STATISTICAL LEARNING: STREAMING SERVICE STATISTICAL LEARNING:

By James McSweeney & Noah Jaccard

TABLE OF CONTENTS

INTRODUCTION 01

Introducing the dataset and the project itself

CLASSIFICATIONS 02 Explanation of how our data is classified

03

DATA PROCESSING Setting up the data to be processed

04

RESULTS The answers to the questions we proposed

01 INTRO

Introduction to the Dataset

What Providers are in the Tests

All datasets from Kaggle

Why Streaming Data?

There are many options a consumer could chose. We wanted to know which options are simply the best.

Data that we isolated among the services:

- Price
- Content Amount
- Genre
- Availability/Location
- Length of Movie/Series
- Et. cetera

Introduction

Potential Questions to Propose

- "Who should I pitch an action movie to based on all current selections?"
- "If I only can subscribe to two services, which two should I choose based on my preferences?"
- "How many action shows were released in India?"
- And really anymore relevant question would be possible to answer

Introduction

Potential Questions to Propose

- "Who should I pitch an action movie to based on all current selections?"
- "If I only can subscribe to two services, which two should I choose based on my preferences?"
- "How many action shows were released in India?"
- And really anymore relevant question would be possible to answer

State of the Art

Why make such a service?

- Pitching content to streaming services.
- Does not currently exist on the market.
- Would provide the capabilities to make an educated decision on whether or not it's worth pitching a movie or tv show idea to a service.
 - This could be based on location, genre, amount of shows available, and more.

DATA PROCESSING

Data description, Preprocessing, and Variable Significance

Initial Data

- Four streaming services
- 23,000 TV Shows and Movies collectively.
- Each row has:
 - Title
 - Date Added
 - Year Released
 - Rating
 - Duration
 - Genres Listed In (up to three)

Data Pre-Preprocessing

- Needed an easy way to classify which service.
 - Added a "Service" column
 - Hulu = 1, Disney = 2, Netflix = 3, Prime = 4
- Needed to know TV Show or Movie.
 - Added a "ContentType" column
 - TV Show = 0, Movie = 1
- Mutated a "ChildFriendly" column based on rating.
 - Anything PG and lower is True, else False
- Created a column for each genre.
 - Binarily specified.

Data Preprocessing

- Binded the four datasets into one dataset
- Removed null rows
- Combined similar genres across services
- Fixed class imbalance through downsampling

Initial Genre #	Combined Genre #
119	39

Service	Before Downsampling	After Downsampling
Disney+	1450	1450
Netflix	8739	1450
Prime	9660	1450
Hulu	3072	1450

Significance of variables

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     3.8174002
                                0.7647910
                                            4.991 6.04e-07 ***
release_vear
                    -0.0003582
                                0.0003794
                                           -0.944 0.345112
ContentType
                     0.2493504
                                0.0142318
                                           17.521 < 2e-16 ***
Thriller
                    -1.8615648
                                0.0634279 -29.349
                                                   < Ze-16 ***
Cooking...Food
                    -0.4852351
                                0.1211042
                                           -4.007 6.18e-05 ***
Music
                    -1.5178011
                                0.0783134 -19.381 < 2e-16 ***
                                0.0849338 -18.327 < Ze-16 ***
Mystery
                    -1.5566143
                                0.0703303
Sports
                    -0.4425982
                                           -6.293 3.17e-10 ***
Black Stories
                    -1.7622881
                                0.0765474
                                          -23.022 < 2e-16 ***
Latino
                    -1.7968820
                                0.0849412 -21.154 < 2e-16 ***
Superhero
                    -1.0504991
                                0.1863394
                                           -5.638 1.75e-08 ***
Survival
                                0.2697245
                    -0.7750442
                                           -2.873 0.004064 **
Fantasy
                    -0.3781519
                                0.0682208
                                           -5.543 3.01e-08 ***
Movies
                     0.5247489
                                0.1379905
                                            3.803 0.000143 ***
Medical
                    -0.7218818
                                0.3309346
                                           -2.181 0.029168 *
                                            3.699 0.000217 ***
Variety
                     0.9067739
                                0.2451351
Police.Cop
                    -0.6051714
                                0.8075224
                                           -0.749 0.453613
                                0.0550068
                                            9.603 < 2e-16 ***
Western
                     0.5282237
Series
                    -0.5765682
                                0.4666323
                                           -1.236 0.216622
Suspense
                     0.6714683
                                0.0232870
                                           28.835
                                                  < Ze-16 ***
Special.Interest
                     0.7962412
                                0.0286424
                                           27.799
                                                  < 2e-16 ***
```

