Computer Networks Prof. Dr. Mesut Güneş SoSe 2017

5. Problem Sheet

Out Due Discussion 17. 05. 17 23. 05. 17 26. 05. 17 - 30. 05. 17

MSc. Marian Buschsieweke MSc. Kai Kientopf marian.buschsieweke@ovgu.de kai.kientopf@ovgu.de

Please solve the problems in groups with two people and submit your solutions before the lecture. The discussion of the problem sheet is in the exercise course after the submission.

Problem 5.1: Multiplexing and Multiple Access

2+2 = 4 points

- Discuss the terms multiplexing and multiple access and give examples.
- How do these terms relate to the duplex, half-duplex, or simplex properties of particular network technologies?

Problem 5.2: Hamming-Code

1+2+2 = 5 points

Two entities have agreed to use the following encoding to transmit characters:

Code Word
10000
01000
11000
00100
01011

- 1. How many check bits are required to correct all 1-bit errors in messages with a length of m bits?
- 2. A Hamming Code with 4 check bits shall be used in the following. Create the code words which represent the word HAMMING.
- 3. Consider the following code words have been received:

Decode this sequence, mark the blocks that contain an error, and correct the errors if possible.

Problem 5.3: Generator Polynomial

 $4 \times 1 = 4$ points

The bit sequence 10100001 has to be transmitted. Use $x^3 + 1$ for the generator polynomial of a CRC.

- 1. Calculate the check sum.
- 2. Name the bit sequence for the transmission.
- 3. How can the receiver check the correctness of the bit sequence? Show the calculation.
- 4. Assumed there is a bit error on the third bit. Show how the receiver recognizes the error.

Computer Networks Prof. Dr. Mesut Güneş SoSe 2017

Problem 5.4: Cyclic Redundancy Checksum

3 points

Determine if the following bit sequences have been transmitted error-free. Use the generator polynomial G to apply a CRC check.

$$G(x) = x^4 + x + 1$$

If you find an error in a bit sequence, assume that the checksum bits contain the error. Recalculate the checksum.

	Data + CRC
1.	0111 0110 0010 0101 0010 1001
2.	0101 0010 1001
3.	1111 0110 1100

Problem 5.5: CRC in Header or Trailer

1 point

Most data link layer protocols store the CRC value in the trailer rather than the header. Discuss why this is a common approach.

Problem 5.6: LLC vs. MAC

3 points

Discuss the difference tasks of the LLC and MAC.

 $a\ total\ of\ 20\ points$