Contributeurs

ACT-1XXX Cours de première année

aut., cre. Alec James van Rassel

Compléments de mathématiques

Sommations

$$\sum_{k=m}^{n} r^{k} = r^{m} \frac{1 - r^{n-m+1}}{1 - r} \qquad \sum_{k=0}^{\infty} k v^{k} = \frac{v}{(1 - v)^{2}}$$

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$\sum_{k=0}^{\infty} k v^k = \frac{v}{(1-v)^2}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Estimation Taylor

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$\approx f(x_0) + f'(x_0)(x - x_0)$$

Théorème de Leibnitz

Soit:

- \rightarrow une fonction $f(x, \alpha)$ continue sur [a, b] et
- \rightarrow des fonctions (dérivables) de α , $u(\alpha)$ et $v(\alpha)$, prenant valeur dans [a,b].

Alors,

$$\frac{\partial \int_{\alpha}^{v(\alpha)} f(x,\alpha) dx}{\partial u(\alpha)} f(x,\alpha) dx = \int_{u(\alpha)}^{v(\alpha)} \frac{\partial f}{\partial \alpha}(x,\alpha) dx + f(v(\alpha),\alpha) \frac{\partial v}{\partial \alpha}(\alpha) - f(u(\alpha),\alpha) \frac{\partial u}{\partial \alpha}(\alpha)$$

Domaines

- \mathbb{R} : Real numbers, $x \in (-\infty, \infty)$.
- \mathbb{Z} : Integers; all integers positive & negative, x $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$
- \mathbb{N} : Natural numbers; all positive integers numbers, $x \in \{1, 2, 3, \ldots\}$.
- $\mathbb{Q}\,$: Rational numbers; numbers written as fractions, for example 1.25%, $-0.4775, 3.\overline{153}, \frac{1}{2}, \frac{4}{7}.$
- $\mathbb{R}\backslash\mathbb{Q}$: Irrational numbers; for example π , e, $\sqrt{3}$.

Fonction impaire

Une fonction est impaire (*odd*) lorsque f(-x) = -f(x). Par exemple, sin(-x) = -sin(x).

Mathématiques financières

Intérêt simple

$$a(t) = 1 + it$$

$$v(t) = \frac{1}{1 + it}$$

$$Prix = 100 \left(1 - \frac{it}{365}\right)^{-1}$$

facteurs d'actualisation et d'accumulation

$$a(t) = (1+i)^t$$
 $v(t) = (1+i)^{-t}$
= $(1-d)^{-t}$ = $e^{\int_0^t \delta_s ds}$ = $e^{-\int_0^t \delta_s ds}$

Conversion de taux

$$d=rac{i}{1+i}$$
 $i^{
m R}=rac{i-r}{1+r}$ Taux d'intérêt effectif annuel $i=\left(1+rac{i^{(m)}}{m}
ight)^m-1$ Taux d'intérêt nominal annuel $i^{(m)}=m\left((1+i)^{1/m}-1
ight)$ Taux d'escompte nominal annuel $d^{(m)}=m\left(1-(1-d)^{1/m}
ight)$

Rentes constantes

$$\ddot{\mathbf{a}}_{\overline{n}|}^{(m)} = \frac{1 - v^n}{\left(i^{(m)} | d^{(m)}\right)} \qquad \qquad \ddot{\mathbf{s}}_{\overline{n}|}^{(m)} = \frac{(1 + i)^n - 1}{\left(i^{(m)} | d^{(m)}\right)}$$
$$\ddot{\mathbf{a}}_{\overline{\infty}|} = \frac{1}{\left(i | d\right)}$$

Rentes continues

$$(\bar{I}\bar{s})_{\bar{n}|i} = \frac{\bar{s}_{\bar{n}|i} - n}{\delta} \qquad (\bar{D}\bar{s})_{\bar{n}|i} = \frac{nv^n - \bar{s}_{\bar{n}|i}}{\delta} (\bar{I}\bar{a})_{\bar{n}|i} = \frac{\bar{a}_{\bar{n}|i} - nv^n}{\delta} \qquad (\bar{D}\bar{a})_{\bar{n}|i} = \frac{n - \bar{a}_{\bar{n}|i}}{\delta}$$

