													0.0		ACC												
	0.0 0.5																										
	Choueiri(n=16) -	0.62	0.56	0.44	0.56	0.5	0.56	0.69	0.56	0.5	0.44	0.44	0.31	0.60	0.69	0.5	0.62	0.75	0.75	0.56	0.69	0.75	0.75	0.69	0.69	0.19	0.69
small cohort																											
	Miao(n=17) -							0.059																		0.59	
	Snyder(n=21)-	0.62	0.76	0.62	0.57	0.43	0.57	0.67	0.57	0.62	0.57	0.57	0.29	0.62	0.29	0.38	0.67	0.43	0.62	0.67	0.62	0.19	0.57	0.048	0.43	0.57	0.48
	Zhao(n=25)-	0.56	0.8	0.68	0.36	0.6	0.24	0.48	0.24	0.48	0.08	0.64	0.56	0.32	0.36	0.48	0.08	0.6	0.36	0.56	0.28	0.68	0.08	0.24	0.04	0.52	0
	Zhao(n=25) - - SU2CLC2(n=25)	0.44	0.28	0.56	0.56	0.52	0.56	0.64	0.52	0.4	0.52	0.16	0.4	0.52	0.52	0.52	0.36	0.48	0.44	0.32	0.6	0.44	0.56	0.52	0.68	0.24	0.64
	Hugo(n=26)-	0.62	0.65	0.38	0.62	0.58	0.54	0.5	0.65	0.54	0.69	0.42	0.69	0.62	0.46	0.42	0.65	0.35	0.077	0.58	0.54	0.19	0.54	0.5	0.42	0.15	0.42
	Average -	0.584	0.578	0.545	0.543	0.536	0.510	0.505	0.503	0.501	0.501	0.499	0.483	0.480	0.474	0.472	0.466	0.464	0.463	0.457	0.454	0.454	0.446	0.440	0.416	0.377	0.371
		I	I	 	ı	I				I	I Z	I		I	ı	I Z	1	I	I	1	l .e	1	1	I	ı	I	1
		Š	S		ict.	5	A.	S	A.	E.	(A)	27	S. S.	~	.80	St.	1	M.	\$	M	Les	W.	N. S.	, PX	80		Q°
			Q ⁻	\	~	~	\circ	_	7			Q~ 2	Qx.	ì	<u>ê</u>	`	•	4.		~,	•		* (O	~	\cup
基本发展的 经发展 医																											