UNCLASSIFIED

AD 277 803

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

BEST

AVAILABLE

COPY

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

WADD-TR-61-75

A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE ACOUSTIC RESPONSE OF CAVITIES IN AN AERODYNAMIC FLOW

TECHNICAL REPORT No. WADD-61-75

MARCH 1962

NOX

FLIGHT DYNAMICS LABORATORY
AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

77 803

Project No. 1370, Task No. 137005

(Prepared under Contract No. AF 33(616)-6966 by Lockheed Aircraft Corporation, Marietta, Georgia, Authors: H. E. Plumblee, J. S. Gibson, and L. W. Lassiter.)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., in stock quantities for sale to the general public.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a precific document.

FOREWORD

This report was prepared for the Flight Dynamics Laboratory, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio. The research and development work was accomplished by Lockheed Aircraft Corporation, Georgia Division, Marietta, Georgia under Air Force Contract F733(616)-6966, Project Nr. 1370, "Dynamic Problems in Flight Vehicles", Task Nr. 137005 Methods of Noise Frediction Control and Heasurement". Tr. D. L. Smith of the Dynamics Branch, Flight Dynamics Laboratory, Directorate of Aeromechanics, Deputy for Technology was Task Engineer. Research covered in this report started in February 1960 and is part of a continuing effort.

The authors wish to express their sincere appreciation for the valuable mathematical assistance and consultation given by Dr. J. F. Andrus of the Mathematical Analysis Department. Our thanks also to other numbers of the Sound and Vibration Section, without whose help the project could not have been completed, and to the AEDC personnel whose patience and cooperation contributed greatly to the experimental program.

ABSTRACT

Theory is developed for the resonant frequencies and pressure amplifications of a rectangular cavity of arbitrary dimensions in a flow field. An intermediate step involves the derivation of radiation impedance for a cavity at all Mach numbers, using the concepts of retarded potential theory. Experimental results are given for small cavities tested in the subsonic regime and for cavities up to 8" in length at supersonic Mach numbers from 1.75 to 5.0. Comparisons are drawn between theoretical and experimental frequency and amplitude response, indicating that the theory developed gives very good definition of the problem.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

Millian C. William

Johonel, USAF

Chief, Flight Dynamics Laboratory

TABLE OF CONTENTS

SECTION					PAGE
1.	INTRO	DDUCT	ION		1
11.	THEO	RY			2
	A. B.			CONSIDERATIONS I IMPEDANCE	2 3
		1. 2.		IONARY MEDIUM 'ING MEDIUM	3 7
			a. b.	Subsonic Velocities Supersonic Velocities	<i>7</i> 11
	c.	PRES	SURE R	ESPONSE	21
ш.	EXPE	RIMENT	TAL TE	CHNIQUES	25
	Α.	TEST	ARTIC	LES	25
		1. 2.		ORATORY D-TUNNEL MODEL	25 25
			a. b.	General Model Mechanism	25 25
	В,	INST	TRUMEI	NTATION AND TEST PROCEDURES	26
			STAT	ND PRESSURE IC PRESSURE CAL A REDUCTION	26 26 26 26
IV.	EXPE	RIMEN'	TAL RE	SULTS - EXPLORATORY	34
	A. B. C.	SUP	ERSON	MACH NUMBER IC FLOW LENGTH	34 34 35
٧.	EXPE	RIMEN	TAL RE	SULTS - AEDC	40
	Α.	BOU	NDAR'	Y-LAYER CHARACTERISTICS	40
		1. 2. 3.	TURB	OCITY PROFILES ULENCE SPECTRA ODYNAMIC NOISE	40 40 40
	В.	CAV	ITY RE	SPONSE	41

SECTION						rage
		1.	FLOY	v stud	DIES	41
			a. b. c.	Oil-F	eren Indications Iow Movies -Pressure Indications	41 43 43
				(1) (2) (3) (4) (5)	Effect of Depth Effect of Length Effect of Width Effect of Mach Number Effect of "q"	43 43 44 44 44
		2.	CHAI	RACTE	RISTIC FREQUENCIES	44
			а. b.		r of Dimensions r of Mach Number	44 45
		3.	AMP	LITUDE	: response	46
			a.	Buffe	t Response	46
				(1) (2) (3) (4)	Effect of Cavity Dimensions Effect of Depth Effect of Mach Number Spatial Distribution	46 46 46 46
			b.	Reson	ant Response	46
VI.	COMPARISON OF THEORY AND EXPERIMENT					78
	Α.	SHC	ORT CA	VITIES		78
		1.	SUBS	SONIC		78
			a. b.		uency itude Response	78 79
		2.	SUP	erson	IC	80
			a.	Frequ Ampl	uency Itude Response	80 81
	В.	LOI	VG CA	VITIES	5	81
VII.	CON	ICLUSI	ONS			98
VIII.	DESI	gn sl	JMMAF	RΥ		99
	А. В.				H/DEPTH < 1.0 H/DEPTH > 1.0	99 99
IX.	REFE	rence	S			108
	APPE	NDIX	B - RA	ADIATI	OLTZ RESONATORS ON IMPEDANCE-SUBSONIC	109 111

		171		
an man of the control of			LIST OF ILLUSTRATIONS	
	FIG	JRE	TITLE	PAGE
	1.	(a) (b)	Field Point Connotation Coordinate System Used For Transformation to Cylindrical	4
		(0)	Coordinates	5
	2.	(a) (b)	Illustrating Pressure Point (x', y') in Region I Illustrating Pressure Point (x', y') in Region II	12 12
	3.	(a)	Illustrating Limits of Integration for the Supersonic Pressure Equation	13
		(b)	Illustrating Limits of Integration for the Supersonic Pressure Equation	13
	4.	(a)	Showing Limits of integration for the Supersonic Force Integral	14
		(b)	Showing Limits of Integration for the Supersonic Force Integral	14
	5.	Illus for S	trating Change from Rectangular to Cylindrical Coordinates upersonic Impedance Integral	18
	6.	Expl	oratory Test Schematic	28
	7.	(a)	AEDC Tunnel Model	29
		(c) (b)	Model Top View Cavity Configuration	30 31
	8.	Instr	umentation Schematic - AEDC	32
	9.	Trans	sducer Locations and Mounting Details	33
	10.	Frequence In Su	uency Spectra of 1" Length x 1" Width x 1" Depth Cavity ubsonic Flow	36
	11.		uency Spectra of 1" Length x 1" Width x 1" Depth Cavity upersonic Flow	38
	12.	Effec	ct of Cavity Length On Spectral Response	39
	13.	Boun	dary-Layer Profiles	49
	14.	Boun	dary-Layer Turbulence Spectra	50
	15.	Boun	dary-Layer Noise Spectra	50
	16.	Effec	et Of Mach Number On Boundary-Layer Noise	51
	17.		ct Of Mach Number And Dynamic Pressure On Overall dary-Layer Noise	52

FIGL	JRE	TITLE	PAGE
18.	Boun	dary-Layer Fluctuations Above A Long Cavity	53
19.	(a) (b)	Time History Of Boundary–Layer Fluctuations For A Long Cavity Spatial Correlation Of Boundary–Layer Displacement Fluctuations	54 55
20.	(a) (b)	Effect Of Cavity Depth On Boundary-Layer Fluctuations, $x = 2$ " Effect of Cavity Depth On Boundary-Layer Fluctuations, $x = 5$ "	56 57
21.	Boun	dary-Layer Fluctuations Due To A Short Cavity	58
22.	Boun	dary Layer Fluctuations For Cavity Of Intermediate Length	59
23.	Oil-	Flow Photographs Of Flow Inside Cavity	60
24.	Effec	ct Of Depth On Cavity Static Pressure	62
25.	Effec	ct Of Length On Cavity Static Pressure	63
26.	Effec	ct Of Mach Number On Cavity Static Pressure	64
27.	(a) (b)	Typical Frequency Response Of A Cavity In Supersonic Flow Effect Of Dynamic Pressure "q" On Resonant Response	65 67
28.	Com	posite Plot Of Resonant Frequencies At A Mach Number Of 2.0	68
29.	Effe	ct Of Cavity Dimensions On Frequency	69
30.		posite Variation Of 1st Mode Frequency With Cavity Length Mach Number	70
31.	Effe	ct Of Cavity Length and Width On Buffet Response	71
32.	Effe	ct Of Cavity Depth And Width On Buffet Response	72
33.	Effe	ct Of Mach Number On Buffet Response	73
34.	Leng	thwise Distribution Of Buffet Response In Long Cavity	74
35.	Stree	amwise Distribution Of Sound Pressure In A Long Cavity	75
36.	(a) (b)	Effect Of Cavity Length On Sound Pressure Of First Three Modes at Mach 2.0 Effect Of Cavity Length On Sound Pressure Of First Two Modes at Mach 3.0	76 77
		MODES AT MACH 5 11	,,

The state of the s		RETAIL TO THE STATE OF THE STAT	PAGE
	37.	Theoretical Amplification Of A Short Cavity	84
	38.	Exploratory Response Spectra Of 1/2" Length \times 1" Width \times 1" Depth Cavity In Subsonic Flow	85
	39.	Comparison of Theoretical And Experimental Response Frequencies For Short Cavity	88
	40.	Comparison Of Theoretical And Experimental Response Frequencies, 1.5" Length \times 1" Width \times 1" Depth Cavity	89
	41.	Theoretical Effect Of Cavity Length On Frequency Of Depth Modes	90
	42.	Comparison Of Theoretical And Experimental Amplitude Response of 1/2" Length \times 1" Width \times 1" Depth Cavity	91
	43.	Comparison Of Theoretical And Experimental Response Frequencies For 2" Length x 2" Width x 2.5" Depth Cavity at Supersonic Mach Number	92
	44.	Comparison of Calculated And Measured Response Spectra	93
	45 .	Further Comparison of Calculated And Measured Response Spectra	95
	46.	Comparison of Calculated and Measured Response Spectra of 8" Length \times 2" Width \times 3.5" Depth Cavity	96
	47.	Comparison of Calculated and Measured Response Spectra of 4" Length \times 2" Width \times 2.5" Depth Cavity	97
	48.	Radiation Impedance of Cavity for Various Aspect Ratios	102
	49.	Solutions to Boundary Condition Function	107
	<i>5</i> 0.	Calculated Response of Test Resonator	110

a	$f_N L_z X/c(R^2 + X^2)$
A	simple source strength
b	$f_N L_z R/c(R^2 + X^2)$
c	velocity of sound
D	"Amplitude" radius, subsonic
D _s	"Amplitude" radius, supersonic
f	frequency, cps
fN	natural frequency of cavity
F	total force on piston
g _n	defined by $g_n = \xi_n + i\eta_n$
i	√ -1
k	wave number, w/c
L	length of Helmholtz resonator neck
Lx	cavity length
Ly	cavity width
Lz	cavity depth
M	Mach number, up/c
n _x	length mode number
n _y	width mode number
n _z	depth mode number of room with all walls rigid
n	depth mode number of cavity (one side on depth axis open)
Ν	n, n _x , n _y
2	root-mean-square sound pressure
Pp	peak sound pressure

- Po	pressure at open end of cavity (peak)
P _s	model local static pressure
₽ _N	sound pressure level, db
q	free-stream dynamic pressure (psig)
r	distance from source to field point for stationary medium
R	radiation resistance
R _×	streamwise correlation coefficient
S	area of piston
t	time
U	dummy variable
^U f	forward velocity
υp	particle velocity (peak)
v	dummy variable
٧	cavity volume
X	radiation reactance
x,y,z	coordinates of source
x', y', z'	coordinates of field point
Ŧ	average boundary-layer thickness
z _r	characteristic radiation impedance
z _r	radiation impedance of piston (cavity)
σ	density of medium (static)
Δ	$tan^{-1}(1/\beta)$
λ	wavelength
$\lambda_{ m N}$	cavity normalizing constant
۶ م	normalizing number
ε _n χ ε _n y ζ _c	normalizing number
င်င	characteristic acoustic impedance

	ratio of eavity width to length, L.A.
۵	sin (1/M)
ω	Angular frequency
β	$\sqrt{1 - M^2}$, M<1.0
βs	$\sqrt{M^2 - 1}$, M>1.0
δ	tan ⁻¹ (y'/x')
δ _s	tan ⁻¹ (v'/u')
۲	normalized frequency, kL _x
ξ	dummy variable
ξ _n	real solution of boundary function
η	dummy variable
η _n	imaginary solution of boundary function
ф	tan B ₈
φ _N	characteristic equation
θ,r	cylindrical coordinates

All decibel units are referenced to 0 0002 dynes/cm 2

I - INTRODUCTION

The problem of acoustic response of a cavity or recess in the surface of an air-borne vehicle is one which has assumed new dimensions of significance with the advent of supersonic flight. Experience with the problem to date has indicated that the severity of response depends in large measure on the airspeed, or perhaps more inclusively, the dynamic pressure associated with the flight condition. Thus, serious questions arise as to expected loads inside a cavity on a supersonic vehicle.

The problem is not simple; the investigations conducted to date have established this very clearly. The mechanisms involved appear in many respects to be simply the excitation of resonant response of a given enclosure; yet there are facets of the problem which appear to deviate markedly from such a phenomenon. For example, the Boeing Airplane Company (Ref. 1) concluded that for the problem as it was encountered on the B-47 aircraft, the mechanism was best defined as a pseudo-resonant phenomenon, in which the normal acoustic modes are modified in frequency by the presence of a bound vortex formation within the cavity. This vortex is presumed to alter the wave-propagation velocity in the upstream direction as compared with the downstream direction, thus in effect changing the resonant frequencies.

Krishnamurty (Ref. 2) conducted quite an extensive study of the problem from the viewpoint of the radiation of sound out of the cavity. He concluded that the phenomenon was more likely to be associated with the inherent instability of the separated boundary layer, which permits amplification of disturbances within certain limits of wavelength. This hypothesis leads to the ultimate question as to why the cavity response is not merely the amplification of a band of frequencies rather than the observed amplification of a single frequency within this band.

The approach followed in the present investigation is based on the hypothesis that whatever the forcing mechanism may be, conditions inside the cavity must ultimately follow the dictates of the characteristic acoustic response of the cavity. Thus, it is hypothesized that at least part of the overall solution to the problem lies in the definition of characteristic acoustic response of the cavity. Other considerations may then apply to effect the general solution, but a firm base will have been laid. On this premise, the theoretical investigation reported herein is primarily aimed at evaluation of the response of a cavity of arbitrary dimensions placed in a flow of arbitrary velocity, either subsonic or supersonic.

Experimentally, the program was aimed at as complete as possible documentation of the phenomena involved. In particular, it was desired to investigate a sufficient range of dimensional parameters to insure that results were of broad enough scope to avoid conclusions which might hold over only a limited range of cavity dimensions.

Manuscript released by the authors 14 January 1961 for publication as a WADD Technical Report.

II. THEORY

A. GENERAL CONSIDERATIONS

The objective of the theoretical treatment discussed herein is to develop expressions for the characteristic resonant response of a cavity, since it is hypothesized that this is the predominant phenomenon involved.

As shown by Morse (Ref. 3), the response of an enclosure is a function of:

- 1. The dimensions of the enclosure
- 2. The impedance of the boundaries
- 3. The location, distribution, and strength of the forcing source functions.

Previous work given in the classical literature provide the basis for the work reported herein. It is hypothesized that the phenomenon of sound generation in a cavity is basically that of an enclosure responding in its normal acoustic modes.

On this premise, the problem evolves into one of deriving the characteristic response function of a cavity from which its natural modes become evident. The model selected for the mathematics is a rectangular cavity of arbitrary dimensions, having five walls terminated in an infinite impedance and the sixth terminated in the radiation impedance of the cavity opening.

Toward this end, the major concern becomes that of deriving the radiation impedance of the rectangular cavity. A literature search reveals that Swenson and Johnson (Ref. 4) have indicated the form of such a derivation but do not give the derivation itself. Stenzel (Ref. 5) presents a study of this impedance for the static case. Although both of these reported results are of considerable help, it still remains to document more completely the impedance for the static case and to extend the results to include the effects of radiation into a medium which may be moving with either subsonic or supersonic velocity.

When considering the case of a moving medium, the fact that speed of the wave front is altered by motion of the medium must be taken into account. The upstream propagation velocity of a source disturbance is the speed of sound less the boundary-layer velocity. Therefore, at supersonic velocity there is no upstream propagation, except that which occurs in the subsonic region of the boundary layer. Garrick (Ref. 6) has shown the effect of a moving medium on radiation patterns and field strength of an acoustic source; and Garrick and Watkins (Ref. 7) have included the effect of forward velocity on the sound generation of a propeller. The retarded potential theory of the above references has been applied to the present impedance derivation, which considers the total effect of an assemblage of in-phase simple sources evenly distributed on the outer surface of a weightless piston of air in the mouth of the cavity.

Finally, the response of a simple cavity, as treated by Morse (Ref. 3) is discussed. This theory is appropriate for use if the depth is not very much less than the streamwise length of the cavity.

B. RADIATION IMPEDANCE

1. STATIONARY MEDIUM

The radiation impedance of the cavity in a stationary medium is assumed to be that of a rectangular piston set in a flat wall, very large with respect to the dimensions of the piston. The piston is assumed to be vibrating with velocity upe into the space on one side of the wall only.

The radiation impedance, Z_r, is

$$z_{r} = F/u_{p}e^{i\omega t} \tag{1}$$

where F is the total force exerted on the piston. The force, F, is equal to the integral of pressure, $p_{D}(x', y')$, over the area of the piston S, that is

$$F = \iint_{S} p(x,y') dx'dy'$$
 (2)

The differential pressure at (x', y') on the piston due to radiation from a simple source at (x, y) is (Ref. 1),

$$dp(x,y') = i\omega u e^{i\omega t} \frac{e^{ikr}}{2\pi r} dx dy$$
 (3)

where

$$r = \sqrt{(x'-x)^2 + (y'-y)^2}$$

The total pressure at (x', y') assuming equal radiation intensity from all sources on the piston is:

$$p(x,y') = \frac{i\omega\sigma u}{2\pi} \int \int_{S} \frac{e^{ikr}}{r} dx dy$$
 (4)

Using Eqs. (1), (2), and (4), the radiation impedance can be written as

$$z_{r} = \frac{i\omega\sigma}{2\pi} \iint_{S} \left[\iint_{S} \frac{e^{ikr}}{r} dx dy \right] dx' dy'$$
 (.5)

Since Eq. (5) has r in the denominator, it is seen that a singularity will exist when x = x' and y = y', and Eq. (4) will yield infinite pressure. In order to circumvent this difficulty it is expedient to subdivide the piston into four areas whose common point is the locus of the singularity. The integration can then be carried out in four steps as shown on the following page.

FIGURE 1a.
FIELD POINT CONNOTATION

From examination of Fig. 1a, it can be seen that Eq. (5) can be expressed as the sum of the integrals over the four indicated areas.

$$z_{\mathbf{r}} = \frac{i\omega\sigma}{2\pi} \int_{0}^{L} \mathbf{y} \int_{0}^{L} \mathbf{x} \left[\int_{0}^{\mathbf{y}} \int_{0}^{\mathbf{x}} \frac{1}{e^{i\mathbf{k}\mathbf{r}}} dx dy + \int_{\mathbf{y}}^{L} \int_{0}^{\mathbf{y}} \frac{1}{e^{i\mathbf{k}\mathbf{r}}} dx dy \right] + \int_{\mathbf{y}}^{L} \int_{\mathbf{x}}^{L} \frac{1}{e^{i\mathbf{k}\mathbf{r}}} dx dy + \int_{0}^{\mathbf{y}} \int_{\mathbf{x}}^{L} \frac{1}{e^{i\mathbf{k}\mathbf{r}}} dx dy dy$$

$$(6)$$

The four integrals obtained by integrating Eq. (6) with respect to x' and y' over the indicated limits are equal, since the inner limits are the variables for the (x', y') integration and will vary over all the cavity area; therefore,

$$z_{r} = \frac{12\omega\sigma}{\pi} \int_{0}^{L} \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} \frac{e^{-ikr}}{r} dx dy dx' dy'$$
 (7)

Making the following change of variables for ease of integration,

$$x'-x=\xi \quad y'-y=\eta \tag{8}$$

there results,

$$Z_{\mathbf{r}} = \frac{12\omega\sigma}{\pi} \int_{0}^{L_{\mathbf{y}}} \int_{0}^{L_{\mathbf{x}}} \int_{0}^{\mathbf{y}} \int_{0}^{\mathbf{x}'} \frac{e^{i\mathbf{k}\mathbf{r}}}{\mathbf{r}} d\xi d\eta d\mathbf{x}' d\mathbf{y}'$$
(9)

where

$$r = \sqrt{\xi^2 + \eta^2}$$

By changing order of integration, the radiation impedance can be expressed as follows:

$$Z_{r} = \frac{12\omega\sigma}{\pi} \int_{0.0}^{L_{y}} \int_{\eta}^{L_{x}} \int_{\xi}^{L_{y}} \int_{\xi}^{L_{x}} \frac{e^{ik}\sqrt{\xi^{2} + \eta^{2}}}{\sqrt{\xi^{2} + \eta^{2}}} dx' dy' d\xi d\eta$$
 (10)

or, upon integration with respect to x' and y',

$$Z_{r} = \frac{12\omega\sigma}{\pi} \int_{0}^{L_{y}} \int_{0}^{L_{x}} \frac{(L_{y} - \xi)(L_{y} - \eta)}{\sqrt{\xi^{2} + \eta^{2}}} d\xi d\eta$$
 (11)

It is of interest to note that Eq. (11) can be written in generalized form. The normalizing factors used are:

$$L_{y}/L_{x} = \zeta \qquad L_{x}k = \gamma \qquad \eta/L_{x} = \forall \qquad \xi/L_{x} = u \qquad (12)$$

Thus in generalized form, Eq. (11) becomes

$$Z_{r} = \frac{i2\omega\sigma L_{x}^{3}}{\pi} \int_{0}^{\xi} \int_{0}^{1} \frac{(1-u)(\xi-v)e^{-i\gamma\sqrt{u^{2}+v^{2}}}}{\sqrt{u^{2}+v^{2}}} du dv$$
 (13)

It is now necessary to change from rectangular to cylindrical coordinates in order to perform the indicated integration. From Fig. 1b, for the lower triangle,

FIGURE 1b.

COORDINATE SYSTEM USED
FOR TRANSFORMATION TO
CYLINDRICAL COORDINATES

のでは、100mmの

$$r\cos\theta = u, \quad r\sin\theta = v \tag{14}$$

and for the upper triangle,

$$r \sin \theta = u$$
 $r \cos \theta = v$ (15)

From the Jacobian Transformation,

$$du dv = r dr d\theta ag{16}$$

Therefore, the impedance equation in cylindrical coordinates is,

$$Z_{\mathbf{r}} = \frac{i2\omega\sigma L_{\mathbf{x}}^{3}}{\pi} \int_{0}^{\tan^{-1}\chi} \int_{0}^{\sec\theta} (1 - \mathbf{r}\cos\theta)(\chi - \mathbf{r}\sin\theta)e^{i\gamma\mathbf{r}} d\mathbf{r} d\theta$$

$$+ \frac{i2\omega\sigma L_{\mathbf{x}}^{3}}{\pi} \int_{0}^{\cot^{-1}\chi} \int_{0}^{\chi} \sec\theta (1 - \mathbf{r}\sin\theta)(\chi - \mathbf{r}\cos\theta)e^{i\gamma\mathbf{r}} d\mathbf{r} d\theta$$

$$(17)$$

Integrating Eq. (17) with respect to $\, r$, the expression for radiation impedance in terms of an integral with respect to the variable $\, \theta \,$ becomes

$$Z_{r} = -\frac{i2\omega\sigma L_{x}^{3}}{\pi} \left[\frac{\chi}{\gamma^{2}} \int_{0}^{\tan^{-1}\chi} \cos\theta \, e^{i\gamma\sec\theta} \, d\theta + \frac{1}{\gamma^{2}} \int_{0}^{\cot^{-1}\chi} \cos\theta \, e^{i\chi\gamma} \, \sec\theta \, d\theta \right]$$

$$-\frac{i}{\gamma^{3}} \left[e^{i\gamma\sqrt{1+\chi^{2}}} - e^{i\gamma} - e^{i\chi\gamma} + 1 - \frac{\pi\chi\gamma^{2}}{2} - i\gamma(1+\chi) \right]$$
(18)

For convenience of calculation, it is necessary to express Eq. (18) in terms of its real and imaginary components. Also, it is desirable to express the impedance as a unit, or characteristic impedance, therefore Eq. (18) is divided by the piston area (L_X, L_y) . The characteristic radiation impedance z_y , is therefore,

$$\mathbf{z_r} = \mathbf{c}\mathbf{\sigma}(\mathbf{R} + \mathbf{i}\mathbf{X}) \tag{19}$$

with R the radiation resistance and X the radiation reactance.

$$R = \frac{1}{\pi \gamma} \left[\int_{0}^{\cos \theta} \sin(\gamma \sec \theta) d\theta + \frac{1}{\zeta} \int_{0}^{\cos \theta} \sin(\zeta \gamma \sec \theta) d\theta + \frac{1}{\zeta \gamma} \left[\cos(\gamma \sqrt{1 + \zeta^{2}}) - \cos \gamma - \cos \zeta \gamma + 1 - \frac{\pi \zeta \gamma^{2}}{2} \right] \right]$$
(20)

$$X = -\frac{2}{\pi \gamma} \left[\int_{0}^{\tan^{-1} \zeta} \cos \theta \cos(\gamma \sec \theta) d\theta + \frac{1}{\zeta} \int_{0}^{\cot^{-1} \zeta} \cos \theta \cos(\zeta \gamma \sec \theta) d\theta \right]$$

$$-\frac{1}{\zeta \gamma} \left[\sin(\gamma \sqrt{1 + \zeta^{2}}) - \sin \gamma - \sin \zeta \gamma + \gamma (1 + \zeta) \right]$$
(21)

The above equations for R and X could be written in terms of a series as was done in Ref. 2, but in the present case this would not result in any simplicity of calculation, since a digital computer was used in obtaining numerical results.

2. MOVING MEDIUM

In the preceding section, the radiation impedance for a cavity in a stationary medium has been derived. It is now necessary to include the effects of a moving medium in the theory. Garrick (Ref. 6) shows how retarded potential theory can be used for including the effects of a moving medium.

a. Subsonic Velocities

For the case of a simple source in a moving medium of uniform subsonic velocity u_f ($u_f < c$), the wave equation for small pressure disturbances is

$$\nabla^2 p = \frac{1}{c^2} \left(\frac{\partial}{\partial t} + u_f \frac{\partial}{\partial x} \right)^2 p \tag{22}$$

The solution of Eq. (22) for the differential pressure at a field point (x', y') from a simple source at (x, y) is as follows:

$$dp = i\omega u_p \frac{e^{i\omega t} e^{(ik/\mu^2) \left[-M(x^1 - x) + D\right]}}{2\pi D} dx dy$$
 (23)

where

$$\beta^2 = 1 - H^2$$
 $D = \sqrt{(x^1 - x)^2 + \beta^2 (y^1 - y)^2}$ (24)

Using Eqs. (1) and (2) from the preceding section and the result of Eq. (23), the impedance for a vibrating piston of air radiating into a subsonic flow is

$$z_{r} = \frac{1\omega\sigma}{2\pi} \int_{0}^{L_{y}} \int_{0}^{L_{x}} \int_{0}^{L_{y}} \int_{0}^{L_{x}} \frac{e^{(4k/\beta^{2})\left[-M(x'-x) + D\right]}}{D} dx dy dx'dy'$$
(25)

Upon separating the above equation for Z into four equal integrals as was done in Eq. (6), the radiation impedance has the following form:

$$Z_{\mathbf{r}} = \underbrace{i\omega\sigma}_{\pi} \int_{0}^{L_{\mathbf{y}}} \int_{0}^{L_{\mathbf{x}}} \int_{0}^{\mathbf{y}} \int_{0}^{L_{\mathbf{y}}} \int_{0}^{\mathbf{x}} \left[\underbrace{e^{-i\mathbf{k}\left[D + M(\mathbf{x}' - \mathbf{x})\right]/\beta^{2}}}_{D} + \underbrace{e^{-i\mathbf{k}\left[D - M(\mathbf{x}' - \mathbf{x})\right]/\beta^{2}}}_{D} \right] d\mathbf{x} d\mathbf{y} d\mathbf{x}' d\mathbf{y}'$$
(26)

It is now convenient to make the following changes of variables of integration,

$$x' - x = \xi$$
 $p(y' - y) = \eta$ (27)

After substitution of the changes of variables, and an inter-change of the order of integration, the radiation impedance, after integration with respect to dx', dy', can be written in the following integral form:

$$Z_{r} = \frac{i\omega\sigma}{\pi\beta^{2}} \int_{0}^{\beta L_{y}} \int_{0}^{L_{x}} (L_{x} - \xi) (\beta L_{y} - \eta) \left[\frac{e^{-ik\left[M\xi - \sqrt{\xi^{2} + \eta^{2}}\right]/\beta^{2}}}{\sqrt{\xi^{2} + \eta^{2}}} + \frac{e^{-ik\left[M\xi + \sqrt{\xi^{2} + \eta^{2}}\right]/\beta^{2}}}{\sqrt{\xi^{2} + \eta^{2}}} \right] d\xi d\eta$$
(28)

Since a generalized solution for any Mach number, cavity length, and cavity width is desired, it is convenient at this point in the derivation to make the normalizing substitutions of Eq. (12) again. The generalized equation for impedance then can be written in the following double integral form:

$$Z_{\mathbf{r}} = \frac{i\omega\sigma L_{\mathbf{x}}^{3}}{\pi\beta^{2}} \int_{0}^{\beta\xi} \int_{0}^{1} (1-u)(\beta\xi-v) \left[\frac{e^{-ik} \left[\sqrt{u^{2}+v^{2}} + Mu \right]/\beta^{2}}{\sqrt{u^{2}+v^{2}}} + \frac{e^{-ik} \left[\sqrt{u^{2}+v^{2}} - idu \right]/\beta^{2}}{\sqrt{u^{2}+v^{2}}} \right] du dv$$
(29)

In order to reduce Eq. (29) to single integral form, it is necessary to make the transformation to cylindrical coordinates, as indicated in Eqs. (14), (15), and (16). The normalized impedance equation in cylindrical coordinates is then:

$$Z_{r} = \frac{i\omega_{r}L_{x}^{3}}{\pi\beta^{2}} \int_{0}^{\tan^{-1}\beta\zeta} \int_{0}^{\sec\theta} (1-D\cos\theta)(\beta\zeta-D\sin\theta)e^{-i\gamma(1+M\cos\theta)D/\beta^{2}} dD d\theta$$

$$+ (1-D\cos\theta)(\beta\zeta-D\sin\theta)e^{-i\gamma(1-M\cos\theta)D/\beta^{2}} dD d\theta$$

$$+ \frac{i\omega_{r}L_{x}^{3}}{\pi\beta^{2}} \int_{0}^{\cot^{-1}\beta\zeta} \int_{0}^{\beta\zeta\sec\theta} (1-D\sin\theta)(\beta\zeta-D\cos\theta)e^{-i\gamma(1-M\sin\theta)D/\beta^{2}} dD d\theta$$

$$+ (1-D\sin\theta)(\beta\zeta-D\cos\theta)e^{-i\gamma(1-M\sin\theta)D/\beta^{2}} dD d\theta$$

Upon integrating Eq. (30) with respect to D, and separating into its real and imaginary components in the form of Eq. (19), the characteristic radiation resistance for the subsonic flow case is:

$$R = -\frac{1}{\pi\gamma} \left[\int_{0}^{\tan^{-1}\beta\xi} \frac{\sin[\gamma(\sec\theta + M)/\beta^{2}]}{(\sec\theta + M)^{2}} + \frac{\sec\theta}{\sin[\gamma(\sec\theta - M)/\beta^{2}]} d\theta \right]$$

$$- \int_{0}^{\cot^{-1}\beta\xi} \frac{\sin[\gamma(\sec\theta + M)/\beta^{2}]}{(\sin\theta - \frac{\cos\theta}{\beta\xi})} \left[\frac{\sin[\gamma(\sec\theta + M)/\beta^{2}]}{(1 + M\sin\theta)^{2}} + \frac{\sin[\gamma(\sec\theta - M)/\beta^{2}]}{(1 - M\sin\theta)^{2}} \right] d\theta$$

$$- \int_{0}^{2\pi} \frac{\sin\theta\cos\theta}{\gamma\xi} \left[\frac{\cos[\gamma(\sec\theta + M\sin\theta)/\beta]}{(1 + M\sin\theta)^{2}} + \frac{\cos[\gamma(\sec\theta + M\sin\theta)/\beta]}{(1 - M\sin\theta)^{2}} \right] d\theta$$

$$(31)$$

$$+\frac{\beta}{\gamma \xi} \left[\frac{\cos \left[\gamma \left(\sqrt{1 + \left(\beta \xi \right)^2} + M \right) / \beta^2 \right]}{\left(\sqrt{1 + \left(\beta \xi \right)^2} + N \right)^2} + \frac{\cos \left[\gamma \left(\sqrt{1 + \left(\beta \xi \right)^2} - M \right) / \beta^2 \right]}{\left(\sqrt{1 + \left(\beta \xi \right)^2} - M \right)^2} \right]$$

$$\frac{-\beta \left[\cos \left(\frac{(1+M)}{\beta^2}\right) + \cos \left(\frac{(1-M)}{\beta^2}\right] + \frac{\beta}{\gamma^2} \left[\frac{1}{(1+M)^2} + \frac{1}{(1-M)^2}\right]}{(1-M)^2}$$

$$-\frac{2\gamma}{\beta^{3}}\left[\arctan\left(\frac{1-M}{\beta}\right) + \arctan\left(\frac{1+M}{\beta}\right)\right]$$

And the radiation reactance is,

$$\lambda = \frac{\beta^{3}}{\pi \gamma} \left[-\int_{0}^{\tan \frac{1}{\beta \zeta}} \frac{\sec \theta - \cos \left[\gamma (\sec \theta + m)/\beta^{2} \right]}{(\sec \theta + m)^{2}} + \frac{\sec \theta - \cos \left[\gamma (\sec \theta - m)/\beta^{2} \right]}{(\sec \theta - m)^{2}} \right] d\theta$$

$$+ \int_{0}^{\cot \frac{1}{\beta \zeta}} \frac{\sin \theta - \frac{\cos \theta}{\beta \zeta}}{(\sin \theta - \frac{\cos \theta}{\beta \zeta})} \left[\frac{\cos \left[\gamma (\sec \theta - m)/\beta^{2} \right]}{(1 + m \sin \theta)^{2}} + \frac{\cos \left[\gamma (\sec \theta - m)/\beta \right]}{(1 - m \sin \theta)^{2}} \right] d\theta$$

$$- \int_{0}^{\cot \frac{1}{\beta \zeta}} \frac{2\rho \sin \theta \cos \theta}{\gamma \zeta} \left[\frac{\sin \left[\gamma (\sec \theta - m)/\beta^{2} \right]}{(1 + m \sin \theta)^{3}} + \frac{\sin \left[\gamma (\sec \theta - m \sin \theta)/\beta \right]}{(1 - m \sin \theta)^{3}} \right] d\theta$$

$$+ \frac{\beta}{\gamma \zeta} \left[\frac{\sin \left[\gamma (\sqrt{1 + (\beta \zeta)^{2} + m})/\beta^{2} \right]}{(\sqrt{1 + (\beta \zeta)^{2} + m})^{2}} + \frac{\sin \left[\gamma (\sqrt{1 + (\beta \zeta)^{2} - m})/\beta^{2} \right]}{(\sqrt{1 + (\beta \zeta)^{2} - m})^{2}} \right]$$

$$- \frac{\beta}{\gamma \zeta} \left[\frac{\sin \left[\gamma (1 + m)/\beta^{2} \right]}{(1 + m)^{2}} + \frac{\sin \left[\gamma (1 - m)/\beta^{2} \right]}{(1 - m)^{2}} + \frac{1}{\beta \zeta} \left[\frac{1}{1 + m} + \frac{1}{1 - m} \right] + \frac{2}{\beta^{2}}$$

$$- \frac{2m}{\beta^{3}} \left[\arctan \left[\frac{1 - m}{\beta} \right] - \arctan \left(\frac{1 + m}{\beta} \right) \right]$$

As a matter of interest, the above equations for R and X are equal to Eqs. (20) and (21) if zero Mach number is substituted.

WADD TR 61-75

To summarize, equations for radiation resistance and reactance have been developed in terms of three parameters; (1), the ratio of cavity width to length, (2) the normalized frequency parameter, kL_x, and (3) Mach number. Calculations for R and X were performed on a digital computer using numerical integration routines.

b. Supersonic Velocities

The assumptions made in deriving the radiation impedance for a cavity in a supersonic flow are the same as those for subsonic flow except as follows:

- (1) The effect of a source at (x, y) is felt only at points (x', y') within the Mach cone with origin at (x, y). The enclosed half-angle, γ , of this cone is $\sin^{-1} 1/M$. Outside the conical region the effect of the source at (x, y) is zero.
- (2) The pressure at field point (x', y') has a double solution, instead of the single solution for the subsonic case. The field point, (x', y') at a particular instant of time, t, is influenced by two wave fronts which originated at time t₁ and t₂ earlier. A wave generated at (x, y) at t₁ radiates spherically with velocity of sound c and is carried downstream with supersonic velocity u_f. The spherical wave is therefore traveling downstream at a velocity greater than the speed of sound, so that the field point (x', y') will both enter and leave a particular wave, which is not possible in the subsonic case. Therefore at time t, the field point will be emerging from a wave generated at time t₁ and penetrating a wave front generated at time t₂ (t>t₂>t₁).

The equation for differential pressure at x1, y1 with source at x, y is

$$dp = \frac{i\omega u_p e^{i\omega t}}{2\pi} \left(\frac{ik \left[-h(x'-x) - D_s\right]/\beta_s^2 + e^{ik \left[-h(x'-x) + D_s\right]/\beta_s^2}}{D_s} \right) ax dy$$
 (33)

where

$$D_{s} = \sqrt{(x^{1} - x)^{2} - \beta_{s}^{2}(y^{1} - y)^{2}} \qquad \beta_{s}^{2} = n^{2} - 1$$
 (34)

The next step in deriving the radiation impedance is to determine the limits of integration. It is seen from Fig. 2a that if $\sin \gamma = 1/M$, then $\tan \phi = \sqrt{M^2 - 1} = \beta_s$. The pressure at (x', y') is the sum of differential pressures received from sources bounded by the Mach cone opening in the negative x direction with origin at (x', y') and the upstream boundarys of the cavity. By examination of Fig. 2a and Fig. 2b it is seen that the integral equation for pressure at a point (x', y') in region 1, from sources in the shaded area, will have different limits than the integration for pressure at (x', y') in region II. The dotted line in Figs. 2a and 2b separate region I and II. The angle Δ between the line separating the two

FIGURE 2a.
ILLUSTRATING PRESSURE
POINT (x', y') IN REGION I

FIGURE 2b.
ILLUSTRATING PRESSURE
POINT (x', y') IN REGION II

regions and the x axis is defined by

$$\Delta = \tan^{-1} \left(\frac{1}{\sqrt{h^2 - 1}} \right) = \tan^{-1} (1/\beta_8)$$

and the angle δ , separating the radial vector from 0 to (x $^{\iota}$, y $^{\iota}$) and the x axis is defined by

$$\delta = \tan^{-1}(y'/x')$$

Therefore if $\delta < \Delta$, the point (x', y') is in region 1 and if $\delta > \Delta$, (x', y') is in region 11.

The pressure at (x', y') for (x', y') in region 1, using Fig. 3a, is as follows. The limits for the x integration, holding y constant, will be from 0 to the intersection point of the Mach cone along the x axis which is

$$x' - (y' - y) \tan \phi - x' - (y' - y) \beta_s$$

The y limits for the shaded area called region A are from 0 to y'. Therefore the pressure at (x', y') is

$$g(x,y') = \int_{0}^{y'} \int_{0}^{x'} - (y'-y)\beta_{g}$$

The x limits of integration in region II from inspection of Fig. 3b are as in the previous integration 0 to $x'-(y'-y)\beta_B$. In setting up the y limits it is necessary to find the point of intersection with the y axis of the lower part of the Mach cone. This point is $y'-x'/\tan \varphi = y'-x'/\beta_B$. Then the y limits are $y'-x'/\beta_B$ to y'. Therefore the pressure contributed to (x', y') from the shaded region of Fig. 3b is

$$p(x,y') = \int_{y'-x'/\beta_s}^{y'} \int_{s'}^{x'-(y'-y)\beta_s}^{(dy)}$$

FIGURE 3a.
ILLUSTRATING LIMITS OF
INTEGRATION FOR THE
SUPERSONIC PRESSURE
EQUATION

FIGURE 36.
ILLUSTRATING LIMITS OF INTEGRATION FOR THE SUPERSONIC PRESSURE EQUATION

As in the preceding impedance derivations, once the pressure at point (x', y') is known, the force on the piston can be calculated. However, in the case now under consideration there are some problems. Regions I and II defined in the derivation of pressure each may have two different geometric shapes as seen in Figs. 4a and 4b. In Fig. 4a $\Delta > \tan^{-1} (L_y/L_x)$ or $I/\beta_s > (L_y/L_x)$ and in Fig. 4b. $\Delta < \tan^{-1} (L_y/L_x)$ or

 $1/\beta_s < L/L_x$

FIGURE 4a.

SHOWING LIMITS OF
INTEGRATION FOR THE
SUPERSONIC FORCE INTEGRAL

FIGURE 46.
SHOWING LIMITS OF
INTEGRATION FOR THE
SUPERSONIC FORCE INTEGRAL

First, the force on area $L_x L_y$ will be derived for $\Delta \ge \tan^{-1} (L_y/L_x)$. In region I, the x' limits of integration are from a to L_x where $a = y'/\tan \Delta = y'\beta_g$ and the y' limits are 0 to L_y . For region II the x' limits of integration are 0 to $a = y'\beta_g$ and the y' limits are 0 to L_y . Using these limits, the force integral is

$$F = \int_{0}^{L_{y}} \int_{y}^{L_{x}} p_{p}(\text{region I}) dx'dy' + \int_{0}^{L_{y}} \int_{0}^{y'\beta} p_{p}(\text{region II}) dx'dy'$$

or, noting that the force from region B is equal to the force from region A when integrating pressure over the total area $L_x L_y$, with respect to dx',dy', the force is

$$F = 2 \int_{y'}^{y} \int_{y'}^{x} \int_{\beta}^{x} \int_{\beta}^{y'} (dp_{\beta}) dx dy dx'dy'$$

$$+2\int_{0}^{L_{y}}\int_{y}^{y'}\beta_{s}\int_{y'-x'/\beta_{s}}^{y'}\int_{z'-x'/\beta_{s}}^{x'-(y'-y)\beta_{s}}(dp) dx dy dx'dy'$$
(35)

For $\Delta \leq \tan^{-1}(L_x/L_y)$ or $(\beta_g L_y/L_x) \geq 1$ the order of integration for force is reversed to dy' dx'. For region I, from Figure 4b, the y limits are 0 to x' tan $\Delta = x'/\beta_g$, and x' limits are 0 to L_x . In region II, y' limits are x'/ β_g to Ly and x' limits are 0 to L_x . Using these limits the force is

$$F = \int_{0}^{L} x \int_{0}^{x^{'}/\beta_{s}} p_{p}(\text{region I}) \, dy' dx' + \int_{0}^{L} x \int_{x/\beta_{s}}^{L} p_{p}(\text{region II}) \, dy' dx'$$

or substituting in the expressions for

$$F = \int_{0}^{L_{x}} \int_{0}^{x/\mu_{s}} \int_{0}^{y'} \int_{0}^{x'-(y'-y)\mu_{s}} (dp) dx dy dy' dx'$$

$$+ \int_{0}^{L_{x}} \int_{x/\mu_{s}}^{L_{y}} \int_{y'-x/\mu_{s}}^{y'-(y'-y)\mu_{s}} (dp) dx dy dy' dx'$$
(36)

Now that the limits of integration have been established the radiation impedance $\mathbf{Z}_{\mathbf{r}}$ can be set up and solved .

The first case to be integrated is for $\beta L/L \leq 1$. Substituting Eqs. (34) in Eq. (35) the radiation impedance Yequation is

$$Z_{r} = \frac{i\omega\sigma}{\pi} \int_{0}^{L_{y}} \int_{y'\beta_{s}}^{L_{x}} \int_{y'\beta_{s}}^{y'} \int_{y'\beta_{s}}^{x'-(y'-y)\beta_{s}} dx dy dx'dy'$$

$$+ \frac{i\omega\sigma}{\pi} \int_{0}^{L_{y}} \int_{y'\beta_{s}}^{y'\beta_{s}} \int_{y'-x/\beta_{s}}^{y'} \int_{0}^{x'-(y'-y)\beta_{s}}^{y'-y'\beta_{s}} dx dy dx'dy'$$
(37)

WADD TR 61-75

where

$$F(x,y,x,y') = (1/D_s) \left[e^{ik \left[-M(x'-x) - D_s \right] / \beta_s^2} + e^{ik \left[-M(x'-x) + D_s \right] / \beta_s^2} \right]$$

By changing variables, the function $\mathbb{E}(x, y, x', y')$ can be made dependent upon two variables instead of four as stated above. The following indicated changes are therefore made:

$$x'-x=\xi$$
 $\beta_{s}(y'-y)=\eta$

Then

(38)

$$F(\xi,\eta) = (1/D_g) \left[e^{ik(M\xi + D_g)/\beta_g^2} + e^{-ik(M\xi - D_g)/\beta_g^2} \right]$$

where

$$D_s = \sqrt{\xi^2 - \eta^2}$$

and changing limits in Eq. (37), the resulting equation for Z_r is

$$Z_{\mathbf{r}} = \frac{1\omega\sigma}{\pi\beta_{\mathbf{s}}} \int_{0}^{L_{\mathbf{y}}} \int_{\beta_{\mathbf{s}}y}^{L_{\mathbf{x}}} \int_{0}^{\beta_{\mathbf{s}}y} \int_{\eta}^{x} F(\xi,\eta) d\xi d\eta dx'dy'$$

$$+ \frac{1\omega\sigma}{\pi\beta_{\mathbf{s}}} \int_{0}^{L_{\mathbf{y}}} \int_{0}^{\beta_{\mathbf{s}}y} \int_{\eta}^{x} F(\xi,\eta) d\xi d\eta dx'dy'$$
(39)

Upon interchanging the order of integration, the above equation for Z, is

$$z_{\mathbf{r}} = \frac{1\omega\sigma}{\pi\beta_{\mathbf{s}}^{2}} \int_{0}^{\mu_{\mathbf{s}}^{\perp}\mathbf{y}} \int_{\eta}^{L_{\mathbf{x}}} \int_{\eta}^{\beta_{\mathbf{s}}^{\perp}\mathbf{y}} \int_{\xi}^{L_{\mathbf{x}}} \mathbf{F}(\xi,\eta) \, d\mathbf{x}' d\mathbf{y}' d\xi \, d\eta$$
(40)

After integration with respect to x' and y', Eq. (40) reduces to

$$Z_{r} = \frac{1007}{\pi \beta_{s}^{2}} \int_{0}^{\beta_{s}^{L}y} \int_{\eta}^{L_{x}} (L_{x} - \xi) (\beta_{s}L_{y} - \eta) F(\xi, \eta) d\xi d\eta$$
 (41)

The next step in solving for supersonic impedance is to use the normalizing factors of Eq. (12), requiring the following form:

$$Z_{r} = \frac{i\omega\sigma L_{x}^{3}}{\pi\mu_{s}^{2}} \int_{0}^{\beta_{s}^{2}} \int_{v}^{1} (1 - u)(\beta_{s}\chi - v) F(u,v) du dv$$
 (42)

where

$$F(u,v) = \left(\frac{1}{\sqrt{u^2 - v^2}}\right) \left(e^{-i\gamma(Mu + \sqrt{u^2 - v^2})/\beta_B^2} + e^{-i\gamma(Mu - \sqrt{u^2 - v^2})/\beta_B^2}\right)$$

In order to simplify the above equation, another change of variables must be incorporated. Let $D_c = \sqrt{u^2 v^2}$ and $\sin \theta = v/u$. Using Jacobian transformations,

$$du dv = D_{s} \sec \theta dD_{s} d\theta$$
 (43)

Solving the above relationships for u and v it is seen that

$$u = D_s \sec \theta \quad v = D_s \tan \theta$$
 (44)

From Fig. 5, the area of integration is bounded by $(0, 1, \beta_s \zeta, A)$. For simplicity the angle δ_s is used in setting limits. The integration is to be divided into two triangles, one bounded by $(0, 1, \beta_s \zeta)$ and the other bounded by $(0, \beta_s \zeta, A)$. In the lower triangle the limits on δ_s are from 0 to $\tan^{-1}(\beta_s \zeta)$. The variable $D_s = \sqrt{u^2 - v^2}$ can be visualized by rotating the vector u' about the point (u', 0) until it intersects a line parallel to the u-axis that also intersects the point (u', v'). The variable D_s is the distance between (u', v') and the intersection of the vector u' with the parallel. The relationship between θ and δ_s is $\sin \theta = (v'/u') = \tan (\delta_s)$. When a point (u = 1, v) is considered $\tan \delta_s = v = \sin \theta$. With the relationship $D_s = \sqrt{u^2 - v^2}$ the upper limit for D_s is $\sqrt{1-\sin^2\theta} = \cos \theta$ and the lower limit is 0. The upper limit for θ is $\theta = \sin^{-1}(v/u) = \sin^{-1}(\beta_s \zeta)$.

FIGURE 5.
ILLUSTRATING CHANGE FROM
RECTANGULAR TO CYLINDRICAL
COORDINATES FOR SUPERSONIC
IMPEDANCE INTEGRAL

For the upper triangle, δ_g varies from $\tan^{-1}(\beta_g \zeta)$ to $\pi/4$. When the point $(u, v = \beta_g \zeta)$ is considered $\tan \delta_g = \beta_g \zeta/u^{\dagger}$ and $D_s = \sqrt{(\beta_g \zeta)^2 \cot^2 \delta_g - (\beta_g \zeta)^2} = \beta_g \zeta \cot \theta$. Using these limits, the equation for impedance is

$$Z_{r} = \frac{i\omega\sigma L_{x}^{3}}{\pi\rho_{s}^{2}} \int_{0}^{\sin^{-1}\beta_{s}\xi} \int_{0}^{\cos\theta} (\beta_{s}\xi - D_{s}\tan\theta)(1 - D_{s}\sec\theta) F(D_{s},\theta) dD_{s} d\theta$$

$$+ \frac{i\omega\sigma L_{x}^{3}}{\pi\rho_{s}^{2}} \int_{\sin^{-1}\beta_{s}\xi}^{\pi/2} \int_{0}^{\beta_{s}\xi} \cot\theta (\beta_{s}\xi - D_{s}\tan\theta)(1 - D_{s}\sec\theta) F(D_{s},\theta) dD_{s} d\theta$$

$$(45)$$

where

$$F(D_s,\theta) = (\sec \theta) \left(e^{-i\gamma(M \sec \theta + 1)D_s/\beta_s^2} + e^{-i\gamma(M \sec \theta - 1)D_s/\beta_s^2} \right)$$

Integrating Eq. (45) with respect to D_s and separating the real and imaginary parts as was done in Eqs. (32) and (33), for the subsonic medium, the equation for normalized radiation resistance, R, becomes

$$R = \frac{-\frac{2}{\pi \xi \gamma}}{\frac{1}{\beta s}} \left[\frac{\sin \theta}{\sin \theta} + \frac{\sin (M + \cos \theta)/\beta s \cos \theta}{(M + \cos \theta)^2} + \frac{\sin (\gamma (M - \cos \theta)/\beta s \cos \theta)}{(M - \cos \theta)^2} \right] d\theta$$

$$+ \int_{\sin^{-1}\beta s}^{\pi/2} \left(\frac{\sin \theta}{(M + \cos \theta)^2} + \frac{\beta s \xi \cot \theta \csc \theta}{(M + \cos \theta)} \sin \left[\xi \gamma (M \cos \theta + \cot \theta)/\beta s \right] d\theta$$

$$+ \int_{\sin^{-1}\beta s}^{\pi/2} \left(\frac{\sin \theta}{(M - \cos \theta)^2} - \frac{\beta s \xi \cot \theta \csc \theta}{(M - \cos \theta)} \sin \left[\xi \gamma (M \csc \theta - \cot \theta)/\beta s \right] d\theta$$

$$+ \frac{\beta s \cos \left[\gamma (M + 1)/\beta s \right]}{\gamma (M + 1)^2} - \frac{\beta s \cos \left[\gamma (M - 1)/\beta s \right]}{\gamma (M - 1)^2} + \frac{\lambda M}{\gamma^2} - \frac{\pi \xi \gamma}{\beta s}$$

$$(46)$$

and the normalized radiation reactance is

$$X = \frac{-\mu_{\rm g}^2}{\pi \lambda \gamma} \left[\mu_{\rm g} \xi \int_0^{\sin^{-1} \beta} \frac{1}{s} \xi \left(\frac{\cos \left[\gamma (M + \cos \theta) / \beta_{\rm g}^2 \right]}{(M + \cos \theta)^2} + \frac{\cos \left[\gamma (M - \cos \theta) / \beta_{\rm g}^2 \right]}{(M - \cos \theta)^2} \right) \cos \theta \, d\theta$$

$$+ \int_{\sin^{-1} \beta_{\rm g} \xi}^{\pi/2} \left(\frac{\sin \theta}{(M + \cos \theta)^2} + \frac{\mu_{\rm g} \xi \cot \theta \csc \theta}{(M + \cos \theta)} \cos \left[\xi \gamma (M \csc \theta + \cot \theta) / \mu_{\rm g} \right] \, d\theta \quad (47)$$

$$+ \int_{\sin^{-1} \beta_{\rm g} \xi}^{\pi/2} \left(\frac{\sin \theta}{(M - \cos \theta)^2} - \frac{\mu_{\rm g} \xi \cot \theta \csc \theta}{(M - \cos \theta)} \cos \left[\xi \gamma (M \csc \theta - \cot \theta) / \mu_{\rm g} \right] \, d\theta$$

$$- \frac{\mu_{\rm g}^2 \sin \left[\gamma (M + 1) / \mu_{\rm g}^2 \right]}{\gamma (M + 1)^2} + \frac{\mu_{\rm g}^2 \sin \left[\gamma (M - 1) / \mu_{\rm g}^2 \right]}{\gamma (M - 1)^2} - \frac{2}{\mu_{\rm g}^2} + \frac{\pi \xi M}{\mu_{\rm g}^2} \right]$$

From Eq. (36) for 6.2 2 1 the equation for radiation impedance is:

$$Z_{\mathbf{r}} = \frac{1\omega\sigma}{\pi} \int_{0}^{L} \int_{\mathbf{x}/\beta_{\mathbf{s}}}^{\mathbf{x}/\beta_{\mathbf{s}}} \int_{0}^{\mathbf{y}'} \int_{\mathbf{x}'-\mathbf{x}/\beta_{\mathbf{s}}}^{\mathbf{x}'-(\mathbf{y}'-\mathbf{y})\beta_{\mathbf{s}}} \int_{\mathbf{x}'-(\mathbf{y}'-\mathbf{y})\beta_{\mathbf{s}}}^{\mathbf{x}} \int_{\mathbf{x}'-\mathbf{x}/\beta_{\mathbf{s}}}^{\mathbf{x}'-(\mathbf{y}'-\mathbf{y})\beta_{\mathbf{s}}} \int_{\mathbf{x}'-\mathbf{x}/\beta_{\mathbf{$$

where F(x, y, x', y') is defined in Eq. (37).

Using the substitutions and changes of variables of Eqs. (38) - (45), the equation for the radiation resistance is:

$$R = -\frac{\beta_{s}^{2}}{\pi \xi \gamma} \left[\beta_{s} \xi \int_{0}^{\pi/2} \frac{\sin \left[\gamma (M + \cos \theta) / \beta_{s}^{2} \right]}{(M + \cos \theta)^{2}} + \frac{\sin \left[\gamma (M - \cos \theta) / \beta_{s}^{2} \right]}{(M - \cos \theta)^{2}} \cos \theta d\theta + \frac{\beta_{s}^{2} \cos \left[\gamma (M + 1) / \beta_{s}^{2} \right]}{\gamma (M + 1)^{2}} - \frac{\beta_{s}^{2} \cos \left[\gamma (M - 1) / \beta_{s}^{2} \right]}{\gamma (M - 1)^{2}} + \frac{\mu_{M}}{\gamma^{2}} - \frac{\pi \xi \gamma}{\beta_{s}^{2}} \right]$$
(49)

With the formulation for reactance as seen below,

$$X = -\frac{\mu_{s}^{2}}{\pi \xi \gamma} \left[\beta_{s} \xi \int_{0}^{\pi/2} \frac{\cos \left[\gamma (M + \cos \theta) / \beta_{s}^{2} \right]}{(M + \cos \theta)^{2}} + \frac{\cos \left[\gamma (M - \cos \theta) / \beta_{s}^{2} \right]}{(M - \cos \theta)^{2}} \right] \cos \theta \, d\theta$$

$$-\frac{\beta_{s}^{2} \sin \left[\gamma (M + 1) / \beta_{s}^{2} \right]}{\gamma (M + 1)^{2}} + \frac{\beta_{s}^{2} \sin \left[\gamma (M - 1) / \beta_{s}^{2} \right]}{\gamma (M - 1)^{2}} - \frac{2}{\beta_{s}^{2}} - \frac{\pi \xi M}{\beta_{s}^{2}} \right]$$
(50)

It is of particular interest to note that Eqs. (49) and (50) are equal to Eqs. (46) and (47) if the $\sin^{-1}\beta_B\zeta=\pi/2$. In other words, for $\beta_B\zeta$ greater than 1 the $\sin^{-1}\beta_B\zeta$ is always equal to 90°. This fact is helpful when the impedance is to be calculated using a digital computer.

C. PRESSURE RESPONSE

Experimentally, the results indicate (as will be shown) that for short cavities, or perhaps more inclusively for cavities of length-to-depth ratio of the order of or less than one, the response is almost exclusively in the depth modes. On the other hand, the longer cavities – where length > 1.0 – show definite experimental evidence of response in the length modes.

Mathematically, it is desirable to effect a general solution which accounts for response in any mode, whether it be length, depth, or transverse. At the same time, it is recognized that a theoretical simplification can be realized if the assumption of a depth-mode predominance is justifiable. Thus the following is concerned with both developments, first the general case and then the simplified case.

1. GENERAL SOLUTION

To effect the general solution, it is hypothesized that the problem comprises one of determining the characteristic response of a rectangular enclosure. The enclosure is assumed to be bounded on five sides by walls of infinite impedance (i.e., rigid walls) and on the sixth by a finite complex impedance which is the radiation impedance determined in the preceding section.

As shown by Morse (Ref. 3), the characteristic response function of the enclosure is

$$\phi_{N} = \cosh\left(\frac{\pi g_{N}^{z}}{L_{z}}\right) \cos\left(\frac{\pi n_{x}^{y}}{L_{y}}\right) \cos\left(\frac{\pi n_{x}^{x}}{L_{x}}\right) \tag{51}$$

where

Lz is the depth of the cavity
Ly is the width of the cavity
Lx is the length of the cavity
ny, nx are integers denoting the modes in the y and x directions.

The parameter g_n appears in lieu of n_z because of the finite impedance terminating the cavity at $z = L_z$. It is defined by the following equation.

$$g_n \tanh(\pi g_n) = i \left[\frac{\gamma L_z}{\pi L_x (R + i\lambda)} \right]$$
 (52)

The solution of Eq. (52) is complex, such that

$$g_n = \xi_{n+} i \eta_n \tag{53}$$

The roots ξ_n , η_n are calculated from Eq. (52) using iterative methods. Upon separating Eq. (52) into real and imaginary components the following equations are obtained.

$$\cot(\pi\eta_n) = \frac{\eta_n \cosh(\pi\xi_n) - \left[\gamma L_z R / \pi L_x (R^2 + X^2) \right] \sinh(\pi\xi_n)}{\xi_n \sinh(\pi\xi_n) - \left[\gamma L_z X / \pi L_x (R^2 + X^2) \right] \cosh(\pi\xi_n)}$$

$$\cot(\pi\eta_n) = -\frac{\xi_n \cosh(\pi\xi_n) - \left[\gamma L_z X / \pi L_x (R^2 + X^2) \right] \sinh(\pi\xi_n)}{\eta_n \sinh(\pi\xi_n) - \left[\gamma L_z X / \pi L_x (R^2 + X^2) \right] \cosh(\pi\xi_n)}$$
(53a)

From the above equations, an expression for $\ \eta_n$ in terms of $\ \xi_n$ can be obtained and is

$$+ \frac{\gamma L_{\mathbf{x}} R \cdot \coth(2\pi \xi_{\mathbf{n}})}{\pi L_{\mathbf{x}} (R^{2} + \mathbf{x}^{2})}$$

$$+ \sqrt{\frac{\gamma L_{\mathbf{x}} R \cdot \coth(2\pi \xi_{\mathbf{n}})}{\pi L_{\mathbf{x}} (R^{2} + \mathbf{x}^{2})}}^{2} + \frac{2\gamma L_{\mathbf{x}} X \xi_{\mathbf{n}} \coth(2\pi \xi_{\mathbf{n}})}{\pi L_{\mathbf{x}} (R^{2} + \mathbf{x}^{2})} - \left[\frac{(\gamma L_{\mathbf{x}} / \pi L_{\mathbf{x}})^{2}}{(R^{2} + \mathbf{x}^{2})} + \xi_{\mathbf{n}}^{2}\right]}$$
(53b)

Using the first of Eq. (53a) the following form is also derived.

$$F_{\underline{+}} = \cos(\pi \eta_n) \left[\xi_n \sinh(\pi \xi_n) - \left(\gamma L_z x / \pi L_x (R^2 + x^2) \right) \cosh(\pi \xi_n) \right]$$

$$- \sin(\pi \eta_n) \left[\eta_n \cosh(\pi \xi_n) - \left(\gamma L_z R / \pi L_x (R^2 + x^2) \right) \sinh(\pi \xi_n) \right]$$
(53c)

In order to numerically obtain a root from Eqs. (53b) and (53c), a value of ξ_n is chosen and substituted into the equation for η_n . This gives two values for η_n which are used in Eq. (53c) to solve for values of F+ and F-, F+ denoting the results using the positive radical and F- using the negative radical. When a pair of values ξ_n , η_n give a zero value of F± a solution is obtained.

The characteristic frequency equation, in terms of g_n , is (Ref. 3)

$$\omega_{\rm N}^2 = (\pi c)^2 \left[\left(\frac{n_{\rm x}}{L_{\rm x}} \right)^2 + \left(\frac{n_{\rm y}}{L_{\rm y}} \right)^2 - \left(\frac{g_{\rm n}}{L_{\rm z}} \right)^2 \right]$$
 (54)

which yields the resonant frequencies of the cavity by iteration. The iterative process is necessary because of the frequency-dependent nature of g_n .

The magnitude of the response is determined on the premise that the cavity is forced by a simple source positioned randomly over the cavity opening. The equation for pressure at a point (x, y, z) can then be written, after Morse (Ref. 3), as

$$p_{p}(x,y,z) = \frac{i\omega\sigma^{2}\sigma e^{-i\omega t}}{V}A(x,y,z')\sum_{N} \frac{\phi_{N}(x,y,z) \phi_{N}(x,y,z')}{\lambda_{N}(\omega^{2}-\omega_{N}^{2})}$$
(55)

where

$$\lambda_{N} = \frac{\varepsilon_{n_{x}} \varepsilon_{n_{y}}}{16\pi g_{n}} \left[\sinh(2\pi g_{n}) + 2\pi g_{n} \right]$$

$$n_{x} = 0, \ \varepsilon_{n_{x}} = 2; \ n_{x} > 0, \ \varepsilon_{n_{x}} = 1$$

$$n_{y} = 0, \ \varepsilon_{n_{y}} = 2; \ n_{y} > 0, \ \varepsilon_{n_{y}} = 1$$
(56)

It is convenient to normalize Eq. (56) for more general results. Thus, let

$$f = \gamma c / 2\pi L_{x} \tag{57}$$

after which, leaving out the time variations, Eq. (56) can be written in the normalized form

$$\frac{p(x,y,z) = \frac{i16\pi oc \gamma_{A}(x,y,z')}{L_{y}L_{z}} \sum_{n} \sum_{n} \sum_{n} \left[\frac{g_{n}\phi_{N}(x,y,z)\phi_{N}(x,y,z')}{\varepsilon_{n}\varepsilon_{n}} \frac{g_{n}\phi_{N}(x,y,z)\phi_{N}(x,y,z')}{\varepsilon_{n}\varepsilon_{n}} \right] \left[\frac{1}{\gamma^{2} - (\pi L_{x})^{2} \left[(n_{x}/L_{x})^{2} + (n_{y}/L_{y})^{2} - (g_{n}/L_{z})^{2} \right]} \right] (58)$$

where A (x', y', z') is the strength of the simple source.

2. SIMPLIFIED SOLUTION

If the response of the cavity is entirely that which arises from excitation of depth modes, as the experimental results seem to verify for length-to-depth ratios of less than approximately one, it is more convenient to write the cavity pressure as

$$p_{p} = \frac{ip_{o}\cos\left[(2\pi/\lambda)(L_{z}-z)\right]}{\sum_{c}\sinh(2\pi L_{z}/\lambda)}$$
(59)

where ζ_{c} is the specific acoustic impedance of the cavity at the open end, and

$$\xi_{c} = R + i \left[X - \cot(2\pi L_{z}/\lambda) \right]$$
 (60)

Again expressing the amplitude response in terms of an amplification, there results the final equation

$$p/p_{o} = \left[\left[R \sin(\gamma L_{z}/L_{x}) \right]^{2} + \left[X \sin(\gamma L_{z}/L_{x}) - \cos(\gamma L_{y}/L_{x}) \right]^{2} \right]^{-\frac{1}{2}}$$
(61)

III - EXPERIMENTAL TECHNIQUES

A. TEST ARTICLES

1. EXPLORATORY

Exploratory tests were performed in Lockheed's four-inch subsonic supersonic tunnel, shown in Figure 6 schematically. The cavity test article consisted of three interchangeable cavities which were mounted in a specially designed section of the tunnel wall. Cavities of 0.5, 1.0, and 1.5 inch lengths, 1.0 inch width and 1.0 inch depth were used. The cavity floor and tunnel wall 1.0 inch upstream and downstream of the cavity were instrumented with high intensity microphones. Sound data from these were recorded on tape and analyzed for frequency and amplitude content. Static pressure and temperature data were observed from visual indicators. The tests were conducted at subsonic Mach numbers from 0.20 to 0.86 and at a single supersonic Mach number of 3.0.

2. WIND-TUNNEL MODEL

a. General

Supersonic tests were performed in the 40 X 40 inch tunnel at AEDC, Tullahoma, Tennessee, through a range of Mach numbers from 1.75 to 5.0. The model comprised a cylindrical body of revolution having a 15-calibre ogive nose section, and a rectangular recess of variable dimensions located near the front of the cylindrical section, as shown in Figures 7(a), 7(b), & 7(c). Cavities with lengths of .5 to 8.0 inches, depths of 1.0 to 3.5 inches and widths of 2.0 and 4.0 inches were tested. Sound data were obtained with thirteen flush-mounted high-intensity microphones and recorded on tape for subsequent analysis. Figure 8 gives a schematic diagram of the instrumentation used. Static pressure, Mach number, and temperature data were recorded automatically and printed out by a computer. Schlieren movies were taken of the flow in the vicinity of the cavity. Boundary layer profiles along the model exterior surface (90° away from the cavity but at the same longitudinal location as the leading edge of the cavity) were measured with a pressure rake. Further definition of the boundary layer was obtained through a limited number of hot-wire measurements of the longitudinal component of turbulence.

b. Model Mechanism

The variable cavity mechanism made it possible to change cavity size without opening the tunnel repeatedly. The cavity floor was designed to permit depths of 1.0" and 2.5". Motor – controlled slugs allowed any desired cavity length for either depth. A third slug was also provided so that cavities with a depth of 4.5 inches could be tested; however, due to a malfunction shortly before the test, this feature could not be used. Control circuitry was varied during certain phases of the test program so that a wider range of depths could be investigated at 8" cavity length.

Widths of 2.0" and 4.0" were tested over comparable length and depth ranges. The basic mechanism involved the 4" width, with provisions for inserts and a different floor and movable slugs to convert to a 2" width. A remote motor control permitted cavity dimensions to be varied from outside the tunnel. All data cables, tubes and control wires were run through the model sting and then out of tunnel. Microphone and pressure tubes had flexible cabling and tubing to permit movement of the various parts.

B. INSTRUMENTATION AND TEST PROCEDURES

1. SOUND PRESSURE

Sound pressure levels were measured with 13 high intensity Altec BR-180 and BR-200 probe microphones. Ten microphones were mounted in the cavity floor for the 4-inch-width configuration, 2 in the rear wall and one on the model surface 1 inch upstream of the cavity. In the 2-inch-width configuration four microphones were mounted in the floor. Figure 9(a) gives a location diagram for the microphones, and illustrates the mounting procedure used. The probe tip in each installation was isolated from metal-to-metal contact by means of a layer of resilient tape, as indicated in Figure 9(b).

Four of the microphones used were standard Altec-BR-180-3 probe microphones. The remainder were either BR-180-1 or BR-200-1 microphones fitted with probe tubes fabricated for the investigation. These tubes were somewhat shorter than the Altec probe, but were found from comparative laboratory calibrations conducted in a small anechoic chamber to produce satisfactory response characteristics up to 8000 cps. Above that frequency the modified probe in conjunction with the BR-180-1 series of transducers produced a more rapid decrease in sensitivity than the commercial system.

Microphone outputs were carried from the model to decade amplifiers where necessary. The signals then went to a C.E.C. 14 channel recorder, on which half the channels were recorded by frequency-modulation techniques and the remaining half by direct-record techniques. Daily field calibrations of microphones and system were made as a matter of operating routine.

2. STATIC PRESSURE

Static pressures were measured by means of 8 flush-mounted pressure pickups in the cavity floor, 2 pickups in the rear wall, 1 pickup on the model exterior and five pickups in the boundary-layer rake. Locations of the pickups are shown in Figure 9 (a). Actual location of the exterior pickup and the rake was previously described. Pressures were transmitted by steel tubing to C. E. C. electro-dynamic pressure transducers and associated instrumentation. This instrumentation resulted in punched data on a paper tape which was in turn read and printed out by a computer. The computer also calculated and printed out Mach number data from the pressure and temperature data which comprised its input.

3. OPTICAL

High-speed Schlieren movies at 8000 frames per second were made of the flow in the vicinity of the cavity for every condition tested. These movies were taken with a Fastax 16 mm movie camera, modified to take 8 mm exposures in order to achieve the desired frame speed. All photographs were taken with the Schlieren knife edge in the horizontal position. In some cases regular-speed movies were taken from direct views into the cavity, which was coated with ultraviolet sensitive oil. These pictures show flow patterns on the model surface and cavity interiors.

4. DATA REDUCTION

In the 40" by 40" supersonic tests, simultaneous tape recording of all microphones used required only about one minute total tunnel time for a given condition. One

minute was considered the necessary time to obtain a good sample of noise data.

Automatic readout and printout of pressure, temperature, and Mach number required only a few seconds. Thus data for a given run was back in the control booth usually in about five minutes. In this way close check was kept on the data for unusual occurrences.

29

FIGURE 7 (b). MODEL, TOP VIEW

FIGURE 7 (c). CAVITY CONFIGURATION

A STATE OF THE STA

FIGURE 9. TRANSDUCER LOCATIONS AND MOUNTING DETAILS

IV - EXPERIMENTAL RESULTS - EXPLORATORY

In order to gain better insight into the problem of cavity response, a series of exploratory tests was performed with the arrangement shown in Figure 6. Three cavity sizes, comprising lengths of 0.5", 1.0", and 1.5" were tested over a range of subsonic Mach numbers from 0.2 to 0.9 and at a single supersonic Mach number of 3.0. In all cases cavity width and depth were held constant at 1.0". As discussed previously, sound pressure levels were observed at either one or two points in the cavity floor, depending upon cavity length, and at a point 1.0" forward of the cavity in the tunnel wall. As a matter of interest, levels were also observed at a point in the tunnel wall approximately 1.0", downstream of the cavity. Data were recorded on a two-channel tape recorder for later spectral analysis with a 1/3 octave spectrometer.

A. EFFECT OF MACH NUMBER

Figure 10 illustrates the spectra of sound pressure observed in the cavity of 1.0° length at each subsonic Mach number tested. The first clearly-discernible sign of resonant response occured at approximately 0.2 Mach number, at which point the 1/3-octave analyses exhibit a pronounced peak in the spectrum in the vicinity of 2000 cps, and a lesser peak at about 8000 cps. The same peaks appear at a lower level in the upstream spectrum, indicating that radiation from the cavity is taking place.

As Mach number is increased, there is a rapid rise in the sound pressure level associated with the lower mode, such that a maximum level of 152 db occured at Mach 0.665. Further increase of Mach number results in decrease of response in this mode up to the limit of the tests, or Mach 0.86.

It is noted that the same Mach number which maximizes this lower-mode response also represents the clear onset of response in another mode of higher frequency. This response, at approximately 8,500 cps, is visable in the spectrum at all Mach numbers, but is of considerably lower level than that of the lower mode up through a Mach number of 0.665. Above that Mach number, however, a rapid increase in level of this higher-frequency response occurs, such that at Mach 0.835 it is the predominant response, with a SPL of 161 db.

Insofar as the frequency of response is concerned, an increase in Mach number produces an increase in frequency of the lower-mode response, although the proportionality is not a direct one. For example, an increase of Mach number by a factor of approximately 4.0 produces a frequency increase of approximately 60%. The high-frequency mode is noted to change still less with Mach number.

On the basis of these results and some indications of the early, simplified theory (to be discussed subsequently), it was concluded that the response of this particular cavity is more nearly that of acoustic resonance than of any other phenomena.

B. SUPERSONIC FLOW

Figure 11 gives the response spectrum of the configuration just discussed at a Mach number of 3.0. It is interesting to note that essentially the same frequencies characterize this response as characterized the high-subsonic response. The magnitude of the response is quite different, however. The higher mode is not predominant, as it was at 0.835 Mach number; and neither response exceeds 132 db. Of course the static

pressure existing in the cavity is appreciably lower in the supersonic test. The level of the boundary layer noise is also observed to be reduced, but not to nearly the extent that SPL in the cavity is.

C. EFFECT OF LENGTH

The effect of cavity length is illustrated by Figure 12 which shows the spectra obtained from cavities of 0.5",1.0",1.5" length at approximately 0.60 Mach number. Certain significant similarities appear. All three cavities, for example, exhibit a peak in the 2700-3200 cps range, which is hypothesized to be the depth mode. The 1.5" cavity appears to involve a more complex response. It contains a very highly predominant peak at 1700 cps which appears in no other case.

In explanation of these results, consider first the simplest calculations of modes of an enclosure of 1.0" width, 1" depth, and lengths of 0.5", 1.0" or 1.5". The characteristic frequency equation is:

$$f_{N}^{2} = \frac{e^{2}}{L} \left[\left(\frac{n_{x}}{L_{x}} \right)^{2} + \left(\frac{n_{y}}{L_{y}} \right)^{2} + \left(\frac{n_{z}}{L_{z}} \right)^{2} \right]$$

From this the primary length and width modes are calculated as shown below:

Configuration	n x	ny	n z	f (cps)
$D = 1^n$, $W = 1^n$, $L = 0.5^n$	1	0	0	5640
	0	1	0	2820
D = 1", W = 1", L = 1"	1	0	0	2820
	0	1	0	2820
$D = 1^n$, $W = 1^n$, $L = 1.5^n$	1	0	0	1880
	0	1	0	2820

In addition to the depth modes, it might be expected that the above modes should appear. The 0.5" cavity exhibits none of these frequencies, and its response is assumed to be entirely that of the first two depth modes. Although the 1.0" cavity appears to have essentially the same kind of response, it will be noted that the peak occurs at about 2800 cps instead of 3200 cps, as it does in the 0.5" cavity. This corresponds to both the tirst length and first width mode as tabulated above and may actually be that mode. The results with the 1.5" length seem to support this since the predominant response is at 1700 cps, which is clearly the frequency of the first length mode. The peak at 5200 cps appears to be the third length mode.

The sound speeds in the AEDC supersonic wind-tunnel for the various test Mach numbers are tabulated below:

MACH NO.	1.5	2.0	2.5	3.0	3.5	4.0	4.5
SPEED OF SOUND, FPS	1160	1152	1160	1162	1182	1185	1205

FIGURE 10. SPECTRAL RESPONSE OF A 1" LENGTH X 1" WIDTH X 1" DEPTH CAVITY IN SUBSONIC FLOW (x = 0 at leading edge of cavity)

WADD TR 61-75

FIGURE 11. SPECTRAL RESPONSE OF A 1" LENGTH X 1" WIDTH X 1" DEPTH CAVITY IN SUPERSONIC FLOW

39

日本の人物の主義を持ちている。 1987年 1988年 1988年

V - EXPERIMENTAL RESULTS - AEDC

The more detailed tests were performed in the 40" \times 40" supersonic tunnel at AEDC, using the model of Figure 7. The procedure followed in the test program was to obtain data at various Mach numbers at as nearly constant tunnel "q" as possible, and then to evaluate the effect of "q" at one particular Mach number. Thus, unless otherwise identified, all data presented were obtained at the maximum "q" of 5.00 psi with one exception. At a Mach number of 5.0, it was not possible to obtain full "q" without condensation, hence all data at 5.0 Mach number were obtained at q = 2.68 psi.

A. BOUNDARY-LAYER CHARACTERISTICS

1. VELOCITY PROFILES

In order to define the conditions under which the data were taken, boundary layer profiles were obtained for each tunnel condition. Figure 13 gives the results obtained for Mach numbers of 2.0, 3.0, 4.0 and 5.0. The data points are plotted along with two theoretical profiles. The solid curve in each case gives the conventional 7th power law; the broken curve gives the profile calculated by the theory of Reference 8 for compressible flow. The indications are that the profiles existing on the model agree reasonably well with those for fully-developed turbulent flow.

2. TURBULENCE SPECTRA

To further catalog the flow field in which the data were taken, a limited number of hot-wire measurements of the spectrum of turbulence in the boundary layer ahead of the cavity were attempted. The measurements were successful at Mach numbers of 2.0 and 5.0; at other Mach numbers wire attrition precluded taking of the data in a reasonable length of time.

Figure 14 gives the dimensionless spectra of the longitudinal component which were obtained in each case. At Mach 5.0, the spectrum was found to be typically random. At Mach 2, on the other hand, the spectrum contains a very pronounced discrete frequency, at 2580 cps. The origin of this periodicity is not known conclusively, but it is assumed to be associated with the tunnel itself.

3. AERODYNAMIC NOISE

The microphone located upstream of the cavity afforded the determination of boundary layer noise as further definition of the test conditions. Spectral analyses were made at all test Mach numbers and at five "q" values for one particular Mach number. Figure 15 illustrates the dimensionless spectra obtained at the various Mach numbers. The level of boundary layer noise was found to decrease markedly with Mach number when "q" was held constant. Figure 16 depicts the observed variation of the SPL of three spectrum level samples. The levels at Mach 5.0 have been increased by 6.0 db. since the "q" at that Mach number was approximately one-half that at all the other Mach numbers considered.

The indications are that Mach number plays a large part in determining the pressure level of aerodynamic noise. As shown in Figure 16, spectral levels of three typical frequencies varied from around 110 db at Mach 1.75 to around 68 db at Mach 5, a range of 42 db.

Figure 17 plots the overall level in terms of its ratio to dynamic pressure as a function of Mach number. It is observed that again a large effect of Mach number is indicated. Implicit in the above mentioned figures is a decrease in static pressure with increasing Mach number. This may be as much a controlling factor in the reduction of sound pressure as the effect of Mach number. For this reason the static pressures corresponding to the test Mach numbers are included on Figures 16 and 17.

The numerical values obtained for $\sqrt{p^2}/q$ are somewhat disconcerting in that they are appreciably lower than those obtained in other investigations. This difference may reflect the lower-frequency limitation in the present case, which for convenience of analysis was 200 cps. The analyzer used had the capability of continuous analysis through two decades, either 20 - 2000 cps or 200 - 20,000 cps. To obtain the full range from 20 - 10,000 cps required twice the analysis time; therefore, the analyses were limited to a lower cutoff frequency of 200 cps. In view of the rising spectrum envelope at the low frequencies, it would be expected that the overall SPL may be appreciably higher when frequencies down to, say, 20 cps are considered.

B. CAVITY RESPONSE

The results of the test program indicate that the pressure response of a cavity can be categorized broadly as a dual phenomenon - a discrete frequency resonant response and a random buffet response. The former is hypothesized to result from excitation of the normal acoustic modes of the cavity; the latter results from the unstable nature of the separated flow in some cases, which tends to permit an intermittent direct impingement of flow on the rear face of the cavity. As might be expected, the buffet response is greatest for the larger cavities.

The discussion to follow considers three aspects of the response, i. e.

- 1) The flow characteristics
- 2) The frequency response
- 3) The magnitude response

1. FLOW STUDIES

The characteristics of the flow associated with a cavity were investigated in detail by means of high-speed Schlieren movies and static pressure measurements, and to a lesser extent by oil-flow movies which permit visualization of flow conditions on the floor of the cavity.

a. Schlieren Indications

Schlierenmovies taken at 8000 frames/sec indicate that the cavity induces a highly unstable flow condition in some cases. A typical case is shown in Figure 18, which presents 12 consecutive frames from the movie of an 8" length 2" width and 2.5" depth cavity at a Mach number of 2.0. Each frame comprises the view shown by the dotted lines in the insert and the boundary layer is identified as the white band in the right corner of each figure.

The instantaneous displacement profile of the separated boundary layer is seen to assume a variety of shapes, reflecting an unstable, rapidly fluctuating flow state. Although not clearly shown in this figure, the movie itself indicates that such extremes are encountered at the front of the cavity and that there is sometimes a shock rather than the expected expansion fan.

Further investigation of the fluctuating boundary-layer displacement was conducted to determine the time history of displacement at certain representative lengthwise stations along the cavity. Figure 19 shows a sample of the results at Mach 2.0 for an 8" L X 2" W X 1.5" D cavity. Here the locus of the free-stream side of the boundary layer (as defined by Schlieren pictures) with reference to an arbitrary zero is plotted against time to give the wave shape of displacement.

There appears to be a definite tendency to periodicity in every case, with a lower-frequency predominance near the rear of the cavity. This latter trend is accompanied by a pronounced increase in amplitude at the rear of the cavity as well. The maximum excursion is observed to vary from 0.18" at the 2" station to 0.6" at the 6" station. Similarly, the rms value of displacement varies from .052" at the 2" station to .161" at the 6" station.

Further evidence of the periodicity of this motion is afforded by the correlation between various pairs of points along the streamwise dimension. Correlation coefficients, defined as

$$R_{x} = \frac{\overline{T_{2} T_{N}}}{\sqrt{\overline{T_{2}^{2}}} \sqrt{\overline{T_{N}^{2}}}}$$

were determined numerically from the time history records for a cavity of length 8ⁿ, width 2ⁿ, and depth 1.5ⁿ at Mach 2.0. Figure 19b gives the correlation diagram which was obtained therefrom. The curve is very similar to that associated with a periodic wave, especially in the rather high degree of negative correlation obtained. On the premise of periodicity, indications are that the wavelength is of the order of 4.8 inches (taking the average of positive and negative abscissae intercepts). This corresponds to a frequency of

$$f = c = 1100 \times 12 = 2750 \text{ cps}$$

Reference to Figure 27a indicates that the predominant pressure response of an 8" cavity occurs at 2200 cps, at which frequency the sound pressure level in the cavity is at least 10 decibels above that of any other frequency.

These fluctuations of the boundary layer show a strong correlation with cavity dimensions. At a given Mach number, the fluctuations become very small when cavity depth is decreased to 1". Conversely, they become larger as depth is increased. Figure 20 illustrates this tendency for depths of 1.0", 1.5" and 2" at stations 2" and 5" from the cavity leading edge. The change in maximum excursion between a depth of 1.5" and 1" is quite apparent, particularly in the rear of the cavity. Where a maximum excursion of 0.6" occured at the 5" station for 1.5" depth, the maximum is only 0.3" for 1" depth. At 2" depth, the maximum excursion is 0.7".

As would be expected short cavities do not show nearly the instabilities that are shown for the 8" cavity, the separated flow being able to bridge the gap. The Schlieren movies reveal that there are fluctuating displacements in the case of a short cavity, but these appear to be more in the nature of an inphase motion throughout the cavity length.

Certain other features of the flow over a cavity become evident in the pictures, however, as shown in Figure 21. Here the cavity is short enough (1th length) that the field of view of the camera permits observation of the flow for some distance downstream of the cavity. Clear evidence of a periodic disturbance in the boundary layer is seen. Presumably this is a traveling-wave disturbance) which is probably also present with long cavities as well.

A sample time history for the 4" cavity length is shown in Figure 22 in the interest of completeness. Comparison of this figure with Figure 19 shows that the fluctuations are greatly reduced at the 4" length.

b. Oil-Flow Movies

Model-fabrication considerations precluded the possibility of direct Schlieren view of flow conditions inside the cavity. Therefore in an effort to gain insight into flow conditions therein, a limited number of movies were made with the floor of the cavity covered with a film of oil containing luminescent particles in suspension. Illumination of the model with black light then made the oil clearly visible. These were not particularly revealing, although there was definite indication of a vortex within the cavity in some cases. Figure 23 shows the photographs for lengths of 0", 1/2", 1", 2", 3", 4", 5", 6", 7", and 8". The view shown is almost directly into the cavity, with flow from left to right at a Mach number of 2.0. At length 1/2" the oil tends to collect in a lateral line about halfway back in the cavity. The same pattern is evident in the 1" cavity. In the 2" cavity there is clear indication of a vortex formation which seems to have a vertical axis. At longer length there is some slight indication of the same sort of formation, although it is not as clearly defined.

c. Static-Pressure Indications

Static pressures were measured along the cavity floor in all cases. Some runs also had pressure pick-ups on the front and rear walls. Rear wall pressures were usually of the same magnitude as the rearmost floor pressure for a given configuration whereas front wall pressures were usually from zero to ten percent higher than front floor pressure. Due to the scatter and incomplete wall data, the following discussion is concerned mainly with floor data. The model local static pressure is given in all figures in this section, and its relation to cavity pressures can be seen.

- (1) Effect of Depth: The depth of an 8" long cavity was varied in half-inch steps from T" to 3.5" at all Mach numbers. The data obtained at Mach 2 is typical of that for the entire program (Figure 24). A trend of increasing cavity pressure with increasing depth is shown. Pressure profile shape does not change appreciably but is a little flatter for shallow cavities.
- (2) Effect of Length: Variation of length has several effects, as indicated in Figure 25. The front floor pressure decreases with increasing cavity length to a point and then rises again. For cavities greater than 4" length, the rearmost floor pressure is considerably higher than that anywhere else in the cavity. At high Mach numbers this was not true, however, the floor profile being almost flat. Lowest floor pressure occured approximately two-thirds of the way back on the floor regardless of actual length.

- (3) Effect of Width: Variation of width from 4" to 2" did not change floor pressures, but did produce the higher pressures measured on the front wall which were mentioned previously. No other effects of width changes were observed.
- (4) Effect of Mach Number: Increasing Mach number in general gave more scatter in data tor a given location, and length and depth effects do not show up as well. The floor profile becomes flatter with increasing Mach number (Figure 26). At low Mach numbers, the rear wall pressures were slightly less than rear floor pressures while at high Mach numbers, the rear wall had slightly higher pressures.
- (5) Effect of "q": Increasing "q" from .77 to 5.1 psi at Mach 2.5 produces a general increase in all cavity pressures. Floor profiles tend to be flatter at very low "q" and assume the typical shape at high "q".

2. CHARACTERISTIC FREQUENCIES

The typical response obtained in both the exploratory and AEDC tests is a discrete frequency response containing several peaks. Some of these are harmonic, or nearly so, and some are not. Additionally, the spectrum may contain a random low frequency response which is referred to herein as "cavity buffeting". To illustrate a set of typical responses, Figure 27-a gives the spectra for all lengths tested at a particular Mach number, in this case M=2. Figure 27-b illustrates the effect of "q" on the spectrum of response.

a. Effect of Dimensions

Figure 28 gives a composite plot of all discrete frequency components which are discernible from the spectra obtained at Mach 2.0. In the sense of a preliminary orientation as to the response frequencies, a family of harmonic curves is shown along with the data. To obtain these curves, a single curve was faired through all data points relating to the second lowest discernible component (selected instead of the lowest component because of its sharpness). The harmonic curves were thus normalized on this as a base.

This figure illustrates the point just made. For any length the frequencies observed are nearly harmonic, but not quite so, and there are usually one or two extra points. It is apparent that there are so many frequencies excited that almost any hypothesis can be supported, depending upon how the data are viewed. For that reason, the final analysis of the entire response spectrum will be discussed in that section of the report wherein theoretical and experimental comparisons are drawn.

For the present, certain conclusions seem warranted by the data for the first four response frequencies. First, the trend of the lowest-frequency response, hereafter referred to as "1st mode," is suggestive of an inverse relationship between frequency and cavity length. Also, the 1st mode and the 2nd mode frequencies are almost exactly harmonic. Thus it might be concluded from these experimental data that at least for the first few modes

$$f \propto n/L_{\chi}$$
 where $n = 1, 2, 3, etc.$ $L_{\chi} = cavity length$

Figure 29 gives a comparison of the experimental data for each of the first four modes with the curve deptciting this relationship. In order to broaden the scope of the results and perhaps bring into perspective other parameters, data are plotted for the 1" depth along with the 2.5" depth, and for a 4" width and 2.5" depth as well.

For lengths from 4" to 8" the 1st mode data seems to follow the f \propto n/L $_{\times}$ curve very well, regardless of cavity width or cavity depth. For lengths of 2" and less, however, the lowest observed experimental frequency is appreciably less than indicated by the f \propto n/L $_{\times}$ curve. The same trend appears in the 2nd mode comparisons. For the 3rd mode, the divergence between the f \propto n/L $_{\times}$ curve and the data is perhaps not as great, but there is a markedly higher degree of scatter.

These results seem to indicate three broad conclusions:

- 1. The cavity response for long lengths is a different phenomena from that for short lengths, perhaps corresponding to the difference between length modes in the former case and depth modes in the latter.
- 2. A factor of 2 change in cavity width has little or no effect on frequencies of the first two modes, considering lengths ≥ 4". (this is not to say that there will not be a definite width effect on some of the higher modes.)
- 3. A factor of 2.5 change in depth has no appreciable effect on the first two or three modes of a large cavity, again considering lengths ≥ 4".

b. Effect of Mach Number

The observed effect of Mach number is shown in Figure 30. Here the 1st mode is selected for study, and data for Mach numbers of 2.0, 3.0, and 4.0 are plotted together to determine if any systematic effects occur.

In general, the indications are that the effect of Mach number is small. With the exception of the data at 2" length and at 4" length, in every case the points at different Mach numbers are almost coincident.

As discussed previously, the 2" length was found to produce clear indication of a vortex within the cavity. This factor, which suggests that a different flow regime exists at that length, may be the cause of the wide spread in response frequencies shown in Figure 30 at the 2" length.

3. AMPLITUDE RESPONSE

In consideration of the amplitude response both the buffet and resonant contributions must be considered. These are discussed individually in the following:

a. BUFFET RESPONSE

The buffet response of the cavity is characterized by a random spectrum which reaches its maximum value in every instance at the lower limiting frequency of the analyses. Thus, there is some uncertainty as to what the true maximum may be. Some few analyses made with 100 cps as the lower limiting frequency still showed a rising spectrum envelope. Thus, in view of the uncertainty regarding overall level, all discussion of this facet of the response will be confined to representative spectrum-level variations.

- (1) Effect of Cavity Dimensions: Figure 31 illustrates the effect of cavity length and cavity width on the levels observed in 50-cps bands centered at 200 cps and 400 cps. The upper graph gives the results obtained at Mach 2.0 for a 2" width; the lower graph gives corresponding results for the 4" width. The indications are that there is approximately a 10:1 (20 db) increase in buffet level over the length range tested. The buffet response reaches a maximum at the 6" length and remains constant for greater lengths.
 - The 4" width exhibits about the same response, both in maximum value and minimum value. There is one notable difference, however; the maximum response is reached with a shorter length of 4" in the wider cavity.
- (2) Effect of Depth: Although the 2" and 4" widths show very similar buffet response at 2.5" depth, they show markedly different levels of response as depth is systematically varied. Or more precisely, the good agreement shown in the preceeding figure is perhaps only a fortuitous result, for Figure 32 indicates that as depth is varied in an 8" cavity the width becomes an important factor. The 2" width cavity produced a buffet response which increased continuously throughout the range of depths tested, whereas the buffet response of the 4" width cavity reached its maximum at 1.5" depth and decreased thereafter. This result suggests that cavity volume, as well as length may be a controlling parameter in buffet response.
- (3) Effect of Mach Number: Figure 33 depicts the effect of Mach number on the buffet response of a given cavity. Sound levels decrease rather uniformly with increasing Mach number.
- (4) Spatial Distribution: The streamwise variation of buffet levels in an 8" cavity are shown in Figure 34. The highest levels occur in the rear of the cavity, as might be expected. A difference in level of the order of 15 db. exists between front and rear of the cavity.

b. RESONANT RESPONSE

The amplitude of the resonant response is considerably more difficult to categorize than that of the buffet response since it involves presumably the characteristic distributions of a number of different modes. The following discussion will attempt to derive from the voluminous data obtained certain conclusive indications of a general nature.

The distribution of sound pressure inside a given cavity is, of course, a matter of interest. This facet of the response is best studied with a long-cavity configuration, where data are available from a number of microphones. Figure 35 shows the distributions of pressure in the first four modes as observed in the streamwise direction on the centerline of the floor in a cavity of length 7" and depth 2.5". The Mach number for this example is 2.0.

The most general result indicated is that, regardless of the shape of the distribution curve, there is a pronounced tendency for the response to be greatest near the upstream end of the cavity. Or, stated another way, it appears that whatever typical response exists, it is subject to the superposition of what is probably an exponential decrease of intensity in the streamwise direction. It is observed that this is directly opposite to the buffet distributions.

Now consider the individual responses. In the first and third modes there is a definite tendency for a standing-wave type of distribution, perhaps as shown by the curves which have somewhat arbitrarily been drawn through the data. On the other hand, the distribution for the second mode has very little tendency toward periodicity but accentuates the exponential decrease.

The same sort of cyclical response as that just discussed for a given length occurs at a given point as the length of the cavity is varied. For example, Figure 36 (a) shows the response at a point 1/2ⁿ from the leading edge of a cavity whose length was systematically increased from 0.625" to 7" at a Mach number of 2.0. Cavity depth was held constant at 1" and width at 2". Extremely wide variations of pressure are found to occur in each of the first three modes. The pressure at this particular point was found to reach a maximum when the length was adjusted to 2", and to decrease sharply as length was further increased. At the 5" length a minimum was recorded, and at still greater lengths another substantial increase in level occured. Perhaps it should be noted that two unusual conditions are associated with the 2" length. First, at this Mach number, both the hot-wire turbulence spectrum and the upstream boundary-layer-noise spectrum showed a strong periodic component. In the turbulence spectrum this occured at about 2580 cps.

In some cases the cavity response has a peak very close to this frequency. This may only reflect cavity response off-resonance to discrete-frequency forcing, but it may also reflect coincidence of the discrete input with a cavity resonance in which case a very large response would be expected.

Secondly, the oil-flow movies revealed that the 2" length permitted a pronounced vortex formation in the cavity, which could also change the response greatly.

Further indication of the possible uniqueness of this response is afforded by the set of partial curves at the right of Figure 36 (a). These were obtained under precisely the same conditions as the other data, except that the depth was held constant at 2.5" instead of 1". Unfortunately malfunction of the cavity drive mechanism precluded the setting up of lengths less than 3", so that the response of the 2" length was not obtained at this depth. Even so, from the data at lengths greater than 2" it is apparent that this deeper cavity represents a quite different situation. It is also clear that over most of the common range of lengths of the two sets of data, pressure response in the 2.5" depth is several orders of magnitude greater than that in the 1" depth. This result is certainly consistent with the indications of Figure 21, which led to the conclusion that the boundary-layer fluctuations of the 1" deep cavity were considerably less than those of the 2.5" cavity.

Figure 36 (b) gives a comparable plot to that of Figure 36 (a) but a Mach number of 3.0. Two things are evident. First, the maximum levels are of the order of 30 db. lower than those at Mach 2.0, a result which is compatible with the reduction of boundary-layer noise between those same two Mach numbers. Secondly, there is no evidence of the extremely high levels at the 2" length. Rather the levels in that vicinity tend to exhibit a more cyclical variation of the type that would be expected of a resonant response.

FIGURE 13. BOUNDARY-LAYER PROFILES

FIGURE 14. BOUNDARY-LAYER TURBULENCE SPECTRA

FIGURE 15. BOUNDARY-LAYER NOISE SPECTRA

FIGURE 16. EFFECT OF MACH NUMBER ON BOUNDARY-LAYER NOISE

FIGURE 17. EFFECT OF MACH NUMBER AND DYNAMIC PRESSURE ON OVERALL BOUNDARY-LAYER NOISE

LENGTH 8 INCHES WIDTH 2 INCHES DEPTH 2.5 INCHES

MACH 2

CAMERA VIEW

1/8000 SECOND

FIGURE 18

BOUNDARY LAYER
FLUCTUATIONS ABOVE
A LONG CAVITY

- AIR FLOW

FIGURE 19. TIME HISTORY OF BCUNDARY-LAYER FLUCTUATIONS FOR LONG CAVITY

FIGURE 20 (a). EFFECT OF CAVITY DEPTH ON BOUNDARY-LAYER FLUCTUATIONS, M = 2.0,

(Measured At x = 2.0") Length = 8.0", Width = 2.0"

FIGURE 20 (b). EFFECT OF CAVITY DEPTH ON BOUNDARY-LAYER FLUCTUATIONS, M = 2.0

(Measured At x = 5.0") Length = 8.0", Width = 2.0"

LENGTH 1 INCH WIDTH 4 INCHES DEPTH 2.5 INCHES

MACH 2

CAMERA VIEW

1/8000 SECOND

FIGURE 21

BOUNDARY LAYER
FLUCTUATIONS DUE TO
A SHORT CAVITY

- AIR FLOW

FIGURE 22. BOUNDARY-LAYER FLUCTUATIONS FOR CAVITY
OF INTERMEDIATE LENGTH AT MACH 2

FIGURE 23. OIL FLOW PHOTOGRAPHS OF FLOW INSIDE CAVITY

FIGURE 23. (Contd.) OIL FLOW PHOTOGRAPHS OF FLOW INSIDE CAVITY

FIGURE 24. EFFECT OF DEPTH ON CAVITY STATIC PRESSURE

Distance Along-Cavity Floor (0 = Upstream End) - inches

Model Local Static Pressure 1.49 psi Cavity Width 2 Inches, Depth 2.5 Inches Mach 2

FIGURE 25. EFFECT OF LENGTH ON CAVITY STATIC PRESSURE

Distance Along Cavity Floor (0 = Upstream End) - inches

Length = 8.0"

Width = 2.0"

Depth = 2.5"

FIGURE 26. EFFECT OF MACH NUMBER ON CAVITY STATIC PRESSURE

FIGURE 27 (b). EFFECT OF DYNAMIC PRESSURE "q" ON RESONANT RESPONSE

Sound Pressure Level - db

FIGURE 28. COMPOSITE PLOT OF RESONANT FRECUENCIES AT A MACH NUMBER OF 2.0

Width = 2"
Depth = 2.5"

FIGURE 29. EFFECT OF CAVITY DIMENSIONS ON FREQUENCY

WADD TR 61-75

FIGURE 31. EFFECT OF CAVITY LENGTH AND WIDTH ON BUFFET RESPONSE

Mach 2

FIGURE 32. EFFECT OF CAVITY DEPTH AND WIDTH ON TYPICAL BUFFET RESPONSES

Length 8" M = 2.0

FIGURE 33. EFFECT OF MACH NUMBER ON BUFFET RESPONSE

Depth = 2.5", Width = 2.0"

FIGURE 34. LENGTHWISE DISTRIBUTION OF BUFFET RESPONSE IN LONG CAVITY

FIGURE 35. STREAMWISE DISTRIBUTION OF SOUND PRESSURE IN A LONG CAVITY -RESONANT RESPONSE

Width = 2.0", Depth = 2.5"

WADD TR 61-75

FIGURE 36 (a). EFFECT OF CAVITY LENGTH ON SOUND PRESSURE OF FIRST THREE MODES AT MACH 2.0

11. 化二代元 金 Man Man B E

VI - COMPARISON OF THEORY & EXPERIMENT

In making comparisons of theory and experiment, it will be helpful to consider first the cases where the simplified theory may be expected to apply. This has the merit of considering the simpler responses first, and determining the factors which limit the range of applicability of the simplified theory. Then the more general cases, in which both depth and length modes appear, can be considered with better insight.

A. SHORT CAVITIES

SUBSONIC

The simplified theory is predicated on the assumption that the modes in which the cavity responds are predominately depth modes; that is, no standing waves in either the streamwise or tranverse directions are considered. While this approach would hardly be realistic for long cavities, there is evidence that it may be adequate for short cavities. To explore this possibility, consider first the data for a 1/2" length X 1" width X 1" depth cavity from the tests conducted at Lockheed.

a. Frequency

Equation (61) gives the calculated amplification of pressure which would be expected between the bottom and top of a cavity Calculation of a complete family of response curves by this equation yields the results shown in Figure 37 for Mach numbers from 0.1 to 0.9. First consider the implications of these curves. They are the following:

- The cavity should exhibit two responses (within the frequency limits of 0-10,000 cps) at all subsonic Mach numbers.
- 2) The frequency of these two resonant responses should decrease slightly with Mach number.
- 3) The low frequency mode should predominate at all Mach numbers. However, increasing Mach number causes lower response in the low mode and a more predominant response in the higher mode.

Figure 38 gives the measured response spectrum of the 1/2" X 1" X 1" cavity throughout the subsonic regime. It is observed in the way of generalities, that the first of the above theoretical conclusions is confirmed by the data. There are two principal frequencies of response. Secondly, the experimental response frequency has a slightly increasing trend with Mach number as opposed to the theoretical prediction. Thirdly, the lower mode becomes less predominant with increasing Mach number and the second mode amplitude response increases with Mach number, however the increase is very much more predominant than predicted by the theory.

Thus, the predicted general trends are found to occur. Now consider the numerical agreement between theory and experiment insofar as response frequencies are concerned. Figure 39 gives a comparison of calculated and measured frequencies for the 1/2" X 1" X 1" cavity throughout the subsonic Mach number range. In general the agreement is rather good, particularly in the first mode. As a matter of fact, numerical agreement between theory and experiment in the 2nd. mode is also quite good up to about 0.7 Mach number, although there appears to be a divergence between the observed and calculated trends.

All factors considered, it is felt that the general and numerical aspects of the comparisons of Figure 39 support the hypothesis of a resonant response of the short cavity in its depth modes.

Now consider the situation with a longer cavity. Figure 40 gives a comparison between calculated and experimental response frequencies for the 1.5" length X 1" width X 1" depth cavity at subsonic Mach numbers. Unlike Figure 39, this does not give a depiction of all experimentally-observed frequencies for it is apparent from Figure 12 that there are frequencies in the response of this cavity which are not representative of depth modes. The intent here is to show that the simplified theory does account adequately for a part of the total response. This is evident from Figure 12, which indicates that the theory accounts reasonably well for most of the response frequencies.

A pertinent analytical result can now be considered; that is, the effect of cavity length on frequency of the depth modes. For the present this will be confined to the subsonic flow regime. Figure 41 gives the calculated variation of frequency of the first two modes of the cavities used in the exploratory tests, as cavity length is increased. A Mach number of 0.6 is considered. As a matter of interest the experimental frequencies from Figure 12 are included for comparison with theory at 0.6 Mach number.

It is observed that the first-mode frequency decreases with cavity length throughout the range of lengths considered, and this is verified by experimental results. Theoretical results for the second mode show the same trend.

b. Amplitude Response:

Equation (61) derives the amplitude response in terms of amplification of pressure in the cavity. This approach was followed in order to obtain results that are independent of the input itself, the premise being that this yields a more general theory. Such an approach is analogous to the derivation of the transfer function, or impedance of a mechanical system which can then be considered for any arbitrary input.

In the present case, however, difficulty arises in definition of the input. The boundary layer noise existing in the flow could conceivably be viewed as the input. On the other hand, any instability of the separated boundary layer which results in time-variant displacements of the separated layer may well constitute a velocity input. In the practical case, much more convenience is associated with assessing the boundary-layer noise than the fluctuating boundary-layer displacements. For that reason it was decided to explore first the possibility of obtaining satisfactory results using boundary-layer noise as the forcing function.

In order to make the comparison of calculated and measured amplifications it will be necessary to reduce the theoretical and experimental results to a common basis of analysis. Because the input is random, the experimental response levels represent the output as integrated by the cavity over its resonant bandwidth, and the input level represents integration of a random signal over the frequency limits of the appropriate 1/3-octave filter. Theoretical results, on the other hand, are calculated in terms of response to sinusoidal input of variable frequency; as such they are the spectrum level of response.

For purposes of comparison let the amplification p/po be defined as:

$$p/p_0 = p_{\Delta} f/p_{spect}$$

where

 p_{spect} is the spectrum level of boundary-layer noise. $p_{\Delta\,f}$ is the response as integrated over the theoretical half-power limits of the frequency response characteristic.

Let it further be assumed that the 1/3-octave response level for the output is entirely composed of P $_{\Delta f}$, having no contributions from frequencies outside these limits. The theoretical results can then be put on a comparable basis with experimental results and plotted. Figure 42 gives such a plot for the first and second modes of the 1/2" X 1" X 1" cavity, where the amplifications shown are (1/3 octave)/ p_{spect}).

The indications of this figure are quite encouraging. For both the first mode and the second mode the agreement between theory and experiment is quite good. Actually, it would appear that the implications of this agreement are of more consequence than the agreement itself, for the use of boundary-layer noise as the forcing function seems to be a realistic and satisfactory practice. As mentioned above, this will permit much better utilization of the results since both the characteristic spectrum and intensity variations of boundary-layer noise are now fairly well catalogued in the literature.

It should be noted that because the simplified theory considers only depth modes, the streamwise distribution of pressure within the cavity is constant. That is, the pressure at any point on the cavity floor is theoretically the same. Of course, pressure will vary on all vertical surfaces, with a maximum occurring at the bottom of the cavity and a minimum at the top.

2. SUPERSONIC

a. Frequency

Figure 43 gives a comparison of experimental response-frequencies with calculated frequencies for the 2" length X 2" width X 2.5" depth cavity at Mach numbers from 1.75 to 5.0. Consider first the theoretical results. Four modes were found to exist at frequencies below 10 kc in most cases. These are non-harmonic. Unlike the results at subsonic Mach numbers, the frequency of a given mode does not vary appreciably with Mach number.

The data points indicated by squares are seen to follow the theory curves very closely. Several interesting points arise in this regard. For example, the theory predicts the first mode to occur in the vicinity of 1800 to 2000 cps, but no resonant response was observed at this mode. The reason apparently lies in the amplification; although the theory indicates the presence of the mode, it also indicates extremely small amplifications. The calculated amplification was only of the order of 0.5db as a maximum. In view of this, it is not surprising that the experimental response spectra do not show such a resonance.

It is interesting to note also that for this cavity not only are all depth modes predicted accurately by the theory, but these are the only responses which appear in the measured spectrum. Thus the theory adequately predicts the entire frequency response of this cavity at all Mach numbers.

b. Amplitude Response

Figure 44 indicates the measured and calculated emplitude response of the 2" length X 2" width X 2.5" depth cavity at all Mach numbers tested. In general, the calculated spectrum of amplification shows agreement with the experimental spectrum in its frequencies, as was indicated by Figure 43, but the agreement in amplification is rather poor except for the Mach 3 case. In this case the amplifications are in fair agreement for the 1st and 3rd modes. The experimental amplification of the 2nd mode is much higher than calculated, but judging from the sharpness of the response curve, a part of this may be due to the filter bandwidth used in analysis. The spectrum shape is indicated correctly only if the width of the resonant peak is large relative to the bandwidth of the filter used in analysis (50 cps). This does not appear to hold for the second mode, hence the filter output may be taken as indicative of the response integrated over its own bandwidth.

Further comparison of theory and experiment is afforded by Figure 45, which considers shorter cavities at a Mach number of 2.0. Cavities of 1" length and 0.5" length are considered for a constant width of 2" and depth 1". In both of these cases the agreement is considered to be rather good, particularly for the 1" length.

The results of Figures 44 and 45 tend to add further confirmation to the conclusion that the simplified theory is adequate only for cases wherein length/depth is less than unity.

B. LONG CAVITIES

The experimental evidence presented herein indicates that in cavities of length-to-depth ratios greater than approximately one, there is significant response of the cavity in its length modes. There may also be excitation of depth modes, as was shown to be the case at $L_z = 1.5$ in the exploratory tests, but predominance of the length modes is to be expected.

Consider the cavity of 8" length, 2" width, and 3.5" depth. Figure 46 gives a comparison of the calculated and measured sound-pressure spectra at a point on the bottom of the cavity 0.5 inches from the leading edge at a Mach number of 2.0. The theoretical spectrum is calculated from Eq. (58). In order to obtain absolute values for the calculated pressure spectrum, it is necessary to obtain either a theoretical or an empirical value of source strength A. In the present case A was evaluated empirically as follows:

At distances $r \gg \lambda$ from the source, the sound pressure can be written as

$$p_p \approx \frac{i\omega \Lambda e^{-i\omega t}}{l_1\pi r}$$
, $p_{rms} \approx \frac{\omega \sigma \Lambda}{l_1\pi r V_2}$

The spectrum of pressure response at the point of interest in the cavity was observed at a high frequency (6000 cps), which was off resonance. At such a frequency the requirement that $r >> \lambda$ is at least approximated, since $\lambda = 2.2$ inches and (r) avg. = 5.2 inches, assuming the source to be located at random in the plane of the cavity opening. From the spectrum – level pressure at 6000 cps and the average r, the source strength was computed as A_{6000} cps A_{6000}

To be useful, the spectrum of source strength must be determined. In view of the relatively flat slope of the turbulence spectrum shown in Figure 14 it was hypothesized that

A (
$$\omega$$
) = constant = 46.8

for the case under consideration; i.e., a constant-velocity source is assumed..

Within the limitations of the assumptions made regarding source strength and characteristics, Figure 46 indicates reasonably good agreement between calculated and measured spectra. While there are some appreciable differences between theoretical and experimental amplitudes, it seems clear that the phenomenon of cavity response is correctly defined by the theory.

Some further insight into the phenomena is afforded by the tabulation below, which compares calculated and measured resonant frequencies and identifies the nature of each by its modal description

RESONANT FREQUENCIES, 8" L X 2" W X 3.5" D

fcal.	• f meas	Modal Description
600	560	$n_x = 1$ $n_y = 0$ $g_n = g_0$
800		$n_x = 2$ $n_y = 0$ $g_n = g_0$
1450	1 350	$n_x = 1 n_y = 0 \qquad g_n = g_1$
2200	2250	$n_{x}^{2} = 2$ $n_{y}^{y} = 0$ $g_{n}^{y} = g_{1}^{y}, g$
3250	3150	n = 3 $n' = 0$ $q - q$
4050	4000	n = 1, 4 n' = 0 $q = q$
4550	4850	n = 5 $n' = 0$ $a = a$
5600	5600	x y ³ n ³ o
	6550	
7600	7000	

An interesting point arises in connection with the first two calculated frequencies. Theoretically, two resonances should occur, at 600 cps and at 800 cps. In this case only one resonance is indicated. However, Figure 27 shows that in many cases the analyses are made with sufficient definition (50 cps) to distinguish between the two modes in the way of a double-peaked curve.

Figure 47 gives a similar comparison of theory and experiment for a 4" length X 2" width X 2.5" depth configuration. In this case, the resonant frequencies may be identified as follows:

RESONANT	FREQUENCIES,	4 ⁿ L	X 2"	W X 2.	.5" D
-----------------	--------------	------------------	------	--------	-------

fcal.	f meas.	Modal Description
1250	1325	n _x = 1 n _y = 0 g _n = g ₃
1800		$n_x = 0.1 n_y = 0.0 g_n = g_0$
2450	2700	$n_{x} = 1$ $n_{y} = 0$ $g_{n} = g_{1}$
3950	38 <i>5</i> 0	$n_{x}^{2} = 2$ $n_{y}^{2} = 0$ $g_{n}^{2} = g_{0}^{2}$
4400	4250	$n_y = 1,2 n_y = 0 g_p = g_2, g_2$
5250	<i>575</i> 0	$n_{x} = 1$ $n_{y} = 0$ $g_{n} = g_{2}$
6000	6500	$n_x = 2 \cdot n_y = 0 g_n = g_1$
7600	7600	$\hat{n_x} = 2 \hat{n_y} = 0 \hat{g_n} = g_3$

The comparison of theoretical and experimental response spectra given in Figure 47 indicates reasonably good agreement for the lower-order modes. At the higher modes the theoretical spectrum tends to overemphasize the response. In this regard, it should be noted again that the theoretical spectrum shape is directly related to the assumed spectral distribution of A, and the absolute pressure levels are directly related to the magnitude taken for A. Obviously the evaluation of A from the sound pressure on the cavity bottom will over estimate source strength by virtue of the reverberant characteristics of the enclosure, which reinforces the pressure above the assumed free-space level.

Further uncertainty exists in the hypothesized spectral envelope of A. As discussed previously, the calculations depicted in Figure 46 and 47 are based on a source strength which is independent of frequency, since the spectrum of turbulence was found to approximate this condition.

On the other hand, the envelope of sound pressure measured in the boundary layer follows more nearly a $1/\omega$ type of variation. Thus the assumption that A (ω) α $1/\omega$ may well be a better approximation to the actual conditions. Certainly this would yield a more representative response envelope as judged from the measured envelopes.

A further point regarding the higher-order modes is that appreciable air dissipation will increase the damping at the frequencies involved here. Since this is not accounted for theoretically, some overestimation of the higher order modes is probably to be expected.

FIGURE 37. THEORETICAL AMPLIFICATION OF SHORT CAVITY

qp - 7dS

FIGURE 38. EXFLORATORY RESPONSE SPECTRA OF A 1/2" LENGTH X 1" WIDTH X 1" DEPTH CAVITY IN SUBSONIC FLOW

FIGURE 39. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESPONSE FREQUENCIES FOR SHORT CAVITY

Length = 0.5"

Width = 1.0"

Depth = 1.0"

FIGURE 40. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESPONSE FREQUENCIES

Length = 1.5"

Depth = 1.0"

Width = 1.0"

FIGURE 41. THEORETICAL EFFECT OF CAVITY LENGTH ON FREQUENCY OF DEPTH MODES

Width = 1.0" Depth = 1.0"

FIGURE 42. COMPARISON OF THEORETICAL AND EXPERIMENTAL AMPLITUDE RESPONSE

Length = .5"

Width = 1.0"

Depth = 1.0"

FIGURE 43. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESPONSE FREQUENCY FOR A 2" LENGTH X 2" WIDTH X 2.5" DEPTH CAVITY AT SUPERSONIC MACH NUMBER.

Frequency - cps
FIGURE 44. COMPARISON OF CALCULATED AND
MEASURED RESPONSE SPECTRA

FIGURE 44. (Cont'd)

FIGURE 45. FURTHER COMPARISON OF CALCULATED AND MEASURED RESPONSE SPECTRA

COMPARISON OF CALCULATED AND MEASURED RESPONSE SPECTRA OF A 6" LENGTH X 2" WIDTH X 3.5" DEPTH CAVITY. FIGURE 46.

