 1線形代数			
I ルスドノ・ア・マネ			
	Av 1 v. s		
1-1固有値と固有ベクトル	$Ax \rightarrow = \lambda x \rightarrow$	この条件が成立するx→を固有ベクトル、 λ を固有値	
1-2具体例	固有値λ=5に対する固有ベクトルは複数存在(1,1)(2,2)など		
1-3求めかた	A-λ x→=0→ :対角線に1		
	ad-bc =0を計算しλを導出	2×2行列の場合	
		3×3の場合サラスの公式も可	
	$ A = egin{array}{c ccc} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \ \end{array}$		
	A_{31} A_{32} A_{33}	場所を入れ替えると符号が変わる(+,-,+,-,・・・)	
	$=A_{11}igg egin{array}{c c} A_{22} & A_{23} \ A_{32} & A_{33} \ \hline & +A_{31}igg egin{array}{c c} A_{12} & A_{13} \ A_{22} & A_{23} \ \hline \end{array} igg $		
	$A_{12} = A_{13} = A$		
1-4問題	固有ベクトルはあるベクトルの定数倍		
1-5固有値分解	↑:固有値を対角に並べた行列	正方行列しか使えない	
	V:固有ベクトルを並べた行列		
	$AV=V \wedge A=V \wedge V^{-1}$		
1-6具体例			
1_7問題			
1-8特異値分解	正方行列以外の固有値分解		
	$Mv \rightarrow = \sigma u \rightarrow$		
	$M^T u \rightarrow = \sigma v \rightarrow$	U、Vは直交行列	
	M=USV^T	Sはσがたくさん入ったもの	
1 0 未 从 人 上	INI-CCV 1		
1-9求めかた			
1-10具体例			
1–11利用例	特異値分解の大きい所同士を比較して	画像圧縮に使える	
	画像の類似度を判断することができる	Single value decomposition (svd)	
	正図~~ AIMI 7 OCCN. CCO	origio valao accomposition (sva)	
2確率統計			
	集団の性質を要約し記述	エレベーター耐重量 60kg /人	
- 1802	標本から元の集団の性質を推測		
		MA N. 10 18:11 2 2 2 2 2 2 2	
2–2確率変数	事象と結びつけられた数値	賞金 当たりが出たら100円	
確率分布	事象の発生確率	1/16、1/4	
2–3期待値	事象 X X_1 X_2 \cdots X_n		
- ~ NI LI IL	確率変数 $f(X)$ $f(X_1)$ \cdots $f(X_n)$		
	確率 $P(X_1)$ $P(X_2)$ ··· $P(X_n)$		
	期待値 $E(f)$ 期待値 $E(f)$ $= \sum_{k=1}^{n} P(X = x_k) f(X = x_k) = \int P(X = x) f(X = x) dx$		
	$= \sum_{k=1}^{\infty} P(X = x_k) f(X = x_k) $ $= \int P(X = x) f(X = x) dx$		
2 4/\#b	地往信もとだれだけずしているもの取り	± L亚坎100万円 10件鍵	
2-4分散	期待値からどれだけズレているかの平均	売上平均100万円 10店舗	
共分散	2つのデータ系列の傾向の違い		
	分散Var(f) 共分散Cov(f,g)		
	$= E\left(\left(f_{(X=x)} - E_{(f)}\right)^{2}\right) = E\left(\left(f_{(X=x)} - E(f)\right)\left(g_{(Y=y)} - E(g)\right)\right)$ $= E\left(f_{(X=x)}^{2}\right) - \left(E_{(f)}\right)^{2} = E(fg) - E(f)E(g)$		
	NA NA		
2-5標準偏差	2乗すると元データと単位が違う場合あり	身長^2 → cm^2	
	平方根を求めて単位を戻す		
2-6ベルヌーイ分布	$P(x \mu) = \mu^x(1-\mu)^1-x$	コイントスのイメージ	
_ 0 ,,, 1,,5 ,,,	1 (71)667 1667 1 7		
フルチマーノ公左	カニブロカリ <i>ム</i> 左レナ <i>号</i> こ	サノコロを転がオフソ――ご	
マルチヌーイ分布	カテゴリカル分布とも言う	サイコロを転がすイメージ	
マルチヌーイ分布 2–7二項分布	カテゴリカル分布とも言う ベルヌーイ分布の多試行版	サイコロを転がすイメージ	
	ベルヌーイ分布の多試行版	サイコロを転がすイメージ	
	ベルヌーイ分布の多試行版	サイコロを転がすイメージ	
	ベルヌーイ分布の多試行版	サイコロを転がすイメージ	
		サイコロを転がすイメージ	
	ベルヌーイ分布の多試行版	サイコロを転がすイメージ 二項分布のnを無限大のイメージ	
2–7二項分布	ベルヌーイ分布の多試行版 $P(x \lambda, n) = \frac{n!}{x!(n-x)!} \lambda^{x} (1-\lambda)^{n-x}$		
2–7二項分布	ベルヌーイ分布の多試行版		
2-7二項分布 ガウス分布	ベルヌーイ分布の多試行版 $P(x \lambda, n) = \frac{n!}{x!(n-x)!} \lambda^{x} (1-\lambda)^{n-x}$	二項分布のnを無限大のイメージ	
2–7二項分布	ベルヌーイ分布の多試行版 $P(x \lambda, n) = \frac{n!}{x!(n-x)!} \lambda^{x} (1-\lambda)^{n-x}$		
2-7二項分布 ガウス分布 2-8推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!(n-x)!} \lambda^{x} (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^{2}) = \sqrt{\frac{1}{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right)$	二項分布のnを無限大のイメージ	
2-7二項分布 ガウス分布 2-8推定 点推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定	二項分布のnを無限大のイメージ	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など)	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する	二項分布のnを無限大のイメージ	
2-7二項分布 ガウス分布	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など)	
2-7二項分布ガウス分布2-8推定 点推定 点推定 区間推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など)	