Rentes (dé)croissantes annuellement

$$(I^{(m)}\ddot{a})_{\overline{n}|}^{(m)} = \frac{\ddot{a}_{\overline{n}|}^{(m)} - nv^{n}}{(i|d^{(m)})} \qquad (D^{(m)}\ddot{a})_{\overline{n}|}^{(m)} = \frac{n - a_{\overline{n}|}^{(m)}}{(i|d^{(m)})}$$

$$(I^{(m)}\ddot{s})_{\overline{n}|}^{(m)} = \frac{\ddot{s}_{\overline{n}|}^{(m)} - n}{(i|d^{(m)})} \qquad (D^{(m)}\ddot{s})_{\overline{n}|}^{(m)} = \frac{n(1+i)^{n} - s_{\overline{n}|}^{(m)}}{(i|d^{(m)})}$$

Rentes croissantes continûment

$$(I\ddot{a})_{\overline{\infty}|}=rac{1}{d(i|d)}$$
 Paiement en continu, valeurs accumulée et actualisée $(ar{I}ar{s})_{\overline{n}|\delta_s,h(t)}=\int_0^n h(t)\mathrm{e}^{\int_t^n\delta_s ds}dt$ $(ar{I}ar{a})_{\overline{n}|\delta_s,h(t)}=\int_0^n h(t)\mathrm{e}^{-\int_0^t\delta_s ds}dt$

Rentes avec croissance géométrique

$$\ddot{\mathbf{a}}_{\overline{n}|i^{R}} = \frac{1 - \left[\frac{1+r}{1+i}\right]^{n}}{i - r} (1+i) \qquad \qquad \ddot{\mathbf{s}}_{\overline{n}|i^{R}} = \frac{(1+i)^{n} - (1+r)^{n}}{i - r} (1+i)$$

T-Bills

$$Prix = 100 \left(1 - \frac{dt}{360}\right)^t$$

Obligations

Notation

P Le **prix** de l'obligation;

F La **valeur nominale** de l'obligation.

> « face amount » ou « par value » ;

> La valeur nominale est l'unité dans laquelle l'obligation est émise.

C La valeur de remboursement de l'obligation;

> « redemption value »;

 \rightarrow Par défaut, F = C.

r Le taux de coupon par période de paiement;

> « coupon rate »;

> Le montant de chaque coupon est *Fr*;

> Le taux est habituellement donné sous base **annuelle** mais la majorité des obligations ont des coupons payables semi annuellement.

g Le taux de coupon "spéciale" utilisé dans les formules mathématiques;

 \rightarrow Taux tel que Cg = Fr.

n Number of remaining coupon **payments**.

i Le taux d'intérêt effectif par période de paiement;

> C'est le « *yield-to-maturity* » pour une obligation se transigeant au prix *P*.

Donc, contrairement au taux r qui est une composante fixe de l'obligation, i va varier selon le prix P;

> C'est donc le taux i tel que P = PV(bond payments).

Formule pour prix

$$P = Fra_{\overline{n}|} + Cv^n \equiv Cga_{\overline{n}|} + Cv^n$$

= $C + (Fr - Ci)a_{\overline{n}|} \equiv C + (Cg - Ci)a_{\overline{n}|}$

Condition	Équivalent	Obligation transigée	anglais
P > C	Fr > Ci	avec prime	with premium
P = C	Fr = Ci	avec parité	at par
P < C	Fr < Ci	avec escompte	with discount

Amortissement d'obligations

Book value

$$BV_t = (Fr - C)_{n-t}a_j + C$$

Immunisation

P(i) Valeur actualisée des flux monétaires au taux effectif i.

$$P(i) = \sum_{t=0}^{n} (A_t v^t)$$

Note La duration de Macaulay est surnommée « duration » par défaut alors que la convexité *modifiée* est surnommée « *convexité* » par défaut.

