Device for determining the weight of a motor vehicle

Patent number:

DE19802630

Publication date:

1999-09-16

Inventor:

RIEKER HEINZ (DE); SCHUETZNER PAUL (DE);

STOLL JOSEF (DE)

Applicant:

DAIMLER CHRYSLER AG (DE)

Classification:

- international:

G01M17/00; G01G19/03; G01L5/13; G01L5/18;

G01P3/56; B60G17/00; B60K28/16; B60T8/32;

B60K31/00; B62D6/00; B60R16/02

- european:

G01G19/08C

Application number: DE19981002630 19980124 Priority number(s): DE19981002630 19980124

Also published as:

EP0932033 (A1) US6339749 (B1) JP11316152 (A)

EP0932033 (B1)

Report a data error here

Abstract not available for DE19802630
Abstract of corresponding document: **US6339749**

In a device for determining the weight of a motor vehicle which is being moved by propulsive forces in its longitudinal direction, signals which correlate with a propulsive force and with a corresponding vehicle longitudinal acceleration are recorded with the aid of a sensing system during successive time intervals. Signals recorded at at least two points in time are used by a computer to produce a signal which correlates to the vehicle's weight. To enhance the device's accuracy, signals for the propulsive force and for the corresponding vehicle longitudinal acceleration are detected at successive points in time which follow one another at constant time intervals. The signals in a memory are stored, where they form a time sequence for the propulsive forces and the corresponding vehicle longitudinal accelerations. A plurality of successive stored signals of the time sequence are read from the memory and used to generate the signals that correlate to the current weight of the vehicle.

Data supplied from the esp@cenet database - Worldwide

DEUTSCHES
PATENT- UND
MARKENAMT

① Offenlegungsschrift② DE 198 02 630 A 1

② Aktenzeichen:

198 02 630.7

② Anmeldetag:

24. 1.98

43 Offenlegungstag:

16. 9.99

G 01 M 17/00 G 01 G 19/03 G 01 L 5/13 G 01 L 5/18 G 01 P 3/56 B 60 G 17/00 B 60 K 28/16 B 60 T 8/32 B 60 K 31/00 B 62 D 6/00 // B60R 16/02

(f) Int. Cl.6:

① Anmelder:

DaimlerChrysler AG, 70567 Stuttgart, DE

@ Erfinder:

Rieker, Heinz, Dipl.-Ing., 71111 Waldenbuch, DE; Schützner, Paul, Dr., 73728 Esslingen, DE; Stoll, Josef, Dipl.-Ing., 71686 Remseck, DE

56 Entgegenhaltungen:

DE 38 43 818 C1 DE 33 42 553 C2 DE 1 96 12 222 A1 DE 42 28 413 A1 DE 41 38 822 A1 DE 39 41 702 A1 **EP** 01 11 636 A2 WO 93 18 375 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Vorrichtung zur Bestimmung der Masse eines Kraftfahrzeuges

Eine Vorrichtung zur Bestimmung der Masse eines durch Vortriebskräfte in seine Längsrichtung bewegten. Kraftfahrzeuges, bei dem mit Hilfe einer Sensorik in aufeinanderfolgenden Zeitpunkten mit einer Vortriebskraft und mit einer zugehörigen Fahrzeuglängsbeschleunigung korrelierende Signal erfaßt werden, wobei die erfaßten Signale von wenigstens zwei Zeitpunkten von einem Rechner zur Erzeugung eines mit der Fahrzeugmasse korrelierenden Signals herangezogen werden, soll dahingehend ausgestaltet werden, daß während der Fahrt in einfacher Weise möglichst genaue Werte für die Fahrzeugmasse und die Fahrbahnneigung zur Verfügung stehen.

Dies wird dadurch erreicht, daß die Signale für die Vortriebskraft und für die zugehörige Fahrzeuglängsbeschleunigung in kontinuierlich, mit konstanten Zeitabständen aufeinanderfolgenden Zeitpunkten erfaßt und in einem Speicher abgespeichert werden, wo sie eine Zeitreihe für die Vortriebskräfte und für die zugehörige Fahrzeuglängsbeschleunigung ausbilden, wobei eine bestimmte Anzahl von aufeinanderfolgenden, gespeicherten Signalen der Zeitreihen aus dem Speicher gelesen und zur Generierung des mit der momentanen Fahrzeugmasse korrelierenden Signals herangezogen wird.