2-7二項分布ガウス分布2-8推定 点推定 点推定 区間推定	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など)	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 に間推定 2-9推定量estimator 推定値estimate 2-10標本平均	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 ア均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(\mathcal{N})$ 大きくなれば母集団の値に近く	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(\mathcal{N})$ 大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^\wedge) = \theta$	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(\mathcal{N})$ 大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^\wedge) = \theta$	二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^{\wedge})=\theta$	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^{\wedge})=\theta$	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(\mathcal{N})$ 大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^\wedge) = \theta$	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^{\wedge})=\theta$	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ ^(ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^{\wedge})=\theta$	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。 推定関数とも。 真の値を θ とすると θ	 二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を 1 となるとの 1 といった 1 といった 1 となった 1 と	二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。 推定関数とも。 真の値を θ とすると θ	 二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を 1 となるとの 1 といった 1 といった 1 となった 1 と	 二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 不偏分散 3情報理論 2-12情報科学	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(N,y^\wedge)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $\mathbf{E}(\theta^\wedge) = \theta$ $\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が $\Delta \mathbf{w} = 1$ $\Delta \mathbf{w} / \mathbf{w} = 1/10 $ 増加の比率で表現可 $1/\Delta \mathbf{w}$ をwで積分するとlog(w)	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット 	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(N,y)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $\mathbf{E}(\theta^*) = \theta$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が $\Delta w = 1$ $\Delta w / w = 1/10 増加の比率で表現可 1/\Delta w をwで積分するとlog(w) \mathbf{I}(\mathbf{x}) = \mathbf{log}(\mathbf{P}(\mathbf{x})) = \mathbf{log}(\mathbf{W}(\mathbf{x})) p = 1/w$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量	$P(x \lambda,n)$ $= \frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $= \frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $= \frac{N(x;\mu,\sigma^2)}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ α	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(N,y)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $\mathbf{E}(\theta^*) = \theta$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が $\Delta w = 1$ $\Delta w / w = 1/10 増加の比率で表現可 1/\Delta w をwで積分するとlog(w) \mathbf{I}(\mathbf{x}) = \mathbf{log}(\mathbf{P}(\mathbf{x})) = \mathbf{log}(\mathbf{W}(\mathbf{x})) p = 1/w$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ	$P(x \lambda,n)$ $= \frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $= \frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $= \frac{N(x;\mu,\sigma^2)}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ α	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$P(x \lambda,n)$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^\wedge(N,y)$ ト) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^\wedge)=\theta$ $\hat{\sigma}^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$ $s^2=\frac{n}{n-1}\times\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$ 増えた量が Δ w=1 Δ w/w=1/10 増加の比率で表現可 1/ Δ w をwで積分するとlog(w) $I(x)=-\log(P(x))=\log(W(x))$ $p=1/w$ 自己情報量の期待値 $H(x)=E(I(x))=-E(\log(P(x))=-\Sigma(P(x)\log(P(x)))$	 二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$N(x) = N(x) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $D(x; \mu, \sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(N,y)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^*) = \theta$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x_i)^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - x_i)^2$ 増えた量が $\Delta w = 1$ $\Delta w / w = 1/10 増加の比率で表現可 1/\Delta w をwで積分するとlog(w) I(x) = \log(P(x)) = \log(W(x)) = 1/w 自己情報量の期待値 H(x) = E(I(x)) = -E(\log(P(x)) = -\Sigma(P(x)\log(P(x))) 同じ事象・確率変数における異なる確率分布P、Qの違いを表す$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はピット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布:Q 例コイン表裏1/2 実際の分布:P 例コインに細工あり表1/3 	
