Projektovanje baza podataka

Prevođenje ER šeme u relacionu šemu BP

Tehnike projektovanja šeme BP

Prevođenje ER šeme u relacionu šemu baze podataka

- Mogući postupak projektovanja šeme BP
 - Konceptualna šema u ER modelu podataka
 - Implementaciona šema u relacionom modelu podataka
 - Relaciona šema BP se može dobiti transformacijom (prevođenjem) ER šeme BP

Prevođenje ER šeme u relacionu šemu baze podataka

- Slučajevi
 - Regularni tip entiteta
 - Binarni tip poveznika
 - Maksimalni kardinaliteti: M: N, N: 1, 1: 1
 - Dva tipa poveznika između dva ista tipa entiteta
 - Rekurzivni tip poveznika
 - Identifikaciono zavisni tip entiteta
 - IS-A hijerarhija
 - Kategorizacija
 - N-arni tip poveznika
 - Gerund

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

Regularni tip entiteta

- Regularni tip entiteta se prevodi u šemu relacije
 N(R, C)
 - R skup obeležja regularnog tipa entiteta se uključuje u skup obeležja šeme relacije
 - C skup ograničenja regularnog tipa entiteta se prevodi u skup ograničenja šeme relacije
 - skup ključeva tipa entiteta K ⊆ C se prevodi u skup ključeva šeme relacije

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

Binarni tip poveznika (M : N)

- Maksimalni kardinaliteti: M: N
 - Tip entiteta = šema relacije
 - Tip poveznika = šema relacije N(R, C)
 - $-R = K_1 K_2 Q$
 - $-K = \{K_p\}, K_p \subseteq K_1K_2 \text{ (ne uvek)}$
 - Q skup obeležja tipa poveznika
 - K₁ i K₂ primarni ključevi jednog i drugog tipa entiteta
 - K_p primarni ključ tipa poveznika
 - $K_p \subseteq K_1 K_2$ nije obavezan uslov
 - videti tehniku preimenovanja obeležja, kasnije u materijalu

• Primer:

Binarni tip poveznika (M : N)

- Šeme relacija
 - Radnik({MBR, IME, PRZ, ZAN}, {MBR})
 - Projekat({OZPR, NAZPR, NARUČ}, {OZPR})
 - Radi({MBR, OZPR, BR_ČAS}, {MBR+OZPR})
- Ograničenja referencijalnih integriteta
 - Radi[MBR] ⊆ Radnik[MBR]
 - Radi[OZPR] ⊆ Projekat[OZPR]

Binarni tip poveznika (M : N)

- Definisanje ograničenja inverznih referencijalnih integriteta
- Ako je $a_1 = 1$
 - Radnik egzistencijalno zavisan od Projekta
 - zavisnost sadržavanja ograničenje inverznog referencijalnog integriteta

 $Radnik[MBR] \subseteq Radi[MBR]$

 u pojavi šeme relacije Radi mora se nalaziti bar jedna torka za svakog Radnika

Binarni tip poveznika (M : N)

- Definisanje ograničenja inverznih referencijalnih integriteta
- Ako je $a_2 = 1$
 - Projekat egzistencijalno zavisan od Radnika
 - Zavisnost sadržavanja
 - ograničenje inverznog referencijalnog integriteta

Projekat[OZPR] ⊆ Radi[OZPR]

Primer ekstenzije

Radnik

MBR	IME	PRZ	ZAN
13	Iva	Ban	inž
09	Ana	Ras	eko
15	Eva	Tot	prof
03	Aca	Kon	eko

Projekat

OZPR	NAZPR	NARUČ
ozpr1	Lido	IFC
ozpr2	Fakt	IIS
ozpr3	Sklad	IIS

Radi

MBR	OZPR	BR_ČAS			
13	ozpr1	53			
13	ozpr2	61	$a_1 = 0, a_2 = 0$		
03	ozpr1	25			
15	ozpr2	25			
09	ozpr1	15		$a_1 = 1, a_2 = 0$	
15	ozpr3	70			$a_1 = 1, a_2 = 1$

