

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Question Number	Scheme				
1 (a)	Po(isson) with $(\lambda =)4$				
(b)	Pairs of	shoes (are sold) singly/randomly/independently/at a constant (average) rate	B1		
			(1)		
(c) (i)	$X =$ number of sales per hour $\Rightarrow X \sim Po(4)$				
	P(X > 4)	$=1-P(X\leqslant 4)$	M1		
	= 0.3712 awrt 0.371				
(ii)	('0.371	.') ³	M1		
	= 0.0511	·	A1		
	- 0.0311	77 0.03113 01 awit 0.0311	(4)		
(d)	$H_a:\lambda=$	'4' $H_1: \lambda > '4'$	B1ft		
(u)		$P(X \ge 9) = 1 - P(X \le 8) = 0.0214$	M1		
	= 0.1107				
			A1		
		ificant/Do not reject H ₀ /Not in the critical region	M1		
		insufficient evidence of an <u>increase</u> in <u>sales</u> following the appearance of the	dA1		
	advert/manager's belief is not supported.				
		Notes	(5) Total 11		
(a)	B1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4)	1000111		
	For one of the given assumptions in context (must have context of shoes or sales)				
(b)	B 1	Ignore extraneous non-contradictory comments.			
(c) (i)	M1 For writing or using $P(X > 4) = 1 - P(X \le 4)$				
	1411	For writing or using $P(X > 4) = 1 - P(X \le 4)$			
	A1	awrt 0.371			
(ii)	A1 M1	awrt 0.371 'part (i)' ³			
(ii)	A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132)			
	A1 M1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a)			
(ii) (d)	A1 M1 A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1			
	A1 M1 A1 B1ft	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$			
	A1 M1 A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used	ļ		
	A1 M1 A1 B1ft M1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H ₀ and H ₁ For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR			
	A1 M1 A1 B1ft	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \geqslant 9$			
	A1 M1 A1 B1ft M1 A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \geqslant 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ or	context		
	A1 M1 A1 B1ft M1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \geqslant 9$	context eir <i>p</i> -		
	A1 M1 A1 B1ft M1 A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \geqslant 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ on needed but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be in a correct ft conclusion in context.	context eir <i>p</i> - mplied by		
	A1 M1 A1 B1ft M1 A1	awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \geqslant 7) = 1 - P(X \leqslant 6)$ If a CR approach is taken then award M1 for $P(X \geqslant 9) = 1 - P(X \leqslant 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \geqslant 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ on needed but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be in	context eir <i>p</i> - mplied by		

Question Number	Scheme Marks					Marks
2 (a)	20, 20, 20 20, 20, 50		0, 20, 50 (×3)	20, 50, 50 (>	<3) 50, 50, 50	B2
				·		(2)
(b)	b) $a = 30 \text{ and } b = 40$				B1	
	40	1.0	25			(1)
(c)	$p^3 = \frac{49}{100}$	13 — (or $q^3 = \frac{27}{}$	_		M1
	800	00	8000	0		
	$p = \frac{17}{1}$	0.85)	or $q^3 = \frac{27}{8000}$ and $q = \frac{3}{20}$	0.15)		A1
	20		20	,		
	[p/20)]	2 "	2 11 11 11	[p/40] 2 "	n n 2 n	(2)
(d)				$[P(40)] = 3 \times "$	p"×"q"	M1 M1
	$c = \frac{2601}{}$	_	$d = \frac{459}{8000}$			
	8000)	8000			A1
		1			1	(3)
	<u> </u>		20	50		B1 M1
(e)	P(M =	m)	$\frac{3757}{4000}$	243		A1ft
		,	4000	4000		(2)
				No	tos	(3) Total 11
		For a	ll 4 correct com		ies	1014111
(a)	B2	(B1 f	or 3 correct con	nbinations)		
					of the given combinations	
(b)	B1		a = 30 and b = 40			
(c)	M1	Eithe	$p^3 = \frac{4913}{8000} \text{ c}$	or $q^3 = \frac{27}{2222}$		
	A 1					
	A1 $p = 0.85$ oe and $q = 0.15$ oe $[P(30)] = 3 \times (\text{their } p)^2 \times (\text{their } q) \text{ or } [P(40)] = 3 \times (\text{their } p) \times (\text{their } q)^2$					
(d)	M1	-	-			
					nust be using their values from part (c	
		-	-		and $[P(40)] = 3 \times (\text{their } p) \times (\text{their } q)$) -
	M1	or 119	se of sum of n	robabilities = 1	i.e. $c + d = \frac{153}{400}$	
	A1	For c	$c = \frac{2601}{100} (= 0.3)$	25125) and a	$d = \frac{459}{8000} (= 0.057375)$	
(e)	B1			gnore notation	used for M)	
	3.71	Eithe	$r \frac{4913}{8000} + their$	c or $\frac{27}{2000}$ +	their d	
	M1	C C	8000	8000		
					ed to be checked	
		For -	$\frac{3757}{4000}$ oe and -	$\frac{243}{4000}$ oe		
	A1ft				and <i>d</i> but $P(M = 20) + P(M = 50)$ mu	et eum to 1
			ble is not requ		and a out 1 ($M - 20$) \pm 1 ($M - 30$) mu	ot sum to 1
					= 40 and $b = 30$ – this will mean $p = 0.1$	5 and $q = 0.85$,
	NB		$\frac{459}{2000}d = \frac{2601}{2000}$		-	
		[- 8	$\frac{1}{8000} u = \frac{1}{8000}$	· 		

