

- This NFA closely resembles the regular expression (aa + aab)*b
 - The top loop is aa
 - The bottom loop is aab
 - By following the links we can generate any string in the language
- This is not the transition diagram for an FA; some nodes have more than one *a*-arc, some have none
- Example: aaaabaab can be either accepted (top-bottom-top-b) or not accepted (top-bottom-bottom loops).

- For this reason, we should **not** think of an NFA as describing an algorithm for recognizing a language
- Instead, consider it as describing a number of different sequences of steps that might be followed

This is the "computation tree" for aaaabaab

Each level corresponds to a prefix of the input string

 Each state on a level is one the machine could be in after processing that prefix

- There is an accepting path for the input string (as well as other paths that are not accepting) q_1

NFA: **Λ**-transitions

The technique in previous example does not provide a simple way to draw a transition diagram for (aab)*(a+aba)*

- We introduce a new feature called Λ-transition.
- It allows the device to change state without reading the next symbol.

- Definition: A *nondeterministic finite automaton* (NFA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where:
 - *Q* is a finite set of states,
 - Σ is a finite input alphabet
 - $q_0 \in Q$ is the initial state
 - $A \subseteq Q$ is the set of accepting states
 - δ : Q × (Σ ∪ { Λ }) → 2^Q is the transition function. (The values of δ are not single states, but *sets* of states)
- For every $q \in Q$ and every $\sigma \in \Sigma \cup \{\Lambda\}$, we interpret $\delta(q, \sigma)$ as the set of states to which the NFA can move from state q on input σ

• Example:

$$\delta(0,a) = \{1\}$$

$$\delta(0,A) = \{3\}$$

$$\delta(0,b) = \emptyset$$

$$\delta(3,a) = \{3,4\}$$

How to define $\delta^*(q, x\sigma)$?

Defining δ^* is a little harder than for an FA, since $\delta^*(q, x)$ is a set, as is $\delta(p, \sigma)$ for any p in the first set:

 $\bigcup \{ \delta(p, \sigma) \mid p \in \delta^*(q, x) \}$ is a first step towards δ^*

We must also consider Λ -transitions, which could potentially occur at any stage

- Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 - $S \subseteq \Lambda(S)$
 - For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$

- Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 - $S \subseteq \Lambda(S)$
 - For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$
- As for any finite set that is defined recursively, we can easily formulate an algorithm to calculate $\Lambda(S)$:
 - Initialize T to be S, as in the basis part of the definition
 - Make a sequence of passes, in each pass considering every $q \in T$ and adding every state in $\delta(q, \Lambda)$ not already there
 - Stop after the first pass in which T does not change
 - The final value of *T* is $\Lambda(S)$

- Definition: Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA
- Define the **extended transition function** $\delta^*: Q \times \Sigma^* \to 2^Q$ as follows:
 - For every $q \in Q$, $\delta^*(q,\Lambda) = \Lambda(\{q\})$
 - For every q ∈ Q, every $y ∈ Σ^*$, and every σ ∈ Σ
 - $\delta^*(q, y\sigma) = \Lambda(\cup \{\delta(p, \sigma) \mid p \in \delta^*(q, y)\})$
 - A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$ (i.e., some sequence of transitions **involving the symbols of** x and Λ 's leads from q_0 to an accepting state)
- The language *L*(*M*) accepted by *M* is the set of all strings accepted by *M*

The answer is $\delta^*(0, aab) = \{0, 5, 3\}.$

textbook

An NFA that accepts strings that contain aa or bb as a substring.

An NFA that accepts strings over {a,b} that contain be either at the third position from the right or at the second position from the right.

Simultaneous Pattern: NFA for a*+(ab)*

Simultaneous Pattern: NFA for (a*+(ab)*)b*

Simultaneous Pattern: NFA for all strings over {a,b,c} that are missing at least one letter. For example: ab,ccccc, bcbcbb, cacaaa

$$L = (a+b)*b$$