COMPARISON OF CALCULATED AND MEASURED RESPONSE SPECTRA OF A 4" LENGTH X 2" WIDTH X 2.5" DEPTH CAVITY. FIGURE 47.

VII - CONCLUSIONS

The analytical and experimental investigation reported herein indicates the following conclusions:

- 1. The acoustic response of cavities in either subsonic or supersonic airflow comprises dual phenomena involving
 - a. A random frequency buffet response
 - b. A discrete-frequency resonant response
- 2. For short cavities the total response is primarily resonant; for long cavities the buffet and resonant responses are of equal importance.
- 3. The resonant response can be categorized as almost entirely the depth mode for cavities of length-to-depth ratio of one or less, and predominately the lengthwise modes for cavities wherein length is 2 to 3 times depth.
- 4. Classical theory, developed herein to account for the effects of a moving medium adjoining the cavity opening, is found to provide excellent definition of the response frequencies and fair definition of the amplitude response for both subsonic and supersonic regimes.
- 5. On the basis of results presented, it appears that the spectrum of boundary-layer noise may be taken as the forcing function in calculating response.
- 6. The theory can be simplified in the form of a design approach that will permit fairly rapid assessment of the approximate response of a given cavity, as given in the following section.

VIII. DESIGN SUMMARY

The following is in the nature of a summary intended to enable a designer to assess the frequencies and dynamic pressure loading to be expected on the structural surface of a given cavity.

A. CAVITY LENGTH/DEPTH<1.0

Both the amplification factor and the resonant frequencies are obtained from Eq. (62) below.

$$p_{p}/p_{o} = \left[\left[R \sin(\gamma L_{z}/L_{x}) \right]^{2} + \left[X \sin(\gamma L_{z}/L_{x}) - \cos(\gamma L_{z}/L_{x}) \right]^{2} \right]^{-\frac{1}{2}}$$
 (62)

where:

is frequency in cps.

L is streamwise cavity length L_{\perp}^{\times} is cavity depth

R^z is the radiation resistance, given in Figure 48 for both subsonic and supersonic cases at width/length ratios for .125 to 2.0.

X is the radiation reactance, given in Figure 48 for the same Mach numbers and width/length ratios.

B. CAVITY LENGTH/DEPTH >1.0

In these cases the length modes are predominant, and it is necessary to employ the more general theory. Frequencies may be determined from the characteristic frequency equation

$$f_{N}^{2} = \frac{c^{2}}{l_{1}} \left[\left(\frac{n_{x}}{L_{x}} \right)^{2} + \left(\frac{n_{y}}{L_{y}} \right)^{2} - \left(\frac{g_{n}}{L_{z}} \right)^{2} \right]$$
(63)

where
$$g_n = \xi_n + i\eta_n$$

On the basis of experimental evidence, the transverse modes are not normally excited, thus the resonant frequencies may be reasonably approximated by

$$\mathbf{f}_{N}^{2} = \frac{c^{2}}{l_{1}} \left[\left(\frac{\mathbf{n}_{x}}{\mathbf{L}_{x}} \right)^{2} - \left(\frac{\mathbf{g}_{n}}{\mathbf{L}_{z}} \right)^{2} \right] = \frac{c^{2}}{l_{1}} \left[\left(\frac{\mathbf{n}_{x}}{\mathbf{L}_{x}} \right)^{2} - \left(\frac{\xi_{n}}{\mathbf{L}_{z}} \right)^{2} + \left(\frac{\eta_{n}}{\mathbf{L}_{z}} \right)^{2} - \frac{2i\xi_{n}\eta_{n}}{L_{z}^{2}} \right]$$

$$(64)$$

Because of the frequency dependent nature of g_n , determination of f_n becomes an iterative process, as outlined by the following steps.

(1) It may be helpful in initiating this process to take the first approximation of frequency as that for a closed cavity, that is

$$f_{N}^{2} = \frac{c^{2}}{4} \left[\left(\frac{n_{x}}{L_{x}} \right)^{2} + \left(\frac{n_{z}}{L_{z}} \right)^{2} \right]$$
 (65)

Enter the impedance tables of Appendix B or C and determine values of R and X.

(3) Calculate the constants a and b as follows:

$$a = \frac{2f_N L_z X}{c(R^2 + X^2)} \qquad b = \frac{2f_N L_z R}{c(R^2 + X^2)}$$
 (66)

- (4) Take the values of a and b calculated in step 3 and using figure 49 read the values of ξ and η for the desired mode. If the value of b is negative, treat it as positive in determining ξ and η , but record η as a negative number. In other words, η always carries the sign of b.
- (5) With the values of ξ and η from step 4 a second approximation of natural frequency, f_N can be calculated as follows (neglecting damping):

$$f_{N} = \frac{c}{2} \left[\left(\frac{n_{x}}{L_{x}} \right)^{2} + \left(\frac{\eta_{n}}{L_{z}} \right)^{2} - \left(\frac{\xi_{n}}{L_{z}} \right)^{2} \right]^{1/2}$$
(67)

(6) Examine f in comparison with the first approximation of f. If f - f is positive, choose a higher value of f, and if negative, a lower value of f, and go back to step 2. When a change of sign of f - f is obtained, these points should be plotted as a curve of f - f vs. f. This method will give the approximate intercept on the f-axis. More iterations can be made for higher accuracy.

It should be pointed out that in this process, certain values of a and b in an iterative sequence may cause the values of ξ and η to cross a dotted mode line in figure 49, thus apparently denoting a change of mode. When this occurs, the apparent mode change may be disregarded and continuity of the iteration maintained.

It is also observed that some modes may have a resonant frequency in the vicinity of the crossover point, where radiation resistance changes from negative to positive. In such cases two distinct resonances may be calculated.

(7) Once correct values of f_n , ξ_n and η_n have been determined the resonant response for the mode in question can be calculated from the following equations.

$$p_{N} = 20 \log_{10} \left[\frac{p_{p_{N}}}{p_{ref}} \right]$$

where (68)

$$p_{p_{N}} = \frac{i8\sigma f_{N}L_{z}A(x,y,z')g_{n}\phi_{N}(x,y,z)\phi_{N}(x,y,z')}{L_{x}L_{y}\varepsilon_{n}\left[\sinh(2\pi g_{n}) + 2\pi g_{n}\right]\varepsilon_{n}\eta_{n}}$$

The coordinates (x, y, z) are the location of the point in the cavity where sound pressure is desired and (x', y', z') is the location of the sound source of strength A(x', y', z').

The above calculations should be made for all combinations of n_{χ} and n_{χ} . It is recommended that n_{χ} range from 0 to 6 and n_{χ} be 0, 1, and 2.

DATA:

$$n_x = 2$$
, $n_z = 1$, $n = 0$, $L_x = 8$.", $L_y = 2$.", $L_z = 3.5$ "
 $c = 13,900$. IN/SEC, $x = .5$ ", $x' = 0$, $z = 0$, $z' = 3.5$ "
 $A(x', z') = 3$, $\sigma = 1.065 \times 10^{-8}$ LB-SEC²/IN⁴

Going through the steps outlined at the beginning of the section, the following results are obtained.

- (1) Using Eq. (65), the first approximation to frequency f_N is, $f_{N1} = 2650$ cps.
- (2) Using the above frequency of 2650 cps, values of impedance from Appendix C are:

$$R = .846$$
 $X = .564$

- (3) Impedance and frequency from steps (1) and (2) yield the constants: a = .73 b = 1.10
- (4) From Figure 49 the values of ξ_n and η_n for n=0 are: $\xi_o=.14$ $\eta_o=.56$
- (5) The second approximation to natural frequency, using the values of step (4), is $f_{N2} = 2045 \text{ cps}$
- (6) Compare f_N of step (5) with f_N of step (1). $f_{N2} - f_{N1} = -605 \text{ cps}$

The result is negative, therefore choose a lower value of f_N , say $f_{N3} = 2150$ cps, to insert into step (2).

After calculation of steps (2) - (5), a natural frequency, $f_{N4} = 2070$ cps is found. Comparison with f_{N3} gives a value of -80 cps so that smaller value of f_{N} must be chosen. Choosing $f_{N5} = 2000$ cps yields a value of $f_{N6} = 2070$ cps.

For the final iteration use a value of f_N in step (2) of 2070 cps. This results in a value of f_N = 2070 cps in step (5). Therefore the correct value of f_N is 2070 cps. The correct values of ξ_0 and η_0 are ξ_0 = .16, η_0 = .59.

(7) Using the input constants and the above values of f_N , f_n , f_n , sound pressure level in the cavity may be calculated.

The value of p_{N} from Eq. 68 is

$$p_{p_N} = 14.35 \times 10^{-5} \text{ psi}$$

 $p_N = 94 \, db$

In order to compare with the value of SPL from figure 46, a value of 17 db must be added to account for the 50 cps bandwidth used for presenting SPL in figure 46. This gives a value of p_{N} of 111 db which is approximately the same as found with the more complicated machine calculation.

WADD TR 61-75

2 2 'n 0 = 1.5 SUPERSONIC ≨. 0. -9.0 0.5 0.3 0.2 .0. -2.0 4.0 0 0 0.7 × œ

×

FIGURE 49. SOLUTIONS TO BOUNDARY CONDITION FUNCTION

IX. REFERENCES

- Boeing Airplane Co.: "Investigation of B-47 Bomb Bay Buffeting," Report D-12675, Feb. 15, 1952.
- Krishnamurty, K.: "Sound Radiation From Surface Cutouts in High Speed Flow," PhD Thesis, California Institute of Technology, 1956.
- Morse, Philip M.: "Vibration and Sound," McGraw-Hill Book Company, Inc., Second Edition, 1948.
- 4. Swenson, George W., Jr., and Johnson, Wallace E.: "Radiation Impedance of A Rigid Square Piston in An Infinite Baffle," Journal of the Acoustical Society of America, Vol. 24, January 1952.
- 5. Stenzel, Heinrich: "The Acoustic Radiation of the Rectangular Vibrating Membrane." ACUSTICA, Vol. 2, No. 6, 1952.
- 6. Garrick, I. E.: "On Moving Sources In Non-Steady Aerodynamics And In Kirchhoff's Formula," Proceedings of the First U. S. National Congress of Applied Mechanics, June 11 16, 1951, ASME, New York, N. Y. 1952.
- Garrick, I. E., and Watkins, Charles E.: "A Theoretical Study of the Effect
 of Forward Speed on The Free-Space Sound-Pressure Field Around Propellers,"
 NACATR 1198, 1954.
- 8. Uram, E. M.: "A Method of Calculating Valority Distribution For Turbulent Boundary Layers in Adverse Pressure Distributions," Journal of The Aerospace Sciences, Vol. 27, September 1960.
- 9. Stewart, G. W., and Lindsay, R. B.: "Acoustics" D. Van Nostrand Company, Inc., 1930.

APPENDIX A

HELMHOLTZ RESONATORS

The Helmholtz resonator configuration may be regarded analytically as an extension of the simplified short-cavity case. As with the short-cavity case, it is assumed that a weightless air piston vibrates as a rigid body in the mouth of the resonator. The impedance as viewed from the mouth of the resonator is then

$$Z_T = Z_R + Z_H$$

where Z_{T} is the total impedance and

$$Z_R = R + iX$$

the radiation impedance as given by Eqs. (32) and (33) for a subsonic medium and by Eqs. (46) and (47) for a supersonic medium. Z_H , the impedance of the Helmholtz cavity, comprises the inductive reactance of the air piston in the mouth and the capacitive reactance of the volume of the resonator. It can be written as

$$Z_{H} = -i \omega \left(\frac{\sigma L}{S} \right) + i \left(\frac{\sigma c^{2}}{V} \right)$$

Combination of this equation with Eq. (47) gives the total reactive impedance of the Helmholtz configuration and yields the resonant frequency when $X_c = X_1$.

The amplification of a Helmholtz resonator is shown in Reference 9 to be, at resonance,

$$\frac{p}{p_0} = 20 \log_{10} \left(\frac{c}{\omega_n VR} \right)$$
 where R is radiation resistance V is resonator volume ω_n is resonant frequency

Figure 50 gives a plot of the calculated resonant frequency of the resonator shown in the inset.

Amplification calculations for this resonator indicated that an appreciable attenuation, rather than amplification, should occur. This configuration was tested at all Mach numbers of the AEDC test program, but in no case was the response of sufficient magnitude to be observed over the buffet or microphone self-noise. This result may be construed as evidence of very low response.

Width = 4"

FIGURE 50. CALCULATED FREQUENCY RESPONSE OF TEST RESONATOR

APPENDIX B SUBSONIC RADIATION IMPEDANCE

Marketing Bundangshippy Agreement Section 1992 Section 1995	The second se		1. A. S.			
	WINTH TO LENGTH RATIO 0. C625		WIDTH TO LENGTH	BATIO 0.1250	- WIDTH TO LENGTH BATIO (0.250	
GENERALIZED	RADIATION	NALIATIUM NULTALIAN	RADIATION	RAULATION	RADIATION	RADIATION
FREQUENCY 0+50	RESISTANCE 0.0025	REACTARCE 0.6394	ALSISTANCE 0.0049	REACTANCE 0.045	RESISTANCE 0.0099	REACTANCE 0.1050
1.00	0.0097	0.6777	0.0193	0.1285	0.0386	0.2048
1.50	G.U210 0.U357	0.1136 0.1465	0.0420 0.0713	0.1869 0.2391	0.0838 0.1418	0.2949
2.00 2.50	0.0526	0.1759	0.1049	0.2841	0.2081	0.4338
3.00	0.0/0/	0.2016	0.1409	0.3217	0.2782	0.4804
3.50 4.00	0.0840 0.1068	0.2241 0.2438	0.1772 0.2123	0.3526 0.3778	0.3480	0.5330
4.50	0.1237	0.2413	0.2454	0.3986	0.4(55	0.5440
5.00 5.50	0,1395 0,1543	0.2775	0.2761 0.3047	0.4165 0.4327	0.5304 0.5796	0.5487 0.5497
6.00	0.1664	0.30m0	0.3317	0.4480	0.6241	0.5489
6.50 7.00	0.1823 0.1962	0.3230 0.3379	0.3574 0.3841	0.4630 0.4777	0.7052	0.5473_ 0.5451
7.50	6.2106	0.3525	0.4108	0.4918	0.7443	0.5418
8.00 8.50	0.2256	9.3666 9.3809	0.4384 0.4067	0.5047 0.5160	0.7832 0.8219	0.5365 0.5281
9,00	0.2411	0, 3924	0.4955	0.5252	0.8597	0.5162
7.50	C.2730	0.4037	0,5243_	0.5320	. 0.8955	0.5003
10.00 10.50	0.2869 6.3045	0.5139 0.5231	0.5525 0.579a	0.53o5 0.5391	0.9283 0.9572	0.4808 0.4583
11.00	0.3197	0.4315	0.0054	0.5400	0.7816	0.4341
11.50	0.3343	0,1:395	0,6291	0.5399		0.4092
12.00 12.50	6 . 5484 6 . 5623	0,44 71 0,4546	0.648 0.6748	0.5342	1.0173 1.0298	0.3847 0.5613
13.00	0.3760	0.4621	0.6961	0.5376	. 1.0397	0.3395
13.50 14.00	0.3898 0.4038	0.4694 0.4765	0.7172 0.7302	0.5357 0.5339	1.0480 1.0553	0.3192 0.3001
14.50	0.4181	0.4055	9.7593	0.5315	1,0618	0.2815
15.00 15.50	0.4325 0.4471	0.4595 0.4595	0.7803 0.8011	0.5281 0.5235	1.6676 1.6724	0.2631
16.00	0.4616	0.4000	0.6213	0.5176	1.0724	0.2255
16.50	0.4759	0.5042	0.0407	0.510.	1.0764	0.2064
17.00 17.50	0.4849 0.5035	6.5679 0.5111	0.8780 0.8780	0.5025 0.4937	1,0757	0.1877 U.1700
18.00	0.5168	0.5141	0.8917	0.4847	1.066/	0.1540
18.50 19.00	0.5297 0.5424	0.5109	0.9064 0.9702	0.4755 0.4664	1.0596 1.0514	0.1400 0.1284
14.50	(0.5223	0. 9334	0.4575	1.0429	0.1191
20.00	0.5676	9.5259	0.9462	0.6446	1.034/	0.1118
21.00		0,5272 3,5293	0.9588	0.4391	1.0272	0.1062 0.1016
21.50	0.4660	0,53119	0.9532	0 •ាដុំដូលស	1.0155	1,140.0
22.00 22.00	0.0189	7.5329 7.5377	0. ዓንካ / 1 , በነካታ	0.4102 9.5992	1.0089 1.0035	0,0941
23.00	0.0439	1.5329	1.0156	0.3876	0.4919	0.0875
23.50	0.6560	0.5327	1,62%	0.3759	0.9919	0.0850
24.00 24.50	0.06//	0.5325 0.5318	1,0324 1,0393	0.3639 0.3521	0.7856 0.7792	0.0833 0.0828
25.09	0.6903	0.5313	1.0454	0.3436	U.9730	0.0836
25.50 26.00	a.7013 0.7122	0.5307 0.5300	1.0503 1.0557	0.3275 0.318a	0.9674 6.9628	0.0858 0.0891
26.50	6,7231	0.5293	1.0603	0.3084	0.4596	0.0931
27.00	9.7341	0.52 H 5.37 1 2	1.0690	0.2982 0.2979	0.vo/8	0.0975
27.50 28.00	t.,7451 (.,7561	1. 12.11	1.0729	0.2775	0.7573	0.1017 0.1054
28.50	6.7679	0.5237	1.0764	0.26/0.	6.9393	0.1084
29.00 27.50	0.1116 0.1800	0.5214 0.5187	1.0793 1.0915	0.2562 0.2454	0.4611 9.4624	0.1107 0.1124
\$0.00	6.1460	0.5155	1.982 /	0.2347	0.4646	0.1137
30.50 31.00	6.6070	6.5127 2.5075	1.0%35 1.0%34	. 0.2243 0.2143	0.7662	0.1150
31.50	0.0259	0.5966	1. 692 7	0.2649	0.9677 0.9695	0.1163 0.1180
32,00 32,50	0.00463	0.5033	1.0017	6.1700	0.9717	0.1198
32.50 33.00	0.8435 0.8521	0.5002 0.47 71	1,0n0c 1.0/76	0.1876 0.1797	0.9746 0.9782	0.1216 0.1231
33.50	0.3605	0.4939	1.0733	0.1721	0.9825	0.1241
34.00 34.50	0.8694 0.8780	0.5705 0.5870	1.0770	0.1646 0.1572	0.4873	0.1243 0.1235
33.00	C. 414564). 445 52	1.0736	0.1470	0.9972	U.1216
35.70 36.00	G.A9%7 G.2027	0.5792 0.5767	1.0717	0.1426	1.0016	0.1190
36.30	0.7107	0.4765	1.0662	0.1355 0.1287	1.0054 1.0084	0.1157 0.1120
37:00		0.4561	1. 6620	0.1223	1.0106	0.1084
37.50 39.00	0.7259 0.7326	2.4615 2.456₹	1.0591 1.0552	0.1165 0.1113	1.0124	0.1049 0.1016
38. 00	0.4346	0.4523	1.0512	0.1066	1.0151	0.0986
34.50 34.00	0.9464 0.45\$2	0.4476 0.4429	1.0474 1.0436	0.1024 0.0986	1.0164	0.0958
40.00	6.1597	0.6386	1.0400	0.0455	1.0179	0.0928 0.0897
40.50 61.00	0,9664 0.9727	0,4329	1.0366	0.0916	1.0208	0.0861
41,00 41.50	0.4727	0.4276 0.4222	1.0351 1.029	0.0883 0.0851	1.0219 1.0225	0.0821 0.0777
42.00	6.7846	0.4167	1.0253	0.0820	1.0223	0.0732
42.50		<u>0.4111</u>		0.0792	1.0214	0.0688
43.50	1.0000	0.45.60	1.0135	0.0743	1.6175	0.0646 0.0611
44.00	1.00%/	3246	1.0092	0.0713	1.0149	0.0582
44.50 45.00	1.0672 1.0136	0. \$693 9. \$562	1.0051 1.0013	0.0/25 0.0/18	1.0123 1.0097	0.0560
45.50	1.018-6		0.4411	0.0716	1,0078	0.0545 0.0533
46.00	1,0224	C. (1)	0.794)	0.0715	1.0054	0.0525
46.50 47.00	1,07/ <i>1</i> 1,6310	6. States C. Sta Sta	0.9716	0.9716 0.0716	1.0037 1.0022	0.0517 0.0508
47.50	1.0352	Carrier	O. 4464	0.0716	1.0006	0.0498
48.66 48.50	1,0392	0.3527	9 1 3 9 2 0 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0715	0.4486	0.0489
47.00	1.0431	· = · - · · · · · · · · · · · · · · · ·	0.9113	- 0.0715 - 0.0716	0.4968 0.4445	_ 0.0480 0.0475
47.50	1.0501	2.3357	0.4/54	0.6720	0.9920	0.0474

	MACH HACH MUND	WIDTH TO LENGTH PATIO 0. 1000		I RATIO 1.0000	WIDTH TO LENGTH BATTO 2.0000		
FREEUENCY	RESISTANCE 0.0107	RADIATION REALTANCE 0,1606	RADIATION RESISTANCE	REACTANCE - 0.2315	RADIATION RESISTANCS 0.0769	RADIATION REACTANGE 0.1095	
1.00		0.3095	0.1506	0.4333	6.2775	0.5347	
2.00	0.1657 0.2775	0.5347	0.3161 0.5101	0.5813 0.6613	0.5289 0.7540	0.6312 0.6100	
2.50 3.00	0.4021 0.5289	0.5996	0. (043	0.6200		0.5209 0.4183	
3.50	0.6486	0.6327	0.7981	0.5262	1.6236	0.5335	
4.00 4.50	0./540 0.8409	0.6100	1.071u 1.043a	0.4124	1.0390 1.6465	0.2694 0.2150	
5.00 5.50	0.9079 0.9562	0.5209 0.4686	1.0770 1.0363	0 • 2 104 0 • 1503	1.0422	0.1640	
6.00	0.4840	0.4183	0.9007	0.1732	1.0211	0.1225 0.1014	
6.50 7.00	1.0101 1.0236	0.3750 0.3335	0.9485 0.9252	0.1240 0.1427	0.7591 0.7470	0.1046 0.1233	
7.50	1.0320	0.2995	0.9219	0.1676	0.4251	0.1415	
8.00 8.50	1.0390 1.0438	0.2694 0.241/	0.9364 0.9622	0.1884 0.1979	0.474H 0.4434	0,1473 0,1397	
9.00	1.0465	0.2150 0.1840	0.9912	0.1932 0.1759	1.0041	0.1259	
10.00	1.0422	0.1640	1.0315	0.1503	1.0106	0.1134 0.1040	
10.50 11.00	1.0337 1.0211	0.1413 0.1225	1.0354 1.0285	0.1223 0.0777	1.0141 1.0161	0.0945 0.0817	
11.50	1.0054	0.1038 0.1014	1.0144	0.0806	1.0121	0.0676	
12.50	0.4/23	0.1002	0.9n21	0.0127	1.0012 0.9881	0.0578 0.0569	
13.00 13.50	0.9591	0.1146	0.9689 0.9689	0.0011 0.0915	0.9796 0.9797	0.0640	
14.00	0.9470	0.1233	0.4/20	0.1913	0.9867	0.0736 0.0793	
14.50 15.00	0.9488	0.1334	0.9817	0.1074		0.0787 0.0739	
15.50 16.00	0.9643 0.9748	0.1463	1.0049 1.0135	0.1033	1.0034	0.0686	
16.50	0.9849	0.1448	1.0176	0.0938 0.0817	1.00%	0.0648 0.0612	
17.00 17.50	0.9934 0.9999	0.1397 0.1330	1.0167 1.0114	0,0696 0,0595	1.0087	0.0559	
18.00	1.0041	0.1259	1.0033	C.0534	1.0039	0.0487 0.0422	
18.50 19.00	1.0066 1.0080	0.1192 0.1134	0.9943 0.9872	0.0517 0.0542	0.4968 0.4904	0.0396 0.0420	
19.50 20.00	1.0092 1.0106	0.1004 0.1040	0.9831 0.9828	0.0596	0.4889	0.0475	
20.50	1.0123	0.0995	G. VII.64	0.0660	0.9903 0.9950	0.0524 0.0540	
21.00	1.0141	0.0945 0.0385	0.9926	0.0741	0.9993 1.6016	0.0524 0.0496	
22.00	1.0161	0.0817	1.0064	0.0694	1.0026	0.0471	
22.50 23.00	1.0150 1.0121	0.0746 0.0076	1.010/ 1.011a	0.0627 0.0550	1.0036 1.0051	0.0452 0.0427	
23.50	1.0073	0.0618	1.0697	0.0477 0.0425	1.0658 1.0643	0.0387	
24.50	0.9945	0.0561	0.9993	0.0401	1.6004	0.0342 0.0312	
25.00 25.50	0.9681 0.9829	0.0569 0.0597	0.9937 0.9897	0.0407 0.0437	0.495 <i>[</i>	0.0312 0.0341	
26.00 26.50	0.9796 6.9786	0.C640 0.C640	0.98N2 0.9894	0.0460	6.9925	0.0378	
21.00	0.9/9/	0.0136	6.4927	0.0524 0.0554	(1.44.20 (1.44.20	0.0403 0.0405	
27.50 28.00	0.7676 1634.0	0.6772 0.6793	0.9977	0.0562 0.0546	1.6065 1.0010	0.0390	
28.50 29.00	0.7911 	= 0.0796 =	1.0064	0.0569	1.0022	0.0358	
29.50	0.9986	0.0766	1.0079	0.0458 0.0406	1.U030 1.U039	0.0344 V.v323	
30.00 30.50	1.0010	0.6739 0.6711	1.0054 1.0017	0.0362 0.6335	1 - գ։ 0 3 ։ 1 - ս 0 2 0	0.0293 0.0265	
31.00	1.0034	0.000	0.99/7	0.0327	0.4986	0.0252	
31.5u 32.00	1.0040 1.0046	∂• ∪666 0• ∪648	0.4414 0.4410	0.0343 0.0371	0.9957 0.9944	0.0263 0.0289	
32.50 33.00	1.0055 1.0066	0.16)1 0.1612	0.9917 6.9934	0+0403 0+0432	0.4474	0.0315	
31.50	1.0078	C. Cas9	0.2964	0.6448	(· 996	0.0326 0.0321	
34.50	1.0087	0.6559 6.6525	1.0000 1.0034	0.0447 0.0429	1.000V 1.0014	0.0376	
35.00 35.50	1.00m3 1.0066	0.0487 0.0452	1.0657 1.0664	0.0377 0.0358	1.0019	0.0287	
36.00	1.0039	0.0422	1.00>4	0.0321	1.002ê 1.0031	0.0276 0.025/	
36.50	1.0005	0.0403	1.0630	0.0279	1.0025 1.0005	0.0234 0.0216	
37.50 38.00	0.4932 0.4904	0. Ch63 0. Ch20	0.4963	0.0282	0.4979	0.0215	
38.50	0.4FB6	C.Chko	0.993,	9.6299 0.0323	0.7490 0.4456	0.0250 0.0252	
39.00 39.50	0.9860 0.9887	Q. (475 V. (502	0.44,13 0.44,19	0.0349 0.0368	0.4970 0.4489	U.0268	
40.00	0.0403	0.(524	0.478)	0.0375	1.0003	0.0271 0.6264	
. 40.50 41.00 = · · ·	0.9426 6.4956	りゃじっきん りゃしっしゃ	1.0014	0.0369 0.0349	1.009 1.0012	0.0254 0.0246	
41.50	0.99/4 0.99/j	9.4535 9.4524	1.0050	0.0320	1,6017	0.0239	
42.00 42.50	1.0007	0.0516	1.0019	0.0240 0.0263	1.0025	0.0228 0.0211	
43.00 43.50	1,0016	9. (496 5. (1.13	1.0013	0.0247	1.0014	0.0194	
E4.60	1.0026	4.1571	0.996.	0.0250	0.4475	0.0180 0.0180	
44.50 45.00	1.0030 1.0036	9. (362 8. (452	9.4751 0.4747	0.026a 0.0249	0.4965 C.4969	v.J207 V.O224	
45.50	1.00%5	0.(441 C.(427	0.49%	0.0307	0.4985	0.0233	
46.50	1.0056	0.0569	0.9999	0.0320	1.4006	0.0223	
47.00	1.005H 1.005H	5.6367 0.6364	1.0021	0.0310 0.0790	1.000y 1.0011	0.0215 0.0210	
48.00	1.0043	6.0342	1.0041	0.0266	1.0016	0.0204	
48.50	1.0004	0.0324	1.0036	0.0243		0.0194	
	· 0.7980 6.7957	0.(30H 0.0312	1,0051	0.6215	1.0666	0.0166	
JV100	V	V+4.312	44444	0.0216	0.4364	0.0163	

-	3.00	H RATIO D. S.	WIDTH TO LENG	BATIO 0.1250	WIDTH TO LENGT	RATIO 0.0625	WIDTH TO LENGTH	
you was .		REACTANCE	RALLATION RESISTANCE	REACTANCE	RADIATIOS	RACIATION	RESISTANCE	OGNERAL 1250
	<u> </u>	0.1051	0.0390	0.1260	0.0190	0,0345 0,0777	0.0025	FREQUENCY Q.30
-		0.2948	0.0844	0.1864	0.0423	0,1136	0.0212	1.00
_	9	0.3714 0.4329	0,2086	0.2389 0.2836 0.3211	0.071e 0.1052	0. 1464 0. 1757	0.0359 0.0527	2:00
		0.4791	0.2783 0.3474	0.3211	0.1410 0.1767	0.2013 0.2238	0.0707	3.00
•	9	0.5319	0.4132	0.3772 0.3784	0.2117	0.2435	0.1065	3.50 4.00
	2	0.5435	0.4/37 0.5285	0.4167	0.2445 0.2752	0.2612	0.1232	5.00
_	ļ	0.5512 0.5511	0.5781 0.6235	0.4334	0.3039	0.2933	0.1539	5.50
	6	0.5496	0.6661	0.4642	0.3582	0.1256	0.1424	6.50
	5	0,5425	0.7469	0.4922	0.4122	0.3527	0.2113	7.00
	9	0,5356	0.7860 0.8241	0.5044 0.5149	0.4390 0.4679	0.3605 9.3795	0.2263	8.00 8.50
		0.5129 0.4967	0.8605 0.6946	0.5235	0.4961	9.3916 0.4e28	0.2573	9.00 9.50
	8	0.4778		0.5350	0.55¶3	9.4131	0.2884	10.00
	5	0.4548 0.4349	0.9257 0.9553 0.9773	0,5382 0.5401	0,5776 0,6034	0.4227 0.4316	0.30 <i>31</i> 0.318 <i>1</i>	10.50 11.00
~~		0.4115 0.3885	0.9978 1.0152	0.5410	0.6230 0.6517	0.6400		11.50
	7	0.3657	1.0297	0.5405	0.0/4/	0.4557	0.3623	12.50
	5	0.3215	1.0517	0.5389	0.6971 0.7191	0.4636 0.4700	0.3765 0.3708	13.00 13.50
		0.300 0.279	1.0597 1.0657	0.5340 0.5304	0.740s 0.7614	0.4756 0.4826	0.4191	14.00
	0	0.259	1.0699	0.5260	0.1816	0.6885	G.4332	15.00
	0	0.2210	1.0730	0+520V 0+5151	0.8013 0.8203	0 • ₽ 4 8 B 0 • ₽ • 3 B	υ•4472 Ω•4611	15.50 16.00
		0.203	1.0722	0,5088 0,5019	0.8586 5688.0	በ•ጎሮችክ በ•ካሮኛሪ	0.≒749 €•ዛ៩⊌ዕ	18•50 17•00
	3	0.172	1.0670	0.4945	0.8733	0.5115	0.5023	17.50
	6	0.145	1.0584	0.4751	0.9056	0.5150 0.5162	0.5158 0.5293	18.00 18.50
		0.133 0.123	1.0530 1.0469	0.4641 0.4545	0.420a	4.5269 0.5233	0.5427 0.5559	19.00 19.50
		0.113	1.0400 1.6325	0.4445	0.9480 0.9614	0.5757 V036.0	0.5689 VIde. 0	20.00
	79	0.097	1.0244	0.4285	0.1/32	(1, 524)3	0.5942	20,50
		0.092 0.088	1.0160	0.4179 0.4073	0.9841 0.9942	0.5295 0.5306	0.6065 9.6166	21.50 22.00
		0.086 0.085	0.444 <i>1</i> 0.4725	0.3968 0.jao4	1,0046	0.5315 0.5323	1 . 6307. 0 . 9426	22.59
	51	0.086	V. 4862	0.3766	1.0215	0.5527	0.0546	23.50 23.50
	3 3	0.088 0.088	0.9769	0.3546	1.01/0	0. 133. 0. 1337	6.0666 6.9785	24.00 24.50
		0.089	0.4735	0.3435 0.3320	1.0452 1.0520	• 55, 7 • 5319	0.9904 5.7021	25.06
	19	0.091	0.767B	0.3204 0.3087	1.0577	0.0367	0.7136	25.50 26.00
••	44	0.094	U.9626	0.2711	1.06/2	1.5575	C.7247 0.7356	26.50 27.00
		0.097 0.100	0.4285 0.4605	0.2857 0.2743	1.0705	0.5257 0.5259	0.7960	27.50 28.00
		0.103	0.4510 6.4510	- 0.2044 0.2545	1.0753	C. 522C 9.52CT	(.1663	28.50
	20	0.112	6.9578	() . 2 4 4 9	1.6787	0.5181	0.7767 0.7867	29.00 29.10
		0.119	0.9599	0.2355 0.2261	1.000	0.51ac c.5137	0.7761	30.00 30.50
		0.121	0.9670	0.2168	1.0825 1.0832	0.5111 0.5012	(.8157	31.00
	31	0.123	0.9754	0.1980	1.0833	0.5049	C+8257 U+3352	31.50 32.00
	19	0.122 0.121	U. 4793 U. 4828	0.1646	1.0H2a 1.0H1/	6.5014 0.6977	0,8465 0,255	32.50 33.60
-		0.12	8681.0 1804.0	· <u>0.1/09</u>	= 1.6396 1.6779	- 1.1.7 <u>0</u> 6		35.50
	92	0.119	0.9915 0.9945	0.1552	1.0/54	13.46.40	(∙ , ն/ ዘհ	34.00
	74	0.117	6.9977	6.14a1 6.1416	1.0627	0.40.22	0.6866 0.8947	35.00 35.59
		0.110 0.111	1.0015 1.001	0.1354 0.1295	1.0671 1.0644).h7h2 0.k760	C.9025	36.00
	18	0.11	1.0089	0.1238 0.1183	1.6616	6.63,7	. 0.9174	37.00
	147	0.10	1.0156	0.112₹	1.0556	0.4612 0.4506	C+9253 D+9325	37.50 38.00
	159	0.10	1.0180 1.0198	0.10// 0.1026	1.0522 1.0486	0.4518 0.4576	じょとうりつ (1。26.6.5	38.50 39.10
	214	0.09	1.0208 1.0212	0.0983	1.0447	0.44.21 0.4371	0.9578	34.50
	351	0.08	1.0211	0.0706	1.0366	C.4.122	(• 2591 0 • 9653	40.00 40.50
	759	0.07	1.0208	0.0546	1.0325 1.0235	0.4273 9.4224	6.7113	\$1.00 \$1.50
	726	0.07	1.0196 1.6188	0.0821	1.0246	0.44174 0.4124	(. 4836. C . 4887	42.00
	664	0.06	1.01/8	0.0774	1.0171	11. Ni 12	P. 7943	42.50
	606	0.06	1.0166	0.0761 0.0745	1.0134 1.007	1,4019 0,1969	1.ucae 0.449h	43.50 44.00
		0.05 0.05	1.0139	0.0751	1.0061 1.002	0.3916 0.3500	1.0161 1.0150	(اوييائية
	554	0.05	1,0093	0.0711	0.4987	(+3/44	1.0197	45.0L 45.0(-
	503	0.05	1.00%	0.0706	0.7957	1.3742	1,0242	46.50
		0.04 U.04	1.002	0.0703 0.0705	0.7dHo 8,985;	9. 302b	1.6325	41. 9∪
	479	U.04 U.04	0.9376	0.0709	0.702:	J. 3514	1,6401	47.50 18.00
	479	0.04	0.493	0.0723	· ···- · 6.4111	0.3400	1.5436 1.5470	47.00
	LS L	0.04	U.990·	0.0733	3. 1146	5 54 5	1.0501	49.50

. ")	MAGII NUMBER 0.10 WIDTH TO LENGTH RATIO 0.5000		WIDTH TO LENGT	LR 0.10 1 RATIO 1.0000	HACH NUMBER 0.10 WIDTH TO LENGTH RATIO 2.9000		
GENERALIZED	RADIATION	REACTANCE	RADIATION	RADIATION REACTANCE	HADIATION RESISTANCE -	RADIATION	
PRECVENCY 0,50	0.0199	0.1609	0.0396	0.2319 -	0.0776	0.3102	
1.00	0.1668	0.4365			0.2796 0.5314	0.5346 0.6288	
2.00	0.2788	1680.0	0.5121	0.6589	0.7548	0.6053	
2,30	0.4030 0.52H8	0.5976	0.7049	0.8150	0.9055	0.5155 0.4145	
3.50	0.6570 0.7510	0.6299	0.9933 1.0638	0.5219 0.4107	1.u165 1.u320	0.3327	
4.00	0.8368	0.5076	1.0850	0.3033	1.0409	0.2719 0.2201	
5.00	0.9037	0.5223 0.4720	1,0704 1,0335	0.2164 0.1542	1.0388 1.0208	0.1711 0.1308	
6.00	0.9978	0.4229	0.9904	0.1326	0.4920	0.1095	
6.50 7.00	1.0114	0.3777 0.3370	0. 4548 0. 7346	0.1516 0.1461	0.7665 0.7567	0.1105 0.1247	
7.50	1.0376	0.5007	0.9318	0.1658	0.9644	0.1575	
8.00 8.50	1.0441 1.0474	0.2677 0.2372	0.9439 0.9651	0.1816 0.1860	0.7806 0.9940	0.1389 0.1294	
9.00	1.04/3	0.2089	0.9880	0.1830	0.4994	0.1168	
9.50 10.00	1 • 04 56 1 • 0 56 4	0.1828 0.1596	1.0085 1.020a	0.1682 0.1473	0.7996 1.0004	0.1077 0.1028	
10.50	1.0260	0.1402 0.1252	1.0244	0.1251	1.0043	0.0980	
11.00 11.50	1.0134 0.9996	0.1151	1.0202 1.0107	0.1055 0.0915	1.6086 1.6088	0.0876 0.0785	
72.00	0.9862 0.9744	0.1899	0.9994	0.0840	1.6035	0.0644	
12.50 13.00	0.9652	0.1114	0. 9824	0.0855	6.9959 0.9911	0.0661	
13.50	0.9590 0.9560	0.1160 0.1217	0.4816 0184.0	0.0404 0.0950	0.7917	0.0715	
14.00 14.50	0,9559	0.1275	0.9865	0.0976	0.9958 0.9992	0.0715 0.0676	
15.00 15.50	0.4584 0.4628	0.1326 0.1376	0.4929	0.0973	0.9991	0.0624	
16.00	0.9687	0.1399	1.0039	0.0884	0.7941	0.0595 0.0600	
16.50 17.00	0.9758 0.9837	0.1413 0.1411	1.000°1 1.000°1	0.0815 0.0747	0.4484 0.4444	0.0619	
17.50	0.9919	0.1370	1.0049	0.0688	1.0021	0.0593	
18.00 18.50	1.0000	0.1351 0.1293	1.0019 0.9987	0.0647	1.6035 1.0024	0.0546 0.0507	
19.00	1.0138	0.1217	0.9959	0.0616	1.0007	0.0489	
19.50 20,00	1.0183 1.0207	0.1129 0.1035	0.4941 0.4936	0.0619 0.0627	1.0002 1.0012	0.0485 0.0474	
20.50	1.6208	0.0941	0.9941	0.0633	1.6020	0.0446	
21.00 21.5G	1.0188 1.0153	0.6835	0.9976	0.0633	1.0008	0.0410 0.0390	
22.00	1.0108	0.0731	0.9987	0.0614	0.9939	0.0398	
22.50	1.0061 1.001	0 . 0695 0 . 06 <i>1</i> 6	1.0000	0.0595 0.0573	0.4452	0.0429 0.0460	
24.50	0.9983	0.0667	1.0013	0.0550	0,9978	0.0468	
\$4.50 \$4.00	0.9956 0.9457	0.0666	1.0013 1.0013	0.0528 6.0509	1.0012	0.0451 9.0421	
25.00	0.7922	$a_{1}6660$	1.060!	0.0472	1.0029	0.0395	
26.00	0.7892	0.0657 0.0659	6.9997 0.9984	0.0480 0.0473	1.6627 1.0030	0.0379 0.0363	
26.50	0.7874 6.7857	4,0656	0.9978_	0.0468	1.0032	0.0341	
27.00 27.50	0.9843	0.1683	0.9974	0.0407	1.623 0. 7 996	0.0112 0.0291	
28.00 28.50	0.7816 0.7816	0.6709 0.6739	0.9975 0.9984	0.0465 0.0462	0.4961 0.4936	0.0291	
29.00	0.4868	3.1768	0.7792	0.0455	0. 1936	0.0346	
29.50 30.60	0 * 440 J	0.6790 0.6798	(1.9999 1.0004	0.0446 0.0434	0,7790	0.0369 0.0370	
\$0.50	£000.i	0.0790	1.0006	0.0421	1,6014	0.0354	
31.00 31.50	1,0052	0. (165 0. 6124	1.0003	0.0408	1.0024 1.0025	0.0332 0.0315	
32.00	1.0118	0. C674	0.4440	0.0386	1,0027	0.0302	
32.50 53.00	1.0128 1.0122	0,1620 0,1566	0.4941	0.03n2 0.03n0	1.0029 1.0026	0.0287 0.0266	
34.50	1.0105	0. C524 0. C522	0.4983	0.0379 0.0378	1.6612	0.0246	
34.00 34.50	1 .0051	0.0470	0.4464	0.0311	0.4463	0.0257 0.0246	
\$5.00 \$5.50	1.0025	0. C459 0. 0455	0.4944	0.03/3 0.036/	0.442	0.026H 0.0290	
36.00	0.7786	0 . (454	1.0002	0.0359	0.4981	0.0299	
36.50	0.9974	0.0455		- 0.034 <u>y</u>	1.001	0.0293 0.0279	
37.50	0.4420	0.(473	0.4943	0.0333	1.0013	0.0266	
58.00 58.50	0.9947 0.9937	17 a 5, k 5 5 () a (- k 5 k	0.4884	0.0128 6.0127	1.0012 1.0014	0.0258 0.0252	
39.00	0,4926	() • () ቁ.⊅A	0,7987	0.0327	1.0017	0.0242	
40.00	0.4913	0.C468 0.0451	0.4480	0.0328	1.0016 1.0005	0.0228 0.0215	
40.50	0.7915	0.0026	0.9997	0.0755	(.,4640	0.0212	
41.00 41.50	0.4425	0.6.11 9.6524	1.0003 1.0003	0.03c0 6.0311	0.7777	0.0220 0.0213	
42.00	6.4450	0.6531	1.0004	0.0301	0.7784	0.0241	
42.50	0.4979		1.0606	0.0291 0.0283	1.4770	0.0240 0.0231	
43.50	1.0024	0.0515	0.4442	0.0278	1.0002	0.0222	
են.00 են.50	1,6042 1,0055	0.(49B 0.1477	0.9985	0.0274	0.4448	0.5219 0.0221	
45.00	1.0664	طو'ية كي (.	0.4414	0.0264	1.0002	0.0222	
45.50	1.0066	0.050	0.4445 0.4443	0.0294	1.0000	0.0216 0.0206	
46.50	1.0060	0.6485	1.000.	0.0275	1,0006	u.u197	
47.00 47.50	1.0051 1.0638	0.4 C\$66 0.4 C\$56	1.6612 1.0017	0.0287 0.0275	0.44 9 n	0.0194 6.0196	
48.00	1.0023	0.0337 0.0328	1.0620	0.0261 0.0247	0.1495	Ų.U200	
48.50 49.00	6,7989	0.0324	1,6615	0.0237	1.0001	0.0148 0.0142	
49.50	0.7971	0.0324	6.4443	0.0231	0.7497	ŭ.Q185	

		MACH NUMB WIDTH TO LENGTH	ER 0.26 H RATIO 0.0625		MACH MUMBER 0.20 WIDTH TO LENGTH RATIO 0.1250		MACH NUMBER 0.20 WIDTH TO LENGTH RATIO 0.2500	
	ENERAL I ZED	KADIATION	RACIATION	HADIATION SONTETERS	PADIATION	RADIATION	RADIATION	
	PRECUENCY	0.0026	0.0396	0.0051	0,0648	-0.0103	0.1066 0.2055	
-	1.50	0.0216	0.1136	0.0200 0.0432	0.1289	0.400	0.2947	
	2.00	0.0364	0.1451 0.1750	0.0/2/ 0.1060	0.2383 0.2823	0.1446 0.2101	0.3701 0.4301	
_	3.00	0.0708	0.2004	0. 1410	0.3193	0.2783	0.4753	
	3.50 4.00	0.0884 0.105 6	0.2220 0.2420	0.1760 0.2090	0.3500 0.3758	0.4455 0.4092	0.5074	
	4.50	6.1220 0.1377	0.2611 0.2782	0.2420	0.3981 0.4177	0.4684	0.5428	
	5.00 5.50	0.1530	0.2944	0,3021	0.4356	0.5745	0.5556	
	6.00	0.1680 0.1830	0.3101 0.3250	0.3309 0.3594	0.4521 0.4671	0.6225 9.6083	0.5569	
	7.00	0.1980 0.2130	0.3394	0.3876 0.4156	0.480¢ 0.4926	0.7119 0.7119 0.7533	0.5506	
	. 7.50 8.00	0.2280	9.3658	0.4431	0.5030	0.7921	0.5325	
	9.00	0.2429	0.3/80	0.4702	0.5119	0.0280 0.0616	0.5197	
	9,50	0.2723 0.287G	0.4010 0.4118	0.5227 0.5484	0.5264	0.8912	0.4893	
	10.00 10.50	6.3018	9.4221	0.5740	0.5371	0.9451	0.4552	
	11.00 11.50	0.31n9 0.3321	0.4320 6.4412	0.5996 0.6252	0.540.9 0.543.5	0.9694 0.9920	0.4367 0.4168	
_	12.00	0.3474	11, 44 37	0.6500	0.5442 0.5434	1.0126	0.3954	
	12.50 13.00	0.3626 0.3776	0.4573 0.4642	0.6753 0.6992	0.5454	1.0306	0.3723 0.3481	
	13.50 14.00	6.3722 6.4664	0.4795 2.4763	0.7213 0.7432	0.5376	1.0568	0.3254	
_	14.50	6.4202	0.4818	0.7633	0.5284	1.0689	0.2757	
	15.00 15.50	U.4337 0.4471	0.4672 0.4926	0.7624 0.8007	0.5234 0.5183	1.0707	0.2544 0.2352	
	16.00	0.4605 0.4740	0.4978 0.5028	0.8187 0.8365	0.5131	1.0694	0.2160 0.2025	
	16.50 17.00	0.4877	0.5075	0.8542	0.5017	1.0658	0.1881	
	17.50	6.50 <u>15</u>	0.5117 0.5154	0.0116	0.4750	1.0636	0.1744	
	18.50	0.5291	0.5185	0.4656	0.4790	1.0573	0.1483	
	19.00 19.50	n ,5426 n ,5559	0.5212 9.5236	0.9206 0.9351	0.4697 0.4599	1.6527 1.6468	0.1361	
	20.00 20.50	838c+3 818c+9	0.5253 0.5270	0.9486 0.9612	0.4497 0.4393	1.0400 1.0324	0.1149 0.1064	
	21.00	(,)94 1	0.5265	0.9750	0.4288	1.0245	0.0996	
	21.50 22.00	9000.0 93(0.)	0.529H 0.5309	0.9341 0.9945	0.4135 0.4076	i.u166 1.u088	0.0943 0.0903	
	22.50	0.6311 6.6632	0.5316 0.5321	1.0043	0.3968	0.9944	0,0874 0.0856	
	23.00	י, כ'נ'ט. י	6.5329	1.0729	0.3749	0.9877	0.0847	
	24.00 24.50	0.0569 2.542.	6.53/3 6.53/1	1,0293	0.3639	0,9814 2,9757	0.0848 9.9858	
	25.00	1.6897	e.5317 e.5312	1.0435 1.0496	0.3421	0.970b 9.9668	0.0878	
	25.50 26.00	t . 1 V2 h	ուս և Էմիկ	1.0553	0.3207	0.9639	0.0904 0.0935	
_	- 26.50 26.50	6.7235 (.756	0.5245	1.0607	0.3100	0.9621	0.0967	
	21.00	0.747.6	1.5267	1,0701	0.2881	0.9610	0.1023	
	28.00 28.50	(./563 (./668	0.5221	1.0768	0.2770 0.2658 0.2548	0.9612 0.9615	0.1045 0.1063	
	29.00 24.50	6.7776	0.5264	1.0790 1.0790	0.2548 0.2440	0.9618 0.9621	0.1080 0.1099	
	30.00	0.7967	9.5154	1.0811	0.2338 0.2240	0.9626 0.9635	0.1121 0.1147	
	30.50		0.5128 0.5102	1,0814	0.2148	0.7652	0.1175	
	31.50 32.00	6.8250 0.8344	0,5074 0,5045	1.0911 1.0803	0.2060	0.9678 0.9713	0.1202 0.1226	
	35.20	0.89.37	0.5014	1.0804	0.1892	0.9755 0.9801	0.1242 0.1250	
	33.00 33.50	0.8528 0.8618	Դ. և Չու Լ Դ. և Չել և	1.0797 1.0783	0.1810 0.1/28	0.4848	0.124B	
_	314.00	v.:70 - 0.8790). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,0774 1,0776	9.1648 9.1967	0.484	0.1237 0.1221	
	34.50 35.00	9,8872	(1 , 1) et , 14	1.0734	0.1494	0.9975	0.1199	
	35.50 36.00	0.8951 6.9029	0.4781 0.4738	1.0708	0.1355	1.0041	0.1150	
_	36.70	0.9104	0.4695 0.4651	1.0650 1.061a	0.1292	1.0070	0.1123	
	37.00 37.50	6.9250	0.4606	1.0585	0.1177	1.0121	0.1061	
	38.00 38.50	0.9320 (.9389	0.4565 0.4535	1.0550 1.0514	0.1124 0.1074	1.0143 1.0160	0.1027 0.0991	
	39 , 011	0.7456 0.7521	9.4406 0.442}	1.0477	0.102H 0.0985	1.0174 1.0184	0.0954 0.0918	
-	40.00	<u>6.75</u> 65	0.4374	1.0398	0.0947	1.0191	0.0883	
	40.50 41.00	6.4410	0.4326 0.4278	1.0398 1.0319	0.0913	1.0197	0.0815	
	41.50 42.00	(*A1/1	0.4228 9.4178	1.02H1_ 1.02H3	0.0856	1.0204	0.0781 0.0745	
	42.50	2. AU 3.0	0.6125	1.020	0.0808	1.0203	U.0707	
-	43.00	6.7947 1.0001	0.4071 0.4016	1.0174 1.0137	0.0165	1.0197	0.0668	
	44.00	1.0052 1.0101	e. 3960 v. 5703	1.0100 1.0002	0.0747	1.0164 1.0139	0.0593 0.0562	
	14.50 15.00	1.0147	0.3847	د ۲۰۵۵ و آ```	0.0/20	1.0111	0.0537	
-	45.50 46.00	1.0171	0.1777	0.9483	0.0/13	1.0080	0.0520	
	46.50	1.0274	0.3633	0. 7914 0. 7082		1.0025	0.0504	
	47.00 47.50	1.0315	0.3575	0.9454	0.0715	0.4984	0.0501	
	43.00	1.0324 1.0451	n. 3526 n. 3465	0.9E27 0.9E02	0.0/19	0.9968 0.9953	0.0500 0.0499	
	43.50	1.0457	7, 34 CB	0.1//5	0.0729	85PY.V	0.0498 0.0497	
	49.50	1,6501 1,6532	1.3311 0.3274	0.7/54 0.7751	0.0735 0.0742	0.4422	0.0497	

	WIDTH TO LENGT	R 0.20 H RATIO 0.5000	MACH NUMB		WIDTH TO LENGTH RATIO 2.0000		
PREQUENCY	HADIATION	REACTANCE	HADIATION	RACIATION REACTANCE	RESISTANCE	PAULATION	
0.50	0-0205	0.1617	0,0406	0.2334	0.0799	0.3122	
1.00	0-0796 0-1703 0-2027	V. 1 360	0,3243	0.4346	0,2861 0.5387	0.5341	
2.00 2.50	0.2827 0.4055	0.5306 0.5916	0.5178 0.7062	0.6512 0.6542	0.7567 0.8975	0.5911 0.4997	
3.00	0.5280	0.6205 0.6219	0.8646	0.6003	0.9664	0.4040	
3.50 4.00	0.7417	0.6024	0.9782 1.0424	0.5103	0. 9952 1.0121	0.3317 0.2805	
4.50 5.00	0.8252_	0.5689 0.5212	1.0633	0.3111 0.2350	1.0261 1.0312	0.2361 0.1919	
5.50	0.9453	0.4818	1.0271	0.1845	1.0222	0.1537 0.1305	
6.50	1.0159	0.3893	0.9734	0.1497	0.4876	0.1237	
7.00 7.50	1.0370	0.3444 0.3015	0.9594 0.9555	0.1520 0.1580	0.7820 0.7860	0.1253 0.1254	
8.00 8.50	1.0549 1.0532	0.2515 0.2257	0. 759a 0. 7684	0.1029 9.1642	0.9913 0.9912	0.1167 0.1057	
9.00	1,0460	0.1953	0.9790	0.1613	0.7852	0.0988	
9.50 10.00	1.0351	0.1711 0.1534	0.9976	0.1547 0.1454	- 0.4792 0.4793	0.0995 0.1049	
10.50	0.9997	0.1317	1,0036	. 0.1347 0.1234	0.9867	0.1090 0.1069	
11,50	0.9915	0.1299	1.0079	0.1124	1.0068	0.0788	
12.00 12.50	0.9853 0.9804	0.1255 J.1226	1.0064 1.0032	0.1027 0.0947	1,6110	0.0880 0.0784	
13.00	0.9761	9.1200 9.1182	0.9989 0.9947	0.0891 0.080	1.0074 1.0076	0.0711 0.0651	
14.00	0.9667	0.1179	0.9914	0.0849	1.0051	0.0591	
14.50	0.9628	0.1196	0.4848 0.4848	<u>60000</u>	1.6005	0.0538 0.0513	
15.50 16.00	0.9598	0 • 1290 0 • 1350	0.4945	0.0864	0.7875 0.9844	0.0532 0.0587	
16.50	0.9688	0.1402	0.9977	0.0833	0.4865	0.0646	
17.00 17.50	0.114.0 0.889.0	0.1432 0.1431	1.0002 1.0016	0.0/46 0.0752	0.7 426 0.7 9 92	0.0675 0.0658	
13.00 18.50	0.4985 8700.t	0.1376 0.1331	1.0015 1.0003	0.0708	1.0034 1.0045	0.0610 0.0558	
19.00	1.0150	0.1244	0. 7784	0.0648	1.0038	0.0521	
19.50 20.00	1.0195	0.1146 0.1646	0.9966 0.9957	0.0638 0.0638	1.0032 1.0034	0.0499 0.0478	
20.30	1.0215	0.0955 0.0869	0.446	0.0642		0.0450 0.0419	
21.50	1.0170	0-0/98	0.9997	0.0631	0.4448	0.0399	
22.00 22.50	1.0134 1.0091	0.0/37 0.0688	1.0019 1.0036	0.0607	0.9973 0.9961	0.0397	
23.00 23.50	1.0099 0.7794	4.Cn51 0.0627	1.90/ 1.0012	0.0555 0.0501	0.7966 0.7976	0.0417 0.0415	
24.00	0.9898	0.0618 0.0624	0.998)	0.0480	0.99/9	0.0400	
24.50 25.00	0.9863	0.6463	0.4933	0.0486	0.4424	0.0391 0.0395	
25.50 26.00	C. 704 i O. 9834	0.076 0.0701	0.4925	0.0510 0.0533	0.4401	0.0411 U.0424	
26.50 27.00	6.9842 6.9866	0.0726	6.9960	0. <u>0</u> 547 0.0547	1.0014	0.0420	
27.50	0.9884	0.6756	1.0627	0.0528	1.0051	0.0357	
28.00 28.50	0.9908 0.9927	0 • 67'54 6 • 6 747	1.0053 1.0064	0.0494 1-04-0	1.0042 1.0024	0.0324	
29.00 29.50	0.4473	0.0737 0.0728	1.0095 1.0631	0,0409 6.6576	1.0001	0.0295 0.0291	
50.00	0.7764	0.0722 0.0719	0.4797 0.4766	0.0359 0.0357	0.9981 0.9967	0.0287	
31.00	0.444	0.0715	0.9941	0,03/3	0.4423	0.0288 0.0298	
31.50 32.00	1.0021 1.0049	0.0767 0.0690	0.4424 0.4433	0.0395 0.0419	0.4401	0.0318 0.0337	
32.50	1.0076	0.066k 0.0624	0.9967	0.0438 0.0445	0.49H6 1.6013	0.0345	
55.00 35.50	1.0108	ባ • ሮ5ዞ6	1.0001	0.0440	1.0028	0.0312	
34.00 34.50	1.0107 1.0094	0.0542 0.0501	1.0024	0.0424 0.0349	1.0028 1.6019	0.0287 0.0212	
35.00 35.50	1.0073	0.0467 0.0442	1.00կկ 1.00կն	0.0372	1.6010 1.0006	0.0266	
36.00	1.0015	0.0426	1.0027	0.0324	1,0007	0.0259	
36.50	0.4986	0.0420	1.0016	0.0311 0.0305	1.0005 0.4998	0.0250 0.0242	
37.50 38.00	0.9937 0.9919	0.042/ 0.643/	0.4975 0.4965	0.0367 0.031	0.4488	0.0240 0.0244	
38.50	0.9905	0.0451	0.9950	0.0326	0.7980	0.0251	
39.00 39.50	0.9897 0.9894	0.0469 0.0488	0.9957 0.9964	0.0338 0.0350	0.4985 0.4989	0.0253 0.0251	
40.00	0.9899 0.9911	0.0508 0.052f	0.9976	0.0357	0.4484	0.0248 0.0249	
41.00	6.4433	0.6541	1,0012	0.0350	n * 4484	0.0254	
41.50 42.00	0.9955	0.0548 0.0547	1.0026	0.0336 0.0316	6.4999 1.6014	0.0258 0.0254	
42.50	1.0009	0.0536 0.0518	1.0035	0.0244	1.002/	0.0240 0.0219	
43.50	1.0045	0.6435	1.0012	0.0260	1.0021	0.0201	
44.00 44.50	1.0052 1.0052	0.0671 0.0649	0.9944	0.0253 0.0256	1.0006 0.4992	0.0192 0.0192	
45.00 45.50	1.004H 1.0045	0.0k50 9.0k15	0.9464 0.4460	0.0267 0.0281	0.4981	0.0197 0.0203	
46.00	1.0037	0.(404	0.9465	0.0295	3. 1979	U.0207	
46.50	1.0033	0.0345	0.9971	0.0306	0.4979 6.7980	0.0212 0.0218	
47.50 48.00	1.0027 1.0022	0.03/4 0.0363	1.0004	0.030U 0.0287	1897.0	0.0224 U.U226	
48.50	1.0014 1.0004	0.0351 0.0341	1,002,	0.02/0	1.0012	0.0220	
49.00 _ 49.50	0.4990	0.0334	1.0613	0.0242	1.0617	0.0207	
50.00	0.9975	0.0152	1.0002	0.0236	1.0011	v.0182	

