

Machine Learning Methods for Speech Emotion Recognition: A Survey Study

Yenho Chen, Hyeongju Choi, Zaid Khan, Mohammad Nikbakht

Motivation

The pandemic social restrictions led to a lack of interactions and psychological distress which affected the emotional and mental health of individuals impacted by the pandemic. Thus, a need for remote emotion monitoring is felt. Speech emotion recognition (SER), an algorithmic detection of emotional state from speech signals can help address this issue.

Contributions

Our contribution

- Design a pipeline that compares performance of SER across different machine learning models and feature extraction methods to gain deeper knowledge into the task
- For each model, we discover the optimal feature subset in a principled manner via a feature selection algorithm to identify the features that carry the most emotional information

Broader impacts

- Improves human computer interaction
 - Applications in healthcare, military, and many other fields.
 - Enables remote emotion assessment from speech in parallel with facial image methods
- With the rise of immersive virtuality reality technologies emotion recognition can become an important feature

Technical Approach

Feature Extraction

Model/feature selection and Hyperparameter Tuning

Compare on Test Set

RAVDESS Dataset

Dataset Summary

- Used audio-only samples for this project
- Consist of 1440 recording samples each ~4/5 seconds long
- 24 professional actors (12 male, 12 female)
- 8 emotions: calm, happy, sad, angry, fear, surprise, disgust, neutral

Dataset Split

- Split data samples into three sets: train, validation, test
- Actors 1-21 for training and validation & 21-24 for test to prevent data snooping
- Account for imbalanced class by oversampling to avoid biased predictions
 - Only neutral emotion required oversampling

Feature Extraction

Humans can sense emotions from only sounds. If we convert the raw audio signals into a perceptually meaningful space, we can represent the data more closely to how humans perceive and improve audio classification. Some of these features are:

- Mel-frequency cepstral coefficients (MFCCs)
- Mel spectrogram
- Spectral contrast
- Chromagram

Feature Extraction

2D feature extraction:

1D features extraction:

- Average of 2D features over time to create 1D vectors
- Append global features such as max, min, mean, std, range

Feature Selection

• Why?

 Reducing the number of features used for models allows faster learning, improved generalization, and enhanced interpretability

Backward Selection

- We utilized backward selection algorithm for feature selection
- Greedy search to find the optimal set of features by generating a path through all possible subsets
- We use validation accuracy as the metric

```
Algorithm 1 Backwards selection algorithm
Input: X_n = [\{x_1, ..., x_n\}]_{i=1}^m feature set, y = \{y_1, ..., y_m\} emotion labels, n total number of features, m number of data
   samples, f(x; \theta) model, \theta model parameters
Output: k Optimal feature subset
Initialize: k \leftarrow \{1, \dots, n\} all features, j \leftarrow 1 step number, P_1 \leftarrow k backwards path, A step scores, a step scores for inner
   X_{k,\text{train}}, X_{k,\text{val}}, y_{\text{train}}, y_{\text{val}} \leftarrow \text{TrainTestSplit}(X_k, y)
   \theta^* = \text{fit}(f(x; \theta), X_{k, \text{train}}, y_{\text{train}})

    b fit full model

   A_1 \leftarrow \frac{1}{n_{\text{val}}} \sum_{i=1}^{m} \mathbb{I}[f(X_{k,\text{val}}; \theta^*) = y_{\text{val}}]
                                                                                                                                                                            > evaluate
    while n > 0 do
        for i \in \{1, \ldots, n\} do
                                                                                                                                          beliminate one feature at a time
              k \leftarrow \{1, \dots, n\}/i
              \theta^* = \text{fit}(f(x; \theta), X_{k,\text{train}}, y_{\text{train}})

    b fit reduced model

              a_{i,n} \leftarrow \frac{1}{n_{val}} \sum_{i=1}^{m} \mathbb{I}[f(X_{k,val}; \theta^*) = y_{val}]
                                                                                                                                                                            b evaluate
                                                                                                                                             > record subset with best score
        k \leftarrow \{1, \dots, n\} / \operatorname{argmax} a_n
        A_i \leftarrow \max a_n
         P_i \leftarrow k
                                                                                                                                                                        > record path
         j \leftarrow j + 1
        n \leftarrow n-1
    end while
    j^* \leftarrow \operatorname{argmax} A
    k \leftarrow P_{i^*}
                                                                                                                                                       choose optimal subset
```


Outline of Models

Does more model complexity improve SER performance?

