Seminarul 1 de Geometrie II

Seria 11 - 2021-2022

1 Geometrie analitică în spațiul euclidian tridimensional. Recapitulare

Exercitiul 1.1: În spațiul euclidian \mathbb{R}^3 , considerăm punctele

$$A = (1, -2, -2), B = (-5, 0, -1), C_{\alpha} = (-2, -1, \alpha) \ \alpha \in \mathbb{R}.$$

- a) Determinați α astfel încât A, B, C_{α} coliniare.
- b) Dați exemplu, dacă există, de punct D_{α} ale cărui coordonate sunt expresii de gradul 1 în α astfel încât A, B, D_{α} să nu fie coliniare pentru niciun $\alpha \in \mathbb{R}$.

Exercițiul 1.2: În spațiul euclidian \mathbb{R}^3 , considerăm punctele

$$A = (1, 0, 0), B = (1, -1, 1), C = (2, 0, 3).$$

Determinați punctul D astfel încât ABCD să fie paralelogram.

Exercițiul 1.3: În spațiul euclidian \mathbb{R}^3 , considerăm punctele

$$A = (1, 0, 0), B = (1, -1, 1), C = (1, \alpha, \beta), \ \alpha, \beta \in \mathbb{R}.$$

Determinați α, β astfel încât $\triangle ABC$ este dreptunghic.

Exercițiul 1.4: În spațiul euclidian \mathbb{R}^3 , considerăm punctele A = (1, 2, 3), B = (0, -1, 1) și planul $\pi : 2x - 3y + 5z - 2 = 0$.

Determinați locul geometric al punctelor C din planul π astfel încât $\triangle ABC$ este dreptunghic în B.

Exercițiul 1.5: În spațiul euclidian \mathbb{R}^3 , considerăm dreapta

$$d: \frac{x-1}{1} = \frac{y}{2} = \frac{z-2}{2}$$

și planul $\pi: 4x-y-z=1$. Determinați poziția relativă a lui d și π .

Exercițiul 1.6: În spațiul euclidian \mathbb{R}^3 , considerăm punctele

$$A = (0, 0, 0), B = (2, 3, 1), C = (1, -1, 1).$$

Determinați:

- a) Centrul de greutate al triunghiului $\triangle ABC$.
- b) Centrul cercului circumscris triunghiului $\triangle ABC$.
- c) Ortocentrul triunghiului $\triangle ABC$.
- d) Centrul cercului înscris în triunghiul $\triangle ABC$.

Exercițiul 1.7: În spațiul euclidian \mathbb{R}^3 , considerăm dreaptele

$$d_1: \frac{x+\alpha-1}{\alpha} = \frac{y+1}{2} = \frac{z+\alpha-1}{\alpha}$$
 și $d_2: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$.

- a) Arătați că pentru orice $\alpha \in \mathbb{R}$, dreptele d_1 și d_2 sunt coplanare și, pentru $\alpha = 1$, găsiți ecuația planului determinat de d_1 și d_2 .
- b) Determinați $\alpha \in \mathbb{R}$ astfel încât $d_1 \perp d_2$ și, în acest caz, aflați distanța de la punctul P = (2, 3, 4) la dreapta d_1 .

Exercițiul 1.8: În spațiul euclidian \mathbb{R}^3 , considerăm dreaptele

$$d_1: \frac{x-2}{-1} = \frac{y+1}{3} = \frac{z}{1}$$
 și $d_2: \frac{x+1}{2} = \frac{y-8}{-6} = \frac{z-3}{-2}$.

Demonstrați că dreptele sunt coplanare și scrieți ecuația planului pe care îl determină.

Exercițiul 1.9: În spațiul euclidian \mathbb{R}^3 , considerăm dreaptele

$$d_1: \frac{x-2}{-1} = \frac{y+1}{3} = \frac{z}{1}$$
 şi $d_2: \frac{x+1}{7} = \frac{y-8}{-3} = \frac{z-3}{1}$.

Demonstrați că dreptele sunt coplanare și scrieți ecuația planului pe care îl determină.

Exercițiul 1.10: În spațiul euclidian \mathbb{R}^3 , considerăm dreaptele

$$d_1: \frac{x-2}{-1} = \frac{y+1}{3} = \frac{z}{1}$$
 şi $d_2: \frac{x+1}{7} = \frac{y-8}{-3} = \frac{z-4}{1}$.

Studiați dacă dreptele sunt coplanare, iar dacă nu, aflați ecuația perpendicularei comune la ele.

Exercițiul 1.11: În spațiul euclidian \mathbb{R}^3 , fie $\pi_1 : 2x - y - z - 2 = 0$, $\pi_2 : x + 2y + 2z + 1 = 0$, $\pi_3 : x + 7y + 7z + \alpha = 0$ și A = (1, -2, 5).

- a) Aflaţi ecuaţia parametrică a dreptei $d = \pi_1 \cap \pi_2$.
- b) Calculați simetricul punctului A față de planul π_2 .
- c) Calculați simetricul punctului A față de dreapta d.
- d) Determinați $\alpha\in\mathbb{R}$ astfel încât π_1,π_2,π_3 se intersectează după o dreaptă.

Seminarul 2 de Geometrie II

Seria 11 - 2021-2022

2 Spații afine. Combinații afine. Exerciții

Exercițiul 2.1: Fie K un corp comutativ și sistemul de ecuații liniare AX = b, unde $A \in \mathcal{M}_{m,n}(K), b \in K^m$.

Dacă

$$\mathcal{A} = \{X \in K^n \mid AX = b\} \subset K^n$$

$$V = \{X \in K^n \mid AX = 0\} \subset K^n$$

$$\varphi : \mathcal{A} \times \mathcal{A} \to V, \varphi(X, Y) = Y - X,$$

demonstrați că $(A, V_{/K}, \varphi)$ este un spațiu afin.

Exercițiul 2.2: Fie $\mathbb{A}^3 = (\mathbb{R}^3, \mathbb{R}^3_{/\mathbb{R}}, \varphi)$ spațiul real tridimensional cu structura afină canonică. Demonstrați că punctele A, B, C sunt coliniare dacă și numai dacă $\{A, B, C\}$ este o mulțime afin dependentă.

Exercițiul 2.3: Fie $\mathbb{A}^2 = (\mathbb{R}^2, \mathbb{R}^2_{/\mathbb{R}}, \varphi)$ spațiul real bidimensional cu structura afină canonică și $A, B, C \in \mathbb{A}^2$. Demonstrați că $\{A, B, C\}$ este sistem afin de generatori dacă și numai dacă A, B, C nu sunt coliniare.

Exercițiul 2.4: Fie $\mathbb{A}^4 = (\mathbb{R}^4, \mathbb{R}^4_{/\mathbb{R}}, \varphi)$. Verificați dacă:

a)
$$\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\0\\-3\\2 \end{pmatrix} \right\} \subset \mathbb{A}^4,$$

b)
$$\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 2\\-3\\5\\1 \end{pmatrix}, \begin{pmatrix} -4\\1\\-3\\2 \end{pmatrix}, \begin{pmatrix} -5\\1\\-4\\0 \end{pmatrix}, \begin{pmatrix} 1\\-3\\-2\\-1 \end{pmatrix} \right\} \subset \mathbb{A}^4,$$

sunt sisteme afin independente și sisteme afine de generatori.

