Assignment 3

1.

A) This graph is not simple. Vertex 2 needs to connect to 5 vertexes but only 4 exist; in order for it to both be a degree 5 vertex and a simple graph. Therefore, it's impossible for vertex 2 to be in a simple graph, as it must connect to itself or to another vertex twice to have 5 edges for its degree value.

B) This graph is simple, example:

2.

V is a set of nodes (vertices)

E is the set of edges (lines between vertices)

Every edge is the graph is a pair of vertices, thus element E is a pair of vertices, V.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{\{1,5\}, \{5,6\}, \{6,8\}, \{7,8\}, \{3,8\}, \{3,6\}, \{2,8\}, \{3,5\}, \{4,5\}, \{2,4\}\}\}$$

3. Adjacency matrix:

	1	2	3	4	5	6	7	8
1	0	0	0	0	1	0	0	0
2	0	0	0	1	0	0	0	1
3	0	0	0	0	1	1	0	1
4	0	1	0	0	1	0	0	0
5	1	0	1	1	0	1	0	0
6	0	0	1	0	1	0	0	1
7	0	0	0	0	0	0	0	1
8	0	1	1	0	0	1	1	0

4. Adjacency list:

Initial vertex	Adjacent vertices				
1	5				

2	4,8
3	5,6,8
4	5,2
5	6,1,4,3
6	5,3,8
7	8
8	6,3,7,2

5.

$$V' = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E' = \{(1, 5), (2, 8), (3, 6), (3, 8), (4, 2), (5, 3), (5, 4), (5, 6), (6, 8), (8, 7)\}$$

6.

$$K_3 = V$$
" = $\{3, 6, 8\}$

$$E'' = \{\{3, 6\}, \{6, 8\}, \{3, 8\}\}$$

Adjacency matrix (every point connects to every other point):

	3	6	8
3	0	1	1
6	1	0	1
8	1	1	0

7.

$$E''' = \{\{2, 6\}, \{6, 4\}\}$$

$$|E'''| = 2$$

8.

Result: $1 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 8$

$$V' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$E' = \{\{1, 0\}, \{1, 4\}, \{1, 2\}, \{0, 6\}, \{2, 5\}, \{2, 3\}, \{2, 7\}, \{0, 9\}, \{9, 8\}\}\$$

Adjacency list:

Initial vertex	Adjacent vertices
0	1, 9, 6
1	0, 2, 4
2	1, 7, 3, 5
3	2
4	1
5	2
6	0
7	2
8	9
9	0, 8

9.

result:
$$1 \rightarrow 0 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$$

$$V' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$E' = \{\{1, 0\}, \{0, 4\}, \{4, 2\}, \{2, 3\}, \{3, 5\}, \{5, 6\}, \{6, 7\}, \{7, 8\}, \{8, 9\}\}$$

Adjacency matrix:

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
2	0	0	0	1	1	0	0	0	0	0
3	0	0	1	0	0	1	0	0	0	0
4	1	0	1	0	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	0	0	0	0	0	1	0	1	0
8	0	0	0	0	0	0	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0