Question Number	Answer		Mark
16(a)	Interference/superposition takes place Destructive (interference) occurs when (the two reflective) waves meet in antiphase (and these wavelengths are missing) If the path difference is equal to $(n + 1/2) \lambda$ [Allow If $2d = (n + 1/2) \lambda$]	(1) (1) (1)	3
16(b)	Use of path difference = $2d$ Use of minimum occurs when path difference = $\lambda / 2$ Use of $n = c/v$ (with $v = f\lambda$) wavelength in air = 6.0×10^{-7} m Example of calculation Path difference = $2 \times 6.5 \times 10^{-8}$ m = 1.3×10^{-7} m wavelength in coating = $2 \times 1.3 \times 10^{-7}$ m = 2.6×10^{-7} m wavelength in air = 2.6×10^{-7} m × $2.3 = 5.98 \times 10^{-7}$ m = 598 nm	(1) (1) (1) (1)	4
16(c)	Use of $I = P/A$ Use of $P = E/t$ Use of Efficiency = useful power output/power input Efficiency = 0.31 Or 31% Example of calculation Power incident on solar array = 1.1 kW m ⁻² × 8.7 m ² × cos 60 = 4.785 kW Power output from solar array = $5.4 \times 10^6 \text{J} \div 3600 \text{s} = 1.5 \text{kW}$ Efficiency = $1.5 \text{kW} \div 4.785 \text{kW} = 0.313$	(1)(1)(1)(1)	4
	Total for question 16		11