

Нормоконтролер

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	· ·	,
ФАКУЛЬТЕТ	ФУНДАМЕНТАЛЬНЫЕ НА	УКИ
КАФЕДРА	ПРИКЛАДНАЯ МАТЕМАТ	<u> ИКА</u>
РАСЧЕТНО	-пояснительн	АЯ ЗАПИСКА
К ВЫПУСКНО	ОЙ КВАЛИФИКАЦИ	ОННОЙ РАБОТЕ
	НА ТЕМУ:	
	<u>ических решениях_к</u> ия колебаний балки і	
Студент <u>ФН2-82Б</u> (Группа)	(Подпись, да	А. А. Кононенко та) (И.О.Фамилия)
(1)	(подпись, да	
Руководитель ВКР	(Подпись, да	та) И. А. Рудаков (И.О.Фамилия)
Консультант	(Подпись, да	та) (И.О.Фамилия)
Консультант		

(Подпись, дата)

(Подпись, дата)

(И.О.Фамилия)

(И.О.Фамилия)

М.М. Лукашин

Реферат

Расчётно-пояснительная записка 50 с., 2 рис., 13 источников, 1 прил. «О периодических решениях квазилинейного уравнения колебаний балки и проводов»

Объектом исследования является квазилинейное уравнение колебаний балки и проводов.

Целью работы является исследование соответствующей задачи Штурма-Лиувилля на собственные функции и собственные значения, нахождение условий обратимости и вполне непрерывности обратного оператора, доказательство конечномерности ядра оператора, изучение пространства Соболева, доказательство гладкости решений исходной задачи и выполнение граничных условий в классическом смысле.

В ходе данной работы решено линейное уравнение Эйлера-Бернулли, найдено условие обратимости дифференциального оператора, произведена нормировка собственных функций. Построен ортонормированный базис из собственных функций дифференциального оператора. Доказана конечномерность
ядра оператор и вполне непрерывность обратного оператора. Доказано существование производных по Соболеву до второго порядка включительно. Доказана теорема о существовании и единственности периодического решения.

Содержание

BE	ведение	4
1.	Постановка задачи	5
2.	Свойства собственных значений λ_n	6
3.	Симметричность дифференциального линейного оператора	11
4.	Согласованность λ_n с формулой Назарова	13
5 .	Свойства системы	16
6.	Обратимость оператора	17
7.	Основная теорема	18
8.	Доказательство гладкости решения	21
9.	Доказательство конечномерности ядра оператора ${\cal L}$ и вполне	
	непрерывности L^{-1}	27
10	.Компактные множества, принцип Шаудера	29
11	.Доказательство теоремы о существовании и единственно-	
	сти периодического решения с помощью принципа Шаудера	32
12	.Дополнение	40
За	ключение	47
Сг	писок использованных источников	48
Ш	РИЛОЖЕНИЕ А	50

Введение

В данной работе рассматривается задача о периодических по времени решениях квазилинейного уравнения Эйлера-Бернулли вынужденных колебаний двутавровой балки, испытывающей растяжение вдоль горизонтальной оси. Уравнение, рассмотренное в этой работе, представляет собой математическую модель колебаний проводов, стержня, способного сопротивляться изгибу, а так же двутавровых балок. Граничные условия соответствуют случаю шарнирно опирающихся концов. Нелинейное слагаемое удовлетворяет случаю нерезонансности на бесконечности. Используя принцип Шаудера доказывается теорема о существовании и единственности периодического решения.

В случае a=0 задача о периодических колебаниях балки с шарнирно опёртыми концами исследовалась в работах [3] - [5]. В работах [6] - [7] уравнение (1) изучалось также при a=0 и при однородных граничных условиях, соответствующих случаям закреплённых, свободных и упруго закреплённых концов. Уравнение (1) при $a\neq 0$ рассмотрено в работе [8], в которой с помощью принципа сжимающих отображений доказаносуществование по крайней мере одного периодического решения малой амплитуды, если внешняя сила имеет достаточно малую амплитуду и нелинейное слагаемое зависит от u и u_x .

1. Постановка задачи

Рассмотрим задачу о периодических колебаниях балки и проводов

$$u_{tt} + u_{xxx} - au_{xx} + g(x, t, u) = f(x, t), \quad x \in (0, \pi), t \in \mathbb{R}$$
 (1)

с граничными условиями

$$u(0, t) = u(\pi, t) = 0, (2)$$

$$u_{xx}(0, t) = u_{xx}(\pi, t) = 0 (3)$$

и с периодическим по времени условием

$$u(x, t) = u(x, t + T). \tag{4}$$

Задание.

- 1. Исследовать соответствующую задачу Штурма-Лиувилля на собственные функции и собственные значения.
- 2. Найти условие обратимости дифференциального оператора

$$\partial_{tt} + \partial_{xxxx} - a\partial_{xx}.$$

- 3. Доказать конечномерность ядра этого оператора.
- 4. Доказать гладкость решений задачи (1) (4) и выполнение граничных условий в классическом смысле.

2. Свойства собственных значений λ_n

Уравнению (1) соответствует следующая задача Штурма-Лиувиллся:

$$X^{(4)} - aX'' = \lambda X,\tag{5}$$

учитывая граничные условия $X(0) = X(\pi) = 0$. Докажем, что собственное значение $\lambda > 0$.

Так как $X = X(x), x \in (0, \pi)$, то домножим правую и левую части уравнения задачи (5) на X(x) и проинтегрируем от 0 до π :

$$\int_{0}^{\pi} X^{(4)} X dx - a \int_{0}^{\pi} X'' X dx = \lambda \int_{0}^{\pi} X^{2} dx.$$
 (6)

Так как нас интересует нетривиальное решение, то $X \not\equiv 0$ и $\int\limits_0^\pi X^2 dx > 0$. Покажем, что левая часть уравнения $\geqslant 0$: (воспользуемся формулой интегрирования по частям)

$$I = \int_0^{\pi} X^{(4)} X dx = \int_0^{\pi} (X''')' X dx = \int_0^{\pi} X dX''' = \left| dX = X' dx \right| =$$

$$= XX''' \Big|_0^{\pi} - \int_0^{\pi} X''' X' dx = -\int_0^{\pi} (X'')' X' dx = -\int_0^{\pi} X' dX'' =$$

$$= -X'' X' \Big|_0^{\pi} + \int_0^{\pi} (X'')^2 dx = \int_0^{\pi} (X'')^2 dx > 0.$$

$$II = -a \int_0^{\pi} X'' X dx = -a \int_0^{\pi} (X')' X dx = -a \int_0^{\pi} X dX' =$$

$$= -a \left(X X' \Big|_0^{\pi} - \int_0^{\pi} X' dX \right) = a \int_0^{\pi} (X')^2 dx \geqslant 0.$$

$$\downarrow \downarrow$$

$$\int_{0}^{\pi} X^{(4)} X dx - a \int_{0}^{\pi} X'' X dx \geqslant 0.$$
 (7)

Следовательно, и собственное значение $\lambda \geqslant 0$. Предположим, что $\lambda = 0$. Тогда:

$$\int_0^{\pi} (X'')^2 dx = -a \int_0^{\pi} (X')^2 dx.$$

Это равенство выполняется только при $X'' = X' = 0 \Rightarrow X = C$. Подставим начальное условие $X(0) = 0 \Rightarrow C = 0 \Rightarrow X = 0$. Однако нас интересует только нетривиальный случай, поэтому предположение, что λ может быть равно нулю, неверно. Значит собственное значение $\lambda > 0$.

Составим уравнение для нахождения собственных значений дифференциального линейного оператора L[x]. Решим уравнение (5) при фиксированном $\lambda > 0$. Перенесём правую часть уравнения влево, чтобы получить линейное неоднородное дифференциальное уравнение с постоянными коэффициентами:

$$X^{(4)} - aX'' - \lambda X = 0, \quad a, \lambda \in \mathbb{R}, \ a > 0.$$

Его характеристическим уравнением будет дифференциальное уравнение вида:

$$t^4 - at^2 - \lambda = 0.$$

Произведём замену $z=t^2$:

$$z^{2} - az - \lambda = 0;$$

$$D = a^{2} + 4\lambda > 0; z_{1,2} = \frac{a}{2} \pm \sqrt{\frac{a^{2}}{4} + \lambda};$$

$$\downarrow \downarrow$$

$$\begin{cases} t_{1,2} = \pm \sqrt{\frac{a}{2} + \sqrt{\frac{a^2}{4} + \lambda}}, \\ t_{3,4} = \pm \sqrt{\frac{a}{2} - \sqrt{\frac{a^2}{4} + \lambda}} = \pm i\sqrt{\sqrt{\frac{a^2}{4} + \lambda} - \frac{a}{2}}. \end{cases}$$

Для удобства дальнейших вычислений, запишем:

$$\begin{cases} b = \sqrt{\frac{a}{2} + \sqrt{\frac{a^2}{4} + \lambda}}, \\ c = \sqrt{-\frac{a}{2} + \sqrt{\frac{a^2}{4} + \lambda}}. \end{cases}$$

Фундаментальная система решений имеет вид:

$$\{e^{-bx}, e^{bx}, \cos(cx), \sin(cx)\}. \tag{8}$$

Так как косинус и синус гиперболические равны:

$$ch(bx) = \frac{e^{bx} + e^{-bx}}{2}$$
, a $sh(bx) = \frac{e^{bx} - e^{-bx}}{2}$,

то ФСР (8) можно заменить на:

$$\{ \operatorname{ch}(bx), \operatorname{sh}(bx), \cos(cx), \sin(cx) \}.$$

Общее решение уравнения:

$$X = y_{\text{o.o.}} = C_1 \operatorname{ch}(bx) + C_2 \operatorname{sh}(bx) + C_3 \cos(cx) + C_4 \sin(cx),$$

$$X' = C_1 b \operatorname{sh}(bx) + C_2 b \operatorname{ch}(bx) - C_3 c \sin(cx) + C_4 c \cos(cx),$$

$$X'' = C_1 b^2 \operatorname{ch}(bx) + C_2 b^2 \operatorname{sh}(bx) - C_3 c^2 \cos(cx) - C_4 c^2 \sin(cx).$$

