Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 8: Esercizi di ricapitolazione su modelli di stato e analisi modale

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

In questa lezione: esercizi!

▶ Esercizio 1: rappresentazione interna o di stato

▶ Esercizio 2: forma di Jordan, polinomio minimo e matrice esponenziale

▶ Esercizio 3: analisi modale e evoluzione forzata a t.c.

▶ Esercizio 4: analisi modale e evoluzione forzata a t.d.

Esercizio 1

Rappresentazione interna o di stato con $u(t) = v_i(t)$ e $y(t) = v_L(t)$?

Esercizio 1: soluzione

Variabili:
$$x(t) = \begin{bmatrix} v_{C_1}(t) \\ v_{C_2}(t) \\ i_I(t) \end{bmatrix}$$
, $u(t) = v_i(t)$, $y(t) = v_L(t)$

Matrici:
$$F = \begin{bmatrix} -\frac{1}{RC_1} & 0 & -\frac{1}{C_1} \\ 0 & 0 & \frac{1}{C_2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} \frac{1}{RC_1} \\ 0 \\ 0 \end{bmatrix}$, $H = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$, $J = 0$

Giacomo Baggio IMC-TdS-1920: Lez. 8 October 28, 2019 5 / 11

Esercizio 2

$$\dot{x}(t) = Fx(t), \quad x(0) = x_0, \quad F = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$

- 1. Forma di Jordan F_i ?
- 2. Polinomio minimo $\Psi_F(x)$?
- 3. Esponenziale e^{Ft} ?
- 4. Evoluzione libera per $x_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$?

Esercizio 2. soluzione

1.
$$F_J = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

2.
$$\Psi_F(x) = x(x+1)^2$$

3.
$$e^{Ft} = \begin{bmatrix} e^{-t} & 0 & 0 \\ 0 & 1 & 0 \\ 2te^{-t} & 0 & e^{-t} \end{bmatrix}$$

4.
$$x(t) = \begin{bmatrix} e^{-t} & 0 & 2te^{-t} \end{bmatrix}^{\top}$$

Esercizio 3 [riadattato da Es. 1 tema d'esame 1 Febbraio 2012]

$$\dot{x}(t) = Fx(t) + Gu(t) = \begin{bmatrix} 0 & 1 & 0 \\ 2f & f - 2 & 0 \\ 2 & 0 & 2 - f^2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u(t), \quad f \in \mathbb{R}$$

$$y(t) = Hx(t) = \begin{bmatrix} 1 & -2 & 0 \end{bmatrix} x(t)$$

- 1. Forma di Jordan F_I e i modi del sistema al variare di $f \in \mathbb{R}$?
- 2. Funzione di trasferimento W(s) al variare di $f \in \mathbb{R}$?
- 3. Per f=0, ingresso u(t) tale che $y_f(t)=\frac{3}{2}t^2-t$, $t\geq 0$?

Esercizio 3: soluzione

1.
$$F_{J} = \begin{cases} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} & f = 1, \text{ modi: } e^{t}, te^{t}, e^{-2t} \\ \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} & f = 2, \text{ modi: } e^{-2t}, te^{t}, e^{2t} \\ \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix} & f = -2, \text{ modi: } e^{-2t}, te^{-2t}, \frac{t^{2}}{2}e^{-2t} \\ \begin{bmatrix} 2-f^{2} & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & -2 \end{bmatrix} & f \neq 1, 2, -2, \text{ modi: } e^{(2-f^{2})t}, e^{ft}, e^{-2t} \end{cases}$$

2.
$$W(s) = \frac{(3-5f)-s}{(s-f)(s+2)}$$

3. u(t) = 1 + 2t, $t \ge 0$.

Giacomo Baggio IMC-TdS-1920: Lez. 8 October 28, 2019 9 / 11

10 / 11

$$x(t+1) = Fx(t) + Gu(t) = \begin{bmatrix} -3 & 1 \\ 0 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = x(t)$$

- 1. Modi del sistema e loro carattere?
- 2. Matrice di trasferimento W(z)?
- 3. Evoluzione del sistema per $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ e $u(t) = -2^{t+2}$, $t \ge 0$?

Esercizio 4: soluzione

1. $(-3)^t$, 2^t , entrambi divergenti

2.
$$W(z) = \begin{bmatrix} \frac{1}{(z+3)(z-2)} \\ \frac{1}{z-2} \end{bmatrix}$$

3.
$$y(t) = \begin{bmatrix} \frac{1}{19}2^{t+2} - \frac{3}{19}t2^{t+2} - \frac{5}{19}(-3)^{t+1} \\ -t2^{t+2} \end{bmatrix}$$
, $t \ge 0$

11 / 11