname{Re} \left\{ \int_{+\pi}^{t} A(z,t^*;t,\bar{t}) \frac{\partial \varphi(z,t^*)}{\partial z} dz \right\}.$$

As a first application of the formulas (4) and (6) we consider the equation

$$(7) \qquad \Delta \varphi = \varphi$$

in the wedge  $- \propto <$  arg z  $< \propto$  . In this case P = 1/4 and the Riemann function A has the form

$$A(z,z^*;t,t^*) = J[i\sqrt{(z-t)(z^*-t^*)}]$$

where J is the Bessel function of order zero. We set  $t^* = 0$  and we take as path of integration the ray from the origin to z, whence (4) yields for the solution  $\varphi$  of (7)

(8) 
$$\varphi(t,0) = \varphi(t,\bar{t}) - \int_{0}^{t} \left\{ \varphi \frac{\partial}{\partial z} J[\sqrt{(t-z)\bar{z}}] dz + J[\sqrt{(t-z)\bar{z}}] \frac{\partial \varphi}{\partial \bar{z}} d\bar{z} \right\}$$

The remarkable fact about this special case is that

(9) 
$$\operatorname{Re}\left\{\varphi(t,0)\right\} = \varphi(t,\bar{t}) - \int_{0}^{t} \left\{\varphi\operatorname{Re}\left[\frac{\partial J}{\partial z} dz\right] + \frac{1}{2}J\frac{\partial \varphi}{\partial |z|} d|z|\right\}$$

since  $(t-z)\overline{z} > 0$  along our path of integration. Thus, along any ray through the origin,  $\operatorname{Re}\left\{\varphi(t,0)\right\}$  is completely determined by  $\varphi(t,\overline{t})$  alone. Furthermore, for real arguments the Bessel function J is uniformly bounded, whereas  $\varphi(t,\overline{t})$  and its derivatives are required to vanish exponentially at infinity for solutions of boundary value problems in a wedge. Therefore, by (8),  $\varphi(t,0)$  will be bounded for such solutions. It follows from this analysis that the first boundary value problem for (7) in a wedge  $-\alpha < \arg z < \alpha$  transforms by (9) into a Dirichlet problem for the harmonic function  $\operatorname{Re}\left\{\varphi(t,0)\right\}$  in the same wedge. Thus  $\varphi(t,0)$  can be found by standard procedures and the explicit solution  $\varphi(t,\overline{t})$  of (7) assuming the given boundary values can be obtained as an integral from the formula

(10) 
$$\varphi(t,\bar{t}) = \varphi(0,0)J(i|t|) + 2 \operatorname{Re} \int_{0}^{t} J[i\sqrt{(t-z)\bar{t}}] \frac{\partial \varphi(z,0)}{\partial z} dz$$
,

based on (6).

The general formula (6) for solutions  $\varphi$  of (1) in a domain D gives a convenient procedure [6] for continuing  $\varphi$  analytically across an analytic arc of the boundary of D along which  $\varphi$  satisfies, for example, the boundary condition  $\varphi = 0$ . We write the equation of the analytic arc in the form  $\bar{z} = G(z)$ , where G(z) is an analytic function. Such a representation can always be obtained by solving for  $\bar{z}$  the more usual equation of the arc. We suppose, without loss of generality, that the origin is the point on the boundary of D near which we wish to make the reflection. In D, near the origin, consider the analytic function

(11) 
$$U(t) = \int_{0}^{t} A(z,0;t,G(t)) \frac{\partial \varphi(z,0)}{\partial z} dz$$

From (6) and the boundary condition  $\varphi = 0$ , we obtain along the curve  $\overline{z} = G(z)$  the identity

$$0 = \varphi(t,\bar{t}) = \varphi(0,0)A(0,0;t,\bar{t}) + 2 \operatorname{Re} \left\{ \int_{0}^{t} A(z,0;t,\bar{t}) \frac{\partial \varphi(z,0)}{\partial z} dz \right\}$$
$$= 2 \operatorname{Re} \left\{ \bar{U}(t) \right\} = \bar{U}(t) + \bar{U}(\bar{t}) \qquad .$$

Hence the analytic function U(t) can be continued analytically across the curve  $\overline{z} = G(z)$  by the rule

$$\overline{U}(t) = -\overline{\overline{U}}(G(t))$$

since when t lies on one side of the curve and sufficiently near the origin, the point G(t) lies on the opposite side. We now derive from (11) the integral equation

(12) 
$$\overline{U}(G(t)) + \int_{0}^{t} A(z,0;t,G(t)) \frac{\partial \varphi(z,0)}{\partial z} dz = 0$$

for the determination of the analytic function  $\varphi(t,0)$  across the arc  $\bar{z}=G(z)$ . This equation is linear and of the Volterra type, so there is no difficulty is solving it by successive approximations. Thus the analytic continuation of  $\varphi(t,0)$  is performed, and to obtain the continuation of the original solution  $\varphi(t,\bar{t})$  of (1) we have only to apply formula (6) again with  $t^*=0$ .