- Maksimalni kardinaliteti: N: 1
 - Tip poveznika se pretstavlja putem prostiranja primarnog ključa
 - Prostiranje primarnog ključa:
 - skup obeležja šeme relacije, nastale od tipa entiteta na "1" strani se proširuje obeležjima primarnog ključa tipa entiteta na "N" strani
 - Strani ključ u šemi relacije na "1" strani

• Primer:

- Šeme relacija
 - Radnik({MBR, IME, PRZ, ZAN, OZRM}, {MBR})
 - Radno_mesto({OZRM, NARM, BRBOD}, {OZRM})
- Ograničenje referencijalnog integriteta
 - Radnik[OZRM] ⊆ Radno_mesto[OZRM]

- Definisanje ograničenja nula vrednosti obeležja stranog ključa
- Ako je $a_1 = 0$ Null(Radnik, OZRM) = T
- Ako je $a_1 = 1$ $Null(Radnik, OZRM) = \bot$
 - jer je radnik egzistencijalno zavisan od radnog mesta

Binarni tip poveznika (N : 1)

- Definisanje ograničenja inverznih referencijalnih integriteta
- Ako je $a_2 = 1$
 - Radno_mesto je egzistencijalno zavisno od Radnika Radno_mesto[OZRM] ⊆ Radnik[OZRM]

Binarni tip poveznika (N : 1)

Radnik

MBR	IME	PRZ	ZAN	OZRM
13	Iva	Ban	inž	orm1
09	Ana	Ras	eko	orm2
15	Eva	Tot	prof	6)
15	Eva	101	prof	ω
03	Aca	Kon	eko	ω
15	Eva	Tot	prof	orm2
03	Aca	Kon	eko	orm2
15	Eva	Tot	prof	orm3
03	Aca	Kon	eko	ω
15	Eva	Tot	prof	orm3
03	Aca	Kon	eko	orm3

Radno_mesto

OZRM	NARM	BRBOD
orm1	Projektant	700
orm2	Programer	600
orm3	Operater	500

$$a_1 = 0, a_2 = 0$$

$$a_1 = 1, a_2 = 0$$

$$a_1 = 0, a_2 = 1$$

$$a_1 = 1$$
, $a_2 = 1$

- Maksimalni kardinaliteti: 1:1
 - Prevođenje se sprovodi u zavisnosti od vrednosti minimalnih kardinaliteta (a₁, a₂)
- Ako je $a_1 = 0$ i $a_2 = 0$
 - analogno slučaju kardinaliteta M: N, ili
 - analogno slučaju kardinaliteta N : 1
- Ako je $a_1 = 1$ i $a_2 = 0$, ili $a_1 = 0$ i $a_2 = 1$
 - analogno slučaju kardinaliteta N : 1
- Ako je $a_1 = 1$ i $a_2 = 1$
 - oba tipa entiteta i tip poveznika se prevode u jednu šemu relacije

• Primer:

Binarni tip poveznika (1 : 1)

- $a_1 = 0$ i $a_2 = 0$, šema prevođenja M: N
- Šeme relacija:
 - Radnik({MBR, IME, PRZ, ZAN}, {MBR})
 - Osiguranik({BRPOL, IZNOS, DATUM}, {BRPOL})
 - Je({MBR, BRPOL}, {MBR, BRPOL})
- Ograničenja referencijalnog integriteta
 - Je[MBR] \subseteq Radnik[MBR]
 - Je[BRPOL] ⊆ Osiguranik[BRPOL]

Radnik

IME PRZ ZAN **MBR** inž 13 Iva Ban 09 Ana eko Ras 15 Eva Tot prof 03 Aca eko Kon

Osiguranik

BRPOL	IZNOS	DATUM
1214	700	21/02
1288	700	13/10
1379	1000	13/10
2561	5000	01/01

Je

MBR	BRPOL
13	1214
15	1379

Binarni tip poveznika (1 : 1)

- $a_1 = 0$ i $a_2 = 0$, šema prevođenja N: 1
- Šeme relacija:
 - Radnik({MBR, IME, PRZ, ZAN, BRPOL}, {MBR})
 - Osiguranik({BRPOL, IZNOS, DATUM}, {BRPOL})
- Ograničenje referencijalnog integriteta
 - Radnik[BRPOL] ⊆ Osiguranik[BRPOL]

