

National Technical Systems Test Report for Electromagnetic Interference (EMI) Testing of the Verify Controller with 2 Touch Writer Duos

Prepared For

SLI Compliance | 4720 Independence Street | Wheat Ridge, CO 80033

Performed By

National Technical Systems | 1736 Vista View Drive | Longmont, CO 80504-5242 | 303-776-7249 | www.nts.com

Carlie Doublin Technical Writer Eugene Devito EMI Project Engineer

Revision History

Rev.	Description	Issue Date
0	Initial Release	05/04/2022

Table of Contents

1.0	Introd	duction		4
2.0	Refer	ences		4
3.0	Produ	ict Select	ion and Description	4
	3.1		ty Classification	
4.0	Gener	ral Test F	Requirements	4
	4.1		quipment	
	4.2		rement Uncertainties	
5.0	Test I	Descriptio	ons and Results	5
	5.1		ed Emissions	
		5.1.1	Test Procedure	6
		5.1.2	Test Result	6
		5.1.3	Test Datasheets	6
		5.1.4	Test Photographs	10
		5.1.5	Test Data	13
		5.1.6	Test Equipment List	23
	5.2	Condu	cted Emissions	24
		5.2.1	Test Procedure	24
		5.2.2	Test Result	24
		5.2.3	Test Data	24
		5.2.4	Test Photographs	36
		5.2.5	Test Equipment List	38
6.0	Test I	_og		39
			List of Tables	
Table	3.0-1: Pr	oduct Ide	ntification - Equipment Under Test (EUT)	4
			nt Uncertainties	
			f Test Information & Results	
			missions Test Equipment List	
Table	5.2-1: Co	onducted 1	Emissions Test Equipment List	38

1.0 Introduction

This document presents the test procedures used and the results obtained during the performance of an Electromagnetic Interference (EMI) test program. The test program was conducted to assess the ability of the specified Equipment Under Test (EUT) to successfully satisfy the requirements listed in Section 2.0.

2.0 References

The following references listed below form a part of this document to the extent specified herein.

- Test Specification: FCC Part 15 Class B
- SLI Compliance Purchase Order(s) 20220207-01, dated 02/07/2022
- National Technical Systems (NTS) Quote(s) OP0607041, dated 02/02/2022
- ISO/IEC 17025:2017(E) General Requirements for the Competence of Testing and Calibration Laboratories, dated 11/1/2017

3.0 Product Selection and Description

SLI Compliance selected and provided the test sample(s) to be used as the Equipment Under Test. Details below:

Table 3.0-1: Product Identification - Equipment Under Test (EUT)

Item	Qty.	Name/Description	Part Number	Serial Number
1	1	Verify Controller	3006085	C2115161506
2	2	Touch Writer Duos	3006070	B1903101010
3				B2013730601

3.1 Security Classification

Non-classified

4.0 General Test Requirements

4.1 Test Equipment

The instrumentation used in the performance of these tests is periodically calibrated and standardized within manufacturer's rated accuracies and are traceable to the National Institute of Standards and Technology. The calibration procedures and practices are in accordance with ANSI/NCSL Z540-1 and ISO 17025:2017. Certification of calibration is on file subject to inspection by authorized personnel.

4.2 Measurement Uncertainties

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of CISPR and therefore no adjustment of the data for measurement uncertainty is required.

Table 4.2-1: Measurement Uncertainties

Measurement Type	Measurement Unit	Frequency Range
Conducted Emissions	dBuV or dBuA	150 kHz – 30 MHz
D - 4:-4 - 4 E1 - 44: - E:-14	JD., V /	30-1,000 MHz
Radiated Electric Field	dBuV/m	1,000-6,000 MHz

5.0 Test Descriptions and Results

Table 5.0-1: Summary of Test Information & Results

Section	Test	Specification	Test Facility	Test Date	Part #	Serial #	Test Result
5.1	Radiated Emissions	FCC Part 15 Class B	Longmont	04/13/2022 - 04/25/2022	3006085 3006070	C2115161506 B1903101010 B2013730601	Conforms
5.2	Conducted Emissions	FCC Part 15 Class B	Longmont	04/13/2022 - 04/25/2022	3006085 3006070	C2115161506 B1903101010 B2013730601	Conforms

5.1 Radiated Emissions

5.1.1 Test Procedure

FCC Part 15 Class B

5.1.2 Test Result

The Verity Controller with 2 Touch Duo Writers met the specification requirements for Radiated Emissions.

