1. (E-8 criterion for continuity) §3.5, p.73, #1 (only at x=2). Define $f(u) = x^2$. Verify the ε - δ criterion for continuity at x = 2.

Solution. Let E>O We need to find S>O such that $|\chi-z|<\delta \Rightarrow |\chi^2-4|<\varepsilon$

Scratch work.

To find δ , we try to solve $|x^2-4| < \epsilon$.

 $|\chi^2 - \kappa| = | x - 2 | |x + 2| < \delta |x + 2| < \delta M$

Where M is an upper bound for 1×121. Then one can take $\delta = \frac{\varepsilon}{M}$, for then $|x^2-k| < \varepsilon M = \frac{\varepsilon}{M} \cdot M = \varepsilon$. To find an upper bound for 1x+21, it is enough to bound |x-2|, since $|x+2| = |(x-2)+4| \le |x-2|+4$

Suppose 1x-21<1. Then

 $|x+2| = |(x-2)+4| \le |x-2|+4 \ (\Delta ineg.)$ < 1+4=5

Thus, an upper bound for 1x+21 is 5 and we can take $S = \min\left(1, \frac{\varepsilon}{\varepsilon}\right)$

Back to the proof. Choose
$$\delta = \min(1, \frac{\varepsilon}{5})$$
. Then $|x-2| < b \leq 1$, $50 |x+2| = |(x-2)+4| \leq |x-2|+4 \quad (\Delta ineq.)$ $< |+4| = 5$, and $|x^2-4| = |x-2||x+2| < \delta \cdot 5 \leq \frac{\varepsilon}{5} \cdot 5 = \varepsilon$. \square

2. (15 points) ε - δ criterion for continuity. §3.5, p. 73, #5. Define $h(x) = 1/(1+x^2)$ for all $x \in \mathbb{R}$. Prove that the function $h: \mathbb{R} \to \mathbb{R}$ satisfies the ε - δ criterion on \mathbb{R} . (To prove the ε - δ condition on \mathbb{R} means to verify the condition at every point a of \mathbb{R} .)

Proof. Let
$$E > 0$$
 and $a \in \mathbb{R}$. We need to find $S > 0$

Such that
$$|x-a| < S \Rightarrow \left| \frac{1}{1+x^2} - \frac{1}{1+a^2} \right| < E.$$

$$|x-a| < S \Rightarrow \left| \frac{1}{1+x^2} - \frac{1}{1+a^2} \right| < E.$$

$$|x-a| = \left| \frac{1+a^2}{(1+x^2)(1+a^2)} \right| = \left| \frac{x^2-a^2}{(1+x^2)(1+a^2)} \right|$$

$$= \left| \frac{x-a}{(1+x^2)(1+a^2)} \right| = \left| \frac{x^2-a^2}{(1+x^2)(1+a^2)} \right|$$

$$\leq \left| \frac{x-a}{(1+x^2)(1+a^2)} \right|$$

$$= \left| \frac{x+a}{(1+x^2)(1+a^2)} \right|$$

$$= \left| \frac{x+a}{(1+x^2)(1+a^2)} \right|$$

$$= \left| \frac{x+a}{(1+x^2)(1+a^2)} \right|$$

$$\leq \left| \frac{x-a}{(1+x^2)(1+a^2)} \right|$$

$$= \left| \frac{x-a}{$$

Proof Continued. Choose
$$8 = min(1, \frac{\epsilon}{1+12a_1})$$
. Suppose $|x-a| < \delta \le 1$. Then $|x+a| = |(x-a)+2a| \le |x-a|+|2a|$ (Δ ineq.) $< 1+12a|$, and $\left|\frac{1}{1+x^2} - \frac{1}{1+a^2}\right| = |x-a| \frac{|x+a|}{(1+x^2)(1+a^2)}$ (algebra done in Scratch)

