AD-A189 893 1/1 UNCLASSIFIED END BATE FILMED 3 BR 6 516

$$\begin{split} & | \boldsymbol{W} - \boldsymbol{h} | \leq \mathcal{A}(\boldsymbol{v}) \cdot | \boldsymbol{W}_{\boldsymbol{Y} - \boldsymbol{h} + \boldsymbol{h} +$$

AD-A189 093

OFFICE OF NAVAL RESEARCH

Contract NOO014-80-K-0852

R&T Code

Technical Report No. 38

Electron Stimulated Desorption: O trom O Condensed on Metals Image Charge, Coherent Scattering, and Symmetry Effects in

By

David E. Ramaker and Hideo Sambe

Prepared tor Publication

Desorption Induced by Electronic Transitions, DIET III (Springer Series in Surface Science)

George Washington University Department of Chemistry Washington, D.C. 20052

December, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCU	REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION Unclassified	1b. RESTRICTIVE MARKINGS
28. SECURITY CLASSIFICATION AUTHORITY	3. Distribution/Avaication of Report Approved for public release;
25. DECLASSIFICATION / DOWNGRADING SCHEDULE	distribution unlimited
a PERFORMING ORGANIZATION REPORT NUMBERIS) Technical Report #38	S. MONITORING ORGANIZATION REPORT NUMBERS)
64. NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL Dept. of Chemistry George Mashington Univ.	7a, name of monitoring organization Office of Naval Research (Code 413)
6c. ADDRESS (City, State, and Zile Code) Washington, D.C. 20052	7b. ADDRESS (CPr. State, and 2b Code) Chemistry Program 800 N. Phincy Street Arlington, Virginia 22217
BE NAME OF FUNDING ISPONSORING BS OFFICE SYMBOL ORGANIZATION OF NAVAI Research Office of Navai Research	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER CONTRACT NO0014-80-K-0852
Bc. ADDRESS (Gry, State, and ZIP Code)	10 SOURCE OF FUNDING NUMBERS
Chemistry Program 800 N. Quincy, Arlington, VA 22217	PROGRAM PROJECT TASK PP013 WORK UNIT OF SEMENT NO. RR 013-08 NO. 08-01 NE US6-681
11. Nile (Indude Securny Classification) Inage Charge, Coherent Scatter Electron Stimulated Desorption: 0	Coherent Scattering, and Symmetry Effects in Desorption: Of from O2 Condensed on Metals (Unclassified)
12. PERSONAL AUTHOR(S) D.E. Ramaker and H. Sambe	
	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT December 1987
16. SUPPLEMENTARY NOTATION Prepared for publication Transitions, DIET III, (Springer	Prepared for publication in Desorption Induced by Electronic ons, DIET III, (Springer Series in Surface Science)
17. COSATI CODES 18. SUBJECT TERMS (18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUB-GROUP > Electron Sta	mulated Desorption
Coherent Scaftering	tering
19. ABSTRACT (Continue on revene if necessary and identify by block number)	unber)
1225	ronmental deffects, which do not tate lifetime, but rather from. etal substrate, (2) adsorbate-symmery and hence cause certain coherent scattering of electrons
in the substrate. We review previously reported ESD yields of 0 from 02 condensed on polycrystalline Pt in the electron energy range 0 to 40 eV.	y.reported ESO yields of 0- t in the electron energy range

20 DISTRIBUTION AVAILABILITY OF ASSTRACT
(A) UNCLASSIFED/UNLIMITED (A) SANE AS RPT.
22. NAME OF RESPONSIBLE INDIVIDUAL
Dr. David L. Nel Son DD FORM 1473, 84 MAR

83 APR eartion may be used until exhausted.
All other editions are obsolete.

226. TELEPHONE (Include Ares Co

21. ABSTRACT SECURITY CL

CODEC USERS

Unclassified

mage Charge, Coherent Scattering, and Symmetry Effects in Electron Stimulated Description: O-from O₂ Condensed on Metals

David E. Ramaker and Hideo Sambe Department of Chemistry, George Washington University Washington, DC 20052, USA