Exercițiul 2.5: În \mathbb{A}^2 , fie $A_1, ..., A_6$ vârfurile unui hexagon. Pentru orice $\Delta \subset \{1, 2, 3, 4, 5, 6\}, |\Delta| = 3$, fie

$$G_{\Delta} = \frac{1}{3}A_{i_1} + \frac{1}{3}A_{i_2} + \frac{1}{3}A_{i_3}, \ \{i_1, i_2, i_3\} = \Delta,$$

$$G_{\Delta'} = \frac{1}{3}A_{j_1} + \frac{1}{3}A_{j_2} + \frac{1}{3}A_{j_3}, \ \{j_1, j_2, j_3\} = \{1, 2, 3, 4, 5, 6\} \setminus \Delta.$$

Demonstrați că toate $G_{\Delta}G_{\Delta'}$ sunt concurente.

Exercițiul 2.6: Fie $(A, V_{/K}, \varphi)$ un spațiu afin și $M = \{P_0, P_1, ..., P_n\} \subset A$. Demonstrați că $P \in Af(M)$ dacă și numai dacă $Af(M) = Af(M \cup \{P\})$.

Exercițiul 2.7: Fie $(A, V_{/K}, \varphi)$ un spațiu afin si $M \subset A$. Demonstrați că

$$Af(Af(M)) = Af(M).$$

Exercițiul 2.8: Fie $(A, V_{/K}, \varphi)$ un spațiu afin și $M \subset A$. Este adevărat că

$$Af(M) = \{\alpha P + (1 - \alpha)Q \mid P, Q \in M, \alpha \in K\}?$$

Exercițiul 2.9: Fie $(A, V_{/K}, \varphi)$ un spațiu afin, $A_1, A_2, ..., A_k \in A$ și $\lambda_1, \lambda_2, ..., \lambda_k \in K$ nu toate nule cu $\sum_{i=1}^k \lambda_i = 0$.

a) Demonstrați că funcția

$$L: \mathcal{A} \to V, \ L(M) = \sum_{i=1}^{k} \lambda_i \overrightarrow{MA_i}$$

este constantă.

b) Demonstrați că $L \equiv 0$ dacă și numai dacă $A_1, A_2, ..., A_k$ sunt afin dependente.

Exercițiul 2.10: (convexitate în spații afine reale) Fie \mathcal{A} un spațiu afin real. O mulțime $M \subset \mathcal{A}$ se numește convexă dacă

$$\forall A, B \in M, \ tA + (1-t)B \in M, \ \forall t \in [0,1].$$

- a) Demonstrați că M este convexă $\iff \forall k \geq 2, \ \forall P_1, ..., P_k \in M, \ \forall \alpha_1, ..., \alpha_k \in [0, 1]$ cu $\sum_{i=1}^k \alpha_i = 1$, avem $\sum_{i=1}^k \alpha_i P_i \in M$.
- b) Demonstrați că o intersecție arbitrară de mulțimi convexe este convexă.
- c) Pentru o submulțime $N \subset \mathcal{A}$, numim *acoperirea convexă* a lui N cea mai mică submulțime convexă ce conține N, notată conv(N). Demonstrați că

$$conv(N) = \{ \sum_{i=1}^{k} \alpha_i P_i \mid k \ge 2, \ P_1, ..., P_k \in N, \ \alpha_1, ..., \alpha_k \in [0, 1] \text{ cu } \sum_{i=1}^{k} \alpha_i = 1 \}.$$

- d) Fie $N \subset \mathcal{A}$ o submulțime finită, $|N| \geq 2$. Atunci există o partiție a lui $N, N = N_1 \cup N_2, N_1 \cap N_2 = \emptyset$, astfel încât $\operatorname{conv}(N_1) \cap \operatorname{conv}(N_2) = \emptyset$.
- e) (Teorema lui Radon) Fie $N \subset \mathcal{A}$ o submulțime finită, |N| = m și dim $\mathcal{A} = n$. Presupunem $m \geq n+2$. Atunci există o partiție a lui $N, N = N_1 \cup N_2, N_1 \cap N_2 = \emptyset$, astfel încât $\operatorname{conv}(N_1) \cap \operatorname{conv}(N_2) \neq \emptyset$.
- f) (Teorema lui Helly) Fie $M_1, ..., M_r$ submulțimi convexe ale lui \mathbb{R}^n cu $r \geq n+1$. Dacă intersecția a oricare n+1 dintre ele este nevidă, atunci intersecția tuturor este nevidă.

Seminarul 3 de Geometrie II

Seria 11 - 2021-2022

3 Repere afine. Subspații afine. Exerciții

Exercițiul 3.1: Fie \mathbb{A}^3 spațiul afin real canonic și $P_0 = (...), P_1 = (...), P_2 = (...), P_3 = (...)$. Arătați că $\mathcal{R} = \{P_0, P_1, P_2, P_3\}$ este un reper afin și determinați coordonatele afine ale punctului M = (...) în raport cu \mathcal{R} .

Exercițiul 3.2: Fie $(A, V/K, \varphi)$ un spațiu afin și $M \subset A$. Demonstrați că

$$Af(M) = \bigcap_{\substack{\mathcal{A}' \supset M \\ \mathcal{A}' \subset \mathcal{A} \text{ subspatiu afin}}} \mathcal{A}'.$$

Exercițiul 3.3: Fie $\mathcal{A} = \mathbb{Z}_p^n$ cu structura afină canonică.

- a) Determinați numărul de puncte ale unui subspațiu afin de dimensiune k (în particular, demonstrați că toate au același număr de puncte).
- b) Determinați numărul de subspații afine ale lui \mathbb{Z}_p^n de dimensiune k.
 - Definiția paralelismului pentru subspații afine.

Exercițiul 3.4: Fie $(\mathcal{A}, V/K, \varphi)$ un spațiu afin și $\mathcal{A}', \mathcal{A}'' \subset \mathcal{A}$ subspații afine. Arătați că, dacă $\mathcal{A}' \parallel \mathcal{A}''$ și $\mathcal{A}' \cap \mathcal{A}'' \neq \emptyset$, atunci $\mathcal{A}' \subset \mathcal{A}''$ sau $\mathcal{A}'' \subset \mathcal{A}'$.

Exercițiul 3.5: Fie $(A, V/K, \varphi)$ un spațiu afin, $A' \subset A$ subspațiu afin, $A' \neq A$ și $\mathcal{H} \subset \mathcal{A}$ hiperplan afin. Arătați că

$$\mathcal{A}' \parallel \mathcal{H} \iff \mathcal{A}' \subset \mathcal{H} \text{ sau } \mathcal{A}' \cap \mathcal{H} = \emptyset.$$

Exercițiul 3.6: Fie $(A, V/K, \varphi)$ un spațiu afin. Arătați că orice subspațiu afin al lui A este o intersecție de hiperplane afine.

Exercițiul 3.7: Fie $(A, V/K, \varphi)$ un spațiu afin, $A_0, A_1 \subset A$ subspații afine și $k \in K$. Demonstrati că

$$\mathcal{A}_k = \{ (1-k)A_0 + kA_1 \mid A_0 \in \mathcal{A}_0, A_1 \in \mathcal{A}_1 \}$$

este subspațiu afin al lui A. Determinați dimensiunea sa.

Seminarul 4 de Geometrie II

Seria 11 - 2021-2022

4 Subspații afine. Aplicații afine. Exerciții

Exercițiul 4.1: Fie $\mathcal{A} = \mathbb{R}^4$ cu structura canonică de spațiu afin și punctele A = (1,0,1,2), B = (0,1,2,3), C = (0,0,1,-1). Fie $\mathcal{A}' = \langle \{A,B,C\} \rangle$, subspațiul afin generat de cele trei puncte.

Descrieți \mathcal{A}' prin ecuații implicite și aflați dim \mathcal{A}' .

