

Avaliação de algoritmos de machine learning para detecção de malware IoT no dataset IoT-23

Cristian H. M. Souza

Carlos H. Arima

Agenda

- Introdução
- Metodologia
- Implementação e resultados
- Conclusão e trabalhos futuros

Introdução

Introdução

 Malwares continuam sendo um dos principais desafios à segurança dos sistemas computacionais.

 O advento do paradigma loT foi acompanhado pelo aumento do número de programas maliciosos com foco nas arquiteturas ARM e MIPS.

• Soluções a nível de rede que utilizam machine learning têm se mostrado efetivas na detecção e mitigação de malwares.

Introdução

- Este trabalho propõe uma avaliação de algoritmos de machine learning para classificação de malware IoT com base no dataset IoT-23.
- O objetivo principal é auxiliar pesquisadores de segurança na escolha e implementação de modelos para detecção de artefatos maliciosos em tais ambientes.
- Foram implementados os algoritmos de Random Forest, SVM e uma árvore de decisão, além de uma rede neural convolucional.
- Os modelos são comparados com base nas métricas de acurácia, precisão, recall e F1-Score.

- O dataset utilizado para treinamento dos modelos propostos neste estudo é o IoT-23, criado pelo Avast AIC Laboratory.
- Esta base contém 20 capturas de malwares coletadas de diversos dispositivos IoT, além de 3 capturas de tráfego benigno.
- Seu objetivo é fornecer aos pesquisadores um grande conjunto de dados reais e rotulados de infecções e tráfego legítimo, visando auxiliar o desenvolvimento de algoritmos de machine learning.

• Em números totais, o dataset possui 325.307.990 registros, sendo 294.449.255 deles maliciosos.

Tipo de ameaça	Descrição			
Attack	Anomalias que não puderam ser identificadas e classificadas.			
Benign	Tráfego benigno.			
C&C	Tráfego gerado pela comunicação entre um dispositivo infectado e uma estação de comando e			
	controle.			
DDoS	Tráfego gerado por ataques de negação de serviço distribuídos.			
FileDownload	Tráfego gerado pela transferência de arquivos maliciosos.			
HeartBeat	Tráfego gerado pela estação de C&C para verificar a conexão com o alvo.			
Mirai	Tráfego que possui características da botnet Mirai.			
Okiru	Tráfego que possui características da botnet Okiru.			
PartOfAHorizontalPortScan	Tráfego gerado por scanners de rede para coleta de informações.			
Torii	Tráfego que possui características da botnet Torii.			

Pré-processamento:

- 1. Remoção de colunas não importantes.
- 2. Label encoding.
- 3. Substituição de valores ausentes.
- 4. Feature scaling.
- 5. Separação do conjunto de treinamento e de teste (7:3).

Implementação e resultados

Implementação e resultados

- CNN: Max pooling 1D, pool_size=2 e 500 neurônios.
 - Otimizador Adam.
- RF: 100 árvores e random_state=0.
- **SVM:** regularização = 1 e kernel cache = 700 MB.

Algoritmo	Acurácia	Precisão	Recall	F1-Score
CNN	92.83%	0.97	0.99	0.98
Decision Tree	97.33	0.93	0.99	0.96
Random Forest	99.33%	0.97	0.99	0.98
SVM	94%	0.91	0.93	0.92

Conclusão e trabalhos futuros

Conclusão e trabalhos futuros

• Este trabalho apresenta uma avaliação de diferentes algoritmos de machine learning para a detecção de malware em dispositivos IoT, utilizando o dataset IoT-23.

 Como trabalhos futuros, pretende-se avaliar o desempenho dos algoritmos contra artefatos maliciosos não presentes no dataset IoT-23, com o objetivo de mensurar a acurácia dos modelos em cenários reais.

 Avaliar o comportamento dos modelos considerando artefatos especializados na evasão de defesas pode fornecer dados importantes para aprimorar a capacidade de detecção dos algoritmos.

Avaliação de algoritmos de machine learning para detecção de malware IoT no dataset IoT-23

Cristian H. M. Souza

Carlos H. Arima