

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN

ÍTEMS DE CÁLCULO III (UNIDAD II)

RUEDAS PRADO LUISA GUADALUPE 417099677

PROFESOR

MTRA. JEANETT LÓPEZ GARCÍA

MATEMÁTICAS APLICADAS Y COMPUTACIÓN

SEPTIEMBRE 2021

ÍTEMS DEL KAHOOT DEL 06 DE NOVIEMBRE DE 2020

(Propuesta)

1. Sea

$$f(x,y) = \frac{x+2y}{x^2 - y};$$

Hallar

$$f_y(x,y)$$

Aplicando la definición:

a)
$$\frac{2x^2+x}{(x-y)(x+y)}$$

c)
$$\frac{2x^2+x}{(x-y)^2}$$

b)
$$\frac{x^2+y}{(x-y)^2}$$

$$d) \frac{x^2+y}{(x-y)(x+y)}$$

Solución:

$$f_y(x,y) = \frac{\partial}{\partial y} \left[\frac{x+2y}{x^2 - y} \right] = \frac{2(x^2 - y) - (-1)(x+2y)}{(x^2 - y)^2} = \frac{2x^2 + x}{(x^2 - y)^2}$$

2. Sea

$$f(x, y, z) = x^2y - 3xy^2 + 2xz$$

Hallar

$$f_y(x,y,z)$$

a)
$$2xy - 3y^2 + 2z$$

c)
$$x^2 - 6xy$$

b)
$$x^2 - 6xy + 2x$$

d)
$$-6xy + 2x$$

Solución:

$$f_y(x,y,z) = \frac{\partial}{\partial y}[x^2y - 3xy^2 + 2xz] = \frac{\partial}{\partial y}(x^2y) - \frac{\partial}{\partial y}(3xy^2) + \frac{\partial}{\partial y}(2xz) = x^2 - 6xy + 0$$

3. Sea

$$u = (x^2 + y^2 + z^2)^{\frac{1}{2}}$$

Hallar

$$\frac{\partial u}{\partial z}$$

a)
$$\frac{2z}{(x^2+y^2+z^2)^{\frac{1}{2}}}$$

c)
$$\frac{z}{(x^2+y^2+z^2)^2}$$

b)
$$\frac{z}{(x^2+y^2+z^2)^{\frac{1}{2}}}$$

d)
$$\frac{2z}{(x^2+y^2+z^2)}$$

Solución:

$$\frac{\partial}{\partial z}[(x^2+y^2+z^2)^{\frac{1}{2}}] = \frac{1}{2(x^2+y^2+z^2)^{\frac{1}{2}}} \cdot \frac{\partial}{\partial z}[(x^2+y^2+z^2)] = \frac{1}{2(x^2+y^2+z^2)^{\frac{1}{2}}} \cdot 2z = \frac{z}{(x^2+y^2+z^2)^{\frac{1}{2}}}$$

Cálculo III

MAC Cálculo III

4. Sea

$$f(x, y, z) = 4xyz + \ln 2xyz$$

Hallar

$$f_3(x,y,z)$$

a) $4xz + \frac{1}{z}$

b)
$$4xy + \frac{1}{2z}$$

c)
$$4xy + \frac{1}{2}$$

c)
$$4xy + \frac{1}{z}$$
 d) $4yz + \frac{1}{2z}$

Solución:

$$f_3(x, y, z) = \frac{\partial}{\partial z} (4xyz + \ln(2xyz)) = 4xy + \frac{1}{2xyz} (2xy) = 4xy + \frac{1}{z}$$

5. Sea

$$f(x,y) = x\cos y - ye^x$$

Hallar

$$D_{12}f(x,y)$$

a) $-ye^x$

b)
$$-x\cos y$$

c)
$$-\sin y - e^x$$
 d) $-z + e^x$

d)
$$-z + e^x$$

Solución:

$$\frac{\partial}{\partial x}(x\cos y - ye^x) = \cos y - ye^x$$
$$\frac{\partial^2}{\partial y\partial x}x\cos y - ye^x = -\sin y - e^x$$

