CALCULUS

PART I : DIFFERENTIAL CALCULUS

LECTURE 1 : DIFFERENTIAL CALCULUS FOR FUNCTIONS OF A SINGLE VARIABLE.
TAYLOR'S FORMULA.

1. WEIERSTRASS THEOREM:

 $f:[a,b] \rightarrow \mathbb{R}$ => f is bounded and attains its minimum (m) and f continuous f =

In f = f([a,b]) - different metations $f([a,b]) = ger : \exists x \in [a,b]$ such that g = f(x)

Remark : Txela,67 Fyelm, M) such that y = f(x)

2. DIFFERENTIABILITY DEFINITION:

f: (a, b) → R is differentiable at x*∈(a, b) if the limit

lim $\frac{f(x^*+R) - f(x^*)}{R}$ exists and is finite.

If the simil exists but is infinite, then we say that I was derivative at x^* (but I is not differentiable at x^*).

3. LOCAL EXTREMA DEFINITION:

 x^* is a local minimum of f, $f:(a,b) \rightarrow \mathbb{R}$ if $f(x^*) < f(x)$, f(x) < f(x), f(x) < f(x)

 \times^* is a local maximum of f, f: $(a, b) \rightarrow \mathbb{R}$ if $f(x^*) > f(x)$, $+x \in [x^* - E, x^* + E]$, E > 0

4. CRITICAL OR STATIONARY POINTS DEFINITION:

 x^* is a vitical point of f if $f'(x^*) = 0$

Remark: local extrema and critical points do not coincide

5. FERHAT THEOREM :

f:(a,b) → R has a local minimum/maximum at x*E(a,b). If f is differentiable at x^* than $\xi'(x^*) = 0$.

G. ROLLE THEOREM :

Let f: (a,6) → R. 4:

- (1) & is continuous on [a,6]
- (2) 4 is differentiable on (a, b)
- (3) $\pm(0)$ = $\pm(6)$

Then $\exists c \in (a,b)$ such that f(c) = 0.

4. LAGRANGE THEOREM

Let f: (a, b) → R. 4:

- (1) & is continuous on [a,6]
- (2) of in differentiable on (a, b)

Then $\exists ce(a,b)$ such that $\pm'(c) = \frac{\pm(b) - \pm(a)}{b - a}$

8. CAUCHY THEOREM:

Let f, g: [a, b] → R. 4:

- (1) \$1,9 are continuous on ta,67
 (2) \$1,9 are differentiable on (a,6)

(3) q'(x) + 0, 4 x € (a,b)

Thum $\exists c \in (a, b)$ such that: $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$

9. TAYLOR THEOREM:

2 € (d,b) = R is (m+1) times differentiable, x0 € (a,b). Then tx € (a,b) to

between x and xo such that:

$$T_m(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(m)}(x_0)}{m!}(x-x_0)^m$$

 $\mathcal{R}^{u}(x) = \frac{1}{b(u+1)(c)} (x-x^{0})_{u+1}$

 $f(x) = T_m(x) + R_m(x)$

for appreximation $Rm(x) \rightarrow 0$.

LECTURE 2 : CALCULUS FOR FUNCTIONS OF SEVERAL VARIABLES I. THE

GEOMETRY OF Rd, PARTIAL DERIVATIVES, THE GRADIENT.

1. THE GEOMETRY OF R :

v) "+" addition

$$x = (x_1, x_2, ..., x_d)$$
 $y = (y_1, y_2, ..., y_d)$
 $x + y = (x_1 + y_1, x_2 + y_2, ..., x_d + y_d)$

b) multiplication by a scalar:

$$\lambda_{X} = (\lambda_{X_1}, \lambda_{X_2}, \dots, \lambda_{X_d})$$

: (touber panni) toubard too to the (a

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_d y_d$$

 $(< x_1 y_2$ alternative metation)

d) more of x (length): $||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$

e) distance:

N1: 11x11 >8 and 11x11 = 0 (=) X = 0 Rd

$$N_2: ||X|| = |X| ||X||, \forall X \in \mathbb{R}, X \in \mathbb{R}^d$$

4) open ball centored at x and of tradius &:

g) ordhogonality in Ra

h) segments in Rd

i) C convex so if 4x, y & C we have [x, y] CC.

2. PARTIAL DERIVATIVES DEFINITION:

4: Rd → R, & flas partial dominative with respect to Xe at a point x=(x1,...,xd)

if lim (x1,x2,..., Xe-1,Xe+h, Xe+1,...xd) - f(x1,...,Xe-1,Xe,Xe+1,...,xd)

fr. >0

, strixs

Negation: 3xe

3. THE GRADIENT:

$$\Delta f(x) = \left(\frac{9x}{9t}(x), \frac{9x^{5}}{9t}(x), \dots, \frac{9x^{q}}{9t}(x)\right), x \in \mathbb{R}_{q}$$

LECTURE 3: DIFFERENTIAL CALCULUS FOR FUNCTIONS OF SEVERAL VARIABLES II DIFFERENTIABILITY AND PROPERTIES.

