Basics of Machine Learning

SD 210 - P3

Lecture 5 - Ensemble methods: bagging and random forests

Florence d'Alché-Buc

Contact: florence.dalche@telecom-paristech.fr, 2A Filière SD, Télécom ParisTech,Université of Paris-Saclay, France

Table of contents

- 1. Motivation
- 2. Bagging
- 3. Random forests
- 4. References

Outline

Motivation

Bagging

Random forests

References

Ensemble methods for classification and regression

1. Remark:

- Machine Learning not so "automatic": too many hyperparameters to tune
- 2. **meta-learning**: a procedure that learns to learn
- 3. committee learning or wisdom of the crowd: better results are obtained by combining the predictions of a set of diverse classifiers/regressors have a try in challenge
- 4. **ensemble learning**: Improve upon a single base predictive model by building an ensemble of predictive model (with no hyperparameter)

Ensemble methods for regression

Let f_t , t = 1, ..., T be T different regressors. Notations:

$$\epsilon_{t}(x) = y - f_{t}(x)
MSE(f_{t}) = \mathbb{E}[\epsilon_{t}(x)^{2}]
f_{ens}(x) = \frac{1}{T} \sum_{t} f_{t}(x)
= y - \frac{1}{T} \sum_{t} \epsilon_{t}(x).$$

4

Encourage the diversity of base models

$$MSE(f_{ens}) = \mathbb{E}[(y - f_{ens}(x))^2]$$

If ϵ_t are mutually independent with zero mean, then we have:

$$MSE(f_{ens}) = \frac{1}{T^2} \mathbb{E}[\sum_t \epsilon_t(x)^2]$$

The more diverse are the models, the more we reduce the mean square error !

Ensemble methods for supervised classification

Binary classification

$$h_{ens}(x) = sign(\sum_t h_t(x))$$

Multiclass classification

$$h_{ens}(x) = \underset{c}{\operatorname{arg max}} \operatorname{vote}(c, h_1, \dots, h_T)$$

with :
$$\mathsf{vote}(c, h_1, \dots, h_T) = \sum_t \mathbb{1}_{h_t(x) = c}(h_t(x))$$

Ensemble methods

- Encourage the diversity of base models by:
 - using bootstrap samples (Bagging and Random forests)
 - using randomized models (ex: Random forests)
 - using weighted version of the current sample (Boosting) with weights dependent on the previous model (adaptive sampling) we'll see that in next module SD207

Ensemble methods at a glance

- 1995: Boosting, Freund and Schapire
- 1996: Bagging, Breiman
- 2001: Random forests, Breiman
- 2006: Extra-trees, Geurts, Ernst, Wehenkel

Outline

Motivation

Bagging

Random forests

References

Reminder: Decomposition bias/variance in regression

Given x,

$$\mathbb{E}_{S}\mathbb{E}_{Y|x}(Y - f_{S}(x))^{2} = noise(x) + bias^{2}(x) + variance(x)$$
 (1)

noise(x):
$$E_{Y|x}[(Y - E_{Y|x}(Y))^2]$$
:

quantifies the error made by the Bayes model $(E_{v|x}(y))$

$$bias^{2}(x) = (E_{Y|x}(Y) - E_{S}[f_{S}(x)])^{2}$$

measures the difference between minimal error (Bayes error) and the average model

$$variance(x) = E_S[(f_S(x) - E_S[f_S(x)])^2]$$

measures how much $h_S(x)$ varies from one training set to another

Introduction to bagging (regression) - 1

Assume we can generate several training independent samples $\mathcal{S}_1,\dots,\mathcal{S}_{\mathcal{T}}$ from P(x,y).

A first algorithm:

- draw T training independent samples $\{S_1, \dots, S_T\}$
- learn a model $f_t \in \mathcal{F}$ from each training sample \mathcal{S}_t ; $t = 1, \dots, T$
- compute the average model : $f_{ens}(x) = \frac{1}{T} \sum_{t=1}^{T} f_t(x)$

Introduction to bagging - 2

The bias
$$(E_{S_1,...,S_T}[f_{ens}(x)] - f_{target}(x))$$
 remains the same because : $E_{S_1,...,S_T}[f_{ens}(x)] = \frac{1}{T} \sum_t E_{S_t}[f_t(x)] = E_S[f_S(x)]$ But the variance is divided by T:
$$E_{S_1,...,S_T}[(f_{ens}(x) - E_{S_1,...,S_T}[f_{ens}(x)])^2] = \frac{1}{T}E_S[(f_S(x) - E_S[f_S(x)])^2]$$

When is it useful? When the learning algorithm is unstable, producing high variance estimators such as trees!

Bagging (Breiman 1996)

In practice, we do not know P(X,Y) and we have only **one training** sample \mathcal{S} : we are going to use Bootstrap samples!

