

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS CRATEÚS CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

BRUNO TEIXEIRA DE SOUSA

SOLUÇÃO HEURÍSTICA APLICADA AO PROBLEMA DE ALOCAÇÃO DE SALAS DA UNIVERSIDADE FEDERAL DO CEARÁ – CAMPUS CRATEÚS

BRUNO TEIXEIRA DE SOUSA

SOLUÇÃO HEURÍSTICA APLICADA AO PROBLEMA DE ALOCAÇÃO DE SALAS DA UNIVERSIDADE FEDERAL DO CEARÁ – CAMPUS CRATEÚS

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Ciência da Computação do Campus Crateús da Universidade Federal do Ceará, como requisito parcial à obtenção do grau de bacharel em Ciência da Computação.

Orientadora: Prof. Ma. Lisieux Marie Marinho dos Santos Andrade

Coorientador: Prof. Me. Luiz Alberto do Carmo Viana

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária

Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S696s Sousa, Bruno Teixeira de.

Solução heurística aplicacada ao problema de alocação de salas da Universidade Federal do Ceará- campus crateús / Bruno Teixeira de Sousa. – 2019.

113 f.: il. color.

Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Crateús, Curso de Ciência da Computação, Crateús, 2019.

Orientação: Profa. Ma. Lisieux Marie Marinho dos Santos Andrade.

Coorientação: Profa. Ma. Luiz Alberto do Carmo Viana.

1. Problema de Alocação de Salas. 2. Meta-heurística. 3. Modelo Computacional. 4. Gerador de Instâncias. 5. Busca Tabu. I. Título.

CDD 004

BRUNO TEIXEIRA DE SOUSA

SOLUÇÃO HEURÍSTICA APLICADA AO PROBLEMA DE ALOCAÇÃO DE SALAS DA UNIVERSIDADE FEDERAL DO CEARÁ – CAMPUS CRATEÚS

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Ciência da Computação do Campus Crateús da Universidade Federal do Ceará, como requisito parcial à obtenção do grau de bacharel em Ciência da Computação.

Aprovada em: 02 de julho de 2019

BANCA EXAMINADORA

Prof. Ma. Lisieux Marie Marinho dos Santos Andrade (Orientadora) Universidade Federal do Ceará (UFC)

Prof. Me. Luiz Alberto do Carmo Viana (Coorientador) Universidade Federal do Ceará (UFC)

Prof. Me. Jefferson Lourenço Gurguri Instituto Federal de Educação do Ceará (IFCE)

Prof. Dr. Renê Pereira Gusmão Universidade Federal do Sergipe (UFSE)

Dedico este trabalho a minha mãe Luciana Soares, meu pai José Teixeira e meu irmão José Rodrigo por todo apoio e carinho.

AGRADECIMENTOS

À minha Mãe e ao meu Pai, por sempre me proporcionar acesso a um ensino de qualidade e por sempre zelar por um ambiente familiar com muito carinho, atenção, amparo, amor, respeito, companheirismo. Sobretudo um suporte sólido para todos os momentos difíceis. Irmão, seu apoio também foi vital.

Em especial à minha amada Mãe por todas as horas de sonos perdidas juntos. Os momentos onde ficava à minha espera para antes de mais horas e horas de estudos sempre através de muitas conversas me repassar confiança e clamaria como só ela sabe proporcionar.

Aos meus orientadores, Profa. M.e. Lisieux Marie Marinho dos Santos Andrade e Prof. M.e. Luiz Alberto do Carmo Viana, pelas suas formidáveis orientações, tanto pelos seus elogios e críticas. Como pela calma e paciência em todas as etapas do trabalho.

Aos meus amigos de graduação onde tivemos diversas longas horas de discussão e motivação mútuas. Todos os obstáculos ultrapassados durante essa minha trajetória acadêmica não teria virado viável sem companheirismo dos meus amigos e minhas amigas que estiveram ao meu lado durante toda essa caminhada. Em especial Mârdonio Vieira, Uálison Rodrigues, Wislla Nuânska, Paulo Henrique, Tiago Rocha, Luiza Ananda, Icaro de Sena, Saori Costa e Ayrton Sousa . Como também aos amigos de outros cursos como Lara Carneiro, Ariane Carvalho, Klayre Sousa, Ana Larissa e especialmente Débora Martins.

Agradeço a todos os professores por me proporcionar o conhecimento não apenas racional, mas a manifestação do caráter e afetividade da educação no processo de formação profissional. Por todos que a mim se dedicaram, não somente por terem me ensinado, mas por terem me feito aprender. Em especial Andre Meireles, Lívio Freire, Rennan Dantas, Filipe Fernandes, Allysson Allex e Giannini Italino.

Agradeço a todos os servidores do Campus da UFC em Crateús por todo o suporte proporcionado a minha pessoa durante esses quase 5 anos. Em especial Aline Pinho, Amanda Maria, Marcella Bezerra, Felipe Ferreira e a carinhosa Tia Ana Célia.

Agradecer a minha amiga Patricia Farias por todas as noites em claro que passamos juntos entre conversas e conselhos durante toda essa caminhada onde no inicio dessa jornada nos conhecemos.

Agradeço a toda à família Núcleo Popular em especial a Adylson Galdino, Nayanne Vieira, Matheus Figueiredo, Vanuzia Vasconcelos, Stefany Tavares, Samara Paulino, Samara Bernandes. Por todas as vibrações positivas e os conselhos.

"O planeta não vai ser salvo por quem tira notas altas nas provas, mas por aqueles que se importam com ele." (Howard Gardner)

RESUMO

O problema de Alocação de Salas possui natureza combinatória, devido às relações entre ele-

mentos como salas, professores, recursos físicos, entre outros. Desta forma, surge a necessidade

de sanar conflitos no mundo real, visto que nos ambientes acadêmicos a explosão combinatória

dos elementos é elevada e a execução desta atividade de forma manual é inviável. Sendo assim,

o presente trabalho apresenta um modelo computacional, um gerador de instâncias e uso da

estratégia meta-heurística Busca Tabu aplicada ao Problema de Alocação de Salas no contexto

da Universidade Federal do Ceará, Campus Crateús. Experimentos com 748 casos de testes, dis-

tribuídos em 4 cenários, revelam resultados promissores constatando a eficiência da metodologia

adotada.

Palavras-chave: Problema de Alocação de Salas. Meta-heurística. Modelo Computacional.

Gerador de Instâncias. Busca Tabu

ABSTRACT

The problem of Room Allocation is the combinatorial nature, the answers among the elements as rooms, physical resources, among others. In this way, the outbreak of conflicts of life in the real world, since the academic environments, the combination of elements and the trainings of manual form is impracticable. Thus, the present work presents a computational model, a generator of instances and use of the metaheuristic strategy, Campus Crateús. Experiments with 748 test cases, distributed in 4 scenarios, show promising results in the adopted methodology.

Keywords: Room Allocation Problem. Meta-heuristics. Computational Model. Instance Generator. Search Tabu

LISTA DE FIGURAS

Figura 1 – Representação gráfica para um problema de minimização	20
Figura 2 – Heurística de construção gulosa de uma solução inicial	21
Figura 3 – Heurística de construção aleatória de uma solução inicial	22
Figura 4 – Método da Descida	23
Figura 5 – Diagrama da Organização do Problema de Alocação de Horários	26
Figura 6 – Representação computacional da solução para problema PAS	31
Figura 7 – (a) Representação da escolha de um par Professor-Turma, (b) Ilustra a troca	
entres os elementos (c) e Representa a solução vizinha encontrada	32
Figura 8 – (a) Representação da escolha de uma Turma (b), Ilustra a Alocação da Turma	
e (c) Representa a solução vizinha encontrada	32
Figura 9 - (a) Representação da escolha de uma Turma, (b) Ilustra a realocação da	
Turma em outra sala e (c) Representa a solução vizinha encontrada	33
Figura 10 – Movimentação Busca Tabu	34
Figura 11 – Algoritmo de Busca Tabu	35
Figura 12 – Algoritmo do troco Genérico	35
Figura 13 – Algoritmo da Construção Híbrida.	36
Figura 14 – Algoritmo de Pertubação	36
Figura 15 – Algoritmo do Busca Tabu Modificado	37
Figura 16 – Tempo Exato instâncias reais	48
Figura 17 – Tempo Exato instâncias geradas	48
Figura 18 – Taxa de Qualidade na Obtenção de Boas Soluções	50

LISTA DE TABELAS

Tabela 1 –	Porcentagem utilizada por perfil de professor em cada Classe de instância	46
Tabela 2 –	Quantidade de professores por perfil de Carga Horária em Sala de Aula	46
Tabela 3 –	Quantidade de instâncias por classes	46
Tabela 4 –	Dados dos testes realizados nos conjuntos de instâncias reais e geradas	47
Tabela 5 –	Parâmetros Adotados para os Cenários de Testes do Procedimento de Busca	
	Tabu	49
Tabela 6 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 100	56
Tabela 7 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 200	57
Tabela 8 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 300	59
Tabela 9 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 400	61
Tabela 10 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 100	64
Tabela 11 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 200	66
Tabela 12 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 300	68
Tabela 13 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 400	70
Tabela 14 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 100	73
Tabela 15 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 200	75
Tabela 16 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 300	77
Tabela 17 –	Resultados das instâncias aplicadas a heurística com os parâmetros todos	
	iguais a 400	79

Tabela 18 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 100	81
Tabela 19 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 200	82
Tabela 20 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 300	83
Tabela 21 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 400	84
Tabela 22 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 100	86
Tabela 23 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	00
•	07
iguais a 200.	87
Tabela 24 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 300	88
Tabela 25 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 400	89
Tabela 26 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 100	91
Tabela 27 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 200	92
Tabela 28 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 300	93
Tabela 29 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 400	94
Tabela 30 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 100	96
Tabela 31 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	,,
iguais a 200	97
-	91
Tabela 32 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	00
iguais a 300	98
Tabela 33 – Resultados das instâncias aplicadas a heurística com os parâmetros todos	
iguais a 400	99

Tabela 34 – Taxa de erro do BT em relação a restrição professor-turma na classe 1 100
Tabela 35 – Taxa de erro do BT em relação a restrição professor-turma na classe 2 101
Tabela 36 – Taxa de erro do BT em relação a restrição professor-turma na classe 3 102
Tabela 37 – Taxa de erro do BT em relação a restrição professor-turma na classe 4 103
Tabela 38 – Taxa de erro do BT em relação a restrição professor-turma na classe 5 104
Tabela 39 – Taxa de erro do BT em relação a restrição professor-turma na classe 6 105
Tabela 40 – Taxa de erro do BT em relação a restrição professor-turma na classe 7 106
Tabela 41 – Taxa de erro do BT em relação a restrição professor-dia na classe 1 107
Tabela 42 – Taxa de erro do BT em relação a restrição professor-dia na classe 2 108
Tabela 43 – Taxa de erro do BT em relação a restrição professor-dia na classe 3 109
Tabela 44 – Taxa de erro do BT em relação a restrição professor-dia na classe 4 110
Tabela 45 – Taxa de erro do BT em relação a restrição professor-dia na classe 5 111
Tabela 46 – Taxa de erro do BT em relação a restrição professor-dia na classe 6 112
Tabela 47 – Taxa de erro do BT em relação a restrição professor-dia na classe 7 113

SUMÁRIO

1	INTRODUÇÃO	15
1.1	Justificativa	15
1.1.1	Cenário da Educação Superior	15
1.1.2	Evasão Escolar	16
1.2	Objetivos	17
1.2.1	Objetivo Gerais	17
1.2.2	Objetivos Específicos	17
1.3	Estrutura do trabalho	17
2	NOTAÇÕES E DEFINIÇÕES	18
2.1	Problema de Otimização Combinatória	18
2.2	Otimização Computacional	18
2.3	Conceito de Vizinhança	19
2.4	Ótimo Local	19
2.5	Ótimo Global	19
2.6	Procedimentos Heurísticos	20
2.6.1	Heurística Construtivas	20
2.6.2	Heurística de Refinamento	22
2.7	Meta-heurísticas	23
3	PROBLEMA DA ALOCAÇÃO DE SALAS	25
3.1	Otimização e o Problema de Alocação de Sala	25
3.2	Problema de Horários	25
3.2.1	Problema de Horários de Aula	26
3.2.2	Problema de Horários de Curso	27
3.2.3	Problema de Horários de Atividade	28
4	HEURÍSTICA PROPOSTA	30
4.1	Representação de uma solução	30
4.2	Estrutura de Vizinhanças e Movimentos	31
4.3	Busca Tabu	33
4.4	Geração da Solução Inicial	35
4.5	Estrutura Heurística Utilizada	36

5	MODELO MATEMÁTICO	38
5.1	Restrições	38
5.2	Entradas	39
5.3	Variáveis	39
5.4	Restrições e Função Objetivo	40
5.5	Linearização	42
6	EXPERIMENTOS COMPUTACIONAIS	45
6.1	Ambiente de Testes	45
6.2	Gerador de Instâncias	45
6.3	Resultados do Método Exato	47
6.4	Resultados da Heurística	49
7	CONCLUSÃO	51
	REFERÊNCIAS	52
	APÊNDICES	54
	APÊNDICE A – Resultados da Classe 1	54
	APÊNDICE B – Resultados da Classe 2	62
	APÊNDICE C – Resultados da Classe 3	71
	APÊNDICE D – Resultados da Classe 4	80
	APÊNDICE E – Resultados da Classe 5	85
	APÊNDICE F – Resultados da Classe 6	90
	APÊNDICE G – Resultados da Classe 7	95
	APÊNDICE H – Taxa de Erro da Busca Tabu na relação Professor-Turma .	100
	APÊNDICE I – Taxa de Erro da Busca Tabu na relação Professor-Dia	107

1 INTRODUÇÃO

Estatísticas do Ministério da Educação (MEC) apontam o crescimento do ingresso de estudantes no Ensino Superior. Segundo Franco (2008), tal crescimento é justificado pelo forte investimento do Governo Federal na interiorização das Instituições Federais de Ensino em cidades do interior do país, e também ao estímulo à programas de apoio financeiro para estudantes na esfera privada.

Proporcional à entrada de alunos nas instituições, deve ser o esforço das organizações educacionais no preparo dos ambientes físicos, programas pedagógicos e equipe docentes. Devendo ser garantida no início do período letivo, a alocação desses recursos, e um destes procedimentos no ensino presencial é alocação de turmas, salas e professores.

A Universidade Federal do Ceará (UFC), instalada no município de Crateús, possui atualmente a oferta de cinco cursos de bacharelado. Por tratar-se de um novo espaço acadêmico, a entrada de novos estudantes e a oferta de disciplinas cresce a cada novo período, e com o passar dos anos, a quantidade de alunos, disciplinas e professores aumentam. Como consequência, a complexidade do procedimento da alocação de turmas aumenta, sendo então de extrema relevância o desenvolvimento de ferramentas tecnológicas para realizar a automatização desse processo. A necessidade de explorar e encontrar uma boa configuração de horários, em termos de Otimização Combinatória (OC), foi modelada e denominada como Problema de Alocação de Salas (PAS). Classificado como NP-difícil, tem por objetivo a construção de uma solução viável em um tempo computacionalmente razoável (EVEN *et al.*, 1975; CARTER; TOVEY, 1992).

Dentro deste cenário, o presente trabalho baseia-se no uso de estratégias computacionais de otimização. Por exemplo, faz-se a construção de um modelo matemático e desenvolve-se heurísticas para o Problema da Alocação de Salas da Universidade Federal do Ceará em Crateús.

1.1 Justificativa

1.1.1 Cenário da Educação Superior

Segundo (FRANCO, 2008) a organização do Ensino Superior teve a sua estruturação iniciada em meado de 1934 por meio do inicio da Universidade de São Paulo, registros revelam que, no pós-guerra, o Brasil apresentou a maior expansão no sistema de educação, em todos os níveis. Martins (2000) afirma que com o advento do final da década passada, o crescimento da

Educação Superior no país atingiu média de 7% ao ano, produzindo uma diversificação da forma de atendimento aos ingressantes, sobretudo na graduação.

Censo realizado pelo MEC em 2016 demonstra que as instituições receberam quase três milhões de novos discentes, contudo esse número representa apenas um crescimento de 0,2% em relação ao ano anterior. Tendo uma ressalva para as Instituições privadas onde abrigam a grande parcela de ingressantes sendo 75,3% delas, sobretudo uma tênue queda de 0,3% nas matrículas é relevado entre 2015 e 2016.

Os dados apresentados pelo Censo alarmaram ainda as autoridades educacionais evidenciando as metas do Plano Nacional de Educação (PNE), que prospecta um aumento para a taxa de atuação de jovens na faixa de 18 a 24 anos no ensino superior dos atuais 17,8% para 33%.

1.1.2 Evasão Escolar

A Evasão Escolar é um fenômeno social complexo definido como a interrupção no ciclo de estudos (GAIOSO, 2005). É um dos maiores problemas que atinge as Instituições do Ensino Superior Brasileiro, seja no âmbito público ou privado. O abandono dos cursos por alunos de forma precoce proporciona uma perda coletiva: social, de recursos e tempo dos envolvidos no árduo processo de ensino, pois segundo Lobo (2012) essa perda perpassa pelos alunos, seus professores, Instituição de Ensino, o sistema de educação e toda a sociedade.

O processo de desistência estudantil no Ensino Superior atinge também a escala internacional demonstrando um impacto negativo nos resultados dos sistemas educacionais. Por Filho *et al.* (2007) o fator econômico do aluno é a maior razão para a interrupção da vida estudantil, e engloba a ordem acadêmica, além das respectivas do aluno no curso à Instituição como papel positivo no que diz respeito ao incentivo da permanência do aluno. Em Andriola *et al.* (2006, p. 365), que também avalia a investigação das razões para evasão, os autores evidenciam que:

"O envolvimento docente com o ensino de graduação [...] é insatisfatório para 41,1% dos entrevistados; é satisfatório para 36,8% dos coordenadores, embora destaquem que muitos docentes priorizam o ensino de pós-graduação e a pesquisa".

O maior engajamento dos docentes com a graduação é consequentemente um maior

suporte para permanência discente, mensurado como elemento expressivo para uma parcela significativa dos coordenadores (74%) entrevistados por Adriola, Adriola e Moura (2006). Desta forma, o presente estudo apresenta-se como ferramenta importante para uma melhor distribuição dos horários docentes em sala de aula, preservando a familiaridade individual docente com os componentes curriculares, otimizando assim seu tempo para realização de atividades extraclasse que estimulem a permanência dos alunos no curso.

1.2 Objetivos

1.2.1 Objetivo Gerais

Desenvolver e empregar uma modelagem matemática e um procedimento heurístico a fim de otimizar a tarefa de alocação de salas de aula para a Universidade Federal do Ceará - Campus Crateús.

1.2.2 Objetivos Específicos

- Caracterizar modelo computacional para o Problema de Alocação de Salas ao contexto da UFC Crateús;
- Implementar procedimento heurístico para o Problema de Alocação de Salas;
- Avaliar o impacto da solução heurística, visto o esforço computacional, frente aos resultados obtidos nos experimentos exatos.

1.3 Estrutura do trabalho

Para um melhor compreensão e organização, o presente trabalho está disposto em 7 capítulos. No Capítulo 2, trata das notações e definições para melhor entendimento do capítulos seguintes. O Capítulo 3 detalha o Problema de Alocação de Salas no contexto educacional. No Capítulo 4, descreve-se a heurística utilizada. No Capítulo 5, detalha-se o modelo matemático não linear desenvolvido e sua linearização. O Capítulo 6, descreve e analisa os resultados experimentais obtidos. Por fim, o Capítulo 7 apresenta a conclusão e a proposta para trabalhos futuros.

2 NOTAÇÕES E DEFINIÇÕES

Nesta seção apresenta notações e definições que são base para este trabalho. A primeira seção apresenta o conceito do problema de otimização combinatória. Após isso, é apresentado conceito de vizinhança, ótimo local e global. Por fim, os procedimentos heurísticos são apresentados.

2.1 Problema de Otimização Combinatória

Uma grande variedade de problemas reais que surgem na indústria, economia, logística, etc., são problemas de decisão NP-completos, e tem suas respectivas versões de otimização NP-difíceis. Formalmente, um problema de otimização, para o caso de minimização, pode ser descrito como:

$$min \quad f(s) \tag{2.1}$$

su jeito
$$a \ s \in S$$
 (2.2)

Nessa descrição, $f: S \to R$ é a função-objetivo, a ser minimizada na região viável S, isto é, o conjunto finito das possíveis soluções viáveis para o problema abordado. Desta forma, Otimização Combinatória compreende o processo de descobrir e comparar soluções factíveis até que nenhuma solução melhor seja capaz de ser encontrada. Essas soluções são classificadas como boas ou ruins em termos de um objetivo Kalyanmoy $et\ al.\ (2001)$.

2.2 Otimização Computacional

A Otimização Computacional se refere a um conjunto de métodos matemáticos direcionados para a seleção de uma solução ótima (submetidos a alguns critérios) partindo de um universo de alternativas disponíveis. Segundo Gamarra e Guerrero (2015), efetivamente, a Otimização objetiva encontrar os melhores valores disponíveis para alguma função-objetivo, dentro de um domínio determinado ou limitado por um conjunto de restrições. Nota-se ainda que há uma ampla gama de funções-objetivo e tipos de domínios.

2.3 Conceito de Vizinhança

A estrutura de vizinhança é uma função $N: S \to 2^S$, em que determina, para todo $s \in S$, um conjunto de vizinhos $N(s) \subseteq S$. O conjunto N(s) é denominado de vizinhança de s.

Segundo Coelho (2006), uma solução s' faz parte da vizinhança da solução s se, e somente se, s' resultou de uma modificação de s, de maneira que continue a fazer parte do conjunto de soluções possíveis.

2.4 Ótimo Local

Geometricamente, as restrições lineares definem um poliedro convexo, que é autodenominado um conjunto de pontos viáveis. Em alguns casos, chegamos a valores da qual alterações discreta não conduz a resultados melhores, essas soluções chamamos de ótimo local, como podemos observar na Figura 1 os pontos verde.

2.5 Ótimo Global

Um problema de otimização temos uma função objetivo e um conjunto de restrições, os dois relacionados às variáveis de decisão. Os valores fazíveis às variáveis de decisão são determinados pelas restrições impostas sobre essas variáveis, construindo um conjunto discreto (finito ou não) de soluções viáveis a um problema. A solução para o problema de otimização, ou seja, o ótimo global, é menor (ou maior) valor possível para a função objetivo para o qual o valor atribuído às variáveis não viole nenhuma restrição. Nota-se que, na Figura 1, assim o ponto vermelho como mínimo global no espaço de solução.

Ótimo local
 Ótimo Global

Figura 1 – Representação gráfica para um problema de minimização

Fonte: Próprio autor

2.6 Procedimentos Heurísticos

Uma heurística é um conjunto de regras e métodos que conduzem à descoberta de soluções para a resolução de problemas computacionais, fornecendo, em geral, soluções satisfatórias, em um período de tempo razoável Souza (2008). O conceito "satisfatório" e "razoável" baseia-se no contexto inerente a heurística aplicada. Por exemplo, a alocação de turmas em um conjunto de salas será razoável se todas as turmas forem dispostas de maneira que não ocorra sobreposição de duas ou mais turmas. No entanto, não será razoável se necessitar de mais salas adicionas para que ocorra a alocação das turmas.

Desta forma, heurísticas são técnicas inspiradas em processos intuitivos que buscam uma boa solução, sobre um custo computacional aceitável, sem, no entanto, estar capacitada a garantir a sua otimalidade, como também garantir quão próximo ela está da solução ótima (SOUZA, 2008). Segundo Souza (2008), a grande maioria das heurísticas são algoritmos baseados em construção e algoritmos de melhoria (refinamento). Nas heurísticas de construção, a solução é gerada sem partir de uma solução inicial. Assim, os métodos são responsáveis por gerar uma solução.

2.6.1 Heurística Construtivas

e busca tabu na resolução do problema de alocação de salas. Os algoritmos baseados em construção partem de uma solução vazia, e adicionam elemento a elemento, respeitando os critérios heurísticos até construir uma solução. Segundo Souza (2008), pode-se compreender os

métodos aleatórios como as heurísticas de construção mais simples.

Em métodos gulosos, a cada passo da construção da solução, é selecionado um único elemento, onde o candidato selecionado é o "melhor" segundo o critério da heurística. O termino do processo ocorre quando todos os candidatos são analisados. Segundo Souza (2008), as heurísticas gulosas, em geral, constroem soluções de qualidade superior à média das soluções aleatórias. Contudo, apesar de apresentar esse ponto positivo, há uma desvantagem: após realizar uma decisão, em um certo momento, da escolha de um elemento, esse não pode ser alterado no caso da escolha ser uma má decisão. Tal desvantagem pode ser contornada adicionando uma aleatoriedade na construção. O aspecto da diversidade depende das soluções finais geradas em pequena escala.

Segundo Ferreira (2004), para problemas com complexidade elevada, a aplicação de estratégias heurísticas, no geral, não fornece boas soluções, tendo em vista que podem ser melhoradas com o complemento com os métodos de refinamento (melhoria).

A Figura 2 representa o pseudocódigo para a construção de uma solução inicial para um determinado problema de otimização que utiliza a função gulosa g(.). Verifica-se que o t_{melhor} representa o melhor integrante do conjunto de elementos com o valor mais satisfatório de acordo com a função de avaliação g, ou seja, aquele t_{melhor} que possui o menor (maior) valor de g quando o problema abordado é de minimização (maximização).

Figura 2 – Heurística de construção gulosa de uma solução inicial.

```
Algoritmo: Construção Gulosa

1: procedimento ConstrucaoGulosa(g(.), s)

2: s ← {}

3: Inicialize o conjunto C de elementos candidatos

4: ENQUANTO ( C != {}) FAÇA

5: g(t_melhor) = melhor {g(t) | t ∈ C}

6: s ← s ∪ {t_melhor}

7: Atualize o conjunto C de elementos candidatos;

8: fim

9: retorne s;
```

Fonte: Adaptado de (SOUZA, 2008)

A estrutura de construir uma solução utilizando o algoritmo apresentado na Figura 2 ocorre de forma bastante simples, escolhendo a cada processamento do laço o melhor elemento candidato até concluir a verificação de todos. Após isso retorna o resultado que é o conjunto s.

Outro processo utilizado para geração de uma solução inicial é a escolha de um

candidato de forma aleatória, em outras palavras, a cada passo é escolhido um elemento arbitrário a ser colocado no conjunto solução. A grande vantagem dessa metodologia reside na simplicidade da implementação, que faz uso de testes empíricos. A desvantagem é a baixa qualidade, em média, da solução final produzida, que geralmente requer um maior esforço computacional na fase de refinamento (SOUZA, 2008). A Figura 3 descreve o pseudocódigo que baseia-se na escolha aleatória.

Figura 3 – Heurística de construção aleatória de uma solução inicial.

```
Algoritmo: Construção Aleatória

1: procedimento ConstrucaoAleatoria(g(.), s)

2: s ←{}

3: Inicialize o conjunto C de elementos candidatos

4: ENQUANTO (C!={}) FAÇA

5: Escolha aleatoriamente t_escolhido ∈ C

6: s ← s ∪ {t_escolhido}

7: Atualize o conjunto C de elementos candidatos;

8: fim

9: retorne s;
```

Fonte: Adaptado de (SOUZA, 2008)

2.6.2 Heurística de Refinamento

Heurísticas de refinamento, também chamadas de heurísticas de melhoria ou busca local, constituem uma ampla classe de algoritmos cujo objetivo é procurar, a cada iteração, uma solução melhor quando comparada a solução vigente, explorando o conjunto de vizinhança. Essa família de heurísticas toma uma solução inicial qualquer, que pode ser obtida através de uma heurística construtiva. Desta forma, a definição de vizinhança é crucial em uma heurística de refinamento, visto que uma solução *s* pertencente ao espaço de soluções deve ser sempre acessível por qualquer outra solução em um número finito de passos (SOUZA, 2008).

Um exemplo desta classe de métodos é o descida/subida ($Descent/Uphill\ Method$) que, a partir de uma solução inicial qualquer, e com sucessivas iterações, realiza uma análise sobre todos os seus possíveis vizinhos, promovendo a locomoção exclusivamente para algum que venha a apresentar uma melhoria no atual valor da função de avaliação. A Figura 4 exibe o pseudocódigo do Método de Descida posto ao problema de minimização de uma função de avaliação f, partindo de uma solução inicial denotada por s, retratando a busca em uma determinada vizinhança N(.). Note que N(.) representa toda a vizinhança de uma dada solução s que, formalmente, exprimimos por $N(.) = s': s' \leftarrow s \oplus m$.

Figura 4 – Método da Descida.

```
Algoritmo: Método de Descida

1: procedimento Descida(f(.), N(.), s)

2: V = {s' ∈ N(s) | f(s') < f(s)}

3: ENQUANTO (|V| > 0) FAÇA

4: Selecione s' ∈ V, onde s' = arg min {f(s') | s' ∈ V}

5: s ← s'

6: V = {s' ∈ N(s) | f(s') < f(s)}

7: FIM

8: retorne s
```

Fonte: Adaptado de (SOUZA, 2008)

2.7 Meta-heurísticas

As meta-heurísticas são heurísticas que possuem um proposito geral e se propõem a tentar escapar das armadilhas de ótimos locais ainda distantes de um ótimo global. Apresenta uma abordagem para explorar eficientemente o universo finito de soluções viáveis dos problemas de diversas naturezas. Segundo Becceneri (2008), podemos descrever resumidamente meta-heurística como mecanismos de alto nível para desbravar o universo de busca, tendo em vista que cada uma utiliza uma estratégia específica.

De acordo com Osman e Laporte (1996), supracitado em Blum e Roli (2003), metaheurística é formalmente definida como um processo de geração iterativo, que rege uma heurística subordinada, de forma inteligente em diferentes conceitos para percorrer o espaço de busca. O qual deve ser modelado para um problema específico. Algumas das propriedades desejáveis para uma meta-heurística são:

- **Simplicidade**: deve ser simples e baseada em um princípio claro, que possa ser aplicável em geral;
- **coerência**: deve-se conseguir traduzir para o algoritmo, de forma natural, a ideia proposta pela meta-heurística;
- Eficiência: deve-se desprender um tempo computacional que seja razoável para a determinação da solução;
- **Efetividade**: deve-se encontrar as soluções ótimas para a maioria dos problemas propostos, para os quais se conhece a solução;
- Robustez: deve ser consistente, em uma ampla variedade de problemas testes;
- Amigável: deve ser fácil de entender e fácil de usar, e com a menor quantidade de parâmetros possíveis;

• Inovação: deve permitir sua utilização para novos tipos de aplicações.