Подставим граничные условия X(0) = X''(0) = 0:

$$\begin{cases} X(0) = C_1 \operatorname{ch}(0) + C_2 \operatorname{sh}(0) + C_3 \cos(0) + C_4 \sin(0), \\ X''(0) = C_1 b^2 \operatorname{ch}(0) + C_2 b^2 \operatorname{sh}(0) - C_3 c^2 \cos(0) - C_4 c^2 \sin(0). \end{cases}$$

$$\begin{cases} C_1 + C_3 = 0, \\ C_1 b^2 - C_3 c^2 = 0, \end{cases} \begin{cases} C_1 = -C_3, \\ C_1 \left(b^2 + c^2 \right) = 0, \end{cases} \Leftrightarrow \begin{cases} C_1 = 0, \\ C_3 = 0. \end{cases}$$
 (9)

Подставим вторые граничные условия $X(\pi) = X''(\pi) = 0$:

$$\begin{cases} X(\pi) = C_2 \operatorname{sh}(\pi b) + C_4 \sin(\pi c) = 0, \\ X''(\pi) = C_2 b^2 \operatorname{sh}(\pi b) - C_4 c^2 \sin(\pi c) = 0. \end{cases}$$
(10)

Нас интересует нетривиальное решение системы (10) $(C_2^2 + C_4^2 \neq 0$, где C_2^2, C_4^2 — неизвестные переменные), а для этого необходимо и достаточно равенство нулю определителя матрицы системы линейных алгебраических уравнений (10):

$$\Delta = \begin{vmatrix} \sinh(b\pi) & \sin(\pi c) \\ b^2 \sinh(b\pi) & -c^2 \sin(\pi c) \end{vmatrix} = 0.$$

Получим уравнение:

$$c^{2} \operatorname{sh}(b\pi) \sin(\pi c) + b^{2} \operatorname{sh}(b\pi) \sin(\pi c) = \operatorname{sh}(b\pi) \sin(\pi c) (c^{2} + b^{2}) = 0,$$
 (11)

где $\mathrm{sh}(b\pi)=\frac{e^{b\pi}-e^{-b\pi}}{2}=0\Leftrightarrow e^{2b\pi}=1$. Последнее равенство выполняется только при b=0, что невозможно, так как $a>0,\,\lambda_n>0\Rightarrow b=0$

 $\sqrt{rac{a}{2} + \sqrt{rac{a^2}{4} + \lambda_n}} > 0$. Также из равенства (11) видно, что, так как

$$c = \sqrt{-\frac{a}{2} + \sqrt{\frac{a^2}{4} + \lambda_n}} > 0, \ c^2 + b^2 \neq 0,$$

то $\sin(\pi c) = 0 \Rightarrow \pi c = \pi n \Rightarrow c = n, n \in \mathbb{N}$ (так как b > 0). Исследовав уравнение (11), получаем его решения: $\lambda_n = n^4 + an^2, n \in \mathbb{N}$.

Так как в главе 2 выяснили, что $\lambda_n > 0$ и по условию a > 0, то $n \in \mathbb{N}$. Как видно из графика (1), рост значений корней уравнения является степенным.

Рис. 1. График роста собственных значений λ_n при a=1.

Найдём собственные функции дифференциального линейного оператора A[x]. Для этого найдём все константы C_1 , C_2 , C_3 , C_4 . В системе (9) мы выяснили, что константы $C_1 = C_3 = 0$. Приравняем C_4 к единице и получим значение $C_2 = -\frac{\sin(\pi c)}{\sinh(\pi b)}$. Таким образом, учитывая, что $\sin(\pi c) = 0$, то $C_2 = 0$, а значение собственной функции на отрезке $[0, \pi]$ (график изменения которой предствлен на рисунке (2)) равняется $X_n = C_4 \sin(nx)$, $n \in \mathbb{N}$. Из теории рядов Фурье известно, что тригонометрическая система

$$\{\sin(x), \sin(2x), \dots, \sin(nx), \dots\}$$

является полной и ортогональной в $L_2[0, \pi]$.

Рис. 2. График изменения собственной функции X_n при x=10.

3. Симметричность дифференциального линейного оператора

Докажем, что дифференциальный оператор $AX = X^{(4)} - aX''$, которому соответствуют начальные условия (2) - (3), симметричен, то есть докажем, что выполняется равенство (AX,Y) = (X,AY):

$$(AX_{n}, X_{m}) = (\lambda_{n}X_{n}, X_{m}) = \int_{0}^{\pi} AX_{n} X_{m} dx = \int_{0}^{\pi} \left(X_{n}^{(4)} - aX_{n}^{"}\right) X_{m} dx =$$

$$= \int_{0}^{\pi} X_{n}^{(4)} X_{m} dx - a \int_{0}^{\pi} X_{n}^{"} X_{m} dx = \int_{0}^{\pi} X_{m} dX_{n}^{"} - a \int_{0}^{\pi} X_{m} dX_{n}^{'} = X_{m} X_{n}^{"} \Big|_{0}^{\pi} -$$

$$- \int_{0}^{\pi} X_{n}^{"'} X_{m}^{'} dx - a \left(X_{m} X_{n}^{'} \Big|_{0}^{\pi} - \int_{0}^{\pi} X_{n}^{'} X_{m}^{'} dx\right) = - \int_{0}^{\pi} X_{m}^{'} dX_{n}^{"} + a \int_{0}^{\pi} X_{m}^{'} dX_{n} =$$

$$= -X_{m}^{'} X_{n}^{"} \Big|_{0}^{\pi} + \int_{0}^{\pi} X_{n}^{"} X_{m}^{"} dx + a \left(X_{m}^{'} X_{n} \Big|_{0}^{\pi} - \int_{0}^{\pi} X_{m}^{"} X_{n} dx\right) =$$

$$= \int_{0}^{\pi} X_{n}^{"} X_{m}^{"} dx - a \int_{0}^{\pi} X_{n} X_{m}^{"} dx. \tag{12}$$

$$\int_0^{\pi} X_n'' X_m'' dx = \int_0^{\pi} X_m'' dX_n' = X_m'' X_n' \Big|_0^{\pi} - \int_0^{\pi} X_n' dX_m'' = -\int_0^{\pi} X_n' X_m''' dx =$$

$$= -\int_0^{\pi} X_m''' dX_n = -X_m''' X_n \Big|_0^{\pi} + \int_0^{\pi} X_n dX_m''' = \int_0^{\pi} X_n X_m^{(4)} dx.$$

Подставив последнее значение в выражение (12), получаем уравнение

$$\int_0^{\pi} X_n X_m^{(4)} dx - a \int_0^{\pi} X_m'' X_n dx = \int_0^{\pi} X_n \left(X_m^{(4)} - a X_m'' \right) dx =$$

$$= \int_0^{\pi} X_n A X_m dx = \left(X_n, A X_m \right) = \left(X_n, \lambda_m X_m \right).$$

То есть верно равенство $(AX_n, X_m) = (X_n, AX_m)$, а значит дифференциальный оператор A[x] симметричен.

Из симметричности линейного оператора, следует, что

$$\int_0^\pi \lambda_n X_n X_m = \int_0^\pi X_n \lambda_m X_m \Rightarrow (\lambda_n - \lambda_m) \int_0^\pi X_n X_m dx = 0.$$

Так как нас интересует только нетривиальный случай

$$\lambda_n \neq \lambda_m$$
, to $\int_0^\pi X_n X_m dx = 0$,

и значит $(X_n, X_m) = 0$, а это равносильно тому, что собственные функции оператора A[x] являются ортогональными.

4. Согласованность λ_n с формулой Назарова

Дифференциальный оператор имеет вид $A \colon AX = X^{(4)} - aX'' = \lambda X$. Запишем формулу Назарова по поиску собственных значений A:

$$\mu_n = \left(\frac{\pi \cdot \left[n - l - 1 - \frac{\kappa}{2l}\right]}{\int_0^\pi p_{2l}^{-1/(2l)}(x) \, dx} + O(n^{-1})\right)^{2l}, \quad n \to \infty, \text{ где}$$
 (13)

- 1. По причине того, что оператор A является дифференциальным оператором, имеющим четвёртоый порядок, то 2l=4, в силу чего l=2.
- 2. Первая функция $X^{(4)}$ будет содержать коэффициент p_{2l} , в силу чего $p_{2l}=1$. Поэтому $\int_0^\pi p_{2l}^{-1/(2l)}\left(x\right)dx=\pi$.
- 3. Число $\kappa = \sum_{j=1}^{2} (k_j + k'_j)$, в котором значения k_j и k'_j можно найти, воспользовавшись граничными условиями

$$X^{(k_j)}(0) + \sum \alpha_{jk}^0 X^{(k)}(0) = 0$$

$$X^{(k'_j)}(\pi) + \sum \alpha_{jk}^1 X^{(k)}(\pi) = 0$$

$$j = \overline{1, 2};$$

$$0 \leqslant k_1 < k_2 \leqslant 3;$$

$$0 \leqslant k'_1 < k'_2 \leqslant 3.$$

В силу этого, учитывая граничные условия (2) - (3) можем найти, чему равняются числа: $k_1=0,\ k_2=2,\ k_1'=0,\ k_2'=2,\ и$ число $\kappa=(0+0)+(2+2)=4.$

4.
$$O(n^{-1}) = \frac{1}{n} f(n)$$
, где $|f(n)| \leqslant C = const$.

Подставив в формулу (13) полученные числа, вычислим, чему равняется собственное значение: $\lambda_n = (n + O(n^{-1}))^4$.

