Prof. Dr. Leandro Alves Neves

Pós-graduação em Ciência da Computação

Processamento de Imagens Digitais

Aula 05

[§] Sumário

- Realce (Transformações de intensidade)
 - Brilho, Contraste e propriedades
 - Operações lineares e não lineares (propriedades)
- Análise de Intensidades: histograma
- Transformações de Contraste
 - Lineares
 - Não Lineares
 - Correção GAMA
 - Equalização de Histograma

Objetivos:

- Melhorar ou acentuar aparência de características
- Quando Aplicar:
 - Degradação da qualidade da imagem, em função:
 - Introdução de ruído
 - Perda de contraste
 - Borramento
 - Distorção provocada por equipamento de aquisição

Realce de Imagens

Métodos:

- Domínio espacial:
 - Manipulação direta dos pixels das imagens.
- Informações baseadas em Brilho e Contraste
 - Mas, o que pode envolver o Brilho e o Contraste?

Realce de Imagens

- Brilho:
 - Percepção visual da intensidade luminosa de uma fonte.
 - Não corresponde a uma função linear:
 - Existem fenômenos associados
 - Bandas de Mach
 - Contraste Simultâneo

Fenômeno Bandas de Mach

- Descoberto pelo físico Ernst Waldfried Josef Wenzel Mach(1838-1916).
 - Sistema visual tende a subestimar ou superestimar
 - Intensidades próximas às transições entre regiões de intensidades diferentes.

Realce de Imagens

- Fenômeno Contraste Simultâneo
 - Brilho Aparente de depende da intensidade do fundo

Quadrados centrais mesma intensidade

- Fenômeno Contraste Simultâneo
 - □ Brilho Aparente depende da intensidade do fundo

Koffka-Benussi Ring

Realce de Imagens

- Contraste
- Intensidade luminosa por unidade de área
- Diferentes Formulações para expressar o contraste
 - Lei de Weber-Fechner (1860)
 - A resposta do sistema visual humano depende de:
 - Variações locais de luminância
 em vez da luminância
 absoluta

Contraste

Lei de Weber-Fechner (1860): Experimento

Apresentar a um observador um objeto com luminância $L_F = L + \Delta L$

em um fundo L.

Qual a diferença ΔL para o observador notar alteração entre o objeto e o

fundo?

Maior sensibilidade para perceber alterações em estímulos de baixa intensidade

Contraste Local

- Lei de Weber-Fechner pode falhar
 - Estímulos tornam-se mais complexos e cobrem um intervalo de frequência maior.
 - Medida de contraste local
 - □ Beghdadi e Khellaf (1997)

Realce de Imagens

Contraste Local

- Medida de Beghdadi e Khellaf (1997)
 - Considere
 - pixel f(x, y) \square centrado em uma vizinhança w_f
 - □ O contraste é definido como: $C_f = \frac{\left|I_{(x,y)} Im_{(x,y)}\right|}{Im_{(x,y)}}$,
 - $\Box I_{(x,v)}$ é o nível de cinza do pixel
 - \square $Im_{(x,y)}$ é o nível de cinza médio na vizinhança W_f

Realce de Imagens

- Transformações de Contraste
 - Melhorar a qualidade
 - Critérios subjetivos: inspeção via sistema visual humano
- \square Aplicado sobre o intervalo de contraste (I_c):
 - $I_c = L_{max} L_{min}$, em que L é um nível de cinza na imagem

É possível se existe um intervalo de intensidades

histograma

Definição de Histograma

Frequência de uma ocorrência

$$H = \sum_{i=1}^{L_{\text{max}}} m_i, \quad m_i : \text{função que conta o número de ocorrências } i;$$

$$L_{\text{max}} : \text{total de intervalos;}$$

Níveis de cinza

posicional

de pixel na Imagem (Medida Estatística de 1^a. Ordem) ¹⁴

Tipos de Histogramas

Permite avaliar o contraste de uma imagem

Histograma: Exemplos

Análise de intensidades

Histograma: Exemplos

Transformações de Contraste

- Uma função T de níveis de cinza pode ser descrita como: g=T(f)
 - f representa níveis de cinza em uma imagem dada como entrada
 - g representa níveis de cinza após processo de transformação

