Hartshorne Solutions

Nilay Kumar

Last updated: February 14, 2014

Problem 3.1

(a) By the results of problem 1.1, we know that any conic in \mathbb{A}^2 can be written as either a variety Y defined by $y-x^2=0$ or a variety Z defined by xy-1=0. We know that A(Y)=k[x] and $A(Z)=k[x,x^{-1}]$. Note that $A(Y)\cong A(\mathbb{A}^1)$, and hence by Corollary 3.7, $Y\cong \mathbb{A}^1$ as affine varieties. It remains to show that Z is isomorphic to $\mathbb{A}^1-\{0\}$.

why

- (b) Let B be a proper open subset of \mathbb{A}^1 . By definition of the Zariski topology, we can write $B = \mathbb{A}^1 \setminus \{p_1, \dots, p_n\}$ where p_i are a finite set of points in \mathbb{A}^1 . The ring of regular functions of \mathbb{A}^1 is $\mathcal{O}(\mathbb{A}^1) = k[x]$. In B, however, polynomials that vanish only at any of the p_i are globally invertible, and hence $\mathcal{O}(B) = k[x, (x-p_1)^{-1}, \dots, (x-p_n)^{-1}]$. These two rings are not isomorphic.
- (c) In the projective plane, we can write a conic as $F(x, y, z) = ax^2 + 2bxy + 2cxz + dy^2 + 2eyz + fz^2$, which can be rewritten under an appropriate change of variables as $x^2 + y^2 + z^2$. Hence every conic in the projective plane is isomorphic, and it will suffice to show that there exists a conic that is isomorphic to \mathbb{P}^1 . This is done by noting that the 2-uple of $\rho_2 : \mathbb{P}^1 \to \mathbb{P}^2$ is an isomorphism onto its image (c.f. problem 3.4), and that

$$\rho_2(a_0, a_1) = (a_0^2, a_0 a_1, a_1^2),$$

which clearly traces out a conic $xz - y^2$.

- (d) This is obvious from the cell decomposition $\mathbb{P}^2 = \mathbb{A}^2 \sqcup \mathbb{A}^1 \sqcup \mathbb{A}^0$ one cannot construct a bijection between \mathbb{A}^2 and \mathbb{P}^2 .
- (e) If an affine variety X is isomorphic to a projective variety Y, then we must have that $\mathcal{O}(X) = \mathcal{O}(Y) = k$. But for $k[x_1, \ldots, x_n]/I(X) = k$, I(X) must be maximal. Hence $I(X) = (x_1 a_1, \ldots, x_n a_n)$, i.e. X is just a point.

Problem 3.14

(a) Note first that ϕ is continuous, as the preimage of any closed subset $V \subset \mathbb{P}^n$ is the projective cone $\overline{C(V)}$, which is closed in \mathbb{P}^{n+1} . Furthermore, the point at which the line connecting any Q and P to the hypersurface (choose $x_0 = 0$ without loss of generality) is given by

$$\phi(Q) = [Q_1 - \frac{Q_0 P_1}{P_0} : \dots : Q_{n+1} - \frac{Q_0 P_{n+1}}{P_0}],$$

where P_i and Q_i , are the *i*th components of P and Q, respectively (the coordinates are written as for a point in \mathbb{P}^n). It is easy to see that ϕ pulls back regular functions to regular functions: given $g/h : \mathbb{P}^n \to k$, $g(\phi(Q))/h(\phi(Q))$ is regular as well, since inserting $\phi(Q)$ (as above) will retain homogeneity as well as keep the denominator non-zero (as h has no zeroes).

(b) The twisted cubic is given parametrically by $[x:y:z:w]=[t^3:t^2u:tu^2:u^3]$. We wish to project from P=[0:0:1:0] onto the hyperplane z=0. This yields the points $[t^3:t^2u:u^3]\in\mathbb{P}^2$. Note that these points satisfy the equation $x_0^2x_2-x_1^3=0$. But this is precisely the projective closure of the cuspidal cubic $y^3=x^2$.

Problem 3.15

- (a) Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be affine varieties. Consider the product $X \times Y \subset \mathbb{A}^{n+m}$ with the induced Zariski topology. Suppose that $X \times Y$ is a union of two closed subsets $Z_1 \cup Z_2$. Let $X_i = \{x \in X \mid x \times Y \subset Z_i\}$ for i = 1, 2. The irreducibility of Y guarantees that $X_1 \cup X_2 = X$: if there were an x for which $x \times Y$ were not contained in a Z_i , this would yield a covering of Y by closed sets $Z_1 \cap Y, Z_2 \cap Y$. Furthermore, the X_i must be closed. Hence either $X_1 = X$ or why $X_2 = X$ and thus $Z_1 = X \times Y$ or $Z_2 = X \times Y$, i.e. $X \times Y$ is irreducible.
- (b) Consider the map $A(X) \otimes_k A(Y) \to A(X \times Y)$ given by taking $(f \otimes g)(x, y)$ to f(x)g(y). This map is clearly onto, as it produces the coordinate functions $x_1, \ldots, x_n, y_1, \cdots, y_m$.