Bank Marketing Dataset Analysis Report:

1.Introduction

The Bank Marketing dataset comes from a Portuguese bank's direct marketing campaigns. These campaigns involved contacting clients (mostly by phone) to promote **term deposits**.

- Objective: Predict whether a client will subscribe to a term deposit (yes or no).
- Type of Problem: Binary classification.
- Algorithm Used: Logistic Regression.

2. Dataset Overview

- File Used: bank-full.csv
- **Records**: 45.211 rows
- Features: 16 input variables + 1 target (y)
- Target Variable:
 - o $y = yes \rightarrow client$ subscribed to term deposit
 - o y = no \rightarrow client did not subscribe

Features:

- 1. Client Attributes: age, job, marital, education, default, housing, loan
- 2. Current Campaign: contact, month, day of week, duration, campaign
- 3. Previous Campaigns: pdays, previous, poutcome
- 4. **Economic Indicators**: emp.var.rate, cons.price.idx, cons.conf.idx, euribor3m, nr.employed

3. Exploratory Data Analysis (EDA)

3.1 Target Distribution

- No: ~89%
- Yes: ~11%

The dataset is **highly imbalanced**.

3.2 Numerical Features

- age: Most clients between 30–40 years old.
- duration: Strongly linked with outcome (longer calls often lead to "Yes").
- campaign: Most clients contacted fewer than 5 times.
- balance: Skewed distribution with some very high values.

3.3 Categorical Features

• **Job**: Common jobs include admin, blue-collar, and technician.

- Marital: Majority are married.
- Education: Most have secondary education.
- Housing Loans: Many clients have housing loans.

3.4 Correlation

- duration shows the strongest correlation with subscription.
- Other features (pdays, previous, euribor3m) also show some influence.

Fig: Correlation Heatmap

4. Data Preprocessing

- **Encoding**: All categorical variables converted into numeric form using Label Encoding.
- **Splitting**: 70% training data, 30% testing data.
- **Scaling**: Not applied (logistic regression with categorical encoding doesn't strictly require it).

5. Model Training

- Model: Logistic Regression
- Hyperparameters:
 - o solver = liblinear o max iter = 500
- Training: Model fitted on training dataset.

```
"" # Import Libraries """
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
"""# Load and Exploration of Dataset"""
df = pd.read csv("bank-full.csv", sep=';')
print("Dataset Shape:", df.shape)
print("\nFirst 5 rows:\n", df.head())
print("\nColumn Info:\n")
print(df.info())
print("\nMissing Values:\n", df.isnull().sum())
print("\nTarget value counts:\n", df['y'].value_counts())
sns.countplot(x="y", data=df)
plt.title("Target Distribution (Subscribed: Yes/No)")
plt.show()
print("\nStatistical Summary:\n", df.describe(include='all'))
print("\nUnique Values per Column:\n")
for col in df.columns:
    print(f"{col}: {df[col].nunique()} unique values")
plt.figure(figsize=(12, 6))
sns.heatmap(df.select dtypes(include=np.number).corr(), annot=True,
cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap (Numeric Features)")
plt.show()
df.select_dtypes(include=np.number).hist(bins=20, figsize=(15, 10),
edgecolor="black")
plt.suptitle("Numeric Feature Distributions")
plt.show()
categorical_cols = df.select_dtypes(include='object').columns
for col in categorical_cols:
   plt.figure(figsize=(8, 4))
    sns.countplot(data=df, x=col, order=df[col].value_counts().index)
   plt.title(f"Distribution of {col}")
    plt.xticks(rotation=45)
    plt.show()
for col in categorical cols:
```

```
plt.figure(figsize=(8, 4))
    sns.countplot(data=df, x=col, hue="y", order=df[col].value_counts().index)
    plt.title(f"{col} vs Subscription (Target)")
    plt.xticks(rotation=45)
    plt.show()
print("\nTarget Variable Distribution (with percentages):")
print(df['y'].value_counts(normalize=True) * 100)
"""# Encoding and Training of Logistic Model"""
df_encoded = df.copy()
for col in df_encoded.select_dtypes(include=['object']).columns:
    df_encoded[col] = LabelEncoder().fit_transform(df_encoded[col])
X = df_encoded.drop("y", axis=1)
y = df_encoded["y"]
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.3, random_state=42, stratify=y
log_reg = LogisticRegression(max_iter=500, solver='liblinear')
log_reg.fit(X_train, y_train)
"""# Model Evaluation"""
y_pred = log_reg.predict(X_test)
print("\nClassification Report:\n", classification_report(y_test, y_pred))
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
            xticklabels=["No", "Yes"],
            yticklabels=["No", "Yes"])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrices")
plt.show()
```