Duration

$$D_{\text{mac}}(i) = \frac{-P'(\delta)}{P(\delta)} = \frac{\sum_{t=0}^{n} (t)(A_t v^t)}{P(i)}$$

$$D_{\text{mod}}(i) = \frac{-P'(i)}{P(i)} = \frac{\sum_{t=0}^{n} (t)(A_t v^{t+1})}{P(i)}$$

$$D_{\text{mod}}(i) = vD_{\text{mac}}(i)$$

Portfeuille de n obligations ayant chacune un prix de P_k :

$$D_{\text{mac}}(\text{ptf.}) = \frac{\sum\limits_{k=1}^{n} D_{\text{mac}}(k\text{-\`eme obligation}) P_k}{\sum\limits_{k=1}^{n} P_k}$$

Convexité

$$C_{\text{mod}}(i) = \frac{P''(i)}{P(i)} = \frac{\sum_{t=1}^{n} t(t+1)v^{t+2}A_t}{P(i)}$$
$$C_{\text{mac}}(i) = \frac{P''(\delta)}{P(\delta)} = \frac{\sum_{t=1}^{n} t^2 v^t A_t}{P(i)}$$

$$C_{\text{mac}}(i) = \frac{P''(\delta)}{P(\delta)} = \frac{\sum_{t=1}^{n} t^2 v^t A_t}{P(i)}$$

$$C_{\text{mod}}(i) = (C_{\text{mac}}(i) + D_{\text{mac}}(i))v^2$$

Approximations

Approximation linéaire Basée sur la duration modifiée.

$$P(i) \approx P(i_0)[1 - (i - i_0)D_{\text{mod}}(i_0)]$$

Approximation de Macaulay Basée sur la duration de Macaulay.

$$P(i) \approx P(i_0) \left(\frac{1+i_0}{1+i}\right)^{D_{\text{mac}}(i_0)}$$

Obligation zéro-coupon de n années

Mesure	Égale
C_{mac}	n^2
D_{mac}	п
$C_{\mathbf{mod}}$	$\frac{n(n+1)}{(1+i)^2}$
$D_{\mathbf{mod}}$	$\frac{n}{1+i}$

Taux au comptant et taux à terme

Notation

 r_t Taux de rendement annuel effectif d'un investissement sur t années.

- > Taux au comptant ou « spot rate ».
- > Parfois appelé le taux zéro-coupon car $r_t = P_t^{-1/t} 1$ où P_t est le prix d'une obligation zéro-coupon.
- > C'est en fait une moyenne des taux sur la période.

$$(1+r_n)^n = \prod_{i=1}^n (1+f_{t_i})$$

 $f_{[t_1,t_2]}$ Taux d'intérêt annuel effectif en vigueur de t_1 à t_2 .

- > Taux à terme ou « forward rate ».
- > Habituellement, la période est d'un an ou d'un trimestre, mais en théorie il peut être appliqué sur n'importe quelle longueur de période.
- > Le taux à terme est une anticipation pour une période future en date d'aujourd'hui.
- $\rightarrow (1 + f_{[t_1,t_2]})(1 + f_{[t_2,t_3]}) = (1 + f_{[t_1,t_3]})$
- > Corrolaire :

$$f_{[t_1,t_2]} = \left[\frac{(1+r_{t_2})^{t_2}}{(1+r_{t_1})^{t_1}} \right]^{1/(t_2-t_1)} - 1$$

Pour bien saisir la distinction entre les deux :

Application aux obligations

- 1. Identifier les flux monétaires de l'obligation CF_t .
- 2. Actualiser chaque CF_t selon son taux à terme r_t pour déterminer le prix

P.

3. Déterminer le taux de rendement (« *Yield-to-Maturity* » , « IRR ») i qui, en actualisant les CF_t , reproduit le prix P.

4.
$$P = \sum_{t} \frac{CF_t}{(1+r_t)^t} = \sum_{t} \frac{CF_t}{(1+i)^t}$$

Analyse probabiliste des risques actuariels

Théorèmes probabilistes

Théorème du binôme

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \ \forall n \in \mathbb{N}$$

Théorème multinomial

$$(x_1 + \dots + x_r)^n = \sum_{\substack{(n_1, \dots, n_r):\\n_1 + \dots + n_r = n}} \binom{n}{n_1, \dots, n_r} x_1^{n_1} \dots x_r^{n_r} s$$

Relations factoriels

$$\binom{n}{k} = \binom{n}{n-k}$$

Règle de Pascal

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Triangle de Pascal

- > Triangle des coefficients binomiaux
- > Chaque nombre est la somme des 2 nombres directement au-dessus.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Moments

Note: Il est intéressant de savoir que les moments impairs d'une loi normal avec moyenne nulle sont nuls. Ceci est la normal avec une moyenne nulle est parfaitement symétrique tel que f(-x) = -f(x); pour plus de détails, voir ce vidéo YouTube.

