

MS4671 – High Throughput Experimental Methods for Materials Discovery

Dr. Danny Ren Zekun

Dr. Haiwen Dai

danny.ren@bears-berkeley.sg

haiwen.dai@ntu.edu.sg

School of Materials Science and Engineering

Today's class

- Part 1: Introduction to High-Throughput Experimentation (20 mins)
 - Introduction to High Throughput experimentation (10 mins)
 - Opentrons automated pipetting robots (5 mins)
 - OpenCV framework (5 mins)

- Part 2: Automated mixing of food die using Opentrons
 - Opentrons automated solution mixing (1hr)
 - Producing rainbow colors via automated mixing code (In-class quiz) (1hr)
 - OpenCV image recognition (30mins)
 - Homework (Making a target color via BO and automated solution mixing) (30mins)

High Throughput Experimentation

What is high throughput experimentation and why is it important?

Types of modules used in HTE

Machines for making things out of stuff

Machines for moving stuff

Machine for Testing

Decision-making brain

Types of experimental techniques in HTE

- Point-wise experiments (e.g. mechanical, spectrum analysis, electrical etc...)
- Parallel/Simultaneous experiments (e.g. impedance spectroscopy, gas adsorption etc...)
- Proxy experiments (Optical, electrical measurements)
- Ultrafast analysis

Nanoindenter

Potentiostat

Hyperspectrum

Ultrafast CT

https://www.bruker.com/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html
https://www.biologic.net/product_category/potentiostats-galvanostats/
https://www.lumafield.com/product-feature/ultra-fast-ct-scanning
Wikipedia

Introduction to Opentrons

3-axis Liquid handling robot

 Picks liquid from reservoir (resource), pipettes into receptacle, disposes tips in trash

Python controlled

Standardized labware

Core Workflow Overview of OT2

Communication protocol using Rest API

- The interaction between your computer (the client) and the OT-2 (the server) is managed through a REST API.
- Scripts sends HTTP requests to specific URLs on the robot, and the robot responds with JSON-formatted data.

Automated colour mixing using Opentrons

- Amount of colour x transferred to each well
- Efficiency in liquid transferring

OpenCV Library

- Image manipulation
 - Read and display
 - Color space and channel manipulation
 - Resize, rescale, cropping
 - Transformations
 - Draw and Masking
- Object and Face detection
 - Contour, thresholding, and edge detection
 - Basic item detection and recognition
- Connecting with AI modules

Open Computer Vision Library

pip install opencv-python
Python >=3.6

Image

https://brandonrohrer.com/convert_rgb_to_grayscale.html

Functionalities

Resize

Crop

Mask & rotate

Contour / Edge

https://brandonrohrer.com/convert_rgb_to_grayscale.html

In-class Quiz (60mins)

(Follow the code provided to achieve automated color mixing)

- 1. Modify the code provided (protocol_modified.py) to achieve automated "rainbow" color mixing in a row.
- Example code can be found in https://github.com/dannyzekunren/MS4671

Homework

Using active learning to make a target color

Wee4_homework.ipynb can be found in

https://github.com/dannyzekunren/MS4671

- 1. Target color: RGB values. (55,150,40), or you can random generate
- 2. Active Learning: Design an efficient algorithm to control the Opentrons to mix automatically and approach this color.
- 3. Operation: Demonstrate the code on Opentrons.

Automated Loops

Measurements and Analysis

Remote commands to OT2

Full Feedback Loop

Send a message when completing the actions: aiohttp

Color mixing

The expected results