- Ograničenje nula vrednosti
 Null(Radnik, BRPOL) = T
- Ograničenje jedinstvenosti vrednosti skupa obeležja

Unique(Radnik, BRPOL)

Radnik

MBR	IME	PRZ	ZAN	BRPOL
13	Iva	Ban	inž	ω
09	Ana	Ras	eko	1214
15	Eva	Tot	prof	1379
03	Aca	Kon	eko	ω

Osiguranik

BRPOL	IZNOS	DATUM
1214	700	21/02
1288	700	13/10
1379	1000	13/10
2561	5000	01/01

Binarni tip poveznika (1 : 1)

- $a_1 = 1$ i $a_2 = 0$, šema prevođenja N: 1
- Šeme relacija:
 - Radnik({MBR, IME, PRZ, ZAN, BRPOL},

{*MBR*, *BRPOL*})

- Osiguranik({BRPOL, IZNOS, DATUM}, {BRPOL})
- Ograničenje referencijalnog integriteta
 - Radnik[BRPOL] ⊆ Osiguranik[BRPOL]

Radnik

IME PRZ ZAN **BRPOL** *MBR* inž 13 Ban 4400 Iva 09 1214 Ana Ras eko 15 Eva Tot prof 1379 03 Kon eko 1509 Aca

Osiguranik

BRPOL	IZNOS	DATUM
1214	700	21/02
1288	700	13/10
1379	1000	13/10
2561	5000	01/01
4400	1500	01/01
1509	2000	21/02

- $a_1 = 1$ i $a_2 = 1$, prevod putem jedne šeme relacije

Radnik

MBR	IME	PRZ	ZAN	BRPOL	IZNOS	DATUM
13	Iva	Ban	inž	4400	1500	01/01
09	Ana	Ras	eko	1214	700	21/02
15	Eva	Tot	prof	1379	1000	13/10
03	Aca	Kon	eko	1509	5000	21/02

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

- Jedan entitet prve klase može biti, posredno ili neposredno, povezan sa jednim entitetom druge klase po više osnova
- Entiteti klasa mogu imati različite uloge u vezi

- Primer
 - isti minimalni i maksimalni kardinaliteti

- Semantika ova dva tipa poveznika je različita
- Prevođenjem bi se dobile identične šeme relacija
 - Radi({MBR, OZM}, {MBR+OZM})
 - Održava({MBR, OZM}, {MBR+OZM})

- Ograničenja referencijalnog integriteta bi bila ista
 - Radi[MBR] ⊆ Radnik[MBR]
 - Radi[OZM] ⊆ Mašina[OZM]
 - Održava[MBR] ⊆ Radnik[MBR]
 - Održava[OZM] ⊆ Mašina[OZM]

- Kolizija sa pretpostavkom o šemi univerzalne relacije
 - semantiku šeme relacije u RMP nosi njen skup obeležja, a ne naziv
 - šema relacione BP treba da sadrži takav skup šema relacija od kojih ne postoje dve sa istim skupom obeležja

- Alternativno rešenje
 - u toku prevođenja bi se, umesto šema relacija Radi i Održava, mogla formirati samo jedna šema relacije

Radi_Održava({MBR, OZM}, {MBR+OZM})

- time se, međutim, gubi semantika
 - jer bi tabela nad takvom šemom relacije sadržala neinterpretirane parove vrednosti za

(MBR, OZM)

- Moguća rešenja
 - (A) uvođenje novog obeležja uloge
 - (B) uvođenje novog obeležja preimenovanjem obeležja ključa barem jednog tipa entiteta

- (A) Uvođenje novog obeležja uloge
 - primenjuje se samo za tipove poveznika koji imaju maksimalne kardinalitete M: N, ili 1: 1
 - svi takvi tipovi poveznika između dva tipa entiteta se prevode u jednu šemu relacije
 - skup obeležja te šeme relacije se proširuje novim obeležjem
 - vrednost tog obeležja ukazuje na ulogu entiteta u povezniku

