Multistep Methods

A 9-step method is a method for which the solution to the ODE system

$$\frac{dy}{dt} = f(y,t)$$

$$y(0) = y(0)$$

at time t_{m+1} , i.e., y_{m+1} depends on y_n , y_{n-1} , ..., y_{n-9}

Example: (1-step method)

$$y_{n+1} = y_n + \frac{\Delta t}{2} \left[f(y_n, t_n) + f(y_{n+1}, t_{n+1}) \right]$$

$$((ran \kappa - Nicolson))$$

1)
$$y_{n+1} = y_{n-1} + \int_{t_{n-1}}^{t_{n+1}} f(y(\tau), \tau) d\tau$$

$$= y_{n-1} + 2\Delta t f(y_n, t_n) \qquad (approximation of the m tegral with the (explicit) MIDPOINT RULE)$$

2) Alternatively, we can interpolate $f(y^{(r)}, \bar{t})$ with a second-order polynomial at t_{n-1} , t_n , t_{n+1} ,

I and then integrate. This yields
the Simpson quadrature rule, and the
scheme:

$$y_{n+1} = y_{n-1} + \frac{\Delta t}{3} \left[f(y_{n-1}, t_{n-1}) + 4 f(y_n, t_n) + f(y_{n+1}, t_{n+1}) \right]$$
(implied)

Adams - Borsh for the Methods

Adams-Bashfath methods are explicit multistep. methods to compute the solution to ODE systems in the farm $\frac{dy}{dt} = f(y,t)$ $\frac{dy}{dt} = f(y,t)$

The key islea is the following. Given the time instants then, tn, tn-1, ... and the corresponding solution vectors $y_n, y_{n-1}, ...$ we use EXTRAPOLATION of an the interpolant of f(y(z), z) at tn, tn-1, tn-2, to compute an approximation of $\int_{t_n}^{t_{n+1}} f(y(z), z) dz$.

In other words, we consider $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(y(z), z) dz$

where $\begin{cases} f(y(z), \overline{z}) & dz \simeq \int_{t_{n}}^{t_{n+1}} T_{q}(y(z), \overline{z}) dz \\ t_{n} \end{cases}$ and $T_{q}(y(z), \overline{z}) \text{ in the polynomial interpolation}$ $f(y_{n}, t_{n}), f(y_{n-1}, t_{n-1}), \cdots, f(y_{n-q}, t_{n-q})$ $\lim_{t \to \infty} f(y_{n-2}, t_{n-2}) = \lim_{t \to \infty} f(y_{n-2}, t_{n-1}) = \lim_{t \to \infty} f(y_{n-2}, t_{n-2})$

Examples: $q=0 \Rightarrow \Pi_0(y(\tau), \tau) = f(y_n, t_n)$ $y_{n+1} = y_n + \Delta t f(y_n, t_n)$ one-step Adams Boshfath coincides with Euler favority

flyn,tn) ----

$$TT_{a}(y(\tau), \tau) = f(y_{n}, t_{n}) + \frac{t-t_{n}}{t_{n-1}-t_{n}} (f(y_{n-1}, t_{n-1}) - f(y_{n}, t_{n}))$$

$$=> TT_1(y_{n_1}, t_{n+1}) = 2 f/y_{n_1}t_n) - f(y_{n-1}, t_{n-1})$$

$$TT_1(y_n, t_n) = f(y_n, t_n)$$

$$= \int_{t_{n}}^{t_{n+1}} T_{1}(y/\tau), \tau) d\tau = \frac{\Delta t}{2} \left(3 f(y_{n}, t_{n}) - f(y_{n-1}, t_{n-1}) \right)$$

This yields the (second-order) two-steps.
Adams-Bashfath method

$$y_{n+1} = y_n + \frac{\Delta t}{2} \left(3 f(y_n, t_n) - f(y_{n-1}, t_{n-1}) \right)$$

Example: (three step. Adams-Bashforth method)

$$\int_{t_{n}}^{t_{n+1}} TT_{2}(y(z), \bar{z}) d\tau = \frac{\Delta t}{12} \left(23 f(y_{n}, t_{n}) - 16 f(y_{n-1}, t_{n-1}) + 5 f(y_{n-2}, t_{n-2}) \right)$$

=>
$$y_{n+1} = y_n + \Delta t \left(23 f(y_n, t_n) - 16 f(y_{n-1}, t_{n-1}) + 5 f(y_{n-2}, t_{n-2})\right)$$

(third-order explicit)

$$y_{n+1} = y_n + \frac{\Delta t}{24} \left(55 f/y_{n,t_n} \right) - 59 f/y_{n-1}, t_{n-1} \right) + 37 f(y_{n-2}, t_{n-2}) - 9 f(y_{n-3}, t_{n-3})$$

Adams-Multon Methods

These are implied multisteps methods in which the integral from to to tons
15 approximated by replacing f(y/z), z) with the interpolating polynomial of $y_{n+1}, y_n, y_{n-1}, ...$

-- + flynn, tun)

yni=yn + st f(yn+1, tu+1)
(Barnward & la)

yn+1 = yn + st (f(yn+1, tn+1) + f(yn, tn))
(Gan K-Nicolson)

f/yn-1, tn-1)

f/yn-1, tn-1)

f/yn-1, tn-1)

f/yn-1, tn-1)

fn-1

tn-1

 $y_{n+1} = y_n + \frac{\Delta t}{12} \left(\frac{5f}{y_{n+1}}, t_{n+1} \right) + \frac{8f}{y_n}, t_n - \frac{f}{y_{n-1}}, t_{n-1} \right)$ (third-order Adams-Multon)