

A STATE OF THE PARTY OF THE PAR

Pure Longitudinal Flight

$$\begin{cases} \theta = \alpha + \gamma \\ \dot{\theta} = \alpha \end{cases}$$

Force equations

$$x_{a} \to m \cdot \dot{V} = -mg \cdot \sin \gamma - \frac{1}{2}\rho V^{2} S \cdot Cx + F$$

$$z_{a} \to -mV \cdot \dot{\gamma} = mg \cdot \cos \gamma - \frac{1}{2}\rho V^{2} S \cdot Cz$$

$$\vec{M}_G^a = [I_G] \cdot \frac{d\vec{\Omega}}{dt} = B \cdot \dot{q} \ \vec{y}_b$$

$$y_b \to B \cdot \dot{q} = \frac{1}{2} \rho V^2 SL \cdot Cm_G$$

Kinematic equations

$$\theta = \alpha + \gamma$$

$$q = \dot{\theta} = \dot{\alpha} + \dot{\gamma}$$

$$\rightarrow \dot{\alpha} = q - \dot{\gamma}$$

$$\to V_z = \dot{h} = V \cdot \sin \gamma$$

$$\vec{V}$$
 $V_z = \dot{h}$

Pure Longitudinal Flight equations

$$\begin{cases} m \cdot \dot{V} = -mg \cdot \sin \gamma - \frac{1}{2}\rho V^2 S \cdot Cx + F \\ -mV \cdot \dot{\gamma} = mg \cdot \cos \gamma - \frac{1}{2}\rho V^2 S \cdot Cz \\ B \cdot \dot{q} = \frac{1}{2}\rho V^2 SL \cdot Cm_G \end{cases}$$

$$\dot{\alpha} = q - \dot{\gamma}$$

$$\dot{h} = V \cdot \sin \gamma$$

5 differential equations for 5 state variables $(V, \gamma, q, \alpha, h)$

An important remark

The previous equations are obtained, following the assumptions:

- The thrust \vec{F} is aligned with the velocity \vec{V}
 - This is a fair assumption as far as the engine misalignment with the fuselage is small
- The thrust \vec{F} is applied at the centre of gravity G
 - This is a discutable assumption: commercial aircraft have engines located below the centre of gravity; any thrust action will create a pitch moment aroud G

Aerospatiale / British Aerospace Concorde

State Vector Formalism

$$\dot{X} = f(X, \delta U)$$

The vector X is called the state vector: the derivative of the X vector is perfectly defined and the state of the System is completely defined with respect to time

The derivative vector \dot{X} is also function of the command vector δU which is at the disposal of the pilot or the aircraft computer (command law generation).

The steady state of the system is given by:

$$f(X, \delta U) = 0$$

 \rightarrow At steady state, a same command δU will generate a same state X

The initial response of the system is given by: $\dot{X}_{t=0} = f(X_{t=0}, \delta U_{t=0})$

$$\dot{X}_{t=0} = f(X_{t=0}, \delta U_{t=0})$$

Response to Steady Step Command

Command variable : δu

steady

steady step command : $\Delta\delta u$

Pure Longitudinal flight Steady State

$$\begin{cases} m\dot{V} = -\frac{1}{2}\rho V^2 S \cdot Cx + F(\rho, V, \delta x) - mg \cdot \gamma \\ -mV\dot{\gamma} = -\frac{1}{2}\rho V^2 S \cdot Cz_{\alpha}(\alpha - \alpha_0) + mg \end{cases}$$

$$B\dot{q} = \frac{1}{2}\rho V^2 SL \cdot \left[Cm_0 + Cm_{\alpha,G}(\alpha - \alpha_0) + Cm_q \frac{qL}{V} + Cm_{\delta m} \cdot \delta m \right]$$

$$\dot{\alpha} = q - \dot{\gamma}$$

Steady State :
$$\dot{\alpha} = \dot{V} = \dot{q} = \dot{\gamma} = 0$$

$$\begin{cases} -\frac{1}{2}\rho \mathbf{V}^{2}S \cdot Cx + F(\rho, \mathbf{V}, \delta \mathbf{x}) - mg \cdot \mathbf{\gamma} = 0 \\ -\frac{1}{2}\rho \mathbf{V}^{2}S \cdot Cz_{\alpha}(\alpha - \alpha_{0}) + mg = 0 \\ Cm_{0} + Cm_{\alpha,G}(\alpha - \alpha_{0}) + Cm_{\delta m} \cdot \delta m = 0 \end{cases}$$

$$q = 0$$

5 unknowns $(\alpha, V, \gamma, \delta x, \delta m)$ and 3 equations

Remark on the altitude h

In the previous set, we have omitted the equation describing the altitude evolution $\dot{h} = V \cdot \gamma$

$$\dot{h} = V \cdot \gamma$$

In another term:

