-1-

SEQUENCE LISTING

<110> The Scripps Research Institute The Regents of the University of California Wu, Eugene Nemerow, Glen R. Stewart, Phoebe <120> MODIFIED FIBER PROTEINS FOR EFFICIENT RECEPTOR BINDING <130> 22908-1237PC <140> 60/478,008 <141> 2004-06-10 <150> not assigned <151 2003-06-11 <160> 70 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 tgtcttgaat ccaagatgaa gcgcgcccgc cccagcgaag atgacttc 48 <210> 2 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tggagctggt gtggtccaca aagtgcgcgt gtcatattct gggttcca 48 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 actttgtgga ccacaccagc tcca 24 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence

-2-

<220> <223> primer	
<400> 4 cataacgcgg ccgcttcttt attcttgggc	30
<210> 5 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 5 gtgctactaa acaattcctt cctggatcca gaatattgga ac	42
<210> 6 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 6 gttccaatat tctggatcca ggaaggaatt gtttagtagc ac	42
<210> 7 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 7 atgggatcca agatgaagcg cgcaagaccg	30
<210> 8 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 8 tggtgtggtc cacaaagtta gcttatcatt	30
<210> 9 <211> 48 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 9 aagctaactt tgtggaccac accagacaca tctccaaact gcacaatt	48

-3-

```
<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 10
aaacacggcg gccgctcttt cattcttg
                                                                       28
<210> 11
<211> 45
<212> DNA
<213> Artificial Sequence
<223> primer
ctttgtggac cacaccagac actagtccaa actgcacaat tgctc
                                                                      45
<210> 12
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
gagcaattgt gcagtttgga ctagtgtctg gtgtggtcca caaag
                                                                      45
<210> 13
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 13
gettaggtta aceteaaget ttttettggt ttttttgaga ggtggget
                                                                      48
<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
agcccacctc tcaaaaaaac caggaaaaag cttgaggtta acctaagc
                                                                      48
<210> 15
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
```

-4-

```
<223> primer
<400> 15
atcagtatta acttgcagtg gagccttagg gtttacagtt aggcttccgg cctcgtccag 60
agagaggccg tt
<210> 16
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 16
ggaagcctaa ctgtaaaccc taaggctcca ctgcaagtta atactgattc aaacataaac 60
ctggaaatat ct
<210> 17
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 17
atcattgtca aatgtcaacc cttctcttgc tcttacattt ataccaatgt tgtaatcaaa 60
ttctaggcca tg
<210> 18
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 18
attggtataa atgtaagagc aagagaaggg ttgacatttg acaatgatgg tgccattaca 60
gtaggaaaca aa
<210> 19
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 19
ctggacgagg ccggcagcct aactgtaaac cctaaggc
                                                                     38
<210> 20
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
```

-5-

```
<400> 20
 gccttagggt ttacagttag gctgccggcc tcgtccag
                                                                                                                                               38
  <210> 21
  <211> 7960
  <212> DNA
  <213> Artificial Sequence
  <220>
 <223> pDV67
 <400> 21
 gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgccagta catgacetta tgggactttc ctacttggca gtacatctac gtattagtca 600 actcacgggg atttccaagt ctcacccca ttgacgtcaa tgggagtttg ttttggcacc 720
 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900 gtttaaactt aagcttggta ccgagctcgg atccactctc ttccgcatcg ctgtctgcga 960
cogcgtcacg cacgaaggag gcgtaggagt cgcgcagctt gttgaccagc tcggcggtga 1920 cctgcacgtc tagggcgcag tagtccaggg tttccttgat gatgtcatac ttatcctgtc 1980
cetgeacgte tagggegeag tagtecaggg ttteettgat gatgteatac ttatectgte 1980 cettttttt ceacageteg eggttgagga caaactette geggtettte cagtactett 2040 gateeggaa ceegtegge teegaacgag atcegtacte eggeegeag ggaacetgage 2100 caagatecaa gatgaaagege geaagacegt etgaagaaag egtetaacea gteacagteg 2160 etgaagatecaa aceggteet ecaaetgtge etttettac teeteectt gtatecat 2220 atgggtttea agagagteee eetggggtac ettetttgeg eetaaecaa eetetagta 2340 eetecaatgg eagatecte egaagatea aceaetgtga aceaetgtga eetetetggae gaggeeggea 2400 acettacete egaagatea aceaetgtga aceaetgte eagaaaaace aagteaaaca 2460
accttacctc ccaaaatgta accactgtga gcccacctct caaaaaaacc aagtcaaaca 2460
accttacctc ccaaaatgta accactgtga gcccacctct caaaaaaacc aagtcaaaca 2460 taaacctgga aatatctgca cccctcacag ttacctcaga agccctaact gtggctgccg 2520 ccgcacctct caaacttagc gccacacac tcaccatgca atcacaggcc ccgctaaccg 2580 tagccctgca aacatcaggc cccctcacca caaggacccct cacagtgtca gaaggaaagc 2640 cctcacccc tctaactact gccactggta gcttgggcat tgacttgaaa gagcccattt 2760 ataacacattt gaccgtagca actggtccag ggtggctcc tttgcatgaa gcttgcagc cacagggctc tctaactact gaccgtagca actggtccag gtgtgactat taataatact tccttgcaaa 2880 cacaaggtac tggagccag ggttttgatt cacaaggcaa tatgcaactt aatgtagcag 2940
```

gaggactaag gattgattct caaaacagac gccttatact tgatgttagt tatccgtttg 3000 atgeteaaaa ecaactaaat etaagaetag gacagggeee tettttata aacteageee 3060 acaacttgga tattaactac aacaaaggcc tttacttgtt tacagcttca aacaattcca 3120 aaaagcttga ggttaaccta agcactgcca aggggttgat gtttgacgct acagccatag 3180 ccattaatgc aggagatggg cttgaatttg gttcacctaa tgcaccaaac acaaatcccc 3240 tcaaaacaaa aattggccat ggcctagaat ttgattcaaa caaggctatg gttcctaaac 3300 taggaactgg ccttagtttt gacagcacag gtgccattac agtaggaaac aaaaataatg 3360 ataagctaac tttgtggacc acaccagctc catctcctaa ctgtagacta aatgcagaga 3420 aagatgctaa actcactttg gtcttaacaa aatgtggcag tcaaatactt gctacagttt 3480 cagttttggc tgttaaaggc agtttggctc caatatctgg aacagttcaa agtgctcatc 3540 ttattataag atttgacgaa aatggagtgc tactaaacaa ttccttcctg gacccagaat 3600 ttatgcctaa cctatcagct taccaaaat ctcacggtaa aactgccaaa agtaacattg 3720 tcagtcaagt ttacttaaac ggagacaaaa ctaaacctgt aacactaacc attacactaa 3780 acggtacaca ggaaacagga gacacaactc caagtgcata ctctatgtca ttttcatggg 3840 actggtctgg ccacaactac attaatgaaa tatttgccac atcctcttac actttttcat 3900 acattgccca agaataaaag aagcggccgc tcgagtctag agggcccgtt taaacccgct 3960 gatcagcctc gactgtgcct tctagttgcc agccatctgt tgtttgcccc tcccccgtgc 4020 cttccttgac cctggaaggt gccactccca ctgtcctttc ctaataaaat gaggaaattg 4080 cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 5340 ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 5400 gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 5460 ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgacacgtgc tacgagattt 5520 egattecace geogeettet atgaaaggtt gggettegga ategtttee gggaegeegg 5580 etggatgate etecagegeg gggateteat getggagtte ttegeecace ceaacttgtt 5640 tattgeaget tataatggtt acaaataaag caatageate acaaatttea caaataaage 5760 attituta ctgcattcta gttgtggttt gtccaaactc atcaatgtat cttatcatgt 5760 ctgtataccg tcgacctcta gctagagctt ggcgtaatca tggtcatagc tgtttcctgt 5820 gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa 5880 grgaaattgt tatccgctca caattccaca caactacga gccggaagca taaagtgtaa 5880 agcctggggt gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc 5940 tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcgggggg 6000 agcgcggtttg cgtattgggc tatcagctca ctcaaaggcg gtaatacggt tatcacaga 6120 acaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 6180 aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt 6300 tccccctgga agcatcacta ctgccctcc tgtgccctta cccgatta cccgatta cccgatta cccgatta cccgatacct 6360 tececetgga ageteceteg tgegetetee tgtteegace etgeegetta ceggatacet 6360 gteegeettt eteeettegg gaagegtgge gettteteaa tgeteaeget gtaggtatet 6420 cagtteggtg taggtegtte geteaaget gggetgtgtg caegaacee cegtteagee 6480 cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt 6540 atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc 6600

-7-

```
tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat 6660
 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 6720 acaaaccacc gctggtagcg gtggttttt tgtttgcaag cagcagatta cgcgcagaaa 6780 aaaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga 6840
  aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 6900
  tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 6960
  cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 7020 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 7080
catagitiges tigacticology tegigiagat aactaegata egggaggget taccatetigg 7080 ceccagitiget geaatgatae egggagaeee aegeteaeeg geteeagatt tateageaat 7140 aactetati aattigitiges eeggagaeeta aagtagitiet geaactitiat eegeeteeae eageteaeeg eggtaagetag agtaagtagit tegeeagtata atagititigeg 7260 atteagetee eggteee eteeteegte eteeteegte eteeteegte eteeteegte eteeteegte eteeteegte eteeteegte eteetaeegte eteeteegte eteetaeegte eteeteegte ete
gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag 7680 atccagttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc 7800 gacacggaaa tgttgaatac tcatactctt ccttttcaa tattattgaa gcatttatca 7800 gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 7920
  ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc
  <210> 22
  <211> 1240
  <212> DNA
  <213> Artificial Sequence
  <220>
 <223> Adenovirus TPL
 ggatccactc tcttccgcat cgctgtctgc gagggccagc tgttggggtg agtactccct 60
 ctgaaaagcg ggcatgactt ctgcgctaag attgtcagtt tccaaaaacg aggaggattt 120 gatattcacc tggcccgcgg tgatgccttt gagggtggcc gcatccatct ggtcagaaaa 180 gacaatcttt ttgttgtcaa gcttggtggc aaacgacccg tagagggcgt tggacagcaa 240
gagtattcca agatatgtag ggtagcatct tecacegegg atgetgggg ggacgtagta 780 tgcteggaag actatetge tgaagatgg eggacgagg ttgetaeggg egggetgete 840 gaagaegttg aagetggegt etgtagaace ttgaagatgg tagetggtg gatgatatgg ttggaegetg 900 gtegegeage ttgttgaeca geteggeggt gacetgeagg aggegtagga 960 gtegegeage ttgttgaeca geteggeggt tecagegegg tecageggeggt tecagegege agtagteaga 1020
 ggttteettg atgatgteat acttateetg teeetttttt tteeacaget egeggttgag 1080 gacaaactet tegeggtett teeagtacte ttggategga aaccegtegg ceteegaacg 1140
 agateegtae teegeegeeg agggaeetga gegagteege ategaeegga teggaaaace 1200
 tetegagaaa ggegtetaac cagteacagt egcaagatet
 <210> 23
 <211> 7607
 <212> DNA
 <213> Artificial Sequence
```

<220>

-8-

<223> Plasmid GRE5-2.E1

<400> 23 tctagaagat ccgctgtaca ggatgttcta gctactttat tagatccgct gtacaggatg 60 ttctagctac tttattagat ccgctgtaca ggatgttcta gctactttat tagatccgct 120 gtacaggatg ttctagctac tttattagat ccgtgtacag gatgttctag ctactttat 180 agatcgatct cctggcgtt cggggtcaaa aaccaggttt ggctataaaa gggggtgggg 240 aacttcaggg tgagtttggg gacccttgat tgtacagt tgtacaattc 360 accttact tgtacagt tgtacagt atgttatatg gagggggcaa agttttcagg gtgttgttta gaatgggaag atgtcccttg 420 tatcaccatg gaccctcatg ataattttgt ttctttcact ttctactctg ttgacaacca 480 ttgtaacgaa tttttaaatt cactttgtt tatttgtcag atgtcagga atgtccctta 600 ttgtaacgaa tttttaaatt cactttgtt tatttgtcag atgtaagta ctttctctaa 660 tcactttttt ttcaaggcaa tcagggtata ttatattgta cttcagcaca gttttagaga 660 acaattgtta taattaaatg ataaggtaga atatttctgc atataaattc tggctggcgt 720 ggaaatatte ttattggtag aaacaactae ateetggtea teateetgge tttetettta 780 tggttacaat gatatacaet gtttgagatg aggataaaat actetggge caaaceggge 840 gttattgtge tgteteatea ttttggeaaa gaattagate taageteetgg caacegtgetg 900 gttattgtge tgteteatea ttttggeaaa gaattagate taagetteetg cagetegagg 960 cetagatea acteggtega etgaaaatga gacatattat etgecaegga ggtgttatta eegaagaaat 1020 ggccgccagt cttttggacc agctgatcga agaggtactg gctgataatc ttccacctcc 1080 tagccatttt gaaccaccta cccttcacga actgtatgat ttagacgtga cggccccga 1140 tagccatttt gaaccaccta cccttcacga actgtatgat ttagacgtga cggcccccga 1140 agatcccaac gaggaggcgg tttcgcagat ttttcccgac tctgtaatgt tggcggtgca 1200 ggaagggat gacttactca cttttccgcc ggcgcccggt tctcccggagc cggctcacct 1260 tgtaccggag gtgatcgatc ttacctgca cgaggctggc tttccaccaacct 1320 ggatgaagag gtgatgatc ttacctgca cgaggctggc tttccaccaacct 1320 ggatgaagag gtgatgatc ttacctgca cgaggctggc tttccaccaacct 1320 ggatgaagag ggtgaggagt ttggtgtaga ttagtgtaga caccccgggc acggttgcag 1440 ggatttgat tatcaccgga ggaatacggg ggacccagat ttattgtggag caccccgggc acggttgcag 1440 agggggggt ttggtgggt ttggtgggt ttggtgaaa ttattgtgga caccccgggc acggttgcag 1440 tatgggggg ttggtgggt ttggtggatag ttggtgaaaa ttatgggcag tgggtgatag 1560 aattttttt ttaattttta cagttttgt ggtttaaagaa 1620 ctgcaagacc ctgcaagacc cctaaaaatgg cgcctgctat cctgagacgc 1740 titgaagag tittgaaatc ctgtggtgag ctgtttgatt ctttgaatct gggtcaccag 2340 gcgcttttcc aagagaaggt catcaagact ttggatttt ccacaccggg gcgcgctgcg 2400 gctgctgttg cttttttgag ttttataaag gataaatgga gcgaagaaac ccatctgagc 2460 ggggggtacc tgctggattt tctggccatg catctgtgga gagcggttgt gagacacaag 2520 aatcgcctgc tactgttgtc ttccgtccgc ccggcgataa taccgacgga ggagcagcag 2580 cagcagcagg aggaagccag gcggcggcgg caggagcaga gcccatggaa cccgagagcc 2640 ggcctggacc ctcgggaatg aatgttgtac aggtggctga actgtatcca gaactgagac 2700 gcattttgac aattacagag gatgggcagg ggctaaaggg ggtaaagagg gagcgggggg 2760 cttgtgaggc tacagaggag gctaggaatc tagcttttag cttaatgacc agacaccgtc 2820 cgcagaagta ttccatagag cagctgacca cttactggct gcagcaggg gatgattttg 2940 aggaaggtat tagggtata gaaggggg cagctgacca cagctgacca agattagag gatgattttg 2940 aggaagggtat tagggtatat gcaaaggtgg cagctaggg agattagag 3000 ggaaggggt ggtgtgtcgc cccaaaagca gggcttcaat taagaaatgc ctctttgaaa 3360 ggtgtacctt gggtatcctg tctgagggta actccagggt gcgccacaat gtggcctccg 3420 actgtggttg cttcatgcta gtgaaaagcg tggctgtgat taagcataac atggtatgtg 3480

