Notes on Pure Mathematics

Harry Han

January 30, 2023

Notation

- The \mathbb{} fonts are used to denote sets. (S, Y, etc.)
- $\mathbb{A} \succ \mathbb{B}$ denotes there exits a surjective function $f: A \to B$. \prec , \approx denotes injective, bijective, respectively.

Axiom 0.1 (The "Smallest" Infinite Set). A set \mathbb{S} is infinite iff $\mathbb{S} \succ \mathbb{N}$.

Remark 0.1. Although FPM is a pure mathematic class with emphasis on rigor, no rigorous definition for the infinite set has been proposed. This definition/axiom is of my own conception.

Definition 0.1 (Countable Set). A set \mathbb{S} is countable iff $\mathbb{N} \times \mathbb{S}$ (there exists a bijection $f : \mathbb{N} \to \mathbb{S}$).

Corollary 0.1 (At Most Countable). Let \mathbb{A} be an infinite set. $(\mathbb{A} \prec \mathbb{N})$ iff $(\mathbb{A} \simeq \mathbb{N})$.

Proof. We want to prove $\mathbb{A} \prec \mathbb{N}$ is equivalent to $\mathbb{A} \simeq \mathbb{N}$. $\mathbb{A} \simeq \mathbb{N} \to \mathbb{A} \prec \mathbb{N}$ is by definition. We only need to prove the other direction; i.e., provided $\mathbb{A} \prec \mathbb{N}$, find a bijective function $h : \mathbb{A} \to \mathbb{N}$.

Let $f: \mathbb{A} \to \mathbb{N}$ be an injective mapping. If f is bijective, we are done. If f is injective but not bijective, let \mathbb{N}^- be the range of f. As \mathbb{A} is infinite, \mathbb{N}^- is also infinite. Let $f': \mathbb{A} \to \mathbb{N}^-$ such that f(a) = f'(a). f' is an bijective mapping.

Thus we only need to show there exists a mapping $g: \mathbb{N}^- \to \mathbb{N}$ that is bijective.

g can be constructed by such: sort \mathbb{N}^- and \mathbb{N} in ascending order. Let the first element in the sorted \mathbb{N}^- maps to the first in the sorted \mathbb{N} , the secound to secound, etc. As \mathbb{N}^- is infinite, g must be bijective.

Indeed $h = f' \circ g : \mathbb{A} \to \mathbb{N}$ is the bijective mapping we seek. QED. \square

Theorem 0.0.1 (List of Countable and Uncountable Sets). Any of the following sets are countable.

- 1. \mathbb{Z} and any of its infinite subsets.
- 2. \mathbb{R} and any of its infinite subsets.
- 3. If \mathbb{S} is countable, $\{\mathbb{S} \times \mathbb{S}\}, \{\mathbb{S} \times \mathbb{S} \times \cdots \times \mathbb{S}\}$ are also countable.