The procedure just outlined can readily be extended to the case of fourth order elliptic equations. We illustrate this generalization with an application to the important special case of the Oseen equation

$$\Delta \Delta \Psi = 2 \Delta \Psi_{x}$$

This equation has a general solution

$$\Psi = e^{\mathbf{x}} \varphi + \mathbf{h}$$

where  $\phi$  is a solution of (7) and h is a harmonic function. By (10), the general solution can be written near the origin in the form

(14) 
$$\Psi = \text{Re} \left\{ e^{(t+\bar{t})/2} \int_{0}^{t} J[i\sqrt{(t-z)\bar{t}}]g'(z)dz + Ce^{(t+\bar{t})/2}J(i|t|) + f(t) \right\}$$

where C is an arbitrary constant and f(t) and g(t) are arbitrary analytic functions. We suppose that the solution  $\psi$  of (13) is defined in a region D whose boundary contains the analytic arc  $\overline{z} = G(z)$  passing through the origin, and along this arc we assume that the boundary conditions

$$(15) \qquad \qquad \psi = \frac{\partial \Psi}{\partial \mathbf{n}} = 0$$

are fulfilled, where n denotes the inner normal of the arc. The problem is to continue  $\Psi$  analytically across the arc  $\bar{z} = G(z)$ , and it is clearly sufficient by (14) to perform such a continuation on the analytic functions f(t) and g(t).

We denote by s the arc length along the curve  $\bar{z} = G(z)$ , and we verify that

(16) 
$$\frac{\partial z}{\partial n} = i \frac{\partial z}{\partial s} = iG'(z)^{-1/2}$$

Replacing (15) by

$$e^{-x} \Psi = \partial(e^{-x} \Psi)/\partial n = 0$$

and substituting (14) into the result, we obtain

(17) 
$$\operatorname{Re}\left\{V(t)\right\} = 0$$

along the curve  $\overline{z} = G(z)$ , where V and  $\overline{w}$  are the analytic functions defined by

(18) 
$$V(t) = \int_{0}^{t} J[i \sqrt{(t-z)G(t)'}]g'(z)dz + CJ(i\sqrt{tG(t)'}) + f(t)e^{-(t+G(t))/2}$$

$$(19) \ W'(t)G'(t)^{-1/2} = iG'(t)^{-1/2} \left\{ g'(t) + iCJ'(1 \ \sqrt{tG(t)}) \frac{G(t) - tG'(t)}{2\sqrt{tG(t)}} + i \int_{0}^{t} J'(i\sqrt{(t-z)G(t)}) \frac{G(t) - (t-z)G'(t)}{2\sqrt{(t-z)G(t)}} g'(z)dz + e^{-(t+G(t))/2} [f(t) \frac{G'(t) - 1}{2} + f'(t)] \right\}$$

in D. Therefore these functions can be reflected across  $\overline{z} = G(z)$  by the rule

$$V(t) = -\overline{V}(G(t))$$
 ,  $W(t) = -\overline{W}(G(t))$ 

It follows then from (18) and (19) that f(t) and g(t) can be continued analytically across  $\overline{z} = G(z)$  as solutions of the system of Volterra integral equations

(20) 
$$iG'(t)\overline{w}'(G(t)) = g'(t) + e^{-(t+G(t))/2}f'(t) + f(t)e^{-(t+G(t))/2}\frac{G'(t)-1}{2}$$

$$+ i\int_{0}^{t} J'(i\sqrt{(t-z)G(t)}) \frac{G(t)-(t-z)G'(t)}{2\sqrt{(t-z)G(t)}} g'(z)dz$$

$$+ iCJ'(i\sqrt{tG(t)}) \frac{G(t)-tG'(t)}{2\sqrt{tG(t)}},$$

$$(21) \frac{d}{dt} [\overline{V}'(G(t)) + i\overline{W}'(G(t))] = e^{-(t+G(t))/2} f'(t) - f(t) e^{-(t+G(t))/2} \frac{G'(t)+1}{2}$$

$$- i \frac{d}{dt} \int_{0}^{t} \frac{J'(i\sqrt{(t-z)G(t)})\sqrt{t-z}}{\sqrt{G(t)}} g'(z)dz - iC \frac{d}{dt} \frac{J'(i\sqrt{tG(t)})\sqrt{t}}{\sqrt{G(t)}}.$$

Once the solution of (20) and (21) has been obtained by successive approximations, the continuation of the stream function  $\Psi$  can be found from the expression (14).

We can apply the rule just described for reflecting  $\Psi$  to the case where  $\Psi$  is defined in a neighborhood of the origin slit along the positive real axis, on which the boundary conditions (15) are imposed. Here G(z) = z

and it is found that V and W are regular, single-valued functions of  $\sqrt{t}$  near the crigin, whence by (20), (21) the same is true for f and g. Therefore  $\Psi$  is a regular function of  $\sqrt{t}$  and  $\sqrt{t}$ , and since  $\Psi_{\mathbf{x}}$  and  $\Psi_{\mathbf{y}}$  must vanish at the crigin, we conclude that the skin friction  $\Delta\Psi$  behaves like  $1/\sqrt{\mathbf{x}}$  along the positive real axis [5].

Our mothod of reflection is valid for the equation  $\triangle \triangle \Psi = \lambda^4 \Psi$  of the vibrating clamped plate, also, and, indeed, many further, more involved applications could be carried out.

