# ESP32-A1S 规格书

版本 V2.3 版权 **©**2021

免责申明和版权公告

本文中的信息,包括供参考的URL地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

文中所得测试数据均为实验室测试所得,实际结果可能略有差异。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

# 文件制定/修订/废止履历表

| 版本    | 日期           | 制定/修订内容 | 制定 | 核准 |
|-------|--------------|---------|----|----|
| V2. 2 | 2019. 11. 01 | 首次制定    |    |    |
| V2. 3 | 2021. 06. 09 | 更新资料    |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |
|       |              |         |    |    |

# 目录

| 1. 产品概述           |    |
|-------------------|----|
| 1. 1. 特性          |    |
| 2. 主要参数           |    |
| 2.1. 电气参数         |    |
| 2. 2. 申气特性        |    |
| 2.3. WIFI 射频性能    | 7  |
| 2.4. 蓝牙 (BR) 射频性能 |    |
| 2.5. 蓝牙(EDR)射频性能  | 8  |
| 2.6. BLE 射频性能     | 3  |
| 2.7. 功耗           |    |
| 3. 外观尺寸           | 10 |
| 4. 管脚定义           | 11 |
| 5. 原理图            | 13 |
| 6. 设计指导           | 16 |
| 6.1. 天线布局要求       | 16 |
| 6.2. 供电           | 16 |
| 7. 回流焊曲线图         | 17 |
| 8. 包装信息           | 18 |
| 9. 联系我们           | 18 |

## 1. 产品概述

ESP32-A1S 是Wi-Fi+BT 语音模块。该模块核心处理器芯片 ESP32 集成了 2.4 GHz Wi-Fi 和蓝牙双模,模组另外集成了 ES8388 语音编解码芯片、PSRAM 和 Flash 芯片。可广泛地应用于离在线语音产品以及各种物联网硬件终端场合。

ESP32 芯片具有行业领先的低功耗性能和射频性能,支持Wi-Fi IEEE802.11b/g/n 协议和蓝牙 V4.2 完整标准,包含传统蓝牙 (BR/EDR) 和低功耗蓝牙 (BLE)。该芯片搭载 Xtensa® 32-bit LX6 双核处理器,运算能力高达 600 MIPS,工作频率高达 240 MHz。支持二次开发,无需使用其它微控制器或处理器。芯片内置 520 KB SRAM, 448 KB ROM, 16KB RTC SRAM, 1 Kbit 的 eFuse。芯片支持多种低功耗工作状态,能够满足各种应用场景的功耗需求。

ES8388 是一款低功耗、高性价比的音频编解码芯片,内部集成了 2 路 ADC 和 2 路 DAC、麦克风放大器、耳机放大器等,可广泛应用于各种家庭智能设备、智能音响、故事机方案等,是语音产品的理想解决方案。

ESP32-A1S 模块提供丰富的外设接口,包括 UART, PWM, SPI, I2S, I2C, ADC, DAC, SDIO 以及多个 GPIO。



图 1 主芯片架构图

#### 1.1. 特性

- 支持 Wi-Fi 802.11b/g/n, 1T1R 模式数据速率高达 150Mbps
- 支持蓝牙 V4. 2 完整标准,包含传统蓝牙(BR/EDR)和低功耗蓝牙(BLE) 支持标准 Class-1、Class-2 和 Class-3
- Xtensa® 32-bit LX6 双核处理器,运算能力高达 600 MIPS
- 芯片内置 520 KB SRAM, 448 KB ROM, 16KB RTC SRAM, 1 Kbit 的 eFuse。
- 支持2路音频输入和2路音频输出,集成了麦克风放大器和耳机放大器
- 支持 UART/GPIO/ADC/DAC/PWM/I2C/I2S 接口
- 集成 64Mb PSRAM
- 采用 SMD-38 封装
- 通用 AT 指令可快速上手
- 支持二次开发,集成了Windows、Linux开发环境

