

K-NN

1. Considere o seguinte conjunto de treino:

ID	a1	a2	a3	classe
1	1	1	0	Χ
2	0	1	1	Z
3	0	0	1	Χ
4	1	1	1	Χ
5	0	1	0	Χ
6	1	0	1	Z

Classifique o exemplo $x = \{a1=1, a2=0, a3=1\}$ usando:

- a) classificador 1-NN (distância Euclideana);
- b) classificador 5-NN (distância Euclideana).

Naive Bayes

1. Considere o seguinte conjunto de treino:

ID	a1	a2	а3	classe
1	1	1	0	Χ
2	0	1	1	Z
3	0	0	1	Χ
4	1	1	1	Χ
5	0	1	0	Χ
6	1	0	1	Z

Classifique o exemplo $x = \{a1=0, a2=1, a3=1\}$ usando um *Naive Bayes*.

2. Considere os dados do ficheiro "golf.csv".

Outlook	Temperature	Humidity		Wind	Play
sunny	85	8	35	FALSE	no
sunny	80	9	90	TRUE	no
overcast	83	7	78	FALSE	yes
rain	70	9	96	FALSE	yes
rain	68	8	30	FALSE	yes
rain	65	7	70	TRUE	no
overcast	64	6	55	TRUE	yes
sunny	72	9	95	FALSE	no
sunny	69	7	70	FALSE	yes
rain	75	8	30	FALSE	yes
sunny	75	7	70	TRUE	yes
overcast	72	9	90	TRUE	yes
overcast	81	7	75	FALSE	yes
rain	71	8	30	TRUE	no

Classifique o exemplo $x = \{Outlook = "sunny", Temperature = 66, Humidity = 90, Wind = TRUE\}$ usando *Naive Bayes*.

Árvores de Decisão e Regras de Decisão

1. Fazer o diagrama em árvore da disjunção (i.e. OR).

Α	В	V
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

2. Considere o conjunto de dados apresentado na tabela seguinte em que **DMC** é a duração média de uma chamada, **FUM** é a faturação do último mês, e **CT** é uma variável que indica se o contrato terminou. A partir destes três atributos pretende-se determinar o valor do atributo **Ab** (abandonou?)

DMC	FUM	СТ	Ab
alta	alta	sim	sim
alta	baixa	não	não
baixa	alta	não	não
baixa	baixa	sim	sim
baixa	alta	sim	não

Extraia a Regra de Decisão utilizando o algoritmo oneR.

- **3.** Considere a árvore criada anteriormente. Expanda a folha "impura" utilizando o oneR, e considerando apenas as variáveis DMC e FUM.
- **4.** Da árvore criada, extraia um conjunto de regras com o algoritmo top-down (STOP: cobertura = 80%, qualidade = 100%).
- **5.** Usando o algoritmo *bottom-up*, e a partir da regra "**IF** CT = sim & FUM = alto **THEN** Ab = sim", extraia uma regra com cobertura \geq 60% e qualidade \geq 60%.

Redes Neuronais

1. Considere o seguinte conjunto de dados e o perceptron

Α	В	\wedge
0	0	0
0	1	0
1	0	0
1	1	1

1.1. Utilizando a taxa de aprendizagem de $\eta=0.25\,$ e a função de ativação,

$$f(x_1, x_2, ..., x_n) = \begin{cases} 1, \text{ sse } \sum x_i w_i > 0 \\ 0, \text{ c.c.} \end{cases},$$

descreva uma iteração do algoritmo de correção de erro do *perceptron* para o conjunto de testes da tabela (função AND).

1.2. O algoritmo convergiu?

Support Vector Machine

1. Considere os seguintes pontos:

X	у	classe	X	У	classe
2	5	•	1	1	•
5	6	•	2	3	
3	7	•	4	2	•
6	8	•	5	4	•

- **1.1.** Qual o hiperplano paralelo ao eixo do x com a maior margem?
- **1.2.** Este será o melhor hiperplano?

Algoritmos Genéticos

1. Crie 10 instâncias para o "problema no *Knapsack"*. Considere uma taxa de seleção de 50% (as melhores 5 instâncias contribuem com 2 cópias cada). Como *crossover*, escolha 3 pares diferentes das instâncias selecionadas e troque os últimos 3 genes. Finalmente, insira uma mutação aleatória em cada instância. Repita o processo 2 vezes e indique a solução final.

ITEM	SURVIVAL POINTS	WEIGHT
pocketknife	10.00	1.00
beans	20.00	5.00
potatoes	15.00	10.00
unions	2.00	1.00
sleeping bag	30.00	7.00
rope	10.00	5.00
compass	30.00	1.00