Optimisation numérique

Basé sur le poly de Quentin Mérigot

Luca Nenna*

2022 - 2023

Table des matières

Ta	able	des matières	1
1	Exi	stence, unicité, convexité	4
	1.1	Existence	5
	1.2	Notions de calcul différentiel	6
	1.3	Convexité et condition nécessaire et suffisante d'optimalité	7
	1.4	Stricte convexité et unicité du minimiseur	10
2	Descente de gradient à pas optimal		11
	2.1	Méthode de descente	11
	2.2	Descente de gradient à pas optimal	12
Bi	Bibliographie		

 $^{{\}rm ^*Universit\'e~Paris-Saclay,~CNRS,~Laboratoire~de~math\'ematiques~d'Orsay,~91405,~Orsay,~France.~e-mail:luca.nenna@universite-paris-saclay.fr}$

Introduction

Motivation Dans de nombreuses applications, la formulation naturelle du problème qu'on cherche à résoudre est un problème d'optimisation :

— Dans la méthode des moindres carrés, on remplace un système linéaire Ax = b surdéterminé et/ou n'ayant pas de solution (par exemple car certaines des égalités se contredisent) par le problème d'optimisation suivant :

$$\min_{x \in \mathbb{R}^N} \left\| Ax - b \right\|^2. \tag{1}$$

Le minimiseur x^* de ce problème vérifie "au mieux" la famille d'équation Ax = b. Au contraire, lorsqu'un système linéaire Ax = b admet plusieurs solutions, on peut en sélectionner une en considérant le problème

$$\min_{x \in K} ||x||^2 \quad K = \{ x \in \mathbb{R}^N \mid Ax = b \}$$
 (2)

— Si $\bar{x} \in \mathbb{R}^N$ représente un signal 1D échantilloné avec du bruit (\bar{x}_i représentant par exemple la mesure effectuée en un temps t_i), on peut débruiter le signal en considérant le problème d'optimisation suivant, où $\lambda > 0$ est un paramètre :

$$\min_{x \in \mathbb{R}^N} ||x - \bar{x}||^2 + \lambda \sum_{1 \le i \le N-1} |x_{i+1} - x_i|^2$$
(3)

un compromis entre deux comportements : x^* doit être proche de \bar{x} (c'est le rôle du premier terme $||x - \bar{x}||^2$ de la fonction optimisée) mais doit également être "régulier", au sens où deux valeurs successives x_i et x_{i+1} doivent être proches (second terme $\sum_i |x_{i+1} - x_i|^2$).

— En finance, on peut considérer le problème de l'optimisation de portefeuille. Étant donnés N actifs, il s'agit de déterminer le pourcentage $x_i \geq 0$ du portefeuille que l'on investit dans l'actif i. Comme on souhaite investir 100% du portefeuille, ce problème d'optimisation est accompagné d'une contrainte $\sum_{1\leq i\leq N} x_i = 1$. On pourra donc considérer des problèmes d'optimisation avec contraintes de la forme

$$\min_{x \in \Delta} f(x) \text{ où } \Delta = \{ x \in \mathbb{R}^N \mid \forall i, x_i \ge 0 \text{ et } \sum_i x_i = 1 \}.$$
 (4)

La fonction f est typiquement de la forme $f(x) = \frac{1}{\varepsilon} |\langle c|x\rangle - r|^2 + \langle x|Qx\rangle$: $c \in \mathbb{R}^N$ représente le rendement des actifs et le premier terme cherche à fixer

- le niveau de rendement $\langle c|x\rangle = \sum_i c_i x_i$ à r. Le second terme de la fonction $\langle x|Qx\rangle$ est une mesure de risque : Q est une matrice symétrique mesurant les corrélations entre actifs, et on cherche un investissement minimisant cette corrélation.
- En apprentissage automatique (*machine learning*), de nombreux problèmes peuvent être formulés comme des problèmes d'optimisation. Nous verrons par exemple des problèmes de classification, que l'on résoudra par régression logistique ou par machine à vecteurs support (*support vector machine*).

Pour plus d'exemple, on renvoie au livre de Boyd et Vanderberghe, qui est disponible gratuitement (en anglais) en ligne : http://web.stanford.edu/~boyd/cvxbook/.

Problèmes avec/sans contrainte On peut séparer les problèmes en deux grandes classes. Il y a d'une part les problèmes d'optimisation sans contraintes, où l'on cherche à minimiser une fonctionnelle sur \mathbb{R}^d ou sur son domaine de définition ouvert (les problèmes (1), (3) et la régression logistique sont de ce type). D'autre part, les problèmes d'optimisation avec contraintes, où l'on cherche à minimiser sur l'ensemble des points de \mathbb{R}^N vérifiant un certain nombre de contraintes d'égalité ou d'inégalité (les problèmes (2), (4) et les machines à vecteurs support sont de ce type).

