

信息安全数学基础

—— 同余方程 (1)

信数课题组

北京邮电大学

上次课回顾

目录

- 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- ② 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

目录

- 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- 2 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

- (i) 设 m 是一个正整数, f(x) 为多项式 $f(x) = a_n x^n + \cdots + a_1 x + a_0$, 其中 a_i 是整数, $i = 0, 1, \cdots, n$, 则 $f(x) \equiv 0 \mod m$ 叫做模 m 同余方程. 若 $a_n \not\equiv 0 \mod m$, 则 n 叫做 f(x) 的次数, 记作 $\deg f$. 此时, 该式又叫做模 m 的 n 次同余方程, $a_n \mod m$ 称为其首项系数.
- (ii) 如果整数 a 使得 $f(a) \equiv 0 \mod m$ 成立,则 a 叫做同余方程 $f(x) \equiv 0 \mod m$ 的 解. 此时,满足 $x \equiv a \mod m$ 的所有整数都使得同余 方程 $f(x) \equiv 0 \mod m$ 成立,即 a 所在的剩余类 $C_a = \{c \in \mathbb{Z} \mid c \equiv a \mod m\}$ 中的每个剩余都使得同余方程 $f(x) \equiv 0 \mod m$ 成立.因此,同 余方程 $f(x) \equiv 0 \mod m$ 的解 a 通常写成 $x \equiv a \mod m$.
- (iii) 在模 m 的完全剩余系中, 使得同余方程成立的剩余个数叫做同余方程的 解数.

例 3.1.1 同余方程 $2x^4 + x^3 + 2 \equiv 0 \mod 7$ 是首项系数为 2 的模 7 的 四次同余方程. 而 $x \equiv 2 \mod 7$ 是该同余方程的解. 事实上, 我们有 $2 \cdot 2^4 + 2^3 + 2 \equiv 4 + 1 + 2 \equiv 0 \mod 7$.

而其他剩余均不满足, 故解数为 1.

例 3.1.1 同余方程 $2x^4 + x^3 + 2 \equiv 0 \mod 7$ 是首项系数为 2 的模 7 的 四次同余方程. 而 $x \equiv 2 \mod 7$ 是该同余方程的解. 事实上, 我们有 $2 \cdot 2^4 + 2^3 + 2 \equiv 4 + 1 + 2 \equiv 0 \mod 7$.

而其他剩余均不满足, 故解数为 1.

注:如例 3.1.1 所示,当模 *m* 比较小时,我们可以依次将剩余代入验算是 否满足来求解同余方程.但对于一般的模 *m*,我们需要探索新的求解思路.下面我们将针对一次、二次和高次同余方程,分别介绍其求解及相关结果.

目录

- 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- 2 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

定理 3.1.1

设 m 是一个正整数, a 是满足 $m \nmid a$ 的整数, 则一次同余方程 $ax \equiv 1 \mod m$

有解的充要条件是 (a, m) = 1. 而且, 当同余方程有解时, 其解是唯一的.

定理 3.1.1

设 m 是一个正整数, a 是满足 $m \nmid a$ 的整数, 则一次同余方程 $ax \equiv 1 \mod m$

有解的充要条件是 (a, m) = 1. 而且, 当同余方程有解时, 其解是唯一的.

证: 充分性. (存在性) 因为 (a,m)=1, 根据广义欧几里德除法或贝祖等式 (定理 1.2.4), 可得到整数 s,t 使得 $s\cdot a+t\cdot m=(a,m)=1$.

因此, $x = s \mod m$ 是同余方程 $ax \equiv 1 \mod m$ 的解.

定理 3.1.1

设 m 是一个正整数, a 是满足 $m \nmid a$ 的整数, 则一次同余方程 $ax \equiv 1 \mod m$

有解的充要条件是 (a, m) = 1. 而且, 当同余方程有解时, 其解是唯一的.

证: 充分性. (存在性) 因为 (a,m)=1, 根据广义欧几里德除法或贝祖等式 (定理 1.2.4), 可得到整数 s,t 使得 $s\cdot a+t\cdot m=(a,m)=1$.

因此, $x = s \mod m$ 是同余方程 $ax \equiv 1 \mod m$ 的解.

(唯一性) 若还有解 x', 即 $ax' \equiv 1 \mod m$, 则有 $a(x-x') \equiv 0 \mod m$. 而 (a,m)=1, 所以 $x \equiv x' \mod m$, 即解是唯一的.

定理 3.1.1

设 m 是一个正整数, a 是满足 $m \nmid a$ 的整数, 则一次同余方程 $ax \equiv 1 \mod m$

有解的充要条件是 (a, m) = 1. 而且, 当同余方程有解时, 其解是唯一的.

证: 充分性. (存在性) 因为 (a,m)=1, 根据广义欧几里德除法或贝祖等式 (定理 1.2.4), 可得到整数 s,t 使得 $s\cdot a+t\cdot m=(a,m)=1$.

因此, $x = s \mod m$ 是同余方程 $ax \equiv 1 \mod m$ 的解.

(唯一性) 若还有解 x', 即 $ax' \equiv 1 \mod m$, 则有 $a(x-x') \equiv 0 \mod m$. 而 (a,m)=1, 所以 $x \equiv x' \mod m$, 即解是唯一的.

必要性. 若同余方程 $ax \equiv 1 \mod m$ 有解, 不妨设为 $x \equiv x_0 \mod m$, 则存在整数 q, 使得 $a \cdot x_0 = 1 + q \cdot m$. 根据定理 1.2.5, 有 (a, m) = 1.

设 m 是一个正整数, a 是一个整数. 如果存在整数 a' 使得 $a \cdot a' \equiv a' \cdot a \equiv 1 \mod m$

成立,则 a 叫做模 m 可逆元. 这时 a' 叫做 a 的模 m 逆元,记作 $a'=a^{-1} \mod m$.

设 m 是一个正整数, a 是一个整数. 如果存在整数 a' 使得 $a \cdot a' \equiv a' \cdot a \equiv 1 \mod m$

成立,则 a 叫做模 m 可逆元. 这时 a' 叫做 a 的模 m 逆元,记作 $a'=a^{-1} \mod m$.

注: 根据定理 3.1.1, 在模 m 的意义下, a' 是唯一存在的.

设 m 是一个正整数, a 是一个整数. 如果存在整数 a' 使得 $a \cdot a' \equiv a' \cdot a \equiv 1 \mod m$

成立,则 a 叫做模 m 可逆元. 这时 a' 叫做 a 的模 m 逆元,记作 $a'=a^{-1} \mod m$.

注: 根据定理 3.1.1, 在模 m 的意义下, a' 是唯一存在的.

现在我们给出模简化剩余的一个等价描述.

定理 3.1.2

设m是一个正整数,则整数a是模m简化剩余的充要条件是整数a是模m可逆元.

设 m 是一个正整数, a 是一个整数. 如果存在整数 a' 使得 $a \cdot a' \equiv a' \cdot a \equiv 1 \mod m$

成立,则 a 叫做模 m 可逆元. 这时 a' 叫做 a 的模 m 逆元,记作 $a'=a^{-1} \mod m$.

注: 根据定理 3.1.1, 在模 m 的意义下, a' 是唯一存在的.

现在我们给出模简化剩余的一个等价描述.

定理 3.1.2

设m是一个正整数,则整数a是模m简化剩余的充要条件是整数a是模m可逆元.

证: 必要性. 如果整数 a 是模 m 简化剩余, 则 (a, m) = 1.

根据定理 3.1.1, 存在整数 a' 使得 $a \cdot a' \equiv 1 \mod m$.

充分性. 如果整数 a 是模 m 可逆元, 则存在整数 a' 使得 $a \cdot a' \equiv 1$ mod m. 即同余方程 $ax \equiv 1 \mod m$ 有解 $x \equiv a' \mod m$. 根据定理 3.1.1, 有 (a,m)=1. 因此, 整数 a 是模 m 简化剩余.

充分性. 如果整数 a 是模 m 可逆元, 则存在整数 a' 使得 $a \cdot a' \equiv 1$ mod m. 即同余方程 $ax \equiv 1 \mod m$ 有解 $x \equiv a' \mod m$. 根据定理 3.1.1, 有 (a,m)=1. 因此, 整数 a 是模 m 简化剩余.

其次, 考虑通常的一次同余方程的求解. 实际上, 一次同余方程求解的思路是:

$$(a, m) = 1, ax \equiv 1 \mod m.$$

$$\downarrow \downarrow$$

$$(a, m) = 1, ax \equiv b \mod m.$$

$$\downarrow \downarrow$$

$$ax \equiv 1 \mod m.$$

我们有以下结果.

定理 3.1.3

设m是一个正整数,a是满足 $m \nmid a$ 的整数,则一次同余方程 $ax \equiv b \mod m$

有解的充要条件是 $(a, m) \mid b$. 且该同余方程有解时, 其解为

$$x \equiv \left(\frac{b}{(a,m)} \cdot \left(\left(\frac{a}{(a,m)}\right)^{-1} \mod \frac{m}{(a,m)}\right) + t \cdot \frac{m}{(a,m)}\right) \mod m,$$

$$t = 0, 1, \dots, (a,m) - 1.$$

定理 3.1.3

设 m 是一个正整数, a 是满足 $m \nmid a$ 的整数, 则一次同余方程 $ax \equiv b \mod m$

有解的充要条件是 $(a, m) \mid b$. 且该同余方程有解时, 其解为

$$x \equiv \left(\frac{b}{(a,m)} \cdot \left(\left(\frac{a}{(a,m)}\right)^{-1} \mod \frac{m}{(a,m)}\right) + t \cdot \frac{m}{(a,m)}\right) \mod m,$$

$$t = 0, 1, \dots, (a,m) - 1.$$

证:必要性.

设同余方程 $ax \equiv b \mod m$ 有解 $x \equiv x_0 \mod m$, 即存在整数 y_0 使 得 $ax_0 - my_0 = b$.

因为 $(a,m) \mid a, (a,m) \mid m$, 所以根据定理 1.1.3 有 $(a,m) \mid ax_0 - my_0$, 即 $(a,m) \mid b$.

充分性. 设 $(a,m) \mid b$, 则 $\frac{b}{(a,m)}$ 为整数.

首先, 考虑同余方程

$$\frac{a}{(a,m)}x \equiv 1 \mod \frac{m}{(a,m)}.$$

因为 $\left(\frac{a}{(a,m)},\frac{m}{(a,m)}\right)=1$,根据定理 3.1.1,存在唯一解 x_0 (或运用广义 欧几里德除法求出该整数 x_0),使得同余方程 $\frac{a}{(a,m)}x\equiv 1 \mod \frac{m}{(a,m)}$ 成立,而且有唯一解

$$x \equiv x_0 \mod \frac{m}{(a,m)}$$
.

事实上, 若同余方程 $\frac{a}{(a,m)}x_0 \equiv 1 \mod \frac{m}{(a,m)}$ 和 $\frac{a}{(a,m)}x_0' \equiv 1 \mod \frac{m}{(a,m)}$ 同时成立, 两式相减得到

$$\frac{a}{(a,m)}(x_0 - x_0') \equiv 0 \mod \frac{m}{(a,m)}.$$

因为 $\left(\frac{a}{(a,m)}, \frac{m}{(a,m)}\right) = 1$, 我们立即得到

$$x_0 \equiv x_0' \mod \frac{m}{(a,m)}$$
.

其次, 求出同余方程
$$\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$$
 的唯一解
$$x \equiv x_1 \equiv \frac{b}{(a,m)} \cdot x_0 \mod \frac{m}{(a,m)}.$$

而且, 该解是同余方程 $ax \equiv b \mod m$ 的一个特解.

其次, 求出同余方程
$$\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$$
 的唯一解 $x \equiv x_1 \equiv \frac{b}{(a,m)} \cdot x_0 \mod \frac{m}{(a,m)}$.

而且, 该解是同余方程 $ax \equiv b \mod m$ 的一个特解.

最后, 求出同余方程 $ax \equiv b \mod m$ 的全部解

$$x \equiv x_1 + t \cdot \frac{m}{(a, m)} \mod m, \ t = 0, 1, \dots, (a, m) - 1.$$

其次, 求出同余方程 $\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$ 的唯一解 $x \equiv x_1 \equiv \frac{b}{(a,m)} \cdot x_0 \mod \frac{m}{(a,m)}$.

而且, 该解是同余方程 $ax \equiv b \mod m$ 的一个特解.

最后, 求出同余方程 $ax \equiv b \mod m$ 的全部解

$$x \equiv x_1 + t \cdot \frac{m}{(a, m)} \mod m, \ t = 0, 1, \dots, (a, m) - 1.$$

事实上, 如果同时有同余方程 $ax_1 \equiv b \mod m$ 和 $ax_1' \equiv b \mod m$ 成立, 则两式相减得 $a(x_1 - x_1') \equiv 0 \mod m$. 性质 2.1.5 和性质 2.1.3, 这等价于 $x_1 \equiv x_1' \mod \frac{m}{(a,m)}$.

其次, 求出同余方程 $\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \mod \frac{m}{(a,m)}$ 的唯一解 $x \equiv x_1 \equiv \frac{b}{(a,m)} \cdot x_0 \mod \frac{m}{(a,m)}$.

而且, 该解是同余方程 $ax \equiv b \mod m$ 的一个特解.

最后, 求出同余方程 $ax \equiv b \mod m$ 的全部解

$$x \equiv x_1 + t \cdot \frac{m}{(a,m)} \mod m, \ t = 0, 1, \dots, (a,m) - 1.$$

事实上, 如果同时有同余方程 $ax_1 \equiv b \mod m$ 和 $ax_1' \equiv b \mod m$ 成立, 则两式相减得 $a(x_1 - x_1') \equiv 0 \mod m$. 性质 2.1.5 和性质 2.1.3, 这等价于

$$x_1 \equiv x_1' \mod \frac{m}{(a,m)}.$$

因此, 同余方程 $ax \equiv b \mod m$ 的全部解可写成

$$x \equiv \frac{b}{(a,m)} \cdot \left(\left(\frac{a}{(a,m)} \right)^{-1} \mod \frac{m}{(a,m)} \right) + t \cdot \frac{m}{(a,m)} \mod m,$$

$$t = 0, 1, \cdots, (a, m) - 1.$$

例 3.1.2 求解一次同余式 $39x \equiv 65 \mod 91$.

例 3.1.2 求解一次同余式 $39x \equiv 65 \mod 91$.

解: 首先, 计算最大公因数 (39,65) = 13, 并且有 (39,65) | 91, 所以原同余方程有解.

其次,运用广义欧几里德除法,求出同余方程

$$3x \equiv 1 \mod 7$$

的一个特解 $x'_0 \equiv 5 \mod 7$. 再次, 求出同余方程

$$3x \equiv 5 \mod 7$$

的一个特解 $x_0 \equiv 5 \cdot x_0' \equiv 5 \cdot 5 \equiv 4 \mod 7$.

最后, 求出原同余方程的全部解

$$x \equiv 4 + t \cdot \frac{91}{(39,65)} \equiv 4 + t \cdot 7 \mod 91, \ t = 0, 1, \dots, 12$$

或

 $x \equiv 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88 \mod 91.$

目录

- □ 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- ② 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

定理 3.2.1

设 m_1, \dots, m_k 是 k 个两两互素的正整数, $m = m_1 \dots m_k$, 则同余方程

$$f(x) \equiv 0 \mod m \tag{3.2.1}$$

与同余方程组

$$\begin{cases} f(x) \equiv 0 \mod m_1 \\ \vdots \\ f(x) \equiv 0 \mod m_k \end{cases}$$
 (3.2.2)

等价.

定理 3.2.1

设 m_1, \dots, m_k 是 k 个两两互素的正整数, $m = m_1 \dots m_k$, 则同余方程

$$f(x) \equiv 0 \mod m \tag{3.2.1}$$

与同余方程组

$$\begin{cases} f(x) \equiv 0 \mod m_1 \\ \vdots \\ f(x) \equiv 0 \mod m_k \end{cases}$$
 (3.2.2)

等价.

证: 设 x_0 是同余方程 (3.2.1) 的解, 则 $f(x_0) \equiv 0 \mod m$. 由性质 2.1.6, 我们有 $f(x_0) \equiv 0 \mod m_i$, $i = 1, \dots, k$, 即 x_0 是同余方程组 (3.2.2) 的解.

定理 3.2.1

设 m_1, \cdots, m_k 是 k 个两两互素的正整数, $m = m_1 \cdots m_k$, 则同余方程

$$f(x) \equiv 0 \mod m \tag{3.2.1}$$

与同余方程组

$$\begin{cases} f(x) \equiv 0 \mod m_1 \\ \vdots \\ f(x) \equiv 0 \mod m_k \end{cases}$$
 (3.2.2)

等价.

证: 设 x_0 是同余方程 (3.2.1) 的解, 则 $f(x_0) \equiv 0 \mod m$. 由性质 2.1.6, 我们有 $f(x_0) \equiv 0 \mod m$, $i = 1, \dots, k$, 即 x_0 是同余方程组 (3.2.2) 的解.

反过来,设 $f(x_0) \equiv 0 \mod m_i$, $i = 1, \dots, k$, 根据性质 2.1.7, 我们有 $f(x_0) \equiv 0 \mod m$, 即同余方程组 (3.2.2) 的解 x_0 也是同余方程 (3.2.1) 的解.

目录

- □ 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- ② 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?

答曰:二十三.

术曰: 三三数之剩二,置一百四十.五五数之剩三,置六十三.七七数之剩二,置三十.并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十.五五数之剩一,则置二十一.七七数之剩一,则置十五.即得.——《孙子算经》卷下第 26 "物不知数"题

今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?

答曰:二十三.

术曰: 三三数之剩二,置一百四十.五五数之剩三,置六十三.七七数之剩二,置三十.并之,得二百三十三,以二百一十减之,即得.凡三三数之剩一,则置七十.五五数之剩一,则置二十一.七七数之剩一,则置十五.即得. ——《孙子算经》卷下第 26 "物不知数"题

《孙子算经》

中国古代重要的数学著作,成书大约在四、五世纪,也就是大约一千五百年前.南北朝数术著作,《算经十书》之一.作者生平和编写年不详.传本的《孙子算经》共三卷.卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下包括线性方程组等实用的、趣味的问题.对后世的影响较为深远,如著名的"鸡兔同笼"问题、具有重大意义的"物不知数"问题等.

将其用同余方程组表示就是:

$$\begin{cases} x \equiv 2 \mod 3, \\ x \equiv 3 \mod 5, \\ x \equiv 2 \mod 7. \end{cases}$$

将其用同余方程组表示就是:

$$\begin{cases} x \equiv 2 \mod 3, \\ x \equiv 3 \mod 5, \\ x \equiv 2 \mod 7. \end{cases}$$

而解答过程就是

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233,$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$\begin{cases} x \equiv 2 \mod 3, \\ x \equiv 3 \mod 5, \\ x \equiv 2 \mod 7. \end{cases}$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233,$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233,$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$2 \cdot 2 \cdot \underline{5 \cdot 7} = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot \underline{3 \cdot 7} = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot \underline{3 \cdot 5} = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233,$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$\begin{cases} x \equiv 2 \mod 3, \\ b_1 & \downarrow m_1 \\ x \equiv 3 \mod 5, \\ x \equiv 2 \mod 7. \\ x \equiv 2 \mod 7. \\ b_3 & \downarrow m_3 \end{cases}$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233,$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233, = \sum_{i=1}^{3} b_i \cdot M_i' \cdot M_i$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$233 - 210 = 23.$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233, = \sum_{i=1}^{3} b_i \cdot M_i' \cdot M_i$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$m = m_1 \cdot m_2 \cdot m_3$$

$$233 - 210 = 23.$$

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63 + 30 = 233, = \sum_{i=1}^{3} b_i \cdot M_i' \cdot M_i$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$m = m_1 \cdot m_2 \cdot m_3$$

$$233 - 210 = 23.$$

而解答过程就是

$$2 \cdot 2 \cdot 5 \cdot 7 = 2 \cdot 70 = 140,$$

$$3 \cdot 1 \cdot 3 \cdot 7 = 3 \cdot 21 = 63,$$

$$2 \cdot 1 \cdot 3 \cdot 5 = 2 \cdot 15 = 30.$$

$$140 + 63^{3} + 30 = 233, = \sum_{i=1}^{3} b_{i} \cdot M'_{i} \cdot M_{i}$$

$$(-2) \cdot 3 \cdot 5 \cdot 7 = (-2) \cdot 105 = -210,$$

$$m = m_{1} \cdot m_{2} \cdot m_{3}$$

$$233 - 210 = 23.$$

19 / 42

进一步, 可表示成 $x = b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + b_3 \cdot M_3' \cdot M_3 + q \cdot m$,

其中 $m = m_1 \cdot m_2 \cdot m_3$, $M_i = \frac{m}{m_i}$, $M'_i \cdot M_i \equiv 1 \mod m_i$, i = 1, 2, 3.

明朝数学家程大位的《孙子歌》:

三人同行七十稀,五树梅花廿一枝, 七子团圆正月半,除百零五便得知。 明朝数学家程大位的《孙子歌》:

三人同行七十稀,五树梅花廿一枝, 七子团圆正月半,除百零五便得知。

秦九韶与"大衍求一术"

秦九韶 (1208 年 -1268 年), 南宋著名数学家. 1247 年完成著作《数书九章》, 其中的大衍求一术、三斜求积术和秦九韶算法是有世界意义的重要贡献.

大衍问题源于《孙子算经》中的"物不知数"问题,秦九韶在《数书九章》中明确系统地叙述了求解的一般性计算步骤,并称之为"大衍求一术". 这比高斯 1801 年建立的同余理论早 554 年,被西方称为"中国剩余定理",即现代数论中一次同余方程组解法,是中世纪世界数学的重要成就之一.

数学史家梁宗巨评价道:秦九韶的《数书九章》是一部划时代的巨著,内容丰富,精湛绝伦.特别是大衍求一术(不定方程的中国独特解法)及高次代数方程的数值解法,在世界数学史上占有崇高的地位.那时欧洲漫长的黑夜犹未结束,中国人的创造却像旭日一般在东方发出万丈光芒.

大行教術	見馬	雅圖式	情则	周而
大行教術	見馬	雅圖式	情则好	同而
行教術	見馬	雅圖式	情則力	周雨
教術	E,	圖式	则	m
術	i	太	#2	
	- 8			15
- 1		120	140	法則無
		蚌	為元法	無
/ I	- 3	4	1	
- 1		群	晒	eb.
4 3	- 8	מת	12.	24:
- 3	- 3	改	所	11-
- 1	- 13	定	未	柚
1		#	及	和較之
- 1		權	者	軟
1		其	12	之
	- 8	A	游、	用
	- 8	倬	本	18
1		单	:1:	哥
		*	解	鸽
			群加政定並釋其美律學去	群加改定盖

相关历史背景

在欧洲最早接触一次同余方程的,是和秦九韶同时代的意大利数学家裴波那契 (1170 年 - 1250 年),他在《算法之书》中给出了两个一次同余问题,但是没有一般的算法.这两个问题从形式到数据都和"物不知数"题相仿,整个水平没有超过《孙子算经》.

