# Factorization in Deep Neural Networks - Part 2



# Course organisation

#### Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- Pruning,
- 4 Factorization,
- Fact. pt.2 : Operators and Architectures,
- 6 Distillation,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

# Course organisation

#### Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- Pruning,
- 4 Factorization,
- **5** Fact. pt.2 : Operators and Architectures,
- 6 Distillation,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

## Complexity of 2D Convolutions

 $N_{ops} = k.l.C_{in}C_{out}$  with kernel size (k,l),  $C_{in}$  input feature maps and  $C_{out}$  output feature maps.

To reduce the number of parameters, we can:

- Reduce the size of kernels
- Reduce the number of feature maps

Two strategies :

- Decompose kernels
- Depthwise convolutions

## Complexity of 2D Convolutions

 $N_{ops} = k.l.C_{in}C_{out}$  with kernel size (k,l),  $C_{in}$  input feature maps and  $C_{out}$  output feature maps.

To reduce the number of parameters, we can:

- Reduce the size of kernels
- Reduce the number of feature maps

## Two strategies :

- Decompose kernels
- Depthwise convolutions

## Complexity of 2D Convolutions

 $N_{ops} = k.l.C_{in}C_{out}$  with kernel size (k,l),  $C_{in}$  input feature maps and  $C_{out}$  output feature maps.

To reduce the number of parameters, we can:

- Reduce the size of kernels
- Reduce the number of feature maps

Two strategies:

- Decompose kernels
- Depthwise convolutions

## Complexity of 2D Convolutions

 $N_{ops} = k.l.C_{in}C_{out}$  with kernel size (k,l),  $C_{in}$  input feature maps and  $C_{out}$  output feature maps.

## Decomposing kernels

Assuming  $C_{in} = C_{out}$ , decompose (k, l) kernel by (k, 1) and (1, l):  $N_{ops} = k.1. C_{in}^2 + 1.l. C_{in}^2 = (l + k). C_{in}^2$  with kernel size (k, l),  $C_{in}$  input and out feature maps.

# SqueezeNet

#### Introducing the Fire Module



landola et al. 2016, https://arxiv.org/abs/1602.07360

# Depthwise convolutions

# Instead of learning parameters that recombine all input feature maps to compute each feature maps,

use "groups" of D input feature maps to compute  $DC_{in}$  output feature maps.

## Complexity of a Depthwise 2D Convolution

 $N_{ops} = k.l.C_{in}.D.C_{in}$  with kernel size (k,l),  $C_{in}$  feature maps and D is Depth.

# Depthwise convolutions

Instead of learning parameters that recombine all input feature maps to compute each feature maps,

use "groups" of D input feature maps to compute  $DC_{in}$  output feature maps.

## Complexity of a Depthwise 2D Convolution

 $N_{ops} = k.l.C_{in}.D.C_{in}$ 

with kernel size (k, l),  $C_{in}$  feature maps and D is Depth.

## MobileNet

#### MobileNetV1



#### MobileNetV2



 $\tt https://arxiv.org/abs/1704.04861 \ and \ https://arxiv.org/abs/1801.04381$ 

#### **MobileNet**

## Accuracy obtained on ImageNet

| Network     | Accuracy(%) | Params (M) |
|-------------|-------------|------------|
| SqueezeNet  | 57.5        | 1.24       |
| MobileNetV1 | 70.6        | 4.20       |
| MobileNetV2 | 72.0        | 3.40       |

 $\verb|https://arxiv.org/abs/1704.04861| and \verb|https://arxiv.org/abs/1801.04381|$ 

#### Alternatives to Convolution

#### Introducing Shift Attention Layer



Figure 1: Overview of the proposed method: we depict here the computation for a single output feature map d, considering a 1d convolution and its associated shift version. Panel (1) represents a standard convolutional operation: the weight filter  $\mathbf{W}_{d,\cdot,\cdot}$  containing SC weights is moved along the spatial dimension (L) of the input to produce each output in  $\mathbf{Y}_d$ . In panel (2), we depict the attention tensor  $\mathbf{A}$  on top of the weight filter: the darker the cell, the most important the corresponding weight has been identified to be. At the end of the training process,  $\mathbf{A}$  should contain only binary values with a single 1 per slice  $\mathbf{A}_{d,c,\cdot}$ . In panel (3), we depict the corresponding obtained shift layer: for each slice along the input feature maps (C), the cell with the highest attention is kept and the others are disregarded. As a consequence, the initial convolution with a kernel size S has been replaced by a convolution with a kernel size 1 on a shifted version of the input  $\mathbf{X}$ . As such, the resulting operation in panel (3) is exactly the same as the shift layer introduced in  $\mathbf{W}$  u et al. [2017], but here the shifts have been trained instead of being arbitrarily predetermined.

#### Alternatives to Convolution



Figure 7: Evolution of accuracy when applying compression methods on different DNN architectures trained on CIFAR10.

Hacene et al. 2019, https://arxiv.org/abs/1905.12300