fMRIPrep

Suzanne T. Witt, Ph.D.

What is fMRIPrep

- Preprocessing pipeline created by the Standard Center for Reproducible Neuroscience
- Designed to be robust, easy to use, and transparent
- Performs minimal processing: motion correction, fieldmap correction, normalization, bias field correction, and brain extraction
- Makes use of the best bits of popular software packages (e.g., ANTs, FSL, FreeSurfer, AFNI), as well as custom code

Reasons to use fMRIPrep

- Field-tested
- Reproducible
- Each step has been optimized
- Easy to use output
- Automatically generated reports for QC of each step

Reasons to not use fMRIPrep

- Data do not meet assumptions (e.g., narrow FOV)
- Need unlimited flexibility
- Have study population that does not conform to standard adult MNI templates (e.g., infants, NHP, rodent)

T1-weighted

One or more (e.g. in longitudinal studies) T1w images

One run of one task (or resting-state) time-series of blood-oxygen level (BOLD) measurements

Fuse & Conform

All T1w images are aligned and averaged to form a 3D reference image NIfTI headers are checked for validity

INU Correction

The T1w reference is run through the N4 algorithm to correct for intensity nonuniformity (INU)

Estimation of head-motion

Parameters representing bulk head motion (due to involuntary drift, swallowing, etc.) of each timepoint with respect to the reference are estimated

Atlas-based brain extraction is

Slice-timing correction

(Optional) When the acquisition time of 2D axial slices of a given timepoint is available, temporal dynamics are estimated and all slices resampled to the mid-timepoint of that TR

Brain atlas Default:

MNI152

nonlinear

v2009c

asymmetric

Skull-stripping

performed on the reference T1w image

Alignment to T1w reference

Registers activity in BOLD voxels to anatomical location

Susceptibility distortion estimation

(Optional) Find a deformation field that compensates for the distortion, when adequate acquisitions are present

Spatial normalization

Non-linear, spatial alignment to the brain atlas

Brain tissue segmentation

The brain-extracted image is classified into CSF, GM and WM

Anatomical preprocessing

preprocessin

Functional

Surface reconstruction

Surfaces of the cortical sheet are reconstructed from the anatomical information (T1w reference, T2w)

Sample on surface

Sample the BOLD signal on the surfaces reconstructed from the anatomical data

Sample in template

Resample the BOLD signal in atlas-space, concatenating all pertinent transformations

resampling of the BOLD signal in its original grid, applying corrections

Confounds

Calculate and store nuisance regressors such as noise components, motion parameters, global signals, etc.

Options of interest

- ICA-AROMA
- FreeSurfer (including longitudinal)
- Anatomy only
- Fieldmap-less distortion correction
- Multi-echo EPI
- Multiple output spaces

Things fMRIPrep does not do

- Smoothing
- ICA-FIXX
- Denoising with user-specified confounds (e.g., in preparation for resting-state analyses)

What do I need to run fMRIPrep?

Minimum requirements

- 1. Data must be in BIDS format
- 2. Must have at least one T1w image

Stuff

What is BIDS?

- BIDS is a system for naming and organizing 'raw' neuroimaging files
- BIDS is not a new file format

What is BIDS?

- BIDS is a system for naming and organizing 'raw' neuroimaging files
- BIDS is not a new file format

Animals

Household Items

Fruits and Vegetables

In practice for MRI data

task-rest_bold.json

Name

How to run fMRIPrep?

Option 1: Docker

- fMRIPrep is a Docker container
- Can be run directly from Docker

```
docker run -ti --rm \
    -v filepath/to/data/dir:/data:ro \
    -v filepath/to/output/dir:/out \
    nipreps/fmriprep:latest \
    /data /out/out \
    participant
```

Can be run using the fmriprep-docker wrapper script

```
pip install --user --upgrade fmriprep-docker

fmriprep-docker /path/to/data/dir /path/to/output/dir participant
RUNNING: docker run --rm -it -v /path/to/data/dir:/data:ro \
    -v /path/to_output/dir:/out nipreps/fmriprep:20.2.0 \
    /data /out participant
```

Option 2: Compute Canada

Khan Lab has a set of wrapper scripts: neuroglia-helpers

git clone http://github.com/khanlab/neuroglia-helpers ~/neuroglia-helpers

BIDS apps can be run using bidsBatch

bidsBatch fmriprep_20.2.0 ~/my-bids-dataset ~/my-bids-dataset/derivatives/fmriprep-v20.2.0 participant

Tips on running fMRIPrep

- Running time scales with number of functional runs
- If using Docker, it is recommended to only process one subject at a time
- If using Compute Canada, try and keep the job under 24 hours
- If time/memory is an issue, consider omitting FreeSurfer or looking into the threads and memory options for fMRIPrep

Where to get help?

- 1. fMRIPrep read the docs: https://fmriprep.org/en/stable/
- 2. Neurostars: https://neurostars.org/
- 3. fMRIPrep git page: https://github.com/nipreps/fmriprep

Output