Optimizing Reconstruction and Error Estimation of IceCube Events Using Graph Neural Networks

Bachelor Defence

Christian Kragh Jespersen Jakob Hallundbæk Schauser Johann Bock Severin Jonas Vinther

KØBENHAVNS UNIVERSITET

Outline

Machine Learning and Graphs

Our Graph Neural Networks

Results and Comparison: OscNext, Probabilistic, Ensemble, Muons and Moon

Further Work

The Standard Model

Neutrinos

- Only weak-force/gravity
- Unknown masses (lightweight)
- Flavour oscillation

Standard Model of Elementary Particles

Muons

- Forces: EM-weak-gravity
- Electron with ~200x the mass
- Lifetime: 2.2×10^{-6} s

Standard Model of Elementary Particles

Where Do the Particles Come From?

IceCube Neutrino Observatory

- As much mass as possible
- Digital Optical Module (DOM)
- 86 + 8 strings
- Clear ice
- Avoid hadronic/ electromagnetic biproducts

IceCube Neutrino Observatory

Digital

86 + 8

Clear ic

Avoid h electro

IceTop 81 Stations 324 optical sensors

IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors

DeepCore 8 strings-spacing optimized for lower energies 480 optical sensors

What We See

- Position
- Time
- Charge
- Precision

What We Want

- Zenith
- Azimuth
- Energy
- (Classification)
- (Stopped)

Why New Algorithms?

- Retro
 - Slow
 - High-energy
 - Unflexible

- Transition to Machine Learning
 - Fast
 - Flexible

16-01-2024

How About Graphs?

- Nodes and edges
- Represented in Linear Algebra:
 - Feature Matrix, X
 - Adjacency Matrix, A
 - Edge-features, E

Neural Networks

Multi-Layer Perceptron (MLP)

$$f(x) = \phi^{N} \left(W^{N} \phi^{N-1} \left(W^{N-1} \cdots \phi^{1} \left(W^{1} x \right) \cdots \right) \right)$$

Universal Approximation Theorem

ML and Graphs 🕸 📖 🔀 🔆 🦎 🗥

Graph Neural Networks

- Message passing method
- Aggregation
- Convolutions
- Pooling

Graph Neural Networks

- Message passing method
- **Aggregation**
- Convolutions
- Pooling

14 / 30

- Message passing method
- Aggregation
- **Convolutions**
- Pooling

Graph Neural Networks

- Message passing method
- Aggregation
- Convolutions
- **Pooling**

Training the Network

- Loss functions
- Gradient descent

KØBENHAVNS UNIVERSITET

	Best GNN	Retro		
$\log_{10}(E)$	0.15	0.24		
θ (deg)	11.9	15.0		
ϕ (deg)	29.6	38.0		
Ω (deg)	32.8	40.6		

Probabilistic Loss Functions

Uncertainty estimation

Ensemble

Ensemble

KØBENHAVNS UNIVERSITET

	Ensemble	Best GNN	Retro
$\log_{10}(E)$	0.09	0.15	0.24
θ (deg)	10.8	11.9	15.0
ϕ (deg)	29.8	29.6	38.0
Ω (deg)	30.9	32.8	40.6

Ensemble – Energy Predictions

From simulation to observation

Muons and the Moon

Reconstruction of MuonGun

	θ	ϕ	Ω	$log_{10}(E)$
StateFarm	1.72 °	5.49 °	4.09 °	0.1340
GGConv	2.77 °	$7.52~^{\circ}$	5.77 °	0.1376
AntHill	1.88 °	5.57 °	$4.19\ ^{\circ}$	-
σ	0.01°	0.02 $^{\circ}$	0.01 $^{\circ}$	0.0007

Moon

Calibration tool for real observations

Uncertain Unbinned Maximum Likelihood Estimation

Further work

More Work on Ensembles

Improved Explainability

Better Implementation/Closer to the I3 Files

GNNs for Cleaning

Content in Appendix

Sensors of IceCube: DOMs (Digital Optical Module)

Kernel Density Estimate

Results

Moon Analysis

Importance of Loss Function

Comparison

	Loss $(\theta, \phi/x, y, z)$	Loss $(log(E))$	θ	ϕ	Ω	log(E)	Speed	Params (10^3)
StateFarm	2xPvM	MAE	11.92 °	31.23 °	33.37 °	0.1487	$9 \cdot 10^{3}$	643
GGConv	vG	Normal	15.94°	29.65 $^{\circ}$	32.84 $^{\circ}$	0.2105	$3 \cdot 10^4$	176
AntHill	2xPvM/SvM	Normal	14.20 °	33.53 °	36.37 °	0.2357	$1 \cdot 10^{4}$	2,218
LifeGuard	2xPvM+σ	MAE	15.91°	-	-	0.2634	$2 \cdot 10^{4}$	2.2
Retro	-	-	15.00 °	37.93 °	$40.56\ ^{\circ}$	0.2390	$O(10^{-2})$	-
σ	-	-	0.01 °	0.05 $^{\circ}$	0.04 $^{\circ}$	0.0003	-	-

Explanability

- SHAP
- Integrated Gradients

Figure 31: Average relative importance for output variables with respect to input variables for SHAP for the upper plot and Integrated Gradient for the lower.