Notation

- $E = \{e_1, \dots, e_n\}$: the set of individuals
- ▶ $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$ where $x_{ij} \in \Re (j = 1, \dots, p)$: description of individual e_i
- **X** = $(\mathbf{x}_1, \dots, \mathbf{x}_n)$: the data matrix
- ▶ $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$: interval-valued data set
- ▶ $\mathbf{w}_k = (w_{k1}, \dots, w_{kp})$ where $w_{kj} \in \Re \ (j = 1, \dots, p)$: description of the prototype of the cluster $k \ (k = 1, \dots, K)$
- $ightharpoonup \mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_K)$: the matrix of prototypes
- $ightharpoonup \mathcal{P} = (P_1, \dots, P_K)$: partition of E into K clusters
- $ightharpoonup Λ = [λ_{kj}]$: matrix of weights
- $\mathbf{u}_i = (u_{i1}, \dots, u_{ic}) (i = 1, \dots, n)$: the vector of membership degrees of individual e_i in the clusters
- ▶ $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_c)$: the matrix of membership degrees

Notation

objective function

$$J = \sum_{k=1}^{K} \sum_{i=1}^{n} (u_{ik})^{m} \Delta_{\boldsymbol{\lambda}_{k}}(\mathbf{x}_{i}, \mathbf{w}_{k})$$

$$u_{ik} \in [0, 1]; \sum_{k=1}^{K} u_{ik} = 1; m > 1$$

$$\Delta_{\boldsymbol{\lambda}_{k}}(\mathbf{x}_{i}, \mathbf{w}_{k}) = \sum_{j=1}^{p} \lambda_{kj} (x_{ij} - w_{kj})^{2}$$

$$\boldsymbol{\lambda}_{k} = (\lambda_{k1}, \dots, \lambda_{kp}); \prod_{i=1}^{p} \lambda_{kj} = 1; \lambda_{j} > 0$$

 $\Lambda = [\lambda_{kj}]_{K \times p}$: matrix of weights

INPUT:

- the data set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$;
- the data matrix X
- the number K of clusters:
- T (maximum number of iterations); $\varepsilon \ll 0$;
- the parameter m(m > 1);

OUTPUT:

- the matrix of prototypes W;
- the matrix of relevance weights Λ
- the matrix of membership degrees $\mathbf{U} = [u_{il}];$

INITIALIZATION

- Set $t \leftarrow 0$:
- Randomly select K distinct prototypes $\mathbf{w}_{L}^{(t)} \in \mathcal{D}$ (k = 1, ..., K) to obtain the matrix of prototypes $\mathbf{W}^{(t)} = (\mathbf{w}_1^{(t)}, \dots, \mathbf{w}_{k'}^{(t)})$:

Set
$$\lambda_k^{(t)} = (1, \dots, 1) (k = 1, \dots, K);$$

Compute the membership degree of e_i dans le cluster k:

$$u_{ik}^{(t)} = \left[\sum_{h=1}^{K} \left(\frac{\Delta_{k}^{(t)}(\mathbf{x}_{i}, \mathbf{w}_{k}^{(t)})}{\Delta_{k}^{(t)}(\mathbf{x}_{i}, \mathbf{w}_{h}^{(t)})} \right)^{\frac{1}{m-1}} \right]^{-1} = \left[\sum_{h=1}^{K} \left(\sum_{j=1}^{p} \lambda_{kj}^{(t)}(\mathbf{x}_{ij} - \mathbf{w}_{kj}^{(t)})^{2} \lambda_{kj}^{\frac{1}{m-1}} \right]^{-1} \right]$$

$$\left[\sum_{h=1}^{\mathcal{K}} \left(\frac{\sum_{j=1}^{p} \lambda_{kj}^{(t)} (x_{ij} - w_{kj}^{(t)})^{2}}{\sum_{j=1}^{p} \lambda_{hj}^{(t)} (x_{ij} - w_{hj}^{(t)})^{2}}\right)^{\frac{1}{m-1}}\right]^{-1}$$

Compute
$$J^{(t)} = \sum_{k=1}^{K} \sum_{i=1}^{n} (u_{ik}^{(t)})^m \Delta_{\lambda_k^{(t)}}(\mathbf{x}_i, \mathbf{w}_k^{(t)})$$

2) Step 1: computation of the best prototypes.

Set
$$t = t + 1$$
;

$$\mathbf{\Lambda}^{(t-1)}$$
 and $\mathbf{U}^{(t-1)}$ are kept fixed.

Compute the prototype $\mathbf{w}_k^{(t)} = (w_{k1}^{(t)}, \dots, w_{kp}^{(t)})$ according to:

$$w_{kj}^{(t)} = \frac{\sum_{i=1}^{n} \left(u_{ik}^{(t-1)}\right)^{m} x_{ij}}{\sum_{i=1}^{n} \left(u_{ik}^{(t-1)}\right)^{m}}$$

3) Step 2: Weighting

 $\mathbf{W}^{(t)}$ and $\mathbf{U}^{(t-1)}$ are kept fixed Compute the vector of relevance weight of the variable j into cluster k, $\boldsymbol{\lambda}_k^{(t)} = (\lambda_{k1}^{(t)}, \dots, \lambda_{kp}^{(t)})$ as

$$\lambda_{kj}^{(t)} = \frac{\left\{\prod_{h=1}^{p} \left[\sum_{i=1}^{n} (u_{ik}^{(t-1)})^{m} (x_{ih} - w_{kh}^{(t)})^{2}\right]\right\}^{\frac{1}{p}}}{\sum_{i=1}^{n} (u_{ik}^{(t-1)})^{m} (x_{ij} - w_{kj}^{(t)})^{2}}$$

4) Step 3: Allocation

 $\begin{aligned} \mathbf{W}^{(t)} & \text{ and } \mathbf{\Lambda}^{(t)} & \text{ are kept fixed} \\ & \text{For } i = 1 \text{ to } n \text{ do compute } \mathbf{u}_i^{(t)} = (u_{i1}^{(t)}, \dots, u_{il}^{(t)}, \dots, u_{iK}^{(t)}) \\ & u_{ik}^{(t)} = \left[\sum_{h=1}^K \left(\frac{\Delta}{\Delta_k^{(t)}} \frac{\lambda_k^{(t)}(\mathbf{x}_i, \mathbf{w}_k^{(t)})}{\Delta_k^{(t)}} \right)^{\frac{1}{m-1}} \right]^{-1} \\ & = \left[\sum_{h=1}^K \left(\frac{\sum_{j=1}^p \lambda_{kj}^{(t)}(\mathbf{x}_{ij} - \mathbf{w}_{kj}^{(t)})^2}{\sum_{i=1}^p \lambda_{ki}^{(t)}(\mathbf{x}_{ij} - \mathbf{w}_{kj}^{(t)})^2} \right)^{\frac{1}{m-1}} \right]^{-1} \end{aligned}$

- Compute
$$J^{(t)} = \sum_{k=1}^K \sum_{i=1}^n (u_{ik}^{(t)})^m \Delta_{\boldsymbol{\lambda}_k^{(t)}}(\mathbf{x}_i, \mathbf{w}_k^{(t)})$$

5) Stopping criterion. If $|J^{(t)} - J^{(t-1)}| < \varepsilon$ or t > T then STOP; otherwise go to 2 (Step 1).