

Owner: Ib Andresen Industri No.: MD-21013-EN Issued: 26-10-2021 Valid to: 26-10-2026

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

Ib Andresen Industri A/S Industrivej 12-20 DK-5550 Langeskov

Programme

EPD Danmark www.epddanmark.dk

☐ Industry EPD ☐ Product EPD

Declared product(s)

Light gauge steel profiles.

Production site

Industrivej 12-20 DK-5550 Langeskov Denmark

Product(s) use

The profiles are primarily used for the mounting of sheet materials in the construction of interior or exterior walls and ceilings.

Declared or functional unit

1 kg of light gauge steel profile.

Year of data 2019-2020 **Issued:** 26-10-2021

Valid to: 26-10-2026

Basis of calculation

This EPD is developed in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

□ Cradle-to-gate with modules C1-C4 and D

□Cradle-to-gate with options, modules C1-C4 and D

 \square Cradle-to-grave and module D

□Cradle-to-gate

□Cradle-to-gate with options

CEN standard EN 15804 serves as the core PCR

Independent verification of the declaration and

data, according to EN ISO 14025

□ internal

Third party verifier:

Ninlen Buolten

Ninkie Bendtsen

Henrik Fred Larsen EPD Danmark

Hunt Kellas

Life	cycle	stage	es and	d mod	ules (MND	= mo	dule	not d	eclare	d)					
	Product Construction process			Use							End of life				Beyond the system boundary	
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	X	X	X	X	X

Product information

Product description

Steel profiles are manufactured from hot dip galvanized steel with different surface treatment in order to obtain intact surface on the products. To meet requirements regarding noise reduction properties, the profiles can be mounted with sealing strips and/or isolation sheets.

The products are transported to the customers on wooden spacers with plastic straps. The straps are not included in the EPD.

The main product compounds incl. wood packaging.

Steel no.	Steel weight %	Zinc weight %
Steel 1a	96,7	3,3
Steel 2a	97,2	2,8
Steel 3a	95,9	4,1
Steel 3b	96,3	3,7
Steel 3c	97,6	2,4
Steel 4a	96,4	3,7
Steel 4b	97,1	2,9
Steel 4c	97,6	2,4
Steel 4d	98,2	1,8
Steel 4e	98,5	1,5
Steel 4f	98,8	1,2
	Packaging	
Pallets and sawn wood	3.34E-04	Kg

Content in the product pr. declared unit

Included products

Roll formed profiles (and other components) produced from steel quality and steel thickness presented in the table below.

Steel no.	Steel grade	Steel thickness mm			
Steel 1a	DX51D+Z140	0,56			
Steel 2a	S250GD+z100	0,46			
Steel 3a		0,90			
Steel 3b	S250GD+z275	1,00			
Steel 3c		1,50			
Steel 4a		1,00			
Steel 4b		1,25			
Steel 4c	S350GD+z275	1,50			
Steel 4d	333000+2273	2,00			
Steel 4e		2,50			
Steel 4f		3,00			

Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of *light gauge steel profiles* on the production site located in Langeskov, Fyn. Product specific data are based on average values collected in the period 1/7 2019 - 30/6 2020 and provided by Ib Andresen Industry. Background data are based on Simapro version 9.2.0.2 2020 and Ecoinvent 3.6 2019 – allocation, cut-off by classification – unit.

Hazardous substances

The profiles does not contain substances listed in the "Candidate List of Substances of Very High Concern for authorization".

(http://echa.europa.eu/candidate-list-table)

Essential characteristics (CE)

The Ib Andresen Industri-profiles are covered by harmonised technical specification EN 10346:2015. Declaration of performance according to EU regulation 305/2011 is available for all declared product variations.

Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website:

https://iai.dk/dokumenter

Reference Service Life (RSL)

The product has an estimated service life of 60 years.

Picture of product(s)

The profiles are available with different types of surface treatment. Products used in internal and external walls and ceilings have a surface layer of 100 – 275 g per square meter.

Steel grades are expressed according to the standard EN 10027, where e.g. S 250 GD + Z100 designates a structural steel (S) with a specified yield of strength of 250 MPa (250) and a surface layer of 100 g plain Zinc per square meter (Z100).

Steel no.	1	2	3	4
Steel grade	DX51D+Z140	S250GD+Z100	S250GD+Z275	S350GD+Z275
Product objectives	Material of 0,56 mm thickness for use in steel profiles for interior walls and ceilings.	Material of 0,46 mm thickness for use in steel profiles for interior walls and ceilings.	Material of 0,9 – 1,5 mm thickness for use in steel profiles for interior walls and ceilings.	Material of 1 - 3 mm thickness for use in steel profiles for external walls and light weight steel beams.
Steel				
Manufactured in accordance with European standard		EN 10	346:2015	
Iron weight (w-%)	97,655	97,35	97,35	97,35
Carbon weight (w-%)	0,18	0,2	0,2	0,2
Silicon weight (w-%)	0,5	0,6	0,6	0,6
Manganese weight (w-%)	1,2	1,7	1,7	1,7
Phosphorus weight (w-%)	0,12	0,1	0,1	0,1
Sulfur weight (w-%)	0,045	0,045	0,045	0,045
Titan weight (w-%)	0,3	-	-	-
Coating				
Coating		Hot ga	alvanized	
Coating thickness per side (µm/m²)	10	7	20	20
Coating total weight (g/m²)	140	100	275	275
Zink weight (w-%)	3,3	2,8	2,4 - 4,1	1,2 – 3,7
Corrosion class	C1 – C2	C1 – C2	C1 – C2	C2 – C3

The thickness of the zinc coating determines the duration of protection. When galvanized steel is exposed to atmospheric conditions, there is generally a linear relationship between the thickness of the zinc coating and the lifetime expectancy. The corrosion categories are an expression of this. According to ISO 9224 and when it is defined in which environment the profiles are used, which are inside gypsum constructions, the service life is estimated to be 60 years.

