# **Predictive Analytics for Business Nanodegree**

# **Project: Predictive Analytics Capstone**

Latifa M.Alyaeesh

Misk Academy & Udacity

-----

## **Capstone Project Overview**

The capstone project has three main tasks, each of which requires you to use skills you developed during the Nanodegree program.

## **Task 1: Store Format for Existing Stores**

Your company currently has 85 grocery stores and is planning to open 10 new stores at the beginning of the year. Currently, all stores use the same store format for selling their products. Up until now, the company has treated all stores similarly, shipping the same amount of product to each store. This is beginning to cause problems as stores are suffering from product surpluses in some product categories and shortages in others. You've been asked to provide analytical support to make decisions about store formats and inventory planning.

### **Task 2: Store Format for New Stores**

The grocery store chain has 10 new stores opening up at the beginning of the year. The company wants to determine which store format each of the new stores should have. However, we don't have sales data for these new stores yet, so we'll have to determine the format using each of the new store's demographic data.

## **Task 3: Forecasting**

Fresh produce has a short life span, and due to increasing costs, the company wants to have an accurate monthly sales forecast.

# **Task 1: Determine Store Formats for Existing Stores**

### 1. What is the optimal number of store formats? How did you arrive at that number?

The best number of clusters is 3 since shows higher Median in ARI while it maintains low Variability.

|                            | K-Means Cluster A | Assessment Report |          |          |
|----------------------------|-------------------|-------------------|----------|----------|
| Summary Statistics         |                   |                   |          |          |
| Adjusted Rand Indices:     |                   |                   |          |          |
|                            | 2                 | 3                 | 4        | 5        |
| Minimum                    | -0.009475         | 0.160572          | 0.172381 | 0.204008 |
| 1st Quartile               | 0.353058          | 0.344134          | 0.296018 | 0.285294 |
| Median                     | 0.4926            | 0.498265          | 0.382588 | 0.36941  |
| Mean                       | 0.475777          | 0.487769          | 0.402193 | 0.366629 |
| 3rd Quartile               | 0.654984          | 0.614865          | 0.48537  | 0.433118 |
| Maximum                    | 0.952939          | 0.759953          | 0.775237 | 0.614868 |
| Calinski-Harabasz Indices: |                   |                   |          |          |
|                            | 2                 | 3                 | 4        | 5        |
| Minimum                    | 10.38298          | 10.05244          | 11.8645  | 10.77356 |
| 1st Quartile               | 18.7784           | 15.96022          | 14.07268 | 13.03449 |
| Median                     | 20.07012          | 16.90389          | 15.11582 | 13.615   |
| Mean                       | 19.08731          | 16.64035          | 14.79844 | 13.70011 |
| 3rd Quartile               | 20.87407          | 17.91537          | 15.72883 | 14.38381 |
| Maximum                    | 22.44228          | 18.93512          | 16.62962 | 16.10526 |

Figure 1: K-Means Cluster Assessment Report



Figure 2: Plots of K-Means Cluster Assessment Report

### 2. How many stores fall into each store format?

Cluster 1 has 25 stores, cluster 2 has 35 stores and cluster 3 has 25 stores.

| Cluster Info | rmation: |      |              |              |            |
|--------------|----------|------|--------------|--------------|------------|
|              | Cluster  | Size | Ave Distance | Max Distance | Separation |
|              | 1        | 25   | 2.099985     | 4.823872     | 2.191565   |
|              | 2        | 35   | 2.475018     | 4.412367     | 1.947297   |
|              | 3        | 25   | 2.289004     | 3.585931     | 1.72574    |

Figure 3: Cluster Information

**Hint:** I used Alteryx 2020.

# 3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Based on the result shown below, cluster 1 sells a lot of General Merchandise compared to the other two clusters. Clusters 2 sells a lot of produce compared to the other two clusters.

