

HEXFET® Power MOSFET

Feature

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- 175°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability

	1127(1 2 1 1)	31101 III 0 01 E 1		
Key Parameters				
V _{DS} min	250	V		
V _{DS(Avalanche)} typ.	300	V		
R _{DS(on)} typ. @ 10V	29	mΩ		
T」max	175	°C		

G	D	S
Gate	Drain	Source

Base next number	Dookogo Typo	Standard Pack Form Quantity				Ordereble Bort Number
Base part number	Package Type			Orderable Part Number		
IRFB4332PbF	TO-220	Tube	50	IRFB4332PbF		

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	± 30	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	60	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	42	
I _{DM}	Pulsed Drain Current ①	230	A
RP @ T _C = 100°C Repetitive Peak Current © ©		120	
P _D @T _C = 25°C	Maximum Power Dissipation	390	W
P _D @T _C = 100°C	Maximum Power Dissipation	200	W
	Linear Derating Factor	2.6	W/°C
TJ	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ④		0.38	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{ hetaJA}$	Junction-to-Ambient		62	

Notes ① through ⑥ are on page 2.

2019-08-16

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	250			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		170		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		29	33	mΩ	$V_{GS} = 10V, I_D = 35A$
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	V V 1 050 A
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-14		mV/°C	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
	Drain to Source Leakage Current			20	μΑ	V _{DS} =250 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			1.0	mA	$V_{DS} = 250V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
gfs	Forward Trans conductance	100			S	$V_{DS} = 25V, I_{D} = 35A$
Q_g	Total Gate Charge		99	150	200	\/ - 135\/ - 35A \/ - 10\/@
Q_{gd}	Gate-to-Drain Charge		35		nC	$V_{DD} = 125V, I_D = 35A, V_{GS} = 10V$
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 200V, V_{GS} = 15V, R_{G} = 4.7\Omega$
Г	Energy per Dulce		520		1	L = 220nH, C= $0.3\mu F$, $V_{GS} = 15V$ $V_{DS} = 200V$, $R_G = 5.1\Omega$, $T_J = 25^{\circ}C$
E _{PULSE}	Energy per Pulse		920		μJ	V_{DS} = 200V, R_{G} = 5.1 Ω , T_{J} = 25°C L = 220nH, C= 0.3 μ F, V_{GS} = 15V V_{DS} = 200V, R_{G} = 5.1 Ω , T_{J} = 100°C
C _{iss}	Input Capacitance		5860			$V_{GS} = 0V$
C _{oss}	Output Capacitance		530			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz,
Coss eff.	Effective Output Capacitance		360			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 200V$
L _D	Internal Drain Inductance		4.5		ъЦ	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance		7.5		nH	from package and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		230	mJ
E _{AR}	Repetitive Avalanche Energy ①	300	39	mJ
V _{DS (Avalanche)}	Repetitive Avalanche Voltage①			V
I _{AS}	Avalanche Current ②		35	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			60		MOSFET symbol
	(Body Diode) Pulsed Source Current				- Δ	showing the integral reverse
I _{SM}	(Body Diode) ①			230		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 35A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		190	290	ns	$T_J = 25^{\circ}C$, $I_F = 35A$, $V_{DD} = 50V$
Q_{rr}	Reverse Recovery Charge		820	1230	nC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② starting $T_J = 25$ °C, L = 0.39mH, $R_G = 25\Omega$, $I_{AS} = 35$ A.
- 3 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- \P R₀ is measured at T_J of approximately 90°C.
- © Applicable to Sustain and Energy Recovery applications.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical E_{PULSE} vs. Drain Current

Fig 7. Typical EPULSE vs. Temperature

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 12. Maximum Safe Operating Area

2019-08-16

Fig 13. On-Resistance Vs. Gate Voltage

Fig 15. Threshold Voltage vs. Temperature

Fig 14. Maximum Avalanche Energy Vs. Temperature

Fig 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 18 - Typical Recovery Current vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig. 19 - Typical Recovery Current vs. dif/dt

Fig. 21 - Typical Stored Charge vs. dif/dt

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 20b. Gate Charge Waveform

Fig 19b. Unclamped Inductive Waveforms

Fig 20a. Gate Charge Test Circuit

Fig 21a. tst and EPULSE Test Circuit

Fig 21b. tst Test Waveforms

Fig 21c. E_{PULSE} Test Waveforms

Fig 21c. EPULSE Test Waveforms

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- DIMENSIONS AND FINISH UNCONTROLLED IN L1.

 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIMETERS		INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3.56	4.83	.140	.190		
A1	1.14	1.40	.045	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1,14	1.78	.045	.070		
b3	1,14	1.73	.045	.068	5	
С	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	_	0.76	-	.030	8	
е	2.54	BSC	.100	BSC		
e1	5.08	BSC	.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	3.56	4.06	.140	.160	3	
ØΡ	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19,2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free'

TO-220AB packages are not recommended for Surface Mount Application.

2019-08-16

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †				
Moisture Sensitivity Level	TO-220AB N/A				
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
10/24/2016	 Changed datasheet with Infineon logo - all pages. Corrected Absolute Maximum table-Storage Temperature range from "-40C" to "-55C" on page1. Corrected Package Outline on page 8. Added disclaimer on last page.
01/11/2018	Added typical "Irr", "Qrr" curves (Fig 18 to Fig 21) on page 6.
08/16/2019	 Correct typo on Rdson units from "Ω" to "mΩ"-page2

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.