

<u> Item</u>	Part	<u>Section</u>	Supplement, Correction, or Revision
1	Pr	eface	Revised p iii, reprinted p iv, revised p v, and new p vi
2	Con	tents	Revised pp vii and viii
3		ersion tors	Revised p ix
Ц	I		Revised Table 1 (1 page) and reprinted Table 2 (1 page)
5	II	2	Revised sheets 9 and 10 of Table 1-TC-B
6	II	3	Revised sheet 2 of Table 1-SF
7	II	4	Revised sheet 2 of Table 1-CRMI-PB
8	II	5	Revised sheet 1 and new sheet 2 of Table 1-CERL-FC
9	II	6	Revised sheets 2 and 3 and new sheet 4 of Table 2-PR; revised sheet 2 of Table 5-PR; new sheet 4 of Table 6-PR
10	II	7	Revised Table 1-WES-FC (1 page)
11	II	8	Revised sheet 5 of Table 1-CRMI-PD; revised sheet 3 of Table 2-CRMI-PD; deleted sheet 4 (issued August 1977)

^{*} TR 6-553 was issued in June 1960. Distributions of Supplements, Corrections, and Revisions are issued each year. This distribution, No. 15, brings the report up to date as of July 1979.

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited 80

2 15

1/3

(Issued August 1980)

Item	Pant.	Section	Supplement, Correction, or Revision
TOCIII	1 01 0	DECOTOR	Supplements, Collection, Of Nevision
12	II	9	Revised sheet 2 of Table 1-PQ
13	II	10	Revised sheet 2 of Table 1-SC; revised Table 2-SC (1 page)
14	II	11	Revised sheets 2 and 3 of Table 1-BFS
15	II	12	Revised Table 1-SSFE (1 page)
16	II	13	Revised Table 1-TP (1 page)
17	II	14	Revised Table 1-4.5A (1 page)
. `18	II	15	Revised Table 1-SIC (1 page)
19	II	16	Revised Table 1-RCC (1 page)
20 🛴	. II	17	Revised sheets 9, 10, 11, and 12 of Table 1-LTS
. 21	II	18	Revised Table 1-NED (1 page)
22	II	19	A new item including Key (1 page), text (1 page), Table 1 (1 page), and Table 1-CPM (1 page)
23	II	20	A new item including Key (1 page), text (1 page), Table 1 (3 pages), Table 2 (3 pages), Table 3 (3 pages), Table 4 (1 page), Table 1-CR (1 page), and Table 2-CR (2 pages)
24	II	22	New sheet 2 of Table 1-MM
25	II	25	Revised sheet 6 of Table 1-CRA
26	II	26	Revised Table 1-0D (1 page)
27	II	27	Revised sheet 2 of Tables 1-KCD and 2-KCD; revised Tables 3-KCD, 4-KCD, 5-KCD, 6-KCD, and 7-KCD (1 page each)
28	II	28	Revised Table 1-ED (1 page)
29	II	34	Revised Table 1-MCP (1 page) Accession for
30	II	35	Revised Table 2-QA (1 page) NTIS COALL
31	II	37	Revised sheet 3 of Table 1-CAP TTIC TiB
32	II	38	New sheet 3 of Table 1-MAWC Unannounced Justification 1
33	II	39	Revised sheet 3 of Table 1-CT form 50 6.
34	II		Revised Plate 2 By
			Availability Codes Avail and/or Dist Special

PREFACE

The stablishment of exposure stations, and the conduct of programs of investigation relative to the durability of concrete exposed to natural weathering have been authorized from time to time by the Office, . Chief of Engineers. The initial installation of concrete specimens at an exposure station was made at Treat Island, Maine, in 1936 by the Concrete Laboratory of the Passamaquoddy Tidal Power Project. In 1939 the Office, Chief of Engineers, authorized the Central Concrete Laboratory, North Atlantic Division, to develop data relative to the durability of concrete exposed to severe weathering. Under this authorization specimens were prepared and installed at exposure stations in Maine, Florida, and New York. In 1946, the Office, Chief of Engineers, directed the Concrete Research Division (now Concrete Technology Division, Structures Laboratory) of the U. S. Army Engineer Waterways Experiment Station (WES) (successor to the Central Concrete Laboratory) to continue the work in connection with these exposure stations. Further authority is contained in multiple letter of the Office, Chief of Engineers, dated 14 September 1948, subject, "Civil Works Investigations of Office, Chief of Engineers," Item CW-604-Concrete "Continuation of Permanent Exposure Stations." Additional authorizations have been provided since that time for the making and installing of specific specimens at these exposure stations. Installation and testing of specimens at the Florida station was discontinued in November 1971.

Results of these various investigations have been reported from time to time in the reports listed below.

- 1. Corps of Engineers, Central Concrete Laboratory, Cement Durability Program, First Interim Report, June 1942.
- 2. , Concrete Research, Laboratory Studies of Concrete Containing Air-Entraining Admixtures, Second Interim Report, Part I, July 1945.

(Reprinted August 1980)

- 3. Waterways Experiment Station, <u>Concrete Research</u>, Third Interim Report, <u>Durability of Concrete Exposed to Natural Weathering</u>, Technical Memorandum No. 6-226, August 1947.
- 4. , Concrete Research, Third Interim Report,
 Supplement No. 1, Durability of Concrete Exposed to Natural Weathering, Technical Memorandum No. 6-226, June 1950.
- 5. , Investigation of Durability of Concrete Exposed to Natural Weathering, Report No. 5, Summary of Results 1936-1953, Technical Memorandum No. 6-226, May 1954.
- 6. ; Cement Durability Program, Long-Term Field Exposure of Concrete Columns, Technical Report C-72-2, August 1972.
- 7. Roshore, E. C. and Houston, B. J., Investigation of Plastic and Rubber-Based Coatings Used in Lieu of Rubbed Finishes on Formed Concrete Surfaces, sponsored by the Assistant Secretary of the Army (R&D), Department of the Army; Miscellaneous Paper No. 6-864, November 1966.
- 8. Houston, B. J., <u>Investigation of Nonmetallic Waterstops</u>; <u>Preliminary Laboratory and Field Exposure Tests</u>, sponsored by Office, Chief of Engineers, U. S. Army; Technical Report No. 6-546, Report No. 1, May 1960.
- 9. , Investigation of Nonmetallic Waterstops;
 Progress Report of Laboratory and Field Exposure Tests,
 sponsored by Office, Chief of Engineers, U. S. Army;
 Technical Report No. 6-546, Report No. 3, June 1963.
- 10. , Investigation of Nonmetallic Waterstops

 Effect of Exposure, sponsored by Office, Chief of
 Engineers, U. S. Army; Technical Report No. 6-546,
 Report No. 6, January 1968.
- 1. Kennedy, T. B., <u>Tensile Crack Exposure Tests</u>, <u>CWI Item</u>
 No. 026, <u>Tensile Crack Exposure Test for Reinforced Concrete Beams</u>, <u>Technical Memorandum No. 6-412</u>, U. S. Army
 Engineer Waterways Experiment Station, CE, July 1955.
- 12. Roshore, E. C., <u>Durability and Behavior of Prestressed</u>
 Concrete Beams, <u>Pretensioned Concrete Investigation</u>;

 <u>Progress to July 1960</u>, <u>Technical Report No. 6-570</u>, Report 1, June 1961.
- . 13. , Tensile Crack Exposure Tests; Results of Tests of Reinforced Concrete Beams, Technical Memorandum No. 6-412, Report 2, November 1964.

- 14. Roshore, E. C. <u>Durability and Behavior of Prestressed</u>

 <u>Concrete Beams; Posttensioned Concrete Investigation,</u>

 <u>Progress to July 1966, Technical Report No. 6-570, Report No. 6-570, Report 2, March 1967.</u>
- 15. Field Exposure Tests of Reinforced Concrete
 Beams, Miscellaneous Paper No. 6-868, January 1967.
- 17. O'Neil, E. F., <u>Durability and Behavior of Prestressed</u>

 <u>Concrete Beams; Posttensioned Concrete Beam Investigation with Laboratory Tests from June 1961 to September 1975, Technical Report No. 6-570, Report 4, February 1977.</u>
- 18. Durability and Behavior of Prestressed Concrete Beams; Laboratory Tests of Weathered Pretensioned Beams, Technical Report No. 6-570, Report 5, June 1976.

This report summarizes all investigations made to date, and is issued in loose-leaf form in order that it may be kept up to date by the addition of new material or revision of old material, as appropriate. The report is made up of two volumes: Volume 1 (this volume) summarizes the test results of investigations which are still active, and Volume 2 summarizes the findings of completed investigations.

The major part of the work reported herein and the preparation of this report constitute part of Civil Works Research Work Unit 31132, "Field Exposure Durability Studies of Concrete." The studies were made by the Concrete Technology Division, Structures Laboratory, Waterways Experiment Station. Personnel actively engaged in the direction and conduct of the work include Ms. K. Mather, Messrs. B. Mather, J. M. Scanlon, B. R. Sullivan, R. V. Tye, Jr., E. E. McCoy, E. C. Roshore, H. T. Thornton, R. E. Black, D. Glass, D. Wilson, and G. S. Harris. Mr. Thornton prepared this distribution.

During the preparation of this report COL Edmund H. Lang, CE, was Director of the Waterways Experiment Station, and Mr. J. B. Tiffany was Technical Director. During the preparation of this distribution of the Supplements, Corrections, and Revisions, COL John L. Cannon and

(Issued August 1980)

COL Nelson P. Conover, CE, served as Commanders and Directors and Mr. F. R. Brown was Technical Director.

CONTENTS

				Pag
PREFA	CE .			ii
CONVE	RSION	I FAC	TORS,	INCH-POUNDS TO METRIC UNITS OF MEASUREMENT i
SUMMA	RY .			
PART	I:]	(NTRO	DUCT	ON
	Mild Mode Nonv Test	l-Wea erate veath Met	theri e-Weat nering thods	ering Station, Treat Island, Maine
PART	II:	PROC	RAMS	OF INVESTIGATIONS
	Sect	ion	1:	Tensile Crack Specimens, Series A (CW R&D)
	Sect	cion	2:	Tensile Crack Specimens, Series B (CW R&D)
	Sect	cion	3:	Stewart Field Spheres (NAD)
	Sect	tion	4:	Cement-Replacement Materials Investigation, Phase B (CW R&D)
	Sect	tion	5:	CERL Fibrous Concrete (CW R&D)
	Sect	tion	6:	Prestressed Concrete Program (CW R&D)
	Sect	tion	7:	WES Fibrous Concrete (CW R&D)
	Sect	tion	8:	Cement-Replacement Materials Investigations, Phases D (CW R&D)
	Sect	tion	9:	Passamaquoddy Tidal Power Project
	Sect	tion	10:	Missouri River Division Program
	Sect	tion	11:	Portland Blast-Furnace Slag Cement Investigation (CW R&D)
	Sect	tion	12:	Specimen Size-Frost Effects Program (CW R&D)
	Sect	tion	13:	Trumbull Pond Dam Prisms (NED)
	Sect	tion	14:	Investigation of 4-1/2-inAggregate Concrete (CW R&D)
	Sect	tion	15:	Sulfur-Infiltrated Concret (Canadian)
	Sect	tion	16:	Roller Compacted Concrete (NPD)

CONTENTS (Continued)

Section 17:	Longtime Study, Waterways Experiment Station (CW R&D)
Section 18:	Charles River Dam-Smelt Brook Protection Project (NED)
Section 19:	Concrete Polymer Materials (Water and Power Resources Service)
Section 20:	Cement Replacement and High-Range Water-Reducing Admixtures (Canadian)
Section 22:	Mt. Morris Dam Cores (Buffalo)
Section 25:	Air-Entraining Admixture Study (CW R&D)
Section 26:	Omaha District Aggregate Program
Section 27:	Kansas City District Aggregate Program
Section 28:	Eufaula Dam Aggregates Study (Tulsa)
Section 29:	Alkali-Aggregate Reactivity Investigation (CW R&D)
Section 30:	Nonmetallic Waterstop Investigation (CW, IMVD)
Section 31:	Woven Plastic Test Program (CW R&D)
Section 32:	National Bureau of Standards Supersulfate Cement Program
Section 34:	Membrane Curing Program (CW R&D)
Section 35:	Quality Aggregate Investigation (CW R&D)
Section 36:	Cement-Replacement Materials Investigation, Phase G (CW R&D)
Section 37:	Maximum Size of Coarse Aggregate Program (CW R&D)
Section 38:	Maximum Allowable Water-Cement Ratio Investigation (CW R&D)
Section 39:	Curing Investigation (CW R&D)
Section 40:	Investigation of Plastic Based Mortar Coatings (CW R&D) :

PLATES 1-3

CONVERSION FACTORS, INCH-POUND TO METRIC (SI) UNITS OF MEASUREMENT

- 1 inch = 25.4 millimetres
- 1 foot = 0.3048 metre
- $37^{\circ}F = 2.8^{\circ}C$
- $-10^{\circ}F = -23.4^{\circ}C$
- $28^{\circ}F = -2.2^{\circ}C$
- $70^{\circ}F = 21.1^{\circ}C$
- 1 1b = 0.453592 kilogram
- 1 bag of cement = 94 1b of cement = 42.637648 kilograms of cement
- 1 cu yd = 0.764555 cubic metre
- 1 gal (U. S.) = 3785.412 cubic centimetres
- 1 gal (U. S.) = 3.785412 cubic decimetres
- 1 cu ft = 0.028317 cubic metre
- 1 ton = 2000 lb = 907.184 kilograms
- 1 psi = 0.006894757 megapascals
- 1 fps = 0.3048 metre/second
- 1 lb/cu ft = 16.018477 kilograms/cubic metre
- 1 bag/cu yd = 55.767928 kilograms/cubic metre
- 1 gal/bag = 88.781398 cubic centimetres/kilogram
- 3-1/2 by 4-1/2 by 16 in. = approximately 90 by 115 by 410 millimetres
- 6 by 6 by 30 in. = approximately 150 by 150 by 760 millimetres
- 6 by 6 by 48 in. = approximately 150 by 150 by 1220 millimetres
- 18 by 18 by 36 in. = approximately 460 by 460 by 910 millimetres

in the state of th

ection	ion Row	Program of Investigation	Size and Kind	No. Installed	No. Left	Date Installed	Section No. i	
				82	0		1	
leach leach	2	Tensile Cruck Specimens, Series A Tensile Cruck Specimens, Series B		76	75	Nov 1951 Nov 1954	2	
lack	9	Stewart Field Spheres	1-ft spheres	24	12	May 1954	3	
leach	ź	Cement-Replacement Materials	18- by 18- by 36-in. prisas	21	-6	Dec 1953	Ĭ,	
		Investigation, Phase B	-	_		_		
each	2	Prestressed Concrete Program	4-1/2- by 9- by 81-in. beams	16	0	Oct 1958	6	
eck.	3	Prestressed Concrete Program	3-1/2- by 4-1/2- by 16-in. beens	72	57	Oct 1958	6	
leach	2	Prestressed Concrete Program	10- by 16- by 96-in. beans	20 75	12 21	June 1961	6 8	
le ck	•	Cement-Replacement Materials Investigation, Phase D	10- by 20-in. cores	75	21	Oct 1958		
leach	1	Cement-Replacement Materials	2-ft cubes	20	Ą	Oct 1958	8	
	_	Investigation, Phase D						
lack	8	Passasmquoddy Project	5- by 5- by 60-in. columns	43	1	June 1936	9	
ack .	5	Missouri River Division Program	3-1/2- by 4-1/2- by 16-in. beams	12	5	Sept 1963	10	
eck	5	Missouri River Division Program	3- by 4-1/2- by 16-in. beams	3	,2	Nov 1965	10	
ack	5	Portland Blast-Furnace Slag	3-1/2- by 4-1/2- by 16-in. beens	108	66	May 1956	11	
sck	9	Cement Investigation	3-1/2- by 4-1/2- by 16-in. beams	^	^	Dec 1069	12	
BCK.	3	Specimen Size-Frost Effects Investigation	3-1/2- by 4-1/2- by 10-111. been	9	9	Dec 1968	12	
nck	2	1	6- by 6- by 30-in. beams	3	3	Dec 1968	12	
ack	3		2-ft cubes	3	3	Dec 1968	12	
ack	ž	1	18- by 18- by 36-in. prises	š	3	Dec 1968	12	
ack	3	Trumbull Pond Dam Prisas	18- by 18- by 36-in. prises	6	6	June 1972	13	
ack	5	Investigation of 4-1/2-in.	18- by 18- by 36-in. prises	12	5	Dec 1968	14	
	_	Aggregate Concrete						
eck	3	Longtime Study, Waterways	3-1/2- by 4-1/2- by 16-in. beams	198	196	May 1955	17	
	i,	Experiment Station	10 da 144- 1 10 da	••		Dec 2515		
ack . ack	2	Mt. Horris Dam Cores	10-indiam by 18-in. cores	11	,3	Oct 1949	22	
ack	ź	Air-Entraining Admixture Study Omaha District Aggregate Program	6- by 6- by 30-in. prisms	90 6	13	Nov 1944 Dec 1956	25 26	
ack	ş	Omaha District Aggregate Program	6- by 6- by 30-in. beams	3	3	Bov 1964	26	
ack	ž	Kansas City District Aggregate	1	18	ĕ	Jan 1958	27	
	-	Program	Ĭ.	10	•	1,70		
ack	2		•	18	1	May 1959	27	
ack .	2			9	5	Nov 1962	27	
ack	2	•	,	9	5	Dec 1963	27	
ack	2)	j	3	3	May 1969	27	
sck	2		1	3	3	July 1974	27	
nck	2	†	i	3	3	July 1974	27	
each	ĩ	Bufaula Dan Aggregates Study	2-ft cubes	3	3	Oct 1958	28	
sck		Monmetallic Waterstop	Waterstop pieces	5ŭ	16	May 1957	30	
		Investigation	- -					
		,	Embedded waterstop pieces	27	0	May 1957	30	
ack	H well	•	Waterstop pieces	30	0	Nov 1957	30	
sck	N vall	ì	Embedded waterstop pieces	15	0	Nov 1957	30	
ec e	N ASTY	†	Waterstop pieces	2 1	0	Aug 1958	30 30	
nck	5	Woven Plastic Test Program	Embedded waterstop pieces 13-in. squares .	160	Ö	Aug 1958 Nov 1963	31	
		Woven Plastic Test Program	13-in. squares	80	ŏ	Apr 1967	31	
ack	5	Woven Plastic Test Program	13-in. squares	22	ő	Mar 1970	<u> </u>	
op of	-	Membrane Curing Program	Box specimens	14	14	June 1946	34	
wherf		<u>-</u> ··· ·••	-	-	-	 . .		
each	2	Quality Aggregate Investigation	2-ft cubes	10	0	Nov 1962	35	
esch	A-1	Quality Aggregate Investigation	2-ft cubes	6	2	Dec 1963	35	
tech	2	Cement-Replacement Materials	15- by 18- by 36-in. prises	2	0	Nov 1962	36	
tech	2	Investigation, Phase G	.	30	_	Dec 1062		
	•	Maximum Size of Coarse Aggregate Program	ĺ	18	9	Dec 1963	37	
			ì	24	12	Dec 1964	38	
esch	4-1	Maximum Allounble Water-Come:				270-	نر	
each	A-1	Maximum Allowable Water-Ceme: : Eatio Investigation	1					
_	A-1 1	Patio Investigation	1		56	June 1968	39	
ek.	A-1 1 5		10- by 10- by 3-in. morter-coated	56 8	56 8	June 1968 July 1969	. ¥0	
ick ick	5	Patio Investigation Curing Investigation Investigation of Plastic Based Nortar Coatings	panels	56 8	8	July 1969	+ 40	
ick ick	1	Patio Investigation Curing Investigation Investigation of Plastic Based Nortar Coatings Investigation of Plastic Based	panels 10- by 10- by 3-in. mortar-coated	56				
ick ick ick	1 5 5	Patio Investigation Curing Investigation Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings	panels 10- by 10- by 3-in. mortar-coated panels	56 8 8	8	July 1969 Nov 1969	. 40 40	
ick ick ick	5	Patio Investigation Curing Investigation Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated	56 8	8	July 1969	. 40 40	
nek nek nek	1 5 5	Patio Investigation Curing Investigation Investigation of Plastic Based Nortar Coatings Investigation of Plastic Based Nortar Coatings Investigation of Plastic Based Nortar Coatings	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels	56 8 8	8 8 16	July 1969 Nov 1969 Dec 1970	40 40	
ack ack ack ack	1 5 5 5	Patio Investigation Curing Investigation Investigation of Flastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CERL Fibrous Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams	56 8 8 16	8 8 16 10	July 1969 Nov 1969 Dec 1970 Jan 1975	. 40 40 5	
ack ack ack ack ack	1 5 5	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plantic Based Mortar Coatings Investigation of Plantic Based Mortar Coatings CERL Fibrous Concrete WES Fibrous Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- b; 16-in. beams 9- by 9- by 45-in. beams	56 8 8 16 30	8 8 16 10 17	July 1969 Nov 1969 Dec 1970 Jan 1975 June 1975	. 40 40 40 5	
ack ack ack ack ack ack ack	1 5 5 5	Patio Investigation Curing Investigation Investigation of Flastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CERL Fibrous Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 3- by 45-in. beams 6- by 6- by 30-in. beams	56 8 8 16	8 8 16 10	July 1969 Mov 1969 Dec 1970 Jan 1975 June 1975 June 1975	. 40 40 57 7	
nek nek nek nek nek nek nek	1 5 5 5 4 4 6 5 9	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CERL Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- b; 16-in. beams 9- by 9- by 45-in. beams	56 8 8 16 30 17	8 8 16 10 17 12 21	July 1969 Nov 1969 Dec 1970 Jan 1975 June 1975	. 10 10 10 5 7 7 7	
nek nek nek nek nek nek nek nek	1 5 5 5 5 4 4 6 5 5 9 9	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CEML Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 9- by 45-in. beams 6- by 6- by 30-in. beams 6- by 6- by 36-in. beams 4- by 8-in. cylinders 3- by 6-in. cylinders	56 8 8 16 30 17 12 21	8 8 16 10 17 12 21	July 1969 Mov 1969 Dec 1970 Jan 1975 June 1975 June 1975 June 1975 June 1975	40 40 5 7 7 7 15	
ack ack ack ack ack ack ack ack ack ack	15 5 5 5 4 5 5 9 9 6	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings ESEL Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete Sulfur-Infiltrated Concrete Sulfur-Infiltrated Concrete Sulfur-Infiltrated Concrete Roller-Compacted Concrete	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 9- by 45-in. beams 6- by 6- by 30-in. beams 6- by 6- by 36-in. beams 4- by 8-in. cylinders 3- by 6-in. cylinders 12- by 12- by 36-in. beams	56 8 8 16 30 17 12 21 18	8 8 16 10 17 12 21 18 36 6	July 1969 Nov 1969 Dec 1970 Jan 1975 June 1975 June 1975 June 1975 Aug 1976	40 40 5 7 7 7 15 15	
each ack	15555466	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CEML Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete Substitutions Concrete Charles River - Smelt Brook	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 3- by 45-in. beams 6- by 6- by 36-in. beams 4- by 8-in. cylinders 3- by 6-in. cylinders 12- by 12- by 36-in. beams 6- by 6- by 24-in. beams 6- by 6- by 24-in. beams	56 8 8 16 30 17 12 21 18 36 30	8 8 16 10 17 12 21 18 36	July 1969 Bov 1969 Dec 1970 Jan 1975 June 1975 June 1975 June 1975 Aug 1976 Aug 1976	40 40 57 77 77 15	
ack	15 5 5 5 5 5 5 5 9 6 6 7	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CERL Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete Sub Fibrous Concrete Sub Fibrous Concrete RES Fibrous Concrete Cultur-Infiltrated Concrete Roller-Compacted Concrete Charles River - Smelt Brook Concrete-Polymer Materials	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 3- by 45-in. beams 6- by 6- by 30-in. beams 6- by 6- by 36-in. beams 4- by 8-in. cylinders 3- by 6-in. cylinders 12- by 12- by 36-in. beams 6- by 6- by 28-in. beams 6- by 6- by 28-in. beams 6- by 6- by 28-in. beams 6- by 6- by 30-in. beams	56 8 8 16 30 17 12 21 18 36 18	8 8 16 10 17 12 21 18 36 6 18	July 1969 Bov 1969 Dec 1970 Jan 1975 June 1975 June 1975 June 1975 Aug 1976 Aug 1976 July 1977	. 40 40 57 77 77 15 16 18	
ack ack ack ack ack ack ack ack ack ack	15555466	Patio Investigation Curing Investigation Curing Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings Investigation of Plastic Based Mortar Coatings CEML Fibrous Concrete WES Fibrous Concrete WES Fibrous Concrete Substitutions Concrete Charles River - Smelt Brook	panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 10- by 10- by 3-in. mortar-coated panels 3-1/2- by 4-1/2- by 16-in. beams 9- by 3- by 45-in. beams 6- by 6- by 36-in. beams 4- by 8-in. cylinders 3- by 6-in. cylinders 12- by 12- by 36-in. beams 6- by 6- by 24-in. beams 6- by 6- by 24-in. beams	56 8 8 16 30 17 12 21 18 36 30	8 8 16 10 17 12 21 18 36 6 18	July 1969 Bov 1969 Dec 1970 Jan 1975 June 1975 June 1975 Aug 1976 Aug 1976 Aug 1976 Aug 1976 Aug 1976	40 40 5 7 7 7 15 15 16	