6. Sea

$$u = x\cos y - y\sin x$$

Calcular la diferenciabilidad total $du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy$

a)
$$8x^2 + 30xy$$

b)
$$6x^3 + 30x^2y$$

c)
$$18x^2 + 60xy$$

d)
$$6x^3 + 60xy^2$$

Solución:

$$\frac{\partial}{\partial x}(x\cos y - y\sin x) = \cos y - y\sin x$$
$$\frac{\partial}{\partial y}(x\cos y - y\sin x) = -x\sin y - \sin x$$

7. Sean

$$u = 3xy - 4y^{2}$$
$$x = 2ae^{b}$$
$$y = be^{-a}$$

Calcular

$$\frac{\partial^2 u}{\partial a \partial b}$$

Empleando la regla de la cadena:

MAC Cálculo III

a)
$$(\cos y - y \cos x)dx + (-x \sin y - \sin x)dy$$

c)
$$(\sin y - y \sin x)dx + (-x \cos y - \cos x)dy$$

b)
$$(-\cos y + y\cos x)dx + (x\sin y + \sin x)dy$$

d)
$$(-\sin y + y\cos x)dx - (-x\cos y - \cos x)dy$$

Solución:

$$\frac{\partial u}{\partial b} = \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial b}\right) + \frac{\partial u}{\partial y} \left(\frac{\partial u}{\partial b}\right) = 3y(2ae^b) + (3x - 8y)e^{-a} = 6yae^b + (3x - 8y)e^{-a}$$

$$\frac{\partial^2 u}{\partial a \partial b} 6e^b \left(\frac{\partial y}{\partial a}a + 1(y)\right) + \frac{\partial (3x - 8y)}{\partial a}e^{-a} + (3x - 8y)(-e^{-a})$$

$$= 6e^b (-rae^{-a} + y) + (6e^b + 8be^{-a})e^{-a} + (3x - 8y)(-e^{-a})$$

$$= -6abe^{(b-a)} + 6ye^b + 6e^{b-a} + 8be^{-2a} - 3xe^{-a} + 8ye^{-a}$$

8. Sean

$$u = 9x^{2} + 4y^{2}$$
$$x = a\cos(\theta)$$
$$y = a\sin(\theta)$$

Hallar

$$\frac{\partial^2 u}{\partial a^2}$$

Empleando la regla de la cadena.

a)
$$-6abe^{(b-a)} + 6ye^b + 6e^{b-a} + 8be^{-2a} - 3xe^{-a} +$$
 c) $-6abe^{-a} + 6ye^b - 6e^{b-a} + 8be^{(b-a)} - 3xe^{-a} +$ $8ye^{-a}$

b)
$$6be^{-a} + 6ye^{b} - 6e^{b-a} + 8be^{(b-a)} - 3xe^{-a} + 8ye^{-a}$$

b)
$$6be^{-a} + 6ue^{b} - 6e^{b-a} + 8be^{(b-a)} - 3xe^{-a} + 8ue^{-a}$$
 d) $8ae^{-a} - 6ue^{b} + 6e^{b} + 8be^{(b-a)} + 3e^{-a} + 8xe^{-a}$

$$\begin{split} \frac{\partial u}{\partial a} &= \frac{\partial u}{\partial x} (\frac{\partial x}{\partial a}) + \frac{\partial u}{\partial y} (\frac{\partial y}{\partial a}) = 18x \cos \theta + 8y \sin \theta = 18a \cos^2 \theta + 8a \sin^2 \theta \\ \frac{\partial^2 u}{\partial a^2} &= 18 \cos^2 (\theta) + 8 \sin^2 \theta \end{split}$$

ÍTEMS DEL KAHOOT DEL 13 DE NOVIEMBRE DE 2020

1. ¿Cuál de las siguientes opciones representa $\frac{\partial f}{\partial x}$ de $f(x,y) = \frac{1}{x^2 + y^2}$?