Вычислим ассимптотику, взяв $\lim_{n\to\infty}\lambda_n$ и найдя, чему оно равно:

$$\lim_{n\to\infty} (\sqrt[4]{\lambda_n} - n)n = \lim_{n\to\infty} (\sqrt[4]{n^4 + an^2} - n)n = \lim_{n\to\infty} (n\sqrt[4]{1 + \frac{a}{n^2}} - n)n =$$

$$= \lim_{n\to\infty} n^2 \left(\sqrt[4]{1 + \frac{a}{n^2}} - 1\right) = \begin{vmatrix} 3\text{амена} : \frac{a}{n^2} = k \Rightarrow n^2 = \frac{a}{k} \\ n \to \infty \Rightarrow \frac{a}{n^2} = k \to 0 \end{vmatrix} = \lim_{k\to 0} a^{\frac{(1+k)^{\frac{1}{4}} - 1}{k}} =$$

$$= a \lim_{k\to 0} \frac{(1+k)^{\frac{1}{4}} - 1}{k} = | \text{Эквивалентная бесконечно малая функция } | = \frac{a}{4} \Rightarrow$$

$$\Rightarrow (\sqrt[4]{\lambda_n} - n)n = \frac{a}{4} + \gamma_n, \text{ где } \gamma_n \xrightarrow[n\to\infty]{} 0 \Rightarrow \sqrt[4]{\lambda_n} = n + \frac{a}{4n} + \gamma_n \frac{1}{n} \Rightarrow$$

$$\Rightarrow \left(\gamma_n \frac{1}{n} = o\left(\frac{1}{n}\right)\right) \Rightarrow \lambda_n = \left(n + \frac{a}{4n} + o\left(\frac{1}{n}\right)\right)^4. \tag{14}$$

В итоге найден первый член ассимптотики слагаемого $O\left(\frac{1}{n}\right)$ в формуле Назарова: $O\left(\frac{1}{n}\right) = \frac{a}{4n} + o\left(\frac{1}{n}\right)$.

Нормировка

Осуществим нормировку в пространстве $L_2(0, \pi)$ для полученной ранее собственной функции $X_n = A_n \sin(nx)$:

$$||X_n||_{L_2(0,\pi)} = 1$$

$$||A_n \sin(nx)||_{L_2(0,\pi)} = A_n \sqrt{\int_0^{\pi} \sin(nx)^2 dx} = A_n \sqrt{\frac{1}{2} \int_0^{\pi} (1 - \cos(2nx)) dx} =$$

$$= A_n \sqrt{\frac{\pi}{2} - \frac{1}{4n} \sin(2nx) \Big|_0^{\pi}} = A_n \sqrt{\frac{\pi}{2}} = 1 \quad \Rightarrow \quad A_n = \sqrt{\frac{2}{\pi}}.$$

Таким образом, соотвествующие нормированные в $L_2(0, \pi)$ функции равняются

$$X_n = \sqrt{\frac{2}{\pi}}\sin(nx), \ n \in \mathbb{N}.$$

Оценим функцию X_n и производные этой функции:

$$|X_n| \leqslant \sqrt{\frac{2}{\pi}},\tag{15}$$

$$|X_n'| \leqslant n\sqrt{\frac{2}{\pi}},\tag{16}$$

$$|X_n| \leqslant \sqrt{\frac{2}{\pi}}, \tag{15}$$

$$|X_n'| \leqslant n\sqrt{\frac{2}{\pi}}, \tag{16}$$

$$|X_n''| \leqslant n^2 \sqrt{\frac{2}{\pi}}. \tag{17}$$

5. Свойства системы

Введём систему собственных функций

$$\left\{ \sqrt{\frac{2}{\pi T}} \sin(nx), \frac{2}{\sqrt{\pi T}} \sin(nx) \cos(wmt), \frac{2}{\sqrt{\pi T}} \sin(nx) \sin(wmt) : n, m \in \mathbb{N} \right\}.$$
(18)

Обозначим функции $e_{nm}^c = \frac{2}{\sqrt{\pi T}}\sin(nx)\cos(wmt), e_{nm}^s = \frac{2}{\sqrt{\pi T}}\sin(nx)\sin(wmt).$

Введём обозначение: $\Omega = [0; \pi] \times \mathbb{R}$.

Проверим ортонормированность системы (18) в пространстве $L_2(\Omega)$.

$$\left(\sqrt{\frac{2}{\pi T}}\sin(nx), \sqrt{\frac{2}{\pi T}}\sin(nx)\right) = \frac{2}{\pi T} \int_{0}^{T} \int_{0}^{\pi}\sin^{2}(nx)dxdt = \frac{1}{\pi T} \int_{0}^{T} \int_{0}^{\pi}(1-\cos(2nx))dxdt = \frac{1}{\pi T} \int_{0}^{T}dt = 1,$$

$$\left(\sqrt{\frac{2}{\pi T}}\sin(nx), e_{nm}^{c}\right) = \frac{2\sqrt{2}}{\pi T} \int_{0}^{T} \int_{0}^{\pi}\sin^{2}(nx)\cos(wmt)dxdt = \frac{\sqrt{2}}{T} \int_{0}^{T}\cos(wmt)dt = \frac{\sqrt{2}}{wmT}(\sin(wmt))\Big|_{0}^{T} = \Big|w = \frac{2\pi}{T}\Big| = 0,$$

$$(e_{nm}^{c}, e_{nm}^{c}) = \frac{4}{\pi T} \int_{0}^{T} \int_{0}^{\pi}\sin^{2}(nx)\cos^{2}(wmt)dxdt = \frac{1}{T} \int_{0}^{T}(1+\cos(2wmt))dt = \frac{1}{T} \left(t + \frac{\sin(2wmt)}{wm}\right)\Big|_{0}^{T} = 1,$$

$$(e_{nm}^{s}, e_{nm}^{s}) = \frac{4}{\pi T} \int_{0}^{T} \int_{0}^{\pi}\sin^{2}(nx)\sin^{2}(wmt)dxdt = \frac{1}{T} \int_{0}^{T}(1+\sin(2wmt))dt = \frac{1}{T} \left(t + \frac{\sin(2wmt)}{wm}\right)\Big|_{0}^{T} = 1.$$

Таким образом, в $L_2(\Omega)$ построен ортонормированный базис из собственных функций дифференциального оператора A. Все собственные функции ортонормированной системы удовлетворяют начальным и граничным условиям задачи (1)-(4).

6. Обратимость оператора

Будем предполагать выполнение следующих условий:

$$T = 2\pi \frac{b}{c}, \quad b, c \in \mathbb{N}, \quad \text{HOД}(b, c) = 1,$$
 (19)

$$a > 0, \quad \frac{1}{2}ab \notin \mathbb{N}.$$
 (20)

Введём замену $w=\frac{2\pi}{T}$. Докажем обратимость оператора, соответствующего уравнению (1) задачи (1) - (4):

$$L = \partial_{tt} + \partial_{xxxx} - a\partial_{xx}.$$

$$Le_{nm}^{c} = \frac{-(wm)^{2}}{\sqrt{\pi T}} 2\sin(nx)\cos(wmt) + \frac{n^{4}}{\sqrt{\pi T}} 2\sin(nx)\cos(wmt) +$$

$$+ a\frac{n^{2}}{\sqrt{\pi T}} 2\sin(nx)\cos(wmt) = e_{nm}^{c}(n^{4} + an^{2} - (wm)^{2}) =$$

$$= e_{nm}^{c}(\lambda_{n} - (wm)^{2}) = \mu_{nm}e_{nm}^{c},$$

$$Le_{nm}^{s} = -(wm)^{2} \frac{2}{\sqrt{\pi T}}\sin(nx)\sin(wmt) + n^{4} \frac{2}{\sqrt{\pi T}}\sin(nx)\sin(wmt) +$$

$$+ an^{2} \frac{2}{\sqrt{\pi T}}\sin(nx)\sin(wmt) = -(wm)^{2}e_{nm}^{s} + n^{4}e_{nm}^{s} + an^{2}e_{nm}^{s} =$$

$$= (n^{4} + n^{2} - (wm)^{2})e_{nm}^{s} = (\lambda_{n} - (wm)^{2})e_{nm}^{s} = \mu_{nm}e_{nm}^{s},$$

где $|\mu_{nm}| = |\sqrt{\lambda_n} - wm|(\sqrt{\lambda_n} + wm) = M(n, m)(\sqrt{\lambda_n} + wm)$. Следовательно μ_{nm} является собственным числом линейного оператора L.

7. Основная теорема

Будем говорить, что выполнено условие A), если либо

a — иррациональное, а w — рациональное положительное числа; (21)

либо

a и w — рациональные положительные числа, $a \notin w\mathbb{N}$ и в представлении числа a = p/q в виде несократимой дроби знаменатель q не является квадратом целого числа; (22)

либо

a — нечётное, а w — рациональное положительное числа и в представлении числа w=p/q в виде несократимой дроби знаменатель q — нечётное число. (23)

Обозначим

$$G(x, t, u) = \int_0^u g(x, t, s) ds.$$

Сформулируем результат Рудакова И.А. (2022 г.) в случае, когда нелиней-

ное слагаемое g(x, t, s) удовлетворяет следующим условиям:

функция $g \in C^1([0, \pi] \times \mathbb{R}^2)$ и является Т-периодической по переменной t, (24)

$$g(x, t, -u) = -g(x, t, u) \text{ при всех } u \int \mathbb{R}, (x, t) \in \Omega$$
 (25)

существуют $p > 2, \ u_0 > 0$ такие, что

$$ug(x, t, u) \geqslant pG(x, t, u) > 0$$
 при $u \in (-\infty, -u_0] \cup [u_0, +\infty), \quad (x, t) \in \Omega,$ (26)

$$A_3|u|^d+A_4\geqslant |g(x,\,t,\,u)|\geqslant A_1|u|^d-A_2$$
 при всех $(x,\,t,\,u)\in\Omega imes\mathbb{R},$ (27) где $d\in[p-1,\,p)$ и $a_1,\,A_2,\,A_3,\,A_4$ – положительные константы.

Лемма Пусть выполнено условие A). Тогда для любой функции $f \in L_2(\Omega) \cap R(L)$ имеет место включение

$$u = L^{-1}f \in L_2([0, T]; H_2) \cap C(\Omega) \cap H_1(\Omega)$$

и $u_x \in C(\Omega)$. Если $f \in H_1(\Omega) \cap R(L)$, то $u = L^{-1}f \in H_2(\Omega) \cap C^1(\Omega)$ и $u_{xx} \in C(\Omega)$.

