Amendments to the Claims:

this listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1 - 26. (Canceled)

1	27. (New) A data processing unit comprising:
2	an instruction cache to store instructions for execution, including instructions
3	belonging to an M-bit instruction set and instructions belonging to an N-bit instruction set, where
4	M < N;
5	an instruction fetch unit coupled to receive instructions from the instruction cache,
6	and operable to produce control signals representative of decoded N-bit instructions; and
7	one or more execution units coupled to the receive the control signals from the
8	instruction fetch unit,
9	the instruction fetch unit comprising a translation unit to translate an M-bit
10	instruction received from the instruction cache to produce one or more N-bit instructions,
11	the instruction fetch unit further comprising a decoder unit to decode only N-bit
12	instructions, thereby producing the control signals, the translation unit configured to deliver the
13	one or more N-bit instructions to the decoder unit,
14	wherein the M-bit instruction set includes data instructions that produce M-bit
15	results,
16	wherein the N-bit instruction set includes first data instructions that produce N-bit
17	results and second data instructions that produce M-bit results,
18	wherein the instruction fetch unit is configured to produce one or more of the
19	second data instructions in response to receiving an M-bit data instruction.

1	28. (New) The data processor unit of claim 27 wherein the second data
2	instructions further store the M-bit results into an N-bit data store and perform sign-extension of
3	the M-bit result in the N-bit data store to produce an N-bit result.
1	29. (New) The data processor unit of claim 27 wherein the instruction fetch
2	unit includes a pre-decoder unit configured to receive N-bit instructions from the instruction
3	cache and to produce one or more pre-decode signals in response to a received N-bit instruction,
4	the pre-decoder unit providing a signal path to deliver the received N-bit instruction and the one
5	or more pre-decode signals to the decoder, wherein the translation unit is further configured to
6	produce corresponding pre-decode signals associated with the one or more N-bit instructions and
7	to deliver the corresponding pre-decode signals to the decoder, wherein the corresponding pre-
8	decode signals are pre-decode signals that would be produced if the one or more N-bit
9	instructions were processed by the pre-decoder unit.
1	30. (New) The data processor unit of claim 27 wherein M is 16, and N is 32.
1	31. (New) A data processor comprising:
2	first means for caching instructions for execution, the instructions comprising
3	instructions of an M-bit instruction set and instructions of an N-bit instruction set, where M < N;
4	second means for decoding M-bit instructions received from the first means to
5	produce one or more N-bit instructions corresponding to an M-bit instruction;
6	third means for decoding N-bit instructions to produce control signals, wherein
7	the N-bit instructions can be received from the first means or the second means; and
8	one or more execution units configured to receive the control signals, thereby
9	executing the N-bit instructions,
10	wherein the M-bit instruction set includes data instructions for operating on M-bit
11	data,
12	wherein the N-bit instruction set comprises first data instructions for operating on
13	N-bit data and second data instructions for operating on M-bit data,

1	32. (New) The data processor of claim 31 wherein the data instructions in the
2	M-bit instruction set produce M-bit results, wherein the first data instructions of the N-bit
3	instruction set produce N-bit results, and wherein the first data instructions of the N-bit
4	instruction set produce M-bit results.
1	33. (New) The data processor of claim 32 wherein the second means is
1	
2	further for producing one or more of the second data instructions of the N-bit instruction set in
3	response to receiving a data instruction from the M-bit instruction set.
1	34. (New) The data processor of claim 31 wherein the second means is
2	further for producing first pre-decode signals associated with the one or more N-bit instructions,
3	wherein the third means comprises a decoder means for producing the control signals and a pre-
4	decoder means for producing second pre-decode signals, wherein the decoder means is
5	responsive to the first pre-decode signals and to the second pre-decode signals.
1	35. (New) The data processor of claim 31 wherein M is 16 and N is 32.
1	36. (New) A microprocessor comprising:
2	a memory for storing instructions, the instructions comprising M-bit instructions
3	and N-bit instructions, where $M < N$;
4	a translation circuit for receiving M-bit instructions from the memory, the
5	translation circuit configured to produce one or more N-bit instructions in response to a received
6	M-bit instruction and to produce corresponding pre-decode signals associated with the one or
7	more N-bit instructions;
8	a predecoder circuit for receiving N-bit instructions from the memory, the
9	predecoder circuit configured to produce associated pre-decode signals in response to a received
10	N-bit instruction; and
11	a decoder circuit for receiving the one or more N-bit instructions and the
12	corresponding pre-decode signals from the translation circuit and further for receiving the

Appl. No. 10/644,226 Amdt. dated December 2, 2003 Preliminary Amendment

15

16

17

1

2

3

4

13	received N-bit instruction and the associated pre-decode signal from the predecoder circuit,
14	wherein control signals are produced in response thereto,

- wherein the pre-decode signals corresponding to the one or more N-bit instructions that are produced by the translation circuit are the same pre-decode signals that would be produced if the one or more N-bit instructions were received by the predecoder circuit.
- 37. (New) The microprocessor of claim 36 wherein the N-bit instructions include first data instructions for processing N-bit data and second data instructions for processing M-bit data, wherein one or more of the second data instructions are produced by the translation circuit in response to receiving an M-bit instruction that is a data instruction.
- 1 38. (New) The microprocessor of claim 37 wherein the second data 2 instructions produce M-bit results.
- 1 39. (New) The microprocessor of claim 38 wherein the second data 2 instructions further store the M-bit results in an N-bit data store and perform a sign-extension 3 operation to produce an N-bit result.
- 1 40. (New) The microprocessor of claim 36 wherein M is 16 and N is 32.