⁻⁻ Dashed lines in "Section" and "Now" columns indicate that these specimens are no longer on the exposure rack.

(Reprinted August 1980)

Table 2

Recapitulation of Specimens Exposed at St. Augustine, Fla.

	Sp	ecimens			Sec.
		No.		Date	No.
Program of	•	In-	No.	In-	in This
Investigation	Size and Kind	stalled	<u>Left</u>	stalled	Vol
Prestressed Concrete Program	4-1/2- by 9- by 81-in. beams	3	1	0ct 1959	6
Portland Blast- Furnace Slag Ce- ment Investigation	3-1/2- by 4-1/2- by 16-in. beams	108	93	Aug 1956	11
	8-1/2- by 8-1/2- by 12-in. prisms	45	0	Aug 1956	11
Longtime Study Waterways Experi- ment Station	3-1/2- by 4-1/2- by 16-in. beams	198	195	Aug 1955	17
Alkali-Aggregate Reactivity In- vestigation	6- by 6- 30-in. beams	72	45	Aug 1955	29
	6- by 6- by 30-in. beams	36	30	Aug 1956	29
National Bureau of Standards Super- sulfate Cement Program	3- by 4- by 16-in. beams	27	19	Nov 1957	32

Note: Installation and testing of specimens at St. Augustine, Fla., was discontinued in November 1971.

							1	Readings	Beach Fow 1			
				_	3095	Cycles, 1977		3242 (ycles, 1978		3335 C	yeles, 1979
Beam No.	Kominal Stress psi	Steel Posi- tion	Type Steel befor- mation	Con- di- tion	<u> 2v²</u>	Crack Width 1/1000 in.	Con- di- tion	<u>53°</u> 2	Crack Width 1/1000 in.	Con- di- tion	<u>54²</u>	Crack Width 1/1000
83 84 85 86 87	20,000 20,000 20,000 20,000 20,000	B B B	A-305 A-305 OS OS A-305	22 60 68 65 46	80 74 88 69 66	15 25 25 25 25 20	47 64 66 67 46	78 47 40 58 52	15 30 20 25 20	34 63 63 44	85 72 68 70 71	15 30 25 20
68 69 90 91 92	20,000 20,000 20,000 30,000 30,000	B B B	A-305 OS OS A-305 A-305	51 63 58 68 65	53 46 59 60 84	20 25 25 25 25 25	53 64 56 69 66	52 56 49 38 39	20 25 20 30 25	46 61 58 66 64	97 95 56 93 62	න 25 න 30 න
93 94 95 96 97	30,000 30,000 30,000 30,000 30,000	B B B	0S 0S A-305 A-305	63 63 60 64 62	51 68 76 86 76	55 70 25 25 25	65 65 46 65 63	60 63 60 66	60 75 20 96 40	61 60 12 63 62	72 55 63 99 75	60 75 20 30 40
96 99 100 101	30,000 10,000 10,000 10,000	B B B B	0S A-305 A-305 OS	59 56 56 56 58	63 92 72 54 53	50 60 55 80	61 59 56 57 56	54 54 41 43 53	50 75 50 60 125	55 59 43 56 54	70 56 51 63 65	100 75 100 50 125
103 104 105 106 107	10,000 10,000 10,000 50,000	B B B	A-305 A-305 OS OS A-305	47 64 65 66 50	62 62 69 16	60 60 75 70 (1-in. spall)	47 58 65 90 51	57 73 58 76 55	50 75 50 (1/t-in. spall) (1-in. spall)	16 56 88 91 19	139 124 117 97 83	60 T5 80 (1/4-in. spall) (1-in. spall)
105 109 110 111 112	50,000 50,000 50,000 50,000 50,000	3 3 3 3	A-305 0S 0S A-305 A-305	53 65 53 50 59	115 94 68 67	(5/8-in. spall) (1-1/2 in. spall) 75 75 75	54 55 55 61	33 54 62 43 50	(5/8-in. spall) (2-in. spall) 100 100 (1-in. spall)	56 53 49 62	53 97 109 63 90	(3/3-in. spall) (2-in. spall) 100 100 (1-in. spall)
113 114 115 116 117	50,000 50,000 None None None	B B B	05 05 A-305 A-305 A-305	\$7 51 51 57 59	79 101 78 76 11	(1/t-in. spall) 100	13 51 19 57 53	48 56 43 25 45	(1/4-in. spall) (1/2-in. spall)	16 51 16 62 52	106 151 53 61 61	(1/4-in. spall) (1/2-in. spall) — — 30
118 119 120 121 122	None None None 20,000 20,000	B B T T	0S 0S 0S A-305 A-305	55 51 70 67	64 43 79 92 97	35 35	12 52 55 73 69	22 70 50 52 60	30 30	39 15 53 71 67	20 63 19 146 110	 30 39
123 124 125 126 127	20,000 20,000 20,000 20,000 20,000	7 7 7	0S 0S A-305 A-305 OS	59 63 57 75 66	65 71 54 54 65	60 60 30 30 20	59 63 59 76 68	51 47 30 37 61	100 60 25 25 20	52 63 57 74 55	71 58 56 541 57	100 60 25 25 20
128 129 130 131 132	20,000 30,000 30,000 30,000 30,000	7 7 7 7	05 A-305 A-305 05 05	67 52 60 70 54	65 93 83 19 53	20 50 60 - 75 75	68 54 61 72 56	· 35 96 69 60 60	15 60 75 75 (1/4-in. spall)	57 53 56 72 47	53 52 51 63 64	50 60 75 75 (1/1-in-spall)
133 134 135 136 137	30,000 30,000 30,000 30,000	T T T	#-305 #-305 05 05 #-305	58 62 61 62 49	91 72 43 59 79	50 75 40 40 100	ડક હ હ છ ડ	47 54 29 33 31	50 50 40 50 110	58 63 60 58 49	57 45 60 83 70	50 50 50 50 210
138 139 140 141 142	40,000 40,000 40,000 40,000	****	A-305 0S CS A-305 A-305	55 65 65 59 57	77 69 81 94 86	75 55 60 60 60	56 66 67 53 62	34 39 29 73 75	90 65 70 75 50	54 61 52 59	53 57 54 92 106	90 65 TO T5 50
143 144 145 146	\$0,000 \$0,000 50,000 50,000	7	05 05 A-305 A-305	62 51 52 17	81 93 89 73	75 (3/8-in. spall) 125 80	52 52 63	71 88 73 54	75	62 51 50 43	98 117 89 113	75 (1-in. spell) 150 75

(Continued

									197	3-1976 R	eading	(B			
				2624 C	ycles	1973	2760 Cy	cles,	1974	2872 C	ycles,	1975	3	018 c	ycles, 1976
Beam No.	fominal Stress psi	Steel Posi- tion	Type Steel Defor- mation	Con- dition	<u> \$v²</u>	Max Crack Width 1/1000 in.	Con- dition	3 v ²	Max Crack Width 1/1000 in.	Con-	4 √ ²	Max Crack Width 1/1000 in.	Con- di- tion	<u>%v²</u>	Max Crack Width 1/1000 in.
148	50,000	T	os		##		Unloaded	##			_				
149	50,000	T	A-305	68		75	66		500¥	61	73	500	61	100	(4-in. spall)
150	50,000	T	A-305	65		60	65		70	62	73 61	70	64	104	75
151	50,000	T	05	57		70	58		70	57	62	60	56	63	(1/2-in. spall)
152	50,000	T	08	57 54		70 60	54		55	5ì	52	50	53	52	50
153	None	T	A-305	44		0	36		0	16	50		26	52	
154	None	T	A-305	55		0	54		Ö	54	84			52 31 81	
155	None	T	A-305	76		0	65		0	54 61	82		55 65	81	
156	None	T	08	52		0	27		0	25	50 84 82 83		22	81	
157	None	T	08	52		0	51		0	49	83		50	90	
158	None	T	os	51		0	50		0	50	74		51	79	(2-in. spall)

							_	19	77- Readings			
				3	095_0	ycles, 1977	3	3242 Cycles, 1978				les, 1979
				Con- di- tion	% √ ²	Max Crack Width 1/1000 in.	Con- di- tion	<u>≴v²</u>	Max Crack Width 1/1000 in.	Con- di- tion	<u>\$v</u> ²	Max Crack Width 1/1000 in.
148 149 150 151 152	50,000 50,000 50,000 50,000 50,000	T T T	08 A-305 A-305 08 08	64 63 53 53	67 65 63 67	(4-in. spall) 75 (5/8-in. spall) 50	62 63 45 54	50 60 32 33	(6-in. spall) 75 (1-in. spall) 50	61. 62 45 52	93 90 54 96	(6-in. spall) 75 (1-in. spall) 50
153 154 155 156 157	None None None None	T T T	A-305 A-305 A-305 OS OS	29 55 23 54	53 74 82 82 80		26 61 66 23 57	35 24 53 52 28		19 59 65 21 49	55 52 56 82	
158	None	T	os	50	68		52	36	(2-in. spall)	50	74	(2-in. spall)

Satisfactory pulse velocity readings were not obtained in 1973 and 1974. One rebar failed during winter of 1973-1974.

Ū

										E	xposure	Rack, I	Row 9	(W to	<u>E)</u>
			Water- Cement	C					1973	- Re	adings				
Sphere	Agguegate	Combination	Ratio	Cement Factor	Air	1973	1974	1975	1976	1977	1978	1979			
No.	Fine	Coarse	gal/bag	bags/cu yd	**	*v2	<u> 102</u>	% ²	%v2	% √2	*v2	₹v2			
11B	Nat. sand A	Nat. gravel A	4.5	7.1	4.0	52	49	33	NR	Failed					
12D	Nat. sand A	Nat. gravel A	5.0	6.2	2.3	NR	NR	NR	NR	NR	Failed				
13D	Nat. sand A	Nat. gravel A	5.5	5.3	4.7	NR	NR	NR	NR	NR	Failed				
21V	Crushed	Nat. gravel A	4.5	7.3	4.5	66	60	80	73	73	73	66			
21B	Crushed	Nat. gravel A	4.5	7.3	4.3	78	76	72	62	65	65	62			
22A	Crushed	Nat. gravel A	5.0	6.4	4.8	95	93	88	81	83	83	79			
23A	Crushed	Nat. gravel A	5.5	5.6	4.5	62	62	70	65	62	59	52			
23B	Crushed	Nat. gravel A	5.5	5.6	4.6	43	40	67	61	63	59 61	57			
53A	Blend B	Nat. gravel A	5.5	5.2	5.1	NR	NR	NR	Failed						
53B	Blend A	Nat. gravel A	5.5	5.1	4.3	NR	NR	NR	Failed						
71A	Crushed	Rock C	4.5	7.4	6.8	Failed									
92E	Blend C	Rock C	5.0	6.3	3.9	NR	NR	NR	Failed						
120	N-A send A	Nat amount A			5 6	177	100	377	****						

Table 1-CRMI-PB (Continued)

Section 4

Record of Testing of Prisms Made for Cement-Replacement Materials Investigation,

Phase B, 1953- (Installed December 1953)

										Beach Row 2
								1976-	Readings	
Mix No.	Specimen	Port- land Cement	Max Aggr Size _in.	3040 Cycles 1976 5v ²	3117 Cycles 1977 19 ²	3264 Cycles 1978 2v ²	3357 Cycles 1979 5v ²		,	
a	B-11	100	6							
ъ	B-30 B-31 B-32	100	3	75 89 91	70 (1 101	65 54 70	42 50 39			
c	B-61 B-62 B-63	100	3*	96 96	108 97	107 106	81 81			
đ	B-48	55 †	6							
e	B-110 B-111	65‡	6							
f	B-77 B-78 B-79	55t	3							
g	B-93 B-94 B-95	65‡	3	88	90	91	65			

Water-cement ratio (by wt), 0.5; that of all other specimens, 0.8. 45% fly ash used as replacement material.
35% natural cement used as replacement material.

Table 1-CERL-FC

Record of Testing of Concrete Beams for CERL Fibrous Concrete Program Installed January 1975

					~~					Rack	Row 3
						75 – 197′					
				Jan 1975		Jun I			76		77
M:x	Beam	Flaw		0 cycles		66 c	rcles	212 c	ycles	289 c	ycles
No.	No.	in.	<u>%E</u>	<u>fps</u>	%v ²	%E	%v ²	<u>%E</u>	<u>%v²</u>	<u>%E</u>	<u>%v</u> 2
0-1	0	0	100	14,150	100	110	161	110	102	110	94
	1	0	100	14,000	100	104	145	109	. 104	109	87
	2	0	100	13,855	100	105	148	††			
	3	H.L.*	100	13,040	100	**	**	++			
	4	1/16+	100	13,435	100	**	**	††			
	5	1/8	100	13,300	100	**	**	++			
0-2	10	0	100	13,435	100	102	157	103	94	105	94
	11	0	100	13,570	100	100	158	99	100	101	94
	12	0	100	13,435	100	101	165	++			
	13	H.L.	100	13,300	100	103.	160	††			
	14	1/16	100	12,545	100	85	176	++			
	15	1/8	100	12,545	100	90	156	††			
0-3	20	0	100	14,150	100	104	153	104	104	108	94
	21	0	100	14,300	100	104	154	105	96	109	94
	22	0	100	14,150	100	101	157	††			
	23	H.L.	100	13,855	100	100	168	††			
	24	1/16	100	13,435	100	79	161	++			
	25	1/8	100	13,570	100	93	150	††			
0-4	30	0	100	13,855	100	101	155	111	96	111	102
	31	0	100	13,570	100	108	154	113	106	115	89
	32	0	100	13,855	100	102	160	++			
	33	H.L.	100	13,435	100	102	153	†† 			
	34	1/16	100	13,040	100	100	159	††			
	35	1/8	100	12,915	100	78	170	††			
0-5	40	0	100	14,150	100	100	161	114	112	113	98
	41	0	100	14,150	100	103	157	104	107	109	98
	42	0	100	14,000	100	101	174	††			
	43	H.L.	100	13,855	100	97	164	††			
	44	1/16	100	13,170	100	77	172	†† **	:		
	45	1/8	100	12,915	100	72	158	††			
					(Cont	inued)		_ 			

Hairline crack.

Unable to obtain reading.

[†] In two pieces. †† Shipped to CERL in July 1976 for laboratory tests. (Sheet 1)

(Issued August 1980)

Section 5

Table 1-CERL-FC (Continued)

				_				Rack	Row	3
						1978-	Readings			_
				78		79				
Mix	Beam	Flaw	<u>436 c</u>	ycles	<u>529 c</u>	ycles				
No.	No.	in.	<u>%E</u> _	%v ²	<u>%E</u>	<u>%v²</u>				
0-1	0	0	111	88	**	**				
	1 2 3 4 5	0 0 H.L.* 1/16† 1/8	109	87	116	92				
0-2	10	0	106	92	109	92				
	11	0	104	98	104	100				
	12	0								
	13	H.L.								
	14 15	1/16 1/8								
	15	1/0								
0-3	20	0	109	94	111	96				
	21	0	109	86	110	96				
	22	0								
	23 24	H.L. 1/16								
	25	1/18								
	-/	_, -								
0-4	30	0	114	102	110	98				
	31	0	116	92	114	95				
	32 33	0 H.L.								
	34	1/16								
	35	1/8								
0-5	40	0	114	92	113	85				
U -)	41	Ö	109	72 **	109	98				
	42	Ö	,			70				
	43	H.L.								
	44	1/16								
	45	1/8								

^{*} Hairline crack.

^{**} Unable to obtain reading.

[†] In two pieces.

