

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part II)

Date: 02.08.2016

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH C353 / MATH F353

Course Title : Statistical Inference and Applications.

Instructor-in-charge : CHANDRA SHEKHAR

1. Scope and objective of the Course:

The course deals with some of the statistical techniques of decision-making. Test of hypotheses, both parametric and nonparametric methods will be discussed. Comparison of two treatments will be discussed. Comparison of several treatments using analysis of variance will be dealt with. Control charts for measurements and attributes will also be discussed.

2. Text Book:

Venkateswaran, S., & B. Singh, Operations Research, Notes-EDD, Vol.1 and 2, 1997.

3. Reference Books:

Devore JL, Probability and Statistics for Engineering and the Sciences, 5th ed., Thomson, 2000

4. Course Plan:

Lect.	Торіс	Ref. to Text Book (Chapter)				
1-4:	Review of Elements of Probability Theory and Statistical Concepts.	Chapter1				
<u>5-15:</u>	Classical decision theory (Tests of Parametric hypotheses).	Chapter 2				
Lect. 1: Classification of hypotheses as simple and						
	composite, Distributional and parametric hypotheses. Example	es				
Lects.2	2-3: Hypothesis testing in General Terminology	2.1 to 2.4				
Lects.4-5: Neymann Pearson's lemma, BCR						
	(Simple vs. Simple hypotheses)	2.5, 2.5.1				
Lects, 6 -8: UMPCR (Simple vs composite, composite						
,	vs composite). Monotone likelihood ratio and its application.	2.5.2-2.5.3				
Lects 9-10: GLRT (No derivation of GLRT need to						
	be discussed. One example of derivation of GLRT,					
	given in the book may be explained.) Use of various tests					
	based on GLRT without derivation.	2.6, 2.7				
Lect.11: Approximate tests, paired t-test (Omit the derivations						
	of GLRT but the results to be applied to numerical problems	3)				

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

16 to 24: Classical Decision Theory (Non- parametric hypotheses):	Chapter 3
Lect.1 Testing of hypotheses about multinomial	2.8
probabilities.	
Lects.2-3: Applications of the test in lect.1 (above) to	
distributional hypotheses and the resulting Chi-Square	
test of goodness of fit.	3.2, 3.3
Lect.4: Kolmogorov-Smirnov one sample test.	3.4
Lects.5-6: Chi-Square test for independence and	
homogeneity	3.5, 3.6
Lect.7: Wilcoxon's test	3.7, 3.8, 3.8.2
Lect.8-9: Sign test, Signed rank-sum test	3.9, 3.9.1, 3.9.2
25 to 34: Analysis of Variance and Design of Experiments.	Chapter 4
Lects. 1-3: Introduction and one-way	4.1, 4.2
classification (Fixed Effects Model)	4.3,4.3.1
Lect.4-6: Randomized Block Design for one way	4.3.3 and
classification, two-way classification (one	4.4
observation per cell-interaction absent.)	
Lects.7-8: Latin Square Design and missing values	4.5 & 4.6
Lects. 9-10: Test for testing the equality of variances	4.7
35-40 Statistical Quality Control	Chapter 5

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time Venue	Remarks
Mid Sem.	90 mts.	35	7/10 2:00 - 3:30 PM	CB
Test				
Quiz		20	To be announced	
/Assignment/				
Seminar				
Compre.	3 hrs	45	12/12 FN	Partially CB and
Exam.				OB

- 5. Chamber Consultation Hour: will be announced in the class.
- 6. Notices: Notices concerning the course will be displayed on the NALANDA only.

Instructor-In-Charge MATH F353