WADD TR 61-75

《新闻报》《刘明·日报》《张明·张明·张明·张明·张明·张明·《宋》:"李教》:"元、《》:"子》:

116

}

0	WIDTH TO LENGTH RATIO 0, 25 90		ER 0.30 H RATIO 0.1250	MIDTH TO FENG HYCH WOAR	ER 0.30 [H RATIO] 0.0425	WINT TO LENG!	
Provinski konskrime se sam je	ADIATION	RADIATION	KADIATION REACTANCE	HAUIATION RESTEVANCE	RADIATION	RESISTANCE	GANGRAL LA
. <u>.</u> .	0.1068 0.2063 0.2944	0.0108	0.0063 - 0.1294	0,054 0,054	0.0398 	0.0027 	
	0.2944	0.0893 0.1479	0.1868 0.2371	0.0448	0.1136 0.1430	0.0224 0.0373	1.50
uritara	0.4253	0.2122	0.2800	0.10/1	0,1759		2.50
	0.5016	0.3415	0.3163 0.3473	0.1400 0.1742	0.1990 0.2215	0.0707 0.0875	3.00
	0.5256 0.5430	0.4025 0.4607	0.3/42 0.39d2	0.2066 0.2383	0.2421 0.2612	0.1040	4.00 4.50
	0.5551 0.5621	u.5167 0.5709	0.4198 0.4390	0.2695	0.2792 0.2962	0.1362 0.1522	5.00 5.50
	0.5639	0.6230 0.6725	0.4557 0.4678	0.3313 0.3616	0.3119	0.1603 0.1842	6.00
	0.5524	0.7180	0.4817	0.3909 0.4188	0.3400 0.3526	0.1991	7.00
	0.5411	0.7592 0.7960	0.4918 0.5007	0.4455	0.3648	0.2147 0.2292	7.50 8.00
	C.5136 0.4996	0.82 <u>8</u> 9 0.8589	0.5089	0.4711	0.3/66	C, 2434 d, 2574	9.00
	0.4855 0.4709	0.6873 0.9146	0.5244 0.5312	0.5212 0.5466	0.4000 0.4113	0.2716 9.2862	9.50 10.00
	0.4550 0.4371	0.9412 0.9665	0.5369 0.5409	0.5725 0.5986	0.4221 0.4320	0.3012 0.3165	10.50 11.00
	0.4170	0.4897	0.5431	0.6245	0.4412	0.3318	11.50
	0.3950	1.0102	0.5437 0.5428	0.6498 0.6742	0.4495 0.4571	0.3471 0.3622	12.00 12.50
	0.3485 0.3253	1.0414 1.0525	0.5409	0.647a 0.72 0 0	0.4041 0.4707	0.3769 0.3915	13.00 13.50
	0.3027 0.2808	1.0609	0.5346 0.5304	9.741 <i>1</i> 0.762 <i>(</i>	0.4779 0.4828	0.4058 0.4201	14.00 14.50
_	0.2595	1.0/15	0.5254	9.7830	0.4862	0.4342	15.00
	0.2388 0.2190	1.0737 1.6737	0.5196 0.5131	0.8025 0.8212	0.4932 0.4977	0.4482 0.4619	15.50 16.0u
	02005 01838	1.0717 1.0678	0.5061 0.4989	0. ช.386 0. ช.55	0.5026 0.5060	0.4753 0.4885	16.50 17.00
	0.1692	1.0626	0.4916 0.4863	0.8715	0.5100	0.5016 0.5146	17.50 18.00
	0.1460	1.0512	0.4768	0.9021	0.5175	U•52/8	18.50
	0.1367 0.1281	1.0458 1.0408	0.4689 0.4604	0.41/1 0.41/1	0.5200 0.5238	0.5411 0.5545	19.00 19.50
	0.1199 0.1121	1.0358 1.0304	0.4512 0.4412	0.9462 0.9590	9.5261 0.5286	0.7680 0.5813	20.00 20.50
	0.1048	1.0244	0.4306	0.0725	0.5303	0.5913	21.00
	0.0984 0.0933	1.0178 1.0106	0.4195 0.4083	0 . 48 44 0. 4842	0.5309	0.00/1	21.50 22.00
	0.0895	1.0032 0.9961	0.3971 0.3859	1.0047 1.0157	0.5314 0.5337	0.6316 0.6535	22.50 23.00
	0.0859	0.4894 0.4833	0.3747	1.0222		6.6552 0.6669	24.50
	6.0858	0.7176	0.3523 0.3411	1.6371	0.5517 0.5312	U.0/83	24,50
	0.0869	0.7724 0.7676	0.5500	1.0435 1.047	9.5307	0.6897	25.00 25.50
	0.0914 0.0948	0.7635 0.7602	0.3191 0.3085	1.0544 1.0590	6.5299 6.5291	0./119 C./229	26.00 26.50
	0.0988	0.9581	0.2082	1.0633	0.332ab 9.526a	0.7339 e.7448	27.00
	0.1069	0.9578	0.2778	1.0711	0.5252 0.5235	0.7557 0.7665	28.00
	0.1102	0.9592	0.26/4 0.2567	1.0745	0.5210	0.7771	28.50 29.00
	0.1146	0.4633 0.4654	0.2462 0.2357	1.0797 1. un13	0.5183	0.1974	29.50 50.00
	0.1170 1182	0.7674	0.2251		0.5125	0.8070	30.50
	0.1193 0.1204	0.7716 0.7742	0.2060 0.1970	1.081y 1.0813	0.5663 0.5032	0.9254 0.8344	31.50 32.00
	0.1213	0.4771	0.1884	1.0005	0.5661 0.4968	C. 64.52	\$2.50
	0.1219	C * A83A	0.1819	1.0792	4.4939	6.8605 0.8605	* 3 • 00 5 5 • 50
	0.1215 0.1208	0.9874 0.9909	0.1641 0.1566	1.0/60 1.0/3c	0.490c 0.4864	- 079490 - 0.n/()	34.00 34.50
	0.1199	0.4480	0.1496 0.1429	1.0714 1.0689	0.4427 0.479 0	C.0055 C.8937	35.00 35.50
	0.1172	1.0018	0.1367 0.1308	1.0662	0.4751 0.4710	0.7017 0.4098	36.00
**	0.1123	1.0057	0.1251	1.0908	0.1666	7777	36.50 37.00
	0.1088 0.1046	1.u132 1.u162	0.1175 0.1140	1.0580 1.0550	0.462G 0.5572	0.4154 0.4524	37.50 38.00
	0.1000 0.0953	1.0184 1.0197	0.108/ 0.103/	1.0517 1.0481	6.4521 0.4469	0.9469	38.50 59.00
	0.0907	1.0203	0.0992	1.0442	0.4417	6.7534 6.7536	39.50 40.00
	0.0829	1.0201	0.0914	1.0361	0.6315	0.7654	40.00
	0.0794	1.0197 1.0192	0.0832 0.0854	1.6320 1.0280	0.42a2 0.4211	0.9711 0.9771	41.00 41.00
	0.0729 0.0698	1.0186	0.0828 0.0805	1.024@ 1.0201	0.4161 0.4110	0.9824 9.9860	42.00 42.50
	0.0668	1.0166	2010.0	1.0162	0.4038	E.7933	
	0.0616	1.0137	0.0753	1.0072	0.3456	1,60,34	11 14 * 00
	0.0594	1.6121 1.0105	0.0/45 0.0/38	1.004v 1.0014	0.5704 0.3852	1.0683	եկ, 50 են, 00
	0.0555		0.0732 0.0728	0.9981 0.7951	0.3800 0.3768	1.0178	43.30
	0.0518	1.0055	0.0723	0.9922 0.9892	9.3671	1.0267	46.50
	0.0488	1.0008	0.0720 0.071h	0.4662	U • 357H	1.0352	4/.00 4/.50
	0.0479	0.9980 0.9952	0.0710	0.4835	0 - 3122 0 - 3166	1.0426	48.00 48.50
	0.0480	0.4902	0.072H G.0738	G. 9//4 O. 7/48	0.3611 0.3556	1,0466	49.00
	0.0500	0.4883	0.0749	6. 7/24	6.3301		50.00

الرجمينيال يتيزران ويبيريشها

・ 日本の主義のは、日本のでは

	ر المنظم المعارضين المنظم المنظم المنظم المنظم المنظ	AACH NUME WIDTH TO LENG	SER 0.30 TH RATIO 0.5000	WIDTH TO LENG	ER 0.30 TH BATIO 1.0000	MACH NUMB	EK 0.30
		RADIATION	RADIATION	RADIATION		RADIATION	and the state of t
153		0.0216	0.1632			RUSISTANCE	REACTANCE
\$4.0	7.00	0.0532	0.3120	-0-1620			0.5528
1.00	2.00	0.2888	0.5247	0.4263	0.6372		
1. 10				0.7062	0.6327		0.4747
1.50 0.4002 0.1002 0.1003 1.0004 0.2201 1.0005 0.2201 1.500 0.2201 1.0005 0.2201 1.0005 0.2201 1.0005 0.2201 1.0005 0.100		0.6322	0.6164	0.9515	0.4950	0.9610	0.3353
1.00	4.50	0.0082	0.5/05	1.0317	0.3281		
6.00							0.2230
1.00		0.9862	(1,4504	1.0124	0.1880	1.0238	0.1535
100	7.00	1.0478	0.3400	6.466	0.1524		
0.00	6.00	1.0605			0.1452		0.1060
9.56	8.50			0.9054	0.1456	0.9818	0.0893
10.50	4.50	1.0266	0.1679	0.9754	0.1505		
11.00	10.50						0.1104
12.00 12.00	11.00 "	0.9961	0.1384	1.0030	0.1276	0.9955	0.1113
11.00	12,00	0.9834	0.1281	1.0041	0.1064		0.1019
13-50 C. 9677 D. 1786 D. 9915 D. 09047 D. 0707 D. 07087 D. 07		0.4720	C. 1249 0. 1236		0.0959 0.0962		0.0827
18.50	13,50 14,00		U. 1246	0.4432	0.0944	1.0062	0.0734
15.50	14.50	0.9655	0.1296	0.9953	0.0940		
10.00	15.50						0.0573
17.00		0.9744	0.1333	1.0045	0.0790	0.4963	
11.00	17.00	0.9818	0,1321	0.9992			
18-50	18.00					0.9905	0.0541
19.50	18.50	0.9910	0.1291	0.9880	0.0661	0.4608	
1.00	19.50	1.0110	0.1206				
21.50						1.0030	0.0583
22.50	21.00	1.0221	0.0916	1.0030	0.0700	1.0074	
24.50	22.00	1.0175	9.0762				
23.50					0.0564	1.0012	0.0399
24.50	23.50	1.0021	0.0625	1.0034	36#0+0	1.6001	
25.00	24.50	0,9922	g _a nggh	0.7776			
20.00 0.480 0.0062 0.4900 0.0062 0.4900 0.028 0.4900 0.028 0.4900 0.0997 27.00 0.0101 0.0744 0.4900 0.028 0.4900 0.0997 27.00 0.0101 0.0744 0.4901 0.0503 0.4905 0.0000 0.4907 0.4107 1.0013 0.0503 0.4908 0.0000 0.4907 0.4107 1.0013 0.0503 1.0002 0.0399 28.00 0.4903 0.4903 0.4905 1.0014 0.0503 1.0002 0.0399 28.00 0.4903 0.4903 0.4905 1.0014 0.0503 1.0002 0.0399 29.50 0.4903 0.4903 0.4903 0.4903 0.0001 0.4903 0.4903 0.4903 0.0001 0.0002 0.0399 29.50 0.4903 0.4903 0.4903 0.0001 1.0021 0.4707 1.0017 0.0403 1.0018 0.0353 1.0040 0.0342 0.0503 0.000 1.0021 0.4707 1.0071 0.0403 1.0003 1.0004 0.0342 0.0503 0.0001 1.0021 0.4707 1.0072 0.0343 1.0040 0.0343 0.0504 0.0343 1.0040 0.0343 0.0504 0.0034 0.0004 0.0003 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.						0.4400	0.0357
27.00		0.4804	0.0662	0.4844	0.0496	0.9942	
1.00	27.00	0.9801	15.0744				
20.50						0.4983	0.0405
29.50		0.9403	0.0635	1.0049	0.0523	1.0020	0.0388
30.50	24.50	1.9942	0.0786	1.0073			
31.00						1.0044	0.0313
32.00			0.0000	0.9460	0.0355	1.0009	0.02/5
352-30	32.00	1.0068	0 • ((6) 4 1	0.4952			
33-50	33.00	1.0073					0.0289
14-50				0.9963	0.0409	0.9979	0.0286
35.50	34.50	1.0041	0.650 6	0.4488	0.0405	0.7775 0.7969	
36.50	35.50	1.0008	0.0485	0.9997 1.0004			0.0298
37,50					0.0377	0.4995	0.0310
\$8.00	37.00	0.9979	0.064	1.0015	0.0353		
1000	38.00	0.9961	0.6457				0.0272
39.50 0.9920 0.cc65 0.9988 0.319 1.9006 0.9220	59.00				0.0322	1.0024	0.0241
NO.50	39.50	0.9920	0.0005	0.4489	0.0319		
1.50	40.50	0.9913	በ.ሮዚዓያ	0.9989			0.0216
\$2.00	41.50				0.0320	0.4974	0.0228
13.00	42.00	· (++4955	0.6532	0 .9 993	0.0106	0.4480	
1.00	43.00	0.9995	0.0527	6.0063	0.0296		0.0242
44-50	44.00				0.0244	0.4990	0.0257
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	44.50	1.0047	0.0471	0.79/4	0.0300	0.4997	
46.00 1.0075	45.50	1.0071	0,6447	0.9997			0.0241
47.00 1.0062 0.0564 1.0027 0.0278 1.0024 0.0204 47.50 1.0024 0.0204 47.50 1.0024 0.0278 1.0017 0.0192 48.00 1.0021 0.0228 1.0027 0.0260 1.0007 0.0184 48.50 0.0497 0.023 1.0007 0.0236 0.4997 0.0182 49.50 0.3997 0.0258 0.4997 0.0183 49.50 0.3997 0.0257 0.9978 0.0183 49.50 0.39978 0.0257 0.9978 0.0257 0.9985 0.0187 50.30 0.4998 0.0197 0.0241 0.4980 0.0197	46.50			1.0012	0.0307	1.0025	U.U220
48.00	47.00	1.0062	O.0364	1.0027	0.02/8	1.0017	
49.00 0.797 0.627 1.6007 0.0238 0.7989 0.0183 49.50 0.7978 0.625 0.7978 0.0237 0.7983 0.0187 49.50 0.7978 0.6532 0.7978 0.0241 0.7980 0.0197	48.00	1.0021	o. c 328	1.0015	0.0260 0.0240		0.0184
49-50 0.4948 0.6552 0.9478 0.0241 0.980 0.0192	49.00	0.1975	0.0325		0.0238	0.7989	0.0183
			0.6332	0.9478	0.0241	0.4980	0.0192
			•••	V• 7711	0.0249	0.4479	0.0198

	WIDTH TO LENGT	WIDTH TO LENGTH RATIO 0.0625		WIDTH TO LENGTH RATIO 0, 1250		MACH NUMBER 0.40 WIDTH TO LENGTH RATIO 0.2500	
GENERALIZED	HADIATION RESISTANCE	RAULATION REACTANCE	KADIATION RESISTANCE	KAULATION REACTANCE	RADIATION RESISTANCE	RADIATION REACTANCE	
- 0.50	0.0029	0,6402 0,6784	0.0058 0.0324	0.0669	0.0117	0.1076	
1.50	0.0835	0,1134	0.0324	0.1864	0.0447	0.2973	
2:58	C.0383	0.1446	0.0470 0.0765 0.1080	0.1864	0.1520	0.3633	
2.50 3.00	0.0701	0.1723 0.1972	0.1397	0.2767 0.3126	0.2138	0.4183	
3.50 4.00	0.0860 0.1020	0.2202 0.2417	0.1712	0.3445	0.3352	0.4959	
4.50	0.1184	0.2614	0.2347	0.3995	0,4533	0.5454	
5.00 5.50	0.1352 0.1522	0.2HQ6 0.2Y76	0.2675 0.3003	0.4224	0.5122 0.5700	0.5601 0.5673	
6.00	0.1689	0. 3129	0.3325	0.4576	0.6247	0.5673	
0.50 7.00	0.1850	0.3209	0.3631	0.4704	0.6747	0.5613 0.5514	
7.50	0.2150	0.3524	0.4192	0.4912	0.7589	0.5398	
8.00 8.50	0.2273 0.2436	0.3648 0.3769	0.4455	0.5005 0.5043	0.7949 0.8284	0.5273	
9.00	0.2581	0.5887 0.3999	0.4472	0.5172	0.8600	0.5003	
9.50 10.00	0.2727 0.2873	0.4105	0.5231	0.5240	0.8898 0.9171	0.4847 0.4674	
10.50 11.00	0.3019 0.3163	0.4206 0.4303	0.5736 0.5981	0.5337	0.9418	0.4490	
11.50	0.3309	0.4396	0.5761	0.5398	0.9637 0.9835	0.4302 0.4113	
12.00 12.50	V.3456 0.3606	0.4536 0.4570	0.6463	0.5418 0.5426	1.0017	0.3923	
13.00	0.3757	0.4647	0.6446	0.5420	1.0188	0.3728 0.3522	
13.50 14.00	0.3908 0.4057	0.4716 0.4778	0.7183 0.7411	0.5398 0.5362	1.0480	0.3303	
14.50	0.5202	0.4833	0.7627	0.5313	1.0587	0.3074 0.2844	
15.00 15.50	0.4344 0.4482	0.4885 0.49 34	0.7831 0.8024	0.5258 0.5198	1.0707	0.2621	
16.00	0.4620	0.4980	0.8210	0.5134	1.0728	0.2216	
16.50 17.00	0.4756 0.4892	0.5024 0.5064	0.8389 0.8562	0.5065	1.0715 1.0687	0.2034 0.1864	
17.50	0.5026	0.5100	0.8724	0.4412	1.0646	0.1705	
18.00 18.50	0.5157 0.5287	0.5132	0.8880 0.9027	0.4829	1.0589	0.1562 0.1438	
19.00	0.5414	0.5192	0.7166	0.4661	1.0448	0.1335	
19.50 20.00	0 • 554 2 0 • 566 9	0.5220 0.5246	0.9362 0.9435	0.4576 0.4430	1.0375 1.0308	0.1253 0.1186	
20.50	0.5798	0.52/0	0.9565	0.4400	1,0247	0,1128	
21.00 21.50	0.5927	0.5289 0.5304	0.9692	0.4304	1.0191 1.6134	0.1075 0.1026	
22.00	0.6182	0.5315	0.9924	0.4095	1.0076	0.0983	
22.50 23.00	C.6307 O.6430	0.5322 0.5327	1.0020 1.0124	0.3986 0.3875	1.0016 0.9957	0.0949 0.0924	
23.50	0.6552	0.5329	1.0214	0.3/63	0.4401	0.0909	
24.00 24.56	0.6613 6.6177	0.5327 9.5322	1.0297	0.3650	0.4851 0.9804	0.0900	
25.00	0.708	0.5515 0.5302	1.0441 1.0479	0.3416	0.9758	0.0895	
25.50 26.00	6.7129	0.5290	1.0548	0.3275 0.3183	U.9713 G.Y668	0.0899 0.0913	
26.50	0.7735	0.5211 0.5269	1.0589	0.3075	0.9628	0.0936	
27.50	0./444	9+9251	1.0560	0.296f 0.2865	0.9577	0.0969 0.1008	
28.00 28.50	0.7547 0.7651	0.5237 0.5226	1.0642 1.0721	0.2765 0.2665	U.9570 V.9573	0.1048 0.1086	
24.00	0.7754	0.5202	1.0747	0.2565	0.4584	0.1120	
29.50 30.00	0.7855 0.7956	0.5181 0.5158	1.0768 1.0784	0.2465 0.2556	0.9601 0.9622	0.1151 0.1178	
30.50	Cc08.0	0.5154	1.0795	0.2270	0.4649	0.1203	
31.00 31.50	C+6153 C+8250	0.5107	1.0803	0.21/6	0.9682 0.9721	0.1224 0.1238	
52.00	0.8546 0.846	0.5046 0.5011	1.0800 1.0804	0.1992 0.1901	0.4763	0.1243	
32.50 33.00	0.0440	0.4973	1.0775	0.1812	0.78 0 4 0.7841	0.1240 U.1230	
55.50	C.8618 6.8761	0.4935	1.0786	0.1726	0.4874	0.1217	
34.00	0.8782	0.4825	1.0760	0.1645 0.1569	0.4950	U.7204 0.1191	
35.00 35.50	C.8861 U.E.V.38	0.4813 0.4772	1.0712 1.0685	0.1497 0.1429	0.4958 0.4988	0.1178 0:1163	
36.00	C. 4014	0.4752	1.0657	0.1365	1.0018	0.1144	
36.50 37.00	0.9089	0.4670	1.0627	0.1303	1.0047 1.0073	0.1122 0.1097	
37.50	0.4234	0.46(6	1.0561	0.1191	1.0097	0.1070	
58.00 38.50	C.4505 U.4575	0.4564 0.4521	1.0926 1.0491	0.1142 0.1098	1.0120 1.0142	0.1043 0.1015	
39.00	С. ሃላፋን	0.4476	1.0454	0.1036	1.0165	0.0983	
39.50 40.00		0.44 50 7.1321	1.0425	0.1016	1.0186	0.0947	
40.50	0.96HD 6.9712	0.4331 0.42 <i>1</i> 9	1.035a 1.0322	0.0939 0.0904	1.0214	0.0861	
41.00 41.50	0.9112	0.4226	1.0284	0.08/1	1.0217 1.0214	0.0816 0.0772	
42.00 42.50	0.4831 0.4867	0.4173 c.4119	1.0246 1.0207	0.0842 0.0817	1.0206	0.0732 0.0694	
43.00	(7.3.505	1.0169	0.0795	1.0179	0.0660	
43.50 44.00	0.7995 1.0046	0.4016 0.5954	1.0150 1.0091	0.0/75 7.270.0	1.0162 1.0140	0.0627 0.0578	
44.50	1.0093	0.3634	1.0052	0.0/45	1.6115	0.0573	
45.00 45.50	1.013y 1.0182	0.3641 0.3786	1.0013	0.0/33 0.0728	1.6088 1.0061	0.0554 0.0542	
	1.0224	0.3731	0.9940	0.0726	1.0038	0.0536	
46.50 47.00	1.0265	0.3677 0.5622	0.790, 0.98/6	0.0727	1.u018 1.u002	0.0531 0.0520	
47.50	1.0343	C. 356F	0.4640	0.0754	0.9988	v.0523	
48.00 48.50	1.0300 1.6415	0.3513 0.3938	0.9822 0.979.	0.0733 0.0745	0.V973 0.Y956	0.0518	
49.00	1.0446	0.3463	0.9114	0.0749	C.4939	0.0512	
47.50	1.6483 1.6511	0.3349 0.1275	0.9752 6.9752	0.0757 0.0766	U.9922 (*.9907	0.0513 0.0517	

	WIDTH TO LENGT	IER 0.40 H.RATIO 0.5000	WIDTH TO LENGT	ER 0.40 TH RATIO 1.0000	MACH NUMBER 0.40 WIDTH TO LENGTH BATIO 2.0000		
FREQUENCY	RACIATION RESISTANCE 0.0233	RACIATION REACTANCE	RADIATION RESISTANCE	HEACTANCE	RADIATION	RADIATION REACTANCE	
9.50	0.0233	0.1654 0.3135	0.0463 0.1731	0.2395	0.0903 0.3142	0.3204	
1.30	0 . 1847	0.4317 0.5151	· · · · · · · · · · · · · · · · · · ·	0.5645	0+5655 0+7529	0.5849 0.5303	
2.00 2.50	0.2963	0.3131 0.3661	0.5357 0,700a	0.6153 0.6027	G 0508	0.4441	
3.00 3.50	0.5183	0.5915	0.8272 0.9135	0.5507 0.4833	0.8913	0.3818	
4.00	0.7077	0.5932	0.9683	0.4160	0.9569	0.3289	
4.50 5.00	0.7912	0.5763	1.0021 1.0220	0.3550 0.3003	0.9982 1.0291	0.2972 0.2533	
5.50	0.9341	0.5080	1.0303	0.2507	1.0424	0.2066	
6.00	1.0257	0.4040	1.0151	0.1742	1.6313	0.1362	
7.00 7.50	1.0481 1.0573	0.3495 0.2996	0.9980	0.1534 0.1450	1.0187 1.0060	0.1157 0.1026	
8.00	1.0571	0.2571	0.9732 0.9722	0.1449 0.1474	0.4945	0.0953	
9.00	1.0515	0.2220	0.9/72	0.14/3	0.9851	0.0926 0.0933	
9,50	1.0320	0.1700	0.9840		0.9759 0.9755	0.0958 0.0982	
10.50	1.0055	0.1379	0.9901	0.1257	6.4740	0.0992	
11.00	0.9914	0.1300 0.1275	0.9887	0.1191	0.7819 0.9851	0.0991 0.0770	
12.00	0.9703	0.1290	1809.0	0.1144	0.7895	0.0993	
12.50 13.00	0.4658 0.4650	0.1323	0.4489 0.4424	0.1119	0.4961 1.0034	0.0984 0.0945	
13.50	0.9664	0.1370	0.9973 1.0012	0.1084	1.0107	0.0870	
14.00 14.50	0.9765	0 • 1371 0 • 1365	1.0034	0.1035 0.0978	1.0140	0.0770 0.0673	
15.00 15.50	0.9724	0.1361 0.1361	1.005a 1.0054	0.0921 0.0863	1.0043	0.0602 0.0562	
16.00	0.4785	9.1360	1.0074	0.0802	1.0016	0.0545	
16.50 17.00	0.4832 0.48#3	0.1351 0.1326	1.0067	0.0138 0.0616	U.4998 U.4484	0.0531 0.0512	
17.50	0.9929	0.1291	0.9997	0.0627	0.9962	0.0491	
18.00 18.50	0.4992	0.1206	0.9883	0.0602 0.0608	0.4929 0.4897	0.0482 0.0494	
19.00 19.50	1.0016 1.0043	0.1169 0.1135	0.9844 0.9835	0.0642 0.0649	0.9882 0.9894	0.0525 0.0559	
20.00	1.0076	0.1075	0.4859	0.0735	0.9927	0.0580	
21.00	1.0110	0.1045	0.9900	0.0760		0.0579 0.0558	
21.50	1.0147	0.0911	1.0019	0.0730	1.0026	0.0528	
22.00 22.50	1.0140 1.0117	0.0840 0.0777	1.0057	0.0636 0.0635	1.0036 1.0041	0.0499 0.0474	
23.00 23.00	1.0085	0.0171 0.0689	1.0081	0.0565	1.00 46 1.0050	0.0452 0.0427	
24.00	1.0015	0.0660	1.0057	0.0499	1.6050	0.0398	
24.50 25.00	0.1975 1.4437	0.0637 v.u621	1.0032 1.0060	0.0466 u.b44,	1.0041	0.0369 0.0344	
25.50	0.404#	0.0618	0.4445	0.0459	0.4440	0.0350	
26.00	C. V855 G. V821	0.0636 0.0637	C. 7718	0.0444	0.9971	0.0329 0.0337	
27.00 27.50	0.9865 0.9868	0.0695 0.0756	0.4919	0.0496 0.0515	0.7942	0.0351 0.0366	
20.00	0.7928	0.0771	0.4440	0.0521	0.7948	0.0376	
28.50 29.00	0.9860 1.884.0	0.0794 0.0869	0.9985 1.0003	0.0514	0.4960 0.4975	0.0385 0.0386	
29.50	0.4935	0 • 6866 0 • 6799	1.001c 1.001c	0.0473	0.4988 1.0001	0.0381	
30.00 30.50	1.0011	0.0799	1.0067	0.0454 0.0442	1.0011	0.0374 0.0365	
31.00 31.50	1.0049	0.0762	1.000	0.0453	1.0021 1.0031	0.0355 0.0341	
32.00	1.0109	0.685	1.0010	0.0416	1.0039	0.0323	
32.50 33.00	1.0122	0.0634 9.093	1.0011 1.0010	0.0405 0.0392	1.0041 1.0034	0.0300 0.0277	
55.50 34.00	1.0104	0.0537	1.0006	0.0382	1,0018	0.0259	
34.00	1.v052	0.6479	0.4441	0.0368	C. 4981	0.0254	
35.00 35.50	1.0075 1.0000	0.0464 0.0455	0.9995	0.0362 0.0355	0.4441	0.0263	
36.00	0.9478	0.6451	9.9786	0.0547	0.9971	0.0275	
36.50	0.9956	0.6457	0.9977 C.9967	0.0342	0.4972	0.0276 0.0278	
37.50	0.7717	2.0470	0.9957	0.0351	0.4971	0.0284	
58.00 38.50	0.4410	0.e4a7 0.6505	0.9966 0.9966	0.0363 0.0376	U•4476 U•4489	0.0292 0.0297	
39.00 39.50	0.4414	9.0519 9.0528	0.9983	0.03H2 0.03H0	1.0005 1.0021	0.0295	
40.00	0.7947	0.0530	1.0622	0.0367	1.0029	0.0284 0.0267	
40.50 41.00	0.4484	0.0527 0.(523	1.0034	0.0348 0.032/	1.0030 1.0024	0.0249 0.0236	
41.50	G.44/H	0.0519	1.0034	0.0307	1.0017	0.0227	
42.00 42.50	C.9987	0+6514 0+6509	1.0625 1.0614	0.0241	1.0011	0.0221	
43.00 43.50	1.0007	0.0500 0.0487	1.0002 0.9988	0.0211	1.0000	0.0211	
44.00	1.0025	0.0473	0.9974	0.0269	C.7484	0.0207	
44.50	1.002 <i>1</i> 1.002 <i>1</i>	0.0459 0.0446	0.4963 0.4457	0.07 <i>1</i> 7 0.0299	0.4917	0.0211 0.0218	
45.50	1.0027	0.0437	0,9958	0.0303	0.9972	0.0226	
46.00 46.50	1.0027	0.6423 0.6418	0.4485	0.0315	0.7976 0.7983	0.0233 0.0238	
47.00	1.0031	しゃてものち	1.0000	0.0319	0.4993	0.0239	
47.50 48.00	1.0030 1.0025	1 v 2 3 • 0 4 1 2 3 • 0	1.0014 1.0022	0.0308 0.0243	1.0003	0.0236 0.0229	
48.50 49.00	1.0015	0.635	1.0024	0.0276	1.6016	0.0220 0.0211	
			1.0026				

	MACH NUMBER 0.50 WIDTH TO LENGTH RATIO 0.062		WIDTH TO LENGTH	RATIO 0,2500
GENERALIZED CONTRACTOR	RESISTANCE REACTANCE	- KARPATION KARLATION	RESISTANCE	RADIATION
0.50	0.0032 0.0406		TO VICE THE PROPERTY OF THE PR	REACTANCS
1.50	0.0122 0.076/ 0.0269 0.1129	0.0244 0.1305 0.6498 0.1853	0.0487	0.2083 0.2909
2.00 2.50	0.0394 0.1431 0.0541 0.1703	0.0786 0.2320 0.1080 0.2726	0.1560	0.3568
3.00 3.50	0.0690 0.1955 0.0844 0.2195	0.1374 0.3072	0.2134	0.4543
4.00	0.1006 6.2420	0.1677 0.3451 0.1998 0.3740	0.3279 0.3880	0.4927 0.5243
4,50 5,00	0.1177 0.7626 0.1351 0.2811	0.2333 0.4008 0.2671 0.4232	0.4498 0.5109	0.5475
5.50 6.00	0.1521 0.27/6 0.1634 0.3128	0.4416	0.5685	0:5611 0:5665
6.50 7.00	0.1841 0.3272	0.3613 0.4708	0.0214	0.5660
7.50	0.1996 0.3409 0.2150 0.3538	0.3904 0.4831 ° 0.4191 0.4938	0.7151	0.5548
8.00 8.50	0.2363 0.3659 0.2451 0.3773	0.4472 0.5026	0.7971	0.5447 0.5314
9.00 9.50	0.2595 0.5881	0.4998 0.5159	0.0326	0.5152
10.00	0.2016 0.4094	0.5245 0.5215 0.5269 0.5269	0.8908	0.4800
10.50 11.00	0.5018 0.4197 0.3164 0.4296	0.5731 0.5317 0.5976 0.5355	0.9389	0.4458
11.50	0.3310 0.4388	0.6219 0.5381	0.9609	0.4279 0.4088
12.50	0.3600 0.4557	0.6457 0.5394 0.6690 0.5399	0.9986	0.3890 0.3691
13+00 13+50	0.3746 0.4636 0.3893 0.4711	0.6921 0.5397 0.7150 0.5386	1.02/4	0.3496 0.3300
14.00 14.50	0.4042 0.4780 0.4192 0.4840	0.7377 0.5362	1.0506	0.3099
15.00 15.50	C.4334 0.4H94	0.7612 0.5272	1.0596	0.2889
16.00	0.4483 0.4941 0.4623 0.4985	0.8013 0.5211 0.8204 0.5145	1.0697 1.0709	0.2465 0.2266
16.50	0.4696 0.5026 0.4696 0.5063	0.638/ 0.50/4	1.0704	6.2081
17.50 18.00	0.5030 0.5098	0.8729 0.4915	1.0685	0.1907 0.1742
18.50	(+516) 0+5129 0+5289 0+5158	0.8886 0.4827 0.9032 0.4737	1.0602	0.1589 0.1453
19.00 19.50	0.5416 0.5187 0.5543 0.5214	0.9169 0.4647 0.9301 0.4559	1.0459	0.1340
20.00 20.50	0.5670 0.5239	0.4424 0.4470	1.0380 1.0304	0.1249 0.1176
21.00	0.5925 0.5279	0.959 0.9673 0.4378	1.0232	0.1115
21.50 22.00	0.6051 0.5293 0.6175 0.5305	0.418.0 c8483 0.4002	1.6094	0.1023
22.50 23.00	0.6298 0.5315 1.042v 0.5322	0.4991 0.3982	1.0028 0.7968	0.0994
23,50	6.6543 0.5326	1.0087 0.3640 1.0183 0.3775	0.991/ U.98/4	0.0968 0.0961
24.00 24.50	6+6663 0+5325 0+6782 0+5324	1.0272 1.0353 0.3550	6.7036	0.0954
25.00 25.50	0.6697 0.5315 0.7011 0.5307	1.0424 0.3434	0.4160	0.0948 0.0947
26.00 26.50	0.7123 0.5297 0.7234 0.5265	1.0542 0.3203	0.4643	0.6953 0.0964
27.00	6.7344 P. 5270	1.0591 0.3088 1.0633 0.2975	0.7667 0.7647	0.0979
27.50 28.00	0.67651 9.5253 0.7555 0.5233	1.0667 0.2562 1.0693 0.2754	0.4628	0.1012
28.50 29.00	0.7657 0.5213 0.7757 0.5192	1.0714 0.2650	0.9611 0.9598	0.1053 0.1061
27.50	0.7856 0.5170	1-0/32 0-2551 1-0/4/ 0-2455	0.9593	0.1094 0.1129
30.00 30.56	0.7954 0.5146 0.9050 0.5121	1.0761 0.2361	0.7614 0.7636	0.1161 0.1188
31,00 31,50	0.61%5 0.509k	1.0776 0.2175 1.0776 0.2086	0.7663	0.1212
32.00	G.8456 0.5037	1.0777 0.2000	0.9694 0.9731	0.1233 0.1251
32.50 33.00	0.8623 0.5067 0.6516 0.6976	1.0774 0.1417 1.0764 0.1834	0.4//3 0.4820	0.1262 0.1264
- 33.50 - 34.00		1.0760 0.1752	0.9866	0.1256
34.50 35.00	G.8775 0.4n61	1.0729 0.1593	0.9908 0.9947	0.1242 0.1223
35.50	C.8938 0.4779	1.0700 0.1514 1.0685 0.1449	0.9982 1.6017	0.1201 0.1177
36.00 36.50	6.4014 0.4736 0.4093 0.4692	1.0659 0.1381 1.0651 0.1316	1.0049	0.1148
37.60 37.50	0.4167 6.4667	1.0599 0.1253	1.0047	0.1114 0.1078
\$8.00	0.4308 0.4554	1.0565 0.1195 1.0525 0.1142	t,0112 1.0123	0.1044 0.1013
\$8.50 \$9.00	0.4576 0.4508 0.4443 0.4402	1.0480 0.1095 1.0448 0.1052	1.0133 1.0145	0.0984
		1.0512 0.1015	1,0157	0.0956 0.0926
40.50	0.7633 0.4318	1.0334 0.0944	1.0166	0.0894
4 1.00 4 1.50	0.9693 0.6269 0.9693	1.0259 0.0891 0.0851	1.0176 1.0178	0.083D 0.0799
#2.90 #2.50	++3810 0.4172 0.4868 0.4121	1.0226 0.0868 1.0193 0.0846	1.0179	0.0767
4 5.00 4 5.50	0.7924 0.4076	1.0161 0.0824		0.0698
44.00	1.0631 0.5964	1.012a 0.0803 1.0093 0.0785	1.0165 1.0150	0.0663 0.0630
և և , 50 Կ 5 , 00	1.0602 0.3910 1.0131 0.3055	1.0058 0.0769 1.0023 0.0755	1.6132	0.0602
45.50	1.0179 6.3799	0.4484 0.0745	1.0113	0.0576 0.0553
46.50	1.0267 0.3634	0.4754 0.0737 0.4720 0.0731	1.0065	0.0532
47.60 47.50	1.0367 0.3626 1.0395 0.3570	0.9851 0.0728 0.9851 0.0729	1.0010	0.0503
₩8,00 ₩8,50	4.(35) 0.3513 1.3516 0.3513	0.9926 0.0734	0.9954	0.0499 U.0501
49.00	1.04 m 0. Hel?	0.9763 0.0751	0.7932 0.7913	0.050 <u>7</u> 0.0514
49.50 50.06	1.0007 0.3746 1.0512 0.3270	0.9719 0.0762 0.9719 0.0774	1881.0 1881.0	0.0522
		V*V*114	V4100J	0.0532

The state of the s	WIDTH TO LENGTH	RATIO 0.5000	WIDTH TO LENGT	ER 0.50 H RATIO 1.0000	WIDTH TO LENG	TH RATIO 2.0000
GÊNERAL 1260	RACIATION RESISTANCE	RAUIATION	RADIATION	HEACTANCE	RADIATION RESISTANCE	RADIATION REACTANCE
FREQUENCY	0.0259	REACTANCE 0.1684 0.3147	816 STANCE 0.0514 0.1880	0.2444 0.4368	0.1001	0.3267
1-40	6. 1953	0.4258	0.3666	0.5488	0.5798	0.5494
2,00 2,50	0.3030 0.4076	0.5008 0.5478	0.5413 0.6043	0.5840 0.5640	D.7349	0.4845 v.4 to 1
3.00 3.50	0.5058	0.5767	0.7913 0.8720	0.5272 0.4838	0.0386 0.8851	0.3895 0.4811
4.00 4.50	0.6924	0.5948	0.9361 0.9854	0.4346 0.3796	0.9452 0.9990	0.3618 0.3204
5.00	0.8614 0.9274	0.5510	1.0159	0.3205 0.2651	1.0310	0.2669 0.2167
5.50	0.9774	0.4592	1,0209	0,2221	1.0361	0.1793
7.00	1.0131	0.4043	1.0101	0.1942 0.1777	1.0292	0.1547 0.1365
7.50 8.00	1.0538 1.061f	0.3144	0.9982	0.1657 0.1537	1.0219 1.0150	0.1186 0.1007
8.50 9.00	1.0594	0.2785	0,9942 0,9894	0.1418	1,0027	0.0871 0.0817
9.50	1.0341	0.1666	0.9846	0.1269	0.9772	0.0839
10.00 10.50	1.0174	0.1489 0.1300	0.9819 189.0	0.1243 0.1220	0.9725 U.9734	0.0498 0.0948
11.00 11.50	0.4844	0.1316 0.1281	0.9824 0.9821	0.1187 0.1181	0.9/70 0.4804	0.0968 0.0967
12.00	0.9889 0.9614	0,1275 9,1301	0.9809 0.9804	0.1150 0.1154	0.9831 0.9864	0.0954
13.00	0.9574	0.1351	0.4626	0.1155	0.9920	0.0973
13.50 14.00	0.9575 0.9612	0.1407 0.1450	0.9882 0.9958	0.1164 0.1145	0.4995 1.6066	0.0953 0.0897
14.50 15.00	0.9668 0.9726	0.1467 0.1462	1.0030	0.1073 0.1018	1.0113 1.0125	0.0815 0.0730
15.50	0.9778	0. 1446 0. 1420	1.0116	0.0936 0.0858	1.0112	0.0659
16.00 16.50	0.9885	0.1400	1.0115	0.0783	i.6075	0.0569
17.00 17.50	0.9943 0.9994	0.1300 0.1304	1.0096 1.0059	0.0710 0.0645	1.0059 1.0034	0.0529 0.0488
18.00 18.50	1.0028 1.0044	0.1238 9.1173	1.0003	0.6578 0.0581	0.4993	0.0457
19.00	1.0049	0.1119	0.9883	0.0596	0.9909	0.0464
19.50 20.00	1.0054 1.0062	0.1075 0.1033	0.9852 0.9850	0.0631 0.0671	0.9893 0.9897	0.0492 0.0516
20.50 21.00	1.0070	0.0988	0.4870	0.0700 0.0713	0.9912	0.0528 0.0531
21.50 22.00	1.0063	0. (HY3 0. (H55	0. 9931 0. 9963	0.0715	0.4937	0.0533
22.50	1.0035	0.0826	0.9997	0.0694	0.4977	0.0543
23.00 0-3.5	1.0026	0.0891 1.0772	1.003v 1.005v	0.0667	1.4010 1.4642	0.0535 0.0509
24.00 24.50	1.0008	0.0711	1.006%	0.0581 0.058u	1.u061 1.u06h	0.0472 0.0434
25.00 25.50	0.4460	0.0692 0.0684	1.0035 1.0016	0.0509 0.0493	1.0056 1.0046	0.0403 0.0382
26.00	0.3415	0.6485	1.0003	0.0400	1.0038	0.0364
26.50 27.00	0.4801	0.0689	0.4995	0.0470	1.0014	0.0345 0.0325
27.56 28.00	0.4844 0.4894	0.6649 0.6711	0.9975	0.0466 0.0453	U. YYY1 C. YY66	0.0312 0.0312
29.50 29.00	0.4840 0.4868	0.6730 0.0750	0.9768 0.9764	0.0452 0.0452	0.4447 6.4940	0.0324
29.50 30.00	0.9903	0.(766 0.6771	0.996)	0.0451 0.0447	0.7944	0.0354
30.50	0.4965	0.0767	0.1962	0.0444	0.9952	0.0361 0.0364
31.00	1.0021	0.6759	0.7957	0.0445 0.0452	0.4449	0.0367 0.0372
32.00 32.50	1.0047	0.1719 0.0000	0.9982	0.0462 0.0467	0.9992 1.0012	0.0374 0.0368
3 3.00 33.50	1.0096	0.0653	1.0004 1.0024	0.0462 0.0447	1.0036	0.0352
34.00	1.010	0.0564	1.0037	0.0426	1.0040 1.0040	0.0330 0.0308
34.50 35.00	1.00/0	0.0494	1.0043	0.0403	1.0035 1.6026	0.0291
35.50 36.00	1.004 <i>7</i> 1.002 <i>2</i>	0.0469 0.0450	1.0037 1.0036	4et0.0	1.6023 1.0017	0.0268 0.0256
36.50	0.9994	0.0436 0.0430	1.0014	0.0319	1.000	0.0245
37.50	0.9934	9.0435	0.4464	0.0310	0.7975	0.0239
38.00 38.50	6.6860 6.6660	0. ሮዩ50 ∪₊ርክ/2	0.9950 0.9943	0.6322 0.0339	0.440A	0.0249 0.0261
39.00 39.00	0.9891	0.0494 0.0513	0.7946 0.9956	0.0356 0.0367	0.7464	0.0270 0.0275
40.50	0.9903	P.C530	0.9967	0.0371	6.4974	0.0277
41.00	0.4932	0.6:56	C466*0	0.0369	6*4849	0.0279 0.0283
41.50 42.00	0.4421	0.6464 6.6364	1.000v 1.0021	0.0362 0.035u	0,999/	0.0284 U.0280
42.50	1.0007	0.0536	1.002e 1.002e		1.0023	0.0268
45.50 44.00	1.0045	0.6514 0.6492	1.0022 1.0012	0.0300 0.0241	1.00?K	0.0239
44.50	1.66/19	0.0470	1.000>	0.0247	1.6020	0.0228 0.0220
45.00 45.50	1.0062	0.0547 0.0524	0.4449 1.0000	0.0286 0.0284	1.0016	0.0212 0.0204
46.00 46.50	1.69% 1.60%	0.001 0.0302	0.4449	0.0280 0.0276	1.0003	0.0197
47.00 " 47.50	1.0022	0.0369	0.998h	0.02/5 0.02/5	0.4480	0.3196
48.00	r.9991	0.0362	0.4483	0.0276	U. 4913 U. 4972	0.0204 0.0212
48.50	L.9986	0.1363	0.948;	0.0276	6124.0	0.0218
49.00 49.50	0.4470	O. Cion	0.9983 0.9981	0.0275	0.4414	0.0221

	WIDTH TO LENGTH RATIO 0.0625		WIDTH TO LENG	ER 0.60 H RATIO 0.1250	MACH NUMBER 0.60 WIDTH TO LENGTH RATIO 0.2	
ENERALIZED	RADIATION RESISTANCE	RAU[ATION	RADIATION	RADIATION REACTANCE	RADIATION	RADIATION REACTANCE
0.50	0.0057	0.0412	0.0075	0.0689	0.0150 0.0542	0.1114
1.00 1.50	0.0136	0.0769 0.1119	0.0272 0.0528 0.0796	0.1308 0.1031	0.0542 0.1052 0.1578	0.2086
2.00	0.0399 0.0534	0.1412 0.1686	0.0796 0.1064	0,1031 0,2281 0,2691	0.1578 0.2100	0.2862 0.3484 0.4023
3,00	0.0678	0.1949	0.1350	0.3078	0.2650	0.4508
3.50 4.00	0.0837	0.2175 6.241e	0.1663 0.1994	0.3430	0.3246	0.5224
4.50	0.1174	0.2618	0.2325	0.3990	0.4474	0.5431
5.00 5.50	0.1340 0.1505	0.2003	0.2647 0.2966	0.4214 0.4414	0.5050 0.5606	0.5569 0.5657
6.00	0.1672 0.1838	0.3130 0.3284	0.3207 0.3604	0.4588 0.4731	0.0149 0.0669	0.5690
4.50 7.00	0.1999	0.3417	0.3908	0.4845	0.7145	0.5659 0.5573
7.50 8.00	6.2154 0.2304	0.3542 0.3663	- 0.4196 - 0.4472 -	0.4942	0.7569	0.5453 0.5318
8.50	0.2454	0.3778	0.4743	0.5105	0.8309	0.5167
9.00 9.50	0.2602 0.2747	0.3697	0.5008 0.5262	0.5166 0.5215	0.8635 0.8922	0.4994
10.00	0.2887	0.4088	0.5506	0.5256	0.9169	0.4610
10.50 11.00	0.3026 0.3167	0.4187 0.4285	0.5743	0.5330	0,9389	0.4423
11.50	0.3310 0.3454	0.4377 0.4465	0.6216 0.6449	0.5354	0.9780	0.4050
12.50	0.3598	0.4547	0.6679	0.5368 0.5375	0.9946 1.60A7	0.3854 0.3660
13.00 13.50	0.3742 0.3888	0.4626 0.4701	0.6701	0.5574 0.5365	1.0212	0.3472 0.3287
14.00	0.4034	0.4769	0.7350	0.5545	1.0432	0.3096
14.50	0.4180	0.4831 0.4889	0.7568 0.777	0.5311	1.0517	0.2898 0.2702
15.50	0.4467	0.494.5	0.7980	0.5217	1.0622	0.2513
16.00 16.50	6.4611 6.4754	0.4995 0.5036	0.8178 0.8370	0.5158 0.5089	1.0652	0.2330 0.2147
17.00	0.4895	0.50/3	0.8552	0.5009	1.0662	0.1967
17.50	6.503? 0.5166	0.5105	0.8721 0.8678	0.4922	1.0635	0.1798
18.50	0.5798	0.5161	0.9028	0.4/44	1.0538	0.1511
19.00 17.50	0.5427 0.5598	0.5185 0.5205	1116.0	0.4651 0.4554	1.0477 1.0406	0.1389 0.1278
20.00	0.5677 0.5799	0.5225 0.5245	0.4431 0.4549	0.4457	1.0325	0.1186
20.50	6.5721	0.5264	0.9662	0.4360	1.0741	0.1118
21.50 22.00	6404.9 AAFA.J	0.5281 0.5295	0.9770 0.9872	V•4164 V•4063	1.0087 1.0016	0.1024 8.0994
22.50	6.6288	0.5506	0.9960	0.3962	0.4444	0.0449
25.00 23.00	6,6469 5,6469	0.5316 3.5327	1.0058 1.9146	0.3862 9.3763	0.9887 0.9937	0.09/1 0.0974
24.00	(.6693	0.5323	1.0231	0.3661	0.9797	U.09B0
24.50 . 25.00	6,477 6,6890	0.5321 0.5315	1.0311 1.0385	0.3554 0.3446	0.9762 0.9731	0.0986 0.0995
25.50	(./1095	0.5308	1.0452	0.3336	0.4706	0.1009
26.00 26.50	0,7118 0,7251	0.5298 0.5285	1.0514 1.0570	0.3225 0.3112	0.9688 7.734.0	0.1924 0.1036
21.50	0.7361	0.52 <u>69</u> 0.5250	1.0617 = 1.0656		0.9666	U.1046
28.00	0.7551	0.5231	1.0636	0.2883 0.2773	0.7655 0.7645	0.1057 0.1072
28.50 29.00	0.7653 0.7756	0.5210 0.5188	1.0712 1.0752	0.2665 0.2560	0.4641 0.4643	0.1091 0.1109
29.50	(./853	0.5165	1.0747	0.2457	0.4647	0.1125
30.00 30.50	0.7949 C.3045	0.5140 0.5115	1.0756 1.0760	0.2357 0.2262	0.9652 0.9660	0,1142 0,1162
31.00	0.6139 0.6233	0.5061	1.0762	0.21/1	0.96/5	0.1184
31.50 32.00	6,8325	0.5031	1.0761 1.0757	0,20a2 0,1975	0.9697 0.9724	0.1204 0.1220
32.50 33.00	0.8416 0.8514	n_1,999 9=1966	- 1.074a 1.0737	0.1912 0.1833	0.9753 0.9787	0.1234
35.50	じょおりりと	0.4932	1.0724	0.1758	0.4827	0.1245 0.1253
34.50	6.8679 0.8763	96840	1.0711	0.1686 0.1614	0.9872 0.9917	0.1252 0.1242
35.00	6.8546	0.4819	1.0600	0.1545	0.4478	Ú• 1226
55.50 36.00	0.8926 0.9005	0.4779 9.4738	1.0660 1.0639	0.1477 0.1412	0.9997 1.0036	0.1206 0.1162
36.50	0.4084	0.4676	1.0617	0.1340	1.00/3	0.1151
37.00	0.9160	0.4605	1.0591	0.1286 0.1226	1.0105	0.1114
38.0v	0.4306	(1, 41, 57	1.0523	0.1169	1.0148	0.1034
38.50 39.00	0.7575 0.7443	0.4509	1 • 04 9 3 1 • 04 9 7	0.1117 0.1668	1.0163	0.0993 0.0952
34.50 10.00	0.7508 0.7576	0.550	7.0918	0.1023	1.0178	0.0911
40.55	0.7677	n. 4510	1.0334	0.0946	1,0171	0.0871 0.0837
41.00 41.50	0.9688 0.9786	0.426C 0.4211	1.0292 1.0252	0.0417 0.0891	1.0165	0.0807 0.0779
42.00	€.9302	0.4160	1.6213	0.0868	1.0153	0.0750
42.50	94876 6086.0	0.4059		0.0849	1.0144	0.0724
43.50	0.7961	0.4009	1.0103	0.0618	1.0124	0.0679
44.00 44.00	1.0013	0.3957	1.0C7; 1.0042	0.0306 0.0793	1.0115	0.0657 0.0635
43.50	1.0111	0.3852	1.0010	0.0782	1.0092	0.0614
45.00	1.0158	- · · · · · · · · · · · · · · · · · · ·	0.9917	- 0.07/4	1.0011	0.0595
46.50	1.0247	6.3671	0.9914	0.0763	1,0048	0.0563
4/.00 4/	1.0350	0. 1636 0. 1560	0.9871 0.9862	0.0739 0.0756	1.0032 1.0012	0.0546 0.0531
48.0)	1.0369	0.5524 0.5569	0.7034	0.0157	0.4484	0.0520
44.00	1,010	0.3449	0.9cur	0.0759 0.0764	0.4460	0.0514 0.0511
44.10	1.047)	11.55.6	0.9757	0.0769	0.4455	v.0511

