Theorem 0.1. There is a functor $C \colon \mathbf{AOp} \to \mathbf{CSGrp}$.

Proof. Let Λ be an action operad. Put $C(\Lambda)(n) = \Lambda_{n+1}$. We will show that this collection of groups constitutes a crossed simplicial group by following Proposition 1.6 of [?]. The group homomorphisms into the symmetric groups are given by π of the action operad. We define $s_i : \Lambda_n \to \Lambda_{n+1}$ by

$$s_i(g) = \mu(g; e_1, \dots, e_1, e_2, e_1, \dots, e_1),$$

where e_2 is in the $\pi(g)^{-1}(i)^{th}$ input. Similarly for $d_i \colon \Lambda_n \to \Lambda_{n-1}$, using e_0 rather than e_2 .

We will describe how to think of the elements $s_i(g)$ and $d_i(g)$ in terms of the diagrams that represent their permutations under π . For example, the permutation $(0\,2)(1\,3) \in \Sigma_3$ can be drawn as follows.

The diagram representing the permutation $s_i(g)$ is given by drawing the permutation for g and adding a new string running parallel and to the right of the i^{th} output string. E.g., $s_1((0\,2)(1\,3))=(0\,3\,1\,4\,2)$ is represented by the following diagram.

Similarly the diagram representing the permutation $d_i(g)$ is given by drawing the permutation g and deleting the i^{th} output string. E.g., $d_2((0\,2)(1\,3)) = (0\,2\,1)$ is represented by the following diagram.

It is then simple to check that the simplicial identities hold for these maps. For example when i < j we require that $d_i \cdot d_j = d_{j-1} \cdot d_i$. Following the method above we see that $d_i(d_j(g))$ is obtained by first writing out the diagram representing g, deleting the j^{th} output string, and renumbering the strings above this. We then follow this by deleting the i^{th} output string and renumbering the strings above this. If instead we consider $d_{j-1}(d_i(g))$ we see that the permutation is obtained by first writing out the diagram

representing g, deleting the i^{th} output string, and renumbering the strings above this. Since we have renumbered the strings above the i^{th} output, the removal the $j-1^{th}$ output string in the resulting diagram is the same as removing the j^{th} output string as we did before. The identity follows.

We now require that these maps satisfy two further conditions as detailed in [?]. The first is that $s_i(gh) = s_i(g)s_{\pi(g)^{-1}(i)}(h)$ and similarly for the d_i . Now

$$s_i(gh) = \mu(gh; e_1, \dots, e_1, e_2, e_1, \dots, e_1)$$

with the e_2 in the $\pi(h^{-1}g^{-1})(i)^{th}$ position. Compare this with

$$s_i(g)s_{\pi(q)^{-1}(i)}(h) = \mu(g; e_1, \dots, e_1, e_2, e_1, \dots, e_2)\mu(h; e_1, \dots, e_1, e_2, e_1, \dots, e_1)$$

where the first composite has e_2 in the $\pi(g)^{-1}(i)^{th}$ position and the second has e_2 in the $\pi(h)^{-1}(\pi(g)^{-1}(i))^{th}$ position. The action operad axiom tells us that we can combine the two composites, where the element from the left composite that is multiplied with e_2 in the right composite is that which is in the $\pi(h)(\pi(h^{-1}g^{-1})(i))^{th}$ position, i.e., the e_2 from the left composite. Hence the identity is satisfied. Since it did not matter what the elements were we can repeat the argument for the d_i with e_0 in place of e_2 .

The final condition of the proposition is that the following two diagrams commute.

$$\begin{array}{cccc} [n+1] \xrightarrow{\sigma_{\pi(g)^{-1}(i)}} & [n] & [n-1] \xrightarrow{\delta_{\pi(g)^{-1}(i)}} & [n] \\ \pi(s_i(g)) & & \downarrow^{\pi(g)} & & \pi(d_i(g)) \downarrow & & \downarrow^{\pi(g)} \\ [n+1] \xrightarrow{\sigma_i} & [n] & & [n-1] \xrightarrow{\delta_i} & [n] \end{array}$$

This can easily be seen as a consequence of how $s_i(g)$ and $d_i(g)$ are described in terms of the diagrams that represent their underlying permutations. Following the bottom path of the first diagram, the elements 1 to $g^{-1}(i)$ and $g^{-1}(i) + 2$ to n + 1 are permuted according to g, while $g^{-1}(i) + 1$ is sent to i + 1. This is followed by every $k \le i$ being mapped to k, i + 1 also being mapped to i, and every i is i to i to

On morphisms we simply send a map $F: \Lambda \to \Gamma$ of action operads to the collection of morphisms $F_n: \Lambda_n \to \Gamma_n$. That these interact appropriately

with the face and degeneracy maps follows immediately from fact that F is a map of operads. To be a map of crossed simplicial groups we also require that $\pi^{\Gamma} \cdot F_n = \pi^{\Lambda}$ for all $n \in \mathbb{N}$ but this is simply part of the requirement of F being a map of action operads.