# Interpreting Genome using ML model for Comparison of Genomes.

#### INTRODUCTION

A genome is a complete collection of DNA in an organism. All living species possess a genome, but they differ considerably in size. The human genome is arranged into 23 chromosomes.

A human genome has about 6 billion characters or letters. If Genome is considered as a book, then it is like a book with about 6 billion letters of "A", "C", "G" and "T". Everyone has a unique genome. Nevertheless, scientists find that most parts of the human genomes are identical to each other.



Genomics comprehensively uses Machine Learning to capture needs in data and deduce new biological hypotheses. By effectively leveraging large data sets, deep learning has reconstructed fields such as computer vision and natural language processing. It has become the method of first choice for many genomics modelling tasks, including predicting the impact of genetic variation on gene regulatory mechanisms like DNA receptiveness and splicing.

So, in this project we are going to explore different methods in python that are helpful to interpret genome in different ways and, we will understand how machine learning algorithms can be used to build a prediction model on DNA sequence data.

We will also try to predict the closeness of other creature's genomes with Human genome sequence.

There are 3 general approaches to encode sequence data:

- 1. Ordinal encoding DNA Sequence
- 2. One-hot encoding DNA Sequence
- 3. DNA sequence as a "language", known as K-Mer counting

We will be using one of the above-mentioned methods to build the proposed Machine Learning Model.

#### How is a DNA Sequence represented?



The double-helix is the exact chemical representation of our DNA. But DNA is unique. It's a nucleotide which is made up of four types of nitrogen bases:

Adenine (A), Thymine (T), Guanine (G), and Cytosine. We always call them A, C, G and T.

These four chemicals link together by hydrogen bonds in the possible order making a chain and gives one strand of the DNA double-helix and the second strand of the double-helix balances the existing strand. So, if we have A on the first strand, you have to have T on the second strand.

#### DNA data handling using Biopython

DNA sequence in fasta format using Biopython. The sequence object will contain attributes such as id and sequence and the length of the sequence that you can work with directly.

We will use Bio.SeqIO from Biopython for parsing DNA sequence data(fasta). It provides a simple uniform interface to input and output assorted sequence file formats.

#### Sequence Input

The main function is Bio.SeqIO.parse() which takes a file handle (or filename) and format name and returns a SeqRecord iterator.

#### **Sequence Output**

For writing records to a file use the function Bio.SeqlO.write(), which takes a SeqRecord iterator (or list), output handle (or filename) and format string.

Now since machine learning models require an input to be in the form of numerical values and currently, we still have our data in string format. So, the later step is to encode these strings into matrices.

The two most widely known techniques are an **Ordinal Encoding** and **One-Hot Encoding**.

#### **Ordinal Encoding**

In ordinal encoding, each unique category value is assigned an integer value. It is easily reversible. Often, integer values starting at zero are used.

For some variables, Ordinal encoding may be enough. The integer values have a real arranged relationship between each other, and machine learning algorithms may be able to understand and utilize this relationship.

It is a biological encoding for ordinal variables. For categorical variables, it requires an ordinal relationship where no such relationship exists. This might cause problems and then one-hot encoding may be used instead.

By using default, it's going to assign integers to labels inside the order that is observed within the information. If a selected order is favoured, it may be designated through the "categories" argument as a list with the rank order of all predicted labels.

#### **One-Hot Encoding**

For specific variables wherein no ordinal relationship exists, the integer encoding may not be enough.

Forcing an ordinal dating via an ordinal encoding and permitting the version to anticipate a natural ordering among classes may also bring about negative performance or unexpected outcomes.

In this case, a one-hot encoding can be applied to the ordinal illustration. this is wherein the integer encoded variable is eliminated and one new binary variable is added for each unique integer fee in the variable.

If you know all the labels to be expected in the data, they can be specified as the "categories" argument as a list.

#### **DNA Sequence as K-mer**

We first take the long biological sequence and break it down into k-mer length overlapping "words".

For example, if we use "words" of length 3 (three-mers), "ATGCAT" becomes: 'ATG', 'TGC', 'GCA', 'CAT'. Hence our example sequence is broken down into 4 three-mer words.

