6.3 若干常用的时序逻辑电路

6.3.1 寄存器和移位寄存器

一、寄存器

寄存器是一种常用的时序逻辑电路,广泛应用于各类数字系统和数字计算机中。

寄存器用于寄存一组二值代码,寄存器的存储电路由触发器组成,一个触发器能够储存1位二值代码,N个触发器组成的寄存器能储存一组N位的二值代码。

寄存器中的触发器只要求具有置1、置0的功能,因此同步RS 触发器、主从结构的触发器,都可以组成寄存器。

由同步RS触发器构成

CP=1期间Q端的状态输出跟随D端状态而变

CP=0以后,Q端将保持CP 变为低电平时D端的状态。

图6.3.1 74LS75的逻辑图

二、移位寄存器

移位寄存器除了具有存储代码的功能,还有移位功能 移位功能是指寄存器里存储的代码能在移位脉冲的作用下依次 左移或右移。

图6.3.4 用D触发器构成的移位寄存器

总的效果相当于移位寄存器里原来代码依次右移移位

例如,在4个时钟周期内输入代码依次为1011,而移位寄存器 的初始状态为 $Q_0Q_1Q_2Q_3=0000$,在移位脉冲作用下,移位寄存器

代码的移动情况如表6.3.1所示

表6.3.1 移位寄存器中代码的移动状况

ср	D _I	Q_0	Q ₁	Q_2	Q_3
0	0	0	0	0	0
1	1-	→ 1	0	0	0
2	0	0	1	0	0
3	1—	→1	0	1	0
4	1—	→ 1	1	0	1

图6.3.5 图6.3.4电路的电压波形

图6.3.6 用JK触发器构成的移位寄存器

图6.3.6是用JK触发器组成的4位移位寄存器,它和图6.3.4电 路具有同样的逻辑功能。

NORTHEASTERN UNIVERSITY AT QINHUANGDAO

图6.3.7 4位双向移位寄存器74LS194A的逻辑图

正常工作时,RD处于高电平

置零

保持

右移

左移

图6.3.8 用两片4位双向移位寄存器接成8位双向移位寄存器

一片的Q3接至另一片的DIR端,而将另一片的Qn接到这一片的 同时把两片的S₁、S₀、CP和R_D分别并联

6.3.2 计数器

计数器——用以统计输入脉冲CP个数的电路。

计数器的分类:

- (1)按计数器中触发器翻转是否同时进行分为同步计数器和异步计数器
- (2) 按数字的增减趋势可分为加法计数器、减法计数器和可逆计数器。
- (3)按计数器中数字的编码方式分为二进制计数器、二一十进制计数器、循环码计数器等。
 - (4) 按计数器的容量分类,如十进制计数器、六十进制计数器

一、同步计数器

1. 同步二进制计数器

目前生产的同步计数器芯片基本上分为二进制和十进制两种

1 0 1 1 0 1 1

+ 1

状态未变 ____1 0 1 1 1 0 0 改变状态

T触发器构成的同步计数器,每次CP信号到达时应使该翻转的那些触发器控制端 $T_{i=1}$,不该翻转的 $T_{i=0}$

计数器用T触发器构成时,第i位触发器输入端的逻辑式为:

$$\begin{split} T_i &= Q_{i-1}Q_{i-2}...Q_1Q_0 \\ &= \prod_{i=0}^{i-1}Q_j \qquad (i=1,2,...,n-1) \end{split} \tag{6.3.1} \label{eq:continuous}$$

只有最低位例外,按照计数规则,每次输入计数脉冲时它都要翻转,故 T_0 =1

图6.3.11所示电路就是按式(6.3.1)接成的4位二进制同步加法计数器。

图6.3.11 用T触发器构成的 同步二进制加法计数器

各触发器的驱动方程为:

$$\begin{cases} T_{0} = 1 \\ T_{1} = Q_{0} \\ T_{2} = Q_{0}Q_{1} \\ T_{3} = Q_{0}Q_{1}Q_{2} \end{cases}$$
(6.3.2)

电路的状态方程为:

$$\begin{cases} Q_0^{n+1} = \overline{Q_0} \\ Q_1^{n+1} = Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \end{cases}$$
 (6.3.3)
$$\begin{cases} Q_1^{n+1} = Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \\ Q_2^{n+1} = Q_0 \overline{Q_1} \overline{Q_2} + \overline{Q_0} \overline{Q_1} Q_2 \\ Q_3^{n+1} = Q_0 \overline{Q_1} Q_2 \overline{Q_3} + \overline{Q_0} \overline{Q_1} Q_2 Q_3 \end{cases}_{11}$$

