CMPT 407: Computational Complexity

Summer 2017

Lecture 4: Randomized Computation (6 - 9 June)

Lecturer: Valentine Kabanets Scribe: Lily Li

4.1 Review

Theorem 4.1 EXP \subset PolySize \Longrightarrow EXP $= \Sigma_2^p$.

Proof: For all L in EXP there exists a TM M, which runs in time $2^{n^c} = t$ for an input x of size n. Imagine a txt grid which describes the operation of M. Where each row is a configuration of M. This transcript is valid if and only if all windows (three consecutive cells in row i and the associated cell in row i+1) are consistent. Consider the function $T:[t]\times[t]\to\Sigma^*$ where T(i,j)=cell j at time i. Since we assumed $\mathsf{EXP}\subset\mathsf{PolySize}$ all we need to do is show that $T\in\mathsf{EXP}$. Well, that's pretty obvious, simply execute the TM M. Now show that $T\in\Sigma_2$ as follows: $\exists C\forall i,j:$ window (i,j) (in the tableau) is consistent and the tableau ends in an accepting state.

Note: (by IKW) it is possible to generalize this implication for NEXP, namely NEXP \subset PolySize \Longrightarrow NEXP $= \Sigma_2$. Proving this is quite a bit more difficult and requires more tool.

4.2 Circuits

Let us consider the set of inclusion of circuit complexity: $AC_0 \subset TC_0 \subset NC_1 \subset PolySize$

Claim 4.2 $NC_1 = PolySize formula$.

Proof: $\mathsf{NC}_1 \subseteq \mathsf{PolySize}$ formula is the easy direction. Now lets attempt to show th other direction, $\mathsf{PolySize}$ formula $\subseteq \mathsf{NEXP}$. Now a normal expansion of a formula F in $x_1, ..., x_n$ might be of depth O(n). But if you think about it you realize that there are not a lot of "stuff" so a long path can be restructured to be made shorter and wider. In particular cut F into two pieces F_1 and F_2 each of depth approximately half. Let f(F) be the formula associated the the circuit of F. Then

4.2.1 Valiant's Challenge

Find an explicit function $f:\{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size O(n) and depth $O(\log n)$.

Definition 4.3 A majority gate is defined as follows: $maj_n : \{\}$

Example 4.4 Let $a_1, a_2, ..., a_n$ be n, n digit numbers. We want to show that this problem in the domain of Valiant's Challenge. So we need to demonstrate a $O(\log n)$ circuit of O(n) size to solve this problem. The algorithm here requires a trick as follows:

Theorem 4.5 Finding the parity of n numbers is in TC_0 .

Proof: First we need to construct a threshold function.

4.3 AC₀

Theorem 4.6 The addition of two n bit numbers is in AC_0 .