Convexité Tout les algorithmes et exemples présentés dans ce cours relèvent de l'optimisation *convexe*, où aussi bien la fonction optimisée que le domaine d'optimisation sont supposés convexes. La raison fondamentale pour laquelle on se restreint à ce cas est que pour les problèmes d'optimisation convexe, un minimiseur local est automatiquement minimiseur global.

Chapitre 1

Existence, unicité, convexité

Contents

1.1	Existence	
1.2	Notions de calcul différentiel	
1.3	Convexité et condition nécessaire et suffisante d'optimalité 7	
1.4	Stricte convexité et unicité du minimiseur	

Dans cette première partie, on s'intéresse à un problème de minimisation d'une fonction $f \in \mathcal{C}^1(\mathbb{R}^d)$:

$$\inf_{x \in \mathbb{R}^d} f(x) \tag{P}$$

Définition 1. On appelle :

- (i) infimum ou valeur du problème de (P) la valeur $\inf_{\mathbb{R}^d} f$.
- (ii) minimiseur global (ou simplement minimiseur) de (P) tout élément $x^* \in \mathbb{R}^d$ vérifiant $f(x^*) = \inf_{\mathbb{R}^d} f$. On note $\arg \min_{\mathbb{R}^d} f$ l'ensemble des minimiseurs de f (qui peut être vide), i.e.

$$\arg\min_{\mathbb{R}^d} f = \{ x \in \mathbb{R}^d \mid f(x) = \inf_{\mathbb{R}^d} f \}.$$

(iii) On appelle suite minimisante pour (P) toute suite $x^{(0)}, \ldots, x^{(k)}, \ldots$ d'éléments de \mathbb{R}^d telle que $\lim_{k \to +\infty} f(x^{(k)}) = \inf_{x \in \mathbb{R}^d} f(x)$.

Remarque 1. Il est possible que le problème (P) n'admette pas de minimiseur : penser par exemple à $f(x) = \exp(x)$ sur \mathbb{R} .

Lemme 1. Il existe une suite minimisante pour le problème (P).

Démonstration. Par définition de l'infimum, pour tout k > 0, il existe un élément $x^{(k)} \in \mathbb{R}^d$ tel que $\inf_{\mathbb{R}^d} f \leq f(x^{(k)}) \leq \inf_{\mathbb{R}^d} f + \frac{1}{k}$, soit $\lim_{k \to +\infty} f(x^{(k)}) = \inf_{\mathbb{R}^d} f$. \square

1.1 Existence

Proposition 2. Soit $f \in C^0(\mathbb{R}^d)$. On suppose de plus qu'il existe $x_0 \in \mathbb{R}^d$ tel que le sous-niveau $S = \{x \in \mathbb{R}^d \mid f(x) \leq f(x_0)\}$ est compact. Alors le problème d'optimisation (P) admet un minimiseur global.

Démonstration. Si $f(x_0) = \inf_{\mathbb{R}^d} f$ on a déjà l'existence d'un minimum, à savoir le point x_0 lui-même. On suppose donc maintenant que $f(x_0) > \inf_{\mathbb{R}^d} f$. Soit $(x^{(k)})_{k \geq 0}$ une suite minimisante, qui vérifie donc $\lim_{k \to +\infty} f(x^{(k)}) = \inf_{\mathbb{R}^d} f < f(x_0)$. Alors, pour k suffisamment grand, on a $f(x^{(k)}) \leq f(x_0)$, soit $x^{(k)} \in S$. Comme l'ensemble S est compact, on peut extraire une sous-suite $(x^{(\sigma(k))})_{k \geq 0}$ qui converge vers un point $x^\infty \in S$. Alors, par continuité de f et par définition d'une suite minimisante on a $f(x^\infty) = \lim_{k \to +\infty} f(x^{(\sigma(k))}) = \inf_{\mathbb{R}^d} f$, et x^∞ minimise donc f sur \mathbb{R}^d .

Corollaire 3. Soit $f \in C^0(\mathbb{R}^d)$ vérifiant

$$\lim_{\|x\| \to +\infty} f(x) = +\infty,$$

c'est-à-dire que

$$\forall L \in \mathbb{R}, \exists R \ge 0 \ t.q. \ ||x|| \ge R \Longrightarrow f(x) \ge L.$$

Alors (P) admet un minimiseur global.

