Kai Bu kaibu@zju.edu.cn http://list.zju.edu.cn/kaibu/netsec2022

Disclaimer:

The content to be presented aims only for helping students understand principles of anonymous communication. It should not be used for abusive Internet activities.

0	4	8	16	19 31
Version	IHL	Type of Service	Total Length	
Identification			Flags	Fragment Offset
Time To Live		Protocol	Header Checksum	
		Source I	P Addres	s
		Destination	n IP Addr	ess
Options Padding				

Communication anonymity & privacy:

who is communicating?

who are you talking to?

what type of activities?

what type of information?

why wanted?

Anonymity for Mortals

- Unmonitored access to health and medical information
- Preservation of democracy: anonymous election/jury
- Censorship circumvention: anonymous access to otherwise restricted information

• ...

Anonymity for Attackers

Misbehaviors without getting caught:

- Terrorism
- Darknet
- Spam
- Pirate
- ...

how to?

HTTPS?

HTTPS for Confidentiality

HTTPS Not for Anonymity

HTTPS?

how to?

how to?

hide destination address;

hide destination address; how to deliver packets to destination?

RELAY!

Overlay Network

Handle routing at the application layer

Tunnel messages inside other

messages

Threat Model

Insider Byzantine attacker
 with limited view of network:
 an attacker might have tight control
 over a network (e.g., Z ASes),
 yet unlikely to observe entire Internet

Attacker is part of the network

Threat Model

Insider Byzantine attacker
 with limited view of network:
 an attacker might have tight control
 over a network (e.g., Z ASes),
 yet unlikely to observe entire Internet

Attacker may or may not attack

Threat Model

Insider Byzantine attacker
 with limited view of network:
 an attacker might have tight control
 over a network (e.g., Z ASes),
 yet unlikely to observe entire Internet

anonymizing proxy

- intermediary between sender & receiver
- Sender relays all traffic through proxy
- Encrypt destination and payload

- intermediary between sender & receiver
- Sender relays all traffic through proxy
- Encrypt destination and payload
- Asymmetric technique: receiver not involved (or informed of) anonymity

k: shared key of sender and proxy

- k: shared key of sender and proxy
- if attacker is located between sender and proxy:

sender anonymity: 0

receiver anonymity: 1

- k: shared key of sender and proxy
- if attacker is located between proxy and receiver:

sender anonymity: 1

receiver anonymity: 0

- k: shared key of sender and proxy
- if two attackers collude to correlate ingress and egress proxy traffic:

sender anonymity: 0

receiver anonymity: 0

If attacker is the proxy per se:
 decrypt all messages;
 crack both confidentiality & anonymity;
 sender anonymity: 0
 receiver anonymity: 0

what if receiver is attacker?

what if receiver is attacker? protect sender anonymity from receiver

Receiver as Attacker

- Known-location attacker
- Use proxy to protect sender anonymity: do not vote for letting votefor website know that I accessed votefor /wink

Receiver as Attacker

- Known-location attacker
- Use proxy to protect sender anonymity: do not vote for letting votefor website know that I accessed votefor /wink

Advantages

- Easy to configure
- Require no active participation of receiver, which need not be aware of anonymity service
- Have been widely deployed on Internet

Disadvantages

- Require trusted third party proxy may release logs, or sell them, or blackmail sender
- Anonymity largely depends on the (likely unknown) location of attacker

sender

msg, dest_k

receiver

msg

VPN

how to evade attacker?

how to evade attacker? dynamize proxy location

- Basic idea: get lost in a crowd
- Jump from one crowd to another
- Members of a crowd called Jondos

Algorithm:

- Relay message to random jondo
- With probability p, jondo forwards message to another jondo
- With probability 1-p, jondo delivers message to its intended destination

must trust jondos;

must trust jondos; if any message is intercepted, receiver is trivially exposed.

how to evade

untrusted proxies?

how to evade

to evade

VPN

to evade

source routing specify on-path routers by source

POF: Protocol Oblivious Forwarding

Port bound

forwarding table

forwarding process

POF: Protocol Oblivious Forwarding

Port bound

forwarding table

forwarding process

anonymity protected?

POF: Protocol Oblivious Forwarding

Port sequence leaked

forwarding table

forwarding process

anonymity protected? nah!

source routing how to anonymize?

POF: Protocol Oblivious Forwarding

Port sequence leaked

forwarding table

forwarding process

should hide ports from non-neighbors

onion routing source-routing based anonymous overlay communication

onion routing source-routing based anonymous overlay communication

onion routing source-routing based anonymous overlay communication

Onion Routing

- Connect to Tor entry
- Randomly select a series of Tors
- Relay messages across them
- Tor exit relays messages to destination

- Reply traffic from destination traverses the reverse path
- Maintains a bidirectional persistent multi-hop path between source and destination

Layered Encryption
 {{{msg}_D}_c}_B}_A

sufficient?

onion routing applications?

Darknet

 Portions of the Internet purposefully not open to public view or hidden networks whose architecture is superimposed on that of Internet.

- Install Tor
- Access darknet.onion through it

Darknet

Darknet

how to de-anonymization?

in it to win it!

Tor Traffic Correlation

- Passive monitoring
- Active attraction:
 deploy a Tor router;
 attract Tor traffic;
 perform traffic analysis and correlation;

Path Selection Attack

Tor path selection algorithm:
 weight nodes by selfreported bandwidth
 select each node using weighted
 probability distribution;

• Attack:

malicious relay reports very high bw to increase selection probability; if it controls the first hop, de- sender; if it controls the last hop, de- receiver;

Counting Attack

 Correlate incoming and outgoing flows by counting the number of packets

- Tor router assigns each anonymous circuit its own queue
- Dequeue one packet from each queue in round-robin fashion

- Tor router assigns each anonymous circuit its own queue
- Dequeue one packet from each queue in round-robin fashion

Assumption: only Init and A occupy T2

larger latency indicate Init's traffic!

Cross Site Attack

Crawling:

- Deploy Tor routers
- Access darknet
- Crawl transaction information
- Extract Bitcoin accounts of interest

Correlation:

Search the accounts on public websites

Readings

- Anonymous Communication
 by Nick Mathewson
- Tor: The Second-Generation Onion Router (2012 DRAFT)
 by Dingledine et al.

Disclaimer:

The content aims only for helping students understand principles of anonymous communication. It should not be used for abusive Internet activities.

Thank You