





Tobia Claglüna :: AMAS Group, LSM

# **IPPL** Meeting

June 6, 2023

Contact: tobia.clagluena@psi.ch

1/5

Tobia Claglüna (LSM, PSI) June 6, 2023 June 6, 2023

### **Emergent Identities: Gaussian Test-Case**

Initial probability density:  $f(r) = \mathcal{N}(\mu, \sigma) = \mathcal{N}(0, 1) = \frac{1}{\sqrt{2-3}} \exp\left(-\frac{r^2}{2}\right)$ What identities currently hold:

$$\mathbf{g}(r) = \left[\sqrt{\frac{2}{\pi}}\exp\left(-\frac{r^2}{2}\right) + \left(r + \frac{1}{r}\right)\operatorname{erf}\left(\frac{r}{\sqrt{2}}\right)\right]$$

$$\overset{\bullet}{\mathbf{r}} \operatorname{Tr}(\mathbf{D}) = \Gamma \nabla^2 g = \Gamma h$$

#### Conclusion:

- Our solutions of the off-diagonals of D are incorrect
- The analytical solution computed with Mathematica of either one coefficient is wrong

Tobia Claglüna (LSM, PSI) June 6, 2023 June 6, 2023

#### D-Field Analysis: Gaussian Test-Case

Solver result looks similar to what we've seen in the Maxwellian.



Figure 1:  $D_{xy}$  comparison (different colorbar ranges!)

#### **TODO**

| Make off-diagonals of ${\it D}$ coincide with analytical solutions                     |
|----------------------------------------------------------------------------------------|
| Create convergence plots for these coefficients                                        |
| Start assembling a list of the results I've gathered in the last $4.5~\mathrm{months}$ |
| [Onesided Hessian]                                                                     |

Tobia Claglüna (LSM, PSI) June 6, 2023

## (Adjusted) Timeline

| Date  | Target Goals                                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 16/05 | Setup v-space datastructures in LangevinParticles.hpp. Add Friction coefficient. Add Solver for 2nd Rosenbluth potential $g(\vec{v})$ . |
| 23/05 | Analyse structure of <b>D</b> . Finish Diffusion coefficient computation (via onesided Hessian operator).                               |
| 30/05 | Analyse interplay between collision coeff.'s (see whether Severin's conclusions are confirmed or can be disproved).                     |
|       | Profiling of runtime and memory consumption.                                                                                            |
| 06/06 | Start improving most pressing bottlenecks. Start writing.                                                                               |
| 17/07 | Submission.                                                                                                                             |

Table 1: Timeline with approximate milestones