Clustering and k-means

Toby Dylan Hocking

Visualize iris data with labels

Visualize iris data without labels

▶ Let $X \in \mathbb{R}^{150 \times 2}$ be the data matrix (input for clustering).

##		Petal.Width	Petal.Length
##	[1,]	0.2	1.4
##	[2,]	0.2	1.4
##	[3,]	0.2	1.3
##	[4,]	0.2	1.5
##	[5,]	0.2	1.4
##	[6,]	0.4	1.7

Visualize several clusterings

- ► K-means algorithm (kmeans function in R).
- ▶ Which K is best? How to choose number of clusters?

Adjusted Rand Index (ARI)

- ► Measures agreement between two label/cluster vectors (the two vectors must be the same size).
- Number of labels does not have to be equal to the number of clusters.
- ► Labels may be different from clusters, and not obvious to match.
- ► Here labels are species names (setosa, virginica, versicolor) whereas clusters are integers (1, 2, 3).
- ightharpoonup Best value = 1 (perfect agreement).
- ightharpoonup Random/constant assignment = 0 (clustering meaningless).

Compare two clusters to labels

Compare three clusters to labels

Compare four clusters to labels

Compare random clusters to labels

Compute ARI for several clusterings

- ▶ Which K is best? Clear peak at 3 clusters, which makes sense since there are three species in these data.
- ► How to choose number of clusters? We don't have access to labels (here, species) at training time, when we run the clustering algorithm.

Visualization of squared error

- ▶ Black line segments show distance from each data point to its (closest) cluster center.
- ► This is the distance/error that the K-means algorithm attempts to minimize.

Compute error for several clusterings

- Let $X \in \mathbb{R}^{150 \times 2}$ be the data matrix.
- Let *K* be the number of clusters.
- ▶ Let $H \in \mathbb{R}^{150 \times K}$ be the matrix which assigns each data point to a cluster (there is a one in every row).
- ▶ Let $M \in \mathbb{R}^{K \times 2}$ be the matrix of cluster centers.
- K-means wants to minimize the within-cluster squared error,

$$\min_{H,M} ||\underbrace{X}_{\mathsf{data}} - \underbrace{HM}_{\mathsf{center}}||_2^2$$

Model selection via error curve analysis

- ► These error values can be computed using only the input data (labels/outputs are not required).
- ► The curve stops decreasing rapidly after three clusters.
- ▶ In general, for any problem/data set, making this plot and then locating the "kink in the curve" is a good rule of thumb for selecting the number of clusters.

Visualize clusters using two random seeds

- ► Goal of K-means is to minimize the squared error.
- ▶ Hard non-convex problem due to the 0/1 valued H matrix.
- ► So not possible to get global (absolute best) minimum in practice. Instead K-means returns a local minimum.
- ► Result of K-means algorithm, and quality of local minimum, depends on the intialization / random seed.

Choose between seeds using min error

- ► Try several different random seeds.
- Keep the result with minimum error.

K-means starts with three random cluster centers

All data points assigned to nearest cluster

Cluster centers updated

Compute new assignments

Compute new centers

Compute assignments iteration 3

Compute centers iteration 3

Compute assignments iteration 4

Compute centers iteration 4

Compute assignments iteration 5

Compute centers iteration 5

Compute assignments iteration 6

Compute centers iteration 6

Compute assignments iteration 7

Compute centers iteration 7

Compute assignments iteration 8 (no change = stop)