								1967 Rea				ack, Row 3	1141
Beam No	Batch No.	Type Concrete	O Cycles 1958	150 Cycles 1959 %E	221 Cycles 1960 %E	362 Cycles 1961	451 Cycle 1965	2 19	les Cy 63 1	92 cles (964 Æ	855 Cycles 1965 Æ	985 Cycles 1966 %E	
6894 6896 6898	19	Air	100 100 100	104 103 107	103 101 105	97 95 99	99 98 103	10 9 10	2	97 97 03	97 95 101	97 96 102	93 95 102
6900 6902 6904	20	Air	100 100 100	107 108 107	105 105 105	99 99 99	104 104 102		5 1	04 .04 .02	103 103 101	108 104 103	108 103 103
6906 6908 6910	21	Air	100 100 100	105 105 105	103 104 103	98 98 98	101 101 101	. 10	2	96 99 .01	98 100 101	100 101 97	100 101 99
6912 6914 6916	22	Air	100 100 100	105 102 105	103 101 103	98 96 98	102 99 101	10	xo 1	.03 .00 .00	102 100 100	102 100 100	103 102 101
6918 6920 6922	23	Plain	100 100 100	108 109 105	107 107 104	99 95 99	97 88 100	} {	91 30 91 1	86 70 104	87 65 106	84 43 Failed 106	108
6924 6926 6928	24	Plain	100 100 100	108 103 106	106 100 103	101 95 95	103 95 92	;	06 1 93 93	106 95 86	106 92 82	106 90 48 Faile	107 94 1
							1068.	-1978 Re	adings				
			1326 Cycles 1968 4E	1480 Cycles 1969 4E	1633 Cycles 1970 %E	1802 Cycles (1971 £E	1959 Cycles 1972 %E	2099 Cycles 1973 1E	2235 Cycles 1974 \$E	2347 Cycle 1979 <u>4</u> E	s Cyc	93 2570 les Cycles 76 1977 E %E	2717 Cycles 1978 \$E
6770 6772 6774	1	Air	104 99 99	102 100 101	99 98 101	95 95 99	95 95 98	104 141 145	106 147 145	108 147 146	11 15 14	8 108	99 119 109
6776 6778 6780	2	Air	92 99 102	94 98 98	90 94 96	88 92 91	88 90 90	93 94 101	101 99 100	103 102 101	9	9 103 8 104 9 110	101 113 114
6782 6784 6786	3	Air	98 98 98	98 96 98	96 96 97	91 91 95	91 89 94	91 91 90	92 92	9° 14 96		95 14 110 13 92	113 109 107
6788 6790 6792	4	Air	95 101 101	95 101 105	93 99 103	95 101 98	94 99 100	89 95 100	89 103 102	92 103 106	10		94 105 102
6806 6808	5	Air	99 93	99 96	97 96	90 90	94 91 ·	89 89	91 94	91 95		% 98 77 84	96 91
6812 •6814	6	Air	88 94	93 98	91 98	91 88	82 90	82 92	85 92	86 93	9	94 80 90 74	89 100
6816 6818 6820	7	Air	90 86 84	87 84 82	89 86 84	83 84 82	87 84 83	78 79 75	80 79 72	80 79 74	7	75 70 74 · 59 52 87	78 58 Faile
6822 6824 6826	8	Air	91 87 83	86 83 83	88 87 82	88 74 88	87 74 89	87 83 76	89 84 76	89 86 79	: 8	32 64 30 79 30 80	101 93 93
6828 6830 6832	9	Air	91 88 88	89 84 84	89 86 86	79 74 85	81 73 86	83 71 86	80 71 79	82 73 81		75 60 53 136 77 117	86 99 91
6834 6836 6838	10	Air	92 94 100	88 91 97	90 93 98	92 87 95	90 90 94	84 85 90	85 85 90	85 89 92	1 1	78 88 31 90 90 86	98 103 121
6846 6848 6850	n	Air	100 90 92	95 88 88	97 90 90	88 84 90	87 83 89	85 76 87	87 78 89	8) 78 90	, 6	87 82 78 90	136 111 105
6852 6854 6856	12	Air	96 94 96	93 94 92	96 93 91	89 90 82	89 89 83	92 86 84	92 87 82	92 89 83		38 97 92 89 39 105	105 98 66

(Continued)

(Sheet 2)

							107	8- 1978 R	eadinge	Expo	sure Pac	, Row 3	(W to F)
			1326 Cycles	1480 Cycles	1633 Cycles	1802 Cycles	19:59 Cycles	2099 Cycles	2235 Cycles	2347 Cycles	2493 Cycles	2570 Cycles	2717 Cycles
Beas No.	Batch No.	Type Concrete	1968 LE	1969 %E	1970 LE	1971 %E	1972 LE	1973 %E	1974 %E	1975 EE	1976 45	1377 %E	1978 %E
6858 6860 6862	13	Air	90 91 102	90 90 101	90 92 99	87 99 96	87 99 96	85 88 102	86 87 104	88 88 124	88 88 107	89 90 109	101 110 128
6864 6866 6868	' 14	Air	99 98 97	96 98 96	97 96 95	90 90 97	91 91 92	95 90 90	94 90 91	96 91 93	93 90 89	93 85 90	108 104 99
6870 6872 6874	15	Plain	87 97 92	85 95 90	84 93 91	Failed Failed Failed							
6876 6878 6880	16	Plain	79 79 82	77 76 79	Failed Failed Failed								
6982 6884 6886	17	Air	99 102 100	97 100 96		ared fro ared fro			99	100	92	99	138
6888 6890 6892	18	Air	102 100 102	100 101 101	97 99 104	95 94 103	93 102	96 94 106	96 95 107	97 95 10 7	97 95 103	98 82 109	133 110 137
6894 6896 6898	19	Air	95 96 103	92 96 101	90 88 103	88 87 160	87 85 98	89 85 109	91 86 109	92 87 108	73 53 119	80 111 84	128 119 121
6902 6904	20	Air	108 105 101	107 103 98	105 102 101	100 101	98 99 111	110 109 117	110 104 116	111 107 117	120 107 121	109 108 115	125 131 125
6906 6908 6910	21	Air	96 100 191	92 100 100	96 99 95	107 105 107	109 106 111	114 113 109	114 113 117	114 114 116	124 118 119	103 116 113	135 124 121
6912 6914 6916	22	Air	103 102 101	103 100 102	101 98 100	109 108 114	108 106 113	110 113 114	111 112 115	111 112 115	113 114 117	103 128 117	118 145 131
6918 6922	23	Plain	76 107	74 Failed	74	94	95	115	113	114	111	112	138
6924 6926	2 ⁴	Plain	106 92	Failed Failed									
			2810 Cycles 1979 \$E				•	•					
6770 6772 6774	1	Air	101 119 109										
6776 6778 6780	2	Air	107 114 122										
6782 6784 6736	3	Air	115 114 107										
6788 6790 6792	i,	Air	99 105 108										
6806 6808	5	Air	99 92										
6812 6814	6	Air	103 92										
6816 6818	7	Air	78 62										

(Continued)

Exposure Rack, Row 3 (W to F)

					1979-	Readings		
			2810	 				
			Cycles					
Bean	Batch		1979					
No.	No.	Type Concrete	SE_					
6522	8	Air	106					
6824	Ü	Alr	100					
6826			102					
0020			98					
6828	•							
6020	9	Air	97					
6830 6832			103					
0032			93					
6834	10	44						
6034	10	Air	105					
6836 6838			104					
0030			122					
6846	11	Air	120					
6848	11	AIF	130					
6850			112					
0050			110					
6852	12	Air	109					
6852 6854	¥C	MAI	109					
6856			99 86					
W,70			55					
6858	13	Air	104					
6360			121					
6360 6862			136					
6864 6866	14	Air	113					
6866			105					
6868			102					
6882	17	Air						
6884		744						
6884 6886			144					
			477					
6888	18	Air	144					
68 c o		****	111					
6892			138					
2-			230					
6894	19	Air	129					
6896 6898		***************************************	120					
6898			125					
			,					
6900	20	Air	130					
6902			130					
6904			126					
6906	21	Air	135					
6908			127					
6910			122					
			===					
6912	22	Air	122					
6914			139					
6916			133					
6918	23	Plain	142					
		•						

			1.72	1.45											W to E)
		Cycles,	1969		Cycles,	1970	1440	Cycles,	1971		Cycles	1972		Cycles,	1973
Beam			Condi-		²	Condi-	4	<u>/2</u>	Condi-	%	v ²	Condi-	\$1	<u>~</u> _	Condi-
No.	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion	Trans	long.	tion
1	128	96	26	130	94	31	93	88	26	85	84	28	Ş	Ş	29
2	98	84	31	89	87	30	60	73	33	62	75	34			37
3	105	87	33 26	105	90	28	79	73	33 26	40	66	34 32 30 26			22
4	100	110		85	111	39 30	57	85 78	36	60	88	30			31 21
5	112	92	23	103	94	30	73	78	36 33	41	65	26			21
6	92	100	23	85	101	27	62	75	28	58	70	22			31
7	87	95	31	81	96	49	60	83	48	56	80	54			45
8	108	89	67	95	90	52	71	**	49	63	**	52			47
9	89	60	36 29	79 82	62 85	53	56 58	**	48	34	**	39 34			54
10	92	80	29	82	85	29	58	**	31	33	**	34			54 32
11	87	79	20	76	81	26	61	62	27	43	50	18			12
12	88	64	24	81	64	30	70	77	40	22	65	26			41
13 14	74	73	30	76	74	27	75	44	30	37	**	21			
14	85	97	30 37	82	97	35	63	64	30 45 26	48	63	36 24			46
15	74	98	23	69	100	26	62	69	26	26	69	24			23 46 43
16	81	96	51	78	98	22	70	74	20	26	95	26			19
17	72	85	69	76		75	64	11	70	45	**	70			70
18	76	75	50	74	99 88	46	66	63	42	30	76	34			41
19	76	**	50 68	74	**	71	62	:1	65	37	**	69			67
20	78	97	37	83	98	34	54	77	65 32	56	92	30			41

	Cycles,	1974 Condi- tion	1085 Ev	Cycles, 2 Long.	Condi-	2131 Trans	Cycles, v ² Long.	1976 Condi- tion		Cycles, v ² Long.	1977 Condi- tion		Cycles y ² Long.	Condi- tion
1 2	\$ \$	32 40	§§ 60	60	46	53	58	47	52	54	52	51	52	40
) 14 5		§§ 35 30	# 11	114 113	16 24	**	93 104	35 29	**	83 101	39 41	**	76 43	34 14
6 7 8 9		40 53 54 §§ 50	\$\$ 70 62	85 57 94	146 144 38	** 54 32	84 57 95	56 59 56	** 55 29	74 55 84	68 75 64	## 54 49	67 84	78 75 50
11 12 13 14 15		22 65 §§ 51 §§	8§ 65 60	103 67	29 36	57 53	93 68	1414 55	57 53	87 64	41 59	39 52	59 60	46 50
16 17 18 19 20		41 77 47 55 42	27 61 25	111 8 86 90	18 72 33	46 ** 47 41	106 ## 87 91	40 82 60 50	45 48 48	90 ** 80 88	նկ 93 55 55	45 ## 48	91. ** 37	58 94 67 55

	2448 Trans	Cycles. 2 Long.	1979 Condi- tion
1 2 3 4 5	\$5 **	\$\$ 48	55 61
5		65 77	57 48
6 7 8 9	55 44		141 136
10		61	100
13 12 11	55 ##	51	51
14 15		45	74
16 17 18 19	**	61 70 37	57 148 98
20		53	63

A satisfactory reading was not obtained.
 Eatisfactory pulse velocity readings were not obtained in 1973 and 1974.
 Shipped back to Concrete Laboratory.

Section 6

						Beach	Row 2
	No. of			Average Con	dition		
Type of	Beam	2355	2448				
End	Ends	Cycles	Cycles				
Protection	1 Used	1978	<u> 1979 </u>				
Flush (1)	2	12§	Failed				
Flush (6)	2	14	4				
Flush (7)	2	5§	2§				
Flush (9)	2	2§	15				
Ext (1)	4						
Ext (2)	14	14	18				
Ext (3)	4						
Ext (4)	14	16	21				
Ext (5)	14						
Ext (6)	14						
Ext (7)	14	2§§	2§§				
Ext (8)	14	455	755				
Total	40						

[§] Based on 1 beam end.

^{§§} Based on 3 beams ends.

Record of Testing of Concrete Beams for WES Fibrous Concrete Program

Installed July 1975

Pear Ho. Load, 1b Er Page 1976 1977 1979 1														Rack Rows L and 6
H-3				0 Cycles		146 Cy		223 (37C C		463 C		
H-3	Beam No.	Load, 1b	7R.	fps	372	%E_	5v2	žE_	*v2	SE.	5v2	%E	% √ ²	
#-3 2720 * 16.095 100 * 103 * 102 * 101 * 106 1-1 k340														
1-1			_											
1-3			•		100	•		•		*		*		
1-1		4340		15,560	- 1						91			
14,590		l		16,317	- 1									
		ı												
1.		1												
1-1		1		14,790										
1-3		i			- 1								99	
1		- 1			- 1									
H-3 H-1 11,765 H-3 H-1 11,765 H-3 H-1 11,765 H-3 H-1 11,765 H-3 H-1 H-1 H-1,765 H-3 H-1 H-1 H-1,765 H-3 H-1 H-1 H-1,765 H-3 H-1,765 H-3 H-1 H-1,765 H-3 H-1,765 H-3 H-1,765 H-3 H-1,765 H-3 H-1,765 H-4,765 H-5 H-7 H-7 H-8 H-1,765 H-		1												
N-1	M-3	(- 1									
N-3	H-1	1		14.765	1		108		102				106	
0-1		- 1			1									
14,370		1			1									
P-2		- (14,370	- [10%							
B-7		i i			ł				103		102		107	
H-7	P-2	7		15,245	•		109		105		105		m	
H=8							<u>6- b</u>	y 6- 1	y 30-11	a. Bear	<u>==5</u>			
H-8	H-7	None	100	16,235	100	98	105	106	103	102	103	101	103	
H-15	B-8	1	1		1									
1-8		1	1		- 1				101	102			105	
R-B	H-16	1	- 1	15,825	- 1	102	108	108	99	102	101	103	10ե	
	I-8	1		15,925		120	105	116	97	102	103	102	101	
L-8 16,130 103 108 103 101 101 102 97		ſ	- 1	14,970	1	109	109	125						
N-7		l	- 1		1				100	105	101	103	99	
0-8 0-16 13,690 100 103 103 101 105 97 100 99 0-16 15,245 68 110 97 100 95 101 97 100 99 100 6-by 6-by 36-in. Beams I-7 None 100 15,675 100 105 105 105 109 111 102 111 103 111 103 13-7 141,495 103 106 101 109 100 101 109 100 99 90 90 90 90 90 90 90 90 90 90 90 9	L-6	-	1	16,130	ļ	103	108	103	101	101	101	102	97	
0-8 0-16 15,245 88 110 97 100 95 101 97 102 14,705 106 105 106 100 104 100 109 100		I	-	14,125	1	100	102	103	9h	103	97	101	93	
0-16		- 1	- [13,890	-		103	103	101	105		100		
1-7		į.	1	15,245	1									
I-7	P-8	1	Ŧ	14,705	7	106						109	100	
T-15		_												
J-7 J-8 J-8 J-16 I\(\frac{1}{4}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{495}{105} 1\(\frac{1}{2}\),\frac{100}{105} 1\(\frac{1}{2}\)		none	100		100									
J-8 11,495 109 104 118 96 97 98 190 98 J-15 14,495 100 104 100 97 100 99 97 99 J-16 14,565 115 109 106 103 112 101 100 102 K-7 14,780 103 106 109 98 115 100 100 102 K-15 14,565 106 106 103 101 97 103 154 105 K-16 14,285 102 109 100 102 100 104 101 102 L-16 14,635 104 104 108 101 102 101 107 93 L-16 14,085 205 109 210 99 210 100 97 99 H-8 14,085 205 109 210 99 103 97 190 <td></td> <td>ł</td> <td>- 1</td> <td></td> <td>- 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		ł	- 1		- 1									
J-15 J-16 J1,565 J1,665		1	- 1		1				99					
3-16	J-15	1	- [1									
K-15 14,565 106 106 103 101 97 103 154 105 K-16 14,285 102 109 100 102 100 104 101 102 L-15 14,635 104 104 108 101 102 101 107 93 L-16 14,635 103 103 106 100 100 107 99 H-8 14,085 205 109 210 99 210 101 201 100 M-15 15,075 100 104 109 99 103 97 199 97 M-16 14,850 112 109 102 112 91 109 99 M-7 14,550 112 109 102 112 105 105 105 102 M-8 14,085 112 102 124 99 131 95 104 97 M-8-8 14,085 112 102 124 99 131 95	<i>3</i> -16	1	- 1	14,565	- 1					115				
K-15 14,565 106 106 103 101 97 103 154 105 K-16 14,285 102 109 100 102 100 104 101 102 L-15 14,635 104 104 108 101 102 101 107 93 L-16 14,635 103 103 106 100 100 107 99 H-8 14,085 205 109 210 99 210 101 201 100 M-15 15,075 100 104 109 99 103 97 199 97 M-16 14,850 112 109 102 112 91 109 99 M-7 14,550 112 109 102 112 105 105 105 102 M-8 14,085 112 102 124 99 131 95 104 97 M-8-8 14,085 112 102 124 99 131 95	K-7	1	!	14.780		103	106	100	08	115	100	05	100	
K-16		1	1		- 1									
L-16 14,635 103 103 106 100 106 100 97 99	K-16	- [- 1		- 1									
H-8		}			1	104	104	108	101		101	107	93	
H-15 15,075 100 104 109 99 103 97 193 97 H-16 14,850 112 109 109 102 112 91 109 99 H-7 14,850 118 105 106 109 112 105 105 105 102 H-8-8 14,085 112 102 124 99 131 95 104 97 H-15 14,020 109 106 112 101 106 102 102 100 H-16 14,020 109 106 112 101 106 102 102 100 H-16 14,020 100 110 112 102 103 102 103 103 105 100 103 12,710 97 108 103 102 100 101 97 101	L-16	l	-	14,635	-	103	103	106	100	106	100	97	99	
H-15		J	1		1				99	210	101	201	100	
R-7		i												
R-S 14,085 112 102 124 99 131 95 104 97 R-15 14,020 109 106 112 101 106 102 100 R-16 14,020 100 110 112 102 103 102 103 0-7 13,825 106 110 109 103 105 100 103 0-15 12,710 97 108 103 102 100 101 97 101		1	1		-									
N-15 14,020 109 106 112 101 106 102 102 100 N-16 14,020 100 110 112 102 103 102 103 0-7 13,825 106 110 109 103 105 100 103 0-15 12,710 97 108 103 102 100 101 97 101		I			1									
N-16		1	1		1									
0-7 13,825 106 110 109 103 105 100 103 0-15 12,710 97 108 103 102 100 101 97 101		I	1		1									
0-15 12,710 97 108 103 102 100 101 97 101		- 1	1		- 1									
		1	1		-									
		₹	1		1									

[·] Loaded beams not tested for SE.

	Cementiti	ous Mat'l	Nominal				25		1974-197 347	77 Readin		- Ar	20
Core	Type II Portland Cement	Replace- ment Material	Cement Factor bags/	Water- Cement Ratio	Air Content	22 Cyc 19	les 74	Cyc	1es 75	24 Cyc 19	les 76	Cyc	70 les 77
No.	<u> </u>	3	eu yd	by wt	3	_≴E_	xv2	<u> </u>	<u></u> ₩2	% E	5 v ²	_4E_	5 v ²
5 H 5B	100	0	2-1/4	0.73	3.9-6.1	70 NR	53 69	70 K3	94 NR	60 Failed	75	64	Broker
12T 12M	100	0	3	0.55	6.3-7.4	62 48	92 68	62 NR	93 96	60 Failed	73	46	65
13T 13M 13B	75	Pumicite 25	3	0.58	6.2-7.6	73 MR 96	† 66 89	Failed 96	Failed 113	Failed NR	88	7 5	79
15T 15M	65	Ent cem	3	0.56	6.5-8.7	70 63	91 94	"0 62	9Ļ 120 .	68 60	94. 67	60 51	88 71
17 M 17B	92	Une D 8	3	0.55	5.3-7.4	50 77	64 95	Failed 78	Failed 117	69	77	80	X R
188	70	Fly ash 30	3	0.55	6.1-7.7	106	100	105	123	88	77	70	68
19 T 19B	100	0	L,	0.42	6. 9 -7.9	68 67	96 94	69 66	120 135	96 49	79 78	87 Failed	73
20B 20M 20T	75	Pumicite 25	4	0.45	5.7-8.5	48 84 97	67 76 79	51 64 102	51 96 115	NR 71 68	49 86 80	Failed 36 89	67 64
23M 23B	80	Cal sh 20	l _a	0.45	4.5-6.1	52 52	66 73	55 51	116 94	55 42	91 93	Failed 67	78
241 241	94	Une D 6	<u>L</u>	0.42	6.5-7.8	75 82	91 93	72 84	116 131	61 94	104 90	61 61	87 81
									1978-	Read	dings		
						27 Cyc 19	les 78	C	2810 ycles 1979				
						≸E_	x v ²	\$E	5v2	_			
12T	100	0	3	0.55	6.3-7.4	Broken	Broken						
13B	75	Punicite 25	3	0.58	6.2-7.6	104	73	100	ār				
15T 15M	65	Nat cem 35	3	0.56	6.5-8.7	51 51	79 †	50 46	KR NR				
17B	92	Une D 8	3	0.55	5-3-7-4	90	ЖR	87	ЖR				
18B	70	Fly ash 30	3	0.55	6.1-7.7	51	65	<u>L</u> L	nr				
19T	100	0	4	0.42	6.9-7.9	87	68	MR	S.				
20 N 20B	75	Pumicite 25	ħ	0.45	5.7-5.5	¥R 121	86 62	NR	ar ar				
23B	80	Cal sh 20	14	0.45	4.5-6.1	87	71	82	NR				
24T 24M	94	Unc D	4	0.42	6.5-7.8	65 67	82 72	68 78	er er				

(Sheet 5)

[†] End of specimen too rough to obtain satisfactory reading. RR Satisfactory reading was not obtained although un attempt was made to obtain one.

