The impact of online machine-learning methods on long-term investment decisions in electricity markets

Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw

School of Computing, Newcastle University, Newcastle-upon-Tyne, United Kingdom

Abstract

Keywords: Long-Term Energy Modelling, Online learning, Machine learning, Market investment, Climate Change

1. Introduction

Introduction goes here

2. Literature Review

- Literature review on online machine learning and different impacts on long-term investment decisions (look for things directly similar to this work)

3. Material

- Introduce online learning, machine learning and ElecSim.
- Should I introduce theory behind machine learning techniques? If so, just the most successful?

4. Methods

- Use of hyperparameter tuning, talk about time taken to train/query models.
- Talk about ML methods used
- Talk about residuals
- Talk about sampling from residuals and placing these errors on the day-ahead market.

5. Results

- Results of offline learning, online machine learning shown. Include residuals and MAE,MAPE,MASE etc
- Results of the residuals on the output of ElecSim until 2035.

6. Discussion

- Discuss the impact of this on the electricity market and global economy. Make suggestions.

7. Conclusion

- Summary of work and future work.

8. Funding Sources

This work was supported by the Engineering and Physical Sciences Research Council, Centre for Doctoral Training in Cloud Computing for Big Data [grant number EP/L015358/1].

References

 $^{{\}it Email address:} \ {\tt a.kell2@newcastle.ac.uk} \ (Alexander J. \ M. \\ Kell)$