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to 1 kg of light gauge steel profile.

Name	Value	Unit
Declared unit	1	kg
Conversion factor to 1 kg.	1	-

Functional Unit

Not defined.

PCR

Product category rules: PRC 2019:14 Construction products, Version 1.0, date 2019-12-20.

This EPD is developed according to the core rules for the product category of construction products

in EN 15804:2012+A2

System diagram

Cradle to gate with module C1 - C4, module D and with optional modules.

The profiles are manufactured from hot dip galvanized carbon steel delivered from steelworks as coils by boat to the IAI's port in Nyborg. In IAI site Langeskov, the coil is divided in narrow bands whose width fit the specific profiles, and the profiles are manufactured through roll forming technique.

System boundary

The general rules for the exclusion of inputs and outputs follow the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

The system boundaries of this EPD includes Module A1, A2, A3, C1, C2, C3, C4 and Module D.

Product stage (A1-A3) includes:

A1: Extraction and processing of raw materials. The mining of raw materials as iron and zinc. The process of making the hot rolled steel-coils in the right alloy accordingly the IAI-requirement, including zinc-coating.

A2: Transport of raw material from the steel mill in Finland to the IAI stock and to manufacturing site. Transport of the profiles to stock in Hobro.

A3: The manufacturing processes. Slitting of hot rolled coils and roll forming steel into various widths, thicknesses and surface treatments according to the requirements of the ordered profiles.

Packaging to customers on pallets with straps.

External services such as electricity, heating and water, waste and emissions to air, land and water from manufacturing.

End of life stage (C1-C4) includes:

C1: Deconstruction of the construction into which the steel is built.

C2: Transportation of waste from constructionsites to waste processing sites / disposals.

C3: Waste processing, sorting of scrap steel.

C4: Disposal.

Steel is a highly recyclable building material, once steel has been made, it can be recycled without weakening its properties.

The background data used is Miljøstyrelsens Affaldsstatistik 2018: Proportion of construction waste prepared for the purpose of reuse, recycled or used for other final material recovery is calculated at 89%.

The impacts from the End-of-life stages were modelled in Simapro.

Resource recovery stage (D): Potential for reuse, recycling or energy recovery.

LCA results

Environmental performance for Steel 1a: DX51D+Z140, t=0,56 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.86E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.85E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP- biogenic	[kg CO ₂ eq.]	6.32E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.31E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11 eq.]	1.25E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	2.51E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.34E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.51E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	9.06E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.87E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	2.51E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.21E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.97E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terrestrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.20E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0 0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.20E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.35E+01	8.53E-01	1.60E-01	3.16E-02	7.50E-02	3.23E-01	1.72E-02	-1.10E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.35E+01	8.53E-01	1.60E-01	3.16E-02	7.50E-02	3.23E-01	1.72E-02	-1.10E+01
SM	[kg]	4.16E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.27E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Unit	A1	A2	• •					
		74	А3	C1	C2	C3	C4	D
[Disease ncidence]	2.62E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
q U235 eq.]	1.70E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
[CTUe]	1.34E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
[CTUh]	1.99E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
-	ND	ND	ND	ND	ND	ND	ND	ND
q [cidence] U235 eq.] CTUe] CTUh]	2.62E-07	bidence 2.62E-07 4.17E-09 U235 eq.] 1.70E-01 3.78E-03 CTUe 1.34E-03 3.97E-06 CTUh 1.60E-08 2.12E-11 CTUh 1.99E-07 6.74E-10	bidence 2.62E-07 4.17E-09 2.59E-10 U235 eq.] 1.70E-01 3.78E-03 1.74E-03 CTUe 1.34E-03 3.97E-06 7.79E-05 CTUh 1.60E-08 2.12E-11 3.58E-12 CTUh 1.99E-07 6.74E-10 1.36E-10	bidence 2.62E-07 4.17E-09 2.59E-10 5.98E-10 U235 eq.] 1.70E-01 3.78E-03 1.74E-03 1.35E-04 CTUe] 1.34E-03 3.97E-06 7.79E-05 7.76E-08 CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 CTUh] 1.99E-07 6.74E-10 1.36E-10 1.54E-11	bidence 2.62E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 U235 eq.] 1.70E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 CTUe] 1.34E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 CTUh] 1.99E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11	bidence 2.62E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 U235 eq.] 1.70E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 CTUe] 1.34E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 CTUh] 1.99E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09	bidence 2.62E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 1.07E-10 U235 eq.] 1.70E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 7.24E-05 CTUe] 1.34E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 5.95E-08 CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 2.43E-13 CTUh] 1.99E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09 7.47E-12

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

MER = Materials for energy recovery; EE = Exported energy)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	3.79E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD = Hazar	dous waste dis	posed; NHWD = N	on hazardous wast	e disposed; RWD	= Radioactive wast	e disposed; CRU =	Components for r	e-use; MFR = Mate	erials for recycling;