# 2. 主要参数

表1 主要参数说明

|      | 衣 1 土 安 多 数 坑 圴                                               |
|------|---------------------------------------------------------------|
| 模块型号 | ESP32-A1S                                                     |
| 封装   | SMD-38                                                        |
| 尺寸   | $31.5*19.0*3.1(\pm 0.2)$ mm                                   |
| 天线形式 | 板载 PCB 天线/兼容 IPEX 天线接口                                        |
| 频谱范围 | 2400 ~ 2483.5MHz                                              |
| 工作温度 | -40 °C ~ 85 °C                                                |
| 存储环境 | $-40~^{\circ}\text{C}~^{\sim}~125~^{\circ}\text{C}$ , < 90%RH |
| 供电范围 | 供电电压 3.0V ~ 3.6V, 供电电流 >500mA                                 |
| 支持接口 | UART/GPIO/ADC/PWM/I2C/I2S/麦克风/耳机/扬声器                          |
| 串口速率 | 支持 110 ~ 4608000 bps , 默认 115200 bps                          |
| WiFi | 802. 11b/g/n                                                  |
| 蓝牙   | 蓝牙 4.2 BR/EDR 和 BLE 标准                                        |

WEP/WPA-PSK/WPA2-PSK

# 2.1. 电气参数

ESP32-A1S 模块是静电敏感设备,在搬运时需要采取特殊预防措施。



图 2 ESD 防静电图

### 2.2. 电气特性

表 2 主要参数说明

|      | 参数                                                            | 条件  | 最小值          | 典型值  | 最大值               | 单<br>位 |
|------|---------------------------------------------------------------|-----|--------------|------|-------------------|--------|
| 供电   | 电压                                                            | VDD | 3. 0         | 3. 3 | 3. 6              | V      |
| T /0 | $V_{\scriptscriptstyle \rm IL}/V_{\scriptscriptstyle \rm IH}$ | _   | -0.3/0.75VDD | _    | 0. 25VDD/VDD+0. 3 | V      |
| I/0  | $V_{ m OL}/V_{ m OH}$                                         | _   | N/0.8VI0     | _    | 0. 1VIO/N         | V      |

## 2.3. WIFI 射频性能

表3 主要参数说明

| 描述                    | 典型值           | 单位  |
|-----------------------|---------------|-----|
| 工作频率                  | 2400 - 2483.5 | MHz |
|                       | 输出功率          |     |
| 11n 模式 HT40, PA 输出功率为 | 13±2          | dBm |
| 11n 模式 HT20, PA 输出功率为 | 13±2          | dBm |
| 11g 模式下, PA 输出功率为     | 14±2          | dBm |
| 11b 模式下, PA 输出功率      | 18±2          | dBm |
|                       | 接收灵敏度         |     |

| CCK, 1 Mbps          | ≤-96         | dBm |
|----------------------|--------------|-----|
| CCK, 11 Mbps         | ≪-88         | dBm |
| 6 Mbps (1/2 BPSK)    | ≤-92         | dBm |
| 54 Mbps (3/4 64-QAM) | ≤-74         | dBm |
| HT20 (MCS7)          | <b>≤</b> −72 | dBm |
| HT40 (MCS7)          | <-70         | dBm |

# 2.4. 蓝牙 (BR) 射频性能

#### 表 4 主要参数说明

| 描述             | 典型值    | 单位  |  |  |
|----------------|--------|-----|--|--|
| 输出功率           |        |     |  |  |
| 发射功率           | 典型值8±2 | dBm |  |  |
| 接收灵敏度 低功耗蓝牙 1M |        |     |  |  |
| 灵敏度@0.1%BER    | ≪-89   | dBm |  |  |

# 2.5. 蓝牙 (EDR) 射频性能

#### 表 5 主要参数说明

|                | 0 1 2 9 % 10 71 |     |  |  |
|----------------|-----------------|-----|--|--|
| 描述             | 典型值             | 单位  |  |  |
| 输出功率           |                 |     |  |  |
| 发射功率           | 典型值 8±2 dBm     |     |  |  |
| 接收灵敏度 低功耗蓝牙 1M |                 |     |  |  |
| 灵敏度@0.01%BER   | ≪-89            | dBm |  |  |