Bagging = Bootstrap Aggregating

- draw T bootstrap samples $\{1, \dots, T\}$ from S (bootstrap: uniform sampling with replacement)
- Learn a model f_t for each t
- Build the average model: $f_{bag}(x) = \frac{1}{T} \sum_{t} f_{t}(x)$

Example of bagged trees

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman,

Example of bagged trees

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Bagging in practise

- Variance is reduced but the bias can increase a bit (the effective size of a bootstrap sample is 30% smaller than the original training set \mathcal{S}
- The obtained model is however more complex than a single model
- Bagging works for unstable predictors (neural nets, trees)
- In supervised classification, bagging a good classifier usually makes it better but bagging a bad classifier can make it worse

Outline

Motivation

Bagging

Random forests

References

Random forests

Produce more diversity by building "more" de-correlated trees

- Perturbe and combine algorithms
 - Perturbe the base predictive model by bagging and variable randomization
 - Combine the perturbed predictive model

REFS: Random forests: Breiman 2001

Geurts, Ernst, Wehenkel, Extra-trees, 2006

Random forests: Breiman 2001

Random forests algorithm

- INPUT: F = p candidate feature splits, S_{train}
- for t=1 to T
 - $\mathcal{S}_{\textit{train}}^{(t)}$ m instance randomly drawn with replacement from $\mathcal{S}_{\textit{train}}$
 - $h_{tree}^{(t)} \leftarrow$ randomized decision tree learned from $\mathcal{S}_{train}^{(t)}$
- OUTPUT: $H^T = \frac{1}{T} \sum_t h_{tree}^{(t)}$

Learning a single randomized tree

- To select a split at a node:
 - $R_f(F) \leftarrow$ randomly select (without replacement) f feature splits from F with f << p
 - Choose the best split in $R_f(F)$ (consider the different cut-points)
- Do not prune this tree 修剪

Extra-trees: Geurts et al. 2006

Extra-trees

- INPUT: candidate feature splits $F = \{1, \dots, p\}, S_{train}$
- for t=1 to T
 - Always use S_{train}
 - $h_{tree}^{(t)}
 ightarrow :$ randomized decision tree learned from \mathcal{S}_{train}
- OUTPUT: $H^T = \frac{1}{T} h_{tree}^{(t)}$

Learning a single randomized tree in extra-trees

- To select a split at a node:
 - randomly select (without replacement) K feature splits from F with K << |F|
 - Draw K splits using the procedure Pick-a-random-split(S,i):
 - let a^i_{max} and a^i_{min} denote the maximal and minimal value of x_i in S
 - Draw uniformly a cut-point a_c in $[a_{max}^i, a_{min}^i]$
 - Choose the best split among the *K* previous splits

Do not prune this tree

Random Forests and extra-trees

- Extra-trees faster (do not need to build bootstrap samples + shorter split selection procedure)
- Recent consistency results: for random forests (Scortnet et al. 2016)

Random forest

Example of decision frontier:

Comparison (just an example)

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Random forest

Pros

- Fast, parallelizable and appropriate for a large number of features
- Relatively easy to tune
- Frequently the winner in challenges

Cons

- Overfitting if the size of the trees is too large
- Interpretability is lost (however importance of feature can be measured)

Variable importance

Definition

A variable X^j is important to predict Y if breaking the link between X^j and Y increase the prediction error

 $\{\bar{\mathcal{S}}_n^t = \mathcal{S}_n - \mathcal{S}_n^t, t = 1, \dots, n_{tree}\}$ out-of-bag samples: contains the samples not selected by bootstrap

Variable importance

一种测试importance的方法

Let $\{\bar{\mathcal{S}}_n^t = \mathcal{S}_n - \mathcal{S}_n^t, t = 1, \dots, n_{tree}\}$ out-of-bag samples Let $\{\bar{\mathcal{S}}_n^{t,j}, t = 1, \dots, n_{tree}\}$: permuted out-of-bag-samples (the values of the *j*th variable have been randomly permuted).

$$\hat{I}(X^{j}) = \frac{1}{n_{tree}} \sum_{t=1}^{n_{tree}} R_{n}(f_{t}, \bar{\mathcal{S}}_{n}^{t,j}) - R_{n}(f_{t}, \bar{\mathcal{S}}_{n}^{t})$$

with $R_n(f, S)$: empirical loss of h measured on S

Variable importance: spam data

Spam dataset:

Outline

Motivation

Bagging

Random forests

References

References

- Perrone, Cooper, When classifiers disagree, 1992
- Tumer and Gosh, 1996
- Breiman, Bagging predictors, 1996
- Further reading: Buhlman and Yu, Analyzing bagging, Annals of stats., 2002
- Breiman, Random Forests, Machine Learning, 2001.
- Geurts, Ernst, Wehenkel, Extra-trees, JMLR, 2006