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Bestimmung der Masse eines durch Vortriebskräfte in seine Längsrichtung bewegten Kraftfahrzeuges mit den Merkmalen des Oberbegriffes des Anspruches 1.

Für eine Vielzahl von Regelungs- und/oder Steuerungseinrichtungen, die verschiedene Fahrzeugteilsysteme beeinflussen, ist zur Optimierung ihrer Funktionsweise die Kenntnis von aktuellen Werten der Fahrzeugmasse und der 10 Fahrbahnsteigung von erheblicher Bedeutung. Derartige Fahrzeugteilsysteme, bei denen die Fahrzeugmasse und/ oder die Fahrbahnneigung einen Regel- und/oder Steuerparameter bilden, sind bspw. eine Geschwindigkeitsregelanlage, eine Fahrdynamik-Regelstrategie wie z. B. Anti-Blok- 15 $Z_{TRLi} = m_{Fzg} \times b_{Fzgi} + Z_{HA}$. kier-Systeme, Antriebsschlupfregelsysteme, eine Hinterradlenkung, eine Vorderradlenkung, Systeme zur Einstellung des optimalen Reifendrucks, eine Getriebesteuerung mit verschiedenen Schaltstrategien und ein Federungssystem.'

Von besonderer Bedeutung sind diese Systeme bei Lastkraftwagen mit einem Anhänger oder Auflieger, um bspw. bei einer Talfahrt nachteilige Auswirkungen z. B. auf das Lenkverhalten der Zugmaschine durch ein Schieben des Anhängers oder Aufliegers zu verhindern. Auch ist bei Omnibussen die Kenntnis der aktuellen Fahrzeuggesamtmasse 25 zur Optimierung des Antriebs, Federungs- und Bremssystems von großer Bedeutung, da sich die Fahrzeugmasse bei jeder Haltestelle des Busses erheblich ändern kann. Gelenkbusse mit Heckantrieb benötigen Daten über die Fahrzeugmasse zur Steuerung und/oder Regelung von Dämpfungs- 30 gliedern im Gelenkbereich, um ein Ausbrechen des Fahrzeughecks zu verhindern.

Bei einer aus DE-OS 42 28 413 A1 bekannten Vorrichtung wird die Fahrzeugmasse dadurch bestimmt, daß wenigstens zwei Längsbeschleunigungen zu wenigstens zwei un- 35 terschiedlichen Zeitpunkten erfaßt werden und die zu diesen Zeitpunkten vorliegenden Vortriebskräfte erfaßt werden. Aus der Differenz der Vortriebskräfte und der Differenz der Längsbeschleunigungen wird dann die Fahrzeugmasse bestimmt. Für die Genauigkeit dieses bekannten Verfahrens ist 40 es erforderlich, daß eine nennenswerte Differenz zwischen den zwei nacheinander gemessenen Beschleunigungswerten vorhanden ist, zusätzlich dürfen sich die Fahrwiderstände, wie z.B. Luftwiderstand, Rollwiderstand, Hangabtrieb, zwischen den aufeinanderfolgenden Zeitpunkten nicht we- 45 sentlich geändert haben. Zur Steigerung der Genauigkeit dieses Verfahrens wird vorgeschlagen, die Bestimmung der Fahrzeugmasse bei jedem größeren Beschleunigungssprung zu wiederholen.

Die vorliegende Erfindung beschäftigt sich mit dem Pro- 50 blem, eine Vorrichtung der eingangs genannten Art derart auszugestalten, daß während der Fahrt in einfacher Weise möglichst genaue Werte für die Fahrzeugmasse und die Fahrbahnneigung zur Verfügung gestellt werden können.

