Chapitre 7 Suites

I. Notion de suite

1) <u>Définition</u>

Définition:

Une **suite** u est une **fonction** qui à tout nombre **entier** naturel n associe un nombre noté u(n) ou u_n .

Remarques:

• On a donc : $u : \mathbb{N} \to \mathbb{R}$

 $n \longmapsto u(n)$

- La suite se note u ou (u_n) avec des parenthèses. u_n est le terme général et n est l'indice.
- Le terme initial de la suite est u_0 , ou u_p quand la suite est définie à partir de l'indice p.

Exemples:

- (a_n) est la suite des nombres pairs. On a $a_0=0$, $a_1=2$, $a_2=4$,...
- (b_n) est la suite telle que : $b_1 = \frac{1}{1}$, $b_2 = \frac{1}{2}$, $b_3 = \frac{1}{3}$,...
- (c_n) est la suite telle que $c_0=4$, $c_1=1$, $c_2=0.25$, $c_3=0.0625$,...
- (d_n) est la suite définie par : $d: \mathbb{N} \to \mathbb{R}$

$$n \longmapsto 3^n$$

On a donc $d_0=1$, $d_1=3$, $d_2=9$,

- (Φ_n) est la suite qui à tout entier naturel, non nul, lui associe le nombre de ses diviseurs. $\Phi_1=1$, $\Phi_2=2$, $\Phi_3=2$, $\Phi_4=3$, ...
- On considère un cercle C de rayon 1 et deux suites (v_n) et (w_n) , définies de la manière suivante :
 - (v_n) est la suite des polygones réguliers à 2^n côtés inscrits dans le cercle \mathscr{C} et (w_n) est la suite des polygones réguliers à 2^n côtés circonscrits au cercle \mathscr{C} .

• (f_n) est la suite qui à tout entier n associe le produit de tous les entiers, non nul, inférieurs où égal à n. Donc : $f_1=1$, $f_2=2\times 1=2$, $f_3=3\times 2\times 1=6$, $f_4=24$, ...

• On considère les suites $\begin{cases} x_{n+1} = x_n^2 - y_n^2 + a \\ y_{n+1} = 2x_n y_n + b \end{cases}$ avec $(x_0; y_0) = (a; b)$ Puis on rejoint les points formés.

2) Modes de génération d'une suite

Définitions:

- Une suite est définie par une **formule explicite** lorsque le terme est fonction de l'indice n. $u_n = f(n)$
- Une suite est définie par une **formule de récurrence** lorsque le terme est fonction du précédent.

Dans ce cas, il faut indiquer le terme initial.

$$u_{n+1} = f(u_n)$$
 et $u_0 = a$

Exemples:

• La suite (u_n) définie par $u_n = -n^2 + 3n + 10$ est une suite explicite : c'est la suite des images f(n) des entiers naturels n par la fonction associée.

 $f: x \mapsto -x^2 + 3x + 10$ $u_0 = 10$, $u_1 = 12$, ..., $u_{42} = -1628$, ...

• La suite v telle que $v_{n+1} = 0.8 v_n + 10$, avec $v_0 = 100$ est une suite récurrente de terme initial $v_0 = 100$.

 $v_0 = 100$, $v_1 = 90$, $v_2 = 82$, ...

- La suite (w_n) telle que $w_{n+1}=0.8 w_n+10$, avec $w_0=-10$ est une suite récurrente de terme initial $w_0=-10$ $w_1=2$, $w_2=11.6$, ...
- La suite (Φ_n) qui à tout entier naturel, non nul, lui associe le nombre de ses diviseurs est une suite explicite.
- La suite (f_n) qui à tout entier n associe le produit de tous les entiers, non nul, inférieurs où égal à n peut être définie de façon explicite ou récurrente.

forme explicite
$$f_n = n \times (n-1) \times ... \times 3 \times 2 \times 1$$

forme récurrente
$$\begin{cases} f_1 = 1 \\ f_n = n \times f_{n-1} \end{cases}$$

• La suite (i_n) des nombres entiers naturels peut également être définie des deux manières.

forme explicite
$$i_n = n$$

forme récurrente
$$\begin{cases} i_1 = 1 \\ i_n = i_{n-1} + 1 \end{cases}$$

Remarques:

- Pour une suite définie de manière explicite, la fonction associée *f* est définie sur (au moins) \mathbb{R}^+ .
- Pour une suite définie de manière récurrente, la fonction associée *f* est définie sur *I* avec *f*(*I*) ⊂ *I*.

3) Représentation graphique

Suite explicite

Soit (u_n) une suite donnée par sa formule explicite $u_n = f(n)$ et C_f la courbe représentative de la fonction associée f.

La suite (u_n) est représentée par les points $A_n(n;f(n))$ d'abscisse entière de la courbe C_f .

Les termes de la suite sont les ordonnées.

Exemple:

La représentation graphique de la fonction $f: x \longmapsto -x^2 + 3x + 10$

permet d'obtenir les termes de la suite (u_n) définie explicitement par $u_n = -n^2 + 3n + 10$.

$$u_0 = 10$$
 ; $u_1 = 12$; $u_2 = 12$; $u_3 = 10$; $u_4 = 6$; $u_5 = 0$; ...

Suite récurrente

Dans le cas d'une suite $\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$, on peut utiliser une autre représentation graphique.

- On trace la représentation graphique C_f de f et la première bissectrice d'équation y = x.
- On place le premier terme u_0 sur l'axe des abscisses.
- On utilise C_f pour construire $u_1 = f(u_0)$ sur l'axe des ordonnées.
- On reporte u_1 sur l'axe des abscisses à l'aide de la première bissectrice.
- On utilise C_f pour construire $u_2 = f(u_1)$ sur l'axe des ordonnées.
- etc ...

Exemples:

Soit (u_n) , la suite définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2u_n + 4}{2 + u_n^2} \end{cases}$ on obtient la représentation de la suite sur

l'axe des abscisses.

Soit (v_n) , la suite définie par $\begin{cases} v_0 = 0.5 \\ v_{n+1} = \frac{1}{2}v_n^2 + 1 \end{cases}$

Sens de variation

Définition:

Une suite (u_n) est **croissante** lorsque, pour tout entier naturel n, on a :

$$u_{n+1} \geqslant u_n \text{ ou } u_{n+1} - u_n \geqslant 0$$
.

Une suite (u_n) est **décroissante** lorsque, pour tout entier naturel n, on a :

$$u_{n+1} \le u_n$$
 ou $u_{n+1} - u_n \le 0$.

Une suite (u_n) est stationnaire lorsque, pour tout entier naturel n, on a $u_{n+1}=u_n$.

Exemples:

- La suite u de terme général $u_n = -2n+1$ est décroissante car, pour tout entier n : $u_{n+1} - u_n = -2(n+1) + 1 - (-2n+1) = -2$, négatif; ainsi $u_{n+1} - u_n \le 0$.
- La suite v de terme général $v_n = 3^n$ est croissante car, pour tout entier n: $v_{n+1} - v_n = 3^{n+1} - 3^n = 3^n \times 3 - 3^n \times 1 = 3^n \times (3-1) = 3^n \times 2$, positif; ainsi $v_{n+1} - v_n \ge 0$.

Remarques:

Pour étudier le sens de variation d'une suite à terme positif on peut comparer $\frac{u_{n+1}}{u_n}$ à 1. Exemple: Dans la cas de la suite (v_n) de terme général $v_n=3^n$ (donc pour tout n $v_n>0$)

on a ainsi:
$$\frac{v_{n+1}}{v_n} = \frac{3^{n+1}}{3^n} = 3$$
 donc $\frac{v_{n+1}}{v_n} > 1$ et $v_{n+1} > v_n$.

Dans le cas d'une suite définie par une formule explicite, l'étude du sens de variation de la fonction associée permet d'obtenir des informations sur la monotonie de la suite.

Théorème:

Soit (u_n) la suite définie par la relation $u_n = f(n)$.

Si la **fonction** f est monotone sur $[0; +\infty[$, alors la suite (u_n) est monotone et a **même sens de variation** que f.

Exemples:

f est croissante donc (u_n) est croissante

f est décroissante donc (v_n) est décroissante

II. Suite arithmétique

1) Formules

Définition:

Une suite est **arithmétique** lorsque, à partir du terme initial, l'on passe d'un terme de la suite au terme suivant en ajoutant toujours le même nombre *a* appelé **raison** :

pour tout entier naturel n, $u_{n+1} = u_n + a$, avec u_o donné.

Cette formule est la **formule de récurrence** de la suite.

Terme général en fonction de n: $u_n = u_0 + n \times a$ (formule explicite)

Remarque:

Si on connaît le terme d'indice p, alors $u_n = u_p + (n-p) \times a$.

Ainsi $a = \frac{u_n - u_p}{n - p}$, la raison a est l'accroissement moyen entre deux termes.

En particulier, c'est l'accroissement entre deux termes consécutifs : $a = u_{n+1} - u_n$.

Exemples:

La suite des nombres pairs (a_n) est définie par $a_{n+1}=a_n+2$ et $a_0=0$ (ou encore par $a_n=2\times n$). $a_0=0$, $a_1=2$, $a_2=4$, $a_3=6$, ...

Il s'agit d'une suite arithmétique de raison 2.

$$\begin{cases} a_0 = 0 \\ a_{n+1} = a_n + 2 \end{cases}$$

 (u_n) est une suite arithmétique de raison -3 et de premier terme $u_0=8$.

Alors
$$u_1 = 5$$
, $u_2 = 2$, $u_3 = -1$, ...

Sens de variation 2)

Propriétés:

- Si la raison est **positive** alors la suite arithmétique est **croissante**.
- Si la raison est négative alors la suite arithmétique est décroissante.

Remarque: lien avec la fonction affine.

Comme $u_n = u_0 + n \times a$, on peut définir la fonction f telle que :

$$f(x) = ax + b$$
, avec $b = u_0$ et $x \in [0; +\infty[$.

Une suite arithmétique de raison a est donc liée à une fonction affine de coefficient a.

Exemples:

- La suite des nombres pairs (a_n) est croissante (sa raison est 2).
- La suite arithmétique (u_n) de raison -3 et de premier terme $u_0=8$ est décroissante.

3) Somme des termes consécutifs

Théorème:

La somme de termes consécutifs d'une suite arithmétique est :

$$S = u_0 + u_1 + u_2 + \dots + u_n = (n+1) \left(\frac{u_0 + u_n}{2} \right)$$

 $Somme \ des \ termes \ d'une \ suite \ arithm\'etique = nombre \ de \ termes \times \frac{premier \ terme + dernier \ terme}{2}$

Démonstration:

Soit (u_n) la suite arithmétique de raison r.

$$\begin{cases} S = u_0 + u_1 + \ldots + u_{n-1} + u_n \\ S = u_n + u_{n-1} + \ldots + u_1 + u_0 \end{cases}$$

$$\begin{cases} S = u_0 + (u_0 + r) + \ldots + (u_n - r) + u_n \\ S = u_n + (u_n - r) + \ldots + (u_0 + r) + u_0 \end{cases}$$

En additionnant membres à membres on obtient :

$$2S = u_0 + u_n + (u_0 + r) + (u_n - r) + \dots + (u_n - r) + (u_0 + r) + u_n + u_0$$

$$2S = (u_0 + u_n) + (u_0 + r + u_n - r) + \dots + (u_n - r + u_0 + r) + (u_n + u_0)$$

$$2S = (n+1)(u_0 + u_n)$$

donc
$$S=(n+1)\left(\frac{u_0+u_n}{2}\right)$$
.

On utilise la notation suivante :

$$\sum_{k=0}^{n} u_{k} = (n+1) \left(\frac{u_{0} + u_{n}}{2} \right)$$

Cas particulier:

Pour calculer la somme S=1+2+3+...+n des n premiers nombres entiers naturels, on considère la suite $(u_n): 1, 2, 3, ..., n, ...$

 (u_n) est une suite arithmétique de raison 1.

On a donc:
$$1+2+3+...+n=n\frac{(n+1)}{2}$$

III. Suite géométrique

1) <u>Formules</u>

Définition:

Une suite est **géométrique** lorsque, à partir du terme initial, l'on passe d'un terme de la suite au terme suivant en multipliant toujours le même nombre **b** appelé **raison** :

pour tout entier naturel n, $u_{n+1} = u_n \times b$, avec u_o donné.

Cette formule est la **formule de récurrence** de la suite.

Terme général en fonction de $n: u_n = u_0 \times b^n$ (formule explicite)

Remarque:

b est le coefficient multiplicateur entre deux termes consécutifs et l'accroissement est :

$$u_{n+1} - u_n = u_n \times b - u_n = u_n \times (b-1)$$
.

Lorsque b = 1, la suite est constante.

Exemples:

• Soit (d_n) la suite définie par : $d_n=3^n$. Il s'agit d'une suite géométrique de raison 3. $d_0=1$, $d_1=3$, $d_2=9$, $d_3=27$, ...

• (w_n) est une suite géométrique de raison 0,8 telle que $w_0=2$. $w_0=2$, $w_1=1,6$, $w_2=1,28$, ...

2) Sens de variation

Propriétés :

Pour une suite géométrique de terme u_0 positif :

- Si la raison est strictement **supérieure à 1** alors la suite géométrique est **croissante**.
- Si la raison est comprise entre 0 et 1 alors la suite géométrique est décroissante.

Exemples:

- La suite (d_n) définie par : $d_n=3^n$ est croissante (sa raison est 3 et $d_0=1$)
- La suite géométrique (w_n) de raison 0,8 et de premier terme 2 est décroissante.

3) Somme des termes consécutifs

Théorème:

La somme de termes consécutifs d'une suite géométrique de raison $b \neq 1$ est :

$$S = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - b^{n+1}}{1 - b}$$

Somme des termes d'une suite géométrique = premier terme $\times \frac{1 - raison^{nombre de termes}}{1 - raison}$

Démonstration:

Soit (u_n) la suite géométrique de raison b. Donc $u_p = u_{p-1} \times b$ pour tout $p \in \mathbb{N}$.

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ bS = b \left(u_0 + u_1 + \dots + u_{n-1} + u_n \right) \\ S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ bS = bu_0 + bu_1 + \dots + bu_{n-1} + bu_n \\ S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ bS = u_1 + u_2 + \dots + u_n + u_{n+1} \end{cases}$$

En soustrayant terme à terme, on obtient :

$$S - bS = u_0 - 0 + u_1 - u_1 + \dots + u_n - u_n + 0 - u_{n+1}$$

Donc
$$S - bS = u_0 - u_{n+1} = u_0 - u_0 \times b^{n+1}$$

Ainsi
$$(1-b)S = u_0(1-b^{n+1})$$
 et $S = u_0 \times \frac{1-b^{n+1}}{1-b}$.

On utilise la notation suivante :

$$\sum_{k=0}^{n} u_k = u_0 \times \frac{1 - b^{n+1}}{1 - b}$$

Remarque:

Si b=1 alors (u_n) est une suite stationnaire et donc $S=(n+1)u_0$.

IV. Applications

Soit (u_n) une suite à termes positifs :

- la **variation absolue** entre deux termes consécutifs est $u_{n+1}-u_n$.
- le **coefficient multiplicateur** d'un terme et de son précédent est $\frac{u_{n+1}}{u_n}$.
- la variation relative de deux termes consécutifs est $\frac{u_{n+1}-u_n}{u_n} = \frac{u_{n+1}}{u_n} 1$.

1) Nature des suites

- Une suite (u_n) est **arithmétique** si, et seulement si, la **variation absolue** entre deux termes consécutifs $u_{n+1}-u_n$ est **constante**.
- Une suite (u_n) est **géométrique** si, et seulement si, le **coefficient multiplicateur** entre deux termes consécutifs $\frac{u_{n+1}}{u_n}$ (ou la variation relative $\frac{u_{n+1}-u_n}{u_n}$) est **constant**.

Exemples:

• Une production de 5000 tonnes augmente de 200 tonnes par mois : la variation absolue est constante.

Donc la production suit une loi arithmétique de raison a=200 et de terme initial $u_0=5000$. D'où le terme général : $u_n=u_0+na=5000+200\,n$.

• Une production de 5000 tonnes augmente de 4 % par mois : la variation relative est constante.

Donc la production suit une loi géométrique de raison $b=1+\frac{4}{100}=1,04$ et de terme initial $v_0=5000$

D'où le terme général : $v_n = v_0 \times b^n = 5000 \times 1,04^n$.

2) Capitaux

Un capital C_0 est placé au taux annuel t %. Il y a deux possibilités de placement.

À intérêts simples

Chaque année, les intérêts se calculent sur le capital placé au départ :

$$C_{n+1} = C_n + C_0 \times \frac{t}{100}$$

La suite des capitaux est une suite arithmétique de raison $C_0 \times \frac{t}{100}$. D'où :

$$C_n = C_0 + n \times C_0 \times \frac{t}{100} = C_0 \times \left(1 + n \times \frac{t}{100}\right)$$

À intérêts composés

Chaque année, les intérêts se calculent sur le capital acquis l'année précédente :

$$K_{n+1} = K_n + K_n \times \frac{t}{100} = K_n \times \left(1 + \frac{t}{100}\right)$$

La suite des capitaux est une suite géométrique de raison $1 + \frac{t}{100}$. D'où :

$$K_n = C_0 \times \left(1 + \frac{t}{100}\right)^n$$

Exemple:

Deux capitaux de 2500 €et 2000 €sont placés au taux annuel de 5 %, le premier à intérêts simples et le second à intérêts composés, durant 18 mois.

Le capital acquis pour le premier est : $2500(1+18\times0.05) = 4500$ € Le capital acquis par le second est : $2000(1+0.05)^{18} = 4813$ €

Calculatrice:

