Estimating penetrance curves according to mutation in familial genetic studies in the presence of incomplete genotypes

Grégory NUEL

Stochastics and Biology Group, LPSM (CNRS 8001), Sorbonne University, Paris, France

Séminaire MathForGenomics May 27, 2021 IBGBI, Evry, France

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Binary Disease

Definition:

- $Y \in \{0, 1\}$ a binary disease phenotype,
- $X \in \{DD = 0, Dd = 1, dd = 2\}$ a bi-allelic genotype
- for all $x \in \{0, 1, 2\}$, the penetrance $F_x = \mathbb{P}(Y = 1 | X = x)$

Mode of Inheritance:

- dominant: $F_0 < F_1 = F_2$
- recessive: $F_0 = F_1 < F_2$
- additive: $F_1 = F_0 + R$ and $F_2 = F_0 + 2R$
- multiplicative: $F_1 = F_0 \times R$ and $F_2 = F_0 \times R^2$

Time-to-event Disease

T time before disease onset, the hazard rate is defined by

$$\lambda_{X}(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \mathbb{P}(T \in]t, t + \Delta]|T > t, X = X)$$

- phenotype is $Y = \mathsf{UN}t = \{T > t\}$ or $Y = \mathsf{AF}t = \{T = t\}$
- for all $x \in \{0, 1, 2\}$, the *penetrance* is now:

$$F_X(t) = \mathbb{P}(T \leqslant t | X = x) = 1 - \underbrace{\exp\left(-\int_0^t \lambda_X(s)ds\right)}_{S_x(t)}$$

• the relative hazards are

$$\mathsf{RH}_1(t) = rac{\lambda_1(t)}{\lambda_0(t)}$$
 and $\mathsf{RH}_2(t) = rac{\lambda_2(t)}{\lambda_0(t)}$

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Autosomal Dominant Model

MAF
$$f = 0.10 \,\pi_0 = (1-f)^2 \,\pi_1 = 1-\pi_0 \quad \lambda_1(t) = \lambda_2(t) = \lambda_0(t) \text{RH}(t)$$

$$S(t) = \pi_0 \exp\left(\int_0^t \lambda_0(u) du\right) + \pi_1 \exp\left(\int_0^t \lambda_0(u) \text{RH}(u) du\right)$$

known parameter

unknown parameter

Autosomal Dominant Model

MAF
$$f = 0.10 \,\pi_0 = (1-f)^2 \,\pi_1 = 1-\pi_0 \quad \lambda_1(t) = \lambda_2(t) = \lambda_0(t) \text{RH}(t)$$

$$S(t) = \pi_0 \exp\left(\int_0^t \lambda_0(u) du\right) + \pi_1 \exp\left(\int_0^t \lambda_0(u) \text{RH}(u) du\right)$$

known parameter

unknown parameter

Simulated Dataset

Design

- same structure for all families
- Hardy-Weinberg for founders
- uniform censoring $\mathcal{U}([0,80])$
- N = 500 families
- n = 5000 individuals

	unaffected	affected	total
non carrier	3985	56	4041
carrier	703	256	959
total	4688	312	5000

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

277/5000 genotyped (277/312 AF, 0/4688 UN)

more affected genotyped than unaffected ⇒ risk of bias

1251/5000 genotyped (277/312 AF, 974/4688 UN)

more affected genotyped than unaffected ⇒ risk of bias

2602/5000 genotyped (277/312 AF, 2325/4688 UN)

more affected genotyped than unaffected ⇒ risk of bias

1040/5000 genotyped (66/312 AF, 974/4688 UN)

2474/5000 genotyped (149/312 AF, 2325/4688 UN)

4459/5000 genotyped (277/312 AF, 4182/4688 UN)

5000/5000 genotyped (312/312 AF, 4688/4688 UN)

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

EM Algorithm (Dempster et al., 1977)

Context: *X* latent variable (*e.g.* unobserved genotypes), *Y* observed variables (*e.g.* censored time at onset, genetic tests, etc.), θ parameter to estimate (*e.g.* penetrances, hazard rates)

$$\hat{\theta} = \arg\max_{\theta} \log \sum_{\mathbf{X}} \mathbb{P}(\mathbf{X}, \mathbf{Y}|\theta)$$

