MÉTODOS E MODELOS AVANÇADOS EM CIÊNCIA DE DADOS

Aula 05 - Autoencoders (AEs)

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- **2** Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- **5** Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- **7** Referências

Roteiro

- 1 Introdução
- **2** Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- **5** Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- Referências

Figura de: Dagupsta (2018)

Figura de: Dagupsta (2018)

Autoencoders (AEs)

- são capazes de aprender representações/padrões dos dados de entrada
- aprendizado é de maneira não supervisionada, pois o conjunto de treinamento não é rotulado
- representações latentes (codings), que possuem uma dimensionalidade muito menor que o conjunto de entrada
- representação aprendida na camada oculta (meio)

Onde usamos AEs?

- úteis para redução de dimensionalidade/visualização de dados
- agem como detectores de características
- podem ser usados para inicialização dos pesos sinápticos de redes neurais profundas (DNNs)
- alguns AEs são modelos generativos → criam novos dados que se parecem com os dados do conjunto de treinamento

Figura de: Dagupsta (2018)

- AEs simplesmente aprendem como reproduzir as entradas nas saídas do modelo
- Também podemos:
 - limitar o tamanho da representação latente (neurônios na camada oculta)
 - adicionar ruído às entradas e treinar a rede para recuperar os dados originais
- Esses processos forçam os AEs a aprenderem formas eficientes de representar dados

Roteiro

- 1 Introdução
- **2** Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- 5 Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- Referências

- Duas sequências de números:
 - s1 = 40, 27, 25, 36, 81
 - s2 = 50, 48, 46, 44, 42, 40, 38, 36, 34, 32
- Qual é a mais fácil de memorizar?

- Duas sequências de números:
 - \sim s1 = 40, 27, 25, 36, 81
 - s2 = 50, 48, 46, 44, 42, 40, 38, 36, 34, 32
- Qual é a mais fácil de memorizar?
 - primeiro momento, talvez s1
 - mas, em s2 podemos ver que temos os números pares de 50 até 32
 - padrões são mais fáceis de se memorizar do que sequências em si
 - AEs tentam descobrir/explorar padrões dos dados

- William Chase & Herbert Simon (70's)
 - experimentos sobre a relação entre memória, percepção e reconhecimento de padrões
 - observaram jogadores de xadrez memorizando as peças de um tabuleiro
 - jogadores precisavam de 5 segundos para memorizar a posição de todas elas

- William Chase & Herbert Simon (70's)
 - experimentos sobre a relação entre memória, percepção e reconhecimento de padrões
 - observaram jogadores de xadrez memorizando as peças de um tabuleiro
 - jogadores precisavam de 5 segundos para memorizar a posição de todas elas
 - não significa que eles tem mais memória do que nós
 - eles consegue ver os padrões mais fácil
 - notar esses padrões os ajuda a armazenar informação de maneira mais eficiente

Autoencoders (AEs)

Jogador de xadrez

Autoencoders (AEs)

Jogador de xadrez

AEs:

- agem como jogadores de xadrez
- olham para os dados (entradas)
- convertem em representações latentes/padrões
- e geram algo que se parece bem próximo das entradas

- AEs possuem duas partes:
 - codificador encoder (rede de reconhecimento): converte os padrões de entrada em representações latentes
 - decodificador decoder (rede generativa): converte a representação interna e compacta nas saídas

Figura adaptada de: Aurélien Gerón (2019)

Observações:

- AE mais simples tem a mesma arquitetura que uma MLP, exceto pela camada de saída ter o mesmo tamanho que as entradas
- camada oculta: Encoder
- camada de saída: Decoder
- saídas são chamadas de reconstruções, porque os AEs tentam reconstruir as entradas

Funções de custo (loss)

- Função de custo/erro:
 - contém uma medida de reconstrução (loss reconstruction)
 que penaliza o modelo quando as reconstruções são
 diferentes das entradas
 - vai comparar ${\mathcal X}$ com $\hat{{\mathcal X}}$ para medir o quão boa é a reconstrução
 - treinamos o AE para minimizar essa função por meio do gradiente descendente

