有丝分裂和减数分裂图像识别及有关题型的分析归类

- 一、有丝分裂和减数分裂图像的识别的误区
- 1、染色体数目的确定

染色体形态可分为单线型和双线型 (如下图),当染色体复制完成后,就有单线型变为双线型,无论哪一种形态,染色体的数目都等于着丝点的个数。 只要数清着丝点的个数,染色体的个数就知道了。

2、同源染色体的确定

同源染色体的判断依据下面几点:

形态相同,即染色体上的着丝点的位置相同。

大小相同,即两条染色体的长度相同。

来源不同,即一条来源于父方,一条来源于母方(通常用不同的颜色来表示)。

能够配对,即在细胞内成对存在。对常染色体而言,只有当这四点同时满足时细胞中才含有同源染色体。

但应注意: 姐妹染色单体经着丝点分裂形成的两条子染色体不是同源染色体 , 而是相同染色体。

二、联系图像应明确有丝分裂和减数分裂各个时期的特点

各时期的特点如下表

分裂时期	有丝分裂	减I分裂	減Ⅱ分裂
前期	有同源染色体	有同源染色体	无同源染色体
	无联会,不形成四分体	联会,形成四分体	无联会,不形成四分体
	有染色单体	有染色单体	有染色单体
	染色体随机分布	四分体随机分布	染色体随机分布
中期	有同源染色体	有同源染色体	无同源染色体
	有染色单体	有染色单体	有染色单体
	染色体在赤道板上排成一行	染色体在赤道板处排成两行	染色体在赤道板上排成一行
后期	有同源染色体(看一极)	有同源染色体(二极间)	无同源染色体
	无染色单体	有染色单体	无染色单体
	着丝粒分裂,染色体移向两极	同源染色体分离,染色体移向两极	着丝粒分裂,染色体移向两极
末期	有同源染色体(看一极)	有同源染色体(二极间)	无同源染色体
	无染色单体	有染色单体	无染色单体
	染色体均分两极,在每极随机分布	染色体均分两极,在每极随机分布	染色体均分两极,在每极随机分布

各时期的图像如下图

三、细化图像判断方法

- 四、与有丝分裂和减数分裂图像相关的题型
- 1、一般图像识别问题 ---- 利用上面的识别方法即可
- 例 1、下图是某种动物细胞进行有丝分裂和减数分裂部分图,据图回答问题:

按先后顺序把有关有丝分裂图的号码排列起来 ______;按顺序把有关减数分裂图的号码排列起来 ______

解析:此类题目对于学生来说是图像题中最难得分的, 学生不仅要把各个图像准确的识 别出,而且还要把它们按正确的顺序排列起来,只要其中一个序号排错,这一步就不得分。 根据上面的视图方法可得:

是减 前期, 是有丝中期, 是减 中期, 是减 中期, 是有丝后期 是有丝后期, 是有丝后期, 是减 后期, 是减 前期

?是精细胞, ?有丝前期

因此,有丝分裂顺序为: ? ;减数分裂顺序为:

例 2、如右图所示是什么时期的分裂图像

解析:此图很多同学都识别错了。同学们一看染色体为 10 是偶数,又被拉向两极,就 判断为有丝分裂后期。

正确的判断方法是:着丝点分裂,染色体被拉向两极,属于后期,对于后期的图像,我 们应看一极的染色体条数 5条,奇数,所以为减 后期。

2、柱形图

例 3、下图中甲~丁为小鼠睾丸中细胞分裂不同时期的染色体数、染色单体数和 DNA 分子数的比例图 , 关于此图叙述中错误的是

- A. 甲图可表示减数第一次分裂前期
- B. 乙图可表示减数第二次分裂前期
- C. 丙图可表示有丝分裂间期的某一阶段 D. 丁图可表示有丝分裂后期

解析:此类题通过柱形图的变化来表示有丝分裂或减数分裂的不同时期。

首先,必须弄明白不同的柱形图所代表的含义。

上面讲过染色体可分为单线型和双线型两种形态, 在有丝分裂和减 分裂后期时, 着丝 的染色体中含两条染色单体,每一条单体含有一个 DNA 分子,因此,染色体: DNA=1:2。 所以, 从表示染色体 , ■表示 DNA。