gcaactgcga ggacagggcc tctcagatgc tgacctgctc ggacggcaac tgtcacctgc 3540 tgaagaccat tcacgtagcc agccactctc gcaaggcctg gccagtgttt gagcataaca 3600 tactgacccg ctgttccttg catttgggta acaggagggg ggtgttccta ccttaccaat 3660 gcaatttgag tcacactaag atattgcttg agcccgagag catgtccaag gtgaacctga 3720 acggggtgtt tgacatgacc atgaagatct ggaaggtgct gaggtacgat gagacccgca 3780 ccaggtgcag accctgcgag tgtggcggta aacatattag gaaccagcct gtgatgctgg 3840 atgtgaccga ggagctgagg cccgatcact tggtgctggc ctgcacccgc gctgagtttg 3900 gctctagcga tgaagataca gattgaggta ctgaaatgtg tgggcgtggc ttaagggtgg 3960 gaaagaatat ataaggtggg ggtcttatgt agttttgtat ctgttttgca gcagccgcg 4020 cogcoatgag caccaactcg tttgatggaa gcattgtgag ctcatatttg acaacgcgca 4080 tgcccccatg ggccggggtg cgtcagaatg tgatgggctc cagcattgat ggtcgccccg 4140 tcctgcccgc aaactctact accttgacct acgagaccgt gtctggaacg ccgttggaga 4200 ctgcagcete cgccgccgct tcagccgctg cagccaccgc ccgcgggatt gtgactgact 4260 ttgctttcct gagcccgctt gcaagcagtg cagcttcccg ttcatccgcc cgcgatgaca 4320 agttgacggc tcttttggca caattggatt ctttgacccg ggaacttaat gtcgtttctc 4380 agcagctgtt ggatctgcgc cagcaggttt ctgccctgaa ggcttcctcc cctcccaatg 4440 cggtttaaaa cataaataaa aaaccagact ctgtttggat ttggatcaag caagtgtctt 4500 gctgtetcag ctgactgctt aagtcgcaag ccgaattgga tccaattcgg atcgatctta 4560 ttaaagcaga acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca 4620 aatttcacaa ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc 4680 aatttcacaa ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc 4680 aatgtatctt atcatgtctg gtcgactcta gactcttccg cttcctcgct cactgactcg 4740 ctgcgctcgg tcgttcggct gcggcagcg gtatcagctc actcaaaggc ggtaatacgg 4800 ttatccacag atcaggga taacgcagga aagaacatgt gagcaaaaagg ccagcaaaag 4860 gcgacacaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacaagg actataaaga 4980 taccaggatacc tgtcccctcg aagctccctc gggaagcgtg cgctttctca tagctcacgc 5040 accggatacc tgtccgct tctcccttcg gtaggtcgt cgcttctca tagctcaccc 5160 cccattcacc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta 5220 agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 5280 gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 5340 gtaggeggg ctacagagtt ctegaagtgg tggcctatct acggctacac tagaaggaca 5340 gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 5400 tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 5460 acgtggaacg aaaacgagt tcaagaagat cctttgatct tttctacggg gtctgacgct 5520 cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc 5580 acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa 5640 acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc gatctgtcta 5700 tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat acgggagggc 5760 ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat 5820 ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc tgcaacttta 5880 tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag ttcgccagtt 5940 aatagtttgc gcaacgttgt tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt 6000 ggtatggctt cattcagctc cggttccca cgatcaaggc gagttacatg atcccccatg 6060 ctctggtttat cactcatggt tatggcagca ctccttcggt ctcctacgt ctcttactgt cattcatggt tatggcagca ctcctatatt ctcttactgt cattcatggt cattcatggt cattcatgat cattctgaga atagtgtatg 6240 eggegacega gttgetettg eceggegtea atacgggata atacegegee acatageaga 6300 actttaaaag tgeteateat tggaaaacgt tettegggge gaaaactete aaggatetta 6360 eegetgttga gatecagtte gatgtaacce actegtgeae ecaactgate tteageatet 6420 tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag 6480 ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca atattattga 6540 agcattate agggttattg teteatgage ggatacatat ttgaatgtat ttagaaaaat 6600 aaacaaatag gggtteegeg cacattteee egaaaagtge cacetgaegt etaagaaace 6660 attattatea tgacattaac etataaaaat aggegtatea egaggeeeet ttegtetege 6720 gcgtttcggt gatgacggtg aaaacctctg acacatgcag ctcccggaga cggtcacagc 6780 ttgtctgtaa gcggatgccg ggagcagaca agcccgtcag ggcggtcag cgggtgttgg 6840 cgggtgtcgg ggctggctta actatgcggc atcagagcag attgtactga gagtgcacca 6900 tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggaaattgta 6960 agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac 7020 caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg 7080 agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa 7140

```
gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt 7200 tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt 7260
  agagettgae ggggaaagee ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga 7320
 gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc 7380 gcgcttaatg cgccgctaca gggcgcgtcc cattcgccat tcaggctgcg caactgttgg 7440
 gaaggegat eggtgegge etettegeta ttacgecage tggegaaagg gggatgtget 7500 gcaaggegat taagttgggt aacgecaggg ttttcccagt cacgacgttg taaaacgacg 7560
 gccagtgaat tgtaatacga ctcactatag ggcgaattaa ttcgggg
                                                                                                                             7607
  <210> 24
  <211> 11600
  <212> DNA
  <213> Artificial Sequence
 <223> Plasmid pMNNeoE2-a-3.1
  <400> 24
 gaattccgca ttgcagagat attgtattta agtgcctagc tcgatacaat aaacgccatt 60
 tgaccattca ccacattggt gtgcacctcc aagcttgggc agaaatggtt gaactcccga 120 gagtgtccta cacctagggg agaagcagcc aaggggttgt ttcccaccaa ggacgacccg 180 tctgcgcaca aacggatgag cccatcagac aaagacatat tcattctctg ctgcaaactt 240
 ggcatagctc tgctttgcct ggggctattg ggggaagttg cggttcgtgc tcgcagggct 300 ctcacccttg actctttaa tagctcttct gtgcaagatt acaatctaaa caattcggag 360
 aactcgacct tecteetgag geaaggacca cagecaactt cetettacaa geegcatega 420
 ttttgtcctt cagaaataga aataagaatg cttgctaaaa attatattt taccaataag 480 accaatccaa taggtagatt attagttact atgttaagaa atgaatcatt atcttttagt 540
gccatcccgt ctccgctcgt cacttatcct tcactttcca gagggtcccc ccgcagaccc 1380 gtgacccttg tctctattc tactatttgg tgtttgtctt gtattgtct cttctgtct 1520 gctatcatc acaagagcgg aacggactca ccatagggac caagctagcg cttctcgtcg 1560 cgtccaagac cctcaaagat ttttggcact tcgttgagcg aggcgatatc aggtatgaca 1620 cgtccaagac cctcaaagat ttttggcact cgttggggac caagctagcg aggcgatatc aggtatgaca 1680
gegecetgee geaaggeeag etgettgee geteggetge ggttggeaeg geaggatagg 1680 ggtacetgeegggtaga agttgaggeg egggttgge tegeatgtge ggtttettg gegtttggge tegeatgtge eggtttggge tegeatgtge taggeagge tgacatege ggtagaatag gtggegtteg taggeagge tgacatege tatggegagg 1860 eagatagge eggetettg eaacgegteg taggeagat geetttegte eggetggeg 1920 taggagaatag eggetggeg eagataggeg taggeagat geetttegte eggetggeg 1980
ttcaacagca cgtcgtctcc cacatctagg tagtcgccat gcctttcgtc cccccgcccg 1980 acttgttcct cgtttgcctc tgcgttgtcc tggtcttgct ttttatcctc tgttggtact 2040
teteccaage eegagegee gecateacea gaggtaateg tggacagega ggaagaaaga 2580
```

gaagatgtgg cgctacaaat ggtgggtttc agcaacccac cggtgctaat caagcatggc 2640 aaaggaggta agcgcacagt gcggcggctg aatgaagacg acccagtggc gcgtggtatg 2700 cggacgcaag aggaagaga agagccagc gaagcggaaa gtgaaattac ggtgatgaac 2760 ccgctgagtg tgccgatcgt gtctgcgtgg gagaagggca tggaggctgc gcgcgcgctg 2820 atggacaagt accacgtgga taacgatcta aaggcgaact tcaaactact gcctgaccaa 2880 gtggaagete tggeggeegt atgeaagace tggetgaacg aggageaceg egggttgeag 2940 ctgacettea ceageaacaa gacetttgtg acgatgatgg ggcgatteet geaggegtae 3000 ctgcaceget gegetgagat egaaggegag ettaagtgt tacacggage egegttgtgg 3060 cataaggage acgtgattga aatggatgtg acgagegaaa acgggcageg egegttgata 3120 gagcagteta geaaggecaa gategtgaag aaceggtggg geegaaatgt ggtgeagate 3240 ggeaagtett geggeatgtt ettetetgaa ggegeaaagg eteaggtgge ettetetgaa ggegeaaagg eteaggtgg geegaaatgt ettetetgaa ggegeaaagg eteaggtgge teagtttee 3360 ateaagget ttatgeagge getgtateet aacgeecaga eegggeaegg teacettttg 3420 atgccactac ggtgcgagtg caactcaaag cctgggcacg cgcccttttt gggaaggcag 3480 ctaccaaagt tgactcgtt cgccctgagc aacgcggagg acctggacgc ggatctgatc 3540 tecgacaaga gegtgetgge cagegtgeac caeeeggege tgatagtgtt ceagtgetge 3600 aaccetgtgt atcgcaacte gegegegeag ggeggaggee ccaactgega etteaagata 3660 teggegeeeg acctgetaaa egegttggtg atggtgegea geetgtggag tgaaaactte 3720 accgagetge egeggatggt tgtgeetgag tttaagtgga geactaaaca ecagtatege 3780 aacgtgtccc tgccagtggc gcatagcgat gcgcggcaga acccctttga tttttaaacg 3840 gcgcagacgg caagggtggg ggtaaataat cacccgagag tgtacaaata aaagcatttg 3900 cctttattga aagtgtctct agtacattat ttttacatgt ttttcaagtg acaaaaagaa 3900 gtggcgctcc taatctgcgc actgtggctg cggaagtagg gcgagtggcg ctccaggaag 4020 ctgtagagct gttcctggtt gcgacgcagg gtgggctgta cctggggact gttgagcatg 4080 gagttggca acceggtaat aaggttcatg gtggggttgt gatccatggg agtttgggc 4140 cagttggca aggcgtggag aaacatgcag cagaatagtc cacaggeggc cgagttgggc 4200 cgagttggca 4200 cgagttggca 4200 cgagttgggc 4200 cgagttggca 4200 cgagtaga 4200 cgagt ccctgtacgc tttgggtgga cttttccagc gttatacagc ggtcggggga agaagcaatg 4260 gegetaegge geaggagtga etegtaetea aactggtaaa eetgettgag tegetggtea 4320 gaaaageeaa agggeteaaa gaggtageat gtttttgagt gegggtteea ggeaaaggee 4380 atccagtgta cgccccagt ctcgcgaccg gccgtattga ctatggcgca ggcgagcttg 4440 tgtggagaaa caaagcctgg aaagcgcttg tcataggtgc ccaaaaaata tggcccacaa 4500 ccaagatett tgacaatgge ttteagttee tgeteactgg ageecatgge ggeagetgtt 4560 acaagatett gatgacgeeg eggtgeggee ggtgeacacg gacaaggge gtgegaggt 4620 acaaaacata aagaagggtg ggetegteea tgggatecat atatagggee egggttataa 4740 ttacctcagg tcgacctcga gggatctttg tgaaggaacc ttacttctgt ggtgtgacat 4800 aattggacaa actacctaca gagatttaaa gctctaaggt aaatataaaa tttttaagtg 4860 tataatgtgt taaactactg attctaattg tttgtgtatt ttagattcca acctatggaa 4920 ctgatgaatg ggagcagtgg tggaatgcct ttaatgagga aaacctgttt tgctcagaag 4980 aaatgccatc tagtgatgat gaggctactg ctgactctca acattctact cctccaaaaa 5040 agaagagaaa ggtagaagac cccaaggact ttccttcaga attgctaagt tttttgagtc 5100 atgctgtgtt tagtaataga actcttgctt gctttgctat ttacaccaca aaggaaaaag 5160 ctgcactgct atacaagaaa attatggaaa aatattctgt aacctttata agtaggcata 5220 acagttataa tcataacata ctgttttttc ttactccaca caggcataga gtgtctgcta 5280 ttaataacta tgctcaaaaa ttgtgtacct ttagcttttt aatttgtaaa ggggttaata 5340 aggattttac ttgctttaaa aaacctccca cacctccccc tgaacctgaa acataaaatg 5400 gaggttttac ttgctttaaa aaacctccca cacctccccc tgaacctgaa acataaaatg 5460 aatgcaattg ttgttgttaa cttgtttatt gcagcttata atggttacaa ataaagcaat 5520 aatgcaattg ttgttgttaa cttgtttatt agcagcttata atggttacaa ataaagcaat 5520 atctcacaa atttcacaaa taaagcattt ttttcactgc attctagttg tggtttgtcc 5580 tgtgggaaagt ccccaggct ccccaggct ccccaggct ccccaggct ccagcaggc agaagtatgc aaagcatgca ttcagttaggg 5640 tccccaggt ccccaggt ccccaggc cccccaggc cccccaggc cccccaggc ccccaggc ccccaggc ccccaggc ccccaggc ccccaggc ccccaggc cccccaggc ccccaggc cccccaggc ccccaggc cccccaggc ccccaggc cccccaggc ccccccaggc cccccaggc cccccaggc cccccaggc cccccaggc cccccaggc cccccaggc ccccc gctactgggc tatctggaca agggaaaacg caagcgcaaa gagaaagcag gtagcttgca 6120 gtgggcttac atggcgatag ctagactggg cggttttatg gacagcaagc gaaccggaat 6180 tgccagctgg ggcgccctct ggtaaggttg ggaagccctg caaagtaaac tggatggctt 6240