In genomics, we refer to these types of manipulations as "k-mer counting" or counting the occurrences of each possible k-mer sequence and Python natural language processing tools make it super easy.

It reverts a list of k-mer "words." We then join the "words" into a "sentence", then use our desired NLP methods on the "sentences" as you normally would.

You can change both the length of the word and the amount of overlap. This allows us to verify how the DNA sequence information and the size will be crucial in your application.

We can then go on and create a bag-of-words model like you would in NLP.

A bag-of-words is a description of text that explains the occurrence of words within a document.

#### MACHINE LEARNING MODEL

Now that we have learned how to extract feature matrix from the DNA sequence, we will apply our knowledge to a real-life Machine Learning use case.

**Objective:** Build a classification model that is trained on the human DNA sequence and can predict a gene family based on the DNA sequence of the coding sequence. To test the model, we will use the DNA sequence of humans, dogs, and chimpanzees and compare the accuracies.

Gene families are groups of related genes that share a common ancestor. Members of gene families may be paralogs or orthologs. Gene paralogs are genes with similar sequences from within the same species while gene orthologs are genes with similar sequences in different species.

Then we Load Human DNA data, Chimpanzee DNA data and Dog DNA data.

We define for each of the 7 classes and how many there are in the human training data:

| Gene family                 | Number | Class label |
|-----------------------------|--------|-------------|
| G protein coupled receptors | 531    | 0           |
| Tyrosine kinase             | 534    | 1           |
| Tyrosine phosphatase        | 349    | 2           |
| Synthetase                  | 672    | 3           |
| Synthase                    | 711    | 4           |
| Ion channel                 | 240    | 5           |
| Transcription factor        | 1343   | 6           |

Now after having all our loaded data, the next step is to convert a sequence of characters into k-mer words with default size = 6 (hexamers).

The **Kmers\_funct()** function will collect all the overlapping k-mers of a defined length from any sequence.

The DNA sequence is then changed into lowercase and is divided into all possible k-mer words of length 6 and then converting the lists of k-mers for each gene into string sentences of words that can be used to create the BoW model for all three creatures.

We will make a target variable y to hold on all the class labels.

Now that the target variables contain the array of Class values. We use the BoW model using CountVectorizer() which is equivalent to k-mer counting and the size of n-gram will be 4.

Now we will convert our k-mer words into uniform length numerical vectors that shows the count of every k-mer present.

In our project, humans have 4380 genes converted into uniform length feature vectors of 4-gram k-mer (length = 6) counts. Chimpanzee and dog have the same number of features 1682 and 820 genes respectively.

Now we know how to transform our DNA sequences into uniform length vectors in the form of k-mer counts and n-grams, we will now build a classification model that can predict the DNA sequence function established only on sequence itself.

We will use the human data to train the model, keeping 20% of the human data to test the model. Then we can test the model's generalizability by attempting to predict sequence function in chimpanzee and dog.

We use the train/test split human dataset and build simple **Multinomial Naive** Bayes classifier.

#### **MULTINOMIAL NAIVE BAYES**

Multinomial Naive Bayes is one of the most popular supervised learning classifications that is used for the analysis of the categorical text data.

It is a probabilistic learning method that is mostly used in Natural Language Processing (NLP). The algorithm is based on the Bayes theorem and predicts the tag of a text such as a piece of email or newspaper article. It calculates the probability of each tag for a given sample and then gives the tag with the highest probability as output.

Naive Bayes classifier is a collection of many algorithms where all the algorithms share one common principle, and that is each feature being

classified is not related to any other feature. The presence or absence of a feature does not affect the presence or absence of the other feature.

It is important to understand the Bayes theorem concept first as it is based on the latter.

Bayes theorem calculates the probability of an event occurring based on the prior knowledge of conditions related to an event. It is based on the following formula:

- ightharpoonup P(A|B) = P(A) \* P(B|A)/P(B)
  - → Where we are calculating the probability of class A when predictor B is already provided.
  - ightharpoonup P(B) = prior probability of B.
  - ► P(A) = prior probability of class A
  - ightharpoonup P(B|A) = occurrence of predictor B given class A probability

#### APPLICATIONS OF MULTINOMIAL NAIVE BAYES

- Naive Bayes classifier is used in Text Classification, Spam filtering and Sentiment Analysis. It has a higher success rate than other algorithms.
- Naïve Bayes along with Collaborative filtering are used in Recommended Systems.
- It is also used in disease prediction based on health parameters.
- This algorithm has also found its application in Face recognition.
- Naive Bayes is used in prediction of weather reports based on atmospheric conditions (temp, wind, clouds, humidity etc.)

### ADVANTAGES and DISADVANTAGES OF MULTINOMIAL NAIVE BAYES

- It is simple to implement because all you must do is calculate probability. This approach works with both continuous and discrete data. It's straightforward and can be used to forecast real-time applications. It's very scalable and can handle enormous datasets with ease.
- This algorithm's prediction accuracy is lower than that of other probability algorithms. The Naive Bayes technique can only be used to classify textual input and cannot be used to estimate numerical values.

## Making predictions on Human hold out test set and performance of unseen data.

Looking at the model performance metrics such as the **confusion matrix**, **accuracy**, **precision**, **recall and f1 score**. We observe we are obtaining really good results on our unseen data, so it looks like our model did a good job and did not overfit to the training data.

Now for the actual test. Let's see how our model performs on the DNA sequences of other species. Firstly, we'll try the Chimpanzee, which we expect to be very similar to that of human. Then we will try it with Humans' best friend, the Dog DNA sequences.

The model produces good results on Human DNA data. It also does on Chimpanzee because the Chimpanzees and humans share identical genetic hierarchy.

The performance of the dog is not as good as the latter which is because the dog is more differing from humans than the chimpanzee.

CODE:

| In [1]:                      | <pre>DNA Data handling using Biopython  from Bio import SeqIO for sequence in SeqIO.parse('C:\\Users\\ashri\\Downloads\\IBS3EndSem Project\\example     print(sequence.id)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | print (sequence.rd) print (len (sequence))  ENST00000435737.5 ATGTTTCGCATCACCAACATTGAGTTTCTTCCCGAATACCGACAAAAGGAGTCCAGGGAATTTCTTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | TTGAAGGACTCCATCCAGACAAGCATCATAAACCGGACCTCTGTGGGGAGCTTGCAGGGACTGGTGGACATGGACTCTGTGGT ACTAAATGAAGTCCTGGGGCTGACTCTCATTGTCTGGATTGACTGA 390 ENST00000419127.5 ATGTTTCGCATCACCAACATTGAGTTTCTTCCCGAATACCGACAAAAGGAGTCCAGGGAATTTCTTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | ACTAAATGACAAAGGCTGCTCTCAGTACTTCTATGCAGAGCATCTGTCTCTCCACTACCCGCTGGAGATTTCTGCAGCCTCAGGGA GGCTGATGTGTCACTTCAAGCTGGTGGCCATAGTGGGCTACCTGATTCGTCTCTCAATCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | ACATGGATCATCAGACAATTTTTCGAGTGCCCAGCCCTCTGGTTCACATTCAGCTCCAGTGCAGTTCAAGGCTTTCAGACAAGCCA CTTTTGGCAGAATATGGCAGTTACAACATCAGTCAACCCTGCCCTGTTTGATCTTTTAGATGCTCCTCCGGTTTATGTTCCCTCA GGCCCAGCGTTGTGATGGAGTAAATGACTGCTTTGATGAAAGTGATGAACTGTTTTTGCGTGAGCCCTCAACCTGCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | CAAGTTTGTCTCCCCGGTGAGAAGAATTGTGGTCCACGAGTACTATAACAGTCAGACTTTTGATTATGATATTGCTTTGCTACAGC TCAGTATTGCCTGGCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | So it produces the sequence ID, sequence and length of the sequence.  Ordinal encoding DNA sequence data  import numpy as np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | <pre>import re import re def string_to_array(seq_string):     seq_string = seq_string.lower()     seq_string = re.sub('[^acgt]', 'n', seq_string)     seq_string = np.array(list(seq_string))     return seq_string</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | <pre>from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() label_encoder.fit(np.array(['a','c','g','t','z']))  LabelEncoder()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | And here is a function to encode a DNA sequence string as an ordinal vector. It returns a NumPy array with A=0.25, C=0.50, G=0.75, T=1.00, n=0.00.  def ordinal_encoder(my_array):     integer_encoded = label_encoder.transform(my_array)     float_encoded = integer_encoded.astype(float)     float_encoded[float_encoded == 0] = 0.25 # A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | <pre>float_encoded[float_encoded == 0] = 0.23 # A float_encoded[float_encoded == 1] = 0.50 # C float_encoded[float_encoded == 2] = 0.75 # G float_encoded[float_encoded == 3] = 1.00 # T float_encoded[float_encoded == 4] = 0.00 # anything else, lets say n return float_encoded</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | <pre>seq_test = 'TTCAGCCAGTG' ordinal_encoder(string_to_array(seq_test))  array([1. , 1. , 0.5 , 0.25, 0.75, 0.5 , 0.5 , 0.25, 0.75, 1. , 0.75])</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In [4]:                      | <pre>One-hot encoding DNA Sequence  from sklearn.preprocessing import OneHotEncoder def one_hot_encoder(seq_string):     int_encoded = label_encoder.transform(seq_string)     onehot_encoder = OneHotEncoder(sparse=False, dtype=int)     int encoded = int encoded.reshape(len(int encoded), 1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | <pre>onehot_encoded = onehot_encoder.fit_transform(int_encoded) onehot_encoded = np.delete(onehot_encoded, -1, 1) return onehot_encoded  seq_test = 'GAATTCTCGAA' one hot encoder(string to array(seq test))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Out[4]:                      | array([[0, 0, 1],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | [0, 0, 0],<br>[0, 1, 0],<br>[0, 0, 1],<br>[1, 0, 0],<br>[1, 0, 0]])<br>DNA sequence as a "language", known as k-mer counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In [5]:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Out[5]:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | 'aggttca', 'ggttcag', 'gttcagt', 'ttcagtg', 'tcagtga', 'aggtgag', 'aggtgag', 'agtgagt',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | <pre>'tgagtga', 'gagtgac', 'agtgaca', 'gtgacac', 'tgacaca', 'gacacag', 'acacagg',</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | 'cacaggc', 'acaggca', 'caggcag']  It returns a list of k-mer "words." You can then join the "words" into a "sentence", then apply your favorite natural language processing methods on the "sentences" as you normally would.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | <pre>words = Kmers_funct(mySeq, size=6) joined_sentence = ' '.join(words) joined_sentence  'gtgccc tgccca gcccag cccagg ccaggt caggtt aggttc ggttca gttcag ttcagt tcagtg cagtga a gtgag gtgagt tgagtg gagtga agtgac gtgaca tgacac gacaca acacag cacagg ccaggca agg cag'</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| In [7]:                      | <pre>mySeq1 = 'TCTCACACATGTGCCAATCACTGTCACCC' mySeq2 = 'GTGCCCAGGTTCAGTGAGTGACACAGGCAG' sentence1 = ' '.join(Kmers_funct(mySeq1, size=6)) sentence2 = ' '.join(Kmers_funct(mySeq2, size=6))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [8]:                      | <pre>from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer() X = cv.fit_transform([joined_sentence, sentence1, sentence2]).toarray() X</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Out[8]:                      | array([[0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1],  [1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0],  [0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| In [9]:                      | 0, 1, 0, 0, 1]], dtype=int64)  Here comes machine learning  import numpy as np import pandas as pd import os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | <pre>import matplotlib.pyplot as plt %matplotlib inline for dirname, _, filenames in os.walk('/ashri/input'):     for filename in filenames:         print(os.path.join(dirname, filename))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>In [10]: Out[10]:</pre> | <pre>Load human DNA data  human_dna = pd.read_table('C:\\Users\\ashri\\Downloads\\IBS3EndSem Project\\human.txt human_dna.head()  sequence class</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| out[10].                     | O ATGCCCCAACTAAATACTACCGTATGGCCCACCATAATTACCCCCA 4  1 ATGAACGAAAATCTGTTCGCTTCATTCATTGCCCCCCACAATCCTAG 4  2 ATGTGTGGCATTTGGGCGCTGTTTGGCAGTGATGATTGCCTTTCTG 3  3 ATGTGTGGCCATTTGGGCGCTGTTTGGCAGTGATGATTGCCTTTCTG 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In [11]:                     | 4 ATGCAACAGCATTTTGAATTTGAATACCAGACCAAAGTGGATGGTG 3  human_dna['class'].value_counts().sort_index().plot.bar() plt.title("Class distribution of Human DNA")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Out[11]:                     | Text(0.5, 1.0, 'Class distribution of Human DNA')  Class distribution of Human DNA  1400  1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 1000 -<br>800 -<br>600 -<br>400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | Load Chimpanzee DNA data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| In [12]: Out[12]:            | <pre>chimp_dna = pd.read_table('C:\\Users\\ashri\\Downloads\\IBS3EndSem Project\\chimpanzee chimp_dna.head()  sequence class</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | <ul> <li>ATGCCCCAACTAAATACCGCCGTATGACCCACCATAATTACCCCCA</li> <li>ATGAACGAAAATCTATTCGCTTCATTCGCTGCCCCCACAATCCTAG</li> <li>ATGGCCTCGCGCTGGTGGCGGCGACGCGGCTGCTCCTGGAGGC</li> <li>ATGGCCTCGCGCTGGTGGCGACGCGGCTGCTCCTGGAGGC</li> <li>ATGGGCAGCCCAGCCCGGGTCTGAGCAGCGTGTCCCCCAGCCACC</li> <li>ATGGGCAGCCCAGCCCGGGTCTGAGCAGCGTGTCCCCCAGCCACC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| In [13]:                     | <pre>chimp_dna['class'].value_counts().sort_index().plot.bar() plt.title("Class distribution of Chimpanzee DNA")  Text(0.5, 1.0, 'Class distribution of Chimpanzee DNA')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | Class distribution of Chimpanzee DNA  500 - 400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 300 -<br>200 -<br>100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In [14]:                     | Load Dog DNA data  dog_dna = pd.read_table('C:\\Users\\ashri\\Downloads\\IBS3EndSem Project\\dog.txt')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Out[14]:                     | sequence class  O ATGCCACAGCTAGATACATCCACCTGATTTATTATAATCTTTTCAA 4  1 ATGAACGAAAATCTATTCGCTTCCTTCGCTGCCCCCTCAATAATAG 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | 2 ATGGAAACACCCTTCTACGGCGATGAGGCGCCTGAGCGGCG 6 3 ATGTGCACTAAAATGGAACAGCCCTTCTACCACGACGACTCATACG 6 4 ATGAGCCGGCAGCTAAACAGAAGCCAGAACTGCTCCTTCAGTGACG 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In [15]: Out[15]:            | dog_dna['class'].value_counts().sort_index().plot.bar() plt.title("Class distribution of Dog DNA")  Text(0.5, 1.0, 'Class distribution of Dog DNA')  Class distribution of Dog DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | 250 -<br>200 -<br>150 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | 50 - 6 - 7 - 7 - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | Here are the definitions for each of the 7 classes and how many there are in the human training data:    Gene family   Number   Class label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | Tyrosine kinase 534 1 Tyrosine phosphatase 349 2 Synthetase 672 3 Synthase 711 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Ion channel 240 5 Transcription factor 1343 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| In [16]:                     | <pre>def Kmers_funct(seq, size=6):     return [seq[x:x+size].lower() for x in range(len(seq) - size + 1)]  human_dna['words'] = human_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1) human_dna = human_dna.drop('sequence', axis=1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | <pre>chimp_dna['words'] = chimp_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1) chimp_dna = chimp_dna.drop('sequence', axis=1)  dog_dna['words'] = dog_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1) dog_dna = dog_dna.drop('sequence', axis=1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In [17]: Out[17]:            | class words  0 4 [atgccc, tgcccc, gcccca, ccccaa, cccaac, ccaac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | <ol> <li>4 [atgaac, tgaacg, gaacga, acgaaa, cgaaa</li> <li>3 [atgtgt, tgtgtg, gtgtgg, tgtggc, gtggca, tggca</li> <li>3 [atgtgt, tgtgtg, gtgtgg, tgtggc, gtggca, tggca</li> <li>4 [atgcaa, tgcaac, gcaaca, caacag, aacagc, acagc</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | We need to now convert the lists of k-mers for each gene into string sentences of words that can be used to create the Bag of Words model. We will make a target variable y to hold the class labels.  