清华大学电子工程系

媒体与认知

2023-2024 学年春季学期

作业3

毕嘉仪 2022010608

2024年5月16日

理论部分

- 1 单选题(15分)
- 1.1 <u>D</u>
- 1.2 <u>C</u>
- 1.3 <u>D</u>
- 1.4 <u>D</u>
- 1.5 <u>B</u>

计算题 (15 分) $\mathbf{2}$

给定两个类别的样本分别为:

$$\omega_1: \{(3,1), (2,2), (4,3), (3,2)\}$$

刊的样本分別为:
$$\mathcal{N}_1$$
 こは、 \mathcal{M}_1 = $(3,2)$ $\omega_1: \{(3,1),(2,2),(4,3),(3,2)\}$ $\omega_2: \{(1,3),(1,2),(-1,1),(-1,2)\}$ \mathcal{N}_2 こし、 \mathcal{N}_3 こし、 \mathcal{N}_4 こし、 \mathcal{N}_5 ここう、 \mathcal{N}_5 こし、 \mathcal{N}_5 こり、 \mathcal

试利用 LDA,将样本特征维数压缩为一维。

$$S_{1} = \frac{1}{4} \left(\begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0$$

$$S_{N}^{-1}.S_{D} = \frac{8}{9} \times \frac{3}{8} \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 12 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & 0 \\ -2 &$$

2.2 模型训练通常需要大量的数据,假设某采集的数据集包含 80%的有效数据和 20%的无效数据。采用一种算法判断数据是否有效,其中无效数据被成功判别为无效数据的概率为 90%,而有效数据被误判为无效数据的概率为 5%。如果某条数据经过该算法被判别为无效数据,则根据贝叶斯定理, 这条数据是无效数据的概率是多少?

(提示: 全概率公式 $P(Y) = \sum_{i=1}^{N} P(Y|X_i)P(X_i)$)

 $P(w_{1}) = 0.8. P(w_{2}) = 0.2.$ $P(x_{2}|w_{1}) = 0.9. P(w_{2}|w_{1}) = 0.05. P(w_{2}|x_{2})?$ $P(x_{2}|w_{1}) = P(x_{2}|w_{1}) P(w_{1}) + P(x_{2}|w_{2}) P(w_{2})$ $= 0.05 \times 0.8 + 0.9 \times 0.2 = 0.04 + 0.18 = 0.22.$ $P(w_{2}|x_{2}) = \frac{P(w_{2}|w_{2}) P(w_{2})}{P(x_{2})} = \frac{P(x_{2}|w_{2}) P(w_{2})}{P(x_{2})} = \frac{0.9 \times 0.2}{0.12} = \frac{0.9 \times 0.2}{0.12} = \frac{0.9 \times 0.2}{0.12}$

2.3 设有两类正态分布的样本集,第一类均值为 $\mu_1 = [2,-1]^T$,第二类均值为 $\mu_2 = [1,1]^T$ 。两类样本集的协方差矩阵和出现的先验概率都相等: $\Sigma_1 = \Sigma_2 = \Sigma = \begin{bmatrix} 4 & 2 \\ 2 & \frac{4}{3} \end{bmatrix}$, $p(\omega_1) = p(\omega_2)$ 。试计算分类界面,并对特征向量 $x = [6,2]^T$ 分类。

$$\frac{1}{3}\int_{1}^{2} \log x = \left(\frac{2}{3}\int_{1}^{2} \int_{1}^{2} \frac{1}{3} - \frac{1}{3}\int_{1}^{2} \int_{1}^{2} \int_{1}^{2} \frac{1}{3} - \frac{1}{3}\int_{1}^{2} \int_{1}^{2} \int_{1}^{2} \frac{1}{3} - \frac{1}{3}\int_{1}^{2} \int_{1}^{2} \int_{1}^{2}$$

