COMP 285 (NC A&T, Spr '22) Weekly Quiz 1

Reporting Issues If you find any issues with the solutions, reach out to Chi Wang (author) or Luis Perez (reviewer).

1

Recall the definitions of big-Oh, big-Omega, and big-Theta. Based on these definitions, select all statements below which are true.

Solution

The below are all trust statements.

- 1. Big-Oh is an upper bound. That is, intuitively, T(n) = O(f(n)) means $T(n) \le cf(n)$ for some c.
- 2. Big-Theta provides both upper and lower bounds.
- 3. Big-Omega is a lower bound.

The above are by definition.

2

What is the running time of the following function: $T(n) = 13 + 12nlog(n) + 3n^2$

Solution

 $\Theta(n^2)$ because n^2 is both upper and bower bounds. The other terms grow much more slowly, which means for large n, they do not impact the result much.

3

Which of the following is the correct English description of f(n) = O(g(n))?

Solution

There is some c > 0 and some n_0 , such that for all $n \ge n0$ we have $f(n) \le c \cdot g(n)$.

4

Suppose that f(n) = O(g(n)). Which of the following is implied by this fact?

Solution

 $g(n) = \Omega(f(n))$. Intuitively, f(n) = O(g(n)) means that $f(n) \leq cg(n)$ for some c and large enough n. This means that $g(n) \geq \frac{1}{c}f(n)$ for large enough n (divide both sides by c), which fits the definition of $g(n) = \Omega(f(n))$.

5

What is the smallest exponent x such that $n^2 + n^3 - n = O(n^x)$

Solution

3. Because the asymptotic upper bound is n^3

6

Is Merge Sort's worst case runtime asymptotically faster than Insertion Sort's worst case runtime?

Solution

Yes. Merge Sort's worst case runtime is $O(n \log n)$, and Insertion Sort's worst case runtime is $O(n^2)$.

7

Which of the following describes $\frac{n(n+1)(n+2)}{6}$

Solution

- $O(n^4)$: $\frac{n(n+1)(n+2)}{6} = \frac{n^3+3n^2+2n}{6}$ so the asymptotic upper bound should be $O(n^3)$. Since $O(n^4)$ grows faster than $O(n^3)$, it can be the upper bound.
- $O(n^3)$: It's the asymptotic upper bound.
- $\Theta(n^3)$: It's both the upper bound and the lower bound.
- $\Omega(n^2)$): Since $O(n^2)$ grows slower than $O(n^3)$, it can be the lower bound.

8

Is Merge Sort faster than Insertion Sort on some arrays?

Solution

Yes, Merge Sort's worst case runtime is $O(n \log n)$, and Insertion Sort's worst case runtime is $O(n^2)$.

In particular, Insertion Sort will take $\Theta(n^2)$ steps on an array thats sorted in reverse order, while merge sort will that $\Theta(n \log n)$ steps.

9

Is Merge Sort faster than Insertion Sort on all input arrays?

Solution

No. Merge Sort's best case runtime is $O(n \log n)$, and Insertion Sort's best case runtime is O(n).

In particular, Insertion Sort will take $\Theta(n)$ steps on an array that's already sorted, while merge sort will take $\Theta(n \log n)$ steps.

10

The Merge operation takes two arrays A and B of size n which are already sorted and outputs the union of the two in sorted order. What is the smallest bound on the runtime of the Merge algorithm?

Solution

O(n). The Merge operation needs to walk through every element in A and B.