Grande parte das meta-heurísticas cumprem com somente algumas das propriedade mencionada anteriormente. No entando, não existe uma meta-heurística que possa ser considerada a melhor, visto que dependem da natureza dos problemas e dos objetivos almejados.

3 PROBLEMA DA ALOCAÇÃO DE SALAS

A elaboração do quadro de horário no contexto educacional se tornou uma ação cíclica respeitando as características temporais das atividades, podendo ser anual, semestral ou qualquer outra modalidade utilizada. O problema da alocação de salas encontra-se inserido no campo da Pesquisa Operacional, visto que a complexidade da obtenção manual de uma solução é extremamente árdua.

A problemática de construir um horário é uma subclasse derivada da classe de problema combinatórios, dadas as sua características. No decorrer deste capítulo, serão apresentados elementos essenciais para a compreensão de algumas variantes desse problema.

3.1 Otimização e o Problema de Alocação de Sala

A otimização combinatória promove, na maioria de seus estudos, buscas por soluções que atendam a um determinado conjunto de propriedades pertencentes ao problema tratado. Estes problemas, muitas vezes de natureza discreta, contêm em si combinações elevados de seus elementos. Uma forma de solucionar tais problemas seria a enumeração simples de todas as possíveis soluções. Entretanto, para qualquer problema de um tamanho minimamente interessante (e útil), este método torna-se impraticável, já que o número de soluções possíveis é elevado.

Sua caracterização provém de duas naturezas de objetivo, que são: minimação ou maximização. Nos dois casos, tem-se uma função posta a um campo finito e enumerável. Entretanto, mesmo com domínio finito, algoritmos simples que verificam cada componente do domínio podem se tornar impraticáveis.

3.2 Problema de Horários

De acordo com SOUZA (2000), o problema delineia-se basicamente pela existência de um conjunto de turmas, um conjunto de professores e um conjunto de horários reservados para a realização das aulas. O processo inicia após todas as turmas estarem montadas e o quadro de professores definido.

Os envolvidos solicitam aos professores que enviem as suas disponibilidades, ou seja, os horários em que eles podem ou preferem dar aulas. A partir dessas informações, tem-se todas as restrições que devem ser atendidas. Tais restrições são classificadas por: hard, prioritárias e que devem a qualquer custo ser atendidas; e soft, que necessitam ser satisfeitas o máximo

possível.

3.2.1 Problema de Horários de Aula

O problema de Horário de Aula encontra-se nas mais diversas Instituições, e consiste em escalonar um conjunto de aulas em uma quantidade fixa de horários. Esta classe de problemas tem uma ramificação extremamente grande e uma parcela que pode ser observada na Figura 5, em que ALVES (2010) expõe de forma representativa.

Problema de Alocação oblema de Escala de oblema de Horário de rogramação de Jogo Problema de Horário Problema de Escala de Transporte Publico Tripulantes em Competições Educacional Funcionários Problema de Horários Problema de Horário Problema de Horários de Exames Escolar de Cursos Problema de Alocação de Aulas as Salas

Figura 5 – Diagrama da Organização do Problema de Alocação de Horários

Fonte: (ALVES, 2010)

Relacionando ao problema de geração de horário a aulas, o trabalho de Cirino (2016) trata o Problema de Alocação de Aulas a Salas (PAAS), conduzindo a um caso de estudo do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP), apresentando dois modelos de programação matemática inteira. A primeira modelagem aborda duas métricas de qualidade, que tem como objetivo minimizar o percentual de assentos livres nas salas e o número de trocas de salas das turmas. Além dessas, há restrições essenciais, como sobreposição de salas e conflito de horário. O segundo modelo, baseado no primeiro, adiciona mais três métricas de qualidade: uso e troca de sala; redução do deslocamento de currículo; restrição de salas ,preferencialmente vazias onde tem que atender a um conjunto de

salas que tem preferencia em manter-se vazias. Cirino (2016) ataca o PAAS de três formas: resolução exata *CPLEX*, meta-heurísticas mono-objetivo empregando as seguintes heurísticas: Busca Local (BL), Busca Tabu (BT), GRASP, Algoritmo Genético (AG) e Algoritmo Genético Compacto (AGC) e por fim meta-heurísticas multi-objetivo aplicando heurística Algoritmo de Busca em Tabela (ABT).

Os resultados de performance utilizados por Cirino (2016) na abordagem monoobjetivo demonstram que o *CPLEX* tem desempenho superior em relação aos demais algoritmos, porém o *CPLEX* não foi capaz de solucionar as instância do conjunto 5x. A Busca local e o GA demonstraram bons desempenhos para uma quantidade grande de instâncias, todavia busca local mostra-se superior ao AG. Consequentemente o busca local se torna a melhor algoritmo para solucionar o PAAS. Na abordagem multi-objetivo, o ABT tem como busca o BL e AGC. Apesar do BL ter tido uma performance superior ao AGC no multi-objetivo para grandes instâncias, o AGC mostrou-se extremamente superior às outras buscas para instâncias grandes, tendo apenas obtido alguns resultados complementares ao mono-objetivo, visto que métodos mono-objetivo com baixo desempenho mostraram-se promissores na tática multi-objetivo.

3.2.2 Problema de Horários de Curso

O problema de Horário de Curso vem sendo aplicado no ambiente acadêmico, tendo como foco a alocação de aulas em uma Instituição com as características de uma Universidade típica. Tal problema consiste em conjunto de cursos, como por exemplo Fundamento de Programação, Álgebra, Cálculo etc, e para cada curso há um número de aulas. Existem também o conjunto de currículos (Ciência da Computação, Engenharia Civil, Medicina etc.). Cada currículo envolve um conjunto de cursos. Os estudantes podem efetuar matrícula em turmas dos cursos de seu currículo. Turmas de um determinado curso podem vir a ter estudantes de currículos distintos.

Partindo do pressuposto da existência de um conjunto de horários assegurado para a execução das aulas em cada horário, um número limitado de salas. De acordo com Coelho (2006), a formulação básica para o Problema de Horário de Curso fundamenta-se em elaborar um quadro semanal com o horário de todas as aulas de um conjunto de disciplinas de cursos universitários, com o objetivo de minimizar a sobreposição de encontros de disciplinas que têm estudantes em comum.

A finalidade do problema consiste em alocar as aulas dos cursos aos horários dispo-

níveis, concernente às restrições em relação a capacidade e disponibilidade dos espaços existente na universidade. Haja visto que nenhum estudante pode cursar duas aulas ao mesmo tempo.

Nascimento *et al.* (2005) apresentaram uma modelagem matemática para o Problema de Programação de Cursos, com aulas e horários de inicio e término bem definidos, para um cenário de cursos universitários. A dificuldade do problema, assim como no trabalho de Cirino (2016), está na alocação das aulas às salas, respeitando os horários e outras restrições. Sua abordagem classifica seus requisitos em essenciais e não-essenciais, e tem como objetivo medir e avaliar seus atendimentos. Por fim, apresentou resultados que indicam uma redução satisfatório no número de inviabilidade em relação a demanda maior que a capacidade.

3.2.3 Problema de Horários de Atividade

O Problema de Escala de Atividades representa o problema de conter uma determinada quantidade de atividades para ser marcada em uma quantidade fixa de horários já definidos, onde uma quantidade de pessoas vão estar participando dessas atividade e as mesmas podem estar participando em diversas atividades. O principal problema é a sobreposição de horários onde os participantes estão em mais de uma atividade acontecendo simultaneamente. Para Ernst et al. (2004), "prover a pessoa certa, no tempo certo, no custo adequado e ainda alcançar um alto nível de satisfação dos trabalhadores é um problema crítico para as organizações.".

A preocupação de reduzir custo e otimizar recursos humanos se aplica nas mais diversas áreas inclusive na área da saúde. Sendo um alto custo realizar o atendimento de forma eficiente e ao mesmo tempo ocorrer um atendimento de forma eficaz para a sociedade se tornando uma combinação que preocupa desdo setor privado ao público. A necessidade de economizar nos gastos aplicados em médicos e hospitalares. Os altos valores exigidos nos planos de saúde em união com excessivos gastos nos hospitais públicos tem deixado cada vez mais uma grande parcela da população desassistida. Partindo do pressuposto saúde é um estado de bem-estar inerente a todo ser humano.

Abordando predileções individuais para a geração de alocações no contexto do Problema de Alocação de Escala de Trabalho, Poltosi (2007) apresenta uma modelagem matemática cuja função objetivo (FO) é composta por sete funções ponderadas por pesos individuais, com a finalidade de identificar e minimizar quais dessas são violadas na obtenção de uma solução factível. O problema é resolvido por meio de uma meta-heurística Busca Tabu (BT) combinada com Algoritmos Genéticos (AG). É também apresentado um estudo sobre a influência dos

parâmetros da BT e do AG na qualidade das soluções obtidas.

4 HEURÍSTICA PROPOSTA

Algumas características particulares dos problemas combinatórios, expostos na Seção 3.1, fazem com que a aplicação de métodos exatos garantam a otimalidade da solução encontrada ao término do processo. Porém, esses métodos podem tornar-se impraticáveis por conta do tempo gasto para se obter uma solução. Algumas propriedades dos métodos heurísticos (Seção 2.6) os tornam uma alternativa poderosa para solucionar problemas dessa natureza.

O presente trabalho faz uso do procedimento heurístico Busca Babu (BT), escolhido por suas aplicações a problemas semelhantes ao tema desta pesquisa, tais como Silveira *et al.* (2018), Souza *et al.* (2002), entre outros. Este capítulo é reservado à apresentação das estratégias utilizadas para a resolução do problema descrito pelo modelo formulado nesta pesquisa, o processo de geração de instâncias e a representação de uma solução válida.

4.1 Representação de uma solução

A representação utilizada para o conjunto de horários é feita por uma tabela, em que as linhas correspondem a horários pré-fixados e as colunas aos dias da semana, respeitando a ordem em que os eventos irão acontecer. Uma solução x é representada por três vetores de tamanho n: professor-turma, turma-sala e sala-slot, que são, respectivamente, a associação professor-turma, turma-sala e sala-slot (combinação de dia da semana e horário, isto é, uma entrada da tabela). Uma posição no vetor de associação professor-turma representa o arranjo de um professor p com uma turma t. Uma posição no vetor de associação turma-sala indica a associação de uma turma t a uma sala s e, por fim, no vetor de associação turma-slot são relacionadas as turmas t com os slots. Um exemplo é apresentado na Figura 6.

Relação Professor x Turma Prof n Prof 1 Turma r Turma 1 0 n Relação Turma x Sala Sala n Sala 1 Turma r Turma 1 0 n Relação Turma x Sala Turma n Turma 1 horário horário Dia 1 0

Figura 6 – Representação computacional da solução para problema PAS.

Fonte: Próprio autor.

Neste exemplo, é associado ao professor 1 à turma 1, que está alocada na sala 1 no horário 1. Permitindo a manipulação de forma simples das vizinhanças que serão mostradas na seções seguintes.

4.2 Estrutura de Vizinhanças e Movimentos

É imprescindível determinar uma estrutura de vizinhança, ou seja, por meio de uma função X é possível inferir uma solução s' semelhante a s, sabendo que s é uma solução qualquer para o problema do PAS, através de transformações conhecidas por movimentações. Para melhorar a visualização da vizinhança é aplicado uma transposição no vetores de solução s para s^T sem perda de estrutura. No presente trabalho são utilizados três movimentações, detalhadas a seguir.

O movimento de troca de turma entre professores, representados na Figura 7, consiste em escolher dois professores p_1 e p_2 (Figura 7 (a)), tendo o p_1 alocado a turma t_1 que não é do grupo de familiaridade do mesmo porém, é do grupo de familiaridade do p_2 . O movimento de troca consiste em desalocar a t_1 do p_1 e realocar para o p_2 (Figura 7 (b)), formando uma nova solução (Figura 7 (c)). Tal movimento não pode gerar uma quebra de restrição na relação

professor em relação as turmas que são familiaridade do mesmo.

Figura 7 – (a) Representação da escolha de um par Professor-Turma, (b) Ilustra a troca entres os elementos (c) e Representa a solução vizinha encontrada

Fonte: Próprio autor.

O deslocamento ilustrado na Figura 8, representa a aplicação de uma realocação a uma turma t_z que esteja alocada em um slot (dia e horário) e que possua quebra na relação professor-dia (Figura 8 (a)). Esta movimentação não pode gerar sobreposições dia horário entre turmas, como observado na turma t_z em um slot que consiste uma quebra de restrição Figura 8 (b). O movimento irá percorrer a vizinhança até encontrar um slot vago para remanejar a t_z (Figura 8 (c)).

Figura 8 – (a) Representação da escolha de uma Turma (b), Ilustra a Alocação da Turma e (c) Representa a solução vizinha encontrada

Fonte: Próprio autor.

Outro movimento de vizinhança também trata da realocação, contudo a solução realocada não apresenta nenhuma quebra de restrição, logo este procedimento é uma realocação simples, a Figura 9 representa esta ação. Consiste em uma turma t_y alocada em uma sala s_p (Figura 9 (a)), ser realocada na sala s_q (Figura 9 (b)), em que tal movimento leva a uma nova vizinhança (Figura 9 (c)) .

Figura 9 – (a) Representação da escolha de uma Turma, (b) Ilustra a realocação da Turma em outra sala e (c) Representa a solução vizinha encontrada

Fonte: Próprio autor.

4.3 Busca Tabu

Conforme mencionado, a presente pesquisa faz uso de um procedimento heurístico para solucionar o PAS no contexto do campus da UFC-Crateus. O método selecionado é o Busca Tabu, originalmente proposta em Glover (1994) e Hansen (1986). Consiste em um método de busca local para explorar o universo finito de soluções realizando movimentações, objetivando encontrar um melhor vizinho. Essa estratégia adotada realiza a memorização das soluções geradas, permitindo que o procedimento não se "prenda" em um ótimo local (Figura 10). Contudo, a mesma pode acarretar em um algoritmo cíclico, ou seja, poderá retornar uma solução já gerada anteriormente. De maneira a evitar esse ciclo, o algoritmo faz uso de uma lista tabu T com a finalidade de armazenar possíveis movimentos proibidos(as melhores soluções já visitadas).

Desta forma, o algoritmo Busca Tabu sonda nas suas iterações, um subconjunto V da vizinhança N(s) da solução vigente s. O componente $s' \in V$ com melhor valor nessa região respeitando a função f(.) é eleito a nova solução vigente, mesmo que s' seja pior que s, isto é, que f(s') > f(s) considerando um problema de minimização.

A lista tabu por um lado, reduz o risco de ciclagem (uma vez que ela garante o não retorno, por |T| iterações, a uma solução já visitada anteriormente), por outro lado também pode proibir movimentos para soluções que ainda não foram visitadas (WERRA; HERTZ, 1989 apud SOUZA, 2008). A função de aspiração A(f(s)) tem como finalidade modificar o *status* tabu de determinados movimentos. Note que podemos expressar essa função como f(s') < A(f(s)) que representa a geração de um valor para obter o movimento m em v.

Figura 10 – Movimentação Busca Tabu.

Fonte: Próprio autor.

O procedimento possui dois critérios de paradas: o alcance de uma quantidade máxima de iterações sem obter uma melhora na solução corrente, e o valor da melhor solução encontrada em um limite inferior conhecido. O intuito da segunda é evitar execuções desnecessárias do procedimento quando obtido uma solução ótima ou quando a mesma é julgada suficientemente boa para o problema abordado. A Figura 11 apresenta a Busca Tabu, por meio de pseudocódigo, admitindo uma função de minimização. Note que o mesmo contém o f_{min} representando o valor mínimo conhecido da função f.

Figura 11 – Algoritmo de Busca Tabu.

```
Algoritmo: Busca Tabu
1: procedimento BT(f(.), N(.), A(.), |A|, Fmin, |T|, BTMax,s)
2: s* ← s
                   {Melhor Solução obtida até então}
                   {Contador do número de iterações}
3: Iter ← 0
4: MelhorIter ← 0; {Iteração mais recente que forneceu s*}
                   {Lista Tabu}
6: ENQUANTO (f(s) > Fmin E Iter - MelhorIter < BTMax) FAÇA
7:
    Iter ← Iter+1
8:
     Seja s' ← s + m o melhor elemento de V sub. conjunto de N(s) tal o movimento m não
              tal que o movimento m não seja tabu OU s' atenda a condição de aspiração
              (f(s') < A(f(s)));
9:
    Atualize a lista tabu T
10: s ← s'
11: SE f(s) < f(s*) ENTÃO
         s* \leftarrow s
12:
         Melhoriter ← Iter
13:
14: Atualize a função de aspiração A
15: retorne s
```

Fonte: Adaptação de (SOUZA, 2008)

4.4 Geração da Solução Inicial

Uma solução inicial, para a presente pesquisa, é formulada por meio de uma heurística de construção hibrida, formada por um procedimento guloso e um algoritmo do troco genérico. O algoritmo do troco genérico considera ter n trocos com m moedas. Aplicado ao contexto do PAS na responsabilidade de estabelecer a relação professor-turma e a construção gulosa de turma-sala e turma-salot. Isso é representado no Figura 12 do Algoritmo .

Figura 12 – Algoritmo do troco Genérico.

```
Algoritmo : Troco Genérico
1: procedimento trocoGenerico(professores, turmas)
2: // professores Conjunto de Professores, turmas conju de turmas
3: s ← 0
       ← 0
4: x
5: PARA p ∈ professores FAÇA
     PARA p > 0 FAÇA
          x \leftarrow \{t \in turmas \mid t \text{ seja maior } \} \text{ tal que p.ch} + t \le p.ch
7:
8:
          s \leftarrow s \cup p
9:
     fim
10: fim
11: retorne s
12: fim
```

Fonte: Próprio autor.

O algoritmo de Construção Híbrida, união das estratégias do troco e gulosa, é apresentada na Figura 13 do Algoritmo .

Figura 13 – Algoritmo da Construção Híbrida.

```
Algoritmo : Construção Híbrida

1: procedimento construcaoHibrida(turmas, salas, professores, slots)

2: // professores conjunto de Professores, turmas conjunto de turmas

3: // slots conjunto de horário, salas conjunto de salas

4: professores turmas ← 0

5: turmas salas ← 0

6: turmas horários ← 0

7: professores turmas ← trocoGenerico(professores, turmas)

8: turmas salas ← construcaoGulosa(turmas, salas)

9: turmas horários ← construcaoGulosa(turmas, slots)

10: retorne { professores turmas, turmas salas , turmas horários }
```

Fonte: Próprio autor.

4.5 Estrutura Heurística Utilizada

A aplicação do procedimento Busca Tabu ao PAS é justificado visto que seu uso demonstra eficiência para problemas semelhantes, validado em diversos trabalhos, tais como Silveira *et al.* (2018) e Souza *et al.* (2002). Desta forma, a presente pesquisa realizou adequações na estrutura do procedimentos. O algoritmo de perturbação é bem simples de se compreender, já que apenas realiza uma troca, de maneira aleatória, nas relações professor-dia e professor-turma, e em seguida retorna a solução modificada.

Figura 14 – Algoritmo de Pertubação

```
Algoritmo : Perturbação

1: procedimento perturbacao (solucao)

2: slot_1 ← gerarNumeroAleatorio()

3: slot_2 ← gerarNumeroAleatorio()

4: solucao ← trocar(solucao, slot_1, slot_2)

5: prof_1 ← gerarNumeroAleatorio()

6: prof_2 ← gerarNumeroAleatorio()

7: trocarTurmasProfessores(solucao, prof_1, prof_2)

8: retornar solucao
```

Fonte: Próprio autor.

Na primeira fase, é construída uma solução inicial conforme descrito na Seção 4.4. A lista Tabu é utilizada para guardar as soluções encontradas que não conseguiram sofrer refinamento no (*IteraMaxSemMelhora*) iterações na fase encontrar melhor vizinho. O procedimento realiza uma perturbação a fim de passear por outra vizinhança e em seguida realizar novos refinamentos na solução.

Figura 15 – Algoritmo do Busca Tabu Modificado

```
Algoritmo : Busca Tabu Modificado
1: procedimento BTModificado(turmas, salas, professores, slots, BTMax,
     IteraMaxSemMelhora, tamLisTabu)
2: // BTMax máximo de iteração total, IteraMaxSemMelhora máximo de
     iterações sem melhorias, tamLisTabu tamanho máximo da lista tabu
3:
    lisTabu \leftarrow \{\}
    Iter \leftarrow 0
4:
     PARA Iter < max FAÇA
         S' \leftarrow melhorVizinho(S^*)
           SE(f(s') < f(s^*))
7:
              s*←s'
8:
           SENÃO
9:
10:
              Atualizar lisTabu com s'
11: fim
12: retornar menor(lisTabu)
13:fim
```

Fonte: Próprio autor.

A seguir, para melhor compreensão do problema no contexto da UFC-Crateús, será apresentado o modelo computacional estabelecido.

5 MODELO MATEMÁTICO

Um modelo matemático não-linear para o problema PAS da Universidade Federal do Ceará, Campus Crateús é apresentado no presente capítulo. A concepção do modelo é dada por um conjunto recursos: professores, turmas, dias e horários da semana, que devem ser alocados a um conjunto de salas. O propósito é realizar todas as alocações satisfazendo alguns critérios que podem ser observados nas subseções que seguem.

As seções 5.1, 5.2 e 5.3 apresentam, respectivamente, as restrições, entradas e variáveis utilizadas no modelo. Detalhes da modelagem não linear e a sua linearização são apresentados nas seções 5.4 e 5.5.

5.1 Restrições

Operando nos turnos matutino, vespertino e noturno, o Campus da UFC em Crateús oferta aulas de segunda a sexta-feira recebendo anualmente, em média, 250 novos estudantes distribuidos em diversas turmas e horários. A confecção da alocação de aulas e professores é realizada duas vezes ao ano (1 o e 2 o semestre), por meio do software FET¹. Contudo, esse procedimento usualmente necessita de intervenções manuais para que se obtenha uma solução favorável ao cenário esperado, dadas as características dos perfis docentes e as configurações de aulas ministradas.

Assim, algumas características do Campus foram pontuadas. Considera-se como uma solução factível aquela em que todas as turmas são alocadas contemplando suas cargas horárias teórica e prática, de forma a respeitar as horas de trabalho dos professores. Além dessas, são também consideradas restrições fortes: toda turma deve estar associada a exatamente um professor; duas turmas não podem ter conflitos em sua alocação, isto é, o uso das salas deve ser distinto caso sejam alocadas na mesma combinação de dia e horário.

As restrições a seguir são consideradas fracas. Seu cumprimento é preferível, mas não é mandatório.

- A Turmas com carga horária teórica e prática devem possuir a alocação das atividades teóricas em dias antecedentes aos dias das atividades práticas;
- B Os professores devem ser alocados apenas em seus dias preferenciais, e essa informação é tomada como entrada para o problema;

Disponível em: https://fet.br.uptodown.com/windows

C As alocações professor-turma devem respeitar o perfil de formação de cada docente, e tais perfis são também considerados entrada para o problema.

5.2 Entradas

O modelo possui os seguintes parâmetros de entradas.

P, o conjunto de professores;

T, o conjunto de turmas;

 $T_p \subseteq T$, que representa o subconjunto, para cada $p \in P$, das turmas que compõem o perfil acadêmico do professor p;

D, o conjunto de dias da semana;

 $D_p \subseteq D$, que representa, para cada $p \in P$, o subconjunto dos dias preferíveis para o professor p lecionar;

 $D^{'}\subseteq D$, que contém dias da semana com incidência de feriados do semestre;

H, o conjunto de slots de horários;

S, o conjunto de salas;

 $ch_t^T \in \mathbb{Z}_+$, que representa a carga horária teórica da turma $t \in T$;

 $ch_t^P \in \mathbb{Z}_+$, que representa a carga horária prática da turma $t \in T$;

 $ch_p \in \mathbb{Z}_+$, que representa a carga horária do professor $p \in P$.

Por simplicidade, é admitido que os conjuntos P, T, D, H, e S são representados pelos devidos segmentos iniciais de \mathbb{Z}_+ .

A seguir, são descritas as variáveis utilizadas.

5.3 Variáveis

O modelo desenvolvido possui as seguintes variáveis.

 z_{pi} , representa a associação entre um professor e um dia da semana;

 x_{pt} , representa a associação entre um professor e uma turma;

 y_{tijk}^{P} , que representa a associação de uma turma $t \in T$ com carga horária prática a um $i \in D, j \in H$ e $k \in S$;

 y_{tijk}^T , que representa a associação de uma turma $t \in T$ com carga horária teórica a um $i \in D, j \in H$ e $k \in S$;

 y_{tijk} , que representa a carga horária total da turma sem distinguir carga horária teórica da

prática;

 a_p , representa a penalidade a um professor quando é associado a uma turma fora do subconjunto T_p das turmas que compõem o perfil acadêmico do mesmo;

 b_p , que representa a penalidade a um professor quando é associado a um dia fora do seu subconjunto D_p de dias preferíveis para lecionar.

As variáveis $z_{pi}, y_{tijk}^P, y_{tijk}^T$ são definidas como binárias. Da mesma forma, as variáveis y_{tijk}, a_p e b_p são tomadas como inteiras não-negativas.

5.4 Restrições e Função Objetivo

Agora, são descritas as restrições e a Função Objetiva (FO). A seguir, é apresentado a descrição completa do modelo.

$$\min \quad z(\alpha, \beta) = \alpha \cdot \sum_{p \in P} a_p + \beta \cdot \sum_{p \in P} b_p$$
 (5.1)

$$\sum_{p \in P} x_{pt} = 1, \forall t \in T \tag{5.2}$$

$$\sum_{T \setminus T_p} x_{pt} \le a_p, \forall p \in P \tag{5.3}$$

$$\sum_{t \in T} (ch_t^T + ch_t^P) x_{pt} = ch_p, \forall p \in P$$
(5.4)

$$\sum_{i \in D} \sum_{j \in H} \sum_{k \in S} y_{tijk}^T = \frac{ch_t^T}{2}, \forall t \in T$$
(5.5)

$$\sum_{i \in D} \sum_{j \in H} \sum_{k \in S} y_{tijk}^P = \frac{ch_t^P}{2}, \forall t \in T$$
(5.6)

$$\sum_{t \in T} y_{tijk} \le 1, \forall i \in D, \forall j \in H, \forall k \in S$$
(5.7)

$$y_{tijk} = y_{tijk}^T + y_{tijk}^P, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.8)$$

$$x_{pt} \cdot y_{tijk} \le z_{pi}, \forall p \in P, \forall y \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.9)$$

$$\sum_{i \in D \setminus D_p} z_{pi} \le b_p, \forall p \in P \tag{5.10}$$

$$y_{tijk}^{P} \le 1 - y_{ti'j'k'}^{T}, \forall t \in T, \forall i \in D, \forall i' \in D' : i < i', \forall j, j' \in H, \forall k, k' \in S.$$
 (5.11)

$$x_{pt} \in \{0,1\}, \forall p \in P, \forall t \in T \tag{5.12}$$

$$y_{tijk}^{P} \in \{0,1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.13)$$

$$y_{tijk}^T \in \{0,1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S.$$

$$(5.14)$$

$$y_{tijk} \in \{0,1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S.$$

$$(5.15)$$

$$z_{pi} \in \{0,1\}, \forall p \in P, \forall i \in D \tag{5.16}$$

$$a_p \in \mathbb{B}^{|P|} \tag{5.17}$$

$$b_p \in \mathbb{B}^{|P|} \tag{5.18}$$

$$\alpha \in \mathbb{Z}_+^* \tag{5.19}$$

$$\beta \in \mathbb{Z}_+^* \tag{5.20}$$

Primeiramente, é tratada da FO. Essa consiste da penalização de dois parâmetros, α e β , que correspondem, respectivamente, à atribuição de um professor a uma turma fora de seu perfil, e à associação entre um professor $p \in P$ e um dia fora de D_p . A restrição (5.2) assegura que toda turma tenha apenas um professor associado a mesma.

Por fim, as restrições são descritas. A restrição (5.3) descreve quando um professor é vinculado a uma turma que não pertence ao grupo de turmas constantes em seu perfil. A restrição (5.4) garante que todo professor cumpra sua carga horária de trabalho. As equações (5.5) e (5.6) endossam que toda turma tem que cumprir sua carga horária prática e teórica respectivamente. (5.7) certifica que para qualquer dia, *slot* de horário e sala será associado apenas a uma turma. A equação (5.8) representa a associação entre a y_{tijk}^T e y_{tijk}^p para que possa ser valorado y_{tijk} . A restrição (5.9) garante a vinculação de um professor a uma turma com mesmo dia, *slot* de horário e sala. A restrição (5.10) descreve quando um professor é associado a um dia que não está compreendido dentro do seu conjunto de dias preferenciais para aulas. A restrição (5.11) assegura que uma turma teórica venha primeiro que uma turma prática. Por fim, a equações (5.12), (5.13), (5.14) e (5.15) são, respectivamente, restrições de integralidade.

Observa-se que, no modelo proposto, a restrição (5.9) não é linear. Para fazer-se uso do pacote de otimização pertencentes ao ambiente de testes, seu processo de linearização é apresentado na subseção que segue.

