

Microcontroller Teil 7 Analog Digital Converter

DI (FH) Andreas Pötscher

HTL Litec

Digitale Signale können nur 2 Zustände annehmen.

- ▶ Digitale Signale können nur 2 Zustände annehmen.
- ► Taster gedrückt oder nicht gedrückt. Led eingeschaltet oder ausgeschaltet.

- Digitale Signale können nur 2 Zustände annehmen.
- ▶ Taster gedrückt oder nicht gedrückt. Led eingeschaltet oder ausgeschaltet.
- ► Analoge Signale können, im Gegensatz dazu, theoretisch unendliche viele Werte annehmen.

- Digitale Signale können nur 2 Zustände annehmen.
- ► Taster gedrückt oder nicht gedrückt. Led eingeschaltet oder ausgeschaltet.
- ► Analoge Signale können, im Gegensatz dazu, theoretisch unendliche viele Werte annehmen.
- ► Ein Potentiometer kann auf beliebig viele Stellungen gedreht werden.

- Digitale Signale können nur 2 Zustände annehmen.
- ► Taster gedrückt oder nicht gedrückt. Led eingeschaltet oder ausgeschaltet.
- ► Analoge Signale können, im Gegensatz dazu, theoretisch unendliche viele Werte annehmen.
- ► Ein Potentiometer kann auf beliebig viele Stellungen gedreht werden.
- ▶ Ein Temperatursensor kann eine beliebig genaue Spannung liefern.

▶ Microcontroller verfügen meistens über einen oder mehrere digitale Eingangspins.

- ▶ Microcontroller verfügen meistens über einen oder mehrere digitale Eingangspins.
- ▶ Damit kann eine Spannung von einer externen Schaltung erfasst werden.

- ▶ Microcontroller verfügen meistens über einen oder mehrere digitale Eingangspins.
- Damit kann eine Spannung von einer externen Schaltung erfasst werden.
- ▶ im Microcontroller befindet sich eine Analog-Digital-Wandler, der die Spannung in einen digitalen Wert umwandelt.

- ▶ Microcontroller verfügen meistens über einen oder mehrere digitale Eingangspins.
- Damit kann eine Spannung von einer externen Schaltung erfasst werden.
- ▶ im Microcontroller befindet sich eine Analog-Digital-Wandler, der die Spannung in einen digitalen Wert umwandelt.
- ▶ Dieser digitale Wert kann anschließend in der Software verarbeitet werden.

Analoge Ausgänge

▶ Eine Microcontroller haben direkt einen Digital-Analog Wandler eingebaut.

Analoge Ausgänge

- ► Eine Microcontroller haben direkt einen Digital-Analog Wandler eingebaut.
- ► Meistens kann diese Funktion aber von einer Pulsweitenmodulation (PWM) ersetzt werden.

Signalpegel

- ▶ 0 bis 5 Volt (0-5V):
- ▶ 0 bis 3,3 Volt (0-3,3V):
- ▶ 0 bis 10 Volt (0-10V):
- ▶ 4 bis 20 Milliampere (4-20mA):

Analog Digital Wandler

Ein Analog-Digital-Umsetzer (ADC) ist eine elektronische Schaltung oder ein Bauteil in einem Mikrocontroller, der analoge Eingangssignale in digitale Werte umwandelt. Dieser Prozess ist entscheidend, um analoge Werte zu erfassen und in eine digitale Form zu bringen, die vom Programm im Microcontroller verarbeitet werden kann.

▶ In den meisten Fällen wird das analoge Signal mit einer bestimmten Frequenz abgetastet.

- ► In den meisten Fällen wird das analoge Signal mit einer bestimmten Frequenz abgetastet.
- ▶ Die Abtastfrequenz ist entscheidend welche Signalfrequenzen aufgezeichnet werden können (Shannon Theorem).

- ► In den meisten Fällen wird das analoge Signal mit einer bestimmten Frequenz abgetastet.
- ▶ Die Abtastfrequenz ist entscheidend welche Signalfrequenzen aufgezeichnet werden können (Shannon Theorem).
- Der ADC kann von der Software im Programm ausgelöst werden.

- ► In den meisten Fällen wird das analoge Signal mit einer bestimmten Frequenz abgetastet.
- ▶ Die Abtastfrequenz ist entscheidend welche Signalfrequenzen aufgezeichnet werden können (Shannon Theorem).
- Der ADC kann von der Software im Programm ausgelöst werden.
- Alternativ dazu kann der ADC auch direkt von der Hardware (z.B. Timer) ausgelöst werden.

Nachdem das analoge Signal abgetastet wurde, wird der gemessene analoge Wert in eine begrenzte Anzahl von digitalen Werten umgewandelt.

- Nachdem das analoge Signal abgetastet wurde, wird der gemessene analoge Wert in eine begrenzte Anzahl von digitalen Werten umgewandelt.
- ▶ Dieser Schritt wird Quantisierung genannt.

- Nachdem das analoge Signal abgetastet wurde, wird der gemessene analoge Wert in eine begrenzte Anzahl von digitalen Werten umgewandelt.
- ▶ Dieser Schritt wird Quantisierung genannt.
- Die Genauigkeit der Quantisierung wird durch die Bit-Anzahl (Auflösung) des ADC bestimmt.

- Nachdem das analoge Signal abgetastet wurde, wird der gemessene analoge Wert in eine begrenzte Anzahl von digitalen Werten umgewandelt.
- Dieser Schritt wird Quantisierung genannt.
- ▶ Die Genauigkeit der Quantisierung wird durch die Bit-Anzahl (Auflösung) des ADC bestimmt.
- ► Ein ADC mit einer höheren Bit-Anzahl kann das analoge Signal präziser quantisieren.

Referenzspannung

Um das analoge Signal zu quantisieren, vergleicht der ADC den gemessenen analogen Wert mit einer Referenzspannung, die im ADC eingestellt ist. Der ADC bestimmt dann, in welchem Bereich dieser Referenzspannung der gemessene Wert liegt. Die Referenzspannung gibt somit den maximal messbaren Wert vor.

Beispiel

Ein ADC mit 10 Bit Auflösung kann 2¹⁰ (also 1024) verschiedene digitale Werte darstellen. Der Spannungsbereich, den der ADC quantisiert, reicht von 0 Volt bis 5 Volt.

Um die Schritte der Quantisierung zu berechnen, wird der gesamte Spannungsbereich (5 Volt) durch die Anzahl der verfügbaren digitalen Werte (1024) geteilt. Das ergibt:

$$Schrittweite = \frac{5V}{1024} = 0,00488V$$

Beispiel

Wird der Digitalwert als Funkition der Spannung dargestellt entspricht die Schrittweite der Steigung.

Figure 1: Digitalwert als Funktion der Spannung. Der Wert 500 entspricht einer Spannung von 2.44V

Beispiel

Um einen digitalen Wert in eine Spannung zurückzurechnen, verwenden Sie die Schrittweite des ADC (Analog-Digital-Umsetzers), die wir zuvor berechnet haben, zusammen mit dem digitalen Wert selbst. Dazu muss einfach die Formel umgestellt werden.

$$Spannung = DigitalerWert * Schrittweite$$

In diesem Beispiel:

$$Spannung = 500 * 0.00488V = 2,44V$$

ADC beim Atmega 2560