EM solution: multiple imputation $X^1, \dots, X^N \sim \mathbb{P}(X|Y; \theta_{\text{old}})$

$$\frac{1}{N} \sum_{j=1}^{N} \log \mathbb{P}(\mathbf{X}^{j}, Y | \theta) \xrightarrow[N \to \infty]{} Q(\theta | \theta_{\mathsf{old}}) = \sum_{\mathbf{X}} \mathbb{P}(\mathbf{X} | Y; \theta_{\mathsf{old}}) \log \mathbb{P}(\mathbf{X}, Y | \theta)$$

$$\theta^{(\text{iter}+1)} = \arg\max_{\theta} Q\left(\theta | \theta^{(\text{iter})}\right) \quad \text{and} \quad \theta^{(\text{iter})} \xrightarrow[\text{iter} \to \infty]{} \hat{\theta}$$

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Simpsons' Pedigree and Bayesian Network

1: Herb's mother, 2: Abraham, 3: Penelope, 4: Ingrid, 5: Clancy,

6: Herb, 7: Homer, 8: Marge, 9: Patty, 10: Selma,

11: Bart, **12**: Lisa, **13**: Maggie

Simpsons' Pedigree and Bayesian Network

1: Herb's mother, 2: Abraham, 3: Penelope, 4: Ingrid, 5: Clancy,

6: Herb, 7: Homer, 8: Marge, 9: Patty, 10: Selma,

11: Bart, 12: Lisa, 13: Maggie

$$\begin{split} \mathbb{P}(X) &= \mathbb{P}(X_1) \mathbb{P}(X_2) \mathbb{P}(X_3) \mathbb{P}(X_4) \mathbb{P}(X_5) \\ \mathbb{P}(X_6 \mid X_{1,2}) \mathbb{P}(X_7 \mid X_{2,3}) \mathbb{P}(X_8 \mid X_{4,5}) \mathbb{P}(X_9 \mid X_{4,5}) \mathbb{P}(X_{10} \mid X_{4,5}) \\ \mathbb{P}(X_{11} \mid X_{7,8}) \mathbb{P}(X_{12} \mid X_{7,8}) \mathbb{P}(X_{13} \mid X_{7,8}) \end{split}$$

Blood Type Genetics

- ABO gene $\Rightarrow p_{O} = 0.60, p_{A} = 0.30, p_{B} = 0.10$
- RHD gene $\Rightarrow q_D = 0.60, q_d = 0.39, q_w = 0.01$
- This leads to a total of 12 blood phenotypes:
 A+, B+, AB+, O+, A-, B-, AB-, O-,Aw, Bw, ABw, Ow

	ABO	00	OA	OB	AA	AB	BB
RHD		0.36	0.36	0.12	0.09	0.06	0.01
DD	0.3600	O+	A+	B+	A+	AB+	B+
Dd	0.4680	O+	A+	B+	A+	AB+	B+
Dw	0.0120	O+	A+	B+	A+	AB+	B+
dd	0.1521	O-	A-	B-	A-	AB-	B-
dw	0.0078	Ow	Aw	Bw	Aw	ABw	Bw
ww	0.0001	Ow	Aw	Bw	Aw	ABw	Bw

Simpsons' Pedigree and Bayesian Network

$$\begin{split} \mathbb{P}(X) &= \mathbb{P}(X_1) \mathbb{P}(X_2) \mathbb{P}(X_3) \mathbb{P}(X_4) \mathbb{P}(X_5) \\ &\mathbb{P}(X_6 \mid X_{1,2}) \mathbb{P}(X_7 \mid X_{2,3}) \mathbb{P}(X_8 \mid X_{4,6}) \mathbb{P}(X_9 \mid X_{4,6}) \mathbb{P}(X_{10} \mid X_{4,6}) \\ &\mathbb{P}(X_{11} \mid X_{7,8}) \mathbb{P}(X_{12} \mid X_{7,8}) \mathbb{P}(X_{13} \mid X_{7,8}) \end{split}$$

$$X_i \in \mathcal{G} = \{O, A, B\}^2 \times \{D, d, w\}^2 \quad |\mathcal{G}| = 3^2 \times 3^2 = 81$$

$$ev = \{ Homer A+ and Bart Ow \}$$
 $\mathbb{P}(X|ev) = \frac{\mathbb{P}(X, ev)}{\sum_{X'} \mathbb{P}(X', ev)}$

- $X = (X_1, X_2, \dots, X_{13})$ is the family genotype
- in order to compute $\mathbb{P}(ev) = \sum_{X'} \mathbb{P}(X', ev)$
- we just have to sum over 81¹³ configurations

 $81^{13} = 6\,461\,081\,889\,226\,672\,446\,898\,176$

⇒ simply impossible!

