高等微积分笔记

mny

2023年11月23日

目录

1	微积	!分简介	2			
	1.1	阿基米德时代	2			
	1.2	Newton 时代	3			
2	集合	与映射	4			
	2.1	映射的性质	5			
	2.2	范畴中的映射	5			
3	实数	:	8			
	3.1	戴德金分割	8			
	3.2	确界定理	9			
	3.3	确界定理应用	12			
4	数列极限 12					
	4.1	极限的性质	14			
	4.2	极限的计算方法	16			
		4.2.1 从定义直接计算	16			
		4.2.2 极限的四则运算	17			
		4.2.3 夹逼定理	19			
		4.2.4 Stolz 定理	21			
	4.3	单调极限定理	22			
	4.4	柯西收敛准则	25			
	4.5		27			
		4.5.1 基本概念	27			

1 微积分简介 2

		4.5.2 实数的另一种定义	28
5	函数	极限	29
	5.1	函数极限的性质与计算方法	31
	5.2	函数极限的计算方法	32
	5.3	极限的计算	32
	5.4	拓扑空间	40
		5.4.1 拓扑公理	40
		5.4.2 基本概念	41
		5.4.3 连续性	42
	5.5	连续函数的整体性质	45
		5.5.1 介值定理	45
		5.5.2 最值/有界性定理	46
	5.6	无穷小量与无穷大量	48
6	微分	与导数	49
	6.1	计算导数	49
		6.1.1 从定义直接计算	49
		6.1.2 用导数的四则运算性质	50
		6.1.3 复合函数求导	51
		6.1.4 微分	52
	6.2	反函数求导	53
	6.3	复合函数的高阶导	55
		1 微积分简介	

1.1 阿基米德时代

问题: 设 $D=\{(x,y)|a\leq x\leq b,\quad 0\leq y\leq h(x)\}$ 求曲边梯形 D 的面积 area (D). 特例: a=0, 剖分 $D=\bigcup D_i$, 分点 $x_i=\frac{ib}{n}$

- 求和

area
$$(D) \simeq \sum_{i=1}^{n} (x_{i-1} - x_i) h(\xi)$$
 (1.1)

1 微积分简介 3

• 相信随着剖分越来越细,上述近似越来越好

例 1.1. $h(x) = x^2$

area
$$(D) \simeq \sum_{i=1}^{n} \frac{b}{n} h\left(\xi_i = x_i\right) = \sum_{i=1}^{n} \frac{b}{n} \left(\frac{ib}{n}\right)^2 = \frac{b^3}{n^3} \sum_{i=1}^{n} i^2$$
 (1.2)

$$=\frac{b^3}{n^3}\frac{1}{6}n(n+1)(2n+1)\tag{1.3}$$

$$= \frac{b^3}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) \tag{1.4}$$

$$= \frac{b^3}{6} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) \xrightarrow{i \in \mathcal{H}} x_n \tag{1.5}$$

研究: 当 n 越大时, x_n 最终会靠近哪个常值 L

例 1.2. $h(x) = x^k$, $(k \ge 2)$ 相应的

$$area(D) \simeq \frac{b^{k+1}}{n^{k+1}} \sum_{i=1}^{n} i^{k}$$
 (1.6)

更接近哪个数 L? 对于更一般 h, 以上计算更加复杂.

1.2 Newton 时代

上述问题反问题: 已知面积函数 S(a), 如何求高度? x 流动到 x + o,

$$S(x+o) - S(x) \simeq o \cdot h(x) \tag{1.7}$$

$$\implies h(x) \simeq \frac{S(x+o) - S(x)}{o}$$
 (流数法) (1.8)

相信当 o 越接近零, 此近似越好.

例 1.3. $S(a) = a^m, \quad (m \in \mathbb{Z}_+)$

$$\implies h(x) \simeq \frac{(x+o)^m - x^m}{o} \tag{1.9}$$

使用牛顿二项式公式

$$(x+y)^m = x^m + C_m^1 x^{m-1} y + \dots + C_m^m y^m$$
(1.10)

带入,得到

$$h(x) \simeq C_m^1 x^{m-1} + C_m^2 x^{m-2} o \cdots + C_m^m o^{m-1} \xrightarrow{\frac{\diamond o \ \text{\$} + \text{\$}}{m}} m x^{m-1}$$
 (1.11)

由此可知, 例1.2 答案为 $S(a) = \frac{1}{k+1}a^{k+1}$

- 从高度函数得到面积称作积分 $S(b) = \int_0^b h(x) dx$
- 从面积函数得到高度函数称作求导 h(x) = S'(x)

进行一个循环,可以得到

$$\left(\int_0^x h(\xi) \,\mathrm{d}\xi\right)' = h(x) \tag{1.12}$$

和

$$\int_0^b S'(x) \, \mathrm{d}x = S(b) - S(0) \tag{1.13}$$

2 集合与映射

定义 2.1. 设 X,Y 是集合,所谓 X 到 Y 的一个映射是指如下的数据 对于 X 中的每一个元素 x,指定 Y 中唯一的元素 (i l) 与之对应. 记此映射为

$$f: X \to Y$$
 (2.1)

(这个符号直到 1940 年代才开始出现, 标志着范畴论的开始) 称 X 为 f 的定义域 domain, Y 为 f 的陪域 co-domain.

$$\forall A \subseteq X, \quad f(A) = \{ y \in Y | \exists a \in A \notin y = f(a) \}$$
 (2.2)

称之为 A 在 f 下的像集. 特别的, 称 f(X) = Im(f) 为 f 的值域或像集.

定义 2.2. 原像集. 对 $V \subseteq Y$, 定义在 f 下的原像集

$$f^{-1}(V) = \{x \in X | f(x) \in V\} = \bigcup_{y \in V} F_y$$
 (2.3)

对于 V 的补集 V^c 显然有,

$$f^{-1}(V^c) = (f^{-1}(V))^c (2.4)$$

显然有

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \tag{2.5}$$

2.1 映射的性质

• 映射可复合. 设 $f: X \to Y$, $g: Y \to Z$, 可定义复合映射 $g \circ f: X \to Z$,

$$g \circ f(x) = g(f(x)), \quad \forall x \in X$$
 (2.6)

• 映射的复合满足结合律. 设 $f: X \to Y, g: Y \to Z, h: Z \to W, 则$

$$h \circ (g \circ f) = (h \circ g) \circ f \tag{2.7}$$

证明是直接的.

- 对于集合 X 有一个恒同映射, $id_X: X \to X$, 定义为 $Id_X(x) = x$, $\forall x \in X$
- 恒同映射是映射复合的单位, 即 $\forall f: X \to Y$ 有

$$id_Y \circ f = f = f \circ id_X \tag{2.8}$$

对于两个集合 X,Y, 存在一个集合

$$\operatorname{Hom}(X,Y) = \{ \text{\mathbb{M} X if Y is pipeline} \}$$
 (2.9)

2.2 范畴中的映射

定义 2.3. 所谓一个范畴 (Category) C 是指如下一个数据:

- 对象 X, Y, Z^1 , 构成 object Obj(C)
- 对任何 $X,Y \in C$, 指定一个集合 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$, 称 $\operatorname{Hom}_{\mathcal{C}}$ 中的任意元素为范畴 \mathcal{C} 中的一个态射 (morphism), 记 $\operatorname{Hom}_{\mathcal{C}}$ 中的元素为

$$f: X \to Y$$
 (2.10)

• 态射可复合, 即 $\forall X, Y, Z \in \mathrm{Obj}(\mathcal{C})$, 指定出映射

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,Z)$$
 (2.11)

记为

$$(f,g) \to g \circ f \in \operatorname{Hom}_{\mathcal{C}}(X,Z)$$
 (2.12)

¹在线性代数里面它们是线性空间

• 态射复合是结合的, 即 $\forall X, Y, Z, W \in \mathrm{Obj}(\mathcal{C})$, 设

$$f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), \ g \in \operatorname{Hom}_{\mathcal{C}}(Y, Z), \ h \in \operatorname{Hom}_{\mathcal{C}}(Z, W),$$
 (2.13)

有 (结合律)

$$h \circ (g \circ f) = (h \circ g) \circ f \tag{2.14}$$

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W \tag{2.15}$$

• 态射的复合是有单位元的, 对任何对象 $X \in Obi(\mathcal{C})$, 指定态射

$$id_X \in \operatorname{Hom}_{\mathcal{C}}(X, Y) \tag{2.16}$$

满足, 对 $\forall f \in \text{Hom}_{\mathcal{C}}(X,Y), \forall g \in \text{Hom}_{\mathcal{C}}(W,X),$ 有

$$f \circ \mathrm{id}_X = f, \ \mathrm{id}_X \circ g = g$$
 (2.17)

例 2.1. 范畴 Set, 其中的对象是集合 X,Y, 此时

$$\operatorname{Hom}_{Set}(X,Y) = \{ \mathfrak{R} \mathfrak{h} f \colon X \to Y \} \tag{2.18}$$

- 态射复合 ←→ 映射复合
- id_X = 恒同映射

例 2.2. 矢量空间 Vect: 对象是线性空间, 态射是线性映射.

例 2.3. 拓扑空间 Top: 对象是拓扑空间, 态射是连续映射.

定义 2.4 (集合论中). 称映射 $f: x \to y$ 是

- $\not= x \neq x'$, $\not= f(x) \neq f(x')$.
- 满射 $\iff \forall y \in Y, \exists x \in X \notin f(x) = y.$
- 双射 ⇔ 既单又满.

定义 2.5. 称映射 $f: X \to Y$ 是

单射

一般的范畴中:

$$\iff \forall \text{\&ff}(Q_1, q_2) : W \to X, \text{\&ff}(Q_1 = f \circ q_2, \text{yn}) = q_2$$
 (2.20)

• 满射

$$\iff \forall \text{\&fine} \ Z, \forall \text{weight} \ h_1, h_2 \colon Y \to Z. \ \exists f \ h_1 \circ f = h_2 \circ f, \ \text{\it Min} \ h_1 = h_2$$
 (2.21)

定理 2.1. 映射 $f: X \to Y$ 是双射 \iff ∃映射 $g: Y \to X$ 使 $g \circ f = \mathrm{id}_X$ 且 $f \circ g = \mathrm{id}_Y$ 证明. 从充分和必要两个方面说明.

" ⇒ ":

由 f 满知 $f^{-1}(\{y\}) \neq \emptyset$.

由 f 单知 $f^{-1}(\{y\})$ 至多一个元素.

于是 $\forall y \in Y$ 有 $f^{-1}(\{y\})$ 是单元集. 记 $f^{-1}(\{y\}) = \{g(y)\}$, 得到映射 g.

" ⇐ ":

设 $\exists g \colon Y \to X$ 使

$$g \circ f = \mathrm{id}_X, \ f \circ g = \mathrm{id}_Y$$
 (2.22)

证 f 单: 若 f(x) = f(x'), 则

$$g \circ f(x) = g[f(x)] = g[f(x')] = g \circ f(x')$$
 (2.23)

即

$$x = x' \tag{2.24}$$

矛盾, 故 f 单.

证 f 满:

$$\forall y \in Y, \ f[g(y)] = f \circ g(y) = \mathrm{id}_Y(y) = y \tag{2.25}$$

所以 $y \in \text{Im } f$, 故 f 满.

定义 2.6. 在范畴 C 中, 称态射 $f \in \text{Hom}_{\mathcal{C}}(X,Y)$ 为一个同构, 如果

$$\exists g \in \operatorname{Hom}_{\mathcal{C}}(Y, X) \tag{2.26}$$

使得

$$g \circ f = \mathrm{id}_X \ \ \text{I} \ f \circ g = \mathrm{id}_Y \tag{2.27}$$

称对象 X 与对象 Y 同构, 如果 ∃同构态射 $f: X \to Y$.

命题 2.1. 满足(2.27)的 g 至多一个.

证明. 若 $g_1, g_2: Y \to X$ 都满足(2.27), 则

$$g_2 = (g_1 \circ f) \circ g_2 = g_1 \circ (f \circ g_2) = g_1 \circ \mathrm{id}_Y = g_1.$$
 (2.28)

3 实数 8

3 实数

出于计数的需要,引入了自然数 $0,1,2,3,\ldots$ 由于要做不交并,

$$|S \cup T| = |S| + |T| \tag{3.1}$$

引入了加法.

由于要做笛卡尔积,

$$S \times T = \{(s,t)|s \in S, t \in T\}$$

$$(3.2)$$

引入了乘法.

加法在 \mathbb{N} 上未必有逆, 引入负整数. 这样将整数集扩充为 \mathbb{Z} . 但 \mathbb{Z} 上乘法未必有逆, 形式化引入分数 $\frac{m}{n}$, $(m \in \mathbb{Z}, n \in \mathbb{Z}_+)$, 将 \mathbb{Z} 扩充为 \mathbb{Q}^2 .

命题 3.1. $\sqrt{2}$ 不是有理数 (定义 $\sqrt{2}$ 是满足 $x^2 = 2$ 的正数).

证明. 假设 $\sqrt{2} = \frac{m}{n}, m, n$ 无公因子. 则 $2 = \frac{m^2}{n^2}$. $m^2 = 2n^2$ 说明 m 是偶数, 代回发现 n 是偶数.

这表明有理数集 ℚ 需要进一步扩充.

命题 3.2. x 是有理数 $\iff x$ 是有限或无限循环小数.³

微积分当中需要介值定理,但人们一直没有严格证明,问题在于没有实数的严格定义. 1872 年戴德金首次严格定义实数.

3.1 戴德金分割

定义 3.1. 所谓戴德金分隔是指一个有序对 (A,B), 满足:

- A,B 是 ℚ 的非空子集.
- $A \cap B = \emptyset$, $A \cup B = \mathbb{Q}$
- $\forall x \in A, \forall y \in B, \forall x < y$
- 集合 A 无最大元素.

$$\int f(x) \, \mathrm{d}x = \{ \Re F(x) | F' = f \}. \tag{3.3}$$

²这些"逆"都是等价类,就像不定积分那样,可以理解为一个集合

³小数的定义略去. 但是小数是无穷级数, 加法和乘法的定义现在都没定义.

3 实数 9

称两个戴德金分割 $(A,B) = (A',B') \iff A = A'$.

定义 3.2. 所谓一个戴德金实数,就是一个戴德金分割.

$$\mathbb{R}_D = \{ \text{Mnf index} \}$$
 (3.4)

• 每个有理数 a 确定一个戴德金分割

$$(A_a, B_a), \ \, \sharp \, \dagger A_a = \{ x \in \mathbb{Q} | x \le a \} \tag{3.5}$$

• 序.

定义
$$(A,B) \leq (A',B') \iff A \subseteq A'$$

• 和.

$$(A,B) + (A',B') = (A+A', \mathbb{Q}/(A+A'))$$
(3.6)

• 称一个戴德金实数 (A, B) 为一个戴德金有理数 \iff A 有最大元素.

以上定义好实数集 ℝ, 由此可以证出介值定理, 严格建立微积分.

3.2 确界定理

定义 3.3. 设非空集合 $E \in \mathbb{R}$, 称 E 的元素 a 为 E 的最大元素, 如果 $\forall x \in E, x \leq a$, 记为 $a = \max E$

最小元素: $a = \min E \iff a \in E 且 \forall x \in E \notin a \geq a$

定义 3.4. 上界和下界.

称 c 为 E 的一个上界, 如果 $\forall x \in E \land x \leq c$. 称 d 为 E 的一个下界, 如果 $\forall x \in E \land x \geq d$.

定义 3.5. 确界.

称 $c \in E$ 的上确界 (supremum), 记作 $c = \sup E$, 如果 $c \in E$ 的最小的上界.

 $\iff c = \min\{E \text{ 的上界}\}$

称 $d \in E$ 的下确界 (infimum), 记作 $d = \inf E$, 如果 $d \in E$ 的最大的下界.

 $\iff d = \max\{E \text{ 的下界}\}$

命题 3.3. 任意非空实数集 F, $\min F$, $\max F$ 非必存在.

例 3.1. F = (0,1), 则 $\min F$, $\max F$ 皆不存在.

