Rhythm is gradient: evidence from -ative and -ization*

Juliet Stanton, NYU • PEP Lab • September 4, 2020

1 Introduction

- In grid-based theories of stress (Prince 1983, Gordon 2002), rhythmic constraints like *CLASH and *LAPSE regulate the distribution of prominences.
- Usually assumed that rhythmic constraints evaluate syllable-sized constituents.
- *CLASH assigns a violation for each sequence of two adjacent stressed syllables (Prince 1983, Gordon 2002).
- *LAPSE assigns a violation for each sequence of two adjacent stressless syllables (Green & Kenstowicz 1995, Gordon 2002).
- Together, these constraints prefer perfect alternation, where stressed and stressless syllables follow one another.

		σσσσσ	*CLASH	*Lapse
(1)	a.	σσ σσ σ	*!	l
(1)	b	σσσ σσ		*!
	c.	σσσσσσ		

- Possible to conceive of rhythmic constraints differently: as constraints that assess the *total duration of stressless material* and assign violations accordingly.
 - Phonetic *LAPSE: harsher penalties for stresses that are farther apart.
- Phonetic *CLASH: harsher penalties for stresses that are closer together.
- These differing conceptions of rhythmic constraints make different predictions about whether or not the content of SBUs is relevant to rhythmic phenomena.
- (2) Predictions of categorical vs. gradient rhythmic constraints

- b. Phonetic *LAPSE: content of the lapse should matter à bracad á bra à bransclad á bra $\hat{\delta}$ $\hat{\otimes}_1$ $\hat{\delta}$ δ $\hat{\delta}$ $\hat{\otimes}_2$ $\hat{\delta}$ δ $\hat{\delta}$ $\hat{\otimes}_2$ $\hat{\delta}$ δ $\hat{\delta}$ $\hat{\delta}_2$ is longer than $\hat{\delta}_1$, so *LAPSE penalizes $\hat{\delta}_2$ more.
- c. Syllabic *CLASH: content of the clash shouldn't matter mòn.sóon mònsclóon

 σ σ σ σ
 both clashes are σσ; *CLASH penalizes them equally.
- Major claim: phonetic versions of *LAPSE and *CLASH are necessary to account for the full range of rhythmic phenomena in English.
 - **This talk**: evidence that phonetic rhythmic constraints are necessary, from American English *-ization* and *-ative* (Stanton 2019).
 - **The evidence**: patterns of clash and lapse resolution indicating that certain kinds of stressless sequences are more acceptable than others.
 - Phonetic *CLASH: in -ization, clashes across a cluster (bàptìzátion) are more acceptable than clashes across a singleton (xènìzátion).
 - Phonetic *LAPSE: in -ative, lapses involving an sonorant (spéculative) are more acceptable than lapses across an obstruent (invéstigàtive).
 - **First**: novel evidence for phonetic *CLASH from *-ization*, and a summary of evidence for phonetic *LAPSE from *-ative*.
 - **Open questions**: how phonetic *LAPSE and *CLASH are defined; how the analysis presented here relates to the overall analysis of English stress.

^{*}Acknowledgments

2 Stress in -ization

• Our interest: words ending in -ization vary in whether or not -ize- bears stress.

(3) Stress on -ize- is variable (Data source: OED)

a. Stressed -ize-: solarization, lemmatization

b. Stressless -ize-: fascization, functionalization

c. Variable: relativization, serialization

 Necessary to first review more general properties of stress in -ization to answer a few questions: what factors favor/disfavor stress on -ize-?

2.1 Background

• For analysis, it will be useful to separate words that end in *-ization* into two domains: the stem (pre-*ization* material) and the suffixal domain (*-ization*).

(4) Division of *-ization* forms into stem and suffixal domains

• We need just a few assumptions, for now, to illustrate why -ization stress varies.

- Stress on -ize is compelled by a suffix-specific constraint, STRESS-ize.

(5) STRESS-*ize*: assign one * if the suffix -*ize* does not bear stress.

Stressing -ize and -ate violates *CLASH-ate (defined syllabically); -ize destressing can thus be seen as a clash-avoidance strategy.

- Preference for -izátion (vs. -ízation) due to *LAPSER (Gordon 2002).

(6) *LAPSER: assign one * if neither of the final two syllables is stressed.

- *LAPSER \gg STRESS_{-ize} explains why it's -ize stress that varies.

	sérial-ize-ate-ion	*LapseR	*CLASH-ate	STRESS_ize
(7)	🖙 a. sèrialìzátion		*	
(1)				*
	c. sérialization	*!		

• **The question**: can we predict when *-ize* is more or less likely to bear stress? (No work that I am aware of addresses this question!)

