Notes on Convex Optimization

Fei Jie

Contents

Pı	reface	iv
1	Introduction	1
	1.1 Mathematical optimization	1
	1.2 Least squares and linear programming	
	1.3 Convex optimization	2
	1.4 Nonlinear optimization	2
	1.5 Outline	
	1.6 Notation	2
Ι	Theory	3
2	Convex sets	4
	2.1 Affine and convex sets	4
	2.2 Some important examples	5
	2.3 Operations that preserve convexity	5
	2.4 Generalized inequalities	5
	2.5 Separating and supporting hyperplanes	6
	2.6 Dual cones and generalized inequalities	6
3	Convex functions	7
	3.1 Basic properties and examples	7
	3.2 Operations that preserve convexity	7
	3.3 The conjugate function	7
	3.4 Quasiconvex functions	7
	3.5 Log-concave and log-convex functions	
	3.6 Convexity with respect to generalized inequalities	7

4	Convex optimization problems	8
	4.1 Optimization problems	8
	4.2 Convex optimization	8
	4.3 Linear optimization problems	8
	4.4 Quadratic optimization problems	8
	4.5 Geometric programming	8
	4.6 Generalized inequality constraints	8
	4.7 Vector optimization	8
5	Duality	9
	5.1 The Lagrange dual function	9
	5.2 The Lagrange dual problem	9
	5.3 Geometric interpretation	9
	5.4 Saddle-point interpretation	9
	5.5 Optimality conditions	9
	5.6 Perturbation and sensitivity analysis	9
	5.7 Examples	9
	5.8 Theorems of alternatives	9
	5.9 Generalized inequalities	9
II	Applications	10
6	Approximation and fitting	11
7	Statistical estimation	12
8	Geometric problems	13
III	Algorithms	14
9	Unconstrained minimization	15
10	Equality constrained minimization	16
11	Interior-point methods	17

CONTENTS

Appendices		19
\mathbf{A}	Mathematical background	19
В	Problems involving two quadratic functions	20
\mathbf{C}	Numerical linear algebra background	21
Bi	bliography	22

Preface

This document is notes on the textbook Convex Optimization [1].

Introduction

1.1 Mathematical optimization

A mathematical optimization problem has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$ (1.1)

Here the vector $x = (x_1, ..., x_n)$ is the optimization variable of the problem, the function $f_0 : \mathbb{R}^n \to \mathbb{R}$ is the objective function, the functions $f_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m are the limits, or bounds, for the constraints. A vector x^* is called optimal, or a solution of the problem (1.1), if it has the smallest objective value among all vectors that satisfy the constraints: for any z with $f_1(z) \leq b_1, ..., f_m(z) \leq b_m$, we have $f_0(z) \geq f_0(x^*)$.

1.2 Least squares and linear programming

1.2.1 Least-squares problems

A least-squares problem is an optimization problem with no constraints and an objective which is a sum of squares of terms of the form $a_i^T x - b_i$:

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=2}^k (a_i^T x - b_i)^2.$$
 (1.2)

Here $A \in \mathbb{R}^{k \times n}$ (with $k \geq n$), a_i^T are the rows of A, and the vectors $x \in \mathbb{R}^n$ is the optimization variable.

1.2.2 Linear programming

In linear programming problem, the objective function and all constraint functions are linear:

minimize
$$c^T x$$

subject to $c_i^T x \le b_i, \quad i = 1, \dots, m.$ (1.3)

Here the vectors $c, a_1, \ldots, a_m \in \mathbb{R}^n$ and scalars $b_1, \ldots, b_m \in \mathbb{R}$ are problem parameters that specify the obejctive and constraint functions.

1.3 Convex optimization

A convex optimization problem is one of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$, (1.4)

where the functions $f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex, i.e., satisfy

$$f_i(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$
 (1.5)

for all $x, y \in \mathbb{R}^n$ and all $\alpha, \beta \in \mathbb{R}$ with $\alpha + \beta = 1, \alpha \ge 0, \beta \ge 0$.n

1.4 Nonlinear optimization

1.5 Outline

1.6 Notation

Part I

Theory

Convex sets

2.1 Affine and convex sets

2.1.1 Lines and line segments

Suppose $x_1 \neq x_2$ are two different points in \mathbb{R}^n . Points of the form

$$y = \theta x_1 + (1 - \theta)x_2,$$

where $\theta \in \mathbb{R}$, form the line passing through x_1 and x_2 .

