Diffusione delle opinioni in modelli sociali -Applicazioni del modello di Ising Statistical Physics And Complex Systems

Angelo Caponnetto, Lorenzo Santella, Alessio Chen

Giugno 2024

Indice della presentazione

Introduzione al modello di Ising Descrizione generale

Il modello sociale implementato

Descrizione degli individui

Descrizione matematica del modello

Simulazione NetLogo

Interfaccia del programma Il codice

Referenze

Referenze

Il modello di Ising

Il modello di Ising venne ideato per spiegare il comportamento dei materiali ferromagnetici in presenza di campi esterni.

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - h \sum_{i=1}^N \sigma_i$$
 (1)

Per ogni sito del reticolo $\sigma_i = \pm 1$

Rappresentazione della società: modello Instagram

Il modello sociale utilizzato è costituito da N individui, ognuno dei quali è caratterizzato dagli attributi:

▶ Opinione: $\sigma_i = \pm 1$

ightharpoonup Credibilità: $c_i \in [0, 1]$

► Coerenza: w

Followers

Lui è Bob

Rappresentazione della società: modello Instagram

Al variare degli attributi, Bob cambia il suo aspetto

Quando la credibilità di Bob aumenta, il suo colore cambia

Bob può avere un numero di followers variabile

Descrizione matematica

Il modello matematico è descritto dall'hamiltoniana:

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^t \sigma_j^t - h \sum_{i=1}^{N} \sigma_i^t - w \sum_{i=1}^{N} \sigma_i^{t-1}$$
 (2)

dove il termine di interazione è espresso da:

$$\sum_{\langle i,j\rangle} \sigma_i \sigma_j = \sum_{i=1}^N \frac{\sigma_i}{k_i} \sum_{j \in v_i} \sigma_j c_j \tag{3}$$

avendo indicato con v_i l'insieme degli individui che influenzano σ_i .

Descrizione matematica

L' aggiornamento di tipo Metropolis, per l'i-esimo individuo, è:

$$\sigma_i^{t+1} = \begin{cases} -\sigma_i^t & \text{se } \Delta H \le 0 \\ -\sigma_i^t & \text{se } \Delta H > 0 & \text{con } P(\Delta H) = e^{-\beta \Delta H} \\ \sigma_i^t & \text{altrimenti} \end{cases}$$
 (4)

con ΔH dato da:

$$\Delta H = 2\sigma_i^t \left[\frac{J}{k_i} \sum_{j \in v_i} \sigma_j^t c_j + h + w \sigma_i^{t-1} \right]$$
 (5)

Interfaccia NetLogo

L'interfaccia del programma che è stato implementato si presenta come:

Andiamo al programma

Grazie per l'attenzione

Referenze

Metastable states in the parallel ising model F.Bagnoli ,T.Matteuzzi, R.Rechtman 29 feb 2016

Topological phase transistions in the nonlinear parallel ising model

F.Bagnoli, T.Matteuzzi, R.Rechtman 29 feb 2016