

FCC TEST REPORT

FCC ID: 2AKCU-3013141

On Behalf of

Zebra A/S

SELFIE STICK WITH REMOTE PRINT 4 MIX

Model No.: 3013141

Prepared for : Zebra A/S

Address : Strandgade 71-73, DK-1401 Copenhagen K Denmark

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : T1881685 01

Date of Receipt : December 01, 2018

Date of Test : December 01-13, 2018

Date of Report : December 15, 2018

Version Number : REV0

TABLE OF CONTENTS

<u>De</u>	escrip	tion	<u>Page</u>
1.	Sum	mary of Standards And Results	6
	1.1.	Description of Standards and Results	6
2.	Gen	eral Information	
	2.1.	Description of Device (EUT)	
	2.2.	Accessories of Device (EUT)	
	2.3.	Tested Supporting System Details	
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	
	2.6.	Test Conditions	_
	2.7.	Additional instructions	
	2.8.	Test Facility	
	2.9.	Measurement Uncertainty	
	2.10.	1 1	
3.	_	rious Emission	
	3.1.	Test Limits	
	3.2.	Test Procedure	
	3.3.	Test Setup	
	3.4.	Test Results	
4.		er Line Conducted Emission	
	4.1.	Test Limits	_
	4.2.	Test Procedure	
	4.3.	Test Setup	
_	4.4.	Test Results	
5.		ducted Maximum Output Power	
	5.1.	Test limits	_
	5.2.	Test Procedure	
	5.3.	Test Setup	
_	5.4.	Test Results	_
6.		x Power Spectral Density	
	6.1.	Test limits Test Procedure	-
	6.2. 6.3.	Test Setup	
		Test Results	
7.	6.4.	dwidth	
/•	7.1.	Test limits	
	7.1.	Test Procedure	
	7.2.	Test Setup	
	7.3. 7.4.	Test Results	
8.		d Edge Check	
0.	8.1.	Test limits	
	8.2.	Test Procedure	
	8.3.	Test Results	
9.		enna Requirement	
-•	9.1.	Standard Requirement	
		Antenna Connected Construction	

Page 3 of 36	Report No.: T1881685 01	

9.3. Results ----- 36

TEST REPORT DECLARATION

Applicant : Zebra A/S

Address : Strandgade 71-73, DK-1401 Copenhagen K Denmark

Manufacturer : NINGBO SELECTED ELECTRICAL APPLIANCES CO., LTD

Address NO.98 3ZONE PUXI, LINHAI VILLAGE, LINSHAN TOWN, YUYAO, NINGBO,

· ZHEJIANG

Model Name : 3013141

(A) Model No. : 3013141(B) Trademark : N/A

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2017, ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue...... December 15, 2018

Page 5 of 36 Report No.: T1881685 01

Revision History

Revision	Issue Date	Revisions	Revised By
00	December 15, 2018	Initial released Issue	Simple Guan

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Test Requirement	Standards Paragraph	Result	
Conducted Emission	FCC PART 15:2017	15.207	N/A	
6dB Bandwidth	FCC PART 15:2017	15.247 (a)(2)	P	
Output Power	FCC PART 15:2017	15.247 (b)(3)	P	
Radiated Spurious Emission	FCC PART 15:2017	15.247 (c)	Р	
Conducted Spurious & Band Edge Emission	FCC PART 15:2017	15.247 (d)	P	
Power Spectral Density	FCC PART 15:2017	15.247 (e)	P	
Radiated Band Edge Emission	FCC PART 15:2017	15.205	P	
Antenna Requirement	FCC PART 15:2017	15.203	P	
RF Exposure Evaluation	KDB447498 D01V06	4.1(f), 4.3.1(a)	P	
Note: 1. P is an abbreviation for Pass.				
2. F is an abbreviation for Fail.				
3. N/A is an abbreviation for Not Applicable.				

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Description : The product is built with Bluetooth compatibility

Model Name : SELFIE STICK WITH REMOTE PRINT 4 MIX

Model Number : 3013141

Diff : N/A

Trademark : N/A

Test Voltage : DC 3V from battery

Bluetooth Version : Bluetooth 4.0 BLE

Operation

frequency

: 2402-2480MHz

Channel No.

