

Deep Learning in Practice

Edited by Nur Naim, Sept 2021

Learning objectives

- Introduce to deep learning practices in different applications
- Different types of architectures from different deep learning algorithms.
- Real world challenges
- Keras, Tensorflow and PyTorch

Deep Learning Practices

- Industrial project
- Academic research
- Data
- Algorithms
- Flexibility

Ten Quick Tips for Deep Learning in Biology

Type	Example references	Variants	Network structure	Applications
BP	Rumelhart ^[33]	RBF GRNN	Input layer Output layer Hidden layer	Data fitting Pattern recognition Classification
CNN	LeCun ^[34] Krizhevsky ^[35]	LeNet, AlexNet VggNet	Input layer Convolution layer Pooling layer Full connected layer	Image processing Speech signal Natural Language Processing
RNN	Mikolov ^[36] Sundermeyer ^[37]	LSTM	Input layer Hidden layer Output layer	Time series analysis Emotion analysis Natural Language Processing
GAN	Goodfellow ^[28]	DCGAN	Discrimination model Generation model	Image generation Video generation

 $Source: https://www.researchgate.net/figure/Summary-of-BP-CNN-RNN-and-GAN_tbl1_327019925$

Face Recognition

- Detect faces
- Recognise the face
- Challenges:

Illumination. Illumination stands for light variations. ...

Pose. Facial Recognition Systems are highly sensitive to pose variations. ...

Expressions. ...

Low Resolution. ...

Ageing. ...

Model Complexity. ...

Conclusion

Algorithms: dlib, cvlib, mtcnn, vgg16, etc.

Activity Detection

- Challenges ~ labelling, high uncertainty, large dataset
- Algo Yolo

How a driverless car sees the

road?

Self-Driving Car

https://www.youtube.com/watch?v=tiwVMrTLUWg

Real-life Sequence Learning Applications

- RNNs can be applied to various type of sequential data to learn the temporal patterns.
 - Time-series data (e.g., stock price) → Prediction, regression
 - Raw sensor data (e.g., signal, voice, handwriting) → Labels or text sequences
 - Text \rightarrow Label (e.g., sentiment) or text sequence (e.g., translation, summary, answer)
 - Image and video → Text description (e.g., captions, scene interpretation)

Task	Input	Output
Activity Recognition (Zhu et al. 2018)	Sensor Signals	Activity Labels
Machine translation (Sutskever et al. 2014)	English text	French text
Question answering (Bordes et al. 2014)	Question	Answer
Speech recognition (Graves et al. 2013)	Voice	Text
Handwriting prediction (Graves 2013)	Handwriting	Text
Opinion mining (Irsoy et al. 2014)	Text	Opinion expression

Genomic Analysis

	Keras	TensorFlow	PyTorch C
Level of API	high-level API ¹	Both high & low level APIs	Lower-level API ²
Speed	Slow	High	High
Architecture	Simple, more readable and concise	Not very easy to use	Complex ³
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets
Popularity Rank	1	2	3
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration
Created By	Not a library on its own	Created by Google	Created by Facebook ⁴
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs ⁵

Resource: https://medium.com/analytics-vidhya/ml03-9de2f0dbd62d

Resources

• Google (image) – face recognition, activity detection, self-driving car, genomic analysis.

