Pipelining in Computer Architecture

Pipelining is a process of arrangement of hardware elements of the CPU such that its overall performance is increased. Simultaneous execution of more than one instruction takes place in a pipelined processor.

Real World Example 1:

In an automobile manufacturing line, there are 3 stages, each contributing something to the construction of the car.

Step 1: Assemble (A)

Step 2: Paint (P)

Step 3: Fix Tires (T)

Each step operates in parallel with the other steps, although on a different car.

Assuming A + P + T take 3 hours.

Time line	0-3 hours	3-6 Hours	6 -9Hours
Car 1	A+P+T		
Car 2		A+P+T	
Car 3			A+P+T

So, without pipelining it will take 9 hours to manufacture 3 cars.

In pipelining, we will use the advantage of parallelism that exists among the actions needed to manufacture a car.

Assume each stage takes 1 hour.

Time									
line	hour								
Car 1	A	P	T						
Car 2		A	P	T					
Car 3			A	P	T				

So, with pipelining it will take 5 hours to manufacture 3 cars.

Speedup = Without Pipelining / With Pipelining = 9/5

Speed-up is a measure of how much faster a pipelined architecture is compared to a non-pipelined architecture when executing the same workload.

Here our assumptions are:

- 1. There is no time consumed to transition car from one working station to other.
- 2. All the stages consume equal time.

However these assumption are not valid

- 1. Each stage can take different amount of time. For example, painting a car takes 2 hours and assembly and installing tires take 0.5 hours each.
- 2. To transfer car from one stage to another will take time. For example, it takes 10 minutes to transfer a car from assembly room to paint room and 10minutes to transfer from paint room to tire fixing room.

NOTE: This will not be consume in un-pipeline factory as everything will be done in same room (this is the overhead of using pipelining).

Real World Example 2:

Automobile manufacturing line with pipelining, in 3 stages.

If Assemble (A), Paint (P), Fix tires (T) take different time.

If Assembly take 0.5 hour, Paint 2 hours and Tires 0.5 hours.

• Paint of Car 2 cannot start before 2.5th hour because paint unit is busy with Car 2. So after assembly Car 2 has to wait for 1.5 hours.

Total time taken to complete 3 instructions = 7 hours.

Speed Up = 9/7

Time line	0-0.5h	0.5-2.5h	2.5-4.5h	4.5-6.5 h	6.5-7 h
Car 1	A (0.5 h)	P (2h)	T (0.5h)		
Car 2		A (0.5 h) +wait for 1.5 h	P (2h)	T (0.5h)	
Car 3			A (0.5h)+ wait for 1.5 h	P (2h)	T (0.5h)

Real World Example 2:

Automobile manufacturing line with pipelining, in 3 stages.

If we add time for transition between stages as well.

Total time taken to complete 3 instructions = 7 h + 40 m = 7.67 h

Speed Up = 9/7.67

Time line	0-0.5h	Transition time 10 min	0.5 +10m-2.5h +10m	Transition time 10 min	2.5h+20m-4.5h+2 0m	Transition time 10 min	4.5h+30 m-6.5 h+30m	Transition time 10 min	6.5h+40m -7 h+40m
Car 1	A (0.5 h)		P (2h)		T (0.5h)				
Car 2			A (0.5 h) +wait for 1.5 h		P (2h)		T (0.5h)		
Car 3					A (0.5h)+ wait for 1.5 h		P (2h)		T (0.5h)

Throughput and Latency:

In case of car manufacturing throughput is number of cars create per hour.

Latency is time taken to complete one car.

Case	Latency	Throughput	Speed up
Non pipeline	3	3/9=0.33	NA
Pipeline ideal case	3	3/5=0.6	9/5
Pipeline with all stages not of equal time	4.5	3/7=0.42	9/7
Non ideal case with latch time	4.833	3/7.67=0.39	9/7.67

Pipelining in Computer:

In a computer pipeline, each step in the pipeline completes a part of an instruction.

Like the assembly line, different steps are completing different parts of different instructions in parallel.

Each of these steps is called a pipe stage or a pipe segment.

The stages are connected one to the next to form a pipe — instructions enter at one end, progress through the stages, and exit at the other end, just as cars would in an assembly line.