a)
$$-\frac{2y}{(x^2+y^2)^2}$$

c)
$$-\frac{1}{(x^2+y^2)^2}$$

b)
$$-\frac{2x}{(x^2+y^2)^2}$$

$$\mathrm{d}) \ \frac{2x}{\ln(x^2 + y^2)}$$

Solución:

$$\frac{\partial f}{\partial x}((x^2+y^2)^{-1})$$

Por regla de la cadena

$$= -\frac{1}{x^2 + y^2} \frac{\partial f}{\partial x} (x^2 + y^2) = -\frac{1}{x^2 + y^2} \frac{\partial f}{\partial x} (2x) = -\frac{2x}{(x^2 + y^2)^2}$$

2. ¿Cuál de las siguientes opciones corresponde a la dirección de más rápido crecimiento de la función: $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ en el punto (1,-2,1)?

a)
$$\frac{-1}{\sqrt{6}}(1, -2, 1)$$

c)
$$\frac{-2}{\sqrt{6}}(1,-2,1)$$

b)
$$\frac{1}{\sqrt{6}}(1,-2,1)$$

d)
$$\frac{-1}{\sqrt{6}}(1,-2,1)$$

Solución:

$$\nabla f(x,y,z) = f_x(x,y,z)\hat{i} + f_y(x,y,z)\hat{j} + f_z(x,y,z)\hat{k} = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}\right)\hat{i} + \left(\frac{y}{\sqrt{x^2 + y^2 + z^2}}\right)\hat{j}$$

$$+ \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)\hat{k}$$

$$\nabla f(1,-2,1) = \left(\frac{1}{\sqrt{6}}\right)\hat{i} + \left(\frac{-2}{\sqrt{6}}\right)\hat{j} + \left(\frac{1}{\sqrt{6}}\right)\hat{k} = \frac{1}{\sqrt{6}}(1,-2,1)$$

3. ¿Cuál de las siguientes opciones corresponde a el plano tangente de la superficie $z=x^2-y^2$ en el punto (5,-4,9)?

a)
$$z-9=8(x-5)+10(y+4)$$

c)
$$z-9=10(x-5)+8(y-4)$$

b)
$$z-9=5(x-8)+4(y-8)$$

d)
$$z-9=10(x-5)+8(y+4)$$

Solución

Sea
$$f(x, y, z) = x^2 - y^2 - z$$

$$\nabla f(x,y,z) = f_x(x,y,z)\hat{i} + f_y(x,y,z)\hat{j} + f_z(x,y,z)\hat{k} = (2x)\hat{i} + (-2y)\hat{j} - \hat{k}$$
$$\nabla f(5,-4,9) = (2(5))\hat{i} + (-2(-4))\hat{j} - \hat{k} = 10\hat{i} + 8\hat{j} - \hat{k}$$

 \therefore De lo anterior se obtiene que la ecuación del plano tangente es 10(x-5)+8(y+4)=z-9

MAC Cálculo III

4. De las siguientes opciones ¿cuál representa al gradiente de la siguiente función $f(x,y) = e^{x^2} \cos y$?

a)
$$e^{x^2}\hat{i} + \cos y\hat{j}$$

c)
$$(xe^{x^2}\cos y)\hat{i} - (e^{x^2}\sin y)\hat{j}$$

b)
$$(2xe^{x^2}\cos y)\hat{i} + (-e^{x^2}\sin y)\hat{j}$$

d)
$$2xe^{x^2}\cos y - e^{x^2}\sin y$$

Solución:

$$\nabla f(x,y) = f_x(x,y)\hat{i} + f_y(x,y)\hat{j} = (2xe^{x^2}\cos y)\hat{i} + (-e^{x^2}\sin y)\hat{j}$$

