

Pixelweise Klassifikation von Straße

Martin, Marvin, Sebastian, Vitali | 22. Juli 2015

Contents

1 Die Aufgabe

Lasagne

Die Aufgabe

- **Eingabe**: Bilder, die von einer Kamera aus Fahrersicht aufgenommen wurden
- Ausgabe: Ein Bild gleicher Größe, wo jedes Pixel entweder schwarz ist (wenn der Klassifikator denkt es ist Straße) oder weiß ist (wenn dem) nicht so ist.

Die Daten

KITTI Road Estimation dataset

- Daten-Bilder der Größe $[1226, ..., 1242] \times [370, ..., 376]$, 8-bit **RGB**
- Label-Bilder der selben Größe; 8-bit RGB mit 2 Farben
- 289 Trainingsbilder
- 290 Testbilder

Die Aufgabe

Lasagne layer definition


```
class DenseLayer(Layer):
def init (self, incoming, num units, W, b, **kwargs):
    . . .
def get_output_shape_for(self, input_shape):
    return (input_shape[0], self.num_units)
def get_output_for(self, input, **kwargs):
    if input.ndim > 2:
        input = input.flatten(2)
    activation = T.dot(input, self.W)
    if self.b is not None:
        activation = (activation +
                      self.b.dimshuffle('x', 0))
    return self.nonlinearity(activation)
```

Daten

Labels

Overlay

