CENTRAAL EXAMEN NATUURKUNDE: WVO

	2024	2023 2024		2022			2021			2019		2018			2(16	20	
	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 3	tijdvak 2	tijdvak 1	tijdvak 3	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1
1	Elektrische scooter	Snelheidsrecord op de fiets $t = \frac{s}{v}:$	Fietshelm	Langlaufen in klassieke stijl	Schakeling van LED`s	lassa meten in de ruimte	Vrije worp bij basketbal $v_{y} = \left(\frac{\Delta y}{\Delta y}\right)$	Kayak-jumping $\frac{1}{2}mv^2 = mg\Delta h$	Looping $mgh = \frac{1}{2}mv^2$	Planck	Pariser Kanone	Dafne Schippers tegen Ireen Wüst $v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	Mechanische doping $E = Pt \qquad \rho = \frac{m}{V}$	Uitrijden van een auto $s = v_{\text{gem}}t$	Rookmelder $^{238}_{92}U+^{1}_{0}n \rightarrow ^{239}_{92}U$	Zonvolgsysteem $U_{\rm AB} = U_{\rm AC}$	Onderzoek naar geluid in een fles $f = \frac{1}{T}$	Gekleurde LED's $R = \frac{U_{\rm R}}{I}$
2	E = IUt	$F_{\mathrm{w},\ell} = \frac{1}{2} \rho c_{\mathrm{w}} A v^2$	$\Delta E_{\rm z} = \Delta E_{\rm k} \cdot mgh = \frac{1}{2}mv^2$	$u = \frac{F_{\rm v}}{C}$	$E = \frac{hc}{\lambda} P = UI \eta = \frac{P_{\text{licht}}}{P_{\text{elek}}}$	$F_{\text{res}} = F_{\text{R}} - F_{\text{L}} = Cu_0 - Cu_0$	$\Delta t \Big _{\text{raaklijn}}$ $W = Fs$ $E_{k} = \frac{1}{2}mv^{2} \qquad F_{\text{res}} = ma$	$F_{\text{z }} = mg \sin \alpha$ $F_{\text{res}} = F_{\text{z }} - F_{\text{w}}$ $a = \frac{\Delta v}{\Delta t}$	$F_{\rm z} = mg$ en $F_{\rm mpz} = \frac{mv^2}{r}$		$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$	$\lambda_{\max} T = k_{\mathrm{W}}$	$[\mathbf{k}] = \frac{[F]}{[v^2]} F_{\mathbf{w},\mathbf{l}} = \frac{1}{2} \rho C_{\mathbf{w}} A v^2.$	$A = \frac{\ln 2}{t_{\frac{1}{2}}}N \qquad m = N \cdot 241 \cdot \mathbf{u}$	U = IR	$v = f\lambda$	
3	$\eta = \frac{E_{ m nuttig}}{E_{ m in}}$	P = F v	$W = \Delta E_{\rm k} \qquad F_{\rm res} s = \frac{1}{2} m v^2$		$R = \frac{U}{I}$	$T = 2\pi \sqrt{\frac{m}{C}}$		$F_z = mg$			$\eta = \frac{E_{\rm k}}{E_{\rm ch}} E_{\rm ch} = r_{\rm m} m E_{\rm k} = \frac{1}{2} m v^2$		$R = \rho \frac{\ell}{A} A = \frac{1}{4}\pi d^2 I = \frac{U}{R} t = \frac{C}{I}$			$U_{\mathrm{BC}} + U_{\mathrm{LDR}_1} + U_{\mathrm{LDR}_2} = 0.$		
4		$v = \left(\frac{\Delta s}{\Delta t}\right)_{\text{raaklijn}}$		$F_{\rm w} = f_{\rm d} F_{\rm n}$.		$v_{\text{max}} = \frac{2\pi A}{T}$			$\left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}} \qquad v = \sqrt{v_x^2 + v_y^2} :$	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F = m a v = \frac{2\pi}{T}$	$A = \pi r^2$:					Cessna $F_{\rm z} = mg P = F_{\rm m} v$	$\left[V^{-\frac{1}{2}}\right]$:	$E_{\rm f} = \frac{hc}{\lambda} P_{\rm el} = UI$
