2.3 不定积分

- 1 原函数与不定积分的概念
- 2 基本积分表
- 3 不定积分的性质

首页

上页

返回

下页

结束

1原函数与不定积分的概念

❖原函数的概念

如果在区间I上,可导函数F(x)的导函数为f(x),即对任一 $x \in I$,都有

$$F'(x) = f(x) \stackrel{\text{def}}{=} f(x) dx$$

那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.

•原函数举例

因为 $(\sin x)'=\cos x$,所以 $\sin x$ 是 $\cos x$ 的原函数.

因为
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$
,所以 \sqrt{x} 是 $\frac{1}{2\sqrt{x}}$ 的原函数.

提问: $\cos x$ 和 $\frac{1}{2\sqrt{x}}$ 还有其它原函数吗?

首页

❖原函数存在定理

如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一 $x \in I$ 都有

$$F'(x)=f(x)$$
.

简单地说就是:连续函数一定有原函数.

两点说明:

- 1. 如果函数f(x)在区间I上有原函数F(x),那么f(x)就有无限多个原函数, F(x)+C都是f(x)的原函数, 其中C是任意常数.
- 2. 函数 f(x)的任意两个原函数之间只差一个常数,即如果 $\Phi(x)$ 和F(x)都是f(x)的原函数,则 $\Phi(x)-F(x)=C\ (C为某个常数).$

❖不定积分的概念

在区间I上,函数f(x)的带有任意常数项的原函数称为 f(x)(或f(x)dx)在区间I上的不定积分,记作

$$\int f(x)dx$$
.

不定积分中各部分的名称:

∫----- 称为积分号,

f(x) ----- 称为被积函数,

f(x)dx ----- 称为被积表达式,

x ----- 称为积分变量.

❖不定积分的概念

在区间I上,函数f(x)的带有任意常数项的原函数称为 f(x)(或f(x)dx)在区间I上的不定积分,记作

$$\int f(x)dx$$
.

根据定义,如果F(x)是f(x)在区间I上的一个原函数,那么 F(x)+C就是f(x)的不定积分,即

$$\int f(x)dx = F(x) + C.$$

首页

上页

返回

下页

结束

如果F(x)是f(x)的一个原函数,则 $\int f(x)dx = F(x) + C$.

例1 因为 $\sin x$ 是 $\cos x$ 的原函数,所以

$$\int \cos x dx = \sin x + C.$$

因为 \sqrt{x} 是 $\frac{1}{2\sqrt{x}}$ 的原函数,所以

$$\int \frac{1}{2\sqrt{x}} dx = \sqrt{x} + C.$$

首页

上页

返回

结束

如果F(x)是f(x)的一个原函数,则 $\int f(x)dx = F(x) + C$.

例2 求函数 $f(x) = \frac{1}{x}$ 的不定积分.

解 当
$$x>0$$
 时, $(\ln x)'=\frac{1}{x}$,

$$\int \frac{1}{x} dx = \ln x + C(x > 0);$$

当
$$x < 0$$
 时, $[\ln(-x)]' = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$,

$$\int \frac{1}{x} dx = \ln(-x) + C (x < 0).$$

合并上面两式,得到

$$\int \frac{1}{x} dx = \ln|x| + C(x \neq 0).$$

首页

上页

返回

「页

结束

例3设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.

解 设所求的曲线方程为y=f(x),则曲线上任一点(x, y)处的切线斜率为

$$y' = f'(x) = 2x$$
,

即f(x)是2x的一个原函数. 因为

$$\int 2x dx = x^2 + C ,$$

故必有某个常数C使 $f(x)=x^2+C$,即曲线方程为 $y=x^2+C$.

因所求曲线通过点(1,2),故

于是所求曲线方程为y=x²+1.

首页

上页

返回

「页

结束

•积分曲线

函数f(x)的原函数的图形称为f(x)的积分曲线.

函数f(x)的积分曲线也有无限多. 函数f(x)的不定积分表示f(x)的一簇积分曲线,而f(x)正是积分曲线的斜率.

2x的积分曲线

首页

上页

返回

下页

结束

❖微分与积分的关系

从不定积分的定义可知

$$\frac{d}{dx}[\int f(x)dx] = f(x), \ \vec{\boxtimes} \ d[\int f(x)dx] = f(x)dx;$$

又由于F(x)是F'(x)的原函数, 所以

由此可见,如果不计任意常数,则微分运算与求不定积分的运算是互逆的.

