Rules of Inference

Equivalence	Name
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{} \end{array} $	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \hline \neg p \end{array} $	Modus tollens
$ \begin{array}{c} p \to q \\ q \to r \\ \hline p \to r \end{array} $	Hypothetical Syllogism
$ \begin{array}{c} p \lor q \\ \hline \neg p \\ \hline q \end{array} $	Disjunctive Syllogism
$\therefore \frac{p}{p \vee q}$	Addition
$\frac{p \wedge q}{p}$	Simplification
$ \begin{array}{c} p \\ q \\ \vdots p \wedge q \end{array} $	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \vdots q \lor r \end{array} $	Resolution
$\frac{ (\forall x \mid x \in D : P(x))}{P(c/x)}$	Universal Instantiation
$ \frac{P(c/x)}{\left(\forall x \mid x \in D : P(x)\right)} $	Universal Generalization
$\frac{\left(\exists x \mid x \in D : P(x)\right)}{P(c^*/x)}$	Existential Instantiation
$\therefore \frac{P(c^*/x)}{\left(\exists x \mid x \in D : P(x)\right)}$	Existential Generalization