OBJECT ORIENTED ANALYSIS AND DESIGN

SUB CODE: CE 405 / IT 405

Teaching Scheme (Credits and Hours)

Teaching scheme					Evaluation Scheme					
L	Т	P	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	04	03	70	30	20	30	150

Learning Objectives:

The educational Objectives of this Course are:

- To Introduce various designing techniques and methods for object oriented
- Performance analysis with real time system
- Demonstrate a familiarity with object oriented data and system.
- To give clear idea on implementing design with UML diagram like state diagram, activity diagram, use case diagram etc.

Outline Of the Course:

Sr.	Title of the Unit		
No		Hours	
1	Introduction	04	
2	Modeling Concepts	05	
3	Class Modeling	06	
4	State Modeling	05	
5	Interaction Modeling	04	
6	Analysis and Design	07	
7	System Design	07	
8	Class design	07	

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

Detailed Syllabus

Sr. No	Topic	Lecture Hours	Weight age(%)
1	Introduction	04	10
	 About Object Orientated Technology 		
	 Development and OO Modeling 		
	History.		
2	Modeling Concepts	05	10
	 Modeling design Technique 		
	 Three models, Class Model 		
	State model		
	Interaction model		
3	Class Modeling	06	12
	Object and class concepts		
	 link and association 		
	Generalization		
	• Inheritance		
	 Advanced class modeling- aggregation 		
	Abstract class		
	Metadata		
	Constraints		
4	State Modeling	05	12
	• Event, state		
	 Transition and conditions 		
	• state diagram		
	• state diagram		
	• behaviour		
	• concurrency		
	Relation of Class		
	State models		10
5	Interaction Modeling	04	12
	Use case Models		
	 sequence models 		
	 activity models 		
6	Analysis and Design	07	15
	Development Life cycle		
	Development stages		
	Domain Analysis-Domain		
	• class model		
	 domain state model 		
	 domain interaction model 		
	 Iterating and analysis. 		
	Application Interaction model		
	Application class model		
	Application state Model		
	Adding operation		

7	System Design	07	12
	Estimating Performance		
	Making a reuse plan		
	 breaking system into subsystems 		
	 identifying concurrency 		
	 allocation of subsystems, 		
	 management of data storage 		
	Handling Global resources		
	 choosing a software control strategy 		
	 Handling boundary condition 		
	Common Architectural style		
8	Class design	07	12
	 Overview of class design 		
	 designing algorithms recursing downward 		
	 refactoring 		
	 design optimization 		
	Adjustment of Inheritance		
	Reification of Behaviour		
	TOTAL	45	100

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Students Learning Outcome:

On successful completion of the course, the student will:

- Develop modular solutions to a given problem statement,
- Design and implement software employing the principles of encapsulation, information hiding, abstraction, and polymorphism,
- Design, implement, and use classes and methods in an object-oriented programming language, employing standard naming conventions and making appropriate use of

- advanced features such as inheritance, exception handling, I/O, references, and simple GUIs,
- Evaluate existing classes and software for the purposes of extension through inheritance,
- Use and create standard API documents to understand and document the use of classes and methods,
- Design and implement through test suites (unit testing),
- Refactor existing software to improve its design or efficiency,
- Use object-oriented design tools such as UML class diagrams to model problem solutions and express inheritance, association, aggregation, and composition relationships among classes,
- Recognize and use basic object-oriented design patterns to structure solutions to problems,
- Implement association relationships and multiplicities,
- Use frameworks, classes, and methods from standard libraries in problem solutions,
- Explain the fundamentals of software development including development process, quality of software systems, and challenges of software development, and
- Define or explain principles of modularity, encapsulation, information hiding, abstraction, and polymorphism

Reference Books:

- 1. Oriented Modeling and Design wih UML second edition by michael Blaha and James Rambaugh
- 2. Object-Oriented Analysis and Design with Applications, Second Edition by, Grady Booch

List of experiments:

Sr. No	Name of Experiment			
1	E- R Diagram			
2	Study of Class Diagram			
3	Study of Use Case Diagram			
4	Study of Sequence Diagram			
5	Study of Activity Diagram			
6	Study of package diagram			
7	Study of State chart Diagram			
8	Study of Collaboration Diagram			
9	Study of Component Diagram			
10	Study of Deployment Diagram			