

Taller 02

Cinemática II

Problema 1.

En un tramo de una montaña rusa, la posición del carro se puede describir como:

$$\begin{cases} u_x = c \cdot \sin(kt) \\ u_y = c \cdot \cos(kt) \\ u_z = h - b \cdot t \end{cases}$$

Se pide:

- a) Encontrar la expresión de la velocidad del carro para cualquier t.
- b) Encontrar la expresión de la aceleración del carro para cualquier t.

Problema 2.

Ignacio eleva un globo aerostático desde su bodega (origen del sistema de referencia) como muestra la Figura. La trayectoria del globo sigue la parábola $y=ax^2$, con a>0 y $x=v_ot$. Se pide:

- a) Determinar la velocidad del globo en $x = x_0$.
- b) Determinar la rapidez del globo en $x = x_0$.
- c) Determinar la aceleración del globo en $x = x_0$.

Problema 3.

Sebastián de altura h_s lanza una pelota de tenis sobre un granero de altura h, que se encuentra a distancia desconocida d de su posición. Él es poco fuerte y sólo puede tirar la pelota con velocidad (rapidez) v_A . No obstante, él puede variar el ángulo θ_A de su lanzamiento. Suponiendo que la altura máxima de la trayectoria de la pelota es justo cuando pasa por encima del granero; se pide:

- a) Determinar θ_A para que la pelota pase justo sobre el granero.
- b) La distancia horizontal d entre Sebastián y la cúspide del granero.

Problema 4.

Una bala de cañon se lanza desde el punto A con velocidad v_o . Un viento lateral que afecta la bala entregándole una aceleración constante y horizontal igual a a_x . Si se desea que la altura máxima se alcance en la misma linea que el punto A (ver imagen), la bala se debe lanzar con un ángulo α . Se pide:

- a) Determinar el ángulo α .
- b) Determinar la altura máxima h que alcanza la bala.

1/3

Problema 1

$$u = \begin{cases} c \cdot \sin(kt) \\ c \cdot \cos(kt) \\ h - bt \end{cases}$$

$$\dot{u} = \frac{du}{dt} = \left\{ -ck \cdot cos(kt) \right\}$$

$$\ddot{u} = \frac{d^2u}{dt^2} = \left\{ -\frac{ck^2 \sin(kt)}{-ck^2 \sin(kt)} \right\}$$

Problema 2

Sabernos que y(x) = ax2 con a>0, y que x = vo.t

$$\dot{u} = \frac{du}{dt} = \frac{dux}{dt} \hat{i} + \frac{duy}{dt} \hat{j} = \frac{dux}{dt} \hat{i} + \frac{duy}{dx} \cdot \frac{dx}{dt} \hat{j}$$

$$\dot{u} = v_0 \hat{i} + (2ax)(v_0)\hat{j}$$

Es decir, la velocidad cuando X = Xo es:

$$\dot{u}(x=x_0) = \left\{ \begin{array}{c} v_0 \\ 2a \times v_0 \end{array} \right\}_{\mu}$$

La rapidez es:
$$|\dot{u}(x=x_0)| = v_0 \sqrt{1 + 4a^2 x_0^2}$$

La aceleración es:
$$\ddot{u} = \frac{d^2u}{dt^2} = \frac{d^2u_x}{dt^2} + \frac{d^2u_y}{dt^2}$$

$$\ddot{u} = \frac{d}{d+2} = \frac{d^2u_x}{d+2} + \frac{d^2u_y}{d+2}$$

$$\ddot{u} = \frac{d}{d+2} \left(\frac{du_x}{d+2}\right) + \frac{d}{d+2} \left(\frac{du_y}{dx} \cdot \frac{dx}{d+2}\right) + \frac{d}{d+2} \left(\frac{du_y}{dx} \cdot \frac{dx}{d+2}\right) + \frac{d}{d+2} \left(\frac{du_x}{dx} \cdot \frac{dx}{dx}\right) + \frac$$

Problema 3

La auteración es:
$$\ddot{u} = \{-9\}$$

La velocidad es:
$$\dot{u} = \left\{ \begin{array}{l} 0 \\ -g \end{array} \right\} t + \left\{ \begin{array}{l} C_{1} \times \\ C_{2} \times \end{array} \right\}$$

La posición es:
$$u = \left\{ -\frac{0}{9} \right\} \frac{t^2}{2} + \left\{ \frac{c_{1x}}{c_{1y}} \right\} t + \left\{ \frac{c_{2x}}{c_{2y}} \right\}$$

si ponemos el origen del sistema de ejes en la mano del lanzador, entonces las condiciones uniciales son:

Es decir, la ecuación del movimiento es:

$$W = \left\{ -\frac{0}{3} \right\} \frac{t^2}{2} + re \left\{ \cos \Theta A \right\} t$$

