Machine Learning

Marc Sebban & Amaury Habrard $$_{\rm LaHC}$$

Contents

1	Wha	at is Machine Learning?	2
2	Sup	Supervised learning problem	
	2.1	Notations	2
	2.2	Curse of dimensionality - Overfitting - Underfitting	3
	2.3	Regularized Risk Minimization	4
	2.4	Bias/Variance trade-of	4
	2.5	Statistical learning theory	4

1 What is Machine Learning?

Machine Learning aims at knowing how to make algorithms that can *learn* from data. They are divided in two category:

- Supervised learning, subdivided into
 - Classification: predict a yes/no answer
 - Regression: predict a continuous value, such as the price of a house
 - Ranking: output the "most relevant" data

The aim is to predict fro labelled data

- Unsupervised learning, subdivided into
 - Clustering
 - Dimensionality Reduction

The aim is to find the underlying structure of unlabelled data

Possible Applications Computer Vision, Robotics, Speech Recognition, Artificial Intelligence

Required Skills

- Convex Optimization
- Algorithm: Asymptotic behaviour

We will mainly use SVM (Support Vector Machine), that deals with classification problems. They use the *kernel trick*, which is projection of the data on a high-dimensional space (potentially infinite) where the data becomes linearly separable.

2 Supervised learning problem

2.1 Notations

- Let $S = \{z_i = (\mathbf{x_i}, y_i)\}_{i=1}^m$ be a set of m training examples i.i.d. from an unknown joint distribution $\mathcal{D}_{\mathcal{Z}}$ over a space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- The $\mathbf{x_i}$ values ($\mathbf{x_i} \in \mathcal{X}$) are typically vectors in \mathbb{R}^d whose components are usually called features.
- The y values $(y \in \mathcal{Y})$ are drawn from a discrete set of classes/labels (typically $\mathcal{Y} = \{-1, +1\}$ in binary classification) or are continuous values (regression)
- We assume that there exists a target function f such that $y = f(\mathbf{x}), \ \forall (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$.

Definition 1. A supervised learning algorithm L automatically outputs from S a model or a classifier (or a hypothesis) $h \in \mathcal{H}$ as close to f as possible.

2.2 Curse of dimensionality - Overfitting - Underfitting

The number of training example is very important! Sadly, as the number of features or dimension grows, the amount of data (i.e. examples necessary to learn) grows exponentially: it is the *curse of dimensionality*. To avoid this problem, we can:

- pre-process the data into a lower dimensional space
- regularize the underlying optimization problem at running time

This issue is very closed to overfitting.

Definition 2 (Overfitting). In statistics, overfitting occurs when a model is excessively complex, such as having too many degrees of freedom (e.g. polynomial of high order) with respect to the amount of data available \rightarrow use a regularization.

Definition 3 (Underfitting). Underfitting occurs when a statistical model or machine learning algorithm cannot capture the underlying trend of the data.

To pick the best hypothesis h^* , we need a criterion to assess the quality of h. Given a non-negative loss function $\updownarrow: \mathcal{H} \times \mathcal{Z} \to \mathbb{R}^+$ measuring the degree of agreement between $h(\mathbf{x})$ and y, we can define the *tree risk*.

Definition 4 (True Risk). The true risk $\mathcal{R}^{\ell}(h)$ (also called generalization error) of a hypothesis h with respect to a loss function ℓ corresponds to the expected loss suffered by h over the distribution $\mathcal{D}_{\mathcal{Z}}$.

$$\mathcal{R}^{\ell}(h) = \mathbb{E}_{\mathcal{Z} \sim \mathcal{D}_{\mathcal{Z}}} \ell(h, z)$$

Unfortunately, $\mathcal{R}^{\ell}(h)$ cannot be computed as $\mathcal{D}_{\mathcal{Z}}$ is unknown, so we try to minimise the *empirical risk* $\hat{\mathcal{R}}^{\ell}$, a statistical measure of the true risk over S.

Definition 5 (Empirical Risk). Let $S = \{z_i = (\mathbf{x_i}, y_i)\}_{i=1}^m$ be a training sample. The empirical risk $\hat{\mathcal{R}}^{\ell}$ (also called empirical error) of a hypothesis $h \in \mathcal{H}$ with respect to a loss function 'corresponds to the expected loss suffered by h on S.

$$\hat{\mathcal{R}}_{\ell}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

Definition 6 (0/1 loss). The most natural loss function for binary classification is the 0/1 loss (also called classification error)

$$\ell_{0/1}(h,z) = 1$$
 if $yh(x) < 0$ and 0 otherwise

 $\mathcal{R}^{\ell_{0/1}}$ then corresponds to the proportion of correct predictions.

