Отчет о выполнении лабораторной работы 3.4.2 Закон Кюри-Вейсса

Исламов Сардор, группа Б02-111

26 ноября 2022 г.

Аннотация. В работе исследована зависимость периода колебаний автогенератора от температуры сердечника катушки. По результатам измерений определена парамагнитная точка Кюри гадолиния.

Теоретическое введение

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотическим образом. Однако при $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p — температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (1) недостаточна точна.

Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонитрован в виде отдельного блока.

Рис. 1: Схема экспериментальной установки.

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0) \propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$
,

где C – ёмкость конутра автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

Результаты измерений и обработка данных

Оценим допустимую ЭДС термопары: $\varepsilon = \Delta T/\kappa \approx 0.02$ мВ. Будем придерживаться данного значения, чтобы погрешности были не слишком большими.

Теперь исследуем зависимость периода колебаний LC—генератора от температуры образца (табл. 1). Обозначим за τ период колебаний, измеренный по частотомеру, T— температура, снятая с дисплея и ΔU — ЭДС термопары. Также период колебаний без образца, указанный на установке, равен $\tau_0 = 6.9092$ с.

T	1 TT 0 1 D		T 2 C /
$T,^{o}C$	ΔU , -0.1 мкВ	τ_0 , MKC	$T,^{o}C$ (с термостата)
12	81	8.0144036	12.14
14	120	7.9785881	14.12
16	160	7.9186441	16.11
18	140	7.8077556	18.10
20	180	7.6406484	20.10
22	170	7.4240262	22.09
24	180	7.2517720	24.10
26	150	7.1755204	26.10
28	110	7.1325068	28.10
30	190	7.1085357	30.09
32	190	7.0896154	32.08
34	160	7.0756342	34.09
36	160	7.0655102	36.09
38	160	7.0575413	38.08
40	160	7.0513568	40.08

Таблица 1: Зависимость периода колебаний от температуры образца

С учетом того, что $\Delta T = \kappa \Delta U$ - разность температур жидкости и образца (при $\Delta U > 0$ температура образца выше) изобразим зависимости на графике (рис. 2) и с использованием формулы (2) определим некторые характеристики образца.

Рис. 2: зависимость периода колебаний от температуры образца

Как видно, участок кривой после изгиба не сразу выходит на прямую, что сильно сказывается на результатах. Поэтому отдельно проводился анализ первого участка, второго, и зависимости в общем. Наиболее соответствует табличным значениям зависимость сразу после изгиба (зеленая прямая), при этом точка Кюри равна соответственно $\theta = 17.42 \pm 1.67^{\circ}C$, для красной прямой при этом значение оказалось меньше 14, а для оранжевой меньше 9. Табличное значение $\theta = 16^{\circ}C$.

Подведение итогов

В ходе работы была исследована зависимость периода колебаний автогенератора от температуры сердечника. На основе полученных данных вычислена парамагнитная точка Кюри. Полученная зависимость несколько отличается от теоретической, что может быть связано с неидельностью установки, с незамеченными в ней изменениями, произошедшими после начала работы, или с недостаточной точностью закона в области точки Кюри.

Наиболее близким к искомой величине результат получился сразу после изгиба кривой и равен $\theta=17.42\pm1.67^{\circ}C$, что хорошо согласуется с табличным значением для гадолиния $\theta=16^{\circ}C$.