- we assume that the altitude h variations are small
- which means that the density ρ can be assumed constant

$$\dot{h} = 0 \rightarrow \rho = Cte$$

Response to Steady Step Command

Starting from an initial flight trim situation,

- ➤ If you produce a perturbation by modifying the command state,
- ➤ If you maintain this command state,
- ➤ If the aircraft is stable,
- The aircraft will go to another flight trim situation after a transient phase which can last a certain time ...
- This transient phase depends on the dynamic properties of the aircraft
- The new flight trim situation only depends on the new command state: it doesn't depend on the transient phase

The resolution of the Longitudinal Equations at Steady State leads to:

- 3 equations $(\dot{V} = 0, \dot{\gamma} = 0, \dot{q} = 0)$
- 5 unknowns $(V / \alpha / \gamma / \delta x / \delta m)$, assuming $\rho = Cte$
- The knowledge of the 2 Command variables $(\delta x / \delta m)$ leads to the system resolution

Available command variables: $\delta x / \delta m$

The Throttle

$$F(\rho, V, \delta x) = F_0(\rho, V) \cdot \delta x$$

- F_0 is the maximum available thrust
- δx can vary from 0 (idle) to 1 (TOGA)

The Elevator

 $Cm_{\delta m} \cdot \delta m$

- produces an important pitch moment
- δm can vary from -30° to 30°

Thrust variation: Initial Response

Situation at t=0: Trim n°1

$$\Delta \delta x > 0$$
, fixed $/ \Delta \delta m = 0^{\circ}$

Situation at $t=0 + \varepsilon$

$$\begin{cases} m\dot{V}_{t=0} = -\frac{1}{2}\rho V_{1}^{2}SCx + F_{0}(\rho, V_{1}) \cdot (\delta x_{1} + \Delta \delta x) - mg \cdot \gamma_{1} \\ -mV_{1}\dot{\gamma}_{t=0} = -\frac{1}{2}\rho V_{1}^{2}SCz_{\alpha}(\alpha_{1} - \alpha_{0}) + mg \end{cases}$$

$$B\dot{q}_{t=0} = \frac{1}{2}\rho V_{1}^{2}SL[Cm_{0} + Cm_{\alpha,G}(\alpha_{1} - \alpha_{0}) + Cm_{\delta m}\delta m_{1}]$$

$$\dot{\alpha}_{t=0} = q_{1} - \dot{\gamma}_{t=0}$$

Variation at t=0 (initial response)

$$\begin{cases} \dot{V}_{t=0} = \frac{F_0(\rho, V_1)}{m} \cdot \Delta \delta x \\ \dot{\gamma}_{t=0} = 0 \\ \dot{q}_{t=0} = 0 \\ \dot{\alpha}_{t=0} = 0 \end{cases}$$

Name of the last o

General Response from a $\Delta\delta x$ variation

Initial effect from a $\Delta\delta x$ variation

Time simulation 10s Concorde / 5000 ft / 100 m/s / 5% thrust step

Thrust variation: Final Trim

Situation at t=0: Trim n°1

$$\Delta \delta x > 0$$
, fixed $/\Delta \delta m = 0^{\circ}$

$\left[-\frac{1}{2}\rho V_1^2 SCx + F_0(\rho, V_1) \cdot \delta x_1 - mg \cdot \gamma_1 = 0 \right]$ $\begin{cases} -\frac{1}{2}\rho V_1^2 SCz_{\alpha}(\alpha_1 - \alpha_0) + mg = 0\\ Cm_0 + Cm_{\alpha,G}(\alpha_1 - \alpha_0) + Cm_{\delta m}\delta m_1 = 0\\ q_1 = 0 \end{cases}$