^{*}from wood packaging

Environmental performance for Steel 2a: S250GD+Z100, t=0,46 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.88E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.88E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP- biogenic	[kg CO ₂ eq.]	7.23E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.39E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11 eq.]	1.29E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	2.88E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.36E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.66E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	1.07E-01	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	9.00E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	3.06E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.26E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	8.24E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.24E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.24E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.40E+01	8.53E-01	1.60E-01	3.16E-02	7.50E-02	3.23E-01	1.72E-02	-1.10E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.40E+01	8.53E-01	1.60E-01	3.16E-02	7.50E-02	3.23E-01	1.72E-02	-1.10E+01
SM	[kg]	4.13E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.35E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Unit	A1	A2	A3	C1	C2	C3	C4	D
[Disease incidence]	2.86E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
[kBq U235 eq.]	1.76E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
[CTUe]	1.36E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
[CTUh]	2.02E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
-	ND	ND	ND	ND	ND	ND	ND	ND
	[Disease incidence] [kBq U235 eq.] [CTUe] [CTUh]	[Disease incidence] 2.86E-07 [kBq U235 eq.] 1.76E-01 [CTUe] 1.36E-03 [CTUh] 1.60E-08 [CTUh] 2.02E-07	[Disease incidence] 2.86E-07 4.17E-09 [kBq U235 eq.] 1.76E-01 3.78E-03 [CTUe] 1.36E-03 3.97E-06 [CTUh] 1.60E-08 2.12E-11 [CTUh] 2.02E-07 6.74E-10	[Disease incidence] 2.86E-07 4.17E-09 2.59E-10 [kBq U235 eq.] 1.76E-01 3.78E-03 1.74E-03 [CTUe] 1.36E-03 3.97E-06 7.79E-05 [CTUh] 1.60E-08 2.12E-11 3.58E-12 [CTUh] 2.02E-07 6.74E-10 1.36E-10	[Disease incidence] 2.86E-07 4.17E-09 2.59E-10 5.98E-10 [kBq U235 eq.] 1.76E-01 3.78E-03 1.74E-03 1.35E-04 [CTUe] 1.36E-03 3.97E-06 7.79E-05 7.76E-08 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 [CTUh] 2.02E-07 6.74E-10 1.36E-10 1.54E-11	[Disease incidence] 2.86E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 [kBq U235 eq.] 1.76E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 [CTUe] 1.36E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 [CTUh] 2.02E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11	[Disease incidence] 2.86E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 [kBq U235 eq.] 1.76E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 [CTUe] 1.36E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 [CTUh] 2.02E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09	[Disease incidence] 2.86E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 1.07E-10 [kBq U235 eq.] 1.76E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 7.24E-05 [CTUe] 1.36E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 2.43E-13 [CTUh] 2.02E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09 7.47E-12

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D		
HWD	[kg]	4.90E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05		
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03		
RWD	[kg]	0.00E+00									
CRU	[kg]	0.00E+00									
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00		
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00		
EE	[MJ]	0.00E+00									

EE [MJ] 0.00E+00 0.00

^{*}from wood packaging

Environmental performance for Steel 3a: S250GD+Z275, t=0,9 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.87E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.86E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP- biogenic	[kg CO ₂ eq.]	6.73E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.34E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11 eq.]	1.27E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H+ eq.]	2.68E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.35E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.58E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	9.78E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.93E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	2.75E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	8.09E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; MDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.22E+00	8.17E-03	1,23E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.22E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.15E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.31E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Unit	A1	A2	А3	C1	C2	C3	C4	D
[Disease incidence]	2.72E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
[kBq U235 eq.]	1.72E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
[CTUe]	1.35E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
[CTUh]	2.00E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
-	ND	ND	ND	ND	ND	ND	ND	ND
	[Disease incidence] [kBq U235 eq.] [CTUe] [CTUh]	[Disease incidence] 2.72E-07 [kBq U235 eq.] 1.72E-01 [CTUe] 1.35E-03 [CTUh] 1.60E-08 [CTUh] 2.00E-07	[Disease incidence] 2.72E-07 4.17E-09 [kBq U235 eq.] 1.72E-01 3.78E-03 [CTUe] 1.35E-03 3.97E-06 [CTUh] 1.60E-08 2.12E-11 [CTUh] 2.00E-07 6.74E-10	[Disease incidence] 2.72E-07 4.17E-09 2.59E-10 [kBq U235 eq.] 1.72E-01 3.78E-03 1.74E-03 [CTUe] 1.35E-03 3.97E-06 7.79E-05 [CTUh] 1.60E-08 2.12E-11 3.58E-12 [CTUh] 2.00E-07 6.74E-10 1.36E-10	[Disease incidence] 2.72E-07 4.17E-09 2.59E-10 5.98E-10 [kBq U235 eq.] 1.72E-01 3.78E-03 1.74E-03 1.35E-04 [CTUe] 1.35E-03 3.97E-06 7.79E-05 7.76E-08 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 [CTUh] 2.00E-07 6.74E-10 1.36E-10 1.54E-11	[Disease incidence] 2.72E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 [kBq U235 eq.] 1.72E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 [CTUe] 1.35E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 [CTUh] 2.00E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11	[Disease incidence] 2.72E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 [kBq U235 eq.] 1.72E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 [CTUe] 1.35E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 [CTUh] 2.00E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09	[Disease incidence] 2.72E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 1.07E-10 [kBq U235 eq.] 1.72E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 7.24E-05 [CTUe] 1.35E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [CTUh] 1.60E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 2.43E-13 [CTUh] 2.00E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09 7.47E-12

