HIGH-VOLTAGE MIXED-SIGNAL IC

UG1701

65x132 STN Controller-Driver

Olfi, Scylly

MP Specifications
Datasheet Revision: 1.0

IC Version: c_B September 29, 2014

©1999~2014

Table of Content

NTRODUCTION	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
ORDERING INFORMATION	4
BLOCK DIAGRAM	5
PIN DESCRIPTION	6
RECOMMENDED COG LAYOUT	8
CONTROL REGISTERS	9
COMMAND TABLE	. 11
COMMAND DESCRIPTION	. 12
LCD VOLTAGE SETTING	. 17
V _{LCD} QUICK REFERENCE	. 18
LCD DISPLAY CONTROLS	. 20
TO LAYOUT AND LC SELECTION	. 21
HOST INTERFACE	. 24
DISPLAY DATA RAM (DDRAM)	. 31
RESET & POWER MANAGEMENT	. 33
ABSOLUTE MAXIMUM RATINGS	. 38
SPECIFICATIONS	. 39
AC CHARACTERISTICS	. 40
PHYSICAL DIMENSIONS	. 45
ALIGNMENT MARK INFORMATION	. 46
PAD COORDINATES	. 47
TRAY INFORMATION	. 50
REVISION HISTORY	. 51

UC1701

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver

INTRODUCTION

UC1701c is an advanced high-voltage mixed-signal CMOS IC, especially designed for the display needs of ultra-low power hand-held devices.

In addition to low power column and row drivers, the IC contains all necessary circuits for high-V LCD power supply, bias voltage generation, timing generation and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

MAIN APPLICATIONS

 Cellular Phones, Smart Phones, PDA, and other battery operated palm top devices or portable Instruments

FEATURE HIGHLIGHTS

- Single chip controller-driver supports 65x132 graphics STN LCD panels.
- Support both row ordered and column ordered display buffer RAM access.

- Support industry standard 8-bit parallel bus (8080 or 6800 mode), 4-wire serial bus (S8), and 2-wire I²C serial interfaces.
- Ultra-low power consumption under all display patterns.
- Selectable Mux Rate and Bias Ratio allow flexible power management options.
- Internal charge pump with on-chip pumping capacitor requires only 1 external capacitor to operate.
- Very low pin count (7~9-pin) allows exceptional image quality in COG format on conventional ITO glass.
- Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.

V_{DD} range (Typ.): 2.7V ~ 3.3V
 V_{DD2/3} range(Typ.): 2.7V ~ 3.3V
 LCD V_{OP} range: 3.85V ~ 10.0V

- Available in gold bump dies
- COM/SEG bump information

Bump pitch: $27 \mu M$ Bump gap: $12 \mu M \pm 3 \mu M$

Bump surface: 1500 µM²

ORDERING INFORMATION

Part Number	I ² C	Description
UC1701cGAB	Yes	Gold Bumped Die, Bump Height: 10uM
UC1701cGBB	Yes	Gold Bumped Die, Bump Height: 15µM

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

USE OF I2C

The implementation of I²C is already included and tested in all silicon.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 4F, No. 618, Recom Road, Neihu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip

Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com ©1999~2014

65x132 STN Controller-Driver

BLOCK DIAGRAM

PIN DESCRIPTION

Pin (Pad) Name	Туре	Pins	Description						
			MAIN POWER SUPPLY						
V _{DD}		3	V_{DD} supplies for Display Data RAM and digital logic, V_{DD2} supplies for analog circuit, V_{DD3} supplies for reference voltage circuits.						
$V_{DD2} \ V_{DD3}$	PWR	4 2	V_{DD2}/V_{DD3} should be connected to the same power source. But V_{DD} can be connected to a source voltage no higher than V_{DD2}/V_{DD3} .						
			ITO trace resistance needs to be minimized for V _{DD2} /V _{DD3} .						
V_{SS} V_{SS2}	GND	2 4	Ground. Connect V_{SS} and V_{SS2} to the shared GND pin. In COG applications, minimize the ITO resistance for both V_{SS} and V_{SS2} .						
			LCD Power Supply & Voltage Control						
V0in V0out	PWR	2 2	V0 is the LCD driving voltage for COM circuit at negative frame. V0in is the V0 input of common circuits. V0out is the output of V0 regulator. V0s is the feedback of V0 regulator.						
V0s		1	Be sure that $V0 \ge VG > VM > V_{SS} \ge XV0$, under operation.						
			These pins should be separated in ITO layout; while they should be connected together in FPC layout.						
VGin VGout	PWR	2	VG is the LCD driving voltage for segment circuit. VGout is the output of VG regulator. VGs is the feedback of VG regulator. VGin is the VG input of segment circuits.						
VGoul	PVVP	1	$1.6V \leq VG < V_{DD2}$.						
VGS)	•	These pins should be separated in ITO layout; while they should be connected together in FPC layout.						
XV0in	DIALD	2	XV0 is the LCD driving voltage for common circuit at positive frame. XV0out is the output of XV0 regulator. XV0s is the feedback of XV0 regulator. XV0in is the XV0 input of common circuits.						
XV0out	PWR	2	These pins should be separated in ITO layout; while they should be connected						
XV0s		1	together in FPC layout.						
\/N4O	DWD	0	VM is the LCD driving voltage for common circuits.						
VMO	PWR	2	$0.8V \leq VM < V_{DD2}$.						

Note

• Recommended capacitor values: C_{V0} : Optional. 0.1uF/16V. Connect the capacitor of C_{V0} value between XV0 and V0.

				Host In	TERFACE										
				Bus mode: The interface bus mode is determined by BM[1:0] and TST5 by the following relationship:											
	В		BM[1:0]	TST5	Mode										
BM0	BM0 BM1 TST5 I 1 11 10 0x	Open	6800/8-bit												
		10	Open	8080/8-bit											
			Ov	Open	4-wire SPI w/ 8-bit token (S8: conventional)										
			UX	1	2-wire serial (I ² C)										
			Always con	lways connect unused pins to either Vss or VDD.											
CS0	I	1	Chip Select be of high in	•	ected when CS0 = "L". When the chip is not select	cted, D[7:0] will									
RST	ı	1		It's necessary to set pin-reset in 3 mS after V _{DD/2/3} stable. When RST="L", all control registers are re-initialized by their default states.											
			An RC Filte	r has been ir	ncluded on-chip. There is no need for external R0	C noise filter.									

Pin (Pad) Name	Туре	Pins	Description
CD	-	1	Select Control data or Display data for read/write operation.
CD	ı	ļ	"L": Control data "H": Display data
WR0 / A3 WR1 / A2	I	1 1	WR [1:0] controls the read/write operation of the host interface. See Host Interface section for details. In parallel mode, the meaning of WR[1:0] depends on which interface it is in, 6800 or 8080 mode. In serial interface modes, these two pins are not used. Connect them to V _{SS} or V _{DD} . In I ² C mode, these two pins specifies bits 3~2 of device address (A[3:2]).
DT1 DT2	I	1 1	Duty selection. DT2 DT1 Duty 0 0 1/65 0 1 1/49 1 0 1/33 1 1 1 1/55
D7~D0	I/O	187	Bi-directional bus for both serial and parallel host interfaces. In serial modes, connect D[7] to SDA, D[6] to SCK. D7 D6 D5 D4 D3 D2 D1 D0 Parallel (8-bit) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Serial (S8, I²C) SDA SCK Always connect unused pins to either V _{SS} or V _{DD} .
			HIGH VOLTAGE LCD DRIVER OUTPUT
SEG0 ~ SEG131	HV	132	SEG (column) driver outputs. Support up to 132 pixels. Leave unused SEG drivers open-circuit.
COM0 ~ COM63	HV	64	COM (row) driver outputs. Support up to 64 rows. Leave unused COM drivers open-circuit.
CIC	HV	2	Icon driver outputs. Leave it open if not used.
			Misc. Pins
V_{DDX}		2	Auxiliary V_{DD} . This pin is connected to the main V_{DD} bus within the IC. It's provided to facilitate chip configurations in COG application. There's no need to connect V_{DDX} to main V_{DD} externally and it should \underline{NOT} be used to provide V_{DD} power to the chip.
V _{ssx}		2	Auxiliary V_{ss} . These pins are connected to the main Vss bus within the IC, to facilitate chip configurations in COG application. There's no need to connect VssX to main Vss externally and they should <u>NOT</u> be used to provide Vss power to the chip.
TST4	1	1	Test control. There's an on-chip pull-up resistor for TST4. Leave it open during normal use.
TST2	I/O	1	Test I/O pins. Leave these pins open during normal use.
Dummy		8	Dummy pins are NOT connected inside the IC.

RECOMMENDED COG LAYOUT

Notes for V_{DD} with COG:

The operation condition, V_{DD} =2.7V (typical), should be satisfied under all operating conditions. UC1701c's peak current (I_{DD}) can be up to ~15mA during high speed data-write to UC1701c's on-chip SRAM. Such high pulsing current mandates very careful design of V_{DD} and V_{SS} ITO trances in COG modules. When V_{DD} and V_{SS} trace resistance is not low enough, the pulsing I_{DD} current can cause the actual on-chip V_{DD} to drop to below 2.6V and cause the IC to malfunction.

CONTROL REGISTERS

UC1701c contains registers, which control the chip operation. The following table is a summary of these control registers, a brief description and the default values. These registers can be modified by commands, which will be described in the next two sections, Command Table and Command Description.

Name: The Symbolic reference of the register. Note that, some symbol name refers to bits (flags) within another register.

Default: Numbers shown in **Bold** font are default values after hardware reset.

