Consistency of the MLE for Poisson distribution

Objective: The primary purpose is to explore the consistency of the maximum likelihood estimator $(\hat{\lambda}_n)$ for the Poisson distribution as the sample size (n) increases.

Motivation: A data scientist has conducted research which suggests the number of calls in an answering service approaches a Poisson distribution and the telephone operator, on the average, handles six calls every two minutes $\left(\lambda_0^* = 6 \frac{calls}{two\ minutes}\right)$.

Task: Follow the subsequent steps to examine the consistency of $\hat{\lambda}_n$.

- 1. Assume that the number of calls addressed by the telephone operator indeed resembles a Poisson distribution.
- 2. Compute the average number of calls (λ_0) answered in a minute from the given information, use the three-simple rule to obtain λ_0 .
- 3. Open the Shiny app given in the URL: https://fhernanb.shinyapps.io/Cons-MLEs/
- 4. Using the Shiny app, select the Poisson distribution, the real rate $\left(\lambda_0 = 3 \frac{calls}{minute}\right)$ and $\delta = 0.07$.
- 5. Fix the sample size at n = 50, 175, 560, 994, 1284, 1673, 2000 and fill the gaps in Table 1 by using the results from the Shiny app.

Table 1. Number of samples and proportions when the maximum likelihood estimate is within or outside the interval $(\lambda_0 \pm \delta)$.

Sample size n	Number of samples on which $\lambda_0 - \delta < \hat{\lambda}_n < \lambda_0 + \delta$	Number of samples on which $\hat{\lambda}_n \leq \lambda_0 - \delta \text{ or } \hat{\lambda}_n \geq \lambda_0 + \delta$	Estimated $P(\hat{\lambda}_n - \lambda_0 < \delta)$	Estimated $P(\hat{\lambda}_n - \lambda_0 \ge \delta)$
50	2301		0.23	
175				
560		3307		0.331
994				
1284				_
1673				_
2000				_

6. According to the data gathered:		
	•	What can one infer with regard to the pattern observed?
	•	Can one affirm that $\hat{\lambda}_n$ is close to $\lambda_0=3$ with high probability (when n is large)?
7.	-	rate numerals 4 and 5 with higher values for δ . What can one conclude about the rgence quickness of $\hat{\lambda}_n$ as δ rises?

Consistency of the MLE for Geometric distribution

Objective: The primary purpose is to explore the consistency of the maximum likelihood estimator $(\hat{\pi}_n)$ for the Geometric distribution as the sample size (n) increases.

Motivation: From grandparents' expertise, when a loaded dice is thrown repeatedly on a board game, the Geometric distribution might be used for modeling the number of failures until the first time a "6" appears with success probability equals 0.3.

Task: Follow the subsequent steps to examine the consistency of $\hat{\pi}_n$.

- 1. Assume that the number of failures until the first time a "6" appears truly resembles a Geometric distribution.
- 2. Open the Shiny app given in the URL: https://fhernanb.shinyapps.io/Cons-MLEs/
- 3. Using the Shiny app, select the Geometric distribution, the real probability ($\pi_0 = 0.3$) and $\delta = 0.07$.
- 4. Fix the sample size at n = 50, 175, 560, 994, 1284, 1673, 2000 and fill the gaps in Table 2 by using the results from the Shiny app.

Table 2. Number of samples and proportions when the maximum likelihood estimate is within or outside the interval $(\pi_0 \pm \delta)$.

Sample size n	Number of samples on which $\pi_0 - \delta < \hat{\pi}_n < \pi_0 + \delta$	Number of samples on which $\hat{\pi}_n \leq \pi_0 - \delta \text{ or } \hat{\pi}_n \geq \pi_0 + \delta$	Estimated $P(\hat{\pi}_n - \pi_0 < \delta)$	Estimated $P(\hat{\pi}_n - \pi_0 \ge \delta)$
50	9437		0.944	
175				
560		0		0
994				
1284				
1673				_
2000				

5.	Accor	cording to the data gathered:			
	•	What can one infer with regard to the pattern observed?			
	•	Can one affirm that $\hat{\pi}_n$ is close to $\pi_0 = 0.3$ with high probability (when n is large)?			
6.		rate numerals 3 and 4 with higher values for δ . What can one conclude about the rgence quickness of $\hat{\pi}_n$ as δ rises?			

Consistency of the MLE for Exponential distribution

Objective: The primary purpose is to explore the consistency of the maximum likelihood estimator $(\hat{\phi}_n)$ for the Exponential distribution as the sample size (n) increases.

Motivation: An experimental physicist claims that the lapse of time between detections of an unusual particle by a Geiger counter has an Exponential distribution with mean time equals 0.25 hours.

Task: Follow the subsequent steps to examine the consistency of $\hat{\phi}_n$.

- 1. Assume that the amount of time between detections of an unusual particle, in effect, has an Exponential distribution.
- 2. Compute the rate (ϕ_0) from the given information.
- 3. Open the Shiny app given in the URL: https://fhernanb.shinyapps.io/Cons-MLEs/
- 4. Using the Shiny app, select the Exponential distribution, the real rate $\left(\phi_0 = \frac{1}{0.25} = 4 \frac{detections}{hour}\right)$ and $\delta = 0.07$.
- 5. Fix the sample size at n = 50, 175, 560, 994, 1284, 1673, 2000 and fill the gaps in Table 3 by using the results from the Shiny app.

Table 3. Number of samples and proportions when the maximum likelihood estimate is within or outside the interval $(\phi_0 \pm \delta)$.

Sample size n	Number of samples on which $\phi_0 - \delta < \hat{\phi}_n < \phi_0 + \delta$	Number of samples on which $\hat{\phi}_n \leq \phi_0 - \delta \text{ or } \hat{\phi}_n \geq \phi_0 + \delta$	Estimated $P(\hat{\phi}_n - \phi_0 < \delta)$	Estimated $P(\hat{\phi}_n - \phi_0 \ge \delta)$
50	948		0.095	
175				
560		6817		0.682
994				
1284				
1673				_
2000				

6.	Accor	ding to the data gathered:
	•	What can one infer with regard to the pattern observed?
	•	Can one affirm that $\hat{\phi}_n$ is close to $\phi_0=4$ with high probability (when n is large)?
7.		cate numerals 4 and 5 with higher values for δ . What can one conclude about the rgence quickness of $\hat{\phi}_n$ as δ rises?

To conclude, infer curves which illustrate the convergence swiftness of the MLEs of the parameters regarded throughout this questionnaire from acquired information in Tables 1, 2 and 3 and color them according to the imposed colors for the distributions.

Figure 1. Template to illustrate the convergence swiftness of the MLEs.