REALTIME SCHEDULING ALGORITHMS

Module 2.7 COP4600 – Operating Systems Richard Newman

- Timing is everything!
 - Deadlines for tasks
 - Consequences if deadline missed!
- Tasks may be periodic
 - Same task done repeatedly
 - E.g., check altitude of plane, adjust elevators
- Tasks may be aperiodic
 - Tasks arrive based on external events
 - E.g., Temperature in reactor core is too high!

REAL-TIME SYSTEM CATEGORIES

- Hard real time
 - Disaster if deadline missed (fly-by-wire, chemical plant, etc.)
- Soft real time
 - Annoying if deadline missed (audio, video, etc.)

- Periodic task set = {(C_i,P_i)|i=1,2,...,m}
 - C_i = ith task's maximum compute time
 - P_i = ith task's period
 - May also include deadlines, priorities
 - Normally assume deadline same as period

- Schedule
 - Which task is running at each instant
- Requirements
 - jth instance of task i must complete before its deadline (i.e., (j+1)st instance arrival)
 - Highest priority unfinished task runs

- Static Priorities
 - Task i's priority never changes
 - Always run highest priority task (preemptive)
 - Rate Monotonic Scheduling is optimal
 - Shortest period = highest priority
- Dynamic Priorities
 - Earliest deadline first (EDF) is optimal
 - Can schedule iff

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

Also works for aperiodic tasks

PRIORITY INHERITANCE

- Locking and Blocking
 - Low priority task may hold lock
 - Block high priority task
- Priority Inversion
 - Medium priority task may preempt low priority task blocking high priority task!
- Priority Inheritance
 - Give low priority task with lock the priority of the highest priority task waiting on it (directly or indirectly)

SUMMARY

- Realtime System types
 - Hard vs. Soft
- Specifying realtime systems
- Static Priority
 - Rate Monotonic Scheduling
- Dynamic Priority
 - Earliest Deadline First
 - Condition for Schedulability
- Priority Inversion
 - Priority Inheritance