Exercise 1. (Hatcher 1.2: 1). Show that the free product G * H of nontrivial groups G and H has trivial center, and that the only elements of G * H of finite order are the conjugates of finite-order elements of G and H.

Trivial center: Let $x=x_1\dots x_n$ with $x_n\in G-\{1\}$ be an element of G*H. Let $h\in H-\{1\}$ be arbitrary, then hx in reduced form ends with $x_n\in G$, but xh in reduced form ends in $h\in H$. Thus $hx\neq xh$, so x cannot be in the center of G*H. A similar argument holds if $x_n\in H-\{1\}$ instead, so no nontrivial element of G*H can be in the center.

Now the empty word, as the identity element, commutes with all other elements of G * H, so it is an element of the center. By the previous argument, it is the only such element, so the center of G * H is trivial.

Finite order \implies conjugate: First we show that any finite order element of G*H is a conjugate of finite order elements of G and H. Suppose $x=x_1\ldots x_m\in G*H$ has finite order, i.e. x^n is the empty word for some $n\in\mathbb{N}$. This necessarily means

$$\underbrace{(x_1 \dots x_m) \dots (x_1 \dots x_m)}_{n \text{ times}} = \text{ the empty word.}$$

In order for this to reduce to the empty word, we need $x_{n-i}x_{i+1} = e$ for all $0 \le i \le m-1$. Then since left and right inverses coincide in groups, $x_{m-1} = x_{i+1}^{-1}$ for all i. We then have two cases:

$$\begin{cases} (x_m^{-1} \dots x_{\lfloor m/2-1 \rfloor}^{-1}) \ x_{\lfloor m/2 \rfloor} \ (x_{\lfloor m/2+1 \rfloor} \dots x_m) & \text{m is odd} \\ (x_m^{-1} \dots x_{m/2-1}) \ e \ (x_{m/2+1} \dots x_m) & \text{m is even.} \end{cases}$$

Since e is clearly of finite order, x is the conjugate of a finite order element when m is even. When m is odd,

$$e = x^n = x_{\lfloor m/2 \rfloor},$$

so x is a conjugate of finite order $x_{\lfloor m/2 \rfloor}$.

conjugate \Longrightarrow **finite order:** Suppose xgx^{-1} is an element of G*H, where g is a finite order element of G or H, i.e. $g^n = e$ for some $n \in \mathbb{N}$. Then

$$\underbrace{(xgx^{-1})...(xgx^{-1})}_{n \text{ times}} = xg^nx^{-1} = xex^{-1} = x^{-1} = \text{ the empty word}$$

since all pairs $x^{-1}x$ give the identity and then are reduced away. Thus xgx^{-1} has finite order n.

Exercise 2.

- 1. (Hatcher 1.2: 4). Let $X \subset \mathbb{R}^3$ be the union of n lines through the origin. Compute $\pi_1(\mathbb{R}^3 X)$.
- 2. (Hatcher 1.2: 6). Use Proposition 1.26 to show that the complement of a closed discrete subspace of \mathbb{R}^n is simply connected if $n \geq 3$.
- 1. This argument assumes that all n lines are disjoint. Obviously, if any two lines coincide, we can treat them as the same line and then we're working with n-1 lines instead of n.

The map $F(x,t): (1-t)x+t\frac{x}{\|x\|}$ is a deformation retraction from \mathbb{R}^3-X to S^2 minus 2n points, which shows that the two spaces are homotopy equivalent. Then since stereographic projection is a homeomorphism from $S^n-\{\mathrm{pt}\}$ to \mathbb{R}^n , the sphere minus 2n points is homeomorphic to \mathbb{R}^2 minutes 2n-1 points. Then this space clearly deformation retracts onto the bouquet of 2n-1 circles, so we have the sequence

$$\mathbb{R}^3 - X \quad \simeq \quad S^2 - \{2n \text{ points}\} \quad \cong \quad \mathbb{R}^2 - \{2n-1 \text{ points}\} \quad \simeq \quad \underbrace{S^1 \vee \dots \vee S^1}_{2n-1 \text{ times}}.$$

Then since the fundamental group of m circles wedged together is the free product on m generators, $\pi_1(\mathbb{R}^3 - X)$ is the free group on 2n - 1 generators.

2. **Trivial fundamental group:** Proposition 1.26 says that attaching any number of 3-cells to a space does not affect the fundamental group. So suppose $X = \{x_{\alpha}\}_{\alpha}$ is any closed discrete subspace of \mathbb{R}^n . Since it's discrete, by definition of the subspace topology, there must be open balls $B_{r_{\alpha}}(x_{\alpha})$ of \mathbb{R}^n that intersect X only at x_{α} .

