Методи оптимізації. Лекція 20.05.2022

Метод умовного градієнта

Метод умовного градієнта є **методом** лінійної апроксимації (лінеаризації) цільової функції.

Розглянемо задачу

$$f(x) \rightarrow min, x \in X \subset E^n,$$
 (1)

де X — опукла, замкнена, обмежена множина простору E^n , цільова функція $f(x) \in C^1(X)$.

Ітераційна формула методу умовного градієнта має вигляд:

$$x^{(k+1)} = x^{(k)} + \alpha_k h^{(k)}, k = 0,1,2,...,$$
 (2)

де $h^{(k)}$ – вектор, який вказує напрямок спуску цільової функції f(x) в точці $x^{(k)}$, α_k – параметр, який регулює довжину кроку уздовж $h^{(k)}$.

Для вибору $h^{(k)}$ на k-тій ітерації розв'язується задача мінімізації на множині X лінійної апроксимації цільової функції f(x) в точці $x^{(k)}$, тобто такої функції:

$$F_k(x) = f(x^{(k)}) + (f'(x^{(k)}), x - x^{(k)}),$$

де $(f'(x^{(k)}), x - x^{(k)})$ – головна лінійна частина приросту цільової функції f(x) в точці $x^{(k)}$. Відкидаючи константу $f(x^{(k)})$, цю задачу можна записати у вигляді

$$f_k(x) = \left(f'(x^{(k)}), x - x^{(k)}\right) \to \min, \ x \in X.$$
 (3)

Задача (3) у випадку, якщо множина X задається лінійними обмеженнями є задачею лінійного програмування.

Нехай $\overline{x}^{(k)}$ — оптимальний розв'язок задачі (3), а $f_k(\overline{x}^{(k)}) = (f'(x^{(k)}), \overline{x}^{(k)} - x^{(k)})$ — оптимальне значення цільової функції задачі (3). За теоремою Вейерштрасса розв'язок $\overline{x}^{(k)}$ задачі (3) завжди існує. Якщо задача (3) має декілька розв'язків, то вибирається один з них.

Враховуючи що $x^{(k)} \in X$, маємо

$$\min_{\mathbf{x}} f_k(\mathbf{x}) = f_k(\overline{\mathbf{x}}^{(k)}) \le f_k(\mathbf{x}^{(k)}) = 0.$$

Тому можливі лише два випадки: $f_k\left(\overline{x}^{(k)}\right) = 0$ або $f_k\left(\overline{x}^{(k)}\right) < 0$.

Якщо $f_k(\overline{x}^{(k)}) = 0$, то $(f'(x^{(k)}), x - x^{(k)}) \ge f_k(\overline{x}^{(k)}) = 0$ для будь-яких точок $x \in X$, тобто точка $x^{(k)}$ – стаціонарна точка задачі (1) за теоремою 3 про екстремальні властивості функцій, які визначені на опуклих множинах.

Робота алгоритму завершується, точку $x^{(k)}$ треба дослідити на екстремальність.

Якщо ж f(x) – опукла функція на множині X , то відповідно до другої частини теореми 3, точка $x^{(k)}$ – точка мінімуму задачі (1).

Нехай тепер $f_k\left(\overline{x}^{(k)}\right)$ < 0 . В цьому випадку $\overline{x}^{(k)} \neq x^{(k)}$. Тоді у формулі (2) вважаємо

$$h^{(k)} = \overline{x}^{(k)} - x^{(k)}$$

і ітераційна формула (2) запишеться у вигляді

$$x^{(k+1)} = x^{(k)} + \alpha_k \left(\overline{x}^{(k)} - x^{(k)} \right), \ k = 0, 1, 2, \dots,$$
(4)

Вектор $h^{(k)}$ прийнято називати *умовним антиградієнтом* цільової функції f(x) в точці $x^{(k)}$.

Так як множина допустимих розв'язків X є опуклою, то для будь-якого α_k з відрізку [0,1] точка $x^{(k+1)} \in X$:

$$x^{(k+1)} = x^{(k)} + \alpha_k \left(\overline{x}^{(k)} - x^{(k)} \right) \in X.$$

Способи вибору крокового множника $\alpha_{\scriptscriptstyle k}$

1. Визначимо α_{k} з умови:

$$g_{k}(\alpha_{k}) = \min_{0 \le \alpha \le 1} g_{k}(\alpha),$$

$$g_{k}(\alpha) = f(x^{(k)} + \alpha h^{(k)}).$$
(5)

2. Параметр α_k виберемо апріорно:

$$0 < \alpha_k \le 1, \ k = 0, 1, ..., \sum_{k=0}^{\infty} \alpha_k = \infty, \sum_{k=0}^{\infty} \alpha_k^2 < \infty.$$

Наприклад, за α_k можна взяти $\alpha_k = \frac{1}{k+1}$.

