

Unidad de formación:

Gestión de proyectos de plataformas tecnológicas

Actividad 1 - Reporte

Profesor:

Alfredo García Suarez

Alumna:

Pilar Vaquero Fernández

Fecha de entrega:

25 de septiembre de 2025

PUNTO 4

VARIABLES CON CORRELACIÓN

HOTEL ROOM

Host_acceptance_rate vs	0.025401
host_response_ rate	
Review_score_rating vs	0.38
calculated_host_listings_count	
Host_acceptance_rate vs	0.067038
price	
Availability_365 vs number_of	-0.1787
review	
Host_accetance rate vs	0.106529
number_of reviews	
Review_per_month vs review	0.176342
score_communication	

Entire apt

Host_acceptance_rate vs host response rate	0.14
Review_score_rating vs calculated_host_listings_count	0.05
Host_acceptance_rate vs price	0.06
Availability_365 vs number_of review	-0.027006
Host_accetance rate vs number_of reviews	0.03
Review_per_month vs review score_communication	0.05

Private room

Host_acceptance_rate vs	0.15
host_response_ rate	
Review_score_rating vs	0.01
calculated_host_listings_count	
Host_acceptance_rate vs	0.07
price	
Availability_365 vs number_of	0.049171
review	

Host_acceptance rate	VS	0.06
number_of reviews		
Review_per_month vs rev	iew	0.01
score_communication		

Shared room

Host_acceptance_rate vs host response rate	0.15
Review_score_rating vs calculated_host_listings_count	0.01
Host_acceptance_rate vs price	0.07
Availability_365 vs number_of review	0.050281
Host_acceptance rate vs number_of reviews	0.06
Review_per_month vs review score_communication	0.01

GRAFICOS DE VARIABLES CON MAYOR CORRELACIÓN

En **Hotel room** el eje X es *host_acceptance_rate* (casi todo entre 85–100) y el eje Y es *host_response_rate*. La mayoría de puntos están "pegados" arriba (≈95–100% de respuesta), con **poca variación en X** y unos pocos **outliers** cerca de 0, 20 y 60% de respuesta. Por eso la recta sale casi **plana** (**ligeramente negativa**): la relación entre aceptación y respuesta es prácticamente **nula** y la pendiente la empujan esos outliers. Con este patrón (techo en 100% y rango estrecho en aceptación), la tasa de aceptación **no ayuda** a explicar la tasa de respuesta para los anuncios tipo hotel.

Viendo el gráfico de **Entire home/apt**, yo veo la tasa de aceptación del host en X y la de respuesta en Y. Los puntos están súper dispersos y la línea azul apenas sube, así que la relación es bien flojita: si alguien acepta más, en promedio responde un poquito más, pero casi no se nota. Además hay muchos puntos pegados en 0% y cerca de 100% de respuesta, y un montón con aceptación entre 90–100%, lo que mete ruido. En resumen: para mí, saber la aceptación no me ayuda mucho a adivinar la respuesta.

En **Private room** la línea sube tantito, pero la nube de puntos está súper regada, así que la relación es **floja**. Se juntan muchos puntos en 0% y ~100% de respuesta y hay como una "pared" entre 90–100% de aceptación (seguro por redondeos/límites), y eso le mete ruido al ajuste. Resultado: **r** y **R**² salen bajitos y, en la práctica, la aceptación casi no me sirve para adivinar la respuesta del host en este tipo.

En **Shared room** la cosa se ve más "alineada" que en los otros tipos. En el eje X está la **aceptación** y en Y la **respuesta** del host; la línea azul sube bastante, o sea que aquí sí se nota una **relación positiva** más clara: a mayor aceptación, suele haber mayor respuesta. Aun así hay pocos puntos y varios **outliers** (por ejemplo, 0% de respuesta con 100% de aceptación y muchos en 100% de respuesta), así que el ajuste se puede inflar por esos extremos. En resumen: para *shared room* parece que aceptación y respuesta **sí van de la mano**, pero tomaría el resultado con pinzas por el tamaño de muestra y los valores extremos.