We turn our attention to the simplest fourth order equation, namely,  $\Delta\Delta\Psi=0 \quad .$ 

and we show that the above technique simplifies to such an extent that we are led to the explicit solution of specific boundary value problems. The general solution of the biharmonic equation (22) has the form

(23) 
$$\Psi = \operatorname{Re} \left\{ \tilde{z} f(z) + g(z) \right\} ,$$

where f and g are arbitrary analytic functions of z. If we substitute this formula into the boundary conditions (15) along the arc  $\bar{z} = G(z)$  and take (16) into account, we find

(24) 
$$\operatorname{Re} \left\{ G(z) f(z) + g(z) \right\} = 0$$

(25) 
$$\operatorname{Re}\left\{iG(z)f'(z)G'(z)^{-1/2}+ig'(z)G'(z)^{-1/2}-if(z)G'(z)^{1/2}\right\}=0$$

We define the two analytic functions

$$\Phi(z) = G(z)f(z) + g(z) ,$$

$$\Psi(z) = i \int \{G(z)f'(z) + g'(z) - f(z)G'(z)\} dz$$

and we note that (24) and (25) imply

(26) 
$$\operatorname{Re}\left\{\Phi(\mathbf{z})\right\} = \operatorname{Re}\left\{\Psi(\mathbf{z})\right\} = 0$$

on the curve  $\overline{z} = G(z)$ . But also

$$f(z) = \left[ \frac{\Phi'(z) \cdot i \Psi'(z)}{(2G'(z))} \right],$$

$$g(z) = \frac{\Phi(z) - \left[ \frac{\Phi'(z) + i \Psi'(z)}{(2G'(z))} \right]}{(2G'(z))}$$

whence the biharmonic function  $\Psi$  satisfying the boundary conditions (15) can be expressed in the form

(27) 
$$\Psi = \operatorname{Re} \left\{ \Phi(z) + \frac{\overline{z} - G(z)}{2G'(z)} \left[ \Phi'(z) + i \Psi'(z) \right] \right\}$$

in terms of the pair of analytic functions  $\Phi$  and  $\Psi$  satisfying the equivalent boundary conditions (26).

As in our earlier studies, the formula (27) gives a rule for continuing  $\Psi$  analytically across an arbitrary analytic arc  $\overline{z} = G(z)$ . Indeed, we have only to reflect  $\Phi$  and  $\Psi$  by the usual Schwarz principle, using (26). However, in the present situation, the reflection rule is so simple and elegant that for certain domains D it can be exploited in order to solve explicitly the first boundary value problem for (22). This can be done when D is bounded by a simple closed analytic curve  $\overline{z} = G(z)$  such that G(z) is single-valued in D and regular there except for a finite number of poles. The functions  $\Phi$  and  $\Psi$  defined by (27) re regular in D except for singularities at the poles of G, and D the boundary curve we find

$$(28) \qquad \qquad \Psi = \operatorname{Re} \left\{ \Phi \right\} \qquad ,$$

(29) 
$$\int \frac{\partial \Psi}{\partial n} ds = \operatorname{Re} \{\Psi\}$$

Hence the problem of determining a solution of (22) in P with prescribed values for  $\Psi$  and  $\partial\Psi/\partial n$  on the curve bounding D reduces to the problem of finding analytic functions  $\Phi$  and  $\Psi$  with given real parts on the boundary of D and with suitable singularities at the poles of G. The

solution therefore involves only the determination of a finite number of parameters associated with the singularities in such a way that  $\Phi' + i \Psi'$  vanishes at the zeros of G'. In particular, if G has only simple poles, then  $\Phi$  has only simple poles and  $\Psi' + i \Phi'$  has only simple poles.

As an example of this theory, we develop a representation for the biharmonic Green's function  $\Gamma(z,\zeta)$  of the exterior of the ellipse  $x^2 + y^2 + y^2 + 2 = 1$ . The result should be compared with the earlier solution given by a related method [7,8]. We write the equation of the ellipse in the complex form

$$(z + \bar{z})^2 ch^{-2} \propto -(z - \bar{z})^2 sh^{-2} \propto = 4$$

and solve for z as a function of z to obtain

(30) 
$$G(z) = z \operatorname{ch} 2\alpha - \sqrt{z^2 - 1} \operatorname{sh} 2\alpha$$

Denote by  $p(z, \zeta)$  the analytic function of z whose real part is the Green's function for Laplace's equation in the exterior of the ellipse, with source point at  $z = \zeta$ . A fundamental solution of (22) is

Re 
$$\left\{-\left|z-\zeta\right|^2 p(z,\zeta)\right\}$$
,

and we must add to this an expression of the type (27), adjusted so that the sum satisfies the homogeneous boundary conditions (15) on the ellipse. This gives on the ellipse

$$\operatorname{Re} \left\{ \Phi \right\} = 0$$
,  
 $\operatorname{Re} \left\{ \Psi \right\} = \operatorname{Re} \left\{ i \int |z - \zeta|^2 p'(z, \zeta) dz \right\}$ 

whence we have

(31) 
$$\Phi = A(z^2 - G(z)^2)$$
,

(32) 
$$\Psi = i \int (z-\zeta)(G(z)-\zeta)p'(z,\zeta)dz + B(z-G(z))+iC(z+G(z))+Dp(z,\infty),$$

where the real parameters A, B, C, D are to be found from the condition that  $\Phi' + i \Psi'$  must vanish at the zeros  $\pm ch 2 \propto of G'(z)$ . We thus obtain for A, B, C, D the equations

$$\pm 2A \operatorname{ch} 2\alpha \pm i \operatorname{Dp}'(\operatorname{ch} 2\alpha, \infty) + i(B + iC)$$

$$= (\operatorname{ch} 2\alpha \mp \zeta)(1 \mp \overline{\zeta}) p'(\pm \operatorname{ch} 2\alpha, \zeta)$$

and therefore

(33) 
$$\Gamma(z,\zeta) = \text{Re}\left\{-|z-\zeta|^2 p(z,\zeta) + \Phi + \frac{\overline{z}-G(z)}{2G'(z)} [\Phi'+i\Psi']\right\}$$
, with G,  $\Phi$ , and  $\Psi$  given by (30), (31), and (32).