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	4.52E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							
CRU	[kg]	0.00E+00							
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00							

EE [MJ] 0.00E+00 0.00

^{*}from wood packaging

Environmental performance for Steel 3b: S250GD+Z275, t=1,0 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.82E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.81E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	5.23E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.20E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.20E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	2.07E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.31E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.32E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	7.15E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.71E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	1.84E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.63E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
PERE	[MJ]	2.14E+00	8.17E-03	1,23E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.14E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.20E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.17E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PM	[Disease incidence]	2.32E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.62E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.31E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	1.95E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND							

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – nc cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	3.37E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							

CRU	[kg]	0.00E+00							
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00							

^{*}from wood packaging

Environmental performance for Steel 3c: S250GD+275, t=1,50 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.87E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.86E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	6.73E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.34E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.27E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	2.68E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.35E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.58E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	9.78E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.93E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	2.75E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	8.09E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.22E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00							
PERT	[MJ]	2.22E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00							
PENRT	[MJ]	2.23E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.15E-01	0.00E+00						
RSF	[MJ]	0.00E+00							
NRSF	[MJ]	0.00E+00							
FW	[m ³]	2.31E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PM	[Disease incidence]	2.72E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.72E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.35E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	2.00E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND							

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

MER = Materials for energy recovery; EE = Exported energy)

waste pro	reacte production and output nows per declared unit												
Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D				
HWD	[kg]	4.52E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05				
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03				
RWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00				
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00				
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
HWD - Hazar	doue waste die	nosed: NHWD - N	on hazardoue wast	dienosad RWD	- Radinactive wast	a diennead: CRII -	Components for r	o-uso: MFR - Mate	rials for recycling.				

^{*}from wood packaging

Environmental performance for Steel 4a: S350GD+Z275, t=1,0 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.84E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.83E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	5.83E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.26E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.23E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	2.31E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.32E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.42E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	8.20E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.80E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	2.21E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.18E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.82E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
PERE	[MJ]	2.17E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.17E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.18E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.18E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.18E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.23E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PM	[Disease incidence]	2.48E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.66E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.32E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	1.97E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND							

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

MER = Materials for energy recovery; EE = Exported energy)

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
HWD	[kg]	3.83E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							
-									
		0.005.00							
CRU	[kg]	0.00E+00							
CRU MFR	[kg] [kg]	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 4.21E-02	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 8.90E-01	0.00E+00 0.00E+00	0.00E+00 0.00E+00