证明. 因为

$$\forall a \in F \implies \frac{a}{2} \in F \implies a$$
不是最小元素, (3.7)

$$\forall b \in F \implies \frac{b+1}{2} \in F \implies b$$
不是最大元素. (3.8)

这样,从字面上有

- 若 E 无上界,则 E 无上确界.
- 若 E 有上界, $\{E$ 上界 $\}$ 非空, **是否有最小元素需要证明**.

定理 3.1 (确界定理). 有上界的非空实数集一定有上确界,有下界的非空实数集一定有下确界. 证明. 只证明上确界. 对于实数采用戴德金实数的定义.

设

$$E = \{x_{\alpha} = 戴德金分割 (A_{\alpha}, B_{\alpha}) | \alpha \in \text{指标集 } \Lambda \}$$
 (3.9)

已知 E 有上界 $\tilde{c}=(\tilde{A},\tilde{B}),\;(\tilde{A}\subsetneq \mathbb{Q}).$

由 $\forall \alpha, \ \tilde{c} \geq x_{\alpha}$, 根据定义有

$$\forall \alpha, \ \tilde{A} \supseteq A_{\alpha} \implies \tilde{A} \supseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} \xrightarrow{\underline{\mathbb{E}} \times h} \{ y | \exists \alpha \in \Lambda \notin y \in A_{\alpha} \}$$
 (3.10)

令 $A = \bigcup_{\alpha} A_{\alpha}$ (A 必是 $\mathbb Q$ 的非空真子集).

考虑 $(A, B = \mathbb{Q}/A)$, 可以直接验证它是一个戴德金分割.

• 定义中的第三条:

$$\forall x \in A, \ \exists \alpha \notin x \in A_{\alpha} \tag{3.11}$$

而且

$$B = \left(\bigcup A_{\alpha}\right)^{C} = \bigcap A_{\alpha}^{C} = \bigcap_{\alpha} B_{\alpha} \implies \forall y \in B, \forall \alpha, \ y \in B_{\alpha}$$
 (3.12)

即我们可以找到一个 α ,

$$x \in A_{\alpha}, y \in B_{\alpha} \implies x < y.$$
 (3.13)

定义中的第四条:要证 *A* 中无最大元,采用反证法.
 若 *A* 中有最大元,记为 *z*,则

$$z \in A = \bigcup_{\alpha} A_{\alpha} \implies \exists \alpha \notin z \in A_{\alpha}.$$
 (3.14)

由于 z 是 A 最大元, 并且 $A_{\alpha} \subseteq A$, z 也是 A_{α} 最大元, 矛盾.

3 实数 11

这样 $y = (A, B) = (\bigcup_{\alpha} A, \bigcup_{\alpha} B)$ 是一个戴德金实数, **我们可以断言** $y = \sup E$, 分为两部分内容:

- $y \not\in E \perp P \iff y \geq x_{\alpha} \iff A \supseteq A_{\alpha}, \forall \alpha \text{ 显然成立}.$
- $y \le E$ 的任何上界 $z \stackrel{\text{idh}}{=} (A_0, B_0)$, 由 z 是上界可知,

$$\forall \alpha, \ A_0 \supseteq A_\alpha \implies A \supseteq \bigcup_{\alpha} A_\alpha = A \implies z > y.$$
 (3.15)

命题 3.4 (判断上确界). $C = \sup E$ 等价于下列两点同时成立:

- 1. $\forall x \in E \ fi \ x \leq c$.
- 2. $\forall \varepsilon > 0 \ \exists x \in E \ \notin x > c \varepsilon$.

定义 3.6. 称 E 是有界的, 如果 E 既有上界又有下界. $\iff \exists k > 0$ 使 $\forall x \in E$ 有 $|x| \leq k$

例 3.2. 设 E 是有界的非空实数集,则

$$\sup\{x - y | x, y \in E\} = \sup E - \inf E. \tag{3.16}$$

证明. 记 $F = \{x - y | x, y \in E\}$, 可知 F 非空有界.

由确界定理知, $\sup F$, $\sup E$, $\inf E$ 皆存在, 有

• $\sup E - \inf E \neq F$ 的上界,因为 $\forall x, y \in E$,有 $x \leq \sup E, y \geq \inf E$,所以

$$x - y \le \sup E - \inf E. \tag{3.17}$$

说明 $\sup E - \inf E$ 不小于 F 的任何成员, 是上界.

• 对于 $\forall \varepsilon > 0$, $\sup E - \frac{\varepsilon}{2}$ 不是 E 上界, $\inf E + \frac{\varepsilon}{2}$ 不是 E 下界.

$$\exists x, y \in E, \ x - y > \sup E - \inf E - \varepsilon \tag{3.18}$$

说明 $\forall \varepsilon > 0$, $\sup E - \inf E - \varepsilon$ 不是 F 上界.

所以
$$\sup E - \inf E = \sup F$$
.

3.3 确界定理应用: 证明阿基米德定理 (命题3.5)

命题 3.5. $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}$ 使x < n.

证明. 反证法. 假设结论不对, 则 $x \ge n$, $\forall n \in \mathbb{Z}$, 即 $x \in \mathbb{Z}$ 的一个上界. 这说明 \mathbb{Z} 非空且有上界.

由确界定理知, $\sup \mathbb{Z}$ 存在, 记 $M \equiv \sup \mathbb{Z}$, 那么

$$n+1 \in \mathbb{Z} \implies n+1 \le M \implies n \le M-1.$$
 (3.19)

这与
$$M = \sup \mathbb{Z}$$
 矛盾.

命题 3.6. 任何两个实数 a < b 之间必有有理数.

证明. 寻找一个有理数 $\frac{m}{n} \in (a,b)$

对于 $x = \frac{1}{b-a}$, 由命题3.5结论可知,

$$\exists n \in \mathbb{Z}, \ n > \frac{1}{b-a}. \tag{3.20}$$

对于 y = nb, 由命题3.5的结论可知, $m_1 \in \mathbb{Z}$, $m_1 > y$, 即有

$$\frac{m_1}{n} > b \quad (m_1 \in \mathbb{Z}) \tag{3.21}$$

对于 z=-na, 由命题3.5的结论可知, $\exists m \in \mathbb{Z}, m > -na$, 记 $m_0=-m \in \mathbb{Z}$, 从而有

$$-m_0 > -na \iff \frac{m_0}{n} < a. \tag{3.22}$$

这样总能找到整数 m_0, m_1 使 $\frac{m_0}{n} < a < b < \frac{m_1}{n}$. 于是在 m_0 和 m_1 之间总有一个 m 满足 $a < \frac{m}{n} < b$.

4 数列极限

之前的阿基米德时代的问题 (例1.2) 中, 我们需要考虑 n 越来越大的时候, x_n 是否趋近于某个值 L. 我们需要定义越来越接近这个概念.

定义 4.1. 所谓一个无穷序列, 是指一个映射 $x: \mathbb{Z}_+ \to \mathbb{R}, n \mapsto x_n$, 记为

$$\{x_n\}_{n=1}^{\infty} = \{x_n\}_{n \in \mathbb{Z}_+} \tag{4.1}$$

称 x_n 为其第 n 项.

定义 4.2. 称数列 $\{x_n\}_{n=1}^{\infty}$ 以 L 为极限 (limit), (i已为 $\lim_{n\to\infty}x_n=L)$ 如果对于任何 $\varepsilon>0$, 都 存在 $n\in\mathbb{Z}_+$ 使得 $\forall n>N$ 总有 $|x_n-L|<\varepsilon$.

也称当 $n \to \infty$ 时, x_n 趋于 L.

这种定义称为 $\varepsilon - N$ 语言.

" $\{x_n\}$ 以 L 为极限"可以表示为

$$\forall \varepsilon > 0, \exists N \in \mathbb{Z}_{+} \notin \forall n \geq N \not = |x_n - L| < \varepsilon. \tag{4.2}$$

" $\{x_n\}$ 不以 L 为极限"可以表示为

$$\exists \varepsilon > 0 \forall N \in \mathbb{Z}_{+} \exists n \ge N \notin |x_n - L| \ge \varepsilon. \tag{4.3}$$

定义 4.3. 称 $\{x_n\}_{n=1}^{\infty}$ 是收敛的, 如果 \exists 实数 L, 使 $\{x_n\}$ 以 L 为极限. 否则, 称 $\{x_n\}$ 发散.

" $\{x_n\}$ 收敛"可以表示为

$$\exists L \in \mathbb{R} \forall \varepsilon > 0 \exists N \in \mathbb{Z}_{+} \forall n \ge N, \, \bar{\eta} |x_n - L| < \varepsilon. \tag{4.4}$$

" $\{x_n\}$ 发散"可以表示为

$$\forall L \in \mathbb{R} \exists \varepsilon > 0 \forall N \in \mathbb{Z}_{+} \exists n \geq N \notin |x_{n} - L| \geq \varepsilon. \tag{4.5}$$

例 4.1. $\lim_{n\to\infty}\frac{1}{n}=0$.

证明. $\forall \varepsilon > 0$, 取正整数 $N > \frac{1}{\varepsilon}$, 则 $\forall n \geq N$ 有

$$|x_n - 0| = \frac{1}{n} \le \frac{1}{N} < \varepsilon. \tag{4.6}$$

例 4.2. 设 a > 1, 求 $\lim_{n \to \infty} a^{\frac{1}{n}}$.

解 求证 $\lim_{n\to\infty}a^{\frac{1}{n}}=1$. 为此, $\varepsilon>0$, 取 $N=\left\lfloor\frac{a-1}{\varepsilon}\right\rfloor+1$, 则对 $\forall n\geq N$ 都有

$$(1+\varepsilon)^n \ge 1 + n\varepsilon \ge 1 + N\varepsilon > a. \tag{4.7}$$

从而

$$1 + \varepsilon > \sqrt[n]{a}. \tag{4.8}$$

可以得到

$$\left|\sqrt[n]{a} - 1\right| < \varepsilon,\tag{4.9}$$

验证了

$$\lim_{n \to \infty} \sqrt[n]{a} = 1. \tag{4.10}$$

总结 $\forall a > 0$ 有 $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$.

例 4.3. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

证明. $\forall \varepsilon > 0$ 取 N 使 $\frac{N-1}{2}\varepsilon^2 > 1$, 则对于 $\forall n \geq N$ 有

$$(1+\varepsilon)^n = 1 + C_n^1 \varepsilon + C_n^2 \varepsilon^2 + \dots \ge C_n^2 \varepsilon^2.$$
(4.11)

$$\geq \frac{(n+1)n}{2}\varepsilon^2\tag{4.12}$$

$$\geq \frac{N+1}{2}\varepsilon^2 n > 1 \cdot n \tag{4.13}$$

从而 $\sqrt[n]{n} < 1 + \varepsilon$, 得到

$$|\sqrt[n]{n} - 1| < \varepsilon. \tag{4.14}$$

4.1 极限的性质

命题 4.1 (充分大指标的项保持极限不等式). 设 $\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$, 则 $\exists N \in \mathbb{Z}_+$ 使 $\forall n \geq N$ 有 $a_n < b_n$.

证明. 设 $\lim_{n \to \infty} a_n = A < B = \lim_{n \to \infty} b_n$, 取 $\varepsilon = \frac{B-A}{2} > 0$. 由 $\lim_{n \to \infty} a_n = A$ 定义知

$$\exists N_1 \in \mathbb{Z}_+ \forall n \ge N_1 \overleftarrow{\eta} |a_n - A| < \varepsilon. \tag{4.15}$$

由 $\lim_{n\to\infty} b_n = B$ 定义知

$$\exists N_2 \in \mathbb{Z}_+ \forall n \ge N_2 \hat{\mathbf{n}} | b_n - B | < \varepsilon. \tag{4.16}$$

取 $N = \max\{N_1, N_2\}$, 则 $\forall n \geq N$ 有

$$a_n < A + \varepsilon = B - \varepsilon < b_n. \tag{4.17}$$

推论 设 $\{a_n\}$ 是正数列, 满足 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q<1,$ 则 $\lim_{n\to\infty}a_n=0.$

证明. 取 q < r < 1, 则

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < \lim_{n \to \infty} r. \tag{4.18}$$

由命题4.1可知, $\exists N \in \mathbb{Z}_+$ 使 $\forall n \geq N$ 有 $\frac{a_{n+1}}{a_n} < r$.

从而, $\forall n > N$, 有

$$\frac{a_n}{a_N} = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+1}}{a_N} < r^{n-N}. \tag{4.19}$$

即有

$$a_n < a_N r^{n-N}, \forall n > N. \tag{4.20}$$

由于 $\frac{1}{r}>1$, 记 $\frac{1}{r}=1+c,(c>0)$. 这样, 取 $N_0>N+\frac{a_N}{c\varepsilon}$, 对于 $\forall n\geq N_0$, 有

$$\left(\frac{1}{r}\right)^{n-N} = (1+c)^{n-N} \ge (n-N)c \tag{4.21}$$

$$\geq (N_0 - N)c > \frac{a_N}{\varepsilon}. (4.22)$$

可得

$$a_n < a_N r^{n-N} < a_N \frac{\varepsilon}{a_N} = \varepsilon. \tag{4.23}$$

上面最后部分是在算等比级数的极限.

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & |r| < 1 \\ \text{ π 存在, } & |r| > 1 \text{ g } r = -1 \\ 1, & r = 1 \end{cases}$$
 (4.24)

推论 数列极限是唯一的.

证明. 反证法. 设 $\{a_n\}$ 既以 A 为极限, 又以 B 为极限, 且 a < B, 从而

$$\lim_{n \to \infty} a_n = A < B = \lim_{n \to \infty} a_n. \tag{4.25}$$

由命题4.1可知,

$$\exists N \in Z_+, \forall n \ge N \, \text{ is } \, \mathbb{E} a_n > a_n, \tag{4.26}$$

矛盾!

推论 收敛的数列一定有界.

定义 4.4. 称数列有上界, 若 $\exists M \notin \forall n, a_n \leq M$. 称数列有下界, 若 $\exists K \notin \forall n, a_n \geq K$.

证明. 设 $\lim_{n\to\infty} x_n = L < L+1 = \lim_{n\to\infty} L+1$, 由命题4.1可知,

$$\exists N \in \mathbb{Z}_+, \forall n \ge N \hat{\tau} x_n < L + 1. \tag{4.27}$$

所以

$$x_n \le \max\{x_1, \cdots, x_N, L+1\}.$$
 (4.28)

故有上界, 下界同理.

推论 (极限不等式) 设 $a_n \leq b_n$, $\forall n \geq N_0$, 若 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$ 存在, 则 $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

证明. 反证法. 设
$$\lim_{n\to\infty}a_n>\lim_{n\to\infty}b_n$$
, 由命题4.1可知, $\exists n\geq N$ 有 $a_n>b_n$, 矛盾!

注意! ≤ 可过渡给极限式, 但 < 不一定能.

例 4.4.
$$a_n = 0 < b_n = \frac{1}{n}$$
, 但 $\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n$.

4.2 极限的计算方法

4.2.1 从定义直接计算

例 4.5. 多项式增长远小于指数增长,

$$\lim_{n \to \infty} \frac{n^k}{q^n} = 0, \quad \pm q > 1 \text{ ft.} \tag{4.29}$$

证法一

证明. 记 $x_n = \frac{n^k}{q^n}$, 注意到

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(n+1)^k q^n}{q^{n+1} n^k}$$

$$= \lim_{n \to \infty} \left(\underbrace{\frac{n+1}{n} \frac{n+1}{n} \cdots \frac{n+1}{n}}_{k \uparrow} \cdot \frac{1}{q} \right)$$

$$= \frac{1}{q} < 1$$

$$(4.30)$$

由命题4.1知 $\lim x_n = 0$.

