Vorlesung Wahrscheinlichkeitstheorie mit Martingalen

Wintersemester 2018/2019

Vorlesung: Prof. Dr. Martin Keller-Ressel Mitschrift: Willi Sontopski

10. Oktober 2018

Inhaltsverzeichnis

0	Einführung		•	•			•	•		•	•	2
1	Bedingter Erwartungswert											3
1.1	Bedingtet Erwartungswert als L_2 -Projektion											3

0 Einführung

- Voraussetzung für viele weitere VL im Schwerpunkt Stochastik
- \bullet zunehmend stochastische Systeme / stochastische Prozesse \to Modellierung von zeitabhängigen und zufälligen Vorgängen
- wichtig im naturwissenschaftlicher, wirtschaftwissenschaftlicher und sozialwissenschaftlicher Modellierung
 - Schwimmbewegung eines Einzellers
 - Bildung und Rückbildung von sozialen Netzwerken
 - zeitlicher Verlauf eines Wechselkurses (EUR / GBP)

Zentrale Frage: Abhängigkeitsstruktur (ist "morgen" von "heute" unabhängig?)

- unabhängige gleichverteilte Zufallsvariablen
- Markov-Prozesse
- Martingale

Was ist ein Martingal?

- \bullet "faires Spiel" zwischen Personen A und B bei dem keine Strategie einen systematischen Vorteil bringt
- Ein Vorgang, bei dem die beste Voraussage (Punktschätzung) der heutige Wert ist.
- "neutraler stochastischer Prozess" ohne systematischen Trend zum Auf- oder Abstieg

Weitere Themen:

- charakteristische Funktionen: Fourier-Transformation einer Wahrscheinlichkeitsverteilung
 - Wichtiges analytisches Werkzeug in der W-Theorie
- Zentrale Grenzwertsätze: Aussagen über Konvergenz von Summen unabhängiger Zufallsvariablen zur Normalverteilung
- Brown'sche Bewegung und evtl. Lévy-Prozesse

1 Bedingter Erwartungswert

1.1 Bedingtet Erwartungswert als L_2 -Projektion

Betrachte den Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$.

Für Zufallsvariable $X: \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ definiere die L_p -Norm

$$||X||_p := \mathbb{E}[|X|^p] = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{\frac{1}{p}}$$

und die Räume

$$\mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P}) := \left\{ X : \Omega \to \mathbb{R} \middle| X \text{ ist } \mathcal{A}\text{-messbar und } \|X\|_p < \infty \right\}$$

. Aufgrund der Minkowski-Ungleichung

$$||X + Y||_p \le ||X||_p + ||Y||_p$$

und der Homogenität

$$||c \cdot X||_p = c \cdot ||X||_p \qquad \forall c \ge 0$$

ist

$$\mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P})$$

Vektorraum mit Halbnorm $\|\cdot\|_p$. Es fehlt die Definitheit.

Wir identifizieren Zufallsvariablen X, \tilde{X} , welche \mathbb{P} -fast sicher übereinstimmen, d. h. $\mathbb{P}[X \neq \tilde{X}] = 0$. Formal betrachten wir den Unterraum

$$\mathcal{N} := \{ N : \Omega \to \mathbb{R} : N = 0 \text{ } \mathbb{P}\text{-fast sicher} \}$$

und bilden den Quotientenraum

$$L_p(\Omega, \mathcal{A}, \mathbb{P}) := \mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P}) / \mathcal{N} = \{ [X + \mathcal{N}] : X \in \mathcal{L}_p(\Omega, \mathcal{A}, \mathbb{P}) \}.$$

Wir schreiben auch kurz $L_p(\mathcal{A})$ oder $L_p(\mathbb{P})$, wenn wir Abhängigkeit von \mathcal{A} oder \mathbb{P} betonen wollen.

Aus der Maßtheorie ist bekannt:

Theorem 1.1.1 Sei $p \in [1, \infty)$. Dann ist $L_p(\Omega, \mathcal{A}, \mathbb{P})$ mit Norm $\|\cdot\|_p$ ein Banachraum. Für p = 2 ist $L_2(\Omega, \mathcal{A}, \mathbb{P})$ ein Hilbertraum mit Skalarprodukt

$$\langle X, Y \rangle := \mathbb{E}[X \cdot Y] = \int_{\Omega} X(\omega) \cdot Y(\omega) \, d\mathbb{P}(\omega)$$

Bemerkung. Zwei Zufallsvariablen $X, Y \in L_2$ heißen **orthogonal** : $\Leftrightarrow \langle X, Y \rangle = 0$.

