

윤관식, 최영서, 박성훈, 여기태*

- 01. 서론
- 02. 현황
- 03. 선행연구 및 연구의 차별성
- 04. 연구내용 및 방법
- 05. 분석결과
- 06. 결론
- 07. 참고문헌

서론

01 서론

■연구의 배경 및 목적

해운의 중요성

- 글로벌 경제의 한 축
- 전 세계 물동량의 90% 이상을 다루는 주요 운송 수단

해운의 운영구조

- 정기선 운송: 컨테이너 운송
- 부정기선 운송: 벌크 운송

정기선 대표적 운임지수

- SCFI (Shanghai Containerized Freight Index)
- CCFI (China Containerized Freight Index)

이 서론

■연구의 배경 및 목적

SCFI 란?

- 상하이발 컨테이너 운임지수
- 글로벌 컨테이너 시장에서 가장 많은 물동량이 처리되고 있는 중국 대형항만 중,
- 상하이발 13개국 주요항로로 구성, 미국서안(USWC) 은

LA, Long Beach, Oakland기준

• 선물거래의 기초자산으로 활용

SCFI 의 중요성

- 컨테이너 시장은 SCFI 를 기준으로 시장 가격 조절
- 여러 파생상품 거래 => 선사 혹은 용선사의 리스크 회피
- 해상운임지수의 불확실성 헷징
- => SCFI 의 예측 또는 예상으로 상대 이해관계자보다 전략적 우위 선점

이 세론

□ 연구의 배경 및 목적

- 글로벌 컨테이너 운임 기준인 SCFI 에 영향을 주는 변수들의 추세를 고려
- -> 정교한 예측을 수행
- 분석된 예측 결과를 바탕으로
- -> 향후 선사 등 해운 이해관계자들의 의사결정을 조력하고 리스크 대비에 활용
- 해운시장에 존재하는 변동 요소들에 대해 고려하고

다양한 관점에서의 시장 구조를 이해

이 서론

02 현황

02 현황

SCFI(Shanghai Containerized Freight Index)

- 2005년 12월 7일 발간을 시작하였으나,
 내용을 업데이트하여 국제 컨테이너 화물 파생상품 개발 및 중국 수출 컨테이너 화물 지수 제도 개선을 목적으로
 2009년 10월 16일(지수 1,000 기준) 공식적으로 출범하여 매주 종합운임지수를 산정하여 발표
- 상하이항을 기항하는 22개 선사 및 26개 중국 쉬퍼/포워더 로부터 데이터를 수집하여 산출
- 단위는 USD/TEU(20피트당 미국달러)이지만, 미국서안(USWC)과 미국동안(USEC)은 40피트 컨테이너 기준으로 함
- 지수는 일반 건식 화물 컨테이너(General dry cargo container) 기준이며, 미국서안과 동안의 경우 일반 화물(General Cargo)을 기준으로 함.
- 기준 종합지수는 1,000포인트이며 기준 기간은 2009년 10월 16일에 지정되었음.
- 상하이발 주요 13개 항로가 포함되어 있으며 이 항로로는 유럽, 지중해, 미국서안, 미국동안, 페르시아만, 호주·뉴질랜드, 서아프리카, 남아프리카, 남아메리카, 서일본, 동일본, 동남아시아, 한국 등
- 미국서안(USWC) 항로에 속하는 항구로는 Los Angeles, Long Beach, Oakland 3개 항이 포함
- 운임의 내용은 선형과 관계없이 산출된 운임으로 해상운임과 부대할증료(Surcharge) 로 구성

Comprehensive Index
Europe(Base port) Freight Rate
Mediterranean(Base port) Freight Rate
USWC(Base port) Freight Rate
USEC(Base port) Freight Rate
Persian Gulf and Red Sea(Dubai) Freight Rate
Australia/New Zealand(Melbourne) Freight Rate
East/West Africa(Lagos) Freight Rate
South Africa(Durban) Freight Rate
South America(Santos) Freight Rate
West Japan(Base port) Freight Rate
East Japan(Base port) Freight Rate
Southeast Asia(Singapore) Freight Rate
Korea(Pusan) Freight Rate

