Cemurop 26, 23.04.24

(a)
$$f(x) = \ln(4 + 3x - x^2) = \ln((4 - x)(1 + x)) = \ln(4 - x) + \ln(1 + x); x_0 = 2$$
 $f(x) = \ln(4 + 3x - x^2) = \ln((4 - x)(1 + x)) = \ln(4 - x) + \ln(1 + x); x_0 = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + 3x) = \ln(4 - x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + 3x - x^2) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) + \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4 + x) = 2$
 $f(x) = \ln(4 + x) + \ln(4$

D
$$f(x,y) = \int_{x-y}^{x-y} (x,y) \neq (0,0)$$

(a) then pepulsus wo $x: g_{o}(x) = f(x,0)$

f hence pepulsus no x broke (x_{o}, y_{o}) , evan hence $g_{o} = f(x,y)$
 $g(x) = \frac{x}{x} = 1$ $(x \neq 0) \rightarrow (a = 1)$

(b) the pepulsus no g broke (x_{o}, y_{o}) , evan hence $g_{o} = f(x,y)$
 $(x_{o} = x) = f(x_{o} = x)$

(c) $g = x J_{x} : f(x_{o} = x) = \frac{x^{2} + x^{2}}{x^{2} + x^{2}} = 0$
 $f(x,y) = f(x,y) =$

(b)
$$f(x,y) = x + y \sin \frac{1}{y}$$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = \lim_{x \to 0} x = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = \lim_{x \to 0} (y \sin \frac{1}{y}) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to y} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{1}{y}) \right) = 0$
 $\lim_{x \to 0} \left(\lim_{x \to 0} (x + y \sin \frac{$