BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn})) \tag{2}$$

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)})\cos(\theta)$$
(4)

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\Omega)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

$$t_{\text{down}} = 12 - t_{\text{len}}/2 \tag{7}$$

$$t_{\rm up} = 12 + t_{\rm len}/2$$
 (8)

Weather Downscaling

$$T_{\text{mean}} = \frac{1}{2} \left(T_{\text{max}} + T_{\text{min}} \right) \tag{9}$$

$$T_{\rm range} = T_{\rm max} - T_{\rm min} \tag{10}$$

$$T_{\text{excursion}} = \sin\left(2\pi \frac{h_r - 10}{24}\right) \tag{11}$$

$$T_{\rm air} = T_{\rm mean} + T_{\rm range} \cdot T_{\rm excursion}$$
 (12)

Canopy Radiation

$$q = \frac{n_r}{n} \tag{13}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(13)$$

$$(14)$$

$$(15)$$

$$r^{\sim} = \frac{m_r}{n} \tag{15}$$

$$h = \frac{r^{\sim}}{q} \tag{16}$$

C4 Photosynthesis

From Collatz 1992 Coupled Photosynthesis-Stomata1 Conductance Model for Leaves of C4 Plants. Aust. J. Plant Physiol. 19 519-538

$$V_{\text{max}} = \frac{V_{\text{max}_0} Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{(1 + \exp(0.3(T_{\text{lower}} - T_{\text{leaf}})))(1 + \exp(0.3(T_{\text{leaf}} - T_{\text{upper}}))}$$
(17)

$$V_{\text{max}} = \frac{V_{\text{max}_0} Q_{10}^{\frac{\text{leaf}}{10}}}{(1 + \exp(0.3(T_{\text{lower}} - T_{\text{leaf}})) (1 + \exp(0.3(T_{\text{leaf}} - T_{\text{upper}})))}$$

$$R_d = \frac{R_0 Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}}{1 + \exp(1.3(T_{\text{leaf}} - 55))}$$

$$k_t = k Q_{10}^{\frac{T_{\text{leaf}} - 25}{10}}$$

$$c_t = c_t - \frac{1.6A_n P_{22}}{10}$$
(20)

$$k_t = kQ_{10}^{\frac{T_{\text{leaf}} - 25}{10}} \tag{19}$$

$$c_i = c_a - \frac{1.6A_n P}{g_s}?? (20)$$

$$A_{\text{net}} = A_{\text{gross}} - R_d \tag{21}$$

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$
(22)

$$M = \min \left[\frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}}) \theta_{\text{curve}}}}{2\theta_{\text{curve}}} \right]$$

$$A_{\text{gross}} = \min \left[\frac{\left(M + k_t \cdot \frac{c_i}{P} \right) \pm \sqrt{\left(M + k_t \cdot \frac{c_i}{P} \right)^2 - \left(4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta \right)}}{2 \cdot \beta} \right]$$

$$(23)$$

Effect of Specific Leaf Nitrogen on C4 photosynthesis

$$V_{\text{max}} = m_{\text{vmax}} N_{\text{leaf}} + c_{\text{vmax}} \tag{24}$$

$$R_{\rm d} = m_{\rm Rd} N_{\rm leaf} + c_{\rm Rd} \tag{25}$$

$$\alpha_{\text{slope}} = m_{\alpha} N_{\text{leaf}} + c_{\alpha} \tag{26}$$

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x:

$$A = (1 - \Gamma^*/c_i) \tag{27}$$

$$w_c = \frac{V_{\text{cmax}}c_i}{c_i + K_c(1 + O_a/K_0)}$$
 (28)

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{29}$$

$$\Gamma^* = exp(19.02 - 37.83/(R(T_{leaf} + 273.15))) \tag{30}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (31)

$$K_0 = exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15))$$
(32)