WIDTHTO LENGTH RATIO 0.3000				•	WIDTH TO LENGTH BATIO 2,0000		
REQUENCY	HEST STANCE	RADIATION	RESTSTANCE	HADIATION REACTANCE	RADIATION RESISTANCE	RADIATION _	
0.60	0.0399	0.1722 0.3743	0.0594 0.20u2	0.2504	0.1150 0.3668	0.3310	
1.50	0.2064	0.4149	0.3831	0.5226	0.5841	0.4979	
2.00	0.4050	0.4825	0-5349	0.5460	0.6424	0.4398	
2,50 3.00	0.3985	0.5319	0.4542	0.5404	0.6430 0.8005	. G.4151 G.4160	
3.50	0.5901	0.5901	0.8451	0.4914	0.8751	0.4079	
4.00 4.50	0.6858	0.5907	0.9178 0.9642	0.4415 0.3635	81#4•0 4#84•0	0.3715 0.3232	
5.00	0.8448	0.5449	0.9881	0.3319	1.0073	0.2797	
5.50	0.9071	0.5103	1.0016	0.2V17 0.2577	1.0220	0.2450 0.2154	
6.50	1.0040	0.4225	1.0186	0.2249	1.0427	0.1800	
7.00	1.0338	0.3715	1.0175	0.1955	1.0404	0.1478	
7.50 8.00	1.0500	0.3221 0.2780	1.0060	0.1747 0.1592	1,0314 1,0202	0.1231 0.1069	
8.50	7.0563	0.2391	1.0035	0.1472	1.0107	0.0956	
9.00 9.50	1.0508	0.2043 0.1745	1.0011	0.1546 0.1230	1.0013	0.0867 0.0812	
10.00	1.0232	0.1522	0.9879	0.1157	0.9812	0.0808	
10.50	1.0061	0.1382	U.981/	0.1130	0.9752	0.0843	
11.00 11.50	0.9910	0.1306 0.126v	0.9783	0.1122 0.1112	0.4738 0.4748	0.0883 0.0908	
12.00	0.9676	0.1262	0.9745	0.1116	0.9759	0.0925	
12.50 13.00	0.9587	0.1289	0.9735	0.1130 0.1165	0.4774	0.0952 0.0979	
13.50	0.7528	0.1415	0.9813	0.1108	0.4901	0.0983	
14.00	0.4559	0.1465	n. QRR7	0.1181	0.9975	0.0950	
14.50	0.9608	0.1497	1.0014	0.1147	1.0027	0.0896	
15.50	0.9/33	0.1527	1.0067	0.1044	1.0086	0.0794	
16.00 16.50	0.9817 0.9903	0.1519 0.1482	1.0115	0.09/2 0.0Ud2	1.0116	0.0739	
17.00	0.9975	0.1421	1,0143	0.0002	1.0125	0.0594	
17.50	1.0026	0.1351	1.0106_	0.0710	1.6094	0.0536	
18.00 18.50	1.0064	0.1282 0.1212	1.0062 1.0017	0.0658 0.0625	1.0058 1.0028	0.0500 0.0476	
19.00	1.0115	0.1134	0.9978	0.0602	1.0001	0.0455	
19.50 20.00	1.011 <i>1</i> 1.0100	0.1055 0.0986	0.9436 0.9898	0.0593 0.0603	0.4447 0.4431	0.0440 6.0441	
20.50	1,0076	0.0935	0.98/8	0.0627	U.9905	0.0458	
21.00	1.0054	0.0895	0.9880	0.0653	0.4849	0.0480	
21.50 22.00	1.0034 1.0010	0.0858 0.0826	0.9H96 0.9913	1000.0	0.4894 0.4405	0,0496 0,0508	
22.50	0.4485	0.0804	0.9927	7.0668	0. 9914	0.0521	
23.00	0.995B 0.7945	0.0795 0.0792	0,994n 0,9972	0.0666 0.0658	0.9932 0.9961	0.0535 0.0540	
24.00	6.9939	0.0786	0.9994	6.0639	0.4992	0.0531	
24.50	0.4433	0.6776	1.0000	0.0615	1.0010	0.0511	
25.00 25.50	0,4425 5,4421	0.0769 0.0768	1.0011 1.601o	0.0594 0.0580	1.0032 1.0046	0.0490 0.0469	
26.00	0.9923	0.0767	1.0026	0.0565	1.6041	0.0444	
26.50	0.9930	0.0/61		0.0543	4400.1 #400.1	0.0411 D.03/6	
27.50	0.4931	0.6741	1.0030	0.0472	1.0044	0.0349	
28.00	0.9931	0-6738	1.0033	0.0471	1.0031	0.0333	
28.50 29.00	0.9936 0.9945	0.0736 0.0731	1.0028 1.0010	0.0451 0.0429	1.0016	0.0322 0.0311	
29.50	0.9952	0.0722	1.0061	0.0409	0.9903	0.0503	
30.00 30.50	0.9952 0.9962	0.0716	0.9975 0.9953	0.0399	0.4962	0.0304 0.0315	
31.00	0.9975	0.0710	0.4936	0.0412	0.9941	0.0329	
31.50	0.9991	0.0701	0.9931	0.0424	0.4943	0.0340	
32.00 32.50	1.0006 1.0016	6567 • O	0.9923 0.9931	010436 0.0451	0.9947 0.9951	0.0348 0.0356	
35.00	1.0026	0.6655	0.9942	0.0467	6.4961	0.0364	
35.50 34.00			0. 9964	0.04/6	0.9977 0.9995	0.0370 0.0366	
34.50	1.0054	0.0586	1.0012	0.0460	1.0011	0.0356	
35+00 35-50	1.0050 1.0043	0.0559 0.0536	1.002/ 1.0038	0.0442 0.0422	1.6021	0.0344	
35.50 36.00	1.0043	0.0516	1.0044	0.0422	1.0030 1.0038	U.0332 U.U317	
36.50	1.0024	0.0496	1.0045	0.03/6	1.0044	0.0298	
37.00 57.50	1,6007	0.0167	1.0038	0.0353 0.0336	1.0041 1.0032	0.0278 0.0261	
38.00	6.4966	0.0462	1.0009	0.0328	1,0021	0.0250	
38.50 39.00	0.4944	0.0465 0.0470	0.9996 0.9988	0.0326 0.0325	1.0011	0.0243	
34.50	0.9924	0.0477	0.9981	0.0329	1,0002	0.0237 0.0232	
40.00	0.99Tu	0.0438	0.9973	0.5526	0,4976	0.0233	
-40.50	0.4411	0.0504 0521	0.9969	0.0330 0.0335	0.9966	0.02%1 0.0250	
41.50	0.9928	0.0035	0.7975	0.0336	0.4463	0.0258	
42.00 42.50	0.9942 0.9958	0.0540 0.0545	0.9975	0.0535 0.0534	0.4965	0.0263	
43.00	0.4976	0.0547	0.9973	0.0337	0.9961	0.0276	
43.50	0.9998	0.0544	0.9979	0.0340	0.4983	0.0280	
44.00 44.50	1,0021	0.0534 0.0516	0.9986 0.999h	0.0341 0.0339	0.4997 1.600%	0.0279 0.0273	
45.00	1.0052	n. Ü474	1.0006	0.0335	1.0015	0.0264	
45.50 ha.00	1.0060	0.04/2	1.0007	0.0332	1.0020	0.0256	
46.00 46.50	1.0065	0.0425	1.0017	0.0326 0.0315	1.0026	0.0246 0.0234	
47.00	1.0060	0.0400	1.0031	0.0299	1.0029	0.0221	
_ 47.50 48.00	1.0048 1.0031	0.0378 0.0378	1.0030 1.0024	0.0283 0.0264	1.0024 1.0016	0.0209	
48.50	1.0013	0.0351	1.0016	0.0259	1.0009	0.0201	
49.00	0.9996	0.0344	1.000	0.0250	1.0002	0.0191	
49.50	0.99/1 0.9959	0.0142	0.9794	0.0245	0.4993	0.0188	

,是是1966年,1972年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年,1982年

	MACH NUMBER 0./0 WIDTH TO LENGTH BATTO 0.0025		WIDTH TO LENGT	WIDTH TO LENGTH RATIO 0.1250		MACH NUMBER 0,70 WIDTH TO LENGTH RATIO 0,2500	
CENERAL IZED	RACIATION	ŘÁDÍATIÚN REAGTANCE	RADIATION	RADIATION	RAGIATIUN RESISTANCE	RADIATION	
#KEQUENCY -0.50 1.00	HCSISTANCE 0.0045	0.0/85	RESISTANCE 0.0091	REACTANCE 0.0702	0.0183	REACTANCE 0.1138 0.2067	
1.00	0.0153	0.0785	0.0307 0.0540 0.0787	0.1300 0.1796	0.0612	0.2067 0.2787	
2.00 2.50	0.0394	0.1347 0.1662	0.0787 0.1054	0.2250 0.2661	0.1558 0.2077	0.2787 0.3418 0.3996	
3.00	0.0681	0,1944	0.1354	0.3065	0.2654	0.4476	
3.50 4.00	0.0837 0.0995	0.2182 0.2405	0.1663	0,3400	0.3237	0.4850	
4.50	0.1160 0.1330	0.2614 0.2804	0.2295	0.3979	0.4403	0.5403	
5.50	0.1478 0.1663	0.3138	0.2951	0.4411	0.5560	0.5645	
6.00	0.1829	0.3289	0.3583	0.4585 0.4735	0.6093 0.6609	0.5679 0.5664 0.5591	
7.00 7.50	0.1994 0.2152	0.3425 0.3550	0.3895 0.4187	0,4856 0,4955	0.7094 0.7530	0.5591 0.5478	
8.00 8.50	0.2305 0.2457	0.3669 0.3783	0.4170 0.4748	0.5041 0.5112	0.7927 0.8294	0.5343	
9.00	0.2607	0.3890	0.5014	0.5167	0.8623	0.5186 0.5002	
9.50 10.00	0.2752 0.2896	0.1992	0.5268 0.5514	0.5213	0.8406 0.9159	0.4808	
10.50 11.00	0.3039 0.3179	0.4185 0.4274	<u>0.575</u> / 0.5992	0.5286	0.9388	0.4418	
11.50	0.3316	0.4363	0.6219	0.5326	0.4755	0.4214	
12.00 12.50	0.3454 0.3596	0.4450 0.4535	0.664	0.5341 0.5348	0.9908 1.0047	0.3827 0.3636	
13.00 13.50	0.3738 0.3881	0.4614 0.4689	0.6890 0.7107	0.5344	1.0164	0.3444	
14.00	0.4026	0.4760	0.7322	0.5334	1.6354	0.3261	
14.50	0.4172	0.4824	0.7534	0.5289	1.0433	0.2901	
15.50	0.4458 0.4601	0.4937	0.7943 0.8143	0.5209	1.0540	0.2545 0.2373	
16.50	0.4742	0.5031	0.8337	0.5090	1.0597	0.2201	
17.00 17.50	0.4881 9.5020	0.5072 0.5169	0.8519 0.8692	0.5015 0.4935	1.0598	0.2034	
18.00 18.50	0.5159 0.5295	0.5142 0.5168	0.8850 0.9013	0.4848 0.4755	1.0565	0.1729	
19.00	6.5427	0.5191	0.915a	0.4660	1.0527	0.1585 0.1456	
19.50 20.00	0.555/ 0.5684	0.5211 0.5228	0.9296 0.9427	0.4563 0.4462	1.0410 1.0344	0.1346 0.1247	
20.50	0.5809	0.5243 0.5256	0.9547	0,4356	1.0270	0.1160	
21.50	0.6051	0.5269	0.9650 0.9762	0.4254 0.4152	1.0189	0.1091 0.1041	
22.00 22.50	0.6170 5.6207	0.5279 0.5280	0.9861 9.9951	0.4048 0.3745	1.0033	0.1004	
23.00	0.6403	0.5297	1.0036	0.3845	0.4840	1790.0	
23.50	0.6630	80 € € 60	1.011a 1.0198	0.3746 0.3645	0.9832 0.9782	0.0972 0.0978	
24.50 25.00	0.6755 0.6872	0.5310 0.5310	1.0273 1.0344	0.3543 0.3441	0.97 3 7 0.9701	0.0990 0.1010	
25.50 26.00	0.6989 0.7105	0.5406 0.5247	1.0410	0.3337	0.7677	0.1055	
26.50	0.7219	0.5285	1.0525	0.3123	0.9661	0.1053 0.1074	
27.00 27.50	0./330 0./439	9.5270 0.5253	1.05/4 1.0617	0.3017	0.4646 0.4649	0.1095 0.1112	
28.00 28.50	0.7545 0.7648	0.5233 0.5211	1.0658 1.0689	0.2002 0.2695	0.4652	0.1125	
29.00	0.7750	0.5167	1.0715	0.2570	0.4657	0.1159 0.1153	
29.50 30.00	0.7857 0.7847	0.5164 0.5138	1.0736 1.0749	0.2405 0.2381	0.9679 0.9691	0.1163 0.1170	
30.50	0.0044 0.6130	0.5110	1.0757	0.2281	0.9703	0.1179	
31.50 32.00	0.0230	0.5051	1.6758	0.2009	0.9736	0.1193	
32.50	0.8519 0.8407	0.4988	1.0747	0.1998	0.7753 0.9772	0.1199 0.1207	
33.00 33.50	0.8474 0.8980	0.4955 C.4722	1.0/22	0.la34 ae1f=0	0.7797 0.7825	0.1214 0.1217	
34.00	6.8884	J.4897	1.0684	0.1600	6.7554	0.1218	
34.50 35.00	0.8627	0.4814	1.0604	0 - 1619 0 - 1523	0.9887 0.9922	0.1217 0.1211	
35.50 36.00	0.5910 0.8918	0.4775 0.4736	1.0631 1.0603	0.1489 0.1428	0.4473	0.1200 0.1186	
36.50 37.00	0.7056 0.7141	2.4675 0.4653	1.0585	0.1369	1.0029	0.1168	
37.50	0.9218	0 , 4 6 0 M	1.0534	0.1312 9.1257	1.0066	0.1142 0.1111	
58.00 38.50	0.929! 9.9351	0.4562 0.4516	1.0505 1.0676	0.1205 0.1156	1.0127 1.0153	0.1076 0.1038	
39.00 39.50	0.9432 6.9499	0.4507 0.4818	1.0446	0.110s 0.10s2	1.6174	0.0995	
40.00	0.7564	C. 1 366	1.0375	0.1017		0.0950	
40.50 41.00	0.9628 6.3669	0.4317 0.4265	1.0342 1.0305	0.0444	1,0196 1.0194	0.0864 0.0822	
41.50 42.00	6.7/4A 6.980)	0.4212 0.4158	1.0260 1.0226	0.0911 0.0893	1.6185 1.0174	0.0782	
42.10	0.7857	0.4104	1.0186	0.0829	1.0160	0.0746 0.0713	
43.00 43.50	0.4400 0.4411	በ• ያቃላት	1.014a 1.010a	0.0836 0.0817	7.0143 1.0122	0.0683	
կե.00 կե.50	1.00u <i>1</i> 1.0052	0.3241 0.4389	1.0060 1.0031	0.0304 0.0794	1.6101	0.0638	
45.00	1.0046	0.3837	0.4440	1010.0	1.0082 1.0063	0.0622 0.0608	
45.50		0.3795	0.9462	0.0782	1.0045	0.0597	
46.50 47.00	1.6225 1.0265	0.5632	0.9902 0.9876	0.0732 C.0783	1.0015	0.0581	
47.50	1.0305	0.3578	0.9851	0.0785	0.4485	0.0573 0.0569	
48.00 48.30	1.0344 1.6383	0.3525 0.3471	7089±0	0.0787 0.0790	0.4973 G.4962	0.0565 0.0561	
49.00	1.0417	7.3416	0.9783 0.9784	0.0792	0,9949	0.0556	
50.00	1.04-7	C.3396	0.9744	0.0747	0.9936 0.9925	0.0555 0.0553	

Najvojenio prografija izvije te i	HACH NUMBE	R 0.70 RATIO 0.5000	MACH (UMB) WIDTH TO LENGT	ER 0.70 H RATIO 1.0000	MACH NUMBER 0.70 WIDTH TO LENGTH RATIO 2.0000	
GENERAL 1ZED	RADIATION	RACIATION	RADIATION	RADIATION	RADIATION	RADIATION
- 0.50	0.0364	RLACTANCE:	0.0721	4 4 14 14 1 9 2571 0 4 18 1	RESISTANCE 0.1386	REACTANCE 0.3404
1.00	0.1211	0.4094	0.0721 0.2323 0.3876	0.4181	0.3966	0.¥6 2 9
1.50	0.2991	0.4677	0.5121	0.5171	0.6320	0.7255
2.00 2.50 3.00	0.3914	0.5249	0.6286	0.5312	0:7907	0.4377
3.50	0.5837	0.5758	0.8198	0.4400	0.8544	0.4050 0.5742
4.00 4.50	0.6646 0.7520	0.5781 0.5694	0.8789	0.4022	0.9591	0.3469
5.00	0.8283 0.8922	0.5463 0.5121	0.9676 0.9901	0.3985 0.3154	0.7954 1.0162	0.3062 0.2667
6.00	0.9442	0.4733	1.0036	0.2008	1.0299	0.2340
6.50 7.00	0.98// 1.0205	0,430h 0,3836	1.0153 1.0217	0.2479	1.0450	0.2019 0.1685
7,50	1.0406	0.3361	1.0207	0.1920 0.1721	. 1.0394 1.0317	0.1408 0.1207
8.50	1.0547	0.2526	1.0161	0.1539	1.0236	0.1038
9.00 9.50	1.0511	0.2157 0.1851	1.010d 1.0023	0.1366 0.1242	1.0126	0.0902
10.00	1.0270	0.1625	0.9951 0.9890	0.1165 0.1101	0.9911	0.0808 0.0793
10.50	0.9975	0.1326	0.4817	0.1056	0.97/9	0.0792
11.50	0.9821	0.1266 0.1261	0.9749	0.1055	0.9727	0.0828
12.50	0.9607	0.1280	0.9706	0.1101	0.9739	0.0910
13.00	0.9540	0.1317	0.9710	0.1127	0.4763	0.0933 0.0959
14.00 14.50	0.9509 0.9548	0.1447 0.1498	0.9795 0.9865	0.1187 0.1160	0.4862 0.4823	0.0968 0.0950
15.00	0.9601	0.1535	0.4930	0.1155	0.9473	0.0925
15.50 16.00	0.9671 0.9762	0. 1963 0. 1569	1.0060	0.1120 0.1061	1.0024 1.0076	0.0992 0.0843
16.50 17.00	0.4855 0.9935	0.1543 0.1498	1.0103	0.0982 0.0902	1.0110	0.0776 0.0712
17.50	1.0010	0.1443	1.0121	0.0631	1.0127	0.0655
10.00 18.50	1.0078	0.1368 0.1278	1.0114	0.0761	1.0125	0.0595
19.00	1.0148	0.1188	1.0048	0.0656	1.00/3	0.0495
19.50 20.00	1.0159 1.0157	0.1104 0.1019	1.0015	0.0612	1.0044 1.0013	0.0466 0.0441
20.50	1.0154	0.0939 0.6878	0.4431	0.0600	0.7975	0.0426
21.50	1.0062	0.0832	0.9914	0.0609	0.9919	0.0442
22.00 22.50	1.0023	0.0793 0.0768	0.440*	0.0610 0.0613	0.9905 0.9892	0.0453 0.0468
23.00	0.9938	0.0760	0.9904	0.0622	0.9891	0.0491 0.0509
23.50	C.VAA!	0.0766	0.7921	0.0624	0.7919	0.0518
24.50 25.00	0.9869 1.9869	0.0777 0.0794	0.9928 0.9943	0.0652	0.7736 0.7761	0.0526 U.U531
25.50	1884.0 1184.0	0.0808 0.0815	0.496) 0.7986	0.0635 0.0635	0.7991 1.0014	0.0525 0.0507
26.00 26.50	0.9888	0.0822	1.000)	0.0613	1.0032	0.0489
27.00	0.7908	0.0R77 0.0822	1.0027	0.0578	1.0050 1.0064	0.0468 0.0440
28.00	0.4953	0.0909	1.0061	0.0539	1.0067	0.0408
28.50 27.00	0.4464 8866.0	0.0796	1.0064 1.0063	60c0.0 11d0.0	1.0063 1.0058	0.0382 0.0358
29.50	1.0005 1.0014	9.0758 0.0733	1.0054 1.0035	0.0444 0.0416	1.0047 1.0028	0.0333 0.0313
30.00 30.50	1.0019	0.0/11	1,0011	0.0401	1.000#	0.0304
31.00	1.0024	0.0689	0.9789	0.0389	0.9992 0.7976	0.0300 0.0296
32.00	1.0021	0.0645 0.629	0. 994 <i>1</i> 0. 9934	0.0394 0.0468	0.4949 0.4958	0.0500 0.0310
32.50 33.00	1.0013	0.0613	0.4932	0.0422	0.4942	0.0321
35.50	1.0008	0.0598	0.9934	0.0432 0.0443	0.4440	0.0551 0.0542
34.50	0.9995	0.0530	0.4951 0.4967	9.0452 0.0453	0.4944	0.0354
35.00 55.50	0.9944 0.9989	0.0570 0.0560	0.9966	0.0448	0.4475	0.0361
36.00 36.50	0.9984 0.9982	0.0554 0.0549	0.9941 1.0004	0.0442 0.0435	0.448B 1.0004	0.0361 0.0357
37.00	0.9981	0.0542	1.0014	0.0422	1.6020	0.0346
37.50 38. 0 0	0.4978 67975	0.0534 0.0529	1.0023	0.040H 0.6347	1.0029	0.0332 0.0318
38.50 39.00	0.4973 0.4972	0.0525 0.6519	1.0027 1.0030	0.0385 0.0370	1.6042 1.0043	0.0302 0.0263
39.50	0.4968	0.0514	t.002n	0.0350	1.0038	0.0266
40.00	0.9765	0.0513 0.0512	1.0025	0.0344	1.0030	0.0254 0.0242
41.00	0.7966 0.9964	0.0508 0.0508	1.001o 1.0004	0.031H 0.0307	1.6011	0.0232 0.0227
41.50 42.00	0.9966	0.0504	0.9993	0.0304	0.4486	U.0228
42.50 43.00	0.9976	9.0504	0.999;	0.0301	0.4411	0.0230 0.0234
45.70	0.9981	0.0504	0.7460 0.7455	0.0305 0.0315	0.4461 0.4460	0.0241 0.0251
44.00 44.50	0.9989 0.9998	0.4 (502 0.4 (1647	0.9954	0.0324	0.4962	0.0258
45.00 45.50	1.0005 1.0011	0.(1489 9.04x1	0.9956 0.9962	0.0333 0.0342	0.4465 C.4410	0.0264 0.0271
46.00	1.0019	0.0472	0.9974	V. 0347	0.1980	0.0276
46.50 - 47.66	1.0025 1.002 <i>7</i>	ր, Ույթ ո, Եննն	0.9994 11.9994	0.054A	0.v9v1	0.0275 0.0271
47.50 48.00	1.0027	0.(432 0.0419	1.0011 1.0022	0.033H 0.0327	1.0010	0.0267 0.0259
	1.0023	0.0414	1.0025	0.0312	1.0025	0.0248
48.50				V. X.	T	4
49.50 49.50	1.0015 1.0007	0,0372 0,0365 0,0366	1.0e27 1.0027 1.0024	0.0298 0.0287 0.0275	1,0028 1,0028 1,0029	0.0238 0.0228 0.0217

	WIDTH TO LENGTH RATIO 0.0625		MACH HUMBER 0.80 WIDTH TO LENGTH RATIO 0.1250		MACH NUMBER 0.80 WIDTH TO LENGTH RATIO 0.2500	
GENERAL I ZED FREQUENCY	RADIATION RESISTANCE	RADIATION REACTANCE	RADIATION RESISTANCE	KAULATION REACTANCE	RADIATION RESISTANCE	REACTANCE
0.50 1,00	0.0059	0.0424	0.0119	0.0712	0.0238	0.1158-
1.50	0.0273	0.1092	0.0545	0.1775	0,1082	0.2719
2.00	0.0400 0.0534	0. 1393 0. 1666	0.0791 0.1063	0.2240 0.2652	0.1575 0.2090	0.3391 0.3930
3.00	0.0677	0.19J1 0.2172	0.1346	0.3037	0.2630	0.4409
3,50 4,00	0.0908	0.2397	0.1650 0.1950		0.32 <u>03</u> 0.3772	0.5109
4.50 5.00	0.1193 0.1320	0.2607 0.2798	0.2279 0.2601	0.3959	0.4356 0.4929	0.5354 0.5518
5.50	0.1486	0.2975	0.2924	0.4405	0.5486	0.5626
6.00	0.1654 0.1819	0.3138 0.3290	0.3247 0.3560	0.4582	0.6031 0.6539	0.5667 0.5655
7.00	0.1986	0.3631	0 TA 13	0.4861	0.7024	0.5579
7.50 8.00	0.2148 0.2305	0.3557 0.3676	0.4173 0.4461	0.4462 0.5048	0.7471 0.7878	0.5495
8.50	0.2459	0.3787	0.4741	0.5118	0.8252	0,5204
9.00 9.50	0.2608 0.2756	0.3894 0.3496	0.5010 0.5272	0.51/4 0.5218	0.8582 0.8879	0.5024 0.4832
10.00	6.2401	0.4092	0.5522	0.5249	0. v138	0.4627
10.50 11.00	0.3045 0.3188	0.4165	0.5761 0.5995	0.52/6	0.9364	0.4424
11.50	0.3325	0.4.155	0.6222	0.5310	0.9732	0.4011
12.00 12.50	0.3462 0.3600	0.4439 0.4520	0.6447 0.6666	0.5318 0.5317	0.9880 1.0008	0.3814
13.00	0.3738	ዕ። ቀ ኃላት	0.6470	0.5312	1.0116	0.3430
13.50 14.00	6.3879 9.4020	0. ችለፖዛ 0. ችፖዜክ	0.7090 0.7296	0.5302 0.5285	1.0210 1.0288	0.3246
14.50	0.4162	0.4811	0.7503	0.5262	1.0357	0.2900
15.00 15.50	0.4305	0.4571	0.1107	0.5250 0.5189	1.0414	0.2729 0.2566
16.00	0.4589	0.4979	0.8103	0.5137	1.0491	0.2405
16.50 17.00	0.4730 0.4870	0.5025 0.5067	0.8289 0.8472	0.5078 0.5013	1.0512 1.0525	0.2249 0.2099
17.50	0.5008	0.5105	0. 8646	0.4939	1.0524	0.1948
18.00 18.50	6.5107 6.5283	0.5146	0.3817 0.8940	0.4859 0.4771	1.0510	0.1807 0.1673
19.00	0.5419	0.5195	0.9131	0.40/6	1.0448	0.1547
19.50 20.00	0 . 5555 0 . 5692	0.5215 0.5230	0.92/4 0.960/	0.45// 0.44/73	1.0404 1.0349	0.1433 0.1327
20.50	0.5808	0.5243	0.9527	0.4 568	1.0285	0.1235
21.00 21.50	0.5932	0.525h 0.526h	0.9643 0.974 <i>n</i>	0.4263	1.0216	0.1156 0.1092
22.00	0.61/1	C.5273	0.9847	0.4052	1.0068	0.1044
22.50 23.00	0.6289 0.6405	0.5280 0.5286	9. ¥940 1. 0025	0.3945	0.9995	0.1006 0.0983
23.50	0.65.0	0.5290	1.0104	0.3734	0.4856	0.0973
24.00 24.50	0.6634 0.6749	0.5293	1.0176	0.3629 0.3528	0.7/94 0.7/42	0.0974 0.0986
25.00	0.6865	0.5 93	1.0507	0.5421	0.7077	6.1063
25.50 26.66	6 .697 6 (.7074	0.5790 0.5734	1.0357 1.0925	0.3529	0.4264	0.1027 0.1053
26.50	0./200	0.5275	1.0479	0.3127	0.4623	0.1080
27.00 27.00	0.7310 0.7678	0.5764 9.5249	1.0527 1.0572	0.3027	0.4615	0.1109
28.00	0.7527	0.1232	1.0612	0.2824	0.9623	0.1161
28.50 29.00	0.1633 6.1136	815c.0	1.0648	0.2721 0.2618	0.9638 0.9653	0.1182
29.50 30.00	0.7837 0.7937	0.516/	1.0701	U.2517	0.9672	0.1210
30.56	0.1431	0.5142 0.5115	1.0770 1.0733	0.2417 0.2318	0.9694	0.1219 0.1226
31.00	0.8133	0,5085 0,5052	1.0742	0.2221	0.4742	0.1227
32.00	0.0319	0.5032	1.0745 1.0743	0.2125		0.1226 0.1223
32.50 33.00	0.849H	0.4982 9.4945	1.0736	0.1941	0.9810	0.1218
55.50	6.8577	0.4908	1.0722 1.0706	0.1774	0.9831 0.9855	0.1214 0.1208
34.00	0.8658 6.8737	0,4234	1.0683	0.1697	0.4817 0.4400	0.1200 0.1193
35.00	C.8814	0.4797	1.0637	0.1557	0.9924	0.1183
35.50 36.00	1988.0 1896.0	0.4760 0.4722	1.0613 1.0589	0.1495 0.1435	<u>- 0.9949</u> - 0.9975	0.1173 0.1160
36.40	0.4043	0.4683	1.0562	0.1378	1.0000	0.1145
37.00 37.50	0.9117 0.9191	0.4693	1.0534 1.050a	0.1323 0.1272	1.0028 1.0056	G.1130 O.1109
38.00	0.9263	0•¼560	1.04/6	0.1225	1.0083	0.1085
38.50 34.00	0.7334 0.9405	0.4517 0.4473	10447 1.0418	0.1181 0.1138	<u>1.0109</u>	0.1056 0.1024
57.50	0.9474	0.4426	1.0389	0.1097	1.0151	0.0991
40.50	0.4245	0.4378 0.4528	1.0360 1.0328	0.1058 0.1020	1.0169 1.0181	0.0953 0.0914
41.00	0.9671	0.4276	1.0290	0.0985	1.0190	0.0873
41.50 42.00	0.9732 0.9791	0.4224 0.4171	1.0263 1.022v	0.0952		0.0830 0.0789
42.50	0.4848	0.6117	1.0195	0.0893	1.0181	0.0748
45.00	0.9902 0.9954	0.4062	1.0158 1.0121	0.0867	1.0168 1.0152	0.0711
44.00	1.0004	0. 1952 ***	1.0084	0.0826	1.0152	0.0646
44.50 45.00	1.0051 1.0097	0.3648 0.3843	1.0046	0.0811	1.0109	0.0620
45.50	1.0151	0.5766	0,9973	0.0/91	1.0051	0.0582
46.00 46.50	1.0183 1.9224	0.3634	0.4939	0.0787 0.0785	1.0032	0.0570
47.00	1.0263	0.3626	0.98/5	0.0785	0.4965	0.0559
47.50 48.00	1.0302 1.0340	0.3572	0.9847	0.0787	0,7964	0.0558
49.50	1.0376	0.3462	0,9794	0.0/98	0.4928	0.0560 0.0566
49.00 49.56	1.0419	0.3196	0.4//1	0.0814	0.4915	6.0571
50.00	1.6473	6. 5295	0,9751 0,9733	0.0814	0.9905 0.9897	0.0578 0.0585

ENERALI (ED	HADIATION	ER 0.80 H RATIO 0.5000 RAGIATION	MADIATION	KAUIATION	HADIATION	MADIATION
FREQUENCY	RUSISTANCE	REAGTANCE	RESISTANCE	REACTANCE 0.2505	RESISTANCE 0,1763	REACTANCE 0.3372
1.00	0.0474	0.1797	0.0434	0.3874	0.3986	0.3984
1.50 2.00	0.2099	0.38/1	0,3733	0.4607 0.5018	0.5056	0.4158 0.4308
2.50	0.3903	0.5095	0.6103	0.5065	0.6813	0.4327
3.00 5.40	0.4803 0.5710	0.5464 0.5647	0.7033 0.7631	0.5016	0.7599 0.6316	0.4361 6.5162
4.00	0.6547	0.5043	0.8470 0.9016	0.4407	0.8875 0.9387	0.3930
4.50 5.00	0.7354	0.5623	0.9414	0.3774	0.4749	0.3267
5.50	0.8707	0.5150	0.9725	0.3428	1.0038	0.2937 0.2570
0.50	0.9691	0.4590	1,0099	0.2/34	1.0372	0.2236
7.00 7.50	1.005H 1.027H	0.3965 0.3518	1.0209	0.2418	1.0453	0.1914 0.1612
8.00	1.0425	0.3095	1.0260	0.1884 0.1654	1.0404	0,1376
9.00	1.0497	0.268/	1.0240	0.1467	1.0334	0.1164 0.1011
	1.0428	0.2010	1.0132	0.1313	1.0138	0.0897
10.50	1.0322	0.1546	0.9959	0.1104	1.0027 0.9930	0.0814 0.0781
11.00 11.50	1.0046 0.9895	0.1398 0.1397	0.9877	0.1045 0.1026	0.9847 0.9777	0.0764 0.0780
12.00	0.9765	0.1268	0.4738	0,1033	0.4741	0.0811
12.50	0.9651	0.1261 0.1295	0.9643	0.1052	0.9716 0.9719	0.0843 0.0886
13.50	0.9514	0.1342	0,9695	0.1125	0.9742	0.0916
14.00 14.50	0.9489 0.9503	0.1403 0.1468	0.9727 0.9782	0.1156 9.1174	€.9772 €.9824	0.0944 0.6961
15.00	0.9541	0.1519	0. 9840	0.1170	0.7876	0.0958
15.50 16.00	0.9602_	0.1564 0.1585	0.9959	0.11s/ 0.1117	0.4934 0.4993	0.0949 0.0917
_16.50	0.9772	0.1585	1.0019	0.10/0	1.0038	0.0878
17.00 17.50	0.4867 0.4956	0.1564 0.1518	1.0063	0.1012 0.0944	1.0082	0.0829 0.0769
18.00	1.0036	0.1456	1.0103	0.0882	1.0128	0.0713
18.50 19.00	1.0105 1.0151	0.13/5 0.12d5	1.010/ 1.0094	0.0817 0.0761	1.0137 1.0127	0.0649 0.0591
	1.0183 1.0193	0.11V1 0.1992	1.0083 1.0061	0.0713 0.0668	1.01.3	0.0540
20.50	1.0103	0.1002	1.0036	0.0638	1.0086	0.0494
21.00 21.50	1.0161	0.0919 0.0899	1.0014 0.9989	0.0610	1.0023	0.0437
22.00	1.0076	0.0795	0.9963	0.0580	U. Y957	0.0422
27.50 23.00	1,0023 0,9971	0,0754 0,0753	0.9939 0.991a	0.05 <i>17</i> 0.05 <i>1</i> 4	0.4458 0.440 <i>1</i>	0.0424 0.0438
23.50	0.9924	0.6724	0. 9904	0.0574	0.9895	0.0453
24.00 24.50	0.9879	0,0728 0,0745	(1, 484) (1, 4600	0.058¥ 0.0604	0.4888 6.4888	0,0472 0.6492
25.00	0.9826	0.0165	1989.0	0.0616	0.4405	0,0506
25.59 26.00	0.9818 0.9818	0.0817	n, 9963 0, 7921	0.0431 0.040	0.4918 0.7961	0.0520 0.0526
26.50	0.9828	0.(241	0.9945	0.0644	0.4962	0.052/
27.00 27.50	0.9851 0.9879	0.0861	0. 44/1	0.0642	6.7989 1.6012	0.0522 0.0508
28.00 28.50	0.9911 0.9946	0.6874 0.6868	1. 0023 1. 0045	0.0612 0.0586	1.0033	0.0492
29.00	0.99/9	0.0053	_ 1. 005 <i>0</i>	0.0536	1.6051	0.0468
29.50 30.00	1.0011 1.0037	0.C832 0.0801	1, 0065 1, 0065	0.0525 6.0491	1,0069 1.0069	0.0415 0.0386
30.50	1.0056	0.0769	1.0050	0.0463	1.0063	0.0361
31.00 51.50	1.0070	0.0732	1. 5046	0.04 Sn 0.05 In	1.0054	0.0337 0.0318
32.00	1.0074	0.0659	1.0012	0.0406	1.6022	0.0305
32,50 33,00	1.0066 1.0052	Q. U624 Q. U596	0.4995 0.4978	0.0376 0.0395	1.6003	0.0294 0.0292
34,00	1.003/	0,0572	0.9966	0.0348	0.4964	0.0293
.54.50	0.4449	0,0542	0.994a	0.0404	0.9945	0.0298 0.0308
35.00° 35.50	0.4429	0.0534 0.0533	0.444# 0.44##	0.0409 0.0416	0.4434	0.0317
36.00	0.4946	0.0535	0.4945	0.0423	0.4942	0.0340
36.50 37.00	0.9934 0.9928	0.0540	0. 448	0.042B 0.0434	0.4948 0.4459	0.0350 0.0358
37.50	0.4926	0.0557	0.9963	0.0436	0.49/2	0.0360
38.00 38.50	0.9926	0.6565	0.9976	0.0438 0.0436	0.4486 1.0002	0.0361 0.0356
39.00	0.9945	0.0575	1.0002	0.0430	1.0014	0.0348
39.50 40.00	0.9954	0.0577	1.0017	0.0422	1.0027	0.0337
40.50	0.9978	0.0571	1.0036	0.0342	1.0041	0.0307
41.00 41.00	1,0001	0.0563 0.6552	1.0043	0.0374 0.0354	1.0044 1.6042	0.0290 0.0274
42,00	1.0011	0.0540	1.0037	0.0337	1.6038	0.0259
42.50	1,0017	0.0511	1.0031	0.0320 0.030u	1.0030	0.0245 0.0235
44.00	1.0023	0.044/ 0.0482		0.0299	1.0009	0.0228
44.50	1.0020	0.0469	0.4981	0.0244 0.0245	0.4446	0.0224 0.0224
45.00 45.50	1.0015 1.9008	0.0456 0.0447	0.44/1	0.0247	0164.0	0.0226
46.00	1.0003	0. (440	0.0000	0.0310	0.4967	0.0231
46.50 47.00	6.9997 2.9992	0. (4.33 0. (4.29	0.9956 0.9961	0.0317 6.0323	0.4428	0.0245
47.50	0.9966	0. (424	0.7764	0.6328	0.4962	0.0254 0.0261
48.60 48.50	0.4960	0.C423 0.0424	0.9970 0.997s	0.0532 0.0534	0.4468 0.4477	0.0268
49.00	0.9975	(), ()424	0.9984	0.0332	0.4480	0.0272 0.G273
49.50	C.7775	0,6424	0.4445	0.0332	0.4496	0.0212

GENERAL IZED FREQUENCY 0.50 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.50 6.50 7.00	WIDTH TO LENGTH RUSTSTANCE 0.0076 0.0173 0.0242 0.0403 0.0535 0.0679 0.0626 0.0982 0.1145	RADIATION **CACTANCE 0.0419 0.0467 0.1086 0.1380 0.1659 0.1918	KADIATION RESISTANCE 0.0153 0.0345 0.0562 0.0803	KAOLATION KENCTANCE 0.0/01 0.1262 0.1760	#IDTH TO LENGTH RADIATION RESISTANCE 0,0305 0,0686 0,1112	RADIATION REACTANCE 0-1133 0-1982
FREQUENCY 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50	RUSISTANCI 0.0076 0.0173 0.0242 0.0403 0.0535 0.0679 0.0826 0.0982 0.1145	**CACTANCE 0.0414 0.0467 0.1080 0.1380 0.1659 0.1918	RESISTANCE 0.0153 0.0345 0.0562 0.0803	REACTANCE 0.0/01 0.1262 0.1760	0.0305 0.0686	REACTANCE 0-1133 0-1982
1-00 1-50 2-00 2-50 3-00 5-50 4-00 4-50 5-00 5-50 6-00 6-90	0.0173 0.0282 0.0403 0.0535 0.0674 0.0826 0.0982 0.1145	0.1086 0.1380 0.159 0.1418	0.0345 0.0562 0.0803	0.1262 0.1760	0.0686	0.1982
1.50 2.50 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.50	0.0282 0.0403 0.0535 0.0674 0.0626 0.0782 0.1145	0,1086 0,1380 0,1659 0,1918	0.0562 0.0803	0,1760		
2.50 3.50 3.50 4.00 4.50 5.00 5.50 6.00 6.50	0.0535 0.0679 0.0826 0.0982 0.1145	0.1659	0.0003	A 2312	A 1500	0.2702
3.00 3.50 4.00 4.50 5.00 5.50 6.00	0.0679 0.0826 0.6982 0.1145	0.1918	0.1066	0.2213 0.2624	0.1582 0.2087	0.3327 0.3871
4.00 4.50 5.00 5.50 6.00 6.50	0.6982 0.1145		0.1340	0.3007	0.2617	0,4338
4.50 5.00 5.50 6.00 6.50	0.1145	0.2159 0.2388	0.1639 0.1944	0.3350 0.3660	0.3166 0.3726	0.4729
5.50 6.00 6.90		0.2597	0.2254	0.3933	0,4291	0.5291
6.00	0.1310 0.1475	0.2789	0.2577 0.2899	0.4 [76 0.4 390	0.4855 0.5406	0.5471 0.5586
6.50	0.1642	0.3138	0, 3220	0.4570	0.5940	0.5644
	0.1811 0.1977	0.5290 0.5429	0,3534 0,3644	0.4725 0.4857	0.6451 0.6932	0.5644 0.5598
7.50	0.2159	0.3558	0.4149	0.4965	0.7385	0.5509
8.00 8.50	0.2298 0.2454	0.3680 0.3794	0.4443 0.4724	0.5050 0.5120	0.7800 0.8178	0.5385
9.00	0.2608	0.3900	0.4998	0.5178	0.8519	0.5234 0.5058
9.50	0.2760 0.2909	0.4000 0.4042	0.5263 0.5516	0.5219	6.8823	0.4865
10.00 10.50	0.3050	0.4186	0.5759	0.5270	0.4090 0.4326	0.4663 0.4455
11.00	0.3169	0.4267	0.5492	0.5286	0.9527	0.4243
	0,3328	0.4352	0.6220	0.5295	0.7697	0.4035 U.3829
12.50	0.3607	0.4511	0.6658	0.5293	0.4975	D.3629
13.00 13.50	0.3745 0.3882	0.4585 0.4656	0.6866 0.707u	0.5284 0.5273	1.6077 1.0164	0.3437 0.3253
14.00	0.4019	0.4724	6.7274	0.5255	1.0239	0.3075
14.50	0,4155	0.4790	0.7475	0.5230	1.0299	0.2901
15.00 15.50	0.4294 0.4434	0.4812	0.7863	0-5198 0-5160	1.0347 1.0387	0.2741 0.2585
16.00	0.4573	0.4766	0.8052	0.5116	1.0417	0.2433
16.50 17.00	0.4714 0.4656	0.5016 0.50o1	0.8237 0.8418	0.5064 0.5605	1.0437 1.0449	0.2286 0.2146
1/.50	0.4996	0.5099	0.8595	0.4937	1.0453	0.2009
18.00 18.50	6.5134 0.5269	0.5132 0.5162	0.8765 0.8920	0.4861 0.4778	1.0446	0.1878
14.00	0.7403	0.5189	0.9080	0.4689	1.0431	0.1752 0.1633
19.50	0.5536	0.5212	0.4226	0.4596	1.0372	0.1522
20.00 20.50	0.5668 0.5798	0.5232 0.5247	0.9365	0.4498 0.4395	1.0331 1.6281	0.1417
21.00	0.5925	0.5257	0.9615	0.4287	1.0224	0.1240
21.50 22.00	0.604n 4010.0	0.5265 0.5271	0.9724 0.9826	0.4178 0.4070	1.0163 1.0098	0.1168
22.50	0.6288	0.5275	0.4920	0.3961	1.6029	0.1060
23.00	0.4404	9.5227	1.0005	9.3952	0,7991	0.1025
23.50	0.6517 0.5630	0.1279	1,0006 c+1,01	0.3 <u>/</u> 14 0.3637	0.9894 0.9831	0.1003 0.0991
24.50	1.0751	2.5270	1.6224	v • 3 2 5 f	0.9172	0.0991
25.00 25.50	0.6852 0.6962	0.5277 0.5273	1.0205 1.0341	0.3427 0.3326	0.9721 0.7677	0.1002 0.1019
26.03	0.7072	0.5267	1,0393	0.3226	0.9641	0.104.3
26.50	- 0.7180 0.7288	J.5260 0.5251	1.0441 - 1.0447 -	0.3127	0.7616	0.1072 0.102
21.50	0.7525	0.5239	1.0528	0.2432	0.4542	0.1135
28.00 28.50	0.7562 0.7607	0.5225 0.5208	1.0566 1.0600	0.2035 9.2738	0.7593 0.7603	0.1167 0.1195
24.09	6.7710	0.5190	1.0024	0.2642	0.7618	0.1221
29.50 30.00	0.7813 0.7914	0.5169 0.5147	1.0655 1.0673	0.2547 0.2452	0.7641 0.7668	0.1243
30.50	0.0015	0.5122	1.0697	0.2357	0.7699	0•:760 0•1271
31.00	0.8115	0.5094	1.0/10	0.2262	0.9730	0.1276
31.50 32.00	0.8213 0.8367	0.5002 0.5027	1.6718 1.0720	0.2167 0.2075	0.9761	0.1277 0.1274
32.50	0.0390	0.4991	1,0717	0.1986	0.9826	0.1266
33.00 33.50	(,elut / 6 .elut / 5	0.4753 0.4714	1.6/11	0.1400 0.1815	0.4057 0.4854	0.1254 0.1238
311.00	0.8656	0.4075	1.0680	0.1733	0.4404	0.1271
34.50 35.00	0.8816	0.4855 0.4795	1.0666 }.0643	0.1656 0.1583	0.7433 0.4455	0.1204 0.1185
35.50	0.8893	0.4754	1.0617	0.1514	0.9775	0.1166
36.00 36.50	0.8969 0.9042	0.4712 9.4668	1.0588 1.058	0.1450 0.1591	0.9995 1.0013	0.1146 0.1124
37.00		0.4625	1,0520	0.1335	1.0026	Ú. 1103
31.50 38.00	0.9152 0.7251	0 . 4 5 2 2 (r . 4 5 3 9	1.0496 1.6464	0.1284	1.0044	0.1083
38.50	6.4318	0.4435	1.0464	0.1236 0.1192	1.0061	0.1063 0.1041
39.00	0.9384	() • 4450	1.0400	0.1151	1.0095	0.1014
39.50 Ten.00			1.0369	0.1113	1.0110	0.0989
40.50	0.9573	0.4312	1.0306	0.1045	1.0135	0.0934
41.00 41.50	0.4634	0.4265 0.4217	1.0275 1.0245	0.101h 0.6985	1.0145	0.0904
42.00	0.4752	0.4168	1.0215	0.0956	1.0160	0.0871 0.0837
43.50	8084.0	0.5118	1.0184	0.0400	1.0162	0.0801
43.00 43.50	0.4619	0.4067	1.0152 1.0120	0.0408 0.0484	1.6159	0.0766
44.00	0.4448	0.3963	1.0088	0.0863	1.0142	0.0698
44.50 45.00	1.0017 1.0064	0.3910 0.3857	1.0055 1.0022	0.0845 0.082 9	1.0128 1.0110	0.0666 0.0638
45.50	1.0110	0.3603	0.9989	0.0816	1.0090	0.0612
16.00	1.0154	0.3749	0.9755	0.0805	1.0066	0.0590
46.50 47.90	1.0196 1.0236	0.3642	0.94922 0.9464	0.0797 0.0792	1.0040 1.0013	0.0571 0.0559
47.50	1.0274	4.1549	0.9255	0.0/92	0.4986	0.0551
48.90 48.50	1.6311 1.6347	0.3536 0.3495	0.474)	0.0744 0.0749	0.496i 0.4937	0.0548 0.0549
44.00	1.0363	0.3433	0.9760	0.0807	0.9915	0.0553
49.50 50.00	1.0416 1.6452	0.31n0 5.1127	0.4744 0.4722	0.0816 0.0826	0.484.0 4764.0	0.0560 0.0571

* * * * * * * * * * * * * * * * * * *		SEK 0.90 H RATIO 0.5000	MACH NUMB WIDTH TO LENGT	DER 0.40 H RATIO 1.0000	MAUH NUMBER 0.90 WIDTH TO LENGTH RATIO 2.0000	
GENERAL 12ED FREQUENCY	RADIATION RESISTANCE	RADIATION HEACTANCE	RESISTANCE	RADIATION REACTANCE	RADIATION RESISTANCE	RADIATION
0.50	0.0606	0.1736	0.1179	0.2442	0.2119	0.2927
1.00	0.1342	0.2H89 0.37/1	0.2467 0.3683	0.30/5 0.4382	0.3685 _0.4753	0.3674
5.00	0.2979	0.4449	0.4805	0.4762	0.5682	0.4279
3.00	0.3844	0.4958	0.5822	0.4925	0.6547	0.4391 0.4392
3.50	0.5556	0.5524	0. 7506	0.4807	0.8040	0.4282
4.00 4.50	0.6370 0.7138	0.5599 0.5554	0.8171 0.8726	0.4556 0.4248	0.8641 0.9144	0.4974 0.3801
5.00	0.7847	0.5406	0.9182 0.9542	0.3975 0.3640	0.4563 0.4898	0.3492
6.00	0.7029	C.4865	0.9818	0.3304	1.0149	0.3162 0.2822
7.00	0.9489	0.4503	1.0021 1.0169	0.2973 0.2633	1.0321 1.0423	0.2480 0.2148
7.50	1.0134	0.3691	1.0258	0.2351	1.0466	0.1844
8.00 8.50	1.0322	7.3279 0.2880	1.0304	0.2075 0.1825	1.0461 1.6415	0.1575 0.1345
9.00	1.0460	0.2511	1.02/3	0.1603	1.0339	0.1152
9.50 — 10.00 —	1.0432	0.2180 0.1899	1.0216	0.1414 0.1262	1.0245 1.0143	0.0998 0.0885
10.50	1.0248 1.0115	0.1671 0.1498	1.0048 0.9954	0.1148	1.0040	0.0812
11.50	0199.0	0.1476	0.9864	0.10/1 0.1028	0.9943 0.9858	0.0773 0.0760
12.00 12.50	0.9840 U.9719	0.1304 0.1276	0.9788 0.9752	0.1013	0.9791	0.0768 0.0792
13.00	0.9418	0.1283	0.9697	0.1048	0.9/1/	0.0826
13.50 14.00	0.4544 0.9501	0.151a 0.1568	0.9684 0.9692	0.1081 0.1114	0.9709 6.9720	0.0867 0.0905
14.50	0.9487	0.1427	0.4770	0.1140	0.7748	0.0935
15.00	0.9506 0.9548	0.1487 0.1539	0.9763	0 • 1156 0 • 1160	0.4440	0.0956
16.00	0.9613	0. 15/7	0.9870	0.1149	0.4844	0.0963
16.50 17.00	0.9692 0.9782	0. 1596 0. 1594	0.4424 0.4474	0.1125 0.1089	0.7949 1.6002	0.0946 0.0916
1f.50	0.9875	0.1570	1.0017	0.1045	1.0050	0.0875
18.00 18.50	0.9964 1.0043	0.1526 0.1463	1.0054	0.0994 0.0739	1.0089	0.0826 0.0771
19.00	1.0110	0. 1383 0. 1293	1.0097	0.0882	1.0133	0.0712
19.50 20.00	1.0160 1.0191	0.1197	1.0105	0.0825 0.0771	1.0139 1.0134	0.0652 0.0596
20.50	1.0203	0.1100	1.0097	0.0720	1.0119	0.0545
21.50	1.0172	0.0922	1.0059	0.0674	1.0095	0.0501 0.0466
22.00 22.50	1.0134 1.0087	0.0149 0.0790	1.0034 1.0004	0.0600 0.0575	1.0033	0.0440
23.00	1.0033	0.0747	0.99/4	0.0559	1,6000 0,996B	0.0424 0.0418
- 23.50 24.00	0.9977 0.9924	0.6771	- ···- 0.9945	0.0553 0.0554	0.9939	0.0420
24.50	0.7877	0.0713	0.9896	0.0562	0.7898	0.0428 0.0442
25.60 25.50	9.7421	0.0729 0.0734	0.9876	0.0574 0.0594	0.7886	0.0478
26.00	0.9794	ባቊ 6 ፖንያ	0.9880	0.0612	6.9891	0.0496
26.50 27.00	0.9790 0.9799	0.6814 0.6645		0.0626	0.4903	0.0511 0.0523 - =
27.50	D.9820	9.0872	0.9931	0.0643	0,44#1	0.0529
28.00 28.50	0.9849 0.988h	0* 0A00 0* CHAQ	0.99PO	0.0641 0.0634	0.7965 0.7989	0.0529 0.0524
29.00 29.50	0.9923 0.9965	0.0902 0.092	1.0003 1.0624	0.0619 0.0599	1.0012 1.0033	0.0512
30.0u	1.0004	0.0072	1.0040	0.0576	1.0050	0.0494 0.0473
30.50 31.00	1.0038 1.0067		1.0051 1.005 <i>1</i>	0.05.1 0.0525	1,6063	0.0449 0.0423
31.50	1.00##	0.6770	1.0059	0.0498	1.0071	0.0395
32.00 32.50	1.0101 1.0104	0.6726 9.0681	1.065a 1.0050	0.0473 0.0450	8600.1 9200.1	0.0369 0.0345
33.00	1.0099	0.060	1.0059	0.0429	1.047	0.0325
33.50	1.0007 1.0008	= ··-0.0601 ··· =	1.007/	0.0413	1.0031 1.6014	0.0309
34.50 55.00	1.0043	0.(540	0.9997	0.0384	0.7446	0.0291
35.50	1.0016 9898.0	0.0522 0.0510	0.4482 0.4467	0 • 0 3±4 0 • 0 3±2	0.4974	0.0269 0.0293
36.00 36.50	0.9962 0.9937	0.0505 0.050B	0.9954 0.9943	0.0384 0.0370	0.7951 0.7942	0.0298
37.00	0.9917	0.0517	0.9936	0.0499	0.9937	0.0308 0.0318
37.50 38.00	0.9903 0.9894 =	0.0530 0.0545	0,443;	0.0409 0.0420	0.4936	0.0330
38.50	0.9891	0.0562	0.9940	0.0430	6.4446	0.0350
39.00 39.50	0.4845	0.0574	0.4950	0,0456 0.0441	0.445 <i>7</i> 0.4764	0.0358 0.0361
40.00	0.9920	0.004	0.9978	0.0442	0.4483	0.0362
40.50 41.00	0.9937 6.9957	6.0613 ·	0.9992 1.0006	0.0437 0.0430	0.9997 1.0011	0.0359 0.0353
41.50	0.9979	0.0609	1.0020	0.0417	1.0023	0.0342
42.00 42.50	1.0000 1.0014	0.0566 0.0566	1.002v 1.0036	0.0464 0.038¥	1.0033	0.033G 0.0314
43.00 43.50	1.0035 1.0047	0.0569 0.0568	1.0040 1.0039	0.0373	1.0044	0.0299
44.00	1.0056	0.6525	1.0016	0.0341	1.6045 1.6042	0.0283 0.0268
44.50 45.00	1,0059	0.0501 0.04 <i>11</i>	1.0031 1.0024	0.0327	1.6037	0.0254
45.50	1,0051	0.00%	1.0015	0.0306	1.0029	0.G242 0.O232
46.00 46.50	1.0042	0.C437	1.0005	0.0300	1.0007	0.0225
47.00	1.0015	0.1.408	0.9983	0.0743	0.7984	0.0222 0.0222
- 47.50 48.00	0.4999	0.0400 0.0195	0.9911	0.05A9 0.05A3	0.49 / 5 6.4987	0.0226
48.50	0.9968	0.0396	0.7461	0.0300	0.1962	0.0237
19.00	0.9958 0.9947	0.0406	0.9954	0.0306	0.4954	0.0243
49.50	0.7741		0.7957	0.0113	U. 7958	0.0252

	WIDTH TO LENGT	LR 0.95 H RATIO 0.0625	MACH NUMB! WIDTH TO LENGTH		MACH NUMB WIDTH TO LENGTH	EN 0.95 I RATIO 0.2500
GENERALIZED	RADIATION	RAGIATION REAGTANCE	RADIATION RESISTANCE	_ KADIATION	RESISTANCE	RAULATION REACTANCE
FREQUENCY 0.50	RESISTANCE 0.0077	0.0418	0.0157	Q. 0699	0.031A	0-1.125
	0.0176 0.0265	U+1 (44 0-1081	0.0351	0.1253 0.1749	0.0699	0.1960
1.50 2.00	C.0406	0.1375	0.0806	0.2201	0.1586	0.3296
2.50 3.60	0.053a 0.6679	0.1653 0.1912	0.1067 0.1342	0.2991	0.2082	0.4300
3.50	0.0824	0.2153	0.1634	0.3534	0.3142	0_4690
4.00 4.50	(.09n0 G.l]41	0.2301 0.2590	0.193/ 0.2247	0.3642 0.3920	0.3695 <u>0.425</u> 2	0.5008
5.00	0.1304	0.2795	0.2565	0.4162	0.4808	0.5442
5.50 6.00	0.1469 0.1637	0.2966 0.3135	0.2HH3 = . 0.3202		0.5354	0.5628
6.50	0.1806	0.4787	0.3518	0.4719	U_43¥4	0.5439
7.00 7.50	0.1970 0.2132	0.3427 0.3560	0.3827 0.4130	0.4850 0.4962	0.6876 0.1328	0.5600 0.5520
H.GO	0.2294	0.36n2	0.4427	0.5050	V.7748	0.5402
8.50 9.00	6.2453 6.2607	0.3745 0.3849	0.4710 0.4986	0.5120	0.8129	0.5084
9.50	0.2758	0.3998	0.5251	. 0.5219		0.4894
10.00 10.50	C.2904 6.3048	0.4091 0.4182	Ი₊ ๖๖06 0• 575v	0.5249 0.5270	0.4060 0.4300	0.4693 Q.4483
11.00	C.3192	0.4268	0.5985	0.5283	0.4506	0.4270
11.50 12.00	0.3333 6.3471	0.4349 0.4426	0.6434	0.5291	0.9683	0.405B 0.3849
12.50	0.3606	0.4502	0.6646	0.5285		0.3646
13.00 13.50	6.3747 6.3879	0.4574 0.4650	0.6855 0.7960	0.52/7 0.5262	1.0063	0.3449
14.00	U.4016	0.4715	0.7260	0.5241	1.0220	0.3082
14.50 15.00	0.4153 0.4291	0.4783 0.4844	0. /450 0. /650	0.5217 0.5186	1.0323	0.2748
15.50	0.4428	0.4902	0.7840	0.5150	. 1.0358	2593
16.00 16.50	6.4556 0.4705	0.4957 8902.0	0.802a 0.821u	0.5107 0.5056	1.0385 1.0403	0.2444
17.60	6.4844	0.5053	0-8387	0.4949	1.0413	0.2164
17.50 18.00	0.49F3 0.5122	0.5695 0.5132	0,8563. 0.8732	0.4735 0.4864		0.2033 0.1908
18.50	U.5261	0.5165	0.8890	0.4764	1.0399 _	0.1787
19.00	0.5529 0.5529	0.5108 0.5211	0.9051 0.9198	0.4648 0.460/	1.0377 1.0348	0.1672 0.1565
20.00	6,5661	0.5230	0.9339	0.4512	1.0313	0.1463
20.50 21.00	e.5791 0.5919	0.5246 0.5258	_ 0.94/1 0.9593	0.4409 0.4304	1.0269	0.1370
21.50	(, 564 h	0.5269	0.9706	0.4197	1.0164	0.1214
22.00 22.50	0.016/ 0.6286	0.5270 0.5272	0.9811 0.9908	0.40a8 0.39//	1.0106 1.0042	0.1151 0.1097
21.00	0.6402	0.5274	0.4440	0.3867	0.4477	0.1058
23.50 24.00	11co.) 0.6630	J. 7274 9. 7272	1.0076 1.0150	9.3757 0.3648	0.7913 0.7853	0.1031
24.50	10,70,050	0.5269	1.0216	0.25.0	0.9793	0.1905
25.00 25.50	6.6952 6.6952	0.5265 0.5259	1.02 <i>11</i> 1.0333	0.3436 0.3332	0.v/3v 290v.u	0.1010 _0.1023
26.00	C./Ook	9. 52 5.	1.0383	0.3230	0.7654	6-1042
26.59 26.59	6.7170 9.7275	5.5244 6.5235	1.0430 1.0475	0.3131 0.3032	D.¥623 U.9601	U-1467
27.50	0.7379	0.5224	1.0512	0.2735	0.9588	0.1150
28.00 28.50	€ - 794-7 0 - 7565	0.5117 9.5190	1.0581	↑-2840 0•2745	0.7585 0.7591	0.1163
29.00	0.1681	0.5131	1,0610	0.2651	0 - ሃልፀ4	0.1225
29.50 \$0.00	6.771.9 6.7890	0.5363 0.5163	1.063a 1.063a	0.2557 0.2464	0.962 3 0.9649	0.1249 0.1271
30.50	0.7779	0.5119	1.00//	0.23/1	0.9680	0.1296
31.00 51.50	6,9698 6,3183	0.5093 6.5004	1.0692 1.0700	0.2278 0.2186	0.9749	0.1300
32.00	1.9277	0.5045	1, 3/05	0.2096	0.9785 0.9821	0.1298
52.50 53.00	6.8376 (.8461	(+,51 03 (+,476	1.6706 1.070a	0.2008 0.1920	0.7821	0.1292_ 0.1281
55.50	6.5551	7.4735	1.6694	0.1832	U.9888 U.9918	0.1264
34.00 34.50	しゃかしょう	0.4897 0.4857	1.06#1 1.0663	0.1755 0.1674	0.9945	0.1224
35.00	€.2804	0.5017	1.0641	0.1599	0.9969	0.1201
35.50 36.00	#233.7 1466.0	0.4776 0.4734	1.0616 1.0567	0.1527 0.1462	0.9991 1.0010	0.1176
36.50	(.4017	0,4691	1.0557	0.1400	1_0026	0-1126
37.00 37.5a	U.∂111 U.∂1185	0.4649 9.4684	1.0525 1.0593	0.1343 0.1290	1.6041	0.1101 0.1077
38.00	C+4.256	9.4559	1.0459	0.1241	1.0067	0.1053
38.50 59.00	(.7325 6.7373	9.4513 9.4466	1.0423 1.0388	0.1196 0.1156	1.0088	0.1028
39,50	E - 7959	6.4417	1.0354	0.1126	1.007#	0.0980
40.00 40.50	(.)554 (.)754	n.u3/1 0.u3/1	1.0321 1.0289	0.1088 0.1058	1.0107 1_1	0.0956
41.00	0.9630	0.4772	1.0259	0.1029	1.0125	0.0904
41.50 42.00	0.4710	0.4220 0.4167	1.0179	0.1902 0.0977	1.0135	0.0848
42.50	(*4625	0.4116	1.0169	0.0954	<u>1.6138</u>	0.0818 0.0788
43.00 43.50	0.484	0.4062 0.4007	1.0140	0.0934 0.0914	1.0136	0.0757
44.00	C • 7984	0.3951 0.3696	1.0084 1.0056	0 • 0 ± 9 6 0 • 0 B / B	1.0130	0.0726 0.0697
44.50 45.00	1.0032 1.0078	11_34(3).	1.0024	0.0862	1.0109	0.0668
45.50	1.0122	. 0.3781	0.4444	0.0846	1.0093	0.0618
46.00 46.50	1.0163 1.0262	0.3725 0.3668	0.9970 0.994g	0.0854 0.0825		0.0597
47.00	1.0239	6.1612	0.9910	0.0814	1.0031	0.0579 0.0566
47.50 48.00	1.02/4	0.3557 0.3501	0.4881 0.4351	0.80%		0.0558
48,50	1.6138	0.3447	0.9822	0.0804	0.9956	0.0553
49.00 49.50	1.0368 1.0308	9.5374 0.5341	0.9794 0.9768	0.0806	0.9910	0.0556
50.00	1.0424	9.3249	0.9/43	0.0815	0.7890	0.0563