Proposition 1.1.2 Sei $\mathcal{F} \subseteq \mathcal{A}$ eine Unter- σ -Algebra von \mathcal{A} und $p \in [1, \infty)$. Dann ist $L_p(\Omega, \mathcal{F}, \mathbb{P})$ ein abgeschlossener Unterraum von $L_p(\Omega, \mathcal{A}, \mathbb{P})$.

Beweis. RobertToDo □

Definition. (Bedingte Erwartung in L_2)

Sei $\mathcal{F} \subseteq \mathcal{A}$ eine Unter- σ -Algebra von \mathcal{A} .

Jedes $X \in L_2(\Omega, \mathcal{A}, \mathbb{P})$ hat eine eindeutige Orthogonalprojektion Y auf $L_2(\Omega, \mathcal{F}, \mathbb{P})$. Diese heißt **bedingte Erwartung** von X bzgl. \mathcal{F} und wir schreiben $\mathbb{E}[X \mid \mathcal{F}] := Y$.

Die bedingte Erwartung ist also eine Zufallsgröße und nur bis auf P-Nullmengen eindeutig bestimmt.

Bemerkung. Als Orthogonalprojektion gilt

$$||X - \mathbb{E}[X \mid \mathcal{F}]||_2 = \inf \{||X - Y||_2 : Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})\}.$$

Interpretation: $\mathbb{E}[X \mid \mathcal{F}]$ ist die beste Näherung für X durch Zufallsvariablen $Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 1.1.3 Y ist die Orthogonalprojektion von X auf $L_2(\Omega, \mathcal{F}, \mathbb{P})$ $\iff \forall F \in \mathcal{F} \in L_2(\mathcal{F}) : \langle X - Y, F \rangle = 0$

Beweis. RobertToDo \Box

Proposition 1.1.4 (Eigenschaften der bedingten Erwartung) Seien $X, Y \in L_2(\Omega, \mathcal{A}, \mathbb{P})$ und $\mathcal{F} \subseteq \mathcal{A}$ Unter- σ -Algebra von \mathcal{A} . Dann gilt:

- 1. $X \in L_2(\mathcal{F}) \Longrightarrow \mathbb{E}[X \mid \mathcal{F}] = X$
- 2. $\mathbb{E}[a \cdot X + b \cdot Y \mid \mathcal{F}] = a \cdot \mathbb{E}[X \mid \mathcal{F}] + b \cdot \mathbb{E}[Y \mid \mathcal{F}] \ \forall a, b \in \mathbb{R}$ "Linearität"
- 3. $\langle \mathbb{E}[X \mid \mathcal{F}], Y \rangle = \langle X, \mathbb{E}[Y \mid \mathcal{F}] \rangle = \langle \mathbb{E}[X \mid \mathcal{F}], \mathbb{E}[Y \mid \mathcal{F}] \rangle$ "Symmetrie"

4. Für jede Unter- σ -Algebra $\mathcal{H} \subseteq \mathcal{F}$ von \mathcal{F} gilt die **Turmregel** / **tower law**:

$$\mathbb{E}\big[\mathbb{E}[X \mid \mathcal{F}] \mid \mathcal{H}\big] = \mathbb{E}[X \mid \mathcal{H}] \tag{1.1}$$

- 5. $\mathbb{E}[Z\cdot X\mid \mathcal{F}]=Z\cdot \mathbb{E}[X\mid \mathcal{F}]$ $\forall Z$ beschränkt und \mathcal{F} -messbar "Pull-out-property"
- 6. $X \leq Y \Longrightarrow \mathbb{E}[X \mid \mathcal{F}] \leq \mathbb{E}[Y \mid \mathcal{F}]$ "Monotonie"
- 7. $\left|\mathbb{E}[X\mid\mathcal{F}]\right|\leq\mathbb{E}\big[|X\mid\mid\mathcal{F}\big]$ "Dreiecksungleichung"

Beweis. Nächste Vorlesung