Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition

Alexander Novikov

sasha.v.novikov@gmail.com

Dmitry Kropotov dmitry.kropotov@gmail.com

Summary

- Gaussian processes are powerful and elegant models, but the exact inference requires $\mathcal{O}(n^3)$ computations, where n is the number of training data
- We propose the Tensor Train GP (TT-GP) framework with linear complexity $\mathcal{O}(nD)$ w.r.t. the dataset size n and the dimensionality of the data D
- TT-GP supports billions of inducing inputs
- Can train TT-GP with neural network embeddings end-to-end
- TT-GP achieves state-of-the-art results on several benchmarks both with RBF and deep kernels

Inducing Inputs

• Inducing points (Z, u) are m imaginary points that compress information in data. The joint distribution of labels y, process values $f \in \mathbb{R}^n$ at data points and process values $u \in \mathbb{R}^m$ at inducing points is given by

$$p(y, f, u) = \prod_{i} p(y_i|f) \cdot p(f|u) \cdot p(u),$$

where $p(f|u) = \mathcal{N}(f|K_{nm}K_{mm}^{-1}u, K_{nn} - K_{nm}K_{mm}^{-1}K_{nm}^T)$, $p(u) = \mathcal{N}(u|0, K_{mm})$. Here $K_{mm} \in \mathbb{R}^{m \times m}$, $K_{nm} \in \mathbb{R}^{n \times m}$, $K_{nn} \in \mathbb{R}^{n \times n}$ are covariance matrices computed between Z and Z, X and Z, X and X respectively

• Using the variational distribution of the form q(f,u)=p(f|u)q(u) with $q(u)=\mathcal{N}(u|\mu,\Sigma)$ we can derive the variational lower bound

$$\log p(y) \ge \sum_{i} \mathbb{E}_{q(f_i)} \log p(y_i|f_i) - \text{KL}(q(u)||p(u))$$

• The complexity of computing this bound is $\mathcal{O}(nm^2+m^3)$

Structured Kernel Interpolation

• SKI (Wilson and Nickisch, 2015): set inducing points on a multi-dimensional grid

$$Z = Z^1 \times Z^2 \times \ldots \times Z^D$$

Assume the kernel decomposes as $k(x, x') = k^1(x^1, x'^1) \cdot k^2(x^2, x'^2) \cdot \ldots \cdot k^D(x^D, x'^D)$ Covariance matrix K_{mm} takes form $K_{mm} = K^1_{m_1m_1} \otimes K^2_{m_2m_2} \otimes \ldots \otimes K^D_{m_Dm_D}$

- $\det(K_{mm})$ and K_{mm}^{-1} can be computed in $\mathcal{O}(Dm^{3/D})$
- Inducing points can be considered as inteprolation points for the kernel

$$k_i \approx K_{mm} w_i$$

where $k_i \in \mathbb{R}^m$ is the vector of covariances between the *i*-th training object and the inducing points, $w_i \in \mathbb{R}^m$ is the vector of interpolation coefficients

• KISS-GP uses cubic convolutional interpolation for which

$$w_i = w_i^1 \otimes w_i^2 \otimes \ldots \otimes w_i^D$$

Gaussian Process ELBO

Evidence Lower Bound (Hensman et al., 2013) with KISS-GP approximation of k_i :

$$\log p(y) \ge \sum_{i=1}^{n} \left(\log \mathcal{N}(y_i | w_i^T \mu, \sigma^2) - \frac{1}{2\sigma^2} (\delta - w_i^T K_{mm} w_i) - \frac{1}{2\sigma^2} \text{tr}(w_i^T \Sigma w_i) \right)$$

$$1 \left(\det(K_{mm}) - \det(K_{mm}) \right)$$

$$-\frac{1}{2} \left(\log \frac{\det(K_{mm})}{\det(\Sigma)} - m + \operatorname{tr}(K_{mm}^{-1}\Sigma) + \mu^T K_{mm}^{-1} \mu \right)$$

where σ^2 is the noise variance, δ is the prior variance of the process at any point and $\mu \in \mathbb{R}^m$, $\Sigma \in \mathbb{R}^{m \times m}$ are variational parameters

Tensor Train Format

Tensor \mathcal{A} is said to be represented in Tensor Train (Oseledets, 2011) format if:

$$\mathcal{A}_{i_1...i_d} = \underbrace{G_1[i_1]}_{1 \times r} \underbrace{G_2[i_2]}_{r \times r} \dots \underbrace{G_d[i_d]}_{r \times 1}$$

An example of computing one element of a 4-dimensional tensor:

- TT-format uses $O\left(dnr^2\right)$ memory to approximate a tensor with n^d elements
- Allows for efficient implementation of linear algebra operations

TT-GP

- ullet Set inducing points Z on a grid in the feature space
- Restrict Σ to be in a Kronecker product format $\Sigma = \Sigma^1 \otimes \Sigma^2 \otimes \ldots \otimes \Sigma^D$
- Represent μ as a d-dimensional tensor, restrict to be in TT format with TT-ranks r
- Maximize ELBO with respect to TT-cores of μ , Kronecker factors of Σ , and kernel parameters using stochastic optimization

Properties

- Linear complexity $\mathcal{O}(nDm^{1/D}r^2 + Dm^{1/D}r^3 + Dm^{3/D})$ w.r.t. the dataset size n and dimensionality D. TT-ranks are in general on the scale of $r \approx 10$. Here $m = m_0^D$, where m_0 is the number of inducing points per dimension
- TT-GP can be applied for $n \approx 10^6$ and $m \approx 10^{10}$

RBF Kernel Experiments

Dataset			SVI-GP / KLSP-GP			TT-GP			
Name	n	\overline{D}	acc.	m	<i>t</i> (s)	acc.	\overline{m}	\overline{d}	t (s)
Powerplant	7654	4	0.94	200	10	0.95	35^4	_	5
Protein	36584	9	0.50	200	45	0.56	30^{9}	_	40
YearPred	463K	90	0.30	1000	597	0.32	10^{6}	6	105
Airline	6M	8	0.665*	_	-	0.694	20^{8}	-	5200
svmguide1	3089	4	0.967	200	4	0.969	20^{4}	_	1
EEG	11984	14	0.915	1000	18	0.908	12^{10}	10	10
covtype bin	465K	54	0.817	1000	320	0.852	10^{6}	6	172

Comparison with SVI-GP (Hensman et al., 2013) on regression and classification tasks

Deep Kernel Experiments

Embedding learned by TT-GP with a deep kernel on digits dataset

Dataset		SV-DKL	DNN		TT-GP				
Name	n	acc.	acc.	<i>t</i> (s)	acc.	d	<i>t</i> (s)		
Airline	6M	0.781	0.780	1055	0.788 ± 0.002	2	1375		
CIFAR-10	50K	_	0.915	166	0.908 ± 0.003	9	220		
MNIST	60K	_	0.993	23	0.9936 ± 0.0004	10	64		
Comparison with SV-DKL (Wilson et al., 2016) and stand-alone DNN									

References

- J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In *Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence*, pages 282–290. AUAI Press, 2013.
- I. V. Oseledets. Tensor-train decomposition. *SIAM Journal on Scientific Computing*, 33(5):2295–2317, 2011.
- A. G. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes (kiss-gp). In *International Conference on Machine Learning*, pages 1775–1784, 2015.
- A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Stochastic variational deep kernel learning. In *Advances in Neural Information Processing Systems*, pages 2586–2594, 2016.