Beach	F		10	•-	12
Beacn	NOV	1	LW.	to	2, }

						····		1970	-1976 F	adings	Beach how	(1 (W to E)
Cube No.	Cementity Type II Portland Cement	Replace- ment Material	Nominal Cement Factor bags/ cu yd	Water- Cement Ratio by Wt	Air Content	1633 Cycles 1970 4V ²	1502 Cycles 1971 gv ²	1959 Cycles 1972 \$V ²	2099 Cycles 1973 \$v ²	2238 Cycles 1974 \$v ²	2350 Cycles 1375 5V ²	2496 Cycles 1976 27 ²
5	100	o	2-1/4	0.73	3.9-5.1	Failed						
7	50	Slag 50	2-1/4	0.76	4.7-6.6	Failed						
8	65	Nat cem 35	2-1/4	0.76	5.7-6.4	Failed						
9	70	Cal sh 30	2-1/4	0.79	5.9-6.3	Failed						
10	88	Unc D 12	2-1/4	0.80	5.5-6.2	†	Pailed					
104	88	Unc D 12	2-1/4	0.80	5.5-6.2	t	Failed					
11	70	Fly ash 30	2-1/4	0.73	5.5-6.2	74	71	60	**	83	51	Failed
114	73	Fly ash 30	2-1/4	0.73	5.5-6.2	Fail e d						
12	100	0	3	0.55	6.3-7.4	Ť	Failed					
13	75	Posicite 25	3	0.58	6.2-7.6	94	15	N R	##	Failed		
14	50	Slag 50	3	0.60	5.8-6.3	100	85	66	**	65	38	32
15	65	Nat cem 35	3	0.56	6.5-8.7	82	48	49	**	14	är	XR
16	75	Cal st. 25	3	0.59	5.7-7.4	91	IR	91	**	Failed		
17	92	Une D 8	3	0.55	5.3-7.4	98	85	77	##	72	K R	i.
18	70	Fly ash 30	3	0.55	6.1-7.7	85	15	Failed				
						2573	2720	2613	771	Readings		
						Cycles	Cycles	Cycles				
						1977 5 8 ²	1978 5 v ²	1979 20 ²				
14	- 50	S136 50	3	0.60	5.8-6.3	Failed	<u></u>					
15	. 65	Nat cem 35	3	0.56	6.5-8.7	Fmiled						
17	92	Une D 8	3	0.55	5-3-7-4	89	103	64				
18	70	Fly ash	3	0.55	6.1-7.7	Failed						

[†] End of specimen too rough to obtain satisfactory reading. set Equipment salfunctioned in 1973.

Section 9

										sure Ra	ek, Rov	ê, West End
						1	969-1973	Observa:	tions			
			19	69	1	970		1971		1972		1973
Speci-				Condi-		Condi-		Condi		Cond	<u></u>	Condi-
⊃en_	Type Cement	Type Water	Cycles	tion	Cycles	tion		tion		s tio		iles trus
			Spec	isens vi	th Reinf	oreing b	a:					
S-13-9	Aluminous	Sea (normal)	1401	Fair	4554	Fair	¥723	Fair	¥580) Fai	ir 50	20 Fair
						1	974-1978	Observat	tions			
			19	74	197		19		10	77	19	75
				Condi-		Condi-		Condi-		Condi-		Condi-
			Cycles		Cycles	tion	Cycles	tion	Cycles		Cycles	tion
S-13-R	Aluminous	Sea (normal)	515 9	Pair	5271	Fair	5417	Fair	5kgà	Fair	5642	Fair
						1	979-	Observat	ions			
			19	19								
				Condi-								
			Cycles	tion								
S-13-R	Aluminous	Sea (normal)	5735	Fair								

Section 10

												5 (W to E)
Beam No.	Mixture No.	Cement/ Aggregate Ratio as Shot (by wt)	Position of Panel When Shot	Type Cement	Fine Aggregate	Reinforcing Mesh	1793 Cycles 1975 \$E	1939 Cycles 1976 ZE	2016 Cycles 1977 ZE	Readi 2163 Cycles 1978 ZE	2256 Cycles 1979 	
1A	1	1:3.5	Vertical	II, A	Sand A	Yes	96	101	102	NR	nr	
18	1	1:3.5	Vertical	II, A	Sand A	Yes	104	Failed				
2A	5	1:4.0	Vertical	II, A	Sand A	No	123	128	91	NR	NR	
2C	2	1:4.0	Vertical	II, A	Sand A	Yes	105	121	107	ЯR	NR	
2D	2	1:4.0	Vertical	II. A	Sand A	Yes	78	81	NR#	NR	NR	

^{*} NR denotes a satisfactory reading could not be obtained.

Table 2-SC

Section 10

Record of Testing of Concrete Beams, Missouri River Division Program

1965- (Installed November 1965)

				<u> </u>					-/- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		re Rack,	Row 5 (W to E)
						- 0	130	286	965-1972 471	Keading 625	⁽⁸ 778	947	1104
Beam No.	Mixture No.	Type Cement	Fine Aggregate	Coarse Aggregate	Air Content	Cycles 1965 5E	Cycles 1966 LE	Cycles 1967 SE	Cycles 1968 9E	Cycles 1969 5E	Cycles 1970 %E	Cycles 1971 E	Cycles 1972 LE
sc-1	6	I, D	Sand D	Gravel A	7.5	100	92	94	100	100	101	96	65
sc-s	6	I, D	Sand D	Gravel A	7.5	100	97	99	96	94	91	73	49
SC-3	6	I, D	Sand D	Gravel A	7.5	100	102	102	100	102	102	80	65
								1	973-	Reading	s		
						1244 Cycles 1973 4E	1383 Cycles 1974 <u>4</u> E	1495 Cycles 1975 \$E	1641 Cycles 1976 \$E	1718 Cycles 1977 \$E	1865 Cycles 1978 %E	1958 Cycles 1979	
SC-1	6	I, D	Sand D	Gravel A	7.5	89	81	80	82	NR	Failed		
SC-2	6	I, D	Sand D	Gravel A	7.5	NR	Failed						
SC-3	6	I. D	Sand D	Gravel A	7.5	45	NR	NR	NR	NR	NR	Failed	

							1956-106	7 Readir	ga .	Exposu	re Rack,	Row 5	W to E)
Beam No.	Coment	O Cycles 1956	144 Cycles 1957 AE	215 Cycles 1958 4E	365 Cycles 1959 \$E	436 Cycles 1960 4E	577 Cycles 1961 18	666 Cycles 1962 4E	TT2 Cycles 1963	907 Cycles 1964 4E	1070 Cycles 1965	1200 Cycles 1966	1356 Cycles 1967 %E
85T-128 85T-130 85T-132 85T-134 8ST-136	Type II PCt	100 100 100 100 100	121 117 120 125 123	128 123 126 133 132	130 125 126 134 132	125 123 122 132	120 116 115 123	120 114 114 125	121 116 112 123	121 116 108 122	118 114 108 118	121 114 110 120	120 114 110 118
85T-133 85T-140 85T-142 85T-144		100 100 100 100	123 123 123 127	129 130 130 135	133 132 131 136	128 128 129 13	120 120 119 124	126 121 120 122	121 122 123 122	115 120 118 122	115 120 116 122	117 120 116 122	115 119 116 123
95T-146 95T-148 95T-150 95T-152 95T-154 95T-156	PRFS* No. 8	100 100 100 100 100	112 112 112 114 113 110	120 121 122 123 119	120 120 122 124 123 119	120 121 122 123	110 113 114 116 114	115 111 116 117 116	116 116 116 116 117	112 111 113 114 114	112 111 113 114	111 131 115 116 114	111 111 115 118 115
95T-158 95T-160 95T-162		100 100 100	111 109 111	117 116 118	118 117 120	117 118 119	107 110 110	108 111 110	106 109 108	103 107 106	105 103 102	103 105 106	104 105 106
105T-164 105T-166 105T-168 105T-170	Blend: No. 2 PEFS, 80%; nat cem A, 20%tt	100 100 100 100	116 115 107 114	124 120 113 121	128 123 115 123	127 120 111	120 113 104	120 115 107	119 116 103	118 109 101	116 1 0 9 98	118 109 91	117 110 93
10ST-172 10ST-174 10ST-176 10ST-178 10ST-180	25,411	100 100 100 100	113 110 112 111 111	121 117 119 118 117	122 120 122 120 120	122 117 119 118 117	112 108 111 110 108	111 110 113 110 109	111 108 111 111 107	107 105 109 110 102	105 103 106 108 104	103 100 106 106 101	105 99 110 108 101
115T-182 115T-184 115T-186 115T-188 115T-190 115T-192	Blend: No. 2 PBFS, 75%; nat cem A, 25%	100 100 100 100 100	109 105 108 119 111 109	115 110 1,4 125 118 117	115 113 116 129 120 118	113 113 114 128 **	104 101 102 120	108 103 105 121	102 101 103 121	97 94 96 116	94 89 94 119	92 89 92 118	93 89 92 117
115T-194 115T-196 115T-198		100 100 100	110 106 106	118 114 113	117 111 115	116 109 112	104 93 101	106 92 103	103 92 101	95 83 95	72 81 92	78 94 90	77 93 90
125T-200 125T-202 125T-204 125T-206 125T-208 125T-210 125T-212 125T-214 125T-216	Blend: No. 2 PEFS, 70%; nat cem A, 30%	100 100 100 100 100 100 100 100	106 101 99 100 102 111 113 117 120	110 109 103 104 106 117 120 123 126	112 109 103 100 104 116 126 126 128	110 105 101 100 104 116 121 124	100 83 88 84 90 103 109 114	105 95 89 87 92 107 110 118	100 94 89 78 85 103 110 118	95 92 84 74 79 100 107 111	92 89 75 70 74 95 104 106	90 80 72 62 69 97 101 104	90 81 71 60 69 97 100 107
		1541	1695	1848	2017	2174	968-1979 2314	Reading 2453	2565	2711	2788	2935	3028
		Cycles 1968		Cycles 1970	Cycles 1971 %E	Cycles 1972	Cycles 1973	Cycles 1974 Æ	Cycles 1975 4E	Cycles 1976	Cycles 1977 %E	Cycles 1978 E	Cycles 1979
18T-4 18T-6 18T-8 18T-10 18T-12 1ST-14 1ST-16 1ST-16	PBFS No. 3	109 120 112 113 111 113 106 105	110 117 114 114 112 114 102 103	112 120 113 110 112 108 102 103	112 121 114 103 111 108 102 109	100 105 99 103 116 110 121 116	Failed Failed Failed 97 100 98 75 104	97 102 98 79 150	98 102 100 79 152	148 127 102 NR NR	116 NR 102 NR NR	104 NR 112 NR NR	109 Failed 117 Failed Failed
2ST-20 2ST-22 2ST-24 2ST-28 2ST-30 2ST-32 2ST-34 2ST-36	PBFS No. 4	114 117 120 125 125 125 129 117	118 121 125 123 125 126 120 118	116 119 120 119 118 120 114	117 121 122 124 123 128 118 119	122 123 118 123 127 128 116 115	122 154 123 109 110 110 123 119	153 154 118 98 117 111 124 165	153 160 123 100 118 112 128 165	NR HR 184 147 122 121 134 NR	NR NR 191 NR 141 136 135 NR	NR NR 155 NR 147 142 135	Failed Failed NR Failed NR NR NR Failed

(Continued)

(Sheet 2)

^{*} Fortland blast-furnace slag cement.

** Returned to laboratory 1959.

† Portland cement.

** Hat ceme natural cement.

No A satisfactory re-ding was not obtained although an attempt was made to obtain one.

(Revised August 1980) Table 1-PFS (Continued)

Section 11

						10	68-1070	Readings		Exposu	re Rack,	Row 5	W to E)
Beam No.	Cement	1541 Cycles 1968	1695 Cycles 1969 #E	1848 Cycles 1970 \$E	2017 Cycles 1971 1E	2174 Cycles 1972 E	2314 Cycles 1973	2453 Cycles 1974 \$E	2565 Cycles 1975	2711 Cycles 1976 \$E	2788 Cycles 1977 4E	2935 Cycles 1978 \$E	3028 Cycles 1979 SE
35T-38 35T-42 35T-44 35T-46 35T-48 35T-50 35T-52 35T-54	PBFS* No. 1	126 122 103 99 115 119 117	126 123 102 98 116 121 118 128	124 118 94 97 NR 114 111	121 117 MR MR MR 117 114 MR	118 115 D D D D	97 128	105 N	107	NR	NR		
45T-56 45T-60 45T-62 45T-64 45T-66 1 5T-68 45T-70 45T-72	PBFS No. 2	125 125 113 122 120 119 121	126 126 116 122 123 119 119	125 125 106 124 215 114 110	128 132 113 120 116 119 114 118	116 NR NR NR NR NR NR	MR MR MR MR MR MR 140 MR	98 NR M NR M M 137	98 NR M NR M 142 M	118 D D	·114	118	123
58T-74 58T-76 58T-78 58T-82 58T-84 58T-86 58T-88 58T-90	PBFS No. 5	106 103 109 111 108 111 110	110 104 107 111 120 109 110	114 102 107 112 108 108 107 102	111 99 103 107 99 104 105 96	104 92 97 104 97 102 102	105 94 100 104 99 97 96 70	107 MR 97 M 100 99 88 77	107 MR 99 M 101 99 90 78	NR D 133 114 D 96 100	D 137 113 96 106	142 NR 105	143 D 106
6ST-92 6ST-96 6ST-98 6ST-100 6S:-102 6ST-104 6ST-106 6ST-108	PBFS No. 6	120 126 120 119 125 116 117	120 124 121 118 124 114 119	120 125 115 117 124 113 117	1106 110 110 110 110 110 110	112 115 107 110 116 108 105 92	101 114 113 108 117 104 87	111 114 113 108 117 104 MR 93	111 115 114 111 117 106 MR 95	106 NR D NR AR 108 D	NR NR D D 112	D D 123 NR	125 D
75T-112 75T-114 75T-116 75T-118 75T-120 75T-122 75T-124 75T-126	PBFS No. 7	118 118 122 125 120 111 169 112	117 116 121 126 118 114 111	117 116 119 122 118 109 107	109 114 114 116 114 120 95	106 106 114 111 107 100 203 106	105 109 109 111- 109 57 92 103	103 108 107 113 107 96 92 126	105 110 112 114 112 98 94 127	103 104 110 114 115 98 92	NR NR NR 118 NR 94 132	NR	
85T-128 85T-130 85T-132 85T-134 85T-138 85T-140 85T-142 85T-144	Type II PCt	118 114 106 120 117 119 116 121	116 112 110 119 115 121 114 120	114 110 108 118 115 119 116 118	114 116 109 113 111 107 112 114	123 165 99 105 104 104 109	123 114 107 123 119 114 111	118 114 107 121 116 132 119 118	120 116 111 122 118 130 117 118	118 105 112 122 114 131 118 142	119 115 117 124 117 121 119 146	132 120 125 118 127 138 151	122 122 123 120 127 139 151
987-146 987-148 987-150 987-152 987-154 987-158 987-160 987-162	PBFS No. 8	112 113 117 116 113 101 105 106	110 111 116 114 110 100 105 104	108 111 114 114 112 100 103 105	106 109 116 114 112 100 101	102 105 112 123 121 115 109 116	112 116 119 118 139 83 88 104	114 119 120 174 MR MR MR	114 118 120 160 MR MR MR	NR	D	D	D
10ST-164 10ST-166 10ST-168 10ST-172 10ST-174 10ST-176 10ST-178 10ST-180	Blend: No. 2 PBFS, 80%; nat cem A, 20%††	114 102 82 101 99 106 102 93	116 100 82 101 101 104 103 91	114 98 83 101 99 102 101 91	106 108 92 74 103 103 97 Broken	NR 109 85 D 97 96 95	96 93 85 101 76 80	100 96 NR 102 91 NR	102 96 NB 102 89 NR				

(Sheet 3)

Fortland blast-furnace slcg cement.

Portland cement.

Mat cem = natural cement.

Mat cem = natural cement.

A satisfactory reading was not obtained although an attempt was made to obtain one.

Specimens so deteriorated that no reading can be obtained.

Missing.

Record of Testing of Concrete Specimens for Specimen Size-Frost Effects Investigation

(Installed Dec 1968)

										968-19	75 Rea	dings					E	posur	Rack
		0	Cycle		68		39 les	_	292 ycles		61	6	18		58		97		009
Specimen	Air Content*		Pul Vel		_		69		1970		71	Cyc 19	72	19					les 275
No.		<u>4</u> E		08	<u>%v²</u>	⊈E	% V ²	Æ	<u>4v2</u>	⊈E	<u>%v2</u>	⊈ E	<u>%v2</u>	≸E_	1 v2	5E	<u> \$v^2</u>	\$E	5 v ²
						3	-1/2-	by 4	-1/2- by	16-in	. Bean	<u>s</u>							
ROS-4A ROS-4B ROS-4C	4.3 4.3 4.3	100 100 100	15.		100 100 100	102 104 101	107 99 95	10 11 10	0 96	119 118 118	91 82 78	118 119 119	102 96 89	115 117 119	96 94 93	116 118 118	119 110 105	116 118 119	80 57 64
ROS-5A ROS-5B ROS-5C	4.6 4.6 4.6	100 100 100	16,	740 420 420	100	102 100 99	104 100 95	10 10 11	9 93	118 119 120	86 79 83	120 117 118	94 85 91	121 117 118	101 103 98	120 118 119	95 111 105	118 118 118	66 70 70
ros-6A ros-6B ros-6C	4.2** 4.2** 4.2**	100 100 100	16,	120 320 320	100	101 100 101	99 94 90	11: 11: 11:	88 0	119 118 117	84 75 75	117 116 115	96 90 84	117 118 120	96 99 104	116 120 119	105 103 105	117 120 120	73 70 67
							<u>6</u>	- by (5- by 30	-in. B	eams								-,
ROS-1	4.0 4.4**	100 100		795		100	114	119	5 112	111	92	109	99	109	112	109	127	109	152
ROS-2 ROS-3	4.8	100		705 335		100	116 105	10		121 101	90 81	102	99 98	116 104	101 98	118 104	123 113	116 104	150 130
								3	2-st Cub	es									
ROS-1 ROS-2 ROS-3	4.0 4.4** 4.8	100 100 100	15,	210 265 150	100	† † †	101 100 100	† † †	99 94 97	† † †	82 78 80	† † †	101 93 100	† † †	102 103 97	† † †	119 112 110	† † †	150 141 106
							18-	by 18	3- by 36	-in. P	risms					-			
ROS-4	4.3	100		750		94	102	100	5 99	107	89	105	95	108	105	109	105	109	109
ROS-5 ROS-6	4.6 4.2**	100 100		545 425	100 100	94 97	102 103	100		114 108	87 90	116 108	99 101	116 108	105 111	116 108	108 108	116 108	111
					000	•	200			976-	Read	lings							
		Cyc	155 :1es :76	Сy	232 cles 977	Cyc	379 :les	Cyc											
		<u> </u>	<u> </u>	≸E		<u>≯E</u>	578 50 ²	19	<u>\$v²</u>										
									1/2- by	16-in.	Веаля	,							
ROS-LA	4.3	113	113	113	91		104	113	22			•							
ROS-4B ROS-4C	4.3 4.3	116 121	105 100	116 117	87 85		95 89	118 119	50 51										
ROS-5A ROS-5B	4.6 4.6	102 119	116 105	114 120	87 89		93 89	121	21 20										
ROS-5C	4.6	121	100	120	87	121	87	122	20										
ros-6a ros-6b ros-6c	4.2** 4.2** 4.2**	118 115 117	98 100 105	117 117 117		117 108 108	89 81 86	118 113 113	21 19 19										
							6-		- by 30-	in. Be	ams							,	
ROS-1	4.0	109	119	107	116	109	114												
ROS-2 ROS-3	4.4 ** 4.8		114 100				111 105												
								2	-ft Cube	s									
ROS-1	4.0	ŧ	112	t	112	t	105		106	_									
ROS-2 ROS-3	4.4 . 8	† †	100 102	†	106 108	†	91 97	†	103 98										
							18-	by 18	- by 36-	in. Pr	isms								
ROS-4 ROS-5 ROS-6	4.3 4.6 4.2**		108 110 110	118	106	120	105 110 189	107 118	107 107										
							-		-										

Air content d mined on each batch; six batches of concrete were made for this investigation. Slump was 2-1/ in. for these batches; slump of all other batches of concrete was 2 in. Unable to obtain satisfactory flexural frequency reading on these cubes.

