Sector-Resolved Measurement in a Scalar Refractive Gravity Framework: Unique Geometry, Pointer Fixing, and a Laboratory Discriminator

Gary Alcock

Los Angeles, CA, USA
(Dated: October 2, 2025)

We show that in a scalar refractive gravity framework (a " ψ -field" replacing curved spacetime), superposed mass distributions source one geometry, resolving the Penrose paradox of multiple spacetimes. Quantum evolution remains unitary under a self-adjoint Hamiltonian in that geometry. Because cavity photons and atomic transitions couple unequally to ψ (cavities track $c_1 = c e^{-\psi}$; atomic transitions either cancel leading ψ contributions or acquire a uniform fractional shift), meter states acquire ψ -dependent phases while the system does not (or does so differently), fixing the pointer basis and driving decoherence by environment coupling. We emphasize: we do not derive outcome selection or the Born rule. The concrete corollary is a laboratory test:

$$\frac{\Delta R}{R} = \xi \, \frac{\Delta \Phi}{c^2}, \qquad \xi \equiv \alpha_{\rm ph} - \alpha_{\rm at}, \label{eq:xi_ph}$$

where $\alpha_{\rm ph}$ and $\alpha_{\rm at}$ parameterize photon and atomic ψ -response at leading order. General Relativity (GR) implies $\xi = 0$ (sector equality); any ψ -framework with sector asymmetry implies $\xi \neq 0$. On Earth this lever arm is 1.1×10^{-14} per $100 \,\mathrm{m}$ — within reach of modern metrology.

NOTATION

We use $\delta\psi$ for infinitesimal/local changes (e.g. perturbation theory at a single location) and $\Delta\psi$ for finite differences between two altitudes. The gravitational potential difference satisfies $\Delta\psi=2\,\Delta\Phi/c^2$.

INTRODUCTION

The quantum measurement problem has resisted a fully satisfactory resolution. Standard approaches (Copenhagen, many-worlds, de Broglie-Bohm) either invoke collapse, branches, or nonlocal hidden variables. Penrose sharpened this by pointing out that a quantum superposition of mass distributions should gravitationally source multiple geometries, which is inconsistent with a single wavefunction evolving unitarily [1, 2].

In a scalar refractive gravity approach, one posits a universal refractive index $n=e^{\psi(x)}$ such that the one-way speed of light is $c_1(x)=c\,e^{-\psi(x)}$. Matter accelerations follow $\mathbf{a}=\frac{c^2}{2}\nabla\psi$. The field obeys a nonlinear sourcing equation,

$$\nabla \cdot \left[\mu (|\nabla \psi|/a_{\star}) \nabla \psi \right] = -\frac{8\pi G}{c^2} \left(\rho - \bar{\rho} \right), \tag{1}$$

with a monotone crossover function μ . Under standard conditions for quasilinear elliptic PDEs, this has a unique solution for a given source. The key claim becomes: any superposition sources exactly one ψ .

We develop the following chain:

- (1) Superpositions \rightarrow one ψ geometry.
- (2) Quantum evolution in that ψ background is unitary.
- (3) Cavities (photons) and atoms can respond differently to ψ .

FIG. 1. Superposed densities source a single refractive field ψ ; this mirrors how quantum expectation values source classical fields, e.g. $\langle j^{\mu} \rangle$ sourcing electromagnetism in semiclassical QED.

- (4) This sectoral asymmetry pins the pointer basis; under generic environment coupling, the system decoheres in that basis.
- (5) The falsifiable corollary: $\Delta R/R = \xi \, \Delta \Phi/c^2$ with $\xi = \alpha_{\rm ph} \alpha_{\rm at}.$
- (6) We do *not* derive the Born rule or single-outcome selection that remains interpretational.

ONE ψ FOR SUPERPOSITIONS

Let $\hat{\rho}(x)$ be the mass density operator in the quantum state $|\Psi\rangle$. Define the effective classical source

$$\rho_{\text{eff}}(x) = \langle \Psi | \hat{\rho}(x) | \Psi \rangle.$$

If $|\Psi\rangle = a|L\rangle + b|R\rangle$, then $\rho_{\rm eff} \approx |a|^2 \rho_L + |b|^2 \rho_R$. Inserting this into Eq. (1) yields a unique ψ (given monotonic μ), with no geometric branching.