The above result, which is of some interest for the discussion of slow viscous flow around an ellipse, simplifies considerably in the limiting case when  $\propto = 0$  and the ellipse degenerates into a slit from -1 to +1. Here we find, in fact, that the biharmonic Green's function is given by

(34) 
$$\Gamma(z,\zeta) = \text{Re}\left\{-|z-\zeta|^2 p(z,\zeta) + iy(z-\zeta)(z-\zeta)p'(z,\zeta)\right\}$$

since G(z) = z. This same formula yields the biharmonic Green's function for the exterior of any finite number of slits along the real axis, provided that we interpret p to be that analytic function whose real part is the harmonic Green's function of the multiply-connected slit domain.

With our present method we can treat the first boundary value problem for (22) in domains bounded by slits along an analytic arc  $\overline{z} = G(z)$ . However, for the applications it is also desirable to study the behavior of biharmonic functions near a point of the boundary where two analytic arcs intersect at an arbitrary angle. In order to obtain a first analysis of problems of this type, we determine here the biharmonic Green's function  $\Gamma(z,\zeta)$  for an arbitrary crescent domain bounded by two circular arcs.

Without loss of generality, we can assume that the two circular arcs bounding the crescent intersect at the points 1 and -1. The conformal transformation z = thw therefore maps the crescent in the z-plane onto an infinite strip a < v < b in the w-plane, w = u + iv. The general solution (23) of (22) can be replaced in the w-plane by an expression

(35) 
$$F(w,\overline{w}) = (\operatorname{ch} w \operatorname{ch} \overline{w}) + \operatorname{Re} \left\{ f^{*}(w) \operatorname{sh} \overline{w} + g^{*}(w) \operatorname{ch} \overline{w} \right\}$$

which is easily seen to be the general solution of the transformed differential equation

(36) 
$$(\frac{\partial^2}{\partial x^2} - 1)(\frac{\partial^2}{\partial x^2} - 1)F = 0$$

The Green's function  $\Gamma(z,\zeta)$  of (22) for a crescent will be related to the Green's function G(w,C) of (36) for the corresponding strip by the identity

(37) 
$$G(\mathbf{w}, \mathbf{\sigma}) = |\operatorname{ch} \mathbf{w}|^{2} |\operatorname{ch} \mathbf{\sigma}|^{2} \Gamma(\mathbf{z}, \mathbf{\zeta}) ,$$

where  $\zeta = \text{th } \mathcal{O}$ ,  $\mathcal{O} = \text{s+it.}$  We proceed to determine G by the method of Fourier transforms, omitting details of a familiar nature [2,4.9].

We write  $G(w, \mathcal{T})$  as the Fourier transform with respect to  $\theta$  of a quantity  $\chi(v,t;\theta)$ , which turns out to be the Green's function with discontinuity at v=t of the ordinary fourth order differential equation

(38) 
$$\frac{d^4 \delta}{dv^4} + (8 - 2\theta^2) \frac{d^2 \delta}{dv^2} + (16 + 8\theta^2 + \theta^4) \delta = 0$$

in the interval a < v < b, since equation (36) has constant coefficients.

Thus we have

(39) 
$$G(\pi,\sigma) = \frac{1}{\pi} \int_{0}^{\infty} \gamma(v,t;\theta) \cos\theta (u-s) d\theta ,$$

where the symmetric Green's function  $\chi(v,t;\theta) = \chi(t,v;\theta)$  is given for  $a \le v \le t \le b$  by the lengthy relation

(40) 
$$4\theta(\theta^2 + 4)(4 \sinh^2 \ell \theta - \theta^2 \sin^2 2 \ell) \gamma(v, t; \theta)$$

- =  $(\theta^2+4)(\theta \cosh \ell \theta \sin 2\ell 2 \sinh \ell \theta \cos 2\ell)[\sinh \theta (v-a)\sin 2(v-a)\sinh \theta (t-b)\sin 2(t-b)]$
- +  $(\theta^2+4)$ sh  $\ell \theta \sin 2 \ell \left\{ sh \theta (v-a) \sin 2(v-a) \left[ \theta ch \theta (t-b) \sin 2(t-b) 2 sh \theta (t-b) \cos 2(t-b) \right] \right\}$
- $\operatorname{sh} \theta(t-b) \sin 2(t-b) [\theta \operatorname{ch} \theta(v-a) \sin 2(v-a) 2 \operatorname{sh} \theta(v-a) \cos 2(v-a)]$
- $(\theta \operatorname{ch} \ell \theta \sin 2\ell + 2 \operatorname{sh} \ell \theta \cos 2\ell) [\theta \operatorname{ch} \theta (v-a) \sin 2(v-a) 2 \operatorname{sh} \theta (v-a) \cos 2(v-a)]$  $\cdot [\theta \operatorname{ch} \theta (t-b) \sin 2(t-b) - 2 \operatorname{sh} \theta (t-b) \cos 2(t-b)]$

in which we have replaced b-a by  $\ell$ .