5.1.3 Test Datasheets

Radiated Emissions, FCC Part 15 (VVSG1.0 IEC 61000) SLI Compliance Project Number: PR154302 Manufacturer: Derrick Forester Customer Representative: Test Area: 10M#2 Model: Verity Controller 3006085 S/N: C2115161506 Touch Writer Duo 3006070 B1903101010 B2013730601 Standard Referenced: FCC Part 15 (V VSG1.0 IEC 61000) Class B Date: March 18, 2022 Temperature: 22°C Pressure: 837 mb Humidity: 17% Input Voltage: 120V ac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

REdoc FR0100

Radiated Emissions-Quasi-Peak Data Table 30MHz – 1GHz Vertical						
Frequency (MHz)	Amplitude (dBµV/m)	Quasi-peak Limit (dBµV/m)	Delta to Limit (dB)	EUT Azimuth (degrees)	Antenna Height (cm)	
54.79	16.7	30	-13.3	65	289	
112.09	21.4	30	-8.6	145	108	
113.65	24	30	-6	174	182	
115.13	22.9	30	-7.1	175	164	
150.83	26	30	-4	18	111	
153.58	25.8	30	-4.2	19	99	
157.56	26.5	30	-3.5	254	101	
833.26	23.4	37	-13.6	133	326	

Radiated Emissions- Peak and Average Data Table 1GHz – 10GHz Vertical

Vertical						
Frequency (MHz)	Amplitude (dBµV/m)	Peak Limit (dBμV/m)	Delta to Pk Limit (dB)	EUT Azimuth (degrees)	Antenna Heigh (cm)	
1006	41.3	73	-31.7	54	225	
1108	39.6	73	-33.4	54	135	
1200	43.6	73	-29.4	54	0	
1250	42.9	73	-30.1	54	202	
1750	47.5	73	-25.5	54	157	
1810	47.2	73	-25.8	54	157	
1870	47.7	73	-25.3	54	135	
2000	46	73	-27	54	112	
9592	51	73	-22	54	135	
Frequency (MHz)	Amplitude (dBμV/m)	Average Limit (dBµV/m)	Delta to Limit (dB)	EUT Azimuth (degrees)	Antenna Heigh (cm)	
1006	21.2	54	-32.8	234	301	
1108	23.1	54	-30.9	115	205	
1200	22	54	-32	21	170	
1250	22.3	54	-31.7	230	106	
1750	27.1	54	-26.9	147	105	
1810	27.2	54	-26.8	137	302	
1870	25.4	54	-28.6	153	131	
2000	38.7	54	-15.3	121	170	
9592	37.3	54	-16.7	105	329	

Manufacturer: SLI Compliance Project Number: PR154302 Customer Representative: Derrick Forester Test Area: 10M #2 Model: Verity Controller 3006085 SM: C2115161506 Touch Writer Duo 3006070 B1903101010 B2013730601 FCC Part 15 (VVSG1.0 IEC 61000) Class B Standard Referenced: Date: March 18, 2022 22°C Temperature: Humidity: 17% 837 mb Pressure: Input Voltage: 120Vac/60Hz Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product. Test Engineer: Mike Tidquist

REdoc FR0100

Radiated Emissions-Quasi-Peak Data Tab le 30MHz – 1GHz Horizontal							
Frequency (MHz)	Amplitude (dBµV/m)	Quasi-peak Limit (dBµV/m)	Delta to Limit (dB)	EUT Azimuth (degrees)	Antenna Heigh (cm)		
101.33	17.8	30	-12.2	250	111		
150.79	22.4	30	-7.6	104	311		
153.45	22.9	30	-7.1	274	353		
233.57	21.2	37	-15.8	29	398		
384.02	24	37	-13	1	193		
833.32	23.4	37	-13.6	113	102		
841.69	23.1	37	-13.9	100	220		
856.57	23.3	37	-13.7	118	250		