证法二 (从定义验证)

证明. 对 $\forall \varepsilon > 0$, 取 $N \geq \max\left\{2k, \frac{(k+1)!2^k}{a^{k-1}\varepsilon}\right\}$. $\forall n \geq N$ 有 (记 $q = 1+a, \ a > 0$)

$$\frac{n^k}{q^n} = \frac{n^k}{(1+a)^n} \le \frac{n^k}{C_n^{k+1}a^{k+1}}$$

$$= \frac{n^k(k+1)!}{n(n-1)\cdots(n-k)a^{k+1}}$$

$$= \frac{(k+1)!}{a^{k+1}} \frac{1}{n} \frac{n}{n-1} \cdots \frac{n}{n-k}$$

$$< \frac{(k+1)!}{a^{k+1}} \frac{1}{n} 2 \cdot 2 \cdots 2$$

$$= \frac{(k+1)!}{a^{k+1}} 2^k \frac{1}{n} \le \frac{(k+1)!}{a^{k+1}} 2^k \frac{1}{N} < \varepsilon.$$
(4.31)

4.2.2 极限的四则运算

定理 4.1. 设 $\lim a_n = A$, $\lim b_n = B$, 则

$$\lim(a_n + b_n) = A + B \tag{4.32}$$

$$\lim(a_n - b_n) = A - B \tag{4.33}$$

$$\lim a_n b_n = AB \tag{4.34}$$

$$\lim \frac{a_n}{b_n} = \frac{A}{B} \quad (\beta + \pi \beta) \tag{4.35}$$

证明中用到三角不等式 (绝对值不等式).

$$|x + y| \le |x| + |y| \tag{4.36}$$

证明. 我们只证极限的乘积和商的性质.

乘积 对于任何 $\varepsilon > 0$,

$$|a_n b_n - AB| = |(a_n - A)b_n + A(b_n - B)| \le |a_n - A| \cdot |b_n| + |A| \cdot |b_n - B| \tag{4.37}$$

- 由 $\{b_n\}$ 收敛知其有界, 即 $\exists M$ 使 $|b_n| \leq M, \forall n$.
- $\lim_{n\to\infty} a_n = A \ \exists N_1 \in \mathbb{Z}_1, \forall n \ge N_1 \ \ |a_n A| < \frac{\varepsilon}{2M}.$
- $\lim_{n\to\infty} b_n = B \ \exists N_2 \in \mathbb{Z}_1, \forall n \geq N_2 \ \text{fi} \ |b_n B| < \frac{\varepsilon}{2(|A|+1)}.$

从而, 令 $N = \max\{N_1, N_2\}$, 对 $n \ge N$, 代回(4.37)得

$$|a_n b_n - AB| \le \frac{\varepsilon}{2M} M + |A| \frac{\varepsilon}{2(|A|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}. \tag{4.38}$$

这证明了 $\lim a_n b_n = AB$.

商

$$\left| \frac{a_n}{b_n} - \frac{A}{B} \right| = \left| \frac{a_n B - b_n A}{b_n B} \right| = \left| \frac{(a_n - A)B + A(B - b_n)}{b_n B} \right|$$

$$\leq \frac{|a_n - A|}{|b_n|} + \frac{|A| \cdot |B - b_n|}{|b_n||B|}.$$
(4.39)

- 由 $B \neq 0$, 不妨设 B > 0. 由命题4.1知 $\exists M \in \mathbb{Z}_+$ 使 $\forall n \geq M$ 有 $b_n > \frac{B}{2}$
- $\text{ in } \lim_{n\to\infty} a_n = A \text{ } \exists N_2, \forall n \geq N_2 \text{ } fi \text{ } |a_n A| < \varepsilon' = \frac{\varepsilon}{2} \frac{B}{2}$
- 由 $\lim_{n\to\infty} b_n = B$ 知 $\exists N_3, \forall n \geq N_3$ 有 $|b_n B| < \varepsilon'' = \frac{\varepsilon}{2} \frac{\frac{1}{2}B^2}{|A|+1}$

$$\left| \frac{a_n}{b_n} - \frac{A}{B} \right| \le \frac{\frac{\varepsilon}{2} \frac{B}{2}}{\frac{B}{2}} + \frac{|A| \frac{\varepsilon}{2} \frac{\frac{1}{2} B^2}{|A|+1}}{\frac{B}{2} B} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \tag{4.41}$$

推论 有限次四则运算和极限可交换.

$$\lim_{k \to \infty} \sum_{i=1}^{n} x_{i,k} = \sum_{i=1}^{n} \lim_{k \to \infty} x_{i,k}$$
 (4.42)

$$\lim_{k \to \infty} \left(\prod_{i=1}^{n} x_{i,k} \right) = \prod_{i=1}^{n} \left(\lim_{k \to \infty} x_{i,k} \right)$$

$$(4.43)$$

证明. 只需 k-1 次使用前述定理.

注意 无限和/无限积与极限未必可交换.

$$\lim_{k \to \infty} \sum_{i=1}^{\infty} x_{i,k} \neq \sum_{i=1}^{\infty} \left(\lim_{k \to \infty} x_{i,k} \right)$$
(4.44)

例 4.6. 对于一个下表这样一个数列 $x_{i,k}$,

	k=1	k=2	k=3	
i = 1	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	
i = 2	0	$\frac{1}{2}$	$\frac{1}{3}$	
i=3	0	0	$\frac{1}{3}$	
:				

纵向求和, 值是 1, 但先取极限 $k \to \infty$ 每一项都变为零, 再纵向求和, 值是 0.

类似地, 有例子表明无限乘积与极限未必可交换.

4.2.3 夹逼定理

定理 4.2. 设 $a_n \leq b_n \leq c_n \ (\forall n \geq N_0), \ 如果$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \tag{4.45}$$

则 $\lim_{n\to\infty} b_n$ 存在且等于 L.

证明. 对于左右两边的数列极限,

• $\lim_{n\to\infty} a_n = L$ 定义可知,

$$\exists N_1, \ \forall n \ge N_1, \ \ |a_n - L| < \varepsilon$$

$$\tag{4.46}$$

从而

$$L - \varepsilon < a_n \tag{4.47}$$

• $\lim_{n\to\infty}c_n=L$ 定义可知,

$$\exists N_2, \ \forall n \ge N_2, \ \ |c_n - L| < \varepsilon \tag{4.48}$$

从而

$$c_n < L + \varepsilon \tag{4.49}$$

结合起来, $\forall n \geq \max\{N_i\}$, 有 $L - \varepsilon < a_n \leq b_n \leq c_n < L + \varepsilon$.

例 4.7. 计算极限

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{n^k} = a_k \tag{4.50}$$

因为

$$LHS = \lim_{n \to \infty} \left(a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k} \right) \tag{4.51}$$

$$= \lim a_k + \lim \frac{a_{k-1}}{n} + \cdots \tag{4.52}$$

$$= a_k + 0 + \dots = a_k. \tag{4.53}$$

例 4.8.

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_0}$$
(4.54)

$$= \lim_{n \to \infty} \left(\frac{a_k n^k + \dots + a_0}{n^k} \frac{n^l}{b_l n^l + \dots + b_0} n^{k-l} \right)$$
 (4.55)

$$= \begin{cases} a_k \cdot \frac{1}{b_l} \cdot 0 = 0, & k < l \\ a_k \cdot \frac{1}{b_l} \cdot 1 = 0, & k = l \\ \text{ π 存在 (由引理), } & k > l \end{cases}$$
 (4.56)

引理 4.1. 设

$$\lim_{n \to \infty} x_n = X \neq 0,$$

$$\lim_{n \to \infty} y_n = Y \neq 0,$$

$$\lim_{n \to \infty} Z_n \pi \dot{F} \dot{E},$$
(4.57)

则

$$\lim_{n \to \infty} (x_n y_n z_n) \, \pi \, \dot{\varphi} \, \dot{e}. \tag{4.58}$$

证明. 反证法, 设 $\lim_{n\to\infty} (x_n y_n z_n) = L$ 存在, 则

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \left[(x_n y_n z_n) \frac{1}{x_n} \frac{1}{y_n} \right]$$
(4.59)

$$= \lim_{n \to \infty} (x_n y_n z_n) \lim_{n \to \infty} \frac{1}{x_n} \lim_{n \to \infty} \frac{1}{y_n}$$
(4.60)

$$= L \cdot X \cdot Y. \tag{4.61}$$

与条件
$$\lim_{n\to\infty} z_n$$
不存在 矛盾!

例 4.9. 设 a_1, a_2, \cdots, a_k 是正数, 求

$$\lim_{n \to \infty} (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}}.$$
 (4.62)

解 不妨设 $a_1 = \max\{a_i\}$, 有

$$(a_1^n)^{\frac{1}{n}} \le (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}} \le (ka_1^n)^{\frac{1}{n}}. \tag{4.63}$$

注意到

$$\lim_{n \to \infty} (a_1^n)^{\frac{1}{n}} = a_1, \lim_{n \to \infty} (ka_1^n)^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{k} a_1 = a_1.$$
 (4.64)

使用夹逼定理得到

$$\lim_{n \to \infty} (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}} = \max\{a_i\}$$
(4.65)

例 4.10. 进一步,

$$\lim_{n \to \infty} \left(a_1^{-n}, a_2^{-n}, \cdots, a_k^{-n} \right)^{-\frac{1}{n}} \tag{4.66}$$

$$= \lim_{n \to \infty} \frac{1}{\left[\left(\frac{1}{a_1} \right)^n + \dots + \left(\frac{1}{a_n} \right)^n \right]^{\frac{1}{n}}}$$
 (4.67)

$$= \frac{1}{\max\left\{\frac{1}{a_i}\right\}} = \frac{1}{1/\min\{a_i\}} \tag{4.68}$$

$$=\min\{a_i\}. \tag{4.69}$$

4.2.4 计算极限的一个有用方法: Stolz theorem

定义 4.5. 称 $\lim_{n\to\infty} x_n = +\infty$, 如果对 $\forall k > 0$,

$$\exists n \in \mathbb{Z}_+, \ \forall n \ge N \, \bar{\uparrow} \, x_n > k. \tag{4.70}$$

定理 4.3 (Stolz Theorem). 设 $\{b_n\}$ 严格单调递增且无上界 (或等价地说 $\lim b_n=+\infty$). 设 $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$,则

设
$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$$
,则

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L. \tag{4.71}$$

证明 Stolz 定理. 由 $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$ 的定义可知, $\exists N \in \mathbb{Z}_+, \ \forall n \geq N$ 有

$$L - \varepsilon < \frac{a_{i+1} - a_i}{b_{i+1} - b_i} < L + \varepsilon \implies (L - \varepsilon)(b_{i+1} - b_i) < a_{i+1} - a_i < (L + \varepsilon)(b_{i+1} - b_i) \quad (4.72)$$

我们可以对上式对i从N到n-1求和,得到

$$(L-\varepsilon)(b_n - b_N) < a_n - a_N < (L+\varepsilon)(b_n - b_N)$$
(4.73)

$$\stackrel{\text{lighth}}{\Longrightarrow} (L - \varepsilon) \left(1 - \frac{b_N}{b_n} \right) + \frac{a_N}{b_n} < \frac{a_n}{b_n} < (L + \varepsilon) \left(1 - \frac{b_N}{b_n} \right) + \frac{a_N}{b_n}. \tag{4.74}$$

同时注意到

$$\lim_{n \to \infty} \frac{b_N}{b_n} = 0, \ \lim_{n \to \infty} \frac{a_N}{b_n} = 0 \tag{4.75}$$

由于命题4.1"充分大指标的项保持极限不等式", 可知 $\exists N_0 \in \mathbb{Z}_+$, 使得 $\forall n > N_0$ 都有

$$\left| \frac{a_n}{b_n} - L \right| < 2\varepsilon. \tag{4.76}$$

4.3 单调极限定理 (Weierstrass 定理)(Monotone Converge Theorem)

定理 4.4 (单调极限定理). 有上界且递增的数列一定收敛; 有下界且递降的数列一定收敛.

证明. 设 $\{x_i\}$ 递增且有上界, 考虑单步点集

$$X = \{x_n | n \in \mathbb{Z}_+\},\tag{4.77}$$

可知 X 非空且有上界, 由确界定理知, $\sup X$ 存在, 记为 L.

由 $\sup X = L$ 的定义知,

$$\forall \varepsilon > 0, L - \varepsilon$$
不是 X 上界, (4.78)

即 $\exists N \in \mathbb{Z}_+$, 使得 $x_N > L - \varepsilon$, 从而对于 $\forall n \geq N$ 都有

$$L - \varepsilon < x_N \le x_n \le L,\tag{4.79}$$

即

$$|x_n - L| < \varepsilon. \tag{4.80}$$

这表明
$$\lim_{n\to\infty} x_n = L$$
.

定理 4.5 (Euler). $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ 存在 (记为 e).

证明. 记 $x_n = \left(1 + \frac{1}{n}\right)^n$.

• {x_n} 有上界,

$$x_n \le 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$< 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1) \times n} < 3$$
(4.81)

• {*x*_n} 递增,

$$^{n+1}\sqrt{x_n} = \sqrt[n+1]{\underbrace{\left(1+\frac{1}{n}\right)\cdots\left(1+\frac{1}{n}\right)\cdot 1}_{n\,\uparrow}} \le \frac{\left(1+\frac{1}{n}\right)+\cdots+\left(1+\frac{1}{n}\right)+1}{n+1} = 1 + \frac{1}{n+1}.$$
(4.82)

所以我们得到了

$$\left(1 + \frac{1}{n}\right)^n \le \left(1 + \frac{1}{n+1}\right)^{n+1}.$$
(4.83)

由单调极限定理可知, 极限存在, 称为自然常熟 e.

命题 4.2. 令 $y_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$, 则 $\lim_{n \to \infty} y_n = e$

证明. 注意到 $\{y_n\}$ 递增且有上界, 可知 $\lim_{n\to\infty}y_n$ 存在, 记为 Y.

由上例可知,

$$x_n \le y_n \ (\forall n) \implies e = \lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n = Y.$$
 (4.84)

最后来证 $Y \le e$. 我们固定一个 $k \in \mathbb{Z}_+$, 对于 $\forall n \ge k$, 有

$$x_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$\geq 1 + C_{n}^{1} \frac{1}{n} + \dots + C_{n}^{k} \left(\frac{1}{n}\right)^{k}$$

$$= 1 + \frac{1}{1!} \left(\frac{n}{n}\right) + \frac{1}{2!} \left(\frac{n}{n} \cdot \frac{n}{n-1}\right) + \dots + \frac{1}{k!} \left(\frac{n}{n} \cdot \dots \cdot \frac{n-k+1}{n}\right)$$
(4.85)

利用极限不等式可知,

$$e = \lim_{n \to \infty} x_n \ge \lim_{n \to \infty} \left(1 + \frac{1}{1!} \frac{n}{n} + \dots + \frac{1}{k!} \frac{n}{n} \dots \frac{n - k + 1}{n} \right)$$

$$= 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!} = y_k.$$
(4.86)

之后再取极限可知

$$e \ge \lim_{k \to \infty} y_k = Y. \tag{4.87}$$

定理 4.6. e 不是有理数.

证明. 我们需要使用一个引理.

引理 4.2. $\forall n \in \mathbb{Z}_+$ 有

$$0 < e - y_n < \frac{2}{(n+1)!}. (4.88)$$

证明. 一方面, $\forall m \geq n+1$, 有

$$y_m \ge y_{n+1}. \tag{4.89}$$

由极限不等式可知 $\lim_{m\to\infty} y_m \geq y_{n+1}$, 从而

$$e \ge y_{n+1} > y_n$$
 (4.90)

另一方面, $\forall m > n + 3$, 有

$$y_{m} - y_{n} = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{m!}$$

$$\leq \frac{1}{(n+1)!} \left[1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+3)(n+4)} + \dots + \frac{1}{(m-1)m} \right]$$
(4.91)

$$= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{n+2} - \frac{1}{n+3} + \dots + \frac{1}{m-1} - \frac{1}{m} \right)$$
(4.93)

$$<\frac{1}{(n+1)!}\left(1+\frac{2}{n+2}\right)$$
 (4.94)

$$\leq \frac{2}{(n+1)!}.\tag{4.95}$$

所以

$$e - y_n = \lim_{m \to \infty} (y_m - y_n) < \frac{2}{(n+1)!}.$$
 (4.96)

对于定理4.6的证明, 我们采用反证法.

