Última revisión del documento: 23 de marzo de 2025

Soluciones propuestas

3° de Secundaria Unidad 2 2024-2025

— Practica la reposición a la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:		Puntuación:										
🙎 Deduce información acerca de la estructura atómica a	a partir de	Pregunta	1	2	3	4	5	6	7	8	9	
datos experimentales sobre propiedades atómicas peri	ódicas.	Puntos	5	4	4	5	5	5	5	5	5	
🙎 Representa y diferencia mediante esquemas, modelos :	Obtenidos											
gía química, elementos y compuestos, así como átomo		Pregunta	10	11	12	13	14	15	16		Total	
culas.	Puntos	8	5	5	15	15	5	4		100		
Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.												
Ejercicio 1						_		de	5 ρ	un	tos	
 □ Los electrones de valencia se encuentran siempre en el último nivel de energía. ☑ Verdadero □ Falso Ե La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. □ Verdadero ☑ Falso C Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula. ☑ Verdadero □ Falso d El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. □ Verdadero ☑ Falso 	el último nivel de energía. ✓ Verdadero ☐ Falso ✓ Verdadero ☐ Falso ✓ La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. ☐ Verdadero ☑ Falso C Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula. ✓ Verdadero ☐ Falso i El número de masa representa la suma de protones y neutrones. ✓ Verdadero ☐ Falso i El número total de electrones en un átomo lo determina el grupo al que pertenece. d El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. i En mention ☐ Falso i En número total de electrones en un átomo lo determina el grupo al que pertenece. ☐ Verdadero ☑ Falso											
e Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad. ✓ Verdadero □ Falso	también el número de moles presentes de la sustan- cia. Verdadero											

Ejercicio 2

de 4 puntos

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \bigcirc $3 O_2 + energía <math>\uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $C_6H_{12}O_6(ac) \longrightarrow 2C_2H_5OH(ac) + 2CO_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejercicio 3 ____ de 4 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{c} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - B Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejercicio 4

de 5 puntos

Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Hay 2 N en los reactivos y 1 N en el producto, por lo que hay que multiplicar a NO_2 por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + H_2O$$

Hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar a H_2O por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + 2H_2O$$

Hay 2 O en los reactivos y 6 O en los productos, por lo que hay que multiplicar a O_2 por 3. Y la ecuación balanceada es:

$$N_2H_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O$$

Ejercicio 5

de 5 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Hay 3 Fe en los productos y 1 en los reactivos, por lo que hay que multiplicar por 3 al Fe.

$$3 \text{ Fe} + \text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + \text{H}_2$$

Hay 4 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 4 al H₂O.

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + \operatorname{H}_2$$

Por último, hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H_2 . Y la ecuación balanceada es:

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2$$

Ejercicio 6

de 5 puntos

Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Hay 2 C en los reactivos y 1 C en los productos, por lo que hay que multiplicar por 2 al CO₂.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + H_2O$$

Ahora, hay 6 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 3 al ${\rm H}_2{\rm O}.$

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + 3H_2O$$

Hay 3 O en los reactivos y 7 O en los productos, por lo que hay que multiplicar por 3 al O_2 . Y la ecuación balanceada es:

$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

Ejercicio 7

de 5 puntos

Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Hay 4 H en el reactivo y 2 en el producto, por lo que el coeficiente de H2O es 2.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + O_2$$

Hay 3 O en los reactivos y 4 los productos, por lo que si intentamos dar al O_2 un coeficiente de 1/2, nos da 3 oxígenos en ambos lados.

$$\mathrm{NH_4NO_3} \longrightarrow \mathrm{N_2} + 2\,\mathrm{H_2O} + \frac{1}{2}\,\mathrm{O_2}$$

Dado que usualmente no se usan fracciones como coeficientes, multiplicamos todo por 2 para deshacernos de la fracción, y la ecuación balanceada es:

$$2 \, \mathrm{NH_4NO_3} \longrightarrow 2 \, \mathrm{N_2} + 4 \, \mathrm{H_2O} + \mathrm{O_2}$$

Ejercicio 8

de 5 puntos

Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

Hay 2 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 2 al HgO.

$$2 \operatorname{HgO} \longrightarrow \operatorname{Hg} + \operatorname{O}_2$$

Ahora, hay 2 Hg en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al Hg. Y la ecuación balanceada es:

$$2 \operatorname{HgO} \longrightarrow 2 \operatorname{Hg} + \operatorname{O}_2$$

Ejercicio 9

de 5 puntos

Balancea la siguiente ecuación química:

$$H_2SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + H_2O$$

Hay 1 S en los reactivos y 2 S en los productos, por lo que hay que multiplicar por 2 al H_2SO_4 .