Question Number		Scheme	Marks		
3 (a) (i)	<i>X</i> ∼ B(1				
() ()	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9872$				
	= 0.0128 awrt 0.0128				
	$P(1 < X < 5) = P(X \le 4) - P(X \le 1) = 0.9984 - 0.7361$				
(ii)	or $P(X=2) + P(X=3) + P(X=4) = 0.1937 + 0.0574 + 0.0112$				
	= 0.2623 awrt 0.262				
			(4)		
(b)	$H_0: p =$	$= 0.1 H_1: p < 0.1$	B1		
	$X \sim B(50, 0.1)$				
	$P(X \leqslant 2)$	$0 = 0.1117$ or $CR X \le 1$	B1		
	Do not r	eject H ₀ /Not in the critical region	M1		
		insufficient evidence to suggest that this result supports the managing <u>director's</u>			
	claim/not enough evidence to suggest an reduction in the probability of a tennis ball failing the bounce test				
			(4)		
(c)	$X \sim B(r)$	$(n, 0.1)$ and we reject H_0 if $P(X = 0) < 0.01$			
, ,	P(X=0)	$0) = \left[{}^{n}C_{0} \times 0.1^{0} \right] \times 0.9^{n} [< 0.01]$	M1		
	$0.9^{44} = 0$	$0.00969[<0.01] n > \frac{\ln 0.01}{\ln 0.9} \Rightarrow n > 43.7$	M1		
	n = 44				
		Notes	Total 11		
(a) (i)	M1	for writing or using $P(X \ge 4) = 1 - P(X \le 3)$			
	A1 awrt 0.0128				
(ii)	M1	for writing or using $P(X \le 4) - P(X \le 1)$			
(/		or for writing or using $P(X=2) + P(X=3) + P(X=4)$			
(1.)	A1	awrt 0.262			
(b)	B1	Both hypotheses correct. Must be in terms of p or π Must be attached to H_0 and H_1			
	B1	awrt 0.112 or $CR \leqslant 1$			
	M1	A correct ft statement consistent with their p –value and 0.05 or their CR and 2– no connected but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be implied by a correct ft conclusion in context. Must have a p -value or CR to accommark.	neir <i>p</i> -		
	A1	Correct conclusion in context which must be not rejecting H ₀ . Must use underlined volume No hypotheses then A0	vords (oe).		
(c)	M1	For recognising $P(X=0)=0.9^n$			
	M1	For $0.9^{44} (= 0.00969)$ or $0.9^{43} (= 0.01077)$ or rearranging to $n > \frac{\ln 0.01}{\ln 0.9}$ (A	llow =)		
	A 4	n > awrt 43.7 implies M1M1 (Allow $n = $ awrt 43.7 for M1M1)			
	A1 SC	Cao Hea of tables only $n = 40, n = 0.0148$ and $n = 50, n = 0.0052$, sooms M1M0A0			
	SC	Use of tables only, $n = 40$, $p = 0.0148$ and $n = 50$, $p = 0.0052$ scores M1M0A0			