Frequency (MHz)	Amplitude (dBµV/m)	Peak Limit (dBμV/m)	Delta to Pk Limit (dB)	EUT Azimuth (degrees)	Antenna Height (cm)
1038	24.2	54	-29.8	143	101
1104	22.9	54	-31.1	127	110
1200	21.7	54	-32.3	360	132
1334	31.5	54	-22.5	93	322
1500	22.5	54	-31.5	183	114
1660	22.8	54	-31.2	105	170
1750	24.7	54	-29.3	213	131
1898	26	54	-28	93	103
1916	27.1	54	-26.9	131	105
1940	24	54	-30	34	110
2000	34.8	54	-19.2	90	200

Radiated Emissions- Peak and Average Data Table 1GHz – 10GHz Horizontal

1940	24	54	-30	34	110
2000	34.8	54	-19.2	90	200
9584	37.8	54	-16.2	60	217
Frequency (MHz)	Amplitude (dBµV/m)	Average Limit (dBµV/m)	Delta to Limit (dB)	EUT Azimuth (degrees)	Antenna Height (cm)
1038	39.2	73	-33.8	54	157
1104	39.9	73	-33.1	54	157
1200	39.5	73	-33.5	54	337
1334	43	73	-30	54	90
1500	41.5	73	-31.5	54	202
1660	45	73	-28	54	135
1750	44.5	73	-28.5	54	202
1898	48.1	73	-24.9	54	112
1916	48.2	73	-24.8	54	135
1940	45.5	73	-27.5	54	45
2000	47.5	73	-25.5	54	112
9584	51.3	73	-21.7	54	67

The highest emission measured was at 157.56 MHz, which was 3.5 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- > The "field strength" (FS) emissions level is attained by adding the received amplitude measured (RA), Antenna factor (AF), and cable factor (CF) minus the amplifier gain (AG). FS = RA + AF + CF AG. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m 28.8 dB (CF/AG) = 32.2 dBuV/m. Important Note: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- > The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

5.1.4 Test Photographs

RE 001 Front

RE 002 Right

RE 003 Back

RE 004 Left

RE 005 Front @ 3m

5.1.5 Test Data

Radiated Em	nissions			
Quasi-peak M	leasurements			
le: Horizontal	Quasi-peaks below	1 GHz		
Mike Tidquistl	EUT: Verity Controll	er w/2 Touch Write	er Duo	
4302				
: SLI Complian	ce			
Amplitude	Quasi-peak Limit	Delta to Limit	EUT Azimuth	Antenna Height
in dBμV/m	in dBμV/m	in dB	in degrees	in cm
17.8	30	-12.2	250	111
22.4	30	-7.6	104	311
22.9	30	-7.1	274	353
21.2	37	-15.8	29	398
24	37	-13	1	193
23.4	37	-13.6	113	102
23.1	37	-13.9	100	220
23.3	37	-13.7	118	250
5 Class B				
EC 61000				
Hz				
	Quasi-peak Me: Horizontal Mike Tidquist 1302 SLI Compliand Amplitude in dBµV/m 17.8 22.4 22.9 21.2 24 23.4 23.1 23.3	Mike TidquistEUT: Verity Controll 1302 SLI Compliance Amplitude Quasi-peak Limit in dBμV/m in dBμV/m 17.8 30 22.4 30 22.9 30 21.2 37 24 37 23.4 37 23.1 37 23.3 37	Quasi-peak Measurements e: Horizontal Quasi-peaks below 1 GHz Mike TidquistEUT: Verity Controller w/2 Touch Write 1302 SLI Compliance Amplitude Quasi-peak Limit Delta to Limit in dBμV/m in dB 17.8 30 -12.2 22.4 30 -7.6 22.9 30 -7.1 21.2 37 -15.8 24 37 -15.8 23.4 37 -13.6 23.1 37 -13.9 23.3 37 -13.7 5 Class B 5 Class B 5 C 61000	Quasi-peak Measurements le: Horizontal Quasi-peaks below 1 GHz Mike TidquistEUT: Verity Controller w/2 Touch Writer Duo 1302 SLI Compliance Amplitude Quasi-peak Limit Delta to Limit EUT Azimuth in dBμV/m in dBμV/m in dB in degrees 17.8 30 -12.2 250 22.4 30 -7.6 104 22.9 30 -7.1 274 21.2 37 -15.8 29 24 37 -15.8 29 24 37 -13 1 23.4 37 -13.6 113 23.1 37 -13.9 100 23.3 37 -13.7 118

