Vv214 Linear Algebra

First Midterm Exam - Review class

DU Yang

SJTU-UM Joint Institute Shanghai Jiao-Tong University

March 16, 2019

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basis

Matrix Algebra

Reduced Row-Echelon Form Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrices

Geometric Meaning

Kernel, Image and Dimension Formula

Kernel and Image
Dimension Formula

Linearity, Matrix and Vector

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basi

Matrix Algebra

Reduced Row-Echelon Form

Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrices
Geometric Meaning

Kernel, Image and Dimension Formula

Kernel and Image

Linear Equation

Definition

In mathematics, a **linear equation** is an equation that may be put in the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = 0,$$

where x_1, \dots, x_n are the variables (or unknowns or indeterminates), and b, a_1, \dots, a_n are the coefficients, which are often real numbers.

System of linear equations

Definition

In mathematics, a system of linear equations has the form

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n \end{vmatrix}$$

where here a_{ij} , b_i are coefficients and x_i are unknowns.

Matrix

We can write a system of linear equations in to a matrix form.

Coefficient Matrix

$$\begin{bmatrix} a_{11}x_1 & a_{12}x_2 & \cdots & a_{1m}x_m \\ a_{21}x_1 & a_{22}x_2 & \cdots & a_{2m}x_m \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}x_1 & a_{n2}x_2 & \cdots & a_{nm}x_m \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Augmented Matrix

$$\begin{bmatrix} a_{11}x_1 & a_{12}x_2 & \cdots & a_{1m}x_m & b_1 \\ a_{21}x_1 & a_{22}x_2 & \cdots & a_{2m}x_m & b_2 \\ \vdots & \vdots & \ddots & \vdots & \cdots \\ a_{n1}x_1 & a_{n2}x_2 & \cdots & a_{nm}x_m & b_n \end{bmatrix} \in \mathbb{R}^{n \times (m+1)}$$

Vector and Vector Space

Definition

A matrix with only one column is called a **column vector**, or simply a **vector**. A matrix with only one row is called a **row vector**. The entries of a vector are called its components. The set of all column vectors with n components is denoted by \mathbb{R}^n ; we will refer to \mathbb{R}^n as a **vector space**.

Linear combination of vectors

A vector b in \mathbb{R}^n is called a **linear combination** of the vectors v_1, \dots, v_n in \mathbb{R}^n , if there exist scalars x_1, \dots, x_m such that

$$b = x_1v_1 + \cdots + x_nv_m = 0.$$

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basis

Matrix Algebra

Reduced Row-Echelon Form

Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrice

ernel, Image and Dimension Formula

Kernel and Image

Dimension Formula

Span

Definition

Consider the vectors v_1, \dots, v_m in \mathbb{R}^n . The set of all linear combinations of the vectors v_1, \dots, v_m is called their **span**:

$$\textit{span}(\textit{v}_1,\cdots,\textit{v}_m) = \{\textit{c}_1\textit{v}_1 + \cdots + \textit{c}_m\textit{v}_m : \textit{c}_1,\cdots,\textit{c}_m \in \mathbb{R}\}.$$

Linear Independence

Definition

Consider vectors v_1, \dots, v_m in \mathbb{R}^n .

- ▶ We say that a vector v_i in the list v_1, \dots, v_m is **redundant** if v_i is a linear combination of the preceding vectors v_1, \dots, v_{i-1} .
- ► The vectors v₁, · · · , v_m are called linearly independent if none of them is redundant. Otherwise, the vectors are called linearly dependent (meaning that at least one of them is redundant).

Remark

The vectors v_1, \dots, v_m are linearly independent if and only if

$$c_1v_1+\cdots+c_mv_m=0 \quad \Rightarrow \quad c_1=\cdots=c_m=0.$$

Subspace of \mathbb{R}^n

Definition

A subset W of the vector space \mathbb{R}^n is called a **(linear) subspace** of \mathbb{R}^n if it has the following three properties:

- 1. W contains the zero vector in \mathbb{R}^n .
- 2. W is closed under addition: If w_1 and w_2 are both in W, then so is $w_1 + w_2$.
- 3. W is closed under scalar multiplication: If w is in W and k is an arbitrary scalar, then kw is in W.

Basis

Definition

We say that the vectors v_1, \dots, v_m form a **basis** of a subspace V of \mathbb{R}^n if they span V **and** are linearly independent. (Also, it is required that vectors v_1, \dots, v_m be in V.)

Unique representation

Every vector v in V can be expressed **uniquely** as a linear combination of basis,

$$v = c_1 v_1 + \cdots + c_m v_m$$
.

