Теория делимости

Будем рассматривать \mathbb{Z} .

Определение. $q \in \mathbb{Z}$ делит $n \in \mathbb{Z}$, если $\exists t \in \mathbb{Z} : n = qt$

Обозначение. $q \mid n, n : q$.

Пример. $m^5 - m : 5$

 $\it Peшение. \,$ Случай 1: $\it m=5k$ Тривиально.

Случай 2: m = 5k + 1

$$(5k+1)^5 - (5k+1) = (5k+1)((5k+1)^2 - 1)((5k+1)^2 + 1)$$
$$= (5k+1)(5k+1-1)(5k+1+1)((5k+1)^2 + 1) \vdots 5$$

Случай 3: m = 5k + 2

$$(5k+2)^5 - (5k+2) = (5k+2)(5k+2-1)(5k+3)((5k+2)^2 + 1)$$
$$= \dots (25k+20k+4+1) \vdots 5$$

Остальные случаи опущены.

Определение. $n, m \in Z, d : n : d, m : d$

d называется общим делителем n, m.

Определение. n, m взаимно простые, если:

$$n : d, m : d \Rightarrow d = \pm 1$$

Теорема 1. $n : ab \Leftrightarrow n : a, n : b$ и a, b взаимно простые.

M3*37y2019 25.9.2021

Упражнение.

$$m(m+1)(2m+1)$$
:6

Решение.

$$m(m+1)$$
: 2

Докажем m(m+1)(2m+1): 3

Случай 1: m=3k

Тривиально.

Случай 2: m = 3k + 1

$$2m + 1 = 6k + 3 \vdots 3$$

Случай 3: m = 3k + 2

Тривиально.

Упражнение. $\forall n \; \exists k : n^2 + (n+1)^2 = 4k+1$

Решение.

$$n^{2} + (n+1)^{2} = 4k + 1$$

$$2n^{2} + 2n + 1 = 4k + 1$$

$$2n^{2} + 2n = 4k$$

$$n^{2} + n = 2k$$

$$\underbrace{n(n+1)}_{2} = 2k$$

$$\vdots_{2}$$

Упражнение.

$$n^3(n^2+3)$$
:4

Решение. Для чётных n n^3 \vdots 4. Для n=2k+1 $(2k+1)^2+3=4k^2+4k+4$ \vdots 4.

Определение. $a,b \in \mathbb{Z}$ сравнимы по модулю n, если $a-b \ni n$.

Обозначение. $a \equiv b \pmod{n}$

M3*37y2019 25.9.2021

Пример. $4 \equiv 1 \pmod{3}, 8 \equiv 2 \pmod{3}, 151 \equiv 11 \pmod{10}$

1. $a \equiv c \pmod{n}, b \equiv d \pmod{n} \Rightarrow a + b \equiv c + d \pmod{n}, ab \equiv cd \pmod{n}$

Упражнение. $a^7 - a + 56 \vdots 7$

Решение. Случай 1: $a \equiv 0$

$$0+0+56 \equiv 0$$

Случай 2:
$$a \equiv 1$$

 $1 - 1 + 56 \equiv 0$

Случай 3:
$$a \equiv 2$$

 $128 - 2 + 56 \equiv 70 + 56 \equiv 0$

Остальные случаи опущены.

Упражнение.

$$m^2 + n^2 : 7 \Rightarrow n : 7, m : 7$$

Решение.

$m \equiv$	$m^2 \equiv$
0	0
1	1
2	4
3	2
4	2
5	4
6	1

M3*37y2019

Определение. $\{a_1\dots a_n\}$ называется полной системой вычетов $\mod n$, если $\forall a\in\mathbb{Z}\ \exists j:a\equiv a_j\mod n$

Теорема 2.

- $\{a_1 \dots a_n\}$ полная система вычетов $\mod n$
- k взаимно просто с n

Тогда $\{ka_1\dots ka_n\}$ — полная система вычетов $\mod n$.

M3*37y2019 25.9.2021