Zadanie 1.

Niech *N* oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia, z czego:

- *M* to liczba szkód zgłoszonych przed końcem tego roku
- *K* to liczba szkód które zostaną zgłoszone w ciągu następnego roku.

Oczywiście zachodzi N = M + K.

Wiadomo, że zmienne M oraz K są warunkowo (przy ustalonej wartości parametru ryzyka Λ) niezależne i mają rozkłady Poissona z parametrami odpowiednio:

- Λq zmienna M,
- Λp zmienna K,

gdzie p = 1 - q to liczba z przedziału (0, 1).

O parametrze ryzyka Λ wiadomo, że:

• ma on rozkład Gamma o wartości oczekiwanej $\frac{\alpha}{\beta}$ i wariancji $\frac{\alpha}{\beta^2}$

Oczekiwana liczba szkód zaszłych w ciągu roku pod warunkiem, że do końca roku zgłoszono m szkód, a więc:

$$E(N|M=m)$$

(A)
$$m + \frac{\alpha + mp}{\beta + q}$$

(B)
$$m + \frac{\alpha p + mp}{\beta + q}$$

(C)
$$m + \frac{\alpha p + mp}{\beta q + q}$$

(D)
$$m + \frac{\alpha + mp}{\beta q + q}$$

(E)
$$m + \frac{\alpha + m}{\beta + q}$$

Zadanie 2.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela z zerową nadwyżką początkową $U(t)=ct-S_{N(t)}$, gdzie:

- *ct* jest sumą składek zgromadzonych do momentu *t*,
- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n Y_i$ jest sumą wartości *n* pierwszych szkód
- wartości szkód $Y_1, Y_2, Y_3,...$ są i.i.d, niezależne od procesu N(t)

O rozkładzie wartości pojedynczej szkody wiemy tylko tyle, że:

•
$$\Pr(Y_1 \in [0,1]) = 1$$

•
$$E(Y_1) = 1/10$$
.

Wiemy też, że $c > \lambda/10$

Wobec tego wartość oczekiwana deficytu w momencie ruiny (pod warunkiem że do ruiny dojdzie) może przyjmować różne wartości. Przedział, który zawiera wszystkie te wartości (i nic ponadto) jest postaci:

(A)
$$\left[\frac{1}{30}, \frac{1}{3}\right]$$

(B)
$$\left[\frac{1}{15}, \frac{1}{3}\right]$$

(C)
$$\left[\frac{1}{20}, \frac{1}{2}\right]$$

(D)
$$\left[\frac{1}{30}, \frac{1}{2}\right]$$

(E)
$$\left[\frac{1}{10}, \frac{1}{2}\right]$$

Zadanie 3.

Wiadomo, że w ubezpieczeniu odpowiedzialności cywilnej właścicieli motocykli szkodowość jest sezonowa. Z doświadczeń lat ubiegłych wiemy, że oczekiwana wartość szkód z rocznej polisy wystawionej na jeden motocykl rozkłada się na kwartały kalendarzowe zgodnie ze współczynnikami udziałowymi podanymi w drugiej kolumnie poniższej tabeli. W trzeciej kolumnie tabeli podane są także kwoty składki przypisanej u pewnego ubezpieczyciela w roku 2008.

Kwartał roku kalendarzowego	udział w oczekiwanej wartości szkód w roku	Składka przypisana w roku 2008
Q1	10%	20 tys. zł
Q2	25%	80 tys. zł
Q3	50%	60 tys. zł
Q4	15%	40 tys. zł

Przy założeniach, że:

- Wszystkie umowy są roczne
- Umowy ubezpieczeniowe zawarte w danym kwartale zawierane są średnio w połowie tego kwartału
- Ryzyko w ciągu danego kwartału rozkłada się równomiernie
- Kwartały są równej długości
- Rezerwa składki na koniec roku 2007 u tego ubezpieczyciela wyniosła 80 tys. zł.

