Set Operations and Databases

DATA 604

Leanne Wu

lewu@ucalgary.ca

Department of Computer Science

Motivation

 Queries (especially complex ones) are easier to write if you understand the formal underpinnings behind SQL

Quick rules:

- Everything is a set (tables should not have duplicates)
- Rows (tuples) are not ordered
- Results may be multi-sets (sets with duplicate copies)

Selects

Selects are often expressed formally as (for example):

```
σ<sub>library='Nose Hill Library'</sub> (library_location)
```

Which would be read as

```
SELECT * from library_location
WHERE library = 'Nose Hill Library';
```

Selects with Boolean operators

- Conditions for selects may be joined using AND, OR, NOT
- For example,

```
σ<sub>(library='Nose Hill Library' OR Square_Feet > 7500)</sub>(library_location)
```

Projects

• Projects are expressed formally as (for example): $\pi_{\text{Monday Open}}(\text{library location})$

Which would be read as

SELECT Monday_Open from library_location;

Mathematical operations on sets

- Used on relations (let's say R and S) which have the same attributes
- UNION (note: not the SQL version of union)
 - all tuples in R or in S or both. Duplicates are removed
- INTERSECTION
 - all tuples in R and S
- Set difference/MINUS
 - all tuples in R but not S

Cartesian (CROSS) Products

 Given two relations R and S, combines every element of R with every element of S

х	у
x1	у1
x2	у2

а	b
a1	b1
a2	b2

Х	у	а	b
x1	у1	a1	b1
x1	у1	a2	b2
x2	y2	a1	b1
x2	y2	a2	b2