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(33)

$$J = \frac{Q_2 + J_{\text{max,T}} - \sqrt{(Q_2 + J_{\text{max,T}})^2 - 4\Theta_{PSII}Q_2J_{\text{max,T}}}}{2\Theta_{PSII}}$$
(34)

$$J_{\max,T} = J_{\max@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(35)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4} T_{\text{leaf}}^2$$
(36)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSII,max}} \cdot \beta_{\Phi} \tag{37}$$

$$\Phi_{\text{PSII,max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(38)

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x:

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(39)

$$c_i = 0.7c_a@25^{\circ}C??$$
 (40)

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(41)

$$O_i = O_a @25^{\circ} C??$$
 (42)

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{43}$$

Water Stress

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{44}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{45}$$

(46)

(51)

Four options for water stress model:

$$g_{\text{ws, linear}} = \frac{W_s - W_p}{F_c - W_p} \tag{47}$$

$$g_{\text{ws, logistic}} = \frac{1}{1 + \exp\left(\frac{\frac{1}{2}(F_c + W_p) - W_s)}{\phi_i}\right)}$$
(48)

$$g_{\text{ws, exponential}} = \frac{1 - \exp\left(\frac{F_c - W_s}{F_c - W_p} + \frac{W_p}{1 - W_p}\right)}{0.631206}$$
 (49)

$$g_{\text{ws, none}} = 1 \tag{50}$$

Calculate g_s and A_n under water stress:

$$g_s^{\text{water stress}} = g_{\text{ws},*}g_s$$
 (52)
 $A_n^{\text{water stress}} = g_{\text{ws},*}A_n$ (53)

$$A_n^{\text{water stress}} = g_{\text{ws},*} A_n \tag{53}$$

Canopy Energy Balance

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{54}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(55)

$$u_a = \frac{u \cdot 0.41}{\log((u-d)/z_o)} \tag{56}$$

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b} \tag{57}$$

$$\rho_v' = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)\right) \tag{58}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100}\right) \tag{59}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{60}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2}\right) \tag{61}$$

$$R_{lc} = 4\sigma \cdot (273 + T_{air})^3 \cdot \Delta T \tag{62}$$

$$\Phi_N = J_a - R_{lc} \tag{63}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$
(64)

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(65)

$$\mathbf{E_c} = \sum_{\text{layer}=1}^{N} (\mathbf{E}_{\text{sun}} \cdot l_{\text{sun}}) + (\mathbf{E}_{\text{shade}} \cdot l_{\text{shade}})$$
(66)

$$\mathbf{E}_{\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{br}=1}^{24} \mathbf{E}_{\mathbf{c}}$$
 (67)

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)}}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
(68)

$$F_{\text{sun}} = \frac{1 - \exp[-k \cdot F_{\text{canopy}}]}{k} \tag{69}$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{70}$$

$$I_{\text{sun}} = k \cdot I_{beam} + I_{\text{diff}} + I_{\text{scat}} \tag{71}$$

$$I_{\text{beam}} = I_{\text{dir}} \cos(\theta) \tag{72}$$

$$I_{\text{shade}} = I_{\text{diff}} + I_{\text{scat}} \tag{73}$$

$$I_{\text{diff}} = I_{\text{od}} \exp(-k_d F_{\text{canopy}}) \tag{74}$$

$$I_{\text{scat}} = I_{\text{beam}} \exp(-k\sqrt{\alpha_{\text{scat}}} F_{\text{canopy}}) - I_{\text{beam}} \exp(-kF_{\text{canopy}})$$
 (75)

(76)

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(77)

$$F_{\text{sun}} = \sum_{\text{layer}=1}^{N} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$
 (78)

$$F_{\text{shade}} = \sum_{\text{layer}=1}^{N} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$
 (79)

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{80}$$

$$A_c = \sum_{\text{layer}=1}^{N} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(81)

$$A_{c,\text{tot}} = \sum_{\text{day}=1}^{365} \sum_{\text{hr}=1}^{24} A_c \tag{82}$$

$$g_c = \sum_{\text{layer}=1}^{N} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(83)

$$g_{c,\text{tot}} = \sum_{\text{dav}=1}^{365} \sum_{\text{hr}=1}^{24} g_c \tag{84}$$