Démonstration. Soit $x_0 \in \mathbb{R}^d$ quelconque et $S = \{x \in \mathbb{R}^d \mid f(x) \leq f(x_0)\}$. Pour montrer l'existence d'un minimiseur, il suffit de démontrer que S est compact. L'ensemble S est fermé comme sous-niveau d'une fonction continue. Supposons S non borné : pour tout k, il existe alors $x^{(k)} \in S$ tel que $||x^{(k)}|| \geq qk$. Ainsi, $\lim_{k \to +\infty} x^{(k)} = +\infty$ et $f(x^{(k)}) \leq f(x_0)$, contredisant l'hypothèse.

Corollaire 4. Soit $f \in C^0(\mathbb{R}^d)$ et vérifiant la propriété suivante :

$$\forall x \in \mathbb{R}^d, f(x) > C ||x||^p + D,$$

où $C > 0, D \in \mathbb{R}$ et p > 0. Alors le problème (P) admet un minimiseur.

Démonstration. Soit $x_0 \in \mathbb{R}^d$ quelconque et $S = \{x \in \mathbb{R}^d \mid f(x) \leq f(x_0)\}$. Pour pouvoir appliquer le théorème précédent, il suffit de démontrer que S est compact. Comme on sait déjà que S est fermé comme sous-niveau d'une fonction continue, il suffit de démontrer que cet ensemble est borné. Or, pour tout $x \in S$, on a

$$C ||x||^p + D \le f(x) \le f(x^{(0)})$$

soit $||x||^p \le E := |f(x^{(0)}) - D|/C$. Ainsi, l'ensemble S est contenu dans la boule centrée en 0 et de rayon $\sqrt[p]{E}$ et est donc borné.

1.2 Notions de calcul différentiel

Définition 2 (Différentiabilité). Soit $f: \Omega \subset V \to W$ avec Ω ouvert. On dit que f est différentiable en $x_0 \in \Omega$ si et seulement si il existe une application linéaire continue $L \in \mathcal{L}(V, W)$ telle que

$$f(x_0 + h) = f(x_0) + L(h) + o(||h||).$$

L'application linéaire L est notée $d_{x_0}f \in \mathcal{L}(V,W)$ et elle est dite différentielle de f en x_0

L'application f est alors $\mathcal{C}^1(\Omega)$ si elle est différientable dans tout point x dans Ω et l'application

$$\begin{array}{ccc} \mathrm{d} f : & \Omega & \to & ((V, W), \| \cdot \|_{\mathrm{op}}) \\ & x_0 & \mapsto & \mathrm{d}_{x_0} f \end{array}$$

est continue.

Définition 3 (Dérivée directionnelle). Soit $f: \Omega \subset V \to W$ avec Ω ouvert, $x_0 \in \Omega$ et $h \in V$. Quand elle existe, la limite

$$\lim_{t \to 0} \frac{f(x_0 + th) - f(x_0)}{t}$$

est appelée dérivée directionnelle de f dans la direction

Remarque 2. Si f est différentiable en x_0 alors elle admet une dérivée directionnelle dans toute direction $h \in V$ et

$$d_{x_0} f(h) = \lim_{t \to 0} \frac{f(x_0 + th) - f(x_0)}{t}.$$

La réciproque n'est pas vraie en général! Par exemple

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{if } x \neq 0\\ y & \text{if } x = 0. \end{cases}$$

Définition 4. Soit $f \in \mathcal{C}^1(\mathbb{R}^d)$. Par le théorème de Riesz il existe un unique vecteur de V, noté $\nabla f(x_0)$ et appelé gradient de f en x_0 , tel que

$$d_{x_0}f(h) = \langle \nabla f(x_0), h \rangle \ \forall h \in V.$$

Soit $\langle \cdot, \cdot \rangle$ le produit scalaire usuel et $(e_i)_{1 \leq i \leq d}$ la base canonique de \mathbb{R}^d , on a

$$\nabla f(x) = \left(\frac{\partial f}{\partial e_i}(x)\right)_{1 \le i \le d} \text{ où } \frac{\partial f}{\partial e_i}(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (f(x + \varepsilon e_i) - f(x)).$$

Dans la suite on prendra toujours $V = \mathbb{R}^d$ et $W = \mathbb{R}$.

Exemple 1. Considérons $f(x) = ||x||^2$ sur \mathbb{R}^d . En développant le carré de la norme, on obtient $f(x+v) = ||x||^2 + \langle 2x|v\rangle + ||v||^2$. On en déduit que $\nabla f(x) = 2x$, ce qui est conforme avec le calcul.

On dit que $f: \Omega \subset V \to W$ est deux fois différentiable en x_0 si elle est différentiable dans un voisinage de x_0 et df est différentiable en x_0 . On note cette dérivée $d_{x_0}^2$ qui est un élément de $\mathcal{L}(V, \mathcal{L}(V, W))$. En particulier on a que $d_{x_0}^2 f(h, k)$ est la dérivée directionnelle de $x \mapsto d_x f(h)$ dans la direction k.