Dimension

Consider a subspace V of \mathbb{R}^n . The number of vectors in a basis of V is called the **dimension** of V, denoted by $\dim(V)$,

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basis

Matrix Algebra

Reduced Row-Echelon Form

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Geometric Meaning

Kernel, Image and Dimension Formula

Kernel and Image

Reduced Row-Echelon Form

A matrix is in **reduced row-echelon form(rref)** if it satisfies all of the following conditions:

- ▶ If a row has nonzero entries, then the first nonzero entry is a 1, called the leading 1 (or pivot) in this row.
- ▶ If a column contains a leading 1, then all the other entries in that column are 0.
- ▶ If a row contains a leading 1, then each row above it contains a leading 1 further to the left.

Definition

The rank of a matrix A is the number of leading 1's in rref(A).

Elementary Row Operation

Types of elementary row operations

- Divide a row by a nonzero scalar.
- Subtract a multiple of a row from another row.
- Swap two rows.

Remarks

- The elementary row operations will NOT change the rank of a matrix, and will NOT change the solution of a system of linear equations.
- ► Rank(A)= Max number of independent row vectors of A = Max number of independent column vectors of A.

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basi

Matrix Algebra

Reduced Row-Echelon Form

Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrices
Geometric Meaning

Kernel, Image and Dimension Formula

Kernel and Image

Linear Operation

Definition

A function T from \mathbb{R}^m to \mathbb{R}^n is called a **linear transformation** if there exists an $n \times m$ matrix A such that

$$T(x) = Ax$$

for all x in the vector space \mathbb{R}^m .

Properties

If A is an $n \times m$ matrix; x and y are vectors in \mathbb{R}^m and k is a scalar, then

- 1. A(x + y) = Ax + Ay, and
- $2. \ A(kx) = k(Ax).$

Column Vectors of a Matrix

Remarks

- ▶ The i^{th} column vector of the identical matrix in \mathbb{R}^n is called the i^{th} vector of the elementary basis, denoted by e_i .
- ▶ For example, e_2 in \mathbb{R}^4 is $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$.
- ▶ A matrix is a linear transformation which maps e_i to the i^{th} column vector of the matrix. Thinking: Why we only need to map basis?

Inverse of Matrices

Definition

A $n \times n$ matrix A is **invertible** if and only if

- $ightharpoonup rref(A) = I_n \text{ or }$
- ightharpoonup rank(A) = n or
- ▶ $det(A) \neq 0$.

Inverse

A matrix A^{-1} is the **inverse** of A if $AA^{-1} = A^{-1}A = I$.

Theorem

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Find the Inverse

Gauss-Jordan method

$$\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\mathsf{row} \ \mathsf{elimination}} \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Adjugate matrix method

 $A^* := (cof \ A)^T$, the transpose of the cofactor matrix of A is called an **adjugate matrix** of A. Then

$$A^{-1} = \frac{1}{\det(A)}A^*.$$

Geometric Meaning

Orthogonal Projection Matrix

- $A^2 = A$.
- Column vectors are on a line.

Reflection Matrix

- $A^2 = I$, where I is the identity.
- $A = A^{-1}$.
- ▶ The eigenvalues of A equal ± 1 .

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basis

Matrix Algebra

Reduced Row-Echelon Form

Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrices
Geometric Meanin

Kernel, Image and Dimension Formula

Kernel and Image

Kernel and Image

Image

The **image** of a function (not necessarily linear) consists of all the values the function takes in its target space. If f is a function from X to Y, then

$$image(f) = \{f(x) : x \in X\}.$$

Kernel

The **kernel** of a linear transformation (matrix) A from \mathbb{R}^m to \mathbb{R}^n consists of all zeros of the transformation, that is, the solutions of the equation Ax = 0.

Kernel and Image

Remarks

- ► The image of a linear transformation *A* is the span of the column vectors of *A*.
- ▶ If A is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then ker(A) is a subspace of \mathbb{R}^m and image(A) is a subspace of \mathbb{R}^n .

Dimension Formula

Remarks

• dim(image(A)) = rank(A).

Rank-Nullity Theorem

For any $n \times m$ matrix A, or equivalently a linear transform A from \mathbb{R}^m to \mathbb{R}^n , we always have

$$dim(ker(A)) + dim(image(A)) = m.$$

Linearity, Matrix and Vector

Linear Equation

Matrix and Vector

Span, Linear Independence and Basis

Span

Linear Independence

Subspace and Basis

Matrix Algebra

Reduced Row-Echelon Form

Elementary Row Operation

Linear Transformation

Linear Operation

Column Vectors of a Matrix

Inverse of Matrices

and Image and Dimension Formula

ernel, Image and Dimension Formul

Kernel and Image
Dimension Formula

Summary

Go over

- ► The textbook,
- ► Homework 1-3,
- Slides and exercises on recitation classes.