 $\delta < \frac{\varepsilon}{1+1201}$

$$\leq |x-a||x+a|$$
 (because $(1+x^2)(1+a^2) \geq 1$)
 $\leq |x-a|(1+|2a|)$
 $\leq \frac{\varepsilon}{1+|2a|}(1+|2a|)$ (because $|x-a| < \delta \leq \frac{\varepsilon}{1+|2a|}$)
 $= \varepsilon$

This proves that for any $a \in \mathbb{R}$, with $\delta = \min(1, \frac{\varepsilon}{1 + 12a_1})$, $|\alpha - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Therefore, $f(x) = \frac{1}{(1+2)}$ is continuous at x = a for all $a \in \mathbb{R}$.

3. (Existence of a root) § 3.3, p.65, #3.

Prove that there is a solution of the equation $\frac{1}{\sqrt{x+x^2}} + x^2 - 2x = 0, \quad x>0.$

Let $f(x) = \frac{1}{\sqrt{x+x^2}} + x^2 - 2x$. Then $f(1) = \frac{1}{\sqrt{2}} + 1 - 2 = \frac{1}{\sqrt{2}} - 1 < 0 \quad \text{because } \sqrt{2} > 1.$ $f(2) = \frac{1}{\sqrt{6}} + 4 - 4 = \frac{1}{\sqrt{6}} > 0.$

Since f is continuous on [1,2], by the intermediate value theorem, there is an $x_0 \in (1,2)$ such that $f(x_0) = 0$.

4. (Fixed point theorem) Prove that every continuous function f: [a, b] -> [a, b] has a fixed point.

Solution of f(a) = a or f(b) = b, then f would have a fixed point at a or b. So we will assume that $f(a) \neq a$ and $f(b) \neq b$. Consider the function g(x) = f(x) - x.

Then g(a) = f(a) - a > 0 because $f(a) \in (a, b]$.

g(b) = f(b)-b < 0 became f(b) ∈ [a, b).

Since g is continuous on [a, b], by the intermediate

Value theorem there is an $x_0 \in (a,b)$ such that $g(x_0) = 0$. Then $f(x_0) = x_0$.

So f has a fixed point at to E [a, b].

5. (6 pts) (Limits) For any sequence a_n , prove that $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} |a_n| = 0$.

Proof. By the ε -N definition of a limit, $\lim_{n\to\infty} a_n = 0$ iff $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$, $|a_n| = |a_n - 0| < \varepsilon$, and $\lim_{n\to\infty} |a_n| = 0$ iff $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$, $|a_n| = |a_n| - 0| < \varepsilon$.

Therefore, the two E-N conditions are exactly the same. This shows that

 $\lim_{n \to \infty} a_n = 0 \quad \text{iff } \lim_{n \to \infty} |a_n| = 0, \qquad \square$

6. (Uniform continuity) Define $f(x) = x^3$ for all x. Prove that $f: \mathbb{R} \to \mathbb{R}$ is not uniformly continuous

Solution. Let
$$u_n = n + \frac{1}{n}$$
 and $v_n = n$.

Then $\lim_{n\to\infty} u_n - v_n = \lim_{n\to\infty} (n+\frac{1}{n}) - n = \lim_{n\to\infty} \frac{1}{n} = 0$

However,
$$\lim_{n \to \infty} f(u_n) - f(v_n) = \lim_{n \to \infty} (n + \frac{1}{n})^3 - n^3$$

$$= \lim_{n \to \infty} n^3 + 3n^2 \cdot \frac{1}{n} + 3n \cdot \frac{1}{n^2} + \frac{1}{n^3}$$

$$-n^3$$

7. (Lipschitz => uniform continuity) § 3.4, p. 69, #11.

Suppose $f:D \to \mathbb{R}$ is Lipschitz, i.e., there is a constant $C \ge 0$ such that $\nabla u, v \in D$, $|f(u) - f(v)| \le C |u - v|$.

