

Universidade de São Paulo

Instituto de Matemática e Estatística

Algoritmos genéticos Um algoritmo evolucionário para otimização

Aluno: Fabricio Kassardjian

Orientador: Anatoli Iambartsev

SUMÁRIO

- 1. Introdução
- 2. Algoritmos Genéticos
- 3. Implementação do Algoritmo e Resultados
 - a. Teste inicial
 - b. Modelo de Ising
- 4. Conclusões

Computação Evolutiva

Baseada em processos encontrados na natureza de seleção, reprodução e mutação

Créditos da imagem: "<u>Darwin's finches</u>," por John Gould (domínio público).

Otimizar problemas

$$f: \Omega \to \mathbb{R}$$

$$\arg\min_{x \in \Omega} f(x)$$

Classificação dos métodos

Técnicas de otimização global - (COELLO; LAMONT; VELDHUIZEN, 2007)

Biologia

Evolução das espécies / seleção natural – **Darwin**

Genética, compartilhamento de características entre os pais e descendentes – Mendel

Unidade de informação: Gene

Conjunto de genes: Cromossomo

Posição do gene no cromossomo: Locus

Valores possíveis de para um gene: Alelos

Interação entre genes: Epistasia

Conjunto específico de genes: genótipo

Características expressas pelo genótipo e ambiente: fenótipo

Genótipo

Meio ambiente

Fenótipo

https://www.diferenca.com/genotipo-e-fenotipo/

Reprodução

Organismos podem ser:

- Diplóides com par de cromossomos, conceito de dominante-recessivo
- Haplóides cromossomo simples

Tipo de reprodução:

- Assexuada duplicação
- Sexuada combinação de material genético de dois indivíduos + recombinação do material por crossover

Exemplo de reprodução com crossover - (KLUG et al., 2011)

Breve história...

Década de 40: inspiração na natureza para primeiros passos em IA

Década de 50: Sistemas adaptativos para solução de problemas difíceis

Década de 60: Rechenberg – estratégias evolucionárias – cromossomos com números reais para estudos de aerofólios

Décadas de 60 e 70: Holland – consolida os algoritmos genéticos

- Cria abstração da evolução biológica através de uma estrutura formal teórica
- Usou cromossomos binários: Alelos 1 ou 0
- Operadores de crossover, mutação e inversão

Algoritmo Genético por Holland

- 1. Seleção de um cromossomo na população de forma estocástica baseada nas avaliações de todos os cromossomos
- 2. Aplicações dos operadores genéticos sobre uma cópia do individuo selecionado em 1.
- 3. Seleção de outro cromossomo de forma aleatória com probabilidade igual para todos a ser substituído pelo novo cromossomo gerado em 2
- 4. Avaliar o novo cromossomo
- 5. Retonar ao 1

Teorema da inexistência de almoço grátis

Wolpert – Não existência de algoritmo universal para solução de problemas de otimização

Se houver um método específico para determinado problema definitivamente ele será mais eficiente que o GA.

Problem Type

Exemplo para NFL - (GOLDBERG, 1989)

- 1. Introdução
- 2. Algoritmos Genéticos
- 3. Implementação do Algoritmo e Resultados
 - a. Teste inicial
 - b. Modelo de Ising
- 4. Conclusões

Biologia x Algoritmo

- Cromossomo
- Gene
- Alelos
- Locus
- Genótipo
- Fenótipo

- Indivíduo / Solução candidata
- Codificação de valores, característica
- Valores possíveis para o gene
- Posição
- Estrutura com os valores
- Conjunto de parâmetros do problema

Todo algoritmo irá conter:

- Codificação
- População, função de avaliação e seleção
- Operadores genéticos

Esquemas

Usando o cromossomo com comprimento l e composto apenas por valores binários $\mathcal{A}=\{0,1\}$

Define-se esquema H como uma máscara ou template com comprimento l e valores possíveis no conjunto $\mathcal{A}^+ = \{0, 1, *\}$

Exemplo com l = 8:

$$H = **11*0*1$$

Instâncias são cromossomos que se encaixam no esquema e formam o conjunto definido por M(H)

