# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-332301

(43)Date of publication of application: 30.11.2000

(51)Int.CI.

H01L 33/00 G02B 6/122 H01L 31/0232 H05B 33/00

(21)Application number: 11-138605

(71)Applicant:

**NIPPON TELEGR & TELEPH CORP** 

<NTT>

(22)Date of filing:

19.05.1999

(72)Inventor:

ANDO YASUHIRO

ISHII YUZO

# (54) SEMICONDUCTOR DEVICE HAVING INPUT/OUTPUT MECHANISM FOR OPTICAL SIGNAL, AND MANUFACTURE THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a method for inexpensively manufacturing with a good productivity a high-performance semiconductor device which can input and output not only an electrical signal but also an optical signal while keeping a form of chip size package, and which is provided with electrode pads directly connectable to a printed circuit board to allow a multiplicity of optical inputs and outputs. SOLUTION: In the semiconductor device, a semiconductor integrated circuit is provided at its periphery with surface emitting type lasers, light emitting diodes or an array thereof which has both positive and negative electrodes provided on a side opposite to a luminous surface, a surface type optical

I ment 12 having surface type photodetectors with both positive and negative electrodes provided on a side opposite to a light receiving surface or having an array thereof, is connected to a chip by solder bump means with an electrode surface 11c of the optical element directed downwards. Further electrodes for connection of electrical signals to a printed circuit board 17 as well as a mechanism for input and output of optical signals are provided.



#### **LEGAL STATUS**

[Date of request for examination]

09.11.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### (19) 日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-332301 (P2000-332301A)

最終頁に続く

(43)公開日 平成12年11月30日(2000.11.30)

| (51) Int.Cl.7 | 識別記号                  | FΙ           | テ <b>ーマコード(参考)</b>   |
|---------------|-----------------------|--------------|----------------------|
| H01L 33/00    |                       | H01L 33/00   | M 2H047              |
| G02B 6/122    |                       | H05B 33/00   | 3 K 0 0 7            |
| H01L 31/023   | 2                     | G02B 6/12    | B 5F041              |
| H 0 5 B 33/00 |                       | H01L 31/02   | C 5F088              |
|               |                       | 審査請求 未       | 請求 請求項の数6 OL (全10頁)  |
| (21)出願番号      | <b>特願平11-138605</b>   | (1-) [-1-01] | 0004226<br>本電信電話株式会社 |
| (22)出願日       | 平成11年5月19日(1999.5.19) | 東            | 京都千代田区大手町二丁目3番1号     |
|               |                       | (72)発明者 安    | 東塚博                  |
|               |                       | 東            | 京都新宿区西新宿三丁目19番2号 日本  |
|               |                       | 電            | 信電話株式会社内             |
|               |                       | (72)発明者 石    | 井 雄三                 |
|               |                       | 東            | 京都新宿区西新宿三丁目19番2号 日本  |
|               |                       | 電            | 信電話株式会社内             |
|               |                       | (74)代理人 10   | 0068353              |
|               |                       | 弁            | 理士中村(純之助(外2名)        |

# (54) [発明の名称] 光学的信号の入出力機構を有する半導体装置およびその製造方法

# (57)【要約】

【課題】チップサイズパッケージの形態を保ったままで、電気的な信号の入出力に加えて、光学的な信号の入出力も行える高性能の半導体装置を安価に提供する。また、プリント基板に直接接続できる電極パッドを設け、多数の光学的な入出力も行える半導体装置を生産性良く安価に製造できる方法を提供する。

【解決手段】半導体集積回路の周辺部に、発光面の反対側に正と負の両電極を有する面発光型レーザ、発光ダイオードまたはそれらのアレイを備え、受光面の反対側に正と負の両電極を有する面型受光素子またはそのアレイを備えた面型光素子を、面型光素子の電極面を下にしてはんだバンプ手段により接続し、プリント基板への電気的信号の接続を可能とする電極に加えて、光学的信号の入出力機構を有する半導体装置とする。



1

### 【特許請求の範囲】

【請求項1】半導体集積回路に、プリント基板への電気的信号の接続が可能な電極を有し、上記半導体集積回路を構成している素子表面は樹脂材料によって保護され、該半導体集積回路は、それ自体でプリント基板に搭載可能なチップサイズパッケージ構造を有する半導体装置であって、上記半導体集積回路の周辺部に、発光面の反対側に正と負の両電極を有する面発光型レーザ、発光ダイオードまたはそれらのアレイを備え、受光面の反対側に正と負の両電極を有する面型受光素子またはそのアレイを備えた面型光素子を、該面型光素子の電極面を下にしてはんだ付け手段により接続され、上記プリント基板への電気的信号の接続を可能とする電極に加えて、上記半導体装置の光学的信号の入出力をも可能とする光学的信号の入出力手段を接続してなることを特徴とする光学的信号の入出力機構を有する半導体装置。

【請求項2】請求項1において、上記はんだ付け手段は、はんだバンプによる接続手段であり、面型光素子の発光側または受光側の表面にも、はんだバンプを形成可能とする金属層を有することを特徴とする光学的信号の 20 入出力機構を有する半導体装置。

