Calculus II Lecture 6

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Trigonometric Integrals
 - Integrating rational trigonometric integrals
 - Ad hoc methods for trigonometric integrals

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Integrals of the form $\int R(\cos \theta, \sin \theta) d\theta$, R

Let R be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

Can we integrate $\int R(\cos \theta, \sin \theta) d\theta$?

- Yes. We will learn how in what follows.
- The algorithm for integration is roughly:
 - Apply the substitution $\theta = 2 \arctan t$ to transform to integral of rational function.
 - Solve as previously studied.

The rationalizing substitution $\theta = 2 \arctan t$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$? How does this transform $d\theta$? How is t expressed via θ ?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

Recall the expression of sin(2z), cos(2z) via tan z:

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

The rationalizing substitution $\theta = 2 \arctan t$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$? How does this transform $d\theta$? How is t expressed via θ ?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d(\arctan t) = \frac{2}{1 + t^2}dt$$

$$t = \tan\left(\frac{\theta}{2}\right)$$

Theorem

The substitution given above transforms $\int R(\cos \theta, \sin \theta) d\theta$ to an integral of a rational function of t.

Let
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1-t^2}{1+t^2}$, $\sin \theta = \frac{2t}{1+t^2}$, $z = \frac{3}{\sqrt{5}} (t + \frac{1}{3})$.

$$\int \frac{\mathrm{d}\theta}{2\sin\theta - \cos\theta + 5} = \int \frac{2\mathrm{d}t}{(1+t^2)\left(2\frac{2t}{t^2+1} - \frac{(1-t^2)}{1+t^2} + 5\right)}$$

$$= \int \frac{2\mathrm{d}t}{6t^2 + 4t + 4}$$

$$= \int \frac{\mathrm{d}t}{3t^2 + 2t + 2}$$

$$= \int \frac{\mathrm{d}t}{3\left(t^2 + 2t\frac{1}{3} + \frac{1}{9} - \frac{1}{9} + \frac{2}{3}\right)}$$

$$= \frac{1}{3}\int \frac{\mathrm{d}t}{\left(t + \frac{1}{3}\right)^2 + \frac{5}{9}}$$

$$= \frac{1}{3}\int \frac{\mathrm{d}t}{\frac{5}{9}\left(\frac{9}{5}\left(t + \frac{1}{3}\right)^2 + 1\right)}$$

Let
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1-t^2}{1+t^2}$, $\sin \theta = \frac{2t}{1+t^2}$, $z = \frac{3}{\sqrt{5}} (t + \frac{1}{3})$.

$$\begin{split} \int \frac{\mathrm{d}\theta}{2\sin\theta - \cos\theta + 5} &= \frac{1}{3} \int \frac{\mathrm{d}t}{\frac{5}{9} \left(\frac{9}{5} \left(t + \frac{1}{3}\right)^2 + 1\right)} \\ &= \frac{3}{5} \int \frac{\frac{\sqrt{5}}{3} \mathrm{d} \left(\frac{3}{\sqrt{5}} \left(t + \frac{1}{3}\right)\right)}{\left(\left(\frac{3}{\sqrt{5}} \left(t + \frac{1}{3}\right)\right)^2 + 1\right)} \\ &= \frac{\sqrt{5}}{5} \int \frac{\mathrm{d}z}{z^2 + 1} \\ &= \frac{\sqrt{5}}{5} \arctan z + C \\ &= \frac{\sqrt{5}}{5} \arctan \left(\frac{3}{\sqrt{5}} \left(t + \frac{1}{3}\right)\right) + C \\ &= \frac{\sqrt{5}}{5} \arctan \left(\frac{3}{\sqrt{5}} \left(\tan \left(\frac{\theta}{2}\right) + \frac{1}{3}\right)\right) + C \end{split}$$

Todor Milev 2020

The integral $\int \sec \theta d\theta$ appears often in practice. A quicker solution will be shown later, but first we show the standard method.