Variation between the 2 successive trims

Situation after a certain time: Trim n°2

$$\begin{cases} \Delta \gamma = \gamma_2 - \gamma_1 = \frac{F_0(\rho, V)}{mg} \cdot \Delta \delta x \\ V_2 = V_1 \\ \alpha_2 = \alpha_1 \\ q_2 = q_1 = 0 \end{cases}$$

$$\begin{cases} -\frac{1}{2}\rho V_{2}^{2}SCx + F_{0}(\rho, V_{2}) \cdot (\delta x_{1} + \Delta \delta x) - mg \cdot \gamma_{2} = 0 \\ -\frac{1}{2}\rho V_{2}^{2}SCz_{\alpha}(\alpha_{2} - \alpha_{0}) + mg = 0 \\ Cm_{0} + Cm_{\alpha,G}(\alpha_{2} - \alpha_{0}) + Cm_{\delta m}\delta m_{1} = 0 \\ q_{2} = 0 \end{cases}$$

General Response from a $\Delta\delta x$ variation

General Response from a $\Delta\delta x$ variation

Starting from an initial flight trim situation,

- You perform a thrust increase manoeuvre and you maintain it
- ➤ What happens?

There is an immediate initial effect (short term),

The velocity increases (the kinematic energy increases)

There is final effect (long term),

The slope increases (you gain altitude and the potential energy increases) but keeping the same initial speed

Between these 2 states, there is a transient phase characterized by long period, low damped oscillations called the phugoïde

<u>Remark</u>: we obtain these simplified results assuming that there is no thrust term within the pitch equation (we assume that the engine thrust axis is passing through the CG).

Charles Charles

General Response from a $\Delta\delta x$ variation

Time simulation 200 s Concorde / 5000 ft / 100 m/s / 5% thrust step

The state of the s

General Response from a $\Delta\delta x$ variation

The flight simulation confirms the results obtained with the 2 successives trim approach except for the variation of V at the final trim.

The variation of V at the final trim is linked to the lift equation

$$mg = \frac{1}{2}\rho V^2 S \cdot Cz$$

Between both trims, there is no variation of α , so no variation of Cz,

so no variation of the dynamic pressure

$$\frac{1}{2}\rho V^2 = Cte$$

As the flight simulation computes the altitude evolution

Between both trims, the altitude h is increasing, so the density ρ is decreasing

And the velocity *V* shall increase for keeping the dynamic pressure constant

A Section of the sect

General Response from a $\Delta\delta x$ variation

decentred engines from CG

When the engine is decentred (as commercial aircraft), the thrust increase creates a pitchup motion which modifies the angle of attack, as initial response. The steady solution for the decentred engine case requires the notion of Speed neutral point F_V (see annex 5); a simulation on next slide is presented for a nominal situation.

$$\begin{cases} -\frac{1}{2}\rho V^2 SCx + \mathbf{F} - mg \cdot \gamma = 0 \\ -\frac{1}{2}\rho V^2 SCz_{\alpha}(\alpha - \alpha_0) + mg = 0 \\ Cm_0 + Cm_{\alpha,G}(\alpha - \alpha_0) + Cm_{\delta m}\delta m + \frac{2\mathbf{F}}{\rho V^2 S} \cdot \frac{z_F - z_G}{L} = 0 \end{cases}$$

General Response from a $\Delta\delta x > 0$ variation

Elevator deflection Step

 δm positive variation : elevator down motion / $Cz_{\delta m}\delta m$ neglected

We do assume that the pitch response is instantaneous (correct assumption / Short Period mode)

We achieve immediately the final variation for the angle of attack, α

$$\begin{cases} Cm_0 + Cm_{\alpha,G}(\alpha_1 - \alpha_0) + Cm_{\delta m}\delta m_1 = 0\\ Cm_0 + Cm_{\alpha,G}(\alpha_2 - \alpha_0) + Cm_{\delta m}(\delta m_1 + \Delta \delta m) = 0 \end{cases}$$

$$\alpha_2 - \alpha_1 = -\frac{Cm_{\delta m}}{Cm_{\alpha,C}} \cdot \Delta \delta m < 0$$