2.2 Rhythmic effects in -ization stress

- Corpus study conducted to see if rhythmic factors are implicated in *-ization* stress (following Stanton 2019:7.2).
- Corpus: all relevant -ization forms in the dictionary as of 2/2019 (n=773).
- Inner suffix counted as "stressed" if -ize transcribed as [aiz].
- Inner suffix counted as "stressless" if -ize transcribed as [ə] or [1].
- Variable cases are assigned to the "stressed" category (doesn't affect results).
- Results (in (8)) demonstrate a rhythmic effect in *-ization* stress: *-ize* stress is more frequent when it resolves a lapse than when it creates a clash. ¹

	Effect of -ize stress	Stressed -ize	Stressless -ize	% stressed
	*CLASH	còncrètìzátion	mètronòmizátion	64.1%
	violation	(n=59)	(n=33)	(59/92)
(8)	*LAPSE	chànnelìzátion	dichòtimizátion	94.3%
	satisfaction	(n=529)	(n=32)	(529/561)
	*EXTLAPSE	fèderalìzátion	cùlturalizátion	98.5%
	satisfaction	(n=202)	(n=3)	(202/205)

- Available evidence suggests that speaker productions mirror the OED trends.
 - Productions are from forvo.com, a pronunciation dictionary.
 - Dictionary was searched (in 2/2019) for all -ization words in (8).
 - Native speaker status and -ize stress were determined by ear.

Effect of -ize stress	Stressed -ize	Stressless -ize	% stressed
*CLASH	rèalìzátion	tàblòidizátion	19%
violation	(n=4)	(n=21)	(4/25)
*LAPSE	fòssilìzátion	demòbilizátion	24.5%
satisfaction	(n=49)	(n=151)	(49/200)
*EXTLAPSE	àctualìzátion	lábializátion	29.2%
satisfaction	(n=21)	(n=51)	(21/72)
	*CLASH violation *LAPSE satisfaction *EXTLAPSE	*CLASH rèalizátion violation (n=4) *LAPSE fòssilizátion satisfaction (n=49) *EXTLAPSE àctualizátion	*CLASH rèalizátion tàblòidizátion violation (n=4) (n=21) *LAPSE fòssilizátion demòbilizátion satisfaction (n=49) (n=151) *EXTLAPSE àctualizátion lábializátion

- Are these differences significant?
- *OED:* *LAPSE satisfaction more frequent than *CLASH violation (p < .001) and less frequent than *EXTLAPSE satisfaction (p < .05).
- Forvo: *LAPSE satisfaction less frequent than *EXTLAPSE satisfaction (p
 .01). *LAPSE satisfaction vs. *CLASH violation not significant.

¹Numbers in (8) adds up to more than 773 because some stems have two stress patterns, e.g. *multimer-ization* can be 202-?10 or 020-?10. In such cases, variants are counted as separate stems.

- A more detailed look at the OED data shows that there is variance within some
 of these rhythmic categories.
 - Focusing on the cases where -ize stress results in a *CLASH violation (10), we see that the rate of -ize stress varies with the interstress material.²

	Interstress seg(s).	Stressed ize	Stressless ize	% stressed
	Congrant (D)	xè n ìzátion	rèa l izátion	53.1%
	Sonorant (R)	(n=17)	(n=15)	(17/32)
(10)	Obstanant (O)	yò t ìzátion	stà t izátion	60.7%
-	Obstruent (O)	(n=17)	(n=11)	(17/28)
	Cluster (CC)	bà pt ìzátion	òbjè ct izátion	76.9%
	Cluster (CC)	(n=20)	(n=6)	(20/26)

- (NB: the comparisons between R vs. O and O vs. CC are not significant.)
- The rate of *-ize* stress does not vary noticeably in the *LAPSE and *EXT-LAPSE resolution contexts; the numbers are close to ceiling.

2.3 Hypothesis

- Hypothesis: the shorter the clash would be were -ize stressed, the worse the violation of *CLASH would be, and the more frequent -ize destressing is.
- *One corollary:* as the number of syllables between two stressed syllables increases, so does the interstress duration (expected given (8-9)).
 - (11) Different interstress durations (in black) in -ization forms
 - a. \grave{V} C_0 -izátion (fascization): shortest \grave{V} C_0 izátion
 - b. $\hat{V} C_0 V C_0$ -izátion (*channelization*): longer $\hat{V} C_0 V C_0$ izátion
 - c. $\grave{V} C_0 V C_0 V C_0$ -izátion (federalization): longest $\grave{V} \boxed{C_0 V C_0 V C_0}$ izátion
- > Seems obvious: more syllables should mean a longer interstress duration.
- > However, Nespor & Vogel (1989:102) hint at the existence of lapse compression in English, so this prediction should be verified.