Example

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad | \text{ part. fractions}$$

$$= -\ln|1 - t| + \ln|1 + t| + C$$

$$= \ln\left|\frac{1 + t}{1 - t}\right| + C$$

$$= \ln\left|\frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})}\right| + C$$

The integral $\int \sec \theta d\theta$ appears often in practice. A quicker solution will be shown later, but first we show the standard method.

Example

$$\begin{split} & \text{Set } \theta = 2 \arctan t, \cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}, \, \mathrm{d}\theta = 2 \frac{1}{1 + t^2} \mathrm{d}t. \\ & \int \sec \theta \mathrm{d}\theta \quad = \quad \ln \left| \frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})} \right| + C \end{split}$$

This is a perfectly good answer, however there's a simplification:

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

$$= \frac{\left(\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)^2}{\left(\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)\right) \left(\cos \left(\frac{\theta}{2}\right) + \sin \left(\frac{\theta}{2}\right)\right)}$$

$$= \frac{\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)} = \frac{1 + \tan \left(\frac{\theta}{2}\right)}{1 - \tan \left(\frac{\theta}{2}\right)}.$$

The integral $\int \sec \theta d\theta$ appears often in practice. A quicker solution will be shown later, but first we show the standard method.

Example

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.
$$\int \sec \theta d\theta = \ln|\tan \theta + \sec \theta| + C$$

This is a perfectly good answer, however there's a simplification:

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

$$= \frac{\left(\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)^2}{\left(\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)\right) \left(\cos \left(\frac{\theta}{2}\right) + \sin \left(\frac{\theta}{2}\right)\right)}$$

$$= \frac{\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)} = \frac{1 + \tan \left(\frac{\theta}{2}\right)}{1 - \tan \left(\frac{\theta}{2}\right)}.$$

Trigonometric Integrals - quick ad hoc techniques

- As we saw, every rational trigonometric expression can be integrated with the substitution $\theta = 2 \arctan t$.
- This integration technique results in rather long computations.
- Particular integral types may be computable with quicker ad hoc techniques.
- We illustrate such techniques on examples.
- Examples to which our ad hoc techniques apply arise from integrals needed outside of the subject of Calculus II, so these techniques are important.
- The trigonometric integral we saw, $\int \frac{d\theta}{2\sin\theta-\cos\theta+5}$, will not work with any of following ad-hoc techniques, so the general method is important as well.

$$\int \sin^3 x dx = \int \sin^2 x \sin x dx$$

$$= \int \sin^2 x d(-\cos x) \qquad \qquad \text{Can we rewrite } \sin^2 x \text{ via } \cos x?$$

$$= \int (-1) \left(1 - \cos^2 x\right) d(\cos x)$$

$$= \int \left(\cos^2 x - 1\right) d(\cos x) \qquad \qquad \text{Set } u = \cos x$$

$$= \int \left(u^2 - 1\right) du$$

$$= \frac{u^3}{3} - u + C$$

$$= \frac{1}{3} \cos^3 x - \cos x + C \qquad .$$

$$\int \cos^{5} x \sin^{2} x dx = \int \cos^{4} x \sin^{2} x \cos x dx$$

$$= \int \cos^{4} x \sin^{2} x d(\sin x) \qquad \text{Can we rewrite } \cos^{4} x \text{ via } \sin x?$$

$$= \int \left(\cos^{2} x\right)^{2} \sin^{2} x d(\sin x)$$

$$= \int \left(1 - \sin^{2} x\right)^{2} \sin^{2} x d(\sin x) \qquad \text{Set } u = \sin x$$

$$= \int \left(1 - u^{2}\right)^{2} u^{2} du$$

$$= \int \left(1 - 2u^{2} + u^{4}\right) u^{2} du$$

$$= \int \left(u^{2} - 2u^{4} + u^{6}\right) du$$

$$= \frac{u^{3}}{3} - 2\frac{u^{5}}{5} + \frac{u^{7}}{7} + C$$

$$= \frac{\sin^{3} x}{3} - 2\frac{\sin^{5} x}{5} + \frac{\sin^{7} x}{7} + C \qquad .$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m} x \cos^{n-1} x d(\sin x)$$

