Package 'CropPro'

August 31, 2022

	_				
Type Package					
•	e Discriminant analysis classification of archaebotanical datasets against ethnographic data to understand crop processing stages				
Version 0.1.0					
Author Elizabeth Stroud					
Maintainer <elizabeth.str< th=""><th>oud@arch.ox.ac.uk></th></elizabeth.str<>	oud@arch.ox.ac.uk>				
graphic data to understar The package contains fu	hylsis classification of archaebotanical datasets against ethno- nd crop processing stages. Inctions to transform archaeobotanical datasets, con- the data against the ethnographic data as 2D or 3D plots				
License MIT Depends dplyr, MASS, rgl Encoding UTF-8					
				LazyData true R topics documente	d·
				it topies documente	u•
cropplot2d data.model dataorg dungplot2d dungplot3d LDAcrop.dung					
crop.plot3d	ploting the results of the LDA as a 3 d object				

cropplot3dpoints(x, y, z, col, gcol, site)

2 cropplot2d

Arguments

X	Function 1
у	Function 2
z	Function 3
col	colour of archaeobotanical data
gcol	group colour
site	name of archaeobotanical data

Examples

```
##example dataset
LD1<-runif(40, min= -0, max=3)
LD2<-runif(40, min = -2, max=4)
LD3<-runif(40, min =-4, max=-1)
Study<-sample(1:3, 40, replace=T)
data<-data.frame(Study,LD1, LD2, LD3)

## use
cropplot3dpoints(data$LD1, data$LD2, data$LD3)

## without defaults
cropplot3dpoints(data$LD1, data$LD2, data$LD3, gcol = c("black", "grey", "grey48", "grey100"), col = "red", since the same that the same that
```

cropplot2d

Ploting the output of the LDAcrop.pro as a 2d graph

Description

This function plots the output of LDAcrop.pro as a 2d graphshowing LD1 and LD2

Usage

```
cropplot2d(x, y, ylims = ylims, xlims = xlims, gcols = NULL, gpchs = NULL, col = "black", pch = 23, si
```

Arguments

Х	The first linear discriminant function
У	the second linear discriminant function
ylims	the limits of the y axis (expressed as c(min, max))
xlims	the limits of the x axis (expressed as c(min, max))
gcols	the colours for the symbols of the modern crop processing groups (expressed as $c("pink","red",etc))$
gpchs	the symbols of the modern crop processing groups (expressed as c(1,2,3,14,18))
col	The colour of the archaeobotanical data's symbol
pch	the symbol of the archaebotanical data
site	the name of the archaeobotanical data showing in the legend

data.model 3

Author(s)

Elizabeth Stroud

Examples

```
##example dataset
LD1<-runif(40, min= -0, max=3)
LD2<-runif(40, min = -2, 4)
Study<-sample(1:3, 40, replace=T)
data<-data.frame(Study,LD1)

#### Use with defaults (will return a black and white graph)
cropplot2d(data$LD1, data$LD2)

##Use with variables
cropplot2d(data$LD1,data$LD2, xlims = c(-5, 5), ylims =c(-5,5), gcols =c("forestgreen", "blue", "skyblue", "or</pre>
```

data.model

test 2

Description

test 2

Usage

```
data("data.model")
```

Format

A data frame with 216 observations on the following 8 variables.

NO 1

PROC 2a numeric vector

BHH a 3numeric vector

BFH a numeric vector

SHH a n4umeric vector

SHL a nu5meric vector

SFH a num6eric vector

SFL a nume6ric vector

Examples

```
data(data.model)
## maybe str(data.model) ; plot(data.model) ...
```

4 dungplot2d

dataorg

function to transform raw archaeobotanical data into the form required for LDAcrop.pro.

Description

the function transforms raw archaeobotnical data, calculating the squareroot of each species number muliplited by 100, divided by the total weed species within the sample

Usage

```
dataorg(dataframe, groupcol)
```

Arguments

dataframe the data to be entered

groupcol the column containing the grouping variables of the different species (BHH,

BFH etc)

Author(s)

Elizabeth Stroud

References

```
see - references
```

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
   }
```

dungplot2d

Ploting the output of the LDAcrop.dung as a 2d graph showing LD1 and LD2

Description

This function plots the output of the LDAcrop.dung as a 2d graph showing LD1 and LD2

Usage

```
dungplot2d(data, ylims = NULL, xlims = NULL, gcols = NULL, gpchs = NULL, col = "black", pch = 15, site
```

dungplot3d 5

Arguments

data	the dataframe containing the results of the LDAcrop.dung function
ylims	the limits of the y axis expressed as c(min, max)
xlims	the limits of the x axis expressed as c(min, max)
gcols	the colours of the symbols of the modern crop processing groups expressed as for example $c("pink", "red", etc)$
gpchs	the symbols of the modern crop processing groups expressed as for example $c(1,2,3,4)$
col	the colour of the archaeobotanical samples
pch	the symbol of the archaeobotanical samples
site	the name of the archaeobotnical samples to appear in the legend

Author(s)

Elizabeth Stroud

See Also

LDAcrop.dung

dungplot3d	3d plot for the results of the LDA anaylsis where the archaeobotanical samples are entred at the discrimination point.

Description

3d plot for the results of the LDA analysis where the archaeobotanical samples are entred at the discrimination point.

Usage

```
dungplot3d(x,y,z, gcol=NULL, col="black", site="site", forth=3)
```

Arguments

data	the output of LDAcrop.dung
gcol	the colour of the crop processing stages
col	the colour of the archaeobotanical samples
site	the name to appear on the legend for the archaebotanical samples
LD	whether using the first three discriminant functions or substituting the 3rd or for the 4th (response is LD=4)

6 LDAcrop.dung

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

LDAcrop.dung

Linear discriminant analysis based on attributes of weed seeds to classify taphanomic pathway (processing vs dung)

Description

This function conducts linear discriminant analysis classification using ethnographic data of crop processing to classify archaeobotanical samples on the basis of attributes of weed seeds. This function is a modification of LDAcrop.pro, in that it uses the entered archaeobotanical data as well as the ethnographic data to create the model. The archaeobotanical data is then reclassified angainst that. The function provides the classification of each sample (class), as well as the discriminant scores of each sample (LD1, LD2, LD3) and the posterior probabilities. The function also produces a classification table showing the classification results and the percentage of samples classified as either: Archaeological, Winnowing by-products, Coarse sieve by-products, Fine sieve by-products, Fine sieve products

Usage

```
LDAcrop.dung(x)
```

Arguments

Χ

archaeobotanical dataset

Examples

```
## Create random dataset for example
BHH<-runif(40, min=0, max=7)
BFH<-runif(40, min=0, max=24)
SHH<-runif(40, min=1, max=13)
SHL<-runif(40, min=0.5, max=17)
SFH<-runif(40, min=1, max=22)
SFL<-runif(40, min=1, max=8)
NO<-sample(1:40, 40, replace=F)
PROC<-runif(40,min=0,max=0)
data<-as.data.frame(cbind(NO, PROC,BHH,BFH,SHL,SFH,SFL))
## function usage
LDAcrop.dung(data)</pre>
```

LDAcrop.pro 7

LDAcrop.pro

Linear discriminant analysis based on attributes of weed seeds

Description

This function conducts linear discriminant analysis classification using ethnographic data of crop processing to classify archaeobotanical samples on the basis of attributes of weed seeds. The function provides the classification of each sample (class), as well as the discriminant scores of each sample (LD1, LD2, LD3) and the posterior probabilities. The function also produces a classification table showing the classification results and the percentage of samples classified as either: Winnowing by-products, Coarse sieve by-products, Fine sieve by-products, Fine sieve products

Usage

```
LDAcrop.pro(x)
```

Arguments

Χ

archaeobotanical dataset

Examples

```
##Create random dataset for examples
BHH<-runif(40, min=0, max=7)
BFH<-runif(40, min=0, max=24)
SHH<-runif(40, min=1, max=13)
SHL<-runif(40, min=0.5, max=17)
SFH<-runif(40, min=1, max=22)
SFL<-runif(40, min=1, max=8)
Sample<-sample(1:40, 40, replace=F)
data<-as.data.frame(cbind(BHH,BFH,SHH,SHL,SFH,SFL,Sample))
#Use
LDAcrop.pro(data)</pre>
```