Setup and the first examples

献出心脏吧!

Setup and the first examples

1 Notations

All schemes are assumed to be separated. For a "scheme" which is not separated, we will use the term "prescheme".

Let A be a ring. We denote by Spec A the spectrum of A. For an ideal $I \subset A$, we use V(I) to denote the closed subscheme of Spec A defined by I.

Let S be Spec K, Spec \mathcal{O}_K or an algebraic variety. An S-variety is an integral scheme X which is of finite type and flat over S. For an algebraic variety, we mean a K-variety.

We will use k, K to denote fields, and k, K to denote their algebraically closure relatively.

Let X be an integral scheme. We denote by $\mathscr{K}(X)$ the function field of X. For a closed point $x \in X$, we denote by $\kappa(x)$ the residue field of x.

We denote the category of S-varieties by \mathbf{Var}_S . We denote by X(T) the set of T-points of X, that is, the set of morphisms $T \to X$.

Let X be an algebraic variety over k. A geometrical point is referred a morphism $\operatorname{Spec} \mathbf{k} \to X$.

When refer a point (may not be closed) in a scheme, we will use the notation $\xi \in X$. We use Z_{ξ} to denote the Zariski closure of $\{\xi\}$ in X. When we talk about a closed point on an algebraic variety, we will use the notation $x \in X(\mathbf{k})$.

1.1 Separated and proper morphisms

2 Examples

Example 1. Let **k** be an algebraically closed field and A the localization of $\mathbf{k}[x]$ at (x). Let $S = \operatorname{Spec} A$ and $X = \operatorname{Spec} A[y]$. There are three types of points in X:

- (i) closed points with residue field **k**, like p = (x, y a);
- (ii) closed points with residue field $\mathbf{k}(y)$, like P = (xy 1);
- (iii) non-closed points, like $\eta_1 = (x), \eta_2 = (y), \eta_3 = (x y)$.

3 Preparation in commutative algebra

3.1 Nakayama's Lemma Yang: To be completed

Theorem 2 (Nakayama's Lemma). Let A be a ring and \mathfrak{M} be its Jacobi radical. Suppose M is a finitely generated A-module. If $\mathfrak{a}M = M$ for $\mathfrak{a} \subset \mathfrak{M}$, then M = 0.

Proof. Suppose M is generated by x_1, \dots, x_n . Since $M = \mathfrak{a}M$, formally we have $(x_1, \dots, x_n)^T = \Phi(x_1, \dots, x_n)^T$ for $\Phi \in M_n(\mathfrak{a})$. Then $(\Phi - \mathrm{id})(x_1, \dots, x_n)^T = 0$. Note that $\det(\Phi - \mathrm{id}) = 1 + a$ for $a \in \mathfrak{a} \subset \mathfrak{M}$. Then $\Phi - \mathrm{id}$ is invertible and then M = 0.

Proposition 3 (Geometric form of Nakayama's Lemma). Let $X = \operatorname{Spec} A$ be an affine scheme, $x \in X$ a closed point and \mathcal{F} a coherent sheaf on X. If $a_1, \dots, a_k \in \mathcal{F}(X)$ generate $\mathcal{F}|_x = \mathcal{F} \otimes \kappa(x)$, then there is an open subset $U \subset X$ such that $a_i|_U$ generate $\mathcal{F}(U)$.

Proof. Yang: To be completed.

Corollary 4.

Proof. Yang: To be completed.

3.2 Associated prime ideals

This part refers to [Mat70, Chapter 3].

Definition 5 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The associated prime ideals of M are the prime ideals $\mathfrak p$ of form $\mathrm{Ann}(x)$ for some $x \in M$. The set of associated prime ideals of M is denoted by

Ass(M).

Example 6. Let $A = \mathbf{k}[x, y]/(xy)$ and M = A. First we see that $(x) = \operatorname{Ann} y$, $(y) = \operatorname{Ann} x \in \operatorname{Ass} M$. Then we check other prime ideals. For (x, y), if xf = yf = 0, then $f \in (x) \cap (y) = (0)$. If $(x - a) = \operatorname{Ann} f$ for some f, note that $y \in (x - a)$ for $a \in \mathbf{k}^*$, then $f \in (x)$. Hence f = 0. Therefore $\operatorname{Ass} M = \{(x), (y)\}$.

