Signály

Signály obecně

- Co vůbec je signál? V tomto kontextu se nespíš myslí elektrický nebo digitální signál.
- Je to způsob, jakým počítač komunikuje s různými zařízeními, jako jsou klávesnice, myš, obrazovka a ostatní příslušenství.
- Elektrický signál může získat hodnoty, a to může představovat binární data, tudíž 0 a 1 anebo jiné informace. Při přenosu dat mezi částmi počítače jako je třeba procesor a paměť, tak se využívají různé typy signálů, aby se zaručila správná komunikace a funkčnost.

Signál spojitý

- Je to typ signálu, který může nabývat hodnot v průběhu času a v nepřetržitém rozsahu neboli v určitém časovém úseku může mít nekonečně mnoho různých hodnot.
- Například zvukový signál, jako hlas nebo hudba, je spojitý, protože zvuk se může měnit plynule, aniž by vznikly žádné přerušení nebo skoky
- Je důležitý v oblasti matematiky a v aplikacích, kde je důležité zachytit detailní změny v čase nebo prostoru

Signál diskrétní

• Existuje pouze v diskrétních časových okamžicích. Hodnoty tohoto signálu jsou známy jen v určitých časových okamžicích, nikoli nepřetržitě.

Signál pulzní

- Jedná se o rychlou sekvenci krátkých elektrických impulsů, které jsou pozitivní (při zvýšení napětí nebo proudu) nebo negativní (při snížení napětí nebo proudu).
- Používá se v digitální elektronice pro přesouvání a zpracovávání informací.
- Pulzní signály mají charakteristiky amplitudu, frekvenci a dobu trvání impulsů.

Signál číslicový

- Je to soubor čísel, které představují různé hodnoty. Tyto hodnoty mohou představovat informace, jako například zvuk, obraz, data atd...
- Číslice v digitálním signálu jsou reprezentovány pomocí již zmiňovaného binárního kódu, kde se využívá jen dvě hodnoty, a to jsou 0 a 1.
- Tyto číselné hodnoty jsou následně zpracovávány počítači, mobilní telefony nebo televizory. Díky přesnému zpracování digitálních signálů dosáhneme vysoké kvality přenosu informací.

Šířka pásma

- Rychlost přenosu dat, nazývaná šířka pásma, určuje množství dat, která lze přenést přes komunikační kanál za určitou dobu.
- Vyjadřuje se v bitových nebo bytových rychlostech za sekundu (bps nebo Bps). Vyšší šířka pásma umožňuje rychlejší přesun dat, a to může zlepšit výkon při stahování souborů, streamování videa, hraní online her apod.
- Nízká šířka pásma může způsobit pomalé načítání stránek nebo zasekávání videa. Je důležité zajistit, že šířka pásma je dostatečná pro aktivity na vašem počítači nebo ve vaší síti.

Základní pásmo

- Základní pásma v počítačích označují první, nejníže umístěnou úroveň paměti, ke které má přímý přístup procesor.
- Tato paměť je rychlá a umožňuje procesoru ukládat a číst data s minimální latencí (odezvou). Na základním pásmu se nachází operační systém a běžné programy spuštěné v určitém okamžiku.

Přeložené pásmo

 Toto pásmo odkazuje na proces překladu programového kódu z vyšší úrovně jazyka jako je C++ na nižší úroveň, kterou počítač může přímo provádět, tudíž na binární kód. Tento překlad umožňuje počítači spouštět a provádět programy napsané programátory v lidsky čitelné formě. Také se označuje jako "kompilace".

Časový multiplex

- Jedná o techniku, která umožňuje více různých zařízení nebo uživatelů využívat jeden komunikační kanál tak, že se časově střídají ve svém využívání.
- To znamená, že v určitém časovém úseku má každé zařízení nebo uživatel přidělený přístup ke kanálu, a pak se časový slot přesune na další zařízení. Tím dochází k efektivnímu využití a umožňuje se komunikace mezi více zařízeními.

Frekvenční multiplex

- FDM neboli Frequency Division Multiplexing, se používá u přenosu dat v počítačových sítí.
- Umožňuje více různým signálům sdílet jeden fyzický kanál (např. kabel, optické vlákno nebo rádiový signál) tím, že jim přidělí různé frekvenční pásmo.