- (A) Uvođenje novog obeležja uloge
 - moguće ga je, kada su minimalni kardinaliteti tipova poveznika isti, realizovati već na nivou ER modela podataka
 - svi tipovi poveznika s kardinalitetima M: N, ili
 1: 1, između datih tipova entiteta, zamene se jednim, novim tipom poveznika, koji će sadržati i obeležje ulogu

- Primer
 - isti minimalni i maksimalni kardinaliteti
 - početno stanje

- Primer
 - isti minimalni i maksimalni kardinaliteti
 - stanje nakon izvršene transformacije same ER šeme

- Specifikacija ograničenja vrednosti obeležja ULOGA
 - $-id(Zadužen, ULOGA) = (DUlo, \bot)$
 - *DUIo*(*Number*, 1, d ∈ {0, 1, 2})
 - 0 radnik radi na mašini i održava mašinu
 - 1 radnik samo radi na mašini
 - 2 radnik samo održava mašinu
 - Sledi: $dom(Zadužen, ULOGA) = \{0, 1, 2\}$

- Dobijene šeme relacija
 - Radnik({MBR,...}, {MBR})
 - Mašina({OZM,...}, {OZM})
 - Zadužen({MBR, OZM, ULOGA}, {MBR+OZM})

- Ograničenja referencijalnog integriteta
 - Zadužen[MBR] ⊆ Radnik[MBR]
 - Zadužen[OZM] ⊆ Mašina[OZM]
- Semantika različitih uloga entiteta u vezi je očuvana putem obeležja ULOGA

- Primer
 - različiti minimalni i isti maksimalni kardinaliteti
 - uobičajeno, ne vrši se transformacija same ER šeme BP

- Dobijene šeme relacija
 - Radnik({MBR,...}, {MBR})
 - Mašina({OZM,...}, {OZM})
 - Zadužen({MBR, OZM, ULOGA}, {MBR+OZM})

- Ograničenja referencijalnog integriteta
 - Zadužen[MBR] ⊆ Radnik[MBR]
 - Zadužen[OZM] ⊆ Mašina[OZM]

- Specifikacija ograničenja vrednosti obeležja ULOGA
 - $-id(Zadužen, ULOGA) = (DUlo, \bot)$
 - *DUIo*(*Number*, 1, d ∈ {0, 1, 2})
 - 0 radnik radi na mašini i održava mašinu
 - 1 radnik samo radi na mašini
 - 2 radnik samo održava mašinu
 - Sledi: $dom(Zadužen, ULOGA) = \{0, 1, 2\}$

- Novo međurelaciono ograničenje
 - kao posledica minimalnog kardinaliteta 1, na strani tipa entiteta Mašina

$$Mašina[OZM] \subseteq \sigma_{ULOGA \neq 1}(Zadužen[OZM])$$

interpretira se na sledeći način

```
(\forall u \in r(Ma\check{s}ina))(\exists v \in r(Zadu\check{z}en))(
u[OZM] = v[OZM] \land v[ULOGA] \neq 1)
```

- odgovarajući tip ograničenja mogao bi biti ugrađen u samu specifikaciju ER modela podataka
 - što bi dozvolilo rešavanje problema već na nivou projekta ER šeme BP

- (B) Preimenovanje obeležja ključa barem jednog tipa entiteta
 - mora se primeniti za tipove poveznika sa različitim maksimalnim kardinalitetima
 - može se primeniti kada su maksimalni kardinaliteti tipova poveznika isti
 - M: N, ili 1:1
 - obeležja stranog ključa, dobijenog propagacijom primarnog ključa, preimenuju se
 - uvođenje novih obeležja u relacionu šemu BP
 - uobičajeno rešenje
 - podržavaju ga svi ozbiljni CASE alati namenjeni za podršku projektovanja ER šema BP

