Sea P un d-politopo en \mathbb{R}^n , el cual podemos caracterizar, usando la H description, como $P:=\{x\in\mathbb{R}^n:Ax\leq b\}$ donde $A\in M_{m\times n}(\mathbb{R})$ y $b\in\mathbb{R}^m$. Definase $T:\mathbb{R}^n\to\mathbb{R}^m$, como Tx = -Ax + b. Se va a probar que T es inyectiva en el politopo P: tome $v \neq w \in P$, si $Tv = Tw \Rightarrow Av = Aw \Rightarrow A(v - w) = 0$. Llame u := (v - w), como $v \in P$ sabemos que $Av \leq b$ y por ende $A(v+\alpha u) \leq b$, de lo cual concluimos que $v+\alpha u \in P$ para todo α . Dado que P es acotado y $u \neq 0$ llegamos a una contradiccion, de la cual deducimos que $Tv \neq Tw$ para todos $v \neq w \in P$. De lo anterior se concluye que $T: P \to T[P]$ es un isomorfimo, y por tanto que P es afinmente isomorfo a T[P] (pues T es una transformación afin).

Veamos ahora que representa T[P]. $x \in T[P] \iff x = -Ap_x + b$ para algun $p_x \in P \iff x \in T[\mathbb{R}^n]$ y $x \geq 0$ (pues $0 \leq -Ap + b$ ssi $p \in P$) $\iff x \in T[\mathbb{R}^n] \cap R^m_{\geq 0}$. Por tanto podemos afirmar $T[P] = T[\mathbb{R}^n] \cap \mathbb{R}^m_{\geq 0}$. Claramente $T[\mathbb{R}^n] = -A[\mathbb{R}^n] + b \subseteq \mathbb{R}^m$ es un subespacio afin, por ende podemos concluir que P es afinmente isomorfo a $T[\mathbb{R}^n] \cap \mathbb{R}^m_{\geq 0}$ donde $T[\mathbb{R}^n]$ es un espacion afin de \mathbb{R}^m . Esto es precisamente lo que se deseaba probar.