3. Адаптивний (автоматичний) вибір крокового множника. Параметр α_k вибирається за правилом дроблення до тих пір, поки не виконається нерівність

$$f\left(x^{(k)} + \alpha\left(\overline{x}^{(k)} - x^{(k)}\right)\right) - f\left(x^{(k)}\right) \le \delta \alpha f_k\left(\overline{x}^{(k)}\right),$$

де δ – параметр методу, $0 < \delta < 1$.

4. Дроблення кроку. Виберемо $\alpha_k = 1$ й перевіримо виконання умови монотонності

$$f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right),$$

а потім за необхідності дробимо кроковий множник α_k ($\alpha_k = \lambda \ \alpha_k$, $\lambda \in (0,1)$) поки не буде виконана умова монотонності.

Умови збіжності методу умовного градієнта

Теорема. Нехай X — замкнута, обмежена, опукла множина простору E^n , цільова функція $f(x) \in C^1(X)$, причому її градієнт задовольняє умову Ліпшиця

$$||f'(x)-f'(z)|| \le L ||x-z||$$
 для $\forall x, z \in X$.

Тоді будь-яка гранична точка x_* послідовності $\left\{x^{(k)}\right\}_0^\infty$, яка визначається за методом (4)-(5), є стаціонарною в задачі (1), тобто

$$(f'(x_*), x - x_*) \ge 0$$
 для $\forall x \in X$.

Якщо при цьому цільова функція f(x) опукла на множині X , то x_* – розв'язок задачі (1) і

$$\lim_{k\to\infty}f\left(x^{(k)}\right)=f_*,$$

де
$$f_* = \min_{x \in X} f(x)$$
.

Зауваження. Аналогічні теореми можна сформулювати і для інших способів вибору крокової множника $\alpha_{\scriptscriptstyle k}$.

Критерії завершення ітераційного процесу:

$$\left| f_k \left(\overline{x}^{(k)} \right) \right| \le \varepsilon,$$

$$\left\| x^{(k+1)} - x^{(k)} \right\| \le \varepsilon.$$

Відзначимо, що якщо допустима область задається нелінійними обмеженнями, то задача (3) є задачею з *лінійною* цільовою функцією і *нелінійними* обмеженнями. Для розв'язання цієї задачі необхідно застосовувати відповідні методи умовної оптимізації.

Алгоритм методу умовного градієнта

Початковий етап. Вибрати початкову точку $x^{(0)} \in X$. Задати константу δ (0 < δ < 1), константу зупинки ε > 0, покласти k = 0 і перейти до основного етапу.

Основний етап

Крок 1. Обчислити $f'(x^{(k)})$. Знайти оптимальний розв'язок $\overline{x}^{(k)}$ задачі

$$(f'(x^{(k)}), x-x^{(k)}) \rightarrow min, x \in X.$$

Крок 2. Якщо $f_k\left(\overline{x}^{(k)}\right) = \left(f'\left(x^{(k)}\right), x - x^{(k)}\right) = 0$, то зупинитися: $x^{(k)}$ – стаціонарна точка, інакше обчислити умовний антиградієнт $h^{(k)} = \overline{x}^{(k)} - x^{(k)}$, покласти $\alpha_k = 1$.

Крок 3. Перевірити виконання умови

$$f\left(x^{(k)} + \alpha\left(\overline{x}^{(k)} - x^{(k)}\right)\right) - f\left(x^{(k)}\right) \le \delta \alpha f_k\left(\overline{x}^{(k)}\right). \tag{6}$$

Якщо нерівність виконується, то перейти до кроку 4, інакше провести дроблення крокової множника α_k поки не буде виконано нерівність (6).

Крок 4. Обчислити наступне наближення $x^{(k+1)} = x^{(k)} + \alpha_k h^{(k)}$, замінити k на k+1. Якщо $\|x^{(k+1)} - x^{(k)}\| \le \varepsilon$, то зупинитися, в іншому випадку — перейти до кроку 1.

