Impact of using CD4 to inform undiagnosed estimates

Martina Morris and Jeanette Birnbaum

September 13, 2016

1 Overview

This version of the report is for internal use only.

2 Methods: Proofs of Equivalence

2.1 Base Case versus Base Case Continuous

I coded up an alternate version of the Base Case that is identical theoretically but uses a different computational approach, one that can be easily altered to accommodate the CD4 Case. In addition, this approach treats the Base Case TID as a continuous function that has a unique value at every time point, rather than a step function in which the steps are determined by the observed infection windows.

So first let's check that Base Case Alt is the same as Base Case (Table 1 and Figure ??).

Table 1: Base Case TIDs using different computational approaches

$_{ m Time}$	Original Base Case	Alternate Base Case
0.000	0.734	0.734
0.250	0.594	0.594
0.500	0.510	0.510
1.000	0.409	0.408
5.000	0.164	0.164
18.000	0.000	0.000

2.2 Fake CD4 Case versus Base Case Continuous

18.000

Table 2: Base Case versus Fake CD4 Case TIDs Alternative Base Case Fake CD4 Case Time 0.000 0.7340.7340.2500.5940.5940.5000.510 0.5101.000 0.408 0.4085.000 0.164 0.164

0.000

0.000

Figure 1: Base Case versus Base Case Continuous TIDs

Figure 2: Fake CD4 Case versus Base Case Continuous TIDs

3 Methods: setting up real CD4-based medians

```
# Define our literature-based median times to infection by CD4 bin
(cd4meds \leftarrow data.frame(cd4lower = c(500, 350, 200), cd4upper = c(2000, 500, 350),
   medWindow = c(1.5, 4, 8)))
## cd4lower cd4upper medWindow
## 1 500 2000
## 2
         350
                  500
                            4.0
                  350
## 3
         200
                            8.0
# ******** Define who should get a CD4-based median
cd4breaks <- c(0, 200, 350, 500, 2000)
windowbreaks <-c(0, 3, 8, 16, 18)
dataf <- within(dataf, {</pre>
   # Non-missing testing history
   hasTestHist <- !is.na(everHadNegTest)
   # CD4 measured within 30d
   cd4within30 <- hasTestHist & !is.na(cd4_days) & cd4_days <= 30 & !is.na(firstcd4cnt)
   # Categories
   cd4cat <- cut(firstcd4cnt, breaks = cd4breaks, include.lowest = TRUE, right = FALSE)
})
with(dataf, table(hasTestHist))
## hasTestHist
## FALSE TRUE
## 2132 3016
with(dataf, table(cd4within30))
## cd4within30
## FALSE TRUE
## 2970 2178
# ****** Assign medians
# Start with 1/2 of infPeriod, which is just the Base Case. Update to CD4-based
# median if indicated by infPeriod (infection window) Define our literature-based
# median times to infection by CD4 bin
cd4meds \leftarrow data.frame(cd4lower = c(500, 350, 200), cd4upper = c(2000, 500, 350),
   medWindow = c(1.5, 4, 8))
# ****** Assign medians
# Start with 1/2 of infPeriod, which is just the Base Case. Update to CD4-based
# median if indicated by infPeriod (infection window)
dataf <- transform(dataf, medWindows = infPeriod/2, impacted = 0)</pre>
for (i in 1:nrow(cd4meds)) {
   dataf <- transform(dataf, temp = cd4within30 & firstcd4cnt >= cd4meds[i, "cd4lower"] &
       firstcd4cnt < cd4meds[i, "cd4upper"] & infPeriod >= 2 * cd4meds[i, "medWindow"])
    dataf <- transform(dataf, impacted = ifelse(temp == 1, 1, impacted))</pre>
    dataf <- within(dataf, {</pre>
       medWindows[hasTestHist & cd4within30 & firstcd4cnt >= cd4meds[i, "cd4lower"] &
           firstcd4cnt < cd4meds[i, "cd4upper"] & infPeriod >= 2 * cd4meds[i, "medWindow"]] <- cd4meds[i,</pre>
            "medWindow"]
   })
# Was expecting 296 cases impacted; need to find the 6
with(dataf, sum(medWindows != infPeriod/2, na.rm = TRUE))
## [1] 290
with(dataf, table(mode2, impacted))
           impacted
## mode2
             0 1
## MSM
          3232 171
## non-MSM 1620 125
```

```
with(dataf, table(mode2, impacted)/rowSums(table(mode2, impacted)))
##
           impacted
## mode2
                     0
##
    MSM
            0.94975022 0.05024978
    non-MSM 0.92836676 0.07163324
##
# Now look among the 3016 with testing history
with(subset(dataf, !is.na(everHadNegTest)), table(mode2, impacted))
##
           impacted
## mode2
             0 1
##
    MSM
            2098 171
##
    non-MSM 622 125
with(subset(dataf, !is.na(everHadNegTest)), table(mode2, impacted)/rowSums(table(mode2,
##
           impacted
## mode2
                   0
##
    MSM
            0.9246364 0.0753636
    non-MSM 0.8326640 0.1673360
# Show old and new median windows AMONG the 3016 contributing to testing
# histories
ddply(subset(dataf, !is.na(everHadNegTest)), .(mode2, cd4cat), summarise, N_impacted = sum(impacted),
    avgOldMedian = round(mean(infPeriod/2, na.rm = TRUE), 1), avgNewMedian = round(mean(medWindows,
       na.rm = TRUE), 1), Difference = avgOldMedian - avgNewMedian)
                  \verb|cd4cat N_impacted| avgOldMedian| avgNewMedian| Difference|
##
       mode2
## 1
         MSM
                 [0,200)
                                0
                                            3.9
                                                        3.9
               [200,350)
## 2
         MSM
                                24
                                            1.9
                                                        1.9
                                                                   0.0
## 3
         MSM
              [350,500)
                                35
                                                        1.2
                                                                   0.2
                                            1.4
## 4
         MSM [500,2e+03]
                               112
                                            1.3
                                                        0.8
                                            1.0
## 5
         MSM
                   <NA>
                                0
                                                        1.0
                                                                   0.0
                                 0
## 6 non-MSM
                 [0,200)
                                            6.0
                                                        6.0
                                                                   0.0
## 7
    non-MSM
               [200,350)
                                34
                                            4.4
                                                        4.2
                                                                   0.2
## 8 non-MSM
                                31
                                                        2.8
               [350,500)
                                            3.9
                                                                   1.1
## 9 non-MSM [500,2e+03]
                                            3.0
                                                        1.8
## 10 non-MSM
                    <NA>
                                 0
                                            2.8
                                                        2.8
```

