17 Die Gammafunktion

Die Gammafunktion ist eine der wichtigsten Funktionen der Analysis. Sie interpoliert die Fakultät $s\mapsto s!=1\cdot 2\cdots s$ unter Beibehaltung der Funktionalgleichung $s!=s\cdot (s-1)!$. Infolge eines unglücklichen historischen Umstandes bezeichnet man nicht s!, sondern (s-1)! mit $\Gamma(s)$; entsprechend lautet die Funktionalgleichung der gesuchten Funktion $\Gamma(s+1)=s\cdot \Gamma(s)$.

Bereits 1729 hat Euler Definitionen in Gestalt eines unendlichen Produktes und eines uneigentlichen Integrals angegeben. Besonders zweckmäfig ist die Definition von Gauß (1812).

17.1 Die Gammafunktion nach Gauß

Wir stellen (s-1)! in einer Weise dar, die nicht voraussetzt, daß s eine natürliche Zahl ist. Mit $n \in \mathbb{N}$ gilt

$$(s-1)! = \frac{(n+s)!}{s(s+1)\cdots(s+n)}$$
$$= \frac{n! n^s}{s(s+1)\cdots(s+n)} \cdot \left(\frac{n+1}{n} \cdot \frac{n+2}{n} \cdots \frac{n+s}{n}\right).$$

Daraus erhalten wir durch Grenzübergang $n \to \infty$

(1)
$$(s-1)! = \lim_{n \to \infty} \frac{n! \, n^s}{s(s+1) \cdots (s+n)}.$$

Wir zeigen, daß der Limes (1) auch für beliebiges reelles $s \neq 0, -1, -2, \ldots$ existiert. Sei

(2)
$$\Gamma_n(x) := \frac{n! \, n^x}{x(x+1)\cdots(x+n)}.$$

Hilfssatz 1: Die Folge (Γ_n) konvergiert gleichmäßig auf jedem kompakten Intervall [a;b], das keine der Stellen $0,-1,-2,\ldots$ enthält. Die Grenzfunktion hat keine Nullstelle.

K. Königsberger, Analysis 1

© Springer-Verlag Berlin Heidelberg 1999

Beweis: Wir betrachten für $x \in [a; b]$ die Quotienten

$$\frac{\Gamma_{n-1}(x)}{\Gamma_n(x)} = \frac{(x+n)(n-1)^x}{n \cdot n^x} = \left(1 + \frac{x}{n}\right) \left(1 - \frac{1}{n}\right)^x.$$

Für n > 2R mit $R := \max\{|a|, |b|, 1\}$ liefert die Logarithmusreihe

$$\left| \ln \frac{\Gamma_{n-1}(x)}{\Gamma_n(x)} \right| = \left| \ln \left(1 + \frac{x}{n} \right) + x \cdot \ln \left(1 - \frac{1}{n} \right) \right|$$

$$< \sum_{k=2}^{\infty} \left| \frac{x}{n} \right|^k + |x| \cdot \sum_{k=2}^{\infty} \frac{1}{n^k} < 2 \frac{R^2}{n^2} \sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^k = 4 \frac{R^2}{n^2}.$$

Die Reihe $\sum_{k=p}^{\infty} \ln \Gamma_{k-1} / \Gamma_k$ mit p := [R] + 1 konvergiert also gleichmäßig auf [a; b]. Wegen

$$\Gamma_n = \Gamma_{p-1} \cdot \prod_{k=p}^n \frac{\Gamma_k}{\Gamma_{k-1}} = \Gamma_{p-1} \cdot \exp\left(\sum_{k=p}^n \ln \frac{\Gamma_k}{\Gamma_{k-1}}\right)$$

konvergiert auch die Folge (Γ_n) gleichmäßig auf [a;b]. Die Grenzfunktion $\Gamma_{p-1} \cdot \exp\left(\sum_{k=p}^{\infty} \ln \Gamma_k / \Gamma_{k-1}\right)$ hat offensichtlich keine Nullstellen.