Realce de Imagens

- Operações lineares versus não lineares
 - Classificação comumente utilizada em PID

□ Dado um operador geral H ⇒ produz a saída g(x,y) para uma entrada f(x,y)

$$H[f(x, y)] = g(x, y)$$

Operações lineares quando:

$$\begin{split} H\left[a_if_i(x,y) + a_jf_j(x,y)\right] \\ &= a_iH\left[f_i(x,y)\right] + a_jH\left[f_j(x,y)\right] \\ &= a_ig_i(x,y) + a_jg_j(x,y) \end{split}$$

Dado um operador geral $H \implies produz$ a saída g(x,y) para uma entrada f(x,y)

Por exemplo, H como um operador de somatória:

$$\sum \left[a_i f_i(x, y) + a_j f_j(x, y) \right] = \sum a_i f_i(x, y) + \sum a_j f_j(x, y)$$

$$= a_i \sum f_i(x, y) + a_j \sum f_j(x, y)$$

$$= a_i g_i(x, y) + a_i g_j(x, y)$$

- em que a_i , a_j , $f_i(x, y)$ e $f_j(x, y)$ são, respectivamente, constantes e imagens arbitrárias (do mesmo tamanho).
- Saída após a soma de duas entradas

Propriedade de *aditividade*

 Mesmo que realizar essa operação individualmente e depois somar os resultados.

Também está presente a propriedade de *homogeneidade* (multiplicar uma constante por uma entrada é igual a entrada multiplicada por essa constante)

- Operações não lineares
- Exemplo, H como o máximo de uma função

$$(1)\max\left\{ \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \right\} + (-1)\max\left\{ \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix} \right\} \qquad \Longrightarrow \qquad \max\left\{ (1) \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} + (-1) \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix} \right\}$$

$$= 3 + (-1)7 = -4 \qquad \qquad = \max\left\{ \begin{bmatrix} -6 & -3 \\ -2 & -4 \end{bmatrix} \right\} = -2$$

As saídas não são iguais, propriedade de homogeneidade não respeitada

- Transformações de Contraste: Lineares
- Cada ponto na Imagem de Entrada gera um ponto na Imagem de Saída

Imagem de Entrada

Imagem de Saída

- **Representação**: $|g = c \cdot f + b|$, em que:
 - **c** escala de níveis de cinza da imagem, por exemplo: $c = \frac{g \max g \min}{c}$
 - **b** ajuste de brilho

 $f \max - f \min$

Transformações de Contraste: Lineares

Negativo

T[f(x, y)] = g(x, y) = w - f(x, y),w é a intesidade máxima presente na imagem

- Transformações de Contraste: Lineares
 - Negativo

Transformações de Contraste: Lineares

Alargamento de Contraste

$$g(x,y) = \begin{cases} k_1 \cdot f(x,y) \Rightarrow & 0 \le f(x,y) < f_1(x,y) \\ k_2 \cdot f(x,y) \Rightarrow & f_1(x,y) \le f(x,y) \le f_2(x,y) \\ k_3 \cdot f(x,y) \Rightarrow & f_2(x,y) < f(x,y) \le W \end{cases}$$

Transformações de Contraste: Lineares

Binarização (Thresholding)

- **Assumindo:**
 - $K_1 = 0;$
 - f1(x,y) = f2(x,y)

$$K_{3}$$
 $f(x,y)=W$

- Transformações de Contraste: Lineares
- □ Binarização (*Thresholding*)

- Transformações de Contraste: Lineares
- Combinações: Alargamento + Binarização (Thresholding)

- Transformações de Contraste: Não Lineares
- Realçar detalhes específicos na imagem
- □ Transformações Lineares versus Não lineares $g = c \cdot f + b$
 - Linear: c (fixo e empírico);
 - Não Linear: c é um parâmetro que expressa

Logaritmo
Raiz quadrada
Exponencial
Quadrado

Transformações de Contraste

Exemplos

Realce de Imagens

- Transformações de Contraste: Não Lineares
- Exemplos

Entrada

Logaritmo

Raiz Quadrada

Exponencial

Quadrado

Transformações de Potência: Correção GAMA

Dada por :

$$g = c(f + \varepsilon)^{\gamma}$$

- \Box c e γ :constantes positivas
- ε: compensação quando entradafor zero

Todas as classes de transformações em função de γ

Transformações de Potência: Correção GAMA

a b c d

FIGURE 3.8 (a) Magnetic resonance (MR) image of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and}$ 0.3, respectively. (Original image for this example courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Čenter.)

