Solution Architecture Definition for "Mirroring of Virtual-labs at IITD"

Suraj Samal

07 September 2013

Contents

1	DO	CUMENT NAME AND STATUS	3
2	DO	CUMENT PURPOSE	3
3	PRO	DJECT OVERVIEW AND STATUS	4
4	PRO	DJECT SCOPE	4
5		DJECT ROLES AND RESPONSIBILITIES	5
	5.1	Key Stakeholders	5
	5.2	Escalation Levels	5
	5.3	Escalation Matrix	5
6	SOI	LUTION ARCHITECTURE ASSUMPTIONS	6
7	SOI	LUTION OVERVIEW	6
	7.1	Current Architecture Overview	6
	7.2	Proposed Architecture Overview	6
	7.3	Architectural Decisions	7
	7.4	Architectural Issues	7
	7.5	Architectural Risks	7
8	SOI	LUTION DESCRIPTION	7
	8.1	Functional Model	7
	8.2	Re-use of Components	7
	8.3	Information and Data Characterstics	8
		8.3.1 Data Types	8
		8.3.2 Current and Estimated Data Size	8
		8.3.3 Data Security	8
	8.4	Infrastructure Model	9

		8.4.1 Source(III1 Hyderabad Datacenter)	۶
		8.4.2 Target(IIT Delhi DataCenter)	9
	8.5	Integration and Network Model	10
	8.6	Security Architecture	10
		8.6.1 Network Security	10
		8.6.2 System Security	11
		8.6.3 Application Security	11
		8.6.4 Operational Security	11
	8.7		11
	8.8	Performance	11
		8.8.1 Performance Modelling	11
	8.9		12
	8.10	Scalability	12
9			13
	9.1	0	13
	9.2		13
	9.3		13
	9.4	Capacity Planning	13
10	SOI	UTION ACCEPTANCE CRITERIA	13
	501	TOTOTATICEEL THE CELERATE	
11	IMP	LEMENTATION AND MIGRATION	13
	11.1	Efforts and Schedule(Phase-I)	13
	11.2	Efforts and Schedule(Phase-II)	14
	11.3	Migration Requirements	14
	DEE	EDENICES	1 /
12	KEF	ERENCES	14
13	DEF	INITIONS	14
14	ATT	ACHMENTS	14
1 =	SIC	N-OFF	14
LO			15 15
			15 15
	13.2	Documentation Location	ΙL
16	DO	CUMENT CONTROL SHEET	15
Li	st o	f Tables	
	1	Project Scope - Inclusions and Exclusions	5

2	Key Stakeholders	5
3	Escalation Levels	6
4	Escalation Matrix	6
5	Request Types	7
6	Solution Architecture Assumptions	8
7	Architectural Decisions	16
8	Architectural Decisions	17
9	Key Architectural Issues	18
10	Key Architectural Risks	18
11	Current and Estimated Data Size	19
12	Performance Modelling	19
13	Performance Estimates	20
14	Implementation Phases	20
15	Schedule and Estimates - PhaseI	20
16	References	21
17	Definitions	21
18	Sign-Off	21
19	Contact for Enquiries	22
20	Record of Issues	22
1 2	1	9 10
3	Performance Analysis Model	12
1 D	OCUMENT NAME AND STATUS Solution Architecture Definition	
	Mirroring of Virtual-labs at IITD	
	Lab Sources and VLEAD VMs	
	Document Status: Draft	
	Document Issue: 0.2	
	Issue date: 2013-09-06	

2 DOCUMENT PURPOSE

The Solution Architecture Definition defines the overall architectural solution for the "Mirroring of Virtual-labs at IITD". The solution addresses the problem as documented

in the "VLEAD Mandate - Virtual Labs Integration: Deliverables, Resources and Budget 2012-06-02". The solution comprises a number of elements or components, which are partitioned into subsets for implementation. The primary audience of this document consists of IT and network architects. The primary purpose of this document is to communicate the essential elements of the overall solution so that operatational implications can be assessed and understood, and so that the design activities in Design & Build can proceed further. As such it tries to achieve the following:

- It provides visibility and exposure to other architects for peer review.
- It unambiguously defines the overall solution to the proposed requirements of the initiative.
- It provides a basis for assessment of the overall solution once implemented.
- It describes how the development and deployment of the solution can be phased if this is required to meet needs and or to meet technology constraints

3 PROJECT OVERVIEW AND STATUS

VLEAD (Virtual Labs Engineering and Architecture Division) team was setup in June 2012 as a central engineering team for integrating all the virtual-labs (around 180 in number) across all disciplines and institutes onto a common data-center (currently located at IIIT Hyderabad). Currently(as of 2013-08-15) around 86 lab sources are version-controlled and around 40 hosted out of IIIT data-centre. Hence, it becomes absolutely necessary to have atleast the sources mirrored at an additional location (identified as IIT Delhi) so as to ensure availability, reliability and faster recovery of **Virtual Labs** in case of unforeseen disasters or catastropes.

