JSTOR: The American Mathematical Monthly, Vol. 72, No. 2 (Feb., 1965), pp. 15-18

This is the first page of the item you requested.

+ Show full citation

THE PRIMALITY OF RAMANUJAN'S TAU-FUNCTION

D. H. LEHMER, University of California, Berkeley

Introduction. The function $\tau(n)$ introduced by Ramanujan in 1916 [1] as a natural outgrowth of the functions $\sigma_k(n)$, the sum of the kth powers of the divisors of n, has been the subject of numerous investigations ever since. It is defined most simply as the coefficient of X^n in the expansion of the product

$$X\prod_{m=1}^{\infty} (1-X^m)^{24} = \sum_{n=1}^{\infty} \tau(n)X^n = X - 24X^2 + 252X^3 + \cdots$$

Although a number of remarkable properties of $\tau(n)$ have been established, some of which are cited below, there remains a number of unsolved questions about $\tau(n)$; for example: What is the exact order of magnitude of $\tau(n)$ (see [2])? Is $\tau(n) = 0$ for some n > 0 (see [3])? In this note we address ourselves to the question: Is $\tau(n)$ ever a prime? We answer this question by

Theorem A. The integer $\tau(n)$ is composite for $2 \le n \le 63000$, but

$$\tau(63001) = 80561663527802406257321747$$

is a prime number.

Since published tables of $\tau(n)$, [4], extend to n=1000 and unpublished tables to n=10000, [5], it is clear that to prove Theorem A requires the use of some of the known properties of $\tau(n)$, namely the formulas and congruence properties listed below. Numbers in square brackets give references to papers where these results are established. In what follows p always designates a prime.

Required Properties.

(1) If
$$(a, b) = 1$$
, then $\tau(ab) = \tau(a)\tau(b)$. [6]

(2)
$$\tau(p^{\alpha+1}) = \tau(p)\tau(p^{\alpha}) - p^{11}\tau(p^{\alpha-1}), \quad (\alpha > 0). \quad [6]$$

As an immediate consequence of (1) and (2)

(3) If
$$p \mid \tau(p)$$
 then $p \mid \tau(np)$, $(n > 0)$.

(4) If
$$n \text{ is odd } \tau(n) \equiv \sigma(n) \pmod{8}$$
. [7]

Setting p=2 in (3) and using (4) we easily derive

(5) $\tau(n)$ is odd if and only if n is an odd square.

(6) If
$$n$$
 is odd, $\tau(n) \equiv \sigma_3(n) \pmod{32}$. [8]

(7) If
$$(n, 3) = 1$$
, $\tau(n) \equiv \sigma(n) \pmod{3}$. [9]

(8) If
$$3p = u^2 + 23v^2$$
, $\tau(p) \equiv -1 \pmod{23}$. [10], [3]

(9)
$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}$$
. [2], [11]

Proof of Theorem A. We begin by assuming there exists a least integer $n_0 \le 63000$ for which $\tau(n_0)$ is a prime. If n_0 is not a power of a prime then $n_0 = ab$

15

America.

Want the full article?

<u>Login</u> to access JSTOR, or check our <u>access options</u>. You may have access for free through an institution.

Publisher Sales Service for \$12.00 USD.

Enter your token or email if you've already purchased this article.

JSTOR is part of ITHAKA, a not-for-profit organization helping the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

 $|\cdot|$

 $@2000-2010\ ITHAKA.\ All\ Rights\ Reserved.\ JSTOR @,\ the\ JSTOR\ logo,\ and\ ITHAKA @ are\ registered\ trademarks\ of\ ITHAKA.$