【請求項3】請求項1または請求項2において、上記面型光素子の発光側または受光側の表面もしくは裏面に、 集光作用を有するレンズ状物体を加工または形成するか、もしくはあらかじめ成形したレンズ状物体を装着してなることを特徴とする光学的信号の入出力機構を有する半導体装置。

【請求項4】請求項1ないし請求項3のいずれか1項に おいて、上記面型光素子の発光側または受光側の表面の 少なくとも発光または受光領域が、使用する光の波長に 関して透明な材料によって封止してなることを特徴とす る光学的信号の入出力機構を有する半導体装置。

【請求項5】請求項1ないし請求項4のいずれか1項に記載の光学的信号の入出力機構を有する半導体装置からの光学的信号の入出力機構を有する半導体装置からの光学的信号の接続において、光路をおおむね90度変換することが可能な構造の光路端部を有する光導波路またはシート状の光導波路フィルムをプリント基板に配設するか、または光路をおおむね90度変換することが可能な構造の光路端部を有する光ファイバを挟み込んで形成されたシートを、上記半導体装置の面型光素子の発光 40 部または受光部の直近に配設し、上記面型光素子の発光 側または受光側の表面の金属層と、それと対応する位置に形成された上記光導波路、シート状の光導波路フィルムまたは光ファイバを挟み込んで形成されたシートの上の金属層とを、はんだバンプの手段により接続してなることを特徴とする光学的信号の入出力機構を有する半導体装置。

【請求項6】請求項1ないし請求項5のいずれか1項に 記載の光学的信号の入出力機構を有する半導体装置の製 造方法であって、 半導体集積回路が作製されたウエハのままで、電気的信号および光学的信号を入出力するための電極パッドを作

製する工程と、 上記面型光素子を搭載する工程と、

上記面型光素子の発光側または受光側の表面もしくは裏面に、集光作用を有するレンズ状物体を加工または形成するか、もしくはあらかじめ成形されたレンズ状物体を装着する工程と、

上記面型光素子の発光側または受光側の表面の少なくと も発光または受光領域が、使用する光の波長に関して透 明な材料によって封止する工程と、

個別の半導体集積回路に切り分けをする工程を含むことを特徴とする光学的信号の入出力機構を有する半導体装置の製造方法。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光学的信号の入出力機構を有する半導体装置およびその製造方法に関する。

【従来の技術】図6は、従来の半導体装置の第1の従来 例を示すものであり、その断面構造を模式的に示してい る。この第1の従来例は、半導体集積回路61を、それ とほぼ同程度の外形をしたパッケージ62に収め、パッ ケージ下面から格子状に電気端子63を取り出した半導 体装置である。このような小型のパッケージは、チップ サイズパッケージ (CSP) と呼ばれ、小型である故 に、プリント基板64への高密度な表面実装が可能とな る。また、QFP(クワッドフラットパッケージ)や、 SOP (スモールアウトラインパッケージ) のような周 辺部からリードを取り出すペリフェラル構造と比べて、 エリアアレイ構造は小型で、かつ多数の電気端子を取り 出すことができる。現在、大型コンピュータの論理LS I (大規模集積回路) パッケージや、通信系用途などに 使われており、今後の高密度表面実装において重要なパ ッケージになるものと考えられる。また、チップサイズ パッケージには、上記のような半導体集積回路61をキ ャリア基板65に搭載したタイプのみでなく、多様なパ ッケージ形態があり、半導体集積回路を単に樹脂などで 保護しただけであっても、プリント基板等に直接接続す るための電極が形成されていれば、CSPの範疇に含ま れる。近年、通信装置や、大型コンピュータの性能向上 に対して、半導体集積回路自身の性能ではなく、それら の間を接続する電気配線の特性がボトルネックになると の指摘がなされている。これは、例えば、D.A.B.Mille r, "Limit to the Bit—Rate Capacity of Electrical Interconnects from the Aspect Ratio of theSystem A rchitecture," Special Issue on Parallel Computing with OpticalInterconnects, Journal of Parallel and Distributed Computing,1996.において詳細に述べられ ているように、電気配線の帯域制限、電気コネクタの小

型化限界、そして電気配線部における消費電力の増大が特に問題として挙げられている。そして電気配線の代わりに光ファイバや光導波路、自由空間を用いた光配線によって、それらの問題を解決する方法が数多く提案、研究されている。チップサイズパッケージは、電気的な信号入出力を有する半導体装置としては、パッケージサイズや帯域性能において優れたパッケージであるが、半導体装置間を光配線で行う場合には、発光素子や受光素子といった電気/光変換素子をパッケージに内蔵しなければならず、次に示す第2の従来例に示すようにチップサイズより随分大きなパッケージ構造にならざるを得なかった。

