Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Algoritmos y Estructuras de Datos II

Ordenación elemental

Introducción Motivación

Ordenación por selección

Número de operaciones de un programa (función ops)

Ordenación por inserción

Resumen

Contenidos

- Introducción
- 2 Motivación
- Ordenación por selección
 - Idea
 - Ejemplo
 - Algoritmo
 - Comando for
 - Análisis
- Número de operaciones de un programa (función ops)
- Ordenación por inserción
 - Ejemplo
 - Algoritmo
 - Análisis
- 6 Resumen

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Algoritmos y Estructuras de Datos

Programación imperativa:

- Algoritmos y Estructuras de Datos I
 - pre- y post- condiciones
 - "qué" hace un algoritmo
- Algoritmos y Estructuras de Datos II
 - "cómo" hace el algoritmo

Ejemplo de "qué" y "cómo" de un algoritmo

Ejemplo:

un algoritmo para contar los ceros de una secuencia finita de enteros.

- ¿Qué hace?
 devuelve (calcula, computa) el número de ocurrencias del cero en la secuencia dada.
- ¿Cómo lo hace? Hay varias posibilidades, por ejemplo: recorre la secuencia de izquierda a derecha incrementando un contador cada vez que observa un cero.

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Análisis de algoritmos

Analizar el "cómo" permite

- predecir el tiempo de ejecución (eficiencia en tiempo)
- predecir el uso de memoria (eficiencia en espacio)
- predecir el uso de otros recursos
- o comparar distintos algoritmos para un mismo problema

Introducción
Motivación
Ordenación por selección

Número de operaciones de un programa (función ops)
Ordenación por inserción
Resumen

Problema del pintor

Un pintor tarda una hora y media en pintar una línea recta de 3 metros de largo sobre el suelo. ¿Cuánto tardará en pintar una de 5 metros de largo?

```
3 \text{ metros} \longleftrightarrow 90 \text{ minutos}
1 \text{ metro} \longleftrightarrow 30 \text{ minutos}
5 \text{ metros} \longleftrightarrow 150 \text{ minutos}
```

Solución: dos horas y media.

El trabajo de pintar la línea es **proporcional** a su longitud.

Introducción Motivación Ordenación por selección

Número de operaciones de un programa (función ops) Ordenación por inserción

Problema del profe de Algoritmos 2

El profe de esta materia tarda media hora en ordenar alfabéticamente 100 exámenes. ¿Cuánto tardará en ordenar 200 exámenes?

Razonamiento similar

100 exámenes
$$\longleftrightarrow$$
 1/2 hora 200 exámenes \longleftrightarrow 1 hora

Solución: una hora.

¿Está bien? ¿Es el trabajo de ordenar exámenes **proporcional** a la cantidad de exámenes a ordenar?

Introducción Motivación

Resumen

Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Otros problemas

Un pintor tarda una hora y media en pintar una pared **cuadrada** de 3 metros de lado. ¿Cuánto tardará en pintar una de 5 metros de lado?

```
9 metros cuadrados ←→ 90 minutos
1 metro cuadrado ←→ 10 minutos
25 metros cuadrados ←→ 250 minutos
```

Solución: cuatro horas y 10 minutos.

El trabajo de pintar la pared cuadrada es **proporcional** a su superficie, que es proporcional al cuadrado del lado.

Introducción Motivación

Resumen

Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Otros problemas

el del globo esférico

Si lleva cinco horas inflar un globo aerostático esférico de 2 metros de diámetro, ¿cuánto llevará inflar uno de 4 metros de diámetro?

El trabajo de inflar el globo es **proporcional** a su volumen, que es proporcional al cubo del diámetro $(V = \frac{\pi d^3}{6})$.

diámetro = 2
$$\longleftrightarrow$$
 k metros cúbicos \longleftrightarrow 5 horas diámetro = 4 \longleftrightarrow 8k metros cúbicos \longleftrightarrow 40 horas

Solución: cuarenta horas.

Introducción **Motivación** Ordenación por selección Número de operaciones de un programa (función ops)

Ordenación por inserción

Algoritmos de ordenación

Para resolver el problema del profe de esta materia, es necesario

Resumen

- establecer a qué es proporcional la tarea de ordenar exámenes,
- estudiar/inventar métodos de ordenación,
- asumiremos la existencia de elementos o items a ordenar,
- relacionados por un orden total,
- que deben ordenarse de menor a mayor y
- que no necesariamente son diferentes entre sí.

Introducción Motivación

Ordenación por selección Número de operaciones de un programa (función ops)

Ordenación por inserción
Resumen

¿Cómo?

Reflexionemos sobre lo siguiente:

- ¿Qué significa que una secuencia de exámenes, números, palabras, etc. esté ordenada?
- ¿Cómo hacen para controlar si una secuencia de números está ordenada?
 - (a esta pregunta la vamos a continuar en el práctico y en el laboratorio)
- ¿Cómo harían para ordenar de menor a mayor ciertos datos o ciertas cosas físicas que están desordenados/as?
 - números
 - cartas de un juego,
 - palabras,
 - exámenes.

Ordenación por selección

- Es el algoritmo de ordenación más sencillo (pero no el más rápido),
- selecciona el menor de todos, lo intercambia con el elemento que se encuentra en la primera posición.
- selecciona el menor de todos los restantes, lo intercambia con el que se encuentra en el segundo lugar.
- selecciona el menor de todos los restantes, lo intercambia con en el que se encuentra en el tercer lugar.
- ... (en cada uno de estos pasos ordena un elemento) ...
- hasta terminar.

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Resumen

Idea
Ejemplo
Algoritmo
Comando fo
Análisis

Ordenación por selección

9 3 1 3 5 2 7 9 3 1 3 5 2 7 1 3 9 3 5 2 7 1 3 9 3 5 2 7 1 2 9 3 5 3 7							
1 3 9 3 5 2 7 1 3 9 3 5 2 7	9	3	1	3	5	2	7
1 3 9 3 5 2 7	9	3	1	3	5	2	7
	1	3	9	3	5	2	7
1 2 9 3 5 3 7	1	3	9	3	5	2	7
	1	2	9	3	5	3	7
1 2 9 3 5 3 7	1	2	9	3	5	3	7
1 2 3 9 5 3 7	1	2	3	9	5	3	7

3 7
9 7
9 7
9 7
9 7
7 9

Introducción Motivación

Ordenación por selección

Número de operaciones de un programa (función ops)
Ordenación por inserción
Resumen

Idea
Ejemplo
Algoritmo
Comando for
Análisis

Ordenación por selección

Invariante

Invariante:

- el arreglo a es una permutación del original,
- un segmento inicial a[1,i) del arreglo está ordenado, y
- dicho segmento contiene los elementos mínimos del arreglo.

Resumen

Ordenación por selección

Pseudocódigo

```
{Pre: n > 0 \land a = A}
proc selection sort (in/out a: array[1..n] of T)
     var i, minp: nat
     i = 1
                                         {Inv: Invariante de recién}
     do i < n \rightarrow minp:= min pos from(a,i)
                  swap(a,i,minp)
                  i = i + 1
     od
end proc
{Post: a está ordenado y es permutación de A}
```

Número de operaciones de un programa (función ops)
Ordenación por inserción
Resumen

Idea Ejemplo Algoritmo Comando for Análisis

Ordenación por selección

Swap o intercambio

```
 \begin{aligned} &\{\text{Pre: } a = A \land 1 \leq i,j \leq n \,\} \\ &\text{proc swap } (\text{in/out } a : \text{array}[1..n] \text{ of T, in } i,j : \text{nat}) \\ &\quad \text{var tmp: } \mathbf{T} \\ &\quad \text{tmp:= a[i]} \\ &\quad \text{a[i]:= a[j]} \\ &\quad \text{a[i]:= tmp} \end{aligned} \\ &\text{end proc} \\ &\{\text{Post: a[i]} = A[j] \land a[j] = A[i] \land \forall \ k. \ k \not\in \{i,j\} \Rightarrow a[k] = A[k]\} \\ &\quad \text{iGarantiza permutación!} \end{aligned}
```

Introducción Motivación

Ordenación por selección

Número de operaciones de un programa (función ops)

Ordenación por inserción

Resumen

Idea
Ejemplo
Algoritmo
Comando for
Análisis

Ordenación por selección

Invariante de la función de selección

- Invariante:
 - invariante anterior, y
 - el mínimo del segmento a[i,j) está en la posición minp.

Resumen

Comando for **Análisis**

Idea

Ordenación por selección

Función de selección

```
{Pre: 0 < i < n}
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    var j: nat
    minp:= i
    i := i + 1
                                {Inv: a[minp] es el mínimo de a[i,j)}
    do i < n \rightarrow if a[i] < a[minp] then minp:= i fi
                 i := i + 1
    od
end fun
{Post: a[minp] es el mínimo de a[i,n]}
```

Comando for

Fragmentos de la siguiente forma aparecen con frecuencia:

$$\begin{aligned} & k \! := n \\ & \text{do } k \leq m \rightarrow C \\ & \qquad \qquad k \! := k \! + \! 1 \\ & \text{od} \\ \end{aligned}$$

Por simplicidad, lo reemplazaremos por

siempre que k no se modifique en C.

Además, asumiremos que el **for** declara la variable k, cuya vida dura sólo durante la ejecución del ciclo.

Resumen

Idea
Ejemplo
Algoritmo
Comando for
Análisis

Comando for

```
Reemplazo en min_pos_from
```

```
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    var j: nat
    minp:= i
    i:= i+1
    do j \le n \rightarrow if a[j] < a[minp] then minp:= j fi
                 i := i + 1
    od
end fun
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:=i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= j fi
    od
end fun
```

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Resumen

Idea
Ejemplo
Algoritmo
Comando for
Análisis

Comando for

Reemplazo en selection_sort

```
\begin{array}{c} \textbf{proc} \ selection\_sort \ (\textbf{in/out} \ a: \ \textbf{array}[1..n] \ \textbf{of} \ \textbf{T}) \\ \textbf{var} \ \textbf{i,minp:} \ \textbf{nat} \\ \textbf{i:=1} \\ \textbf{do} \ \textbf{i} < \textbf{n} \rightarrow minp:= min\_pos\_from(a,i) \\ swap(a,i,minp) \\ \textbf{i:=i+1} \\ \textbf{od} \\ \textbf{end} \ \textbf{proc} \end{array}
```

Comando for

En selection_sort

```
proc selection sort (in/out a: array[1..n] of T)
     var minp: nat
     for i:= 1 to n-1 do
        minp:= min pos from(a,i)
        swap(a,i,minp)
     od
end proc
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= j fi
    od
end fun
```

Comando for ... downto

Fragmentos de la siguiente forma también aparecen con cierta frecuencia:

$$\begin{aligned} & k \! := m \\ & \text{do } k \geq n \rightarrow C \\ & \qquad \qquad k \! := k \text{-} 1 \\ & \text{od} \\ \end{aligned}$$

Por simplicidad, lo reemplazaremos por

siempre que k no se modifique en C.

Problema del profe

Cuando el algoritmo es la ordenación por selección

- ¿Cómo se respondería el problema del profe si el algoritmo utilizado por él fuera el de ordenación por selección?
- ¿Cuánto más trabajo resulta ordenar 200 exámenes que 100 con este algoritmo?
- ¿Cuánto trabajo es ordenar 200 exámenes (con este algoritmo)?
- ¿Cuánto trabajo es ordenar 100 exámenes (con este algoritmo)?
- ¿Cuánto trabajo es ordenar n exámenes (con este algoritmo)?

Problema del profe

Análisis

- Para contestar estas preguntas habría que analizar el algoritmo de ordenación por selección, es decir, contar cuántas operaciones elementales realiza.
- Cuántas sumas, asignaciones, llamadas a funciones, comparaciones, intercambios, etc.
- En vez de eso, se elige una operación representativa.
- ¿Qué es una operación representativa?
- Una tal que se repite más que o tanto como cualquier otra.
- Hay que buscar la que más se repite.

Analizando el procedimiento selection_sort

- selection_sort contiene un ciclo,
- allí debe estar la operación que más se repite,
- encontramos una llamada a la función min_pos_from y una llamada al procedimiento swap,
- el procedimiento swap es constante (siempre realiza 3 asignaciones elementales),
- la función min_pos_from, en cambio, tiene un ciclo,
- nuevamente allí debe estar la operación que más se repite,
- encontramos una comparación entre elementos de a, y una asignación (condicionada al resultado de la comparación).

Analizando ordenación por selección Conclusión

- La operación que más se repite es la comparación entre elementos de a,
- toda otra operación se repite a lo sumo de manera proporcional a esa,
- por lo tanto, la comparación entre elementos de a es representativa del trabajo de la ordenación por selección.
- Esto es habitual: para medir la eficiencia de los algoritmos de ordenación es habitual considerar el número de comparaciones entre elementos del arreglo.
- Veremos luego que acceder (o modificar) una celda de un arreglo es constante: su costo no depende de cuál es la celda, ni de la longitud del arreglo.

¿Cuántas comparaciones realiza la ordenación por selección?

- Al llamarse a min_pos_from(a,i) se realizan n-i comparaciones.
- selection_sort llama a min_pos_from(a,i) para $i \in \{1, 2, ..., n-1\}$.
- por lo tanto, en total son (n-1) + (n-2) + ... + (n-(n-1)) comparaciones.
- es decir, (n-1) + (n-2) + ... + 1 = $\frac{n*(n-1)}{2}$ comparaciones.

Resolviendo el problema del profe

Con una fórmula simplificada

Como $\frac{n_*(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$, el número de comparaciones es proporcional a n^2 .

100 exámenes
$$\longleftrightarrow$$
 10000 comparaciones \longleftrightarrow 1/2 hora 200 exámenes \longleftrightarrow 40000 comparaciones \longleftrightarrow 2 horas

Solución: 2 horas.

Conviene utilizar la expresión n² para contestar la pregunta; es más sencillo y da el mismo resultado.

Número de operaciones de un programa

- Una vez que uno sabe qué operación quiere contar, debe imaginar una ejecución arbitraria, genérica del programa intentando contar el número de veces que esa ejecución arbitraria realizará dicha operación.
- Ése es el verdadero método para contar.
- Es imprescindible comprender cómo se ejecuta el programa.
- A modo de ayuda, en las filminas que siguen se da un método imperfecto para ir aprendiendo.
- El método supone que ya sabemos cuál operación queremos contar.

Ordenación por inserción

Número de operaciones de un programa

Secuencia de comandos

- Una secuencia de comandos se ejecuta de manera secuencial, del primero al último.
- La secuencia se puede escribir horizontalmente:

$$C_1;C_2;\ldots;C_n$$

o verticalmente

Número de operaciones de un programa

Secuencia de comandos

- Para contar cuántas veces se ejecuta la operación, entonces, se cuenta cuántas veces se ejecuta en el primero, cuántas en el segundo, etc. y luego se suman los números obtenidos:
- $ops(C_1; C_2; ...; C_n) = ops(C_1) + ops(C_2) + ... + ops(C_n)$

$$\bullet \ \text{ops} \left(\begin{array}{c} C_1 \\ C_2 \\ \vdots \\ C_n \end{array} \right) = \text{ops}(C_1) + \text{ops}(C_2) + \ldots + \text{ops}(C_n)$$

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Número de operaciones de un programa Comando skip

- El comando skip equivale a una secuencia vacía:
- ops(**skip**) = 0

Ordenación por inserción Resumen

Número de operaciones de un programa

- El comando for k:= n to m do C(k) od "equivale" también a una secuencia:
- for k:= n to m do C(k) od "equivale" a

:

C(m)

Ordenación por inserción Resumen

Número de operaciones de un programa

De esta "equivalencia" resulta

$$\begin{aligned} & ops(\textbf{for k:= n to m do } C(k) \textbf{ od}) = \\ & = ops(C(n)) + ops(C(n+1)) + \ldots + ops(C(m)) \end{aligned}$$

que también se puede escribir

$$ops(\textbf{for } k := n \textbf{ to } m \textbf{ do } C(k) \textbf{ od}) = \sum_{k=n}^{m} ops(C(k))$$

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Resumen

Número de operaciones de un programa

Comando for (una salvedad importante)

La ecuación

$$ops(\textbf{for } k := n \textbf{ to } m \textbf{ do } C(k) \textbf{ od}) = \sum_{k=n}^{m} ops(C(k))$$

solamente vale cuando **no hay interés en contar las operaciones que involucran el índice k** implícitas en el **for**: inicialización, comparación con la cota m, incremento; ni el cómputo de los límites n y m. Por eso escribimos "equivale" entre comillas.

Número de operaciones de un programa

Comando condicional if

- El comando if b then C else D fi se ejecuta evaluando la condición b y luego, en función del valor de verdad que se obtenga, ejecutando C (caso verdadero) o D (caso falso).
- Para contar cuántas veces se ejecuta la operación, entonces, se cuenta cuántas veces se la ejecuta durante la evaluación de b y luego cuántas en la ejecución de C o D

• ops(if b then C else D fi) =
$$\begin{cases} ops(b)+ops(C) & caso b \ V \\ ops(b)+ops(D) & caso b \ F \end{cases}$$

Ordenacion por seleccion

Número de operaciones de un programa (función ops)

Ordenación por insectión

Resumen

Número de operaciones de un programa Asignación

 El comando x:=e se ejecuta evaluando la expresión e y modificando la posición de memoria donde se aloja la variable x con el valor de e.

•

$$ops(x:=e) = \left\{ \begin{array}{ll} ops(e) + 1 & \text{ si se desea contar la asignación} \\ & \text{ o las modificaciones de memoria} \\ \\ ops(e) & \text{ en caso contrario} \end{array} \right.$$

 Tener en cuenta que la evaluación de e puede implicar la llamada a funciones auxiliares cuyas operaciones deben ser también contadas.

Número de operaciones de una expresión

- Similares ecuaciones se pueden obtener para la evaluación de expresiones.
- Por ejemplo, para evaluar la expresión e<f, primero se evalúa la expresión e, luego se evalúa la expresión f y luego se comparan dichos valores.

•

$$ops(e < f) = \left\{ \begin{array}{ll} ops(e) + ops(f) + 1 & \text{ si se cuentan comparaciones} \\ ops(e) + ops(f) & \text{ caso contrario} \end{array} \right.$$

Introducción

Motivación

Ordenación por selección

Número de operaciones de un programa (función ops)

Ordenación por insección

Ejemplo: número de comparaciones de la ordenación por selección

```
proc selection_sort (in/out a: array[1..n] of T)
     var minp: nat
     for i = 1 to n do
        minp:= min pos from(a,i)
        swap(a,i,minp)
     od
end proc
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for i:=i+1 to n do if a[i] < a[minp] then minp:= i fi
    od
end fun
```

Ejemplo: número de comparaciones de la ordenación

por selección

```
\begin{array}{lll} & \text{ops}(\text{selection\_sort}(a)) \\ = & \text{ops}(\textbf{for} \text{ } \text{i:= 1 to } \text{ } \textbf{o} \textbf{do} \text{ } \text{minp:= min\_pos\_fr...;swap...od}) \\ = & \sum_{i=1}^{n} \text{ } \text{ops}(\text{minp:= min\_pos\_from}(a,i);\text{swap}(a,i,\text{minp})) \\ = & \sum_{i=1}^{n} \text{ } (\text{ops}(\text{minp:= min\_pos\_from}(a,i)) + \text{ops}(\text{swap}(a,i,\text{minp}))) \\ = & \sum_{i=1}^{n} \text{ } \text{ops}(\text{minp:= min\_pos\_from}(a,i)) \\ = & \sum_{i=1}^{n} \text{ } \text{ops}(\text{min\_pos\_from}(a,i)) \\ = & \sum_{i=1}^{n} \text{ } \text{ops}(\text{minp:= i;} \textbf{for} \text{ } \text{j:= i+1 to n do if ...} \textbf{fi od}) \end{array}
```

Ordenación por inserción Resumen

Ejemplo: número de comparaciones de la ordenación por selección

```
\begin{array}{ll} & \text{ops}(\text{selection\_sort}(a)) \\ = & \sum_{i=1}^{n} \text{ ops}(\text{minp:= i;for } j\text{:= i+1 to n do if } \dots \text{fi od}) \\ = & \sum_{i=1}^{n} \text{ (ops}(\text{minp:= i}) + \text{ops}(\text{for } j\text{:= i+1 to n do if } \dots \text{fi od})) \\ = & \sum_{i=1}^{n} \text{ ops}(\text{for } j\text{:= i+1 to n do if } \dots \text{fi od}) \\ = & \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{ ops}(\text{if a[j]} < a[\text{minp]}) \text{ then minp:= j if}) \\ = & \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\text{ops}(a[j] < a[\text{minp]}) + \text{ops}(\text{minp:= j})) \text{ o ops}(\text{skip}) \\ = & \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{ ops}(a[j] < a[\text{minp]}) \end{array}
```

Ordenación por inserción Resumen

Ejemplo: número de comparaciones de la ordenación por selección

$$\begin{split} \text{ops(selection_sort(a))} &= \sum_{i=1}^n \ \sum_{j=i+1}^n \text{ops(a[j]} < \text{a[minp])} \\ &= \sum_{i=1}^n \ \sum_{j=i+1}^n \ 1 \\ &= \sum_{i=1}^n \ (\text{n-i}) \\ &= \sum_{i=0}^{n-1} i \\ &= \frac{n^*(\text{n-1})}{2} \\ &= \frac{n^2}{2} - \frac{n}{2} \end{split}$$

Ordenación por inserción

Ejemplo: número de intercambios de la ordenación por selección

```
ops(selection sort(a))
    ops(for i:= 1 to n do minp:= min pos fr...;swap...od)
 = \sum_{i=1}^{n} \text{ ops(minp:= min_pos_from(a,i);swap(a,i,minp))} \\ = \sum_{i=1}^{n} \left( \text{ops(minp:= min_pos_from(a,i))} + \text{ops(swap(a,i,minp))} \right) 
= \dots = \sum_{i=1}^{n} (0 + ops(swap(a,i,minp)))
= \sum_{i=1}^{n} ops(swap(a,i,minp))= \sum_{i=1}^{n} 1
```

Resumen

Conclusión del ejemplo

- Número de comparaciones de la ordenación por selección: $\frac{n^2}{2} \frac{n}{2}$
- Número de intercambios de la ordenación por selección: n
- Esto significa que la operación de intercambio no es representativa del comportamiento de la ordenación por selección, ya que el número de comparaciones crece más que proporcionalmente respecto a los intercambios.
- Por otro lado, pudimos contar las operaciones de manera exacta.

Ordenación por inserción

- No siempre es posible contar el número exacto de operaciones.
- Un ejemplo de ello lo brinda otro algoritmo de ordenación: la ordenación por inserción.
- Es un algoritmo que se utiliza por ejemplo en juegos de cartas, cuando es necesario mantener un gran número de cartas en las manos, en forma ordenada.
- Cada carta que se levanta de la mesa, se inserta en el lugar correspondiente entre las que ya están en las manos, manteniendolas ordenadas.

Ordenación por inserción Ejemplo

9	3	1	3	5	2	7
9	3	1	3	5	2	7
3	9	1	3	5	2	7
3	1	9	3	5	2	7
1	3	9	3	5	2	7
1	3	3	9	5	2	7
1	3	3	5	9	2	7

1	3	3	5	2	9	7
1	3	3	2	5	9	7
1	3	2	3	5	9	7
1	2	3	3	5	9	7
1	2	3	3	5	7	9

Ordenación por inserción

Invariante:

• el arreglo a es una permutación del original y

Introducción

- un segmento inicial a[1,i) del arreglo está ordenado.
- (pero en general a[1,i) no contiene los mínimos del arreglo)

Ordenación por inserción

Pseudocódigo

Ordenación por inserción

Invariante del procedimiento de inserción

Invariante:

- el arreglo a es una permutación del original
- a[1,i] sin celda j está ordenado, y
- a[j,i] también está ordenado.

Ordenación por inserción

Procedimiento de inserción

```
 \begin{aligned} &\{ \text{Pre: } 0 < i \leq n \land a = A \} \\ & \text{proc insert (in/out a: array[1..n] of T, in i: nat)} \\ & \quad \text{var } j \text{: nat} \\ & \quad j \text{:= } i \\ & \quad \text{do } j > 1 \land a[j] < a[j-1] \rightarrow \text{swap(a,j-1,j)} \\ & \quad \quad \text{od} \\ & \text{end proc} \\ &\{ \text{Post: a[1,i] est\'a ordenado} \land a \text{ es permutaci\'on de A} \} \end{aligned}
```

Ordenación por inserción

Todo junto

```
proc insertion sort (in/out a: array[1..n] of T)
      for i = 2 to n do
         insert(a,i)
      od
end proc
proc insert (in/out a: array[1..n] of T, in i: nat)
      var j: nat
      i := i
      do i > 1 \land a[i] < a[i-1] \to \text{swap}(a,i-1,i)
                                     i := i-1
      od
end proc
```