^{*}from wood packaging

Environmental performance for Steel 4b: S350GD+Z275, t=1,25 mm

Potential environmental impact per declared unit

Unit	A1	A2	A3	C1	C2	C3	C4	D
[kg CO ₂ eq.]	1.82E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
[kg CO ₂ eq.]	1.81E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
[kg CO ₂ eq.]	5.23E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
[kg CO ₂ eq.]	1.20E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
[kg CFC 11	1.20E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
[mol H ⁺ eq.]	2.07E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
[kg PO ₄ eq.]	1.31E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
[kg N eq.]	2.32E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
[mol N eq.]	7.15E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
kg NMVOC eq.]	8.71E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
[kg Sb eq.]	1.84E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
[m ³]	7.63E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01
	[kg CO ₂ eq.] [kg CO ₂ eq.] [kg CO ₂ eq.] [kg CO ₂ eq.] [kg CFC 11 [mol H* eq.] [kg PO ₄ eq.] [kg N eq.] [mol N eq.] [kg NWCC eq.] [kg Sb eq.] [MJ] [MJ]	[kg CO₂ eq.] 1.82E+00 [kg CO₂ eq.] 1.81E+00 [kg CO₂ eq.] 5.23E-03 [kg CO₂ eq.] 1.20E-03 [kg CFC 11 1.20E-07 [mol H* eq.] 2.07E-02 [kg PO₄ eq.] 1.31E-03 [kg N eq.] 2.32E-03 [mol N eq.] 7.15E-02 kg NMVOC eq.] 8.71E-03 [kg Sb eq.] 1.84E-03 [MJ] 2.15E+01 [m³] 7.63E-01	[kg CO₂ eq.] 1.82E+00 5.44E-02 [kg CO₂ eq.] 1.81E+00 5.44E-02 [kg CO₂ eq.] 1.23E-03 1.68E-05 [kg CO₂ eq.] 1.20E-03 2.37E-05 [kg CFC 11 1.20E-07 1.20E-08 [mol H* eq.] 2.07E-02 5.93E-04 [kg PO₄ eq.] 1.31E-03 3.97E-06 [kg N eq.] 2.32E-03 1.57E-04 [mol N eq.] 7.15E-02 1.74E-03 kg NMVOC eq.] 8.71E-03 4.85E-04 [kg Sb eq.] 1.84E-03 8.19E-07 [MJ] 2.15E+01 8.03E-01 [m³] 7.63E-01 2.61E-03	[kg CO ₂ eq.] 1.82E+00 5.44E-02 1.44E-02 [kg CO ₂ eq.] 1.81E+00 5.44E-02 1.32E-02 [kg CO ₂ eq.] 5.23E-03 1.68E-05 1.21E-03 [kg CO ₂ eq.] 1.20E-03 2.37E-05 1.56E-05 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 [mol H*eq.] 2.07E-02 5.93E-04 4.39E-05 [kg POa eq.] 1.31E-03 3.97E-06 7.98E-06 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 kg NMVOC eq.] 8.71E-03 4.85E-04 2.40E-05 [kg Sb eq.] 1.84E-03 8.19E-07 5.07E-08 [MJ] 2.15E+01 8.03E-01 1.52E-01 [m³] 7.63E-01 2.61E-03 2.09E-03	[kg CO ₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 [kg CO ₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 [kg CO ₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 [kg CO ₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 [mol H* eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 [kg POa eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 kg NMVOC eq.] 8.71E-03 4.85E-04 2.40E-05 3.01E-05 [kg Sb eq.] 1.84E-03 8.19E-07 5.07E-08 3.32E-09 [MJ] 2.15E+01 8.03E-01 1.52E-01 2.98E-02 [m³] 7.63E-01 2.61E-03 2.09E-03 3.99E-05	[kg CO₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 [kg CO₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 [kg CO₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 [kg CO₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 [mol H⁺ eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 [kg PO₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 kg NMVOC eq.] 8.71E-03 4.85E-04 2.40E-05 3.01E-05 2.57E-06 [kg Sb eq.] 1.84E-03 8.19E-07 5.07E-08 3.32E-09 7.75E-08 [MJ] 2.15E+01 8.03E-01 </td <td>[kg CO₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 2.07E-02 [kg CO₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 2.20E-02 [kg CO₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 -1.26E-03 [kg CO₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 2.46E-05 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 3.15E-09 [mol H⁺ eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 2.66E-04 [kg PO₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 1.86E-05 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 6.04E-05 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 6.81E-04 kg NMVOC eq.] 8.71E-03 4.85E-04 2.40E-05 3.01E-05 2.57E-05 1.86E-04 <!--</td--><td>[kg CO₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 2.07E-02 5.81E-04 [kg CO₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 2.20E-02 5.79E-04 [kg CO₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 -1.26E-03 1.15E-06 [kg CO₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 2.46E-05 1.61E-07 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 3.15E-09 2.39E-10 [mol H* eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 2.66E-04 5.50E-06 [kg PO₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 6.04E-05 1.90E-06 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 6.81E-04<</td></td>	[kg CO₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 2.07E-02 [kg CO₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 2.20E-02 [kg CO₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 -1.26E-03 [kg CO₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 2.46E-05 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 3.15E-09 [mol H⁺ eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 2.66E-04 [kg PO₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 1.86E-05 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 6.04E-05 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 6.81E-04 kg NMVOC eq.] 8.71E-03 4.85E-04 2.40E-05 3.01E-05 2.57E-05 1.86E-04 </td <td>[kg CO₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 2.07E-02 5.81E-04 [kg CO₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 2.20E-02 5.79E-04 [kg CO₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 -1.26E-03 1.15E-06 [kg CO₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 2.46E-05 1.61E-07 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 3.15E-09 2.39E-10 [mol H* eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 2.66E-04 5.50E-06 [kg PO₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 6.04E-05 1.90E-06 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 6.81E-04<</td>	[kg CO ₂ eq.] 1.82E+00 5.44E-02 1.44E-02 2.16E-03 4.51E-03 2.07E-02 5.81E-04 [kg CO ₂ eq.] 1.81E+00 5.44E-02 1.32E-02 2.16E-03 4.51E-03 2.20E-02 5.79E-04 [kg CO ₂ eq.] 5.23E-03 1.68E-05 1.21E-03 6.01E-07 3.30E-06 -1.26E-03 1.15E-06 [kg CO ₂ eq.] 1.20E-03 2.37E-05 1.56E-05 1.70E-07 1.33E-06 2.46E-05 1.61E-07 [kg CFC 11 1.20E-07 1.20E-08 4.18E-10 4.67E-10 1.07E-09 3.15E-09 2.39E-10 [mol H* eq.] 2.07E-02 5.93E-04 4.39E-05 2.26E-05 2.30E-05 2.66E-04 5.50E-06 [kg PO ₄ eq.] 1.31E-03 3.97E-06 7.98E-06 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [kg N eq.] 2.32E-03 1.57E-04 9.75E-06 1.00E-05 7.87E-06 6.04E-05 1.90E-06 [mol N eq.] 7.15E-02 1.74E-03 1.13E-04 1.10E-04 8.62E-05 6.81E-04<

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.14E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.14E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.15E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.20E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.17E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRM = Use of non renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
PM	[Disease incidence]	2.32E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.62E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.31E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.60E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	1.95E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND	ND	ND	ND	ND	ND	ND	ND
DM - Portioula	to Motter emissis	no: IDD – Ionizina r	adiation buman ba	olth: ETD fur - Eco t	ovioity froobyyotor	total: UTD a - Uuma	n tovioity concer o	ffooto: UTD no - Uu	mon tovicity non

Waste production and output flows per declared unit

cancer effects; SQP = Soil Quality (dimensionless)

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
HWD	[kg]	3.37E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							

