Information chiffrée

O. FINOT

Lycée S^t Vincent

10 octobre 2018

Objectifs

Être capable :

- de reconnaître des pourcentages d'évolution : augmentations et baisses successives;
- d'additionner et de comparer des pourcentages : pourcentages relatifs à un même ensemble, comparaison de deux pourcentages relatifs à deux ensembles de référence distincts;
- de déterminer et d'analyser des pourcentages de pourcentages;
- 4. d'analyser des des variations d'un pourcentage;
- d'apprendre à distinguer les pourcentages décrivant le rapport d'une partie au tout des pourcentages d'évolution (augmentation ou baisse).

I. Effectifs et proportions (Activité : TP 1 page 8)

I. Effectifs et proportions (Activité : TP 1 page 8)

1) Expression d'une proportion à l'aide d'un pourcentage

1. a Proportion des "pratiquants de roller" parmi les personnes interrogées :

- 1. a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$

- 1. a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ $(10^{-4} = 0,0001 = \frac{1}{10000} = \frac{1}{104})$

- 1. a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ $(10^{-4} = 0,0001 = \frac{1}{10000} = \frac{1}{10^4})$
 - \blacktriangleright Sous la forme d'un pourcentage arrondi à $10^{-2}\approx 8,71\%$

- a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ $(10^{-4} = 0,0001 = \frac{1}{10000} = \frac{1}{104})$
 - ightharpoonup Sous la forme d'un pourcentage arrondi à $10^{-2} \approx 8,71\%$

A retenir : Proportion

La proportion ou fréquence d'une partie A d'une population E, est le rapport p des effectifs de A et de E :

$$p = \frac{n_A}{n_E} \, \left(\frac{EffectifdeA}{EffectifdeE} \right)$$

- a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ $(10^{-4} = 0,0001 = \frac{1}{10000} = \frac{1}{104})$
 - ▶ Sous la forme d'un pourcentage arrondi à $10^{-2} \approx 8,71\%$

A retenir : Proportion

La proportion ou fréquence d'une partie A d'une population E, est le rapport p des effectifs de A et de E :

$$p = \frac{n_A}{n_E} \left(\frac{EffectifdeA}{EffectifdeE} \right)$$

b Pourcentage de femmes parmi ces "pratiquants du roller" :

- a Proportion des "pratiquants de roller" parmi les personnes interrogées :
 - Sous forme de fraction : $\frac{1192}{13685}$
 - Sous forme d'un nombre décimal arrondi à 10^{-4} : $\approx 0,0871$ $(10^{-4} = 0,0001 = \frac{1}{10000} = \frac{1}{104})$
 - ▶ Sous la forme d'un pourcentage arrondi à $10^{-2} \approx 8.71\%$

A retenir: Proportion

La proportion ou fréquence d'une partie A d'une population E, est le rapport p des effectifs de A et de E:

$$p = \frac{n_A}{n_E} \left(\frac{EffectifdeA}{EffectifdeE} \right)$$

b Pourcentage de femmes parmi ces "pratiquants du roller":

$$\frac{657}{1192} \times 100 = 55,117, soit environ 55,12\%$$

$$\frac{521 \times 19}{100} = 521 \times 0, 19 = 98, 99$$

Soit environ 99 "16-25 ans".

$$\frac{521\times19}{100}=521\times0,19=98,99$$

Soit environ 99 "16-25 ans".

b Soit N le nombre des "12-24" ans interrogées. On a :

$$\frac{521 \times 19}{100} = 521 \times 0, 19 = 98, 99$$

Soit environ 99 "16-25 ans".

b Soit N le nombre des "12-24" ans interrogées. On a :

$$N \times \frac{43,15}{100} = 356$$

$$N = \frac{356 \times 100}{43,15} = 825,02$$

Soit environ 825 "12-24 ans".

3. Pourcentage de "porteurs de casque" parmi les "pratiquants de roller" :

3. Pourcentage de "porteurs de casque" parmi les "pratiquants de roller" :

$$657 \times 0,088 + 535 \times 0,144 = 134,856 = 135$$
 porteurs de casque.

