Homework 2—Sample Solution

Carl Eastlund

February 4, 2013

- 1. (b) Like quicksort, quickselect has worst-case performance when the pivot is consistently chosen poorly: one partition has n-1 elements, and the desired index is in that partition.
 - i. State the worst-case running time of quickselect as a recurrence.

Solution:

$$T(n) = T(n-1) + n$$

ii. Solve the recurrence using the master method, recursion trees, or summations.

Solution: Solution using summations.

$$T(n) = \sum_{i=1}^{n} i = \frac{n^2 + n}{2} \in \Theta(n^2)$$

- (c) Again like quicksort, quickselect has best-case performance when the pivot is consistently chosen well: both partitions have at most $\frac{n}{2}$ elements.
 - i. State the best-case running time of quickselect as a recurrence.

Solution:

$$T(n) = T(\frac{n}{2}) + n$$

ii. Solve the recurrence using the master method, recursion trees, or summations.

Solution: Solution using the master method where a=1, b=2, and f(n)=n. Trying case 3 because $n^{\log_b a}=n^0=1 \in o(f(n))$. Choosing $\frac{1}{2}$ for ϵ gives us $f(n) \in \Omega(n^{\log_b a+\epsilon})=\Omega(\sqrt{n})$. Choosing $c=\frac{1}{2}$ gives us $af(\frac{n}{b})=f(\frac{n}{2})=\frac{n}{2}=\frac{1}{2}n=cf(n)$. Therefore case 3 applies, and we have a solution for the recurrence

$$T(n) \in \Theta(n)$$

2. (b) State the running time of stooge sort as a recurrence.

Solution:

$$T(n) = 3T(\frac{2}{3}n) + 1$$

(c) Solve the recurrence using the master method, recursion trees, or summations.

Solution: Solution using the master method where a=3, b=1.5, and f(n)=1. Trying case 1 where $\epsilon=\log_{1.5}2$; specifically, $\log_b a - \epsilon = \log_{1.5} 3 - \log_{1.5} 2 = 1$. Therefore $f(n)=1 \in O(n^1) = O(n^{\log_b a - \epsilon})$, so case 1 applies. (Of course, ϵ does not have to be chosen so cleverly to make $\log_b a - \epsilon = 1$; any number between 0 and $\log_{1.5} 3 \approx 2.71$ works.)

$$T(n) \in \Theta(n^{\log_{1.5} 3E}) \cong \Theta(n^{2.71})$$

3. **Note:** For each case, we note the simplified Θ form of each f(n) first.

```
(a) f(n) = 5n^{1.25} + 3n \log n + 2n\sqrt{n}. Note: f(n) \in \Theta(n\sqrt{n}) = \Theta(n^{1.5})

i. g(n) = n^2. Solution: f(n) \in o(g(n))

ii. g(n) = n^{3/2}. Solution: f(n) \in \Theta(g(n))

iii. g(n) = n \log n. Solution: f(n) \in \omega(g(n))

iv. g(n) = n. Solution: f(n) \in \omega(g(n))

(b) f(n) = n(\log \frac{n}{2})^2. Note: f(n) = n(\log n - \log 2)^2 = n(\log n)^2 - 2\log 2(n\log n) + (\log 2)^2 n \in \Theta(n(\log n)^2)

i. g(n) = n. Solution: f(n) \in \omega(g(n))

ii. g(n) = n\sqrt{n}. Solution: f(n) \in O(g(n))

iii. g(n) = n(\log n)^2. Solution: f(n) \in \Theta(g(n))

iv. g(n) = n \log n. Solution: f(n) \in \omega(g(n))

i. g(n) = 2^{2n}. Note: f(n) = 4^n \in \Theta(4^n)

i. g(n) = n^{65536}. Solution: f(n) \in \omega(g(n))

ii. g(n) = 2^n. Solution: f(n) \in \omega(g(n))

iii. g(n) = 3^n. Solution: f(n) \in \omega(g(n))

iv. g(n) = 3^n. Solution: f(n) \in \omega(g(n))

iv. g(n) = 4^n. Solution: f(n) \in \omega(g(n))
```

4. (a) $T(n) = 5T(\frac{1}{4}n) + (\frac{5}{4})^n$

Solution: a=5, b=4, and $f(n)=(\frac{5}{4})^n$. An exponential f(n) suggests that case 3 applies. Clearly $f(n) \in \Omega(n^{\log_b a + \epsilon})$ regardless of what ϵ we choose. We must show that $5f(\frac{n}{b}) = \le c(\frac{5}{4})^n$ for sufficiently large n.

$$5(\frac{5}{4})^{\frac{n}{4}} \leq c(\frac{5}{4})^{n}$$

$$5c^{-1} \leq (\frac{5}{4})^{\frac{3}{4}n}$$

$$10 \leq (\frac{5}{4})^{\frac{3}{4}n} \text{ if we choose } c = \frac{1}{2}.$$

$$10,000 \leq (\frac{5}{4})^{n}$$

$$41.3 \approx \log_{\frac{5}{4}} 10,000 \leq n$$

The equation therefore holds for $c = \frac{1}{2}$ and n over 42.

v. $g(n) = 5^n$. **Solution:** $f(n) \in o(g(n))$ vi. g(n) = n!. **Solution:** $f(n) \in o(g(n))$

$$T(n) \in \Theta((\frac{5}{4})^n)$$

(b)
$$T(n) = 9T(\frac{1}{3}n) + n^2\sqrt{\log n}$$

Solution: $a=9,\ b=3,\ {\rm and}\ f(n)=n^2\sqrt{\log n}.$ In this case, $n^{\log_b a}=n^2.$ This is asymptotically smaller than f(n), which suggests case 3. However, there is no ϵ we can choose such that $n^2\sqrt{\log n}\in\Omega(n^{2+\epsilon}).$ Therefore, the master method does not apply.

Note: Exercise 4.6-2 in the text (CLRS, 3rd Edition) extends case 2 of the master method to allow $f(n) \in \Theta(n^{\log_b a}(\log n)^k)$ for any $k \ge 0$; the solution is then $T(n) \in \Theta(n^{\log_b a}(\log n)^{k+1})$. If we use that extension, we can show in this case that $T(n) \in \Theta(n^2(\log n)^{1.5})$.

(c)
$$T(n) = 2T(\frac{1}{4}n) + \sqrt[3]{n}$$

Solution: $a=2, b=4, \text{ and } f(n)=n^{\frac{1}{3}}.$ In this case, $n^{\log_b a}=n^{\frac{1}{2}}.$ Since f(n) is slower by exactly a factor of $n^{\frac{1}{6}}$, we use case 1 where $\epsilon=\frac{1}{6}.$

$$T(n) = \Theta(\sqrt{n})$$

(d)
$$T(n) = 2T(\frac{2}{3}n) + (\log n)^2$$

Solution: a=2, b=1.5, and $f(n)=(\log n)^2$. In this case, $n^{\log_b a}=n^{\log_{1.5} 2} \cong n^{1.71}$. Case 1 applies where ϵ is any number between 0 and $\log_{1.5} 2$, exclusive.

$$T(n) = \Theta(n^{\log_{1.5} 2}) \cong \Theta(n^{1.71})$$