Part IV - B Model calibration Conformal Prediction

Adrian Galdran RyC/ikerbasque Research Fellow Tecnalia - Derio, Spain adrian.galdran@tecnalia.com

Conformal Prediction - Contents

- 1. Motivation
- 2. Conformal Prediction: Ingredients
- 3. Conformal Predictions: Algorithm
- 4. Hands-On

Curtis Langlotz

SENIOR ASSOCIATE VICE PROVOST FOR RESEARCH, PROFESSOR OF RADIOLOGY (INTEGRATIVE BIOMEDICAL IMAGING INFORMATICS), OF MEDICINE (BMIR), OF BIOMEDICAL DATA SCIENCE AND SENIOR FELLOW AT THE STANFORD INSTITUTE FOR HUMAN-CENTERED AI

Dietzel M, Baltzer PAT. How to use the Kaiser score as a <u>clinical decision rule</u> for diagnosis in multiparametric breast MRI: a pictorial essay. Insights Imaging. 2018

Dietzel M, Baltzer PAT. How to use the Kaiser score as a <u>clinical decision rule</u> for diagnosis in multiparametric breast MRI: a pictorial essay. Insights Imaging. 2018

 $\mathbb{P}(BI-RADS \in \{7, 9, 10, 11\}) \ge 90\%$

1. Motivation: Differential Diagnosis

Step 1: Do we see an enhancing lesion?

- On MRI, when you inject contrast, suspicious lesions often "light up" because they have abnormal blood vessels.
- So the first question is: does the lesion actually enhance? If yes → move on.

Step 2: Is there a spiculated margin ("root sign")?

- Spiculation means the lesion has spikes or radiating lines extending into the surrounding tissue —
 like roots of a tree.
- This is a strong red flag for cancer. If it's present, you follow the right-hand branch.
- If absent (the lesion looks smooth/rounded), you go to the *left-hand branch*.

Step 3: What happens in the delayed phase (contrast wash-out curve)?

This is the part you asked about — it's the time course of contrast enhancement.

- After contrast injection, radiologists watch how bright the lesion gets over time.
- There are three typical "curves":
 - Persistent: keeps getting brighter and brighter with time.
 - → Usually benign (think of a sponge slowly soaking water).
 - Plateau: gets bright quickly, then levels off.
 - → Suspicious (like tissue that soaks fast but then "caps out").
 - Washout: gets bright early, but then fades as contrast drains away.
 - → Very suspicious for cancer (because malignant tumors often have "leaky" vessels).

So the "delayed phase" check is: which of these three time-curves does the lesion follow?

Step 4: If persistent or plateau → check margins

- Margins = edge of the lesion.
- Smooth (circumscribed) edges → usually benign.
- Irregular/jagged edges → more worrisome.

Step 5: If washout → check internal enhancement pattern

- · Inside the lesion, how does the contrast distribute?
- If it's patchy, rim-shaped, or irregular → higher suspicion.
- If it's uniform or "centrifugal" (from inside out), less worrisome.

Step 6: If spiculation was present (right side of the tree) \rightarrow check delayed phase again, then edema

- If the lesion is spiculated and the curve is persistent/plateau/washout, you still branch down.
- In later branches, radiologists look for edema swelling in the tissue around the lesion.
- · Edema often shows up in malignancy, so its presence increases the suspicion.

Putting it together

At the bottom of the tree, you land on a Kaiser score number (1-11).

- Low scores (1-4): likely benign (BI-RADS 2/3).
- Middle scores (5-7): indeterminate but suspicious (BI-RADS 4).
- High scores (8-11): very suspicious, likely malignant (BI-RADS 5).

