RICERCA OPERATIVA - PARTE I

ESERCIZIO 1. (11 punti) Sia dato il seguente problema di PL

min
$$2x_1 + x_2$$

 $-x_2 + x_1 \ge 2$
 $x_1 + x_2 \ge 4$
 $x_1 \ge 3$
 $x_1, x_2 > 0$.

Si eseguano i seguenti punti:

- si risolva il problema per via grafica;
- si scriva il problema in forma standard e si scriva il duale del problema in forma standard;
- si risolva il primale utilizzando l'algoritmo del simplesso più opportuno visualizzando graficamente a ogni iterazione dove ci trova nel primale e riportando la corrispondente soluzione di base del duale;
- \bullet si esegua l'analisi di sensitività sul coefficiente di x_2 nell'obiettivo, visualizzando graficamente cosa succede agli estremi dell' intervallo individuato.
- \bullet È vero che il coefficiente di x_2 può essere modificato fino a rendere vuota la regione ammissibile del duale?

ESERCIZIO 2. (8 punti) Sia dato il seguente problema di PL

$$\max 2x_1 + \alpha x_2$$

$$x_1 + x_2 + x_3 = \alpha - 1$$

$$x_1 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Spiegare cosa succede per $\alpha < 1$ analizzando solo il primo vincolo. Lo si risolva spiegando come varia la soluzione al variare di α per $\alpha \geq 1$.

ESERCIZIO 3. (5 punti) Si dimostri che quando il primale ha obiettivo illimitato, il duale ha regione ammissibile vuota, dimostrando anche il risultato intermedio necessario per tale dimostrazione.

ESERCIZIO 4. (5 punti) Si consideri la regione ammissibile $S_a \neq \emptyset$ di un problema di PL in forma standard. Si dica se le seguenti affermazioni sono vere o false, **motivando la risposta**:

- per ogni vertice \mathbf{v} di S_a esiste sempre almeno una funzione obiettivo $\mathbf{c}\mathbf{x}$ del problema di PL tale che $\mathbf{v} \in S_{ott}$;
- esiste sempre almeno una funzione obiettivo $\mathbf{c}\mathbf{x}$ del problema di PL tale che $S_{ott} = \emptyset$ in quanto l'obiettivo del problema è illimitato;
- non esiste alcuna funzione obiettivo **cx** del problema di PL tale da rendere illimitato l'obiettivo del duale.