Name	Bits	Default		De	escription									
SL	6	00H	Scroll Line. Scroll the displayed i scrolling) and 63. Setting SL outs image. This register does not affect the scrolling of the scrolling scrolling.	side of this ra	ange causes und									
CA	8	00H	Column Address of DDRAM (Dis (Used in Host to access DDRAM		AM). Value rang	e is 0~131.								
PA	4	0H	Page Address of DDRAM. Value	ge Address of DDRAM. Value range 0~8. (Used in Host to access DDRAM)										
BR	1	ОН	Bias Ratio. The ratio between V BR=0 Duty=1/65 1/9 Duty=1/49 1/8 Duty=1/33 1/6 Duty=1/55 1/8	Duty=1/65 1/9 1/7 Duty=1/49 1/8 1/6 Duty=1/33 1/6 1/5										
PM	6	20H	Adjust contrast of LCD panel dis	play.										
PC	6	20H	PC [1]: V0 pump control. (Defa PC [2]: XV0 pump control. (Def PC [5:3]: Resistor Ratio for V _{LCI}											
CR	8	0H	Return Column Address. Useful	turn Column Address. Useful for cursor implementation.										
AC3	1	0H		·										
DC	3	0H	Display Control: DC[0]: PXV: Pixels Inverse (k DC[1]: APO: All Pixels ON (D DC[2]: Display ON/OFF (Defa When DC[2] is set to 0, the	Default 0: OF ault 0: OFF)	F)	ılt 0: OFF)								
LC	2	0H	LCD Control: LC[0]: MX, Mirror X SEG/Colu LC[1]: MY, Mirror Y COM/Rov											
APC0 APC1	8 8	90H 	Advanced Program Control. APC0 [7]: TC, V _{BIAS} temperature 0b: TC curve definition = -0.0 1b: TC curve definition = -1.0 APC0 [6] is fixed. APC0 [5:4]: FR, Frame Rate: (U Frame Rate Duty:1/65 Duty:1/65 Duty:1/49 Duty:1/33 APC0 [3:2] are fixed. APC0 [1:0]: WA, automatic columum WA[0]: 0: PA wrap around WA[1]: 0: CA wrap around APC1[7:0]: For UltraChip's use of the survey of the su	05% / °C 0.11% / °C 0.11% / °C Init: Hz) 1(1:0]: 00b 58 102 115 57 mn/row Wrap disable disable	FR[1:0]: 01b 77 136 153 76 Around. 1: PA wrap ard 1: CA wrap ard	FR[1:0]: 10b 96 170 191 94 ound enable.	FR[1:0]: 11b 115 203 229 113							

Name	Bits	Default	Description
			Status Registers
BZ,	1	0	BZ : Set to 1 when system is busy. Commands can only be accepted when BZ=0.
MX, DE,	1 1		MX : Mirror X-axle (i.e. SEG or column) DE : Set to 1 when display enabled.
RST	1		RST : Reset flag. RST=1 when reset is in progress.
		J*	confile confil

COMMAND TABLE

The following is a list of host commands supported by UC1701c

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle

D7-D0: # Useful Data bits, - Don't Care

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
1.	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A
2.	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A
3.	Get Status	0	1	ΒZ	MX	DE	RST	0	0	0	0	Get Status	
4.	Set Column Address LSB	0	0	0	0	0	0	#	#	#	#	Set CA [3:0]	0
4.	Set Column Address MSB	U	U	0	0	0	1	#	#	#	#	Set CA [7:4]	0
5.	Set Power Control	0	0	0	0	1	0	1	#	#	#	Set PC[2:0]	000b
6.	Set Scroll Line	0	0	0	1	#	#	#	#	#	#	Set SL[5:0]	0
7.	Set Page Address	0	0	1	0	1	1	#	#	#	#	Set PA[3:0]	0
8.	Set V _{LCD} Resistor Ratio	0	0	0	0	1	0	0	#	#	#	Set PC[5:3]	100b
9.	Set Electronic Volume	0	0 🄷	1	0	0	0	0	0	0	1		
9.	(double-byte command)	U	0	0	0	#	#	#	#	#	#	Set PM[5:0]	20H
10.	Set All-Pixel-ON	0 4	0	1	0	1	0	0	1	0	#	Set DC[1]	0b
11.	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0b
12.	Set Display Enable	0	0	1	0	1	0	1	1	1	#	Set DC[2]	0b
13.	Set SEG Direction	0	0	1	0	1	0	0	0	0	#	Set LC[0]	0b
14.	Set COM Direction	0	0	1	1	0	0	#	-	-	-	Set LC[1]	0b
15.	System Reset	0	0	1	1	1	0	0	0	1	0	Software Reset	N/A
16.	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
17.	Set LCD Bias Ratio	0	0	1	0	1	0	0	0	1	#	Set BR	0b
18.	Set Cursor Update Mode	0	0	1	1	1	0	0	0	0	0	AC3=1, CR=CA	N/A
19.	Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0	AC3=0, CA=CR.	N/A
20.	Set Static Indicator OFF	0	0	1	0	1	0	1	1	0	0	NOP	N/A
24	Set Static Indicator ON			1	0	1	0	1	1	0	1	NOD	NI/A
21.	Set Static Indicator	0	0	-	-	-	-		-	-	-	NOP	N/A
22.	Set Booster Ratio	0	0	1	1	1	1	1	0	0	0	NOP	0b
22.	(double-byte command)	U	U	0	0	0	0	0	0	0	#	NOP	do
23.	Set Power Save	0	0	#	#	#	#	#	#	#	#	Display OFF &	N/A
23.	(compound command)	٥	U	#	#	#	#	#	#	#	#	All Pixel ON	IN/A
24.	Set Test Control	0	0	1	1	1	1	1	1	Т	Τ	For UCI only	N/A
	(double-byte command)	Ů	Ŭ	-	#	#	#	#	#	#	#	Do NOT use	1 1// 1
25.	Set Adv. Program Control 0	0	0	1	1	1	1	1	0	1	0		
	(double-byte command)	Ů	Ŭ	#	0	#	#	0	0	#	#	Set TC, FR, WA	90H
26.	Set Adv. Program Control 1	0	0	1	1	1	1	1	0	1	1	For UCI only	
	(double-byte command)			#	#	#	#	#	#	#	#	Set APC1	N/A

^{*} Any bit patterns other than the commands listed above, may result in NOP (No Operation).

65x132 STN Controller-Driver

COMMAND DESCRIPTION

1. Write Data Byte to Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Write data	1	0	8-bit data write to SRAM							

2. Read Data Byte from Memory

Action	C/D	W/R	D7	D6 •		D5	D4	D3	D2	D1	D0
Read data	1	1			1	8-bi	t data rea	d from SR	AM		

Write/Read Data Byte (Command 1,2) access Display Data RAM based on Page Address (PA) register and Column Address (CA) register. PA and CA can also be programmed directly by issuing Set Page Address and Set Column Address commands.

3. Get Status

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Get Status	0	1	BZ	MX	DE	RST	0	0	0	0

BZ: BZ=1 when busy. The system accepts commands only when BZ=0.

MX: Mirror X. Status of register LC[0]
DE: Display Enable flag. DE=1 when display is enabled.

RST: RST flag. RST=1 when reset is in progress.

Set Column Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Column Address LSB, CA[3:0]	0	0	0	0	0	0	CA3	CA2	CA1	CA0
Set Column Address MSB, CA[7:4]	0	0	0	0	0	1	CA7	CA6	CA5	CA4

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~131

5. Set Power Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Pump Control, PC[2:0]	0	0	0	0	1	0	1	PC2	PC1	PC0

Set PC[2:0] to enable the built-in charge pump.

PC[2]: XV0 pump control. 0: Disable (Default) PC[1]: V0 pump control. **0: Disable** (Default) PC[0]: VG pump control. **0: Disable** (Default)

row 0

row 63

©1999~2014 65x132 STN Controller-Driver

6. Set Scroll Line

Action	C/D	W/R	D7	D6	D5	D4 📢	D3	D2	D1	D0
Set Scroll Line, SL[5:0]	0	0	0	1	SL5	SL4	SL3	SL2	SL1	SL0

Set the scroll line number. Range: 0~63

Scroll line setting will scroll the displayed image up by SL rows. Icon output CIC will not be affected by Set Scroll Line command.

7. Set Page Address

Ī	Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
ĺ	Set Page Address, PA[3:0]	0	0	1	0	1	1	PA3	PA2	PA1	PA0

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output CIC.

Possible value = $0 \sim 8$.

8. Set V_{LCD} Resistor Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V _{LCD} Resistor Ratio, PC[5:3]	0	0	0	0	1	0	0	PC5	PC4	PC3

Configure PC[5:3] to set internal Resistor Ratio, Rb/Ra, for the V_{LCD} Voltage regulator to adjust the contrast of the display panel:

PC[5:3]: 000b~111b - 1+Rb/Ra ratio. **Default: 100b**. Refer to V_{LCD} Quick Reference for "1+Rb/Ra" ratio.

