Set Theory II

Ji, Yong-hyeon

March 14, 2025

We cover the following topics in this note.

- Relations
- Equivalence Relations
- Equivalence Classes
- Partitions

Relation

Definition. Let $A \times B$ be the cartesian product of two sets A and B. A **(binary) relation** on $A \times B$ is a subset \mathcal{R} of $A \times B$. That is,

 \mathcal{R} is a relation on $A \times B \iff \mathcal{R} \subseteq A \times B$.

Remark. \mathcal{R} is a relation on $A \iff \mathcal{R} \subseteq A \times A$.

Note (Notation). Let $(s,t) \in \mathcal{R}$. We use the notation $s \mathcal{R} t$ and we can say "s **is related to** t **by** R". If $(s,t) \notin \mathcal{R}$, we denote as: $s \mathcal{R} t$.

Example. Let $A = \{1, 2\}$ and $B = \{4, 5\}$. Then

$$A \times B = \{(1,4), (1,5), (2,4), (2,5)\}.$$

Here, $\mathcal{R} = \{(1,4), (2,5)\} \subseteq A \times B$ be a relation.

Example. Let A and B are sets, and let $f: A \to B$ be a function from A to B. Then

$$(a,b) \in f \iff a f b \iff b = f(a).$$

★ Equivalence Relation **★**

Definition. A binary relation \mathcal{R} on a set S is called an **equivalence relation** if it satisfies the following three properties: for all $a, b, c \in S$,

- (i) (Reflexivity) $(a, a) \in \mathcal{R}$;
- (ii) (Symmetry) $(a, b) \in \mathcal{R} \implies (b, a) \in \mathcal{R}$;
- (iii) (Transitivity) $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R} \implies (a, c) \in \mathcal{R}$.

Remark.

Reflexivity (each element is related to itself)

Symmetry (if a is related to b, then b is related to a)

Transitivity (if a is related to b and b is related to c, then a is related to c)

Example. Let $A = \{1, 2, 3, 4\}$. Then

$$\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1)\}$$

is an equivalence relation on A.

Note. Let A, B, C are sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.

- We claim that $(g \circ f)[A] = g[f[A]]$: $(g \circ f)[A] = \{(g \circ f)(a) : a \in A\} = \{g(f(a)) : a \in A\} = \{g(b) : b = f(a) \in f[A]\} = g[f[A]].$
- We claim that f is surjective \iff Img(f) = f[A] = B: $f: A \twoheadrightarrow B \iff \forall b \in B, \ \exists a \in A \text{ s.t. } f(a) = b \iff f[A] = \{f(a) \in B : a \in A\} = B.$

Lemma 1. Let A, B and C are sets, and let $f: A \to B$ and $g: B \to C$ are functions.

- (1) If f and g are both one-to-one, then $(g \circ f) : A \to C$ is one-to-one.
- (2) If f and g are both onto, then $(g \circ f) : A \to C$ is onto.

Lemma 2. Let A, B and C are sets, and let $f: A \to B$ and $g: B \to C$ are functions.

- (1) If $(g \circ f) : A \to C$ is one-to-one, then f is one-to-one.
- (2) If $(g \circ f) : A \to C$ is onto, then g is onto.

Equivalence Relation on 2^A Based on Bijection

Proposition 3. Let A be a set, and 2^A be its power set. Define a relation \mathcal{R} on 2^A as follows:

$$X \sim_{\mathcal{R}} Y \iff \exists f \in Y^X \text{ such that } f \text{ is bijective,}$$

for $X, Y \in 2^A$. In other words,

$$\mathcal{R} := \left\{ (X, Y) \in 2^A \times 2^A : \exists \ a \ bijection \ f \in Y^X \right\}.$$

Then \mathcal{R} is an equivalence relation on 2^A .

Proof. Let $X, Y, Z \in 2^A$. We must show that \mathcal{R} is reflexive, symmetric and transitive:

(i) (Reflexivity)

(ii) (Symmetry)

(iii) (Transitivity)

Indexed Family

Definition. Let I and S are sets. Consider a function $A:I\to S$ defined by $i\mapsto A(i)=:A_i$. The image $\mathrm{Img}(A)$ is called an **indexed family of elements in** S **indexed by** I. We write this indexed family as: $\langle A_i \rangle_{i\in I}$. Note that

$$\operatorname{Img}(A) = \{A(i) : i \in I\} = \{A_i : i \in I\} = \langle A_i \rangle_{i \in I}.$$

Example (Sequence). Let $I = \mathbb{N}$ be an indexing set. Then

$$S := \{A_1, A_2, A_3, A_4, \dots\} = \{A_i : i \in \mathbb{N}\} = \langle A_i \rangle_{i \in \mathbb{N}}$$

is an indexed family of elements in S indexed by \mathbb{N} .

Union and Intersection of an Indexed Family

Definition. Let *I* and *S* are sets, and let $\langle A_i \rangle_{i \in I}$ be an indexed family in *S*.

• The **union of** $\langle A_i \rangle_{i \in I}$ is defined by $\bigcup_{i \in I} A_i := \{x \in S : \exists i \in I \text{ such that } x \in A_i\}$.

