第二季第 5 课: Yoneda 引理 研究一个范畴,可以讨论从这个范畴到集合范畴的函子,这样有了可表函子的概念. 可表函子讨论的是函子是否可以等价为 Hom 函子,体现了 Hom 函子的价值. 我们讨论了如何用一个对象,诱导出范畴上的 Hom 函子,以及不同的这类 Hom 函子之间的联系. 本次课基本的例子是矩阵. 矩阵空间之间的转换可以用左乘和右乘实现,也可以理解为通过线性映射和通过自然变换两种方式,这里蕴含了对偶的性质.

接下来给出了 Yoneda 引理的一种推导方式,说明对象的恒等元在自然变换下的像,决定了自然变换本身. Yoneda 引理的问题描述、证明过程、应用都具有比较抽象的表达方式. 我们用矩阵为例说明 Yoneda 引理的意义. 矩阵空间的转换,若以自然变换来描述,将看到单位矩阵在自然变换下的像如何构成特定矩阵集合中的元,也就是泛元. 这样的泛元,又决定了自然变换本身.

范畴 $\mathcal C$ 到集合范畴 **Set** 的共变和反变函子范畴,有如下常用记号。以对象 $A \in \mathcal C$ 诱导的 Hom 函子为例:

$$\begin{split} h^A &= \mathcal{C}(A,-) = \mathrm{Hom}(A,-) \in \mathbf{Set}^{\mathcal{C}} = \mathbf{Fct}(\mathcal{C},\mathbf{Set}) \\ h_A &= \mathcal{C}(-,A) = \mathrm{Hom}(-,A) \in \mathbf{Set}^{\mathcal{C}^\mathrm{op}} = \mathbf{Fct}(\mathcal{C}^\mathrm{op},\mathbf{Set}) \end{split}$$

注: $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ 就是预层范畴的记号, $\mathbf{Set}^{\mathcal{C}}$ 是余预层范畴的记号。

Yoneda 引理 继续沿用可表函子的记号,在函子范畴 $\mathbf{Set}^{\mathcal{C}}$ 中讨论自然变换 $\Phi \in \mathrm{Nat}(h^X, F)$,让两个函子 h^X 和 F 分别作用于 $f: X \to Z$:

自然变换 Φ 令上图的外框交换。这里值得注意的是用 Hom 函子 h^X 作用于 X 自身,产生了 X 上的自态射集 $\operatorname{End}(X) = h^X X = \mathcal{C}(X,X)$,而自然变换 Φ 从 X 产生了集合范畴中的态射 $\Phi X \in \operatorname{\mathbf{Set}}(\operatorname{End}(X),FX)$, ΦX 把 X 上的自态射转为集合 FX 中的元素 $(\Phi X)(a)$:

 $\Phi X: a \mapsto (\Phi X)(a)$ 的映射过程,结合自然变换的性质,产生了 Yoneda 引理:

下图中外框中的节点表示态射集对象,内框中的节点表示态射集中的元素:

$$\operatorname{End}(X) = \mathcal{C}(X,X) \xrightarrow{h^X f} f \circ 1_X = f$$

$$\downarrow^{\Phi X} \downarrow^{\Phi Z} \downarrow^{\Phi Z}$$

$$U = (\Phi X)(1_X) \xrightarrow{Ff} (Ff)(U) = (\Phi Z)(f)$$

$$\downarrow^{F}$$

$$FX \xrightarrow{Ff} FZ$$

- 1. 图中从左上到左下: ΦX 的作用,X 的幺元 $1_X \in \text{End}(X)$ 产生泛元 $U = (\Phi X)(1_X) \in FX$
- 2. 图中左下到右下: 继续复合 Ff, $(Ff \circ \Phi_X)(1_X) = (Ff)(U) = (Ff)((\Phi X)(1_X))$
- 3. 图中从左上到右上: $h^X f$ 的作用 $h^X f$: $\operatorname{End}(X) \to h^X Z$:: $1_X \mapsto f \circ 1_X = f$
- 4. 图中右上到右下:继续复合 ΦZ , $(\Phi Z \circ h^X f)(1_X) = (\Phi Z)((h^X f)(1_X)) = (\Phi Z)(f)$

以上产生了从左上到右下的两条映射路径,根据交换性 $(\Phi Z) \circ h^X f = Ff \circ (\Phi X)$,代入泛元得到 $(\Phi Z)(f) = Ff(U)$. 这样证明了,自然变换 Φ 由泛元 $U = (\Phi X)(1_X)$ 所决定. 这就是 Yoneda 引理 (Yoneda lemma). 自然变换决定泛元,而泛元也决定自然变换,于是有一一对应:

$$U = (\Phi X)(1_X) \stackrel{1:1}{\longleftrightarrow} \Phi \tag{0.0.1}$$

如果 F 为 X 所表示的可表函子,即有自然同构 $\Phi \in Nat(h^X, F)$,Yoneda 引理给出了集合范畴中的同构

$$Nat(h^X, F) \simeq FX \tag{0.0.2}$$

表示对象在可表函子下的像 FX 是一个集合,集合中的元和自然同构一一对应. 换句话说,若 $F \in \mathbf{Set}^{\mathcal{C}}$ 是 $X \in \mathcal{C}$ 表示的可表函子,则集合 $FX \in \mathbf{Set}$ 按照上式决定了:

$$\eta: FX \to \operatorname{Nat}(h^X, F)$$

$$s \mapsto \eta(s) = \Phi_s$$

矩阵的例子 有限维线性空间选取了基就确定了向量表示,有限维的线性映射对应矩阵。取值于环 R 的有限维列向量构成范畴 $\mathcal{C} = \mathbf{Col}_R$,其中的态射就是 R-矩阵,它通过矩阵乘法的方式把 n-维的对象 R_n 转为 m-维的对象:

$$[f_i^j] \in R_m^n = \mathbf{Col}_R(R_n, R_m) = h^{R_n}R_m = h_{R_m}R_n$$

矩阵空间 R_m^n 中的矩阵都是态射,这样得到一对范畴 $\mathcal{C} = \mathbf{Col}_R$ 上的 Hom 函子:

$$\begin{split} h^{R_n}: \mathbf{Col}_R \to \mathbf{Set} & h_{R_m}: \mathbf{Col}_R \to \mathbf{Set} \\ & R_a \mapsto h^{R_n} R_a = R_a^n & R_b \mapsto h_{R_m} R_b = R_m^b \end{split}$$

范畴 $\mathcal{C}=\mathbf{Col}_R$ 中取两个对象 $X=R_x,Y=R_y$,得到 Hom 函子 $h^X=h^{R_x},h^Y=h^{R_y}$ 。以 h^X 为例, $f\in \mathrm{Hom}(A,B)=R_b^a$ 在 h^X 下有 $h^Xf:h^XA\to h^XB::\varphi\mapsto (h^Xf)(\varphi)$ 。 $f\in R_b^a$ 和 $\varphi\in R_a^x$ 视为矩阵,则 $(h^Xf)(\varphi)=f\varphi\in R_b^x$ 正是矩阵乘法:

 $f\varphi$ 的复合相当于用 f 左乘作用于 φ :

$$\begin{split} f:R_a^x \to R_b^x \\ \varphi \mapsto f\varphi = \begin{bmatrix} f_1^1 & \cdots & f_1^a \\ \vdots & & \vdots \\ f_b^1 & \cdots & f_b^a \end{bmatrix} \begin{bmatrix} \varphi_1^1 & \cdots & \varphi_1^x \\ \vdots & & \vdots \\ \varphi_a^1 & \cdots & \varphi_a^x \end{bmatrix} \end{split}$$

考虑自然变换 $\Phi \in \text{Nat}(h^X, h^Y)$, 对于任意对象 $A = R_a, B = R_b$ 下图外框交换:

自然变换的交换图要求 $f \circ \Phi(A) = \Phi(B) \circ f$, $h^X A \to h^Y B$ 有两条复合路径,按照不同的先后顺序转换行列的维度,最终完成了维度转换。其中 $f \in \operatorname{Hom}(A,B)$ 是行数 $a \to b$ 的转换 $f: R_a \to R_b$,自然变换 $\Phi \in \operatorname{Nat}(h^X,h^Y)$ 是列数 $x \to y$ 的转换 $\Phi: \operatorname{Hom}(R_x,-) \to \operatorname{Hom}(R_y,-)$:

下面用矩阵的方式来说明 Yoneda 引理的意义。记 $F = h^Y$,考虑自然变换 $\Phi \in \operatorname{Nat}(h^X, F)$,并令 $A = X = R_x$.按照 Yoneda 引理的方式,考虑对恒等元也就是单位矩阵 $I_x \in \operatorname{End}(X)$ 的映射:

这里出现了泛元 $U=(\Phi(X))(I_x)\in R_x^y$,它是 x 行 y 列的矩阵空间,根据 Yoneda 引理其中的矩阵和自然变换对应。从恒等元 I_x 生成泛元 U 的过程,把自然变换的信息传递到泛元中:

$$\Phi(X): (\operatorname{End}(X) = R_x^x) \to (FX = R_x^y)$$

$$I_x \mapsto U = (\Phi(X))(I_x)$$

单位矩阵 I_x 是平凡的,而泛元 U 作为自然变换 Φ 作用的结果,蕴含了自然变换 Φ 的全部信息,可以借由 Yoneda 引理决定自然变换 Φ 本身.

 R_x^y 中的矩阵以左乘方式实现了 $R^y \to R^x$ 的态射,同一个矩阵也对应了矩阵的右乘作用。类似于前述 $f\varphi$ 的复合相当于用 f 左乘 φ , $(\Phi B)(f)$ 相当于用 ΦB 右乘作用于 f:

$$\begin{split} \Phi B: R_b^x \to R_b^y \\ f \mapsto (\Phi B)(f) = \begin{bmatrix} f_1^1 & \cdots & f_1^x \\ \vdots & & \vdots \\ f_b^1 & \cdots & f_b^x \end{bmatrix} \begin{bmatrix} m_1^1 & \cdots & m_1^y \\ \vdots & & \vdots \\ m_x^1 & \cdots & m_x^y \end{bmatrix} \end{split}$$