CRU	[kg]	0.00E+00							
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00							

^{*}from wood packaging

Environmental performance for Steel 4c: S350GD+Z275, t=1,50 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.80E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.79E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	4.48E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.13E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.17E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	1.76E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.28E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.19E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	5.84E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.60E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	1.39E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.11E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.40E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Addification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terrestrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; MVDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.10E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.10E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.11E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.11E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.22E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.10E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1,73E-05	-5,45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PM	[Disease incidence]	2.12E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.57E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.28E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.59E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	1.92E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND	ND	ND	ND	ND	ND	ND	ND
DM - Porticula	to Matter emissis	ne: IDD - Ionizing r	adiation human ha	alth: ETD fw = Eco t	ovicity froebwator	total: HTP.c - Huma	n toxicity concor o	ffects: HTP-nc - Hu	man toxicity non

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

MER = Materials for energy recovery; EE = Exported energy)

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	2.79E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.95E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWD = Hazar	dous waste dis	posed: NHWD = N	on hazardous wast	e disposed: RWD	= Radioactive wast	e disposed: CRU =	Components for r	e-use: MFR = Mate	rials for recycling:

^{*}from wood packaging

Environmental performance for Steel 4d: S350GD+Z275, t=2,0 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.78E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.78E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	4.03E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.09E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.15E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	1.58E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.27E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.11E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	5.05E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.54E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	1.12E-03	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.09E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.27E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terrestrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.08E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.08E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.09E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.09E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.24E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.06E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	А3	C1	C2	СЗ	C4	D
PM	[Disease incidence]	2.00E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08
IRP ²	[kBq U235 eq.]	1.54E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02
ETP-fw ¹	[CTUe]	1.27E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
HTP-c ¹	[CTUh]	1.59E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09
HTP-nc ¹	[CTUh]	1.91E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08
SQP ¹	-	ND	ND	ND	ND	ND	ND	ND	ND
PM = Particula	te Matter emission	ons: IRP = Ionizing ra	adiation – human he	alth: FTP-fw = Fco to	oxicity – freshwater	total: HTP-c = Huma	n toxicity – cancer e	ffects: HTP-nc = Hui	man toxicity – non

Waste production and output flows per declared unit

cancer effects; SQP = Soil Quality (dimensionless)

waste pro	oddctioii d	na oacpac no	ovvo per acen	area arric					
Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	2.45E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.94E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MED	[leal	0.005.00	0.005+00	4 24E 02	0.005+00	0.005.00	9 00E 01	0.005+00	0.005+00

0.00E+00 0.00E+00 4.21E-02 0.00E+00 0.00E+00 0.00E+00 MER 0.00E+00 0.00E+00 7.77E-02 0.00E+00 0.00E+00 1.10E-01 0.00E+00 0.00E+00 [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 [MJ]

^{*}from wood packaging

Environmental performance for Steel 4e: S350GD+Z275, t=2,5 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	1.77E+00	5.44E-02	1.44E-02	2.16E-03	4.51E-03	2.07E-02	5.81E-04	-1.05E+00
GWP-fossil	[kg CO ₂ eq.]	1.77E+00	5.44E-02	1.32E-02	2.16E-03	4.51E-03	2.20E-02	5.79E-04	-1.05E+00
GWP-	[kg CO ₂ eq.]	3.74E-03	1.68E-05	1.21E-03	6.01E-07	3.30E-06	-1.26E-03	1.15E-06	9.70E-04
GWP-luluc	[kg CO ₂ eq.]	1.06E-03	2.37E-05	1.56E-05	1.70E-07	1.33E-06	2.46E-05	1.61E-07	-3.97E-04
ODP	[kg CFC 11	1.13E-07	1.20E-08	4.18E-10	4.67E-10	1.07E-09	3.15E-09	2.39E-10	-4.86E-08
AP	[mol H ⁺ eq.]	1.46E-02	5.93E-04	4.39E-05	2.26E-05	2.30E-05	2.66E-04	5.50E-06	-5.35E-03
EP-freshwater	[kg PO ₄ eq.]	1.26E-03	3.97E-06	7.98E-06	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04
EP-marine	[kg N eq.]	2.06E-03	1.57E-04	9.75E-06	1.00E-05	7.87E-06	6.04E-05	1.90E-06	-1.12E-03
EP-terrestrial	[mol N eq.]	4.53E-02	1.74E-03	1.13E-04	1.10E-04	8.62E-05	6.81E-04	2.09E-05	-1.19E-02
POCP	[kg NMVOC eq.]	8.49E-03	4.85E-04	2.40E-05	3.01E-05	2.57E-05	1.86E-04	6.06E-06	-5.21E-03
ADPm ¹	[kg Sb eq.]	9.35E-04	8.19E-07	5.07E-08	3.32E-09	7.75E-08	1.22E-06	5.30E-09	-1.93E-05
ADPf ¹	[MJ]	2.07E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
WDP ¹	[m ³]	7.18E-01	2.61E-03	2.09E-03	3.99E-05	2.30E-04	3.07E-03	7.26E-04	-1.87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.07E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.07E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.07E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.07E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.25E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.04E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRM = Use of non renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

Additional environmental impact per declared unit (ND = not declared)

