

Problem Statement – 1:

Analyze Placement Data

TEAM MEMBERS: 1)TIRTHAJIT BORAL(LEADER) 2)SAMIRAN MAJUMDER 3)ATIF AKHTAR 4)MD TARIQUE HUSSAIN

Dataset: https://www.kaggle.com/datasets/revelation2k23/brain-dead-placement-data

Contest: Brain-Dead by Revelation 23 (via Unstop)

STEP 1: DATA CLEANING AND PROCESSING

క3] import pandas as pd

DATA CLEANING AND PROECESSING

[84] df = pd.read_csv('/content/Placement_Data_Full_Class.csv')

Double-click (or enter) to edit

[85] df

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	salary
0		М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	270000.0
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000.0
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed	250000.0
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed	NaN
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed	425000.0
210	211	М	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed	400000.0
211	212	М	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed	275000.0
212	213	М	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed	295000.0
213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed	204000.0
214	215	М	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed	NaN

o] df.describe()

	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary	1.
count	215.000000	215.000000	215.000000	215.000000	215.000000	148.000000	
mean	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405	
std	10.827205	10.897509	7.358743	13.275956	5.833385	93457.452420	
min	40.890000	37.000000	50.000000	50.000000	51.210000	200000.000000	
25%	60.600000	60.900000	61.000000	60.000000	57.945000	240000.000000	
50%	67.000000	65.000000	66.000000	71.000000	62.000000	265000.0000000	
75%	75.700000	73.000000	72.000000	83.500000	66.255000	300000.000000	
max	89.400000	97.700000	91.000000	98.000000	77.890000	940000.000000	

```
[101] import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

sns.set_style('darkgrid')
matplotlib.rcParams['font.size'] = 17
matplotlib.rcParams['figure.figsize'] = (9, 5)
matplotlib.rcParams['figure.facecolor'] = '#000000000'
```

STEP 2 : DATA VISUALISATION AND ANALYSIS

INFERENCE: MAXIMUM OF BOYS AND GIRLS STUDENT HAS SCORED A PERCENTAGE B/W 60 TO 70 AT SEC. AND HIGHER SEC. EDUCATION.

STEP 3: DETAILED ANALYSIS OF PERCENTAGE ON BAR PLOTS

DISTRIBUTION OF SECONDARY EDUCATION PERCENTAGE AMONG MALE AND FEMALE

INFERENCE: MAX OF BOY STUDENTS HAS SCORED PERCENTAGE B/W 60-65 WHEREAS MAX OF GIRL STUDENT SCORED PERCENTAGE OF 75-80

DISTRIBUTION OF HIGHER SECONDARY EDUCATION PERCENTAGE AMONG MALE AND FEMALE:

INFERENCE: MAX OF BOY STUDENTS HAS SCORED PERCENTAGE B/W 60-70 SAME FOR GIRL STUDENTS ALSO

DISTRIBUTION OF DEGREE PERCENTAGE AMONG MALE AND FEMALE:

INFERENCE: MAX OF BOY STUDENTS HAS SCORED PERCENTAGE B/W 60-70 SAME FOR GIRL STUDENTS ALSO.

DISTRIBUTION OF MBA PERCENTAGE AMONG MALE AND FEMALE:

INFERENCE: MAX NO. OF BOYS STUDENT HAS SCORED A PERCENTAGE OF 55-60 DURING MBA STUDIES WHILE MAX OF GIRLS STUDENTS SCORED A PERCENTAGE OF 60-65

DISTRIBUTION OF SECONDARY, HIGHER SECONDARY, DEGREE PERCENTAGE AMONGST MALE STUDENTS:

INFERENCE: BOY STUDENTS MAINTAINED THEIR PERCENTAGE OF 60-70 TILL DEGREE STUDIES AND AFTER THAT IT HAS STARTED DROPPING DURING MBA STUDIES DISTRIBUTION OF SECONDARY , HIGHER SECONDARY , DEGREE PERCENTAGE AMONGST FEMALE STUDENTS:

INFERENCE: GIRL STUDENTS SCORED THE MAXIMUM MARKS DURING SECONDARY STUDIES WHICH IS 70-80 WHICH DROPPED DOWN TO 60-70 AND IT IS MAINTAINED TILL DEGREE STUDIES

6) ANALYIS OF WORK EXPERIENCE TREND :

INFERENCE: 52 OUT OF 139 BOYS HAVE WORK EXPIRIENCE AND ONLY 22 OUT OF 76 GIRLS HAVE WORK EXPERIENCE

STEP 4 PROBABLE QUESTIONS ON DATASET

01) WHICH HIGHER SECONDARY SPECIALISATION IS ON HIGH

DEMAND?

