

Sep 06, 2022

Adapting hPSCs cultured on MEFs to feeder-free system

In 1 collection

Hanqin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

dx.doi.org/10.17504/protocols.io.b4k5quy6

ABSTRACT

This protocol describes the procedure of adapting human pluripotent stem cells (hPSCs) to feeder-free culturing conditions using mTeSR-plus or StemFlex

General Notes

- Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, feeder-free hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. We have routinely maintained feeder-free cells in either mTeSR-plus or StemFlex. However, these two mediums are not interchangeable. Pick one and stick to it.
- 4. We have routinely maintained feeder-free hPSC cultures on VTN, Matrigel and Geltrex-coated cell culture plates without observing obvious differences.

DOI

dx.doi.org/10.17504/protocols.io.b4k5quy6

PROTOCOL CITATION

Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2022. Adapting hPSCs cultured on MEFs to feeder-free system. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4k5quy6

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

1

COLLECTIONS (i)

Feeder-free culturing of hPSCs

KEYWORDS

ASAPCRN

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 02, 2022

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

57725

PARENT PROTOCOLS

Part of collection

Feeder-free culturing of hPSCs

MATERIALS TEXT

Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
Knockout Serum Replacement	Thermo Fisher	10828-028
(KSR)		
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100x)	Thermo Fisher	15140163
MEM Non-Essential Amino	Thermo	11140050
Acids (100X)	Fisher	
2-Mercaptoethanol	Sigma	M3148
Heat Stable Recombinant	Thermo Fisher	PHG0360
Human FGF2		
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		
mTeSR-plus	STEMCELL	100-0276
	Technologies	
StemFlex	Thermo	A3349401
	Fisher	
FBS	Gibco	10437028
Vitronectin	Thermo	A14700
(VTN-N) Recombinant Human	Fisher	
Protein, Truncated		
DMSO	Fisher	BP231-100
	Scientific	
Y-27632	Chemdea	CD0141
Collagenase type IV	Thermo	17104019
	Fisher	
Matrigel	Corning	CV40234
Geltrex	Fisher	A1413302
	Scientific	

Note: This protocol makes reference to protocols in other collections. Please check for any materials found in those protocols, which might not be listed here

1 When MEFs-cultured hPSCs reach 50% confluency, change medium to hPSCs medium + Rock inhibitor, preparing for the feeder-free adaptation on the next day.

1.1 hPSCs medium

A	В
DMEM/F12	385 ml
Fetal Bovine	75 ml
Serum (FBS)	
Knockout Serum Replacement	25 ml
L-Glutamine (100X)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino	5 ml
Acids (100X)	
2-Mercaptoethanol (10,000X)	50 μl
Heat Stable Recombinant	80 µl
Human FGF2 (25ug/ml)*	

^{*}While we prefer Heat Stable Recombinant Human FGF2, we also have used regular FGF2. Final volume: 500ml

L-Glutamine (100X)

L-Glutamine,	14.6 g
powder	
MilliQ H2O	500 ml

2-Mercaptoethanol (10,000X)

2-Mercaptoethanol	0.78 ml
MilliQ H2O	9.22 ml

Heat Stable Recombinant Human FGF2 (25µg/ml)

Α	В
Heat Stable Recombinant Human	500 µg
FGF2	
0.1% BSA	20 ml

Final volume: 20ml

Y-27632 (1,000X)

Y-27632	5 mg
DMSO	1.56 ml

hPSCs medium + Rock Inhibitor

A	В
hPSCs medium	500 ml
Y-27632 (1,000X)	500 μΙ

Final volume: 500ml

2 Coat three wells of a 6-well plate with either VTN/Matrigel/Geltrex for each cell line.

For a detailed protocol, refer to "Coating plates," which can be found in the protocol collection "Feeder-free culturing of hPSCs." This collection can be accessed using the collection link found in the title section of this protocol, located above

- 3 Wash one well of MEF-cultured hPSCs with DPBS
- 4 Add 1 ml Collagenase solution to this well.

4.1 Collagenase solution

Α	В
Collagenase type IV	10 mg
KSR medium	10 ml

Final volume: 10ml

KSR medium

Α	В
DMEM/F12	385 ml
Knockout Serum Replacement	100 ml
L-Glutamine (200 mM)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino	5 ml
Acids (100X)	

Final volume: 500ml

- 5 Incubate © 00:45:00 & 37 °C . Watch for edge curling of the colonies as this indicates that collagenase incubation is complete.
- 6 Add 2 ml DMEM/F12

protocols.io

5

7	Pipette repeatedly with 5 ml pipette to lift colonies, careful not to carry over too many MEF	s.
8	Collect into 15 ml conical tube.	
9	Add 7 ml DMEM/F12.	
10	Centrifuge at 3200-300 x g, 00:05:00	5m
11	Aspirate supernatant	
12	Resuspend cell pellet in 1 ml pre-warmed Accutase	
13	Incubate © 00:05:00 & 37 °C	5m
14	Add 9 ml DMEM/F12, invert to mix	
15	Centrifuge at 3200-300 x g, 00:05:00	5m
16	Aspirate supernatant	

6

protocols.io

17 Re-suspend cell pellet in 1 ml Feeder-Free Medium + Rock inhibitor, triturate 5-10 times to achieve single cell suspension using a P1000 tip

17.1 Feeder-free Medium (version A)

StemFlex	450 ml
basal medium	
StemFlex	50 ml
supplement	

Final volume: 500ml

Feeder-free Medium (version B)

mTeSR-plus	400 ml
basal medium	
mTeSR-plus	100 ml
supplement	

Final volume: 500ml

- -Feeder-free mediums (version A & B) are not interchangeable. Pick one and stick to it.
- It is possible to include 5 ml Penicillin & Streptomycin (100X) into the feeder-free medium

Feeder-free medium + Rock Inhibitor

Α	В
Feeder-free	50 ml
medium	
Y-27632	50 μΙ
(1,000X)	

Final volume: 50ml

- 18 Aspirate VTN/Matrigel/Geltrex solution from the coated plate, add 2 ml Feeder-free medium + Rock inhibitor to each well.
- 19 Dispense 20 μ l, 60 μ l, 200 μ l cell suspension respectively into the three VTN/Matrigel/Geltrex-coated wells.

20	Check the cells under the microscope to get an idea of the resulting cell density.
21	Spread the cells by moving the plate in left-right, then backward-forward motion.
22	Place the plate in a low oxygen incubator
23	Change 2 ml pre-warmed Feeder-free medium for each well every other day.
24	When large colonies emerge or hPSCs density reaches 50-80%, passage the well showing the best hPSCs morphology using Accutase or ReLeSR. It usually takes 5-7 days.
	A detailed protocol on "Passaging of feeder-free hPSCs" can be found in the collection "Feeder-free culturing of hPSCs." This collection can be found using the collection link in the title section of this protocol, located above

It usually takes 2 passages for hPSCs to fully adapt to feeder-free culture. Differentiation and

changes on growth speed are normal during the adaptation.

25