- **1.** Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
- **2.** What algebraic structures with one operation (groupoid, semigroup, monoid or group) are the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} together with addition or multiplication?
 - **3.** Give examples of:
 - (i) a groupoid which is not a semigroup.
 - (ii) a semigroup which is not a monoid.
 - (iii) a monoid which is not a group.
- **4.** Give example of a groupoid with identity element in which there exists an element having two different symmetric elements.
 - **5.** Let $A = \{a_1, a_2, a_3\}$ be a set. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

6. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = x + y + xy.$$

Show that:

- (i) $(\mathbb{R}, *)$ is a commutative monoid.
- (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
- **7.** Let "*" be the operation on \mathbb{N} defined by x * y = g.c.d.(x, y).
- (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **8.** Determine the finite stable subsets of (\mathbb{Z},\cdot) .
- **9.** Let A be a set and let $\mathcal{P}(A)$ be the power set of A (that is, the set of all subsets of A). What algebraic structure with one operation (groupoid, semigroup, monoid or group) is $\mathcal{P}(A)$ together with the operation " \cup " or " \cap "?
- **10.** Let (A, \cdot) be a groupoid and $X, Y \subseteq A$. Let " \cdot " be the operation on the power set $\mathcal{P}(A)$ defined by:

$$X \cdot Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Show that:

- (i) If (A, \cdot) is commutative, then $(\mathcal{P}(A), \cdot)$ is commutative.
- (ii) If (A, \cdot) is a semigroup, then $(\mathcal{P}(A), \cdot)$ is a semigroup.
- (iii) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), \cdot)$ is a monoid.
- (iv) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), \cdot)$ is not a group (for $A \neq \emptyset$).

1. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = xy - 5x - 5y + 30.$$

Is $(\mathbb{R}, *)$ a group? What about $(\mathbb{R} \setminus \{5\}, *)$?

2. Let $n \in \mathbb{N}$, $n \geq 2$. Show that the set

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}$$

is a stable subset of the monoid $(M_n(\mathbb{R}),\cdot)$ and $(GL_n(\mathbb{R}),\cdot)$ is a group.

3. Let $n \in \mathbb{N}^*$. Show that the set

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

is a stable subset of the group (\mathbb{C}^*,\cdot) , (U_n,\cdot) is an abelian group, and determine the elements of U_n .

4. Let $n \in \mathbb{N}$ and $\mathbb{Z}_n = \{\widehat{x} \mid x \in \mathbb{Z}\}$, where $\widehat{x} = x + n\mathbb{Z} = \{x + nk \mid k \in \mathbb{Z}\}$. Let "+" be the operation on \mathbb{Z}_n defined by:

$$\widehat{x} + \widehat{y} = \widehat{x + y}, \quad \forall \ \widehat{x}, \widehat{y} \in \mathbb{Z}_n.$$

Show that $(\mathbb{Z}_n, +)$ is an abelian group and determine its cardinal (discussion on n).

5. Let $M \neq \emptyset$ be a set and

$$S_M = \{f : M \to M \mid f \text{ bijective}\}.$$

- (i) Show that (S_M, \circ) is a group.
- (ii) If $|M| = n \in \mathbb{N}^*$, then we denote S_M by S_n . Determine the operation table for the group (S_3, \circ) .
- **6.** Determine the operation table for the dihedral group (D_3, \cdot) of rotations and symmetries of an equilateral triangle.
- 7. Determine the operation table for the dihedral group (D_4, \cdot) of rotations and symmetries of a square.
- **8.** Let (G, \cdot) and (G', \cdot) be groups with identity elements e and e' respectively. Let " \cdot " be the operation on $G \times G'$ defined by:

$$(g_1, g_1') \cdot (g_2, g_2') = (g_1 \cdot g_2, g_1' \cdot g_2'), \quad \forall (g_1, g_1'), (g_2, g_2') \in G \times G'.$$

Show that $(G \times G', \cdot)$ is a group, called the *direct product* of the groups G and G'.

- **9.** Determine the group of invertible elements of the monoids $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) , (\mathbb{C}, \cdot) , $(M_n(\mathbb{R}), \cdot)$ $(n \in \mathbb{N}, n \ge 2)$ and (M^M, \circ) , where $M \ne \emptyset$ is a set and M^M denotes the set of all functions $f: M \to M$.
 - **10.** Let (G,\cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - $(ii) \ \forall x \in G, \ x^2 = 1 \Longrightarrow G \text{ is abelian.}$

