EEE104 – Digital Electronics (I) Lecture 14

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Flip-Flops and Related Devices

- Latches
- Edge-Triggered Flip-Flops
- Flip-Flop Applications

- An edge-triggered flip-flop changes state at the edges of a clock pulse.
- It is identified by a small triangle at the clock
 (C) input.
- It can be either rising-edge triggered or falling edge triggered (bubble at C input).

A Method of Edge-Triggering

	INPUTS		OUTPUTS		Was was
S	R	CLK	Q	Q	COMMENTS
0	0	X	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	?	?	Invalid

An Example

INPUTS		OUTPUTS		
D	CLK	Q	\bar{Q}	COMMENTS
l	1	1	0	SET (stores a 1)
0	1	0	1	RESET (stores a 0)

- The J-K flip-flop is similar to the S-R flip-flop but has no invalid state.
- When J = 1 and K = 1, the output will be toggled at the rising edge of the clock.

J	INPUTS		OUTPUTS		
	Κ	CLK	Q	\overline{Q}	COMMENTS
0	0	1	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

The difference with its S-R counterpart:

- The Q output is fed back to the input of gate G₂.
- The /Q output is fed back to the input of gate G₁.

How does it work?

- When both J and K are LOW, /S and /R are HIGH.
 Q* will not change.
- When J = 1 and K = 0, /R is HIGH and /S = Q at triggering edges of CLK. If Q = 0, it will be SET.
 If Q = 1, no change. So Q* = 1.

$$/S = \overline{1 \cdot \overline{Q} \cdot 1} = Q$$

How does it work?

When J = 0 and K = 1, /S is HIGH and /R = /Q at triggering edges of CLK. If Q = 1, it will be RESET. If Q = 0, /R is HIGH and no change at Q. So Q* = 0.

$$/R = \overline{1 \cdot Q \cdot 1} = \overline{Q}$$

How does it work?

• When both J and K are HIGH, /Q functions as the SET signal and Q functions as the RESET signal. $/S = \overline{1 \cdot \overline{Q} \cdot 1} = Q$

$$/R = \overline{1 \cdot Q \cdot 1} = \overline{Q}$$

- If Q = 1, /S = 1, /R = 0, $Q^* = 0$.
- If /Q = 1, /S = 0, /R = 1, $Q^* = 1$.

An Example

Asynchronous Preset and Clear Inputs

- Synchronous inputs affects the state of the flipflop only on the triggering edge of the clock.
- Asynchronous inputs affect the state of the flipflop independent of the clock.

- The Clear input is used to RESET the output.
- The Preset input is used to SET the output.

How does it work?

When /CLR = 0 and /PRE = 1, /R = 0 and /S = 1.
 Q will be RESET.

How does it work?

When /CLR = 1 and /PRE = 0, /R = 1 and /S = 0.
 Q will be SET.

Flip-Flop Applications

Parallel Data Storage

Flip-Flop Applications

Frequency Division

By connecting n flipflops in this way, a frequency division of 2ⁿ is achieved.

Flip-Flop Applications

Counting

Negative edgetriggered J-K flipflops are used.