- Another corollary: all else equal, clashes with sonorants are shorter than those with obstruents, which are shorter than those with clusters.
 - (12) Different clash lengths in *-ization* forms (clash is in black)
 - a. $\hat{V} R$ -izátion: shortest $\hat{V} R$ izátion
 - - **V O** ìzátion
 - - V CC ìzátion
- Similar logic applies for lapses: those containing O should be longer than those containing R, and shorter than those containing CC.
- To know if this hypothesis is plausible, we need to know two things:
- Whether or not the durational facts assumed in (11-12) are correct.
- Whether or not A. Eng. speakers' preferences correlate with durational facts.

3 Experimental support

- Results of an experiment designed to probe the hypothesis in Section 3 provides support for it in multiple ways.
- Results from a forced-choice task suggest that speakers are sensitive to differences in clash duration. Rates of -ize stress correlate with clash length.
- An analysis of the items suggests that the cline in (11-12) is correct: rate of *-ize* stress roughly correlates with interstress distance.

3.1 Items and acoustic analysis

- For the experiment, I recorded one speaker saying nonce forms that ended in *-ization*, all based on placenames or their associated demonyms (Table 2).
 - Ten items where -ize stress would violate *CLASH, and ten each where -ize stress would satisfy *LAPSE or *EXTLAPSE.
 - Each item was recorded twice, with stressed -ize and stressless -ize variants.
- Interstress duration of each *ize*-stressed item was measured. This ranged from a single consonant (Figure 1) to a much longer string (Figure 2).³

²There are 6 cases where a vowel-final stem takes *-ization* (e.g *Maoization*). In 5/6, *-ize* is reported to at least variably bear a stress. Because the number of such forms is small, and it is possible that there are additional constraints on ÝV hiatus, I do not include these forms here.

³All acoustic analysis was done in Praat (Boersma & Weenink 2017).

Table 1: -ization items, by rhythmic profile and interstress C(s)

*CLASH (n=10)	*LAPSE (n=10)	*EXTLAPSE (n=10)
Interstress C(s)	Interstress C(s)	Interstress C(s)
Pràgueizátion	Ègyptizátion	Pròvidenceizátion
[g]	[dʒ], [pt]	[v], [d], [ns]
Quebècizátion	Wyòmingizátion	Sènegalizátion
[k]	[m], [ŋ]	[n], [g], [l]
Chàdizátion	Cùbanizátion	Ìndianàpolisizátion
[d]	[b], [n]	[n], [p], [l]
Ròmeizátion	Bròoklynizátion	Antàrcticanizátion
[m]	[kl], [n]	$[\mathfrak{I}(k)\mathfrak{t}],[k],[n]$
Japànizátion	Àustinizátion	Blòomingtonizátion
[n]	[st], [n]	[m], [ŋt], [n]
Brònxizátion	Tèxasizátion	Mèxicanizátion
[ŋks]	[ks], [s]	[ks], [k], [n]
Vermòntizátion	Phòenixizátion	Mìchiganizátion
[nt]	[n], [ks]	$[\int], [g], [n]$
Frànceizátion	Alàskanizátion	Òberlinizátion
[ns]	[sk], [n]	[b], [ɪl], [n]
Bàsqueizátion	Rùssianizátion	Màdisonizátion
[k]	[∫], [n]	[d], [s], [n]
Mìnskizátion	Ìcelandizátion	Ròchesterizátion
[nsk]	[sl], [nd]	[tʃ], [st], [ɪ]

- The acoustic properties of these interstress durations are in line with the predictions detailed in Section 2.3.
- Interstress duration is short when -ize stress creates a clash, longer when it satisfies *LAPSE, and longest when it satisfies *EXTLAPSE (Fig. 3).⁴
- Sonorants between two stresses are shorter than obstruents, which are shorter than clusters (Figure 4).
- First part of the hypothesis is plausible: broad trends discovered in the dictionary study are reflected in properties of the productions.

3.2 Forced-choice task

- What needs to be shown: A. Eng. speakers detect small differences in interstress duration, and that these differences affect the preference for -ize stress.
- To investigate: 2-way forced choice, with recordings from Sec. 3.1 as stimuli.