5. De las siguientes opciones ¿cuál representa al gradiente de la siguiente función $f(x,y) = \sqrt{x+y}$?

a)
$$\left(\frac{1}{2\sqrt{x+y}}\right)\hat{i} + \left(\frac{1}{2\sqrt{x+y}}\right)\hat{j}$$

c)
$$\left(\frac{1}{2\sqrt{x+y}}\right)\hat{i} + \left(\frac{1}{\sqrt{x+y}}\right)\hat{j}$$

b)
$$\left(\frac{1}{\sqrt{x+y}}\right)\hat{i} + \left(\frac{1}{\sqrt{x+y}}\right)\hat{j}$$

d)
$$\left(\frac{1}{\sqrt{x+y}}\right)\hat{i} + \left(\frac{1}{2\sqrt{x+y}}\right)\hat{j}$$

Solución:

$$\nabla f(x,y) = f_x(x,y)\hat{i} + f_y(x,y)\hat{j} = \left(\frac{1}{2\sqrt{x+y}}\right)\hat{i} + \left(\frac{1}{2\sqrt{x+y}}\right)\hat{j}$$

6. De las siguientes opciones ¿cuál representa al gradiente de la siguiente función $f(x,y) = e^y \tan(2x)$?

a)
$$2e^y \sec^2(2y)i + 2e^y \tan(2x)j$$

c)
$$e^y \sec^2(2y)i + e^y \tan(2x)j$$

b)
$$e^y \sec^2(2y)i + 2e^y \tan(2x)j$$

d)
$$2e^y \sec^2(2x)\hat{i} + \tan(2x)e^y\hat{i}$$

Solución:

Para encontrar el gradiente de f(x, y), ocupamos

$$\nabla(f) = \frac{\partial(f)}{\partial x}\hat{i} + \frac{\partial(f)}{\partial y}\hat{i}$$

Por lo anterior tenemos que aplicando la regla de la cadena sobre f(x,y) en $\frac{\partial f}{\partial x}$

$$\frac{\partial (e^y \tan{(2x)})}{\partial x} = e^y \frac{\partial (\tan{(2x)})}{\partial x} = \sec^2(2x) \frac{\partial (2x)}{\partial x} = 2e^y \sec^2(2x)$$

Ahora bien para $\frac{\partial f}{\partial y}$ obtenemos

$$\frac{\partial (e^y \tan{(2x)})}{\partial y} = \tan{(2x)} \frac{\partial (e^y}{)} \partial y = \tan{(2x)} e^y$$

Por lo anterior tenemos que el gradiente es:

$$\nabla(f) = \frac{\partial(f)}{\partial x}\hat{i} + \frac{\partial(f)}{\partial y}\hat{i} = 2e^y \sec^2(2x)\hat{i} + \tan(2x)e^y\hat{i}$$

- 7. ¿Cuál opción representa la recta normal a la superficie $x^2 = 12y$ en el punto (6,3,3)?
 - a) $\frac{x-6}{1} = \frac{y-1}{-1}z = 3$

c) $\frac{x-1}{1} = \frac{y-6}{-1}z = 3$

b) $\frac{x-3}{1} = \frac{y-6}{-1}z = 3$

d) $\frac{x-1}{1} = \frac{y-1}{-1}z = 3$

Solución:

$$= \frac{x-6}{1} = \frac{y-1}{-1}z = 3$$

- 8. La relación de $\nabla F(x_0, y_0, z_0)$ con el plano tangente a la superficie es:
 - a) Paralelos.

c) Perpendiculares.

b) Ortogonales.

d) Ninguno de los anteriores.

Solución: Ortogonal y perpendicular.

- 9. La relación de $\nabla F(x_0, y_0, z_0)$ y la línea normal es:
 - a) Paralelos.

- c) Ortogonales.
- b) Linealmente dependientes.
- d) Ninguno de los anteriores.

Solución: aralela y linealmente independiente.

- 10. La relación de $\nabla F(x_0, y_0, z_0)$ y las superficies de nivel de la superficie en el punto P_0 es:
 - a) Paralelos.

c) Ortogonales.

b) Normales.

d) Ninguno de los anteriores.

Solución: Normal y ortogonal.

- 11. Dados los elementos de una base para un espacio vectorial tridimensional, ¿cuál es la forma de designar $\varphi_x dx + \varphi_y dy + \varphi_z dz$?
 - a) Paralelos.

c) Ortogonales.

b) Linealmente dependientes.

d) Combinación lineal.