2 59	Radiated Emis	ssions			
97	Quasi-peak Me	asurements			
Tab	le: Vertical Qua	asi-peaks below 1	GHz		
Operator:	Mike TidquistEl	JT: Verity Controll	er w/2 Touch Wr	iter Duo	
PR#: PR15	4302				
Customer	: SLI Compliance	9			
Frequency	Amplitude	Quasi-peak Limit	Delta to Limit	EUT Azimuth	Antenna Height
MHz	in dBµV/m	in dBμV/m	in dB	in degrees	in cm
54.79	16.7	30	-13.3	65	289
112.09	21.4	30	-8.6	145	108
113.65	24	30	-6	174	182
115.13	22.9	30	-7.1	175	164
150.83	26	30	-4	18	111
153.58	25.8	30	-4.2	19	99
157.56	26.5	30	-3.5	254	101
833.26	23.4	37	-13.6	133	326
FCC Part 1	5 Class B				
VVSG1.0 II	EC 61000				
120Vac/60	Hz				

	nissions				
Average Mea	asurements				
le: Horizontal	Averages abov	e 1 GHz			
Touch Writer	Duo				
4302					
SLI Compliand	ce				
Amplitude	Average Limit	Delta to Limit	EUT Azimuth	Antenna Height	
in dBμV/m	in dBμV/m	in dB	in degrees	in cm	
24.2	54	-29.8	143	101	
22.9	54	-31.1	127	110	
21.7	54	-32.3	360	132	
31.5	54	-22.5	93	322	
22.5	54	-31.5	183	114	
22.8	54	-31.2	105	170	
24.7	54	-29.3	213	131	
26	54	-28	93	103	
27.1	54	-26.9	131	105	
24	54	-30	34	110	
34.8	54	-19.2	90	200	
37.8	54	-16.2	60	217	
t;					
Class B					
EC 61000)					
	le: Horizontal Touch Writer 1302 SLI Compliance Amplitude in dBµV/m 24.2 22.9 21.7 31.5 22.5 22.8 24.7 26 27.1 24 34.8 37.8 t: Class B	Touch Writer Duo 1302 SLI Compliance Amplitude Average Limit in dBμV/m in dBμV/m 24.2 54 22.9 54 21.7 54 31.5 54 22.5 54 22.8 54 24.7 54 26 54 27.1 54 24 54 34.8 54 37.8 54	Touch Writer Duo 1302 SLI Compliance Amplitude Average Limit Delta to Limit in dBμV/m in dBμV/m in dB 24.2 54 -29.8 22.9 54 -31.1 21.7 54 -32.3 31.5 54 -22.5 22.5 54 -31.5 22.8 54 -31.2 24.7 54 -29.3 26 54 -28 27.1 54 -28 27.1 54 -26.9 34.8 54 -19.2 37.8 54 -16.2	Nee	Ne: Horizontal Averages above 1 GHz Touch Writer Duo 4302 SLI Compliance SLI Compliance SLI Compliance SLI Compliance SUT Azimuth Antenna Height Average Limit Delta to Limit EUT Azimuth Antenna Height Sum of the provided Height Sum of the provide

	Radiated Em	nissions				
	Average Mea	asurements				
Tab	ole: Horizontal	Averages abov	e 1 GHz			
Operator:	Touch Writer	Duo				
PR#: PR15	4302					
Customer	: SLI Complian	ce				
Frequency	Amplitude	Average Limit	Delta to Limit	EUT Azimuth	Antenna Height	
MHz	in dBμV/m	in dBμV/m	in dB	in degrees	In cm	
1038	24.2	54	-29.8	143	101	
1104	22.9	54	-31.1	127	110	
1200	21.7	54	-32.3	360	132	
1334	31.5	54	-22.5	93	322	
1500	22.5	54	-31.5	183	114	
1660	22.8	54	-31.2	105	170	
1750	24.7	54	-29.3	213	131	
1898	26	54	-28	93	103	
1916	27.1	54	-26.9	131	105	
1940	24	54	-30	34	110	
2000	34.8	54	-19.2	90	200	
9584	37.8	54	-16.2	60	217	
E <mark>nter Li</mark> mi	it;					
FCC Part 1	Class B					
(VVSG1.0	IEC 61000)					