Record of Testing of Trumbu'l Pond Dam Concrete Prisms

1972- (Installed June 1972)

			gs	Readin	-1975	1972						Cementit			
	8 Cycles 1975		74	276 C	3	140 Cy 197			Cycles, Pulse Veloci		lb/cu yd	terial, Type II Portland	Water- Cement Ratio	Replacement	
	Zv2	≸E_	₹v ²	XE_	₹V2	%E	v ²	_	fps	Æ_	Fly Ash	Cement	by Wt	Material	rism No.
	9 8	109	103	113	111	113			13,76	100	0	273	0.66	None	Cem-l
	127	114	106	115	101	117			13,89	100	0	273	0.66	None	Cen-2
	126	99	105	100	108	101	.00	20	14,22	100	0	273	0.66	None	Cem-3
		108	108	113	103	118	.00	5	13,33	100	79	192	0.63	Fly ash*	FA-l
		116	106	121	116	125			13,27	100	7 9	192	0.63	Fly asn#	FA-2
	End gone	106	58	106	92	120	.00	35	13,33	100	79	192	0.63	Fly ash*	FA-3
		•	ıgs	Readin	_	1976	_								
_		:5	Cycle		Cycles	758	ycles	611	ycles	534 (
		~	1979		978	1	777	1	76	19					
		<u> </u>	<u> </u>	≸E.	5 v ²	3E	%v2	₹E	% v ²	<u> Se</u>					
					iled	R Fa	N	MR	NR	75	0	273	0.66	None	Cem-1
		96			104	NR	106	77	102	109	0	273	0.66	None	Cem-2
		38	R 8	N N	105	7 NR	97	47	91	100	0	273	0.66	None	Cem-3
					iled	R Fa	N	62	NR	119	79	192	0.63	Fly ash*	FA-1
					iled	R Fa	N	NR	NR	106	79	192	0.63	Fly ash*	FA-2
					iled										

³⁵ percent replacement by solid volume; all prisms contain type II portland cement. BR "enotes a satisfactory reading could not be obtained.

Record of Testing of Prisms Made for Investigation of 4-1/2-in. Aggregate Concrete

(Installed Dec 1968)

									68-191					ure Rack	
		Replacement	Water- Cement Ratio	Cement Factor bags/	_0	Cycles, Pulse Veloc		Cyc	39 les 69	Cyc	92 les 70	Cyc. 19	71		les 772
Prism No.	Date Made	Material	by Wt	cu yd	<u>Le</u>	îps	<u>%v²</u>	% E	4 v ²	Œ	4v²	%E	1v2	-6E	4 <u>v</u> 2
Mix 1, Rd 1 Rd 2	0ct 1967 0ct 1967	None None	8.0 8.0	2.30 2.30	100 100			87 96	101 101	106 105	99 99	105 104	73 61		62 NR*
11x 2, Rd 1 Rd 2	Nov 1967 Dec 1967	None None	0.9 0.9	2.04 2.04	100 100			99 99	103 99	102 91	100 92	101 87	83 66	89 NR	81 43
tix 3, Rd 1 Rd 2	Apr 1968 July 1968	None None	1.0	1.94 1.84	100 100	-,,,,,,		95 97	103 103	88 110	95 99	83 109	69 75		NF L NF
dix 4, Rd 1 Rd 2	Apr 1968 July 1968	Fly ash* Fly ash*	8.0 8.0	2.40 2.40	100 100			93 89	104 99	122 120	98 96	108 116	76 79		86 91
Mix 5, Rd 1 Rd 2	June 1968 July 1968	Fly ash* Fly ash*	0.9 0.9	2.14 2.14	100 100			95 90	111 108	106 103	107 105	106 103	86 84		96 65
Mix 6, Rd 1 Rd 2	July 1968 July 1968	Fly ash* Fly ash*	1.0	1.94 1.94	100 100			101 97	102 107	65 105	97 96	Failed 103	1 78 75		1 58 84
					MIN TH				1973-1						
					758 Cy 197	'3	894 Cy 197	4	10	06 Cyc 1975		1152 Cy 1976	<u>. </u>		Cycle 977
					≸E_	21/2	ZE_	<u> 1</u> v2		SE_	5 v ²		<u> 77</u> 2	1E	Zy.
Mix 1, Rd 1 Ri 2	Oct 1967 Oct 1967	Kone None	0.8 0.8	2.30 2.30	77 NR	86	75 Failed	61		72	67	93	14	90	18
Mix 2, Rd 1 Rd 2	Nov 1967 Dec 1967	None None	0.9 0.9	2.04 2.04	92 Failed	92	NR	98	Fa	ilea					
Mix 3, Rd 1 Rd 2	Apr 1968 July 1968	None None	1.0	1.84 1.84	MR Failed	NR NR	Failed								
Mix 4, Rd 1 Rd 2	Apr 1968 July 1968	Fly ash ^e Fly ash ^e	0.8 0.8	2.40 2.40	101 107	98 103	92 100	92 96		92 92	95 108	95 Failed	37		Faile
iix 5, Rd 1 Rd 2	June 1968 July 1968	Ply ash* Fly ash*	0.9 0.9	2.14 2.14	95 93	111 104	86 87	103 105		86 81	111 107	66 79	50 11	73 Failed	48
4ix 6, Rd 1 Rd 2	July 1968 July 1968	Fly ash ^e	1.0 1.0	1.94 1.94	Failed 73	95 93	Pailed NR	78	Fa	iled					
					1376 Cv				197	8 Read	iings				
					15/6 Cy 197										
iix 1, Rd 1	Oct 1967	None	0.8	2.30	Fai	led									
11x 5; Rd 1	June 1968	Fly ash*	0.9	2.14	Fai	led									

^{30%} replacement by solid volume; all prisms contain type II portland cement. NR denotes a satisfactory reading could not be obtained.

Sulfur-Infiltrated Concrete Specimens (Installed August 1976)

			1976	- Readings	Exposure Rack, Ro
Specimen	0 Cycles, 1976	77 Cycles, 1977	224 Cycles, 1978	317 Cycles, 1979	
No.	Pulse Veloc, fps	77 Cycles, 1977 \$v2	5y2	1/2	
			4 × 8-in.	Cylinders	
31-6	14,620	96	102	77	
2-6	15,360	89	97	70	
3-6	15,360	93	78	65	
4-6	15,505	87	91	71	
85-6	16,500	79 80	77 88	58	
86-6	14,185		00	43	
87-6	15,875	83 86	87	68	
88-6	15,505	06	91	68	
39-6	16,105	85 88	81 88	71	
81-7 82 - 7	15,150 16,835	77	74	66 60	
83-7	15,360	89	97	60	
84-7	15 875	87	81	£3.	
	15,875 16,665	81	76	51 67	
65-7 86-7	13,550	101	89	63	
87-7	16,180	78	88	68	
88-7	15,505	97	91	66	
89-7	16,025	85	78	69	
			3- × 6-in.	. Cylinders	
81-7	15,150	110	106	84	
81-8	14,880	120	146	106	
81-9	14,970	109	109	86	
81-10	15,060	108	131	69	
82-7	15,245	108	105	73	
82-8	15,430	106	117	86	
82-9	15,625	107	89	79	
82 -1 0	15,625	107 108	89 108	79 66	
83-7 83-8	15,060 15,245	105	93	93	
83-9	15,335	104 102	98 99	74	
83-10 84-7	15,245 15,245	112	112	88 88	
84-8	15,825	98	111	82	
84-9	15,825	iii	98	92	
84-10	15,430	109	91	91	
85-7	15,825	104	98	59	
85-8	15,430	109	86	9í	
85-9	15,430	109	109	73	
85-10	15,060	115	95	69	
86-7	13,890	112	119	106 '	
86-8	14,285	106	136	95	
86-9	14,970	97	109	77	
86-10	14,795	112	112	88	
87-7	15,150	110	100	72	
87-8	14,705	117	100	gh.	
87-9	14,705	117	128	80	
87~1C	14,705	109	113	72	
88-7 88-8	14,970 14,880	109 120	102 100	60 100	
88-9	14,705	109	113	100	•
88-10	14,886 11,880	120 113	129 120	106 81	
89-7 89-8	14,880 14,970	102	102	97	
89-9	14,795	102	111	71 	
89-10	14,970	102			

Table 1-RCC

Record of Testing for Roller Compacted Concrete

(Installed at Treat Island in August 1977)

							Exposure	Rack,	Row	6
				197	77	Readings				
	0	Cycles, 19	77	147	Cycles	, 1978				
_		Pulse			Pul	.se				
Beam		Velocity	. 2		Veloc	ity				
No.	<u>%E</u>	fps	<u> %v</u> 2	<u>%E</u>	fps	2v2				
17257-7	100	13,160	100		Faile	.d				
17257-8	100	12,930	100		1					
17257-9	100	13,045	100							
17258-7	100	14,020	100							
17258-8	100	14,150	100							
17258-9	100	14,425	100		•					

Table 1-LTS (Continued)

(Installed at Treat Island in July 1955)

Section 17

									1975-	Readings	 	 	
Spec-	Cez	Pro-	27. Cyc	les	2875 Cycles		3099 Cycles	3192 Cycles				 	
imen No.	Туре	gram No.	19	75 5v ²	1976 	1977 #E	1978 	1979 ≸E					
5693C 5694C 5695C	IV	43A*	125 121 105	# #	137 121 123	Failed 135 95	136 100	149 110					
56960 56970 56980	11	21	102 112 100	‡ ; ;	113 136 100	97 112 117	NR 123 110	NR 123 123					
56990 57000 57010	IV	41**	110 111 106	‡ ‡ ¥	107 108 107	108 128 107	NR 130 113	117 131 113					
5702C 5703C 5704C	I	16	97 96 112	‡ ‡	106 101 112	122 102 117	133 105 122	131 112 122					
5705C 5706C 5707C	٧	51	98 95 69	‡ ‡	121 100 88	121 68 88	133 68	137 72					
5708C 5709C 5710C	1	13	93 101 114	‡ ‡	99 102 114	91 99 125	89 106 123	99 111 123					
5711C 5712C 5713C	I	11	126 127 132	‡ ‡ ‡	128 130 132	139 136 147	145 154 153	143 146 159					
5714C 5715C 5716C	11	23	135 128 129	‡ ‡ ‡	137 129 132	139 136 132	151 150 138	138 153 142					
5717C 5718C 5719C	11	25 1	136 130 126	* * *	134 132 126	150 143 133	151 136 141	148 154 141					
5720C 5721C 5722C	I	1.98	125 130 127	* * *	127 137 128	133 138 135	142 149 NR	142 149 ar					
5723C 5724C 5725C	1	19C	136 139 130	‡ ‡ ‡	137 139 130	137 140 133	149 128 140	160 132 140					
57260 57270 57280	1	12††	132 131 133	* *	137 132 133	137 130 130	143 139 143	136 137 164					
57290 57300 57310		17	128 130 118	‡ ‡	128 131 122	130 130 Failed	136 128	138 132					
57320 57330 57340		31††	144 154 156	* *	Failed 154 156	Failed Failed							
57350 57360 57370		15	131 106 110	‡ ‡	133 110 125	Failed Failed 110	118	117					
57380 57390 57400		2211	117 132 136	‡ ‡	118 134 136	129 132 Failed	117 132	117					

(Sheet 9)

^{**} Coments h3 and h3A made at same plant.

**Coments lb, 2h, and h1 made at same plant.

† Coments 25 and 33 made from some major raw materials.

† Coments 12, 22, and 31 made at same plant.

‡ End of specimen too rough to obtain satisfactory reading. fv² data discontinued.

(Installed at Treat Island in July 1955)

									1975-	Readings	-
	Cen	ent		29	2875	2952	3099	3192	-71/	мевативо	
Spec-		Pro-	Cyc 19		Cycles 1976	Cycles 1977	Cycles 1978	Cycles 1979			
inen Vo	Tuna	gram No.		<u>≸</u> v ²	SE	SE_	%E				
No. 741C	Type III	33t	147	/-	150	Failed					
5743C	111	331	139	ŧ	113	140	NR	ĸR			
5744C	T	14.00	115	#	114	144	150	148			
5745C	•	•	119	#	121	119	137	137			
5746C			Miss	ıng							
5747C	11	5/144	124	‡	123	124 134	119	142			
5748C 5749C			118 113	‡ ‡	119 117	117	146 108	144 108			
5750C	7	19A	129	‡	130	135	120	140			
5751C	•	177	127	#	132	132	139 139	139			
5752C			131	#	133	133	145	155			
5753C	I	18	107	#	Failed						
5754C 5755C			115 134	‡	Failed Failed						
			_								
5756C 5757C	IV	¥3 *	133 123	* *	Failed 123	Failed					
5758C			128	*	128	130	128	129			
5759C	TT	2211	112	‡	112	127	133	134			
5760C	••		131	#	133	141	174	165			
5761C			134	*	139	135	141	142			
5762C	IV	¥3*	120	*	122	120	126	134			
5763C 5764C			132 125	‡ ‡	133 125	132 125	138 NR	136 XR			
5765C 5766C	II	25t	129 124	‡ ‡	130 126	128 Failed	136	135			
5767C			124	‡	124	126	126	127			
5768C	II	23	118	‡	120	119	126	132			
5769C		-	119		120	119	136	136			
5770C			133	*	133	122	126	127			
5771C	I	17	116	‡ •	116	116	133	131			
5772C 5773C			126 110	*	115 15r	120 112	126 NR	124			
	T17	1 74#						154			
5774C 5775C	14	43A#	130 133	‡ ‡	134 128	160 137	160 133	154 131			
5776C			142	ŧ	141	142	162	160			
5777C	1	16	124		132	133	NR				
5778C			119	*	120 124	115	124	122		•	
5779C			130	ŧ	124	123	152	150		•	
	III	31††	136 163	‡	Failed						
5781C 5782C			160	*	Failed Failed						
	111	33 †	157	‡	Failed						
5783C 5784C	111	337	155	i	Failed						
5785C			156	‡	Failed						
5786C	1	1211	107	‡	110	110	156	150			
5787C 5788C			111	*	115 117	117 122	122 133	122 136			
5789C 5790C	I	193	129 130	‡ ‡	130 125	112 133	117 142	113 141			
5791C			119	ŧ	119	114	121	121			
5792¢	1	19C	131		130	126	129	127			
5793C			101	*	103	103	103 141	104			
5794C			128	•	132	133	74"	163			

Cementr',3 and \$3A made at same plant.
Cements 15, 25, and \$1 made at same plant.
Cements 25 and 33 made from same major raw materials.
Cements 12, 22, and 31 made at same plant.
End of specimen too rough to obtain satisfactory reading. \$V^2 data discontinued.

(Sheet 10)

(Installed at Treat Island in July 1955)

	_								1075	Readings		 	
	Cer	ent	272		2875	2952	3099	3192	1975-	ucart uks		 	
Spec-		Pro-	Cyc) 197	les 15	Cycles 1976	Cycles 1977	Cycles 1978	Cycles 1979					
imen No.	Туре	No.	≸E	5V ²	_ XE	XE_	ZE_	5E					
5795C	I	14##	135	*	130	128	130	137					
5796C			112	‡	113	155	NR	HR					
5797C			107	•	106	107	109	110					
5798C	I	11	125 142	‡	119 142	129 142	137 152	135 166					
5799C 5800C			141	į	146	130	148	148					
5801C	**	21	124	*	122	124	132						
5802C	11	21	112	#	113	115	141	131 141					
5803C			116	‡	116	116	121	121					
58040	¥	51	116	‡	116	120	126	139					
5805C			115	*	115 103	Failed 108	111						
5806C			99	•			113	113					
5807C	1	18	112 142	*	115 152	116 147	114	112					
5809C 5809C			120	ŧ	123	111	147 126	144 132					
	••	A1.65		*	103	107	,,,,						
5810¢ 5811¢	11	5748	102 95	į	105	103	112 156	118 120					
5812C			125	\$	126	128	133	131					
5813C	I	13	123	#	116	114	111	112					
58140			94 122	‡ ‡	102 124	102 125	126	126					
5815C			122	•	154	12)	7ע	124					
5816C	IV	1,1==	125	‡ ‡	126 116	127 117	134	134					
5817C 5818C			115 120	į	117	119	119 127	119 130					
5819C		19A	119		117	116	128						
5820C	•	TÀN	135	‡	137	137	125	126 141					
5821C			130	#	129	Failed							
5822C	1	15	117	‡	115	Failed							
5823C 5824C			219 131	*	125 136	97 131	121 120	119 121					
5825C 5826C	I	19C	130 126	*	135 126	130 129	153 126	139 127					
5827C			138	#	143	143	138	144					
5828C	Ť	11	116	‡	114	113	130	129					
5829C	•		130	*	137	130	130	128					
5830C			120	#	123	124	123	123					
5831C	1	198	117	#	121	Failed				_			
5832C 5833C			129 120	‡ ‡	129 139	130 128	129 126	140 126		•			
	.	1. n. e											
5834C 58350	ĬĄ	43A*	119 122	*	122 127	Failed Failed							
5836C			118	#	126	Failed							
5837C	I	18	124	#	130	Failed							
5838C			153	*	166	155	126	129					
5839C			115	٠	121	132	132	135					
5840C 5841C	1	15	124	‡	Failed								
58410 58420			122	‡ ‡	Failed Failed						•		
	777	324	195										
5843C 5844C	III	33†	125 148	ŧ	Failed Failed								
5845C			141	\$	Failed								
58460		1.3	131	*	Failed								
5817C 5816C			90 91	*	Failed Failed								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7.	•									

Cements &3 and &40 made at **eme plant.
Cements 1%, 2%, and %1 made at same plant.
Cements 25 and 33 made from same major raw materials.
End of specimen too rough to obtain satisfactory reading. SV² data discontinued.

(Installed at Treat Island in July 1955)

									1000		 	
			27	20	2875	2952	3099	3192	1975-	Readings	 	
_	Cez		Cyc		Cycles		Cycles	Cycles				
Spec- ipen		Pro- gram	19	75	1976	1977	1978	1979				
No.	Туре	No.	SE.	5V ²	12	SE.	1E	\$E				
5849C	ī	16	119	#	124	118	90	94				
5850C	•	10	127	ŧ	127	129	131	133				
5851C			114	#	115	114	113	148				
-0	_			‡								
5852C 5853C	1	13	106 119	÷	103 120	101 120	121 154	121 147				
5854c			123	ŧ	131	134	140	140				
-					_	-						
	III	31††	155		166	158	145	142				
5856C			123 162	‡ ‡	Failed 178	Failed						
5857C			102	•	110							
5858c	II	24**	127	*	132	132	127	127				
5859C			121	‡	122	Failed						
5860C			70	*	62	128	117	116				
5861C	1	14**	96	#	91	97	107	110				
5862C	_	_	116	#	115	117	116	117				
5863C			115	#	118	105	213	114				
5864C	tr	23	114	#	117	114	119	112				
5865C			77		79	77	117 118	XP.				
5866C			97	#	102	Failed						
-0/20		•	300	‡		110						
5867C 5868C	11	21	108	i	110 116	112 115	NR 119	NR 122				
5869C			*	#	Failed			166				
	_					1	_					
5870C	I	193	114 120	‡ ‡	117 125	124 127	126	126				
5871C 5872C			99	¥	107	109	:03 97	108 98				
-						-	٠.	,,,				
5873C	I	1211	87	#	92	92	102	101				
5874C 5875C			109 127	‡ ‡	112 123	112 124	115	117				
20120			121	•	123	12-	119	141				
5876C	v	51	125	*	127	127	126	130				
5877C			88	*	95	Failed						
5878C			123	*	126	128	126	126				
5879C	IV	41**	121	*	124	125	113	120				
5680C		_	113	*	114	115	120	113				
5881C			106	#	115	135	117	118				
5882¢	Ŧ	17	114	#	112	112	128	127				
5883C	-		125	#	123	123	123	123				
5884c			123	*	12F	125	146	140				
5855C	77	25*	114	*	221	146	227	***				
5886C	11	4)*	115	į	11£ 113	119	13L 119	113 119		•		
5887C			. 13%	#	135	136	134	124				
-000						1						
5888c 5889€	II	2211	132 117	* *	135 120	134 152	132 125	132 127				
5890C			130	ŧ	133	158	128	12,				
						-						

Cements 14, 24, and 41 made at same plant.
Cements 25 and 33 made from same major raw materials.
Cements 12, 22, and 31 made at same plant.
End of specimen too rough to obtain satisfactory reading.

SV² data discontinued.

Table 1-NED

Record of Testing of Concrete Specimens from Charles River Dam, and Smelt Brook Local Protection Project (Installed August 1976)

									Exposure	Rack,	Row	3
					1976-	Ī	Reading	5				
	0 Cycles			77 C	ycles	224	224 Cycles		Cycles			
		1976		1	1977		1978		1979			
		Pulse										
Beam		Veloc	2		9		2		9			
No.	<u>%E</u>	<u>fps</u>	<u>%v²</u>	<u> %E</u>	<u>%v²</u>	<u>%E</u> _	<u> %v²</u>	<u> 2E</u>	<u> %v²</u>			
ı	100	16,000	100	100	98	118	103	109	98			
2	100	16,130	100	106	97	111	110	111	98			
2 3 4	100	16,000	100	107	98	107	105	105	102			
	100	17,240	100	113	88	117	98	113	93			
5 6	100	17,700	100	108	89	111	95	111	93			
6	100	17,240	100	115	95	109	83	107	86			
7	100	16,130	100	107	91	109	102	111	92			
7 8	100	16,260	100	106	97	105	102	107	105			
9	100	15,750	100	105	105	105	120	114	100			
10	100	16,130	100	116	97	109	107	110	98			
11	100	16,530	100	112	91	112	101	112	94			
12	100	16,000	100	111	95	111	100	113	100			
13	100	15,750	100	108	97	109	105	108	102			
14	100	15,875	100	105	97	106	100	106	100			
15	100	15,750	170	107	98	108	101	106	103			
16	100	15,875	100	105	98	106	106	104	100			
17	100	16,130	100	99	95	108	100	102	100			
18	100	16,260	100	107	95	109	98	106	100			

(Issued August 1980)

Key to Section 19

Concrete-Polymer Materials

Înstext:

Aggregates: Coarse, natural gravel, Clear Creek Fine, natural sand, Clear Creek

Cement: Type II blended (Lab. No. M-6800)

PIC Catalyst: D-A79

Vinyl Efter Resin: Dow Derakane 470

Concrete-Polymer Materials

In July 1978 twelve 6- by 6- by 30-in. beams were installed at half-tide elevation for the Water and Power Resource. Service (formerly USBR) to investigate the durability and performance of polymer and polymer-impregnated concrete. The polymer concrete specimens represent two mixtures, one using methyl methacrylate (MMA), and one using vinyl ester (VE). The polymer-impregnated specimens are portland cement concrete (PCC) that was impregnated with MMA by vacuum and pressure soak. The program also includes control specimens of portland cement concrete with no treatment.