Vzorkování signálů

- Týkají se procesu, kdy se nepřetržitý analogový signál převádí na diskrétní digitální formu. Vzorkovací frekvence určuje, kolik měření se provede za jednu sekundu.
- Kvantizace se přiřazuje naměřeným hodnotám konkrétní digitální hodnoty podle počtu bitů. Vyšší vzorkovací frekvence umožňuje přesnější rekonstrukci původního signálu, ale zároveň vyžaduje více úložného prostoru.

Rekonstrukce signálů

 Rekonstrukce signálu zahrnuje převod analogového signálu na digitální formu (ADC), zpracování v digitálním prostoru a zpětný převod na analogový signál (DAC) pro reprodukci nebo zobrazení. To umožňuje počítačům práci s různými typy signálů, jako jsou zvuk, obraz a data.

AČ/ČA převodník

Zkratka pro "Analogový kód/Číslicový kód převodník.".

- Jsou běžné v různých systémech, jako jsou audio zařízení (např. mikrofony, reproduktory), měřící přístroje, teploměry, kamery atd.
- Je důležité vybrat správný typ AČ/ČA převodníku podle konkrétní aplikace a požadavcích na přesnost a rychlost převodu.

AD/DA převodník

- AD/DA převodník přeměňuje mezi analogovým a digitálním signálem. AD převádí analog na digitální a DA převádí digitální na analogový signál. Tyto převodníky jsou klíčové v aplikacích.
- Jsou využívány v různém a velkém množství aplikací, včetně zvukového zpracování, telekomunikací a průmyslového řízení.
- Při výběru AD/DA převodníku je důležité se zaměřit na faktory jako je rozlišení, přesnost a rychlost převodu

Rozlišení analogové a digitální formy

- Analogová
- Data jsou zobrazeny spojitým signálem, který může dosahovat libovolné hodnoty v určitém rozsahu.
- Může být vyjádřena fyzikálním jevem, jako například elektrický proud, napětí, tlak nebo zvukové vlny. Může být ovlivněna přesností měřicího zařízení a vnějšími rušivými vlivy jako je šum.
 - Digitální
- Data jsou reprezentována diskrétními hodnotami, a to znamená, že mohou dosahovat jen určitých konkrétních hodnot.
- V nejjednodušším případě jsou data vyjádřena jako binární čísla (0 a 1). Je méně náchylná k chybám a rušení, a to umožňuje lehčí uchovávání dat.

Vzorkovací teorém

- Je to pravidlo v oblasti signálového zpracování.
- Říká, že abychom správně obnovili spojitý signál ze vzorků (diskrétních hodnot), musíme vzorkovat s dostatečně vysokou frekvencí.
- Konkrétně, abychom věrně zachytili signál, jehož nejvyšší frekvence je **f** Hz, je třeba vzorkovat alespoň dvakrát rychlostí **2f** vzorků za sekundu.
- Tento proces umožňuje převádět spojitý signál na diskrétní podobu.

SNR

 Neboli "signal to noise ratio" je míra, která udává, jak moc je užitečný signál ve srovnání s nechtěným šumem v zařízení. Vyjadřuje se v decibelech (dB). Čím vyšší je SNR, tím lépe se signál rozlišuje od šumu. • Například u gramofonu, vyšší SNR znamená, že hudba je čistší a méně rušena než u nízkého SNR, kde by šum přehlušoval samotnou hudbu.

Aliasing

- Tenhle termín se používá k popisu jevu, kdy dochází k chybějícím nebo zkresleným informacím při digitalizaci analogového signálu, jako je zvuk nebo obraz.
- Tenhle jev se objevuje při nedostačujícím vzorkování, což způsobuje, že výsledný digitální signál je nepřesně převedený původní analogový signál.

Útlum signálů

Vzorec pro výpočet decibelu:

$$\mathrm{dB} = 10 \cdot \log_{10} \left(rac{P}{P_0}
ight)$$

• Týká se snižování intenzity signálu během jeho přenosu a zpracování. Zjednodušeně, když signál prochází zařízením nebo médiem, může dojít k oslabení.