Intro to Math Reasoning HW 10a

Ozaner Hansha

December 5, 2018

Problem 1

Consider the following relation R on an arbitrarily large universe of sets U:

$$ARB \equiv (\exists f: A \to B) \ \underbrace{(\forall x, y \in A) \ f(a) = f(b) \to a = b}_{f \text{ is injective}}$$

Part a

Problem: Prove that R is not symmetric.

Solution: Consider the set of all functions from $A = \{1\}$ to $B = \{1, 2\}$:

$$\operatorname{graph}(f_1) = \{(1,1)\}\$$

 $\operatorname{graph}(f_2) = \{(1,2)\}\$

Note that both functions are injective and so ARB. Now let us consider the set of all functions from B to A:

$$graph(g) = \{(1,1)(2,1)\}\$$

Notice that there exists only one such function. Also note that this function is not injective, thus $\neg BRA$. This one counterexample is sufficient to show that R is not symmetric on all universes of sets.

Part b

Problem: Prove that R is not anti-symmetric.

Solution: Consider the set of all functions from $A = \{1\}$ to $B = \{2\}$:

$$\mathrm{graph}(f)=\{(1,2)\}$$

This function is injective, thus ARB. Now consider the set of all functions from $B = \{1\}$ to $A = \{2\}$:

$$graph(f) = \{(2,1)\}$$

This function is also injective, thus BRA. However, note that $\{1\} \neq \{2\}$ (at least I hope it doesn't). And so R does not satisfy anti-symmetry:

$$ARB \wedge BRA \not\rightarrow A = B$$

This one counterexample is sufficient to show that that R is not anti-symmetric on all universes of sets.

Problem 2

Problem: Consider the following relation based off R used in problem 1 on an arbitrary universe of sets:

$$A <_{\#} B \equiv ARB \land \neg isBijective(A, B)$$

Where the is Bijective predicate simply means there exists a bijection (a function that is both injective and surjective) between A and B. Prove this relation is a strict partial order.

Solution: We have to prove three properties of this relation:

• Anti-reflexive

Proving this means showing that the following is false for any set A:

$$ARA \land \neg isBijective(A, A)$$

Note that is Bijective (A, A) is true because there does exist a bijection from any A to itself, namely the identity function: id(a) = a. Thus the statement is always false and anti-symmetry holds.

• Anti-symmetric

Proving this means showing the following $A, B \in U$:

$$ARB \land \neg isBijective(A, B) \implies \neg (BRA \land \neg isBijective(B, A))$$

 $\implies \neg BRA \lor isBijective(B, A)$

Note that \neg is Bijective (A, B) implies \neg is Bijective (B, A) because all bijections have bijective inverses, and so if there wasn't one for $A \to B$ then there won't be one for $B \to A$. Our only mode of attack, then, is to show that $\neg BRA$.

This can be done by noting that the Schroder-Bernstein theorem states that if there is an injective function from $A \to B$ and one from $B \to A$, then there must exist some bijection between the two sets:

$$ARB \wedge BRA \implies \text{isBijective}(A, B)$$

However we know that while ARB is true, the consequence is Bijective (A, B) is false. This means that $\neg BRA$. And so we are done.

• Transitive

This is equivalent to proving the following for any sets A, B and C:

$$(ARB \land \neg isBijective(A, B)) \land (BRC \land \neg isBijective(B, A)) \implies (ARC \land \neg isBijective(A, C))$$

Note that ARB guarantees the existence of at least one injective function from $A \to B$ and so we will call one such function $f: A \to B$. We will do the same for the statement BRA and call it $g: B \to C$. Now note that the composition of these two injective functions $f \circ g: A \to C$ is also a injective function (compositions of injective functions are injective). This satisfies the ARC portion of the consequent.

We can prove the second part of the consequent, namely \neg is Bijective (A, C), by contradiction. First note that if A and C are bijective then there exists injective functions from the domain to the codomain and vice versa:

is Bijective
$$(A, C) \implies ARC \wedge CRA$$

Now note that we are assuming that $A <_{\#} B$, which means there is an injective function from A to B:

$$A <_{\#} B \implies ARB$$

From the transitivity of injective functions we used earlier we can say:

$$CRA \wedge ARB \implies CRB$$

However note that the antecedent we are assuming includes $B<_{\#}C$ which implies BRC but also that B and C are not equinumerous:

$$B <_{\#} C \equiv BRC \land \neg isBijective(B, C)$$

This implies that $\neg CRB$ because if there was an injunctive function from C to B then Schroder-Bernstein would tell us that the sets are indeed equinumerous. Thus we are left with a contradiction:

$$CRB \wedge \neg CRB$$

And so our original assumption that there was a bijection between A and C was false.

Problem 3

Problem: Prove that if $(\exists n \in \mathbb{N}) |A| = n$ then:

$$B \subsetneq A \implies |B| < |A|$$

Solution: Note that a subset of a set embeds that set (i.e. $B \subseteq A \to BRA$). Also note that if $|B| \neq |A|$ (i.e. no bijection) then we can use the strict partial order we defined earlier:

$$BRA \wedge |B| \neq |A| \equiv B <_{\#} A$$

Now note that for all natural numbers n (where $n = \{0, 1, \dots, n-1\}$):

$$n <_{\#} B$$

Via the transitive property we can see that:

$$(\forall n \in \mathbb{N}) \ n <_{\#} B \land B <_{\#} A \implies n <_{\#} A$$

Which is the same as saying A is infinite. This, however, depends on the fact that there is no bijection between A and B. To show this we just have to show that there is no injective function from A to B, (i.e. ARB). This is obvious because |A| = n for some finite n and thus there is at least one element $a_0 \notin B$. Then $|A \setminus \{a_0\}| = n - 1$. And either that set is equal to B (thus equinumerous) or there is another element a_1 that is also not in B. This argument must end at some point since there are finite number of elements in A.

Problem 4

Problem: Prove that for any two sets A and B:

$$(\forall n \in \mathbb{N}) \ B \subseteq A \land |B| > n \implies |A| > n$$

Solution: We know that all subsets of a set embed that set, thus:

$$B \subseteq A \implies BRA$$

We also are assuming that B is greater in cardinality than any finite n, meaning:

$$(\forall n \in N) \ nRB$$

This automatically entails that B is not equinumerous with any n since there is always an injection with n+1. We know that by the transitivity of injective functions (due to the composition of them) that:

$$(\forall n \in N) \ nRB \land BRA \implies nRA$$

And so now we have $|A| \ge n$ for all naturals n. But recall just like with nRB, we know that this automatically entails that $|A| \ne n$ for any finite n. Thus we are left with: |A| > n

Problem 5

Problem: Prove the following:

$$(\exists B \subsetneq A) \ ARB \iff (\forall n \in \mathbb{N}) \ |A| > n$$

Solution: Let P be the left hand proposition and Q the right hand one. Note that $\neg Q$ means A is finite, and $\neg P$ means there is no injective function from A to B. We know then from problem 3 that $\neg Q \rightarrow \neg P$, and this is just the contraposition (tautology) of the forward direction $P \rightarrow Q$, and so we only need to prove the backwards direction.

Note that if a set A is infinite then, by the axiom of choice, it has a countable subset $\{x_1, x_2, x_3, \cdots, x_j, \cdots\} \subseteq A$. Now note that we can easily define a one-to-one map from A to $A \setminus \{x_1\}$ (i.e. a proper subset of A) like so:

$$f(x_j) = x_{j+1}$$

Thus $ARA \setminus \{x_1\}$ meaning the backwards relation is satisfied.