Definition der Gammafunktion nach Gauß:

(3)
$$\Gamma(x) := \lim_{n \to \infty} \frac{n! \, n^x}{x(x+1)\cdots(x+n)}, \qquad x \in \mathbb{R} \setminus \{0, -1, -2, \ldots\}.$$

Die Gammafunktion ist stetig, hat keine Nullstellen und erfüllt die Identitäten:

(4)
$$\Gamma(x) = (x-1)! \quad \text{für } x \in \mathbb{N},$$

(5)
$$\Gamma(x+1) = x \cdot \Gamma(x)$$
 (Funktionalgleichung).

Die Interpolationseigenschaft (4) wurde schon bei der Herleitung von (1) gezeigt; die Funktionalgleichung folgt aus $\Gamma_n(x+1) = \frac{n}{x+1+n} \cdot x \Gamma_n(x)$.

Beispiel: Berechnung von $\Gamma(\frac{1}{2})$:

$$\Gamma_n\left(\frac{1}{2}\right) = \frac{2^{n+1}n!\sqrt{n}}{1\cdot 3\cdot 5\cdots (2n+1)}.$$

Mit dem Wallisschen Produkt 11.5.II. erhält man

(6)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

Eine mehrmalige Anwendung der Funktionalgleichung ergibt

(7)
$$\Gamma(x+n+1) = (x+n)(x+n-1)\cdots x \cdot \Gamma(x).$$

Danach ist die Gammafunktion durch ihre Werte im Intervall (0; 1] festgelegt. Weiter folgt aus (7) für $x \to -n$, $n \in \mathbb{N}_0$, die Asymptotik

$$\Gamma(x) = \frac{\Gamma(x+n+1)}{x(x+1)\cdots(x+n)} \simeq \frac{(-1)^n}{n!} \cdot \frac{1}{x+n}.$$

Weierstraß hat der definierenden Formel (3) noch eine andere, bedeutsame Gestalt gegeben. Zunächst ist

$$\frac{1}{\Gamma_n(x)} = x \cdot \exp\left(x \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right)\right) \cdot \prod_{k=1}^n \frac{x+k}{k} \cdot \mathrm{e}^{-x/k}.$$

Für $n \to \infty$ folgt mit der Eulerschen Konstanten $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$, siehe 11.9 (22), die

Weierstraßsche Produktdarstellung

(8)
$$\frac{1}{\Gamma(x)} = x \cdot e^{\gamma x} \cdot \prod_{k=1}^{\infty} \left(1 + \frac{x}{k} \right) e^{-x/k}.$$

Die Gammafunktion erfüllt eine weitere wichtige Funktionalgleichung. Diese folgt leicht aus (8) und dem Eulerschen Sinusprodukt. Mit ihrer Hilfe kann die Berechnung der Funktionswerte in (0;1) auf die Berechnung in $(0;\frac{1}{2}]$ zurückgeführt werden.

Ergänzungssatz der Gammafunktion:

(9)
$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$
 (Euler)

Beweis: (8) ergibt

$$\frac{1}{\Gamma(x)\Gamma(1-x)} = \frac{1}{(-x)\Gamma(x)\Gamma(-x)} = x \cdot \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2}\right).$$

Rechts steht das Sinusprodukt 16.2 (9). Damit folgt (9).

Beispiel: Für $x = \frac{1}{2}$ erhält man erneut $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Konvexitätseigenschaften

Eine positive Funktion $g:I\to\mathbb{R}$ heißt logarithmisch konvex, wenn l
n g konvex ist. Eine logarithmisch konvexe Funktion ist konvex: Da die Exponentialfunktion monoton wächst und konvex ist, gilt nämlich für $x,y\in I$ und $t\in[0;1]$

$$g(tx + (1-t)y) = e^{\ln g(tx + (1-t)y)} \le e^{t \ln g(x) + (1-t) \ln g(y)}$$

$$\le tg(x) + (1-t)g(y).$$

Wir zeigen: Die Gammafunktion ist auf $(0, \infty)$ logarithmisch konvex.