I CONTINUITY DEFINITION:

 $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ is continuous at $x \in \mathbb{R}^d$ if $+ \varepsilon > 0$ 3 \times 1 $+ \varepsilon < 0$ 1 $+ \varepsilon <$

2. CHAIN RULE THEOREM :

 $f: \mathbb{R}^d \to \mathbb{R}$ has continuous portial derivatives and $x_1, \dots, x_d: [a, b] \subset \mathbb{R} \to \mathbb{R}$ one all differentiable.

Then $\mp : [a,b] \rightarrow \mathbb{R}$, $\mp (\pm) = f(x_i(\pm), \dots, x_d(\pm)) (\mp = f_o(x_i, \dots, x_d))$ is differentiable and $\frac{d}{dt} \mp (\pm) = \nabla f(x_i(\pm), \dots, x_d(\pm)) = \frac{d}{dt} \times (\pm)$

3. LAGRANGE THEOREM (d>1):

If DER convex, a, b & D (a + b)

f: D → R Pras continuous partial desirratives

thun $\exists c \in (a,b)$ such that : $f(b) - f(a) = \nabla f(c) \cdot (b-a)$

PROOF:

Let a, b e D and g: $(0,1) \rightarrow \mathbb{R}$, $g(\pm) = f(a + \pm (b-a))$, $\pm e(0,1)$. Taking account of the Lagrange showum for functions of one natioable:

(1) . (ot) p = (a)p - (1)p toth that g(1) = ot E

If a = (a, a2, ..., am), b=(b, b2, ... , bm) them:

$$g(t) = f(\alpha_1 + t(b_1 - \alpha), \dots, \alpha_m + t(b_m - \alpha_n))$$

and

$$g'(t) = f'_{u_1}(a + t(b-a))u'_{i_1}(t) + \dots + f'_{u_n}(a + t(b-a))u'_{i_n}(t) =$$

$$= f'_{u_1}(a + t(b-a)(b_1-a_1) + \dots + f'_{u_n}(a + t(b-a))(b_n-a_n) =$$

$$= \nabla f(a)(a + t(b-a))(b-a). (2)$$

Taking c = a + to(b-a) to (1) and (2) => $f(b) - f(a) = \nabla f(c)(b-a)$

4. SCHWARZ THEOREM:

 $f: \mathbb{R}^d \to \mathbb{R}$ admits continuous mixed second order partial derivatives (on a small ball around x) then:

$$\frac{9x^{i}9x^{j}}{9_{5}t}(x) = \frac{9x^{j}9x^{i}}{9_{5}t}(x)$$

6. HESSIAN MATRIX:

$$H^{4} = \left(\frac{9x9x^{3}}{9^{5}}(x)\right)^{1/3 = 1/9} = \frac{9x^{9}x^{9}}{9^{5}} = \frac{9x^{9}}{9^{5}} = \frac{9x^{$$

6. LINEAR FUNCTIONS:

$$T: \mathbb{R}^d \to \mathbb{R}$$
 is called linear if:
i) $T(x+y) = T(x) + T(y) + \forall x, y \in \mathbb{R}^d$ $\Rightarrow iii) T(x+py) = xT(x) + \beta T(y)$
ii) $T(x+y) = xT(x)$, $\forall x \in \mathbb{R}^d$, $\forall x \in \mathbb{R}^d$

THEOREM :

 $\forall T: \mathbb{R}^d \rightarrow \mathbb{R}$ limear function \Rightarrow there exist unique $\alpha_K \in \mathbb{R}^d$ such that $T(x) = \alpha_K \cdot X$

EXAMPLE :

$$\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d$$

 $T_{\alpha}(x) = \alpha \cdot x \rightarrow \text{linear function}$

4 QUADRATIC FUNCTIONS:

$$Q(x) = \sum_{i,j=1}^{d} a_{ij} x_i x_j, \quad a_{ij} = a_{ji}, \quad i,j = 1,d$$

$$A = (a_{ij})_{i,j} = 1,d = \begin{pmatrix} a_{i1} & a_{i2} & a_{id} \\ \vdots & \vdots & \vdots \\ a_{di} & \vdots & \vdots \end{pmatrix} - the matrix of the guadratic function$$

EXAMPLE:

A =
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 = $1 Q(x_1, x_2) = x_1^2 + x_1 x_2 + x_2 x_1 + x_2^2 = x_1^2 + 2x_1 x_2 + x_2^2$

LECTURE 4: OPTIMIZATION FOR FUNCTIONS OF SEVERAL VARIABLES I.

