Exercise 8.1

Use elimination procedure 9.11 to convert this e-NFA into an equivalent regular expression.

 ϵ (a(ba)*d | bba*c(ba)*d) (ea*c(ba)*d)* ϵ

Exercise 8.2 - obligatory (8 points)

Convert this e-NFA into an equivalent regular expression.

Show all important intermediate steps, so that the approach can be understood. Hint: In order to keep notation clear, you can introduce abbreviations for complex regular expressions.

Exercise 8.3 - obligatory (4 points)

a) Specify an e-NFA that accepts the language of the following Chomsky type-3 grammar:

$$S \rightarrow bA$$
 | aS

$$A \rightarrow bB$$

| aA

$$\mathbb{B} \to \mathbb{c} \mathbb{S}$$

b) Specify a Chomsky type-3 grammar that generates the language of the following DFA:

$$z0 = S$$
, $z1 = A$, $z2 = B$, $z3 = C$

$$\mathbb{S} \to aA$$

$$A \rightarrow aS$$

$$B \rightarrow aC$$

$S = c^p$	D	npind	g lem	ma													
et p = x	(yz Pur																
case 2:	xy^2z	εĽ,k	out it	conta	ains i	more	a's tl	าan b)'s *	٠	٠	٠	٠	٠	٠	٠	
P=7;.S	= cccc	ccca	aaaa	aa	٠							٠					
case1:	y is in t	he c	part					×y	² -Z								
c ccc	caaaa	aaa	٠	٠	٠	° Co	ase 1	CC	CCC	-ccc	<·	Caao	199	ain	٠	٠	
case2:	y is, in t	he b	part						11. 2	7		•					
ccccc	caa aa	aa a															
case2:	y is in t	he a	and l	o part	ts	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	
cccc c	caa aa	aaa							٠								
	: {						k uε	Σ*, k	≥ 1} r	egula	ır *	٠	٠	٠	٠	٠	
aaa	a* (al	bc)*	-	(abo	:)*(b	$c)^+$			٠			•				•	
L= { 8	(3, {a}	267	, 8 < 3	<i>{ab</i>	3,50	c 3	٠	٠	•	٠	•	•	٠	٠	٠	٠	
• 9	bc3 1	abc	3.3		•	•			٠	•		•				•	
	,		' /														
•		•	•	•	•	·	•		٠	•	•	•	•		•	•	
•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	
	2.4																
Voroic	<u> </u>	-	-	-	-	-	-	-	-	-	-			-	-		
a) (diffi •	{ a^nbo cult!) P	rove	-		lage	L is n	not re	gular	Hint	: Use	the	pump	ing l	emm •	a.		
.et L = ı) (diffi	{ a^nbo cult!) P	rove	-		Jage	L is n	ot re	gular	·. Hint	: Use	the	pump	ing l	emm •	a.		
et L = n) (diffi	{ a^nbocult!) P	Prove	that	langu •		•			•	•	•	•		•	•	•	
et L = n) (diffi	{ a^nbo cult!) P	Prove	that	langu •		. Xy	· 1 ² Z	٠	•	•	•	pump		•	•	•	
et L = ({ a^nbocult!) P	Prove	that	langu •		. Xy	· 1 ² Z	٠	•	•	•	•		•	•		
et L = a^	{ a^nbccl	Prove	that	langu		. Xy	122	٠	i a a a	- G G C		•		•	•		
et L = a^	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	•	- G G C		•		•	•	•	
et L = (a) (diffi	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	i a a a	- G G C		•		•	•	•	
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	i a a a	- G G C		•		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = () (diffi	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·	- G G C		abcc		•	•		
et L = () (diffi	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
et L = and	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
Let L = a) (diffi	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
Let L = a) (diffi	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		
Let L = a) (diffi a^ aoaa aoaa	{ a^nbccl	Prove	that	langu	• 90	. Xy	122	٠	· · · · · · · · · · · · · · · · · · ·			abcc		•	•		

```
Exercise 8.7 - obligatory (4 points)
A push-down automaton P = (Z, \Sigma, \Gamma, \Lambda, z0, k0, E) is defined as following:
• Set of states Z = \{ z0, z1, ze \}.
• Input alphabet \Sigma = \{0,1\}
• Stack alphabet \Gamma = \{ k0, x \}
• z0 is start state
· k0 is initial stack symbol
accept states E = { ze }
Transition relation Λ:
(1) z0, k0\rightarrow0 z0, k0 x
(2) z0, x \rightarrow 0 z0, xx
(3) z0, x \rightarrow 1 z1, x
(4) z1, x→0 z1,e
(5) z1, k0 \rightarrow \epsilon ze, \epsilon
a) Which of the following strings are accepted by P?
(1) ε °
(2) 00100 accepted
state stack input next operation
(z0, k0, 00100) // push X on stack
(z0, k0X, 0100) // pop X and push XX
(z0, k0XX, 100) // pop X and push X, change state to z1.
(z1, k0XX, 00) // pop X
(z1, k0X, 0) // pop X
(z1, k0, e) // change to final state
(ze, e, e) //
(3) 0010
state stack input next operation
(z0, k0, 0010) // push X .
(z0, k0X, 010) // pop X and push XX
(z0, k0XX, 10) // pop X and push X, change to state z1
(z1, k0XX, 0) // pop X
(z1, k0X, e) // can't change to state z(e), k0 is not on top of stack
(4)0100
state stack input next operation
(z0, k0, 0100) // push X
(z0, k0X, 100) // pop.X and push X, change state to z1
```

(z0, k0X, 00) // pop X

z1,	k0, 0	J) // t	here'	s no >	(to p	op, c	an't d	chang	je sta	ate to	z0				-			
		•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	•	•	•	•	•	•
) V	Vhich	n lånd	าแล้ตย	e does	s the	PĎA	acce	nt?	٠		٠		•					
			_	> .0}														
	·		·	·	·	·	•	•	·	·	·	·	•	•	•		•	
	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	۰
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰
	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	•	٠
	٠		•	٠	٠	٠	٠	•	٠	٠	٠	•	•	•			•	
	·		·	·	·	·	•	•	·	·	·	·	•	•			•	•
	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	•		٠	٠	•	٠	•	٠	٠	٠		•	٠	•	•	•	
		٠								٠			•				•	
	٠				٠		٠						•					
				٠														
				٠														
	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰
	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠
		٠					•	•		٠			٠	•	٠	٠	٠	•
			٠	٠		٠	٠	٠		٠	٠	٠	•	٠			•	•
				٠				•					•	•			•	
				٠														
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰
	•	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	۰
			٠			٠		•										