Respiration

$$R_{\text{total}} = aA_n + b_{\text{stem}} \Delta \omega_{\text{stem}} + b_{\text{root}} \Delta \omega_{\text{root}} + b_{\text{storage}} \Delta \omega_{\text{storage}}$$
(85)

Allocation

$$A_{\text{storage}} = |\min(0, \omega_{\text{storage}} \cdot k_{\text{storage}})|$$
 (86)
$$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}}$$
 (87)
$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}})$$
 (88)
$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}})$$
 (90)
$$\omega_{\text{root}} = \omega_{\text{storage}} + (A_{\text{total}} \cdot k_{\text{storage}})$$
 (91)
$$\Psi_{\text{adl}} < \Psi_{\text{pt}}$$
 (92)
$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}}$$
 (93)
$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}}$$
 (94)
$$k_{\text{storage}} = k_{\text{storage}} \cdot k_{\text{mod}}$$
 (95)
$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_{g}; 0 \le k_{\text{mod}} \le 1$$
 (96)
$$\Delta F_{\text{canopy}} = \frac{\omega_{\text{leaf}}}{Sp_{\text{leaf}}}$$
 (97)
$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}}$$
 (98)
$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storot}}}$$
 (99)
$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}}$$
 (100)

(101)

 $Stem_{coppice} = 0.95 - \omega_{stem}$

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(102)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{103}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
 (104)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{105}$$

$$E_{d} = \begin{cases} E_{p}, & \theta^{*} \geq \theta_{1} \\ E_{p} \left(\frac{\theta - \theta_{2}}{\theta_{1} - \theta_{2}} \right), & \theta_{2} < \theta^{*} < \theta_{1} \\ 0, & \theta^{*} \leq \theta_{2} \end{cases}$$

$$(106)$$

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{107}$$

$$g_{a,\text{soil}} = \frac{\rho_w \cdot a_s}{\left(2.126 \cdot 10^{-5}\right) + \left(1.48 \cdot 10^{-7}\right) \cdot T_{\text{soil}}} \left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)$$
(108)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T)$$
(109)

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{110}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{111}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
(112)

Soil Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_{\text{soil}} + 273.16)} \right]$$

$$\tag{113}$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_{\text{soil}}}{273.3 + T_{\text{soil}}} \right] / T_{\text{soil}} + 273.16$$
 (114)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{115}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_{\text{soil}}}{\Delta z} \right] + (T_{\text{soil}} - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(116)

