Online Computation, Ex 3.

David Ponarovsky

March 12, 2023

ex1. Consider the experts setting with gains: $g_{i,t} \in [0,1]$ is **ex2.** Show a lower bound of $\Omega\left(\sqrt{T}\right)$ in the experts setting the gain of expert i at step t. Hedge updates:

$$P_{i,t+1} = \frac{e^{\eta G_{i,t}}}{\sum_{j} e^{\eta G_{j,t}}}$$

where $G_{i,t} = \sum_{s \leq t} g_{i,t}$. Prove that the regret of Hedge at time T is $O(\sqrt{T \log n})$, for a good choice of the learning rate η , against the adaptive adversary.

Solution. Let g_t be the random variable which counts the gain at time step t and by $G_t = \sum_{t=0}^{T} g_t$. Recall that for any pair of random variables X, Y such that $X \geq Y$ holds that $\mathbf{E}[X] \geq \mathbf{E}[Y]$. Also notice that for x restricted to some range [-r, r] there are constants c_0, c_1 depend on r such that $e^{x}-1-x \le c_{0}x^{2}$ and $1+x+c_{0}x^{2} \le e^{x+c_{1}x^{2}}$. Namely, the exponent is bounded by quadric approximation (second Tylor series order). By the monotonous property of the expectation, for any random variable X that maps to bounded range [-r, r], it holds that:

$$\mathbf{E}\left[e^{x}\right] \le \mathbf{E}\left[1 + x + c_{0}x^{2}\right] \le e^{\mathbf{E}\left[x + c_{1}x^{2}\right]}$$

Define the potential $\psi(t) = \sum_{i} e^{\eta G_{i,t}}$ and notice that:

- 1. $\frac{\psi(t+1)}{\psi(t)} = \mathbf{E}\left[e^{\eta g_t}\right]$ relatives to the distribution $P_{i,t+1}$.
- 2. $\psi(t) \geq e^{\eta G_{t,j}}$ for any t and j in particular the j which maximizes the gain.

Therefore we obtain that:

$$\begin{split} \psi\left(T\right) &= \frac{\psi\left(T\right)}{\psi\left(0\right)} \psi\left(0\right) = \prod_{t=0}^{T} \frac{\psi\left(t+1\right)}{\psi\left(t\right)} \psi\left(0\right) \leq \\ n \prod_{t=0}^{T} \mathbf{E}\left[e^{\eta g_{t}}\right] &\leq n \prod_{t=0}^{T} \mathbf{E}\left[1 + \eta g_{t} + c_{0}\left(\eta g_{t}\right)^{2}\right] \\ n \prod_{t=0}^{T} 1 + \mathbf{E}\left[\eta g_{t} + c_{0}\left(\eta g_{t}\right)^{2}\right] &\leq n \prod_{t=0}^{T} e^{\mathbf{E}\left[\eta g_{t} + c_{1}\left(\eta g_{t}\right)^{2}\right]} \leq \\ n e^{\mathbf{E}\left[\sum \eta g_{t} + c_{1}\left(\eta g_{t}\right)^{2}\right]} &\leq n e^{\mathbf{E}\left[\sum \eta g_{t}\right] + \mathbf{E}\left[c_{1}\left(\eta g_{t}\right)^{2}\right]} \end{split}$$

On the other hand, by the second property, it follows that for any j:

$$e^{\eta G_{j,T}} < ne^{\mathbf{E}\left[\sum \eta g_t\right] + \mathbf{E}\left[c_1(\eta g_t)^2\right]}$$

By dividing at $e^{\mathbf{E}[\sum \eta g_t]}$, extracting the logarithm and combine the fact that $g_t^2 = g_t$ (indicator) we have that:

$$R_T \le \frac{1}{\eta} \log\left(n\right) + c_1 \eta T$$

And by choosing $\eta = \sqrt{\log(n)/T}$ we complete the proof.

on the regret of any online algorithm against the oblivious adversary.

Solution. Consider an adversarial which draw the values of $g_{i,t}$ uniformly random, in particular $g_{i,t}$'s are independent. Fix an online algorithm for the problem and denote by g_t the gain that earns by it at time step t. As $g_{i,t}$ are independent, the sum $G_T = \sum g_t$ is a summation of independent variables with the same exception and variance. Therefore we know that $(G_T - T\mu)/\sqrt{T} \sim G(0, \sigma)$ where μ and σ do not depends on T. Denote that Gaussian by X.

On the other hand, a run in which the optimal gain $T\mu + \frac{1}{2}\sqrt{T}$ might occur with positive probability. Using that event, we infer that the regret has to be at least:

$$R_T \ge T\mu + \frac{1}{2}\sqrt{T} - \mathbf{E}\left[G_t\right] = \frac{1}{2}\sqrt{T}$$

ex3. Consider a system of linear inequalities $Ax \geq b$, where $A \in [0,\infty]^{m \times n}, b \in [0,\infty]^m$, and unknown $x \in [0,\infty]^n$. (we are seeking a non-negative solution). An ε -approximate solution $x \geq 0$ satisfies $Ax \geq b - \varepsilon 1$. Suppose we have an efficient procedure for the following problem: Given $p \in$ $[0,1]^m, \sum_{i\in[m]} p_i = 1$, decide if exists $x \geq 0, p^{\top} Ax \geq p^{\top} b$. Show how to find an ε -approximate solution to $Ax \geq b$. Analyze the run-time.

Solution. I think that a misunderstood occurred, and the restriction of A>0 was written by mistake. Because otherwise, One could pick x to be the vector $x_i=\frac{\max b}{\min A}$ for any i, where the minimum is taken over all the non-zero values of A. Notice that on the one hand, $x \geq 0$ and on the other hand, the inequality is satisfied. For see that, consider non-zero row a_i of A, there is must to be at least one entry $A_{ij'\in a_i}$ which is nonzero, Hence we have that:

$$(Ax)_i = \sum_{\substack{A_{ij} \text{ max } b \\ \min A}} \ge \frac{A_{ij'}}{\min A} \max b \ge b_i$$

Also, the above proves that the inequalities system has no solution only if a coordinate exists for which $b_i > 0$ and the ith row contains only zero values. One can Compute x by doing at most one iteration over the input. So the total running time is at most O(mn). If A isn't restricted to holding only positive values, then the problem is equivalence to solving an arbitrary LP.

ex4. Recall that we showed, for EXP updates, that w.p $1 - \delta$

$$RT \le \beta nT + \gamma T + (1+\beta)\eta + \frac{\ln(\delta^{-1}n)}{\beta} + \frac{\ln n}{\eta}$$

Infer that for the right choice of β, γ, η

$$\mathbf{E}\left[R_T\right] = O\left(\sqrt{Tn\ln n}\right)$$

Solution. Let's choose $\delta=2^{-Tn},\ \beta=\sqrt{\frac{logn}{nT}},\ \text{and}\ \gamma,\eta=\Theta\left(\beta\right)$ assume that $T=\Omega(n)$ (which is reasonable assumption). Observes that the term $\frac{\log\left(\delta^{-1}n\right)}{\beta}$ becomes $\frac{log(n)}{\beta}+\frac{1}{nT\beta}$ and then we obtain that:

$$\mathbf{E}\left[R_T\right] \le \left(1 - 2^{-Tn}\right) \Theta\left(\sqrt{Tn \log n}\right) + 2^{-Tn} \cdot T = \Theta\left(\sqrt{Tn \log n}\right)$$