[Project #2] Deep Learning for Image Classification with EM Algorithms

[Team Name (#팀 07)]

	이름	학번	학년	E-mail
팀장	임성현	20180325	3	jfknfj920@naver.com
조원 1	박진혁	20180293	3	jh040597@naver.com
조원 2	박병수	20170283	3	byeongsu@soongsil.ac.kr

1 Introduction

영상 분류를 위해 deep learning 모델을 구축한다. 어떻게 feature space 를 관측 및 분석하여 정확도를 개선할 수 있는지 탐색하고 더 나은 deep learning model 구축 방법을 모색한다. 다음과 같은 방법으로 위 내용을 실행하였다.

- 1. Feature space visualization
 - PCA
 - GMM
- 2. xAl visualization
 - CAM

2 Main Structure

```
1 cnn = tf.keras.models.Sequential()
2 cnn.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same',
  input_shape=(32, 32, 3)))
cnn.add(tf.keras.layers.BatchNormalization())
  6 cnn.add(tf.keras.layers.Dropout(0.25))
 7 cnn.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same'))
8 cnn.add(tf.keras.layers.BatchNormalization())
10 cnn.add(tf.keras.layers.Dropout(0.25))
11 cnn.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same'))
12 cnn.add(tf.keras.layers.BatchNormalization())
14 cnn.add(tf.keras.layers.MaxPooling2D((2, 2)))
16 cnn.add(tf.keras.layers.Dropout(0.25))
17 cnn.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
18 cnn.add(tf.keras.layers.BatchNormalization())
20 cnn.add(tf.keras.layers.Dropout(0.25))
21 cnn.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
22 cnn.add(tf.keras.layers.BatchNormalization())
24 cnn.add(tf.keras.layers.Dropout(0.25))
25 cnn.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
26 cnn.add(tf.keras.layers.BatchNormalization())
28 cnn.add(tf.keras.layers.MaxPooling2D((2, 2)))
30 cnn.add(tf.keras.layers.Dropout(0.25))
31 cnn.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
32 cnn.add(tf.keras.layers.BatchNormalization())
34 cnn.add(tf.keras.layers.Dropout(0.25))
35 cnn.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
36 cnn.add(tf.keras.layers.BatchNormalization())
38 cnn.add(tf.keras.layers.Dropout(0.25))
39 cnn.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
40 cnn.add(tf.keras.layers.BatchNormalization())
42 cnn.add(tf.keras.layers.GlobalAveragePooling2D())
44 cnn.add(tf.keras.layers.Dropout(0.25))
45 cnn.add(tf.keras.layers.Dense(64, activation='relu'))
46 cnn.add(tf.keras.layers.Dense(10, activation='softmax'))
48 cnn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

그림 1 CNN 으로 구현한 Deep Learning model

- 입력 데이터로 (32, 32, 3) 인 이미지를 50,000 장 입력 받아 학습한다. 해당 CNN 모델 구성은 다음과 같다.
- 총 9 개의 convolution layer 로 구성된다.
 - 일반적으로 convolution filter(이하 kernel)의 수를 늘리는 것보다 깊게 convolution layer 를 구성하는 것이 성능이 좋다. 따라서, 하나의 layer 당 최대 128 개의 kernel 수를 갖도록 하였다.
- Convolution layer 를 통과하면 Batch normalization 하였다.