3

【0003】図7は、光学的信号の入出力機構を有する 半導体装置の第2の従来例であり、その上面図を示して いる。本第2の従来例で示す半導体装置は、半導体集積 回路71を、抵抗、コンデンサ等の受動素子類である電 子部品類72や、半導体レーザアレイ73、受光素子ア レイ74と共に、モジュール基板75に搭載し、さらに 光ファイバリボン76によって光学的な信号入出力を行 うことを可能にした、フラットパッケージタイフの並列 20 光伝送モジュールであり、図7はその上面図である。こ の並列光伝送モジュール内には、さらにマイクロレンズ アレイ77、短尺光ファイバ78が含まれており、パッ ケージの一側面にはMTコネクタのような光ファイバコ ネクタレセプタクル79が具備されている。半導体レー ザアレイ73から出射した光は、マイクロレンズアレイ 77によって集光され、長さ数ミリ程度の短尺光ファイ バ78の一端に入射される。短尺光ファイバ78は、光 ファイバコネクタレセプタクル79内に固定されてお り、その他端はパッケージ外へ取り出されている。光フ ァイバコネクタレセプタクル79に、それと対応する光 ファイバコネクタプラグ80を嵌合、接続することによ り、テープ化された光ファイバリボン76によって並列 光伝送モジュール間の光伝送を行うことができる。ま た、この並列光伝送モジュールは、パッケージ側面のう ち、光ファイバレセプタクル79が具備された側面以外 の3面に、プリント基板81~接続するためのリード8 2が具備されており、これにより電気的な信号入出力を 行う。また、光ファイバリボン76から受光素子アレイ 74〜光学的な信号を伝搬する場合においても、上述の 40 半導体レーザアレイの場合と全く同様に、短尺光ファイ バ78、およびマイクロレンズアレイ77を介して行わ れる。また、この並列光伝送モジュールのプリント基板 81~の実装は、次のように行われる。

- (1) 並列光伝送モジュールから、光ファイバコネクタ プラグ80を外した状態にしておく。
- (2) パッケージをプリント基板81上の所望の位置に 仮搭載し、はんだリフロー等の表面実装工程により、リ ード82をプリント基板上に対応する電極に実装、固定 する。

- (3) 光ファイバコネクタプラグ80を端部に設けた光ファイバリボン76を、並列光伝送モジュールの光ファイバコネクタレセプタクル79に嵌合する。
- (4) プリント基板81上の光ファイバリボン76の余 長部をクリップ等でプリント基板81上の適当な位置に 固定する。上記の手順において、プリント基板81上に 実装された並列光伝送モジュールへ光ファイバリボン7 6を接続し、その余長を収納する作業は、人手に頼らざ るを得ず、基板実装工程の自動化を困難にしている。ま た、本第2の従来例に示すように、従来の並列光伝送モ ジュールには、マイクロレンズアレイ77などのディス クリートな微小光学部品や、短尺光ファイバ78やポリ マー光導波路など、モジュール内において、ごく短距離 伝送のための光導波路部品が必要とされることが多い。 これらの光部品はそれぞれ別個に作製され、モジュール 組み立て時には、それぞれを高精度に光軸調整・固定し なければならないため、部品点数の増加を招き、並列光 伝送モジュールの小型化・低コスト化・量産化を困難に していた。また、このような並列光伝送モジュールの製 造は、まずウエハから個別に切り出された半導体集積回 路や半導体レーザアレイ、受光素子アレイを、モジュー ル基板上にて個別にハイブリッドに搭載されていた。

#### [0004]

【発明が解決しようとする課題】しかるに、上述の第1 の従来例においては、チップサイズパッケージの半導体 装置は、電気的な信号入出力のみを有しており、電気配 線の帯域制限、電気コネクタ小型化限界、電気配線の消 費電力の増加といった電気配線のボトルネックを解消す べく光配線を行うために不可欠な、光学的な信号入出力 の機能を有していなかった。また、上述の第2の従来例 においては、半導体レーザと受光素子をパッケージ内に 備えているものの、フラットパッケージの一つの側面を 光学的信号の入出力に用いているために、多数の光学的 信号の入出力の場合には、どうしてもモジュールサイズ が大きくなっていた。また、パッケージの一側面に具備 した光ファイバコネクタレセプタクルへ、光ファイバコ ネクタプラグを嵌合・接続させる工程、および、プリン ト基板上の光ファイバリボンの余長部を収納する作業 は、パッケージをプリント基板上にはんだリフロー等に よって表面実装した後に、手作業により行わざるを得な いため、基板実装工程を自動化できず、コスト的に高く なり、しかも量産化が困難であった。また、第2の従来 例においては、マイクロレンズアレイなどのバルクの微 小光学部品や、短尺光ファイバや、ポリマー光導波路な ど、モジュール内における極短距離伝送のための光導波 路部品が必要とされることが多く、これらが部品点数の 増加を招き、並列光伝送モジュールの小型化・低コスト 化・量産化を困難にしていた。なお、第2の従来例にお いては、レセプタクルタイプのコネクタ構造であった が、この他にもモジュール内部から数十センチ程度の光

