L12 Logistic Regression

Prof. Xun Jiao

Review

- Logistic Regression
 - Hypothesis

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 should give $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Decision boundary

Outline

- Cost function
- Gradient descent
- Multi-class Classification
- Scikit Learn Library
- Mini-Project

Cost Function

Can't just use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

Cost function

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{oldsymbol{ heta}}(oldsymbol{x})=0$, but y = 1

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\boldsymbol{\theta}}(\boldsymbol{x})) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Cost function

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases}
-\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1 \\
-\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0
\end{cases}$$

$$J(\theta) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\theta}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\theta}(\boldsymbol{x}^{(i)})\right) \right]$$

$$J(\theta) = \sum_{i=1}^{n} \cot \left(h_{\theta}(\boldsymbol{x}^{(i)}), y^{(i)}\right)$$

Overall Look

Logistic regression objective:

$$\min_{m{\theta}} J(m{\theta})$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

$$h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
ight)$$
 $g(z) = rac{1}{1 + e^{-z}}$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

- Initialize $oldsymbol{ heta}$
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \right]$$

Does this look familiar to you?

Multiclassification

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

$$p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$$

$$p(y = \mathbf{1} \mid \boldsymbol{x}; \boldsymbol{\theta})$$

$$p(y = \mathbf{z} \mid \boldsymbol{x}; \boldsymbol{\theta})$$

Train a logistic regression classifier for each class i to predict the probability that y = i

Predict class label as the most probable label

$$\max_{c} h_c(\boldsymbol{x})$$

Decision Tree

Hypothesis

In general, a Yes/No question! A student likes decision tree ECE 5400 asks a question... false true ...and then Slightly less-than classifies the Awesome student awesome student person based on the answer.

The very top of the tree is called the "Root Node" or just "The Root"

These are called "Internal Nodes", or just "Nodes".

Lastly, these are called "Leaf Nodes", or just "Leaves"

Now we are ready to talk about how to go from a raw table of data...

to	а	decision	tree!!	!

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

First Step: who would be the top (root)?

Chest pain? Blood circulation? Blocked Arteries?

???

If we only use chest pain?

If we only use blood circulation

Chest Pair	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

If we only use blocked arteries?

	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Which one has best separation ability?

Good, but not perfect: Can mostly separate, but still some errors Good, but not perfect

Good, but not perfect

Think about it: what can be the worst situation???