5	gem	$\Sigma W = \Delta E_k E_k = \frac{1}{2} m v^2 v_{\text{gem}}$		Cappuccino	Parkeren in de ruimte mv^2 $2\pi r$									$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$ $P = Fv$	U = IR	$\frac{\left [F_{\text{lift}} \right]}{\left [\rho \right] \cdot \left [A_{\text{vleugel}} \right] \cdot \left [v \right]^2}$		Ruimtelift $m\frac{v^2}{r} = G\frac{mM}{r^2}, \qquad v = \frac{2\pi r}{T}$
6	$F_{w} = \frac{W}{S} = \frac{\Delta E_{k}}{S}.$	Goudlokje $\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$	$F_{\rm res} = F_{\rm z} - F_{\rm p}$		$\frac{F}{\text{mpz}} = \frac{ \text{ en } v =}{r}$		Qled-tv		$W_{\rm w} = E_{\rm k,in} - E_{\rm k,uit}$			$\Sigma W = \Delta E_{\mathbf{k}}$		Water uit de ruimte	X-stream	$F_{\text{lift}} = \frac{1}{2} \rho A_{\text{vleugel}} C_{\text{lift}} v^2$		$\frac{m-1}{r} - G \frac{1}{r^2} \qquad T$ $r = R_A + h$
7		$A \propto R^2$ /gebruik van $A = \pi R^2$		$ \eta = \frac{P_{\text{nuttig}}}{P_{\text{nuttig}}} $	$F_{\text{mpz}} = \frac{4\pi^2 mr}{T^2}$ $T = \frac{mM}{T}$	$P = F_{_{\mathbf{W}}} v$			$W_{ m w} = F_{ m w} s$ - Beker van Lycurgus	$T = \frac{k_{\mathrm{W}}}{\lambda_{\mathrm{max}}}$		PET samen met CLI	Gravitron	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	P = Fv		Thalliumscintigrafie	
8		$A = \frac{P_{\text{bron}}}{P = IA}$, met $A = \pi R^2$	Deuterium ${}_{1}^{2}H + {}_{1}^{1}p \rightarrow {}_{2}^{3}He$	$\rho = \frac{RA}{a}$	$F_g = G_{\frac{2}{r}}$.	CG in MRI $f = \frac{1}{-}$	$\lambda_{\mathrm{R}} = \frac{h}{-} \cdot E_{\mathrm{L}} = \frac{p^2}{-}$	AA-Batterijen		Cirkelgolf	Elektrische gitaar	$^{18}_{9}F \rightarrow ^{18}_{8}O + ^{0}_{+1}e (+v_e) (+\gamma)$	$F_{\rm z} = mg$		$Fw = k \cdot m \cdot g \cdot cos(hoek)$		$^{201}_{82}\text{Pb} \rightarrow ^{201}_{81}\text{Tl} + ^{0}_{1}\text{e} (+\nu_{e}).$	
	2 "	$4\pi r^2$ $P_{\text{mit}} = \sigma A T^4$	$\lambda = \frac{hc}{E_{\rm f}} \qquad E_n = -\frac{13,609}{n^2}$	Poollicht $\int_{2}^{\ell} GM$	$T = \frac{\kappa_{\rm W}}{\lambda_{\rm max}}$	$\sum \hat{U_i} = 0$	$\lambda_{\rm B} = \frac{1}{p} \cdot E_{\rm k} = \frac{1}{2m}$ $E_n = \frac{n^2 h^2}{8mL^2}$		$[k] = \frac{[f_{\text{res}}]}{\left[\sqrt{\frac{ne^2f}{\pi m}}\right]}$	$v = f\lambda$				$\lambda = \frac{h}{}$			$A = \frac{\ln 2}{N}$	$a = \frac{\Delta v}{\Delta A}$ $F_{\text{res}} = ma$
