

Kobky

Robert programuje novou počítačovou hru. Ve hře vystupuje jeden hlavní hrdina, n jeho nepřátel a je tam n+1 kobek. Nepřátelé jsou očíslováni od 0 do n-1, kobky jsou označeny čísly od 0 do n. Nepřítel i ($0 \le i \le n-1$) se nachází v kobce i a má sílu s[i]. Kobka n je prázdná.

Hrdina začíná hru tím, že vstoupí do kobky x. Na začátku hry má sílu z. Kdykoliv hrdina vstoupí do některé kobky i ($0 \le i \le n-1$), utká se s nepřítelem i, což vede k jednomu z dvou možných výsledků:

- Má-li hrdina větší nebo stejnou sílu než jeho nepřítel (ten má sílu s[i]), hrdina zvítězí. Síla hrdiny se tím **zvýší** o s[i] ($s[i] \geq 1$). V tomto případě hrdina půjde příště do kobky w[i] (w[i] > i).
- V opačném případě je hrdina poražen. Síla hrdiny se tím **zvýší** o p[i] ($p[i] \ge 1$). V tomto případě hrdina půjde příště do kobky l[i].

Poznamenejme, že p[i] může být menší než, stejné, nebo větší než s[i]. Také l[i] může být menší než, stejné, nebo větší než i. Bez ohledu na výsledek souboje nepřítel zůstává v kobce i a zachovává si svoji sílu s[i].

Hra končí, když hrdina vstoupí do kobky n. Lze ukázat, že hra skončí po konečném počtu soubojů bez ohledu na to, ve které kobce a s jakou silou hrdina hru zahájí.

Robert vás požádal, abyste jeho hru otestovali provedením q simulací. Pro každou simulaci Robert určí počáteční kobku x a počáteční sílu hrdiny z. Vaším úkolem je určit pro každou simulaci, jakou sílu bude mít hrdina na konci hry.

Implementační detaily

Implementujte následující funkce:

```
void init(int n, int[] s, int[] p, int[] w, int[] l)
```

- n: počet nepřátel.
- s, p, w, l: pole délky n. Pro $0 \le i \le n-1$:
 - $\circ s[i]$ je síla nepřítele i. Je to zároveň síla získaná hrdinou po vítězství nad nepřítelem i.
 - $\circ p[i]$ je síla získaná hrdinou po porážce od nepřítele i.
 - w[i] je číslo kobky, kam půjde hrdina po vítězství nad nepřítelem i.
 - l[i] je číslo kobky, kam půjde hrdina po porážce od nepřítele i.
- Tato funkce je volána právě jednou, před všemi voláními funkce simulate (viz níže).

- x: číslo kobky, kam hrdina vstupuje na začátku hry.
- z: hrdinova počáteční síla.
- Tato funkce vrátí sílu hrdiny po skončení hry, pokud hrdina zahájil hru vstupem do kobky x s počáteční silou z.
- Funkce bude zavolána přesně q krát.

Příklad

Uvažujme následující volání:

Diagram znázorňuje situaci po tomto volání. Každý čtvereček představuje jednu kobku. Pro kobky 0, 1 a 2 jsou uvnitř čtverečků uvedeny jejich hodnoty s[i] a p[i]. Fialové šipky ukazují, kam půjde hrdina po vítězném souboji, zatímco černé šipky ukazují, kam půjde v případě porážky.

Nechť vyhodnocovač zavolá simulate (0, 1).

Hra bude probíhat takto:

Kobka	Síla hrdiny před soubojem	Výsledek
0	1	Porážka
1	4	Porážka
0	5	Vítězství
2	7	Porážka
1	9	Vítězství
2	15	Vítězství
3	24	Konec hry

Funkce vrátí výslednou hodnotu 24.

Nechť vyhodnocovač zavolá simulate (2, 3).

Hra bude probíhat takto:

Kobka	Síla hrdiny před soubojem	Výsledek
2	3	Porážka
1	5	Porážka
0	6	Vítězství
2	8	Porážka
1	10	Vítězství
2	16	Vítězství
3	25	Konec hry

Funkce vrátí výslednou hodnotu 25.

Omezení

- $1 \le n \le 400\ 000$
- $1 \le q \le 50\ 000$
- $1 \leq s[i], p[i] \leq 10^7$ (pro všechna $0 \leq i \leq n-1$)
- $0 \le l[i], w[i] \le n$ (pro všechna $0 \le i \le n-1$)
- w[i] > i (pro všechna $0 \le i \le n-1$)
- $0 \le x \le n-1$
- $1 < z < 10^7$

Podúlohy

- 1. (11 bodů) $n \leq 50~000$, $q \leq 100$, $s[i], p[i] \leq 10~000$ (pro všechna $0 \leq i \leq n-1$)
- 2. (26 bodů) s[i] = p[i] (pro všechna $0 \le i \le n-1$)
- 3. (13 bodů) $n \leq 50~000$, všichni nepřátelé mají stejnou sílu, neboli s[i] = s[j] pro všechna $0 \leq i, j \leq n-1$.
- 4. (12 bodů) $n \leq 50~000$, mezi hodnotami $\,s[i]\,$ se nachází nejvýše $\,5\,$ různých hodnot.
- 5. (27 bodů) $n \leq 50~000$
- 6. (11 bodů) Žádná další omezení.

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím tvaru:

- řádek 1: n q
- řádek 2: s[0] s[1] \ldots s[n-1]
- řádek 3: p[0] p[1] ... p[n-1]

- řádek 4: w[0] w[1] \dots w[n-1]
- řádek 5: l[0] l[1] \dots l[n-1]
- řádek 6+i ($0 \le i \le q-1$): x z pro i-té volání funkce simulate.

Výsledek vypisuje ve tvaru:

- řádek 1+i ($0 \leq i \leq q-1$): výsledná hodnota i-tého volání funkce ${\tt simulate}.$