Hamburg University

Optimization

Notes

Department of Mathematics, Hamburg University, Bundesstrasse 55, 20146, Hamburg, Germany

Abstract:

Keywords: Optimization● Convexity

Introduction

0.1. Definitions

0.2. Useful lemmas and Theorems.

Lemma 0.1.

Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ possesses a weakly convergent subsequence.

Lemma 0.2

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ converges if and only if it is bounded and possesses at most one weak sequential cluster point.

Theorem 0.1.

Let $f: H \to (\infty, \infty]$ be a convex functional on a Hilbert space. Then the following are equivalent:

- $(i)\ f\ is\ weakly\ sequentially\ lower\ semicontinuous.$
- (ii) f is sequentially lower semicontinuous.
- (iii) f is lower semicontinuous.
- (iv) f is weakly lower semicontinuous.

Lemma 0.3.

A convex set is closed if and only if it is weakly closed.

1. Lecture 1

2. Lecture 2

2.1. Convexity

Definition 2.1.

Let U be linear space. A functional $J: U \to \overline{\mathbb{R}}$ is called convex, if for $t \in [0,1]$ and $u_1, u_2 \in U$.

$$J(tu_1 + (1-t)u_2) \le tJ(u_1) + (1-t)J(u_2) \tag{1}$$

holds such that the right hand sid is well defined.

- J is strictly convex if (1) holds strictly for $\forall u_1, u_2 \in U, u_1 \neq u_2 \text{ and } t \in (0,1) \text{ with } J(u_1) < \infty \text{ and } J(u_2) < \infty.$
- An optimization problem,

$$\min_{u \in C} J(u)$$

is called convex if both C and J are convex.

Lemma 2.1.

If C and V are convex in U, then

- $\alpha V = \{w = \alpha v, v \in C\}$ is convex.
- C + V is convex.

Proof.

Lemma 2.2.

Let V be a collection of convex sets in U, then $C = \bigcap_{K \in V} K$ is convex.

Proof. If $C = \emptyset$, then C the statement is vacuously true. Consider $C \neq \emptyset$ and $u_1, u_2 \in C$ then $u_1, u_2 \in K$ for all $K \in V$

$$\implies tu_1 + (1-t)u_2 \in K, \quad \forall K \in V \implies tu_1 + (1-t)u_2 \in \bigcap_{K \in V} K$$

Lemma 2.3.

Let $C \in U$ convex and $J: C \to \mathbb{R}$. Define $\alpha = \inf_{u \in C} J(u)$. Then the set $\Psi = u|J(u) = \alpha$ is convex, i.e. the solution of

$$\min_{u \in C} J(u)$$

is a convex set.

Proof. Let $u_1, u_2 \in \Psi$ and $u_t = tu_1 + (1-t)u_2$. Sinc J is convex, it holds that $J(u_t) \leq tJ(u_t) + (1-t)J(u_t) = \alpha$. Thus $J(u_t) = \alpha$, $\forall t \in [0, 1]$. Implying $u_t \in \Psi$ Hence Ψ is convex.

Lemma 2.4.

Let U be linear normed space, and $C \subset U$ a convex set and $J: U \to \overline{\mathbb{R}}$ convex functional. Let $\overline{u} \in C$ such that

$$J(\overline{u}) \le J(u) \quad \forall u \in B_{\epsilon}(\overline{u}) \cap C,$$

for some ball $B_{\epsilon}(\overline{u})$ in U with center in \overline{u} . Then $J(\overline{u}) = \inf_{u \in C} J(u)$. In other words, the local minimizer of a convex optimization problem is also a global minimizer.

Proof. Let $B_{\epsilon}(\overline{u})$ be an open neighborhood of \overline{u} with $J(\overline{u}) \leq J(u)$ for all $u \in B_{\epsilon}(\overline{u}) \cap C$. Take an arbitrary $u^* \in C$ and consider $u_t = t\overline{u} + (1-t)u^*$. Since C is convex $u_t \in C$. For some $t \in (0,1), u_t \in B_{\epsilon}(\overline{u})$.

Thus,

$$J(\overline{u}) \le J(u_t) \le tJ(\overline{u}) + (1-t)J(u^*).$$

We have $\forall t \in [0,1]$ that $(1-t) \leq 0$, then

$$(1-t)J(\overline{u}) < (1-t)J(u^*) \qquad \forall u^* \in C$$

Therefore, \overline{u} is a local minimizer for C.

Theorem 2.1.

