Building Recommendation Systems

Cesar Reyes

Principal Data Scientist

Intro Com

ponents Designing

Modeling

Evaluating

Productionize

•

What's a RecSys

We are interacting with RS every day

"Recommender systems help solve information overload by helping users find relevant products from a wide range of selections by providing personalized content."

Too many choices?

24 choices of jam attracted 60% of the shoppers **3%** of shoppers bought jam

6 choices of jam attracted 40% of the shoppers 30% of shoppers bought jam

What's a RecSys?

A recsys calculates and provides relevant content to the user based on knowledge of the user, content, and interaction between the user and the item

Components Designing Modeling

Component of a RS

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

- Domain
- Purpose
- Context
- Personalization level
- Privacity and trustworthiness
- Interface
- Algorithms

Building Recommendation Systems

Components Designing

Designing

Think about your current situation: value and impact

Business Goal

Increase retention? CVR? LTV?

How the impact and success of the recommender can be measured?

Look at your problem

Which types of recommendations create value, both for the consumer and the provider of the recommendations?

Is the novelty, popularity, continuation, metadata important?

Interaction

What are the interaction values? Are these available?

How many users? How many items?

Additional Features

What are the user/item features? Are available online? Are useful for recsys task?

How to collect data - User behavior and how to collect it

Evidence is the data that reveals the user's tastes and preferences. When we talk about collection evidence, we're collection **events** and **behavior** that provide an indicator of the user's tastes.

Generally, two type of feedback are produced by users of a system, Explicit and implicit.

Start simple and iterate

User the previous strategy as baseline

Non-personalize

1

Popular / Novelty

2

Use item metadata

Personalize

3

User and item data

User, item and context data

People need to see things they are familiar with to believe that the Recommendation System makes good recommendations. Otherwise, you may think the recommendation system is bad and not interact with it, or worse, you may make fun of it on social media.

ntro

Components

Designing

Modeling

Evaluating

Productionize

ML Models

Types of Recsys

How do you choose the model that constitute good model?

Content base

Collaborative Filtering - Matrix Factorization

 $A \sim U \times V$

SVD, ALS, SGD, WMF

Hybrid - SLIM (Sparse Linear Methods for Top-N Recommender Systems) / FM

DL - Wide & Deep Learning for Recommender Systems

DL - Neural Collaborative Filtering

Figure 2: Neural collaborative filtering framework

Figure 3: Neural matrix factorization model

DL - DeepFM

Figure 1: Wide & deep architecture of DeepFM. The wide and deep component share the same input raw feature vector, which enables DeepFM to learn low- and high-order feature interactions simultaneously from the input raw features.

DL - DLRM (Deep Learning Recommendation Model)

DL - Two tower model

Model Architecture

"In the same way that word embeddings revolutionized NLP, item embeddings are revolutionizing recommendations"

ntro

Components

Designing

Modeling

Evaluating

Productionize

Evaluating and testing RecSys

How do you know that one model is better than another?

Traditional ML problem has a well defined label that can be use to measure offline classification metrics

In Recsys the ranking metrics are the key to measure the model performance. The most important item should be at the top of the recommendation

(b) List title: "My favorite books in 2019"

(a) List title: "Fantasy books"

"It is important to emphasize that recommendation often involves solving a surrogate problem and transferring the result to a particular context. A classic example is the assumption that accurately predicting ratings leads to effective movie recommendations [2]. We have found that the choice of this surrogate learning problem has an outsized importance on performance in A/B test". Deep Neural Networks for YouTube Recommendations

How to Split train / test split?

Which metric is the best to evaluate the model performance?

Decision-support metrics

- * MSE
- * AUC
- * Log Loss
- * HR@k
- * MAP@k
- * nDGC@

,...

Recommendation centric

- * Coverage
- * **Diversity** ("filter bubble" problem)
- * Confidence

User centric

- * Trustworthiness
- * Novelty
- * Serendipity

System centric

- * Robustness
- * Scalability
- * Stability
- * Privacy
- * Latency
- * ...

Business metrics

- * CTR
- * CVR
- * AOV
- * Engagement
- * Frequency
- * Retention

Online vs Offline Evaluation

In the RS community there are a general agreement that evaluate a RS it's close to impossible without having a live system to test it (AB test).

Still it's important to know if your recommender system is going in the write direction.

Table 1: Offline & online metrics of different models.

Online Acquisition Gain is relative to the control.

Model	Offline AUC	Online Acquisition Gain 0%	
Wide (control)	0.726		
Deep	0.722	+2.9%	
Wide & Deep	0.728	+3.9%	

WDL - Google Apps store - app recommendations

Table 4: Offline AUCs and online CTR gains of different methods. Online CTR gain is relative to the control group.

Methods	Offline AUC	Online CTR Gain	Average RT(ms)
WDL	0.7734		13
WDL(+Seq)	0.7846	+3.03%	14
DIN	0.7866	+4.55%	16
BST(b = 1)	0.7894	+7.57%	20
BST(b=2)	0.7885	-	-
BST(b=3)	0.7823	2	9

BST - Alibaba CTR prediction

Is the feature like the past?

What happen if the marketing team make a special promotion and a lot of people buy some products? Are this signal useful for the next recommendation?

ntro

Components

Designing

Modeling

Evaluating

Productionize

RS to production

As any other ML type, RecSys are a software application that live in production

Retrieve candidate from thousand or millions of item is extremely computationally intensive

Recommendation system not just recommendation model

Recommendation system is much more complex that recommendation algorithms/models

Two-stage Recommender Systems

Figure 2: Recommendation system architecture demonstrating the "funnel" where candidate videos are retrieved and ranked before presenting only a few to the user.

Deep Neural Networks for YouTube Recommendations

Two-stage Recommender Systems

System Design for Recommendations and Search (Eugene Yan)

Four-stage Recommender Systems

Moving Beyond Recommender Models - Even Oldridge (NVIDIA)

End2End flow

End2End Frameworks

TF Recommenders

Merlin

TorchRec

O TorchRec

"There is more art than science in the development of Recommendation Systems ..."

Deep Neural Networks for YouTube Recommendations

Our Product recommendations strategy

user_id

item_id

order_id

Demo

Frameworks & tools

Name	Link
Surprise	https://github.com/NicolasHug/Surprise
LightFM	https://github.com/lyst/lightfm
Implicit	https://github.com/benfred/implicit
Spotlight	https://github.com/maciejkula/spotlight
TF Recommenders	https://github.com/tensorflow/recommenders
TensorRec	https://github.com/jfkirk/tensorrec
RecBole	https://github.com/RUCAlBox/RecBole
Collie Recs	https://github.com/ShopRunner/collie_recs
DeepCTR	https://github.com/shenweichen/DeepCTR
Nvidea Merlin	https://github.com/NVIDIA-Merlin/Merlin

Name	Link
RecPack	https://gitlab.com/recpack-maintainers/recpack
RecList	https://github.com/jacopotagliabue/reclist