Automated Planning & Artificial Intelligence

Uninformed and Informed search in state space

Humbert Fiorino

Humbert.Fiorino@imag.fr
http://membres-lig.imag.fr/fiorino

Laboratory of Informatics of Grenoble - MAGMA team

February 2011

Introduction

- There are many planning approaches. State space planning is the most obvious:
 - The search space is a subset of the state space
 - Each node corresponds to a state of the world, each arc corresponds to a state transition.
 - A plan is a path in the search space from the initial state to a goal state.

Forward Search Algorithm

- The forward search algorithm takes as input the statement $P = (O, s_0, g)$ of a planning problem P.
- If P is solvable, then Forward-search (O, s_0, g) returns a solution plan, otherwise it returns failure.
- The plan returned by each recursive invocation of the algorithm is called a partial solution because it is part of the final solution returned by the top level invocation.

ForwardSearch(\mathcal{O}, s_0, g)

```
begin
          if s_0 satisfies g then
                return [];
          else
                applicable \leftarrow \{a \mid a \text{ is applicable in } s_0\};
                if applicable = \emptyset then
 6
                      return \perp;
 8
                else
                      Nondeterministically choose a \in applicable;
                      \pi \leftarrow ForwardSearch(\mathcal{O}, \gamma(s_0, a), g);
10
11
                      if \pi \neq \bot then
12
                           return a \cdot \pi;
13
                      else
14
                           return \perp;
15 end
```


Depth-first deterministic implementation

- Loops have to be pruned \Rightarrow store execution trace (s_0, \dots, s_k) and return \bot each time $s_k = s_i$ with i < k.
- This implies :
 - lacktriangledown The algorithm returns ot for any infinite branch
 - ② This property does not make it return \bot on branches leading to a solution.

- **1** is satisfied by the number of state is finite. Then, any infinite branch necessarily entails $s_k = s_i$ with i < k: the algorithm returns \perp .
- ② To make the algorithm return \bot , we need $s_k = s_i$ with i < k. Reasoning by contradiction: suppose that there is a finite execution trace $(s_0, \ldots, s_i, \ldots, s_k, \ldots, s_n)$ with $s_k = s_i$ (i < k). Thus, $(s_0, \ldots, s_{i-1}, s_k, \ldots, s_n)$ is also a solution trace and it is not pruned.

Forward Search Algorithm

Soundness

Theorem

Any plan π returned by ForwardSearch (\mathcal{O}, s_0, g) is a solution of $P = (\mathcal{O}, s_0, g)$

- We must show that the algorithm builds up a sequence of applicable actions. The proof is by induction on the call number k.
 - Basis : k=1, s_0 satisfies g, therefore $\pi=[]$ is a solution plan
 - Induction step : By induction hypothesis, any plan $\pi \leftarrow ForwardSearch(\mathcal{O}, \gamma(s_0, a), g)$ with $k \geq 1$ is a solution for $(\mathcal{O}, \gamma(s_0, a), g)$. For k + 1, a is applicable to s_0 . Then, $a \cdot \pi$ is a solution for $P = (\mathcal{O}, s_0, g)$.

Completeness

Let $P = (\mathcal{O}, s_0, g)$ and let Π be the solution set of P. $\forall \pi \in \Pi$, there is at least one deterministic execution trace of $ForwardSearch(\mathcal{O}, s_0, g)$ that returns π .

- We must show that, if there is a solution $\pi = [a_1, \ldots, a_k]$, the algorithm necessarily finds it. The prove is by induction on the plan length $k = |\pi|$:
 - Basis : For k=0, $\pi=[]$ is returned by line 3.
 - Induction step : In order to return execution trace with length k, necessarily $|ForwardSearch(\mathcal{O}, \gamma(s_0, a), g)| = k 1$, which is verified by the induction hypothesis. Indeed,
 - $\pi = ForwardSearch(\mathcal{O}, \gamma(s_0, a), g) = [a_2, \dots, a_k] \text{ and } |a \cdot \pi| = k.$

Breadth-first search complexity

Suppose that the branching factor is b and the solution is at depth d.
 In the worst case,

$$b + b^2 + \cdots + b^d + (b^{d+1} - b) = O(b^{d+1})$$

nodes are generated and stored! (time and space complexity are equivalent)

Depth-first search complexity

- It has very modest memory requirements : a single path from the root to a leaf node = O(m), where m is the maximum depth of any node (space complexity).
- In the worst case, all the $O(b^m)$ nodes in the search tree are generated (time complexity).

$BackwardSearch(\mathcal{O}, s_0, g)$

```
Action a is relevant for g iff g \cap effect^+(a) \neq \emptyset et g \cap effect^-(a) = \emptyset:
                               \gamma^{-1}(g, a) = (g - effect(a)) \cup precond(a)
     begin
           if s_0 satisfies g then
                 return [];
  4
           else
  5
                 relevant \leftarrow \{a \mid a \text{ is relevant in } g\};
  6
                 if relevant = \emptyset then
                       return ⊥;
  8
                 else
  9
                       Nondeterministically choose a \in relevant;
                       \pi \leftarrow BackwardSearch(\mathcal{O}, s_0, \gamma^{-1}(g, a));
 10
 11
                      if \pi \neq \bot then
 12
                            return \pi \cdot a:
 13
                       else
 14
                             return ⊥;
 15 end
```

Backward Search Algorithm

Bidirectional search

Divide and conquer

- The biggest issue = how to improve efficiency by reducing the size of the search space?
- Answer : apply "divide and conquer" strategy :
 - divide the problem to a set of smaller sub-problems, solve each sub-problem independently, combine the results to form the solution
 - In planning we would like to satisfy a set of goals: Divide the planning goals along individual goals, solve (find a plan for) each of them independently, combine the plan solutions in the resulting plan
 - Is it always safe? No, there can be interacting goals.

