	EXAMINATION QUESTIONS/SOLUTIONS 2009-10	Course
		Comp245
Question		Marks &
1.		seen/unseen
Parts	(a) Using Payes Theorem	seen ↓
(1)	(e). Using Bayes Theorem,	
	$P(\overline{B} A) = \frac{P(A \cap \overline{B})}{P(A)} = \frac{P(A B)P(B)}{P(A)} = \frac{(1 - P(A B))(1 - P(B))}{P(A)}$ $= \frac{(1 - 0.8)(1 - 0.3)}{0.2} = 0.7.$	unccon III
(ii)	(d). From the standard normal table, $\Phi(1.282)\approx 0.9$ and so $\Phi(-1.282)\approx 0.1$. It follows that	unseen ↓
	$\frac{90-100}{\sigma} \approx -1.282 \implies \sigma \approx \frac{10}{1.282} \approx 7.8.$	seen ↓
(iii)		Secti V
(iv)	(f). For $X_i \sim \text{Exponential}(\lambda)$, $f(x_i) = \lambda \exp(-\lambda x_i)$. So,	
	$\ell(\lambda) = \sum_{i=1}^{3} \log f(x_i) = 3\log(\lambda) - \lambda \sum_{i=1}^{3} x_i$ $\frac{d\ell(\lambda)}{d\lambda} = \frac{3}{\lambda} - \sum_{i=1}^{3} x_i$ $\implies \hat{\lambda} = \frac{3}{\sum_{i=1}^{3} x_i} = \frac{3}{0.1 + 0.5 + 0.9} = \frac{3}{1.5} = 2.$	
(v)	<u>(b)</u> .	
	Observed: SATA 26 27 53 SSD 48 81 129 74 108 182 Expected: SATA 21.55 31.45 SSD 52.45 76.55	
	Test statistic X^2 =2.1853.	Each 4 mar
	Setter's initials NH	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2009-10	Course
		Comp245
Question 2.		Marks &
Parts (i)	(a) $X \sim \text{Geometric}(0.2)$. From the formula sheet, $E(X) = 1/0.2 = 5$. (b) $P(X \le 2) = P(X = 1) + p(X = 2) = 0.2 + 0.2 * (1 - 0.2) = 0.36.$	seen/unseen seen ↓ 4 marks
	(c) [A one-sided hypothesis test for a geometric parameter higher than 0.2 would consider the left tail of the distribution, so 0.36 is in fact the p-value for this test.] There is very little evidence to reject the null hypothesis of 80% next day deliveries.	3 marks unseen ↓ 1 marks
(ii)		seen ↓ 4 marks
	 (b) P(Y ≤ 5) = ∑_{i=0}⁵ P(Y = i) = ∑_{i=0}⁵ (20)/i 0.2ⁱ × 0.8²⁰⁻ⁱ ≈ 0.804. (c) [A one-sided hypothesis test for a binomial probability parameter higher than 0.2 would consider the right tail of the distribution. The p-value for the test is:] P(Y ≥ 6) = 1 - P(Y ≤ 5) ≈ 0.196. 	3 marks unseen ↓
	So there is more evidence against the null hypothesis than before, but insufficient to reject at any typical significance level. Let Z be the number of parcels delivered on time, then $Z\sim \text{Binomial}(1000,0.8)$. So $E(Z)=1000\times 0.8=800$ and $Var(Z)=1000\times 0.8\times (1-0.8)=160$, and hence by the CLT approximately $Z\sim N(800,160)$.	1 marks seen ↓
	$P(Z \le 774) \approx \Phi\left(\frac{774-800}{\sqrt{160}}\right) \approx \Phi(-2.055) \approx 0.020$. So with this larger sample there is now much stronger evidence that 80% is not being achieved.	4 marks
	Setter's initials NH Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2009-10	Course
		Comp245
Question		Marks &
3.		seen/unseen
Parts		seen ↓
(1)	Properties of a pdf: $I_{x} f(x) > 0 \ \forall x \in \mathbb{R}.$	
	I. $f(x) \ge 0, \forall x \in \mathbb{R};$ II. $\int_{x=-\infty}^{\infty} f(x)dx = 1.$	
	3.4—0	unseen ↓
	From the second point, we have	
	$1 = \int_{x = -\infty}^{\infty} f(x) dx = \int_{x = 1}^{\infty} \frac{c}{x^3} dx = \frac{-c}{2x^2} \Big _{x = 1}^{\infty} = \frac{c}{2}.$	
	So $c = 2$.	5 marks
(ii)	em em e en e	
	$E(X) = \int_{x = -\infty}^{\infty} x f(x) dx = \int_{x = 1}^{\infty} \frac{2}{x^2} dx = \frac{-2}{x} \Big _{x = 1}^{\infty} = 2.$	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 marks
(iii)	To find the median, we first work out the cdf:	
	$F(x) = \int_{u=-\infty}^{x} f(u)du = \int_{u=1}^{x} \frac{2}{u^3} du = \frac{-1}{u^2} \Big _{u=1}^{x} = 1 - \frac{1}{x^2}.$	
	The median is then x satisfying $F(x) = 1/2$.	
	$\frac{1}{2} = 1 - \frac{1}{x^2} \iff \frac{1}{x^2} = \frac{1}{2} \implies x = \sqrt{2}.$	
	So the median is $\sqrt{2}$.	7 marks
(iv)	We have seen the median is less than the mean, suggestive of right skew. This	-
	is consistent with the shape of the density function $f(x)$, which is decreasing in x on $[1, \infty)$.	3 marks
	III & OII [1, 55).	y marks
	Setter's initials Checker's initials	Page numbe
	NH	3 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2009-10	Course
		Comp245
Question 4. Parts		Marks & seen/unseen seen ↓
(i)	(a) bias $(T) = \mathrm{E}[T \theta] - \theta$. (b) Obvious unbiased estimators for mean and variance are $\bar{x} = 1001.625$ and $s_{n-1}^2 = 117.982$ respectively. (c) Let X be the weight of a randomly chosen bag of potatoes, so approximately $X \sim \mathrm{N}(1001.625, 117.982)$. Then $\mathrm{P}(X \leq 990) \approx \Phi\left(\frac{990 - 1001.625}{\sqrt{117.982}}\right) \approx \Phi(-1.070) \approx 0.14$.	1 marks 6 marks unseen ↓ 3 marks
(ii)	(a) Let $z = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} = \frac{1001.625 - 1000}{\sqrt{100/8}} = 0.460$. From the formula sheet, the rejection region of a two-sided normal test at the 1% level is (-2.576,2.576), so there is insufficient to reject the null hypothesis of the mean being 1kg. (b) If each bag weight X_i is i.i.d. N(1000, 100) then the sum S_5 of the weights of five independent bags is N(5000, 500). So $P(S_5 > 4990) = 1 - \Phi\left(\frac{4990 - 5000}{\sqrt{500}}\right) \approx 1 - \Phi(-0.447) \approx 0.673$.	seen ↓ 7 marks 3 marks
	Setter's initials Checker's initials	Page numbe