

Index

- Problem Introduction
- Related Work
- Research Questions
- Methodology
- Experiments and Evaluation
- Conclusion

Problem Introduction

- Cardiovascular diseases, such as Atrial Fibrillation, are among the leading causes of death in the population, resulting in an increased demand for cardiac assessment
- Deep learning can be used to develop multi-classification models for arrhythmia detection and improve medical monitoring
- Today, much research and accurate models are available for simpler arrhythmia classification tasks, e.g. AFIB classification (binary) or common arrhythmia types grouped (AAMI standard)

Problem Introduction

- Problem: Professional treatment requires individual and detailed ECG assessment
- In recent years, Transformer models have gained considerable popularity due to the self-attention mechanism and research papers that apply Transformer models on less comprehensive ECG arrhythmia classification tasks show good results
- However, research and accurate models are limited on comprehensive arrhythmia detection tasks including Transformer models and rare subdiseases, such as Atrial Flutter, Premature Ventricular Contractions, Prolonged QT interval etc.

Related Work: Classification of ECG Using Ensemble of Residual CNNs with Attention Mechanism

- winning paper of the Physionet 2021 challenge
- prop. by Nejedly et. Al
- Uses several residual CNN block and an encoder-block
- Specific designed loss function that fits to class weights in challenge evaluation metrics
- 58% accuracy on all subtasks (2-, 3-, 4-, 6- and 12-leads)
- Follow up study by authors shows that encoder-block does not improve performance (59% accuracy without)

Related Work: ECGBERT: Understanding Hidden Language of ECGs with Self-Supervised Representation Learning

- prop. by Choi et. al based on BERT methodology
- uses wave segment vocabulary that is created from 70 clusters using K-mean and Dynamic Time Warping (4 classifiers:
 P, QRS, T and background waves, such as PR or ST intervals) -> a heartbeat is composed of several wave segments
- ECG signal splitted by segments and each segment is assigned to a clusters and then a pre-defined token. This procedure creates training data that form sentences of repetitive wave tokens (max 8 consecutive heartbeats)
- Additionally!, CNN features from raw ECG are fed into the Transformer encoder using an U-Net
- Model is pre-trained with masking (similar to Masked Language Modeling in LLMs)
- Model is fine-tuned on several down-stream tasks by adapting/fine-tuning the output layers:
- Afib classification (binary), heartbeat classification (AAMI standard), ECG patient verification and sleep apnea detection

Research Questions

- 1. How well does a vanilla Transformer-based model perform on the Physionet 2021 challenge data compared to a feature-based model or a Convolutional Network?
- 2. Can an ensemble Transformer model and a Convolutional Network extracting wavelet features effectively capture spatio-temporal information and improve accuracy?
- 3. Which model performs best at discriminating SR, AF, AFL, PAC and PVC on both datasets?
- 4. What are the challenges in transferring the pre-trained models from the Physionet 2021 challenge data to the MyDiagnostick database? Do the models generalise well, even though different ECG devices were used?

Methodology 1: Transformer with equal-sized segments as input

Methodology 1: Transformer with trainable embedding matrix

Methodology 2: Ensemble Model

Experiments and Evaluation

Data: Physionet 2021 Challenge database

Dataset source	Average ECG length (seconds)	Data samples
Ningbo database	$10\mathrm{s}$	34,905
PTB-XL database	10s	21,837
Chapman-Shaoxing database	10s	10,247
Georgia 12-lead challenge data	$9\mathrm{s}$	10,344
CPSC database	15s	6. 877
CPSC-extra database	15s	3,453
PTB database	110s	516
INCART database	1800s	74

about 89.000 12-lead ECGS

Physionet 2021 data distribution

Physionet 2021 scored challenge data distribution (subset)

Evaluation: Physionet 2021

Evaluation: Physionet 2021 metrics

Evaluation: Physionet 2021 metrics

Conclusion