设 $e \in \mathbb{Q}$, $e = \frac{A}{B}$, 其中 $A, B \in \mathbb{Z}_+$. 由引理,

$$0 < e - y_2 < \frac{2}{3!} = \frac{1}{3} \tag{4.97}$$

这表明 $e \notin \mathbb{Z} \implies B \geq 2$.

再次使用引理,有

$$0 < e - y_B < \frac{2}{(B+1)!},\tag{4.98}$$

而

$$e - y_B = \frac{A}{B} - \left(1 + \frac{1}{1!} + \dots + \frac{1}{B!}\right) \xrightarrow{\underline{\text{mfr}}} \frac{\underline{\text{mfr}}}{B!}.$$
 (4.99)

代回(4.98)可知

$$0 < \frac{C}{B!} < \frac{2}{(B+1)!} = \frac{1}{B!} - \frac{2}{B+1} < \frac{1}{B!},\tag{4.100}$$

这表明

$$0 < C < 1. (4.101)$$

与
$$C \in \mathbb{Z}$$
 矛盾!

4.4 柯西收敛准则

单调极限定理 (MCT) 的适用范围太小, 只能用于单调数列, 我们需要一般的判据.

要证 $\{x_n\}$ 有极限 L, 我们需要证当 n 无穷大时 $|x_n-L|<\varepsilon$, 但是如果猜不出 L, 往往无用. 我们只能比较大指标的 $|x_n-x_m|$.

定理 4.7 (Cauchy 收敛原理). 实数列 $\{x_n\}$ 收敛, 当且仅当

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{Z}_+, \ \forall m, n \ \text{n fix}_m - x_n | < \varepsilon. \tag{4.102}$$

定义 4.6. 称 $\{x_n\}$ 为一个 Cauchy 列,如果 $\forall \varepsilon > 0$, $\exists N \in \mathbb{Z}_+$, $\forall m, n > N$ 有 $|x_m - x_n| < \varepsilon$. 这样,定理4.7可以表述为 $\{x_n\}$ 收敛当且仅当它是 Cauchy 序列.

Cauchy 收敛原理的证明. 从充分性和必要性两方面来证明.

先证"⇒":

设 $\lim_{n \to \infty} x_n = L$, 对于 $\forall \varepsilon > 0$, $\exists N \in \mathbb{Z}_+$, 使得

$$\forall m, n > N \dot{\eta} |x_n - L| < \frac{\varepsilon}{2}, |x_m - L| < \frac{\varepsilon}{2}. \tag{4.103}$$

从而由三角不等式可得, $|x_m - x_n| < \varepsilon$

再证"←= ":

首先 $\{x_n\}$ 有界,因为对于 $\forall \varepsilon > 0$, $\exists N \in \mathbb{Z}_+$, $\forall m, n > N$ 有 $|x_m - x_n| < 1$. 特别地,有 $|x_n - x_{N+1}| < 1$. 于是我们得到

$$\min\{x_1, x_N, x_{N+1} - 1\} \le x_n \le \max\{x_1, x_N, x_{N+1} - 1\}. \tag{4.104}$$

这表明 $\{x_n\}$ 有界.

对于每个 $k \in \mathbb{Z}_+$, 集合 $\{x_n : n \ge k\}$ 非空且有界, 有确界定理可知上确界和下确界都存在, 记

$$a_k = \inf\{x_k \colon k \ge n\} \tag{4.105}$$

$$b_k = \sup\{x_k \colon k \ge n\} \tag{4.106}$$

注意到 $\{a_k\}$ 递增, $\{b_k\}$ 递减 ⁴, 特别地,

$$a_1 \le a_2 \le \dots \le a_k \le b_k \le b_{k-1} \le \dots \le b_1.$$
 (4.107)

这表明 $\{a_k\}$ 递增且有上界 b_1 , $\{b_k\}$ 递减且有下界 a_1 . 由 MCT 知这两个数列的极限都存 在,记 $\lim_{k\to\infty}a_k=A, \lim_{k\to\infty}b_k=B$.并且有 $A\leq B$. 由 Cauchy 列的定义可知, $\forall \varepsilon>0, \exists k\in\mathbb{Z}_+$ 使 $\forall m,n\geq k$ 有 $|x_m-x_n|<\varepsilon$.

所以, $\forall N \geq k$, ε 是集合 $\{x_m - x_n | \forall m, n \geq N\}$ 的上界, 我们可以得到

$$\varepsilon \ge \sup\{x_m - x_n | \forall m, n \ge N\} = b_N - a_N, \forall N \ge k. \tag{4.108}$$

取极限,得到极限不等式

$$\varepsilon \ge \lim_{N \to \infty} (b_N - a_N) = B - A. \tag{4.109}$$

于是 $\forall \varepsilon > 0$ 有 $B - A \leq \varepsilon$, 又因为 $B \geq A$, 我们发现 $A = B \equiv L$.

最后由于
$$a_k \le x_k \le b_k$$
, $\forall k$,由夹逼定理可得 $\{x_n\}$ 极限存在且等于 L .

从以上证明中可以提炼出上下极限的概念.5

定义 4.7. 对于任何实数列 $\{x_n\}_{n=1}^{\infty}$, 考虑 $b_n = \sup\{x_k : k \geq n\}$ (若 $\{x_k : k \geq n\}$ 有上界, 则可 定义 $b_n \in \mathbb{R}$, 若无上界, 则形式化定义 $b_n = +\infty$.)

- 若所有 $b_n = +\infty$, 记 $\lim_{n \to \infty} \sup x_n = +\infty$.
- 若 $\exists b_n \in \mathbb{R}$, 则所有 $b_n \in \mathbb{R}$, 且 $\{b_n\}$ 递减. 这有两种情况.

1. 若 $\{b_n\}$ 有下界,则 $\lim_{n\to\infty} b_n$ 存在, 称其值为 $\{x_n\}$ 的上极限, 记为

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \left(\sup \{ x_k \colon k \ge n \} \right) \in \mathbb{R}. \tag{4.110}$$

2. 若 $\{b_n\}$ 无下界,约定

$$\lim_{n \to \infty} \sup x_n = -\infty. \tag{4.111}$$

总结起来, 上下极限的定义为

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \sup \left(\left\{ x_k \colon k \ge n \right\} \right), \tag{4.112}$$

$$\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} \inf \left(\left\{ x_k \colon k \ge n \right\} \right). \tag{4.113}$$

命题 4.3. $\{x_n\}$ 收敛等价于上下极限存在且相等.

 $^{^4}$ 因为若 $F \subset E$ 则 $\inf F \ge \inf E$, $\sup F \le \sup E$.

⁵以后幂级数收敛半径 Cauchy-Hadamand 公式涉及上极限.

例 4.11 (来自以后极限收敛的例子). 考虑

$$x_n = \sum_{k=1}^n \frac{\sin(k\theta)}{k^2},$$
 (4.114)

证 $\lim_{n\to\infty} x_n$ 存在.

证明. 用 Cauchy 收敛原理验证, 只要证 x_n 是一个 Cauchy 列. 为此对于 $\forall \varepsilon > 0$, 取 $N = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix} + 1$, 从而 $\forall m > n \geq N$, 有

$$|x_m - x_n| = \left| \sum_{k=n+1}^m \frac{\sin(k\theta)}{k^2} \right| \le \sum_{k=n+1}^m \frac{1}{k^2} < \sum_{k=n+1}^m \frac{1}{(k-1)k} = \frac{1}{n} - \frac{1}{m} < \frac{1}{n} \le \frac{1}{N} < \varepsilon. \quad (4.115)$$

4.5 度量空间

4.5.1 基本概念

定义 4.8. 所谓集合 X 上的一个度量, 是指映射

$$d: X \times X \longrightarrow \mathbb{R}$$

$$(x, y) \longmapsto d((x, y))$$
(4.116)

需要满足

- 对称性 $d(x,y) = d(y,x) \ \forall x,y \in X$
- 正定性 $d(x,y) \ge 0 \ \forall x,y \in X$, 且 $d(x,y) = 0 \iff x = y$.
- 三角不等式 $\forall x, y, z \in X$ 有 $d(x, y) + d(y, z) \ge d(x, z)$.

称 (X,d) 为一个度量空间.

例 4.12. 对于 $X = \mathbb{R}^n = \{\vec{x} = (x_1, x_2, \dots, x_n) | x_i \in \mathbb{R} \},$

$$d(\vec{x}, \vec{y}) = \sqrt{\sum (x_i - y_i)^2}.$$
 (4.117)

多元微积分中使用此度量.

定义 4.9. 称 $\{x_n\}$ 收敛到某点 $L \in X$ (记为 $\lim_{n \to \infty} x_n = L$), 若

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{Z}_+ \ \forall n > N \ f d(x_n, L) < \varepsilon, \tag{4.118}$$

这等价于

$$\lim_{n \to \infty} d(x_n, L) = 0. \tag{4.119}$$

定义 4.10. 称 $\{x_n\}_{n=1}^{\infty}$ 为一个 Cauchy 列, 若

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{Z}_+ \ \forall m, n \ge N \ f d(x_m, x_n) < \varepsilon. \tag{4.120}$$

定义 4.11. 称一个度量空间 (X,d) 是完备的 (complete), 如果 X 中的任何 Cauchy 列都收敛 (\mathfrak{I}) (\mathfrak{I}) 中的某点).

例 4.13. $\left(\mathbb{R}^n, d(x,y) = \sqrt{\sum (x_i - y_i)^2}\right)$ 是完备的度量空间.

例 4.14. $(\mathbb{Q}, d(x, y) = |x - y|)$ 是不完备的.

理由 取一个有理数序列 $\{x_n \in \mathbb{Q}\}_{n=1}^{\infty}$ 满足 $\lim_{n \to \infty} x_n = \sqrt{2}.\{x_n\}$ 是 Cauchy 列, 但 $\{x_n\}$ 在 \mathbb{Q} 中无极限.

4.5.2 实数的另一种定义

我们用 Cauchy 列可以给出 ℝ 的另一个定义.

定义 4.12. 一个实数为"有理数 Cauchy 列的等价类".

定义 4.13. 两个 \mathbb{Q} 中的 Cauchy 列 $\{x_n\}$ 于 $\{y_n\}$ 等价, 如果

定理 4.8 (压缩映射定理). 设 (X,d) 是完备的度量空间,设 $T: X \to X$ 是压缩映射 (即 $\exists c \in (0,1)$ 使 $\forall x,y \in X$ 有 $d(T(x),T(y)) \leq c \cdot d(x,y)$),则 T 有唯一的不动点.

证明. 任取
$$x_0 \in X$$
, 定义 $x_n = \underbrace{T \circ T \circ \cdots \circ T(x_0)}_{n \uparrow T} = T(x_{n-1}).$

• 断言 $\{x_n\}_{n=0}^{\infty}$ 是 Cauchy 列. 为此, $\forall m > n$,

$$d(x_{n}, x_{m}) = d(T^{n}x_{0}, T^{m}x_{0}) \leq c^{n}d(x_{0}, x_{m-n})$$

$$\leq c^{n}(d(x_{0}, x_{1}) + d(x_{1}, x_{2}) + \dots + d(x_{m-n-1}, x_{m-n}))$$

$$= c^{n}\frac{1 - c^{m-n}}{1 - c}d(x_{0}, x_{1})$$

$$< \frac{c^{n}}{1 - c}d(x_{0}, x_{1}) < \frac{c^{N}}{1 - c}d(x_{0}, x_{1})$$

$$< \varepsilon \quad (只要 N 足够大)$$
(4.122)

• 由 (X,d) 完备可知, 前述 Cauchy 列 $\{x_n\}$ 收敛, 设 $\lim_{n\to\infty}x_n=y_0$, 来证 y_0 是 T 的不动点.

证明. 考虑不等式

$$0 \le d(T(y), x_n) = d(T(y), T(x_{n-1}))$$

$$\le c \cdot d(T(y), x_{n-1})$$
(4.123)

由夹逼定理知,

$$\lim_{n \to \infty} d(T(y), x_n) = 0 \implies \lim_{n \to \infty} x_n = T(y). \tag{4.124}$$

结合

$$\lim_{n \to \infty} x_n = y,\tag{4.125}$$

可得

$$T(y) = y. (4.126)$$

• T的不动点唯一.

证明. 设 T(y) = y, T(z) = z, 则

$$d(y,z) = d(T(y), T(z)) \le c \cdot d(y,z) \implies y = z. \tag{4.127}$$

结合起来, T 有不动点且不动点唯一.

5 函数极限

定义 5.1. 称当 $x \to x_0$ 时, $f(x) \to L($ 记为 $\lim_{n\to\infty} f(x) = L)$, 如果

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ \forall |x - x_0| < \delta \ \text{bt} \ \bar{f}[f(x) - L] < \varepsilon. \tag{5.1}$$

这个定义并不要求 $f(x_0)$ 的行为, $f(x_0)$ 甚至可以无定义.

我们引入记号: 开球邻域 $B_r(x_0) = \{x | d(x, x_0) < r\}$, 去心开球邻域 $B_r^*(x_0) = B_r(x_0)/\{x_0\}$.

定义 5.2. 如果 f 在 x_0 的某个去心邻域有定义,称当 $x\to x_0$ 时,f 以 L 为极限 (记为 $\lim_{n\to\infty}f(x)=L)$ 如果

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ \text{\'e} \ \text{\'$$

这个定义使用了 $\varepsilon - \delta$ 语言.

 $x \to x_0$ 时, f(x) 以 L 为极限

$$\iff \forall \varepsilon > 0 \ \exists \delta > 0, \ \forall |x - x_0| < \delta \ \overleftarrow{\eta} |f(x) - L| < \varepsilon.$$

 $x \to x_0$ 时, f(x) 不以 L 为极限

$$\iff \exists \varepsilon > 0 \ \forall \delta > 0, \ \exists |x - x_0| < \delta \ \hat{\mathbf{T}}|f(x) - L| \ge \varepsilon.$$

定义 5.3. 左极限:

$$\lim_{x \to x_0^-} f(x) = L \iff \forall \varepsilon > 0 \ \exists \delta > 0, \ \forall -\delta < x - x_0 < 0 \ \not| f(x) - L | < \varepsilon. \tag{5.3}$$

右极限, 正负无穷极限同理.

命题 5.1. f 在 x_0 处有极限等价于 f 在 x_0 的左右极限存在且相等.

类似地,引入符号

$$\lim_{x \to \infty} f(x) = L \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = L. \tag{5.4}$$

我们会想问, 函数极限和序列极限有什么关系?

定理 5.1 (Heine). $\lim_{x\to x_0} f(x) = L$ 的充要条件为, 对于任何的以 x_0 为极限且项项不等于 x_0 的序列 $\{x_n\}_{n=0}^{\infty}$ 有 $\lim_{n\to\infty} f(x_n) = L$.

证明. 必要性是显然的, 下面证明充分性.

为此用反证法, 假设 f 不以 L 为极限但试探数列的极限为 L, 即

$$\exists \varepsilon > 0 \ \forall \delta > 0, \ \exists 0 < |x - x_0| < \delta \ \notin |f(x) - L| > = \varepsilon.$$
 (5.5)

(这包含无穷个断言,因为每一个 δ 给出一个 x.) 这样 $\forall n \in \mathbb{Z}_+, \ \delta = \frac{1}{n} \exists x (记为 x_n)$ 满足 $0 < |x_n - x_0| < \frac{1}{n}$ 且 $|f(x_n) - L| \ge \varepsilon$.

但是
$$\lim_{n\to\infty} f(x_n) = L$$
, 与 $|f(x_n) - L| \ge \varepsilon$ 矛盾!

上述的定理常常用于判断极限的存在性, 如果能找到两个序列 $\{x_n\} \to x_0$ 和 $\{y_n\} \to x_0$, 但 $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(y_n)$, 则 $\lim_{x\to x_0} f(x)$ 不存在.

例 5.1. 当 $\alpha > 0$ 时, $\lim_{x\to 0} \sin \frac{1}{r^{\alpha}}$. 来证这个极限不存在.