ファイバを引き出した格好のピグテールタイプもある。 ピグテールタイプでは、光ファイバがモジュールと一体 であるために、プリント基板上にモジュール自身を表面 実装することさえ困難になる。プリント基板上に実装し た後に、光ファイバリボンをコネクタ接続し、光ファイ バリボンの余長部を手作業によって収納せねばならない 点は、レセプタクルタイプと全く同じである。また、こ のような半導体装置の製造においては、半導体集積回路 や、半導体レーザアレイ、受光素子アレイ等は、各モジ ュール基板ごとに、順にハイブリッド実装されるため、 各部品の位置合わせ、搭載、固定等の工数が多くなり、 低コストに量産化を実現することが困難であった。本発 明は、上記のような事情に鑑みてなされたものであっ て、その目的とするところは、チップサイズパッケージ の形態を保ったままで、電気的な信号入出力に加えて、 光学的な信号入出力も行うことのできる半導体装置を提 供することにある。また、フラットパッケージ側面から 光ファイバリボンによって光学的な信号入出力を行う従 来の半導体装置に代って、プリント基板に直接接続でき る雷極を有し、さらにそれに加えて多数の光学的な入出 20 力も行うことのできる半導体装置を提供することにあ る。また、上記の光学的な入出力機構を有する半導体装 置を生産性良く製造する方法を提供することにある。

#### [0005]

【課題を解決するための手段】上記本発明の目的を達成 するために、本発明の請求項1に係る光学的信号の入出 力機構を有する半導体装置は、半導体集積回路等がそれ 自体で、例えば、ガラスエポキシ樹脂基板よりなるプリ ント基板、あるいはマルチチップ実装に用いられるセラ ミックス基板等に搭載可能なチップサイズパッケージ構 造を有するものであって、発光面の反対側に正と負の両 電極を有する面発光型レーザ、LED(発光ダイオー ド) またはそれらのアレイや、受光面の反対側に正と負 の両電極を有する面型受光素子またはそのアレイ等の面 型光素子を、上記半導体集積回路の周辺部に電極面を下 にして、はんだバンプ等のはんだ付け手段により接続さ れており、プリント基板等への電気的信号の直接接続を 可能とする電極に加えて、上記半導体装置の光学的信号 の入出力をも可能とする光学的信号の入出力手段を設け た半導体装置とするものである。

【0006】また、本発明の請求項2に係る半導体装置は、請求項1に記載の面型光素子を内蔵したチップサイズパッケージにおいて、面発光型レーザ、LEDまたはそのアレイ等の発光側表面、あるいは面型受光素子またはそのアレイ等の受光側表面にも、はんだバンプを形成可能な金属層を設けた光学的信号の入出力機構を有する半導体装置とするものである。

【0007】また、本発明の請求項3に係る半導体装置は、請求項1または請求項2に記載の半導体装置における入出力光のビーム変換を行う機構を有するものであっ 50

て、面型発光素子の発光側表面または裏面、あるいは面型受光素子の受光側表面または裏面に、集光作用を有するレンズ状物体を加工または形成するか、もしくはあらかじめ成形されたレンズ状物体を装着して、光学的信号の入出力機構を有する半導体装置とするものである。

【0008】また、本発明の請求項4に係る半導体装置は、請求項1ないし請求項3のいずれか1項に記載の半導体装置の信頼性を向上させる手段であって、面型発光素子あるいは面型受光素子の少なくとも発光領域、受光領域を、使用する光の波長に関して透明な材料を用いて封止した光学的信号の入出力機構を有する半導体装置とするものである。

【0009】また、本発明の請求項5に係る半導体装置は、請求項1ないし請求項4のいずれか1項に記載の半導体装置からの光学的信号の接続機構を有するものであって、光路をおおむね90度変換することが可能な構造の光路端部を有する光導波路またはシート状の光導波路フィルムの上記光路端部を、上記プリント基板等に直接形成するか、または光ファイバを挟み込んで形成された光導波路シートに、光路をおおむね90度変換することが可能な構造の光路端部を形成し、該光路端部を、上記半導体装置の面型光素子の発光部または受光部の直近

(直下近傍) に配設し、上記面型光素子の発光側または 受光側の金属層と、それに対応する位置に形成された、 上記光導波路、シート状の光導波路フィルムまたは光導 波路シートのそれぞれの光路端部上の金属層とを、はん だバンプ等の手段により、それらを接続して光学的信号 の入出力機構を有する半導体装置とするものである。

【0010】また、本発明の請求項6に係る光学的信号の入出力機構を有する半導体装置の製造方法は、請求項1ないし請求項5のいずれか1項に記載の半導体装置を作製する方法であって、半導体集積回路が作製されたウエハのままで、電気的信号および光学的信号を入出力するための電極パッドを作製する工程と、上記面型光素子を搭載する工程と、上記面型光素子の発光側または受光側の表面もしくは裏面に、集光作用を有するレンズ状物体を加工または形成するか、もしくはあらかじめ成形されたレンズ状物体を装着する工程と、上記面型光素子の発光側または受光側の表面の少なくとも発光または受光領域が、使用する光の波長に関して透明な材料によって對止する工程と、個別の半導体集積回路に切り分けをする工程を含む光学的信号の入出力機構を有する半導体装置の製造方法とするものである。