Приклад. Розглянемо задачу

$$f(x) = 2x_1^2 + 2x_2^2 - 2x_1x_2 - x_1 - 4x_2 \rightarrow min$$

при обмеженнях

$$x_1 + x_2 \le 2$$
, $x_1 + 5x_2 \le 5$, $x_1 \ge 0$, $x_2 \ge 0$.

Лінії рівня цільової функції і допустима область показані на рисунку.

Градієнт цільової функції дорівнює $f'(x) = \begin{pmatrix} 4x_1 - 2x_2 - 1 \\ -2x_1 + 4x_2 - 4 \end{pmatrix}$.

Розв'яжемо цю задачу методом умовного градієнта, взявши за початкову точку $x^{(0)} = \left(0,0\right)^T \in X$, $f\left(x^{(0)}\right) = 0$.

Ітерація 1. Пошук напрямку спуску. У початковій точці $x^{(0)} = (0,0)^T$ маємо $f'(x^{(0)}) = (-1;-4)^T$. Зауважимо, що початкова точка повинна належати множині допустимих розв'язків.

Задача знаходження напрямку $h^{(0)}$ має вигляд:

$$f_{0}(x) = (f'(x^{(0)}), x - x^{(0)}) = \begin{pmatrix} -1 \\ -4 \end{pmatrix} \begin{pmatrix} x_{1} - 0 \\ x_{2} - 0 \end{pmatrix} = -x_{1} - 4x_{2} \rightarrow min,$$

$$x_{1} + x_{2} \leq 2,$$

$$x_{1} + 5x_{2} \leq 5,$$

$$x_{1} \geq 0, x_{2} \geq 0.$$

Сформульована задача є задачею лінійного програмування і може бути розв'язана симплекс-методом.

Оптимальним розв'язком цієї задачі є точка

$$\overline{x}^{(0)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T, \ f_0\left(\overline{x}^{(0)}\right) = -\frac{17}{4} = -4.25.$$

Так як $f_0(\bar{x}^{(0)}) < 0$, обчислюємо вектор

$$h^{(0)} = \overline{x}^{(0)} - x^{(0)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T.$$

Лінійний пошук. Будь-яка точка $x^{(1)}$, яку знайдено з точки $x^{(0)}$ у напрямку $h^{(0)}$, може бути представлена у вигляді

$$x^{(1)} = x^{(0)} + \alpha h^{(0)}$$
, де $0 \le \alpha \le 1$.

Тобто маємо

$$x^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 5/4 \\ 3/4 \end{pmatrix} = \left(\frac{5\alpha}{4}, \frac{3\alpha}{4}\right)^T,$$

відповідне значення цільової функції дорівнює $f(x^{(0)} + \alpha h^{(0)}) = \frac{19}{8}\alpha^2 - \frac{17}{4}\alpha$.

Значення α_0 знаходиться з розв'язання такої задачі одновимірної оптимізації:

$$\frac{19}{8}\alpha^2 - \frac{17}{4}\alpha \rightarrow min, \ 0 \le \alpha \le 1.$$

Оптимальний розв'язок дорівнює $\alpha_0 = \frac{1}{10}$.

Отже,

$$x^{(1)} = \left(\frac{85}{76}, \frac{51}{76}\right)^T \approx (1.118, 0.671)^T, \ f(x^{(1)}) = -1.901.$$

Нехай константа зупинки
$$\varepsilon = 10^{-1}$$
. Знайдемо норму
$$\left\|x^{(1)} - x^{(0)}\right\| = \sqrt{\left(1.118 - 0\right)^2 + \left(0.671 - 0\right)^2} = 1.3039 > \varepsilon \,.$$

Критерій зупинки не виконано.

Ітерація 2. Пошук напрямку. В точці $x^{(1)} = \left(\frac{85}{76}, \frac{51}{76}\right)^{T}$ маємо

$$f'(x^{(1)}) = \left(\frac{81}{38}, -\frac{135}{38}\right)^T$$
.