	Radiated Em	nissions			
	Average Mea	asurements			
Ta	ble: Vertical A	verages above 1	. GHz		
Operator:	Touch Writer	Duo			
PR#: PR15	4302				
Customer	: SLI Complian	ce			
Frequency	Amplitude	Average Limit	Delta to Ave Limit	EUT Azimuth	Antenna Height
MHz	in dBμV/m	in dBμV/m	in dB	in degrees	in cm
1006	21.2	54	-32.8	234	301
1108	23.1	54	-30.9	115	205
1200	22	54	-32	21	170
1250	22.3	54	-31.7	230	106
1750	27.1	54	-26.9	147	105
1810	27.2	54	-26.8	137	302
1870	25.4	54	-28.6	153	131
2000	38.7	54	-15.3	121	170
9592	37.3	54	-16.7	105	329
Enter Limi	t:				
FCC Part 1	Class B				
(VVSG1.0	IEC 61000)				

3	Radiated Emis	sions				
-	Peak Data					
Tal	ble: Vertical Pea	k Data above 1 GI	łz			
Operator:	Touch Writer Du	uo				
PR#: PR15	4302					
Customer	: SLI Compliance					
Frequency	Amplitude	Peak Limit	Delta to Pk Limit	Average Limit	EUT Azimuth	Antenna Height
MHz	in dBμV/m	in dBμV/m	in dB	in dBμV/m	in degrees	in cm
1006	41.3	73	-31.7	54	225	300
1108	39.6	73	-33.4	54	135	201
1200	43.6	73	-29.4	54	0	201
1250	42.9	73	-30.1	54	202	101
1750	47.5	73	-25.5	54	157	101
1810	47.2	73	-25.8	54	157	300
1870	47.7	73	-25.3	54	135	101
2000	46	73	-27	54	112	200
9592	51	73	-22	54	135	300
Enter Limi	t:					
FCC Part 1	Class B					
(VVSG1.0	IEC <mark>61000</mark>)					

5.1.6 Test Equipment List

Table 5.1-1: Radiated Emissions Test Equipment List

Asset Number	Asset Type	Manufacturer	Model	Calibrated	Due
WC059421	Chamber (EMI, Anechoic)OTA	CIR Enterprises	CH 2	04/26/2022	04/26/2024
WC059736	Chamber (EMI, Semi-Anechoic)	CIR Enterprises	CH 1	04/03/2022	04/03/2024
WC059425	Power Supply (AC)	Pacific Power Source	3060-MS/M93235	NCR	NCR
WC059431	Controller (System)	Sunol Sciences	SC110V	NCR	NCR
WC059439	Meter (Digital Multimeter)	Fluke	85	07/30/2021	07/30/2022
WC059550	Amplifier (Pre/RF/Low Noise)	Ciao Wireless	CA118-3010	12/08/2021	12/08/2022
WC059551	Amplifier (Pre/RF/Low Noise)	EMC Integrity	EMCI-LNA-30- 1000M	12/06/2021	12/06/2022
WC059739	Antenna (Biconilog)	Sunol Sciences	JB1	05/18/2021	05/18/2023
WC059742	Antenna (Double Ridge Guide)	EMCO	3115	09/22/2021	02/03/2024
WC076859	Receiver	Rohde & Schwarz	ESW44	02/15/2022	02/15/2023
WC078470	Software	ETS-Lindgren	C47213	NCR	NCR
WC078486	Meter (Hydrometer)	Extech Instruments	Datalogger 42270	06/14/2021	06/14/2022

Calibration Abbreviations

CAL: Calibration

NCR: No Calibration Required

5.2 Conducted Emissions

5.2.1 Test Procedure

FCC Part 15 Class B

5.2.2 Test Result

The Verity Controller with 2 Touch Duo Writers met the specification requirements for Conducted Emissions.