相关历史背景

在欧洲最早接触一次同余方程的,是和秦九韶同时代的意大利数学家装波那契 (1170 年 - 1250 年),他在《算法之书》中给出了两个一次同余问题,但是没有一般的算法.这两个问题从形式到数据都和"物不知数"题相仿,整个水平没有超过《孙子算经》.

直到十八、十九世纪,大数学家欧拉于 1743 年、高斯于 1801 年对一般一次同余方程进行了详细研究,才重新获得和秦九韶"大衍求一术"相同的定理,并对模数两两互素的情形给出了严格证明. 欧拉和高斯事先并不知道中国人的工作.

相关历史背景

在欧洲最早接触一次同余方程的,是和秦九韶同时代的意大利数学家裴波那契 (1170 年 - 1250 年),他在《算法之书》中给出了两个一次同余问题,但是没有一般的算法.这两个问题从形式到数据都和"物不知数"题相仿,整个水平没有超过《孙子算经》.

直到十八、十九世纪,大数学家欧拉于 1743 年、高斯于 1801 年对一般一次同余方程进行了详细研究,才重新获得和秦九韶"大衍求一术"相同的定理,并对模数两两互素的情形给出了严格证明. 欧拉和高斯事先并不知道中国人的工作.

1852 年英国传教士伟烈亚力发表《中国科学摘记》,介绍了《孙子算经》物不知数题和秦九韶的解法,引起了欧洲学者的重视. 1876 年,德国马蒂生首先指出孙子问题的解法和高斯方法一致. 当时德国著名数学史家康托(1829 年 - 1920 年)看到马蒂生的文章后,高度评价了"大衍术",并称赞发现这一方法的中国数学家是"最幸运的天才". 直到今天,"大衍求一术"仍然引起西方数学史家浓厚的研究兴趣.

现在我们考虑"物不知数"问题的推广形式,即非常重要的中国剩余定理或孙子定理.

定理 3.2.2 (中国剩余定理, Chinese Remainder Theorem)

设 m_1, \dots, m_k 是 k 个两两互素的正整数,则对任意的整数 b_1, \dots, b_k ,同余方程组

$$\begin{cases} x \equiv b_1 \mod m_1 \\ \vdots \\ x \equiv b_k \mod m_k \end{cases}$$
 (3.2.3)

一定有解, 且解是唯一的, 即

(i) 若令 $m = m_1 \cdots m_k$, $m = m_i \cdot M_i$, $i = 1, \dots, k$, 则同余方程组 (3.2.3) 的解可表示为

$$x \equiv b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \dots + b_k \cdot M_k' \cdot M_k \mod m,$$
 其中 $M_i' \cdot M_i \equiv 1 \mod m_i, \ i = 1, 2, \dots, k.$

(ii) 若令 $N_i = m_1 \cdots m_i, i = 1, \cdots, k-1,$ 则同余方程组 (3.2.3) 的解可表示为

$$x \equiv x_k \mod (m_1 \cdots m_k),$$

其中 $N_i \cdot N_i \equiv 1 \mod m_{i+1}$, $i = 1, 2, \dots, k-1$, 而 x_i 是同余方程组

$$\begin{cases} x \equiv b_1 \mod m_1 \\ \vdots \\ x \equiv b_i \mod m_i \end{cases}$$

的解, $i = 1, \dots, k$, 并满足递归关系式

$$x_i \equiv x_{i-1} + ((b_i - x_{i-1})N'_{i-1} \mod m_i) \cdot N_{i-1} \mod (m_1 \cdots m_i), \ i = 2, \cdots, k.$$

证: (i) 构造法证明.

首先,证明解的存在性.直接构造同余方程组的解:

根据假设条件, 对任意给定的 $i,1 \le i \le k$, 有

$$(m_i, M_j) = 1, \ 1 \leqslant j \leqslant k, j \neq i.$$

又根据推论 1.2.1 有 $(m_i, M_i) = 1$. 再运用广义欧几里德除法, 可分别求出整数 M_i , $i = 1, 2, \dots, k$, 使得 $M_i \cdot M_i \equiv 1 \mod m_i$, $i = 1, 2, \dots, k$.

证: (i) 构造法证明.

首先,证明解的存在性.直接构造同余方程组的解:

根据假设条件, 对任意给定的 $i,1 \le i \le k$, 有

$$(m_i, M_j) = 1, \ 1 \leqslant j \leqslant k, j \neq i.$$

又根据推论 1.2.1 有 $(m_i, M_i) = 1$. 再运用广义欧几里德除法, 可分别求

出整数 M_i , $i=1,2,\cdots,k$, 使得 $M_i \in \mathbb{N}$ mod m_i , $i=1,2,\cdots,k$.

这样, 我们构造出一个如下的整数, 即

$$x = b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \dots + b_k \cdot M_k' \cdot M_k \mod m.$$

因为 $m = m_i \cdot M_i$ 及 $m_i \mid M_j$, $1 \leq j \leq k, j \neq i$,

所以,这个整数x满足同余方程

$$x \equiv 0 + \dots + 0 + b_i \cdot M_i' \cdot M_i + 0 + \dots + 0 \equiv b_i \mod m_i, \ i = 1, 2, \dots, k.$$

也就是说, $x = b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \dots + b_k \cdot M_k' \cdot M_k \mod m$ 是同余方程组 (3.2.3) 的解.

其次, 证明解的唯一性. 设 x, x' 都是满足同余方程组 (3.2.3) 的解,则 $x \equiv b_i \equiv x' \mod m_i, i = 1, 2, \cdots, k$. 因为 m_1, \cdots, m_k 是两两互素的正整数, 根据性质 2.1.7, 我们得到 $x \equiv x' \mod m$.

其次, 证明解的唯一性. 设 x, x' 都是满足同余方程组 (3.2.3) 的解,则 $x \equiv b_i \equiv x' \mod m_i, \ i = 1, 2, \cdots, k$. 因为 m_1, \cdots, m_k 是两两互素的正整数, 根据性质 2.1.7, 我们得到 $x \equiv x' \mod m$.

(ii) 递归法证明.

k=1 时, 同余方程 $x \equiv b_1 \mod m_1$ 的解为 $x \equiv x_1 \equiv b_1 \mod m_1$. k=2 时, 原同余方程组等价于

$$\begin{cases} x \equiv b_1 \mod N_1, \\ x \equiv b_2 \mod m_2. \end{cases}$$
 (3.2.4)

其次, 证明解的唯一性. 设 x, x' 都是满足同余方程组 (3.2.3) 的解,则 $x \equiv b_i \equiv x' \mod m_i, \ i = 1, 2, \cdots, k$. 因为 m_1, \cdots, m_k 是两两互素的正整数,根据性质 2.1.7, 我们得到 $x \equiv x' \mod m$.

(ii) 递归法证明.

k=1 时, 同余方程 $x \equiv b_1 \mod m_1$ 的解为 $x \equiv x_1 \equiv b_1 \mod m_1$. k=2 时, 原同余方程组等价于

$$\begin{cases} x \equiv b_1 \mod N_1, \\ x \equiv b_2 \mod m_2. \end{cases}$$
 (3.2.4)

由同余方程组 (3.2.4) 的第一个同余方程有解 $x \equiv x_1 \equiv b_1 \mod N_1$, 其中 $N_1 = m_1$, 可将同余方程组的解表示为 (y_1) 为待定参数) $x = x_1 + y_1 \cdot N_1$.

其次, 证明解的唯一性. 设 x, x' 都是满足同余方程组 (3.2.3) 的解,则 $x \equiv b_i \equiv x' \mod m_i, \ i = 1, 2, \cdots, k$. 因为 m_1, \cdots, m_k 是两两互素的正整数,根据性质 2.1.7, 我们得到 $x \equiv x' \mod m$.