Definition of Terms

Term	Units Defini	tion Value	
$A_{\rm gross}$??	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area	_
$A_{\rm net}$??	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-
$A_{net, water stress}$	$\mu mol mol^{-1}$	A_{net} under water stress	
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	_
$A_{c,\mathrm{tot}}$	$g m^{-2} yr^{-1}$	A_c integrated over the course of a year	_
$A_{c,\mathrm{sun}}$	$mol mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	_
$A_{c,\mathrm{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	_
A??	$\mu mol\ mol^{-1}$	Predicted rate of CO ₂ uptake	_
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378
c_i ??	μπισιπισι	Transsphore C C 2 concentration	0.0
C	$\rm J^{\circ}C^{-1}m^{-}3$	volumetric heat capacity	
a	Dimensionless	Coefficient for growth respiration	0.2
α	dimensionless	Atmospheric transmittance	0.85
	mol mol^{-1}	The quantum yield of CO ₂ uptake determined by the	0.04
$\alpha_{ m slope}$	mor mor	initial slope of the response of A versus I_{abs}	0.04
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015
	Dimensionless	Coefficient for maintenance respiration for root	0.013
$b_{ m root}$	Difficusionless		0.01
β	%	C ₄ curvature parameter	0.95
eta_Φ	$mol\ mol^{-1}$	Fraction of absorbed quanta reaching PSII	
c_{lpha}	тиот тиот	intercept of linear relationship between quantum yield	
	$\mu mol mol^{-1}$	of leaf photosynthesis rate and specific leaf nitrogen	
c_i	µтоі тоі	Intercellular concentration of O_2 in air corrected for	
	7.1 -1 72 1	solubility relative to 25°C	1010
c_p	$J kg^{-1} K - 1$	Specific heat capacity of dry air	1010
C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each	-
	2 -1	month	
$c_{ m Rd}$	$\mu mol m^{-2} s^{-1}$	intercept of linear relationship between leaf dark res-	
	2 -1	piration rate and specific leaf nitrogen	
$c_{ m vmax}$	$\mu mol m^{-2} s^{-1}$	intercept of linear relationship between maximum rate	
		of carboxylation and specific leaf nitrogen	
d_s	m	Soil depth	-
D_j	d	day of year	-
$D_{ m start}$	d	Day of year on which the sinusoidal temperature func-	45
_		tion is assumed to start	
d	dimensionless	Zero plane displacement	0.77
δ ??	degrees	Solar declination	=
e_l	kPa	Saturated water VPD in the leaf	-
E	$J mol^{-1}$	Activation energy	$R_d =$
			66405
			$V_{\rm max} =$
			6800
E_d			
E_i	0 1		
E_c	$mmol m^{-2} s^{-1}$	Instantaneous canopy evapo/transpiration rate	-
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	-
E_l	$mmol m^{-2} s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a	-
		canopy layer	
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	-
E_{R_d}	$\mathrm{J} \; \mathrm{mol}^{-1}$	Activation energy of R_d	-
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	-
$E_{V_{\max}}$	$\mathrm{J} \; \mathrm{mol}^{-1}$	Activation energy of V_{cmax}	-
f		fraction of light not absorbed by photosynthesis	0.23
$f_{s,l}$		fraction of sunlit leaves at depth l (l is cumulative leaf	
		area index from top)	
F_c	$m^3 m^{-3}$	Field Capacity	

undefined

-	Term	Units Definit	tion Value	
$F_{\rm canopy}$		$m^2 m^{-2}$	Cumulative canopy leaf area index from top at depth	9
$F_{\rm shade}$		$m^2 m^{-2}$	Canopy shaded leaf area index	-
