1995 IMO Shortlist

IMO Shortlist 1995

5

– Algebra

1 Let a, b, c be positive real numbers such that abc = 1. Prove that

$$\frac{1}{a^{3}\left(b+c\right)}+\frac{1}{b^{3}\left(c+a\right)}+\frac{1}{c^{3}\left(a+b\right)}\geq\frac{3}{2}.$$

Let a and b be non-negative integers such that $ab \geq c^2$, where c is an integer. Prove that there is a number n and integers $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that

$$\sum_{i=1}^{n} x_i^2 = a, \sum_{i=1}^{n} y_i^2 = b, \text{ and } \sum_{i=1}^{n} x_i y_i = c.$$

3 Let n be an integer, $n \geq 3$. Let a_1, a_2, \ldots, a_n be real numbers such that $2 \leq a_i \leq 3$ for $i = 1, 2, \ldots, n$. If $s = a_1 + a_2 + \ldots + a_n$, prove that

$$\frac{a_1^2 + a_2^2 - a_3^2}{a_1 + a_2 - a_3} + \frac{a_2^2 + a_3^2 - a_4^2}{a_2 + a_3 - a_4} + \ldots + \frac{a_n^2 + a_1^2 - a_2^2}{a_n + a_1 - a_2} \le 2s - 2n.$$

4 Find all of the positive real numbers like x, y, z, such that :

1.)
$$x + y + z = a + b + c$$

2.)
$$4xuz = a^2x + b^2u + c^2z + abc$$

Proposed to Gazeta Matematica in the 80s by VASILE CRTOAJE and then by Titu Andreescu to IMO 1995.

Let \mathbb{R} be the set of real numbers. Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ which simultaneously satisfies the following three conditions?

- (a) There is a positive number M such that $\forall x : -M \leq f(x) \leq M$.
- (b) The value of f(1) is 1.
- (c) If $x \neq 0$, then

$$f\left(x + \frac{1}{x^2}\right) = f(x) + \left[f\left(\frac{1}{x}\right)\right]^2$$

1995 IMO Shortlist

6 Let n be an integer, $n \ge 3$. Let x_1, x_2, \ldots, x_n be real numbers such that $x_i < x_{i+1}$ for $1 \le i \le n-1$. Prove that

$$\frac{n(n-1)}{2} \sum_{i < j} x_i x_j > \left(\sum_{i=1}^{n-1} (n-i) \cdot x_i\right) \cdot \left(\sum_{j=2}^{n} (j-1) \cdot x_j\right)$$

_	Geometry
1	Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters AC and BD intersect at X and Y . The line XY meets BC at Z . Let P be a point on the line XY other than Z . The line CP intersects the circle with diameter AC at C and M , and the line BP intersects the circle with diameter BD at B and N . Prove that the lines AM, DN, XY are concurrent.
2	Let A, B and C be non-collinear points. Prove that there is a unique point X in the plane of ABC such that
	$XA^{2} + XB^{2} + AB^{2} = XB^{2} + XC^{2} + BC^{2} = XC^{2} + XA^{2} + CA^{2}.$
3	The incircle of triangle $\triangle ABC$ touches the sides BC , CA , AB at D, E, F respectively. X is a point inside triangle of $\triangle ABC$ such that the incircle of triangle $\triangle XBC$ touches BC at D , and touches CX and XB at Y and Z respectively. Show that E, F, Z, Y are concyclic.
4	An acute triangle ABC is given. Points A_1 and A_2 are taken on the side BC (with A_2 between A_1 and C), B_1 and B_2 on the side AC (with B_2 between B_1 and A), and C_1 and C_2 on the side AB (with C_2 between C_1 and B) so that
	$\angle AA_1A_2 = \angle AA_2A_1 = \angle BB_1B_2 = \angle BB_2B_1 = \angle CC_1C_2 = \angle CC_2C_1$. The lines AA_1, BB_1 , and CC_1 bound a triangle, and the lines AA_2, BB_2 , and CC_2 bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.
5	Let $ABCDEF$ be a convex hexagon with $AB = BC = CD$ and $DE = EF = FA$, such that $\angle BCD = \angle EFA = \frac{\pi}{3}$. Suppose G and H are points in the interior of the hexagon such that $\angle AGB = \angle DHE = \frac{2\pi}{3}$. Prove that $AG + GB + GH + DH + HE \ge CF$.

