



# 5 Validação cruzada

#### Sumário

| 5.1 | Métodos de resolução            | 05 |
|-----|---------------------------------|----|
| 5.2 | Subdivisão do conjunto de dados | 06 |
| 5.3 | K-fold                          | 07 |
| 5.4 | Algoritmo de treino atualizado  | 09 |





Validação cruzada Tokio.

A validação cruzada permite-nos avaliar e validar o nosso modelo, antes de o usar com novos exemplos, escolhendo os hiperparâmetros ótimos para isso.

Logo, ajudar-nos-á a encontrar o valor de  $\lambda$  idóneo, para cada modelo.

Neste sentido, realizaremos a validação cruzada através de uma avaliação prévia do modelo, sobre um subconjunto de dados. Para isso, reordenamos aleatoriamente o conjunto de dados (mantendo as relações entre os vetores  $X \in Y$ ) e dividimo-lo em três subconjuntos:

- O **subconjunto de treino**, utilizado para treinar o modelo (obter a  $\Theta$  ótima).
- O **subconjunto de validação**, destinado a regularizar o modelo (obter a  $\lambda$  ótima).
- O **subconjunto de teste,** dirigido a avaliar definitivamente o modelo, a obter a sua precisão final.

## 5.1 Métodos de resolução

Para otimizar o valor de lambda, pegamos nos resultados do processo de treino, sobre o subconjunto de treino (o valor ótimo de  $\Theta$ ), e calculamos, no subconjunto de validação, para cada valor de  $\lambda$  que se vá estimar, o custo total.

Deste modo, selecionamos o valor de lambda que minimize o custo total como o fator a utilizar para o nosso modelo.

Finalmente, pegamos em ambos os fatores ( $\Theta$  e  $\lambda$ ), como integrantes do nosso modelo, e realizamos predições sobre o subconjunto de teste, para encontrar o seu custo total.

#### 5.2 Subdivisão do conjunto de dados

É muito importante que cada fase se realize única e exclusivamente sobre o seu subconjunto de dados atribuído, isto é, que quando realizemos a validação não a efetuemos sobre dados que já tenhamos usado para treinar o modelo ou que, quando realizemos o teste final, não o façamos sobre dados que já tenhamos usado para treinar ou validar o modelo.

Face a subdividir o conjunto de dados, devemos selecionar algum destes rácios sugeridos, em função do número de exemplos disponíveis no total:

- 60%, 20% e 20%.
- 70%, 15% e 15%.
- 50%, 25% e 25%.

É importante que todos os subconjuntos contem com um mínimo de dados disponíveis, uma vez que, se fossem demasiado escassos, não poderíamos realizar a validação cruzada ou o teste final corretamente.

No caso de existirem poucos dados, nos dois subconjuntos mais pequenos, podemos usar rácios mais elevados ou outros métodos como o *k-fold*.

#### **5.3** *K-fold*

O método *k-fold* permite-nos dispor de um número *k* de "dobras" ou subconjuntos com reposição dos dados, para poder avaliar múltiplos valores de λ.

Neste método estabelecemos k partições de dados, treinamos o modelo sobre k-1 das partições e validamo-lo sobre a partição restante, podendo validar um número k de valores de  $\lambda$  diferentes.

Desta forma, nunca validamos  $\lambda$  sobre os mesmos dados que temos usado para treinar o modelo e examinamos os seus diferentes valores usando um subconjunto de dados distinto, ainda que partilhem a maioria dos exemplos.

Podemos escolher este método quando não dispusermos de um número de exemplos inicial, que nos permita simplesmente dividir o conjunto de dados em vários subconjuntos independentes com segurança.

|         | Х  | Υ     |
|---------|----|-------|
| Grupo 1 | 1  | 12,95 |
|         | 2  | 16,09 |
|         | 3  | 19,23 |
|         | 4  | 22,37 |
| Grupo 2 | 5  | 25,51 |
|         | 6  | 28,66 |
|         | 7  | 31,80 |
|         | 8  | 34,94 |
| Grupo 3 | 9  | 38,08 |
|         | 10 | 41,22 |
|         | 11 | 44,36 |
|         | 12 | 47,51 |
| Grupo 4 | 13 | 50,65 |
|         | 14 | 53,79 |
|         | 15 | 56,93 |
|         | 16 | 60,07 |
| Grupo 5 | 17 | 63,21 |
|         | 18 | 66,36 |
|         | 19 | 69,50 |
|         | 20 | 72,64 |

Validação cruzada Tokio.

| lteração | X_train, Y_train   | X_cv, Y_cv |
|----------|--------------------|------------|
| 1        | Grupos 1, 2, 3 e 4 | Grupo 5    |
| 2        | Grupos 2, 3, 4 e 5 | Grupo 1    |
| 3        | Grupos 3, 4, 5 e 1 | Grupo 2    |
| 4        | Grupos 4, 5, 1 e 2 | Grupo 3    |
| 5        | Grupos 5, 1, 2 e 3 | Grupo 4    |

### 5.4 Algoritmo de treino atualizado

O algoritmo de treino completo de um problema, de regressão linear múltipla, atualizado com normalização, seria:

- **1.** Compilar os exemplos *X* e os seus resultados previamente conhecidos *Y*.
- 2. Normalizar os exemplos X.
- 3. Dividir o conjunto de dados em subconjuntos de treino, validação e teste.
- **4.** Escolher um rácio de aprendizagem  $\alpha$ .
- **5.** Inicializar os pesos  $\Theta$ , de forma aleatória.
- **6.** Iterativamente, calcular o custo, assim como suas derivadas/inclinações e atualizar Θ sobre o subconjunto de treino.
- **7.** Finalizar quando  $\Theta$  convirja num valor ótimo.
- **8.** Modificar o rácio de aprendizagem  $\alpha$  se necessário.
- **9.** Obter a  $\Theta$  ótima.
- **10.** Otimizar  $\lambda$  iterativamente, sobre o subconjunto de validação.
- **11.** Obter a λ ótima.
- **12.** Avaliar o modelo sobre o subconjunto de teste e obter o custo total final.
- **13.** Usar  $\Theta$  e  $\lambda$  para formar o nosso modelo e realizar predições.