$F_{ m sun}$		$m^2 m^{-2}$	Canopy sunlit leaf area index	-
F_{sum}		$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer	-
			considered in calculation	
$G_{\rm soil}$		$W m^{-2}$	Soil heat flux	-
g		$m s^{-2}$	Gravitional constant	9.8
g_a		$mmolm^{-2}s^{-1}$	Leaf boundary layer conductance	-
g_c		$mmol m^{-2} s^{-1}$	Canopy conductance of CO ₂	-
$g_{\rm c, \; root}$				
g_s		$mmolm^{-2}s^{-1}$	Leaf stomatal conductance	-
g_0		dimensionless	Stomatal slope factor	3
g_1		dimensionless	Stomatal intercept factor	0.08
$g_{s,\mathrm{sun}}$		$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of sunlit leaves	-
$g_{s,\mathrm{shade}}$		$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of shaded leaves	-
$g_{ m ws}$		dimensionless	Species-specific water stress sensitivity factor	
$g_{ m ws}*$		dimensionless	water stress stomatal conductance factor; see equa-	
<i></i>			tions??	
γ		$Pa K^{-1}$	psychrometer constant	-
Γ^* ??		$\mu \text{mol mol}^{-1}$	CO_2 compensation point in the absence of dark respi-	
		•	ration	
h_r		h	Hour of day	-
h_s		%	Relative humidity	=
$h_{\rm canopy}$		m	Height of canopy	5
h_{ms}		m	Wind speed measurement height	$\frac{\circ}{2}$
h_{layer}		m	Height of canopy layer above ground	_
I		$\mu mol \ m^{-2} \ s^{-1}$	Photon flux	_
h		$mmday^{-1}$	The amount of water received on a given rainy day	_
$h_{ m soil}$		m	Water pressure head	_
HO_{soil}		$kg m^{-3}$	Saturated humidity of the air at the soil surface	_
$HS_{ m soil}$		Kgm^{-3}	Humidity of the air at the soil surface	_
$I_{ m abs}$		$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	_
abs		μπιοι πε	within a canopy layer	
$I_{ m dir}$??		$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	_
$I_{ m diff}$		$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	_
1 (1111		μπιοι πε	1 Hotor hax in amase radiation	eqn:Idiff
$I_{ m total}$		$\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	-
I_s		$\mu mol m^{-2} s^{-1}$	Solar constant, photon flux in a plane perpedicular to	2600
18		μπιοι πε	the solar beam above the atmosphere	2000
I_d			the solar beam above the atmosphere	
$I_{\ell,d}$				
$I_{ m short}$		$\mu mol m^{-2} s^{-1}$	Short wave radiation component of incident light	_
$I_{ m beam}$		μποιπ 3	flux density of beam radiation on horizontal surface at	
1 beam			top of canopy	
Ι.			flux density of diffuse radiation on horizontal surface	
$I_{ m od}$				
T		$\mu molm^{-2}s^{-1}$	at top of canopy Solar radiation incident upon soil surface	
$I_{ m soil}$		$W m^{-2}$	Solar radiation incident upon son surface Solar radiation on soil	-
$I_{ m soil}$		$W m$ $\mu mol m^{-2} s^{-1}$		-
$I_{ m sun}$		$\mu mol \ m - s$	Mean I for leaves which receive direct solar radiation,	-
7		, -2 -1	i.e. are sunlit	
I_{shade}		$\mu mol m^{-2} s^{-1}$	Mean I for leaves shaded from direct solar radiation	-
$I_{ m scat}$		$\mu mol m^{-2} s^{-1}$	Direct beam radiation scattered by surfaces within the	-
			canopy	
J??	_			undefined
$J_{\max,T}$?	?	- 0 1		undefi
$J_{ m a}$		$\mu mol\ m^{-2}\ s^{-1}$	Total solar radiation absorbed by either sunlit or	-
			shaded leaves within a canopy layer	
$J_{\rm a,\ soil}$		$\mu molm^{-2}s^{-1}$	Total solar radiation absorbed by soil	-