6.Code

7. Output --

```
Dataset Shape: (45211, 17)
First 5 rows:
   age
                job marital education default balance housing loan
         management married tertiary
   58
                                           no
                                                 2143
                                                          yes
                                                               no
   44
         technician
                     single secondary
                                                   29
                                           no
                                                          yes
                                                               no
2
   33 entrepreneur married secondary
                                           no
                                                    2
                                                          yes yes
   47
        blue-collar married
                              unknown
                                                 1506
                                           no
                                                          ves
                                                               no
            unknown
                    single
   33
                              unknown
                                           no
                                                           no
                                                               no
           day month duration campaign pdays previous poutcome
  contact
                may
0 unknown
             5
                          261
                                     1
                                           -1
                                                     0
                                                        unknown
                                                                no
1
 unknown
                          151
                                     1
                                           -1
            5
                may
                                                     0 unknown no
2 unknown
            5 may
                          76
                                     1
                                           -1
                                                        unknown
                                                                no
3 unknown
            5
                may
                          92
                                     1
                                           -1
                                                        unknown no
4 unknown
                                           -1
                                                     0 unknown no
                may
                          198
Column Info:
```

		age	job	marital	education	default	balance	\		
count	45211.	000000	45211	45211	45211	45211	45211.000000			
unique		NaN	12	3	4	2	NaN			
top		NaN	blue-collar	married	secondary	no	NaN			
freq		NaN	9732	27214	23202	44396	NaN			
mean	40.	936210	NaN	NaN	NaN	NaN	1362.272058			
std	10.	618762	NaN	NaN	NaN	NaN	3044.765829			
min	18.	000000	NaN	NaN	NaN	NaN	-8019.000000			
25%	33.	000000	NaN	NaN	NaN	NaN	72.000000			
50%	39.	000000	NaN	NaN	NaN	NaN	448.000000			
75%	48.	000000	NaN	NaN	NaN	NaN	1428.000000			
max	95.	000000	NaN	NaN	NaN	NaN	102127.000000			
	housing	loan	contact	da	y month	dura	tion \			
count	45211	45211	45211 4	5211.00000	0 45211	45211.00	0000			
unique	2	2	3	Na	N 12		NaN			
top	yes	no	cellular	Na	N may		NaN			
freq	25130	37967	29285	Na	N 13766		NaN			
mean	NaN	NaN	NaN	15.80641	9 NaN	258.16	3080			
std	NaN	NaN	NaN	8.32247	6 NaN	257.52	7812			
min	NaN	NaN	NaN	1.00000	0 NaN	0.00	0000			
25%	NaN	NaN	NaN	8.00000	0 NaN	103.00	0000			
50%	NaN	NaN	NaN	16.00000	0 NaN	180.00	0000			
pdays: 559 unique values										
previous: 41 unique values										
poutcome: 4 unique values										
y: 2 unique values										
_										

Numeric Feature Distributions

8. Model Evaluation

8.1 Classification Report (Test Data)

	precision	recall	fl-score	support
0 1	0.90 0.60	0.98 0.21	0.94 0.31	11977 1587
accuracy macro avg weighted avg	0.75 0.87	0.60 0.89	0.89 0.63 0.87	13564 13564 13564

8.2 Confusion Matrix (Interpretation)

- True Negatives (TN): Very high \rightarrow Model correctly identifies most No.
- True Positives (TP): Very low → Model misses many Yes.
- False Negatives (FN): High \rightarrow Many actual subscribers are predicted as No.

Fig: Confusion Matrices

9. Results

- The model achieves 89% accuracy overall.
- Very strong in predicting **non-subscribers (class 0)**:
 - \circ Precision = 0.90, Recall = 0.98
- Weak in predicting subscribers (class 1):
 - \circ Recall = 0.21 \rightarrow Model captures only \sim 21% of actual subscribers.
 - o F1-score = $0.31 \rightarrow Poor performance for minority class.$
- This happens due to **class imbalance** (only 11% "Yes").

10. Observation

- Logistic Regression achieved high accuracy (89%) but performed poorly on predicting actual subscribers (Yes).
- For marketing, missing potential subscribers is costly, so future improvements should focus on increasing **Recall for the minority class**.
- This baseline model highlights the importance of handling imbalanced datasets in real-world classification problems.