(ii) 递归法证明.

k=1 时, 同余方程 $x \equiv b_1 \mod m_1$ 的解为 $x \equiv x_1 \equiv b_1 \mod m_1$. k=2 时, 原同余方程组等价于

$$\begin{cases} x \equiv b_1 \mod N_1, \\ x \equiv b_2 \mod m_2. \end{cases}$$
 (3.2.4)

由同余方程组 (3.2.4) 的第一个同余方程有解 $x \equiv x_1 \equiv b_1 \mod N_1$, 其中 $N_1 = m_1$, 可将同余方程组的解表示为 (y_1) 为待定参数) $x = x_1 + y_1 \cdot N_1$.

将 x 代入同余方程组 (3.2.4) 的第二个同余方程, 有

$$x_1 + y_1 \cdot N_1 \equiv b_2 \mod m_2,$$

即
$$y_1 \cdot N$$

$$y_1 \cdot N_1 \equiv b_2 - x_1 \mod m_2.$$

(3.2.5)

其次, 证明解的唯一性. 设 x,x' 都是满足同余方程组 (3.2.3) 的解,则 $x \equiv b_i \equiv x' \mod m_i, \ i=1,2,\cdots,k$. 因为 m_1,\cdots,m_k 是两两互素的正整数,根据性质 2.1.7, 我们得到 $x \equiv x' \mod m$.

(ii) 递归法证明.

k=1 时, 同余方程 $x \equiv b_1 \mod m_1$ 的解为 $x \equiv x_1 \equiv b_1 \mod m_1$. k=2 时, 原同余方程组等价于

$$\begin{cases} x \equiv b_1 \mod N_1, \\ x \equiv b_2 \mod m_2. \end{cases}$$
 (3.2.4)

由同余方程组 (3.2.4) 的第一个同余方程有解 $x \equiv x_1 \equiv b_1 \mod N_1$, 其中 $N_1 = m_1$, 可将同余方程组的解表示为 (y_1) 为待定参数 $x = x_1 + y_1 \cdot N_1$.

将 x 代入同余方程组 (3.2.4) 的第二个同余方程, 有

$$x_1 + y_1 \cdot N_1 \equiv b_2 \mod m_2,$$

即
$$y_1 \cdot N_1 \equiv b_2 - x_1 \mod m_2$$
.

(3.2.5)

运用广义欧几里德除法, 对整数 N_1 及模 m_2 , 可求出整数 N_1 使得

$$N_1' \cdot N_1 \equiv 1 \mod m_2$$
.

$$N_1' \cdot N_1 \equiv 1 \mod m_2$$
.

$$y_1 \equiv (b_2 - x_1) \cdot N_1' \mod m_2.$$

$$N_1' \cdot N_1 \equiv 1 \mod m_2$$
.

$$y_1 \equiv (b_2 - x_1) \cdot N_1' \mod m_2.$$

故同余方程组 (3.2.4) 的解为

$$x = x_2 = x_1 + ((b_2 - x_1) \cdot N_1' \mod m_2) \cdot N_1 \mod (m_1 m_2).$$

$$N_1' \cdot N_1 \equiv 1 \mod m_2$$
.

$$y_1 \equiv (b_2 - x_1) \cdot N_1' \mod m_2.$$

故同余方程组 (3.2.4) 的解为

$$x = x_2 = x_1 + ((b_2 - x_1) \cdot N_1' \mod m_2) \cdot N_1 \mod (m_1 m_2).$$

假设 i-1 $(i \ge 2)$ 时, 结论成立. 即

$$\begin{cases} x \equiv b_1 \mod m_1 \\ \vdots \\ x \equiv b_{i-1} \mod m_{i-1} \end{cases}$$

有解 $x \equiv x_{i-1} \mod (m_1 \cdots m_{i-1})$.

$$N_1' \cdot N_1 \equiv 1 \mod m_2$$
.

$$y_1 \equiv (b_2 - x_1) \cdot N_1' \mod m_2.$$

故同余方程组 (3.2.4) 的解为

$$x = x_2 = x_1 + ((b_2 - x_1) \cdot N_1' \mod m_2) \cdot N_1 \mod (m_1 m_2).$$

假设 i-1 ($i \ge 2$) 时, 结论成立. 即

$$\begin{cases} x \equiv b_1 \mod m_1 \\ \vdots \\ x \equiv b_{i-1} \mod m_{i-1} \end{cases}$$

有解 $x \equiv x_{i-1} \mod (m_1 \cdots m_{i-1})$.

对于
$$i$$
, 同余方程组
$$\begin{cases} x \equiv b_1 \mod m_1 \\ \vdots \\ x \equiv b_i \mod m_i \end{cases}$$

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

类似于 k=2 的情形, 由同余方程组 (3.2.6) 的第一个同余方程有解 $x \equiv x_{i-1} \mod N_{i-1}$, 可将同余方程组的解表示为 (y_{i-1}) 为待定参数) $x = x_{i-1} + y_{i-1} \cdot N_{i-1}$.

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

类似于 k=2 的情形, 由同余方程组 (3.2.6) 的第一个同余方程有解 $x \equiv x_{i-1} \mod N_{i-1}$, 可将同余方程组的解表示为 $(y_{i-1}$ 为待定参数)

$$x = x_{i-1} + y_{i-1} \cdot N_{i-1}.$$

将 x 代入同余方程组 (3.2.6) 的第二个同余方程, 有 $x_{i-1} + y_{i-1} \cdot N_{i-1} \equiv b_i \mod m_i$,

$$y_{i-1} \cdot N_{i-1} \equiv b_i - x_{i-1} \mod m_i.$$
 (3.2.7)

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

类似于 k = 2 的情形, 由同余方程组 (3.2.6) 的第一个同余方程有解 $x \equiv x_{i-1} \mod N_{i-1}$, 可将同余方程组的解表示为 (y_{i-1}) 为待定参数)

$$x = x_{i-1} + y_{i-1} \cdot N_{i-1}.$$

将 x 代入同余方程组 (3.2.6) 的第二个同余方程, 有 $x_{i-1} + y_{i-1} \cdot N_{i-1} \equiv b_i \mod m_i$,

$$y_{i-1} \cdot N_{i-1} \equiv b_i - x_{i-1} \mod m_i.$$
 (3.2.7)

运用广义欧几里德除法, 对整数 N_{i-1} 及模 m_i , 可求出整数 N_{i-1}' 使得 $N_{i-1}' \cdot N_{i-1} \equiv 1 \mod m_i$,

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

类似于 k = 2 的情形, 由同余方程组 (3.2.6) 的第一个同余方程有解 $x \equiv x_{i-1} \mod N_{i-1}$, 可将同余方程组的解表示为 (y_{i-1}) 为待定参数)

$$x = x_{i-1} + y_{i-1} \cdot N_{i-1}.$$

将 x 代入同余方程组 (3.2.6) 的第二个同余方程, 有 $x_{i-1} + y_{i-1} \cdot N_{i-1} \equiv b_i \mod m_i$,

$$y_{i-1} \cdot N_{i-1} \equiv b_i - x_{i-1} \mod m_i.$$
 (3.2.7)

运用广义欧几里德除法, 对整数 N_{i-1} 及模 m_i , 可求出整数 N'_{i-1} 使得 $N'_{i-1} \cdot N_{i-1} \equiv 1 \mod m_i$, 将同余方程 (3.2.7) 的两端同乘以 N'_{i-1} , 得 $y_{i-1} \equiv (b_i - x_{i-1}) \cdot N'_{i-1} \mod m_i$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ■ 釣९♡

等价于同余方程组
$$\begin{cases} x \equiv x_{i-1} \mod N_{i-1}, \\ x \equiv b_i \mod m_i. \end{cases}$$
 (3.2.6)

类似于 k = 2 的情形, 由同余方程组 (3.2.6) 的第一个同余方程有解 $x \equiv x_{i-1} \mod N_{i-1}$, 可将同余方程组的解表示为 $(y_{i-1}$ 为待定参数)

$$x = x_{i-1} + y_{i-1} \cdot N_{i-1}.$$

将 x 代入同余方程组 (3.2.6) 的第二个同余方程, 有 $x_{i-1} + y_{i-1} \cdot N_{i-1} \equiv b_i \mod m_i$,

$$y_{i-1} \cdot N_{i-1} \equiv b_i - x_{i-1} \mod m_i.$$
 (3.2.7)

运用广义欧几里德除法, 对整数 N_{i-1} 及模 m_i , 可求出整数 N'_{i-1} 使得 $N'_{i-1} \cdot N_{i-1} \equiv 1 \mod m_i$, 将同余方程 (3.2.7) 的两端同乘以 N'_{i-1} , 得 $y_{i-1} \equiv (b_i - x_{i-1}) \cdot N'_{i-1} \mod m_i$.