Table 1 contains pertinent data on mixture designs. Table 1-CPM contains the exposure records of the specimens to date.

Table 1

Mixture Design Data

WPRS Concrete Specimens for Tests at Treat Island, Maine

Material	Design Data
Portland Cement Concrete (PCC)	Aggregate - natural sand and gravel Gravel - 57 percent, 3/4-in. maximum size Sand - 43 rercent Cement - Type II blended laboratory cement, 672 lb/yd ³
	Water/Cement ratio - 0.43 Slump - 3 in. Entrained air - 3 percent 28 day fog cure Compressive strength - 6000 lb/in.
Polymer Impregnated Concrete (PIC)	PIC specimens made from the PCC specimens Full impregnation (vacuum and pressure soak Monomer - MMA Polymer loading - 5.3 percent Catalyst - 0.5 percent
Polymer Concrete (PC)	Aggregate - same as PIC and PCC MMA - PC Monomer - 7 percent (97.5 percent MMA + 2.5 percent TMPTMA) Catalyst - 1.5 percent BP Promoter - 0.5 percent DMA Coupling agent - 0.5 percent silane VE - PC Resin - 7.5 percent vinyl ester Catalyst - 1.5 percent MEKP Promoter - 0.5 percent CoN Coupling agent - 0.5 percent silane

Table 1- ' ".

Record of Testing for Con. ete-Polymer Materials

(Installe July 1978)

							Exposure	Rack,	Row 7
					1978-	Readings			
		0 Cycles	-	93 Cy	cles				
		1978		19	79				
		Pulse			-				
Beam		Veloc	9		2				
No.	<u>%E</u>	fps	<u>%v²</u>	<u>%E</u>	<u>%v²</u>				
PCC - 1	100	13,965	100	109	98				
2	100	13,965	100	106	99				
_		•							
3	100	13,965	100	102	99				
PIC - 1	100	16,130	100	158	87				
		-							
2	100	16,130	100	158	84				
3	100	16,130	100	156	85				
1014 2	100	3.5. O. 5							
MMA - 1	100	15,245	100	91	93				
2	100	15,335	100	98	94				
3	100	15,530	100	98	90				
VE - 1	100	13,660	100	152	96				
2	100	13,515	100	3 < 3	93				
3	100	13,660	100	154	91				

Cement Replacement and High-Range Water-Reducing Admixtures

In text and tables:

Aggregates: The aggregates were supplied by Brunswick Ready-Mix Concrete, Ltd., Aggregate Division, P. O. Box 270, Grand Bay, New Brunswick, from their Blagdon Pit.

Air-entraining admixture: The air entraining agent was supplied by W. R. Grace & Co., Ltd., 66 Hymus Rd., Scarborough, Ontario, in a plastic container labeled "Darex AEA Liquid." This material was supplied by this firm in response to a request for a sulphonated hydrocarbon, type A.E.A.

Cement: The cement was supplied by Canada Cement Lafarge, Ltd.

Slag: The slag was delivered in metal drums from Standard Ind., Hamilton, Ontario.

High-Range water reducers: "A" - Mighty 150, Atlas Chemicals,
Brantford, Ontario.
"B" - Melment LlO, Sternson, Ltd.,
Brantford, Ontario.

Cement Replacement and High-Range Water-Reducing Admixtures

In October 1978 concrete specimens from a Canadian research program were installed at Treat Island to investigate the effect of cement replacement with slag and the effect of high-range water reducers on the durability and performance of concrete exposed to severe weathering in a marine environment. There has been a discussion of the possibility that the construction of marine structures in the Maritime Provinces could possibly benefit from the slag and fly ash being produced in these areas. It is intended that the exposure tests will identify the possible benefits from the use of these materials. The program will also provide data on the effect of recently developed high-range water-reducing admixtures.

The variables include three water-cement ratios, two types of portland cement with or without slag replacement and with or without air entrainment, and the use of two high-range water reducers.

Tables 1-4 give information on the concrete mixture, the proportioning, properties of the freshly mixed concrete, and aggregate gradings. Tables 1-CR and 2-CR are records of testing of the concrete prisms and cylinders over the years.

Table 1 Concrete Mixture Description

Series	% Slag*	Cement Type**	Water to Cement Ratio
AOl	0	10	0.4
02	25	10	0.4
03	25	10	0.4
04	25	10	0.4
05	0	10	0.4
06	45	10	0.4
07	45	10	0.4
08	45	10	0.4
09	0	10	0.4
10	65	10	0.4
11	65	10	0.4
12	65	10	0.4
13	0	50	0.4
14	0	50	0.4
15	0	10	0.4
B01	0	10	0.5
02	25	10	0.5
03	25	10	0.5
04	25	10	0.5
05	0	10	0.5
06	45	10	0.5
07	45	10	0.5
08	45	10	0.5
		(Continued)	

By weight.
U. S. equivalent to cement type 10 and cement type 50 are type I and type V respectively. (Sheet 1)

Table 1 (Continued)

Series	% Slag	Cement Type	Water to Cement Ratio
B09	0	10	0.5
10	65	10	0.5
11	65	10	0.5
12	65	10	0.5
13	0	50	0.5
14	0	50	0.5
15	0	10	0.5
COl	0	10	0.6
2	25	10	0.6
3	25	10	0.6
4	25	10	0.6
5	0	10	0.6
6	45	10	0.6
7	45	10	0.6
8	45	10	0.6
9	0	10	0.6
10	65	10	0.6
11	65	10	0.6
12	65	10	0.6
13	0	50	0.6
14	0	50	0.6
15	0	10	0.6

(Continued)

(Issued August 1980)

Section 20

Table 1 (Concluded)

Series	% Slag	Cement Type	Water to Cement Ratio
ı	0	10	0.5
2AMI	0	10	0.5
3MI	0	10	0.5
4	0	10	0.5
5AME	0	10	0.5
6ME	0	10	0.5

Table 2
Properties of Fresh Concrete

Series	Slump, in.	Air Content, %	Unit weight, 1b/ft3
A01	2-3/4	5 . 6	146.2
2	2-1/4	7.0	143.8
3	3-1/2	6.6	143.2
4	3-5/8	6.8	142.4
5	3-1/2	6.5	145.1
6	2-7/8	6. 8·	144.6
7	2-1/4	6.4	144.2
8	2-3/8	6.5	144.5
9	3-5/8	5.8	145.3
10	2-1/4	6.0	144.1
11	3	6.4	140.7
12	3	6.4	141.1
13	2-3/4	6.2	146.5
14	2-5/8	5.6	147.4
15	3	5•5	145.9
B01	3-1/2	6.5	143.7
2	3-7/8	6.7	142.8
3	3-5/8	5•9	144.2
4	3-3/8	5•5	145.0
5	3-3/8	5•5	148.2
6	3	6.4	144.1
7	2-3/4	6. 8	143.9
8	2-7/8	6.2	. 144.3

(Continued)

Table 2 (Continued)

Series	Slump, in.	Air Content, %	Unit weight, lb/ft3
в09	3	6.5	146.3
10	3	7.0	143.9
11	2-1/2	5.6	145.1
12	2-7/8	5.5	146.3
13	3-3/8	6.2	145.7
14	3-1/2	6.5	145.1
15	3-3/8	6.5	144.6
CO1	3-1/2	5.8	147.5
2	3-7/8	6.4	145.5
3	4	5.5	145.7
14	3-1/2	5.9	147.3
5	3	5.7	145.1
6	3	5.2	145.3
7	3-1/2	6.5	143.2
8	3-3/4	6.2	143.4
9	3-1/2	5.4	144.6
10	3-5/8	5.5	144.6
11	3-5/8	6.2	144.2
12	3-5/8	5.2	145.8
13	3-7/8	5•4	147.8
14	4	5.3	148.2
15	3-7/8	6.0	145.7

(Continued)

(Issued August 1980)

Section 20

Table 2 (Concluded)

Series	Slump, in.	Air Content, %	Unit weight, lb/ft3
1	3-1/4	5•6	146.0
2 AMI	Collapse	6.3	144.8
3 MI	Collapse	0.9	152.2
4	2-3/8	1.5	152.3
5 AME	Collapse	6.2	144.4
6 ME	Collapse	0.3	150.5

Table 3

Mixture Proportions

		Mixture	Proportio	ons, lb/y	rd ³	
<u>Mix</u>	Cement	Slag	Water	Fly Ash	Concrete Aggregate	Air-Entraining Agent oz/100 lb Cement
A01	667	0	267	994	2016	0.86
2	492	164	270	971	1983	1.42
3	536	179	300	933	1919	1.08
4	533	178	305	921	1908	0.99
5	749	0	297	940	1931	0.93
6	410	336	296	937	1923	1.86
7	409	335	295	934	1918	1.86
8	410	336	296	937	1922	1.86
9	750	0	299	940	1933	0.79
10	260	483	297	932	1917	2.44
11	262	489	302	920	1892	2.39
12	263	490	303	923	1898	2.39
13	661	0	264	1012	2016	1.20
14	665	0	266	1018	2028	1.20
15	751	0	301	944	1942	0.84
B01	555	0	272	1801	1969	0.82
2	413	138	271	1075	1958	1.10
3	417	139	272	1086	1977	0.99
4	390	130	255	1098	2040	0.99
5	539	0	271	1126	2063	0.76
6	308	253	280	1061	1987	1.30
7.	308	252	279	1060	1985	1.30
				(Conti	nued)	

(Sheet 1)

(Issued August 1980)

Section 20

Table 3 (Continued)

	Mixture Proportions, 1b/yd ³												
<u>Mix</u>	Cement	Slag	Water	Fly Ash	Concrete Aggregate	Air-Entraining Agent oz/100 lb Cement							
во8	309	253	281	1062	1988	1.30							
9	565	0	282	1106	1996	1.00							
10	196	363	280	1069	1977	1.69							
11	197	366	282	1078	1963	1.53							
12	199	369	284	1087	2010	1.53							
13	530	0	265	1110	2028	1.05							
14	528	0	264	1105	2019	1.05							
15	558	0	279	1092	1973	1.05							
COl	476	0	286	1159	2060	0.92							
2	353	118	282	1136	2037	1.10							
3	353	118	283	1139	2040	1.03							
4	336	112	268	1084	2175	1.06							
5 .	450	0	269	1095	2103	0.92							
6	248	203	269	1096	2106	1.38							
7	244	200	266	1081	2075	1.59							
8	244	200	266	1082	2077	1.47							
9	448	0	269	1091	2095	0.92							
10	158	293	270	1076	2107	1.36							
11	157	292	269	1072	21.00	1.36							
12	159	295	272	1084	2124	1.36							
13	458	С	275	1115	2141	0.92							
14	459	0	276	1118	2147	. 0.92							
15	452	0	271	1099	2112	0.92							

(Continued)

(Sheet 2)

Table 3 (Concluded)

		Mixtur	re Propo	rtions,	lb/yd ³	
Mix	Cement	Slag	Water	Fly Ash	Concrete Aggregate	Air-Entraining Agent oz/100 lb Cement
1	563	0	282	1103	1993	0.81
2 AMI*	559	0	279	1094	1976 ,	0.81
3 MI*	587	0	294	1150	2077	0
4	588	0	294	1151	2079	0
5 AME**	557	0	278	1091	1970	0.81
6 ME**	581	0	290	1137	2054	0

^{*} High-range water-reducer "A" was added to mixes 2 AMT and 3 MI at the rate of 0.59 and 1.63 lb, respectively, per 100 lb of cement.

** High-range water-reducer "B" was added to mixes 5 AME and 6 ME at

the rate of 2.78 and 2.29 lb, respectively, per 100 lb of cement.

Table 4
Sieve Analysis of Aggregates

	Pe	rcent Passing	
Sieve Size	Fine Aggregates		gregates
1-1/2 in.	-	••	100.0 (95-100)
l in.	-		40.3 (20 - 55)
3/4 in.	-	100.0 (85.100)	7•9 (0 - 15)
1/2 in.	-	59.0	-
3/8 in.	-	17. ¹ 4 (0-20)	-
No. 4	96.4 (95-100)	0.4 (0-5)	-
No. 8	84.3 (80-100)	-	-
No. 16	73•C (50–85)	-	-
No. 30	43.6 (25 – 60)	-	-
No. 50	20.6 (10 . 30)	-	-
No. 100	7.1 (2 - 10)	-	-
No. 200	1.3	-	-
Pan	0	***	-

^{*} The aggregates were specified as follows: nonreactive graded aggregates shall be used and shall be obtained from the Bay of Fundy area. Maximum size shall be 1-1/2 in., and aggregates shall meet the requirements of CSA A23.1.

(Issued August 1980)

Section 20

Table 1-CR

Record of Testing of Concrete Prisms

Cement Replacement High-Range Water Reducers

(Installed October 1978)

Priem No. 3E A01 100 A02 A03 A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B11 B13	Cycles, 19 Pulse Veloc Pulse Veloc 2ps 11,565 13,825 14,085 14,150 13,760 13,760 14,285 14,285 14,285 14,425	<u>gv²</u>	1979-	Pendings	
Prism No. XE A01 100 A02 A03 A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	Pulse Yeloc E 298 11,565 12,825 14,250 13,760 13,760 14,285 14,285 14,285 14,285 14,285	<u>gv²</u>			
A01 100 A02 A03 A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	Veloc 228 11,565 13,825 14,085 14,150 13,760 13,760 14,285 14,285 14,285 14,285 14,285 14,285				
A01 160 A02 A03 A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	E 208 11,565 13,825 14,085 14,150 13,760 13,760 14,285 14,285 14,285 14,425 14,150				
A01 100 A02 A03 A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,565 13,825 14,085 14,150 13,760 13,760 14,285 13,955 14,285 14,285				
A03 A05 A06 A07 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,085 14,150 13,760 13,760 14,285 13,955 14,285 14,425	109			
A03 A05 A06 A07 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,085 14,150 13,760 13,760 14,285 13,955 14,285 14,425				
A05 A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,150 13,760 13,760 14,285 13,955 14,285 14,425				
A06 A07 A09 A10 A11 A13 B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	13,760 13,760 14,285 13,955 14,285 14,425				
B01 B02 B03 B05 B06 B07 B09 B11 B13	13,760 14,285 13,955 14,285 14,425				
B01 B01 B02 B03 B05 B06 B07 B09 B10 B11	14,285 13,955 14,285 14,425				
B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	13,955 14,285 14,425 14,150				
B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,285 14,425 14,150				
B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,425				
B01 B02 B03 B05 B06 B07 B09 B10 B11 B13	14,150				•
B02 B03 B05 B06 B07 B09 B10 B11	14,150 14,085				
B02 B03 B05 B06 B07 B09 B10 B11 B13	14,150 14,085	,			
B02 B03 B05 B06 B07 B09 B10 B11 B13	14.085	1			
B03 B05 B06 B07 B09 B10 B11		1			
B05 B06 B07 B09 B10 B11 B13	11 1.00				
B06 B07 B09 B10 B11 B13	14,425	ľ			
B07 B09 B10 B11 B13	14,565	1			
B13 B13	14,020	1			
B10 B11 B13	14,565				
B11 B13	14,085	1			
B13	14,425				
	14,425 14,355 14,425	1			
	14.425	1			
CO1	14,220	1			
C02	14,285	1			
C03	14,285	1			
C05	14,495	1			
co6	14,285	1			
C07	14,495	i			
C09	14,285	1			
C10	14,355	ı			
Cll	14,150	1			
C13	14,425				
, 1	14,285				
\ 2 3 4 5	13,760	l			
5 1	14,925	i			
7	14,925	1			
; I	14,085	l l			
á	14,780	1			

Table 2-CR

Record of Testing of Concrete Cylinders (6 by 2 in.)

Cement Replacement -- High-Range Water Reducers

			1979- Readings	Rack Row 9
	0 Cycle	s, 1979		 -
Cylinder	Pulse Veloc			
No.	fps	\$7 ²		
A01-3 -4	*	100		
A02-3	12,500	1		
_4	13,700	1		
A03~3	14,285	- 1		
_4 A04_8	14,285 13,890			
-9	13,890	1		
A05-3	13,890	1		
_14 A06-3	13,700 14,285			
_4	13,700	1		
A07-3	13,700			
_4 A08_14	13,890 13,700			
-16	13,700	1	•	
A09-3	14,285	1		
_4 A10-3	14,495 14,285	- 1		
-4	14,285			
A11-3	14,285	j		
_4 A12-11	13,890 13,890	1		
-13	14,085	1		
A13-3	14,705	1		
-4 Al ,-7	14,705 14,285	- 1		
-12	14,705	ł		
A15-8	14,285	1		
-9	14,925			
		1		
B01-3	14,285			
_4 B02 - 3	14,285 14,085	1		
-4	14,285			
B03-3	13,890			
_4 B04-5	13,890 14,285	- 1		
-15	14,705	1		
805-3 -4	14,495	- 1		
B06-3	14,705 14,925	ı		
-4	14,085	- 1		
B07-3 -4	14,705	- 1		
во8-6	14,495 14,925	1		
-9	15,150]		
B09-3 -4	14,085	1	•	
B10-3	14,705 14,495	i		
-4	14,495	1		
811-3 -4	14,925			
B12-7	14,495 14,925			
~12	14,285	1		
B13~3 ~4	14,705 14,925	- 1		
B14-11	14,705	1		
-15	14.495			
B15-8 -9	14,285 14,285	1		
-7	2-,507	1		
40) -		1		
CO1-3	14,085 14,705	1		
C02-3	14,285			
-4	14.285	l		
CO3~3 ~4	14,235	Į.		
co4-9	14,085	l		
-15	14,495	l		
CO5-3 -4	14,705 14,705	•		
-7	4-9107	,		
			(Continued)	

^{*} Specimens missing.

