Lecture 2 on Linear Algebra

김현석

Department of Mathematics, Sogang University (R1420, kimh@sogang.ac.kr)

March 8 (Tuesday) 15:00-16:15

TA: 정선우 (kyungho2142@gmail.com)

- Matrices:
- (i) By an m by n (or $m \times n$) matrix, we mean a rectangular array of mn numbers a_{ij} $(1 \le i \le m, 1 \le j \le n)$, arranged in m rows and n columns:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

If m = n, then A is called a *square matrix* of order n.

(ii) The number a_{ij} in the *i*th row and *j*th column of a matrix A is called the (i,j) entry of A and often denoted by A(i,j).

(iii) An m by 1 matrix, which has only one column, is called a *column vector*. A 1 by n matrix is called a *row vector*.

- ullet Multiplication of vectors by matrices: Let $A=[a_{ij}]$ be an m by n matrix.
- (i) If $\mathbf{x} = (x_1, \dots, x_n)$ is an n-dimensional vector, we define

$$A\mathbf{x} = \begin{bmatrix} (a_{11}, \dots, a_{1n}) \cdot \mathbf{x} \\ \vdots \\ (a_{m1}, \dots, a_{mn}) \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix}.$$

(ii) Therefore, $A\mathbf{x}$ is an m-dimensional vector whose ith component is the (inner) product of the ith row vector of A and the n-dimensional vector \mathbf{x} :

$$(A\mathbf{x})_i = (a_{i1}, \dots, a_{in}) \cdot \mathbf{x} = [a_{i1} \cdots a_{in}] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

(iii) (An extremely important formula) Ax is a linear combination of the columns of A; more precisely,

$$A\mathbf{x} = \sum_{j=1}^{n} x_j \text{ (the } j \text{th column of } A)$$

$$= x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

Example. Compute $A\mathbf{x}$ in two ways (by rows and by columns), where

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right] \quad \text{and} \quad \mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right].$$

Solution.

- The matrix equation $A\mathbf{x} = \mathbf{b}$: Let $A = [a_{ij}]$ be an m by n matrix, $\mathbf{x} = (x_1, \dots, x_n)$ an n-dimensional vector, and $\mathbf{b} = (b_1, \dots, b_m)$ an m-dimensional vector.
- (i) ${\bf x}$ is a solution of the (matrix) equation $A{\bf x}={\bf b}$, that is, it satisfies

$$A\mathbf{x} = \mathbf{b}$$

if and only if (x_1,\ldots,x_n) is a solution of the system of linear equations

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_n.$$

(ii) Recall that

$$A\mathbf{x} = \sum_{j=1}^{n} x_j$$
 (the j th column of A).

Therefore, the equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} can be written as a linear combination of the columns of A.

Example. Consider the following 3 by 3 matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right].$$

Given $\mathbf{b} = (b_1, b_2, b_3)$, find a solution of $A\mathbf{x} = \mathbf{b}$.

Solution.

Example. Consider the following 3 by 3 matrix

$$C = \left[\begin{array}{rrr} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right].$$

Given $\mathbf{b} = (b_1, b_2, b_3)$, find a solution of $C\mathbf{x} = \mathbf{b}$ if possible. Solution.

- ullet Dependence and independence: Let ${f v}_1,{f v}_2,\ldots,{f v}_n$ be m-dimensional vectors.
- (i) We say that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are (linearly) dependent if there exists a nonzero vector $\mathbf{c} = (c_1, c_2, \dots, c_n)$ in \mathbb{R}^n such that

$$\sum_{j=1}^{n} c_j \mathbf{v}_j = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \mathbf{0}.$$

(ii) Note that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are dependent if and only if some \mathbf{v}_j is a linear combination of the other vectors:

$$\mathbf{v}_j = \sum_{k \neq j} d_k \mathbf{v}_k.$$

(iii) If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are not dependent, they are said to be (linearly) independent.

(iv) Let A be the m by n matrix whose columns are the column vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are dependent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has a nonzero solution.

- Identity matrices:
- (i) The n by n identity matrix is the square matrix $I=I_n$ of order n whose (i,j) entry is one if i=j and zero if $i\neq j$:

$$I = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right].$$

(ii) The (i,j) entry of the identity matrix I will be denoted by δ_{ij} :

$$\delta_{ij} = I(i,j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
.

The function $(i, j) \mapsto \delta_{ij}$ is called the *Kronecker delta (function)*.

(iii) Let I be the n by n identity matrix. Then

$$I\mathbf{x} = \mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

(iv) The columns of the n by n identity matrix are the standard unit vectors in \mathbb{R}^n and denoted by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

(v) The vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are independent.