Eagle: Making multi-locus association mapping on a genome-wide scale routine

Andrew W. George 1, Arunas Verbyla 1, and Joshua Bowden 2

¹Data61, CSIRO, Australia.
 ²IM &T, CSIRO, Australia.

October 16, 2018

Supplementary Table 1: Implementation and methodology attributes of eight computer programs/packages for genome-wide association mapping.

Attributes	Eagle	bigRR	glmnet	LMM-Lasso	MLMM	$_{ m r2VIM}$	FaST-LMM	GEMMA
Implementation								
Purpose built ^a	Yes	Yes	$N_{\rm o}$	Yes	Yes	Yes	Yes	Yes
Language	R/C++	R	Ж	\mathbf{Python}	Ж	R	$C++$ and $Python^b$	C++
GUI	Yes	$N_{\rm o}$	$N_{\rm o}$	$N_{\rm O}$	No	No	$N_{\rm O}$	No
Documentation	Videos, user-manuals, website, R help	${ m R}$ help	Vignettes, R help	Readme.txt, test script	Vignette, R help	${ m R}$ help	Videos, website user-manuals,	User-manual, website
Additional fixed effects ^{c}	Yes	Yes	Yes	m No	Yes	$N_{\rm O}$	Yes	m Yes
Types of trait data	Cont.	Cont., binary, count	Cont., binary, count	Cont.	Cont.	Cont., binary	Cont.	Cont., binary
Data larger than memory	Yes	No	No	m No	$ m N_{ m O}$	$ m N_{o}$	Yes	No
Methodology								
$\mathrm{Model}\ ^d$	LMM	HEM	GLMM	$_{ m LMM}$	LMM	RF	$_{ m LMM}$	LMM, mvLMM Bayesian Sparse LMM
${\rm SNPs~fitted}~^e$	m All/multiple	All	All	All	Multiple	Multiple	Single	Single
Selection type	Model	Variable	Variable	Variable	Model	Variable	Variable	Variable
Threshold free	Yes	$N_{\rm o}$	No	$N_{\rm O}$	Yes	No	$N_{\rm O}$	$N_{\rm O}$
, , , , , , , , , , , , , , , , , , ,	-+-F & VIIIO 3:							

a Specifically created for the analysis of GWAS data.

 $[^]b$ Separate programs, one written in Python, the other C++

 $^{^{}c}$ Capacity for additional fixed effects (such as age, sex, and/or population structure effects) to be included directly in the model.

 $[^]d$ For the different types of model, LMM is linear mixed model. GLM is generalised linear model., GLMM is generalised linear mixed model, and RF is random forests.

e Association is assessed a SNP at a time (single), for multiple SNPs (multiple), or for all SNPs (all). Eagle fits all SNPs but also identifies multiple SNPs (All/multiple) in association with the trait.

Supplementary Figure 1: Memory usage (in gigabytes) of Eagle and the other association mapping programs/packages across the six simulation scenarios. The maximum amount of memory on the computer is 128 gigabytes. The x-axis is on the log scale. GEMMA, a single-locus implementation, had the lowest memory usage. Of the multi-locus implementations, Eagle had the lowest memory usage. Also, it was the only multi-locus implementation able to produce results for data under scenario $10000 \times 1.5 \text{M}$. This is due to its ability to handle data larger than the available memory of a computer. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few)

.

Supplementary Figure 2: Power verse false discovery rates for Eagle and the single-locus methods GEMMA and FaST-LMM. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few). Eagle has substantially higher power than the single-locus methods.

