[2024-2025]

группа 10-1

М. А. Ложкин 17 февраля 2025 г.

Линейные рекурренты

Будем говорить, что последовательность чисел $\{x_n\}$ удовлетворяет линейному рекуррентному соотношению порядка k, если для некоторых чисел $\alpha_1, \alpha_2, \ldots, \alpha_k$ равенство

$$x_{n+k} = \alpha_1 x_{n+k-1} + \alpha_2 x_{n+k-2} + \dots + \alpha_k x_n$$

выполняется при любом натуральном n.

1. Рассмотрим последовательность $\{r_n\}$, удовлетворяющую соотношению

$$r_{n+2} = 5r_{n+1} - 6r_n. (1)$$

- (а) Докажите, что для любого числа C последовательность $\{Cr_n\}$ также удовлетворяет (1). Докажите, что если последовательности $\{r_n\}$ и $\{s_n\}$ удовлетворяют (1), то и последовательность $\{r_n+s_n\}$ удовлетворяет (1).
- **(б)** Найдите все геометрические последовательности, удовлетворяющие соотношению (1).
- **(в)** Найдите явную формулу для r_n , если известно, что $r_1 = \alpha$ и $r_2 = \beta$.
- **2.** Таракан ползает по ребрам правильного тетраэдра ABCD со скоростью 1 ребро в минуту. В каждой вершине таракан с вероятностью 1/3 выбирает, по какому из трёх рёбер ему ползти дальше. Какова вероятность того, что через 1 час таракан снова будут в вершине A?
- **3.** Сколькими способами можно представить натуральное число n в виде суммы нескольких нечётных слагаемых? (Представления, отличающиеся порядком слагаемых, считаем разными).
- **4.** Найдите остаток от деления на 4 целого числа $(3+\sqrt{7})^{2024}+(3-\sqrt{7})^{2024}$
- **5. (а)** Найдите формулу для члена t_n последовательности $\{t_n\}$, заданной соотношениями

$$t_{n+2} = 4t_{n+1} - 4t_n, \quad t_0 = 0, t_1 = 1.$$

(б) Найдите формулу для члена u_n последовательности $\{u_n\}$, заданной соотношениями

$$u_{n+2} = 4u_{n+1} - 5u_n$$
, $u_0 = 0$, $u_1 = 1$.

(в) Найдите формулу для члена v_n последовательности $\{v_n\}$, заданной соотношениями

$$v_{n+2} = v_{n+1} + 2v_n + n, \quad v_0 = 0, v_1 = 1.$$

6. Дано натуральное число n. Найдите наибольшую степень двойки, на которую делится число

$$\left[\left(3+\sqrt{11}\right)^{2n-1}\right].$$

7. Дано натуральное число k. Последовательность $\{a_n\}$ определяется рекуррентным соотношением

$$a_{n+2} = 2a_{n+1} + ka_n$$
, $a_0 = 0$, $a_1 = 1$.

Найдите наименьшее значение k, такое что при любом простом p число a_p делится на p тогда и только тогда, когда $p \le 101$.

8. Даны целые числа X и Y. Последовательность $\{a_i\}$ задана по правилу

$$a_0 = 0$$
, $a_1 \in \mathbb{Z}$, $a_k = Xa_{k-1} + Ya_{k-2}$ для $k \geqslant 2$.

Пусть n и m — натуральные числа. Докажите, что если $n \mid m$, то $a_n \mid a_m$.