 $V_{LCD} = ((1+Rb/Ra) \times Vev) \times (1+(T-25)xC_T\%)$

 $Vev=(1-(63-PM)/162)xV_{REF}$

where Rb and Ra are internal resistors, V_{REF} is on-chip contrast voltage, and PM is a value of electronic volume

9. Set Electronic Volume

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Electronic Volume, PM[5:0]	0	0	1	0	0	0	0	0	0	1
Set Electionic Volume, Fivi[5.0]	"	U	0	0	PM5	PM4	PM3	PM2	PM1	PM0

Set PM[5:0] for electronic volume "PM" for VLCD voltage regulator to adjust contrast of LCD panel display

Effective range: 0~63. Default: 32 (20h)

10. Set All Pixel ON

Action	C/D	W/R	D7	D6	D5	D4 📢	D3	D2	D1	D0
Set All Pixel ON, DC [1]	0	0	1	0	1	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM. **Default: 0**

11. Set Inverse Display

Action	C/D	W/R	D7	D6	D	5	D4	D3	D2	D1	D0
Set Inverse Display, DC [0]	0	0	1	0	1		0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

12. Set Display Enable

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Enable, DC[2]	0	0	1	0	1	0	1	1	1	DC2

This command is for programming register DC[2]. When DC[2] is set to 1, UC1701c will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers.

13. Set SEG Direction

Action			C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Segment Direction	, LC	C[0]	0	0	1	0	1	0	0	0	0	LC0 / MX

Set LC[0] for SEG (column) mirror (MX). Default: 0

MX is implemented by reversing the mapping order between RAM and SEG (column) electrodes. The data stored in RAM is not affected by MX command. Yet, MX has immediate effect on the display image.

14. Set COM Direction

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Common Direction, LC[1]	0	0	1	1	0	0	LC1 / MY	-	,	-

Set LC[1] for COM (row) mirror (MY). Default: 0b

MY is implemented by reversing the mapping between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. Yet, MY has immediate effect on the display image.

15. System Reset (Software Reset)

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Software Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset.

Some control register values will be reset to their default values. Yet, data stored in RAM will not be affected. See the "Reset and Power Management" section for more details.

16. NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	1	1	1	0	0	0	1	1

This command is used for "no operation".

©1999~2014

65x132 STN Controller-Driver

17. Set LCD Bias Ratio

Action	C/D	W/R	D7	D6	D5	D4 (D3	D2	D1	D0
Set Bias Ratio, BR	0	0	1	0	1	0	0	0	1	BR

Select voltage bias ratio required for LCD. Default: 0

The setting of Bias ratio varies according to Duty:

DUTY	BR = 0	BR = 1
1/65	1/9	1/7
1/49	1/8	1/6
1/33	1/6	1/5
1/55	1/8	1/6

18. Set Cursor Update Mode

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Cursor Update Mode	0	0	1	1	1	0	0	0	0	0

This command is used for set cursor update mode function. When cursor update mode sets, UC1701c will update register CR with the value of register CA. The column address CA will increment with write RAM data operation but the address wraps around will be suspended no matter what WA setting is. However, the column address will not increment in read RAM data operation. The set cursor update mode can be used to implement "write after read RAM" function. The column address (CA) will be restored to the value, which is before the set cursor update mode command, when reset cursor update mode.

The purpose of this pair commands and their feature is to support "write after read" function for cursor implementation.

19. Reset Cursor Update Mode

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0

Set AC3=0 and CA=CR.

20. Set Static Indicator OFF

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Turn OFF Static Indicator	0	0	1	0	1	0	1	1	0	0

No Operation.

21. Set Static Indicator ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Turn ON Static Indicator	0	0	1	0	1	0	1	1	0	1
Turri ON Static indicator	0	0	-	-	-	-	-	-	-	-

No Operation.

22. Set Booster Ratio

Action	C/D	W/R	D7	D6	D5	D4 📢	D3	D2	D1	D0
Set Booster Ratio	0	1	1	1	1	1	1	0	0	0
(Double-byte command)	ľ	'	0	0	0		0	0	0	-

This command is used for "No Operation".

23. Set Power Save

Action	C/D	W/R	D7	D	6	D5	D4	D3	D2	D1	D0
Power Save (Compound Command)	0	0	#		#	#	#	#	#	#	#

24. Set Test Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set TT	•	1	1	1	1	1	1	1	Т	Т
(Double-byte command)			-	#	#	#	#	#	#	#

This command is for UltraChip's Test only. Do NOT use.

25. Set Advanced Program Control 0

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control, APC0 [7:0]			1	1	1	1	1	0	1	0
(Double-byte command)	0	0	TC, APC0 [7]	0	FR1, APC0 [5]	FR0, APC0 [4]	0	0	WA1, APC0 [1]	WA0, APC0 [0]

TC : APC0 [7], V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

 $TC: 0b = -0.05\%^{\circ}C,$ $1b = -0.11\%^{\circ}C$

APC0 [6] is fixed.

APC0 [5:4]: FR, Frame Rate: (Unit: Hz)

FR[1:0]: Duty:1/65 FR[1:0]: Duty:1/55 01b: 77 00b: 58 10b: 96 11b: 115 00b: 102 01b: 136 11b: 203 10b: 170 FR[1:0]: Duty:1/49 FR[1:0]: Duty:1/33 00b: 115 01b: 153 11b: 229 10b: 191 10b: 94 00b: 57 01b: 76 11b: 113

APC0 [3:2] are fixed.

WA: APC0 [1:0], Automatic column/row wrap around.

WA[0]: **0: PA WA disable**WA[1]: **0: CA WA disable**1: PA WA enable.
1: CA WA enable.

26. Set Advanced Program Control 1

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control, APC1 [7:0]	0	0	1	1	1	1	1	0	1	1
(Double-byte command)	J	U			AP	C1 registe	er parame	ter		

For UltraChip only. Please Do NOT use.

LCD VOLTAGE SETTING

MULTIPLEX RATES

Multiplex Rate is set by DT[2:1]:

DT2	DT1	Duty
0	0	1/65
0	1	1/49
1	0	1/33
1	1	1/55

BIAS RATIO SELECTION

Bias Ratio (BR) is defined as the ratio between V_{LCD} and V_{BIAS} , i.e.

$$BR = V_{LCD}/V_{BIAS}$$

where
$$V_{BIAS} = V_G - V_{MO-} = V_{MO}$$

The theoretical optimum $Bias\ Ratio\ can\ be\ estimated\ by\ \sqrt{Mux}+1$. BR of value 15~20% lower/higher than the optimum value calculated above will not cause significant visible change in image quality.

UC1701c supports four *BR* as listed below. BR can be selected by software program.

	Bias Ratio							
Duty	BR=0	BR=1						
1/65	1/9	1/7						
1/49	1/8	1/6						
1/33	1/6	1/5						
1/55	1/8	1/6						

Table 1: Bias Ratios

TEMPERATURE COMPENSATION

The temperature compensation coefficient is -0.11% / $^{\circ}$ C (default) or -0.05% / $^{\circ}$ C.

V_{LCD} GENERATION

 V_{LCD} is supplied by internal charge pump. The source of V_{LCD} is controlled by PC[2:0]. For good product reliability, it is recommended to keep V_{LCD} under 10.0V for all temperature conditions.

When V_{LCD} is generated internally, the voltage level of V_{LCD} is determined by three control registers: BR (Bias Ratio), PM (Potentiometer), and PC[5:3] (V_{LCD} Resistor Ratio) with the following relationship:

 $V_{LCD}=((1+Rb/Ra) \times Vev) \times (1+(T-25)xC_T\%)$

Vev=(1-(63-PM)/162)xV_{REF}

where

 ${\tt Ra}$ and ${\tt Rb}$ are two design constants, whose value depends on the setting of BR register, as illustrated in the table on the next page,

PM is value of electronic volume,

 V_{REG} is on-chip contrast voltage,

T is the ambient temperature in ^OC, and

 C_T is temperature compensation coefficient.

V_{LCD} FINE TUNING

Black-and-white STN LCD is sensitive to even a 1% mismatch between IC driving voltage and the V_{OP} of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust V_{LCD} to match the actual V_{OP} of the LCD.

For the best result, software based approach for V_{LCD} adjustment is the recommended method for V_{LCD} fine-tuning. System designers should always consider the contrast fine tuning requirement before finalizing on the LEM design

LOAD DRIVING STRENGTH

The power supply circuit of UC1701c is designed to handle LCD panels with loading up to ~24nF using 20- Ω /Sq ITO glass with V_{DD2/3} \geq 2.6V. For larger LCD panels, use lower resistance ITO glass packaging.

©1999~2014

65x132 STN Controller-Driver

V_{LCD} QUICK REFERENCE

 V_{LCD} Programming Curve.

PC[5:3]	1+Rb/Ra	VREF	PM	VLCD Range (V)
000b	3.0	2.1	0	3.85
0000	3.0	2.1	63	6.30
001b	3.5	2.1	0	4.49
0010	3.5	2.1	63	7.35
010b	4.0	2.1	0	5.13
0100	4.0	2.1	63	8.40
011b	4.5	2.1	0	5.78
0110	4.5	2.1	63	9.45
100b	5.0	2.1	0	6.42
1000	5.0	2.1	56	10.05
101b	5.5	2.1	0	7.06
1015	5.5	2.1	42	10.05
110b	6.0	2.1	0	7.70
1100	0.0	2.1	30	10.03
111b	6.5	2.1	0	8.34
1110	0.5	2.1	20	10.03

Note: For good product reliability, keep V_{LCD} under **10.0V** over all temperature.

HI-V GENERATOR AND BIAS REFERENCE CIRCUIT

Note

Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

 $C_{\text{V0}}\colon$ Optional. 0.1 $\mu\text{F}/16\text{V}$ Connect the capacitor of C_{V0} value between XV0 and V0.

LCD DISPLAY CONTROLS

CLOCK & TIMING GENERATOR

UC1701c contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

4 different frame rates are provided based on different Mux-Rate for system design flexibility.

DRIVER MODES

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When SEG and COM drivers are in idle mode, they will be connected together to ensure zero DC condition on the LCD.