Beweis: Die Logarithmen der Approximierenden Γ_n sind auf $(0;\infty)$ konvex wegen

$$(\ln \Gamma_n)''(x) = \sum_{k=0}^n \frac{1}{(x+k)^2} > 0.$$

Folglich ist auch die Grenzfunktion $\ln \Gamma = \lim_{n \to \infty} \ln \Gamma_n$ konvex auf $(0, \infty)$. \square

Mit Hilfe von (7) folgert man nun leicht, daß die Gammafunktion in jedem Intervall (-k; -k+1) für gerades $k \in \mathbb{N}$ logarithmisch konvex ist.

17.2 Charakterisierung der Γ-Funktion nach Bohr-Mollerup. Die Eulersche Integraldarstellung

Die Funktion Γ ist nicht die einzige Funktion mit der Interpolationseigenschaft (4) und der Funktionalgleichung (5). Für jede Funktion f auf $\mathbb R$ mit f(1)=1 und der Periode 1 erfüllt auch $f\cdot \Gamma$ die Identitäten (4) und (5). Bemerkenswert ist nun, daß die weitere Eigenschaft der logarithmischen Konvexität die Gammafunktion eindeutig festlegt.

Satz von Bohr-Mollerup (1922): Eine Funktion $G:(0,\infty)\to\mathbb{R}_+$ ist dort die Γ -Funktion, wenn sie folgende drei Eigenschaften hat:

- a) G(n) = (n-1)! für $n \in \mathbb{N}$,
- b) $G(x + 1) = x \cdot G(x)$,
- c) G ist logarithmisch-konvex.

Beweis: Mehrmalige Anwendung von b) ergibt

$$(b_n) G(x+n) = (x+n-1)\cdots(x+1)x\cdot G(x), \quad n\in\mathbb{N}.$$

Demnach ist G bereits durch seine Werte im Intervall (0;1] bestimmt. Zu zeigen bleibt: $G(x) = \Gamma(x)$ für 0 < x < 1.

Wegen der logarithmischen Konvexität gilt für $n \in \mathbb{N}$

$$G(n+x) = G(x \cdot (n+1) + (1-x) \cdot n)$$

$$\leq (G(n+1))^{x} \cdot (G(n))^{1-x} = n! n^{x-1}.$$

Andererseits ist

$$n! = G(n+1) = G(x \cdot (n+x) + (1-x) \cdot (n+x+1))$$

$$\leq (G(n+x))^{x} \cdot (G(n+x+1))^{1-x}$$

$$= (G(n+x))^{x} \cdot (n+x)^{1-x} (G(n+x))^{1-x}$$

$$= (n+x)^{1-x} G(n+x).$$

Wir erhalten damit die Einschließung

$$n! (n+x)^{x-1} \le G(n+x) \le n! n^{x-1}$$
.

Mittels (b_n) ergibt sich daraus

$$\frac{n!\,n^x}{x(x+1)\cdots(x+n)}\cdot\left(\frac{n+x}{n}\right)^x\leq G(x)\leq \frac{n!\,n^x}{x(x+1)\cdots(x+n)}\cdot\frac{x+n}{n}.$$

Schließlich führt der Grenzübergang $n \to \infty$ zu $\Gamma(x) \le G(x) \le \Gamma(x)$.

Mit Hilfe der gewonnenen Charakterisierung der Gammafunktion stellen wir nun die Verbindung zu dem in 11.9 betrachteten Gammaintegral her.

Eulersche Integraldarstellung: $F\ddot{u}r \ x > 0$ gilt

(10)
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Beweis: Die Konvergenz des Integrals wurde bereits in 11.9 gezeigt; bei 0 mit der Majorante t^{x-1} und bei ∞ mit der Majorante $e^{-t/2}$.

Es bezeichne G(x) den Wert des Integrals (10). Wir zeigen, daß die Funktion G die drei Voraussetzungen im Satz von Bohr-Mollerup erfüllt. a) und b) haben wir bereits im Anschluß an 11.9 (20) gezeigt. Zum Nachweis von c) müssen wir zeigen, daß für $\lambda \in (0;1)$ und x,y>0 gilt:

(*)
$$G(\lambda x + (1 - \lambda)y) \le (G(x))^{\lambda} \cdot (G(y))^{1-\lambda}.$$

