Ressource R1.06

Mathématiques Discrètes

Tiphaine Jézéquel, Mickaël Le Palud

2023-2024

Mathématiques discrètes = 1e ressource de maths du BUT

Organisation du cours

A partir d'aujourd'hui jusqu'au 10 novembre

- 1h de Cours Magistral (CM) une semaine sur 2
 - Tiphaine Jézéquel
- 2h de Travaux Dirigés (TD) chaque semaine :
 - Tiphaine Jézéquel (groupes A,B,C,D)
 - Mickaël Le Palud (groupe E).

Evaluation

- Devoir Surveillé (DS1) 30min début octobre coeff 1
- Devoir Surveillé (DS2) 1h30 le 10 novembre sur toute la ressource - coeff 2
- Tests de 5min à faire sur Moodle
- \hookrightarrow la somme des notes de tests donne une note coeff 0,5

Interros Moodle sur les Cours Magistraux

Sur l'espace Moodle du cours de Mathématiques Discrètes, après chaque cours en amphi vous trouverez un test à faire portant sur ce cours. Il faudra y répondre sur votre temps libre, avant une date donnée.

Il sera constitué de 3 questions, et noté sur 3 points. La somme des notes des tests donnera une note qui comptera avec un coeff 1/2. Vous ne pourrez faire chaque test qu'une seule fois.

Les Ressources de Maths en BUT1

Entre 2h et 4h de maths par semaine toute l'année.

Semestre 1

Maths Discrètes Tiphaine Jézéquel Mickaël Le Palud

10 semaines,

Maths discrètes **Initiation Python** Gwendal Le Bouffant Adib Rahmouni

4 TP de 2h du 01/09 au 10 novembre en octobre et novembre

Outils fondamentaux Gwendal Le Bouffant

T. Jézéquel, A. Rahmouni

6 semaines. de fin nov à mi janvier

Semestre 2

Théorie des Graphes Adib Rahmouni Gwendal Le Bouffant

5 semaines. de fin janvier à mi mars Gwendal Le Bouffant Adib Rahmouni

5 semaines. de fin janvier à mi mars

Méthodes numériques Statistiques descriptives

Tiphaine Jézéquel Yannick Favreau

8 semaines, de fin mars à fin juin

La Ressource de Maths "Discrètes" = sur des ensembles finis

Cours 1-2 : Logique, Tables de vérité, Quantificateurs Algo, Bases De Données

Р	Q	P et Q
F	F	F
F	V	F
V	F	F
V	V	V

Cours 3: Ensembles \hookrightarrow se méfier si impression de facilité Bases de Données, Python

 $\{x \in \mathbb{N}, x \ pair\}$ $\{3,4,7\}$

Cours 4 : Opérations internes Algo, Bases De Données

*	а	b	С
а	a²	a*b	a * c
b	b*a	b²	b*c
С	c * a	c * b	C2

Cours 5-6: Relations, Fonctions, **Applications** Bases De Données

Cours 1

Éléments de logique

Ressource R1.06 - Mathématiques Discrètes Tiphaine Jézéquel, Mickaël Le Palud

2023-2024

Plan du cours

- Notion de Proposition
- Connecteur logique Négation non
- Connecteurs logiques ET et OU
- Connecteurs logiques Implique ⇒ et Équivalent ⇔
- Négation des connecteurs logiques

Pourquoi de la logique? - En informatique

• Si il ne fait pas trop chaud OU il pleut Alors Ne rien faire Sinon Ouvrir la fenêtre

• Si il fait trop chaud ET il ne pleut pas Alors Ouvrir la fenêtre

Pourquoi de la logique? - Dans la vraie vie

 Tous les chats sont mortels Socrate est mortel

donc Socrate est un chat. FAUX

• Théorème : Tous les chats ont 9 queues. **Démonstration :** Aucun chat n'a 8 queues. Tout chat a une queue de plus qu'aucun chat. Donc tout chat a 9 queues. FAUX

• Tou te s les autres candidat e s à l'élection sont nuls. donc le meilleur choix est de voter pour moi. FAUX

> La mathématique est une science dangereuse : elle dévoile les supercheries et les erreurs. Galilée

> > www.charlatans.info/logique.shtml

1

1. Notion de Proposition

Définition

Une **proposition** est un énoncé auquel on peut attribuer la valeur de vérité **vrai** (**V**) ou faux (**F**), mais jamais les deux à la fois.

Exemples

- "Il fait beau"
- "Ouvrez les yeux"
- "Le soleil est bleu".....
- "Pourquoi es-tu là?"

Exercice. Les expressions suivantes sont-elles des propositions? Donner la valeur (Vrai ou Faux) des propositions.

- "Faire p=4"
- "4 est impair"
- "si p est impair, remplacer p par 2p"
- "si p est impair, alors 2p est pair"

Remarque. On dira "soit P une proposition", et P vaudra Vrai ou Faux

2. Connecteur logique Négation non

Définition

Soit *P* une proposition.

La négation de P est la proposition notée non P qui

- est vraie lorsque *P* est fausse,
- est fausse lorsque P est vraie.