Exercițiul 4.2: Fie $\mathcal{A} = \mathbb{C}^3$ cu structura canonică de spațiu afin și dreapta

$$d: \left\{ \begin{array}{ll} z_1 - iz_2 & = 0 \\ 2z_2 + z_3 + 1 & = 0 \end{array} \right.$$

Găsiți ecuațiile parametrice ale lui d. $\mathcal{D}ir(d) = ?$

Exercițiul 4.3: Fie $\mathcal{A} = \mathbb{R}^4$ cu structura canonică de spațiu afin și dreptele

$$d_1: \frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{0} = \frac{w}{2},$$

$$d_2: \frac{x}{1} = \frac{y}{1} = \frac{z-3}{0} = \frac{w-1}{2},$$

$$d_3: \frac{x}{1} = \frac{y}{1} = \frac{z-3}{1} = \frac{w-1}{1}.$$

Calculați $d_1 \vee d_2$ și $d_1 \vee d_3$.

Exercițiul 4.4: Fie $\mathcal{A} = \mathbb{R}^n$ cu structura canonică de spațiu afin. Arătați că orice hiperplan în \mathcal{A} separă spațiul. Pentru $\mathcal{A} = \mathbb{C}^n$, arătați că acest rezultat nu mai rămâne valabil.

Exercițiul 4.5: Găsiți, dacă există, dreptele spațiului afin \mathbb{R}^3 care taie simultan dreptele de ecuații:

$$d_1: \left\{ \begin{array}{ccc} x & = 3z \\ y & = -\frac{3}{2} \end{array} \right., d_2: \left\{ \begin{array}{ccc} x+z & = 0 \\ y & = \frac{3}{2} \end{array} \right., d_3: \left\{ \begin{array}{ccc} x-z & = 3 \\ y & = z \end{array} \right., d_4: \left\{ \begin{array}{ccc} x-z & = 0 \\ y & = z \end{array} \right..$$

Exercițiul 4.6: Decideți dacă următoarele trei plane din spațiul afin $\mathcal{A} = \mathbb{R}^3$ aparțin unui aceluiași fascicol:

$$\pi_1 : x - y + z + 5 = 0,$$

 $\pi_2 : 2x - 2y + 2z + 77 = 0,$
 $\pi_3 : -x + y - z = 0.$

Exercițiul 4.7: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura canonică de spațiu afin și dreapta

$$d: \left\{ \begin{array}{ll} x+y & =1 \\ x-z & =2 \end{array} \right.$$

- a) Găsiți ecuații implicite pentru d.
- b) Determinați fasciculul de plane care îl conțin pe d.
- c) Aflați planul din acel fascicul care conține punctul P = (1, 0, 0).
- d) Aflați planele din acel fascicul care intersectează dreapta d', unde

$$d: \left\{ \begin{array}{ll} x+y+z & =1 \\ x-y & =2 \end{array} \right. .$$

Exercițiul 4.8: Fie $\mathbb{A}^4 = \mathbb{R}^4$ cu structura afină canonică și $\mathbb{A}^3 = \mathbb{R}^3$ cu structura afină canonică. Fie

$$P_0 = (1, -3, 2, 0), P_1 = (2, -2, 3, 0), P_2 = (2, -2, 2, 1),$$

 $P_3 = (2, -3, 3, 1), P_4 = (1, -2, 3, 1).$

- a) Verificați că $\mathbb{R} = \{P_0, P_1, P_2, P_3, P_4\}$ este un reper afin în \mathbb{A}^4 .
- b) Considerăm $f: \mathbb{A}^4 \to \mathbb{A}^3$ unica aplicație afină pentru care

$$f(P_0) = ..., f(P_1) = ..., f(P_2) = ..., f(P_3) = ..., f(P_4) =$$

Verificați dacă f este injectivă, surjectivă, bijectivă.

c) Scrieți ecuația lui f în raportul cu reperele canonice din \mathbb{A}^4 și \mathbb{A}^3 .

Exercitiul 4.9: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura afină canonică. Considerăm funcția

$$f: A \to A, f(x, y, z) = (x + y + z, 2x - y + 3, 3x + z + 1).$$

- a) Arătați că f este aplicație afină.
- b) Fie π planul de ecuație

$$\pi: x + y - z = 1$$

$$d: \frac{x-1}{2} = \frac{y-1}{0} = \frac{z}{3}.$$

Determinați ecuații pentru $f(\pi)$ și f(d).

- c) Există plane $\pi' \subset \mathcal{A}$ astfel încât $f(\pi')$ este dreaptă? Dați exemplu sau demonstrați că nu există.
- d) Există plane $\pi' \subset \mathcal{A}$ astfel încât $f(\pi')$ este plan şi $\pi' \parallel f(\pi')$? Daţi exemplu sau demonstraţi că nu există.
- e) Există drepte $d' \subset \mathcal{A}$ astfel încât f(d) = d? Dați exemplu sau demonstrați că nu există.

Exercițiul 4.10: Fie K un corp comutativ și $n \ge 1$. Înzestrăm K^n și K cu structurile canonice de spații afine peste K. Fie $f: K^n \to K$ o aplicație afină.

- a) Demonstrați că, dacă f nu este constantă, atunci, pentru orice $\alpha \in K$, există un hiperplan $\mathcal{H} \subset K^n$ astfel încât $\mathcal{H} = f^{-1}(\{\alpha\})$. (0,6p)
- b) Demonstrați că dacă există $\mathcal{H}_1, \mathcal{H}_2$ hiperplane, $\mathcal{H}_1 \neq \mathcal{H}_2$, astfel încât $f_{|\mathcal{H}_1} = f_{|\mathcal{H}_2} = c \in K$, atunci f este constantă. (0,4p)

Seminarul 5 de Geometrie II

Seria 11 - 2021-2022

5 Aplicații afine. Exerciții

Exercițiul 5.1: Fie $\mathbb{A}^4 = \mathbb{R}^4$ cu structura afină canonică și $\mathbb{A}^3 = \mathbb{R}^3$ cu structura afină canonică. Fie

$$P_0 = (1, -3, 2, 0), P_1 = (2, -2, 3, 0), P_2 = (2, -2, 2, 1),$$

 $P_3 = (2, -3, 3, 1), P_4 = (1, -2, 3, 1).$

- a) Verificați că $\mathbb{R} = \{P_0, P_1, P_2, P_3, P_4\}$ este un reper afin în \mathbb{A}^4 .
- b) Considerăm $f: \mathbb{A}^4 \to \mathbb{A}^3$ unica aplicație afină pentru care

$$f(P_0) = ..., f(P_1) = ..., f(P_2) = ..., f(P_3) = ..., f(P_4) = ...$$

Verificați dacă f este injectivă, surjectivă, bijectivă.

c) Scrieți ecuația lui f în raportul cu reperele canonice din \mathbb{A}^4 și \mathbb{A}^3 .

Exercițiul 5.2: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura afină canonică. Considerăm funcția

$$f: A \to A, f(x, y, z) = (x + y + z, 2x - y + 3, 3x + z + 1).$$

- a) Arătați că f este aplicație afină.
- b) Fie π planul de ecuație

$$\pi: x + y - z = 1$$

$$d: \frac{x-1}{2} = \frac{y-1}{0} = \frac{z}{3}.$$

Determinați ecuații pentru $f(\pi)$ și f(d).