Définition 5. Soit $f \in \mathcal{C}^2(\Omega)$, où $\Omega \subseteq \mathbb{R}^d$ est un ouvert. On appelle hessienne de f en $x_0 \in \Omega$ la matrice associée a la forme bilinéaire $d_{x_0}^2$ dans la base canonique. En particulier

$$D^{2}f(x) = \left(\frac{\partial^{2} f}{\partial e_{i} \partial e_{j}}(x)\right)_{1 < i, j < d},$$

où l'on a noté $(e_i)_{1 \leq i \leq d}$ la base canonique de \mathbb{R}^d . et où

1.3 Convexité et condition nécessaire et suffisante d'optimalité

1.3.1 Convexité

Définition 6. Une fonction $f: \mathbb{R}^d \to \mathbb{R}$ est convexe si

$$\forall (x,y) \in \mathbb{R}^d, \forall t \in [0,1], \ f((1-t)x + ty) \le (1-t)f(x) + tf(y).$$

Exercice 1. Soit $f: \mathbb{R}^d \to \mathbb{R}$ une fonction convexe. Montrer que l'ensemble

$$\{x \in \mathbb{R}^d \mid f(x) \le C\}$$

est convexe quel que soit C. En déduire que l'ensemble des minimiseurs de (P) est un ensemble convexe fermé (possiblement vide).

Proposition 5. Soit $f \in C^1(\mathbb{R}^d)$. Alors les propositions suivantes sont équivalentes :

- (i) f est convexe sur \mathbb{R}^d ,
- (ii) $\forall x, y \in \mathbb{R}^d$, la fonction $g: t \in [0,1] \mapsto f((1-t)x + ty)$ est convexe.
- (iii) $\forall x, y \in \mathbb{R}^d$, $f(y) \ge f(x) + \langle y x | \nabla f(x) \rangle$,
- (iv) $\forall x, y \in \mathbb{R}^d, \langle \nabla f(x) \nabla f(y) | x y \rangle \ge 0.$

Lemme 6. Soit $f \in C^1(\mathbb{R}^d)$. Étant donnés $x \in \Omega$ et $v \in \mathbb{R}^d$, on définit $x_t = x + tv$ et $g(t) = f(x_t)$. Alors,

$$g'(t) = \langle \nabla f(x_t) | v \rangle. \tag{1.1}$$

Démonstration de la proposition 5. $(i) \iff (ii)$ conséquence directe de la définition.

(ii) \Longrightarrow (iii). Soit x, y dans \mathbb{R}^d et $g: t \mapsto f(x_t)$ où $x_t = (1-t)x + tv = x + t(y-x)$, qui est convexe par hypothèse. Par convexité, on a $g(t) \geq g(0) + tg'(0)$, soit par le lemme $f(x) + \langle \nabla f(x) | y - x \rangle + \leq f(y)$.

 $(iii) \Longrightarrow (iv)$ Il suffit de sommer l'inégalité (iii) et la même inégalité où l'on a inversé le rôle de x et y.

 $(iv) \Longrightarrow (ii)$ Soit encore $g: t \mapsto f(x_t)$ où $x_t = (1-t)x + tv = x + t(y-x)$. Comme $g'(t) = \langle \nabla f(x_t) | y - x \rangle$, (lemme 6) l'inégalité (iv) appliquée en x_s et x_t (où t > s) nous donne

$$g'(t) - g'(s) = \langle \nabla f(x_t) - \nabla f(x_s) | y - x \rangle = \frac{1}{t - s} \langle \nabla f(x_t) - \nabla f(x_s) | x_t - x_s \rangle \ge 0,$$

et g' est donc croissante sur [0,1]. Ainsi, g est convexe.

Lemme 7 (Taylor-Lagrange). Soit $f \in C^2(\mathbb{R}^d)$, $x, v \in \mathbb{R}^d$ et $x_t = x + tv$. Alors,

$$\forall t \ge 0, \exists s \in [0, t], \quad f(x_t) = f(x) + t \langle \nabla f(x) | v \rangle + \frac{t^2}{2} \langle D^2 f(x_s) v | v \rangle.$$

