Package 'MEAanalysis'

May 6, 2025

```
Version 0.1.0
```

Title Analyse and Visualise Multi Electrode Array Burst Data

Maintainer Emily Gordon <emily.gordon@wadham.ox.ac.uk>

Description Analyse and visualise multi electrode array data at the single electrode and whole well level, downstream of 'AxIS Navigator 3.6.2 Software' processing. Compare bursting parameters between time intervals and recordings using the bar chart visualisation functions. Compatible with 12- and 24- well plates.

```
License GPL (>= 2)
```

```
Imports data.table (>= 1.15.4), dplyr (>= 1.1.4), ggplot2 (>= 3.5.0), janitor (>= 2.2.0), kableExtra (>= 1.4.0), knitr (>= 1.46), readr (>= 2.1.5), readxl (>= 1.4.3), reshape2 (>= 1.4.4), stringr (>= 1.5.1), tidyr (>= 1.3.1), tidyverse (>= 2.0.0)
```

Depends R (>= 4.3.0)

Encoding UTF-8

RoxygenNote 7.3.1

LazyData true

Suggests rmarkdown (>= 2.26), testthat (>= 3.2.1)

VignetteBuilder knitr

Config/testthat/edition 3

URL https://egordon2.github.io/MEA-analysis-package/

BugReports https://github.com/egordon2/MEA-analysis-package/issues

NeedsCompilation no

Author Emily Gordon [aut, cre]

Repository CRAN

Date/Publication 2025-05-06 08:30:06 UTC

Contents

create_electrode_dataset	2
create_synchrony_dataset	
electrode_burst_duration	4
electrode_mean_burst_ISI	5
electrode_number_of_bursts	6
electrode_spikes_per_burst	7
input_electrode_barchart	
input_heatmap_data	
input_MEA_data	
input_well_barchart	
MEA_heatmap	
single_electrode_barchart	
well_barchart	
well_burst_duration	
well_mean_burst_ISI	
well_number_of_bursts	
well_spikes_per_burst	
rr	
	17

create_electrode_dataset

Create Electrode Data Set

Description

Index

This function reads in, filters, and reformats electrode burst csv files produced by the axis navigator tool (Axion Biosystems) for use in analysis. This function filters the data to only contain information relating to single electrodes and burst characteristics. It also adds a 'Recording_identifier' column to enable other MEAanalysis functions to calculate burst parameters for a specific recording, as well as a column to identify the well a burst was recorded in.

Usage

create_electrode_dataset(data_path, recording_identifier)

Arguments

data_path

Include path to electrode burst dataset csv or excel file produced by the axis navigator tool. This path should be written within quotation marks and with respect to the current working directory.

recording_identifier

Include a unique identifier for the MEA recording being loaded. This identifier will be added to the 'Recording_identifier' column and be used by other MEAanalysis functions to filter the data and calculate burst parameters.

Value

A reformatted and filtered electrode burst list for use in analysis.

Examples

create_synchrony_dataset

Create Synchrony Data Set

Description

This function reads in, filters, and reformats neural metric csv files produced by the axis navigator neural metric tool (Axion Biosystems) for use in synchrony index analysis.

Usage

```
create_synchrony_dataset(data_path, heatmap_condition)
```

Arguments

data_path

Include path to neural metric dataset csv or excel file produced by the axis navigator neural metric tool. This path should be written within quotation marks and with respect to the current working directory.

heatmap_condition

Include a unique identifier for this neuralMetric dataset's experimental condition, this argument will be used by the MEA_heatmap function to group data.

Value

A reformatted and filtered neural metric dataset for use in synchrony index analysis.

```
electrode_burst_duration
```

Electrode Burst Duration

Description

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM burst duration recorded by single electrodes (within the specified time interval and recording).

Usage

```
electrode_burst_duration(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset func-

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM burst duration for single electrodes within the specified time interval and recording).

```
electrode_mean_burst_ISI
```

Electrode Mean Burst ISI

Description

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM mean ISI within a burst (sec) recorded by single electrodes (within the specified time interval and recording).

Usage

```
electrode_mean_burst_ISI(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset function

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list dataset with three additional columns (mean, SD and SEM mean ISI within a burst (sec) for single electrodes within the specified time interval and recording)

```
electrode_number_of_bursts

Electrode Number of Bursts
```

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM number of bursts recorded by single electrodes (within the specified time interval and recording).