分数行列 -
$$g(x) = g_1(x) - g_2(x)$$

$$= \frac{1}{2} [8 - 15] \hat{x} - 6.$$

$$= \frac{1}{2} [8 - 15] \hat{x} - 6.$$

$$= 2[-12 - 12] = 2$$

$$= 2[-12 - 12] = 5$$

$$g_2([2]) = [-13][3] - 5$$

$$= -3 + 3 - 2 = -2.$$

$$g_1([2]) > g_2([2])$$

$$= -3 + 3 - 2 = -2.$$

2.4 给定异或的样本集

$$D = \{((0,0)^T, -1), ((0,1)^T, 1), ((1,0)^T, 1), ((1,1)^T, -1)\}$$

该样本集是线性不可分的,可采用如下所示的多项式函数
 $\phi(\mathbf{x})$ 将样本 $D = \{(\mathbf{x}_n, y_n)\}$ 映射为 $D_{\phi} = \{(\phi(\mathbf{x}_n), y_n)\}$,其
中 $\phi(\mathbf{x})$ 满足

$$\phi_1(\mathbf{x}) = 2(x_1 - 0.5) \ge \chi \chi_l - 1$$

$$\phi_2(\mathbf{x}) = 4(x_1 - 0.5)(x_2 - 0.5) = 4\chi_l \chi_2 - \chi(\chi_l + \chi_2)$$

(1) 给出映射后的样本集;

3

(2) 在映射后的样本集中,设计一个线性 SVM 分类器,给 出支持向量及分类界面。

1)
$$\sqrt{n}$$
 [\sqrt{n}] = -1 . \sqrt{n} [\sqrt{n}] = \sqrt{n}] = -1 . \sqrt{n} [\sqrt{n}] = \sqrt{n}] = $\sqrt{$

$$\frac{3L}{342} = \left| -\left(\sum_{3,4} x_{3} (y_{3} y_{3} x_{3}^{2} x_{3}^{2} \right) - 2x_{2} \right| \\
= \left| -\left(x_{1}(-1) \right) \left[-1 - 1 \right] \left[+ x_{3}(+1) \right] - 1 - 1 \right] \left[+ x_{4}(-1) \left[-1 - 1 \right] \left[+ x_{4}(-1) \left[+ x_{4}(-1) \right] \right] \right| \\
- + x_{4}(-1) \left[+ x_{4}(-1) \left[+ x_{4}(-1) \right] \right] \\
= \left| - 2x_{4} - 2x_{2} = 0 \right| + x_{2}(+1) \cdot \left[+ x_{4}(-1) \left[+ x_{4}(-1) \right] \right] \\
+ x_{4}(-1) \left[+ x_{4}(-1) \left[+ x_{4}(-1) \left[+ x_{4}(-1) \right] \right] \right] \\
= \left| - 2x_{4} - 2x_{3} = 0 \right| + x_{4}(-1) \left[+ x_{$$

$$\begin{array}{lll}
\vec{x} &= \frac{4}{5} x_{1} y_{1} \vec{x}_{1} \\
&= \frac{1}{5} \left(-\frac{1}{5} \right) + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] - \left[-\frac{1}{5} \right] \\
&= \frac{1}{5} \left(-\frac{1}{5} \right) + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] \\
&= \frac{1}{5} \left(-\frac{1}{5} \right) + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right] \\
&= \frac{1}{5} \left(-\frac{1}{5} \right) + \left[-\frac{1}{5} \right] + \left[-\frac{1}{5} \right]$$

- 2.5 使用 KMeans 算法对 2 维空间中的 6 个点
 - (0,2),(2,0),(2,3),(3,2),(4,0),(5,4) 进行聚类,距离函数选择 欧氏距离 $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ 。
 - (1) 起始聚类中心选择 (0,0) 和 (4,3), 计算聚类中心;
 - (2) 起始聚类中心选择 (1,4) 和 (3,1), 计算聚类中心。

编程部分

2 编程作业报告