Math 227 – Review for Final Exam: Problems from past exams (or similar to such problems)

Problem 1. Let A be a subset of a vector space. Prove that span(A) is the smallest subspace containing A.

Problem 2. (I) Each of the following examples gives a linear map f from a vector space V_1 to another vector space V_2 , where V_1 and V_2 are vector spaces over the same field \mathbb{F} . In addition, each of these linear maps is either onto or 1-1 or both. Determine which properties each of the following linear maps possesses (and justify your answer).

(a) The linear map $f: \mathbb{Z}_7^3 \to \mathbb{Z}_7^3$ given by

$$\bar{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{Z}_7^3 \quad \mapsto \quad f(\bar{x}) := \begin{pmatrix} 6 & 0 & 3 \\ 2 & 2 & 5 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{Z}_7^3.$$

(b) The trace operator from $\mathbb{Z}_5^{4\times4}$ to \mathbb{Z}_5 , defined by

$$A = (a_{ij})_{1 \leqslant i, j \leqslant 4} \in \mathbb{Z}_5^{4 \times 4} \quad \mapsto \quad \operatorname{tr}(A) := \sum_{i=1}^4 a_{ii}.$$

(c) The linear map $f: \mathbb{C}^m \to \mathbb{C}^n$ given by

$$\bar{w} \in \mathbb{C}^m \quad \mapsto \quad f(\bar{w}) := \begin{pmatrix} \sqrt{2} & 1-i \\ \frac{3}{4} & \frac{3e}{e} \end{pmatrix} \bar{w} \in \mathbb{C}^n$$

(determine also the values of m and n here).

(d) The operator $T:\mathbb{R}^{\mathbb{N}}\to\mathbb{R}^{\mathbb{N}}$ which we call the "left shift" and is defined by

$$(x_n)_{n\in\mathbb{N}} = (x_1, x_2, x_3, x_4, \dots) \in \mathbb{R}^{\mathbb{N}} \mapsto T((x_1, x_2, x_3, x_4, \dots)) := (x_2, x_3, x_4, x_5, \dots).$$

(e) The operator $S:\mathbb{R}^{\mathbb{N}}\to\mathbb{R}^{\mathbb{N}}$ which we call the "right shift" and is defined by

$$(x_n)_{n\in\mathbb{N}} = (x_1, x_2, x_3, x_4, \dots) \in \mathbb{R}^{\mathbb{N}} \mapsto S((x_1, x_2, x_3, x_4, \dots)) := (0, x_1, x_2, x_3, x_4, \dots).$$

(f) The linear extension f from the space of real polynomials \mathcal{P} to itself of the function

$$\phi(x^{2i}) = x^{2i+1}$$
 and $\phi(x^{2i+1}) = x^{2i}$ for every $i \in \mathbb{Z}_{\geq 0}$

(observe that ϕ is indeed a function from the standard basis $\{1, x, x^2, x^3, \ldots\}$ of \mathcal{P} into \mathcal{P} , so we know that it has a unique linear extension $f: \mathcal{P} \to \mathcal{P}$ (recall the relevant theorem here); to better understand this linear extension f, consider also some specific examples of polynomials in \mathcal{P} , and determine their images under f).

(II) Under what conditions for the vector spaces V_1 and V_2 are we allowed to say that, if we already know that f is onto, then we also have that f is 1-1? Or similarly, if we already know that f is 1-1, then we also have that f is onto? (You may wish to review Main Theorem E here.)

Problem 3. Consider the operators T and S from $\mathbb{R}^{\mathbb{N}}$ to itself that were defined in the previous problem.

- (i) Show that <u>every</u> real number λ is an eigenvalue of the left shift T, and for each such λ find an eigenvector of T corresponding to λ .
- (ii) Show that the right shift S has $\underline{\mathbf{no}}$ eigenvalues.
- (iii) If Id is the identity operator on $\mathbb{R}^{\mathbb{N}}$, show that $T \circ S = \text{Id but } S \circ T \neq \text{Id.}$

Problem 4. Let $Q: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ be given by

$$(x_n)_{n\in\mathbb{N}} = (x_1, x_2, x_3, x_4, x_5 \dots) \in \mathbb{R}^{\mathbb{N}}$$

 $\mapsto Q((x_1, x_2, x_3, x_4, x_5, \dots)) = (2x_1, 0, 2x_3, 0, 2x_5, 0, \dots).$

Show that Q is linear. Is Q onto? One-to-one? Find Ker(Q) and Range(Q). Identify all the eigenvalues of Q and the eigenspaces corresponding to them.

Problem 5. Let A be a 5×3 matrix with entries from a field \mathbb{F} , and let B be the 3×3 matrix made up of the first three rows of A. Show that, if det $B \neq 0$, then the columns of A are \mathbb{F} -linearly independent.

Problem 6. Find a 2×2 real matrix with eigenvalues $1 \pm 2i$. (Partial credit will be given for a *complex* matrix.)

Problem 7. Let A be a matrix in $\mathbb{C}^{4\times 4}$ which has **only real** entries, and suppose that $\frac{4}{5} + \frac{3}{5}i$ and $\frac{3}{5} + \frac{4}{5}i$ are eigenvalues of A.