(12 112 12 12 12 12 12 12 12 12 12 12 12											
Unit	A1	A2	А3	C1	C2	C3	C4	D			
[Disease incidence]	1.92E-07	4.17E-09	2.59E-10	5.98E-10	4.19E-10	3.36E-09	1.07E-10	-9.20E-08			
[kBq U235 eq.]	1.52E-01	3.78E-03	1.74E-03	1.35E-04	3.60E-04	3.13E-03	7.24E-05	-3.96E-02			
[CTUe]	1.26E-03	3.97E-06	7.79E-05	7.76E-08	3.22E-07	1.86E-05	5.95E-08	-7.93E-04			
[CTUh]	1.59E-08	2.12E-11	3.58E-12	6.27E-13	1.39E-12	3.19E-11	2.43E-13	-8.91E-09			
[CTUh]	1.90E-07	6.74E-10	1.36E-10	1.54E-11	6.40E-11	1.52E-09	7.47E-12	-3.75E-08			
-	ND	ND	ND	ND	ND	ND	ND	ND			
	[Disease incidence] kBq U235 eq.] [CTUe] [CTUh]	[Disease incidence] 1.92E-07 kBq U235 eq.] 1.52E-01 [CTUe] 1.26E-03 [CTUh] 1.59E-08 [CTUh] 1.90E-07	[Disease incidence] 1.92E-07 4.17E-09 kBq U235 eq.] 1.52E-01 3.78E-03 [CTUe] 1.26E-03 3.97E-06 [CTUh] 1.59E-08 2.12E-11 [CTUh] 1.90E-07 6.74E-10	[Disease incidence] 1.92E-07 4.17E-09 2.59E-10 kBq U235 eq.] 1.52E-01 3.78E-03 1.74E-03 [CTUe] 1.26E-03 3.97E-06 7.79E-05 [CTUh] 1.59E-08 2.12E-11 3.58E-12 [CTUh] 1.90E-07 6.74E-10 1.36E-10	[Disease incidence] 1.92E-07 4.17E-09 2.59E-10 5.98E-10 kBq U235 eq.] 1.52E-01 3.78E-03 1.74E-03 1.35E-04 [CTUe] 1.26E-03 3.97E-06 7.79E-05 7.76E-08 [CTUh] 1.59E-08 2.12E-11 3.58E-12 6.27E-13 [CTUh] 1.90E-07 6.74E-10 1.36E-10 1.54E-11	[Disease incidence] 1.92E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 kBq U235 eq.] 1.52E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 [CTUe] 1.26E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 [CTUh] 1.59E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 [CTUh] 1.90E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11	[Disease incidence] 1.92E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 kBq U235 eq.] 1.52E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 [CTUe] 1.26E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 [CTUh] 1.59E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 [CTUh] 1.90E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09	[Disease incidence] 1.92E-07 4.17E-09 2.59E-10 5.98E-10 4.19E-10 3.36E-09 1.07E-10 kBq U235 eq.] 1.52E-01 3.78E-03 1.74E-03 1.35E-04 3.60E-04 3.13E-03 7.24E-05 [CTUe] 1.26E-03 3.97E-06 7.79E-05 7.76E-08 3.22E-07 1.86E-05 5.95E-08 [CTUh] 1.59E-08 2.12E-11 3.58E-12 6.27E-13 1.39E-12 3.19E-11 2.43E-13 [CTUh] 1.90E-07 6.74E-10 1.36E-10 1.54E-11 6.40E-11 1.52E-09 7.47E-12			

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater. total; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

Waste production and output flows per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
HWD	[kg]	2.22E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.94E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							
	1 31								

CRU	[kg]	0.00E+00							
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00							

^{*}from wood packaging

Environmental performance for Steel 4f: S350GD+Z275, t=3,0 mm

Potential environmental impact per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
GWP-total	[kg CO2 eq.]	1,77E+00	5,44E-02	2,41E-01	2,16E-03	4,51E-03	2,07E-02	5,81E-04	-1,05E+00
GWP-fossil	[kg CO ₂ eq.]	1,77E+00	5,44E-02	2,67E-01	2,16E-03	4,51E-03	2,20E-02	5,79E-04	-1,05E+00
GWP-	[kg CO ₂ eq.]	3,74E-03	1,68E-05	-2,64E-02	6,01E-07	3,30E-06	-1,26E-03	1,15E-06	9,70E-04
GWP-luluc	[kg CO ₂ eq.]	1,06E-03	2,37E-05	2,69E-04	1,70E-07	1,33E-06	2,46E-05	1,61E-07	-3,97E-04
ODP	[kg CFC 11	1,13E-07	1,20E-08	3,59E-08	4,67E-10	1,07E-09	3,15E-09	2,39E-10	-4,86E-08
AP	[mol H ⁺ eq.]	1,46E-02	5,93E-04	2,58E-03	2,26E-05	2,30E-05	2,66E-04	5,50E-06	-5,35E-03
EP-freshwater	[kg PO ₄ eq.]	1,26E-03	3,97E-06	7,79E-05	7,76E-08	3,22E-07	1,86E-05	5,95E-08	-7,93E-04
EP-marine	[kg N eq.]	2,06E-03	1,57E-04	4,68E-04	1,00E-05	7,87E-06	6,04E-05	1,90E-06	-1,12E-03
EP-terrestrial	[mol N eq.]	4,53E-02	1,74E-03	9,12E-03	1,10E-04	8,62E-05	6,81E-04	2,09E-05	-1,19E-02
POCP	[kg NMVOC eq.]	8,49E-03	4,85E-04	1,64E-03	3,01E-05	2,57E-05	1,86E-04	6,06E-06	-5,21E-03
ADPm ¹	[kg Sb eq.]	9,35E-04	8,19E-07	1,68E-04	3,32E-09	7,75E-08	1,22E-06	5,30E-09	-1,93E-05
ADPf ¹	[MJ]	2,07E+01	8,03E-01	3,67E+00	2,98E-02	7,06E-02	3,04E-01	1,62E-02	-1,05E+01
WDP ¹	[m ³]	7,18E-01	2,61E-03	6,88E-02	3,99E-05	2,30E-04	3,07E-03	7,26E-04	-1,87E-01