Solución: Son designados como combinación lineal.

MAC Cálculo III

- 12. Dadas las siguientes superficies y sus vectores normales ¿cuál de las siguientes relaciones entre ellos no es posible?
 - a) Linealmente dependientes y $(N_1 \times N_2)$.
- c) Todas las anteriores.

b) Paralelos y ortogonales.

d) Ninguno de los anteriores.

$$F(x, y, z) = 0 \land G(x, y, z)$$

$$N_1 = \nabla F(x_0, y_0, z_0); N_2 = \nabla G(x_0, y_0, z_0)$$

ÍTEMS DEL KAHOOT DEL 20 DE NOVIEMBRE DE 2020

1. ¿Qué opción representa la derivada direccional de

$$f(x,y) = 3x^2 + 4y^2$$

En dirección del vector unitario:

$$U = (\cos\frac{1}{3}\pi)\hat{i} + (\sin\frac{1}{3}\pi)\hat{j}?$$

a)
$$3x + 4\sqrt{3}y$$

c)
$$\sqrt{3}x - \sqrt{3}y$$

b)
$$\sqrt{3}x - 4y$$

d)
$$3x - 4\sqrt{3}y$$

Solución:

$$D_U f(x,y) = f_x(x,y)(\cos\frac{1}{3}\pi) + f_y(x,y)(\sin\frac{1}{3}\pi)$$
$$= 6x(\frac{1}{2}) - 8y(\frac{1}{2}\sqrt{3}) = 3x - 4\sqrt{3}y$$

2. ¿Cuál es la opción que representa el gradiente de

$$f(x,y) = e^y \tan(2x)?$$

a)
$$(2e^y \sec^2 2y)i + (e^y \tan (2x))j$$

c)
$$(e^y \sec^2 y)i + (e^y \tan(x))j$$

b)
$$(2e^y \sec^2 x)i + (2e^y \tan(2y))j$$

d)
$$(2e^y \tan^2 x)i + (e^y \sec(y^2))j$$

Solución:

$$\nabla f(x,y) = f_x(x,y)\hat{i} + f_y(x,y)\hat{j} = 2e^y \sec 2x\hat{i} + e^y \tan 2x\hat{j}$$

3. Calcula $D_u f(-2,1,3)$ de la función

$$f(x, y, z) = y^2 + z^2 - 4xz$$

En dirección:

$$U = \frac{2}{7}\hat{i} + \frac{6}{7}\hat{j} + \frac{3}{7}\hat{k}$$

a)
$$\frac{6}{7}$$

b)
$$\frac{42}{7}$$

c)
$$\frac{12}{7}$$

d)
$$\frac{24}{7}$$

$$D_U f(-2, 1, 3) = (\frac{2}{7}\hat{i} + \frac{6}{7}\hat{j} + \frac{3}{7}\hat{k})(-12\hat{i} + 2j + 14\hat{k})$$
$$= -\frac{24}{7} - \frac{12}{7} + \frac{42}{7} = \frac{6}{7}$$

4. Selecciona la opción que corresponde a una ecuación de la recta normal de la función en el punto (2,-2,3): $x^2 + y^2 + z^2 = 17$

a)
$$\frac{x+2}{-1} = \frac{y-2}{2} = \frac{z-3}{3}$$

c)
$$\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{3}$$

b)
$$\frac{x-4}{2} = \frac{y+4}{-2} = \frac{z-9}{3}$$

d)
$$\frac{x+2}{-5} = \frac{y+2}{-2} = \frac{z+3}{8}$$

Solución:

$$\nabla F(x, y, z) = 2x\hat{i} + 2y\hat{j} + 2z\hat{k}$$
$$\nabla F(2, -2, 3) = 4\hat{i} - 4\hat{j} + 6\hat{k}$$

El vector normal es $2\hat{i} - 2\hat{j} + 3\hat{k}$

Ecuación del plano tangente:

$$2(x-2) - (y+2) + 3(z-3) = 0 \to 2x - 2y + 3z = 17$$
$$\therefore \frac{x-2}{2} = \frac{y+2}{-2} = \frac{z-3}{3}$$

Es una ecuación de la recta normal de la función.