	HACH NUMBER WIDTH TO LENGTH R		MACH HUMB WIDTH TO LENGTH	LK 0.95 RATIO 1.0000	WIDTH TO LENGTH	RATIO 2.0000
GENERALIZEO FREQUENCY	RADIATION	RADIATION . REACTANGE	RADIATION	RADIATION REACTANCE	RAULATION . RESISTANCE	RADIATION .
0.50	0.0629	.0.1713	0.1207	0.2371	0.2072	0.2748
1.00 1.50	0.1359 0.2144	0.2842 0.3/V1	0.2444 0.3607	0.3538 0.4256	0.3487 0.4596	0.3534 0.4003
2.00	0.2954	0.4376	0.4681	0.4664	0.5540	0.4290
2.50	0.3795	0.4884	0.5672	0.4880 0.4923	0.6405 . 0.7198	0.4428 0.4461
3.50	0.5462	0.5467	0.7340	0.4822	0.7900	0.4337
4.00 4.50	0.0204 0.1023	0.5961 0.5538	0.6023 0.8570	0.4629 0.4373	0.8514 0.9032	0.4147 0.5899
5.00	0./729	0.5412	0.9060	0.4074	0.4466	0.3605
5.50 6.00	0.0362	. 0.5197 0.4908	0.9440 G,9740	0.3755 0.3425	0.9818 1.0087	0.3284 0.2945
6.50	0.4386	0.4553	0.9970	0.3077	1.0281	0.2605
7.00 7.50	0.4767	0.4181 0.3//9	1.013a 1.024a	0.2777 0.2470	1.0403	G.2276 G.1968
8.00	1.0261	0.3573	1.0309	0.2163	1.0477	0.1689
8,50 9,00	1.0436	0.29/6 0.2610	1,0326 1,0307	0.1920 0.1685	1.0446. 1.0384	0.1443
9 . 50	1.0426.	0.2276	1.0255	0.1444	1.6297	0.1236 0.1067
10.00 10.50	1.0367	0.1988 0.1749	1.0181	0.1318 6.1190	1.0199	0.0938
11.00	1.0148	0.1561	0.4943	0.1190 0.1098	1.60% 0.99%	0.0848 0.0791
12.00	1.0015 0.7882	0.1339	0.440/ 0.440/	0.1943	0.4400	0.0764
12.50	0.4759	0.1295	0.9759	0.1018 0.1016	0.4828 0.4764	0.0761 0.0777
13.00	0.9652	0.1289	0.9714	0.1033	0.4728	0.0806
13.50 14.00	0.7572 0.7517	0.1312 0.1355	0. 4040 0. 4040	0.1061 0.1092	0.9708 0.9707	0.084 3 0.0882
		0.14.10	0.9702	0.1120	U. 4723.	0.0917
15.00 15.50	0.4448 0.4524	0.1667 9.1522	0.9733	0.1142 0.1153	0.9754 0.9797	0.0946 0.0965
16.00	0.7584	0.1563	0.9624	0.1153	0.9841	0.04/2
16.50	0.9650	0. 1592 0. 1598	0.9876 0.9927	0.1141 0.1117	0.9902 0.9957	0.0967
	0.7830	ひょ 1584 .	0.444.0	0.1084	1.0009	0.0949 0.0918
18.00 18.50	0.9920 1.0003	0.1552 0.1498	1.0017 1.0053	0.1043 0.0994	1.0054	1180.0
19.00	1.0675	0.1428	1.0081	0.0942	1.0092 1.0120	0.0827 0.0773
19.50 20.00	1.0134	0.1544 0.1252	1.0100	0.0886	1.0136	0.0715
20.50	1.0197	0.1157	1.6110	0.0n30 0.07/4	1 . a 142 1 . a 150	0.0657 0.6601
21.00 21.50	1.0200 1.0186	0.1062 0.0973	1.6104	0.0721	1.0122	0.0550
22.00	1.0157	0.6894	1.0087 1.0066	0.0575 0.0631	1.0049	0.0506 0.0471
22.50 23.00	1.0116	n. Cnzo	1:0937	0.0596	1.0039	0.0444
24,50		0.0774	1.0007	0.0572 0.0555	1.0006 6.7974	0.0426 0.0418
24.00	0.9956	0.6717	0.	0.0550	0.9944	0.0419
74.50 25.00	0.77C3	0.(/1/ 0.0/19	0.7417	0.0552 0.0561	0.4414	0.0426 0.0439
25.50	0.9824	0.0738	0.9804	0.0574	5.7057	0.0456
26.00 26.50	0.9H00 0.9788	0.0745	0.987a 0.984u	0.0607	7.4984 0.4984	6.8474 0.0492
27.00	0.9767	0.0827	0.468.4	0.0622	0.4897	0.0509
27.50 28.00	0.4800 0.4622	0.6897 8.6842	0.7925 0.7904	0.0633 0.0639	0.7911	0.0522 9.0529
28.50	0.4874	Vende	0. 7753	0.0640	(.7953	0.0524
29.00 29.50	6.4840 6.4431	6 C 708	0.7996 0.7996	0.0634 0.0624	0.9976 1.0001	0.0530
50. úú	6.4412	0.0170	1.001	0.0608	1.0022	0.0522 0.0508
30,50 31.00	1.0012	0.00% 0.0%	1.002a 1.0043	0.0589 0.0567	1.0042	0.0488
31.50	1.0075	a.c210	1.0053	0.0543	1.005a 1.0067	0.0466 0.0441
32.00 32.50	1.0096	0.1.767	1.005s 1.0061	0.0517	1.00/2	0.0414
33.00	1.0109	ហ. ហភមិប	1.0053	0.0492 0.0466	1.0672	0.0388 0.0363
33.50 34.00	1.0104 1.00ny	0,655 9,6570	1.0050	0.0444	1.0057	0.0340
34.50	1.0007	9.6963	1.0641 1.6626	0.6423 0.0405	1.6044 1.6027	0.9321 0.0307
35.00 35.50	1.0944 1.0016	1.01636 0.0516	1.0611	0.6342	1.0011	0.0246
36.00	6.441.0	0 C GO	0.997,	0.0382	0.7443	0.0292 0.0290
36.50 37.00	. 0.4956 0.4934	5.0902 0.0903	0,926;	0.0374	0.4401	0.0294
37.50	0.4315	0.0514	6.9949 0.9933	0.0393	0.4470	0.0300 0.0309
38.00	6.484.9	C. (52h	0.9931	(-*0rū)	5.9937	0.0320
38.50 39.00	0.7887 0.7884	0.6540 0.656	0.7931	0.0412 0.0422	0.4435 0.4634	0.0332
39.50	8330.0	9.1502	0.9742	0.0430	0.7945	0.0343 0.0352
40.00 40.50	6.4547 6.4912	0.0578	0,7751 0,7764	0.0437 0.0440	0.4420 0.4420	0.0359
41.00	0.4435	0.1519	0.997	0.0434	6.9981	0.0363 0.0365
41.50 42.00	6.4953 6.4976	0.0022 0.0019	1.000)	0.04;6 6.0429	0.7975	0.0361
42.50	6.4464), (0) 11	1.0016	0.0418	1.0009	0.0356 0.0345
43.00 43.50	1.0020 1.0038	0, 0578 1, 6579	1,0025 1,0035	0.0407	1.0031	0.0335
44.00	1.0052	0.0557	1.003,	0.0373 0.0376	1.0041	0.0319 0.0304
44.50 45.00	1.0062	بائل ودر) چادا	1.00 50	0.0362	1.0046	0.3289
45.50	1.0067	9.0908 0.0402	1,063d 1,0035	0.0348 0.0333	1.0044 1.0039	0.0273
46.00	1.0660	ሁ (ነክ ንላ	1.0627	0.0320	1.0033	0.0259 0.0246
46.50 47.00	1.0051 1.0037	0.6416 0.6416	1.0021 1.0012	0.0309 0.0300	1.0023	0.0235
47.50	1.0021	0. (404	1.0002	0.0243	1.6011 1.0600	0.0229 0.0224
48.00 	1.0063	0,6394 _ , 0,0390	0.4790	Vo50.0	0.4484	0.0223
49.00	0.7767	0.0390	0.4441 0.4440	0.0290 0.0292	0.9980 0.9971	0.0225 0.0228
49.50 50.00	0.4955 0.4942	0.0525 0.0525	0.476}	0.0295	0.7464	0.0233
24000	V. 7742	04. 400	0.7957	0.0302	0.4424	0.0239

APPENDIX C SUPERSONIC RADIATION IMPEDANCE

	WIDTH TO LENGTH RATIO 0.2500		MIDIH TO LENGTH	IER 1.50 RATIO 0.5000	MACH NUMBER 1.50 WIDTH TO LENGTH BATTO 0.7200		
GENERAL I-LED	RADIATION RESISTANCE	RADIATION	RADIATION RESISTANCE	RADIATION REACTANCE	RADIATION RESISTANCE	RADIATION REACTANCE	
FREQUENCY 0.10	-8785.3500	0.0183	-4392.6800	0.0284	-2928.4500	0.0354	
0.20 0.30	-1002.6700 -268.7910	0.0385 - 0.0581	-501.3350 -134.3900	0.0567 0.0846	-334.2210 -89.5884	0.0665 0.0992	
0.40	-101.4540	0.0774	-50,7174	0.1121	-33.6030	0.1513	
0.50	-45.8255 -22.9732	0.0963	-22.8979 -11.4654	0.1540	-15.2518 -7.6745	0.1625	
0.70	-12.2285	0.1528	-9.0858	0.1904	-4.0316	0.2216	
0.80	-6.6869 -3.6335	0.1504 0.1674	-3.3069 -1.7713	0.2146 0.2579	-2.1717 -1.1400	0.2442 0.2753	
1.00	-1.8083 -0.8115	0.1859 0.1997	-0.8741 -0.3405	0.2600 0.2809	-0.536/ -0.1667	0.2777	
1.20	-0.1634	0.2149	-0.0058	0.3006	0.0638	0.3440	
1.30	0.2401	0.2295	0.2070	0.3191 0.3364	0.2153	0.3636 0.3815	
1.50	0.6500	0.2569	0.4748	0.3525	0.386u	0.4977	
1.60	0.7461 0.8024	0.2697 0.2819	0.4945 0.5342	0.3675	0.4365 0.4727	0.4125 0.4254	
1.80	0.8325	0.2736	0.5608	0.1942	0.5000	0.4371	
1.90 2.00	0.8454	0.3048	9.5787 0.5908	0.4060	0.5213	0.44/5	
2.10	0.8413	0. 3259	0.5440	0.4271	0.5526	0.4847	
2.30	0.8310 0.8179	0.3455	0.6047 0.6087	0.4566 0.4 <u>454</u>	0.5647 0.5754	0.4717 0.4781	
2.40 2.50	0.8032	0. 1548	0.6117	0.4557	0.5847	0.4637	
5.00	0.7879 0.7725	0. 3639 0. 3728	0.6141	0.46 <u>15</u> 0.4689	0.5937	0.4887 0.4932	
2.70	0.7574 0.7428	0.3815 0.3900	0.6183	0.4759	<u>0.6096</u> 0.6171	0,4473	
2.40	0.7291	0.3785	0.6227	0,4892	0.6244	G. 5047	
5.0U 3.10	U.7163 0.7044	0.4067	0.6255 0.6283	0.4955 0.5016	0.6517 0.6589	0.5080 0.5113	
3.20	0.6435	0.4230	0.6317	0.50/5	0.6461	0.5144	
3.50 3.40	0.6857 0.6748	0.4510	0.6577	0.5155 0.5188	0.6536	0.5175	
3.60	0.00/1 U.6605	0.4466	0.6501	0.5242	0.6690	0,5233 0,5759	
3.70	0.6545	0.4617	0.6559	0.5442	0.6855	0.5285	
3.80 5.90	0.6496 0.6457	0.4640	0.6623 0.6623	0.5388 0.5431	0.6942 0.7032	0.5308	
4.00	0.6476	0.4850	0.6764	0.5471	0.7125	0.5146	
4.20	0.6404 0.6588	0.4447	0.6842	0.5538	0.7221	0.5572	
4.30	0.6380	0.5022	0.7009	0.5565	0.7421	0.51/8	
4.40 4.50	0.637y 0.6384	0.5080 0.5135	1401.0 1811.0	0.5606	0.1525	0.5580 _ 0.51/8	
4.69	0.0345	0.5187	0.7280	0.5619	0.7732	0.5170	
4.70 4.80	C.6411	0.5237 0.5282	<u>0.7375</u> 0.7470	0.5627	0.1837	0.5358 0.5341	
5.00	U.6456 U.6484	0 <u>.</u> ५३२५ 0.5365	U. /566	0.5629	0.8046 0.8148	0.5118	
5.10	6,6515	0.5401	0.7757	U.5613	0.8748	0,5260	
5.20 5.30	0.6549 0.6585	0.5435 0.5467	0.7851 0.1944	0.5598 0.5590	0.8147 0.8442	0,5725 0,5100	
5.40	0.6624	0.5495	U. HO 56	0.5558	0.8534	0.5145	
5.60	0.6664	0.5522	0.8126	0 <u>+5553</u> 0+5505	0.8625	0,5078 0,5051	
5.70 5.60	0.6144	0.5568	0.8500	0.5475	0.8790	0.5001	
5.40	0.6144 C.6140	0.5589 0.5609	0.8384 0.8466	0.5443 0.5409	U.8464 U.8444	0.4838 0.4430	
6.0u 6.10	C.6887	0.5627 0.5643	U.8546 U.8624	0.5374 0.5337	0.4015 0.4084	0.4846 0.474	
6.20	0.6984	0.5654	0.8701	0.5299	0.4144	0.4/41	
6.50	0.7034 0.7086	0.5674	0.8715	0.5760	0.9212	0.4688 0.4636	
0.50	6.7137	0,5700	0.8921	0.5181	0.9552	Q. 4585	
6.60	0.7194	0.5/12 0.5/23	0.8972 0.4062	0.5140	0.9387 0.9445	0. 45 \$4 0. 44 84	
6.80	0.7307	0.5/33	0. V151	0.5056	0.7500	0. 44 54	
6.90 7.00	0,7366	0.5748	U.9200 U.9267	9.5012 0.4968	0.9555	0.4585 0.4555	
7.10	0.7488 0.7551	0.5754	0.9444	0.4923	0.4654	0.4286	
7.30	0.7616	0.5/60	0.4466	0.4628	0.7762	0.4237 U.4187	
7.40 7.50	0.7682 0.7748	0.5760 0.5758	0.4241	0.4778 0.4727	0.4813 0.4864	0.4136 0.4084	
7.69	C. 7816	0.5154	0.9658	0,4674	0.4914	0.4032	
7.10 7.89	0.7884	0.5747 0.5738	0.9719	0.4619	0.9962	0.3978 0.3923	
7.90 8.00	C.8022	0.5126	0.9857	9. 4505 0. 4445	1.0056	0. 1866	
8.10	C.80V1 O.815V	0.5712 0.5686	0.9894 0.9947	0.4585	1.0101	0.3747	
8.20 8.10	0.8227 0.8294	0.5676	0.9999	0.4520 0.4256	1.0186	0.3687	
8.40	C.8560	0.5631	. 1.0044	0.4141	1.0261	0.3565	
8.50 8.50	0.8475 0.8486	0.5505	1.0158	0.4125 0.4058	1.0295	0.3501	
8.70	0.8549	0.5549	1.0718	0.1440	1.0355	0.55/5	
8.80 8.90	0.8609 1468.0	0.5518 0.5487	1.0751	0. 142 1 0. 3855	1.0581	0.3507	
9.00	0.8725	0.5454	1.0515	0.3788	1.0424	0.3245	
9.10 9.20	0.8878 0.8850	0.5421	1.0343	0.3721	1.0456	0.311y 0.3058	
9.30		U.5354	1.0369	0.1570	1.0464	0.2777	
7.40 9.50	0.8911	0.5371 0.5788	1.0404	0+3526 0+3463	1.0479 1.0488	0.2948 0.2881	
7.60 7.70	0.7026	0.5255 0.5227	1.0445	0.5401	1.0495	0.7825	
9.40	0.9118	0.5140	1.0457	0.1240	1.0506	0.2771 0.2718	
- 10.00	C.7165 0.7208	0.5159 0.5128	1.0482	U. 1222 U. 1165	1.0508	0.2607 0.2617	

	WINTH TO LENGTH					KATIC 4.0000
ENERAL 1260 FREQUENCY	RADIATION	RADIATION REACTANCE	HADIA! ION HESISTANCE	HADIATION.	RESISTANCE	RADIATION REACTANCE
.0.10	-2196.3400	0.0362	-1098.1700.	0.0404		0.0425
0.20 0.50	-250.6640 -61.1874	0.0721	-125.3280 -33.5897	0.0805 0.1200	-62.6606 -16.6847	0.0847 0.1262
0.40	-25.3452 -11.4281	0. 1121	-12.6586	0,1584	-4.3152	0. 1666
0.50	-5.7030	0.1757	-5.6923 -2.8207	0,1757	-2.U245 -1.3795	0.2430
0.80	-3.0031 -1.6025	0.2496	-1.4602 -0.7401	0.2653	-0-6888 -0-5210	0.2784
0.40	-0.8222	0.2960	-0.3455	0.32/1	-0.1068	0.3426
1.00 1.10	-0.3629	0.3217 0.3455	-0.1020 0.0540	0.3546	0.0285 0.1208	0.5710 0.3968
1.20	0.1021	0.3674	0.1578	0,4025	0.1867	0.4200
1.50	0,2234	0.3872 0.4051	0.2357	0.4227 0.4405	0.2417	0.4404
1.50	0.36/5	0.4210 0.4351	0.3488 0.3767	0.4554	0.3245	9.4/14
1.60	0-4124 0-4472	0.4475	0.4092	0.4691	0.35dd 0.3902	U. 486 i Q. 4964
1.80	0.4751 0.4482	0.4579 0.4670	0.43/9 0.4638	0.4870	0.4193 0.4465	0.5045 0.5105
2.00	0.5179	0.4747	0.4873	0.5014	0.4720	0.5148
2.10	0,5350	0.4811	0.5089	0.5055 0.5080	<u>0.4757</u> 0.5184	0.5175
2.30	0.5641	0.4908	0.5475	0.5095	0.5391	0.5158
2.40 2.50	0.5767 0.5884	0.4444 0.4474	0.5646 0.5806	0.5102	0.5586 0.5767	0.5180 U.5165
7.60	0.5445 0.6045	0.4999 0.5021	0.5954 0.6045	0.5076 0.5087	0.5 43 5 0.6042	U. 5144 U. 5121
2.10	0.6191	0.5039	0.6222	0.5076	0.6247	0.5075
2. VO 3. 00	0.6284	0.5056	0.6543	0,5065	0.65/2	0.5044
3,10	0,6460	0.5087	0.6566	0.5042	0.6614	0.5020
1.20 1.30	0.0546 0.6631	0.5102 0.5117	0.6670	0.5033 0.5026	0.6732 0.6841	0.441
3.40	0.6716	0.5133 0.5148	0.840	0.5021	U.6+4/	U. 4965
3.50	0.6803	0.5164	0.6467 0.7065	0.5018	0.7050	0.495
3.70	0.6980	0.5178	0.7162	0.5016	0.7254	0.474 0.4728
5.90	0.7166	0.5205	0.7362	0.5016	0.7460	0.4777
4.10 4.10	G. 7263 0. 7363	0.5215 0.5223	0./464 0./569	0.5016 0.5014	0.1565 U.1612	0.4717 0.4710
4.70	0.7465	0.5727	0.7676	9.5011	0.7781	0.4702
4.40	0.7569 0.7674	0.5224	0.784	0.500¥ 0.500¥	0.7897	0.4892
4,50	0.1/62	0.5216	0.000	0.4981	0.8114	0.4061
4.60 4.70	0.788V 0.7997	0.5207 0.5190	0.8119 0.8231	0.0763	U.U233 GaE548	0. 4842 0. 4017
4.40	C.8105 0,8211	0.5168 0.5142	5 - 21 5 4 5 0 - 34 5	0.4714 0.4682	0.8463	0.4787 0.4751
5.00	0.8516	0.5111	0.8564	हा, ५०५५	<u> 0.6576</u> .	9.4751
- <u>5.10</u>	0.8419 0.8520	<u>0.5075</u>	. 0.8611 0.8776	0.4802	<u>6.879</u> 7	0.4617
<u>Ut.at</u>	1100,0	<u> </u>	U-88/6	0.4706	0.7006	Da 1656.5
5.40 5.50	0.871° 0.8801	0.4444 0.4444	0.8913	0.4651 0.4594	0.7177	(). երի ի <u>Օրկիկի</u>
5.60	ۥ8887	0.4841 0.4786	0.7154	0.4554	0.9288	0.4380
5.10	0.4041	0.4/30	- <u>0.7730</u>	0.4471	0.9872	9.4314
6.00	0.9122	<u>0.4673</u>	0.4511	· 0 : 4 5 4 5	- <u>0.7576</u>	0.41/8
6.10	0,4259	0.4558	0.9526	0.4213	0.4654	0.4040
6. 20 6. 10	0.9423 C.9584	0•4501 0•4445	0.7587 0.7645	0.4149 0.4085	0.1720 0.4776	0. 3772 0. 3905
6.40	0.9442	0.4389	0.7644	0.4022	0.9828	0.383√
6.50	0.9551		<u>0.4751</u>	0.3761	0.9878 0.7975	0.3775
6 10	0.9605	0.4276	0.7897 0.7893	0.5845	0.4464	0.3672
6.90	0.9704	0.6123	0.9757	0.5787 0.5751	1.0012	0, 41,93
7.00 1.10	C. 4753 G. 91:01	0.40/2 0.40/1	0.9980 1.0021	0.56// 0.5625	1.0094 1.0133	U. 5479 0, 3472
r. 70	0.9840	0.4470	1.0065	0.3571	1.0173	0.3471
7.40	0.9897	0.3920 0.3869	1.0107	0.5518 0.5486	1.0211	0.3517
7.50	0.9441	0.3817	1.0187 1.0230	0.5415	1.0288	0.4211
7.60 7.70	1.00 ts 1.00 ts	0.5/11	1,0270	0.3360 9 <u>.3306</u>	1.0526	U.3157 U.3103
7.80	1.0128	0.5656 0.5600	1.0310 1.0347	0.5251	1,0401	0. Հ ՄԿԵ
8.00	1.0214	0.3542	1.0586	0.3157	1.0412	0.2142
8. 10 8. 20	1.0254	0.3483 G.3423	1.0422	0,3078	1,0505	0.2810
8.30	1,0529	0.3362	1,0469	0.2957	1.0568	<u>v.2752</u>
8.50	1.0564	0.4436	1.0514	0.2842	1,0546	0.2645 0.2650
8.60	1,0424	0.5175	1.0571	0.2768	1.0645	0.7560
8.70	1,0450	0.5108 0.4044	1.05 4 1 1.06 12	0.2040	1,0601	0.2438
8.90 9.00	1.0494	0.2400	1.06/8	0.2576	1.0695	0.2374 0.2310
9.10	1.0521	0.2854	1.0652	0,2497	1,0/14	0.2247
9.20 9.50	1.0519	0.2797	1.0654	0.2488	1.0/20	0.2185 0.2125
9.40	1.0556	0.2672	1.0667	0.2268	1,6772	0.5067
9.50	1.0561	0.2614	1.0667	0.2211	1.0720	0. 20 IU
9.70	1,056?	0.2505	1.0642	0.2103 0.2052	1.0707	U-1902
	1.0568					

CHEBA: TEPA	ganta#**	RADIATION	GARTATION	MAINTATION	gantatinu	RADIATION
FREQUENCY	RADIATION RESISTANCE	REACTANCE	RADIATION RESISTANCE	REACTANCE	RADIATION RESISTANCE	REACTANCE
0.20	-29539-2000 -3565-0700	0.0162	-14769.6000	0.0218	-9856, 3899 -1188, 3500	0,0241
0.30	-1018-5900	0.0486	-509-2920	0.0652	-339.5260	0,0722
0.40	-413.7990 -203.7120	0.0646 0.0806	~206.8950 ~101.8440	0.0868 0.1081	-137.9270 -67.8941	0.0961 0.1197
0.60	-113.1680	0.0965	-56.5140	0.1293 0.1502	-37.7084 -22.7440	0, 1431 Q. 1661
0.70 0.80	-68,2403 -43,7523	0.1123	-34.1314 -21.8583	0.1709	-14.5588	0.1889
0.90	-29.3228 -20.3480	0.1453 0.1585	-14.6589 -10,1464	0.1912	-9.7424 -6.7435	0.2112
1.10	-14.5117	0.1735	-1.2226	0.2108	-4.7902	0, 2545
1.20	-10.5764 -7.8421	0.1883 0.2029	-5.2489 -3.8752	0.2500 0.2687	-3.4698 -2.5492	0.2754 0.2957
1.40	-5.8957	0.2172	-2.8941	0.2870	~1.8899	Q. 3155 Q. 3346
1.50	-4.4750 -3.4727	0.2312	-2.1775 -1.6436	0.3047 0.3220	-1.4067 -1.0451	0, 5551
1.70	-2,6294	0.2584 0.2715	-1.2389 -0.9272	0.5586	-0.1694 -0.5553	0, 370) 0, 3880
1.90	- 1-5526	0.2844	-0.6835	0.3703	-0.3865	0.4044
2.00 2.10	- 1. 1843 -0.8727	0.3949	-0.4904 -0.4455	0.3852	-0.2512 -0.1611	0.4200 0.4349
2.70	-0.6597	0.3708	-0.2075	0.4133	-0-0503	0.4490
2.30	-0.4717 -0.3189	0.4523	-0.105V -0.0198	0.4265 0.4388	0-0258 0-0404	0.4625
2.50	-0.1937	0.3542	0.0528	0.4506	0.1459	0.4867
2.60 2.70	-0.0903 -0.0043	0.3647 0.3747	U.1145 U.1676	0.4617 0.4772	0.2370	0.4976 0.5076
2.80 2.90	0.0676 0.1285	0.3845 0.3738	0.2157 0.2543	0.4821 0.4914	0.2751 0.3095	0.5175 0.5259
5.00	0.1798	0.4029	0.2903	0,5000	0.3408	0.5538
3.10 3.20	0.2238	0.4116	0.3225	0.5081 0.5155	0.3696	0.5410 0.5474
3.30	0.2944	0*#580	0.3782	0.5223	0.4210	0.5532
3.40 5.50	0.3230 0.4481	0.4357 0.4431	0.4026 0.4251	0.5286 0.5545	0.4445 0.4665	0.5582 0.5626
3.60 3.70	0.3703	0.4502 0.4570	0.4461 0.4658	0.5395 0.5861	0.4871 0.5069	0.5665 0.5694
1.80	0.4078	0.4635	0.4843	0.5483	0.5258	0.5719
- 2.90 -	0.4258 0.4584	0.4698	0.50 la 0.5183	0.5552	0.5418	0-5/39
4,10	0.4517	0.4814	0.5341	0.5580	0.5/76	0.5762
4.20 4.50	0.4640 0.4753	0.4869	0.5442	0.5603 0.5623	0.5936 0.6089	0.5766 0.5766
4.40	0.4859	0.4971	0.5775	0.5654	0.6236	0.5762
- 4.50	ტ, გადა 0 - 5053	0.5065	0.5908 0.6036	0.5652	0.6575	0,5/53 0,5/42
4.70	0.5142	0.5109	0.6160	U.5667	0.6645	0-5/26
4.90	0,5227 0,540 y	0.5191	0.6595	0.56f0 0.56f1	0.6772	0.5/0d 0.5688
5.00	U.5387 U.5463	0.5224	0.6506 0.6615	0.5669 0.5665	0.7011 0.7124	0.5664 Q.5639
5.20	0.5537	0.5501	0.6720	u. 5659	0.1255	0.5612
5.40	0.5608 0.5678	0.5335	0.6821 0.6970	0.5651 0.5642	0.7538	0.5583 0.5592
5.50	<u>U.574/_</u>	u,5398	0.7016	0.56.11		0.5520
5.60 5.70	0.5815 0.5881	0.5428 0.5457	0./110 9./201	0.5618 0.5604	0.1631 0.1721	0.5488 0.5454
5.80 5.90	0.5947 0.6012	0.5484 0.5511	0.7740	0.5589 0.5574	0.7893 0.7893	0.5420 0.5385
6.00	0.607/	0.5536	0.7461	0.5557	0.7975	0.5350
6.10	0.6141	0.5560 0.5583	0.7544	0.5520	0.8055	0.5315
6.10	0.6269	0.5605	0.7704	0.5501	0.8206	0.5244
6.40 6.50	0.6345 0.6397	0.5626 0.5646	0.7782 9.7859	0.5481	0.8278	0.5208 0.5173
6.60	Q-64n1	0.5665	0.7954	0.5454	0.8418	0.5137
6.00	0.6584	0.5685	0.8081	0.5418	0.8485 0.8550	0.5102 0.5067
7.00	0.6655	0.5716	0.8154 0.8725	0.5373	0.8615	0.5032
1.10	0.6/83	0.5744	0.8746	0.5525	0.8740	0.4962
7.20 7.30	0.6844	0.5756 0.5768	0.8365 0.8454	0-5300 0-5275	0.8801 0.8861	0.4928 0.4833
1.40	0.6990	0.5/78	0.8503	0.5249	0.8951	0.4859
	0.7114	0.5/86 0.5/V4	0.8571 0.8658	0.5222	0.4047 0.4047	0.4024
7.70	0.7181	0.5800	0.87u5 0.8771	0.5167 0.5137	0.9095	0.4755
7.90	0.7316	0.5808	0.8837	0.5107	0.9209	0.4684
8.00 8.10	0.7384 0.7452	0.5810 0.5811	0.8907 9.8966	0.5076 0.5044	0.9265 0.9320	0.4649 0.4612
8.20	9.7520	0.5810	0.9030	0.5011	0.9376	D.4576
8.40	0.7588	0.5808 0.5804	<u></u>	0.4411	0.9430	0.4538 0.4500
8.50	0.7125 0.779u	0.5799	0.9219	0.4405	0.4538	0.4461
8.60 8.70	0.7862	0.5/92 0.5/85	0.47d0 0.7341	0.4868 0.4829	0.95V2 0.9644	0.4421 0.441
8.80 8.70	0.7431 0.7994	0.5773 0.5761	0.4400	0.4789	0.9696	0.4339
4.00	0.0066	0.5748	7100.0	0.4705	0.9744	0.4237
9.10	0.8154 0.8201	0.5733 0.5717	0.9314 0.9630	0.4062 0.4617	0.9848	0.4209
→ ,30	0.8268	0.5694	0.9684	0.45/1	0,9945	0.411
9.40 9.50	0.8554 C.8599	0.5680 0.5659	0.9737 0.9789	0.4523 0.4475	0.4442 1.0058	0.4070 0.4071
9.60	0.8464	0.5637	0.9840	0.4425	1.0085	0.5472
9.10 9.80	0.8528 0.8541	0.5615 0.5588	0.9937	0.4374	1.0126	0.3921 0.3864
V. 90	0.8654		0.9982	0.4270	1.0208	0.3617

	MACH NUMB WIDTH TO LENGTH		MACH NUMB		MACH NUMBER 2.00 HIDTH TO LENGTH RAILO 4.0000		
GENERALIZED	HADIATION	MOSTATON	RADIATION	RADIATION	RADIATION	RADIATION	
FREQUENCY 0.10	RESISTANCE -7384-7900	REACTANCE 0.0253	RESISTANCE -3642.3900	REACTANGE 0,0271	RESISTANCE -1846.2000	O. 0286	
0.20	₩891.2660	0.0506	~445.6320	0.0541	-222.8140 -63.6565	0.0554 0.0554	
0.30	-254.6430 -103.4420	0.0757 0.1007	-127.4190 -51.7161	0.1077	-25.8529	0.1112	
0.50	-50.9166 -28.2756	0.1255	-25.4503 -14.1264	0.1342	-12.7172 -7.0510	0.1385	
0.70	-17.0502	0.1741	-8.5046	0,1860	-4.2395	0.1920 0.2181	
0.80	-10.9090 -7.2941	0.1979 0.2212	-5.4344 -3.6217	0.2114	-2.6971 -1.7855	0.243/	
1.00	-5.0421 -3.5739	0.2440	-2.4849 -1.7495	0.2605 0.2842	-1.2138 -2.8374	0.2687 0.2431	
1,20	-2.5803	0.0000	-1.2459	0.50/2	-0.5788	0.3168	
1.30	-1.8861 -1.3878	0.0000	-0.8910	0.3296	-0.3945 -0.2581	0.3547	
1.50	-1.0214	0.3496	-O bb 88	0.3720	-0.1542	0.3835	
1.60 1.70	-0.7450 -0.5346	0.3687 0.3870	\$0.2970 -0.1824	0.3921	-0.0725 -0.0062	0.4038	
1.80	-0.309% -0.2380	0.4046 0.4214	-0.0905 -0.0152	0.4246	0.0490	0.4571 0.4598	
2.00	-0.1315	0.4374	0.0479	0.4635	0.13/7	4.4700	
2.10	-0.0454 0.0294	0.4526	0.1019	0.4791	0.1/48	0.4923	
2.30	0.0417	0.4403	0.1906	0,5074	0.2400	0.5209	
2.40 2.50	0.1455 0.1926	0.4929 0.5047	C.2282 U.2625	0.5200 0.5318	0.2645	0.5336 0.5455	
2.60	0.2343	0.5156	0.2745	0.5425	0. 524 5	0.5560	
2.70 2.80	0.2718	0.5256 0.534H	0.3240 0.3520	0.5523	0.3501 0.1751	0.5857	
2.90 3.00	0.3172 U.3661	0.5432	0,3787	0.5691	0.4994 0.4231	0.5820 0.5887	
3.10	0.3931	0.5574	0.4285	0.5821	U_4462	0.5944	
5.20 3.50	0.4185 0.4425	0.5634 0.5685	0.4520 0.4747	0.58/3 0.5916	0.468/ 0.4908	0.5992	
3.40	0-4652	0.5729	0.4400	0.5951	0.5125	0.8062	
3.50 3.60	0-4869	0.5766	0.5179	0.5978	0.5537	0.6083	
3.70	0.5275	0.5820	0.5584	0.6008	0.5739	0.6104	
3.80 3.40	0.5465 0.5649	0.5837 0.5847	0.5777 0.5965	0.6011	0.5933 0.6123	0.6101	
4.00 4.10	0.5825 0.5995	0.5853 0.5852	0.6146 0.6322	0.6002 0.5988	0.6307 0.6485	0.60/7 0.6056	
4.20	0.6158	0.5847	0.5471	0.546#	0.6658	0.6028	
4.30 4.40	0.6515	0.5837	0.6655 0.6815	0.5943 0.5913	0.6825_ 0.6986	0.5796	
4.50	0.6613	0.5H03	0,6965	0.5879	0.7142	0.5916	
4.60 4.70	0.6753 0.6888	0.5781 0.5755	0.7112 9.7755	0.5840 0.5749	0.7291 8.743 <u>5</u>	0.5470 0.5670	
4.80	0.7011	0.5726	0.7588	U.5/54	0.7573	0.5767	
<u>4.90</u>	-0.7143	0.5661	0.7518	9,5706	Q. 7705 G. 7831	0.5711	
5.10 5.20	0.7579			0.5603 0.5549	0.8067	0.5541	
5.30	0.7546	0.5547	0.7703	0.5494	0.8177	0.546/	
5.40 5.50	0.7698 0.7746	0.5506 0.5464	0.8087 0.8166	0.5437 0.5380	0.0282 0.8481	0.5403 0.5338	
5.60	0.7891	0.5471	0.8281	0.5322	0.8476	0.5772	
5.70 5.80	0.7781 0.8968	0.55/8 0.5554	0.8471	<u>- 0.5264</u>	0.8651	0.5207	
5.90 6.00	0.8152 0.8232	0.5240	0.8519	0.5147	0.H732 0.H807	0.5076	
6.10	0.8104	0.5202	0.8691	0.5012	0.8882	0.4741	
6.20 0.30	0.8584 0.8456	0.5158 0.5114	0.8763 0.8831	0.4975	0.8422	0.4844 0.4422	
6.40	0.8576	0.50/1	0.8896	0.4865	0.9082	0.4762	
6.60	0.8541	0.5028	0.4757	0.4810 0.4757	0.9142	0.4707	
6.70	0.8/27	0.4902	0.4078 0.4134	0.4705	0.9256	0.458/	
6.90	0.8844	0.4861	0.9188	0.4655 0.4605		0.4531 0.4477	
7.00 7.10	0.8403 0.8461	0.4821 0.4781	0.4241	0.4556 0.4508	0.94 10 0.4458	0.4424 0.4572	
7.20	0.9018	0.4741	0.9342	0.4462	0.9505	0.4527	
7.50	0.9073	0.4702	0.939	0.4416	0.9550 0.9595	0.4272	
7.50	0.9182	0.4625	0.94#7	0.4321	0.9639	0.4178	
7.60 7.70	0.9236 0.9289	0.4587 0.4549	0.9533 0.9579	0.4283	0.9637 4577.0	0.4152 0.4086	
7.80 7.90	0.9341	0.4511	0.9625	0.4198	0.9767 0.9808	0.4042 0.4998	
8.00	0.9445	0.4455	0.4715	0.4115	0.9850	0.5755	
8.10	0.9496	0.4358	0.9759	0.4074	0.9893	0.3912	
8,30	0.9597	0,4319	0.9847	0.5971	0.9973	0.4827	
8.40 8.50	0.9647 0.9697	0.4280	0.9871	0.3950 0.3908	1.0013	0.3785 0.3742	
8.60	0.9146	0.4199	0.9978	0.3866	1.0094	U. 5694	
8.70	0.9795	0.4116	1.0021	0.3823 0.3780	1.0134	0.3656	
8.90 9.00	0.9891	0.4075	1.0106	0.3757	1.0215	0.3569	
9.10	0.9985	0.3984	1.0189	0.3647	1.0291	0.3524 0.3474	
9.20 9.30	1.0030 1.0075	0.3939 0.3842	1.0250	0.3601 0.3555	1.0329 1.0367	U. 34 3 3 U. 3386	
9.40	1.0110	0.3845	1.0509	0.350/	1.0404	C. 5356	
9.50	1.0162	0.3796	1.0347	0.545H	1.0440	J. \$287 0. \$240	
9.70	1.0244	0.3696	1.0421	0.5558 0.5307	1,0510	0.5170 0.5158	
9.80							

	MACH NUME HIDIM TO LENGTE	ER 2.50 KA110 0.2500	MACH NUMB WINTH TO LENGTH		MACH NUMB WIDIN 10 LENGTH	
GENERAL 12ED	HADIATION	. HADIATION	RACIATION	KAULATION	RADIATION	RADIATION
PREQUENCY	RESISTANCE -055/1-7998	REACTANG! 0.0140	-32785.8999	REACTANCE 0.0178	RESISTANCE -2 1857.2998	REACTANCE 0.0191
0.20 0.30	-3037.319v -2334.2700	0.0281 0.0421	~4018.6600 -1167.1300	0.0355 Q.0535	-2679-1100 -778-0880	0.0382 0.0573
0.40	-404.6740	0.0560	-482.4340	0.0709	-321.6210	0.0/63
0.50	-483,8270 -274.0940	0.0700	-241,9090 -137.0410	0.1060	-161.2700 -91.3566	0.0952 0.1140
0.70	-168-8910 -110-6520	0.0977	- <u>55.3153</u>	0.1234	-56.2860 -36.8696	0.132 <i>1</i> 0.1512
0.90	-75.961Y	0.1251	-51.4675	0.1578	-75.3025	0.1696
1.00	-54.0963 -59.6793	0.1586 0.1521	-27.0316 -19.8197	0.1748 0.1916	-18.0097 -13.1994	0.1878 0.2058
1,20	-29.8181	0.1654 0.1787	-14.8854	0.2082	-4.9073	0.2256
1.30	-22.8642 -17.8326	0.1917	-11.4045 -8.8843	0.2246 0.240A	-7.5834 -5.9009	0.2411
1.50	~14.1108 -11.3048	0.2047	-/.0189 -5.6110	0,2568 0,2725	-4.6541 -3.7122	0.2/54
1.70	-9,1531	0.2401		0.28/9	-2.9862	0.1085
1.80	-7.4803 -6.1612	0.2428 0.2549	-3.6882 -3.0230	0.\$051 0.3179	-2.4231 -1,9757	0.5246 0.3403
2.00	-5,1091	0.2670	-2.4911	0.5525	-1.6171	0.3557
2.10	-4,2612 -3.5710	0.2790	-2.0610 -1.7096	0,1467	-1.3262 -1.0875	0.3854
2.30	-3.0044 -2.5354	0.3022	-1.4198 -1.1785	0.5742	-0.8898 -0.7243	0.3947
2.50	-2.1442	0.5247	-0,9759	9.4304	-0.5845	0.4136 0.4270
2.60 2.70	-1.8157 -1.5380	0.3356 0.3462	-0.8045 -0.6564	0.4129 0.4250	-0.4655 -0.8627	0.4400
2.80	-1.3017	0.5567	-0.5328	0.4168	-0.2740	0.4648
3.90	-1.0996	0.3569	-0.4241 -0.3274	0.4482	-0.1214	0.4165
3,10	-0.7755	0.5866 0.3760	-0.2463	0,4677	-0.0671	0.4985
3.20 3.30	-0.6446 -0.5103	0.4053	-0.10//	0.4744	-0.0127 0.0363	0.5067 0.5188
3.40 5.50	-0.4300 -0.5416	0.4143 0.4230	-0.0443 0.0032	0.4441 0.5080	0.0808 0.1215	0.5282 0.5372
3.60	-0.2632	0.4515	0.0508	0.5100	0.1584	0.5456
3.70	-0.1935	0.44//	0.0941	0.5247	0. 1935 0. 2257	0.5536
3.90	-0.0757	0.4554	0.1762	0.5198	<u> </u>	0.5682
4.00 4.10	-0.0247 0.0210	0.4629	0.2040 0.2454	0.5466 0.5551	0.2841 0.3109	0.5747 0.5808
4.20	0.0675	0.4770 0.4838	0.2647 0.2922	0.5592	0.3362	0.5864
4,40	0.1004	0.4902	0.3182	0.5649 0.5702	0.5605	0.5916
4.50	0.1465	0.4964	0.3427	0.5750 0.5775	0.4055	0.6006
4.70	0,2258	0.5001	0.3880	0.5836		0.6011
4.80 4.90	0.2497 0.2729	0,5135 0,5187	0.40V1 0.42V3	0.58/1 0.5906	0.4668 0.485v	0.6107
5.00	0.2951	0.5737	0.4487	0.5936	0.5043	0.6155
5.10 5.20	0.1160 0.1557	0.5285	<u>0.4673</u> 0.4852	0.596 <u>2</u> 0.5984	0.5322	0.6110
5.30	0.3542	9.53/5	0.5025	0.6003	0.5564	0.6171
5.40 5.50	0.3718 	0.5413 0.5452	0.5147 0.5353	0.6014	0.5728 0.5887	0.6196 0.6198
5.60 5.70	0.4045 C.4147	0.5488	0.5510 0.5661	0.6040 0.6046	0.6042 0.6143	0.6196 0.6190
5.80	0.4545	0.5554	0.5808	U. 5U49	V-654U	0.6181
5.90	<u>G.4483</u> V.4610	<u>0.5585</u>	0.5951	0.6049	0.6485	0.6169
6.10	0.4/4/	0.5614	0.6224	0.6041	0-6150	0.6116
6.20	0.4872 0.4993	0.5665 0.5686	0.6355 0.6485	0.6032	0-6890 U-701U	0.6114
6.40	0.510v 0.5221	0.5706 0.5725	1088.0	0.6009 0.5993	0.7143 0.7265	0.6064 0.6035
6.50	0.5332	0.5743	0.6844	U.59/5	0.7585	U. 6UU4
6.70	0,5459	0.5758	0.7069	0.5956	0.7498	0.5971
6.40	0.5644	<u> </u>	0.7176	0.5910	1171.0	0.5898
7.10	0.5743 0.5834	0.5746 0.5806	0.7281 0.7383	0.5858 0.5858	0.782? 0.7924	0.5858 0.5817
7.20	0.5945	0.5814	0.7482	0.5879	0.0023	0.5775
7.50 7.40	0.6024	0.5821 6.5827	0.7578	0.5767	0.8117	0.5731
7.50	0.6780	0,5851 0.5854	U.1163 U.7851	0.5735	0.8301	0.565y 0.5591
1.10	0.6372	0,5856	U. 1757	0.5665	V=8472	0.5542
7.80 7.90	0.6499 0.6536	0.5837 0.5837	U.8020 9.8161	0.5629 0.5572	0.8554 0.6631	0.5443 0.5442
8.00	0.6615	0.5836	0.8179	J. 555u	0.8706	0.5191
8.10	0.6893	0,5854	0.8255	0.5516 0.5476	0.87(y	<u> </u>
B 50	0,6846		0.8400	0.5451	U. 871/	0.5235 0.5182
8.50	0.5450 0.6444	0.5817	0,8537	0.5596 0.5555	0.8083	0.5124
H. 60 B. 70	0,7065 0,7135	0.5810 0.5803	0.86U2 0.8606	0.5314 0.5272	0.4105 Q.4163	0.5075 0.5023
8.80	0,7205	0.5795	0.8727	0.5231	0.9219	0.4970
8.90 9.00	0.7273	0.5786	0.87 <u>87</u> 0.8844	0.5184	0.4512	0.4911
y. 10	0.7408	0.5/66	6.8400	0.5104	0.93/3	0.4814
9.20 9.30	0.7474 0.7554	0.5755 0.5743	0.4425	0.5062 0.5019	0.4421 0.4467	0.4757
9.40	C. /603	0.5/31	8 40 40	0.4427	0.4511	0.4656
9.50	0.7666 0.7774		0.4104	0*#485	0.4554	0.46C> 0.4554
9.10 9.80	0.7740	0.5640	0.4203 0.4249	0.4850 0.4808	0.9632 0.9670	C. 4504 O. 4454
7 A D U	0,7912	A 9 20 LO	ひゅうとうり	V. 40V0	0.4010	0.4454

	MACH NUMBER 2.50 WIDTH TO LENGTH RATTO 1.0000		MACH NUMBER 2.50 WINTH TO LENGTH MATTO 7.0000		MACH NUMBER 2.50 NIDIH 10 LENGTH RATIO 4.0000	
GENERALIZED	HADIATION	RADIATION	RADIATION RESISTANCE	RADIATION	RADIATION	HADIATION REACTANCE
FREQUENCY	RESISTANCE -16593.0000	REACTANCE Q.019B	-8196-4800 -1004-6600	0.0208	R[-\$]\$1ANC(-4048.2400	0.0215
0.20	-2009.3300 -583.5650	0.0396	-1004.6600 -291.7810	0.0416 0.0625	-502.3310 -145.8890	0.0496 0.0630
0.40	-241.2140	0.0790	-120.6040	0.0830	-60.2995	0.0050
0.50	-120.9500 -68.5144	0.0465	-60.4708 -34.2510	0.1035	-30.2311	0.1060 0.1270
05.0	-42,2101	0.1373 0.1565	-21.0967 -13.8124	0.1445	-10.5599	0, 1478
0.80	-21.6461 -18.9699	0.1755	-9.4711	0.1644 0.1843	-6.6952 -4.7217	0.1684 0.1888
1.00	-13.498/ -9.8893_	0.1943	-0./323 -4.4240_	0.2041	-5.3491 -2.4414	0.2087 0.2287
1.20	-7.4183	0-2313	-5.6847	0.2428	-1.8177	0.2485
1.30	-5.6736 -4.4091	0.2494 G.2672	-2.8082 -2.1715	0.2617	-1.3755 -1.0527	0.2674
1,50	-4.4717	0.2847	-1,6781	0.2781	-0.6113	0.3057
1.70	-2,1621 -2,2111	0.3188	-1.3386 -1.0605	0.1167	- 0.6265 - 0.4822	0.5240 0.3420
1.80 1.90	-1.1905 -1.4521	0.3354	-0.8416 -0.6666	0.5515 0.5684	-0.3672 -0.2734	0.3576 0.3768
2.00	-1,1801	0.5674	-0.5245	0.1648	-0.1900	0.3935
2.10	-0,9587 -0,7765	0.3H28 0.3Y/8	-0.4076 -0.3099	0.4008	-0.1120	0.4098
2.30	-0.6248	0.4124	-0.2215	0.4315	-0.0286	0.4411
2.40 2.50	-0.4972 -0.3888	0.4266 0.4403	-U.1566 -U.0952	0.4467 0.4605	0.013a 0.0516	0.4559 0.4705
2.60 2.70	-0.2457 -0.2151	0.4556 0.4665	-0.04 (\$ 0.0065	0.4/40 0.48/2	0.0857	0.4842 0.4775
2.80	-0.1447	0.4788	0.0444	0.4778	0.1464	0.5103
3,00	-0.0825 -0.0212	0.4907	U.0883 U.1239	0.5120	0.1737	0.5726
3. to	0.0225	0.5150	0.1568	0.5347	0.2240	0.5455
5.20 3.30	0.0674 0.1083	0.5234 0.5334	0.1875 0.2163	0.5452 0.5552	0.7476 0.7703	0.5561 0.5661
3.40	0.1454	0.5428	0.2455	0.5647	0.2972	0.5756
3.50	0.1806	0.5517	0.2643	0.5/36	0.5546	0.5845 0.5928
3.70 3.80	0.2432	0.56H0 0.5755	0.3177	0.5897 0.5770	0.1556	0.6003
1.70	0.2986	0.5824	0.1678	1103.0	0+5751 0+5949	0.6077 0.6143
4.00 4.10	0.3242 0.3486	0.5888	0.3843	0.6048	0 - 4 14 1 ህ - 4 3 5 5	0.625s
4.20	0.3719	0.6001	0.4255	0.6205	0.4524	U. 6407
4.40	0.3944	0.6050	0.4455 0.4649	0.6250	U.4 / 10 U.4 / 194	0.6530 0.6588
4+50	0.4469	0.6133	0.4840	0,6325	0.5075	0.6471
4.50	0.4771 1814.0	8410.0 8410.0	0.5027 0.5210	0,6355 0,6379	0.5255 	0.6448 0.6470
4.90 4.90	0.4957 0.5141	0.6274 0.6245	0.5 589	0.6399 0.6414	0.5666	0.6447
5.00	0.5421	0.6261	0.5738	0.6424	0.5947	0.6505
5.10 5.20	0,5607	0.6281	0.5708		<u>0.611</u> 9 -	0.6507
5.30	0.5833	0.6285	0.6237	0.6426	V=644V	3.644/
5.40 	0.5995 0.6154	0.6285 0.6281	0.6577 0.6554	0.6418 0.6406	0.0598 0.6758	6.6485 0.6467
5.60 5.70	0.6108 V.545Y	0.6274	1010.0	0.6540	0.6907	0.6947
5.80	V-6606	0.6247	0.7004	0.6547	0.7057	0.6424 0.6396
5.40	0.6/44	0. <u>4279</u> 0.6208	0.7147	0.6319	0.7447	0.0504
6.10	0.7024	0.6185	0.7424	0.6254	0.7624	0.6230
6.20 6.30	0.7157 0.7286	0.6175	8c 275 .0 16 <u>275 .0</u>	0.621/ 0.61//	0.775s 0.885	0.624H 0.6203
6.40 6.50	0.7411 0.7555	0.6092 0.6056	0.7814 0.7937	0.6154 0.60y8	0.8015	0.6155
6.60	V. 1652	0.6018	0.0000	0.6040	0.8156 9.8256	0.6051
6,70	0.7767	0.5956	0.6172	0.5757	U, 8474 U. H487	0.5435
6.90	0.7988	0.5891	0.8575	<u>0.5882</u>	0.8576	0.5817
7.00 7.10	0.8043 0.8145	0+5845 n,5797	0,8474 0,8601	0.5825 0.5767	0.8702 0.8809	0.5815 0.5751
7.70	0.8244 0.8489	0.5747	0.8679	0.5707	0.8405	0.5686
7.40	0.8481	0.5698	44.78.0 4688.0	0.5645 0.558f	0.4844	0.502u 0.554
7.60	0.8570	0.5591 0.6536	0.8974	0.5514 6.5454	4.91/6	0.5485 0.5015
7.70	0.8/19	0.5481	0.9140	V.5188	0.9260	0.5542
7.80 1.90	0.8819 0.8896	0.5424 0.5367	0,921v 6,9244	0.5322	0.941H 0.9492	0.5271 0.5177
8.00	C.8970	0.5310	0.4565	0.5187	0.4565	0.5126
8.10	0.7107	0.5252	0.9434	0.5052	1604.0	0,5054 0,6481
8.50 8.40	0.9175	0.5154	0.9562	0.4985	0.9756	0.11708
8.50	0.9298	0.5017	0.4627	0.4415 0.4847	0.9414 0.9469	0.41135 0.4763
8.60 B.70	0.9356 0.9412	0.4758 0.4899	0.9755 0.9784	0.477¥ 0.0000	0.4451	0.4070
8.80	0.9465	0.4840	0.7854	V. 4645	1.6018	0.4614 0.4547
9.06	0.9515 0.9564	0.4162	0.9880 0.9923	0.45/8	1.0062	0.4476
9.10	0.9610	0.4666	0.9965	0,4447	1.0142	0.9537
9.20 9.30	0.9654 0.9696	0.4608 0.4552	1.0004	0.4382 0.4318	1.01/7	0.4268 0.4201
9.40	0.9737	0.4475	1.0076	0.4754	1.0246	0.4134
9.60	0.9775	0. u 4 tu	1.0109	0.4192	1.0276	0.4068
9.70 9.80	0.9841 0.9880	0.4350	1-0167	0.4070 0.4010	1.0559	0.3940
9.90	0.9912	0.4273	1.0242		1.0395	0. 4877 0. 5816

•
g.
ь.
-
•
<i>,</i>
٠,
2
ē
2
-
2
Ę.
7
Œ.
ъ.
į.
75
5
7
æ.
32
7
-6
-
7.7
5
-
- 2
. i
-
-
.:
77
-
••-
•••

