Assignment Date: January 26, 2015 DUE DATE: February 2 (Groundhog day), 2015 (by 5pm) LATE DUE DATE: February 3, 2015 (by 5pm)

NOTE: Please drop-off your homework in my mailbox located in the mailroom on 4th floor (East end).

- 1. Given the complex number $u = Ae^{j\phi}$, show that:
- a. Re{u} = $A \cos(\phi)$

b.
$$\operatorname{Im}\{u\} = A \sin(\phi)$$

[10 points]

- 2. Given the complex number u = v + jw, show that:

a. Re{u} =
$$\frac{1}{2}$$
(u+u*)
b. Im{u} = $\frac{1}{2j}$ (u-u*)

[10 points]

- 3. Using the result in problem 2 and Euler's identity, show that: a. $cos(2\pi\xi_o x)=\frac{e^{j2\pi\xi_o x}+e^{-j2\pi\xi_o x}}{2}$ a. $sin(2\pi\xi_o x)=\frac{e^{j2\pi\xi_o x}-e^{-j2\pi\xi_o x}}{2j}$

a.
$$sin(2\pi\xi_o x) = \frac{e^{j2\pi\xi_o x} - e^{-j2\pi\xi_o x}}{2j}$$

[10 points]

- 4. Find all of the roots of the following equations, and show the locations of these roots in the complex plane.
- a. $x^4 = 1$

b.
$$x^3 = 8e^{j\pi}$$

[20 points]

- 5. Let $u(x) = A \exp\{j2\pi\xi_o x\}$, where A and ξ_o are real positive constants. Find, and sketch as functions of x, the following:
- a. $u(x)u^{*}(x)$
- b. $u(x) + u^*(x)$
- c. $|u(x) + u^*(x)|^2$

[20 points]

6. Consider two plane waves: $u_1(\vec{r}) = e^{j\vec{k}_1 \cdot \vec{r}}$ in direction \vec{k}_1 and $u_2(\vec{r}) = e^{j\vec{k}_2 \cdot \vec{r}}$ in direction \vec{k}_2 . The interference between these plane waves produces a fringe pattern in the observed intensity. Simplify the intensity $I(\vec{r}) = |u_1(\vec{r}) + u_2(\vec{r})|^2$ to express the fringe direction \vec{K} in terms of \vec{k}_1 and \vec{k}_2 .

[30 points]