The number of stages in which one instruction can be divided is different from processor to processor.

If we only create two stages Fetch Instruction (FI) and Execute Instruction (EI) – the bottleneck creator, EI will take a lot more time than FI.

To get a better throughput and thus the speedup pipeline must have more stages. The pipeline designer's goal is to balance the length of each pipeline stage

Let us consider the following decomposition of the instruction processing:

- 1. Fetch instruction (FI)
- 2. Decode instruction (DI)
- 3. Calculate operands (CO)
- 4. Fetch operands (FO)
- 5. Execute instruction (EI)
- 6. Write operand (WO)

With this decomposition, the various stages will be of more nearly equal duration. For the sake of illustration, let us assume equal duration. Using this assumption, a six-stage pipeline can reduce the execution time for 9 instructions from 54 time units to 14 time units.

	_		Tim	e	→									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	со	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	со	FO	EI	wo						
Instruction 4				FI	DI	со	FO	EI	wo					
Instruction 5					FI	DI	со	FO	EI	wo				
Instruction 6						FI	DI	со	FO	EI	wo			
Instruction 7							FI	DI	со	FO	EI	wo		
Instruction 8								FI	DI	со	FO	EI	wo	
Instruction 9									FI	DI	со	FO	EI	wo

Throughput with pipeline= 9/14
Throughput without pipeline=
9/54
Speedup=
54/14

Clock Cycle:

The time required between moving an instruction one step down the pipeline is a processor cycle.

Because all stages proceed at the same time, the length of a processor cycle is determined by the time required for the slowest pipe stage, just as in an auto assembly line.

The longest step would determine the time between advancing the line.

In a computer, this processor cycle is usually 1 clock cycle.

For example:

If:

- FI DI CO FO EI WO each takes 1us.
- Clock cycle should be of 1us.
- Although this is the ideal case.

If:

- FI takes 5 us, DI takes 1us, CO takes 1us, FO takes 10us, EI takes 1us, and WO also takes 10us.
- Clock cycle should be of 10us

In processor with no pipelining:

• If one instruction takes 10us then clock cycle should 10us.

Frequency:

Computer processors can execute one or more instructions per clock cycle, depending on the type of processor.

Frequency of computer is 1/clock cycle

For example: if 1 clock cycle = 10 ms;

f = 1/10ms = 1MHZ

Frequency is also known as clock speed.

Performance:

Ideal Case (Derivations)

If

- All stages take equal amount of time T
- \Box Latch time = 0
- \square Stages = k
- \square Number of instructions = n

Then

- \Box Clock cycle of pipeline = T, clock cycle of non pipeline = k*T
- Frequency of pipeline=1/T, Frequency of non pipeline=1/k*T
- ☐ Time taken to complete n instructions without pipeline= n*k*T= n*clock cycle of non pipeline
- ☐ Through put for n instructions without pipeline= n/ n*k*T
- ☐ Time taken to complete n instructions with pipeline= (k+n-1)*T=(k+n-1)*(Clock Cycle of pipeline)
- ☐ Through put for n instructions with pipeline= n/(k+n-1)*T
- $\square \text{ Speedup for n instructions} = n*k*T/(k+n-1)*T = n*k/(k+n-1)$
- \Box Latency without pipelining = k*T
- ☐ Latency with pipelining= k*T

PIPELINE IN COMPUTER:: PERFORMANCE IDEAL CASE

Numerical:

- ☐ It takes 6us to complete one instruction in non-pipeline processor
- ☐ We were able to convert the circuit into 6 equal sequential pipeline stages.
- Assume latch time is 0
- Answer the following, assuming that there are no stalls in the pipeline.

What are the clock cycle in the two processors?

What are the clock speeds(frequency) in two processors?

How long does it take to finish one instruction in pipeline and no pipeline (latency)?

What is the throughput for 100 instructions without pipelining?

What is the throughput for 100 instructions with pipelining?

What is the speedup from pipelining for 1 instructions?

What is the speedup from pipelining for 100 instructions?