The explicit representation of the biharmonic Green's function for a crescent given by formulas (37), (39), and (40) yields as limiting cases the solution of the first boundary value problem in a wedge of arbitrary angle [9], or in an infinite strip [4], or in a domain bounded by two tangent circles. For the special values  $a = -\pi/4$ ,  $b = \pi/4$  the representation reduces to the usual one for the unit circle, since the integral (39) can be evaluated in closed form when  $\ell = \pi/2$ . Another special case of particular interest is that of the semi-circle, for which a = 0,  $b = \pi/4$ . We obtain, in general, a wide variety of explicit examples for the study of the multiple-valued character of biharmonic functions near a corner of a curve along which the boundary conditions (15) hold, and consequently we can analyze the viscous flow around a corner. Finally, since equation (36) has constant coefficients, it can be solved by means of the Fourier transform in any infinite strip, and hence we can obtain the solution of the biharmonic problem in domains bounded by logarithmic spirals.

#### References

- [1] Bergman, S., "Linear operators in the theory of partial differential equations," <u>Trans. Amer. Math. Soc.</u>, vol. 53 (1943), pp. 130-155.
- [2] Duffin, R. J., "On a question of Hadamard concerning superbiharmonic functions," J. Math. Physics, vol. 27 (1949), pp. 253-258.
- [3] Garabedian, P. R. and Schiffer, M., "Variational problems in the theory of elliptic partial differential equations," J. Ratl. Mech. Anal., vol. 2 (1953), pp. 137-171.
- [4] Ghizzetti, A., "Ricerche analitiche sul problema dell' equilibrio di una piastra indefinita a forma di striscia, incastrata lungo i due lati," <u>Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl.</u>, vol. 6 (1947), pp. 145-187.
- [5] Latta, G. E., "Singular perturbation problems," Thesis, California Institute of Technology, 1951.
- [6] Lewy, H., "A theory of terminals and the reflection laws of partial differential equations," Technical Report No. 4, Stanford University, 1952.
- [7] Loewner, C., "On generation of solutions of the biharmonic equation in the plane by conformal mappings," <u>Pac. J. Math.</u>, vol. 3 (1953), pp. 417-436.
- [8] Muschelišvili, N., "Sur la solution du problème biharmonique pour l'aire extérieure à une ellipse," <u>Math. Zeit.</u>, vol. 26 (1927), pp. 700-705.
- [9] Tranter, C. J., "The use of the Mellin transform in finding the stress distribution in an infinite wedge," Quart. J. Mech. Appl. Math., vol. 1 (1948), pp. 125-130.
- [10] Szegő, G., "Remark on the preceding paper of Charles Loewner," <u>Pac. J.</u>

  Math., vol. 3 (1953), pp. 437-446.

### STANFORD UNIVERSITY

Technical Reports Distribution List
Contract Nonr 225(11)
(NR-041-086)

| Chief of Naval Research Office of Naval Research Department of the Navy Washington 25, D. C. Attn: Code 432 | 5 | Office of Naval Research Department of the Navy Washington 25, D. C. Attn: Code 438 | 2  |
|-------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------|----|
| Scientific Section                                                                                          |   | Chief, Bureau of Ordnance Department of the Navy                                    | ~  |
| Office of Naval Research Department of the Navy 1000 Geary Street                                           |   | Washington 25, D. C. Attn: Re3d Re6a                                                | 1  |
| San Francisco 9, California<br>Attn: Dr. J. D. Wilkes                                                       | 2 | Chief, Bureau of Aeronautics Department of the Navy                                 |    |
| Director, Naval Research Lab. Washington 25, D. C.                                                          |   | Washington 25, D. C.                                                                | 1  |
| Attn: Technical Information Officer                                                                         | 9 | Chief, Bureau of Ships Asst. Chief for Research & Development                       |    |
| Dr. Edward Paulson<br>Head, Statistics Branch<br>Office of Naval Research                                   |   | Department of the Navy<br>Washington 25, D. C.                                      | 1  |
| Mashington 25, D. C. Attn: Code 433                                                                         | 1 | Director, OMR Branch Office 495 Summer Street                                       |    |
| Planning Research Division                                                                                  | - | Boston 10, Mass.                                                                    | 1  |
| Deputy Chief of Staff<br>Comptroller, U. S. A. F.<br>The Pentagon                                           |   | Director, ONR<br>Branch Office<br>844 N. Rush Street                                |    |
| Washington 25, D. C. Headquarters, U. S. A. F.                                                              | 1 | Chicago 11, Illinois Director, ONR                                                  | 1  |
| Director of Research and Development                                                                        |   | Branch Office<br>346 Broadway                                                       |    |
| Washington 25, D. C. Chairman                                                                               | 1 | New York, 13, N. Y. Director, ONR                                                   | 1  |
| Research and Development Board The Pentagon                                                                 |   | Branch Office<br>1030 E. Green St.                                                  | ,  |
| Washington 25, D. C. Asst. Chief of Staff, G-4                                                              | 1 | Pasadena 1, California Office of the Asst. Naval                                    | 1  |
| for Research and Development U. S. Army                                                                     | 1 | Attaché for Research<br>Navel Attaché<br>American Embassy                           |    |
| Washington 25, D. C. Chief of Naval Operations                                                              | 1 | Navy No. 100<br>Fleet Fost Office                                                   |    |
| Operations Evaluation Group-<br>OP342E                                                                      |   | New York, N. Y.                                                                     | 10 |
| The Pentagon<br>Washington 25, D. C.                                                                        | 1 |                                                                                     |    |

