I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

Shekh de la définition de l'intégrale de Riemann.

I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

Shekh de la définition de l'intégrale de Riemann. Fonction en escaliers: $\iint_{a} (x) dx = \sum_{h} \int_{h} \Delta h$ Fonction of "quelconque" (cont. par morcoaux) $\int_{a}^{b} f(x) = ? \quad \text{Subdivision de [a,b]}$

I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

Sketch de la définition de l'intégrale de Riemann. Fonction en escaliers: Sf(x) de = E fa- sh Fonction of "quelonque" (cont. par morcoaux)

I. Fonctions usuelles et propriétés

Fonctions usuelles, intervalle de définition, continuité, dérivabilité, limites classiques, etc.

-> Non traité, mais notions à connaîtres absolument. Se référer au poly sur mon site, ou sur toute ressources traitant des fonctions.

II. Intégrale de Riemann

Sketch de la définition de l'intégrale de Riemann. Fonction en escaliers: $\iint_{\mathcal{S}} (x) dx = \sum_{k} \int_{\mathcal{K}} \Delta_k$ Fonction of "quelconque" (cont. par morcoaux)

Par morceaux sur I CR est intégrable sur tout intervalle fermé De plus, on a: $\int_{0}^{1} \int_{0}^{1} f(x) dx = \int_{0}^{1} \int_{0}^{1} f(x)$ (Charles)

Par morceaux sur ICR est Théorème - Définition Soit of continue sur I Mors, la intégrable sur tout intervalle fermé $F: x \in I \longleftrightarrow \int f(y) dy$ De plus, on a: est une fonction dévirable sur T et on F(a) = 0 (et F'(v) = g(v)) $\int \mathcal{J}(x) dx = \int \mathcal{J}(x) dx + \int \mathcal{J}(x) dx$ F(x) est applée primitire de g(x) (Charles) mullo en a. Enfin, on a: $\int_{a}^{b} J(x) dx = F(b) - F(a) := [F(x)]_{a}^{b}$ demo? Charles

Primitives des fonctions usuelles

f(x)	$\int f(x)dx$	valable pour $x \in$
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$	R
$\frac{1}{x^n} = x^{-n}, n \in \mathbb{N} \setminus \{1$	$ \frac{x^{-n+1}}{-n+1} = \frac{-1}{(n-1)x^{n-1}} $	$]-\infty,0[$ ou $]0,+\infty[$
$\frac{1}{x}$	ln(x)	$]-\infty,0[$ ou $]0,+\infty[$
$x^{\alpha}, \ \alpha \in \mathbb{R} \setminus \mathbb{Z}$	$\frac{x^{\alpha+1}}{\alpha+1}$]0,+∞[
e ^x	e ^x	\mathbb{R}
cos(x)	sin(x)	R
sin(x)	-cos(x)	R

Primitives des fonctions usuelles (suite)

f(x)	$\int f(x)dx$	valable pour $x \in$
$\frac{1}{1+x^2}$	arctan(x)	R
$\frac{1}{\sqrt{1-x^2}}$	arcsin(x)] - 1, 1[
cosh(x)	sinh(x)	R
sinh(x)	cosh(x)	\mathbb{R}
tanh(x)	ln(cosh(x))	R
$\frac{1}{\sqrt{x^2+1}}$	argsinh(x)	R
$\frac{1}{\sqrt{x^2-1}}$	argcosh(x)]1,∞[

$$\left(\frac{e^{u(x)}}{h(u(x))} \right) = \frac{u'(x)}{u(x)}$$

$$\left(\frac{1}{u(x)} \right)^{\frac{1}{2}} = -\frac{u'}{u^{2}}$$

= \frac{1}{3} \land \n-\frac{1}{3} \rangle + h

$$\int \frac{1}{3 \times -a} \, dx = \lim_{x \to a} |x - a| + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

$$= \frac{1}{-h \cdot 1} (x - a)^{-h + 1} + h$$

Primitives de:
$$\int 2x e^{x^2+1} dx = \left[e^{x^2+1}\right]$$

$$u'e^{u(1)}$$

$$\int \frac{1}{x} \cos \left(\lim_{x \to \infty} \mathbb{R}^+ \right) dx \qquad \left(\lim_{x \to \infty} \mathbb{R}^+ \right)$$

$$= \lim_{x \to \infty} || \ln x|| + \lambda$$

ntégration par parties

$$(uv)' = u'r + ur'$$

$$\frac{1}{x} \cos \left(\lim_{x \to \infty} \mathbb{R}^+ \right)$$

$$u' \left(\partial \mathcal{L} \left(u_{(r)} \right) \right)$$

$$\int \frac{1}{x} \cos \left(\lim_{x \to \infty} \mathbb{R}^{+} \right) dx \qquad \left(\lim_{x \to \infty} \mathbb{R}^{+} \right)$$

$$= \lim_{x \to \infty} || \ln x|| + \lambda$$

tégration par parties

$$(uv)' = u'r + ur'$$

$$\int_{a}^{b} u' s = \left[u \right]_{a}^{b} - \int_{a}^{b} u s'$$

Choix de well of?

$$V = \frac{Ancos/acin}{u' = 1}$$

$$V = \frac{Anc$$

IV. Changement de variables Formulation clamque: $\gamma = \Psi(n)$, $\Psi \in \mathcal{E}^1$ $\begin{cases}
f(b) \\
f(a)
\end{cases}
f(b)$ f(a) f(b) f(a) f(b) f(a) f(b) f(c) f(dans l') en x mre caprenis

Formulation compatible usec R^ $\int_{a}^{b} J(y) dy = ? \qquad \forall : j \mapsto x = f(y)$

gu per ike ur 4/11.

Y'(a): } expremism des Y'(b): } borner en smalle of Exo;) VI-xi du) x=nnt

$$\frac{1}{x^2 + a^2} dx = \int \frac{1}{x^2 + 4x + 3} dx =$$

 $\int \frac{1}{x^2 + x + 1} e^{-x} =$

$$\int \frac{2x+1}{3x^2+x+1} dx =$$