Causal effect estimation in the presence of misclassified binary mediators

Kimberly A. H. Webb and Martin T. Wells Women in Statistics and Data Science October 18, 2024

Analysis Plan

Define the misclassification model

Use parameter estimates to compute (in)direct effects and misclassification rates

Develop estimation methods for parameters of interest

Misclassification model

Misclassification model

Misclassification model

True mediator mechanism: $logit{P(M = 1|X, C; \beta)} = \beta_0 + \beta_X X + \beta_C C$

True mediator mechanism: $logit\{P(M = 1|X, C; \beta)\} = \beta_0 + \beta_X X + \beta_C C$ C, covariates True mediator mechanism M, gestational hypertension (latent, binary) X, maternal age

(years)

True mediator mechanism: $logit{P(M = 1|X, C; \beta)} = \beta_0 + \beta_X X + \beta_C C$

True mediator mechanism: $logit\{P(M = 1|X, C; \beta)\} = \beta_0 + \beta_X X + \beta_C C$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$

True mediator mechanism: $logit\{P(M = 1|X, C; \beta)\} = \beta_0 + \beta_X X + \beta_C C$

Observed mediator mechanism: $logit\{P(M^* = 1 | M = m, Z; \gamma)\} = \gamma_{1m0} + \gamma_{1mZ}Z$

Outcome mechanism: $E(Y|X, C, M) = \theta_0 + \theta_X X + \theta_C C + \theta_M M + \theta_{XM} X M$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit{P(M^* = 1 | M = m, Z; \gamma)} = \gamma_{1m0} + \gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M) = \theta_0 + \theta_X X + \theta_C C + \theta_M M + \theta_{XM} X M$ Observed mediator mechanism **Mediation parameters: Z**, patient insurance status (binary) β and θ quantify the exposure-mediator-M*, gestational hypertension outcome relationship. diagnosis (binary) Outcome mechanism Frue mediator mechanism M, gestational hypertension (latent, binary) Y, preterm birth X, maternal age

(years)

(binary)

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$ Outcome mechanism: $E(Y|X,C,M) = \theta_0 + \theta_X X + \theta_C C + \theta_M M + \theta_{XM} X M$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Key point: We can use **COMBO** to estimate subject-level sensitivity and specificity, and then plug these values into existing misclassification correction procedures.

- Existing procedures relied on known sensitivity and specificity.
- 1. Extended from Nguimkeu, Rosenman, and Tennekoon (2021), "Regression with a misclassified binary regressor: Correcting for hidden bias".
- 2. Extended from Lyles and Lin (2010), "Sensitivity analysis for misclassification in logistic regression via likelihood methods and PVW".

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Complete data log-likelihood:

$$\mathcal{E}_{complete}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\gamma}; X, \boldsymbol{C}, \boldsymbol{Z}, Y)$$

$$= \sum_{i=1}^{N} \left[\ell_{Y|X,M,C}(\theta; X_i, M_i, C_i, Y_i) + \sum_{j=1}^{2} m_{ij} \log\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{\ell=1}^{2} m_{ij} m_{i\ell}^* \log\{\pi_{i\ell j}^*\} \right]$$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Complete data log-likelihood:

$$\mathcal{\ell}_{complete}(\pmb{\beta}, \pmb{\gamma}, \pmb{\gamma}; X, \pmb{C}, \pmb{Z}, Y)$$

$$= \sum_{i=1}^{N} \left[\ell_{Y|X,M,C}(\theta; X_i, M_i, C_i, Y_i) + \sum_{j=1}^{2} m_{ij} \log\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{\ell=1}^{2} m_{ij} m_{i\ell}^* \log\{\pi_{i\ell j}^*\} \right]$$

Outcome

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Complete data log-likelihood: $\ell_{complete}(\beta, \gamma, \gamma; X, C, Z, Y) = \sum_{i=1}^{N} \left[\ell_{Y|X,M,C}(\theta; X_i, M_i, C_i, Y_i) + \sum_{j=1}^{2} m_{ij} \log\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{\ell=1}^{2} m_{ij} m_{i\ell}^* \log\{\pi_{i\ell j}^*\} \right]$

Outcome

True mediator

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$ Outcome mechanism: $E(Y|X,C,M) = \theta_0 + \theta_X X + \theta_C C + \theta_M M + \theta_{XM} X M$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Expectation Step