Wir benützen dazu die Höldersche Ungleichung für Integrale 11.8 (19):

$$\int\limits_{\varepsilon}^{R} f(t)g(t) \, \mathrm{d}t \leq \left(\int\limits_{\varepsilon}^{R} |f|^{p} \, \mathrm{d}t\right)^{1/p} \cdot \left(\int\limits_{\varepsilon}^{R} |g|^{q} \, \mathrm{d}t\right)^{1/q} \quad (0 < \varepsilon < R < \infty).$$

Seien $p:=\frac{1}{\lambda},\ q:=\frac{1}{1-\lambda}$ und $f(t):=t^{(x-1)/p}\,\mathrm{e}^{-t/p},\ g(t):=t^{(y-1)/q}\,\mathrm{e}^{-t/q}.$ Die Höldersche Ungleichung ergibt dafür

$$\int\limits_{\varepsilon}^{R} t^{\lambda x + (1-\lambda)y - 1} \, \mathrm{e}^{-t} \, \mathrm{d}t \leq \left(\int\limits_{\varepsilon}^{R} t^{x-1} \, \mathrm{e}^{-t} \, \mathrm{d}t \right)^{\lambda} \cdot \left(\int\limits_{\varepsilon}^{R} t^{y-1} \, \mathrm{e}^{-t} \, \mathrm{d}t \right)^{1-\lambda}.$$

Mit $\varepsilon \downarrow 0$ und $R \to \infty$ erhält man die behauptete Ungleichung (*).

G erfüllt somit die Bedingungen des Satzes von Bohr-Mollerup; also ist $G(x) = \Gamma(x)$.

Folgerung:
$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$$
.

Beweis: Die Substitution $x = \sqrt{t}$ ergibt

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{1}{2} \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} dt = \frac{\Gamma(\frac{1}{2})}{2} = \frac{\sqrt{\pi}}{2}.$$

Bemerkung: Das Integral $\int_0^\infty e^{-x^2} dx$ spielt eine wichtige Rolle in der Wahrscheinlichkeitstheorie. Man kann es auch nach Poisson durch Rückführung auf ein Doppelintegral über \mathbb{R}^2 berechnen (siehe Band 2).

Als weitere Anwendung des Satzes von Bohr-Mollerup leiten wir die Legendresche Verdopplungsformel her.

Legendresche Verdopplungsformel: $F\ddot{u}r \ x > 0$ gilt

$$\boxed{\Gamma\left(\frac{x}{2}\right)\Gamma\left(\frac{x+1}{2}\right) = \frac{\sqrt{\pi}}{2^{x-1}}\Gamma(x).}$$

Beweis: Für $G(x) := 2^x \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)$ gilt

$$G(x+1) = 2^{x+1}\Gamma\Big(\frac{x+1}{2}\Big)\Gamma\Big(\frac{x}{2}+1\Big) = 2^{x+1}\Gamma\Big(\frac{x+1}{2}\Big) \cdot \frac{x}{2} \cdot \Gamma\Big(\frac{x}{2}\Big) = xG(x).$$

G erfüllt also die Funktionalgleichung der Gammafunktion. Ferner ist G logarithmisch-konvex, da jeder Faktor dieses ist. Nach dem Satz von Bohr-Mollerup ist daher $G(x) = G(1) \cdot \Gamma(x) = 2\sqrt{\pi} \cdot \Gamma(x)$.

17.3 Die Stirlingsche Formel

Wir wollen $\Gamma(x)$ für x>0 durch eine elementare Funktion approximieren. Als Anhaltspunkt behandeln wir $\ln n!$ für natürliche Zahlen n mit Hilfe der Eulerschen Summationsformel. Die Anwendung von 11.10 (23) auf $f(x)=\ln x$ ergibt

$$\ln n! = \int_{1}^{n} \ln t \, dt + \frac{1}{2} \ln n + \int_{1}^{n} \frac{H(t)}{t} \, dt$$
$$= \left(n + \frac{1}{2}\right) \ln n - n + 1 + \underbrace{\int_{1}^{\infty} \frac{H(t)}{t} \, dt}_{=: \alpha} - \int_{n}^{\infty} \frac{H(t)}{t} \, dt.$$

