Adaboost Implementation

David Torpey

May 20, 2017

Contents

1	Introduction	2
2	Algorithm	2

Introduction 1

In order to perform the Adaboost (Adaptive Boosting) algorithm, we need to define two hyper-parameters:

- 1. M number of models in the Adaboost cascade.
- 2. C_i a base classifier to use in the Adaboost cascade.

Usually, C_i is some simple classifier such as a decision stump (a decision tree of depth one). An optimal M can be chosen through cross-validation.

$\mathbf{2}$ Algorithm

Below is pseudocode for the Adaboost algorithm.

Algorithm 1 Adaboost

Initialize observation weights $D_t(i) = \frac{1}{m}, \forall i = 1, \dots, m$.

for t = 1 to T do

- (1) Train weak learner h_t using distribution D_t (sample m samples from X using D_t .
- (2) Given above weak hypothesis $h_t: X \to \{-1, +1\}$, find $\epsilon_t =$ $P_{i \sim D_t}[h_t(x_i) \neq y_i].$

(3) Calculate $\alpha_t = \frac{1}{2}ln(\frac{1-\epsilon_t}{\epsilon_t})$. Update the weight distribution for the samples: $D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$, where Z_t is a normalization factor that ensures D_{t+1} is a distribution. This can be, for example, $Z_t = \sum_{i=1}^m (D_t(i))$.

end for

The final classifier/hypothesis will then be:

$$H(x) = sign(\sum_{t=1}^{T} (\alpha_t h_t(x)))$$
(1)