Local computations in a simple pedigree

Idea: we consider a smaller (but similar) family, ev (evidence) still represents the available information.

for founders (1, 2, 3, 4) i:

$$\varphi_i(X_i) = \mathbb{P}(X_i \cap \mathrm{ev})$$

for offsprings (5, 6, 7)k with parents i, j:

$$\varphi_j(X_i,X_j,X_k) = \mathbb{P}(X_k \cap \text{ev}|\ X_i,X_j)$$

$$\mathbb{P}(\text{ev}) = \sum_{X_1} \sum_{X_2} \sum_{X_3} \sum_{X_4} \sum_{X_5} \sum_{X_5} \sum_{X_6} \sum_{X_7} \varphi_1(X_1) \varphi_2(X_2) \varphi_3(X_3) \varphi_4(X_4)$$

$$\varphi_5(X_1, X_2, X_5)\varphi_6(X_3, X_4, X_6)\varphi_7(X_5, X_6, X_7)$$

 \Rightarrow 81⁷ = 22 876 792 454 961 still too large !!

Local computations in a simple pedigree

Pedigree

Clique decomposition

Local computations in a simple pedigree

$$F_j(S_j) = \sum_{C_i \setminus S_j} \left(\prod_{i \in \text{from}_i} F_i(S_i) \right) \times \prod_{X_u \in C_i^*} \varphi_u(X_{\text{pa}_u}, X_u) \qquad F_3(\emptyset) = \mathbb{P}(\text{ev})$$

Complexity:

• from $81^7 = 22876792454961$

• to $3 \times 81^3 = 1594323$

Lisa: "Much better!" Homer: "Woohoo!"

Clique decomposition for the Simpsons

Clique decomposition for the Simpsons

- from $81^{13} = 6461081889226672446898176$
- to $8 \times 81^3 = 4251528$

Clique decomposition for the Simpsons

- from $81^{13} = 6461081889226672446898176$
- to $8 \times 81^3 = 4251528$

Extended Pedigree: Small Variables

For a *founder i*, instead of $X_i \in \mathcal{G}$ we have:

Extended Pedigree: Small Variables

For a *offspring* k (with father i and mother j), instead of $X_k \in \mathcal{G}|X_i, X_i$ we have:

Extended Pedigree: Small Variables

Recall on complexity:

- naive $81^{13} = 6461081889226672446898176$
- genotypes $8 \times 81^3 = 4251528$

Small variables with the three heuristics:

- min-neighbors: the smallest clique
 - ⇒ 61154 61649 89051
- min-fill: the clique with minimum fill-in
 - ⇒ 85205 92333 92360
- weighted min-fill: the clique with minimum weighted fill-in
 - ⇒ 57530 43841 43112

The bped Program

bped is a C++ program for performing the sum-product algorithm and computing all marginal posterior distribution under the autosomal bi-allelic Mendelian model under HWE.

```
command-line: bped file.ped file.ev [freq]
```

- pedigree file (famID/indID,patID,matID)
- evidence file (famID/indID/AA/Aa/aA/aa)
- (option) allelic frequency (default f = 0.10)

The ev. file contains for each ind. $\propto \mathbb{P}(X_i = AA/Aa/aA/aa|Y_i)$

- 1/1/1/1 is the neutral evidence (no information)
- 0/1/1/0 is the evidence for a heterozygous carrier
- 1/0.095/0.095/0.095 for $T_i = 67, \delta_i = 0$
- 0/0.407/0.407/0.407 for $T_i = 38, \delta_i = 1$

bped Demo 1

- allelic frequency f = 0.10
- ev1: full neutral evidence
- ev2: $X_7 \neq AA$
- ev3: $X_7 \neq AA$ and $X_5 = AA$