tettgeegee aaggatetga tggegeaggg gateaagate tgateaagag acaggatgag 6300 gatcgtttcg catgattgaa caagatggat tgcacgcagg ttctccggcc gcttgggtgg 6360 agaggetatt eggetatgae tgggeacaac agacaategg etgetetgat geegeegtgt 6420 teeggetgte agegeagggg egeeeggtte tttttgteaa gacegaeetg teeggtgeee 6480 tccggctgtc agcgcagggg cgcccggttc tttttgtcaa gaccgacctg tccggtgcc 6480 gcgcaggtgt gcaggacggg tatcgtggt ggcaccgacgg ggcgttcctt 6540 tgccggggca ggatctcctg tcatctcacc ttgcccagaggga ctggcggaaggga ctggcgaaggga ctggcgaaggga ctggcgaaggaaggaagga ctggcagaaggaagga ctcgaaacatcg catcgaggaa gcacgtactc ggatggaagg cggtcttgtc gaccaccaaag 6780 catcgagaaa tggcgaaaa tggcggagat ctcggcgaact gcatgggaaaa tggcggagat ctcggctga ccatggcga tggtggaaaa tggcggagat ctcggatta tcggattga cccatgggga tggtggaaca cggcgaact ggtgggaaaa tggcggatca tctggatta tcgaactgtgg ccggatggga ccggcgaact ggtggggaac 6960 catacagga ggcgaattga tccatggcga tgcctgctg ccgaatatca cataacgga ggcgaatatca agagcttga agagcttgaa agagcttggg ggcgaatggg 7020 gctatcagga catagcgttg gctacccgtg atattgctga agagcttggc ggcgaatggg 7020 ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga ttcgcagcgc atcgccttct 7080 ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga ttcgcagcgc atcgccttct 7080 gacgcccaac ctgccatcac gagatttcga ttccaccgc gccttctatg acgccggctg gatgatcctc cagcggggg acctctatg gctgacgac ctcgcgagt tctaccggca ggctcgatcc cctcgcgagt tggtcaaccag ggctgatccagcgggagt tctaccggca acgccggcgggagt tctaccggca acgcggcggagt tctaccggca acgcggagt tctaccggca acgcggagt tctaccggagt tggtcaaatcc gtgggaggca ccgggagaccaga gatctttgtg aaggaacctt acgcgagag acttctgtgg acgcggagagaccaga gtggaaatcc gtgggaggca cgatggcaga acgcagagaaccag 7380 tggggaggca acgcagagaaccag gatttaaagc tctaaggtaa acttctgtgg tgggaaccaaa ttggacaaac 7500 aagaacacag 7500 aacacactgat tctaattgtt tgggtatttt agattccaac ctatggaact ctatggaact gatgaatggg 7620 aacacactgat aatgaggaaa acctgttttg ctcagaagaa acgcatcta 7680 agcagtggtg gaatgccttt aatgaggaaa acctgttttg ctcagaagaa atgccatcta 7680 gtgatgatga ggctactgct gactctcaac attctactcc tccaaaaaag aagagaaagg 7740 tagaagaccc caaggacttt ccttcagaat tgctaagttt tttgagtcat gctgtttta 7800 gtaatagaac tettgettge tettgetatt acaccacaaa ggaaaaaget geaetgetat 7800 acaagaaaat tatggaaaaa tattetgtaa cetttataag taggeataac agttataate 7920 etcaaaaatt gtgtacettt actecacaca ggcatagagt gtetgetatt aataactatg 7920 etcaaaaatt gtgtacettt agettettaa tettgtaaagg ggttaataag gaatattega 8040 egettetaaag gatcataate agecatacca cattegaga ggttaactt 8100 egettetaaag ggttaataag ggttaatatt 8160 tgtatagtgc cttgactaga gatcataatc agccatacca catttgtaga ggttttactt 8100 gttgttaaat tgttattgc agcttataat ggttacaaat aaagcaattgt 8160 ttcacaaata aagcatttt ttcactgcat tctagttgtg gtttgtcaa actcacaat 8220 gtatcttatc atgtetggat ccccaggaag ctcctctgtg tcctcataaa ccctaacat 8280 ctctacttga gaggacattc caatcatagg ctgcccatcc accctctgtg tcctcataca accctaactc 8340 aattaggtca cttaacaaa aggaaattgg gtaggggtt ttcacagacc gctttcaag 8460 ggtaatttta aaatactgg gaagtccctt ccactgctgt gttccagaag tgttggtaaa 8520 caacccacaa atgtcaacag cagaaacata caaggactgtaa gctttgacaa aggacccaac 8580 cagoccacaa atgtcaacag cagaaacata caagotgtca gotttgcaca agggcccaac 8580 accetgetea teaagaagea etgtggttge tgtgttagta atgtgcaaaa caggaggcae 8640 attttccca cetgtgtagg ttccaaaata tetagtgttt teattttac ttggatcagg 8700 catctgctga cetgtcaactg tagcatttt tggggttaca acagcettgt ggtcagtgtt 8760 cetgtagttt gctaacaca cetgcaget caaaggttcc caaaggttcc caaaggttc caaaaatttgac cettgaatgg gtttccaga accattttca tggggttaca gtttgagcag gatatttggt 8820 caaaatttgac cettgaatgg gttttccaga accattttca tgagttttt tgagtectga 8940 caacaaggttc caacaggtt ttaacagtaa cagcttccca 9000 catcaaaaata ttttcaacagg ttaagtcctc atttaaaatta gggaaagaa ttaagtcaga gatattagaa 9060 catcaaaata tttccacagg ttaagtcctc atttaaatta ggcaaaggaa ttcttgaaga 9060 cgaaagggc tcgtgatacg cctatttta taggttaatg tcatgataat aatggttct 9120 tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc 9180 tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttattttc 9180 taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa 9240 gcggcatttt gccttcctgt ttttgctcac caagaaacgc tggtgaaagt tcggcgcgtat tcgccctat tcctgttttt 9300 gaagatcagt tgggtgcacg agtgggttac ccaagaaacgc tggtgaaagt aaaagatgct 9360 cttgagagtt ttcgcccga agaacgtttt ccaatgatga gcacttttaa agttctgcta 9480 tattctcaga atgacttggt tgagtactca ccagtcacag aactcggtcg ccgcatacac 9540 tatcacagaaacacaca cagtacaca gagaacact tacggatggc 9600 atgacacagtaa gagaattata cagtactca cagtcacag ataaccataa gtgatacaca 9660 atgacagtaa gagaattatg cagtgetgee ataaccatga gtgataacac tgcggccaac 9660 ttacttctga caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg 9720 gatcatgtaa ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac 9780 gagcgtgaca ccacgatgcc tgcagcaatg gcaacaacgt tgcgcaaact attaactggc 9840 gaactactta ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt 9900

```
gcaggaccac ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga 9960
 geogytgage gtgggteteg eggtateatt geageactgg ggeoagatgg taageetee 10020 egtategtag tatetaeae gaegggagt ategetgaga taggtgete actgattaag eattggtaae tataaettt agattgatt aaaaetteat tittaattta aaaggateta ggtgaagate 10200 etttttgata ateteatgae caaaateeet taaegtgagt tittegtteea etgagggtea 10200 etgagggtea 10200
 gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc 10320
 tgcttgcaaa caaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta 10380
 ccaactettt ttecgaaggt aactggette ageagagege agataccaaa tactgteett 10440
ccaactettt tteegaaggt aactggette ageagagege agataceaaa taetgteett 10440 getetgetaa teetgttaee agtggetget accagatege ttegaacteaa gaegatagtt accggataag gegeageget teeegaaggg agataceaaa taetgteett 10500 tagatageteaa gegeataget gegaacteet aagaacteet tagatacete 10500 teegaagggeteaa gegeageget teeegaaggg agataceta geggeggteeg 10560 tagatagaaa gegeeagget teeegaaggg agaaaggegg agataceta gegggggtteg 10680 acagggtagaa gegeeagget teeegaaggg agaaaggegg agaaaggegg agataceaaa taetgteett 10440 teegaaggg agataceaaa taetgteett 10500 tagatageteetg tagataceaaa taetgteett 10500 aagaacteetg tagatageteetg tagataceaaa taetgteett 10500 aagaacteetg tagatageteetg tagatageteetg 10560 teegaaggggeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetgeteetget
tttaggcgaa aagcggggct tcggttgtac gcggttagga gtcccctcag gatatagtag 11400
 tttcgctttt gcatagggag ggggaaatgt agtcttatgc aatacacttg tagtcttgca 11460 acatggtaac gatgagttag caacatgcct tacaaggaga gaaaaagcac cgtgcatgcc 11520
 gattggtgga agtaaggtgg tacgatcgtg ccttattagg aaggcaacag acgggtctga 11580
 catggattgg acgaaccact
 <210> 25
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer
 <400> 25
 tgtacaccgg atccggcgca cacc
                                                                                                                                                                                                                24
 <210> 26
 <211> 35
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer
<400> 26
cacaacgagc tcaattaatt aattgccaca tcctc
                                                                                                                                                                                                                35
 <210> 27
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> primer
 <400> 27
```

-14-

cgcgctgact cttaaggact agtttc	26
<210> 28 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 28 gcgcttaatt aacatcatca ataatatacc ttatttt	37
<210> 29 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 29 atcatggccg acaagcagaa gaac	24
<210> 30 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 30 gtacagctcg tccatgccga gagt	24
<210> 31 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> EGFP probe	
<221> misc_feature <222> 1 <223> FAM (6-carboxy-fluorescein)	
<221> misc_feature <222> 26 <223> TAMRA (6-carboxy-tetramethyl-rhodamine)	
<400> 31 caggaccatg tgatcgcgct tctcgt	26
<210> 32 <211> 1749 <212> DNA <213> Adenovirus serotype 2 fiber	
<220> <221> CDS	

-15-

<222> (1) ... (1749)

702	.27 (- /	. (_ /	43)												
ato	00> 3 Jaaa Lys	cac	gcc	aga Arg 5	ccg	tct Ser	gaa Glu	gac Asp	acc Thr	. hue	aac Asr	c ccc	gtç Val	tat Tyr	cca Pro	48
_	-		20			110	FLO	25	val	. Pro	Phe	e Leu	Thr 30	Pro	cca Pro	96
		35			. Cly	1116	40	GIU	ser	. Pro	Pro	45	Val	. Leu	Ser	144
						55	veb	TIII	ser	HIS	60 GTA	Met	Leu	. Ala	Leu	192
65	atg Met	-			70		ac u	veħ	цуs	75	СТХ	Asn	Leu	Thr	Ser 80	240
	aat Asn			85			0111	FIO	90	тув	тув	Thr	rys	Ser 95	Asn	288
	agt Ser		100		501		FIO	105	IIII	тте	Thr	Ser	Gly 110	Ala	Leu	336
	gtg Val	115					120	116	val	Inr	ser	GLY 125	Ala	Leu	Ser	384
	cag Gln 130					135	1111	Val	GIII	Asp	Ser 140	Lys	Leu	Ser	Ile	432
145		•	2		150		Val	Ser	Asp	155	гЛа	Leu	Ala	Leu	Gln 160	480
	tca Ser			165	001	Ciy	Set	Asp	170	Авр	Thr	Leu	Thr	Val 175	Thr	528
	tca Ser		180					185	GTĀ	ser	ren	GTA	11e 190	Asn	Met	576
		195		-2-			200	GIY	пув	тте	GTÅ	11e 205	Lys	Ile	Ser	624
	cct Pro 210					215	ADII.	Ser	qaA	THE	ьец 220	Thr	Val	Val	Thr	672
gga Gly	cca Pro	ggt Gly	gtc Val	acc Thr	gtt Val	gaa Glu	caa Gln	aac Asn	tcc Ser	ctt Leu	aga Arg	acc Thr	aaa Lys	gtt Val	gca Ala	720

-16-

225	i				230)				235	i				240	
gga Gly	gct Ala	att Ile	ggt Gly	tat Tyr 245		tca Ser	tca Ser	aac Asn	aac Asn 250	Met	gaa Glu	att Ile	aaa Lys	acg Thr 255	gly	768
ggt Gly	Gly	atg Met	Arg 260	ata Ile	aat Asn	aac Asn	aac Asn	ttg Leu 265	ььеu	att Ile	cta Leu	gat Asp	gtg Val 270	gat Asp	tac Tyr	816
cca Pro	ttt Phe	gat Asp 275	gct Ala	caa Gln	aca Thr	aaa Lys	cta Leu 280	- ALG	ctt Leu	aaa Lys	ctg Leu	999 Gly 285	GIn	gga Gly	ccc Pro	864
ctg Leu	tat Tyr 290	att Ile	aat Asn	gca Ala	tct Ser	cat His 295	aac Asn	ttg Leu	gac Asp	ata Ile	aac Asn 300	Tyr	aac Asn	aga Arg	ggc	912
cta Leu 305	tac Tyr	ctt Leu	ttt Phe	aat Asn	gca Ala 310	tca Ser	aac Asn	aat Asn	act Thr	aaa Lys 315	гÃЗ	ctg Leu	gaa Glu	gtt Val	agc Ser 320	960
ata Ile	aaa Lys	aaa Lys	tcc Ser	agt Ser 325	gga Gly	cta Leu	aac Asn	ttt Phe	gat Asp 330	Asn	act Thr	gcc Ala	ata Ile	gct Ala 335	ata Ile	1008
aat Asn	gca Ala	gga Gly	aag Lys 340	ggt Gly	ctg Leu	gag Glu	ttt Phe	gat Asp 345	aca Thr	aac Asn	aca Thr	tct Ser	gag Glu 350	tct Ser	cca Pro	1056
gat Asp	atc Ile	aac Asn 355	cca Pro	ata Ile	aaa Lys	act Thr	aaa Lys 360	att Ile	Gly	tct Ser	ggc Gly	att Ile 365	gat Asp	tac Tyr	aat Asn	1104
gaa Glu	aac Asn 370	ggt Gly	gcc Ala	atg Met	att Ile	act Thr 375	aaa Lys	ctt Leu	gga Gly	gcg Ala	ggt Gly 380	tta Leu	agc Ser	ttt Phe	gac Asp	1152
aac Asn 385	tca Ser	gly aaa	gcc Ala	att Ile	aca Thr 390	ata Ile	gga Gly	aac Asn	aaa Lys	aat Asn 395	gat Asp	gac Asp	aaa Lys	ctt Leu	acc Thr 400	1200
ctg Leu	tgg Trp	aca Thr	acc Thr	cca Pro 405	gac Asp	cca Pro	tct Ser	cct Pro	aac Asn 410	tgc Cys	aga Arg	att Ile	cat His	tca Ser 415	gat Asp	1248
aat Asn	gac Asp	tgc Cys	aaa Lys 420	ttt Phe	act Thr	ttg Leu	gtt Val	ctt Leu 425	aca Thr	aaa Lys	tgt Cys	gly aaa	agt Ser 430	caa Gln	gta Val	1296
cta Leu	gct Ala	act Thr 435	gta Val	gct Ala	gct Ala	ttg Leu	gct Ala 440	gta Val	tct Ser	gga Gly	gat Asp	ctt Leu 445	tca Ser	tcc Ser	atg Met	1344
aca Thr	ggc Gly 450	acc Thr	gtt Val	gca Ala	agt Ser	gtt Val 455	agt Ser	ata Ile	ttc Phe	ctt Leu	aga Arg 460	ttt Phe	gac Asp	caa Gln	aac Asn	1392
ggt Gly 465	gtt Val	cta Leu	atg Met	gag Glu	aac Asn 470	tcc Ser	tca Ser	ctt Leu	пåв	aaa Lys 475	cat His	tac Tyr	tgg Trp	aac Asn	ttt Phe 480	1440

aga Arg	aat Asn	Gly aaa	aac Asn	tca Ser 485	act Thr	aat Asn	gca Ala	aat Asn	cca Pro 490	tac Tyr	aca Thr	aat Asn	gca Ala	gtt Val 495	gga Gly	1488
ttt Phe	atg Met	cct Pro	aac Asn 500	ctt Leu	cta Leu	gcc Ala	tat Tyr	cca Pro 505	aaa Lys	acc Thr	caa Gln	agt Ser	caa Gln 510	act Thr	gct Ala	1536
aaa Lys	aat Asn	aac Asn 515	att Ile	gtc Val	agt Ser	caa Gln	gtt Val 520	tac Tyr	ttg Leu	cat His	ggt Gly	gat Asp 525	aaa Lys	act Thr	aaa Lys	1584
cct Pro	atg Met 530	ata Ile	ctt Leu	acc Thr	att Ile	aca Thr 535	ctt Leu	aat Asn	ggc Gly	act Thr	agt Ser 540	gaa Glu	tcc Ser	aca Thr	gaa Glu	1632
act Thr 545	agc Ser	gag Glu	gta Val	agc Ser	act Thr 550	tac Tyr	tct Ser	atg Met	tct Ser	ttt Phe 555	aca Thr	tgg Trp	tcc Ser	tgg Trp	gaa Glu 560	1680
agt Ser	gga Gly	aaa Lys	tac Tyr	acc Thr 565	act Thr	gaa Glu	act Thr	ttt Phe	gct Ala 570	acc Thr	aac Asn	tct Ser	tac Tyr	acc Thr 575	ttc Phe	1728
tcc Ser	tac Tyr	att Ile	gcc Ala 580	cag Gln	gaa Glu	taa *										1749
)> 33 L> 58															

<212> PRT <213> Adenovirus serotype 2 fiber

	0> 33														
															Pro
									Val						Pro
				Asn				Glu							
				Glu			Asp								
				Gly		Thr									
Gln	Asn	Val	Thr	Thr 85	Val	Thr	Gln	Pro	Leu 90	75 Lys	Lys	Thr	Lys	Ser	80 Asn
Ile	Ser	Leu	Asp	Thr	Ser	Ala	Pro	Leu 105	Thr	Ile	Thr	Ser	Gly	95 Ala	Leu
Thr	Val	Ala 115	Thr	Thr	Ala	Pro	Leu 120	Ile	Val	Thr	Ser	Gly	110 Ala	Leu	Ser
Val	Gln 130	Ser	Gln	Ala	Pro	Leu 135	Thr	Val	Gln	Asp	Ser	125 Lys	Leu	Ser	Ile
Ala 145	Thr	Lys	Gly	Pro	Ile 150	Thr	Val	Ser	Asp	Gly	140 Lys	Leu	Ala	Leu	Gln
Thr	Ser	Ala	Pro	Leu 165	Ser	Gly	Ser	Asp	Ser	155 Asp	Thr	Leu	Thr	Val	160 Thr
Ala	Ser	Pro	Pro 180	Leu	Thr	Thr	Ala	Thr	170 Gly	Ser	Leu	Gly	Ile	175 Asn	Met
				Tyr											

-18-

```
195
                            200
Gly Pro Leu Gln Val Ala Gln Asn Ser Asp Thr Leu Thr Val Val Thr
Gly Pro Gly Val Thr Val Glu Gln Asn Ser Leu Arg Thr Lys Val Ala
                                        220
                    230
                                        235
Gly Ala Ile Gly Tyr Asp Ser Ser Asn Asn Met Glu Ile Lys Thr Gly
                245
                                   250
Gly Gly Met Arg Ile Asn Asn Asn Leu Leu Ile Leu Asp Val Asp Tyr
                         265
Pro Phe Asp Ala Gln Thr Lys Leu Arg Leu Lys Leu Gly Gln Gly Pro
                           280
Leu Tyr Ile Asn Ala Ser His Asn Leu Asp Ile Asn Tyr Asn Arg Gly
                       295
                                            300
Leu Tyr Leu Phe Asn Ala Ser Asn Asn Thr Lys Lys Leu Glu Val Ser
                    310
                                       315
Ile Lys Lys Ser Ser Gly Leu Asn Phe Asp Asn Thr Ala Ile Ala Ile
               325
                                    330
Asn Ala Gly Lys Gly Leu Glu Phe Asp Thr Asn Thr Ser Glu Ser Pro
            340
                               345
Asp Ile Asn Pro Ile Lys Thr Lys Ile Gly Ser Gly Ile Asp Tyr Asn
                            360
Glu Asn Gly Ala Met Ile Thr Lys Leu Gly Ala Gly Leu Ser Phe Asp
                        375
Asn Ser Gly Ala Ile Thr Ile Gly Asn Lys Asn Asp Asp Lys Leu Thr
                   390
Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Arg Ile His Ser Asp
                                       395
                                 410
Asn Asp Cys Lys Phe Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Val
           420
                               425
Leu Ala Thr Val Ala Ala Leu Ala Val Ser Gly Asp Leu Ser Ser Met
                           440
Thr Gly Thr Val Ala Ser Val Ser Ile Phe Leu Arg Phe Asp Gln Asn
                       455
                                          460
Gly Val Leu Met Glu Asn Ser Ser Leu Lys Lys His Tyr Trp Asn Phe
                   470
                                       475
Arg Asn Gly Asn Ser Thr Asn Ala Asn Pro Tyr Thr Asn Ala Val Gly
               485
                                   490
Phe Met Pro Asn Leu Leu Ala Tyr Pro Lys Thr Gln Ser Gln Thr Ala
Lys Asn Asn Ile Val Ser Gln Val Tyr Leu His Gly Asp Lys Thr Lys
                               505
                           520
Pro Met Ile Leu Thr Ile Thr Leu Asn Gly Thr Ser Glu Ser Thr Glu
                      535
Thr Ser Glu Val Ser Thr Tyr Ser Met Ser Phe Thr Trp Ser Trp Glu
                                           540
                   550
                                     555
Ser Gly Lys Tyr Thr Thr Glu Thr Phe Ala Thr Asn Ser Tyr Thr Phe
               565
                                  570
Ser Tyr Ile Ala Gln Glu
           580
<210> 34
<211> 1746
<212> DNA
<213> Adenovirus serotype 5 fiber
<220>
<221> CDS
<222> (1)...(1746)
```

