• Bayesian linear regression and Ridge regression

In the Bayesian linear regression settings, when $\mathbf{w}_0 = \mathbf{0}$ and $S_0 = \tau^2 \mathbb{I}$, we have:

$$\ln p(\mathbf{w}|\mathbf{t}) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^t \phi(\mathbf{x}_n))^2 - \frac{1}{2\tau^2} ||\mathbf{w}||_2^2$$

In this case, MAP, maximum a-posteriori, (\mathbf{w}_N) is equivalent to the solution of ridge regression $(\hat{\mathbf{w}}_{ridge})$ with $\lambda = \frac{\sigma^2}{\lambda^2}$. Bayesian regression also allows to account for regularization (which can be obtained as a specific case).

• k-Nearest Neighbor

To classify a point \mathbf{x} : select the k most similar points to \mathbf{x} in the training set and assign to \mathbf{x} the most frequent class among those. No actual model is computed: we use the training records to predict an unknown class label. The elements are: the training dataset, the similarity function and the value of k.

- 1. Compute distance to other training records
- 2. Identify the k nearest neighbors
- 3. Use labels of nearest neighbors to determine the label of the point (majority voting/others)

How many neighbors? It's an hyperparameter (cross-validation changing k at every iteration or nested cross-validation). If k is too small the classification might be too sensitive. If k is too large the neighborhood may include quite dissimilar points.

consistent learners: $N \ge \frac{1}{\epsilon} (8 \text{ VC(H)})$ openeral bearrars: emor_{the}(h) $\le \text{ emor}_{\text{the}}$ every he to soutsfies

 $N \ge \frac{1}{\varepsilon} \left(8 \text{ VC(H)} \log_z \left(\frac{13}{\varepsilon}\right) + 4 \log_z \left(\frac{2}{\delta}\right)\right)$ $enor_{the}(h) \le enor_D(h) + \sqrt{\frac{VC(H)}{(\ln \left(\frac{2N}{VC(H)}\right) + 1)} + \ln \frac{4}{\delta}}$

- MDP: agent-environment interface (well defined states, actions, rewards)
- MDP: Bellman equations (expectation, optimality) to evaluate and find the optimal value functions/ policy
- Computationally unfeasible
- Dynamic programming: approximate the optimal value function/ policy iteratively (policy iteration, value iteration)
- Real application: unknown states, actions, rewards
- Monte Carlo methods: learn value functions/ policy through experience (data: complete episodes of states, actions, rewards)
 - policy evaluation for the evaluation of V_{π}
 - policy improvement? V_{π} useless, need for Q_{π}
 - Q_{π} evaluation: need for exploration
 - explorating starts, ϵ -soft

	Bellman expectation equation	Bellman Optimality equation
Programming	· policy iteration	· value iteration
Empirical	 Moute Carlo coutrol SARSA 	· a-learning

predicted:

1		0	
1	tp	fp	
0	fn	tn	

- accevacy:
$$Acc = \frac{tp+tn}{N}$$

- precision: Pre =
$$\frac{tp}{tp+fp}$$

-
$$F_1 = \frac{2 \cdot Prec \cdot Rec}{Prec + Rec}$$

SVM

Separable

Minimize
$$\frac{1}{2} \| \mathbf{w} \|_{2}^{2}$$

8.t. $\frac{1}{2} \| \mathbf{w} \|_{2}^{2}$

y(x) = In duta k(x, xn) + 6

 $b = \frac{1}{151} \sum_{x_m \in S} \left(t_m - \sum_{x_m \in S} \alpha_m t_m k(x_m, x_m) \right)$

Non-sepanable

winimize
$$\frac{1}{2} \| \mathbf{w} \|_{2}^{2} + \mathbf{C} \sum_{n} \sum_{n} \text{ever} (\text{penalties to the violation})$$

S.t. $\tan (\mathbf{w}^{T} \phi (\mathbf{x}_{n}) + \mathbf{b}) \ge 1 - \mathbf{z}_{n} + \mathbf{w}$

S.t.
$$0 \le \alpha_n \le \frac{1}{N}$$

parameter that controls both the mangin emors and the # support vectors:

0 < % margin <) < % # support vectors