11	Lise Meitner			Δx	Radon in de kelder	i	$E_{\rm f} = \frac{hc}{2}$	$R = \rho \frac{l}{A} \qquad A = \frac{1}{4}\pi d^2$	$\left[\sqrt{\frac{\sigma}{\pi m}}\right]$ $n = \frac{\rho}{m} \qquad m_{\text{at}} = A \cdot u$		$m = \rho V V = \frac{1}{4}\pi d^2 \ell \ell = \frac{1}{2}\lambda$		$v = \frac{2\pi r}{T} \qquad F_{\text{mpz}} = \frac{mv^2}{r}$	$\lambda = \frac{n}{\sqrt{2\pi m k_{\rm B} T}}$	$Fw = (Fw +) k2 \cdot v^2 \text{ eindals}$		$t_{rac{1}{2}}$	Δt
1		ℓ	$V = \frac{1}{\lambda}$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$			$\mathcal{L}_{\mathrm{f}} - \lambda$ Practicum warmtestraling	$P = UI I = \frac{U}{R} P = \frac{U^2}{R}$	at		$m - pr r = \frac{1}{4 \pi a^{2}} v = \lambda f$		T T T T T T T T T T T T T T T T T T T			Sirius B als Quantumsysteem	$(1)^{\frac{d}{d}}$ $I - P_{\text{bron}}$	$h = v_{\text{gem}} t$ /liegen
	$\frac{d}{1}$		$(1)^{\frac{t}{t}}$			1 -2	$A = \frac{1}{4}\pi d^2 R = \rho \frac{\ell}{A} P = \frac{U^2}{R}$	$P = CI I = \frac{1}{R}$	$c=f\lambda$ SPECT-scan bij parkinson		$J = \overline{T}$		hc		het viriaal-theorema	$\lambda_{\max} T = k_{\mathrm{W}}$	$I = I_0 \left(\frac{1}{2}\right)^{\frac{a}{d_1}} \qquad I = \frac{P_{\rm bron}}{4\pi r^2}$ Jupiter fly-by	$x = \frac{v}{x}$
	$I = I_0 \left(\frac{1}{2}\right)^{d_{1/2}}$		$N(t) = N_0 \left(\frac{1}{2}\right)^{t_{1/2}},$ Treinwielen			$A = \frac{1}{4}\pi d_{\rm aorta}^2$ delaarsnevel	$1 + \alpha(T - T_0)$	GPS P.	${}^{123}_{52}\text{Te} + {}^{1}_{1}\text{p} \rightarrow {}^{123}_{53}\text{I} + {}^{1}_{0}\text{n}$		$U_{ m ind} \propto rac{{ m d} arPhi}{{ m d}t}$		$\Delta E = \frac{nc}{\lambda}.$	Elektrische tandenborstel	$E_{g} = -G \frac{mM}{r} \text{ en } E_{k} = \frac{1}{2} m v^{2}.$ $r = R + h$			f
	2		$[d][r_0]$	h o		$E_{\rm f} = \frac{hc}{\lambda}$ $E_n = -\frac{13,6\text{eV}}{n^2}$	$P = \sigma A T^4$	GPS $I = \frac{P_{\text{bron}}}{4\pi r^2}$	$N = N_0 \left(\frac{1}{2}\right)^{\frac{1}{t_1}}$	Alfanuclidatharania		In de zon I_1	$\Delta E = \frac{hc}{\lambda} \qquad E_n = \frac{n^2 h^2}{8mL^2}$	$F_z = mg$	$G\frac{mM}{r^2} = \frac{mv^2}{r}$	$V = N_{\rm e}d^3$	$F_{\rm g} = G \frac{mM}{r^2} \qquad F_{\rm mpz} = \frac{mv^2}{r}$	$v = \frac{x}{T}$:
	$F_{\rm mpz} = \frac{m v^2}{r}$	$P = I^2 R$ kernfusiereactor	$\gamma = \frac{[\lambda^{3}]^{3}}{[\lambda^{2}]}$	$E = \frac{nc}{\lambda}.$			$\lambda_{\max} T = k_{\mathrm{W}}.$	$P_{\text{stral}} = IA$ $\eta = \frac{r_{\text{el}}}{P_{\text{stral}}}$	$E_{\rm f} = \frac{nc}{\lambda}$	Alfanuclidetherapie $[E]$	Elektronendiffractie	$\frac{I_1}{I_2}$:	Ontspannen lopen			$L = n\frac{1}{2}\lambda$		