Then the balls $B_{r_{\alpha}/2}(x_{\alpha})$ with radii halved are all disjoint. The space $\mathbb{R}^n - X$ is clearly a deformation retract of $\mathbb{R}^n - \{B_{r_{\alpha}/2}(x_{\alpha})\}_{\alpha}$, so they have isomorphic fundamental groups. But we can recover \mathbb{R}^n from this space by filling in the holes with 3-cells, so by Proposition 1.26,

$$1 \cong \pi_1(\mathbb{R}^n) \cong \pi_1\left(\mathbb{R}^n - \{B_{r_\alpha/2}(x_\alpha)\}_\alpha\right) \cong \pi_1(\mathbb{R}^n - X).$$

Path connected: Suppose γ is a path between two point in \mathbb{R}^n that intersects X at some points $\{x_\beta\}_\beta$. As argued earlier, we can find disjoint open balls in \mathbb{R}^n containing a single x_β each. Then we can perturb γ away from x_β while staying in the open ball, giving us a path $\tilde{\gamma}$ between the same points that now doesn't intersect X. Thus $\mathbb{R}^n - X$ is path connected.

Exercise 3. (Hatcher 0: 14). Given positive integers v, e, and f satisfying v - e + f = 2, construct a cell structure on S^2 having v 0-cells, e 1-cells, and f 2-cells.

We can construct S^2 by taking a 0-cell and gluing the boundary of D^2 to it. Thus the sphere has (v, e, f) = (1, 0, 1). Now consider the following two operations on S^2 :

- ϕ : designate a point on S^2 to be a new 0-cell, and add a 1-cell between it and some other pre-existing 0-cell.
- ψ : Add a loop at some 0-cell.

Note that ϕ adds a vertex and an edge, and ψ adds an edge and a face, so both preserve the identity v-e+f=2. If ϕ is performed a times and ψ is performed b times on the sphere, then we can represent the number of 0-cells, 1-cells, and 2-cells as

$$(1,0,1) + a(1,1,0) + b(0,1,1).$$

Suppose (v, e, f) is an arbitrary triple satisfying v - e + f = 2, then if we let a = v - 1 and b = e - v - 1, this becomes

$$(v, e, 2 + e - v) = (v, e, f).$$

Since ϕ and ψ both preserve v-e+f=2, we end up with our desired cell structure on S^2 .

Exercise 4. Suppose Γ is a 1-dimensional cell complex and let E be an edge of Γ connecting two different vertices (0-cells) of Γ , where E includes both of its endpoints. Show that Γ is homotopy equivalent to the quotient space Γ/E obtained by shrinking E to a point (don't use Hatcher's Proposition 0.17 or the homotopy extension property, etc).

Since E connects two different endpoints, it is clearly contractible. Thus there is a homotopy $F: E \times I \to E$ between id_E and q, the quotient map $\Gamma \twoheadrightarrow \Gamma/E$. Now add some 1-cell to E to get a space \tilde{E} .

We can extend F to all of $\tilde{E} \times I$ as follows:

- First note that there is a retraction $r: D^1 \times I \to (\partial D^1 \times I) \cup (D^n \times \{0\})$ given by radially projecting from the point (0,2).
- We can let $F|_{D^1\times 0}$ just be the identity.
- Now define $F|_{D^1 \times I}(x,t) = (F_t \circ r)(x)$. This is well-defined since it agrees with our original F on $E \times I$ and since r maps $D^1 \times I$ into $(\partial D^1 \times I) \cup (D^1 \times \{0\})$. This is a subset of $(E \times I) \cup (D^1 \times \{0\})$, where F is already defined.

Now extend this result by induction to all of Γ . This gives us a homotopy $G: \Gamma \times I \to \Gamma$. Since G_1 is constant on E, it induces a map $\psi: \Gamma/E \to \Gamma$ such that the following diagram commutes.

$$\Gamma \xrightarrow{G_1} \Gamma$$

$$\downarrow^q \qquad \qquad \downarrow^\psi$$

$$\Gamma/E$$

We claim that ψ and q are maps showing $\Gamma \simeq \Gamma/E$. The homotopy G_t shows $\mathrm{id}_{\Gamma} \simeq \psi q$, but the other direction is less straightforward.

Note that since $G_t(E) \subset E$ for all t, we have $qG_t(e_1) = qG_t(e_2)$ whenever $e_1, e_2 \in E$. Being in E is exactly the equivalence relation determining the quotient space Γ/E , so by the universal property of quotient spaces, there is a unique \tilde{G}_t making the following diagram commute.

$$\Gamma \downarrow q \qquad \qquad qG_t$$

$$\Gamma/E \xrightarrow{\neg \neg \neg \neg} \Gamma/E.$$

Putting these diagrams together, we get

$$\begin{array}{cccc}
\Gamma & \xrightarrow{G_t} & \Gamma & & \Gamma & & \Gamma \\
\downarrow^q & & \downarrow^q & & \downarrow^q & & \downarrow^q \\
\Gamma/E & \xrightarrow{\tilde{G}_t} & \Gamma/E & & \Gamma/E & \xrightarrow{\tilde{G}_1} & \Gamma/E
\end{array}$$

Now \tilde{G}_t is a homotopy between $\mathrm{id}_{\Gamma/E}$ and $q\psi$: $\tilde{G}_0q=qG_0=q$, which implies $\tilde{G}_0=\mathrm{id}$ since q is epic; $\tilde{G}_0q=qG_1=q\psi q$, which similarly implies $\tilde{G}_1=q\psi$; and \tilde{G}_t is continuous with respect to t since qG_t is.

Thus the quotient map q is a homotopy equivalence showing $\Gamma \simeq \Gamma/E$.