DRIVER ARRANGEMENTS

The naming conventions are: COMx, where x = 0-63, refers to the row driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows is fixed and it is not affected by SL, MX or MY settings.

DISPLAY CONTROLS

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO.

DRIVER ENABLE (DE)

Driver Enable is controlled by the value of DC[2] via Set Display Enable command. When DC[2] is set to OFF (logic "0"), both COM and SEG drivers will become idle and UC1701c will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become "1", and UC1701c will first exit from Sleep Mode, restore the power (VLCD, VD etc.) and then turn ON COM and SEG drivers.

That is the display is turned ON after setting PC[2:0]=111b and DC[2]=1.

ALL PIXELS ON (APO)

When set, this flag will force all SEG drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

INVERSE (PXV)

When this flag set to ON, SEG drivers will output the inverse of the value it received from the display buffer RAM (bit-wise inversion). This flag has no impact on data stored in RAM.

©1999~2014

65x132 STN Controller-Driver

ITO LAYOUT AND LC SELECTION

Since COM scanning pulses of UC1701c can be as short as 153µS, it is critical to control the RC delay of COM and SEG signal to minimize crosstalk and maintain good mass production consistency.

COM TRACES

Excessive COM scanning pulse RC decay can cause fluctuation of contrast and increase COM direction crosstalk.

Please limit the worst case of COM signals RC delay (RC $_{\text{MAX}})$ as calculated below

$$(R_{ROW}/2.7 + R_{COM}) \times C_{ROW} < 9.23 \mu S$$

where

C_{ROW}: LCD loading capacitance of one row of pixels. It can be calculated by C_{LCD}/Mux-Rate, where C_{LCD} is the LCD panel capacitance.

R_{ROW}: ITO resistance over one row of pixels within the active area

R_{COM}: COM routing resistance from IC to the active area + COM driver output impedance.

In addition, please limit the min-max spread of RC decay to be:

$$|RC_{MAX} - RC_{MIN}| < 2.76 \mu S$$

so that the COM distortions on the top of the screen to the bottom of the screen are uniform.

(Use worst case values for all calculations)

SEG TRACES

Excessive SEG signal RC decay can cause image dependent changes of medium gray shades and sharply increase the crosstalk of SEG direction.

For good image quality, please minimize SEG ITO trace resistance and limit the worst case of SEG signal RC delay as calculated below.

$$(R_{COL}/2.7 + R_{SEG}) \times C_{COL} < 6.30 \mu S$$

where

 C_{COL} : LCD loading capacitance of one pixel column. It can be calculated by C_{LCD} / (# of column), where C_{LCD} is the LCD panel capacitance.

R_{COL}: ITO resistance over one column of pixels within the active area

R_{SEG}: SEG routing resistance from IC to the active area + SEG driver output impedance.

(Use worst case values for all calculations)

SELECTING LIQUID CRYSTAL

The selection of LC material is crucial to achieve the optimum image quality of finished LCM.

When $(V_{90}-V_{10})/V_{10}$ is too large, image contrast will deteriorate, and images will look murky and dull.

When $(V_{90}-V_{10})/V_{10}$ is too small, image contrast will become too strong, and crosstalk will increase.

For the best result, it is recommended the LC material has the following characteristics:

$$(V_{90}-V_{10})/V_{10} = (V_{ON}-V_{OFF})/V_{OFF} \times 0.72 \sim 0.80$$

where V_{90} and V_{10} are the LC characteristics, and V_{ON} and V_{OFF} are the ON and OFF V_{RMS} voltage produced by LCD driver IC at the specific Mux-rate.

Example:

Duty	Bias	V _{ON} /V _{OFF} -1	x0.80	x0.72
1/65	1/9	10.6%	9.6%	7.5%

65x132 STN Controller-Driver

FIGURE 2: COM and SEG Electrode Driving Waveform

THE COMMON OUTPUT STATUS SELECT CIRCUIT

In the UC1701c chips, the COM output scan direction can be selected by the common output status select command. (See the table below for details.) Consequently, the constraints in IC layout at the time of LCD module assembly can be minimized.

Duty	Direction	COM[0:15]	COM [16:23]	COM [24:26]	COM [27:36]	COM [37:39]	COM [40:47]	COM[48:63]	CIC	
1/65	0				COM [0:63]				CIC	
1700	1				COM [63:0]				010	
1/49	0	COM	[0:23]		NC		COM [24:47]	CIC	
1, 10	1	COM[[47:24]		NC		СОМ	[23:0]	2.0	
1/33	0	COM[0:15]			NC			COM[16:31]	CIC	
1/55	1	COM[31:16]			NC			COM[15:0]	OIO	
1/55	0		COM [0:26]		NC		COM [27:53]	CIC		
1/55	1		COM [53:27]		NC		COM [26:0]		0.0	

Table 2: Duty Layout

HOST INTERFACE

As summarized in the table below, UC1701c supports 2 8-bit parallel bus protocols and 2 serial bus protocols. Designers can choose either the 8-bit parallel bus to achieve high data transfer rate, or use serial bus to create compact LCD modules and minimize connector pins.

			Bus	Type		
		8080	6800	S8 (4-wire)	I ² C (2-wire)	
Wid	lth	8-bit	8-bit	Se	rial	
Acce	ess	Read	/ Write	Write	e only	
	BM[1:0]	10	11	C)x	
	TST5		Open	1		
	CS0		Chip select			
Control &	CD	Control/Data	0	-	_	
Data Pins	WR0	WR	R/W	_	A3	
	WR1	RD	EN	_	A2	
	DB[5:0]	Da	ata	-	-	
	DB[7:6]	Da	ata	DB[6]=SCK,	, DB[7]=SDA	

^{*} Connect unused control pins and data bus pins to VDD or VSS

	CS Disable Bus Interface	CS Init. Bus State	RESET Init. Bus State
8-bit	✓	-	✓
S8	✓	✓	✓
I ² C	-	-	✓

- CS disable bus interface CS can be used to disable Bus Interface Write / Read Access.
- RESET can be pin reset / soft reset.

Table 3: Host interfaces Summary

PARALLEL INTERFACE

The timing relationship between UC1701c internal control signal RD, WR and their associated bus actions are shown in the figure below.

The Display RAM read interface is implemented as a twostage pipeline. This architecture requires that every time memory address is modified, either in parallel mode or serial mode, by either Set CA or Set PA command, a dummy read cycle needs to be performed before the actual data can propagate through the pipeline and be read from data port D[7:0].

There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal RAM on the rising edges of write pulses.

Figure 3: Parallel Interface & Related Internal Signals

SERIAL INTERFACE

UC1701c supports 2 serial modes: 4-wire SPI mode (S8). Bus interface mode is determined by the wiring of the BM[1:0] and TST5. See table in last page for more detail.

S8 (4-WIRE) INTERFACE

Only write operations are supported in 4-wire serial mode. Pins WR[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse.

Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.

Figure 4: 4-wire Serial Interface (S8)

I²C (2-wire) Interface

When BM[1:0] is set to "LH" and TST5 is set to "H", UC1701c is configured as an I²C bus signaling protocol compliant slave device. Please refer to I²C standard for details of the bus signaling protocol, and AC Characteristic section for timing parameters of UltraChip implementation.

In this mode, pins WR0~WR1 (WR[0] becomes A[3], WR[1] becomes A[2]) are used to configure UC1701c' device address. Proper wiring to V_{DD} or V_{SS} is required for the IC to operate properly for ^{12}C mode.

Each UC1701c I^2C interface sequence starts with a "S" (Start) from the bus master, followed by a sequence header, containing a device address, the mode of transfer (CD, 0:Control, 1:Data), and the direction of the transfer (RW, 0:Write, 1:Read).

Since both WR and CD are expressed explicitly in the header byte, the control pins WR[1:0] and CD are not used in I^2C mode and should be connected to $V_{\rm SS}$.

The direction (read or write) and content type (command or data) of the data bytes following each header byte are fixed for the sequence. To change the direction $(R \Leftrightarrow W)$ or the content type $(C \Leftrightarrow D)$, start a new sequence with a START (S) flag, followed by a new header.

After receiving the header, the UC1701c will send out an "A" (Acknowledge signal, pull to "L"). Then, depends on the setting of the header, the transmitting device (either the bus master or UC1701c) will start placing data bits on SDA, MSB to LSB, and the sequence will repeat until a STOP signal (P, in WRITE mode), or an N (Not Acknowledged, in READ mode) is sent by the bus master.

When using I^2C serial mode, if command System Reset is to be written, the writing sequence must be finished (STOP) before succeeding data or commands start. The flow chart on the right shows a writing sequence with a "System Reset" command.

Note that, for data read (CD=1), the first byte of data transmitted will be dummy.

HOST INTERFACE REFERENCE CIRCUIT

FIGURE 5: 8080/8bit parallel mode reference circuit

FIGURE 6: 6800/8bit parallel mode reference circuit

FIGURE 7: Serial-8 serial mode reference circuit

FIGURE 8: I²C serial mode reference circuit

Note

• The ID pins are for production control. The connection will affect the content of D[7] of the 1-st byte of the Get Status command. Connect to V_{DD} for "H" or V_{SS} for "L".

- ullet RST pin is optional. When the RST pin is not used, connect it to V_{DD} .
- When using I²C serial mode, WR1/0 are user configurable and affect A[3:2] of device address.
- R1, R2: $2k \sim 10k \Omega$, use lower resistor for bus speed up to 3.6MHz, use higher resistor for lower power.
- When using Read function:

(8080) Set WR1=0		
(6800) Set WR1=1	→ data output will be enabled.	1
(Serial) Set SCK=0		

(8080) Set WR1=1	
(6800) Set WR1=0	→ data output will be disabled.
(Serial) Set SCK=1	

• It is REQUIRED to set MPU's data port to 1 before Data Read or Status Read actions.