Определение. Обобщённым решением задачи (1) - (4) называется функция $u \in L_{d+1}(\Omega)$ такая, что

$$\int_{\Omega} (u(\phi_{tt} + \phi_{xxxx} - a\phi xx) + g(x, t, u)\phi) dx dt = \int_{\Omega} f(x, t)\phi dx dt$$
 при всех $\phi \in D(L)$.

Теорема. Допустим, что имеют место условия A), (24) - (27). Тогда для любой T-периодической по t правой части $f(x, t) \in H_1(\Omega)$ задача (1) - (4) имеет не ограниченную в пространстве $L_{d+1}(\Omega)$ последовательность обобщённых решений из пространства $H^2(\Omega) \cap C^1(\Omega)$, для которых вторые классические производные по x непрерывны в циллиндре Ω .

В статье 2018 года немного ослаблено условие Ямагучи 1995 г.: условия (21)-(23). В данной работе эти условия ещё больше ослаблены и заменены на условия (19), (20).

8. Доказательство гладкости решения

Лемма Пусть выполнено условие A). Тогда для любой функции $f \in L_2(\Omega) \cap R(L)$ имеет место включение

$$u = L^{-1}f \in L_2([0, T]; H_2) \cap C(\Omega) \cap H_1(\Omega)$$

и $u_x \in C(\Omega)$. Если $f \in H_1(\Omega) \cap R(L)$, то $u = L^{-1}f \in H_2(\Omega) \cap C^1(\Omega)$ и $u_{xx} \in C(\Omega)$.

Для доказательства гладкости решения докажем, что $u \in C(\Omega)$, $u_x \in C(\Omega)$, $u_{xx} \in C(\Omega)$. Так как $X_n = \sqrt{\frac{2}{\pi}} \sin(nx)$, то $X_n'' = -n^2 \sqrt{\frac{2}{\pi}} \sin(nx)$. Задачу (1) можно записать в виде: Lu = f(x,t). Разложим функцию правой части f и решение u в ряд Фурье по собсвтенным функциям X_n :

$$u = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (A_{nm} \cos(mt) + B_{nm} \sin(mt)) X_n$$
$$f = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (a_{nm} \cos(mt) + b_{nm} \sin(mt)) X_n$$

При действии на собственную функцию дифференциального оператора собственная функция умножается на собственное число оператора

$$f = Lu = ku = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \mu_{mn} (A_{nm} \cos(mt) + B_{nm} \sin(mt)) X_n$$

 \Downarrow

$$\mu_{mn}A_{mn} = a_{mn} \Rightarrow A_{mn} = \frac{a_{mn}}{\mu_{mn}}$$
$$\mu_{mn}B_{mn} = b_{mn} \Rightarrow B_{mn} = \frac{b_{mn}}{\mu_{mn}}$$

$$u = \sum_{n=1}^{\infty} \sum_{\substack{m=0, \ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\mu_{mn}} (a_{nm} \cos(mt) + b_{nm} \sin(mt)) X_n,$$
 $\mu_{mn} = 0 \Rightarrow f(x, t) = 0, \quad u$ $\mu_{mn} u_{mn} = f_{mn} = 0, \quad \mu_{mn} = 0, \quad u_{mn} \neq 0 \text{ если } f \in kerL^{\perp}.$

Далее докажем равномерную сходимость ряда

$$|u| = \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{|\mu_{mn}|} (|a_{nm}\cos(mt) + b_{nm}\sin(mt)|) |X_n| \le$$

$$\le \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{|\mu_{mn}|} (|a_{nm}\cos(mt) + b_{nm}\sin(mt)|) \le$$

$$\le \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \sqrt{\frac{1}{\pi}} \frac{1}{|\mu_{mn}|} (|a_{nm}| + |b_{nm}|) \le || \le$$

$$\le \left| (|a| + |b|)^2 = a^2 + 2|a||b| + b^2 \le a^2 + a^2 + b^2 + b^2 = 2(a^2 + b^2) \right| \le$$

$$\le \frac{2}{\sqrt{\pi}} \sqrt{\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\mu_{mn}^2} \sqrt{\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} (a_{nm}^2 + b_{nm}^2)} =$$

$$= \frac{2}{\sqrt{\pi}} \sqrt{\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\mu_{mn}^2} ||f||_{L_2[0, \pi]},$$

где для функции $f=\sum\limits_{n=1}^{\infty}\sum\limits_{\substack{m=0,\\ \mu_{mn}\neq 0}}^{\infty}(a_{nm}^2+b_{nm}^2)$ справедливо равенство Парсеваля:

$$||f||_{L_2[0,\pi]} = \sum_{n=1}^{\infty} \sum_{\substack{m=0,\\ \mu_{mn} \neq 0}}^{\infty} (a_{nm}^2 + b_{nm}^2).$$

$$\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\mu_{mn}^2} = \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\left(\sqrt{\lambda_n} - \frac{c}{b}m\right)^2 \left(\sqrt{\lambda_n} + \frac{c}{b}m\right)^2} \leqslant$$

$$\leqslant \left|\sqrt{\lambda_n} + \frac{c}{b}m \right| \geqslant \sqrt{\lambda} = \sqrt{n^4 + an^2} \sim n^2 \text{ при } n^2 \to \infty \right| \leqslant$$

$$\leqslant \sum_{n=1}^{\infty} \frac{1}{n^4} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\left(\sqrt{\lambda_n} - \frac{c}{b}m\right)^2} = \left(\frac{b}{c}\right)^2 \sum_{n=1}^{\infty} \frac{1}{n^4} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\left(\frac{b}{c}\sqrt{\lambda_n} - m\right)^2} =$$

Замена: $\frac{b}{c}\sqrt{\lambda_n} = |z_n| = \left(\frac{b}{c}\right)^2 \sum_{n=1}^{\infty} \sum_{\substack{m=0,\\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^4} \frac{1}{(z_n - m)^2}$. Затем производим такую замену

$$= \left| m_0 = z_n, \ z_n - m_0 = \delta_1, \ m_0 + 1 - z_n = \delta_2 \right| =$$

$$= \left(\frac{b}{c} \right)^2 \sum_{n=1}^{\infty} \frac{1}{n^4} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{m_0} \frac{1}{(z_n - m)^2} + \left(\frac{b}{c} \right)^2 \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^4} \sum_{\substack{m=m_0+1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{(z_n - m)^2} =$$

$$= \left| p = m_0 - m + 1, \ m = m_0 + 1 - p, \ p = 1 \dots m_0 + 1,$$

$$q = m - m_0, \ m = q + m_0, \ q = 1 \dots \infty \right| =$$

$$= \left(\frac{b}{c} \right)^2 \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^4} \sum_{p=1}^{m_0+1} \frac{1}{(m_0 + 1 - p - z_n)^2} + \left(\frac{b}{c} \right)^2 \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^4} \sum_{q=1}^{\infty} \frac{1}{(q + m_0 - z_n)^2} <$$

Замена: $\delta_2 = m_0 + 1 - z_n$, $\delta_1 = z_n - m_0$

$$< \left(\frac{b}{c}\right)^{2} \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^{4}} \sum_{k=1}^{\infty} \frac{1}{(k-\delta_{2})^{2}} + \left(\frac{b}{c}\right)^{2} \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^{4}} \sum_{k=1}^{\infty} \frac{1}{(k-\delta_{1})^{2}} \le$$

$$\le \left|\delta_{1}, \, \delta_{2} \in (0, \, 1), \, \delta = \max\{\delta_{1}, \, \delta_{2}\}\right| \le 2 \left(\frac{b}{c}\right)^{2} \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^{4}} \sum_{k=1}^{\infty} \frac{1}{(k-\delta)^{2}} =$$

$$= \sum_{\substack{n=1, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{n^{4}} \left(2 \left(\frac{b}{c}\right)^{2} \frac{1}{(1-\delta)^{2}} + 2 \left(\frac{b}{c}\right)^{2} \sum_{k=2}^{\infty} \frac{1}{(k-\delta)^{2}}\right) <$$

$$<\sum_{\substack{n=1,\\ \mu_{mn}\neq 0}}^{\infty}\frac{1}{n^4}\left(2\left(\frac{b}{c}\right)^2\frac{1}{(1-\delta)^2}+2\left(\frac{b}{c}\right)^2\int_{1}^{\infty}\frac{1}{(x-\delta)^2}dx\right)=\\ =\sum_{\substack{n=1,\\ \mu_{mn}\neq 0}}^{\infty}\frac{1}{n^4}\left(2\left(\frac{b}{c}\right)^2\left(\frac{1}{1-\delta}\right)^2+2\left(\frac{b}{c}\right)^2\left(\frac{1}{1-\delta}\right)\right)\leqslant\\ \leqslant\left|\delta\text{ зависит от }n.\text{ Из формулы Назарова}\right.\\ \text{следует, что }\exists\,\varepsilon_0\in(0,\,1):\left|m-\frac{b}{c}\sqrt{\lambda}\right|\geqslant\varepsilon_0\Rightarrow\\ \Rightarrow\delta_1,\delta_2\geqslant\varepsilon_0\Rightarrow\delta\geqslant\epsilon_0,\,1-\delta\geqslant\varepsilon_0\right|\leqslant\\ \leqslant\left(\frac{2b^2}{c^2\varepsilon_0^2}+\frac{2b^2}{c^2\varepsilon_0}\right)\sum_{\substack{n=1,\\ \mu_{mn}\neq 0}}^{\infty}\frac{1}{n^4}=\left(\frac{2b^2}{c^2\varepsilon_0^2}+\frac{2b^2}{c^2\varepsilon_0}\right)\frac{\pi^4}{90}$$

Теперь вернёмся к сравнению первоначального ряда:

$$|u| \leqslant \frac{2}{\sqrt{\pi}} \sqrt{\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{|\mu_{mn}^{2}|}} ||f||_{L_{2}[0,\pi]} \leqslant$$

$$\leqslant \frac{2}{\sqrt{\pi}} \frac{\pi^{2}}{3\sqrt{10}} \sqrt{\left(\frac{2b^{2}}{c^{2}\varepsilon_{0}^{2}} + \frac{2b^{2}}{c^{2}\varepsilon_{0}}\right)} ||f||_{L_{2}[0,\pi]} = C_{u,0}$$

Таким образом мы нашли мажоранту (сходящийся мажорирующий ряд) для исходного ряда, а следовательно по признаку Вейерштрасса ряд

$$u = \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{1}{\mu_{mn}} (a_{nm} \cos(mt) + b_{nm} \sin(mt)) X_n$$

сходится абсолютно и равномерно, а так как все его члены непрерывны, то из равномерной сходимости следует непрерывность всего ряда и функции u соответственно. Доказательство непрерывности u_x осуществляется аналогично.

