Inżynieria oprogramowania

LAB 5 UML – Diagramy czynności / aktywności

1. Diagram czynności / aktywności

Diagram czynności (zwany czasami diagramem aktywności) w języku UML służy do modelowania czynności i zakresu odpowiedzialności elementów bądź użytkowników systemu. Jest niejako podobny do diagramu stanu, jednak w odróżnieniu od niego nie opisuje działań związanych z jednym obiektem a wieloma, pomiędzy którymi może występować komunikacja przy wykonywaniu czynności.

2. Elementy

- Początkowy i końcowy stan akcji, przedstawiane odpowiednio jako wypełnione koło oraz wypełnione koło w okręgu.
- Stan akcji zawierający etykietę ją opisującą. Obrazowany za pomocą prostokąta z zaokrąglonymi narożnikami.
- Przejście przepływu sterowania (ciągła strzałka), występujące pomiędzy czynnościami.
 Zakończenie jednej czynności powoduje rozpoczęcie drugiej.
- Przejście przepływu obiektów (przerywana strzałka). Obiekt występuje pomiędzy aktywnościami, co oznacza że jest otrzymywany na wyjściu pierwszej z nich, a pobierany na wejściu drugiej.
- Tory, rysowane za pomocą linii ciągłych. Służą do określania, który element systemu wykonuje dane akcje.
- Decyzje (obrazowane za pomocą rombów) służące do wyboru jednego przejścia przepływu sterowania. Odpowiednie wyjścia opisywane są warunkami, które muszą zostać spełnione by dane przejście mogło zajść.
- Współbieżność obrazowana jest za pomocą pogrubionej kreski i dzieli się na dwa elementy:
 - Synchronizacja sterowania aby nastąpiło przejście (lub przejścia) wychodzące, muszą wystąpić wszystkie przejścia przychodzące.
 - Rozdzielenie sterowania po zajściu przejść przychodzących występują jednocześnie wszystkie przejścia wychodzące.
 - Opcjonalnie możemy wyznaczyć elementy rozproszone, nadając im symbol :R przy przejściu w kolejny stan.

3. Podstawowe symbole

Prostokąt o zaokrąglonych rogach jest graficzną interpretacją czynności lub akcji wykonywanej przez system. Mimo że akcja i czynność są czym innym, symbol mają podobny.

Romby reprezentują miejsca, w których podejmowana jest decyzja.

Koło zamalowane na czarno oznacza początek, a więc miejsce, w którym rozpoczyna się przepływ sterowania.

Koło z czarną kropką oznacza koniec, czyli punkt zatrzymania wszelkich przepływów sterowania.

Przekreślone koło oznacza zatrzymanie wybranego przepływu sterowania.

Strzałka określa przepływ sterowania pomiędzy dwoma zadaniami (akcjami).

ZAD.1.

Utworzyć diagram czynności przedstawiony na rysunku poniżej.

ZAD.2.

Utworzyć diagram czynności przedstawiony na rysunku poniżej.

4. Akcja / czynność

Czynność jest bardziej ogólnym pojęciem, w związku z czym jest podzielna i charakteryzuje się dłuższym czasem wykonywania. Akcja jest pojęciem szczegółowym, a co za tym idzie, niepodzielnym, o krótkim czasie realizacji.

Na diagramach czynności używa się zazwyczaj czynności, jednak czasami, zwłaszcza w sytuacji, gdy diagram ma być specyfikacją programistyczną, można skorzystać z akcji.

5. Współbieżność

Współbieżność jest jednoczesnym wykonywaniem kilku czynności. Elementy wykonywane współbieżnie wyróżnia się kreską, która je niejako grupuje.

ZAD.3.

Utworzyć diagram czynności przedstawiony na rysunku poniżej.

ZAD.4.

Zaproponuj diagram czynności wyznaczania n-tego wyrazu ciągu Fibonacciego.

ZAD.5.

Zaproponuj diagram czynności obsługi bankomatu.

Uwzględnij czynności:

- Wypłata
- Saldo
- Zmiana PIN
- Doładowanie telefonu