DISPLAY DATA RAM (DDRAM)

DATA ORGANIZATION

The input display data is stored to a dual port static DDRAM (DDRAM, for Display Data RAM) organized as 65x132.

After setting CA and PA, the subsequent data write cycle will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page between the relation of COM, SEG, SRAM, and various memory control registers.

DISPLAY DATA RAM ACCESS

The Display RAM is a special purpose dual port RAM which allows asynchronous access to both its column and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Page Address (PA) and Column Address (CA) by issuing Set Row Address and Set Column Address commands.

MX IMPLEMENTATION

Column Mirroring (MX) is implemented by selecting either (CA) or (131–CA) as the RAM column address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

Row Mapping

COM electrode scanning orders are not affected by Start Line (SL), or Mirror Y (MY, LC[1]). Visually, register SL having a

non-zero value is equivalent to scrolling the LCD display up or down (depends on MY) by *SL* rows.

RAM ADDRESS GENERATION

The mapping of the data stored in the display SRAM and the scanning electrodes can be obtained by combining the fixed Rm scanning sequence and the following RAM address generation formula.

During the display operation, the RAM line address generation can be mathematically represented as following:

For the 1st line period of each field Line = SL
Otherwise
Line = Mod (Line+1, 64)

Where Mod is the modular operator, and *Line* is the bit slice line address of RAM to be outputted to column drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above *Line* generation formula produce the "loop around" effect as it effectively resets *Line* to 0 when *Line+1* reaches 64.

MY IMPLEMENTATION

Row Mirroring (MY) is implemented by reversing the mapping order between row electrodes and RAM, i.e. the mathematical address generation formula becomes:

For the 1st line period of each field *Line* = Mod (*SL* + *MR* -1, 64) Otherwise *Line* = Mod (*Line-1*, 64)

Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.

©1999~2014

65x132 STN Controller-Driver

		Line	1																		T	Panel		/= 0			/=1	
PA[3:0]	0	AddeCss	1	0	1		1					RAM				_			-		ŀ	Location	SL=0	SL=16	SL=0	SL=0	SL=25	
	D0 D1	00H 01H	1	0	1	\vdash					H			H	Н		Н		-	\dashv	ŀ	COM1 COM2	C1 C2	C49 C50	C64 C63	C48 C47	C25 C24	C9 C8
	D2	02H	1	0	0																ŀ	COM3	C3	C51	C62	C46	C23	C7
0000	D3	03H	1	0	0							Page 0									į	COM4	C4	C52	C61	C45	C22	C6
	D4 D5	04H	1	1	1	-	<u> </u>	<u> </u>				192 1					Н		4		4	COM5 COM6	C5 C6	C53	C60	C44 C43	C21 C20	C5
	D6	05H 06H	1	1	0												H				J	COM7	C7	C54 C55	C59 C58	C43	C20	C4 C3
	D7	07H	1	1	0													•				COM8	C8	C56	C57	C41	C18	C2
	D0	08H	1																		L	COM9	C9	C57	C56	C40	C17	C1
	D1 D2	09H 0AH	-	┢		┢		\vdash									Š				ŀ	COM10 COM11	C10 C11	C58 C59	C55 C54	C39 C38	C16 C15	
0004	D3	0BH	1	H								Domo 1				4			•		F	COM12	C12	C60	C53	C37	C14	
0001	D4	0CH	1									Page 1						_				COM13	C13	C61	C52	C36	C13	
	D5	0DH	4	_		₩							_	\Box	\Box	7	_			_	ŀ	COM14	C14	C62	C51	C35	C12	
	D6 D7	0EH 0FH	1	┢		<u> </u>											Н		-	-	ŀ	COM15 COM16	C15 C16	C63 C64	C50 C49	C34 C33	C11 C10	
	D0	10H	1	Н		t															ŀ	COM17	C17	C1	C48	C32	C9	
	D1	11H	1																		L	COM18	C18	C2	C47	C31	C8	
	D2	12H	4	_		-														_	Ļ	COM19	C19	C3	C46	C30	C7	
0010	D3 D4	13H 14H	1	\vdash	\vdash	\vdash		\vdash	Н	Н		Page 2	-	Н	Н		Н	\dashv	-	\dashv	ŀ	COM20 COM21	C20 C21	C4 C5	C45 C44	C29 C28	C6 C5	
	D5	15H	1											Н			Н				ŀ	COM22	C22	C6	C43	C27	C4	
	D6	16H	1									111									Į	COM23	C23	C7	C42	C26	C3	
	D7	17H	1	<u> </u>	—	\vdash		<u> </u>	Щ			* *		Щ	Н	-	Н		_	Щ	ŀ	COM24	C24	C8	C41	C25	C2	
	D0 D1	18H 19H	1	⊢	\vdash	\vdash	\vdash	\vdash						H	\vdash		Н	-		\dashv	ŀ	COM25 COM26	C 25	C9 C10	C40 C39	C24 C23	C1 C64	 C48*
	D2	1AH	1	t		t			1)	*		H	Н		H				ŀ	COM27	C27	C10	C38	C22	C63	C46
0011	D3	1BH	1)		Page 3									I	COM28	C28	C12	C37	C21	C62	C46
00	D4	1CH	4	_				1/	٥,			, age e								_	ŀ	COM29	C 29	C13	C36	C20	C61	C45
	D5 D6	1DH 1EH	1	H		,,,											Н			_	ŀ	COM30 COM31	C30 C31	C14 C15	C35 C34	C19 C18	C60 C59	C44 C43
	D7	1FH	1	H	K												Н			_	ŀ	COM31	C32	C16	C33	C17	C58	C42
	D0	20H	1																		Ĺ	COM33	C33	C17	C32	C16	C57	C41
	D1	21H 📥																			L	COM34	C34	C18	C31	C15	C56	C40
	D2 D3	22H 23H		⊩	J																ŀ	COM35 COM36	C35	C19 C20	C30 C29	C14 C13	C55 C54	C39 C38
0100	D3	24H	1	=		H						Page 4					Н			-	ŀ	COM37	C37	C21	C28	C12	C53	C37
	D5	25H	1																		l	COM38	C38	C22	C27	C11	C52	C36
	D6	26H																			L	COM39	C39	C23	C26	C10	C51	C35
	D7 D0	27H 28H	-	_		-									Н		Н			_	ŀ	COM40 COM41	C40 C41	C24 C25	C25 C24	C9 C8	C50 C49	C34 C33
	D1	29H	1	Н													Н			_	ŀ	COM41	C42	C26	C23	C7	C48	C32
	D2	2AH	1																		Ĺ	COM43	C43	C27	C22	C6	C47	C31
0101	D3	2BH										Page 5									L	COM44	C 44	C28	C21	C5	C46	C30
	D4	2CH	-	┡		-	-					· ·					Н			_	ŀ	COM45	C 45	C29	C20	C4	C45	C29
	D5 D6	2DH 2EH	1	┢		H											H	-		-	ŀ	COM46 COM47	C 46 C 47	C30 C31	C19 C18	C3 C2	C44 C43	C28 C27
	D7	2FH	1			乚															l	COM48	C48	C32	C17	C1	C42	C26
	D0	30H	1	匚													П				Į	COM49	C49	C33	C16		C41	C25
	D1 D2	31H 32H	1	\vdash	\vdash	\vdash	-	-		Н	\vdash			\vdash	Н	<u> </u>	Н	_		\dashv	ŀ	COM50 COM51	C50 C51	C34 C35	C15 C14		C40 C39	C24 C23
	D2	32H 33H	1	Н		H	\vdash	\vdash	H	Н	Н	.		Н	\vdash		Н	\dashv	\dashv	\dashv	ŀ	COM51	C51	C36	C14		C38	C23
0110	D4	34H	1									Page 6									l	COM53	C 53	C37	C12		C37	C21
	D5	35H	1	Е																		COM54	C54	C38	C11		C36	C20
	D6	36H	1	⊢	\vdash	Ͱ	\vdash		Н	Н	Н		<u> </u>	H	Н	<u> </u>	Н	_		Щ	ŀ	COM55	C 55	C39	C10		C35	C19
	D7 D0	37H 38H	1	H	H	┢	-	-	H	Н	Н				H	\vdash	H	-		\dashv	ŀ	COM56 COM57	C56 C57	C40 C41	C9 C8		C34 C33	C18 C17
	D1	39H	1	E													П	╛			ŀ	COM58	C58	C42	C7		C32	C16
	D2	3AH	1																			COM59	C 59	C43	C6		C31	C15
0111	D3	3BH	-	\vdash			<u> </u>	<u> </u>	$oxed{\square}$	\square	Ш	Page 7	<u> </u>	\square	\square	_	Ы			Щ	L	COM60	C 60	C44	C5		C30	C14
	D4 D5	3CH 3DH	1	⊢	\vdash	┢	\vdash	 	H	Н	Н	-	<u> </u>		\vdash	-	Н	-	_	\dashv	ŀ	COM61 COM62	C61	C45 C46	C4 C3		C29 C28	C13 C12
	D6	3EH	1	Н	H	t	\vdash	H	H	H	Н			H	H		Н	\dashv	\dashv	\dashv	ŀ	COM63	C 63	C47	C2		C27	C12
	D7	3FH	1																		Į	COM64	C 64	C48	C1		C26	C10
1000	D0	40H	1	L	L		L	L	Ш			Page 8									L	CIC	CIC	CIC	CIC	CIC	CIC	CIC
					1	ī	1	ı					1			ω	<u>ග</u>	0	_	0					65	49 MI	65 UX	49
			MX=0	SEG1	SEG2	SEG3	SEG4	SEG5	SE G6	SEG7	SEG8					SEG128	SEG129	SEG130	SEG131	SEG132						1410	- · ·	
			Σ	없	S	SE	S	S	ਲ	ß	ß		L			SE	SE	SE	Ж	Ж								
			7.	32	3	30	29	28	127	126	125					35			32	7.								
			MX=1	SEG132	SEG131	SEG130	SEG129	SEG128	SEG127	SEG126	SEG125					SEG5	SEG4	SEG3	SEG2	SEG1								
				Ø	S	S	S	S	Ø	Ø	Ø			i .		Ľ	L	•										