Model Selection

Steps taken for each model:

1. Hyperparameter tuning using the train and validation set

- Regularization strength
- Network architecture
- 2. Backward selection to pick the best features

3. Retrain on the whole train + validation set

- 4. Test on held-out test set and record evaluation metrics
 - Accuracy, Precision, Recall, F1 Score

Model Training

- Statistical Learning
 - Hyperparameter Search: Grid search to determine regularization strength.
- Deep Learning
 - Training program
 - Cross-entropy loss
 - Adam optimizer with learning rate of 1e-4
 - ReLU activation function
 - He initialization
 - Mini-batch size of 8.
 - Architecture Search
 - Explore several configurations of models with different depths and layer size.

Feature Selection Results

Backwards selection complete steps with optimal feature set in bold

- MFCC are consistently included in the optimal feature subset indicating their importance for emotion recognition
- For all models, reducing the feature set improves performance

ML Models	Full Model	Backward Step step 1	step 2	step 3	step 4
LR	mfcc, mel, chrom, contrast, global	mfcc, mel, chrom, contrast	mfcc, mel, contrast	mfcc, mel	mfcc
SVM_{lin}	mfcc, mel, chrom, contrast, global	mfcc, mel, chrom, global	mfcc, mel, chrom	mfcc, mel	mfcc
SVM_{rbf}	mfcc, mel, chrom, contrast, global	mfcc, mel, chrom, global	mfcc, mel, global	mfcc, mel	mel
MLP	mfcc, mel, chrom, contrast, global	mfcc, mel, chrom, contrast	mfcc, mel, contrast	mfcc, mel	mfcc
1D CNN	mfcc, mel, chrom, contrast, global	mfcc, mel, chrom, contrast	mfcc, mel, chrom	mfcc, chrom	mfcc
2D CNN	mfcc, mel, chrom, contrast	mfcc, chrom, mel	mfcc, chrom	mfcc	N/A

Model Evaluation Results

1D Deep learning models easily overfit

- 1D CNN and MLP have near perfect training, suggesting overfitting
- LR outperforms both MLP and 1D CNN

2D CNN outperforms all models

• Suggests that time-series are crucial while global features are not

	Train				Validation			Test				
ML Model	accuracy	precision	f1 score	recall	accuracy	precision	f1 score	recall	accuracy	precision	f1 score	recall
LR	0.710	0.707	0.705	0.707	0.571	0.583	0.557	0.571	0.422	0.476	0.419	0.422
SVM_{lin}	0.798	0.800	0.795	0.798	0.595	0.612	0.589	0.595	0.378	0.431	0.365	0.378
SVM_{rbf}	0.979	0.979	0.979	0.979	0.611	0.611	0.605	0.611	0.400	0.428	0.385	0.400
MLP	0.997	0.997	0.997	0.997	0.738	0.748	0.736	0.738	0.417	0.425	0.384	0.384
1D-CNN	1	1	1	1	0.746	0.769	0.748	0.748	0.356	0.364	0.320	0.320
2D-CNN	0.951	0.952	0.951	0.951	0.714	0.762	0.712	0.714	0.489	0.479	0.463	0.489

Future Directions

1. Design time-series features for 1D models.

2. Implement cross-subject cross validation procedure.

- 3. Explore more modern feature selection methods.
- 4. Simplify the classification problem.

End

GitHub Repository

GitHub Repository for Source Codes

Multi-layer perceptron

Architecture:

- 5-layer fully connected
- Batch normalization with ReLU activation
- Dropout to reduce overfitting
- Realized increasing the size of middle hidden layers improves performance

Training:

- Cross-entropy loss
- Adam optimizer
- Learning rate of 1e-4
- He initialization
- Batch size of 8
- 80 epochs

1D CNN

• Architecture:

- 4 convolutional layers
- Max pooling layers
- ReLU activation
- Dropout to reduce overfitting
- Realized increasing the size of middle hidden layers improves performance

Training:

- Cross-entropy loss
- Adam optimizer
- Learning rate of 1e-4
- He initialization
- Batch size of 8
- 100 epochs

128@1x86

1@1x172

2D CNN

Architecture:

- 3 convolutional layers
- Average/max pooling layers
- ReLU activation
- Dropout to reduce overfitting
- Used rectangular filters instead of square to cover more time windows for each frequency feature step

• Training:

- Cross-entropy loss
- Adam optimizer
- Learning rate of 1e-4
- He initialization
- Batch size of 8
- X epochs

Add backward selection plot