In very long term, the plan is to achieve live mirroring of all the lab content as well as to run **Virtual labs** out of multiple sites to ensure better availability, reliability and performance.

4 PROJECT SCOPE

The scope of this project is to have the sources of all the Virtual-labs mirrored at one of the servers at IIT Delhi. Additionally, other critical data on VLEAD VMs and containers are also planned to be mirrored as part of this initiative.

Table 1: Project Scope - Inclusions and Exclusions

Inclusions	Exclusions
Backup of Lab Sources	Live Mirroring of lab
	content and hosting
Backup of VMs and	Mirroring of complete VLEAD Services
Containers	Load-sharing between IIITH
	and IITD sites

5 PROJECT ROLES AND RESPONSIBILITIES

5.1 Key Stakeholders

Table 2: Key Stakeholders

AREA / POSITION	NAME	ROLE
Prime	Ranjan Bose	Principal Investigator
Stakeholders		(IIT Delhi)
	Venkatesh Choppella	Principal Investigator
		(IIIT Hyderabad)
Technology	Chandan Gupta	Technical Manager
Stakeholders		(IIIT Hyderabad)
(IT, Vendors,	Kuldeep Singh	Engineer
Networks etc)		(IIT Delhi)
	Suraj Ketan Samal	Engineer
		(IIIT Hyderabad)
	Technical Support	Technical Support
		(IIIT Hyderabad)

5.2 Escalation Levels

Table 3: Escalation Levels

Escalation Level	NAME	Email	CONTACT NUMBER
LEVEL 4	Ranjan Bose	rbose.iitd@gmail.com	+91-11-26591048
LEVEL 3	Venkatesh Choppella	venkatesh.choppella@iiit.ac.in	+91-965-2740281
LEVEL 2	Chandan Gupta	chandan@virtual-labs.ac.in	+91-970-3330781
LEVEL 2	Kuldeep Singh	kuldeep.002@gmail.com	+91-11-64674687
LEVEL 1	Suraj Ketan Samal	suraj@virtual-labs.ac.in	+91-868-6160862
LEVEL 0	Technical Support	engg@virtual-labs.ac.in	+91-40-66531592

5.3 Escalation Matrix

Below is the proposed response-time for various types of requests:

Table 4: Escalation Matrix

Escalation Level/Request Type	Urgent	Normal
LEVEL 0	2 hrs	2 days
LEVEL 1	4 hrs	5 days
LEVEL 2	6 hrs	10 days
LEVEL 3	1 day	15 days
LEVEL 4	3 days	25 days

Note:

- 'hrs' mean working hours and 'day' or 'days' mean working days
- 'response-time' means acknowledgement of the issue and work in progress on the same
- Below is the description of various Request Types:

Table 5: Request Types

Request Type	Description
Urgent	The complete solution or majority of the solution
	is affected. (Ex: Backups not happening any more due
	to some bug in the solution, Network Issues due to ISP
	down, power outage etc)
Normal	Minor bugs with little impact on the solution,
	change requests to the existing solution,
	and maintainance activities

6 SOLUTION ARCHITECTURE ASSUMPTIONS

Table 6: Solution Architecture Assumptions

Table 1.	Assumptions	
Number	Assumption	Description
ASS-01	Resources	Resources should be available at
		(IIITH and IITD) for setup and continuous
		support (trouble-shooting, fixing issues)
		throughout the duration of Virtual-Labs project
ASS-02	Infrastructure	Infrastructure at IIT Delhi will need to be
		setup within appropiate time-frames. It
		should be accessible from Virtual-labs
		datacenter,IIIT Hyderabad.
ASS-03	Data	Data content and format for the mirroring-setup
	requirements	will not vary without agreement between VLEAD,
		IIIT Hyderabad and Virtual-labs,IIT Delhi teams.
ASS-04	Estimated	Labs Assumed =180, VMs Assumed = 55, Also,
	Data	it doesnot include backups of individual VMs
		(one-vm-per lab model).
ASS-05	Change	All subsequent changes to this interface will
	management	need to be signed off by all the prime
		Stakeholders and updated accordingly in
		this document.