Suppose you've got an FDA-approved diagnostic model

$$\hat{\mathcal{M}}_{y}\left(oldsymbol{x}
ight) \, \sim \, \mathbb{P}\left(oldsymbol{Y} = oldsymbol{y} \, | \, oldsymbol{X} = oldsymbol{x}
ight) \quad \, oldsymbol{y} \in \left\{1, \, \ldots, \, K
ight\} = oldsymbol{\mathcal{Y}}$$

Suppose you've got an FDA-approved diagnostic model

$$\hat{\mathcal{M}}_{y}\left(oldsymbol{x}
ight) \, \sim \, \mathbb{P}\left(oldsymbol{Y} = oldsymbol{y} \, | \, oldsymbol{X} = oldsymbol{x}
ight) \quad \, oldsymbol{y} \in \left\{1, \, \ldots, \, oldsymbol{K}
ight\} = oldsymbol{\mathcal{Y}}$$

$$\hat{\mathcal{M}}_y\left(oldsymbol{x^*}
ight)=\mathbf{7}$$

Suppose you've got an FDA-approved diagnostic model

$$\hat{\mathcal{M}}_{y}\left(oldsymbol{x}
ight) \, \sim \, \mathbb{P}\left(oldsymbol{Y} = oldsymbol{y} \, | \, oldsymbol{X} = oldsymbol{x}
ight) \quad \, oldsymbol{y} \in \left\{1, \, \ldots, \, oldsymbol{K}
ight\} = oldsymbol{\mathcal{Y}}$$

$$\hat{\mathcal{M}}_y(oldsymbol{x}^*) = 7$$

Suppose you've got an FDA-approved diagnostic model

$$\hat{\mathcal{M}}_{u}\left(oldsymbol{x}
ight) \, \sim \, \mathbb{P}\left(oldsymbol{Y} = oldsymbol{y} \, | \, oldsymbol{X} = oldsymbol{x}
ight) \quad \, oldsymbol{y} \in \left\{1, \, \ldots, \, K
ight\} = oldsymbol{\mathcal{Y}}$$

$$egin{aligned} \hat{\mathcal{M}}_y\left(oldsymbol{x}^*
ight) = oldsymbol{7} & egin{aligned} \hat{\mathcal{M}}_y\left(oldsymbol{x}^*
ight) \in \{ e$$

 $ext{Predict a set } \mathcal{T}_{x^*} \subseteq \mathcal{Y} ext{ which contains } y^* ext{ with high } p^*$

Coverage: $\mathbb{P}\left(y^* \in \mathcal{T}_{x^*}\right) \geq 1 - \alpha$

 $\underline{ \textbf{Prediction Sets}}: \ \boldsymbol{x^*} \mapsto \mathcal{T}_{x^*} \subseteq \boldsymbol{\mathcal{Y}} = \{1, \dots, \boldsymbol{\mathcal{K}}\}$

Coverage: $\mathbb{P}\left(y^* \in \mathcal{T}_{x^*}\right) \geq 1 - \alpha$

Coverage: $\mathbb{P}\left(y^* \in \mathcal{T}_{x^*}\right) \geq 1 - \alpha$

Coverage: $\mathbb{P}\left(y^* \in \mathcal{T}_{x^*}\right) \geq 1 - \alpha$ Efficient sets

Let's get back to our FDA-approved diagnostic model $\hat{\mathcal{M}}$

Let's get back to our FDA-approved diagnostic model $\hat{\mathcal{M}}$

No retraining allowed

Let's get back to our FDA-approved diagnostic model $\hat{\mathcal{M}}$

No retraining allowed, but you have some fresh data available:

$$(\mathtt{bMRI}_1, oldsymbol{y_1}), \, \dots, \, (\mathtt{bMRI}_{\mathbf{N}, oldsymbol{y_i}}) = \{(oldsymbol{x_i}, oldsymbol{y_i})\}_{i=1}^{\mathbf{N}} \, \sim \, \mathbb{P} \, \, oldsymbol{i.i.d.}$$

We call this Calibration Set (sorry about that)

Let's get back to our FDA-approved diagnostic model $\hat{\mathcal{M}}$

No retraining allowed, but you have some fresh data available:

$$(\mathtt{bMRI}_1, oldsymbol{y_1}), \, \dots, \, (\mathtt{bMRI}_{\mathbf{N}, oldsymbol{y_i}}) = \{(oldsymbol{x_i}, oldsymbol{y_i})\}_{i=1}^{\mathbf{N}} \, \sim \, \mathbb{P} \, \, oldsymbol{i.i.d.}$$

We call this Calibration Set (sorry about that)

How do we build these Conformal Prediction Sets?

1. Collect scores of correct classes

1. Collect scores of correct classes $E=\{0.25, \}$

1. Collect scores of correct classes $E=\{0.25, 0.90, \}$

1. Collect scores of correct classes $\mathbf{E} = \{0.25, 0.90, \dots, 0.65\}$

- 1. Collect scores of correct classes $E=\{0.25, 0.90, \ldots, 0.65\}$
- 2. For a desired coverage of α , find a value $\hat{q_{\alpha}}$ such that you keep 1- α of the scores in $\mathbb E$:

$$\hat{m{q}_{lpha}} = ext{np. quantile}\left(\left[\mathtt{E}_{1}, \mathtt{E}_{2}, \ldots, \mathtt{E}_{\mathtt{N}}\right], \, m{lpha}\right)$$

- 1. Collect scores of correct classes $\mathbf{E} = \{0.25, 0.90, \dots, 0.65\}$
- 2. For a desired coverage of α , find a value $\hat{q_{\alpha}}$ such that you keep 1- α of the scores in $\mathbb E$:

$$\hat{q_{\alpha}}=$$
 np. quantile ([E₁, E₂, ..., E_N], α)

What happens if we use $\hat{q_{\alpha}}$ to build prediction sets in the calibration dataset?

- 1. Collect scores of correct classes $\mathbf{E} = \{0.25, 0.90, \dots, 0.65\}$
- 2. For a desired coverage of α , find a value $\hat{q_{\alpha}}$ such that you keep 1- α of the scores in \mathbb{E} :

$$\hat{m{q_lpha}} = ext{np. quantile}\left(\left[\mathtt{E_1}, \mathtt{E_2}, \ldots, \mathtt{E_N}\right], \, m{lpha}
ight)$$

3. If we use \hat{q}_{α} to build prediction sets on test data, we have theoretically guaranteed coverage

- 1. Collect scores of correct classes $E=\{0.25, 0.90, \ldots, 0.65\}$
- 2. For a desired coverage of α , find a value $\hat{q_{\alpha}}$ such that you keep 1- α of the scores in $\mathbb E$:

$$\hat{m{q}_{lpha}} = ext{np. quantile}\left(\left[\mathtt{E}_{1}\,,\,\mathtt{E}_{2}\,,\,\ldots\,,\,\mathtt{E}_{\mathtt{N}}
ight],\,m{lpha}
ight)$$

3. If we use \hat{q}_{α} to build prediction sets on test data, we have theoretically guaranteed coverage, if data is interchangeable.

$$\mathbf{1} ext{-}lpha \leq \mathbb{P}\left(\mathbf{y}^* \in \mathcal{T}_{x^*}^{\hat{q_lpha}}
ight) \leq \left(\mathbf{1} ext{-}lpha
ight) + rac{\mathbf{1}}{\mathbf{N}+\mathbf{1}}$$

- 1. Collect scores of correct classes $E=\{0.25, 0.90, \ldots, 0.65\}$
- 2. For a desired coverage of α , find a value $\hat{q_{\alpha}}$ such that you keep 1- α of the scores in $\mathbb E$:

$$\hat{q_{lpha}} = ext{np. quantile}\left(\left[\mathtt{E}_{1}, \mathtt{E}_{2}, \ldots, \mathtt{E}_{\mathtt{N}}\right], \, oldsymbol{lpha}
ight)$$

3. If we use \hat{q}_{α} to build prediction sets on test data, we have theoretically guaranteed coverage. If data is interchangeable:

$$\mathbf{1} ext{-}lpha \leq \mathbb{P}\left(\mathbf{y}^* \in \mathcal{T}_{x^*}^{\hat{q_lpha}}
ight) \leq \left(\mathbf{1} ext{-}lpha
ight) + rac{\mathbf{1}}{\mathbf{N}+\mathbf{1}}$$

3.5 Beyond Coverage

Marginal Coverage of 90%

3.5 Beyond Coverage

Marginal Coverage of 90% No Conditional Coverage

3.5 Beyond Coverage

Marginal Coverage of 90% No Conditional Coverage

Check out also Conformal Risk Control

4. Hands-On

Github repository:

https://github.com/agaldran/uqinmia-miccai