1. FERMAT THEOREM:

f: Rd →R is Fréchet differentiable in x* ∈ Rd.

If x* is a local minimum/maximum then $\nabla f(x^*) = 0$.

A quadratic function $Q: \mathbb{R}^m \to \mathbb{R}$ (with matrix $A = (a_{ij})$) is:

- positive definite if Q(x) >0 4x ERd 190 Ras
- indefinite if Q(x1)>0,Q(x2)<0

2. SYLVESTER THEOREM: (out for positive I megative definite) De xirtam art is (is)= A H

Them:

- 1) $\alpha_{11} > 0$, $\begin{vmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{vmatrix} > 0$, ..., $\begin{vmatrix} \alpha_{11} & \cdots \\ \vdots & \ddots \\ \vdots & \ddots \\ \alpha_{dd} \end{vmatrix} > 0 \Rightarrow Q$ is perture definite
- 2) an <0 > |an anz|>0 ..., (-1) | ... add >0 =) a is megative definite
- 3) otherwise the crit, is not effective

3 . THEOREM :

 $f: \mathbb{R}^d \to \mathbb{R}$ twice Freichet differentiable in X^* . If $\nabla f(X^*) = 0_{\mathbb{R}^d}$ and

 $H_{\xi}(x^*) = \nabla^2 \xi(x^*)$ is $\sum_{\text{positive definite}} \Rightarrow x^*$ is minimum.

4. LEAST SQUARES METHOD:

Given:

- a set of data (measurement) $y_1 y_1 \dots y_i \dots y_m$

- a model f(x) = ax+b

Goal: find a*, 6* such that a*x+6* is the best fit for the given data

$$E(a,b) = \sum_{i=1}^{m} (y_i - (ax_i + b))^2 \longrightarrow min$$

LECTURE 5 : CONSTRAINT OPTIMIZATION

1. PLANAR CURVES :

a) Implicit form:
$$f(x_1, x_2) = 0$$

b) Explicit from (where the implicit equation):
$$X_2 = f_{\xi}(x_1)$$
 ex: circle: $X_2 = \pm \sqrt{1-x_1^2}$

c) Farametria form ("add a parameter):
$$\begin{cases} x_1 = x_1(\pm) \\ x_2 = x_2(\pm) \end{cases}$$
 ex: circle
$$\begin{cases} x_1 = \cos \pm \\ x_2 = \sin \pm \end{cases} \pm \varepsilon [o_1 z_{11})$$

Idium
$$\begin{cases} x_1 = \frac{3t}{1+t^3} \\ x_2 = \frac{3t^2}{1+t^3} \end{cases}$$

2 LEVEL SETS:

$$f: \mathbb{R}^d \longrightarrow \mathbb{R}$$
 $c \in \mathbb{R} \Rightarrow \Gamma_c = \{(x_1, \dots, x_d) \in \mathbb{R}^d : f(x_1, \dots, x_d) = c\} \rightarrow c$ - level set

you can also talk about sub-level sets:

$$\square = \{(x_1, \dots, x_d) \in \mathbb{R}^d : \varphi(x_1, \dots, x_d) \leq c\}$$

The gradient is othegonal to level the:

Ye
$$T \begin{cases} x_1 = x_1(\pm) \\ x_2 = x_2(\pm) \end{cases}$$
 $t \in [T, T]$ is a differentiable parametric curve, then

the tangent to T is given by:
$$\frac{d}{dt}(x_1(t), x_2(t)) = (x_1'(t), x_2'(t))$$

3. LAGRANGE MULTIPLIER HETHOD:

Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ continuous and differentiable, x^* conditional minimum. Then there exists $\lambda^* \in \mathbb{R}$ such that (x_1, x_2, λ^*) is a local (unconditional) minimum for $L(x_1, x_2, \lambda) = f(x_1, x_2) - \lambda g(x_1, x_2)$ that is $\nabla L(x_1, x_2, \lambda) = 0$ $\partial L = 0$ $\partial L = 0$ $\partial L = 0$ $\partial L = 0$

Geometric insight: At the conditional minimum point the g=0 and f=c contour lines are tangent to each there.

The only good case is: $\nabla f \perp \text{tangent but also } \nabla g \perp \text{tangent} = 0$ $\Rightarrow \nabla f \nabla g \text{ ordinear } \Rightarrow \exists \lambda^* \in \mathbb{R} \text{ s.t.} \quad \forall f(x^*) = \lambda^* g(x^*) \Leftrightarrow \nabla f(x^*) - \lambda^* g(x^*) = 0 \Leftrightarrow 0$ $\Leftrightarrow \nabla L = 0$