CLAIMS

1	1. A semiconductor structure comprising:
2	a semiconductor substrate;
3	at least one first crystalline epitaxial layer on said substrate, said first layer having a
4	surface which is planarized; and
5	at least one second crystalline epitaxial layer on said at least one first layer.
1	2. The structure of claim 1, wherein said at least one first crystalline epitaxial layer is
2	lattice mismatched.
1	3. The structure of claim 1, wherein said at least one second crystalline epitaxial layer
2	is lattice mismatched.
1	4. The structure of claim 1, wherein said first and second crystalline epitaxial layers
2	are lattice mismatched.
1	5. The structure of claims 2, wherein said at least one first layer comprises a
2	composition graded relaxed epitaxial region.
	• · · · · · · · · · · · · · · · · · · ·
L	6. The structure of claims 3, wherein said at least one second layer comprises a
2	composition graded relaxed epitaxial region.

composition graded relaxed epitaxial regions. 2 8. The structure of claim 7, wherein said at least one first layer comprises a first 1 2 composition graded relaxed epitaxial region and a first uniform composition layer. 9. The structure of claim 8, wherein said at least one second layer comprises a second 1 2 uniform composition layer and a second composition graded relaxed epitaxial region. 10. The structure of claim 9, wherein said first and second uniform composition layers 1 2 are substantially lattice mismatched. 11. The structure of claim 9, wherein the surface of said at least one second layer 1 2 comprises substantially fewer threading dislocations and dislocation pile-ups. 12. The structure of claim 9, wherein said substrate comprises silicon, and said first 1 and second composition graded relaxed epitaxial regions and said first and second uniform 2 composition layers comprise a Ge_xSi_{1-x} alloy. 3 13. The structure of claim 12, wherein the planarization occurs at a composition of 1 approximately 50%. 2

7. The structure of claims 4, wherein said first and second layers comprise

1

14. The structure of claim 13, wherein the final Ge concentration is approximately 1 2 between 70 and 100%. 15. The structure of claims 1, wherein said at least one second crystalline epitaxial . 1 layer comprises a surface which is planarized. 2 16. The structure of claim 15, wherein subsequent epitaxial layers are provided on said 1 second layer, each of which comprises a surface which is planarized. 2 17. The structure of claim 1, wherein said first layer is planarized by chemical-1 mechanical polishing. 2 18. The structure of claim 15, wherein a first planarization occurs at approximately 1 between 20 and 35% GeSi, and a second planarization occurs at approximately between 50 and 2 70% GeSi. 3 19. The structure of claim 12, wherein compressive strain is incorporated in said 1 graded region to offset the tensile strain that is incorporated during thermal processing. 2 20. The structure of claim 1, wherein alloys of Ge_xSi_{1-x} from x=0 to about $x\approx35\%$ are grown at 750°C, alloys from x=35 to about $x\approx75\%$ are grown at between 650°C and 750°C, and alloys greater than 75% are grown at 550°C. 3

1	21. A semiconductor structure comprising:
2	a silicon substrate; and
3	a GeSi graded region grown on said silicon substrate, compressive strain being
4	incorporated in said graded region to offset the tensile strain that is incorporated during
5	thermal processing.
1 .	22. The structure of claim 21, wherein the compressive strain is incorporated by
2	growing GeSi alloys at lower temperatures such that the alloy does not completely relax.
1	23. The structure of claim 21, wherein the compressive strain is incorporated by
2	decreasing the growth temperature as Ge concentration increases in said graded region.
1	24. The structure of claim 21, wherein alloys of Ge_xSi_{1-x} from $x=0$ to about $x\approx35\%$
2	are grown at 750°C, alloys from $x=35$ to about $x\approx75\%$ are grown at between 650°C and
3	750°C, and alloys greater than 75% are grown at 550°C.
1	25. The structure of claim 21, wherein said graded region comprises a surface which is
2 .	planarized
1	26. The structure of claim 25, wherein said graded region is planarized by chemical-
2	mechanical polishing.

1	21. A semiconductor structure comprising.
2	a semiconductor substrate;
3	a first layer having a graded region grown on said substrate, compressive strain being
4	incorporated in said graded region to offset the tensile strain that is incorporated during
5	thermal processing, said first layer having a surface which is planarized; and
6	a second layer provided on said first layer.
1	28. A method of fabricating a semiconductor structure comprising:
2	providing a semiconductor substrate;
3	providing at least one first crystalline epitaxial layer on said substrate; and
4	planarizing the surface of said first layer.
1	29. The method of claim 28 further comprising providing at least one second
2	crystalline epitaxial layer on said first layer.
1	30. The method of claim 28, wherein said step of providing said first layer comprise
2	growing a GeSi relaxed graded region on said substrate.
L	31. The method of claim 30 further comprising incorporating compressive strain in
2	said grade region to offset tensile strain incorporated during thermal processing.

- 1 32. The method of claim 31, wherein said step of incorporating compressive strain
- 2 comprises decreasing the growth temperature as Ge concentration increases in said graded
- 3 region.
- 1 33. The method of claim 32, wherein said step of incorporating compressive strain
- 2 comprises growing alloys of Ge_xSi_{1-x} from x=0 to about $x\approx35\%$ at 750°C, growing alloys
- 3 from x=35 to about $x\approx75\%$ at between 650°C and 750°C, and growing alloys greater than
- 4 75% at 550°C.
- 1 34. The method of claim 28, wherein said step of planarizing comprises chemical-
- 2 mechanical polishing.