: 40 Channels

Modulation type :

: GFSK

Antenna Type

: PCB Antenna, Maximum Gain is -3dBi

Software version : V1.0 Hardware version : V1.0

Length: 52mm

Product Size : Width: 33mm

Height: 11mm

Page 8 of 36 Report No.: T1881685 01

2.2.Accessories of Device (EUT)

Power Source : N/A

2.3.Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or sDOC
1	N/A	N/A	N/A	N/A	N/A

2.4.Block Diagram of connection between EUT and simulators

EUT

2.5.Test Mode Description

Tested mode, channel, and data rate information					
Mode Channel		Frequency (MHz)			
	Low :CH0	2402			
GFSK	Middle: CH19	2440			
	High: CH39	2480			

2.6.Test Conditions

Items	Required	Actual
Temperature range:	15-35℃	25℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	98kPa

2.7. Additional instructions

Software (Used for test) from client

Mode	Special Hardware operating is used. The Hardware operating method is provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.			
Power level setup by client				
Mode	Channel	Frequency (MHz)	Soft Set	
GFSK	CH0	2402	TV 11: 1-f1	
	CH19	2440	TX level is set as defaults value.	
	CH39	2480	value.	

Page 10 of 36 Report No.: T1881685 01

2.8.Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 Designation Number: CN1236

July 25, 2017 Certificated by IC Registration Number: 12135A

2.9. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.8×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	%
Uncertainty for DC and low requency voltages	0.06%

Equipment	Manufacturer	Model No.	Serial No.	Last cal.	Cal. Due day
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2018.04.13	2020.04.12
Spectrum analyzer	Agilent	E4407B	MY49510055	2018.09.21	2019.09.20
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2018.04.13	2020.04.12
Filter	KANGMAI	ZLPF-LDC-10 00- 1959	1209002075	2018.09.21	2019.09.20
Filter	WAINWRIGHT	WHKX2.80 /18G- 12SS	SN1	2018.09.21	2019.09.20
RF Cable	Resenberger	Cable 4	N/A	2018.09.21	2019.09.20
Signal Analyzer	Agilent	N9020A	MY499100060	2018.09.11	2019.09.10
vector Signal Generator	Agilent	N5182A	MY49060042	2018.09.11	2019.09.10
vector Signal Generator	Agilent	E4438C	US44271917	2018.09.11	2019.09.10
Amplifier	НР	HP8347A	2834A00455	2018.09.21	2019.09.20
Amplifier	Agilent	8449B	3008A02664	2018.04.13	2020.04.12
Filter	WAINWRIGHT	WHKX1.0G/1 5G- 10SS	SN40	2018.09.21	2019.09.20
Test Receiver	ROHDE&SCHWA RZ	ESR	1316.3003K03- 102082-Wa	2018.09.21	2019.09.20
9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2016.07.21	2020.07.20
RF Cable	Resenberger	Cable 1	N/A	2018.09.21	2019.09.20
RF Cable	Resenberger	Cable 2	N/A	2018.09.21	2019.09.20
RF Cable	Resenberger	Cable 3	N/A	2018.09.21	2019.09.20
Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018.09.26	2020.09.25
Attenuator	HP	8494B	DC-18G	2018.09.21	2019.09.20
Attenuator	НР	8496B	DC-18G	2018.09.21	2019.09.20
20dB Attenuator	ICPROBING	IATS1	82347	2018.09.21	2019.09.20
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170294	2017.02.22	2019.02.21

Page 11 of 36

3. SPURIOUS EMISSION

3.1.Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uV/m)

3.2.Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, the table was rotated 360 degrees to determine the position of the highest radiation

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

3.3.Test Setup

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

3.4.Test Results

Test Condition

Continually Transmitting in maximum power.

9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHZ~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned the 10th harmonic from 9 kHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1. If the amplitude of the spurious emission is more than 20dB above the allowable value, it's considered too low relative to the limit value, no necessary to report.

