

CMC Working Group and NERC Focus on EV Charging

Ryan D. Quint, PhD, PE

Director, Engineering and Security Integration North American Electric Reliability Corporation March 2023

RELIABILITY | RESILIENCE | SECURITY

California Mobility Center (CMC)

- Public-private collaborative whose goal is to accelerate innovation and commercialization of new products, services, and technology in the clean mobility space.
- Focused on creating an ecosystem of entrepreneurs, large and small businesses, investors and academia to build world class companies.
- CMC, NERC, and WECC signed
 Memorandum of Understanding (MOU)
 to pursue joint initiatives to ensure grid
 reliability with growing EV penetrations

California Energy Commission Projections and Analysis

- Wood Mackenzie projects passenger and commercial EVs in the US to grow to:
 - 69.4 million and 3.14 million respectively by 2035
 - 178.3 million and 5.76 million respectively by 2050.

EV Impacts to the Bulk Power System

- Rapid or unexpected changes in load consumption
 - Time of use rates
 - Unplanned "panic charging"
 - Impacts to system frequency and loading patterns

- Charging hours
- Coupled with daily solar drop-off
- V2G support for variability

Source: CEC

EV Impacts to the Bulk Power System

- Constant power load characteristics
 - Possible degradation of stability margins
 - Wide-area oscillatory impacts
 - Grid-unfriendly characteristic

- Fault ride-through
 - Responding during faults
 - Planned/studied behavior
 - Recovery characteristic

EV Impacts to the Bulk Power System

- System restoration and blackstart plans
 - Unexpected load steps during blackstart
 - Capabilities during large voltage/frequency swings

Source: History

- Participation in DER Aggregation
 - EV smart charging as DER (FERC definition)
 - V2G as DER (NERC definition)
 - EVs part of DER Aggregators (FERC 2222)
 - Displacement of BPS generation and possible essential reliability services

- Other possible impacts
 - Power quality, harmonic, control interactions

Open Questions on EV Impacts to the Bulk Power System

- How will EVs affect resource and energy adequacy in at-risk areas?
- How will time of use rates affect charging patterns?
- How will EVs affect grid dynamics and stability?
- How will EV projections get into load forecasts?
- How will unmanaged versus managed charging affect load patterns?
- How will V2G technology affect system operations and planning?
- How will/could V2G affect essential reliability services?
- How will EVs participate in DER aggregation?
- How will we model and study all of these concerns?
- How can we work in partnership with the EV industry to encourage "grid-friendly" EVs?

Timeframes of Reliability

A. von Meier, "Challenges to the Integration of Renewable Resources at High System Penetration," California Energy Commission, May 2014: https://www.energy.ca.gov/

- "Electric Vehicle Dynamic Charging Performance Characteristics During Bulk Power System Disturbances"
 - Fundamental "grid-friendly" EV charging dynamic behavior
 - Steady-state current consumption constant current
 - Power factor
 - Active power-frequency control (frequency response support)
 - Ride-through performance
 - Dynamic response times
 - Voltage ride-through ranges

Understanding

Models

Studies

Understanding Models Studies

https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31558.pdf

Understanding

Models

Studies

"Positive Sequence Model for Aggregated Representation Electric Vehicle Chargers: EPCL Model Description," EPRI Project 1-116982

Understanding

Models

Studies

Planned Activities:

- Model Development
- Beta Testing
 - Local Reliability Impacts
 - Wide-Area Reliability Impacts
- Industry Roll-Out of EV Model

Key Focus Areas Moving Forward

- Data collection for assessments resource and energy adequacy
 - Understanding what is installed today and into the future
- Dynamic model development for planning and operational reliability studies
 - Understanding how EVs will perform electrically and how that either supports or adversely affects grid reliability
- Collaboration between energy and transportation sector
 - Outreach, information sharing, and encouragement for grid-friendly performance of EVs as a team – leveraging shared goals and outcomes
- Engagement and involvement from grid planners and operators
 - Advocating the importance of engagement from energy sector entities

Questions and Answers

Ryan D. Quint, PhD, PE

Director, Engineering and Security Integration ryan.quint@nerc.net