

UNIVERSITY OF REGINA

DISCRETE BAYESIAN NETWORKS INFERENCE WITH SIMPLE PROPAGATION

eds.github.i

ANDRÉ E. DOS SANTOS

cs.uregina.ca/~evarista

dossantos@cs.uregina.ca

CS900

BAYESIAN NETWORKS

PROBABILISTIC GRAPHICAL MODEL

Pearl

1988

U = { fire, burglar, smoke, cellphone }

The Π of the CPTs is a **joint probability distribution** $\rho(U)$

 $\rho(\mathbf{U}) = \rho(\mathbf{fire}) \cdot \rho(\mathbf{burglar}) \cdot \rho(\mathbf{smoke} \mid \mathbf{fire}) \cdot \rho(\mathbf{cellphone} \mid \mathbf{fire}, \mathbf{burglar})$

DARWINIAN NETWORKS

DARWINIAN NETWORKS

(CAI 2015, CI 2016)

andreeds.github

CLEVER WAY TO VIEW CPTs

DARWINIAN NETWORKS

POPULATION OF MICROORGANISMS

MULTIPLICATION IS

MERCE

$$owhite + owhite = owhite$$

$$P(c|h) \cdot P(e|c,d) = P(c,e|d,h)$$

MARGINALIZATION IS REPLICATION AND NATURAL SELECTION

andreeds.github

$$\sum P(c, e|d, h) = P(e|d, h)$$

andreeds.githu

Scan me

SIMPLE PROPAGATION

SP ONLY USES THE "ONE IN, ONE OUT" PROPERTY FOR JOIN TREE PROPAGATION

JOIN TREE PROPAGATION

JTP IS CENTRAL TO THE THEORY AND PRACTICE OF PROBABILISTIC EXPERT SYSTEMS
(Shafer 1996)

SIMPLE PROPAGATION

SP ONLY USES THE "ONE IN, ONE OUT" PROPERTY FOR JOIN TREE PROPAGATION

SIMPLE PROPAGATION

SP ONLY USES THE "ONE IN, ONE OUT" PROPERTY FOR JOIN TREE PROPAGATION

$$P(j|i) \cdot P(i, m|d = 0, l)$$

populations **p(i, m|d = 0, l)** and **p(j|i)** are then sent to the next node

ob

oc

$$S - E$$

irrelevant potentials

relevant potentials

BN	Vars	LP	SP	Savin
Water	32	0.06	0.05	17%
Oow	33	0.07	0.06	14%
Oow_Bas	33	0.04	0.03	25%
Mildew	35	0.05	0.04	20%
Oow_Solo	40	0.07	0.06	14%
Hkv2005	44	0.23	0.27	-17%
Barley	48	0.09	0.1	-11%
Kk	50	0.09	0.09	0%
Ship	50	0.16	0.17	-6%
Hailfinder	56	0.02	0.02	0%
Medianus	56	0.04	0.03	25%
3Nt	58	0.02	0.01	50%
Hepar_li	70	0.03	0.03	0%
Win95Pts	76	0.03	0.03	0%
System_V57	85	0.06	0.05	17%
Fwe_Model8	109	0.14	0.15	-7%
Pathfinder	109	0.12	0.11	8%
Adapt_T1	133	0.04	0.04	0%
Cc145	145	0.1	0.08	20%
Munin1	189	0.54	0.75	-39%
Andes	223	0.15	0.13	13%
Cc245	245	0.2	0.18	10%
Diabetes	413	0.34	0.31	9%
Adapt_T2	671	0.24	0.22	8%
Amirali	681	0.45	0.41	9%
Munin2	1003	0.49	0.45	8%
Munin4	1041	0.61	0.57	7%
Munin3	1044	0.66	0.64	3%

OPTIMAL JTs BUILT FROM 28 REAL-WORLD AND BENCHMARK BNs

- SP was faster in 18
- SP tied LP in 5
- LP was faster in 5

LAZY PROPAGATION

LP TESTS INDEPENDENCY AND DETERMINE ELIMINATION ORDERING

LAZY PROPAGATION

LP TESTS INDEPENDENCY AND DETERMINE ELIMINATION ORDERING

LAZY PROPAGATION

LP TESTS INDEPENDENCY AND DETERMINE **ELIMINATION ORDERING**

BN	Vars	LP	SP	Savin
Water	32	0.06	0.05	17%
Oow	33	0.07	0.06	14%
Oow_Bas	33	0.04	0.03	25%
Mildew	35	0.05	0.04	20%
Oow_Solo	40	0.07	0.06	14%
Hkv2005	44	0.23	0.27	-17%
Barley	48	0.09	0.1	-11%
Kk	50	0.09	0.09	0%
Ship	50	0.16	0.17	-6%
Hailfinder	56	0.02	0.02	0%
Medianus	56	0.04	0.03	25%
3Nt	58	0.02	0.01	50%
Hepar_li	70	0.03	0.03	0%
Win95Pts	76	0.03	0.03	0%
System_V57	85	0.06	0.05	17%
Fwe_Model8	109	0.14	0.15	-7%
Pathfinder	109	0.12	0.11	8%
Adapt_T1	133	0.04	0.04	0%
Cc145	145	0.1	0.08	20%
Munin1	189	0.54	0.75	-39%
Andes	223	0.15	0.13	13%
Cc245	245	0.2	0.18	10%
Diabetes	413	0.34	0.31	9%
Adapt_T2	671	0.24	0.22	8%
Amirali	681	0.45	0.41	9%
Munin2	1003	0.49	0.45	8%
Munin4	1041	0.61	0.57	7%
Munin3	1044	0.66	0.64	3%

OPTIMAL JTs BUILT FROM 28 REAL-WORLD AND BENCHMARK BNs

- SP was faster in 18
- SP tied LP in 5
- LP was faster in 5

CONCLUSION

SP IS A NEW BN INFERENCE
ALGORITHM

NO TESTING OF INDEPENDENCIES

"ONE IN, ONE OUT"
PROPERTY

NO ELIMINATION ORDERINGS

SP IS FASTER THAN LP
IN 18/28 REAL-WORLD BNs

SP PERFORMS POORLY IN NON-OPTIMAL JOIN TREES

CONCLUSION

SP IS A NEW BN INFERENCE
ALGORITHM

NO TESTING OF INDEPENDENCIES

"ONE IN, ONE OUT"
PROPERTY

NO ELIMINATION ORDERINGS

SP IS FASTER THAN LP
IN 18/28 REAL-WORLD BNs

SP PERFORMS POORLY IN NON-OPTIMAL JOIN TREES

UNIVERSITY OF REGINA

DISCRETE BAYESIAN NETWORKS INFERENCE WITH SIMPLE PROPAGATION

eds.github.i

ANDRÉ E. DOS SANTOS

cs.uregina.ca/~evarista

dossantos@cs.uregina.ca

CS900