	1	2	1	1	1	1
	1	3	1	1	1	1
ev1 file:	1	4	1	1	1	1
	1	5	1	1	1	1
	1	6	1	1	1	1
	1	7	1	1	1	1

bped Demo 1

allelic frequency f = 0.10

ev1: full neutral evidence

• ev2: X₇ ≠ AA

• ev3: $X_7 \neq AA$ and $X_5 = AA$

bped output for ev1:

1:1	0.9801	0.0099	0.0099	0.0001
1:2	0.9801	0.0099	0.0099	0.0001
1:3	0.9801	0.0099	0.0099	0.0001
1:4	0.9801	0.0099	0.0099	0.0001
1:5	0.9801	0.0099	0.0099	0.0001
1:6	0.9801	0.0099	0.0099	0.0001
1:7	0.9801	0.0099	0.0099	0.0001

- allelic frequency f = 0.10
- ev1: full neutral evidence
- ev2: *X*₇ ≠ AA
- ev3: $X_7 \neq AA$ and $X_5 = AA$

	1	2	1	1	1	1
	1	3	1	1	1	1
ev2 file:	1	4	1	1	1	1
	1	5	1	1	1	1
	1	6	1	1	1	1
	1	7	0	1	1	1

- allelic frequency f = 0.10
- ev1: full neutral evidence
- ev2: X₇ ≠ AA
- ev3: $X_7 \neq AA$ and $X_5 = AA$

bped output for ev2:

1:1	0.736306	0.130566	0.130566	0.00256256
1:2	0.736306	0.130566	0.130566	0.00256256
1:3	0.736306	0.130566	0.130566	0.00256256
1:4	0.736306	0.130566	0.130566	0.00256256
1:5	0.492513	0.251231	0.251231	0.00502513
1:6	0.492513	0.251231	0.251231	0.00502513
1:7	0.000000	0.497487	0.497487	0.00502513

- allelic frequency f = 0.10
- ev1: full neutral evidence
- ev2: $X_7 \neq AA$
- ev3: $X_7 \neq AA$ and $X_5 = AA$

	1	2	1	1	1	1
	1	3	1	1	1	1
ev3 file:	1	4	1	1	1	1
	1	5	1	0	0	0
	1	6	1	1	1	1
	1	7	Λ	1	1	1

- allelic frequency f = 0.10
- ev1: full neutral evidence
- ev2: X₇ ≠ AA
- ev3: $X_7 \neq AA$ and $X_5 = AA$

bped output for ev3:

1:1	0.99	0.005	0.005	0
1:2	0.99	0.005	0.005	0
1:3	0.49005	0.25245	0.25245	0.00505
1:4	0.49005	0.25245	0.25245	0.00505
1:5	1	0	0	0
1:6	0	0.495	0.495	0.01
1:7	0	0	1	0

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

The Method

Start from pedigree data, disease status (age, censoring), and possible extra-information (e.g. partial genotyping).

- initialization: random weights w (w_i closer to 1 for affected)
- for iter=1, 2, 3, . . .
 - fit a (non-parametric) survival model with weights w

fit0 = survfit(Surv(
$$T, \delta$$
) \sim 1, weights = 1 - w)
fit1 = survfit(Surv(T, δ) \sim 1, weights = w)

write the evidence file:

affected:
$$S_0(T_i)\lambda_0(T_i)$$
 (AA), $S_1(T_i)\lambda_1(T_i)$ (Aa/aA/aa) unaffected: $S_0(T_i)$ (AA), $S_1(T_i)$ (Aa/aA/aa)

• use bped to update the weights w

```
bped ped ev 0.10
```

 output: a fitted survival fit0/fit1 (including survival, confidence intervals, etc.), and post. carrier probabilities w.

Application to Our Simulated Dataset

Simulated Dataset: N = 500 families, n = 5000 individuals, 312 affected, 959 carriers, 75% of affected are carriers.

Application to Our Simulated Dataset

Simulated Dataset: N = 500 families, n = 5000 individuals, 312 affected, 959 carriers, 75% of affected are carriers.