- (i) Show that A is diagonalisable (over \mathbb{C}) (<u>hint:</u> observe that $p_A(t)$ will be a polynomial with real coefficients (why?); but then, if $z \in \mathbb{C}$ is a root of $p_A(t)$, what can you say about the value $p_A(\bar{z})$, where \bar{z} is the conjugate of z?).
- (ii) Show that every eigenvalue λ of A^9 satisfies $|\lambda| = 1$.

Problem 8. Let \mathbb{F} be a field, let A, B be matrices in $\mathbb{F}^{n \times n}$, and suppose that A and B are similar. Prove that, for every $k \geq 2$, A^k and B^k are also similar.

Problem 9. Give the definition of an inner product space (distinguish between the real and the complex case).

Recall the following

Definitions. (I) A matrix $A \in \mathbb{R}^{n \times n}$ is called *symmetric* if $A = A^T$. (II) A matrix $B \in \mathbb{C}^{n \times n}$ is called *Hermitian* if $B = B^*$.

Alternative Terminology. A symmetric or Hermitian matrix is sometimes also called *self-adjoint*.

Problem 10. (i) Let A be a matrix in $\mathbb{R}^{n \times n}$. Show that, for all $\tilde{x}, \tilde{y} \in \mathbb{R}^n$, we have $\langle A\tilde{x}, \tilde{y} \rangle = \langle \tilde{x}, A^T \tilde{y} \rangle$ (where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^n).

- (ii) Let B be a matrix in $\mathbb{C}^{n\times n}$. Show that, for all $\tilde{v}, \tilde{w} \in \mathbb{C}^n$, we have $\langle B\tilde{v}, \tilde{w} \rangle = \langle \tilde{v}, B^*\tilde{w} \rangle$ (where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{C}^n ; be careful about how this is defined, in particular, that its definition is slightly different from that of the standard inner product on \mathbb{R}^n).
- (iii) Consider now a self-adjoint matrix $E \in \mathbb{C}^{n \times n}$. Prove that $\langle E\tilde{u}, \tilde{u} \rangle$ is a real number for every $\tilde{u} \in \mathbb{C}^n$.

Recall the following

Definition. Let $(V, \langle \cdot, \cdot, \rangle)$ be a (real or complex) inner product space, and let S be a subspace of V. We can define the *orthogonal complement* of S by

 $S^{\perp} := \{ \bar{w} \in V : \text{for every } \bar{y} \in S, \ \bar{w} \perp \bar{y} \} = \{ \bar{w} \in V : \text{for every } \bar{y} \in S, \ \langle \bar{w}, \bar{y} \rangle = 0 \}.$

Recall that you are asked in HW6, Problem 2 to prove that S^{\perp} will be a subspace of V too, and that we will have $V = S \oplus S^{\perp}$.

Problem 11. Let $V = \mathbb{R}^{4 \times 4}$.

(i) Verify that we can turn V into a real inner product space by setting

$$A, B \in \mathbb{R}^{4 \times 4} \quad \mapsto \quad \langle A, B \rangle := \operatorname{tr}(AB^T),$$

that is, verify that this is an inner product on V (you may also wish to recall HW5, Problem 1 here, where you were asked to verify a useful formula for this inner product in terms of the matrix entries).

- (ii) Let S be the subspace of **upper triangular** matrices in V which have **zero trace**. Find a basis for it, as well as a basis for S^{\perp} .
- (iii) Recall that S should be isomorphic to a vector space of the form \mathbb{R}^n for some n. Determine n here, and define a linear isomorphism from S to \mathbb{R}^n (explain also why the linear map you will define is indeed an isomorphism).

Problem 12. Let Y be the solution set of the linear system

$$\begin{cases} x_1 & -x_3 - 6x_4 = 0 \\ x_2 - x_3 & = 0 \\ x_1 - x_2 & -6x_4 = 0 \end{cases},$$

where the coefficients are taken from \mathbb{R} . Consider also the following vectors from \mathbb{R}^4 :

$$\bar{u} = \begin{pmatrix} 0\\3\\0\\-19 \end{pmatrix}, \ \bar{v} = \begin{pmatrix} 1\\2\\0\\14 \end{pmatrix}, \ \text{and} \ \bar{w} = \begin{pmatrix} 8\\6\\1\\-4 \end{pmatrix}.$$

- (a) Show that Y is a subspace of \mathbb{R}^4 .
- (b) Determine the dimensions of Y and of Y^{\perp} .
- (c) Find a basis of Y.
- (d) Find an orthonormal basis of Y, and extend it to an orthonormal basis of \mathbb{R}^4 .
- (e) Find the point of Y that is the closest to \bar{u} (that is, find the element \bar{y}_0 of Y such that $\|\bar{y}_0 \bar{u}\|$ is smallest possible among elements of Y; <u>hint:</u> recall how we can find $\|\bar{x}\|$, for any given $\bar{x} \in \mathbb{R}^4$, when we have an orthonormal basis of the space).
- (f) True or False: $[\bar{u}]_Y + [\bar{v}]_Y = [\bar{w}]_Y$ in \mathbb{R}^4/Y (justify your answer).

Problem 13. Let $f: \mathbb{R} \to \mathbb{R}$ be a function that satisfies f(1) = 1 and f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.

True or False: we necessarily have f(x) = x for every $x \in \mathbb{R}$ (justify your answer, that is, prove the statement if true, or give a counterexample if false).