1. Introduction

Considerable progress has been made towards our understanding of electron/photon stimulated desorption (ESD/PSD) [1]. Identification of the excited states responsible for desorption reveals that they usually are many particle excitations (i.e. n holes (h)-n electrons (e), such 2h, 2h-le etc.) and arise from widely different excitation mechanisms [2]. Furthermore, it is known that the lifetime of these localized excitations, which determine the probability for desorption, is very much altered by covalent interactions between the active site and its immediate environment [3]. In this work we shall examine environmental effects, which do not arise from alteration of the excited-state lifetime, but rather from: (1) the image charge induced in the metal substrate, (2) adsorbate-adsorbate interactions which reduce the symmetry and hence cause certain selection rules to breakdown, and (3) coherent scattering of electrons in the substrate.

we review previously reported (4) ESD yields of 0' from 0, condensed on polycrystalline Pt in the electron energy range 0 to 40° eV. Of the various species which may desorb (0', 0, and 0'), 0' desorption is the most convenient to study here for three reasons: 1) the 0' desorption yields appear to be dominated by resonant ESD processes, thus the 0' yields are easier to interpret quantitatively than the non-resonant ESD 0' yields are about as straightforward to interpret as PSD 0' yields, but they do not require use of a synchrotron for measurement; and 3) the 0 yields are more difficult to observe experimentally, and they may have contributions from both resonant and nonresonant mechanisms making them

The apparatus utilized to obtain the experimental data described here has been described previously [6], and it is also fully described in the article by Sanche in this volume. The incident angle of the electron beam is 20° from the surface, and the O- ions are measured by a quadrapole mass spectrometer positioned at 70° from the surface. The film thicknesses are estimated to within 20% by a method described previously [6]. A rare gas (RG) is condensed near its sublimation temperature on a clean Pt ribbon, and the 0. gas is condensed onto the RG film at 17 K. Electron Transmission Spectra (ETS) data (7) reveal that the RG films at 17 K. Electron Transmission Bragg reflection (BR) minima are observed around 5 and 9 eV for Ar 4, 7, and 9 eV for Kr, and 2.5, 5, and 7.5 for Xe. In contrast, Xe films prepared well below the sublimation temperature do not exhibit BR minimum in ETS (7). Data also indicate that the Ar films seem to be more ordered than the Kr and Xe films [8].

The three different "environmental" effects under study in this review, can be isolated in the O- yields from 0₁/RG/Pt system. The effects of ion neutralization are minimized by inserting a rare gas (Ar, Kr, or Xe) layer between the Pt metal and the O₁ layer. The RG layer also serves as a spacer layer so that the distance between the ion and the metal surface can be varied, thus varying the effect of the image charge force on the desorbing ions (4). The image charge effects are best studied for O₁(O₁/B ML)/RG(1-5 ML)/Pt. Adsorbate-adsorbate interactions become important at larger O₁ coverages when symmetry breakdown effects become visible. Finally, in the range O₁(O₁/B ML)/RG(6-35 ML)/Pt, coherent scattering effects dominate.

Figure 1 compares the electron-energy dependence of the ESD O- yield from O41.1 M1/Art1-22 M1J/Ptt as a function of incident electron energy. The electron impact O- dissociation of O₁ gas is well understood [9]. In the energy range from 4.4 to 10 eV, the O- ions are produced via the transient O₂-[4]₁₄, amion in a process referred to as dissociative attachment (DA). Above 17 eV, the O- ions are produced predominantly via an excited neutral O₁-molecule in a process referred to as dissociation (DD).

Fig. 1 Comparison of the ESD Oryield curves obtained from O₁/Ar/Pt with a constant (0.1 ML) O₁ coverage and variable (1-32 ML) Ar thicknesses (4). The shaded areas indicate the estimated contributions due to the direct process.

Fig. 2. Ar thickness dependence of the Or yields produced by ESD from the Or/Ar/Pt samples with a constant (0.1 ML) O. coverage (4). The incident electron energies are as indicated. Also shown (dotted curve) is the O' yield produced by ESD with incident energy of 40 eV on O₂(0.16 ML)/Ar(variable)/ Pt [4].

2. Image Charge Effects

Fig. 2 shows the Ar thickness dependence of the O- yield from 01/Ar/Pt with a constant (0.1 ML) O₂ coverage. The sharp maximum probably corresponds to the case when the Ar plus O₃ coverage form one ML to within experimental uncertainty. Fig. 2 also shows the O' yield from 01(0.16 ML)/Ar(variable)/Pt samples produced by 40-eV electron impact. In O₃ gas, O' formation by 40-eV electron impact arises predominantly via an O₄' intermediate state [10]. Therefore, we expect that both the O' yield and the DA contribution to the O' yield are produced via charged intermediate states, O₁' and O₁', respectively. Fig. 2 shows that the image charge has a similar effect on these charged states and their dissociated ions.

