Number System

Rismiyati, B.Eng, M.Cs

Outline

- Review bilangan decimal
- Bilangan Biner, Octal dan Hexa decimal
- Konversi bilangan
 - Desimal ke biner, octal, hexa dan sebaliknya
 - Biner ke octal, hexa dan sebaliknya
 - Octal ke hexa
- Aritmatika Dasar bilangan biner
 - Pertambahan pengurangan
 - Perkalian Pembagian
- Signed binary
 - · 2's complement
 - Pengurangan dengan 2's complement
- ASCII code

Review Bilangan Desimal

Review Bilangan Desimal

- 724.5
 - 7 Ratusan
 - 2 Puluhan
 - 4 satuan
 - 5 persepuluh
- Atau bisa dinyatakan dengan
 - $•7x10^2 + 2x10^1 + 4x10^0 + 5x10^{-1}$

Review Bilangan Desimal

- Bilangan decimal disebut berbasis 10 karena mempunyai 10 digit (0,1,...,9)
- Secara umum bilangan dalam basis r bisa dinyatakan dalam bentuk umum

$$A_{n-1}r^{n-1} + A_{n-2}r^{n-2} + ... + A_1r^1 + A_0r^0 + A_{-1}r^{-1} + A_{-2}r^{-2} + ... + A_{-m+1}r^{-m+1} + A_{-m}r^{-m}$$

Ditulis juga

$$A_{n-1}A_{n-2...}A_1A_0A_{-1}A_{-2...}A_{-m+1}A_{-m}$$

".": radix point

A_{n-1}: Most significant digit

A_{-m}: Least Significant digit

Binary Number, Octal, Hexadecimal

Binary Number

- Sistem bilangan biner adalah bilangan dengan basis 2
- · Hanya mempunyai 2 digit, 0 dan 1
- Nilai bilangan biner dalam desimal
 - $\cdot 11010_2 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0$
- MSB
- LSB
- Konversi decimal ke biner
 - Bilangan bulat: Pembagian 2
 - Pecahan: perkalian 2

Urutan angka dalam biner

• 0 • 0000 • 0001 • 10 • 0010 • 0011 • 100 • 0100 • 101 • 0101 • 0110 • 110 • 0111 • 111 • 1000 • 1000

Menambahkan 0 di sebelah kiri angka biner tidak berpengaruh (untuk bilangan bulat) Untuk pecahan, menambahkan di sebelah kanan tidak berpengaruh

Desimal ke Biner (Bilangan Bulat)

```
26251
2<u>312</u>0
2<u>156</u>0
2<del>78</del>0
2391
2<u>19</u>1
2<del>9</del>1
2\frac{4}{2} 0
```

=1001110001

Desimal ke Biner (Pecahan)

$$0.6875 \times 2 = 1.3750$$

$$0.3750 \times 2 = 0.750$$

$$0.750 \times 2 = 1.500$$

$$0.500 \times 2 = 1.000$$

$$=0.5 + 0.125 + 0.0625$$

MSB

Bilangan Oktal

- Oktal adalah bilangan berbasis 8 (0-7)
- Hexa decimal adalah bilangan berbasis 16 (0-9, A-F)
- Kedua basis bilangan ini digunakan dalam merepresentasikan bilangan bilangan biner secara tidak langsung
 - Bilangan octal terdiri dari 3 digit biner
 - 1 digit hexa decimal (16= 2^4): 4 digit biner

Bilangan Oktal

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Konversi octal dan hexa decimal ke desimal

Seperti pada sistem biner

Konversi octal dan hexa decimal ke biner (dan sebaliknya)

- 1 octal: 3 digit biner
- 1 hexa decimal: 4 digit biner

Octal	biner
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Неха	Biner	Неха	Biner
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111

CONTOH

- 673₈ = 110 111 011
- 256₈ =010 101 110
- E102₁₆ = 1110 0001 0000 0010
- · 110101011011010110001 =
 - 110 101 011 011 010 110 001 : 6533261₈
 - 0001 1010 1011 0110 1011 0001 : 1AB6B1₁₆

Jembatan penghubun g

Latihan

- 1. Rubah bilangan berikut ke decimal:
 - a) 1001101
 - b) 1010011.101,
 - c) 10101110.1001
- 2. Rubah bilangan desimal berikut ke binary, octal dan hexa
 - a) 87.25
 - b) 891
 - c) 2014
- 3. Lengkapi tabel berikut

Decimal	Binary	Octal	Hexadecimal
369.3125	?	?	?
?	10111101.101	?	?
?	?	326.5	?
?	?	?	F3C7.A

Rentang Nilai bilangan

- Angka tertinggi yang bisa di capai oleh suatu sistem numerik bergantung pada bit yang digunakan pada hardware
- Jumlah bit ini biasanya dalam bentuk bilangan pangkat dua
 - 8, 16,32, 64
- Bilangan yang bisa dihandle oleh n bit

Operasi Aritmatika

Operasi aritmatika

- Arithmetic operations with numbers in base r follow the same rules as for decimal numbers.
- However, must be careful to use only r allowable digits and perform all computations with base r digits.

Carries:	00000	101100
Augend:	01100	10110
Addend:	+10001	+10111
Sum:	11101	101101

Borrows:	00000	00110	00110
Minuend:	10110	10110	10011 11110
Subtrahend:	-10010	-10011	-11110 -10011
Difference:	00100	00011	-01011

Aritmatika pertambah an

EXAMPLE 1-2 Hexadecimal Addition

Perform the addition $(59F)_{16} + (E46)_{16}$:

Hexadecimal	Equiva	ulation			
	1 ←	1	1 ←		1
59F	5	Carry	9	15	Carry
E 46	14		4	6	
13E5	$1\overline{19} = 1$	16 + 3	$\overline{14} = \mathbf{E}$	$\overline{21} = 1$	6 + 5

Aritmatika: perkalian oktal

EXAMPLE 1-3 Octal Multiplication

Perform the multiplication $(762)_8 \times (45)_8$:

Octal	Octal		Decimal	Octal
762	5 × 2	=	10 = 8 + 2	= 12
45	$5 \times 6 + 1$	=	31 = 24 + 7	= 37
4672	$5 \times 7 + 3$	=	38 = 32 + 6	= 46
3710	4×2	=	8 = 8 + 0	= 10
43772	$4 \times 6 + 1$	=	25 = 24 + 1	= 31
	$4 \times 7 + 3$	=	31 = 24 + 7	= 37

Aritmatika: Perkalian biner

Multiplicand: 1011

Multiplier: \times 101

1011

0000

1011

Product: <u>110111</u>

Bilangan Biner Bertanda

SIGNED BINARY

Unsigned Binary

- Dalam kehidupan sehari hari-hari, sering hanya berinteraksi dengan angka positif, termasuk 0
- Karena terbiasa, maka tidak pernah menulis tanda + di depan angka
 - Konsep unsigned binary
- Dalam memanggil angka negative, tanda (-) diberikan sebelum angka
 - - 5
- Dalam logika, bagaimana merepresentasikan bilangan negative tersebut?

Signed binary

- Signed binary: bilangan biner untuk menyatakan bilangan baik positif maupun negative
- Caranya?
- Terdapat 3 cara:
- Menggunakan MSB sebagai tanda, 0 untuk + dan 1 untuk
 - 3 = 0 011
 - · -3 = 1 011
 - 7 = 0 111
 - -7 = 1 111
 - 0 = 0 000
 - · -0 =1 000

Kelemahan: 2 representasi 0

2. Signed binary dengan 1's complement

- 1's complement of a number is obtained by inverting each bit of given number.
- $\cdot +3 = 0011$
- · -3 = 1100
- +5 = 0101
- · -5 = 1 010
- Range yang bisa dicover: -2ⁿ⁻¹ -1 sampai -2ⁿ⁻¹ -1

3. 2's complement

- 2's complement didapatkan dengan membalikkan angka biner bilangan positif kemudian ditambah 1
- Atau sama dengan 1's complement +1
- Misal +3 = 0.011
- · Maka -3
 - 1's complement = 1100
 - Plus 1 1101
 - Maka -3 adalah 1101
- Tidak ada double representasi untuk 0

□ TABLE 3-13 Signed Binary Numbers

Decimal	Signed 2s Complement	Signed Magnitude
+ 7	0111	0111
+ 6	0110	0110
+ 5	0101	0101
+ 4	0100	0100
+ 3	0011	0011
+ 2	0010	0010
+ 1	0001	0001
+ 0	0000	0000
- 0	_	1000
- 1	1111	1001
- 2	1110	1010
- 3	1101	1011
- 4	1100	1100
- 5	1011	1101
- 6	1010	1110
- 7	1001	1111
- 8	1000	_

Penguranga n dengan 2's complemen t

- Pengurangan bisa juga dilakukan dengan 2's complement
- A-b = A + -b

EXAMPLE 3-20 Unsigned Binary Subtraction by 2s Complement Addition

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction X - Y and Y - X using 2s complement operations. We have

Desimal, alphanumeric codes

Binary coded Decimal

□ TABLE 1-4 Binary-Coded Decimal (BCD)

Decimal	BCD
Symbol	Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

$$(185)_{10} = (0001 \ 1000 \ 0101)_{BCD} = (10111001)_2$$

Alphanumeri c codes

- Many applications of digital computers require the handling of data consisting not only of numbers, but also of letters
 - Examples: customer name
- Must be able to represent
 - Letters
 - Symbols

Alphanumeri c codes

- Any alphanumeric character set for English is a set of elements that includes the ten decimal digits, the 26 letters of the alphabet, and several (more than three) special characters.
- If only capital letters are included, we need a binary code of at least six bits
- if both uppercase letters and lowercase letters are included, we need a binary code of at least seven bits.
- The codes must be in binary because computers can handle only 1s and 0s

Alphanumeri c Code ASCII

- ASCII: American Standard Code for Information Interchange
- It uses seven bits to code 128 characters
- The ASCII code contains 94 characters that can be printed and 34 nonprinting characters used for various control functions
- The printing characters consist of the 26 uppercase letters, the 26 lowercase letters, the 10 numerals, and 32 special printable characters such as %, @, and \$.

ASCII tables

	$\mathbf{B}_{7}\mathbf{B}_{6}\mathbf{B}_{5}$							
$\mathbf{B_4}\mathbf{B_3}\mathbf{B_2}\mathbf{B_1}$	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P	*	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	С	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB		7	G	W	g	w
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	1	1	ĺ
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	٨	n	~
1111	SI	US	/	?	O	_	O	DEL

Exercise Text book halaman 34, 36

- 1.9- 1.19
- 1.22 -1.25