Warning Due to the non convexity and non differentiability of the 0/1 loss, minimizing the empirical risk is NP-hard. For this reason, we use surrogate loss functions such that:

- Hinge loss (used in SVM): $\ell_{hinge}(h, z) = \max(0, 1 yh(x))$
- Exponential loss (used in boosting): $\ell_{exp}(h,z) = e^{-yh(x)}$
- Logistic loss (used in logistic regression): $\ell_{log}(h,z) = \ln(1+e^{-yh(x)})$

2.3 Regularized Risk Minimization

To prevent the algorithm from overfitting, a supervised learning problem often take the following regularized form:

$$\min_{h \in \mathcal{H}} \hat{\mathcal{R}}^{\ell}(h) + \lambda ||h||_{p}$$

Where λ is a constant penalizing "too complex" models, and $||.||_p$ a ℓ_p -norm over the classifier h.

Definition 7 (ℓ_p -norm). If θ is a d-dimensional vector:

$$||\theta||_p = \left(\sum_{i=1}^d |\theta_i|^p\right)^{\frac{1}{p}}$$

The ℓ_2 -norm is used to reduce the risk of overfitting (it decreases the large values of the model), and the ℓ_1 also allows the induction of sparse models - i.e. with less features (example: LASSO or ℓ_1 -SVM).

Remark Increasing θ with the ℓ_1 -norm causes more and more of the parameters θ_j to be driven to zero. The gradient on the ℓ_1 -norm is constant w.r.t. the magnitude of each vector component.

Downside The l_1 -norm is not differentiable.

2.4 Bias/Variance trade-of

There are three sources of error between $h \in \mathcal{H}$ and the target function $f \in \mathcal{F}$:

- 1. The inductive bias: nothing guarantees the equality between the target concept space \mathcal{F} and the selected class of hypotheses \mathcal{H} , even if the learner is able to provide an optimal hypothesis h^* from \mathcal{H} .
- 2. The variance: since the training set S is finite and randomly drawn from $\mathcal{D}_{\mathcal{Z}}$, the learner usually does not provide the optimal hypothesis h^* .
- 3. The presence of noise: some training examples can be mislabelled. The learner receives a training set of a "noisy" function $f_b = f + \varepsilon$.

The Bias/Variance trade-off comes from the Mean Square Error (MSE), in statistics:

Definition 8 (MSE). Let θ a theoretical parameter ($\mathcal{R}(h)$ in our case) and $\hat{\theta}$ an estimate of θ ($\hat{\mathcal{R}}(h)$ in our case). Let $B = \mathbb{E}(\theta) - \theta$ be the bias of $\hat{\theta}$ w.r.t. θ . The MSE assesses the quality of θ in terms of its variation and unbiasedness. It is the expected value of the square loss between $\hat{\theta}$ and θ .

$$MSE = \mathbb{E}_z[(\hat{\theta} - \theta)^2]$$

$$= \mathbb{E}_z[(\hat{\theta} - \mathbb{E}(\hat{\theta}) + \mathbb{E}(\hat{\theta}) - \theta)^2]$$

$$= \mathbb{E}_z[(\hat{\theta} - \mathbb{E}(\hat{\theta}) + B)^2]$$

$$= \mathbb{V}(\hat{\theta}) + B^2$$

2.5 Statistical learning theory

Definition 9 (Empirical Risk Minimization). The ERM principle rests on the fact that if h works well on the training set S it might also work well on new examples.

Definition 10 (Probably Approximately Correct (PAC) Condition). [Valiant 1984] The ERM principle is valid if the true risk of the hypothesis $h \in \mathcal{H}$ induced from S is closed to the true risk of the optimal hypothesis $h^* \in \mathcal{H}$

$$h = \arg\min_{h_i \in \mathcal{H}} \hat{\mathcal{R}}(h_i)$$
$$h^* = \arg\min_{h_i \in \mathcal{H}} \mathcal{R}(h_i)$$

Condition of validity of the ERM principle:

$$\forall \mathcal{D}_{\mathcal{Z}}, \forall \gamma \geq 1, \forall \delta \leq 1, \mathbb{P}(|\mathcal{R}(h) = \mathcal{R}(h^*)| \geq \gamma) \leq \delta$$

Definition 11 (Bayesian error). The bayesian error ϵ^* is the lowest possible error rate (or irreducible error) for any hypothesis h.

$$\epsilon^8 = \int_{x \in R_i \ s.t. \ y \neq C_i} \mathbb{P}(C_i|x)\mathbb{P}(x)dx$$

where x is an instance, y its corresponding label, R_i is the area/region that a classifier function h classifies as C_i .

Remark In many application, $\epsilon^* > 0$, and as S is finite, selecting the optimal h does not imply getting the optimal hypothesis h^* .