- c) Există plane $\pi' \subset \mathcal{A}$ astfel încât $f(\pi')$ este dreaptă? Dați exemplu sau demonstrați că nu există.
- d) Există plane $\pi' \subset \mathcal{A}$ astfel încât $f(\pi')$ este plan şi $\pi' \parallel f(\pi')$? Daţi exemplu sau demonstraţi că nu există.
- e) Există drepte $d' \subset \mathcal{A}$ astfel încât f(d) = d? Dați exemplu sau demonstrați că nu există.

Exercițiul 5.3: Fie K un corp comutativ și $n \ge 1$. Înzestrăm K^n și K cu structurile canonice de spații afine peste K. Fie $f: K^n \to K$ o aplicație afină.

a) Demonstrați că, dacă f nu este constantă, atunci, pentru orice $\alpha \in K$, există un hiperplan $\mathcal{H} \subset K^n$ astfel încât $\mathcal{H} = f^{-1}(\{\alpha\})$. (0,6p)

b) Demonstrați că dacă există $\mathcal{H}_1, \mathcal{H}_2$ hiperplane, $\mathcal{H}_1 \neq \mathcal{H}_2$, astfel încât $f_{|\mathcal{H}_1} = f_{|\mathcal{H}_2} = c \in K$, atunci f este constantă. (0,4p)

Exercițiul 5.4: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura afină canonică și

$$f: A \to A, \ f(x, y, z) = (4x - 12, 4y + 6, 4z - 3).$$

- a) Demonstrați că f este o omotetie și aflați centrul și raportul ei.
- b) Fie planul $\pi: 4x + 9y z = 2$. Determinați $f(\pi)$.

Exercițiul 5.5: Fie \mathcal{A} un spațiu afin și omotetiile $H_{O_1,\lambda_1}, H_{O_2,\lambda_2}$.

- a) Demonstrați că dacă $\lambda_1\lambda_2 \neq 1$, $H_{O_1,\lambda_1} \circ H_{O_2,\lambda_2}$ este o omotetie și determinați centrul și raportul ei.
- b) Demonstrați că dacă $\lambda_1\lambda_2=1,\ H_{O_1,\lambda_1}\circ H_{O_2,\lambda_2}$ este o translație și determinați vectorul de translație.

Exercițiul 5.6: Fie \mathcal{A} un spațiu afin și omotetiile $H_1 = H_{O_1,\lambda_1}, H_2 = H_{O_2,\lambda_2}$. Presupunem că există $A \in \mathcal{A}$ astfel încât $(H_1 \circ H_2)(A) = (H_2 \circ H_1)(A)$.

Ce puteți spune despre H_1 și H_2 ?

Exercițiul 5.7: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura afină canonică, planul $\pi : 4x + 9y - z = 2$ și $W = \langle (1,2,3) \rangle \leq \mathbb{R}^3$.

Determinați ecuațile proiecției pe planul π de-a lungul lui W și a simetriei față de planul π de-a lungul lui W.

Reamintire de la curs: Am demonstrat că o aplicație liniară $p:V\to V$ este proiecție vectorială (pe un subspațiu de-a lungul unui subspațiu complementar) dacă și numai dacă $p^2=p$.

Exercitiul 5.8: Fie \mathcal{A} un spațiu afin și $\pi: \mathcal{A} \to \mathcal{A}$ aplicație afină.

- a) Demonstrați că π este o proiecție afină \iff urma sa liniară $p:V\to V$ e proiecție vectorială și π are un punct fix.
- b) Demonstrați că π este o proiecție afină $\iff \pi^2 = \pi$.

Seminarul 6 de Geometrie II

Seria 11 - 2021-2022

6 Spații euclidiene. Exerciții

Exercițiul 6.1: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura euclidiană canonică și dreptele

$$d_1: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{2}$$
$$d_2: \frac{x-2}{1} = \frac{y-1}{-1} = \frac{z-2}{0}$$

Găsiți o perpendiculară comună pe d_1 și d_2 . Este ea unică?

Exercițiul 6.2: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura euclidiană canonică, dreapta

$$d: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{2}$$

şi planul $\pi: x - 2y + 2z = 1$.

Determinați:

- a) direcția normală la planul π .
- b) ecuația proieției ortogonale pe planul π .
- c) proieția ortogonală a dreptei d pe planul π .
- d) măsura unghiului format de dreapta d și planul π .
- e) măsura unghiului format de planul π cu planul π' : x + y = 1.

Exercițiul 6.3: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura euclidiană canonică. Considerăm planul

$$\pi: x_1 - 2x_2 + 2x_3 = 1$$

și dreapta

$$d: \frac{x_1-1}{1} = \frac{x_2-1}{0} = \frac{x_3-2}{-1}.$$

Determinati

- a) $S_{\pi}(d)$ unde S_{π} este simetria ortogonală fața de π ;
- b) $S_d(\pi)$ unde S_d este simetria ortogonală fața de d.

Exercițiul 6.4: Fie \mathcal{E} un spațiu euclidian și $H: \mathcal{E} \to \mathcal{E}$ o omotetie de raport λ , $|\lambda| \neq 1$. Arătați că H nu se poate descompune în produs de simetrii ortogonale.

Exercițiul 6.5: în $\mathcal{E} = \mathbb{R}^3$ cu structura euclidiană canonică considerăm două plane π_1, π_2 astfel încât $\pi_1 \parallel \pi_2, \pi_1 \neq \pi_2$. Fie $O_1 \in \pi_1, O_2 \in \pi_2$ puncte astfel încât $O_1O_2 \perp \pi_1$

şi $R_1, R_2 > 0$. Notăm cu $\mathcal{C}_1 \subset \pi_1$ cercul de centru O_1 şi rază R_1 şi cu $\mathcal{C}_2 \subset \pi_2$ cercul de centru O_2 şi rază R_2 .

Ce reprezintă mulțimea

$$C_{R_1,R_2} = \left\{ P \in \mathcal{E} \mid \exists P_1 \in C_1, P_2 \in C_2, \ P = \frac{1}{2}P_1 + \frac{1}{2}P_2 \right\} ?$$

Exercițiul 6.6:

- a) Demonstrați că $-I_n \in SO(n) \iff n$ e par.
- b) Demonstrați că SO(n) este subgrup normal al lui O(n) și calculați O(n)/SO(n).
- c) Demonstrați că, dacă n e impar și $H = \{\pm I_n\}$, atunci $O(n) = SO(n) \times H$ (i.e. $SO(n) \cap H = \{I_n\}$ și SO(n)H = O(n)).
- d) Demonstrați că, dacă n e par, $O(n) \not\simeq SO(n) \times \mathbb{Z}_2$.

Exercițiul 6.7:

a) Fie $A \in O(n)$ de ordin 2 *i.e.* $A^2 = I_n$. Demonstrați că A este matricea unei simetrii s față de un subspațiu vectorial i.e. există o bază ortonormală $\{f_1, ..., f_k, f_{k+1}, ..., f_n\}$ astfel încât

$$sf_i = f_i, \forall i = \overline{1, k},$$

 $sf_j = -f_j, \forall j = \overline{k+1, n}.$

pentru un $1 \le k \le n$.

Echivalent, există $P \in GL_n(\mathbb{R})$ astfel încât $A = PSP^{-1}$, unde

$$S = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ & \ddots & & & & \\ 0 & \dots & 1 & \dots & \dots & 0 \\ 0 & \dots & \dots & -1 & \dots & 0 \\ & & & \ddots & & \\ 0 & \dots & \dots & \dots & 0 & -1 \end{pmatrix}.$$

b) Demonstrați că $O(n) \simeq O(m)$ dacă și numai dacă n = m.

