Periodicity Notes

Objective 1: List physical and chemical properties of Alkali Metals

Physical

- Soft, bright metals which can be cut easily
- o Melting Points decrease down the group when the metallic bonds become weaker
- o Li, Na, y K float in water due to their low densities

Chemical

- \circ Kept in oil to prevent reaction with O_2 in the air
- o Reactivity increases down the group
- o Each reacts vigorously with H₂O to produce an Alkaline Solution and H₂ gas
 - $2\text{Li (s)} + 2\text{H}_2\text{O (l)} \rightarrow 2\text{LiOH (aq)} + \text{H}_2\text{ (g)}$
 - All follow this model
- o Group One Metals react with Halogens to produce Salts
 - $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$
 - All Alkaline Metal / Halogen combinations follow this model

Objective 2: Outline the bonding and acid-base properties of period 3 oxides

- Ionic Oxides: Na₂O, MgO, Al₂O₃ (solids)
- Gigantic Covalent (Net Covalent): SiO₂ (quartz)
- Molecular Covalent: P4O₁₀ (s), P₄O₆(s), SO₃ (l), SO₉(g), Cl₂O₇(l), Cl₂O(g)
- The change from Ionic to Molecular Covalent across the period follows the decrease in electronegativities between Oxygen and the other element.
- Acid-Base Properties

- o Basic Oxides: Na₂O, MgO
- o Amphoteric: Al₂O₃ (is like an acid or base depending on its env)
- o Acidic Oxides: SiO₂(s) P₄O₁₀ P₄O₆ SO₃ SO₂ Cl₂O₇ Cl₂O
- Reactions of Basic Oxides with H₂O
 - \circ Na₂O (s) + H₂O (l) \rightarrow 2NaOH (aq)
 - $\circ \quad MgO(s) + H_2O(l) \rightarrow Mg(OH)_2$
- Reactions of Acidic Oxides with H₂O
 - \circ P₄O₁₀ (s) + 6H₂O (l) \rightarrow 4H₃PO₄ (aq)
 - $SO_3(l) + H_2O(l) \rightarrow H_2SO_4(aq)$ *Formation of Acid Rain
 - $\circ \quad \text{Cl}_2\text{O}_7 \text{ (l) H}_2\text{O (l)} \rightarrow \text{HClO}_4$
 - NO₂ (g) → H₂O (l) → HNO₃ (aq) + HNO₃ (aq) *Formation of Acid Rain (Not from period 3)

Objective 3: Outline the Chemical and Physical properties of Halogens

- Physical Properties
 - o Fluorine: Pale yellow gas
 - o Chlorine: Greenish-yellow gas
 - o Bromine: Reddish-brown liquid
 - o Iodine: Purple solid
 - o These exist as diatomic molecules in nature
 - Melting Points decrease down the group. LDF Grows because the polarizability of the e⁻ cloud grows.
- Chemical Properties

- o Reactivity decreases down the group
- o Elements at the top are stronger Oxidizing Agents tan those at the bottom.
- O The halogens closer to the top replace the ions of the halogens below them.
- Example: $F_2(g) + 2NaCl(aq) \rightarrow 2NaF(aq) + Cl_2(g)$

Showing what that means:

$$F_2(g) + 2Na^+(aq) + 2Cl^-(aq) \rightarrow 2Na^+(aq) + 2F^+(aq) + Cl_2(g)$$

$$F_2 + 2e^- \rightarrow 2F^-$$

$$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$$