Maximization Step

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Expectation Step

Maximization Step

$$\begin{split} w_{ij} &= P(M_i = j | M_i^*, X_i, C_i, Z_i, Y_i) \\ &= \sum_{\ell=1}^2 \frac{m_{i\ell}^* \pi_{i\ell j}^* \pi_{ij} E[Y_i | X_i, M_i = j, C_i, \theta^{(t)}]}{\sum_{k=1}^2 \pi_{i\ell k}^* \pi_{ik} E[Y_i | X_i, M_i = k, C_i, \theta^{(t)}]} \end{split}$$

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Expectation Step

Maximization Step

$$\begin{split} w_{ij} &= P(\boldsymbol{M}_i = j | \boldsymbol{M}_i^*, \boldsymbol{X}_i, \boldsymbol{C}_i, \boldsymbol{Z}_i, \boldsymbol{Y}_i) \\ &= \sum_{\ell=1}^2 \frac{m_{i\ell}^* \pi_{i\ell j}^* \pi_{ij} E[\boldsymbol{Y}_i | \boldsymbol{X}_i, \boldsymbol{M}_i = j, \boldsymbol{C}_i, \boldsymbol{\theta}^{(t)}]}{\sum_{k=1}^2 \pi_{i\ell k}^* \pi_{ik} E[\boldsymbol{Y}_i | \boldsymbol{X}_i, \boldsymbol{M}_i = k, \boldsymbol{C}_i, \boldsymbol{\theta}^{(t)}]} \end{split}$$

$$\begin{split} Q &= \sum_{i=1}^{N} \Big[\sum_{j=1}^{2} \ell_{Y|X,M,C}(\theta; X_{i}, M_{i} = w_{ij}, C_{i}, Y_{i}) \\ &+ \sum_{j=1}^{2} w_{ij} \mathrm{log}\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{\ell=1}^{2} w_{ij} m_{i\ell}^{*} \mathrm{log}\{\pi_{i\ell j}^{*}\} \Big] \end{split}$$

Estimation

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\}=\beta_0+\beta_XX+\beta_CC$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\}=\gamma_{1m0}+\gamma_{1mZ}Z$ Outcome mechanism: $E(Y|X,C,M)=\theta_0+\theta_XX+\theta_CC+\theta_MM+\theta_{XM}XM$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Expectation Step

Apply label switching correction from Webb and Wells (2023)

Maximization Step

$$\begin{split} w_{ij} &= P(M_i = j | M_i^*, X_i, C_i, Z_i, Y_i) \\ &= \sum_{\ell=1}^2 \frac{m_{i\ell}^* \pi_{i\ell j}^* \pi_{ij} E[Y_i | X_i, M_i = j, C_i, \theta^{(t)}]}{\sum_{k=1}^2 \pi_{i\ell k}^* \pi_{ik} E[Y_i | X_i, M_i = k, C_i, \theta^{(t)}]} \end{split}$$

$$\begin{split} Q &= \sum_{i=1}^{N} \Big[\sum_{j=1}^{2} \ell_{Y|X,M,C}(\theta; X_{i}, M_{i} = w_{ij}, C_{i}, Y_{i}) \\ &+ \sum_{j=1}^{2} w_{ij} \mathrm{log}\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{\ell=1}^{2} w_{ij} m_{i\ell}^{*} \mathrm{log}\{\pi_{i\ell j}^{*}\} \Big] \end{split}$$

Estimation

True mediator mechanism: $logit\{P(M=1|X,C;\beta)\} = \beta_0 + \beta_X X + \beta_C C$ Observed mediator mechanism: $logit\{P(M^*=1|M=m,Z;\gamma)\} = \gamma_{1m0} + \gamma_{1mZ} Z$ Outcome mechanism: $E(Y|X,C,M) = \theta_0 + \theta_X X + \theta_C C + \theta_M M + \theta_{XM} X M$

