

Moving towards commercialization of lignocellulosic biomass to fuels to chemicals. How to deal with heterogeneous biomass?

Renata Bura, Shannon Ewanick, Erik Budsberg, Jordan Crawford, Brian Marquardt and Rick Gustafson

November 13th, <u>2012</u>

Heterogeneous biomass

Hybrid poplar

Forest residues

How to deal with heterogeneous biomass?

Objectives

Objectives

How can we improve the production of fuels and chemicals from biomass?

How do deal with heterogeneous lignocellulosic biomass?

Preconditioning
Online reaction control
Techno-economical analysis
Life Cycle Analysis (LCA)

Chemical composition of hybrid poplar

Biomass	Cellulose (%)	Hemicellulose (%)	Lignin (%)
P. deltoides, Stoneville	42.2	16.6	25.6
NM 6	49.0	21.7	23.3
CAFI high lignin	43.8	20.4	29.1
CAFI low lignin	45.1	21.5	21.4
Caudina DN 34	43.7	19.6	27.2
DN 182	45.5	20.8	23.6
DN 17	43.7	23.2	23.1
NC 5260	45.1	20.3	21.5

(Sannigrahi et al., 2009)

Chemical composition-challenges

- Agronomy practices for stand establishment
- Water and nutrients management
- Weed control
- Harvest and storage
- Growing seasonal precipitation requirements
- Seasonal changes
- Age

Physical characteristics

- Moisture content
- Particle size
- Bark content
- Leaf/needle content /

- Harvest and collection
- Storage
- Transportation
- Handling

Affect of preconditioning

Switchgrass and sugarcane bagasse preparation

Air-dry

(10 %

moisture)

Fermentation

SSF — 5% (w/w), 10 FPU/g cellulose, 5 g/L of *S. cerevisiae*

Final results — theoretical ethanol yield from raw biomass

How to deal with heterogeneous biomass?

Pretreatment

Hydrolysis

Fermentation

Improving analytical methods

Spectroscopic Current **Methods** Raman HPLC, GC, wet chemistry, High resolution chemical modification enzymatic from molecular vibration -time and cost -background fluorescence -not online -resolution of multiple Issues compounds -less robust -detection limits -requires trained personnel -destructive and invasive

What is so special about UW Raman?

- Raman Instrument
 - Kaiser Rxn2 System
 - 785 nm excitation
 - 6 mm ball probe (UW patent)
 - Sapphire spherical lens
 - Interfacial measurements
 - No moving parts
 - Sampling error <<1%</p>
 - Temperature range: -40° C 350° C
 - Pressure range: 0-350 Barr
 - Effective sampling of liquids, slurries, powders, pastes and solids
- Chemometric techniques (UW)
- Algorithms to remove fluorescence (UW)

Experimental methods

- Fermentation in 1.3 L NBS Bioflo 115 bioreactor
- S. cerevisiae ATCC 96581 (6-C only)
- 785 nm Raman ball probe in vessel
- Manual sampling for HPLC analysis

Raman: surface plots

Synthetic sugars

Switchgrass hydrolysate

HPLC vs Raman

	HPLC	Raman	
		20000 15000 5000 0 400 600 800 1000 1200 1400 1600	
Sample preparation	\$\$\$	\$	
Equipment cost	\$\$\$	\$\$\$	
Sample run time	30-120 min	1 min	
Analysis time for 6 hour fermentation	3 days, 36 data points	Real time, 360 data points	
Online probe/sensor?	No	Yes	

Techno-economical analysis (ASPEN)

Life Cycle Analysis (LCA)

How to deal with heterogeneous biomass?

Acknowledgements

Centre for Process Control and Analysis (CPAC)

- Novozymes Inc.
- Weyerhaeuser Inc.
- UW Applied Physics Laboratory
- Denman Professor in Bioresource Science Engineering
- Biofuels and Bioproducts Laboratory
 Research Group
 (www.depts.washington.edu/sfrbbl/)