故同余方程组 (3.2.6) 的解为

 $x = x_i = x_{i-1} + ((b_i - x_{i-1}) \cdot N'_{i-1} \mod m_i) \cdot N_{i-1} \mod (m_1 m_2 \cdots m_i).$

根据数学归纳法原理, 结论成立.

例 3.2.1 求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 5, \\ x \equiv b_2 \mod 6, \\ x \equiv b_3 \mod 7, \\ x \equiv b_4 \mod 11. \end{cases}$$

例 3.2.1 求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 5, \\ x \equiv b_2 \mod 6, \\ x \equiv b_3 \mod 7, \\ x \equiv b_4 \mod 11. \end{cases}$$

解: 令
$$m = 5 \cdot 6 \cdot 7 \cdot 11 = 2310$$
,
 $M_1 = 6 \cdot 7 \cdot 11 = 462$, $M_2 = 5 \cdot 7 \cdot 11 = 385$,
 $M_3 = 5 \cdot 6 \cdot 11 = 330$, $M_4 = 5 \cdot 6 \cdot 7 = 210$.
分别求解同余方程

$$M'_i \cdot M_i \equiv 1 \mod m_i, i = 1, 2, 3, 4.$$

得到
$$M'_1 = 3, M'_2 = 1, M'_3 = 1, M'_4 = 1.$$

故同余方程组的解为

$$x \equiv 3 \cdot 462 \cdot b_1 + 385 \cdot b_2 + 330 \cdot b_3 + 210 \cdot b_4 \mod 2130.$$

例 3.2.2 韩信点兵: 有兵一队. 若列成五行纵队, 则末行一人; 成六行纵队, 则末行五人; 成七行纵队, 则末行四人; 成十一行纵队, 则末行十人. 求兵数.

例 3.2.2 韩信点兵: 有兵一队. 若列成五行纵队, 则末行一人; 成六行纵队, 则末行五人; 成七行纵队, 则末行四人; 成十一行纵队, 则末行十人. 求兵数.

解: 韩信点兵问题可转化为同余方程组:

$$\begin{cases} x \equiv 1 \mod 5, \\ x \equiv 5 \mod 6, \\ x \equiv 4 \mod 7, \\ x \equiv 10 \mod 11. \end{cases}$$

例 3.2.2 韩信点兵:有兵一队. 若列成五行纵队,则末行一人;成六行纵队,则末行五人;成七行纵队,则末行四人;成十一行纵队,则末行十人. 求兵数.

解: 韩信点兵问题可转化为同余方程组:

$$\begin{cases} x \equiv 1 \mod 5, \\ x \equiv 5 \mod 6, \\ x \equiv 4 \mod 7, \\ x \equiv 10 \mod 11. \end{cases}$$

解一. 对
$$b_1 = 1, b_2 = 5, b_3 = 4, b_4 = 10$$
, 应用例 3.2.1, 得到
$$x \equiv 3 \cdot 462 + 385 \cdot 5 + 330 \cdot 4 + 210 \cdot 10$$

$$\equiv 6731$$

$$\equiv 2111 \mod 2310.$$

解二. 归纳构造同余方程的解.

◆ロト ◆御 ト ◆草 ト ◆草 ト 草 りゅう

将 x 代入同余方程组的第二个同余方程, 有 $1+5y \equiv 5 \mod 6$, 即 $5y \equiv 4 \mod 6$.

将 x 代入同余方程组的第二个同余方程, 有 $1+5y\equiv 5 \mod 6$, 即 $5y\equiv 4 \mod 6$.

运用广义欧几里德除法, 对整数 $N_1=5$ 及模 $m_2=6$, 可求出整数 $N_1'=N_1^{-1}\equiv 5\mod 6$, 进而有 $y\equiv 5\cdot 4\equiv 2\mod 6$.

故同余方程组的解为 $x = x_2 = 1 + 5 \cdot 2 \equiv 11 \mod 30$.

将 x 代入同余方程组的第二个同余方程, 有 $1+5y\equiv 5 \mod 6$, 即 $5y\equiv 4 \mod 6$.

运用广义欧几里德除法, 对整数 $N_1=5$ 及模 $m_2=6$, 可求出整数 $N_1=N_1^{-1}\equiv 5 \mod 6$, 进而有 $y\equiv 5\cdot 4\equiv 2 \mod 6$.

故同余方程组的解为 $x = x_2 = 1 + 5 \cdot 2 \equiv 11 \mod 30$.

可将它表示为 (y) 为待定参数) $x = x_2 = 11 + 30y$.

将 x 代入同余方程组的第二个同余方程, 有 $1+5y\equiv 5 \mod 6$, 即 $5y\equiv 4 \mod 6$.

运用广义欧几里德除法, 对整数 $N_1=5$ 及模 $m_2=6$, 可求出整数 $N_1'=N_1^{-1}\equiv 5\mod 6$, 进而有 $y\equiv 5\cdot 4\equiv 2\mod 6$.

故同余方程组的解为 $x = x_2 = 1 + 5 \cdot 2 \equiv 11 \mod 30$.

可将它表示为 (y) 为待定参数) $x = x_2 = 11 + 30y$.

将 x 代入同余方程组的第三个同余方程, 有 $11+30y \equiv 4 \mod 7$, 即 $30y \equiv 4-11 \equiv 0 \mod 7$.

将 x 代入同余方程组的第二个同余方程, 有 $1+5y\equiv 5 \mod 6$, 即 $5y\equiv 4 \mod 6$.

运用广义欧几里德除法, 对整数 $N_1=5$ 及模 $m_2=6$, 可求出整数 $N_1'=N_1^{-1}\equiv 5\mod 6$, 进而有 $y\equiv 5\cdot 4\equiv 2\mod 6$.

故同余方程组的解为 $x = x_2 = 1 + 5 \cdot 2 \equiv 11 \mod 30$.

可将它表示为 (y) 为待定参数) $x = x_2 = 11 + 30y$.

将 x 代入同余方程组的第三个同余方程, 有 $11 + 30y \equiv 4 \mod 7$, 即 $30y \equiv 4 - 11 \equiv 0 \mod 7$.

运用广义欧几里德除法, 对整数 $N_2=30$ 及模 $m_3=7$, 可求出整数 $N_2'=N_2^{-1}\equiv 4\mod 7$, 进而有 $y\equiv 4\cdot 0\equiv 0\mod 7$.

故同余方程组的解为 $x = x_3 = 11 + 30 \cdot 0 \equiv 11 \mod 210$.

可将它表示为 (y) 为待定参数) x = 11 + 210y.

可将它表示为 (y) 为待定参数) x = 11 + 210y.

将 x 代入同余方程组的第四个同余方程,有 $11+210y\equiv 10$ mod 11, 即 $210y\equiv 10-11\equiv 10$ mod 11.

可将它表示为 (y) 为待定参数) x = 11 + 210y.

将 x 代入同余方程组的第四个同余方程, 有 $11 + 210y \equiv 10$ mod 11, 即 $210y \equiv 10 - 11 \equiv 10 \mod 11$.