Lemme 8. Soit $\Omega \subseteq \mathbb{R}^d$ ouvert, $f \in C^2(\Omega)$, $x \in \Omega$ et $v \in \mathbb{R}^d$ et $g : t \mapsto f(x_t)$ où $x_t = x + tv$. Alors,

$$g''(t) = \langle D^2 f(x_t) v | v \rangle. \tag{1.2}$$

Démonstration. On fait le calcul en coordonnées, en notant $(e_k)_k$ la base canonique :

$$g(t) = f(x + \sum_{k} t v_k e_k)$$

$$g'(t) = \sum_{i} v_i \frac{\partial f}{\partial e_i} \left(x + \sum_{k} t v_k e_k \right) = \langle \nabla f(x_t) | v \rangle$$

$$g''(t) = \sum_{i} \sum_{j} v_{i} v_{j} \frac{\partial^{2} f}{\partial e_{j} \partial e_{i}} \left(x + \sum_{k} t v_{k} e_{k} \right) = \langle D^{2} f(x_{t}) v | v \rangle$$

Proposition 9. Soit $f \in C^2(\mathbb{R}^d)$. Si $\forall x \in \mathbb{R}^d, D^2 f(x) \succeq 0$, alors f est convexe.

Démonstration de la proposition 9. Considérons $x, y \in \Omega$ et $g(t) = f(x_t)$ où $x_t = (1-t)x+ty$. Alors, $g''(t) = \langle D^2 f(x_t)(y-x)|y-x\rangle$ est positif par hypothèse, de sorte que par Taylor-Lagrange

$$g(1) = g(0) + g'(0) + \frac{s^2}{2}g''(s) \ge g(0) + g'(0),$$

soit $f(y) \ge f(x) + \langle \nabla f(x) | y - x \rangle$. La proposition 5 montre que f est convexe.

1.3.2 Condition nécessaire d'optimalité

Théorème 10 (Fermat). Soit $f \in C^1(\mathbb{R}^d)$, et x^* un minimiseur de (P). Alors

$$\nabla f(x^*) = 0$$
. (équation d'Euler)

Remarque 3. La contraposée est fausse : prendre $f(x) = x^3$ sur $\Omega = \mathbb{R}$: le point 0 vérifie f'(0) = 0 mais n'est pas un minimiseur (même local).

Démonstration. Si x^* est un minimiseur de f sur Ω , on a pout tout $\varepsilon \in \mathbb{R}$, $f(x^* + \varepsilon e_i) \geq f(x^*)$. Ainsi,

$$\forall 0 < \varepsilon \le \varepsilon_0, \quad \frac{f(x^* + \varepsilon e_i) - f(x^*)}{\varepsilon} \ge 0.$$

En passant à la limite, on obtient $\frac{\partial f}{\partial e_i}(x^*) \geq 0$. De même, en considérant le cas $\varepsilon < 0$

$$\forall -\varepsilon_0 \le \varepsilon < 0, \quad \frac{f(x^* + \varepsilon e_i) - f(x^*)}{\varepsilon} \le 0,$$

d'où l'on tire en passant à la limite $\frac{\partial f}{\partial e_i}(x^*) \leq 0$, soit in fine $\frac{\partial f}{\partial e_i}(x^*) = 0$.

1.3.3 Condition suffisante d'optimalité

Théorème 11. Soit $\Omega \subseteq \mathbb{R}^d$ un ouvert convexe et $f \in C^1(\Omega)$ convexe. Alors $x^* \in \Omega$ est un minimiseur de (P) si et seulement si $\nabla f(x^*) = 0$.

Démonstration. Le théorème de Fermat nous donne déjà le sens direct. Pour la réciproque, il suffit de remarquer que si $\nabla f(x^*) = 0$, la proposition précédente donne

$$\forall y \in \Omega, f(y) \ge f(x^*) + \langle y - x^* | \nabla f(x^*) \rangle = f(x^*),$$

de sorte que x^* est bien un minimiseur de (P).

1.4 Stricte convexité et unicité du minimiseur

Définition 7. Une fonction $f: \mathbb{R}^d \to \mathbb{R}$ est strictement convexe si

$$\forall x \neq y \in \mathbb{R}^d, \forall t \in]0, 1[, f((1-t)x + ty) < (1-t)f(x) + tf(y).$$

Proposition 12. Soit $f: \mathbb{R}^d \to \mathbb{R}$ strictement convexe. Alors f admet au plus un minimiseur sur \mathbb{R}^d .

Démonstration. Par l'absurde, supposons que f admette deux minimiseurs distincts $x^* \neq y^* \in \mathbb{R}^d$. Alors, par stricte convexité de la fonction f on a $f(z^*) < \frac{1}{2}(f(x^*) + f(y^*)) = f(x^*)$, où $z^* = \frac{1}{2}(x^* + y^*)$, contredisant l'hypothèse que x^* minimise f. \square

Remarque 4. Cette proposition ne dit rien de l'existence d'un minimiseur.