Dabei ist H die 1-periodische Funktion mit $H(t)=t-\frac{1}{2}$ für $t\in(0;1)$ und H(0)=0. (Zur Existenz der uneigentlichen Integrale: Mit einer Stammfunktion Φ zu H ergibt partielle Integration

$$\int_{1}^{A} \frac{H(t)}{t} dt = \left. \frac{\varPhi(t)}{t} \right|_{1}^{A} + \int_{1}^{A} \frac{\varPhi(t)}{t^{2}} dt.$$

Da jede Stammfunktion zu H beschränkt ist, existieren für $A\to\infty$ Grenzwerte.) Die Substitution $t=n+\tau$ führt unter Beachtung der Periodizität von H zu

$$\ln n! = \left(n + \frac{1}{2}\right) \ln n - n + 1 + \alpha - \int_{0}^{\infty} \frac{H(\tau)}{\tau + n} d\tau.$$

Diese Darstellung legt es nahe, $x^{x-1/2}e^{-x}$ als wesentlichen Bestandteil eines Näherungswertes für $\Gamma(x)$ für große x heranzuziehen.

Unser Ziel ist es, nachzuweisen, daß die auf $(0, \infty)$ durch

$$G(x) := x^{x-1/2} \operatorname{e}^{-x} \operatorname{e}^{\mu(x)} \quad \operatorname{mit} \quad \mu(x) := -\int\limits_0^\infty \frac{H(t)}{t+x} \, \mathrm{d}t$$

definierte Funktion mit der Gammafunktion bis auf einen konstanten Faktor übereinstimmt, und schließlich diesen Faktor zu berechnen.

Vorweg leiten wir eine Reihendarstellung der Funktion μ her. Da H die Periode 1 hat, gilt

$$\mu(x) = -\sum_{n=0}^{\infty} \int_{n}^{n+1} \frac{H(t)}{t+x} dt = -\sum_{n=0}^{\infty} \int_{0}^{1} \frac{H(t)}{t+n+x} dt.$$

Mit

$$g(x) := -\int_{0}^{1} \frac{t - \frac{1}{2}}{t + x} dt = \left(x + \frac{1}{2}\right) \ln\left(1 + \frac{1}{x}\right) - 1$$

folgt also die Reihendarstellung

(11)
$$\mu(x) = \sum_{n=0}^{\infty} g(x+n).$$

Wir zeigen jetzt, daß G die Voraussetzungen b) und c) des Satzes von Bohr-Mollerup erfüllt.

Nachweis der Funktionalgleichung: Eine einfache Umformung zeigt, daß G(x+1) = xG(x) genau dann erfüllt ist, wenn

$$\mu(x) - \mu(x+1) = \left(x + \frac{1}{2}\right) \ln\left(1 + \frac{1}{x}\right) - 1$$

gilt. Das ist nach der Reihendarstellung für $\mu(x)$ tatsächlich der Fall. Nachweis der logarithmischen Konvexität: Wegen

$$\left(\ln x^{x-1/2} e^{-x}\right)'' = \frac{1}{x} + \frac{1}{2x^2} > 0$$
 für $x > 0$

ist der Faktor $x^{x-1/2} e^{-x}$ logarithmisch-konvex. Ferner sind wegen g'' > 0 alle Funktionen g(x+n) und damit die Funktion μ konvex. G ist also logarithmisch-konvex.

Zwischenergebnis: Die Funktion G erfüllt die Voraussetzungen b) und c) des Satzes von Bohr-Mollerup; es gibt also eine Konstante c mit

$$\Gamma(x) = c G(x), \quad x > 0.$$

Bevor wir c berechnen, leiten wir noch eine wichtige Abschätzung der Funktion μ her. Wir gehen aus von der für |y| < 1 gültigen Entwicklung

$$\frac{1}{2}\ln\frac{1+y}{1-y} = y + \frac{y^3}{3} + \frac{y^5}{5} + \dots$$

Wir setzen y = 1/(2x + 1), multiplizieren die entstandene Identität mit 2x + 1, bringen das erste Glied der rechten Seite nach links und erhalten

$$g(x) = \left(x + \frac{1}{2}\right) \ln\left(1 + \frac{1}{x}\right) - 1 = \frac{1}{3(2x+1)^2} + \frac{1}{5(2x+1)^4} + \frac{1}{7(2x+1)^6} + \dots$$