 - layer 가 깊어질수록 gradient vanishing problem 이 발생이 빈번하게 된다. 즉, covariate shift 현상이 발생하므로 batch normalization 을 하였다.
- Dropout 기법으로 규제하였으며 25%만큼 dropout 하였다.
- GAP 로 fully connected layer 를 대신하였다.
- loss function 으로 교차 엔트로피를 활용, activation function 으로 softmax 를 활용하였다.
 - True, False 로 분류하는 것이 아닌 10 가지의 범주로 분류하는 경우이므로 sigmoid 가 아닌 softmax 를 활용하였다.

3 Training the Network

1. epoch=100 모델

- epoch=100, Batch size=256, validation data=test data
- epoch 수가 높을수록 deep learning model 의 정확도가 높아지는 것은 자명하다. 다만, colab 을 통해 학습을 진행하는 특성상 여러번의 학습시 런타임이 중단되며 무엇보다도 학습 시간이 오래 걸린다. 우리는 정확도와 loss 에 관한 그래프를 통해 test data 에 대한 정확도가 epoch=30 을 넘어가는 순간부터 크게 유의미한 결과가 나오지 않는다는 것을 확인했다. 따라서, 지금 기술한 모델은 feature space visualization 시 dramatic 한 비교 관측을 위해 사용하나 그 외에는 아래에 기술된 방식으로 학습했다.

2. epoch=30 모델

- epoch=30, batch size=256, validation data=test data

- 위 모델과 epoch 수만 줄어들었으며 학습 시간을 절약하기 위해 학습하였다. 해당 모델로 convolution layer 별로 feature space 를 관측했다. Dramatic 한 비교를 위해 바로 위에 기술된 모델을 일부 사용하였다.

4 EXPERIMENTAL RESULTS

- 테스트 환경은 Colab 에서 진행되었으며 TensorFlow 라이브러리를 사용하였다.

1. 정확도 비교

- conv 는 convolution layer 를 의미하며 이를 토대로 수치를 비교하였다.

Model	Layer	Trair	n data	Test data		
		Loss	Accuracy	Loss	Accuracy	
epoch=30	conv_1	1.4811	0.4538	1.4939	0.4469	
	conv_2	1.3089	0.5346	1.3432	0.5271	
	conv_3	0.9907	0.6471	1.0454	0.6349	
	conv_4	0.6528	0.7689	0.7434	0.7427	
	conv_5	0.4635	0.8390	0.5787	0.8020	
	conv_6	0.3846	0.8661	0.5186	0.8257	
	conv_7	0.3217	0.8868	0.4886	0.8323	
	conv_8	0.2589	0.9075	0.4646	0.8442	
	conv_9	0.1750	0.9401	0.4336	0.8641	
epoch=100	conv_9	0.0278	0.9933	0.4117	0.8836	

표 1 train data 와 test data 에 따른 loss 와 정확도 비교

 Train data 를 예측한 경우 conv 가 깊어질수록 정확도가 향상된 모습을 보인다. 물론 test data 의 경우도 이와 같으나 conv_6 부터 정확도가 향상되는 폭이 줄어들게 되며 epoch 를 높여도 성능 향상폭이 train data 에 비해 작다.

2. F1-score 비교

- 같은 convolution layer 일 때, epoch 가 다른 CNN 모델을 비교하였다.

Conv 9 for x train Classification Report:					CNN epoch=100	for x_train Classification Report:			
CONV_9 101 X_	precision		f1-score	support		precision	recall	f1-score	support
0	0.95	0.93	0.94	5000	0	0.99	0.99	0.99	5000
1	0.96	0.99	0.94	5000	1	1.00	1.00	1.00	5000
					2	0.99	0.99	0.99	5000
2	0.96	0.89	0.93	5000	3	0.99	0.98	0.98	5000
3	0.87	0.88	0.87	5000	4	0.99	0.99	0.99	5000
4	0.96	0.92	0.94	5000	5	0.98	0.99	0.98	5000
5	0.89	0.90	0.89	5000	6	1.00	1.00	1.00	5000
6	0.95	0.97	0.96	5000	7	0.99	1.00	1.00	5000
7	0.96	0.97	0.96	5000	,				
8	0.92	0.99	0.96	5000	8	1.00	1.00	1.00	5000
9	0.98	0.96	0.97	5000	9	1.00	1.00	1.00	5000
accuracy			0.94	50000	accuracy			0.99	50000
macro avg	0.94	0.94	0.94	50000	macro avg	0.99	0.99	0.99	50000
weighted avg	0.94	0.94	0.94	50000	weighted avg	0.99	0.99	0.99	50000