Usage

```
electrode_number_of_bursts(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset function

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM number of bursts for single electrodes within the specified time interval and recording).

```
electrode_spikes_per_burst

Electrode Spikes per Burst
```

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM number of spikes per burst recorded by single electrodes (within the specified time interval and recording).

Usage

```
electrode_spikes_per_burst(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data Electrode burst list dataset preprocessed using the create_electrode_dataset func-

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM number of spikes per burst for single electrodes within the specified time interval and recording).

8 input_heatmap_data

```
input_electrode_barchart
```

Input dataset for single_electrode_barchart function

Description

A data set containing electrode burst data with additional columns calculated for various MEA parameters.

Usage

```
input_electrode_barchart
```

Format

A data frame with 8886 rows and 58 variables

Source

https://www.github.com/egordon2/MEAanalysis

input_heatmap_data

Input dataset for MEA_heatmap function

Description

A data set with well average synchrony index data for a baseline and comparison experimental condition.

Usage

```
input_heatmap_data
```

Format

A data frame with 24 rows and 3 variables

Well

synchrony_index: Baseline

synchrony_index: Agonist Challenge

Source

https://www.github.com/egordon2/MEAanalysis

input_MEA_data 9

input_MEA_data

Input dataset for electrode and well MEA parameter functions.

Description

A data set containing electrode burst list data filtered and reformated for use in analysis.

Usage

```
input_MEA_data
```

Format

A data frame with 8886 rows and 36variables:

Electrode

Time_s

Size_spikes

Duration_s

Recording_identifier

well

Source

https://www.github.com/egordon2/MEAanalysis

input_well_barchart

Input dataset for well_barchart function

Description

A data set containing electrode burst data with additional columns calculated for various MEA parameters.

Usage

```
input_well_barchart
```

Format

A data frame with 8886 rows and 70 variables

Source

https://www.github.com/egordon2/MEAanalysis

Function creates a heatmap of the synchrony index for each well grouped by heatmap condition.

Usage

```
MEA_heatmap(
   data,
   x_axis_title = "Experimental Condition",
   well_filter = "A1|A2|A3|A4|A5|A6|B1|B2|B3|B4|B5|B6|C1|C2|C3|C4|C5|C6|D1|D2|D3|D4|D5|D6"
)
```

Arguments

data Dataset containing well average synchrony index data.

x_axis_title Include title for heatmap x axis. Default is "Experimental Condition"

well_filter Argument can be used to filter for specific MEA wells to include in the heatmap.

Value

A heatmap of the synchrony index for each well grouped by heatmap condition.

Examples

```
p \leftarrow MEA\_heatmap(data = input\_heatmap\_data, \\ x\_axis\_title = "Experimental Condition", \\ well\_filter = "A1|A2|A3|A4|A5|A6|B1|B2|B3|B4|B5|B6|C1|C2|C3|C4|C5|C6|D1|D2|D3|D4|D5|D6")
```

```
single_electrode_barchart

Single Electrode Bar chart
```

Description

Function creates a bar chart of calculated MEA parameters by single electrode for a given time interval and recording.

Usage

```
single_electrode_barchart(
  data = output_table,
  electrode_parameter,
  electrode_filter =
    "A1|A2|A3|A4|A5|A6|B1|B2|B3|B4|B5|B6|C1|C2|C3|C4|C5|C6|D1|D2|D3|D4|D5|D6",
  statistic = se
)
```

Arguments

data

Dataset containing electrode burst data and calculated MEA parameter. Use create_electrode_dataset and electrode parameter functions to preprocess data before use in this function (i.e., electrode_burst_duration, electrode_mean_burst_ISI, electrode number of bursts, electrode spikes per burst).

electrode_parameter

Include "number_of_bursts"/ "burst_duration"/ "spikes_per_burst"/ "mean_burst_ISI" to determine the parameter visualised in the barchart.

electrode_filter

Argument can be used to filter for single electrodes to include in the barchart.

statistic

Include "se" or "sd" to determine whether bar chart error bars represent the standard error or standard deviation of the mean.

