LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharsini P S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV200

Dharsini P S's Performance Report

Score: 13/40 Percentage: 32.5%

Dharsini P S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles		
LCM	Finding LCM	

......

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is ____°.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is $___^{\circ}$

The measurement of right angle is _____°.

Straight angle + Right angle = $___$ + $___$ = $___$

It is called as _____ angle.

Hi, here in this video you will learn **LCM**

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

	1 14 1 440
Therefore, factors of 10 are	and multiples of 10 are
$\underline{\textit{Question: 5}} \hspace{1cm} \dots \dots \dots$	
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	on multiple.
	50 , 100
	, 100
The LCM of 50, 100 is 2 x 2 x x	·
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	n numbers,
Multip	ple of $1 = \underline{\hspace{1cm}}$
	ple of $2 = \underline{\hspace{1cm}}$
	le of 13 =
Multipl	le of $20 = $
Here, is the common factor of ex	very number.

Data handling

	Topics to be Improved
Arithmetic mean, mode and median	Mean, Median and Mode
Chance of probability	Sample space in probability
Range	Finding the range

Hi, here in this video you will learn Mean, Median, Mode

Quartian. 7	
Question: 7	

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations. Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

<u>Question: 8</u>

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is _____ and it is the ____ of a data.

 $\underline{Question: \ 9}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

$Mean = \underline{\hspace{1cm}}, Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$
$\underline{Answer:}$
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation = $___$, number of observation = $___$ Therefore, mean = $___$
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability Question: 10
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 12
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls.
If one of the ball is blue in colour, then other ball can be or
If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or
Therefore, if two balls are taken out then possible outcomes are blue +,
Hi, here in this video you will learn Range
Question: 13
Range of the data = $_$
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 14
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer:
Range =
Arranging the data in ascending order,
In the given data,
$\label{eq:highest value} \text{Highest value} = \underline{\qquad} \text{, Range} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of $5 = \underline{\hspace{1cm}}$
Therefore,
$\label{eq:highest value} \text{Highest value} = \underline{\qquad} \; , \; \text{Range} = \underline{\qquad} \; - \underline{\qquad} = \underline{\qquad} \; .$

Geometry

	Topics to be Improved
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles
Angle sum property of triangle	Angle sum property of triangle
Related angles	Complementary angles
Types of triangle	Basics of types of triangle (sides)
Right angle triangle and pythagoras property	Basics of Pythagoras property
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle
Transversal angle made by transversal	Basics of Transversal angle
Faces vertex and edges	Idenfication of faces, edges and vertices

Hi, here in this video you will learn Criteria of congruence
<i>Question:</i> 16
Circle the groups that contain congruent images.
Answer: Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
Question: 17
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
Answer:
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{1cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{1cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

.....

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

.....

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Цi	horo	in	thia	vidoo	77011	337ill	loorn	Anglo	gum	proporty
111,	nere	111	01118	video	you	WIII	rearn	Angle	Sum	property

Question: 19

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 20

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ______

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = ____ = ____ = ___ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ = ____ =

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ___ and ___

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Related Angles

Question: 22

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 23

Shade the complementary angles.

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

$$85^{\circ}+95^{\circ}=$$
 and this is _____ (a / not a) complementary angles. $45^{\circ}+45^{\circ}=$ and this is _____ angles.

$$6^{\circ} + 84^{\circ} =$$
 and this is _____ angles.

$$73^{\circ} + 107^{\circ} =$$
 _____ and this is ____ angles.

$$36^{\circ} + 64^{\circ} =$$
_____ and this is _____ angles.

$$90^{\circ}$$
 + 90° = ____ and this is ____ angles.

Question: 24

Find the complement and supplement of 15° and 90°

Answer:

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 90°.

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Supplement of
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Complement of
$$90^{\circ} = \underline{\hspace{1cm}}$$
.

Supplement of
$$90^{\circ} = \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Types of triangle	Hi,	here in	this video	you will	learn	Types	of trian	gle
--	-----	---------	------------	----------	-------	--------------	----------	-----

Question:	25
$\omega uesuuuu$.	~0

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

.....

.....

Polygon with three sides is called _____.