Seminarul 7 de Geometrie II

Seria 11 - 2021-2022

6 Prezentări - raportul a trei puncte coliniare

7 Spații euclidiene II. Exerciții

Exercițiul 7.1: (curs) Demonstrați că orice matrice $A \in SO(3)$ are 1 ca valoare proprie.

Exercițiul 7.2: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura euclidiană canonică. Considerăm planul

$$\pi: x_1 - 2x_2 + 2x_3 = 1$$

și dreapta

$$d: \frac{x_1-1}{1} = \frac{x_2-1}{0} = \frac{x_3-2}{-1}.$$

Determinati

- a) $S_{\pi}(d)$ unde S_{π} este simetria ortogonală fața de π ;
- b) $S_d(\pi)$ unde S_d este simetria ortogonală fața de d.

Exercițiul 7.3: Fie $\mathcal{E} = \mathbb{R}^2 \simeq \mathbb{C}$ cu structura canonică de spațiu euclidian. Demonstrați că o funcție $f: \mathbb{C} \to \mathbb{C}$ este o izometrie dacă și numai dacă există $a, b \in \mathbb{C}$, |a| = 1, astfel încât

$$f(z) = az + b$$
 sau $f(z) = a\overline{z} + b$.

Exercițiul 7.4: Fie $\mathcal{E} = \mathbb{R}^2 \simeq \mathbb{C}$ cu structura canonică de spațiu euclidian și punctele $A, B, C \in \mathcal{E}$ având coordonatele complexe $a, b, c \in \mathbb{C}$.

Demonstrați că $\triangle ABC$ este echilateral (pozitiv orientat) dacă și numai dacă $a + b\epsilon + c\epsilon^2 = 0$, unde ϵ este rădăcina de ordin 3 a unității.

Exercițiul 7.5: (teorema lui Napoleon) Fie un triunghi ABC și A^*, B^*, C^* celelalte vârfuri ale triunghiurilor echilaterale construite pe laturile acestui triunghi, ca în primul exercițiu.

Fie E, F, G centrele de greutate ale triunghiurilor A^*BC, B^*AC, C^*AB . Demonstrați că triunghiul EFG este echilateral.

Seminarul 8 de Geometrie II

Seria 11 - 2021-2022

8 Hipercuadrice. Exerciții

Exercițiul 8.1: Fie $\mathcal{A} = \mathbb{R}^2$ cu structura canonică de spațiu afin. Aduceți la formă normală conicele următoare, precizând denumirea lor.

a)
$$x_1^2 + 2x_1x_2 + 2x_2^2 - 2x_1 - 4x_2 - 9 = 0;$$

b)
$$x_1^2 + 2x_1x_2 - 2x_1 - 4x_2 - 9 = 0$$
;

c)
$$x_1^2 + 4x_1x_2 + 4x_2^2 - 2x_1 - 4x_2 - 9 = 0;$$

d)
$$x_1^2 - 2x_1x_2 + x_2^2 - 4x_2 = 0$$
.

Exercițiul 8.2: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura canonică de spațiu afin. Aduceți la formă normală cuadricele următoare, precizând denumirea lor.

a)
$$x_1^2 + 2x_1x_2 + 2x_2^2 + x_3^2 - 2x_1 - 4x_2 - 9 = 0;$$

b)
$$x_1^2 + 2x_1x_2 - 4x_3^2 + 2x_1 - 4x_2 - 9 = 0$$
;

c)
$$4x_1x_2 + 4x_2^2 + x_3^2 - 2x_1 - 4x_2 - 9 = 0;$$

d)
$$x_1^2 - 2x_1x_2 + x_2^2 - 4x_2 - 8x_3 - 1 = 0.$$

Exercițiul 8.3: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura canonică de spațiu afin. Verificați că orice conică nedegenerată se poate obține ca intersecția conului $x^2 + y^2 - z^2 = 0$ cu un plan.

Exercițiul 8.4: Fie K un corp, $\mathcal{A} = K^2$ cu structura afină canonică și $\mathcal{C} \subset \mathcal{A}$ conica $(\mathcal{C}): x^2 + y^2 = 1$. Considerăm $\tau: \mathcal{A} \to \mathcal{A}$ o transformare afină cu proprietatea că $\tau(P) = P$ pentru orice $P \in \mathcal{C}$.

- a) Arătați că dacă $K = \mathbb{R}$ atunci $\tau = id_{\mathcal{A}}$.
- b) Rămâne adevărată concluzia de la punctul a) pentru K corp arbitrar?

Exercițiul 8.5: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura de spațiu euclidian.

- a) Scrieți ecuația suprafeței obținute prin rotația dreptei de ecuații z=0, x+2y=4 în jurul axei OX.
- b) Scrieți ecuația suprafeței obținute prin rotația dreptei de ecuații z=2, x+y=1 în jurul axei OX.

Exercițiul 8.6: Fie $\mathcal{E}=\mathbb{R}^2$ cu structura euclidiană canonică și $\mathcal{C}\subset\mathcal{E}$ o conică nevidă. Notăm

$$I(\mathcal{C}) := \{ f : \mathcal{E} \to \mathcal{E} \mid f \text{ izometrie cu } f(\mathcal{C}) = \mathcal{C} \}.$$

- a) Arătați că $I(\mathcal{C})$ este un grup în raport cu compunerea funcțiilor.
- b) Determinați numărul de elemente ale lui $I(\mathcal{C})$ dacă \mathcal{C} este o parabolă.
- c) Determinați toate conicele \mathcal{C} pentru care grupul $I(\mathcal{C})$ este infinit.

Exercițiul 8.7: Fie $\mathcal{E}=\mathbb{R}^2$ cu structura euclidiană canonică, $\mathcal{P}\subset\mathbb{R}^2$ un poligon nedegenerat și

$$\operatorname{Iso}(\mathcal{P}) := \{ f : \mathcal{E} \to \mathcal{E} \mid f \text{ izometrie }, f(\mathcal{P}) = \mathcal{P} \}.$$

- a) Arătați că există $\mathcal P$ a.i. $\mathrm{Iso}(\mathcal P)\simeq S_3.$
- b) Există \mathcal{P} a.i. $Iso(\mathcal{P}) \simeq \mathbb{Z}_4$?
- c) Există \mathcal{P} a.i. $Iso(\mathcal{P}) \simeq S_4$?

Exercițiul 8.8: Fie $\mathcal{E}=\mathbb{R}^3$ cu structura de spațiu euclidian. Determinați planele care intersectează hiperboloidul cu o pânză

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

după cercuri.

Seminarul 9 de Geometrie II

Seria 11 - 2021-2022

9 Hipercuadrice euclidiene. Exerciții

Exercițiul 9.1: Fie $\mathcal{A} = \mathbb{R}^3$ cu structura canonică de spațiu euclidian. Aduceți la formă canonică prin izometrii următoarele cuadrice, precizând denumirea lor.

- a) $z^2 + 4xy 1 = 0$;
- b) $5x^2 + 8y^2 + 5z^2 + 4xy 8xz + 4yz 27 = 0$;
- c) $6x^2 2y^2 + 6z^2 + 4xz + 8x 4y 8z + 1 = 0$;
- d) $x^2 + 2y^2 + z^2 2xz + 3x 5y z = 0$;
- e) $x^2 + 6x 2y + 8z + 3 = 0$.

Exercițiul 9.2: Fie $\mathcal{E}=\mathbb{R}^2$ cu structura euclidiană canonică și $\mathcal{C}\subset\mathcal{E}$ o conică nevidă. Notăm

$$I(\mathcal{C}) := \{ f : \mathcal{E} \to \mathcal{E} \mid f \text{ izometrie cu } f(\mathcal{C}) = \mathcal{C} \}.$$

- a) Arătați că $I(\mathcal{C})$ este un grup în raport cu compunerea funcțiilor.
- b) Determinați numărul de elemente ale lui $I(\mathcal{C})$ dacă \mathcal{C} este o parabolă.
- c) Determinați toate conicele ${\mathcal C}$ pentru care grupul $I({\mathcal C})$ este infinit.

Exercițiul 9.3: Fie $\mathcal{E}=\mathbb{R}^2$ cu structura euclidiană canonică, $\mathcal{P}\subset\mathbb{R}^2$ un poligon nedegenerat și

$$\operatorname{Iso}(\mathcal{P}) := \{ f : \mathcal{E} \to \mathcal{E} \mid f \text{ izometrie}, f(\mathcal{P}) = \mathcal{P} \}.$$

- a) Arătați că există \mathcal{P} a.i. $\mathrm{Iso}(\mathcal{P}) \simeq S_3$.
- b) Există \mathcal{P} a.i. $Iso(\mathcal{P}) \simeq \mathbb{Z}_4$?
- c) Există \mathcal{P} a.i. Iso $(\mathcal{P}) \simeq S_4$?

Exercițiul 9.4: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura de spațiu euclidian. Determinați planele care intersectează hiperboloidul cu o pânză

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

după cercuri.

Exercițiul 9.5: Decideți dacă există o sferă pe care să se afle cercurile: Γ_1 de centru (1, -2, -2) de rază 2 din planul de ecuație x + y + z + 3 = 0 și Γ_2 de centru (1, 0, 0) și rază 2 din planul de ecuație x - y - z - 1 = 0. Dacă da, scrieți ecuația sferei.

Exercițiul 9.6: Scrieți ecuația axei de simetrie a conului $\Gamma: x^2 = yz$.

Exercițiul 9.7: Scrieți ecuația conului cu vârful în punctul (0,0,1) peste elipsa de ecuații $\frac{x^2}{25} + \frac{y^2}{9} = 1, \ z = 3.$

Exercițiul 9.8: Decideți care dintre cuadrice conțin drepte și determinați ecuațiile lor în cazul în care cuadricele sunt în formă normală.

Exercițiul 9.9: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura de spațiu euclidian și $d_1, d_2 \subset \mathcal{E}$ necoplanare. Demonstrați că reuniunea perpendicularelor din punctele lui d_1 pe d_2 este o conică și aflați tipul ei.

Seminarul 10 de Geometrie II

Seria 11 - 2021-2022

9 Hipercuadrice euclidiene. Exerciții

Exercițiul 9.1:

- a) Scrieți ecuațiile generatoarelor hiperboloidului cu o pânză $\mathcal{H}: \frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$.
- b) Determinați locul geometric al punctelor de pe \mathcal{H} în care generatoarele sunt perpendiculare.

Exercitiul 9.2:

- a) Scrieţi ecuaţiile generatoarelor paraboloidului hiperbolic $\mathcal{P}: \frac{x^2}{a^2} \frac{y^2}{b^2} 2z = 0$.
- b) Determinați locul geometric al punctelor de pe $\mathcal P$ în care generatoarele sunt perpendiculare.

Exercițiul 9.3: Fie $\mathcal{E} = \mathbb{R}^3$ cu structura de spațiu euclidian și $d_1, d_2 \subset \mathcal{E}$ necoplanare cu $d_1 \not\perp d_2$. Demonstrați că reuniunea perpendicularelor din punctele lui d_1 pe d_2 este un paraboloid hiperbolic echilater.

Exercițiul 9.4:

- a) Fie $\Gamma \subset K^n$ o hipercuadrică cu centru X_0 . Demonstrați că $T_X\Gamma \parallel T_{S_{X_0}(X)}\Gamma$, pentru orice $X \in \Gamma$.
- b) Reciproc, demonstrați că dacă pentru o hipercuadrică $\Gamma \subset K^n$ există două puncte $X,Y \in \Gamma$ cu $T_X\Gamma \parallel T_Y\Gamma$, atunci Γ are un centru.

Exercițiul 9.5: Scrieți ecuația sferei care conține cercul de ecuații $x^2 + (y-1)^2 + (z+1)^2 = 5$, x+y+z=1 și e tangentă în punctul (0,0,1) la planul de ecuație z=1.

10 Axiomele planului afin şi ale planului proiectiv. Exerciții

Axiomele planului afin

Fie \mathcal{A} o mulţime şi $\mathcal{D} \subset 2^{\mathcal{A}}$ (mulţimea părţilor lui \mathcal{A}). Vom numi elemente din \mathcal{D} "drepte".

Perechea $(\mathcal{A}, \mathcal{D})$ se numește plan afin dacă satisface:

- A1. Prin orice două puncte distince trece o unică dreaptă.
- A2. Există trei puncte necoliniare.
- A3. Orice dreaptă conține cel puțin două puncte.
- A4. Pentru orice punct și orice dreaptă, există o unică paralelă la acea dreaptă prin acel punct.

(unde prin drepte paralele întelegem drepte care nu se intersectează sau coincid)

Axiomele planului proiectiv

Fie $\mathcal P$ o mulțime și $\mathcal D\subset 2^{\mathcal P}$ (mulțimea părților lui $\mathcal P$). Vom numi elemente din $\mathcal D$ "drepte".

Perechea $(\mathcal{P}, \mathcal{D})$ se numește plan proiectiv dacă satisface:

- P1. Prin orice două puncte distince trece o unică dreaptă.
- P2. Există trei puncte necoliniare.
- P3. Orice dreaptă conține cel puțin trei puncte.
- P4. Orice două drepte se intersectează.

Exercițiul 10.1: Demonstrați că orice două drepte dintr-un plan afin au același număr de puncte.

Exercițiul 10.2: Demonstrați că orice două drepte dintr-un plan proiectiv au același număr de puncte.

Exercițiul 10.3: Verificați că proiectivizarea unui spațiu vectorial de dimensiune 3 *i.e.* \mathbb{P}^2K este un plan proiectiv.

Exercițiul 10.4: Verificați că completarea proiectivă (cu dreapta de la infinit) a unui plan afin este un plan proiectiv.

Seminarul 11 de Geometrie II

Seria 11 - 2021-2022

11 Spaţii afine şi spaţii proiective. Exerciţii

Axiomele spaţiului afin

Fie \mathcal{A} o mulţime, $\Delta \subset 2^{\mathcal{A}}$ (numite "drepte) şi $\Pi \subset 2^{\mathcal{A}}$ (numite "plane").

Tripletul $(\mathcal{A}, \Delta, \Pi)$ se numește spațiu afin dacă satisface:

- A1. Prin orice două puncte distince trece o unică dreaptă.
- A2. Orice dreaptă conține cel puțin două puncte.
- A3. Orice plan $\pi \in \Pi$ (împreună cu dreptele conținute în el) este un plan afin și orice trei puncte necoliniare se află într-un un unic plan.
- A4. Paralelismul este tranzitiv.

(unde prin drepte paralele întelegem drepte **coplanare** care nu se intersectează sau coincid)

Axiomele spațiului proiectiv

Fie \mathcal{P} o multime și $\mathcal{D} \subset 2^{\mathcal{P}}$ (numite "drepte").