Transformações c = 1 and $\gamma = 3.0, 4$. de Potência: Correção GAMA

a b c d

FIGURE 3.9

(a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with $\gamma = 3.0, 4.0, \text{ and}$ 5.0, respectively. (Original image for this example courtesy of NASA.)

Realce de Imagens

- Escolha de Transformações: Empírico
- Porém, existe uma categoria de métodos

Equalização de Histograma

Imagem original $f \Longrightarrow$ transformada \Longrightarrow $g \Longrightarrow$ distribuição mais uniforme

Níveis de cinza devem ter, aproximadamente, a mesma frequência

- Mapeamento de cada nível de cinza
 - Função de Distribuição Acumulada (FDA)
 nível

Realce de Imagens

Histograma Normalizado (1ª Etapa)

- □ Distribuição discreta de probabilidade $p_f(f_i) = \frac{n(i)}{n}$,
 - n(i) é número de ocorrências do nível de cinza i
 - n é o total de pixels na imagem
 - $p_f(f_i)$, é a probabilidade do i-ésimo nível de cinza
- Medidas estatísticas dos níveis de cinza:
 - valores mínimo e máximo
 - valor médio
 - variância
 - desvio padrão

Realce de Imagens

- Equalização de Histograma (2ª Etapa)
- Considere uma imagem composta por $n = M \times N$ pixels
 - □ Níveis de cinza k = 0, 1, . . . , L − 1
 - □ Equalizar um histograma \Longrightarrow via FDA (g_k) :

$$g_k = T(f_k) = \sum_{i=0}^k p_f(f_i) = \sum_{i=0}^k \frac{n_i}{n}$$
 $k = 0, 1, \dots, L-1$

- n_i, número de ocorrências do nível de cinza i
- $p_f(f_i)$, é a probabilidade do i-ésimo nível de cinza
- FDA normaliza os níveis de cinza da imagem no intervalo $0 \le f_k \le 1$

Realce de Imagens

Equalização de Histograma

Exemplo: Equalização de histograma de uma imagem (f)

Níveis de Cinza (k)	Frequência (<i>n_k</i>)	
0	1314	
1	3837	Número de pixels
2	5820	6000
3	4110	4500
4	2374	3000
5	921	1500
6	629	0 1 2 3 4 5 6 7 Níveis de cinza
7	516	
	T-1-1 40504	

Total: n = 19521

Equalização de Histograma

1^a. Etapa: Definir a probabilidade p_f com que cada nível de cinza k_f aparece na imagem f

$p_f(k)$	Probabilidade (p _f (f _i))
$p_f(f_0)$:	1314/19521≈ 0,067
$p_f(f_1)$:	3837/19521≈ 0,197
$p_f(f_2)$:	5820/19521≈ 0,298
$p_f(f_3)$:	4110/19521≈ 0,211
$p_f(f_4)$:	2374/19521≈ 0,122
$p_f(f_5)$:	921/19521≈ 0,047
$p_f(f_6)$:	629/19521≈ 0,032
$p_f(f_7)$:	516/19521≈ 0,026

