Examen final

Département de génie électrique et de génie informatique Microélectronique - GIF17457

le 21 avril 2005

Vous avez droit à tous les documents et aux calculatrices autorisées. Durée de l'examen: 2 heures (13h30-15h30).

1. (25 points) Verilog, logique synchrone Soit le circuit suivant:

- (a) (5 points) Quel type d'élément synchrone est-ce (bascule ou verrou)? Est-ce un circuit statique ou dynamique? Est-il sensible au niveau '1', niveau '0', à la transition montante ou à la transition descendante de l'horloge? Justifiez.
- (b) (10 points) Écrivez une description comportementale de ce circuit.
- (c) (10 points) Écrivez une description structurale de ce circuit.

2. (25 points) Logique CMOS dynamique, analyse dynamique Soit le circuit suivant:

On assume que les transistors ont les paramètres suivants:

- $\beta_n = 1.6 \text{ mA/V}^2$;
- $C_{S_n} = C_{D_n} = 20 \text{ fF};$
- $V_{T_n} = 0.7 \text{ V};$
- $C_{G_n} = 10 \text{ fF};$

et que la tension d'alimentation $V_{DD}=2.5~\mathrm{V}.$

- $\beta_p = 1.6 \text{ mA/V}^2$;
- $C_{S_p} = C_{D_p} = 80 \text{ fF};$
- $|V_{T_n}| = 0.8 \text{ V};$
- $C_{G_p} = 40 \text{ fF};$
- (a) (5 points) Trouvez la capacité au point A.
- (b) (5 points) Dans les pires conditions de partage de charge, quelle est la tension à l'équilibre V_f au point A en assumant que le circuit cherche à maintenir le niveau logique '1' en sortie? Détaillez votre démarche.
- (c) (5 points) Quel est le temps maximal requis pour précharger la sortie à 90% si a=0?
- (d) (5 points) Quel est le temps maximal requis pour précharger la sortie à 90% si a=1 et b=0?
- (e) (5 points) Quel est le délai d'évaluation maximal défini comme étant le temps de chute de V_{DD} à $0.1V_{DD}$ au point A si a=b=c=1?

3. (25 points) Logique CMOS statique, conception

Soit un procédé ayant les caractéristiques suivantes:

- $k'_n = 40 \ \mu \text{A/V}^2$;
- $k_p' = 10 \ \mu \text{A/V}^2$;
- $V_{T_n} = 0.4 \text{ V};$
- $V_{T_p} = -0.5 \text{ V};$
- $\mu_n = 500 \, \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$.

Si on construit un inverseur dans ce procédé en supposant qu'une alimentation de 1.8 V est employée:

- (a) (5 points) Trouvez le point milieu V_M de la caractéristique si $\left(\frac{W}{L}\right)_n = 6$ et $\left(\frac{W}{L}\right)_p = 16$.
- (b) (5 points) Calculez β_n et β_p .
- (c) (5 points) Calculez C_{ox} .
- (d) (5 points) Calculez C_{G_n} et C_{G_p} .
- (e) (5 points) Comment ajusteriez-vous les ratios $\left(\frac{W}{L}\right)_n$ et $\left(\frac{W}{L}\right)_p$ pour obtenir le plus petit inverseur possible qui ait une caractéristique symétrique $(V_M = 0.9 \text{ V})$?
- 4. (25 points) Arithmétique, conception

Vous avez à réaliser un circuit effectuant l'encodage de Booth d'un vecteur de 8 bits. A chaque bit d'entrée x_n doit donc correspondre un chiffre signé z_n représenté sur 2 bits $(r_n$ et $s_n)$ selon l'encodage suivant:

z_n	r_n	s_n
-1	0	0
0	0	1
0	1	0
1	1	1

- (a) (10 points) Déterminez le circuit combinatoire nécessaire à la génération d'un chiffre (r_n, s_n) , si nécessaire en utilisant des tables de Karnaugh, et dessinez-en le schéma au niveau des portes logiques et / ou des transistors.
- (b) (10 points) Dessinez le schéma de haut niveau du circuit complet en utilisant le circuit conçu en (a) comme composante.
- (c) (5 points) En quoi le circuit diffère-t-il selon qu'il doive traiter des vecteur binaires positifs ou en complément-à-deux?

Bonne chance et bon été!

Sébastien Roy