2-7二項分布 がウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$R(x \lambda,n)$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{2\sigma^2}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ $=\frac{n!}{2\sigma$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$N(x) = N(x) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $= \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $D(x; \mu, \sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(N,y)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^*) = \theta$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x_i)^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - x_i)^2$ 増えた量が $\Delta w = 1$ $\Delta w / w = 1/10 増加の比率で表現可 1/\Delta w をwで積分するとlog(w) I(x) = \log(P(x)) = \log(W(x)) = 1/w 自己情報量の期待値 H(x) = E(I(x)) = -E(\log(P(x)) = -\Sigma(P(x)\log(P(x))) 同じ事象・確率変数における異なる確率分布P、Qの違いを表す$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はピット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布:Q 例コイン表裏1/2 実際の分布:P 例コインに細工あり表1/3 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!(n-x)!} \lambda^x (1-\lambda)^{n-x}$ $ \lambda^x (1-\lambda)^{n-x} $ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 パラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(N,y)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $\mathbf{E}(\theta^*) = \theta$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$R(x \lambda,n)$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $=\frac{n!}{2\sigma^2}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ $=\frac{n!}{2\sigma$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラ	$P(x \lambda,n)$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 バラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ (ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^n) = \theta$ $\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2$ $-s^2 = \frac{n}{n-1} \times \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が Δ w=1 Δ w /w=1/10 増加の比率で表現可 1/ Δ w をwで積分するとlog(w) $I(x) = -\log(P(x)) = \log(W(x))$ $p=1/w$ 自己情報量の期待値 $H(x) = E(I(x)) = -E(\log(P(x)) = -\Sigma(P(x)\log(P(x)))$ 同じ事象・確率変数における異なる確率分布P、Qの違いを表す $E(f(x)) - \sum_{i=1}^n P(x) = \sum_{i=1}^n P(x) = \log(P(x)) = \log(P(x))$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	$P(x \lambda,n)$ $=\frac{n!}{x!(n-x)!}\lambda^x(1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 バラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると θ (ハット) 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^n) = \theta$ $\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2$ $-s^2 = \frac{n}{n-1} \times \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が Δ w=1 Δ w /w=1/10 増加の比率で表現可 1/ Δ w をwで積分するとlog(w) $I(x) = -\log(P(x)) = \log(W(x))$ $p=1/w$ 自己情報量の期待値 $H(x) = E(I(x)) = -E(\log(P(x)) = -\Sigma(P(x)\log(P(x)))$ 同じ事象・確率変数における異なる確率分布P、Qの違いを表す $E(f(x)) - \sum_{i=1}^n P(x) = \sum_{i=1}^n P(x) = \log(P(x)) = \log(P(x))$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 不偏分散 3情報理論 2-12情報科学	ベルヌーイ分布の多試行版 $ P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x} $ 母集団を特徴づける母数を統計学的に推測 平均値など 1 つの値に推定 平均値などが存在する範囲(区間)を推定 ハラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(V)$ 、	 二項分布のnを無限大のイメージ 母数(パラメータ:平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナットPは確率 微分エントロピーとも言う誤差関数に使う場合もある元々考えられていた分布:Q例コイン表裏1/2実際の分布:P例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布:Q 例コイン表裏1/2 実際の分布:P 