<400> 34

atg Met 1	aag Lys	cgc Arg	gca Ala	aga Arg 5	ccg Pro	tct Ser	gaa Glu	gat Asp	acc Thr 10	ttc Phe	aac Asn	ccc Pro	gtg Val	tat Tyr 15	cca Pro	48
tat Tyr	gac Asp	acg Thr	gaa Glu 20	acc Thr	ggt Gly	cct Pro	cca Pro	act Thr 25	gtg Val	cct Pro	ttt Phe	ctt Leu	act Thr 30	cct Pro	ccc Pro	96
ttt Phe	gta Val	tcc Ser 35	ccc Pro	aat Asn	gly aaa	ttt Phe	caa Gln 40	gag Glu	agt Ser	ccc Pro	cct Pro	999 Gly 45	gta Val	ctc Leu	tct Ser	144
ttg Leu	cgc Arg 50	cta Leu	tcc Ser	gaa Glu	cct Pro	cta Leu 55	gtt Val	acc Thr	tcc Ser	aat Asn	ggc Gly 60	atg Met	ctt Leu	gcg Ala	ctc Leu	192
aaa Lys 65	atg Met	ggc	aac Asn	ggc	ctc Leu 70	tct Ser	ctg Leu	gac Asp	gag Glu	gcc Ala 75	ggc Gly	aac Asn	ctt Leu	acc Thr	tcc Ser 80	240
caa Gln	aat Asn	gta Val	acc Thr	act Thr 85	gtg Val	agc Ser	cca Pro	cct Pro	ctc Leu 90	aaa Lys	aaa Lys	acc Thr	aag Lys	tca Ser 95	aac Asn	288
ata Ile	aac Asn	ctg Leu	gaa Glu 100	ata Ile	tct Ser	gca Ala	ccc Pro	ctc Leu 105	aca Thr	gtt Val	acc Thr	tca Ser	gaa Glu 110	gcc Ala	cta Leu	336
act Thr	gtg Val	gct Ala 115	gcc Ala	gcc Ala	gca Ala	cct Pro	cta Leu 120	atg Met	gtc Val	gcg Ala	ggc	aac Asn 125	aca Thr	ctc Leu	acc Thr	384
atg Met	caa Gln 130	tca Ser	cag Gln	gcc Ala	ccg Pro	cta Leu 135	acc Thr	gtg Val	cac His	gac Asp	tcc Ser 140	aaa Lys	ctt Leu	agc Ser	att Ile	432
gcc Ala 145	acc Thr	caa Gln	gga Gly	ccc Pro	ctc Leu 150	aca Thr	gtg Val	tca Ser	gaa Glu	gga Gly 155	aag Lys	cta Leu	gcc Ala	ctg Leu	caa Gln 160	480
aca Thr	tca Ser	ggc Gly	ccc Pro	ctc Leu 165	acc Thr	acc Thr	acc Thr	gat Asp	agc Ser 170	agt Ser	acc Thr	ctt Leu	act Thr	atc Ile 175	act Thr	528
gcc Ala	tca Ser	ccc Pro	cct Pro 180	cta Leu	act Thr	act Thr	gcc Ala	act Thr 185	ggt Gly	agc Ser	ttg Leu	gly ggc	att Ile 190	gac Asp	ttg Leu	576
aaa Lys	gag Glu	ccc Pro 195	att Ile	tat Tyr	aca Thr	caa Gln	aat Asn 200	gga Gly	aaa Lys	cta Leu	gga Gly	cta Leu 205	aag Lys	tac Tyr	gly aaa	624
gct Ala	cct Pro 210	ttg Leu	cat His	gta Val	aca Thr	gac Asp 215	gac Asp	cta Leu	aac Asn	act Thr	ttg Leu 220	acc Thr	gta Val	gca Ala	act Thr	672
ggt Gly 225	cca Pro	ggt Gly	gtg Val	act Thr	att Ile 230	aat Asn	aat Asn	act Thr	tcc Ser	ttg Leu 235	caa Gln	act Thr	aaa Lys	gtt Val	act Thr 240	720
gga	gcc	ttg	ggt	ttt	gat	tca	caa	ggc	aat	atg	caa	ctt	aat	gta	gca	768

Gl;	y Ala	Leu	Gly	Phe 245	Asp	Ser	Gln	. Gly	Asn 250	Met	Gln	Leu	Asn	Val 255		
G1 ³	a gga y Gly	cta Leu	agg Arg 260		gat Asp	tct Ser	caa Gln	aac Asn 265	Arg	cgc	ctt Leu	ata Ile	ctt Leu 270	Asp	gtt Val	816
agt Se:	t tat	ccg Pro 275	ttt Phe	gat Asp	gct Ala	caa Gln	aac Asn 280	GTII	cta Leu	aat Asn	cta Leu	aga Arg 285	cta Leu	gga Gly	cag Gln	864
Gl ₃	c cct Pro 290		ttt Phe	ata Ile	aac Asn	tca Ser 295	vra	cac His	aac Asn	ttg Leu	gat Asp 300	Ile	aac Asn	tac Tyr	aac Asn	912
аа; Ly: 30!	a ggc s Gly s	ctt Leu	tac Tyr	ttg Leu	ttt Phe 310	aca Thr	gct Ala	tca Ser	aac Asn	aat Asn 315	Ser	aaa Lys	aag Lys	ctt Leu	gag Glu 320	960
gtt Val	aac L Asn	cta Leu	agc Ser	act Thr 325	gcc Ala	aag Lys	gj aaa	ttg Leu	atg Met 330	ttt Phe	gac Asp	gct Ala	aca Thr	gcc Ala 335	ata Ile	1008
gco	att a Ile	aat Asn	gca Ala 340	gga Gly	gat Asp	gjå aaa	ctt Leu	gaa Glu 345	ttt Phe	ggt Gly	tca Ser	cct Pro	aat Asn 350	gca Ala	cca Pro	1056
aac Asr	aca Thr	aat Asn 355	ccc Pro	ctc Leu	aaa Lys	aca Thr	aaa Lys 360	att Ile	ggc	cat His	ggc	cta Leu 365	gaa Glu	ttt Phe	gat Asp	1104
tca Ser	aac Asn 370	aag Lys	gct Ala	atg Met	gtt Val	cct Pro 375	aaa Lys	cta Leu	gga Gly	act Thr	ggc Gly 380	ctt Leu	agt Ser	ttt Phe	gac Asp	1152
ago Ser 385	aca Thr	ggt Gly	gcc Ala	att Ile	aca Thr 390	gta Val	gga Gly	aac Asn	aaa Lys	aat Asn 395	aat Asn	gat Asp	aag Lys	cta Leu	act Thr 400	1200
ttg Lev	tgg Trp	acc Thr	aca Thr	cca Pro 405	gct Ala	cca Pro	tct Ser	cct Pro	aac Asn 410	tgt Cys	aga Arg	cta Leu	aat Asn	gca Ala 415	gag Glu	1248
aaa Lys	gat Asp	gct Ala	aaa Lys 420	ctc Leu	act Thr	ttg Leu	gtc Val	tta Leu 425	aca Thr	aaa Lys	tgt Cys	ggc Gly	agt Ser 430	caa Gln	ata Ile	1296
ctt Leu	gct Ala	aca Thr 435	gtt Val	tca Ser	gtt Val	ttg Leu	gct Ala 440	gtt Val	aaa Lys	ggc Gly	agt Ser	ttg Leu 445	gct Ala	cca Pro	ata Ile	1344
tct Ser	gga Gly 450	aca Thr	gtt Val	caa Gln	agt Ser	gct Ala 455	cat His	ctt Leu	att Ile	ata Ile	aga Arg 460	ttt Phe	gac Asp	gaa Glu	aat Asn	1392
gga Gly 465	gtg Val	cta Leu	cta Leu	aac Asn	aat Asn 470	tcc Ser	ttc Phe	ctg Leu	gac Asp	cca Pro 475	gaa Glu	tat Tyr	tgg Trp	aac Asn	ttt Phe 480	1440
aga Arg	aat Asn	gga Gly	gat Asp	ctt Leu	act Thr	gaa Glu	Gly	aca Thr	gcc Ala	tat Tyr	aca Thr	aac Asn	gct Ala	gtt Val		1488

-21-

				485					490							
ttt	ato	cct	220											495		
			500				-2 -	505	пўр	per	HIS	GIŢ	ьув 510	Thr	gcc Ala	1536
aaa Lys	agt Ser	aac Asn 515	att	gtc Val	agt Ser	caa Gln	gtt Val 520	+ <u>y</u> -	tta Leu	aac Asn	gga Gly	gac Asp 525	aaa Lys	act Thr	aaa Lys	1584
cct Pro	gta Val 530	aca Thr	cta Leu	acc Thr	att Ile	aca Thr 535		aac Asn	ggt Gly	aca Thr	cag Gln 540	gaa Glu	aca Thr	gga Gly	gac	1632
aca Thr 545	act Thr	cca Pro	agt Ser	gca Ala	tac Tyr 550	tct Ser	atg Met	tca Ser	ttt Phe	tca Ser 555	tgg Trp	gac Asp	tgg Trp	tct Ser	ggc Gly 560	1680
cac His	aac Asn	tac Tyr	att Ile	aat Asn 565	gaa Glu	ata Ile	ttt Phe	gcc Ala	aca Thr 570	tcc Ser	tct Ser	tac Tyr	act Thr	ttt Phe 575		1728
tac Tyr	att Ile	gcc Ala	caa Gln 580	gaa Glu	taa *											1746
<212	0> 3! 1> 5: 2> P! 3> Ac	81 RT	viru	s se:	roty	pe 5	fibe	er								
<212 <212	1> 50 2> P)	81 RT	viru	s se:	roty	pe 5	fibe	er								
<213 <213 <213	1 > 50 2 > P1 3 > A0 0 > 3!	81 RT denov							Thr	Phe	Acn	Dro	Wo.1	The same	Post	
<213 <213 <213 <400 Met 1	1> 5: 2> P) 3> A: 0> 3! Lys	81 RT denov 5 Arg	Ala	Arg 5	Pro	Ser	Glu	Asp								
<21: <21: <21: <400 Met 1 Tyr	1> 5: 2> P: 3> A: 0> 3! Lys Asp	81 RT denov 5 Arg Thr	Ala Glu 20	Arg 5 Thr	Pro Gly	Ser Pro	Glu Pro	Asp Thr	Val	Pro	Phe	Leu	Thr	15 Pro	Pro	
<21: <21: <21: <40: Met 1 Tyr	1 > 5: 2 > P! 3 > A: 0 > 3! Lys Asp Val	81 RT denov Arg Thr Ser 35	Ala Glu 20 Pro	Arg 5 Thr Asn	Pro Gly Gly	Ser Pro Phe	Glu Pro Gln	Asp Thr 25 Glu	Val Ser	Pro Pro	Phe Pro	Leu Gly	Thr 30 Val	15 Pro Leu	Pro Ser	
<21: <21: <21: <400 Met 1 Tyr Phe	1 > 56 2 > P1 3 > Ac 0 > 3! Lys Asp Val Arg 50	81 RT denov Arg Thr Ser 35 Leu	Ala Glu 20 Pro Ser	Arg 5 Thr Asn Glu	Pro Gly Gly Pro	Ser Pro Phe Leu	Glu Pro Gln 40 Val	Asp Thr 25 Glu Thr	Val Ser Ser	Pro Pro Asn	Phe Pro Gly	Leu Gly 45 Met	Thr 30 Val Leu	15 Pro Leu Ala	Pro Ser Leu	
<21: <21: <21: <40: Met 1 Tyr Phe Leu Lys 65	1> 56 2> P1 3> Ac 0> 3! Lys Asp Val Arg 50 Met	81 RT denov Arg Thr Ser 35 Leu	Ala Glu 20 Pro Ser Asn	Arg 5 Thr Asn Glu Gly	Pro Gly Gly Pro Leu	Ser Pro Phe Leu 55 Ser	Glu Pro Gln 40 Val	Asp Thr 25 Glu Thr Asp	Val Ser Ser Glu	Pro Pro Asn Ala	Phe Pro Gly 60 Gly	Leu Gly 45 Met Asn	Thr 30 Val Leu Leu	15 Pro Leu Ala Thr	Pro Ser Leu Ser	
<21: <21: <21: <400 Met 1 Tyr Phe Leu Lys 65 Gln	1 > 50 2 > P1 3 > A0 0 > 3! Lys Asp Val Arg 50 Met Asn	81 RT denov 5 Arg Thr Ser 35 Leu Gly Val	Ala Glu 20 Pro Ser Asn	Arg 5 Thr Asn Glu Gly Thr	Pro Gly Gly Pro Leu 70 Val	Ser Pro Phe Leu 55 Ser	Glu Pro Gln 40 Val Leu Pro	Asp Thr 25 Glu Thr Asp Pro	Val Ser Ser Glu Leu	Pro Pro Asn Ala 75 Lys	Phe Pro Gly 60 Gly Lys	Leu Gly 45 Met Asn Thr	Thr 30 Val Leu Leu	15 Pro Leu Ala Thr	Pro Ser Leu Ser 80 Asn	
<211 <212 <213 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile	1 > 50 2 > Pl 3 > A0 0 > 3! Lys Asp Val Arg 50 Met Asn Asn	81 RT denov 5 Arg Thr Ser 35 Leu Gly Val	Ala Glu 20 Pro Ser Asn Thr	Arg 5 Thr Asn Glu Gly Thr 85 Ile	Pro Gly Gly Pro Leu 70 Val	Ser Pro Phe Leu 55 Ser Ser	Glu Pro Gln 40 Val Leu Pro	Asp Thr 25 Glu Thr Asp Pro	Val Ser Ser Glu Leu 90 Thr	Pro Pro Asn Ala 75 Lys Val	Phe Pro Gly 60 Gly Lys Thr	Leu Gly 45 Met Asn Thr	Thr 30 Val Leu Leu Lys Glu	15 Pro Leu Ala Thr Ser 95 Ala	Pro Ser Leu Ser 80 Asn	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile	1 > 50 2 > Pl 3 > A0 0 > 3! Lys Asp Val Arg 50 Met Asn Asn	81 RT denov 5 Arg Thr Ser 35 Leu Gly Val	Ala Glu 20 Pro Ser Asn Thr	Arg 5 Thr Asn Glu Gly Thr 85 Ile	Pro Gly Gly Pro Leu 70 Val	Ser Pro Phe Leu 55 Ser Ser	Glu Pro Gln 40 Val Leu Pro Pro	Asp Thr 25 Glu Thr Asp Pro	Val Ser Ser Glu Leu 90 Thr	Pro Pro Asn Ala 75 Lys Val	Phe Pro Gly 60 Gly Lys Thr	Leu Gly 45 Met Asn Thr	Thr 30 Val Leu Leu Lys Glu	15 Pro Leu Ala Thr Ser 95 Ala	Pro Ser Leu Ser 80 Asn	
<211 <212 <213 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile Thr	1 > 50 2 > P) 3 > A0 0 > 3! Lys Asp Val Arg 50 Met Asn Val	81 RT denov 5 Arg Thr Ser 35 Leu Gly Val Leu Ala 115	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala	Pro Gly Gly Pro Leu 70 Val Ser	Ser Pro Phe Leu 55 Ser Ser Ala Pro Leu	Glu Pro Gln 40 Val Leu Pro Pro	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met	Val Ser Ser Glu Leu 90 Thr	Pro Pro Asn Ala 75 Lys Val Ala	Phe Pro Gly 60 Gly Lys Thr	Leu Gly 45 Met Asn Thr Ser	Thr 30 Val Leu Leu Lys Glu 110 Thr	15 Pro Leu Ala Thr Ser 95 Ala Leu	Pro Ser Leu Ser 80 Asn Leu Thr	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile Thr	1 > 50 2 > Pl 3 > Ac 0 > 3! Lys Asp Val Arg 50 Met Asn Val Gln 130	81 RT denov 6 Arg Thr Ser 35 Leu Gly Val Leu Ala 115 Ser	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala Gln	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala Ala	Pro Gly Gly Pro Leu 70 Val Ser Ala Pro Leu	Ser Pro Phe Leu 55 Ser Ser Ala Pro	Glu Pro Gln 40 Val Leu Pro Pro Leu 120 Thr	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met Val	Val Ser Ser Glu Leu 90 Thr Val	Pro Pro Asn Ala 75 Lys Val Ala Asp	Phe Pro Gly 60 Gly Lys Thr Gly	Leu Gly 45 Met Asn Thr Ser Asn 125 Lys	Thr 30 Val Leu Leu Lys Glu 110 Thr	15 Pro Leu Ala Thr Ser 95 Ala Leu Ser	Pro Ser Leu Ser 80 Asn Leu Thr	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile Thr Met Ala	1 > 50 2 > Pl 3 > Ac 0 > 3! Lys Asp Val Arg 50 Met Asn Val Gln 130 Thr	S1 RT denoved Thr Ser 35 Leu Gly Val Leu Ala 115 Ser Gln	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala Gln	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala Ala Pro	Pro Gly Gly Pro Leu 70 Val Ser Ala Pro	Ser Pro Phe Leu 55 Ser Ser Ala Pro Leu 135 Thr	Glu Pro Gln 40 Val Leu Pro Pro Leu 120 Thr	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met Val Ser	Val Ser Ser Glu Leu 90 Thr Val His	Pro Pro Asn Ala 75 Lys Val Ala Asp	Phe Pro Gly 60 Gly Lys Thr Gly Ser 140 Lys	Leu Gly 45 Met Asn Thr Ser Asn 125 Lys	Thr 30 Val Leu Leu Lys Glu 110 Thr Leu Ala	15 Pro Leu Ala Thr Ser 95 Ala Leu Ser Leu	Pro Ser Leu Ser 80 Asn Leu Thr Ile	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65In Ile Thr Met Ala 145 Thr	1> 50 2> Pl 3> Ac 0> 3! Lys Asp Val Arg 50 Met Asn Val Gln 130 Thr Ser	SI RT denov Arg Thr Ser 35 Leu Gly Val Leu Ala 115 Ser Gln	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala Gln Gly Pro	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala Ala Pro Leu	Pro Gly Gly Pro Leu 70 Val Ser Ala Pro Leu 150 Thr	Ser Pro Phe Leu 55 Ser Ala Pro Leu 135 Thr	Glu Pro Gln 40 Val Leu Pro Pro Leu 120 Thr Val	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met Val Ser Asp	Val Ser Ser Glu Leu 90 Thr Val His Glu	Pro Pro Asn Ala 75 Lys Val Ala Asp Gly 155 Ser	Phe Pro Gly 60 Gly Lys Thr Gly Ser 140 Lys	Leu Gly 45 Met Asn Thr Ser Asn 125 Lys Leu Leu	Thr 30 Val Leu Leu Lys Glu 110 Thr Leu Ala	15 Pro Leu Ala Thr Ser 95 Ala Leu Ser Leu	Pro Ser Leu Ser 80 Asn Leu Thr Ile Gln 160 Thr	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile Thr Met Ala 145 Thr	1> 50 2> Pl 3> Ac 0> 3! Lys Asp Val Arg 50 Met Asn Val Gln 130 Thr Ser Ser	SI RT denoted Arg Thr Ser 35 Leu Gly Val Leu Ala 115 Ser Gln Gly Pro	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala Gln Gly Pro	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala Pro Leu 165 Leu	Pro Gly Gly Pro Leu 70 Val Ser Ala Pro Leu 150 Thr	Ser Pro Phe Leu 55 Ser Ala Pro Leu 135 Thr Thr	Glu Pro Gln 40 Val Leu Pro Pro Leu 120 Thr Val Thr	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met Val Ser Asp	Val Ser Glu Leu 90 Thr Val His Glu Ser 170 Gly	Pro Pro Asn Ala 75 Lys Val Ala Asp Gly 155 Ser Ser	Phe Pro Gly 60 Gly Lys Thr Gly Ser 140 Lys Thr Leu	Leu Gly 45 Met Asn Thr Ser Asn 125 Lys Leu Leu Gly	Thr 30 Val Leu Leu Lys Glu 110 Thr Leu Ala Thr	15 Pro Leu Ala Thr Ser 95 Ala Leu Ser Leu Ile 175 Asp	Pro Ser Leu Ser 80 Asn Leu Thr Ile Gln 160 Thr	
<211 <212 <400 Met 1 Tyr Phe Leu Lys 65 Gln Ile Thr Met Ala 145 Thr Ala Lys	1> 50 2> Pl 3> Ac 0> 3! Lys Asp Val Arg 50 Met Asn Val Gln 130 Thr Ser Glu	81 RT denov 5 Arg Thr Ser 35 Leu Gly Val Leu Ala 115 Ser Gln Gly Pro	Ala Glu 20 Pro Ser Asn Thr Glu 100 Ala Gln Gly Pro Pro 180 Ile	Arg 5 Thr Asn Glu Gly Thr 85 Ile Ala Ala Pro Leu	Pro Gly Gly Pro Leu 70 Val Ser Ala Pro Leu 150 Thr Thr	Ser Pro Phe Leu 55 Ser Ala Pro Leu 135 Thr Thr Gln	Glu Pro Gln 40 Val Leu Pro Pro Leu 120 Thr Val Thr Ala Asn	Asp Thr 25 Glu Thr Asp Pro Leu 105 Met Val Ser Asp Thr 185 Gly	Val Ser Ser Glu Leu 90 Thr Val His Glu Ser 170 Gly Lys	Pro Pro Asn Ala 75 Lys Val Ala Asp Gly 155 Ser Ser Leu	Phe Pro Gly 60 Gly Lys Thr Gly Ser 140 Lys Thr Leu	Leu Gly 45 Met Asn Thr Ser Asn 125 Lys Leu Leu Gly Leu	Thr 30 Val Leu Lys Glu 110 Thr Leu Ala Thr Ile 190 Lys	15 Pro Leu Ala Thr Ser 95 Ala Leu Ser Leu Ile 175 Asp	Pro Ser Leu Ser 80 Asn Leu Thr Ile Gln 160 Thr Leu Gly	