In der rechts stehenden Reihe ersetzen wir die Faktoren 5, 7, 9, ... durch 3 und erhalten eine geometrische Reihe mit dem Wert

$$\frac{1}{3(2x+1)^2} \cdot \frac{1}{1 - \frac{1}{(2x+1)^2}} = \frac{1}{12x(x+1)} = \frac{1}{12x} - \frac{1}{12(x+1)}.$$

Damit folgt $0 < g(x) < \frac{1}{12x} - \frac{1}{12(x+1)}$ und weiter mit (11)

$$0<\mu(x)<\frac{1}{12x}.$$

Wir kommen jetzt zur Berechnung der Konstanten c. Wegen $\mu(x) \to 0$ für $x \to \infty$ gilt

$$c = \lim_{x \to \infty} \frac{\Gamma(x)}{x^{x-1/2} e^{-x}}.$$

Mit $x = n \in \mathbb{N}$ bzw. x = 2n folgt

$$c = \frac{c^2}{c} = \lim_{n \to \infty} \frac{(n-1)!^2}{n^{2n-1} e^{-2n}} \cdot \frac{(2n)^{2n-1/2} e^{-2n}}{(2n-1)!}$$
$$= 2 \lim_{n \to \infty} \frac{2 \cdot 4 \cdots (2n-2)\sqrt{2n}}{1 \cdot 3 \cdots (2n-1)} = \sqrt{2\pi}.$$

Zuletzt wurde das Wallissche Produkt 11.5.II. verwendet.

Wir fassen zusammen:

Stirlingsche Formel: $F\ddot{u}r \ x > 0$ gilt

$$\boxed{\Gamma(x) = \sqrt{2\pi}x^{x-1/2} e^{-x+\mu(x)} \quad mit \ 0 < \mu(x) < \frac{1}{12x}.}$$

In den Anwendungen wird häufig $\sqrt{2\pi}x^{x-\frac{1}{2}}e^{-x}$ als Näherungswert für $\Gamma(x)$ bei großem Argument herangezogen. Wegen $\mu(x)>0$ ist dieser Wert zu klein. Der relative Fehler aber ist kleiner als $\exp\left(\frac{1}{12x}\right)-1$; schon für x>10 ist er kleiner als 1 Prozent.

17.4 Aufgaben

- 1. Man berechne $\Gamma(n+\frac{1}{2})$ für $n \in \mathbb{N}$.
- 2. Sei a eine reelle Zahl $\neq 0, 1, 2, \ldots$ Man zeige

$$\left| \binom{a}{n} \middle| n^{a+1} \to \left| \frac{1}{\Gamma(-a)} \right| \quad \text{für } n \to \infty.$$

Anwendung: Im Fall $a \ge 0$ konvergiert die Binomialreihe $\sum_{n=0}^{\infty} \binom{a}{n} x^n$ normal auf [-1;1].

3. Die Betafunktion. Diese wird für $(x,y) \in \mathbb{R}_+ \times \mathbb{R}_+$ definiert durch

$$B(x,y) := \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Man zeige, daß sie folgende Integraldarstellung besitzt:

$$B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt.$$

4. Man setze in 3. $x = \frac{m}{n}$ $(m, n \in \mathbb{N})$ und $y = \frac{1}{2}$ und zeige

$$\int_{0}^{1} \frac{t^{m-1}}{\sqrt{1-t^{n}}} dt = \frac{\sqrt{\pi} \Gamma\left(\frac{m}{n}\right)}{n\Gamma\left(\frac{m}{n} + \frac{1}{2}\right)}.$$

Man folgere mit dem Ergänzungssatz und der Verdopplungsformel:

$$\int\limits_{0}^{1} \frac{\mathrm{d}t}{\sqrt{1-t^4}} = \frac{\Gamma\left(\frac{1}{4}\right)^2}{\sqrt{32\pi}}, \qquad \int\limits_{0}^{1} \frac{\mathrm{d}t}{\sqrt{1-t^3}} = \frac{\Gamma\left(\frac{1}{3}\right)^3}{\sqrt{3}\sqrt[3]{16\pi}}.$$