Four effects that the image charge has on the description yield can be summarized using the semi-quantitative, adiabatic potential energy curves for 0, depicted in Fig. 3 [4]. The solid curves give the ground state of 0,, the ill, 0, of state and its partner dissociating to the lowest 0+0 limit, and a 0, state and its partner dissociating to the lowest 0+0 limit [4]. The two 0, and two 0, states each form a pair of states which at large separation have

Fig. 3 Potential energy curves of Or gas foold curves), and the corresponding potential energy curves under the influence of an image charge (dotted curves). Spectra on the left side show schematically the relative number of vibrational and/or electronic states which have sufficient energy to vibrath or ions, for Or gas (solid lines) and for Or/M (dotted lines) [4].

Fig. 4 Comparison of the O' yields from O₁ gas with that from O₁(3) ML)/Pt at 17 K [14] (with retarding potentials of V₁ = 0, -1.5, and -1.8 eV), and from O₂(1 ML)/W at 300 K [15].

wavefunctions approaching [\psi(0\alpha^1)\psi(0\beta) \psi \psi(0\beta)\psi(0\beta^1)\psi(0\alpha^1)\end{0} \text{ and } \left(\psi(0\alpha^1)\psi(0\alpha^1)\end{0} \text{ denotes the wavefunction for an isolated 0 atom at site "a". The dotted curves give the corresponding potential energy curves in the presence of the image charge. The symbol \O'/\mathcal{N} in Fig. 3, for example, means that the O' ion is near a metal surface. The image charge due to the Pt lowers the energies of the ionic species auch as \O'/\mathcal{N}, \O'-\mathcal{N}, and \O_2'\mathcal{N}, while the energies of the neutral species such as \O'\mathcal{N}, \O'-\mathcal{N}, and \O_2'\mathcal{N}, while the energies of the neutral species such as \O'\mathcal{N}, \O'-\mathcal{N}, and \O_2'\mathcal{N}, while the same. The magnitude of this lowering depends on the distance between the ion and the metal surface, and hence on the thickness of the rare gas spacer layer. The curves in Fig. 3 are drawn assuming the maximum energy lowering, 2.5 eV [4].

The first effect of the image charge involves the energy separation of the 0 + 0- dissociation limit into the O/M+O and O-M+O limits. Consequently, to desorb O- ions, the lower Or/M intermediate state must undergo a non-radiative transition into its upper partner state. The mechanism for this "charge transfer" transition, O-M+O to O/M+O, is similar to that for symmetric charge transfer in atom-atom collisions of identical huclei [11] and occurs because of the breakdown of the adiabatic approximation. The probability for this transition is 1/2 when the separation of the dissociation limits vanishes, and decrease quickly as the separation of the dissociation limits is negligibly small. Nevertheless, based on the relative atomic sizes of 0° and O', we expect that the O+O·M limit is aligntly lower than the O-M+O· limit. This means that the DA contribution should increase and the DD contribution should decrease slightly as the thickness of the rare gas layer increases.

The second effect of the image charge involves the kinetic energy of the escaping O- ions. As can be seen easily in Fig. 3, in comparison with the corresponding O- kinetic energy from O₂ gas, the kinetic energy of the O-corresponding O- kinetic energy of the O-escaping ions have a greater chance to be recaptured or neutralized, thus decreasing the DAO-yield, while the faster O- ions have a greater chance for escape, thus increasing the DDO-yield, who is the manual effect.

The third effect of the image charge involves the number of vibrational and/or electronic intermediate states (i.e., smount of configuration space) which have sufficient energy to yield Or ions. The curves on the left side of Fig. 3 schematically indicate the configuration space for production of Or from O₁, gas (solid lines) and from O₁/M (dotted lines). These plots indicate that the configuration space for O₂/M decreases slightly while that for the O₂, M state increases significantly compared to that for O₂.