Question Number		Schen	ne	Marks
4 (a)	$\frac{9}{20}$		B1 (1)	
(b)	(21k-k)	$\left(\frac{\pi}{20}\right) \times \frac{\pi}{20} = 1$		(1) M1
(0)		20		1411
	$k = \frac{1}{\pi} *$			A1*
		_		(2)
(c) (i)	$\left[E(X) = \right]$	$=\frac{1}{2}(k+21k)\bigg]=\frac{11}{\pi}$		B1
(ii)	Var(X)	$=\frac{1}{12}\big(21k-k\big)^2$	or $Var(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 dx - \left(\frac{11}{\pi}\right)^2$	M1
		$=\frac{100}{3\pi^2}$		A1
				(3)
(d)	E(A) = 1	$\pi E(X^2) + 4E(X) + \frac{4}{\pi}$	$E(A) = \int_{k}^{21k} f(x)(A) dx = \int_{k}^{21k} \frac{\pi}{20} (\pi) (x^2 + \frac{4}{\pi}x + \frac{4}{\pi^2}) dx$	M1
	$E(X^2)$ =	$=\frac{100}{3\pi^2} + \left(\frac{11}{\pi}\right)^2 = \frac{463}{3\pi^2}$	$E(A) = \frac{\pi}{20} \left(\pi \right) \left(\frac{x^3}{3} + \left(\frac{4}{\pi} \right) \frac{x^2}{2} + \frac{4}{\pi^2} x \right)$	M1
	$E(A) = \frac{1}{2}$	$\frac{463}{3\pi} + \frac{44}{\pi} + \frac{4}{\pi}$	sub limits $\frac{21}{\pi}$ and $\frac{1}{\pi}$	M1
	=	$\frac{607}{3\pi}$	= awrt 64.4	A1
			Notes	(4) Total 10
(a)	B1	0.45oe cao	Tioles	10tal 10
(b)	M1		angle = 1 Any equivalent rearrangement, allow $20k$ instea	ad of $(21k-k)$
(-)	A1*		correct solution must be seen	, ,
(c)(i)	B1	oe must be in terms of π	(isw after correct answer seen)	
(ii)	M1 use of $\frac{(b-a)^2}{12}$ or $Var(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 dx - \left(\frac{11}{\pi}\right)^2$			
	A1		rms of π (isw after correct answer seen)	
		If both final answers are g	given in terms of k , score B1M1A0 for (c)(i) 11 k and (c)(i	i) $\frac{100}{3}k^2$
	SC			
(d)	M1		$\pi X^2 + 4X + \frac{4}{\pi}$ or for setting up correct integral (ignor	e limits)
(d)	M1	for expanding $E(A) = E$	$\pi X^2 + 4X + \frac{4}{\pi}$ or for setting up correct integral (ignor $E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2f	
(d)		for expanding $E(A) = E$ Valid method for finding	·	
(d)	M1	for expanding $E(A) = E$ Valid method for finding or for integration of their	$E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2f	f(x)

Question Number	Scheme			
5 (a)	$X \sim \text{Po}(3)$	$X \sim \text{Po}(5)$		
	P(<i>X</i> ≤5)	= 0.6160 awrt 0.616	M1 A1	
			(2)	
(b)	$X \sim B(4, 0.616)$			
	P(X < 2)	$= P(X \leqslant 1)$	M1	
	$=0.384^4$	$+4 \times 0.616 \times 0.384^{3}$	M1	
	= 0.16126 awrt 0.161			
			(4)	
(c)	X = The	number of defects per x meters		
	$X \sim N(\frac{1}{2})$		B1	
	$P(X < 26) = P\left(Z < \frac{25.5 - \frac{x}{16}}{\sqrt{\frac{x}{16}}}\right) = 0.5398$		M1	
	$\frac{25.5 - \frac{x}{16}}{\frac{1}{4}\sqrt{x}} = 0.1$		B1 M1 A1ft	
	$\frac{1}{16}x + \frac{1}{40}$	$-\sqrt{x} - 25.5 = 0 \rightarrow \sqrt{x} = 20$ (or $\sqrt{x} = -20.4$)	M1	
	$(\sqrt{x})^2 = 1$	20^{2}	M1	
	x = 400		A1	
			(8)	
		Notes	Total 14	
(a)		M1 For writing or using $P(X \le 5)$		
	A1	awrt 0.616		
(b)	B1ft	For $X \sim B(4,0.616)$ Follow through their part (a).		
. ,	3.71	May be implied by a correct ft expression for the 2 nd M1		
	M1	For writing or using $P(X \le 1)$ (May be implied by 2^{nd} M1)		
	M1	For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ 0		
	A1	awrt 0.161 correct answer on its own scores 4 out of 4		
(c)	B1 For $X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)$ May be implied by values in standardisation.			
	M1	For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)		
	B1	$z = \pm 0.1$ Allow calculator value if seen $\pm 0.0999(2986)$ Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a z value.		
	M1	Follow through their mean and variance		
	A1ft	A correct equation with compatible signs ft their mean and variance provided mean	= variance	
	M1	For solving their 3 term equation by factorising, completing the square or use of for May be implied by -20.4 , otherwise if answer is incorrect working must be shown.		
		For correct squaring of both sides. May be implied by 416[.16] from correct equation	on	
	M1	This mark may be scored prior to solving a 3TQ, e.g. $\left(25.5 - \frac{x}{16}\right)^2 = \left(\frac{1}{40}\sqrt{x}\right)^2$.		
		Do not award if squaring each individual term		
	A1	x = 400 only. This is dependent upon all previous marks in (c).		
	SC	Use of $X \sim N\left(\frac{x}{16}, \frac{15x}{256}\right)$ leading to $x = 400$ scores max B0M1B1M1A0M1M	[1A0	