출처: 상하이항운교역소(Shanghai Shipping Exchange), 저자 재구성

■ 해상운임지수 예측에 관한 연구

연구자	연구 방법 사용 변수		평가대상
조상호(2019)	인공신경망(ANN) 모델	HRCI, U.S. Dollar Index, Bunker 380CST	SCFI 예측
김형준 외 2인(2019)	시계열 요소분해법	BDI지수(1999.11- 2018.10)	BDI 단기지수 예측
모수원(2009)	ARIMA모형과 HP기법	BDI	2009년 6월-2010년 6월 BDI 예측
이석용(2020)	실증분석	CCFI	컨테이너 시장의 순환주기 분석 및 시황 예측

■ 해상운임 예측에 관한 연구

연구자	연구 방법	사용 변수	평가대상	
김창범(2019)	조건부이분산모형과 Hurst지수	BDI와 HRCI	해상운임 변동성의 레버리지 효과 및 장기기억 과정의 변화 분석	
강효원 외 2인(2014)	벡터자기회귀모형	국제유가, 수출액, 중고선가지수, 중고선매매 선복량, 신조선 인도량, 수주 잔량, 폐선량, 선대 배치 선박수, 선대 배치 선복량, HRCI, 컨테이너선 정기용선료지수	정기선 운임에 영향을 미치는 변수들에 대한 실증분석	
안영균·고병욱(2018)	공적분모형, VECM 모형	세계 컨테이너 물동량, 세계 컨테이너 선복량, MGO벙커유 가격, 세계 금리(Libor), 컨테이너 운임지수	4개 독립변수와 컨테이너 운임지수와의 상관관계	
김명희(2016)	단위근 검정, VAR모형, 공적분 분석을 이용한 예측	ClarkSea Index세계GDP 성장률, 세계 해상물동량, 주요국 주가지수, LIBOR금리, OECD의 인플레이션 및 유가(Brent Crude Oil Price),	해상운임에 영향을 미치는 요인 분석	

■ 해상운임지수 관계에 관한 연구

연구자	연구 방법	연구 방법 사용 변수		
김현석· 오용식(2012)	GARCH 모형, TGARCH 모형	BDI, 해운기업 주가	BDI와 해운기업 주가 변동성 간의 관계	
김형호 외 2인(2016)	VAR 모형 <i>,</i> VECM 모형	해운실물경기지수(BDI, CCFI, HRCI), 해운기업 주가	해운선사 주가와 해상 운임지수의 영향 관계 분석	
이재연(2021)	회귀분석	컨테이너운임지수(CCFI, SCFI), 대만 해운기업(Evergreen, Yang Ming, Wan Hai) 주가, 국제유가, 환율, 교역량, 산업생산지수	컨테이너운임지수(CCFI, SCFI)가 대만 해운기업의 주가에 미치는 영향 분석	

해상운임 관계에 관한 연구

연구자	연구 방법 사용 변수		평가대상
김부권 외 2인(2019)	Copula 모형	국제운임지수(BDI, BCI, BPI, BSI, BHI), WTI 현물가격	국제운임지수와 원유가격의 의존관계
김현석· 장명희(2013)	비대칭 공적분 검정 모형	BDI, HFO 380cst	벙커 가격과 건화물선지수(BDI) 간의 비대칭 장기균형 분석
정상국· 김성기(2011)	벡터자기회귀모형	BDI, BCI, BPI, 두바이 국제유가	국제유가의 변화가 건화물선 운임에 미치는 영향
최기홍· 김동윤(2018)	VAR모형, GARCH모형, DCC모형	BDI, Crude oil(Brent, Budai and WTI)	발틱운임지수와 원유시장 간의 상호관련성

