

Geophysical Data Pepart

ATMOSPHERIC RADIO NOISE DATA BANGKOK, THAILAND—March-May 1967

By: RANGSIT CHINDAHPORN LT. CHAIKAMOL LUMJIAK PRAJUAB NIMITYONGSKUL

Prepared for.

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703

CONTRACT DA-36-039 AMC-0004C(E) ORDER NO. 5384-PM-63-91

Distribution of this document is unlimited.

Sponsored by

ADVANCE RESEARCH PROJECTS AGENCY

ARPA ORDER 371

FOR THE

THAI-U.S. MIL; TARY RESEARCH AND DEVELOPMENT CENTER

SUPREME COMMAND HEADQUARTERS

BANGKOK, THAILAND

STANFORD RESEARCH INSTITUTE

MENLO PARK, CALIFORNIA

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

BEST AVAILABLE COPY

October 1967

Geophysical Dota Report

ATMOSPHERIC RADIO NOISE DATA BANGKOK, THAILAND-March-May 1967

Prepared for:

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703

CONTRACT DA-36-039 AMC-00040(E) ORDER NO 5384-PM-63-91

By: RANGSIT CHINDAHPORN LT. CHAIKAMOL LUMJIAK PRAJUAB NIMITYONGSKUL

SRI Project 4240

Distribution of this document is unlimited.

Spansored by

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER 371
FOR THE
THAI-U.S. MILITARY RESEARCH AND DEVELOPMENT CENTER
SUPREME COMMAND HEADQUARTERS
BANGKOK, THAILAND

Copy No.

CONTENTS

LIST	OF.	Ш	USTE	AT	107	S																									į	i i
LIST	OF.	TAI	3LES.			•	•	•	•			•				•	•	•	•	•	•	•	•	•	•	•	•		•		i	i i
			OUCTI																													
11	DI	scu:	88108	٠.	•	•	•	•		•		•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•		
APPE	VD L	х -	BADI	0.5	OI:	4	VA	u	S																							

ILLUSTRATIONS

Fig.	l	AHN-3 Atmospheric Badio Noise Measuring Equipment	2
Fig.	2	Location of the Radio Noise Recording Station at Laem Chabang, Thailand	3
Fig.	9	Radio Noise Recording Station	.1
Fig.	•	Nomogram for Transforming Effective Antenna Noise Figure to Noise Field Strength as a Function of Frequency	6
Fig.	A-1	Three-Month Median Time-Block Values of Radio Norse Power	4

TABLES

Tuble I	Radio Noise Measuring Site at Laem Chabang, Thailam 2	5
Tuble 11	ARN-3 Radio Noise Recorder Specifications	5
Table A-1	Month-Hour Values of Badio Noise	10
Table A-2	Three-Month Time-Block Values of Radio Noise	13

I INTRODUCTION

Measurements of atmospheric radio noise are being made by the Electronics Laboratory of the Military Besearch and Development Center (MBDC-EL), a joint Thailand-United States-organization in Bangkok., The noise-measuring equipment (Fig. 1), modeled after the U.S. National Bureau of Standards Radio Noise Recorder, Model ARN-2, is located near the village of Laem Chabang (Fig. 2), about 90 kilometers southeast of Bangkok, in order to minimize interference from man-made noise. A view of the site, showing the standard ARN-2 antenna and ground plane, is presented in Fig. 3.

The cooperation and participation of the staff members of the Thailand Ministry of Defense and the support of the United States Advanced Research Projects Agency and the U.S. Army Electronics Command, have made it possible for the data presented in this report to be accumulated.

Tables I and II, below, present information about the site and the equipment of the part is possible.

For convenience in applying the results in this study, a nomogram for transforming effective antenna noise figure to noise field strength as a function of frequency is presented in Fig. 4.