2.1.2 Affine sets

A set C is affine if the line through any two distinct points in C lies in C, i.e., for any $x_1, x_2 \in C$ and $\theta \in \mathbb{R}$, we have $\theta x_1 + (1 - \theta)x_2 \in C$.

2.1.3 Affine dimension and relative interior

2.1.4 Convex sets

A set C is convex if the line segment between any two points in C lies in C, i.e., if for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C.$$

2.1.5 Cones

A set C is called a cone, or nonnegative homogeneous, if for every $x \in C$ and $\theta \ge 0$, we have $\theta x \in C$. A set C is a convex cone if it is convex and a cone, which means that for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \ge 0$, we have

$$\theta_1 x_1 + \theta_2 x_2 \in C.$$

2.2 Some important examples

- 2.2.1 Hyperplanes and halfspaces
- 2.2.2 Euclidean balls and ellipsoids
- 2.2.3 Norm balls and norm cones
- 2.2.4 Polyhedra
- 2.2.5 The positive semidefinite cones
- 2.3 Operations that preserve convexity
- 2.3.1 Intersection
- 2.3.2 Affine functions
- 2.3.3 Linear-fractional and perspective functions

2.4 Generalized inequalities

2.4.1 Proper cones and generalized inequalities

A cone $K \subseteq \mathbb{R}^n$ is called a proper cone if it satisfies the following:

- K is convex.
- K is closed.
- *K* is solid, which means it has nonempty interior.
- K is pointed, which means that it contains no line (or equivalently, $x \in K, -x \in K \Rightarrow x = 0$).

A proper cone K can be used to define a generalized inequality, which is a partial order on \mathbb{R}^n that has many of the properties of the standard ordering on \mathbb{R} .

2.4.2 Minimum and minimal elements

The most obvious difference between ordinary inequalities and generalized inequalities is that \leq for \mathbb{R} is a linear ordering: any two points are comparable, meaning either $x \leq y$ or $y \leq x$. This property does not hold for other generalized inequalities.

 $x \in S$ is the minimum element of S (with respect to the generalized inequality \preceq_K) if for every $y \in S$ we have $x \preceq_K y$. If a set has minimum (maximum) element, then it is unique. $x \in S$ is a minimal element of S (with respect to the generalized inequality \preceq_K) if $y \in S$, $y \preceq_K x$ only if y = x.

2.5 Separating and supporting hyperplanes

2.6 Dual cones and generalized inequalities

Convex functions

- 3.1 Basic properties and examples
- 3.2 Operations that preserve convexity
- 3.3 The conjugate function
- 3.4 Quasiconvex functions
- 3.5 Log-concave and log-convex functions
- 3.6 Convexity with respect to generalized inequalities

Convex optimization problems

- 4.1 Optimization problems
- 4.2 Convex optimization
- 4.3 Linear optimization problems
- 4.4 Quadratic optimization problems
- 4.5 Geometric programming
- 4.6 Generalized inequality constraints
- 4.7 Vector optimization

Duality

5.1 The Lagrange dual functi	:10r	n
------------------------------	------	---

- 5.2 The Lagrange dual problem
- 5.3 Geometric interpretation
- 5.4 Saddle-point interpretation
- 5.5 Optimality conditions
- 5.6 Perturbation and sensitivity analysis
- 5.7 Examples
- 5.8 Theorems of alternatives
- 5.9 Generalized inequalities

Part II Applications

Approximation and fitting

Statistical estimation

Geometric problems

Part III Algorithms

Unconstrained minimization

Equality constrained minimization

Interior-point methods

Appendices

Appendix A

Mathematical background

Appendix B

Problems involving two quadratic functions

Appendix C

Numerical linear algebra background

Bibliography

- [1] BOYD, S., AND VANDENBERGHE, L. Convex optimization. Cambridge university press, 2004. iv
- [2] Kipf, T. N., and Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).