Προσομοίωση και Μοντελοποίηση Δυναμικών Συστημάτων

Εργασία 2

Εκτίμηση Άγνωστων Παραμέτρων - Μέθοδοι Πραγματικού Χρόνου Μέθοδος Κλίσης, Μέθοδος Lyapunov

9 Απριλίου 2025

Θέμα 1 (5 μονάδες)

Θεωρήστε το σύστημα μάζας-ελατηρίου-αποσβεστήρα με εξωτερική δύναμη, η εξίσωση του οποίου δίνεται από την σχέση:

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = u(t), \tag{1}$$

όπου x(t) [m] η μετατόπιση, m>0 η μάζα, b>0 ένας σταθερός συντελεστής απόσβεσης, k>0 η σταθερά του ελατηρίου, και u(t) η εξωτερική δύναμη. Θεωρήστε για τα πειράματά σας ότι $m=1.315,\ b=0.225$ και k=0.725. Θεωρήστε επίσης πως οι καταστάσεις x(t), $\dot{x}(t)$ και η είσοδος u(t) είναι μετρήσιμα.

- α) Να σχεδιάσετε εκτιμητή πραγματικού χρόνου των άγνωστων παραμέτρων m, b και k με τη μέθοδο κλίσης θεωρώντας i) u(t)=2.5 και ii) $u(t)=2.5\sin(t),$ $\forall t\geq 0.$ Να εκτελέστε διάστημα προσομοίωσης 20 [sec] με κατάλληλο βήμα ολοκλήρωσης για ακριβή αποτελέσματα, και να δημιουργήστε τις γραφικές παραστάσεις των x(t), $\hat{x}(t)$ και της διαφοράς $e_x(t)=x(t)-\hat{x}(t),$ καθώς και των εκτιμήσεων $\hat{m}(t),$ $\hat{b}(t)$ και $\hat{k}(t)$ των m, b και k, αντίστοιχα. Να σχολιάστε τα αποτελέσματα.
- β) Για το ίδιο πρόβλημα να σχεδιάσετε εκτιμητή πραγματικού χρόνου των άγνωστων παραμέτρων i) παράλληλης δομής και ii) μεικτής δομής με τη μέθοδο Lyapunov θεωρώντας $u(t)=2.5\sin(t),\ \forall t\geq 0.$ Να δημιουργήστε τις γραφικές παραστάσεις των $x(t),\ \hat{x}(t)$ και της διαφοράς $e_x(t)=x(t)-\hat{x}(t),$ καθώς και των εκτιμήσεων $\hat{m}(t),\ \hat{b}(t)$ και $\hat{k}(t)$ των $m,\ b$ και k, αντίστοιχα. Να σχολιάστε τα αποτελέσματα.
- γ) Να επαναλάβετε τη διαδικασία του ερωτήματος (β) θεωρώντας ότι η έξοδος x(t) μετριέται με θόρυβο $\eta(t)=\eta_0\sin(2\pi f_0t),\ \forall t\geq0,$ με $\eta_0=0.25$ και $f_0=20.$ Να συγκριθούν τα αποτελέσματα με και χωρίς θόρυβο. Να μελετηθεί η επίδραση της μεταβολής του πλάτους η_0 του θορύβου στην ακρίβεια των εκτιμώμενων παραμέτρων. Να δημιουργηθούν γραφήματα που να δείχνουν το σφάλμα εκτίμησης των παραμέτρων σε συνάρτηση με το πλάτος του θορύβου.

Θέμα 2 (5 μονάδες)

Θεωρήστε το μη-γραμμικό σύστημα της γωνίας κύλισης (roll angle) ενός αεροσκάφους με ροπή εισόδου, η εξίσωση του οποίου δίνεται από την σχέση:

$$\ddot{r}(t) = -a_1 \dot{r}(t) - a_2 \sin(r(t)) + a_3 \dot{r}^2(t) \sin(2r(t)) + bu(t) + d(t), \tag{2}$$