Chapitre 2

Descente de gradient à pas optimal

On souhaite résoudre numériquement le problème de minimisation d'une fonction $f \in \mathcal{C}^0(\mathbb{R}^d)$. Comme en général il n'est pas raisonnable d'espérer calculer de manière exacte un minimiseur ou même la valeur de l'infimum du problème (P), on cherchera à l'approcher. Il s'agira de construire une suite $(x^{(k)})_{k\geq 0}$ de points vérifiant une des deux propriétés suivantes :

- (a) la suite $x^{(k)}$ est minimisante pour (P), i.e. $\lim_{k\to+\infty} f(x^{(k)}) = \inf_{\mathbb{R}^d} f$.
- (b) la suite $x^{(k)}$ converge vers un minimiseur de f sur \mathbb{R}^d .

Dans ce chapitre, nous nous intéresserons à la construction de suites $x^{(k)}$ vérifiant la seconde propriété (qui est bien sûr plus forte que la première).

2.1 Méthode de descente

Vocabulaire On appelle *méthode de descente* un procédé algorithmique permettant de construire itérativement une suite vérifiant (a) ou (b). Typiquement, une méthode de descente prend la forme suivante

$$\begin{cases} d^{(k)} = \dots & direction \ de \ descente \\ t^{(k)} = \dots & pas \ de \ descente \\ x^{(k+1)} = x^{(k)} + t^{(k)} d^{(k)} \end{cases}$$

Un tel algorithme est appelé méthode de descente si $f(x^{(k+1)}) \leq f(x^{(k)})$. Dans ce cours, on considèrera les possibilités suivantes :

- (a) La direction de descente peut être égale à l'opposé du gradient, $d^{(k)} = -\nabla f(x^{(k)})$, auquel cas on parle de méthode de descente de gradient. Lorsque f est \mathcal{C}^2 , il peut être plus avantageux de choisir $d^{(k)} = -\mathrm{D}^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$, auquel cas on parle de méthode de Newton.
- (b) Le pas de descente peut être choisi constant $(t^{(k)} = \tau)$, optimal (cf (2.1)), ou obtenu par des constructions un peu plus complexes, permettant de garantir la convergence de la méthode.

Définition 8. Soit $f \in \mathcal{C}^0(\mathbb{R}^d)$. On appelle direction de descente en $x \in \mathbb{R}^d$ tout vecteur v tel que $\exists \tau > 0, \forall t \in [0, \tau], f(x + tv) < f(x)$.

Exercice 2. Si $f \in \mathcal{C}^1(\mathbb{R}^d)$ et $\langle v | \nabla f(x) \rangle < 0$, alors v est une direction de descente.

Si f est différentiable en x, on a $f(x+tv)=f(x)+t\langle\nabla f(x)|v\rangle+\mathrm{o}(t)$. On cherche naturellement une direction de descente rendant le produit scalaire $\langle\nabla f(x)|v\rangle$ le plus petit possible, menant au choix de $d^{(k)}=-\nabla f(x^{(k)})$:

Lemme 13. Soit $f \in \mathcal{C}^1(\mathbb{R}^d)$ et $x_0 \in \mathbb{R}^d$. Alors, $\min_{\|v\|=1} d_{x_0} f(v) = -\|\nabla f(x_0)\|$ et si $\nabla f(x_0) \neq 0$, l'unique minimiseur est $v = -\nabla f(x_0)/\|\nabla f(x_0)\|$.

Démonstration. On a $d_{x_0}f(v) = \langle \nabla f(x_0)|v\rangle \ge -\|\nabla f(x_0)\| \|v\|$ par Cauchy-Schwarz, avec égalité si et seulement si v est positivement homogène à $-\nabla f(x_0)$. Comme $\|v\| = 1$, on a $v = -\nabla f(x_0)/\|\nabla f(x_0)\|$.

2.2 Descente de gradient à pas optimal

Définition 9. Soit $f \in \mathcal{C}^1(\mathbb{R}^d)$. L'algorithme de descente de gradient à pas optimal est donné par :

$$\begin{cases} d^{(k)} = -\nabla f(x^{(k)}) \\ t^{(k)} \in \arg\min_{t} f(x^{(k)} + td^{(k)}) \\ x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)} \end{cases}$$
(2.1)

Remarque 5. Par construction, les itérées vérifient

$$f(x^{(k+1)}) \le f(x^{(k)})$$
$$\langle \nabla f(x^{(k+1)}) | \nabla f(x^{(k)}) \rangle = 0.$$

Pour la deuxième égalité, il suffit de remarquer que si l'on pose $g(t) = f(x^{(k)} + td^{(k)})$, alors par définition de $t^{(k)}$,

$$g'(t^{(k)}) = 0 = \langle \nabla f(x^{(k)} + t^{(k)}d^{(k)})|d^{(k)}\rangle = \langle \nabla f(x^{(k+1)})|\nabla f(x^{(k)})\rangle.$$

Remarque 6. Pour pouvoir mettre en œuvre cet algorithme il faut pouvoir calculer le pas optimal $t^{(k)}$ à chaque itération, ce qui implique de résoudre un problème d'optimisation (sur \mathbb{R}). Ceci n'est faisable de manière exacte que dans un nombre très limité de cas. En général, on préfèrera d'autre méthode de calcul du pas.

