



# HJEMMEEKSAMEN MET4

Vår 2020

**Dato:** 15. mai 2020

**Tidsrom:** 09:00 - 13:00

Antall timer: 4

#### BESVARELSEN SKAL LEVERES I WISEFLOW

På våre nettsider finner du informasjon om hvordan du leverer din besvarelse: https://www.nhh.no/for-studenter/eksamen/innlevering-individuelt-og-i-gruppe/

Kandidatnummer blir oppgitt på StudentWeb i god tid før innlevering. Kandidatnummer skal være påført på alle sider øverst i høyre hjørne (ikke navn eller studentnummer). Ved gruppeinnlevering skal alle gruppemedlemmers kandidatnummer påføres.

Samarbeid mellom individer eller grupper om utarbeidelse er ikke tillatt, og utveksling av egenprodusert materiale til andre individer eller grupper skal ikke forekomme. En besvarelse skal bestå av individets, eller gruppens egne vurderinger og analyse. All kommunikasjon under hjemmeeksamen er å anse som fusk. Alle innleverte oppgaver blir behandlet i Urkund, NHHs datasystem for tekst- og plagiatkontroll

#### UTFYLLENDE BESTEMMELSER OM EKSAMEN

https://www.nhh.no/globalassets/for-studenter/forskrifter/utfyllende-bestemmelser-til-forskrift-om-fulltidsstudiene-ved-nhh.pdf

Antall sider, inkludert forside: 10

Antall vedlegg: 5 (Alle vedlegg følger etter oppgavene)

#### **Oppgave 1**

I forbindelse med kommunevalgkampen i 2019 var det fokus på utslipp av klimagasser. To av regjeringspartiene, Høyre og Venstre, ønsket å formidle budskapet om at Norges klimagassutslipp hadde gått ned under deres regjeringstid, og publiserte de to grafene som er vist i **Vedlegg 1a** og **1b**.

Begge disse figurene ble kritisert for å vere misvisende. På hvilke(n) måte(r) er de det? Beskriv kort med ord hvordan du tenker at figurene kunne vært mindre misvisende.

## Oppgave 2

Lokal luftforurensing er et stort problem i mange byområder. Som ledd i en større kartlegging av luftkvaliteten i en stor europeisk by har myndighetene satt opp en sensor langs en travel innfartsåre som måler en rekke parametre hver time, deriblant konsentrasjonen av nitrogendioksid  $(NO_2)$ . Dette er en gass som i store doser kan føre til svekket lungefunksjon og forverring av astma og bronkitt.

Vi skal i denne oppgaven undersøke data fra denne måleren, og ser på den gjennomsnittlige daglige konsentrasjonen av  $NO_2$ , målt over en periode på 391 dager. I første omgang ønsker vi å se om det er forskjell i forventet  $NO_2$ -konsentrasjon mellom helgedager (lørdag og søndag) og ukedager (mandag til fredag). I tabellen under finner vi en deskriptiv statistikk for målingene fordelt på de to kategoriene. Måleenheten er mikrogram per kubikkmeter ( $\mu$ g/m³).

|          | Gj. snitt | St. avvik | Median | Min  | Max   | N   |
|----------|-----------|-----------|--------|------|-------|-----|
| Ukedager | 116.8     | 31.0      | 113.2  | 43.6 | 223.2 | 279 |
| Helg     | 99.0      | 32.6      | 91.8   | 38.0 | 215.4 | 112 |

- a) Test om variansen til  $\mathrm{NO}_2$ -konsentrasjonen er lik mellom ukedager og helgedager.
- b) Test om forventet NO<sub>2</sub>-konsentrasjon er lik mellom ukedager og helgedager.
- c) Hvilke forutsetninger gjør vi for å gjennomføre testene i spørsmål a) og b)? Bruk informasjonen du har tilgjengelig til å vurdere om forutsetningene er oppfylt.

Dersom konsentrasjonen av  $NO_2$  overstiger  $100 \mu g/m^3$  er det ikke anbefalt at barn, eldre, eller personer med lungesykdommer oppholder seg utendørs i lengre perioder, og myndighetene må utstede et såkalt gult farevarsel. Vi ønsker videre å analysere om det er systematiske forskjeller også mellom ukedagene. Vi får oppgitt kontingenstabellen under, som viser antall dager med gult farevarsel, fordelt på de forskjellige ukedagene.

| Ukedag  | Antall dager med gult farevarsel | Antall dager uten gult farevarsel |
|---------|----------------------------------|-----------------------------------|
| Mandag  | 31                               | 20                                |
| Tirsdag | 34                               | 17                                |
| Onsdag  | 38                               | 15                                |
| Torsdag | 36                               | 16                                |
| Fredag  | 42                               | 9                                 |

d) Test om kjennetegnene "gult farevarsel" og "ukedag" er uavhengige. Hva betyr resultatet i praksis? Du får oppgitt at testobservatoren i den aktuelle testen er gitt ved  $\chi^2 = 6.14$  (Du trenger altså ikke skrive opp hele utregningen av testobservatoren, det holder at du viser hvordan det kan gjøres).

For å bedre forstå hvilke faktorer som forklarer variasjon i NO<sub>2</sub>-konsentrasjon setter vi opp en regresjonsmodell basert på et datasett med følgende forklaringsvariabler:

| Variabel                                                           | Forklaring                                                                                                                                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WeekdayMonday - WeekdaySunday<br>Temperature<br>Humidity<br>Winter | Dummyer som angir dag Daglig gjennomsnittlig lufttemperatur (°C) Daglig gjennomsnittlig relativ luftfuktighet (%-poeng) Dummy som tar verdien 1 fra oktober t.o.m. mars, 0 ellers |

- I **Vedlegg 2** finner du en lineær regresjonsmodell med  $NO_2$ -konsentrasjonen som responsvariabel i kolonne (1).
- e) For en gitt årstid, temperatur og luftfuktighet, hvilken ukedag har i følge den estimerte regresjonsmodellen høyest forventet NO<sub>2</sub>-konsentrasjon?
- f) Gi en kortfattet fortolkning av regresjonsmodell (1) i Vedlegg 2.
- g) Bruk figurene i Vedlegg 3 til å diagnostisere regresjonsmodell (1) i Vedlegg 2. Skriv kortfattet.

Vi tilpasser en ny regresjonsmodell med de samme forklaringsvariablene, men denne gangen bruker vi logistisk regresjon, og som responsvariabel bruker vi dummyvariabelen danger\_warning, som indikerer om gjenomsnittskonsentrasjonen av NO<sub>2</sub> den aktuelle dagen oversteg  $100 \ \mu \text{g/m}^3$ , og at myndighetene derfor måtte utstede gult farevarsel. Den estimerte modellen er gitt i kolonne (2) i **Vedlegg 2**.

h) På hvilken måte gir den logistiske regresjonen et annet bilde enn resultatet vi fikk i oppgave d)? Hvordan forklarer du det?

Myndighetene må bestemme seg for om de skal utstede farevarsel et døgn i forveien. I morgen er det lørdag 16. mai, og i den aktuelle byen er det meldt en gjennomsnittlig temperatur på 19 °C og en gjennomsnittlig relativ luftfuktighet på 47%.

i) Bruk den logistiske regresjonsmodellen til å predikere sannsynligheten for at gjennomsnittlig NO<sub>2</sub>-konsentrasjon overstiger 100  $\mu$ g/m<sup>3</sup>. Gi en kort vurdering

om myndighetene bør utstede gult farevarsel. (Husk at luftfuktigheten er gitt på skala 0-100, og ikke 0-1)

j) Svar spørsmål i) ved å benytte den lineære regresjonsmodellen i Vedlegg 2, kolonne (1) i stedet. Se bort fra usikkerhet knyttet til estimering av regresjonskoeffisientene når du svarer på dette spørsmålet.

#### **Oppgave 3**

Vi tenker oss at konsentrasjonen av  $NO_2$  ved tidspunkt t kan skrives på følgende måte:

$$NO2_t = T_t + S_t + R_t,$$

der  $T_t$  er en trendkomponent,  $S_t$  er en sesongkomponent og  $R_t$  er residualserien, altså det som ikke fanges opp av trend- og sesongkomponentene. I **Vedlegg 4** ser vi et plott av  $NO2_t$ , samt estimerte trend- og sesongkomponenter, og et autokorrelasjonsplott for residualtidsrekken.

- a) Forklar *kort* hva vi lærer av å se på de estimerte trend- og sesongkomponentene.
- I Vedlegg 5 har vi tilpasset to ulike tidrekkemodeller til residualtidsrekken  $R_t$ .
- b) Hvilke to tidsrekkemodeller har vi tilpasset? Hvilken av de to modellene passer best til datasettet? Begrunn svaret, både ved hjelp av utskriftene i Vedlegg 5 og en av figurene i Vedlegg 4.

Anta at den beste modellen fra spørsmål **b**) representerer den *sanne* modellen for residualtidsrekken  $R_t$ .

c) Er R<sub>t</sub> stasjonær? Begrunn svaret.