όπου r(t) [rad] η γωνία roll, $a_i>0$, i=1,2,3, και b>0 σταθερές, άγνωστες παράμετροι, u(t) η είσοδος ελέγχου και d(t) εξωτερικές διαταραχές. Ο στόχος ελέγχου είναι η ρύθμιση της γωνίας r(t) από την αρχική τιμή r(0)=0 στην επιθυμητή τιμή $\bar{r}_d=\frac{\pi}{10}$, και η επιστροφή πάλι σε μηδενική γωνία. Προτείνεται η δημιουργία μιας ομαλής τροχιάς αναφοράς $r_d(t)$ που να προδιαγράφει τον παραπάνω στόχο $(r_d(t):0\to\bar{r}_d\to0)$, σε βάθος χρόνου 20 [sec]. Θεωρήστε για τα πειράματά σας ότι $a_1=1.315,\ a_2=0.725,\ a_3=0.225$ και b=1.175.

- α) Να υλοποιήσετε έναν ελεγκτή ανάδρασης $u(t)=u(r(t),\dot{r}(t))$ για την επίτευξη του στόχου ελέγχου όταν d(t)=0, και προσομοιώστε την απόκριση του συστήματος κλειστού βρόχου¹. Να δημιουργηθεί γράφημα της γωνίας r(t) παράλληλα με την επιθυμητή γωνία $r_d(t)$.
- β) Θεωρήστε πως οι καταστάσεις r(t), $\dot{r}(t)$ καθώς και η είσοδος u(t) είναι μετρήσιμα και πως οι μη-γραμμικές συναρτήσεις του (2) είναι γνωστές. Να σχεδιαστεί εκτιμητής πραγματικού χρόνου των άγνωστων παραμέτρων με τη μέθοδο Lyapunov με d(t)=0. Δημιουργήστε τις γραφικές παραστάσεις των r(t), $\hat{r}(t)$ και της διαφοράς $e_r(t)=r(t)-\hat{r}(t)$, καθώς και των εκτιμήσεων των άγνωστων παραμέτρων, αντίστοιχα. Να σχολιάσετε τα αποτελέσματα.
- γ) Να επαναλάβετε την διαδικασία του ερωτήματος (β) θεωρώντας εξωτερικές διαταραχές $d(t)=0.15\sin(0.5t),\ \forall t\geq 0.$ Να μελετηθεί η επίδραση της εισαγωγής των εξωτερικών διαταραχών στην ακρίβεια των εκτιμώμενων παραμέτρων.

 $^{1}\Sigma$ ημείωση: Ένας προτεινόμενος ελεγκτής ανάδρασης είναι ο παρακάτω:

$$z_1(t) = \frac{r(t) - r_d(t)}{\phi(t)}, \ \alpha(t) = -k_1 T(z_1(t)),$$
 (3a)

$$z_2(t) = \frac{\dot{r}(t) - \alpha(t)}{\rho}, \ u(t) = -k_2 T(z_2(t)),$$
 (3b)

όπου $\phi(t)=(\phi_0-\phi_\infty)e^{-\lambda t}+\phi_\infty$, με παραμέτρους $\phi_0>\phi_\infty>0$, $\lambda>0$, $\phi_0\gg|r(0)-r_d(0)|$, και $T(z)=\ln\left(\frac{1+z}{1-z}\right)$. Επίσης $\rho\gg|\dot{r}(0)-\alpha(0)|$ και $k_1>0$, $k_2>0$ κέρδη ελεύθερης επιλογής. Για επιβεβαίωση της ορθής υλοποίησης παρατηρήστε ότι $|r(t)-r_d(t)|<\phi(t)$ και $|\dot{r}(t)-\alpha(t)|<\rho$, $\forall t\geq 0$. Παρατηρήστε επίσης πως για $\phi_\infty\downarrow$ βελτιώνεται η ακρίβεια παρακολούθησης της επιθυμητής τροχιάς $r_d(t)$.

Σημειώσεις

- Να παραδώσετε: (i) αναφορά (pdf) στην οποία θα καταγράψετε όλα τα αποτελέσματα συνοδευόμενα από τις όποιες παρατηρήσεις/συμπεράσματα, (ii) όλους του κώδικες (m-files) που αναπτύξατε.
- Να ανεβάσετε στο elearning ένα συμπιεσμένο αρχείο με ονομασία: 'Lastname_Firstname_AEM_lab02'.
- Προθεσμία υποβολής: έως και Παρασκευή 02/05/25.