$$2 \operatorname{H_2SO_4} + \operatorname{Pb}(OH)_4 \longrightarrow \operatorname{Pb}(SO_4)_2 + \operatorname{H_2}O$$

Hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H₂O. Y la ecuación queda:

$$2 \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{Pb}(\operatorname{OH})_4 \longrightarrow \operatorname{Pb}(\operatorname{SO}_4)_2 + 4 \operatorname{H}_2 \operatorname{O}$$

Ejercicio 10

de 8 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

El número atómico Z se relaciona con la cantidad de protones en un átomo. Si consideramos un átomo eléctricamente neutro, la cantidad de electrones deberá ser la misma. b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

$$10,000 \times 2 \text{ mm} = 20,000 \text{ mm} = 20m$$

Ejercicio 11

de 5 puntos

Relaciona cada elemento con las características que le corresponden.

- a E Titanio
- (A) Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
- **b** <u>J</u> Oro
- \bigcirc Elemento metálico con Z = 31.
- c D Helio
- C Elemento metaloide, ubicado en el tercer período de la tabla periódica.
- **d** A Boro
- (D) Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
- e <u>I</u> Radón
- (E) Elemento con 22 protones y 22 electrones.
- f F Yodo
- (F) Elemento de la familia de los Halógenos con 74 neutrones.
- 9 H Bismuto
- (G) Elemento de la familia de metales alcalino-terreos con 138 neutrones.
- h <u>G</u> Radio
- (H) Elemento con Z = 83.
- i B Galio
- (I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
- j <u>C</u> Silicio
- (J) Metal brillante utilizado en joyería.

de 5 puntos Ejercicio 12

Relaciona la especie química con la cantidad de protones y electrones de valencia.

- (A) Ión oxígeno (O^{-})
- B Nitrógeno (N)
- C Silicio (Si)
- (D) Calcio (Ca)
- (E) Ión Fluor (F⁻)
- F Oxígeno (O)
- G Neón (Ne)
- H Ión Litio (Li⁺)
- (I) Fósforo (P)
- (J) Selenio (Se)

- <u>G</u> 10 protones y 8 electrones de valencia.
- **b** B 7 protones y 5 electrones de valencia.
- c <u>E</u> 9 protones y 8 electrones de valencia.
- d A 8 protones y 7 electrones de valencia.
- e <u>H</u> 3 protones y 2 electrones de valencia.
- f ____ 20 protones y 2 electrones de valencia.
- 9 _____ 34 protones y 6 electrones de valencia.
- h <u>C</u> 14 protones y 4 electrones de valencia.
- i ____ 15 protones y 5 electrones de valencia.
- j <u>F</u> 8 protones y 6 electrones de valencia.

Ejercicio 13 de 15 puntos

Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (1) y electrones (-).

Especie	Símbolo	\oplus	1	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 14

de 15 puntos

Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla

Elemento	${\rm Grupo/Familia}$	Período	Tipo
Paladio			
Oro			
Argón			
Samario			
Talio			

Ejercicio 15 ____ de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El potencial de Ionización y el carácter metálico
 - B El carácter no metálico y el potencial de ionización
 - C La electronegatividad y la afinidad elec-
 - D El carácter metálico y la electronegatividad
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A El radio atómico y el radio iónico
 - B El carácter metálico y la afinidad electrónica
 - C La electronegatividad y el radio atómico
 - D Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- C En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - (C) Izquierda y hacia arriba
 - (D) Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 16 ____ de 4 puntos

Relaciona cada **concepto** con su definición.

- B Diagrama de esferas y barras.
- **b** _D Diagrama de esferas.
- c _A Fórmula condensada.
- d <u>C</u> Fórmula estructural.

