COMP20003 Algorithms and Data Structures Recurrences

Nir Lipovetzky
Department of Computing and
Information Systems
University of Melbourne
Semester 2

Divide and Conquer Algorithms

- Mergesort and quicksort are instances of divide-and-conquer algorithms:
 - Solve the problem by continually dividing into smaller problems.
- Other examples?

Split-solve-join approach:

For problems where the output is a transformation of the input, need to:
•process both sub-problems, and
•join the sub-solutions after processing

Recurrence for divide and conquer sorting algorithms

- One pass through the data reduces problem size by half. Process both halves.
- Operation takes constant time c.
- Base case takes time d.

Recurrence for divide and conquer sorting algorithms

- One pass through the data reduces problem size by half. Process both halves.
- Operation takes constant time c.
- Base case takes time d.

```
T(1) = d

T(n) = 2T(n/2) + nc

= nc + 2cn/2 + 4cn/4... + n/2*2c + nd

= c(n-1)log n + nd
```

Divide and Conquer: Recurrences to Master Theorem

• Most common case:

$$T(n) = 2T(n/2) + n$$

General case:

$$T(n) = aT(n/b) + f(n)$$
$$f(n) \in \Theta(n^{o})$$

• Most common case:

$$T(n) = 2T(n/2) + n$$

 $a=2, b=2, d=1$

Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n) $f(n) \in \Theta(n^d)$
- T(n) closed form varies, depending on whether:

•
$$d > log_b a$$
 $T(n) \in \Theta(n^d)$

•
$$d = log_b a$$
 $T(n) \in \Theta(n^d log n)$

•
$$d < log_b a$$
 $T(n) \in \Theta(n^{log}b^a)$

Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n), where $a \ge 1$, b > 1, n^d asymptotically positive
- T(n) closed form varies, depending on whether:
 - $d > log_b a$ $T(n) \in \Theta(n^c)$
 - $d = log_b a$ $T(n) \in \Theta(n^d log n)$
 - $d < log_b a$ $T(n) \in \Theta(n^{log}b^a)$

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(nd)$$

- Size of subproblems decreases by b
 - So base case reached after $log_b n$ levels
 - Recursion tree log_bn levels
- Branch factor is a
 - At kth level, have ak subproblems
- At level k, total work is then
 - a^k * O(n/b^k)^d
 - (#subproblems * cost of solving one)

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(nd)$$

- At level k, total work is then
 - $a^k * O(n/b^k)^d = O(n^d) * (a/b^d)^k$
- As k (levels) goes from 0 to $log_b n$, this is a geometric series, with ratio a/b^d .

$$\Sigma$$
 O(nd)* (a/bd)k

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(nd)$$

- Geometric series: O(nd) * (a/bd)k
 - as k goes from $0 \rightarrow log_b n$
- Case 1: ratio a/bd< 1
 - $(a/b^a)^k$ gets smaller as k goes from 1 \rightarrow log n
 - a/b^d First term is the largest, and is <1
 - O(nd)

Example for *a/b^d*< 1

$$T(n) = 2T(n/2) + n^2$$

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(nd)$$

- Geometric series: O(nd) * (a/bd)k
 - as k goes from $0 \rightarrow \log_b n$
- Case 2: *ratio a/bd= 1*
 - Series is O(n^d) + O(n^d) + ...
 - For log_bn levels
 - Sum = $O(n^d \log n)$

Example for most common case $a/b^d = 1$

$$T(n) = 2T(n/2) + n$$

 $T(n) = 2(2T(n/4) + n/2) + n$
 $= 4T(n/4) + n + n$
 $= 8T(n/8) + n + n + n$

. . . .

1 * n

2 * n/2

4 * n/4

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(nd)$$

- Geometric series: O(nd) * (a/bd)k
 - as k goes from $0 \rightarrow \log_b n$
- Case 3: ratio a/ba > 1
 - $a/bd > 1 \rightarrow$ series is increasing
 - Sum dominated by last term:
 - $O(nd)(a/bd)\log(b)n = n\log(b)a$

$$T(n) = 4T(n/2) + n$$

 For more on geometric series, and calculation of closed form, see:

http://www.youtube.com/watch?v=JJZ-shHiayU

 4 minute tutorial from Rose-Hulman Institute of Technology