

MA0301 Elementær Diskret matematikk

Øving 3

Våren 2025

Øvingen skal leveres inn digitalt på OVSYS, som én enkelt individuelt .pdf-fil. Du må gjøre et ærlig forsøk på alle oppgavene som ikke har en stjerne etter seg.

 $\fbox{1}$ La E,N,I være følgende utsagn, som vi i utgangspunktet ikke kjenner sannhetsverdien til:

E: Eva består eksamen.

I: Isak består eksamen.

N: Noora består eksamen.

La nå P, Q, R, S være følgende utsagn:

P: Hvis Eva består eksamen, består også Noora.

Q: Eva eller Isak består eksamen.

R: Hvis Isak består eksamen, består også Eva.

S: Noora eller Isak står på eksamen, men ikke begge to.

Velg de riktige påstandene under. Flere av dem kan være sanne samtidig. Du trenger ikke å forklare svarene dine.

- a)
- P er ekvivalent til $E \to N$
- $(P \wedge R) \rightarrow (I \rightarrow N)$ er sann
- \square Rer ekvivalent til $\neg I \vee E$

E-9N

- b) Kryss ut påstandene som er logiske konsekvenser av $P \wedge Q \wedge R$. **EV** I
 - Hvis Eva eller Isak står på eksamen må Noora også stå. T > N
 - $\Box\,$ Hvis Noora eller Isak står på eksamen må Eva også stå.
 - Hvis Noora eller Eva stryker, stryker også Isak. → N ∨ ¬ € ≡ ¬ I
 - Hvis Noora stryker, stryker også Isak.
- c) Anta nå at P, Q, R, S er sann. Hva kan vi konkludere?
 - **②** E er sann. **←→ ▶**
 - \square I er sann. Ev
 - Ner sann. 196

2 Fyll ut sannhetsverditabellen med de manglende sannhetsverdiene (0 eller 1).

A	B	A->B
C	0	1
O)	1
1	0	0
l)	1

A	B	C	$\neg(A \to B)$	$A \to C$	$\neg (A \to B) \land (A \to C)$
0	0	0	6	1	0
0	0	1	0	ı	0
0	1	0	0	ı	0
0	1	1	O	1	0
1	0	0)	0	0
1	0	1	1	1	1
1	1	0	0	0	ı
1	1	1	0	ı	0

 $\fbox{3}$ La P, Q, R være tre atomære formler. Vis følgende:

a)
$$P \lor (Q \land R) \not\equiv (P \lor Q) \land R$$

b)
$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

c)
$$\neg (P \land Q \land R) \equiv (\neg P) \lor (\neg Q) \lor (\neg R)$$

(Hint: Du kan bruke en enkelt sannhetsverditabell til å løse hele oppgaven)

Teori:

• 3a) viser at vimåbry oss om paranteser når vi blander bruk av \land og \lor . Når vi bare anvender \lor på utsagn kan parantesene flyttes vilkårlig rundt, altså trenger vi dem egentlig ikke. Vi sier at \lor er assosiativ. Det stemmer også at \land er assosiativ:

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

• Ekvivalensen i 3b) kalles distributivitet. Vi sier at \vee er distributiv over \wedge . Vi kan også vise at \vee er distributiv over \wedge . Altså:

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

• Du kan videreføre resonnement fra 3c) for å vise at:

$$\neg (P \lor Q \lor R) \equiv (\neg P) \land (\neg Q) \land (\neg R)$$

Generelt kan man bevise at De Morgans lov gjelder uansett hvor mange termer man har (det er 3 termer over).

- 4 La $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ være en mengde atomære formler. Husk at en tilordning på X er et valg av sannhetsverdi for hvert element i X, altså tilsvarende en funksjon fra X til $\{0, 1\}$.
 - a) Hvor mange mulige tilordninger på X finnes det?
 - b) Hvor mange tilordninger på X gjør $\neg x_1 \wedge x_6$ sann?
 - c) Hvor mange tilordninger på X gjør $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6)$ sann?
 - d) Hvor mange tilordninger på X gjør $(x_1 \wedge x_2 \wedge x_3) \rightarrow (x_4 \vee x_5 \vee x_6)$ sann? (Hint: hvor mange gjør påstanden usann?)
- a) Finn en utsagnslogisk formel som er ekvivalent med $(P \to Q) \to R$ hvor du kun anvender konnektivene $\{\lor, \neg\}$.
 - b) \bigstar Finn en utsagnslogisk formel som er ekvivalent med $(P \land Q) \to (R \land S)$ hvor du kun anvender konnektivene $\{\lor, \neg\}$.
- **6** ★ La $X = \{x_1, x_2\}$ være en mengde atomære formler. La $F = \{F_1, F_2, \dots, F_{17}\}$ være en mengde utsagnslogiske formler som kun bruker de atomære utsagnene i X. Vis at det må eksistere to ulike formler F_j og F_k i F slik at $F_j \equiv F_k$. (Hint: hvor mange måter kan en kolonne i en sannhetsverditabell med 4 rader fylles ut på?)

- a) Hvor mange mulige tilordninger på X finnes det?
- b) Hvor mange tilordninger på X gjør $\neg x_1 \wedge x_6$ sann?
- c) Hvor mange tilordninger på X gjør $(x_1 \wedge x_2 \wedge x_3) \vee (x_4 \wedge x_5 \wedge x_6)$ sann?
- d) Hvor mange tilordninger på X gjør $(x_1 \wedge x_2 \wedge x_3) \rightarrow (x_4 \vee x_5 \vee x_6)$ sann? (Hint: hvor mange gjør påstanden usann?)

a)
$$2^{G} = 64$$

b)
$$-1 \times 1, -1 \times 6$$
 $X_1 = 0, X_2 = 1$ $2^4 = 16$
c) $(x_1, x_2, x_3) = 2^3 (x_4, x_5, x_6) = 2^3 = 8$ $8 - 8 - 1 = 15$

a) Finn en utsagnslogisk formel som er ekvivalent med $(P \to Q) \to R$ hvor du kun anvender konnektivene $\{\lor, \neg\}$.