Далее докажем равномерную сходимость ряда

$$|u_{xx}| = \sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} n^2 \frac{1}{|\mu_{mn}|} (|a_{nm}\cos(mt) + b_{nm}\sin(mt)|) |X_n|$$
 (28)

Из предыдущих вычислений пропустим аналогичные этапы сравнения

$$|u_{xx}| \leqslant \frac{2}{\sqrt{\pi}} \sqrt{\sum_{n=1}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{n^2}{\mu_{mn}^2}} ||f||_{L_2[0,\pi]}$$

Докажем сходимость ряда

$$\sum_{n=1}^{\infty} \sum_{\substack{m=0,\\ \mu_{mn} \neq 0}}^{\infty} \frac{n^2}{\mu_{mn}^2}$$

1) При m = 0 ряд имеет вид:

$$\sum_{n=1}^{\infty} \frac{n^4}{\lambda_n^2} (a_{nm}^2 + b_{nm}^2).$$

 $\lambda_n > n^4 \Rightarrow$ ряд сходится.

2) При $m \neq 0$

$$\sum_{n=1}^{\infty} \sum_{\substack{m=0,\\ \mu_{mn} \neq 0}}^{\infty} \frac{n^4}{\mu_{mn}^2} (a_{nm}^2 + b_{nm}^2) = \tag{29}$$

$$= \sum_{n \leq 2m}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{n^4}{m^2 \mu_{mn}^2} m^2 (a_{nm}^2 + b_{nm}^2) + \sum_{n>2m}^{\infty} \sum_{\substack{m=0, \\ \mu_{mn} \neq 0}}^{\infty} \frac{n^4}{\mu_{mn}^2} (a_{nm}^2 + b_{nm}^2).$$
 (30)

При $n\geqslant 2m$ справедлива оценка $\frac{n^4}{\mu_{mn}m^2}\leqslant \frac{2m}{\mu_{mn}^2}=16\frac{m^2}{\mu_{mn}^2}\leqslant 16\,C_1$. Таким образом первый ряд в выражении (30) сходится.

Для сходимости второго ряда (в котором n>2m) оценим собственное число

$$\mu_{mn} = n^4 + an^2 - \frac{c}{b}m^2 > n^4 + an^2 - \frac{c}{b}\left(\frac{n}{2}\right)^2 > n^2.$$

Следовательно второй ряд также сходится, а значит и ряд (29) сходится и равен некоторой константе C_{μ} . Тогда справедливо неравенство

$$|u_{xx}| \leqslant \frac{2}{\sqrt{\pi}} \sqrt{C_{\mu}} ||f||_{L_2[0,\pi]} = C_{u,2}.$$

Мы нашли мажоранту для ряда (28), а значит по аналогии с рассуждениями при доказательстве непрерывности u из этого следует непрерывность u_{xx} . Таким образом гладкость решения доказана.

9. Доказательство конечномерности ядра оператора L и вполне непрерывности L^{-1}

Лемма. Предположим, что выполнены условия (19), (20). Тогда ядро N(L) оператора L является конечномерным, и обратный оператор $L^{-1}: R(L) \to R(L)$ вполне непрерывен.

Доказательство. Для доказательства первого утверждения достаточно проверить, что имеется не более конечного числа собственных значений μ_{nk} равных нулю. Обозначим $Q_{nk} = |b\sqrt{\lambda} - ck|$. Из полученного ранее значения собственного числа $\lambda_n = \left(n + \frac{a}{4n} + o\left(\frac{1}{n}\right)\right)^4$ выведем

$$Q_{nk} = |j_{nk} + R(a, b) + \gamma_n|,$$

где

ства

$$j_{nk} = bn^2 - ck$$
, $\gamma_n = o(1)$, $R(a, b) = \frac{1}{2}ab$.

Из условия (19) - (20) следует существование натурального числа l, такого что $R(a,b)\in (l-1,l)$. Обозначим $\varepsilon_0=\min\left(\frac{1}{2}-l+1,\,l-\frac{1}{2}ab\right)$. Поскольку $j_{nk}\in\mathbb{Z},\,\gamma_n=o(1),\,$ то найдётся натуральное число $n_0,\,$ такое, что $|\gamma_n|<\frac{\varepsilon_0}{2}$ при $n\geqslant n_0.$ Следовательно, при $n\geqslant n_0$ будут иметь место неравен-

$$|Q_{nk}| \geqslant \frac{1}{2}\varepsilon_0, \ |\mu_{nk}| \geqslant \frac{1}{2b^2}\varepsilon_0(b\sqrt{\lambda_n} + ck).$$
 (31)

Из этих неравенств следует, что равенства $\mu_{nk} = 0$ могут выполняться не более чем для конечного числа пра $(n, k) \in \mathbb{N} \times \mathbb{Z}_+$. Поэтому dim ker $L < \infty$.

Для доказательства второго утверждения достаточно доказать сходимость

ряда

$$S = \sum_{n=n_0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{\mu_{mn}^2}.$$

Обозначим $z_n=b\frac{\sqrt{\lambda_n}}{c},\ k_n=[z_n],\ \delta_n=z_n.$ Из (31) следует оценка

$$|m-z_n|\geqslant \frac{1}{2c}\varepsilon_0,\ \delta_n\geqslant \frac{1}{2c}\varepsilon_0$$
 для любых $n\in\mathbb{N},\ m\in\mathbb{Z}_+.$

Следовательно,

$$S = \sum_{n=n_0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(b\sqrt{\lambda_n} - ck)^2 (b\sqrt{\lambda_n} + ck)^2} \leqslant \frac{1}{b^2 c^2} \sum_{n=n_0}^{\infty} \frac{1}{\lambda_n} \left(\sum_{k=0}^{\infty} \frac{1}{(k - z_n)^2} \right).$$

Таким образом, ряд S является сходящимся, а значит по теореме Гильберта-Шмидта обратный оператор L_1^{-1} является вполне непрерывным.

Компактные множества, принцип Шаудера

Теорема (принцип Шаудера) Если оператор A является отображением замкнутого ограниченного выпуклого множества D в банаховом пространстве X в себя, то при наличии вполне непрерывности на D оператора A, он имеет на D неподвижную точку.

Доказательство. Вначале рассуждаем от противного. Если у A нет в D неподвижных точек, то существует $\varepsilon_0\geqslant 0$ такой, что при каждом $x\in D$

$$||A(x) - x|| \geqslant \varepsilon_0. \tag{32}$$

На самом деле, если данное неравенство не выполняется, то будет существовать $\{x_n\}\subset D$, для которой

$$||A(x) - x|| \to 0, \ n \to \infty. \tag{33}$$

Но заметим, что в таком случае, из компактности A(D) в X из последовательности $\{A(x_n)\}$ выделяется такая подпоследовательность $\{A(x_{n'})\}$, которая сходится к $x_0 \in \overline{A(D)}$. В (33) заметно, что и $x_{n'} \to x_0$, $n' \to \infty$. К тому же заметим, что $x_0 \in D$, так как $\overline{A(D)} \subset D$, а D замкнуто. Рассчитывая в (33) n = n', из непрерывности A(x) найдём, что $A(x_0) = x_0$, а это в свою очередь не соответствует выдвинутому предположению о том, что у A отсутствуют неподвижные точки на D. Таким образом, верно (32).

В будущем положим $0 \in D$. Ограничением данное условие не будет. Действительно, возьмём $y_0 \in D$. Займёмся изучением множества $D_0 = D - y_0$ и оператора

$$A_0 x = A(x + y_0) - y_0.$$

Обозначим каждое $\varepsilon \in (0, \varepsilon_0)$. Возьмём $M_{\varepsilon} = \{y_i \in \overline{A(D)}, i = 1, \dots, n\}$

является конечной эпсилон-сетью A(D). Возьмём в M_{ε} наибольшую линейно независимую систему элементов. Положим, что она образована элементами, принадлежащими множеству

$$N_{\varepsilon} = \{y_i, i = 1, \dots, m\}, m \leqslant n.$$

Возьмём X_m , натянутое на элементы из N_ε и которое будет являться подпространством X. Обозначим $K_\varepsilon=C_0\,(0\cup M_\varepsilon)$ выпуклой оболочкой.

Обозначим $A_{\varepsilon} - \varepsilon$ - проектор Шаудера. Изучим его сужение на K_{ε} . A_{ε} отображает K_{ε} в себя и A_{ε} является непрерывным. В следствии этого, к сужению A_{ε} на K_{ε} приложим теорему Броуэра, которая показывает существание неподвижной точки $x_{\varepsilon} \in K_{\varepsilon}$ оператора $A_{\varepsilon} : A_{\varepsilon}(x_{\varepsilon}) = x_{\varepsilon}$. Так как A_{ε} , то

$$||A(x_{\varepsilon}) - x_{\varepsilon}|| = ||A(x_{\varepsilon}) - A_{\varepsilon}(x_{\varepsilon})|| \leqslant \varepsilon.$$

Это не соответствует (32), так как мы обозначили $\varepsilon \in (0, \varepsilon)$. Поэтому наше предположение, что A не может иметь на D неподвижной точки, не является истиным, а значит мы доказали теорему Шаудера.

Пусть X — банахово пространство.

 $Teopema\ (Cnedcmвиe\ us\ meopemы\ IIIaydepa).$ Положим оператор A действует из $\overline{S_R(0)}\subset X$ в X и является вполне непрерывным. Когда для любых $\lambda>1$ и любых x с ||x||=R $A(x)\neq \lambda x$, то у A существует в $\overline{S_R(0)}$ неподвижная точка.

