The Silhouette Coefficient

The popular method of silhouette coefficients combines both cohesion and separation. The following steps explain how to compute the silhouette coefficient for an individual point, a process that consists of the following three steps. We use distances, but an analogous approach can be used for similarities.

- 1. For the i^{th} object, calculate its average distance to all other objects in its cluster. Call this value a_i .
- 2. For the i^{th} object and any cluster not containing the object, calculate the object's average distance to all the objects in the given cluster. Find the minimum such value with respect to all clusters; call this value b_i .
- 3. For the i^{th} object, the silhouette coefficient is $s_i = (b_i a_i)/\max(a_i, b_i)$.

The value of the silhouette coefficient can vary between -1 and 1. A negative value is undesirable because this corresponds to a case in which a_i , the average distance to points in the cluster, is greater than b_i , the minimum average distance to points in another cluster. We want the silhouette coefficient to be positive $(a_i < b_i)$, and for a_i to be as close to 0 as possible, since the coefficient assumes its maximum value of 1 when $a_i = 0$.

Figure 8.29. Silhouette coefficients for points in ten clusters.

We can compute the average silhouette coefficient of a cluster by simply taking the average of the silhouette coefficients of points belonging to the cluster. An overall measure of the goodness of a clustering can be obtained by computing the average silhouette coefficient of all points.

Example 8.8 (Silhouette Coefficient). Figure 8.29 shows a plot of the silhouette coefficients for points in 10 clusters. Darker shades indicate lower silhouette coefficients.