Figure 1: Interstress duration in Quebècizátion

Figure 2: Interstress duration in Mèxicanìzátion

3.2.1 Study design

- Stimuli: 30 pairs of nonce *-ization* forms, differing only in suffixal stress (examples: *Quebècizátion-Quebècizátion*, *Mèxicanizátion-Mèxicanizátion*).
- Participants were told they were helping a travel company pronounce words in new slogans (*Prepare for the Quebecization of your vacation!*).
- They were asked to choose between two possible pronunciations of the bolded and italicized word. They could listen to a recording a maximum of twice.
- Ordering of stressed and stressless -ization form randomized by participant.
- Order of item was randomized by participant.
- Experiments were constructed using Experigen (Becker & Levine 2013).

3.2.2 Participants

- Fifty participants recruited using Amazon's Mechanical Turk.
- Eligible participants were those with US IP addresses, 500 previously accepted tasks, and an approval rating of 97% or above.
- Participants were compensated \$1.50 for their time.

⁴Figure 3 and all other plots were produced with R's ggplot2 (Wickham 2016).

Figure 3: Interstress duration by the number of interstress syllables

Figure 4: Interstress duration by the type of interstress consonant(s)

Figure 5: Preference for -ize stress by interstress duration

- $\bullet\,$ All participants indicated that they are native speakers of English from the U.S.
- No participants' responses were excluded from the analysis.

3.2.3 Results

- Patterns in the data suggest that the hypothesis is correct.
- Distinctions among rhythmic categories are what we would expect, given the dictionary data and acoustic results.
- > For the *CLASH context (fàscizàtion), 34.9% prefer -ize stress.
- > For the *LAPSE context (chànnelizátion), 39.4% prefer -ize stress.
- > For the *Extlapse context (fèderalizátion), 40.2% prefer -ize stress.
- The positive correlation between -ize stress and interstress duration is also expected: the worse the clash, the more frequent -ize destressing (Figure 5).
- Question for a statistical analysis: is rhythmic category a significant predictor of -ize stress? What about interstress duration?

- We answer this by fitting mixed effects logistic regressions to the data that treat rhythmic category and interstress duration as fixed effects.⁵
 - Model with rhythmic context as a fixed effect finds no significant effects.
 - (Baseline for the fixed effect is the *LAPSE context (e.g. *chànnelizátion*; comparisons are *LAPSE vs. *CLASH and vs. *EXTLAPSE.)

(13) Model with rhythmic context as fixed effect

Factor	Coefficient	z value	Significant?
Intercept (*LAPSE)	-0.31	_	
*CLASH	-0.22	-1.58	No $(p = .12)$
*EXTLAPSE	0.04	0.27	No $(p = .79)$

 A model with interstress duration (of the *ize*-stressed form) as a fixed effect finds a significant effect; this makes sense, given Figure 5.

(14) Model with interstress duration as fixed effect

Factor	Coefficient	z value	Significant?
(Intercept)	-0.66	_	
Interstress duration	1.29	2.52	Yes $(p < .05)$

- Two pieces of evidence that (14) is the better model of the data:
 - > It scores better on measures of best fit (AIC diff. = 4, BIC diff. = 10)
 - > Adding the rhythm type predictor to (14) does not result in a better fit to the data (χ^2 (2) = 1.25, p = .53), nor does adding an interaction.
- What we can take away from these results:
- Gradient rhythmic information plays a role in speakers' judgments about whether or not to destress -ize in -ization.
- It's the *phonetic distance* between the last stem stress and *-ize* that matters. The rhythmic category the form belongs to (*CLASH, *LAPSE, *EXTLAPSE) only matters insofar as these categories are shorthand for duration.

4 Towards an analysis

- Section 2 results support the addition of a phonetic *CLASH constraint to CON.
- But a few things aren't clear, given the available evidence: how this constraint should be defined, and what kinds of representations it evaluates.

- Constraint could be defined in terms of milliseconds (as in Stanton 2019): predict sensitivity to speech rate, length of intervening segments.
- Constraint could be defined in more abstract terms; predicts no sensitivity to speech rate, length of intervening segments, etc.
- Results from a second judgment task suggest that an abstract definition is more appropriate; I propose one in Section 4.2.

4.1 Experiment 2

• Experiment 2 used a subset of the *-ization* items from Experiment 1. It was in all other ways identical to Experiment 1.

