Lecture 20: p-values and Neyman-Pearson test

Ciaran Evans

p-values

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Given α , we construct a rejection region \mathcal{R} and reject H_0 when $(X_1,...,X_n) \in \mathcal{R}$. Let $(x_1,...,x_n)$ be an observed set of data.

Definition: The **p-value** for the observed data $(x_1, ..., x_n)$ is the smallest α for which we reject H_0 .

p-values

Suppose we have a test which rejects H_0 when $T(X_1,...,X_n)>c_{\alpha}$, where c_{α} is chosen so that $\sup_{\theta\in\Theta_0}\beta(\theta)=\sup_{\theta\in\Theta_0}P_{\theta}(T(X_1,...,X_n)>c_{\alpha})=\alpha$

Let $x_1, ..., x_n$ be a set of observed data.

Theorem: The p-value for the set of observed data $x_1, ..., x_n$ is

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T(X_1, ..., X_n) > T(x_1, ..., x_n))$$

$$\text{observed} \quad \text{test statistic}$$

$$\text{where Mo}$$

```
Proof of theorem
      p = inf { x : reject Ho} = inf { x: T (x, ..., x) > ca}
          As al, Car
 predict C_p = S_1 p \left\{ C_{\alpha} : T(x_1, ..., x_n) > C_{\alpha} \right\} = T(x_1, ..., x_n)
        and by definition of (\alpha)

Sup P_G(T(X_{11}, X_n) > C_{\infty}) = X

GeBo
             54 PO(1(X1,..., X2) > Cp) = P
                                          T(x,,,,x~)
              s \rho P_{6}(T(X_{1},...,X_{n}) > T(X_{1},...,X_{n})) = \rho
                                                                     //
                                          obsened test stat.
          (probability of "or data or more extreme")
```

Recap: hypothesis testing and power function

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Given observed data $X_1, ..., X_n$:

- 1. Calculate a test statistic $T_n = T(X_1, ..., X_n)$
- 2. Choose a rejection region $\mathcal{R} = \{(x_1, ..., x_n) : \text{ reject } H_0\}$
- 3. Reject H_0 if $(X_1,...,X_n) \in \mathcal{R}$

The **power function** $\beta(\theta)$ is

$$\beta(\theta) = P_{\theta}((X_1, ..., X_n) \in \mathcal{R})$$

Goal: maximize power for $\theta \in \Theta_1$, subject to control of power for $\theta \in \Theta_0$

Wald test for normal mean

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0$$
 $H_A: \mu = \mu_1$

where $\mu_1 > \mu_0$. The Wald test rejects if

local in the
$$\frac{x_1 - \mu_0}{\sigma/\sqrt{n}} > Z_{\alpha}$$

=> $x_1 > \mu_0 + \frac{\sigma}{\sigma} Z_{\alpha}$

Wald test for normal mean

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0$$
 $H_A: \mu = \mu_1$

where $\mu_1 > \mu_0$. The Wald test rejects if

$$\overline{X}_n > \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$$

We know that $\beta(\mu_0) = \alpha$ for this test.

Our question: Is there a *better* test for these hypotheses?

► To answer this question, we will need to introduce the Neyman-Pearson test

Rearranging

Reject No when
$$\sqrt{x} > c_0$$
. Equivalent to

 $\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$

Rearranging

where $\mu_1 > \mu_0$.

Let $\mathbf{X} = X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with σ^2 known. We wish to test

$$H_0: \mu = \mu_0$$
 $H_A: \mu = \mu_1$ charge so that $\beta(\mu_0) = \infty$

The Wald test rejects if $\overline{X}_n > c_0$, which is equivalent to rejecting when

$$\frac{L(\mu_1|\mathbf{X})}{L(\mu_0|\mathbf{X})} = \frac{f(X_1, ..., X_n|\mu_1)}{f(X_1, ..., X_n|\mu_0)} > k_0$$

$$\text{chosen so that}$$

$$p(\mu_0) = 0$$

Neyman-Pearson test

Let $X_1,...,X_n$ be a sample from some distribution with probability function f and parameter θ . To test

$$H_0: \theta = \theta_0$$
 $H_A: \theta = \theta_1$,

the **Neyman-Pearson** test rejects H_0 when

$$\frac{L(\theta_1|X)}{L(\theta_0|X)} = \frac{f(X_1, ..., X_n|\theta_1)}{f(X_1, ..., X_n|\theta_0)} > k$$

where k is chosen so that $\beta(\theta_0) = \alpha$.

Example

Let $X_1,...,X_n \stackrel{iid}{\sim} Exponential(\theta)$, with pdf $f(x|\theta) = \theta e^{-\theta x}$. We want to test

$$H_0: \theta = \theta_0$$
 $H_A: \theta = \theta_1$,

where $\theta_1 < \theta_0$. The Neyman-Pearson test rejects when

$$\frac{L(\theta_1|\mathbf{X})}{L(\theta_0|\mathbf{X})} > k.$$

- 1. Calculate $\frac{L(\theta_1|\mathbf{X})}{L(\theta_0|\mathbf{X})}$
- 2. Rearrange the ratio to show that $\frac{L(\theta_1|\mathbf{X})}{L(\theta_0|\mathbf{X})} > k$ if and only if $\sum_i X_i > c$ for some c
- 3. Using the fact that $\sum_i X_i \sim Gamma(n, \theta)$, find c such that $\beta(\theta_0) = \alpha$

$$L(0, |X) = \frac{\theta^{-}e^{-\theta_{0}} \xi_{1} x_{1}}{\theta^{-}e^{-\theta_{0}} \xi_{1} x_{1}} > K \qquad f(x) = \theta e^{-\theta_{0}} x$$

$$L(0, |X) = f(x|\theta_{1}) = T_{1}^{2} \theta_{0} e^{-\theta_{0}} \xi_{1} x_{1}^{2}$$

$$\frac{\theta_{1}}{\theta_{0}} \exp \left\{ (\theta_{0} - \theta_{1}) \xi_{1} x_{1}^{2} \right\} > K \qquad (\theta_{0})^{2} K \qquad (\theta_$$