Funções de custo (loss)

Para entradas binárias

$$l(f(x)) = -\sum_{k} (x_k \log(\hat{x}_k) + (1 - x_k) \log(1 - \hat{x}_k))$$

- onde:
 - k é o índice da instância
 - se $\mathcal{X}_k = 1$, tentamos "puxar" $\hat{\mathcal{X}}_k$ para 1
 - se $x_k = 0$, tentamos "puxar" \hat{x}_k para 0

Funções de custo (loss)

Para entradas reais

$$l(f(x)) = \frac{1}{2} \sum_{k} (\hat{x}_k - x_k)^2$$

- soma das diferenças ao quadrado
- distância euclidiana quadrática
- função de ativação linear na camada de saída
- Em ambos os casos (saídas binárias e reais) o treinamento é feito via Backpropagation

Roteiro

- 1 Introdução
- 2 Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- 5 Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- Referências

Stacked Ads

Os AEs

- podem também ter várias camadas empilhadas
- nesse caso são chamados de Stacked Autoenconder (SAEs) ou Deep Autoencoders (DAEs)
- mais camadas permitem aos AEs aprenderem padrões mais complexos
- a arquitetura de um SAE é simétrica em relação à camada oculta das representações latentes (coding layer)
- parece um "sanduíche"

Stacked Ads

Figura de: Aurélien Gerón (2019)

- Um jeito de garantir que o AE está propriamente treinado é comparar as entradas com as saídas
 - as diferenças não podem ser significativas

- Um jeito de garantir que o AE está propriamente treinado é comparar as entradas com as saídas
 - as diferenças não podem ser significativas

Figura de: Aurélien Gerón (2019)

Reconstrução é perceptível, porém não tão boa :/

Figura de: Aurélien Gerón (2019)

- o que fazer?
 - treinar o modelo por mais épocas
 - tornar encoder/decoder mais profundo (mais camadas)
 - aumentar o tamanho da camada oculta que armazena as representações latentes (codings)

- cuidado ao definir a arquitetura
- se a rede for muito "poderosa", ela vai mapear perfeitamente as entradas nas reconstruções sem aprender nenhum padrão útil
- não irá extrair características úteis

SAEs

- Uma vez que o SAE é treinado, podemos usá-lo para reduzir a dimensionalidade do dataset
- Grande vantagem dos SAEs:
 - é serem capazes de lidar com grandes quantidades de dados
- Geralmente se usa os AEs para reduzir a dimensionalidade para um nível razoável, e depois alimentar uma técnica de visualização de dados (PCA, <u>t-SNE</u>)

SAEs

Figura de: Aurélien Gerón (2019)

Pré-treino usando SAEs

- Situação: tarefa supervisionada complexa
 - mas não temos muitos exemplos rotulados
 - a maioria dos exemplos são não-rotulados

Pré-treino usando SAEs

- Situação: tarefa supervisionada complexa
 - mas não temos muitos exemplos rotulados
 - a maioria dos exemplos são não-rotulados
- Solução: encontrar uma NN que desempenhe bem em uma tarefa similar e usar os pesos sinápticos gerados por ela
 - treinar SAE com todos os dados
 - reusar os pesos sinápticos das camadas do SAE para criar uma DNN
 - treinar DNN usando apenas os dados rotulados

Pré-treino usando SAEs

Amarrando Pesos

- Quando um SAE é puramente simétrico, uma abordagem comum é "amarrar" os pesos de todas as camadas do decodificador (decoder) às camadas do codificador (encoder)
 - Isto reduz pela metade o número de pesos no modelo
 - acelerando o aprendizado
 - limitando o risco de overfitting

Amarrando Pesos

Figura de: Aurélien Gerón (2019)

Outros modelos de AEs

Convolutional AEs (CAEs)