2. For above 1GHz test, if peak Result comply with AV limit, AV Result is deemed to comply with AV limit, no necessary to report.

Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	39.0242	11.66	14.20	25.86	40.00	-14.14	peak			
2		99.8777	15.27	10.60	25.87	43.50	-17.63	peak			
3		151.0663	11.05	14.56	25.61	43.50	-17.89	peak			
4		332.5187	9.47	14.32	23.79	46.00	-22.21	peak			
5		413.2706	10.23	15.96	26.19	46.00	-19.81	peak			
6		612.0642	10.59	19.75	30.34	46.00	-15.66	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.4237	10.86	13.30	24.16	40.00	-15.84	peak			
2		61.9949	8.97	12.55	21.52	40.00	-18.48	peak			
3		148.4410	10.45	14.44	24.89	43.50	-18.61	peak			
4		339.5887	11.13	14.42	25.55	46.00	-20.45	peak			
5		393.4723	10.66	15.41	26.07	46.00	-19.93	peak			
6	*	726.8052	12.18	21.33	33.51	46.00	-12.49	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

TX:2402MHz Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	1	162.182	50.22	-8.36	41.86	74.00	-32.14	peak			
2	2	521.664	45.67	-3.32	42.35	74.00	-31.65	peak			
3	4	242.641	47.89	-4.52	43.37	74.00	-30.63	peak			
4	6	564.209	45.18	0.75	45.93	74.00	-28.07	peak			
5	1	0514.57	41.42	5.20	46.62	74.00	-27.38	peak			
6	* 1	3677.96	41.49	6.43	47.92	74.00	-26.08	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX:2402MHz Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		1017.494	50.35	-8.64	41.71	74.00	-32.29	peak			
2		1565.190	48.51	-6.89	41.62	74.00	-32.38	peak			
3		2536.283	47.45	-3.29	44.16	74.00	-29.84	peak			
4		3958.309	51.16	-5.19	45.97	74.00	-28.03	peak			
5		6756.708	44.82	1.13	45.95	74.00	-28.05	peak			
6	*	12044.52	42.13	5.59	47.72	74.00	-26.28	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX:2440MHz Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	1	017.494	50.35	-8.64	41.71	74.00	-32.29	peak			
2	1	565.190	48.51	-6.89	41.62	74.00	-32.38	peak			
3	2	536.283	47.45	-3.29	44.16	74.00	-29.84	peak			
4	3	958.309	51.16	-5.19	45.97	74.00	-28.03	peak			
5	6	756.708	44.82	1.13	45.95	74.00	-28.05	peak			
6	* 1	2044.52	42.13	5.59	47.72	74.00	-26.28	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX:2440MHz Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		1354.577	53.25	-7.15	46.10	74.00	-27.90	peak			
2		2521.664	48.67	-3.32	45.35	74.00	-28.65	peak			
3		3242.619	47.51	-2.28	45.23	74.00	-28.77	peak			
4		4959.307	49.51	-2.58	46.93	74.00	-27.07	peak			
5	*	7200.309	44.76	3.46	48.22	74.00	-25.78	peak			
6		13677.96	41.49	6.43	47.92	74.00	-26.08	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX:2480MHz Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	,	1601.804	48.14	-6.83	41.31	74.00	-32.69	peak			
2	,	3242.619	45.51	-2.28	43.23	74.00	-30.77	peak			
3	4	4804.110	47.59	-2.93	44.66	74.00	-29.34	peak			
4		7200.309	43.76	3.46	47.22	74.00	-26.78	peak			
5	{	8613.467	42.83	3.91	46.74	74.00	-27.26	peak			
6	* ,	15622.99	43.12	4.76	47.88	74.00	-26.12	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX:2480MHz Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	,	1538.281	49.18	-6.94	42.24	74.00	-31.76	peak			
2		2428.671	47.06	-3.40	43.66	74.00	-30.34	peak			
3	4	4667.241	49.81	-3.33	46.48	74.00	-27.52	peak			
4		7497.646	43.29	3.29	46.58	74.00	-27.42	peak			
5	1	8539.102	43.45	3.76	47.21	74.00	-26.79	peak			
6	* '	16409.81	43.62	4.37	47.99	74.00	-26.01	peak			

The data for 18G-25GHz is very low, so not be shown

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

4. Power Line Conducted Emission

4.1. Test Limits

Frequency	Limits dB(μV)						
MHz	Quasi-peak Level	Average Level					
0.15 -0.50	66 -56*	56 - 46*					
0.50 -5.00	56	46					
5.00 -30.00	60	50					

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9 kHz.