【0011】本発明の光学的信号の入出力機構を有する 半導体装置によれば、プリント基板等への電気的信号を 直接接続することを可能とする電極に加えて、半導体装 置からの光学的信号の入出力をも可能とする光学的信号 の入出力機構を有するチップサイズパッケージの半導体 装置が得られるので、チップサイズパッケージを保った ままで、電気的信号の入出力に加えて、光学的信号の入 出力機構を有する性能に優れた半導体装置を提供するこ とができ、また、フラットパッケージ側面からファイバ リボンを介して光学的信号の入出力を行う従来のリード タイプの半導体装置に代って、小型のパッケージから多 数の光学的信号の入出力を行うことのできる高性能の半 導体装置を実現できる効果がある。また、本発明の半導 体装置は、面型光素子アレイと光導波路とを、はんだバ ンプを用いて位置合わせして固定するので、プリント基 板の振動や各部品材料の熱膨張係数の差による相対位置 の変動に対して安定な構造となり、これらの光結合系に 10 与える影響を小さくすることができる効果がある。ま た、本発明の半導体装置の製造方法によれば、光ファイ バリボンのコネクタ接続工程や、余長光ファイバの収納 作業といった、従来の並列光モジュールにおいては手作 業に頼らざるを得なかった煩雑な作業工程が全く不要と なるので、プリント基板への実装工程をすべて自動化す ることが可能であり、従来技術に比べて、大幅に低コス ト化・量産化をはかることができる効果がある。

#### [0012]

【発明の実施の形態】以下に、本発明の実施の形態を例 20 示し、図1~図5を用いて、さらに詳細に説明する。 〈第1の実施の形態〉図1 (a) は、本発明の第1の実

施の形態における光学的信号の入出力機構を有する半導 体装置の構造と、プリント基板上における電気的信号お よび光学的信号の接続を模式的に示す図である。また、 図1 (b) は、図1 (a) における I - II断面の一部を 拡大して示す図である。この第1の実施の形態における 半導体装置は、半導体集積回路が作製されたLSIチッ プ11と、面型発光素子アレイまたは面型受光素子アレ イ等の面型光素子アレイ12とを、LSIチップ11と 同程度の外形サイズのパッケージ内に収納したチップサ イズパッケージ構造をしている。ただし、図1(a)、 (b) では構成の説明であるために、上記パッケージは 図示していない。面型光素子12は、面型光素子発光部 12 c、あるいは受光部12 dの反対側に、面型光素子 正電極12aと、負電極12bを有しており、LSIチ ップ11の周辺部に形成した面型光素子用電極パッド1 1 a へ直接、はんだバンプ13により接続されている。 また、LSIチップ11の中央部にはメタルポスト11 bが形成されており、モールド樹脂14により覆われて 40 いる。さらに、メタルポスト11bのLSIチップ11 側の電極11cの反対側には、プリント基板17に接続 するための、はんだバンプ15が形成されている。ここ で、半導体集積回路への半導体レーザアレイや、受光素 子アレイの搭載は、ウエハから個別の半導体集積回路に 切出した後に、各々に対してハイブリッド実装して行っ てもよいが、ウエハのままでこれらを搭載し、その後に 個別の半導体集積回路に切り出すようにして製造しても よく、後者の方が低コストで量産できると考えられる。

素子12を搭載した面をプリント基板17側に向けて、 はんだバンプ15がプリント基板17上の電極パッド1 7 a と対向するように位置合わせされ、はんだリフロー 工程により表面実装される。この半導体装置は、はんだ バンプ15をパッケージ下面にアレイ状に配置したエリ アアレイ構造であるために、パッケージ周辺部からリー ドを取り出すバタフライ型やDIP (Dual Inline Pack age) 型等のペリフェラル構造と比べて、同一サイズの パッケージから、より多数の電気的信号の入出力を行う ことができる。このように、小型のパッケージに構成 されるために、パッケージ内の電気配線長が短くなり、 電気配線の帯域制限を受けにくくなり、また、電気配線 で消費する電力の増加を抑えることができる。また、面 型光素子12の入出力光は、短尺の光ファイバや、ディ スクリートなマイクロレンズアレイ部品等の光部品を介 さずに、直接パッケージから取り出される。したがっ て、パッケージ内にアセンブリされる部品点数が少なく て済み、大幅に工数を削減することができ、さらに、パ ッケージサイズを大幅に小型化することができる。ま た、プリント基板17上には、搭載する半導体装置の光 学的信号の入出力位置に対応して、あらかじめ光導波路 16を形成している。この光導波路16の端部16c は、面型光素子12の入出力光に対して45度の角度を なすように加工され、TIR (Total Internal Reflect ion)ミラーまたは45度端面に金属膜等を付着させた 反射ミラーとして上方に位置した面発光素子12の入出 力光を光導波路16のコア層16aへ90度の光路変換 をしてから光結合させる役割を有している。このような 光学的信号の入出力機構を有する半導体装置は、半導体 装置のはんだバンプ15と、プリント基板上の電極17 aを位置合わせし、はんだリフロー工程を経ることで、 プリント基板17〜実装される。この際、面型光素子1 2と光導波路16とも所定の位置に位置合わせされるた めに、はんだバンプ15を介した電気的な接続のみでな く、光学的な接続も行われる。ただし、面型光素子12 と光導波路16とは物理的に接触しないので、パッケー ジの基板固定は、はんだバンプ15のみによっている。 また、この光導波路は、同一のプリント基板上に搭載さ れた複数の半導体装置間を光学的に接続するためにも使 用される。したがって、光ファイバリボンのコネクタ接 続工程や、余長光ファイバの収納作業といった、従来の 並列光モジュールにおいては手作業に頼らざるを得なか った煩雑な作業が全く不要となるので、プリント基板へ の実装工程をすべて自動化することができ、従来技術に 比べて、大幅に低コスト化・量産化することが可能とな る。なお、この光導波路16は、プリント基板17上に 直接形成されたものでなくても構わない。例えば、フィ ルム状のポリマー光導波路や、光ファイバを挟み込んだ シートを接着、あるいは部分的に固定して作製してもよ 面型光素子12を搭載したLSIチップ11は、面型光 50 い。後者は、配布線した光ファイバを2枚のシート間に 挟み、接着剤等で固定し、その端部を、上記の光導波路と同じように45度ミラー加工することにより容易に作製できる。プリント基板上における光配線長が長い場合や、光導波路の減衰が問題となる場合においては、光ファイバを用いた接続方法が優位になると考えられる。また、上記の説明においては、光学的信号の入出力機構を有する半導体装置を実装する基板として、プリント基板を挙げていたが、これはガラスエポキシ樹脂基板のような標準的なプリント基板に限定されるのでなく、マルチチップ実装に用いられるようなセラミックス基板等も包10含していることは言うまでもない。

