Python - Analiza danych z modułem PANDAS

www.udemy.com (R)

LAB - S08-L001 - plot

- 1. Zaimportuj moduł pandas, numpy i matplotlib i nadaj im standardowe aliasy
- 2. Uruchom poniższy fragment kodu, aby przygotować dane do rysowania wykresu (wszystkie zastosowane polecenia powinny Ci już być na tym etapie znane):

```
import datetime
#Import data
nasa = pd.read_csv("nasa_facebook_statuses.csv",
            usecols=["status_published","num_reactions",
                   "num_comments","num_shares","num_likes"])
#Convert column type to date time
nasa["status_published"] = pd.to_datetime(nasa["status_published"])
#Select observations between two datetimes - May 2015
filter =(nasa['status_published'] >= '2016-5-1') & (nasa['status_published']
< '2016-6-1')
nasa = nasa[filter]
#Add column with day only
nasa['day'] = nasa.apply(lambda row: row["status_published"].day,axis=1)
#Remove non-numeric column
nasa.drop('status_published', axis=1, inplace=True)
#Group all columns by sum
nasa_by_day = nasa.groupby(by='day').sum()
nasa by day.head()
```

- 3. Uruchom polecenie, które wyświetli na wykresie wszystkie dane numeryczne znajdujące się w zmiennej **nasa_by_day**. Prawdopodobnie na tym etapie nie zobaczysz ładnego wykresu, bo nie wykonałeś jeszcze jednego ważnego polecenia...
- 4. Uruchom instrukcję (tzw. funkcja magiczna), które spowoduje, że wykres będzie pokazywany wewnętrznie w jupyter notebook
- 5. Ponownie uruchom polecenie z punktu (3) tym razem wykres powinien się ładnie wyświetlić
- 6. Wyświetl wykres tylko dla serii **num_shares**
- 7. Wyświetl wykres dla dwóch serii jednocześnie: num_shares,num_comments
- 8. Wykonaj jeszcze raz punkt (6), ale tym razem skorzystaj z innej metody zastosuj parametr **y** polecenia **plot**

9. Wykonaj jeszczer raz punkt (7), ale tym razem skorzystaj z innej metody - zastosuj parametr **y** polecenia **plot**

Rozwiązania:

Poniżej znajdują się propozycje rozwiązań zadań. Prawdopodobnie istnieje wiele dobrych rozwiązań, dlatego jeżeli rozwiązujesz zadania samodzielnie, to najprawdopodobniej zrobisz to inaczej, może nawet lepiej:) Możesz pochwalić się swoimi rozwiązaniami w sekcji Q&A

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib as plt
In [2]: import datetime
        #Import data
        nasa = pd.read_csv("nasa_facebook_statuses.csv",
                     usecols=["status_published","num_reactions",
                              "num_comments", "num_shares", "num_likes"])
        #Convert column type to date time
        nasa["status_published"] = pd.to_datetime(nasa["status_published"])
        #Select observations between two datetimes - May 2015
        filter =(nasa['status_published'] >= '2016-5-1') & (nasa['status_published'] < '2016-6-1')</pre>
        nasa = nasa[filter]
        #Add column with day only
        nasa['day'] = nasa.apply(lambda row: row["status_published"].day,axis=1)
        #Remove non-numeric column
        nasa.drop('status_published', axis=1, inplace=True)
        #Group all columns by sum
        nasa_by_day = nasa.groupby(by='day').sum()
        nasa by day.head()
```

Out[2]: num_reactions num_comments num_shares num_likes

day

1	62629	727	4403	60243
2	188255	2328	23897	177989
3	53700	770	10858	50264
4	140098	1776	23360	133302
5	93146	1070	7627	89657

```
In [3]: nasa_by_day.plot()
Out[3]: <Axes: xlabel='day'>
```


In [4]: %matplotlib inline

In [5]: nasa_by_day.plot()

Out[5]: <Axes: xlabel='day'>


```
In [6]: nasa["num_shares"].plot()
```

Out[6]: <Axes: >

In [7]: nasa[["num_shares","num_comments"]].plot()

Out[7]: <Axes: >


```
In [8]: nasa.plot(y="num_shares")
```

Out[8]: <Axes: >

In [9]: nasa.plot(y=["num_shares","num_comments"])

Out[9]: <Axes: >

In []: