0.ApiExps 基础接口类实验

本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。

序号	实验名称	简介	文件地址	版本
1	SIL 仿真 Log 日志获取实验	在进行 SIL 仿真时,RflySim 将自动记录每个飞机	1.SwarmLogGet\Readme.pdf	免费版
		的 Log 日志,并生成.ulg 格式文件。		
2	MATLAB 集群接口模型封装	在 MATLAB 的 C++ S 函数通信模块具有效率高	2.MatRflySwarmAPIPack\Readme.pdf	免费版
	实验			
3	.exe 文件生成实验	MATLAB 本身会占用大量的 CPU 和内存	3.EXEFileGener\Readme.pdf	免费版
		资源(见右图),在运行复杂的 Simulink 控制程序		
		时, 一方面计算量太大导致算法运行缓慢, 无法达		
		到实时要求(Simulink 中运行 1s 中大于现实时钟		
		1s), 这样就无法实时控制仿真系统 (或真实系统)		
		的集群飞机。第二方面,在仿真时 Simulink 如果		
		占用大量的计算资源,会导致 RflySim3D 和		
		CopterSim 的计算资源分配较少,导致飞机仿真变		
		差,飞机剧烈抖动甚至坠机。将 Simulink 控制器		
		编译生成 exe 之后,算法可以脱离 MATLAB 运行,		
		而且本身是二进制可执行文件,运行效率非常高,		
		即使大型的控制算法,也能保证实时控制。本实验		
		将以 4 架无人机仿真实验 demo 进行.exe 文件生		
		成。		

4	飞控硬件远程重启接口实	虽然RflySim平台做了较多的优化来实现硬件在环	4.RebootPixViaUDP\Readme.pdf	免费版
	验	仿真的稳定性,但是同一 Pixhawk 飞控在进行多		
		次仿真(特别是上次仿真坠机或者进入失效模式)		
		之后,由于飞控内部参数混乱,易导致无法起飞,		
		或者飞行异常的故障,这时候需要重启飞控来重		
		新初始化 HITL 仿真。本实验采用广播方式,可实		
		现重启局域网内所有 HITL 仿真。		
5	多机地形高度获取接口实	在进行多个飞机的集群控制例子时,往往需要输	5.GetTerrainAPI\Readme.pdf	免费版
	应	入每个飞机得初始位置矩阵列表 InitPosList,		
		RflySim 平台提供了高度信息获取接口,使得可以		
		像 bat 启动脚本一样,给定飞机数量和间距,自动		
		配置飞机初始摆放位置,并根据当前地形求出地		
		形高度。本实验以 12 架飞机的高度信息获取为例		
		进行实验步骤详解。		
6	基于 Simulink 数据分析实验	在进行软件在环和硬件在环仿真时,飞机的飞行	6.DataAnalysis_Mat\Readme.pdf	免费版
		日志通常是我们需要进行导出分析处理的,		
		RflySim 平台具有丰富的飞行日志获取和分析功		
		能。本实验将基于 Simulink 实现飞行日志的实时		
		获取并进行存储分析。		
7	基于 Python 数据分析实验	在进行软件在环和硬件在环仿真时,飞机的飞行	7.DataAnalysis_Py\Readme.pdf	免费版
		日志通常是我们需要进行导出分析处理的,		
		RflySim 平台具有丰富的飞行日志获取和分析功		
		能。本实验将基于 Python 实现飞行日志的实时获		
		取并进行存储分析。		
8	集群接口实验	通过利用 RflySim 平台 mavlink 通信函数接口进行	8.MAVLinkFull4Swarm\Readme.pdf	免费版
		无人机位置控制、速度控制、航向控制。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础接口类实验	本文件夹中的所有实验均为本讲中接口使	0.ApiExps\Readme.pdf	免费版
		用类的实验,旨在帮助用户快速熟悉本讲各		
		种接口以便于后续实验开发。		
2	SIL 仿真 Log 日志获取实	在进行 SIL 仿真时,RflySim 将自动记录每个	0.ApiExps\1.SwarmLogGet\Readme.pdf	免费版
	验	飞机的 Log 日志,并生成.ulg 格式文件。		
3	MATLAB 集群接口模型	在 MATLAB 的 C++ S 函数通信模块具有效	0.ApiExps\2.MatRflySwarmAPIPack\Readme.pdf	免费版
	封装实验	率高		
4	.exe 文件生成实验	MATLAB 本身会占用大量的 CPU 和内存	0.ApiExps\3.EXEFileGener\Readme.pdf	免费版
		资源(见右图),在运行复杂的 Simulink 控		
		制程序时,一方面计算量太大导致算法运行		
		缓慢,无法达到实时要求(Simulink 中运行		
		1s 中大于现实时钟 1s),这样就无法实时控		
		制仿真系统(或真实系统)的集群飞机。第		
		二方面,在仿真时 Simulink 如果占用大量的		
		计算资源,会导致 RflySim3D 和 CopterSim		
		的计算资源分配较少,导致飞机仿真变差,		
		飞机剧烈抖动甚至坠机。将 Simulink 控制器		
		编译生成 exe 之后,算法可以脱离 MATLAB		
		运行,而且本身是二进制可执行文件,运行		
		效率非常高,即使大型的控制算法,也能保		
		证实时控制。本实验将以4架无人机仿真实		

		验 demo 进行.exe 文件生成。		
5	飞控硬件远程重启接口	虽然 RflySim 平台做了较多的优化来实现硬	0.ApiExps\4.RebootPixViaUDP\Readme.pdf	免费版
	实验	件在环仿真的稳定性,但是同一 Pixhawk 飞		
		控在进行多次仿真(特别是上次仿真坠机或		
		者进入失效模式)之后,由于飞控内部参数		
		混乱,易导致无法起飞,或者飞行异常的故		
		障, 这时候需要重启飞控来重新初始化 HITL		
		仿真。本实验采用广播方式,可实现重启局		
		域网内所有 HITL 仿真。		
6	多机地形高度获取接口	在进行多个飞机的集群控制例子时,往往需	0.ApiExps\5.GetTerrainAPI\Readme.pdf	免费版
	实验	要输入每个飞机得初始位置矩阵列表		
		InitPosList, RflySim 平台提供了高度信息获		
		取接口,使得可以像 bat 启动脚本一样,给		
		定飞机数量和间距,自动配置飞机初始摆放		
		位置,并根据当前地形求出地形高度。本实		
		验以 12 架飞机的高度信息获取为例进行实		
		验步骤详解。		
7	基于 Simulink 数据分析	在进行软件在环和硬件在环仿真时,飞机的	0.ApiExps\6.DataAnalysis_Mat\Readme.pdf	免费版
	实验	飞行日志通常是我们需要进行导出分析处		
		理的, RflySim 平台具有丰富的飞行日志获取		
		和分析功能。本实验将基于 Simulink 实现飞		
		行日志的实时获取并进行存储分析。		
8	基于 Python 数据分析实	在进行软件在环和硬件在环仿真时,飞机的	0.ApiExps\7.DataAnalysis_Py\Readme.pdf	免费版
	验	飞行日志通常是我们需要进行导出分析处		
		理的, RflySim 平台具有丰富的飞行日志获取		
		和分析功能。本实验将基于 Python 实现飞		

		行日志的实时获取并进行存储分析。		
9	集群接口实验	通过利用 RflySim 平台 mavlink 通信函数接口进行无人机位置控制、速度控制、航向控制。	0.ApiExps\8.MAVLinkFull4Swarm\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。