Perechea $(\mathcal{P}, \mathcal{D})$ se numește *spațiu proiectiv* dacă satisface:

- P1. Prin orice două puncte distince trece o unică dreaptă.
- P2. Orice dreaptă conține cel puțin trei puncte.
- P3. (Veblen) Dacă $d_1, d_2 \in \mathcal{D}, d_1 \cap d_2 = \{O\}$ și $A_1, B_1 \in d_1, A_1 \neq O, B_1 \neq O, A_2, B_2 \in d_2, A_2 \neq O, B_2 \neq O,$ atunci $A_1A_2 \cap B_1B_2 \neq \emptyset$.

Exercițiul 11.1: Verificați că, pentru un corp comutativ K, $\mathbb{P}^n K$ este un spațiu proiectiv.

Exercițiul 11.2: Fie planul proiectiv $\mathbb{P}^2\mathbb{R}$ și punctele A = [1:0:2], B = [2:4:8], <math>C = [0:2:1], D = [2:1:3]. Găsiți punctul de intersecție $AB \cap CD$.

Exercițiul 11.3: Fie spațiul proiectiv $\mathbb{P}^3\mathbb{R}$ și punctele A = [1:0:2:2], B = [2:4:8:0], <math>C = [0:2:1:-1], D = [2:1:3:-2]. Decideți dacă dreptele AB și CD se intersectează.

Exercițiul 11.4: Pentru un plan proiectiv $(\mathcal{P}, \mathcal{D})$, definim dualul său astfel:

$$\begin{split} \mathcal{P}^* &= \mathcal{D}; \\ \mathcal{D}^* &= \{P^* \mid P \in \mathcal{P}\}, \text{ unde } P^* = \{d \in \mathcal{D} \mid P \in d\} \text{ pentru orice } P \in \mathcal{P}. \end{split}$$

- a) Demonstrați că $(\mathcal{P}^*, \mathcal{D}^*)$ este un plan proiectiv.
- b) Demonstrați că un plan proiectiv se identifică în mod canonic cu bidualul său.
- c) Demonstrați că dualul planului proiectiv \mathbb{P}^2K este canonic izomorf¹ cu \mathbb{P}^2K dacă $K = \mathbb{R}$ sau \mathbb{C} .
- d) Puteți generaliza construcția dualului pentru un spațiu proiectiv de orice dimensiune?

Exercițiul 11.5: Demonstrați că, pentru un plan proiectiv (\mathcal{P}, Δ) și o dreaptă $d \subset \mathcal{P}$, $\mathcal{P} \setminus d$ este un plan afin.

Exercițiul 11.6*:

- a) Demonstrați că, pentru un spațiu afin (A, Δ, Π) , completarea sa cu puncte la infinit (definită la curs) este un spațiu proiectiv.
- b) Demonstrați că, pentru un spațiu proiectiv (\mathcal{P}, Δ) și un hiperplan $\mathcal{H} \subset \mathcal{P}, \mathcal{P} \setminus \mathcal{H}$ este un spațiu afin.

Exercițiul 11.7: Demonstrați Teorema lui Desargues:

Fie \mathcal{P} un spațiu proiectiv de dimensiune $n \geq 3$. Fie $O, A, B, C \in \mathcal{P}$ oricare trei necoliniare și $A' \in OA, B' \in OB, C' \in OC$.

Fie $\{M\} = AB \cap A'B'$, $\{N\} = BC \cap B'C'$ și $\{P\} = AC \cap A'C'$. Atunci M, N, P sunt coliniare.

¹Izomorfism = aplicație bijectivă care duce drepte proiective în drepte proiective

Exercițiul 11.8: Folosind Exercițiul 11.6, scrieți toate variantele Teoremei Desargues într-un spațiu afin de dimensiune $n \geq 3$.

Exercițiul 11.9: Fie $\mathcal{A} = \mathbb{R}^2$ și

 $\mathcal{D} = \{ \text{drepte de pantă pozitivă sau verticale} \}$

 \cup {drepte frânte de pantă negativă a.î. panta se dublează la intersecția cu axa OY}.

Demonstrați că $(\mathcal{A}, \mathcal{D})$ este un plan afin (planul Moulton) în care Teorema lui Desargues este falsă.

Seminarul 12 de Geometrie II

Seria 11 - 2021-2022

12 Izomorfisme proiective. Spaţiul proiectiv $\mathbb{P}^n K$. Exerciţii

Exercițiul 12.1: Fie $A, B \in GL_{n+1}(K)$. Demonstrați că pentru proiectivitățile asociate $f_A, f_B : \mathbb{P}^n K \to \mathbb{P}^n K$, $f_A = f_B$ dacă și numai dacă există $\lambda \in K$ cu $A = \lambda B$.

Exercițiul 12.2: Fie $P_1, ..., P_{n+2} \in \mathbb{P}^n K$ oricare n+1 nesituate în același hiperlan și $Q_1, ..., Q_{n+2} \in \mathbb{P}^n K$ oricare n+1 nesituate în același hiperlan. Demonstrați că există o unică proiectivitate $f: \mathbb{P}^n K \to \mathbb{P}^n K$ astfel încât $f(P_i) = Q_i \ \forall i = \overline{1, n+2}$.

Exercițiul 12.3: Fie planul proiectiv $\mathbb{P}^2\mathbb{R}$ și punctele A = [1:0:2], B = [2:1:2], C = [1:0:-1], D = [1:-2:1]. Dați exemplu de o transformare proiectivă $f: \mathbb{P}^2\mathbb{R} \to \mathbb{P}^2\mathbb{R}$ astfel încât f(AB) = CD.

Exercițiul 12.4: Fie \mathcal{P} un plan proiectiv, $d \subset \mathcal{P}$ o dreaptă fixată şi $O \in \mathcal{P} \setminus d$ un punct fixat. Este adevărat că orice izomorfism proiectiv $f : \mathcal{P} \to \mathcal{P}$ care fixează P şi toate punctele lui d este identitatea?

Exercițiul 12.5: Fie \mathcal{P} un plan proiectiv și $d_1, d_2 \subset \mathcal{P}$ drepte distincte fixate. Demonstrați că orice izomorfism proiectiv $f: \mathcal{P} \to \mathcal{P}$ care fixează punctele lui $d_1 \cup d_2$ este identitatea.

Exercițiul 12.6: Demonstrați că spațiul proiectiv $\mathbb{P}^n K$ este izomorf cu completarea proiectivă a spațiului afin K^n .

Exercițiul 12.7: În spațiul afin \mathbb{R}^5 , fie subspațiul afin

$$W: \begin{cases} y_1 - 2y_2 = 0 \\ y_3 - y_4 = 1 \\ y_5 + 2 = 0 \end{cases}$$

Scrieți ecuațiile închiderii proiective a lui W și determinați punctele ei improprii.

Exercițiul 12.8: O conică proiectivă $\Gamma \subset \mathbb{P}^2\mathbb{C}$ definită de polinomul omogen $P(X) = {}^TXAX$ (unde $X = {}^T(X_0, X_1, X_1)$ și $A \in \mathcal{M}_2(\mathbb{C})$) se numește nedegenerată dacă det $A \neq 0$.

Demonstrați că Γ este nedegenerată dacă și numai dacă spațiul tangent

$$T_Y \Gamma = \left\{ [X_0 : X_1 : X_2] \in \mathbb{P}^2 \mathbb{C} \mid \frac{\partial P}{\partial X_0} (Y) \cdot X_0 + \frac{\partial P}{\partial X_1} (Y) \cdot X_1 + \frac{\partial P}{\partial X_2} (Y) \cdot X_2 = 0 \right\}$$

este o dreaptă proiectivă, pentru orice $Y \in \Gamma$.

