KIMAS'03 Forewords

KIMAS'03 Conference Organization	
KINIAS 03 Conference Organization	

Knowledge Understanding and Behavior	p. 2
Intelligent Nodes for Course of Actions Analysis	p. 9
Can Your Autonomous Robot Come Out And Play?	p. 14
Agent-based Dynamic Information Security Model	p. 19
Enhanced Frame-Based Knowledge Representation for an Intelligent Environment	p. 25
A Multiple Objectives Optimization Approach to Robotic Teams' Analysis, Design and Control	p. 31
A Multi-Agent System for Natural Language Understanding	p. 36
Design and Implementation of An Agent-Oriented Expert System of Loan Risk Evaluation	ı p. 41
An Organization-Based Adaptive Information System for Battlefield Situational Analysis	p. 46
Avoiding Collision Logjams through Cooperation and Conflict Propagation	p. 52
Modeling of Knowledge Intensive Computerized Systems Based on Capability-Oriented Agent Theory (COAT)	p. 58
Automata Theory for Multi-Agent Systems Implementation	p. 65
Multiple Knowledge Intelligent System	p. 71
SUO Communicator: Agent-based Support for Small Unit Operations	p. 77
A proposal on a model of an autonomous agent using the meta-level architecture	p. 83
Multi Agents in Mid Involvement deception Systems	p. 88
Coping with Deception	p. 94
MKIDS - Management of Knowledge Intensive Dynamic Systems	p. 100
Coordinating Activity in Knowledge-Intensive Dynamic Systems	p. 105
Market-Based Task Allocation for Dynamic Information Processing Environments	p. 109
The Virtual Design Team (VDT): A Multi-Agent Analysis Framework for Designing Project Organizations	t p. 115
Destabilizing Dynamic Networks Under Conditions of Uncertainty	p. 121
Identifying Sets of Key Players in a Network	p. 127
Catalytic Reaction Sets, Decay, and the Preservation of Information	p. 133
A Hierarchical Genetic Algorithm with search space partitioning scheme	p. 139
Evolution of Complex Autonomous Robot Behaviors using Competitive Fitness	p. 145
Cellular Inference Network (CIN) for Learning and Control of Multi-Agents Cooperation	p. 151
Towards Computational Sapience (Wisdom): A Paradigm for Sapient (Wise) Systems	p. 158
Sapient Agents - Seven Approaches	p. 166
A Characterization of Sapient Agents	p. 172
Sapient Structures for Sapient Control	p. 178
Integrating Organizational Knowledge for Dynamic Scalable Multiagent Systems	p. 184
Airborne Learning Algorithms. A Case Of a Ground Target Multiple Hypothesis Tracker	p. 190
Advanced Core Design Using Multi-Agents Algorithm	p. 196

Integration of Development methodologies for the Building of Kno Multiagent Systems	owledge Intensive	p. 203
Multi-Tier Communication Abstractions for Distributed Multi-Age	nts Systems	p. 209
CONSMAG: Knowledge Representation Based Upon Consensu	s for Multiple Agents	p. 215
Cooperative Multiple Robots Prevent Energy Repletion Problem		p. 224
An Infrastructure for Adaptive Control of Multi-Agent Systems		p. 230
Integrating knowledge centered MAS through organizational link	S	p. 237
A Data Mining Based Algorithm for Traffic Network Flow Forecast	sting	p. 243
Agent-Based Systems - Key Enabler for the Army Future Force		p. 249
Joint Synthetic Battlespace (JSB) Technology and Infrastructure	Consideration	p. 256
Adaptive Radar Signal Processing- The Problem of Exponential	Computational Cost	p. 264
Artificial Intelligence and Waveform Diversity		p. 270
Multi-agent Moving Target Search in a Hazy Environment		p. 275
Integration of Language and Cognition at Pre-Conceptual Level		p. 280
A Fuzzy Model of Natural Language Acquisition and Syntax Rec	ognition by Humans	p. 287
Vision Systems are Using the Wrong Kind of Information!		p. 294
Dynamic composition of process Federations for context aware activity	perception of human	p. 300
Contextual Vocabulary Acquisition: From Algorithm to Curriculur	n	p. 306
A Family of Agent Based Models		p. 312
A Toolkit for the search of the Most General Interpretable Hypotl	neses	p. 318
Intelligent Sensor Resource Management Using Evolutionary Co	omputing Techniques	p. 325
An Introduction to Perceptual Organization		p. 330
A k-Partition, Graph Theoretic Approach to Perceptual Organiza	tion	p. 336
Unified Bayes Multitarget Fusion of Ambiguous Data Sources		p. 343
Multisensory-Multitarget Sensor Management Using Geometric	Objective Functions	p. 349
Multisensor Image Fusion & Samp; Mining: From Neural Systems	to COTS Software	p. 355
Biologically-Inspired Algorithms for Object Recognition		p. 364
Model Design and Data Analysis for Multi-Input Multi-Output Sys	stems	p. 368
Application of Independent Component Analysis to Microarray D	ata	p. 375
A Biologically Inspired Concept for Active Image Recognition		p. 379
Object Patten Recognition Below Clutter in Images		p. 385
Paradigms Behind a Discussion on Artificial Intelligent/Smart Sys	stems	p. 392
Toward Wisdom in Procedural Reasoning: DBI, not BDI		р. 395
Meaning Generation and Artificial Wisdom		р. 401
Higher Spiritual Abilities (Prolegomena to a Physical Theory)		p. 406
From intelligent robot to multi-agent robotic system		p. 413
Multiresolutional Semiotics: Toward Understanding of Multiscale	Intelligence	р. 418
Problems of Performance Measurement in Locally Organized Sy	•	p. 432
Using Data-Mining to Allow Robots to Discover the Preferences		p. 438
Agent-Assisted document composition in specific domains		p. 444
Towards an Epistemic Analysis of Causality in Distributed Syste	ms	р. 450
		•

Coordinated Multi-Procedural Architecture for Probabilistic Knowledge Discovery	p. 457
Elements of Theory of Interpretation	p. 463
Agent-Based Interpretation of Geospatial Evidential Data	p. 477
Multi-Resolutional Knowledge Representation Using Prototypes and Properties	p. 483
Combinatorial PCA and SVM Methods for feature selection in Learning Classification (Applications to text Categorization)	p. 491
Emulating the Honeybee Information Sharing Model	p. 497
Image Compression in Real-Time Multiprocessor Systems Using Divisive K-Means Clustering	p. 506
NDAS: The Nondeterministic Agent System for Engineering Drawing Analysis	p. 512
A Non-Hierarchical Method for Distributed Hypothesis Management	p. 517
Using Dynamic Classification to Expand Individual/Intuitive Search processes	p. 523
Organizing and Accessing a Comprehensive Knowledge Base Using the World Wide We	bp. 529
Rapid Knowledge Base Design via Extension of Mid-level Knowledge Components	p. 535
Architecture for Information Assurance Decision Support Systems based on Integration of Knowledge Intensive Multi-Agent Systems	p. 542
Threat Response Management System (TRMS)	p. 547
CADRE: Continuous Analysis and Discovery from Relational Evidence	p. 555
Semantic Knowledge Source Integration, a Progress Report	p. 562
The Technology and Practice of Integrated Multi-Agent Event Correlation Systems	p. 568
In Search for Hidden Meaning: Pospelov's Work on Applied Semiotics	p. 575
Finding Unique Records in Unknown Data	p. 580
Capabilities Aware Routing for Dynamic Ad-hoc Networks	p. 585
Artificial Intelligence and Sensor Fusion	p. 591
Task management in Sensor-provided Operator Platforms	p. 596
STEM: a Methodology for the Development of Multiagent Design Tools Using a General Knowledge Model of Configurational Design	p. 602
The Assessment of Knowledge in Theory and in Practice	p. 609
Sharing Learning Policies between Multiple Mobile Robots	p. 616
Integration of Perception and Learning in the CAEDUS Cognitive Architecture	p. 622
Design and Implement of the Home Networking Service Agent Federation Using Open Service Gateway	p. 628
Service Demand Analysis Using Multi-Attribute Learning Mechanisms	p. 634
Clusters with Core-tail Hierarchical structure and their Application to machine Learning Classification	p. 640
Using a Semiotics-Inspired Tool for the Control of Intelligent Opponents in Computer Games	p. 647
Dynamics in Semiotics	p. 653
Advanced Models for Backscattering from Rough Surfaces	p. 659
Decision-Making Processes in Organizations: A Logical-Semiotic Perspective	p. 664
An Architecture for Combining Ways to Think	p. 669
Stochastic Search, Optimization, and the Simultaneous Perturbation Algorithm - A Tutorial	p. 676
An Integrating Semantics of Hybrid Dynamic Systems	p. 679

Dynamic Integration of Distributed Semantic Services	p. 684
Finding The Place Your Data Fits With Respect to 'Ideal Knowledge': A Fuzzy Process Model	p. 690
On a Computational Model of the Peircean Semiosis	p. 703
Software Tool for Agent-Based Distributed Data Mining	p. 710
Cooperative Multi-Agent Mobile Sensor Platforms for Jet Engine Inspection - Concept and Implementation	p. 716
Fast, Feature-Based Wavelet Shrinkage Algorithm for Image Denoising	p. 722
User-Centric Service Brokerage in a Personal Multi-Agent Environment	p. 729
Emergent Hierarchies for Knowledge Agents	p. 736
The Topologies of Cooperation in Knowledge Intensive Multi-Agent Systems	p. 741
A Knowledge-based Model to Database Retrieval	p. 747
A Logic-based Framework for Mobile Multi-Agent Systems	p. 754
Knowledge Management for Engineers	p. 760
Autocreative Hierarchy II: Dynamics Self-organization, Emergence and Level-changing	p. 766
Author Index	p. 774

Table of Contents provided by Blackwell's Book Services and R.R. Bowker. Used with permission.