-22-

235

Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr

230

```
Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala
                 245
                                      250
 Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val
                                 265
 Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln
                             280
 Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn
                                                 285
                                   . 300
                         295
Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu
                     310
                                         315
Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile
                 325
Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro
                                     330
                                 345
Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp
                           360
                                                  365
Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp
                         375
Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys Leu Thr
                                           380
                    390
                                         395
Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu
                 405
                                     410
Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile
                                 425
Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile
                             440
                                                  445
Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn
                         455
                                             460
Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe
                    470
                                         475
Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly
                485
                                     490
                                                        495
Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala
                                 505
Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys
                             520
Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp
                                                  525
                       535
Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly
                    550
                                       555
His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser
                565
                                     570
Tyr Ile Ala Gln Glu
            580
<210> 36
<211> 1098
<212> DNA
<213> Adenovirus serotype 37 fiber
<220>
<221> CDS
<222> (1) ... (1098)
<400> 36
atg tca aag agg ctc cgg gtg gaa gat gac ttc aac ccc gtc tac ccc Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro
                                     10
```

_	-	•	20	5	1101	. 01.11	. ven	25	PIC	Pne	Leu	Thr	Pro	Pro	ttt Phe	96
•		35	•			-1.5	40	. 1110	PLU	PIO	GTÄ	45	Lev	Ser	ctc Leu	144
	50					55		T11T	ABII	. сту	Asp 60	Val	Ser	Leu	aag Lys	192
65	-	-	_		70		GIII	. Asp	Gī	5er 75	Leu	Thr	' Val	Asn	cct Pro 80	240
				85			****	veħ	90		теп	GIu	Leu	Ala 95	Tyr	288
_			100		501	DCI	nia	105	тÀв	ьeu	Ser	Leu	Lys 110	Val	gga Gly	336
	_	115	•				120	nys	ser	gct Ala	Ala	125	Leu	Lys	Asp	384
	130	-	-4-		,	135	neu	TIIL	GIĀ	aaa Lys	140	Ile	Gly	Thr	Glu	432
145					150	CLY	Der	261	Arg	gga Gly 155	TTE	GLY	Ile	Asn	Val 160	480
		•		165			FIIC	Map	170	gat Asp	стх	Tyr	Leu	Val 175	Ala	528
_			180	-1-			мg	185	пец	tgg Trp	Thr	Thr	Pro 190	qaA	Thr	576
		195	-2			nia	200	мар	пЛя	gac Asp	ser	Lys 205	Leu	Thr	Leu	624
	210		•	-1-	,	215	GIII	116	ьeu	gct Ala	220	Val	Ser	Leu	Ile	672
225			•		230		**C	116	ASII	aat Asn 235	гув	Thr	Asn	Pro	Lys 240	720
ata Ile	aaa Lys	agt Ser	ttt Phe	act Thr 245	att Ile	aaa Lys	ctg Leu	cta Leu	ttt Phe 250	aat Asn	aag Lys	aac Asn	gga Gly	gtg Val 255	ctt Leu	768

-24-

tta Leu	gac Asp	aac Asn	tca Ser 260	aat Asn	ctt Leu	gga Gly	aaa Lys	gct Ala 265	tat Tyr	tgg Trp	aac Asn	ttt Phe	aga Arg 270	agt Ser	gga Gly	816
aat Asn	tcc Ser	aat Asn 275	gtt Val	tcg Ser	aca Thr	gct Ala	tat Tyr 280	gaa Glu	aaa Lys	gca Ala	att Ile	ggt Gly 285	ttt Phe	atg Met	cct Pro	864
aat Asn	ttg Leu 290	gta Val	gcg Ala	tat Tyr	cca Pro	aaa Lys 295	ccc Pro	agt Ser	aat Asn	tct Ser	aaa Lys 300	aaa Lys	tat Tyr	gca Ala	aga Arg	912
gac Asp 305	ata Ile	gtt Val	tat Tyr	gga Gly	act Thr 310	ata Ile	tat Tyr	ctt Leu	ggt Gly	gga Gly 315	aaa Lys	cct Pro	gat Asp	cag Gln	cca Pro 320	960
gca Ala	gtc Val	att Ile	aaa Lys	act Thr 325	acc Thr	ttt Phe	aac Asn	caa Gln	gaa Glu 330	act Thr	gga Gly	tgt Cys	gaa Glu	tac Tyr 335	tct Ser	1008
atc Ile	aca Thr	ttt Phe	aac Asn 340	ttt Phe	agt Ser	tgg Trp	tcc Ser	aaa Lys 345	acc Thr	tat Tyr	gaa Glu	aat Asn	gtt Val 350	gaa Glu	ttt Phe	1056
gaa Glu	acc Thr	acc Thr 355	tct Ser	ttt Phe	acc Thr	ttc Phe	tcc Ser 360	tat Tyr	att Ile	gcc Ala	caa Gln	gaa Glu 365	tga *			1098

<210> 37

<211> 365

<212> PRT

<213> Adenovirus serotype 37 fiber

<400> 37 Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro 10 Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe 25 Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu 40 Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 55 60 Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 75 Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 90 95 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly 100 105 His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp
115
120
125 110 Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu 135 140 Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val 155 Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala 170 Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Asp Thr 175 185 Ser Pro Asn Cys Thr Ile Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu

-25-

```
195
                                200
                                                       205
Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile
     210
                           215
Val Val Ala Gly Lys Tyr His Ile Ile Asn Asn Lys Thr Asn Pro Lys
225
                       230
                                              235
Ile Lys Ser Phe Thr Ile Lys Leu Leu Phe Asn Lys Asn Gly Val Leu
                  245
                                         250
Leu Asp Asn Ser Asn Leu Gly Lys Ala Tyr Trp Asn Phe Arg Ser Gly
              260
                                     265
                                                           270
Asn Ser Asn Val Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro
         275
                                280
                                                      285
Asn Leu Val Ala Tyr Pro Lys Pro Ser Asn Ser Lys Lys Tyr Ala Arg
                           295
Asp Ile Val Tyr Gly Thr Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro
305
                       310
                                              315
Ala Val Ile Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser
                  325
                                         330
Ile Thr Phe Asn Phe Ser Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe
              340
                                   345
Glu Thr Thr Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu
                                360
<210> 38
<211> 1098
<212> DNA
<213> Adenovirus serotype 19p fiber
<220>
<221> CDS
<222> (1)...(1098)
atg tca aag agg ctc cgg gtg gaa gat gac ttc aac ccc gtc tac ccc Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro
                                                                           48
tat ggc tac gcg cgg aat cag aat atc ccc ttc ctc act ccc ccc ttt
Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe
                                                                           96
gtc tcc tcc gat gga ttc aaa aac ttc ccc cct ggg gta ctg tca ctc Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu
                                                                           144
aaa ctg gct gat cca atc acc att acc aat ggg gat gta tcc ctc aag
Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys
                                                                           192
                            55
gtg gga ggt ggt ctc act ttg caa gat gga agc cta act gta aac cct
Val Gly Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro
                                                                           240
aag gct cca ctg caa gtt act act gat aaa aaa ctt gag ctt gca tat
Lys Ala Pro Leu Gln Val Thr Thr Asp Lys Leu Glu Leu Ala Tyr
                                                                           288
gat aat cca ttt gaa tgt agt gct aat aaa ttt agt tta aaa gta gga
Asp Asn Pro Phe Glu Cys Ser Ala Asn Lys Phe Ser Leu Lys Val Gly
                                                                           336
                                    105
```

		115	•				120	- Lyp	ser	. ATA	г Ата	125	Let	ı Lys	gat Asp	384
	130	•				135	пец	TIIL	GTÄ	, гла	140	Ile	Gly	Thr	gaa Glu	432
145					150	017		per	ALG	155	TIE	GTA	· Ile	: Asn	gta Val 160	480
		_		165			- 110	Asp	170	Asp	GIĀ	Tyr	Leu	Val 175		528
			180	-4-			****	185	цец	rrp	ınr	Thr	Pro 190	Asp	aca Thr	576
		195	•				200	veb	пåв	Asp	ser	ьув 205	Leu	Thr	ttg Leu	624
	210		•	-1	1	215	0.111	116	пец	Ата	aat Asn 220	Val	Ser	Leu	Ile	672
225			2	-75	230	1113	116	TTG	Asn	Asn 235	aag Lys	Thr	Asn	Pro	Glu 240	720
	_			245		 , 5	neu	neu	250	Asn	aag Lys	Asn	Gly	Val 255	Leu	768
	_		260			CLy	ny s	265	тĀТ	TIP	aac Asn	Phe	Arg 270	Ser	Gly	816
		275			****	ma	280	GIU	тÀв	Ата	att Ile	Gly 285	Phe	Met	Pro	864
	290					295	110	DCT	ABII	ser	aaa Lys 300	гЛа	Tyr	Ala	Arg	912
305			•	2	310		*y*	neu	GTÅ	315	aaa Lys	Pro	Asp	Gln	Pro 320	960
			• "	325			71511	GIII	330	Inr	gga Gly	Cys	Glu	Tyr 335	Ser	1008
			340					345	IUL	TYT	gaa Glu	Asn	Val 350	gaa Glu	ttt Phe	1056
gaa	acc	acc	tct	ttt	acc	ttc	tcc	tat	att	gcc	caa	gaa	tga			1098

Glu Thr Thr Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu * 355 360 365

<210> 39 <211> 365 <212> PRT <213> Adenovirus serotype 19p fiber <400> 39 Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro 10 Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe 25 Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu 40 Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 55 Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 60 75 Lys Ala Pro Leu Gln Val Thr Thr Asp Lys Leu Glu Leu Ala Tyr 90 Asp Asn Pro Phe Glu Cys Ser Ala Asn Lys Phe Ser Leu Lys Val Gly 105 110 His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp 120 Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu 135 Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val 150 155 Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala 165 170 Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Asp Thr 185 Ser Pro Asn Cys Thr Ile Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu 200 205 Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile 215 220 Val Val Ala Gly Lys Tyr His Ile Ile Asn Asn Lys Thr Asn Pro Glu 230 Ile Lys Ser Phe Thr Ile Lys Leu Leu Phe Asn Lys Asn Gly Val Leu 235 250 Leu Asp Asn Ser Asn Leu Gly Lys Ala Tyr Trp Asn Phe Arg Ser Gly 265 Asn Ser Asn Val Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro 280 Asn Leu Val Ala Tyr Pro Lys Pro Ser Asn Ser Lys Lys Tyr Ala Arg 285 295 Asp Ile Val Tyr Gly Thr Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro 300 310 Ala Val Ile Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser 315 330 Ile Thr Phe Asp Phe Ser Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe 345 Glu Thr Thr Ser Phe Thr Phe Ser Tyr Ile Ala Glu Glu 360

