LECTURE 34 Dec. 10/2003. Last time: determined the ring of all algebraic integers in the field Q(Va) (d'Aquarafree integer): $R = \begin{cases} \mathbb{Z} + \mathbb{Z}/\mathbb{Z} & d \equiv 2, 3 \pmod{4} \\ \mathbb{Z} + \mathbb{Z} & (1 + \sqrt{d}) & d \equiv 1 \pmod{4} \end{cases}$ There is also a uniform way of with this. First define the discriminant $D = \int dd$, $d \equiv 2,3 \pmod{4}$ Then infact: $R = \mathbb{Z} + \mathbb{Z} \cdot \left(\frac{D + \sqrt{D}}{2} \right)$ When D < 0 We call these imaginary quadratic rungs

Defin The Norm map

N:R->Z is defined by

N(a+b)d) = (a+b)d)(a-b)d)

= a^2-b^2d.

Given $\alpha = a + b \sqrt{d}$ we reftendenote $\alpha' := a + b \sqrt{d}$ and call it the "conjugate" of α .

Property of M: N(xB)= N(x). N(p).

Rmk When $d < 0 \ (\Theta D < 0) \ N(\alpha) \ge 0$ for all $\alpha \in \mathbb{R}$.
Prop x is a unit in \mathbb{Z} . P(x) = ± 1 is a unit in \mathbb{Z} . P(x) : If x is a unit, then $\exists \beta \in \mathbb{Z}$. Sit. $x\beta = 1$. Then $N(\alpha\beta) = N(\alpha) \cdot N(\beta) = N(1) = 1$. Thus $ N(\alpha) + \mathbb{Z}[x] = 1$. Conversely, if $ N(\alpha) = \pm 1$ then $\pm x'$ is an inverse for x sin a $xx' = N(\alpha)$.
(or if Dxo then x is a unit () $N(x) = +1$ (since when $d = 0$, $N(x) \ge 0$ $\forall x$) Gr In fact, if $D = -3$, there are 6 units if $D = -4$, there are 2 units if $D < -4$, there are 2 units $(R^x = \{\pm 1\})$ Pf) A unit $x = a + b\sqrt{d}$ is a solution to $a^2 - b^2d = 1$ where $a, b \in \mathbb{Z}$ or $a, b \in \mathbb{Z}\mathbb{Z} - \mathbb{Z}$ (according to core of d) If $b \ne 0$, then $-b^2d \ge -d^24$ ($ b \ge \frac{1}{2}$) so if $-d > 4$ then can have any
The case $b=-3$, -4 are easy to verify claredly.

That If Doo, Rx is infinite. Example: D = 5, $R = \mathbb{Z} + \mathbb{Z} \left(\frac{1 + \sqrt{5}}{2} \right)$ $X = \frac{1}{2} \frac{1}{2$ X-1=- X/= -1± 15 Observe: writing an = an+ busd then the sequences (an), (bn) are increasing (induction) so fa": nEZYO is an infinite subgroup of RX. I deal theory when DO of R= ring of Saw previously: d=-1, ZDTi] is a Euclidean ruy However: if d < -1 & $d \equiv 3 \pmod{4}$ then $R = \mathbb{Z} + \mathbb{Z} \sqrt{d}$ is not a unique factorization domain d=-5,73,17,-21,-.. To prove this, consider: $1-d = (1+\sqrt{d})(1-\sqrt{d}) = 2 \cdot (\frac{1-d}{2})$ Claim 2 is an irreducable element in K A) Suppose $2=\alpha\beta$ with neither α nor β a unit. Then $N(2)=4=N(\alpha)N(\beta)$ $\Rightarrow N(\alpha)=N(\beta)=2$

This is impossible ince if d=a+bJd then $iN(x) = a^2 = db^2$ $\begin{cases}
2 & d \leq -5 \Rightarrow b = 0
\end{cases}$ $\Rightarrow a^2 = 2 \text{ which is contradictor } D$ contradictor B. However 2 / (1+52) so have distinct factorization. It follows that not every ideal in Although not all ideals ICR are principal, every I can be generated by 2 elements I=6,B). Why? Fither I= (0), or I has finite index in R lie R/I is To see trus: If d to in I,

then N(x)=x x'=n>0 s

also in I, so (n) CICR = Italians So [R:I] ≤ L2 (cf. argument when d=-1). floorpoluz stersziba & D D X of (I,+), stable undermult. ICQ is a smaller such subgroup, stable under multilyt

wider mult by Risegur. to being stable under mult by DITE. Note: Can draw pictures of I&R. Any subgroup of R of frute index can be generated (as a subgroup) by 2 elements (cf. our classification of lattices in R2). Thus we can find o, B that generate I.