NUMERICAL METHODS

Programming Assignment 1

DUE DATE: APRIL 13, 2018

The objectives of this assignment:

- 1. To give you a programming experience with the numerical methods.
- 2. To compare various methods for finding a root.

PROBLEMS:

- 1. Write a method that accepts a, b, N, and TOL and carries out the Bisection procedure.
- 2. Write a method that accepts a, b, N, and TOL and carries out the False-Position procedure.
- 3. Write a method that accepts p_0 , p_1 , N, and TOL and carries out the Secant procedure.
- 4. Write a method that accepts p_0 , N, and TOL and carries out Newton's procedure.

TESTING CASES:

- 1. Find the root of $f(x) = x^3 + 4x^2 10$ in the closed interval [1, 2].
 - (a) Since f(1) = -5 and f(2) = 14, we can apply the Bisection method using a = 1, b = 2, N = 20, and TOL = 0.0005. Then print n, a_n , b_n , p_n and $f(p_n)$. Output your results like the format of Table 2.1 in the textbook and check your answers.
 - (b) Since f(1) = -5 and f(2) = 14, we can apply the method of False Position using a = 1, b = 2, N = 20, and TOL = 0.0005. Then print n, a_n , b_n , p_n and $f(p_n)$. Output your results like the format of Table 2.3 in the textbook and check your answers.
 - (c) Apply the Secant method using $p_0 = 1$, $p_1 = 2$, N = 20, and TOL = 0.0005. Then print n, p_n and $f(p_n)$. Output your results like the format of Table 2.2 in the textbook and check your answers.
 - (d) Apply Newton's method using $p_0 = 1$, N = 20, and TOL = 0.0005. Then print n, p_n and $f(p_n)$. Output your results like the format of Table 2.4 in the textbook and check your answers.
- 2. Find the root of $f(x) = e^x 2\cos x$ in the closed interval [0, 2]. Note that f(0) * f(2) < 0.
 - (a) Apply the Bisection method using a = 0, b = 2, N = 20, and TOL = 0.0005. Then print n, a_n , b_n , p_n and $f(p_n)$.
 - (b) Apply the method of False Position using a = 0, b = 2, N = 20, and TOL = 0.0005. Then print n, a_n , b_n , p_n and $f(p_n)$.

Cont. 2.

- (c) Apply the Secant method using $p_0 = 0$, $p_1 = 2$, N = 20, and TOL = 0.0005. Then print n, p_n and $f(p_n)$.
- (d) Apply Newton's method using $p_0 = 2$, N = 20, and TOL = 0.0005. Then print n, p_n and $f(p_n)$.

Discuss your observations from parts (a) - (d).

- 3. The function $4x\cos(2x) (x-2)^2 = 0$ has four roots in [0, 8]. Attempting to approximate these zeros within 10^{-5} using the Bisection, False-Position, Secant and Newton's methods. Choose your own initial for each method and run your program on this function. Discuss your observations. For example, which method converges fast?
- 4. Consider the function $f(x) = x^5 4.5 x^4 + 4.55 x^3 + 2.675 x^2 3.3 x 1.3375$, find the root that lies just to the right of x = -0.5.
 - (a) Apply the Secant method using $p_0 = -0.5$, $p_1 = -0.4975$, N = 20, and $TOL = 10^{-5}$. Then print n, p_n and $f(p_n)$.
 - (b) Apply Newton's method using $p_0 = -0.4975$, N = 20, and $TOL = 10^{-5}$. Then print n, p_n and $f(p_n)$.

Did both of the Secant and Newton's methods converge? Did they converge the roots those we desire?

- 5. Compare the Secant method with Newton's method for finding a root of each function below. Use the p_1 value from the Newton's method as the second starting point for the Secant method. Print out the results for both methods and discuss your observations.
 - (a) $F(x) = x^3 3x + 1$, $p_0 = 2$.
 - (b) $F(x) = x^3 2\sin x$, $p_0 = 1/2$.
- 6. Using $f(x) = x^5 9x^4 x^3 + 17x^2 8x 8$, and $p_0 = 0$, study and explain the behavior of the Newton's method. (*Hint*: The iterations are initially cyclic.)

Notes:

Besides coding, you need to write a report to analyze the testing results you obtained.