实验1 SAS基础(一)

承子杰 1807402074

2.SAS库的建立与使用(自定),并将sashelp库下的数据集class存放到自己库中。

步骤: STEP1 先在C盘中建立一个文件夹

STEP2 然后再SAS界面中创建一个自己的数据库,引用路径为上面建立数据库的文件位置,我在这里给数据库起名为A。

STEP3 找到sashelp.class中的文件,右击复制,再粘贴到逻辑库A中

3.产生正态分布随机数, 计算正态分布上0.05, 0.025, 0.01分位数

<mark>分析:</mark>可以调用rannor(seed, x)函数来生成正态分布随机数,对于正态分布的分位数可以采用PROBIT(p)函数来调用。

代码与结果: 生成正态分布随机数代码如下:

```
1 data a,b;
2
   seed=2;
   do i=1 to 10;
   call rannor(seed,x);
   *采用种子为2,生存10个随机数
 6
   output ;
7
   end;
8
   run;
9
10 proc print data=a;
11
   run;
```

结果如下:

SAS 系统

观测	seed	i	х
1	2019015659	1	1.31183
2	1114108698	2	-0.66405
3	2015530869	3	0.54104
4	136114913	4	2.04198
5	285901162	5	1.43923
6	102523109	6	0.90473
7	288555560	7	0.55341
8	1276438356	8	-0.35157
9	815741553	9	-0.80223
10	972842384	10	-0.29515

生成各分位数的代码如下:

```
1 data a;
2 input x;
3 x_p=PROBIT(x);
4 *正态分布分位数函数
5 datalines;
6 0.05
7 0.025
8 0.01
9 run;
10
11 proc print data=a;
12 run;
```

结果如下:

VIEWTABLE: Work.A							
	x	х_р					
1	0.05	-1.644853627					
2	0.025	-1.959963985					
3	0.01	-2.326347874					

<mark>总结:</mark> 正态分布的0.05分位数是 -1.64,0.025的分位数为-1.96 ,0.01的分位数为 -2.33

4.产生标准正态分布表 (计算正态分布的概率)

<mark>分析:</mark>对于正态分布的概率,可以采用PROBNORM(x)函数(P(X≤x))

代码与结果:

```
1 data a;
2 do x=-4 to 4;
3 p_x=PROBNORM(x);
4 *正态分布概率计算函数
5 output;
6 end;
7 run;
8
9 proc print data=a;
10 run;
```

结果如下:

SAS 系统					
观测	x	p_x			
1	-4	0.00003			
2	-3	0.00135			
3	-2	0.02275			
4	-1	0.15866			
5	0	0.50000			
6	1	0.84134			
7	2	0.97725			
8	3	0.99865			
9	4	0.99997			

 $\frac{$ 总结:</mark>考虑到正态分布的 3σ 原则,故我们只生成了-4到4的正态分布概率。

5. SAS数据集的整理(增加、修改变量;计数变量):新建数据集,对sashelp.class中的变量进行如下操作: (1) 使变量weight值加10。 (2) 增加变量 $bmi=weight/height^2$ 。(3)统计数据集中观测个数(用累计变量的形式),计算总体重(用累加变量的形式)

<mark>分析:</mark>在2中建立的逻辑库A中新建立一个数据集result,拷贝A.class中的数据。

- 对于(1),只需直接引用weight变量,执行weight = weight + 10语句。
- 对于 (2) ,只需引入一个新变量bmi,执行bmi = weight/(height * *2)语句。
- 对于 (3) ,只需引入一个累计变量i,执行i+1语句。
- 对于(4),只需引入一个总体重变量 Sum_Weight ,执行 $Sum_Weight + weight$ 语句。

代码与结果:

```
1 data a.result;
 2 set a.class;
3 * a.result 拷贝 a.class 中的数据
4 weight=weight+10;
5
   *引用 weight 变量,并加10
6 bmi=weight/(height**2);
   *创建 bmi 变量, bmi = weight / (height ** 2)
8 format bmi 5.3;
9 *控制 bmi 格式 5个位宽,小数点后3位,整数1位
10 i+1;
11 *累加变量i,记录观测数量
12 Sum_Weight+weight;
13 *体重累加求和
14 run;
15
16 proc print data=a.result;
17
   *输出结果
18 run;
```

结果如下图:

SAS 系统

观测	Name	Sex	Age	Height	Weight	bmi	i	Sum_Weight
1	阿尔弗雷德	男	14	69.0	122.5	0.026	1	122.5
2	爱丽丝	女	13	56.5	94.0	0.029	2	216.5
3	芭芭拉	女	13	65.3	108.0	0.025	3	324.5
4	凯露	女	14	62.8	112.5	0.029	4	437.0
5	亨利	男	14	63.5	112.5	0.028	5	549.5
6	詹姆斯	男	12	57.3	93.0	0.028	6	642.5
7	简	女	12	59.8	94.5	0.026	7	737.0
8	雅妮特	女	15	62.5	122.5	0.031	8	859.5
9	杰弗瑞	男	13	62.5	94.0	0.024	9	953.5
10	约翰	男	12	59.0	109.5	0.031	10	1063.0
11	乔伊斯	女	11	51.3	60.5	0.023	11	1123.5
12	茱迪	女	14	64.3	100.0	0.024	12	1223.5
13	罗伊斯	女	12	56.3	87.0	0.027	13	1310.5
14	玛丽	女	15	66.5	122.0	0.028	14	1432.5
15	菲利普	男	16	72.0	160.0	0.031	15	1592.5
16	罗伯特	男	12	64.8	138.0	0.033	16	1730.5
17	罗纳德	男	15	67.0	143.0	0.032	17	1873.5
18	托马斯	男	11	57.5	95.0	0.029	18	1968.5
19	威廉	男	15	66.5	122.0	0.028	19	2090.5

<mark>总结:</mark>考虑到 *bmi* 为小数,故在此做了格式设定,保留了三位小数。

6.自己编程举例,使得程序中包括不同形式的条件语句、三种循环语句

<mark>分析:</mark>仍旧新建数据集,采用sashelp.class中的数据进行实验。

对于 IF 语句,我们进行如下操作,将男性的观测分别输出到数据集M中。

对于 IF-THEN 语句, 我们做如下操作, 男生的身高加10英尺, 女生的体重减10磅

对于 SELECT-WHEN-OTHERWISE 语句,我们做如下操作,年龄小于13岁的 bmi 加 0.01,年龄大于14岁的 bmi 减 0.01

最后对 DO-END , DO-WHILE-END 和 DO-UNTIL-END 单独进行试验,通过三种方法分别对100以内的整数求和。

代码与结果:

```
1 data a.m;
2 set a.class;
3 if(Sex='男');
```

```
*删选出性别为男的记录
 5
   run;
 7
   proc print data=a.m;
8
   *打印结果
9
   run;
10
11
   data a.result;
12
   set a.class;
   if(Sex='男') then
13
14
       height=height+10;
15
       *性别为男的身高加10
16
   else
17
       weight=weight-10;
18
       *性别为女的体重-10
19
   bmi=weight/(height**2);
20
   format bmi 5.3;
21
   select(age);
22
      when(11,12) bmi=bmi+0.01;
       *年龄为11,12岁的bmi+0.01
23
24
     when(15,16) bmi=bmi-0.01;
      *年龄为15,16岁的bmi-0.01
25
      otherwise bmi=bmi;
26
27
      *其余的bmi不变
28
   end;
29
30
   proc print data=a.result;
31 *打印结果
32 run;
```

结果:

男性观测如下:

SAS 系统

观测	Name	Sex	Age	Height	Weight
1	阿尔弗雷德	男	14	69.0	112.5
2	亨利	男	14	63.5	102.5
3	詹姆斯	男	12	57.3	83.0
4	杰弗瑞	男	13	62.5	84.0
5	约翰	男	12	59.0	99.5
6	菲利普	男	16	72.0	150.0
7	罗伯特	男	12	64.8	128.0
8	罗纳德	男	15	67.0	133.0
9	托马斯	男	11	57.5	85.0
10	威廉	男	15	66.5	112.0

SAS 系统

观测	Name	Sex	Age	Height	Weight	bmi
1	阿尔弗雷德	男	14	79.0	112.5	0.018
2	爱丽丝	女	13	56.5	74.0	0.023
3	芭芭拉	女	13	65.3	88.0	0.021
4	凯露	女	14	62.8	92.5	0.023
5	亨利	男	14	73.5	102.5	0.019
6	詹姆斯	男	12	67.3	83.0	0.028
7	简	女	12	59.8	74.5	0.031
8	雅妮特	女	15	62.5	102.5	0.016
9	杰弗瑞	男	13	72.5	84.0	0.016
10	约翰	男	12	69.0	99.5	0.031
11	乔伊斯	女	11	51.3	40.5	0.025
12	茱迪	女	14	64.3	80.0	0.019
13	罗伊斯	女	12	56.3	67.0	0.031
14	玛丽	女	15	66.5	102.0	0.013
15	菲利普	男	16	82.0	150.0	0.012
16	罗伯特	男	12	74.8	128.0	0.033
17	罗纳德	男	15	77.0	133.0	0.012
18	托马斯	男	11	67.5	85.0	0.029
19	威廉	男	15	76.5	112.0	0.009

求和代码如下:

```
1 data Sum;
2 sum1=0;
3 sum2=0;
4 sum3=0;
5 *初始化总和变量
6 do i=1 to 100;
7
    sum1=sum1+i;
8 end;
9
   j=0;
10 do while(j<=100);</pre>
   sum2=sum2+j;
j=j+1;
11
12
13 end;
14
   k=0;
15 do until(k>100);
16
     sum3=sum3+k;
    k=k+1;
17
18 end;
19
   drop i j k;
20
   *删除 i j k变量
21 run;
22
23
   proc print data=sum;
```

结果如下:

SAS 系统

观测	sum1	sum2	sum3
1	5050	5050	5050