Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 1.4.5 Изучение колебаний струны.

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Цель работы: изучить поперечные стоячие волны на тонкой натянутой струне; измерить собственные частоты колебаний струны и проверить условие образования стоячих волн; измерить скорость распространения поперечных волн на струне и исследовать её зависимость от натяжения струны.

В работе используется: закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

Теория: Струной в акустике называют однородную тонкую гибкую упругую нить. Примерами могут служить сильно натянутый шнур или трос, струны гитары, скрипки и других музыкальных инструментов. В данной работе изучаются поперечные колебания стальной гитарной струны, натянутой горизонтально и закрепленной между двумя неподвижными зажимами. Основное свойство струны — гибкость — обусловлено тем, что её поперечные размеры малы по сравнению с длиной. Это означает, что напряжение в струне может быть направлено только вдоль неё, и позволяет не учитывать изгибные напряжения, которые могли бы возникать при поперечных деформациях (то есть при изгибе струны)

Второй закон Ньютона для вертикального движения элемента струны запишется в следующем виде:

$$\delta_m \frac{\partial^2 y}{\partial t^2} - T_1 \sin \alpha_1 - T_2 \sin \alpha_2$$

Основываясь на предположении, что отклонения струны от положения равновесия малы, можем сделать ряд упрощений:

- 1. Длина участка струны в смещенном состоянии практически равна длине участка в положении равновесия * , поэтому добавочным напряжением вследствие удлинения струны при деформации можно пренебречь. Следовательно, силы T_1 и T_2 по модулю равны силе натяжения струны: $T_1 \approx T_2 \approx T$.
- 2. Углы наклона α малы, поэтому $\tan \alpha \approx \sin \alpha \approx \alpha$, и, следовательно, можно положить $\alpha \approx \frac{\partial y}{\partial x}$

Тогда волновое уравнение примет вид:

$$rac{\partial^2 y}{\partial t^2}=u^2rac{\partial^2 y}{\partial x^2}$$
, где $u=\sqrt{rac{T}{
ho_l}}$

Стоячие волны на струне с закреплёнными концами образуются, только если на длине струны укладывается целое число полуволн: $\lambda_n=\frac{2L}{n}$ Поскольку длина волны однозначно связана с её частотой, струна может колебаться

Поскольку длина волны однозначно связана с её частотой, струна может колебаться только с определёнными частотами: $\nu_n = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}$

Рис. 1: Стоячие волны (собственные моды колебаний струны) для ${\rm n}=1,\,2,\,3$

Рис. 2: Экспериментальная установка

Ход работы:

1. Проведем предварительные расчёты. Оценим скорость распространения волны и по формуле: $u=\sqrt{\frac{T}{\rho_l}}$, где T=12,3 H, $\rho_l=568,4$ мг/м, Тогда u=151 м/с.

Также рассчитаем частоту основной гармоники ν_1 по формуле: $\nu_n=\frac{n}{2L}\sqrt{\frac{T}{\rho_l}},$ $\sigma\nu_n=\nu_n\frac{\sigma_L}{L},~\mathrm{L=}50,0\pm0,1~\mathrm{cm}.$ $\nu_1=(15,1\pm0,1)*10~\Gamma\mathrm{II}$

2. Запишите значения частот ν_n стоячих волн, которые удастся пронаблюдать, изменяя частоту генератора.

n	ν, Гц
1	151,2
2	306,5
3	453, 6
4	604,8
5	756,0

Таблица 1: Частоты наблюдаемых стоячих волн

3. Проведем измерения частот для четных и нечетных гармоник стоячих волн при разных натяжениях струны. Данные занесем в таблицы 2-6. Погрешность измерения частоты данным способом имеет значение $\sigma \nu_n = \pm 1 \ \Gamma$ ц, данное значение получено экспериментально.

n	ν, Гц	n	ν, Γιι
1	181	1	205
2	365	2	412
3	549	3	619
4	733	$\boxed{4}$	824
5	906	5	1030
6	1095	6	1238
7	1273	7	1444
8	1467	8	1655
9	1636	9	1861

Таблица 2: Частоты при Т=17,1 Н Таблица 3: Частоты при Т=21,9 Н

n	ν, Гц	n	ν
1	229	1	2
2	460	2	4
3	687	3	7
4	940	4	9
5	1147	5	12
6	1379	6	14
7	1609	7	17
8	1843	8	19
9	2075	9	22

Таблица 4: Частоты при T=26,8 Н Таблица 5: Частоты при T=31,7 Н

n	ν, Гц
1	262
2	524
3	786
4	1048
5	1312
6	1575
7	1837
8	2099
9	2366

Таблица 6: Частоты при T=35 H

4. Построим график (Рис.3) зависимости частоты от номера гармоники для 5 натяжений проволоки.

Рис. 3:

5. Вычислим скорость волн и по наклону прямой по МНК, также вычислим погрешность. Результаты занесем в таблицу 7.

и м/с	173	196	218	237	248
σ_u M/c	2	2	2	3	3

Таблица 7: Значения скорости волн

6. Построим график (Рис.4) зависимости квадрата скорости волны u^2 от силы натяжения T.

Рис. 4:

- 7. По наклону прямой определим погонную плотность, также определим значение погрешности по МНК. $\rho_l = (56, 1\pm0, 8)*10^{-5} \ \mathrm{kr/m}$. Полученное нами значение погонной плотности совпадает в пределах погрешности со значением указанным на установке $(568, 4 \ \mathrm{mr/m})$.
- 8. Благодаря высокой добротности струны, возможно возбуждение её колебаний при кратных частотах генератора, меньших, чем ν_1 . Уменьшим частоту на генераторе до значения $\nu = \nu_1/2$. На осциллографе получим фигуру Лиссажу с одном самопересечением(Рис.5). Полученная фигура имеет одну точку самопересечения, так как настроенная частота отличается от резонансной в 2 раза.

Рис. 5:

Вывод: : В данной работе мы изучили поперечные стоячие волн на тонкой натянутой струне, измерили собственные частоты колебаний струны, измерили скорость распространения поперечных волн на струне и исследовали её зависимость от натяжения струны. По полученным данным построили графики.