 $\quad undefined$

	Term Units Definition	on Value		
k		Foliar absorption coefficient (α_{ℓ} in Bernacchi 2003)		
K_0 ??	differibloffiebb	Total absorption coefficient (at in Dernacem 2000)		undefined
k_d	dimensionless	extinction coefficient for diffuse light		
K_c ??	$\mu mol\ mol^{-1}$	Michaelis Menton constant for the carboxylation of 460 RuBISCO		
$K_{\rm CO_2}$	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response 0.7		
$Kt \ K_o$		C ₄ slope factor - Michaelis Menton constant for oxygenation of Ru- 330		
		BISCO		
$k_{ m slope} \ { m LN}$	Dimensionless $g m^{-2}$	Initial slope of photosynthetic light response 0.04 Leaf nitrogen concentration	_	
$k_{ m leaf}$	Dimensionless	Partitioning coefficient for leaf	_	
$k_{ m stem}$	Dimensionless	Partitioning coefficient for stem	_	
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	-	
k_t ??		temperature-dependent pseudo-first order rate constant with respect to P_i (Collatz 1992)		
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root	_	
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	-	
ℓ				
$\ell_{ m sun}$				
$l_{ m sun}$	-3	D + 1 24 C21		
L_i	$cm cm^{-3}$	Root density of ith zone	-	
L_w	m	Leaf width in the direction of the wind	0.04	
$\Delta L_{ m stem}$				
$\Delta L_{ m sroot}$	MI/IZ m	Latent heat of concurrentian		
λ	${ m MJ/Kg} \ W/(m^{\circ}C)$	Latent heat of vapourisation Thermal conductivity for the soil surface	-	
$\lambda_{ m soil} \ M$??	W/(m C)	Thermal conductivity for the son surface	-	
	$mol mol^{-1} mmol N^{-1} m$	slope of linear relationship between quantum yield of	_	
m_{lpha}	moi moi mmoi v	leaf photosynthesis rate and specific leaf nitrogen	_	
$m_{ m Rd}$	$\mu mol m^{-2} s^{-1} mmol N^{-}$	$^{-1}m^2$ slope of linear relationship between leaf dark respiration rate and specific leaf nitrogen	-	
m_r	${ m mm~month}^{-1}$	monthly precipitation rate		
$m_{ m vmax}$	$\mu mol m^{-2} s^{-1} mmol N^{-}$	$^{-1}m^2$ slope of linear relationship between maximum rate of		
		carboxylation and specific leaf nitrogen		
$N_{ m eff}$	days/mo	effective length of rainy period		
n	day	The number of days in a month	29, 30, or 31	
nr	day	The number of rainy days in a month	-	
O_a	$mmolmol^{-1}$	Atmospheric O ₂ concentration	210	
O_i ??	$mmolm^{-2}s^{-1}$	Intercellular concentration of O_2 in air corrected for solubility relative to $25^{\circ}C$	-	
$\omega_{ m leaf}$	g	Leaf biomass	-	
$\omega_{ m stem}$	g	Stem biomass	-	
$\omega_{ m sroot}$	g	Biomass of storage root	-	
$\omega_{ ext{froot}}$	g	Biomass of fine root	-	
$\omega_{ m stroot}$	g	Biomass of structural root	-	
$\omega_{ m storage}$	g	Biomass of storage	-	
Ω	degrees	Latitude	-	
P	kPa	Atmospheric pressure		
P_o	kPa	Standard atmospheric pressure at sea level	101.324	
P_s	kPa	Leaf surface partial pressure of CO ₂	-	
$\Psi_{ m g} \ \Psi_l$	MPa	Leaf water potential	-	
$\Psi_{ m L} \ \Psi_t$	MPa	Threshold leaf water potential for decreasing gs	_	
$\Phi_{ ext{PSII,max}}$??				undefined
$\Phi_{ m N}$	${ m W~m^{-2}}$	Net radiation	-	