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terreshrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential – minerals and metals; ADPf = Abiotic Depletion Potential – fossil fuels; WDP = water use

Use of resources per declared unit

Parameter	Unit	A1	A2	А3	C1	C2	C3	C4	D
PERE	[MJ]	2.07E+00	8.17E-03	1.24E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PERM	[MJ]	0.00E+00	0.00E+00	7,43E-03*	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	2.07E+00	8.17E-03	1.31E-01	1.61E-04	8.91E-04	4.78E-02	1.31E-04	-1.10E+00
PENRE	[MJ]	2.07E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	2.07E+01	8.03E-01	1.52E-01	2.98E-02	7.06E-02	3.04E-01	1.62E-02	-1.05E+01
SM	[kg]	4.25E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.04E-02	8.77E-05	4.84E-04	1.53E-06	8.05E-06	1.44E-04	1.73E-05	-5.45E-03

PERE = Renewable primary energy resources used as energy carrier; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRM = Use of non renewable primary energy resources used as energy carrier; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water

cancer effects; SQP = Soil Quality (dimensionless)

Additional environmental impact per declared unit (ND = not declared)

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
PM	[Disease incidence]	1,92E-07	4,17E-09	3,63E-08	5,98E-10	4,19E-10	3,36E-09	1,07E-10	-9,20E-08
IRP ²	[kBq U235 eq.]	1,52E-01	3,78E-03	1,95E-02	1,35E-04	3,60E-04	3,14E-03	7,24E-05	-3,96E-02
ETP-fw ¹	[CTUe]	8,22E+01	6,58E-01	7,07E+00	1,79E-02	5,63E-02	1,31E+00	1,05E-02	-5,39E+01
HTP-c ¹	[CTUh]	1,59E-08	2,12E-11	4,66E-10	6,27E-13	1,39E-12	3,19E-11	2,43E-13	-8,90E-09
HTP-nc ¹	[CTUh]	1,90E-07	6,74E-10	6,42E-09	1,54E-11	6,40E-11	1,52E-09	7,47E-12	-3,80E-08
SQP ¹	-	ND							
DM - Portioula	M Particulate Matter aministrans IRD - Insigning radiation, human health: ETD fur - For toxicity, freehunter, total: UTD a - Human toxicity, concern officets: UTD a - Human toxicity, non-								

Waste production and output flows per declared unit

Parameter	Unit	A1	A2	A3	C1	C2	C3	C4	D
HWD	[kg]	2.22E-04	1.72E-06	7.69E-08	8.10E-08	1.71E-07	9.18E-07	2.42E-08	-7.53E-05
NHWD	[kg]	6.94E-01	5.52E-02	6.99E-03	3.60E-05	6.15E-03	8.96E-03	1.10E-01	6.14E-03
RWD	[kg]	0.00E+00							

CRU	[kg]	0.00E+00							
MFR	[kg]	0.00E+00	0.00E+00	4.21E-02	0.00E+00	0.00E+00	8.90E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	7.77E-02	0.00E+00	0.00E+00	1.10E-01	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00							

^{*}from wood packaging

	Biogenic carbon content per unit				
Parameter	Unit	At the factory gate			
Biogenic carbon content in product	[kg C]	0			
Biogenic carbon content in accompanying packaging	[kg C]	1.5E-04			
Note	Note 1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂				

Additional information

Technical information on scenarios

End of life (C1-C4)

Ella of life (CI CT)		
Scenario information	Value	Unit
Collected separately	-	kg
Collected with mixed waste	-	kg
For reuse	-	kg
For recycling	0,89	kg
For energy recovery	0,11	kg
For final disposal	-	kg
Assumptions for scenario development	-	As appropriate

Re-use, recovery and recycling potential (D)

Scenario information/Materiel	Value	Unit
Scrap steel	0,46	kg

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on measurement of release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on measurement of release of regulated dangerous substances from construction products using harmonized test methods according to the provisions of the respective technical committees for European product standards are not available.

References

Publisher	www.epddanmark.dk
Program operator	Danish Technological Institute Buildings & Environment Gregersensvej DK-2630 Taastrup www.teknologisk.dk
LCA-practitioner	Elisabeth Balle Herschend og Camilla Nørskov Flensted-Jensen Nørskov Miljø Ganløseparken 17 3660 Stenløse ebh@norskov.dk
LCA software /background data	Simapro version 9.2.0.2 Ecoinvent 3.6 – allocation, cut-off by classification – unit.
3 rd party verifier	Ninkie Bendtsen NIRAS A/S Sortemosevej 19 3450 Allerød

General program instructions

Version 2.0 www.epddanmark.dk

EN 15804

DS/EN 15804:2012 + A2:2019 - "Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

Product specific cPCR

Product category rules: PRC 2019:14 Construction products, Version 1.0, date 2019-12-20

FN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and guidelines"

ISO 9224:2012

DS/EN ISO 9224:2012 – "Korrosion af metaller og legeringer – Atmosfærens korrosivitet – Vejledende værdier for korrosivitetskategorier"