Let U is Banach Space, $C \subset U$ convex and $J: C \to \mathbb{R}$ Gateâux differentiable. Consider the minimization problem.

$$\min_{u \in C} J(u)$$

- 1. Let \overline{u} be a local solution. Then $J'(\overline{u}, u \overline{u}) \geq 0$, $\forall u \in C$.
- 2. If J is convex on C, then $J'(\overline{u}, u \overline{u}) \geq 0$, $\forall u \in C$ is necessary and sufficient for global optimality of \overline{u}
- 3. If J is strictly convex on C, then the minimization problem admits at most one solution.
- 4. If C is closed, and J is convex and continuous with

$$\lim_{\substack{u \in C \\ ||u|| \to \infty}} J(u) = \infty.$$

Then a global solution $\overline{u} \in C$ exists.

Proof.

1. Let \overline{u} be a local solution $J(\overline{u}) \leq J(u)$, $\forall u \in B_{\epsilon}(\overline{u}) \cap C$, let $t \in [0,1]$, $u_t = \overline{u} + t(u - \overline{u})$, then $u_t \in C$, since C is convex.

For small t > 0,

$$0 \le \frac{1}{t} \left[J(u_t) - J(u) \right] \le \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(u) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}, u - \overline{u})$$

2. Since J is convex we have for $u \in C$, $J(\overline{u} + t(u - \overline{u})) \le J(\overline{u}) + t[J(u) - J(\overline{u})]$, for t > 0

$$\implies J(u) - J(\overline{u}) \ge \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(\overline{u}) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}, u - \overline{u}) \ge 0.$$

Therefore \overline{u} is a global minimizer.

- 3. Assume, that there are two solution for the minimization problem, $\overline{u}, u^* \in C$, such that $\overline{u} \neq u^*$ and $J(\overline{u}) = J(u^*) = \inf_{u \in C} J(u)$. Since J is strictly convex $J(u_t) = J(t\overline{u} + (1-t)u^*) < tJ(\overline{u}) + (1-t)J(u^*) = \alpha$ for all $t \in [0, 1]$. Contradicting our assumption that u^* and \overline{u} are solutions.
- 4. $\alpha = \inf_{u \in C} J(u) \in \mathbb{R} \cup \{-\infty\}$, choose a minimizing sequence $(u_k)_k \subset C$ with $J(u_k) \xrightarrow{k \to \infty} \alpha$
 - $\Longrightarrow (u_k)_k$ is bounded, because $J \to \infty$ as $||u|| \to \infty$.
 - $\Longrightarrow (u_k)_k$ contains a weakly convergent subsequence $u_{k_e} \xrightarrow[e \to \infty]{} \overline{u} \in C$. Since C is closed and convex.
 - $\Longrightarrow J$ is weakly-lower semicontinuos because it is convex and continuos.

3. Lecture 3

Now consider Hilbert space (H, <.>) with $||x|| = \sqrt{(x,x)}$.

- 4. Lecture 4
- 5. Lecture 5
- 6. Lecture 6
- 7. Lecture 7
- 8. Lecture 8

Definition 8.1.

A function $\Phi: U \times Y \to \overline{\mathbb{R}}$ is said to be a perturbation function of J for the minimization problem

$$\inf_{u \in U} J(u) \tag{P}$$

if $\Phi(u,0) = J(u)$ for all $u \in U$. For each $p \in Y$, the minimization problem (Pp)

$$\inf_{u \in U} \Phi(u, p) \tag{Pp}$$

is called a perturbation problem. The variable p is called perturbation parameter. If we denote by Φ^* the convex conjugate function of Φ , the *dual problem*, with respect to Φ is defined by

$$\sup_{p^* \in Y^*} -\Phi^*(0, p^*) \tag{P*}$$

where $\Phi^*: (U \times Y)^* \cong U^* \times Y^* \to \overline{\mathbb{R}}$, a function defined as follows.

$$\Phi^* (u^*, p^*) = \sup_{\substack{u \in U \\ p \in Y}} ((u^*, u)_{U^*U} + (p^*, p)_{Y^*Y} - \Phi(u, p))$$

Remark 8.1.

For p = 0, $(P^*) \equiv (Pp)$. We denote the infimum for problem (P) by $\inf (P)$ and the supremum for problem (P^*) by $\sup (P^*)$

Lemma 8.1 (Weak duality).

