

Dynamic Bus Routing: The Role of High-Capacity On-Demand Ridesharing in a Population-Dense Urban Environment

Land Transport Authority, Singapore

Population Densities around the World

The Role of Public Buses in Singapore

Guiding Principles in the Planning of Bus Services

- Provide bus services within 400m coverage of developments, subject to minimum demand
- Provide connections to nearby <u>key</u>

 transport node for onward connection to further destinations by rail or other bus services (huband-spoke), and to <u>key amenities</u>
- Maintain overall bus network <u>financial sustainability</u>

Why is Dynamic Bus Routing Important?

Limitations of Fixed and Scheduled Services

- Do not offer flexibility in responding to dynamic demand and traffic situations
- Services have to ply through entire fixed route even when there are no / little passengers along the way

Rationalization of Low Demand Routes

- Under-performing services should ideally be rationalized to reduce cost
- May lead to routes being unserved, or faced with poor service levels

Solution

Feeding **on-demand bus services** into the existing transport network to <u>improve connectivity</u>, <u>save costs</u>, and <u>maintain existing service standards</u>

Why is Dynamic Bus Routing Important?

More flexible: Better adapt to commuters' demands, with potential to reduce journey times

Direct and seamless travel for commuters

Benefits of
Dynamic Bus Routing
in Singapore

Enables the rationalization of low-demand routes, while maintaining existing service levels

Enables cost savings due to better resource optimisation and utilisation

Mix of Fixed and Scheduled Bus Services and

Dynamically Routed Bus Services

Areas / routes with consistently high and even demand across space and time

When fixed and scheduled services operate at high cost recovery ratio and consistently high loading, there is no need for rationalization

Example: Mature Estate with High and Even Demand

Continue operating fixed and scheduled services

Mix of Fixed and Scheduled Bus Services and

Dynamically Routed Bus Services

Areas / routes with uneven spatial activity

Route contains both stops with (i) high boarding / alighting, and (ii) low boarding / alighting

Potential for spatial adjustment / rationalization of routes along corridors with low spatial activity

Example: Mature Estate with Moderate Demand

Operate on-demand services to plug the connectivity gaps in low activity corridors

Mix of Fixed and Scheduled Bus Services and

Dynamically Routed Bus Services

Areas / routes with uneven temporal loading

Exhibits peak-ish loading patterns

Example: Industrial Estates

Operate on-demand services during off-peak periods

Mix of Fixed and Scheduled Bus Services and Dynamically Routed Bus Services

To summarize: Three categories of regions/towns in Singapore:

- 1. Those with consistently high and even demand across space and time;
- 2. Those with uneven spatial activity (i.e. containing bus stops with both high and low utilization):
 - Enables spatial pruning, or headway adjustments, of bus services along corridors of low spatial activity
 - Enables the utilization of DRBs to plug the connectivity gaps in low activity corridors
- 3. Those with uneven temporal loading (i.e. peakish loading patterns)
 - Enables the utilization of DRBs to save costs during low-demand off-peak periods

Simulator Overview

- Event-based, agent-based simulator
- Assumptions:
 - On-time passenger arrival
 - Minor flexibility in origins/destinations
 - Travel time based on historical values
 - Simulator only aware of current demand, not future conditions

TABLE I. INPUTS TO THE DYNAMIC ROUTING SIMULATOR

Travel Demand	Supply Parameters	
Time of entry into	Fleet size	
system	Bus capacities	
 Origin 	 Bus stop locations 	
 Destination 	 Dwell time parameters 	
	 Cost matrix 	

TABLE II. OUTPUTS FROM THE DYNAMIC ROUTING SIMULATOR

Passenger Table	Bus Information Table	
 Boarding time 	 Route taken 	
 Alighting time 	 Distance covered 	
 Waiting time 	 Occupancy over 	
 Waiting time reliability 	time	
 Travel time reliability 		

The Choice Function

Any reasonable choice function will include:

- A routing function that sequences boarding/alighting stops,
 - Effectively a Travelling Salesman Problem (TSP) on a directed graph!
- A cost matrix that denotes costs of travelling between the TSP edges, and
- A cost function that determines the assignment of passengers to vehicles.