Suppose fung and iving are sequences in D such that lim | un - vn] = 0.

By the Lipschitz condition, $0 \leq |f(u_n) - f(v_n)| \leq C|u_n - v_n|.$

Taking the limit as n > 00, by the sandwich lemmas lim |f(Un) - f(Vn)| = 0.

Hence, f is uniformly controus on D.

 8. (14 points) Uniformly continuous but not Lipschitz . §3.5, p. 74, #7. Define $f(x) = \sqrt{x}$ for $0 \le x \le 1$.
(a) Prove that the function $f: [0,1] \to \mathbb{R}$ is continuous.
(b) Use part (a) to show that $f: [0,1] \to \mathbb{R}$ is uniformly continuous.
(c) Show that $f: [0,1] \to \mathbb{R}$ is not Lipschitz.
(Hint:
 ·
$\sqrt{x} - \sqrt{x_0} = (\sqrt{x} - \sqrt{x_0}) \frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}.$
Solution (a) Fix $x_0 \in [0,1]$. Suppose $x_1 \in [0,1]$ and $x_n \to x_0$.
By the square root root, $\sqrt{x_n} \rightarrow \sqrt{x_0}$. This proves that
$f(x) = \sqrt{x}$ is continuous at any $x_0 \in [0,1]$.
(b) By Theorem 3.17, a continuous function on [96]
(actually on any sequentially compact Lomain) is uniformly
continuous. Since f(x)= Nx is continuous on [0,1], it is
uni formly continuous.
(<) Suppose ∃ C ≥ 0 such that for all ×, ×, ∈ [0,1],
$ \sqrt{x} - \sqrt{x_0} \le C x - x_0 $
Then
$ N \times - N \times_{o} = \left \frac{ X \times_{o} }{\sqrt{X + A \times_{o}}} \right \leq C X \times_{o} $
$\frac{1}{\sqrt{x} + \sqrt{x_0}} \leq C$
This is not possible because if both x and xo approach o,
$\frac{1}{\sqrt{1+\sqrt{2}}} \rightarrow \infty.$
A simpler proof.
Suppose ∃ C = 0 such that for all ×, × 0 € [0, 1]
$ \sqrt{x} - \sqrt{x}_{0} \leq C x - x_{0} $
Pick ×0=0. Then Nx = Cx. For x > 0,
$\frac{1}{\sqrt{\times}} = \frac{\sqrt{\times}}{\times} \leq C$
This is not possible because 1/1x is unbounded on (0,1]. [

Prove that for a function f: D > IR, TFAE: (i) for two sequences { Un 3, 1 vn3 in D, $\lim |u_n - v_n| = 0 \Rightarrow \lim |f(u_n) - f(v_n)| = 0.$ (ii) YE70, 3 870 such that Yu, VED, | u-v| < 8 => [f(u) - f(v)] < E. (i) ⇒ (ii) We prove the contrapositive. Suppose (ii) is not true. Then ∃ €70 gud that V 8= 1,70, ∃ Un, Vn ∈ D s.t. $|u_n-v_n|<\perp$ and $|f(u_n)-f(v_n)|\geq \epsilon$. Taking the limit as n > 00, by the sandwich lemma, lim | un - vn | = 0 and lim (f(un) - f(vn)) > E Thus, lim |f(un)-f(vn) | \$\pm 0. (ii) => (ii) Assume (ii). Let {un}, {vn} be two sequences in D such that $\lim |u_n-v_n|=0$. Let ≥ 70 By (ii), I 8>0 sud that if u, v & D, $|u-v|<8 \Rightarrow |f(u)-f(v)|< \varepsilon$ Spice lim | Un-Vn) =0, FNEIN s.t. YnzN, 1 un - ~ 1 < 5. By (11), /f(un)-f(vn) / E. This is precisely the condition for lim | f(un) - f(y) = 0

9. (E-8 criterion for uniform continuity)