 $EM \Rightarrow$ no bias, and very close to the oracle

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Modified Simulation

- same model than before, but f = 0.5% instead of 10%
- $\lambda_0(t) \in (5,200)/100000$ and RH $(t) \in (15,100)$
- N = 10000 families of 10 individuals (fixed pedigree)
- ascertainement: at least one affected before age 45

	unaffected	affected	total
non carrier	97695	1310	99005
carrier	761	234	995
total	98456	1544	100000

full dataset

Modified Simulation

- same model than before, but f = 0.5% instead of 10%
- $\lambda_0(t) \in (5,200)/100000$ and RH $(t) \in (15,100)$
- N = 10000 families of 10 individuals (fixed pedigree)
- ascertainement: at least one affected before age 45

	unaffected	affected	total
non carrier	4301	442	4743
carrier	203	164	367
total	4504	606	5110

after ascertainment

Estimations with 100% Known Genotypes

Estimations with 100% Known Genotypes

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Just in One Slide

polygenic effects (e.g. BOADICEA)

- latent or partially observed
- hypergeometric polygenic model
- usually discretized and approximated

familial frailty (e.g. Gorfine, 2013)

- Gaussian frailty shared in the family
- sum-product on a grid of frailty values
- posterior frailty distribution available

parent of origin (e.g. amyloid neuropathy)

•
$$\lambda_1^{\text{pat}}(t) = \lambda(t|X = 10) \ \lambda_1^{\text{mat}}(t) = \lambda(t|X = 01)$$

almost impossible without EM

covariates (e.g. mammographic density for BC)

- effect could depend on carrier status
- how to deal with missing data

Outline

- Introduction
 - Some Recalls
 - A Fictional Genetic Study
 - Estimations from Known Genotypes
- Expectation-Maximization
 - Principle
 - Posterior in Pedigree
 - Estimations from Unknown Genotypes
- Advanced Stuff
 - Ascertainment Issues
 - Advanced Models
 - Sophisticated Posteriors

Claus Model for BC/OC (Claus, 1991)

Claus' Model: dominant bi-allelic mutation, freq. q = 0.33%

- PCH¹: non-carrier hazard $\lambda_0(t)$, carrier hazard $\lambda_1(t)$
- male BC \rightarrow BC25, OC<70 \rightarrow BC25, OC \geq 70 \rightarrow BC35

¹Piecewise Constant Hazard with cuts in 20,30,40,50,60,70,80.

Claus Model for BC/OC

offspring model with allelic variables (inspired by Lauritzen, 2003)


```
\begin{split} \mathbb{P}(\mathsf{patA}_k = a/b|\mathsf{patA}_i = a, \mathsf{matA}_i = b, \mathsf{patS}_k = \mathsf{pat/mat}, \mathsf{patF}_k = \mathsf{true}) = 1 \\ \mathbb{P}(\mathsf{patS}_k = \mathsf{pat}) = 0.5 \quad \mathbb{P}(\mathsf{patA}_k = 1|\mathsf{patF}_k = \mathsf{false}) = q \\ \mathbb{P}(\mathsf{Carrier}_k = 1|\mathsf{patA}_k = a, \mathsf{matA}_k = b) = (a \neq 00 \text{ or } b \neq 00) \\ \mathbb{P}(\mathsf{patF}_k = \mathsf{false}) = 1\% \quad \mathbb{P}(\mathsf{matF}_k = \mathsf{false}) = 0.01\% \\ \mathbb{P}(\mathsf{Test}_k = 1| \; \mathsf{Carrier}_k = 1) = 80\% \quad \mathbb{P}(\mathsf{Test}_k = 0| \; \mathsf{Carrier}_k = 0) = 98\% \\ \mathbb{P}(\mathsf{maleUN}t|\mathsf{C}_k = a) = S_a(25) \quad \mathbb{P}(\mathsf{femaleUN}t|\mathsf{C}_k = a) = S_a(t) \\ \mathbb{P}(\mathsf{maleBC}t|\mathsf{C}_k = a) = S_a(25) \lambda_a(25) \quad \mathbb{P}(\mathsf{femaleBC}t|\mathsf{C}_k = a) = S_a(t) \lambda_a(t) \end{split}
```


$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH})$$

Individual <i>i</i>	$\pi(NC)$	1/1	1/2	1/3	1/4	1/5
$\pi(C_i = 1)$	_	52.1	21.2	70.0	71.6	35.4

2 founders, 3 offsprings, 32 variables, 22 cliques, complexity 396

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH})$$

1/1	1/2	1/3	1/4	$\pi(C_\mathcal{J})$
1	0	1	1	48.6
0	0	0	0	26.9
0	1	1	1	19.7
1	0	0	1	2.1
1	0	1	0	1.0
0	1	0	1	0.8

Individual <i>i</i>	$\pi(NC)$	1/1	1/2	1/3	1/4	1/5
$\pi(C_i = 1)$	_	52.1	21.2	70.0	71.6	35.4
$\pi(C_i = 1 NC = 3)$	37.4	71.4	28.6	96.2	98.2	5.6
$\pi(C_i = 1 NC = 4)$	33.1	71.1	29.2	100.0	100.0	99.8
$\pi(C_i = 1 NC = 0)$	26.9	0.0	0.0	0.0	0.0	0.0
$\pi(C_i = 1 NC = 2)$	2.3	71.8	28.2	32.2	66.5	1.3
$\pi(C_i = 1 NC = 5)$	0.2	100.0	100.0	100.0	100.0	100.0

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH}, \mathsf{T}_1 = 1)$$

1/1	1/2	1/3	1/4	$\pi(C_\mathcal{J})$
1	0	1	1	91.3
1	0	0	1	3.9
1	0	1	0	1.9
0	0	0	0	1.3
0	1	1	1	0.9
1	1	1	1	0.5

Individual i	$\pi(NC)$	1/1	1/2	1/3	1/4	1/5
$\pi(C_i = 1)$	_	97.8	1.5	94.7	96.7	47.7
$\pi(C_i = 1 NC = 3)$	50.6	99.0	1.0	96.2	98.2	5.6
$\pi(C_i = 1 NC = 4)$	44.6	99.0	1.3	100.0	100.0	99.7
$\pi(C_i = 1 NC = 2)$	3.1	99.0	1.0	32.2	66.5	1.3
$\pi(C_i = 1 NC = 0)$	1.3	0.0	0.0	0.0	0.0	0.0
$\pi(C_i = 1 NC = 5)$	0.4	100.0	100.0	100.0	100.0	100.0

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH}, \mathsf{T}_1 = 0)$$

1/1	1/2	1/3	1/4	$\pi(C_\mathcal{J})$
0	0	0	0	46.0
0	1	1	1	33.6
1	0	1	1	17.0
0	1	0	1	1.4
1	0	0	1	0.7
0	1	1	0	0.7

Individual <i>i</i>	$\pi(NC)$	1/1	1/2	1/3	1/4	1/5
$\pi(C_i = 1)$	_	18.2	35.8	51.7	52.9	26.2
$\pi(C_i = 1 NC = 0)$	46.0	0.0	0.0	0.0	0.0	0.0
$\pi(C_i = 1 NC = 3)$	27.5	33.8	66.3	96.2	98.2	5.6
$\pi(C_i = 1 NC = 4)$	24.6	33.4	66.7	100.0	100.0	99.9
$\pi(C_i = 1 NC = 2)$	1.7	34.2	65.8	32.2	66.5	1.3
$\pi(C_i = 1 NC = 1)$	0.1	5.9	11.1	26.7	55.3	1.1

Individual $i \pi(NC)$									
$\pi(C_i = 1)$ –	17.3	5.1	10.7	20.0	11.1	20.8	14.7	15.2	30.0

3 founders, 6 offsprings, 60 variables, 41 cliques, complexity 748

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH})$$

2/3	2/4	2/6	2/9	$\pi(C_\mathcal{J})$
0	0	0	0	67.5
0	1	1	1	18.0
1	0	0	1	10.0
0	0	1	0	1.9
0	1	0	1	1.4
0	1	1	0	0.4