```
Special.Interest
                    0.7962412 0.0286424
                                         27.799 < 2e-16 ***
Entertainment
                               0.0498704
                                           7.018 2.32e-12 ***
TV. Shows
                               0.0632043 22.977 < 2e-16 ***
TV.Mvsteries
                               0.0834155
                                           0.814 0.415805
Independent Movies
                   -0.2605103
                               0.0309105
                                         -8.428 < 2e-16 ***
Thrillers
                    -0.3616895
                               0.1133989
                                         -3.190 0.001427 **
TV. Thrillers
                    0.0957385
                              0.1081715
                                           0.885 0.376132
TV.Sci.Fi...Fantasy -0.1011011 0.0497062
                                         -2.034 0.041966 *
Sports.Movies
                               0.0555593 -2.222 0.026309 *
Animate
                    -0.5176898
                              0.0223150 -23.199 < 2e-16 ***
sitcom
                               0.0652970 -22.478
international
                    -0.0974916
                              0.0143249 -6.806 1.03e-11 ***
history
                   -0.6727002
                              0.0537325 -12.519 < 2e-16 ***
romance
                   -0.0424996
                              0.0203682 -2.087 0.036938 *
news
                   -1.6171384
                               0.0736542 -21.956 < 2e-16 ***
health
                    0.1762640
                              0.0551746
                                          3.195 0.001402 **
classic
                   -0.4020038
                               0.0540343 -7.440 1.04e-13 ***
reality
                    -0.2929385
                              0.0342346 -8.557 < 2e-16 ***
comedy
                   -0.1801920
                               0.0139814 -12.888 < Ze-16 ***
drama
                    0.0518817 0.0135298 3.835 0.000126 ***
crime
                   -0.4947542
                              0.0328420 -15.065 < 2e-16 ***
horror
                   -0.0232420
                              0.0230396 -1.009 0.313088
Science
                   -0.1091786
                               0.0288097 -3.790 0.000151 ***
Under18
                    0.0293195
                               0.0148351 1.976 0.048126 *
Docs
                   -0.3285606
                               0.0185682 -17.695
lifestyle
                   -1.6265905
                               0.0863726 -18.832 < Ze-16 ***
ArtAndMusic
                    0.0961990
                               0.0310756
                                         3.096 0.001966 **
GameShow
                   -1.4211585 0.1540481 -9.225 < Ze-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Data Processing

- 5 Fold Cross Validation
 - o Train: 80% of selection
 - Test Holdout: 20% of selection
- Random Sampling
 - Instead of 80% of list, 20% of list
- Used for all classifications

x :	title	† date_added †	release_year ‡		† duration †	listed_in	Service \$	ContentType	CookingFood	† Music	Sport
	Ricky Velez: Here's Everything	October 24, 2021	2021	TV-MA		Comedy, Stand Up	1				
	Silent Night	October 23, 2021	2020		94 min	Crime, Drama, Thriller	1				
	The Marksman	October 23, 2021	2021	PG-13	108 min	Action, Thriller	1				
	Gaia	October 22, 2021	2021		97 min	Horror	1				
	Settlers	October 22, 2021	2021		104 min	Science Fiction, Thriller	1				
	The Halloween Candy Magic Pet	October 22, 2021	2021		1 Season	Family, Kids	1		0		
	The Evil Next Door	October 21, 2021	2020		88 min	Horror, Thriller	1				
1	The Next Thing You Eat	October 21, 2021	2021		1 Season	Cooking & Food, Documentaries, Lifestyle & Culture	1		0		

03 Classifications

Classification trees, Random Forest, KNN, Naive Bayes, and SVM

Classification

- Classification groups data by similar characteristics
- Classification methods we used include Classification trees, Random Forest, K-Nearest Neighbors, Naive Bayes, and Support Vector Machines
- Performing multiclass classification to predict what service a piece of content is on based on its features
- Four different classes each representing a different service
 - Aforementioned Hulu = 1, Disney = 2, Netflix = 3, Prime = 4

Classification Tree

- Creates a tree through binary decisions
- By splitting it creates two branches
- The Leaf nodes are the represent the assigned classification
- Accuracy: 62.31%

Prediction

			Truth	
	1	2	3	4
1	250	67	24	98
2	87	321	1	27
3	66	65	244	63
4	55	70	37	276

Tree Visualization

Random Forest

- Creates multiple classification trees
- Majority votes on the results using different classification trees
- Hyper parameter tuned with grid search
- Accuracy: 73.1%

Truth

	1	2	3	4
1	302	50	60	50
2	46	365	34	45
3	33	1	296	26
4	58	20	48	317

Prediction

K Nearest Neighbors

- Useful for multiclass classification
 - We have four classes!
- Finds nearest relational neighbors and groups up the totals.
- Warning: If data is too similarly tied, it will not work.
 - Introduce slight noise to values
- \bullet k = 5
- Accuracy: 73.30

Prediction

Truth

	1	2	3	4
1	82	12	18	21
2	4	54	1	23
3	95	17	718	137
4	118	47	157	796

Naive Bayes

- Assumes independence between variables
- Assigns a probability to each feature
- Sums up probabilities to make a classification
- Accuracy: 33.64%

Prediction

Truth

	1	2	3	4
1	0	0	381	58
2	0	18	256	162
3	0	0	422	16
4	0	0	289	149

SVM (Support Vector Machine)

- Advantages: High Dimensionality, Memory Efficient
- Disadvantages: Very Sensitive
- Accuracy: 74.15%

Prediction /

Truth

	1	2	3	4
1	239	26	17	30
2	15	139	6	37
3	152	49	1498	307
4	194	81	0275	1535

Results

METHOD	ACCURACY
Classification Tree	62.21%
Random Forest	73.1%
Naive Bayes	33.64%
KNN	73.30%
SVM	74.15%

Conclusion and Future Work

- Imagine you are a writer/producer.
- You want to release a TV Show for adults listed under the genres Action, Sitcom, and Drama
- You format a table and predict it with SVM
- The model returns that Hulu would give you the best chance. You sell your show, you are now rich

- Highly possible to simulate and classify streaming service data.
- Random Forest and KNN are the best for reduced processing.
- SVM has the highest accuracy, but costly.
- Surprises:
 - o Tied data for KNN: Noise

- Significant genres are the majority of the selections.
- A successful pitch would be a significant genre.
- Netflix is by far the biggest.

Future Work

- The Database is updated every 4 months
 - Could analysis new and deleted movie and tv show information
- Perform analysis on locations and actors
- Understanding the differences of each service in other countries
- Could try not condensing the genre's and seeing what connections we could make from less generalized data.

Thank You!

Any Questions?