- Primer:
 - različiti minimalni i isti maksimalni kardinaliteti

- Šeme relacija
 - Radnik({MBR,...}, {MBR})
 - Mašina({OZM,...}, {OZM})
 - Radi({MBR, OZM}, {MBR+OZM})
 - Održava({MBO, OZM}, {MBO+OZM})
 - Uvedeno novo obeležje: MBO
 - semantika: matični broj radnika koji održava mašinu
 - MBO i MBR predstavljaju domenski kompatibilna obeležja

$$dom(MBO) \subseteq dom(MBR)$$

- Ograničenja referencijalnog integriteta
 - Radi[MBR] ⊆ Radnik[MBR]
 - Radi[OZM] ⊆ Mašina[OZM]
 - Održava[MBO] ⊆ Radnik[MBR]
 - Održava[OZM] ⊆ Mašina[OZM]
- Ograničenje inverznog referencijalnog integriteta
 - Mašina[OZM] ⊆ Održava[OZM]

- Preimenovanje MBR u MBO izvršeno je da bi se
 - izbegla kolizija s pretpostavkom o postojanju šeme univerzalne relacije
 - putem različitih šema relacija, iskazala semantika dva posebna odnosa između klasa entiteta Radnik i Mašina
 - Radnik radi na mašini i
 - Radnik održava mašinu

Primer ekstenzije

Radnik

MBR	IME	
159	Iva	
113	Aca	
019	Jan	
077	Aca	

Mašina

OZM	OPIS	
m_1	strug	
m_2	strug	
m_3	glod.	
m_4	presa	

Održava

MBO	OZM	
159	m_1	
159	m_2	
159	m_3	
077	m_3	
077	m_4	

Radi

MBR	OZM	
113	$m_{\scriptscriptstyle 1}$	
019	m_1	
113	m_2	

- Primer
 - različiti minimalni i maksimalni kardinaliteti

- Šeme relacija
 - Radnik({MBR, IME, PRZ, ZAN}, {MBR})
 - Projekat({OZPR, NAZPR, NARUČ, MBRU}, {OZPR})
 - Radi({MBR, OZPR, BRČAS}, {MBR+OZPR})
 - Uvedeno novo obeležje: MBRU
 - semantika: matični broj radnika, rukovodioca projekta
 - MBU i MBR predstavljaju domenski kompatibilna obeležja

 $dom(MBRU) \subseteq dom(MBR)$

- Ograničenja referencijalnog integriteta
 - Radi[MBR] ⊆ Radnik[MBR]
 - Radi[OZPR] ⊆ Projekat[OZPR]
 - Projekat[MBRU] ⊆ Radnik[MBR]
- Ograničenje nula vrednosti
 - Null(Projekat, MBRU) = ⊥

- Tip poveznika Rukovodi je predstavljen putem prostiranja ključa tipa entiteta Radnik
- MBR je preimenovano u novo obeležje MBRU
- Važi domenska kompatibilnost obeležja
 - $dom(MBRU) \subseteq dom(MBR)$

Radnik

MBR	IME	PRZ	ZAN
13	Iva	Ban	inž
09	Ana	Ras	eko
15	Eva	Tot	prof
03	Aca	Kon	eko

Projekat

OZPR	NAZPR	NARUČ	MBRU
ozpr1	Lido	IFC	13
ozpr2	Fakt	IIS	13
ozpr3	Sklad	IIS	15

Radi

MBR	OZPR	BRČAS
13	ozpr1	53
13	ozpr2	61
03	ozpr1	25
15	0zpr3	70

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

Rekurzivni tip poveznika

- Jedan poveznik povezuje dva različita entiteta iste klase
- Kolizija sa činjenicom da šema relacije ne sme sadržati dva ista obeležja, u različitim ulogama
- Rešenje
 - tip poveznika se pretstavlja šemom relacije koja sadrži ključ tipa entiteta i preimenovani ključ tipa entiteta

Rekurzivni tip poveznika

Primer

Rekurzivni tip poveznika

- Šeme relacija
 - Proizvod({IDBR, NAZIV, JMER}, {IDBR})
 - Sastavnica({IDBR, IDBK, KOL}, {IDBR+IDBK})
 - Uvedeno novo obeležje: IDBK
 - semantika: identifikaciona oznaka proizvoda komponente
 - IDBK i IDBR predstavljaju domenski kompatibilna obeležja dom(IDBK) ⊆ dom(IDBR)
- Ograničenja referencijalnog integriteta
 - Sastavnica[IDBR] ⊆ Proizvod[IDBR]
 - Sastavnica[IDBK] ⊆ Proizvod[IDBR]