-		continued from previous page Value	
Ф	$rac{ ext{Term} ext{Units} ext{Definition}}{ ext{W} \ ext{m}^{-2}}$	Net radiation at soil surface	
$\Phi_{N,soil} \ \phi_i$	vv III	coefficient which controls spread of logistic function	-
φ_i		used to calculate water stress factor in ??	
ϕ ??		about to calculate water briefs factor in	undefined
$\Psi_{ m adl}$	MPa	Average daily plant water potential	-
$\Psi_{ m pt}$	MPa	Threshold water potential	-
$\Psi_{ m si}$	MPa	Soil water potential of the ith layer	-
Ψ_x	MPa	xylem water potential	-
q	Dimensionless	The probability that there is no rainfall	-
q_w	${\rm kg~s^{-1}}$	Flux of water	-
Q_2 ??			undefined
Q_{10}	dimensionless	Is the proportional rise in a parameter for a 10°C in-	2
		crease in temperature	
r	dimensionless	Leaf reflection coefficient for total solar radiation	0.2
r^{\sim}	$\operatorname{mm} \operatorname{day}^{-1}$	Mean daily rainfall in each month	-
R	$J k^{-1} mol^{-1}$	Real gas constant	8.314
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-
$R_{\rm si}$	$m^3kg^{-1}s^{-1}$	Soil resistance of the ith zone	-
$R_{\rm ri}$	$M^3kg^{-1}s^{-1}$	root resistance of the ith zone	-
R_o	$mol m^{-2} s^{-1} \ mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3
R_d ??	$mot m^{-2} s^{-1}$	Dark respiration at a given temperature	-
$R_{\rm lc}$	$mol m^{-2} s^{-1}$	Longwave radiation	-
$R_{lc,\text{soil}}$	$moi m$ s $kg m^{-3}$	Soil longwave radiation	1000
$ ho_w$	$\kappa g m$ kPa	Density of water	1000
$ ho_a$	kra	vapor pressure deficit in air	
$ ho_a'$	$kPa\ K^{-1}$	Slope of saturated water vapor pressure change with	_
3	KI a IX	respect to temperature (look up table)	
s_p	dimensionless	Spectral imbalance	_
$S_{ m size}$	m	Average size of soil particles	0.04
S_r	Dimensionless	Soil reflectance	0.2
$S_{ au}$	Dimensionless	Soil transmission	0.01
Sp_{leaf}	${\rm gram} {\rm m}^{-2}$	Specific leaf area	50
$Sp_{ m stem}$	${\rm gram}~{\rm m}^{-1}$	Specific stem elongation factor	60
Sp_{froot}	${\rm gram~m^{-1}}$	Specific fine root elongation factor	10
$Sp_{ m stroot}$	${\rm gram}~{\rm m}^{-1}$	Specific structural root elongation factor	60
σ	$\mathrm{Wm^{-2}K^{-4}}$	Stefan-Boltzmann constant	5.67
			10^{-8}
t	h	Time of day	-
t_{up} ??	h	time of dawn	
$t_{\rm down}$??	h	time of dusk	
$t_{ m len}$??	h	day length	-
$t_{ m sn}$	h	Time of solar noon	12
$T_{ m leaf}$	$^{\circ}\mathrm{C}$	Leaf temperature	-
$T_{\rm air}$??	$^{\circ}\mathrm{C}$	Ambient air temperature	-
T_{mean} ??	$^{\circ}\mathrm{C}$	Daily mean $T_{\rm air}$	
$T_{\rm range}$??	$^{\circ}\mathrm{C}$	$rac{T_{ m air} - T_{ m mean}}{T_{ m range}}$	
$T_{\text{excursion}}$??	fraction	Difference between current $T_{\rm mean}$	
$T_{ m soil}$	$^{\circ}\mathrm{C}$	Soil surface temperature	-
$T_{ m lower}$	$^{\circ}\mathrm{C}$	Lower T limitation on photosynthesis	
$T_{ m upper}$	$^{\circ}\mathrm{C}$	Upper T limitation on photosynthesis	
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7
T_4	$^{\circ}\mathrm{C}$	Maximum daily range in air temperature	7
ΔT	$^{\circ}\mathrm{C}$	Temperature difference between (leaf or soil) and air	
au	Dimensionless	Leaf transmittance coefficient	

	Term Units Definition	Value		
Θ_{curve}	dimensionless	Curvature parameter	-	
Θ^*	kgm^{-3}	Actual volumetric water content	-	
Θ_1	kgm^{-3}	The volumetric water content for maximizing Evapo-		
		ration		
Θ_2	kgm^{-3}	The volumetric water content for wilting point	_	
Θ_i	kgm^{-3}	The volumetric water content of the ith day	-	
Θ_{PSII} ??				undefined
Θ	degrees	Solar zenith angle	-	
u	${ m m~s^{-1}}$	Measured wind speed at known height (2m)	2	
u_{layer}	$\mathrm{m}\;\mathrm{s}^{-1}$	Wind speed in a given canopy layer	-	
$u_{ m soil}$	${ m m~s^{-1}}$	Wind speed at soil surface	-	
v		Saturated water vapour concentration	-	
$V_{ m max}$??	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
		given temperature		
V_{\max_0}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
		given temperature		
$V_{c,\max}$??				undefined
V_{c,max_0}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at $25^{\circ}C$	39	
VPD	kPa	Leaf-air water vapour pressure deficit	_	
V_T	$mol m^{-2} s^{-1}$	V_{max} at current T		
w_c ??	$mol m^{-2} s^{-1}$	RuBISCO limited rate of photosynthesis		
w_c	$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis		
w_j ??				undefined
W_p	$m^{3}m^{-3}$	Wilting point		
W_s	m^3m^{-3}	Soil water content		
z_o	m	Roughness length	0.234	
χ	dimensionless	The ratio of horizontal:vertical projected area of leaves	1	
		in the canopy segment		
slope	$mol \ m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7	
curve	dimensionless	Curvature parameter	0.83	
Z	m	Thickness of a soil layer	-	