■국내 시스템 다이내믹스 연구

연구자	연구 방법	사용 변수	목적
최정석(2017)		유가, 해상운임, 원유생산량, 원유소비량, 경제성장률, 환율, 화물수요, 선박공급	선박연료유 비용의 예측
전준우(2020)	시스템 다이내믹스	CCFI, 컨테이너 신조선가 지수, 컨테이너 중고선가 지수, 중국의 컨테이너 물동량, 사이즈별 컨테이너 선대의 월별 데이터, 대형선박 비율	해운 운임이 컨테이너 선가에 영향을 미치는 시차
성기덕(2016)		화물소석률, 유류비, 선박속도, 용선료	한·중·일 항로에 규모의 경제가 적용검토
이재구·이재환(2020)		GDP, PDI, 과거 추세, 인구변수	평택·당진항의 수입 승용차 물동량 예측

■국외 시스템 다이내믹스 연구

연구자	연구 방법	사용 변수	목적
Yan Jin(2008)	Jin(2008) 컨테이너 터미널 하역능력, 운항 중인 선박의 수, 지연되고 있는 신조 선박의 숫자		양쯔강을 운항하는 컨테이너 선박의 투자패턴
Dikos et al.(2006)	시스템 다이내믹스 시장진입(신조선 투자), 시장탈출(선박 해체), 계선		탱커선 시장에서 투자 결정
Jing, D. et al.(2021)	. et al.(2021) NSR을 통과하는 선박, CO₂배출량을 조사하기 위해 연료 사용 조건, 선박 속도		북극항로에서 co₂배출량 예측

연구의 차별성

기존 연구동향

- 해상운임지수는 오랜 시간에 걸쳐 많은 국가에서 다방면으로 개발되어 활용됨
- 예측과 관련된 주제들은 많이 연구되었음
- SCFI지수는 타 해상운임지수 예측과 관련된 연구와 비교해 상대적으로 매우 적음
- 해상운임지수 관련 많은 연구에는 시계열 데이터에 의한 회귀분석 방법을 이용하고 있으며, 시스템 다이내믹스를 이용한 해상운임 예측은 국내외적으로 찾아보기 어려움

연구의 차별성

- 본 연구는 SCFI를 대상으로 시스템 다이내믹스를 활용하여 SCFI
- 예측을 목적으로 둔 연구
- 기존의 정적인 변수관계를 고려한 연구를 벗어나, 변수간 동적인 관계를 추적할 수 있는 방법론을 채택하여 예측의 정확성을 항상 시킴

System Dynamics란?

- 1960년대 MIT 의 Jay Forrester 교수에 의해 개발된 분석 기법
- 동태적이고 순환적인 인과관계의 시각으로 현상을 이해하고 이러한 이해에 기초한 컴퓨터 모델을 구축하여 복잡한 인과관계로 구성된 현상이 어떻게 <mark>동태적</mark>으로 변해 나가는지를 실험하여 문제의 해결을 돕는 방법론
- 시간이 지남에 따라 레벨 및 레이트 변수의 변화량의 관계는 아래와 같은 적분 형태를 가짐
- System Dynamics 는 추세 분석에 해당하는 방법론으로 영향을 주는 요인들의 관계를 통해 추세를 나타내기 때문에 예측 모델 구성이 타당하게 이루어질 수 있다는 장점이 있음

```
Stock_t = Stock_{t-dt} + dt \times (Inflow_{t-dt} - Outflow_{t-dt})
Stock_t : t시간의레벨변수의값 dt \times (Inflow_{t-dt} - Outflow_{t-dt}) : t시간동안의레벨변수에영향을미치는레이트변수의값
```


System Dynamics 모델링 프로세스

문제의 개념화

문제의 대상 및 목표를 정함

동적전제 설정

시스템의 관련 변수를 확인하고 변수 사이에 동적 전제를 설정 시뮬레이션 모델 구성

앞의 전제들을 바탕으로 모델을 구축하여, 관련 데이터를 모델에 반영 시험 및 검증

모델이 성공적으로 실행되었는지 검증 정책 설정 및 평가

인과지도와 Stock-flow 다이어그램을 사용하여 문제를 분석하고 해결

■ 예측변수 설정을 위한 전문가 인터뷰

■ 일시: 2021년 3월 12~3월 19일

■ 응답자: 해운실무 전문가 7명

■ 인터뷰 대상자: COSCO(15년), HMM(29년), MAERSK(30년), ONE(20년), PANTOS(1년), SM상선(11년)

질문 1) 물동량, 경제규모에 해당하는 변수의 "중요도" 및 "순위"를 기입해주십시오.

