Some common discrete distributions

$\mathbb{E}(z^X)$	$\frac{1}{n} \sum_{i=1}^{n} z^{i}$	$\{pz+(1-p)\}^n$	$e^{\lambda(z-1)}$	$\frac{(pz)^k}{\{1-(1-p)z\}^k}$	$\mathbb{E}(z_1^{X_1}\dots z_k^{X_k}) =$	$(\sum_{i=1}^k p_i z_i)^n$
$\operatorname{Var}(X)$	$\frac{1}{12}(n^2-1)$	np(1-p)	~	$\frac{k(1-p)}{p^2}$	(np_1,\ldots,np_k) $\operatorname{Cov}(X_i,X_j) =$	$\begin{cases} np_i(1-p_i) & i=j \\ -np_ip_j & i\neq j \end{cases}$
$\mathbb{E}(X)$	$\frac{1}{2}(n+1)$	du	~	$p \mid k$	(np_1,\ldots,np_k)	
Parameter range $\mathbb{E}(X)$	$n \in \mathbb{N}$	$n\in\mathbb{N},p\in[0,1]$	$\lambda \in [0, \infty)$	$k\in \mathbb{N}, p\in [0,1]$	$p_1,\ldots,p_k\in[0,1]:$	$\sum_{i} p_i = 1, n \in \mathbb{N}$
Range of X	$\{1,\ldots,n\}$	$\{0,1,\ldots,n\}$	$\{0,1,\ldots\}$	$\{k,k+1,\ldots\}$	$(n_1,\ldots,n_k)\in$	$\{0,1,\ldots,n\}^k: \sum_i n_i = n \sum_i p_i = 1, \ n \in \mathbb{N}$
$\operatorname{pmf} f(x)$	$\frac{1}{n}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$e^{-\lambda \frac{\lambda^x}{x!}}$	$\binom{x-1}{k-1}p^k(1-p)^{x-k}$ $\{k, k+1, \ldots\}$	$rac{n!}{n_1!n_k!}p_1^{n_1}\cdots p_k^{n_k}$	
Notation	$X \sim U\{1, \dots, n\}$	$X \sim \operatorname{Bin}(n, p)$	$X \sim \operatorname{Poi}(\lambda)$	$X \sim \text{NegBin}(k, p)$	$X \sim \text{Multi}(n, p_1, \dots, p_k)$	
Distribution	Discrete uniform	Binomial	Poisson	Negative binomial $X \sim \text{NegBin}(k, p)$	Multinomial	

Notes:

- 1. The Bin(1, p) distribution is also called the Bernoulli(p) distribution. If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$, then $\sum_{i=1}^n X_i \sim \text{Bin}(n, p)$. The Bin(n, p) distribution models the number of successes in n independent trials, each with probability p of success.
- 2. The NegBin(1, p) distribution is also called the Geometric(p) distribution. If $X_1, \ldots, X_k \stackrel{\text{iid}}{\sim} \text{Geometric}(p)$, then $\sum_{i=1}^k X_i \sim \text{NegBin}(k, p)$. The NegBin(k,p) distribution models the number of independent trials required to attain k successes, each with probability p of success.
- 3. The Multi (n, p_1, \ldots, p_k) distribution models the number of balls that appear in each of k buckets, when n balls are placed independently in the buckets and a ball falls in the *i*th bucket with probability p_i .

Some common absolutely continuous distributions

$\operatorname{Var}(X)$	$\frac{1}{12}(b-a)^2$
$\mathbb{E}(X)$	$\frac{1}{2}(a+b)$
Parameter range	$(a,b) \in \mathbb{R}^2, a < b$
Range	[a,b]
pdf f(x)	$\frac{1}{b-a}$
Notation	$X \sim U[a,b]$
Distribution	$\operatorname{Uniform}$

Uniform
$$X \sim U[a,b]$$
 $\frac{1}{b-a}$ $[a,b]$ $(a,b) \in \mathbb{R}^2, a < b$ Normal $X \sim N(\mu,\sigma^2)$ $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ \mathbb{R} $\mu \in \mathbb{R}, \sigma \in (0,\infty)$ $X \sim \Gamma(\alpha,\lambda)$ $\frac{1}{\Gamma(\alpha)}$ $(0,\infty)$ $\alpha \in (0,\infty), \lambda \in (0,\infty)$

 $e^{t\mu+\sigma^2t^2/2}$

 $\frac{e^{bt} - e^{at}}{t(b-a)}$

$$X \sim \Gamma(\alpha, \lambda) \qquad \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$

$$X \sim \text{Beta}(a, b) \qquad \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a - 1} (1 - x)^{b - 1} \qquad (0, 1) \qquad a \in (0, \infty), \ b \in (0, \infty) \qquad \frac{a}{a + b}$$

$$\frac{a}{a + b} \qquad \frac{ab}{(a + b)^{2}(a + b + 1)}$$

$$X \sim \text{Beta}(a, b) \qquad \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a - 1} (1 - x)^{b - 1} \qquad (0, 1) \qquad a \in (0, \infty), \ b \in (0, \infty) \qquad \frac{a}{a + b} \qquad \frac{ab}{(a + b)^{2}(a + b + 1)}$$

$$X \sim \text{Cauchy} \qquad \frac{1}{\pi(1 + x^{2})} \qquad \mathbb{R}$$

$$\text{Does not exist} \qquad \infty \qquad \begin{cases} 1 & \text{if } t = 0 \\ \infty & \text{if } t \neq 0 \end{cases}$$

 $Cov(X_i, X_j) = \Sigma_{ij} \quad \mathbb{E}(e^{t^T X}) = e^{t^T \mu + t^T \Sigma t/2}$

 π

 $\mu \in \mathbb{R}^d$, Σ pos. def.

 \mathbb{R}^d

 $\frac{e^{-\frac{1}{2}(x-\mu)T\Sigma^{-1}(x-\mu)}}{(2\pi)^{d/2}(\det\Sigma)^{1/2}}$

Multivariate normal $X \sim N_d(\mu, \Sigma)$

Cauchy

Beta

- 1. The $\Gamma(1,\lambda)$ distribution is the same as the $\operatorname{Exp}(\lambda)$ distribution. If $X_1,\ldots,X_n \overset{\text{iid}}{\sim} \operatorname{Exp}(\lambda)$, then $\sum_{i=1}^n X_i \sim \Gamma(n,\lambda)$.
- 2. For $n \in \mathbb{N}$, the $\Gamma(\frac{n}{2}, \frac{1}{2})$ distribution is the same as the χ_n^2 distribution. If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, 1)$, then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$.
- 3. Recall that the Gamma function is defined, for $z \in \mathbb{C}$ with Re(z) > 0, by $\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt$. If $n \in \mathbb{N}$, then $\Gamma(n) = (n-1)!$. The function $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is called the beta function.
- 4. We can also define the degenerate normal distribution: say $X \sim N(\mu, 0)$ if $\mathbb{P}(X = \mu) = 1$. Then we say $X = (X_1, \dots, X_d)^{\top} \sim N_d(\mu, \Sigma)$ if every linear combination $t_1X_1 + \dots + t_dX_d$ has a (possibly degenerate) univariate normal distribution. This more general definition includes situations like the following: let $X_1 \sim N(0,1)$, and let $X := (X_1, X_1)^{\top}$. Then $X \sim N_2(0, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. In this case, $\det \Sigma = 0$.