5.5 Linearização

Existem diversas abordagens para linearizar as restrições e FO levando em consideração a natureza das variáveis que as compõem Williams (2013). O produto de duas variáveis binárias na restrição (5.9) pode ser substituído por uma nova variável w, sujeita às seguintes restrições:

$$w_{ptijk} \le x_{pt} \tag{5.21}$$

$$w_{ptijk} \le y_{tijk} \tag{5.22}$$

$$w_{ptijk} \ge x_{pt} + y_{tijk} - 1 \tag{5.23}$$

(5.24)

É notável observar que as restrições de (5.21) até (5.23) inferem que $w_{ptijk} = (x_{pt} \cdot y_{tijk})$. Logo, realizando a substituição da (5.9) para a nova restrição, tem-se:

$$w_{ptijk} \le z_{pi} \quad \forall p \in P, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.25)$$

Após aplicação da linearização, o modelo segue finalizado.

$$\min \quad z(\alpha, \beta) = \alpha \cdot \sum_{p \in P} a_p + \beta \cdot \sum_{p \in P} b_p$$
 (5.26)

$$\sum_{p \in P} x_{pt} = 1, \forall t \in T \tag{5.27}$$

$$\sum_{T \setminus T_p} x_{pt} \le a_p, \forall p \in P \tag{5.28}$$

$$\sum_{t \in T} (ch_t^T + ch_t^P) x_{pt} = ch_p, \forall p \in P$$
(5.29)

$$\sum_{i \in D} \sum_{j \in H} \sum_{k \in S} y_{tijk}^T = \frac{ch_t^T}{2}, \forall t \in T$$
(5.30)

$$\sum_{i \in D} \sum_{j \in H} \sum_{k \in S} y_{tijk}^P = \frac{ch_t^P}{2}, \forall t \in T$$
(5.31)

$$\sum_{t \in T} y_{tijk} \le 1, \forall i \in D, \forall j \in H, \forall k \in S$$
(5.32)

$$y_{tijk} = y_{tijk}^T + y_{tijk}^P, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.33)$$

$$w_{ptijk} \le z_{pi} \quad \forall p \in P, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.34)$$

$$\sum_{i \in D \setminus D_p} z_{pi} \le b_p, \forall p \in P \tag{5.35}$$

$$y_{tijk}^{P} \le 1 - y_{ti'j'k'}^{T}, \forall t \in T, \forall i \in D, \forall i' \in D' : i < i', \forall j, j' \in H, \forall k, k' \in S.$$
 (5.36)

$$x_{pt} \in \{0,1\}, \forall p \in P, \forall t \in T \tag{5.37}$$

$$y_{tijk}^{P} \in \{0,1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.38)$$

$$y_{tijk}^T, \in \{0, 1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S.$$

$$(5.39)$$

$$y_{tijk}, \in \{0,1\}, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S.$$

$$(5.40)$$

$$z_{pi} \in \{0,1\}, \forall p \in P, \forall i \in D \tag{5.41}$$

$$a_p \in \mathbb{B}^{|P|} \tag{5.42}$$

$$b_p \in \mathbb{B}^{|P|} \tag{5.43}$$

$$\alpha \in \mathbb{Z}_+^*$$
 (5.44)

$$\beta \in \mathbb{Z}_+^* \tag{5.45}$$

$$w_{ptijk} \le x_{pt} \tag{5.46}$$

$$w_{ptijk} \le y_{tijk} \tag{5.47}$$

$$w_{ptijk} \ge x_{pt} + y_{tijk} - 1 \tag{5.48}$$

$$w_{ptijk} \in \{0,1\}, p \in P, \forall t \in T, \forall i \in D, \forall j \in H, \forall k \in S$$

$$(5.49)$$

Conhecido a estrutura da heurística proposta e a modelagem computacional aplicada ao problema tratado, próximo capítulo apresentará os experimentos computacionais realizados.

6 EXPERIMENTOS COMPUTACIONAIS

Neste Capítulo, é apresentado o ambiente computacional em que foram realizados os testes do modelo e procedimento heurístico adotado sobre dados reais e simulados. O processo de simulação ocorreu por meio de um gerador de instâncias próprio desenvolvido exclusivamente para o contexto do problema. Também serão apresentados no presente capítulo os resultados do métodos exatos, heurísticos e a análise da sensibilidade dos parâmetros.

6.1 Ambiente de Testes

A implementação do modelo foi realizada utilizando a linguagem orientada a objeto C++ versão 11, com o *concert* da ferramenta comercial *IBM ILOG CPLEX* 12.6.0. A heurística foi desenvolvida por meio da linguagem orientada a objeto C++ versão 11. Os testes computacionais foram realizados em um computador com processador *Pentium CPU* G4560 @ 3.5 *GHz* com 16 *GB* de *RAM*, sob o sistema operacional *Linux Mint* 19 *Tara* de 64 *bits*.

6.2 Gerador de Instâncias

Por tratar-se de um caso real do Campus da UFC em Crateús, foi verificado a necessidade da obtenção de mais instâncias. Uma vez que dada a operacionalização do campus até a presente data apenas sete configurações para alocações foram pontuadas, referente aos períodos letivos de 2016.1 a 2019.1. Tais instâncias são denominadas $T_{2016.1}$ a $T_{2019.1}$.

Desta forma, fez-se necessário a criação de um gerador de instâncias baseado nos parâmetros extraídos das instâncias reais, tais como: quantidade de salas, *slot* de horários, perfil docente, carga horária de aula dos professores, entre outros. De modo a manter real semelhança ao cenário institucional.

As instâncias foram geradas distribuídas por 7 classes baseadas na estrutura atual do curso de Ciência da Computação, ofertado na unidade acadêmica de Crateús. Tais características resultaram nos seguintes parâmetros: 10 salas, 4 *slots* de horários e a porcentagem de distribuição da quantidade de professor com determinado perfil, conforme Tabela 1.

Tabela 1 – Porcentagem utilizada por perfil de professor em cada Classe de instância.

Perfil Classe	2h	4h	6h	8h	10h	12h	14h
1	15%	20%	5%	5%	15%	30%	10%
2	0%	0%	0%	10%	30%	30%	30%
3	30%	30%	30%	10%	0%	0%	0%
4	10%	10%	0%	20%	20%	30%	10%
5	0%	0%	30%	30%	40%	0%	0%
6	0%	0%	20%	20%	20%	20%	20%
7	0%	0%	0%	20%	20%	30%	0%

A Tabela 1, apresenta os valores das porcentagens de professores que possuem determinada Carga Horária (CH), definindo assim o perfil de cada docente. Na classe de instância 1 foram utilizados um quantitativo de professores aleatório para cada perfil, contudo para as demais classes o número de docentes teve distribuição, conforme Tabela 2.

Tabela 2 – Quantidade de professores por perfil de Carga Horária em Sala de Aula

Perfil Classe	2h	4h	6h	8h	10h	12h	14h
2	10	15	20	25	30	35	40
3	10	13	16	19	21	24	27
4	10	15	20	25	30	35	40
5	30	40	50	60	70	80	90
6	30	40	50	60	70	80	90
7	30	40	50	60	70	80	90

Fonte: Próprio autor.

Para cada classe pertencente a Tabela 2 foi estabelecido um conjunto de instâncias conforme Tabela 3.

Tabela 3 – Quantidade de instâncias por classes.

Classe	Instâncias
1	T ₁ a T ₃₀
2	T_{31} a T_{60}
3	<i>T</i> ₆₁ a <i>T</i> ₉₀
4	T_{91} a T_{127}
5	T_{128} a T_{149}
6	T_{150} a T_{171}
7	T_{172} a T_{190}

Os experimentos computacionais foram realizados por meio de duas estratégias. A primeira fez uso do algoritmo Branch and Bound B&B e a segunda, conforme proposta, uso do procedimento heurístico Busca Tabu.

6.3 Resultados do Método Exato

Testes computacionais foram aplicados em execução única com o algoritmo B&B para validação do modelo computacional e análise do comportamento das instâncias reais ($T_{2016.1}$ a $T_{2019.1}$) e parte das instâncias geradas pertencentes a Classes 1 (T_1 a T_{15}). A Tabela 4 apresenta os resultados das instâncias reais e uma amostra das instâncias da Classe 1.

As instâncias são identificadas por um identificador T. As colunas TP, TT, QPT e QPD representam, respectivamente, o número total de professores, o número total de turmas, a quantidade de quebras de restrições das relações professor-turma e professor-dias.

Tabela 4 – Dados dos testes realizados nos conjuntos de instâncias reais e geradas.

Instância	TP	TT	QPT	QPD	FO	Tempo (seg)	GAP	Solução
$T_{2016.1}$	12	26	0	0	0	0.75	0.00%	Viável
$T_{2016.2}$	11	20	0	0	0	0.76	0.00%	Viável
$T_{2017.1}$	16	24	0	0	0	1.45	0.00%	Viável
$T_{2017.2}$	15	35	0	0	0	2.67	0.00%	Viável
$T_{2018.1}$	19	43	0	0	0	4.89	0.00%	Viável
$T_{2018.2}$	20	41	0	0	0	4.97	0.00%	Viável
$T_{2019.1}$	17	35	0	2	2	54.48	0.00%	Viável
T_1	8	13	0	0	0	0.02	0.00%	Viável
T_2	8	13	0	0	0	0.53	0.00%	Viável
T_3	11	18	0	0	0	1.73	0.00%	Viável
T_4	12	19	0	0	0	1.33	0.00%	Viável
T_5	13	21	0	0	0	1.69	1.69%	Viável
T_6	20	31	0	0	0	8.27	0.00%	Viável
T_7	20	31	0	0	0	8.56	0.00%	Viável
T_8	21	33	0	0	0	17.07	0.00%	Viável
T_9	22	34	0	1	1	700.14	0.00%	Viável
T_{10}	25	39	0	2	2	2039.69	50.00%	Viável
T_{11}	28	44	0	3	3	50619.08	33.33%	Viável
T_{12}	28	44	0	4	4	44753.65	26.12%	Viável
T_{13}	31	49	0	2	2	9017.61	93.75%	Viável
T_{14}	32	50	0	4	4	78181.69	25.56%	Viável
T_{15}	33	52	0	4	4	230043.61	59.72%	Viável

gradativo nos parâmetros TP e TT que acompanham um aumento do tempo computacional obtido. Porém, apenas a instância $T_{2019.1}$ obteve restrições quebradas na relação professor-dias, resultando em um valor positivo para a FO.

A Figura 16 representa a diferença entre o tempo computacional do método exato frente ao procedimento heurístico, é observado que para as instâncias reais, cujo o conjunto de elementos é menor, o consumo de tempo computacional para o procedimento exato é satisfatório. Contudo, analisando a Figura 17, que representa o comparativo com as instâncias geradas da classe 1, cujo o conjunto de elementos é maior, o consumo de tempo computacional do procedimento exato apresenta elevado comportamento.

Figura 16 – Tempo Exato instâncias reais.

Fonte: Próprio autor.

Figura 17 – Tempo Exato instâncias geradas.

Fonte: Próprio autor.

Desta forma, a presente pesquisa valida a qualidade da geração das instâncias geradas, do modelo computacional proposto e justifica o uso dos procedimentos heurísticos como meio de reduzir o tempo computacional na garantia de soluções com boas qualidades.

6.4 Resultados da Heurística

Testes computacionais foram realizados em execução única com o procedimento Busca Tabu, utilizando como parâmetros: o número máximo de iterações (*BT max*), tamanho da lista tabu (*tamLisTabu*) e quantidade de iterações sem melhoria (*IteraMaxSemMelhora*), conforme Tabela 5.

Tabela 5 – Parâmetros Adotados para os Cenários de Testes do Procedimento de Busca Tabu

Cenário de Teste		Parâr	metros
	BTmax	tamLisTabu	IteraMaxSemMelhora
C_1	100	100	100
C_2	200	200	200
C_3	300	300	300
C_4	400	400	400

Fonte: Próprio autor.

Foram realizados para as 187 instâncias, aplicados aos 4 cenários apresentados anteriormente, 784 casos de testes. A primeira análise parte da verificação da qualidade de soluções produzidas pelo procedimento heurístico. É considerado uma solução viável, aquela em que não há violação das restrições *hard*, conforme estabelecido na Seção 5.1. Desta forma, a Figura 18 apresenta a taxa de qualidade na obtenção de boas soluções.

Para uma análise detalhada, são apresentados nos Apêndices A a G os dados e parâmetros bruto resultantes dos testes computacionais. As colunas apresentadas: TCI, VFOI, QPTI, QPDI, TF, VFOF, QPTF, QPDF, QVMFO, QT, QP, QR, IMS, QPQPT, QPQPD, Solução; correspondem respectivamente: tempo da construção inicial (segundos), valor da Função Objetivo inicial (FO), quantidade de quebras das relações professor-turma inicial, quantidade de quebras das relações professor-dia inicial, tempo da solução final (segundos), quantidade de quebras das relações professor-turma final, quantidade de quebras das relações professor-dia final, quantas vezes teve melhora na FO, o número total de turmas, o número total de professores, total de refinamento, iteração da melhor solução, quantas possíveis quebras nas restrições das relações professor-turma, quantas possíveis quebras nas restrições das relações professor-dia e solução.

Figura 18 – Taxa de Qualidade na Obtenção de Boas Soluções

Os dados anteriores revelam a qualidade do procedimento adotado frente as instâncias e aos parâmetros estabelecidos, contudo não é a única métrica conveniente para expressar a qualidade das soluções geradas. Empregar a analise da composição da FO separadamente, analisando as relações professor-turma e professor-dia, se faz necessário para ter-se uma melhor visão da qualidade das soluções encontradas. Nas Tabelas 34 até 40, presente no Apêndice H esta expostas a porcentagem de erro, que a heurística obteve das relações professor-turma.

Verifica-se que para os 748 casos de testes analisados houve quebra em 363 casos das relações professor-turma, contudo a variação da porcentagem obtida é de 0% a 21,28%, com taxa média da porcentagem de erros em 0,781%. Constata-se então que o procedimento heurístico apresenta soluções viáveis com insignificante quebra das relações professor-turma.

De forma semelhante, continuando a análise da composição da FO, foi avaliado a porcentagem de erro, baseado nas quantidades possíveis de quebras de restrições, em que o procedimento proposto obteve das relações professor-dias. Nas Tabelas 41 até 47 são apresentados os dados individuais, presente no Apêndice I.

Observa-se que para os 784 casos de testes analisados houve quebra em 720 casos das relações professor-dias, contudo a variação da porcentagem obtida é de 0,33% a 28,57%, com taxa média da porcentagem de erros em 5,82%. Constata-se então que o procedimento heurístico apresenta soluções viáveis com insignificante quebra das relações professor-dias. Os resultados demonstram que esta restrição impacta o comportamento da Função Objetivo.

7 CONCLUSÃO

O Problema da Alocação de Salas possui na literatura algumas abordagens relevantes, tais como: Coelho (2006) que investiga um caso de estudo do Instituto de Ciência Matemática e de Computação (ICMC); Nascimento *et al.* (2005) que realizou uma modelagem matemática com classificação de requisitos essenciais e não-essenciais objetivando avaliar seus atendimentos; e Poltosi (2007) que também apresenta uma modelagem matemática com uma Função Objetivo robusta composta por sete funções ponderadas por pesos individuais com o intuito de medir o impacto de cada função na obtenção das soluções factíveis.

Apos verificação das abordagens existentes, a presente pesquisa teve por objetivo desenvolver e empregar uma modelagem matemática e um procedimento heurístico a fim de otimizar a tarefa de alocação de aula da Universidade Federal do Ceará - Campus Crateús. Um modelo computacional foi desenvolvido, validado por meio do algoritmo *Branch and Bound* (B&B) e experimentos revelaram crescimento do tempo computacional gasto para resolução de instâncias maiores, justificando a abordagem heurística proposta.

Para melhor validar a metodologia empregada, um gerador de instâncias foi desenvolvido, mantendo correlação ao padrão estabelecido nas instâncias reais. Com 4 cenários de testes o procedimento heurístico Busca Tabu foi aplicado a 187 instâncias, totalizando 748 casos de testes, para os resultados obtidos duas análises foram empregadas: verificação da qualidade de soluções produzidas e analise da composição da Função Objetivo, ou seja das restrições *hard* aplicadas ao modelo.

Observando os dados coletados, a taxa de qualidade demonstra o encontro de soluções viáveis para o problema, tendo porcentagens elevadas de soluções factíveis encontradas para os 4 cenários de testes. A analise da composição da Função Objetivo, observou quebra em 363 das relações professor-turma com taxa média da porcentagem de erro em 0,781% e quebra em 720 casos das relações professor-dias, com taxa média da porcentagem de erro de 5,82%, revelando que o algoritmo se mostra promissor na geração de soluções com baixa porcentagem de erro.

Como trabalhos futuros, observa-se a necessidade de novas métricas de qualidade para validação das soluções encontradas; Aplicar a técnica de decomposição em linhas ou colunas no modelo matemático afim de reduzi-lo; E uso de outras técnicas computacionais para a resolução do problema formulado.

REFERÊNCIAS

- ALVES, R. H. J. **Metaheurísticas Aplicadas ao Problema de Horário Escolar**. Tese (Doutorado) CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS, 2010.
- ANDRIOLA, W. B.; ANDRIOLA, C. G.; MOURA, C. P. Opiniões de docentes e de coordenadores acerca do fenômeno da evasão discente dos cursos de graduação da universidade federal do ceará (ufc). **Ensaio: aval. pol. públ. Educ**, SciELO Brasil, v. 14, n. 52, 2006.
- BECCENERI, J. C. Meta-heurísticas e otimização combinatória: Aplicações em problemas ambientais. **INPE, Sao José dos Campos**, 2008.
- BLUM, C.; ROLI, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. **ACM computing surveys (CSUR)**, ACM, v. 35, n. 3, p. 268–308, 2003.
- CARTER, M. W.; TOVEY, C. A. When is the classroom assignment problem hard? **Operations Research**, INFORMS, v. 40, n. 1-supplement-1, p. S28–S39, 1992.
- CIRINO, R. B. Z. **Abordagens de solução para o problema de alocação de aulas a salas**. Tese (Doutorado) Universidade de São Paulo, 2016.
- COELHO, A. Uma abordagem via algoritmos meméticos para a solução do problema de horário escolar. **CEFET-MG, Belo Horizonte**, 2006.
- ERNST, A. T.; JIANG, H.; KRISHNAMOORTHY, M.; SIER, D. Staff scheduling and rostering: A review of applications, methods and models. **European journal of operational research**, Elsevier, v. 153, n. 1, p. 3–27, 2004.
- EVEN, S.; ITAI, A.; SHAMIR, A. On the complexity of time table and multi-commodity flow problems. In: IEEE. **Foundations of Computer Science**, **1975.**, **16th Annual Symposium on**. [S.l.], 1975. p. 184–193.
- FERREIRA, A. B. d. H. Novo dicionário aurélio da língua portuguesa. In: **Novo dicionário Aurélio da língua portuguesa**. [S.l.: s.n.], 2004.
- FILHO, R. L. L. S.; MOTEJUNAS, P. R.; HIPÓLITO, O.; LOBO, M. B. C. M. A evasão no ensino superior brasileiro. **Cadernos de pesquisa**, SciELO Brasil, v. 37, n. 132, p. 641–659, 2007.
- FRANCO, A. de P. Ensino superior no brasil: cenário, avanços e contradições. **Jornal de políticas educacionais**, v. 2, n. 4, 2008.
- GAIOSO, N. d. L. O fenômeno da evasão escolar na educação superior no brasil. **Brasília, DF:** Universidade Católica de Brasília, 2005.
- GAMARRA, C.; GUERRERO, J. M. Computational optimization techniques applied to microgrids planning: A review. **Renewable and Sustainable Energy Reviews**, Elsevier, v. 48, p. 413–424, 2015.
- GLOVER, F. Future paths for integer programming and links to ai. **Comput. and**, p. 553–549, 1994.

HANSEN, P. The steepest ascent mildest descent heuristic for combinatorial programming. In: **Congress on numerical methods in combinatorial optimization, Capri, Italy**. [S.l.: s.n.], 1986. p. 70–145.

KALYANMOY, D. *et al.* **Multi objective optimization using evolutionary algorithms**. [S.l.]: John Wiley and Sons, 2001.

LOBO, M. B. d. C. M. Panorama da evasão no ensino superior brasileiro: aspectos gerais das causas e soluções. **Associação Brasileira de Mantenedoras de Ensino Superior. Cadernos**, n. 25, 2012.

MARTINS, C. B. O ensino superior brasileiro nos anos 90. **São Paulo em perspectiva**, SciELO Brasil, v. 14, n. 1, p. 41–60, 2000.

NASCIMENTO, A. S.; SAMPAIO, R. M.; ALVARENGA, G. B. *et al.* Uma aplicação de simulated annealing para o problema de alocação de salas. **INFOCOMP Journal of Computer Science**, v. 4, n. 3, p. 59–66, 2005.

OSMAN, I. H.; LAPORTE, G. Metaheuristics: A bibliography. [S.l.]: Springer, 1996.

POLTOSI, M. R. Elaboração de escalas de trabalho de técnicos de enfermagem com busca tabu e algoritmos genéticos. Universidade do Vale do Rio do Sinos, 2007.

SILVEIRA, J. A. d. S. *et al.* Uso de abordagem heurística para o problema do quadro de horários e alocação de salas de aula. Universidade Federal de Santa Maria, 2018.

SOUZA, M. J. F. Programação de horários em escolas: uma aproximação por metaheurísticas. 2000. Tese (Doutorado) — Tese de Doutorado, UFRJ, Rio de Janeiro, 2000.

SOUZA, M. J. F. Inteligência computacional para otimização. Notas de aula, Departamento de Computação, Universidade Federal de Ouro Preto, disponível em http://www.decom.ufop.br/prof/marcone/InteligenciaComputacional/InteligenciaComputacional.pdf, 2008.

SOUZA, M. J. F.; MARTINS, A. X.; ARAÚJO, C. R. d. Experiências com simulated annealing e busca tabu na resolução do problema de alocação de salas. 2002.

WERRA, D. de; HERTZ, A. Tabu search techniques. **Operations-Research-Spektrum**, Springer, v. 11, n. 3, p. 131–141, 1989.

WILLIAMS, H. P. **Model building in mathematical programming**. [S.l.]: John Wiley & Sons, 2013.

APÊNDICE A – RESULTADOS DA CLASSE 1

Tabela 6 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

Solução	Viável	Viável	Inviável	Viável	Viável	Viável	Viável	Viável	nviável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	nviável	Viável	Viável	Viável	nviável	Viável	Viável 95	Viável						
QPQPD S				49																									257	269
QPQPT C	35	35	47	49	55	83	83	68	91	103	118	118	130	132	138	166	166	172	174	186	201	201	213	215	221	249	249	255	257	269
IMS (0	0	42	10	6	16	15	16	57	21	26	26	29	28	30	38	46	38	36	42	42	44	47	50	49	55	57	58	58	55
QR	0	0	_	11	10	17	16	17	3	22	27	27	30	29	31	39	\mathcal{E}	39	37	43	43	45	48	51	20	99	28	59	59	99
QP	∞	∞	11	12	13	20	20	21	22	25	28	28	31	32	33	40	40	41	45	45	48	48	51	52	53	09	09	61	62	65
QT	13	13	18	19	21	31	31	33	34	39	44	4	49	20	52	62	62	64	65	70	75	75	80	81	83	93	93	95	96	101
QVMFO	0	0	6	11	10	17	16	17	21	22	27	27	30	29	31	39	40	39	37	43	43	45	48	51	50	99	58	59	59	56
QPDF	10	2	4	2	κ	6	~	2	9	∞	5	9	∞	11	7	10	7	10	12	6	17	13	12	13	15	14	10	22	15	56
QPTF	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0
VFOF	10	5	5	5	\mathcal{E}	6	8	S	7	ϵ	S	9	8	11	2	10	8	10	12	6	19	13	12	13	15	14	10	22	15	99
TF	0.264108	0.222208	0.273827	0.282474	0.301964	0.526269	0.477146	0.545959	0.547021	0.632755	0.614396	0.662595	0.684922	0.817994	0.804522	0.935724	0.974811	0.946447	1.057285	1.102693	1.189978	1.207699	1.267849	1.227067	1.222978	1.419850	1.226058	1.367486	1.338803	2.625243
QPDI	10	5	7	5	9	10	∞	4	∞	4	5	9	∞	10	5	12	11	13	6	14	13	12	12	15	15	12	14	18	15	59
QPTI	0	0	11	12	14	23	23	28	31	35	42	42	45	48	46	59	59	28	09	89	70	70	74	77	77	91	91	93	93	96
VFOI	10	2	18	17	20	33	31	32	39	39	47	48	53	58	51	71	70	71	69	82	83	82	98	92	92	103	105	1111	108	155
TCI	0.000128	0.000091	0.000092	0.000103	0.000100	0.000150	0.000159	0.000182	0.000174	0.000189	0.000180	0.000208	0.000208	0.000255	0.000231	0.000332	0.000309	0.000319	0.000347	0.000400	0.000478	0.000497	0.000488	0.000513	0.000462	0.000640	0.000522	0.000684	0.000598	0.044280
Instância	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}	T_{16}	T_{17}	T_{18}	T_{19}	T_{20}	T_{21}	T_{22}	T_{23}	T_{24}	T_{25}	T_{26}	T_{27}	T_{28}	T_{29}	T_{30}