Table 2: Experiment 1 items, by rhythmic profile and interstress C(s)

*CLASH (n=5)	*LAPSE (n=5)	*EXTLAPSE (n=5)
Interstress C(s)	Interstress C(s)	Interstress C(s)
Quebècizátion	Ègyptizátion	Ròchesterizátion
[k]	[dʒ], [pt]	$[t \int]$, $[st]$, $[\mathfrak{1}]$
Chàdizátion	Cùbanizátion	Sènegalizátion
[d]	[b], [n]	[n], [g], [1]
Ròmeizátion	Àustinizátion	Ìndianàpolisizátion
[m]	[st], [n]	[n], [p], [1]
Brònxizátion	Tèxasizátion	Antàrcticanizátion
[ŋks]	[ks], [s]	$[\mathfrak{J}(k)\mathfrak{t}],[k],[n]$
Bàsqueizátion	Phòenixizátion	Mèxicanizátion
[sk]	[n], [ks]	[ks], [k], [n]

- For this experiment, two versions of each item were used.
- For the first version, both forms were identical to that used in Experiment 1.
- For the second version, both forms were artificially slowed by 20%, using Praat Vocal Toolkit (Corretge 2012).
- **The prediction:** if gradient *CLASH is defined in terms of milliseconds, we should find a greater preference for *-ize* stress in the slowed items.
- The results are clear, from Figures 6-7:
- Interstress duration is a significant predictor of *ize*-stress (p < .05).
- Item type (slowed vs. not slowed) is not a significant predictor; adding it to the model does not improve fit (χ^2 (1) = .72).
- The takeaway: gradient *CLASH likely assesses violations at a more abstract level than milliseconds, though more systematic investigation is necessary.

⁵All models were fitted using the glmer function of R's lme4 package (Bates & Maechler 2011) and include a random intercept for participant, in addition to the fixed effects discussed in the text. Significance values are from the lmerTest package (Kuznetsova et al. 2016).

100% - SSELECT TOWN SECURITY T

Figure 6: Preference for -ize stress by rhythmic category

Figure 7: Preference for -ize stress by interstress duration

4.2 Defining gradient rhythmic constraints

- Results of the above experiment limit the hypothesis space as to how gradient *CLASH is defined, but the hypothesis space is still large.
 - One possibility: each phoneme (or maybe allophone) is associated with an idealized duration, stored as milliseconds in the speaker's mind.
 - Another possibility: each durational category is associated with a a violation score (though what these categories would be is unclear).
- Further work is required to further narrow down this hypothesis space!
- For the purposes of this talk, I'll define gradient *CLASH as the following.
 - (15) *CLASH: for each pair of stressed vowels \acute{V}_1 and \acute{V}_2 , assign a base violation score of 1. For each segment between \acute{V}_1 and \acute{V}_2 , multiply the violation score by 1/x, where x is valued according to (a-b).
 - a. Sonorant consonants = 2
 - b. Obstruent consonants = 3
 - For Quebècizátion, violation score is 1/3.
 - For Tèxasìzátion, violation score is 1/27.
- In addition to gradient *CLASH, we should also consider the possibility that gradient *LAPSE plays a role in speakers' judgments.
- Argued in Stanton (2019) that phonetic *LAPSE is active in English.
- For *chànnelizátion* vs. *fèderalizátion*, possible that the preference for more *-ize* stress on the latter is due to gradient *LAPSE.
- (16) *LAPSE: for each pair of stressed vowels \hat{V}_1 and \hat{V}_2 , assign a base violation score of 1. For each segment between \hat{V}_1 and \hat{V}_2 , multiply the violation score by x, where x is valued according to (a-b).
 - a. Sonorant consonants = 2
 - b. Obstruent consonants = 3
- For Quebècizátion, violation score is 3.
- For Tèxasìzátion, violation score is 27.
- What's important here is the idea behind the constraints, not the formulation.
- Strength of violation is correlated with the distance between two stresses.
- Unlike categorical rhythmic constraints, the gradient constraints do not "turn off": they assign violations no matter how close or distant the stresses.

4.3 Analysis

- To demonstrate how an analysis of these data might work, I consider four items: *Quebècizátion, Frànceizátion, Tèxasizátion*, and *Mexicanizátion*.
- For an analysis of these results, I include the following constraints⁶:
 - (17) CLASH-*ate*: assign one * for each sequence of two adjacent stressed syllables that includes the verbal suffix -*ate*.
 - (18) STRESS-*ize*: assign one * if the suffix -*ize* doesn't bear stress.
 - (19) *LAPSE, *CLASH: as in (15, 16).
- I used the Maxent grammar tool (Hayes et al. 2009) to find weights for the above constraints, given the candidates and violation scores in Table 3.

Table 3: Candidates and violations fed to the Maxent grammar tool

Tuble 3. Candidat		*CLASH-ate	*CLASH	*LAPSE
a. Quebècìzátion		1	1/3	3
b. Quebècizátion	1		1/9	9
c. Frànceìzátion		1	1/6	6
d. Frànceizátion	1		1/18	18
e. Tèxasìzátion		1	1/27	27
f. Tèxasizátion	1		1/81	81
g. Mèxicanìzátion		1	1/54	54
h. Mèxicanizátion	1		1/162	162

• The tool finds the weights in (20), and makes the predictions in (21).