<210> 40 <211> 1228

-28-

<212> DNA <213> Adenovirus serotype 9 fiber <220> <221> CDS <222> (50)...(1138) <400> 40 aagggatgtc aaattcctgg tccacaattt tcattgtctt ccctctcag atg tca aag 58 Met Ser Lys agg ctc cgg gtg gaa gat gac ttc aac ccc gtc tac ccc tat ggc tac Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Gly Tyr 106 gcg cgg aat cag aat atc ccc ttc ctc act ccc ccc ttt gtc tcc tcc Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe Val Ser Ser gat gga ttc caa aac ttc ccc cct ggg gtc ctg tca ctc aaa cta gct Asp Gly Phe Gln Asn Phe Pro Pro Gly Val Leu Ser Leu Lys Leu Ala gac cca ata gcc atc gtc aat ggg aat gtc tca ctc aaa gtg gga ggg Asp Pro Ile Ala Ile Val Asn Gly Asn Val Ser Leu Lys Val Gly Gly 250 60 ggt ctc act ttg caa gat gga act gga aaa cta aca gtc aat gct gat Gly Leu Thr Leu Gln Asp Gly Thr Gly Lys Leu Thr Val Asn Ala Asp 298 cca cct ttg caa ctt aca aac aac tta ggg att gct ttg gac gct Pro Pro Leu Gln Leu Thr Asn Asn Lys Leu Gly Ile Ala Leu Asp Ala 346 90 cca ttt gat gtt ata gat aat aaa ctc aca ttg tta gcg ggc cat ggc Pro Phe Asp Val Ile Asp Asn Lys Leu Thr Leu Leu Ala Gly His Gly 394 ttg tct att ata aca aaa gaa aca tca aca ctg cct ggc ttg agg aat Leu Ser Ile Ile Thr Lys Glu Thr Ser Thr Leu Pro Gly Leu Arg Asn 442 125 act ctt gta gta tta act gga aag ggt att gga aca gaa tca aca gat Thr Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu Ser Thr Asp 490 aat ggc gga acg gta tgt gtt aga gtt gga gaa ggt ggc ggc tta tca Asn Gly Gly Thr Val Cys Val Arg Val Gly Glu Gly Gly Gly Leu Ser 538 ttt aat aat gat gga gac ttg gta gca ttt aat aaa aaa gaa gat aag Phe Asn Asn Asp Gly Asp Leu Val Ala Phe Asn Lys Lys Glu Asp Lys 586 cgc acc cta tgg aca act cca gac aca tct cca aat tgc aag att gat Arg Thr Leu Trp Thr Thr Pro Asp Thr Ser Pro Asn Cys Lys Ile Asp 634 185 190 cag gat aag gac tot aag tta act otg gto ott aca aag tgt gga agt 682

-29-

Gln	Asp	Lys	Asp	Ser 200	Lys	Leu	Thr	Leu	Val 205	Leu	Thr	Lys	Сув	Gly 210	Ser	
caa Gln	ata Ile	ttg Leu	gct Ala 215	aat Asn	gtg Val	tca Ser	tta Leu	att Ile 220	gtc Val	gta Val	gat Asp	ggt Gly	aag Lys 225	tac Tyr	aaa Lys	730
att Ile	atc Ile	aat Asn 230	aac Asn	aat Asn	act Thr	caa Gln	cca Pro 235	gct Ala	ctc Leu	aaa Lys	gga Gly	ttt Phe 240	acc Thr	att Ile	aaa Lys	778
tta Leu	ttg Leu 245	ttt Phe	gat Asp	gaa Glu	aat Asn	gga Gly 250	gta Val	ctt Leu	atg Met	gaa Glu	tct Ser 255	tca Ser	aat Asn	ctt Leu	ggt Gly	826
260		-1-		*1011	265	arg	ABII	GIU	Asn	270	IIe	atg Met	Ser	Thr	Ala 275	874
•		-2-		280	Q ₁	rne	MEC	PIO	285	ьeu	vaı	gcc Ala	Tyr	Pro 290	Lys	922
cct Pro	acc Thr	gct Ala	ggc Gly 295	tct Ser	aaa Lys	aaa Lys	tat Tyr	gca Ala 300	aga Arg	gat Asp	ata Ile	gtt Val	tat Tyr 305	gga Gly	aac Asn	970
atc Ile	tac Tyr	ctt Leu 310	ggt Gly	gga Gly	aag Lys	cca Pro	gat Asp 315	caa Gln	cca Pro	gta Val	acc Thr	att Ile 320	aaa Lys	act Thr	acc Thr	1018
ttt Phe	aat Asn 325	cag Gln	gaa Glu	act Thr	gga Gly	tgt Cys 330	gaa Glu	tat Tyr	tct Ser	atc Ile	aca Thr 335	ttt Phe	gat Asp	ttt Phe	agt Ser	1066
tgg Trp 340	gcc Ala	aag Lys	act Thr	tat Tyr	gta Val 345	aat Asn	gtt Val	gaa Glu	ttt Phe	gaa Glu 350	aca Thr	acc Thr	tct Ser	ttt Phe	acc Thr 355	1114
ttt Phe	tcc Ser	tat Tyr	atc Ile	gcc Ala 360	caa Gln	gaa Glu	tga *	aaga	ıccaa	ata a	aacgt	tgtt	t to	catt	caaa	1168
attt	tcat	gt a	tctt	tatt	g at	tttt	acac	cag	gcaco	gggt	agto	cagto	etc c	caco	accag	1228
<211 <212	0> 41 L> 36 2> PR B> Ad	52 RT	rirus	ser	otyp	ne 9	fibe	er								
<400)> 41	•														
Met 1	Ser	ГÀв		_					111			Pro		7 (-		
			20					<i>!</i> 5	Pro			Thr	20			
			Asp					Phe				Val				
		Ala					Ile					45 Val				
Val	Gly	Gly	Gly	Leu	Thr	Leu	Gln	Asp	Gly	Thr	60 Gly	Lys	Leu	Thr	Val	

```
70
Asn Ala Asp Pro Pro Leu Gln Leu Thr Asn Asn Lys Leu Gly Ile Ala
               85
                                    90
Leu Asp Ala Pro Phe Asp Val Ile Asp Asn Lys Leu Thr Leu Leu Ala
            100
                                105
Gly His Gly Leu Ser Ile Ile Thr Lys Glu Thr Ser Thr Leu Pro Gly
                            120
Leu Arg Asn Thr Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu
                                                125
                      135
                                         140
Ser Thr Asp Asn Gly Gly Thr Val Cys Val Arg Val Gly Glu Gly Gly 145 150 155 160
Gly Leu Ser Phe Asn Asn Asp Gly Asp Leu Val Ala Phe Asn Lys Lys
               165
                                    170
Glu Asp Lys Arg Thr Leu Trp Thr Thr Pro Asp Thr Ser Pro Asn Cys
                             185
Lys Ile Asp Gln Asp Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys
                           200
                                                205
Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile Val Val Asp Gly
   210
                        215
                                           220
Lys Tyr Lys Ile Ile Asn Asn Asn Thr Gln Pro Ala Leu Lys Gly Phe
                   230
                                        235
Thr Ile Lys Leu Leu Phe Asp Glu Asn Gly Val Leu Met Glu Ser Ser
                245
                                   250
Asn Leu Gly Lys Ser Tyr Trp Asn Phe Arg Asn Glu Asn Ser Ile Met
           260
                                265
                                                   270
Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro Asn Leu Val Ala
                           280
Tyr Pro Lys Pro Thr Ala Gly Ser Lys Lys Tyr Ala Arg Asp Ile Val
290 295 300
                                                285
Tyr Gly Asn Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro Val Thr Ile
                    310
                                      315
Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe
              325
                                    330
Asp Phe Ser Trp Ala Lys Thr Tyr Val Asn Val Glu Phe Glu Thr Thr
           340
                               345
Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu
<210> 42
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Ad2 third repeat
<400> 42
Gly Asn Leu Thr Ser Gln Asn Val Thr Thr Val Thr Gln Pro Leu Lys
Lys Thr Lys Ser
<210> 43
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Ad5 third repeat
```

-31-

```
<400> 43
 Gly Asn Leu Thr Ser Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys
 1
 Lys Thr Lys Ser
 <210> 44
 <211> 4
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Repeat motif
<221> VARIANT
<222> 4
<223> Xaa = Thr or Ser
<400> 44
Thr Thr Val Xaa
<210> 45
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Repeat Consensus Sequence
<221> VARIANT
<222> 3,5,7,13
<223> Xaa = Hydrophobic Amino Acid
<221> VARIANT
<222> 1, 2, 4, 6, 8, 9, 11, 12, 14, 15
<223> Xaa = Any Amino Acid
<221> VARIANT
                                         1
<222> 10
<223> Xaa = Pro or Gly
5
                                     10
<210> 46
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Ad2 21st repeat
<400> 46
Gly Ala Met Ile Thr Lys Leu Gly Ala Gly Leu Ser Phe Asp Asn Ser
```

-32-

```
<210> 47
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <223> Ad5 21st repeat
 <400> 47
 Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp Ser Thr
 <210> 48
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <223> Ad37 last repeat
 Ile Gly Ile Asn Val Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp
 <210> 49
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <223> Last repeat consensus sequence
 <221> VARIANT
 <222> 4,7
<223> Xaa = Any Amino Acid
<221> VARIANT
<222> 9
<223> Xaa = Asp or Asn
<400> 49
Lys Leu Gly Xaa Gly Leu Xaa Phe Xaa
<210> 50
<211> 1164
<212> DNA
<213> Artificial Sequence
<220>
<223> Ad5Ds fiber
<221> CDS
<222> (13)...(1092)
<221> misc_feature
<222> 1130, 1157
<223> n = A,T,C or G
```

<400> 50 atgggatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51 Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu act cot coc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly gta ctc tct ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met 195 ctt gcg ctc aaa atg ggc aac ggc ctc tct ctg gac gag gcc ggc aac Leu Ala Leu Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn 243 ctt acc tcc caa aat gta acc act gtg agc cca cct ctc aaa aaa acc Leu Thr Ser Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr 291 aag aaa aag ctt gaa gtt aac cta agc act gcc aag ggg ttg atg ttt Lys Lys Lys Leu Glu Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe gac gct aca gcc ata gcc att aat gca gga gat ggg ctt gaa ttt ggt Asp Ala Thr Ala Ile Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly 387 tca cct aat gca cca aac aca aat ccc ctc aaa aca aaa att ggc cat Ser Pro Asn Ala Pro Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His 435 ggc cta gaa ttt gat tca aac aag gct atg gtt cct aaa cta gga act Gly Leu Glu Phe Asp Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr 483 ggc ctt agt ttt gac agc aca ggt gcc att aca gta gga aac aaa aat Gly Leu Ser Phe Asp Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn 531 aat gat aag cta act ttg tgg acc aca cca gct cca tct cct aac tgt Asn Asp Lys Leu Thr Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys 579 aga cta aat gca gag aaa gat gct aaa ctc act ttg gtc tta aca aaa Arg Leu Asn Ala Glu Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys 627 200 tgt ggc agt caa ata ctt gct aca gtt tca gtt ttg gct gtt aaa ggc Cys Gly Ser Gln Ile Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly 675 215 agt ttg gct cca ata tct gga aca gtt caa agt gct cat ctt att ata Ser Leu Ala Pro Ile Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile 723

-34-

aga																
		240)				245	neu.	ABII	ASI	ı ser	250	e Leu)	ı Asp	cca Pro	771
	255	_				260		nap	пец	TIL	265	i GTŽ	Thr	. Ala	tat Tyr	819
270)			3	275		-10	veii	ьец	280	. ATS	ι Туз	Pro	Lys	tct Ser 285	867
				290	•			-16	295	Set	GII	vaı	. Tyr	Leu 300		915
	_	_	305	•				310	TIII	тте	Thr	Leu	Asn 315	Gly	aca Thr	963
cag Glr	gaa Glu	aca Thr 320	gga Gly	gac Asp	aca Thr	act Thr	cca Pro 325	agt Ser	gca Ala	tac Tyr	tct Ser	atg Met 330	Ser	ttt Phe	tca Ser	101:
tgg Trp	gac Asp 335	tgg Trp	tct Ser	ggc	cac His	aac Asn 340	tac Tyr	att Ile	aat Asn	gaa Glu	ata Ile 345	ttt Phe	gcc Ala	aca Thr	tcc Ser	105
tct	tac Tyr	act Thr	ttt	tca Ser	tac	att	ācc	caa	gaa	taa	aga	agcg	acc (acat.i	tatgaa	3332
350					355											
999 <21 <21 <21	cgaai 0> 5: 1> 3! 2> PI	tta (L 59 RT	cagc.	acan	355 g gd	egged							atg (- a o g a a	
999 <21 <21 <21 <21 <22	Cgaal 0> 5: 1> 3! 2> PI 3> A:	tte d L S9 RT Stif:	cago	acan	355	egged									- negau	
999 <21 <21 <21 <22 <40	cgaal 0 > 5: 1 > 3! 2 > Pl 3 > A: 0 > 3 3 > A:	ttc (59 RT ctif:	cago icia: ltas	acan	355 cg go	egge	egtta	a tta	agtgg	jat c	cga	gnte	atg (ca		
999 <21 <21 <21 <22 <40 Met	Cgaat 0> 5: 1> 3! 2> PP 3> Ar 0> 3> Ac 0> 51 Lys	L 59 RT ctif: d5del	cago icia: ltas Ala	acan	355 eg go queno Pro	cggc ce Ser	egtta Glu	a tta	agtgg	gatc Phe	cga;	gnte. Pro	atg d	ca Tyr	Pro	
999 <21 <21 <21 <22 <40 Met Iryr	Cgaat 0 > 5: 1 > 3! 2 > PI 3 > A: 0 > 3 3 > A: 0 > 51 Lys Asp	ttc of the state o	icia: ltas Ala Glu	acand l Sed Arg 5 Thr	355 tg go Queno Pro Gly	egged e Ser Pro	Glu Pro	a tta	Thr 10	gatc Phe Pro	cga Asn Phe	gnte Pro Leu	atg d	Tyr 15 Pro	Pro Pro	
9999 <21 <21 <21 <22 <22 <400 Met 1 Tyr Phe	Cgaat 0 > 5: 1 > 3: 2 > PI 3 > A: 0 > 3 3 > A: 0 > 5: Lys Asp	ttc (59 RT rtif: 15del Arg Thr	cago icia: ltas Ala Glu 20 Pro	Arg 5 Thr	355 Eg go Queno Gly Gly	ese Ser Pro	Glu Pro Gln	Asp Thr 25 Glu	Thr 10 Val	Phe Pro	Asn Phe Pro	Pro Leu Gly	Val Thr 30 Val	Tyr 15 Pro Leu	Pro Pro Ser	
9999 <21 <21 <21 <22 <22 <400 Met Tyr Phe	Cgaat 0 > 5: 1 > 3! 2 > PI 3 > A: 0 > 3 3 > A: 0 > 51 Lys Asp Val Arg	ttc of the second secon	icia ltas Ala Glu 20 Pro Ser	Arg 5 Thr Asn Glu	355 Eg go Queno Gly Gly Pro	ese Ser Pro	Glu Pro Gln 40 Val	Asp Thr 25 Glu	Thr 10 Val Ser	Phe Pro Pro Asn	Asn Phe Pro Gly	Pro Leu Gly 45 Met	Val Thr 30 Val Leu	Tyr 15 Pro Leu Ala	Pro Pro Ser Leu	
999 <21 <21 <21 <21 <22 <22 Tyr Phe Leu	Cgaal 0 > 5: 1 > 3: 2 > PI 3 > A: 0 > 6: 1	L S9 RT Ctif: Arg Thr Ser 35 Leu	icia: ltas Ala Glu 20 Pro Ser Asn	Arg 5 Thr Asn Glu Gly	355 Eg go Quenc Pro Gly Pro Leu	Ser Pro Phe Leu 55 Ser	Glu Pro Gln 40 Val Leu	Asp Thr 25 Glu Thr Asp	Thr 10 Val Ser Glu	Phe Pro Pro Asn Ala	Asn Phe Pro Gly 60 Gly	Pro Leu Gly 45 Met Asn	Val Thr 30 Val Leu Leu	Tyr 15 Pro Leu Ala Thr	Pro Pro Ser Leu Ser	
999 (21 (22 (22 (22 (22 (22 (22 (22 (22 (22	Cgaat 0 > 5: 1 > 3! 2 > PI 3 > Ai 0 > 6: 3 > Ai 0 > 51 Lys Asp Val Arg 50 Met Asn	ttc of Section 15 Sect	cago icia: ltas Ala Glu 20 Pro Ser Asn	Arg 5 Thr Asn Glu Gly Thr	Pro Gly Pro Leu 70	Ser Pro Phe Leu 55 Ser	Glu Pro Gln 40 Val Leu Pro	Asp Thr 25 Glu Thr Asp	Thr 10 Val Ser Glu	Phe Pro Pro Asn Ala 75 Lys	Asn Phe Pro Gly Gly Lys	Pro Leu Gly 45 Met Asn	Val Thr 30 Val Leu Leu	Tyr 15 Pro Leu Ala Thr	Pro Pro Ser Leu Ser 80 Lys	
999 (21 (22 (22 (22 (22 (22 (22 (22 (22 (22	Cgaat 0 > 5: 1 > 3! 2 > PI 3 > A: 0 > 3 3 > A: 0 > 5: Lys Asp Val Arg 50 Met Asn Glu	ttc (59 RT ctif: d5del Arg Thr Ser 35 Leu Gly Val	icia: ltas Ala Glu Pro Ser Asn Thr	Arg 5 Thr Asn Glu Gly Thr 85 Leu	355 Eg go Quenc Pro Gly Pro Leu 70 Val Ser	Ser Pro Phe Leu Sser Ser	Glu Pro Gln 40 Val Leu Pro	Asp Thr 25 Glu Thr Asp	Thr 10 Val Ser Glu Leu:	Phe Pro Pro Asn Ala 75 Lys	Asn Phe Pro Gly Gly Lys Met	Pro Leu Gly 45 Met Asn Thr	Val Thr 30 Val Leu Leu Lys Asp	Tyr 15 Pro Leu Ala Thr Lys 95 Ala	Pro Pro Ser Leu Ser 80 Lys	
999 (21 (22 (22 (22 (22 (22 (22 (22 (22 (22	Cgaal 0 > 5: 1 > 3: 2 > PI 3 > A: 0 > 6: 0 > 5: Lys Asp Val Arg 50 Met Asn Glu Ile	ttc (159 RT rtif: 15del Arg Thr Ser 35 Leu Gly Val Val Ala	cagcicia: ltas Ala Glu 20 Pro Ser Asn Thr Asn 100 Ile	Arg 5 Thr Asn Glu Gly Thr 85 Leu	Pro Gly Pro Leu 70 Val Ser	Ser Pro Phe Leu SSer Ser Thr	Glu Pro Gln 40 Val Leu Pro Ala	Asp Thr 25 Glu Thr Asp Pro Lys 105 Gly	Thr 10 Val Ser Glu Leu: 90 Gly	Phe Pro Asn Ala 75 Lys Leu Glu	Asn Phe Pro Gly Gly Lys Met	Pro Leu Gly 45 Met Asn Thr Phe	Val Thr 30 Val Leu Leu	Tyr 15 Pro Leu Ala Thr Lys 95 Ala Pro	Pro Pro Ser Leu Ser 80 Lys Thr	1164