Exemplos de instâncias para H acima:

$$A_1 = 00110001 \text{ e } A_2 = 10111011$$

Esquemas

Ordem - o(H): definido pelo quantidade de posições com valores definidos

$$o(**11*0*1) = 4$$

Tamanho - $\delta(H)$: definido pelo valor da ultima posição com valor definido menos a primeira com valor definido

$$\delta(**11*0*1) = 5$$

Esquemas

Representação em hiperplanos feita por Goldberg para l=3

(GOLDBERG, 1989)

Codificação

Define como os parâmetros ou variáveis do problema serão representadas no algoritmo. Impor restrições quando possível

Mais básico é o binário: $\mathcal{A} = \{0, 1\}$

Podem ser de outros tipos:

- Com valores reais
- Definidos por ordem de ocorrência
- Grafos

População

Conjunto de soluções candidatas do problema

Tamanho é parâmetro do algoritmo

Exploitation (Aproveitamento)

testar uma região limitada mas promissora do espaço de soluções com a expectativa de melhorar uma solução já conhecida dentro dessa região

Exploration (Exploração)

testar uma região muito mais ampla do espaço de soluções, com a expectativa de encontrar novas soluções promissoras

População

Convergência genética

Elitismo

Estratégia $\mu + \lambda$

Steady state

Tamanho variável: tempo de vida e diversidade

População inicial aleatória ou com espaço dividio

Avaliação

Função de avaliação:

$$f:\Omega\to\mathbb{R}^+$$

Define probabilidade de escolha:

$$p = \frac{f_i}{\sum f}$$

Variações na avaliação

normalização linear f' = a * f + b

$$f' = a * f + b$$

(GOLDBERG, 1989)

Escalonamento sigma

$$E[i,t] = \begin{cases} 1 + \frac{f(i) - \overline{f}(t)}{2\sigma(t)} &, \text{ se } \sigma(t) \neq 0\\ 1.0 &, \text{ se } \sigma(t) = 0 \end{cases}$$

Penalização de restrições do espaço de soluções

Seleção – Roleta Viciada

Sorteio de cromossomos para reprodução

Roleta Viciada:

$$p(i) = f(i) / \sum_{j=0}^{n} f(j)$$

	f	p
Cromossomo 1	152	28,84%
Cromossomo 2	38	7,21%
Cromossomo 3	42	7,97%
Cromossomo 4	5	0,95%
Cromossomo 5	234	44,40%
Cromossomo 6	56	10,63%
Total	527	100,00%

Seleção – Amostragem Estocástica Uniforme

Variação da roleta viciada

Sorteia um valor uma única vez

Indivíduos alinhados em uma reta continua, com segmentos proporcionais a sua probabilidade de seleção

Indivíduo	Fitness	
× ₁	200	
х2	100	
хз	150	
x ₄	100	
x _S	150	
x ₆	300	

$$[\lfloor E[i,t] \rfloor, \lceil E[i,t] \rceil]$$

$$E[i,t] = \frac{f_i}{\sum f} \cdot n$$

Indivíduos sorteados: $x_1, x_2, x_3, x_5, x_6, x_6$

Seleção – Torneio e Ranking

Torneio: Disputa entre dois ou mais cromossomos selecionados de maneira uniforme na população

Probabilidade de seleção do pior indivíduo: $1/N^k$

Ranking: Os cromossomos são ordenados e classificados de 1 a N

$$E[i, t] = \min + (\max - \min) \frac{rank(i, t) - 1}{N - 1}$$

Seguindo as restrições de $1 \le \max \le 2 \text{ e min} = 2 - \max$

Baker sugere usar o valor $\max = 1, 1$

Seleção de Boltzmann

Inspirado no resfriamento simulado (simulated annealing)

$$E[i,t] = \frac{e^{f_i/T}}{\frac{\sum_{j} e^{f_j/T}}{N}}$$

Crossover – 1 ponto

Responsável pela recombinação dos genes entre os pais e é o mais característico do GA