Dieses Problem wird erfindungsgemäß mit einer Vorrich- 55 tung mit den Merkmalen des Anspruches 1 gelöst. Hierbei werden zur Vortriebskraft und zur zugehörigen Fahrzeuglängsbeschleunigung korrespondierende Signale fortlaufend erfaßt und in Zeitreihen z. B. in einem Speicher, abgelegt. Zur Erzeugung eines der aktuellen Fahrzeugmasse entspre- 60 chenden Signals wird dann eine bestimmte Anzahl aufeinanderfolgender Elemente oder Werte dieser Zeitreihe für die Signale der Vortriebskräfte und die dazu korrespondierenden Werte aus der Zeitreihe für die Signale der Fahrzeuglängsbeschleunigungen verwendet. Auf diese Weise steht 65 ein fortlaufend aktualisiertes mit der Fahrzeugmasse korreliertes Signal zur Optimierung der Regelungs- und/oder Steuerungssysteme des Fahrzeugs zur Verfügung, so daß

diese Systeme insbesondere rasch auf Änderungen der Fahrzeugmasse reagieren können.

Darüber hinaus kann bei Kenntnis der aktuellen Fahrzeugmasse mit den aktuellen Werten für die Vortriebskraft und für die Fahrzeuglängsbeschleunigung ein Signal für die momentane Fahrbahnsteigung erzeugt werden.

Die vorliegende Erfindung beruht auf der Erkenntnis, daß zur Bestimmung der Fahrzeugmasse und der Fahrbahnsteigung lediglich die am Fahrzeug wirkende Vortriebskraft Z_{TRL}, die zugehörige Fahrzeuglängsbeschleunigung b_{Fzg} und die zugehörige Hangabtriebskraft ZHA benötigt werden. Die Ausgangssituation bildet der allgemein bekannte Zusammenhang:

$$5 Z_{TRLi} = m_{Fzg} \times b_{Fzgi} + Z_{HA}$$

Dabei wird die Vortriebskraft Z_{TRL} aus der am Fahrzeug wirkenden Antriebs- oder Bremskraft Z_T abzüglich der Rollwiderstandskraft Z_R und abzüglich der Luftwiderstandskraft Z_L gebildet:

$$Z_{TRL} = Z_T - Z_R - Z_L.$$

Die Vortriebskraft Z_{TRL} des Fahrzeuges kann bspw. aus dem Motordrehmoment, der Getriebeübersetzung, der Achsübersetzung und aus dem Radradius bestimmt werden, wenn bspw. das Motordrehmoment in Form von gemessenen Kennfeldern in Abhängigkeit von bestimmten Motorparametern wie Pedalstellung, Drehzahl etc. gespeichert ist. Das Motordrehmoment steht bei einer Vielzahl heute üblicher Motorsteuerungen in den Fahrzeugen bereits zur Verfügung. Die Fahrzeuglängsbeschleunigung läßt sich bspw. über die Raddrehzahl in Verbindung mit dem Radradius berechnen, indem ein in einer Zeiteinheit zurückgelegter Weg zweimal nach der Zeit abgeleitet wird. Die dazu notwendigen Werte liefern bspw. ein Anti-Blockier- und/oder ein Antriebsschlupfregelsystem und stehen somit ebenfalls bei vielen heutigen Fahrzeugen zur Verfügung.

Die mit dem Laufindex i versehenen Terme sind die nacheinander erfaßten, in den Zeitreihen abgelegten Werte. Wenn der Zeitabstand \(\Delta \) zwischen den aufeinanderfolgenden Zeitpunkten ti, in denen diese Werte für die Zeitreihen erfaßt werden, ausreichend klein ist, kann die Fahrzeugmasse m_{Fzg} und die Hangabtriebskraft Z_{HA} in diesem Zeitabschnitt At als konstant angesehen werden.

