

Sydney Girls High School

2006 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Extension 1

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 2006 HSC Examination Paper in this subject.

General Instructions

- ♦ Reading Time 5 mins
- ♦ Working Time 2 hours
- ♦ Attempt ALL questions
- ◆ ALL questions are of equal value
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied
- Board-approved calculators may be used.
- Diagrams are not to scale
- Each question attempted should be started on a new sheet. Write on one side of the paper only.

Marks

Question 1 (12 marks)

a) Differentiate
$$y = 4\cos^{-1}3x$$
 (2)

c) Find
$$\int \frac{dx}{4+3x^2}$$
 (2)

d) Sketch the graph of
$$y = \sin(\sin^{-1} x)$$
 showing clearly the domain and range (3)

e) Find
$$\int 2xe^{x^2-3}dx$$
 using the substitution $u = x^2 - 3$ (3)

			112417103
	Question 3	(12 marks)	
	, ,	of change in velocity (v) of a falling object is given by $-k(v-C)$ where k and C are constants.	
	(i)	Show that $v = C + Ae^{-ht}$ is a solution of this equation	(1)
	(ii)	When $C = 500$, the initial velocity is 0 and the velocity (ν) after 5 seconds is 21 ms ⁻¹ . Find A and k .	(2)
	(iii)	Find the velocity after 20 seconds	(1)
	(iv)	Find the maximum possible velocity	(1)
	ground bearing minute	e car (C) is travelling at a constant distance of 100m above the d. An observer on the ground at Point A sees the cable car on a g of 345° from A with an angle of elevation of 65°. After one the cable car has a bearing of 025° from point A and a new angle ration of 69°.	
	Find	(i) the distance the cable car has travelled in that minute.	(2)
		(ii) its speed in metres per second.	(1)
	••	The acceleration of a particle is given by $x = -4x \ ms^{-2}$	
	(ii)	Show that $x = \sin 2t$ is a solution of this differential equation Find the times when the displacement will be zero.	(1) (1)
	(iv)	Find the velocity of the particle at these times. Hence or otherwise find the equation of its velocity in terms of its	(1)
		displacement.	(1)

Marks

Taking a first approximation of x= 0.6 radians, use 1 application of Newton's method to solve $\tan x = x$ correct to 2 decimal places

(2)

(2)

b)

O is the centre of a circle through points A, B, C, E and F.

Diameter AOE is produced to point D such that BE = ED as shown.

- (1) (i) Copy this diagram onto your answer page
- (2) (ii) Show that $\angle BEO = 2 \angle CDE$
- (2) Show that $\angle BAO = 90^{\circ} - \angle BEO$ (iii)
- DFG is a tangent to the circle touching at F. Given that BE =5cm (iv) and radius of the circle is 3.5cm, find the length of DF in exact form.
- (3)

Question 5 (12 marks)

a) Show that
$$\tan^{-1}\frac{4}{5} + \tan^{-1}\frac{5}{4} = \frac{\pi}{2}$$
 (2)

Simplify
$$\frac{|x+1|}{x^2-1}$$
 for $x \neq \pm 1$ (2)

The remainder when polynomial

$$P(x) = ax^4 + bx^3 + 15x^2 + 9x + 2$$
 is divided by $(x-2)$ is 216 and $(x+1)$ is a factor of P (x). Find "a" and "b". (3)

Points P $(2ap, ap^2)$ and Q $(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.

- If chord PQ subtends a right angle at the origin show that (ii) pq = -4. (2)
- Find the equation of the locus of the midpoint of chord PQ. (iii) (2)

(2)

(1)

Question 6 (12 marks)

a) Use the principle of mathematical induction to prove that

$$2^{n}-1 > 5n+2 \text{ for } n > 4$$
 when $n = 1$ in teger (3)

- b) (i) Find the point of intersection of the curves $y = x^2$ and $y = (x-2)^2$. (1)
 - (ii) The area enclosed by the two curves and the x axis from x = 0 to x = 2 is rotated around the y axis. Find the volume of revolution in exact form. (3)
- c) Use the substitution $u^2 = 1 + x^3$ to evaluate correct to 3 decimal places

$$\int_0^1 \frac{3x^2 dx}{2\sqrt{1+x^3}} \tag{2}$$

d) A funnel is dropping sand at a constant rate of 8m³ per minute. The sand pile is in the shape of a cone such that the height (h) metres is always twice the radius (r) metres.

Find the rate at which the height is changing when the sand pile is at a height of 2m.. Answer correct to 2 decimal places.

(3)

Question 7 (12 marks)

a) (i) Find the inverse function f⁻¹(x) in terms of x for y = f(x) = x² - 4x over the restricted domain x ≥ 2. (2) Write domain and range of this inverse function (ii) Hence find the point common to both f(x) and f⁻¹(x) in this domain. (1)
b) Water is flowing at a horizontal velocity of 2ms⁻¹ over a 5m vertical cliff. (i) How far from the base of the cliff will it fall? (2)
(ii) At what velocity will it strike the river below? (correct to 1 dec place) (1)
(iii) At what acute angle will it make with the river below? (Use g = 10ms⁻²) (to the nearest degree) (1)
c) A particle moves in a straight line, its position x metres at time t seconds being given by x = √3 sin t - cost

(ii) Show that the particle is undergoing Simple Harmonic Motion about x = 0 (1)

(i) Express $\sqrt{3} \sin t - \cos t$ in the form $A \sin(t-\alpha)$ where

 α is in radians and A > 0

(iii) Find the amplitude and period of the motion. (1)

(iv) At what time does the particle first reach its maximum speed after time t = 0 secs?

S.C.H.S. Trial H.S.C Maths 2006 Entl

$$\frac{61}{9} = \frac{7}{7} = \frac{4 \cos^{-1} 3x}{\sqrt{1 - 9x^{2}}}$$

$$\frac{61}{3x} = \frac{-12}{\sqrt{1 - 9x^{2}}}$$
(1)

$$\begin{array}{rcl}
b & x_1 y_1 &= 3, & 4 \\
x_2 y_2 &= -5, & 1 \\
(exturnally) & k_1 & k_2 &= -2 & 3 \\
x &= \frac{k_1 x_2 + k_2 x_1}{k_1 + k_2} \\
&= \frac{10 + 9}{1} &= 19 \\
y &= \frac{k_1 y_1 + k_2 y_1}{k_1 + k_2} \\
&= \frac{-2 + 12}{1} &= 10 \\
&= -2, & (19, 10)
\end{array}$$

$$= \int \frac{dx}{4 + 3z^2}$$

$$= \int \frac{dx}{3\left(\frac{4}{3} + x^2\right)}$$

$$= \int \frac{dx}{3\left(\frac{7}{3} + x^2\right)}$$

$$= \int \frac{dx}{3} + x^2\right)$$

$$= \int \frac{dx}{3}$$

$$= \int \frac{dx}{3} + x^2\right)$$

$$= \int \frac{dx}$$

$$\frac{d}{d} = \sum_{i=1}^{n} (sin^{-i}k)$$

$$\therefore y = k - 1 \le k \le 1$$

$$y = -1 \le y \le 1$$

$$2x e \qquad dx$$

$$4 = x^{2} - 3$$

$$\frac{du}{\partial x} = 2u$$

$$du = 2u du$$

$$2x e \qquad x^{2} - 3$$

$$= \int e \qquad dx$$

$$= \int e \qquad dx$$

$$= e \qquad + c \qquad 3$$

Question 2

$$\frac{2}{5x} + \frac{1}{1}y - 3 - 3 - 3 - \frac{1}{2}$$

$$fan \theta = \frac{M_1 - M_1}{(I + M_1 / N_1)}$$

$$\frac{2}{(I + 2x - \frac{1}{2})}$$

$$\frac{4\frac{1}{1}}{-4}$$

$$\frac{4\frac{1}{1}}{3} = \frac{4}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$

b
$$y = \frac{|x|}{x^2}$$

when $x > 0$ $y = \frac{x}{x^2} = \frac{1}{x}$

when $x > 0$ $y = \frac{x}{x^2} = \frac{1}{x}$

when $x > 0$ $y = \frac{x}{x^2} = \frac{1}{x}$

$$\int_{0}^{\pi} \cos x \, dx$$

$$= \int_{0}^{\pi} \cos x \, dx$$

$$= \int_{0}^{\pi} \sin x \, dx$$

= /ge 2 - loge (undefined)

= log = 1 - log 2 - undergrade

undefined number

$$\frac{dy}{dx} = \frac{3}{\sqrt{1-9x^2}}$$

$$\frac{2}{\sqrt{1-9x^2}}$$

= y = sn 32

GUAJTION3

$$A = \frac{AV}{At} = -k(V-C)$$

$$V = C + A = -kt$$

$$LH.S = \frac{dV}{at} = O - kA = -kt$$

$$RHS = -k(V-C)$$

$$= -k(C+Ac^{-kt}-C)$$

$$= -kAc^{-kt}$$

$$LHS = RHS$$

$$\therefore V = C + A = -kt$$
 is a sola.

is
$$x = \sin 2t$$
 $x = \cos 2t$
 $x = \cos 2t$
 $x = -4 \sin 2t$
 $x = -4 \cos 2t$
 $x = -4 \cos 2t$
 $x = -4 \cos 2t$
 $x = -2 \cos 2t$

$$i fan 65 = \frac{ha}{h}$$

$$u = \frac{100}{fan 65} = 46.63$$

$$fan 69° = \frac{\hbar \omega}{9}$$

 $fan 69° = \frac{\hbar \omega}{9}$
 $fan 69° = 38.39$

= c = 30.1 h = Dist travelled

2

0

DU Funk = n - fank - R EO Let S(x) = fan x -x f(x) = seex -1 a1 = a - f(a) f (a) Put a = 0-6 a = 0.6 - (fan 0.6 - 0.6) (suc 0.6 -1) - 0.42 - Soh is se = 0.62 (24,p)

in ain: Show (BEO = 2 x COE front: LOBE = LCOF = y (Bis LS INSA) LBEO = x = 24 (Ext L-x A)

-. LBEO = 2 + L CDE 11 9in Show LBAO = 90 - (Beo Prof: Draw BA LABE = 90° (LIN SEME CIALE) : LBAO + LBEO = 90° (LSMAYS) - LBAO = 900 - LBEO

14 OIn: FIRE OF LASH Solution: BE = ED = 5 cm -: AD = 12 ca -- FO = 560 = 2515 cm 40 x DC = FO2 (Internet Long 12x5 = FD + orgent Than)

 $\frac{2}{x} = \frac{3x}{x-1} < 5$ (1st CU) x=1 Let 3x = 5 3x = 511 - 5 5 = 2k == 21 (2ad cv.) 0 25 / Test x = 0 TISK K= 3 2 15 / Test n = 2 ans: pe </ ann x > 22

= Let fan \$ = 0 : fand = 4

Now fand = { : L= fan I O LL = I in tan if I tan is = I

 $= \frac{1}{x-1} \quad \text{if } x > -1 \\ \left(\text{and } x \neq 1 \right)$ $\frac{|x+1|}{x^2-1} = \frac{-(x+1)}{(x-1)(x+1)} \quad \text{if } x < -1$ =1 if x <-1 (or 1-12) 1/2 × <-1

 $= P(x) = ax^{4} + bx^{3} + 15x^{2} + 9x + 2$ 1/(2) = 16a + 86 + 60 + 18 + 2 = 216 p2+ 2 = 27/a -: 16a 1 8 6 = 136 P(-1) = a - 6 + 15 - 9 + 2 = 0a-b = -8a = 6 - 8

> 16 (6-8) +86 = 136 246 = 264 : 6 = 11 a = 3

i Chan Pa gra = 45-27) y- = /2 (x-20/) Y-ap2 = (2:2)x - ap2 - apq : y = (118)x - 4/2 ()

1 6 rece 09 : 1 2 2 mg Grad OP = 4 = 1/2 = 1/2 = M2 Since LIOA = 90" M1 M2 = 7 1. E. K = 1 (2) -- /2 = -4 " Midpt R = a (1/2), -(21)

x = a (p49) - p12 = x/a a (p 1 1) = 4 (p+9) -2/2 = 2/2 1c +8 = 2/a x2+ 8a = 2y a x2 = Lya - Sal : x2 = 2a(y-4a)

is locus of milht

· F Chord 10

26 = Prove by M. F. 12-12 -1 > 5n+2 pro 1 = 12 -1 > 5n+2 pro 1 = 14 | 1 = 1 = 1Lus= 1 = 1 = 12 | 1 = 1 = 13 | 1 = 1 = 1Lus= 1 = 1 = 13 | 1 = 1 = 13 | 1 = 1 = 13 | 1 = 1 = 13 | 1 = 1 = 14 | 1 = 1 = 15 | 1 = 1 = 16 | 1 = 1 = 16 | 1 = 1 = 16 | 1 = 1 = 16 | 1 = 1 = 17 | 1 = 1 = 18 | 1 = 1 = 18 | 1 = 1 = 18 | 1 = 1 = 18 | 1 = 1 = 19 | 1 = 1 = 18 | 1 = 1 = 19 | 1 = 1 = 19 | 1 = 1 = 19 | 1 = 1 = 110 | 1 = 1 = 111 | 1 = 1 = 112 | 1 = 1 = 113 | 1 = 1 = 114 | 1 = 1 = 115 | 1 = 1 = 116 | 1 = 1 = 117 | 1 = 1 = 118 | 1 = 1 = 119 | 1 = 1 = 119 | 1 = 1 = 110 | 1 = 1 = 110 | 1 = 1 = 110 | 1 = 1 = 111 | 1 = 1 = 111 | 1 = 1 = 111 | 1 = 1 = 112 | 1 = 1 = 113 | 1 = 1 = 114 | 1 = 1 = 115 | 1 = 1 = 116 | 1 = 1 = 117 | 1 = 1 = 118 | 1 = 1 = 118 | 1 = 1 = 118 | 1 = 1 = 118 | 1 = 1 = 118 | 1 = 1 = 118 | 1 = 1 = 118 | 1

Stop4 IF true por n=k, Men true por n=k+1

Since true for n=5, Men true por n=6 then n=7th

By Mattenatical Induction 2 -1 > 5n+2 por all

Integeo n>4

 $y = x^{2} \qquad y = (x-2)^{2}$ (x-2) = y $x^2 = (x-2)^2$ x-2 = ± Jy x = x - ux H x = 2 ± Jy : ase x = 2 - Jy = . At of interpretar = (1,1) non x2 = (2 - 5) = 4 - 4gt + y Vul = IT S' 4-49 ty dy - ITS y dy = TT [44 - 44 + 4 7' - TT [3/2] * 11 \ 4 - \frac{8}{3} + \frac{1}{2} - 0 \] - 17 \[\frac{1}{2} - 0 \] = 41 · units $\leq \int_{0}^{1} \frac{3x^{2} dx}{2 \sqrt{1+x^{3}}}$ Use a = 1 + x 1 Change limb x =0 $u^{2} = 1 + x^{3}$ $u = (1/x^{3})^{1/2}$ x=1, L=2

 $u^{2} = 1 + x^{3}$ $u = (1 + x^{3})^{1/2}$ $u = (1 + x^{3})^{1/2}$ $u = \int_{0}^{1/2} \frac{3z^{2}}{2\sqrt{1+x^{3}}} dx$ $= \int_{0}^{1/2} 1 dx = \left[u \right]_{0}^{1/2}$ $= \int_{0}^{1/2} \frac{3z^{2}}{2\sqrt{1+x^{3}}} dx$ $= \int_{0}^{1/2} 1 dx = \left[u \right]_{0}^{1/2}$ $= \int_{0}^{1/2} \frac{3z^{2}}{2\sqrt{1+x^{3}}} dx$ $= \int_{0}^{1/2} 1 dx = \left[u \right]_{0}^{1/2}$ $= \int_{0}^{1/2} \frac{3z^{2}}{2\sqrt{1+x^{3}}} dx$ $= \int_{0}^{1/2} 1 dx = \left[u \right]_{0}^{1/2}$ $= \int_{0}^{1/2} \frac{3z^{2}}{2\sqrt{1+x^{3}}} dx$ $= \int_{0}^{1/2} 1 dx = \left[u \right]_{0}^{1/2}$

(3)

86 2

$$V = \frac{3}{3}\pi r^{2}k$$

$$= \frac{1}{3}\pi \frac{h^{2}}{4}.k$$

$$= \pi \frac{h^{3}}{12}$$

$$\therefore V = \frac{1}{4}$$

$$\frac{dV}{dk} = \frac{3\pi}{12} k^{2} = \frac{\pi}{4}$$

$$\frac{dV}{dk} = \frac{3\pi}{12} k^{2} = \frac{\pi}{4} h^{2}$$

$$\frac{dV}{dk} = \frac{dV}{dk}. \frac{dk}{dk}$$

$$\frac{dV}{dk} = \frac{3\pi}{12} k^{2} = \frac{\pi}{12} h^{2}$$

. Late up change of height = 2.55 m/min

47 -

$$\frac{1}{2} \int_{-1}^{2} (x) : y = x^{2} - 4x \quad \text{for } x > 3 \\
\int_{-1}^{-1} (x) : x = y^{2} - 4y \\
y^{2} - 4y \quad y = x + 4 \\
(y - 2)^{2} = x + 4 \\
y - 2 = \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{-1}^{2} x + 4 \\
y = 2 \pm \int_{$$

- f-1(x) is g = 2 + JET4

x7-4 is lon of 5-161 432 is have if 8' (1)

$$\frac{1}{2} \quad f(x) \quad \text{are } f^{-1}(x) \quad \text{inhissed on } y \in \mathbb{R}$$

$$\frac{1}{2} \quad y = x^{2} - 4x = x$$

$$x^{2} - 5x = 0$$

$$x (x - 5) = 0$$

$$\therefore x = 5, y = 5.$$

$$\therefore \text{ Common } P = (5, 5)$$

Pate: (=0, x=0, x=2, i=0 t=0, y=5, y=0, y=-9=-10

Horiz mution · x = 2 x = 2+ +c 0 = 0 + 4 : 1c= 2t

i Lot y = 0 0 = -561+5 5t = 5 -: € =1 x=2x1=2m i. Water pall , 2m from Base of clipp

1 x=2, g=-10

:. 0 = 79°

v2 = 22 + (-10) V = 5104 = 10.2 n/s

617 =
$$x = \int_{3}^{3} \sin t - 1 \cos t$$

2 A $\sin(t - d)$

2 A $\sin(t - d)$

3 A $\sin(t - d)$

4 A $\sin(t - d)$

5 A $\sin(t - d)$

618 A $\sin(t - d)$

62 A $\sin(t - d)$

63 A $\sin(t - d)$

64 A $\sin(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

61 A $\cos(t - d)$

61 A $\cos(t - d)$

62 A $\cos(t - d)$

63 A $\cos(t - d)$

64 A $\cos(t - d)$

65 A $\cos(t - d)$

65 A $\cos(t - d)$

66 A $\cos(t - d)$

67 A $\cos(t - d)$

68 A $\cos(t - d)$

69 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

60 A $\cos(t - d)$

when t = 0 $n = 2 \sin(0 - \frac{\pi}{6})$: First reads, $= -2 \times \frac{1}{2} = -1$ they speed $= -2 \times \frac{1}{2} = -1$ they speed $= -2 \sin(6 - \frac{\pi}{6})$ $= -\frac{\pi}{6} \cos 6$ $= -\frac{\pi}{6} \cos 6$ $= -\frac{\pi}{6} \cos 6$ $= -\frac{\pi}{6} \cos 6$