3. Pourcentage de "porteurs de casque" parmi les "pratiquants de roller" :

$$657 \times 0,088 + 535 \times 0,144 = 134,856 = 135$$
 porteurs de casque.

$$\frac{135}{1192} = 0,11325 \approx 11,33\%$$

Expression d'une proportion à l'aide d'un pourcentage Comparaison de deux pourcentages, pourcentages de pourcentages Additionner et comparer des pourcentages

2) Comparaison de deux pourcentages, pourcentages de pourcentages

1. a

$$\frac{73}{149} \approx 0,4899$$
, soit 48,99 %.

Il y a 48,99 % d'hommes parmi les victimes d'accidents de roller de "35 ans et plus".

$$\frac{73}{149} \approx 0.4899$$
, soit 48,99 %.

Il y a 48,99 % d'hommes parmi les victimes d'accidents de roller de "35 ans et plus".

b

$$\frac{343}{2075} \approx 0.1653$$
, soit 16,53 %.

16,53~% des victimes d'accidents de roller ont "9 ans et moins".

$$\frac{73}{149} \approx 0.4899$$
, soit 48,99 %.

Il y a 48,99~% d'hommes parmi les victimes d'accidents de roller de "35 ans et plus".

b

$$\frac{343}{2075} \approx 0.1653$$
, soit 16,53 %.

16,53 % des victimes d'accidents de roller ont "9 ans et moins".

C

$$\frac{312}{745} \approx 0.4188$$
, soit 41,88 %.

Il y a 41,88 % de "10 à 14 ans" parmi l'ensemble des femmes victimes d'un accident de roller.

1. a

$$\frac{73}{149} \approx 0.4899$$
, soit 48,99 %.

II y a 48,99 % d'hommes parmi les victimes d'accidents de roller de "35 ans et plus".

b

$$\frac{343}{2075} \approx 0.1653$$
, soit 16,53 %.

16,53~% des victimes d'accidents de roller ont "9 ans et moins".

C

$$\frac{312}{745} \approx 0,4188$$
, soit 41,88 %.

Il y a 41,88 % de "10 à 14 ans" parmi l'ensemble des femmes victimes d'un accident de roller.

d

$$\frac{1330}{2075} \approx 0.6410$$
, soit 64,10 %.

64,10 % des accidents de roller concernent des hommes.

2. a

$$\frac{174}{1330}\approx 0{,}1308, \text{ soit } 13{,}08 \text{ \%}.$$

 $13{,}08~\%$ des hommes victimes d'accidents de roller ont "de 20 à 34 ans".

$$\frac{174}{1330} \approx 0.1308$$
, soit 13.08 %.

13,08 % des hommes victimes d'accidents de roller ont "de 20 à 34 ans".

b

$$\frac{127}{745}\approx 0{,}1705, \text{ soit } 17{,}05 \text{ \%}.$$

17,05~% des femmes victimes d'accidents de la route ont "de 20~à 34~ans".

$$\frac{174}{1330} \approx 0.1308$$
, soit 13,08 %.

13,08~% des hommes victimes d'accidents de roller ont "de 20 à 34~ans".

$$\frac{127}{745} \approx 0.1705$$
, soit 17,05 %.

17,05~% des femmes victimes d'accidents de la route ont "de $20~\grave{a}~34~{\rm ans}$ ".

c Dans les effectifs, il y a plus d'hommes que de femmes de 20 à 34 ans, mais en pourcentage il y a plus de femmes. Il y a moins de femmes pratiquantes du roller que d'hommes mais en proportion elles ont plus d'accidents.

$$p_1 = \frac{47}{276} \approx 0.1703$$
, soit 17,03 %.

$$p_1 = \frac{47}{276} \approx 0,1703$$
, soit 17,03 %.

b Proportion p_2 des "15 à 19 ans" parmi les accidentés :

$$p_2 = \frac{276}{2075} \approx 0,1330$$
, soit 13,30 %.

$$p_1 = \frac{47}{276} \approx 0,1703$$
, soit 17,03 %.

b Proportion p_2 des "15 à 19 ans" parmi les accidentés :

$$p_2 = \frac{276}{2075} \approx 0,1330$$
, soit 13,30 %.

c Proportion p_3 des femmes de "15 à 19 ans" parmi les accidentés :

$$p_3 = \frac{47}{2075} \approx 0.0227$$
, soit 2,27 %.

$$p_1 = \frac{47}{276} \approx 0.1703$$
, soit 17,03 %.

b Proportion p_2 des "15 à 19 ans" parmi les accidentés :

$$p_2 = \frac{276}{2075} \approx 0,1330$$
, soit 13,30 %.

c Proportion p_3 des femmes de "15 à 19 ans" parmi les accidentés :

$$p_3 = \frac{47}{2075} \approx 0.0227$$
, soit 2,27 %.