Example 7. Let $A = \mathbf{k}[x,y]/(x^2,xy)$ and M = A. The underlying space of Spec A is the y-axis since $\sqrt{(x^2,xy)} = (x)$. First note that $(x) = \operatorname{Ann} y, (x,y) = \operatorname{Ann} x \in \operatorname{Ass} M$. For (x,y-a) with $a \in \mathbf{k}^*$, easily see that xf = (y-a)f = 0 implies f = 0 since $A = \mathbf{k} \cdot x \oplus \mathbf{k}[y]$ as \mathbf{k} -vector space. Hence $\operatorname{Ass} M = \{(x), (x,y)\}$.

Let A be a noetherian ring and M an A-module. Note that $S^{-1}M = 0$ if and only if $S \cap \text{Ann } M \neq \emptyset$. Then the set $\{\mathfrak{p} \in \text{Spec } A \colon M_{\mathfrak{p}} \neq 0\}$

is equal to $V(\operatorname{Ann} M)$.

Definition 8. Let A be a noetherian ring and M an A-module. The *support* of M is the closed subset $V(\operatorname{Ann} M)$ of Spec A, denoted by Supp M.

Lemma 9. Let A be a noetherian ring and M an A-module. Then the maximal element of the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}$$

belongs to $\operatorname{Ass} M$.

Proof. We just need to show that such Ann x is prime. Otherwise, there exist $a, b \in A$ such that $ab \in A$ nn x but $a, b \notin A$ nn x. It follows that Ann $x \subseteq A$ nn ax since $b \in A$ nn $ax \setminus A$ nn $ax \cap A$ nn ax

An element $a \in A$ is called a zero divisor for M if $M \to aM, m \mapsto am$ is not injective.

Corollary 10. Let A be a noetherian ring and M an A-module. Then

$$\{\text{zero divisors for } M\} = \bigcup_{\mathfrak{p} \in \text{Ass } M} \mathfrak{p}.$$

Lemma 11. Let A be a noetherian ring and M an A-module. Then $\mathfrak{p} \in \operatorname{Ass}_A M$ iff $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proof. Suppose $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $\mathfrak{p}A_{\mathfrak{p}} = \operatorname{Ann} y_0/c$ with $y_0 \in M$ and $c \in A \setminus \mathfrak{p}$. For $a \in \operatorname{Ann} y_0$, $ay_0 = 0$. Then $a/1 \in \mathfrak{p}A_{\mathfrak{p}}$. It follows that $a \in \mathfrak{p}$. Hence $\operatorname{Ann} y_0 \subset \mathfrak{p}$.

Inductively, if Ann $y_n \subseteq \mathfrak{p}$, then there exists $b_n \in A \setminus \mathfrak{p}$ such that $y_{n+1} := b_n y_n$, Ann $y_{n+1} \subset \mathfrak{p}$ and Ann $y_n \subseteq A$ nn y_{n+1} . To see this, choose $a_n \in \mathfrak{p} \setminus A$ nn y_n . Then $(a_n/1)y_n = 0$ since $a_n/1 \in \mathfrak{p}A_{\mathfrak{p}}$. By definition, there exist $b_n \in A \setminus \mathfrak{p}$ such that $a_n b_n y_n = 0$. This process must terminate since A is noetherian. Thus Ann $y_n = \mathfrak{p}$ for some n. Hence $\mathfrak{p} \in A$ so $\mathfrak{p} M$

Conversely, suppose $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$. If $(a/s)(x/1) = 0 \in M_{\mathfrak{p}}$, there exist $t \in A \setminus \mathfrak{p}$ such that tax = 0. It follows that $ta \in \mathfrak{p}$ and then $(a/s) \in \mathfrak{p}A_{\mathfrak{p}}$. Hence $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proposition 12. We have Ass $M \subset \operatorname{Supp} M$. Moreover, if $\mathfrak{p} \in \operatorname{Supp} M$ satisfies $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$, then $\mathfrak{p} \in \operatorname{Ass} M$.

Proof. For any $\mathfrak{p}=\operatorname{Ann} x\in\operatorname{Ass} M$, we have $A/\mathfrak{p}\cong A\cdot x\subset M$. Tensoring with $A_{\mathfrak{p}}$ gives $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\hookrightarrow M_{\mathfrak{p}}$ since $A_{\mathfrak{p}}$ is flat. Hence $M_{\mathfrak{p}}\neq 0$ and $\mathfrak{p}\in\operatorname{Supp} M$.

