DISCRETE STRUCTURES Lecture 4. Partial Orderings

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Content

- Introduction
- 2 Lexicographic Order
- 4 Hasse Diagram
- Maximal and Minimal Elements
- Opper Bounds and Lower Bounds

Examples

Determine whether these relations are reflexive, symmetric, anti-symmetric, transitive

- Let $S = \{1, 2, 3, 4, 5, 6\}$ and the relation aRb if and only if $a \mid b$
- **2** Let $S = \{1, 2, 3, 4\}$ and relation $R = \{(a, b) \in S \times S : a \le b\}$
- **3** Let $S = \{a, b, c\}$ and the relation $R = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Question: What are the common properties of these relations?

Definitions

Definition 2.1

A relation R on a set A is a partial order if it is reflexive, anti-symmetric and transitive.

A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

We often denote a partial order by the pair (A, \preccurlyeq) .

Example 2.2

The divisibility relation | is a partial ordering on the set of positive integers. Hence $(\mathbb{Z}^+,|)$ is a poset.

Inclusion relation

Show that the inclusion relation \subseteq is a partial ordering on the power set of a set S.

Age

Let R be the relation on the set of people such that xRy if x and y are people and x is older than y. Show that R is not a partial ordering.

Comparable and Incomparable

Definition 2.3

The elements a and b of a poset (S, \leq) are called comparable if either $a \leq b$ or $b \leq a$.

When a and b are elements of S such that neither $a \leq b$ nor $b \leq a$, then a and b are called incomparable.

Example 2.4

In the poset $(\mathbb{Z}^+,|)$, are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Total Order

Definition 2.5

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, then S is called a totally ordered set or linearly ordered set, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.

Example 2.6

The poset (\mathbb{Z}, \leq) is totally ordered.

Example 2.7

The poset $(\mathbb{Z}+,|)$ is not totally ordered.

The words in the dictionary are listed in alphabetic, or lexicographic, order, which is based on the ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set constructed from a partial ordering on the set.

Definition 2.8

Consider two posets, (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) . The lexicographic ordering \preccurlyeq on $A_1 \times A_2$ is defined by specifying that one pair is less than a second pair if the first entry of the first pair is less than (in A_1) the first entry of the second pair, or if the first entries are equal, but the second entry of this pair is less than (in A_2) the second entry of the second pair. In other words, (a_1, a_2) is less than (b_1, b_2) , that is,

$$(a_1, a_2) < (b_1, b_2),$$

either if $a_1 <_1 b_1$ or if both $a_1 = b_1$ and $a_2 <_2 b_2$. We obtain a partial ordering \leq by adding equality to the ordering < on $A_1 \times A_2$.

Example 2.9

Determine whether (3,5) < (4,8), whether (3,8) < (4,5), and whether (4,9) < (4,11) in the poset $(\mathbb{Z} \times \mathbb{Z}, \preccurlyeq)$, where \preccurlyeq is the lexicographic ordering constructed from the usual \leq relation on \mathbb{Z} .

A lexicographic ordering can be defined on the Cartesian product of n posets $(A_1, \preccurlyeq_1), (A_2, \preccurlyeq_2), ..., (A_n, \preccurlyeq_n)$. Define the partial ordering \preccurlyeq on $A_1 \times A_2 \times \cdots \times A_n$ by

$$(a_1, a_2, ..., a_n) < (b_1, b_2, ..., b_n)$$

if $a_1 \prec_1 b_1$, or if there is an integer i > 0 such that $a_1 = b_1, ..., a_i = b_i$, and $a_{i+1} \prec_{i+1} b_{i+1}$.

The Ordered Pairs Less Than (3, 4) in Lexicographic Order.

Lexicographic Order (String)

Definition 2.10

Consider the strings $a_1a_2\cdots a_m$ and $b_1b_2\cdots b_n$ on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum of m and n. The definition of lexicographic ordering is that the string $a_1a_2\cdots a_m$ is less than the string $b_1b_2\cdots b_n$ if and only if

$$(a_1, a_2, ..., a_t) < (b_1, b_2, ..., b_t)$$

or

$$(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$$

and m < n, where < in this inequality represents the lexicographic ordering of S^t .

Example 2.11

- discreet < discrete</p>
- ② discreet ≺ discreetness
- discrete
 discretion

Bui Anh Tuan

13

Hasse Diagram

- 1 Many edges do not have to be shown because they must be present.
- 2 If we assume that all edges are pointed "upward", we do not have to show the directions of the edges.

Construction of Hasse Diagram

Construction

- Step 1 of 4: We remove all loops caused by reflexivity.
- Step 2 of 4: We remove all edges implied by the transitivity property.
- **Step 3 of 4:** We redraw edges and vertices such that the initial vertex of each edge is below its terminal vertex.
- **Step 4 of 4:** Remove all arrows from the directed edges, since they are all upward. The diagram at right is the Hasse diagram.

Example 2.12

Construct Hasse Diagram for the poset $(\{2,4,5,10,12,20,25\},|)$

Q1. Determine whether the relation with the directed graph shown is a partial order.

Q2. Find the lexicographic ordering of these n-tuples:

- a) (1,1,2), (1,2,1) b) (0,1,2,3), (0,1,3,2) c) (1,0,1,0,1), (0,1,1,1,0)
- Q3. Find the lexicographic ordering of these strings of lower- case English letters:
- a) quack,quick,quicksilver,quicksand,quacking
- b) open, opener, opera, operand, opened
- c) zoo, zero, zoom, zoology, zoological

Q4. Draw the Hasse diagram for divisibility on the set

a) {1,2,3,4,5,6}.

b) {3,5,7,11,13,16,17}.

c) {2,3,5,10,11,15,25}.

d) {1,3,9,27,81,243}.

Q5. Draw the Hasse diagram for divisibility on the set

a) {1,2,3,4,5,6,7,8}.

b) {1,2,3,5,7,11,13}.

c) {1,2,3,6,12,24,36,48}.

d) {1,2,4,8,16,32,64}.

Q6. Draw the Hasse diagram for inclusion on the set P(S), where $S = \{a,b,c,d\}$.