SubsetMex

Име на задачата	Subset Mex
Вход	стандартен вход
Изход	стандартен изход
Ограничение по време	1 секунда
Ограничение по памет	256 MB

Мултимножество е съвкупност от елементи, подобна на множество, но елементите могат да се повтарят няколко пъти. Например, следното е мултимножество:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Дадено е мултимножество S от неотрицателни цели числа и цел, която е неотрицателно цяло число n, такова че n не принадлежи на S. Вашата задача е да поставите n в множеството S, като използвате многократно следната операция, съставена от S стъпки:

- 1. Избирате (възможно е и празно) подмножество T на S. Тук, T е нормално множество, на което всички елементи се срещат в S.
- 2. Премахвате елементите на T от S. (Премахвате само по един елемент за всяка различна стойност.)
- 3. Поставяте mex(T) в S. Тук mex(T) е стандартното английско означение за най-малкото неотрицателно число, което не принадлежи на T. Името mex е съкращение за "minimum excluded" (минималната стойност, която не е в множеството).

Вашата задача е да намерите минималния брой операции, така че да поставите числото n в мултимножеството S.

Понеже големината на мултимножеството S може да е много голяма, то тя ще бъде зададена под формата на списък $(f_0, ..., f_{n-1})$ с размер n, където f_i представлява броя срещания на числото i в S. (Тук напомняме, че n е числото, което искаме да поставим в S.)

Вход

На първия ред на стандартния вход се съдържа единствено цяло число t (1 \leq t \leq 200) — броят на тестовите случаи. Всеки от следващите два реда описва един тестов случай:

- На първия ред, за всеки тестов случай, се съдържа единствено цяло число n (1 $\leq n \leq$ 50), задаващо числото цел, което да бъде поставено в S.
- На втория ред, за всеки тестов случай, се съдържат n цели числа $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), представящи мултимножеството S, както беше обяснено по-горе.

Изход

За всеки тестов случай, отпечатайте на отделен ред едно число - минималния брой операции, които са необходими.

Подзадачи

Подзадача 1 (5 точки): $n \le 2$

Подзадача 2 (17 точки): $n \le 20$

Подзадача 3 (7 точки): f_i = 0

Подзадача 4 (9 точки): $f_i \le 1$

Подзадача 5 (20 точки): $f_i \le 2000$

Подзадача 6 (9 точки): $f_0 \le 10^{16}$ и $f_j = 0$ (за всяко $j \ne 0$)

Подзадача 7 (10 точки): Съществува стойност i, за която $f_i \leq 10^{16}$ и $f_j = 0$ (за всяко $j \neq i$)

Подзадача 8 (23 точки): Няма допълнителни ограничения

Пример

Вход			Изход		
2					4
4					10
0	3	0	3		
5					
4	1	0	2	0	

Обяснение

В първия тестов случай, в началото $S = \{1, 1, 1, 3, 3, 3\}$ и нашата цел е да добавим числото 4 в S. Можем да извършим следните операции:

- 1. Избираме $T = \{\}$ и тогава S става $\{0, 1, 1, 1, 3, 3, 3\}$
- 2. Избираме *T* = {0, 1, 3} и тогава *S* става {1, 1, 2, 3, 3}
- 3. Избираме *T* = {1} и тогава *S* става {0, 1, 2, 3, 3}
- 4. Избираме $T = \{0, 1, 2, 3\}$ и тогава S става $\{3, 4\}$