1.	Dualitait	${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$	$v = \lambda f \qquad f = \frac{1}{T}$		Parasailing		$\frac{I_1}{I_2} = \left(\frac{x_2}{x_1}\right)^2.$	$F_{\rm mpz} = F_{\rm G} \Rightarrow \frac{mv^2}{r} = G\frac{mM}{r^2}$			$\lambda = \frac{h}{p} = \frac{h}{mv} \qquad \frac{1}{2}mv^2 = eU$		Опторен	$v = \lambda f \qquad v = \sqrt{\frac{F}{\rho_{\ell}}}$		$E_n = n^2 \frac{h^2}{8mL^2}$	$\Delta E_k = \frac{1}{2}M(v_{j,na}^2 - v_{j,voor}^2).$	rillingen binnen oon melecuul
16	Dualiteit		$T = 2\pi \sqrt{\frac{m}{C}}$	Boomwhackers $\lambda = \frac{v}{f}$:	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	 	Om het hoekje ${}^{90}_{38}\mathrm{Sr} \rightarrow {}^{90}_{39}\mathrm{Y} + {}^{0}_{-1}\beta$	$c = \lambda f$	$D=\frac{E}{m},$		$\lambda = \frac{h}{\sqrt{2emU}}$	E = Pt	P = Fv			Protonenweegschaal $\ell = \frac{1}{2}\lambda \qquad v = \lambda f$		$f = \frac{1}{2\pi} \sqrt{\frac{C}{m}} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$
17					F_{z} = mg	$P = \sigma A T^4$ $A = 4\pi R^2$					$\Delta s = 2d \sin \alpha$.			MRI	Speeldoosje			$E_{t} = \frac{1}{2} C A^2$
18	$E_{\mathrm{f}} = \frac{h c}{\lambda}$	$E_n = -\frac{13.6}{n^2} \qquad E_f = \frac{hc}{\lambda}$			Compton $E_{\mathrm{f}} = \frac{hc}{\lambda}$ $p = \frac{h}{\lambda}$			SIRT ${}^{90}_{39}Y \rightarrow {}^{90}_{40}Zr + {}^{0}_{-1}\beta + \gamma + (\overline{\nu_e})$	Joystick met Hall-sensor $\rho = \frac{RA}{\ell}. \ A = \frac{1}{4}\pi d^2$	$E_{k} = \frac{1}{2}mv^{2} p = m\sqrt{\frac{2E_{k}}{m}} = \sqrt{2E_{k}}$ $p = mv$	$2d\sin\alpha=n\lambda.$	$E = \frac{hc}{\lambda}$	$S = \frac{v}{f}$	$hf = \gamma h B_{\text{MRI}}.$ $\Delta E = hf$	$v = \lambda f$			$\Delta E = h f_{\rm A}$
19		$\frac{H_{\delta}}{H_{\gamma}}$			$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \varphi)$	$=\frac{P}{4\pi r^2}$	$F_{\text{mpz}} = \frac{mv^2}{r} \qquad v = \frac{Bqr}{m}$			$A = \frac{\ln 2}{t_{\frac{1}{2}}}N$		Ruiken	Wijnfraude opsporen				$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	
20	-1	Echografie $ [\rho] = kg m^{-3} en [v] = m s^{-1} $	Geleidende klei	$v = \lambda f$	$\frac{[h]}{[m][c]}$	EO-satelliet $F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F_{\text{g}} = G\frac{mM}{r^2}$	$v = \frac{Bqr}{m}$	$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_1}}$							Elektronen uit metaal 'stoken'			
21			$\rho = \frac{RA}{\ell} \qquad A = \frac{1}{4}\pi d^2$	Ramsauer en Townsend	$\lambda_{\text{compton}} = \frac{h}{mc}$			$E_{\text{tot}} = nE$	$F_{\rm L} = Bqv \ {\rm en} \ F_{\rm el} = qE \ E = \frac{U}{\Delta x}$	Zonnepanelen $P = U \cdot I$	Gamma-chirurgie		$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\text{e} + ^{0}_{0}\gamma(+\nu_e)$			Inwendige bestraling ${}^{124}_{54}\mathrm{Xe} + {}^{1}_{0}\mathrm{n} \rightarrow {}^{125}_{54}\mathrm{Xe} \ (+ {}^{0}_{0}\gamma)$	Buiging bij een enkelspleet	nderzoek van bot met alcium-47
