IERG5350 Assignment5:

CarRacing-v0 Tournament

Sharing my naive car-training experience

by WU Tong

Contents

- Two-player self-training:
 - My implementation
 - Some experimental results
- Default parameters: ✓
 - Stable and promising when choosing the right checkpoint.
- Some other dirty tuning experiences.

Two-player self-training

My implementation

Initialization

- Train from scratch;
- Start from a half-trained / well-trained agent from a single-player environment.

• Two-player self-training:

- Close the old environment.
- Build a new two-player environment (cCarRacingDouble-v0 via make_competitive_car_racing), the opponent policy is exactly the current policy, while it is NOT updated along training.
- Update environment after several (50, 100, 200, ...) iterations.

Some other extensions:

• Alternative training of single-player and two-player environments.

Two-player self-training

Some observations

- Train from scratch:
 - It's hard to converge.
- Start from a half-trained / well-trained agent from a single-player environment:
 - A sharp drop of reward followed by an increasing trend.
- Alternative training of single-player and two-player environments:
 - Single-player stage converges more quickly than two-player stage;
 - No significant difference in the final results in my case.

Example@1

Figure missing...
Imaging a curve with continuously low reward

Using the default parameters can achieve sound results

Choosing the right checkpoint is simple yet effective

Iteration	Default@1	Default@2	Default@3	alphacar	zhenghao
Best	649	775	760	633	601
Final	513	647	607	586	612

One tournament

Another

Comparison and summary

Issues left unsolved

- How to make the training more stable? A promising training method that is less effected by randomization?
 - Adding entropy-weight do not make significant improvement. It would give the final checkpoint a higher performance but the optimal checkpoint is less competitive.
 - Other hyper-parameters, activation functions from github or original paper? Not work, sadly .

Thanks for listening!