Tabela 7 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

T QPQPD Solução	35	35	47	È	49	49 55	55 83	55 83 83	55 83 89 89	55 83 83 89 91	49 55 83 83 89 103	449 55 83 83 89 103 118	449 55 83 83 89 91 118	49 55 83 83 89 91 103 118 118	49 55 83 83 89 91 118 118 130	55 83 83 89 103 118 118 130 132	49 55 83 83 89 103 118 118 130 130	55 83 83 89 103 118 118 130 130 166	55 83 83 89 103 118 130 130 136 166	55 83 83 89 91 118 118 130 132 144	55 83 83 83 89 103 118 130 130 144 172	55 83 83 83 89 103 118 130 130 144 174 186	55 83 83 83 83 83 83 83 83 118 118 130 130 172 172 174 172	55 83 83 83 89 103 118 130 130 144 172 174 175 176 176 177 174 174 177	55 83 83 83 83 83 83 83 83 103 118 118 130 174 172 174 174 175 177 177 177 177 177 177 177 177 177	55 83 83 83 83 83 83 83 83 118 118 130 140 172 172 172 174 175 174 177 177 177 177 177 177 177 177 177	55 83 83 83 83 83 83 103 118 118 130 174 174 174 186 201 201 213 215	55 83 83 83 103 118 118 118 119 174 172 174 175 176 177 177 177 177 177 177 177 177 177	55 83 83 83 83 83 83 84 103 118 118 118 172 174 172 174 175 176 177 177 177 177 177 177 177 177 177	49 Viável 83 Viável 83 Viável 83 Viável 89 Viável 91 Viável 118 Viável 118 Viável 132 Viável 134 Viável 146 Viável 172 Viável 174 Viável 174 Viável 201 Viável
IMS QPQPT											_	_	_			_							_							7 47 10 49 7 55 16 83 16 83 16 83 17 89 20 91 20 91 30 103 26 118 26 118 30 172 33 166 34 201 45 201 45 201 45 201 57 249 57 255
QR	0												,		•			,												
QP	~	∞		11	11 12	11 12 13	11 12 13 20	11 12 13 20 20	11 12 13 20 20 21	11 12 13 20 20 21 22	11 12 13 20 20 21 22 22	11 12 13 20 20 21 22 22 23	11 12 13 20 20 22 22 23 28 28	11 12 13 20 20 21 22 22 23 28 28	11 12 13 20 20 21 22 22 23 28 33 31	11 12 13 13 14 15 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 13 14 15 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10	11 12 13 13 14 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 14 14 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	11 12 13 13 13 13 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 13 13 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 13 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 13 13 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	11 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13
QVMFO QT	13	13		18	18	18 19 21	18 19 21 31	18 19 21 31	18 19 21 31 33	18 21 31 33 34	18 19 21 31 33 34 39	18 21 31 33 34 44	18 21 31 33 34 44 44	18 12 12 13 13 13 14 14 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	18 21 31 33 33 34 44 44 49 60	18 21 31 33 34 34 44 44 44 46 50	18 19 21 31 33 33 34 44 44 44 49 60 62	18 21 21 31 33 34 44 44 45 65 65	18 19 11 19 11 19 11 19 19 19 19 19 19 19	18 21 31 31 33 33 34 44 44 45 65 65 65 65	18 21 21 31 33 34 44 44 45 65 65 65 67 67 67	18 19 11 19 10 10 10 10 10 10 10 10 10 10 10 10 10	18 19 11 10 11 10 11 10 10 10 10 10 10 10 10	18 19 19 19 19 19 19 19 19 19 19 19 19 19	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10	18 19 10 11 10 10 10 10 10 10 10 10 10 10 10
	0	0	0	Ø	8 11	8 8	8 17	8 17 17	8 1 1 8 1 1 7 1 1 8 1 1 1 8 1 1 1 8 1	8 17 17 18 21	8 8 17 17 18 20	8 11 17 17 18 20 20	8 117 17 17 18 20 27 27	8 11 17 17 18 20 27 27	8 11 17 17 18 20 27 27 31	8 11 17 17 18 20 27 27 31 30	8 11 8 17 17 20 50 50 30 30 30 30 30 30 30 30 30 30 30 30 30	8 11 8 17 17 20 52 52 33 39 39 39	8 11 8 17 17 50 50 50 50 50 50 50 50 50 50 50 50 50	8 11 8 17 17 20 20 33 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	8 11 8 17 17 20 21 33 33 33 34 40 40 43	8 11 8 17 17 18 18 17 17 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	8 11 8 11 8 1 1 1 8 1 1 1 8 1 1 1 1 1 1	8 11 8 11 8 12 5 5 5 6 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 11 8 17 17 18 18 17 17 18 33 33 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$ 11 8 11 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\cdot 1.1 \\ \text{8.1 \\ \text{1.1 \\ \text{9.3 \\ \text{9.4 \\ \text{4.4 \\ \text{4.4 \\ \text{9.4 \\ \text{9.6 \	\$11 \text{ \$8} \\ 17 \\ 17 \\ 18 \\ 17 \\ 17 \\ 18 \\ 18 \\ 17 \\ 17 \\ 17 \\ 18 \\	\$\cdot \text{1.1} \\ \times \text{1.1} \\ \text{1.1} \\ \text{2.1} \\ \text{2.1} \\ \text{2.2} \\ \t	8 11 8 11 8 11 8 11 8 1 8 1 8 1 8 1 8 1
, QPDF	6	7	•	33	n 0	e 15 x	7 6 2 3	7 7 9 7 7	200770	m 11 0 1 1 0 v	2 2 2 7 7 6 5 2 1 1 5 9 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2110977653	8 3 11 5 6 7 7 6 7 8	2 2 3 7 7 6 2 3 7 8 3 7	x 2 0 7 7 6 x 1 x 8 7 4	x 1 9 1 1 0 5 1 1 0 8 1 4 5	2 2 3 7 7 6 5 1 1 8 8 7 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	x 2 9 7 7 6 8 11 8 8 7 4 8 5 8	x 2 9 7 7 6 8 7 4 5 5 8 7 7	2 2 3 7 7 8 3 11 8 8 7 4 5 51 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 3 7 7 6 2 11 8 8 7 4 5 15 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	x 2 9 7 7 9 x 11 x 8 7 4 x 12 x 7 10 11 14 15 15 15 15 15 15 15 15 15 15 15 15 15	x 2 9 7 7 6 x 11 x 8 7 4 x 5 x 7 0 1 5 4 9	x 7 9 7 7 6 8 7 4 5 5 8 7 6 5 7 6 5 6 5 6 6 5 6 6 6 6 6 6 6 6 6	x 2 9 7 7 6 8 11 8 8 7 4 9 11 5 6 9 11 11 11 11 11 11 11 11 11 11 11 11 1	x 2 9 7 7 6 x 11 x 8 7 4 x 5 x 7 0 5 1 4 9 x 11 7 1	x 7 9 7 7 6 8 7 4 8 12 x 7 9 11 12 12 13 14 6 8 11 17 13 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	x 2 9 7 7 9 x 11 x 8 7 4 x 5 x 7 0 1 1 4 9 x 11 7 11 11 11 11 11 11 11 11 11 11 11 1	x 2 0 1 1 0 8 1 1 0 8 1 4 5 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 7 9 7 7 6 8 1 8 8 7 4 8 2 8 7 1 1 2 8 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
VFOF QPIF	0	0	•	0	0 0	000	0000	0000	00000	000000	00000-	000000-0	00000000000	000000000	000000000000000000000000000000000000000	00000000000000	00000000000000	0000000000000	0000000000000	000000-00-00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000-00-0000000	0000000000000000	000000000000000000000000000000000000000	0000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	6	7	c	C	o 6	0 7 2	7 6 2 3	77050	0 1 1 0 1 0 0	2 0 1 1 6 12 3	2 2 2 7 7 6 5 7 1 5 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	3 17 5 6 5 3	8 3 17 5 6 7 7 6 7 8	8 8 3 12 5 6 7 7 6 2 3	0 2 0 7 7 6 8 8 8 4	0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	v 2 0 7 7 6 8 8 4 8 5 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	0 2 0 7 7 6 0 0 1 2 0 0 0 7 7 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 5 5 6 5 7 5 6 5 7 5 6 5 6 7 5 6 5 6 7 5 6 6 7 5	2 2 3 4 8 8 8 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 3 4 5 5 6 7 7 8 8 8 4 5 5 6 7 7 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 3 4 5 5 5 6 7 7 8 8 8 7 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 4 8 8 3 1 5 5 6 5 7 6 5 7 6 6 7 7 8 8 8 3 1 5 6 6 7 7 8 8 8 3 1 5 6 6 7 8 1 5 6 9 6 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	v 2 0 7 7 6 8 8 8 4 8 10 10 10 10 10 10 10 10 10 10 10 10 10	v 2 0 7 7 6 8 8 8 4 8 5 1 7 0 1 2 4 6 0 5 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v 2 0 7 7 9 8 8 8 4 8 10 10 10 10 10 10 10 10 10 10 10 10 10	0 2 9 7 7 6 8 8 8 4 9 5 8 7 6 9 7 8 8 8 8 8 9 5 8 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
	4.200023	2.905007	3.966531		4.471900	4.471900 5.437627	4.471900 5.437627 8.599698	4.471900 5.437627 8.599698 7.923219	4.471900 5.437627 8.599698 7.923219 9.396178	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312 19.029314 21.010036	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 13.095544 15.505421 22.668934 15.505421 22.668934 19.029312 19.029312 19.980314 21.010036	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312 19.029312 19.029312 19.029312 23.345819 25.195667	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312 19.029314 21.010036 23.345819 25.195667	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 15.505421 22.668934 15.505421 22.668934 19.029312 19.029312 19.283148 21.010036 23.345819 25.195667 25.195667 25.195667	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 13.095544 15.505421 22.668934 19.029312 19.029314 22.668934 23.345819	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 13.095544 15.505421 22.668934 15.505421 22.668934 19.029312 19.029312 19.28314 25.195667 25.195667 25.881348 27.049591 28.935633 30.775452	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.975600 14.166484 15.505421 22.668934 19.029312 19.980314 21.010036 23.345819 25.195667 25.881348 27.049591 28.935633 30.775452	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 13.095544 13.095544 13.095544 13.095544 19.029312 19.029312 19.029314 22.668934 19.029312 22.688934 22.688934 22.688934 23.345819 25.195667 25.881348 27.049591 28.935633 30.775452 34.3671463	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 15.505421 22.668934 15.505421 22.668934 15.505421 22.668934 15.505421 22.68834 22.68834 22.68834 22.68833 30.775452 34.367599 34.671463	4.471900 5.437627 8.599698 7.923219 9.396178 8.897446 12.209456 11.069202 13.095544 13.095544 13.095544 13.095544 13.095544 13.095544 15.505421 22.668934 19.029312 19.980314 21.010036 23.345819 25.195667 25.881348 27.049591 28.935633 30.775452 34.367599 34.671463
	6	7	4		3	ω 4	ω 4 ∞	ω 4 ∞ Γ	ω 4 ⊗ Γ 0	w 4 ∞ r o v	E 4 8 7 6 5 11	ε 4 ∞ Γ ο σ 1 ε	8 4 8 6 7 6 8 7 10 10 10 10 10 10 10 10 10 10 10 10 10	8	8	8 4 8 6 6 6 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8	8 4 8 6 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	8 4 8 6 6 7 11 8 4 7 7 8 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 8 6 6 6 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 9 8 9 8	8 4 8 6 6 7 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8	8 4 8 6 6 11 8 7 8 8 7 6 6 7 12 8 7 6 6 7 7 12 12 12 12 12 12 12 12 12 12 12 12 12	8 4 8 7 6 6 7 11 8 7 8 8 7 7 8 8 7 7 8 9 7 7 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 7 6 6 11 8 7 8 6 7 7 8 11 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 7 6 6 7 8 8 7 7 8 8 7 8 8 7 9 8 7 9 8 7 9 9 9 9	8 4 8 7 6 6 11 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 6 6 11 8 4 7 5 6 6 7 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 7 6 6 7 8 7 7 8 8 7 7 8 8 7 9 9 7 7 8 9 9 9 9	8 4 8 7 6 6 11 8 4 7 2 6 6 7 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 6 6 11 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 9 7 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8 4 8 7 6 6 11 8 4 7 7 6 6 7 11 9 9 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	0	0	11		12	12 41	12 14 23	12 14 23 23	12 14 23 23 28	12 14 23 28 31	12 14 23 23 28 31 35	12 14 15 17 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	12 12 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	12 4 2 2 3 3 2 4 4 4 4 5 4 5 4 5 4 5 4 5 5 6 6 6 6 6 6	12 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 1 2 2 3 3 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5	1 1 2 2 3 3 4 5 4 5 4 5 4 5 5 6 5 6 6 6 6 6 6 6 6 6	21 1 2 2 3 3 4 4 4 5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6	1	12 12 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	12 14 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12	12 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 14 15 15 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12	12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
v r CI		7	15		15	15 18	15 18 31	15 18 31 30	15 18 31 30 37	15 18 31 30 37 36	115 118 30 37 36 46	112 113 113 113 113 114 115 115 115 115 115 115 115 115 115	118 118 30 33 34 45 45	112 113 113 113 113 114 115 115 115 115 115 115 115 115 115	118 118 33 34 35 46 45 55 56	118 118 33 33 34 35 46 45 56 56 56 56	118 118 33 34 46 45 45 55 56 57 71	118 118 30 33 34 35 46 46 56 57 57 50 64 64 64 64 64 64 64 64 64 64 64 64 64	112 113 113 113 114 115 116 117 117 117 117 117 117 117 117 117	118 118 330 337 337 338 34 45 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	118 118 123 133 134 135 136 137 138 138 139 139 139 139 139 139 139 139 139 139	118 118 33 34 35 36 37 37 38 36 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	118 118 123 130 131 131 131 131 131 131 131 131 13	118 118 123 130 131 131 132 133 134 135 136 137 137 137 137 137 137 137 137 137 137	118 118 123 133 134 135 136 137 138 138 138 138 138 138 138 138 138 138	118 118 123 133 133 133 134 135 136 137 138 138 138 138 138 138 138 138 138 138	118 118 118 118 118 119 1107	118 118 118 130 130 130 130 130 130 130 130 130 130	118 118 118 118 118 118 1107 1107	118 118 118 118 118 119 1107 1106 1106
	6	•					v 4 0 4	v 4 0 4 L	8 4 0 4 <i>F</i> 8	8 4 0 4 7 8 4	35 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88 94 10 10 14 14 16 17 16	885 94 94 37 53 74 47 64 76	885 947 75 77 847 36	885 94 110 10 22 24 44 47 47 47 47 47 47 47 53 6	885 94 10 10 22 22 44 44 44 44 44 44 44 44 44 44 44 44 4	855 994 10 10 10 10 10 10 10 10 10 10 10 10 10	285 274 275 277 276 277 276 277 276 277 276 277 277	285 227 227 227 227 227 228 228 223 223 223 223 223	285 274 275 277 277 277 277 277 277 277 277 277	285 110 137 137 137 137 137 137 137 140 140 152 153 153 153 153 153 154 165 165 175 176 176 176 176 176 176 177 176 177 177	085 094 110 154 137 137 137 137 137 137 140 223 236 337 338 361	285 274 275 277 277 277 277 277 277 277 277 277	885 947 947 947 947 957 961 961	885 947 10 10 10 10 10 10 10 10 10 10 10 10 10	885 947 10 10 10 10 10 10 10 10 10 10 10 10 10	885 94 10 10 10 10 10 10 10 10 10 10 10 10 10 1	88 94 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	88 94 10 10 10 10 10 10 10 10 10 10 10 10 10	88 99 4 7 10 6 7 7 7 9 7 7 9 7 7 9 7 9 7 9 9 7 9
TCI		0.000065		0.0000085	0.000085	0.000085 0.000094 0.000110	0.000085 0.000094 0.000110 0.000154	0.000085 0.000094 0.000110 0.000154 0.000137	0.000085 0.000094 0.000110 0.000154 0.000137	0.000085 0.000094 0.000110 0.000154 0.000137 0.000175	0.000085 0.000094 0.000110 0.000137 0.000137 0.000144	0.000085 0.0000110 0.000154 0.000137 0.000175 0.000222 0.000176	0.000085 0.000094 0.000110 0.000154 0.000137 0.000144 0.000222 0.000176	0.0000 0.00001 0.0001 0.0001 0.0001 0.0002 0.0002	0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002	0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002	0.0000 0.00001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	0.000C 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002	0.000C 0.00001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002	0.0000 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00003	0.0000 0.00001 0.00001 0.00001 0.00001 0.00000 0.000000 0.00000000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.0000 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003	0.0000 0.0000 0.00001 0.00001 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003	0.0000 0.0000 0.00001 0.00001 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003 0.00003	0.0000 0.0000 0.00001 0.00001 0.00001 0.00002 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	0.0000 0.0000 0.00001 0.00001 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	0.0000 0.	0.0000 0.	0.000085 0.000094 0.0000110 0.000137 0.000144 0.000144 0.000223 0.000223 0.000223 0.000287 0.000315 0.000315 0.000319 0.000415 0.000415 0.000415 0.000520 0.000527

Tabela 8 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

O Solução	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	Viável	Viável	$Via\sqrt{6}$	Viável
QPQPD	35	35	47	49	55	83	83	68	91	103	118	118	130	132	138	166	166	172	174	186	201	201	213	215	221	249	249	255	257	696
QPQPT	35	35	47	49	55	83	83	68	91	103	118	118	130	132	138	166	166	172	174	186	201	201	213	215	221	249	249	255	257	690
IMS	0	0	7	10	6	15	16	15	19	241	26	26	29	29	29	38	38	38	37	41	44	43	49	48	50	266	99	59	59	55
QR	0	0	∞	11	10	16	17	16	20	κ	27	27	30	30	30	39	39	39	38	45	45	44	20	49	51	7	27	09	09	99
QP	∞	∞	11	12	13	20	20	21	22	25	28	28	31	32	33	40	40	41	42	45	48	48	51	52	53	09	09	61	62	65
QT	13	13	18	19	21	31	31	33	34	39	44	44	49	20	52	62	62	64	65	70	75	75	80	81	83	93	93	95	96	101
QVMFO	0	0	∞	11	10	16	17	16	20	22	27	27	30	30	30	39	39	39	38	42	45	44	20	46	51	09	57	09	09	56
QPDF	7	4	3	\mathcal{S}	2	10	4	10	∞	1	7	6	5	6	6	8	∞	10	6	10	12	7	10	6	15	15	17	13	15	49
QPTF	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
VFOF	7	4	\mathcal{S}	\mathcal{S}	2	10	4	10	8	2	7	6	5	6	6	8	∞	10	6	10	12	7	10	6	15	16	17	13	15	49
TF	2.114033	1.736398	2.334851	2.533174	2.710889	4.978522	4.459733	5.396678	5.358876	5.994751	7.160242	7.102634	7.489401	8.620994	8.451293	10.545486	10.310185	11.324501	11.737280	12.228745	14.161004	13.694144	14.487731	16.120920	16.261662	19.532316	19.143570	19.022043	20.323055	37.854179
QPDI	7	4	\mathcal{C}	κ	2	8	5	7	7	1	11	7	9	7	6	8	11	11	10	6	17	9	6	11	13	19	21	11	19	99
QPTI	0	0	11	12	14	23	23	28	31	35	45	42	45	48	46	59	59	58	09	89	70	70	74	77	77	91	91	93	93	96
VFOI	7	4	14	15	16	31	28	35	38	36	53	49	51	55	55	<i>L</i> 9	70	69	70	77	87	9/	83	88	90	110	112	104	112	162
TCI	0.000124	0.000066	0.000097	0.000106	0.000103	0.000162	0.000137	0.000161	0.000177	0.000180	0.000240	0.000230	0.000199	0.000245	0.000260	0.000299	0.000290	0.000319	0.000352	0.000347	0.000425	0.000388	0.000406	0.000487	0.000473	0.000656	0.000630	0.000544	0.000675	0.034098
Instância	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}	T_{16}	T_{17}	T_{18}	T_{19}	T_{20}	T_{21}	T_{22}	T_{23}	T_{24}	T_{25}	T_{26}	T_{27}	T_{28}	T_{29}	T_{20}

Tabela 9 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
T_1	0.000121	6	0	6	4.200023	6	0	6	0	13	∞	0	0	35	35	Viável
T_2	0.000065	2	0	2	2.905007	7	0	2	0	13	∞	0	0	35	35	Viável
T_3	0.000085	15	11	4	3.966531	κ	0	\mathcal{S}	8	18	11	∞	7	47	47	Viável
T_4	0.000094	15	12	\mathcal{S}	4.471900	7	0	2	11	19	12	11	10	49	49	Viável
T_5	0.000110	18	14	4	5.437627	9	0	9	8	21	13	∞	7	55	55	Viável
T_6	0.000154	31	23	8	8.599698	7	0	7	17	31	20	17	16	83	83	Viável
T_7	0.000137	30	23	7	7.923219	7	0	7	17	31	20	17	16	83	83	Viável
T_8	0.000175	37	28	6	9.396178	6	0	6	18	33	21	18	17	68	68	Viável
T_9	0.000144	36	31	5	8.897446	2	0	S	21	34	22	21	20	91	91	Viável
T_{10}	0.000222	46	35	11	12.209456	12	1	11	20	39	25	\mathcal{E}	300	103	103	Inviável
T_{11}	0.000176	45	42	\mathcal{S}	11.069202	κ	0	\mathcal{S}	27	44	28	27	26	118	118	Viável
T_{12}	0.000247	52	42	10	13.095544	∞	0	8	27	44	28	27	26	118	118	Viável
T_{13}	0.000236	99	45	11	13.975600	∞	_	7	31	49	31	\mathcal{C}	167	130	130	Inviável
T_{14}	0.000223	99	48	8	14.166484	4	0	4	31	20	32	31	30	132	132	Viável
T_{15}	0.000252	50	46	4	15.505421	5	0	5	30	52	33	30	53	138	138	Viável
T_{16}	0.000402	71	59	12	22.668934	15	0	15	36	62	40	36	35	166	166	Viável
T_{17}	0.000287	49	59	5	19.029312	κ	0	\mathcal{S}	39	62	40	39	38	166	166	Viável
T_{18}	0.000315	<i>L</i> 9	58	6	19.980314	7	0	7	40	64	41	40	39	172	172	Viável
T_{19}	0.000324	<i>L</i> 9	09	7	21.010036	10	0	10	36	65	42	36	35	174	174	Viável
T_{20}	0.000361	80	89	12	23.345819	15	0	15	43	70	45	43	42	186	186	Viável
T_{21}	0.000389	85	70	15	25.195667	14	0	14	47	75	48	47	46	201	201	Viável
T_{22}	0.000419	81	70	11	25.881348	6	0	6	46	75	48	46	45	201	201	Viável
T_{23}	0.000415	80	74	9	27.049591	9		S	46	80	51	3	217	213	213	Inviável
T_{24}	0.000465	06	77	13	28.935633	12	_	11	51	81	52	3	86	215	215	Inviável
T_{25}	0.000520	93	77	16	30.775452	18		17	20	83	53	20	49	221	221	Inviável
T_{26}	0.000553	107	91	16	34.367599	13	0	13	59	93	9	59	28	249	249	Viável
T_{27}	0.000527	105	91	14	34.671463	13	0	13	28	93	9	58	27	249	249	Viável
T_{28}	0.000597	106	93	13	36.524040	14	0	14	28	95	61	58	27	255	255	Viável
T_{29}	0.000630	114	93	21	37.830009	13	0	13	09	96	62	09	59	257	257	Viáve
T_{30}	0.004180	155	96	59	67.163597	59	2	57	57	101	92	7	140	569	569	Viável
Fonte: Próprio autor	io autor.															

APÊNDICE B – RESULTADOS DA CLASSE 2

Tabela 10 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

Solução	Inviável	Inviável	Inviável	Inviável	Inviável	Viável	Viável	Viável	Viável	Inviável	Viável	Inviável	Inviável	Viável	Inviável	Viável	Viável	Inviável	Viável	Inviável	Viável	Viável	Viável	Inviável	Inviável	Viável	Viável	Inviável	Viáve	Viável
QPQPD	58	78	116	136	174	194	232	252	290	310	348	368	406	426	464	484	522	542	580	009	638	859	969	716	754	774	812	832	870	068
QPQPT	58	78	116	136	174	194	232	252	290	310	348	368	406	426	464	484	522	542	580	009	889	859	969	716	754	774	812	832	870	068
IMS	ε	22	12	21	26	0	0	0	0	35	0	25	2	0	49	0	0	45	28	13	0	0	0	54	57	11	0	57	0	0
QR	ε	ε	ε	3	7	0	0	0	0	7	0	3	7	0	\mathcal{E}	0	0	3	7	3	0	0	0	3	3	7	0	7	0	0
QP	10	15	20	25	30	35	40	45	20	55	09	65	70	75	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155
QT	10	15	20	25	30	35	40	45	20	55	09	65	70	75	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155
QVMFO	1	_	П	2	-	0	0	0	0	_	0			0	_	0	0				0	0	0				0		0	0
QPDF	5	2	1	9	3	6	∞	8	12	12	25	15	25	12	28	15	16	26	44	19	2	22	39	4	52	36	32	09	55	49
QPTF	1	_	1	_		0	0	0	0	_	0			0	_	0	0		2	_	0	0	0			2	0		0	0
VFOF	9	9	2	7	4	6	8	8	12	13	25	16	26	12	59	15	16	27	46	20	S	22	39	45	53	38	32	61	55	49
TF	0.273745	0.390057	0.462609	0.684662	0.909702	0.951534	1.328188	1.451540	1.779319	1.982648	2.381119	2.806408	3.007185	2.948515	3.988946	3.412099	3.863402	5.118359	6.702443	5.603006	4.634833	5.975499	7.487999	8.495247	10.062403	8.967223	8.749532	10.891516	11.584289	11.218991
QPDI	7	7	κ	6	5	6	∞	∞	12	14	25	17	27	12	30	15	16	28	47	21	5	22	39	46	54	39	32	62	55	49
QPTI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VFOI	7	7	κ	6	2	6	∞	∞	12	14	25	17	27	12	30	15	16	28	47	21	5	22	39	46	54	39	32	62	55	49
TCI	0.000162	0.000108	0.000113	0.000177	0.000227	0.000172	0.000287	0.000283	0.000400	0.000393	0.000659	0.000608	0.000808	0.000458	0.0011111	0.000459	0.000627	0.001052	0.037998	0.001063	0.000556	0.000962	0.001918	0.002033	0.051613	0.002107	0.001557	0.015676	0.021270	0.003139
Instância	T_{31}	T_{32}	T_{33}	T_{34}	T_{35}	T_{36}	T_{37}	T_{38}	T_{39}	T_{40}	T_{41}	T_{42}	T_{43}	T_{44}	T_{45}	T_{46}	T_{47}	T_{48}	T_{49}	T_{50}	T_{51}	T_{52}	T_{53}	T_{54}	T_{55}	T_{56}	T_{57}	T_{58}	T_{59}	T_{60}

Tabela 11 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

Tabela 12 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	QPQPD	Solução
0.000156 9		0	6	2.615079	∞	2	9	1	10	10	2	88	58	58	Inviável
6		0	6	3.595152	~	2	9	1	15	15	7	34	78	78	Viável
S		0	5	4.522682	4	1	\mathcal{S}	1	20	20	ε	139	116	116	Inviável
~	~	0	∞	5.233789	7	2	S	1	25	25	7	29	136	136	Viável
_	0	0	10	7.606854	6	$\overline{}$	∞	1	30	30	\mathcal{C}	18	174	174	Inviável
	4	0	14	9.588375	12	1	11	2	35	35	3	55	194	194	Inviável
	11	0	11	10.375480	∞	_	7	∞	40	40	3	205	232	232	Inviável
	14	0	14	14.539447	13	2	11	1	45	45	7	176	252	252	Inviável
0.000278	2	0	S	13.207901	5	0	S	0	20	50	0	0	290	290	Viável
0.000359	16	0	16	17.745337	15	2	13	1	55	55	7	36	310	310	Inviável
0.000436	18	0	18	19.708656	16	_	15	7	09	09	3	32	348	348	Inviável
0.000526	22	0	22	22.930471	20	1	19	2	65	65	\mathcal{E}	10	368	368	Inviável
	28	0	28	28.409157	27	_	26	1	70	70	3	246	406	406	Inviável
0.000888	19	0	19	29.068239	18	1	17	_	75	75	\mathcal{E}	37	426	426	Inviável
0.000625	16	0	16	29.827166	15	_	14	1	80	80	3	236	464	464	Inviável
	27	0	27	34.921013	25	2	23	7	85	85	7	106	484	484	Viável
0.000568	15	0	15	33.344288	14	2	12	1	90	90	7	∞	522	522	Inviável
	15	0	15	38.147461	14		13	1	95	95	\mathcal{E}	224	542	542	Inviável
	13	0	13	39.012367	13	0	13	0	100	100	0	0	580	580	Viável
	2	0	2	34.815956	7	0	2	0	105	105	0	0	009	009	Viável
	30	0	30	53.288704	29	1	28	1	110	110	3	282	889	638	Inviável
0.000985	25	0	25	53.237213	24	_	23	1	115	115	3	61	859	859	Inviável
0.001534	44	0	44	63.604439	43		42	1	120	120	\mathcal{E}	136	969	969	Inviável
	16	0	16	52.441685	14	2	12	7	125	125	7	77	716	716	Inviável
	27	0	27	61.299709	27	0	27	0	130	130	0	0	754	754	Viável
	39	0	39	79.308372	37	_	36	2	135	135	3	260	774	774	Inviável
	57	0	57	86.724030	55	3	52	7	140	140	1	222	812	812	Inviável
	99	0	99	91.902611	55	_	54	1	145	145	3	125	832	832	Inviável
0.003124	51	0	51	98.584045	20		46	1	150	150	\mathcal{E}	166	870	870	Inviável
0.001724	35	0	35	86.679047	34		33	1	155	155	∞	213	890	890	Inviável

