Final de Lógica 2008

- 1. V o F, justifique.
 - (a) Supongamos que φ es una sentencia de tipo τ tal que hay, salvo isomorfismo, un solo modelo de tipo τ que satisface φ . Entonces $[\varphi]$ es un átomo del álgebra de Lindenbaum $\mathcal{A}_{(\emptyset,\tau)}$.
 - (b) Sean A y B τ-álgebras. Si C es una subálgebra de A × B tal que C es isomorfa a A, entonces B tiene una subuniverso con un sólo elemento.
 - (c) Hay un modelo de tipo τ cuyo universo tiene 7 elementos, y tal que exactamento 6 de sus elementos son definibles.
 - (d) Sean A y B τ -algebras y φ una sentencia de tipo τ . Si A $\not\models \varphi$ y B $\not\models \varphi$ entonces A \times B $\not\models \varphi$.
- 2. Para la siguiente formula de tipo $\tau=(\emptyset,\emptyset,\{q^3,p^2\},a)$ encuentre una equivalente en forma normal prenexa

$$(\exists w (q(w, z, u) \equiv w) \rightarrow (\exists x \ q(x, u, y) \lor \forall y \ p(y, w))).$$

Enuncie los lemas que utilice.

- 3. Sea B un álgebra de Boole finita y sea I un ideal de B.
 - (a) Pruebe que $\theta(I) = \{(a,b) \in B : \text{hay } c \in I \text{ tal que } a \circ c = b \circ c\}$ es una congruencia de II.
 - (b) Pruebe que $b/\theta(I)$ es un átomo de $B/\theta(I)$ si y solo si hay un átomo a de B tal que $a \notin I$ y $b/\theta(I) = a/\theta(I)$.
- 4. De una prueba formal que atestigüe que

$$(\Sigma_{Ret}, \tau_{stet}) \vdash \forall x, y, z (x s(y s z) \equiv (x s y) s z).$$