In the case study, the choice function iterates a modified version of the **insertion heuristic** developed by Jaw¹, returning the **best route** and **associated cost** for bus j to serve a new passenger arrival i as follows:

- 1. Obtain current route cost of bus j, $C_j = \sum_{k^*=1}^{m-1} t_{k^*}^{alight} t_{k^*}^{entry} \ \forall \ k^* \in M_j, k^* \neq i$
- 2. Find cheapest eligible edge to insert L_i^{board}
- 3. Find cheapest eligible edge to insert L_i^{alight}
- 4. Calculate new cost of route, $C_j^{new} = \sum_{k=1}^m t_k^{alight} t_k^{entry} \ \forall \ k \in M_j$
- 5. Assign passenger i to the bus j^* that incurs least additional cost; $j^* = \arg\min(C_j^{new} C_j) \ \forall j \in J$

¹Jaw, J.J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.M., 1986. A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows.

Application of Dynamic Bus Routing in

Areas with Uneven Spatial Activity

Low Case Study: Overview of Town X

- Population-dense, predominantly residential
- High-rise public housing (high demand for public transport) coexists with private landed property (low demand for public transport)
 - This spatial imbalance creates pockets of inefficiency in the current feeder bus network
 - The Challenge: Can dynamic bus routing be used to better serve this demand?
- Key transport nodes:
 - MRT (subway) Station
- 4 feeder bus routes
 - Ply convoluted routes (Svcs C, D)
 - Bus stops have low spatial activity (Svcs B, part of C)
 - No point-to-point connectivity for majority of town
- Via dynamic bus routing:
 - Areas of low and sporadic demand will be efficiently served
 - High level-of-service corridors can be delegated to existing fixed and scheduled services

Case Study: Results [1]

Full Day {Svcs 403, 354, 358, 359}		Present Day	On-Demand
Ridership	FSS:	763	247
	DRB:	-	516
Fleet Size	FSS:	29	25
	DRB:	-/-	3
Average Occupancy / Max Capacity		8.3 / 90	8.1 / 25
Daily Cost Savings			\$2100
Travel Time	Average	9.1	7.6
	Maximum	21.6	20
Wait Time	Average	4.6	4.8
	Maximum	13.6	15.0
% of Improved Journey Times	Average	NA	78.5%

If Services B and C (partial) have their headways tripled...

- 750 trips will be affected daily
- These <u>rely on Svcs B/C</u> (partial) for <u>direct connectivity</u> to their destination

Case Study: Results [2]

Journey Time Improvements

The First Step: Trialing Dynamic Bus Routing in

Areas with Uneven Temporal Activity

On-Demand Public Buses (ODPB) Trial

6 - 12 months trial which commenced in December 2018

Objective

Leverage on demand-responsive technology solutions to optimise resources of <u>low-demand public bus services during off-peak periods</u> through the use of Dynamic Bus Routing

Concept

- Identified regions of <u>uneven temporal demand</u> (low ridership during off-peak periods) to operate as ODPB
- Fixed and scheduled public bus services continue operations, but at reduced frequencies
- Waiting time to be no longer than the fixed and scheduled public bus services

ODPB Trial in Marina Bay / Shenton Way (CBD)

Low-Demand Bus Services

Fixed and scheduled services 400 and 402 operates at increased headways of 40 minutes during ODPB operational hours, from the original 15 minutes

ODPB Trial Geo-fence Area

Within the geo-fence area, a commuter books an ODPB ride through a mobile application by Ministry of Movement, indicating which bus stop he/she wants to board and alight

ODPB Trial in Joo Koon (Industrial Estate)

Low-Demand Bus Services

Fixed and scheduled services 253, 255 and 257 operates at increased headways of 30 minutes during ODPB operational hours, from the original 10 - 15 minutes

ODPB Trial Geo-fence Area

Within the geo-fence area, a commuter books an ODPB ride through a mobile application by Via, indicating which bus stop he/she wants to board and alight

Summary: What Have We Learned?

What have we demonstrated?

- Dynamic Bus Routing in <u>population-dense regions</u> offers significant efficiency gains.
 - DBR can complement existing fixed-route services plying high-demand corridors, and hence optimize travel patterns within towns.
- Under the right circumstances, on-demand bus services offers benefits in terms of
 - Waiting and travel time savings for commuters
 - Improved intra-town connectivity
 - OpEx and CapEx savings for service providers

What's next?

- A second proof-of-concept following the ODPB trial:
 - <u>Smaller</u> (and hence more nimble) buses
 - In a <u>residential</u> region of Singapore
 - Operating <u>across the entire day</u>

Thank You