0.			
Given:			
Time	to complete one instruct	ion	
Ime	in non-pipeline =	6118 = 6 x	10-6 s
Nb.	of stages in pipeline =	K=6	
Lat	ch time = 0		-
Tim	e taken by each step:	= 1 us = 1	xlos
U			
C	lock cycle of pipeline = Tock cycle of non-pipelin	T = 1 us	
Cl	ock cycle of non-pipelin	re= Kxl	
		$=6\times1$	us
		= 6us	
2 Fin	equency of pipeline = 1	- 1	1
9	T	1 us	1x16-6
		5	1 MH
Fn	equency of non-pipeline =	1,1	
		XT 6xlo	
		× 166.6	7KH
3 Ti	ne taken to complete on	inctruction	h
S (I)	with pipeline = (K+n-	DXT	,
	= KXT		= 6119
	in non-pipeline = nx		
The The		= 6 × 1 vs	= 6us

@ no 100	
Throughput = n = 100	
Throughput s n = 100 n x k x T 100 x 6 x 1 us	
= 100	
600 ps	
= 166.67 instructi	uns
per ms	
5 ns 100.	
Throughput = n = 100	
Throughput = n = 100 $(k+n-1)\times T$ $(6+100-1)\times T$	lus
= 9 52.38	
instructions p	res
ms	
(b) n=1	
6) n=1 speedup = n×kxT	
(k+n-1)xT	
= nxk = 1x6 =	1
(K+n-1) (6+1-1)	

Non-ideal Case (Derivations)

If an stages le not take same time of appetite processor take T time to complete he instruction

- ☐ In pipeline processor max time take by any stage is T2
- ☐ Latch time=0
- ☐ Stages =k
- \square Number of instructions = n

Then

- Clock cycle of pipeline processor = T2, Clock Cycle of processor without pipelining = T1
- ☐ Frequency of pipeline processor =1/T2, Frequency of processor without pipelining = 1/T1
- ☐ Time taken to complete n instructions without pipeline= n*T1= n*clock cycle of non pipeline
- ☐ Through put for n instructions without pipeline= n/ n*T1
- \square Time taken to complete n instructions with pipeline= (k+n-1)*T2 = (k+n-1)*(Clock Cycle of pipeline)
- \square Through put for n instructions with pipeline= n/(k+n-1)*T2
- \square Speedup for n instructions = n*T1/(k+n-1)*T2
- ☐ Latency without pipelining = T1
- ☐ Latency with pipelining= K*T2

PIPELINE IN COMPUTER:: PERFORMANCE

Example NON-IDEAL

- ☐ It takes 6us to complete one instruction in non-pipeline processor
- ☐ We were able to convert the circuit into 6 sequential pipeline stages.
- ☐ Stage 1 and 2 take 2us each and stage 3-6 take 0.5us each
- Assume latch time is 0
- Answer the following, assuming that there are no stalls in the pipeline.

What are the clock cycle in the two processors?

What are the clock speeds(frequency) in two processors?

How long does it take to finish one instruction in pipeline and no pipeline (latency)?

What is the throughput for 100 instructions without pipelining?

What is the throughput for 100 instructions with pipelining?

What is the speedup from pipelining for 1 instructions?

What is the speedup from pipelining for 100 instructions?

-	
-	
-	Griven:
	Time taken to complete one instruction
	in non-pipleline = bus = 6 × 10 s
	Stages in pipeline = K = 6
	Stage 1 and 2 take 2us each
	Stage 3 to 6 take 0.5 us each
	Latch time > 0
	tleve T1 = 6us and T2 = 2us
7	Clock cycle of pipeline = 2 us which
7	is equal to the time required
7	for longest pipeline stage
1	for so got pipe
-	Clock cycle of none-pipeline = 6 us
-	Uscu eyeu of Three-properties 5 0 US
	2) Frequency of pipeline = 1 = 1
-	T2 2us
$-\parallel$	
	= 500 KHZ
\dashv	T . 1.
	Frequency of non-pipeline = 1 = 1
	T1 bus
	= 166.67KH

3 no1	
Latency of pipeline = K xT2 = 6 x 2 us	
= 6 x 20s = 12 us	
Lateray with non-pipelines T1 = 6US	
= 6US	
(b) n = 100	
Throughput = n = 100 n×T1 100×600	
= 166.67	
instructions pe	4
S n= 100	
Throughput = n $(K+n-1)XT2$	
= 100 (b + 100-1)x2us	
= 476.19 instructions per m	5