5.2.3 Test Data

Conducted Emissions, FCC Part 15 (VVSG1.0 IEC 61000)

Manufacturer:	SLI Compliance			Project Number:	PR154302		
Customer Representative:	Derrick Forester			Test Area:	10M #1		
Model:	Verity Controller	Verity Controller 3006085			C2115161506		
Standard Referenced:	FCC Part 15 (VV	FCC Part 15 (VVSG1.0 IEC 61000) Class B			March 21, 2022		
Temperature:	22°C	Humidity:	19%	Pressure:	835 mb		
Input Voltage:	120Vac/60Hz						
Configuration of Unit:	Verity Controller	Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.					
Test Engineer:	Mike Tidquist						

CE.doc FR0100

Conducted Emissions Graph (Line 1)

Manufacturer:SLI ComplianceProject Number:PR154302Customer Representative:Derrick ForesterTest Area:10M #1

Model: Verity Controller 3006085 S/N: C2115161506

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.22	41.35	63.86	-22.5	53.86	-12.5
0.32	42.23	61.07	-18.85	51.07	-8.85
0.35	44.58	60.39	-15.81	50.39	-5.81
0.35	43.96	60.29	-16.33	50.29	-6.33
0.45	33.8	57.45	-23.65	47.45	-13.65
3.01	31.86	56	-24.14	46	-14.14
6.51	34.26	60	-25.74	50	-15.74
12.49	33.26	60	-26.74	50	-16.74

Conducted Emissions Average Data Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.23	33.18	63.78	-30.6	53.78	-20.6
0.33	33.4	60.95	-27.55	50.95	-17.55
0.35	37.92	60.36	-22.44	50.36	-12.44
0.35	38.44	60.2	-21.76	50.2	-11.76
0.48	25	56.56	-31.56	46.56	-21.56
3.04	24.84	56	-31.16	46	-21.16
6.62	28.09	60	-31.91	50	-21.91
12.26	27.79	60	-32.21	50	-22.21

Manufacturer: SLI Compliance Project Number: PR154302 Customer Representative: Test Area: Derrick Forester 10M #1 Model: Verity Controller 3006085 S/N: C2115161506 Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022 Temperature: $22^{\circ}C$ Humidity: 19% 835 mb Pressure: Input Voltage: 120Vac/60Hz Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product. Test Engineer: Mike Tidquist

CE.doc FR0100

Manufacturer:SLI ComplianceProject Number:PR154302Customer Representative:Derrick ForesterTest Area:10M #1

Model: Verity Controller 3006085 S/N: C2115161506

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.16	41.51	65.68	-24.17	55.68	-14.17
0.17	40.38	65.42	-25.04	55.42	-15.04
0.35	41.78	60.21	-18.44	50.21	-8.44
0.35	41.8	60.21	-18.41	50.21	-8.41
0.49	32.32	56.21	-23.89	46.21	-13.89
3.7	29.8	56	-26.2	46	-16.2
6.24	36.86	60	-23.14	50	-13.14
16.32	34.65	60	-25.35	50	-15.35

Conducted Emissions Average Data Table (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.16	33.64	65.62	-31.98	55.62	-21.98
0.17	31.09	65.42	-34.33	55.42	-24.33
0.35	32.9	60.39	-27.49	50.39	-17.49
0.35	34.15	60.26	-26.11	50.26	-16.11
0.48	22.71	56.63	-33.91	46.63	-23.91
3.73	24.24	56	-31.76	46	-21.76
6.2	30.89	60	-29.11	50	-19.11
16.11	28.85	60	-31.15	50	-21.15

SLI Compliance Project Number: PR154302 Manufacturer: Customer Representative: Test Area: 10M #1 Derrick Forester Model: Touch Writer Duo 3006070 S/N: B1903101010 Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022 22°C Temperature: Humidity: 19% 835 mb Pressure: Input Voltage: 120Vac/60Hz Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product. Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Graph (Line 1)

Manufacturer: SLI Compliance Project Number: PR154302

Customer Representative: Derrick Forester Test Area: 10M #1

Model: Touch Writer Duo 3006070 S/N: B1903101010

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.15	47.55	65.99	-18.43	55.99	-8.43
0.17	46.72	65.43	-18.7	55.43	-8.7
0.33	44.82	60.75	-15.93	50.75	-5.93
0.34	45.76	60.63	-14.87	50.63	-4.87
0.47	33.67	56.79	-23.12	46.79	-13.12
0.67	28.89	56	-27.11	46	-17.11
6.49	36.77	60	-23.23	50	-13.23
16.81	32.83	60	-27.17	50	-17.17