Remarque:

$$\frac{47}{276} \times \frac{276}{2075} = \frac{47}{2075}$$
, donc $p_1 \times p_2 = p_3$.

On peut faire : 17,03 % de 13,30 %

$$\frac{17,03}{100} \times \frac{13,30}{100} = 0,022\,649, \ \textit{soit environ} \ 2,26 \ \%.$$

Expression d'une proportion à l'aide d'un pourcentage Comparaison de deux pourcentages, pourcentages de pourcentages Additionner et comparer des pourcentages

3) Additionner et comparer des pourcentages

Expression d'une proportion à l'aide d'un pourcentage Comparaison de deux pourcentages, pourcentages de pourcentages Additionner et comparer des pourcentages

1. Pourcentage d'enfants en surpoids dans les zones rurales :

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87,2 = 12,8$$
 soit $12,8\%$.

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87,2 = 12,8$$
 soit $12,8\%$.

2. Pourcentage d'enfants obèses :

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87,2 = 12,8$$
 soit $12,8\%$.

2. Pourcentage d'enfants obèses :

$$12.8 - 9.2 = 3.6$$
 soit 3.6% .

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87,2 = 12,8$$
 soit $12,8\%$.

2. Pourcentage d'enfants obèses :

$$12.8 - 9.2 = 3.6$$
 soit 3.6% .

3. a Dans l'agglomération parisienne, il y a 5 % d'enfants obèses et 16,6 % en surpoids ; la proportion d'enfants obèses parmi ceux en surpoids est donc égale à $\frac{5}{16,6}=0,301\%$, soit environ un peu plus de 3 enfants souffrant d'obésité pour 10 en surpoids. L'affirmation est donc juste.

1. Pourcentage d'enfants en surpoids dans les zones rurales :

$$100 - 87,2 = 12,8$$
 soit $12,8\%$.

2. Pourcentage d'enfants obèses :

$$12.8 - 9.2 = 3.6$$
 soit 3.6% .

- 3. a Dans l'agglomération parisienne, il y a 5 % d'enfants obèses et 16,6 % en surpoids ; la proportion d'enfants obèses parmi ceux en surpoids est donc égale à $\frac{5}{16,6}=0,301\%$, soit environ un peu plus de 3 enfants souffrant d'obésité pour 10 en surpoids. L'affirmation est donc juste.
 - b Les effectifs pour les différents types d'agglomération ne sont pas connus. On ne peut donc rien affirmer concernant le nombre d'enfants en surpoids.

II.Pourcentage d'évolution, coefficient multiplicateur (TP

II.Pourcentage d'évolution, coefficient multiplicateur (TP

1) Variation relative (taux d'évolution)

$$101667 - 93380 = 8287$$

 \rightarrow Soit une hausse de 8287 médecins.

$$101667 - 93380 = 8287$$

- \rightarrow Soit une hausse de 8287 médecins.
- b Variation relative (ou taux d'évolution) du nombre de généralistes entre 1990 et 2009 :

$$101667 - 93380 = 8287$$

- \rightarrow Soit une hausse de 8287 médecins.
- b Variation relative (ou taux d'évolution) du nombre de généralistes entre 1990 et 2009 :

$$\begin{array}{ccc} & \text{en } 1990 & \text{en } 2009 \\ 93\,380 \,\,\text{m\'edecins} & \rightarrow & 101\,667 \,\,\text{m\'edecins} \\ \\ & & & \\ \hline & & \\$$

 \rightarrow Soit une hausse d'environ 8,87 %.

$$101667 - 93380 = 8287$$

- → Soit une hausse de 8287 médecins.
- b Variation relative (ou taux d'évolution) du nombre de généralistes entre 1990 et 2009 :

en 1990 en 2009
93 380 médecins
$$\rightarrow$$
 101 667 médecins

$$\frac{(101 667 - 93 380)}{93 380} \times 100 = 8,874...$$

- \rightarrow Soit une hausse d'environ 8,87 %.
- c Entre 1990 et 2009 le nombre de médecins généralistes en France à augmenté de 8,87 %.