FIG. 1 ARN-3 ATMOSPHERIC RADIO NOISE MEASURING EQUIPMENT

FIG. 2 LOCATION OF THE RADIO NOISE RECORDING STATION AT LAEM CHABANG, THAILAND

FIG. 3 RADIO NOISE RECORDING STATION

Table [

BADIO NOISE MEASURING SITE AT LAEM CHABANG, THAILAND

GEOGRAPH1	C LOCATION	ELEVAT ANGLE OF HORIZON
Latitude	Longitude	ELEVAL V ANGLE OF HORIZON
13.55°N	100,90°E	Less then 3 degrees in all directions; zero degrees towards the west (Gulf of Thailand)

Table 11
ARN-3 RADIO NOISE RECORDER SPECIFICATIONS

Antenna	Standard 6.6294-meter (21.75 feet) vertical antenna with ground plane consisting of ninety radial wires, each approximately 100 feet long.
Frequencies of Measurement	6, 13, 27, 160, 530, 2,300, 5,000, and 10,000 kHz.
Effective noise bandwidth of receiver	200 Hz
Recording chart speed	5 cm per hour

 $E_{\rm in} = F_a + 20 \log_{10} f_{\rm MHz}$ -65.5 DB-4240-2 $F_a = {\rm Effective \ Antenna \ Noise \ Figure} = {\rm External \ Noise \ Power}$ Available from an Equivalent Short, Lossless, Vertical Antenna in dB Above kTb.

 E_n = Equivalent Vertically Polarized Ground Wave rms. Noise Field Strength in dB Above 1 $\mu V/meter$ for a 1-kHz Bandwidth. f_{MHz} = Frequency in MHz

Source: ESSA Tech. Report IER 18-ITSA 18-28

FIG. 4 NOMOGRAM FOR TRANSFORMING EFFECTIVE ANTENNA NOISE FIGURE TO NOISE FIELD STRENGTH AS A FUNCTION OF FREQUENCY

I DISCUSSION

The noise data contained in this report are compatible with the data in a series of Technical Notes published by ITSA,* (Series 18) "Quarterly Radio Noise Data." The following two parameters of the atmospheric noise are tabulated in the Appendix:

- (1) Mean power
- (2) Mean envelope voltage.

The mean power is a basic parameter and is expressed as an effective antenna noise factor, F_a . F_a is defined as the noise power available from an equivalent loss-free antenna in dB above kTb, the thermal noise power available from a passive resistance, where

- k = Boltzmann's constant (1.38 × 10⁻²³ joules per degree Kelvin)
- b = Effective receiver noise bandwich (Hz)
- T = Reference temperature, taken as 288°Kelvin.

The mean envelope voltage, $\mathbf{V_d}$, is expressed as a deviation in dB below the mean power.

Four frequencies, either in the MF and HF bands or in the VLF and LF bands, may be recorded simultaneously for 30 minutes. Switching between the two sets of four frequencies is accomplished automatically each half hour. The average power and the mean envelope voltage are recorded on an 8-channel strip-chart recorder. The thirty-minute samples are taken as representing the noise condition for the full hour.

The month-hour medians for power and voltage, F_{am} and Y_{dm} , respectively, are determined from the hourly values scaled from the chart recordings for each of the corresponding frequencies. Normally, from twenty-five to thirty observations of the mean power are obtained monthly

Institute for Telecommunication Sciences and Aeronomy, of the Institutes for Environmental Research, Environmental Science Services Administration, U.S. Department of Commerce.

for each hour of the day and from ten to fifteen observations of the voltage deviations. When there are fewer than fifteen observations of the mean power or seven observations of the voltage deviations, the tabulated values in the Appendix are identified by an asterisk.

The extent of the variation of the noise power from day to day at a particular hour of the day can be determined from the upper and lower decile values of F_a . These are expressed in dB above and below the month-hour median, F_{am} , and designated by D_a and D_f , respectively, in Table A-1.

Time-block median values of noise are tabulated on a seasonal basis and are obtained by averaging all month-hour medians for the four hours of the day within the three-month period (see Table A-2 and Fig. A-1). The time-block values conform to the seasonal time-block values used in CCIR Report No. 322.