Conducted Emissions Average Data Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.15	34.95	65.97	-31.02	55.97	-21.02
0.17	40.27	65.49	-25.22	55.49	-15.22
0.34	41.06	60.64	-19.58	50.64	-9.58
0.34	41.51	60.6	-19.1	50.6	-9.1
0.46	23.83	57.04	-33.21	47.04	-23.21
0.68	21.64	56	-34.36	46	-24.36
6.44	30.76	60	-29.24	50	-19.24
17.08	26.88	60	-33.12	50	-23.12

PR154302 Manufacturer: SLI Compliance Project Number: Customer Representative: Derrick Forester Test Area: 10M #1 Touch Writer Duo 3006070 Model: B1903101010 Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B March 21, 2022 Date: Temperature: $22^{\circ}C$ Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Graph (Neutral)

Manufacturer: SLI Compliance Project Number: PR154302

Customer Representative: Derrick Forester Test Area: 10M #1

Model: Touch Writer Duo 3006070 S/N: B1903101010

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.15	47.59	66	-18.4	56	-8.4
0.16	44.96	65.57	-20.61	55.57	-10.61
0.2	43.64	64.48	-20.84	54.48	-10.84
0.34	44.83	60.65	-15.83	50.65	-5.83
0.54	32.15	56	-23.85	46	-13.85
1.81	31.34	56	-24.66	46	-14.66
3.92	34.96	56	-21.04	46	-11.04
6.67	37.58	60	-22.42	50	-12.42

Conducted Emissions Average Data Table (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.15	34.22	66	-31.78	56	-21.78
0.16	30.28	65.77	-35.49	55.77	-25.49
0.2	30.18	64.66	-34.48	54.66	-24.48
0.35	33.53	60.3	-26.77	50.3	-16.77
0.5	22.96	56	-33.04	46	-23.04
1.78	23.79	56	-32.21	46	-22.21
3.87	27.25	56	-28.75	46	-18.75
6.77	31.37	60	-28.63	50	-18.63

SLI Compliance Project Number: PR154302 Manufacturer: Customer Representative: Test Area: 10M #1 Derrick Forester Model: Touch Writer Duo 3006070 S/N: B2013730601 Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022 22°C Temperature: Humidity: 19% 835 mb Pressure: Input Voltage: 120Vac/60Hz Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product. Test Engineer: Mike Tidquist

CE.doc FR0100

Manufacturer: SLI Compliance Project Number: PR154302

Customer Representative: Derrick Forester Test Area: 10M #1

Model: Touch Writer Duo 3006070 S/N: B2013730601

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.15	45.92	65.88	-19.96	55.88	-9.96
0.17	46.77	65.53	-18.75	55.53	-8.75
0.2	43.66	64.58	-20.92	54.58	-10.92
0.33	46.21	60.76	-14.56	50.76	-4.56
0.33	46.2	60.73	-14.53	50.73	-4.53
0.35	43.62	60.37	-16.75	50.37	-6.75
0.46	34	57.01	-23.01	47.01	-13.01
6.05	38.54	60	-21.46	50	-11.46

Conducted Emissions Average Data Table (Line 1)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.16	34.8	65.85	-31.05	55.85	-21.05
0.16	36.75	65.69	-28.95	55.69	-18.95
0.19	32.91	64.87	-31.96	54.87	-21.96
0.33	33.6	60.97	-27.37	50.97	-17.37
0.34	39.08	60.69	-21.61	50.69	-11.61
0.35	34.58	60.36	-25.78	50.36	-15.78
0.47	27.23	56.89	-29.67	46.89	-19.67
5.89	31.61	60	-28.39	50	-18.39

PR154302 Manufacturer: SLI Compliance Project Number: Customer Representative: Derrick Forester Test Area: 10M #1 Touch Writer Duo 3006070 Model: B2013730601 Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B March 21, 2022 Date: Temperature: $22^{\circ}C$ Humidity: 19% Pressure: 835 mb Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Graph (Neutral)

Manufacturer: SLI Compliance Project Number: PR154302

Customer Representative: Derrick Forester Test Area: 10M #1

Model: Touch Writer Duo 3006070 S/N: B2013730601

Standard Referenced: FCC Part 15 (VVSG1.0 IEC 61000) Class B Date: March 21, 2022

Temperature: 22°C Humidity: 19% Pressure: 835 mb

Input Voltage: 120Vac/60Hz

Configuration of Unit: Verity Controller w/2 Touch Writer Duo Fully exercising all features of product.

