NUMELE: GRUPA:

1	2	3	4	5	6	7	8

Logică matematică și computațională

Subiectul 1. (15 pct) Pe \mathbb{N} se definește relația binară $R = \{(x, 2x) | x \in \mathbb{N}\}$. Determinați $\mathcal{T}(R)$ (închiderea tranzitivă a lui R).

Subiectul 2. (10 pct) Fie A și B două algebre Boole și $h:A\to B$ un morfism boolean. Demonstrați că dacă F este un filtru în B atunci $h^{-1}(F)$ este un filtru în A.

Subiectul 3. (20 pct) Demonstrați completitudinea calcului propoziținonal clasic: $\Gamma \models \varphi$ implică $\Gamma \vdash \varphi$.

Subiectul 4. (10 pct) In calculul propozițional clasic, demonstrați corectitudinea următoarei reguli de deducție: $\frac{\Gamma \cup \{\varphi\} \vdash \gamma, \Gamma \cup \{\psi\} \vdash \gamma}{\Gamma \cup \{\varphi \lor \psi\} \vdash \gamma}.$

Subiectul 5. (15 pct) In calculul propozițional clasic, demonstrați că pentru orice formule φ, ψ și χ , mulțimea de formule

$$\Sigma = \{ \varphi \land (\psi \leftrightarrow \neg \chi), ((\varphi \land \psi) \lor \neg \neg \chi) \to ((\varphi \to \chi) \leftrightarrow \psi) \}$$

nu este satisfiabilă.

Subiectul 6. (15 pct) Fie $\mathcal S$ forma clauzală a formulei

$$(p \lor r) \land (r \to q) \land \neg q \land (p \to t) \land \neg s \land (s \to t)$$

undep, r, q, s, t sunt variabile propoziționale. Arătați că există o derivare prin rezoluție a clauzei vide \square din \mathcal{S} .

Subiectul 7. (a) (10 pct) Determinați \mathcal{L} , un limbaj de ordinul I și o mulțime de enunțuri Γ astfel încât modelele lui Γ să fie structuri $(A, +, \sim)$ unde + este o operație binară și \sim este o relație de echivalență pe A.

(b) (10 pct) Determinați un enunț δ astfel încât modelele lui $\Gamma \cup \{\delta\}$ să fie modelele lui Γ în care \sim este congruență.

Subiectul 8. (25 pct) Fie \mathcal{L} un limbaj de ordinul I, Γ o mulțime de formule și φ un enunț. Demonstrați că, pentru orice formulă ψ ,

$$\Gamma \cup \{\varphi\} \vdash \neg \psi \text{ implică } \Gamma \vdash \varphi \rightarrow \neg \psi.$$

Pentru demonstrația în calculul propozițional se acordă 15 pct.

Nota n corespunde intervalului [10n-5, 10n+4)