Parâmetro associado a aplicação do operador: p_c

Crossover de 1 ponto, define apenas um ponto de corte

Crossover de 2 pontos ou mais pontos

Sorteados dois ou mais pontos de corte no cromossomo

Crossover Uniforme

Sorteados gene a gene

Crossover com codificação em ordem

Mutação

Responsável pela característica de exploration

Para cada gene é verificado se deve sofre alteração com probabilidade dada por parâmetro do algoritmo p_m

O novo gene pode ser sorteado entre os alelos possíveis, ou apenas trocado pelo inverso em caso de apenas dois estados possíveis

Teorema fundamental dos esquemas

$$E[m(H,t+1)] \geq \frac{\hat{u}(H,t)}{\overline{f}(t)} m(H,t) \left(1 - p_c \frac{\delta(H)}{l-1}\right) \left[(1-p_m)^{o(H)}\right]$$
 Seleção Probabilidade sobrevivência crossover mutação

Define-se

$$\hat{u}(H,t) = \frac{\sum\limits_{i \in M(H,t)} f(i)}{m(H,t)}$$

Valor esperado somente com seleção

$$E[m(H, t+1)] = \frac{\sum_{i \in M(H,t)} f(i)}{\overline{f}(t)}$$

Paralelismo implícito

Holland afirma que a cada população de *n* cromossomos, intrinsicamente estão sendo avaliados uma quantidade bem maior de esquemas

Sequência binária de comprimento l é instância de 2^l esquemas

10 é instância de **, *0, 1* e 10

Quantidade de esquemas em determinada população é valor entre:

$$2^l e n \cdot 2^l$$

Problemas associados ao GA

Carona (hitchhiking): genes vizinhos a genes que formam esquemas com boa avaliação tendem a ser favorecidos pelo algoritmo

Problemas enganadores (*deceptives***)**: Problemas que esquemas que não contemplem o máximo global com média de avaliação superior aos esquemas que contém. Função de avaliação apresenta picos cercados por vales.

Epistasia: genes interagem entre si e combinados podem produzir um resultado melhor ou pior do que individualmente.

- 1. Introdução
- 2. Algoritmos Genéticos
- 3. Implementação do Algoritmo e Resultados
 - a. Teste inicial
 - b. Modelo de Ising
- 4. Conclusões

Definições

- x e y variáveis reais com valores no intervalo [-100,100] usando codificação binária com 15 bits para cada
- Sequência binária no cromossomo é convertida para real para depois ser aplicada na função de avaliação.

$$x = C \cdot i_x - 100$$
 $C = \frac{200}{2^{15} - 1}$

Função de avaliação:

$$f(x,y) = \left| x \cdot y \cdot \sin\left(\frac{\pi \cdot y}{4}\right) \right|$$

(a) Gráfico no domínio completo

(b) Gráfico ampliado em um dos máximos

Definições para os testes

- Cromossomo: vetor combinando as duas sequências binárias das variáveis e portando com l=30
- Seleção: roleta viciada
- Operador de crossover: usando ponto único
- Operador de mutação: inversão do bit
- Execução de 1000 testes com os parâmetros configurados e feito média dos resultados:
 - Tamanho da população: n = 30; 50
 - Iterações do algoritmo (quantidade de gerações): T = 10; 100
 - Probabilidades de crossover: p_c = 0,8; 0,9
 - Probabilidade de mutação: p_m = 0,01; 0,05

Resultados

Listagem mostrando operadores em funcionamento:

```
Geração: 1 | Média Avaliação: 2847,450535
   #### CHILD ####
   ID: 31
   Fenotipo: x = -13,91949 \mid y = -94,32356
   Avaliação: 1270,770525
   #### PARENT 1 #####
   ID: 11
   Fenotipo: x = -13,91949 \mid y = -19,02829
   Avaliação: 183,079928
10
   Selecionado 1 vezes, 0,03
11
12
   #### PARENT 2 #####
13
   ID: 13
14
   Fenotipo: x = 38,99960 \mid y = -94,28694
15
   Avaliação: 3584,173001
16
   Selecionado 6 vezes, 0,20
17
18
   ### HERITAGE MAP ###
19
   111111111111111111112222222222
20
   ### MUTATE MAP
21
```