 \mathcal{A} оказательство. Займёмся рассмотрением оператора F, отображающего $\overline{S_R(0)}$ в $\overline{S_R(0)}$ по такому закону:

$$F(x) = \begin{cases} A(x), & \text{при } ||A(x)|| \leqslant R, \\ RA(x)/||A(x)||, & \text{при } ||A(x)|| > R. \end{cases}$$

Оператор F является вполне непрерывным на $\overline{S_R(0)}$. На самом деле, очевид-

но, что F непрерывен на $S_R(0)$. К тому же, образ $\overline{S_R(0)}$ в случае отображения F есть компактное множество так как A является вполне непрерывным. Поэтому, в силу принципа Шаудера, можно найти точку $x_0 \in \overline{S_R(0)}$ такую, для которой $F(x_0) = x_0$. Разберём два варианта.

Когда $F(x_0) = A(x_0)$, то $||(x_0)|| = ||A(x_0)|| \leqslant R$, и теорема доказана. Если $F(x_0) = RA(x_0)/||A(x_0)||$, где $||A(x_0)|| > R$, то $A(x_0) = \lambda_0 x_0$ и $\lambda_0 = ||A(x_0)||/R > 1$. Этого не может быть исходя из условия теоремы, поэтому $||x_0|| = R$. Из этого следует, что истинным является только первый вариант, то есть $x_0 = F(x_0) = A(x_0)$. Теорема доказана.

11. Доказательство теоремы о существовании и единственности периодического решения с помощью принципа Шаудера

Периодическое решение квазилинейного уравнения

Обозначим $\Omega = [0, \pi] \times \mathbf{R}/(R\mathbf{Z}), (u, v) = \int_{\Omega} u(x, t)v(x, t)dxdt$, если $u, v \in L_2(\Omega), ||u|| = ||u||_{L_2(\Omega)}, H_1(\Omega) = W_2^1(\Omega), H_2(\Omega) = W_2^2(\Omega)$ пространства Соболева,

$$W = \{ v \in C^{\infty}(\Omega) | v(0, t) = v(\pi, t) = v_{xx}(0, t) = v_{xx}(\pi, t) = 0, \ \forall t \}.$$

Определим линейный оператор $L: L_2(\Omega) \to L_2(\Omega)$, такой, что

$$Lu = u_{tt} + u_{xxxx} - au_{xx}, \ \forall u \in W$$

и область определения D(L) состоит из таких функций $v\in L_2(\Omega)$, для которых существует $h\in L_2(\Omega)$, такая, что

$$\int_{\Omega} v(u_{tt} + u_{xxxx} - au_{xx}) dxdt = \int_{\Omega} hu dxdt$$

для любой функции $u \in W$ и при этом Lv = h. Оператор L — самосопряжённый, спектр которого является дискретным и совпадает с множеством собственных значений

$$\sigma(L) = \left\{ \eta_{nk} \equiv \lambda_n - \frac{c^2}{b^2} k^2 \middle| n \in \mathbf{N}, k \in \mathbf{Z}_+ \right\}.$$

Множество функций составляет полную, ортонормированную в $L_2(\Omega)$ систему собственных функций оператора L. Будем предполагать, что нелинейное слагаемое g(x, t, u) непрерывно по всем переменным и удовлетворяет следу-

ющему условию: для задачи (1) - (4) существуют константы $\alpha,\beta,u_0>0$, такие, что $\alpha<\beta$ и

$$\frac{g(x, t, u)}{u} \in [\alpha, \beta] \text{ при } |u| \geqslant u_0, \forall (x, t) \in \Omega.$$
 (34)

Определение Обобщённым решением задачи (1) - (4) называется функция $u \in H_1(\Omega)$, для которой выполняется следующее равенство

$$\int_{\Omega} u(v_{tt} + v_{xxxx} - av_{xx}) dx dt = \int_{\Omega} (g(x, t, u) + f(x, t)) v dx dt \ \forall v \in W.$$

Теорема. Предположим $g \in C^1(\Omega \times \mathbf{R})$, выполнены условия (19), (20), (34) и

$$[\alpha, \beta] \cap \sigma(L) = \varnothing. \tag{35}$$

Тогда для любой функции задача (1) – (4) имеет обобщённое решение

$$u \in H_2(\Omega) \cap C^1(\Omega) \tag{36}$$

такое, что $u_{xx} \in C(\Omega)$. Если дополнительно выполнено условие

$$g'_{u}(x, t, u) \in [\alpha, \beta], \ \forall u, \forall (x, t) \in \Omega,$$
 (37)

то это решение единственное.

Доказательство теоремы разобьём на следующие шаги:

- 1. Исследование оператора L и его резольвенты;
- 2. Доказательство существования обобщённого решения;
- 3. Обоснование гладкости решения;
- 4. Доказательство утверждения о единственности.

Шаг 1). Покажем, что оператор L имеет конечномерное ядро. Для этого

достаточно доказать, что равенство

$$\eta_{nk} = 0 \tag{38}$$

может выполняться не более, чем для конечного числа пар $(n, k) \in \mathbf{N} \times \mathbf{Z}_+$. Из равенства (14) следует, что

$$\eta_{nk} = \frac{1}{b^2} F_{nk} \left(b \left(n + \frac{a}{4n} + o \left(\frac{1}{n} \right) \right)^2 + ck \right),$$

где
$$F_{nk} = \frac{1}{2} (b((n + \frac{a}{4n} + o(\frac{1}{n}))^2 - ck).$$

то из условия (16) вытекает существование натурального числа n_3 , такого, что при $n\geqslant n_3$ выполняется неравенство

$$|F_{nk}| \geqslant \gamma_0 > 0. \tag{39}$$

Здесь $\gamma_0 = \frac{1}{4} min_{m \in \mathbf{Z}} \left| \frac{1}{2} ab - m \right|$. Следовательно, при $n \geqslant n_3$ равенство (38) не выполняется. Поэтому $dim \ker L_1 < \infty$. Из (39) вытекает существование положительной константы γ_1 , такой, что

$$\eta_{nk} \geqslant \gamma_1(n^2 + k)$$
 при $\eta_{nk} \neq 0$. (40)

Докажем, что при $\mu \neq \sigma(L)$ операторы $(L-\mu I)^{-1}:L_2(\Omega)\to L_2(\Omega)$ являются вполне непрерывными. Для этого достаточно проверить сходимость следующего ряда

$$I = \sum_{n=n_1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(\eta_{nk} - \mu)^2}.$$

Из неравенства (40) вытекает существование положительной константы C_1 ,

такой, что $\left(1-\frac{\mu}{\eta_{nk}}\right)^2\geqslant C_1>0$ при $n\geqslant n_1$. Отсюда следует неравенство

$$I \leqslant \frac{1}{C_1} \sum_{n=n_1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{\eta_{nk}^2}.$$

Сходимость ряда доказана в главе 8. Таким образом, ряд I сходится и операторы $(L_i - \mu I)^{-1}: L_2(\Omega) \to L_2(\Omega)$, вполне непрерывны.

Шаг 2) Рассмотрим операторное уравнение

$$Lu = g(x, t, u) + f(x, t), \ u \in D(L). \tag{41}$$

Решение уравнения (42), принадлежащее $H_1(\Omega)$, является обобщённым решением задачи (1) – (4). Если обозначить

$$F(u) = (L - \alpha I)^{-1} (g(x, t, u) - \alpha u + f(x, t)),$$

то (42) будет эквивалентно следующему уравнению

$$u = F(u). (42)$$

Таким образом, доказательство существования решения уравнения (42) сведено к доказательству существования неподвижной точки у оператора F. Из доказанного выше в шаге 1) следует, что оператор $F: L_2(\Omega) \to L_2(\Omega)$ является вполне непрерывным. Чтобы показать существование неподвижных точек у оператора F воспользуемся следствием из теоремы Шаудера о неподвижной точке (глава 11). Для этого докажем, что найдётся R>0, такое, что

$$F(u) \neq \lambda u \ \forall \lambda \in S_R \equiv \{u \in L_2(\Omega), ||u|| = R\}.$$

Предположим противное, то есть для произвольного числа R>0 найдутся

числа $\lambda_i, \ i=1,\ 2$ и $u_i\in S_R$, такие, что

$$F(u) = \lambda u. \tag{43}$$

Обозначим $v=(L-\alpha I)^{-1}f$. Из условия (35) вытекает существование чисел $\mu_1,\,\mu_2\in\sigma(L)$, таких, что

$$[\alpha, \beta] \subset [\mu_1, \mu_2]; \ (\mu_1, \mu_2) \cap \sigma(L) = \varnothing. \tag{44}$$

Из равенства (43) вытекает следующее соотношение:

$$g(x, t, u) - \alpha u = \lambda (L - \alpha I) \left(u - \frac{1}{\lambda} v \right). \tag{45}$$

Умножим равенство (45) на $\left(u - \frac{1}{\lambda}v\right)$ скалярно в $L_2(\Omega)$, из 34, 35, 44 выведем

$$(g(x, t, u) - \alpha u)(u - \frac{1}{\lambda}v) = -\lambda(L - \alpha I)(u - \frac{1}{\lambda}v) \leqslant \tag{46}$$

$$\leqslant \frac{\lambda}{\mu_2 - \alpha} ||(\alpha I - L)(u - \frac{1}{\lambda}v)||^2 = \frac{1}{\lambda} \frac{1}{\mu_2 - \alpha} ||g(x, t, u) - \alpha u||^2. \tag{47}$$

Из условия (34) вытекает существование положительных констант C_1 , C_2 , таких, что

$$|g(x, t, u) - \alpha u| \leq (\beta - \alpha)|u| + C_1, (g(x, t, u) - \alpha u)u \geq -C_2, \forall (x, t, u) \in \Omega \times \mathbf{R}.$$

Отсюда и из (46) следует

$$\frac{1}{\lambda} \frac{1}{\mu_{2} - \alpha} ||g(x, t, u) - \alpha u||^{2} \geqslant (g(x, t, u) - \alpha u, u) - \frac{1}{\lambda} (g(x, t, u) - \alpha u, v) \geqslant \\
\geqslant \int_{\Omega} |g(x, t, u) - \alpha u| \cdot |u| dx dt - ||g(x, t, u) - \alpha u|| \cdot ||v|| - 2|\Omega|C_{2} \geqslant \\
\geqslant \frac{1}{\beta - \alpha} \int_{\Omega} (g(x, t, u) - \alpha u)^{2} dx dt - \frac{1}{\beta - \alpha} C_{1} \int_{\Omega} |g(x, t, u) - \alpha u| dx dt - \\
-||g(x, t, u) - \alpha u|| \cdot ||v|| - 2|\Omega|C_{2} \geqslant \\
\geqslant \frac{1}{\beta - \alpha} ||g(x, t, u) - \alpha u||^{2} dx dt - C_{3} ||g(x, t, u) - \alpha u|| - C_{4}.$$

Здесь и далее C_3, C_4, C_5, \ldots есть положительные константы. Из данного неравенства выведем

$$\left(\frac{1}{\beta - \alpha} - \frac{1}{\mu_2 - \alpha}\right) ||g(x, t, u) - \alpha u||^2 dx dt - C_3 ||g(x, t, u) - \alpha u|| - C_4 \leqslant 0.$$

Отсюда и из (44) вытекает существование константы C_5 , такой, что

$$||g(x, t, u) - \alpha u|| \leq C_5.$$

Тогда из равенства (45) получим оценки

$$\left| \left| \left(L - \alpha I \right) \left(u - \frac{1}{\lambda} v \right) \right| \right| \leqslant C_5, \ ||u|| \leqslant C_6.$$

Следовательно, если $R > C_6$, уравнение (43) решений не имеет, что противоречит предположению. Условия теоремы Шаудера выполнены. Из неё вытекает существование решения u операторного уравнения (42).

Шаг 3) Представим решения u в виде суммы $u=u_1+u_2$, где $u_1\in R(L),\ u_2\in \ker L.$ Обозначим $w=g(x,\,t,\,u)+f\in R(L).$ Из уравнения (42) выразим

$$u_1 = L^{-1}w.$$

Если разложить функцию w в ряд Фурье по системе (20)

то для u_1 будем иметь следующее представление в виде ряда Фурье:

Из ограниченности последовательности $\{\frac{k}{\eta_{nk}}\}$ следует включение $(u_1)_t \in L_2(\Omega)$. Используя неравенства (15) - (17) , (40) методом из леммы (из главы 8) доказывается сходимость ряда

$$\sum_{n=1}^{\infty} \sum_{\substack{k=0,\\ \mu_{kn} \neq 0}}^{\infty} \frac{n}{\mu_{nk}} (a_{nk}^2 + b_{nk}^2).$$

Отсюда будем иметь $(u_1)_x \in C(\Omega)$, $u_1 \in H_1(\Omega)$. Поскольку $\dim \ker L < \infty$, то $u \in H_1(\Omega)$. Тогда из условия теоремы получим включение $w \in H^1(\Omega)$, из которого вытекает сходимость ряда

$$\sum_{n=1}^{\infty} \sum_{\substack{k=0,\\ \mu_{kn} \neq 0}}^{\infty} k^2 (a_{nk}^2 + b_{nk}^2). \tag{48}$$

Из сходимости ряда (48) и ограниченности последовательности $\{\frac{k}{\eta_{nk}}\}$ следует включения $(u_1)_{tt} \in L_2(\Omega), (u_1)_{tx} = (L^{-1}(w)_t)_x \in C(\Omega).$

Из оценок (40) и из сходимости ряда I_1 вытекает сходимость ряда

Отсюда, (15) - (17) и из конечномерности ядра оператора L, получим включение $(u_1)_{xx} \in C(\Omega), u_{xx} \in C(\Omega), u \in H^2(\Omega).$

Шаг 4) Пусть функция g удовлетворяет условию (37). Предположим, задача (1) – (4) имеет решения u, h. Если вычесть соответствующие равенства, то получим соотношение

$$(\alpha I - L)(u - h) + p(x, t, u) - p(x, t, h) = 0.$$
(49)

Здесь $p(x,\,t,\,u)=g(x,\,t,\,u)-\alpha u.$ Из условия (37) следует неравенство

$$(p(x, t, u) - p(x, t, v))(u - v) \ge \frac{1}{\beta - \alpha} (p(x, t, u) - p(x, t, v))^2.$$

Умножив (49) скалярно в $L_2(\Omega)$ на u-h, получим следующие оценки:

$$0 = ((\alpha I - L)(u - h), u - h) + (p(x, t, u) - p(x, t, h), u - h) \geqslant$$

$$\geqslant -\frac{1}{\mu - \alpha} ||(\alpha I - L)(u - h)||^2 + \frac{1}{\beta - \alpha} ||p(x, t, u) - p(x, t, h)||^2 =$$

$$= \left(\frac{1}{\beta - \alpha} - \frac{1}{\mu - \alpha}\right) ||(\alpha I - L)(u - h)||^2.$$

Поэтому $(\alpha I - L)(u - h) = 0$. Из того, что $\alpha \notin \sigma(L)$, следует u - h = 0. Теорема доказана.

12. Дополнение

Теорема Гильберта-Шмидта

Пусть X является банаховым пространством и оператор $A \in \sigma(X)$, то есть оператор A является вполне непрерывным линейным оператором, действующим в X. Пускай кроме этого число λ является собственным значением оператора A, а X_{λ} является отвечющим λ собственным подпространтсвом.

Teopema~1.~В случае когда оператор A является вполне непрерывным, его собственное подпространство X_{λ} , которое отвечает собственному числу $\lambda \neq 0$, явяляется конечномерным.

 $Teopema\ 2$. Пусть оператор A является вполне непрерывным в пространстве X. Тогда каждому числу $\varepsilon > 0$ вне круга $|\lambda| \leqslant \varepsilon$ комплексной плоскости (вещественной оси) соответсвует то, что в нём может содержаться лишь конечное число собственных значений оператора A.

Доказательство. Предположим противное: $A \in \sigma(X)$. Однако можно найти $\varepsilon_0 > 0$, для которого у оператора A существует последовательность отличных друг от друга собственных чисел $\{\lambda_n\}$, для которых $|\lambda_n| \geqslant \varepsilon_0$. Рассмотрим последовательность соответствующих собственных векторов $\{x_n\}$, которая является лнейно независимой.

Рассмотрим пространство X_n , которое является подпространтсвом пространства X и которое является натянутым на x_1, \ldots, x_n . Очевидным является то, что

$$X_1 \subset \cdots \subset X_n \subset \ldots$$

притом что $X_{n+1} \neq X_n$ ни для какого n. Каждое подпространство X_n конечномерно и в силу этого замкнуто. Исходя из теоремы Рисса о почти перпендикуляре, найдётся такая последовательность векторов $\{y_n\}$, что $y_k \in X_k$, $||y_k|| = 1$, $||y_k - x|| \geqslant 1/2$ при любом $x \in X_{k-1} (k = 2, 3, ...)$.

Возьмём $\{Ay_n\}$. В силу того, что последовательность $\{y_n\}$ является огра-

ниченной и оператор A является вполне непрерывным, то последовательность $\{Ay_n\}$ является компактной. Рассуждения далее дадут понять, что Ay_n не будет являться компактной и, следовательно, предположение о том, что имеется неограничено большая последовательность собственных значений является неверным из чего следует то, что теорема 2 является верной.

Нам осталось доказать, что последовательность Ay_n не является компактной. Обозначим новый оператор следующим образом $A_{\lambda} = A - \lambda I$. Для каждого натурального числа $m, n \ (m > n)$ справедливо

$$\begin{aligned} ||Ay_m - Ay_n|| &= ||A_{\lambda_m} y_m + \lambda_m y_m - A_{\lambda_n} y_n - \lambda_n y_n|| = \\ &= |\lambda_m| \left| \left| y_m - \left[-\frac{1}{\lambda_m} A_{\lambda_m} y_m + \frac{1}{\lambda_m} A_{\lambda_n} y_n + \frac{\lambda_n}{\lambda_m} y_n \right] \right| \right| = |\lambda_m| ||y_m - x_{mn}||, \end{aligned}$$

где

$$x_{mn} = -\frac{1}{\lambda_m} A_{\lambda_m} y_m + \frac{1}{\lambda_m} A_{\lambda_n} y_n + \frac{\lambda_n}{\lambda_m} y_n \in X_{m-1}.$$

Действительно если $y_k \in X_k$, то $y_k = \sum_{i=1}^k \alpha_i^k x_i$, в силу того, что $\{x_i\}_1^k$ — базис в X_k . Поэтому

$$A_{\lambda_m} y_m = (A - \lambda_m I) \sum_{i=1}^m \alpha_i^{(m)} x_i = \sum_{i=1}^m \alpha_i^{(m)} (\lambda_i - \lambda_m) x_i \in X_{m-1},$$
$$y_n \in X_n \subset X_{n-1}, \ A_{\lambda_n} y_n \in X_{n-1} \subset X_{m-1}.$$

Таким образом, $x_{mn} \in X_{m-1}$, но в таком случае $||y_m - x_{mn}|| \geqslant 1/2$, а из этого следует, что

$$||Ay_m - Ay_n|| = |\lambda_m|||y_m - x_{mn}|| \geqslant \frac{\varepsilon_0}{2}.$$

Из этого следует некомпактность $\{Ay_n\}$. Теорема доказана.

Пускай H является гильбертовым пространством и A является вполне непрерывным самосопряжённым оператором H. Имеет место следующее

утверждение о собственных векторах и собственных числах данного оператора A.

 $Teopema\ 3.\ \Pi$ усть $A \neq 0.\ Toгда$ оператор A имеет как минимум одно ненулевое собственное значение.

 $Teopema\ 4\ (\Gamma u n b b epma- Ш m u d m a).$ Если A- является вполне непрерывным самосопряжённым операторов в пространтсве H, то при любом $x\in H$, член Ax можно разложить в сходящийся ряд Фурье по ортонормированной системе собственных векторов оператора A.

