FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO ANÁLISE NUMÉRICA – Aula 07 – 2º SEMESTRE/2019 PROF. Jamil Kalil Naufal Júnior

TEORIA: RESOLUÇÃO DE EQUAÇÕES (II)

Nossos objetivos nesta aula são:

- Continuar trabalhando com o problema de resolução de equações.
- Conhecer e praticar com o Algoritmo de Newton para resolução de equações.

Para esta semana, usamos como referência a **Seção 2.3** (**Método de Newton**) do nosso livro da referência básica:

BURDEN, R.L., FAIRES, J.D. **Análise Numérica**. 8.ed. São Paulo: Cengage Learning, 2015.

Não deixem de ler esta seção depois desta aula!

MÉTODO DE NEWTON

Vimos, na aula passada, que o Método da Bissecção baseia-se numa busca binária iterativa, tendo-se como base um intervalo que contenha a raiz procurada.

- Tanto para iniciar o Método da Bisseção, quanto para sua continuidade, sempre é necessário o fornecimento de dois pontos a e b que definem o extremo do intervalo [a,b]. Com o Método de Newton que veremos adiante, só necessitaremos de um ponto.
- Para se construir o Método de Newton, vamos supor que a função f(x) seja "suficientemente" bem comportada para que tenhamos uma expansão em Séries de Taylor até o grau 2, conforme mostrado a seguir, onde p_0 é o valor inicial para se procurar a raiz:

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

• Se p for a raiz procurada, então podemos escrever que f(p) = 0 e temos o seguinte resultado:

$$0 = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

• Considerando que $|p-p_0|$ seja pequeno, então $(p-p_2)^2$ será menor ainda e podemos fazer a seguinte aproximação:

$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$

Isto é equivalente a dizer que:

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1.$$

ou seja, a partir da primeira aproximação p_0 , obtemos a segunda aproximação p_1 .

Isto nos conduz ao seguinte procedimento iterativo, conhecido como Método de Newton:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Geometricamente, estamos realizando uma aproximação da raiz utilizando retas tangentes, conforme mostrado no esquema abaixo:

• Os critérios de parada podem ser os mesmos que utilizamos para o Método da Bisseção:

$$|p_N - p_{N-1}| < \varepsilon,$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \quad p_N \neq 0,$$

$$|f(p_N)| < \varepsilon.$$

EXERCÍCIO TUTORIADO

1. Encontre uma aproximação para uma raiz da equação abaixo, com tolerância ϵ =0.1, utilizando o Método de Newton. O valor inicial para busca fica a seu critério.

$$f(x) = x^3 + 4x^2 - 10 = 0$$

Utilize, como critério de parada,
$$|f(p_N)|$$

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

2. Encontre uma aproximação para uma raiz da equação abaixo, com tolerância ϵ =0.001, utilizando o Método de Newton. O valor inicial para busca fica a seu critério.

$$f(x) = \cos x - x = 0$$

Utilize, como critério de parada, $|p_N-p_{N-1}|<arepsilon$

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

S	3. Escreva c) Metodo de l	Newton numa	versao al	goritmica.

EXERCÍCIOS EXTRA-CLASSE

1. Utilize o Método de Newton para encontrar uma raiz das equações abaixo com tolerância ε=0.00001. Utilize os três critérios de parada e discuta a diferença entre eles (por exemplo, qual critério parece convergir mais rápido).

a.
$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
 for $1 \le x \le 2$

b.
$$\ln(x-1) + \cos(x-1) = 0$$
 for $1.3 \le x \le 2$

c.
$$2x \cos 2x - (x-2)^2 = 0$$
 for $2 \le x \le 3$ and $3 \le x \le 4$

d.
$$(x-2)^2 - \ln x = 0$$
 for $1 \le x \le 2$ and $e \le x \le 4$

e.
$$e^x - 3x^2 = 0$$
 for $0 \le x \le 1$ and $3 \le x \le 5$

f.
$$\sin x - e^{-x} = 0$$
 for $0 \le x \le 1$ $3 \le x \le 4$ and $6 \le x \le 7$

2. Implemente o Método de em Python como uma função newton(f,p,epsilon), que receba a função f, u, ponto inicial p e uma tolerância epsilon e devolve uma aproximação de uma raiz de f com tolerância epsilon.