Equalização de Histograma

Calculando a função distribuição acumulada de probabilidade, obtém-se

2a. Etapa: Calcular a FDA
$$g_k = T(f_k) = \sum_{i=0}^k p_f(f_i) = \sum_{i=0}^k \frac{n_i}{n}$$
 $k = 0, 1, ..., L-1$

$$g_0 = T(f_0) = \sum_{i=0}^{0} p_f(f_0) = 0.067$$

$$g_1 = T(f_1) = \sum_{i=0}^{1} p_f(f_1) = 0.264$$

$$g_k$$
Probabilidade $(p_i(f_i))$
- Acumulada
$$p_f(k)$$
Probabilidade $(p_i(f_i))$
- Q0
0,067
$$p_f(f_0): \quad 1314/19521 \approx 0,067$$
- Q1
0,264
$$p_i(f_1): \quad 3837/19521 \approx 0,197$$
+ Q2
0,562
$$p_i(f_2): \quad 5820/19521 \approx 0,298$$

$$p_i(f_3): \quad 4110/19521 \approx 0,211$$

$$p_i(f_4): \quad 2374/19521 \approx 0,021$$

$$p_i(f_5): \quad 921/19521 \approx 0,047$$

$$p_i(f_6): \quad 629/19521 \approx 0,032$$

$$p_i(f_7): \quad 516/19521 \approx 0,026$$
Q8
Probabilidade $(p_i(f_i))$
- Acumulada

90
0,067

91
0,264

92
0,562

93
0,773

94
0,895

0,942

96
0,974

96
0,974

Equalização de Histograma

ullet 3a. Etapa: cada valor g_k é substituído pelo nível mais próximo

g _k *L _{max}	Probabilidade (p _f (f _i)) – Acumulada	Níveis de Cinza (<i>k</i>) - Equalizados
$g_{o}^{*}7$	0,067	0.469 ≈ 0
<i>g</i> ₁ *7	0,264	1,848 ≈ 2
<i>g</i> ₂ *7	0,562	3,934 ≈ 4
<i>g</i> ₃ *7	0,773	5,411 ≈ 5
g ₄ *7	0,895	6,265 ≈ 6
<i>g</i> ₅ *7	0,942	6,594 ≈ 7
<i>g</i> ₆ *7	0,974	6,818 ≈ 7
<i>g</i> ₇ *7	1	≈ 7

Equalização de Histograma

Resultado

Níveis de Cinza (k) - Original	Probabilidade (p _f (f _i)) – Acumulada	Níveis de Cinza (<i>k</i>) - Equalizados
0	1314	0
1	3837	2
2	5820	4
3	4110	5
4	2374	6
5	921	7
6	629	7
7	516	7

Equalização de Histograma

Equalização de histograma

Os níveis de cinza para a imagem original f e para a imagem equalizada g são representados por f_k e g_k , respectivamente, com $0 \le k \le L-1$

```
calcular o histograma da imagem a ser transformada normalizar o histograma, tal que 0 \le f_k \le 1 para k = 0 até L - 1 faça // calcular função distribuição acumulada de probabilidade g_k \leftarrow \sum_{i=0}^k p_f(f_i) // arredondar valor para nível de cinza mais próximo g_k \leftarrow \text{round}(g_k \times L_{max}) s agrupar valores f_k para formar g_k
```

Realce de Imagens

Equalização de Histograma

Original

(c)

Equalizada

Equalização de Histograma

Número de pixels

0 50 100 150 200 250 Níveis de cinza

Entrada

Saída - Equalizada

- Equalização de Histograma
 - - Exemplo:
 - Imagens com grande concentração de pixels em poucos níveis de cinza

- 1. Diferencie as técnicas de limiarização global e local.
- 2. Que efeito uma transformação de intensidade $s=r^{\gamma}$ provocará em uma imagem monocromática com valores de níveis de cinza originais (r) normalizados na faixa de 0 a 1, caso $\gamma > 1$?
- 3. Assinalar V ou F conforme as proposições a seguir sejam verdadeiras ou falsas.
- () A técnica de equalização de histograma aplicada a imagens digitais nunca produz à saída um histograma perfeitamente plano.
- () Após um histograma ter sido equalizado, uma nova aplicação da técnica de equalização de histograma sobre a imagem não produzirá nela nenhuma alteração.
- () A técnica de hiperbolização de histograma tem como principal vantagem sobre a equalização de histograma o fato de que a primeira leva em consideração as características não lineares da curva de intensidade luminosa subjetiva versus intensidade luminosa física da imagem do olho humano.
- () Ao recortar uma imagem em dois pontos quaisquer, o histograma da subcena resultante sempre será idêntico ao da imagem original, porque as raias verticais indicam a concentração de pixels em termos percentuais e, portanto, não dependem do número total de pixels da imagem.