电路的输出方程为: $C = Q_0Q_1Q_2Q_3$

(6.3.4)

根据式(6.3.3)和(6.3.4)求出电路的状态转换表

秦皇岛分校 NORTHEASTERN UNIVERSITY AT QINHUANGDAO

表6.3.3 图6.3.11电路的状态转换表

计数顺序	电路状态				等效十进制数	进位输出
	Q3	Q2	Q1	Q0		С
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	0
3	0	0	1	1	3	0
4	0	1	0	0	4	0
5	0	1	0	1	5	0
6	0	1	1	0	6	0
7	0	1	1	1	7	0
8	1	0	0	0	8	0
9	1	0	0	1	9	0
10	1	0	1	0	10	0
11	1	0	1	1	11	0
12	1	1	0	0	12	0
13	1	1	0	1	13	0
14	1	1	1	0	14	0
15	1	1	1	1	15	1
16	0	0	0	0	0	0

利什到位可位路出 十数叶C站的作计进的 一个为数位的 一个为数位号 一个,是有 一个。

十六进制计 数器电路

图6.3.12 图6.3.11电路的状态转换图

图6.3.13 图6.3.11电路的时序图

针对计数器的这种分频功能,也把它叫做分频器。

计数器中能计到的最大数称为计数器的容量,它等于计数器所有各位全为1时的数值。N位二进制计数器的容量等于2ⁿ-1 14

在实际生产的计数芯片中,往往还附加了一些控制电路,以增加电路的功能和使用的灵活性。

常用的附加控制功能有:异步置零、预置数、保持。

G,

LD—预置数控制端,

 $D_0 \sim D_3$ —数据输入端

C—进位输出端

R_D—异步置零(复位)端

EP和ET—工作状态控制端

 G_{20}

表6.3.4 4位同步二进制计数器74161的功能表

СР	\overline{R}_{D}	LD	EP	ET	工作状态
×	0	X	×	X	置零
	1	0	×	×	预置数
×	1	1	0	1	保持
×	1	1	×	0	保持(C=0)
	1	1	1	1	计数

 $R_D=0$,所有触发器将同时被置零

R_n=1、LD=0时,电路工作在预置数状态

R_D=LD=1时而EP=0、ET=1时,电路工作在保持状态

 R_n =LD=1时而EP= × 、ET=0时,电路工作在保持状态,同时C=0

R_n=LD=1=EP=ET=1时,电路工作在计数状态

几个需要注意的问题:

异步置零:置零端出现低电平,触发器立即置零,不受时钟控制

同步置零:置零端出现低电平,要等时钟信号到达才能置零

同步预置数: 必须等待时钟到达,才能置数

异步预置数:不须等待时钟脉冲

二进制减法计数规则:在n位二进制减法计数器中,只有当第i位以下各位触发器同时为0时,再减1才能使第i位触发器翻转

用T触发器组成同步二进制减法计数器时,第i位触发器输入端Ti的逻辑式为

$$T_{i} = \overline{Q_{i-1}}.\overline{Q_{i-2}}.....\overline{Q_{1}}.\overline{Q_{0}}$$

$$= \prod_{i=0}^{i-1} \overline{Q_{i}} \qquad (i = 1, 2, ..., n-1)$$
(6.3.6)

图6.3.16电路是 根据式 (6.3.6) 接成的同步二进制减法计数器电路

$$\begin{split} T_{i} &= \overline{Q_{i-1}}.\overline{Q_{i-2}}.....\overline{Q_{1}}.\overline{Q_{0}} \\ &= \prod_{j=0}^{i-1} \overline{Q_{j}} \qquad (i=1,2,...,n-1) \end{split}$$

T触发器是将JK触发器的J和K接 在一起作为T输入端(J=K=T)

图6.3.16 用T触发器接成的 同步二进制减法计数器

可逆计数器74LS191逻辑图 如图6.3.17所示.