Resultados

Parâmetros		Resultados GA	Resultados RS	#		
n	T	p_c	p_m	Média ± IC	Média ± IC	GA > RS
30	10	0,8	0,01	8693,10 ± 47,04	8419,40 ± 39,28	659
50	10	0,8	0,01	9084,39 ± 32,39	8736,45 ± 32,43	716
30	100	0,8	0,01	9369,35 ± 26,09	9352,98 ± 15,41	578
30	10	0,8	0,05	8995,23 ± 35,40	8481,60 ± 38,72	741
30	100	0,8	0,05	9670,58 ± 12,67	9367,58 ± 15,16	852
30	10	0,9	0,01	8729,25 ± 45,65	8453,47 ± 39,33	623
30	10	0,9	0,05	8997,06 ± 35,47	8504,56 ± 38,22	735
50	100	0,8	0,05	9739,77 ± 8,45	9454,56 ± 12,07	927

Resultados

Evolução da população

Grade do modelo

Definição do modelo de Ising

 $\sigma_s \in \{-1, +1\}$ spin na posição s da estrutura

- $-J(s,s')\sigma_s\sigma_s$ energia de interação entre dois spins
- $-h\sigma_s$ energia de interação do spin com um campo magnético externo

 Λ estrutura, ou grade, do modelo

 $\Omega_{\Lambda} = \{-1, +1\}^{\Lambda}$ Espaço de possíveis estados do modelo

$$\sigma \in \Omega_{\Lambda}, \ \sigma = (\sigma_s)_{s \in \Lambda}$$
 um possível estado

Hamiltoniano

$$\mathcal{H}(\sigma) = -\sum_{s,s'\in\Lambda} J(s,s')\sigma_s\sigma_{s'} - \sum_{s\in\Lambda} h\sigma_s$$

Modelo de Ising - Probabilidades

Probabilidade do modelo estar em determinado estado

$$P(\sigma) = \frac{e^{-\beta \mathcal{H}(\sigma)}}{Z(\beta)}$$

Onde

$$Z(\beta) = \sum_{\sigma \in \Omega_{\Lambda}} e^{-\beta \mathcal{H}(\sigma)}$$

e

$$\beta = 1/\kappa \mathcal{T}$$

Definições para os testes

$$\Lambda = \left[1, 10\right]^2$$
 matriz 10 x 10

$$J(s, s') = 1$$

A função de energia será dada por

$$\mathcal{H}(\sigma) = -\sum_{i=1}^{9} \sum_{j=1}^{9} \left(\sigma_{i,j} \sigma_{i,j+1} + \sigma_{i,j} \sigma_{i+1,j} \right)$$

cromossomo: vetor de inteiros com linhas da matriz concatenadas.

Exemplo: cromossomo = [-1, 1, 1, 1, -1, 1, 1, 1, -1]

fenótipo =
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

Definições para os testes

$$f(\sigma_i) = -\left(\mathcal{H}(\sigma_i) + \min_{\sigma \in \Omega_{\Lambda}} \mathcal{H}(\sigma)\right) \qquad \sigma_i$$

- Seleção: roleta viciada
- Operador de crossover: usando ponto único, dois pontos e uniforme
- Operador de mutação: sorteio do novo estado
- Execução de 1000 testes com os parâmetros configurados e feito média dos resultados:
 - Tamanho da população: n = 30; 50
 - Iterações do algoritmo (quantidade de gerações): T = 10; 100
 - Probabilidades de crossover: p_c = 0,8; 0,9
 - Probabilidade de mutação: p_m = 0,01; 0,05

Problema com função de avaliação

Sendo $\xi \in \theta_{\Lambda} \subset \Omega_{\Lambda}$ um estado pertencente a população

1ª função de avaliação:

$$f(\xi) = -\left(\mathcal{H}(\xi) + \min_{\sigma \in \Omega_{\Lambda}} \mathcal{H}(\sigma)\right)$$

2ª função de avaliação:

$$f(\xi) = e^{-\beta \mathcal{H}(\xi)}$$

Probabilidade de seleção de um cromossomo dada por:

$$Pr(\xi) = \frac{e^{-\beta \mathcal{H}(\xi)}}{\sum_{\sigma \in \theta_{\Lambda}} e^{-\beta \mathcal{H}(\sigma)}}$$