- **1.** Which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are subgroups of the groups $(\mathbb{C}, +)$ and (\mathbb{C}^*, \cdot) ?
 - **2.** Show that $H = \{z \in \mathbb{C} \mid |z| = 1\}$ is a subgroup of (\mathbb{C}^*, \cdot) , but not of $(\mathbb{C}, +)$.
 - **3.** Let $n \in \mathbb{N}$, $n \geq 2$. Show that:
 - (i) $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \det(A) \neq 0\}$ is a stable subset of the monoid $(M_n(\mathbb{C}), \cdot)$.
 - (ii) $(GL_n(\mathbb{C}), \cdot)$ is a group.
 - (iii) $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \det(A) = 1\}$ is a subgroup of the group $(GL_n(\mathbb{C}), \cdot)$.
 - **4.** Let $n \in \mathbb{N}^*$. Show that $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ is a subgroup of the group (\mathbb{C}^*, \cdot) .
- **5.** Consider the set $S(\mathbb{Z},+)=\{n\mathbb{Z}\mid n\in\mathbb{N}\}$ of subgroups of the the group $(\mathbb{Z},+)$ and $m,n\in\mathbb{N}$. Show that:
 - (i) $n\mathbb{Z} \subseteq m\mathbb{Z} \iff m|n$.
 - (ii) $m\mathbb{Z} \cap n\mathbb{Z} = [m, n]\mathbb{Z}$, where [m, n] denotes the least common multiple of m and n.
 - (iii) $m\mathbb{Z} + n\mathbb{Z} = (m, n)\mathbb{Z}$, where (m, n) denotes the greatest common divisor of m and n.
 - **6.** Let (G,\cdot) be a group and $H,K\leq G$. Show that:

$$H \cup K \leq G \iff H \subseteq K \text{ or } K \subseteq H$$
.

7. Let (G,\cdot) be a group and let $\emptyset \neq H \subseteq G$ be a finite set. Show that:

$$H \leq G \iff H$$
 is a stable subset of (G, \cdot) .

8. Let (G, \cdot) be a group. Prove that:

$$Z(G) = \{x \in G \mid x \cdot q = q \cdot x, \forall q \in G\}$$

is a subgroup of G, called the center of G. When does the equality Z(G) = G hold?

9. Prove that:

$$Z(GL_2(\mathbb{R}), \cdot) = \{a \cdot I_2 \mid a \in \mathbb{R}^*\},\$$

where I_2 is the identity matrix. Generalization for $GL_n(\mathbb{R})$ with $n \in \mathbb{N}$, $n \geq 2$.

10. Prove that $Z(S_3, \circ) = \{e\}$, where e is the identity permutation. Generalization for S_n with $n \in \mathbb{N}$, $n \geq 3$.

- **1.** (i) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$ and $g : \mathbb{Z} \to \mathbb{Z}_n$ be defined by $g(x) = \widehat{x}$. Prove that g is a group homomorphism between $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$.
- **2.** (i) Let $n \in \mathbb{N}$, $n \geq 2$ and let $\alpha : GL_n(\mathbb{R}) \to \mathbb{R}^*$ be defined by $\alpha(A) = \det(A)$. Show that α is a group homomorphism between $(GL_n(\mathbb{R}), \cdot)$ and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$, $n \geq 2$ and $\beta : M_n(\mathbb{R}) \to \mathbb{R}$ be defined by $\beta(A) = \det(A)$. Show that β is not a group homomorphism between $(M_n(\mathbb{R}), +)$ and $(\mathbb{R}, +)$.
- **3.** For a group homomorphism $f: G \to G'$ between groups (G, \cdot) and (G', \cdot) the *kernel* of f is $\operatorname{Ker} f = \{x \in G \mid f(x) = 1'\}$ and the *image* of f is $\operatorname{Im} f = \{f(x) \mid x \in G\}$. Determine the kernel and the image of the group homomorphisms from Ex. **1.** and **2.**
- **4.** Let $f: \mathbb{C}^* \to GL_2(\mathbb{R})$ be defined by $f(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and $(GL_2(\mathbb{R}), \cdot)$.
- **5.** Let $a, b \in \mathbb{N}$ and $f : \mathbb{C}^* \to \mathbb{R}^*$ be defined by $f(z) = a \cdot |z| + b$. Determine a, b such that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- **6.** Let (G,\cdot) be a group and let $f:G\to G$ be defined by $f(x)=x^{-1}$. Show that $f\in \operatorname{End}(G) \iff G$ is abelian.
 - **7.** Show that the following groups are isomorphic: $(\mathbb{Z}_n, +)$ and (U_n, \cdot) $(n \in \mathbb{N}^*)$.
 - **8.** Show that the following groups are isomorphic: Klein's group (K,\cdot) and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.
 - **9.** Show that the following groups are isomorphic: $(\mathbb{R}, +)$ and (\mathbb{R}_+^*, \cdot) .
 - **10.** Let (G,\cdot) be a group with 3 elements. Determine $\operatorname{End}(G)$ and $\operatorname{Aut}(G)$.
 - **11.** Determine $\operatorname{Aut}(U_4,\cdot)$.
 - **12.** (i) Let $f \in \text{End}(\mathbb{Z}, +)$. Show that $f(n) = f(1) \cdot n, \forall n \in \mathbb{Z}$.
 - (ii) $\forall a \in \mathbb{Z}$, let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(n) = a \cdot n$. Prove that:

$$\operatorname{End}(\mathbb{Z},+) = \{t_a \mid a \in \mathbb{Z}\}\$$

and determine $Aut(\mathbb{Z}, +)$.