Universidade Federal De Campina Grande Departamento De Engenharia Elétrica Laboratório De Arquitetura De Sistemas Digitais – LASD

Prof. Rafael B. C. Lima

Aluno:	
Matrícula:	Data:

Sprint 4 – Unidade Lógica e Aritmética ULA – CPU RISC-V

Descrição geral do problema: Implemente uma ULA com 5 operações lógicas/aritméticas e conecte-a às saídas do seu banco de registradores.

Requisitos mínimos:

Abra o projeto da Sprint3 e edite-o para incluir as funcionalidades dessa sprint. **Obs: "File > Open Project"** e **NÃO** "File > **Open"**.

1. Faça a descrição de hardware de um módulo, denominado ULA, que realize 5 operações lógicas/aritméticas conforme a Tabela 1. As entradas e saídas do módulo são ilustradas na Figura 1.

Operação	ULAControl	ULAResult
Add	3'b000	= SrcA + SrcB
Subtract	3'b001	= SrcA + SrcB + 1
And	3'b010	= SrcA & SrcB
Or	3'b011	= SrcA SrcB
Set less than (SLT)	3'b101	1, se SrcA < SrcB
		0, c.c.

Figura 1 – Módulo ULA.

Tabela 1. Operações da ULA

Entradas:

- SrcA (32bits): Entrada de dados do operando A;
- SrcB (32bits): Entrada de dados do operando B;
- ULAControl (3bits): Entrada para seleção da operação realizada (ver Tabela 1).

Saídas:

- ULAResult (32bits): Saída do resultado da operação realizada;
- Flag Z (1bit): Bit de status que indica se a saída da operação realizada é zero (resultado igual a zero → Z=1; resultado diferente de zero → Z=0).

OBS: O módulo ULA é assíncrono (circuito combinacional).

Utilize o testbench fornecido (ULA32_TB.sv) para simular seu módulo ULA no ambiente https://edaplayground.com/. Certifique-se que todos os testes rodaram sem falhas ("Passou"), antes de prosseguir para a próxima etapa. Alguns exemplos, podem ser encontrados na seguinte videoaula sobre Testbenches no EDAplayground: https://www.youtube.com/watch?v=VsP6zHarUSM.

Figura 2 – Testbench no EDAplayground.

2. Instancie a ULA, o banco de registradores (implementado na sprint anterior) e um MUX de 2x1 de 32 bits, no seu ambiente de testes (Mod_Teste). A montagem completa é ilustrada na Figura 3. Observe que o *MuxULASrc* possibilita a entrada direta de constantes de 8 bits na entrada *SrcB* da ULA.

Devido à quantidade limitada de chaves na placa de testes, algumas entradas serão constantes.

Figura 2 – Diagrama do Datapath

- 3. Ligações auxiliares:
 - Visualize o conteúdo do fio w_rd1SrcA na posição d0x0 do LCD

- Visualize o conteúdo do fio w_rd2 na posição d1x0 do LCD
- Visualize o conteúdo do fio w_SrcB na posição d1x1 do LCD
- Visualize o conteúdo do fio w_ULAResultWd3 na posição d0x4 do LCD

Figura 4 – Placa de testes

- 4. A fim de testar o funcionamento da ULA implementada, realize os seguintes procedimentos:
 - Carregue os seguintes valores nos registradores: \$5 ← 06 \$2 ← 03
 - Disponibilize os valores de \$5 e \$2 respectivamente nas entradas SrcA e SrcB da ULA
 - Efetue as operações: Add _____, Sub_____, And_____, Or_____ e SLT____
 - Carregue o valor da Constant in (8'h07) na entrada SrcB da ULA
 - Efetue novamente as operações: Add _____, Sub_____, And_____, Or____ e SLT____
 - Verifique o funcionamento do flag Z

Desafio (Valendo +0,1 na média geral)

• Pesquise como transformar seus módulos .v/.sv em blocos .bdf (Block Diagram/Schematic Files) e realize a modelagem do circuito dessa sprint de forma visual, arrastando os blocos e desenhando os fios.