22	Latin American Tower $f = \frac{1}{T}$	$f_{\text{herhaal, max}} = \frac{1}{t_{\text{tot}}}$	$R = \rho \frac{l}{A}$.		Viool $f = \frac{1}{T}$	V /		Wortel en mango $E_{\rm f} = \frac{hc}{r}$			$E = \frac{hc}{\lambda}$		$\lambda = \frac{hc}{E_{\rm f}}$:	Energievoorziening voor een weerstation $P = UI$ $nC = It$	$T = \frac{k_{\mathrm{W}}}{\lambda_{\mathrm{max}}}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N_0 \cdot M$	$\sin \alpha = \frac{p_x}{p} \qquad \lambda = \frac{h}{p}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N \qquad m = N m_{\text{atoom}}$
25	$a_{\text{gem}} = \frac{\Delta v}{\Delta t}, v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$	$\lambda = \frac{v}{f}$	Hawkingstraling $\frac{P}{P_{\text{zon}}} = \left(\frac{M}{M_{\text{zon}}}\right)^{3,8}$	$\lambda = \frac{h}{p}$.	$v = f\lambda$	$F_{w} = \frac{1}{2}\rho c_{w}Av^{2}$ $\frac{dE_{t}}{dt} = \frac{1}{2}GmMr^{-2}$	Speciale fluit $v=f\lambda$	$E_n = n^2 \frac{h^2}{8mL^2}$			$A = \frac{\ln 2}{t_{\perp}} N m = N m_{\text{at}}$	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_1}}$	$P = UI$ $nC = It$ $E = UIt = UC \qquad E = Pt$ $P = UI$		2	$\Delta x \Delta p \ge \frac{h}{4\pi}$	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_1}}$
24	$v = f\lambda$				$f = \frac{v}{\lambda}$, $\ell = n \cdot \frac{1}{2} \lambda$ $f_{\text{grondtoon}} = \frac{v}{2\ell}$	dr		EIND EXAMEN	EIND EXAMEN	$E_{\rm f} = \frac{hc}{\lambda}$	$D = \frac{E}{m} : m = \rho V V = \frac{4}{3}\pi r^3$		\ - /				Draadbreuk	(~)
25		EIND EXAMEN	$r_{\rm s} = \frac{2GM}{c^2}$				$v = \lambda f$			EIND EXAMEN		Aardlekschakelaar (* 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	EIND EXAMEN				$R = \frac{\rho \ell}{4}$: $U = IR$	
26			C	EIND EXAMEN			EIND EXAMEN				EIND EXAMEN	$R = \rho \frac{\ell}{A} : U = IR A = \frac{1}{4}\pi d^2$ $U = IR$			EIND EXAMEN	EIND EXAMEN	A	EIND EXAMEN
77			$P = \sigma A T^4, \qquad A = 4\pi r_s^2.$															
28	EIND EXAMEN		- 5 - 12 - 17 - 17 - 17 - 17 - 17 - 17 - 17									$U_{\mathrm{ind}} \propto \frac{d\Phi}{dt}$		EIND EXAMEN			EIND EXAMEN	
70			EIND EXAMEN									a i					LIND LAANINI	
	Elektrische scooter	Snelheidsrecord op de fiets	Fietshelm		te Schakeling van LED`s Parkeren in de ruimte Radon in de kelder Parasailing	Massa meten in de ruimt	Vrije worp bij basketbal	Kayak-jumping	Looping Beker van Lycurgus	Planck Cirkelgolf	n Wüst Pariser Kanone	EIND EXAMEN	Mechanische doping	Uitrijden van een auto	Rookmelder		Onderzoek naar geluid in een fl	ekleurde LED's