Test Engineer: Mike Tidquist

CE.doc FR0100

Conducted Emissions Quasi-Peak (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBµV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.17	46.64	65.52	-18.88	55.52	-8.88
0.17	46.35	65.51	-19.17	55.51	-9.17
0.33	45.48	60.81	-15.33	50.81	-5.33
0.33	45.29	60.78	-15.49	50.78	-5.49
0.34	44.86	60.57	-15.72	50.57	-5.72
2.99	34.35	56	-21.65	46	-11.65
6.2	39.23	60	-20.77	50	-10.77
10.89	35.17	60	-24.83	50	-14.83

Conducted Emissions Average Data Table (Neutral)

Frequncy MHz	Amplitude dBμV	Quasi-peak Limit dBμV	Delta to Quasi- Peak Limit dB	Average Limit	Delta to Average Limit
0.16	34.54	65.72	-31.18	55.72	-21.18
0.16	35.36	65.66	-30.29	55.66	-20.29
0.33	37.5	60.85	-23.35	50.85	-13.35
0.33	38.84	60.76	-21.92	50.76	-11.92
0.34	38.51	60.7	-22.19	50.7	-12.19
3.29	25.68	56	-30.32	46	-20.32
5.87	32.81	60	-27.19	50	-17.19
11.05	29.11	60	-30.89	50	-20.89

5.2.4 Test Photographs

CE 001 Front

CE 002 Right

CE 003 Back

CE 004 Left

5.2.5 Test Equipment List

Table 5.2-1: Conducted Emissions Test Equipment List

Asset Number	Asset Type	Manufacturer	Model	Calibrated	Due
WC059736	Chamber (EMI, Semi-Anechoic)	CIR Enterprises	CH 1	04/03/2022	04/03/2024
WC059439	Meter (Digital Multimeter)	Fluke	85	07/30/2021	07/30/2022
WC059729	Power Supply (AC)	Pacific Power Source	TMX 140	NCR	NCR
WC059822	Receiver	Keysight Technologies	N9038A	10/08/2021	10/08/2022
WC076847	Network (LISN)	Solar Electronics	8012-50-R-25-BNC	11/04/2021	11/04/2022
WC076848	Network (LISN)	Solar Electronics	8012-50-R-25-BNC	12/08/2021	12/08/2022
WC078470	Software	ETS-Lindgren	C47213	NCR	NCR
WC078490	TBD	Extech Instruments	Datalogger 42270	06/14/2021	01/19/2023

Calibration Abbreviations

CAL: Calibration

NCR: No Calibration Required

6.0 Test Log

EMI Test Log

Manufacturer: SLI Compliance Project Number: PR154302

Model: Verity Controller 3006085 S/N: C2115161506

Touch Writer Duo 3006070 B1903101010
B2013730601

Customer Representative: Derrick Forester

Standard Referenced: VVSG1.0 IEC 61000

FR0105

10m Emissions

Test	Test Code	Date	Event	O T	Time (hrs)	Result	Initials
		March 18, 2022	Initial Product Setup Time		1.0	Complete	MT
		0730-0830					
RE		0830-1030	Radiated Emissions, 30 MHz - 1 GHz.		2.0	Pass	MT
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
RE		1030-1200	Radiated Emissions, 1 GHz - 10 GHz.		1.5		MT
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
		1200-1230	Lunch				MT
RE		1230-1300	Continue:		0.5	Pass	MT
			Radiated Emissions, 1 GHz - 10 GHz.				
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
			LISN to Ground Plane Bonding = 2.4 and 2.5mOHM				
		March 21, 2022	Initial Product Setup Time		1.0	Complete	MT
		0830-0930					
CE		0930-1030	Conducted Emissions, 150 kHz - 30 MHz.		1.0	Pass	MT
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
			Verity Controller C2115161506				
CE		1030-1130	Conducted Emissions, 150 kHz - 30 MHz.		1.0	Pass	MT
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
			Touch Writer Duo B1903101010				
CE		1130-1230	Conducted Emissions, 150 kHz - 30 MHz.		1.0	Pass	MT
			FCC Part 15. Class B. (VVSG1.0 IEC 61000)				
			120 VAC / 60 Hz (4.1.2.9)				
			Touch Writer Duo B2013730601				

End of Test Report