분류	변수	중요도 평균	순위
물동량	미국 항만별 하역 물동량	6.8	2
	상하이항의 하역 물동량	6.2	3
	수출입 물동량	7.4	1
경제규모	GDP	4.6	5
	WTI(West Texas Intermediate)	4.6	5
	PMI(Purchasing Manager Index)	5.4	4

질문 2) 해운부문 전문가로서 SCFI를 예측함에 있어 아래 제시된 변수 외 추가적으로 필요하다고 생각하시는 변수가 있으시다면 추가하여 우선순위와 중요도를 표기해주십시오.

분류	변수
	터미널 및 내륙 운송 등 Operational Facility
	선사(Aliance)들의 공급탄력성과 그 실행
	미국 소비자 구매지수(Purchase Index)
	컨테이너 가용성 지수
	기항 포트 생산성 지수
추가요인	포트컨제스천
	선복량
	부대비용
	항만 노조, Labor Shortage
	Port Congestion
	Chassis availability, Equipment availability (empty repositioning to Asia)

- ◆ SCFI의 미주서안(USWC) 노선 지수예측을 하기 위해 사용한 변수들의 데이터는 2016년 1월부터 2020년 12월까지의 월별 데이터를 사용
- ◆ 수요 요인: LA항 수입 물동량, Long Beach항 수입 물동량, Oakland항 수입 물동량, Shanghai항 컨테이너 물동량

공급 요인 : **선복량**

전략 요인 : 계선량

외부 요인 : 유가

들을 삽입하여 시스템 다이내믹스 모델링을 구현

◆ 2016년 1월부터 2020년 12월까지를 전체기간으로 설정하고 이 중 2016년 1월부터 2020년 6월까지를 트레이닝 데이터로 모델의 정확도를 파악하여 정확도를 측정함.

2020년 7월부터 2020년 12월까지의 데이터를 검증 데이터로 사용

◆ 미래예측을 진행한 기간은 2020년 1월부터 2021년 12월까지 총 2년의 기간이며 Test 데이터로 잡아 예측한 값과 비교하여 정확도를 측정함

LA항 컨테이너 수입량 Dmnl

Long Beach항 컨테이너 수입량 Dmnl

Oakland항 컨테이너 수입량 Dmnl

Shanghai항 컨테이너 수입량 Dmnl

■ 벙커유 가격 Dmnl

■해운기업 전략(계선량) Dmnl

■선복량 Dmnl

USWC SCFI의 미래기간예측

USWC SCFI 모델 예측검증

시뮬레이션의 정확도를 측정하기 위해 **MAPE**(Mean absolute percentage error), RMSE(Root mean squared error), R-Square 값으로 검증

$$MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

0% ≤ *MAPE* < 10% 매우 정확한 예측

10% ≤ *MAPE* < 20% 비교적 정확한 예측

 $20\% \le MAPE < 50\%$ 매우 합리적인 예측

50% < MAPE 부정확한예측

	검증 기간	MAPE	정확도	RMSE	검증 기간	RSQ
Train Data (훈련데이터)	2016년 1월 - 2020년 6월	22.9%	77.1%	396.6	2016년 1월 -	70.00/
Test Data (예측데이터)	2020년 7월 - 2020년 12월	13.9%	86.1%	657.1	2020년 12월	70.9%

식 (3)

USWC SCFI의 변수들에 대한 민감도 분석(다변량 민감도 시뮬레이션)

USWC SCFI의 변수들에 대한 민감도 분석(다변량 민감도 시뮬레이션)

<Oakland항 수입량에 대한 민감도 분석>

<Shanghai형 Container Volume에 대한 민감도 분석>

USWC SCFI의 변수들에 대한 민감도 분석(다변량 민감도 시뮬레이션)

<해운기업 전략(계선량)에 대한 민감도 분석>

USWC SCFI의 변수들에 대한 민감도 분석(다변량 민감도 시뮬레이션)

06 결론

06 결론

■분석결과

- ✓ 분석 결과, 트레이닝 기간(2016년 1월-2020년 6월)에서는 MAPE 값 22.9%로 나타나 매우 합리적인 예측이라고 나타났으며,
- ✓ 테스트 기간(2020년 7월-2020년 12월)에서는 13.9%로 나타나 비교적 정확한 예측값이 도출됨.
- ✓ RSQ 값은 70.9로 나타나 설명력을 갖춘 것으로 나타남.
- ✓ 민감도 분석 결과에서는 Shanghai항 컨테이너 물동량에 대한 변동이 민감도 반응이 큰 것으로 나타났으며, 유가에 대한 민감도 반응도 크게 나타남.