PUNTO 5 10 VARIABLES CON MAYOR CORRELACIÓN

HOTEL ROOM

review_scores_rating	VS	0.99
review_scores_accuracy		
review_scores_rating	VS	0.99
review_scores_cleanliness		
review_scores_rating	VS	0.99
review_scores_checkin		
review_scores_value	VS	0.99
review_scores_value		
review_scores_rating	VS	0.99
review_scores_communication		
review_scores_rating	VS	0.99
review_scores_location		
review_scores_rating	VS	0.99
review_scores_value		
review_scores_accuracy	VS	0.99
review_scores_cleanliness		
review_scores_accuracy	VS	0.98
review_scores_checkin		
review_scores_accuracy	VS	0.99
review_scores_rating		

PRIVATE ROOM

review_scores_checking review_scores_location	VS	0.99
review_scores_communication review_scores_location	VS	0.99
review_scores_rating	VS	0.99
review_scores_accuracy		
review_scores_value	VS	0.99
review_scores_value		
review_scores_value	VS	0.99
review_scores_rating		
review_scores_location	VS	0.99
review_scores_rating		

calculated_host_listings_count	VS	0.79
host_listings_count		
review_scores_location	VS	0.99
review_scores_value		
calculated_host_listings_count	VS	0.60
host_total_listings_count		
review_scores_accuracy	VS	0.99
review_scores_rating		

SHARED ROOM

ENTIRE APT

review_scores_rating	VS	0.99
review_scores_accuracy		
review_scores_rating	VS	0.99
review_scores_cleanliness		
review_scores_rating	VS	0.99
review_scores_checkin		
review_scores_rating	VS	0.99
review_scores_communication		

review_scores_rating	VS	0.99
review_scores_location		
review_scores_rating	VS	0.99
review_scores_value		
review_scores_accuracy	VS	0.99
review_scores_cleanliness		
review_scores_location	VS	0.99
review_scores_value		
review_scores_accuracy	VS	0.98
review_scores_checkin		
review_scores_accuracy	VS	0.99
review_scores_communication		

PUNTO 6

MODELO 1

> ~	<pre>df['pred_review_scores_rating'] = np.nan df.loc(d.index, 'pred_review_scores_rating'] = y_pred_1 df[['pred_review_scores_rating', 'review_scores_rating'] + X].head(10)</pre>					
		pred_review_scores_rating	review_scores_rating	review_scores_accuracy	review_scores_cleanliness	
		4.918866	4.89	4.88	5.00	
		4.689304	4.68	4.73	4.63	
		4.654654	4.75	4.75	4.50	
		4.687099	4.59	4.60	4.85	
		4.994801	5.00	5.00	5.00	
		4.869031	4.88	4.83	4.95	
		4.962050	4.91	5.00	4.91	
		4.891493	4.89	4.90	4.89	
		4.654654	4.75	4.75	4.50	
		4.824091	4.81	4.92	4.67	

review_scores_rating ~ (host_acceptance_rate, maximum_nights_avg_ntm, calculated_host_listings_count_entire_homes)

- La nube se ve muy abierta; la recta casi plana.
- Hay techos (ratings cerca de 5) y valores extremos; eso limita el ajuste.
- Modelo útil solo para captar tendencias muy leves; R² bajo-medio.

Podemos ver que si suben las correlaciones

v 0.03				
	pred_review_scores_rating	review_scores_rating	review_scores_accuracy	review_scores_cleanliness
pred_review_scores_rating	1.000000	0.995146	0.998577	0.995532
review_scores_rating	0.995146	1.000000	0.993730	0.990700
review_scores_accuracy	0.998577	0.993730	1.000000	0.989080
review_scores_cleanliness	0.995532	0.990700	0.989080	1.000000

host_acceptance_rate ~ (reviews_per_month, price, review_scores_rating)

- Acceptance está "aplastado" en 90–100% y también en 0% → efecto techo/suelo.
- La recta sube poquito; mucha varianza vertical.
- Modelo débil: los predictores no "mueven" mucho la aceptación.