Proizvod

IDBR	NAZIV	JMER
002	Menjač	kom
005	Motor	kom
021	Osovina	kom
015	Klip	kom
311	ZavrM5	kom
415	Boja	kg
900	Auto	kom

Sastavnica

IDBR	IDBK	KOL
900	002	1
900	005	1
900	021	2
900	415	3
005	015	4
005	311	23

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

Identifikaciono zavisni tip entiteta

- Identifikaciono zavisni, slabi TE ne poseduje "samostalni" identifikator
- Ključ takvog TE se formira korišćenjem ključa nadređenih TE
- Nadređeni TE može, ponovo, biti identifikaciono zavisan
- Postupak formiranja ključa identifikaciono zavisnog TE je rekurzivan
- Završava se dolaskom do regularnog TE

Identifikaciono zavisni tip entiteta

Primer

Identifikaciono zavisni tip entiteta

- Šeme relacija
 - RadnaOrg({IDRO, NAZRO}, {IDRO})
 - Sektor({IDRO, BRSEK, NAZSEK}, {IDRO+BRSEK})
 - Odeljenje({IDRO, BRSEK, BROD, NAZOD}, {IDRO+BRSEK+BROD})
- Ograničenja referencijalnog integriteta
 - Sektor[IDRO] ⊆ RadnaOrg[IDRO]
 - Odeljenje[IDRO+BRSEK] ⊆ Sektor[IDRO+BRSEK]

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

IS-A hijerarhija

- Potklasa je identifikaciono zavisna od superklase
- Potklasa nasleđuje od superklase
 - primarni ključ i
 - sva druga (zajednička) obeležja

IS-A hijerarhija

- Načini prevođenja u relacioni model podataka
 - -(A)
 - po jedna šema relacije za svaku potklasu i šema relacije za superklasu
 - -(B)
 - po jedna šema relacije za svaku potklasu (samo za totalne IS-A)
 - -(C)
 - jedna šema relacije za celu IS-A
 - -(D)
 - po jedna šema relacije za izabrane potklase i jedna šema relacije za superklasu i ostale potklase
 - kombinacija (A) i (C)

it

IS-A hijerarhija

- (A) Šeme relacija:
 - Radnik({MBR, IME, PRZ, ZAN, OZRM}, {MBR})
 - Daktilograf({MBR, KLASA}, {MBR})
 - Programer({MBR, BRPJEZ}, {MBR})
 - Projektant({MBR, SPEC}, {MBR})

- (A) Ograničenja referencijalnog integriteta
 - Daktilograf[MBR] ⊆ Radnik[MBR]
 - Programer[MBR] ⊆ Radnik[MBR]
 - Projektant[MBR] ⊆ Radnik[MBR]
- (A) Međurelaciono ograničenje posledica totalne IS-A hijerarhije

 $Radnik[MBR] \subseteq Daktilograf[MBR] \cup$

Programer[*MBR*] ∪ *Projektant*[*MBR*]

– nepresečna IS-A zahtevala bi dodatna ograničenja, tipa: Daktilograf[MBR] ∩ $Programer[MBR] = \emptyset \land ...$

Radnik

MBR	IME	PRZ	ZAN	OZRM
13	Iva	Ban	pro	orm1
09	Ana	Ras	prg	orm2
15	Eva	Tot	pro	orm3
03	Aca	Kon	prg	orm2
31	Aca	Ban	pro	orm3
22	Eva	Ras	dak	orm4
32	Iva	Pap	pro	orm1
17	Ina	Pap	dak	orm4
44	Jan	Kun	pro	orm1

