(x) Calculate equilibrium solution with regards to rigid body modes	$oldsymbol{\lambda_{N0}} = \mathbf{AG}(\mathbf{G}^T\mathbf{AG})^{-1}\mathbf{e}$
(x) Projector to natural subspace	$\mathbf{P} = \mathbf{I} - \mathbf{AG}(\mathbf{G}^T \mathbf{AG})^{-1} \mathbf{G}^T$
(x) Calculate residual(gap) in natural subspace	$\mathbf{r}_0 = \mathbf{P}^T (\mathbf{d} - \mathbf{F} oldsymbol{\lambda}_0)$
(x) Calculate resulting forces for each substructure (preconditioning)	$\mathbf{Z}_0 = \left[\cdots, \tilde{\mathbf{B}}^{(s)} \tilde{\mathbf{S}}^{(s)} \tilde{\mathbf{B}}^{(s)}{}^T \mathbf{r}_0, \cdots ight]$
(x) Rigid body-components of forces	$\mathbf{W}_0 = \overline{\mathbf{PZ}_0}$
(x) Initialize	$\lambda_{F0} = 0, i = 0$
(x) While not converged	$\sqrt{\mathbf{r}^T\mathbf{Z}1} > \epsilon$
(x) Compute gap-changes due to forces \mathbf{W}_i	${\sf Q}_i = {\sf FW}_i$
(x) Energy of???	$\mathbf{\Delta}_i = \mathbf{Q}_i^{\ T} \mathbf{W}_i$
(x) Energy of???	$oldsymbol{\gamma}_i = {f Z}_i{}^T{f r}_i$
(x) Step in new direction	$oldsymbol{\lambda_{F}}_{i+1} = oldsymbol{\lambda_{F}}_i + oldsymbol{W}_i oldsymbol{\Delta}_i^+ oldsymbol{\gamma}_i$
(x) Gap change due to force step	$\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{P}^T \mathbf{Q}_i \mathbf{\Delta}_i^+ \boldsymbol{\gamma}_i$
(x) Calculate resulting forces for each substructure (preconditioning)	$\mathbf{Z}_{i+1} = \left[\ldots, \tilde{\mathbf{B}}^{(s)} \tilde{\mathbf{S}}^{(s)} \tilde{\mathbf{B}}^{(s)}{}^{T} \mathbf{r}_{i+1}, \ldots ight]$
(x) Remove rigid body-components of forces	$\mathbf{W}_{i+1} = PZ_{i+1}$
(x) Loop over previous iterations	for: $0 \le j \le i$
(x) Compute ??? factor	$\boldsymbol{\phi}_{i,j} = \mathbf{Q}_j^{T} \mathbf{W}_{i+1}$
(x) Orhorgonalize to direction j	$oldsymbol{y} oldsymbol{W}_{i+1} \leftarrow oldsymbol{W}_{i+1} - oldsymbol{W}_{j} oldsymbol{\Delta}_{j}^{\ +} oldsymbol{\phi}_{i,j}$
(x) Increase iteration counter	$i \leftarrow i + 1$
(x) Increase iteration counter (x) Compute total interface forces	$i \leftarrow i + 1$ $\lambda = \lambda_{N0} + \lambda_{F0}$