Now suppose $\mathfrak{p} \in \operatorname{Supp} M$ and $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$. First we show that $\mathfrak{p} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $x \in M_{\mathfrak{p}}$ such that $\operatorname{Ann} x$ is maximal in the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}.$$

Then we claim that $\operatorname{Ann} x = \mathfrak{p} A_{\mathfrak{p}}$. First, $\operatorname{Ann} x$ is prime by Lemma 9. If $\operatorname{Ann} x \neq \mathfrak{p}$, then $V(\operatorname{Ann} x) \supset V(\mathfrak{p})$. This implies that $\operatorname{Ann} x \notin \operatorname{Supp} M_{\mathfrak{p}}$ since $\operatorname{Supp} M_{\mathfrak{p}} = \operatorname{Supp} M \cap \operatorname{Spec} A_{\mathfrak{p}}$. This is a contradiction. Thus $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. By Lemma 11, we have $\mathfrak{p} \in \operatorname{Ass} M$.

Remark 13. The existence of irreducible component is guaranteed by Zorn's Lemma.

Definition 14. A prime ideal $\mathfrak{p} \in \operatorname{Ass} M$ is called *embedded* if $V(\mathfrak{p})$ is not an irreducible component of Supp M.

Example 15. For $M = A = \mathbf{k}[x, y]/(x^2, xy)$, the origin (x, y) is an embedded point.

Proposition 16. If we have exact sequence $0 \to M_1 \to M_2 \to M_3$, then Ass $M_2 \subset \text{Ass } M_1 \cup \text{Ass } M_3$.

Proof. Let $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M_2 \setminus \operatorname{Ass} M_1$. Then the image [x] of x in M_3 is not equal to 0. We have that $\operatorname{Ann} x \subset \operatorname{Ann}[x]$. If $a \in \operatorname{Ann}[x] \setminus \operatorname{Ann} x$, then $ax \in M_1$. Since $\operatorname{Ann} x \subseteq \operatorname{Ann} ax$, there is $b \in \operatorname{Ann} ax \setminus \operatorname{Ann} x$. However, it implies $ba \in \operatorname{Ann} x$, and then $a \in \operatorname{Ann} x$ since $\operatorname{Ann} x$ is prime, which is a contradiction.

Corollary 17. If M is finitely generated, then the set Ass M is finite.

Proof. For $\mathfrak{p}=\mathrm{Ann}\,x\in\mathrm{Ass}\,M$, we know that the submodule M_1 generated by x is isomorphic to A/\mathfrak{p} . Inductively, we can choose M_n be the preimage of a submodule of M/M_{n-1} which is isomorphic to A/\mathfrak{q} for some $\mathfrak{q}\in\mathrm{Ass}\,M/M_{n-1}$. We can take an ascending sequence $0=M_0\subset M_1\subset\cdots\subset M_n\subset\cdots$ such that $M_i/M_{i-1}\cong A/\mathfrak{p}_i$ for some prime \mathfrak{p}_i . Since M is finitely generated, this is a finite sequence. Then the conclusion follows by Proposition 16.

Definition 18. An A-module is called *co-primary* if Ass M has a single element. Let M be an A-module and $N \subset M$ a submodule. Then N is called *primary* if M/N is co-primary. If Ass $M/N = \{\mathfrak{p}\}$, then N is called \mathfrak{p} -primary.

Remark 19. This definition coincide with primary ideals in the case M = A. Recall an ideal $\mathfrak{q} \subset A$ is called *primary* if $\forall ab \in \mathfrak{p}, a \notin \mathfrak{q}$ implies $b^n \in \mathfrak{q}$ for some n.