Remarque

$$\begin{array}{rcl}
1,0887 & = & 1 + 0,0887 \\
 & = & 1 + \frac{8,87}{100}
\end{array}$$

Ainsi pour augmenter une grandeur de 8,87 % il suffit de multiplier cette grandeur par $1+\frac{8.87}{100}$ soit 1,0887. Ce nombre s'appelle le coefficient multiplicateur associé à une augmentation de 8,87 %.

$$99670 - 101667 = -1997$$

Soit une baisse de 1997 médecins.

$$99670 - 101667 = -1997$$

Soit une baisse de 1997 médecins.

b Taux d'évolution correspondant :

$$99670 - 101667 = -1997$$

Soit une baisse de 1997 médecins.

b Taux d'évolution correspondant :

$$\frac{(99\,670-101\,667)}{101\,667}\times 100\approx --1{,}96$$

Soit une baisse d'environ -1,96 %.

$$99670 - 101667 = -1997$$

Soit une baisse de 1997 médecins.

b Taux d'évolution correspondant :

$$\frac{(99\,670-101\,667)}{101\,667}\times 100\approx --1{,}96$$

Soit une baisse d'environ -1,96 %.

c Entre 2009 et 2015, le nombre de médecins généralistes en France devrait baisser d'environ 1,96 %.

Remarque

en 2009 - 1,96 % en 2015
$$\longrightarrow$$
 101 667 médecins \times 0,9804 99 670 médecins

On a :
$$\frac{99670}{101667} \approx 0,9804$$
. Et $1 - \frac{1,96}{100} = 0,9804$

Pour diminuer une grandeur de 1,96 %, il suffit de multiplier cette grandeur par $1-\frac{1,96}{100}$, soit 0,9804. 0,9804 est le **coefficient multiplicateur** associé à une baisse de 1,96 %.

À retenir : Taux d'évolution et coefficient multiplicateur

Le taux d'évolution t (ou variation relative) d'une quantité passant de la valeur y_1 à une valeur y_2 est égal à :

$$t = rac{y_2 - y_1}{y_1} \left(rac{V_{ extit{arriv\'ee}} - V_{ extit{d\'epart}}}{V_{ extit{d\'epart}}}
ight)$$

Remarque : Un taux d'évolution positif traduit une hausse, un taux d'évolution négatif traduit une baisse.

À retenir : Taux d'évolution et coefficient multiplicateur (suite)

Coefficients multiplicateurs :

- Augmenter une grandeur de t% revient à multiplier cette grandeur par $\left(1 + \frac{t}{100}\right)$.
- Exemple : $+5\% = \times 1,05$; $+20\% = \times 1,20$
- **Diminuer** une grandeur de t% revient à multiplier cette grandeur par $\left(1 \frac{t}{100}\right)$.
- ► Exemple : $-12\% = \times 0.88$; $-3\% = \times 0.97$
- ▶ Dans le cas d'une <u>hausse</u>, le coefficient multiplicateur est <u>supérieur à 1</u>.
- ▶ Dans le cas d'une <u>baisse</u>, le coefficient multiplicateur est inférieur à 1.

en 1990
$$+$$
 23,63 % en 2009 \longrightarrow ? médecins

en 1990
$$+$$
 23,63 % en 2009 \longrightarrow ? médecins

D'où : $48\,040 \times 1,2363 = 59\,391,8...$, soit environ 52 392 médecins.

en 1990
$$+$$
 23,63 % en 2009 \longrightarrow 48 040 médecins ? médecins

D'où : $48\,040 \times 1,2363 = 59\,391,8...$, soit environ 52 392 médecins.

4. Nombre de médecins des spécialités chirurgicales en 2015 :

en 1990
$$+$$
 23,63 % en 2009 \longrightarrow 48 040 médecins ? médecins

D'où : $48\,040 \times 1,2363 = 59\,391,8...$, soit environ 52 392 médecins.

4. Nombre de médecins des spécialités chirurgicales en 2015 :

en 2009	- 8,22 %	en 2015
	\rightarrow	
25 163 médecins		? médecins

en 1990
$$+$$
 23,63 % en 2009 \longrightarrow ? médecins

D'où : $48\,040 \times 1,2363 = 59\,391,8...$, soit environ 52 392 médecins.

4. Nombre de médecins des spécialités chirurgicales en 2015 :

en 2009 - 8,22 % en 2015
$$\longrightarrow$$
 25 163 médecins ? médecins

D'où : $25163 \times 0,9178 = 23094,60...$, soit environ 23095 médecins.

