Firmin Doko Tchatoka, School of Economics (UoA)

ECON 7204: Problem set 3 (due date: 19 May 2022). Return your main file and the code file in the appropriate dropbox on MyUni.

Question 1 (IV estimation- 60 marks).

Consider the following linear IV regression model
$$y_t = \beta_0 + x_t \beta + u_t, t = 1, 2, ..., T$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t} \pi_2 + v_t, t = 1, ..., T,$$

$$x_t = \pi_0 + z_{1t} \pi_1 + z_{2t$$

set at $\beta_0 = \beta = \pi_0 = 1$. Let $x_1 = ones(T, 1)$ (a T-dimensional column vector of ones) and define $Z = [x_1 \ z_1 \ z_2]$ (a $T \times 3$ matrix of instruments). The OLS and 2SLS estimators of β are then given by $\hat{\beta} = (x'M_{x_1}x)^{-1}x'M_{x_1}y$, and $\tilde{\beta} = (x'(M_{x_1} - M_Z)x)^{-1}x'(M_{x_1} - M_Z)y$, where $M_{x_1} = I - x_1(x'_1x_1)^{-1}x'_1$ and $M_Z = I - Z(Z'Z)^{-1}Z'$.

- 1. Is x_t exogenous in (1)-(2)? Why? \uparrow
- 2. Are z_{1t} and z_{1t} valid IVs in (1)-(2)? Why? $\frac{1}{2}$
- 3. Suppose first that $\pi_1 = 5$, $\pi_2 = 10$ (strong IVs). For sample sizes T = 50 and T = 500:
 - (a) Generate $r = 1, 2, \dots R = 1000$ pseudo samples of size T for y and x using the above information. For each pseudo sample, compute the OLS and 2SLS estimators, $\hat{\beta}$ and $\hat{\beta}$, of β ; their corresponding t-statistics, t_{β} and \tilde{t}_{β} , for $H_0: \beta = 1$, as well as the Sargan's overidentifying restrictions statistic J_S . You will form a collection of R=1000 estimators; $\hat{\beta}^{(1)}, \hat{\beta}^{(2)}, \dots, \hat{\beta}^{(R)}$ and $\tilde{\beta}^{(1)}, \tilde{\beta}^{(2)}, \dots, \tilde{\beta}^{(R)}$, R=1000 t-statistics; $t_{\beta}^{(1)}, t_{\beta}^{(2)}, \dots, t_{\beta}^{(R)}$ and $\tilde{t}_{\beta}^{(1)}, \tilde{t}_{\beta}^{(2)}, \dots, \tilde{t}_{\beta}^{(R)}$, and R=1000 J_S statistics; $J_S^{(1)}, J_S^{(2)}, \dots, J_S^{(R)}$.

Hint: For the J_S statistic, define $x_1 = ones(T, 1)$ (a T-dimensional column vector of ones) and Z = $[x_1 \ z_1 \ z_2] : T \times 3$. Then, J_S has the form $J_S = T g_T' W_T g_T$, where $W_T = \left(\frac{z' M_{x_1} z}{T}\right)^{-1}$, $g_T = \frac{1}{T} z' M_{x_1} (y - y)^{-1}$ $x\tilde{\beta}$), and $M_{x_1} = I - x_1(x_1'x_1)^{-1}x_1'$; so as $J_S \stackrel{d}{\to} \chi^2(1)$ when the exclusion restrictions hold.

- (b) Plot the histograms of the R=1000 estimates of: $\hat{\beta}$ and $\tilde{\beta}$, t_{β} and \tilde{t}_{β} , and J_{S} . Comment on the results.
- (c) Compute the estimated bias as $\widehat{Bias}(\beta) = \frac{1}{R} \sum_{r=1}^{R} (\widehat{\beta}^{(r)} \beta) = \frac{1}{R} \sum_{r=1}^{R} \widehat{\beta}^{(r)} \beta$ and $\widetilde{Bias}(\beta) = \frac{1}{R} \sum_{r=1}^{R} (\widetilde{\beta}^{(r)} \beta) = \frac{1}{R} \sum_{r=1}^{R} \widetilde{\beta}^{(r)} \beta$. Comment on the results.