1995 IMO Shortlist

6 Let $A_1A_2A_3A_4$ be a tetrahedron, G its centroid, and A'_1, A'_2, A'_3 , and A'_4 the points where the circumsphere of $A_1A_2A_3A_4$ intersects GA_1, GA_2, GA_3 , and GA_4 , respectively. Prove that

$$GA_1 \cdot GA_2 \cdot GA_3 \cdot GA.4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4$$

and

$$\frac{1}{GA_1'} + \frac{1}{GA_2'} + \frac{1}{GA_3'} + \frac{1}{GA_4'} \le \frac{1}{GA_1} + \frac{1}{GA_2} + \frac{1}{GA_3} + \frac{1}{GA_4}.$$

7 Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that $\sqrt{|AHOE|} + \sqrt{|CFOG|} \leq \sqrt{|ABCD|}$, where $|P_1P_2...P_n|$ is an abbreviation for the non-directed area of an arbitrary polygon $P_1P_2...P_n$. 8 Suppose that ABCD is a cyclic quadrilateral. Let $E = AC \cap BD$ and F = $AB \cap CD$. Denote by H_1 and H_2 the orthocenters of triangles EAD and EBC, respectively. Prove that the points F, H_1 , H_2 are collinear. Original formulation: Let ABC be a triangle. A circle passing through B and C intersects the sides AB and AC again at C' and B', respectively. Prove that BB', CC' and HH'are concurrent, where H and H' are the orthocentres of triangles ABC and AB'C' respectively. NT, Combs Let k be a positive integer. Show that there are infinitely many perfect squares 1 of the form $n \cdot 2^k - 7$ where n is a positive integer. $\mathbf{2}$ Let \mathbb{Z} denote the set of all integers. Prove that for any integers A and B, one can find an integer C for which $M_1 = \{x^2 + Ax + B : x \in \mathbb{Z}\}$ and $M_2 =$ $2x^2 + 2x + C : x \in \mathbb{Z}$ do not intersect. 3 Determine all integers n > 3 for which there exist n points A_1, \dots, A_n in the plane, no three collinear, and real numbers r_1, \dots, r_n such that for $1 \le i < j < n$ $k \leq n$, the area of $\triangle A_i A_j A_k$ is $r_i + r_j + r_k$.

Art of Problem Solving 1995 IMO Shortlist

4	Find all x, y and z in positive integer: $z + y^2 + x^3 = xyz$ and $x = \gcd(y, z)$.
5	At a meeting of $12k$ people, each person exchanges greetings with exactly $3k+6$ others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?
6	Let p be an odd prime number. How many p -element subsets A of $\{1, 2, \ldots, 2p\}$ are there, the sum of whose elements is divisible by p ?
7	Does there exist an integer $n > 1$ which satisfies the following condition? The set of positive integers can be partitioned into n nonempty subsets, such that an arbitrary sum of $n-1$ integers, one taken from each of any $n-1$ of the subsets, lies in the remaining subset.
8	Let p be an odd prime. Determine positive integers x and y for which $x \leq y$ and $\sqrt{2p} - \sqrt{x} - \sqrt{y}$ is non-negative and as small as possible.
_	Sequences
1	Does there exist a sequence $F(1), F(2), F(3), \ldots$ of non-negative integers that simultaneously satisfies the following three conditions?
	 (a) Each of the integers 0, 1, 2, occurs in the sequence. (b) Each positive integer occurs in the sequence infinitely often. (c) For any n ≥ 2,
	$F(F(n^{163})) = F(F(n)) + F(F(361)).$
2	Find the maximum value of x_0 for which there exists a sequence $x_0, x_1 \cdots, x_{1995}$ of positive reals with $x_0 = x_{1995}$, such that
	$x_{i-1} + \frac{2}{x_{i-1}} = 2x_i + \frac{1}{x_i},$
	for all $i = 1, \dots, 1995$.
3	For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide x , and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1) = 2$.

1995 IMO Shortlist

For x having p(x) = 2, define q(x) = 1. Consider the sequence x_0, x_1, x_2, \ldots defined by $x_0 = 1$ and

$$x_{n+1} = \frac{x_n p(x_n)}{q(x_n)}$$

for $n \geq 0$. Find all n such that $x_n = 1995$.

4 Suppose that x_1, x_2, x_3, \ldots are positive real numbers for which

$$x_n^n = \sum_{j=0}^{n-1} x_n^j$$

for $n = 1, 2, 3, \dots$ Prove that $\forall n$,

$$2 - \frac{1}{2^{n-1}} \le x_n < 2 - \frac{1}{2^n}.$$

For positive integers n, the numbers f(n) are defined inductively as follows: f(1) = 1, and for every positive integer n, f(n+1) is the greatest integer m such that there is an arithmetic progression of positive integers $a_1 < a_2 < \ldots < a_m = n$ for which

$$f(a_1) = f(a_2) = \ldots = f(a_m).$$

Prove that there are positive integers a and b such that f(an + b) = n + 2 for every positive integer n.

6 Let \mathbb{N} denote the set of all positive integers. Prove that there exists a unique function $f: \mathbb{N} \to \mathbb{N}$ satisfying

$$f(m+f(n)) = n + f(m+95)$$

for all m and n in N. What is the value of $\sum_{k=1}^{19} f(k)$?