Draw a diagram of polygon with three sides :

Question: 26

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 27

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is
Hi, here in this video you will learn Pythagoras property
Question: 28
In a right angled triangle, square of the = sum of the squares of t legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that
Question: 29
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
m
Pythagoras theorem states that square of the = sum of the squares of its
Given: Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle.
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, hypotenuse of the triangle is
$\underline{\textit{Question: } 30} \qquad \dots $
Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.
Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = ____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 31

Find the greatest distance to reach C from A in the given diagram.

.....

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 32

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 33

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = ____

 Therefore, the length of the third side is greater than _____

.....

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Basics of Transversal angle

 $\underline{Question: 34}$

In given diagram, \angle 1 and \angle 7 are _____ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 35

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 36

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

 Hi , here in this video you will learn $\operatorname{\mathbf{Basics}}$ of $\operatorname{\mathbf{3D}}$ $\operatorname{\mathbf{model}}$

Question: 37

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

......

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

 $\underline{Question:~38}$

Mark and find the number of vertices, edges and faces in a cube.

......

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	er of vert	ex, edges	and f	aces	in a c	$\mathrm{cub}\epsilon$					
Cube have	_ vertice	es,	edg	ges an	.d		_ faces				
		,		,							
Question: 39								 	 	 	
TT	1	1 C	1	1.	1	0					

How many vertices, edges and faces does dices have?

Answer:			
The shape of die	ce is		
Dices have	vertices,	$_$ edges and $_$	faces.

Number system

Topics to be Improved					
Introduction to rational numbers	Basics of rational numbers				
Integers	Basics of integers				
Positive and negative rational numbers	Identification of positive rational numbers				
Properties of integers	Associative property				
Exponents	Solving exponents				
Fractions	Division of fraction				
Decimals	Multiplication and division of decimals				

Hi, here in this video you will learn Basics of rational numbers

Question:	40
\mathbf{Q} \mathbf{u} \mathbf{c} \mathbf{s} \mathbf{u} \mathbf{t} \mathbf{o} \mathbf{u} \mathbf{o}	40

The numbers in the diagram represents_

Answer:

0, 4,5,2,3,1 are ______ numbers. -1,-2, -3, -4 are _____ numbers.

The combination of these circles are called _____

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

- COHDHIANOH OF ALL MILES CHOISS ALS CAUSO 48 HUHDSI	Combination	of all	three	circles	are calle	d as	}	numbers
--	-------------	--------	-------	---------	-----------	------	---	---------

Question: 41

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 42

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn Basics of integers

Question: 43

Highlight the ring that contains whole numbers. $\,$

.....

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
Question: 44
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 45
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Positive and Negative rational numbers
Question: 46
Segregate positive and negative rational number.

$\underline{Answer:}$

• If either th	negative), then it is positive the numerator and the denoted (positive/negative)	ominator of a	a rational number are negati	ve, then it is
In the given circ	le, positive rational numb	ers are	and negative ration	onal numbers are
Question: 47				
$\frac{-3}{-4}$ is a	(positive /negative	e / neither p	ositive nor negative) rational	l number.
$\underline{Answer:}$				
-3 is a	- number, -4 is a $-$		number.	
Division of $\frac{-3}{-4}$	number, -4 is a _ and this	r8	tional number.	
(Posi	tive / Negative / Neither	positive nor	negative rational number)	
Question: 48				
	a positive rational number (Positive/ Negative/ nei	_	tive rational number is nor negative)	
Examples for ne Positive rational	sitive rational numbers: _ gative rational numbers: . number × Negative ratio rational number			and this is
Hi, here in the	nis video you will lear	n Proper	ties of integers	
Question: 49				
	ring based on the propert	ies of integer	S	
i	Closure	a	(5+7)+3=3+(7+5)	1
ii	Associative	b	21 + 0 = 21	
iii	Commutative	c	15 + 17 = 32	
iv	Identity	d	1 + 99 = 99 + 1	
$\underline{Answer:}$				
Therefore,	operty: f integers is always + = given option	<u> </u>		