Table 2-CR (Concluded)

			1979-	Readings	Rack Row
	O Cycle	. 1979			
	Pulse	-1212			
Cylinder	Veloc				
No.	fps	<u> \$v²</u>			
an(2	11. 000	100			
co6-3 -4	14,925 14,285	100			
C07-3	14,495	l l			
-4 -4	14,497				
co8-6	14,495 14,495	ł			
-16	14,495				
	14,705	1			
CO9-3 -4	14,495	ŀ			
	14,495	ı			
C10-3	14,495				
-4	14,495				
C11-3	14,085	1			
	14,085 13,890	1			
C12-10	13,090	l			
-14	11,765	1			_
C13~3 -4	14,085	ì			•
	14,085 14,925	1			
C14-13	14,925	1			
-14	14,495	l			
C15-9 -8	14,285	}			
	14,085	ł			
1-3 1-4	14,495 14,085	ł			
1-4	14,005				
2AMI-4	13,890	1			
-3	14,085	1			
-,	14,000				
3MI-3	14,285				
-4	14,085	1			
4-3	14,925	1			
4-4	14,495				
		1			
5AME~3	14,085				
-4	14,085				
6ME-3	14,705	1			
بال	14 085	1			

 $\overline{}$

٠,

Section 22

											Exposure Rack, Row 4 (W to E)
	Water								1978-	Readings	
	Cement Ratio		Cyc)	.es	Cyc Lyc	Les					
Specimen No.	(by wt)	Air \$	197 %E	\$v ²	19 _ 5 E	<u>zv²</u>					
				Exte	rior,	Nomina	1 4-bag-	per-cu-	yd Cene	nt Factor	
Con-5-24(2)	0.49	4.1	101	NR	63	NR					
				Inte	rior,	Nomina	1_3-bag-	per-cu-	yd Cemer	t Factor	
Con-8-3A Con-12-8(2)	0.59 0.59	4.6 3.3	68 66	NR NR	NR 78	NR NR					

							Te	ble 1	L-CRA	(Continue	eđ)			F,	moeni	e Rec	k Ro		tion 25 W to E)
		Cement Factor			02	37	42	36	78	399		Read:	,	4213		43	360	44	53
Spec- imen	Type	(Nominal) bags/	Air		72		73	_ 19	les 74	Cyc1 197	5	Cycle 1976		Cycle 1977	·	_19	1es 78	19	1es 79
No.	Specimen	cu yd	45	<u>≰</u> E	<u> 4√2</u>	<u>se</u>	<u>\$v^2</u>	3E	<u> %v²</u>	_≸E	<u>\$v²</u>	_\$E	<u>\$v²</u>	<u> </u>	<u>4v²</u>	<u> 3E</u>	<u> 1</u> 12	<u>≯E</u>	<u>\$y^2</u>
								•	idmi xt	ure A		_							
ACSB ABSC	Column Beam	5.25	1.9	159 93		244 143		172 128		179 Gone		163		166		176		169	
AC4	Column	4.5	2.0	165		171		272		Failed									
								_	raffi	n 011									
OC5A OB5A	Column Beam	5.25	3.9	120		94 119		96 117		96 112		Gone 119		101		101		161	
OC5B OB5B	Column Beam			F† 120		147		186		Pailed									
0050 0850	Column Beam			79 62		72 58		NR 52		Gone 51		Gone							•
oc6 os6	Column Jean	6.0	5.6	164 111		155 102		MR 100		Gone Failed									
								4	daixi	ure B									
2C5A	Column	5.25	4.9	121 104		121		119		114		Failed							
295A 285B	Beam Beam			85 100		176 91		NR 172		Gone Failed									
2050 2350	Column Peam			184		215 102		215 209	_	Failed Failed									
zc6 zb6	Column	6.0	6 . 0	91 112		112 126	=	95 78		75	Ξ	Gone 82		Failed					
								Resi	Soar	+ CaCl ₂									
CC5A CB5A CC5B CB5B	Column Beam Column Beam	5.25	7.8	F 85 F P		62	-	ЖR		Gone Gone									
								1	Resin	Soap									
RC5A	Column	5.25	6.5	116 114		116 119	_	111 NR		113 Gone		Gone							
RC5Al RB5Al RB5C	Column Beam Beam			122 97		120 88	=	120 119	=	122 119		Gone 117		108	_	135	_	122	
								T	allow	(Beef)									
TB5C	Beam	5.25	4.0	F															
тэ6	Beam	6.0	3.6	83		NR		F											
									Admix	ture C									
DC5A DB5A	Column Beam	5.25	6.5	105 107		105 112	_	96 105		87 105	_	118 78		135 98	_				
DC5B DB5B	Column Beam			106 96		92 92		182 132		182 Failed		Gone '							
DC5C De3C	Column Ream			F 72		F													
DC6	Column	6.0	6.1			122				Pailed									
D96	Beam			95		60	-			Gone ture D									
HC5A	Column	5.25	8.0	105		94				99		05		130		133		162	
H95A HC5B	Beam Column	,,	0.0	116 120		114		114		112 118		95 79 133		79 78		73	_	127	
HB5B HC5C	Beam Column			117 252		124 252		114		116 Failed		133 114		126		123		118	-
HB5C	Beam			79		68		MR		Gone	•								
HC6 HB6	Column Beam	6.0	6.0	95 96		98 138		96 90		90 90		116 67		116 Failed	-	160		ĦR	

⁻⁻ Dashed lines in "N" column indicate that end of specimen was too rough to obtain satisfactory reading.
† F denotes specimen has failed.
NR Denotes no reading obtained.

Record of Testing of Concrete Beams, Omaha District Aggregate Program

(Installed December 1056)

					<u> 1956-</u>	(1	nstal.	led Dece	aber 1	<u>956)</u>									
															ure R	lack,	Row 2	(¥ t	o E
•	Fine	Coarse		•••	Cement Factor	O Cycles		Cycles, Pulse	1957	19	les	34	5 les	Cyc	6 les 60		; :les :61		б :1e: :62
No.	Aggre- gate	Aggre- gate	Type Cement	Air	cu yd	1956 5 E	≸ E	Vel∞c fps	≴ v ²	≸ E	½ v ²	Æ	≸ v ²	华	% √2	Æ	5 y ²	≸ E	%
Oahe-1 Oahe-2 Oahe-3	Hatural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	100 100 100	110	15,245 14,880 15,245		117 116 116	108 109 106	123 122 123	98 101 98	121 120 119	100 105 102	121 119 118	102 108 108	115 113 113	1
S-G-1 S-G-2 S-G-3	Sand- gravel	Limestone B**	I	7.1 6.4 6.3	5.81 5.86 5.86	100 100 100	103	15,430 15,530 15,625	100				103 101 101		103 98 102	106 74 103	105 93 101	90 Ft 79	10
										196	3-196	9 Rea	dinge	ı					
						752 Cycl 196	.es	687 Cycles 1964	C	1050 vcles 1965	Cy	180 cles 966	C)	336 cles	C)	1521 ycles 1968	C	1675 ycles	-
						Æ	<u>≸</u> v ²	<u>\$E</u> \$V					_	1967 ≰√				1969 <u>\$</u> V	2
Oahe-1 Oahe-2 Oahe-3	Matural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	113 114 116	118	114 10 112 11 108 10	0 10	7 112	111 2 109 4 106	102	10	10	10		10	3 5	5
S-G-1 S-G-3	Sand- gravel	Limestone B##	I	7.1 6.3	5.81 5.86	41F F	61												
										197	0-197	6 Rea	dings						
						1828 Cycle 1970	\$ 1 .	1997 Cycles 1971 LE LV	Су	15 ¹ , cles 972 4v ²	Cyc	94 les 73 <u>2</u> v ²	24; Cycl 19;	les	Cyc 19	142 1es 75 \$v ²	S	688 cles 976 <u>\$</u> V	· •
Oahe-1 Cahe-2 Oahe-3	Hatural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	105 103	90 94	103 74 103 78 100 74	101 96 96	82 82	95 98	94 87 93	85 84	94 95 93	83 82 82	113 114	91 82 80	96 86 88	
						2765		2912		197 005	7-	.iea	dings						•
						Cycle 1977	, 	Cycles 1978 SE \$V ²	Cy	cles 979	•								
Oshe-1 Oshe-2 Oshe-3	Matural sand	Limestone A*	II, iov- alk	6.1 6.7 6.6	5.32 5.29 5.30	76 9	e 2 8	93 87 92 83 82 87	71 71 70										

End of specimen too rough to obtain satisfactory reading.

Maximum size aggregate = 1-1/2 in.; slump for this mix = 2-3/4 to 3 in.

Maximum size aggregate = 1 in.; slump for this mix = 2 in.

F denotes specimen has failed.

(Revised August 1980) Table 1-KCD (Continued)

Section 27

															osur	e Rac	k, A	or 2	(W t	o E)
										19	72-1	979 Re	adin	gs						
Beau	Mix- Beam ture Fine Coarse No. No. Aggregate Aggregate		Cement Cycles Factor 1972		S Cycles 1973				2390 Cycles 1975		2536 Cycles 1976		2613 Cycles 1977		2670 Cycles 1978		2763 Cycles 1979			
No.	No.	Aggregate	Aggregate	cu yd	<u>≰e</u>	<u>%v²</u>	≸E	<u> 5v²</u>	≸E	<u> 3v²</u>	瘽	<u>\$</u> \sqrt{2}	<u>≴E</u>	<u> 1</u> v2	Æ	<u>≰</u> v ²	1E	≴v ²	\$E	<u> 2</u> v2
KC-5-1 KC-5-2 KC-5-3	5	Sand B	Limestone D	5.16· 5.14 5.15	96 NR† 74	66 79 65	98 88 93	79 87 83	94 88 93	82 81 90	88 84 93	70 66 107	92 78 85	:	84 76 81		84 80 81	* *	82 96 31	* *
KC-6-1 KC-6-2 KC-6-3	6	Send C	Limestone D	5.84 5.83 5.81	95 89 96	87 78 79	101 91 96	94 90 98	93 89 92	98 93 93	97 89 90	121 75 77	89 85 88	96 94 13	89 85 86	91 80 92	89 81 84	93 88 93	89 75 84	‡ ‡ ‡

(Sheet 2)

RR denotes a satisfactory reading was not obtained as specimen would not respond to flexural vibration. End of specimen too rough to obtain reading. SV^2 data discontinued.

(Revised August 1980)

Table	2-KCD	(Continued)
30045	1100	(outstier a)

Section	2

					Tabl	e 2-KC	D (Con	timue	4)							Sect	ion 27
													osure	Rac	, Ro	, 2 (1	to E)
											Read						
				Cement	:.8			49	2085		97		43		20	25	
	Mix-			Factor	CZO			les	Cycles		les		les	Cyc		Cyc	
Beam	ture	Fine	Coarse	begs/	19	72		73	1974	_19	775	19		19	77_	_19	78
No.	No.	Aggregate	Aggregate	cu yd	Œ	<u> 1</u> 2	SE.	<u> </u>	<u> 52 572</u>	车	ϕ^2	<u>\$2</u>	<u>1/2</u>	≸ E	<u>\$v</u> 2	₹E	<u>xv²</u>
KC-8-1	8	Sand BB	Limestone	5.44	99	79	101	104	95 91	95	117	93	87	83	72	72	67
KC-8-2 KC-8-3			F	5.44 5.47	KR†† KR	55 68	MR MR	94 79	Failed Failed								
NC-0-3				2.47	na	80	-	17	ANTIES								
									1979-		Read	ings					
					266												
					Chc)												
					19												
					XE.	<u> 37</u> 2											
	۰	C1 22		- 11	60												
AC-8-1	8	Sand BB	Limestone F	5.44	63	#											
			•														

Satisfactory reading not obtained due to deteriorated condition of specimen. End of specimen too rough to obtain reading. SV^2 data discontinued.

Mixture Data and Record of Testing of Concrete Beems, Kansas City District Aggregate Program

1962-(Installed Movember 1962)

											-1967	Readi					<u> </u>	
	w			Cement	Cement	00	yeles,	1962		lO6		41 les		04 les		34 :les		90 les
Beam	Mix- ture	Fine	Coarse	Replace- ment	Factor bags/		Pulse Veloc			263		×61		65		66_		67_
No.	No.	Aggregate	Aggregate	Material	cu yd	<u> 1</u> 2	_ Ips	<u>%v²</u>	<u>LE</u>	<u>4</u> v2	⊈E	1/v2	12	<u>\$</u> √2	Œ	½ √2	Æ.	≱ √ ²
KC-13-1	13	Sand E	Limestone	None	5-47	100	15,150		117	101	102	100	102	110	100	101	94	104
KC-13-3			F		5.44 5.46	100	14,795 15,150		103 103	102	103 103	105 99	104 101	115	100 99	100 95	100 93	105 104
KC-14-1	14	Sand E	Limestone	Ply ash	5.13	100	14,535	100	102	104	102	104	103	130	101	98	101	105
KC-14-2			F		5.16	100	14,705		104	100	104	107		116	104	101	102	102
KC-14-3					5.13	100	14,535	100	104	105	102	102	100	109	98	98	98	106
KC-15-1	15	Sand E	Limestone	None	5-37	100	15,060		103	98	101	95	99 97	90	99	93	95	'95
KC-15-2 KC-15-3			С		5•36 5•38	100	15,060 15,150		102 103		101 101	95 95	97 100	101 100	99 100	93 86	91 100	95 92
										1060	-1973	Dec 14						
							75	102	9	1960			551		1508		164	5
							1es 68	Cycl		Cyc			cles		ycle	3	Cycl	
						<u></u>	<u> </u>	196 % E	<u>4√</u> 2	19 1 E	<u>₹</u> v ²	<u></u>	971 5 v ²	_	1972 4	v ²	197 L E	<u>\$v^2</u>
KC-13-1	13	Sand E	Limeston.	Mone	5.47	98	100	98			90	ہے ہو	75		- 1	87	88	101
KC-13-2 KC-13-3			F	•	5.44 5.46	97 97	104	100 99	94 94 94	96 96 97	95 90	95 96	86 75	9		93 75	90 93	106 87
		01 5	••		-				-	•	-	•	-		-			
KC-14-1 KC-14-2	14	Sand E	Limestone F	LTA wan-	5.13 5.16	101	107 105	99 102	102 99	97 102	99 97	97 101	74 72	8			101 106	88 80
KC-14-3					5-13	100	105	98	99	96	95	106	68	10	0		122	86
KC-15-1 KC-15-2	15	Sand "	Limestone C	Hone	5•37 5•36	93 80	98 85	91 80	87 76	93 بلاق	84 75	101 F**	56	10	3	77	76	81
KC-15-3			•		5.33	84	81	84	70	82	68	85		8	ļ.		F	F
										1971	·	Readi	nes.			•		
						17		1896		042	211	9	2266		359			
						Cyc		ycles 1975		rcles 1976	Cycl 197		ycles 1978		cles 979			
						SE.	<u> 2</u> 2			% √ ²		v ² x		Œ	5v ²			
KC-13-1	13	Send E	Limestone	None	5.47	82	101 88		6 84		82 -	86 SI			+			
KC-13-2 KC-13-3			F		5.44	88 91	104 81 82 85	12	2 68	96 98 90	84	90 88 92 95	95	81	†			
KC-14-1	14	Sand E	Limestone	Fly sehê	5.13	68	85 50		_	NER.	Fail		. ,.	~•				
KC-14-2	-7	b	F		5.16	100	82 73	10	1 67	MR	Fail							
KC-14-3					5.13	113	80 T	ailed										
KC-15-1	15	Send E	Limestone	None	5.37	63	76 I	ailed										

Fly ash content, 25 percent replacement by volume.

F denotes specimen has failed.

Dashed lines in "Y" indicate that end of specimen was too rough to obtain satisfactory reading.

Denotes no satisfactory reading was obtained.

End of specimen too rough ". obtain reading. FV" data discontinued.

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

(Installed December 1963)

																Rack	, Row	2 (¥	to E)
														Read					
						Cement	0.0	ycles	. 196	3	12			84	- 4	14		570	
	Mix-		Replace-			Factor		Pulse		-	Cyc			cles		cjea	Cyc	cles	
Beam	ture		ment	Fine	Coarse	bags/		Velo			19	54	1	1965	1	966	_ 19	967	
No.	No.	Cement	Material	Aggregate	Aggregate	cu yd	1 2	îps	_ 1	v ²	≸E	≱v²	Œ	4v2	1/2	% 2	4 5.	3 12	
KC-16-1	16	A	Fly ash	Sand E	Limestone	6.25	100	14.53	25 1	.00	104	105	10).	98	106	• • • •	201	100	
KC-16-2			12, 00	JEAN 2	P	6.27		14,70			104			95					
KC-16-3					•	6.26		14.6		.00		105			103				
•		_										•				100	100	114	
KC-17-1	17	В	None	Sand F	Gravel B	6.00		14,2			104	108	78	92	-,	38	F		
KC-17-2						6.02		14,5		.00		109	74	82					
KC-17-3						6.00	100	14,12		.00	103	110	1,91	*** 77					
KC-18-1	18	С	None	Sand G	Quartzite	5.73		14,70				107	100		102		102	117	
KC-18-2						5.77		15,17					105	98	104	109	106	113	
IC-18-3						5.74	100	15,78	0 1	.00	102	100	104	98	104	108	104	115	
							Cyc	55 les	Cyc	09 les		1052 Cycle	5	Readir 123 Cycl	31		388 :1es		.528 reles
								68	19	69		1970		:97			772		973
							₹E	% y ²	盔	% √ ²	2	5 4	v ²	¶Σ	1 1/2	⊈E	4v2	Æ	# ²
														_					_
KC-16-1 KC-16-2	16	A	Fly ash	Sand E	Limestone	6.25	104		108	107		× 1		108	87	104	95	100	
KC-16-3					P	6.27 6.26	107 204		109 108	105			01	107	88 88	105	88	107	
						0.20	204	111	100	105		_	_	KR!	00	108	95	104	68
KC-18-1	18	c	None	sand G	Quartzite	5.73			106	107		5 1		104	84	100	84	98	
KC-18-2						5.77	702		104	104		_		106	85	104	87	92	
KC-18-3						5.74	104	109	106	99) 11	0 1	05	107	81	83	90	100	76
							16 Cyc			776		7%_ 1922 Cycle		Readin 199 Cycl	79	211		22	
							19			cles 975	,	1976		197		Cyc) 197		Cycl 197	
											2 -		_						
							<u>SE</u>	<u> 172</u>	Œ	1	2 1	<u> </u>	¥ ²	<u>ee</u>	<u> 1</u> v2	<u>SE</u>	<u> 5v²</u>	<u>se</u>	<u> 5v²</u>
KC-16-1	16	A	Fly ash	Sand E	Limestone	6.25	98	106	98	131		j.	79	90	98	75	91	_	**
KC-16-2					F	6.27	109	65	109		0 10)5 1	00	109				117	11
KC-16-3						6.26	104	68	104	12	5 10	7 4	90	104	KR	150	NR	91	11
KC-18-1	18	c	None	Sand G	Quartzite	5.73	102	106	102		-	32	93	100	NR	NR	NR	F	F
KC-18-2 KC-18-3						5.77 5.74	92 64	65 68	Fa:	iled 7		76	KR	Pail	led				

Fly ash content, 25 percent replacement by volume.

F denotes specimen has failed.

ER denotes satisfactory reading was not obtained as specimen would not respond to flexural vibration.

End of specimen too rough to obtain reading. \$V² data discontinued.

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1969-(Installed May 1969)

			-		Avg**					196	-1972	Exp	osure dings	. Kac	k, R	n- 2	(¥ te	<u> </u>
	Mix-			Air	28-day Compres- sive		Readi		orator, 196 9	- ი	0 reles		153 yeles	;	322 Cycle	ε.	Cyc.	
Beam No.	No.	Batch No.*	Aggregates	Content	Strength psi	4	3	/eloc fps			.969 ≰v²	_	1970 E 4 7	2 -	1971 1 E 1	v ²	197 ≰£	72 4V ²
KC-19-1	19	1	Crushed limestone 1-1/2-in. max	4.9	3360	10	0 1	14,62	0 100	191	100	9	3 9	7	58	84	83	92
KC-19-2	19	5	Crushed limestone 1-1/2-in. max	5.0	3360	10	0 1	14,62	0 100	100	100	9	9	8	2 7	81 .	83	91
кс-19-3	19	3	Crushed linestone 1-1/2-in. max	4.7	36≒0	10) 1	4,620	2 100	106	101	90	9	6	90	85	38	92
						-	519	79	55	<u>197</u>	3-197. 7		ading 013		.090		1237	
							rcles 973	Cyc	eles 974		les 75		eles 976		cles 977		ycles 1978	
						Æ		-		生	<u>₹</u> √2	<u>≠</u>	2v2	<u>1</u> E	<u>17</u> 2	SE.		•
KC-19-1	19	1 .	Crushed limestone 1-1/2-in. max	4.9	3360	83	102	63	114	£3	78	51	114	66	109	72	108	
KC-19-2	19	2	Crushed limestone 1-1/2-in. max	5.0	3360	82	94	82	114	79	77	74	110	79	104	51	59	
KC-19-3	19	3	Crushed limestone 1-1/2-in. max	4.7	3640	8£	101	56	113	86	139	82	116	52	105	25	95	
							330			197	9	Re	ading	£				
						Cyc	330 :les 979											
KC-19-1	19	1	Crushed limestone 1-1/2-in. max	4.9	3360	60	89											
KC-19-2	19	2	Crushed limestone 1-1/2-in. max	5.0	3360	79	66											
KC-19-3	19	3	Crushed limestone 1-1/2-in. max	4.7	364C	79	76											

^{*} The water-cement ratio of all three batches was 5.39 gal/bag or 0.49 by weight.

** Average basel on compressive strength of three 6- by 12-in. cylinders per batch.

Mixture Data and Record of Testing of Concrete Beams, Eansas City District Aggregate Program

1975- (Installed July 1974)

												ure f	ack,	Rew 2	(= :	<u>. Ε)</u>
Beam	Mix- ture	Batch		Air Content	A7g** 26-day Compressive Strength		ial Labor adings, Pulse Veloc	1971	,, cy;	les 75	25 Cyc	:6 :1es :76	_19	les //,		ies 76
To.	¥o.	30.0	Aggregates		psi	<u>\$e</u>	fps	<u> 5y2</u>	<u> 52</u>	<u> 5y</u> 2	<u>SE</u>	<u> </u>	<u>ΣΕ</u>	<u> 27,5</u>	<u>SE</u>	<u> 272</u>
KC-20-1	20	1	Crushed limestone 1-1/2-in. max	5.0	3360	100	14,265	100	102	135	104	117	106	109	104	103
KC-20-2	20	2	Crushed linestone 1-1/2-in. max	5.Ł	3280	100	14,370	100	107	129	105	107	110	101	110	106
KC-20-3	20	3	Crushed limestone 1-1/2-in. mex	5.3	3260	100	14,285	100	106	131	108	215	113	102	111	106
										<u> 1919-</u>	-	<u> Read:</u>	ngs			
KC-20-1	20	1	Crushed limestone 1-1/2-in. max	5.0	3360	104	105									
KC-20-2	20	2	Crushed linestone 1-1/2-in. max	5.4	3280	110	197									
KC-20-3	20	3	Crushed limestone 1-1/2-in. max	5-3	3260	106	110									

The water-cement ratio of all three batches was 5.3% gal/cwt or 0.445 by wt. Average based on compressive strength of three 6- by 12-in. cylinders per batch.