Tabela 13 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

T_{11} 0.000151 10 0.001537 8 2 6 2 10 10 2.01937 8 2 6 2 10 10 2.48 78 T_{23} 0.000090 4 0 4 5.11778 5 0 5 0 0 0 10 11 15 15 15 16 16 11 1 1 15 15 2 16 16 16 16 14.109071 9 1 8 1 30 30 2 15 174 174 14.984569 6 1 3 3 2 1 17 14.984569 6 1 3 3 3 3 3 1 1 14.199071 9 1 8 1 3 3 3 1 1 14.199071 9 1 8 1 3 3 3 3 1 1 14.1984569	Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	QPQPD	Solução
4 0 4 5.170916 3 2 1 1 15 15 2 169 5 0 5 6.712778 5 0 5 0 0 0 1 0 1 1 1 15 15 15 1 16 1 0 1 1 1 2 2 2 0 0 0 1 0 1 1 4.84580 6 1 5 1 40 40 0 0 0 21 2 1 2 1 1 4.84869 6 1 5 1 40 40 3 3 2 1 40 40 9 0		0.000151	10	0	10	5.071937	∞	2	9	2	10	10	2	46	58	58	Inviável
0,000107 5 6,712778 5 0 5 0,000107 0,0000152 5 0,712778 5 0,712778 5 0 25 25 0 0 0 0 14,109071 9 1 8 1 30 25 5 0 0 0 0 14,109071 9 1 8 1 30 30 2 0 0 0 0 0 14,109071 9 1 8 1 30 30 3 21 0 0 0 0 14,294502 6 1 40 40 3 3 21 1 40 40 3 3 21 1 0 0 0 0 10 1 4,294502 5 0 0 0 0 1 4,944502 5 0 0 0 0 0 0 1 0 1 1 1 1 <td< td=""><td></td><td>0.000000</td><td>4</td><td>0</td><td>4</td><td>5.170916</td><td>\mathcal{C}</td><td>2</td><td>1</td><td>1</td><td>15</td><td>15</td><td>7</td><td>169</td><td>78</td><td>78</td><td>Inviável</td></td<>		0.000000	4	0	4	5.170916	\mathcal{C}	2	1	1	15	15	7	169	78	78	Inviável
0,000152 5 9,420621 5 0,420621 5 0,420621 5 0,420621 5 0,420621 6 1 8 1 30 30 2 152 0,0000193 7 1,4109071 9 1 8 1 30 30 2 152 0,0000193 7 0 7 1,4109071 9 1 8 1 30 30 2 152 0,0000393 17 0 7 1,4984569 5 0 5 0 5 0 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1		0.000107	S	0	5	6.712778	5	0	ς.	0	20	20	0	0	116	116	Viável
0.000021 10 14,109071 9 1 8 1 30 30 2 152 0.000023 7 14,894569 6 1 5 1 35 35 3 211 0.000033 17 0 7 14,894569 6 1 5 1 35 35 3 211 0.0000231 21 0 5 22.689589 5 0 5 0 0 5 0 0 9 1 8 1 35 35 3 21 0		0.000152	5	0	5	9.420621	5	0	5	0	25	25	0	0	136	136	Viável
0.000193 7 14,984569 6 1 5 1 35 35 3 211 0.0000388 17 0 17 22,239225 16 1 15 1 40 40 3 58 0.0000331 5 0 5 22,689589 5 0 5 5 0 50 5 3 146 0.000057 22 32,888725 1 1 0 6 6 0 0 0 0 0 0 0 0 0 5 4		0.000221	10	0	10	14.109071	6	1	∞	_	30	30	7	152	174	174	Inviável
0.000398 17 0 17 22.239225 16 1 15 1 40 40 3 58 0.0000331 5 0 21 26.776621 19 1 18 2 45 45 2 372 0.000034 12 26.776621 19 1 18 2 45 45 2 372 0.000034 11 0 1 31.624889 1 1 0<		0.000193	7	0	7	14.984569	9	1	2	1	35	35	\mathcal{C}	211	194	194	Inviável
0.000472 21 2.776621 19 1 18 2 45 45 2 372 0.000231 5 0 5 2.689589 5 0 5 5 5 5 5 372 0.000537 22 0 5 2.688785 21 1 20 5 5 9 0 0 0.000334 11 0 11 31.624989 11 0 11 0 0 0 0 0 10 40.392346 14 2 12 5 5 3 14 0 11 0 0 0 0 14 42.479244 1 2 12 5 5 5 9 0 0 0 10 42.479244 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td>0.000398</td><td>17</td><td>0</td><td>17</td><td>22.239225</td><td>16</td><td>1</td><td>15</td><td>1</td><td>40</td><td>40</td><td>κ</td><td>28</td><td>232</td><td>232</td><td>Inviável</td></td<>		0.000398	17	0	17	22.239225	16	1	15	1	40	40	κ	28	232	232	Inviável
0.000231 5 22.689589 5 0 5 50.000231 6 6 0 <td></td> <td>0.000472</td> <td>21</td> <td>0</td> <td>21</td> <td>26.776621</td> <td>19</td> <td>_</td> <td>18</td> <td>2</td> <td>45</td> <td>45</td> <td>7</td> <td>372</td> <td>252</td> <td>252</td> <td>Inviável</td>		0.000472	21	0	21	26.776621	19	_	18	2	45	45	7	372	252	252	Inviável
0.000507 22 32.888725 21 1 20 1 55 55 3 146 0.000334 11 0 11 31.624989 11 0 11 60 60 0 0 0.000334 11 0 16 40.392376 14 2 12 6 6 0 0 0 0.000537 19 0 19 42.479244 18 1 1 70 6 0 0 0 0.000537 19 0 25 52.914383 23 1 22 2 75 75 3 113 0.000410 5 0 2 44.121441 5 0 8 0 0 0 0.000410 5 0 2 61.520485 26 0 8 0 0 0 0.000121 3 0 2 6 0 2 2	_	0.000231	5	0	5	22.689589	5	0	5	0	20	20	0	0	290	290	Viável
0.0006334 11 31.624989 11 0 11 31.624989 11 0 11 0 <td< td=""><td></td><td>0.000507</td><td>22</td><td>0</td><td>22</td><td>32.888725</td><td>21</td><td>1</td><td>20</td><td>1</td><td>55</td><td>55</td><td>\mathcal{C}</td><td>146</td><td>310</td><td>310</td><td>Inviável</td></td<>		0.000507	22	0	22	32.888725	21	1	20	1	55	55	\mathcal{C}	146	310	310	Inviável
0.000622 16 0 16 40.392376 14 2 12 6 65 65 2 12 0.000537 19 0 19 42.479244 18 1 70 70 3 113 0.000872 25 0 25 52.914383 23 1 22 2 75 75 3 65 0.000979 26 0 26 61.520485 26 0 26 0 8 8 0 0 0.000524 14 0 14 5.894838 13 1 12 1 90 90 3 1 0.000524 14 0 14 58.946838 13 1 12 0 <td< td=""><td>_</td><td>0.000334</td><td>11</td><td>0</td><td>11</td><td>31.624989</td><td>11</td><td>0</td><td>11</td><td>0</td><td>09</td><td>09</td><td>0</td><td>0</td><td>348</td><td>348</td><td>Viável</td></td<>	_	0.000334	11	0	11	31.624989	11	0	11	0	09	09	0	0	348	348	Viável
0.000537 19 0.42479244 18 1 17 10 70 30 113 0.000872 25 52.914383 23 1 22 2 75 75 3 65 0.000410 5 0 5 44.121441 5 0 5 0 80 80 0 0.0000410 5 0 26 61.520485 26 0 26 0 85 85 0 0 0.0000524 14 0 14 58.946838 13 1 12 0 85 85 0 0 0.0000524 14 0 14 58.946838 13 1 12 0 <t< td=""><td>2</td><td>0.000622</td><td>16</td><td>0</td><td>16</td><td>40.392376</td><td>14</td><td>2</td><td>12</td><td>2</td><td>65</td><td>65</td><td>7</td><td>12</td><td>368</td><td>368</td><td>Inviável</td></t<>	2	0.000622	16	0	16	40.392376	14	2	12	2	65	65	7	12	368	368	Inviável
0.000872 25 52.914383 23 1 22 75 75 3 65 0.000410 5 6 5 44.121441 5 6 5 0 80 80 0 0.000979 26 0 26 61.520485 26 0 26 85 80 0 0 0.000524 14 0 14 58.946838 13 1 12 1 90 90 3 7 0.000121 32 76.480675 31 2 29 1 95 95 2 33 0.0001895 40 0 19 75.063278 19 0 10	~	0.000537	19	0	19	42.479244	18	1	17	_	70	70	\mathcal{E}	113	406	406	Inviável
0,000410 5 0 5 44.121441 5 0 5 80 80 0 0 0,000979 26 0 26 61.520485 26 0 26 0 85 85 0 0 0,000524 14 0 14 58.946838 13 1 12 1 90 90 3 7 0,000121 32 76.480675 31 2 29 1 95 95 2 303 0,000184 12 6 12 67.256622 12 0 100 100 0	_	0.000872	25	0	25	52.914383	23	_	22	7	75	75	\mathcal{C}	65	426	426	Inviável
0.000979 26 0 26 0 26 0 26 0 85 85 0 0 0.000524 14 58.946838 13 1 12 1 90 90 3 7 0.001121 32 76.480675 31 2 29 1 95 95 2 303 0.000045 12 0 12 67.256622 12 0 100 100 0 0 0 0 0 0 100 100 100 0<	10	0.000410	5	0	S	44.121441	5	0	2	0	80	80	0	0	464	464	Viável
0.000524 14 58.946838 13 1 12 1 90 90 3 7 0.001121 32 76.480675 31 2 29 1 95 95 2 303 0.000145 12 0 12 67.256622 12 0 10 10 112 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14<	١.٥	0.000979	26	0	56	61.520485	26	0	26	0	85	85	0	0	484	484	Viável
0.001121 32 76.480675 31 2 29 1 95 95 2 303 0.000645 12 0 12 67.256622 12 0 10 10 0 0 0.000782 19 0 19 75.063278 19 0 19 0 10 10 0 0 0.001895 40 0 40 105.254326 39 1 38 1 110 11 3 22 0.001895 40 0 40 105.254326 39 1 46 2 115 11 3 118 0.002117 49 0 49 112.761627 47 1 46 2 115 118 3 118 0.001819 60 0 60 132.780197 59 1 58 1 125 13 13 1 1 1 1 1 1 <td< td=""><td>_</td><td>0.000524</td><td>14</td><td>0</td><td>14</td><td>58.946838</td><td>13</td><td>_</td><td>12</td><td>1</td><td>06</td><td>06</td><td>3</td><td>7</td><td>522</td><td>522</td><td>Inviável</td></td<>	_	0.000524	14	0	14	58.946838	13	_	12	1	06	06	3	7	522	522	Inviável
0.000645 12 67.256622 12 0 12 0 10 10 10 0 0 0.000782 19 0 19 75.063278 19 0 105 105 105 0 0 0.001895 40 0 40 105.254326 39 1 38 1 110 110 3 22 0.001895 40 0 40 112.761627 47 1 46 2 115 115 3 118 0.0018195 60 0 49 112.761627 47 1 46 2 115 115 3 118 0.0018195 60 0 60 132.780197 59 1 58 1 125 125 3 221 0.008587 60 0 60 156.444183 58 2 56 2 136 186 0.0008587 60 0 <		0.001121	32	0	32	76.480675	31	2	29	1	95	95	7	303	542	542	Inviável
0.000782 19 0 19 75.063278 19 0 19 0 105 105 10 0 0 105 105 0 112.761627 47 1 46 2 115 115 118 0 0 0 0 112.761627 47 1 46 2 115 118 2 29 1 120 120 3 118 0.0018195 60 0 60 132.780197 59 1 58 1 125 125 3 118 0.002377 55 0 55 141.962936 53 1 125 1 140 140 1 140 1 140 1 1 1 1		0.000645	12	0	12	67.256622	12	0	12	0	100	100	0	0	280	580	Viável
0.001895 40 105.254326 39 1 38 1 110 110 3 22 0.002117 49 112.761627 47 1 46 2 115 115 3 118 0.001364 32 0 49 112.761627 47 1 46 2 115 115 3 118 0.0018195 60 0 60 132.780197 59 1 58 1 125 125 3 221 0.002377 55 0 55 141.962936 53 1 52 2 130 130 3 59 0.008587 60 0 60 156.444183 58 2 56 2 136 13 1 140 140 2 236 0.008381 14 0 14 110.073586 13 1 140 140 2 236 0.0039960 64 0 56 166.641754 55 1 150 150 3 44		0.000782	19	0	19	75.063278	19	0	19	0	105	105	0	0	009	009	Viável
0.002117 49 0.002117 49 112.761627 47 1 46 2 115 115 118 0.001364 32 0.06.626328 31 2 29 1 120 120 2 97 0.0018195 60 0 60 132.780197 59 1 58 1 125 125 3 221 0.002377 55 0 55 141.962936 53 1 52 2 130 130 3 59 0.008587 60 0 60 156.444183 58 2 56 2 136 130 3 59 0.000831 14 0 14 110.073586 13 1 140 140 2 236 0.039960 64 0 64 174.982620 62 2 60 2 145 1 223 0.003993 56 0 56 166.641754 55 1 1 150 150 3 44 0.0017		0.001895	40	0	40	105.254326	39	1	38	1	110	110	\mathcal{E}	22	638	638	Inviável
0.001364 32 106.626328 31 2 29 1 120 120 2 97 0.018195 60 0 60 132.780197 59 1 58 1 125 125 3 221 0.002377 55 0 55 141.962936 53 1 52 2 130 130 3 59 0.008587 60 0 60 156.444183 58 2 56 2 135 136 186 0.000831 14 0 14 110.073586 13 1 140 140 2 236 0.039960 64 0 64 174.982620 62 2 60 2 145 1 223 0.003993 56 0 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 155 155 3 112	- >	0.002117	49	0	46	112.761627	47	_	46	2	115	115	3	118	859	658	Inviável
0.018195 60 0 60 132.780197 59 1 58 1 125 125 3 221 0.002377 55 0 55 141.962936 53 1 52 2 130 130 3 59 0.008587 60 0 60 156.444183 58 2 56 2 135 13 186 0.000831 14 0 14 110.073586 13 1 12 1 140 140 2 236 0.039960 64 0 64 174.982620 62 2 60 2 145 1 223 0.0039950 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112		0.001364	32	0	32	106.626328	31	2	29	1	120	120	7	26	969	969	Inviável
0.002377 55 141.962936 53 1 52 2 130 130 3 59 0.008587 60 0 60 156.444183 58 2 56 2 135 135 2 186 0.0000831 14 0 14 110.073586 13 1 12 1 140 140 2 236 0.039960 64 0 64 174.982620 62 2 60 2 145 1 223 0.0039950 56 0 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112	_	0.018195	09	0	09	132.780197	59	_	28	1	125	125	3	221	716	716	Inviável
0.008587 60 0 60 156.444183 58 2 56 2 135 13 2 186 0.0000831 14 0 14 110.073586 13 1 12 1 140 140 2 236 0.039960 64 0 64 174.982620 62 2 60 2 145 1 223 0.003093 56 0 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112		0.002377	55	0	55	141.962936	53	_	52	2	130	130	3	59	754	754	Inviável
0.000831 14 110.073586 13 1 12 1 140 140 2 236 0.039960 64 0.039960 64 174.982620 62 2 60 2 145 145 1 223 0.003093 56 0 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112		0.008587	09	0	09	156.444183	58	2	99	2	135	135	7	186	774	774	Inviável
0.039960 64 0		0.000831	14	0	14	110.073586	13	$\overline{}$	12	1	140	140	7	236	812	812	Inviável
0.003093 56 0 56 166.641754 55 1 54 1 150 150 3 44 0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112		0.039960	64	0	64	174.982620	62	7	09	2	145	145	1	223	832	832	Inviável
0.001727 38 0 38 159.626587 36 1 35 1 155 155 3 112	_	0.003093	99	0	99	166.641754	55		54	1	150	150	3	44	870	870	Inviadel
		0.001727	38	0	38	159.626587	36	1	35	1	155	155	\mathcal{S}	112	890	890	Inviável

APÊNDICE C – RESULTADOS DA CLASSE 3

Tabela 14 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

7 0 7 0.274475 6 1 5 1 10 10 3 93 22 22 Invisional Invisi	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРD	Solução
0.277335 3 0 3 0 13 13 13 0 37 37 Viável 0.34913 0.334913 3 0 3 0 1 16 16 0 43 43 Viável 0.434913 0.633981 7 0 6 0 22 25 0 0 60 60 Viável 0.43491 0.686432 3 0 2 25 25 0 0 66 Wiável 0.43491 0.814895 7 2 5 1 31 31 2 69 71 71 Niável 0.43491 0.814895 7 2 5 1 31 3 0 66 60 </td <td>7</td> <td></td> <td>0</td> <td>7</td> <td>0.274475</td> <td>9</td> <td>1</td> <td>5</td> <td>1</td> <td>10</td> <td>10</td> <td>3</td> <td>93</td> <td>22</td> <td>22</td> <td>Inviável</td>	7		0	7	0.274475	9	1	5	1	10	10	3	93	22	22	Inviável
0.334913 3 0 16 16 0 43 43 Viável O404325 0.404325 1 0 1 0 19 19 0 49 49 Viável O404325 0.6035981 7 0 6 0 22 22 0 0 49 49 Viável O404325 0.686432 3 0 2 2 2 0 0 69 49 49 Viável O404805 0.814895 7 2 5 1 31 3 0 6 6 60 <	\mathcal{E}		0	κ	0.277335	\mathcal{E}	0	\mathcal{E}	0	13	13	0	0	37	37	Viável
0.404325 1 0 19 19 0 49 49 Viável O.579330 6 0 1 1 0 49 49 Viável O.579330 6 0 6 0 52 22 2 0 6 6 6 0 54 49 Viável O.686338 0 6 6 6 6 0 6 0 6 0 6 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 0 6 0 0 6 0 0 6 0	\mathcal{C}		0	κ	0.334913	3	0	κ	0	16	16	0	0	43	43	Viável
0.579330 6 0 6 0 22 22 0 54 54 Viável 0.63981 0.633981 7 0 7 0 25 25 0 0 60 60 Viável 0.686432 0.686432 3 0 3 3 0 25 1	_		0	1	0.404325	1	0	1	0	19	19	0	0	49	49	Viável
0 7 0.635981 7 0 7 0.635981 7 0 25 25 0 0 66 66 Viável 0 3 0.686432 3 0 3 0 28 0 0 66 66 Viável 0 3 0.911881 3 0 3 0 0 7<	9		0	9	0.579330	9	0	9	0	22	22	0	0	54	54	Viável
0 3 0.686432 3 0 28 28 28 0 66 Viável 0 8 0.814895 7 2 5 1 31 31 2 69 71 71 Inviáve 0 3 0.91881 3 0 3 0 9 4 7 7 7 7 7 1 1 1 3 0 0 9 7 7 7 1 1 1 4 0 0 0 8 0 4 0 0 9 8 0 0 8 8 0 0 1 0	7		0	7	0.635981	7	0	7	0	25	25	0	0	09	09	Viável
0 8 0.814895 7 2 5 1 31 2 69 71 71 Invidue 0 3 0.91881 3 0 3 4 34 0 77 77 74 0 8 1.211213 8 0 3 4 4 0 0 88 8 74 0 8 1.211213 8 0 4 4 0 0 88 8 8 74 0 8 1.231744 7 0 7 4 4 4 4 0 0 88 8 9 4 4 4 0 0 10 <td>ω</td> <td></td> <td>0</td> <td>κ</td> <td>0.686432</td> <td>\mathcal{S}</td> <td>0</td> <td>ε</td> <td>0</td> <td>28</td> <td>28</td> <td>0</td> <td>0</td> <td>99</td> <td>99</td> <td>Viável</td>	ω		0	κ	0.686432	\mathcal{S}	0	ε	0	28	28	0	0	99	99	Viável
0 3 0.911881 3 0 34 34 0 77 77 Viável Vi	∞		0	∞	0.814895	7	2	2	1	31	31	2	69	71	71	Inviável
0 2 0.930689 2 0 37 37 37 0 88 83 Viável 0 8 1.211213 8 0 4 40 0 0 88 88 Viável 0 7 1.231744 7 0 7 4 40 0 0 88 8 Viável 0 8 1.231744 7 0 4 40 0 0 103 103 Viável 0 8 1.231744 7 0 4 4.0 0 0 103 Viável 0 4 1.327197 8 0 0 109	α		0	κ	0.911881	\mathcal{E}	0	\mathcal{E}	0	34	34	0	0	77	77	Viável
0 8 1.211213 8 0 40 40 0 88 88 Viável 0 7 1.231744 7 0 7 43 43 0 0 103 103 Viável 0 8 1.231744 7 0 7 0 4 40 0 0 103 103 Viável 0 4 1.421082 3 1 2 1 49 49 3 17 115 115 109 Viável 0 10 1.662150 9 2 7 1 49 49 3 17 115 105 109 109 Niável 0 10 1.662150 9 2 7 1 49 49 3 17 115 115 110 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>7</td><td></td><td>0</td><td>7</td><td>0.930689</td><td>2</td><td>0</td><td>7</td><td>0</td><td>37</td><td>37</td><td>0</td><td>0</td><td>83</td><td>83</td><td>Viável</td></t<>	7		0	7	0.930689	2	0	7	0	37	37	0	0	83	83	Viável
0 7 1.231744 7 0 43 43 0 0 103 103 Viável 0 8 1.357197 8 0 4 46 0 0 109 109 Viável 0 4 1.421082 3 1 2 1 49 49 3 17 115 119 Inviáve 0 10 1.662150 9 2 7 1 82 2 94 120 120 Inviáve 0 10 1.662150 9 2 7 1 8 0 0 120 100 110 110 100 100 100	∞	20	0	∞	1.211213	∞	0	∞	0	40	40	0	0	88	88	Viável
0 8 1.357197 8 0 46 46 0 109 109 Viável 0 4 1.357197 8 0 46 40 0 109 109 Viável 0 4 1.421082 3 1 2 1 5 5 2 94 15 15 Imviáve 0 10 1.662150 9 2 7 1 52 5 0 0 120 120 Imviáve 0 6 1.852590 6 0 6 0 5 5 0 0 120 120 Imviáve 0 1 1.886577 7 0 6 0 6 0 0 120 120 130 Imviáve 0 18 2.452971 16 0 16 0 12 14 14 14 Imviáve 0 18 2.65814		7	0	7	1.231744	7	0	7	0	43	43	0	0	103	103	Viável
0 4 1.421082 3 1 2 1 49 49 3 17 115 115 Inviávo 0 10 1.662150 9 2 7 1 52 52 2 94 120 120 Inviávo 0 6 1.852590 6 0 6 0 58 58 0 0 126 126 Niávol 0 1 1.886577 7 0 58 58 0 0 132 132 Niávol 0 16 2.452971 16 0 16 61 0 132 Niávol 0 18 2.452971 18 0 18 0 149 49 3 143 Inviávol 0 18 2.69814 10 0 18 0 0 149 149 Niávol 0 18 2.69814 10 0 <td< td=""><td>•</td><td>~</td><td>0</td><td>∞</td><td>1.357197</td><td>∞</td><td>0</td><td>∞</td><td>0</td><td>46</td><td>46</td><td>0</td><td>0</td><td>109</td><td>109</td><td>Viável</td></td<>	•	~	0	∞	1.357197	∞	0	∞	0	46	46	0	0	109	109	Viável
0 10 1.662150 9 2 7 1 52 52 5 9 120 Inviáve 0 6 1.852590 6 0 6 0 55 55 0 0 126 176	7	-	0	4	1.421082	ε	1	2	1	49	49	\mathcal{E}	17	115	115	Inviável
0 6 1.852590 6 0 65 55 55 0 126 126 Viável 0 7 1.886577 7 0 7 0 58 58 0 0 132 132 Viável 0 16 2.452971 16 0 16 0 137 137 Viável 0 13 2.396463 12 1 11 1 64 64 2 82 143 Inviável 0 18 2.673827 18 0 18 0 67 67 0 0 149 Viável 0 10 2.569814 10 0 16 67 67 0 0 149 Viável 0 12 2.879240 12 0 12 0 12 0 149 Viável 0 2 12 12 12 12 12 14<	_	0	0	10	1.662150	6	7	7	1	52	52	7	94	120	120	Inviável
0 7 1.886577 7 0 7 58 58 6 0 132 132 Viável 0 16 2.452971 16 0 16 61 61 0 137 137 Viável 0 13 2.396463 12 1 11 1 64 64 2 82 143 Inviável 0 18 2.673847 18 0 18 0 149 Viável 0 10 2.569814 10 0 17 7 0 0 149 Viável 0 10 12 0 12 0 12 0 15 0 15 15 0 15 15 0 16 16 0 15 175 175 175 175 175 175 175 174 174 174 174 174 174 174 174 175 175		9	0	9	1.852590	9	0	9	0	55	55	0	0	126	126	Viável
0 16 2.452971 16 0 61 61 61 0 137 137 Viável 0 13 2.396463 12 1 11 1 64 64 2 82 143 143 Inviáves 0 18 0 18 0 16 149 149 Viável 0 10 2.569814 10 0 10 70 0 0 149 149 Viável 0 12 2.569814 10 0 10 70 70 0 149 149 Viável 0 12 2.569814 10 0 12 0 154 0 154 1	•	7	0	7	1.886577	7	0	7	0	58	58	0	0	132	132	Viável
0 13 2.396463 12 1 11 1 64 64 2 82 143 Inviáve 0 18 2.673827 18 0 18 0 67 67 0 0 149 149 Viável 0 10 2.569814 10 0 10 0 154 154 154 Viável 0 12 2.879240 12 0 12 0 15 0 154 154 Viável 0 9 12 73 73 0 159 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 189 169 <td< td=""><td></td><td>9</td><td>0</td><td>16</td><td>2.452971</td><td>16</td><td>0</td><td>16</td><td>0</td><td>61</td><td>61</td><td>0</td><td>0</td><td>137</td><td>137</td><td>Viável</td></td<>		9	0	16	2.452971	16	0	16	0	61	61	0	0	137	137	Viável
0 18 2.673827 18 0 18 0 67 67 67 0 149 149 Viável 0 10 2.569814 10 0 70 70 70 0 154 154 154 Viável 0 12 2.879240 12 0 12 0 76 0 169 169 169 169 169 169 169 169 169 175 176 175 175 176 175 176 175 176 175 176 175 176 175 176 175 176 176 176 176 176 176 176 177 176 <td></td> <td>3</td> <td>0</td> <td>13</td> <td>2.396463</td> <td>12</td> <td>1</td> <td>11</td> <td>1</td> <td>64</td> <td>64</td> <td>7</td> <td>82</td> <td>143</td> <td>143</td> <td>Inviável</td>		3	0	13	2.396463	12	1	11	1	64	64	7	82	143	143	Inviável
0 10 2.569814 10 0 70 70 0 154 154 154 Viável 0 12 2.879240 12 0 73 73 0 0 169 169 169 Viável 0 9 2.788131 9 0 9 0 76 76 0 175 175 Viável 0 20 3.447437 20 0 20 79 0 181 181 Viável 0 15 3.725257 15 0 15 0 186 186 186 186 Viável 0 18 3.944557 18 0 18 0 198 198 Viável 0 14 4.090196 14 0 14 0 0 203 203 Viável 0 10 4.157550 10 0 30 97 97 0 0	1	~	0	18	2.673827	18	0	18	0	<i>L</i> 9	<i>L</i> 9	0	0	149	149	Viável
0 12 2.879240 12 0 73 73 0 0 169 169 Viável 0 9 0 76 76 0 0 175 175 Viável 0 20 3.447437 20 0 20 79 0 181 181 Viável 0 15 0 15 0 15 0 186 186 186 Viável 0 18 3.725257 15 0 15 0 82 82 0 0 186 Viável 0 18 3.733343 19 1 18 0 88 88 0 192 192 Inviável 0 14 4.090196 14 0 14 0 0 203 203 Viável 0 10 4.157550 10 0 0 0 0 0 209 205 0 </td <td></td> <td>0</td> <td>0</td> <td>10</td> <td>2.569814</td> <td>10</td> <td>0</td> <td>10</td> <td>0</td> <td>70</td> <td>70</td> <td>0</td> <td>0</td> <td>154</td> <td>154</td> <td>Viável</td>		0	0	10	2.569814	10	0	10	0	70	70	0	0	154	154	Viável
0 9 2.788131 9 0 76 76 76 0 175 175 Viável 0 20 3.447437 20 0 20 79 79 0 181 181 Viável 0 15 3.725257 15 0 15 0 18 186 188 188 0 198 198 Viável 198 198 Viável 198 Viável 0 14 0 14 0 14 0 0 203 203 Viável 0 30 5.466869 30 0 0 215 0 0 215		[2	0	12	2.879240	12	0	12	0	73	73	0	0	169	169	Viável
0 20 3.447437 20 0 79 79 0 181 181 Viável 0 15 3.725257 15 0 15 0 82 82 0 0 186 186 186 Viável 0 20 3.733343 19 1 18 0 88 88 0 198 198 Viável 0 14 0 14 0 14 0 203 203 Viável 0 10 4.157550 10 0 10 0 209 209 Viável 0 30 5.466869 30 0 30 0 97 97 0 0 215 Viável		6	0	6	2.788131	6	0	6	0	9/	9/	0	0	175	175	Viável
0 15 3.725257 15 0 15 82 82 0 0 186 186 Viável 0 20 3.733343 19 1 18 1 85 85 3 59 192 192 Inviáve 0 18 0 18 0 18 0 198 198 Viável 0 14 0 14 0 14 0 0 203 203 Viável 0 10 4.157550 10 0 10 0 209 209 Viável 0 30 5.466869 30 0 30 97 97 0 0 215 Viável		20	0	20	3.447437	20	0	20	0	79	79	0	0	181	181	Viável
0 20 3.733343 19 1 18 1 85 85 3 59 192 192 Inviáve 0 18 3.944557 18 0 18 0 88 88 0 198 198 Viável 0 14 0 14 0 14 0 0 203 203 Viável 0 10 4.157550 10 0 10 0 209 209 Viável 0 30 5.466869 30 0 30 97 97 0 0 215 Viável		15	0	15	3.725257	15	0	15	0	82	82	0	0	186	186	Viável
0 18 3.944557 18 0 18 0 88 88 0 0 198 198 Viável 0 14 4.090196 14 0 14 0 91 91 0 0 203 203 Viável 0 10 4.157550 10 0 10 0 94 94 0 0 209 209 Viável 0 30 5.466869 30 0 30 0 97 97 0 0 215 215 Viável	•	50	0	20	3.733343	19	1	18	1	85	85	\mathcal{E}	59	192	192	Inviável
0 14 4.090196 14 0 14 0 91 91 0 0 203 203 Viável 0 10 4.157550 10 0 10 0 94 94 0 0 209 209 Viável 0 30 5.466869 30 0 30 0 97 97 0 0 215 215 Viável	` '	81	0	18	3.944557	18	0	18	0	88	88	0	0	198	198	Viável
0 10 4.157550 10 0 10 0 94 94 0 0 209 209 Viável 0 30 5.466869 30 0 30 0 97 97 0 0 215 215 Viável		4	0	14	4.090196	14	0	14	0	91	91	0	0	203	203	Viável
0 30 5.466869 30 0 30 0 97 97 0 0 215 215		0]	0	10	4.157550	10	0	10	0	94	94	0	0	209	209	
	α,	0	0	30	5.466869	30	0	30	0	24	6	0	0	215	215	Viável

Tabela 15 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

Solução	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	Viável	Inviável	Inviável	Viável	Viável	Viável	Viável	Viável	Inviável	Viável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	Inviável	Viável	Viável	Viáveľ	Viável
ОРОРD	22	37	43	49	54	09	99	71	77	83	88	103	109	115	120	126	132	137	143	149	154	169	175	181	186	192	198	203	209	215
QPQPT	22	37	43	49	54	09	99	71	77	83	88	103	109	115	120	126	132	137	143	149	154	169	175	181	186	192	198	203	500	215
IMS	0	0	0	0	0	0	0	62	0	46	87	0	0	0	0	0	39	0	0	0	0	0	0	0	182	52	0	0	0	0
QR	0	0	0	0	0	0	0	7	0	3	3	0	0	0	0	0	7	0	0	0	0	0	0	0	3	3	0	0	0	0
QP	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	28	61	64	29	70	73	9/	62	82	85	88	91	94	97
QT	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	28	61	64	29	70	73	9/	79	82	85	88	91	94	97
QVMFO	0	0	0	0	0	0	0	_	0	_	_	0	0	0	0	0		0	0	0	0	0	0	0	П	_	0	0	0	0
QPDF	4	\mathcal{E}	4	4	4	\mathcal{E}	4	15	5	2	9	S	6	7	4	8	9	7	13	18	12	6	9	16	12	11	12	15	\mathfrak{S}	14
QPTF	0	0	0	0	0	0	0	_	0	_	_	0	0	0	0	0	\vdash	0	0	0	0	0	0	0			0	0	0	0
VFOF	4	\mathcal{S}	4	4	4	α	4	16	5	\mathfrak{S}	7	S	6	7	4	∞	7	7	13	18	12	6	9	16	13	12	12	15	3	14
TF	0.946743	1.083430	1.350949	1.605055	1.852857	2.386419	2.639815	4.650862	3.502609	4.079507	4.785531	4.822252	5.311433	5.853807	5.712095	6.828451	7.198628	7.711761	8.853678	10.579736	10.177325	10.298887	10.697060	13.048265	12.518533	14.635650	14.397800	15.019579	13.305199	16.047464
QPDI	4	3	4	4	4	\mathcal{S}	4	17	5	4	∞	5	6	7	4	∞	8	7	13	18	12	6	9	16	14	13	12	15	\mathcal{E}	41
QPTI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VFOI	4	\mathcal{S}	4	4	4	\mathcal{E}	4	17	5	4	8	S	6	7	4	8	∞	7	13	18	12	6	9	16	14	13	12	15	3	14
TCI	0.000093	0.000071	0.000075	0.000098	0.000103	0.000122	0.000120	0.000971	0.000153	0.000190	0.000196	0.000213	0.000232	0.000262	0.000223	0.000298	0.000272	0.000291	0.000354	0.000488	0.000381	0.000400	0.000421	0.000570	0.000461	0.000591	0.000600	0.000621	0.000440	0.000585
Instância	T_{61}	T_{62}	T_{63}	T_{64}	T_{65}	T_{66}	T_{67}	T_{68}	T_{69}	T_{80}	T_{71}	T_{72}	T_{73}	T_{74}	T_{75}	T_{76}	T_{77}	T_{78}	T_{79}	T_{80}	T_{81}	T_{82}	T_{83}	T_{84}	T_{85}	T_{86}	T_{87}	T_{88}	T_{89}	T_{90}