STRIPS algorithm

- STRIPS is somewhat similar to the BackwardSearch but differs in the following steps:
 - In each recursive call of STRIPS, the only subgoals eligible to be worked on are the preconditions of the last operator added to the plan = reduce the branching factor substantially but makes STRIPS incomplete.
 - If the current state satisfies all of an operator's preconditions, STRIPS executes that operator and will not backtrack = prunes the search space but makes STRIPS incomplete.

$STRIPS(\mathcal{O}, s, g)$

```
begin
            \pi \leftarrow [];
 3
4
5
6
7
8
9
            repeat
                   relevant \leftarrow \{a \mid a \text{ is relevant for } g - s\};
                   if relevant = \emptyset then
                         return ⊥:
                   else
                          Nondeterministically choose a \in relevant;
                         \pi' \leftarrow STRIPS(\mathcal{O}, s, precond(a));
10
                         if \pi' \neq \bot then
11
                                s \leftarrow \gamma(s, \pi' \cdot a);
12
                                \pi \leftarrow \pi \cdot \pi' \cdot a:
13
                         else
14
                                return ⊥;
15
            until s satisfies g;
16
            return \pi:
17 end
```


g = {(on A B)(on B C)(on-table C)(clear A)(arm-empty)}

Plan for first goal (on A B) :

```
[\mathit{UNSTACK}(C,A), \mathit{PUTDOWN}(C), \mathit{PICKUP}(A), \mathit{STACK}(A,B)]
```

Now plan for second goal On(B,C)

```
UNSTACK(A, B), PUTDOWN(A), PICKUP(B), STACK(B, C)]
```

Plan for second goal (on B C)

[PICKUP(B), STACK(B, C)]

Now plan for first goal (on A B)

g = {(on A B)(on B C)(on-table C)(clear A)(arm-empty)}

- Plan for first goal (on A B):
 - [UNSTACK(C, A), PUTDOWN(C), PICKUP(A), STACK(A, B)]
- Now plan for second goal On(B,C):

 $[\mathit{UNSTACK}(A,B),\mathit{PUTDOWN}(A),\mathit{PICKUP}(B),\mathit{STACK}(B,C)]$

Plan for second goal (on B C):

[PICKUP(B), STACK(B, C)]

Now plan for first goal (on A B)

g = {(on A B)(on B C)(on-table C)(clear A)(arm-empty)}

- Plan for first goal (on A B)
 - [UNSTACK(C, A), PUTDOWN(C), PICKUP(A), STACK(A, B)]
- Now plan for second goal On(B,C)
 - [UNSTACK(A, B), PUTDOWN(A), PICKUP(B), STACK(B, C)]
- Plan for second goal (on B C) :

[PICKUP(B),STACK(B,C)]

Now plan for first goal (on A B)

g = {(on A B)(on B C)(on-table C)(clear A)(arm-empty)}

- Plan for first goal (on A B) :
 - [UNSTACK(C, A), PUTDOWN(C), PICKUP(A), STACK(A, B)]
- Now plan for second goal On(B,C)
 - [UNSTACK(A, B), PUTDOWN(A), PICKUP(B), STACK(B, C)]
- Plan for second goal (on B C)

[PICKUP(B), STACK(B, C)]

Now plan for first goal (on A B) :

Introduction

- Uninformed search strategies are incredibly inefficient in most cases
- Informed search uses problem-specific knowledge and can find solution more efficiently

Best-first search

- In best-first search, a node is selected for expension based on an evaluation function, f(n)
- Traditionnally, the node with the lowest evaluation because the evaluation measures the distance to the goal
- Best-first search" is inaccurate: if we could really expand the best node first, it would not be a search at all!
- A key component, the **heurisitic function**, h(n), that estimates the cost of the cheapest path from node n to a goal node
- If n is the goal, then h(n) = 0

Greedy search

- Expand the node that is closest to the goal on the grounds that is likely to lead to a solution quickly : f(n) = h(n)
- For instance, using the straight-line distance to Bucarest...

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

From Arad to Bucarest

From Arad to Bucarest

A* search

• It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the estimated cost to get from the node to the goal :

$$f(n) = g(n) + h(n)$$

- f(n) =estimated cost of the cheapest solution through n.
- A^* is optimal if h(n) is an **admissible heuristic** i.e. h(n) never overestimates the cost to reach the goal.

The A^* algorithm

- Put the start node s on OPEN.
- 2 If OPEN is empty, exit with failure.
- 3 Remove from OPEN and place on CLOSED a node n for which f is minimum.
- \bullet if n is a goal node, exit successfully with the solution obtained by tracing back the pointer from n to s.
- **1** Otherwise expand n, generating all its successors, and attach to them pointers back to n. For every successor n' of n:
 - (a) If n' is not already on OPEN or CLOSED, estimate h(n') and calculate f(n') = g(n') + h(n') where g(n') = g(n) + c(n, n') and g(s) = 0.
 - (b) If n' is already on OPEN or CLOSED, direct its pointers along the path yielding the lowest g(n').
 - (c) If n' required pointer adjustement and was found on CLOSED, reopen it.
- Go to step 2.

- Informed search is more efficient than uninformed search but automated planning needs domain-independent heuristics!
- For instance, to solve the 8-puzzle problem, we will use the Manhattan distance etc.