Phys210: Mathematical Methods in Physics II Homework 6

Soner Albayrak[†]

[†]Middle East Technical University, Ankara 06800, Turkey

Policies

- Please adhere to the *academic integrity* rules: see my explanations here for further details!
- For the overall grading scheme or any other course-related details, see the syllabus.
- Non-graded question(s) (if any) are for your own practice!
- Unless stated otherwise, you are expected to show your derivation of the results.
- The homework is due May 17rd 2024, 23:59 TSI.

Consider the higher order function $\mathcal{F}::\mathbb{Z}^+ \to (\mathbb{R}^2 \to \mathbb{C})$ with the information

$$\mathcal{F}(1) = (x,y) \to \frac{1}{3} \left(\frac{2-2x}{(x-1)^2 + y^2} - \frac{4(x+2)}{(x+2)^2 + y^2} + 3 \right)$$

$$+ \frac{2iy(x^2 + y^2 + 2)}{((x-1)^2 + y^2)((x+2)^2 + y^2)}$$

$$+ \frac{x^4 + x^2(2y^2 - 5) + y^4 + 5y^2 + 4}{((x-1)^2 + y^2)((x+2)^2 + y^2)}$$

$$- \frac{6ixy}{((x-1)^2 + y^2)((x+2)^2 + y^2)}$$

$$- \frac{6ixy}{(x-1)^2 + y^2} + \frac{3iy^{n-2}}{x^2 + y^2} + 1 \qquad \text{for } n > 2 \quad \text{(o.1c)}$$

(1) Problem One

(4 points)

Determine the largest set $S \subset \mathbb{Z}^+$ such that $(\forall n \in S)\mathcal{F}(n)$ has a non-empty region of analyticity.

Hint 1: The question is equivalently this: for which values of n, there is a region in the complex plane within which $\mathcal{F}(n)$ satisfies Cauchy-Riemann equations (hence analytic)?

(2) Problem Two

(not graded)

The question above can be solved rather efficiently using Mathematica; for instance:

```
FullSimplify[(
1/3 (3 + (2 - 2 x)/((-1 + x)^2 + y^2) - (4 (2 + x))/((2 + x)^2 + y^2))
+2 I y (2 + x^2 + y^2)/(((-1 + x)^2 + y^2) ((2 + x)^2 + y^2))
)/. {x \rightarrow (z + zb)/2, y \rightarrow (z - zb)/(2 I)}
] (*zb stands for conjugate of z*)
```

(3) Problem Three

(1 points)

Consider the functions $\mathcal{F}(m)$ which are analytic in some region in the complex plane. Determine zeroes and poles of these functions.

(4) Problem Four

(1 points)

Does any of the analytic functions above has an essential singularity?

(5) Problem Five

(not graded)

The following Mathematica command can be utilized to find the singularities of a function f:

FunctionDomain[f[z], z, Complexes]

(6) Problem Six

(2 points)

Consider the functions $\mathcal{F}(m)$ which are analytic in some region in the complex plane. Define new functions $\mathcal{G}(m)$ such that

$$\mathcal{G} :: \mathbb{Z}^+ \to \left(\mathbb{R}^2 \to \mathbb{C}\right) \tag{6.1a}$$

$$\mathcal{G}(m)(x,y) = \sqrt{\mathcal{F}(m)(x,y)}$$
 (6.1b)

Determine the branch points of G(m).

(7) Problem Seven

(not graded)

The question above can be solved rather trivially with the following command:

ComplexAnalysis'BranchPoints[G[z], z]