15.1) Bias-Variance Tradeoff

Vitor Kamada

February 2020

Reference

Tables, Graphics, and Figures from

Principles and Techniques of Data Science

```
Lau et al. (2019): Ch 15 Bias-Variance Tradeoff
```

```
https://www.textbook.ds100.org/ch/15/bias_intro.html
```

2 / 20

Bias-Variance Decomposition

$$\gamma = f_{ heta}(z) + \epsilon$$
 $R(f_{\hat{ heta}}) = \mathbb{E}[(\gamma - f_{\hat{ heta}}(z))^2]$

$$\{\mathbb{E}[f_{\hat{ heta}}(z)] - f_{\hat{ heta}}(z)\}^2 + Var(f_{\hat{ heta}}(z)) + Var(\epsilon)$$

 $bias^2 + model variance + irreducible error$

3 / 20

Vitor Kamada ECO 7100 Econometrics I February 2020

Linear Regression and Sine Waves

Many Sets of Data from the Population

Model Variance and Noise

$risk = bias^2 + variance + noise$

Vitor Kamada ECO 7100 Econometrics I February 2020 7 / 20

More Data Reduces Bias and Variance

Derivation of Bias-Variance

$$egin{aligned} \mathbb{E}[(\gamma-f_{\hat{ heta}}(z))^2] \ & \mathbb{E}[\gamma^2-2\gamma f_{\hat{ heta}}+f_{\hat{ heta}}(z)^2] \end{aligned}$$

$$\mathbb{E}[\gamma^2] - \mathbb{E}[2\gamma f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)^2]$$

$$\mathbb{E}[(f_{ heta}(z)+\epsilon)^2] - \mathbb{E}[2(f_{ heta}(z)+\epsilon)]\mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)^2]$$

$$\mathbb{E}[f_{\theta}(z)^2 + 2f_{\theta}(z)\epsilon + \epsilon^2] - (2f_{\theta}(z) + \mathbb{E}[2\epsilon])\mathbb{E}[f_{\hat{\theta}}(z)] + \mathbb{E}[f_{\hat{\theta}}(z)^2]$$

$$f_{\theta}(z)^2 + 2f_{\theta}(z)\mathbb{E}[\epsilon] + \mathbb{E}[\epsilon^2] - (2f_{\theta}(z) + 2\mathbb{E}[\epsilon])\mathbb{E}[f_{\hat{\theta}}(z)] + \mathbb{E}[f_{\hat{\theta}}(z)^2]$$

Vitor Kamada ECO 7100 Econometrics I February 2020 9 / 20

bias²+ model variance + noise

$$egin{aligned} f_{ heta}(z)^2 + 2f_{ heta}(z)\mathbb{E}[\epsilon] + \mathbb{E}[\epsilon^2] - (2f_{ heta}(z) + 2\mathbb{E}[\epsilon])\mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)^2] \ f_{ heta}(z)^2 + \mathrm{Var}(\epsilon) - 2f_{ heta}(z)\mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)^2] \ f_{ heta}(z)^2 + \mathrm{Var}(\epsilon) - 2f_{ heta}(z)\mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)^2] - \mathbb{E}[f_{\hat{ heta}}(z)]^2 + \mathbb{E}[f_{\hat{ heta}}(z)]^2 \ f_{ heta}(z)^2 - 2f_{ heta}(z)\mathbb{E}[f_{\hat{ heta}}(z)] + \mathbb{E}[f_{\hat{ heta}}(z)]^2 + Var(f_{\hat{ heta}}(z)) + \mathrm{Var}(\epsilon) \ (f_{ heta}(z) - \mathbb{E}[f_{\hat{ heta}}(z)])^2 + Var(f_{\hat{ heta}}(z)) + \mathrm{Var}(\epsilon) \end{aligned}$$

Vitor Kamada ECO 7100 Econometrics I February 2020 10 / 20

Training Error and Test Error

11/20

K-fold Cross-Validation

path ='https://github.com/DS-100/textbook/raw/master/content/'
ice = pd.read_csv(path + 'ch/15/icecream.csv')

	sweetness	overall
0	4.1	3.9
1	6.9	5.4
2	8.3	5.8
•••		
6	11.0	5.9
7	11.7	5.5
8	11.9	5.4

9 rows × 2 columns

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
trans_ten = PolynomialFeatures(degree=10)
X_ten = trans_ten.fit_transform(ice[['sweetness']])
y = ice['overall']
clf_ten = LinearRegression(fit_intercept=False).fit(X_ten, y)
```


14 / 20

Overall Rating vs Ice Cream Sweetness

	sweetness	overall
0	3.60	3.09
1	3.50	3.17
2	3.69	3.46
•••		
6	11.00	5.90
7	11.70	5.50
8	11.90	5.40
309 rows × 2 columns		

70/30% Train-Test Split

Training set size: 217
Test set size: 92

Polynomial Degree from 1 to 10

```
]])
             8.8 , 77.44,
                             681.47,
                                       5996.95, 52773.19],
    1. ,
              10.74,
                      115.35,
                              1238.83,
                                      13305.07, 142896.44],
             9.98, 99.6, 994.01,
                                       9920.24, 99003.99],
             6.79, 46.1,
                               313.05,
                                       2125.59, 14432.74],
             5.13, 26.32,
                               135.01, 692.58, 3552.93],
               8.66, 75.,
                               649.46.
                                       5624.34, 48706.7811)
```

5-fold Cross-Validation

```
from sklearn.model_selection import KFold
def mse cost(y pred, y actual):
    return np.mean((y pred - y actual) ** 2)
def compute CV error(model, X train, Y train):
    kf = KFold(n splits=5)
   validation_errors = []
   for train idx, valid idx in kf.split(X train):
        # split the data
        split_X_train, split_X_valid = X_train[train_idx], X_train[valid_idx]
        split Y train, split Y valid = Y train.iloc[train idx], Y train.iloc[valid idx]
        # Fit the model on the training split
        model.fit(split_X_train,split_Y_train)
        # Compute the RMSE on the validation split
        error = mse cost(split Y valid,model.predict(split X valid))
        validation_errors.append(error)
   #average validation errors
    return np.mean(validation errors)
```

```
cv_df = pd.DataFrame({'Validation Error':
cross_validation_errors}, index=range(1, 11))
cv df.index.name = 'Degree'
display(cv_df)
```

Validation Error

Degree	
1	0.32
2	0.05
3	0.05
8	0.05
9	0.05
10	0.05

10 rows × 1 columns

Final Model

Degree 2 polynomial

Training error: 0.04409 Validation error: 0.04506 Test error: 0.04698