```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('pima-indians-diabetes.csv')
```

df

\Rightarrow		pregnant no	plasma conc	Blood pressure	triceps thickness	serum insulin	bmi	Diabetes function	Age	Target
	0	6	148	72	35	0	33.6	0.627	50	1
	1	1	85	66	29	0	26.6	0.351	31	0
	2	8	183	64	0	0	23.3	0.672	32	1
	3	1	89	66	23	94	28.1	0.167	21	0
	4	0	137	40	35	168	43.1	2.288	33	1
	763	10	101	76	48	180	32.9	0.171	63	0
	764	2	122	70	27	0	36.8	0.340	27	0
	765	5	121	72	23	112	26.2	0.245	30	0
	766	1	126	60	0	0	30.1	0.349	47	1
	767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

df.isnull().sum()

```
pregnant no
     plasma conc
     Blood pressure
                         0
     triceps thickness
                         0
     serum insulin
                         0
     bmi
                         0
    Diabetes function
                         0
     Target
     dtype: int64
x=df
y=df[['Target']]
x = x.drop('Target',axis=1)
y.shape
     (768, 1)
x.shape
     (768, 8)
from sklearn.model_selection import train_test_split
```

xtrain,xtest,ytrain,ytest = train_test_split(x,y,random_state=0,test_size=0.25)

from sklearn.tree import DecisionTreeClassifier

classifier.fit(xtrain,ytrain)

classifier = DecisionTreeClassifier(random_state=0)

res

	Actual	Predicted
0	1	1
1	0	0
2	0	0
3	1	0
4	0	0
187	1	0
188	1	1
189	0	1
190	0	0
191	0	0

192 rows × 2 columns

 $from \ sklearn.metrics \ import \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_squared_error, r2_score, Confusion Matrix Display, classification_report \ accuracy_score, mean_absolute_error, mean_absolute_absolute_error, mean_absolute_absolu$

 ${\tt Confusion Matrix Display.from_predictions(ytest, ypred)}$

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7c95d06f3af0>

print(classification_report(ytest,ypred))

	precision	recall	f1-score	support
0 1	0.80 0.56	0.78 0.58	0.79 0.57	130 62
accuracy macro avg weighted avg	0.68 0.72	0.68 0.72	0.72 0.68 0.72	192 192 192