Отчет по лабораторной работе №1

Операционные системы

Сокирка Анна Константиновна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	10
5	Список литературы	14

Список иллюстраций

3.1	Настройка системы	7
3.2	Установка программы	8
3.3	Изменения открытого файла	8
3.4	Установка необходимых расширений	9
4.1	Команда dmesg	11
4.2	Поиск версии ядра	11
4.3	Поиск частоты процессора	12
4.4	Поиск модели процессора	12
4.5	Поиск объема доступной оперативной памяти	12
4.6	Тип обнаруженного гипервизора	12
4.7	Тип файловой системы	13
4.8	Последовательность монтирования файловых систем	13

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Работа с операционной системой после установки
- 3. Установка программного обеспечения для создания документации
- 4. Дополнительные задания

3 Выполнение лабораторной работы

##Создание виртуальной машины

У меня уже была установлена виртуальная машина в первом семестре, поэтому устанавливаю Fedoda Sway и настраиваю ee(puc. 3.1).

Рис. 3.1: Настройка системы

##Работа с операционной системой после установки

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале(рис. 3.2).

Рис. 3.2: Установка программы

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive(рис. 3.3).

```
# To revert back to SELimux enabled:
# grubby --update-kernel ALL --remove-args selinux
# SELIMUX-permissive
SELIMUX-permissive
SELIMUXTPE= can take one of these three values:
# targeted - Targeted processes are protected,
# minimum - Modification of targeted policy, Only selected processes are protected.
# mils - Multi-Level Security protection.

SELIMUXTYPE-targeted

# T

### T

###
```

Рис. 3.3: Изменения открытого файла

##Установка программного обеспечения для создания документации Запускаю терминальный мультиплексор tmux, переклю- чаюсь на роль суперпользователя. Устанавливаю необходимые расширения для pandoc. Затем устанавливаю дистрибутив texlive(рис. 3.4).

```
aksokirka@fedora:~$ sudo -i
[sudo] пароль для aksokirka:
root@fedora:~#
```

Рис. 3.4: Установка необходимых расширений

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

##Ответы на контрольные вопросы 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авториза- ции и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уни- кальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор груп- пы (CID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию - одна), полное имя (full name) (Могут быть ФИО), домаш- ний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему). 2. Для получения справки по команде: -help; для перемещения по файловой системе - cd; для просмотра содержимого каталога - ls; для определения объёма каталога - du; для создания / удаления каталогов - mkdir/rmdir; для создания / удаления файлов - touch/rm; для задания определённых прав на файл / каталог - chmod; для просмотра истории команд - history 3. Файловая система - это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три ча- сти: олна область для служебных структур, форма указателей в виде таблиц и

зона для хранения самих файлов. ext3/ext4 - журналируемая файловая система, используемая в основном в ОС с ядром Linux. 4. С помощью команды df, введя ее в терминале. Это утилита, которая пока- зывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount. 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id про- цесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

##Дополнительное задание

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы(рис. 4.1).

```
| 0.000000 | Linux version 6.13.4.200.fc41.86_64 (mockbulld@lecc6c3659654d33965e9322f967a5a) (gcc (GCC) 14.2.1.20250110 (Red Hot 14.2.1.7), GNU Id version 2.43.1.5.fc
| 1.000000 | Grammar Line: Story | Linux | Linu
```

Рис. 4.1: Команда dmesg

С помощью поиска, осуществляемого командой 'dmesg | grep -i', ищу версию ядра Linux(рис. 4.2).

```
[2000Bfebora -]* diesa] grep -i "Linux version"

[ 0.00000B] Linux version 6.13.4-200 fcd. 166_56 (mockbuild@leec6c3659654d339658e3322f907a5a) (gcc (GCC) 14.2.1.20250l10 (Red Het 14.2.1-7), GNU ld version 2.43.1-5.fc
41) #1 98P PRESMYT_UNNANCC Sat Feb 22.16.89:18 UTC 2025
[2000Bfebora -]* [
```

Рис. 4.2: Поиск версии ядра

Поиск частоты процессора(рис. 4.3).

```
[root@fedora ~]# dmesg | grep -i "processor"

[ 0.000030] tsc: Detected 2794.748 MHz processor

[ 0.223920] smpboot: Total of 3 processors activated (16768.48 BogoMIPS)

[ 0.237865] ACPI: Added _OSI(Processor Device)

[ 0.237865] ACPI: Added _OSI(Processor Aggregator Device)

[root@fedora ~]#
```

Рис. 4.3: Поиск частоты процессора

Аналогично ищу модель процессора(рис. 4.4).

Рис. 4.4: Поиск модели процессора

Поиск объема доступной оперативной памяти(рис. 4.5).

Рис. 4.5: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. 4.6).

```
[root@fedora ~]# dmesg | grep -i "Hypervisor detected"

[ 0.000000] Hypervisor detected: KVM

[root@fedora ~]#
```

Рис. 4.6: Тип обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. 4.7).

```
root@fedora ~]# sudo fdisk -1

Disk /dev/sda: 80 GiB, 85899280384 bytes, 167772032 sectors

Disk model: VBOX HARDDISK

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

C/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: C47EA275-6200-4D86-B869-FB9490A43EA1

Device Start End Sectors Size Type

dev/sda1 2048 4095 2048 1M BIOS boot

dev/sda2 4096 2101247 2097152 1G Linux extended boot

dev/sda3 2101248 167770111 165668864 79G Linux filesystem

Disk /dev/zram0: 4,34 GiB, 4661968896 bytes, 1138176 sectors

Sector size (logical/physical): 4096 bytes

C/O size (minimum/optimal): 4096 bytes / 4096 bytes

Toot@fedora ~1#
```

Рис. 4.7: Тип файловой системы

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount(рис. 4.8).

Рис. 4.8: Последовательность монтирования файловых систем

5 Список литературы

 $\verb| #https://esystem.rudn.ru/mod/page/view.php?id=1224368\#org24a661f| \\$