Доказательство. Пускай φ_1 — нормированный собственный вектор, который отвечает собственному числу λ_1 оператора A (смотри теорему 3). Возьмём $H_1 = \{x \in H : (x, \varphi_1) = 0\}$. Так как $(Ax, \varphi_1) = (\varphi_1, Ax) = \lambda_1(x, \varphi_1) = 0$ для всех $x \in H_1$, то A переводит элементы из H_1 опять в элементы пространства H_1 . Следовательно можно рассматривать A в качестве такого оператора, который действует в H_1 . Затем, A в H_1 по-прежнему являктся вполне непрерывным и самосопряжённым. Исходя из теоремы 1 в H_1 вектор φ_2 (только важно, чтобы $A \neq 0$ в H_1), и к тому же $|\lambda_2| \leqslant |\lambda_1|$.

Рассмотрим уже $H_2 = \{x \in H_1 : (x, \varphi_2) = 0\}$. Используем опять теорему 3. Следуя данным рассуждениям, получим одну из двух способов. Если процесс прекратится, то есть будет существовать такой номер, для которого на H_n , обозначаемом условиями $(x, \varphi_k) = 0$ (где $k = 1, \ldots, n$) станет A = 0. При данном исходе для каждого $x \in H$ возьмём элемент $y = x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k$. Таким образом, $y \in H$ и, получается, Ay = 0, то есть $Ax = \sum_{k=1}^{n} (x, \varphi_k) \lambda_k \varphi_k$, и значит теорема доказана.

Иной способ состоит в том, что процесс длится бесконечно и неограниченно. В итоге получается последовательность $\{\lambda_k\}$ собственных чисел оператора A последовательность $\{\varphi_k\}$ собственных векторов оператора A, отвечающих этим собственным собственным числам. Используем тот факт, что

исходя из теоремы 3

$$||A||_{L(H_n)}^2 = \lambda_{n+1}^2.$$

Так что

$$A \left| \left| x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k \right| \right|^2 \leqslant \lambda_{n+1}^k \left| \left| x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k \right| \right|^2 =$$

$$= \lambda_{n+1}^2 \left\{ ||x||^2 - \sum_{k=1}^{n} |x, \varphi_k|^2 \right\} \leqslant \lambda_{n+1}^2 ||x||^2.$$

В силу того, что $\lambda_k \to 0$ при $n \to \infty$, то

$$A\left[x - \sum_{k=1}^{n} (x, \varphi_k)\varphi_k\right] \to 0, \ n \to \infty,$$

Из этого следует, что

$$Ax = \sum_{k=1}^{\infty} (x, \, \varphi_k) \lambda_k \varphi_k, \tag{50}$$

а значит теорема доказана.

Из этой теоремы можно привести два следствия.

 ${\it Cледствие}\ 1.\ {\it При}\ {\it выполнении}\ {\it критерия}\ {\it обратимости}\ {\it вполне}\ {\it непрерыв-}$ ного самосопряжённого оператора A выолняется следующее: его собственные вектора смогут образовать базис в H.

Доказательство. При применении к левой и правой части равенства (50) оператора A^{-1} , получим

$$x = \sum_{k=1}^{\infty} (x, \, \varphi_k) \varphi_k,$$

таким образом каждый элемент $x \in H$ раскладывается в сходящийся к нему ряд Фурье по ортонормированный системе из собственных векторов оператора A.

Следствие 2. Пусть оператор A является вполне непрерывным самосопряжённым вектор в сепрарабельном гильбертовом пространстве H. Тогда можно сказать, что в пространтсве H существует ортонормированный базис из собственных векторов оператора A.

Доказательство. Равенство (50) можно записать таким образом:

$$A\left[x - \sum_{k=1}^{\infty} (x, \, \varphi_k)\varphi_k\right] = 0.$$

Из этого заметим, что элемент $x_0 = x - \sum_{k=1}^{\infty} (x, \varphi_k) \varphi_k$ принадлежит пространству N(A) — собственному подпространству оператора A, который отвечает нулевому собственному значению. В слиу того, что N(A) также является сепарабельным, то в пространстве N(A) справедливо построение ортонормированного базиса $\{e'_k\}_1^{\infty}$. Путём разложения $x_0 \in N(A)$ по этмоу базису, получаем

$$x = x_0 + \sum_{k=1}^{\infty} (x, \varphi_k) \varphi_k = \sum_{k=1}^{\infty} (x, e'_k) e'_k + \sum_{k=1}^{\infty} (x, e_k) e_k,$$

в котором одна либо обе суммы могут быть и конечными. [1], [2], [4], [9], [10], [11], [12], [13].

Компактные/бикомпактные множества

Понятие бикомпактности отрезка играет существенное значение и зачастую используется в математическом анализе при рассмотрении теорем, в которых говорится о том, что всякая непрерывная на отрезке функция ограничена на этом отрезке и достигает на нём своего наибольшего и наименьшего значений. Для произвольных банахового и метрического пространств также справедливы эти теоремы, но в них роль отрезка играет бикомпактное множество.

 $Teopema\ 1.$ Если функция f(x) является вещественным нелинейным непрерывным функционалом, определённым на бикомпактном множестве Q, то она ограничена на Q.

Доказательства ограниченности сверху функционала f(x) покажем, что для любых $x \in Q$ найдётся константа c_1 , для которой $f(x) \leqslant c_1$.

Допустим противное. Таким образом будет существовать $x_1 \in Q$, для которого $f(x_1) > 1$. Далее, найдётся элемент x_2 , при котором $f(x_2) > 2$, и так далее по аналогии. Таким образом, возникает последовательность $\{x_n\} \subset Q$, для которой $f(x_n) > n$. Из бикомпактности Q следует, что существует сходящаяся подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$. Пусть \exists точка x_0 , такая что $x_{n_k} \to x_0$, при $k \to \infty$. Вследствие всё той же бикомпактности Q точка $x_0 \in Q$. Исходя из непрерывности функционала f имеем, что $f(x_{n_k}) \to f(x_0)$ при $k \to \infty$. А это означает, что $\{f(x_{n_k})\}$ ограничена. Но исходя из прошлых рассуждений $f(x_{n_k}) > n_k$, что означает $f(x_{n_k}) \to \infty$ при $k \to \infty$. Получили противоречие, а это означает, что предположение о неограниченности сверху функционала f(x) неверно, а значит f(x) ограничен сверху.

Для доказательства ограниченности снизу функционала f(x) покажем, что для любых $x \in Q$ найдётся константа c_2 для которой $f(x) \geqslant c_2$.

Допустим противное. Следовательно, будут существовать $x_1 \in Q$, для которого $f(x_1) \leqslant 1$, найдётся x_2 , при котором $f(x_2) \leqslant 2$, и так далее по аналогии. Таким образом образуется последовательность $x_n \subset Q$, для которой $f(x_n) < n$. Из бикомпактности Q следует, что существует сходящаяся подпоследовательность x_{n_k} последовательности x_n . Пусть \exists точка x_1 , такая что $x_{n_k} \to x_1$. Вследствие всё той же бикомпактности $x_n \in Q$. Исходя из непрерывности функционала $x_n \in Q$ имеем, что $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает, что $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из прошлых рассуждений $x_n \in Q$ из означает $x_n \in Q$ из означает $x_n \in Q$ при $x_n \in$

а это означает, что предположение о неограниченности снизу функционала f(x) неверно, а значит f(x) ограничен снизу.

Таким образом, f(x) ограничен сверху и снизу. Теорема доказана.

Заключение

В ходе данной работы решено линейное уравнение Эйлера-Бернулли, найдено условие обратимости дифференциального оператора. Построен ортонормированный базис из собственных функций дифференциального оператора. Доказана конечномерность ядра оператора и вполне непрерывность обратного оператора. Доказано существование производных по Соболеву до второго порядка включительно. Доказана теорема о существовании и единственности периодического решения.

Список использованных источников

- 1. Наймарк М.А. Линейные дифференциальные операторы. М.: Государственное изд-во технико-теоретической литературы, 1954. 527 с.
- 2. Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Изд-во Московского Университета, 1984. 294с.
- 3. Chang K.C., Sanchez L. Nontrivial periodic solutions of a nonlinear beam equation // Math. Meh. in Appl. Sci. 1982. V. 4. P. 194–205.
- Feireisl E. Time periodic solutions to a beam equations // Nonlin. Anal. 1988.
 V. 12. P. 279–290.
- 5. Рудаков И. А. Нелинейные уравнения, удовлетворяющие условию нерезонансности // Тр. сем. им. И.Г. Петровского. 2006. Вып. 15. С. 226–248.
- 6. Рудаков И. А. Периодические решения квазилинейного уравнения колебания балки с однородными граничными условиями. Дифференциальные уравнения. 2012. Т. 48. №6. С. 814-825.
- 7. Рудаков И. А. Периодические решения квазилинейного уравнения вынужденных колебаний балки // Изв. РАН. Сер. мат. 2015. Т. 79. No 5. C. 215–238.
- 8. Yamaguchi M. Existence of periodic solutions of second order nonlinear evolution equations and applications // Funkcialaj Ekvacioj. 1995. V. 38. P. 519-538.
- 9. Nazarov A.I., Nikitin Y.Y., Exact L 2-small ball behavior of integrate Gaussian processes and spectral asymptotics of boundary value problems // Prob. Theory and Related Fields. 2004. V. 129. №4. P. 469-494.
- 10. Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения. М.: Изд-во МГТУ им. Баумана, 2004, 348 с.
- 11. Эльсгольц Л. Э., Дифференциальные уравнения и вариационное исчисление. М.:Книга по требованию 2012. 424 с.

- 12. Рудаков И. А. Задача о колебаниях двутавронной балки с закрепленным и шарнирно опертым концами Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019 № 3 С. 4-21. DOI: 10.18698/1812-3368-2019-3-4-21
- 13. Рудаков И.А. О периодических решениях одного уравнения колебаний балки // Дифференц. уравнения. 2018. Т. 54. No 5. C. 691–700.

ПРИЛОЖЕНИЕ А

Графическая часть дипломного проекта

В графическую часть дипломного проекта входят:

- 1. график изменения собственных значений;
- 2. график решения уравнения на собственные числа.

