A Additional Empirical Results

Tables 2 and 3 summarize the performance of HOLEx for the head- and tail-prediction tasks, respectively. Note that the corresponding numbers are averaged when reporting the main results in Table 1 on the full task.

As has been observed in prior work, the tail-prediction task is considerably easier than head-prediction for named-entity knowledge bases such as Freebase. This is because many-to-one relations tend to be more common than one-to-many relations. For instance, many people "live in" one city or "work for" one company; where as relatively few people have been the "president of" the United States).

We see, for example, that when using 8 random 0/1 vectors in HOLEX, the tail-prediction HITS@10 metric is 90.5%, which is 5.2% higher than that for head-prediction. Similarly, the mean rank for tail-prediction is 35 in this case, compared to 58 for head prediction.

Knowledge Completion Method	Mean	HITS@10	MRR	HITS@5	HITS@1
	Rank	(%)		(%)	(%)
HolE (reimplemented baseline, dim=256)	62	80.3	0.640	75.1	54.6
HOLEX, 8 Haar vectors	63	84.1	-	-	-
HOLEX, 2 random 0/1 vectors	60	82.8	0.696	78.7	61.8
HOLEX, 4 random 0/1 vectors	59	84.6	0.740	81.4	67.7
HOLEX, 8 random 0/1 vectors	58	85.3	0.763	82.5	70.9
HOLEX, 16 random 0/1 vectors	61	86.1	0.777	83.4	72.8

Table 2: Performance of HOLEX on the head-prediction task. Table 1 reports the average of this and tail-prediction performance.

Knowledge Completion Method	Mean Rank	HITS@10 (%)	MRR	HITS@5 (%)	HITS@1 (%)
HolE (reimplemented baseline, dim=256)	41	85.6	0.690	80.7	59.2
HOLEX, 8 Haar vectors	39	89.3	-	-	-
HOLEX, 2 random 0/1 vectors	36	88.0	0.744	84.1	66.3
HOLEX, 4 random 0/1 vectors	35	89.5	0.785	86.5	72.0
HOLEX, 8 random 0/1 vectors	35	90.5	0.810	87.5	75.4
HOLEX, 16 random 0/1 vectors	37	91.1	0.823	88.6	77.2

Table 3: Performance of HOLEX on the tail-prediction task. Table 1 reports the average of this and head-prediction performance.

B Proof Details

Proof of Theorem 1. According to the definition of the expanded holographic embedding. We have the j, i-th entry of the matrix $h(a, b; C_d)$ is:

$$[h(\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{C}_d)]_{j,i} = \sum_{l=0}^{d-1} c_{i,l} a_l b_{(l+j) \ mod \ d}.$$

in which $c_{i,l}$ is the l, i-th entry of the matrix C_d , and $a_l b_{(l+j) \mod d}$ is $R_{l,j}$ – the l, j-th entry of matrix R. Therefore,

$$h(\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{C}_d)' = \boldsymbol{C}_d' \boldsymbol{R}.$$

which is equivalent to what the Theorem states.

Definition 1. A random 0/1 matrix $\mathbf{A} \in \{0,1\}^{l \times d}$ is a matrix whose entries are chosen independently and uniformly at random from $\{0,1\}$.

Claim 1. Suppose $x, y \in \mathbb{R}^d$ are two vectors, each with exactly one non-zero entry, and at different locations. Let $A \in \{0,1\}^{l \times d}$ be a random 0/1 matrix. Then $\Pr(Ax = Ay) \leq \frac{1}{2^l}$.

Proof. Suppose the *i*-th entry is the unique non-zero in x, and similarly for the *j*-th entry in y. Ax = Ay must imply that A(:, i) = A(:, j). Otherwise, suppose $A_{k,i} = 1$ but $A_{k,j} = 0$, this leads to Ax to be non-zero but Ay to be zero. Contradiction. Given this fact,

$$\Pr(\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y}) \le \Pr(\mathbf{A}(:,i) = \mathbf{A}(:,j)) = 1/2^{l}$$

as claimed. \Box

Proof of Theorem 2. Because d diagonal lines are mutually independent, it suffices to prove the statement holds for one diagonal line with probability at least $1 - \eta/d$. A union bound argument can be applied to show that the statement holds for all d diagonal lines with probability at least $1 - \eta$. In this case, the rest of the proof focuses on one diagonal line.

The effect of applying expanded holographic embedding with l random 0/1 vectors on one diagonal line is to multiply this diagonal line with a l-by-d random 0/1 matrix \boldsymbol{A} . This fact can be quickly checked with the graphical example in Figure 1 (middle). Suppose \boldsymbol{x} and \boldsymbol{y} are two possible configurations of one diagonal line of interest (i.e., both \boldsymbol{x} and \boldsymbol{y} have one non-zero entry of value 1). If a random 0/1 matrix \boldsymbol{A} can tell apart every pairs of \boldsymbol{x} and \boldsymbol{y} , we can decide which configuration the diagonal line is actually in by examining the result of the expanded holographic embedding. In other words, it is sufficient to prove the following: let $l = \lceil 3 \log d - \log \eta \rceil - 1$. sample an l-by-d random 0/1 matrix \boldsymbol{A} , then with probability at least $1 - \eta/d$, we must have $\boldsymbol{A}\boldsymbol{x} \neq \boldsymbol{A}\boldsymbol{y}$ holds, for any two vectors \boldsymbol{x} and \boldsymbol{y} with exact one non-zero entry of value 1.

