International Rectifier

1N5817

SCHOTTKY RECTIFIER

1.0 Amp

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	20	V
I _{FSM} @tp=5μssine	240	Α
V _F @1Apk, T _J =25°C	0.45	V
T _J range	-65 to 150	°C

Description/Features

The 1N5817 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free plating

Voltage Ratings

Part number	1N5817
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	20

Absolute Maximum Ratings

	Parameters	1N5817	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 138 °C,	rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	240	А	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with	
	Surge Current, @T _J =25°C	40		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditio	ns
V _{FM}	Max. Forward Voltage Drop (1)	0.42	0.45	V	@ 1A	T = 25 °C
		0.50	0.75	٧	@ 3A	T _J = 25 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.012	1.0	mA	T _J = 25 °C	V _R = rated V _R
		2.0	10	mA	T _J = 100 °C	V _R - rated V _R
C_{T}	Typical Junction Capacitance	110	-	pF	V _R = 5V _{DC} (test signal range 100kHz to	
					1Mhz), @ 25°	°C
L _S	Typical Series Inductance	8.0	-	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	1N5817	Units	Conditions
T _J	Max. Junction Temperature Range (2)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead	32	°C/W	DC operation, Lead lenght = 1/8 inch.
R _{thJA}	Max. Thermal Resistance Junction to Ambient	100	°C/W	DC operation, without cooling fin
Wt	Approximate Weight	0.33(0.012)	gr(oz)	
	Case Style	DO-204AL	(DO-41)	

 $\frac{\text{(2)}\,\text{dPtot}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

Fig. 1-Typical Forward Voltage Drop Characteristics

Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; \\ & Pd = Forward Power Loss = $I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R(1 - D)$ \\ \end{tabular}$

Bulletin PD-20646 rev. C 11/04

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 11/04