06 결론

시사점 및 향후 연구

- ✓ SCFI 예측을 통해 실무적으로는 용선, 장기계약, 물동량 수급 조절, 화물 운임 조정 등 리스크 조절이 가능함.
- ✓ 선사는 정확한 운임 예측을 통해 향후, 신조선 발주, 노후 선박 폐선 스케줄, 계선량 조절 등 공급에 대한 요인을 조절하는 경영적 판단을 통해 향후 신조선 발주 시, 시장 예측을 통해 적절한 시기에 대한 의사결정을 도울 수 있음.
- ✓ 화주들은 운임 예측을 통해 장기계약에 대한 의사결정을 할 수 있으며, 장기계약을 통해 일종의 헤지를 구성할 수 있음.
- ✓ 운임의 상승은 물동량 수요의 상승을 의미하기 때문에 항만관계자들의 경우 인력수요 및 배치 등에 대한 대응을 할 수 있음.
- ✓ 향후 연구에서는 금융 시장에서 발생하는 변수들을 함께 고려하여 분석하면 폭넓은 분석을 진행할 수 있음.
- ✓ Europe Freight Rate, Mediterranean, USEC, Africa Freight Rate, Korea Freight Rate 등 지역별 운임지수를 예측하여 향후 시장 변동에 대응할 수 있어야 함.

07 참고문헌

07 참고문헌

■ 국외논문

- Abbas, K. A. and Bell, Michael G. H.(1994), System Dynmics Applicability to Transportation Modeling, Transportation. Research Part A: Policy and Practice. Vol. 28A, No. 5, pp. 373-400
- Dikos, G., Markus, H.S., Papadatos, M. P., Papakonstantinos, V. (2006), Niver Lines: A System-Dynamics Approach to Tanker Freight Modeling, Interfaces, Vol. 36, No. 4, pp. 326-341
- Engelen, S., Meersman and H., Voorde E. V. D.(2006), Using system dynamics in maritime economics: an endogenous decision model for shipowners in the dry bulk sector, Maritime Policy & Management: The flagship journal of international shipping and port research, Vol. 33, No. 2, pp. 141-158
- Garrido, J., Saurí, S., Marredo, Á., Gül, Ü. and Rúa, C.(2020), 「Predicting the Future Capacity and Dimensions of Container Ships」, Transportation Research Board, 2674(9), pp. 177-190
- Gouvernal, E. and Slack, B.(2012), Container Freight Rates and Economic Distance: a New Perspective on the World Map, Maritime Policy & Management, Vol. 39, No. 2, pp.133-149
- Hayashi, K.(2020), Stationarity of spot freight rates considering supply/demand effect, Journal of Shipping and Trade, 5(1), pp. 1-9
- Jansson, J. O. and Shneerson, D.(1987), Liner Shipping Economics, NY; Chapman and Hall, pp. 115
- Jin, Y.(2008), Investment in container ships for the Yangtze River:a system dynamics model, OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, 2008,
- Jing, D., Dai, L., Hu, H., Ding, W., Wang, Y., Zhou, X.(2021), 「CO₂ emission projection for Arctic shipping: A system dynamics approach J., Ocean and Coastal Management, 205, pp. 1-14
- Randers, J. and Göluke, U.(2007), Forecasting turning points in shipping freight rates: lessons from 30 years of practical effort, System Dynamics Review, Vol. 23, No. 2/3, pp. 253-284
- Slack, B. and Gouvernal, E.(2011), Container Freight Ratess and the Role of Surcharges, Journal of Transport Geography, Vol. 19, No. 6, pp. 1482-2489
- Taylor, A. J.(1976), System Dynamics in Shipping, Journal of the Operational Research Society, Vol. 27, 1, I, pp. 41-56