证明. 反证法, 设 $\lim_{x\to 0} \sin \frac{1}{x^{\alpha}} = L$, 考虑

$$\left\{ x_n = \left(\frac{1}{2n\pi + \frac{1}{2}\pi} \right)^{\alpha} \right\}_{n=1}^{\infty} \tag{5.6}$$

我们有

$$x_n \neq 0 \ \forall n, \ \lim_{n \to \infty} x_n = 0. \tag{5.7}$$

取另一个序列

$$\left\{ y_n = \left(\frac{1}{2n\pi + \frac{3}{2}\pi} \right)^{\alpha} \right\}_{n=1}^{\infty} \tag{5.8}$$

我们发现, $\lim_{n\to\infty} f(x_n) = 1$, $\lim_{n\to\infty} f(y_n) = -1$, 由 Heine 定理可知, 极限不存在.

5.1 函数极限的性质与计算方法

命题 5.2 (保持极限不等式 6). 设 $\lim_{x \to x_{0}} f\left(x\right) < \lim_{x \to x_{0}} g\left(x\right)$, 则

$$\exists \delta > 0 \ \forall 0 < |x - x_0| < \delta \ \mathsf{f} f(x) < g(x). \tag{5.9}$$

命题 5.3. 设 $f(x) \le g(x) \ \forall 0 < |x - x_0| < r$ 且 $\lim_{x \to x_0} f(x)$ 和 $\lim_{x \to x_0} g(x)$ 都存在,则

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x). \tag{5.10}$$

命题 5.4. 若 f(x) 在 x_0 处有极限, 则 f(x) 在 x_0 的某去心邻域中有界.

证明. 由于 $L-1 < \lim_{x \to x_0} f(x) < L+1$ 由命题5.2可知 $\exists \delta > 0, \forall 0 < |x-x_0| < \delta$ 有,

$$L - 1 < f(x) < L + 1 \quad \forall x \in B_{\delta}(x_0) \tag{5.11}$$

说明 f(X) 在 $B_{\delta}(x)$ 中有界.

定理 5.2. 设 $\lim_{x\to x_0}f\left(x\right)=A,\lim_{x\to x_0}g\left(x\right)=B,$ 则有

$$\lim_{x \to x_0} \left(f\left(x \right) \pm g\left(x \right) \right) = A \pm B,\tag{5.12}$$

$$\lim_{x \to x_0} \left(f(x) g(x) \right) = AB \tag{5.13}$$

当
$$B \neq 0$$
 时 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$ (5.14)

⁶这和数列极限中的充分大指标的项保持极限不等式 (命题4.1) 是一致的

定理 5.3 (单调收敛定理). 设 f 在 $[x_0 - r, x_0]$ 时递增且有上界的 (或递减且有下界),则

$$\lim_{x \to x_{0}^{-}} f\left(x\right) \tag{5.15}$$

存在.(右极限同理)

定理 5.4 (Cauchy 收敛准则). 设 $\forall \varepsilon > 0$, $\exists \delta$, 使得

$$\forall x, y \in B_{\delta} \left(x_0 \right)^* \tag{5.16}$$

都有

$$|f(x) - f(y)| < \varepsilon \tag{5.17}$$

则 $\lim_{x \to x_0} f(x)$ 存在.

证明. • 先证 f 在 x_0 的某去心邻域中有界. 由条件, 对 $\varepsilon = 1$, $\exists r > 0$, $\forall x, y \in B_{2r}(x_0)^*$ 有 |f(x) - f(y)| < 1.

取 $y = x + \frac{r}{2}$, 可知 $|f(x) - f(x_0 + \frac{r}{2})| < 1$, $\forall x \in B_{2r}(x_0)^*$, 说明 $f \in B_{2r}(x_0)^*$ 中有界.

5.2 函数极限的计算方法

从定义/夹逼定理/四则运算/复合极限定理

定理 5.5. 设 $\lim_{x\to x_0}f\left(x\right)=y_0,\ \lim_{y\to y_0}g\left(y\right)=z_0,$ 则

$$\lim_{x \to x_0} g(f(x)) = z_0. \tag{5.18}$$

但这个定理是错的. 有两种修正办法:

- 1. 在 x_0 的某个去心邻域 $B_{\delta}(x_0)$ 中, 有 $f(x) \neq y_0$.
- 2. 若 $g(y_0) = z_0$, 上述定理没有问题.

5.3 极限的计算

例 5.2.

$$\lim_{x \to a^{+}} (x - a)^{\alpha} = \begin{cases} 0, & \alpha > 0 \\ 1, & \alpha = 0 \end{cases}$$

$$\text{ π $\noteath α } (5.19)$$

证明. • 当 $\alpha > 0$ 时, $\forall \varepsilon > 0$, 取 δ , 对于任意 $0 < x - a < \delta$, 有

$$|(x-a)^{\alpha} - 0| = (x-a)^{\alpha} < \varepsilon \tag{5.20}$$

表明

$$\lim_{x \to a^+} (x - a)^{\alpha} = 0 \tag{5.21}$$

当 α < 0 时,来证 (x − a)^α 无上界,由此知不存在右极限.
 来证 当 α < 0 时, (x − a)^α 无上界,即对于任意 k > 0, ∃x > a, 使得 (x − a)^α > k.
 为此,对于 ∀k,取 a < x < a + ½, 则有

$$f(x) = (x - a)^{\alpha} > \left(\frac{1}{k^{\frac{1}{\alpha}}}\right)^{\alpha} = k$$
 (5.22)

例 5.3.

 $\lim_{x \to +\infty} x^{\alpha} = \begin{cases} 0, & \alpha < 0 \\ 1, & \alpha = 0 \\ \text{ π $\rlap{$\wedge$}$ $\rlap{$\wedge$} $ $\rlap{$\alpha$} $} \end{cases} \tag{5.23}$

证明. 方法一

采用复合极限定理, 令 $f(x) = \frac{1}{x}$, 令

$$g(f(x)) = x^{\alpha}. (5.24)$$

于是自动满足修正条件一.

方法二

直接计算, 当 $\alpha < 0$ 时, $\forall \varepsilon > 0$, 取 $M = \varepsilon^{\frac{1}{\alpha}}$, 则对 $\forall x > M$ 有

$$|x^{\alpha} - 0| = x^{\alpha} < M^{\alpha} = \varepsilon \tag{5.26}$$

例 5.4.

$$\lim_{x \to a} \sin x = \sin a, \quad \lim_{x \to a} \cos x = \cos a \tag{5.27}$$

证明.

$$\left|\sin x - \sin a\right| = 2\left|\sin \frac{x - a}{2}\right| \left|\cos \frac{x + a}{2}\right| \leqslant 2\left|\sin \frac{x - a}{2}\right| \tag{5.28}$$

由于 $0 < x < \frac{\pi}{2}$ 时, $\sin x < x < \tan x$, 可得

$$\forall |x| < \frac{\pi}{2}, \quad |\sin x| \le |x|. \tag{5.29}$$

故 $\forall \varepsilon > 0$, 取 $\delta = \min\{\pi, \varepsilon\}$, 当 $0 < |x - a| < \delta$ 时, 有

$$\left|\sin x - \sin a\right| \le 2 \left|\sin \frac{x-a}{2}\right| \le 2 \left|\frac{x-a}{2}\right| < \delta \le \varepsilon$$
 (5.30)

从而

$$\lim_{x \to a} \sin x = \sin a \tag{5.31}$$

同理可证 $\lim_{x \to a} \cos x = \cos a$.

命题 5.5. $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

证明. 我们只证明 $x \to 0^+$ 时的情况, $x \to 0^-$ 时的情况类似.

注意到, $\forall 0 < x < \frac{\pi}{2}$ 时, 有

$$\sin x < x < \tan x = \frac{\sin x}{\cos x} \implies \cos x < \frac{\sin x}{x} < 1 \tag{5.32}$$

于是使用夹逼定理,可得

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1. \tag{5.33}$$

例 5.5.

$$\lim_{x \to +\infty} \frac{a_n x^n + \dots + a_0}{b_m x^m + \dots + b_0} = \lim_{x \to +\infty} \frac{a_n x^n + \dots + a_0}{x^n} \frac{x^m}{b_m x^m + \dots + b_0} x^{n-m}$$
(5.34)

$$= \lim_{x \to +\infty} a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \cdot \frac{1}{\lim_{x \to +\infty} b_m + \frac{b_{m-1}}{x} + \dots + \frac{b_0}{x^m}} x^{n-m}$$
 (5.35)

$$= \begin{cases} 0, & n < m \\ \frac{a_n}{b_m}, & n = m \\ \text{不存在}, & n > m \end{cases}$$
 (5.36)

命题 5.6 (多项式增长远小于指数增长). $\lim_{x\to +\infty} \frac{x^k}{q^x} = 0$, $q > 1, k \in \mathbb{Z}_{\geq 0}$ 证明. 记 q = 1 + a, (a > 0),

$$q^{x} = (1+a)^{x} \ge (1+a)^{[x]} = \sum_{k=0}^{[x]} C_{[x]}^{k} a^{k}$$

$$\ge C_{[x]}^{k+1} a^{k+1}$$

$$= \frac{[x]([x]-1)\cdots([x]-k)}{(k+1)!} a^{k+1}$$

$$> \frac{(x-1)(x-2)\cdots(x-k+1)}{(k+1)!} a^{k+1}$$
(5.37)

于是可得

$$0 < \frac{x^k}{q^x} < \frac{x^k (k+1)!}{(x-1)\cdots(x-k+1) a^{k-1}}$$
 (5.38)

由前例可得, 右侧极限为零, 所以 $\lim_{x\to +\infty} \frac{x^k}{a^x} = 0$.

例 5.6.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} \tag{5.39}$$

$$= \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2 \cdot \frac{1}{2} = \frac{1}{2}$$
 (5.40)

命题 5.7 (Euler). $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$

证明. 做放缩

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{[x]}\right)^{[x]+1}$$
(5.41)

对于上界,

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = e \cdot 1 = e. \tag{5.42}$$

对于下界,

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to +\infty} \left(1 + \frac{1}{n+1} \right)^{n+1} \cdot \lim_{n \to +\infty} \left(1 + \frac{1}{n+1} \right)^{-1} = e \cdot 1 = e. \quad (5.43)$$

由夹逼定理可得,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e. \tag{5.44}$$

命题 5.8. 设 $f \colon \mathbb{R} \to \mathbb{Z}_+, \ g \colon \mathbb{Z}_+ \to \mathbb{R}$ 满足 $\lim_{x \to x_0} f\left(x\right) = +\infty, \ \lim_{n \to +\infty} g\left(n\right) = A,$ 则

$$\lim_{x \to x_0} g\left(f\left(x\right)\right) = A. \tag{5.45}$$

证明. 只需把条件的定义拼起来.

推论: $\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e.$

证明. 今 f(x) = -x, $g(y) = \left(1 - \frac{1}{y}\right)^{-y}$, (这自动满足修正方案一) 则

$$\lim_{y \to +\infty} \left(1 - \frac{1}{y} \right)^{-y} = \lim_{y \to +\infty} \left(\frac{y - 1}{y} \right)^{-y} = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^{y}$$

$$= \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^{y - 1} \cdot \left(1 + \frac{1}{y - 1} \right) = e.$$
(5.46)

做换元 $t = \frac{1}{x}$ 也有类似结论, 总结起来

$$\begin{cases} \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \\ \lim_{t \to 0} \left(1 + t \right)^{\frac{1}{t}} = e \end{cases}$$

$$(5.47)$$

命题 5.9. 设 $\lim_{x\to a}u\left(x\right)=A,\ \lim_{x\to a}v\left(x\right)=B,$ 则

$$\lim_{x \to a} u(x)^{v(x)} = A^{B}.$$
 (5.48)

证明.

$$u(x)^{v(x)} = e^{v(x) \ln u(x)}$$
 (5.49)

于是证明分为两步

- 1. 先证 $\lim_{x\to a} \ln u(x) = \ln A$.
- 2. 再证: 若 $\lim_{x\to a} f(x) = C$, 则 $\lim_{x\to a} e^{f(x)} = e^C$.

证明第一步 令 $g(y) = \ln y$, 这满足修正二. 由于 $\forall A > 0$, 有 $\lim_{y \to A} \ln y = A$ (引理5.1, 下证). 由此, 结合复合函数极限定理, 可得

$$\lim_{x \to a} g \circ u(x) = \lim_{x \to a} \ln u(x) = \ln A. \tag{5.50}$$

证明第二步 令 $h(y)=\mathrm{e}^y$,这满足修正二. 由于 $\lim_{y\to C}\mathrm{e}^y=\mathrm{e}^C$.(引理5.1, 下证) 由此, 结合复合函数极限定理, 可得

$$\lim_{x \to a} h \circ f(x) = \lim_{x \to a} e^{f(x)} = e^{C}.$$
 (5.51)

引理 5.1. • $\forall A > 0$, $\lim_{y \to A} \ln y = A$.

• $\forall C \in \mathbb{R}$, $\lim_{y \to C} e^y = e^C$.

证明引理第一条. 对于 $\forall \varepsilon>0$,取 $\delta=\min\{A-A\mathrm{e}^{-1},A\mathrm{e}^{\varepsilon}-A\}$,则 $0<|y-A|<\delta$,有 $A\mathrm{e}^{-\varepsilon}< y< A\mathrm{e}^{\varepsilon}$,进而

$$e^{-\varepsilon} < \frac{y}{A} < e^{\varepsilon}$$
 (5.52)

即

$$\left|\ln y - \ln A\right| = \left|\ln \frac{y}{A}\right| < \varepsilon \tag{5.53}$$

证明引理第二条. 我们只证 $\lim_{y\to C^+} {
m e}^y={
m e}^C$. $\lim_{y\to C^-} {
m e}^y={
m e}^C$ 的证明类似, 或者可以通过这个结论换元得到.

为此, $\forall \varepsilon > 0$, 取一个正整数 $n > \frac{e^{1+C}}{\varepsilon}$, 令 $\delta = \frac{1}{n}$, 则 $0 < y - C < \delta$ 时, 有

$$\left(1 + \frac{\varepsilon}{e^C}\right)^n \ge n \frac{\varepsilon}{e^C} > e,$$
 (5.54)

进而,

$$e^{\frac{1}{n}} < 1 + \frac{\varepsilon}{e^C}. \tag{5.55}$$

由此知,

$$C < e^y - e^C = e^C \left(e^{y-C} - 1 \right) < e^C \left(e^{\frac{1}{n}} - 1 \right) < e^C \frac{\varepsilon}{e^C} = \varepsilon.$$
 (5.56)

命题 5.10. 设 $\lim_{x\to x_0} f(x) = 0$, $\lim_{x\to x_0} f(x) g(x) = k$, 则

$$\lim_{x \to x_0} [1 + f(x)]^{g(x)} = e^k.$$
 (5.57)

证明. 只需证

$$\lim_{x \to x_0} [g(x) \ln(1 + f(x))] = k.$$
 (5.58)

常 & 史. 书上提供如下方法:

考虑

$$q(y) = \begin{cases} \frac{\ln(1+y)}{y}, & y \neq 0\\ 1, & y = 0. \end{cases}$$
 (5.59)

对 f&q 使用复合极限, 满足修正二, 可得

$$\lim q\left(f\left(x\right)\right) = 1\tag{5.60}$$

复合极限定理中的修正二给出了 $\lim_{x\to x_0} g(x) = g(x_0)$, 这可以给出一个定义.

定义 5.4. 设 f 在 x_0 的某开球邻域中有定义, 称 f 在 x_0 处连续, 如果以下条件之一成立:

- $\lim_{x \to x_0} f(x) = f(x_0)$
- 对于 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |x x_0| < \delta$ 时, $f(x) f(x_0)| < \varepsilon$.
- 对与 $f(x_0)$ 的任何开球邻域 $B_{\varepsilon}(f(x_0))$, 都存在 x_0 的开球邻域, 使得

$$f(B_{\delta}(x_0) \subseteq B_{\varepsilon}(f(x_0))).$$
 (5.61)

• 对于 $f(x_0)$ 的任何一个邻域 V, 都存在 x_0 的一个邻域 U, 使得 $f(U) \subseteq V$.