Entsprechend Anspruch 2 kann unter Zuhilfenahme von einer Anzahl N aufeinanderfolgender Werte der Zeitreihen mit Hilfe eines Regressionsrechenverfahrens gemäß der Gleichung:

$$m_{Fzg} = \frac{S_{bz} - S_z * S_b / N}{S_{bb} - S_b * S_b / N}$$

ein mit der Fahrzeugmasse korreliertes Signal m_{Fzg} erzeugt werden. In dieser Gleichung werden folgende Summenterme verwendet:

$$S_b = \sum_{i=1}^{N} b_{Fzgi}$$

BEST AVAILABLE COPY

DE 198 02 630 A_1

4

$$S_z = \sum_{i=1}^{N} Z_{TRLi}$$

$$S_{bb} = \sum_{i=1}^{N} b_{Fzgi} * b_{Fzgi}$$

$$S_{bz} = \sum_{i=1}^{N} b_{Fzgi} * Z_{TRLi} .$$

Ist die Fahrzeugmasse m_{Fzg} bekannt, kann die Steigung s oder Neigung der Fahrbahn in Längsrichtung bestimmt werden. Dabei ist von folgendem Zusammenhang auszugehen:

$$Z_{HAi} = Z_{TRLi} - m_{Fzg} \times b_{Fzgi} = m_{Fzg} \times g \times \sin(s_i)$$

wobei g die Erdbeschleunigung ist. Im Zeitpunkt ti liegt dann die momentane Fahrbahnsteigung si vor.

Bei einer bevorzugten Ausführungsform können die aufeinanderfolgend erzeugten Signale si für die Fahrbahnsteigung mit Hilfe eines Tiefpaßfilterverfahrens geglättet werden, wodurch sich störende Streuungen eliminieren lassen.

Für die Verwertbarkeit der erzeugten Signale m_{Pzg} für die Fahrzeugmasse und somit auch der Signale s_i für die Fahr- 30 bahnsteigung ist die Genauigkeit der zur Verfügung stehenden Signale Z_{TRLi} für die Vortriebskraft und die Signale b_{Pzgi} für die zugehörige Fahrzeuglängsbeschleunigung sowie das verwendete Regressionsrechnungsverfahren von großer Bedeutung.

Entsprechend einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung werden die für die Erzeugung des mit der Fahrzeugmasse korrelierenden Signals mpzg benötigten Summenterme Sb, Sz, Sbb, Sbz mit Hilfe eines Ringspeicherverfahrens bestimmt. Dieses Verfahren 40 zeichnet sich durch einen minimalen Rechen- und Speicherbedarf aus. Beim Ringspeicherverfahren werden in jedem Zeitpunkt ti die aktuellen Summen dadurch gebildet, daß das jeweils älteste Element der jeweiligen Zeitreihe von der vorhergehenden Summe subtrahiert wird – wobei sich eine 45 Zwischensumme ergibt – und das jeweils neueste bzw. jüngste Element dieser Zeitreihe zu dieser Zwischensumme addiert wird – wobei sich die aktuelle Summe ergibt. Der jeweils älteste Wert wird dabei vom jeweils neu hinzugekommenen jüngsten Wert im Speicher überschrieben.

Mit Hilfe des vorgeschlagenen Regressionsrechenverfahrens wird ständig die jeweils aktuell gültige Fahrzeugmasse m_{Fzg} bzw. ein damit korreliertes Signal zur Verfügung gestellt. Die aktuelle Fahrbahnsteigung s_i bzw. das damit korrelierende Signal wird mit Hilfe des Wertes m_{Fzg} für die aktuell gültigen Fahrzeugmasse und einem aktuellen Wert Z_{HAi} für die Hangabtriebskraft bestimmt und zusätzlich einem Tiefpaßfilterverfahren unterworfen.

Bevor ein auf diese Weise erzeugtes, mit der Fahrzeugmasse korrelierendes Signal m_{Fzg} in einem anderen Fahrzeugsystem z. B. der Bremsanlage ausgewertet oder verwertet wird, kann es entsprechend einer Weiterbildung der erfindungsgemäßen Vorrichtung mit Hilfe einer Akzeptanzprüfung auf seine Vertrauenswürdigkeit und Plausibilität untersucht werden. Vorzugsweise kann dabei die Streuung der Abszissenwerte σ_b verwendet werden, die sich wie folgt berechnet:

Je größer die auf diese Weise berechnete Streuung der Abszissenwerte σ_b ist, umso vertrauenswürdiger ist das der Fahrzeugmasse entsprechende Signal m_{Pzg} . Als Ausschlußkriterium für das jeweils untersuchte Signal m_{Pzg} kann ein vorbestimmter Grenzwert vorgesehen werden, der von der Abszissenwertstreuung überschritten werden muß, damit eine Auswertung des betreffenden Signals für die Fahrzeugmasse m_{Pzg} zugelassen wird.