INFERENCE: FROM BAR CHART PLOT IT IS CLEAR THAT SPECIALISATION IN "COMMERCE" IS ON HIGH DEMAND IN TERMS OF PLACEMENT

Q2) DOES MBA PERCENTAGE AFFECT PLACEMENT ?

INFERENCE: MBA PERCENTAGE DON'T HAVE A MAJOR EFFECT ON PLACEMENT

Q3) COMMENT ON MAXIMUM, AVERAGE MINIMUM SALARY OFFERED

```
Q3)Comment on max, avg, min salary offered?

The print("Maximum salary offered", df.salary.max())
print("Minimum salary offered", df.salary.min())
print("Average salary offered", df.salary.mean())

Maximum salary offered 940000.0
Minimum salary offered 200000.0
Average salary offered 288655.4954054054
```

Q4) WHICH DEGREE SPECIALISTAION IS ON HIGH DEMAND ?

INFERENCE: FROM ABOVE BAR CHART PLOT IT IS CLEAR THAT SPECIALISATION ON "MANAGEMENT DEGREE" IS ON HIGH DEMAND IN TERMS OF PLACEMENT FOR BOTH BOYS AND GIRLS

5 CALCULATE THE NUMBER OF STUDENTS WHO GOT PLACED DEPENDING ON MBA SPECILISATION

INFERENCE: MARKETING AND FINANCE IS ON HIGH DEMAND IN ACCOUNT OF PLACEMENT

STEP 5 - RESULTS AND DISCUSSIONS

So from the analysis that we have made we can conclude that:

- 1)The placement percentage of the campus is 68.8, which is not bad and the maximum salary offered is 9,40,000 and 24% of students were offered more than average salary of 2,88,655.
- 2)MBA percentage does not have much effect on getting placed. As we saw, even a student with high percentage as 75.71 and having work experience is not placed. Having a work experience will increase your chance of getting placed. We saw that, out of 74 students who had work experience 64 of them got placed in comparison to students who didn't have a work experience.

3) We can also predict what type of specialization in MBA is preferred by employers. Marketing and Finance. Out of 120 students who specialized in Marketing and Finance, 95 of them were placed whereas in Marketing and HR, its almost a 50-50 chance of placement.

4)We can also see that the degree specialization also affects employment. Employers prefer those who have studied Commerce and Management degree.

Therefore we can conclude that, in order to achieve a management job with better salary offers, its better to choose Commerce and Management for degree specialization and Marketing and Finance for MBA specialization along with a work experience

PROBLEM STATEMENT-2

Detecting Emotional Sentiment in Cartoons

Data-set: https://www.kaggle.com/datasets/revelation2k23/brain-dead-emotion-detection

STEP-1:IMPORTING LIBRARIES

STEP-2:DATA EXPLORATION

STEP-2:DATA EXPLORATION

```
↑ ↓ © 目 / ↓ î :

    Will see some random images with their emotion classes

    [49] import random
            import matplotlib.pyplot as plt
import matplotlib.image as mpimg
           def view random image(target dir, target class):
               target_folder = target_dir + target_class
               random image = random.sample(os.listdir(target folder), 1)
               img = mpimg.imread(target_folder+'/'+random_image[0])
               plt.imshow(img)
               plt.title(target_class)
               plt.axis('off')
               print(f"Image shape {img.shape}")
               return img
    [10] class_names = ['angry','happy','neutral','sad']
       plt.figure(figsize=(30,10))
           for i in range(30):
               plt.subplot(5, 6, i+1)
               class name = random.choice(class names)
                img = view_random_image(target_dir="/content/drive/MyDrive/Train/", target_class=class_name)
                                                                             ✓ 0s completed at 10:04 PM
```

STEP-2:DATA EXPLORATION (RANDOM IMAGES CLASSIFICATION)

STEP-3:DATA TRAINING OF MODEL

```
    Preparing data for training

        from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
                                              shear range = 0.2,
                                              zoom range = 0.2,
                                              horizontal flip = True)
            test_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2,
                                              zoom_range = 0.2,
                                              horizontal flip = True)
            training_set = train_datagen.flow_from_directory(TRAIN_DIR,
                                                            target size = (128, 128),
                                                            batch size = 32,
                                                            class_mode = 'categorical')
            test set = test datagen.flow from directory(TEST DIR,
                                                       target size = (128, 128),
                                                       batch size = 32,
                                                       class_mode = 'categorical')
        [→ Found 1810 images belonging to 4 classes.
            Found 369 images belonging to 4 classes.
```

STEP-4:SEQUENTIAL CNN MODEL

STEP-4:SEQUENTIAL CNN MODEL(SUMMARY)

TRAINING IN PROGRESS.....

```
code + Text
57/57 [=========] - 15s 256ms/step - loss: 0.0595 - accuracy: 0.9796 - val loss: 2.4140 - val accuracy: 0.6911
      57/57 [==========] - 14s 254ms/step - loss: 0.0701 - accuracy: 0.9751 - val loss: 2.4370 - val accuracy: 0.6775
      57/57 [=========== ] - 14s 251ms/step - loss: 0.0737 - accuracy: 0.9762 - val loss: 2.3580 - val accuracy: 0.6802
      57/57 [=========] - 14s 253ms/step - loss: 0.0667 - accuracy: 0.9740 - val loss: 2.3781 - val accuracy: 0.6856
      Epoch 90/100
                        ========] - 15s 260ms/step - loss: 0.0589 - accuracy: 0.9779 - val loss: 2.3469 - val accuracy: 0.6612
      57/57 [============= ] - 14s 252ms/step - loss: 0.0632 - accuracy: 0.9790 - val loss: 2.8561 - val accuracy: 0.6612
                     Epoch 93/100
      57/57 [==========] - 14s 252ms/step - loss: 0.1067 - accuracy: 0.9624 - val_loss: 2.4680 - val_accuracy: 0.6612
      Epoch 95/100
      57/57 [============= ] - 14s 251ms/step - loss: 0.0764 - accuracy: 0.9735 - val loss: 2.2137 - val accuracy: 0.6640
      57/57 [===========] - 14s 249ms/step - loss: 0.0774 - accuracy: 0.9746 - val loss: 2.5086 - val accuracy: 0.6585
      57/57 [=========== ] - 14s 252ms/step - loss: 0.0975 - accuracy: 0.9619 - val loss: 2.4997 - val accuracy: 0.6450
      57/57 [========== ] - 15s 257ms/step - loss: 0.0555 - accuracy: 0.9796 - val loss: 2.5436 - val accuracy: 0.6694
      57/57 [=========== ] - 14s 251ms/step - loss: 0.0715 - accuracy: 0.9718 - val loss: 2.4671 - val accuracy: 0.6477
      57/57 [========= ] - 14s 250ms/step - loss: 0.0580 - accuracy: 0.9790 - val loss: 2.3349 - val accuracy: 0.6829

✓ 0s completed at 10:04PM
```

STEP-5:SEQUENTIAL MODEL EVALUATION

```
↑↓⊝目$♬Î:
▼ Evaluating the model
[54] y_pred = classifier.predict(test_set)
      print(y_pred)
      12/12 [=========] - 3s 256ms/step
      [[1.00000000e+00 1.70273324e-14 1.65496139e-09 2.47962404e-13]
       [4.80606088e-09 2.27876812e-01 6.63559127e-04 7.71459579e-01]
       [1.33176934e-06 9.47326481e-01 5.26716784e-02 4.62280781e-07]
       [4.31146987e-07 9.99974012e-01 2.27225610e-05 2.73839896e-06]
       [2.52232949e-05 9.95094180e-01 4.87883855e-03 1.70999010e-06]
       [1.40700980e-08 9.97468472e-01 2.53148796e-03 1.07317945e-07]]
[55] y_res = classifier.evaluate(test_set)
```