Для знаходження напрямку $h^{(1)}$ розв'яжемо таку задачу:

$$f_{1}(x) = \frac{81}{38}x_{1} - \frac{135}{38}x_{2} \rightarrow min,$$

$$x_{1} + x_{2} \le 2,$$

$$x_{1} + 5x_{2} \le 5,$$

$$x_{1} \ge 0, x_{2} \ge 0.$$

Оптимальним розв'язком цієї задачі ϵ точка

$$\overline{x}^{(1)} = (0,1)^T, \ f_1(\overline{x}^{(1)}) = -3.55.$$

Так як $f_1(\bar{x}^{(1)}) < 0$, обчислюємо вектор

$$h^{(1)} = \overline{x}^{(1)} - x^{(1)} = \left(-\frac{85}{76}, \frac{25}{76}\right)^T.$$

Лінійний пошук. Значення кроку α_1 отримаємо мінімізацією функції

$$f(x^{(1)} + \alpha h^{(1)}) = 3.45 \alpha^2 - 3.55 \alpha - 1.9$$
 за умови $0 \le \alpha \le 1$.

Оптимальний розв'язок $\alpha_1 \approx 0.514$.

Отже,
$$x^{(2)} = (0.54, 0.84)^T$$
, $f(x^{(2)}) = -2.815$.

Знайдемо норму

$$||x^{(2)} - x^{(1)}|| = \sqrt{(0.54 - 1.118)^2 + (0.84 - 0.671)^2} = 0.6022 > \varepsilon.$$

Критерій зупинки не виконано.

Ітерація 3. Пошук напрямку. В точці $x^{(2)} = (0.54, 0.84)^T$ маємо $f'(x^{(2)}) = (-0.5075, -1.7256)^T$.

Задача для знаходження напрямку $h^{(2)}$ має вигляд:

$$f_{2}(x) = -0.5075x_{1} - 1.7256x_{2} + 1.7235 \rightarrow min,$$

$$x_{1} + x_{2} \le 2,$$

$$x_{1} + 5x_{2} \le 5,$$

$$x_{1} \ge 0, x_{2} \ge 0.$$

Оптимальним розв'язком цієї задачі є точка

$$\overline{x}^{(2)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T, f_2(\overline{x}^{(2)}) = -0.205.$$

Так як $f_2(\bar{x}^{(2)}) < 0$, обчислюємо вектор

$$h^{(2)} = \overline{x}^{(2)} - x^{(2)} = \begin{pmatrix} 1.25 \\ 0.75 \end{pmatrix} - \begin{pmatrix} 0.54 \\ 0.84 \end{pmatrix} = \begin{pmatrix} 0.71 \\ -0.09 \end{pmatrix}.$$

Лінійний пошук. Значення кроку α_2 отримаємо мінімізацією функції

$$f\left(x^{(2)} + \alpha h^{(2)}\right) = f\left(0.54 + 0.71\alpha, 0.84 - 0.09\alpha\right) =$$
$$= 1.1522 \alpha^2 - 0.205 \alpha - 2.815$$
$$3а умови 0 \le \alpha \le 1.$$

Оптимальний розв'язок $\alpha_2 = 0.089$.

Отже,

$$x^{(3)} = (0.603, 0.832)^T, f(x^{(3)}) = -2.823.$$

Знайдемо норму

$$||x^{(3)} - x^{(2)}|| = \sqrt{(0.603 - 0.54)^2 + (0.832 - 0.84)^2} = 0.0635 < \varepsilon.$$

Отже, точка $x^{(3)} = (0.603, 0.832)^T$ є оптимальним розв'язком задачі зі заданою точністю.

Метод гіперплощини, що відтинає

Основна ідея методу полягає в тому, що допустима область апроксимується деяким багатогранником, який зменшується від одного ітераційного кроку до іншого, при цьому все краще апроксимуючи допустиму область в околі розв'язку.

Метод гіперплощини, що відтинає (або метод Келлі січних площин) може застосовуватися до загальних задач опуклого програмування з нелінійною цільовою функцією і нелінійними обмеженнями:

$$f(x) \to \min,$$

$$g_i(x) \le 0, \quad i = \overline{1, m}.$$

$$(1)$$

 $g_i(x) \le 0, \quad i = \overline{1,m}$. Функції f(x) та $g_i(x)$ є опуклими і неперервно-диференційовними функціями.

Введемо додаткову змінну і перепишемо задачу (1) у вигляді:

$$y \to min,$$

$$f(x) - y \le 0,$$

$$g_i(x) \le 0, \quad i = \overline{1,m}.$$
(2)

Задача (2) є задачею опуклого програмування з лінійною цільовою функцією і *нелінійними* обмеженнями в просторі E^{n+1} .