Thus the Penrose objection (superpositions \Rightarrow multiple geometries) is neutralized: only one ψ ever exists, determined by the expectation density.

QUANTUM EVOLUTION IN A ψ BACKGROUND

The single-particle Hamiltonian is

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla \cdot \left(e^{-\psi} \nabla \right) + m\Phi, \qquad \Phi = -\frac{c^2}{2} \psi, \qquad (2)$$

which is self-adjoint with respect to the natural inner product; evolution $i\hbar\partial_t|\Psi\rangle=\hat{H}|\Psi\rangle$ is unitary with a conserved probability current.

Atomic ψ -response: constant vs gradient effects

Tiny gradient effects. On Earth, $\nabla \psi = 2g/c^2 \approx 2.2 \times 10^{-16} \,\mathrm{m}^{-1}$. Over an atomic size $a_0 \sim 5 \times 10^{-11} \,\mathrm{m}$, the variation $\delta \psi \lesssim 10^{-26}$. Perturbations from spatial variation (both in the kinetic operator and in $m\Phi(\mathbf{x})$) therefore produce level-dependent fractional shifts $\lesssim 10^{-26}$, utterly negligible compared to the $\sim 10^{-14}$ altitude lever arm of our experiment.

Constant ψ_0 : uniform fractional scaling (hydrogenic example). Write $\psi(\mathbf{x}) = \psi_0 + \delta \psi(\mathbf{x})$ with $\delta \psi$ neglected. Then

$$\hat{H} \approx e^{-\psi_0} \left(-\frac{\hbar^2}{2m} \nabla^2 \right) + V_{\rm EM} + m\Phi_0, \quad \Phi_0 = -\frac{c^2}{2} \psi_0.$$

The common shift $m\Phi_0$ cancels in all transition frequencies. Treat the kinetic prefactor as a small perturbation $\delta \hat{H} = -\psi_0 \hat{T}$ with $\hat{T} = -\frac{\hbar^2}{2m} \nabla^2$. For Coulomb binding, the virial theorem gives $\langle T \rangle_n = -E_n$ (with $E_n < 0$). First-order perturbation theory yields

$$\delta E_n = \langle n | \delta \hat{H} | n \rangle = -\psi_0 \langle T \rangle_n = \psi_0 E_n,$$

so each bound energy acquires the same fractional shift $\delta E_n/E_n = \psi_0$. For transitions,

$$\frac{\delta\omega_{ab}}{\omega_{ab}} \equiv \frac{\delta(E_a-E_b)}{E_a-E_b} = \frac{\psi_0(E_a-E_b)}{E_a-E_b} = \psi_0,$$

confirming uniformity for transition frequencies at leading order. We denote this atomic leading-order coefficient by $\alpha_{\rm at} = +1$ in this minimal, kinetic-only model.¹

Cavity photons and ψ

For a rigid cavity of length L and longitudinal mode index $q \in \mathbb{N}$, the resonance is

$$f_{\text{cav}} = \frac{q c_1}{2L}, \qquad c_1 = c e^{-\psi}.$$

Thus

$$\frac{\delta f_{\rm cav}}{f_{\rm cav}} = -\delta \psi \quad \Rightarrow \quad \alpha_{\rm ph} = -1,$$

assuming L is fixed by rigid body mechanics at the relevant precision (elastic/thermal effects bounded as systematics).

Sector coefficients and what the experiment measures

Summarizing the leading-order fractional responses for a small local change $\delta \psi$:

$$\frac{\delta f_{\text{cav}}}{f_{\text{cav}}} = \alpha_{\text{ph}} \, \delta \psi, \quad \frac{\delta f_{\text{at}}}{f_{\text{at}}} = \alpha_{\text{at}} \, \delta \psi.$$

In the kinetic-only hydrogenic estimate above, $\alpha_{\rm at}=+1$. If electromagnetic material parameters co-vary with ψ within solids and atoms such that internal energies receive compensating factors, $\alpha_{\rm at}$ can be suppressed ($\alpha_{\rm at}\simeq 0$ in an ideal nondispersive cancellation). Our proposed observable is the difference

$$\xi \equiv \alpha_{\rm ph} - \alpha_{\rm at}$$
.

GR enforces sector equality and hence $\xi=0$. Any inequivalence gives $\xi\neq0$. The experiment measures ξ directly.

POINTER BASIS: OPERATIONAL (METER-CHOSEN)

Let system S (atom) and meter M (cavity photons) interact and then couple to the environment E. The total Hamiltonian reads

$$\hat{H}_{\text{tot}} = \hat{H}_S[\psi] + \hat{H}_M[\psi] + \hat{H}_{SM} + \hat{H}_{ME}.$$

Because \hat{H}_M imprints ψ -dependent phases on meter states with coefficient $\alpha_{\rm ph}$ while \hat{H}_S imprints with (possibly different) $\alpha_{\rm at}$, the *meter* determines the pointer basis in which decoherence occurs. If one instead engineered an atomic (matter-sector) meter, the pointer basis would follow the corresponding atomic eigenstates. This is fully standard in environment-induced superselection: the apparatus/environment coupling selects the basis.

 $^{^1}$ More general atoms (non-Coulombic potentials, relativistic and QED corrections) preserve the conclusion that a constant multiplicative change of the kinetic operator induces a uniform first-order fractional shift across transitions, modulo small state-dependent corrections; the uniformity follows from virial-type relations for homogeneous potentials. If electromagnetic parameters co-vary with ψ in matter such that $V_{\rm EM}$ picks up compensating factors, the net $\alpha_{\rm at}$ can be reduced or nulled $(\alpha_{\rm at} \simeq 0)$; the experiment measures $\xi = \alpha_{\rm ph} - \alpha_{\rm at}$.

INFLUENCE FUNCTIONAL PROOF OF DECOHERENCE

We give the reduced density matrix evolution explicitly.

Setup. Initial state

$$|\Psi_0\rangle = \sum_i c_i |s_i\rangle \otimes |m_0\rangle \otimes |E_0\rangle.$$

Under unitary evolution U(t) generated by \hat{H}_{tot} , the state at time t can be written (in a standard pre-measurement model) as

$$|\Psi(t)\rangle = \sum_{i} c_i |s_i\rangle \otimes |m_i(t)\rangle \otimes |E_i(t)\rangle,$$

where $|m_i(t)\rangle = e^{-i\hat{H}_M^{(i)}t/\hbar}|m_0\rangle$ and $|E_i(t)\rangle$ incorporate the M-E interactions conditioned on branch i.

Reduced state and influence functional. Tracing out ME,

$$\rho_S^{ij}(t) = c_i c_j^* \mathcal{F}_{ij}(t), \qquad \mathcal{F}_{ij}(t) \equiv \langle m_j(t) | m_i(t) \rangle \langle E_j(t) | E_i(t) \rangle.$$

Because \hat{H}_M depends on ψ with coefficient $\alpha_{\rm ph}$ while \hat{H}_S depends with $\alpha_{\rm at}$, distinct branches $i \neq j$ accumulate different meter phases

$$\langle m_j(t)|m_i(t)\rangle \sim \exp\left\{\frac{i}{\hbar}\int_0^t dt' \,\Delta H_M^{(ij)}[\psi(t')]\right\},$$

with $\Delta H_M^{(ij)}$ proportional to $(\alpha_{\rm ph} - \alpha_{\rm at}) \, \delta \psi$ through the S-M coupling. Coupling to E induces damping of off-diagonal terms; in the Born–Markov limit one obtains

$$|\langle E_i(t)|E_i(t)\rangle| \approx \exp(-\Gamma t),$$

for some decoherence rate Γ set by $M{-}E$ couplings. Hence

$$|\mathcal{F}_{ij}(t)| \to 0 \quad (i \neq j),$$

and

$$\rho_S(t) \approx \sum_i |c_i|^2 |s_i\rangle\langle s_i|.$$

We stress: this *does not* derive selection of one outcome or the Born rule; it shows suppression of interference in a basis fixed by sector response and apparatus coupling.

EXPERIMENTAL COROLLARY: ALTITUDE SLOPE

At a single location, a small local change $\delta\psi$ gives

$$\frac{\delta R}{R} \equiv \frac{\delta (f_{\rm cav}/f_{\rm at})}{(f_{\rm cav}/f_{\rm at})} = (\alpha_{\rm ph} - \alpha_{\rm at}) \, \delta \psi \equiv \xi \, \delta \psi.$$

FIG. 2. Predicted cavity–atom slope: null (GR, $\xi=0$) vs non-null ($\xi\neq0$). Linear-gradient model is valid over $\lesssim 400\,\mathrm{m}$; curvature corrections are $<10^{-18}$ and negligible at present precision.

Between two altitudes separated by Δh on Earth,

$$\Delta \psi = \frac{2 \, \Delta \Phi}{c^2} \approx \frac{2 \, g \Delta h}{c^2},$$

so the finite change is

$$\frac{\Delta R}{R} = \xi \, \frac{\Delta \Phi}{c^2}.$$

With $g\Delta h/c^2\approx 1.1\times 10^{-14}$ per 100 m, a nonzero ξ produces a clean, linear slope; $\xi=0$ gives a strict null. Modern cavities (stability 10^{-16} – 10^{-17}) and optical clocks (< 10^{-18}) make this test feasible.

RELATION TO EXISTING EXPERIMENTS AND WHY THIS IS UNTESTED

High-precision redshift tests comparing atom vs atom clocks have reached fractional 10^{-17} over 33– $40\,\mathrm{cm}$ [3]. Transportable optical lattice clocks have compared sites separated by ~ 100 – $450\,\mathrm{m}$ [4]. Ultra-stable cavities (room-temperature and cryogenic) reach 10^{-16} – 10^{-17} linewidths and underpin state-of-the-art optical clocks [5, 6]. Searches for ultralight dark matter also compare cavity and atomic references, but probe temporal modulations, not an altitude slope [7].

To our knowledge, a stationary, two-altitude, sector-resolved measurement of $f_{\rm cav}/f_{\rm at}$ reporting a geometry-locked slope at the $10^{-14}/100\,\rm m$ level has not been published. This likely reflects practical priorities (atomic-to-atomic comparisons for timekeeping) rather than impossibility: the required components are standard. A dedicated protocol with dispersion bounds, orientation flips, and hardware swaps would decisively determine \mathcal{E} .

CONCLUSION

This framework eliminates the Penrose paradox by enforcing one geometry, shows how the pointer basis is fixed by sector response (operationally, by the meter), and reduces a conceptual tension to a falsifiable, binary discriminator. We make no claim to derive outcome selection. The experiment measures $\xi = \alpha_{\rm ph} - \alpha_{\rm at}$ via a height-dependent slope of $f_{\rm cav}/f_{\rm at}$ at $\sim 10^{-14}/100\,{\rm m}$. Independent of whether $\alpha_{\rm at} \approx 0$ (material co-variance) or $\alpha_{\rm at} \approx +1$ (kinetic-only scaling), the key discriminator is ξ : any $\xi \neq 0$ signals physics beyond GR's sector equality.

 [1] R. Penrose, "On gravity's role in quantum state reduction," Gen. Relativ. Gravit. 28, 581–600 (1996). doi:10.1007/BF02105068

- [2] R. Penrose, "On the Gravitization of Quantum Mechanics
 1: Quantum State Reduction," Found. Phys. 44, 557–575
 (2014). doi:10.1007/s10701-013-9770-0
- [3] C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, "Optical Clocks and Relativity," *Science* **329**, 1630–1633 (2010). doi:10.1126/science.1192720
- [4] M. Takamoto et al., "Test of General Relativity by a Pair of Transportable Optical Lattice Clocks," Nat. Photonics 14, 411–415 (2020). doi:10.1038/s41566-020-0619-8
- [5] T. Kessler et al., "A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity," Nat. Photonics 6, 687–692 (2012). doi:10.1038/nphoton.2012.217
- [6] D. G. Matei et al., "1.5 μm Lasers with Sub-10 mHz Linewidth," Phys. Rev. Lett. 118, 263202 (2017). doi:10.1103/PhysRevLett.118.263202
- [7] C. J. Kennedy et al., "Precision Metrology Meets Cosmology: Measuring Dark Matter with Atomic Clocks," Nat. Phys. 16, 112–117 (2020). doi:10.1038/s41567-019-0719-8