Résumé de cours : Semaine 31, du 30 mai au 3 juin.

1 Déterminants (suite et fin)

Notation. K désigne un corps quelconque.

1.1 Calcul des déterminants (suite)

Théorème. Soit $M=(M_{i,j})_{\substack{1\leq i\leq a\\1\leq j\leq a}}$ une matrice décomposée en blocs, où, pour tout $i,j\in\mathbb{N}_a$, $M_{i,j}\in\mathcal{M}_{n_i,n_j}(\mathbb{K})$. Si M est triangulaire supérieure (ou inférieure) par blocs, $\det(M)=\prod_{i=1}^a\det(M_{i,i})$. Il faut savoir le démontrer.

Corollaire. Le déterminant d'une matrice triangulaire supérieure ou inférieure est égal au produit de ses éléments diagonaux.

1.2 Formules de Cramer

Propriété. Considérons un système linéaire de Cramer (S): MX = B, où $M \in GL_n(\mathbb{K}), B \in \mathbb{K}^n$, dont l'unique solution est notée $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$. Alors, pour tout $j \in \{1, \dots, n\}, \quad \boxed{x_j = \frac{\det(jM)}{\det(M)}}$

où $_jM$ est la matrice dont les colonnes sont celles de M, sauf la $j^{\text{\`e}me}$ qui est égale à B. Il faut savoir le démontrer.

1.3 Exemples de déterminants.

1.3.1 Déterminant de Vandermonde

Définition. Soient $n \in \mathbb{N}$ et $(a_0, \dots, a_n) \in \mathbb{K}^{n+1}$. La **matrice de Vandermonde** est $\mathcal{V}(a_0, \dots, a_n) = (a_{i-1}^{j-1}) \in \mathcal{M}_{n+1}(\mathbb{K})$, et le **déterminant de Vandermonde** est $V(a_0, \dots, a_n) = \det(\mathcal{V}(a_0, \dots, a_n))$.

Propriété.
$$V(a_0,\ldots,a_n) = \prod_{0 \le i < j \le n} (a_j - a_i).$$

Il faut savoir le démontrer.

1.3.2 Déterminants tridiagonaux

Définition. Soient n un entier supérieur ou égal à 2 et $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. M est tridiagonale si et seulement si , pour tout $(i,j) \in \mathbb{N}_n^2$, $|i-j| \ge 2 \Longrightarrow m_{i,j} = 0$.

Propriété. Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ une matrice tridiagonale. Pour tout $k \in \mathbb{N}_n$, notons M_k la matrice extraite de M en ne retenant que ses k premières colonnes et ses k premières lignes. Alors la suite $(\det(M_k))_{1 \le k \le n}$ vérifie une relation de récurrence linéaire d'ordre 2.

1.3.3 Déterminants circulants

Définition. Une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est circulante si et seulement si on passe de l'une de ses lignes à la suivante selon une permutation circulaire des coefficients vers la droite.

Méthode : Pour des matrices circulantes simples, on peut commencer par remplacer la première ligne par la somme de toutes les lignes. La première ligne devient alors colinéaire à (1, 1, ..., 1). On peut ensuite effectuer des différences de colonnes pour placer des 0 sur la première ligne.

1.4 Le polynôme caractéristique

Notation. On fixe un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$ et $u \in L(E)$.

Définition. Le polynôme caractéristique de $M \in \mathcal{M}_n(\mathbb{K})$ est $\chi_M = \det(XI_n - M)$. Pour tout $\lambda \in \mathbb{K}$, $\chi_M(\lambda) = \det(\lambda I_n - M)$.

Propriété. Pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $\chi_{t_M} = \chi_M$.

Propriété. Si M est triangulaire supérieure ou inférieure, alors $\chi_M(X) = \prod_{i=1}^n (X - \lambda_i)$,

où $\lambda_1, \ldots, \lambda_n$ sont les coefficients diagonaux de M.

Propriété. Deux matrices semblables ont le même polynôme caractéristique (réciproque fausse).

Définition. $\chi_u = \chi_{mat(u,e)}$ où e est une base de E.

Propriété. $(\lambda \in Sp(u)) \iff (\lambda \in \mathbb{K} \text{ et } \chi_u(\lambda) = 0).$

Si \mathbb{L} est un sur-corps de \mathbb{K} , $Sp_{\mathbb{L}}(u)$ désignera l'ensemble des racines de χ_u dans \mathbb{L} .

Propriété. $\chi_u(X) = X^n - Tr(u)X^{n-1} + \dots + (-1)^n \det(u)$.

Corollaire. Si χ_u est scindé sur \mathbb{K} , $Tr(u) = \sum_{\lambda \in Sp_{\mathbb{K}}(u)} m(\lambda)\lambda$ et $\det(u) = \prod_{\lambda \in Sp_{\mathbb{K}}(u)} \lambda^{m(\lambda)}$.

Théorème. u est diagonalisable si et seulement si χ_u est scindé sur \mathbb{K} et, pour tout $\lambda \in Sp(u)$, la dimension de $Ker(\lambda Id_E - u)$ est égale à la multiplicité de λ en tant que racine de χ_u .

2 Produits scalaires

2.1 Définition d'un produit scalaire

Notation. E est un \mathbb{R} -espace vectoriel.

Définition. $\varphi \in L_2(E)$ est définie si et seulement si $\forall x \in E \setminus \{0\}, \ \varphi(x,x) \neq 0.$

Définition. $\varphi \in L_2(E)$ est positive si et seulement si $\forall x \in E, \ \varphi(x,x) \geq 0$.

Définition. Un *produit scalaire* est une forme bilinéaire symétrique définie positive, c'est-à-dire une application $\varphi: E^2 \longrightarrow \mathbb{R}$ telle que, pour tout $x, y, z \in E$ et $\lambda \in \mathbb{R}$,

$$\begin{aligned} & - & \varphi(x,y) = \varphi(y,x) \,; \\ & - & \varphi(\lambda x + y,z) = \lambda \varphi(x,z) + \varphi(y,z) \,; \\ & - & x \neq 0 \Longrightarrow \varphi(x,x) > 0. \end{aligned}$$

Un espace préhilbertien réel est un couple (E,φ) , où E est un \mathbb{R} -espace vectoriel et où φ est un produit scalaire sur E.

2.2Exemples

$$\diamond$$
 En posant $\varphi(f,g) = \int_a^b f(t)g(t)dt$, φ est un produit scalaire sur $\mathcal{C}([a,b],\mathbb{R})$.

Il faut savoir le démontrer.

Notation. \diamond Pour $p \in \mathbb{R}_+^*$, $l^p = \{(u_n) \in \mathbb{R}^{\mathbb{N}} / \sum |u_n|^p \text{ CV}\}$. \diamond Notons l^{∞} l'ensemble des suites bornées de réels.

Propriété. l^1 , l^2 et l^{∞} sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$. De plus si (a_n) et (b_n) sont dans l^2 , alors (a_nb_n) est un élément de l^1 .

Propriété. Pour tout
$$(u_n), (v_n) \in l^2$$
, on pose $((u_n)|(v_n)) = \sum_{n \in \mathbb{N}} u_n v_n$.

 l^2 muni de (.|.) est un espace préhilbertien.

2.3Identités remarquables

Notation. E est un espace préhilbertien réel. Son produit scalaire sera noté (.|.).

Définition. Pour tout $x \in E$, la norme de x est $||x|| = \sqrt{(x|x)}$.

Formule. Pour tout $((x,y), \alpha) \in E^2 \times \mathbb{R}$,

La dernière formule est la formule du parallélogramme ou formule de la médiane. Les seconde, troisième et quatrième formules sont des formules de polarisation.

Théorème de Pythagore :
$$(x|y) = 0 \iff ||x+y||^2 = ||x||^2 + ||y||^2$$
.

2.4 Inégalités de Cauchy-Schwarz et de Minkowski

Inégalité de Cauchy-Schwarz : $\forall (x,y) \in E^2 \ |(x|y)| \le ||x|| ||y||$, avec égalité si et seulement si x et y sont colinéaires.

Il faut savoir le démontrer.

Inégalité de Minkowski, ou inégalité triangulaire : $\forall (x,y) \in E^2 \ \|x+y\| \le \|x\| + \|y\|$, avec égalité ssi x et y sont positivement colinéaires, i.e y=0 ou il existe $k \in \mathbb{R}_+$ tel que x=ky. Il faut savoir le démontrer.

Théorème. La norme associée au produit scalaire d'un espace préhilbertien est bien une norme.

3 Orthogonalité

Notation. E est un espace préhilbertien. Son produit scalaire est noté < .,. >.

3.1 Orthogonalité en dimension quelconque

Définition. Soit $(x,y) \in E^2$. x et y sont orthogonaux ssi $\langle x,y \rangle = 0$. On note $x \perp y$.

Définition. Si $A \subset E$, $A^{\perp} = \{x \in E / \forall y \in A \mid x \perp y\}$: l'orthogonal de A est l'ensemble des vecteurs de E qui sont orthogonaux à tous les vecteurs de A.

Exemple. Si $a \in E \setminus \{0\}$, a^{\perp} est un hyperplan.

Propriété. Soit A une partie de E. Alors A^{\perp} est un sous-espace vectoriel de E.

Définition. Soient A et B deux parties de E. On dit qu'elles sont orthogonales si et seulement si tout vecteur de A est orthogonal à tout vecteur de $B: A \perp B \iff [\forall (a,b) \in A \times B, \ a \perp b].$

Propriété. Soient A et B deux parties de E. $A \perp B \iff A \subset B^{\perp} \iff B \subset A^{\perp}$.

Propriété. $A \subseteq B \Longrightarrow B^{\perp} \subseteq A^{\perp}$, $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$, $A^{\perp} = (\operatorname{Vect}(A))^{\perp}$ et $A \subseteq (A^{\perp})^{\perp}$. Il faut savoir le démontrer.

Remarque. Si F et G sont deux sous-espaces vectoriels, $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$, mais en général, $(F\cap G)^{\perp}\neq F^{\perp}+G^{\perp}$ et $F^{\perp\perp}\neq F$.

Propriété. $\{0\}^{\perp} = E \text{ et } E^{\perp} = \{0\}.$

Définition. $(x_i)_{i \in I} \in E^I$ est orthogonale si et seulement si : $\forall (i,j) \in I^2$, $(i \neq j \Longrightarrow x_i \perp x_j)$. Elle est orthonormale si et seulement si : $\forall (i,j) \in I^2$, $\langle x_i, x_j \rangle = \delta_{i,j}$.

Relation de Pythagore: Si (x_1, \ldots, x_n) une famille orthogonale de vecteurs de E,

$$\|\sum_{i=1}^n x_i\|^2 = \sum_{i=1}^n \|x_i\|^2$$
. Lorsque $n \ge 3$, la réciproque est fausse.

Propriété. Une famille orthogonale sans vecteur nul est libre.

En particulier, une famille orthonormale est toujours libre.

Propriété. Supposons que E admet une base orthonormée notée $(e_i)_{i\in I}$.

Si
$$x = \sum_{i \in I} \alpha_i e_i \in E$$
 et $y = \sum_{i \in I} \beta_i e_i \in E$, alors $\langle x, y \rangle = \sum_{i \in I} \alpha_i \beta_i$, $||x||^2 = \sum_{i \in I} \alpha_i^2$ et $x = \sum_{i \in I} \langle e_i, x \rangle e_i$.

Propriété. Supposons que E est muni d'une base $e = (e_i)_{i \in I}$.

Alors il existe un unique produit scalaire sur E pour lequel e est une base orthonormée.

Propriété. Soient $n \in \mathbb{N}^*$ et $(E_i)_{1 \le i \le n}$ une famille de n sous-espaces vectoriels de E deux à deux orthogonaux. Alors ils forment une somme directe que l'on note $E_1 \bigoplus^{\perp} \cdots \bigoplus^{\perp} E_n = \bigoplus_{1 \le i \le n}^{\perp} E_i$.

Définition. Soient F et G deux sous-espaces vectoriels de E.

G est un supplémentaire orthogonal de <math>F si et seulement si $E = F \stackrel{\perp}{\oplus} G$.

Propriété. Soit F un sous-espace vectoriel de E. F admet au plus un supplémentaire orthogonal. Il s'agit de F^{\perp} . Il est cependant possible que $F \stackrel{\perp}{\oplus} F^{\perp} \neq E$.

Il faut savoir le démontrer.

3.2 En dimension finie

Propriété. Si E est de dimension finie, l'application $\begin{array}{ccc} E & \longrightarrow & L(E,\mathbb{R}) \\ x & \longmapsto & < x, . > \end{array}$ est un isomorphisme.

Théorème. On ne suppose pas que E est de dimension finie. Si F est un sous-espace vectoriel de dimension finie de E, alors F^{\perp} est l'unique supplémentaire orthogonal de F. De plus $F = (F^{\perp})^{\perp}$. Il faut savoir le démontrer.

Définition. Un espace euclidien est un espace préhilbertien de dimension finie.

Hypothèse: jusqu'à la fin du paragraphe, E est supposé euclidien de dimension n > 0.

Propriété. Si F et G sont deux sous-espaces vectoriels de E, alors $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Propriété. Si F est un sous-espace vectoriel de E, alors $dim(F^{\perp}) = dimE - dimF$.

Propriété. Soit e une base orthonormée de E. Soient $x, y \in E$ dont les coordonnées dans la base e sont données sous forme de vecteurs colonnes notés X et Y. Alors $\langle x, y \rangle =^t YX =^t XY$.

Remarque. Si e est une base orthonormée de E, pour tout $u \in L(E)$, pour tout $i, j \in \mathbb{N}_n$, $[\max(u, e)]_{i,j} = \langle e_i, u(e_j) \rangle$.

La fin de ce paragraphe est hors programme.

Définition. La matrice du produit scalaire dans la base e est égale à

$$\operatorname{mat}(\langle .,.\rangle,e) = (\langle e_i,e_j\rangle)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{R}).$$

Propriété. e est orthogonale si et seulement si mat(<.,.>,e) est diagonale. e est orthonormée si et seulement si $mat(<.,.>,e)=I_n$.

Formule. Soit e une base quelconque de E. On note Ω la matrice de < ., .> dans la base e. Soient x et y deux vecteurs de E, dont les coordonnées dans e sont données sous la forme des vecteurs colonnes X et Y de \mathbb{R}^n . Alors

$$\langle x, y \rangle = {}^{t}X\Omega Y = {}^{t}Y\Omega X = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} x_i y_j \omega_{i,j}.$$

Il faut savoir le démontrer.

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, muni d'une base $e = (e_1, \ldots, e_n)$ et soit φ une forme bilinéaire sur E. La matrice de φ dans la base e est $\max(\varphi, e) = (\varphi(e_i, e_j))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$. Pour tout $x, y \in E$, en posant $X = \max_e(x)$ et $Y = \max_e(y)$, $\varphi(x, y) = {}^t X \Omega Y$. φ est symétrique si et seulement si $\Omega \in S_n(\mathbb{K})$.