•

FH Aachen Campus Jülich Prof. Dr.-Ing. C. Helsper WS 2013 A 19.09.2013

Klausur "Elektrische Messtechnik" Mess-, Steuer-, Regelungstechnik PT (IIB) Studiengang Physikalische Technik

Name:		Unterschrift:		
Matrikel-Nr:				
Bearbeitungszeit	2 h			
erlaubte Hilfsmittel	Skript, Übungsaufgaben mit Taschenrechner	Lösungen,		
	v			

Aufgabe	Punkte Soll	Punkte Ist	Aufgabe	Punkte Soll	Punkte lst
1.1	3	1	2 d	8	
1.2	3			1	
1.3	3		3a	4	
1.4	3		3b	6	
1.5	3		3c	5	
1.6	3				
1.7	3		4a	5	
1.8	3		4b	10	
			4c	5	
2a	2		9		
2b	8				
2c	3				
Summe de	r Punkte:			80	

80	Punkte	=	1,0
40	Punkte	=	4,0

Datum:

Prüfer:

Aufgabe 1

1.	Was versteht man unter	der	Empfindlichkeit eines	Drehspulmessgeräts ?)
----	------------------------	-----	------------------------------	----------------------	---

- (a) Den Endwert des kleinsten Messbereichs
- (b) Die Anfälligkeit gegenüber heftigen Stößen und Erschütterungen
- (c) Das Verhältnis aus der Änderung der Ausgangsgröße zu der sie verursachenden Änderung der Eingangsgröße
- (d) Die Fähigkeit, zwischen zwei nahe beieinander liegenden Messwerten unterscheiden zu können
- 2. Eine Brücke wird im "Ausschlagverfahren" betrieben. Bezeichnet das Wort "Ausschlagverfahren"
 - (a) das Messprinzip?
 - (b) die Messmethode?
 - (c) das Messverfahren ?
 - (d) keinen der drei genannten Begriffe?
- 3. Die in der Abbildung dargestellte Spannung ist

- (a) eine Gleichgröße
- (b) eine pulsierende Gleichgröße
- (c) eine Wechselgröße
- (d) eine Mischgröße
- 4. Wie kann man Reflexionen am Ende einer Leitung verhindern?
 - (a) Durch Kurzschließen der Leitung
 - (b) Durch Abschließen der Leitung mit einem möglichst großen ohmschen Widerstand
 - (c) Durch Abschließen der Leitung mit dem Wellenwiderstand
 - (d) Durch eine 90°-Krümmung des Leitungsendes

5.	Wie kann man den systematische Fehler in einem Messergebnis verkleinern?	
	 (a) durch genaue Kalibrierung des Messgeräts (b) durch Einsatz eines Tiefpassfilters (c) durch mehrfache Messung und Mittelung der Messwerte (d) durch Addition einer bekannten Korrektion zum Messwert 	
6.	Welches Material eignet sich zur Abschirmung von Magnetfeldern, die d Wechselströme mit einer Frequenz von $f=16\%$ Hz hervorgerufen werd	urch en ?
	 (a) dickes Aluminiumblech (b) leitfähiger Abschirmlack (c) dickes Eisenblech (d) dünne Kupferfolie 	_ _ _
7.	Die Drehzahl eines Motors wird durch Impulszählung ermittelt. Auf dem Umfang der Welle sind dazu 12 reflektierende Flächen aufgebradie optisch detektiert werden können. Die Impulse werden über einen Zeraum von $T=5$ s gezählt. Welcher kleinste Unterschied Δn in der Drehzkann damit noch unterschieden werden ?	ert-
	(a) $\Delta n = 1 \text{ s}^{-1}$ (b) $\Delta n = 0.1 \text{ min}^{-1}$ (c) $\Delta n = 1 \text{ min}^{-1}$ (d) $\Delta n = 10 \text{ min}^{-1}$	
8.	Wodurch werden bei einem Digital-Analog-Umsetzer so genannte "missing codes" verursacht?	
	 (a) Durch zu schnelles Umschalten der Eingangsbits. (b) Durch Übertragungsverluste auf den Zuleitungen. (c) Durch mangelnde Gleichheit der für die Umsetzung verwendeten Widerstände. (d) Durch eine zu niedrige Versorgungsspannung. 	0

Aufgabe 2

Mit einem einfachen Digitalmultimeter soll eine Spannung mit dem dargestellten zeitlichen Verlauf gemessen werden.

- a) Bestimmen Sie die Frequenz der Spannung.
- b) Wie groß ist der Effektivwert dieser Spannung?
- c) Welchen Wert zeigt das Instrument in der Betriebsart "Gleichspannungsmessung" an ?
- d) Welchen Wert zeigt das Instrument in der Betriebsart "Wechselspannungsmessung" an ?

Aufgabe 3

Zwei Dehnungsmessstreifen aus Konstantan (K=2) sind mit zwei Festwiderständen zu einer Wheatstone'-schen Brücke verschaltet.

Bei Belastung des Werkstückes wird ein DMS gedehnt und der andere gestaucht. Die DMS verändern dabei ihren Widerstand, der im unbelasteten Zustand $R=100~\Omega$ beträgt, um $+\Delta R$ bzw. um $-\Delta R$.

Der Wert der beiden Festwiderstände beträgt ebenfalls $R = 100 \Omega$.

Die Versorgungsspannung der Brücke beträgt U_0 = 24 V.

- a) Skizzieren Sie die Anordnung der Widerstände in der Brückenschaltung!
- b) Leiten Sie einen Zusammenhang zwischen der Brückenspannung U_B und der relativen Widerstandsänderung $\Delta R/R$ her, wenn die Messung der Brückenspannung stromlos erfolgt !
- c) Wie groß ist die Empfindlichkeit der Brücke, wenn man die Dehnung ε als Eingangs- und die Brückenspannung U_B als Ausgangsgröße betrachtet ? (Hinweis: $\Delta R/R = K \cdot \varepsilon$)

Aufgabe 4

Die Thermospannung eines Eisen/Konstantan-Thermoelementes soll durch einen Operationsverstärker verstärkt werden. Die Schaltung soll gleichzeitig als Tiefpass 1. Ordnung mit einer 3 dB - Eckfrequenz von $f_{\rm g}=$ 0,5 Hz ausgelegt werden.

- a) Skizzieren Sie eine geeignete Schaltung, die außerdem auch den Einfluss des Bias-Stromes kompensiert!
- b) Dimensionieren Sie diese Schaltung unter den folgenden zusätzlichen Randbedingungen:

Der Eingangswiderstand der Schaltung soll 10 k Ω betragen.

Die Ausgangsspannung soll bei einer Temperatur von ϑ = 900 °C gerade U_2 = 900 mV betragen. (Thermospannung von Eisen/Konstantan bei ϑ = 900 °C: 51,875 mV)

c) Mit welchem Faktor wird eine Störspannung mit der Netzfrequenz f = 50 Hz von dieser Schaltung verstärkt?