Cuando la pelota va en su punto más alto, entonces vy=0. En dicho instante, la posición de la pelota debe ser:

Es decir:

$$U_y = 0$$
: $-gt^* + V_0 \cdot sin \Theta_A = 0$
 $U_x = d$: $V_0 \cdot cos \Theta_A \cdot t^* = d$
 $U_y = h - hs$: $-\frac{1}{2}g(t^*)^2 + V_0 \cdot sin \Theta_A \cdot t^* = h - hs$

Con la primera ecuación determinamos el tiempo t*:

, reemplazando en la 3º ecuación:

$$-\frac{1}{2}g\left(\frac{U_0^2\sin^2\theta A}{g^2}\right) + U_0\cdot\sin\theta A\left(\frac{U_0\sin\theta A}{g}\right) = h-hs$$

$$\frac{U_0^2}{g}\sin^2\theta A\left[-\frac{1}{2}+1\right] = h-hs$$

$$2g\left(h-hs\right)$$

$$sin^2 \theta_A = \frac{2g(h-hs)}{V_0^2}$$

$$\Theta_A = a \sin \left(\frac{1}{v_0} \sqrt{2g(h-h_s)} \right)$$

La distancia "d" al granero es:

, pero sabemos que: cosoa = ± VI-sinzoa = ± Voz-za(h-hs)

, donde sòlo la raiz positiva tiene sentido en nuestro problema.

Reemplazando en la ecuación para "d":

$$\sqrt{V_0^2 \left[\frac{V_0^2 - 2g(h - hs)}{V_0^2} \right] \cdot \left[\frac{2g(h - hs)}{V_0^2} \right]} = d$$

$$d = \frac{2g(h - hs)}{V_0} \sqrt{\frac{V_0^2}{2g(h - hs)}} - 1$$

* Comentario de interés: No existe solución si no se cumple que $\frac{\sqrt{6^2}}{2g(h-hs)}-1 \ge 0$ (ecuación); $\frac{2g(h-hs)}{\sqrt{6^2}} \le 1$ (ecuación) para sin θ_A) , y como 2g(h-hs) es siempre positivo (K>hs), enfonces para que exista solución, la velocidad debe ser como mínimo:

$$U_0^2 \geqslant 2g(h-hs)$$

$$U_0 \geqslant \sqrt{2g(h-hs)}$$

Problema 4

La authoración es: $\ddot{u} = \begin{cases} a_x \\ -g \end{cases}$

Integrando 2 veces y usando las undiciones iniciales:

$$u = \begin{cases} a_x & t^2 \\ -g & \frac{1}{2} + b_0 & \cos \alpha \end{cases}$$
 t

En el punto mais alto sabemos que $\dot{u}_y=0$, y queremos que en dicho punto $\dot{u}_x=0$ (que la bala se encuentre justo sobre A):

 $\ddot{u}_y = 0$: $u_x = 0$: $(\frac{a}{2})(t^*)^2 - (\sqrt{a} \cdot \sin \alpha)(t^*) = 0$ $u_y = h$: $(-9/2)(t^*)^2 + (\sqrt{a} \cdot \cos \alpha)(t^*) = h$

con la primera ecuación: $t^* = \frac{v_0 \cdot \cos \alpha}{g}$, reemplazando en la 2^{da} :

$$\left(\frac{\alpha_{x}}{2}\right)\left(\frac{\sigma^{2}\cos^{2}\alpha}{g^{2}}\right) - \left(\sigma\sin\alpha\right)\left(\frac{\sigma\cos\alpha}{g}\right) = 0$$

$$\frac{\alpha_{x}}{2g}\cos\alpha - \sin\alpha = 0$$

$$\tan\alpha = \frac{\alpha_{x}}{2g}$$

$$\alpha = \operatorname{atan}\left(\frac{\alpha_{x}}{2g}\right)$$

Reemplazando t* en la 3ºa ecuación:

$$(-\frac{g}{2})(\frac{\upsilon_0^2 \cos^2 \alpha}{g^2}) + (\upsilon_0 \cos \alpha)(\frac{\upsilon_0 \cos \alpha}{g}) = h$$

$$\frac{\upsilon_0^2 \cos^2 \alpha}{g} \left[1 - \frac{1}{2}\right] = h$$

$$h = \frac{\upsilon_0^2 \cos^2 \alpha}{2g}$$

Como sabernos que tan $\alpha = \frac{a_x}{2g}$, podemos usar geometria para obtener "cosq".

$$\cos^2 \alpha = \frac{1}{1 + \frac{\alpha x^2}{4g^2}}$$

Finalmente: $h = \frac{\sigma^2}{2g} \left(\frac{1}{1 + \frac{\alpha x^2}{4g^2}} \right) = \sigma^2 \left(\frac{1}{1 + \frac{\alpha x^2}{2g}} \right)$