- (d) Compute the rejection frequencies of the *t*-test and J_S -test at 5% level, i.e., the quantity $Re_{OLS} = \frac{1}{R}\sum_{r=1}^{R}\mathbb{1}[|t_{\beta}^{(r)}| > 1.96], Re_{2SLS} = \frac{1}{R}\sum_{r=1}^{R}\mathbb{1}[|\tilde{t}_{\beta}^{(r)}| > 1.96], Re_{J_S} = \frac{1}{R}\sum_{r=1}^{R}\mathbb{1}[J_S^{(r)} > 3.84],$ where $\mathbb{1}[C] = 1$ if condition C holds and $\mathbb{1}[C] = 0$ otherwise. Comment on the results.
- 4. Suppose that $\pi_1 = 0.01$ and $\pi_2 = 10$ (i.e., z_1 is weak but z_2 is strong). For sample sizes T = 50 and T = 500, repeat (a)-(d) of question 3. Conclude.
- 5. Suppose that $\pi_1 = \pi_2 = 0.01$ (both z_1 and z_2 are weak). For sample sizes T = 50 and T = 500, repeat (a)-(d) of question 3. Conclude.
- 6. Suppose now that $\pi_1 = \pi_2 = 0$ (both z_1 and z_2 are irrelevant). For sample sizes T = 50 and T = 500, repeat (a)-(d) of question 3. Conclude.

QUESTION 2 (GMM estimation- 40 marks).

Consider the following population moment condition resulting from the consumption based asset pricing model:

$$g(x_{1t}, x_{2t}, z_{t}, \theta) = f_{t}(\theta) \theta$$

$$f_{t}(\theta) = \int_{t}^{t} x_{1t} dt - 1$$

$$\mathbb{E}[g(x_{1t}, x_{2t}, z_{t}, \theta)] = 0, \ t = 1, ..., T,$$
(3)

where $\theta = (\gamma, \delta)'$, $g(x_{1t}, x_{2t}, z_t, \theta) = f_t(\theta) \times z_t$, $f_t(\theta) = \delta x_{1t}^{\gamma-1} x_{2t} - 1$, $x_{1t} = c_{t+1}/c_t$, $x_{2t} = r_{t+1}/p_t$, $z_t = (1, x_{1,t-1}, x_{1,t-2}, x_{2,t-1}, x_{2,t-2})'$, c_t is aggregate per capita consumption, and r_{t+1} , p_t are respectively the gain in period t+1 and the price in period t on a **NYSE index**. The data is monthly and the sample period is 1960.1-1997.12. You are tasked to estimate $\theta = (\gamma, \delta)'$ using alternative GMM methods. The files *cbapmewrdata.dat* and *cbapmewrinstr.dat* contain data on (x_{1t}, x_{2t}) and z_t , respectively.

1. Efficient Two-Step GMM Estimation

- (a) Write a code that computes the efficient two-step GMM estimates of γ and δ , as well as their resulting standard error estimates.
- (b) Using the above data sets and your code, find the efficient two-step GMM estimates of γ and δ , and their standard error estimates. Comment on the results.
- (c) Are the instruments in z satisfy the exclusion restriction? Justify.

2. Iterative GMM Estimation

- (a) Write a code that computes the iterative GMM estimates of γ and δ , as well as their resulting standard error estimates.
- (b) Using the above data sets and your code, find the efficient iterative GMM estimates of γ and δ , and their standard error estimates (*NB: initialize* θ at the efficient two-step GMM estimate of the previous question). Compare your results with the efficient two-step GMM ones.

(c) Are the instruments in z satisfy the exclusion restrictions? Why?

3. Conclude.

$$g(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = (8 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\theta = (8 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{1} + = (1 \times x_{1} \times x_{2} + -1) \times 2t$$

$$\chi_{2} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{3} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$

$$\chi_{4} + (1 \times x_{2} \times x_{2} + -1) \times 2t$$