(ii)	Associative property: Rearranging the parentheses (bracket	is)	(does not/ o	does) change the	sum.
	Therefore, $(a + b) + c = \underline{\hspace{1cm}}$	·•			
	From the given option	_ satisfies t	he Associative prope	erty.	
(iii)	Commutative property : Changing the order of the addends $_$ Therefore, $a + b = _$ + $_$	•	s not/ does) change	the sum.	
	From the given option	$_{-}$ satisfies t	he Commutative pro	operty.	
(iv)	Identity property : The sum of Therefore, $a + \underline{\hspace{1cm}} = a$	_ and any	number always retu	rns same number	·.
	From the given option	_ satisfies t	he Identity property	•	
Que	stion: 50				
Mark	the operations in which commutative	property h	olds true for any tw	o integers.	
	Addition Subtract	ion	Multiplication	Division	
Ans	wer:				
	mmutative property, changing the		_ (order/ brackets) o	of the operands	
For a Γhe σ	(does not/ does) change the ny two integers, commutative property commutative property for addition is _ commutative property for multiplication	holds true	·	. .	
Que	stion: 51				
	additive identity and multiplicative idenwer:	ntity the sa	ame? (Yes or No)		
	ity property holds only for				
Γhe l	Identity property for addition isIdentity property for multiplication is _	&	and additive identity		
Γher	efore, additive identity is (equ	ıal / not ec	qual) to multiplicative	ve identity.	
Hi,	here in this video you will learn	Expone	ents and power		
Que	stion: 52				
Find	the exponential form of 1000.				
Ans	wer:				
	(Exponents/Base) tells us he the desired result.	now many t	times a number shou	uld be multiplied	by itself

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times ___ 10 is raised to the power of ___ = (10)

Question: 53

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 54

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)

- (i) Tenth power of 100: Base = $__$, Power/Exponents = $__$, exponential form = $__$.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Division on fractions

Question: 55

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

4		ver:	
\boldsymbol{A}	usu	ver:	

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 56

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

......

Question: 57

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Basics of decimals

Question: 58

Shade 0.4 part of the given shape.

......

\underline{Ansu}	<u>er:</u>
	are boxes.
	be expressed as in fraction
	action represents parts out ofequal parts.
So, we	need to shade boxes out ofboxes.
Ques	ion: 59
Solve	ne following.
(i)	4×1.2
(ii)	48×1.2
\underline{Ansu}	<u>er:</u>
(ii)	Iultiplication of 0.4 × 1.2 assuming there is no decimal point is he number of digits after decimal point in 0.4 is and 1.2 is otal digits after decimal point in the product of two numbers is ount that digits from the right towards left and place the decimal point, the result is 48 × 1.2: Iultiplication of 0.48 × 1.2 assuming there is no decimal point is he number of digits after decimal point in 0.48 is and 1.2 is otal digits after decimal point in the product of two numbers is ount that digits from the right towards left and place the decimal point, the result is
Ques	ion: 60
One b	x of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 tes?
\underline{Ansu}	<u>er:</u>
	x contains chocolates. The cost of one box is ost of one chocolate = ÷ =
(i)	otal digits after decimal point in decimal number =
(ii)	ivide the two numbers assuming there is no decimal point.
	$\frac{2010}{15} = $
, ,	lace the decimal point after digits counting from the right in the quotient after ivision.
	ne cost of one chocolate is st of 15 chocolates = cost of one chocolate × = x =

Comparing Quantities

Topics to be Improved				
Percentage Basic of percentage				
Profit and loss	Prediction of loss and profit			
Simple interest	Calculation of simple interest			

Hi.	here in	this	video	vou	will	learn	Basics	\mathbf{of}	percentage
,	11010 11	CILLO	viaco	Joa	** 111	100111	Dasies	01	percentage

Question:	61
ω ω ω ω ω ω ω ω ω	$\boldsymbol{o}_{\boldsymbol{I}}$

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{ }{ }$$

Question: 62	
--------------	--

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 63

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

......

Answer:

There are _____ apples in a basket. Number of rotten apples are _____.

