Al: Artificial Intelligence

Homework #1 **Basic MLLM Implementation**

Wen-Huang Cheng (鄭文皇) **National Taiwan University**

wenhuang@csie.ntu.edu.tw

A HW1 - Overview

- Task 1: Image Captioning Evaluation
- Task 2-1: MLLM Image Style Transfer (Text-to-image)
- Task 2-2: MLLM Image Style Transfer (Image-to-image)

Task 1: Image Captioning Evaluation

What is Image Captioning?

A computer screen with a Windows message about Microsoft license terms.

A can of green beans is sitting on a counter in a kitchen.

A photo taken from a residential street in front of some homes with a stormy sky above.

A blue sky with fluffy clouds, taken from a car while driving on the highway.

A hand holds up a can of Coors Light in front of an outdoor scene with a dog on a porch.

A digital thermometer resting on a wooden table, showing 38.5 degrees Celsius.

A Winnie The Pooh character high chair with a can of Yoohoo sitting on it in front of a white wall.

A cup holder in a car holding loose change from Canada.

Task 1: Evaluation Details

- ➤ Models (Restricted): BLIP (<u>link</u>), Phi-4 (<u>link</u>)
- ➤ Datasets (Restricted): MSCOCO-Test (5k) (link), flickr30k (link)
- > Metrics (intro, implementation): BLEU, ROUGE-1, ROUGE-2, METEOR
- Failure to follow the above model, dataset, and metrics will result in a deduction of 10% for each error.

Task 1: Report (20%)

- 1. Briefly describe how you implement the two models (5%)
- 2. Experiment table of (2 models) X (2 datasets), for example: (5%)

	MSCOCO-Test				flickr30k			
	BLEU	ROUGE-1	ROUGE-2	METEOR	BLEU	ROUGE-1	ROUGE-2	METEOR
BLIP								
Phi-4								

- 3. Analysis: describe what is observed from the table and what causes the difference in metric between the two models. (5%)
- 4. Case study: qualitative analysis of interesting samples in both models. (5%)

Task 2-1: MLLM Image Style Transfer (Text-to-image)

> Style: Snoopy

> Pipeline:

Task 2-1: Implementation Details

- > Style: Snoopy
- Models:
 - ➤ MLLM: Phi-4 (<u>link</u>) (Restricted)
 - T2I Image Generative Model: stable-diffusion-3-medium-diffusers(link)
 (Restricted)
- ➤ Input content images : a subset of CeleFaces (100 images) (link)
- Output: 100 stylized images (224 X 224)
- > DO NOT train/fine-tune the model or use additional models
- ➤ How to Lower the VRAM usage

Task 2-2: MLLM Image Style Transfer (Image-to-Image)

> Style: Snoopy

Task 2-2: Implementation Details

- > Style: Snoopy
- ➤ Models:
 - ➤ MLLM: Phi-4 (<u>link</u>) (Restricted)
 - > T2I Image Generative Model: stable-diffusion-v1-5 (link) (Restricted)
- ➤ Input content images: a subset of CeleFaces (100 images) (link)
- Output: 100 stylized images (224 X 224)
- > DO NOT train/fine-tune the model and use additional models
- ➤ How to Lower the VRAM usage

△ Task 2: Report (60%)

- 1. Briefly describe how you implement task 2-1&2-2 (e.g., Instruction strategy) (5% * 2)
- 2. Visualization on task 2-1&2-2
 - 1. The style transfer on YOUR PROFILE PHOTO (5% * 2)
 - 2. 5 success samples and 5 failure samples of CeleFaces and describe (10% * 2)
 - 3. Compare different instruction strategies (10% * 2)

Task 2: Competition (20%)

- > Submit the output stylized images of "Task 2-1" following the format (next page)
- ➤ We will use this <u>repo</u> to calculate the ArtFID [1] of the stylized images generated by each person in "Task 2-1", and rank the scores of the whole class to grade.
- > Compute ArtFID on your own (if you want): Download style images from link
- Grading method: <u>Linear grading from 1%-20%</u>

Your output

CeleFaces

ArtFID is computed as $(ArtFID = (1 + LPIPS) \cdot (1 + FID))$. LPIPS measures content fidelity between the stylized image and the corresponding content image and FID assesses the style fidelity between the stylized image and the corresponding style image.

Stylized Images Submission Format

- ➤ All the stylized images of Task 2-1 should be resized to 224 X 224 (You don't need to generate 224 X 224 directly, just do resize at the end)
- > The filenames should correspond to the content images, e.g., 000001.jpg
- > DO NOT include ANY other images or files except for the 100 generated images
- Folder name and structure: hw1_<student_id>_stylized_images

```
|-- 000001.jpg
```

|-- 000002.jpg

- Zip the folder to hw1_<student_id>_stylized_images.zip
- > Violation of the format will result in 0% score for the Task 2 competition

Submission Rules

- Deadline
 - 2025/03/28 (Fri.) 23:59
- Upload filename and format
 - hw1_<student-id>.zip (e.g. hw1_D12345678.zip)
- Submit to NTU cool

△ Submission Rules

- > Your submission should be a zipped file with the following structure:
 - hw1_<student-id>.zip

```
|--- hw1_<student-id> (Should contain this folder, not separate files)
|------ hw1_<student-id>.pdf (Your report, including Task 1 / 2-1 / 2-2) (4-6 pages)
|------ hw1_<student-id>_stylized_images.zip (Your output images of Task 2-1)
|------ hw1_<student-id>_code.zip (All tasks, randomly select 10% of the people to re-implement )
|------ README.md
```

- Your environment details
- How to run your code
- > Incorrect format or exceeding page limitation will result in a deduction of 5%.
- > Failure of re-implementing similar performance will result in 0%.
- > Plagiarism in the report or code will result in **0%**.

Any Question

ai.ta.2025.spring@gmail.com

