Set Theory Notations

Universal Set : Ω

Empty Set : \emptyset

$$Set: S = \{x \in \Omega \mid x \in S\}$$

Complement of Set : $S^C = \{x \in \Omega \mid x \notin S \}$

Union:
$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Algebra of Sets

Let A, B, and C be subsets of Ω

• Complement Laws:

$$A \cup A^C = \Omega$$

$$A \cap A^C = \emptyset$$

• Identity Laws:

$$A \cup \emptyset = A$$

$$A \cap \Omega = A$$

• Commutative Laws:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

• Associative Laws:

$$\left(\begin{array}{ccc} A \ \cup \ B \end{array}\right) \ \cup \ C \ = A \ \cup \ \left(\begin{array}{ccc} B \ \cup \ C \end{array}\right)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

• Distributive Laws:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• De Morgan's Laws:

$$(\cup_{i=1}^{n} A_{i})^{C} = \bigcap_{i=1}^{n} A_{i}^{C}$$

$$(\cap_{i=1}^{n} A_{i})^{C} = \bigcup_{i=1}^{n} A_{i}^{C}$$

- Outline of Proof:

If we are able to show that $(\bigcup_{i=1}^n A_i)^C \subset \bigcap_{i=1}^n A_i^C$ is true and $\bigcap_{i=1}^n A_i^C \subset (\bigcup_{i=1}^n A_i)^C$ is also true, then we can conclude that $(\bigcup_{i=1}^n A_i)^C = \bigcap_{i=1}^n A_i^C$.

Let
$$x \in (\bigcup_{i=1}^{n} A_i)^C \Rightarrow x \notin (\bigcup_{i=1}^{n} A_i)$$

 $\Rightarrow x \notin A_1, x \notin A_2, \dots x \notin A_n$
 $\Rightarrow x \in A_1, x \in A_2, \dots x \in A_n$
 $\Rightarrow x \in \bigcap_{i=1}^{n} A_i^C$
 $\Rightarrow (\bigcup_{i=1}^{n} A_i)^C \subset \bigcap_{i=1}^{n} A_i^C$

Similar arguments can be made to show that $\bigcap_{i=1}^n A_i^C \subset (\bigcup_{i=1}^n A_i)^C$