Bayesian Neural Networks

Blair, Taylor Ava Conor

March 21, 2024

Abstract

Bayesian Neural Networks are...

Contents

1	Intr	oduction	2
	1.1	Neural Networks	2
	1.2	Bayesian Neural Networks	2
	1.3	History	3
2	Lite	rature Review	3
3	Con	struction	3
4	How	it works	4

<u>Ta</u>	Taylor Blair		
5	Use Cases	4	
	5.1 Bitcoin	. 4	
	5.2 BitTorrent Data Integrity	. 5	
6	Simulation		
7	Closing	5	

1 Introduction

1.1 Neural Networks

1.2 Bayesian Neural Networks

Bayesian Neural were invented by Ralph Merkle. Ralph Merkle initially patented Merkle trees for digital signatures....

Figure 1: Basic Merkle Tree[6]

....

1.3 History

2 Literature Review

Merkle Trees are a component of several projects, as such many papers provide incremental changes towards certain operations on Merkle trees. This paper references the original patent by Ralph Merkle [5] in addition to descriptions of Merkle tree operations given by Boneh and Shoup [2]. As secondary sources, the implementation of Merkle trees in Bitcoin [4] provides a real example of the impact of hash functions in addition to a whitepaper from the BitTorrent project[1].

3 Construction

Merkle trees are constructed from the bottom up by hashing data as the leaf nodes.

Algorithm 1 Merkle tree construction

for
$$i=1,\ldots,n$$
 do \triangleright Compute leaf node hashes $y_i \leftarrow h(x_i)$ end forfor $j=1,\ldots,n-1$ do \triangleright Compute intermediate Nodes from y_{n+1},\ldots,y_{2n-1} $y_{i+n} \leftarrow h(y_{2i-1},y_{2i})$ \triangleright Hash leaf nodes below for new hashend for \triangleright Return tree where y_{2n-1} is the root

When referring to the parts of a Merkle tree the most common terminology is "root hash" which refers to the hashed value of the root of the tree and "leaf hash" which refers to the hash for a given data block.

4 How it works

5 Use Cases

Merkle trees are used as authenticated data structures with optimal complexity for proving membership and comparing against other structures.

5.1 Bitcoin

Bitcoin, and other cryptocurrencies, use Merkle trees for the commitment header. The *chain* in blockchain refers to the chain of receipts from processed transactions.

It would be too slow to create a receipt for each transaction, so Bitcoin groups transactions into sections. The smaller group of transactions is a Merkle tree where the leaf nodes represent a single transaction. Thus the group of transactions results in a root hash which is used as the commitment header.

Merkle trees were incorrectly implemented in the Bitcoin protocol. This implementation resulted in DOS attacks due to over-hashing and duplicate nodes (CVE-2012-2459). This bug was patched in a proposal that replaced the Merkle tree implementation[4].

5.2 BitTorrent Data Integrity

BitTorrent uses Merkle trees for checking the integrity of torrented files. The torrented data is hashed into a Merkle Tree and the root hash is compared with a trusted peer to verify integrity[1]. If the root hashes do not match then the nodes below are compared with the trusted peer. This process repeats until a non-matching block is reached. The advantage of using a Merkle tree over another data structure is finding corrupted data blocks in $O(\log(n))$ time.

6 Simulation

We used the Cifar 10....

7 Closing

References

Bakker, A. (2009). Bep 0030: Merkle hash torrent extension [[Online; accessed 4-May-2023]].

- Boneh, D., & Shoup, V. (2020). A graduate course in applied cryptography. *Draft* 0.5.
- Buchannen, B. (2022, January). Bloom filters, merkle trees and... accumulators. https://medium.com/asecuritysite-when-bob-met-alice/bloom-filters-merkle-trees-and-accumulators-27bc2f7baf5a
- Friedenbach, M., & Alm, K. (2017, August). Fast merkle trees proposal. https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
- Merkle, R. C. (1979). Method of providing digital signatures. *Patent US4309569A*.
- Wikipedia contributors. (2022). Merkle tree Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid= 1123544588