SIENNA: Insider Resistant Context-Based Pairing for Multimodality Sleep Apnea Test

Samson Aggelopoulos Marionne Casipit Brian Lu Stephanie Aelmore Willy Chang Alana Power

Professor Yao Zheng

Introduction

- Obstructive sleep apnea (OSA)
 - Over 25 million sufferers
 - Traditional testing is obtrusive and expensive
- In-Lab Polysomnography (PSG)
 - o Requires patient to be in-lab overnight
 - Multiple instruments of sensors and electrodes
 - Testing facilities are scarce
- At-Home OSA Screenings
 - Convenient and cost-effective
 - Vulnerable to test fraud

Fig 2-1.

At-Home OSA Screening Modalities

Fig 3-1.

Fig 3-2.

- Respiratory belt
 - Measure changes in thoracic circumference from respiration
- Physiological radar monitoring system (PRMS)
 - Measure phase shift of reflected signals from the patient's chest movements
- Mobile OSA app
 - Aggregate OSA screening data from sensing modalities

Problem Description

- Pairing Vulnerability
 - Belt paired with the user's phone by a medical technician
 - O PRMS paired without supervision at the user's home
 - Non-compliant user may exploit the unsupervised pairing process
- Design goals
 - Pair two devices with zero human interaction
 - Secure the pairing process against a co-located adversary
- Adversary Models
 - Eavesdropper: Extract security context, decrypt and review data
 - Spoof: Transmit false data, manipulate OSA test outcome

inSIder rEsistaNt coNtext-based pAiring (SIENNA)

- JADE-ICA Algorithm for separating independent sources from a mixed signal
- Level-crossing quantization Produces a binary key from the breathing pattern
- Fuzzy Commitment Scheme for validating biometric information
- Friendly Jamming System for partially jamming a signal to resist eavesdropping

PRMS

Key
Establishment
Secure

Fig. 5-1

Fig. 5-2

Fig. 5-3

Fig. 5-4

Methodology

- Breathing Separation
 - JADE-ICA
 - Input signals in the form of a matrix are "whitened" using PCA to produce orthogonal columns
 - Whitened matrix is rotated to produce independent rows
- Fingerprinting
 - Level-crossing quantization
 - Quantizer QTZ(x) produces a distinct binary code based on where the signal falls between levels

Fig. 6-1: Illustration of mixed source signals separated with ICA

Fig. 6-2: Illustration of Level-crossing quantization with two bits.

Methodology cont.

- Context-Based Device Pairing
 - Fuzzy Commitment
 - Secret value σ (v bits), Hash function H (μ bits),
 Opening feature φ, Commitment χ
 - σ can be revealed if and only if the Hamming Distance is within threshold τ
 - Concealing if σ cannot be guessed with p>1/2 $^{\circ}$ V
 - Binding if incorrect feature rejected with p>1/2[^]µ
 - v = 128, and $\mu = 256 \rightarrow similar$ to SHA-256
- Insider Resistant
 - Dialog-Code-Based Friendly Jamming
 - Transmitter duplicates each symbol, and receiver jams a random selection
 - Eavesdropper won't know which ones are jammed

Fig. 7-1: Overview of the Insider Resistant Device Pairing process.

Implementation and Materials

Sienna was developed and tested using:

- PRMS
 - TMYTEK mmWave Kit, NI USRP
- Wireless Respiratory belt
 - Pneumotrace 1132
- OSA app
 - Android app with modality switching
- Eavesdropper
 - BLE with Kismet and Ubertooth

Experiment Setup

- Initial data collection done outdoors with beach mats, and indoors with beds
- Experiments ran for hour long intervals
- Eavesdropping and spoofing attacks were attempted in intervals
- The data was analyzed and verified offline

Fig 9-1.

Fig 9-2.

Fig 9-3.

Fig 9-4.

Results and Analysis

- Performance of fingerprint extraction
 - Breathing signature quantized in parallel
 - Quantization step size to 0.05cm @10samples/sec
- Quality of binary fingerprint
 - Hamming distance between fingerprints
 - SIENNA can be set to 70% for optimal performance
- Performance of key evolution
 - Measured randomness of fuzzy commitment
 - Entropy drops due to redundancy of motions
- Performance under adversarial settings
 - BER@receiver vs. aggregated BER@attacker
 - Jamming signal can suppress approximately 50%

Fig 10-2. BER of

Fig 10-1. Reconstructed signal after QTZ

Fig 10-3. Similarity of same subject

Fig 10-4. Similarity of different subject

Conclusion

- SIENNA: insider-resistant context-based pairing
 - Employs fuzzy commitment, friendly jamming, JADE-ICA
 - o Leverages unique breathing patterns for secure pairing
- Security Analysis and Evaluation
 - Attacker w/out knowledge: is mitigated through fuzzy commitment
 - Attacker w/ general knowledge: is mitigated by increasing entropy
 - Attacker w/ perfect knowledge: is mitigated by friendly jamming
 - Accumulated BER of fuzzy commitment with friendly jamming is well beyond decodable for an attacker
- Publications
 - "Insider-Resistant Context-Based Pairing for Multimodality Sleep Apnea Test" submitted to Globecom 2021
 - Technical Report available at https://arxiv.org/abs/2105.00314

Acknowledgements

Special thanks to Dr. Yao Zheng, Dr. Ming Li, Dr. Olga & Victor Lubecke, and Yanjun Pan for mentoring this project.

Great thanks to TMYTEK for their support and equipment.

This work is partly supported by NSF grants and ARO grant

- Dr. Yao Zheng: CNS-1948568
- Dr. Ming Li: W911NF-19-1-0050
- Dr. Olga & Victor Lubecke: IIP-1831303, IIS-1915738

Thank You