5. Determina las ecuaciones de la recta tangente a las funciones $x^2 + y^2 - z = 8$; $x - y^2 + z^2 = -2$ en el punto (2,-2,0)

a)
$$\frac{x-2}{2} = \frac{y+2}{-2} = \frac{z}{2}$$

c)
$$\frac{x+2}{2} = \frac{y-2}{-1} = \frac{z}{20}$$

b)
$$\frac{x+2}{-2} = \frac{y-2}{-1} = \frac{z+1}{2}$$

d)
$$\frac{x-2}{4} = \frac{y-2}{-1} = \frac{z}{20}$$

Solución:

$$\nabla F(x,y,z) = 2x\hat{i} + 2y\hat{j} - \hat{k}; \nabla G(x,y,z) = \hat{i} - 2y\hat{j} - 2z\hat{k}$$

$$= n_1 = \nabla F(2,-2,0) = 4\hat{i} - 4\hat{j} - \hat{k}; n_2 = \nabla G(2,-2,0) = \hat{i} + 4\hat{j};$$

$$n_1 \times n_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -4 & -1 \\ 1 & 4 & 0 \end{vmatrix} = 4\hat{i} - \hat{j} + 20\hat{k}$$

6. Calcula la derivada direccional de $f(x, y, z) = 6x^2 - 2xy + yz$ en dirección del vector unitario:

$$U = \frac{3}{7}\hat{i} + \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}$$

a)
$$\frac{24}{7}y + \frac{2}{7}z$$

c)
$$\frac{32}{7}x + \frac{2}{7}z$$

b)
$$\frac{32}{7}y + \frac{2}{7}z$$

d)
$$\frac{3}{7}x + \frac{24}{7}y + \frac{1}{7}z$$

$$D_U f(x, y, z) = (12x - 2y)\frac{3}{7} + (-2x + z)\frac{2}{7} + \frac{6}{7}y$$
$$= \frac{32}{7}x + \frac{2}{7}z$$

MAC Cálculo III

7	Una devivada direccional de una función diferencial	o so puedo ebtenos medientes
١.	7. Una derivada direccional de una función diferenciable se puede obtener mediante:	
	a) El producto punto del gradiente y un vector unitario.	c) La diferencial total de la función.
	b) La regla de la cadena.	d) El calculo de la ecuación de la recta normal.
8. Sea f una función definida en una región R que contiene siguiente relación $f(x,y) \geq f(x_0,y_0)$ para todo (x,y)		
	a) Tiene un máximo relativo.	c) Tiene un punto silla.
	b) Tiene un mínimo relativo.	d) Ninguna de las anteriores.
9.	. ¿Qué condición cumple el punto x_0 para decir que se trata de un punto crítico?	
	a) La función no es diferenciable.	c) $f(x) \ge f(x_0)$.
	b) La función necesariamente debe ser diferenciable.	d) $D_f(x_0) = 0$.
10.	¿Cuál es una condición necesaria para que una función de dos variables tenga un extremo relativo e un punto?	
	a) Sus primeras derivadas parciales deben ser distintas de cero en el punto.	c) Sus primeras derivadas parciales deben ser cero en el punto.
	b) Que sus dos derivadas parciales existan en el punto.	d) Ninguna de las anteriores.
11.	. Un vector ortogonal a un vector tangente de toda curva C que pase por un punto P_0 de una superficie S se denomina:	
	a) Vector ortonormal S en P_0 .	c) Vector tangente a S en P_0 .
	b) Vector ortonormal S en P₀.	d) Plano tangente de S.
	s) vector normal a s en 10.	a) I kino tangente de 21
12.	Es la recta que pasa por P_0 y tiene como números directores las componentes del vector grad unitario a C en P_0	
	a) Recta normal.	c) Recta secante.
	b) Recta tangente.	d) REcta paralela.