Raccourci bernoulli

Soit

$$X = \begin{cases} a & p \\ b & 1 - p \end{cases}$$

Alors

$$Var(X) = (b - a)^2 p(1 - p)$$

Conditionnels

$$E[X] = E_Y[E[X|Y]]$$
 $V(X) = E_Y[V(X|Y)] + V_Y(E[X|Y])$

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

- 1. Cov(X, Y) = Cov(Y, X)
- 2. Cov(X, X) = V(X)
- 3. $Cov(X, Y) \stackrel{\perp}{=} 0$
- 4. Cov(c, X) = 0
- 5. Cov(cX, Y) = cCov(X, Y)
- 6. $\operatorname{Cov}(\sum_{i=1}^{n} \alpha_i X_i, \sum_{j=1}^{m} \beta_j Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j \operatorname{Cov}(X_i, Y_j)$

$$V(\sum_{i=1}^{n} \alpha_i X_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^2 V(X_i) + 2 \sum_{i < j} \sum_{j=1}^{n} \alpha_j Cov(X_i, X_j)$$
$$\rho_{P}(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Convolution

$$f_{X+Y}(s) = \int_{-\infty}^{\infty} f_X(s-y) f_Y(y) dy$$

Variable aléatoire

Soit X une variable aléatoire.

Soit la fonction

de densité	$f_X(x) = \Pr(X = x)$	Density Function
de masse de probabilité	$f_X(x) \neq \Pr(X = x)$	Probability Mass Function (PMF)
de répartition	$F_X(x) = \Pr(X \le x)$	Cumulative Density Function (CD
de survie	$S_X(x) = \Pr(X > x)$	Survival Function (CDF)

 $F_X(x)$

Lois multivariées

Loi multinomiale

$$\Pr(X_1 = x_1, ..., X_r = x_r) = \binom{n}{x_1, ..., x_r} p_1^{x_1} ... p_r^{x_r}$$

Loi normale multivariée

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\mathbf{\Sigma})}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

Théorèmes limites

Inégalité de Markov

Soit la variable aléatoire (non-négative) X.

Alors $\forall a > 0$ on a :

$$\Pr(X \ge a) \le \frac{\mathrm{E}[X]}{a}$$

Inégalité de Tchebychev

Soit la variable aléatoire X avec μ , $\sigma^2 < \infty$.

Alors $\forall k > 0$ on a :

$$\Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$
 ou $\Pr(|X - \mu| \ge k^*) \le \frac{\sigma^2}{(k^*)^2}$

Loi (faible) des grands nombres (WLLN)

Soit la suite de variables aléatoires (iid) X_1, \ldots, X_n tel que $\forall i = 1, \ldots, n$ $E[X_i] = \mu$ et $Var[X_i] = \sigma^2 > 0$.

Alors $\forall \epsilon > 0$ où $\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$:

 $\lim_{n \to \infty} \Pr\left(|\bar{X}_n - \mu| \ge \epsilon\right) \to 0 \qquad \Leftrightarrow \qquad \bar{X}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$

où P représente la convergence en probablité.

Théorème central limite (CLT)

Soit la suite de variables aléatoires (iid) X_1, \ldots, X_n tel que $\forall i = 1, \ldots, n$ $E[X_i] = \mu$ et $Var[X_i] = \sigma^2 > 0$.

Alors pour $S_n = \sum_{i=1}^n X_i$:

 $\lim_{n\to\infty} \Pr\left(\frac{S_n - \operatorname{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} \le z\right) = \Phi(z) \qquad \Leftrightarrow \frac{S_n - \operatorname{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$

où \mathcal{L} représente la convergence en distribution ("law").