human_texts = list(human_dna['words'])  for item in range(len(human_texts)):    human_texts[item] = ' '.join(human_texts[item])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In [19]:                     | <pre>y_human = human_dna.iloc[:, 0].values  Now let's do the same for chimp and dog.  chimp_texts = list(chimp_dna['words'])</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | <pre>for item in range(len(chimp_texts)):     chimp_texts[item] = ' '.join(chimp_texts[item])  y_chim = chimp_dna.iloc[:, 0].values  dog_texts = list(dog_dna['words']) for item in range(len(dog_texts)):</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In [20]:                     | <pre>dog_texts[item] = ' '.join(dog_texts[item])  y_dog = dog_dna.iloc[:, 0].values  y_human</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | From skiedin.leature_extraction.text import countvectorizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In [22]:                     | <pre>cv = CountVectorizer(ngram_range=(4,4)) #The n-gram size of 4 is determined by testing X = cv.fit_transform(human_texts) X_chimp = cv.transform(chimp_texts) X_dog = cv.transform(dog_texts)  print(X.shape) print(X_chimp.shape)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In [23]:                     | print(X_dog.shape)  (4380, 232414) (1682, 232414) (820, 232414)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | <pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In [24]:                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | Now let's make predictions on the human hold out test set and see how it performes on unseen data.  y_pred = classifier.predict(X_test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [20]:                        | <pre>from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score print("Confusion matrix for predictions on human test DNA sequence\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted def get_metrics(y_test, y_predicted):     accuracy = accuracy_score(y_test, y_predicted)     precision = precision_score(y_test, y_predicted, average='weighted')     recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | <pre>return accuracy, precision, recall, f1 accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, p) Confusion matrix for predictions on human test DNA sequence Predicted 0 1 2 3 4 5 6</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Predicted 0 1 2 3 4 5 6  Actual  0 99 0 0 0 1 0 2  1 0 104 0 0 0 2  2 0 0 78 0 0 0 0  3 0 0 0 124 0 0 1  4 1 0 0 0 143 0 5  5 0 0 0 0 0 51 0  6 1 0 0 1 0 0 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [27]: In [28]:            | <pre>y_pred_chimp = classifier.predict(X_chimp)  print("Confusion matrix for predictions on Chimpanzee test DNA sequence\n") print(pd.crosstab(pd.Series(y_chim, name='Actual'), pd.Series(y_pred_chimp, name='Pred accuracy, precision, recall, f1 = get_metrics(y_chim, y_pred_chimp) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, pred_chimp)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Confusion matrix for predictions on Chimpanzee test DNA sequence  Predicted 0 1 2 3 4 5 6  Actual 0 232 0 0 0 0 0 2 1 0 184 0 0 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 1  0 184  0  0  0  0  1<br>2  0  0 144  0  0  0  0<br>3  0  0  0 227  0  0  1<br>4  2  0  0  0 254  0  5<br>5  0  0  0  0  0 109  0<br>6  0  0  0  0  0  0 521<br>accuracy = 0.993<br>precision = 0.994<br>recall = 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| In [29]:                     | <pre>f1 = 0.993 Let us now do predictions on Dog test DNA sequence.  y_pred_dog = classifier.predict(X_dog)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In [30]:                     | <pre>print("Confusion matrix for predictions on Dog test DNA sequence\n") print(pd.crosstab(pd.Series(y_dog, name='Actual'), pd.Series(y_pred_dog, name='Predict accuracy, precision, recall, f1 = get_metrics(y_dog, y_pred_dog) print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, p)</pre> Confusion matrix for predictions on Dog test DNA sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | Predicted 0 1 2 3 4 5 6 Actual 0 127 0 0 0 0 0 4 1 0 63 0 0 1 0 11 2 0 0 49 0 1 0 14 3 1 0 0 81 2 0 11 4 4 0 0 1 126 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |