Name:

For the problems on this page, let G be a finite group containing an element a.

(6pts) 1. Prove that if ord(a) = n and $a^k = e$, then k is a multiple of n. Your proof should use the division algorithm.

(6pts) 2. What can you say about the orders of a^m ? Use the previous question to prove that for any m we have that $\operatorname{ord}(a^m)$ is a divisor of $\operatorname{ord}(a)$. (Another way to say this is that $\operatorname{ord}(a)$ is a multiple of $\operatorname{ord}(a^m)$.)

(16pts)	5.	For each of the statements below, decide whether they are TRUE or FALSE . Then justify your choices either with a brief explanation (if true) or counterexample (if false). (a) Every element in S_8 can be written as the product of 8 transpositions.
		(b) Every element of A_8 can be written as the product of 8 transpositions.
		(c) For any group G , all subnormal series of G are the same length.
		(d) If a has order 5 then the cyclic group $\langle a \rangle$ is isomorphic to a subgroup of S_5 .

(12pts)	6.	. Suppose $p(x)$ is a degree 7 polynomial that is irreducible over \mathbb{Q} . Let E be the splitting field
		for $p(x)$, and let $G = Gal(E/\mathbb{Q})$ be the Galois group.

(a) Carefully explain (citing any appropriate theorem) why G has an element of order 7.

(b) Suppose p(x) has at least one non-real complex root. Carefully explain why G has an element of order 2.