7 SOLUTION OVERVIEW

7.1 Current Architecture Overview

Figure 1: Current Architecture

Sources of all virtual-labs are stored in the version-control VM(svn.virtual-labs.ac.in/bzr.virtual-labs.ac.in/bzr.virtual-labs.ac.in) at Virtual Labs DataCenter, IIIT Hyderabad. These sources are uploaded (checked-in) and downloaded (checked-out) over HTTP and SSH publicly by different lab developers across all the institutes. This critical data is already backed-up on a storage server(SAN) located in the same data-center.

Additionally, there is also critical data belonging to services provided by VLEAD (eg. ldap, developer-portal, ns, mail) which is used by Virtual-labs community and VLEAD internally. This data is across different Virtual machines setup at Virtual Labs DataCenter, IIIT Hyderabad. Selected file-systems from all these VMs is already backed-up on the same storage server(SAN) in the existing data-center.

7.2 Proposed Architecture Overview

Figure 2: Proposed Architecture

- All the critical data(as described above) at IIIT DataCenter will be mirrored at an offsite location(IIT, Delhi) using a mechanism that syncs data overnight at a specified time everyday.
- In Phase-I, a overnight cronjob would be scheduled at the IIIT data-center to push all the virtual-lab sources from version-control server to the mirrored location at IITD.
- In Phase-II, the cronjob would be modified to additionally backup VLEAD service VMs from the storage server(SAN) to mirrored location at IITD.

7.3 Architectural Decisions

Here are a summary of significant decisions and the rationale behind the decisions used to derive the solution. This table represents a single decision and each decision in a table format.

Table 7: Architectural Decisions

Subject Area	Area of Concern
Architectural Desicion	AD-001 Backup principle
Issue or Problem	Which backup/restore tool should be used?
Assumptions	1,
Motivation	- Data sizes are huge, hence need to have a mechanism to
	send incremental data rather than sending all the data everytime.
	- Backup/Restore process should be recoverable, so that
	in case of failure, it can start from the place it failed.
	- Backup/Restore process should work seamlessly with a subset
	of data without any additional efforts.
	- Transfer of data over public network should be secure and encrypted.
	- Should be scalable (atleast up to the estimated specifications).
	- Should complete within stipulated time-frames and not interfere
	with system's normal operations.
	- Should be automated requiring as less manual intervention as possible.
	- Backup tool should preserve the user/group/timestamp attributes.
	- Data needs to be pushed rather than pulled to enable VLEAD
	team to monitor the backup/restore process.
	- Should send data with parallel/simultaneous connections and
	in compressed format.
Options	Rsync, SCP (Secure Copy), Rsnapshot(uses rsync),
	Clonezilla (works at image level)
Decision	'rsync' tool to be used and scheduled on crontab. Data will be pushed
T	from the source to the destination.
Justification	Rsync seems to closely satisfy all the requirements as mentioned earlier:
	- SCP cant be used in an incremental fashion and doesnot preserve
	filesystem attributes.
	- Rsnapshot is a good tool but applicable when it runs on destination and
	pulls data from source.
	- Clonezilla or other Imaging tools work at disk/filesystem level and
Implications	not applicable in complete or partial backup/restore of directories.
Implications	'rsync' tool should be available on both the systems and an SSH account
Derived requirements	on the mirror-system is required Rsync should be installed on both source and destination systems.
Related Decisions	Rayric should be histalied our bour source and desiliation systems.