Tabela 16 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

Solução	Viável	Viável	Inviável	Viável	Viável	Inviável	Inviável	Viável	Viável	Viável	Inviável	Viável	Viável	Inviável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	Viável	Viável	Viável	Viável	Viável	Viável	Inviável	ViáveH	Viável
ОРОРD	22	37	43	49	54	09	99	71	77	83	88	103	109	115	120	126	132	137	143	149	154	169	175	181	186	192	198	203	209	215
QPQPT	22	37	43	49	54	09	99	71	77	83	88	103	109	115	120	126	132	137	143	149	154	169	175	181	186	192	198	203	209	215
IMS	0	0	278	0	0	136	77	0	0	0	26	0	0	228	0	0	0	0	0	0	260	0	0	0	0	0	0	292	0	0
QR	0	0	κ	0	0	\mathcal{E}	κ	0	0	0	\mathcal{E}	0	0	7	0	0	0	0	0	0	3	0	0	0	0	0	0	7	0	0
QP	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	28	61	64	29	70	73	9/	62	82	85	88	91	94	97
QT	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	28	61	64	29	70	73	9/	6/	82	85	88	91	94	97
QVMFO	0	0	1	0	0	_	1	0	0	0	_	0	0	_	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0
QPDF	4	\mathcal{E}	2	S	\mathcal{E}	4	4	7	2	9	9	11	5	8	4	8	S	6	S	10	7	6	13	9	19	15	~	10	25	14
QPTF	0	0	П	0	0	_	П	0	0	0	_	0	0	-	0	0	0	0	0	0	П	0	0	0	0	0	0	2	0	0
VFOF	4	\mathcal{S}	\mathcal{E}	5	33	2	2	7	2	9	7	11	5	6	4	∞	2	6	2	10	∞	6	13	9	19	15	∞	12	25	14
TF	2.302349	2.314172	3.091009	3.789638	4.124852	5.241518	6.354083	7.332290	7.435463	8.716879	10.189024	11.562062	11.146279	13.520040	13.598935	14.324438	16.585722	17.713476	17.436422	20.729908	20.443260	22.298750	25.906265	23.996771	30.467159	30.736439	30.048157	34.238209	39.795071	37.197544
QPDI	4	3	4	5	\mathcal{E}	9	9	7	2	9	∞	11	5	10	4	∞	5	6	S	10	6	6	13	9	19	15	8	14	25	41
QPTI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VFOI	4	3	4	5	α	9	9	7	7	9	8	11	5	10	4	∞	S	6	S	10	6	6	13	9	19	15	∞	14	25	41
TCI	0.000092	0.000075	0.000077	0.000102	0.000102	0.000115	0.000138	0.000158	0.000160	0.000185	0.000192	0.000264	0.000201	0.000289	0.000227	0.000242	0.000314	0.000323	0.000283	0.000359	0.000316	0.000338	0.000413	0.000374	0.000590	0.000541	0.000500	0.000593	0.000787	0.000609
Instância	T_{61}	T_{62}	T_{63}	T_{64}	T_{65}	T_{66}	T_{67}	T_{68}	T_{69}	T_{70}	T_{71}	T_{72}	T_{73}	T_{74}	T_{75}	T_{76}	T_{77}	T_{78}	T_{89}	T_{80}	T_{81}	T_{82}	T_{83}	T_{84}	T_{85}	T_{86}	T_{87}	T_{88}	T_{89}	T_{90}

Tabela 17 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

VFOI QPTI QPDI TF	QPDI		TF		VFOF	QPTF	QPDF	QVMFO	QT	QP S	QR of	IMS	QPQPT	ОРОРО	Solução
4		0	4	3.497634	4	0	4	0	10	10	0	0	22	22	Viável
5 0	0	_	2	4.667260	5	0	S	0	13	13	0	0	37	37	Viável
3 0	0	_	\mathcal{E}	5.221797	2	_	\leftarrow		16	16	7	91	43	43	Inviável
3 (\cup		3	6.546982	3	0	3	0	19	19	0	0	46	46	Viável
8		0	∞	8.570376	8	0	∞	0	22	22	0	0	54	54	Viável
7		С	7	9.689416	9	1	S	1	25	25	3	165	09	09	Inviável
4		С	4	11.750108	4	0	4	0	28	28	0	0	99	99	Viável
10		0	10	13.780683	6	1	8	1	31	31	2	27	71	71	Inviável
_		0	_	12.083615	Т	0	_	0	34	34	0	0	77	77	Viável
4		0	4	15.189783	4	0	4	0	37	37	0	0	83	83	Viável
4		0	4	16.731325	4	0	4	0	40	40	0	0	88	88	Viável
6		0	6	20.333763	6	0	6	0	43	43	0	0	103	103	Viável
5		0	S	21.532743	4	1	\mathcal{S}	1	46	46	3	354	109	109	Inviável
∞		C	8	23.183388	7	1	9	1	49	49	3	99	115	115	Inviável
12		0	12	26.941450	111	1	10	1	52	52	3	36	120	120	Inviável
9		0	9	27.981998	9	0	9	0	55	55	0	0	126	126	Viável
∞		0	∞	28.345861	8	0	∞	0	28	28	0	0	132	132	Viável
14		0	14	34.623760	13	_	12		61	61	α	47	137	137	Inviável
∞		0	8	33.484306	8	0	8	0	49	64	0	0	143	143	Viável
7		0	7	35.378513	7	0	7	0	<i>L</i> 9	29	0	0	149	149	Viável
6		0	6	37.770302	6	0	6	0	70	70	0	0	154	154	Viável
2		0	S	39.036236	S	0	S	0	73	73	0	0	169	169	Viável
11		0	11	46.169849	10	_	6		9/	9/	α	230	175	175	Inviável
		0	∞	44.627403	8	0	8	0	79	4	0	0	181	181	Viável
2		0	2	43.979855	2	0	7	0	82	82	0	0	186	186	Viável
10		0	10	52.476982	10	0	10	0	85	85	0	0	192	192	Viável
48		0	48	93.063744	47	3	44		88	88	0	99	198	198	Inviável
15		0	15	59.436165	14	_	13		91	91	\mathcal{S}	115	203	203	Inviável
12		0	12	61.157127	12	0	12	0	94	94	0	0	209	209	Viáveb
14		0	14	64.395424	14	0	14	0	26	26	0	0	215	215	Viável

APÊNDICE D – RESULTADOS DA CLASSE 4

Tabela 18 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРД	Solução
T_{91}	0.000161	7	0	7	0.312782	7	0	7	0	10	10	0	0	46	46	Viável
T_{92}	0.000106	7	0	7	0.364432	9	1	5	1	15	15	κ	83	<i>L</i> 9	<i>L</i> 9	Inviável
T_{93}	0.000136	4	0	4	0.457212	4	0	4	0	20	20	0	0	92	92	Viável
T_{94}	0.000194	6	0	6	0.778317	6	0	6	0	25	25	0	0	113	113	Viável
T_{95}	0.000378	13	0	13	0.986748	13	0	13	0	30	30	0	0	138	138	Viável
T_{96}	0.000212	7	0	7	1.027551	7	0	7	0	35	35	0	0	159	159	Viável
T_{97}	0.000178	ε	0	ε	1.051519	\mathfrak{S}	0	\mathcal{S}	0	40	40	0	0	184	184	Viável
T_{98}	0.000312	10	0	10	1.413817	10	0	10	0	45	45	0	0	205	205	Viável
T_{99}	0.000434	22	0	22	1.957477	21	_	20	_	20	20	κ	36	230	230	Inviável
T_{110}	0.000363	11	0	11	1.923608	10	1	6		55	55	\mathcal{E}	27	251	251	Inviável
T_{111}	0.000266	8	0	∞	1.910518	8	0	8	0	09	09	0	0	276	276	Viável
T_{112}	0.000535	17	0	17	2.701651	17	0	17	0	65	65	0	0	297	297	Viável
T_{113}	0.000470	17	0	17	2.631805	17	0	17	0	70	70	0	0	322	322	Viável
T_{114}	0.000776	20	0	20	3.255888	20	0	20	0	75	75	0	0	343	343	Viável
T_{115}	0.000807	26	0	26	3.906788	25	7	23	П	80	80	_	25	368	368	Inviável
T_{116}	0.000800	21	0	21	3.939041	21	0	21	0	85	85	0	0	389	389	Viável
T_{117}	0.000981	25	0	25	4.496141	25	0	25	0	06	90	0	0	414	414	Viável
T_{118}	0.000826	18	0	18	4.568687	18	0	18	0	95	95	0	0	435	435	Viável
T_{119}	0.000473	2	0	7	3.770130	2	0	2	0	100	100	0	0	460	460	Viável
T_{120}	0.000991	24	0	24	5.188338	24	0	24	0	105	105	0	0	481	481	Viável
T_{121}	0.001428	25	0	25	6.117057	25	0	25	0	110	110	0	0	909	909	Viável
T_{122}	0.000825	12	0	12	5.614693	12	0	12	0	115	115	0	0	527	527	Viável
T_{123}	0.001844	51	0	51	8.492271	50	2	48	1	120	120	7	71	552	552	Viável
T_{124}	0.001926	37	0	37	8.159235	37	0	37	0	125	125	0	0	573	573	Viável
T_{125}	0.000900	16	0	16	6.753632	16	0	16	0	130	130	0	0	298	298	Viável
T_{126}	0.001385	30	0	30	8.190632	30	0	30	0	135	135	0	0	619	619	Viável
T_{127}	0.001397	29	0	29	8.274704	29	0	29	0	140	140	0	0	644	644	Viável

Fonte: Próprio autor.

Tabela 19 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	Q)	QR QR	IMS	QPQPT	ОРОРО	Solução
T_{91}	0.000137	4	0	4	1.138001	4	0	4	0	10	10	0	0	46	46	Viável
T_{92}	0.000130	∞	0	∞	1.589105	∞	0	∞	0	15	15	0	0	<i>L</i> 9	<i>L</i> 9	Viável
T_{93}	0.000142	4	0	4	1.786085	4	0	4	0	20	20	0	0	92	92	Viável
T_{94}	0.000167	S	0	5	2.618650	4	П	ε	1	25	25	\mathfrak{S}	75	113	113	Inviável
T_{95}	0.000184	10	0	10	3.311405	6	_	∞	1	30	30	\mathcal{E}	28	138	138	Inviável
T_{96}	0.000189	7	0	7	3.749768	7	0	7	0	35	35	0	0	159	159	Viável
T_{97}	0.000211	11	0	11	4.434138	10	П	6	1	40	40	κ	84	184	184	Inviável
T_{98}	0.000271	12	0	12	5.730974	111	1	10	1	45	45	κ	45	205	205	Inviável
T_{99}	0.000310	11	0	111	6.603997	6	\mathcal{S}	9	2	20	20	_	118	230	230	Inviável
T_{110}	0.000262	∞	0	∞	6.631235	∞	0	∞	0	55	55	0	0	251	251	Viável
T_{1111}	0.000466	12	0	12	8.836717	11	_	10	1	09	09	κ	31	276	276	Inviável
T_{112}	0.000968	24	0	24	11.275117	24	0	24	0	65	65	0	0	297	297	Viável
T_{113}	0.000375	9	0	9	9.298056	9	0	9	0	70	70	0	0	322	322	Viável
T_{114}	0.000470	7	0	7	10.974455	7	0	7	0	75	75	0	0	343	343	Viável
T_{115}	0.000699	22	0	22	15.227525	20	3	17	2	80	80	_	187	368	368	Inviável
T_{116}	0.000877	22	0	22	15.575080	21		20	1	85	85	\mathfrak{S}	93	389	389	Inviável
T_{117}	0.000518	11	0	11	14.339385	10	П	6		90	06	7	31	414	414	Inviável
T_{118}	0.000751	15	0	15	17.468817	14	П	13		95	95	\mathcal{C}	3	435	435	Inviável
T_{119}	0.000928	18	0	18	19.231247	17	2	15	1	100	100	_	10	460	460	Inviável
T_{120}	0.001309	31	0	31	22.826689	30	\vdash	56		105	105	\mathcal{C}	99	481	481	Inviável
T_{121}	0.001363	37	0	37	25.028572	36	3	33	1	110	110	0	98	909	909	Inviável
T_{122}	0.001008	20	0	20	23.115040	19	П	18		115	115	\mathcal{C}	13	527	527	Inviável
T_{123}	0.000926	21	0	21	25.006533	20		19	1	120	120	\mathcal{E}	50	552	552	Inviável
T_{124}	0.001014	27	0	27	25.688168	26	2	24		125	125	7	130	573	573	Inviável
T_{125}	0.001195	28	0	28	30.406149	27	3	24		130	130	_	46	298	298	Inviável
T_{126}	0.001528	31	0	31	32.263351	30	П	29	_	135	135	\mathcal{C}	81	619	619	Inviável
T_{127}	0.001750	42	0	42	36.305038	41	П	40	1	140	140	\mathcal{S}	13	644	644	Inviável

Fonte: Próprio autor.

Tabela 20 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

1	151	VEOI	TAGO	ו המס	Ę	10777	חחם (חחס		Ę	6	6	TAGG	Tagao	מחסחס	S. 1.0 D
Instancia	וכו	VFOI	Ųľ II	ŲŁDI	1 I	v rOr	QF1F	QPDF	QVIMIFU	ا ۲	77	Z.K	CIVII	VPVP1	(ryrd	Solução
T_{91}	0.000129	5	0	5	2.311019	5	0	5	0	10	10	0	0	46	46	Viável
T_{92}	0.000087	2	0	2	2.821167	2	0	2	0	15	15	0	0	<i>L</i> 9	<i>L</i> 9	Viável
T_{93}	0.000102	ε	0	\mathfrak{S}	3.683727	\mathfrak{S}	0	ε	0	20	20	0	0	92	92	Viável
T_{94}	0.000191	6	0	6	6.444602	6	0	6	0	25	25	0	0	113	113	Viável
T_{95}	0.000260	13	0	13	8.339341	13	0	13	0	30	30	0	0	138	138	Viável
T_{96}	0.000273	13	0	13	9.582879	12	1	111	1	35	35	κ	61	159	159	Inviável
T_{97}	0.000282	14	0	14	11.236726	13	1	12	1	40	40	7	108	184	184	Inviável
T_{98}	0.000373	19	0	19	14.322608	16	2	14	\mathfrak{S}	45	45	7	272	205	205	Inviável
T_{99}	0.000293	10	0	10	13.919674	10	0	10	0	50	20	0	0	230	230	Viável
T_{110}	0.000537	18	0	18	19.028280	17	1	16	1	55	55	_	235	251	251	Inviável
T_{111}	0.000325	5	0	S	17.193888	S	0	5	0	09	09	0	0	276	276	Viável
T_{112}	0.000536	16	0	16	23.076363	16	0	16	0	65	65	0	0	297	297	Viável
T_{113}	0.000427	12	0	12	21.899809	10	1	6	2	70	70	κ	23	322	322	Inviável
T_{114}	0.000577	15	0	15	26.526333	14	1	13	1	75	75	\mathcal{E}	145	343	343	Inviável
T_{115}	0.000620	24	0	24	31.294624	23	1	22		80	80	7	284	368	368	Inviável
T_{116}	0.000529	10	0	10	29.574724	10	0	10	0	85	85	0	0	389	389	Viável
T_{117}	0.000751	20	0	20	36.230297	20	0	20	0	06	06	0	0	414	414	Viável
T_{118}	0.000771	21	0	21	39.249943	21	0	21	0	95	95	0	0	435	435	Viável
T_{119}	0.001291	28	0	28	47.292946	28	0	28	0	100	100	0	0	460	460	Viável
T_{120}	0.000808	16	0	16	43.311825	16	0	16	0	105	105	0	0	481	481	Viável
T_{121}	0.001690	48	0	48	60.378296	47	1	46		110	110	α	104	909	909	Inviável
T_{122}	0.001052	29	0	56	54.858250	27		26	2	115	115	\mathcal{C}	140	527	527	Inviável
T_{123}	0.001783	44	0	44	67.434547	41	4	37	3	120	120	0	129	552	552	Inviável
T_{124}	0.001780	44	0	44	71.414680	43	4	39		125	125	0	99	573	573	Inviável
T_{125}	0.001459	41	0	41	71.869469	40	1	39		130	130	\mathcal{C}	69	869	298	Inviável
T_{126}	0.001077	23	0	23	66.366272	21	1	20		135	135	\mathcal{C}	39	619	619	Inviável
T_{127}	0.001857	41	0	41	82.640152	40	7	38	1	140	140	7	123	644	644	Viável

Fonte: Próprio autor.

Tabela 21 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

Instância	TCI	VFOI	QPTI	QPDI	TCI VFOI QPTI QPDI TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
<i>t</i> 91	0.000135	5	0	N	4.168581	4	1	8	1	10	10	8	23	46	46	Inviável
<i>t</i> 92	0.000075	1	0	_	4.565860	1	0	1	0	15	15	0	0	<i>L</i> 9	<i>L</i> 9	Viável
<i>t</i> 93	0.000125	9	0	9	7.243105	5	П	4	1	20	20	3	262	92	92	Inviável
<i>t</i> 94	0.000186	6	0	6	10.840095	∞	_	7	1	25	25	\mathcal{E}	116	113	113	Inviável
<i>t</i> 95	0.000231	14	0	14	14.522719	12	\mathcal{C}	6	_	30	30	_	62	138	138	Inviável
196	0.000286	12	0	12	17.094929	12	0	12	0	35	35	0	0	159	159	Viável
161	0.000196	9	0	9	16.295172	9	0	9	0	40	40	0	0	184	184	Viável
<i>t</i> 98	0.000275	9	0	9	20.773233	9	0	9	0	45	45	0	0	205	205	Viável
<i>t</i> 99	0.000358	17	0	17	26.639288	16	2	14	1	20	20	7	275	230	230	Inviável
t_{110}	0.000291	7	0	7	26.124315	7	0	7	0	55	55	0	0	251	251	Viável
t_{111}	0.000366	6	0	6	32.199150	∞	2	9	1	09	09	7	323	276	276	Inviável
t_{112}	0.000383	7	0	7	34.093185	9	2	4	1	65	9	7	131	297	297	Inviável
t_{113}	0.000332	4	0	4	35.027058	4	0	4	0	70	70	0	0	322	322	Viável
t_{114}	0.000640	16	0	16	48.287682	15	2	13	1	75	75	7	214	343	343	Inviável
t_{115}	0.000579	20	0	20	51.752781	19	П	18		80	80	\mathcal{S}	\mathfrak{S}	368	368	Inviável
t_{116}	0.000614	15	0	15	54.018745	14	\vdash	13	1	85	85	\mathcal{S}	194	389	389	Inviável
t_{117}	0.000636	16	0	16	58.739697	15	П	14		06	90	\mathcal{S}	17	414	414	Inviável
t_{118}	0.000831	21	0	21	70.444679	21	0	21	0	95	95	0	0	435	435	Viável
t_{119}	0.000604	13	0	13	65.283966	13	0	13	0	100	100	0	0	460	460	Viável
t_{120}	0.001197	30	0	30	85.331802	30	0	30	0	105	105	0	0	481	481	Viável
t_{121}	0.001065	32	0	32	94.381706	31	2	29	1	110	110	7	96	909	909	Inviável
t_{122}	0.000717	6	0	6	80.247986	6	0	6	0	115	115	0	0	527	527	Viável
t_{123}	0.001561	39	0	39	114.317764	35		34	4	120	120	\mathcal{C}	06	552	552	Inviável
t_{124}	0.001675	4	0	44	120.612183	43		42		125	125	α	75	573	573	Inviável
t_{125}	0.002237	53	0	53	135.416794	52	7	50	1	130	130	7	21	298	298	Inviável
t_{126}	0.003413	54	0	54	153.699310	53	7	51		135	135	7	347	619	619	Inviável
t_{127}	0.012477	59	0	59	163.704224	58	\vdash	57	1	140	140	3	62	644	644	Inviável

Fonte: Próprio autor.

APÊNDICE E – RESULTADOS DA CLASSE 5

Tabela 22 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

TCI VFOI	VFO		QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
0.000535 19 0 19 1.36237	0 19 1	0 19 1.362	19 1.362	1.362	371	18	\vdash	17	_	30	30	7	65	123	123	Inviável
0.000253 12 0 12 1.24896	12 0 12 1.2489	0 12 1.2489	12 1.2489	1.2489	964	12	0	12	0	40	40	0	0	164	164	Viável
0.000354 14 0 14 1.738698	14 0 14 1.7386	0 14 1.7386	14 1.7386	1.7386	86	14	0	14	0	20	20	0	0	205	205	Viável
0.000492 19 0 19 2.479058	19 0 19 2.4790	0 19 2.4790	19 2.4790	2.4790	28	18		17		09	09	\mathcal{C}	36	246	246	Inviável
0.000682 26 0 26 3.054396	26 0 26 3.0543	0 26 3.0543	26 3.0543	3.0543	969	25	\vdash	24		70	70	\mathcal{C}	53	287	287	Inviável
0.000395 7 0 7 2.95890	7 0 7 2.9589	0 7 2.9589	7 2.9589	2.9589	00	7	0	7	0	80	80	0	0	328	328	Viável
0.000644 14 0 14 3.88876	14 0 14 3.8887	0 14 3.8887	14 3.8887	3.8887	29	14	0	14	0	06	06	0	0	369	369	Viável
0.000885 26 0 26 5.02197	26 0 26 5.0219	0 26 5.0219	26 5.0219	5.0219	74	25	П	24	1	100	100	\mathcal{E}	\mathcal{E}	410	410	Inviável
0.000846 24 0 24 5.696308	24 0 24 5.69630	0 24 5.69630	24 5.69630	5.69630	8(23	П	22	1	110	110	7	99	451	451	Inviável
0.000931 18 0 18 6.187643	18 0 18 6.1876	0 18 6.1876	18 6.1876	6.1876	13	17	3	14	1	120	120	_	51	492	492	Inviável
0.000837 16 0 16 6.937486	16 0 16 6.93748	0 16 6.93748	16 6.93748	6.93748	9	15	П	14	1	130	130	3	26	533	533	Inviável
0.001092 19 0 19 7.933256	19 0 19 7.93325	0 19 7.93325	19 7.93325	7.93325	9	19	0	19	0	140	140	0	0	574	574	Viável
0.001959 42 0 42 10.392345	0 42 1	0 42 10.3923	42 10.3923	10.39234	5	41	1	40	1	150	150	3	96	615	615	Inviável
0.011136 54 0 54 11.988806	. 0 54 1	_	_	11.9888	90	54	0	54	0	160	160	0	0	959	959	Viável
0	0 32 1	_	_	11.0722	29	32	0	32	0	170	170	0	0	<i>L</i> 69	<i>L</i> 69	Viável
0.001788 31 0 31 12.26436	0 31 1			12.26436	51	30		29	1	180	180	3	∞	738	738	Inviável
0	0 51 1			15.7254	72	20	2	48		190	190	7	28	779	179	Inviável
0	0 66 1			18.5375	88	65	П	64		200	200	\mathcal{C}	63	820	820	Inviável
0.002927 41 0 41 17.714792	_	_	_	17.71479	32	41	0	41	0	210	210	0	0	861	861	Viável
				19.9053	55	53	П	52		220	220	\mathcal{C}	82	905	905	Inviável
0.002134 38 0 38 17.746913				17.7469	912	38	0	38	0	230	230	0	0	943	943	Viável
0.004331 63 0 63 22.667072	63 0 63 22.6670	0 63 22.667(63 22.667(22.6670)72	63	0	63	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 23 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