6	n=1	
	Speedup = $n \times T I$ $(K+n-1) \times T2$	
	= 1×6us	
	(6+1-1) x 2us = 1 = 0.5	
	2	
9	ns 100	
	$Speedup = n \times TI$ $(k+n-1) \times T2$	
	= (60 × 6us	
	(6+100-1) x2us	
	= 20 = 2.85 7	

Including Latch Time

□ Non pipeline processor takes 11 time to complete one instruction ONS
☐ In pipeline processor max time take by any stage is T2
☐ Latch time=T3
□ Stages =k
□ Number of instructions = n
Then
☐ Clock cycle of pipeline processor = T2+T3, Clock Cycle of processor without pipelining = T1
☐ Frequency of pipeline processor =1/(T2+T3), Frequency of processor without pipelining = 1/(T1)
☐ Time taken to complete n instructions without pipeline= n*T1= n*clock cycle of non pipeline
☐ Through put for n instructions without pipeline= n/ n*T1
☐ Time taken to complete n instructions with pipeline= (k+n-1)*(T2+T3)= (k+n-1)*(Clock Cycle of pipeline)
☐ Through put for n instructions with pipeline= n/ (k+n-1)*(T2+T3)
□ Speedup for n instructions = $n*T1/(k+n-1)*(T2+T3)$
☐ Latency without pipelining = T1
☐ Latency with pipelining= K*(T2+T3)

PIPELINE IN COMPUTER:: PERFORMANCE

Example NON-IDEAL CASE with latch time

- ☐ It takes 6us to complete one instruction in non-pipeline processor
- ☐ We were able to convert the circuit into 6 sequential pipeline stages.
- ☐ Stage 1 and 2 take 2us each and stage 3-6 take 0.5us each
- Latch time is 2us
- Answer the following, assuming that there are no stalls in the pipeline.

What are the clock cycle in the two processors?

What are the clock speeds(frequency) in two processors?

How long does it take to finish one instr in pipeline and no pipeline (latency)?

What is the throughput for 100 instructions without pipelining?

What is the throughput for 100 instructions with pipelining?

What is the speedup from pipelining for 1 instructions?

What is the speedup from pipelining for 100 instructions?

	-
Gilven:	
Time Taken to complete one instruct	ion
in non-pipeline = 6 us s 6x 10	-6 S
Stages = K5 6	
Stages = 165 6 Stage 1 and 2 take 2 us e	ach
Stages 3 to 6 take 0.5 us e	
Latch time is Zus	
Here, T1 = 6 us, T2 = 2us, T3=	· Zus
Clock time in pipeline= T2+T3	
= 2us+2us	
. 5 4 us	
Clock time in non-pipeline = T1	
s 6us	
2	
P.F = 1 = 1 = 250	KHZ
T2+T3 Yus	
N.P.Fs 1 = 166.67 KHZ	
6us	
Control of the second of the s	

3	
Lateray with pipeline = KX (T2.	+ T3)
= 6x/2us	t 2ús)
= 6 x 40s	
, 24us	
Latency without pipeline = 6 us	
9 n = 100	
$\frac{1}{100 \times 100} = \frac{100}{100 \times 100}$	1x6x
= 166.67 i	struction
pet ms	
S) n=100	
Throughput > n	
Throughput $= n$ $(k+n-1)\times(T2+T3)$	
5 100	
(6+100-1)(4us)	
238.09 instruction	2
per ms	

6	n=1
	speedup = nxT1
	(k+n-1)×(T2+T3)
	= 1× 6us
	(b+1-1)x(4us)
	5 1 = 0.25 4
	9

EXERCISE

Question 1: If throughput of one processor1 for n instruction is 10us and through put of processor 2 is 15us for same n instruction what speed up is achieved by processor2 are compare to processor 1?

Question 2: If Latency with pipelining with 5 stages is 6us and latch time is 0 what is the clock cycle time?

Question:1	
Speed up = Throughput of none-pi Throughput of pipeline	peline
3 10	
5 2	
3	
Question: 2	
As, K=5 L.P=6us T3=0	72 - ?
Lattercy = K X Clock cycle	
643 = 5 x Clock cycle	
clock cycles 64s = 1.2x	10 8
5 s 1.2 u	