Zusätzlich oder alternativ dazu kann gemäß einer Weiterbildung der erfindungsgemäßen Vorrichtung der Korrelationskoeffizient R bei der Plausibilitätsprüfung herangezogen werden. Er wird wie folgt berechnet:

$$R = \frac{S_{bz} - S_b * S_b / N}{(S_b - S_b / N) * (S_z - S_z / N)}.$$

Auch für den Korrelationskoeffizienten R kann vorgesehen werden, daß eine Auswertung des untersuchten, der Fahrzeugmasse entsprechenden Signals m_{Fzg} nur dann durchgeführt werden darf, wenn R einen bestimmten Grenzwert übersteigt. Dieser Grenzwert kann insbesondere dynamisch aus den vorhergehenden Berechnungen der mit der Fahrzeugmasse korrelierenden Signale mFzg berechnet werden. Bspw. verschlechtern Schwingungen im Antriebsstrang den errechneten Korrelationskoeffizienten R. Für den Fall, daß diese Schwingungen im Antriebsstrang im Vergleich zu dem fahrdynamischen Anteil der Signale für die Vortriebskräfte Z_{TRLi} und die zugehörigen Fahrzeuglängsbeschleunigungen b_{Fzgi} zu groß sind, sorgt dieses Akzeptanzkriterium, d. h. der Grenzwert für den Korrelationskoeffizienten R, dafür, daß das davon betroffene Signal für die Fahrzeugmasse m_{Pzg} unberücksichtigt bleibt bzw. nicht verwertet wird.

Werden sowohl der Korrelationskoeffizient R als auch die Streuung der Abszissenwerte σ_b als Akzeptanzkriterien verwendet, wird aus diesen beiden Größen vorzugsweise ein Gewichtungsfaktor ermittelt, der bei einem gewichteten Mittelwert der erzeugten einzelnen Signale für die Fahrzeugmasse m_{F2g} die Vertrauenswürdigkeit oder Güte der Einzelresultate berücksichtigt. Erst dieser gewichtete Mittelwert wird als verwertbares oder auswertbares Signal für die Fahrzeugmasse m_{F2g} den jeweils mit der erfindungsgemäßen Vorrichtung kommunizierenden dynamischen Fahrzeugsystemen zur Verfügung gestellt.

Für eine zuverlässige Bestimmung der Vortriebskraft Z_{TRL} aus den Einzelkräften Antriebs- oder Bremskraft Z_T Rollwiderstandkraft Z_R und Luftwiderstandskraft Z_L müssen unterschiedliche Verluste und systemimmanente Effekte berücksichtigt werden. Ist bspw. die durch die Fahrzeugbremse verursachte Bremskraft Z_T nicht eindeutig ermittelbar, kann vorzugsweise die Regressionsrechnung für die Fahrzeugmasse solange ausgesetzt werden, bis die Betätigung der Bremsen beendet ist. Desweiteren ist zu berücksichtigen, daß sich die reale Fahrzeugmasse von der zu berücksichtigenden, wirksamen, effektiven Fahrzeugmasse unterscheidet, da bestimmte Teilmassen des Fahrzeugs, die in Abhängigkeit von der Fahrzeuggeschwindigkeit rotieren, in der Längsrichtung des Fahrzeugs eine größere Trägheit aufweisen. Dadurch ist die effektive Fahrzeugmasse größer als die reale Fahrzeugmasse. In gleicher Weise ergibt sich unter Berücksichtigung der Trägheitswirkung des Motors eine effektive Vortriebskraft für das Fahrzeug, die sich von der vom Motor aufgebrachten Antriebskraft unterscheidet. Darüber hinaus müssen Übertragungsverluste berücksichtigt werden, die zwischen den verschiedenen Aggregaten im Antriebsstrang (Differential, Getriebe und dgl.) auftreten,