4.625579 15 1 14 1 30 30 3 44 123 123 5.116896 14 2 12 1 40 40 2 108 164 164 6.317155 6 1 5 2 50 50 3 12 10 10.136420 11 1 12 1 40 40 2 108 164 164 10.136420 11 1 1 1 70 70 3 20 28 20 28 16 164 20 10 10 10 1 44 12 14 14 1 10 1 10 10 1 10 1 10 1	Lactions of Test WENT OPPI OPPI TEST	t	VEOI	THAO	Idao	TL	4 I 🗅	EOE OPTE OPP	ם חמס		Ę	5	l d	INTE	TaOao	חמטמט	0.1.1.00
15 1 14 1 30 30 3 44 123 123 14 2 12 1 40 40 2 108 164 164 6 1 5 2 50 50 3 122 205 13 1 12 1 60 60 3 78 246 246 20 11 10 1 70 70 3 20 287 26 20 1 19 1 70 70 3 20 287 286 20 2 1 10 10 10 0 410 410 410 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 <td>ICI VFUI QPII QPDI</td> <td>QPII</td> <td></td> <td>עאט </td> <td></td> <td>11</td> <td>VFCF</td> <td>QFIF</td> <td>QPDF</td> <td>QVMFU</td> <td><u></u></td> <td>子 </td> <td>\Z</td> <td>SIMI</td> <td>QPQP1</td> <td>UPVPD</td> <td>Soluçac</td>	ICI VFUI QPII QPDI	QPII		עאט 		11	VFCF	QFIF	QPDF	QVMFU	<u></u>	子	\Z	SIMI	QPQP1	UPVPD	Soluçac
14 2 12 1 40 40 2 108 164 164 6 1 5 2 50 50 3 112 205 205 11 1 1 1 1 70 70 3 112 205 205 20 11 1 10 1 70 70 3 112 205 205 20 11 10 1 70 70 3 78 246 246 20 1 10 1 70 70 3 8 36 30 30 3 12 1 1 90 90 3 8 369 369 4 2 1 10 10 1 12 40 40 40 410 410 410 410 410 410 410 410 410 410 410 410	0.000583 16 0 16	16 0 16	0 16	16		4.625579	15	_	14		30	30	ϵ	44	123	123	Inviável
6 1 5 2 50 50 3 112 205 205 13 1 12 1 60 60 3 78 246 246 246 20 11 10 1 70 70 3 20 287 246 246 20 11 10 1 70 70 3 78 246 246 20 1 10 1 90 90 3 8 369 369 20 0 100 100 0 410	0.000286 15 0 15	15 0 15	0 15	15		5.116896	14	2	12		40	40	7	108	164	164	Inviável
13 1 12 1 60 60 3 78 246 246 20 11 10 1 70 70 3 20 287 287 20 1 19 1 80 80 3 115 328 328 31 12 1 11 1 90 90 3 8 369 38 368 38 369 38 369 38 369 38 369 38 369 38 369 38 490 490 38 369 490	0.000229 8 0 8	8 0 8	8 0	∞		6.317155	9	1	S	7	20	20	\mathcal{E}	112	205	205	Inviável
11 1 10 1 70 70 3 20 287 287 20 1 19 1 80 80 3 115 328 328 3 12 1 11 1 90 90 3 8 369 369 4 12 1 1 10 10 0 410 410 410 5 20 0 20 0 10 0 421 451 451 5 38 0 120 120 120 0 492 492 492 43 0 22 0 120 120 0 492 492 492 43 0 43 0 140 0 0 533 533 533 43 0 29 150 160 0 0 615 615 58 1 27	0.000367 14 0 14	14 0 14	0 14	14		8.510750	13	1	12	_	09	99	ε	78	246	246	Inviável
20 1 19 1 80 80 3 115 328 328 31 12 1 11 1 90 90 3 8 369 441 441 441 441 441 441 441 442 442 442 442 442 443 444	0.000413 12 0 12	12 0 12	0 12	12		10.136420	11	1	10		70	70	\mathcal{E}	20	287	287	Inviável
3 12 1 11 1 90 90 3 8 369 369 5 20 0 100 100 0 410 410 8 38 3 35 1 110 110 1 129 451 451 9 22 0 22 0 120 120 0 492 492 8 38 0 120 120 0 0 492 492 9 43 0 120 120 0 0 492 492 1 43 0 140 140 0 0 533 533 534 1 24 0 150 150 0 0 615 615 1 48 1 47 1 170 1 180 1 180 1 1 1 2 48 1 <td< td=""><td>0.000592 21 0 21</td><td>21 0 21</td><td>0 21</td><td>21</td><td></td><td>13.461862</td><td>20</td><td>1</td><td>19</td><td>_</td><td>80</td><td>80</td><td>ε</td><td>115</td><td>328</td><td>328</td><td>Inviável</td></td<>	0.000592 21 0 21	21 0 21	0 21	21		13.461862	20	1	19	_	80	80	ε	115	328	328	Inviável
5 20 0 20 100 100 0 410 410 3 38 3 35 1 110 110 1 129 451 451 43 0 22 0 120 120 0 492 492 43 0 43 0 140 140 0 64 452 492 43 0 43 0 140 140 0 574 574 574 5 43 0 140 140 0 615<	0.000569 13 0 13	$13 \qquad 0 \qquad 13$	0 13	13		14.868913	12	_	111	_	06	96	ε	~	369	369	Inviável
38 3 35 1 110 11 129 451 451 38 0 22 0 120 120 0 492 492 43 0 38 0 130 130 0 492 492 43 0 43 0 140 140 0 574 574 28 0 29 0 150 150 0 615 615 28 0 28 0 160 160 0 656 656 5 1 27 1 170 170 3 33 697 697 6 1 65 1 180 180 3 192 779 779 7 48 1 47 1 190 10 2 132 179 179 7 44 0 220 20 0 0 902 <td>0.000758 20 0 20</td> <td>0</td> <td>0 20</td> <td>20</td> <td></td> <td>17.942385</td> <td>20</td> <td>0</td> <td>20</td> <td>0</td> <td>100</td> <td>100</td> <td>0</td> <td>0</td> <td>410</td> <td>410</td> <td>Viável</td>	0.000758 20 0 20	0	0 20	20		17.942385	20	0	20	0	100	100	0	0	410	410	Viável
3 22 0 120 120 120 0 492 492 3 38 0 130 130 0 6 492 492 43 0 43 0 140 140 0 574 574 29 0 29 0 150 150 0 615 615 28 0 28 0 160 0 656 656 3 28 1 27 1 170 170 3 33 697 697 48 1 47 1 180 180 3 192 738 779 58 1 37 1 200 20 0 902 902 74 0 24 0 220 20 0 902 902 74 1 27 1 210 21 9 9 9	0.001439 39 0 39	0	0 39	39		26.738468	38	ϵ	35	_	110	110		129	451	451	Inviável
38 0 38 0 130 130 0 533 533 43 0 43 0 140 140 0 0 574 574 1 29 0 150 150 0 615 615 615 28 0 28 0 160 0 656 657 657 738 738 738 738 779 779 749 740 740 740 740<	0.000822 22 0 22	22 0 22	0 22	22		23.862009	22	0	22	0	120	120	0	0	492	492	Viável
43 0 43 0 140 140 0 574 574 43 0 29 0 150 150 0 615 615 28 0 28 0 160 160 0 656 656 5 1 27 1 170 170 3 33 697 697 6 1 65 1 180 180 3 192 738 738 4 48 1 47 1 190 190 2 135 779 779 5 38 1 37 1 200 2 135 779 779 7 24 0 220 200 3 17 861 861 8 78 1 230 230 3 100 943 943 1 38 0 240 0 0 984 <td>0.002102 38 0 38</td> <td>0</td> <td>0 38</td> <td>38</td> <td></td> <td>32.710876</td> <td>38</td> <td>0</td> <td>38</td> <td>0</td> <td>130</td> <td>130</td> <td>0</td> <td>0</td> <td>533</td> <td>533</td> <td>Viável</td>	0.002102 38 0 38	0	0 38	38		32.710876	38	0	38	0	130	130	0	0	533	533	Viável
4 29 0 150 150 0 615 615 28 0 28 0 160 160 0 656 656 3 28 1 27 1 170 170 3 33 697 697 48 1 47 1 180 180 3 192 738 738 38 1 47 1 190 190 2 135 779 779 58 1 57 1 200 200 3 142 820 820 7 24 0 24 0 220 20 0 902 902 8 78 1 77 1 230 230 3 100 943 943 1 38 0 240 240 0 984 984	0	0	0 43	43		36.535168	43	0	43	0	140	140	0	0	574	574	Viável
2 28 0 160 160 0 656 656 656 657	29 0	0	0 29	53		35.974224	29	0	56	0	150	150	0	0	615	615	Viável
58 1 27 1 170 170 3 33 697 697 66 1 65 1 180 180 3 192 738 738 38 1 47 1 190 190 2 135 779 779 58 1 37 1 200 200 3 142 820 820 58 1 57 1 210 210 3 17 861 861 24 0 24 0 220 220 0 0 902 902 78 1 77 1 230 230 3 100 943 943 38 0 38 0 984 984 984	0	0	0 28	28		40.678532	28	0	28	0	160	160	0	0	959	959	Viável
66 1 65 1 180 180 3 192 738 738 48 1 47 1 190 190 2 135 779 779 58 1 37 1 200 200 3 142 820 820 58 1 57 1 210 210 3 17 861 861 74 0 24 0 220 220 0 0 902 902 78 1 77 1 230 230 3 100 943 943 38 0 38 0 240 0 984 984	0	0	0 29	56		43.687519	28	1	27		170	170	\mathcal{E}	33	<i>L</i> 69	<i>L</i> 69	Inviável
48 1 47 1 190 190 2 135 779 779 38 1 37 1 200 200 3 142 820 820 24 0 24 0 220 220 0 0 902 902 78 1 77 1 230 230 3 100 943 943 38 0 38 0 240 240 0 984 984	0	0	<i>L</i> 9 0	<i>L</i> 9		60.574635	99	1	9		180	180	\mathcal{E}	192	738	738	Inviável
38 1 37 1 200 200 3 142 820 820 58 1 57 1 210 210 3 17 861 861 24 0 24 0 220 220 0 0 902 902 38 1 77 1 230 230 3 100 943 943 38 0 38 0 240 240 0 0 984 984	0.002510 49 0 49	0	0 49	49		60.850784	48	1	47	_	190	190	7	135	779	779	Inviável
7 58 1 57 1 210 210 3 17 861 861 7 24 0 220 220 0 0 902 902 7 1 230 230 3 100 943 943 38 0 38 0 240 240 0 984 984	0	0	0 39	39		60.179825	38	1	37		200	200	\mathcal{E}	142	820	820	Inviável
7 24 0 24 0 220 220 0 0 902 902 3 78 1 77 1 230 230 3 100 943 943 38 0 38 0 240 240 0 0 984 984	0.012961 59 0 59	0	0 59	59		74.183907	58	1	57	_	210	210	κ	17	861	861	Inviável
3 78 1 77 1 230 230 3 100 943 943 38 0 38 0 240 240 0 0 984 984	0.001877 24 0 24	24 0 24	0 24	24		64.467567	24	0	24	0	220	220	0	0	905	905	Viável
38 0 38 0 240 240 0 0 984 984	0.005284 79 0 79	62 0 62	0 79	79		86.009048	78	1	77	1	230	230	ϵ	100	943	943	Inviável
	0.002556 38 0 38	38 0 38	0 38	38		81.460571	38	0	38	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 24 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP.	QR	IMS	QPQPT	ОРОРО	Solução
T_{128}	0.001253	27	0	27	13.009991	25	4	21	2	30	30	0	195	123	123	Inviável
129	0.000259	8	0	8	10.826117	7	_	9	_	40	40	κ	235	164	164	Inviável
130	0.000299	10	0	10	14.050907	6	_	∞	_	50	20	\mathcal{E}	109	205	205	Inviável
731	0.000712	24	0	24	23.500963	22	2	20	2	09	09	_	256	246	246	Inviável
r ₁₃₂	0.000334	9	0	9	20.856606	9	0	9	0	70	70	0	0	287	287	Viável
⁷ 133	0.000732	26	0	26	31.436636	25	1	24	1	80	80	κ	143	328	328	Inviável
r_{134}	0.000987	34	0	34	40.013855	33	_	32	_	90	06	\mathcal{E}	162	369	369	Inviável
T_{135}	0.001110	33	0	33	46.107765	32	2	30	_	100	100	7	148	410	410	Inviável
736	0.000881	21	0	21	47.678055	21	0	21	0	110	110	0	0	451	451	Viável
137	0.000603	5	0	5	44.725407	5	0	5	0	120	120	0	0	492	492	Viável
138	0.001782	4	0	4	77.221489	43	Т	42	_	130	130	κ	122	533	533	Inviável
139	0.001321	31	0	31	72.585899	30	ε	27	_	140	140	_	100	574	574	Inviável
140	0.002010	40	0	40	89.539963	38	2	36	7	150	150	7	20	615	615	Viável
141	0.003332	57	0	57	108.065041	99	_	55	_	160	160	\mathcal{E}	45	959	959	Inviável
142	0.003023	53	0	53	114.372871	52	П	51		170	170	7	195	<i>L</i> 69	<i>L</i> 69	Inviável
143	0.008232	69	0	69	135.448349	89	П	29		180	180	\mathcal{E}	105	738	738	Inviável
, 1	0.001698	32	0	32	117.865593	31		30		190	190	\mathcal{S}	170	779	779	Inviável
145	0.004041	99	0	99	152.880371	55		54		200	200	\mathcal{S}	69	820	820	Inviável
146	0.058455	69	0	69	174.356628	29	4	63		210	210	0	19	861	861	Inviável
147	0.003311	64	0	64	176.424789	63		62		220	220	\mathcal{C}	72	905	905	Inviável
148	0.003246	99	0	99	176.697021	55	4	51		230	230	0	242	943	943	Inviável
T_{149}	0.003496	63	0	63	198.663254	63	0	63	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 25 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	ОРОРТ	ОРОРО	Solução
T_{128}	0.001426	28	0	28	22.792755	26	2	24	2	30	30	-	4	123	123	Inviável
T_{129}	0.000243	6	0	6	18.806871	6	0	6	0	40	40	0	0	164	164	Viável
T_{130}	0.000329	10	0	10	26.094496	10	0	10	0	20	20	0	0	205	205	Viável
T_{131}	0.000486	15	0	15	36.997334	13	2	11	2	09	09	7	30	246	246	Inviável
T_{132}	0.000438	10	0	10	42.875580	6	_	8	\leftarrow	70	70	7	310	287	287	Inviável
T_{133}	0.000743	24	0	24	59.475792	23	2	21		80	80	7	291	328	328	Inviável
T_{134}	0.001255	29	0	29	78.286156	28	П	27	_	06	06	7	94	369	369	Inviável
T_{135}	0.001056	25	0	25	83.741043	24	П	23		100	100	1	9	410	410	Inviável
T_{136}	0.000841	19	0	19	85.609924	19	0	19	0	110	110	0	0	451	451	Viável
T_{137}	0.000672	5	0	5	84.284988	4	П	\mathcal{C}	1	120	120	\mathcal{E}	12	492	492	Inviável
T_{138}	0.001804	39	0	39	137.694717	38	-	37		130	130	7	366	533	533	Inviável
T_{139}	0.001520	31	0	31	145.424835	30	П	59		140	140	\mathcal{E}	160	574	574	Inviável
T_{140}	0.001592	32	0	32	152.756744	31	-	30		150	150	\mathcal{E}	63	615	615	Inviável
T_{141}	0.002289	38	0	38	189.881729	37	П	36	_	160	160	\mathcal{E}	382	959	959	Inviável
T_{142}	0.003071	55	0	55	216.660736	54	П	53		170	170	7	18	<i>L</i> 69	<i>L</i> 69	Inviável
T_{143}	0.003474	59	0	59	235.531021	28	_	57	\leftarrow	180	180	\mathcal{E}	48	738	738	Inviável
T_{144}	0.028859	57	0	57	254.345139	99	\mathcal{E}	53		190	190	1	59	779	417	Inviável
T_{145}	0.002072	29	0	29	242.524323	27	2	25	2	200	200	1	63	820	820	Inviável
T_{146}	0.003580	20	0	20	287.886963	49	П	48	\vdash	210	210	3	74	861	861	Inviável
T_{147}	0.002657	42	0	42	286.970612	41	\vdash	40	\leftarrow	220	220	\mathcal{E}	320	902	905	Inviável
T_{148}	0.003790	54	0	54	337.872253	54	0	54	0	230	230	0	0	943	943	Viável
T_{149}	0.003304	54	0	54	355.263702	53	1	52	1	240	240	3	68	984	984	Inviável

Fonte: Próprio autor.

APÊNDICE F – RESULTADOS DA CLASSE 6

Tabela 26 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
T_{150}	0.001253	27	0	27	13.009991	25	4	21	2	30	30	0	195	123	123	Inviável
T_{151}	0.000259	∞	0	%	10.826117	7	_	9	_	40	40	κ	235	164	164	Inviável
T_{152}	0.000299	10	0	10	14.050907	6	1	8	1	20	20	ε	109	205	205	Inviável
T_{153}	0.000712	24	0	24	23.500963	22	2	20	2	09	09		256	246	246	Inviável
T_{154}	0.000334	9	0	9	20.856606	9	0	9	0	70	70	0	0	287	287	Viável
T_{155}	0.000732	26	0	26	31.436636	25	1	24	1	80	80	ε	143	328	328	Inviável
T_{156}	0.000987	34	0	34	40.013855	33	1	32	1	06	06	ε	162	369	369	Inviável
T_{157}	0.001110	33	0	33	46.107765	32	2	30	1	100	100	7	148	410	410	Inviável
T_{158}	0.000881	21	0	21	47.678055	21	0	21	0	110	110	0	0	451	451	Viável
T_{159}	0.000603	5	0	5	44.725407	2	0	S	0	120	120	0	0	492	492	Viável
T_{160}	0.001782	44	0	44	77.221489	43	1	42	1	130	130	\mathcal{E}	122	533	533	Inviável
T_{161}	0.001321	31	0	31	72.585899	30	\mathfrak{S}	27	1	140	140		100	574	574	Inviável
T_{162}	0.002010	40	0	40	89.539963	38	2	36	2	150	150	7	20	615	615	Viável
T_{163}	0.003332	57	0	57	108.065041	99	1	55	1	160	160	ε	45	959	959	Inviável
T_{164}	0.003023	53	0	53	114.372871	52	_	51	1	170	170	7	195	<i>L</i> 69	<i>L</i> 69	Inviável
T_{165}	0.008232	69	0	69	135.448349	89		<i>L</i> 9	1	180	180	\mathcal{E}	105	738	738	Inviável
T_{166}	0.001698	32	0	32	117.865593	31	_	30	1	190	190	\mathcal{E}	170	622	417	Inviável
T_{167}	0.004041	99	0	99	152.880371	55		54	1	200	200	\mathcal{E}	69	820	820	Inviável
T_{168}	0.058455	69	0	69	174.356628	29	4	63	1	210	210	0	19	861	861	Inviável
T_{169}	0.003311	64	0	64	176.424789	63		62	1	220	220	\mathcal{E}	72	902	905	Inviável
T_{170}	0.003246	99	0	99	176.697021	55	4	51	1	230	230	0	242	943	943	Inviável
T_{171}	0.003496	63	0	63	198.663254	63	0	63	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 27 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
T_{150}	0.000583	16	0	16	4.625579	15	-	14		30	30	3	44	123	123	Inviável
T_{151}	0.000286	15	0	15	5.116896	14	2	12	1	40	40	7	108	164	164	Inviável
T_{152}	0.000229	∞	0	∞	6.317155	9	1	2	2	20	20	ε	112	205	205	Inviável
T_{153}	0.000367	14	0	14	8.510750	13	1	12	1	09	09	ε	78	246	246	Inviável
T_{154}	0.000413	12	0	12	10.136420	11	1	10		70	70	\mathcal{E}	20	287	287	Inviável
T_{155}	0.000592	21	0	21	13.461862	20	1	19	1	80	80	ε	115	328	328	Inviável
T_{156}	0.000569	13	0	13	14.868913	12	1	11	1	06	06	ε	%	369	369	Inviável
T_{157}	0.000758	20	0	20	17.942385	20	0	20	0	100	100	0	0	410	410	Viável
T_{158}	0.001439	39	0	39	26.738468	38	\mathcal{E}	35	1	110	110		129	451	451	Inviável
T_{159}	0.000822	22	0	22	23.862009	22	0	22	0	120	120	0	0	492	492	Viável
T_{160}	0.002102	38	0	38	32.710876	38	0	38	0	130	130	0	0	533	533	Viável
T_{161}	0.001767	43	0	43	36.535168	43	0	43	0	140	140	0	0	574	574	Viável
T_{162}	0.001416	29	0	29	35.974224	29	0	29	0	150	150	0	0	615	615	Viável
T_{163}	0.001533	28	0	28	40.678532	28	0	28	0	160	160	0	0	959	959	Viável
T_{164}	0.001509	29	0	29	43.687519	28	_	27		170	170	\mathcal{E}	33	<i>L</i> 69	<i>L</i> 69	Inviável
T_{165}	0.004178	<i>L</i> 9	0	<i>L</i> 9	60.574635	99	1	65		180	180	\mathcal{E}	192	738	738	Inviável
T_{166}	0.002510	46	0	49	60.850784	48	_	47		190	190	7	135	622	417	Inviável
T_{167}	0.002190	39	0	39	60.179825	38		37		200	200	\mathcal{C}	142	820	820	Inviável
T_{168}	0.012961	59	0	29	74.183907	28	_	27		210	210	\mathcal{E}	17	861	861	Inviável
T_{169}	0.001877	24	0	24	64.467567	24	0	24	0	220	220	0	0	905	905	Viável
T_{170}	0.005284	79	0	79	86.009048	78	1	77	1	230	230	ε	100	943	943	Inviável
T_{171}	0.002556	38	0	38	81.460571	38	0	38	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 28 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	QPQPD	Solução
T_{150}	0.001253	27	0	27	13.009991	25	4	21	2	30	30	0	195	123	123	Inviável
T_{151}	0.000259	8	0	∞	10.826117	7	_	9	_	40	40	κ	235	164	164	Inviável
152	0.000299	10	0	10	14.050907	6	1	8	1	50	20	κ	109	205	205	Inviável
T_{153}	0.000712	24	0	24	23.500963	22	2	20	2	09	09	_	256	246	246	Inviável
154	0.000334	9	0	9	20.856606	9	0	9	0	70	70	0	0	287	287	Viável
155	0.000732	26	0	26	31.436636	25	1	24	1	80	80	κ	143	328	328	Inviável
156	0.000987	34	0	34	40.013855	33	1	32	1	90	06	κ	162	369	369	Inviável
157	0.001110	33	0	33	46.107765	32	2	30	1	100	100	7	148	410	410	Inviável
58	0.000881	21	0	21	47.678055	21	0	21	0	110	110	0	0	451	451	Viável
59	0.000603	2	0	5	44.725407	5	0	5	0	120	120	0	0	492	492	Viável
09	0.001782	44	0	44	77.221489	43	1	42	1	130	130	κ	122	533	533	Inviável
61	0.001321	31	0	31	72.585899	30	\mathfrak{S}	27	1	140	140	_	100	574	574	Inviável
62	0.002010	40	0	40	89.539963	38	2	36	2	150	150	2	20	615	615	Viável
63	0.003332	57	0	57	108.065041	99	1	55	1	160	160	κ	45	959	959	Inviável
64	0.003023	53	0	53	114.372871	52	1	51	1	170	170	7	195	<i>L</i> 69	<i>L</i> 69	Inviável
65	0.008232	69	0	69	135.448349	89	1	<i>L</i> 9	1	180	180	\mathcal{E}	105	738	738	Inviável
99	0.001698	32	0	32	117.865593	31	1	30	1	190	190	8	170	417	779	Inviável
29	0.004041	99	0	99	152.880371	55	1	54	1	200	200	\mathcal{E}	69	820	820	Inviável
89	0.058455	69	0	69	174.356628	29	4	63		210	210	0	19	861	861	Inviável
T_{169}	0.003311	64	0	64	176.424789	63	_	62		220	220	3	72	905	905	Inviável
T_{170}	0.003246	99	0	99	176.697021	55	4	51		230	230	0	242	943	943	Inviável
171	0.003496	63	0	63	198.663254	63	0	63	0	240	240	0	0	984	984	Viável

Fonte: Próprio autor.

Tabela 29 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	ОРОРТ	ОРОРО	Solução
T_{150}	0.001426	28	0	28	22.792755	26	2	24	2	30	30		4	123	123	Inviável
T_{151}	0.000243	6	0	6	18.806871	6	0	6	0	40	40	0	0	164	164	Viável
T_{152}	0.000329	10	0	10	26.094496	10	0	10	0	20	20	0	0	205	205	Viável
T_{153}	0.000486	15	0	15	36.997334	13	2	11	2	09	09	7	30	246	246	Inviável
T_{154}	0.000438	10	0	10	42.875580	6	_	8	\leftarrow	70	70	7	310	287	287	Inviável
T_{155}	0.000743	24	0	24	59.475792	23	2	21		80	80	7	291	328	328	Inviável
T_{156}	0.001255	29	0	29	78.286156	28	1	27	_	06	06	7	94	369	369	Inviável
T_{157}	0.001056	25	0	25	83.741043	24	1	23		100	100	1	9	410	410	Inviável
T_{158}	0.000841	19	0	19	85.609924	19	0	19	0	110	110	0	0	451	451	Viável
T_{159}	0.000672	2	0	5	84.284988	4	1	\mathcal{C}	1	120	120	\mathcal{E}	12	492	492	Inviável
T_{160}	0.001804	39	0	39	137.694717	38	1	37		130	130	7	366	533	533	Inviável
T_{161}	0.001520	31	0	31	145.424835	30	1	59		140	140	8	160	574	574	Inviável
T_{162}	0.001592	32	0	32	152.756744	31	1	30		150	150	\mathcal{E}	63	615	615	Inviável
T_{163}	0.002289	38	0	38	189.881729	37	1	36	_	160	160	\mathcal{E}	382	959	959	Inviável
T_{164}	0.003071	55	0	55	216.660736	54		53	\vdash	170	170	7	18	<i>L</i> 69	<i>L</i> 69	Inviável
T_{165}	0.003474	59	0	29	235.531021	28		57	\leftarrow	180	180	3	48	738	738	Inviável
T_{166}	0.028859	57	0	57	254.345139	99	3	53	\vdash	190	190	1	59	622	779	Inviável
T_{167}	0.002072	29	0	56	242.524323	27	2	25	2	200	200	1	63	820	820	Inviável
T_{168}	0.003580	20	0	20	287.886963	49		48	\vdash	210	210	3	74	861	861	Inviável
T_{169}	0.002657	42	0	42	286.970612	41	$\overline{}$	40	\leftarrow	220	220	\mathcal{E}	320	905	905	Inviável
T_{170}	0.003790	54	0	54	337.872253	54	0	54	0	230	230	0	0	943	943	Viável
T_{171}	0.003304	54	0	54	355.263702	53	1	52	1	240	240	3	68	984	984	Inviável

Fonte: Próprio autor.

APÊNDICE G – RESULTADOS DA CLASSE 7

Tabela 30 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 100.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	QPQPD	Solução
T_{172}	0.000751	26	0	26	1.237054	25	2	23	1	30	30	2	9	141	141	Inviável
T_{173}	0.000248	12	0	12	1.457946	10	Т	6	2	40	40	7	33	188	188	Inviável
T_{174}	0.000312	6	0	6	1.700140	∞	_	7	1	50	20	3	26	235	235	Inviável
T_{175}	0.000328	11	0	111	2.035404	11	0	111	0	09	09	0	0	282	282	Viável
T_{176}	0.000614	19	0	19	3.059500	18	_	17	1	70	70	3	13	329	329	Inviável
T_{177}	0.000988	21	0	21	4.015689	21	0	21	0	80	80	0	0	376	376	Viável
T_{178}	0.000669	16	0	16	3.889980	16	0	16	0	90	90	0	0	423	423	Viável
T_{179}	0.000748	17	0	17	4.587521	17	0	17	0	100	100	0	0	470	470	Viável
T_{180}	0.001402	38	0	38	6.647142	38	0	38	0	110	110	0	0	517	517	Viável
T_{181}	0.000839	22	0	22	5.959334	22	0	22	0	120	120	0	0	564	564	Viável
T_{182}	0.001321	30	0	30	7.551250	29	Т	28	1	130	130	\mathcal{E}	48	611	611	Inviável
T_{183}	0.001689	45	0	45	9.491059	43	2	41	2	140	140	7	88	859	859	Inviável
T_{184}	0.001994	46	0	46	10.306676	46	0	46	0	150	150	0	0	705	705	Viável
T_{185}	0.135749	80	0	80	15.250009	80	0	80	0	160	160	0	0	752	752	Viável
T_{186}	0.002844	99	0	99	14.350928	99	0	99	0	170	170	0	0	466	466	Viável
T_{187}	0.001639	38	0	38	12.507718	37	\mathcal{E}	34		180	180	_	11	846	846	Inviável
T_{188}	0.019180	89	0	89	15.635730	<i>L</i> 9	\mathcal{S}	64		190	190	_	80	863	863	Inviável
T_{189}	0.002935	49	0	49	16.273911	46	0	49	0	200	200	0	0	940	940	Viável
T_{190}	0.117517	88	0	88	21.078819	88	0	88	0	210	210	0	0	286	284	Viável

Fonte: Próprio autor.

Tabela 31 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 200.

Solução	Viável	Inviável	Inviável	Viável	Inviável	Viável	Inviável	Inviável	Viável	Viável	Viável	Inviável	Inviável	Inviável	Viável	Inviável	Inviável	Inviável	Viável
QPQPD S	141				329													940	286
QPQPT	141	188	235	282	329	376	423	470	517	564	611	658	705	752	799	846	893	940	284
IMS	31	159	74	0	57	0	61	99	145	0	0	71	33	193	0	194	53	21	0
QR	-	κ	7	0	\mathcal{E}	0	\mathcal{E}	\mathcal{E}	7	0	0	7	\mathcal{E}	7	0	\mathcal{E}	7	7	0
QP	30	40	50	09	70	80	06	100	110	120	130	140	150	160	170	180	190	200	210
QT	30	40	20	09	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210
QVMFO	1	1	2	0	1	0	1	1	1	0	0	1	1	1	0	1	2	1	0
QPDF	26	9	12	4	18	6	17	16	34	2	42	23	09	54	63	39	65	71	39
QPTF	2	_	_	0	_	0	1	1	7	0	0	2	1	1	0	1	7	2	0
VFOF	28	7	13	4	19	6	18	17	36	2	42	25	61	55	63	40	<i>L</i> 9	73	39
TF	5.482482	4.409831	7.463973	7.329847	11.147188	11.311305	15.892188	17.600378	24.207760	19.858404	31.789812	31.921757	44.494877	49.027580	52.290424	52.861839	68.243874	72.332985	62.531212
QPDI	30	∞	15	4	20	6	19	18	37	2	42	56	62	99	63	41	69	74	39
QPTI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VFOI	30	∞	15	4	20	6	19	18	37	2	42	26	62	99	63	41	69	74	39
TCI	0.001505	0.000199	0.000472	0.000277	0.000644	0.000382	0.000646	0.000590	0.001076	0.000602	0.001497	0.001069	0.004371	0.003094	0.003295	0.001939	0.014646	0.004989	0.002194
Instância	T_{172}	T_{173}	T_{174}	T_{175}	T_{176}	T_{177}	T_{178}	T_{179}	T_{180}	T_{181}	T_{182}	T_{183}	T_{184}	T_{185}	T_{186}	T_{187}	T_{188}	T_{189}	T_{190}

Fonte: Próprio autor.

Tabela 32 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 300.

Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	QPQPD	Solução
T_{172}	0.001502	24	0	24	11.085906	23	1	22	1	30	30	3	26	141	141	Inviável
T_{173}	0.000275	10	0	10	10.841891	10	0	10	0	40	40	0	0	188	188	Viável
T_{174}	0.000228	∞	0	∞	13.101917	7	1	9	1	20	20	ε	∞	235	235	Inviável
T_{175}	0.000367	13	0	13	17.943220	12	1	11	1	09	09	ε	88	282	282	Inviável
T_{176}	0.000498	16	0	16	23.927437	14	1	13	2	70	70	ε	34	329	329	Inviável
T_{177}	0.000583	20	0	20	30.205921	19	1	18	1	80	80	ε	108	376	376	Inviável
T_{178}	0.001032	22	0	22	37.939213	22	0	22	0	06	06	0	0	423	423	Viável
T_{179}	0.000656	19	0	19	40.419998	17	1	16	2	100	100	κ	270	470	470	Inviável
T_{180}	0.001025	23	0	23	48.714844	22	1	21	1	110	110	κ	9/	517	517	Inviável
T_{181}	0.001129	24	0	24	55.334000	23	1	22	1	120	120	ε	120	564	564	Inviável
T_{182}	0.002314	45	0	45	76.023064	44	1	43	1	130	130	κ	27	611	611	Inviável
T_{183}	0.001242	36	0	36	75.658943	33	4	29	2	140	140	0	268	859	859	Inviável
T_{184}	0.004105	70	0	70	106.764198	69	1	89		150	150	ε	48	705	705	Inviável
T_{185}	0.003259	54	0	54	106.350037	54	0	54	0	160	160	0	0	752	752	Viável
T_{186}	0.001668	24	0	24	99.860527	24	0	24	0	170	170	0	0	799	799	Viável
T_{187}	0.003243	62	0	62	128.091278	61	_	09		180	180	ε	32	846	846	Inviável
T_{188}	0.004140	65	0	65	142.928345	63	2	61	2	190	190	7	2	863	893	Inviável
T_{189}	0.004591	73	0	73	154.764877	73	0	73	0	200	200	0	0	940	940	Viável
T_{190}	0.002974	99	0	99	152.664398	65	1	64	1	210	210	3	85	284	286	Inviável

Fonte: Próprio autor.

Tabela 33 – Resultados das instâncias aplicadas a heurística com os parâmetros todos iguais a 400.

				1	, T	1		2	2							
Instância	TCI	VFOI	QPTI	QPDI	TF	VFOF	QPTF	QPDF	QVMFO	QT	QP	QR	IMS	QPQPT	ОРОРО	Solução
T_{172}	0.001663	22	0	22	20.697828	20	3	17	2	30	30		209	141	141	Inviável
173	0.000194	9	0	9	17.056561	5	_	4	_	40	40	κ	250	188	188	Inviável
T_{174}	0.000533	16	0	16	29.265732	15	_	14	_	20	20	κ	176	235	235	Inviável
175	0.000568	17	0	17	36.657810	16	_	15	_	09	09	κ	62	282	282	Inviável
176	0.000577	23	0	23	45.492680	22	_	21	_	70	70	7	107	329	329	Inviável
177	0.000542	13	0	13	49.913151	12	_	11	_	80	80	κ	151	376	376	Inviável
178	0.000503	15	0	15	57.329361	14	_	13	_	06	06	κ	377	423	423	Inviável
179	0.001292	28	0	28	82.218597	26	2	24	2	100	100		288	470	470	Inviável
081	0.000813	15	0	15	82.033730	14	_	13	_	110	110	κ	215	517	517	Inviável
181	0.001180	38	0	38	104.503250	36	_	35	2	120	120	\mathcal{C}	218	564	564	Inviável
182	0.001990	33	0	33	125.553650	32	2	30	_	130	130	7	148	611	611	Inviável
183	0.001676	37	0	37	140.167023	36	_	35	_	140	140	κ	68	658	859	Inviável
84	0.001239	29	0	59	137.691895	27	2	25	2	150	150	7	25	705	705	Inviável
85	0.001667	29	0	59	162.434875	28	_	27	_	160	160	κ	22	752	752	Inviável
981	0.001953	32	0	32	177.451141	31		30	_	170	170	\mathcal{E}	387	799	799	Inviável
187	0.023722	75	0	75	242.600067	74	_	73	_	180	180	κ	146	846	846	Inviável
88	0.002898	55	0	55	232.051727	55	0	55	0	190	190	0	0	893	893	Viável
68	0.014751	75	0	75	273.042633	74	\mathcal{S}	71		200	200	_	343	940	940	Inviável
06	0.003380	64	0	49	287.146851	63	2	61	1	210	210	7	20	286	286	Inviável

Fonte: Próprio autor.

APÊNDICE H – TAXA DE ERRO DA BUSCA TABU NA RELAÇÃO PROFESSOR-TURMA

Tabela 34 – Taxa de erro do BT em relação a restrição professor-turma na classe 1.

		Taxa de	e erro por j	parâmetro	do BT
Instância	QPQPT	$\ $ C ₁	C_2	C ₃	C ₄
$\overline{T_1}$	35	0%	0%	0%	0%
T_2	35	0%	0%	0%	0%
T_3	47	2.127%	0%	0%	0%
T_4	49	0%	0%	0%	0%
T_5	55	0%	0%	0%	0%
T_6	83	0%	0%	0%	0%
T_7	83	0%	0%	0%	0%
T_8	89	0%	1.123%	0%	0%
T_9	91	1.098%	0%	0%	0%
T_{10}	103	0%	0%	0.970%	0.970%
T_{11}	118	0%	0%	0%	0%
T_{12}	118	0%	0%	0%	0%
T_{13}	130	0%	0%	0%	0.769%
T_{14}	132	0%	0%	0%	0%
T_{15}	138	0%	1.449%	0%	0%
T_{16}	166	0%	0%	0%	0%
T_{17}	166	0.602%	0%	0%	0%
T_{18}	172	0%	0%	0%	0%
T_{19}	174	0%	0%	0%	0%
T_{20}	186	0%	0%	0%	0%
T_{21}	201	0.995%	0%	0%	0%
T_{22}	201	0%	0%	0%	0%
T_{23}	213	0%	0.469%	0%	0.469%
T_{24}	215	0%	0%	0%	0.465%
T_{25}	221	0%	0%	0%	0.452%
T_{26}	249	0%	0%	0.401%	0%
T_{27}	249	0%	0%	0%	0%
T_{28}	255	0%	0%	0%	0%
T_{29}	257	0%	0%	0%	0%
T_{30}	269	0%	0%	0%	0.743%

Tabela 35 – Taxa de erro do BT em relação a restrição professor-turma na classe 2.