Fraction form of rotten apples in a basket $=$
Convert it into a percent= x% =
Hi, here in this video you will learn Profit and Loss
Question: 64
Anu bought a book for ₹100 and sold it for ₹150 . Here, cost price of a book is $___$ and selling price of a book is $___$
$\underline{Answer:}$
The price that is paid to buy or purchase a goods is price and the price at which goods are sold is called price. Therefore, cost price of a book =, selling price of a book =
Question: 65
You bought a bat for ₹50 to play cricket. After one week, you sold that bat for ₹150. Is that a profit or loss for you?
Answer:
In profit, selling price cost price. $(<,>,=)$ In loss, selling price cost price. $(<,>,=)$ Cost price of a bat =, selling price of a bat = Cost price is (greater / smaller) than selling price. Then it is
Question: 66
Janu bought a smart phone for Rs.19,499 and after one week she sold her phone at a loss of Rs.2500 . Find the selling price of the phone.
$\underline{Answer:}$
Cost price of a smart phone =, loss =
Therefore, selling price =
Hi, here in this video you will learn Simple Interest
Question: 67
Match the following.

Column A		
i	Principle(P)	
ii	Amount (A)	
iii	Rate (R)	
iv	Time period (T)	

Column B					
a	Interest calculated based on this				
b	Total sum you borrow				
c	Number of years				
d	Total sum with interest				

Answer:	
Auswei.	

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
$Question: \ 68$
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
$\underline{Answer:}$
Given:
$Amount = \underline{\hspace{1cm}}, Principle = \underline{\hspace{1cm}}, Time period = \underline{\hspace{1cm}}.$
If Amount and principle is given, then formula for calculating interest is
$Interest = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
$Question: \ 69$
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
$\underline{Answer:}$
$Interest = \underline{\hspace{1cm}}, \ Time \ period = \underline{\hspace{1cm}}, \ Principal = \underline{\hspace{1cm}}.$
Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal } x \ \underline{\qquad}}$
Substituting values in the formula,
Rate of interest $= \frac{\underline{\qquad} \times 100}{\text{Principal x} \underline{\qquad}}$
Rate of interest = Therefore, the rate of interest is %

Algebra

Topics to be Improved				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Basics of simple equation	Formating of simple equation			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi, here in this video you will learn Addition on expression

Question: 70

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 71

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 72

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates	s Ram and Sam ha	ve:			
(ii) How many icecr	reams Sam have mo	ore than Ram	:	·	
Answer:					
		Charalatas	T		
	Sam	Chocolates	Icecream		
	Ram				
\ /	s Ram and Sam ha 's chocolate + Sam reams Sam have mo icecream	a's chocolates ore than Ram	:		
Hi, here in this vapplication	rideo you will le	arn Solvin	g an equati	on using	
Question: 73					
	Box A	Bo	XX B		
Box B contains	times the numb	er of chocolat	es in Box A		
Answer:					
Box A contains Box B contains No. of chocolates in I	chocolates.	(No. of choo	colates in Box A	A)	
Question: 74					
Write the equation for Subtracting four time	r the following stat				
Answer:					
		Four tir	mes of m =		
	Subtracting for	our times of r	$n \text{ from } 4 = \underline{\hspace{1cm}}$		
The equation is					

Question: 75
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Types of expression
Question: 76
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition. The terms in the expression are , , and Therefore, there are terms in the expression.
Question: 77
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
3. 7xy + 4m
Answer:
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a

Que	<i>stion:</i> 78				
$5m^2$	+ m + 0 is a	expression	a. (Monomial/ B	Binomial/Trinomial)	
\underline{Ans}	wer:				
	-	on $5m^2 + m + 0$ are ter		led a	_ expression.
Hi,	here in this vi	deo you will learn	Subtraction	n on expression	
Que	stion: 79				
Find	the sum of two ex	xpressions a + b + c a	and $b + c + d$		
\underline{Ans}	<u>wer:</u>				
The s	two terms will get	ions are and _ added only if they are sions = +	re(Like	/ Unlike) terms.	
Que	stion: 80				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	is		
(iii)	How many more	teachers are there in	school B than so	chool A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and	_•	+=	
(ii)	Number of girls i	in school B = in school B = students in school B i	-•	=	

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $___$

Question: 81

Solve the following:

$$\begin{array}{c}
13x + \underline{\hspace{1cm}} \\
(+) \quad 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$