$$\Pr(\forall x, y \in D : x \neq y, Ax \neq Ay) \tag{10}$$

$$=1-\Pr(\exists x,y\in D:x\neq y,Ax=Ay)$$
(11)

$$\geq 1 - \frac{d(d-1)}{2} Pr(\boldsymbol{A}\boldsymbol{x}_0 = \boldsymbol{A}\boldsymbol{y}_0)$$
(12)

$$\geq 1 - \frac{d(d-1)}{2} \frac{1}{2^l} \geq 1 - \eta/d. \tag{13}$$

Here, D is the space with vectors of exact one non-zero entry of value 1. The size of D is $\frac{d(d-1)}{2}$. It is a union bound argument from (2) to (3). From (3) to (4) we use Claim 1. The last inequality is because $l \geq 3 \log d - \log \eta - 1$.

The proof of theorem 3 makes many connections to compressed sensing. We provide a brief review here. Many definitions and lemmas can be found in [20]. We first introduce the notion of restricted isometry property.

Definition 2 (restricted isometry property [20]). The restricted isometry constant δ_s of a matrix $A \in \mathbb{R}^{m \times d}$ is defined as the smallest δ_s such that

$$(1 - \delta_s) \|x\|_2^2 \le \|\mathbf{A}x\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$

for all s-sparse $x \in \mathbb{R}^d$.

It is well known that restricted isometry property implies recovery of sparse vectors, which can be shown below.

Lemma 1 (Theorem 2.6, [20]). Suppose the restricted isometry constants δ_{2s} of a matrix $\mathbf{A} \in \mathbb{R}^{m \times d}$ satisfies $\delta_{2s} < \frac{1}{3}$, then every s-sparse vector $x^* \in \mathbb{R}^d$ is recovered by ℓ_1 -minimization.

Therefore, in order to guarantee sparse recovery of x^* , we need a good matrix A. It turns out that random Bernoulli matrix has good restricted isometry constant upper bound:

Lemma 2 (Theorem 2.12, [20]). Let $\mathbf{A} \in \mathbb{R}^{m \times d}$ be a Bernoulli random matrix, where every entry of the matrix takes the value $\frac{1}{\sqrt{m}}$ or $-\frac{1}{\sqrt{m}}$ with equal probability. Let $\epsilon, \delta \in (0,1)$ and assume $m \geq C\delta^{-2}(s\log(d/s)) + \log(\epsilon^{-1})$ for a universal constant C > 0. Then with probability at least $1 - \epsilon$ the restricted isometry constant of \mathbf{A} satisfies $\delta_s \leq \delta$.

Lemma 3 (Compressed sensing). Let $\mathbf{A} \in \mathbb{R}^{m \times d}$ be a Bernoulli random matrix, where every entry of the matrix takes the value $\frac{1}{\sqrt{m}}$ or $-\frac{1}{\sqrt{m}}$ with equal probability. Let $x^* \in \mathbb{R}^d$ be a vector with at most s non-zero entries. let $\epsilon \in (0,1)$ and assume

$$m \ge C(s\log(d/s) + \log(\epsilon^{-1}))$$

for a universal constant C > 0. Let random linear measurements $y = \mathbf{A}x^*$ be given, and x be a solution of

$$\min_{z} \|z\|_1 \quad \text{subject to} \quad y = \mathbf{A}z \tag{14}$$

Then with probability at least $1 - \epsilon$, $x = x^*$.

Proof of Lemma 3. By setting $\delta = \frac{1}{3}$ in Lemma 2, and using Lemma 1, Lemma 3 is proved.

Lemma 4. Let $\epsilon \in (0,1)$. If $x_1, x_2 \in \mathbb{R}^d$ have at most s non-zero entries, $\mathbf{A} \in \mathbb{R}^{m \times d}$ is a Bernoulli random matrix, $m \geq C(s \log(d/s) + \log(\epsilon^{-1}))$ for a universal constant C > 0. If we have $y_1 = \mathbf{A}x_1$, $y_2 = \mathbf{A}x_2$, and $y_1 = y_2$, then with probability at least $1 - \epsilon$, we know that $x_1 = x_2$.

Proof. Lemma 4 is a corollary of Lemma 3. Lemma 3 says that if x is sparse, then y uniquely determines x by running ℓ_1 regression. That means, y can be used as a certificate for testing whether the unknown vector x is what we want. Using Lemma 3, we know that by running ℓ_1 regression, we could recover the unique solution for both $y_1 = Ax_1$ and $y_2 = Ax_2$. Since $y_1 = y_2$, by probability $1 - \epsilon$, the two programs have the same unique solution, denoted as x'.

If $x_1 \neq x_2$, it means x' is not the same as at least one of them. Without loss of generality, assume $x' \neq x_1$. This contradicts the claim of Theorem 3, which says x' equals x_1 .

Proof of Theorem 3. Theorem 3 is a simple corollary of Lemma 4. To prove Theorem 3, it is sufficient to prove that a l-by-d Bernoulli random matrix can differentiate all s-sparse vectors with high probability, which is implied by Lemma 4.