- 1. Find dy/dx for each of the following.
 - (a) $y = x^2 + xy$
 - (b) $x^2y + y = 3$
 - (c) $x^{1/4} + y^{1/4} = 2$
 - (d) $\sqrt{x} + \sqrt{y} = 25$
 - (e) $x + \sin(y) = y + 1$
 - $(f) \sin(xy) = 2x + 5$
 - (g) $x^2 + xy y^3 = xy^2$
 - (h) $e^{\cos(y)} = x^3 \sin(y)$
 - (i) $\sin(2x^2y^3) = 3x^3 + 1$
 - (i) $4y^2 + 2 = 3x^2$
- 2. Find d^2y/dx^2 for each of the following.
 - (a) $1 xy = x y^2$
 - (b) $x y = (x + y)^2$
 - (c) $\sin(x) 4\cos(y) = y$
- 3. For the curve $x^2 + y^2 xy + 3x 9 = 0$,
 - (a) Find dy/dx.
 - (b) Where do the horizontal tangent lines occur? (dy/dx = 0).
 - (c) Where do the vertical tangent lines occur? $(dy/dx = \pm \infty)$.
 - (d) Find d^2y/dx^2 .
- 4. For the curve $x^2 + xy + y^2 = 5$,
 - (a) Find dy/dx.
 - (b) Where do the horizontal tangent lines occur? (dy/dx = 0).
 - (c) Where do the vertical tangent lines occur? $(dy/dx = \pm \infty)$.
 - (d) Find d^2y/dx^2 .
- 5. For the curve $\cos(x)y^2 + (3\sin(x) 1)y + 7x 2 = 0$,
 - (a) Find dy/dx at the point (0,2).
 - (b) Where do the horizontal tangent lines occur? (dy/dx = 0).
 - (c) Where do the vertical tangent lines occur? $(dy/dx = \pm \infty)$.