

Deep Learning: Advanced Approaches

Machine Learning 2023-24
Slides P. Zanuttigh

Some slides from S. Fujimoto, I. Goodfellow and others

Loss Function: Cross Entropy

- For classification tasks the cross entropy is commonly used in place of the 0-1 loss
- □ For binary classification: $L(f(x), y) = -y \log(f(x)) (1 y) \log(1 f(x))$
- □ The optimal f(x) minimizing this loss function is $f(x) = P(y = 1 \mid x)$
 - We are training the neural net output to estimate conditional probabilities
- \square Note that the expression works if f(x) is strictly between 0 and 1
 - An undefined or infinite value would otherwise arise
 - To achieve this, the sigmoid is commonly used as activation for the output layer
- The function is convex
 - → Gradient descent (e.g., SGD) works better

Extension to Multi-Class

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

	AL	 CA	 NY	 WA	 WY
	0	 0	 -1	 0	 0
•	0	 0	 0	 -1	 0
	0	 -1	 0	 0	 0

- One-hot encoding
 - Output: vector y with one component for each class
 - o $y_i = 1$ if sample in class $i, y_i = 0$ otherwise
 - Avoid having some classes "closer" to others as when using class index
 - Increases output data dimensionality
- Extension of cross-entropy to multi-class
 - Labels one-hot encoded, vector function f to be estimated
 - o $f_i(x)$ = estimated probability that x belong to class i

$$L(f(x), y) = -\sum_{i} y_{i} \log(f_{i}(x))$$

In Practice: Many DL Tools.....

- Many deep learning frameworks
- Supported by large research entities and companies
- Optimized for GPU computing

Tensorflow (Google)

Keras: higher level framework for easier implementation

Caffe (University of Berkley)

PyTorch (Meta)

Microsoft Cognitive Toolkit

... and many others

Deep Learning: Advanced Approaches

- Advanced CNN schemes: Residual networks, skip connections, auto-encoders
- 2. Generative models: Generative Adversarial Networks (GAN)
- 3. Modeling temporal information: Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM) (not part of the course)

Advanced CNN Models

- We'll see some relatively recent advanced architectures
- Some new concepts will be briefly introduced:
 - Residual Networks
 - Inception Modules
 - Transposed Convolutions

"Historical" Perspective: AlexNet (2012)

- AlexNet [1]: First Deep Learning approach outperforming "classic" ML methods on the image classification task (i.e., outperforming SVM and RF)
- Exploits 11x11, 5x5, 3x3, convolutions, max pooling, dropout, data augmentation, ReLU activations, SGD with momentum
- Split in 2 pipelines since it was trained with 2 GPUs (for 6 days)
 - According to Nvidia the DGX-2 server released in 2018 can train it in 18 mins!!!
- Complex but quite "standard" model

AlexNet: the Network

- □ 5 convolutional layers, 3 fully connected ones
- Many feature maps for each layer
- 650K neurons, 60M parameters
- Rectified Linear Units (ReLU) activations, overlapping pooling, dropout trick

3 Fully Connected Layers

□ Training with randomly extracted 224x224 patches for more data

Softmax: maps output values to a set of values in [0,1] range summing up to 1

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^{n_c} e^{z_j}}$$

GoogleNet (Inception V1)

- Released in 2014, 1st method very close to human level performance on image classification
- □ Implemented a novel element: *the inception module*
 - This module performs multiple small convolutions with different sizes in parallel
- The networks is a 22 layers deep CNN but reduced the number of parameters from 60M of AlexNet to 4M

The Inception Module

Residual Neural Networks (*ResNet*)

- Residual Neural Network [2] introduced in 2015 a novel architecture with "skip connections"
- Idea: try to estimate the residual w.r.t the previous estimation instead of the function itself
- Thanks to this technique they were able to train a NN with 152 layers with reasonable complexity
- Was able to beat human-level performance on image classification tasks

Dilated Convolutions

- Large convolutions have a wide receptive field but requires a lot of parameters
- ☐ Use dilated (*atrous*) convolutions, to increase the field of view without increasing the spatial dimensions
- ☐ The convolution works on samples spaced apart with a regular step instead of over each single sample in the window.

Many Other Approaches....

- This was just a quick overview of some relatively recent results
 - For ICT students more approaches will be presented in computer vision, neural networks and deep learning and many other courses....
- Huge amount of resources is currently spent on Deep Learning research
- Many other schemes exist
- And every month there is a new one outperforming previous results !!!