Variando tipo de crossover

Parâmetros				Resultados GA	Resultados RS	#
n	T	p_c	p_m	Média ± IC	Média ± IC	GA > RS
30	10	0,8 ₁	0,02	-58.90 ± 0,54	-39,05 ± 0,33	978
30	10	0,82	0,02	-60,21 ± 0,57	-38,98 ± 0,32	970
30	10	0,8 _u	0,02	-60,42 ± 0,63	-39,39 ± 0,35	960
30	100	0,81	0,02	-122,24 ± 0,71	-48,54 ± 0,27	1000
30	100	0,82	0,02	-126,05 ± 0,75	-47,94 ± 0,27	1000
30	100	0,8 _u	0,02	-130,47 ± 0,73	-48,23 ± 0,28	1000

Genótipo x crossover

Variando os parâmetros

Parâmetros				Resultados GA	Resultados RS	#
n	T	p_c	p_m	Média ± IC	Média ± IC	GA > RS
30	40	0,8	0,02	-105,07 ± 0,72	-44,98 ± 0,31	1000
30	40	0,8	0,05	-93,90 ± 0,71	-44,63 ± 0,29	1000
30	40	0,8	0,01	-101,69 ± 0,74	-44,91 ± 0,30	1000
40	40	0,8	0,02	-111,06 ± 0,73	-46,24 ± 0,30	1000
40	40	0,8	0,01	-109,59 ± 0,73	-46,02 ± 0,31	1000
30	40	0,95	0,02	-108,42 ± 0,75	-44,91 ± 0,31	1000
30	40	0,7	0,02	-101,26 ± 0,69	-44,78 ± 0,31	1000
30	40	0,8	0,02	-110,66 ± 0,66	-44,81 ± 0,30	1000
30	40	0,95	0,02	-113,69 ± 0,70	-44,75 ± 0,30	1000

Variando os parâmetros

	Р	arâme	tros		Resultados GA	Resultados RS	#
n	$n \mid T \mid p_c \mid p_m \mid \beta$		Média ± IC	Média ± IC	GA > RS		
30	40	0,8	0,02	0,05	-113,69 ± 0,70	-44,75 ± 0,30	1000
30	40	0,95	0,02	0,01	-90,78 ± 0,66	-44,79 ± 0,30	1000
30	40	0,95	0,02	0,1	-120,45 ± 0,70	-44,95 ± 0,30	1000

Teste 1 - $p_c = 0.950 | p_m = 0.020 | beta = 0.010$

Teste 1 - $p_c = 0.950 | p_m = 0.020 |$ beta = 0.050

Teste 1 - $p_c = 0.950 | p_m = 0.020 |$ beta = 0.200

Comparando médias e variâncias

Com operador de mutação

Geração	0	10	20	30	40
Média	0	-47,49	-78,76	-96,46	-106,86
Variância	178,55	158,42	117,09	106,79	103,55

Sem operador de mutação

Geração	0	10	20	30	40
Média	0	-47,49	-78,76	-96,46	-106,86
Variância	178,55	158,42	117,09	106,79	103,55

3. IMPLEMENTAÇÃO E RESULTADOS

3B. MODELO DE ISING

3. IMPLEMENTAÇÃO E RESULTADOS

3B. MODELO DE ISING

0.0 -

-200

-150

-100

Energia

30

Distribuição de 500 testes nas gerações

Progressão da média e variância

$$p_m$$
 = 0,005

Comparando crossover

Teste 1 - Probabilidades : Cross = 0.950 | Mut = 0.000

Teste 1 - Probabilidades : Cross = 0.950 | Mut = 0.001

Teste 2 - Probabilidades : Cross = 0.950 | Mut = 0.020

Teste 1 - Probabilidades : Cross = 0.950 | Mut = 0.020

SUMÁRIO

- 1. Introdução
- 2. Algoritmos Genéticos
- 3. Implementação do Algoritmo e Resultados
 - a. Teste inicial
 - b. Modelo de Ising
- 4. Conclusões

OBRIGADO!