【0013】また、面型光素子発光部12c側、あるい は面型光素子受光部12 d側の表面または裏面に、レン ズ状の物体を形成することは大きな効果がある。次に、 面型発光素子を搭載したLSIチップを例にとり、その 近傍の縦断面図のみを拡大して示した図2および図3を 用いて説明する。図2は、発光面22と反対側に正と負 の両電極パッド23a、23bを形成した面型発光素子 21をLSIチップ11へ搭載し、発光面22側の表面 にレンズ状の物体24を形成した光学的信号の入出力機 20 構を有する半導体装置を示す。発光面22から出射した 発散光25aは、レンズ状の物体24によってコリメー ト光25bに変換される。このようなビーム変換を行う ことで、面型発光素子21と、光導波路16間の距離が 大きい場合においても、高効率に光結合することが可能 となる。このレンズ状の物体24は、どのような方法で 作製しても構わない。例えば、面型発光素子21をLS I チップ11に搭載した後に、微小量の液体状のポリマ ー材料を塗布し、続いて、それを硬化させて形成しても 良く、また、球レンズを接着剤等で装着しても良く、あ 30 るいは、面型発光素子21を作製する際に、モノリシッ クに集積化しても構わない。 さらに、このレンズ状の物 体24は、図2に示したような屈折型のマイクロレンズ だけに限らず、回折型のレンズであっても良い。また、 面型光素子の発光面と反対側にレンズ状物体を形成する ことも可能である。図3は、発光面32側に、正と負の 両電極パッド33a、33bと、はんだバンプ13を形 成した面型発光素子31を、発光面32側がLSIチッ プ11に向くように搭載した光学的信号の入出力機構を 有する半導体装置を示している。図3では、面型発光素 40 子31の基板は、使用波長に対して透明な材料であり、 発光面32と反対側の表面に回折型のレンズ34を形成 している。図2と同様に、発光面32からの発散光35 aは、回折型レンズ34によってコリメート光35bに 変換される。このような回折型レンズ34は、複数のマ スクを用いた通常の半導体プロセスによって階段状に近 似した形状を作製できるため、特にモノリシック集積化 が容易である。なお、以上の説明においては、面型光素 子として面型発光素子を対象にしてきたが、面型受光素 子であっても全く同様である。また、面型光素子として 50

一次元アレイを例に挙げて説明してきたが、平面方向に 縦横に配列された二次元アレイに関しても、光導波路の 多層化などの手段により信号の入出力が可能となる配線 方法を採用することにより、本発明の一応用として実施 可能である。また、上記の説明においては、はんだバン プ13は、あらかじめ面型光素子12上の電極パッドに 形成していたが、これはLSIチップ11上の電極パッド ド11aに形成しておいても全く構わない。

【0014】また、面型光素子を樹脂封止することも効果的である。図4は、面型光素子を、使用波長に対して透明な樹脂によって封止した光学的信号の入出力機構を有する半導体装置の縦断面の一部を示した図である。面型光素子41をLSIチップ11に搭載した後に、面型光素子の周囲を封止用樹脂42で覆っている。このような樹脂封止を施すことで、面型光素子の信頼性を向上させることができ、さらにチップサイズパッケージの取り扱い性を格段に向上させることができる。上述したレンズの形成、樹脂による封止は、半導体レーザアレイや受光素子アレイの搭載と同様に、ウエハのままの半導体集積回路に対して行うことができ、一連のこれらの工程の後に、個別の半導体集積回路に切り分けるようにようにして、本発明の光学的信号の入出力機構を有する半導体装置を製造することができる。

【0015】 〈第2の実施の形態〉 図5は、本発明に係 る光学的信号の入出力機構を有する半導体装置の構造 と、プリント基板上における電気的信号および光学的信 号の接続系を示す模式図である。図5は、図1(b)と 同様に、半導体装置の縦断面の一部を拡大して示してい る。この第2の実施の形態における半導体装置は、半導 体集積回路が作製されたLSIチップ11と、面型発光 素子アレイまたは面型受光素子アレイ等の面型光素子ア レイ52とを、LSIチップ11と同程度の外形サイズ のパッケージ内に収めたチップサイズパッケージ構造を している。面型光素子アレイ52は、発光面53aある いは受光面536の反対側に正と負の両電極パッド54 a、54bを有しており、LSIチップ11の周辺部に 形成した面型光素子用電極パッド11aへ直接、はんだ バンプ13により接続されている。さらに、面型光素子 アレイ52の発光面53aあるいは受光面53b側の表 面にも、金属層55が形成され、はんだバンプ56が形 成されている。また、LSIチップ11の中央部には、 メタルポスト11bが形成されており、モールド樹脂1 4により覆われている。さらに、メタルポスト11bの LSIチップ11側の電極11cの反対側には、プリン ト基板17に接続するためのはんだバンプ15が形成さ れている。さらに、この第2の実施の形態では、光導波 路57の端部57cにおけるクラッド層57b上面に、 面型光素子アレイ52の金属層55、および、はんだバ ンプ56と対応するように、金属層58が形成されてい る。面型光素子アレイ52を搭載したLSIチップ11

は、面型光素子アレイ52を搭載した面を、プリント基板17側に向けて、はんだバンプ15がプリント基板17上の電極パッド17aと対向するように位置合わせされ、はんだリフロー工程により表面実装される。その際、電気的な入出力のためのはんだバンプ15が溶融して、プリント基板17側の電極パッド17aと接続・固定されると同時に、面型光素子アレイ52に形成されたはんだバンプ55も溶融し、光導波路57と接続・固定される。このように面型光素子アレイ12と光導波路23とをはんだバンプを用いて位置合わせ、固定すること10により、プリント基板17の振動や各部品材料の熱態張係数の差による相対位置の変動に対して安定な構造となり、これらの光結合系に与える影響を小さくすることができる効果がある。

11

#### [0016]

【発明の効果】本発明の光学的信号の入出力機構を有す る半導体装置によれば、プリント基板等への電気的信号 を直接接続することを可能とする電極に加えて、半導体 装置からの光学的信号の入出力をも可能とする光学的信 号の入出力機構を有するチップサイズパッケージの半導 20 体装置が得られるので、チップサイズパッケージを保っ たままで、電気的信号の入出力に加えて、光学的信号の 入出力機構を有する性能に優れた半導体装置を提供する ことができ、また、フラットパッケージ側面からファイ バリボンを介して光学的信号の入出力を行う従来のリー ドタイプの半導体装置に代って、小型のパッケージから 多数の光学的信号の入出力を行うことのできる高性能の 半導体装置を実現できる効果がある。また、本発明の半 導体装置は、面型光素子アレイと光導波路とを、はんだ バンプを用いて位置合わせして固定するので、プリント 30 基板の振動や各部品材料の熱膨張係数の差による相対位 置の変動に対して安定な構造となり、これらの光結合系 に与える影響を小さくすることができる効果がある。ま た、本発明の半導体装置の製造方法によれば、光ファイ バリボンのコネクタ接続工程や、余長光ファイバの収納 作業といった、従来の並列光モジュールにおいては手作 業に頼らざるを得なかった煩雑な作業工程が全く不要と なるので、プリント基板への実装工程をすべて自動化す ることが可能であり、従来技術に比べて、大幅に低コス ト化・量産化をはかることができる効果がある。

#### 【図面の簡単な説明】

【図1】本発明の第1の実施の形態で例示した光学的信号の入出力機構を有する半導体装置の構造を示す模式図

【図2】本発明の第1の実施の形態で例示した発光面と 反対側に正と負の両電極ペッドを形成した面型発光素子 の構造を示す模式図。

【図3】本発明の第1の実施の形態で例示した発光面側 に正と負の両電極ペッドとはんだバンプを形成した面型 発光素子の構造を示す模式図。 【図4】本発明の第1の実施の形態で例示した面型光素 子を使用波長に対して透明な樹脂で封止した光学的信号 の入出力機構を有する半導体装置の構造を示す模式図。

12

【図5】本発明の第2の実施の形態で例示した光学的信号の入出力機構を有する半導体装置の構造とプリント基板上における電気的信号と光学的信号の接続系を示す模式図.