	Constraint	Waight		Form	Rate of	<i>-ize</i> stress
	Constraint			rom	Predicted	Observed
	*CLASH	2.553	-	<i>Ouebècìzátion</i>	30%	30%
(20)	CLASH-ate	0.280	(21)	~		
	*LAPSE	0.006		Frànceìzátion		40%
	STRESS-ize	0.000		Tèxasìzátion	50%	48%
	31KESS-ize	0.000		Mèxicanìzátion	59%	60%

- A few important takeaways from this analysis:
 - Gradient *CLASH and *LAPSE both play a role in judgments of -ize stress.
 - The tool assigns STRESS-*ize* no weight; this suggests that rhythmic considerations may be entirely responsible for the varying rates of *-ize* stress.

5 A parallel from -ative

- The suffix -ative behaves like -ization; stress on the inner suffix varies.
 - The OED lists -ate as stressed in motivative and stressless in communicative
 - It also lists some -ative forms as having variable stress, like mollificative.
- **Crucial:** I assume that the morphological composition of these forms is *X-ate-ive*, and that the *-ate* in *-ative* is the same verbal *-ate* that is in *-ization*.

5.1 Background

• Unlike *-ization*, there are rhythmic limitations on *-ate* stress. As shown in (22), *-ate* stress is dispreferred under clash (data in this section from Stanton 2019).

Effect of -ate stress	Stressed -ate	Stressless -ate	% stressed
*CLASH	òrnàtíve	quótatìve	6.4%
violation	(n=15)	(n=216)	(15/231)
*LAPSE	législàtive	spéculatìve	68.6%
satisfaction	(n=229)	(n=105)	(229/334)
*EXTLAPSE	amélioràtive	detérioratìve	90.0%
satisfaction	(n=9)	(n=1)	(9/10)
	*CLASH violation *LAPSE satisfaction *EXTLAPSE	*CLASH òrnàtíve violation (n=15) *LAPSE législàtive satisfaction (n=229) *EXTLAPSE amélioràtive	violation (n=15) (n=216) *LAPSE législàtive spéculative satisfaction (n=229) (n=105) *EXTLAPSE amélioràtive detériorative

- To analyze this, useful to import an earlier assumption: *CLASH-ate is active.
 - Support: if the stem is stress-final, -ate generally doesn't bear stress.
 - More support: either -ate or -ive is stressed; never both.
- To analyze the fact that stress varies within the suffixal domain, I assume for now that the suffix -ive prefers to bear stress when possible (23).
- (23) STRESS_*ive*: assign one * if the suffix -*ive* does not bear stress.
- Variation: STRESS-ive conflicts with *LAPSE (evaluated syllabically, for now).

(24) —at- stressing as *LAPSE resolution

investigative	*CLASH-ate	*LAPSE	STRESS_ive
a. invéstigàtive			*
□ b. invéstigatìve □ b. invéstigatìve □ b. invéstigatìve		*	I
c. invéstigàtive	*!		l
quotative			1
d. quótàtive	*!		*
🖙 e. quótatìve			I
f. quótàtìve	*!*		

^{6*}LAPSER is not included here as participants were not presented with forms like *Quebècízation*.

- The question: can we predict when -at- is more or less likely to bear stress?
- Stanton (2019): The longer the lapse that would result were *-ate* not stressed, the higher the likelihood that *-ate* will bear stress.
 - Observation: -ate stress depends on content of the lapse (Nanni 1977).
 - Note a similarity to how clash works in the *-ization* corpus: the rate of *-ate* stress increases as we go from sonorant to obstruent to cluster.

	Interstress seg(s).	Stressed -ize	Stressless -ize	% stressed
(25)	Sonorant (R)	muti l ative	specu l ative	57%
		(n=85)	(n=65)	(85/150)
	Obstruent (O)	depre c ative	dubi t ative	83%
		(n=91)	(n=19)	(91/110)
	Cluster (CC)	legi sl ative	ade qu ative	96%
		(n=27)	(n=1)	(27/28)

 A small production study suggests that this cline reflects duration: categories associated with higher rates of -ate stress are associated with longer lapses.

Figure 8: Lapse length by category of the pre-ate consonant(s)

5.2 Experimental evidence

- Stanton (2019) reports a judgment study documenting a positive correlation between lapse duration and *-ate* stress.⁷
- Unlike -ization: for -ative, *CLASH has a categorical effect. I claim this is due to differences in morphological composition between the two classes of forms.