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1975- (Installed July 1974)

					Ave**	—			1974			ure F	ack,	Row 2	(W t	<u>о Е)</u>
Beam	Mix- ture	Batch		Air Content	28-day Compres- sive Strength		ial Laboradings, Pulse Veloc		11 Cyc	12 :les :75	25 Cyc	8 1es 76	_19	les 77	_19	1es 78
No.	No.	No.	Aggregates	<u> </u>	psi	<u> 5</u> E	fps	∑ v²	<u>≸E</u>	<u> %v²</u>	<u>\$E</u>	<u> </u>	3E	×v2	Z E	∡ v ²
KC-21-1	21	1	Crushed limestone 1-1/2-in. max	5.0	4600	100	14,795	100	105	134	166	114	104	104	106	106
KC-50-5	21	2	Crushed limestone 1-1/2-in. max	4.9	5150	100	14,620	100	101	132	107	114	109	106	105	106
KC-21-3	21	3	Crushed limestone 1-1/2-in. max	5.1	4939	100	14,535	100	102	139	106	116	106	105	121	110
						 ,				1	979-		eadin	gs		
						Cy	75 cles 979									
						<u> 7E</u>	₹v ²									
KC-21-1	21	1	Crushed limestone 1-1/2-in. max	5.0	4600	94	110									
KC-50-5	21	2	Crushed limestone 1-1/2-in. max	4.9	5150	102	107									
KC-21-3	21	3	Crushed imestone 1-1/ n. max	5.1	4930	121	105									

^{*} The water-cement ratio of all three batches was 5.28 gal/cwt or 0.44 by wt.

** Average based on compressive strength of three 6- by 12-in. cylinders per batch.

Mixture Data and Record of Testing of Concrete Cubes, Eufaula Dam Aggregate Study

1958- (Installed October 1958)

												Beac	h Row 1 (W to E)
										1965 Rea				
Cube	Coarse / Maximum Size	Aggregate Descrip-	Air	Water- Cement Ratio	Theo Cement Factor	O Cycles Pulse Valoe		1959	220 Cycles 1960	361 Cycles 1961	451 Cycles 1962	1963	1964	855 Cycles 1965
No.	in.	tion	土	gal/bag	bags/cu yd	fps	<u>\$v^2</u>	_ %v 2	<u> \$v^2</u>	<u>\$v²</u>	_ %v 2	% v ²	<u>\$v²</u>	\$v ²
1	6	Poor	5.4	4.97	4.0	14,450	100	95	101	96	100	102	110	113
2	6	Random	5.9	4.85	4.0	14,650	100	95	100	100	104	107	110	107
3	3	Random	5.7	5.30	4.0	14,075	100	95	103	99	102	108	111	112
									1966-	1973 Res	dings			
						985 Cycles 1966 ¢ V ²	1141 Cycles 1967 \$V ²	1326 Cycle 1968	8 Cyc	les C	1633 yeles 1970 (V ²	1802 Cycles 1971 4v ²	1959 Cycles 1972 \$V ²	2099 Cycles 1973 4V ²
1	6	Poor	5.4	4.97	4.0	90	112	105	96	5	94	85	84	•
2	6	Random	5.9	^ኢ .85	4.0	92	107	110	99)	94	89	82	*
3	3	Random	5.7	30	4.0	97	114	109	100)	96	97	95	•
									1974_	7	adings			
						2235 Cycles 1974 \$V ²	2347 Cycles 1975 \$V ²	2493 Cycles 1976 \$v ²	2570 Cycle 1977 \$V ²	26	17 : les C: 78 :	2710 ycles 1979 fy ²		
1	6	Poor	5.4	4.97	4.0	94	88	92	97	9	2	61		
2	6	Random	5.9	4.05	4.0	115	109	108	93	10	6	70		
3	3	Random	5.7	5.30	4.0	109	99	96	93	10	3	71		

(]

[•] Equipment malfunctioned in 1973.

Section 34

kecord of Testing of Box Specimens, Membrane Curing Program

1959- (Installed June 1946)

									Con	dition	of Speci			
						Cur		_	13 Wint			inters		nters
Box	East	West	Admix			Mate		Form	1959			960		61
No.	Corner	Corner	East	West	Cement	East	West	Lining	East	West	East	West	East	West
1	GVRW	G₩	Resin	None	A	Water	Water	T-and-G*	Excel**	Excel	Excel	Excel	Excel	Excel
2	GVRCCW	GVRAHW	Resin + CC	Resin + AH	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
3	GCCJW	GCCW	Resin scap + CC	œ	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
4	G.	JW	Resin soap	Resin soap	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
5		AC	None	None	В	Air	Air	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
6	CAC	CMC	None	None	В	Air	Water	Lining A	Excel	Excel	Excel	Excel	Excel	Excel
7	RAC	RWC	None	None	В	Air	Water	Lining B	Excel	Excel	Excel	Excel	Excel	Excel
8	AH	AC	AH	AH	В	Air	Air	T-and-G	Sl ckt	Excel	Sl ck	Excel	Excel	Excel
9	B-3	B-1	None	None	В	HPB	RG	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
10	B~8	B-2	None	None	В	KC70	HPC .	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
11	B-25	B-23	None	None	В	SF45W	C845	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
12	B-24	B-29	None	None	В	SF45	DSA	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
13	B-17	B-28	None	None	В	AFMST	PENC	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
14	B-18	B-30	None	None	В	AlC	TFX199	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel

							Condi	tion of	Specim	ens, 19	62-1972					
	16 W1	nters	17 W1	nters	18 W1	nters	19 Wi	nters	20 W1	nters	24 W1	nters	25 W1	nters	26 Wi	nters
	_19	62	19	63	19	64	19	65	19	66	_ 1970	††	19	71	19	t2
	East	West	East	West	East	dest	East	West	East	West	East	West	East	West	East	West
1	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
2	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
3	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
4	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Exce1	Excel
5	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
6	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
7	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
8	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
9	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
10	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
11 12 13 14		Excel Excel Excel Excel	Excel Excel Excel Excel	Excel Excel Excel Excel	Excel Excel	Excel Excel	Excel Excel Excel Excel	Excel Excel	Excel	Excel Excel	Excel Excel	Excel Excel Excel Excel			Excel Excel Excel Excel	Excel Excel Excel Excel

							Condit	ion of	Specimen	s. 1973	:_			
	27 W1	nters	28 W1	nters	29 Wi	nters		nters	31 W	nters	32 W1	nters	33 W1	nters
	19	75	19	74	19	75	19	76	19	77	19	78	19	79
		West	East	West	East	West	East	West	East	West	East	West	East	West
1	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
2	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
3	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
4	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
5	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
6	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
7	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
8	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
9	Excel	Excel	Excel	Excel	.Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
10	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
11	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
12	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
13	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
14	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel

Luser de la company de la comp

Tongue-and-groove lumber. Excel denotes excellent. Sl ck denotes slight crack. Condition of the specimens did not change from 1967 to 1971.

Record of Testing of Cubes Made for Quality Aggregate Investigation

1963 Installation (Installed December 1963)

									104	2-1060	Readings	Beach	Row A-1	W to E)
			Water- Cement Ratio	Air		0 Cycl 1963 Pulse	es	121 Cycles	2 Cyc	84 les C	414 ycles (570 ycles	755 Cycles	909 Cycles
Cube No.	Date Made	Coarse Aggregate	(by Wt)	Content*	Slump* in.		<u>≸v²</u>	1964 % V ²	19 % V		1966 <u>K</u> v ² _	1967 %V ²	1968 4 v ²	1969 4 v ²
Q-11	Aug 1962	Dolomite	0.5	4.8	1-1/2	15,565	100	102	11	9	117	88	89	73
Q-12	Aug 1962	Dolomite	0.8	4.9	1-1/2	14,870	100	115	11	0	122	51	Failed	
Q-13	July 1962	Natural gravel B	0.5	5.0	1-1/2	15,875	100	114	12	2	112	107	105	91
Q-14	Aug 1962	Natural gravel B	0.8	4.9	1-1/2	15,505	100	103	11	8	118	105	84	66
Q-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	14,335	100	124	14	0	135	131	121	107
Q-16	Aug 1962	Gneiss	0.8	4.8	1-1/2	13,890	100	122	11	2	139	16	Failed	
									197	0-1976	Readings			
						1062	12		388	1528	1664	177		
						Cycles 1970	Cyc. 19	71 1	cles 1972	Cycles 1973	Cycles 1974	Cycle 197		
						4v ²	5 V	<u> </u>	(v ²	*v2	5 v ²	_4v²		
Q-11	Aug 1962	Dolomite	0.5	4.8	1-1/2	Failed								
Q-13	July 1962	Natural gravel B	0.5	5.0	1-1/2	81	80	•	90	11	118	105	94	:
Q-14	Aug 1962	Natural gravel B	0.8	4.9	1-1/2	t	fai	led						
Q-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	99	10	4- 1	115	tt	120	123	116	;
								.,	197	7	Readings			
						1999 Cycles 1977 4v ²	21 Cyc 19	les Cy 78	239 (cles 1979 (v ²					
Q-13	July 1962	Natural gravel B	0.5	5.0	1-1/2	94	10							
0-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	109	12	0 11	Lla					

Air content and slump of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size. A satisfactory realing could not be taken because of the condition of the specimen. Equipment melfunctioned in 1973.

						Beach Row 2 (W to E)						
Speci-		Nominal		Actual Sand:	Max Size	1970-1975 Readings						
men and Mix No.	Date Made	Cement Factor bags/ cu yd	Replace- ment Material	Aggre- gate Ratio	Coarse Aggre- gate in.	1062 Cycles 1970 % V ²	1231 Cycles 1971 *v ²	1388 Cycles 1972 % v ²	1528 Cycles 1973 *v ²	1664 Cycles 1974 %V ²	1776 Cycles 1975	
2	Sept 1963	2.0	None	24	6	t	Failed					
4	Sept 1963	2.0	Fly ash	24	6	86	†	Failed				
5	Sept 1963	2.0	Shale	30	3	†	Failed					
6	Sept 1963	2.0	Shale	24	6	84	t	Failed				
7	Sept 1963	2.5	None	30	3	104	76	104	††	84	10 6	
8	Sept 1963	2.5	None	23	6	87	NR	86	††	104	94	
9	Sept 1963	2.5	Fly ash	30	3	Failed						
10	Sept 1963	2.5	Fly ash	23	6	80	NR	86	tt	38	Failed	
11	Oct 1963	2.5	Shale	30	3	88	NR	88	tt	Failed		
12	Oct 1963	2.5	Shale	23	6	83	20	84	tt	96	92	
13	0ct 1963	3.0	None	29	3	100	NR	100	tt	116	113	
14	Oct 1963	3.0	None	22	6	89	34	91	††	84	71	
15	Oct 1963	3.0	Fly ash	29	3	91	90	109	tt	122	118	
16	0ct 1963	3.0	Fly ash	22	6	89	74	94	tt	107	10 6	
•	0ct 1963	3.0	Shale	29	3	95	72	99	tt	112	114	
18	0ct 1 963	3.0	Shale	22	6	91	80	102	††	108	108	
								976-	Reading			
						1922 Cycles 1976	1999 2146 Cycles Cycles 1977 1978		1979	es P		
						% v ²	_ z v ²	%v ² ‡	%v 2:	<u>-</u>		
7	Sept 1963	2.5	None	30	3	Failed						
8	Sept 1963	2.5	None	23	6	83	Failed					
12	Oct 1963	2.5	Shale	23	6	67	Failed					
13	Oct 1963	3.0	None	29	3	101	95	103	106			
14	Oct 1963	3.0	None	22	6	71	81	89	82			
15	Oct 1963	3.0	Fly ash	29	3	115	103	106	84			
16	Oct 1963	3.0	Fly ash	22	6	89	65	94	104			
17	Oct 1963	3.0	Shale	29	3	86	47	86	88			
18	Oct 1963	3.0	Shale	22	6	77	59	100	86			

G

End of prism too rough to obtain satisfactory reading.
Equipment malfunctioned in 1973.
Unable to obtain satisfactory reading, although an attempt was made to do so.
These specimens are spalling badly causing erratic readings.

(Issued August 1980)

Table 1-MAWC (Continued)

Section 38

									Beach Row A-1
Prism No.	Date Made	Type Cement	Replucement Material	Water-Cer gals/bag	ment Ratio	Cement Factor bags/cu yd	2036 Cycles 1978	2129 Cycles 1979	
Mix 1, Rd 1	Feb 1964	II	None	6.8	0.6	2.93	96	37	
Rd 2	Aug 1964	II	None	6.8	0.6	2.93	108	76	
Mix 2, Rd 1	May 1964	II	None	7.9	0.7	2.51	81	79	
Rd 2	July 1964	II	None	7.9	0.7	2.51	98	97	
Mix 7, Ra 1	Mar 1964	11	Fly ash	6.4	0.6	2.93	94	MRee	
R4 2	Aug 1964	II	Fly ash	6.4	0.5	2.93	93	56	

^{**} ER denotes that a satisfactory reading was not obtained although an attempt was made.

Priest Parist County Priest P														
Prime Position Condition					···-							Cycles		
30022 10					Other Cement									
	30021	10	1	100 (cement A)	None	None	99	99	99	_				
	30022	49						٩è						
	40021	14	5				109		105					
50002 3	40022	կկ					93	98	101					
108 102 101 109 105 598 598 60022 33 4	50021	8	3				102	100						
Second Sign	50022	31												
Source S	60021	23	4				MR#	66	61	78				
Spiral S	60022							105						
			1	100 (cement B)	None	None		85			103	80	55	62
								93	95			185	91	43
Solician			2				96	96		92	66	81	81	75
Solid Soli							95	109		84	101	100		96
Solicion		26	3					86		Broken	Fa	iled	•	,,
113 66 100 89 97 86 91 75		6						98	95	102	97	98	89	90
Section Sect	60421	35	14				71		62	Broken			-,	,,,
September Sept	60422	11					113	66	100	89			91	75
			1	75 (cement A)	None			75			96	38	82	NR
Accessed	32582								106	83	103	74	119	88
25 Broken 61 Ris Broken Falled Falle			2			shale			MR	MR	Fa	iled		
52581 51 3 25 870km 61 Ris Ricken Failed 62582 12 4 62581 27 4 62581 27 4 62582 13 65 (cement A) 35 (nat cement) 75 Ris 83 109 104 MR Ris Ri									100	Broken		91	NR	47
September Sept			3								Fa	iled		• •
Common C						(shale)		96		108			106	94
101 96 113 98 111 75 126 63	62581	27	4				75	NR	88	109	104			
335M2 24	62582	13					101	96	113	98	111			
108		_3	1	65 (cement A)		None				72				NR
\$\frac{1}{45782} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					cement)						89	85	89	85
128 50 120 Broken Failed Fa			2								95	82	88	78
124 NR 118 101 Palled						•				94	103	94	100	90
535N2 39 635N2 7 124 NR 118 101 Failed Broken Broken Failed 109 98 89 70 89 51 325F1 53 1 75 (cement A) None 25 101 81 90 81 93 95 86 35 325F2 45			3					50	150		Fa	iled		•
109 98 89 70 89 51		39		~			124	MR	778	101	Fai	led		
325F1 53 1 75 (cement A) None 25 101 81 90 81 93 95 86 35 325F2 45 (fly ash) 106 97 105 100 106 99 100 91 425F2 25 116 99 112 96 113 94 108 100 525F1 17 3 112 103 104 105 105 102 102 101 525F2 29 107 100 104 80 107 90 101 MR 625F1 33 4 100 95 97 87 98 85 90 81 625F2 36 124 107 110 60 105 101 103 MR 181851 52 2 blast- 110 68 107 59 77 87 88 85 90 84 88FS1 52 2 blast- 110 68 107 59 77 88 MR 18 MR 18 MR 188FS1 52 2 blast- 110 68 107 59 77 MR MR 18 MR 188FS1 16 3 alag 99 72 84 68 82 MR MR 18			4					n		oken		led		
\$\frac{1}{425F2} \ \ \frac{56}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{106} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	635112	7					109		98		89	70	89	51
\$\frac{1}{425F2} \ \ \frac{56}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{425F2} \ \ \frac{25}{5} \ \ \frac{1}{106} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		53	1	75 (coment A)	None									35
116 99 112 96 113 94 108 100		47 56	2			(ITA esu)						99		
112 103 104 105 105 102 102 101			-					90		22				
107 100 104 80 107 90 101 MR			3					102						
100 95 97 87 98 85 90 81			_											
SEFS1			L											
SHFS2 19 (portland 96 94 96 93 97 90 89 38			•											
SBFS2 19	3EFS1	41	1	None	100	None	95	MR	69	84	76	NTR	50	tro.
hBFS2 21 furnace 110 92 99 90 102 90 94 84 5HFS1 16 3 alag 99 72 84 68 82 NR NR NR NR NR HR 5HFS1 5 4 6HFS1 5 4 Failed Failed 6HFS2 37 97 41 71 Broken Failed 6HFS2 37 100 97 4 105 96 98 NR 335F1 22 1 65 (cement A) None 35 102 97 101 104 105 96 98 NR 335F2 54 (fly ash) 109 85 102 69 100 93 100 85 435F1 46 2 97 93 93 90 86 67 83 435F2 48 105 83 94 89 94 89 121 NR 535F2 34 105 83 94 89 94 89 121 NR 535F1 32 44 107 91 101 9					(portland		96		96					
hBFS2 21 furnace 110 92 99 90 102 90 94 84 5HFS1 16 3 alag 99 72 84 68 82 NR NR NR NR NR HR 5HFS1 5 4 6HFS1 5 4 Failed Failed 6HFS2 37 97 41 71 Broken Failed 6HFS2 37 100 97 4 105 96 98 NR 335F1 22 1 65 (cement A) None 35 102 97 101 104 105 96 98 NR 335F2 54 (fly ash) 109 85 102 69 100 93 100 85 435F1 46 2 97 93 93 90 86 67 83 435F2 48 105 83 94 89 94 89 121 NR 535F2 34 105 83 94 89 94 89 121 NR 535F1 32 44 107 91 101 9	ABFS1		2					68						
5HFS2 2 cement) 86 74 78 Broken Failed 97 41 71 Broken Failed 97 41 71 Broken Failed 97 Failed 98 MR 98 100 97 Failed 98 MR 98 MR 100 98 100 98 100 98 MR 100 98 100 98 100 98 MR 100 98 100 98 MR 100	4BFS2	21			furnace		110							
SHFS2 2 (cement)	5BF81	16	3		zlag		99	72	84	68	82			
6BFS1 5 4 97 41 71 Broken Failed 6BFS2 37 100 97 Failed 335F1 22 1 65 (cement A) None 35 102 97 101 104 105 96 98 NR 335F2 54 (fly ash) 109 85 102 69 100 93 100 85 435F1 46 2 92 97 93 93 90 86 67 83 435F2 48 105 83 94 89 94 89 121 NR 535F1 47 3 5 75 88 79 94 79 91 70 83 535F2 34 125 NR 123 97 Failed 635F1 32 4 107 91 101 92 101 73 85 81	5HFS2	2	_		cement)		86		78	Broken				***
6BFS2 37 110 73 109 97 Failed 335F1 22 1 65 (cement A) None 35 102 97 101 104 105 96 98 MR 335F2 54 (fly ash) 109 85 102 69 100 93 100 85 435F1 46 2 92 97 93 93 90 86 87 83 435F2 48 105 83 94 89 94 89 121 MR 535F1 47 3 78 88 79 94 79 91 70 83 535F2 34 125 MR 123 97 Failed 635F1 32 4 107 91 101 92 101 73 85 81		5	4				97							
335F2 54 (fly ash) 109 85 102 69 100 93 100 85 435F1 46 2 92 97 93 93 90 86 87 83 435F2 48 105 83 94 89 94 89 121 MR 535F1 47 3 75 88 79 94 79 91 70 83 535F2 34 125 MR 123 97 Failed 635F1 32 4 107 91 101 92 101 73 85 81	6bfs2	37					110	73						
335F2			1	65 (cement A)	None			97	101	104	105	96	98	NR
\$435F2 48 \$535F1 47 \$35F1 47 \$35F2 34 \$9 94 \$9 91 \$0 83 \$35F2 34 \$35F2 32 \$4 107 \$91 101 \$2 101 \$35F2 32	335F2	5 1 4				(fly ash)		85	102					
h35F2 48 535F1 47 3 75 88 79 94 79 91 70 83 535F2 34 34 75 88 79 94 79 91 70 83 535F2 34 38 78 78 78 78 78 78 78 78 78 85 81			5					97	93	93	90			
75 75 79 94 79 91 70 83 75 75 78 123 97 Failed 635F1 32 4 107 91 101 92 101 73 85 81	435F2							83	94	89	94	89		
535F2 34 125 MR 123 97 Failed 635F1 32 4 107 91 101 92 101 73 85 81			3					88	79	94	79	91	70	
635F1 32 4 107 91 101 92 101 73 85 81		34								97	Pai			-
035F2 43 110 89 112 69 107 51 94 MR			4											81
	03572	43					110	89	112	69	107	51	∂ #	, MP.

C