Question Number		Scheme	Marks
6 (a)	[F(k)=1]	\Rightarrow] $ak + bk^2 = 1 \Rightarrow ak = 1 - bk^2 *$	B1*
			(1)
(b)	f(x) = a	+2bx	B1
	E(X) =	$\int_0^k \left(ax + 2bx^2 \right) dx \left[= \frac{6}{5} \right] \Rightarrow \left[\frac{ax^2}{2} + \frac{2bx^3}{3} \right]_0^k \left[= \frac{6}{5} \right]$	M1
	$\frac{ak^2}{2} + \frac{2k}{2}$	$\frac{bk^3}{3} = \frac{6}{5}$	dM1, A1
	$15ak^2 + 1$	$20bk^3 = 36$	
	15k(1-b)	$(bk^2) + 20bk^3 = 36$	M1
	$5bk^3 = 3$	6-15k*	A1*
			(6)
(c)		$= \int_0^k \left(ax^2 + 2bx^3 \right) dx \Rightarrow \left[\frac{ax^3}{3} + \frac{bx^4}{2} \right]_0^k$	M1
		$=\frac{ak^3}{3} + \frac{bk^4}{2} - \frac{36}{25} = \frac{22}{75}$	dM1 A1
	$10ak^3 + 1$	$15bk^4 = 52$	
	$10k^{2}(1-$	$(-bk^2) + 15bk^4 = 52$	M1
	$5bk^4 = 5$	$52-10k^2*$	A1*
			(5)
(d)	$\frac{1}{k} = \frac{36}{52}$	M1	
	$5k^2 - 36$	k + 52 = 0	A1
	(k-2)(3)	5k - 26) = 0	M1
	k = 2	A1	
			(4)
(e)	'40' <i>b</i> = 3	$36 - 30' \Rightarrow b = \frac{3}{20} \qquad \text{or} \qquad 80'b = 52 - 40' \Rightarrow b = \frac{3}{20}$ $41 \Rightarrow a = \frac{1}{5}$	B1ft
	$2a + \frac{3}{5} =$	$a:1 \Rightarrow a=\frac{1}{5}$	B1ft
		Notes	(2) Total 18
(a)	B1*	Answer is given so no incorrect working can be seen	10(a) 10
(b)	B1	For a correct expression for $f(x)$ (may be implied by a correct expression for $E(X)$)
	M1	For an attempt to integrate x f(x) (Ignore limits) at least one ($x^n \to x^{n+1}$). F.t. the f(x) must be a changed expression from F(x) so integrating x F(x) is M0	heir f(x)
	33.474	Dependent on the previous M mark. For equating to $\frac{6}{5}$ and substitution of k	
	(no need to see substitution of lower limit 0).		
	A1	For a correct equation any form	
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation	
	A1*	Answer is given so no incorrect working can be seen	

(c)	M1	For an attempt to integrate x^2 f(x) (Ignore limits) at least one $(x^n \to x^{n+1})$ F.t. their f(x) x^2 F(x) is M0		
	dM1	Dependent on previous M mark. For substitution of correct limits and subtraction of $\frac{36}{25} = \frac{22}{75}$		
	A1	For a correct equation any form		
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation		
	A1*	Answer is given so no incorrect working can be seen		
(d)	M1	For solving simultaneously to set up an equation in <i>k</i> only		
	A1	For a correct 3 term quadratic		
	M1	For solving their 3 term quadratic by factorising, completing the square or using formula. $k = 5.2$ implies M1A1M1		
	A1	2 only cao. Correct answer on its own scores 4 out of 4		
(e)	B1ft	For $b = \frac{3}{20}$ ft their k $b = \frac{36-15k}{5k^3}$ Common ft answer is $b = \frac{-525}{8788} = \text{awrt} - 0.0597$ coming from choosing $k = 5.2$		
	B1ft	For $a = \frac{1}{5}$ ft their k and their b $a = \frac{1 - bk^2}{k}$ Common ft answer is $a = \frac{85}{169}$ = awrt 0.503 coming from choosing $k = 5.2$		