【図6】従来のパッケージ型半導体装置の構造を模式的 に示した第1の従来例。

【図7】従来の光学的信号の入出力機構を有する半導体 装置の構造を模式的に示した第2の従来例。

#### 【符号の説明】

- 11…LS Iチップ
- 11a…面型光素子用電極パッド
- 11 b…メタルポスト
- 11 c…電極
- 12…面型光素子アレイ
- 12a…面型光素子正電極
- 12b…面型光素子負電極
- 12c…面型光素子発光部
- 1 2 d…面型光素子受光部
- 13…はんだバンプ
- 14…モールド樹脂
- 15…はんだバンプ
- 16…光導波路
- 16a…コア層
- 16b…クラッド層
- 16 c…端部
- 17…プリント基板
- 17a…電極パッド
  - 18…電気配線層
  - 21…面型発光素子
  - 22…発光面
  - 23 a …電極パッド (正)
  - 23b…電極パッド(負)
  - 24…レンズ状の物体
  - 25 a …発散光
  - 25 b…コリメート光
  - 31…面型発光素子
- 40 32…発光面
  - 33a…電極パッド(正)
  - 33b…電極パッド(負)
  - 3 4…回折型レンズ
  - 35 a …発散光
  - 35 b…コリメート光
  - 36…面型発光素子裏面
  - 41…面型光素子
  - 42…封止用樹脂
  - 52…面型光素子アレイ
- 50 53a…発光面

## 53b…受光面

- 54a…電極パッド(正)
- 54b…電極パッド(負)
- 55…金属層
- 56…はんだバンプ
- 57…光導波路
- 57a…コア層
- 57b…クラッド層
- 57 c…端部
- 58…金属層
- 61…半導体集積回路
- 62…パッケージ (チップサイズパッケージ)
- 63…電気端子
- 64…プリント基板

13…はんだパンプ

#### \* 65…キャリア基板

- 71…半導体集積回路
- 72…電子部品類
- 73…半導体レーザアレイ
- 74…受光素子アレイ
- 75…モジュール基板
- 76…光ファイバリボン
- 77…マイクロレンズアレイ
- 78…短尺光ファイバ
- 10 79…光ファイバコネクタレセプタクル
  - 80…光ファイバコネクタプラグ
  - 81…プリント基板
  - 82…リード

【図1】

13

【図2】



11…L81チップ

- ila…面型光素子用電板パッド
- 1111・・・メタルポスト
- 11c…電極
- 13…はんだパンプ
- 14…モールド樹脂 15…はんだパンプ
- 2 1 …面型発光素子
- 2 2 … 発光面
- 23 a…電極パッド (正)
- 23 b…世様パッド(量)
- 24…レンズ状の物体
- 25 a…発散光 35 b…コリメート光

【図6】

图 6



- 6 1 … 半導体集積回路
- 62…パッケージ(チップサイズパッケージ)
- 63…電気端子
- 64…プリント基板
- 65…キャリア基板



17a…電極パッド

18…電気配線層

【図3】



【図4】



- 11…LSIチップ
- 11a…面弧光楽子用電極パッド
- 1 1 1 …メタルポスト
- 11c…電極
- 13…はんだパンプ
- 14…モールド樹脂
- 15…はんだパンプ
- 3 1 …面型発光素子
- 3 2 …発光面
- 3 3 a…電極パッド (正)
- 33b…電極パッド(負)
- 9 4 …回折型レンズ
- 3 5 a … 発散光
- 35b…コリメート光
- 3 6 …面型発光素子裏面

- 11…L81チップ
- I 1 b …メタルポスト
- l l c…電極
- 14…モールド樹脂
- 15…はんだパンプ
- 4 1 …面型光素子
- 4 2 …対止用樹脂

## 【図5】

図 5



- 11…LS1チップ
- 11a…面型光素子用電極パッド
- 116…メタルポスト
- 110…電極
- L3…はんだパンプ
- 14…モールド横脚
- 15…はんだパンプ
- 17…プリント益板
- 17m・電程パッド
- 18…電気型線層

- 5 2…面型光素子アレイ
- 6 3 a…発光面
- 5 3 b … 受光面
- 54 a…電極パッド (正)
- 54b…電極パッド(負)
  - 55…金属層
  - 5 6…はんだパンプ
  - 5 7 …光導波路
  - 57 a…コア暦
  - 57b…クラッド層
  - 57c…蟾部
  - 58…金属層

# 【図7】



7 1 …半導体集積回路

75…モジュール基板

78…光ファイバコネクタレセプタクル

72…鐵子部品類

76…光ファイパリポン

80…光ファイパコネクタブラグ

73…半導体レーザアレイ

77…マイクロレンズアレイ 81…プリント基板

74…受光素子アレイ

78…短尺光ファイパ

82...リード

## フロントページの続き

Fターム(参考) 2HO47 KA02 KA15 KB09 MA07 RA00

TA01

3KO07 AB18 BB01 CC05 FA02

5F041 AA47 CA12 CB22 DA03 DA09

DA20 DA43 EE01 EE11 EE17

EE23 EE25 FF14 FF16

5F088 BA15 BB01 BB10 EA02 JA01

JA09 JA12 JA14 JA20