

Claim Fraud Detection

The Magnificent Six

Outline

- Introduction
- Preprocessing
 - Data cleaning
 - Feature engineering
 - Feature selection
- Prediction
 - Stacking
 - Modeling
- Conclusion

Introduction

Proportion of cases per Accident Site by Fraud

Preprocessing

- Data Cleaning
- Feature Engineering
- Feature Selection

Preprocessing - Data Cleaning

NAs

- Train data (fraud=0): delete
- Train data (fraud=1) & Test data: impute (Random Forest)

Special variables: Zip code

- NAs: impute (kNN)
- Add city, state, longitude and latitude

Highly correlated variables

Age and Income (0.98)

Preprocessing - Feature Engineering

Categorical variables

- Count
- Supervised ratio

$$SR_i = \frac{P_i}{N_i + P_i}$$

WOE

$$WOE_i = \log\left(\frac{P_i/TP}{N_i/TN}\right)$$

- Continuous variables
 - Transform into categorical variables

Preprocessing - Feature Selection

Variable Importance

- Random Forest
- Chi-squared Test
- Kruskal Test

Prediction

- Stacking
- Model

Prediction - Stacking (General Outline)

Prediction - Model Considered

Penalized Logistic Regression (LASSO, SCAD, MCP)

Discriminant Analysis (LDA, QDA, RDA)

Tree-Based Method (Random Forest, XGBoost)

K-Nearest-Neighbors (KNN)

Generalized Additive Model (GAM)

Clustering Methods

Neural Network (NN)

Visualization: Principal Component Analysis

Prediction - Model Considered

Penalized Logistic Regression (LASSO, SCAD, MCP)

Discriminant Analysis (LDA, QDA, RDA)

Tree-Based Method (Random Forest, XGboost)

K-Nearest-Neighbors (KNN)

Generalized Additive Model (GAM)

Clustering Methods

Neural Network (NN)

We use Stacking to build a 3-layer architectures

First Layer

Second Layer

Third Layer

	Penalized Logistic Regression
First Layer	Naive Bayes Classifier
	Linear Discriminant Analysis (LDA)

Second Layer

Third Layer

0.680-0.700

Third Layer

First Layer	
	Generalized Additive Model (GAM)
Second Layer	Regularized Discriminant Analysis (RDA)

0.720-0.730

First Layer

Second Layer

XGBoost

ANN

Final Prediction AUC

Our group's final prediction on the Kaggle Public Leaderboard had an AUC of 0.74781.

Conclusion

- Business Insights
- Takeaway
- Suggestions

Conclusion

Our findings from this project fall into two categories:

- 1. What the model tells us
- 2. What the modeling process taught us

Conclusion - Business Insights

What the model tells us:

- We found that the following variables are important:
 - Accident Site, Level of Education, Safety Rating, and Past Number of Claims
 - We used the XGBoost variable importance measure to find this
- Fraud was more likely if the accident occurred in a parking lot
- Drivers with lower safety ratings were more likely to commit fraud

- Cast a wide net in researching different methods
 - Our research led us to gradient boosting, a key method in our model.
 - We added several methods to our "toolbox" for future data analysis, even if we did not use them for this project

- Consider a variety of methods to test in cross validation
 - Every method can make predictions, so throw them into the mix for CV
 - Your preferred method may not work for every problem (e.g. SCAD and MCP performed poorly)

- Prediction vs other goals
 - Machine Learning and nonparametric methods perform well, but do not give us easy-to-interpret models.
 - In other settings, we might focus more on variable importance and finding the true model.

- Exploratory data analysis pointed us in the right direction.
 - Summary statistics often do not tell the whole story.
 - Remember Anscombe's Quartet
 - Trust your intuition, but verify.
 - As we might expect, age and income are highly correlated.
 - Safety Rating is related to Past Number of Claims.

Conclusion - Suggestions

Variables which might be useful

- Driver's Criminal History
- Weather on the day of the accident
 - Bad weather might lead to more legitimate accidents
- Time of day of the accident
 - More legitimate accidents may happen during rush hour.
- Whether the accident occurred in the policyholder's home city
 - Perhaps a policyholder is more likely to commit fraud in a situation they can control

Thank you!

The Magnificent Six