United International University (UIU)

Dept. of Computer Science & Engineering (CSE)
Final Exam Total Marks: 40 Fall 2023

Course Code: CSE 2217 Course Title: Data Structure and Algorithms II

Time: 2 hours

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

There are **six** questions. **Answer all of them**. Show full simulation/tabulations wherever necessary. Figures in the right-hand margin indicate full marks.

First determine X and Y correctly for your student ID and write it down. Use these values in Questions 1.

For example, a student with ID: 0111 142 001

$$A$$
 B
 $A=142$, $B=1$
 $X = 2 + (142 \text{ mod } 6) = 2+4 = 6$
 $Y = 2 + (1 \text{ mod } 5) = 2+1 = 3$

algorithm to find occurrences of a specific product code pattern within the dataset.

The numeric values of the letters of the product code:

A	В	С	D	Е	F	G	Н	Ι	J
1	2	3	4	5	6	7	8	9	10

The hash function is defined as follows:

hash(s) = s[0] * 10^(n-1) + s[1] * 10^(n-2) + + s[n-1]*10^(n-n) Where,

hash(s) is the hash value of string n is the length of the string

10 is the base of the hash function.

You are given a dataset of product codes, for example, "HGJABCDFGH," and you need to efficiently identify occurrences of a specific product code pattern within it. The pattern you are looking for is "CDFG". Clearly show the step-by-step calculations for the hash values, modulo operations, and the final results.

- **3.** (a) "The Disjkstra's Algorithm might fail on graphs with negative edge weights" do you agree with the statement? Justify your answer using an example.
 - **(b)** Does the following graph contain any negative weight cycles? Justify by applying the Bellman Ford Algorithm.

(c) Consider the following graph. Redraw the graph and assign the values of w_1 , w_2 , w_3 , w_4 , w_5 , w_6 , w_7 , w_8 and w_9 in such a way that the BFS algorithm can be used on the graph to determine the shortest path from vertex A to all other vertices.

(d) Apply BFS on the graph you generated in Question 3c considering the vertex a as the source vertex. Show the parent values of each vertex and draw the minimum spanning tree that is obtained based on the parent values.

[2]

[5]

[1]

4.	4. (a) The following table shows the parent array of a Disjoint set (Rooted tree implementation).													
	Perform the following operations sequentially using path compression and union-by-rank													
	heuristic:													
	i. Draw the disjoint set forest											[2]		
	ii. What will be returned by Find-Set(6), and Find-Set(5)?											[1]		
	iii. Redraw the forest after Union(0, 7)											[1]		
	iv. Redraw the forest after Union(2, 9)											[1]		
	Index	0	1	2	3	4	5	6	7	8	9	10	11	
	Parent	6	4	3	4	4	8	3	7	10	8	10	8	
	(b) What is the time complexity of Make-Set(x), Union(x,y) and Find-Set(x) operations in Disjoint										[2]			
	Sets? Can you name one application where we use Disjoint Sets?													
5.	(a) Draw the 11-item hash table that results from using the hash function											[4]		
J.	(a) Draw the 11-item hash table that results from using the hash function $h(k, i) = (h'(k) + 2i^2)$ mod 11, where $h'(k) = k$ mod 11, to hash the keys 50, 3, 6, 17, and 61.											ניין		
	•													
	Assume that collisions are handled by open addressing. What kind of clustering did you													
	encounter?													
	(b) State the difference between Direct-address Tables and Hash Tables. How do we deal with										[3]			
	collisions in Hash tables? Describe four collision resolution techniques with proper examples.													
												[2]		
6.												[2]		
	between different complexity classes?													
	(b) Explain the concept of NP-Completeness. What does it mean for a problem to be NP-											[3]		
	complete?										[[]			
	p '													