Wartość składki zarobionej w roku 2008 wynosi:

- (A) 188 tys. zł
- (B) 192 tys. zł
- (C) 196 tys. zł
- (D) 200 tys. zł
- (E) 204 tys. zł

Zadanie 4.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela, a więc proces: $U(t) = u + (1 + \theta)\lambda \mu_y t - S_{N(t)}$, gdzie:

- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n Y_i$ (lub zero, jeśli n = 0)
- $Y_1, Y_2, Y_3,...$ to niezależne zmienne losowe o tym samym rozkładzie danym na półosi dodatniej gęstością: $f_Y(y) = \frac{\alpha v^{\alpha}}{(v+v)^{\alpha+1}}$, o wartości oczekiwanej μ_Y

Wiemy, że parametry procesu wynoszą:

•
$$\alpha = 2$$
, $\theta = \frac{1}{5}$, oraz $u = 4\mu_{\gamma}$

Prawdopodobieństwo, iż do ruiny dojdzie, i to dojdzie w pierwszym momencie, w którym nadwyżka spadła poniżej poziomu wyjściowego u, a więc że: $\exists T > 0$ takie, że:

- U(T) < 0 oraz $\forall t \in (0,T)$ $U(t) \ge u$ wynosi:
- (A) $\frac{1}{4}$
- (B) $\frac{1}{5}$
- (C) $\frac{1}{6}$
- (D) $\frac{1}{10}$
- (E) $\frac{1}{9}$

Zadanie 5.

Liczba szkód w ciągu roku w pewnym ubezpieczeniu równa jest:

$$N = M_1 + ... + M_K$$
, gdzie:

- $K, M_1, M_2, M_3,...$ są niezależnymi zmiennymi losowymi,
- K oznacza liczbę wypadków, i ma rozkład Poissona o wartości oczekiwanej λ ,
- $M_1, M_2, M_3,...$ to liczby szkód z poszczególnych wypadków mają one identyczny rozkład prawdopodobieństwa dany funkcją:

$$Pr(M_1 = k) = \frac{1}{-\ln(1-c)} \frac{c^k}{k}, \quad k = 1,2,3,...$$
 z parametrem $c = 1 - e^{-1}$,

Prawdopodobieństwo warunkowe iż w danym roku doszło do jednego wypadku pod warunkiem, iż wystąpiły 4 szkody:

$$\Pr(K=1|N=4)$$

(A)
$$\frac{24}{(\lambda+1)(\lambda+2)(\lambda+3)(\lambda+4)}$$

(B)
$$\frac{6}{(\lambda+1)(\lambda+2)(\lambda+3)}$$

(C)
$$\frac{2e^{-\lambda}}{(\lambda+1)(\lambda+2)}$$

(D)
$$\frac{6e^{-\lambda}}{(\lambda+1)(\lambda+2)(\lambda+3)}$$

(E)
$$\frac{24e^{-\lambda}}{(\lambda+1)(\lambda+2)(\lambda+3)(\lambda+4)}$$

Zadanie 6.

W pewnym ubezpieczeniu liczba szkód, które w ciągu t lat wygeneruje ubezpieczony charakteryzujący się wartością λ parametru ryzyka Λ ma rozkład warunkowy Poissona z wartością oczekiwaną λt .

Zakładamy, że rozkład wartości parametru ryzyka Λ w populacji ubezpieczonych dany jest na półosi dodatniej gęstością:

•
$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta \lambda)$$
.

Wiemy, że:

- prawdopodobieństwo p_0 iż losowo wybrany ubezpieczony w ciągu jednego roku nie zgłosi szkody równe jest 36/49;
- prawdopodobieństwo $p_{0,0}$ iż losowo wybrany ubezpieczony w ciągu dwóch kolejnych lat nie zgłosi szkody równe jest 9/16.

Wobec tego wartości parametrów (α, β) wynoszą:

(A)
$$(\alpha, \beta) = (2, 6)$$

(B)
$$(\alpha, \beta) = (2, 5)$$

(C)
$$(\alpha, \beta) = (2, 4)$$

(D)
$$(\alpha, \beta) = (1, 3)$$

(E)
$$(\alpha, \beta) = (1, 4)$$

Zadanie 7.

 $N, Y_1, Y_2, Y_3,...$ to niezależne zmienne losowe, N ma rozkład Poissona z wartością oczekiwaną równą 10, zaś $Y_1, Y_2, Y_3,...$ mają identyczny rozkład Pareto o dystrybuancie określonej na półosi dodatniej wzorem:

$$\bullet \qquad F(y) = 1 - \left(\frac{1}{1+y}\right)^2$$

Niech $M = \max\{Y_1, Y_2, ..., Y_N\}$, przy czym jeśli N = 0, to przyjmujemy M = 0.

