Taxonomy of Data Visualization Methods

Data visualization methods

The common definition for taxonomy comes from the biological sciences and refers to the organization into groups of members that **share similar characteristics**.

Andy Kirk . (2012). Data Visualization: a successful design process

Taxonomy in Visualization Methods

Method Classification

categorical

To facilitate comparisons between the relative and absolute sizes of categorical values.

Ex. bar charts, dot plots

hierarchical

To provide a breakdown of categorical values in their relationship to a population of values or as constituent elements of hierarchical structures.

Ex. donut charts

relational

To assess the associations, distributions, & patterns that exists between multivariate datasets. Ex. scatterplots, sankey diagrams

temporal

To exploit temporal data and show the changing trends and patterns of values over a continuous timeframe. Ex. line charts, stream graphs

spatial

To plot and present datasets with geo-spatial properties via the many different mapping frameworks. Ex. chloropleths, cartograms

Andy Kirk . (2012). Data Visualization: a successful design process

The Chartmaker Directory

- JS
- R
- Python (matplotlib, seabornlib)
- Excel
- Tableau
- Etc.

Example and Implementation

WITH PYTHON

METHOD CLASSIFICATION

1. CATEGORICAL - COMPARING CATEGORIES

Categorical – Dot Plot

Data variables:

2 x categorical (province, current_state),

1 x quantitative (age)

Visual Variables:

Position, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	patient_id	gender	age	nationality	province	current_state	contacted_with	confirmed_date	released_date	deceased_date	hospital
0	1	female	31.0	indonesia	DKI Jakarta	released	NaN	2-Mar-20	13-Mar-20	NaN	RSPI Sulianti Saroso
1	2	female	64.0	indonesia	OKI Jakarta	released	1.0	2-Mar-20	16-Mar-20	NaN	RSPI Sulianti Saroso

Source Code for Categorical – Dot Plot

Note:

Seaborn is a Python data visualization library based on matplotlib.. Unlike when using matplotlib directly, seaborn lib isn't necessary to translate the variables into parameters of the visualization (e.g., the specific color or marker to use for each category) (https://seaborn.pydata.org)

Categorical – Bar Chart

Data variables:

1 x categorical (province),

1 x quantitative (count)

Visual Variables:

Position, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

0043-0045

	patient_id	gender	age	nationality	province	current_state	contacted_with	confirmed_date	released_date
0	1	female	31.0	indonesia	DKI Jakarta	released	NaN	2-Mar-20	13-Mar-20
1	2	female	64.0	indonesia	OKI Jakarta	released	1.0	2-Mar-20	16-Mar-20

Count = Group by province

Source Code for Categorical – Bar Chart

```
import pandas as pd _____
                                       Import lib for data structures
import plotly.express as px _
                                                                         Import lib for plotting data
                  Read data
pasien = pd.read csv('../input/indonesia-coronavirus-cases/patient.csv')
pasien df = pasien.groupby(['province']).size().to frame('count').reset index()
pasien df.head()
                                            Grouped the data by province into count var
                                                     and create new df
fig = px.bar(pasien df, y='count', x='province', text='count')
                                                        Set data label position
fig.update traces( textposition='outside')
fig.update layout(uniformtext minsize=8, uniformtext mode='hide',title="Jumlah Kasus Covid-19
\n per Provinsi di Indonesia\n", width=600)
fig.show()
```

Note:

There are several ways to make bar chart, such as matplotlib bar function and seaborn barplot function. Ex. plt.bar(y_var, x_var, align='center', alpha=0.5) sns.barplot(x=x var', y=y var', data=data2.head(10))

Categorical – Histogram

Data variables:

1 x quantitative-interval (age interval),

1 x quantitative ratio (number of case)

Visual Variables:

Height, Width

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	patient_id	gender	age	nationality	province	current_state	contacted_with	confirmed_date	released_date
0	1	female	31.0	indonesia	DKI Jakarta	released	NaN	2-Mar-20	13-Mar-20
1	2	female	64.0	indonesia	DKI Jakarta	released	1.0	2-Mar-20	16-Mar-20

Age Interval = (max-min)/bins

Number of case = Group by Interval Age

Source Code for Categorical – Histogram

Note:

There are several ways to make histogram. The standard count-based histogram can be created with the matplotlib hist function Ex.

plt.hist(x, bins=30, normed=True)

Categorical – Radial Chart

Data variables:

1 x categorical (direction),

2 x categorical ordinal (strength),

1 x quantitative (frequency)

Visual Variables:

Position, color-saturation

Data:

Wind Rose.