The results of the noise measurements at MF and HF for the maths March, April, and May 1966, are given in this report. No data for LF and VLF for these months are available, but it is expected that data for these frequency bands will be published in subsequent reports.

APPENDIX

RADIO NOISE VALUES

Table A-1 MONTH-HOUR VALUES OF RALIO NOISE

 $[\]Xi$ Less than 15 days/month for F_a or less than 7 days/month for V_d Ξ Median value of effective antenna noise in dB above ktb

 b_u^{max} = Ratio of upper decile to median in dB

D_I = Ratio of median to lower decile in dB

Vin = Median deviation of average of tage in dB below mean power

Table A-1 (Continued)

MONTH-HOLR VALUES OF RADIO NOISE

Station: LAEM-CHABANG Lat. $13.05^{\circ}N$ Long. 100.9°F Month April 1967

							ŀ	REQUEN	CY (MI	[±)						
IIK. (LT)		a.	53			2.	3			5.	0			10	0.0	
(11)	F am	D _u	\mathfrak{b}_l	V _{dm}	Fum	D _u	\mathfrak{d}_l	V _{dm}	Fam	D _u	D _l	V _{dm}	Fam	D _u	υ _l	v _{dm}
00	99	7	7	3.0	76	Ú	3	3.0	66	12	9	1.0	60	b	5	2.0
01	99	9	10	4. 0	76	7	3	3.0	65	13	9	1.0	62	5	3	9.5
02	100	7	12	4.0	76	4	5	4.0	66	14	14	1.0	57	7	9	9.5
03	99	9	8	4.0	75	16	5	4.0	66	10	10	1.0	59	8	10	10.0
04	100	7	9	5, 0	74	12	ò	5.0	b6	9	11	1.5	61	10	7	5.0
05	97	13	11	5.0	74	8	Ó	4.5	68	9	10	1.0	64	5	6	6.0
06	90	22	8	3.0	ь9	17	4	5.0	58	16	5	2.5	62	4	7	2.0
07	88	17	8	6.0	70	18	7	6.0	52	6	6	3.0	50	4	8	7.0
08	90	15	16	o. 0	65	9	10	6.0	47	9	3	3.5	42	9	6	9.0
UŞ	84	20	10	8.0	65	12	8	6.0	47	11	5	3,0	39	9	6	9.5
10	88	25	14	8.0	64	13	12	6.0	47	10	5	2.5	38	7	7	7.5
11	105	12	25	4.0	66	21	14	5.0	49	20	7	4.0	39	14	7	9.0
12	107	12	28	7.5	72	17	19	7.0	51	10	9	4.0	4 1	13	8	7.0
13	107	12	24	7.0	76	12	22	ΰ, 5	54	11	9	4.0	39	14	4	7.0
14	107	11	25	6.0	78	12	22	5.5	57	7	14	4.0	47	9	9	9.0
15	110	6	19	5.0	79	12	17	5.0	57	6	10	3, 5	48	01	7	8:5
16	105	9	19	5.0	77	9	12	4.0	58	6	6	2.5	53	6	8	3.0
17	104	7	10	4.0	80	5	7	3.0	64	9	5	1.0	61	6	7	4.0
18	104	6	13	3.0	81	b	9	2.5	71	6	7	0.5	სხ	6	5	3.0
19	104	5	10	4.0	81	3	8	2.5	71	4	4	0.5	65	5	4	5.0
20	104	5	11	3.0	80	b	4	2.0	73	3	5	0.5	υ9	3	5	3.0
21	104	3	11	3.0	80	6	4	2.5	73	9	6	0.5	68	5	3	2.0
22	103	5	7	3.υ	79	7	4	3.0	69	10	4	0.5	68	3	5	9.6
23	101	7	9	3.0	77	5	b	3.0	υ4	14	0	1.0	υ3	5	b	2.5