Example for memory mapping: let MX = 0, MY = 0, SL = 0, according to the data shown in the above table:

Page 0 SEG 1 (D7-D0): 11100000bPage 0 SEG 2 (D7-D0): 00110011b

RESET & POWER MANAGEMENT

TYPES OF RESET

UC1701c has 2 different types of reset: Pin Reset (hardware reset) and System Reset (Software reset). Pin Reset is activated by connecting the RST pin to ground; while System

Reset is performed by software commands. After each powerup, a Pin Reset, which is in 3mS, is required. In the following discussions, reset means Pin Reset.

The differences between pin reset (hardware reset) and system reset (software reset):

Procedure	Pin Reset (hardware reset)	System Reset (software reset)
Display OFF: DC[2]=0, all SEGs/COMs output at V _{SS}	V	X
Normal Display: DC[0]=0, DC[1]=0	V	X
SEG Normal Direction: MX=0	V	X
Clear Serial Counter and Shift Register (if using Serial Interface)	V	X
Bias Selection: BR=0	V	X
Booster Level BL[1:0]=0	V	X
Exit Power Saving Mode	V	X
Power Control OFF: PC[2:0]=000b	V	X
Exit Cursor Update mode	V	V
Scroll Line SL[5:0]=0	V	V
Column Address CA[7:0]=0	V	V
Page Address PA[3:0]=0	V	V
COM Normal Direction: MY=0	V	V
V _{LCD} Regulation Ratio PC[5:3]=100b	V	V
PM[5:0]=10 0000b	V	V
Exit Test Mode	V	V

RESET STATUS

When UC1701c enters RESET sequence:

- Operation mode will be "Reset"
- All control registers are reset to default values. Refer to Control Registers for details of their default values.

OPERATION MODES

UC1701c has three operating modes (OM): Reset, Sleep, and Normal.

For each mode, the related statuses are as below:

Mode	Reset	Sleep	Normal
ОМ	00	10	11
Host Interface	Active	Active	Active
Clock	OFF	OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 4: Operating Modes

CHANGING OPERATION MODE

There are 2 commands that will initiate OM transitions: Set Display Enable, and System Reset.

When DC[2] is modified by *Set Display Enable*, OM will be updated automatically. There is no other action required to enter sleep mode.

OM changes are synchronized with the edges of UC1701c internal clock. To ensure consistent system states, wait at least $10\mu S$ after Set Display Enable or System Reset command.

Action	Mode	OM
RST_ pin pulled "L"	Reset	00
Set Driver Enable to "0"	Sleep	10
Set Driver Enable to "1"	Normal	11

Table 5: OM changes

When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that, Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1701c consumes very little energy in Sleep mode (typically under 5μA).

EXITING SLEEP MODE

UC1701c contains internal logic to check whether V_{LCD} and V_{BIAS} are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1701c internal voltage sources are restored to their proper values.

POWER-UP SEQUENCE

Figure 9: REFERENCE POWER-UP SEQUENCE

There's no delay needed while turning ON V_{DD} and V_{DD2/3}, and either one can be turned on first:

Figure 10: Power Off-On Sequence

ENTER/EXIT SLEEP MODE SEQUENCE

UC1701c enters Sleep mode from Display mode by issuing Set Display Disable command and setting all-pixel-ON.

To exit Sleep mode, set All-pixel-OFF.

FIGURE 11: Reference Enter/Exit Sleep Mode Sequence

Power-Down Sequence

To prevent the charge stored in capacitor Cv0 causing abnormal residue horizontal line on display when V_{DD} is switched off, use Reset mode to enable the built-in charge draining circuit to discharge these external capacitors.

FIGURE 12: Reference Power-Down Sequence

SAMPLE COMMAND SEQUENCES FOR POWER MANAGEMENT

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

C/D The type of the interface cycle. It can be either Command (0) or Data (1)

W/R The direction of data flow of the cycle. It can be either Write (0) or Read (1)

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default <u>A</u>dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

Power-Up

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	1	_	ı	-	-	-	_	1	4	1	Turn ON V _{DD} and V _{DD2/3}	Wait until V _{DD} , V _{DD2/3} are stable
R	_	-	-	1	1	1	_	-	1)	Wait ≤ 3 mS	
R	1	_	ı	-	-	-	1		1		Set RST pin Low	Wait 1 uS after RST is Low
R	ı	_	ı	1	-	-	(J	ا	_	Set RST pin High	Wait 5 mS after RST is High
0	0	0	1	1	1	1	1	0	1	0	Set Adv. Program Control 0	
	Ü	U	1	0	0	1	0	0	1	1	Get Adv. 1 Togram Control o	Set Wrap Around Enable
R	0	0	1	0	1	0	Ö	0	0	#	Set SEG Direction	Set up LCD format specific
R	0	0	1	1	0	0	#	_	-	_	Set COM Direction	parameters, MX, MY, etc.
R	0	0	0	0	1	0	0	#	#	#	Set V _{LCD} Resistor Ratio	
R	0	0	1	0	1	0	0	0	1	#	Set LCD Bias Ratio	LCD specific operating voltage
R	0	0	1	0	0	0	0	0	0	1	Set Electronic Volume	setting
- 1	0	0	0	0	#	#	#	#	#	#	Cet Electronic Volume	
	1	0	#	#	#	#	#	#	#	#		
0											Write display RAM	Set up display image
												Cot up alopia, illugo
	1	0	#	#	#	#	#	#	#	#		
R	0	0	0	0	1	0	1	1	1	1	Set Power Control	
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

Power-Down

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	1	1	0	0	0	1	0	System Reset	
R	_	_	_	_	-	_	-	_	-	_	Draining capacitor	Wait ~5mS before V _{DD} OFF

DISPLAY-OFF

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	0	1	0	1	1	1	0	Set Display Disable	
С	1	0	# #	#	#	#	#	#	#	#		Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.)
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

ABSOLUTE MAXIMUM RATINGS

In accordance with IEC134 - notes 1, 2 and 3.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	Logic Supply voltage	-0.3	+4.0	V
V_{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V_{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
$V_{DD2/3}$ - V_{DD}	Voltage difference between V _{DD} and V _{DD2/3}		1.2	V
V_{LCD}	LCD Generated voltage	-0.3	+11.0	V
V _{IN} / V _{OUT}	Any input/output	-0.4	$V_{DD} + 0.3$	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

Note:

- 1. All voltages are based on $V_{SS} = 0V$
- 2. Stress values listed above may cause permanent damages to the device.

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply for digital circuit		2.6	2.7~3.3	3.6	V
$V_{DD2/3}$	Supply for bias & pump		2.6	2.7~3.3	3.6	V
V_{LCD}	Charge pump output	$V_{DD2/3} \ge 2.6V, 25^{\circ}C$	3.85		10.0	V
V _D	LCD data voltage	$V_{DD2/3} \ge 2.6V, 25^{\circ}C$	0.80		1.32	V
V _{IL}	Input logic LOW				0.2V _{DD}	V
V _{IH}	Input logic HIGH		0.8V _{DD}			V
V _{OL}	Output logic LOW	I _{OH} = -0.5mA			0.2V _{DD}	V
V _{OH}	Output logic HIGH	I _{OL} = 0.5mA	0.8V _{DD}			V
I _{IL}	Input leakage current	V _{IN} = V _{DD} or V _{SS}	-50	1.5	50	uA
I _{SB}	Standby current	$V_{DD} = V_{DD2/3} = 3.3V,$ Temp = 85°C			50	uA
C _{IN}	Input capacitance	•		5	10	PF
Соит	Output capacitance			5	10	PF
R _{0(SEG)}	SEG output impedance	V _{LCD} = 10V		2000	3000	Ω
R _{0(COM)}	COM output impedance	V _{LCD} = 10V		2000	3000	Ω
		Duty=1/65		77		
	Average Frame Date	Duty=1/49	450/	153	.200/	Hz
F_{FR}	Average Frame Rate	Duty=1/33	-15%	76	+20%	
		Duty=1/55	1	136		

POWER CONSUMPTION

 $V_{DD} = 2.7 \text{ V},$ $V_{LCD} = 8.49 \text{ V}$ Mux Rate = 65,

 $\begin{array}{ll} \mbox{Bias Ratio} = 0\mbox{b}, & \mbox{PM} = 32, \\ \mbox{Frame Rate} = 77\mbox{Hz}, & \mbox{C}_{\mbox{\tiny V0}} = 0.1\mbox{ uF}, \\ \end{array}$

Bus mode = 6800, All outputs are open circuit.