wodurch sich die effektive Vortriebskraft im Zugbetrieb des Motors verringert und im Schubbetrieb des Motors erhöht. Bei der Berücksichtigung der Roll- und Luftwiderstandskräfte Z_R und Z_L können empirisch ermittelte Funktionen herangezogen werden. Für den Fall, daß die Roll- und Luftwiderstandskräfte Z_R und Z_L nicht berücksichtigt oder gleich Null gesetzt werden, wird bei der Bestimmung der Fahrbahnneigung ein Signal si für die Steigung erzeugt, das einem effektiven Fahrwiderstand entspricht. Die dabei entstehende Abweichung der Fahrbahnneigung, die dem er- 10 zeugten Signal's; entspricht, von der real vorliegenden Steigung beträgt in der Regel weniger als 1%.

Die Anzahl N der Werte in den Zeitreihen, die zur Ermittlung eines mit der Fahrzeugmasse m_{Fzg} korrespondierenden Signals und in der Folge eines mit der Fahrbahnsteigung s; 15 korrespondierenden Signals ist für das vorgeschlagene Regressionsrechenverfahren entsprechend einer bevorzugten Ausführungsform so zu wählen, daß sich unter Berücksichtigung des konstanten Zeitabstandes \Delta t zwischen zwei aufeinanderfolgenden Werten der Zeitreihen insgesamt eine 20 Zeitspanne ergibt, die größer ist als eine Schwingungsperiode derjenigen im Antriebsstrang auftretenden Schwingung, die die niedrigste Frequenz aufweist. Auf diese Weise können durch Schwingungen im Antriebsstrang verursachte Schwankungen der Antriebskraft Z_T und der Fahrzeugbe- 25 schleunigung b_{Fzg} gegeneinander aufgehoben werden, so daß sie das Ergebnis für die Fahrzeugmasse m_{Fzg} und die Fahrbahnsteigung s nicht verfalschen.

Im folgenden wird anhand der Zeichnung ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung beschrie- 30

Die erfindungsgemäße Vorrichtung besteht im wesentlichen aus einem Rechner 1 und aus einem Speicher 2. Die Vorrichtung verfügt außerdem über eine im übrigen nicht dargestellte Sensorik, die zur Vortriebskraft korrelierende Signale 35 Z_{TRL} über eine Datenleitung 3 und zur Fahrzeuglängsbeschleunigung korrelierende Signale b_{Pzg} über eine weitere Datenleitung 4 dem Rechner 1 zuführt. Die Sensorik kann dabei auch aus einer bereits am Fahrzeug vorhandenen Sensorik bestehen, die andere dynamische Fahrzeugteilsysteme 40 (z. B. eine Getriebesteuerung, ein ABS-System) mit den entsprechenden Signalen versorgt. Die Datenübertragung zum Rechner 1 der erfindungsgemäßen Vorrichtung kann dann insbesondere über eine Schnittstelle an den jeweiligen anderen Fahrzeugsystemen erfolgen.

Die dem Rechner 1 zugeführten Signalwerte werden im Speicher 2 in einer ersten Zeitreihe (Z_{TRL1}, Z_{TRL2}, ..., Z_{TRLN}) für die Vortriebskräfte Z_{TRL} und in einer zweiten Zeitreihe (b_{Fzg1}, b_{Fzg2}, . . ., b_{FzgN}) für die Fahrzeuglängsbeschleunigungen b_{Fzg} abgelegt bzw. gespeichert. Darüber 50 hinaus können im Speicher 2 weitere Daten abrufbereit abgelegt sein, bspw. die Daten einer Motorkennlinie, wenn z. B. anstelle der Vortriebskraft Z_{TRL} nur ein Antriebsmoment über die Datenleitung 3 dem Rechner 1 zur Verfügung gestellt werden kann.

Die Daten bzw. Meßwerte, für die der Vortriebskraft und der Fahrzeuglängsbeschleunigung entsprechenden Signale Z_{TRL} und b_{Fzg} werden fortlaufend mit einem konstanten Zeitabstand Δt erfaßt und dem Rechner 1 zugeführt bzw. vom Rechner 1 an den entsprechenden Sensoren der Senso- 60 rik abgefragt.