Finally, the fourth effect of the image charge involves the quenching rate of the intermediate state. Near a metal surface, some of the Or or Or underway. The image charge influences these destruction process can get underway. The image charge influences these destruction rates of the Or invand motion and subsequent neutralization are similar to the first two steps of the Antoniewicz "bounce" mechanism [12], which is known to be active for neutral desorption from physisorbed systems [13]. Again in contrast, the de-excitation rate of the Or intermediate state is not affected by the image charge. Thus, intermediate state quenching has a greater effect on the DA process than on the DD process.

relative to the DD process. This is consistent with the two-orders of magnitude reduction seen in the O-(via DA)/O-(via DD) ratio for the O₁(0.37 MI)/A-f/Pt system compared with that of O₁ gas. As the thickness of the rare gas spacer layer decreases from 4 to 1 MI, the image charge force increases, process should decrease and that via the DD process should decrease and that via the DD process should increase. This is consistent with Fig. 2. As indicated above, the dissociation branching effect for the DA process, and the configuration space effect for the DD process, and the configuration space effect for the DD process, are All four image charge mechanisms predict a depletion of the DA process

3. Symmetry Effects

Figure 4 compares the O- yield from O₂ gas with that from O₁(3 ML)/Pt at 17 K [14] and O₂ (1 ML)/W at 300 K [15] in the electron energy range 2-20 eV, i.e. in the range where the DA contribution dominates. The data for O₂/Pt is also shown with retarding potentials, Vs, of -1.5 and -1.8 eV. These later i.e. in the range where the DA contribution dominates. The data for 01/Pt is also shown with retarding potentials, Vs. of -1.5 and -1.8 eV. These later data provide a measure of the kinetic energy of the desorbing O, since only ions in excess of Vs. can be collected. Note that application of the retarding potentials for 0,/Pt eliminates the 7 ev peak, making it comparable to that for 0,/W. The data also reveal the presence of peaks around 9 and 12 aV in the 0,/w. The data also reveal the presence of peaks around 9 and 13 eV in the O- yields from the chemisorbed systems, which are absent for O.

from the $^{1}\mathcal{L}_{i}^{*}$ and $^{1}\mathcal{L}_{i}^{*}$ resonances which have excitation energies in this region. These two 1 resonances do not appear in the yield from 1 because of a selection rule which does not allow 1 2 2 transitions from the $^{1}\mathcal{L}_{i}^{*}$ ground state of $^{1}\mathcal{L}_{i}$ in the gas phase, or even at low coverages on the $^{1}\mathcal{L}_{i}^{*}$ substrate [16]. However at higher coverages, $^{1}\mathcal{L}_{i}^{*}$ on the A theoretical analysis [16] indicates that the 9 and 13 eV features arise surface, and perhaps even dimer formation, causes this selection rule to break down [16].

Image charge effects are responsible for the remaining differences seen in Fig. 4. The principal III. DA contribution at 7 eV is absent in the yield 'rom O₂/W primarily because of the branching ratio mechanism described above. It is present in the yield from O₂/Pt at the 3 ML O₂ thickness these two resonances correlate to the upper $0/M + 0^-$ dissociation limits, while their partner states (the $^1\Sigma_a^+$, and $^1\Sigma_a^+$) correlate to the lower $0 + 0^-/M$ dissociation limits [16]. Thus the image charge effect can increase or decrease because the image charge effect is already decreased. The retarding potentials of 1.5 and 1.8 eV eliminate this contribution because the IIIs resonance apparently produces O of kinetic energy less than these energies while the O from the two $\imath\Sigma^*$ resonances have larger kinetic energies [14]. Although the image charge via the branching ratio mechanism essentially eliminates the 1 I. contribution, it increases the two 1 E. contributions because the DA yield depending on whether the excited resonance correlates to the The upper or lower limit.

and the atomic sites are active, because spectral features in the total yield align with those from O₁/W and from the OH' yield from OH/TiO₂ [5]. Portions of the OH' yield have been shown to arise from the DA mechanism, and the similarity of the DD contributions for 0₁/W and 0₂ gas clearly indicate that the minority molecular sites are the active ones in this case. However, the O- yields from 0₂(1 ML)/Mo at 300 K [15] suggests that both the molecular data and interpretation above provides an anawer to the long standing question concerning the active sites for 01/W; i.e. are they atomic or molecular sites [17]. The presence of the two 12' resonance contributions and

should mimic the O spectral lineshape from atomic O sites on Pt [5]. A least squares fit of the O from O₂/W and OB from OH/TiO, spectral lineshapes to the O yield from O₂/Mo suggest that about half of the O yield from O₂/Mo herefore must involve breaking O-Ti bonds, i.e. the OH's spectral lineshape arises from the minority molecular sites and half from the predominant atomic sites [16].