对于上面的定义,我们可以通过不连续的例子来理解,f 在 x_0 处不连续 \iff $\exists \varepsilon > 0, \forall \delta > 0, \exists |x - x_0| < \delta$,使得 $|f(x) - f(x_0)| \ge \varepsilon$. 这可以说成 f 在 x_0 处撕开了定义域 D.

例 5.7. 判断连续性

$$f(x) = \begin{cases} \sin\frac{1}{x^{\alpha}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
 (5.62)

解

当 $\alpha > 0$ 时, $\lim_{x\to 0} f(x)$ 不存在, 故不连续.

当 $\alpha = 0$ 时, $\lim_{x\to 0} f(x) = \sin 1 \neq f(0)$. 故 f 在 0 处不连续.

当 $\alpha < 0$ 时, 令 $\alpha = -\beta$, $(\beta > 0)$, 则 $\lim_{x\to 0} f(x) = 0 = f(0)$, 故 f 在 0 处连续.

定义 5.5. 称 x 为 f 的连续点, 如果 f 在 x 处连续, 称 x 为 f 的间断点, 如果 f 在 x 处不连续.

间断点也可以分为几类:

- 本性间断点, $\lim_{x\to r_0} f(x)$ 不存在.
- 可去间断点, $\lim_{x \to x_0} f(x)$ 存在, 但不等于 $f(x_0)$

对于可去间断点,我们可以通过定义 $\tilde{f}(x_0)=\begin{cases} f(x)\,, & x\neq x_0 \\ \lim_{x\to x_0}f(x)\,, & x=x_0 \end{cases}$ 使得 x_0 变为 \tilde{f} 的连续点.

命题 5.11 (用序列极限刻画函数连续). f(x) 连续当且仅当对于所有以 x_0 为极限的点列 $\{x_n\}_{n=1}^{\infty}$, 总有 $\lim_{n\to\infty} f(x_n) = f(x_0)$.

证明. 从充分性和必要性分别证明.

" ⇒ ":

设 f 在 x_0 处连续, 设 $\lim_{n\to\infty} x_n = x_0$, 来证 $\lim_{n\to\infty} f(x_n) = f(x_0)$.

这可以用复合极限定理来证明,令 $h(n) \equiv x_n, \forall n \in \mathbb{Z}_+,$ 则 $\lim_{n \to \infty} h(n) = x_0$,由于 f 在 x_0 处连续,故

$$\lim_{n \to \infty} f(h(n)) = f(x_0), \qquad (5.63)$$

这满足复合极限定理的修正二, 所以 $\lim_{n\to\infty} f(x_n) = f(x_0)$.

" = ":

设序列极限等于 $f(x_0)$ 成立, 来证 f 在 x_0 处连续, 即证 $\lim_{x\to x_0} f(x) = f(x_0)$.

反证法. 设 $x \to x_0$ 时, f(x) 不以 $f(x_0)$ 为极限, 即 $\exists \varepsilon > 0$, $\forall \delta > 0$, $\exists 0 < |x - x_0| < \delta$, 使 $|f(x) - f(x_0)| \ge \varepsilon$ 成立.

特别的, 对 $\delta = \frac{1}{n}$, 则 $\exists 0 < |x_n - x_0| < \frac{1}{n}$, 使得 $|f(x_n) - f(x_0)| \ge \varepsilon$. 由于

$$\lim_{n \to \infty} f(x_n) = f(x_0), \qquad (5.64)$$

矛盾!

定义 5.6. 设 $f: D \to \mathbb{R}$, D 满足 D 中每一点都有一个开球邻域包含在 D 中, 称 $f \in D$ 上的 连续函数/映射, 记为 $f \in C(D; \mathbb{R})$, 如果 f 在 D 的每一点处都连续.

定义 5.7. 称 $D \in \mathbb{R}$ 的一个开集 (open set), 如果 $\forall x_0 \in D$, 都存在 $B_r(x_0) \subseteq D$.

下面我们可以考虑如何定义一般的映射的连续性.

定义 5.8. 对于一般的 X, Y, 称 $f: X \to Y$ 在 x_0 处连续, 如果对于 Y 中任意开集 $V, f^{-1}(V)$ 是 X 中的开集.

5.4 拓扑空间

5.4.1 拓扑公理

定义 5.9. 设 X 是一个集合,所谓 X 上的一个拓扑结构,是指 X 的一个子集族 \mathcal{T} ,称 \mathcal{T} 的成员此拓扑的开集,满足以下三条公理

- 1. $\emptyset, X \in \mathcal{T}$.
- 2. 9 中两个 (有限个) 集合之交仍属于 9.
- 3. 9 中任意多个 (可以是无穷个) 集合之并仍属于 9.

称 (X, \mathcal{I}) 为一个拓扑空间. 在上下文可以得出 \mathcal{I} 的时候, 也简称 X 为一个拓扑空间.

例 5.8. $\mathcal{I}_{A,R} \equiv \{\emptyset, X\}$ 称为平凡拓扑. $\mathcal{I}_{B,R} \equiv \{X\}$ 的所有子集 $\}$ 称为离散拓扑.

在度量空间中,我们可以有一些非平凡的拓扑. 令 (X,d) 为一个度量空间,定义开球为 $B_r(x) = \{y \in X | d(y,x) < r\}$. 令

$$\mathcal{I} = \{ U \subseteq X | U \text{ 可以表示为开球之并} \} \tag{5.65}$$

我们断言, \mathcal{I}_d 满足拓扑公理, 称之为度量 d 诱导的拓扑.

证明. 公理三是显然的. 公理一也是显然的, 构造如下

$$\emptyset = 0$$
 个开球之并, $X = \bigcup_{x \in X} B_1(x)$ (5.66)

公理二需要证明.

设 $U, V \in \mathcal{T}_d, U = \bigcup_{\alpha} U_{\alpha}, V = \bigcup_{\beta} V_{\beta}.$

$$U \cap V = \bigcup_{\alpha,\beta} U_{\alpha} \cap V_{\beta} \tag{5.67}$$

我们只需证 $U_{\alpha} \cap V_{\beta}$ 是开球之并即可. 设 $U_{\alpha} = B_r(x), V_{\beta} = B_s(y),$ 则对于

$$\forall z \in B_r(x) \cap B_s(y) \tag{5.68}$$

取

$$0 < t < \min\{r - d(x, z), s - d(y, z)\}. \tag{5.69}$$

从而

$$B_t(z) \subseteq B_r(x), \quad B_t(z) \subseteq B_s(y)$$
 (5.70)

所以有

$$B_t(z) \subseteq U_\alpha \cap V_\beta \tag{5.71}$$

于是

$$U_{\alpha} \cap V_{\beta} = \bigcup_{z} B_{t}(z). \tag{5.72}$$

我们就证明了开集之交仍是开集.

定义 5.10. 称 X 的子集 B 为上述拓扑 (X, \mathcal{T}) 的闭集 $(close\ set)$, 若 $X/B = B^C$ 是开集.

前面我们已经知道,一个度量 d 可以诱导出一个度量拓扑 \mathcal{I}_d ,**在微积分中,我们都是用此拓扑.**

- 一元微积分中 $X=\mathbb{R}$, d(x,y)=|x-y|. \mathbb{R} 上赋予欧式拓扑, 开集可以表示为一族开区间 之并.
- 多元微积分中 $X = \mathbb{R}^n$, $d(\vec{x}, \vec{y}) = \sqrt{\sum (x_i y_i)^2}$. \mathbb{R}^n 上赋予欧式拓扑, 开集可以表示为一族不带边球体之并.

定义 5.11. 设 (X, \mathcal{T}) 是一个拓扑空间, 给定 $Y \subseteq X$, 令

$$\mathscr{T}_{Y} = \{ U \cap Y | U \in \mathscr{T} \}. \tag{5.73}$$

易验证 \mathcal{I}_Y 是 Y 上的一个拓扑, Y(M X 获得的) 子空间拓扑. 我们以后对于 $D \subseteq RT^n$, 都赋予从 \mathbb{R}^n 获得的子空间拓扑.

例 5.9. 对于 $D = [a, b] \subseteq \mathbb{R}$, 它当中的开集可以为 $[a, p) \cup (c, d) \cup (q, b]$

5.4.2 基本概念

定义 5.12. 设 (X,\mathcal{T}) 是拓扑空间, 设 $A \subset X, a \in A$.

称 $a \in A$ 的内点 (同时称 $A \in a$ 的邻域), 如果存在开集 U, 使得 $a \in U \subseteq A$.

命题 5.12. $A \in X$ 的开集, 当且仅当 A 中每一点都是 A 的内点.

证明. 从充分性和必要性两方面.

" \Longrightarrow :" 显然. $\forall a \in A$, 取开集 U = A, 则 $a \in U \subseteq A$.

" $\leftarrow :$ "设 A 中每一点都是 A 的内点, 则 $\forall a \in A, \exists U_a \in A, a \in U_a \subseteq A$. 则

$$A = \bigcup_{a \in A} \{a\} \subseteq \bigcup_{a \in A} U_a \subseteq A. \tag{5.74}$$

因而 A 是开集之并, 由拓扑公理三, A 是开集.

对于 \mathbb{R}^n 中的拓扑, $A \in \mathbb{R}^n$ 的开集 $\iff \forall a \in A, \exists B_r(a) \subseteq A.$ $B \in \mathbb{R}^n$ 的闭集 $\iff B^C \in \mathbb{R}^n$ 的开集 $\iff \forall y \notin B, \exists B_r(y) \subseteq B^C.$

5.4.3 连续性

定义 5.13. 设 (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) 是两个拓扑空间. 设 $f: X \to Y$ 是一个映射, $x_0 \in X$. 称 f 在 x_0 处连续, 如果对于 Y 中任意开集 $V \ni f(x_0)$ 都存在 X 的开集 $U \ni x_0$, 使 $f(U) \subseteq V$.

定义 5.14. 称 $f: X \to Y$ 为连续映射 (记为 $f \in C(X,Y)$), 如果 f 在 X 的每一点处都连续.

定理 5.6. $f: X \to Y$ 连续

 $\iff f$ 下开集的原像集是开集 (即对 Y 的任何开集 V 有 $f^{-1}(V)$ 是 X 的开集). 7

 \iff f 下闭集的原像集是闭集 (对 Y 的任何闭集 B 有 $f^{-1}(B)$ 是 X 的闭集).

图 1:

第一条推第二条:

第一条推出第二条. 设 $f \in C(X,Y)$,设 V 是 Y 中的开集,来证: $f^{-1}(V)$ 是 X 的开集。这等价于证明, $f^{-1}(V)$ 中的每点 x_0 是 $f^{-1}(V)$ 的内点。

由 $x_0 \in f^{-1}(V)$, 知 $f(x_0) \in V$, 由 f 在 x_0 处连续, 知存在 X 中的开集 U, 使 $x_0 \in U$, 且

$$f^{-1}(V) = \{x \in X | f(x) \in V\}. \tag{5.75}$$

 $^{^{7}}$ 注意这里面的 f^{-1} 并不是逆映射, 而是原像集

 $f(U) \subseteq V$.

即 $U \subseteq f^{-1}(V)$,这样, $x_0 \in U_{(\mathcal{H})} \subseteq f^{-1}(V)$,说明 x_0 是 $f^{-1}(V)$ 的内点。 又因为 x_0 是 $f^{-1}(V)$ 中任意点,所以 $f^{-1}(V)$ 是开集。

第二条推出第一条. 设 f 下开集的原像集都为开集, 来证 $f \in C(X,Y)$, 即证 f 在每一点 x_0 处连续.

为此, 对任何开集 $V\ni f\left(x_{0}\right)$, 由于第二条成立可知 $f^{-1}\left(V\right)$ 是 X 的开集, 取 $U=f^{-1}\left(V\right)$ 显然 $x_{0}\in f^{-1}\left(V\right)=U$.

证明第二条等价于第三条. 假设 B 是一个闭集, 则 B^C 是一个开集, 由第二条可知 $f^{-1}\left(B^C\right)$ 是一个开集. 注意到

$$X = f^{-1}(B) \sqcup f^{-1}(B^{C}). (5.76)$$

即
$$f^{-1}(B^C) = (f^{-1}(B))^C$$
,所以 $f^{-1}(B)$ 是一个闭集.

定理 5.7 (连续映射的复合是连续的). 设 $f: X \to Y$ 在 x_0 处连续, $g: Y \to Z$ 在 $f(x_0)$ 处连续.

则 $g \circ f: X \to Z$ 在 x_0 处连续.

证明. 对任何包含 $g \circ f(x_0)$ 的任何开集 W, 由 g 在 $f(x_0)$ 处连续的定义, 存在含 $f(x_0)$ 的开集 V 是 $g(V) \subseteq W$.

又由于 f 在 x_0 处连续的定义知, 存在含 x_0 的开集 U 使得 $f(U) \subseteq V$.

这样,
$$g \circ f(U) = g(f(U)) \subseteq g(V) \subseteq W$$
. 从而 $g \circ f$ 在 x_0 处连续.

定理 5.8 (映射复合保持连续性). 设 $f \in C(X,Y)$, $q \in C(Y,Z)$ 则 $q \circ f \in C(X,Z)$.

前述定理是连续映射的局部性质,下面我们讨论连续函数的局部性质.

定理 5.9. 设 $f: X \to \mathbb{R}, g: X \to \mathbb{R}$ 都在 x_0 处连续, 则 f+g, $f \cdot g$ 在 x_0 处连续.

定理 5.10. 一种投机取巧的证法

$$X \xrightarrow{F} \mathbb{R} \times \mathbb{R} \xrightarrow{\text{foliation}} \mathbb{R}$$

$$x \mapsto (f(x), g(x)) \mapsto f(x) + g(x)$$

$$(5.77)$$

由于 F 和加法都是连续的, 所以 f+g 也是连续的.

类似可以证明乘除法.

引理 5.2. $h: \mathbb{R}^2 \to \mathbb{R}, (a,b) \mapsto a+b$ 是连续的.

证明. $\forall \varepsilon > 0$, 取 $\delta = \frac{\varepsilon}{\sqrt{2}}$, 则 $\forall d((a,b),(a_0,b_0)) < \delta$, 有

$$|h(a,b) - h(a_{0},b_{0})| = |(a - a_{0}) + (b - b_{0})|$$

$$\leq \sqrt{2 \left[(a - a_{0})^{2} + (b - b_{0})^{2} \right]}$$

$$= \sqrt{2}d((a,b),(a_{0},b_{0})) < \sqrt{2}\delta$$

$$= \varepsilon.$$
(5.78)

命题 5.13. 设 $f, g: X \to \mathbb{R}$, 定义 $F \equiv (f(x), g(x))$.

则 F 在 x_0 处连续, 当且仅当 f 和 g 在 x_0 处连续.

证明. " \leftarrow "设 f,g 在 x_0 处连续, 来证 F 在 x_0 处连续.

为此 $\forall B_{\varepsilon} (f(x_0), g(x_0)), \exists \varepsilon' = \frac{\sqrt{2}}{2} \varepsilon$ 使

$$B_{\varepsilon'}\left(f\left(x_{0}\right)\right) \times B_{\varepsilon'}\left(g\left(x_{0}\right)\right) \subseteq B_{\varepsilon}\left(F\left(x_{0}\right)\right). \tag{5.79}$$

由 f 在 x_0 处连续, $\exists x_0$ 的开邻域 U_1 , 使 $f(U_1) \subseteq B_{\varepsilon'}(f(x_0))$.

由 g 在 x_0 处连续, $\exists x_0$ 的开邻域 U_2 使 $g(U_2) \subseteq B_{\varepsilon'}(g(x_0))$.

取 $U = U_1 \cap U_2$, 则 $U \in x_0$ 的开邻域, 且

$$F(U) \subseteq f(U) \times g(U) \subseteq f(U_1) \times g(U_2) \subseteq B_{\varepsilon'}(f(x_0)) \times B_{\varepsilon'}(g(x_0)) \subseteq B_{\varepsilon}(F(x_0)). \quad (5.80)$$

推论: 设 $f,g \in C(X,\mathbb{R})$ 则 $f+g, f-g, fg \in C(X,\mathbb{R})$.

下面来考虑 $\frac{f}{g}\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}.$ 商函数的定义域为 $X/g^{-1}\left(\left\{ 0\right\} \right).$

命题 5.14 (连续函数的等高面皆为闭集). 设 $f: X \to \mathbb{R}$ 连续, $\forall C \in \mathbb{R}$, 定义

$$X_c \equiv \{x \in X | f(x) = c\} = f^{-1}(\{c\}).$$
 (5.81)

则 X_c 是闭集.

证明. 由于单点集 $\{c\}$ 是 \mathbb{R} 的闭集⁸, 显然.

命题 5.15. $\forall f \in C(X, \mathbb{R}^n), \, \forall \vec{c} \in \mathbb{R}^n, \, \text{有} \, f^{-1}\left(\{\vec{C}\}\right) \, \text{是} \, X \, \text{的闭集}.$

定理 5.11. 设 $f,g \in C(X,\mathbb{R})$ 连续,则 $\frac{f}{g}$ 是 $X/g^{-1}(\{0\})$ 上的连续映射 (即连续函数的商在分母的零点之外连续).

证明. $\diamondsuit Y = X/g^{-1}(\{0\}),$

$$Y \xrightarrow{F} \mathbb{R} \times (\mathbb{R}/\{0\}) \xrightarrow{q} \mathbb{R}, \quad x \mapsto (f(x), g(x)), \quad q = \frac{f(x)}{g(x)}.$$
 (5.82)

例 5.10. 多项式函数都是连续的.

证明. 乘方 x^n 是恒同映射的乘法, 是连续的. 加法是连续的. \Box

例 5.11. 有理函数在分母的零点之外是连续的.

证明. 有理函数是多项式的商函数.

命题 5.16. 设 u(x), v(x) 在 x_0 处是连续的, 则 $u(x)^{v(x)}$ 在 x_0 处连续.

证法一. 结论等价于
$$\lim_{x \to x_0} u(x)^{v(x)} = \left(\lim_{x \to x_0} u(x)\right)^{\left(\lim_{x \to x_0} v(x)\right)}$$

证法二. $u(x)^{v(x)} = e^{v(x) \ln u(x)}$.

$$u(x)$$
 与 $\ln(\square)$ 复合,再与乘法复合,再与 $\mathrm{e}^{(\square)}$ 复合

5.5 连续函数的整体性质

5.5.1 介值定理

定理 5.12 (区间套原理). 设有一簇闭区间 $[a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_i,b_i]$, 且 $\lim_{n\to\infty}(b_n-a_n)=0$, 则

- $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ 存在且相等 (记为 c).
- $\bigcap_{n=1} [a_n, b_n] = \{c\}.$

 $^{^{8}}$ 只要证 $\forall y \neq c$, $\exists B_{r}\left(y\right) \subseteq \left\{c\right\}^{C}$. 取 $r = \frac{1}{2}d\left(y,c\right) > 0$ 即可. 同理, \mathbb{R}^{n} 中单点集也是闭集

证明. 注意到, $a_1 \le a_2 \le \cdots \le a_n \le b_n \le b_{n-1} \le \cdots \le b_1$. 这说明 a_n 序列单调递增, 且有一个上界是 b_1 , b_n 序列单调递减, 且有一个下界是 a_1 .

由单调收敛定理,它们都有极限,记 $\lim_{n\to\infty}a_n=A$, $\lim_{n\to\infty}b_n=B$. 由四则运算, $0=\lim_{n\to\infty}(b_n-a_n)=B-A$.

再证 $\bigcap_{n=1} [a_n, b_n] = \{c\}.$

先证 $c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$. 由于 $a_{n+1} \le a_n$, 所以 $a_n \le c \le b_n$, $\forall n$, 说明 $c \in [a_n, b_n]$, $\forall n$, 从而 $c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$.

对于 $\forall x \in \bigcap_{n=1}^{\infty} [a_n, b_n]$,有 $a_n \le x \le b_n$, $\forall n$,由夹逼定理,x = c. 从而 $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$.

定理 5.13 (介值定理). 设 f 在 [a,b] 上连续, 且 f(a)f(b) < 1, 则存在 $c \in (a,b)$, 使得 f(c) = 0. 证明. 用反证法, 设 f(x) 在 [a,b] 上处处非零, 不妨设 f(a) < 0 < f(b)(不满足就用 -f 代替 f).

令 $I_1 = [a,b] = [a_1,b_1]$,构造闭区间的下降列 $[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots$,满足 $|b_n - a_n| = \frac{1}{2} |b_{n-1} - a_{n-1}|$.

在构造好 I_n 的基础上, I_{n+1} 为 I_n 左半, 若 $f\left(\frac{a_n+b_n}{2}\right) > 0$, 反之右半. 由 $\lim (b_n - a_n) = \lim \frac{b-a}{2^n} = 0$.

由区间套原理知 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n \equiv c$. 由于 f 在 [a,b] 上连续, 所以

$$0 \ge \lim_{n \to \infty} f(a_n) = f(c) = \lim_{n \to \infty} f(b_n) \ge 0$$

$$(5.83)$$

从而 f(c) = 0,矛盾.

推论 设 $f: [a,b] \to \mathbb{R}$ 连续, 设 V 介于 f(a) 和 f(b) 之间, 则 $\exists c \in [a,b]$ 使 f(c) = V.

证明. 若 V = f(a) 或 V = f(b), 结论自动成立. 除此之外对 f 做平移 g(x) = f(x) - V 即可.

5.5.2 最值/有界性定理

定义 5.15. 称子集族 $\mathcal{U} = \{u_{\alpha} : \alpha \in \text{指标集}A\}$ 为 D 的一个覆盖 (covering), 如果

$$\bigcup_{\alpha \in A} u_{\alpha} \supseteq D. \tag{5.84}$$

如果 \mathscr{U} 的个成员都是 (X,\mathscr{T}) 的开集, 则称 \mathscr{U} 是 D 的一个开覆盖 (open covering). 称 \mathscr{U} 的一个子集 \mathscr{V} 为一个子覆盖 (subcovering), 如果 \mathscr{V} 也是 D 的一个覆盖. 进一步, 如果 \mathscr{V} 中只有有限个元素, 则称 \mathscr{V} 是 \mathscr{U} 的一个有限子覆盖.

定理 5.14 (有限覆盖定理, Borel). 设 \mathscr{U} 是一族开区间构成的族, 且是 D = [a,b] 的一个覆盖,则 \mathscr{U} 有一个有限子族 \mathscr{V} 也是 D 的覆盖.

证明. 假设 $\mathcal U$ 的任何有限子族都不是 D 的覆盖 (简称 D 无有限子覆盖). .

令 $I_1 = [a, b]$, 它无有限子覆盖, 构造闭区间的下降列 $I_1 \supseteq I_2 \supseteq \cdots$, 满足 $|I_n| = \frac{1}{2} |I_{n-1}|$, 且 I_n 皆无 $\mathcal U$ 的有限子覆盖. 在构造好 I_n 之后, 它的左右两半不可能都有有限子覆盖, 我们取没有有限子覆盖的一半为 I_{n+1} .

由区间套原理可知, $\lim a_n = \lim b_n = c$, $c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, 特别的, $c \in [a, b]$.

记 $\mathscr{U} = \{u_{\alpha} = (x_{\alpha}, y_{\alpha})\}$. 从而 $\exists u_{\alpha} \ni c$,即 $x_{\alpha} < c < y_{\alpha}$. 由 $x_{\alpha} < c = \lim a_n$, $c = \lim b_n < y_{\alpha}$,则 $\exists N$, $\forall n > N$ 有 $x_{\alpha} < a_n$, $b_n < y_{\alpha}$ 即 I_n 有有限子覆盖 (x_{α}, y_{α}) ,矛盾!

定理 5.15. 有界闭区间上的连续函数一定有界.

待补充

定义 5.16. 称 I 是区间, 如果 I 是 \mathbb{R}^1 的凸集. 即 $\forall P, A \in I$ 则线段 $PQ \subseteq I$.

命题 5.17. 考虑 $\inf I = m($ 约定,若无下界令 m 为符号 $-\infty)$, $\sup I = M($ 同,无上界: $+\infty)$. $\forall m < x < M$,有 $x \in I$. 由 $\frac{m+x}{2} > m = \inf I$,知 $\exists x_1 \in I$ 使 $\frac{m+x}{2} > x_1$. 同理 $\exists x_2 \in I$ 使 $\frac{x+M}{2} < x_2$. 于是 $x_1 < x < x_2$,由 I 的凸性知 $[x_1, x_2] \in I$. 特别的, $x \in I$. 这样

$$(m.M) \subseteq I \subseteq [m, M] \implies I = (m, M) \cup (端点集的集合)$$
 (5.85)

定理 5.16 (反函数定理). 设 I 是区间, 设 $f: I \to \mathbb{R}$ 是连续单射, 则

- f(I) 是区间.
- f^{-1} : $f(I) \to I$ 是连续的.

证明第一条. $\forall f(x_1), f(x_2) \in f(I), \forall f(x_1), f(x_2), \notin \mathbb{R}$ 使用介值定理, 线段 $f(x_1) f(x_2)$ 包含在 $f(I) \mapsto f(I)$ 是 \mathbb{R} 的区间.

证明第二条. 由 f 连续单射可知 f 严格单调, 不妨设 f 严格递增

1. 当 y_0 是 f(I) 的内点时,设 $f(x_0) = y_0$,则 x_0 是 I 的内点,则 $\forall \varepsilon > 0$ 取 $0 < \varepsilon^1 < \varepsilon$ 使 $x \pm \varepsilon^1 \in I$.

令 $\delta = \min\{y_0 - f(x_0 - \varepsilon^1), f(x_0 + \varepsilon^1) - y_0\}$, 这使得 y 介于 $f(x_0 + \varepsilon^1), f(x_0 - \varepsilon^1)$ 之间.

由介值定理可知, $\exists x \in (x_0 - \varepsilon^1, x_0 + \varepsilon^1)$ 使得 f(x) = y. 于是 $|x - x_0| < \varepsilon^1 \implies |f(x) - f(x_0)| < \varepsilon$, 即 f 在 x_0 处连续.

2. 当 y_0 是 f(I) 的端点,不妨设是左端点.类似令 $f(x_0) = y_0$,则 x_0 也是 I 的左端点.令 $\delta = f(x_0 + \varepsilon^1) - y_0$,则 $\forall y \in (y_0, y_0 + \delta)$,由介值定理可知, $\exists x \in (x_0, x_0 + \varepsilon^1)$ 使得 f(x) = y. 于是 $|x - x_0| < \varepsilon^1 \implies |f(x) - f(x_0)| < \varepsilon$,即 f 在 x_0 处连续.

例 5.12 (幂函数). 分情况三种:

- f(x) = xⁿ, n ∈ Z₊, [0, +∞) → R 显然 f 连续且严格递增⁹.
 由反函数定理可知, f 有连续的反函数 f⁻¹: [0, +∞) → [0, +∞), 记为 f⁻¹(y) = y^{1/n}: R_{≥0} → R_{≥0}
- $\mathcal{Z} \times x^{\frac{m}{n}} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \not \to x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)^m$.
- $\forall \alpha \in \mathbb{R}/\mathbb{Q}$, 取有理数序列 $\{\alpha_n\} \to \alpha$, 定义 $x^{\alpha} = \lim_{n \to \infty} x^{\alpha_n}$.

例 5.13 (对数函数). $f(x) = e^x$ 有连续反函数 $f^{-1}(y) \stackrel{i2h}{=\!=\!=\!=} \ln y$: $\mathbb{R}_+ \to \mathbb{R}_+$.

例 5.14 (反三角函数). $f(x) = \sin x$: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ 严格递增且连续,f 有连续的反函数 $f^{-1}(y) \stackrel{i 2 h}{=\!=\!=\!=} \arcsin y$: $\left[-1, 1\right] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. 类似地, $\arccos x$: $\left[-1, 1\right] \to \left[0, \pi\right]$, $\arctan x$: $\left(-\infty, +\infty\right) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

5.6 无穷小量与无穷大量10

定义 5.17. 称 $x \to x_0$ 时, f(x) 是无穷小量 $\iff \lim_{x \to x_0} f(x) = 0$, 正/负无穷大量同理.

例 5.15. $x \to 0$ 时, $x, \sin x, x^n$ $(n \ge 1)$ 是无穷小量, $\ln |x|, \frac{1}{x}$ 是无穷大量.

引入无穷小量/无穷大量的比较,

- f 是比 g 更高阶的无穷小量 $\iff \lim_{x\to 0} \frac{f(x)}{g(x)} = 0.$
- f 是与 g 同阶的无穷小量 $\iff \lim_{x\to 0} \frac{f(x)}{g(x)} \in \mathbb{R}/\{0\}.$
- f 是与 g 等价的无穷小量 $\iff \lim_{x\to 0} \frac{f(x)}{g(x)} = 1$.

$$(x+h)^{n} = \sum_{l} C_{n}^{l} x^{n-l} h^{l} > x^{n}$$
 (5.86)

⁹这可以用二项式展开

 $^{^{10}}$ 这描述的是某些函数具有特定的极限行为,并不是某一个数是无穷小/无穷大

无穷大量的比较同理.

在计算极限时,可以把某乘积因子替换为与之等价的无穷大/无穷小量,不改变极限值. 因为

$$\lim (f(x) h(x)) = \lim \left(\frac{f(x)}{g(x)}g(x)h(x)\right)$$
(5.87)

6 微分与导数

定义 6.1. f 在某点处的导数定义为

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x)}{h} \xrightarrow{\frac{1}{4} \mathbb{R} \mathbb{R} \frac{1}{2}} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}. \tag{6.1}$$

记为 f'(x)

命题 6.1. f 在 x_0 处是可导的, 当且仅当 $f(x_0\pm)$ 存在且相等.

例 6.1. f(x) = |x| 在 x = 0 处是不可导的.

命题 6.2. 对于一元函数, 可导函数都连续.

证明. 设 f 在 x_0 处可导,则 f 在 x_0 处连续. 只需证 $\lim_{x\to x_0} f(x) = f(x_0)$,实际上有

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right) = f'(x_0) \cdot 0 = 0.$$
 (6.2)

定义 6.2. 称 f 在 D 上可导, 如果 f 在 D 中每点处都可导, 也称 f 是 D 上的可导函数. 这样得到的映射 $D \to \mathbb{R}, x_0 \mapsto f'(x_0)$.

Leibniz 引入了符号, $f' = \frac{df}{dx}$, 他想把导数解释为 df 与 dx 之商.

6.1 计算导数

6.1.1 从定义直接计算

例 6.2. $f(x) = x^n$, $(n \ge 0)$, 当 n = 0 时, f 为常函数, f' = 0. 我们之考虑 $n \ne 0$ 的情况.

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \sum_{i=0}^n C_n^i x^{n-i} h^{i-1} = C_n^i x^{n-1} = nx^{n-1}.$$
 (6.3)

例 6.3.

$$\sin x' = \lim_{h \to 0} \frac{\sin (x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2 \sin \frac{h}{2} \cos \left(x + \frac{h}{2}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \lim_{h \to 0} \cos \left(x + \frac{h}{2}\right) = 1 \cdot \cos x.$$

$$(6.4)$$

类似地, $\cos x' = -\sin x$

例 6.4. $f(x) = e^x$.

$$(e^{x})' = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = e^{x} \lim_{h \to 0} \frac{e^{h} - 1}{h} \xrightarrow{\frac{k}{\pi} t \equiv e^{h} - 1} e^{x} \lim_{t \to 0} \frac{t}{\ln(1+t)} = e^{x}.$$
 (6.5)

例 6.5.

$$(\ln x)' = \lim_{h \to 0} \frac{\ln (x+h) - \ln x}{h} = \lim_{h \to 0} \ln \left(1 + \frac{h}{x}\right)^{\frac{1}{h}} \xrightarrow{\frac{h}{x}} \lim_{t \to 0} \ln (1+t)^{\frac{1}{xt}} = \ln e^{\frac{1}{x}} = \frac{1}{x}.$$
(6.6)

6.1.2 用导数的四则运算性质

定理 6.1. 设 f, g 在 x_0 处可导,则

$$(f \pm g)' = f' \pm g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$
(6.7)

定义 6.3. 称 $D: \{C^{\infty}(E)\} \rightarrow \{C^{\infty}(E)\}$ 为一个导子, 如果它满足

- D(f+g) = D(f) + D(g);
- $D(f \cdot g) = D(f) \cdot g + f \cdot D(g)$;

证明 Leibniz 法则.

$$(fg)'(x) = \lim_{h \to 0} \frac{g(x+h)[f(x+h) - f(x)] + f(x)[g(x+h) - g(x)]}{h}$$

$$= f'(x)g(x) + f(x)g'(x).$$
(6.8)

推论:

$$(f_1 f_2 f_3)' = f_1' f_2 f_3 + f_1 f_2' f_3 + f_1 f_2 f_3'. (6.9)$$

这对于任意多个函数相乘也适用.