首页

上页

返回

下页

结束

2 基本积分表

$$(1)$$
 $\int k dx = kx + C(k$ 是常数),

$$(2) \int x^{\mu} dx = \frac{1}{\mu + 1} x^{\mu + 1} + C,$$

$$(3) \int \frac{1}{x} dx = \ln|x| + C,$$

$$(4)\int e^x dx = e^x + C,$$

$$(5) \int a^x dx = \frac{a^x}{\ln a} + C,$$

$$(6) \int \cos x dx = \sin x + C ,$$

$$(7) \int \sin x dx = -\cos x + C ,$$

$$(8) \int \sec^2 x dx = \tan x + C,$$

$$(9) \int \csc^2 x dx = -\cot x + C ,$$

$$(10)\int \frac{1}{1+x^2} dx = \arctan x + C,$$

$$(11)\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C,$$

$$(12)\int \sec x \tan x dx = \sec x + C,$$

$$(13)\int \csc x \cot dx = -\csc x + C,$$

$$(14) \int \operatorname{sh} x \, dx = \operatorname{ch} x + C \,,$$

$$(15) \int \operatorname{ch} x \, dx = \operatorname{sh} x + C.$$

$$\int x^{\mu} dx = \frac{1}{\mu + 1} x^{\mu + 1} + C$$

1914
$$\int \frac{1}{x^3} dx = \int x^{-3} dx = \frac{1}{-3+1} x^{-3+1} + C = -\frac{1}{2x^2} + C.$$

例5
$$\int x^2 \sqrt{x} dx = \int x^{\frac{5}{2}} dx = \frac{1}{\frac{5}{2} + 1} x^{\frac{5}{2} + 1} + C = \frac{2}{7} x^{\frac{7}{2}} + C.$$
$$= \frac{2}{7} x^3 \sqrt{x} + C.$$

1916
$$\int \frac{dx}{x\sqrt[3]{x}} = \int x^{-\frac{4}{3}} dx = \frac{x^{-\frac{4}{3}+1}}{-\frac{4}{3}+1} + C = -3x^{-\frac{1}{3}} + C = -\frac{3}{\sqrt[3]{x}} + C.$$

积分表

首页

上页

访问

下页

结束

长

3 不定积分的性质

华性质1 $\int [f(x)+g(x)]dx = \int f(x)dx + \int g(x)dx$. 这是因为,

$$[\int f(x)dx + \int g(x)dx]' = [\int f(x)dx]' + [\int g(x)dx]' = f(x) + g(x).$$

首页 上页 返回 🧧

3 不定积分的性质

- *性质1 $\int [f(x)+g(x)]dx = \int f(x)dx + \int g(x)dx$.
- **忰性质2** $\int kf(x)dx = k\int f(x)dx$ (k 是常数, $k \neq 0$).

1918
$$\int \frac{(x-1)^3}{x^2} dx = \int \frac{x^3 - 3x^2 + 3x - 1}{x^2} dx = \int (x - 3 + \frac{3}{x} - \frac{1}{x^2}) dx$$
$$= \int x dx - 3 \int dx + 3 \int \frac{1}{x} dx - \int \frac{1}{x^2} dx = \frac{1}{2} x^2 - 3x + 3 \ln|x| + \frac{1}{x} + C.$$

积分表

首页

上页

返回

下页

结束

3 不定积分的性质

- ***性质1** $\int [f(x)+g(x)]dx = \int f(x)dx + \int g(x)dx.$
- **忰性质2** $\int kf(x)dx = k\int f(x)dx$ (k 是常数, $k \neq 0$).

例9
$$\int (e^x - 3\cos x) dx = \int e^x dx - 3 \int \cos x dx = e^x - 3\sin x + C$$
.

例10
$$\int 2^x e^x dx = \int (2e)^x dx = \frac{(2e)^x}{\ln(2e)} + C = \frac{2^x e^x}{1 + \ln 2} + C$$
.

$$\int \frac{1+x+x^2}{x(1+x^2)} dx = \int \frac{x+(1+x^2)}{x(1+x^2)} dx = \int (\frac{1}{1+x^2} + \frac{1}{x}) dx$$

$$= \int \frac{1}{1+x^2} dx + \int \frac{1}{x} dx = \arctan x + \ln|x| + C.$$

例12
$$\int \frac{x^4}{1+x^2} dx = \int \frac{x^4-1+1}{1+x^2} dx = \int \frac{(x^2+1)(x^2-1)+1}{1+x^2} dx$$
$$= \int (x^2-1+\frac{1}{1+x^2}) dx = \int x^2 dx - \int dx + \int \frac{1}{1+x^2} dx$$
$$= \frac{1}{3}x^3 - x + \arctan x + C.$$

例13 $\int \tan^2 x dx = \int (\sec^2 x - 1) dx = \int \sec^2 x dx - \int dx = \tan x - x + C.$

例14
$$\int \sin^2 \frac{x}{2} dx = \int \frac{1 - \cos x}{2} dx = \frac{1}{2} \int (1 - \cos x) dx$$
$$= \frac{1}{2} (x - \sin x) + C.$$

例15
$$\int \frac{1}{\sin^2 \frac{x}{2} \cos^2 \frac{x}{2}} dx = 4 \int \frac{1}{\sin^2 x} dx = -4 \cot x + C.$$

积分表

首页

上页

返回

下页

结束

长