例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) モールス信号 ケーブルが貧弱なため少量しかデータ送 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定 バラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(/\mathbb{N}^n)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^*) = \theta$ $\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が Δ W=1 $\Delta W / W=1/10 増加の比率で表現可 1/\Delta W \text{ をwで積分するとlog(W)} \\ I(x) = -\log(P(x)) = \log(W(x)) \\ p=1/W \\ e=1/H \\ e=1/$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布:Q例コイン表裏1/2 実際の分布:P例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) モールス信号 ケーブルが貧弱なため少量しかデータ送れない 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定 バラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(/\mathbb{N}^n)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^*) = \theta$ $\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が Δ W=1 $\Delta W / W=1/10 増加の比率で表現可 1/\Delta W \text{ をwで積分するとlog(W)} \\ I(x) = -\log(P(x)) = \log(W(x)) \\ p=1/W \\ e=1/H \\ e=1/$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の導関数 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はピット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布: Q 例コイン表裏1/2 実際の分布: P 例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) モールス信号 ケーブルが貧弱なため少量しかデータ送れない 分類問題の誤差関数としても使われる 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x!}(n-x)! \lambda^x (1-\lambda)^{n-x}$ $P(x \lambda,n) = \frac{n!}{x!}(n-x)! \lambda^x (1-\lambda)^{n-x}$ $P(x \lambda,n) = \frac{n!}{x!} \lambda^x (1-$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の傾き 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はビット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布:Q例コイン表裏1/2 実際の分布:P例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) モールス信号 ケーブルが貧弱なため少量しかデータ送れない 	
2-7二項分布 ガウス分布 2-8推定 点推定 区間推定 2-9推定量estimator 推定値estimate 2-10標本平均 一致性 不偏性 2-11標本分散 不偏分散 3情報理論 2-12情報科学 2-13自己情報量 2-14シャノンエントロピ 2-15カルバック・ライブラー ダイバージェンス	ベルヌーイ分布の多試行版 $P(x \lambda,n) = \frac{n!}{x! (n-x)!} \lambda^x (1-\lambda)^{n-x}$ $\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ 母集団を特徴づける母数を統計学的に推測 平均値など1つの値に推定 平均値などが存在する範囲(区間)を推定 バラメータを推定するために利用する 数値の計算方法や計算式のこと。推定関数とも。真の値を θ とすると $\theta^*(/\mathbb{N}^n)$ 実際に思考を行った結果から計算した値 母集団から取り出した標本の平均値 サンプル数が大きくなれば母集団の値に近く サンプル数が大きくなれば母集団の値に近く サンプル数によらず期待値は母集団の値に近く サンプル数によらず期待値は母集団の値と同様 $E(\theta^*) = \theta$ $\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ $s^2 = \frac{n}{n-1} \times \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ 増えた量が Δ W=1 $\Delta W / W=1/10 増加の比率で表現可 1/\Delta W \text{ をwで積分するとlog(W)} \\ I(x) = -\log(P(x)) = \log(W(x)) \\ p=1/W \\ e=1/H \\ e=1/$	 二項分布のnを無限大のイメージ 母数(パラメータ: 平均など) 微分時の導関数 微分時の導関数 平均が2の場合、x1=1であればx2=3 と決まる→自由度が1少ない 白シャツにナポリタン 底数2はピット eはナット Pは確率 微分エントロピーとも言う 誤差関数に使う場合もある 元々考えられていた分布: Q 例コイン表裏1/2 実際の分布: P 例コインに細工あり表1/3 Eは平均 例 F:100万円 P:当選確率(1/1000) モールス信号 ケーブルが貧弱なため少量しかデータ送れない 分類問題の誤差関数としても使われる 	

	五 1		
1.1.1	([[6],[8],[7]])		
1.1.2	([[-4],[4],[-1]])		
1.1.3	([[7],[42],[21]])		
1.1.4	([[48],[64],[56]])		
1.2.1	([[3,5],[6,8]])		
1.2.2	([[-1,-11],[2,-12]])		
2.1.1	([[13],[5],[9]])		
2.1.2	([[10],[15]])		
2.1.3	([[10,6,10],[25,23,10]])		
2.1.4	([[1,0],[0,2],[3,5]])		
	([[.,-],[-,-],[-,-]])		
2.2.1	([[5,7],[7,13]])		
2.2.2	([[-1/2,1/2],[2,-1]])	行基本変形より	
2.2.3	([[-1/8,3/8],[3/8,-1/8]])	日金年文がより	
2.2.4	([[-2/8,38/8],[2/8,26/8]])		
2.2.4	([[-2/0,30/0],[2/0,20/0]])		
3.1	a,d		
3.2			
3.2	王順工がら、300,1/4,3/6,1/4,1/10		
4.1.1	1		
4.1.2	2		
4.1.3	n-log(n)		
111.0	11 10 9 (11)		
5.1	P(雨が降ってきた 洗濯物を干していた)=12/60=1/5		
0.1	P(雨が降ってきた,洗濯物を干していた)=12/365		
5.2.1	P(B 赤玉)=(3/5*1/3)/(3/5)=1/3		
5.2.2	P(白色 A)=(2/5*1/2)/(2/5)=1/2		
0.2.2			
6.1	ウ		
6.2			
6.3			
3.3			
7.1	([[3],[7],[7]])		
	$\lambda = 5$		
7.3			
7.4			
7.5			
7.5	•		