- A Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

18 VIIIA	$\overset{\text{2}}{H_{\text{elio}}}^{\text{4.0025}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{Neón}}}{\overset{\text{Neón}}{\overset{N}}}}}}}{\overset{\text{Neón}}{\overset{N}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\mathop{\Lambda^{23:948}}_{\text{Argón}}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\overset{54}{X}\overset{131.29}{\text{Kenón}}$	$\mathop{Radon}\limits^{86}$	$\underset{\text{Oganeson}}{\underbrace{094}}$	$\sum_{\mathbf{Luterio}}^{\mathbf{7_1}} \frac{174.97}{\mathbf{Luterio}}$	$\frac{103}{L}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 CI Cloro	$\overset{35}{B}\overset{79.904}{\Gamma}$ Bromo	53 126.9 T Yodo	$\mathop{\rm At}\limits_{\mathop{\sf Astato}}$	$\prod_{\text{Teneso}}^{292}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	16 32.065 S	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\sum_{Tulio}^{69}	$\overset{\text{101}}{\text{NM}}\overset{258}{\text{d}}$	
	15 VA	7 14.007 Nitrógeno	$\sum_{F\'esforo}^{15\ 30.974}$	$\overset{33}{A}$ 74.922 $\overset{74.922}{A}$ Arsénico	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\mathbf{Bismuto}}$	${\displaystyle \frac{115}{M}} {\displaystyle \frac{288}{C}}$ Moscovio	$\underbrace{\mathbf{Erbio}}^{68}$	100 257 Fm	
	14 IVA	6 12.011 Carbono	$\overset{14}{\text{Silicio}}$	$\overset{32}{\text{Germanio}}$	$\mathop{Sn}_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}_{\text{Pbmo}}^{207.2}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{0}$	99 252 Einsteinio	
	13 IIIA	$\overset{5}{\text{Boro}}$	$\prod_{\text{Aluminio}}^{13} \text{26.982}$	$\overset{31}{\overset{69.723}{\text{Galio}}}$	$\overset{\textbf{49}}{\text{Indo}}_{\text{Indo}}$	\prod_{Talio}^{81}	$\underset{\text{Nihonio}}{\text{113}} \text{ 284}$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\bigcup_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{\text{Hg}}_{\text{S}}$	$\overset{112}{C}\overset{285}{n}$	65 158.93 Terbio	$\underset{Berkelio}{\underline{BK}}$	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{U}}}_{Cobre}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}^{196.97}$	$\underset{\text{Roentgenio}}{Rg}$	$\mathop{Gadolinio}^{64-157.25}$	$\overset{96}{Cm}^{247}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{i=1}^{58.693}$	$\Pr^{46 106.42}_{\text{Paladio}}$	$\Pr^{78}_{\text{P}} \stackrel{195.08}{\text{P}}$	Darmstadtio	$\overset{\textbf{63}}{\text{Europio}}_{\textbf{151.96}}$	$\underset{\text{Americio}}{Am}$	
			9 VIIIB	$ \bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933} $	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{L}$	$\underset{\text{Meitnerio}}{109} 268$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{u}$	
		SO	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$ Hierro	$\mathop{Ru}_{\text{Ruthenio}}^{44}$	$\overset{76}{\text{OSmio}}$	$\overset{\text{108}}{\text{Hassio}}^{277}$	$\underset{\text{Prometio}}{\overset{\textbf{61}}{P}}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Simtéticos	7 VIIB	$\sum_{\mathrm{Manganeso}}^{25} 54.938$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\underset{\text{Bohrio}}{\overset{107}{B}}$	60 144.24 Noodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbolog	Negro: I Gris: Si	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	$\sum_{\text{Molybdeno}}^{42}$	$\bigvee_{\text{Tungstenio}}^{74} 183.84$	$\overset{106}{S}\overset{266}{g}$	$\sum_{\text{Praseodymio}}^{59 \ 140.91}$	$\overset{\mathfrak{g}_{1}}{P}\overset{231.04}{a}$	
	Sim	$\sum_{ ext{Simbolo}}^{ extbf{Z}}A_{r}$	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{ ext{Tantalo}}$	$\underset{\text{Dubnio}}{\overset{105}{\text{D}}} \overset{262}{\overset{262}{\text{D}}}$	$\overset{58}{\overset{140.12}{\overset{12}{\overset{6}{\mathbf{6$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	22 47.867 Titanio	$\overset{40}{Z}\overset{91.224}{ ext{rconio}}$	$\overset{72}{\mathrm{Hafnio}}^{178.49}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\overset{57}{La}_{\text{lantánido}}^{138.91}$	$\overset{89}{Ac}_{\text{ctinio}}^{227}$	
			3 IIIB	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71 * K	.: 89-103 .:: ** .:: Actinido	s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}_{\mathrm{Magnesio}}^{\mathrm{12}\ \mathrm{24.305}}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{ST}}$	$\overset{56}{\text{Bario}}_{\text{Bario}}$	$\mathop{Radio}_{\text{Radio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	le J o	Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{1}$	$\overset{11}{N}\overset{22.990}{\mathrm{sodio}}$	$\sum_{\text{Potasio}}^{19 \ \ 39.098}$	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	$\mathbf{\hat{C}}_{\mathbf{S}}^{55}$	$\frac{87}{\text{Fr}}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
		2	က	4	Ŋ	9	7			