Friday, September 6, 2019 13:5:

$$\frac{dF}{dZ} = A(Z)F(Z) \qquad (*)$$

Vregular singularities

$$A(z) = \sum_{k=-r-1}^{\infty} A_k Z^k$$

r= Poincare rank of Wegular 81 myuloity.

We will assure r=1.

$$A(z) = z^{-2} \Lambda + z^{-1} X + \sum_{k=0}^{\infty} A_k x^k$$

assure $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}$, $\lambda_i \neq \lambda_j$ for $i \neq j$.

Set
$$X^{\circ} = \text{diagonal put of } X$$

 $X^{\circ - d} = X - X^{\circ}$

 $z^{-2} \bigwedge = \frac{1}{J_z} (z^- \bigwedge)$

Theorem 3!
$$y(z) = 1 + \sum_{k \ge 1} y_k z^k \in Gl_N(C(z))$$

S.t.
$$\forall (z)$$
 $\forall (z)$ $\forall (z)$ $\forall (z)$ $\forall (z)$ $\forall (z)$ $\forall (z)$ $\forall (z)$

$$\frac{1}{\sqrt{(z) \cdot z^{x^{\circ}}}} e^{-\lambda/z} + \sqrt{(z) \cdot \frac{x^{\circ}}{z}} e^{-\lambda/z} + \sqrt{(z) \cdot \frac{x^{\circ}}{z^{\circ}}} e^{-\lambda/z}$$

$$= \left(\frac{\Lambda}{z^2} + \frac{\chi}{z} + A_{reg}(z)\right) \cdot \chi(z) - z^{\chi^{\circ}} e^{-\lambda/z}$$

So
$$\frac{1}{12} \gamma(z) = 2^{-2} \left[\Lambda, \gamma(z) \right] + 2^{-1} \left[\chi', \gamma(z) \right]$$

+ $2^{-1} \chi''' \gamma(z) + \Lambda_{ng}(z) \gamma(z)$

Compare coeffs:

$$Z^{-1}: O = [\Lambda, Y,] + X^{o-d}$$

Can get Y, inductively

Example
$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

V(Z) solves.

$$/(z) = \begin{bmatrix} x & y \\ y & s \end{bmatrix}$$

$$\lambda_{(5)} = 5_{-5} \begin{bmatrix} -\lambda(5) & 0 \\ 0 & b(5) \end{bmatrix} + 5_{-1} \begin{bmatrix} 0 & 0 \\ -\lambda(5) & -2(5) \end{bmatrix}$$

Page 2

$$Y = 0$$

$$\alpha = 1$$

$$\beta(z) = \frac{\beta(z)}{z^2} - \frac{1}{z}$$

$$\delta = 1$$

$$\beta(z) = \sum_{n \ge 1} b_n z^n$$

$$b_1 = 1$$
 $b_2 = b_1 = 1$
 $2b_2 = b_3 \Rightarrow b_3 = 2$
 $b_n = (n-1)!$

$$\beta(z) = \sum_{n \geq 1} (n-i)! z^n$$
has 0 radius of Governance.

Asymptotic expansions

O₂

$$S(R; \theta_1, \theta_2) = \left\{ z \in \mathbb{C} \mid 1 \geq l < R, \text{ or } z \in (\theta_1, \theta_2) \right\}.$$

let
$$f(z)$$
 be a holomorphic fn on $S(R; \theta_1, \theta_2)$

Then
$$f(z) \sim \sum_{k=0}^{\infty} a_k z^k$$
 as $z \rightarrow 0$; $z \in S(R; o_1, o_2)$

$$\lim_{z\to 0} \left(f(z) - \sum_{k=0}^{M-1} a_k z^k \right) \cdot z^M \quad \text{exists} \quad (=a_M).$$

Some properties: (Wasow Asymptotic Expansion for ODE's)

Ch ##

- (1) term-wise addition, multiply contion (even composition) is Legitimate
- (2) $f(X) \sim \sum_{k=0}^{\infty} a_k \chi^k \Rightarrow \int_{0}^{\chi} f(t) dt \sim \sum_{k=0}^{\infty} a_k \frac{\chi^{k+1}}{k+1}$ (as $\chi \to 0$, $\chi \in S$)

 (same for differentiation $\Theta_1 < \Theta_2$)
- (3) There are infinitely many functions asymptotic to the same series.

$$e^{-\frac{1}{\chi}} \sim 0 \qquad (\chi \rightarrow 0, \chi \in S(1, \frac{\pi}{4}, \frac{\pi}{4})).$$

and
$$S(R; \theta_1, \theta_2)$$
, two exists $f(z)$ holomorphic on S S, E . $f(z) \sim \sum_{k=0}^{\infty} a_k z^k$ as $z \to 0$, $z \in S$.

Back to our ODE:

(Boalch. Stokes phenomen, Prisson-Lie groups, Frobenius Infds,)
(Invent. Matn. 2001)

$$A(z) = \left(\frac{A}{z^2} + \frac{X}{z}\right)$$
.

We know]! formal solution I (z) = Y(z). Zx° e-1/2

Det An anti-stokes vay is a vary in \mathbb{C} of the form $(\lambda_i - \lambda_j) \mathbb{R}_{>0}$ (for some $i \neq j$)

let 21 = # of Stokes rays

Let do, di, ..., dre-1, dre=do be

an ordering of anti-stokes rays (counter-clockwise)

Z = Sector bounded by di & di+1.

Thm (Sibuya). For each $i \in \{0,...,2l-1\}$, there is a holomorphic for $\forall i \in \{0,...,2l-1\}$, s.t.

- (i) Yi ~ Y(Z) ~ Z→o m Zi
- (ii) $\gamma_i(z) z^{x^{\circ}} e^{-\frac{A}{2}}$ solves (*)

Extended Sector

 $\frac{\wedge}{2}$; bounded b/w $d_i - \frac{\pi}{2}$ and $d_{i+1} + \frac{\pi}{2}$

Y: (Z) can be continued & Y: (Z)~ Y(Z) remains true

Stokes Matrix

. assume ln(Z) is defined by making a cut along de.

$$\Psi_3 = \Psi_0 S_-$$
 along X_1

$$\Psi_0 = \Psi_3 S_+ e^{2\pi i X^*} \text{ along } Y_{cut}$$

(5_,S+) are stokes matrices.

$$\beta(z) = \sum_{n=1}^{\infty} z^{n} (n-1)!$$

$$\int \frac{e^{-P/z}}{1-p} Jp$$

$$= \left(\frac{1}{1-p} \frac{e^{-P/z}}{-z^{-1}}\right) - \int \frac{1}{(1-p)^2} \frac{e^{-P/z}}{-z^{-1}} dp$$

$$= \lim_{\substack{p \to \infty \\ \text{along } l_k}} \left(\frac{-e^{-pz^{-1}}}{(1-p)z^{-1}}\right) + Z + Z \int \frac{1}{(1-p)^2} e^{-P/z} Jp$$

l_b

O. Costin

Asymptotics & Summability pp 108.