Lecture 10

Circuit Model & Plane Waves

GEOL 4397: Electromagnetic Methods for Exploration GEOL 6398: Special Problems

Jiajia Sun, Ph.D.

Sept. 27th, 2018

Outline

- Circuit model
 - Understanding EM response
- Plane waves in a homogeneous media
 - Quasi-static approximation
 - Skin depth
 - Diffusion distance

https://em.geosci.xyz/content/maxwell3_fdem/circuitmodel_for_eminduction/index.html

Time-domain EM response

Step-off current in Tx

$$\varepsilon_3^S = \frac{M_{12}M_{23}}{L} \frac{I_1}{\tau} e^{-\frac{t}{\tau}}$$
where $\tau = \frac{L}{R}$, and $t > 0$

The larger the τ , the slower it decays. Therefore, the more conductive the subsurface, the slower it decays.

Frequency-domain EM response

Coupling coefficient

Response function

Frequency-domain EM response

The phase lag, $\psi = \frac{\pi}{2} + tan^{-1} \left(\frac{wL}{R} \right)$, is diagnostic of the conductivity of the subsurface body.

- Very resistivity body: 90^o
- Very conductive body: 180°

Image credit: https://gpg.geosci.xyz/content/electromagnetics/electromagnetic data.html

FEM survey

FEM data at 10000 Hz

Image created using FDEM_ThreeLoopModel.ipynb. Inductance L = 0.1, Resistance R = 2000, xc = 0, yc = 0, zc = 1, dincl = 0, ddecl = 90, frequency = 10000 Hz, sampling spacing dx = 0.25

FEM data at 10000 Hz

Image created using FDEM_ThreeLoopModel.ipynb. Inductance L = 0.1, Resistance R = 2000, xc = 0, yc = 0, zc = 1, dincl = 0, ddecl = 90, frequency = 10000 Hz, sampling spacing dx = 0.25

FEM data at 3180 Hz

Image created using FDEM_ThreeLoopModel.ipynb. Inductance L = 0.1, Resistance R = 2000, xc = 0, yc = 0, zc = 1, dincl = 0, ddecl = 90, frequency = 3180 Hz, sampling spacing dx = 0.25

How to understand this?

ency

Conductor in a resistive earth: Frequency

Profile over the loop

2 1e-8 1 0 4 -1 H/s -2 H -3 Induction number

$$\alpha = \frac{\omega L}{R}$$

- When $\alpha=1$
 - Real = Imag

Credit: Doug Oldenburg, Seogl帆ang and Linsey Heagy from UBC-GIF

10

-5

-5

-6

Conductor in a resistive earth: Frequency

Profile over the loop

2 1e-8 1 0 H/s -1 H -2 -3 Induction number

$$\alpha = \frac{\omega L}{R}$$

- When $\alpha=1$
 - Real < Imag

Credit: Doug Oldenburg, Seoginang and Linsey Heagy from UBC-GIF

10

-5 ∟ -10

Conductor in a resistive earth: Frequency

Profile over the loop

0.4 1e-7 0.2 0.0 4 H-0.2 H-0.4 -0.6 Induction number

$$\alpha = \frac{\omega L}{R}$$

- When lpha=1
 - Real > Imag

Credit: Doug Oldenburg, Seoginang and Linsey Heagy from UBC-GIF

-0.8

-1.0 <u></u>

10

Conductor in a resistive earth: Transient

Time

Profile over the loop

Time constant

$$\tau = L/R$$

 Response depends upon time constant

$$\varepsilon_3^S = \frac{M_{12}M_{23}}{L} \frac{I_1}{\tau} e^{-\frac{t}{\tau}}$$

Conductor in a resistive earth: Transient

Profile over the loop

A summary

Much of what we see (e.g., the shape of the curve, the zero crossings) is from survey geometry (i.e., coupling, or the relative position of target w.r.t Tx & Rx).

A summary

But what we are really interested in is conductivity. In time domain, the decay rate tells you how conductive a target is. In frequency domain, the relative amplitudes of the real and imaginary curves tell about conductivity.

A summary

How representative is a circuit model?

Jiajia Sun

Outline

- Circuit model
 - Understanding EM response
- Plane waves in a homogeneous media
 - Quasi-static approximation
 - Skin depth
 - Diffusion distance

Revisit Maxwell equations

$$\nabla \cdot \boldsymbol{d} = \rho_f$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$\nabla \times \boldsymbol{e} = -\frac{\partial \boldsymbol{b}}{\partial t}$$

$$\nabla \times \mathbf{h} = \mathbf{j}_f + \frac{\partial \mathbf{d}}{\partial t}$$

Gauss's law for electric fields

Gauss's law for magnetic fields

Faraday's law

Ampere-Maxwell equation

Constitutive relationships

$$\boldsymbol{j}_f = \sigma \boldsymbol{e}$$

$$\mathbf{b} = \mu \mathbf{h}$$

$$d = \varepsilon e$$

 σ : electrical conductivity μ : magnetic permeability

 ε : dielectric permittivity

Revisit Maxwell equations

$$\nabla \cdot \boldsymbol{d} = \rho_f$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$abla imes oldsymbol{e} egin{aligned}
abla imes oldsymbol{e} & egin{aligned}
abla imes oldsymbol{e} & oldsymbol{e} & oldsymbol{h} & oldsymbol{e} & oldsymbol{h} & oldsymbol{e} & oldsymbol{h} & oldsymbol{e} & oldsymbol{h} & oldsymbol{e} & oldsymbol{e} & oldsymbol{h} & oldsymbol{e} & oldsymbol{e$$

Gauss's law for electric fields

Gauss's law for magnetic fields

Faraday's law

Ampere-Maxwell equation

First order equations

Constitutive relationships

$$\boldsymbol{j}_f = \sigma \boldsymbol{e}$$

$$\boldsymbol{b} = \mu \boldsymbol{h}$$

$$d = \varepsilon e$$

 σ : electrical conductivity μ : magnetic permeability

 ε : dielectric permittivity

Revisit Maxwell equations

First order equations

$$\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$$

$$\mathbf{j} = \sigma \mathbf{e}$$

$$\mathbf{b} = \mu \mathbf{h}$$

$$\nabla \times \mathbf{h} = \mathbf{j} + \frac{\partial \mathbf{d}}{\partial t}$$

$$\mathbf{d} = \varepsilon \mathbf{e}$$

Second order equations

$$\nabla^2 \mathbf{h} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} = 0$$
diffusion wave propagation

^{*} Same equation holds for E

From first order equations to second order equations (Optional)

Start from
$$\nabla \times \mathbf{h} = \mathbf{j}_f + \frac{\partial \mathbf{d}}{\partial t}$$

Perform curl operation on both sides:

$$\nabla \times (\nabla \times \mathbf{h}) = \nabla \times (\mathbf{j}_f + \frac{\partial \mathbf{d}}{\partial t})$$

The left hand side: $\nabla \times (\nabla \times \mathbf{h}) = \nabla(\nabla \cdot \mathbf{h}) - \nabla^2 \mathbf{h} = -\nabla^2 \mathbf{h}$

The RHS term:
$$\nabla \times \left(\boldsymbol{j}_f + \frac{\partial \mathbf{d}}{\partial t} \right) = \nabla \times \boldsymbol{j}_f + \nabla \times \left(\frac{\partial \boldsymbol{d}}{\partial t} \right) = \nabla \times \boldsymbol{j}_f + \frac{\partial (\nabla \times \boldsymbol{d})}{\partial t}$$

Recall $\boldsymbol{j}_f = \sigma \boldsymbol{e}$

$$\nabla \times \mathbf{j}_{f} = \sigma \nabla \times \mathbf{e} = -\sigma \frac{\partial \mathbf{b}}{\partial t} = -\mu \sigma \frac{\partial \mathbf{h}}{\partial t}$$

$$\nabla \times \mathbf{d} = \varepsilon \nabla \times \mathbf{e} = -\varepsilon \frac{\partial \mathbf{b}}{\partial t} = -\mu \varepsilon \frac{\partial \mathbf{h}}{\partial t}$$

Thus,
$$\nabla^2 \mathbf{h} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} - \mu \varepsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} = 0$$

From time domain to frequency domain

$$\nabla^2 \mathbf{h} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} = 0$$
diffusion wave propagation

Apply Fourier transform

$$\nabla^2 \mathbf{H} - i\omega\mu\sigma\mathbf{H} + \omega^2\mu\epsilon\mathbf{H} = 0$$

$$\nabla^2 \pmb{H} + k^2 \pmb{H} = 0$$
 where $k^2 = \omega^2 \mu \epsilon - i \omega \mu \sigma$

$$\nabla^{2} \mathbf{H} + k^{2} \mathbf{H} = 0$$

$$k^{2} = \omega^{2} \mu \epsilon - i \omega \mu \sigma$$

$$k^{2} = \omega \mu (\omega \epsilon - i \sigma)$$

$$\nabla^{2} \mathbf{H} + k^{2} \mathbf{H} = 0$$

$$k^{2} = \omega^{2} \mu \epsilon - i \omega \mu \sigma$$

$$k^{2} = \omega \mu (\omega \epsilon - i \sigma)$$

Let us compare $\omega \epsilon$ and σ

By computing
$$\frac{\omega \epsilon}{\sigma}$$

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0$$
$$k^2 = \omega^2 \mu \epsilon - i\omega \mu \sigma$$

$$k^2 = \omega \mu (\omega \epsilon - i \sigma)$$

Let us compare $\omega \epsilon$ and σ By computing $\frac{\omega \epsilon}{\sigma}$ In-class exercise

Compute
$$\frac{\omega \epsilon}{\sigma}$$

$$\sigma = 10^{-4} S/m$$

$$f = 10^4 Hz$$

$$\epsilon = 8.85 \times 10^{-12} F/m$$

$$\nabla^2 \boldsymbol{H} + k^2 \boldsymbol{H} = 0$$

$$k^2 = \omega^2 \mu \epsilon - i\omega \mu \sigma$$

$$k^2 = \omega \mu (\omega \epsilon - i \sigma)$$

Let us compare $\omega \epsilon$ and σ By computing $\frac{\omega \epsilon}{\sigma}$ In-class exercise

Compute
$$\frac{\omega \epsilon}{\sigma}$$

$$\sigma = 10^{-4} S/m$$

$$f = 10^4 Hz$$

$$\epsilon = 8.85 \times 10^{-12} F/m$$

Even with the above parameter values, $\frac{\omega\epsilon}{\sigma}\ll 1$

Therefore,
$$k^2 = -i\omega\mu\sigma$$

Plane waves in a homogeneous media: frequency domain

$$\nabla^{2} \mathbf{H} + k^{2} \mathbf{H} = 0$$

$$k^{2} = -i\omega\mu\sigma$$

$$k = \sqrt{-i\omega\mu\sigma} = (1 - i)\sqrt{\frac{\omega\mu\sigma}{2}}$$

$$\equiv \alpha - i\beta$$

Plane wave solution

$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
 attenuation phase

Plane waves in a homogeneous media: frequency domain

Plane wave solution

$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
 attenuation phase

 δ : skin depth

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

Plane wave solution

$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
 attenuation phase

1/e----δ

 δ : skin depth

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$
$$\mu = 4\pi \times 10^{-7} H/m$$

In-class exercise:

Calculate the skin depths

Туре	σ (S/m)	δ (1 Hz)	δ (1 kHz)	δ (1 MHz)
Air	0			
Sea water	3.3			
Igneous	10 ⁻⁴			
Sedimen ts	10-2			

1/e----δ

 δ : skin depth

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$
$$\mu = 4\pi \times 10^{-7} H/m$$

In-class exercise:

Calculate the skin depths

Туре	σ (S/m)	δ (1 Hz)	δ (1 kHz)	δ (1 MHz)
Air	0	∞	∞	∞
Sea water	3.3	277	8.76	0.277
Igneous	10^{-4}	50300	1590	50.3
Sedimen ts	10-2	5030	159	5.03

 δ : skin depth

 δ : skin depth

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$
$$\mu = 4\pi \times 10^{-7} H/m$$

Plane waves in a homogeneous media: time domain

$$\nabla^2 \mathbf{h} - \mu \epsilon \frac{\partial^2 \mathbf{h}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{h}}{\partial t} = 0$$
$$\mathbf{h}(t=0) = \mathbf{h}_0 \delta(t)$$

Solution for quasi-static

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

z: depth (m)

Electric field as a function of time 100 m from a 1D impulse in the field in a 0.01 S/m whole space

Diffusion distance

Electric field at t = 0.03 ms as a function of distance

Plane waves in a homogeneous media: time domain

At any given depth z, when does the maximum field (e.g., magnetic field) occur?

At any given time t, where does the maximum field (e.g., magnetic field) occur?

Also called peak distance

Diffusion distance

Plane waves in a homogeneous media: time domain

Diffusion distance