Table 8: Architectural Decisions

Subject Area	Area of Concern
Architectural Decision	AD-002 Mirrored Platform Specifications
Issue or Problem	Which hardware/OS/softwares should be used for the target mirror
	destination and what should be its specifications?
Assumptions	
Motivation	- Existing lab sources are versioned on linux platforms(open source).
	Hence mirrored location should also be Linux based
	so as to make the backup/restore process simpler.
	- Destination platform should be reliable, available and provide
	optimum performance.
	- Mirrored location should be operational remotely (aleast from
	IIIT Hyderabad).
	- Server should be accessible from Virtual-labs network, IIIT Hyderabad.
Options	
Decision	- Standard Platform (Multi-core Intel Xeon Series Processor)
	- Atleast 16GB of RAM
	- Atleast 1TB of available space after (RAID)
	- Redundant power backup
	- RAID Configured for reliability and optimum performance.
	- Multiple network interfaces (if possible).
	- An SSH account is required for maintainance purposes.
	- Rsync tool is required and should run on a port accessible
	form Virtual-labs network.
Justification	Decisions made according to items required in the Motivation section
Implications	
Derived requirements	
Related Decisions	

7.4 Architectural Issues

Table 9: Key Architectural Issues

Issue	Area(s)	Description	Status
Identifier	Impacted		
ISS 01	Backup Data	Version control is currently	Closed
		in a different network	
		(10.4.7.x) and needs to be	
		migrated to (10.4.12.x) network	
		before the solution is implemented.	
ISS - 02	Security	Data on mirrored-location can be	Open
		accessible to anyone having physical	
		access to the system as it is a	
		file-system backup.	
ISS - 03	Backup Tool	Rsync has problem with higher	Open
		file-sizes (>2GB)	
ISS - 04	Network	Overall link bandwidth might not be	Open
	Bandwidth	reliable and intermittently slow.	
		We should probably investigate use of a	
		dedicated service line from IIIT	
		Hyderabad to IITD based on the cost and	
		future scope/plan	

7.5 Architectural Risks

Table 10: Key Architectural Risks

Risk [AR]	Description
AR - 01	Mirroring speed has an upper-limit equal to the
	network latencies of ISPs and
	hence the solution cannot be scaled infinitely.
AR - 02	Security is compromised as data travels using
	different ISPs over public network

8 SOLUTION DESCRIPTION

8.1 Functional Model

• The backup would be scheduled at 8:00PM overnight everyday.

• In case of a failure, the backup process would be configured to retry a maximum of three times after a gap of 15 minutes between each trial.

8.2 Re-use of Components

• Pre-existing rsnapshot backup/restore scripts and configurations developed for backups to the local storage(SAN) server at IIITH will be used as a baseline and will be re-used to implement the solution.

8.3 Information and Data Characterstics

8.3.1 Data Types

- All lab sources data to be mirrored are in repositories in the form of unix directories and flat-files.
- Databases would be dumped into flat(.sql) files and then backed-up as flat-files.

8.3.2 Current and Estimated Data Size

Table 11: Current and Estimated Data Size

Slno		Criteria	Current	Estimated	Comment
1	Labs	Total number	86	180	
		Min Size	1.2MB	1.2MB	
		Max Size	25G	25G	
		Average Size	1.02GB	1.02GB	
		Total Size	88GB	185GB	Estimated based on average size
		Incremental	1GB	1.5GB	
		size(per day)			
2	VMs/Containers	Total number	29	53	
		Average Size	5.28GB	5.28GB	
		Total Size	153GB	280GB	Estimated based on average size
		Incremental	1GB	1.5GB	
		size(per day)			

8.3.3 Data Security

 The mirrored data is not compressed or encrypted and will have the same filesystem structure as on the source file-system. This is required as in our use-case, partial restore of the data will be required mostly where a specific lab or VM data is required to be restored. Hence, it is **required** that the mirrored system be kept in a secured area where data cannot be compromised.

8.4 Infrastructure Model

8.4.1 Source(IIIT Hyderabad Datacenter)

No additional infrastructure is required at IIITH Datacenter for this solution

8.4.2 Target(IIT Delhi DataCenter)

- Following are required specifications of the target system where the mirrored data is required to be kept:
 - Standard Rack mounted Server(Multi-core Intel Xeon Series Processor)
 - Linux based OS (CentOS preferred)
 - 16GB of RAM
 - 2TB of available space after (RAID)
 - Redundant power backup
 - RAID Configured for reliability and optimum performance.
 - Multiple network interfaces (if possible).
- Proposed system:
 - IBM System x3650 M4
 - http://www-03.ibm.com/systems/in/x/hardware/rack/x3650m4/index.html

8.5 Integration and Network Model

A dedicated 2Mbps link is proposed for the mirroring system at IITD

8.6 Security Architecture

This section describes the security controls that will be incorporated into the solution.