····	MACH NUMBER 3.00 WIDTH TO LENGTH RATIO 0.2500		MACH NUMBER 3.00 WIDTH TO LENGTH RATIO 0.5000		MACH NUMBER 3.00 WIDTH TO LENGTH RATTO 0.7500	
ENERALIZED FREQUENCY	RADIATION RESISTANCE	HADIATION HEAGTANGE	HADIATION RESISTANCE	REACTANCE	RADIATION.	REACTANCE
0.10	- 120703.0000	0.0124	-60351.5946	0.0150	~40254.3999	0.0159
0.20 0.30	-14896.8999 -4357.3100	0.0372	-7448.4500 -2178.6500	0.0450	-4965-6299 -1452-4300	0.0318 0.0477
0.40	-1814,3600 -916,7790	0.0496	-907.1800 -458.3620	0.0600 0.0749	-304.7860 -305.5730	0.0635 6910 •0
0.40	-523.4340	0.0743 0.0866	-261,7150 -162,5800	0.0898 0.1046	-174.4740 -108.3830	0.0951 0.1107
0.80	-325,1710 -214.8510	0.0988	-107.4190	0.1196	-11.6078	0. 1264
0.90 1.00	-148.7970 -106.9400	0.1110	~ 74.3895 -53.4591	0.1341 0.1487	-49.58/1 -55.65/1	0.1414
1.10	-79.1920 -60,1076	0.1453	-39,5829 -30,0382	0.1632	-26.3798 -20.0150	0. 1726 0. 1878
1.30	-46.5741	0.1592	-23.26HB	0.1918	-15.5002	0.2024
1.40	-36.7257 -29.3987	0.1711 0.1828	-18.3417 -14.6751	0.2200	-12.2136 -9.7671	0.2178 0.2326
1.60	-23.8422 -19.55/4	0.1945 0.2061	-11.8936 -9.7477	0.2339 0.2477	-1.9106 -6.4777	0. 2473 0. 2618
1.80	-16.2039	0.2176	-8.06/5	0.7613	-5.3550	0.2761
1.90 2.00	-15.5447 -11.4112	0.2290	-6./45V -5.6611	0.2747	-4.4635 -5.7469	0.2902 0.3041
2.10	-9.6811 -8.2647	0.2514	-4.7919 -4.0813	0.3010	-3,1646 -2,6866	0. 1178 0. 3314
2.30	-7.0949	0.2733	-5.4919	0.5266	-2.2906	0. 344/
2.40 2.50	-6.1210 -5.3045	0.2947	-3.0002 -2.5870	0,3391 0,3514	-1.9547 -1.6889	0.3578 0.3706
2.60 2.70	-4.6146 -4.6285	0.3051 0.3155	-2.23/1 -1.9389	0.4645 3.4753	-1.4443 -1.2420	0. 3832 0. 3456
2.80	- 5.5275 - 3.0969	0.3257 0.3357	-1.6831	9. \$970	-1.0014	0.4077
2.90 3.00	-2.7249	0.5456	-1,2707	0.4095	-0.9170 -0.7855	0.4116
3 <u>. 10</u>	-2.4019 -2.1201	0 x 3553 0 x 3648	-1.1034 -0.4567	0.4205	-0.6707	0.4425
5. 50 3. 40	-1.8733 -1.6561	0.4742 0.3834	-0.8273 -0.7126	0.4415	-0,4781 -0,3976	0.4643 U.4747
5,50	-1,4642	0.3925	-0.6104	0.4016	-0.3254	0.4899
3.40 3.70	- 1.7441 - 1.1427	0.4015 0.4100	-0.5171 -0.4364	0.4712 0.4806	-0.2011	0.4948 0.5044
3.00	- 1.0074 -0.3862	0.4185	-U.3628 -U.2436	0.4897 0.4985	-0.14/1 -0.0981	0.5117 0.5226
4.00	-0.1712	0.4349	-0.2344	0.5071	-0.0528	0.5515
4.10	-0,6788 -0,5897	0.4429	-0.17d4 -0.127u	0.5233	-0.0110	0.5576
4.40	-0.5088 -0.4351	0.45B2 0.4655	-0.0/9/ -0.035¥	0.5384	0-04F0 0-04FV	0-555k 0-5620
4.50	- C. 36/8	0.4727	0.0048	0.5455	0.1297	0.5698
4.60 4.70	- 0,3061 - 0,2444	0.4796 0.4864	0.0427	0.5523 0.5588	0.1597 0.1881	0.5766 0.5830
4.80	-0.1972 -0.1489	0.4750 0.4795	0.1114 0.1477	0.5651 0.5710	0.2150	0.5871 0.5947
5.00	-0.1041	0.5055	0.1722	0.5767	0.2652	0.6004
5.10 5.70	- 0.0675 - 0.0218	0.5172	0,2002 0,2268	<u>0.</u> <u>58</u> 71	9-2867 0-1112	0.6055 0.6103
5.30	0.0124	0.527# 0.5787	0.2521	0.5919	0.332Y 0.353Y	0.614d
5 . 50	0.0781 0.080		0.2994 0.3716	0.6006 0.6045	0.3741 0.3937	0.6278 0.6764
5.60 5.70 5.80	0.1362	0.5451	0.3429	0.0085	Ua4127	U= 6276
5.80 5.90	0.1629 0.1881	0.5477 0.5520	0.5654 0.5852	0.6115	D.4311 C.4491	0.6325 Q.6351
6. CU 6. 1U	0.2121 0.2549	0.5562 0.5602	0.4023 0.4208	0.6174 0.6179	U-4666 D-4056	0.65/4 0.6594
6.70	0.2567 0.2775	0.5640 0.5676	0.4587 0.4561	0.6221	0.5001	0.0411
- 6.40	0.2975	0.5710	0.4729	0.6241 0.6258	0.5524	Q. 6425 Q. 6436
6.60	0.5164 0.5547	0.5743 0.5773	<u>0.48</u> /3	0.62/3 0.6285	- 0.5474 0.5651	0. 6444
6.70	0.3522	0.5828	0.5208	0.6294	0.5779	0.6452
6.80	0.3855	0.5855	0,5508	0.6506	7.606.0	0.6452 0.6449
7.00 7.10	0.4012 0.4164	0.5877 0.5898	0.5652	0-6508 0-6507	0.6207	0.6444 0.6456
7.20 7.30	0.4312 0.4455	0.5918	0.5930 0.6064	0.6405 0.6500	0.647a 0.604	0.6476 0.641\$
7.40	0.4593	0.5752	0.6145	0.6293	0.6738	0.6397
	0.4728	0.5467	0.6574 0.6449	0.6283	0.0865	0.6380
7.80	0.4985 0.510v	0.5991	0.65/2	0.6259 0.6243	0.7108	0.6558
7.90	0.5230	0.6010	V086,0	0.6226	0.7342	0.6287
8.00 8.10	0.5447 0.5462	0.6017	0.6425	0.6707 0.6186	0.7455 0.7566	0.627A
8. 20 8. 30	0.5574 0.5685	0.6026 0.6029	0.7145 0.7252	0.0163 0.6158	0.1674 0.1160	0.6147 0.8163
8-40	0.5789	0.6030	0.2356	0.6112	0.7884	0.6127
8.50	0.5449	0.6030	0.7459 0.7558	0 <u>. 6085</u> 0. 6055	0.7985 0.8084	0.60y0 0.6051
8.70	0.6095	0.6022	0.1656	0.5445	0.8180	0.6011
8.90	0.6289	0.6017	0./844	0.5459	0.8366	0.5926
9.10	0.6382 <u>0.6474</u>	0.6011 0.6004	0.7935 0.8023	0.5424 0.5888	0.8456 0.854 5	0.5881 0.5835
9.20 9.30	0.6563 C.6651	0.5995 0.5986	0.8110 0.8174	0.5851 0.5815	0.8627 0.8710	0.5/hy 0.5741
9.40	0.6737	0.5975	0.82/6	0.5774	0.8790	0.5692
- 7.50	0.6822	0.596h	0.8433	0.5733	C,8868 O.874\$	0.5542 0.5591
9.80	0.6785	0.5938 0.5923	0.8507 0.8593	0.5650	0.9083	0.553Y 0.5486
4.90	0.7143	0.5908 0.5892	U.8674 U.8774	0.5564 0.5519	0.4524	0.5433 0.5374

WADD TR 61-75

		SER 3.00 -		MACH NUMBER 3.00 MIDTH TO LENGTH RATIO 2.0000		MACH NUMBER 3.00 MIDTH TO LENGTH HATTO 4.0000	
GENERALIZED	RADIATION	MOLTALGAR	RADIATION	RADIATION REACTANLE	RADIATION	RADIATION	
TREQUENCY 0.10	RESISTANCE -30175.7998	REACTANCE 0.0164	RESISTANCE -150R7.8999	REACTAN(:E 0.01/0	XESISTANCE - 7543. 4399	REACTANCE 0.01/3	
0.20	-3720.2200	0.0327	-1862.1100	0.0340	931-0560	0.0447	
0.40	-1089.330C -453.5880	0.0490	-944.6620 -226.7920	0.0510	-2/2.3300 -113.3940	0.05 <u>20</u> 0.0642	
0.50	-229.1780	0.0815	-114.5860 -65.4229	0.0H4H 0.1016	-57.2904 -37.7075	0.0865	
0.60	-130.8540 -81.2847	0.1138	-40.63/0	0.1184	-20.5131	0.1207	
0.80	-54.7023 -37.1859	0.1248 0.1458	-26.8441 -18.5840	0.1351 0.1516	-13.4150 -9.2631	0. 1377 0. 1546	
1.00	-20.7186	0.1616	-13.3483	0.1681	-6.6632	0.1714	
1.20	-19.7782 -15.0034	0.1774	-9.8759 -7.4860	0.1845	-4.9241 -5.7273	0.1880	
1.30	~11.6160	0.208#	-5.7896	0.2167	-2.H/64	0,2209	
1.40	-9.1495 -7.3151	0.2238 0.2390	~4.5534 -5.6522	0.2327	~2.2554 ~1.7917	0.2371 0.253)	
1.60	-5.9191	0.2560	-2.9319	0.2640	1.4382		
1.70	-4.842/ -3.9980	0.2688	-2.5402 -1.9645	0.2794	-1.1639 -0.9474	0.2847 0.3001	
1.90	-3,3282	0.2979	-1.0254		-0.7740 -0.6330	0, 3154	
2.00 2.10	-2.7588 -2.3499	9.3245	-1.3516 -1.1269	1,5589	-V-51/U	0. \$464 <u>U. 346</u> 2	
2.20	- 1.9893 - 1.6900	0.3401 0.355/	-0.9452 -0.7840	0.3542 0.3675	~0.4202 ~0.4465	0.3597 0.3740	
2.30	- 1.4374	0.3671	-0.6570	0.3811	-0.2688	0.3881	
2.50 2.60	- 1.2279 - 1.0479	0.3802	-0.5483 -0.4533	0.1946	-0.7086 -0.1560	0.401s 0.6153	
2.70	-0.H936	0.4057	-0.4709	0.4209	-0.1096	0.4285	
2.80 2.90	- 0.7603 - 0.6444	0.4181 0.4301	-0.2989 -0.2355	0.4516 0.4460	-0.0682 -0.0310	0, 44 14 0, 4540	
4.00	-0.5429	0.4419	-0.1791	0.4581	0.0028	0.4662	
5.10 3.20	-0.4536	0.4535	-U.1286 -0.0831	0.4700	0.0339	0.4782 0.4898	
1.30	-0.3036	0.4756	-0.0417	0.4976	0.0892	0.5012	
3.40 3.50	-0.2401 -0.1827	0.4862 0.4966	-0.0018 0.0311	0.5035 0.5140	0.1145 0.1360	0.5121 0.5228	
3.60	- 6.130/	0.5066	0.0635	0.5242	0.1606	0.5350	
3.80	-0.0832 -0.0346	0.5163	0.0937	0.5361	0.2024	0.5430	
7.90	0.0001	0.5447	0.1488	0.527	0.2224	0,5618	
4.00 4.10	0.0380 0.0728	0.5434 0.5518	0.1742 Q.1984	0.5616 0.5700	0.2423 0.2612	0.5706 0.5791	
4.20	0.1055	0.5594	0.2715	0.5/81	0.2196	0.5875	
4.50	0, 1359	0.56/6 0.5/50	0.2457	0.5857	0.2976	0.5750	
4,50	0.1922 0.71H2	0.5870	0.2854	0,6005	9,4427	0.6074	
4.60	0.2441	0.5951	0.1000	0.6070 0.6155	0.3600	0.6161	
4.80 4.40	0.2668 0.7847	0.6012 0.6068	U. 5446 U. 5652	0.6142	U. 5836	0.6782	
5.00	0.3117	0.6127	0.3814	0.6500	0.4162	9.6547	
5,10	9.1327 0.3534	0.6117	nessas	0.6393	0.4524	0.6480	
5.50	0.37.15	0.6263	<u> </u>	0.6454	0.4642	<u> </u>	
5,40	0.5976 U.4114	0.6503 0.6559	0.4508 	0.6472 0.6506	0.4799 0.4799	0.6557 0.6589	
5.60	0.4241	0.6175	0.4838	0.6557	0.5108	0.6018	
5.70 5.80	0.44/6 0.4650	0.6405 0.6450	0.4777 0.5158	0.6564 0.6587	0.5261 0.5432	0.666 0.666	
5,40	G.4821 G.4987	0.6474	_ · 0.53 15	0.6601	0.5562	U.6684	
6.10	0.5151	0.6491	0.5470	0.6624	0.5/11 0.5856	0.6677 0.6711	
6.20 6.30	0.5410		0.5772	0.664/ 0.665	0.6003 2.4147	0.6718	
6.40	0.5621	0.6525	U. 6067	0.6658	0.6240	0.6724	
6.50	0.5/72		0.611	0.6658	<u>0.6411</u> .		
5.70	0.6065	0.6531	0.8475	0.6650	0.6/0/	0.670v	
6.80 6.40	0.6207 0.6347	0.6527 0.6521	U.0641 U.0767	0.6641 0.6629	0.6843 0.6977	0.0647 0.6643	
7.00	0.6485	0.6512	0.6901	0.6614	0.7107	0.0005	
- 10	0.661v	0.6486	0.7033 0.7162	0.65 <u>97</u>	0.7237 0.7368	U-6647 U-6672	
7.50	0.6881	U.6469	0,1240	0.6554	0.7694	0.6546	
7.40 7.50	0.7009 0.7155	0.6478	0.7415 0.7538	0.6528 0.6500	0.761d <u>0.7741</u>	0.6547 0.6550	
7.60 7.70	0.1256 0.7576	0.6404	9.1657 8111.0	0.6470 0.6437	0.7861	0.6502	
7.80	0.7495	0.6349	0.1874	0.6401	C. 408.0	0.6466 U.642H	
1.90 8.00	0.760		0.8008	0.6364 0.6324	0.820s 0.8320	0.6147	
8.10	G.7831	0.6750	0,8250	0.6783	0.8427	0.0511	
8.20 8.50	0.7939 0.8045	0.6175	0.8337 0.8441	0.624V Q.6175	U+8535 U+8640_	0.625 <i>x</i>	
8.40	0.8148	0.6155	0.8544	0.6146	0.8741	0.6152	
8.50 8.60	0,8249 0,8347	0.6014	0.8741	0.6046	0.8841 0.8439	0.6044	
8, /O 8, 80	0.844	0.5004	0.8836	0.5793	0.9033	0.5788	
8.40	0.8536 0.8627	0.5909	0.8929	0.5440 0.5884	0.9125 0.9214	0.5441 0.5872	
9.00 9.10	0.8716 G.8802	0.5860	0.9106	0.5827	0.9302	0.5811	
4.20	0.8886	0.5/57	0.9172 0.927u	0.5770 017c.0	0.94H6 U.946H	0.5687	
9.30 9.40	0.8968		0.9555	0.5650 0.5589	0.954H 0.9625	0.5625	
9.50	0.9124	0.5576	0.9508	<u> </u>	0.4/00		
9.60 9.70	0.4146		0.4581 0.4651	0.5464 0.5460	0.4115 0.4115	0.5426 0.5358	
9.80	0.414	0.5476	0.4/14	0.5445	0-4404	0.5270	
9,90	0,9408	0.5368		Q.52 <u>70</u>		9,5221	

	MACH NUMB WIDTH TO LENGTH	SER 3.50 1 RATIO 0.2500	MACH NUMBE WIDTH TO LENGTH		MACH NUMB WIDIN TO LENGTH	R 3.50 HAIIC 0.7500
GENERALIZED	RADIATION	KADIATION	HADIATION	RADIATION	HADIATION	RADIATION REAGTANCE
FREQUENCY 0.10	RESISTANCE - 198753.0000	RFACTANCE 0.011	RESISTANCE -99576-2998	REACTANCE Q.0150	RESISTANCE -60250.8994	0.0157
0.20	-24621-2998 -7229-1700	0.0223 0.0334	-12310-6000	0.0260	-8207.0900 -2404.7200	0.0273
0.30	-3021.9500	0.0445	-3614-5800 -1510-9600	0,0520	-2404.7200	0.0545
0.50	-1532,9800 -878,8860	0.0556	-766.40(0 -439.4400	0.0650	-510.9900 -292.9580	0.0681
0,70	-548.2080	0.0177	-274,1300	0.0908	-182,7510	0.0952
0.80 0.90	-363.8120 -253.0680	0.0888 0.0997	-181.9010 -126.5280	0.1037 0.1165	-121.2640 -84.5478	0.1087 0.1221
1.00	-182.7000	0.1107	-91.3425	0.1292	-60.8899	0.1354
1.10	-135.9220 -105.6580	0.1216	-6/.9516 -51.8180	0.1419	-45.2949 -34.5380	0.148/ 0.1620
1.50	-80.7132 -63.4681	0.1433 0.1541	-40,3457 -31,9671	0.1672	-26.88f1 -21.3027	0.1/51
1.50	-51.4741	0,1648	-25.7199	0.1921	-17,1351	0.2012
1.60	-41.9715 -34.6219	0.1754 0.1860	-20.9662 -17.2890	0.2044 0.2166	-13.9645 -11.5113	0.2141 0.2269
1.80	-28.8530	0.1965	-14,4019	0.2288	-9.5849	0.2396
2.00	-24.2649	0.2070	-12,1051 -10,2562	0.2408 0.2528	-8.0518 -6.8173	0.2521
2.10	-17.5702	0,2216	8.7518	0.2646	-5.8124	0.2770
2.20 2.30	-15.1047 -13.0627	0.237B 0.2479	-1.5159 -6.6916	0.2763 0.2879	-4.9865 -4.3015	0.2892 0.3013
2.40	-11.3577	0.2580	-5.6357 -4.9152	0.2994	-3.7284 -3.2457	0.3132 0.3250
2,50	-9.923B -8.1097	0.2679	-4.3045	0. 3219	-2.8561	0.3367
2.10	-7.6755 -6.7888	0.2875	-5.7835 -5.3364	0.5550 0.5459	-2.4862 -2.1855	0.3482
2.40	-6.0/50	0.1067	-2.9595	0.1547	-1,9256	0.3/07
3.00 5.10	-5-3616 -4-7881	0-3161 0-3254	-2.6156 -2.3256	0.5653 0.3758	-1.6996 -1.5021	0.3817 0.3926
3,20	-4.2852	0.3346	-2.06/8	0.3861	-1.3286	0.4032
3.30	-3.843 <i>f</i> -3.454 <i>f</i>	0.3437	-1.8426 -1.6435	0.4962	-1.1755 -1.0397	0.4147
3.50	-3-1107	0.3615	-1.4568	0.4160	-0.9180	0.4542
5.60 3.70	-2.8055 -2.5555	0.5702 0.5788	-1.50Y5 -1.1684	0.4256 0.4151	-0.6106 -0./115	0.4441 0.4530
3.80	-2.2401	0.3872	-1.0419	0.4443	-0.6258	0.4654
3.90 4.00	-2.0/22	0.4955	-0.92(7	0.453	-0.5464	0.4727
4.10	-1.6995	0.5118	-0.7312	0.4710	~()_4(184	0.4408
4.20 5.30	- 1.5596 - 1.5946	0.4147 0.4274	-0.6460 -0.5681	0.4745	-0.3480 -0.2425	0.4995 0.5080
4.40	-1.2628	0.4351	-0.4767	0.4960	-0.2415	0.5165
4.50	-1.1427 -1.7529	0.4425	-0.43 <u>11</u> -0.3707	0.5039	-0.193y -0.1499	0.5244
4.70	-0.9323	0.45/1	-0.314/	0.5191	-0.1088	0.5198
4.80 4.26	-0.8349 6.7540	0.4641	-0.2626 6.2145	0.5265 0.5436	-0.0704 0.0343	0.5472 9.5545
5.00	-0.6764 -0.6058	0.6777 0.6863	-0.1645 -0.12/1	0.5404 0.5471	-0.0004 Q.031A	0.5614 0.5681
- 5.20	-0.5365	0.4407	-0.0878	6.5536	0.0619	0.5746
5.50	-0.4/42	0.5031	-0.0506 -0.0156	0.5599	0.0906	0.580s
5,50	-0.3619	0.5090	0.0175	0.5/17	0.1441	0.5926
5.60 5.70	-0.5113 -0.2659	0.5148 0.5205	0.0489 0.0489	0.5774	0.1690 0.1750	0.5982 0.6035
5.80	-0.2194	0.5259	0.1071	0.5879	0.2160	0.6086
5.90	-C.1776		0.1541	0.5976	0.2381	0.6134 0.6180
6.10	-0.1011	0.5414	0.1847	0.6021	0.2800	0.6224
6.20 6.50	-0.0660 -0.0528		0.2512	0.6105	0.3143	0.6104
6.40	-0.0015	0.5554	0.2552	0.6144	0.3381 0.3564	U.6541 0.6575
6,40	0.0281	0.5634	0.2744	0.6215	0.5/42	0.6407
6.70	0,0894 0,1103	0.5679	0.5146 U.5558	0.6247	0.3915	0.64 16 0.6464
6.8U 6.90	0.1351	0.5755	0,1524	0.6306	0.4247	9.6487
7.00 7.10	0.158¥ 0.1817		0.3704 6,3880	0.6351 0.6355	0.4410 0.4568	0.6511 0.6532
7.20	0.2056	0.5856	0.4050	0.6577	0.4723	0.6550
7.50	0.2746		0.4217	0.6596 0.6414	0.4874	0.6566 0.6574
7,50	0.2644	0.5944	0.4537	0.6429	0.5164	0.658)
7.60 7,70	9.2832 9.3014	0.5494	0.4641 0.4842	0.6443 0.6454	0.5312 0.5052	0088.0 7088.0
7.80	6.3140	0.6017	0,4949 0,5144	(),6464 (),647)	0.5590 0.5726	0.6612 0.6615
7.90 8.00	0,3360 0.3526	0.6056	0.5215	0.6477	0.5859	0.6616
8.10 8.20	0.5686 0.3641		U.5415 U.5548	0.6482	0.5940	0.6614
B.50	0.3993	0.6109	0.5681	0.6482	0.6245	0.6605
8.40	0.4140 0.4281		0.5811 0.5939	0.6480 0.6476	0.6469	0.6598 0.6589
8.60	0.4422	0.6147	0.6064	0.6471	0.6612	0.6578
8.70	0.4558 0.4690		0.61 <u>87</u> 0.6307	0.0465 0.0454	0.6730	0.6565 0.6550
8,40	0.4820	0.6172	U-6425	0.6444	0.0961	0.6533
9.00 9.10	0.4746		0.6541 9.6655	0.6431 0.6417	0.7075 0.7184	0.6515 0.6494
7.20	0.5190	0.6186	U.6761	0.0402	U.7295	0.6472
9,30 7,40	0.5301		4) 40 • 0 444 • 0	V.6384 V.6366	0.7400	0.6449 0.6424
9,50	0.551	V.0187	0,1089	0.0345	0.770+0	0.6397 0.6369
9.60 3.70	0.5646	0.6182	0.7295	0.6301	0.7803	0.6559
9.HD	0.5860	8114.0	U./374 C./472	0.6276 0.6250	0.7906 0.8002	0-650s 0-6475
10.00	0.540		U. 758H	0.6223	U. 1096	0.6241

ENERAL IZED	RADIATION	RADIATION	MADIATION	RADIATION	RADIATION	RADIALION
FREQUENCY 0.10	RESISTANCE -49688.1997	REACTANCE 0.0140	RESTSTANCE -24844.0999	REACTANCE 0.0144	RESISTANCE -12422-0000	REACTANCE U, UL47
0.20	-6155.3199 -1807.2900	0.0279	-3017.6600 -903.6450	0.0289 0.0453	+1538-8500 -451-8320	0.0243
0.40	-755.4860	0.0558	-377.7420	0.0577	-188.8/00	0.0586
0.50	-183,2420 -219,7170	0,0697 0.0835	-191,6190 -109.8560	0.0720	-95.8075 -54.9251	0.0732 0.0878
0.70		0.0974	-68.5269 -45.4679	0.1006 0.1149	-34.;597 -22./290	0.1023 0.1167
0.90	-65,2511	0,1249	-31.6226	0,1291	-15.0051	0, 1312
1.00	-45.6636 -33.9665	0.1585 0.1521	22.8241 16.9740	0.1452 0.1572	-11.4044 -8.4777	0. 1455 0. 1598
1.20 1.30	-25.8979 -20.1589	0.1657 0.1791	-12,9379 -10,0665	0.1712 U.1851	-6.4579 -5.0203	0.1740 0.1881
1.40	-15.9696	0.1925	-7,4698	0.1989	-3.9699	0.7021
1,50	-12.8428 -10.4636	0.2057 0.2189	-6.4042 -5.2123	0.2126	-3.1849 -2.5866	0.2293
1.70	-8.6225 -7.1763	0.2320	-4,2893 -1,5636	0.2597 0.2530	-2.1226 -1.7572	0.2435
1,90	-6,0252	0.2578	-2.4852	0.2663	-1.4651	0.2705
2.00 2.10	-5.0978 -4.3426	0.2705 0.2851	-2.5187 -2.1380	0.2744 0.2924	-1.2291 -1.015/	0.2838 0.2970
2.20 2.50	-3.7215 -5.2061	0.2956 0.3079	-1.8245 -1.5653	0.3052 0.3179	-0.8757 -0.7417	0.5101 0.5224
2.40	-2.1741	0.3201	-1.3442	0.3505	-0.6290	0.3357
2.50	-2.4109 -2.1019	0.3321 0.3440	-1.158H -1.0004	0.3429	-0.5327 -0.4499	0.3482 0.3666
2.70 2.80	-1,8376 -1,6101	0.4558	-0.8646	0.3672	-0.3782 -0.3154	0.5/28
3.00	-1,4131 -1,2415	0,3787 0,3849	0.6445	0. 1907	-0.2601	0.3461
3.10	-1.0913	0.4010	-0.5545 -0.4751	0.4023 0.4136	-0.2110 -0.1471	0.4084 0.4199
3.20 3.50	-0.9590 -0.8419	0.4118 0.4225	-0.4045 -0.3416	0.4247	-0.1274 -0.0915	0.4312
3.40 3.50	-0.7378 -0.6448	0,4430 0,4433	-0.2850	0.4464	-0.0586 -0.0283	0.4531 0.4637
3+60	-0.5613	0,4534	-0.2538 -0.1873	0.46/2	-0.0002	0.4142
3.70 3.80	-0.4860	0.4632	-0.144/ -0.1057	0.4775	0.0257	0.4844 0.4944
4.00	-0.3557 -0.7790	0.4824	-0.0676 -0.0361	0.4969	0.0735	0.5041 0.5136
4.10	-0,2470	0,5007	-0.0048	0.5155	0.095a 0.1162	0.5224
4.20 4.30	-0.1970 -0.1547	0.5095 0.5181	0.0244 0.0519	0.5245 0.5552	U.1561 0.1555	0.5320 0.540#
4.50	-0.1136 0.0753	0.5265 0.5346	0.0780 0.1026	0.5417	0.1/3/ 0.1910	0.5444
4.60	-0.0199	0.5425	V.1261	0.5580	0.2089	0,5476
4.80	-0.0058 0.0258	0.5502	0.1486	0.5657 0.5752	0.2423	0.5/32
<u>4.90</u> -	0 <u>.055/</u> .			0.5805	0.2743	<u>0,5883</u>
<u>5.10</u>	0.1110	0.5786	0.2462	0.5941	0.2898_	0.6021
5.20 _5.30	0.1367 0.1615	0.5851 0.5913	0.2490 0.2672	800A.u 010A.u	0.3051 0.3202	0.6086 0.6149
5.40 5.50	0.1848 0.2074	0.5775 0.6051	0.2850 0.5025	0.6140 0.6197	0.3351 0.3678	0.620¥ 0.6266
5.60	0.2791	0.6086	0.1142	0.6242	0.5644	0.6320
5.70 5.80	0.25 <u>01</u> 0.2704	0.6189	0.3350 0.3521	0.6294	0.3454	0.6477
- 5 <u>. 90</u>	0.2701	0.6231	0.3681 0.3838	0.6435	0.4071	0.646h
6.10	0.327/	0.6425	0.3942	0.6477	0.4350	0.6553
6.20 6.30	0.3458 0.3654	0-6365 <u>0</u> -6401	0.4145 0.4295	0.8552	0.4488 0.4625	0.6571
6.40 6.50	0.3806 0.4974	0.6459 D.6472	0.4445 0.4559	0.6586	0.4/61 0.48v6	0.6640
0.60	0.4158 0.4299	0.6503 0.6531	0.4733 0.4875	0.6646	0.5030	0.6/18
6.80	0.445/	9.6557	0.5016	0.6675	0.5164 0.5240	0.6/44
6.40 7.00	0.4612 0.4763	0.6580	0.5155	0.6736	0.5427 0.555d	0.6786 0.6804
7.10	0.4414	0.6620	0.5429 0.5564	0.6752	0.5687 0.5816	0.6818 U.6831
7.30	<u> </u>	0.6650	0.5697	0.6111	0.59:4	0.0841
7.40 7.50	0.5345 0.5485	0.6662 0.6671	0.5828 0.5959	0.6786	0.6070 0-6196	0.6654
7.60 7.70	0.5622 <u>0.575</u> 7	0.6678 0.6683	0.6087 0.6215	0.6796 0.6798	0.6520 0.6644	0.6855 0.6855
1-80	0.5890	0.6686	U.6341	0.6747	0.6566	0.6855
7.90 8.00	0.6071	0.6687	0.6465 0.6584	0.6784	<u>0.6687</u> 8086±0	2.6848
8.20	0.6278	0.6675	0.6710	0.6781	0.6926 0.7044	0.6831
8.50	0.6527	0.6667	Ų,69kY	0.6760	0.7161	0.6406
8.40 8.50	8499.0	0.6657 0.6645	0.7067 <u>0.7185</u>	0.6746 0.6730	0.7276 0.7390	0.6772
8.50 8.70	0.6886	0.6615	0.7297 0.7410	0.6711	0.7502 0.7614	0.6751 0.6727
8.80	0-1116	0.6547	0.7521	0.6669	0.7725	0.6765
8.90 9.00	0.7224	0.6578 0.6556	0.7651	0.6619	0.7852	0.6650
9.10	0.7449	0.6533 0.6508	0.7846	0.6591	0.8044	0.6620 0.6588
9.30	0.7661	0.6481	0.8054	0.6529	0.8250	0.6554
9.40 9.50	0.1165 0.1861	0.6455 0.6423	0.8156 0.8256	0.6496 0.6561	0.8351 0.8450	0.6518 0.6481
9.60 9.70	0.7967 C.8066	0.6391 0.6358	0.8354 0.8451	0.6425 6.6587	0.8548 0.8644	0.6442 0.640)
9.80	0.8162	0.6573	0.8546	0.6547	0.8758	0.6151
9.90	0.825/	0.6287	0.8640 1878.0	0.6306 0.6263	0.8831	0.6315 0.6270

	MACH NUMBER 4.00 WIDTH to LENGTH RATIO 0.2500		MACH NUMBER 4.00 WILLIH TO LENGTH RATIO 0.5000		MACH NUMBER 4.00 hidih to length ratio 0.750c	
ENERAL 12 FD	RADIATION	RADIATION	RADIATION	RAULALION	KADIATION	KADIATION
FREQUENCY 0.10	RESISTANCE -305540.0000	REACTANCE 0.0101	-151770.0000	REACIANCE Q.0115	-101180-0000	REACTANCE 0.0120
0.20	-37687.8999 -11091.2999	0.0202	-18843.8999 -5545.6600	0.0230 0.0345	-12562-6000 -1647-1100	0.0239 0.0359
0.40	-4617.3199	0.0403	-2123.6600	0.0459	- 1549-1100	0.0478
0.50	-2363.1300 -1358.1200	0.0503	-1181.5600 -679.0580	0,0574	-787.7080 -652.7060	0.0597
0.70	-849.3180	0.0104	-424.6560	0.(18)2	-285-1020	0.0855
0.80	-564.9950 -394.0170	0.0804 0.0904	-282.4940 -197.0040	0.0016	-188.5270 -151.5550	0.0954 0.1077
1.00	-285.1980	0.1005	-142.5930	0.1143	-95.0584	0.1170
1.10	-212.7590 -162.6810	0.1102	-106.3630 -81.3321	0.1256	-70,4034 -54,2154	0.1307
1.30	-127,0210	0.1300	-63,5010	0.1480	-42.5216	0.1541
1-40	-100.4530 -91.4701	0.13VH 0.1496	-50.4655 -40.7225	0.1592 0.1705	-35.6562 -27.1597	0.165/ 0.1/72
1.60	-66.6266	0.1593	-33,2988	0.1813	-22,1895	0.1887
1.70	-55,1266 -46,0844	0.1690	-27,5469 -23,0238	0.1923	-18.3537 -15.3570	0.2114
1.90	-38.8807	0.1884	-19.4199	0.2143	-12,9430	0.2221
2.00	-35-0758 -28,5432	0.1978 0.2073	-16.5145 -14.1407	0.2249	- 10,9945 - 9,4146	0.2159 0.2450
2.20	-24.4524	0.2167	~ 12.1989	0.2462	-8.1144	0.2561
2.40	-21.2242 -18.5046	0.2261	-10,5824 - 4,2300	0.2568	-1.0351 -0.1318	0.2670
2.50	-16,2505 -14,5216	0.2446 0.2558	-8.0902	0,2776	-5.3701 -4.7235	0.7884
2.60	-12.0/50	0,2629	-1.1250 -6.2912	0.548/	-4.1/10	0.2993
2.80 2.90	-11.2630 -10.0440	0.2719 0.2808	-5.5878	0.4062 0.4182	-3.6461 -1.2857	0.3203 0.3407
3,00	-6.9869	0.2897	-4.4753 -4.4450	0.3281	-2.4741	U. 54U+
3.10 3.20	-8.0658 -7.2598	0.2985	-5,9798 -1,5734	0.5179	-2.617d -2.5446	0.3510
3,30	-6.5519	0.3158	-3.2157	0.35/2	-2.1040	0.3709
3.40 3.50	-5.9267 -5.3736	0.3244 0.3328	-2.4000 -2.6,48_	0.1666 0.160	t.8910 1.7018	0.3807 0.3904
5.60	-4.8820	0.1417	-2.3703	0.5852	-1.5551	0. 5994
3.70	- 4.0521	0.4494	-7.14/5	0.4945	- 1, 3820 - 1, 2467	0.4093
3,90	-1,7006	0.4657	<u>-1./681</u>	0.4121	-1-1234	0.42/6
4.00 4.10	- 1. 1865 - 5. 0444	0.1756 0.3815	-1.6060 -1.4575	0,4298 0,4294	- 1.0131 -0.4126	0.4466 0.4454
4.20	-2.0415	0.3893	-1.3262	0.4379	~0.8211	0.4541
4. 5ti		0.4969	-1.2051 -1.0945	0,4462 0,4544	-0.7376 -0.6610	0.4626 0.4710
4.50	<u>-6</u> 2015	_0.4119	-9,7933	0.4624	-0.5900	<u> </u>
4.60	-2.0247 1.0627	0.4173	-0.9005	0.4703 0.4781	- 0.5250 - 0.4658	0.4873 0.49 <u>53</u> _
4.60	1. / 144	0.4556	-0.7565	6.6857	-0.4105	0.5010
<u>5.00</u>	-1.5780 -1.4524	Q.44Q6 O.4475	<u> 0.8655</u> -0.5960	0,4951 0,5004	-0.3587	V.5106 U.5181
5.10	-1.3362	0.4544	<u>-v.>355</u>	0.5076	-0.2050	0.5254
5.20 5.30	-1.2294 -1.1301	0.4675	-0.4790 -0.4205	0.5145 0.5214	-0.2235 -0.1840	0-5325 0-5394
5.40	-1.0480 -0.9524	0.4739	-0.5676	0.5281	-0.1468	0.5462
<u>5.50</u>	-0.8726	0.4802 0.4864		0,5410		U. 5528
5.70 5.80	-0.7982 -0.7286	0.4724 0.4784	-0.234 <u>/</u> -0.1969	0.5555	-0 <u>.046</u> 9	
5.40	-0.6645	Q,5041	-0.15(2	0.5592	0.0115	9.5/15
6.00 6.10	-0.6025 -0.5452	0.5098 0.5154	-0.1216 -0.0877	0.5644 0.5705	0.0387 0.0647	0.5855 0.5880
6.20	-0.4915	0.5207	-0.0556	0.5759	0.0849	0.5942
6.40	-0.4405 -0.5725	0.5260 0.5312	-0.0299 6.0093	<u></u>	U-1136	0.5994 0.6045
_6.50	-0.5475	0.5562	0.0322	0.5710	0.1587	0.6095
6.60	- 0.3044 -0.2658	0.54!1 0.5459	0.0570	0.5758 2.6003	0.1801 U.2007	0.6140 0.6185
6.80	-0.2252	0.5505	0.1072	0.6047	0.220/	0-6558
7.00	-0,1986 -0,1557	0.5594	0.1558	0.6089	0.2589	0.0209
7.10	-0.1202	0.5656	<u></u>	0,5169	0.2112 0.2950	9.0340
7.20 7.50	-0.0888 -0.0585	0.5611 0.5117	0.1940 0.2196	0.6206 0.6242	0 3123	0.6382
7.40	-0.0245	0.5755	0.2195	0.6275	0.3292	0.644
7.50	-0.001/ 0.0250	0.5828	0.2569	0.650/	0.345/ 0.3618	0.6479 0.6508
7.70	0.0505	0.5865	0.2958 0.3156	9.6301 9.6394	0.3776	0.6555 0.6560
7.90	0.0988	0.5928	0.3308	9.6417	9.4084	0.6585
8.00 8.10	U. 1218 0. 1430	0.5958 0.5987	U. 5+76 U. 5640	0.6445 0.6465	0.4230 0.4375	0.6604 9.6624
8.20	0.1648	0.6012	0.3800	0.6485	0.4518	0.6642
8.30 B.40	0.2051	0.6067	0.4110	0.6504	0.4658 0.4790	0.6658 0.6673
8.50	0.2745	0,6091	0,4259	0.6537	0.4931	0.6686
8.70	0.2429	0.6114	U.4406 C.4549	0.6551 0.6565	0.5065 <u>0.5176</u>	0.0047
8.80	0.2785	0.6155	0.4640	0.65/4	U. 5325	0.6714
9.90 9.00	0. 1121	0.6174	0.4828	0.6585	<u>0.5452</u> 0.55//	0.6/19
9.19	0.3282	0.6208	<u> </u>	184907	0-5700	U. 0126
9.20 9.10	(, 34 ev (, 34 ev	0.6773 0.6737	0.5226 0.5354	0.6604	0.5H22 0.5Y41	0.6/2/
7.40	0. 1/40	0.6250	0.5479	0.6606	0.6054	0.6724
9,50.	0.3885 0.4027	0.6261	0.5724	<u> </u>	0.6115	0.6/15
7.10	0.4168	U-6280	0.5844	C. COUL	0-6403	0.6100
9.80 9.90	0.4301 0.445 <u>1</u>	0.6288 0.6295	0.6016	14ca.u 14ca.u	0-6514 0-662k	ე. გ(გეე ე. გ(გეე
19.00	0.4562	0.6301	0.6140	0.6584	0.6732	U. 60 / 6

	MACH NUMB WIUTH TO LENGIH		MACH NUMB MIDIN IR KENGIH		MACH NUMB MIDIN TO LENGTH	
ENERALIZED	RADIATION	RADIATION REACTANCE	HAGIATION	RACIATION	AADIATION	RADIATION REACTANCE
PREQUENCY 0. 10	RESISTANCE -75885.0996 -9421.9700	0.0122	RESISTANCE - 17442.5000	REACTANCE 0.0126	RESISTANCE -14471.2444	0.4)127
0.20 0.30	-9421.9700 -2772.8500	0.0244	-4710.9900 -1586.4200	0.0251	-2355.4900 -693.2070	0.0255 0.0382
0.40	-1161.8300	0.0488	-580.9140	0.0502	-693,2070 -290,4560	0.0504
0.50	-590.7810 -339.5270	0.0609	-295.3640 -164.7610	0.0627	-141.6430 -84.8766	0.0650
0.70	-212,3250	0.0852	-106,1600	U. OH 75	-53,0171	0.0887
0.80	- 14 1-2430 -98.4973	0.0973	-70,6180 -47.2440	0 - 100 1 0 - 1125	- 35 - 305 3 - 24 - 61 7 4	0.1015 6.1140
1.00	-71.2909	0.1213	-35.6397	0.1248	-17.8142 -15.2655	0.1266 0.1590
1.10	-53.1/45 -40.6578	0.1333	-26.3803 -20.3207	0. 1494	-10.1521	0.1515
1.40	-31,7409 -25,2216	0.15/1	-15.860H -12.5946	0.1016	-1,920h -6.2886	0.1638 0.1762
1.50	-20.3483	0.1807	-10.1614	0.1858	-5.007.4	0. 1884
1.60	-16.6348 -13.7571	0.1923 0.2040	-8.3029 -6.8621	0.1978 0.2098	-4.1167 -3.4147	0.2006 0.2127
1.80	-11.4436	0.2155	-5.7284	0.2217	-2.8456	0.2747
2.00	-4.6845 -8.2346	0.2270	-4.0747 -4.0747	0.2335	-2.5911	0.256/
2.10	- 1.04BS	0.2497	-3.4994	0.2568	-1./248	0.7604
2.20 2.30	~6.0722 ~5.2614	0.2610 0.2721	-1-0088 -2-6010	0.2684 0.2798	-1.4772 -1.2798	0.277U 0.2816
2.40	~4.5827 _4,0101	0.2852 0.2941	-7.2590 -1.9700	0.2711 0.4025	-1.09/ <i>></i> -0.9500	0.2951
2.60	-3.5257	0.1050	-1.7741	0.5135	-0.8241	0.3178
2.70	-3.1079 -2.7505	0.3264	-1.5133 -1.3315	0.3245	-0.7160 -0.6221	0.4287
2.90	-2.4409	U. 5369	<u>- - - - - - - - - - - - - -</u>	0.3462	-0.5402	0.5507
3.00 3.10	-2.1719 -1.9468	0.34/3	-1-0561 -0-9153	0.5569 0.3675	-0.4682	0.36;! 0.3/24
3.20	-1.7301	0.4678	-0.8987	0.3779	-0,5477	U. 582 ₹
3.40 3.40	-1.5480 -1.5866	0.3778	-0.7141	0.5882	-0,2472	0.4050
3.50	-1,2429	6.3976		U-4083	-0.2102	0.4137
5.60 5.70	-1.1144 -0.4943	0.4072	-0.4865 -0.4251	0.4182 0.4280	-0.1725 -0.1181	0.424/
3.80	-0.8955	0.4261	-0.1694	0.44/5	-0.1064	0.4437
5.90 4.00	-0.8018 -0.716/	0.4445	-0.5186 -0.2721	0.4470	-0.0110 -0.0498	0.4528 0.4622
4-10	-0.6393	0.4554	-0.2293	0.4654	-0.6243	0.4/14
4.20 4.30	-0.5686 -0.5058	0.4627 0.4708	-0.1878 -0.1532	0.4744	-0.0004 0.0222	0,4804 0,4695
4.40	-0.5442 -0, 3895	0.4793	-0.1191 -0.0572	0.4718 0.5003	0.04 15	0.4480
4.50 4.60	-0.3384	0.4758	-0.05/4	0.5086	- <u>- 0,0</u> 639 0.0842	0.5966 0.5150
4.80	-0.2412 -0.2413	0.5039 0.5117	-0.02/5 -0.007/	0.5167	7101 o	0.5232 0.5312
4.90	-0.2062	0,5194	0.0274	U - 5325		0.5371
5.00	-0.16/8 -0.1318	0.5269 0.5342	0.0463	0.5401 0.5416	0.1555	0.5467 <u>0.5542</u>
5.20	-0.041B	0.5414	0.0408	0.5548	9, 1851	0.5615
5.40	-0.055£	0 <u>.5552</u>	0.1318	0.5619	0.2004 0.2153	0.5687 0.5756
5.50	-0.0002	0.5614	0.1511 0.1690	0.5755	0.2299	0.5823
5.60 5.70	0.0470_	2.5747		0.5820 0.5884	0.2442 <u>0.2583</u>	0.5887
5.80 5.90	0.0720 0.0959	0.5898 7.666.0	0.2054 0.2225	0.5945	0.2/21	0.6014 0.6014
6.00	0.1187	0.5425	0.2391	0.6062	0.2445	0.6141
5.20	0.1625	0.6054	0.2555	0.6118	0.3125 0.3256	0.618/ 0.6241
6.50	0.1828	0.6086	0.2867	0.6224	0.3386	0.6293
6.40	0.2027 0.2220	0.6136 0.6185	0.3017 (1.3108	0.6774	0.3515 0.3645	0.6343 0.6570
6.60	0,2405	0.6731	0.5515	0.6568 0.6412	0.4764	0.6416
6. 70 6. 80	0.258H 0.2765	0.6776	0.3459	0.6454	0.4875	0.0,55
7.00	0,3437	0.6598	0.3/41	0.6542	0.4141 0.4265	0.6574
7, 10	0.5269	0.6435	0.4015_	0.6569		0.6635
1.20 1.10	0-3430 0-5587	0.6471 0.6504	0.4149 0.4282	0.6601 0.6635	0.4507	0.6664 0.6664
7.40	0.3740	0.6535	0.4414	0.6665	6.4744	0.0750
7.60	9.3891 0.4039	0.659.	U.4671	0.6774	0.4960	0.6/50 0.6/84
7.10	0.4185	0.6519		0.6745	(1.5105	0.6608
7.80 7.90	0.4328 0.4468	0.6665	0.492% 0.5048	1010.0 8810.0	0.5277 0.5338	0.6877 0.6849
8.00 8.10	0.4607 0.4743	0.6685 0.6704	0.5172 0.5294	0.6806 0.6823	0.5454 0.5570	U. 6861
8.70	0.4877	0.6721	0.5415	0.6858	0.5684	0.6847
8.40	0.500V 0.514V	0.6755	0.5654 0.5654	0.0851	0.5740 0.5911	0.6907 0.6717
8.50	0.5767	90100	9.5772	0.6871	0.6024	0.0927
8.60 8.70	0.5394 0.5519	0-6769	0.5888 0.6004	0.6379	0.6155	0.6733
8.80	0.5642	0.6785	0.6118	0.6888	0.6357	0.6340
8.90 9.00	0.5764	0.6190	0.6252	0.6840	0.6466 0.6575	0.6449
9.10	0.5002	0.619;	0.6476	U.6H8B	<u> </u>	0.6257
9.20 9.30	0.6119 0.6235	0.6190 8876.0	46660 6166-0	2886.0 0686.0	0.6140	7849°0
9.40	0.6 149	0.6784	0.6784	0.6974	0.7001	0.6917
9.50	0.646/	0.6//1	1.8841 1.669.0	0.685h	0.7204	ስ• የዘላ? ሽ• የአስኒ
9.70 9.80	0-6683	0.6762	0.7102	0.6878	0.7312	0.6867
9.90	8689.0	0.6739		0.6813	0.7514	0.0001 UCO0.U

	HÁCH NUMB HIOTH TO LENGTH		MACH NUMB		WACH NUMBER 4.50 WIDIN TO LENGTH RATIO 0.7500	
GENERAL 1 ZEU	RADIATION	RADIATION	RADIATION	RADIATION	RADIATION	RADIATION
FREQUENCY 0.10	-#34880.0000 HF2121WCE	REACTANCE 0.0092	RESISTANCE -219443.0000	REACTANCE 0.0103	##51514NCE -146295.0000	REACTANCE O. 0107
0.20 0.30	-54574.1997	0.0092 0.0184 0.0276	=27287.0040	0.0206 0.0309	-18191.3999	0.0213 0.0320
0.40	-16085.2999 -6750.1600	0.0367	-8042.6249 -5375.0800	0.0411	- 5361,7500 -2250,0500	0.0426
0.50	-3437.7500 -1978.8200	0.0459	-1/18.8790 -989.4110	0.0514	-1165.2100 -650.6060	0.0532
0.70	-825.8610	0.0642	-619.7260 -412.4280	0.0719 0.0821	~\$13,1490 ~275.2830	0.0745 Q.0850
0.90	-576.8820	0.0825	-288.4580	0.0423	-145-5840	0.0956
1.00	-418.2530 -312.5150	0.0916	-207.1220 -156.2520	0.1025 0.1176	-134.4120 -104.1640	0.1061 0.1166
1.20	-234.3870 -187.2370	0.1097 0.1187	-156.2520 -119.6870 -93.6112	0.1228 0.1329	-79.7870 -62.4025	0.1271 0.1376
1.40	-149.0740	0.1277	-74.5282	0.1429	-49.6797	0.1480
1.50	-120,5190	0.1367 0.1456	-60,2497 -49,3592	0.1529 0.1629	-40.1594 -32.8986	0.1583
1.70	-81,8497 -68.5539	0.1546	-40.9121	0.1778 0.1827	-27.2663 -22.8523	0.1789
1.90	-57.9499	0,1723	-28-9591	0. 1426	-19-2955	0-1974
2.00 2.10	-44.3927 -42.4138	0 1811 0 1898	-24.6788 -21.1876	0.2024 0.2121	-16.4408 -14.1122	0.2095
2.20	-36.6676	0. 1985	-18.3126	0.2218	-12.1945	0.3569
2.30	-31.8949 -27.8992	0.2072 0.2158	-15.9241	0.2315	-10.6008	0.2395
2.50	-24.5297 -21.6690	0.2244	-12.23/6 -10.8051	0.2506 0.2600	-8.1402 -7.1838	0.2593
2.70	19.2252	0.2414	-9.5809	0.2694	-6.3662	1815.0
2.80 2.90	-17.1257 -15.3122	0.2498 0.2582	-8.5208 -7.6197	0.2787 0.2880	-5.6632 -5.6555	0.2883 0.2979
3.90	-13.7540 -12.3652	U.2665 U.2747	-6.8301 -0.1411	0.2971 0.3062	-4.5274	0.3074
3.10 5.20	-11-1627	0.2827	~5.5572	0.5155	-4.0664	0.3167 0.3260
3.30	-10-1051 -9-1715	0.2911	-5.005/ -4.5361	0.3242 0.3331	-3.3059 -2.9910	0.3555
3,50	-8.3441	0.3971	4,1176	0.5419	-2-7119	0-3535
5-60 5-70	-7.6086 -6.9524	0.5150 0.3229	~4.7489 ~5.4178	0.5506 0.5542	-2.4623 -2.2346	0.3624 0.3713
3.80 3.90	-6.3653 -5.8384	0.3307 0.4484	-3.1212 -2.8546	0.36/7 0.5761	-2.0498 -1.8600	0.580U 0.3887
4.00	-5.3642	0.1460	-2.0145	0.3845	-1.6917	0.3975
4.10	-4.9303 -4.5493	0.3556	-2.39 <u>71</u> -2.2003	0.5727	1.5507 -1.4173	0.4057 0.4141
4.30	-4.19H5 -5.87Y2	0.4685 0.3758	-2.0214 -1.8584	0.4089	-1,295/ -1,1848	0.4224
4.40 4.50	_ c 1.5885_	0,5851	-1,7095	0.4247	1.0832_	0.4303
4.60 4.70	- 5, 32 51 - 5, 0002	0.1702	1.5752	0.4324 0.4401	-0.9900 -0.9042	0.4543
4.80	-2.8576	0.4045	-1.5552	0.4476	-0.6250	0.4620
5.00	-2,6551 2,464V	0.4115		0.4623	-0.6841	0.4771
5.10 5.20	-2,2913 -2,1310	0.4314	-1,0587	0.4645	-0.6211 -0.5625	0.4917
5-30	- 1.9827	0.4480	-0.8765	0.4836	-0.5011	0.4988
5.40 5.50	-1.8452 -1.7170	0.4444 0.4508	-0.8037 -0.7559	0.4402	-0.4566 -0.4086	0.5058 0.5127
5.60 5.70	- 1.5989	0.4571	-0.6724 -0.6130	0.5050	-0.1636 -0.3215	0.5194 -0.5260
5.80		0.4693	-0.5575	0.5167	-0.2813	0.5325
5 <u>. 40</u>	-1.78 <u>90</u> -1.1989	0.4753	-0,5049	0,5230 0,5241	-0./44n	0,5188
6.10	-1.1145 -1.0555	0.4870	-0.4091 -0.3651	0.5351	-0.1740 -0.1418	0.5511
6,30	-0.9604	0.4382	-0.1256	0.5468	-0.1111	0.5627
6.40 8.50	-0.890V -0.890V	0.5017 0,50v	-0.2447 7445.0-	0.5524 0.5579	-0.0619 -0.0540	0.5636 0.5742
6.60	- 0.7628 -0.7040	0.5144	-0.2111 -0.1772	0.5633 0.5685	-0.0277 -0.0016	0.5/96 0.5849
6.80	0 . 64 34	0.5746	-0.1447	0.5736	0.022V	0.5400
6.90 7.00	-0,5459 -0,5459	0,5746 0.5544	-0.1140	0.5786 0.5835	0.0641	0.5050
7.10	-0.4480 -0.4556	0,5392 0.5458	-0.0562 -0.0240	0,5882 0,5428	0.0413 0.1125	0.6046
7.50	-0.4108	0,5483	-0.0024	0.5973	0-1430	0,6156
7.40 7.50	-0.3700 -0.3511	0.552H 0.5571	0.0222	0.6016 0.6058	0-1529 0-1421	0.6179 0.6220
7.60 1.70	-0.2940 -0.2585	0.5613 0.5654	0.0476	0.6099 0.6158	0.1908 0.2099	0.6260 P.6279
7.80	-0.2245	0,5694	0.1139	0.6176	0.2246	0-6536
7.90 8.00	-0.1970	0.5/53 5.5/71	0.1349	0.6212	0.2434	0.6407
8.10 8.20	-0.1308 -0.1021	0,5807 0.5843	0.1751	0.6281	0.2770	0.5440
B. 3C	-0.0/44	0.5877	0.2129	0.6345	V. 508 f	0.6501
8.40 8.50	-0.04/8 -0.0221	0.5911 0.5943	0.2310 0.2487	0.63/5 0.6463	0.3240 0.4589	0.6550 0.6557
9.60	0.0026 0.0265	0.597% 0.600%	0.2659 0.2827	0.6431	0-3536 0-3680	0.6583
05.8 08.8	0.0496	0.6055	0.2940	0.6456	0.5822	0.6607 0-6630
8.90	0.0719	0.606)	0.3150 0.33Vr	<u>0.0504</u> 0.0526	0.5961	0.6672
9.10	0.1145	Q.6113	<u> </u>	9-3546	11.4231	0.6690
9.20 9.30	0.134/ 0.1544	0.613H 0.6162	0.3669 0.3756	0.6565 0.6583	0.4495 0.4495	0.6708 0.6724
9.40 9.50	2.1735 0,1421	0.6184 0.6205	0.3899 0.4040	9.660U 9.6615	0.4520 0.4740	0.6758 V.6/51
9,60	0.2101	0.6.26	0.4178	0.6629	0.4870	0.6165
9.80	2.2211 0.2448	0.6265	0.4513 0.4446	0.6652	0.4992	0.6/15
9,90	0.2614 0.2776	0.6280	0.4577	0.6662	0.5251 0.5348	0.6790

