Name:	XX7: : 1.
Name:	W1SC 1d:

True/False

- 1. All problems in NP can be reduced to NP-Hard problems in polynomial time.
 - All problems in NP can be reduced to NP-Complete problems in polynomial time.
 - All NP-Complete problems can be reduced to each other in polynomial time.
 - If $A \leq_p B$ and B is in NPC, then A is in NPC, too.
 - If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.
 - Decision problems are no harder than their respective optimization problems.
 - Assume P! = NP. Given an NPC problem A, no instance of A can be solved in polynomial time.

Proving NPC

To prove B is NP-Complete:

- Prove $B \in NP$
- Prove $B \in NP$ -hard
 - Select a known NPC problem A
 - Construct a reduction f transforming every instance of A to an instance of B
 - Prove that B outputs 1 if and only if A outputs 1 That is, for all α , $Sol-A(\alpha) = 1 \iff Sol-B(\beta) = 1$
 - Prove that f is a polynomial time transformation

3-conjunctive normal form (3-CNF):

- AND of clauses, each is the OR of exactly 3 distinct literals
- A literal is an occurrence of a variable or its negation, e.g. x_1 or $\neg x_1$

e.g.
$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee \neg x_2 \vee x_4)$$

One solution: [1, 1, 1, 0]

3-CNF-SAT: Given a boolean formula ϕ in 3-CNF, is it satisfiable?

A clique in G = (V, E) is a subset of V

- \bullet Each pair of vertices in a clique is connected by an edge in E
- Size of a clique = Number of vertices it contains

CLIQUE: Is there a clique of size k in G?

2. Prove that CLIQUE is NP-complete.

Solution:	

A vertex cover of $G = (V, E)$ is a subset	$V' \subseteq V$ such that if $(w,$	$v) \in E$, then $w \in V'$ or $v \in V'$
or both.		

VERTEX-COVER: Is there a vertex-cover of size k in G?

3. Show that VERTEX-COVER is NP-Complete.

Solution:	