그림 2 (좌) epoch=30 모델의 train data 분류 리포트, (우) epoch=100 모델의 train data 분류 리포트

- epoch 수가 높을수록 f1-score 가 높다. 이는 feature 간 분리가 잘 되었음을 의미하며 정확도가 향상되는 지표로 파악할 수 있다.
- 특정 범주(2:새, 3:고양이, 5:개)가 상대적으로 f1-score 가 낮으며 방향성을 고려한 data augmentation 이 고려된다.

Conv_9 for x_	test Classifi	cation Re	port:						
	precision	recall	f1-score	support	CNN epoch=100	for x_test	Classifica	tion Report	t:
						precision	recall	f1-score	support
0	0.88	0.85	0.86	1000					
1	0.89	0.96	0.93	1000	0	0.88	0.85	0.86	1000
2	0.89	0.76	0.82	1000	1	0.89	0.96	0.93	1000
3	0.74	0.76	0.75	1000	2	0.89	0.76	0.82	1000
4	0.87	0.83	0.85	1000	3	0.74	0.76	0.75	1000
5	0.81	0.81	0.81	1000	4	0.87	0.83	0.85	1000
6	0.87	0.91	0.89	1000	5	0.81	0.81	0.81	1000
7	0.87	0.91	0.89	1000	6	0.87	0.91	0.89	1000
,					7	0.91	0.91	0.91	1000
8	0.86	0.96	0.91	1000	8	0.86	0.96	0.91	1000
9	0.93	0.89	0.91	1000	9	0.93	0.89	0.91	1000
accuracy			0.86	10000	accuracy			0.86	10000
macro avg	0.86	0.86	0.86	10000	macro avq	0.86	0.86	0.86	10000
weighted avg	0.86	0.86	0.86	10000	weighted avg	0.86	0.86	0.86	10000

그림 3 (좌) epoch=30 모델의 test data 분류 리포트, (우) epoch=100 모델의 test data 분류 리포트

- f1-score1 가 epoch 수와 관계없이 변동하지 않았다. Epoch 수를 늘려 모델을 개선하는 것보다 data preprocessing, data augmentation 또는 특정 범주(2, 3, 5)에 대한 규제를 가해야 f1-score 가 향상될 것으로 보인다.
- 3. Feature space visualization: PCA, GMM

그림 4 (좌) epoch=100 모델의 train data PCA, (우) epoch=100 모델의 test data PCA

- Train data 의 경우 PCA 을 통해 각 feature 들이 잘 분리된 모습을 확인할 수 있다. 단, Test data 의 경우 train data 대비 분리가 덜 된 모습을 관측할 수 있었다.

그림 5 (좌) epoch=100 모델의 train data GMM, (우) epoch=100 모델의 test data GMM

- Train data 의 경우 GMM 을 통해 각 feature 들이 잘 분리 되었다. 다만, Test data 의 경우 특정 범주(9)가 뒤덮여 있는데 PCA 를 통해 관측해도 feature 들이 겹쳐 있는 모습을 보아 모델 구조적으로 convolution layer 를 추가하는 식의 개선을 꾀해야 할 필요가 있다.

4. xAI visualization: CAM

그림 6 임의의 데이터에 대한 CAM 가시화

- 총 10 개의 범주에 맞춰 임의의 데이터에 대해 CAM 가시화를 하였다.
- 이 중에서 고양이, 사슴, 배, 트럭의 경우 분류를 제대로 하지 못했다.
 - 고양이의 경우 개라 분류하였다. F1-score 가 낮은 범주지만, 2 순위로 고양이라 분류한 것을 보아 개랑 이목구비(털, 귀 등)가 유사한 동물이므로 방향성을 고려한 data augmentation 시 정확도 향상이 기대된다.
 - 사슴의 경우 새라 분류하였다. 3 순위로 사슴이라 분류하였는데, 새로 분류한 경우 CAM 결과가 사슴이 아닌 사슴주변 수풀을 보고 있었다. 데이터 입력 시배경(수풀)에 대한 전처리가 가해지면 정확도 향상이 기대된다.
 - 배의 경우 자동차라 분류하였다. 2 순위로 배라 분류하였다. 배의 CAM 결과를 보면 인공지능이 배의 중심보다는 배의 주변을 관측하는 것을 확인할 수 있었다.
 - 트럭의 경우 비행기라 분류하였다. 2 순위로 트럭으로 분류하였는데, CAM 결과만 보았을 때, 트럭 중심을 보았으나 예측 점수가 트럭이 2.0701, 비행기가 2.3425 로 약간 근소하여 분류를 제대로 하지 못하였다. 위에서 언급한 배를 자동차로 분류한 것과 다른 케이스이나 동물이 아닌 사람이 만든 기계로 잘못 분류했다는 것이 공통점으로 확인됐다.

5 DISCUSSION AND CONCLUSION

전반적으로 우리가 만든 모델이 수치나 그래프를 봤을 때 만족스러웠다. 하지만, CAM을 통해 이미지 분류를 해보니 데이터가 10 개라는 것을 감안해도 잘 분류한다는 느낌은 아니었다. 하지만, 이번 프로젝트를 통해 xAI와 인공지능의 동작 원리에 대해 알 수 있었고 성장했다는 것에 의의를 두었다.