Exemple 2. Soit $f: x \in \mathbb{R}^d \mapsto \frac{1}{2}\langle Qx|x\rangle + \langle b|x\rangle$ où Q est une matrice symétrique définie positive. Alors f est strictement convexe et $\nabla f(x) = Qx + b$. Soit $x^{(k)} \in \mathbb{R}^d$, $d^{(k)} = -\nabla f(x^{(k)})$. Pour calculer le pas $t^{(k)} \in \mathbb{R}$, on cherche le minimum de $g: t \in \mathbb{R} \mapsto f(x_t)$ où $x_t = x^{(k)} + td^{(k)}$. La fonction g est convexe et atteint donc son minimum en l'unique point $t^{(k)}$ vérifiant $g'(t^{(k)}) = 0$. Or, $g'(t) = \langle \nabla f(x_t) | d^{(k)} \rangle$, soit

$$g'(t^{(k)}) = 0 \iff \langle Q(x^{(k)} + t^{(k)}d^{(k)}) + b|d^{(k)}\rangle = 0$$
$$\iff t^{(k)}\langle Qd^{(k)}|d^{(k)}\rangle - \langle d^{(k)}|d^{(k)}\rangle = 0.$$

Ainsi, $t^{(k)} = \langle d^{(k)}|d^{(k)}\rangle/\langle Qd^{(k)}|d^{(k)}\rangle$. En résumé, dans le cas d'une fonction f de la forme considérée, l'algorithme de descente de gradient à pas optimal s'écrit

$$\begin{cases}
d^{(k)} = -(Qx^{(k)} + b) \\
t^{(k)} = \frac{\langle d^{(k)} | d^{(k)} \rangle}{\langle Qd^{(k)} | d^{(k)} \rangle} \\
x^{(k+1)} = x^{(k)} + t^{(k)} d^{(k)}.
\end{cases}$$
(2.2)

On suppose dans la suite que l'ensemble

$$S = \{ x \in \mathbb{R}^d \mid f(x) \le f(x^{(0)}) \} \text{ est compact},$$
 (2.3)

ce qui garantit (proposition 2) l'existence d'un minimiseur de f sur Ω .

Lemme 14. Sous l'hypothèse (2.3), le minimum dans la définition du pas est atteint.

Démonstration. Il s'agit de démontrer que la fonction $g:t\mapsto f(x^{(k)}+td^{(k)})$ atteint son minimum. On suppose que $d^{(k)}$ est non nul : sinon g est constante et atteint évidemment son minimum. Grâce à la proposition 2, il suffit de montrer que le sous-niveau $S_g:=\{t\in\mathbb{R}\mid g(t)\leq f(x^{(k)})\}$ est compact. Ce sous-niveau est fermé comme image inverse du fermé $]-\infty,f(x^{(k)})]$ par la fonction continue g. Montrons maintenant que S_g est borné. Pour cela, nous utilisons l'hypothèse que S est compact donc borné : $\exists R\geq 0, \forall x\in S, \|x\|\leq R$. Si $t\in S_g$, alors $x^{(k)}+td^{(k)}\in S$, de sorte que

$$\left\| x^{(k)} + td^{(k)} \right\| \le R$$

soit

$$|t| \le \frac{R + \left\| x^{(k)} \right\|}{d^{(k)}}.$$

Ainsi S_g est compact et par la proposition 2, g atteint son minimum sur \mathbb{R} .

Théorème 15. Soit $f \in C^2(\mathbb{R}^d)$ vérifiant

- (i) le sous-niveau $S = \{x \in \mathbb{R}^d \mid f(x) \le f(x^{(0)})\}$ est compact.
- (ii) $\exists M > 0, \ \forall x \in S, \ D^2 f(x) \leq M \operatorname{Id},$
- (iii) f est strictement convexe,

Alors les itérées de l'algorithme (2.1) convergent vers l'unique minimiseur global de f sur Ω .

On utilisera la proposition suivante :

Proposition 16. Soit $(x_k)_{k\geq 1}$ une suite bornée de \mathbb{R}^d admettant une unique valeur d'adhérence \bar{x} . a Alors, $\lim_{k\to +\infty} x_k = \bar{x}$.

a. On rappelle que \bar{x} est valeur d'adhérence de la suite $(x_k)_{k\geq 1}$ si et seulement si il existe une suite extraite $(x_{\sigma(k)})_{k\geq 1}$ dont la limite est \bar{x}

Démonstration du théorème 15. Soit $k \geq 1$ et $g(t) = f(x^{(k)} + td^{(k)}) = f(x^{(k)} - t\nabla f(x^{(k)}))$. Par définition du pas optimal $t^{(k)}$ on a

$$f(x^{(k+1)}) = \min_{t} f(x^{(k)} + td^{(k)}) = \min_{t} g(t),$$

et nous allons utiliser un développement de Taylor pour estimer le minimum de g. Par le lemme 8, et en posant $x_t = x^{(k)} + td^{(k)}$ on a

$$g'(t) = \langle \nabla f(x_t) | d^{(k)} \rangle, \qquad g''(t) = \langle D^2 f(x_t) d^{(k)} | d^{(k)} \rangle.$$

Soit $\sigma = \{t \in \mathbb{R} \mid x_t \in S\}$ et $t \in \sigma$. Par Taylor-Lagrange, pour tout $t \in \sigma$, il existe $s \in [0, t]$ tel que $g(t) = g(0) + tg'(0) + \frac{t^2}{2}g''(s)$. Ainsi,

$$g(t) = g(0) + tg'(0) + \frac{t^2}{2}g''(s)$$

$$= f(x^{(k)}) - t \left\| \nabla f(x^{(k)}) \right\|^2 + \frac{t^2}{2} \langle D^2 f(x_s) \nabla f(x^{(k)}) | \nabla f(x^{(k)}) \rangle$$

Comme $s \in [0, t]$, alors $s = \gamma t$ avec $\gamma \in [0, 1]$ de sorte que $f(x_s) = f((1-\gamma)x_0 + \gamma x_t) \le f(x^{(0)})$. Ainsi, $x_s \in S$. Par hypothèse, on a donc $D^2 f(x_s) \le M$ id, ce qui donne en utilisant (ii)

$$g(t) \le f(x^{(k)}) + \left(\frac{M}{2}t^2 - t\right) \left\|\nabla f(x^{(k)})\right\|^2$$

Le minimum de ce second membre est atteint en t = 1/M et on a donc

$$f(x^{(k+1)}) \le \min_{t} g(t) \le f(x^{(k)}) - \frac{1}{2M} \left\| \nabla f(x^{(k)}) \right\|^{2},$$

de sorte que

$$\left\|\nabla f(x^{(k)})\right\|^2 \le 2M(f(x^{(k)}) - f(x^{(k+1)})).$$
 (2.4)

Ainsi, pour tout $K \geq 0$ on a

$$\sum_{0 \le k \le K} \left\| \nabla f(x^{(k)}) \right\|^2 \le 2M(f(x^{(0)}) - f(x^{(K)})) \le 2M(f(x^{(0)}) - \inf_{\mathbb{R}^d} f).$$

La série de terme général $\|\nabla f(x^{(k)})\|^2$ est donc convergente, d'où l'on déduit que $\lim_{k\to+\infty} \|\nabla f(x^{(k)})\| = 0$.

Montrons enfin que $\lim_{k\to +\infty} x^{(k)} = x^*$, où x^* est l'unique minimum de f sur \mathbb{R}^d , l'unicité provenant de la stricte convexité de f et de la proposition 12. Comme $f(x^{(k)}) \leq f(x^{(0)})$, le point $x^{(k)}$ appartient à S, qui est par hypothèse compact donc borné. Pour montrer que la suite $x^{(k)}$ converge vers x^* , il suffit par la proposition 16 de démontrer qu'elle admet x^* pour seule valeur d'adhérence. Soit donc $(x^{(\sigma(k))})$ une sous-suite convergeant vers une valeur d'adhérence $\bar{x} \in S$. Alors, comme $f \in \mathcal{C}^1(\mathbb{R}^d)$, $\nabla f(\bar{x}) = \lim_{k\to +\infty} \nabla f(x^{(\sigma(k))}) = 0$. Par convexité (théorème 11), on sait que \bar{x} est un minimiseur de f sur \mathbb{R}^d . Par unicité du minimiseur, on en déduit que $\bar{x} = x^*$. \square

Bibliographie

- [1] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, volume 17. SIAM, 2014.
- [2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- [3] Guillaume Carlier. Classical and Modern Optimization. World Scientific, 2022.
- [4] Jean Dieudonné. Elements d'analyse. tome ii : Chapitres xii a xv. 1969.
- [5] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis. Springer Science & Business Media, 2001.
- [6] Robert R. Phelps. Convex functions, monotone operators and differentiability. Springer-Verlag, 1989.