WO 2004/111251 PCT/US2004/018623

-35-

```
Phe Asp Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser
  Phe Asp Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys
  Leu Thr Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn
  Ala Glu Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser
                                   200
  Gln Ile Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala
  Pro Ile Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp
  Glu Asn Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp
  Asn Phe Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala
                                        265
  Val Gly Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys
  Thr Ala Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys
 Thr Lys Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr
 Gly Asp Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp
 Ser Gly His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr
 Phe Ser Tyr Ile Ala Gln Glu
                                        345
           355
 <210> 52
 <211> 1920
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Ad5s/Ad37k fiber
 <221> CDS
 <222> (13)...(1755)
 <221> misc_feature
 <222> 1867, 1875
 <223> n = A, T, C or G
<400> 52
gcaagatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro
gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt
Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu
                                                                                99
act cct ccc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg
Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly
gta ctc tct ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg
Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met
                                                                                195
                                            55
```

-36-

				'	05						7	0				Jp,	3 L U	. A.	a G	тÀ	aac Asn	
			0	U						85						.0 .	an neu	aa Ly	a a	ys	acc Thr	
		-						10	0						10	15	ica 'hr	va	T .T.1	nr	tca Ser	339
							115						_	120	at Me	g g	aı	AT	a Gj	LУ	aac Asn	387
					1.	30						13	5		vu	- 11	TB	Asī	Se	r	125 aaa Lys	435
				14	Þ						150				- C.	. G	тu	GTA	гъ	g		483
			100		a to r Se				16	55			_		1101	1'	7 N	agt Ser	ac Th	r	Leu	531
act Thi	t at	cc ; le : 75	act Thr	gco	c to a Se	a c r I	ecc Pro	cct Pro 180	ct Le	a i	act Thr	aci Th:	t g	gcc lla	act Thr	gg:		agc Ser	tt: Le:	g g	ggc Gly	579
					a ga s Gl	1	.95		_				2	00	gga Gly	aa Ly	'B]	Leu	GT.	/ I	ieu	627
					Pro 210	U						215	;	_ <u>_</u>	u	AG	TT 1	TIL	Ter	ja i T	icc Thr	675
				425	Pro					2	30				I	56	Г. Т	eu	caa Gln	a	hr	723
aaa Lys		~	4 0						245	5					J-Y	25	t a	tg et	GIn	L	eu	771
aat Asn	~	•					2	60			•			2	65	aga Arç	a c	rg .	ьeц	I.	le	819
ctt Leu 270						27	5						28	c c n G	aa ln			211 .	Leu	A	ā	867
cta Leu	gga Gly	G]	ig g	ely Sly	cct Pro 290	ct Le	t t u P	tt a	ata [le	aa As	_	ca er 95	gc Al	сс аН:	ac is	aac Asn	t t	eu A	gat Asp 800	at Il		915

	c ta n Ty		3	05					3	310			-a ,	Set	- At	311 7	15n	Se	r L	78	963
	g ct s Le	٥.	20					32	5		-2	- 0.	-y .	ucu	33	יר ב ה	'ne	Asj	p Al	.a	1011
	a gc r Al 33	5					340)	-	•	,		-u (345	. PII	e G	ΤĀ	Sei	r Pr	0	1059
330	gc: n Al:					355				_		36	0 1	те.	GT	у н	ıs	GT.	Le	u	1107
	tti Phe			3	70						375		-	.cu	GT.	у т	nr	GTA	ct Le	t :	L155
	ttt Phe		38	35					3	90			<i>y</i> 43	.511	цу	A ک ک	3N 95	Asn	As	b	.203
	Cta Lev	40	U					405	;	-				10	410) T C ²	78	Thr	Ile	3	.251
	caa Gln 415						420					να.	4:	25	TIII	. т.	's	Cys	Gl	7	299
450	caa Gln				4	135						440)	4.1	чта	G.T	у.	Lys	Tyr	•	347
cac His				45	0					4	455		י דו	/8	ser	Ph	e :	Thr	att Ile	1:	395
aaa Lys			46	5				•	47	ō		neu.	Ab	p 1	Asn	Se:	a a r A	aat Asn	Leu		143
gga Gly		480						485		_	2		56	<u> </u>	490	gt: Va	t t	er	Thr		91
gct Ala	4 93					5	00						50	u v 5	/aı	ATS	ı T	yr	Pro	15	39
aaa Lys 510					51	L5	_	•			-9 :	520	T T 6	= v	aı	туг	. G	ly :	Thr	15	87
ata i Ile :				530)			•		5.	35	1-La	val	- т	те	ьув	T)	ct a	acc Thr	16	35
ttt a	aac	caa	gaa	act	99	ra t	gt g	raa '	tac	to	ct a	atc	aca	t	tt .	aac	tt	it a	igt	168	33

Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe Asn Phe Ser tgg tcc aaa acc tat gaa aat gtt gaa ttt gaa acc acc tct ttt acc Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe Glu Thr Thr Ser Phe Thr 1731 565 ttc tcc tat att gcc caa gaa tga aaaagcggcc gctcgagtct agagggcccg 1785 Phe Ser Tyr Ile Ala Gln Glu 575 580 tttaaacccg ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc 1845 cctccccgt gccttccttg ancctggaan gtgccactcc cactgtcctt tcctaataaa 1905 atgaggaaat gcatc <210> 53 <211> 580 <212> PRT <213> Artificial Sequence <220> <223> Ad5s/Ad37k <400> 53 Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro 10 Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro 20 25 Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser 35 40 Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu 45 55 60 Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser 70 75 Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Ser Asn 90 Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu 105 Thr Val Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr 110 115 120 Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile 125 135 Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln 140 150 155 Thr Ser Gly Pro Leu Thr Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr 165 170 Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu 185 Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly 200 Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr 215 Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr 230 235 Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala 245 250 Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val 265 Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln 280 Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn

290

315

300

295

310

Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu

```
Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile
                 325
                                     330
Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro
            340
                                 345
Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp
                          360
                                                 365
Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp
                         375
Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys Leu Thr
                                             380
                     390
                                         395
Leu Trp Thr Thr Pro Asp Thr Ser Pro Asn Cys Thr Ile Ala Gln Asp
                 405
                                     410
Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile
            420
                                 425
Leu Ala Asn Val Ser Leu Ile Val Val Ala Gly Lys Tyr His Ile Ile
                            440
Asn Asn Lys Thr Asn Pro Lys Ile Lys Ser Phe Thr Ile Lys Leu Leu
                                                 445
                        455
                                             460
Phe Asn Lys Asn Gly Val Leu Leu Asp Asn Ser Asn Leu Gly Lys Ala
                    470
Tyr Trp Asn Phe Arg Ser Gly Asn Ser Asn Val Ser Thr Ala Tyr Glu
                                        475
                                    490
Lys Ala Ile Gly Phe Met Pro Asn Leu Val Ala Tyr Pro Lys Pro Ser
                               505
                                                    510
Asn Ser Lys Lys Tyr Ala Arg Asp Ile Val Tyr Gly Thr Ile Tyr Leu
        515
                            520
                                                525
Gly Gly Lys Pro Asp Gln Pro Ala Val Ile Lys Thr Thr Phe Asn Gln
                       535
Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe Asn Phe Ser Trp Ser Lys
                                            540
                    550
                                       555
Thr Tyr Glu Asn Val Glu Phe Glu Thr Thr Ser Phe Thr Phe Ser Tyr
                                    570
Ile Ala Gln Glu
            580
<210> 54
<211> 1767
<212> DNA
<213> Artificial Sequence
<220>
<223> Ad5s/Ad37s fiber
<221> CDS
<222> (13)...(1749)
<400> 54
atgggatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51
              Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro
gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt
Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu
act cct ccc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg
Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly
```

-40-

30					35					40					45	
gta Val	ctc Leu	tct Ser	ttg Leu	cgc Arg 50	cta Leu	tcc Ser	gaa Glu	cct Pro	cta Leu 55	gtt Val	acc Thr	tcc Ser	aat Asn	ggc Gly 60	atg Met	195
ctt Leu	gcg Ala	ctc Leu	aaa Lys 65	atg Met	Gly	aac Asn	Gly	ctc Leu 70	tct Ser	ctg Leu	gac Asp	gag Glu	gcc Ala 75	Gly	agc Ser	243
		80	71511	210	пув	Ara	85	ьeu	GIN	Val	Asn	act Thr 90	qaA	Ser	Asn	291
	95				DCI	100	FIO	neu	THE	vaı	105	tca Ser	Glu	Ala	Leu	339
110					115	110	ьец	Mec	vaı	120	GTÅ	aac Asn	Thr	Leu	Thr 125	387
				130		LCu	7114	val	135	Авр	ser	aaa Lys	Leu	Ser 140	Ile	435
gcc Ala	acc Thr	caa Gln	gga Gly 145	ccc Pro	ctc Leu	aca Thr	gtg Val	tca Ser 150	gaa Glu	gga Gly	aag Lys	cta Leu	gcc Ala 155	ctg Leu	caa Gln	483
		160				1111	165	wab	ser	ser	Thr	ctt Leu 170	Thr	Ile	Thr	531
	175					180	ALA	THE	GTÅ	ser	185	ggc Gly	Ile	Asp	Leu	579
190			110	-y-	195	GIII	ASII	GTÅ	гуз	Leu 200	Gly	cta Leu	Lys	Tyr	Gly 205	627
		Deu	1116	210	TIIL	Авр	Asp	ren	Asn 215	Thr	Leu	acc Thr	Val	Ala 220	Thr	675
_			225				WOII	230	ser	теп	GIN	act Thr	Lys 235	Val	Thr	723
		240	4-1			DGI	245	GTÅ	ASI	мес	Gin	ctt Leu 250	Asn	Val	Ala	771
4	255	- 0u	9	776	veñ	260	GIN	Asn	Arg	Arg	Leu 265	ata Ile	Leu	Asp	Val	819
agt Ser 270	tat Tyr	ccg Pro	ttt Phe	gat Asp	gct Ala 275	caa Gln	aac Asn	caa Gln	cta Leu	aat Asn 280	cta Leu	aga Arg	cta Leu	gga Gly	cag Gln 285	867

Gly	cct Pro	ctt Leu	ttt Phe	ata Ile 290	aac Asn	tca Ser	gcc Ala	cac His	aac Asn 295	ttg Leu	gat Asp	att Ile	aac Asn	tac Tyr 300	aac Asn	915
aaa Lys	ggc	ctt Leu	tac Tyr 305	ttg Leu	ttt Phe	aca Thr	gct Ala	tca Ser 310	aac Asn	aat Asn	tcc Ser	aaa Lys	aag Lys 315	ctt Leu	gag Glu	963
		320	501		ALG	пув	325	Leu	Met	Pne	Asp	gct Ala 330	Thr	Ala	Ile	1011
gcc Ala	att Ile 335	aat Asn	gca Ala	gga Gly	gat Asp	999 Gly 340	ctt Leu	gaa Glu	ttt Phe	ggt Gly	tca Ser 345	cct Pro	aat Asn	gca Ala	cca Pro	1059
aac Asn 350	aca Thr	aat Asn	ccc Pro	ctc Leu	aaa Lys 355	aca Thr	aaa Lys	att Ile	ggc	cat His 360	Gly	cta Leu	gaa Glu	ttt Phe	gat Asp 365	1107
tca Ser	aac Asn	att Ile	ggt Gly	ata Ile 370	aat Asn	gta Val	aga Arg	gca Ala	aga Arg 375	gaa Glu	gly aaa	ttg Leu	aca Thr	ttt Phe 380	gac Asp	1155
		7	385		+ + + + + + + + + + + + + + + + + + + +	val	GTĀ	390	гуѕ	Asn	Asn	gat Asp	Lys 395	Leu	Thr	1203
		400		110	nia	PLO	405	PIO	Asn	Cys	Arg	cta Leu 410	Asn	Ala	Glu	1251
-1-	415		Lys	пеа	THE	420	vaı	neu	Thr	Lys	Cys 425	ggc Gly	Ser	Gln	Ile	1299
430			·	ser	435	ьeu	Ala	val	ràs	Gly 440	Ser	ttg Leu	Ala	Pro	Ile 445	1347
	2			450	DGI	nia	uts	neu	455	TTE	Arg	ttt Phe	qaA	Glu 460	Asn	1395
gga Gly	gtg Val	cta Leu	cta Leu 465	aac Asn	aat Asn	tcc Ser	ttc Phe	ctg Leu 470	gac Asp	cca Pro	gaa Glu	tat Tyr	tgg Trp 475	aac Asn	ttt Phe	1443
		480	p	Deu	1111	GIU	485	Inr	AIA	Tyr	Thr	aac Asn 490	Ala	Val	Gly	1491
	495		-1011	Deu	DCI	500	TÄE	PIO	тув	ser	His 505	ggt Gly	Lys	Thr	Ala	1539
aaa Lys 510	agt Ser	aac Asn	att Ile	gtc Val	agt Ser 515	caa Gln	gtt Val	tac Tyr	tta Leu	aac Asn 520	gga Gly	gac Asp	aaa Lys	act Thr	aaa Lys 525	1587

-42-

				530			204	VDII	535	IIII	GIU	GIU	Thr	Gly 540		163
			545		-1-	501	1100	550	FIIG	ser	rrp	Asp	Trp 555	Ser	ggc	168
cac His	aac Asn	tac Tyr 560		aat Asn	gaa Glu	ata Ile	ttt Phe 565	gcc Ala	aca Thr	tcc Ser	tct Ser	tac Tyr 570	act Thr	ttt Phe	tca Ser	173
tac Tyr	att Ile 575	ALA	caa Gln	gaa Glu	taa *	aga	agcg	gcc	gcgt	tatg						176
<21:	0> 5 1> 5	5 78														
<21	2> P	RT	icia	l Se	quen	ce	•									
<22																
<22	3> A	d5s/.	Ad37	s												
	0 > 5															
					Pro											
					Gly				Val							
					Gly								Val			
					Pro											
					Leu 70						Gly					
					Leu					qaA						
					Leu				Ser							
					Met			Gly								
					Val		qaA									
3ly 145	Pro	Leu	Thr	Val	Ser 150	Glu	Gly	Lys	Leu	Ala 155	140 Leu	Gln	Thr	Ser	Gly	
Pro	Leu	Thr	Thr	Thr 165	Asp	Ser	Ser	Thr	Leu 170	Thr	Ile	Thr	Ala	Ser	160 Pro	
PIO	ьец	Thr	Thr 180	Ala	Thr	Gly	Ser	Leu	Gly	Ile	qaA	Leu	Lys	Glu	Pro	
lle	Tyr	Thr 195	Gln	Asn	Gly	Lys	Leu 200	Gly	Leu	Lys	Tyr	Gly	190 Ala	Pro	Leu	
lis	Val 210	Thr	qaA	qaA	Leu	Asn 215	Thr	Leu	Thr	Val	Ala	Thr	Gly	Pro	Gly	
		Ile	Asn	Asn	Thr	Ser	Leu	Gln	Thr	Lys	220 Val	Thr	Gly	Ala	Leu	
/al 225	Thr				230					235					240	
Val 225 3ly	Phe	Asp	Ser	Gln 245	Gly	Asn	Met	Gln	Leu	Asn	Val	Ala	Gly	Gly	Leu	
Val 225 3ly Arg	Phe Ile	Asp Asp	Ser Ser 260	Gln 245 Gln	Gly Asn Gln	Asn Arg	Arg	Leu	Ile	Asn Leu	Asp	Val	Ser	255 Tyr	Pro	

-43-

```
275
                            280
                                                 285
Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn Lys Gly Leu
                        295
                                         300
Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu Val Asn Leu
                    310
                                        315
Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile Ala Ile Asn
                325
                                    330
Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro Asn Thr Asn
            340
                                345
Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp Ser Asn Ile
        355
                            360
                                                365
Gly Ile Asn Val Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly
                       375
Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys Leu Thr Leu Trp Thr
                    390
                                        395
Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu Lys Asp Ala
               405
                                    410
Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Thr
                               425
Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile Ser Gly Thr
                            440
Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn Gly Val Leu
                        455
                                           460
Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe Arg Asn Gly
                  470
                                       475
Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly Phe Met Pro
                485
                                   490
Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala Lys Ser Asn
           500
                              505
Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys Pro Val Thr
                                                   510
                           520
                                                525
Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp Thr Thr Pro
  530
                        535
                                          540
Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly His Asn Tyr
545 550 555 560
Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser Tyr Ile Ala
                565
                                    570
Gln Glu
```

-44-

		•	-5	cc t ro T				20		_	-		*101			P.T.C	Pr	ıe	Leu	•
	٠,	•		tt g he V			35		-			., .	40	. FI.	ie i	LO	PY	0	Gly	147
	•			tc aa eu Ly		50		_				55	***	- 111	I P	ısn	GT	у.	Asp	195
				ag gt vs Va 6	5			_		7	ō ~	-u	GIII	. AB	p G	тĀ	Se	r :	cta Leu	243
			8	t aa O Ly O					85				T 11T	AS	יד כ	ys oo	aa: Ly:	a (Leu	291
		٠,	3	t ga r As			1	.00					·	100		уs	rei	1 5	Ser	339
	~=0			a ca y Hi		11	5]	120	TIA	. 56	er.	ATS	ı A	lla	387
				t tt: O Le:	130)					13	5	JCu	TIIT	G1	· Y	гув	G	ly	435
				a aat 1 Asr 145	•					150		_		DGT	ML	9 9	GTĀ	a I	tt le	483
ggt			TOU	,				1	L65 .				116	Asp	AS.	t o	gat Asp	G.	lу	531
tac Tyr :		1 /5					18	30	-				-9	105	tt: Le:	g t	.rp	Th	ır	579
aca (Thr						195			-			20	20	3.LU	пÃ	3 A	ap	Al	.a	627
aaa d Lys I 205					210				_	•	215			.16	TIEC	ı A	та	Th	r	675
gtt t Val s				225					2	30			-	T.C.	ser	G.	ga ly	ac. Th:	a	723
gtt c Val G			240					24	15			01	u A	B11 (этЛ	gt Va	tg (Let	ı	771
cta a	ac a	at 1	tcc	ttc	ctg	gat	cca	ı ga	a t	at t	- gg	aa	c t	tt a	iga	aa	ıt ç	gga	ì	819

-45-

Leu Asn Asn Ser Phe Leu Asp Pro 265
270 275 286 287 287 288 289 280 280 280 280 280 280
285 290 291 295 295 297 298 298 298 298 298 298 298
Solution
320 325 The Gry Asp Thr Pro 330 agt gca tac tct atg tca ttt tca tgg gac tgg tct ggc cac aac tac Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly His Asn Tyr 335 Trp Ser Gly His Asn Tyr 345 Trp Ser Trp Ser Gly His Asn Tyr 345 Trp Ser Trp Ser Gly His Asn Tyr 345 Trp Ser Trp Trp Ser Gly His Asn Tyr 345 Trp Ser Trp Ser Trp Ser Trp Trp Ser Trp Ser Trp Tro 1107 1107 1107 1107 1107 1107 1107 1107 1107 1107 1107
335 340 340 345 345 345 345 345
220
<pre></pre>
<pre></pre>
<pre> <211> 366 <212> PRT <213> Artificial Sequence <220> <223> Ad37s/Ad5k <400> 57 Met Lys Arg Ala Arg Pro Ser Glu Asp Asp Phe Asn Pro Val Tyr Pro</pre>
<pre></pre>
Met Lys Arg Ala Arg Pro Ser Glu Asp Asp Phe Asn Pro Val Tyr Pro Pro Phe Leu Thr Pro Pro Phe Leu Thr Pro Pro Phe Leu Thr Pro P
Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe 20 Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu 45 Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 50 Val Gly Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 65 Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Lys Leu Glu Leu Ala Tyr 90 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys Val Gly Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Lys Leu Glu Leu Ala Tyr 85 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu 45 Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 50 Val Gly Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 65 Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 50 Val Gly Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 65 70 Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 65 70 75 80 Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 90 95 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 90 95 Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
100
His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp
Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu
1 4(1) The state of the state o
Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val

-46-

```
Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala
                 165
                                    170
 Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Ala Pro
                                 185
 Ser Pro Asn Cys Arg Leu Asn Ala Glu Lys Asp Ala Lys Leu Thr Leu
                            200
 Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Thr Val Ser Val Leu
                                                 205
                         215
                                             220
Ala Val Lys Gly Ser Leu Ala Pro Ile Ser Gly Thr Val Gln Ser Ala
                    230
                                         235
His Leu Ile Ile Arg Phe Asp Glu Asn Gly Val Leu Leu Asn Asn Ser
                 245
                                     250
Phe Leu Asp Pro Glu Tyr Trp Asn Phe Arg Asn Gly Asp Leu Thr Glu
            260
                                 265
Gly Thr Ala Tyr Thr Asn Ala Val Gly Phe Met Pro Asn Leu Ser Ala
                             280
Tyr Pro Lys Ser His Gly Lys Thr Ala Lys Ser Asn Ile Val Ser Gln
                        295
                                             300
Val Tyr Leu Asn Gly Asp Lys Thr Lys Pro Val Thr Leu Thr Ile Thr
                     310
                                         315
Leu Asn Gly Thr Gln Glu Thr Gly Asp Thr Thr Pro Ser Ala Tyr Ser
                325
Met Ser Phe Ser Trp Asp Trp Ser Gly His Asn Tyr Ile Asn Glu Ile
                                     330
                                345
Phe Ala Thr Ser Ser Tyr Thr Phe Ser Tyr Ile Ala Gln Glu
                             360
<210> 58
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Ad37 third repeat
<400> 58
Gly Ser Leu Thr Val Asn Pro Lys Ala Pro Leu Gln Val Asn Thr Asp
<210> 59
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Ad8 last repeat
<400> 59
Val Arg Val Gly Glu Gly Gly Leu Ser Phe Asn Asp Asn
<210> 60
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Ad9 last repeat
```

-47-

```
<400> 60
 Val Arg Val Gly Glu Gly Gly Leu Ser Phe Asn Asn Asp.
 <210> 61
 <211> 14
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Ad15 last repeat
 <400> 61
 Val Arg Val Gly Glu Gly Gly Leu Ser Phe Asn Glu Ala
 <210> 62
 <211> 8
 <212> PRT
<213> Artificial Sequence
<220>
<223> Penton region
 <400> 62
His Ala Ile Arg Gly Asp Thr Phe
<210> 63
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Penton amino acid replacement
Ser Arg Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Thr Ser
<210> 64
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Fiber protein conserved sequence
<400> 64
Thr Trp Leu Thr
<210> 65
<211> 4
<212> PRT
<213> Artificial Sequence
```

-48-

```
<220>
  <223> HSP binding motif
  <400> 65
  Lys Lys Thr Lys
  <210> 66
  <211> 16
  <212> PRT
  <213> Artificial Sequence
 <220>
 <223> Ad8 third repeat
 <400> 66
 Gly Lys Leu Thr Val Asn Thr Glu Pro Pro Leu His Leu Thr Asn Asn
 <210> 67
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Ad9 third repeat
 <400> 67
 Gly Lys Leu Thr Val Asn Ala Asp Pro Pro Leu Gln Leu Thr Asn Asn
 <210> 68
 <211> 16
 <212> PRT
 <213> Artificial Sequence
 <223> Ad15 third repeat
 <400> 68
 Gly Asn Leu Thr Val Asn Thr Glu Pro Pro Leu Gln Leu Thr Asn Asn
<210> 69
<211> 3929
<212> DNA
<213> Artificial Sequence
<220>
<223> Vector pCR2.1
<400> 69
agegeceaat acgeaaaceg ceteteceeg egegttggee gatteattaa tgeagetgge 60
acgacaggtt tecegactgg aaagegggea gtgagegeaa egeaattaat gtgagetage 120 tegtgagegg ataacaattt cacacaggaa acagetatga egeatetage tegtgagegg egeageteggaa egeageteggaa 180 gtacegaget eggatecact agtaaeggee geeagtgtge teggaatteegg ettaageega 300
```

attetgeaga tatecateae aetggeggee getegageat geatetagag ggeceaatte 360 gccctatagt gagtcgtatt acaattcact ggccgtcgtt ttacaacgtc gtgactggga 420 aaaccetgge gttacceaac ttaategeet tgcagcacat ceceettteg ceagetggeg 480 taatagegaa gaggeeegea cegategeee tteccaacag ttgcgcagee tgaatggega 540 atggacgege cetgtagegg cgcattaage geggegggtg tggtggttae gegeagegtg 600 accgctacac ttgccagcgc cctagcgccc gctcctttcg ctttcttccc ttcctttctc 660 gccacgttcg ccggctttcc ccgtcaagct ctaaatcggg ggctcccttt agggttccga 720 tttagtgctt tacggcacct cgaccccaaa aaacttgatt agggtgatgg ttcacgtagt 780 gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac gttctttaat 840 agtggactct tgttccaaac tggaacaaca ctcaacccta tctcggtcta ttcttttgat 900 ttataaggga ttttgccgat ttcggcctat tggttaaaaa atgagctgat ttaacaaaaa 960 tttaacgcga attttaacaa aattcagggc gcaagggctg ctaaaggaag cggaacacgt 1020 agaaagccag tccgcagaaa cggtgctgac cccggatgaa tgtcagctac tgggctatct 1080 ggacaaggga aaacgcaagc gcaaagagaa agcaggtagc ttgcagtggg cttacatggc 1140 acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgccg gggcaggatc 1620 tcctgtcatc ccaccttgct cctgccgaga aagtatccat catggctgat gcaatgcggc 1680 getttetgg atteategae tgtggeegge tgggtgtgge ggacegetat caggacatag 1980 egttegetac cegtgatatt getgaagage ttggeggea atgggetgac egetteeteg 2040 agttettetg aattgaaaaa ggaagagtat gegtateaa cattteegt tegecettat 2160 egetteetet geggeatttt geetteetgt ttttgeteac cagaaacge tggtgaaagt 2220 aaaagatgct gaagatcagt tgggtgcacg agtgggttac atcgaactgg atctcaacag 2280 agttctgcta tgtggcgcgg tattatcccg tattgacgcc gggcaagagc actcggtcg 2400 ccgcatacac tattctcaga atgacttggt tgagtactca ccagtcacag aaaagcatct 2460 tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga gtgataacac 2520 tgcggccaac ttacttctga caacgatcgg aggaccgaag gagctaaccg cttttttgca 2580 caacatggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga atgaagccat 2640 accaaacgac gagcgtgaca ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact 2700 attaactggc gaactactta ctctagcttc ccggcaacaa ttaatagact ggatggaggc 2760 ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt ttattgctga 2820 taaactcgga gccggtgag gtgggtctcg cggtatcatt gcagcactgg ggccagatgg 2880 taatcacac aaatagacag atcgctgaga taggtgcctc agcgggagt caggcaccta tggatgaacg 2940 aatagacag atcgctgaga taggtgctc agcgggagt cattggtaac tggatgaacca 3000 agctgaagatc ctttttgata atctcatgac caaaatcgct taacctgagt ttcgttcca 3120 ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca 3120 ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg 3180 cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga 3240 tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa 3300 tactgttctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc 3360 3929

<210> 70

-50-

```
<211> 3931
          <212> DNA
         <213> Artificial Sequence
         <220>
         <223> Vector pCR2.1-Topo
         <400> 70
        agegeceaat aegeaaaceg ceteteeceg egegttggee gatteattaa tgeagetgge 60
       acgacaggtt tecegactgg aaagegggca gtgagegcaa egcaattaat gtgagettage 120 tegtgagegg ataacaattt cacacaggaa acagetatga egcaetatga egcaegettage 200 tegtgagegg ataacaattt cacacaggaa acagetatga eccatgattac egcaagettag 200 tegtgagegggaa 200 tegtgageggaa 200 tegtgagegggaa 200 tegtgagegggaa 200 tegtgageggaa 200 tegtgag
      gtaccgaget cggatccact agtaacggcc gccagtgtgc tggaattcgc ccttaagggc 300 gaattctgca gatatccatc acactggcgg ccgctcgagc atgcatctag agggcccaat 360
       tcgccctata gtgagtcgta ttacaattca ctggccgtcg ttttacaacg tcgtgactgg 420
       gaaaaccetg gegttaccca acttaatege ettgeageac atececettt egecagetgg 480
     atttataagg gattttgcg atttcggcct attggttaaa aaattgagctg atttaacaa 960 gtagaaagcc agtccgcaga aacggtgctg accccggatg aatgcagct attggtaaagga agcggaacac 1020 accgggtgctg accccggatg
     ctggacaagg gaaaacgcaa gcgcaaagag aaagcaggta gcttgcagtg ggcttacatg 1140
     gcgatagcta gactgggcgg ttttatggac agcaagcgaa ccggaattgc cagctggggc 1200
     gccctctggt aaggttggga agccctgcaa agtaaactgg atggctttct tgccgccaag 1260
    gatctgatgg cgcaggggat caagatctga tcaagagaca ggatgaggat cgtttcgcat 1320 ctatgactgg gcacaacaga caatcggctg ctctgatgc gcggtgtcttt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca 1500
   gcaggggcgc ccggttettt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca 1500 cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc caggtgtgct 1560 tctcctgtca tcccaccttg ctcctgccga gaaggtatcc atcatggct acggtgcatgat cggctgcat acgcttgatc cggctacctg cccattcgac caccaagcga aacattcgcat 1740
  geggetgeat acgettgate eggetacetg eccattegae eaccaagega aacategeat 1/40 eggagegagea egtactegga tggaageegg tettgtegat eaggatgate tggaegaaga 1800 eggaggatete gtegtgaece atggegatge etgettgeeg etgettgeeg etgettgeeg eccattetet ggatteateg actgtggeeg getgggtgtg geggaeeget ateaggaeat 1980 eggetttgeet accegtgata ttgetgaaga gettggegg getgggtgtg geggaeeget ateaggaeat 1980 eggettgget accegtgata ecceptgata 
  cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga 2100 cgagttcttc tgaattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt 2160
  attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa 2220 gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac 2280
  ageggtaaga teettgagag ttttegeece gaagaacgtt tteeaatgat gageactttt 2340 aaagttetge tatgtggege ggtattatee egtattgaeg eegggeaaga geaactegg 2400
  cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat 2460
  cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac 2520
 actgeggeca acttacttet gacaacgate ggaggacega aggagetaac egettttttg 2580 cacaacatgg gggatcatgt aactegeett gategttggg aaceggaget gaatgaagee 2640
caagtttact catatatact tragattgat traaaacttc atttttaatt taaaaggatc 3000
```

-51-

cgcgtaatct gatcaagagc aatactgttc cctacatacc tgtcttaccg acgggggtt ctacagcgtg ccggtaagcg ccggtacttt tgctcgtcag ctggcctttt gataaccgta	tccttttga cagaccccgt gctgcttgca taccaactct ttctagtgta tcgctctgct ggttggactc cgtgcacaca agctatgaga gcagggtcgg atagtcctgt gggggcggag gctggccttt ttaccgcctt cagtgagcga	aacaaaaaa ttttccgaag gccgtagtta aatcctgtta aagacgatag gcccagcttg aagcgccacg aacaggagag cgggtttcgc cctatggaaa tgctcacatg	ccaccgctac gtaactggct ggccaccact ccagtggctg ttaccggata gagcgaacga cttcccgaag cgcacgaggg cacctctgac aacgccagca tetttcctg	cttgagatec cageggtggt teageagage teagaacte ctgeeagtgg aggegeageg ectacacega ggagaaagge agetteeagg ttgagegteg aegeggeett	ttttttctg ttgtttgccg gcagatacca tgtagcaccg cgataagtcg cgataagtcg actgagatac ggacaggtat gggaaacgcc attttgtga tttacggttc	3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780
--	---	---	---	---	--	--