Coherent Scattering Effects

shape of the 6-eV feature depends on the RG, the thickness and structural order of the RG layer, and the O₂ coverage. It is broad and symmetric at small RC thicknesses but sharp, asymmetric, and shifted to lower energy at larger thicknesses. It is much narrower at smaller O₂ coverages than at larger coverages (Fig. 6). The dependence on the RC and on the structural 6, 18, and 24 eV grow feater than the remainder of the spectrum, and at large thicknesses (>20 ML) dominate the spectrum [4]. The O- yields at these three energies are plotted as a function of the Ar thickness in Fig. 5. The spectral Fig. 1 shows that for Or from Oz/Ar(1-32 ML)/Pt, the three order of the RG can also be seen in Fig. 6 [4].

from On-Fig. 5 Ar thickness dependence of electron energies are as indicated. The yields [4] 6 ML)/Ar/Pt ESD

Availability Codes Avail and/or Scenssion For Justification Distribution/ TOTAL STABIL Unattiounded DIIC TAB

yield curves obtained with a yield curves constant rare gas (Ar or Kr) thickness (20 ML) but with different Os coverages, 0.03 ML (solid curves) Comparison of the curves)[4]. and 17 K (bottom). Also shown ESD Or yield curves from O₂ ML)/Pt but prepared at 40 (dotted 0,(0.1 6 (dotted curves) [4]. LEFT) 1.0 ML (obtained Fig. 6 ESD O RIGHT)

Special

Dist

The experimental results described above can be explained in terms of three processes which we call the direct (D), elastic-indirect (ED), and collides with an O; on the surface and produces an O directly. In the EID process, an incident electron at an energy below the first electronic excitation energy (first E_s) of the RG, passes through the O; layer without loss of energy, undergoes quasi-elastic multiple scattering in the RG, and returns the surface, where it collides with an O; and produces O as in the D process. The IID process is identical to the EID, except that the electron upon initial entry into the RG film suffers loss of energy by electronically exciting the RG films uffers loss of energy by electronically exciting the RG films is very short (~ 10 A* [4]).

The O- yield via these processes are proportional to the following expressions [4],

 $\begin{array}{lll} D & = \theta \ \sigma(E) \\ EID & = [1-\theta \ \sigma_{B1}(E)] & P_B(RG,r,E) \ \theta \ \sigma(E), \\ IID & = [1-\theta \ \sigma_{B1}(E)] & P_{at}(RG,E_{at}) & P_{B}(RG,r,E-E_{at}) \ \theta \ \sigma(E-E_{at}). \end{array} \tag{1}$

Here, E denotes the incident electron energy, Θ the O₂ coverage, and $\sigma(E)$ the O-yield cross section from O₂ on the RG film. $\sigma(E)$ is assumed to be independent of the RG thickness beyond 7 ML. The [1- Θ ox[6]] factor gives the probability of passing through the O₂ layer without loss of energy, where oxic is equal to a sum of the elastic backscattering and the total inelastic cross sections of O₃. Pa(RG,r,E) denotes the probability of the electron returning to the surface, which depends on the RG, the RG thinkness (7), and the electron energy in the film. Pac(RG,Ex,E) denotes the electronic excitation probability of the RG im by electron impact at energy E. Since oxi(E) and Pai(E) are slowly varying functions of E [4], the E dependence of the D, EID, and IID contributions are primarily determined by $\sigma(E)$ and $\sigma(E)$ and $\sigma(E)$ and above the first E₂ are given by $\sigma(E)$ and $\sigma(E)$ and

Figure 5 shows that the Or yields at 6, 18, and 24 eV all increase as the Ar layer thickness increases (4). Equation (1) indicates that this relationship exists because of the two indirect processes. The 6, 18 and 24 eV features observed for Oi(0.1 M.J.)/Ar(22 ML) arise predominantly from the EID, 11D, and IID processes respectively. The spectral shape of of (E), or the D contribution, is expected to be similar to the Or yield from 0, gas except for the relative magnitude of the DA and DD contributions. Polarization of the the the DD process, compared with that for Or gas. Our estimates that via the DD process, compared with that for Os gas. Our estimates of the D contribution, indicated in Fig. 1 by the shaded areas, are based on the above considerations. The intensity ratio EID/D for Os(0.1 M.L)/Ar(32 ML) is about 70 at the peak energy of the GeV feature which means that Ps is about 70 at the means maximum Ps obtainable by incoherent multiple scattering is around 2, coherent scattering must be playing a dominant role.

The spectral shape of the 6-eV feature for the different RG films can be correlated with the BR minima observed in ETS data. The 6-eV line shape from a disordered Xe film is virtually identical with that from 0, gas (Fig. 6). Since $\sigma(E)$ is virtually identical in the 5-10 eV range with that from 0, gas, $P_B(E)$ for the disordered film must be nearly invariant with E over this same

energy range. However, Pa(E) for the ordered film must vary over this energy range, since the line shape of the ordered Xe film differs from that for O₁ gas (Fig. 6). The 6-eV line shape for Ar also depends on the O₂ coverage so that at the lower coverage (0.03 ML), it is narrower than o(E) and its peak is shifted to lower energy (Fig. 1 and 6). All these auggest that Pa(E) for Ar is strongly enhanced near the first BR minmum around 5 eV. The peak for Kir at the lower O₂ coverage is also shifted to lower energy (Fig. 6); however, the line shape is wider than o(E). The O- yield is enhanced for Ar more strongly than for Kir, because the first BR minimum for Ar is closer to the peak of o(E), and perhaps also because the minimum for Ar is closer to the peak of o(E), and perhaps also because the minimum for Ar is especially strongly near the first BR minimum for Ar is especially strongly near the first BR minimum [4].

It is well known that for a perfect crystal the electronic wavefunctions just above and below the energy band gaps, which arise from the BR's, have standing-wave character [18]. We conclude that this standing-wave character is increase of Ps. with RG thickness is also consistent with this since the standing-wave character should increase with RG thickness. Bowever, this raises an interesting question. Bow does a relatively small increase in the amplitude of the electronic wavefunction (i.e. at most a factor of 2 due to the standing-wave character) cause such a dramatic increase in the O- desorption yield (a factor of 101? Clearly, either some quantum mechanical matrix element effect causes the O₁ + O₂ cross-section to increase non-linearly with standing-wave character. These possibilities must still be investigated.

5. Summary

In this work we have observed the following environmental effects: 1) the image charge causes desorption yields arising from neutral intermediates to increase, while those arising from ionic intermediates may decrease or increase depending on the dissociation limit of the ionic intermediate state, 2) of the careful of the surface reduce the local symmetry, cause a breakdown in the E- # E' selection rule, and thus introduce additional dissociative attachment contributions in the O- yield, and 3) coherent scattering in the rare gas may enhance the O- yield up to two orders of magnitude near the Bragg reflection energies. The observed image charge and adsorbate-adsorbate interaction effects should be generally observed in other systems. The coherent scattering effects will be large only for low energy desorption thresholds when the inelastic mean free path of the electrons is long. This explains why X' desorption, which generally has higher energy thresholds, may be less affected by coherent scattering and hence has not exhibited these large effects to date.

cknowledgements

We have greatly benefited from discussions with Leon Sanche. This work was supported in part by the Office of Naval Research.

Beignauf an

a tentition intries by Enertespe Transite as biff I, ed. by N.H. Tolk, e.g., Jul. Tolk, and T.E. Madey, Springer Ser. Chem. Phys., Vol. 1, pringer, Berlin, Heidelberg 1983), b) Invertigate in Induo ed., by it is not as DIFT III, ed. by W. Breing and D. Menzel, Springer Ser. Surv. Vol. 4 (Springer, Berlin, Heidelberg 1983).

E. Ensisten as DIFT III, ed. by W. Breing and D. Menzel, Springer Ser. Surv. Performed p. 10 in Ref. 1b above.

E. Ensisten Soc. Soc. Technol. Al. 1137 (1983).

E. Sinter J. Wannaker, L. Parenteau, and L. Sanche: Phys. Rev. Lett. By E.E. Surv. DE. Ramaker, V.M. Bermudez, and M.A. Hoffbauer; J. Vac. E. H. H. Sun. Al. 1575 (1987).