Let \mathfrak{q} be a \mathfrak{q} -primary ideal. Since Supp $A/\mathfrak{q} = \{\mathfrak{p}\}$, $\mathfrak{p} \in \operatorname{Ass} A/\mathfrak{q}$. Suppose $\operatorname{Ann}[a] \in \operatorname{Ass} A/\mathfrak{q}$. Then $\mathfrak{p} \subset \operatorname{Ann}[a]$ since $V(\mathfrak{p}) = \operatorname{Supp} A/\mathfrak{q}$. If $b \in \operatorname{Ann}[a]$, then $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Hence $b^n \in \mathfrak{q}$, and then $b \in \mathfrak{p}$. This shows that $\operatorname{Ass} A/\mathfrak{q} = \{\mathfrak{p}\}$ and \mathfrak{q} is \mathfrak{p} -primary as an A-submodule.

Let $\mathfrak{q} \subset A$ be a \mathfrak{p} -primary A-submodule. First we have $\mathfrak{p} = \sqrt{\mathfrak{q}}$ since $V(\mathfrak{p})$ is the unique irreducible component of Supp A/\mathfrak{q} . Suppose $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Then $b \in \mathrm{Ann}[a] \subset \mathfrak{p}$ since \mathfrak{p} is the unique maximal element in $\{\mathrm{Ann}[c] : c \in A \setminus \mathfrak{q}\}$. This implies that $b^n \in \mathfrak{q}$.

Definition 20. Let A be a noetherian ring, M an A-module and $N \subset M$ a submodule. A minimal primary decomposition of N in M is a finite set of primary submodules $\{Q_i\}_{i=1}^n$ such that

$$N = \bigcap_{i=1}^{n} Q_i,$$

no Q_i can be omitted and Ass M/Q_i are pairwise distinct. For Ass $M/Q_i = \{\mathfrak{p}\}$, Q_i is called belonging to \mathfrak{p} .

Indeed, if $N \subset M$ admits a minimal primary decomposition $N = \bigcap Q_i$ with Q_i belonging to \mathfrak{p} , then $\mathrm{Ass}(M/N) = \{\mathfrak{p}_i\}$. For given i, consider $N_i := \bigcap_{j \neq i} Q_j$, then $N_i/N \cong (N_i + Q_i)/Q_i$. Since $N_i \neq N$, $\mathrm{Ass}\,N_i/N \neq \emptyset$. On the other hand, $\mathrm{Ass}\,N_i/N \subset \mathrm{Ass}\,M/Q_i = \{\mathfrak{p}\}$. It follows that $\mathrm{Ass}\,N_i/N = \{\mathfrak{p}_i\}$, whence $\mathfrak{p}_i \in \mathrm{Ass}\,M/N$. Conversely, we have an injection $M/N \hookrightarrow \bigoplus M/Q_i$, so $\mathrm{Ass}\,M/N \subset \bigcup \mathrm{Ass}\,M/Q_i$. Due to this, if Q_i belongs to \mathfrak{p} , we also say that Q_i is the \mathfrak{p} -component of N.

Proposition 21. Suppose $N \subset M$ has a minimal primary decomposition. If $\mathfrak{p} \in \operatorname{Ass} M/N$ is not embedded, then the \mathfrak{p} component of N is unique. Explicitly, we have $Q = \nu^{-1}(N_{\mathfrak{p}})$, where $\nu : M \to M_{\mathfrak{p}}$.

Proof. First we show that $Q = \nu^{-1}(Q_{\mathfrak{p}})$. Clearly $Q \subset \nu^{-1}(Q_{\mathfrak{p}})$. Suppose $x \in \nu^{-1}(Q_{\mathfrak{p}})$. Then there exists $s \in A \setminus \mathfrak{p}$ such that $sx \in Q$. That is, $[sx] = 0 \in M/Q$. If $[x] \neq 0$, we have $s \in \text{Ann}[x] \subset \mathfrak{p}$. This contradiction enforces $Q = \nu^{-1}(Q_{\mathfrak{p}})$.

Then we show that $N_{\mathfrak{p}} = Q_{\mathfrak{p}}$. Just need to show that for $\mathfrak{p}' \neq \mathfrak{p}$ and the \mathfrak{p}' component Q' of N, $Q'_{\mathfrak{p}} = M_{\mathfrak{p}}$. Since \mathfrak{p} is not embedded, $\mathfrak{p}' \not\subset \mathfrak{p}$. Then $\mathfrak{p} \notin V(\mathfrak{p}) = \operatorname{Supp} M/Q'$. So $M_{\mathfrak{p}}/Q'_{\mathfrak{p}} = 0$.