$$= \int \sin^{m} x \left(1 - \sin^{2} x\right)^{\frac{n-1}{2}} d(\sin x)$$

$$= \int u^{m} \left(1 - u^{2}\right)^{\frac{n-1}{2}} du$$

$$\int \sin^{m} x \cos^{n} x dx = \int \sin^{m-1} x \cos^{n} x d(-\cos x)$$

$$= -\int \left(1 - \cos^{2} x\right)^{\frac{m-1}{2}} \cos^{n} x d(\cos x)$$

$$= -\int \left(1 - u^{2}\right)^{\frac{m-1}{2}} u^{n} du$$
When $n - \text{odd:}$

$$\sin x dx$$

$$= d(-\cos x)$$

$$= \exp(-\cos x)$$
Express $\cos x$

$$\sin x dx$$

$$= d(-\cos x)$$
Express $\cos x$

$$\sin x dx$$

$$= \cos x dx$$

If both m, n- even, use $\begin{vmatrix} \sin^2 x & = & \frac{1-\cos(2x)}{2} \\ \cos^2 x & = & \frac{\cos(2x)+1}{2} \end{vmatrix}$ and substitute s = 2x to

lower trig powers. Repeat above considerations.

$$\int_0^{\frac{\pi}{2}} \sin^2 x dx = \int_0^{\frac{\pi}{2}} \left(\frac{1 - \cos(2x)}{2} \right) dx \qquad \qquad | \text{ express } \sin^2 x \\ = \left[\frac{x}{2} - \frac{\sin(2x)}{4} \right]_0^{\frac{\pi}{2}} \\ = \left(\frac{\pi}{4} - \frac{\sin \pi}{4} \right) - \left(0 - \frac{\sin 0}{4} \right) = \frac{\pi}{4}.$$

Example

Set $t = \cos x$, $x \in \left[0, \frac{\pi}{2}\right] \Rightarrow \sin x \ge 0$. Then $dt = d(\cos x) = -\sin x dx.$

$$\int_{t=0}^{t=1} \sqrt{1-t^2} dt = -\int_{x=\frac{\pi}{2}}^{x=0} \sqrt{1-\cos^2 x} \sin x dx$$

$$= \int_{x=\frac{\pi}{2}}^{x=\frac{\pi}{2}} \sqrt{\sin^2 x} \sin x dx$$

$$= \int_{0}^{x=\frac{\pi}{2}} \sin^2 x dx = \frac{\pi}{4} .$$

$$\int \tan^8 x \sec^4 x dx = \int \tan^8 x \sec^2 x \sec^2 x dx$$

$$= \int \tan^8 x \sec^2 x d (\tan x) \qquad \text{Can we rewrite } \sec^2 x \text{ via } \tan x?$$

$$= \int \tan^8 x \left(1 + \tan^2 x\right) d(\tan x) \qquad \text{Set } u = \tan x$$

$$= \int u^8 \left(1 + u^2\right) du$$

$$= \int \left(u^8 + u^{10}\right) du$$

$$= \frac{u^9}{9} + \frac{u^{11}}{11} + C$$

$$= \frac{\tan^9 x}{9} + \frac{\tan^{11} x}{11} + C \qquad .$$

Todor Milev 2020

$$\int \tan^{5} x \sec^{9} x dx = \int \tan^{4} x \sec^{8} x \tan x \sec x dx$$

$$= \int \tan^{4} x \sec^{8} x d(\sec x) \qquad \text{Can we rewrite } \tan^{4} x \text{ via } \sec x?$$

$$= \int \left(\tan^{2} x\right)^{2} \sec^{8} x d(\sec x)$$

$$= \int \left(\sec^{2} x - 1\right)^{2} \sec^{8} x d(\sec x) \qquad \text{Set } u = \sec x$$

$$= \int \left(1 - u^{2}\right)^{2} u^{8} du$$

$$= \int \left(1 - 2u^{2} + u^{4}\right) u^{8} du$$

$$= \int \left(u^{8} - 2u^{10} + u^{12}\right) du$$

$$= \frac{u^{9}}{9} - 2\frac{u^{11}}{11} + \frac{u^{13}}{13} + C$$

$$= \frac{\sec^{9} x}{9} - 2\frac{\sec^{11} x}{11} + \frac{\sec^{13} x}{13} + C \qquad .$$