- AEs puros tendem a não funcionar bem com imagens (a menos que as imagens sejam pequenas)
- CNNs são nitidamente superiores para tarefas com imagens
- Encoder é uma CNN comum, composta de camadas convolucionais e pooling
 - reduz a dimensionalidade espacial dos dados mas aumenta a profundidade (filtros)
- Decoder faz o inverso
 - aumenta os dados, e reduz a profundidade
 - usar camadas convolucionais transpostas

Outros modelos de AEs

- AEs Recorrentes (RAEs)
 - AEs para sequências: séries temporais ou textos
 - RNN tem desempenho melhor do que DNN
 - RAE:
- Encoder: é uma rede sequence-to-vector, que comprime a sequência de entrada em apenas um único vetor
- Decoder: é uma rede vector-to-sequence, que reconstrói a sequência de entrada a partir da representação intermediária (vector)

Resumindo tudo até aqui ...

- AEs:
 - AE básico, SAE, CAEs, RAEs
- Aplicações:
 - visualização dos dados e pré-treino não supervisionado
- Temos o tamanho da camada oculta limitado, tornando o AE subcompleto
- Podemos:
 - permitir o AE ter uma camada oculta do mesmo tamanho que a camada de entrada, ou até maior
 - AE sobrecompleto

Camada subcompleta

- □ AE subcompleto → camada oculta é menor que a camada de entrada
 - comprime as entradas
 - comprime bem apenas para as entradas do conjunto de treinamento

Camada sobrecompleta

 AE subcompleto → camada oculta é maior que a camada de entrada

- não há compressão na camada oculta
- cada unidade oculta pode apenas copiar um diferente componente da entrada
- não há garantia de que as unidades ocultas irão extrair uma estrutura que tem significado

Roteiro

- 1 Introdução
- **2** Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- 5 Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- 7 Referências

Ideia:

- Adicionar ruídos às entradas
- treinar o AE para recuperar os dados originais, livre de ruídos
- ruído gerado pode ser Gaussiano ou aleatório (dropout)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

- representação deve ser robusta à introdução de ruídos nos padrões
- a **reconstrução** é calculada com base **na entrada corrompida** (x')
- função de **erro** é a mesma, usando os valores das reconstruções (**outputs**) e entradas originais (**inputs**)

Figura de: Aurélien Gerón (2019)

- A implementação é direta/simples
 - SAE com uma camada adicional de Dropout ou ruído ligada às entradas
 - ruídos são aplicados apenas no encoder
 - dAEs podem ser usados para remover ruídos de dados em geral (textos, imagens, etc)

- A implementação é direta/simples
 - SAE com uma camada adicional de Dropout ou ruído ligada às entradas
 - ruídos são aplicados apenas no encoder
 - dAEs podem ser usados para remover ruídos de dados em geral (textos, imagens, etc)

Entradas com ruídos

Reconstruções (saídas)

Figura de: Aurélien Gerón (2019)

Hands on

Vamos exercitar:)

[Google Colab]

Roteiro

- 1 Introdução
- 2 Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- **5** Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- 7 Referências

Síntese

- Autoencoders (AEs)
 - compressão de informação
 - aprendizado não supervisionado (reconstruções)
 - USOS:
- redução de dimensionalidade/visualização
- pré-treino de DNNs
- remoção de ruídos
- AEs, SAEs, dAEs

Próxima aula

- Aprendizado por comitês
 - Bagging
 - Boosting
 - Random Forest

Roteiro

- 1 Introdução
- 2 Motivação AEs
- 3 AEs
- 4 Stacked AEs (SAEs)
- 5 Denoising AEs (dAEs)
- 6 Síntese / Próximas Aulas
- 7 Referências

Literatura Sugerida

(Goodfelow, Bengio, Courville; 2015)

(Géron, 2019)

Artigos

• William G. Chase & Herbert A. Simon, "Perception in chess", Cognitive Psychology v4, no. 1 (1973): 55-81.

Obrigado:)

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br