 $[{]f F}_{\rm am}$ = Median value of effective antenna noise in dB above ktb ${f D}_{u}$ = Ratio of upper decide to median in dB ${f D}_{l}$ = Ratio of median to lower decide in dB ${f V}_{
m dm}$ = Median deviation of average voltage in dB below mean power

Table A-1 (Concluded)

MONTH-HOUR VALUES OF RADIO NOISE

Station: LAEM-CHABANG Lat. 13.05°N Long. 100.9°F Month May 1967

Stati		LALM	CHAB			.a	13.05	14	1.0	uk.	100.9	<u> </u>		donth -	May	1901
								FREQUEN	CY (MI	(z)						
HR. (LT)		0.	53			2.	3			5.	. 0			10	0.0	
(21)	Fam	Du	D _l	V _{dm}	Fam	D _u	D_l	Vdm	Fam	Du	\mathfrak{v}_{l}	V _{dm}	Fam	Þu	\mathfrak{v}_l	V _{dm}
00	104	7	12	3.0	78	8	3	2.5	63	8	3	2.0	59	11	7	9 ()
01	104	8	13	4.0	78	5	4	3.0	63	9	3	2.0	60	7	9	9.0
02	102	8	11	4.0	78	8	6	3.0	63	10	3	5.0	59	13	5	8.5
03	101	9	10	4.0	76	9	4	3.0	61	12	3	2.0	•60	• -		9.0
04	100	10	13	4.9	78	5	6	4.0	62	b	7	2.5	58	7	5	10.0
05	93	16	11	3.5	77	5	7	3.0	62	8	6	2.0	64	6	7	9.0
06	91	21	11	2.0	73	9	7	2.5	59	7	7	2.0	61	8	8	10.0
07	90	21	15	2.0	70	13	5	3.0	55	11	5	3.0	51	14	7	10.0
08	90	17	15	3.0	71	6	8	3.0	51	8	4	3.0	45	8	8	10.0
09	87	22	!0	7.0	69	9	5	3.0	49	8	4	3.0	41	10	12	10.0
10	88	13	17	6.0	69	5	5	3.0	49	8	5	3.0	41	11	8	9.0
11	90	17	13	5.0	69	8	7	2,5	51	8	6	3. 5	39	10	7	9.0
12	92	17	14	6.0	70	10	6	2.5	51	9	ő	4.0	41	8	7	9.0
13	99	13	12	8.0	71	7	5 ·	4.0	ગો	10	8	4.0	43	8	8	9.0
14	102	13	16	8.0	74	12	8	4.0	53	9	4	4.0	43	6	5	8.0
15	104	7	16	8.0	72	11	3	4.0	56	- 8	7	3.0	47	9	7	. 8 0
16	104	9	13	6.5	75	8	8	3. 5	59	5	b	3.0	52	7	8	8.0
17	102	9	11	6.0	78	7	b	2.0	62	2	4	2.0	63	5	12	8.0
18	101	9	8	4.0	79	5	5	2.0	68	3	5	1.0	67	4	b	8.0
19	101	8	8	4.0	79	7	3	2.0	71	3	7	1.5	66	5	5	8.0
20	102	6	9	3 5	80	5	4	2.0	70	3	5	1.5	67	4	5	8.0
21	103	6	9	3.5	81	4	5	2.0	70	4	5	1.5	67	5	5	8.5
22	103	6	10	3.0	80	4	4	2.0	68	6	5	2.0	67	6	7	9.0
23	104	6	11	3.5	79	8	5	2.0	62	12	3	2.0	60	10	10	10.0

⁼ Less than 15 days/month for F $_{\rm m}$ or less than 7 days/month for V $_{\rm d}$ F $_{\rm mm}$ = Median value of effective antenna noise in dB above ktb

 D_u = Ratio of upper decile to median in dB D_l = Ratio of median to lower decile in dB