Niech $m_{0.95}$ oznacza taką liczbę, że $Pr(M \le m_{0.95}) = 0.95$

Liczba $m_{0.95}$ wynosi (z przybliżeniem do jednej dziesiątej):

- (A) 14.0
- (B) 13.0
- (C) 11.9
- (D) 10.8
- (E) 9.7

Zadanie 8.

 X_1 i X_2 to dwa niezależne ryzyka o zbiorze możliwych wartości $\{0,1,2,\ldots\}$. Znamy wartości dystrybuant $F_1(x)=\Pr\big(X_1\leq x\big)$ oraz $F_s(x)=\Pr\big(X_1+X_2\leq x\big)$:

х	$F_1(x)$	$F_{s}(x)$
0	0.6	0.18
1	0.8	0.42
2	0.9	0.63
3	1	0.79

 $Pr(X_2 = 2)$ wynosi:

- (A) 0
- (B) 0.1
- (C) 0.2
- (D) 0.3
- (E) 0.4

Zadanie 9.

Niech:

• N oznacza liczbę roszczeń z jednego wypadku ubezpieczeniowego, zaś:

• $T_1, T_2, ..., T_N$ oznacza czas, jaki upływa od momentu zajścia wypadku do zgłoszenia roszczenia odpowiednio 1-go, 2-go,..., N-tego (numeracja roszczeń od 1-go do N-tego jest całkowicie przypadkowa, nie wynika więc z chronologii ich zgłaszania) Załóżmy, że:

• zmienne losowe N, T_1, T_2, T_3, \dots są niezależne,

• zmienne losowe $T_1, T_2, T_3,...$ mają identyczny rozkład wykładniczy o wartości oczekiwanej 1 (jednostką pomiaru czasu jest miesiąc)

• zmienna losowa *N* ma rozkład logarytmiczny dany wzorem:

$$Pr(N = k) = \frac{1}{-\ln(1-c)} \frac{c^k}{k}, \quad k = 1,2,3,...$$
 z parametrem $c \in (0,1)$.

Niech A oznacza zdarzenie, iż w ciągu pierwszych 2 miesięcy od zajścia wypadku zgłoszono dokładnie jedno roszczenie, a więc iż:

• dokładnie jedna liczba ze zbioru liczb $\{T_1, T_2, ..., T_N\}$, jest mniejsza lub równa 2.

Wartość oczekiwana liczby roszczeń z tego wypadku, a więc:

(A)
$$\frac{c}{e^2-c}$$

(B)
$$\frac{e^2 - c}{ec}$$

(C)
$$\frac{e^2 + c}{e^2 - c}$$

(D)
$$\frac{e^2}{e^2 - c}$$

(E)
$$\frac{e^2 - c}{c}$$

Zadanie 10.

W pewnym ubezpieczeniu mamy do czynienia z ciągłym, liniowym wzrostem liczby ryzyk w portfelu, co wyraża założenie, iż zmienna $T \in (0,1)$ wyrażająca moment zajścia losowo wybranej szkody z tego portfela w ciągu roku (o ile oczywiście do szkody dojdzie) ma rozkład dany gęstością:

•
$$f_T(t) = \frac{8}{10} + \frac{4}{10}t$$
.

Niech D oznacza czas likwidacji szkody (odstęp w czasie od momentu zajścia szkody do jej likwidacji, wyrażony w latach). Zmienna ta ma rozkład jednostajny na odcinku (0,1).

Zakładamy że zmienne losowe T oraz D są niezależne. Oczekiwany czas likwidacji dla szkody do której doszło w ciągu roku, i która pozostaje nie-zlikwidowana na koniec tego roku, a więc:

$$E(D|T+D>1)$$

- (A) 19/32 roku
- (B) 9/16 roku
- (C) 5/8 roku
- (D) 21/32 roku TAK
- (E) 3/4 roku

Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIED	Z I
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	С	
3	A	
4	С	
5	В	
6	A	
7	В	
8	С	
9	D	
10	D	

 $^{^{\}ast}$ Oceniane są wyłącznie odpowiedzi umieszczone w $Arkuszu\ odpowiedzi.$

^{*} Wypełnia Komisja Egzaminacyjna.