4 Results: Reminder of testing histories in MSM versus non-MSM

5 Results: Total percent of probability re-assigned

Looking within mode subgroups, the total percent of probability re-assigned confirms that the relative impact on TID probability is greater for non-MSM.

```
# Compute BC probability assigned within the median window: just 1/infPeriod
# times the medWindow. Then compare that to 0.5, which is how much the CD4 Case
# assigs within the median window
dataf <- within(dataf, {</pre>
   medProbBC <- (medWindows) * (1/infPeriod)</pre>
   probReassigned <- 0.5 - medProbBC</pre>
})
summary(dataf$probReassigned)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
                                                  NA's
## 0.0000 0.0000 0.0000 0.0218 0.0000 0.4166
                                                  2132
ddply(subset(dataf, !is.na(everHadNegTest)), .(mode2), summarise, totalReassigned = sum(probReassigned,
   na.rm = TRUE), propReassigned = sum(probReassigned)/length(probReassigned))
    mode2 totalReassigned propReassigned
## 1 MSM 39.32961 0.01733345
## 2 non-MSM
                  26.55218
                             0.03554508
# Look separately among impacted cases
ddply(subset(dataf, !is.na(everHadNegTest) & impacted == 1), .(mode2), summarise,
   totalReassigned = sum(probReassigned), propReassigned = sum(probReassigned)/length(probReassigned))
##
      mode2 totalReassigned propReassigned
     MSM 39.32961 0.2299977
## 1
## 2 non-MSM 26.55218 0.2124174
```

6 Results: TIDs in MSM versus non-MSM

6.1 TID values at select times

Table 3: Base Case versus CD4 Case TIDs					
Population	Time	Alternative Base Case	CD4 Case		
All	0.000	0.734	0.731		
	0.250	0.594	0.588		
	0.500	0.510	0.501		
	1.000	0.408	0.394		
	5.000	0.164	0.150		
	18.000	0.000	0.000		
MSM	0.000	0.686	0.683		
	0.250	0.526	0.521		
	0.500	0.435	0.428		
	1.000	0.331	0.319		
	5.000	0.112	0.102		
	18.000	0.000	0.000		
non-MSM	0.000	0.880	0.875		
	0.250	0.799	0.790		
	0.500	0.736	0.723		
	1.000	0.643	0.620		
	5.000	0.320	0.297		
	18.000	0.000	0.000		

