基礎コンピュータ工学 第5章 機械語プログラミング (パート10:<u>アドレッシングモード)</u>

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

アドレッシングモード

LD, ST, ADD, SUB, CMP, AND, OR, XOR, JMP, JZ, JC, JM, JNZ, JNC, JNM の命令フォーマットは同じだった.

第 1	バイト	然のぶる
OP	GR XR	第2バイト
0P	GR XR	aaaa aaaa

これまで、XRフィールドは 00_2 にしてきた。 XRフィールドは、メモリデータのアドレス計算方法を決めるアドレッシングモードを指定する

XR	意味	
00_{2}	ダイレクトモード	(直接モード)
01_{2}	G1 インデクスドモード	(G1 指標モード)
10_{2}	G2 インデクスドモード	(G2 指標モード)
11_{2}	イミディエイトモード	(即値モード)

ダイレクト(直接)モード

これまで使用してきたアドレッシングモードはダイレクトモード

- 実効アドレス (EA: Effective Address)実効アドレス = 第2バイトの内容
- $XR 7 7 \nu F = 00_2$
- ニーモニック例 LD GO,AST GO,B
- フローチャート例

実効アドレス = 命令の操作対象となるメモリアドレスのこと.

インデクスド(指標)モード

G1, G2 が配列データをアクセスするために使用できる. (G0, SP は使用できないので注意!!)

- 実効アドレス (EA: Effective Address)
 実効アドレス = 第2バイトの内容+ G1の内容
 実効アドレス = 第2バイトの内容+ G2の内容
 (この時、G1、G2 はインデクスレジスタと呼ばれる。)
- $XR 7 4 NF (G1=01_2, G2=10_2)$
- ニーモニック例 LD GO,A,G1ST GO,B,G2
- フローチャート例

● 機械語の例 (LD 命令) LD GO,A,G1

第1	バイト	然のぶる
OP	GR XR	第2バイト
0001	00 01	aaaa aaaa

機械語の例 (ST命令) ST GO,A,G2

第1	バイト	# 0 . N . L . L
OP	GR XR	第2バイト
0010	00 10	aaaa aaaa

● 機械語の例 (レジスタ)LD G2,A,G1

第1	バイト	然在心上
OP	GR XR	第2バイト
0001	10 01	aaaa aaaa

インデクスモードの使用例

配列AのI番目のデータ(A[I])をXにコピーする.

고도나나	17 € 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	=		エー カ
番地	機械語	ラベル		モニック
00	14 07		LD	G1,I
02	11 08		LD	GO,A,G1
04	20 OB		ST	GO,X
06	FF		HALT	
07	01	I	DC	1
08	08	A	DC	8
09	02		DC	2
OA	OA		DC	10
OB	00	X	DS	1

第1	バイト	Mr. 0 . 1 . 1
OP	GR XR	第2バイト
0001	00 01	0000 1000

イミディエイト(即値)モード

命令の第2バイトがデータそのものになる. ZERO, ONE 等のデータを準備しなくても即値を使用できる. (*ST* 命令やジャンプ命令では使用できない.)

- 実効アドレス (EA: Effective Address)実効アドレス = 第2バイト
- $XR 7 1 \nu F = 11_2$
- ニーモニック例 LD GO,#1 LD GO,#A

#A は, A の内容ではなく, A のアドレスの意味!!

• フローチャート例

● 機械語の例 (データの1) LD GO,#1

第1	バイト	Mr a wall
OP	GR XR	第2バイト
0001	00 11	0000 0001

● 機械語の例 (アドレス A) LD G1,#A

第1	バイト	然在以入上
OP	GR XR	第2バイト
0001	01 11	aaaa aaaa

• イミディエイトなし・ありの比較

	LD	GO,ZERO
	ADD	GO, ONE
ZERO	DC	0
ONE	DC	1

LD GO,#0 ADD GO,#1

イミディエイトモードの使用例

A番地のデータに1を加えB番地に格納する.

番地	機械語	ラベル	ニーモ	Eニック
00	10 07		LD	GO,A
02	33 01		ADD	GO,#1
04	20 08		ST	GO,B
06	FF		HALT	
07	05	A	DC	5
08	00	В	DS	1

第1	バイト	<i>frft</i> 0
0P	GR XR	第2バイト
0011	00 11	0000 0001

アドレッシングモードの使用例

A番地のデータでB番地からの10バイトの配列を初期化する.

番地	機械語	ラベル	ニーモニック	
00	10 OF		LD	GO,A
02	17 OA		LD	G1,#10
04	1B 00		LD	G2,#0
06	22 10	LOOP	ST	GO,B,G2
08	3B 01		ADD	G2,#1
OA	47 01		SUB	G1,#1
OC	B4 06		JNZ	LOOP
0E	FF		HALT	
OF	AA	A	DC	OAAH
10	00 00	В	DS	10
12	00 00			
14	00 00			
16	00 00			
18	00 00			

まとめ

学んだこと

- 「実効アドレス (EA)」=「データのメモリアドレス」
- 「アドレッシングモード」=「実効アドレスの計算方法」
- TeC では次のアドレッシングモードが使用できる.
 - (1) ダイレクト (直接) モード 「命令の第2バイトの内容」が実効アドレス
 - (2) インデクスド (指標) モード 「命令の第2バイトの内容+レジスタの内容」が実効アドレス (アドレス計算には, G1, G2 レジスタだけが使用できる.)
 - (3) イミディエイト (即値) モード 「命令の第2バイト」が実効アドレス

演習

- イミディエイトモードの ST 命令を TeC で実行してみる.
- A番地からの5バイトのデータの和をB番地に求める。
- A番地からの5バイトのデータをB番地から5バイトにコピーする。