#1: OLS Correction

#2: Predictive value weighting

#3: An EM algorithm

Use the resulting bias-corrected parameter estimates to compute (in)direct effects for a change from x to x:

$$OR^{NDE} \cong \frac{\exp(\theta_{X}x)\left\{1 + \exp(\theta_{M} + \theta_{XM}x + \beta_{0} + \beta_{X}\tilde{x} + \beta_{C}c)\right\}}{\exp(\theta_{X}\tilde{x})\left\{1 + \exp(\theta_{M} + \theta_{XM}\tilde{x} + \beta_{0} + \beta_{X}\tilde{x} + \beta_{C}c)\right\}}$$

$$OR^{NIE} \cong \frac{\left\{1 + \exp(\beta_{0} + \beta_{X}\tilde{x} + \beta_{C}c)\right\}1 + \exp(\theta_{X} + \theta_{XM}x + \beta_{0} + \beta_{X}x + \beta_{C}c)\right\}}{\left\{1 + \exp(\beta_{0} + \beta_{X}x + \beta_{C}c)\right\}\left\{1 + \exp(\theta_{M} + \theta_{XM}x + \beta_{0} + \beta_{X}\tilde{x} + \beta_{C}c)\right\}}$$
38

Does gestational hypertension mediate the association between maternal age and preterm birth, after accounting for potential misdiagnosis of gestational hypertension based on patient insurance status?

Data: National Vital Statistics System

- Provides demographic and health data for all births in a year in the US.
- Random subsample from calendar year 2021, N = 20,000.

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
βχ				
γ _{Z, G = 1}				
γ _{Z, G = 2}				
θ_{x}				
θ_{M}				
θ_{XM}				

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

Association between age & gestational hypertension is unchanged after accounting for misdiagnosis.

	EM Algorithm		Naïve A	Naïve Analysis	
	Est.	SE	Est.	SE	
β _X	0.10	0.04	0.08	0.03	
γ _{Z, G = 1}					
γ _{Z, G = 2}					
θ_{X}					
θ_{M}					
θ_{XM}					

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + **Z**

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

Association between age & gestational hypertension is unchanged after accounting for misdiagnosis.

Association between gestational hypertension & preterm birth strengthens.

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
βχ	0.10	0.04	0.08	0.03
γ _{Z, G = 1}				
γ _{Z, G = 2}				
θ_{X}	0.02	0.05	0.10	0.03
θ_{M}	1.19	0.17	0.88	0.06
θ_{XM}	0.19	0.09	0.06	0.06

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + **Z**

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

Association betweer age & gestational hypertension is unchanged after accounting for misdiagnosis.

Association between gestational hypertension & preterm birth strengthens.

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
βχ	0.10	0.04	0.08	0.03
θ_{x}	0.02	0.05	0.10	0.03
θ_{M}	1.19	0.17	0.88	0.06
θ_{XM}	0.19	0.09	0.06	0.06

Use β and θ parameter estimates to compute (in)direct effects.

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

Effect estimates for impact of change in maternal age on preterm birth

Estimates obtained from the EM algorithm approach and from a naive analysis.

Use β and θ parameter estimates to compute (in)direct effects.

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

Association between age & gestational hypertension is unchanged after accounting for misdiagnosis.

Association between gestational hypertension & preterm birth strengthens.

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
βχ	0.10	0.04	0.08	0.03
γ _{Z, G = 1}	-1.01	0.40	-	-
γ _{Z, G = 2}	2.09	8.81	-	-
θ_{x}	0.02	0.05	0.10	0.03
θ_{M}	1.19	0.17	0.88	0.06
θ_{XM}	0.19	0.09	0.06	0.06

Use γ estimates to compute **sensitivity** and specificity.

True mediator mechanism: M ~ X + Race + Education + Parity + Smoking + BMI

Observed mediator mechanism: M* | M ~ Race + Z

Outcome mechanism: Y ~ X + Race + Education + Parity + Smoking + BMI + M + M * X

	Estimated Specificity P(no M* no M)	Estimated Sensitivity P(M* M)
Insured	99.9%	43.1%
Self-Pay	99.4%	21.7%

Key takeaways

- Developed new methods for handling misclassified binary mediator variables.
- Computed (in)direct effects using bias-corrected parameter estimates.
- Quantified gestational hypertension misdiagnosis rates based on insurance status.

Software

- Estimation methods for misclassified outcomes are available in the COMBO R Package on CRAN.
 - Correcting Misclassified Binary Outcomes
- Estimation methods for misclassified mediators are available in the COMMA R Package on CRAN.
 - Correcting Misclassified Mediation Analysis

Thank you!

Kimberly A. H. Webb

kiw58@pitt.edu

kimhwebb.com → My "webb-site" ©

