МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга и конечныне автоматы

Студент гр. 3342	 Пушко К.Д.
Преподаватель	Иванов Д.В.

Санкт-Петербург

2023

Цель работы

Изучить принцип работы Машины Тьюринга, написать программу, реализующую работу Машины Тьюринга.

Задание

Вариант 4.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая оборачивает исходную строку. Результат работы алгоритма - исходная последовательность символов в обратном порядке.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит (можно расширять при необходимости):

- a
- b
- c
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.
- 6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Программа получает на вход ленту Машины Тьюринга в виде строки и сохраняет её в виде списка. Алгоритм работы Машины Тьюринга реализован в цикле while, в котором выполняется функционал Машины Тьюринга, посредством обращения к словарю, содержащему таблицу состояний. Состояния с описанием представлены в табл. 1. Цикл продолжает работу, пока не будет достигнуто терминалное состояние завершения выполнения работы Машины Тьюринга. В алфавит были добавлены символы: S, A, B, C, *. Символ S обозначает начало слова. Символы A, B, C являются временными символами при замене. Они необходимы для того, чтобы программа отличала обработанные и необработанные символы. Символ * необходим для обозначения уже замененных символов. Результат выводится в строку, и сдвигается, благодаря п.4 из соглашения из условия задачи.

Таблица 1 — состояния Машины Тьюринга

Сост	a	b	c	A	В	С	٠,	*	S
инко									
e									
q1	['a',L,'	['b',L,'	['c',L,'	-	-	-	['	-	-
	q2']	q2']	q2']				',R,'q		
							1']		
q2	-	-	-	-	-	-	['S',R	-	-
							,'q3']		
q3	['a',R,	['b',R,	['c',R,	-	-	-	['*',N	-	-
	'q3']	'q3']	'q3']				,'q4'],		
q4	['a',N,	['b',N,	['c',N,	['A',L,'	['B',L,'	['C',L,'	-	['*',L,	['S',N,'
	'q5']	'q5']	'q5']	q4']	q4']	q4']		'q4']	qclear']
q5	['*',N,	['*',N,	['*',N,	-	-	-	-	-	['S',L,'q
	'qa1']	'qb1']	'qc1']						clear']

qa1	['a',	['b',	['c',	['A', R,	['B', R,	['C', R,	['A',	['*',R,	-
	R,	R,	R,	'qa1']	'qa1']	'qa1']	N,'q4'	'qa1']	
	'qa1']	'qa1']	'qa1']]		
qb1	['a',	['b',	['c',	['A', R,	['B', R,	['C', R,	['B',N	['*',R,	-
	R,	R,	R,	'qb1']	'qb1']	'qb1']	,'q4']	'qb1']	
	'qb1']	'qb1']	'qb1']						
qc1	['a',	['b',	['c',	['A', R,	['B', R,	['C', R,	['C',N	['*',R,	-
	R,	R,	R,	'qc1']	'qc1']	'qc1']	,'q4']	'qc1']	
	'qc1']	'qc1']	'qc1']						
qclear	-	-	-	['a',R,'	['b',R,'	['c',R,'	['	['	['
				qclear'	qclear']	qclear'	',N,'q	',R,'qc	',R,'qcl
]]	T']	lear']	ear']

- q1 начальное состояние, смещает курсор в первый символ строки.
- ${
 m q}2$ устанавливает перед началом строки символ S для обозначения начала строки.
- m q3- доходит до конца слова и устанавливает там символ *, обозначающий конец слова.
 - q4 идет до первого встретившегося символа *.
 - q5 определяет какой символ необходимо перенести в конец новой строки.
 - qa1 переносит символ а в конец строки.
 - qb1 переносит символ b в конец строки.
 - qc1 переносит символ с в конец строки.
- qclean удаляет символы S, *, а так же меняет символы A, B,C на символы a, b, c соответственно.
 - qT -терминальное состояние, завершающее выполнений цикла.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

No	Входные данные	Выходные данные
1	abcabc	cbacba
2	abacbbc	cbbcaba
3	acbacbbacbacbaca	acabcabcabcabca

Выводы

Было изучено написание таблицы состояний для машины Тьюринга и написание программы на языке Python, для выполнений операций по Машине Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
R = 1
N = 0
T_1 = -1
table = {
    #дойти до символов
    'q1':{' ':[' ',R,'q1'], 'a':['a',L,'q2'], 'b':['b',L,'q2'],
'c':['c',L,'q2'] },
    # поставить старт строки
    'q2' : {' ':['S',R,'q3']},
    # дойти до конца слова
    'q3':{' ':['*',N,'q4'], 'a':['a',R,'q3'], 'b':['b',R,'q3'],
'c':['c',R,'q3'] },
    #вернуться до *
    'q4':{'a':['a',N,'q5'],
                                                         'b':['b',N,'q5'],
'c':['c',N,'q5'],'*':['*',L,'q4'],'S':['S',N,'qclear'],'A':['A',L,'q4'],
'B':['B',L,'q4'], 'C':['C',L,'q4']},
    #понять что переносить
    'q5':{'S':['S',L,'qclear'], 'a':['*',N,'qa1'], 'b':['*',N,'qb1'],
'c':['*',N,'qc1'],},
    #перенос а
'qa1': {'*':['*',R,'qa1'],'*': ['*', R, 'qa1'], 'a': ['a', R, 'qa1'], 'b': ['b', R, 'qa1'], 'c': ['c', R, 'qa1'],' ':['A',N,'q4'], 'A': ['A', R,
'qa1'], 'B': ['B', R, 'qa1'], 'C': ['C', R, 'qa1']},
    #перенос b
    'qb1': {'*':['*',R,'qb1'],'*': ['*', R, 'qb1'], 'a': ['a', R, 'qb1'],
'b': ['b', R, 'qb1'], 'c': ['c', R, 'qb1'],' ':['B',N,'q4'], 'A': ['A', R,
'qb1'], 'B': ['B', R, 'qb1'], 'C': ['C', R, 'qb1']},
   #перенос с
    'qc1': {'*':['*',R,'qc1'],'*': ['*', R, 'qc1'], 'a': ['a', R, 'qc1'],
'b': ['b', R, 'qc1'], 'c': ['c', R, 'qc1'], '': ['C', N, 'q4'], 'A': ['A', R,
'qc1'], 'B': ['B', R, 'qc1'], 'C': ['C', R, 'qc1']},
    'qclear':{'S':['
                                                      ',R,'qclear'],'*':['
',R,'qclear'],'A':['a',R,'qclear'],'B':['b',R,'qclear'],'C':['c',R,'qclea
r'],' ':[' ',N,'qT']}
}
lenta = list(' '+input()+' '*20)
qState = 'q1'
index = 0
while qState != 'qT':
    s, step ,st = table[qState][lenta[index]]
    lenta[index] = s
    index += step
    qState=st
print(''.join(lenta).replace(' ',''))
```