Table de vérité de la négation :

P	non P
V	F
F	V

Exemples:

- P = "C'est la rentrée" non $P = \dots$
- $P_1 = "4$ est impair" non $P_1 = \dots$
- P(n) = "n est pair" $non P(n) = \dots$

Exercice

- P_2 =" Je n'aime pas ce cours de logique" non P_2 =
- P_4 ="Ouvrez la fenêtre" non P_4 =
- $P_5 = Vrai$ non $P_5 = \dots$

7

3. Connecteurs logiques ET et OU

Définition

Soient P et Q deux propositions.

La proposition "P ET Q" est une proposition qui

- est vraie lorsque P et Q sont vraies simultanément,
- est fausse dans tous les autres cas.

Table de vérité de ET :

Р	Q	P ET Q
V	V	V
V	F	F
F	V	F
F	F	F

Exemples

- P_1 ="II fait beau", Q_1 ="II fait chaud" P_1 ET Q_1 =.....
- $ullet P_2=$ "c'est la rentrée", $Q_2=$ "les étudiant·e·s sont content·e·s" P_2 ET $Q_2=\ldots\ldots$
- P₃ ="I'utilisateur·ice appuie sur CTRL"
 Q₃ ="I'utilisateur·ice appuie sur ALT"
 R₃ ="I'utilisateur·ice appuie sur SUPPR"
 P₃ ET Q₃ ET R₃="I'utilisateur·ice appuie sur CTRL et sur ALT et sur SUPPR"

Définition

Soient P et Q deux propositions.

La proposition "P OU Q" est une proposition qui

- est vraie lorsque
- est fausse lorsque

Table de vérité de *OU* :

Р	Q	P OU Q
V	V	V
V	F	V
F	V	V
F	F	F

4. Connecteurs logiques Implique ⇒ et Équivalent ⇔

Définition

Soient P et Q deux propositions.

La proposition " $P \Rightarrow Q$ ", qui se lit **P implique Q**, est une proposition qui

- est fausse lorsque
- est vraie dans tous les autres cas.

Table de vérité de \Rightarrow :

	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Exemple :"C'est la rentrée" ⇒ "les étudiant·e·s sont content·e·s" Cette proposition se dira en français :

"Si c'est la rentrée, alors les étudiant·e·s sont content·e·s"

Exemple

• P1 = "Il fait beau", Q1 = "Je suis de bonne humeur" $P1 \Rightarrow Q1 =$ "S'il fait beau alors je suis de bonne humeur"

		$P1 \Rightarrow Q1$
II fait beau	Je suis de bonne humeur	Vrai
II fait beau	Je suis de mauvaise humeur	Faux
II ne fait pas beau	Je suis de bonne humeur	Vrai
II ne fait pas beau	Je suis de mauvaise humeur	Vrai

Exercice

• P2 = "C'est la rentrée", Q2 = "les étudiant·e·s sont content·e·s"

$$P2 \Rightarrow Q2 = \dots$$

	$P2 \Rightarrow Q2$
les étudiant∙e∙s sont content∙e∙s	
les étudiant·e·s ne sont pas content·e·s	
les étudiant∙e∙s sont content∙e∙s	
les étudiant∙e∙s ne sont pas content∙e∙s	

Définition

Soient P et Q deux propositions.

La proposition " $P \Leftrightarrow Q$ " se lit " $\mathbf P$ est équivalent à $\mathbf Q$ ", et est une proposition qui

- est vraie lorsque P et Q ont la même valeur de vérité,
- est fausse sinon.

Table de vérité de \Rightarrow :

P	Q	$P \Leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

15

5. Négation des connecteurs logiques

Négation des connecteurs logiques

Soient P et Q deux propositions.

Les formules suivantes donnent la négation des connecteurs logiques :

- non(P ET Q) = (non P) OU(non Q)
- non(POUQ) = (non P)ET(non Q)
- $non(P \Rightarrow Q) = P ET (non Q)$

Démonstration de la Propriété : voir TD1.

Exemple

Conditions pour être admis.e en BUT Info à Lannion :

• P : être formidable

ΕT

Q : être sympa

Négation: quand on n'est pas admis.e, on est donc

• non P : pas formidable

ΟU

• non Q : pas sympa

Interro Moodle sur le Cours 1

Test à faire avant le lundi 4/09 à 23h59.

Questions du Test sur le Cours 1 :

- 1 Une expression vous est donnée : est-ce une proposition?
- ② Une expression en français avec un "ET" ou un "OU" vous est donnée : est-elle vraie?

Exemple : "On est en 2023 et notre enseignante de maths discrètes s'appelle Marc" \longrightarrow FAUX

Une expression en français avec un "Implique" vous est donnée : est-elle vraie?

Exemple : "Si la Terre est plate alors notre enseignante de maths discrètes s'appelle Marc" \longrightarrow VRAI NOT SURE IF DISCRETE MATH

Remarque:

- 1 point par réponse juste
- - 1/2 point si réponse fausse
- 0 point si réponse "ne sais pas"

19

17

TEST WAS EASY