Temperature = 25°C

Display Pattern	Conditions	Typical	Maximum	Unit
All-OFF	Bus = idle	203	325	μΑ
2-pixel checker	Bus = idle	205	328	μΑ
1-pixel checker	Bus = idle	218	349	μΑ
-	Bus = idle (standby current)	-	5	μΑ

65x132 STN Controller-Driver

AC CHARACTERISTICS

FIGURE 13: Parallel Bus Timing Characteristics (for 8080 MCU)

Symbol	Signal	Description	Condition	Min.	Max.	Unit		
$(2.6V \le V_{DD} < 3.6V)$	Ta= -30 to +85°0	C)	(Read / Write)					
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 10	-	nS		
t _{CY80} t _{PWR80} , t _{PWW80} t _{HPW80}	WR0, WR1	Cycle time Low Pulse width High pulse width		250 / 250 140 / 140 80 / 80	-	nS		
t _{DS80} t _{DH80}	D7~D0 (Write)	Data setup time Data hold time		/ 40 / 20	-	nS		
t _{ACC80} t _{OD80}	D7~D0 (Read)	Read access time Output disable time	CL= 16pF	- / 5 /	70 50	nS		

Note: tr (rising time), tf (falling time): ≤ 15nS

FIGURE 14: Parallel Bus Timing Characteristics (for 6800 MCU)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
$(2.6V \le V_{DD} < 3.6V,$	$Ta = -30 \text{ to } +85^{\circ}$	C)		(Read / Write)		
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0 10	-	nS
t _{CY68} t _{PWR68} , t _{PWW68} t _{LPW68}	WR1	System cycle time High Pulse width Low pulse width		250 / 250 140 / 140 80 / 80	-	nS
t _{DS68} t _{DH68}	D7~D0 (Write)	Data setup time Data hold time		/ 40 / 10	-	nS
t _{ACC68} t _{OD68}	D7~D0 (Read)	Read access time Output disable time	CL= 16pF	- / 5 /	70 50	nS

Note: tr (rising time), tf (falling time) : ≤ 15nS

FIGURE 15: Serial Bus Timing Characteristics (for S8)

Symbol	Signal	Description	Condition	Min.	Max.	Unit	
$(2.6V \le V_{DD} < 3.6V, Ta = -30 \text{ to } +85^{\circ}C)$							
t _{ASS8} t _{AHS8}	CD	Address setup time Address hold time		20 10	-	nS	
t _{CSSAS8} t _{CSHS8}	CS0	Chip select setup time Chip select hold time		20 40	-	nS	
tcys8 t _{LPWS8} t _{HPWS8}	SCK	Cycle time Low pulse width High pulse width		80 25 25	-	nS	
t _{DSS8} t _{DHS8}	SDA (Write)	Data setup time Data hold time		20 10	-	nS	

Note: tr (rising time), tf (falling time) : ≤ 15nS

FIGURE 16: Serial bus timing characteristics (for I²C)

Symbol	Signal	Description	Condition	Min.	Max.	Unit				
$(2.6V \leqslant V_{DD} \leqslant 3.6V,$	$(2.6V \le V_{DD} \le 3.6V, Ta = -30 \text{ to } +85^{\circ}C)$									
t _{CYI2C}		SCK cycle time		305						
t _{HPWI2C}	SCK	High pulse width		110	_	nS				
t _{LPWI2C}		Low pulse width		165						
tsstai2C		Setup time – START		28						
t _{HSTAI2C}	COK	Hold time – START		55						
t _{SDAI2C}	SCK SDA	Setup time – Data		40	-	nS				
t _{HDAI2C}		Hold time – Data		11						
t _{SSTOI2C}		Setup time – STOP		28						
t _{BUF}	SDA	Bus Free time between STOP and START		165	_	nS				

Note: tr (Rising time), tf (falling time): ≤ 15nS

FIGURE 17: Reset Characteristics

 $(2.6V \le V_{DD} < 3.6V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Unit
t _{RW}	RST	Reset low pulse width		1	_	μS
t _R	RST, Internal Status	Reset to Internal Status pulse delay		-	1	mS

Note: For each mode, the signal's rising time (tr) and falling time (tf) are stipulated to be equal to or less than 15nS each.

PHYSICAL DIMENSIONS

Die / Bump Information:

Die Size: (5040 $\mu M~\pm~40~\mu M)$ x (703 $\mu M~\pm~40~\mu M)$

Die Thickness: $300 \mu M \pm 20 \mu M$

Dmax - $\text{Dmin} \leqslant 2~\mu\text{M}$

Bump Height: $10 \mu M \pm 3 \mu M$ (Part Number: UC1701cGAB)

15 μ M \pm 3 μ M (Part Number: UC1701cGBB)

 $H_{MAX}-H_{MIN}\leqslant 2~\mu M$

Hardness: 90Hv ± 25Hv

Bump Size: $(15\mu M \pm 2 \mu M) x (100\mu M \pm 2 \mu M)$

Bump Pitch: 27 µM

Bump Gap: $12 \mu M \pm 3 \mu M$

Bump Area: 1500uM²
rdinate origin: Chip center

Coordinate origin: Chip center
Pad reference: Pad center

65x132 STN Controller-Driver

ALIGNMENT MARK INFORMATION

SHAPE OF THE ALIGNMENT MARK:

Note:

Alignment mark is on Metal3 under Passivation.

The "+" mark is symmetric both horizontally and vertically.

COORDINATES:

	D-Left	Mark	D-Righ	nt Mark
Point	X	Y	Х	Υ
1	-1984.5	-149.5	1969.5	-149.5
2	-1969.5	-149.5	1984.5	-149.5
3	-1969.5	-159.5	1984.5	-159.5
4	-1959.5	-159.5	1994.5	-159.5
5	-1959.5	-174.5	1994.5	-174.5
6	-1969.5	-174.5	1984.5	-174.5
7	-1969.5	-184.5	1984.5	-184.5
8	-1984.5	-184.5	1969.5	-184.5
9	-1984.5	-174.5	1969.5	-174.5
10	-1994.5	-174.5	1959.5	-174.5
11	-1994.5	-159.5	1959.5	-159.5
12	-1984.5	-159.5	1969.5	-159.5

65x132 STN Controller-Driver

PAD COORDINATES

#	Pad	Х	Υ	W	Н
1	COM<53>	-2363	-247	15	100
2	COM<54>	-2336	-247	15	100
3	COM<55>	-2309	-247	15	100
4	COM<56>	-2282	-247	15	100
5	COM<57>	-2255	-247	15	100
6	COM<58>	-2228	-247	15	100
7	COM<59>	-2201	-247	15	100
8	COM<60>	-2174	-247	15	100
9	COM<61>	-2147	-247	15	100
10	COM<62>	-2120	-247	15	100
11	COM<63>	-2093	-247	15	100
12	CIC	-2066	-247	15	100
13	TST4	-1970	-274.5	50	45
14	CS0	-1905	-274.5	50	45
15	RST	-1840	-274.5	50	45
16	CD	-1775	-274.5	50	45
17	WR0	-1710	-274.5	50	45
18	WR1	-1645	-274.5	50	45
19	VDDX	-1580	-274.5	50	45
20	D0	-1515	-274.5	50	45
21	D1	-1450	-274.5	50	45
22	D2	-1385	-274.5	50	45
23	D3	-1320	-274.5	50	45
24	D4	-1255	-274.5	50	45
25	D5	-1190	-274.5	50	45
26	D6	-1125	-274.5	50	45
27	D7	-1060	-274.5	50	45
28	VDD	-995	-274.5	50	45
29	VDD	-930	-274.5	50	45
30	VDD2	-865	-274.5	50	45
31	VDD2	-800	-274.5	50	45
32	VDD2	-735	-274.5	50	45
33	VDD3	-670	-274.5	50	45
34	VSS	-605	-274.5	50	45
35	VSS	-540	-274.5	50	45
36	VSS2	-475	-274.5	50	45
37	VSS2	-410	-274.5	50	45
38	VSS2	-345	-274.5	50	45
39	VSS2	-280	-274.5	50	45
40	V0in	-215	-274.5	50	45
41	V0in	-150	-274.5	50	45
42	V0s	-85	-274.5	50	45
43	V0out	-20	-274.5	50	45
44	V0out	45	-274.5	50	45
45	XV0out	110	-274.5	50	45
46 47	XV0out	175	-274.5	50	45
47	XV0s XV0in	240 305	-274.5 -274.5	50 50	45 45
49	XV0in XV0in				
50	VMO	370 435	-274.5 -274.5	50 50	45 45
51	VMO	500	-274.5 -274.5	50	45
52	VGin	565	-274.5 -274.5	50	45
53	VGin	630	-274.5	50	45
54					45
55	VGs VGout	695	-274.5 -274.5	50	45
56	VGout DUMMY	760	-274.5 -274.5	50 45	45
		820 875	-274.5 -274.5		_
57 58	DUMMY	875	-274.5 -274.5	45 45	45 45
58	DUMMY	930	-214.5	4 0	45