# 2.6. BLE 射频性能

#### 表 6 主要参数说明

| <del>111</del> 7方 | 曲刑伍                                     | 出心  |
|-------------------|-----------------------------------------|-----|
| /                 | <b>一</b>                                | 1   |
|                   | , , , , , , , , , , , , , , , , , , , , | Y Y |

| 輸出功率           |        |     |  |
|----------------|--------|-----|--|
| 发射功率           | 典型值8±2 | dBm |  |
| 接收灵敏度 低功耗蓝牙 1M |        |     |  |
| 灵敏度@30.8%PER   | ≤-94   | dBm |  |

## 2.7. 功耗

下列功耗数据是基于 3.3V 的电源、25°C 的环境温度,并使用内部稳压器测得。

- 所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。
- 所有发射数据是基于 50% 的占空比, 在持续发射的模式下测得的。

#### 表7 主要参数说明

| 模式                                      | 最小值 | 典型值 | 最大值 | 单位 |
|-----------------------------------------|-----|-----|-----|----|
| 传送 802.11b, CCK 1Mbps,<br>POUT=+19.5dBm | _   | 240 | _   | mA |
| 传送 802.11g,OFDM 54Mbps,POUT<br>=+16dBm  | -   | 190 | -   | mA |
| 传送 802.11n, MCS7, POUT =+14dBm          | _   | 180 | _   | mA |
| 接收 802. 11b, 包长 1024 字节                 | _   | 95  | _   | mA |
| 接收 802. 11g, 包长 1024 字节                 | _   | 95  | _   | mA |
| 接收 802.11n,包长 1024 字节                   | _   | 93  | _   | mA |
| Modem-Sleep①                            | _   | 20  | _   | mA |
| Light-Sleep②                            | _   | 130 | _   | μА |
| Deep-Sleep③                             | _   | 5   | _   | μА |
| Power Off                               | _   | 1   | _   | μА |

# 3. 外观尺寸



图 3 模组外观图(渲染图仅供参考,以实物为准)



图 4 模组尺寸图

# 4. 管脚定义



图 5 管脚示意图

ESP32-A1S 模组共接出 38 个接口,如管脚示意图,管脚功能定义表是接口定义。 表 8 ESP32-A1S 管脚功能定义表

| 脚序 | 名称        | 功能说明                                                                               |
|----|-----------|------------------------------------------------------------------------------------|
| 1  | GND       | 接地                                                                                 |
| 2  | 3V3       | 供电,推荐 3.3V,大于 500mA                                                                |
| 3  | SENSOR_VN | GPI39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPI03                                       |
| 4  | SENSOR_VP | GPI36, SENSOR_VP, ADC_H, ADC1_CHO, RTC_GPI00                                       |
| 5  | 1034      | GPI34, ADC1_CH6, RTC_GPI04                                                         |
| 6  | 100       | GPIOO, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK                         |
| 7  | I014      | GPI014, ADC2_CH6, TOUCH6, RTC_GPI016, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2    |
| 8  | I012      | GPI012, ADC2_CH5, TOUCH5, RTC_GPI015, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3  |
| 9  | 1013      | GPI013, ADC2_CH4, TOUCH4, RTC_GPI014, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER |
| 10 | I015      | GPI015, ADC2_CH3, TOUCH3, MTD0, HSPICS0, RTC_GPI013, HS2_CMD, SD_CMD, EMAC_RXD3    |
| 11 | 102       | GPI02, ADC2_CH2, TOUCH2, RTC_GPI012, HSPIWP,                                       |