The state of the s

Elevator deflection: Initial Response

Situation at t=0 : Trim n°1

$$\Delta \delta m > 0^{\circ}$$
, fixed / $\Delta \delta x = 0$

Situation at $t=0+\varepsilon$

$$\begin{cases} m\dot{V}_{t=0} = -\frac{1}{2}\rho V_1^2 SCx + F_0(\rho, V_1) \cdot \delta x_1 - mg \cdot \gamma_1 \\ -mV_1\dot{\gamma}_{t=0} = -\frac{1}{2}\rho V_1^2 SCz_{\alpha}(\alpha_2 - \alpha_0) + mg \\ Cm_0 + Cm_{\alpha,G}(\alpha_2 - \alpha_0) + Cm_{\delta m}(\delta m_1 + \Delta \delta m) = 0 \\ q_2 = 0 \end{cases}$$

Variation at t=0 (initial response)

$$\begin{cases} \dot{V}_{t=0} = 0 \\ \dot{\gamma}_{t=0} = \frac{\rho V_1 S}{2m} C z_{\alpha} \cdot \Delta \alpha < \mathbf{0} \\ \Delta \alpha = -\frac{C m_{\delta m}}{C m_{\alpha, G}} \cdot \Delta \delta \mathbf{m} < 0 \end{cases}$$

A STATE OF THE PARTY OF THE PAR

General Response from a $\Delta\delta m$ variation

The state of the s

Initial effect from a $\Delta\delta m$ variation

Starting from an initial flight trim situation,

- You perform a pitch down elevator manoeuvre ($\Delta \delta m > 0$) and you maintain it
- What happens ?

There is an immediate initial effect (short term),

- The lift up force produced by the elevator makes rotate up the velocity \vec{V} , the slope increases as initial effect (but it is a very small effect ...)
- The same lift up force produced a big pitch moment around G

The state of the s

Initial effect from a $\Delta\delta m$ variation

The aircraft is immediately rotating down due to the pitch down moment produced by the elevator move $\rightarrow \alpha$ are decreasing

As a result, an important down lift is produced, which makes rotate down the velocity: the slope is decreasing strongly

It can be seen also as the main initial effect

C Comments

Initial effect from a $\Delta\delta m$ variation

Note the quick convergence of the angle of attack, typical of the Short Period mode The slope γ starts its long term oscillation, typical of the Phugoïd

Elevator deflection: Final Trim

Situation at t=0 : Trim n°1

$$\begin{cases} -\frac{1}{2}\rho V_{1}^{2}SCx + F_{0}(\rho, V_{1}) \cdot \delta x_{1} - mg \cdot \gamma_{1} = 0 \\ -\frac{1}{2}\rho V_{1}^{2}SCz_{\alpha}(\alpha_{1} - \alpha_{0}) + mg = 0 \\ Cm_{0} + Cm_{\alpha,G}(\alpha_{1} - \alpha_{0}) + Cm_{\delta m}\delta m_{1} = 0 \\ q_{1} = 0 \end{cases}$$

<u>Situation after a certain time:</u> <u>Trim n°2</u>

$$\begin{cases} -\frac{1}{2}\rho V_{2}^{2}SCx + F_{0}(\rho, V_{2}) \cdot \delta x_{1} - mg \cdot \gamma_{2} = 0\\ -\frac{1}{2}\rho V_{2}^{2}SCz_{\alpha}(\alpha_{2} - \alpha_{0}) + mg = 0\\ Cm_{0} + Cm_{\alpha,G}(\alpha_{2} - \alpha_{0}) + Cm_{\delta m}(\delta m_{1} + \Delta \delta m) = 0\\ q_{2} = 0 \end{cases}$$

$\Delta \delta m > 0^{\circ}$, fixed $/ \Delta \delta x = 0$

Variation between the 2 successive trims

$$\begin{cases} \Delta \gamma = \frac{\Delta \left\{ F_0(\rho, V) \cdot \delta x_1 - \frac{1}{2} \rho V^2 S C x \right\}}{mg} = ? \\ \frac{V_2^2}{V_1^2} = \frac{C z_1}{C z_2} > 1 \rightarrow V_2 > V_1 \\ \Delta \alpha = \alpha_2 - \alpha_1 = -\frac{C m_{\delta m}}{C m_{\alpha, G}} \cdot \Delta \delta m < 0 \\ q_2 = q_1 = 0 \end{cases}$$