E. H. Isan, D.E. Ramaker, V.M. Bermudez, and M.A. Hoffbauer; J. Vac. E. H. H. Sun. Al. 1575 (1987).

E. H. Isan, L. Phys. Rev. By R. (1987); E. Sun. (1982).

E. H. Sun. E. Manaker, L. San. E. Sun. Technol. A4, 1249 (1986).

E. H. Sun. E. Manaker, L. San. E. Sun. Technol. A4, 1249 (1986).

E. H. Sun. E. Bernteau; J. Vac. Sci. Technol. A4, 1249 (1986).

E. H. Sun. E. Rev. Mod. Phys. 45, 423 (1973); R. Locht and J. Monighy: J. Sun. Man. Ser. Mod. Phys. 45, 423 (1973); R. Locht and D.D. Brights. Ber. J. Man. Ser. Mod. Phys. 7, 121 (1971); D. Kapp and D.D. Brights.

ம் கேற்

J. Chem. Phys. 43, 1460 (1965).
F. Chira and J. Schopani, Int. J. Mass Spectrom. Ion Phys. 15, 361 (1974).
Chem. Phys. Lett. 26, 596 (1974).
S. Cettman. Jupics in Atomic Collision Theory (Academic Press, New York, S. Cettman. Jupics in Atomic Collision.

P. S. Antoniewic P. Phys. Rev. B21, 3811 (1980).

F. Foulner et al.: Phys. Rev. Lett. 53, 671 (1984); 4.J. Zhang, R. Gomer, P. Foulner et al.: Phys. Rev. Lett., 53, 671 (1983).

a.i. L.R. Boseman, Surf. Sci. 129, 550 (1983).

K. Arris, L. Parenteau, and L. Sanchei to be published.

Z.X. Lo. and D. Lichtmani Surf. Sci. 114, 287 (1982).

E. Sancer, p. 104 in Ref. 1a.

C. Nittel. Throduction to Solid State Physics", 6th ed. (John Wiley & :

15 11225

Sons, NY, 1986), Chap. 7.

ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260

Dr. R. Stanley Williams Department of Chemistry University of California Los Angeles, California 90024

1

Or. F. Carter Code 6170 Naval Research Laboratory	Washington, D.C. 20375-5000 Dr Richard Colton	Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000	National Bureau of Standards Optical Physics Division Washington, D.C. 20234	Department of Physics University of California Iryine, California 92664	Chemistry Department George Washington University Washington, D.C. 20052	Or remaintyst Chemistry Department University of California Irvine, California 92717	Chemistry Department University of Rochester Rochester, New York 14627	Or. G. Rubloff 18M Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, New York 10598	Dr. J. Baldeschwieler Departnent of Chemistry and Chemical Engineering California Institute of Technology Pasadena, California 91125	Dr. Galen D. Stucky Chemistry Department University of California Santa Barbara, CA 93106
	No. Copies	~								
REPORT DISTRIBUTION LIST, GEM		Dr. Davíd Young Code 334 NOROA NSIL, Mississippi 39529	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	Mr. John Bcyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112		san Diego, California - 91632		
DISTRIBU	No. Copies	2	-	-	12 high quality					
TECHNICAL REPORT		Office of Maval Research Attn: Gode 1113 805 M. Quincy Street Arlington, Virginia 22217-5000	Dr. Bernard Douda Naval Weapons Support Center Code SOC Crane, Indiana 47522-5050	Mayal Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code LS2 Port Hueneme, California 93401	Defense Technical Information Center Building S, Cameron Station Alexandria, Virginia 22314	OTMSBOC Aston Dr. H. Singerman Applied Chemistry Division	Annipolis, Maryland Kiaul Dr. William Tolles Superintendert	Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000		

Dr. N. Winograd Department of Chemistry Pennsylvania State University University Park, Pennsylvania 16802

Dr. Roald Hoffmann Department of Chemistry Cornell University Ithaca, New York 14853

Dr. Robert L. Whetten Department of Chemistry University of California Los Angeles, CA 90024

Dr. Daniel M. Neumark Department of Chemistry University of California Berkeley, CA 94720

Dr. G. H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853

Dr. A. Steckl Department of Electrical and Systems Engineering Troy, New York 1218i

Dr. R. W. Plummer Department of Physics University of Pennsylvania Philadelphia, Pennsylvania 19104

Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106

Dr. R. P. Messmer Materials Characterization Lab. General Electric Company Schenectady, New York 22217

Dr. J. T. Keiser Department of Chemistry University of Richmond Richmond, Virginia 23173

