МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа №1 по дисциплине «Исследование операций» Вариант 2

Бобовоза Владислава Сергеевича студента 3 курса, 6 группы специальность «прикладная математика»

План выполнения задания:

- 1) Формализация линейной оптимизационной задачи
- 2) Построение математической модели
- 3) Реализация математической модели в AMPL
- 4) Решение оптимизационных задач средствами AMPL

1) Формализация линейной оптимизационной задачи:

Ткань четырех артикулов производится на ткацких станках двух типов с различной производительностью. Для изготовления ткани используются пряжа и красители. Исходные данные задачи представлены таблицей:

Ресурсы	Производительность станков (м.ч) и нормы расхода				Мощности
	сырья (в кг на 1000 м)				станков
	Ткань 1	Ткань 2	Ткань 3	Ткань 4	(тыс.
	типа	типа	типа	типа	станко-ч) и
					объем
					ресурсов
					(кг)
Станки 1	20	10	25	15	100
типа					
Станки 2	8	20	10	12	80
типа					
Пряжа	60	50	70	40	300
Красители	3	2	4	3	15

Прибыль от продажи 1 м ткани каждого типа равна соответственно 80, 70, 60 и 50 у.д.е. Определите ассортимент выпуска продукции, обеспечивающий максимальную прибыль.

2) Построение математической модели:

Переменные:

- х1 количество ткани 1 типа (тыс. м)
- х2 количество ткани 2 типа (тыс. м)
- х3 количество ткани 3 типа (тыс. м)
- х4 количество ткани 4 типа (тыс. м)

Целевая функция:

$$F = 80 * x1 + 70 * x2 + 60 * x3 + 50 * x4 -> max$$

Ограничения:

- По станкам 1 типа: 20 * x1 + 10 * x2 + 25 * x3 + 15 * x4 <= 100
- По станкам 2 типа: $8 * x1 + 20 * x2 + 10 * x3 + 12 * x4 \le 80$
- По пряже: $60 * x1 + 50 * x2 + 70 * x3 + 40 * x4 \le 300$
- По красителям: $3 * x1 + 2 * x2 + 4 * x3 + 3 * x4 \le 15$

• Неотрицательность: $x1 \ge 0$, $x2 \ge 0$, $x3 \ge 0$, $x4 \ge 0$

3) Реализация математической модели в AMPL:

Файл .mod:

```
# Параметры
param P{1..4}; # Прибыль от продажи 1 м ткани каждого типа
# Параметры производительности станков и норм расхода сырья
param Machines1 capacity;
param Machines2 capacity;
param Yarn capacity;
param Dyes_capacity;
param Machines{1..2, 1..4};
param Yarn{1..4};
param Dyes{1..4};
# Переменные решения
var x{1..4}; # Количество произведенной ткани каждого типа
# Целевая функция
maximize Profit: sum{i in 1..4} P[i] * x[i];
# Ограничения на ресурсы
subject to Machines1: sum{j in 1..4} Machines[1,j] * x[j] <= Machines1_capacity;</pre>
subject to Machines2: sum{j in 1..4} Machines[2,j] * x[j] <= Machines2_capacity;</pre>
subject to yarn:
sum{j in 1..4} Yarn[j] * x[j] <= Yarn_capacity;
subject to dyes:
sum{j in 1..4} Dyes[j] * x[j] <= Dyes_capacity;</pre>
subject to X\{i in 1..4\}: x[i] >= 0
```

Файл .dat:

```
param P := 1 80
2 70
3 60
4 50;
# Задание доступных ресурсов
param Machines1 capacity := 100;
param Machines2 capacity := 80;
param Yarn capacity := 300;
param Dyes capacity := 15;
# Задание производительности станков и норм расхода сырья
param Machines: 1 2 3 4 :=
1 20 10 25 15
2 8 20 10 12;
param Yarn :=
1 60
2 50
3 70
4 40;
param Dyes :=
1 3
2 2
3 4
4 3;
```

Файл .run:

```
reset;
model lab_1.mod;
data lab_1.dat;
solve;
display Profit;
display x;
```

4) Решение оптимизационной задачи в AMPL:

```
ampl: MINOS 5.51: optimal solution found.
3 iterations, objective 410
Profit = 410

x [*] :=
1  2.5
2  3
3  0
4  0
;
```