Exercițiul 12.9: Fie $\Gamma \subset \mathbb{P}^2\mathbb{C}$ o conică proiectivă nedegenerată. Demonstrați că există o proiectivitate $f: \mathbb{P}^2\mathbb{R} \to \mathbb{P}^2\mathbb{R}$ astfel încât $f(\Gamma) = \Gamma_0$, unde $\Gamma_0: X_0^2 - X_1 X_2 = 0$.

Seminarul 13 de Geometrie II

Seria 11 - 2021-2022

13 Spațiul proiectiv $\mathbb{P}^n K$. Exerciții

Exercițiul 13.1: În spațiul afin \mathbb{R}^5 , fie subspațiul afin

$$W: \begin{cases} y_1 - 2y_2 = 0 \\ y_3 - y_4 = 1 \\ y_5 + 2 = 0 \end{cases}$$

Scrieți ecuațiile închiderii proiective a lui W și determinați punctele ei improprii.

Exercițiul 13.2: O conică proiectivă $\Gamma \subset \mathbb{P}^2\mathbb{C}$ definită de polinomul omogen $P(X) = {}^TXAX$ (unde $X = {}^T(X_0, X_1, X_1)$ și $A \in \mathcal{M}_2(\mathbb{C})$) se numește nedegenerată dacă det $A \neq 0$.

Demonstrați că Γ este nedegenerată dacă și numai dacă spațiul tangent

$$T_Y \Gamma = \left\{ [X_0 : X_1 : X_2] \in \mathbb{P}^2 \mathbb{C} \mid \frac{\partial P}{\partial X_0} (Y) \cdot X_0 + \frac{\partial P}{\partial X_1} (Y) \cdot X_1 + \frac{\partial P}{\partial X_2} (Y) \cdot X_2 = 0 \right\}$$

este o dreaptă proiectivă, pentru orice $Y \in \Gamma$.

Exercițiul 13.3: Fie $\Gamma \subset \mathbb{P}^2\mathbb{C}$ o conică proiectivă nedegenerată. Demonstrați că există o proiectivitate $f: \mathbb{P}^2\mathbb{C} \to \mathbb{P}^2\mathbb{C}$ astfel încât $f(\Gamma) = \Gamma_0$, unde $\Gamma_0: X_0^2 - X_1 X_2 = 0$. Este aceasta unică?

Exercițiul 13.4: În planul proiectiv $\mathbb{P}^2\mathbb{C}$, fie conica $\Gamma_0: X_1^2 - X_0X_2$.

a) Demonstrați că aplicația $q: \mathbb{P}^1\mathbb{C} \to \mathbb{P}^2\mathbb{C}$,

$$q(t) = [1:t:t^2], \ q(\infty) = [0:0:1],$$

este o parametrizare a lui Γ_0 , unde am identificat t=[1:t] și $\infty=[0:1].$

b) Demonstrați că pentru orice conică nedegenerată $\Gamma \subset \mathbb{P}^2\mathbb{C}$ există o parametrizare polinomială de grad 2 în $t \in \mathbb{P}^1\mathbb{C}$.

Exercițiul 13.5: Demonstrați că există o bijecție canonică între $\mathbb{P}^3\mathbb{R}$ și SO(3).

Exercițiul 13.6: În \mathbb{P}^2K , fie P_1, P_2, P_3 puncte coliniare, d_1, d'_1 drepte concurente în P_1, d_2, d'_2 drepte concurente în P_2 și d_3, d'_3 drepte concurente în P_3 .

Cu notațiile $d_1 \cap d_2 = \{Q_{12}\}, d'_1 \cap d'_2 = \{Q'_{12}\}, d_1 \cap d_3 = \{Q_{13}\}, d'_1 \cap d'_3 = \{Q'_{13}\}, d_2 \cap d_3 = \{Q_{23}\}, d'_2 \cap d'_3 = \{Q'_{23}\}, demonstrați că dreptele <math>Q_{12}Q'_{12}, Q_{13}Q'_{13}$ și $Q_{23}Q'_{23}$ sunt concurente.

Exercițiul 13.7: Fie $d_1, d_2, d_3 \subset \mathbb{P}^2\mathbb{R}$ drepte concurente și $P_1 \in d_1, P_2 \in d_2$. Pentru orice $P \in d_3$, notăm cu $P'_1 = PP_2 \cap d_1$ și cu $P'_2 = PP_1 \cap d_2$.

Demonstrați că dreptele $P_1'P_2'$ au un punct comun (independent de alegerea lui $P \in d_3$).

Exercițiul 13.8: Fie K un corp și $n \ge 1$.

• Pentru orice ideal $I \subseteq K[X_1, ..., X_n]$, introducem notația

$$\mathcal{Z}(I) = \{x = (x_1, ..., x_n) \in K^n \mid f(x) = 0, \ \forall f \in I\}$$

(multimea zerourilor comune ale tuturor polinoamelor din I).

• Pentru orice submulțime $A \subset K^n$, introducem notația

$$\mathcal{I}(A) = \{ f \in K[X_1, ..., X_n] \mid f(x) = 0, \ \forall x \in A \}$$

(mulțimea polinoamelor care se anulează pe A).

Demonstrați următoarele:

- a) Pentru orice $A \subset K^n$, $\mathcal{I}(A) \subseteq K[X_1,...,X_n]$ și $\mathcal{Z}(\mathcal{I}(A)) \supset A$.
- b) Pentru orice $I \leq K[X_1,..,X_n], \mathcal{I}(\mathcal{Z}(I)) \supset \sqrt{I}$.
- c) Demonstrați că există o topologie pe K^n pentru care mulțimile **închise** sunt exact cele de tipul $\mathcal{Z}(I)$ pentru un $I \subseteq K[X_1, ..., X_n]$ (se numește topologia Zariski).

Seminarul 14 de Geometrie II

Seria 11 - 2021-2022

14 Spaţiul proiectiv $\mathbb{P}^n K$. Exerciţii

Exercițiul 14.1: Teorema Hessenberg (O introducere în geometrie, cap. 3.7).

Exercițiul 14.2*: Fie $\Gamma \subset \mathbb{R}^n$ o hipercuadrică geometrică. Demonstrați că dacă există o dreaptă care intersectează Γ în două puncte distincte, atunci există o unică hipercuadrică algebrică (pâna la înmulțirea cu scalari) care îi corespunde lui Γ .

Exercițiul 14.3: Fie K un corp și $n \ge 1$.

• Pentru orice ideal $I \subseteq K[X_1, ..., X_n]$, introducem notația

$$\mathcal{Z}(I) = \{x = (x_1, ..., x_n) \in K^n \mid f(x) = 0, \ \forall f \in I\}$$

(multimea zerourilor comune ale tuturor polinoamelor din I).

• Pentru orice submulțime $A \subset K^n$, introducem notația

$$\mathcal{I}(A) = \{ f \in K[X_1, ..., X_n] \mid f(x) = 0, \ \forall x \in A \}$$

(multimea polinoamelor care se anulează pe A).

Demonstraţi următoarele:

- a) Pentru orice $A \subset K^n$, $\mathcal{I}(A) \subseteq K[X_1, ..., X_n]$ şi $\mathcal{Z}(\mathcal{I}(A)) \supset A$.
- b) Pentru orice $I \subseteq K[X_1, ..., X_n], \mathcal{I}(\mathcal{Z}(I)) \supset \sqrt{I}$.
- c) Demonstrați că există o topologie pe K^n pentru care mulțimile **închise** sunt exact cele de tipul $\mathcal{Z}(I)$ pentru un $I \subseteq K[X_1, ..., X_n]$ (se numește topologia Zariski).