Partial strategy for fast evaluation of $\int tan^m x \sec^n x dx$

$$\int \tan^{m} x \sec^{n} x dx = \int \tan^{m} x \sec^{n-2} x d(\tan x)$$

$$= \int \tan^{m} x \left(1 + \tan^{2} x\right)^{\frac{n-2}{2}} d(\tan x)$$

$$= \int u^{m} \left(1 + u^{2}\right)^{\frac{n-2}{2}} du$$

$$\int \tan^{m} x \sec^{n} x dx = \int \tan^{m-1} x \sec^{n-1} x d(\sec x)$$

$$= \int \left(\sec^{2} x - 1\right)^{\frac{m-1}{2}} \sec^{n-1} x d(\sec x)$$

$$= \int \left(u^{2} - 1\right)^{\frac{m-1}{2}} u^{n} du$$

$$n - \text{even}, n \ge 2$$

$$\sec^{2} x dx$$

$$= d(\tan x)$$
Express $\sec x$
via $\tan x$

$$m - \text{odd}, n \ge 1$$

$$\tan x \sec x dx$$

$$= d(\sec x)$$
Express $\tan x$
via $\sec x$
Via $\sec x$

Outside of the above cases we either use more tricks or resort to the general method $x = 2 \arctan t$.

$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx = \int \frac{1}{\cos x} d(-\cos x) \quad \left| \text{ Set } u = \cos x \right|$$

$$= -\int \frac{du}{u} = -\ln|u| + C$$

$$= -\ln|\cos x| + C = \ln|\sec x| + C$$

The following can be/was computed via $x = 2 \arctan t$. Alternatively:

Example

$$\int \sec x dx = \int \sec x \frac{(\sec x + \tan x)}{(\sec x + \tan x)} dx$$

$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx$$

$$= \int \frac{d(\tan x + \sec x)}{\sec x + \tan x} \qquad | \text{Set } u = \sec x + \tan x$$

$$= \int \frac{du}{u} = \ln|u| + C$$

$$= \ln|\sec x + \tan x| + C.$$

$$\int \tan^3 x dx = \int \tan x \tan^2 x dx$$

$$= \int \tan x \left(\sec^2 x - 1 \right) dx$$

$$= \int \tan x \sec^2 x dx - \int \tan x dx$$

$$= \int \tan x d(\tan x) - \ln|\sec x| \qquad |\operatorname{Set} u = \tan x|$$

$$= \int u du + \ln\left|\frac{1}{\sec x}\right|$$

$$= \frac{u^2}{2} + \ln|\cos x| + C$$

$$= \frac{\tan^2 x}{2} + \ln|\cos x| + C$$

Todor Milev 2020

$$\int \sec^3 x dx = \int \sec x \sec^2 x dx$$

$$= \int \sec x d(\tan x)$$

$$= \sec x \tan x - \int \tan x d(\sec x)$$

$$= \sec x \tan x - \int \tan^2 x \sec x dx$$

$$= \sec x \tan x - \int (\sec^2 x - 1) \sec x dx$$

$$= \sec x \tan x - \int \sec^3 x dx + \int \sec x dx$$

$$2 \int \sec^3 x dx = \sec x \tan x + \ln|\sec x + \tan x| + C$$

$$\int \sec^3 x dx = \frac{1}{2} (\sec x \tan x + \ln|\sec x + \tan x|) + K.$$

Integrate by parts

To evaluate integrals of the form

- $\int \sin(mx)\cos(nx)dx$

use the corresponding identity:

- 2 $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
- 3 $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

$$\int \sin(4x)\cos(5x)dx = \int \frac{1}{2}[\sin(4x - 5x) + \sin(4x + 5x)]dx$$

$$= \frac{1}{2}\int (\sin(-x) + \sin(9x))dx$$

$$= \frac{1}{2}\int (-\sin x + \sin(9x))dx$$

$$= \frac{1}{2}(\cos x - \frac{1}{9}\cos(9x)) + C$$