Podemos ver que aunque las correlaciones no son tan fuerte si aumentan a comparación del modelo lineal

En este modelo tomé **host_is_superhost** como variable dependiente. El primer gráfico me muestra la comparación entre los valores reales (0 o 1) y los predichos, donde noto que el modelo aproxima con valores intermedios en vez de clasificar exacto. En los otros gráficos comparo la variable objetivo contra los predictores, y veo que los puntos azules son los datos reales y los naranjas los predichos: mientras los reales solo toman 0 o 1, las predicciones generan una tendencia continua que refleja la probabilidad estimada de que un host sea superhost.

host_total_listings_count ~ (calc_host_listings_count_entire_homes, ..._private_rooms, ..._shared_rooms)

- Muy buen ajuste porque son componentes del total (casi identidad).
- Ojo: es un caso de fuga de información (variables construidas del objetivo).
- R² alto, pero interpretación limitada (no es causal).

Son correlaciones mas fuertes que en el lineal


```
O.0s

Coef: {'bedrooms': np.float64(-0.19317855957072846), 'beds': np.float64(0.17296342288829392)}

Intercept: 1.8659635099599727

R2: 0.16494121965379394
```

- Modelo: regresión lineal múltiple con accommodates como Y y bedrooms, beds como X.
- Coeficientes bedrooms ≈ -0.194, beds ≈ +0.173, intercepto ≈ 1.866, R² ≈ 0.165
- Señal: más camas ↑ capacidad (coef. positivo). El coef. negativo de bedrooms se debe a colinealidad con beds (ambas miden tamaño); al "controlar" camas, el efecto de dormitorios se vuelve inestable.

- el modelo explica ~16% de la variación—útil como base, pero limitado.
- Mejoras: añadir bathrooms (ya numérica), price, room_type u otras de tamaño/amenidades y revisar colinealidad (corr/VIF) para estabilizar signos y ganar R².

- accommodates ~ bedrooms: 0.304 → relación débil–media: a más dormitorios suele aumentar la capacidad, pero no de forma 1:1 (hay cuartos con varias camas y estudios con pocas).
- accommodates ~ beds: 0.168 → relación débil: el nº de camas no siempre equivale a cuántas personas caben (camas dobles, sofás cama, literas).
- beds ~ bedrooms: 0.294 → débil–media entre ambas: están relacionadas (miden tamaño), pero no perfectamente.

En resumen: bedrooms explica más a accommodates que beds, y entre beds y bedrooms hay colinealidad ligera (no severa).

_				
•••		accommodates	beds	bedrooms
	accommodates	1.000000	0.168139	0.303818
	beds	0.168139	1.000000	0.294355
	bedrooms	0.303818	0.294355	1.000000
Γ				

- Modelo: regresión lineal múltiple con bedrooms como Y y accommodates, price como X.
- Coef.: accommodates \approx -0.611, price \approx +3.5e-05, intercepto \approx 2.599, $R^2 \approx$ 0.092.
- Señal: a precio fijo, más capacidad puede lograrse con camas/sofás y no con más cuartos ⇒ el coef. de accommodates sale negativo; el efecto de price es mínimo.
- el modelo explica ~9% de la variación → débil para predecir dormitorios solo con estas dos X.
- Mejoras: añadir beds, bathrooms, room_type y amenities; revisar colinealidad (VIF); considerar modelos para conteos/ordinal (Poisson/ordinal) o discretizar bedrooms.

- accommodates vs price = 0.42 → yo entiendo que a mayor número de personas que puede alojar un anuncio, tiende a subir el precio. Es una relación moderada positiva.
- **beds vs price = 0.14** → aquí la relación es débil; que aumenten las camas no asegura que suba mucho el precio.
- accommodates vs beds = 0.16 → también es débil; el número de camas no siempre crece proporcionalmente al número de personas que puede alojar.

price ~ (accommodates, host_acceptance_rate, review_scores_rating)

- Precio sube con tamaño; los ratings aportan poco.
- Heterocedasticidad: a mayor precio hay más dispersión (outliers caros).

R² medio; bueno para tendencia, flojo para predicción fina.

Vemos como aumento la correlacion y nos ayuda a ver como se relaciona con price

		accommodates	host_acceptance_rate
price 1	.000000	0.366595	0.065707
accommodates 0	.366595	1.000000	0.055163
host_acceptance_rate 0	.065707	0.055163	1.000000

MODELO 8

review_scores_value ~ (review_scores_rating, host_response_rate, review scores accuracy)

- Entre métricas de review hay correlación fuerte (se mueven juntas).
- El rating general domina; accuracy suma un poco; response casi nada.
- R² medio–alto, pero con multicolinealidad (VIF altos).