For the problem (P) and (P^*) it holds that

$$-\infty \le \sup (P^*) \le \inf (P) \le \infty.$$

Proof. Let $p^* \in Y^*$. It follows

$$-\Phi^*(0, p^*) = -\sup_{\substack{u \in U \\ p \in Y}} ((0, u) + (p^*, p) - \Phi(u, p))$$
 (2)

$$= \inf_{\substack{u \in U \\ p \in Y}} (\Phi(u, p) - (p^*, p)) \tag{3}$$

$$\leq (\Phi(u,0) - (p^*,0)) \quad \forall u \in U, p^* \in Y^*$$
 (4)

$$\Longrightarrow \sup_{p^* \in Y^*} \left(-\Phi\left(0, p^*\right) \right) \le \inf_{u \in U} \Phi(u, 0) = \inf(P) \tag{5}$$

By iteration we can define, a bidual problem

$$-\sup_{u \in U} (-\Phi^*(u,0)) = \inf_{u \in U} \Phi^*(u,0)$$
 (P**)

In case the space U is reflexive then ${U^*}^* = U$.

If the perturbation function $\Phi(u, p)$ is proper, convex and weakly lower semicontinuous. Then $\Phi^{**} = \Phi$. In this case $\Phi(u, 0) = \Phi^{**}(u, 0)$ i.e $(P) \equiv (P^{**})$

Definition 8.2.

Consider the infimal value function

$$h(p^*) = \inf (Pp) = \inf_{u \in U} \Phi(u, p)$$

The problem (P) is called stable if h(0) is finite and its sub-differentiable in zero is not empty.

Theorem 8.1.

The primal problem (P) is stable if and only if the following conditions are simultaneously satisfied:

- The dual problem (P*) has a solution.
- There is no duality gap, i.e.

$$\inf(P) = \sup(P^*) \le \infty$$

Theorem 8.2 (Extremal relation).

Let $\Phi: U \times Y \to \overline{\mathbb{R}}$, be convex the following statements are equivalent:

- 1. (P) and (Pp) have solutions \overline{u} and $\overline{p^*}$ and $\inf(P) = \sup(P^*)$
- 2. $\Phi(\overline{u}, 0) + \Phi^*(0, \overline{p^*}) = 0$
- 3. $(0, \overline{p^*}) \in \partial \Phi(u, 0)$ and $(\overline{u}, 0) \in \partial \Phi^*(0, p^*)$

Proof. We proceed by parts:

- 1. (1) \Longrightarrow (2): \overline{u} solution of inf (P) and $\overline{p^*}$ solution of $\sup(P^*)$ and $\inf(P) = \sup(P^*)$. This properties implies, $\Phi(\overline{u}, 0) = \inf(P) = \sup(P^*) = -\Phi(0, \overline{p^*}) \Longrightarrow \Phi(\overline{u}, 0) + \Phi^*(0, \overline{p^*}) = 0$.
- 2. (2) \Longrightarrow (1): $-\Phi^*(0,\overline{p^*}) = \sup(P^*) \le \inf(P) = \Phi(\overline{u},0) = -\Phi^*(0,\overline{p^*}) \Longrightarrow \sup(P^*) = \inf(P)$
- 3. (2) \iff (3): $\Phi(\overline{u},0) + \Phi^*(0,\overline{p^*}) = 0 = (0,\overline{u}) + (\overline{p^*},0) = ((0,\overline{p^*}),(\overline{u},0)) \iff (0,\overline{p^*}) \in \partial\Phi(\overline{u},0) \ \forall u \in U, \forall p^* \in \partial J(u) \iff J(u) + J^*(p^*) = (p^*,u)$

Fencel duality.

Consider the functional $J: U \to \overline{\mathbb{R}}$,

$$J(u) = F(u) + G(Au)$$

with $F:U\to\overline{\mathbb{R}},$ G convex function $G:V\to\overline{\mathbb{R}}$ and $A:U\to V$ bounded and linear.

We introduce the perturbation $\Phi(u,p) = F(u) + G(Au - p)$. The dual problem is obtained with,

$$\Phi^*(0, p^*) = \sup_{\substack{u \in U \\ p \in V}} ((p^*, p) - F(u) - G(Au - p))$$

For fixed u we set q: Au - p.

$$\begin{split} \Phi^*(0,p^*) &= \sup_{u \in U} \sup_{p \in V} \left((p^*,Au - q) - F(u) - G(q) \right) \\ &= \sup_{u \in U} \sup_{p \in V} \left((A^*p^*,u) - (p^*,q) - F(u) - G(q) \right) \\ &= \sup_{u \in U} \left((p^*,Au) - F(u) \right) + \sup_{p \in V} \left((-p^*,q) - G(q) \right) \\ &= F^*(A^*p^*) + G^*(-p^*) \end{split}$$

References