5. Nombre de médecins des spécialités chirurgicales en 1990 :

5. Nombre de médecins des spécialités chirurgicales en 1990 :

en 1990
$$+$$
 17,21 % en 2009 \longrightarrow ? médecins \longrightarrow 25163 médecins

5. Nombre de médecins des spécialités chirurgicales en 1990 :

en 1990
$$+$$
 17,21 % en 2009 \longrightarrow ? médecins \longleftrightarrow 25163 médecins

D'où : $25163 \div 1,1721 = 21468,30475...$, soit environ 21468 médecins.

2) Évolutions successives, évolution réciproque)

A. Évolutions successives

1)

1)

2)

$$\begin{vmatrix} P_2 & +30 \% & P_3 \\ \longrightarrow & \\ 20 \$ & \times 1,30 & ? \$ \end{vmatrix} | P_2 = 20 \times 1,30 = 26, \text{ soit } 26 \$.$$

1)

$$egin{array}{c|cccc} P_1 & +25 \% & P_2 \\ & \longrightarrow & \\ 16 \$ & \times 1,25 & ? \$ \end{array} \hspace{0.2cm} P_2 = 16 \times 1,25 = 20, \ \text{soit 20 \$} \; .$$

2)

3)

$$k = \frac{26}{16} = 1,625$$

$$k = \frac{26}{16} = 1,625$$

On peut aussi calculer indépendamment des prix : $1,25 \times 1,30 = 1,625$, soit une hausse globale de 62,5 %.

$$k = \frac{26}{16} = 1,625$$

On peut aussi calculer indépendamment des prix : $1,25 \times 1,30 = 1,625$, soit une hausse globale de 62,5 %.

Remarque

Le pourcentage de hausse globale 62,5 % n'est pas égal à la somme des deux pourcentages de hausse successives 25 % et 30 %, car ces deux pourcentages ne s'appliquent pas sur le même prix, donc ne s'additionnent pas.

$$k = \frac{26}{16} = 1,625$$

On peut aussi calculer indépendamment des prix : $1,25 \times 1,30 = 1,625$, soit une hausse globale de 62,5 %.

Remarque

Le pourcentage de hausse globale 62.5~% n'est pas égal à la somme des deux pourcentages de hausse successives 25~% et 30~%, car ces deux pourcentages ne s'appliquent pas sur le même prix, donc ne s'additionnent pas.

À retenir : Évolutions successives

Deux évolutions (hausse ou baisse) successives de coefficients multiplicateurs c et c' correspondent une évolution globale (hausse ou baisse) de $c \times c'$ (on multiplie).

1. a.

1. a.

b. On constate que la baisse de 25 % n'annule pas la hausse de 25 %.

1. a

b. On constate que la baisse de 25 % n'annule pas la hausse de 25 %.

Remarque

$$P_3' = 16 \times 1,25 \times 0,75$$

 $P_3' = 16 \times 0,9375$
On a $0,9375 \neq 1$

2. a.

$$t = \frac{16 - 20}{20}$$

$$t = -0.2$$

Une baisse de 20 % annule l'effet d'une hausse de 50 %.

2. a.

$$t = \frac{16 - 20}{20}$$

$$t = -0.2$$

Une baisse de 20 % annule l'effet d'une hausse de 50 %.

Remarque

$$1,25 \times 0,8 = 1$$

2. a.

$$t = \frac{16 - 20}{20}$$

$$t = -0.2$$

Une baisse de 20 % annule l'effet d'une hausse de 50 %.

Remarque

$$1,25 \times 0,8 = 1$$

b.

$$P'_1$$
 +25 % P'_2 -20 % P'_3
 \rightarrow \rightarrow \rightarrow 40 \$ ×1,25 50 \$ ×0,8 40 \$

Oui une baisse de 20 % compense une augmentation de 25 % pour un prix de départ de 40 \$.

À retenir : Évolution réciproque

Deux évolutions (hausse et baisse) successives sont réciproques si et seulement si leur

coefficients multiplicateurs c et c' sont inverses : $c \times c' = 1$

4. On recherche le coefficient multiplicateur c qui annule l'augmentation de 50 % :

$$1,5 \times c = 1$$

$$c = \frac{1}{1,5}$$

$$c \approx 0,6667$$

Une baisse de 66,67 % compense une hausse de 50 %.