6.2 Full TID curves

Figure 3: MSM: Real CD4 Case versus Base Case Continuous TIDs

Figure 4: non-MSM: Real CD4 Case versus Base Case Continuous TIDs

6.3 Median time undiagnosed

This is a little annoying to get, I don't think we need it to tell the story

6.4 Mean time undiagnosed

Here's where it gets interesting. Our eyes see the absolute difference, but the relative difference tells a different story.

```
## mode bc_auc cd4_auc ratio diff
## 1 MSM 1.8 1.7 0.94 0.11
## 2 non-MSM 4.4 4.1 0.94 0.25
```

7 Results: Incidence and undiagnosed cases

Figure 5: Diagnoses, incidence and undiagnosed counts for MSM and non-MSM

8 Results: Undiagnosed cases and undiagnosed fractions

OD 11 4	т ,	CODA	\sim		1. 1		1 C
Table 4	Impact	of (31)4	Case on	mean	undiagnosed	estimates	and fractions

Group	Year	Estimate	Base Case	CD4 Case	Difference	Percent Change
Total	2010.0	Undiagnosed Cases	1474.0	1393.0	81.0	5.0
Total	2010.0	Undiagnosed Fraction (%)	11.2	10.6	0.6	5.0
Total	2011.0	Undiagnosed Cases	1440.0	1361.0	79.0	5.0
Total	2011.0	Undiagnosed Fraction (%)	10.9	10.4	0.5	5.0
Total	2012.0	Undiagnosed Cases	1390.0	1314.0	76.0	5.0
Total	2012.0	Undiagnosed Fraction (%)	10.5	9.9	0.6	6.0
Total	2013.0	Undiagnosed Cases	1345.0	1271.0	74.0	6.0
Total	2013.0	Undiagnosed Fraction (%)	9.9	9.4	0.5	5.0
Total	2014.0	Undiagnosed Cases	1319.0	1247.0	72.0	5.0
Total	2014.0	Undiagnosed Fraction (%)	9.4	8.9	0.5	5.0
MSM	2010.0	Undiagnosed Cases	701.9	662.2	39.7	6.0
MSM	2010.0	Undiagnosed Fraction (%)	7.4	7.0	0.4	5.0
MSM	2011.0	Undiagnosed Cases	677.7	638.8	38.9	6.0
MSM	2011.0	Undiagnosed Fraction (%)	7.2	6.8	0.4	6.0
MSM	2012.0	Undiagnosed Cases	649.5	611.5	38.0	6.0
MSM	2012.0	Undiagnosed Fraction (%)	6.8	6.4	0.4	6.0
MSM	2013.0	Undiagnosed Cases	622.2	585.0	37.2	6.0
MSM	2013.0	Undiagnosed Fraction (%)	6.4	6.1	0.3	5.0
MSM	2014.0	Undiagnosed Cases	604.7	568.4	36.3	6.0
MSM	2014.0	Undiagnosed Fraction (%)	6.2	5.8	0.4	6.0
non-MSM	2010.0	Undiagnosed Cases	772.0	731.1	40.9	5.0
non-MSM	2010.0	Undiagnosed Fraction (%)	20.6	19.7	0.9	4.0
non-MSM	2011.0	Undiagnosed Cases	761.9	722.1	39.8	5.0
non-MSM	2011.0	Undiagnosed Fraction (%)	20.3	19.5	0.8	4.0
non-MSM	2012.0	Undiagnosed Cases	740.6	702.2	38.4	5.0
non-MSM	2012.0	Undiagnosed Fraction (%)	19.7	18.8	0.9	5.0
non-MSM	2013.0	Undiagnosed Cases	723.1	685.8	37.3	5.0
non-MSM	2013.0	Undiagnosed Fraction (%)	18.2	17.4	0.8	4.0
non-MSM	2014.0	Undiagnosed Cases	714.3	678.2	36.1	5.0
non-MSM	2014.0	Undiagnosed Fraction (%)	17.1	16.4	0.7	4.0