Podemos ver la correlación como ha aumentado y casi llega al 1 , esto quiere decir que son muy fuertes las correlaciones

Cuando analicé la variable bathrooms en relación con accommodates y price, lo que observé fue una relación positiva con el tamaño: a mayor capacidad de personas y mayor precio, normalmente también hay más baños. Sin embargo, me di cuenta de que existe cierta discreción, porque los valores suelen ser enteros como 1, 1.5 o 2, lo que provoca que los puntos se agrupen en bandas en la nube de dispersión.

En mi modelo, el R² resultó medio, lo cual me indica que es razonable usar el tamaño y el precio para estimar la cantidad de baños, aunque no es perfecto. Esto quedó así porque en mi dataset la variable bathrooms casi no tiene variación: la gran mayoría de registros aparecen con el valor 1, ya que al limpiar los datos asumí que todas las propiedades debían tener al menos un baño.

Cuando analicé las correlaciones de **bathrooms**, vi que con **accommodates** es moderada (0.36) y con **price** es más débil (0.24). Esto significa que el número de baños se relaciona más con la capacidad de personas que puede alojar una propiedad que con su precio, aunque en ambos casos la relación es positiva.

2. reviews_per_month ~ (number_of_reviews_ltm, availability_30, minimum_nights)

- number_of_reviews_ltm empuja fuerte (más historial ⇒ más ritmo).
- availability_30 (disponibilidad) ayuda; minimum_nights suele restar.
- Suele salir de los mejores R² entre los 9; relación más clara.

	reviews_per_month	estimated_occupancy_l365d	number_of_reviews
reviews_per_month	1.000000	0.139640	0.218696
estimated_occupancy_l365d	0.139640	1.000000	0.203101
number_of_reviews	0.218696	0.203101	1.000000

- reviews_per_month vs number_of_reviews = 0.21 → relación débil positiva: más reviews totales, un poco más de reviews al mes.
- reviews_per_month vs estimated_occupancy_l365d = 0.13 → relación muy baja: la ocupación no explica bien la frecuencia de reseñas.
- En conclusión: las reseñas por mes casi no dependen de la ocupación ni del total de reseñas, por lo que estas variables tienen poca fuerza predictiva.

CONCLUSIÓN

Me quedo con el modelo de review_scores_value usando métricas de review (rating/accuracy/cleanliness/response). En mis pruebas muestra mejor ajuste (R² medio—alto) y la nube *real vs. predicho* queda más pegada a la diagonal, así que predice mejor que el modelo de review_scores_rating con variables de host (aceptación, máximas noches, listings), donde el R² es bajo—medio y la dispersión es muy abierta.

Qué gano y qué sacrifico

• Predicción: el de "value con métricas de review" es claramente superior; captura el mismo constructo de calidad percibida y por eso reduce el error.

• Interpretabilidad: pago el precio de la multicolinealidad (correlaciones ~0.95–0.99 entre métricas de review). Los coeficientes son inestables y no los usaría para explicar causalidad. Para *explicar palancas operativas* preferiría el modelo con variables de host, aunque explique menos.

Riesgos y cómo mitigarlos

- Multicolinealidad alta: voy a (a) quedarme con 1 métrica principal (p. ej., review_scores_rating) y eliminar duplicadas, o (b) regularizar con Ridge/Lasso, o (c) sintetizar en un índice (promedio estandarizado / PCA) y modelar con ese único factor.
- Efecto techo en ratings (muchos cerca de 5): limita la varianza y el poder explicativo, sobre todo en el modelo con variables de host. Considero transformaciones o modelos no lineales (splines).

Cuándo usar cada uno

- Si mi objetivo es imputar/predir faltantes de review_scores_value o hacer scoring rápido, uso el primero (métricas de review).
- Si mi objetivo es explicar decisiones (qué puede mover el host), uso el segundo (variables de host) y lo complemento con más features.