| Commander, USNOTS            |         | Statistical Laboratory         |             |
|------------------------------|---------|--------------------------------|-------------|
| Pasadena Annex               |         | Dept. of Mathematics           |             |
| 3202 E. Foothill Boulevard   |         | University of California       |             |
| Pasadena 8, California       |         | Berkeley 4, California         | 1           |
| Attn: Technical Library      | 1       | • .,                           |             |
|                              | -       | Hydrodynamics Laboratory       |             |
| Office of Ordnance Research  |         | California Inst. of Technology | •           |
| Duke University              |         | 1201 East California St.       |             |
| 2127 Myrtle Drive            |         | Pasadena 4, California         |             |
|                              | -       | Attn: Executive Committee      | 1           |
| Durham, North Carolina       | 1       | TCOM. MACCIOIAA ACIMILO AGA    | -           |
| Commanding Officer           |         | Commanding Officer             |             |
| Ballistic Research Laborator | ŧ٧      | Naval Ordnance Laboratory      |             |
| Aberdeen Proving Grounds     | •       | White Oak, Silver Spring 19, M | <b>l</b> d. |
| Aberdeen, Maryland           |         | Attn: Technical Library        | i           |
|                              | ,       | atomcommical biblary           | -           |
| Attn: Mr. R. H. Kent         | 1       | Amor Association 7 Tahasatama  |             |
| Die Frank Branch Branch      |         | Ames Aeronautical Laboratory   |             |
| Director, David Taylor Model | . Basin | Moffett Field                  |             |
| Washington 25, D. C.         |         | Mountain View, California      | _           |
| Attn: L Landweber            | 1       | Attn: Technical Librarian      | 1,          |
| P. Eisenberg                 | 1       | 5 2 5 m                        |             |
| Hydromechanics Lab.          | . 1     | Mr. Samuel I. Plotnick         |             |
| Technical Library            | 1       | Asst. to the Director of Resea | rch         |
| 2                            |         | The George Washington Universi | Lty         |
| Director, National Bureau of | •       | Research Laboratory            |             |
| Standards                    | -       | Area B, Camp Detrick           |             |
| Washington, D. C.            |         | Frederick, Maryland            | 1           |
| Attn: Natl. Hydraulics La    | b. 1    |                                | _           |
| atom Matt. Mydraulics 24     | . I     | Machematics Library            |             |
| Commanding Command           |         | Syracuse University            |             |
| Commanding General           |         |                                | 1           |
| U. S. Proving Grounds        | -       | Syracuse 10, N. Y.             | 1           |
| Aberdeen, Maryland           | 1       | II /                           |             |
|                              |         | University of Southern Califor | mla         |
| Commander                    |         | University Library             |             |
| U. S. Naval Ordnance Test St |         | 3518 University Avenue         | _           |
| Inyokern, China Lake, Calif. | . 1     | Los Angeles 7, California      | 1           |
| N A C A                      |         | Library                        |             |
| N. A. C. A.                  |         |                                | . 1         |
| 1724 F St., N.W.             |         | California Institute of Techno | ı<br>o rokî |
| Washington 25, D. C.         |         | Pasadena 4, California         | 1           |
| Attn: Chief, Office of Ac    |         |                                |             |
| nautical Intelligen          | ice l   | Engineering Societies Library  |             |
|                              |         | 29 W. 39th Street              |             |
| Hydrodynamics Laboratory     |         | New York, N. Y.                | 1           |
| National Research Laboratory | r       |                                |             |
| Ottawa, Camada               | 1       | John Crerar Library            |             |
| ,                            | _       | Chicago 1, Illinois            | 1           |
| Director                     |         | -                              |             |
| Penn. State School of Engine | ering   | National Bureau of Standards   |             |
| Ordnance Research Laboratory |         | Library                        |             |
|                              | 1       | 3rd Floor North West Building  |             |
| State College, Pa.           | 1       | Washington 25, D. C.           | 1           |
|                              |         | "GULLING VOIL TO J O T O T O   | 4           |

| Library                                  | Dr. E. P. Cooper                      |
|------------------------------------------|---------------------------------------|
| Mass. Inst. of Technology                | U. S. Naval Shipyard                  |
| Cambridge 39, Mass.                      | U. S. Navy Radiological Defense       |
| -                                        | Leboratory                            |
| Louisiana State University Library       |                                       |
| University Station                       | *                                     |
| Baton Rouge 3, La.                       | Prof. R. Courant                      |
| • ***                                    | Inst. for Mathematics & Mechanics     |
| Library                                  | New York University                   |
| Fisk University                          | New York 3, N. Y.                     |
| Nashville, Tennessee 1                   | D 4 0                                 |
| N T N3 033                               | Dr. A. Craya                          |
| Mrs. J. Henley Crosland                  | Dept. of Aeronautical Engineering     |
| Director of Libraries                    | Columbia University                   |
| Georgia Institute of Technology          | New York. 27, N. Y.                   |
| Atlanta, Georgia 1                       | D. Y C W D                            |
| Tibmomion                                | Dr. K. S. M. Davidson                 |
| Librarian                                | Experimental Towing Tank              |
| G-16, Littauer Center Harvard University | Stevens Inst. of Technology           |
| •                                        | 711 Hudson Street<br>Hoboken, N. J. 1 |
| Cambridge 38, Mass. 1                    | Hoboken, N. J. 1                      |
| Prof. L. V. Ahlfors                      | Prof. R. J. Duffin                    |
| Dept. of Mathematics                     | Dept. of Mathematics                  |
| Harvard University                       | Carnegie Inst. of Technology          |
|                                          | Pittsburgh 13, Pa. 1                  |
| 2                                        | -10000ttgt 19, -u.                    |
| Prof. Peter G Bergmann                   | Dr. Carl Eckart                       |
| Dept. of Physics                         | Scripps Inst. of Oceanography         |
| Syracuse University                      | La Jolla, California 1                |
| Syracuse 10, N. Y.                       |                                       |
|                                          | Prof. A. Erdélyi                      |
| Pro. G. Birkhoff                         | Dept. of Mathematics                  |
| Dept. of Mathematics                     | California Institute of Technology    |
| Harvard University                       | Pasadena 4, California 1              |
| Cambridge 38, Mass.                      |                                       |
|                                          | Prof. K. O. Friedrichs                |
| Prof. H. Busemann                        | Inst. for Mathematics & Mechanics     |
| Dept. of Mathematics                     | New York University                   |
| University of So. California             | New York 3, N. Y.                     |
| Los Angeles 7, California 1              |                                       |
| D                                        | Prof. D. Gilbarg                      |
| Dr. F. H. Clauser                        | Grad. Inst. for Applied Mathematics   |
| Dept. of Aerona cical Engineering        |                                       |
| Johns Hopkins University                 | Bloomington, Indiana 1                |
| Baltimore 18, Maryland 1                 |                                       |
| D- 1/414cm Clauses                       | Prof. A. T. Ippen                     |
| Dr. Milton Clauser                       | Dept. of Civil and Sanitary           |
| Dept. of Aeronautical Engineering        |                                       |
| Purdue University                        | Mass. Inst. of Technology             |
| Lafavette, Indiana 1                     | Cambridge 39. Mass. 1                 |

| Prof. Samuel Karlin Dept. of Mathematics Calif. Inst of Technology |     | Prof. Z. Nehari Dept. of Mathematics Washington University |    |
|--------------------------------------------------------------------|-----|------------------------------------------------------------|----|
| Pasadena 4, California                                             | 1   | St. Louis, Mo.                                             | 1  |
| Prof. J. R. Kline                                                  |     | Dr. M. S. Plesset                                          |    |
| Dept. of Mathematics                                               |     | California Inst. of Technology                             |    |
| University of Pennsylvania                                         |     | Pasadena 4, California                                     | 1  |
| Philadelphia 4, Pa.                                                | 1   | -abdaona 4, -allioinia                                     | -  |
| Initadorphia 4, 1a.                                                | 1   | Prof. W. Prager                                            |    |
| Dr. R. T. Knapp                                                    |     | Dept. of Mathematics                                       |    |
| Hydrodynamics Laboratory                                           |     | Brown University                                           |    |
| California Inst. of Technology                                     |     | Providence, 12, R. I.                                      | 1  |
|                                                                    | 1   | -10v1udice, 12, 11. 21                                     | -  |
| Pasadena 4, California                                             | 1   | Prof. P. C. Rosenbloom                                     |    |
| Prof. B. A. Tamanatana                                             |     | Dept. of Mathematics                                       |    |
| Prof. P. A. Lagerstrom                                             |     | University of Minnesota                                    |    |
| Aeronautics Dept.                                                  |     | Minneapolis 14, Minn.                                      | 1  |
| California Inst. of Technology                                     | •   | minneapoils in, minn.                                      |    |
| Pasadena 4, California                                             | 1 4 | Dr. H. Rouse                                               |    |
| Dec. March Las. Toronto.                                           |     | State Inst. of Hydraulic Resear                            | ah |
| Dr. Martin Lessen                                                  |     |                                                            | СП |
| Aeronautical Engineering Dept.                                     |     | University of Iowa                                         | ,  |
| Penn. State College                                                | _   | Iowa City, Lowa                                            | 1  |
| State College, Pa.                                                 | 1   | David Ohandan Salkana                                      |    |
| - · · · · · · · · · · · · · · · · · · ·                            |     | Prof. Charles Saltzer                                      |    |
| Prof. H. G. Lew                                                    |     | Case Institute of Technology                               | -  |
| Dept. of Aeronautical Engineeri                                    | ng  | Cleveland, Chio                                            | 1  |
| Penn. State College                                                | 7.5 | P                                                          |    |
| State College, Pa.                                                 | 1   | Prof. A. C. Schaeffer                                      |    |
|                                                                    |     | Dept. of Mathematics                                       |    |
| Prof. Hans Lewy                                                    |     | University of Wisconsin                                    | _  |
| Dept. of Mathematics                                               |     | Madison 6, Wisconsin                                       | 1  |
| University of California                                           |     |                                                            |    |
| Berkeley, California                                               | 1   | Prof. L. I. Schiff                                         |    |
|                                                                    |     | Dept. of Physics                                           |    |
| Prof. C. C. Lin                                                    |     | Stanford University                                        |    |
| Dept. of Mathematics                                               |     | Stanford, California                                       | 1  |
| <u>M</u> ass. Inst. of Technology                                  |     |                                                            |    |
| Cambridge 39, Mass.                                                | 1   | Prof. W. Sears                                             |    |
|                                                                    |     | Grad. School of Aeronautical                               |    |
| Prof. W. T. Martin                                                 |     | Engineering                                                |    |
| Dept. of Mathematics                                               |     | Cornell University                                         |    |
| Mass. Inst. of Technology                                          |     | Ithaca, N. Y.                                              | 1  |
| Cambridge 39, Mass.                                                | 1   |                                                            |    |
| -                                                                  |     | Prof. Herbert Solomon                                      |    |
| Dean Paul E. Mohn                                                  |     | Teachers College                                           |    |
| School of Engineering                                              |     | Columbia University                                        |    |
| The University of Buffalo                                          |     | New York 27, N. Y.                                         | 1  |
| Buffalo, N. Y.                                                     | 1   |                                                            |    |
| ,                                                                  |     | Prof. D. Spencer                                           |    |
| Prof. C. B. Morrey                                                 |     | Fine Hall, Box 708                                         |    |
| Dept. of Mathematics                                               |     | Princeton, N J.                                            | 1  |
| University of California                                           |     | •                                                          |    |
| Bonkolom / California                                              | 7   |                                                            |    |

| Prof. J. J. Stoker               |         | Navy Department                                     |    |
|----------------------------------|---------|-----------------------------------------------------|----|
| Inst. for Mathematics & Mechanic | 28      | Naval Ordnance Test Station                         |    |
| New York University              |         | Underwater Ordnance Dept.                           |    |
| New York 3, N. Y.                | 1       | Pasadena, California<br>Attn: Dr. G. V. Schliestett |    |
| Dr. V. L. Streeter               |         |                                                     | 7  |
| Fundamental Mechanics Research   |         | <b>Code P8001</b>                                   | 1  |
|                                  |         | ACMTA W                                             |    |
| Illinois Inst. of Technology     | ,       | ASTIA, Western Regional Office                      |    |
| Chicago 16, Illinois             | 1       | 5504 Hollywood Blvd.                                | _  |
|                                  |         | Hollywood 28, California                            | 1  |
| Prof. C. Truesdell               |         |                                                     |    |
| Grad. Inst. for Applied Mathema  | tics    | Armed Services Technical                            |    |
| Indiana University               |         | Information Agency                                  |    |
| Bloomington, Indiana             | 1       | Documents Service Center                            |    |
|                                  |         | Knott Building                                      |    |
| Prof. Joseph Ullman              |         | Dayton 2, Ohio                                      | 5  |
| Dept. of Mathematics             |         | •                                                   |    |
| University of Michigan           |         | Mr. R. T. Jones                                     |    |
| Ann Arbor, Michigan              | 1       | Ames Aeronautical Laboratory                        |    |
|                                  | -       | Moffett Field                                       |    |
| Prof. J. K. Vennard              |         | Mountain View, California                           | 1  |
| Dept of Civil Engineering        |         | -oundain view, odilioinia                           | _  |
| Stanford University              |         | Wm T D Planner                                      |    |
|                                  | 1       | Mr. J. D. Pierson                                   |    |
| Stanford, California             | -       | Glenn L. Martin Company                             |    |
| 9 A W 11 714                     |         | Middle River                                        | _  |
| Prof. Martin Vitousek            |         | Baltimore, Maryland                                 | 1  |
| University of Hawaii             | _       |                                                     |    |
| Honolulu 11, Hawaii              | 1       | Mr. E. G. Straut                                    |    |
|                                  |         | Consolidated-Vultee Aircraft                        |    |
| Prof. S. E. Warschawski          |         | Corporation                                         |    |
| Dept. of Mathematics             | 2       | Hydrodynamics Research Lab.                         |    |
| University of Minnesota          |         | San Diego, California                               | 1  |
| Minneapolis 14, Minn.            | 1       | -                                                   | /  |
|                                  |         | Dr. George E. Forsythe                              | ,  |
| Prof. A. Weinstein               |         | National Bureau of Standards                        |    |
| Inst. for Fluid Dynamics &       |         | Institute for Numerical Analysis                    |    |
| Applied Mathematics              |         | University of California                            |    |
| University of Maryland           |         | 405 Hilgard Avenue                                  |    |
| College Park, Maryland           | 1       | Los Angeles 24, California                          | 1  |
| vollogo rain, mary rain-         | _       | -00 angeles 24, valifornia                          | _  |
| Prof. A. Zygmund                 |         | Additional copies for project                       |    |
| Dept. of Mathematics             |         | leader and assistants and re-                       |    |
| The University of Chicago        |         |                                                     | 50 |
| Chicago 37, Illinois             | 1       | serve for infine reduttements                       | ,0 |
| onleago 37, lilinois             | •       |                                                     |    |
| Nothersting Dont                 |         |                                                     |    |
| Mathematics Dept.                |         |                                                     |    |
| University of Colorado           | 1       |                                                     |    |
| Boulder, Colorado                | _       |                                                     |    |
| Y 4 Y W 4 194-9-4 A              | ) C C L |                                                     |    |
| Los Angeles Engineering Field C  |         | •                                                   |    |
| Air Research and Development Co  | ршмаца  |                                                     |    |
| 5504 Hollywood Boulevard         |         |                                                     |    |
| Los Angeles 28, California       | •       |                                                     |    |
| Attn: Capt. N. E. Nelson         | 1       |                                                     |    |