Source:

Dataset from plotly.express library

	direction	strength	frequency
0	N	0-1	0.5
1	NNE	0-1	0.6
2	NE.	0-1	0.5
3	ENE	0-1	0.4

Source Code for Categorical – Radial

Note:

Polar charts, also known as radar charts. The regular chart of polar chart is a X-Y chart. In the polar chart, the X axis is wrapped around the perimeter while the Y axis extends from the center to the top. Read more https://www.highcharts.com/docs/chart-and-series-types/polar-chart

Categorical – Sankey Diagram

Prediksi Energi pada 2050

Data variables:

2 x categorical (source, target), 1 x quantitative (value)

Visual Variables:

Link, height, color-hue

Data:

Energy Prediction in 2050.

Source:

https://raw.githubusercontent.com/ plotly/plotly.js/master/test/image/ mocks/sankey energy.json

```
"link": {
    "source": [0, 1,..],
    "target": [4, 4,..],
    "value": [124.729, 0.597,..]
}, "node": {
    "label": ["Agricultural 'waste'",..]}
```

Source Code for Categorical – Sankey Diagram

```
Import lib for plotting
import plotly.graph objects as go
                                              and structuring data
                                                                               fig = go.Figure(data=[go.Sankey(
import urllib, json
                                                                                   valueformat = ".0f",
                                                                                   valuesuffix = "TWh",
'https://raw.githubusercontent.com/plotly/plotly.js/master/test/image/moc
                                                                                   node = dict(
                                                                                                                                      # Define nodes
ks/sankey_energy.json'
                                                                                     pad = 15,
response = urllib.request.urlopen(url) -
                                                         Read data
                                                                                     thickness = 15,
data = json.loads(response.read())
                                                                                     line = dict(color = "black", width = 0.5),
                                                                                    label = data['data'][0]['node']['label'],
# override gray link colors with 'source' colors
                                                                                     color = data['data'][0]['node']['color']
opacity = 0.4
                                                     change 'magenta' to
                                                                                  ),
                                                     its 'rgba' value to
                                                                                                                                         # Add links
                                                                                   link = dict(
                                                         add opacity
                                                                                     source = data['data'][0]['link']['source'],
data['data'][0]['node']['color'] = ['rgba(255,0,255, 0.8)' if color ==
                                                                                     target = data['data'][0]['link']['target'],
"magenta" else color for color in data['data'][0]['node']['color']]
                                                                                     value = data['data'][0]['link']['value'],
                                                                                     label = data['data'][0]['link']['label'],
                                                                                     color = data['data'][0]['link']['color']
                                                                               ))])
data['data'][0]['link']['color'] =
[data['data'][0]['node']['color'][src].replace("0.8", str(opacity))
                                                                               fig.update layout(title text="<b>Prediksi Energi pada 2050</b>",
                 for src in data['data'][0]['link']['source']]
                                                                               font size=14)
                                                                               fig.show()
```

Note:

Sankey diagrams are used to convey the idea of flow.

Categorical – Word Cloud

Data variables:

1 x categorical (words),

1 x quantitative (count of word)

Visual Variables:

Size

Data:

Kickstarter (crowdfunding platform) Project Statistics.

Source:

https://www.kaggle.com/adiljadoon/word-cloud-with-python/data?select=most_backed.c

Source Code for Categorical – Word Cloud

Note:

Word clouds depict the frequency of words used in a given set of text. The font size indicates the quantity of each word's usage. Color is often just used as decoration (which you'll notice actually distorts the visual prominence) (Andy Kirk, 2012).

METHOD CLASSIFICATION

2. HIERARCHICAL

Hierarchical – Pie Chart

Perbandingan Jumlah Kasus COVIS 19 Per Provinsi

Data variables:

1 x categorical (province),

1 x quantitative (percentage of patient in each province)

Visual Variables:

Angle, area, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	patient_id	gender	age	nationality	province	current_state	contacted_with	confirmed_date	released_date	deceased_date	hospital
0	1	female	31.0	indonesia	DKI Jakarta	released	NaN	2-Mar-20	13-Mar-20	NaN	RSPI Sulianti Saroso
1	2	female	64.0	indonesia	DKI Jakarta	released	1.0	2-Mar-20	16-Mar-20	NaN	RSPI Sulianti Saroso
2	3	female	33.0	indonesia	DKG Jakarta	released	1.0	6-Mar-20	13-Mar-20	NaN	RSPI Sulianti Saroso