Número de Comparaciones e intercambios

Introducción

Procedimiento insert(a,i)

	comp	araciones	intercambios	
si el valor de i es	mín	máx	mín	máx
2	1	1	0	1
3	1	2	0	2
4	1	3	0	3
:	:	:	:	:
n	1	n-1	0	n-1
total insertion_sort	n - 1	$\frac{n^2}{2} - \frac{n}{2}$	0	$\frac{n^2}{2} - \frac{n}{2}$

Ordenación por inserción, casos

- mejor caso: arreglo ordenado, n comparaciones y 0 intercambios.
- peor caso: arreglo ordenado al revés, $\frac{n^2}{2} \frac{n}{2}$ comparaciones e intercambios, es decir, del orden de n².
- caso promedio: del orden de n².

Número de operaciones de un programa

- El ciclo do b → C od (o equivalente while b do C od) se ejecuta evaluando la condición b, y dependiendo de si su valor es V o F se continúa de la siguiente manera:
 - si su valor fue F, la ejecución termina inmediatamente
 - si su valor fue V, la ejecución continúa con la ejecución del cuerpo C del ciclo, y luego de eso vuelve a ejecutarse todo el ciclo nuevamente.
- Es decir que su ejecución es una secuencia de evaluaciones de la condición b y ejecuciones del cuerpo C que finaliza con la primera evaluación de b que dé F.

Número de operaciones de un programa

```
Es decir, la ejecución del ciclo do b \rightarrow C od "equivale" a la
eiecución de
if b then C
         if b then C
                    if b then C
                              if b then C
                                        ...;; indefinidamente!!
                              else skip
                    else skip
         else skip
else skip
```

Número de operaciones de un programa

$$ops(\mathbf{do} b \to C \mathbf{od}) = ops(b) + \sum_{k=1}^{n} d_k$$

donde

- n es el número de veces que se ejecuta el cuerpo del do
- d_k es el número de operaciones que realiza la k-ésima ejecución del cuerpo C del ciclo y la subsiguiente evaluación de la condición o guarda b

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción

Resumen

Hemos analizado dos algoritmos de ordenación

Resumen

- ordenación por selección
- ordenación por inserción
- la ordenación por selección hace siempre el mismo número de comparaciones, del orden de n².
- la ordenación por inserción también es del orden de n² en el peor caso (arreglo ordenado al revés) y en el caso medio,
- la ordenación por inserción es del orden de n en el mejor caso (arreglo ordenado),
- la ordenación por inserción realiza del orden de n² swaps (contra n de la ordenación por selección) en el peor caso.

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Problema del profe de algoritmos 2

- Con cualquiera de los dos algoritmos la respuesta es 2 horas,
- salvo que se trate de un conjunto ya ordenado o casi ordenado, en cuyo caso:
 - ordenación por inserción es del orden de n,
 - y por ello la respuesta sería: 1 hora.

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Repaso de la ordenación por selección

```
proc selection sort (in/out a: array[1..n] of T)
     var minp: nat
     for i = 1 to n do
        minp:= min pos from(a,i)
        swap(a,i,minp)
     od
end proc
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= j fi
    od
end fun
```

Se lo puede abreviar omitiendo la función auxiliar.

Introducción Motivación Ordenación por selección Número de operaciones de un programa (función ops) Ordenación por inserción Resumen

Forma abreviada de la ordenación por selección

```
proc selection sort (in/out a: array[1..n] of T)
     var minp: nat
     for i = 1 to n do
        minp:= i
        for j:=i+1 to n do
           if a[j] < a[minp] then minp:= i fi
        od
        swap(a,i,minp)
     od
end proc
```

Repaso de la ordenación por inserción

```
proc insertion_sort (in/out a: array[1..n] of T)
      for i = 2 to n do
         insert(a,i)
      od
end proc
proc insert (in/out a: array[1..n] of T, in i: nat)
      j:= i
      do i > 1 \land a[i] < a[i-1] \to \text{swap}(a,i-1,i)
                                     i := i-1
      od
end proc
```

También puede abreviarse omitiendo el procedimiento auxiliar.

Forma abreviada de la ordenación por inserción

```
proc insertion_sort (in/out a: array[1..n] of T) for i:= 2 to n do  j := i \\  do \ j > 1 \land a[j] < a[j-1] \rightarrow swap(a,j-1,j) \\  j := j-1 \\  od \\ od \\ end proc
```