8.6.1 Network Security

- No special security features will be implemented as part of this solution apart from any features that already exist or are provided by the tools used as part of the solution.
 - Using rsync server, the target mirror will be configured to accept connections only form source and will reject connections from any other hosts.
 - Only required ports will be made open on the source and target systems.

8.6.2 System Security

• No additional system security solutions would be implemented. The source and target systems will be secured by default options provided by Linux Operating system (PAM, SSH Key-based/password authentication, IPtable Firewalls)

8.6.3 Application Security

This will not be applicable as the mirrored-location will be dedicated for this solution and no additional applications will be allowed to be running out of the system.

No special application level authentication/authorization will be implemented. Authentication and authorization will work at system level and covered by system security.

8.6.4 Operational Security

For operational purposes, the mirrored-system super-user credentials will be only shared amoung ?? (To be discussed)

8.7 Privacy

No specific measures are proposed to be implemented as part of the solution to cater to safeguard private data. This is a risk which is mitigated by having security at system level and physical level.

8.8 Performance

The performance of the system would greaterly depend on the network speed of the ISP at both source(IIIT Hyderabad) and mirrored location(IITD) and hence a small analysis was done to estimate the required network link-speed and scheduled duration of backup

8.8.1 Performance Modelling

Analysis Model.bb STPI-IITH→ SIFY-IIITH STPI-IITH→ IITD Public Internet SIFY ISP (4Mbps) (IIITH) Host 1 (IIITH) Host 3 (IITD)

Figure 3: Performance Analysis Model

- Following two models were used to test and estimate the link-speed:
 - STPI-IIITH to IITD: Sample test-data was sent from one of the servers in II-ITH on SIFY network to a test server located in IITD
 - STPI-IIITH to SIFY-IIITH: Sample test-data was sent from one of the servers at IIITH on SIFY network to another server on IIITH on STPI network

Table 12: Performance Modelling

Description	Source Upload speed	Destination Download speed	Average Size (GB)	Average Duration (Hrs)	Average Achieved Speed	Comments
	(Mbps)	(Mbps)			(Mbps)	
STPI-IITH to	4	1	1.38	4.61	0.73	
IITD						
STPI-IITH to	4	8	1.38	0.64	4.93	- STPI more reliable
SIFY-IIITH						- Physical distance
						matters
						- Achieved bandwidth
						more because data gets
						compressed

Table 13: Performance Estimates

-	Estimated	Source	Destination	Estimated
	Average	Link-speed	Link-speed	Duration
	Daily	upload	download	(Hrs)
	Size(GB)	(Mbps)	(Mbps)	
Phase-I	1.5	4	2	2.5
Phase-II	3	4	2	5

8.9 Reliability and Availability

- The solution is required to be available all the time (24*7*365).
- Any outages at source or target mirror locations should be planned and notified apriori to that appropriate measures can be taken.
- Following would be implemented at platform and network level:
 - Hardware Level RAID Configuration would be used to ensure redundancy.
 - Multiple network ports on source and mirrored-system can be implemented.
 - Redundant power supply can ensure more availability.
- No measures at the application level will be implemented to ensure further reliability and availability.

8.10 Scalability

The proposed solution is already planned to be scalable to the upper limits mentioned in the data characteristic specifications right from its inception and hence no specific scalability features would be implemented.

9 OPERATIONS

9.1 Monitoring

• The backup solution will be monitored manually once daily by the VLEAD Engineering team.

9.2 Alarms and Notifications

- No automated alarms will configured. Will be tackled on a reactive basis as per the escalation matrix.
- Email notifications will be configured to send the status or mirroring job everyday.

9.3 Reporting

• No Reporting mechanisms are implemented as part of this solution.

9.4 Capacity Planning

• Capacity planning for the entire solution is done in first stage itself and hence not required during operational phase of this project.

10 SOLUTION ACCEPTANCE CRITERIA

The solution should scalable for all the 180 labs and should be fast enough to run overnight and not affect normal operations of the systems and network.

11 IMPLEMENTATION AND MIGRATION

The solution is proposed to be implemented in two phases:

Table 14: Implementation Phases

Phase	Description	Dependencies
Phase-I	Mirroring of Labs	None
Phase-II	Mirroring of VMs	Phase-I
	and Disaster recovery testing	

Detailed breakup and estimates of the subtasks can be found in "D10-mirror-sources.org" in VLEAD repository.