The sign of $\Delta \gamma$ stays unknown and needs a graphical resolution (see next chart)

Turbofan (very simple) principle

- \triangleright The intake velocity V_i corresponds to the aircraft velocity V
- \triangleright The exhaust velocity V_e doesn't depend on V, function on the turbines efficiency

$$F \sim \dot{m} \cdot (V_e - V)$$
 \longrightarrow $V \nearrow \Longrightarrow F \searrow$

A STATE OF THE PARTY OF THE PAR

Thrust and Drag evolution versus V

The sign of the quantity $\Delta \gamma$ can be found graphically:

We assume the Steady state and we plot the Thrust and the Drag versus the Velocity V:

- The thrust is a curve decreasing versus V : $\frac{\partial F}{\partial V} < 0$
- The Drag is a parabola versus V:

$$\frac{1}{2}\rho V^{2}SCx = \frac{1}{2}\rho V^{2}S \cdot (Cx_{0} + k_{i}Cz^{2})$$

$$\frac{1}{2}\rho V^{2}SCx = \frac{1}{2}\rho V^{2}SCx_{0} + \frac{1}{2}\rho V^{2}S \cdot k_{i}Cz^{2} \qquad Cz = \frac{mg}{\frac{1}{2}\rho V^{2}S}$$

$$\frac{1}{2}\rho V^{2}SCx = \frac{1}{2}\rho V^{2}SCx_{0} + k_{i} \cdot \frac{2m^{2}g^{2}}{\rho V^{2}S} = a \cdot V^{2} + \frac{b}{V^{2}}$$

Constitution of the Consti

Thrust and Drag evolution versus V

Flight regimes Definition

The Drag evolution versus V is a parabola curve:

- The longitudinal flight at $\gamma = 0^{\circ}$ is possible when : Thrust > Drag_{min}
- There are 2 possible solutions for the initial trim at $\gamma = 0^{\circ}$ (when Thrust = Drag)
 - The first One at high velocity: the 1st regime
 - The second One at low velocity: the 2nd regime

A Control of the Cont

Graphical Resolution for $\Delta \gamma$

Graphical Resolution for $\Delta \gamma$

You are trimmed at a first equilibrium with V_1 Then, you perform the pitch down elevator manoeuvre, the velocity reaches a new trimmed value V_2 such as $\Delta V = V_2 - V_1 > 0$

Case n°1

you start from the point R_1 (first regime), the final $\Delta V > 0$ leads to Drag > Thrust

- > your slope decreases and you loose altitude
- it is the first regime : the usual one

Case n°2

you start from the point R_2 (second), the final $\Delta V > 0$ leads to Thrust > Drag

- > your slope increases and you gain altitude
- it is the second regime: the unusual one

General Response from a $\Delta\delta m$ variation

General Response from a $\Delta\delta m$ variation

Starting from an initial flight trim situation, you perform a pitch down elevator manoeuvre $(\Delta \delta m > 0)$ and you maintain it. What happens at Long Term?

At Long term,

- The angle of attack decreases : $\Delta \alpha = -\frac{Cm_{\delta m}}{Cm_{\alpha,G}} \cdot \Delta \delta m < 0$ (Pitch Equation)
- The velocity increases consequently: $\frac{V_2^2}{V_1^2} = \frac{Cz_1}{Cz_2} > 1$ (Lift Equation)
- The Final variation of the slope depends on the Initial velocity value
 - If the Initial velocity is low (second regime), the slope will increase : you gain altitude
 - If the Initial velocity is high (first regime), the slope will decrease : you loose altitude

Remark: the first regime is the "usual" one. You make a pitch down elevator command, your aircraft rotates down, your angle of attack decreases, your velocity increases and you loose altitude.

As for the thrust variation command, between these 2 states, there is a transient phase characterized by long period, low damped oscillations of the velocity called the phugoïde

General Response from a $\Delta\delta m$ variation

Time simulation 200s Concorde / 5000 ft / 100 m/s / 5° elevator step