Example 22. If \mathfrak{p} is embedded, then its components may not be unique. For example, let $M = A = \mathbf{k}[x,y]/(x^2,xy)$. Then for every $n \in \mathbb{Z}_{>1}$, $(x) \cap (x^2,xy,y^n)$ is a minimal primary decomposition of $(0) \subset M$.

Let A be a noetherian ring and $\mathfrak{p} \subset A$ a prime ideal. We consider the \mathfrak{p} component of \mathfrak{p}^n , which is called n-th symbolic

power of \mathfrak{p} , denoted by $\mathfrak{p}^{(n)}$. We have $\mathfrak{p}^{(n)} = \mathfrak{p}^n A_{\mathfrak{p}} \cap A$. In general, $\mathfrak{p}^{(n)}$ is not equal to \mathfrak{p}^n ; see below example.

Example 23. Let $A = \mathsf{k}[x, y, z, w]/(y^2 - zx^2, yz - xw)$ and $\mathfrak{p} = (y, z, w)$. We have $z = y^2/x^2, w = yz/x \in \mathfrak{p}^2 A_{\mathfrak{p}}$, whence $\mathfrak{p}^2 A_{\mathfrak{p}} = (z, w) \neq \mathfrak{p}^2$.

Theorem 24. Let A be a noetherian ring and M an A-module. Then for every $\mathfrak{p} \in \mathrm{Ass}\,M$, there is a \mathfrak{p} -primary submodule $Q(\mathfrak{p})$ such that

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} M} Q(\mathfrak{p})$$

Proof. Consider the set

$$\mathcal{N} := \{ N \subset M \colon \mathfrak{p} \notin \mathrm{Ass}\, N \}.$$

Note that $\operatorname{Ass}\bigcup N_i=\bigcup\operatorname{Ass} N_i$ by definition of associated prime ideals. Then it is easy to check that $\mathcal N$ satisfies the conditions of Zorn's Lemma. Hence $\mathcal N$ has a maximal element $Q(\mathfrak p)$. We claim that $Q(\mathfrak p)$ is $\mathfrak p$ -primary. If there is $\mathfrak p'\neq\mathfrak p\in\operatorname{Ass} M/Q(\mathfrak p)$, then there is a submodule $N'\cong A/\mathfrak p$. Let N'' be the preimage of N' in M. We have $Q(\mathfrak p)\subsetneq N''$ and $N''\in\mathcal N$. This is a contradiction. By the fact $\operatorname{Ass}\bigcap N_i=\bigcap\operatorname{Ass} N_i$, we get the conclusion.

Corollary 25. Let A be a noetherian ring and M a finitely generated A-module. Then every submodule of M has a minimal primary decomposition.

3.3 Length of modules

Definition 26. Let A be a ring and M an A module. A simple module filtration of M is a filtration

$$M = M_0 \supsetneq M_1 \supsetneq \cdots \supsetneq M_n = 0$$

such that M_i/M_{i-1} is a simple module, i.e. it has no submodule except 0 and itself. If M has a simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition 27. Suppose M has a simple module filtration $M = M_{0,0} \supseteq M_{1,0} \supseteq \cdots \supseteq M_{n,0} = 0$. Then for any other filtration $M = M_{0,0} \supset M_{0,1} \supset \cdots \supset M_{0,m} = 0$ with m > n, there exist k < m such that $M_{0,k} = M_{0,k+1}$.

Proof. We claim that there are at least $0 \le k_1 < \cdots < k_{m-n} < m$ satisfies that $M_{0,k_i} = M_{0,k_i+1}$. Let $M_{i,j} := M_{i,0} \cap M_{0,j}$. Inductively on n, we can assume that there exist k_1, \cdots, k_{n-m+1} such that $M_{1,k} = M_{1,k+1}$. Consider the sequence

$$M_{0,0}/M_{1,0} \supset (M_{0,1}+M_{1,0})/M_{1,0} \supset \cdots \supset (M_{0,m}+M_{1,0})/M_{1,0} = 0$$

in $M_{0,0}/M_{1,0}$. Since $M_{0,0}/M_{1,0}$ is simple, there is at most one k_i with $M_{0,k_i}+M_{1,0}\neq M_{0,k_i+1}+M_{1,0}$. And note that if $M_{0,k_i}+M_{1,0}=M_{0,k_i+1}+M_{1,0}$ and $M_{0,k_i}\cap M_{1,0}=M_{0,k_i}\cap M_{1,0}$, then $M_{0,k_i}=M_{0,k_i+1}$ by the Five Lemma. \square

Example 28. Let A be a ring and $\mathfrak{m} \in \mathrm{mSpec}\,A$. Then A/\mathfrak{m} is a simple module.