### Vedlegg 1a: Graf publisert av Høyre



**Bakgrunn:** Denne grafen ble publisert av Høyre på Facebook 1. november 2019, og viser norske  $CO_2$ -utslipp (i 1000 tonn  $CO_2$ -ekvivalenter) som funksjon av tid. Høyre overtok regjeringsmakten sammen med Fremskrittspartiet etter stortingsvalget i 2013.

#### **Vedlegg 1b: Graf publisert av Venstre**



**Bakgrunn:** Denne grafen ble publisert av klima- og miljøminister Ola Elvestuen fra Venstre på Twitter 1. november 2019 (men senere tatt bort), og viser norske  $CO_2$ -utslipp (i 1000 tonn  $CO_2$ -ekvivalenter) som funksjon av tid. Venstre gikk inn i regjering sammen med Høyre og Fremskrittspartiet i januar 2018.

# Vedlegg 2: Regresjonsutskrifter

|                                        | Dependent variable:     |                 |  |
|----------------------------------------|-------------------------|-----------------|--|
|                                        | no2                     | danger_warning  |  |
|                                        | OLS                     | logistic        |  |
|                                        | (1)                     | (2)             |  |
| WeekdayMonday                          | -16.562***              | -1.587***       |  |
|                                        | (4.958)                 | (0.521)         |  |
| WeekdaySaturday                        | -19.239***              | -2.292***       |  |
|                                        | (4.889)                 | (0.519)         |  |
| WeekdaySunday                          | -35.619***              | -2.730***       |  |
|                                        | (5.050)                 | (0.545)         |  |
| WeekdayThursday                        | -4.949                  | -0.915*         |  |
|                                        | (4.930)                 | (0.521)         |  |
| WeekdayTuesday                         | -11.389**               | -1.147**        |  |
|                                        | (4.946)                 | (0.523)         |  |
| WeekdayWednesday                       | -5.857                  | -0.825          |  |
|                                        | (4.909)                 | (0.525)         |  |
| Temperature                            | -1.787***               | -0.086***       |  |
|                                        | (0.252)                 | (0.025)         |  |
| Humidity                               | -0.517***               | -0.044***       |  |
|                                        | (0.121)                 | (0.013)         |  |
| Winter                                 | 17.688***               | 1.289***        |  |
|                                        | (4.187)                 | (0.393)         |  |
| Constant                               | 172.893***              | 5.052***        |  |
|                                        | (9.485)                 | (1.043)         |  |
| <br>Observations                       | <br>349                 | 349             |  |
| R2                                     | 0.431                   |                 |  |
| Adjusted R2                            | 0.416                   |                 |  |
| Log Likelihood                         |                         | -185.570        |  |
| Akaike Inf. Crit.                      |                         | 391.141         |  |
| Residual Std. Error                    |                         |                 |  |
| F Statistic                            | 28.489*** (df = 9; 339) |                 |  |
| ====================================== |                         | 0.05; ***p<0.01 |  |

## Vedlegg 3: Diagnoseplott til regresjon (1) i Vedlegg 2



### Vedlegg 4: Dekomponering av tidsrekke



#### Forklaring:

- $\bullet\,$  Oppe til venstre er  $\mathrm{NO}_2$ -konsentrasjonen plottet gjennom observasjonsperioden sammen med en estimert trendkomponent.
- Oppe til høyre har vi plottet sesongkomponenten, som har en periode på 7 dager.
- Nede til venstre har vi plottet NO<sub>2</sub>-konsentrasjonen etter at vi har trukket ut trend- og sesongkomponentene fra tidsrekken ("residualene").
- Nede til høyre ser vi den estimerte autokorrelasjonsfunksjonen til residualtidsrekken.

## Vedlegg 5: To estimerte tidsrekkemodeller for Rt

```
Call:
arima(x = airquality_ts$residuals, order = c(1, 0, 0))
Coefficients:
        ar1 intercept
     0.6245
             -0.0821
s.e. 0.0393
                2.3389
sigma^2 estimated as 304.1: log likelihood = -1672.83, aic = 3351.65
Training set error measures:
                     ME
                            RMSE
                                      MAE
                                                MPE
                                                       MAPE
                                                                 MASE
Training set 0.009145292 17.43983 13.27842 -133.9213 426.148 0.9166486
Training set 0.00558858
Call:
arima(x = airquality_ts$residuals, order = c(0, 0, 1))
Coefficients:
        ma1 intercept
     0.5536
             -0.0151
s.e. 0.0391
                1.4523
sigma^2 estimated as 342.3: log likelihood = -1695.86, aic = 3397.73
Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                MPE
                                                       MAPE
                                                                 MASE
Training set -0.004784311 18.50129 14.31871 14.36084 241.087 0.9884633
Training set 0.1395284
```