Value

A bar chart of calculated MEA parameters by single electrode for a given time interval and recording.

12 well_barchart

well_barchart

Well Bar chart

Description

Function creates a bar chart of calculated MEA parameters by well for a given time interval and recording.

Usage

```
well_barchart(
  data = output_table,
  well_parameter,
  well_filter = "A1|A2|A3|A4|A5|A6|B1|B2|B3|B4|B5|B6|C1|C2|C3|C4|C5|C6|D1|D2|D3|D4|D5|D6",
  statistic = se
)
```

Arguments

data	Dataset containing electrode burst data and calculated MEA parameter. Use create_electrode_dataset and well parameter functions to preprocess data before use in this function (i.e., well_burst_duration, well_mean_burst_ISI, well_number_of_bursts, well_spikes_per_burst).
well_parameter	Include "number_of_bursts"/ "burst_duration"/ "spikes_per_burst"/ "mean_burst_ISI" to determine the parameter visualised in the barchart.
well_filter	Argument can be used to filter for specific MEA wells to include in the barchart.
statistic	Include "se" or "sd" to determine whether bar chart error bars represent the standard error or standard deviation of the mean.

Value

A bar chart of calculated MEA parameters by single electrode for a given time interval and recording.

well_burst_duration 13

```
well_parameter = "mean_burst_ISI",
    well_filter = "A1|A2|A3|A4",
    statistic = se)

p <- well_barchart(data = input_well_barchart,
    well_parameter = "number_of_bursts",
    well_filter = "A1|A2|A3|A4",
    statistic = se)</pre>
```

well_burst_duration

Well Burst Duration

Description

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM burst duration recorded for each well (within the specified time interval and recording).

Usage

```
well_burst_duration(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset function.

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM burst duration recorded for each well within the specified time interval and recording).

Examples

well_mean_burst_ISI

Well Mean Burst ISI

Description

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM mean ISI within a burst (sec) recorded for each well (within the specified time interval and recording).

Usage

```
well_mean_burst_ISI(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data Electrode burst list dataset preprocessed using the create_electrode_dataset function.

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM mean ISI within a burst (sec) recorded for each well within the specified time interval and recording).

well_number_of_bursts 15

```
well_number_of_bursts Well Number of Bursts
```

Description

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM number of bursts recorded for each well (within the specified time interval and recording).

Usage

```
well_number_of_bursts(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset function.

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM number of bursts recorded for each well within the specified time interval and recording).

```
well_spikes_per_burst Well Spikes per Burst
```

Function reads in electrode burst list data and creates new columns with the mean, SD, and SEM number of spikes per burst recorded for each well (within the specified time interval and recording).

Usage

```
well_spikes_per_burst(
  data = output_table,
  time_lower_bound = 0,
  time_upper_bound = Inf,
  recording_identifier
)
```

Arguments

data

Electrode burst list dataset preprocessed using the create_electrode_dataset function.

time_lower_bound

Define lower bound of time interval for which to calculate the MEA parameter (seconds).

time_upper_bound

Define upper bound of time interval for which to calculate the MEA parameter (seconds).

recording_identifier

Define recording for which to calculate the MEA parameter. Use recording_identifier defined in create_electrode_dataset function.

Value

An electrode burst list table with three additional columns (mean, SD and SEM number of spikes per burst recorded for each well within the specified time interval and recording).

Index

```
* datasets
    input_electrode_barchart, 8
    input_heatmap_data, 8
    input_MEA_data, 9
    input_well_barchart,9
create_electrode_dataset, 2
{\tt create\_synchrony\_dataset, 3}
electrode_burst_duration, 4
electrode_mean_burst_ISI, 5
electrode_number_of_bursts, 6
electrode_spikes_per_burst, 7
input\_electrode\_barchart, 8
input_heatmap_data, 8
input_MEA_data, 9
input_well_barchart, 9
MEA_heatmap, 10
single_electrode_barchart, 10
well_barchart, 12
well_burst_duration, 13
well_mean_burst_ISI, 14
well_number_of_bursts, 15
well_spikes_per_burst, 16
```