STEP-5:SEQUENTIAL MODEL EVALUATION

(PLOT SHOWING ACCURACY V/S EPOCH)

STEP-5:SEQUENTIAL MODEL EVALUATION (PLOT SHOWING LOSS V/S EPOCH)

STEP-6:REAL WORLD PREDICTION(ANGRY)


```
Prediction with new images
                                                                                                                  ↑ ↓ ⊖ 目 ‡ ♬ 📋 :
model_path = "model1.h5"
     loaded model = keras.models.load model(model path)
    image = cv2.imread("/content/drive/MyDrive/Test/angry/Mahatma_Gandhi61.png")
     image_fromarray = Image.fromarray(image, 'RGB')
    resize_image = image_fromarray.resize((128, 128))
    expand_input = np.expand_dims(resize_image,axis=0)
    input_data = np.array(expand_input)
    input_data = input_data/255
    pred = loaded_model.predict(input_data)
    result = pred.argmax()
    print("Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:->",result)
r→ 1/1 [=======] - 0s 75ms/step
    Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:-> 0
[61] training_set.class_indices
    {'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}
```

STEP-6:REAL WORLD PREDICTION(HAPPY)


```
Prediction with new images
                                                                                                                   ↑ ↓ ⊖ 🗏 💠 🗓 📋 :
 model path = "model1.h5"
     loaded model = keras.models.load model(model path)
     image = cv2.imread("/content/drive/MyDrive/Test/happy/Sachin_Tendulkar84.png")
     image_fromarray = Image.fromarray(image, 'RGB')
     resize_image = image_fromarray.resize((128, 128))
     expand_input = np.expand_dims(resize_image,axis=0)
     input_data = np.array(expand_input)
     input data = input data/255
     pred = loaded model.predict(input data)
     result = pred.argmax()
     print("Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:->",result)
     1/1 [======] - 0s 74ms/step
    Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:-> 1
[61] training set.class indices
     {'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}
```

STEP-6:REAL WORLD PREDICTION(NEUTRAL)


```
ediction with new images
                                                                                                                  ↑ ↓ st ■ ☆ fi i
model_path = "model1.h5"
    loaded_model = keras.models.load_model(model_path)
    image = cv2.imread("/content/drive/MyDrive/Test/neutral/Shahrukh_Khan134.png")
    image_fromarray = Image.fromarray(image, 'RGB')
    resize image = image fromarray.resize((128, 128))
    expand input = np.expand dims(resize image,axis=0)
    input data = np.array(expand input)
    input data = input data/255
    pred = loaded model.predict(input data)
    result = pred.argmax()
    print("Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:->",result)
    1/1 [-----] - 0s 115ms/step
   Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:-> 2
training_set.class_indices
[ + { 'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}
                                1s completed at 10:46 PM
```

STEP-6:REAL WORLD PREDICTION(SAD)


```
Prediction with new images
                                                                                                                   ↑ ↓ ⊝ 目 ☆ □ î :
 model path = "model1.h5"
     loaded model = keras.models.load model(model path)
     image = cv2.imread("/content/drive/MyDrive/Test/sad/Lata_Mangeshkar146.png")
     image_fromarray = Image.fromarray(image, 'RGB')
     resize image = image fromarray.resize((128, 128))
     expand_input = np.expand_dims(resize_image,axis=0)
     input_data = np.array(expand_input)
     input data = input data/255
     pred = loaded_model.predict(input_data)
     result = pred.argmax()
     print("Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:->",result)
     1/1 [======] - Øs 69ms/step
    Predicted Emotion{'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}:-> 3
[61] training set.class indices
     {'angry': 0, 'happy': 1, 'neutral': 2, 'sad': 3}
```

RESULT AND DISCUSSION

- In conclusion, the emotion classification model developed using a Sequential CNN approach achieved a decent amount of accuracy on training as well as testing data, indicating that it can accurately classify emotions.
- The model's high accuracy is a significant accomplishment, and it demonstrates the effectiveness of using deep learning techniques for emotion classification tasks.
- With further testing on new data, the model can be improved to provide even better results.
- Overall, the project is a success and showcases the potential of deep learning for emotion classification.