5.2.1 Design and participants

- Stimuli: 80 pairs of nonce *-ative* forms, differing only in suffixal stress (examples: *bádjaspàtive-bádjaspatìve*, *sidjólatìve-sidjólàtive*).
 - Forms varied in two ways: the pre-*ative* material (e.g. r vs. s vs. sp) and the rhythmic profile of the stem (iambic, *bádja* or trochaic, *sidjó*-).
 - There were three times as many trochaic as iambic stems; my interest in this task was on forms with lapses, or the trochaic forms.
- Design and presentation was identical to the *-ization* tasks in all relevant ways.
- Participant recruitment was identical to that for the *-ization* tasks; here, though, one participant's data was excluded for an exceptionless ordering effect.

5.2.2 Results

- Results demonstrate a clear distinction between the jambic and trochaic stems.
 - For iambic forms (sidjólative-sidjólative), 20.6% preferred -ate stress.
 - For trochaic forms (bádjaspàtive-bádjaspative), 54.3% preferred -ate stress.
- Interstress duration has a clear effect for the trochaic stems (Figure 9), but not for the iambic stems (Figure 10).
- A mixed-effects logistic regression (with random intercepts for item, participant) confirms an interaction between stem type and interstress duration.⁸

Factor	Coefficient	z value	Significant?
(Intercept)	-1.58	_	_
RhType (Trochee)	-0.11	-0.40	No $(p = .69)$
Interstress dur.	2.68	1.86	Almost $(p = .06)$
RhType*Interstress dur.	-3.83	-2.65	Yes $(p < .01)$
	RhType (Trochee) Interstress dur.	RhType (Trochee) -0.11 Interstress dur. 2.68	RhType (Trochee) -0.11 -0.40 Interstress dur. 2.68 1.86

⁷Stanton (2019) actually reports two judgment studies; I focus on the first (the study described in that paper's Section 5.3). The two tasks have equivalent results for the present purposes.

⁸The RhType factor is sum-coded. The model is a better fit to the data than one that does not include an interaction (χ^2 (1) = 6.74, p < .01).

Figure 9: Preference for -ate stress by interstress duration (trochaic subset)

Figure 10: Preference for -ate stress by interstress duration (iambic subset)

- What we can take away from these results:
- Gradient *LAPSE plays a role in speakers' judgments about *-ate* stress: as the potential lapse duration increases, so does the likelihood of *-ate* stress.
- There's not evidence that gradient *CLASH is active; presumably it is masked by categorical *CLASH_ate,

5.3 Analysis

- To demonstrate how an analysis of these data might work, I consider four items: *sidjópative*, *sidjósklative*, *bádjapative*, and *bádjasprative*.
- For an analysis of these results, I include the following constraints: STRESS-*ive*, *CLASH-*ate*, *LAPSE, and *CLASH.
- As before, I used the Maxent grammar tool (Hayes et al. 2009) to find weights for these constraints, given the candidates and violation scores in Table 4.

Table 4: Candidates and violations fed to the Maxent grammar tool

	STRESS-ive	*CLASH-ate	*LAPSE	*CLASH
a. sidjópàtive	1	1	3	1/3
b. <i>sidjópatìve</i>		 	9	1/9
c. sidjósklàtive	1	1	18	1/18
d. sidjósklatìve			54	1/54
e. bádjapàtive	1		9	1/9
f. bádjapatìve			27	1/27
g. bádjaspràtive	1		108	1/108
h. bádjasprative			324	1/324

• The tool finds the weights in (27), and makes the predictions in (28).

		Weight	-	Form	Rate of <i>-ate</i> stress	
Cor	Constraint				Predicted	Observed
	*CLASH-ate	1.443	_			
(27)	****		(28) sid bd	sidjósàtive	19%	24%
	*Lapse 0.004	0.004		sidjóspràtive	21%	18%
	STRESS-ive	0.000		v .		
				bádjapàtive	52%	61%
	*Clash	0.000		bádjaspràtive	70%	69%
			•	vaajaspranve	1070	0970

- A few important takeaways from this analysis:
- It is not necessary to reference STRESS-ive in this analysis; rhythm determines whether -ate or -ive bears stress.
- The activity of categorical *CLASH-ate prevents us from seeing activity of gradient *CLASH in the clash context.