11.1 Efforts and Schedule(Phase-I)

Table 15: Schedule and Estimates - PhaseI

	Aug	Sep	Oct
	2013	2013	2013
Deliverables	- Start Analysis	- Complete Analysis	-Develop and
	- Tech-Specs	- Manual mirror setup	install pilot scripts
		at IITD	-Setup IITB mirror
			manually
Effort	80Hrs	80Hrs	80Hrs
Estimates			

	Nov	Dec	Jan	Feb	Mar
	2013	2013	2013	2013	2013
Deliverables	- Deploy final scripts	X	X	X	X
	- Test and Fix issues				
	- Documentation				
Effort	80hrs	X	X	X	X
Estimates					

11.2 Efforts and Schedule(Phase-II)

	Schedule
Deliverables	Not yet planned
Effort	180 hrs
Estimates	

11.3 Migration Requirements

Since, the solution is built from scratch, no specific migration requirements are to be addressed

12 REFERENCES

Table 16: References

Document	Title	Location
Number		
	VLEAD Expert Committee	<vlead-repo></vlead-repo>
	Review - 25 July 2013	/meetings-and-reviews
	Presentation	/2013-07-25-expert-review
		/src/index.org
	VLEAD Engg Contract	<vlead-repo></vlead-repo>
		/official-docs
		/2012-06-02-vlead-
		engg-contract.pdf
	Mirroring to IITD -	
	Sub-tasks and Estimates	<vlead-repo></vlead-repo>
		/plans//project-plan
		/grand-prix/estimates
		/D10-mirror-sources.org

13 DEFINITIONS

The following words, acronyms and abbreviations are referred to in this document.

Table 17: Definitions

Term	Definition
VLEAD	Virtual Labs Engineering and Architecture Divison
RAID	Redundant Array of Independent Disks
Engg	Engineering
IITD	Indian Institute of Technology, Delhi
IIIT	International Institute of Information Technology
VM	Virtual Machines
Containers	Light-weight Virtual machines
SAN	Storage Area Network
SSH	Secure Shell
HTTP	HyperText Transfer (or Transport) Protocol,
	the data transfer protocol used on the World Wide Web.

14 ATTACHMENTS

Document Number	Title
-----------------	-------

15 SIGN-OFF

The completion of the sign-off page is a testament by the signatories below that the following has been achieved or agreed:

- The document has been peer reviewed and all review-defects have been fixed
- The document is complete and accurate
- This document will be placed under configuration control

Table 18: Sign-Off

Reviewed Revision Number	0.2
Baseline Revision Number	
Baseline Date	
Author	Suraj Ketan Samal

O : (: 1D :(:	D (
Organisational Position	Professor,		
	Dept. of Electrical Engineering,		
	IIT Delhi		
Signature	<attach approval<="" e-mail="" td=""><td colspan="2">Date</td></attach>	Date	
Ü	or link to approval>		
Name	Ranjan Bose	Contact Number	
	,	+91-11-2659104	
Role	Principal Investigator,		
	Virtual Labs Project		
Organisational Position	Associate Professor,		
	IIIT Hyderabad		
Signature	<attach approval<="" e-mail="" td=""><td>Date</td></attach>	Date	
-	or link to approval>		
Name	Venkatesh Choppella	Contact Number	
		+91-965-274-0281	
Role	Principal Investigator, VLEAD		

15.1 Major Comments

15.2 Documentation Location

Master Hard copy	Master Electronic
None	Stored in 'mirror' bzr repository on VLEAD server

16 DOCUMENT CONTROL SHEET

This section captures all changes made to the content of document. If you have any questions regarding this document or would like to suggest an improvement, contact:

Table 19: Contact for Enquiries

Name	Suraj Ketan Samal
Designation	Project Engineer
Phone	+91 40 6653 1592
Email	engg@virtual-labs.ac.in
Fax	<contact fax=""></contact>

Table 20: Record of Issues

Issue No	Issue Date	Nature of Amendment	Author
0.1	2013-08-21	Initial Draft	Suraj
0.2	2013-09-05	Updated with analysis and estimates	Suraj

This publication has been prepared and written by **VLEAD,IIIT Hyderabad**, and is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act, no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission from the document controller.

Note for other readers: The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy of this publication. Notwithstanding, **VLEAD**, **IIIT Hyderabad** does not assume responsibility for any errors nor for any consequences arising from any errors in this publication.