#	Pad	X	Υ	W	Н
59	DUMMY	985	-274.5	45	45
60	DUMMY	1040	-274.5	45	45
61	DUMMY	1095	-274.5	45	45
62	DUMMY	1150	-274.5	45	45
63	DUMMY	1205	-274.5	45	45
64	TST5	1260	-274.5	45	45
65	TST2	1320	-274.5	50	45
66	VSSX	1385	-274.5	50	45
67	VDDX	1450	-274.5	50	45
68	BM0	1515	-274.5	50	45
69	BM1	1580	-274.5	50	45
70	DT1	1645	-274.5	50	45
71	VSSX	1710	-274.5	50	45
72	DT2	1775	-274.5	50	45
73	VDD	1840	-274.5	50	45
74	VDD2	1905	-274.5	50	45
75	VDD3	1970	-274.5	50	45
76	COM<31>	2066	-247	15	100
77	COM<30>	2093	-247	15	100
78	COM<29>	2120	-247	15	100
79	COM<28>	2147	-247	15	100
80	COM<27>	2174	-247	15	100
81	COM<26>	2201	-247	15	100
82	COM<25>	2228	-247	15	100
83	COM<24>	2255	-247	15	100
84	COM<23>	2282	-247	15	100
85	COM-22>	2309	-247	15	100
86	COM<21>	2336	-247 -247	15	100
87 88	COM<20> COM<19>	2363 2363	247	15 15	100 100
89	COM<19>	2336	247	15	100
90	COM<17>	2309	247	15	100
91	COM<17>	2282	247	15	100
92	COM<15>	2255	247	15	100
93	COM<13>	2228	247	15	100
94	COM<13>	2201	247	15	100
95	COM<12>	2174	247	15	100
96	COM<11>	2147	247	15	100
97	COM<10>	2120	247	15	100
98	COM<9>	2093	247	15	100
99	COM<8>	2066	247	15	100
100	COM<7>	2039	247	15	100
101	COM<6>	2012	247	15	100
102	COM<5>	1985	247	15	100
103	COM<4>	1958	247	15	100
104	COM<3>	1931	247	15	100
105	COM<2>	1904	247	15	100
106	COM<1>	1877	247	15	100
107	COM<0>	1850	247	15	100
108	CIC	1823	247	15	100
109	SEG<0>	1768.5	247	15	100
110	SEG<1>	1741.5	247	15	100
111	SEG<2>	1714.5	247	15	100
112	SEG<3>	1687.5	247	15	100
113	SEG<4>	1660.5	247	15	100
114	SEG<5>	1633.5	247	15	100
115	SEG<6>	1606.5	247	15	100
116	SEG<7>	1579.5	247	15	100

65x132 STN Controller-Driver

#	Pad	Х	Υ	W	Н
117	SEG<8>	1552.5	247	15	100
118	SEG<9>	1525.5	247	15	100
119	SEG<10>	1498.5	247	15	100
120	SEG<11>	1471.5	247	15	100
121	SEG<12>	1444.5	247	15	100
122	SEG<13>	1417.5	247	15	100
123	SEG<14>	1390.5	247	15	100
124	SEG<15>	1363.5	247	15	100
125	SEG<16>	1336.5	247	15	100
126	SEG<17>	1309.5	247	15	100
127	SEG<18>	1282.5	247	15	100
128	SEG<19>	1255.5	247	15	100
129	SEG<20>	1228.5	247	15	100
130	SEG<21>	1201.5	247	15	100
131	SEG<22>	1174.5	247	15	100
132	SEG<23>	1147.5	247	15	100
133	SEG<24>	1120.5	247	15	100
134	SEG<25>	1093.5	247	15	100
135	SEG<26>	1066.5	247	15	100
136	SEG<27>	1039.5	247	15	100
137	SEG<28>	1012.5	247	15	100
138	SEG<29>	985.5	247	15	100
139	SEG<30>	958.5	247	15	100
140	SEG<31>	931.5	247	15	100
141	SEG<32>	904.5	247	15	100
142	SEG<33>	877.5	247	15	100
143	SEG<34>	850.5	247	15	100
144	SEG<35>	823.5	247	15	100
145	SEG<36>	796.5	247	15	100
146	SEG<37>	769.5	247	15	100
147	SEG<38>	742.5	247	15	100
148	SEG<39>	715.5	247	15	100
149	SEG<40>	688.5	247	15	100
150	SEG<41>	661.5	247	15	100
151	SEG<42>	634.5	247	15	100
152	SEG<43>	607.5	247	15	100
153	SEG<44>	580.5	247	15	100
154	SEG<45>	553.5	247	15	100
155	SEG<46>	526.5	247	15	100
156	SEG<47>	499.5	247	15	100
157	SEG<48>	472.5	247	15	100
158	SEG<49>	445.5	247	15	100
159	SEG<50>	418.5	247	15	100
160	SEG<51>	391.5	247	15	100
161	SEG<52>	364.5	247	15	100
162	SEG<53>	337.5	247	15	100
163	SEG<54>	310.5	247	15	100
164	SEG<55>	283.5	247	15	100
165	SEG<56>	256.5	247	15	100
166	SEG<57>	229.5	247	15	100
167	SEG<58>	202.5	247	15	100
168	SEG<59>	175.5	247	15	100
169	SEG<60>	148.5	247	15	100
170	SEG<61>	121.5	247	15	100
171	SEG<62>	94.5	247	15	100
172	SEG<63>	67.5	247	15	100
173	SEG<64>	40.5	247	15	100
174	SEG<65>	13.5	247	15 15	100
175	SEG<66>	-13.5	247		100
176	SEG<67>	-40.5	247	15	100

#	Pad	X	Υ	W	Н
177	SEG<68>	-67.5	247	15	100
178	SEG<69>	-94.5	247	15	100
179	SEG<70>	-121.5	247	15	100
180	SEG<71>	-148.5	247	15	100
181	SEG<72>	-175.5	247	15	100
182	SEG<73>	-202.5	247	15	100
183	SEG<74>	-229.5	247	15	100
184	SEG<75>	-256.5	247	15	100
185	SEG<76>	-283.5	247	15	100
186	SEG<77>	-310.5	247	15	100
187	SEG<78>	-337.5	247	15	100
188	SEG<79>	-364.5	247	15	100
189	SEG<80>	-391.5	247	15	100
190	SEG<81>	-418.5	247	15	100
191	SEG<82>	-445.5	247	15	100
192	SEG<83>	-472.5	247	15	100
193	SEG<84>	-499.5	247	15	100
194	SEG<85>	-526.5	247	15	100
195	SEG<86>	-553.5	247	15	100
196	SEG<87>	-580.5	247	15	100
196	SEG<88>	-560.5 -607.5	247	15	100
			247		
198	SEG<89> SEG<90>	-634.5	247	15 15	100
199		-661.5			
200	SEG<91>	-688.5	247	15	100
201	SEG<92>	-715.5	247	15	100
202	SEG<93>	-742.5	247	15	100
203	SEG<94>	-769.5	247	15	100
204	SEG<95>	-796.5	247	15	100
205	SEG<96>	-823.5	247	15	100
206	SEG<97>	-850.5	247	15	100
207	SEG<98>	-877.5	247	15	100
208	SEG<99>	-904.5	247	15	100
209	SEG<100>	-931.5	247	15	100
210	SEG<101>	-958.5	247	15	100
211	SEG<102>	-985.5	247	15	100
212	SEG<103>	-1012.5	247	15	100
213	SEG<104>	-1039.5	247	15	100
214	SEG<105>	-1066.5	247	15	100
215	SEG<106>	-1093.5	247	15	100
216	SEG<107>	-1120.5	247	15	100
217	SEG<108>	-1147.5	247	15	100
218	SEG<109>	-1174.5	247	15	100
219	SEG<110>	-1201.5	247	15	100
220	SEG<111>	-1228.5	247	15	100
221	SEG<112>	-1255.5	247	15	100
222	SEG<113>	-1282.5	247	15	100
223	SEG<114>	-1309.5	247	15	100
224	SEG<115>	-1336.5	247	15	100
225	SEG<116>	-1363.5	247	15	100
226	SEG<117>	-1390.5	247	15	100
227	SEG<118>	-1417.5	247	15	100
228	SEG<119>	-1444.5	247	15	100
229	SEG<120>	-1471.5	247	15	100
230	SEG<121>	-1498.5	247	15	100
231	SEG<122>	-1525.5	247	15	100
232	SEG<123>	-1552.5	247	15	100
233	SEG<124>	-1579.5	247	15	100
234	SEG<1245	-1606.5	247	15	100
235	SEG<125>	-1633.5	247	15	100
		-1660.5	247	15	
236	SEG<127>	-1000.3	241	ıΰ	100

65x132 STN Controller-Driver

#	Pad	Х	Υ	W	Н
237	SEG<128>	-1687.5	247	15	100
238	SEG<129>	-1714.5	247	15	100
239	SEG<130>	-1741.5	247	15	100
240	SEG<131>	-1768.5	247	15	100
241	COM<32>	-1823	247	15	100
242	COM<33>	-1850	247	15	100
243	COM<34>	-1877	247	15	100
244	COM<35>	-1904	247	15	100
245	COM<36>	-1931	247	15	100
246	COM<37>	-1958	247	15	100
247	COM<38>	-1985	247	15	100
248	COM<39>	-2012	247	15	100
249	COM<40>	-2039	247	15	100

#	Pad	X	Y	W	Н
250	COM<41>	-2066	247	15	100
251	COM<42>	-2093	247	15	100
252	COM<43>	-2120	247	15	100
253	COM<44>	-2147	247	15	100
254	COM<45>	-2174	247	15	100
255	COM<46>	-2201	247	15	100
256	COM<47>	-2228	247	15	100
257	COM<48>	-2255	247	15	100
258	COM<49>	-2282	247	15	100
259	COM<50>	-2309	247	15	100
260	COM<51>	-2336	247	15	100
261	COM<52>	-2363	247	15	100

TRAY INFORMATION

65x132 STN Controller-Driver

REVISION HISTORY

Revision	Contents	Date
0.6	First Release	Jun. 17, 2014
	Average Frame Rate (Min.): −10% → −15%	
1.0	Average Frame Rate (Max.): +10% → +20%	Sep. 29, 2014
	Power Consumption data are provided.	