			Taxa de erro por j	parâmetro do BT	
Instância	QPQPT	C ₁	C_2	C ₃	C ₄
T_{31}	58	1.724137931%	1.724137931%	3.448275862%	3.448275862%
T_{32}	78	1.282051282%	0%	2.564102564%	2.564102564%
T_{33}	116	0.8620689655%	0.8620689655%	0.8620689655%	0%
T_{34}	136	0.7352941176%	0%	1.470588235%	0%
T_{35}	174	0.5747126437%	0%	0.5747126437%	0.5747126437%
T_{36}	194	0%	1.030927835%	0.5154639175%	0.5154639175%
T_{37}	232	0%	0.4310344828%	0.4310344828%	0.4310344828%
T_{38}	252	0%	0%	0.7936507937%	0.3968253968%
T_{39}	290	0%	0.3448275862%	0%	0%
T_{40}	310	0.3225806452%	0.3225806452%	0.6451612903%	0.3225806452%
T_{41}	348	0%	0%	0.2873563218%	0%
T_{42}	368	0.2717391304%	0.2717391304%	0.2717391304%	0.5434782609%
T_{43}	406	0.2463054187%	0.2463054187%	0.2463054187%	0.2463054187%
T_{44}	426	0%	0%	0.234741784%	0.234741784%
T_{45}	464	0.2155172414%	0.4310344828%	0.2155172414%	0%
T_{46}	484	0%	0.2066115702%	0.4132231405%	0%
T_{47}	522	0%	0%	0.3831417625%	0.1915708812%
T_{48}	542	0.184501845%	0.184501845%	0.184501845%	0.36900369%
T_{49}	580	0.3448275862%	0.1724137931%	0%	0%
T_{50}	600	0.1666666667%	0.33333333333%	0%	0%
T_{51}	638	0%	0%	0.1567398119%	0.1567398119%
T_{52}	658	0%	0.1519756839%	0.1519756839%	0.1519756839%
T_{53}	696	0%	0.2873563218%	0.1436781609%	0.2873563218%
T_{54}	716	0.1396648045%	0.1396648045%	0.2793296089%	0.1396648045%
T_{55}	754	0.1326259947%	0.1326259947%	0%	0.1326259947%
T_{56}	774	0.2583979328%	0.1291989664%	0.1291989664%	0.2583979328%
T_{57}	812	0%	0%	0.3694581281%	0.1231527094%
T_{58}	832	0.1201923077%	0%	0.1201923077%	0.2403846154%
T_{59}	870	0%	0.1149425287%	0.1149425287%	0.1149425287%
T_{60}	890	0%	0%	0.1123595506%	0.1123595506%

Tabela 36 – Taxa de erro do BT em relação a restrição professor-turma na classe 3.

			Taxa de erro por j	parâmetro do BT	
Instância	QPQPT	C_1	C_2	C ₃	C ₄
T_{61}	22	4.545454545%	0%	0%	0%
T_{62}	37	0%	0%	0%	0%
T_{63}	43	0%	0%	2.325581395%	2.325581395%
T_{64}	49	0%	0%	0%	0%
T_{65}	54	0%	0%	0%	0%
T_{66}	60	0%	0%	1.666666667%	1.666666667%
T_{67}	66	0%	0%	1.515151515%	0%
T_{68}	71	2.816901408%	1.408450704%	0%	1.408450704%
T_{69}	77	0%	0%	0%	0%
T_{70}	83	0%	1.204819277%	0%	0%
T_{71}	88	0%	1.136363636%	1.136363636%	0%
T_{72}	103	0%	0%	0%	0%
T_{73}	109	0%	0%	0%	0.9174311927%
T_{74}	115	0.8695652174%	0%	0.8695652174%	0.8695652174%
T_{75}	120	1.666666667%	0%	0%	0.83333333333
T_{76}	126	0%	0%	0%	0%
T_{77}	132	0%	0.7575757576%	0%	0%
T_{78}	137	0%	0%	0%	0.7299270073%
T_{79}	143	0.6993006993%	0%	0%	0%
T_{80}	149	0%	0%	0%	0%
T_{81}	154	0%	0%	0.6493506494%	0%
T_{82}	169	0%	0%	0%	0%
T_{83}	175	0%	0%	0%	0.5714285714%
T_{84}	181	0%	0%	0%	0%
T_{85}	186	0%	0.5376344086%	0%	0%
T_{86}	192	0.52083333333%	0.52083333333%	0%	0%
T_{87}	198	0%	0%	0%	1.515151515%
T_{88}	203	0%	0%	0.9852216749%	0.4926108374%
T_{89}	209	0%	0%	0%	0%
T_{90}	215	0%	0%	0%	0%

<u>Tabela 37 – Taxa de erro do BT em relação a restrição professor-turma na classe 4.</u>

			Taxa de erro por j	parâmetro do BT	
Instância	QPQPT	C_1	C_2	C ₃	C ₄
T_{91}	46	0%	0%	0%	2.173913043%
T_{92}	67	1.492537313%	0%	0%	0%
T_{93}	92	0%	0%	0%	1.086956522%
T_{94}	113	0%	0.8849557522%	0%	0.8849557522%
T_{95}	138	0%	0.7246376812%	0%	2.173913043%
T_{96}	159	0%	0%	0.6289308176%	0%
T_{97}	184	0%	0.5434782609%	0.5434782609%	0%
T_{98}	205	0%	0.487804878%	0.9756097561%	0%
T_{99}	230	0.4347826087%	1.304347826%	0%	0.8695652174%
T_{110}	251	0.3984063745%	0%	0.3984063745%	0%
T_{111}	276	0%	0.3623188406%	0%	0.7246376812%
T_{112}	297	0%	0%	0%	0.6734006734%
T_{113}	322	0%	0%	0.3105590062%	0%
T_{114}	343	0%	0%	0.2915451895%	0.583090379%
T_{115}	368	0.5434782609%	0.8152173913%	0.2717391304%	0.2717391304%
T_{116}	389	0%	0.2570694087%	0%	0.2570694087%
T_{117}	414	0%	0.2415458937%	0%	0.2415458937%
T_{118}	435	0%	0.2298850575%	0%	0%
T_{119}	460	0%	0.4347826087%	0%	0%
T_{120}	481	0%	0.2079002079%	0%	0%
T_{121}	506	0%	0.5928853755%	0.1976284585%	0.395256917%
T_{122}	527	0%	0.1897533207%	0.1897533207%	0%
T_{123}	552	0.3623188406%	0.1811594203%	0.7246376812%	0.1811594203%
T_{124}	573	0%	0.3490401396%	0.6980802792%	0.1745200698%
T_{125}	598	0%	0.5016722408%	0.1672240803%	0.3344481605%
T_{126}	619	0%	0.1615508885%	0.1615508885%	0.3231017771%
T_{127}	644	0%	0.1552795031%	0.3105590062%	0.1552795031%

<u>Tabela 38 – Taxa de erro do BT em relação a restrição professor-turma na classe 5.</u>

			Taxa de erro por parâmetro do BT			
Instância	QPQPT	C ₁	C_2	C ₃	C ₄	
T_{128}	123	0.8130081301%	0.8130081301%	3.25203252%	1.62601626%	
T_{129}	164	0%	1.219512195%	0.6097560976%	0%	
T_{130}	205	0%	0.487804878%	0.487804878%	0%	
T_{131}	246	0.406504065%	0.406504065%	0.8130081301%	0.8130081301%	
T_{132}	287	0.3484320557%	0.3484320557%	0%	0.3484320557%	
T_{133}	328	0%	0.3048780488%	0.3048780488%	0.6097560976%	
T_{134}	369	0%	0.27100271%	0.27100271%	0.27100271%	
T_{135}	410	0.243902439%	0%	0.487804878%	0.243902439%	
T_{136}	451	0.22172949%	0.6651884701%	0%	0%	
T_{137}	492	0.6097560976%	0%	0%	0.2032520325%	
T_{138}	533	0.1876172608%	0%	0.1876172608%	0.1876172608%	
T_{139}	574	0%	0%	0.5226480836%	0.1742160279%	
T_{140}	615	0.162601626%	0%	0.325203252%	0.162601626%	
T_{141}	656	0%	0%	0.1524390244%	0.1524390244%	
T_{142}	697	0%	0.143472023%	0.143472023%	0.143472023%	
T_{143}	738	0.135501355%	0.135501355%	0.135501355%	0.135501355%	
T_{144}	779	0.2567394095%	0.1283697047%	0.1283697047%	0.3851091142%	
T_{145}	820	0.1219512195%	0.1219512195%	0.1219512195%	0.243902439%	
T_{146}	861	0%	0.1161440186%	0.4645760743%	0.1161440186%	
T_{147}	902	0.110864745%	0%	0.110864745%	0.110864745%	
T_{148}	943	0%	0.1060445387%	0.4241781548%	0%	
T_{149}	984	0%	0%	0%	0.1016260163%	

<u>Tabela 39 – Taxa de erro do BT em relação a restrição professor-turma na classe 6.</u>

			Taxa de erro por parâmetro do BT			
Instância	QPQPT	C ₁	C_2	C ₃	C ₄	
T_{150}	123	0.8130081301%	0.8130081301%	3.25203252%	1.62601626%	
T_{151}	164	0%	1.219512195%	0.6097560976%	0%	
T_{152}	205	0%	0.487804878%	0.487804878%	0%	
T_{153}	246	0.406504065%	0.406504065%	0.8130081301%	0.8130081301%	
T_{154}	287	0.3484320557%	0.3484320557%	0%	0.3484320557%	
T_{155}	328	0%	0.3048780488%	0.3048780488%	0.6097560976%	
T_{156}	369	0%	0.27100271%	0.27100271%	0.27100271%	
T_{157}	410	0.243902439%	0%	0.487804878%	0.243902439%	
T_{158}	451	0.22172949%	0.6651884701%	0%	0%	
T_{159}	492	0.6097560976%	0%	0%	0.2032520325%	
T_{160}	533	0.1876172608%	0%	0.1876172608%	0.1876172608%	
T_{161}	574	0%	0%	0.5226480836%	0.1742160279%	
T_{162}	615	0.162601626%	0%	0.325203252%	0.162601626%	
T_{163}	656	0%	0%	0.1524390244%	0.1524390244%	
T_{164}	697	0%	0.143472023%	0.143472023%	0.143472023%	
T_{165}	738	0.135501355%	0.135501355%	0.135501355%	0.135501355%	
T_{166}	779	0.2567394095%	0.1283697047%	0.1283697047%	0.3851091142%	
T_{167}	820	0.1219512195%	0.1219512195%	0.1219512195%	0.243902439%	
T_{168}	861	0%	0.1161440186%	0.4645760743%	0.1161440186%	
T_{169}	902	0.110864745%	0%	0.110864745%	0.110864745%	
T_{170}	943	0%	0.1060445387%	0.4241781548%	0%	
T_{171}	984	0%	0%	0%	0.1016260163%	

Tabela 40 – Taxa de erro do BT em relação a restrição professor-turma na classe 7.

			Taxa de erro por	parâmetro do BT	
Instância	QPQPT	C ₁	C_2	C ₃	C ₄
T_{172}	141	21.27659574%	1.418439716%	0.7092198582%	2.127659574%
T_{173}	188	21.27659574%	0.5319148936%	0%	0.5319148936%
T_{174}	235	21.27659574%	0.4255319149%	0.4255319149%	0.4255319149%
T_{175}	282	21.27659574%	0%	0.3546099291%	0.3546099291%
T_{176}	329	21.27659574%	0.3039513678%	0.3039513678%	0.3039513678%
T_{177}	376	21.27659574%	0%	0.2659574468%	0.2659574468%
T_{178}	423	21.27659574%	0.2364066194%	0%	0.2364066194%
T_{179}	470	21.27659574%	0.2127659574%	0.2127659574%	0.4255319149%
T_{180}	517	21.27659574%	0.3868471954%	0.1934235977%	0.1934235977%
T_{181}	564	21.27659574%	0%	0.1773049645%	0.1773049645%
T_{182}	611	21.27659574%	0%	0.1636661211%	0.3273322422%
T_{183}	658	21.27659574%	0.3039513678%	0.6079027356%	0.1519756839%
T_{184}	705	21.27659574%	0.1418439716%	0.1418439716%	0.2836879433%
T_{185}	752	21.27659574%	0.1329787234%	0%	0.1329787234%
T_{186}	799	21.27659574%	0%	0%	0.1251564456%
T_{187}	846	21.27659574%	0.1182033097%	0.1182033097%	0.1182033097%
T_{188}	893	21.27659574%	0.2239641657%	0.2239641657%	0%
T_{189}	940	21.27659574%	0.2127659574%	0%	0.3191489362%
T_{190}	987	21.27659574%	0%	0.1013171226%	0.2026342452%

APÊNDICE I – TAXA DE ERRO DA BUSCA TABU NA RELAÇÃO PROFESSOR-DIA

Tabela 41 – Taxa de erro do BT em relação a restrição professor-dia na classe 1.

			Taxa de erro por	parâmetro do BT	
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
$\overline{T_1}$	35	28.57142857%	25.71428571%	20%	25.71428571%
T_2	35	14.28571429%	8.571428571%	11.42857143%	5.714285714%
T_3	47	8.510638298%	12.76595745%	6.382978723%	6.382978723%
T_4	49	10.20408163%	12.24489796%	6.12244898%	4.081632653 %
T_5	55	5.454545455%	3.636363636%	3.636363636%	10.90909091 %
T_6	83	10.84337349%	9.638554217%	12.04819277%	8.43373494 %
T_7	83	9.638554217%	6.024096386%	4.819277108%	8.43373494 %
T_8	89	5.617977528%	4.494382022%	11.23595506%	10.11235955 %
T_9	91	6.593406593%	5.494505495%	8.791208791%	5.494505495 %
T_{10}	103	2.912621359%	6.796116505%	0.9708737864%	10.67961165 %
T_{11}	118	4.237288136%	7.627118644%	5.93220339 %	2.542372881 %
T_{12}	118	5.084745763%	3.389830508%	7.627118644%	6.779661017 %
T_{13}	130	6.153846154%	10.76923077%	3.846153846%	5.384615385%
T_{14}	132	8.333333333	4.545454545%	6.818181818%	3.03030303%
T_{15}	138	1.449275362%	5.797101449%	6.52173913 %	3.623188406%
T_{16}	166	6.024096386%	6.626506024%	4.819277108%	9.036144578%
T_{17}	166	4.21686747 %	7.228915663%	4.819277108%	1.807228916%
T_{18}	172	5.813953488%	8.139534884%	5.813953488%	4.069767442%
T_{19}	174	6.896551724%	6.896551724%	5.172413793%	5.747126437%
T_{20}	186	4.838709677%	9.139784946%	5.376344086%	8.064516129%
T_{21}	201	8.457711443%	6.965174129%	5.970149254%	6.965174129%
T_{22}	201	6.467661692%	2.487562189%	3.482587065%	4.47761194%
T_{23}	213	5.633802817%	5.633802817%	4.694835681%	2.34741784%
T_{24}	215	6.046511628%	5.581395349%	4.186046512%	5.11627907%
T_{25}	221	6.787330317%	6.334841629%	6.787330317%	7.692307692%
T_{26}	249	5.62248996 %	6.827309237 %	6.024096386 %	5.220883534%
T_{27}	249	4.016064257%	6.024096386 %	6.827309237 %	5.220883534%
T_{28}	255	8.62745098%	5.882352941 %	5.098039216 %	5.490196078%
T_{29}	257	5.836575875%	8.949416342%	5.836575875%	5.058365759%
T_{30}	269	20.81784387%	2.230483271%	23.79182156%	21.18959108%

Tabela 42 – Taxa de erro do BT em relação a restrição professor-dia na classe 2.

			Taxa de erro por j	parâmetro do BT	
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
T_{31}	58	1.724137931%	1.724137931%	3.448275862%	3.448275862%
T_{32}	78	1.282051282%	0%	2.564102564%	2.564102564%
T_{33}	116	0.8620689655%	0.8620689655%	0.8620689655%	0%
T_{34}	136	0.7352941176%	0%	1.470588235%	0%
T_{35}	174	0.5747126437%	0%	0.5747126437%	0.5747126437%
T_{36}	194	0%	1.030927835%	0.5154639175%	0.5154639175%
T_{37}	232	0%	0.4310344828%	0.4310344828%	0.4310344828%
T_{38}	252	0%	0%	0.7936507937%	0.3968253968%
T_{39}	290	0%	0.3448275862%	0%	0%
T_{40}	310	0.3225806452%	0.3225806452%	0.6451612903%	0.3225806452%
T_{41}	348	0%	0%	0.2873563218%	0%
T_{42}	368	0.2717391304%	0.2717391304%	0.2717391304%	0.5434782609%
T_{43}	406	0.2463054187%	0.2463054187%	0.2463054187%	0.2463054187%
T_{44}	426	0%	0%	0.234741784%	0.234741784%
T_{45}	464	0.2155172414%	0.4310344828%	0.2155172414%	0%
T_{46}	484	0%	0.2066115702%	0.4132231405%	0%
T_{47}	522	0%	0%	0.3831417625%	0.1915708812%
T_{48}	542	0.184501845%	0.184501845%	0.184501845%	0.36900369%
T_{49}	580	0.3448275862%	0.1724137931%	0%	0%
T_{50}	600	0.1666666667%	0.33333333333%	0%	0%
T_{51}	638	0%	0%	0.1567398119%	0.1567398119%
T_{52}	658	0%	0.1519756839%	0.1519756839%	0.1519756839%
T_{53}	696	0%	0.2873563218%	0.1436781609%	0.2873563218%
T_{54}	716	0.1396648045%	0.1396648045%	0.2793296089%	0.1396648045%
T_{55}	754	0.1326259947%	0.1326259947%	0%	0.1326259947%
T_{56}	774	0.2583979328%	0.1291989664%	0.1291989664%	0.2583979328%
T_{57}	812	0%	0%	0.3694581281%	0.1231527094%
T_{58}	832	0.1201923077%	0%	0.1201923077%	0.2403846154%
T_{59}	870	0%	0.1149425287%	0.1149425287%	0.1149425287%
T_{60}	890	0%	0%	0.1123595506%	0.1123595506%

Tabela 43 – Taxa de erro do BT em relação a restrição professor-dia na classe 3.

		Taxa de erro por parâmetro do BT			
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
T_{61}	22	22.72727273%	18.18181818%	18.18181818%	18.18181818%
T_{62}	37	8.108108108%	8.108108108%	8.108108108%	13.51351351 %
T_{63}	43	6.976744186%	9.302325581%	4.651162791%	2.325581395%
T_{64}	49	2.040816327%	8.163265306%	10.20408163%	6.12244898%
T_{65}	54	11.111111111%	7.407407407%	5.55555556%	14.81481481%
T_{66}	60	11.66666667%	5%	6.666666667%	8.333333333%
T_{67}	66	4.545454545%	6.060606061%	6.060606061%	6.060606061 %
T_{68}	71	7.042253521%	21.12676056%	9.85915493%	11.26760563%
T_{69}	77	3.896103896%	6.493506494%	2.597402597%	1.298701299%
T_{70}	83	2.409638554%	2.409638554%	7.228915663%	4.819277108%
T_{71}	88	9.090909091%	6.818181818%	6.818181818%	4.545454545%
T_{72}	103	6.796116505%	4.854368932%	10.67961165%	8.737864078%
T_{73}	109	7.339449541%	8.256880734%	4.587155963%	2.752293578%
T_{74}	115	1.739130435%	6.086956522%	6.956521739%	5.217391304%
T_{75}	120	5.8333333333%	3.3333333333%	3.3333333333%	8.333333333%
T_{76}	126	4.761904762%	6.349206349%	6.349206349%	4.761904762%
T_{77}	132	5.303030303%	4.545454545%	3.787878788%	6.060606061%
T_{78}	137	11.67883212%	5.109489051%	6.569343066%	8.759124088%
T_{79}	143	7.692307692%	9.090909091%	3.496503497%	5.594405594%
T_{80}	149	12.08053691%	12.08053691%	6.711409396%	4.697986577%
T_{81}	154	6.493506494%	7.792207792%	4.545454545%	5.844155844%
T_{82}	169	7.100591716%	5.325443787%	5.325443787%	2.958579882%
T_{83}	175	5.142857143%	3.428571429%	7.428571429%	5.142857143%
T_{84}	181	11.04972376%	8.839779006%	3.314917127%	4.419889503%
T_{85}	186	8.064516129%	6.451612903%	10.21505376%	1.075268817%
T_{86}	192	9.375%	5.729166667%	7.8125%	5.208333333%
T_{87}	198	9.090909091%	6.060606061%	4.04040404%	22.2222222%
T_{88}	203	6.896551724%	7.389162562%	4.926108374%	6.403940887%
T_{89}	209	4.784688995%	1.435406699%	11.96172249%	5.741626794%
T_{90}	215	13.95348837%	6.511627907%	6.511627907%	6.511627907%

Tabela 44 – Taxa de erro do BT em relação a restrição professor-dia na classe 4.

			Taxa de erro por p	parâmetro do BT	
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
T_{91}	46	0 %	0 %	0 %	2.173913043 %
T_{92}	67	1.492537313 %	0 %	0 %	0~%
T_{93}	92	0 %	0 %	0 %	1.086956522%
T_{94}	113	0 %	0.8849557522 %	0 %	0.8849557522%
T_{95}	138	0 %	0.7246376812 %	0~%	2.173913043%
T_{96}	159	0 %	0 %	0.6289308176 %	0%
T_{97}	184	0 %	0.5434782609 %	0.5434782609 %	0%
T_{98}	205	0 %	0.487804878 %	0.9756097561 %	0%
T_{99}	230	0.4347826087 %	1.304347826 %	0 %	0.8695652174%
T_{110}	251	0.3984063745 %	0 %	0.3984063745 %	0%
T_{111}	276	0 %	0.3623188406 %	0~%	0.7246376812%
T_{112}	297	0 %	0 %	0 %	0.6734006734%
T_{113}	322	0 %	0 %	0.3105590062 %	0%
T_{114}	343	0 %	0 %	0.2915451895 %	0.583090379%
T_{115}	368	0.5434782609 %	0.8152173913 %	0.2717391304 %	0.2717391304%
T_{116}	389	0 %	0.2570694087 %	0 %	0.2570694087%
T_{117}	414	0 %	0.2415458937 %	0 %	0.2415458937%
T_{118}	435	0 %	0.2298850575 %	0 %	0%
T_{119}	460	0 %	0.4347826087 %	0 %	0%
T_{120}	481	0 %	0.2079002079 %	0 %	0%
T_{121}	506	0 %	0.5928853755 %	0.1976284585 %	0.395256917%
T_{122}	527	0 %	0.1897533207 %	0.1897533207 %	0%
T_{123}	552	0.3623188406 %	0.1811594203 %	0.7246376812 %	0.1811594203%
T_{124}	573	0 %	0.3490401396 %	0.6980802792 %	0.1745200698%
T_{125}	598	0 %	0.5016722408 %	0.1672240803 %	0.3344481605%
T_{126}	619	0 %	0.1615508885 %	0.1615508885 %	0.3231017771%
T_{127}	644	0 %	0.1552795031 %	0.3105590062 %	0.1552795031%

<u>Tabela 45 – Taxa de erro do BT em relação a restrição professor-dia na classe 5.</u>

			Taxa de erro por	parâmetro do BT	
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
T_{128}	123	13.82113821 %	11.38211382 %	17.07317073 %	19.51219512%
T_{129}	164	7.317073171 %	7.317073171 %	3.658536585 %	5.487804878%
T_{130}	205	6.829268293 %	2.43902439 %	3.902439024 %	4.87804878%
T_{131}	246	6.910569106 %	4.87804878 %	8.130081301 %	4.471544715%
T_{132}	287	8.362369338 %	3.484320557 %	2.090592334 %	2.787456446%
T_{133}	328	2.134146341 %	5.792682927 %	7.317073171 %	6.402439024%
T_{134}	369	3.79403794 %	2.98102981 %	8.672086721 %	7.317073171%
T_{135}	410	5.853658537 %	4.87804878 %	7.317073171 %	5.609756098%
T_{136}	451	4.87804878 %	7.760532151 %	4.65631929 %	4.21286031%
T_{137}	492	2.845528455 %	4.471544715 %	1.016260163 %	0.6097560976%
T_{138}	533	2.626641651 %	7.12945591 %	7.879924953 %	6.941838649%
T_{139}	574	3.31010453 %	7.491289199 %	4.703832753 %	5.052264808%
T_{140}	615	6.504065041 %	4.715447154 %	5.853658537 %	4.87804878%
T_{141}	656	8.231707317 %	4.268292683 %	8.384146341 %	5.487804878%
T_{142}	697	4.591104735 %	3.87374462 %	7.317073171 %	7.604017217%
T_{143}	738	3.929539295 %	8.807588076 %	9.078590786 %	7.723577236%
T_{144}	779	6.161745828 %	6.033376123 %	3.851091142 %	6.803594352%
T_{145}	820	7.804878049 %	4.512195122 %	6.585365854 %	3.048780488%
T_{146}	861	4.761904762 %	6.620209059 %	7.317073171 %	5.574912892%
T_{147}	902	5.764966741 %	2.66075388 %	6.873614191 %	4.4345898%
T_{148}	943	4.029692471 %	8.16542948 %	5.408271474 %	5.72640509%
T_{149}	984	6.402439024 %	3.861788618 %	6.402439024 %	5.284552846%

Tabela 46 – Taxa de erro do BT em relação a restrição professor-dia na classe 6.

			Taxa de erro por	parâmetro do BT	
Instância	QPQPD	C ₁	C_2	C ₃	C ₄
T_{150}	123	13.82113821 %	11.38211382 %	17.07317073 %	19.51219512 %
T_{151}	164	7.317073171 %	7.317073171 %	3.658536585 %	5.487804878%
T_{152}	205	6.829268293 %	2.43902439 %	3.902439024 %	4.87804878%
T_{153}	246	6.910569106 %	4.87804878 %	8.130081301 %	4.471544715%
T_{154}	287	8.362369338 %	3.484320557 %	2.090592334 %	2.787456446%
T_{155}	328	2.134146341 %	5.792682927 %	7.317073171 %	6.402439024%
T_{156}	369	3.79403794 %	2.98102981 %	8.672086721 %	7.317073171%
T_{157}	410	5.853658537 %	4.87804878 %	7.317073171 %	5.609756098%
T_{158}	451	4.87804878 %	7.760532151 %	4.65631929 %	4.21286031%
T_{159}	492	2.845528455 %	4.471544715 %	1.016260163 %	0.6097560976%
T_{160}	533	2.626641651 %	7.12945591 %	7.879924953 %	6.941838649%
T_{161}	574	3.31010453 %	7.491289199 %	4.703832753 %	5.052264808%
T_{162}	615	6.504065041 %	4.715447154 %	5.853658537 %	4.87804878%
T_{163}	656	8.231707317 %	4.268292683 %	8.384146341 %	5.487804878%
T_{164}	697	4.591104735 %	3.87374462 %	7.317073171 %	7.604017217%
T_{165}	738	3.929539295 %	8.807588076 %	9.078590786 %	7.723577236%
T_{166}	779	6.161745828 %	6.033376123 %	3.851091142 %	6.803594352%
T_{167}	820	7.804878049 %	4.512195122 %	6.585365854 %	3.048780488%
T_{168}	861	4.761904762 %	6.620209059 %	7.317073171 %	5.574912892%
T_{169}	902	5.764966741 %	2.66075388 %	6.873614191 %	4.4345898%
T_{170}	943	4.029692471 %	8.16542948 %	5.408271474 %	5.72640509%
T_{171}	984	6.402439024 %	3.861788618 %	6.402439024 %	5.284552846%

<u>Tabela 47 – Taxa de erro do BT em relação a restrição professor-dia na classe 7.</u>

			Taxa de erro por parâmetro do BT			
Instância	QPQPD	C ₁	C_2	C ₃	C ₄	
T_{172}	141	16.31205674 %	18.43971631 %	15.60283688 %	12.05673759 %	
T_{173}	188	4.787234043 %	3.191489362 %	5.319148936 %	2.127659574%	
T_{174}	235	2.978723404 %	5.106382979 %	2.553191489 %	5.957446809%	
T_{175}	282	3.90070922 %	1.418439716 %	3.90070922 %	5.319148936%	
T_{176}	329	5.167173252 %	5.47112462 %	3.951367781 %	6.382978723%	
T_{177}	376	5.585106383 %	2.393617021 %	4.787234043 %	2.925531915%	
T_{178}	423	3.78250591 %	4.01891253 %	5.200945626 %	3.073286052%	
T_{179}	470	3.617021277 %	3.404255319 %	3.404255319 %	5.106382979%	
T_{180}	517	7.350096712 %	6.576402321 %	4.061895551 %	2.51450677%	
T_{181}	564	3.90070922 %	0.3546099291%	3.90070922 %	6.205673759%	
T_{182}	611	4.582651391 %	6.873977087 %	7.037643208 %	4.909983633%	
T_{183}	658	6.23100304 %	3.495440729 %	4.407294833 %	5.319148936%	
T_{184}	705	6.524822695 %	8.510638298 %	9.645390071 %	3.546099291%	
T_{185}	752	10.63829787 %	7.180851064 %	7.180851064 %	3.590425532%	
T_{186}	799	8.260325407 %	7.88485607 %	3.003754693 %	3.754693367%	
T_{187}	846	4.01891253 %	4.609929078 %	7.092198582 %	8.628841608%	
T_{188}	893	7.166853303 %	7.278835386 %	6.830907055 %	6.159014558%	
T_{189}	940	5.212765957 %	7.553191489 %	7.765957447 %	7.553191489%	
T_{190}	987	8.915906788 %	3.951367781 %	6.484295846 %	6.180344478%	