|    |         | HS2_DATA0, SD_DATA0                        |  |  |
|----|---------|--------------------------------------------|--|--|
| 12 | 104     | GPI04, ADC2_CH0, TOUCH0, RTC_GPI010, HSPIH |  |  |
|    |         | HS2_DATA1, SD_DATA1, EMAC_TX_ER            |  |  |
| 13 | HBIAS   | 内部 1K 电阻上拉到 AVCC                           |  |  |
| 14 | MIC2N   | 音频芯片 RIN2 通道                               |  |  |
| 15 | MIC1N   | 音频芯片 RIN1 通道                               |  |  |
| 16 | MBIAS   | 内部 1K 电阻上拉到 AVCC                           |  |  |
| 17 | MIC1P   | 音频芯片 LIN1 通道                               |  |  |
| 18 | MIC2P   | 音频芯片 LIN2 通道                               |  |  |
| 19 | GND     | 接地                                         |  |  |
| 20 | GND     | 接地                                         |  |  |
| 21 | LINEINR | 音频芯片 RIN2 通道                               |  |  |
| 22 | LINEINL | 音频芯片 LIN2 通道                               |  |  |
| 23 | NC      | NC, 悬空处理                                   |  |  |
| 24 | SPORN   | 音频芯片 ROUT1 通道                              |  |  |
| 25 | NC      | NC, 悬空处理                                   |  |  |
| 26 | SPOLN   | 音频芯片 LOUT1 通道                              |  |  |
| 27 | HPOUTL  | 音频芯片 LOUT2 通道                              |  |  |
| 28 | HPOUTR  | 音频芯片 ROUT2 通道                              |  |  |
| 29 | 105     | GPI05, HS1_DATA6, VSPICSO, EMAC_RX_CLK     |  |  |
| 30 | 1018    | GPI018, HS1_DATA7, VSPICLK                 |  |  |
| 31 | 1023    | GPI023, HS1_STROBE, VSPID                  |  |  |
| 32 | I019    | GPI019, VSPIQ, U0CTS, EMAC_TXD0            |  |  |
| 33 | 1022    | GPI022, VSPIWP, UORTS, EMAC_TXD1           |  |  |
| 34 | 1021    | GPIO21, VSPIHD, EMAC_TX_EN                 |  |  |
| 35 | EN      | 使能芯片, 高电平有效。                               |  |  |
| 36 | TXD0    | GPIO1, UOTXD, CLK_OUT3, EMAC_RXD2          |  |  |

| 37 | RXD0 | GPIO3, UORXD, CLK_OUT2 |
|----|------|------------------------|
| 38 | GND  | 接地                     |

表 9 模组启动模式说明

| V VC-17 / VC- 490/1 |    |          |        |  |  |  |  |  |  |
|---------------------|----|----------|--------|--|--|--|--|--|--|
| 系统启动模式              |    |          |        |  |  |  |  |  |  |
| 管脚                  | 默认 | SPI 启动模式 | 下载启动模式 |  |  |  |  |  |  |
| GPIO O              | 上拉 | 1        | 0      |  |  |  |  |  |  |
| GPIO 2              | 下拉 | 无关项      | 0      |  |  |  |  |  |  |

注意: 部分引脚已经内部上拉, 请参考原理图

# 5. 原理图

## 5.1. 模组原理图



#### 图 6 音频部分原理图



图 7 主芯片部分原理图

### 5.2. 应用电路图





图 8 应用电路图

## 6. 设计指导

#### 6.1. 天线布局要求

(1)、在主板上的安装位置,建议以下2种方式:

方案一: 把模组放在主板边沿, 且天线区域伸出主板边沿。

方案二: 把模组放在主板边沿, 主板边沿在天线位置挖空一个区域。

(2)、为了满足板载天线的性能,天线周边禁止放置金属件,远离高频器件。



图 9 天线布局示意图

#### 6.2. 供申

- (1)、推荐 3.3V 电压,峰值 500mA 以上电流
- (2) 、建议使用 LDO 供电;如使用 DC-DC 建议纹波控制在 30mV 以内。
- (3)、DC-DC 供电电路建议预留动态响应电容的位置,可以在负载变化较大时,优化输出纹波。
- (4)、3.3V 电源接口建议增加 ESD 器件。



图 10 DC-DC 降压电路图

### 6.3. GPIO 口的使用

- (1)、模组外围引出了一些 GPIO 口,如需使用建议在 IO 口上串联 10-100 欧姆的电阻。这样可以抑制过冲,使两边电平更平稳。对 EMI 和 ESD 都有帮助。
- (2)、特殊 I0 口的上下拉,需参考规格书的使用说明,此处会影响到模组的启动配置。
- (3)、模组的 IO 口是 3.3V 如果主控与模组的 IO 电平不匹配,需要增加电平转换电路。
- (4)、如果 IO 口直连到外围接口,或者排针等端子,建议在 IO 走线靠近端子处预留 ESD 器件。



图 11 电平转换电路

## 7. 回流焊曲线图



图 12 回流焊曲线图

# 8. 包装信息

如下图示, ESP32-A1S 的包装为编带。



图 13 包装图