Q1. Searching with Heuristics

Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the cost for each connection edge is **always positive**. We define $h^*(X)$ as the shortest (optimal) distance to G from a node X.

C		***	
nswer Questions (a), (b) and (c). Y	ou may want to solve Questions	(a) and (b) at the same time.	
	euristic, and we conduct A* tree a (directed by h' , defined in part	search using heuristic h' and finally find (a)) from S to G	l a solution. Let
(i) Choose one best answer	for each condition below.		
1. If $h'(X) = \frac{1}{2}h(X)$ for	or all Node X , then	$\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcirc C \ge h^*(S)$
2. If $h'(X) = \frac{\sum_{h(X) + h^*(X)}{2}}{2}$	$\frac{Y}{Y}$ for all Node X , then	$\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcirc C \ge h^*(S)$
2		$\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcirc C \ge h^*(S)$
4. If we define the set <i>I</i> always holds		bor nodes Y satisfying $h^*(X) > h^*(Y)$, a	
	$h'(X) \le \begin{cases} \min_{Y \in K(X)} h'(Y) \\ h(X) \end{cases}$	$(1) - h(Y) + h(X)$ if $K(X) \neq \emptyset$ if $K(X) = \emptyset$	
then,		$\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcirc C \ge h^*(S)$
5. If <i>K</i> is the same as a	bove, we have		
	$h'(X) = \begin{cases} \min_{Y \in K(X)} h(X) \\ h(X) \end{cases}$	$f(X) + cost(X, Y)$ if $f(X) \neq \emptyset$ if $f(X) = \emptyset$	
where $cost(X, Y)$ is	the cost of the edge connecting		
then,		$\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	
		pove), $\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	
(ii) In which of the condition we say h_1 dominates h_2	s above, h' is still admissible an when $h_1(X) \ge h_2(X)$ holds for a	If for sure to dominate h ? Check all that a ll X .	oply. Remember 4
· · · • •		search using heuristic h' and finally find	a solution.
(i) Answer exactly the same	questions for each conditions in	Question (a)(i).	
1. $\bigcirc C = h^*(S) \bigcirc$	$C > h^*(S) \bigcirc C \ge h^*(S)$	2. $\bigcirc C = h^*(S) \bigcirc C > h^*(S)$ 4. $\bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcirc C \ge h^*(S)$
3. \bigcirc $C = h^*(S) \bigcirc$	$C > h^*(S) \cup C \ge h^*(S)$	$4. \bigcirc C = h^*(S) \bigcirc C > h^*(S)$	$\bigcup C \geq h^*(S)$

 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6

6. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$

(ii) In which of the conditions above, h' is still **consistent** and for sure to dominate h? Check all that apply.

5. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$

(c) Suppose h is an **admissible** heuristic, and we conduct A^* tree search using heuristic h' and finally find a solution.

If $\epsilon > 0$, and X_0 is a node in the graph, and h' is a heuristic such that

$$h'(X) = \begin{cases} h(X) & \text{if } X = X_0 \\ h(X) + \epsilon & \text{otherwise} \end{cases}$$

- Alice claims h' can be inadmissible, and hence $C = h^*(S)$ does not always hold.
- Bob instead thinks the node expansion order directed by h' is the same as the heuristic h'', where

$$h''(X) = \begin{cases} h(X) - \epsilon & \text{if } X = X_0 \\ h(X) & \text{if otherwise} \end{cases}$$

Since h'' is admissible and will lead to $C = h^*(S)$, and so does h'. Hence, $C = h^*(S)$ always holds.

The two conclusions (<u>underlined</u>) apparently contradict with each other, and **only exactly one of them are correct and the other is wrong**. Choose the **best** explanation from below - which student's conclusion is wrong, and why are they wrong?

\bigcirc	Alice's conclusion is wrong, because the heuristic h' is always admissible.
-	Alice's conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the mality when conducting A* tree search.
\bigcirc	Alice's conclusion is wrong, because of another reason that is not listed above.
o same	Bob's conclusion is wrong, because the node visiting expansion ordering of h'' during searching might not be the e as h' .
\bigcirc	Bob's conclusion is wrong, because the heuristic h'' might lead to an incomplete search, regardless of its optimally
prop	erty.
\bigcirc	Bob's conclusion is wrong, because of another reason that is not listed above.

Q2. Iterative Deepening Search

Pacman is performing search in a maze again! The search graph has a branching factor of b, a solution of depth d, a maximum depth of m, and edge costs that may not be integers. Although he knows breadth first search returns the solution with the smallest depth, it takes up too much space, so he decides to try using iterative deepening. As a reminder, in standard depth-first iterative deepening we start by performing a depth first search terminated at a maximum depth of one. If no solution is found, we start over and perform a depth first search to depth two and so on. This way we obtain the shallowest solution, but use only O(bd) space.

But Pacman decides to use a variant of iterative deepening called **iterative deepening A***, where instead of limiting the depth-first search by depth as in standard iterative deepening search, we can limit the depth-first search by the f value as defined in A* search. As a reminder f[node] = g[node] + h[node] where g[node] is the cost of the path from the start state and h[node] is a heuristic value estimating the cost to the closest goal state.

In this question, all searches are tree searches and **not** graph searches.