运用广义欧几里德除法, 对整数 $N_3=210$ 及模 $m_4=11$, 可求出整数 $N_3'=N_3^{-1}\equiv 1\mod 11$, 进而有 $y\equiv 1\cdot 10\equiv 10\mod 11$.

故同余方程组的解为 $x = x_4 = 11 + 210 \cdot 10 \equiv 2111 \mod 2310$.

目录

- □ 一次同余方程
 - 同余方程的基本概念
 - 一次同余方程求解
- ② 中国剩余定理
 - 同余方程组
 - 中国剩余定理及其证明
 - 中国剩余定理应用

利用中国剩余定理,可以将一些复杂的运算转化为较简单的运算.

利用中国剩余定理,可以将一些复杂的运算转化为较简单的运算.

例 3.2.3 计算 2¹⁰⁰⁰⁰⁰⁰ mod 77.

利用中国剩余定理, 可以将一些复杂的运算转化为较简单的运算. **例** 3.2.3 计算 $2^{1000000}$ mod 77.

解一:利用定理 2.2.13 (欧拉定理)及模重复平方计算法进行求解.

因为 $77=7\cdot 11, \varphi(77)=\varphi(7)\varphi(11)=60$,所以由定理 2.2.13(欧拉定理)得, $2^{60}\equiv 1\mod 77$. 又 $1000000=16666\cdot 60+40$,所以 $2^{1000000}=(2^{60})^{16666}\cdot 2^{40}\equiv 2^{40}\mod 77.$

利用中国剩余定理,可以将一些复杂的运算转化为较简单的运算.

例 3.2.3 计算 2¹⁰⁰⁰⁰⁰⁰ mod 77.

解一:利用定理 2.2.13 (欧拉定理)及模重复平方计算法进行求解.

因为 $77=7\cdot 11, \varphi(77)=\varphi(7)\varphi(11)=60$,所以由定理 2.2.13(欧拉定理)得, $2^{60}\equiv 1\mod 77$. 又 $1000000=16666\cdot 60+40$,所以 $2^{1000000}=(2^{60})^{16666}\cdot 2^{40}\equiv 2^{40}\mod 77.$

设 m = 77, b = 2, 令 a = 1. 将 40 写成二进制 $40 = 2^3 + 2^5$.

运用模重复平方法, 我们依次计算如下:

- (1) $n_0 = 0$, $\text{th} \not\equiv a_0 = a \equiv 1, b_1 = b^2 \equiv 4 \mod 77$.

- (4) $n_3 = 1$, $\exists a_3 = a_2 \cdot b_3 \equiv 25, b_4 = b_3^2 \equiv 9 \mod 77$.

最后计算得出, $2^{1000000} \equiv 23 \mod 77$.

最后计算得出, $2^{10000000} \equiv 23 \mod 77$.

解二: 利用中国剩余定理进行优化求解.

令 $x=2^{1000000}$. 因为 $77=7\cdot 11$, 所以计算 $x \mod 77$ 等价于求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 7, \\ x \equiv b_2 \mod 11. \end{cases}$$

最后计算得出, $2^{1000000} \equiv 23 \mod 77$.

解二:利用中国剩余定理进行优化求解.

令 $x = 2^{1000000}$. 因为 $77 = 7 \cdot 11$, 所以计算 $x \mod 77$ 等价于求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 7, \\ x \equiv b_2 \mod 11. \end{cases}$$

由欧拉定理知, $2^{\varphi(7)}=2^6\equiv 1\mod 7$, 而 $1000000=166666\cdot 6+4$, 所以 $b_1\equiv 2^{1000000}=(2^6)^{166666}\cdot 2^4\equiv 2\mod 7$.

类似地,因为 $2^{\varphi(11)}=2^{10}\equiv 1\mod 11$,而 $1000000=100000\cdot 10$,所以 $b_2\equiv 2^{1000000}=(2^{10})^{100000}\equiv 1\mod 11$.

最后计算得出, $2^{10000000} \equiv 23 \mod 77$.

解二: 利用中国剩余定理进行优化求解.

令 $x=2^{1000000}$. 因为 $77=7\cdot 11$, 所以计算 $x \mod 77$ 等价于求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 7, \\ x \equiv b_2 \mod 11. \end{cases}$$

由欧拉定理知, $2^{\varphi(7)}=2^6\equiv 1\mod 7$, 而 $1000000=166666\cdot 6+4$, 所以 $b_1\equiv 2^{1000000}=(2^6)^{166666}\cdot 2^4\equiv 2\mod 7$.

类似地,因为 $2^{\varphi(11)}=2^{10}\equiv 1\mod 11$,而 $1000000=100000\cdot 10$,所以 $b_2\equiv 2^{1000000}=(2^{10})^{100000}\equiv 1\mod 11$.

即求下列同余方程组的解.

$$\begin{cases} x \equiv 2 \mod 7, \\ x \equiv 1 \mod 11. \end{cases}$$

令
$$m_1=7, m_2=11, m=m_1\cdot m_2=77,$$
 以及
$$M_1=m_2=11, M_2=m_1=7,$$
 分别求解同余方程
$$11M_1'\equiv 1\mod 7,\ 7M_2'\equiv 1\mod 11.$$

得到

$$M_1' = 2, M_2' = 8.$$

故

$$x \equiv 2 \cdot 11 \cdot 2 + 8 \cdot 7 \cdot 1 \equiv 100 \equiv 23 \mod 77.$$

因此, $2^{1000000} \equiv 23 \mod 77$.

令
$$m_1=7, m_2=11, m=m_1\cdot m_2=77$$
,以及 $M_1=m_2=11, M_2=m_1=7$,分别求解同余方程 $11M_1'\equiv 1 \mod 7, \ 7M_2'\equiv 1 \mod 11.$

得到

$$M_1' = 2, M_2' = 8.$$

故

$$x \equiv 2 \cdot 11 \cdot 2 + 8 \cdot 7 \cdot 1 \equiv 100 \equiv 23 \mod 77.$$

因此, $2^{1000000} \equiv 23 \mod 77$.

例 3.2.4 (RSA 公钥密码系统原型)

令
$$m_1=7, m_2=11, m=m_1\cdot m_2=77,$$
 以及
$$M_1=m_2=11, M_2=m_1=7,$$
 分别求解同余方程
$$11M_1'\equiv 1\mod 7, \ 7M_2'\equiv 1\mod 11.$$

得到

$$M_1' = 2, M_2' = 8.$$

故

$$x \equiv 2 \cdot 11 \cdot 2 + 8 \cdot 7 \cdot 1 \equiv 100 \equiv 23 \mod 77.$$

因此, $2^{1000000} \equiv 23 \mod 77$.

例 3.2.4 (RSA 公钥密码系统原型)

系统建立.

假设公钥密码系统使用 N=26 字符集 \mathcal{N} . 明文信息空间为 k=4-字符组成的集合 $\mathcal{M}=\mathcal{N}^k$. 密文信息空间为 l=5-字符组成的集合 $\mathcal{C}=\mathcal{N}^l$. 针对每个用户 (譬如信息接收方 A), 选取素数对 p=2017, q=2027.

(1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.

- (1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.
- (2) 随机选取整数 $e = 365, 1 < e < \varphi(n)$, 使得 $(e, \varphi(n)) = 1$.

- (1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.
- (2) 随机选取整数 $e = 365, 1 < e < \varphi(n)$, 使得 $(e, \varphi(n)) = 1$.
- (3) 运用广义欧几里德算法计算唯一的整数 $d = 1051877, 1 < d < \varphi(n)$, 使得 $e \cdot d \equiv 1 \mod \varphi(n)$.