• The **intersection of** $\langle A_i \rangle_{i \in I}$ is defined by $\bigcap_{i \in I} A_i := \{x \in S : \forall i \in I, x \in A_i\}$.

Remark. Let $I = \{1, \ldots, n\}$. Then

$$\bullet \bigcup_{i \in I} S_i = \bigcup_{i=1}^n S_i = S_1 \cup S_2 \cup \cdots \cup S_n.$$

$$\bullet \bigcap_{i \in I} S_i = \bigcap_{i=1}^n S_i = S_1 \cap S_2 \cap \cdots \cap S_n.$$

* Partitions *

Definition. Let S be a set, and let the function $A: I \to 2^S$ as $i \mapsto A_i := A(i) \subseteq S$, for all $i \in I$. Consider a family of subsets $\langle A_i \rangle_{i \in I}$, where $A_i \subseteq S$ for every index $i \in I$. The family $\langle A_i \rangle_{i \in I}$ is called a **partition** of S if the following conditions are satisfied:

- (i) (Non-empty Subsets) Each subset A_i is non-empty, i.e., $\forall i \in I, A_i \neq \emptyset$
- (ii) (**Pairwise disjoint**) For all distinct $i, j \in I$, the subsets A_i and A_j are disjoint, i.e.,

$$\forall i, j \in I, i \neq j \implies A_i \cap A_j = \emptyset$$
.

(iii) (Union covers the entire set) The union of all subsets A_i covers the whole set S, i.e.,

$$\bigcup_{i\in I} A_i = S$$

Example. Let \mathbb{Z} be a set of integers. We define an indexed family $\langle A_i \rangle_{i \in \{0,1,2\}}$ of subsets of \mathbb{Z} as follows:

$$A_0 = \{ n \in \mathbb{Z} : n \equiv 0 \text{ (mod 3)} \} = \{ n \in \mathbb{Z} : n = 3k + 0 \text{ for some } k \in \mathbb{Z} \} =: [0],$$

$$A_1 = \{ n \in \mathbb{Z} : n \equiv 1 \pmod{3} \} = \{ n \in \mathbb{Z} : n = 3k + 1 \text{ for some } k \in \mathbb{Z} \} =: [1],$$

$$A_2 = \{ n \in \mathbb{Z} : n \equiv 2 \pmod{3} \} = \{ n \in \mathbb{Z} : n = 3k + 2 \text{ for some } k \in \mathbb{Z} \} =: [2].$$

Then

(i)
$$[0] \neq \emptyset$$
, $[1] \neq \emptyset$ and $[2] \neq \emptyset$.

(ii)

$$[0] \cap [1] = \emptyset$$

$$[1] \cap [2] = \emptyset$$

$$[2] \cap [0] = \emptyset.$$

(iii)
$$[0] \cup [1] \cup [2] = \mathbb{Z}$$
.

Thus,

$$\{A_1, A_2, A_3\} = \{[0], [1], [2]\}$$

is a partition of \mathbb{Z} .

★ Equivalence Class ★

Definition. Let $\mathcal{R} \subseteq S \times S$ be an equivalence relation on S. The **equivalence class of** $x \in S$ **under** \mathcal{R} is the set

$$[x]_{\mathcal{R}} = \left\{ y \in S : x \; \mathcal{R} \; y \right\}.$$

Note. Note that $\alpha \mathcal{R} x \iff \alpha \in [x]_{\mathcal{R}} \iff x \mathcal{R} \alpha$.

Equivalence class of *x*

Lemma 4. Let \mathcal{R} be an equivalence relation on a set S. For any $x, y \in S$, let [x] and [y] represent the equivalence classes of x and y, respectively, under \mathcal{R} .

- (1) $\forall x \in S, x \in [x].$
- (2) $x \mathcal{R} y \iff [x] = [y].$
- (3) $x \mathcal{R} y \iff [x] \cap [y] = \emptyset$.

$\star\star\star$ Fundamental Theorem on Equivalence Relations $\star\star\star$

Theorem 5. Let S be a set and let R be an equivalence relation on S. Define the set of equivalence classes

$$\mathcal{P} := \{ [x]_{\mathcal{R}} : x \in S \} \text{ , where } [x]_{\mathcal{R}} = \{ y \in S : x \mathcal{R} y \} \text{ .}$$

Then \mathcal{P} *forms a partition of* S.

$$S = \left\{x, y, z, a, b, c, d, e, f\right\}$$

$$\mathcal{P} = \{ [x]_{\mathcal{R}}, [y]_{\mathcal{R}}, [z]_{\mathcal{R}} \}$$

\star Relation Induced by Partition is Equivalence \star

Theorem 6. Let S be a set and $\mathcal{P} = \langle P_i \rangle_{i \in I}$ be a partition of S. We define a relation \mathcal{R} on S:

$$x \sim_{\mathcal{R}} y \iff \exists i \in I \ such \ that \ x, y \in P_i$$

for all $x, y \in S$. That is, x is related to y under R if and only if x and y belong to the same subset P_i in the partition. Then R is the equivalence relation induced by a partition P.