4.3.Test Setup

Page 24 of 36 Report No.: T1881685 01

4.4.Test Results

The product supplied by battery only, so this item does not applicable.

5. CONDUCTED MAXIMUM OUTPUT POWER

5.1.Test limits

Please refer section 15.247.

5.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V04

- 5.2.1 Place the EUT on the table and set it in transmitting mode.
- 5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3.Test Setup

5.4.Test Results

Channel	Frequency (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)				
СН0	2402	-0.894	0.81	30				
CH19	2440	-0.971	0.80	30				
CH39	2480	-1.019	0.79	30				
Conclusion: PAS	Conclusion: PASS							

6. PEAK POWER SPECTRAL DENSITY

6.1.Test limits

- 6.1.1 Please refer section 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

6.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V04

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: $3kHz \le RBW \le 100 kHz$.), VBW = 10kHz(Set the VBW $\ge 3 \times RBW$), span= $1.5 \times DTS$ bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.3. Test Setup

6.4. Test Results

Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm)	Result
CH0	2402	-10.624	8	PASS
CH19	2440	-11.250	8	PASS
CH39	2480	-11.262	8	PASS
Conclusion: PAS	S		_	

Low channel-2402MHz

Middle channel-2440MHz

High channel-2480MHz

7. BANDWIDTH

7.1.Test limits

Please refer section 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

7.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V04

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100kHz, VBW ≥ 3*RBW = 300kHz,, Sweep time set auto, detail see the test plot.

7.3.Test Setup

7.4. Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
СН0	2402	0.823	0.5	PASS
CH19	2440	0.827	0.5	PASS
CH39	2480	0.835	0.5	PASS

Low channel-2402MHz

Middle channel-2440MHz

8. BAND EDGE CHECK

8.1.Test limits

Please refer section 15.247.

8.2.Test Procedure

Details see the KDB558074 D01 Meas Guidance V04

- 8.2.1 Put the EUT on a 1.5m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 8.2.2 Check the spurious emissions out of band.
- 8.2.3 Both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure. Test Setup Same as 5.2.2.

8.3.Test Results

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency.. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: 1. The amplitude of the spurious emission is more than 20dB above the allowable value, it's considered too low relative to the limit value, no necessary to report.

2. For above 1GHz test, if peak Result comply with AV limit, AV Result is deemed to comply with AV limit, no necessary to report.

Page 31 of 36 Report No.: T1881685 01

Radiated Method:

TX 2402MHz Horizontal

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Page 32 of 36 Report No.: T1881685 01

TX 2402MHz Vertical

2

2402.080

Note:1. *: Maximum data; x: Over limit; !: over margin.

81.13

-3.41

77.72

74.00

3.72

peak

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Report No.: T1881685 01 Page 33 of 36

TX 2480MHz Horizontal

No.	. Mi	k. Freq.	Reading Level	Correct Factor		Limit	Margin		Antenna Height		
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	*	2480.160	84.69	-3.38	81.31	74.00	7.31	peak			
2		2483.500	45.36	-3.38	41.98	74.00	-32.02	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

TX 2480MHz Vertical

	No.	Mł	k. Freq.		Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
			MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
_	1	*	2480.160	78.09	-3.38	74.71	74.00	0.71	peak			
_	2		2483.500	45.05	-3.38	41.67	74.00	-32.33	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note: If peak Result comply with AV limit, QP and AV Result is deemed to comply with AV limit

Conducted Method: GFSK

9. ANTENNA REQUIREMENT

9.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction

The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.

9.3.Results

The EUT antenna is an internal Coaxial Antenna. It complies with the standard requirement.