4. Considere a imagem a seguir representada por uma matriz 7×7 , em que cada elemento indica um nível de cinza normalizado, sendo 0 = preto, 1 = branco.

0	3/7	2/7	2/7	1/7	1/7	4/7
3/7	2/7	1/7	1/7	1/7	1/7	4/7
2/7	0	1	1/7	3/7	0	0
0	5/7	1/7	0	6/7	0	1/7
1/7	1/7	1/7	3/7	6/7	6/7	5/7
1/7	1/7	1/7	1/7	5/7	6/7	4/7
0	1	0	0	0	0	4/7

Pede-se:

- a) Calcular as probabilidades de cada nível de cinza e plotar o histograma.
- b) Na imagem original predominam pixels claros ou escuros?
- c) Equalizar o histograma e reescrever a imagem com os novos valores de intensidades.

5. Considere o histograma da tabela abaixo, ilustrado graficamente na figura à direita, e realize a equalização a partir da função de distribuição acumulada. Plotar o histograma equalizado.

Tabela 1 - Histograma original

	_	
Nível de cinza (r _k)	n_k	$p_r(r_k)$
0	1120	0,068
1/7	3214	0,196
2/7	4850	0,296
3/7	3425	0,209
4/7	1995	0,122
5/7	784	0,048
6/7	541	0,033
1	455	0,028
Total	16384	1

- 6. Considere a imagem a seguir representada por uma matriz 5x5. Pede-se:
- a) Obter o negativo da imagem, aplicando a transformação T(r) = 255 r. Reescrever a matriz.
- b) Aplicar uma função de alargamento de contraste. Os pontos para f₁ e f₂ devem ser escolhidos a partir do histograma, priorizando os maiores vales. Os valores de k₁, k₂ e k₃ são 0,5, 1 e 1,25, respectivamente. Reescrever a matriz.
- c) Aplicar a função de binarização. Escolha o melhor ponto de corte a partir do histograma, priorizando o maior vale. Reescrever a matriz.
- d) Apresente a matriz e o histograma após realizar as combinações das técnicas indicadas nos itens
 (b) e (e).

121	20	198	84	4
87	188	189	99	8
88	115	134	49	19
16	18	187	98	9
12	103	15	176	38

7. Construa um programa para receber cada imagem indicada a seguir e, em seguida, apresentar os resultados após o processo de equalização de histograma. O programa deve apresentar também os histogramas das imagens, com e sem a equalização.

- 8. Considere as imagens indicadas no exercício 7 e aplique:
- a) Alargamento de contraste + binarização;
- b) Correção *gama* com c=1 e γ (0.04; 0.4; 1; 2, 5; 10; e 25);
- c) Considerando os resultados obtidos em (b), responda as questões a seguir:
- i. Qual o valor de γ que permitiu realçar melhor os objetos presentes em cada imagem?
- ii. Foi possível observar um valor único para todas as imagens?
- iii. Qual o valor de γ que degradou mais os objetos? (considere todas as imagens)
- iv. Algum valor de γ não produziu alterações nas intensidades das imagens?
- v. Comparando os resultados obtidos em (a) e (b), qual técnica permitiu destacar melhor o objeto do fundo da imagem?
- 9. Considere a imagem (e) com ruído gaussiano, exercício 3 da Aula 4, e aplique a *correção gama* com c=1 e γ (0.04; 0.4; 2,5; 10). Visualmente, esse tipo de realce permitiu melhorar a qualidade da imagem com ruído? Caso sim, indique o valor de γ e o apromixado da correção. Em seguida, calcule ao menos duas métricas indicadas no exercício 4 (Aula 4) e avalie se é possível comprovar quantitativamente as verificações iniciais. Por fim, conclua sobre a efetividade do realce para corrigir a imagem degradada.

Referências

1. Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

Leitura: Capítulo 4

 González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Leitura: Capítulo 3, tópicos 3.1 a 3.3