07 참고문헌

국내논문

- 강효원, 김우호, 이영수(2014), 「정기선운임 결정 요소의 실증분석」(An Empirical Analysis on the Determinants of the Liner Freight Rate), 무역학회지.제39권 제5호, pp.43-65
- 김태일, 정봉민(2012), 「컨테이너선 시장 가격지수 동향과 전망」, 계간 해양수산(5), pp.128-143
- 김현석, 장명희(2017), 「글로벌 건화물 운임시장과 중국 컨테이너 운임시장 간의 동조성 분석」(Analysis of the Synchronization between Global Dry Bulk Market and Chinese Container Market), 한국항해항만학회지 제41권 제1호 pp.25-32
- 김형호, 전준우, 여기태(2017), 「System dynamics를 이용한 중국 컨테이너 물동량 예측에 관한 연구」(Forecasting of Container Cargo Volumes of China using System Dynamics), 디지털융복합연구 vol.15, no.3, pp.157-163
- 박강희, Tianya Hou, 신현정, 박찬규, 최성희(2009), 「Semi-Supervised Learning을 이용한 시계열 예측 : 서부 텍사스 중질유 가격 예측」(Time Series Prediction with Semi-Supervised Learning: West Texas Intermediate Oil Price Forecasting), 대한산업공학회 춘계공동학술대회 논문집, pp.58-81
- 박강희, Tianya Hou, 신현정(2011), 「기계학습기법에 기반한 국제 유가 예측 모델」(Oil Price Forecasting Based on Machine Learning Techniques), 대한산업공학회지, 37권1호, pp.64-73
- 박호건, 안기명(2002), 「정기선해운의 운임결정요인과 안정화방안에 관한 연구」(A Study on the Determinant and the Stabilization Scheme of Liner Freight Rates), 해운물류 : 이론과 실천 0권0호, pp47-82
- 송경재, 양희민(2005), 「시계열분석에 의한 국제유가 예측: Nymex-WTI선물가격을 중심으로」(A Study on the Nymex WTI Prices Forecasting Using Time Series Analysis), 통계연구, vol.10, no.1, pp.4-4
- 양종서(2008), 「컨테이너선 해운,조선 시황예측 방법론 및 중장기전망」, 해양한국 2008권10호, pp.138-147
- 여기태, 정현재. (2011), 「SD기법에 의한 한·중·일 환적물동량 변화량 추정에 관한 연구」, 한국항만경제학회지, 27권4호, pp.165-185
- 윤원철(2005), 「선물시장과 전문가예측시스템의 가격예측력 비교 WTI원유가격을 대상으로-」(Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price, 자원.환경경제연구, 14권1호, pp.201-222
- 이기영(2019), 「CDS(Credit Default Swap) Spread의 중국 실물경제 예측력 관한 연구」(A Study on the Forecasting Power of CDS Spread to China's Real Economic Activity), 현대중국연구 21권1호, pp.105-137
- 이기영(2015),「Term Spread의 중국경기 예측력에 관한 연구」(An analysis on the predictability of Term Spread on the economic recession in China), 중국연구 64권, pp.215-242
- 이영수(2017), 「ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력」(UC Model with ARIMA Trend and Forecasting U.S. GDP), 국제지역연구 21권4호, pp.159-172
- 이현호(2012), 「컨테이너 해상운임 예측모형」(Container Ocean Freight Index Forecasting Model), 아주대학교 공학대학원 물류경영공학과 석사학위논문
- 조상호(2019), 「인공신경망(ANN) 모형을 활용한 상해 컨테이너 운임지수 예측」(A Study on the Forecasting of Shanghai Containerized Index Using Artificial Neural Network), 한국해양대학교 대학원 해운경영학과 석사학위 논문
- 전준우(2019),「해운 운임 간 인과관계에 관한 연구」(A Study on the Causal Relationship Between Shipping Freight Rates), 융합정보논문지 9권12호, no.12, pp.47-53

감사합니다