Business Case-Aerofit-Probability and Descriptive Statistics

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

 $\label{eq:df_aerofit_treadmill.csv} \texttt{df_aerofit_treadmill.csv}') \\ \texttt{df_aerofit}$

Next steps:

Generate code with df_aerofit

View recommended plots

New interactive sheet

df_aerofit.head()

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	⊮ D291	აი	Mala	12	Dartnarad	1	2	25247	17

df_aerofit.tail()

Double-click (or enter) to edit

 ${\tt df_aerofit.shape}$

→ (180, 9)

1.We can see that the number of rows and columns in the above dataset is-180 and 9.

df_aerofit.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 180 entries, 0 to 179
    Data columns (total 9 columns):
                       Non-Null Count Dtype
         Column
         Product
                       180 non-null
     0
                                       object
                       180 non-null
     1
         Age
                                       int64
     2
         Gender
                       180 non-null
                                       object
     3
         Education
                       180 non-null
                                       int64
         MaritalStatus 180 non-null
                                        object
         Usage
                        180 non-null
                                        int64
         Fitness
                        180 non-null
                                        int64
         Income
                        180 non-null
                                        int64
                       180 non-null
                                       int64
     8 Miles
    dtypes: int64(6), object(3)
    memory usage: 12.8+ KB
```

*From the above observation we observed that the columns do not have any null values.

df_aerofit.describe()

→ *		Age	Education	Usage	Fitness	Income	Miles
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
	may 1	EU UUUUUU	21 000000	7 000000	5 000000	10/581 000000	360 000000

• Find the outliers for every continuous variables in the dataset.

a=sns.boxplot(df_aerofit['Age'])


```
q1=df_aerofit['Age'].quantile(0.25)
q3=df_aerofit['Age'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Age']<(q1-1.5*IQR))) | (df_aerofit['Age']>(q3+1.5*IQR)))]
```

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	78	KP281	47	Male	16	Partnered	4	3	56850	94
	79	KP281	50	Female	16	Partnered	3	3	64809	66
	139	KP481	48	Male	16	Partnered	2	3	57987	64
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	170	⊬ D7Ω1	ΛΩ	Mala	1Ω	Dartnarad	А	5	05500	190

b=sns.boxplot(df_aerofit['Income'])

q1=df_aerofit['Income'].quantile(0.25)
q3=df_aerofit['Income'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Income']<(q1-1.5*IQR)) | (df_aerofit['Income']>(q3+1.5*IQR))]

→ ▼		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	159	KP781	27	Male	16	Partnered	4	5	83416	160
	160	KP781	27	Male	18	Single	4	3	88396	100
	161	KP781	27	Male	21	Partnered	4	4	90886	100
	162	KP781	28	Female	18	Partnered	6	5	92131	180
	164	KP781	28	Male	18	Single	6	5	88396	150
	166	KP781	29	Male	14	Partnered	7	5	85906	300
	167	KP781	30	Female	16	Partnered	6	5	90886	280
	168	KP781	30	Male	18	Partnered	5	4	103336	160
	169	KP781	30	Male	18	Partnered	5	5	99601	150
	170	KP781	31	Male	16	Partnered	6	5	89641	260
	171	KP781	33	Female	18	Partnered	4	5	95866	200
	172	KP781	34	Male	16	Single	5	5	92131	150
	173	KP781	35	Male	16	Partnered	4	5	92131	360
	174	KP781	38	Male	18	Partnered	5	5	104581	150
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	170	VD7Ω1	ΛQ	Mala	1Ω	Dartnarad	Л	E	UEEU8	120

c=sns.boxplot(df_aerofit['Miles'])


```
q1=df_aerofit['Miles'].quantile(0.25)
q3=df_aerofit['Miles'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Miles']<(q1-1.5*IQR)) | (df_aerofit['Miles']>(q3+1.5*IQR))]
```

→		Product	Δσρ	Gender	Education	MaritalStatus	lisage	Fitness	Tncome	Miles
		rroduce	Age	delidei	Luucation	nai Itaistatus	osage	111111111111111111111111111111111111111	THEOME	HILLCS
	23	KP281	24	Female	16	Partnered	5	5	44343	188
	84	KP481	21	Female	14	Partnered	5	4	34110	212
	142	KP781	22	Male	18	Single	4	5	48556	200
	148	KP781	24	Female	16	Single	5	5	52291	200
	152	KP781	25	Female	18	Partnered	5	5	61006	200
	155	KP781	25	Male	18	Partnered	6	5	75946	240
	166	KP781	29	Male	14	Partnered	7	5	85906	300
	167	KP781	30	Female	16	Partnered	6	5	90886	280
	170	KP781	31	Male	16	Partnered	6	5	89641	260
	171	KP781	33	Female	18	Partnered	4	5	95866	200
	173	KP781	35	Male	16	Partnered	4	5	92131	360
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KD791	12	Mala	12	Sinala	5	1	206/1	200
	4									

d=sns.boxplot(df_aerofit['Education'])