图6.3.17 单时钟同步十六 进制加/减计数器74LS191

表6.3.5 同步十六进制加/减法计数器74LS191的功能表

CP _I	S	LD	U/D	工作状态
×	1	1	×	保持
X	×	0	X	 预置数
_ ↑_L	0	1	0	加法计数
J□	0	1	1	 减法计数

图6.3.17 电路只有一个时钟信号(计数脉冲)输入端, 电路的 减由U/D电平决定,所以称这种电路结构为单时钟脉冲

倘若加法计数器脉冲和减法计数器脉冲来自两个不同的脉冲 则需要使用双时钟结构的加/减计数器计数

(6.3.10)

(6.3.11)

计数脉冲

2.同步十进制计数器 电路由T触发器组成

电路的驱动方程为

$$\begin{cases} T_0 = 1 \\ T_1 = Q_0 \overline{Q_3} \\ T_2 = Q_0 Q_1 \\ T_3 = Q_0 Q_1 Q_2 + Q_0 Q_3 \end{cases}$$

电路的状态方程为

$$\begin{cases} Q_0^{n+1} = \overline{Q_0} \\ Q_1^{n+1} = Q_0 \overline{Q_3} \overline{Q_1} + \overline{Q_0} \overline{Q_3} \overline{Q_1} \\ Q_2^{n+1} = Q_0 Q_1 \overline{Q_2} + \overline{Q_0} \overline{Q_1} Q_2 \\ Q_3^{n+1} = (Q_0 Q_1 Q_2 + Q_0 Q_3) \overline{Q_3} \\ + \overline{(Q_0 Q_1 Q_2 + Q_0 Q_3)} \overline{Q_3} \end{cases}$$

FF. $T_0 = 1$ FF, FF_2 FF₃

图6.3.20 同步十进制加法计数器电路

● 東ル大学 素皇島分校 NORTHEASTERN UNIVERSITY AT QINHUANGDAO

计 数	电	路	状	态	等效十	输出
順 序	Q 3	Q z	Qi	Q ₀	进制数	С
0	Ð	0	0	0	0	U
1	0	0	0	ι .	ı	0
2	0	0	1	0	2	0
3	0	0	ı	1	3	U
	0	1	0	0	4	0
4	0	1	0	1	5	Ð
5					l	
6	0	1	1	0	6	0
7	0	1	1	1	7	0
8	1	0	U	0	8	U
9	1	0	0	1	9	1
10	0	0	0	0	0	0
0		0	1	0	10	0
1	1	0	1	1	L1	1
2	0	1	1	0	6	0
0	1	1	0	0	12	0
ı	1	1	0	1	13	1
2	0	ı,	0	0	4	0
0	1	1	1	0	14	0
	1	1	1	1	15	1
2	0	0	1	0	2	0

图6.3.21 图6.3.20电路的状态转换图

由状态转换图上可见,电路是能够自启动电路

电路的驱动方程

$$\begin{cases} T_{0} = 1 \\ T_{1} = \overline{Q_{0}}(\overline{\overline{Q_{1}}\overline{Q_{2}}\overline{Q_{3}}}) \\ T_{2} = \overline{Q_{0}}\overline{Q_{1}}(\overline{\overline{Q_{1}}\overline{Q_{2}}\overline{Q_{3}}}) \\ T_{3} = \overline{Q_{0}}\overline{Q_{1}}\overline{Q_{3}} \end{cases}$$
(6.3.12)

电路的状态方程

$$\begin{cases} Q_0^{n+1} = \overline{Q_0} \\ Q_1^{n+1} = \overline{Q_0} (Q_2 + Q_3) \overline{Q_1} + Q_0 Q_1 \\ Q_2^{n+1} = (\overline{Q_0} \overline{Q_1} Q_3) \overline{Q_2} + (Q_0 + Q_1) Q_2 \\ Q_3^{n+1} = (\overline{Q_0} \overline{Q_1} \overline{Q_2}) \overline{Q_3} + (Q_0 + Q_1 + Q_2) Q_3 \end{cases}$$
(6.3.13)

图6.3.23 同步十进制减法计数器

		ci/c	-LIA	<u></u>		/# <i>[</i>
计数顺序	电	路	火 火		等效上进制数	借 位
	Q_{3}	Q_2	Q 1	Qο		В
0	0	0	0	0 -	0	1
1	1	0	Ø	1 *	9	0
2	1	0	0	0 , ,	8	0
3	0	1	1	1 ,	7	0
4	0	1	1	0 .	6	0
5	0	i	0	1	5	0
6	0	1	0	0	4	0
7	0	0	1	1	3	0
8	0	0	1	0	2	0
9	0	0	0	1	1	0
10	0	0	0	0	0	11
0	1	1	1	1	15	0
1	1	1	1	0	14	0
2	t	1	0	1	13	0
3	1	1	0	0	12	0
4	1	0	1	1 :	11	0
5	1	0	1	0 ,	10	0
6	1	0	0	1:	9	0

根据式(6.3.13)可列出状态转换表,并可画出6.3.24的状态

转换图

图6.3.24 图6.3.23电路的状态转换图

29