(a) Complete the pseudocode outlining how to perform iterative deepening A* by choosing the option from the next page that fills in each of these blanks. Iterative deepening A* should return the solution with the lowest cost when given a consistent heuristic. Note that cutoff is a boolean and new-limit is a number.

function ITERA	TIVE-DEEPENIN	g-Tree-Search(į	problem)					
$start$ -node \leftarrow	- Make-Node(Initial-State[<i>pr</i>	oblem])					
$limit \leftarrow f[state]$	art-node]							
loop								
$fringe \leftarrow$	MAKE-STACK((start-node)						
new-limi	it ←	(i)						
$\textit{cutoff} \leftarrow$		(ii)						
while fri	nge is not empty	/ do						
node	\leftarrow Remove-Fr	CONT(fringe)						
if Go	DAL-TEST(proble	em, STATE[node])	then					
r	eturn node							
end i	if							
for c	<i>hild-node</i> in Ex	PAND(STATE[node], problem) do					
if	$f[child-node] \leq$	≤ <i>limit</i> then						
	$fringe \leftarrow Insi$	ERT(<i>child-node</i> , fri	inge)					
	new-limit ← (iii)							
	$cutoff \leftarrow$	(iv)						
e	lse							
	new - $limit \leftarrow [$	(v)						
	$cutoff \leftarrow$	(vi)						
e	nd if							
end f	for							
end whi	le							
if not cu	toff then							
	r n failure							
end if								
$limit \leftarrow$	(v	vii)						
end loop								

A_1	-∞	$\mathbf{A_2} \boxed{0}$		A ₃	∞] A ₄	limit
B_1	True	B ₂ False	e	\mathbf{B}_3	cutoff	B ₄	not cutoff
C_1	new-limit	C_2 new-limit + 1		C_3 new-limit + $f[node]$			new-limit + f[child-node]
C_5	MIN(new-limit, f[node])	$\mathbf{C_6}$ MIN(new-limit, $f[child\text{-}node]$)		C ₇	$\begin{array}{c} \text{MAX}(\textit{new-limit},\\ f[\textit{node}]) \end{array}$	C ₈	MAX(new-limit, f[child-node])
(i)	$\bigcirc A_1$	$\bigcirc A_2$	$\bigcirc A_3$	$\bigcirc \mathbf{A}$	4		
(ii)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(iii)		$\bigcirc C_2 \\ \bigcirc C_6$	$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C			
(iv)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(v)			$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C	•		
(vi)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(vii)		$\bigcirc C_2 \\ \bigcirc C_6$	$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C			

- **(b)** Assuming there are no ties in *f* value between nodes, which of the following statements about the number of nodes that iterative deepening A* expands is True? If the same node is expanded multiple times, count all of the times that it is expanded. If none of the options are correct, mark None of the above.
 - \bigcirc The number of times that iterative deepening A* expands a node is greater than or equal to the number of times A* will expand a node.
 - \bigcirc The number of times that iterative deepening A* expands a node is less than or equal to the number of times A* will expand a node.
 - \bigcirc We don't know if the number of times iterative deepening A* expands a node is more or less than the number of times A* will expand a node.
 - O None of the above

Q3. CSPs			
In this question, you are trying	to find a four-digit number satis	fying the following conditions:	
1. the number is odd,			
2. the number only contains the	e digits 1, 2, 3, 4, and 5,		
3. each digit (except the leftmo	est) is strictly larger than the digi	it to its left.	
(a) CSPs			
can choose from. The las		n its domain since the number n	ne domains are the five digits we nust be odd. The constraints are ns, the domains are
12345	12345	12345	1 2 3 4 5
(i) Before assigning an arc consistency is en		Write the values remaining in t	he domain of each variable after
tic choose to assign The first d The secon The third The fourth (iii) Now suppose we ass	a value to first? If there is a tie, ligit (leftmost) ad digit digit h digit (rightmost) sign to the leftmost digit first. A	choose the leftmost variable. ssuming we will continue filteri	imum Remaining Value) heuris-
which value will LC to small (1).	CV (Least Constraining Value) c	hoose to assign to the leftmost of	digit? Break ties from large (5)
☐ 2 ☐ 3 ☐ 4 ☐ 5			
number be after one			the number 1332, what will our m left to right, and break value

(b)		The following questions are completely unrelated to the above parts. Assume for these following questions, there are only binary constraints unless otherwise specified.								
	(i)	(i) [true or false] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates does not depend on the order in which arcs are processed from the queue.								
	(ii)	(ii) [true or false] Once arc consistency is enforced as a pre-processing step, forward checking can be used during backtracking search to maintain arc consistency for all variables.								
	(iii) In a general CSP with <i>n</i> variables, each taking <i>d</i> possible values, what is the worst case time complexity of enforcing arc consistency using the AC-3 method discussed in class? $\bigcirc 0 \bigcirc O(1) \bigcirc O(nd^2) \bigcirc O(n^2d^3) \bigcirc O(d^n) \bigcirc \infty$								lexity of enforcing	
	(iv)	tracking sea	rch algorithm, that violate		o backtrack (i ts) before find	i.e. the numb ling a solutio	oer of the	ne times it ncluding t	generates an a	er of times a back- assignment, partial s?
 (v) What is the maximum number of times a backtracking search algorithm might have to backtrack in a general CSP, if it is running arc consistency and applying the MRV and LCV heuristics? ○ 0 ○ O(1) ○ O(nd²) ○ O(n²d³) ○ O(d²) ○ ∞ 										