	MACH NUMBER 4.50 WIDTH TO LENGTH RATIO 1.0000		HACH NUMBER 4.50 WIDIH TO LENGTH RATIO 2.0000		MACH NUMBER 4.50 WEDTH TO LENGTH RAILO 4.0000	
GENERAL 12ED	RADIATION RESISTANCE	RADIATION REACTANCE	RADIATION	RADIATION REACTANCE	RAULATION RESISTANCE	RADIATION
0.10	-109721.0000	0.0108 0.0217	-54860.6997	0.0111	-27440.3999 -3410.8900	0.0113
0.20 0.30	-13645-6000 -4021-3100	0.0325	-6821.7800 -2010.6600	0.0555	-1005.3300	Q. 03 5B
0-40 0-50	-4021,3100 -1687,5400 -859,4350	0.0455 0.0542	-043,7690 -429,7160	0.0445 0.0555	-421.8840 -214.8570	0.0450 0.0562
0.60	-494.7040	0.0650	-247.3500	0.0666	-123.6740	0.0674
0.80	-309.8610 -200.4610	0.0757	-154.9280 -103.2280	0.07/1	-77.462U -51.6110	0.0/86
0.90	-144,2150	0.0973	-72.1040	0.0997	-36.0484	0. 1004
1.00	-104.5570 -78.1207	0.1080	-52.2759 -39.0550	0.11C/ 0.1216	-26.1325 -19.5221	0.1121 0.1231
1.20	~59.8371 ~46.7981	0.1293 0.1399	-29.9122 -25.5916	0.1326 0.1435	-11.4497	0.1542 0.1452
1.40	-37.2554	0.1505	-16.6191	0.1543	-9,3009	0. 1562
1.50	-30.1149	0.1610	-15.0475 -12.3229	0.1651 0.1759	-1.5138 -6.1501	0.1671 0.1730
1.70	-20,4413	0.1820	-i0.2089	0, 1066	··5.0917	0. 1888
1.80 1.90	-17,1171 -14,4637	0.1924	-8.5443 -7.2160	0.1972 0.2078	-4.25/Y -3,5921	0.1996
2-00 2-10	-12.3218 -10.5745	0.2150 0.2252	-6.1434 -5.2679	0.2184	- 3.6541 -2.6146	0.2210 0.2316
2.20	-9.1351	0.2335	-4.5464	0.2593	-2.2520	0.2422
2.40	-1.9390 -0.9371	0.2436	-3.9464	0.2476	-1.9501 -1.6965	0.2527
2,50	-6.0915	0.2636	-4,0185	0.2702	-1.4820	0.2754
2.60 2.70	-5.3731 -4.7588	0.2755 0.2854	-2.6571 -2.5477	0.2803 0.2904	-1.2991 -1.1422	0.2847 0.2949
2.80	-4.2504	0.2932	-5.0815	0.1004	-1.0066	0.3040
2.90 3.00	- <u>1.7734</u> - 3.3761	0.3029 0.3125	-1.8503 -1.6491	0.3103 0.3201	-0.0887 -0.7857	0.3140
3. lù	-3.0291	0.3220	-1, <u>4730</u> -1,3181	0.3299	-0.6450	0.3336
1.20 3.50	2 - 1245 2 - 4560	0.5408	-1.1812	0. 5375 0. 5471	-0.6149 -0.5438	0.3436 0.3532
5-40 5-50	-2.213h -2.0073	0.3501 0.3592	-1.0596 -0.9512	0+3586 0+3679	-0.4892 -0.4231	0.3678 0.3723
3-60	- 1.8190	0.3683	-0.6 141	0.5772	-0.3717	0.3817
3.70 3.80	-1.6505_ -1.4991	0.3773 0.3862	-0.7664	0.3864 0.3955	-5.3750 -0.2826	0.3404 0.4001
3.90	-1.3627	0,3950	-0.6168	0,4044	-0,2438	0.4091
4.00 4.10	- 1.2394 - 1.1275	0.4057 0.1123	-0.5519 -0.4927	0.4133 0.4220	-0.20H2 -0.1753	0.4181 0.4269
4.20	- 1.0258	0.4207 0.4291	~O•4385	0.410/	-0.1459	0-4357
4.40	-0.474 -0.8480	0.4374	-0.3428	0.4476	-0.1166 -	0.444
4,50 4.60	-0,7700 -0,6485	0.4455	-0.3003 -0.2609	0.4559	-0,0654 -0,8621	0,4611
40/0	-0.6324	U-4615	-0.2242	0.9721	-6,0201	0.4694 0.4775
4.80 4.90	-0.5/10 -0.5/162	0.4692	-0.1899 -0.1578	0.4801	0.0007 0.0205	0.4855 0.4758
5.00	-0.4615	0.4845	-0.12/6	0.4756	0.0394	0.5011
- 5.10 5.20	0,4123_ -0.5664	0.4919	-0.0773	0.5031		Q,5087 0.5162
5,30	-0.3234	6.5664	-6.0468	<u> </u>	ي نونون	
5,40 5,50	-0.2830 -0.2450	0.5135 0.5204	~0.0226 U.0004	0.5250 0.5320	0.10/5 0.1231	0.5507 0.5578
5.60 5.70	-0.2092 -0.1754	0.5272	0.0724	0.5389	0.1482	0.5441
5.80	-0.1433	0.5358 0.5404	0.0435 0.065r	0.5450 0.5522	0.1527	0.5515 0.5581
5.90 6.00	-0.1129	0,5468	0.0851 0.1019	1864.0	0.1811 0.1948	0.5710
6.10	-0.0564	0.5592	0.1200	0.5712	0.2001	0.5//2
6.20 6.50	-0.0301 -0.0049	0.5652 0.5710	0.1375 	0.5772 0.5831	0,2212 _0,2541	0.5833
6.40	0.0145	0.5707	0.1709	0.588₹	0.2468	0.5450
6.60		9,502 1 0.5877	<u>0.1070</u>	0.5745	<u></u>	U.6006
01.6	0.0862	0.5910	0.21/8	0.6053	0.2837	· U. 6114
0.40 0.80	0.1069 0,1269	0.0032	0.2327	0.6104 0.6154	0.2957 0.3076	0.6166 0.6216
7.00 7.10	0.1463 0.1650	0.6080 0.6127	0.2618 0.2758	0.6201 0.6250	0.3193 0.3509	0.6264 U.6311
7.20	G. 1833	0-6173	0.2894	0-6246	U. 5425	9.5357
7.30	0.2010 0.2182	0.6217	0.5029	0.6382	0.3539	0.6445
7.50	0,2350	0,6302	0.3294	0.5423	0.3765	0.6484
7.60 [.70	0.2514 0.2674	0.6541 0.6580	0.3423 0.3550	0.6463 0.6501	0.4877 0.3989	0.6523 0.6561
7.80	0.2830	0.5417	0.3676	0.6557	0.4049	0.6597
7.90 8.00	0.2783 0.3133	0.6452	0.3800 0.3923	0.6574	0.4209 0.4318	0.6652
6.19 8.20	0.3200 0.3424	0.651V 0.6550	0.4045 0.4165		0.4427 0.4535	U.66Xi_
8.30	0.3565	0.6579	0.4284	0.6696	<u> </u>	U.6726 U.6755
8.40 8.50	0.3704 0.3841	0.6607 0.6634	0.4401 9.4518	0.6723 0.6749	0.4750 0.4856	0.6781
8.60	0.3975	0.6659	0.4555	0.6773	0.4962	0.6850
8.70 8.80	0,4107 0,4237	0.6682	0.4748 U.4861	0.6146	0.5068 0.5173	0.6752
8.40	0.4366	0.6726	0.9/3	U-0856	0.5271	0.6892
9.00 9.10	0.4492	0.6745 0.6763	0.5085 0.5176	0.6854 Q.6871	0.5581 0.5885	0.6909
9.20	0.4/40	0.6779	0.5305	0.6886	0.5588	0.6754
9.40	0.4861 0.4981	0.6807	0.5414 0.5522	0.6911	0.5690 0.5792	0.6752
9.50	0.5099 0.5216	0.6819 0.6830	0.5629 0.5735	0.6922 0.6931	0.5894 0.5995	0.6973
9.10	0.5332	0.6839	0.5841	0.6738	0.6095	8494.0
Y. 80	0.5446	0.6847	0.5945	0.6945	0.6195	U. 6993

	HIUTH TO LENGTH	RATIO 0.2500	MIDIH TO PENCIH	4A110 0.5000	aidin_to_reagin	HATTO 9. 750
NERALIZED	RÉSISTANCE	RADIATION REACTANCE	RESISTANCE	REACTANCE	RADIATION	RADIATION
0.10	-608608.0000	<u>0.0084</u>	- 304504 .0000	0.0093	-20/8/0.0000	0.0046
0.20	-75757.7498 -22352.3999	0.0169 0.0253	-17878.8999 -11176.2000	0.0186 0.0260	-25252.5999 -7450.8100	0.0192
0.40	-9390.1399	Q.0337 Q.0422	-4695.0649 -2393.6900	0.0375 0.0466	-3130.0500	0.0384 0.0480
0.50	-4787.377V -2758.6800	0.050&	~1579.3400	0-0559	-1595.7900 -919.5600	0.0576
0.70	-1729.8200 -1153.8700	0.0590	<u>-864.9090</u> -976.9330	0.0651	-5/6,6050 -384.6200	0.0672
0.90	-896,9050	0.0758	-403.4500	0.0837	-268.4640	0.0865
1.00	-50%-6850 -448-1180	0.0Hu1 0.0425	-242,8340 -214,0550	0.0929	~195.2740 -146.0340	0.0958 0.1053
1.20	-445.9860	0.1008	-167.9880	0.1113	-111.9870	U. 1148
1,40	-261,1000 -20v.7220	0.1091	-151.5440 -104.8540	0.1205	-64.8980	0.1243 0.1317
1,50	-169,7540 -159,2470	0,1257	-84.8688 -67.6146	0.1588	-56.5/37 -46.403/	0,1431 0-1525
1.70	-115.5690	0.1422	~57.1744	0.1569	-38,5095	0.1618
1.80	~46,9170 ~82.0249	0.1504 0.1585	-48.4471 -41.0023	0.1659 0.1749	-32.2905 -21,4264	0.1711
2.00	-70.0074 -60.1951	0.1667 0.174B	-34.9896	0.1839	-23.5171	0.1897
2.10	-57, 1048	0.1629	-30,0821 -26,0379	0.1928	-20.0444	0.1488
2.30	-45.3893 -59.7589	0.1909	-22.6761 -19.8575	0.2106	-15.1051 -13.2261	0.2171
2.50	~35.0012	0.2069	-17,4818	0.7281	-i1.6490	0.2552
2.10	-30.9702 -27.51 <u>7</u> 1	0.2149	-15.4615 -15.7341	0.2455	-10.2917 -9.1492	0.2442 0.2541
2.80	-24.5520	0.2506	-12.2401	0.2541	-8.14/6	0.2617
3.0u	-21,4874 -14.7546	0.2462	-10.9044 -9.8486	0.7627	-7,2901 -6,5449	0.2795
3. 10 3. 2u	-17.8155	0.2539	-8.8744 -8.0705	0.2796	<u>-5.8941</u>	0.2882
5,30	-14.6121	0.7671	-7.2684	0.2860 0.2464	-5, 5235 -4,11205	0.2960 0.3654
3.40 3.50	-11.2874 -12.1129	0.2768 0.2844	-6.6038 -6.0142	U. 1047 U. 1349	-4.5/5/ -5.9814	U. \$13v D. 5224
1.00	-11.0681	0.2919	-5.4845	u. 3210	-5.0747	0.4408
3.80	-10.1356 -7.3008	0.2943	-5.0708 -4.6007	0.42 <u>41</u>	-3.515d -3.0345	0 <u>.359</u> 1 0.3475
5 - 91)	H.5511_	0.3190	-4.2750	0.3451	-2.7810	0. 5555
4.00	-1.81-5 -1.2674	0.3213 0.3285	-3.8836 5.5769	0.5550 0.5608	-2.5526 -2.5461	0.5656
4.70	-6 • f 162	0.3356 0.3427	-3.2761 -5.0655	U. 1086	-2.158/ -1.9881	0.3796
4.46	7.7616	6.4446	-2,8157	0.1763	-1.8154	0. 3874 0. 3952
<u>4.50</u>	- 5,5875 -4,9691	0.3567 0.3636	~?+6052. ~?+4151	0.3914		0.4106
4.74	- h . 4230	<u>0.3/05</u>		<u></u>	-1,4418	. 0.4161
4.60 4.90	- 4.5057 - 4.0167	0.5772	-2.0754 1.9266	0.4135 0.4207	- 1.3320 - 1.2307	0.4256 0.4516
5.00	- 5. 1460	0.1406	1.7674	0.4778	- 1.1371	0.41.07
5.20	-5.498H -3.2706	0.4051	= "1.6 <u>676</u> 1.5457	0.44by		<u>ე, გა / გ</u> ც. სანა
5.40 5.40	-3 <u>.05</u> 44 -2.8638	0.4101	- 1.4564 - 1.5555	0.4497 0.4555	-0.8954 -0.825n	0.4616 0.4685
	- <u>/.68/4</u>	0.4/27		0,55,2	-U-160p	0.4753
5.60 k. [V	-2.5138 -2.4568	0.1287	1 - 1535 1 - 0716	8884.0 _ U+4755	-0.7000	0.4821 0.4887
5×80	-2.3568 -2.2166	0.4411	-0.9950	0.4817	~ 0.384/	0.4452
- 5.40 - 5.40	-2.0791			<u></u>	-0.5395	0.5080
5,70	-1,02/3 -1,1155	0.4589 0.4666	-0.1926 -0.1330	0.5004 0.5065	-0.44//	0.5153 0.5204
_ 6 <u>= 30</u>	-1,6106	V.4/ <u>03</u>		<u></u>	<u>-0.365/</u>	0.5265
6.40 6.50	- 1.5121 - 1.4144	0.4759 0.4814	-0.6234 -9.5758	0.5181 <u>0.5290</u>	-0- 1211 -0-2720	0.5524 0.5535
6.60	- 1.3321	0.4868	-0,5264	0.5241	- 0.2510	0.5440
6.70	-1.7479	0.49/2	-0.4315 -0.4 100	0.5407	-6-2253 -0.1443	0.5496 0.5551
6.40	- 1.0VHY	0.5076 0.5077	-0.3596	0.5515	-0.165/ -0.1565	0.5005
7.00 1.10	-0.9658	0.5127	-0.3228	0,5565	-0.1091	0.5674 0.5710
7.20 7.50	-0.9015 -0.8424	0.5176 0.5225	-0.2811 -0.2541	0.5664	~ 0.08 \$ 1 ~ 0.05 8 0	0.5761 0.5811
7.40	-0.1863	0.5272	-6,2270	0.5713	-0,6349	0.5860
7.50	-0.7574 -0.6870	0.5419	-0.1618	0.5750 0.5806	-0.0107	0,590/ 0,5153
1.70	-0-6556	0.5409	-0,1354	1:35.0		0,599,
7.80 7.40	-0.5874 -0.5433	0.5455 0.5497	-0.0800	0.5496 0.5739	0-054/ 0-6744	U 2045 U 6080
8.00 8.10	- 0.5011 - 0.4608	0.5554 0.5580	-0.0547 -0.0304	0.5781 0.6021	0.6740 Q.1151	0.6128
H • 20	-0.4722	0.5620	-0.0067	0.6061	0.1315	0,6169
8.40	-16.3851	0.5460	0.0158 0.0178	0.41 <u>00</u>	U. 10/0	0.6241
8.50	-0.5156	0.5/36	0.05/1	0.6174	0.1840	0,6520
8.60	-0.251 <u>5</u>	0.5773 0.5800	8440°0	0.6209 0.6244	0.7006	0.6155 0.6155
8.80	~ 0.2210	() " 5 ժ կ կ	6.1173	0.5277	U.2327	0.6421
9.00	-C.1918 -0.1636	<u>0.5478</u>	0.1382 0.1566	0.6540	0.74H1	0.645
Y. 10	- 0.1364 - 0.1102	0.5743	0.1745 0.1719	0.6570	0.2781 0.2726	U- 65 14
4.30 - 4.30	-0.0848	0.5005	U,2009	0.6471	0.1068	ს. 6540 <u>ს. ტზ</u> 6 (
9.40 9.50	- 0.0603 - 0.0566	0.6034 0.6065	0.2255 <u>5.2617</u>	0.6455 0.6479	0.120a N. <u>134</u> 2	0.8541
4.60	-0.0136	0.8046	6.25/5	0.650 }	U.148U	9.6611
9.70	0.00h/ 0.0303	0.6117	9.2 <u>(1)</u>	U.6526	0.3812	Q. 5684
9.40	6,0513	2.5167	0.3031	9.6.10		<u> </u>

	MACH NUMB WIDTH TO LENGTH		MAUN HOAR HIDARL OF HIGH		MACH NUMBER 5.00 WIDTH TO LENGTH KATLO 4.0000		
SENERAL LAND	PADIATION	RADIATION	KADIATION	KADIATION	RADIATION	RAUTATION	
FRESUENCY 0.10	- 152152.0000	HEACTANCE 0.0098	-RESISTANCE -16016-0916	REACTANCE 0.0100	# 651-51 ANCE - 30038-0000	REACTANCE D. OTGI	
0.10	~ 18939. 5994	0.0195	-4464.7200	0.0200	-4734,8600 -1397.0360	0.0202 0.0505	
0.30	-5588,1100 -2347.5300	0.0293	-2795.0500 -1173.7700	0.02/9	*586.8810	0.0404	
0.50	-1196.8400 -689.6690	0.0984 0.0585	-596,4210 -544.6330	0.0499	-29 V. 2100	0.0564	
0.70	-1,52,4550	0.0682	-216.2250	0.0648	-108.111 <u>4</u>	6,0143	
0.80	-288.4640 -201.7220	0.0174	-144.2400 -100.8580	0.0747	~72.1126 -50.6262	0.0806	
1.00	-146.4169	0.0473	· -/3.2044	0.0995	-56.5987	0.1008	
1.10	- 109.5230 -83.9889	0.1064	-54.7573 -41.9874	0,1046	-21.5144 -20.9896	0.1108	
1.40	-65, (661 -52, 4200	0.1262	-32.8771 -26.2031	0,1790 0.1488	-16.4376	0.1464	
1.50	-42.4265	0.1453		U. 1486	-10.5947	U. 1502	
1.60	-34.7983 28.8770	0+1548 0+1643	-17.5901 -14.4285	0.1583 0.1680	-8.6860 -1.2040	0. 1600	
1.80	-24.2122	U.1737	-12.0947	0.1//6	-6.0359	0,1746	
2.00	-20,48da -17,4808	0.1925	-16.2315 -0.1265	8841.0	-5.1051	0.1873	
2,10	-15,0756	0.2019	-1,4973	0.2064	-3,1332	0.7086	
2.20 2.10	-13.0020 -11,3196	0,2111	-6.4840 -5.6413	0.2158 0.2253	-5.2251 -2.8021	0.2182	
2.40	- 4. 4047	0.2596	-4.4946	0.2547	-2.44/2	0.2572	
2.50 2.60	-6.7190 -7.7072	0.2387	-1:3377 -3:8300	0.2440	-2.1470 -1.8914	0.2467	
2.70	-6.841	0.2564	-3.3V54 -3.0212	0,7656	-1.6721 -1.4051	0.2654	
2.40	- 5,4550	0.2748	-2.6973	0.2609	-1.3194	6.2837	
3.00 3.10	- 4.8730 -4.4034	0.2837	-2.4155 -7.16d6	0.2049 0.2789	~1 .176 4 -1.0516	0.24 1 0 0.107 1	
3.20	-3.9747	0.1017	-1.4519	0. 10/9	-0.9405	0.3112	
	-3.3766	0.4049	-1.7606	0.4167	-U.n421	0.4241	
3.50	-2.4644 -2.7002	0.3271	-1,4402 -1,4055	0.33113	-U.0119 -U.6087	0.3466	
3.10	-7.4654	0.4440		0, 1515		0.1592	
3-80 3-90	-2.2509 -2.0597	0.3524 0.3607	-1.0760 -0.9778	0 - 1600 0 - 1685	~0.4885 ~0.4567	0.3638 <u>0.3723</u>	
4.00	-1.8871	0.3689	-U. bild 4	0.1/68	~0.48YH	0. \$1101	
4.20	-1.750y -1.5890	0.5/70 0.5851	-0.8081 -0.7345	9.3851 9.1911	-1/-3460 -0-10/c	<u> </u>	
4 - 50	-1.4598	0.1910	- <u>u.66/</u> 1	0.4014	-0.2168	6,41.50	
4.40 4.50	-1.2341	0.4009	469A . 0 -	0.46 <i>P</i> c 0.41/4	-0.2171 -0.2054	9.4 157 9.521.C	
4.00	- 1 a 1 35 1	0,4164	-0.4951 5.55/7	0.6252	0.1766 9.177	0.4270	
4.60	-6.4603	<u></u>	-0.40/1	0.1407	0.1237	U. 4452	
5.00	-0.8K2H	0.4464	0.3609 -0.3219	0.4483 0.4558	-0.0777	0.4527	
5.10	-0.7465	0.451/	-U.2854	0.4657	-0.0559	0.4674	
5.20	- U . 6824 - U . 6244	0.4680	-0.251/ -0.21/1	0.4705 0.4777	-0.0556 -0.0162	0.4757 0.4825	
5.40	-0.5/10	0.4750	0.1859	() . 4 () (4)	0.6922	0.4870	
5.50	-0.520 <u>6</u> -0.4753	0.4H19	-0.1601	0.4441 0.4418	0.0143	0.5056	
5.80	- 1),4289	0,5070	-0.1076 -0.0832	<u>9.59</u> \$3	0.0530	0.5177	
5.90	-0.3477	0,5085	-C.0600		<u> </u>	0.5247	
6.00 6.10	-0.3105 -0.275z	0.5149 0.5212	-0.0378 -0.0166	0.5252 0.5316	G,CVH, 0.1120	0.5164 0.5169	
6.20	~0.7416	0.5214	0.0018	0.5173	0.1766	0.5451	
- 0 - 10	-0.2101 -0.1116	0.5335	0.023* 5.04/2	<u> </u>		0,5833 5,5554	
6.60	-0.15 <u>10</u> -0.1235	0.5454 0.5511	0.060h 0.0779	<u>0.5560</u>	0.1661 0.1789	0,5614	
6.70	-0.0772	0.556H	0.0949	0.50/6	9.1707	0.5677 0.5727	
6.40 6.80	-0.0720 -C.0474	9.5623 0.5678	0.1113 0.1275	0.5732 0.5786	0.2030 0.2149	0.5756 0.5641	
7.00	-0.0246	0.5731	0.1428	0.5640	0.2766	6.584.9	
7.10	-0.0023	0.5783 0.5834	0.1580	<u>0.5894</u>	0.2581	0.5444	
7.30	0.0400	0,5884	0,1871 0,2012	0,5794	0.2606	0.6047	
7.50	0.0796	<u>_0.52</u> 81	0.2150	0.604 5	0.2717 0.2627	0.6048 0.6146	
7.60 7.70	0.0984 1011,0	0.6077	0.2205 9.2411	0-613/ U-0185	0.2435	0.61V3 0.6230	
7.80	0.1344	0.6117	0.2547	0.6727	0.1042	0.6282	
7.90 8.00	0.1516	9.6160 9.6201	0.2860	0.6270	0.3254	0.6525	
H. 10	0.1848	9.6747	0.2424	0.6552	0.1462	U, 640H	
8.20 6.50	0.2008 0.2165	0.6282 0.6320	0.5046 0.3166	0.61V2 0.6130	U. 5565	0,6447 	
8.40	0.2516	0.6357	0.3284	0.5467	U.376)	0.6522	
8.50	0.2465 0.2611	0.6371 0.6428	0.3401	0.6592 0.6557	0.3870	0.655/	
8.70 H.80	0.2754	0.6461	0.3651 0.3744	0.05/0	0.4070	0.0624 0.6656	
8.90	0,3031	0.6525	0,5856	0.6655		0.6685	
9.00 9.10	0.5166 0.3299	0.6555 0.6584	0.3467 0.4076	0.6667 0.6690	0.4367 0.4463	U.6716 0.6744	
V.20	0. 54 30	0.6611	U.41d5	0.6/17	0.4502	0.6179	
9.10	0.3558 0.3684	0.6663	0.4545	0.6743 0.6768	0,4660	0.6440	
<u> </u>	0.3809	0.0587		0.6191	0,4355	0.6843	
9.60 9.70	0.3432 0.4053	0.6710 0.6751	0.4609 U.4613	0.6813 0.6834	0.4943 Q.≥044	0.6664 <u>0.6635</u>	
9.50	0.41/2	0.6752	0.4817	0.6653	9,5139	0. 6 104	
9.40	0.4240 C.4406		0.3919	0.697	0.521u 0.5528	0.6418	

	WIDTH TO LENGTH MATLO 0.2500					WIDTH TO LENGTH RATTO 0.75		
FREQUENCY	RESISTANCE	RADIATION REACTANCE	RADIATION RESISTANCE	REACTANCE	RADIATION	REACTANCE		
0.10	-316528,0000 -101716,0000	0.0078 C.0156	-408264.0000 -50858.0000	0.0085 0.0170	-272176.0000 -33905.2998	0.0088 0.0175		
0.30	-30034.2998	0.0234	-15017.2000	0.0256	-10011.3747 -4208.7800	0.0263		
0.40	-12627.0000 -6442.5900	0.0312 0.0389	-6313.4800 -3221.2900	0.0425	-2147.5300	0.0458		
0.50 01.0	-3715.3800 -2331.5500	0.0467 0.0545	-1857.6900 -1165.7700	0.0511 0.0596	- 1238.4600 -777.1810	0.0525		
0.80	-1556.4800	0.0623	-7/8.2400	0.0680	-518.8250	. 0.0700		
1.00	-1089.3200 -791.3140	0.0700	-544.65 <u>70</u> -395.6540	0.0765	- 163, 1050 - 263, 7670	0.0787		
	-592.0190	0.0855	-296.2060	0.0934	-197-4680	0.0960		
1.20	-454.6910 -356.3490	0.0932 0.1009	-227.3410 -178.1700	0.1018 0.1102	-151.5580 -118.7760	0.1047 0.1135		
1.40	-284.2890	0.1086	~142.1390	0.1186 0.1270	-94.7556	0.1220		
1.50	-250.3050 -189.0780	0.1249	-115.1400 -94.5319	0.1353	-76-1591 -63-0163	0.1392		
1.70	~15/-0620 ~131-8290	0.1315 0.1391	-78.5229 -65.9051	0.143/	-52,1431 -43,9305	0.147/		
1.90	-111.6780	0.1467	-55.8286	0.1602	-37.2121	0,1648		
2.00 2.10	-95.3958 -02.0998	0.1543 0.1618	-47.6864 -41.0372	1611.0	-51.7855 -27.3497	0.1752 0.1617		
2.20	-71.1381	0.1694	- 15.5552	0.1849	~23.6942	0. 1901		
2.40	-62.0220 -54.3803	0.1769	-90.9958 -27.1736	0.1931	-20.6538 -18.1048	0.1985 0.2068		
2,50	-47.9279 -42.4451	0,1918	-23,9401	0,2093	-15,9521	0.2151		
2.70	~37,7519	0.2066	-21.20/2 -16.8551	0.2254	-14.1219 -12.5562	0.2234 0.2317		
2.80 2.90	-33./165 -50.2268	0.213V 0.2212	+16+8359 +15+8894	0.2354 0.2413	-11.2090 -10.0415	0.2379 0.2480		
3.00	~2/ . 19 1 9	0.2785	-15-5715	0.2492	-9.0404	0.2561		
3.10 3.20	-24.5459 -22.2219	0.2358	-12.2456 -11.0828	0.2571	-8,1455 -7,3691	0.2647		
3.50	-20.1195	0.2501	-10,0588	0.2727	-6.6853	0,2892		
3.40 3.50	-18-3726 -10-(699	0.2573	~V.1535 -8.3503	0.2804 0.2881	-6.0805 -5.5437	0.2882 0.2961		
3.60 3.70	-15.5435 -14.0700	0.2/14 0.2/85	-1.6351 -6.9965	0.2958 0.3054	-5.0056	0.3039		
5.80	-12.9294	0.2854	-6.4759	0.3109	-4.0 (Bl)	0,311/ 0,3194		
4.00	-11-4044	0.2724	-5.4461	0,3184	-5.9112 -5.6008	0.5271		
	-10,1492	0.1061	-5.02/4	0.3552	-3.3201	0.3423		
4. 20 4. 30	-9.3951 -8.7108	0.3129 0.3197	-4.6481 -4.5038	0.5406 0.3478	-3.0657 -2.0546	0.349d 0.3572		
4.40	-6.0664	0.3264	-1.9901	ű. 3551	-2.0240	ü. 364a		
4.50 4.60				<u>0.</u> 5622 0.4673	. <u> देशकी (.</u> -२०२५४	<u>\$.3(20</u>		
4.10	<u>-6.5292</u> -6.0946	0.4462	-3.2032 -2.9833	0.3/69	-2.0915	<u> </u>		
4.80 4.90	- 5.6954	0.3527 0.3591	-2.7831	0.3834 0.3703	-1.4462 -1.8097	0.3436 0.4007		
5.00 5.10	-5.3280 -4.9893	0.5655 0.3719	-2.5748 - <u>2.4228</u>	0.57/1	- 1-6858 -1-5664	U, 4077 		
5.20	-4.6/66	0.5782	-2.2658	0.4107	-1-4545	0.4215		
5.40		0.3494 0.3406	-1.9798	0.4259	-1.4595 1.2665	0.4350		
5.50	-3.8/12	0.3967	-1.0527	0.4504		11-441/		
5.60 5.88	- 5.6404 - 3.8257 - 3.2257	0.4028 	-1.7345 -1.5242 -1.5213	0.4564 U.4435	-1,0442 -1_0247	0. 44 H S 0. 45 4 d		
5.80 5.90	-3.2257 -3.0392	0.4147	-1,5213 -1,6250	€.4446 U.4558	-0.4531 -0.8870	0.4612 0.4676		
6.00	-2.8049	0.4264	-1.5547	0.4626	-0-8247	0.4717		
6.10	-7,7020 -2,5494	0.4372	-1.2504 -1.1710	0.4741	-0.7665 -0.7115	0.4801 0.4862		
6.30	-2-4064 -2-2722	0.44 <u>\$5</u> 6.4401	-1.0964 -1.0261	<u> </u>		0. 4922		
6.50	-2.1460	0.4246		0, 4450 Va4450	-0.4107 -0.5644	0.5002 0.5041		
6.60 01.6	-2.02/4 -1,915/	0.4501	-0.R9/3	0.4475	-0.5206	0.5047		
6.80	-1.8105	0.4654	-0.8302	0.5031 0.5086	-0-4240 -0-4240	0.5156 0.5213		
6.90 7.90	-1.7109 -1.6170	0.4812	-0.6784	0.5141 0.5145	-0.401y -0.5662	0.5768 0.5778		
7.10	-1.5202	<u> </u>	9.6511_	<u> </u>		9,5311		
7.20 7.30	- 1.6442 1.5645	0.4915	-0.585 <i>1</i> -0.5424	0.5301 0.5352	-0.2995 -0.2654	0.5450 0.5462		
7.40	-1.7890 -1.2173	0.5017	-0.5012	0.5403	-0.2586	0.5534		
7.60	-1.1491	0.5107	-0.4242	0.5458	-0-2100	0 <u>, 5584</u> 0- 5834		
7.80	- 1.0843 -1.0226	0.5154 0.5200	-0.3883 -0.3883	0.5550	-0.1562 -0.1509	0.3682 0.3730		
7.90	-0.9659	0,5246	-0.3204	0,5644	-0.1965	0.5/1/		
8.90 8.10	-0.9078 -0.8543	0.5290 G.5339	-0.2892 -0.2588	0.5690 0.573%	-0.0850 -0.0601	0.5823 0.5868		
8.20	-0.8031	0.5377	-0.2246	0.57/8	-0.0484	0.5912		
8.50 8,40	-0.7543 -0.7075	0.5420 0.5462	-0.2015	0.5865	7.0172 0.0055	0 <u>-5455</u> 0-5447		
8.50 8.60	7565-0- 19816-0-	0.5543 0.5543	-0.14d5 -0.1231	0.5Y05 0.5Y15	0.025/	U-603Y		
8.70	- 0.5786	0.5582	-0.0987	0.5964	0.0425 0.0612	0.607/ 0.6118		
8. HC 8. YO	-0.5391 -0.5011	6.5621 0.5659	-0.0752	0.6623	0.0795	0.6157		
4.00	-0.4646	0.5646	-0.0524 -0.0303	0.0041	0.0972	0.6251		
9.16 9.20	-0.4295 -0.3956	0.5732	-0-0089 0.0118	0.6168	0-1412	0.6261		
Y-30	-0.3630	0.5dV3	0.0.120	0.6202	0-1630	<u> </u>		
9.40	-0.5516 -0.5013	0.5837 0.5870	0.0515	0.6235	0.1792 9.1945	U. 6568 Q. 6400		
9.60	-6.2/20	0.5903	0.0871	0.6299	0-5042	0.64 \$1		
<u>9.10</u>	-C.243/ -U.2163	0.5985	0.10/2	0.6529 0.6559	0.2291 0.2384	0.6461		
10.00	-0.1898 -0.1642	0.5996	0.1419	0.6567	0.2525	0.010		

	HÁCH NUMB WIOTH TO LENGTH		MACH NUMB WAUTH TO LENGTH		MACH NUMB WIDTH TO LENGTH	
SENERAL I ZED	RADIATION	RADIATION	RESISTANCE	HADIATION HEACYANCE	RESISTANCE	REACTANCE
FREQUENCY 0. TO	RESISTANCE -201132.0000	REACTANCE 0.0089	-102066.0000	0.009	-5 1043.0000	0.0092
0.20	-25429.0000	0.0178 0.0266	-12714-5000 -3754-2900	0.0181	-6357.2400 -1877.1400	0.0183
0.30	-7508,5800 -3156.7400	0.0355	-1578.3700	0.0362	-789.1840	V- 0 566
0.50	-1610,6500 -928,8540	0.0532	-805.3230	0.0453	-402.6610 -232.2090	0.045/
0.60	-582.8850	0.0521	-464.4210 -241.4410	0.0614	-145./190	0.0347
0.80	-389.1180	0.0109	-194.55/0	0.0724	-97.2767	0.0/31
0.90	-272.3270	0,0798 0.0886	-136.1610 -98.9092	0.0814	-oH.07H3 -4V.4517	0.0822
1.10	-14B.1000	0.0974	-74.0463	0.0993	-37.019/	0.1003
1-20 1-30	-115-6660 -84-0799	0 1061 0 1149	-56.8270 -44.5351	0.1083 0.1172	-28.4104 -22.2627	0.1094
1.40	-71.0639	0.1236	-35.5263	0.1762	-17.7575	0.1274
1.50	-57-5665 -47-2585	0.1524 3.1411	-28.7168 -23.6219	0.1451	-14.3819 -11.8036	0.1364 0.1454
1.70	-59,2531	0.1497	- 19.618?	0.1578	-9.8008	0,1543
1.80	-32.9432 -27.9039	0.1584 0.1070	-16.4621 -11.9416	0.1616 Q.1794	-8.2218 -6.9604	0.1632 0.1721
2.00	-25-8517	9-1756	-11.4043	0-1791	-5,940/	0.1809
2.10	-20,5059 -17,7637	0. 1842 0. 1927	-10.2403 -8.8679	0.1879	-5.1075 -4.4201	0.1897 0.1985
2.30	-15.4827	0.2012	-1.7262	0.2052	- 5.8479	0.2073
2.50	-13.57V3 -11.9551	0.2040 0.2181	-0.1000 -5.4541	0.2134	- 5. 30 CB -2. 96 14	0.2160 0.2246
2.60	-10.5818	0.2265	-5.2715	0.2310	2.6164	0.2334
2,70 2,80	-9,4067 -8,3956	0.2348	-4,6825 -4,1754	0,2395	-2,5204 -2,0655	0.2417
2.90	-7,5207	0.2514	-1.7304	0.2564	- 1.8442	0.2589
3.00 3.10	-6.7600 -6.0954	0.2596 0.2678		0.2648	- 1.6515 -1.4828	0.2674 0.275d
3.20	-5.5123	0.2759	-2.7270	0.2814	-1.3344	0.2841
3,30	-4.9985 -4.5440	0.2840	-2.4683	0.2896	-1.7052 -1.0868	0.3007
3.40	-4.1404	0.2920	-2.0355	0.3059	-0.9831	0.3087
3.50	-3.7009	0.3079	-1.8558	0.4140	-0.8902	0.3171
3.70 3.80	-3.4595 -3.1712	0.3158	-1.6911 -1.5449	0.5221 0.5100	-0.8064 -0.7317	0.4252
5.90	-2.9120	0.3514		0.1119		0, 4412
#. 00 #. 10	-2.6781 -2.4665	0 ~ 339 1 0 ~ 3468	-1.2940 -1.1860	0 • 5458 0 • 5556	-0-6020 -0-5558	0.4491 0.4570
4.20	-2.2746	0.3544	-1.0878	0.5615	-0.4944	U. 5648
4.50 5.50	- 2,1900 - 1,7407	0.3614 0.3694	-0.4485 0.4164	0.3690	-0,4474 0,4041	0.3725 0.3802
4.50	1,7756	0,1745	- 6 , 84 1 5	0,3851	6.365 L	2.3478_
4.60 4.70	- 1.662h -1.5402	0.3842 0.3915	-0.7723 -0.7086	0.5416 0.4790	-0.4272 -6.2927	0.3953 0.4028
4.80	-1.4211	0.5987	-0.6477	0 - 4064	-0-2010	0.4102
<u>4.90</u>	- 1.5240 - 1.7283	0.4058	-0.9955	0.4156		0.4175 0.4248
5.10	-1.1196	0.4199	-0.4940	0.4280	-0.11/2	9.4420
5.20 5.30	- 1.0514 - C.9 810	0.4269 0.4558	-0,454/ 	0.4350	6, 1526 - 0, 1294	6.4371 0.4461
5.40	-0.9094	0.4406	-0.1749	0.4489	-0.10/4	0.4531
- - 5.5 0	-0.8455 -0.7815	0.4474	-0.3504	0.4625	- 0.0866 - 0.0668	0.45 1 4
5:88	:::18\$7	0.4605	-0.271	0.4691 0.4757	-0.0479	U. 4754
5.80	1489.0-	0.4670 0.4754	-0.2410 -0.2144	0.4757	-0.0794 -1714.0-0-	0.4801 G,4866
6.00	~0.5599	0.4798	-0.18/4	0.4887	0.0017	0.4911
6.20	-0.5246 -0.4818	0.4860	-U. 1617 -U. 1377	0.4950 0.5013	0.0198	0,4995 0.5058
6.50	-0.4419	0.4765	-9a 1158	0.5075	Q-9497	0.5058
6.40 6.50	-0.4031 -0.4697	0.5044 0.5103	-0.0915 -0.0702	Ua 5156	0.0642	0.5192
6.60	-0.1322	0.5161	-0.0447	0.5255	0.0701	0.5242
0.70 0.80	-0.2494	0.5219	-0.0500 -0.0111	0.5313	V-1041	0.5560
6-90	-0,2183	0.5552	0.00/1	0.5171 0.5127	0.1174 0.1298	0.5418 0.5475
7.00 7.10	-0.2098 -0.1825	0.5387 0.5441	0.0247	0.5485	0.1470	0.5541
7.20	-0.1564	0.5495	0.0418 0.0582	0,5538	0.1549	0.5506
7.50	-0.1315 -0.1072	0.5547	0,0/42	0.5695	0.1770	0.5694
7.50	-0.0541	0.5599 0.5649	0.0897 9.1048	0.5647 0.5748	0.1882 0.1992	0.5/46 0.5/9/
7.60	0.0618	0.5699	0.1145	0.5748	0.2101	0.5847
7.10	-0.0195	0.5748	0.1338	0.5897 0.5895	0.220H 0.2515	0.584/ 0.5945
7.90	0.0006	0.5845	0.1514	0.5745	0.7418	0.5192
H.00 H.10	0.0201 0.0389	0.5889 0.5984	0.1/47 0.1878	0.5789 0.6054	0.2520	0. 60 17 Q. 6084
8.20	0.0572	0.5474	0.7006	0.6079	0.2725	0.6129
8.50	0.0722	0.6022	<u></u>	0.6165	0.2822	0.6112
8,50	0.1070	0.6106	0.2376	0.6206	0.1019	0.0250
8.60 8.70	0,125 3 0,1412	0.6145 0.6185	0.2445	0.6255 0.6286	0.3116	0-6247 0-6336
8.80	0.1568	0.6724	0.2728	0.6524	9.3212 9.3317	0.6375
8.99 9.30	0.1720 U.186H	0.6248	0.2841 0.2954	0.6392 0.6398	0,3402	0.6414
9.10	C.2013	U-6554.	<u> </u>	0.6454	0.5476 0.5570	0.0448 0.6484
9.20 9.30	0.21 5 5 0.2295	0.6568 0.6402	0.3174	0.6468	0.3681	U. 65 1R
9.40	0.2451	0.6454	0.3202	0.6502	0.3//6 0.386H	U. 6552 U. 6584
9.50 9.60	0.2565	U-6166 U-6497	0.3475	دونو یا		0.6615
9.70	0.2826	0.6527	0.3599 0.3705	0.6546	0.4051 Valiti	U- 6645
9.80	0.2423	0.6555	0.3805	0.6654	0.4232	0.6703
9,90	0.3018	0.6610	0.5907	0.6707	0.4411	<u></u>

	NACH NUMBER 6.00 WIDTH TO LENGTH RATIO 0.2500		MAGH NUMB		MACH NUMBER 6.00 WINTH TO LENGTH RATTO 6.7500		
GENERAL I ZED	RADIATION	RADIATION	KADIATION	RADIATION	RAULALION	RADIATION	
FREQUENCY 0.10	RESISTANCE 1066470.0000	REACTANCE 0.0072	RESISTANCE -543233.0000	REACTANCE 0.0078	RCSISTANCE -355488.0000	REACTANCE 0.0081	
0.20	-132926.0000 -	0-0145	-66465.0996	0.0157	-44308.6997	0.0161	
0.30	-59272,5999 -16520,2998	0.0584	-8260.1344	0.0235	-13090.7999 -5506.7599	0.0241	
0.50	-8433.9399 -4866.6000	0.0434	-4216.9700 -2433.3000	0.0592	-2811.3100 -1622.2000	0.0402	
0.70	-3055.7700	0.0506	-1527,8900	0.0549	-1018.5900 -680.3850	0.0482 0.0564	
0.80	-2041.1600 -1429.3800	0.0578 0.0650	-1020.5800 -/14.6870	0.0627 0.0705	-680.3850 -476.4570	0.0643 0.0725	
1.00	-1038.9600	0.0722	-519.4770	0.0783	-346.3170	0.0803	
1.10	-778.2880 -597.7100	0.0794	-189.1410 -298.8510	0.0861	-259-4260 -199-2320	0.0885	
1.30	-468.7220	0.0938	-234,3570	0.1016	- 156.2350	0.1042	
1.40	-374.1690 -303.3050	0.1009 0.1081	-187.0800 -151,6470	0.1093 0.1171	-124./1/0 -101.0950	0.1121 0.1201	
1.60	-249.1670 -207.1080	0.1152	-124.5780	0.1248	-83.0476	6. 1500	
1.70	-173.9450	0.1224	-101,5070 -86,7046	G. 1325 0. 1402	-69.0266 -57.9712	0.135V 0.1437	
1.40 2.00	-147,4510 -126,0360	0.1365	/5.7170 63.0082	0.1478	-49.1589	0, 1516	
2.10	- 108,5410	0.1506	-54,2598	0.1554 0.1631	-41. 4941 -56. 1662	0, 1594 0, 1672	
2.20 2.30	-94.1116 -82.1070	Ŭ•1576 0•1646	-47.0442 -41.0409	0-1707 0-1782	-31.3551 -27.3521	0.1750 0.3828	
2,40	-72.0402	0.1716	-56.0065	U. 1858	-23. V950	0. 1905	
2.50	-63.5366 -56.5055	0.1786 0.1855	-31.7534 -28.1566	0.1933 0.2008	-21.1590 -18.7470	0.1982	
2.70	-50.1182	0.1924	-25.0417	0.2082	-16.6829	0.2059 0.2155	
2,80 2,90	- 44,79 18 - 40,1876	0.1993	-22 .3 782 -20 . 0738	0.2157 9.2731	-14.9065 -15.3691	0.2211 0.2247	
5.00	-30.14/4	0.2130	10.0700	0.2395	-12.0324	0.2365	
3. 10 3. 20	-74.6168	0.2196 0.2266	-14./841	0.2378	-10.8645 -9.8598	0.2418	
3.50 3.40	-26.9143 -24,5250	0.2555	-13.4515	0.2524	-8.9370	0.2587	
3,50	-22,4050	0,2468	-12+2551 -11-1759	0.2596 0.2668	-8.1384 -7.4295	0.2662	
3.60 5.70	-20.5175 -18.8516	0.2554	-10.2281 -9.1854	0.2740 0.2811	-6.7982	0.2809	
3.80	-17,3214	0.2666	-8.6766	0.2882	-6.2340 -5.7783	0.2882 0.2954	
4.00	-15.9645 -14.7421	0.7/37	-7.9464 -7.1335	0,2953	-5.2731 -4.8638	0, 5076	
4.10	-13,6380	0.2862	-6.1394	<u> </u>	-4-4933	Q.316x	
4.20 4.30	-12.63H3 -11.7310	0.2927 0.2991	+6.2111 -5.8271	0.5162 0.5251	-4.1575 -3.8524	0.3240 0.341)	
4.40	-10.9056	0.5055	-5.4074	U. 3299	-3.5747	0.3581	
4.50	-10.1592	0.3118	-5.0242 -5.6645	0.5567	-3.8212 -3.0H94	0.3519	
4.70	-8.8369	0.32114	-4.3007	9. 1502	-2.8767		
4.80 4.70	-8.2600 7.7101	0.5106 5.3165	-4-0763 1-8071	0.3568 0.3634	-2.0017 -2.0072	0. 5659 0. 5725	
5.00 5.10	- 1•2424 6•1928	0.3429	-3.5611 - 1.11au	0.5700	-2.5300	0.3790	
5.20	-6.4116	0.3551	-5.1262	0.3877	-2.1844 -2.0625	0 <u>,3876</u> -	
3• 5Q	-5.9437	0.3611	-2.951y -7.7517	0.3373	-1.7115	0.398n 0.4957	
5.50	5. 100 :	0.3730	_/.5894	0.4020		9.411/	
5-60 5-70	- 5.00 to	0.478A C. 3847	-5.74544	0-4002 0-4144	-1.5711 -1.5798	0.4180 5.4253	
5.80 5.40	- 4 - 45 1. - 4 - 20 40	0.5904 0.5962	-2.1430	0.4205 0.4205 0.4266	-1:3638	6.4243 0.4306 0.4368	
6.00	- 3.9724	0.4018	-7±0223 -1•9042	0.4326	-1.2146	0. 6427	
6.10	- 5.7568 - 3.5546	0.4075	-1./935 -1.6898	0.4386 0.4445	-1.1591	0, na 90 0. a 50	
6 - 10	- <u>1. 1650</u>	0.4186	-1.59/1	0.4505	-1,0014	0.4607	
6.40 6.50	-5.1672 -1,0201	0.4240 0.4275	-1,500/ -1,3135	0.4561 Valid18	-0.4586	0.4068 0.4720	
6.60	- 2.8633	0.4548	-1-3552	0.4675	-0.8232	0.6786	
6.10		0,4401 0,4454	-1.2565 -1.1841	0.4/31	-0.7707	. 0.4847	
6.90 7.00	-2.4450 -2.3211	0.4506	- 1.1156 -1.0508	0,4841	-0.0125	- <u>- ٧٠٠, ٧٧, </u>	
1-10	-2.2040	0.455H 0.4607	-0.9893	0.4895 0.4948	-0.5844	0.5062	
7.20 7.30	~2.0732 ~1.7884	0.465¥ 0.470¥	- 0.9410 -0.8756	0.5001 0.5055	-0.5436	0.5115 0.5168	
7.40	-1.8870	0.4758	-0.8227	0.5105	-0.4675	0.5270	
7.50	- 1.7048 ! *054	0.4897 0.4855	-0,1728 0e27a0-	0.5155 0.5205	-0.5982	0.5271 0.5422	
1.10	-1.6/04	0.4707	-6.879)	0.5255		0.5372	
7.80 7.90	- 1.5347 - 1.4628	0,4440 0,4496	-0.6360 -0.5744	0.5352 0.5352	- 0 • 5 5 4 8 - 0 • 5 0 5 0	0.5472 0.5470	
8.00 8.10	- 1.3896 - 1.5190	0.5052 0.5087	-0.5547 -0.5165	0.5349 0.5445	-0.2764	0.55 le	
8.20	-1.2511	0.5131	-0.4801	0.5441	-0.2224	0.5565 0.5611	
8.50 8.40	-1,1847	<u> </u>	-0.4452 -0.4116	0.5557	-0.1910 -0.1724	0.5657	
8.50	-1.0710	0.5/61	-0.3745	0.5625	-0.148/	0.5746	
8.60 8.70	- 1.0155 -0.9623	0.5403 0.5345	-0.5485 -0.5194	0.5668 9.5719	-0.1258 -0.1057	0.5789 0.5832	
8.80	~0.9114	3. 1586	-0.2840	0.5752	-0.0H23	0.58/4	
9.90	-0.8625	0.54 <u>76</u>	-0.2618 -0.2350	0.5844	- 0.0415	<u>0.5915</u> 0.5955	
9.10	-0.1106	<u>\$.50%</u>	-U-20v1	0.58/2	-0.0220	O.59X>_	
9.50	-0.7274 -5.6858	0.5542 0 <u>.5585</u>	-0.1941	0.5911 Q.5949	-0.0030 0.0154	0.6014	
9.40	-0.6457	0.5617	-0.1365	0.5486	0.0555	0.6109	
9.50	-9,60/2	<u>Q.555</u> 5 C.5689	-0.0918	0.6022 0.6058	0.0507 0.0677	0.6145	
9.10 9.80	-0.5544	0.5/24 0.5/59	- U.0104 - U.04V6	0.6075	0.0842 U.1004	0.6216 0.625u	
	V.4 T.1	V4 /1 37	. 0 * 0 4 7 6	V. u I / I	0.1004	U. 06 7 U	

	MACH NUMBER 6.00 MIDTH TO LENGTH RATIO 1.0000		MACH NUMB WIDIH TO LENGTH		MACH NUMBER 6.00 TIDIH TO LENGTH RATTO 4.0000		
FREQUENCY	RADIATION RESISTANCE	REACTANCE	RESISTANCE	REACTANCE	RADIATION RESISTANCE	RADIATION BEACTANCE	
0.10	-2666 16.0000 -33231.5996	0.0082	-143308.0000 -16615.7998	0.0083	-66654.0790 -6307.8699	0.0084 0.0168	
0.30	-9818.0900	0.0244	-490Y.0500	0.0249	-2454.5200	0.0251 0.0435	
0.40	-4130.0699 -2108.4800	0.0326 0.0407	-2065.0300 -1054.2400	0.0352 0.0415	- 1032 - 5200 -527 - 1200	0.0417	
0.60 9.70	-1216.6500 -763.9420	0.0488	-608.3240 -581.97.00	0.0498	- 104 a 1610 - 190 a 984 0	0.0508 0.0508	
0.80	-510-2880	0.0651	-255, 1420	0.0663 0.0746	-121-5700	0.0669	
1.00	-357.3420 -259.7360	0.0813	-174.6690 -129.8660	0.0828	-89.5525 -64.9505	0.0752 0.0836	
1.10	-19%,5680 -149,4220	0.0894	-91.2809 -74.7077	0.0910	-48-6575 -57-5904	0.0917	
1.30	-117-1740 -93-5352	0.1055	-58.5831 -46.7629	0,1075	-29-2875 -23-3767	0,1084 0,1167	
1.50	-75-8183_	0.1216	-51.9057	0.1238	-18.9464	0.1249	
1.60	-62.2876 -51.7665	0-1296 0-1376	~31.1351 -25.8793	0.1320 0.1401	-15.5614 -12.9312	0. 1552 0. 1614	
1.80	-43.4745 -30.8498	0.1455 0.1535	-21,7295 -18,4102	0.1482 0.1563	-10.85/U -7.1994	0.1446 0.1577	
2.00	-51.4945	0.161h	-15.75//	V. 1644	-7.8592	0.1659	
2.20	-27.1193 -23.5105	0.1693	-13.5441 -11.7436	0.1/24 0.1804	-5.86UZ	0.1740	
2.40	-20.5078	0.1850	-10.7412 -6.9809	0.1884 0.1964	-5.1079 -4.4767	0.1931 0.1982	
2,50	-15.861/	0,2007	-1,9159	0.7045	-3.9430	0, 2062	
2.60 2.19	14.0521 12.5034	0.2084 0.2162	-7.0094	0.2123	-3.4886 -4.0797	0.2142	
2.80 2.90	-11.1704 -10.0168	0.2239 0.2316	-5.5665 -4.7884	0.2280 0.2358	-2.7645 -2.4741	0.2300 0.2374	
3.00	-9.0136	0.2392	-4.4855	0.2456	-2.2217	0.2457	
5,10 3,20	-8.13(U -7.36//	0.2544	-4.0456 -3.6575	0.2514	-1,9994	0.2516 0.7613	
3,50	-6.6848 -6.0401	0.2619	-5.31v0 -5.01/6	0.7667	-1.634A -1.4814	0.2691	
3.50	-5.5571	0.2769	-2./448	0.2819	-1.3559	0.2044	
3.60 3.70	-5.0831 4.6593_	0.2843 0.2917	-2.5110 -2.2413	0.244	-1.2248 -1.1165	0.2420 0.2446	
3.80 3.90	-4.2742 -3.9373	0.2990 9.4363	-2.1055 -1.912H	0.3044 0.3118	-1.0146 -0.9505	0.40/1 0.3146	
4.00	- 5.6290	0.5156	-1.7768	0.1192	-0.8507	0.3229	
4.10 4.20	-3.0974	0.3208	-1.6555 -1.5077	0.3358	-0.7182	0.3294 0.1568	
4,50 4,40	-2.6563	0.5551	-1.4904 -1.2838	0,3411 0,3462	-0.651n -0.5765	0.5441	
4,59	-2.46/2	0.3497	-1,1862	0, 1554	-0,5457	0.3562	
4.60	-2.2925 -2.1319	0.3561	-1.0967 -1.0144	0 - 1675 0 - 3675	- 0.4987 - 0.4556	U. 3055 U. 3727	
4.80 08.4	-1.7844 -1.848/	0.1644	6.7535 ~0.8645	0.5765 0.5854	والإنا والهراء	0.3777 9.3867	
5.00	- 1.7240	0.4635	-0.6016	E. 1703	-0.1417	G. 3936	
5.10 5.20	-1,6077 -1,5094	0.1902	-0.7935 -0.6876	U. 17/1		0.4005	
5.40	- 1.1010 - 1.3085	0.4035 0.4100	-0.6555 -0.5869	0.4172	0.2261	0,4208	
	-1.2775	0.4165	-0.5415	0.4248	-0.2010	0.4214_	
5.00	- 1.1.22 - 1.0073	0.4229	-0.4987 0.4989	0-4 0 5 9-4367	- U. 1773 - U. 1248	0,4559 0.4405	
5.80 5.90	-G. +472 -U. 4515	0.435 <i>6</i> 0.4418	-0.4214 -0.4860	0.4931 0.4495	-0.1336 -0.1133	0. հեժ Ս. հ <u>ղ 15</u> 5	
6.00	-0.8698 -0.8119	0.4480	-0.3576	0.4557	-0.094)	6,4576	
6.20	-0.7574	0.4547	~0.3211 ~0.7912	0.4614	-0.0/5/ -0.031	0.4650	
6.40	-0,7050	0.460?	-0.26/8	0.4407	-0.0412 -0.6250	0,4 <u>/81</u> 0,4842	
6.50	-0.6116 -0.5682	0.4458	~0.7102 -0.1857	0.4920	-0.0075 c:00055	0.4702	
6.60 6.70	-0.5271	0.4696	-u.1623	0.4778	0,0256	0,5017	
6.80 6.90	-0.4880 -0.450v	0.4752 0.5008	-0.1400 -0.1186	0.5055	0.0360 0.6476	0.5017 0.5154	
7 10	-0.415A -0.3820	0.5064 0.5118	-0.0988	0.5148	0.0608	0.5190 0.5246	
7.10	-0.3499	0.5172	-0.0103	0.5258	0.000.0	0-5500	
7.40	- C. 3197 - 0. 2899	0.5275	-0.0410 -0.0233	0.5511	0.1644	<u>0.5334</u> 0.5468	
7.50	-0,2618 -0,2348		-0.0061 0.0103	0.5417 0.5468	0.1315 0.1128	0.5512	
1.70	-0.2090	0.5431	0.0263	9.5519	0.1459	0.5565	
7.80 7.90	-0.1841 -0.1602	0.5481 0.5529	0.0418 0.0564	11,556V 0 <u>45618</u>	0.1547 0.1654	0.5615 0.5655	
8.00 8.10	-0.1372 -0,1350	0.5577	0.0715 G.0858	0.5667 0.5715	0.1754	0.5711 0.5759	
8.20	-0.0756	0.5671	0.0947	0.5761	0.1763	0.5m07	
B-40	-0.0729 -0.0528		0.1155 v.1265	<u> </u>	0.2162	0.5658 0.5658	
8.50	-0.0334 -0.0146	0.5807 0.5850	0.1595 0.1522	0.589B 0.594 i	9.2259 9.2356	0.5945	
8,70	0.0036	0.5893	<u> </u>	0.248#	0.2451_	<u> </u>	
8.80 8.90	0.0213 0.0385	0.5935 <u>0.5976</u>	0.1/68 0.1887	0.6027 0.6068	0.2545 0.2630	0.6072 	
9.00	0.0553 0.0716	5.6017	0.2004 0.2120	0.6108 0.6148	0.2730 0.2821	0.6154 0.6194	
7.20	0.0875	9.4045	6.2235	0.6187	0.2912	0.6233	
<u>9.30</u>	1030 وي 181 .)	0.6133	0.2545	0.6225	0.1004	0.6271	
9.50	0.1329 0.1474	2.5201	0.2563	0.6334	0.3180 0.3268	0.6545 0.6581	
9.10	0-1615	0.62[]	0.27/2	0-6169	0.3553	0.0415	
4.86	0.1754		0.2877 0.2382	0.6403	0. 5442 9. 5520	0.6444 0.6482	

ACOUSTIC RESPONSE OF CAVITIES IN AN AERO-AND EXPERIMENTAL INVESTIGATION OF THE Aeronautical System: Fivision, W-PAFB, Ohlo. DYNAMIC FLOW, First report, Mar 62, 162p. Hpt No. WADD-TR-6: -75. A THEORETICAL incl illus., tables, 9 refs

Unclassified Report

Contract AF33(616)-

AFSC Project 1370,

Task 137005

4. Fluid mechanics

Cavitation noise

lence

Corp., Marietta, Ga.

IV. H. E. Plumblee.

III. Lockbeed Aircraft

9969

intermediate step involves the derivation of radi-ation impedance for a cavity at all Mach numbers, eavity of arbitrary dimensions in a flow field. An Theory is developed for the resonant frequencies and pressure ampidications of a rectangular

. / (over)

V. In ASTIA collection

VI. Aval fr OTS

L. W. Lassiter J. S. Gibson,

> tude response, indicating that the theory developed theoretical and experimental irequency and ampli-Experiments! results are given for small cavities to 8" in length at supersonic Mach numbers from tested in the subsonic regime and for cavities up using the concepts of retarded potential theory. 1.75 to 5.3. Comparisons are drawn between gives very good definition of the problem.

ACCUSTIC RESPONSE OF CAVITIES IN AN AERO-.UD EXPERIMENTAL INVESTIGATION OF THE Mer: nautical Systems Division, W-PAFB, Onto. DYNAMIC FLOW, Final report, Mar 62, 162p. No. WADD-TR-61-75. A THEORETICAL ed illus., tables, 9 refs.

2. Aerodynamic purbu-

Acoustics

Ψ

Inclussified Report

internediate step involves the derivation of radiation impedance for a cavity at all Mach numbers, Theory is developed for the resonant frequencies cavity of arbitrary dimensions in a flow field. An and pressure amplifications of a rectangular

(cver)

tude response, indicating that the theory developed Experimental results are given for small cavities theoretical and experimental frequency and amplitested in the subsould regime and for cavities up to 8" in length at supersonic Mech numbers from using the concepts of retarded potential theory. 1.75 to 5.0. Comparisons are drawn between gives very good definition of the problem.

1. Acoustics

Aerodynamic turbulence

4. Fluid mechanics 3. Cavitation noise

L. AFSC Project 1370, Task 137005

II. Contract AF33(616)-III. Lockheed Aircraft 5262

Corp., Marietta, Ga. IV. H. E. Plumblee, J. S. Gibson,

V. In ASTIA collection L. W. Lassiter VI. Avai fr OTS