|           |                                                    | Summary Repo                                       | rt of the K-Mea | ıns Clustering S   | Solution Cluster      |                    |                |
|-----------|----------------------------------------------------|----------------------------------------------------|-----------------|--------------------|-----------------------|--------------------|----------------|
| Solution  | Summary                                            |                                                    |                 |                    |                       |                    |                |
| Call:     |                                                    |                                                    |                 |                    |                       |                    |                |
|           |                                                    | trix(~-1 + Dry.Grocery -<br>y = kccaFamily("kmeans |                 | Meat + Produce + F | Floral + Deli + Baker | y + General, the.o | data)), k = 3, |
| Cluster I | nformation:                                        |                                                    |                 |                    |                       |                    |                |
|           | Cluster                                            | Size                                               | Ave Distance    |                    | Max Distance          |                    | Separation     |
|           | 1                                                  | 25                                                 | 2.099985        |                    | 4.823872              |                    | 2.19156        |
|           | 2                                                  | 35                                                 | 2.475018        |                    | 4.412367              |                    | 1.94729        |
|           | 3                                                  | 25                                                 | 2.289004        | <b>+</b>           | 3.585931              | Į.                 | 1.7257         |
|           | ence after 8 iteration:<br>vithin cluster distance |                                                    |                 |                    |                       |                    |                |
|           | Dry.Grocery                                        | Dairy                                              | Frozen          | Meat               | Produce               | Floral             | De             |
| 1         | 0.528249                                           | -0.215879                                          | -0.261597       | 0.614147           | -0.655027             | -0.663872          | 0.82483        |
| 2         | -0.594802                                          | 0.655893                                           | 0.435128        | -0.384631          | 0.812883              | 0.71741            | -0.4616        |
| 3         | 0.304474                                           | -0.702371                                          | -0.347583       | -0.075664          | -0.483009             | -0.340502          | -0.17848       |
|           | Bakery                                             | General                                            |                 |                    |                       |                    |                |
| 1         | 0.428226                                           | -0.674769                                          |                 |                    |                       |                    |                |
| 2         | 0.312878                                           | -0.329045                                          |                 |                    |                       |                    |                |
|           |                                                    | 1.135432                                           |                 |                    |                       |                    |                |

Figure 4: Summary Report of the K-Means Clustering Solution Cluster

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.



Figure 5: Location of Stores



Figure 6: Altrryx workflow (Task 1)

## **Task 2: Formats for New Stores**

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

The model comparison report shows the comparison between Forest Model, Decision Tree and Boosted Model. All models have the accuracy but Boosted Model chosen due to higher F1 value of 0.8333.

# **Model Comparison Report**

| Fit and error measure | es       |        |            |            |            |
|-----------------------|----------|--------|------------|------------|------------|
| Model                 | Accuracy | F1     | Accuracy_1 | Accuracy_2 | Accuracy_3 |
| Decision_Tree_13      | 0.7059   | 0.7083 | 0.6250     | 1.0000     | 0.5000     |
| Forest                | 0.7059   | 0.7500 | 0.5000     | 1.0000     | 0.7500     |
| Boosted               | 0.7647   | 0.8333 | 0.5000     | 1.0000     | 1.0000     |

Figure 7: Model Comparison Repot

2. What are the three most important variables that help explain the relationship between demographic indicators and store formats? Please include a visualization



Figure 8: Variable importance plot

### 3- What format do each of the 10 new stores fall into? Please fill in the table below.

| Store Number | Segment |
|--------------|---------|
| S0086        | 3       |
| S0087        | 2       |
| S0088        | 1       |
| S0089        | 2       |
| S0090        | 2       |
| S0091        | 1       |
| S0092        | 2       |
| S0093        | 1       |
| S0094        | 2       |
| S0095        | 2       |



Figure 9: Alteryx Model Classification

# **Task 3: Predicting Produce Sales**

1-What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

After examining the decomposition plots with ACF and PACF, the resulted ETS  $\,$  model is ETS  $\,$  (M,N,A) since the seasonality was changing through the analyzed period while there no linear or exponential trend and the error is changing in the magnitude so it would be multiplicative.



Figure 10: Decomposition Plot

## **TS Comparison**

For the accuracy measure, the ETS model has better accuracy in all of the measures so ETS (M, N, and M) model will used.

# Comparison of Time Series Models

#### Actual and Forecast Values:

Actual ETS ARIMA
26338477.15 26860639.57444 27997835.63764
23130626.6 23468254.49595 23946058.0173
20774415.93 20668464.64495 21751347.87069
20359980.58 20054544.07631 20352513.09377
21936906.81 20752503.51996 20971835.10573
20462899.3 21328386.80965 21609110.41054

#### Accuracy Measures:

 Model
 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE

 ETS
 -21581.13
 663707.2
 553511.5
 -0.0437
 2.5135
 0.3257

 ARIMA -604232.29
 1050239.2
 928412
 -2.6156
 4.0942
 0.5463

Figure 11: Comparison of Time Series Model



Figure 12: Alteryx workflow (ETS & ARIMA)

3. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

| Date   | New Store | Existing Store |
|--------|-----------|----------------|
| Jan-16 | 2,588,357 | 21,745,141     |
| Feb-16 | 2,498,567 | 21,188,192     |
| Mar-16 | 2,919,067 | 23,671,624     |
| Apr-16 | 2,797,280 | 22,388,691     |
| May-16 | 3,163,765 | 22,570,588     |
| Jun-16 | 3,202,813 | 26,293,565     |
| Jul-16 | 3,228,212 | 26,710,714     |
| Aug-16 | 2,868,915 | 23,472,138     |
| Sep-16 | 2538,372  | 20,665,605     |
| Oct-16 | 2,485,732 | 20,915,647     |
| Nov-16 | 2,583,448 | 20,915,647     |
| Dec-16 | 2,562,182 | 21,207,755     |



Figure 13: Total Sales Forecast



Figure 14: Alteryx workflow (Forecast)