例 6.6.

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$
 (6.10)

类似地,

$$(\cot x)' = -\frac{1}{\sin^2 x}. (6.11)$$

6.1.3 复合函数求导

形式化地,

$$(g \circ f)(x) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

$$= g'(f(x_0)) \cdot f'(x_0).$$
(6.12)

但上式中标红的步骤是非法的, 因为 $f(x) - f(x_0)$ 可能为 0. 有两种修正方案:

- 1. 把除法用乘法和不等式改写.
- 2. 用微分重写 (这也适用于高维).

定理 6.2 (Chain Rule 链式法则). 设 f 在 x_0 处可导, g 在 $f(x_0)$ 处可导, 则 $g \circ f$ 在 x_0 处可导, 且

$$(g \circ f)(x_0) = g'(f(x_0)) \cdot f'(x_0).$$
 (6.13)

例 6.7.

$$(x^{x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^{x} (\ln x + 1).$$
(6.14)

例 6.8.

$$\left(\ln f\left(x\right)\right)' = \frac{1}{f\left(x\right)}f'\left(x\right). \tag{6.15}$$

特别地, 当 f(x) = |x|, 有

$$(\ln|x|)' = \frac{1}{|x|} \cdot \frac{x}{|x|} = \frac{1}{x}. \quad (x \neq 0)$$
 (6.16)

例 6.9. $f(x) = u(x)^{v(x)}$, 有

$$f'(x) = (u^{v})' = (e^{v \ln u})' = e^{v \ln u} \left(v' \ln u + v \frac{u'}{u} \right) = u^{v} \left(v' \ln u + v \frac{u'}{u} \right).$$
 (6.17)

6.1.4 微分

f 在 x_0 处可导, 则 $\exists A \in \mathbb{R}^{11}$, 使得

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{h} = 0.$$
 (6.18)

于是我们发现, f(x) 在 x_0 附近可以近似为一个线性函数加上小的误差 $f(x_0 + h) = f(x_0) + Ah + \alpha(h)$.

$$f(x_0 + h) \sim f(x_0) + Ah \tag{6.19}$$

我们可以通过研究线性近似来了解 f.

定义 6.4 (可微/微分). 称 f 在 x_0 处可微, 如果存在线性映射 $L: \mathbb{R} \to \mathbb{R}$, 使得

$$f(x_0 + h) = f(x_0) + L(h) + \alpha(h), \qquad (6.20)$$

且 $\lim_{h\to 0} \frac{\alpha(h)}{h} = 0$. 进而称满足上述条件的唯一的 L 为 f 在 x_0 处的微分, 记为 $\mathrm{d}f_{x_0}: \mathbb{R} \to \mathbb{R}$.

命题 6.3. 对于一元函数, 可导与可微等价.

若 f 在 x_0 处可微,则其微分为

$$df_{x_0}(h) = f'(x_0) h, \ \forall h$$
 (6.21)

定义 6.5 (整体微分). 称 f 是 D 上的可微函数, 如果 f 在 D 中每一点 x_0 处皆可微, 这样得到一族线性映射.

$$\{\mathrm{d}f_{x_0} \colon \mathbb{R} \to \mathbb{R}\}_{x_0 \in D} \tag{6.22}$$

称此族线性映射为 f 的微分, 记为 df 或 Df.

上述的 $\mathrm{d}f_{x_0}$ 是一个 $T(D)\to\mathbb{R}$ 的映射, 称为 1-form. 这时候我们会发现链式法则几乎是显然的.

定理 6.3 (微分保持映射符合关系). 设 f 在 x_0 处连续, g 在 $f(x_0)$ 处连续, 则 $g \circ f$ 在 x_0 处连续且

$$d(g \circ f)_{x_0} = dg_{f(x_0)} \circ df_{x_0}$$
(6.23)

 $^{^{11}}$ 可导 \Longrightarrow 极限存在 \Longrightarrow 存在实数 A 等于极限值.

证明. 设 $\mathrm{d}f_{x_0}\left(h\right) = Ah,\,\mathrm{d}g_{f\left(x_0\right)}\left(v\right) = Bv,\,$ 由微分的定义

$$f(x_0 + h) = f(x_0) + Ah + \alpha(h), \quad \lim_{h \to 0} \frac{\alpha(h)}{h} = 0$$
 (6.24)

$$g(f(x_0) + v) = g(f(x_0)) + Bv + \beta(v), \quad \lim_{v \to 0} \frac{\beta(v)}{v} = 0$$
 (6.25)

复合知,

$$g \circ f(x_0 + h) = g(f(x_0) + Ah + \alpha(h))$$

$$= g(f(x_0)) + BAh + B\alpha(h) + \beta(Ah + \alpha(h))$$

$$(6.26)$$

只需证 $\lim_{h\to 0}\frac{B\alpha\left(h\right)+\beta\left(Ah+\alpha\left(h\right)\right)}{h}=0$,第一项是已知的,只需证 $\lim_{h\to 0}\frac{\beta\left(Ah+\alpha(h)\right)}{h}=0$.

$$\Rightarrow q(v) = \begin{cases} \frac{\beta(v)}{v}, & v \neq 0\\ \lim_{v \to 0} \frac{\beta(v)}{v} = 0 & v = 0. \end{cases}$$

注意到

$$\lim_{h \to 0} p(h) = \lim_{h \to 0} \left(Ah + \frac{\alpha(h)}{h} h \right) = 0. \tag{6.27}$$

由复合极限定理知, $\lim_{h\to 0} q(p(h)) = 0$, 进而,

$$\lim_{h \to 0} \left(q(p(h)) \cdot \frac{Ah + \alpha(h)}{h} \right) = 0. \tag{6.28}$$

注意

$$q(p(h))\frac{Ah + \alpha(h)}{h} = \begin{cases} \frac{\beta(p(h))}{h} \frac{p(h)}{h}, & p(h) \neq 0\\ 0, & p(h) = 0 \end{cases}$$

$$= \frac{\beta(Ah + \alpha(h))}{h}$$
(6.29)

命题 6.4 (Leibniz 法则).

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)}$$
(6.30)

用归纳法易证.

6.2 反函数求导

若 f 是连续单射 $f: D \to \mathbb{R}$, 则 f 有反函数 f^{-1} , 问: f^{-1} 是否可导? 如何求导?

命题 6.5. 若 f 与 f^{-1} 皆可导,则有

$$\left(df^{-1}\right)_{f(x_0)} = \left(df_{x_0}\right)^{-1}, \quad \left(f^{-1}\right)'(f(x_0))f'(x_0) = 1$$
(6.31)

证明. 由于

$$f \circ f^{-1} = \mathrm{id}_D, \quad f^{-1} \circ f = \mathrm{id}_{f(D)}$$
 (6.32)

用链式法则,有

$$\begin{cases} (\mathrm{d}f^{-1})_{f(x_0)} \circ \mathrm{d}f_{x_0} = \mathrm{Id}, \\ \mathrm{d}f_{x_0} \circ (\mathrm{d}f^{-1})_{f(x_0)} = \mathrm{Id} \end{cases}$$
(6.33)

可知

$$\left(df^{-1}\right)_{f(x_0)} = \left(df_{x_0}\right)^{-1}. \tag{6.34}$$

例 6.10. $f(x) = x^3$, 在 \mathbb{R} 上严格单调, 但 f^{-1} 在 y = 0 处不可导.

严格单调可导函数的反函数未必可导,因为若 f^{-1} 在 $f(x_0)$ 处可导 $\Longrightarrow f'(x_0) \neq 0$.

定理 6.4. 设 $f: D \to \mathbb{R}$ 是连续单射, 且 D 是区间, 若 f 在 x_0 处可导且 $f'(x_0) \neq 0$, 则 f^{-1} 在 $f(x_0)$ 处可导. 且有

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}. (6.35)$$

证明, 由导数的定义计算

$$(f^{-1})'(f(x_0)) = \lim_{y \to f(x_0)} \frac{f^{-1}(y) - f^{-1}(f(x_0))}{y - f(x_0)}.$$
 (6.36)

用复合极限定理, 定义 $g \colon D/\{x_0\} \to \mathbb{R}, u \mapsto g(u) = \frac{u-x_0}{f(u)-f(x_0)}$, 复合为

$$h(y) = g\left(f^{-1}(y)\right) = \frac{f^{-1}(y) - x_0}{y - f(x_0)} \tag{6.37}$$

注意到

$$\lim_{y \to f(x_0)} f^{-1}(y) \stackrel{\square \text{ if } f^{-1} \text{ if } \notin}{=} f^{-1}\left(\lim_{y \to f(x_0)} y\right) = x_0. \tag{6.38}$$

故有

$$\lim_{u \to x_0} g(u) = \lim_{u \to x_0} \frac{u - x_0}{f(u) - f(x_0)} = \frac{\text{Impiziff}}{f'(x_0)}.$$
 (6.39)

修正方案 I 自动成立, 由 f 单知 $\forall y \neq f(x_0)$ 有 $f^{-1}(y) \neq x_0$. 这样由复合极限定理得到

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$
 (6.40)

推论: 设 f^{-1} 是 f 的反函数, 且 f 是可导函数, 则

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}, \quad (\forall f'(x_0) \neq 0).$$
 (6.41)

例 6.11.

$$\left(\arcsin x\right)' = \frac{1}{\sin'\arcsin x} = \frac{1}{\cos\left(\arcsin x\right)} = \frac{1}{\sqrt{1-x^2}}.$$
(6.42)

例 6.12.

$$(\arccos x)' = \frac{1}{\cos'\arccos x} = \frac{1}{-\sin\arccos x} = \frac{1}{-\sqrt{1-x^2}}$$
(6.43)

例 6.13.

$$(\arctan x)' = \frac{1}{\tan' \arctan x} = \cos^2 \arctan x = \frac{1}{1+x^2}$$
(6.44)

6.3 复合函数的高阶导

$$h^{(1)} = g'(f(x)) f'(x)$$

$$h^{(2)} = g''(f(x)) f'(x) + g'(f(x)) f''(x)$$

$$h^{(3)} = g'''f'f'f' + g''f''f' + g''f''f'' + g'f'''$$
(6.45)

定义 6.6. 所谓 $1,2,\ldots,n$ 的一个分组方式 $P=\{A_1,A_2,\cdots,A_k\}$, 其中 A_1,A_2,\cdots,A_k 是 $\{1,2,\cdots,n\}$ 的无交的非空子集, 且满足

$$A_1 \cup A_2 \cup \dots \cup A_k = \{1, 2, \dots, n\}$$
 (6.46)

求导就是把求导算子分配到每一项的因式上.

定理 6.5.

$$(g \circ f)^{n}(x) = \sum_{\text{maginary } P = \{A_{1}, \dots, A_{k}\}} g^{(\text{add})} f^{(|A_{1}|)} \cdots f^{(|A_{k}|)}$$
(6.47)

证明. 采用归纳法, 几乎是显然的.

例 6.14. $h(x) = e^{\frac{\alpha}{2}x^2}$, 求 $h^{(n)}(0)$.

令

$$g(y) = e^{y}, \quad f(x) = \frac{\alpha}{2}x^{2}, h(x) = (g \circ f)(x).$$
 (6.48)

经过计算可得

$$\frac{\mathrm{d}^{n}}{\mathrm{d}x^{n}}\Big|_{x=0} e^{\frac{\alpha}{2}x^{2}} = \begin{cases} 0, & n \ \text{β-b}, \\ \alpha^{\frac{n}{2}} \cdot (n-1)!!, & n \ \text{β-$flat}, \end{cases}$$
(6.49)

定义 6.7. 称 x_0 是 f 的极大值点, 如果 $\exists x_0$ 的开邻域使 f 在 U 中处处有定义且

$$f(x) \le f(x_0), \quad \forall x \in U,$$
 (6.50)

极小值同理.

定理 6.6 (Fermat). 设 x_0 是 f 的极大值点, 且 f 在 x_0 处可导, 则 $f'(x_0) = 0$.

证明. 不妨设 x_0 是极大值点, 则

$$f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$
(6.51)

且

$$f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$
 (6.52)

可知 $f'(x_0) = 0$.

定义 6.8. 称 x_0 是 f 的 Critical Point 如果 $f'(x_0) = 0$.

对多元函数则全部偏导数为零 $\frac{\partial f}{\partial x_1}(\vec{a}) = \frac{\partial f}{\partial x_2}(\vec{a}) = \dots = \frac{\partial f}{\partial x_n}(\vec{a}) = 0$ 称为临界点.

$$Crit(f) = \{f \text{ 的临界点}\}. \tag{6.53}$$

定理 6.7 (罗尔定理). 设 f 在 [a,b] 上连续且在 (a,b) 上处处可导,若 f(a) = f(b),则 $\exists c \in (a,b)$ 使 f'(c) = 0.

证明. 又最值定理, f 在 [a, b] 上有最大值和最小值.

- \ddot{a} f 的最大最小值都属于 $\{a,b\}$, 结合 f(a) = f(b) 可知, f 为常值函数.

例 6.15. 设 f 是 n 次多项式, 且 f 有 n 个不同的根 $a_1 < a_2 < \cdots < a_n$,

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) \tag{6.54}$$

对于每个 $[a_1,a_2],[a_2,a_3],\cdots$ 使用罗尔定理

$$\implies \exists b_i \in [a_i, a_{i+1}] \notin f'(b_i) = 0. \tag{6.55}$$

于是 f' 有唯一的因式分解

$$f'(x) = n(x - b_1)(x - b_2) \cdots (x - b_n). \tag{6.56}$$

展开后有

$$\begin{cases}
\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{b_1 + b_2 + \dots + b_n}{n - 1} \\
\sum_{i < j} a_i a_j / C_n^2 = \sum_{i < j} b_i b_j / C_{n-1}^2 \\
\vdots \\
\sum_{i_1 < \dots < i_{n-1}} a_{i_1} a_{i_2} \dots a_{i_{n-1}} / C_n^{n-1} = b_1 b_2 \dots b_{n-1} / C_{n-1}^{n-1}.
\end{cases}$$
(6.57)

定理 6.8 (Lagrange 中值定理). 设 $f \in C^1(a,b)$, 则 $\exists c \in (a,b)$, 使

$$f'(c) = \frac{f(b) - f(a)}{b - a}. (6.58)$$

证明. 令

$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right),$$
 (6.59)

则对于 g(x) 使用罗尔定理可得.

由拉格朗日中值定理可以得到单调性与导数正负号的关系.

例 6.16.
$$\frac{x}{1+x} < \ln(1+x) < x$$
, 令 $f(x) = \ln(1+x)$, 有

$$\frac{f(x) - f(0)}{x - 0} = f'(\xi) = \frac{1}{1 + \xi} \in \left(\frac{1}{1 + x}, 1\right)$$
(6.60)

故

$$\ln\left(1+x\right) \in \left(\frac{x}{1+x}, x\right) \tag{6.61}$$

定理 6.9 (柯西中值定理). 对于 $h = f \circ g^{-1}$ 使用 Lagrange 中值定理, 可得

$$\exists \xi \in (a,b), \ \not \in \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)} \tag{6.62}$$