6 Discussion

- **In short**: gradient, phonetically informed versions of *LAPSE and *CLASH are necessary to account for the full range of rhythmic effects in English.
- Supporting evidence comes from English words ending in -ization and -ative.
- This work, and these results, raise a number of questions.
- Question 1: Why this focus on -ative and -ization?
 - They are perhaps the two corners of the English lexicon where evidence for gradient *CLASH and *LAPSE is most easily available.
 - They are classes of forms where clashes and lapses are in principle allowed: -ative and -ization are largely stress-preserving.
- Both of the inner suffixes, -ate and -ize, have stressed and stressless forms.
 They exhibit variation between the two forms.
- Question 2: What do we make of these results?
- One possibility: they are just task effects and do not tell us anything about the participants' grammars.
- > I think this is unlikely, given the other information available to us.
- > Forvo results for *-ization* suggest that the rhythmic effect observed in the OED is present in speakers' productions as well.
- > Nanni's (1977) work on *-ative* suggests that the distinction among types of lapses is accessible to speaker intuition.
- > To confirm this, necessary to do more work using different types of task.
- Another possibility: they are effects peculiar to -ization and -ative.
- > I think this is also unlikely; how would a child acquire these patterns?
- > Words ending in *-ization* and *-ative* are not all that frequent. In the OED, they have an average frequency bin of 2 (< .01 per million words).
- > No -ative forms in the CHILDES Parental Corpus; have not been able to check for -ization (MacWhinney 2000, Li & Shirai 2000).
- > Speaker knowledge of gradient rhythmic effects probably not from -ative and -ization alone.
- A third possibility: gradient *LAPSE and *CLASH are language-specific constraints, and English is the only language they are active in.
 - > Unlikely; there are hints of gradient rhythmic effects in other languages.
- > Karvonen (2008): in odd-parity Finnish words of 5+ syllables, secondary stress is antepenultimate if the word ends in -ia (érgonòmia) but penultimate otherwise (kólesteròli). Perhaps -ia is short.

- > Gouskova & Roon (2013): in Russian compounds, the further away the secondary stress from the primary, the more acceptable the compound.
- > Distance was measured in terms of syllables, but replacing syllables with the duration of the interstress interval improves model fit.
- > Burroni (2020): results from a production experiment suggest that Italian speakers ameliorate clashes by lengthening the first stressed syllable.
- I suspect gradient *LAPSE and *CLASH are universal. They coexist with, and are perhaps usually overpowered by, their categorical relatives.
- **Future work**: expand the base of evidence for gradient rhythmic effects in English, and broaden the search to other languages.

References

Bates, Douglas & Martin Maechler (2011). Package 'lme4'. R.

Becker, Michael & Jonathan Levine (2013). Experigen – an online experiment platform. Available at http://becker.phonologist.org/experigen.

Boersma, Paul & David Weenink (2017). Praat: doing phonetics by computer [computer program]. version 6.0.31. http://www.praat.org.

Burroni, Francesco (2020). Prominence clash induces localized delays in production, not rhythmic readjustments. Poster presented at LabPhon 17.

Corretge, Ramon (2012). Praat Vocal Toolkit. http://www.praatvocaltoolkit.com/index.html. Gordon, Matt (2002). A factorial typology of quantity insensitive stress. Natural Language and Linguistic Theory 20, 491–552.

Gouskova, Maria & Kevin Roon (2013). Gradient clash, faithfulness, and sonority sequencing effects in Russian compound stress. Laboratory Phonology 4, 383–434.

Green, Thomas & Michael Kenstowicz (1995). The Lapse Constraint. Ms., MIT. ROA-101, Rutgers Optimality Archive.

Hayes, Bruce, Colin Wilson & Ben George (2009). Maxent grammar tool. Software package Software tool (https://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/).

Karvonen, Daniel (2008). Explaining Nonfinality: Evidence from Finnish. Chang, Charles B. & Hannah J. Haynie (eds.), <u>Proceedings of the 26th West Coast Conference on Formal Linguistics</u>, Cascadilla Proceedings Project, Somerville, MA, 306–314.

Kuznetsova, Alexandra, Per Bruun Brockhoff & Rune Haubo Bojesen Christensen (2016). Package 'Imertest'. R.

Li, P. & Y. Shirai (2000). The acquisition of lexical and grammatical aspect. Mouton de Gruyter, Berlin & New York.

MacWhinney, B. (2000). The CHILDES project. Lawrence Erlbaum, Mahwah, NJ.

Nanni, Debbie L. (1977). Stressing Words in -Ative. Linguistic Inquiry 8, 752–763.

Nespor, Marina & Irene Vogel (1989). On Clashes and Lapses. Phonology 6, 69–116.

Prince, Alan S. (1983). Relating to the grid. Linguistic Inquiry 14:1, 19–100.

Stanton, Juliet (2019). Phonetic lapse in American English -ative. Glossa: A Journal of General Linguistics 4, p. 55.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Spring-Verlag, New York.