

Intersection (Lane): 0%

CARLA: Introduction

CARLA is an open-source simulator for autonomous driving research simulating urban driving scenario.

Version: In order to get the dataset, we've used CARLA_0.8.2 stable version. There are 2 towns. Town 1 has a total of 2.9 km of drivable roads, and Town 2 has 1.4 km of drivable roads as shown in images as white strips.

Measurements:-

- Player agent :- [Steer, Throttle, Brake, Position, Direction]
- Non-player agent :- [Other vehicle, Pedestrian, Traffic light, Speed sign]
- Sensor :- [Camera, Lidar]

Town 1

Town 2

Literature Survey

Autonomous navigation can be described as a mapping function from sensory input to control output. To implement this function, four major approaches have been proposed:

- 1. Modular Pipelines¹
- 2. Imitation Learning¹
- 3. Reinforcement Learning¹
- 4. Direct Perception²

¹CARLA: Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." arXiv preprint arXiv:1711.03938 (2017).

²CAL: Sauer, Axel, Nikolay Savinov, and Andreas Geiger. "Conditional affordance learning for driving in urban environments." arXiv preprint arXiv:1806.06498 (2018).

Conditional Affordance learning (CAL)

The table * defines the performance of different methods in 4 different conditions and in 4 different tasks. The methods used for training are *Modular Pipeline(MP)*, *Conditional Imitation Learning(CIL)*, *Reinforcement Learning(RL)* and *Conditional Affordance Learning(CAL)*.

- Navigation: No non-player agents are present while running the model.
- Navigation dynamic: Non-player agents are present in the environment.

Task	Training conditions			New weather			New town			New town and new weather						
	MP	CIL	RL	CAL	MP	CIL	RL	CAL	MP	CIL	RL	CAL	MP	CIL	RL	CAL
Straight	98	95	89	100	100	98	86	100	92	97	74	93	50	80	68	94
One turn	82	89	34	97	95	90	16	96	61	59	12	82	50	48	20	72
Navigation	80	86	14	92	94	84	2	90	24	40	3	70	47	44	6	68
Nav. dynamic	77	83	7	83	89	82	2	82	24	38	2	64	44	42	4	64

As CAL performed better than other three learning, so we used CAL for our training.

^{*}CAL: Sauer, Axel, Nikolay Savinov, and Andreas Geiger. "Conditional affordance learning for driving in urban environments." arXiv preprint arXiv:1806.06498 (2018).

Introduction to terms

- Affordance: The term 'Affordance' refers to our implicit understanding of how to interact with an object. There are six affordances, i.e. Hazard stop, Speed sign, Traffic light, Relative angle, Center distance, Vehicle distance.
- Features: Features are useful information present in the images taken by camera(s) attached to agent vehicle.
- ❖ VGG11_bn: Pre-trained batch normalized version of Pytorch model VGG11 has been used as the feature extractor for training and driving purpose.
- * Taskblock: These correspond to the affordances. They are shallow networks and consist of a task-specific layer, followed by a batch normalization layer and a dropout layer. It is of two types-
 - ☐ Conditional Relative Angle, Center Distance (depends on direction)
 - Unconditional Hazard Stop, Speed Sign, Traffic Light, Vehicle Distance

Poses

Poses:- A pair of values, indicates the starting and ending point in a Town.

Here is the image of Town01, with 140 point presents in it.

Overview of the system

Driving Model Description

Affordance

Details of the usage of the six affordances:

		age of the six arrora	arioco.		
TYPE	CONDITIONAL	AFFORDANCE	VALUES TAKEN		
	No	Hazard Stop	{True, False}		
Discrete	No	Traffic Light	{True, False}		
	No	Speed Sign (km/h)	{None, 30, 60, 90}		
Continuous	No	Distance to Vehicle (m)	[0,50]		
	Yes	Relative Angle (rad)	[-π,+π]		
	Yes	Distance to Centerline (m)	[-2, +2]		

Training strategy

- We collected data (20,793 images) from each of the 3 camera angles from Town-1, using the CARLA simulator
- We concatenated the images of the three cameras.
- We also collected the key frames for every bath of 5 images using ffmpeg, thus reducing the total count to 4159 images.

Training strategy

- Affordances are of 2 types: Discrete and Continuous. Weighted cross entropy loss (H) is used for Discrete affordances, while Mean Absolute Error (MAE) is used for Continuous Affordances.
- ❖ A multi task learning component is used to optimise these losses with Adam as optimizer.

$$\mathcal{L} = \sum_{j=1}^3 H_j + \sum_{k=1}^3 \mathit{MAE}_k.$$

- ❖ We trained the model using the collected data for 30 epochs, with a learning rate = 0.001.
- We ran the simulator using the trained model and compared our results with the CAL model by evaluating on the same poses.
- We use PyTorch as our DL framework.

CAL model

- Longitudinal control: The longitudinal controller is subdivided into several states (in ascending importance): cruising, following, over limit, red light, and hazard stop. [All states are mutually exclusive]
- **Lateral control**: Uses the PID (Proportional Integral Differential) Controller which uses two affordances: the distance to centerline d(t) and the relative angle $\psi(t)$.

Hyper Parameters used

We've tried different hyper parameters for different task blocks, and these listed parameters worked best for our model

Task block	Layer type	Nodes	Dropout rate	Sequence length	Dilation value
Traffic light	GRU	120	0.27	14	2
Hazard stop	Temp. convolution	120	0.68	6	1
Speed sign	MLP	100	0.55	1	1
Relative angle	Temp. convolution	100	0.44	10	1
Center distance	Temp. convolution	100	0.44	10	1
Vehicle distance	GRU	120	0.38	11	1

Results & Plots for Discrete Affordances

Hazard Stop

Acc: 94.62

Speed Sign

Acc: 98.29

*Acc. = Accuracy

Red Light

Acc: 90.95

Results & Plots for Continuous Affordances

Vehicle Distance

MAE: 0.09

Centerline Distance

MAE: 0.21

Relative Angle MAE: 5.02

^{*}MAE = Mean Absolute Error

Car running in Town-1 (pose 138-17)

Using Concatenated Images Model

Affindmen

Red Sgmil. Acmul False Predicasel False Speed Sgmir. Acmul. 1 Producted: 1 Hazard stop: Acmul. 2 Predicatel False Vehicle Dastance. Acmul. 200. Predicatel 48:0391 Absolute Frired 1:31089 Center Detruce: Actual 2:1643. Predicatel 20:0296 Absolute Frired 1:31744 Redmyr Aught. Acmul. 1:56356. Predicatel 20:102. Absolute Frired 1:37756

Using Conditional Affordance Model

Training Town (Town - 1)

Task	Summary	Concatenated Image Model(4159 images)						CAL Model(2,40,000 images)						
lask	Summary	7-3	9-3	138-17	120-117	138-134	7-3	9-3	138-17	120-117	138-134			
	Result (Success/ Failure)	1	1	0	1	0	1	1	0	1	0			
	Veh_col	0	0	0	0	0	0	0	0	0	0			
Navigation	Ped_col	0	0	0	0	0	0	0	0	0	0			
Dynamic	Final time	8.75	13.15	98.72	10.2	57.32	8.75	13.15	98.72	10.2	57.31			
	Result (Success/ Failure)	1	1	0	1	0	1	1	0	1	0			
	Veh_col	0	0	0	0	0	0	0	0	0	0			
Navigation	Ped_col	0	0	0	0	0	0	0	0	0	0			
	Final time	8.75	13.15	98.72	10.25	57.31	8.75	13.15	98.72	10.2	57.32			

Test Town (Town - 2)

Tank	Summary	Cor	ncatenated	d Image Mo	del (4159 im	ages)	CAL Model(2,40,000 images)					
Task		65-69	10-19	23-6	70-73	1-56	65-69	10-19	23-6	70-73	1-56	
•	Result (Success/ Failure)	1	1	1	1	1	1	1	1	0	0	
	Veh_col	0	0	0	0	0	0	0	0	1	0	
Navigation Dynamic	Ped_col	0	0	0	0	0	0	0	0	0	0	
Dynamic	Final time	16.4	12.8	13.8	239.85	12.1	18.5	27.0	41.1	388.55	51.4	
	Result (Success/ Failure)	1	1	1	1	1	1	1	1	0	0	
	Veh_col	0	0	0	0	0	0	0	0	1	0	
Navigation	Ped_col	0	0	0	0	0	0	0	0	0	0	
	Final time	16.45	12.8	13.8	239.75	12.1	16.65	26.95	44.45	388.54	51.4	

Summary of our work

- ❖ We used CARLA simulator to collect the images (each of 400 x 300) and ground truth affordances for running the Conditional Affordance Learning model.
- ♦ We ran 4 episodes using 3 cameras. We concatenated the 3 camera images which fetched us 20,793 images (each of 1200 x 300 dimension). Having taken keyframes,(1 out of every 5) we created the dataset comprising of 4159 images.
- Performing a grid search, we trained the Conditional Affordance Learning (CAL) Model using the above dataset using the best performing hyperparameters for our data.
- We also ran the agent vehicle on some poses using the above trained model and recorded metrics like Collision.
- Alongside, we ran the agent vehicle using the CAL model(trained on 2,40,000 images) and recorded the same metrics.

Thank you!

We would like to thank Dr. Sourangshu Bhattacharya and Ms. Soumi Das for their constant guidance and support. Without them this project would have been impossible and we wouldn't have been here!

We learnt how to code better, analyze results, debug and most importantly how to conduct research.

You can find our work here: https://github.com/niladridutt/Conditional-Affordance-Learning