Individual <i>i</i>	$\pi(NC)$									
$\pi(C_i = 1)$	_	17.3	5.1	10.7	20.0	11.1	20.8	14.7	15.2	30.0
$\pi(C_i = 1 NC = 0)$	67.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\pi(C_i = 1 NC = 5)$	7.6	77.6	22.4	1.6	98.5	36.9	93.1	34.7	37.0	98.1
$\pi(C_i = 1 NC = 6)$	7.0	77.6	22.6	2.1	98.5	68.1	97.5	66.0	68.3	99.3
$\pi(C_i = 1 NC = 3)$	6.2	14.6	4.2	81.1	4.1	14.8	15.6	39.7	42.5	83.5
$\pi(C_i = 1 NC = 4)$	5.5	44.0	12.6	44.2	55.7	4.4	46.6	47.5	47.8	97.1

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH}, \mathsf{T_4} = 1)$$

2/3	2/4	2/6	2/9	$\pi(C_\mathcal{J})$
0	1	1	1	81.8
0	0	0	0	7.7
0	1	0	1	6.4
0	1	1	0	1.7
1	0	0	1	1.1
1	1	1	1	8.0

Individual <i>i</i>	$\pi(NC)$	2/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8	2/9
$\pi(C_i = 1)$	_	70.8	20.7	2.0	90.9	45.4	84.6	44.6	46.2	90.2
$\pi(C_i = 1 NC = 5)$	34.1	77.6	22.4	0.2	100	36.9	93.1	34.7	37.0	98.1
$\pi(C_i = 1 NC = 6)$	31.3									
$\pi(C_i = 1 NC = 4)$	14.1	76.2	21.8	2.0	98.1	7.6	80.5	9.2	9.7	95.0
$\pi(C_i = 1 NC = 7)$	10.2	77.7	23.6	3.8	100	97.4	99.8	98.9	99.0	100
$\pi(C_i = 1 NC = 0)$	7.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

$$\pi(\cdot) = \mathbb{P}(\cdot|\text{FH}, \mathsf{T_4} = \mathsf{0})$$

2/3	2/4	2/6	2/9	$\pi(C_\mathcal{J})$
0	0	0	0	80.3
1	0	0	1	11.9
0	1	1	1	4.4
0	0	1	0	2.2
0	1	0	1	0.3
1	0	1	1	0.3

Individual <i>i</i>	$\pi(NC)$	2/1	2/2	2/3	2/4	2/5	2/6	2//	2/8	2/9
$\pi(C_i = 1)$	_	5.9	1.7	12.5	4.9	3.8	7.1	8.3	8.6	17.1
$\pi(C_i = 1 NC = 0)$	80.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\pi(C_i = 1 NC = 3)$	7.1	12.6	3.6	83.9	0.9	15.2	15.5	40.9	43.8	83.7
$\pi(C_i = 1 NC = 2)$	4.5	20.9	5.9	73.2	0.1	1.9	24.9	1.4	1.5	70.4
$\pi(C_i = 1 NC = 4)$	3.6	17.2	4.9	79.5	20.4	1.8	18.2	79.5	79.6	98.8
$\pi(C_i = 1 NC = 5)$	2.0	77.6	22.4	7.2	93.0	36.9	93.1	34.8	37.1	98.1

Summary

Take-Home Messages:

- unbalanced genotyping scheme induces bias
- EM for pedigrees efficiently solves the problem
- bped program for posterior marginals

What Next:

- more sophisticated models (frailty, covariates, POO, etc.)
- tackling ascertainement (raking ?)
- clinical relevance of advanced posterior distribution

Many Human Diseases

- Cancers:
 - Breast and Ovarian: Institut Curie
 - MSI Cancer and Lynch Syndrome: Saint-Antoine
 - Li-Fraumeni: La Pitié-Salpêtrière
- Rare Genetic Diseases:
 - Hereditary Amyloid Neuropathy: Henri Mondor
 - Pulmonary Arterial HT: Marie Lannelongue
 - Huntington Disease: Hôpital Saint-Anne
- Common Disease with Genetic Factors:
 - Alzheimer Disease: CHU Rouen
 - Diabetes, autism, cardio-vascular, obesity, . . .

Just for Pleasure

Special Thanks:

Homer, Marge, Bart, Lisa, and Maggie Simpson and their creator ... Matt Groening