CS330 - Computer Organization and Assembly Language Programming

Lecture 4

Professor: Mahmut Unan – UAB CS

Agenda

- Byte Ordering
- Boolean Algebra
- Bit-Level Operations in C
- Logical Operations in C
- Shift Operations in C

Byte Ordering

- How to order bytes within multi-byte word in memory
- Conventions
 - (most) Sun's, IBMs are "Big Endian" machines
 - Least significant byte has highest address (comes last)
 - (most) Intel's are "Little Endian" machines
 - Least significant byte has lowest address (comes first)
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100 0x100 0x101

Examining Data Representations

- Code to print byte representation of data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;
void show bytes (pointer start, int len)
 int i;
for (i = 0; i < len; i++) {
printf("0x%p\t0x%.2x\n", start+i, start[i]);
printf("\n");
                                     Printf directives:
                                     %p: Print pointer
                                     %x: Print Hexadecimal
```

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11fffcba 0x00

0x11fffcbb 0x00
```

```
0011 1011 0110 1101<sub>2</sub>
3 b 6 d<sub>16</sub>
```

Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character "0" has code 0x30
 - » Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue
 - Data are single byte quantities
 - Text files generally platform independent
 - Except for different conventions of line termination character(s)!

Linux/Alpha S Sun S

Machine-level Code Representation

- Encode program as sequence of instructions
 - Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
 - Instructions encoded as bytes
 - Alpha's, Sun's, Mac's use 4 byte instructions
 - » Reduced Instruction Set Computer (RISC)
 - PC's use variable length instructions
 - » Complex Instruction Set Computer (CISC)
 - Different machines → different ISA & encodings
 - Most code not binary compatible
- A fundamental concept:
 - Programs are byte sequences too!

Representing Instructions

```
int sum(int x, int y) {
return x+y;
}
```

- Sun use 2 4-byte instructions
 - Differing numbers in other cases
- PC uses instructions with lengths 1, 2, and 3 bytes
 - Mostly the same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings

Boolean Variables and Operations

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0
 - $\langle \{0,1\}, |, \&, \sim, 0, 1 \rangle$
 - | is "sum" operation, & is "product" operation
 - ~ is "complement" operation (not additive inverse)
 - 0 is identity for sum, 1 is identity for product
- Makes use of variables and operations
 - Are logical
 - A variable may take on the value 1 (TRUE) or 0 (FALSE)
 - Basic logical operations are AND, OR, XOR and NOT

Boolean Variables and Operations / 2

AND

- Yields true (binary value 1) if and only if both of its operands are true
- In the absence of parentheses the AND operation takes precedence over the OR operation
- When no ambiguity will occur the AND operation is represented by simple concatenation instead of the dot operator

— OR

Yields true if either or both of its operands are true

NOT

Inverts the value of its operand

Table: Boolean Operators

(a) Boolean Operators of Two Input Variables

P	Q	NOT P (P)	P AND Q (P • Q)	P OR Q (P+Q)	$\begin{array}{c} \mathbf{P} \mathbf{N} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{Q} \\ (\overline{\mathbf{P} \bullet \mathbf{Q}}) \end{array}$	$\frac{P \text{ NOR } Q}{(\overline{P} + \overline{Q})}$	P XOR Q (P ⊕ Q)
0	0						
0	1						
1	0					•	
1	1						

Table: Boolean Operators

(a) Boolean Operators of Two Input Variables

P	Q	NOT P	P AND Q	P OR Q	P NAND Q	P NOR Q	P XOR Q
		(\overline{P})	(P • Q)	(P+Q)	$(\overline{P \cdot Q})$	$(\overline{P+Q})$	$(P \oplus Q)$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation	Expression	Output = 1 if
AND	A • B •	All of the set $\{A, B,\}$ are 1.
OR	A + B +	Any of the set {A, B,} are 1.
NAND	A • B •	Any of the set {A, B,} are 0.
NOR	A+B+	All of the set $\{A, B,\}$ are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

Table: Basic Identities of Boolean Algebra

Basic Postulates				
$\mathbf{A} \bullet \mathbf{B} = \mathbf{B} \bullet \mathbf{A}$	A + B = B + A	Commutative Laws		
$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$	$A + (B \bullet C) = (A + B) \bullet (A + C)$	Distributive Laws		
1 • A = A	0 + A = A	Identity Elements		
$A \bullet \overline{A} = 0$	$A + \overline{A} = 1$	Inverse Elements		

Other Identities

$$0 \cdot A = 0$$
 $1 + A = 1$
 $A \cdot A = A$ $A + A = A$
 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $A + (B + C) = (A + B) + C$ Associative Laws
 $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$ DeMorgan's Theorem

Relations between operations

- DeMorgan's Laws
 - Express & in terms of |, and vice-versa
 - A & B = ~(~A | ~B)
 - A and B are true if and only if neither A nor B is false
 - A | B = ~(~A & ~B)
 - A or B are true if and only if A and B are not both false
- Exclusive-Or using Inclusive Or
 - $A ^ B = (^A & B) | (A & ^B)$
 - Exactly one of A and B is true
 - $A ^ B = (A | B) & ^ (A & B)$
 - Either A is true, or B is true, but not both

Evaluate the following expression when A = 0, B = 1, and C = 1

$$F = B + \overline{C}A + B\overline{A} + A\overline{B}$$

Simplify the following function;

$$F = AB + BC + \overline{B}C$$

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0
- The fundamental building block of all digital logic circuits is the gate.
 - Logical functions are implemented by the interconnection of gates.
 - A gate is an electronic circuit that produces an output signal that is a simple Boolean operation on its input signals.

Basic Logic Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A————F	F = A • B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow F$	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A—F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A—————————————————————————————————————	$F = \overline{AB}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$A \longrightarrow F$	F = A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Figure 11.2 Some Uses of NAND Gates

Draw a truth table for $A\overline{B}$ (A+B)

• Draw a logic circuit for A + BC + \overline{D}

General Boolean Algebras

- Boolean operations can be extended to work on bit vectors
 - Operations applied bitwise

- All of the properties of Boolean algebra apply
- Now, Boolean |, & and ~ correspond to set union, intersection and complement

Representing & Manipulating Sets

Representation

- − Width w bit vector represents subsets of {0, ..., w−1}
- $-a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - 76543210

0	1	1	0	1	0	0	1
7	6	5	4	3	2	1	0

- 01010101 { 0, 2, 4, 6 }
- 76543210

Operations

- & Intersection 01000001{0,6}
- | Union 01111101{ 0, 2, 3, 4, 5, 6 }
- ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
- ~ Complement 10101010 { 1, 3, 5, 7 }

- a =[01101001]
- b=[01010101]
- ~a =
- ~b
- a & b
- a | b
- a ^ b

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0 \times 41 \rightarrow 0 \times BE$
 - $\sim 010000012 \rightarrow 101111102$
 - $\sim 0 \times 00 \rightarrow 0 \times FF$
 - $\sim 0000000002 \rightarrow 1111111112$
 - $0x69 \& 0x55 \rightarrow 0x41$
 - 01101001_2 & 01010101_2 \rightarrow 01000001_2
 - $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

```
Step
```

Initially

Step 1

Step 2

Step 3

```
Rules to remember
a^a = 0
a^0 = a
```

```
void inplace_swap (int *x, int *y) {
*y =*x ^ *y;    /*Step 1*/
*x = *x ^ *y;    /*Step 2*/
*y = *x ^ *y;    /*Step 3*/
}
```

Step	* X	· y
Initially	а	b
Step 1	а	a^b
Step 2		
Step 3		

*..

C+00

*.,

```
void inplace swap (int *x, int *y) {
*y = *x ^ *y; /*Step 1*/
*x = *x ^ *y; /*Step 2*/
*y = *x ^ *y; /*Step 3*/
```

Step	*X	*y	
Initially	а	b	
Step 1	а	a^b	
Step 2	a^(a^b)	a^b	
Step 3			

```
void inplace swap (int *x, int *y) {
*y = *x ^ *y; /*Step 1*/
*x = *x ^ *y; /*Step 2*/
         a^{(a^b)} = (a^a)^b
Step
Initially
Step 1
                          a^b
           a
Step 2
          a^{(a^{b})}
                         a^b
Step 3
```

Step	*X	* Y	
Initially	a	b	
Step 1	а	a^b	
Step 2	a^(a^b)	a^b	
Step 3	b	b^(a^b)	

*..

C+ - .-

*****..

```
void inplace swap (int *x, int *y) {
*y = *x ^ *y; /*Step 1*/
*x = *x ^ *y; /*Step 2*/
*y = *x ^ *y; /*Step 3*/
Step
                       b^{\wedge}(a^{\wedge}b) = (b^{\wedge}b)^{\wedge}a
Initially
             a
Step 1
             a
            a^(a^b)
Step 2
Step 3
                             b^{\wedge}(a^{\wedge}b)
```

Step	^	У
المنهنمال،		7_
Initially	a	D
Step 1	a	a^b
Step 2	a^(a^b)	a^b
Step 3	b	a

*~

Stan

*,,