Mit Hilfe des oben beschriebenen Regressionsrechenverfahrens wird vom Rechner 1 aus einer Anzahl N von Werten aus der Zeitreihe für die Vortriebskraft ZTRL und den zugehörigen Werten der Zeitreihe für die Fahrzeuglängsbe- 65 schleunigung b_{Fzg} ein mit der aktuellen Fahrzeugmasse korrelierendes Signal m_{Pzg} erzeugt. Der ermittelte Wert für die Fahrzeugmasse mpzg wird dann vorzugsweise mittels ver-

schiedener Akzeptanzkriterien auf seine Plausibilität überprüft, wobei die entsprechenden Grenzwerte und Vergleichswerte jeweils im Speicher 2 abgespeichert sein können. Nach einer erfolgreichen Überprüfung des ermittelten Wertes wird ein zu der aktuellen Fahrbahnsteigung korrelierendes Signal s vom Rechner 1 erzeugt.

Die erfindungsgemäße Vorrichtung kann vorzugsweise über entsprechende Schnittstellen mit anderen dynamischen Fahrzeugteilsystemen verbunden sein, denen auf diese Weise die Signale für den jeweils aktuellen Wert der Fahrzeugmasse m_{Fzg} und der Fahrbahnsteigung s zur Verfügung gestellt werden. Im Ausführungsbeispiel sind an die Vorrichtung bzw. an den Rechner 1 ein Federungssystem 5, ein Steuersystem 6 für ein Automatikgetriebe, ein Anti-Blokkier-System 7 und ein Antriebsschlupfregelsystem 8 angeschlossen, die dadurch immer die aktuellen Werte der Fahrzeugmasse und/oder der Fahrbahnsteigung bei ihrer Regelungs- und/oder Steuerungsfunktion berücksichtigen können.

Patentansprüche

1. Vorrichtung zur Bestimmung der Masse eines durch Vortriebskräfte in seine Längsrichtung bewegten Kraftfahrzeuges, bei dem mit Hilfe einer Sensorik in aufeinanderfolgenden Zeitpunkten mit einer Vortriebskraft und mit einer zugehörigen Fahrzeuglängsbeschleunigung korrelierende Signale erfaßt werden, wobei die erfaßten Signale von wenigstens zwei Zeitpunkten von einem Rechner zur Erzeugung eines mit der Fahrzeugmasse korrelierenden Signals herangezogen werden, dadurch gekennzeichnet,

- daß die Signale (Z_{TRL}, b_{Fzg}) für die Vortriebskraft und für die zugehörige Fahrzeuglängsbeschleunigung in kontinuierlich, mit konstanten Zeitabständen (\Deltat) aufeinanderfolgenden Zeitpunkten (ti) erfaßt werden,

- daß die kontinuierlich erfaßten Signale (Z_{TRL}, b_{Fzg}) nacheinander in einem Speicher (2) gespeichert werden, wo sie eine Zeitreihe für die aufeinanderfolgenden Vortriebskräfte und eine Zeitreihe für die zugehörigen Fahrzeuglängsbeschleunigungen ausbilden, und

daß eine bestimmte Anzahl (N) von aufeinanderfolgenden, gespeicherten Signalen der Zeitreihen aus dem Speicher (2) gelesen und vom Rechner (1) zur Generierung des mit der momentanen Fahrzeugmasse korrelierenden Signals (mFzg) herangezogen wird.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Signal (m_{Fzg}) für die Fahrzeugmasse einen in Analogie zu der Gleichung

$$m_{Fzg} = \frac{S_{bz} - S_z * S_b / N}{S_{bb} - S_b * S_b / N}$$

55

berechneten Wert repräsentiert, mit den Summentermen

15

$$S_b = \sum_{i=1}^{N} b_{Fxgi}$$

$$S_z = \sum_{i=1}^{N} Z_{TRLi}$$

$$S_z = \sum_{i=1}^{N} Z_{TRL}$$

$$S_{bb} = \sum_{i=1}^{N} b_{Fzgi} * b_{Fzgi}$$

$$S_{bz} = \sum_{i=1}^{N} b_{Fzgi} * Z_{TRLi}$$

Z_{TRLi} = Wert aus der Zeitreihe der Vortriebskräfte und b_{Fzgi} = Wert aus der Zeitreihe der Fahrzeuglängsbe- 25 schleunigungen.

- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß zur Generierung der Summenterme (Sb, Sz, Sbb und Sbz) ein Ringspeichersystem verwendet wird, bei dem die aktuellen Summen um den ältesten 30 Summanden aus der jeweiligen Zeitreihe verringert und um den jüngsten Summanden aus der jeweiligen Zeitreihe erhöht werden.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Signal (Z_{TRL}) mit einer 35 Vortriebskraft korreliert, die aus der am Fahrzeug wirkenden Zug- oder Bremskraft (Z_T) abzüglich der Rollwiderstandskraft (ZR) und abzüglich der Luftwiderstandskraft (Z_L) gebildet ist.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, da- 40 durch gekennzeichnet, daß die Anzahl (N) der für die Bestimmung des Signals (m_{Fzg}) für die Fahrzeugmasse verwendeten Werte der Zeitreihen so gewählt ist, daß das Produkt aus dieser Anzahl (N) und dem Zeitabstand (\Delta t) von zwei aufeinanderfolgenden Zeitpunkten 45 (ti) eine Zeitspanne ergibt, die größer ist als die Schwingungsperiode der Schwingung, die in einem Antriebsstrang des Kraftfahrzeuges die niedrigste Frequenz aufweist.

6. Vorrichtung nach einem der Ansprüche 1 bis 5, da- 50 durch gekennzeichnet, daß vor einer Auswertung des für die Fahrzeugmasse erzeugten Signals (mFzg) dieses einer Akzeptanzprüfung unterzogen wird.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß als Akzeptanzprüfung eine Streuung von 55 Abszissenwerten (ob) herangezogen wird, die einen in Analogie zu der Gleichung

$$\sigma_b^2 = S_{bb}/N - (S_b/N)^2$$

berechneten Wert repräsentiert, wobei die Akzeptanz des erzeugten Signals (m_{Pzg}) für die Fahrzeugmasse mit der Streuung der Abszissenwerte zunimmt.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß ein Grenzwert für die Streuung der Abszissen- 65 werte (ob) im Speicher (2) abgelegt ist, unterhalb dessen eine Auswertung des erzeugten, mit der Fahrzeugmasse korrelierenden Signals (mFzg) nicht erfolgt.

9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß als Akzeptanzprüfung ein Korrelationskoeffizient (R) überwacht wird, der einen in Analogie zu der Gleichung

$$R = \frac{S_{bz} - S_b * S_b / N}{(S_b - S_b / N) * (S_z - S_z / N)}$$

berechneter Wert repräsentiert, wobei mit zunehmendem Korrelationskoeffizienten (R) auch die Akzeptanz des erzeugten Signals (mFzg) für die Fahrzeugmasse steigt.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß ein Grenzwert für den Korrelationskoeffizienten (R) fortlaufend aus vorhergehenden, akzeptierten Signalen (mpzg) für die Fahrzeugmasse berechnet und im Speicher (2) abgelegt wird, unterhalb dessen eine Auswertung des aktuell erzeugten Signals (mFzz) für die Fahrzeugmasse nicht erfolgt.

11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das erzeugte, mit der Fahrzeugmasse korrelierende Signal (mpzg) zur Erzeugung eines mit der Fahrbahnsteigung korrelierenden Signals (s) herangezogen wird.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Signal (s) für die Fahrbahnsteigung einen in Analogie zu dem Gleichungssystem

$$Z_{HAi} = Z_{TRLi} - m_{Pzg} \times b_{Fzgi} = m_{Fzg} \times g \times sin(s_i)$$

berechneten Wert repräsentiert, wobei $Z_{HAi} = Hangabtriebskraft$

g = Erdbeschleunigung.

13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß aufeinanderfolgende Signale (si) für die Fahrbahnsteigung durch ein Tiefpaßfilterverfahren geglättet werden.

Hierzu 1 Seite(n) Zeichnungen

BEST AVAILABLE COPY

ZEICHNUNGEN SEITE 1

DE 198 02 630 A1 G 01 M 17/00 16. September 1999