Source Code for Hierarchical – Pie Chart

```
import pandas as pd
import matplotlib as mpl
                                                        Import lib
import matplotlib.pyplot as plt
%matplotlib inline
patient = pd.read csv('../input/indonesia-coronavirus-cases/patient.csv')
source labels = patient.groupby(['province']).size().index
                                                                          Return number of grouped
source counts = patient.groupby(['province']).size().values
                                                                              rows each group
plt.figure(1, figsize=(20,10)) _
                                         Make square figures and axes
cmap = plt.get cmap('Spectral')
                                                              Get spectral color map and create sequences
colors = [cmap(i) for i in np.linspace(0, 1, 8)]
source pie = plt.pie(source counts, labels=source labels, autopct='%1.1f%%', shadow=True, colors=colors)
plt.title('Perbandingan Jumlah Kasus COVIS 19 Per Provinsi', fontsize=24)
                                                                                    Display the percent value
plt.show()
```

Note:

A simple bar chart will suffice to demonstrate the part-to-whole relationship (Andy Kirk, 2012).

Hierarchical – Stacked Bar Chart

Jumlah Kasus Covid-19 per Provinsi di Indonesia

Data variables:

2 x categorical (province, gender)

1 x quantitative (count)

Visual Variables:

Length, position, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	patient_id	gender	age	nationality	province	current_state	contacted_with	confirmed_date	released_date
0	1	female	31.0	indonesia	DKI Jakarta	released	NaN	2-Mar-20	13-Mar-20
1	2	female	64.0	indonesia	DKI Jakarta	released	1.0	2-Mar-20	16-Mar-20

Count = Group by province, gender

Source Code for Hierarchical – Stacked Bar Chart

```
import pandas as pd
                                                        Import lib
import matplotlib.pyplot as plt
                                                                                      Read the data
pasien = pd.read csv('../input/indonesia-coronavirus-cases/patient.csv')
pasien df = pasien.groupby(['province','gender']).size().to frame('count').reset index()
pasien df.head()
                                                                      Grouped the data by province and gender
                                                                          into count var and create new df
tmp = pasien df.set index(['province','gender']).unstack()
tmp.columns = tmp.columns.levels[1]
                                                                   convert the data into
tmp.head()
                                                                    unstacked format
tmp.plot(kind='bar',stacked=True); -
                                           Plot stack bar chart
plt.title('Jumlah Kasus Covid-19 \n per Provinsi di Indonesia\n',-
weight='bold').set fontsize('16')
plt.show()
```

Note:

Word clouds depict the frequency of words used in a given set of text. The font size indicates the quantity of each word's usage. Color is often just used as decoration (which you'll notice actually distorts the visual prominence) (Andy Kirk, 2012). Read more about stack and unstack dataframe https://www.datasciencemadesimple.com/reshape-using-stack-unstack-function-pandas-python/

Hierarchical – Square Pie Chart

Data variables:

1 x categorical (fuel type)

1 x quantitative (count)

Visual Variables:

Length, position, color-hue

Data:

informasi mobil bekas yang terdaftar di www.cardekho.com.

Source:

https://www.kaggle.com/nehalbirla/vehicle-dataset-from-cardekho/version/1

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner		
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0		•
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0	ļ	Count = Group by fuel type
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0		Group by ruer type

Source Code for Hierarchical – Square Bar Chart

Note:

There are several titles for this type of chart but the common technique involves a grid of units (may be squares or symbols) to represent parts of a whole.

Hierarchical – Tree Map

Population and Life Expectancy for Countries in the World

	country	continent	year	lifeExp	pop	gdpPercap	iso_alpha	iso_num
11	Afghanistan	Asia	2007	43.828	31889923	974.580338	AFG	4
23	Albania	Europe	2007	76,423	3600523	5937.029526	ALB	8
35	Algeria	Africa	2007	72,301	33333216	6223.367485	DZA	12

Data variables:

1 x categorical (country)

1 x quantitative (population)

1 x quantitative (lifeExp)

Visual Variables:

Area, position, color-hue, colorsaturation

Data:

The data for pppulation and life expectancy for countries from Gapminder

Source:

Gapminder dataset from plotly library

Source Code for Hierarchical – Tree Map

```
import plotly.express as px
                                                        Import lib
import numpy as np
df = px.data.gapminder().guery("year == 2007") -
                                                            Read and filter the data
display(df.head(10))
                                                                        Set the nested rectangles
df["world"] = "world" # in order to have a single root node
fig = px.treemap(df, path=['world', 'continent', 'country'], values='pop',
                    color='lifeExp', hover data=['iso alpha'],
                                                                                 Set the size of rectangle
                    color continuous scale='RdBu',
                    color continuous midpoint=np.average(df['lifeExp'], weights=df['pop']))
                                                                 create sequences color and set the
                                                                  midpoint between red and blue color
fig.show()
```

Note.

Tree maps take the concept of a whole population and divide up portions of rectangular spaces within to represent organized, clustered constituent units sized according to their relative value. As well as arrangement, various properties of color are typically used to provide additional layers of quantitative or categorical insight (Andy Kirk, 2012)

METHOD CLASSIFICATION

3. TEMPORAL - SHOWING CHANGES OVER TIME

Temporal – Line Chart

Data variables:

1 x categorical (status)

4 x quantitative (acc_tested, acc_confirmed, acc_negative, acc_deceased)

1 x quantitative interval (date)

Visual Variables:

Position, slope, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	date	(映画) 第100(64)	acc_tested	CHEC AND ENTROPE	acc_confirmed	acc_negative	being decitoral	(acc)(gi)(c)	(New Supplement)	AMA Pelastant	BODE SANDARAN	acc_deceased	ı
a	2-Mar-20	196Ni	339	3	2	335	3	4	*	\$	ł	0	
1	3-Mar-20	24	341	4	2	337	2	3	3	8	3	0	
2	4-Mar-20	观念	372	ŷ.	2	356	909	3	ĝ.	26	\$	0	

Source Code for Temporal – Line Chart

Note:

Line charts are used to compare a continuous quantitative variable on the x axis and the size of values on the y axis. Unlike bar charts, the y axis doesn't need to start from zero because we are looking at the relative pattern of the data journey (Andy Kirk, 2012).

Temporal – Area Chart

COVID-19 Case Until March 2020 in Indonesia

Data variables:

1 x categorical (status)

4 x quantitative (acc_tested, acc_confirmed, acc_negative, acc_deceased)

1 x quantitative interval (date)

Visual Variables:

Height, slope, area, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	date	Record Street (MA	acc_tested	Court And Michigan	acc_confirmed	acc_negative	heitig "des@cod	(anol@ijeta	(New Printerpol	844 Pelsibord	BARRY STREET, STREET,	acc_deceased	ì
÷	2-Var-20	(Selvi)	339	3	2	335	8	3	*	\$	à	0	
	3-Mar-20	34	341	4	2	337	2	ÿ	3	2	3	0	
2	4-Mar-20	观念	372	ū	2	356	303	3	ġ.	26	8	0	

Source Code for Temporal – Area Chart

Note:

Unlike a standard line chart, an area chart should have the y axis starting at zero to ensure the area judgment is being interpreted accurately (Andy Kirk, 2012).

Temporal – Stacked Area Chart

Data variables:

1 x categorical (status)

4 x quantitative (acc_tested, acc_confirmed, acc_negative, acc_deceased)

1 x quantitative interval (date)

Visual Variables:

Height, slope, area, color-hue

Data:

Indonesia Coronavirus Cases

Source:

https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases/

	date	Record Street (MA	acc_tested	Court And Michigan	acc_confirmed	acc_negative	heitig "des@cod	(anol@ijeta	(New Printerpol	844 Pelsibord	BARRY STREET, STREET,	acc_deceased	ì
÷	2-Var-20	(Selvi)	339	3	2	335	8	3	*	\$	à	0	
	3-Mar-20	34	341	4	2	337	2	ÿ	3	2	3	0	
2	4-Mar-20	观念	372	ū	2	356	303	3	ġ.	26	8	0	

Source Code for Temporal – Stacked Area Chart

Note:

Unlike a standard line chart, an area chart should have the y axis starting at zero to ensure the area judgment is being interpreted accurately (Andy Kirk, 2012).

Temporal – Candlestick Chart

Apple Stock Prices from 2010 to 2017

Data variables:

1 x quantitative-interval (date)

4 x quantitative-ratio(open, high, low, close)

Visual Variables:

Position, height, color-hue

Data:

Apple Stock Prices from 2010 to 2017

Source:

https://www.kaggle.com/fayomi/ap ple-stock-prices-from-20102017/notebooks

	Date	Open	High	Low	Close	Volume	Ex-Dividend	Split Ratio	Adj. Open	Adj. High	Adj. Low	Adj. Close	Adj. Volume
0	2010-01-04	213.43	214.50	212.38	214.01	17633200.0	0.0	1.0	27.428730	27.566240	27.293790	27.503268	123432400.0
1	2010-01-05	214.60	215.59	213.25	214.38	21496600.0	0.0	1.0	27.579091	27.706320	27.405597	27.550818	150476200.0
2	2010-01-06	214.38	215.23	210.75	210.97	19720000.0	0.0	1.0	27.550818	27.660055	27.084312	27.112585	138040000.0

Source Code for Temporal – Candlestick Chart

```
import plotly.graph objects as go
                                                         Import lib
import pandas as pd
data = pd.read csv('../input/apple-stock-prices-from-20102017/apple.csv') -
                                                                                        Read the data
data = data.reset index()
data[['Date']]=data[['Date']].apply(pd.to datetime)—
                                                               Convert value to datetime format
dates = data.Date
open data = data.Open
                                               Set open, high, low
high data = data.High
                                               and close variables
low data = data.Low
close data = data.Close
                                             Use candlestick chart from plotly
fig = go.Figure(data=[go.Candlestick
            (x=dates, open=open data, high=high data, low=low data, close=close data)])
fig.update layout(title text="<b>Apple Stock Prices from 2010 to 2017</b>",
                   font size=12)
fig.show()
```

Note:

The <u>candlestick chart</u> is a style of financial chart describing open, high, low and close for a given x coordinate (most likely time). The boxes represent the spread between the open and close values and the lines represent the spread between the low and high values. Sample points where the close value is higher (lower) then the open value are called increasing (decreasing). By default, increasing candles are drawn in green whereas decreasing are drawn in red.(read more https://plotly.com/python/candlestick-charts/)

METHOD CLASSIFICATION

4. RELATIONAL - PLOTTING CONNECTION AND RELATIONSHIP

Temporal – Scatter Plot

The Relationship between Body Mass Index, Insurance Cost and Smoker

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.90	0	yes	southwest	16884.9240
1	18	male	33.77	1	no	southeast	1725.5523
2	28	male	33.00	3	no	southeast	4449.4620

Data variables:

2 x quantitative (bmi, charges)

1 x categorical (smoker)

Visual Variables:

Position, color-hue

Data:

Insurance Dataset

Source:

https://www.kaggle.com/alexisbcook/data-for-datavis

Source Code for Temporal – Scatter Plot

Note:

A scatter plot is a combination of two quantitative variables plotted on to the x and y axes in order to reveal patterns of correlations, clustering, and outliers. (Andy Kirk, 2012).

Correlation – Bubble Plot

	country	continent	year	lifeExp	рор	gdpPercap	iso_alpha	iso_num
11	Afghanistan	Asia	2007	43.828	31889923	974.580338	AFG	4
23	Albania	Europe	2007	76.423	3600523	5937.029526	ALB	8
35	Algeria	Africa	2007	72.301	33333216	6223.367465	DZA	12

Data variables:

1 x categorical (continent)

1 x quantitative (population, lifeExp, gdpPercap)

Visual Variables:

Area, position, color-hue

Data:

The data for population and life expectancy for countries from Gapminder

Source:

Gapminder dataset from plotly library

Source Code for Correlation – Bubble Plot

Note:

A bubble plot extends the potential of a scatter plot through multiple encoding of the data mark(Andy Kirk, 2012).

Correlation – Scatter Matrix Plot

Data variables:

6 x quantitative (glucose, bloodPressure, SkinThixckness, Insulin, BMI, DiabPedigreeFun)

1 x categorical (outcome)

Visual Variables:

Position, color-hue

Data:

Pima Indian Diabetes Dataset

Source:

https://www.kaggle.com/uciml/pima-indians-diabetes-database

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0

Source Code for Correlation – Scatter Matrix Plot

Note:

Similar to the small multiples chart that we saw earlier, a scatter plot matrix takes advantage of the eye's rapid capability to spot patterns across multiple views of the same type of chart (Andy Kirk, 2012).