Patent claims:

- 1. Use of galanthamine and galanthamine derivatives exhibiting cholinergic activity for manufacturing medicaments for the treatment of post-operative delirium and/or subsyndromes of post-operative delirium.
- 2. Use according to claim 1 for manufacturing medicaments for the preventive treatment of post-operative delirium and/or subsyndromes of post-operative delirium.
 - 3. Use according to claims 1 or 2, characterized by the fact that the galanthamine derivatives have the general formula

15

20

5

10

and the salts thereof, wherein R_1 is H, branched or straight chain (C_1-C_6) alkyl, Br, NO_2 , NR_5R_6 wherein R_5 and R_6 are the same or different and are selected from H, branched or straight chain (C_1-C_6) alkyl, and wherein R_2 is OH, branched or straight chain (C_1-C_6) alkyl, methoxy, phenyloxy or the following group

Ιa

25

30

whereby Pol is a polymer, preferably one in accordance with WO-A1-01/174820, and wherein R_3 and R_4 either at the same time or alternatively are H, D, CN, straight chain or branched $(\mbox{C}_1-\mbox{C}_6)$ alkyl or a carbonyl group together, wherein Y_1 and Y_2 alternatively are H or a group selected from:

wherein n represents a value of 0, 1 to 15, and Pol has the meaning indicated above, and wherein Y_1 and Y_2 further represent together a carbonyl group (=0), =NH, = N-OR₇, wherein R₇ is H, tosylate or branched or straight chain (C₁-C₆) alkyl, or Y_1 and Y_2 together is a group selected from:

wherein R_8 and R_9 are the same or different and are H, branched or straight chain (C_1-C_6) alkyl, $-(CH_2)_2-OH$, CHO, CONH₂, tBOC (tert-Butoxycarbonyl), or mean -COCOOH, R_{10} is H or CH3, and wherein when Y_1 is $-O-(CH_2)_2-OH$, Y_2 is OH, and wherein Z_1 is H, branched or

straight chain (C_1-C_6) alkyl, (C_2-C_7) alkenyl, (C_2-C_7) alkynyl, trifluoroacetyl, formyl, phenyl or a group selected from:

$$(CH_2)n-N \qquad N-CH_3 \qquad -(CH_2)n-N \qquad O \qquad (CH_2)n-N \qquad OH$$

$$-(CH_2)n-N \qquad O-CH_3 \qquad -(CH_2)n \qquad OCH_3 \qquad -(CH_2)n \qquad OH$$

$$-(CH_2)n-N \qquad O-CH_3 \qquad -(CH_2)n \qquad OH$$

$$-(CH_2)n-N \qquad O-CH_3 \qquad -(CH_2)n \qquad OH$$

$$-(CH_2)n-N \qquad O-CH_3 \qquad OH$$

$$-(CH_3)n-N \qquad OH$$

$$-(CH_3)n-N$$

wherein R_{11} is H, straight chain (C_1-C_6) alkyl, branched (C_1-C_6) alkyl or (C_2-C_7) alkenyl, R_{12} and R_{13} are the same or different and are selected from H, straight chain or branched (C_1-C_6) alkyl,

phenyl, chlorophenyl, (trifluoromethyl)-phenyl or 1-naphtyl, wherein R_{14} is H, F, CH_3 , NO_2 , Cl, Br, J, CF_3 , n has the meaning indicated above, m is 0 or 1, and W has the meaning H or O, and wherein further Z_1 and R_3 form a common ring

5

wherein R_{15} and R_{16} alternatively mean H, COOCH $_3$, COOCH $_2$ CH $_3$, CN, COCH $_3$.

10

4. Use according to claims 1 or 2, characterized by the fact that the used Galanthamine derivatives have the general formula Ib

$$H_3C$$
 V_4
 V_4

15

20

wherein Y_3 and Y_4 alternatively mean H and OH, X is Cl, Br or I, Z_2 is oxygen (N-oxide and no counterion), branched or straight chain (C_1-C_6) alkyl, or (C_2-C_7) alkenyl or (C_2-C_7) alkynyl or a group selected from:

$$-(CH_2)n-N \qquad O \qquad -(CH_2)n-N \qquad -(CH_2)n-N \qquad R14$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

$$CH_2 \qquad -(CH_2)n-N \qquad R12$$

$$CH_3 \qquad R13$$

wherein n, R_{12} , R_{13} and R_{14} have the meanings as defined in accordance with claim 3.

5. Use according to claims 1 or 2, characterized by the fact that the used galanthamine derivatives have the general formula Ic

5

10

$$Y_3$$
 Y_4
 Z_3
Ic

wherein Y_3 and Y_4 the meaning defined in accordance with claims 3 or 4 have, and Z_3 is oxygen (N-oxide and no counterion) or is a methyl.

6. Use according to claims 1 or 2, characterized by the fact

that the used galanthamine derivatives have the general formula Id

5

and their salts, wherein Y_5 and Y_6 alternatively are H or OH, or together form a keto group, and R_{17} , R_{18} , R_{19} are alternatively for two substituents H, wherein the third substituent is NH_2 or $CONH_2$.

7. Use according to claim 1 or 2, characterized by the fact that the used galanthamine derivatives have the general formula Ie

$$H_3C-O$$
 $N-Z_4$

15

or their salts, wherein Z_4 is straight chain or branched ($C_1 - C_6$) alkyl or 4-brombenzyl.

8. Use according to claims 1 or 2, characterized by the fact 20 that the used galanthamine derivatives have the general formula If:

$$\mathsf{H_{3}C} \overset{\mathsf{OH}}{\longrightarrow} \mathsf{N}$$

or their salts, wherein Y_5 and Y_6 have the meanings as defined in claims 3 to 7, and R_{20} is H or Br.

9. Use according to claims 1 or 2, characterized by the fact that the used galanthamine derivative has the following structural formula

10

15

and its pharmaceutical acceptable salts, hydrate or a solvate thereof and having the chemical name (4aS, 6R, 8aS)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10-tetrahydro-6H-benzofuro[3a,3,2-f][2]benzazepinium.

10. Use according to claim 9, characterized by the fact that
20 the pharmaceutical acceptable salt counterion of (4aS, 6R, 8aS)-6Hydroxy-3-methoxy-11-methyl-4a,5,9,10-tetrahydro-6Hbenzofuro[3a,3,2-ef][2]benzazepinium is selected from the group of
halides, preferably bromide, carboxylic acids with 1-3 carboxyl
functions, particularly preferably tartrate, malonate, fumarate
25 and succinate, and sulfonic acids, preferably methane sulfonic
acid.