 V_{dm}^{-} = Median deviation of sverage voltage in dB below mean power

Table A-2

THREE-MONTH TIME-BLOCK VALUES OF RATIO NOISE

Station: LAEN (HABANG	LAE	E .	ABANG		Lat	<u>=</u>	Lat. 13.05°N							Lon	2	Long. 100.90E			Perio	Period March-April-May 1967	ch-Ap	ril-y	lay 1	196
											TIM	TIME MOCKS (LST)	ST) SI	(1										
FREQUENCY		0000	0000-0400			0400-0860	0800			0800-1200	1200			1206-1600	1600			1600-2000	2000			2000 - 2400	2400	
	Fam	a a	ľ	v.dm	Fam Du	D _u	ľa	Vdm	Fem	'n	ľ	Vdm	Fam Du	'n	$I_{\mathbf{Q}}$	D _I V _{dm} F _{an}		la na	l _a	v_{r^2a}	F am	D	$l_{\mathbf{Q}}$	Vdm
0.53	100	2	11	4.0	93	93 13	==	3.5	98	16 14	14	5.0	26	11	19	101 0.9 61 11 76	101	8 12	12	4.0	102	5	10	3.0
2.3	92	0,	٥	3.0	73	11	80	4.0	3	9	&	4.0	69	6.	12	9 12 4.0	1	œ	®	2.0	42	۲-	9	2.0
10	63	11	∞	1.5	65	80	80	2.0	\$	œ	s	3.0	47	6	7	3.0	;	9	7	1.0	69	&	-	1.0
01	55	6	٠.	6.0	55	φ.	8	5.0	39	10	2	7 7.0 41 9 7 6.0	41	6	2	0.9	æ	4	8	5.0	63	7	7	5.0

 F_{mn} . Median value of effective antenna noise in dB above ktb D_{u} = Ratio of upper decile to median in dB D_{l} = Ratio of median to lower decile in dB V_{dm} . Median deviation of average voltage in dB below mean power

FIG. A-1 THREE-MONTH MEDIAN TIME-BLOCK VALUES OF RADIO NOISE POWER

Security Classification			
DOCUMENT CONT			
(Security classification of title, body of abstract and indexing	annotation must or t		
ORIGINATING ACTIVITY (Corporate author) Stanford Research Institute		UNCLASS	CURITY CLASSIFICATION
		2b. GROUP	Trub
Menlo Park, California 94025		N/A	
ATMOSPHERIC RADIO NOISE DATA, BANGKOK, THA	AILAND—-Marc	h-May, 196	7
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Geophysical Data Report Covering the Period March	through May 1	967	
S. AUTHOR(S) (First name, middle initial, last name)			
Rangsit Chindahporn, Lt. Chaikamol Lumjiak, Praju	ab Nimityongsk	ul	
S. REPORT DATE	78. TOTAL NO. O	F PAGES	76. NO. OF REFS
October 1967	21		
66. CONTRACT OR GRANT NO. Centract DA-36-039 AMC-00040(E) 6. PROJECT NO. Order No. 5384-PM-63-91 ARPA Order No. 371	Geophysica SRI Projec	l Data Repor	T=::: ·
с,	90. OTHER REPO	RT NO(S) (Any o	ther numbers that may be sesigned
	thie report)		
d.			
10. DISTRIBUTION STATEMENT	<u> L</u>		
Distribution of this report is unlimited.			
11 SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY
Advanced Research Projects Agency Washington, D.C.			
13. ABSTRACT	-		
	,		
None: De	ita Report		

DD FORM 1473 (PAGE 1)

UNCLASSIFIED
Security Classification

S/N 0101-807-6801

Security Classification						
KEY WORDS	LIN		LIN		LIN	
Radio Noise	ROLE	₩Ŧ	POLE	WT	ROLE	WT
Atmospheric Noise Radio Noise Recorder						
APN-3						
VLF, LF, MF, HF						
Thailand SEACORE						
SURLUL W						
*						
_						
		- 11				
					7.	
					-	
					e	
DD FORM 4.4.70						

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED