CSE 423 – Computer Graphics

Pranta Sarker

Lecturer

Department of CSE

North East University Bangladesh

Two dimensional transformation

Translation

Scaling

Rotation

Translation

Moving object from one position to another position

Change the position of objects

- Parameters for translation are:
 - t_x if we move the position with respect to x axis
 - t_v If we move the position with respect to y axis

Calculate Translation

If we have –

- Original point is P(x, y)
- Translated parameters are t_{χ} and t_{γ}
- Object translated point is P'(x', y')

Matrix representation

$$[x'y'] = [x y] + [t_x t_y]$$
 Or,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Then,

Translated x – axis is measured by $x' = t_x + x$

Translated y – axis is measured by $y' = t_y + y$

Scaling

- Resizing the object
- Do maximizing and minimizing the object
- Parameters for scaling are:
 - s_x if we move the position with respect to x axis
 - s_v If we move the position with respect to y axis

Property	Result
In between 0 and 1	Point is closer to origin and size will be decreased
s_x and s_y are greater than 1	Point is away from origin and size will be increase
$S_{\chi} = S_{y}$	Uniformly increases or decreases

Calculate Scaling

If we have –

- Original point is P(x, y)
- Scaled parameters are s_x and s_y
- Object scaled point is P'(x', y')

Then, Scaled x – axis is measured by $x' = s_x$. x Scaled y – axis is measured by $y' = s_y$. y

Matrix representation

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Rotation

- Rotate the object with a specific angle, θ
- Two types of rotation
 - Clockwise direction and
 - Anti clockwise direction

Clockwise

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Or,

$$x' = x \cos \theta + y \sin \theta$$

$$y' = y \cos \theta - x \sin \theta$$

AntiClockwise

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Or,

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

Problem

Q: (a) Find the matrix that represents the rotation of an object by 30^{o} by the origin.

(b) What's the new coordinate of the point P(2, -4) after the rotation?

Solution

(a) The matrix
$$R_{30^o} = \begin{bmatrix} \cos 30^o & -\sin 30^0 \\ \sin 30^0 & \cos 30^o \end{bmatrix}$$

(b) New rotated points

$$[x' \quad y'] = [2 \quad -4] \begin{bmatrix} \cos 30^o & -\sin 30^o \\ \sin 30^o & \cos 30^o \end{bmatrix}$$

Problem

Q: Transform (2,1), (3,4) and (5,3) points using translation and scaling factors 6 along x-axis and 9 along y-axis.

Solution:

Translation for coordinates A(2,1)

The new coordinate will be A'(x', y')

Translation factors are $t_x = 6$ and $t_y = 9$

Therefore,

$$x' = 6 + 2 = 8$$

 $y' = 9 + 1 = 10$

Thus, the new coordinate for the point A(2,1) is A'(8,10)

Complete rest part of the problem yourself