

Figure 39.8: Let n=2 and m=3. The immersion maps the purple circular base of the cylinder $U \times W$ to circular cup on the surface of the solid purple gourd.

39.5 Tangent Spaces and Differentials

In this section, we discuss briefly a geometric interpretation of the notion of derivative. We consider sets of points defined by a differentiable function. This is a special case of the notion of a (differential) manifold.

Given two normed affine spaces E and F, let A be an open subset of E, and let $f: A \to F$ be a function.

Definition 39.10. Given $f: A \to F$ as above, its graph $\Gamma(f)$ is the set of all points

$$\Gamma(f) = \{(x,y) \in E \times F \mid x \in A, \ y = f(x)\}.$$

If Df is defined on A, we say that $\Gamma(f)$ is a differential submanifold of $E \times F$ of equation y = f(x).

It should be noted that this is a very particular kind of differential manifold.

Example 39.9. If $E = \mathbb{R}$ and $F = \mathbb{R}^2$, letting f = (g, h), where $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$, $\Gamma(f)$ is a curve in \mathbb{R}^3 , of equations y = g(x), z = h(x). When $E = \mathbb{R}^2$ and $F = \mathbb{R}$, $\Gamma(f)$ is a surface in \mathbb{R}^3 , of equation z = f(x, y).