```
q1=df_aerofit['Education'].quantile(0.25)
q3=df_aerofit['Education'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Education']<(q1-1.5*IQR))) | (df_aerofit['Education']>(q3+1.5*IQR))]
```

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
	156	KP781	25	Male	20	Partnered	4	5	74701	170	
	157	KP781	26	Female	21	Single	4	3	69721	100	
	161	KP781	27	Male	21	Partnered	4	4	90886	100	
	175	L∕D791	40	Mala	21	Qinala	۵	5	22/16	200	

e=sns.boxplot(df_aerofit['Usage'])

q1=df_aerofit['Usage'].quantile(0.25)
q3=df_aerofit['Usage'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Usage']<(q1-1.5*IQR)) | (df_aerofit['Usage']>(q3+1.5*IQR))]

_		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	154	KP781	25	Male	18	Partnered	6	4	70966	180
	155	KP781	25	Male	18	Partnered	6	5	75946	240
	162	KP781	28	Female	18	Partnered	6	5	92131	180
	163	KP781	28	Male	18	Partnered	7	5	77191	180
	164	KP781	28	Male	18	Single	6	5	88396	150
	166	KP781	29	Male	14	Partnered	7	5	85906	300
	167	KP781	30	Female	16	Partnered	6	5	90886	280
	170	KP781	31	Male	16	Partnered	6	5	89641	260
	47E	L∕D7Ω1	40	Mala	21	Single	6	Ę.	02/16	200

e=sns.boxplot(df_aerofit['Fitness'])


```
q1=df_aerofit['Fitness'].quantile(0.25)
q3=df_aerofit['Fitness'].quantile(0.75)
IQR=q3-q1
df_aerofit[(df_aerofit['Fitness']<(q1-1.5*IQR)) | (df_aerofit['Fitness']>(q3+1.5*IQR))]
\overline{z}
           Product Age Gender Education MaritalStatus Usage Fitness Income Miles
      14
            KP281
                                         16
                                                                             38658
                                                                                        47
                     23
                           Male
                                                  Partnered
            KD/181
                     21
                        Famala
                                         12
                                                     Single
                                                                              65220
```

Clipping the data-

```
minn=np.percentile(df_aerofit['Age'],5)
maxx=np.percentile(df_aerofit['Age'],95)
df_aerofit['Age']=np.clip(df_aerofit['Age'],minn,maxx)
minn1=np.percentile(df_aerofit['Income'],5)
maxx1=np.percentile(df_aerofit['Income'],95)
df_aerofit['Income']=np.clip(df_aerofit['Income'],minn1,maxx1)
minn2=np.percentile(df_aerofit['Miles'],5)
maxx2=np.percentile(df_aerofit['Miles'],95)
df_aerofit['Miles']=np.clip(df_aerofit['Miles'],minn2,maxx2)
minn3=np.percentile(df_aerofit['Education'],5)
maxx3=np.percentile(df_aerofit['Education'],95)
df_aerofit['Education']=np.clip(df_aerofit['Education'],minn3,maxx3)
minn4=np.percentile(df_aerofit['Usage'],5)
maxx4=np.percentile(df_aerofit['Usage'],95)
df_aerofit['Usage']=np.clip(df_aerofit['Usage'],minn4,maxx4)
minn5=np.percentile(df_aerofit['Fitness'],5)
maxx5=np.percentile(df_aerofit['Fitness'],95)
df_aerofit['Fitness']=np.clip(df_aerofit['Fitness'],minn5,maxx5)
```

Univariate Analysis

sns.countplot(data=df_aerofit,x='Product')

Bivariate Analysis

```
sns.countplot(data=df_aerofit,x='Gender',hue='Product')
plt.title('Gender vs Product')
plt.show()
```


sns.countplot(data=df_aerofit,x='MaritalStatus',hue='Product')
plt.title('MaritalStatus vs Product')
plt.show()

sns.boxplot(data=df_aerofit,x='Product', y='Age')
plt.title('Product vs Age')
plt.show()

sns.boxplot(data=df_aerofit,x='Product', y='Income')
plt.title('Product vs Income')
plt.show()

sns.boxplot(data=df_aerofit,x='Product', y='Usage')
plt.title('Product vs Usage')
plt.show()

Representing the Probabilities

df_aerofit.head()

_ →		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	20.0	Male	14	Single	3.0	4	43.05	112
	1	KP281	20.0	Male	15	Single	2.0	3	43.05	75
	2	KP281	20.0	Female	14	Partnered	4.0	3	43.05	66
	3	KP281	20.0	Male	14	Single	3.0	3	43.05	85
	4	KD381	30 U	Mala	1.1	Dartnarad	4.0	2	43 UE	17

 $crosstab1=pd.crosstab(index=df_aerofit['Product'],columns='count',normalize=True)\\ crosstab1$

Products and Gender

 $\verb|pd.crosstab| (index=df_aerofit['Gender'], columns=df_aerofit['Product'], \verb|margins=True|, normalize=True|)|$

 $\verb|pd.crosstab| (index=df_aerofit['MaritalStatus'], columns=df_aerofit['Product'], margins=True, normalize=True)|$

Conditional Probability

Pd.crosstab(index=df_aerofit['Gender'],columns=df_aerofit['Product'],margins=True,normalize=True)

P(using KP281|Female)=0.22 P(using KP481|Female)=0.1611 P(using KP781|Female)=0.03 P(using KP281|Male)=0.22 P(using KP481|Male)=0.17 P(using KP781|Male)=0.18

 $P(KP281|Partnered) = 0.26\ P(KP481|Partnered) = 0.20\ P(KP781|Partnered) = 0.12\ P(KP281|Single) = 0.17\ P(KP481|Single) = 0.13\ P(KP781|Single) = 0.09$

Correlation

df_aerofit.head()

Customer Profiling

KP281

*Age- 23 to 33 *Income-38000 to 54000 *Usage-3 to 4 times a week *Martial Status-Partenered are most likely to use KP281 *Gender-Both Male and Female are equally using KP281