CS641 Modern Cryptology

LECTURE 3

Cryptanalysis

Cryptanalysis is the domain dealing with breaking various encryption algorithms.

- The simplest technique of cryptanalysis is brute-force attack that tries out all possible values of the decryption key.
- While brute-force attack described earlier only needs knowledge of algorithms and ciphertext, and so can always be applied, there are other types of attacks that require additional information.

CIPHERTEXT-ONLY ATTACK

Ela knows a few ciphertexts encrypted with one key.

- Happens due to insecure communication channel.
- Brute-force attack that runs through all possible keys is a type of ciphertext-only attack.

KNOWN PLAINTEXT ATTACK

Ela knows a few pairs of plaintext and corresponding ciphertext encrypted with the same key.

- Can happen due to carelessness by either Anubha and Braj.
- Stronger attack than ciphertext-only attack.

CHOSEN PLAINTEXT ATTACK

Ela can choose a few paintexts for encryption and see corresponding ciphertexts.

- Can happen through an intermediatory between Ela and Anubha.
- Stronger than known plaintext attack.

CHOSEN CIPHERTEXT ATTACK

Ela can choose a few ciphertexts and see corresponding plaintexts.

- Can happen when Ela can write messages on the channel for Braj and there is some leakage at Braj's end.
- Stronger than ciphertext-only attack but incoparable to known/chosen plaintext attacks.

CHOSEN PLAINTEXT AND CIPHERTEXT ATTACK

Ela can choose a few plaintexts and ciphertexts and see corresponding ciphertexts and plaintexts respectively.

- Can happen for a combination of chosen plaintext attack and chosen ciphertext attack scenarios.
- Stronger than all previous types.

CENTRAL AXIOM

- Ela has all information that remains fixed, including encryption, decryption, and key generation algorithms.
- Further, she also has the ability to mount a chosen plaintext and ciphertext attack.

CLASSICAL CIPHERS UNDER CENTRAL AXIOM

Substitution cipher:

- ► Ela chooses *abcdef* ··· · *xyz* as plaintext. Corresponding ciphertext yields the key.
- Even a long enough known plaintext and corresponding ciphertext will yield the key.
- Permutation cipher:
 - Same plaintext and corresponding ciphertext will yield the key.
- Combinations of these ciphers can also be easily broken.

BLOCK CIPHERS

A block cipher operates on a fixed size (called blocksize) block of plaintext.

- To encrypt an arbitrary size plaintext m, let $m = m_1 m_2 \cdots m_t$ with $|m_i| = b$ where b is blocksize, $c_i = E(m_i, k_E)$, and $c = c_1 c_2 \cdots c_t$.
- In case $|m_t| < b$, pad it with fixed sequence, for example, 10^* .
- Classical ciphers are all block ciphers, and so are most modern ciphers.

Analysis of Block Ciphers

Brute Force Attack

Send as plaintext all possible 2^b values of a block and collect their ciphertexts to make the correspondence table.

- Requires encryptions of 2^b blocks.
- A type of Chosen Ciphertext Attack.
- Feasible if **b** is small.
- Therefore, any block cipher with small blocksize is insecure.

Analysis of Block Ciphers

- For secure encryption, we need b > 120 bits as per earlier analysis.
- A good choice of b is 128 bits (= 16 bytes).
- A large blocksize allows us to mix multiple letters, making frequency analysis also difficult.
- The best mixing is done by a linear transformation, so we can choose *E* to be a linear transformation.
- To apply linear transformation, we need to view every block as a vector in a certain dimensional space.

A GENERAL LINEAR TRANSFORMATION CIPHER

- Let a block consist of b numbers, with each number limited to certain bitsize.
- This is always possible since any sequence of bits can be viewed as a number.
- Now a block is a b-dimensional vector, say u.
- Let $k_F = (K, k_c)$ where K is a $b \times b$ invertible matrix and k_c a b-dimensional vector.

Define $c = E(u, k_E) = K \cdot u + k_c$ and $D(c, k_D) = K^{-1} \cdot c - K^{-1} \cdot k_c$.

Analysis of Linear Cipher

- Let 0 be all-zero vector and e_i be vector with 1 in i-th dimension and zero everywhere else.
- Send plaintext $0e_1 \cdots e_h$ to Anubha for encryption and let $c_0c_1 \cdots c_h$ be corresponding ciphertexts.
- Then, $c_0 = K \cdot 0 + k_c = k_c$.
- Let the *i*-th column of K be K_i.
- Then, $c_i = K \cdot e_i + k_c = K_i + k_c$.
- Therefore, $K_i = c_i k_c = c_i c_0$.

Analysis of Linear Cipher

- So, any linear cipher can be broken easily with a chosen plaintext attack.
- Even a known plaintext attack can break it as all one needs is linear independence of b plaintext vectors:
 - ► Suppose plaintext vectors are p₀, p₁, ..., p_b with last b of then linearly independent.
 - ▶ Let encryption of p_i be c_i .
 - ▶ Then $[c_1 \cdots c_b] = K \cdot [p_1 \cdots p_b] + [k_c \cdots k_c]$.
 - ▶ This gives $K = [c_1 \cdots c_b] \cdot [p_1 \cdots p_b]^{-1} + [k_c \cdots k_c] \cdot [p_1 \cdots p_b]^{-1}$.
 - Therefore,

$$c_0 = [c_1 \cdots c_b] \cdot [p_1 \cdots p_b]^{-1} \cdot p_0 + [k_c \cdots k_c] \cdot [p_1 \cdots p_b]^{-1} \cdot p_0 + k_c.$$

▶ Above can be used to compute k_c and then K.

Conclusions

#1

Choose large blocksize

#2

E must be non-linear