Macchine sequenziali

Dal circuito combinatorio al sequenziale (addizionatore)

Stato = carry Inizialmente, $c_0=0$

Dal circuito combinatorio al sequenziale (comparatore)

Circuito sequenziale (schema di principio)

Definizione

- Una Macchina Sequenziale è una quintupla $MS=(I,S,O,\delta,\omega)$
 - I Alfabeto di Ingresso
 - $I = \{i_1, ..., i_m\}$
 - S Insieme degli Stati
 - $S=\{s_1,...,s_n\}$
 - O Alfabeto d'Uscita
 - $O=\{o_1,...,o_a\}$
 - δ Funzione dello stato successivo
 - \Box δ : $S \times I \rightarrow S$
 - ω Funzione di uscita
 - $\square \omega : S \times I \rightarrow O (\underline{Mealy})$
 - \square ω : 5 \rightarrow 0 (Moore)

Rappresentazioni

- Per rappresentare le funzioni δ ed ω si possono usare
 - Diagramma degli stati
 - Tabella degli stati/uscite (di transizione)
 - Algorithm State Machine (ASM)
 - Matrice di connessione*
 - * Non la usiamo

Diagramma degli Stati

- Il Diagramma degli stati è un grafo orientato etichettato G(V,A,L)
 - Vertici V = Insieme dei nodi
 - ogni nodo rappresenta uno stato
 - Archi A Insieme degli archi
 - · ogni arco rappresenta le transizioni di stato
 - L = Insieme delle etichette

Esempio diagramma stati

Tabelle degli stati/uscite

· MACCHINA DI MEALY

Matrice |S| righe per |I| colonne.

L'elemento in posizione h,k contiene il prossimo stato e l'uscita nel caso in cui lo stato corrente sia h e l'ingresso sia il k-esimo

· MACCHINA DI MOORE

Matrice $|S| \times |I| + 1$.

L'elemento in posizione h,k contiene il prossimo stato nel caso in cui lo stato corrente sia h e l'ingresso sia il k-esimo L'elemento h,|I|+1 contiene l'uscita nel caso in cui lo stato sia h

Macchina di Mealy

	i ₁	i ₂	 i_k	 i _m
s ₁ s ₂ :			: : :	
: S _h : .			 : $\delta(i_k, s_h)/\omega(i_k, s_h)$	
: S _n				

Macchina di Moore

	i ₁	i_2	 i_k	 i _m	ω
s ₁			:		:
S _h			 $\vdots \\ \delta(i_k, s_h)$		$\omega(s_h)$
II .			K II		N II'
S _n					

Algorithm State Machine

Trasformazione del grafo in ASM: caso Mealy

Algorithm State Machine

Trasformazione del grafo in ASM: caso Moore

Flip/Flop S-R

(rappresentazione diagramma degli stati)

- Ingresso: Set Reset (S-R) solo uno dei due ingressi può essere pari ad uno.
- Stati: 0, 1

Flip/Flop S-R

(rappresentazione tabella di transizione)

Ingressi	Stato	Stato	Uscita
S-R	attuale	succ.	
0 0	0	0	0
0 0	1	1	1
0 1	0	0	0
0 1	1	0	1
10	0	1	0
10	1	1	1

Flip/Flop S-R (rappresentazione ASM)

Riconoscitore di sequenza

- Macchina che riconosca la sequenza di lettere ciao
- I={a,b,..,z}
 - Per comodità indichiamo con il simbolo di negazione su una lettera tutte le lettere di I tranne la lettera stessa; se più simboli attivano la stessa transizione allora si userà un solo arco con l'elenco di tali simboli
- O={si,no}

Diagramma degli stati (Moore)

2: aspetto i

3: aspetto a

4: aspetto o

5: parola completa

Tabella di transizione (Moore)

Diagramma degli stati (Mealy)

1: attesa c

2: attesa i

3: attesa a

4: attesa o

Tabella di transizione (Mealy)

Contatore UP-DOWN modulo 4

Stato attuale	ingr	Stato succ.	uscita
0	U		
0	D		
1	U		
1	D		
2	U		
2	D		
3	U		
3	D		

Classificazione macchine sequenziali

Dipendendo dalla struttura della macchina stessa e dalle caratteristiche delle sequenze di ingresso, le macchine sequenziali si possono distinguere in:

- SINCRONE
- ASINCRONE
- SINCRONE IMPULSIVE
- ASINCRONE IMPULSIVE

Considerazioni sulle macchine sequenziali

- Le macchine sincrone non si possono realizzare.
- Ci focalizzeremo solo sulle sincrone impulsive (Level Level Clocked).
- I flip/flop, che utilizzeremo nel seguito, vengono ricavati dalle macchine asincrone, per mancanza di tempo non li potremo progettare (per chi è interessato vedere libro di Reti Sequenziali, Ciciani, Cioffi).

Altro esempio di macchina sequenziale

- Riconoscitore della sequenza ANNA
 - (alfabeto di ingresso: a,b,c,n)
 - identificare sia la macchina di Mealy che di Moore

FARE A CASA ESERCIZI DI ESAME SULLE MACCHINE SEQUENZIALI (ORA SOLO RAPPRESENTAZIONE, DOPO ANCHE SINTESI)