Оскільки показано, як здійснити перехід від задачі (1) з нелінійною цільовою функцією до задачі (2) з лінійною цільовою функцією, подальше викладення методу проведемо для такої задачі опуклого програмування:

$$(c, x) \rightarrow min,$$

 $g_i(x) \le 0, \quad i = \overline{1, m},$ (3)

де $g_i(x)$ – опуклі і неперервно-диференційовні функції, $x \in E^n$.

Позначимо через $X = \left\{ x \in E^n : g_i(x) \le 0, i = \overline{1,m} \right\}$ множину допустимих розв'язків задачі (3).

Апроксимуємо множину X багатогранною множиною Z . У випадку, коли X – обмежена, замкнута множина, то Z – багатогранник.

Ідея методу полягає у відсікання на кожному кроці частини багатогранної множини, яка не містить точку мінімуму початкової задачі.

Опишемо k – й крок методу. Розв'язуємо задачу лінійного програмування:

$$(c, x) \rightarrow min,$$

 $x \in Z_k,$ (4)

Нехай $x^{(k)}$ – оптимальний розв'язок задачі (4). Якшо

$$g_i(x^{(k)}) \leq 0, \quad \forall i = \overline{1,m}$$
,

то $x^{(k)}$ – оптимальний розв'язок початкової задачі (3).

Інакше, знайдемо

$$g_j(x^{(k)}) = \max_{1 \le i \le m} g_i(x^{(k)}).$$

Нова багатогранна множина Z_{k+1} виходить додаванням до множини Z_k додаткового обмеження:

$$g_{j}(x^{(k)})+g'_{j}(x^{(k)})(x-x^{(k)}) \leq 0.$$

Отже,

$$Z_{k+1} = Z_k \cap \left\{ x: \ g_j\left(x^{(k)}\right) + g_j'\left(x^{(k)}\right)\left(x - x^{(k)}\right) \le 0 \right\}. \tag{5}$$

Гіперплощина

$$g_{j}(x^{(k)}) + g'_{j}(x^{(k)})(x - x^{(k)}) = 0$$
 (6)

строго відокремлює точку $x^{(k)}$ від множини X і на цій підставі вона називається *січною гіперплощиною*.

Теорема про збіжність методу січних площин. Нехай f(x), $g_i(x)$, $i=\overline{1,m}$ ϵ опуклими і неперервно-диференційовними функціями. Якщо задача (3) має мінімум на скінченній відстані, то будь-яка точка згущення послідовності $\left\{x^{(k)}\right\}$, яка генерується методом гіперплощини, що відтина ϵ , ϵ оптимальним розв'язком задачі (3).

Алгоритм методу

Початковий етап. Апроксимувати множину X багатогранною множиною Z_1 . Покласти k = 1, задати $\varepsilon > 0$ і перейти до основного етапу.

Основний етап

Крок 1. Розв'язати задачу лінійного програмування (4):

$$(c, x) \rightarrow min,$$

 $x \in Z_{\iota}.$

Нехай точка $x^{(k)}$ — оптимальний розв'язок задачі (4).

Якщо $g_i(x^{(k)}) \le 0$ для всіх $i = \overline{1,m}$, то зупинитися: $x^{(k)}$ — оптимальний розв'язок вихідної задачі. В іншому випадку перейти до кроку 2.

Крок 2. Визначити індекс j , для якого $g_j(x^{(k)}) = \max_{1 \le i \le m} g_i(x^{(k)})$. Додати до обмежень, які визначають множину Z_k , додаткове обмеження вигляду

$$g_{j}(x^{(k)}) + g'_{j}(x^{(k)})(x - x^{(k)}) \le 0.$$

Отже, множина Z_{k+1} має вигляд

$$Z_{k+1} = Z_k \cap \left\{ g_j(x^{(k)}) + g'_j(x^{(k)})(x - x^{(k)}) \le 0 \right\}.$$

Замінити k на k+1 та перейти до кроку 1.

Крок 3. Якщо $||x^{(k+1)}-x^{(k)}|| \le \varepsilon$, то зупинитися: $x^{(k)}$ — наближення до точки мінімуму. В іншому випадку перейти до кроку 1. Алгоритм описано.