Proposition 29. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the sequence terminates.

Proposition 30. The length l(-) is an additive function for modules of finite length. That is, if we have an exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_i of finite length, then $l(M_2) = l(M_1) + l(M_3)$.

Proof. The simple module filtrations of M_1 and M_3 will give a simple module filtration of M_2 .

Proposition 31. Let (A, \mathfrak{m}) be a local ring. Then A is artinian iff $\mathfrak{m}^n = 0$ for some $n \geq 0$.

Proof. Suppose A is artinian. Then the sequence $\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3 \supset \cdots$ will stable. It follows that $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n. By the Nakayama's Lemma 2, $\mathfrak{m}^n = 0$.

Conversely, we have

$$\mathfrak{m}\subset\mathfrak{N}\subset\bigcap_{\text{minimal prime ideal}}\mathfrak{p}_{}$$

whence \mathfrak{m} is minimal.

Proposition 32. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set $\{\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_k\}$. It has a minimal element $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ and for any maximal ideal $\mathfrak{m}, \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \mathfrak{m}$. It follows that $\mathfrak{m} = \mathfrak{m}_i$ for some i. Let $\mathfrak{M} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ be the Jacobi radical of A. Consider the sequence $\mathfrak{M} \supset \mathfrak{M}^2 \supset \cdots$ and by Nakayama's Lemma, we have $\mathfrak{M}^k = 0$ for some k. Consider the filtration

$$A \supset \mathfrak{m}_1 \supset \cdots \supset \mathfrak{m}_1^k \supset \mathfrak{m}_1^k \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1^k \cdots \mathfrak{m}_n^k = (0).$$

We have $\mathfrak{m}_1^k \cdots \mathfrak{m}_i^j/\mathfrak{m}_1^k \cdots \mathfrak{m}_i^{j+1}$ is an A/\mathfrak{m}_i -vector space. It is artinian and then of finite length. Hence A is of finite length.

Proposition 33. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0. For definition of dimension, see ??.

Proof. Suppose A is artinian. Then A is noetherian by Proposition 32. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then A/\mathfrak{p} is an artinian integral domain. If there is $a \in A/\mathfrak{p}$ is not invertible, consider $(a) \supset (a^2) \supset \cdots$, we see a = 0. Hence \mathfrak{p} is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal $\mathfrak{p}_1, \dots, \mathfrak{p}_n$. Let \mathfrak{q}_i be the \mathfrak{p}_i -component of (0). Then we have $A \hookrightarrow \bigoplus_i A/\mathfrak{q}_i$. We just need to show that A/\mathfrak{q}_i is of finite length as A-module. If $\mathfrak{q}_i \subset \mathfrak{p}_j$, take radical we get $\mathfrak{p}_i \subset \mathfrak{q}_j$ and hence i = j. So A/\mathfrak{q}_i is a local ring with maximal ideal $\mathfrak{p}_i A/\mathfrak{q}_i$. Then every element in $\mathfrak{p}_i A/\mathfrak{q}_i$ is nilpotent. Since \mathfrak{p}_i is finitely generated, $(\mathfrak{p}_i A/\mathfrak{q}_i)^k = 0$ for some k. Then A/\mathfrak{q}_i is artinian and then of finite length as A/\mathfrak{q}_i -module. Then the conclusion follows.

3.4 Noether's Normalization Lemma and Hilbert's Nullstellensatz Yang: To be completed.

Theorem 34 (Noether's Normalization Lemma). Let A be a k-algebra of finite type. Then there is an injection $k[T_1, \dots, T_d] \hookrightarrow A$ such that A is finite over $k[T_1, \dots, T_d]$.

Remark 35. Here A does not need to be integral. For example,

Theorem 36 (Hilbert's Nullstellensatz). Let A be a

References

[Mat70] Hideyuki Matsumura. Commutative algebra. Vol. 120. WA Benjamin New York, 1970.