- (1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.
- (2) 随机选取整数 $e = 365, 1 < e < \varphi(n)$, 使得 $(e, \varphi(n)) = 1$.
- (3) 运用广义欧几里德算法计算唯一的整数 $d = 1051877, 1 < d < \varphi(n)$, 使得 $e \cdot d \equiv 1 \mod \varphi(n)$.

则用户 A 的公钥 K_e 是数组 (n,e)=(4088459,365), 私钥是 $K_d=d=1051877$.

- (1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.
- (2) 随机选取整数 $e = 365, 1 < e < \varphi(n)$, 使得 $(e, \varphi(n)) = 1$.
- (3) 运用广义欧几里德算法计算唯一的整数 $d=1051877, 1 < d < \varphi(n)$, 使得 $e \cdot d \equiv 1 \mod \varphi(n)$.

则用户 A 的公钥 K_e 是数组 (n,e)=(4088459,365), 私钥是 $K_d=d=1051877.$

加密算法.

为加密信息 m = math, 将明文 math 转换成数字信息:

$$m = 13 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26 + 8 = 229692.$$

任意发送方 B, 利用接收方 A 的公钥 K_e 计算出

$$c = m^e \mod n = 229692^{365} \equiv 3937358 \mod 4088459.$$

再将其转换成字符信息

$$c = 3937358 = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = \text{hpzlv},$$

即为待发送的密文.

- (1) 计算 n = pq = 4088459 和 $\varphi(n) = (p-1)(q-1) = 4084416$.
- (2) 随机选取整数 $e = 365, 1 < e < \varphi(n)$, 使得 $(e, \varphi(n)) = 1$.
- (3) 运用广义欧几里德算法计算唯一的整数 $d=1051877, 1 < d < \varphi(n)$, 使得 $e \cdot d \equiv 1 \mod \varphi(n)$.

则用户 A 的公钥 K_e 是数组 (n,e)=(4088459,365), 私钥是 $K_d=d=1051877.$

加密算法.

为加密信息 m = math, 将明文 math 转换成数字信息:

$$m = 13 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26 + 8 = 229692.$$

任意发送方 B, 利用接收方 A 的公钥 K_e 计算出

$$c = m^e \mod n = 229692^{365} \equiv 3937358 \mod 4088459.$$

再将其转换成字符信息

$$c = 3937358 = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = \text{hpzlv},$$

即为待发送的密文.

为解密接收到的信息 hpzlv, 用户 A 将其转换成数字信息 $c = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = 3937358.$

为解密接收到的信息 hpzlv, 用户 A 将其转换成数字信息

$$c = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = 3937358.$$

再利用自己的私钥 K_d 计算出

 $c^d \mod n = 3937358^{1051877} \equiv 229692 \mod 4088459.$

为解密接收到的信息 hpzlv, 用户 A 将其转换成数字信息

$$c = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = 3937358.$$

再利用自己的私钥 K_d 计算出

$$c^d \mod n = 3937358^{1051877} \equiv 229692 \mod 4088459.$$

并将其转换成字符信息 $229692 = 13 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26 + 8 = \text{math}$, 即为明文.

为解密接收到的信息 hpzlv, 用户 A 将其转换成数字信息

$$c = 8 \cdot 26^4 + 16 \cdot 26^3 + 0 \cdot 26^2 + 12 \cdot 26 + 22 = 3937358.$$

再利用自己的私钥 K_d 计算出

$$c^d \mod n = 3937358^{1051877} \equiv 229692 \mod 4088459.$$

并将其转换成字符信息 $229692 = 13 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26 + 8 = \text{math}$, 即为明文.

注: 需要强调的是, 在加密算法中因发送方 B 不知道用户 A 的公钥中 n 的整数分解, 即 p 和 q, 所以在计算 $c = m^e \mod n$ 时无法使用中国剩余 定理进行优化运算.

但在解密算法中,用户 A 知道自己的私钥,进而可等同于知道 n 的整数分解,所以可以利用中国剩余定理简化计算 $c^d \mod n$.

事实上, 令 $x = 3937358^{1051877}$, 因为 $4088459 = 2017 \cdot 2027$, 所以计算 $x \mod 4088459$ 等价于求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 2017, \\ x \equiv b_2 \mod 2027. \end{cases}$$

事实上, 令 $x = 3937358^{1051877}$, 因为 $4088459 = 2017 \cdot 2027$, 所以计算 $x \mod 4088459$ 等价于求解同余方程组

$$\begin{cases} x \equiv b_1 \mod 2017, \\ x \equiv b_2 \mod 2027. \end{cases}$$

由同余性质、费马小定理和模重复平方计算法得,

$$b_1 \equiv 3937358^{1051877} \equiv 174^{1541} \equiv 1771 \mod 2017,$$

$$b_2 \equiv 3937358^{1051877} \equiv 924^{383} \equiv 641 \mod 2027.$$

根据中国剩余定理, 先分别求出 $qq' \equiv 1 \mod p$ 和 $pp' \equiv 1 \mod q$, 即 $2027q' \equiv 1 \mod 2017$ 和 $2017p' \equiv 1 \mod 2027$, 亦即 $q' \equiv 1412 \mod 2017$ 和 $p' \equiv 608 \mod 2027$.

再得出同余方程组的解

 $x \equiv 1771 \cdot 1412 \cdot 2027 + 641 \cdot 608 \cdot 2017 \equiv 229692 \mod 4088459.$

定理 2.2.4 的推广.

定理 3.2.3

在定理 3.2.2 的条件下, 若整数 b_1, \cdots, b_k 分别遍历模 m_1, \cdots, m_k 的完全剩余系, 则

 $x\equiv b_1\cdot M_1'\cdot M_1+b_2\cdot M_2'\cdot M_2+\cdots+b_k\cdot M_k'\cdot M_k\mod m$ 遍历模 $m=m_1\cdot m_2\cdots m_k$ 的完全剩余系.

定理 2.2.4 的推广.

定理 3.2.3

在定理 3.2.2 的条件下, 若整数 b_1, \dots, b_k 分别遍历模 m_1, \dots, m_k 的完全剩余系, 则

$$x\equiv b_1\cdot M_1'\cdot M_1+b_2\cdot M_2'\cdot M_2+\cdots+b_k\cdot M_k'\cdot M_k\mod m$$
 遍历模 $m=m_1\cdot m_2\cdots m_k$ 的完全剩余系.

证:令

$$x_0 = b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \dots + b_k \cdot M_k' \cdot M_k \mod m$$
,则当 b_1, \dots, b_k 分别遍历模 m_1, \dots, m_k 的完全剩余系时, x_0 遍历 $m_1 m_2 \dots m_k$ 个数.

下证它们模 m 两两不同余, 则结论成立.

4 D > 4 A > 4 B > 4 B > B 900

$$b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \cdots + b_k \cdot M_k' \cdot M_k$$

$$\equiv b_1' \cdot M_1' \cdot M_1 + b_2' \cdot M_2' \cdot M_2 + \dots + b_k' \cdot M_k' \cdot M_k \mod m,$$

则根据性质 2.1.6,

$$b_i \cdot M'_i \cdot M_i \equiv b'_i \cdot M'_i \cdot M_i \mod m_i, \ i = 1, \dots, k.$$

而
$$M'_i \cdot M_i \equiv 1 \mod m_i$$
, $i = 1, \dots, k$, 所以,

$$b_i \equiv b_i' \mod m_i, i = 1, \cdots, k.$$

但 b_i, b'_i 是同一个完全剩余系中的两个数, 故

$$b_i = b'_i, i = 1, \cdots, k.$$

本课作业

- 1. 求解同余方程: $256x \equiv 179 \mod 337$.
- 2. 求解同余方程: $28x \equiv 21 \mod 35$.
- 3. 一个数被 3 除余 1, 被 4 除余 2, 被 5 除余 4, 这个数最小是几?
- 4. 利用中国剩余定理计算 2²⁰²⁴ mod 77.

交流与讨论

电子邮箱:

陈秀波: xb_chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn