Sto: 2.Hausaufgabe(01.11.23) - Till Billerbeck(G3), Cora Zeitler(G1)

Mittwoch, 25. Oktober 2023 10:28

Aufgabe 3 🏠 (4 Punkte)

Eine Urne enthalte genau sechs gleichförmige Kugeln: drei Rote, zwei Blaue und eine Grüne. In einem Zufallsexperiment wird zunächst eine Kugel gezogen, diese zurückgelegt und dann erneut eine Kugel gezogen.

- a) Was ist ein geeigneter Ergebnisraum für dieses Experiment? Wie groß sind die Wahrscheinlichkeiten für die Elementarereignisse?
- b) Mit welcher Wahrscheinlichkeit werden in dem Experiment zwei gleichfarbige Kugeln gezogen?

3a) Ergebnissaum:
$$\Omega = \{ (R,R), (R,B), (R,G), (B,B), (B,R), (B,G) \}$$

- es gilt 3 Farben und bei jedes Ziehrung hat man 3 Möglichkeiden: 3.3=9

- d.h. es gild inagrammed 9 mgl. Ergebnisse

Elementarereigniose:
$$P(\{R_1R\}) = P(R) \cdot P(R) = \frac{3}{6} \cdot \frac{3}{6} = \frac{3}{36} = \frac{1}{4}$$

 $P(\{R_1B\}) = P(R) \cdot P(B) = \frac{3}{6} \cdot \frac{2}{6} = \frac{6}{36} = \frac{1}{6}$
 $P(\{R_1G\}) = P(R) \cdot P(G) = \frac{3}{6} \cdot \frac{1}{6} = \frac{3}{36} = \frac{1}{42}$
 $P(\{B_1B\}) = P(B) \cdot P(B) = \frac{2}{6} \cdot \frac{2}{6} = \frac{3}{36} = \frac{1}{6}$
 $P(\{B_1B\}) = P(B) \cdot P(B) = \frac{2}{6} \cdot \frac{3}{6} = \frac{3}{36} = \frac{1}{6}$
 $P(\{B_1G\}) = P(B) \cdot P(G) = \frac{1}{6} \cdot \frac{1}{6} = \frac{3}{36} = \frac{1}{18}$
 $P(\{G_1G\}) = P(G) \cdot P(B) = \frac{1}{6} \cdot \frac{3}{6} = \frac{3}{36} = \frac{1}{18}$
 $P(\{G_1B\}) = P(G) \cdot P(B) = \frac{1}{6} \cdot \frac{2}{6} = \frac{3}{36} = \frac{1}{18}$
 $P(\{G_1B\}) = P(G) \cdot P(B) = \frac{1}{6} \cdot \frac{2}{6} = \frac{3}{36} = \frac{1}{18}$

3b)
$$P(2 \text{ gleich farbige}) = P(\{R,R\}) + P(\{B,B\}) + P(\{G,G\})$$

= $\frac{1}{4} + \frac{1}{3} + \frac{1}{36} + \frac{1}{36} = \frac{11}{36} = \frac{11}$

Welche Aussagen sind richtig für alle Laplace-Experimente mit Ergebnisraum Ω ? Korrekte Antworten geben einen Punkt, inkorrekte einen Minuspunkt. Die minimale Punktzahl ist trotzdem 0. Die Teilaufgabe a) ist eine Präsenzaufgabe und wird nicht bewertet.

- a) $P(A \cup B) = P(A) + P(B)$, für alle $A, B \subset \Omega$,
- b) $P(A \cap B) = P(A)P(B)$, für alle $A, B \subset \Omega$,
- c) $P(A^c) = 1 P(A)$, für alle $A \subset \Omega$,
- d) Es existiert ein Ereignis A mit $P(A) = \frac{1}{2}$,
- e) $\sum_{\omega \in \Omega} P(\{\omega\}) = 1$.

4a)
$$P(A \cup B) = P(A) + P(B)$$
; $\forall A, B \in \Omega$
 $\Omega = \{0,1\}$
 $A = \Omega, B = \{0\}$
 $A \cup B = \Omega$
 $P(A \cup B) = 1 \neq 1 + \frac{1}{2} = P(A) + P(B)$

- Aussage falsch (wenn A und B disjunkt waren, dann ware Aussage wahr

4b)
$$P(A \cap B) = P(A) \cdot P(B) \Rightarrow Aussage folioch$$

Gegenbosp: $\Omega = \{1,2,3\}$
 $A = 1,2$; $B = 2,3$
 $A \cap B = 2$
 $P(A \cap B) = \frac{2}{3}$
 $P(A) \cdot P(B) = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{5}$ $\frac{4}{5} \cdot \frac{4}{5} = \frac{4}{5}$

$$4c) P(A^c) = \Lambda - P(A)$$

⇒ wahre Aussige ⇒ nach Salz 3.2., Eigenschaft 4 aus Skript

4d) es existiert ein Ereignio A mil
$$P(A) = \frac{1}{2} \implies \text{falloothe Auchaege}$$

Gegenbesp: $\Omega = \{1, 2, 3\}$
 $P(\Omega) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
 $P(\emptyset) = 0$, $P(\{1\}) = P(\{2\}) = P(\{3\}) = \frac{1}{3} + \frac{1}{2}$
 $P(\{1, 2\}) = P(\{1, 3\}) = P(\{2, 3\}) = \frac{1}{3} + \frac{1}{2}$
 $P(\{1, 2, 3\}) = 1 + \frac{1}{2}$