其次,通过观察染色体、染色单体和 DNA 数量的变化弄明白四图可能代表什么时期的什么分裂。

甲图中有单体并且染色体数为 2n,因此,可能为有丝分裂:间期复制完成、前期或中期;也可能为减 :间期复制完成、前期、中期或后期。

乙图中染色体数量减半, 一定为减 分裂,并且有染色单体, 因此,可能为前期或中期。

丙图的判断是最容易出错的。染色体数为 2n,没有染色单体,所以可能为有丝分裂:间期未复制或末期;减 间期未复制或减 后期。丁图无染色单体并且染色体数量减半只能为减 末期。

所以,答案为 D。

3、曲线图

(1)细胞核内 DNA 和染色体的数量变化

例 4、下图是表示某种生物细胞核内染色体及 DNA 相对量变化的曲线图。根据此曲线图回答下列问题: (注:横坐标各个区域代表细胞分裂的各个时期, 区域的大小和各个时期所需的时间不成比例)

- (1)图中代表染色体相对数量变化的曲线是_____。
- (2)形成配子时,成对的遗传因子分离发生在图中的_____过程。
- (3)细胞内含有四分体的区间是 _____。
- (4) 若该生物体细胞中染色体数为 20条,则一个细胞核中的 DNA 分子数在 9—12 时期为 _____条。
 - (5)着丝点分裂发生在横坐标数字的 _____处进行。

解析:根据 DNA 和染色体在有丝分裂和减数分裂中的变化特点可知,曲线 A 为 DNA 的变化曲线, B 为染色体的变化曲线。 这个图把减数分裂、 受精作用和有丝分裂很好的联系 在一起。 0~8表示的是减数分裂; 8位点发生受精作用; 8~13表示的是有丝分裂。具体的时间段 1~2、2~3、3~4、4~5、5~6、6~7、7~8依次为减 的前期、中期、后期、减的前期、中期后期和末期; 9~10、10~11、11~12、12~13依次为有丝的前期、中期、后期和末期。

成对的遗传因子分离发生在减 后期,即 3~4;

四分体形成于减 前期,消失于减 后期,存在区间即 1~3

着丝点分裂是瞬间完成的,在两个地方发生:减 后期和有丝后期刚开始时,这里很多同学往往不是漏掉一个就是填成区间。

答案为:(1)B(2)3~4(3)1~3(4)40(5)6、11

(2)每一条染色体上的 DNA 含量变化曲线

例 5、下列是有关细胞分裂的问题。图 1 表示细胞分裂的不同时期与每条染色体 DNA 含量变化的关系;图 2 表示处于细胞分裂不同时期的细胞图像。请据图回答:

解析:通过具体图表,考查减数分裂及有丝分裂过程中,染色体的变化规律,题目给出的图像和我们平日训练时的图像基本相同,但该题的关键是图 1 中的纵坐标代表每条染色体 DNA 含量而不是一个细胞中的染色体含量。 CD 段可能发生在有丝分裂后期或者减 后期。

从图 1 中可以看出 , A B 段 ,染色体含量增加 ,这是由于在细胞分裂间期 ,完成了染色体的复制 ; C D 段染色体含量减半 ,这是由于着丝点分裂 ,一条染色体变为两条染色体的缘故。

图 2 中的乙、丙,其染色体的着丝点都未分开,相当于图 1 中的 BC 段,甲中染色体的着丝点已分开,相当于 DE 段。

乙细胞中含有 4条染色体,其染色体 DNA = 1 2,由于细胞是不均等分裂,所以该细胞属于减数第一次分裂的后期,产生的两个子细胞分别叫次级卵母细胞和第一极体。

答案: (1) DNA 复制(或染色体复制) 间 着丝点分裂 (2) 乙、丙 , 甲 (3) 8 1 2 减数第一次 后 次级卵母细胞和第一极体