ABSTRACTS DISTRIBUTION LIST, 056/625/679

Dr. J. E. Jensen Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265	Dr. R. Ree Chemistry Renssaeler Troy, Ne∺
Dr. J. H. Weaver Department of Chemical Engineering and Materials Science Winversity of Minnesota Minneapolis, Minnesota 55455	Dr. Steven Stanford U Department Stanford,
Dr. A. Reisman Microelectronics Center of North Carolina Research Triangle Park, North Carolina 27709	Dr. Mark J Yale Unive Department New Haven, Dr. W. Kna

9		
	cience	>-,
	rface S ne 3	borator
	for Su logy of Main	ler Irch La
27709	Dr. M. Grunze Laboratory for Surface Science and Technology University of Maine Grono, Maine 04463	Dr. J. Butler Naval Research Laboratory
	Dr. Labo Grand Cray	Dr. ⊀àvá

	s Department		Pennsylvania 19352
Dr. Irvin Heard	Chemistry and Physics Department	Lincoln University	Lincoln University, F

		Institute	
Dr. R. Reeves	Chemistry Department	Renssaeler Polytechnic	Troy, New York 12131

1100	÷	Chemistry	06511-8118	
Ë	Ξ	9	C	
TOSTINOS Y TON TOSTINOS	Yale University	Department	New Haven,	

20234	n Research Center
Washington, D.C.	Dr. J. E. Demuth IBM Corporation Themas J. Watson P.O. Box 218

Madison	Madison, Wisconsin 53/36
Dr. R.	Dr. R. P. Van Duyne
Chemist	Chemistry Department
Northwe	Morthwestern University
Evansto	Evanston, [1] nois 66637

3	Chemistry		78712
Dr. J. M. White	Department of	5	Austin, Texas

ABSTRACTS DISTRIBUTION LIST, 056/625/629

istry fornia ia 94720	oratory
Dr. G. A. Somorjai Department of Chemistry University of California Berkeley, California 94	Dr. J. Murday Naval Research Laboratory Code 6170

Code 6170	Dr. W. T. Peria
Washington, D.C. 20375-5000	Electrical Engineering Departme
Code 6 Washir	Dr. W.

Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455	Dr. Keith H. Johnson Department of Metallurgy and Materials Science Massachusetts Institute of Technology Cambridge, Massachusetts 702139
Electrical E University o Minneapolis,	Dr. Keith H. Department o Materials Massachusett Cambridge, M

	7
nistry	60637
Sibener ment of Chemistry Franck Institute	Avenue
Sibe	640 Ellis Avenue hicago, Illinois
Dr. S. Sibo Department James Fran	5640 E

Dr. Arold Green Quantum Surface Dynamics Code 3817 Naval Weapons Center
--

			02912	
	nistry		Island	
010	Department of Chemistry	Brown University	Providence, Rhode	
Dr. A.	Depart	Brown	Provid	

Dr. S. L. Bernasek Department of Chemistry Princeton University Princeton, New Jersey 00 Dr. W. Kohn

peparument of raysics University of California, San Diego La Jolla, California 92037	Or. Stephen D. Kevan Physics Department University Of Oregan Eugene, Oregan 97403
Universi La Jolla	Dr. Step Physics Universi Eugene,

r. David M. Walba	Department of Chemistry	University of Colorado	Boulder, CO 80309-0215
ŋ.	Dep	Univ	Bou

	47403
Dr. L. Kesmodel	Indiana University
Department of Physics	Bloomington, Indiana

47403	ę.
Bloomington, Indiana	Dr. K. C. Janda University of Pittsburg Chemistry Building Pittsburg, PA 15260

2751	;
Dr. E. A. Irene Department of Chemistry University of North Carolina Chapel Hill, North Carolina	Dr. Adam Heller Bell Laboratories

0797	, 6
Jersey	Fleischmann of Chemistry of Southampton n SO9 SNH GDOM
Murray Hill, New Jersey	Dr. Martin Fleischmann Department of Chemistry University of Southampt Southampton 809 5NH UNITED KINGOOM
Murray	Dr. Ma Depart Univer Southa UNITED

Dr. H. Tachikawa Chemistry Department Jackson State University Jackson, Mississippi 39217

r. Ronald Lee	301	aval Surface Weapons Center		Silver Spring, Maryland 20910
٥٢.	R301	Naval	Whi te	Silv

r. Robert Gomer	Department of Chemistry	ames Franck Institute	640 Ellis Avenue	Chicago, Illinois 60637
	Depar	James	5640	Chica

Dr. Horia Metíu	
Chemistry Department	
rsity of C	
Santa Barbara, California	93106

DATE FILMED