Daktilograf

MBR	KLASA
17	Α
22	С

Programer

MBR	BRPJEZ
09	3
03	5

Projektant

MBR	SPEC
13	IS
32	DM
44	TP
15	DM
31	TP

- (B) Šeme relacija
 - Daktilograf({MBR, IME, PRZ, OZRM, KLASA}, {MBR})
 - Programer({MBR, IME, PRZ, OZRM, BRPJEZ}, {MBR})
 - Projektant({MBR, IME, PRZ, OZRM, SPEC}, {MBR})
 - Klasifikaciono obeležje ZAN, u (B) slučaju, nema potrebe navoditi
 - nepresečna IS-A zahtevala bi dodatna ograničenja, tipa: $Daktilograf[MBR] \cap Programer[MBR] = \emptyset \wedge ...$

Programer

MBR	IME	PRZ	OZRM	BRPJEZ
03	Aca	Kon	orm2	5
09	Ana	Ras	orm2	3

Daktilograf

MBR	IME	PRZ	OZRM	KLASA
17	Ina	Pap	orm4	Α
22	Eva	Ras	orm4	С

Projektant

MBR	IME	PRZ	OZRM	SPEC
31	Aca	Ban	orm3	TP
13	Iva	Ban	orm1	IS
44	Jan	Kun	orm1	TP
15	Eva	Tot	orm3	DM
32	Iva	Pap	orm1	DM

- (C) Šema relacije
 - Radnik({MBR, IME, PRZ, ZAN, OZRM,KLASA, BRPJEZ, SPEC}, {MBR})

- (C) Ograničenje torke
 - odnos vrednosti obeležja, za slučaj nepresečne IS-A
 - $ZAN = pro \Rightarrow SPEC \neq \omega \land KLASA = \omega \land BRPJEZ = \omega$
 - $ZAN = prg \Rightarrow BRPJEZ \neq \omega \land KLASA = \omega \land SPEC = \omega$
 - $ZAN = dak \Rightarrow KLASA \neq \omega \land SPEC = \omega \land BRPJEZ = \omega$
 - za slučaj presečne IS-A
 - id(Radnik, ZAN) = (DZan, ⊥), DZan(String, 3, d ∈ [000, 111])
 - Substr(ZAN, 1) = 1 \Leftrightarrow SPEC $\neq \omega \land$ Substr(ZAN, 2) = 1 \Leftrightarrow BRPJEZ $\neq \omega \land$ Substr(ZAN, 3) = 1 \Leftrightarrow KLASA $\neq \omega$

Radnik

MBR	IME	PRZ	ZAN	OZRM	KLASA	BRPJEZ	SPEC
13	Iva	Ban	pro	orm1	ω	ω	IS
09	Ana	Ras	prg	orm2	ω	3	ω
15	Eva	Tot	pro	orm3	ω	ω	DM
03	Aca	Kon	prg	orm2	ω	5	W
31	Aca	Ban	pro	orm3	ω	ω	TP
22	Eva	Ras	dak	orm4	С	ω	ω
32	Iva	Pap	pro	orm1	ω	ω	DM
17	Ina	Pap	dak	orm4	Α	ω	ω
44	Jan	Kun	pro	orm1	ω	ω	TP

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

- Načini prevođenja u relacioni model podataka
 - od svakog tipa u kategorizaciji formira se posebna šema relacije
 - -(A)
 - primarni ključevi svih kategorija prenose se kao strani ključevi u zavisni TE
 - uvodi se specijalno ograničenje torke u zavisnom TE
 - -(B)
 - formira se jedan strani ključ u zavisnom TE
 - ako ne postoji, uvodi se novo obeležje vrsta kategorije
 - njegova vrednost ukazuje, za svaku pojavu zavisnog TE, s kojom konkretnom kategorijom je povezana
 - broj obeležja u primarnim ključevima svih kategorija je isti
 - svi primarni ključevi svih kategorija su domenski kompatibilni

it

- (A) Šeme relacija
 - Pravno_lice({MBR, NAZIV}, {MBR})
 - Fizičko_lice({JMBG, PRZ, IME}, {JMBG})
 - Član_kluba({CLID, CLVRST, CLDAT, MBR, JMBG}, {CLID})
- Ograničenja referencijalnog integriteta
 - Član_kluba[MBR] ⊆ Pravno_lice[MBR]
 - Član_kluba[JMBG] ⊆ Fizičko_lice[JMBG]
- Uslov ograničenja torke šeme Član_kluba:
 - (JMBG ≠ ω ∧ MBR = ω) ∨ (JMBG = ω ∧ MBR ≠ ω)

- (B) Šeme relacija
 - Pravno_lice({MBR, NAZIV}, {MBR})
 - Fizičko_lice({JMBG, PRZ, IME}, {JMBG})
 - Član_kluba({CLID, CLVRST, CLDAT, MBG}, {CLID})
 - $dom(CLVRST) = \{0, 1\}$
 - 0 pravno lice
 - 1 fizičko lice
 - $dom(MBG) \subseteq dom(MBR) \land dom(MBG) \subseteq dom(JMBG)$
- Ograničenja referencijalnog integriteta
 - $-(\sigma_{CLVRST=0}(\check{C}lan_kluba))[MBG] \subseteq Pravno_lice[MBR]$
 - $-(\sigma_{CLVRST=1}(\check{C}lan_kluba))[MBG] \subseteq Fizi\check{c}ko_lice[JMBG]$

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- Kategorizacija
- N-arni tip poveznika
- Gerund

N-arni tip poveznika

- Tip poveznika = šema relacije
- Ključ tipa poveznika zavisi od maksimalnih kardinaliteta povezanih tipova entiteta

it

N-arni tip poveznika

Primer

N-arni tip poveznika

- Šeme relacija
 - Student({BRI, IME}, {BRI})
 - Predmet({OZP, NAZ}, {OZP})
 - Nastavnik({OZN, IMN}, {OZN})
 - Izvođenje_nastave({BRI, OZP, OZN}, {BRI+OZP+OZN})

- Ograničenja referencijalnog integriteta
 - Izvođenje_nastave[BRI] ⊆ Student[BRI]
 - Izvođenje_nastave[OZP] ⊆ Predmet[OZP]
 - Izvođenje_nastave[OZN] ⊆ Nastavnik[OZN]

Student

BRI	IME
S ₁	Iva
S ₂	Ana
S ₃	Eva
S ₄	Aca
S ₅	Ana
S ₆	Ema

Predmet

OZP	NAZ
p_1	Mat
p_2	Fiz
p_3	Hem
p_4	Eng
p_5	Geo

Nastavnik

OZN	IMN
n_1	Han
n_2	Kun
n_3	Kiš
n_4	Car

Izvođenje_nastave

BRI	OZP	OZN
S ₁	p_1	n_1
S ₁	p_2	n_1
S ₁	p_3	n_2
S ₂	p_1	n ₄
S ₂	p_4	n_3
S ₃	p_4	n_3
S ₃	p_1	n_1
s_3	p_5	n_2

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- N-arni tip poveznika
- Kategorizacija
- Gerund

 Prevođenje gerunda - na isti način kao i prevođenje regularnog tipa poveznika

• Primer:

Šeme relacija

- Nastavnik({OZN, IMN}, {OZN})
- Predmet({OZP, NAZ}, {OZP})
- Student({BRI, IME}, {BRI})
- Poveravanje({OZN, OZP}, {OZN+OZP})
- Sluša({OZN, OZP, BRI}, {OZN+OZP+BRI})

- Ograničenja referencijalnog integriteta
 - Poveravanje[OZN] ⊆ Nastavnik[OZN]
 - Poveravanje[OZP] ⊆ Predmet[OZP]
 - Sluša[BRI] ⊆ Student[BRI]
 - Sluša[OZN+OZP] ⊆ Poveravanje[OZN+OZP]
- Ograničenje inverznog referencijalnog integriteta
 - Poveravanje[OZN+OZP] ⊆ Sluša[OZN+OZP]

Sadržaj

- Regularni tip entiteta
- Binarni tip poveznika
- Dva tipa poveznika između istih TE
- Rekurzivni tip poveznika
- Identifikaciono zavisni tip entiteta
- IS-A hijerarhija
- N-arni tip poveznika
- Gerund

Pitanja i komentari

Prevođenje ER u relacionu šemu BP

Tehnike projektovanja šeme BP