第二章 MATLAB基础

●第一节 MATLAB的操作

一、MATLAB的工作窗口和指令行的操作

1.若干通用操作命令

命令名称

指令功能

*cd, chdir

改变当前工作目录。

*clear

清除内存中的所有变量。Clear+火焰之头

*clc

擦除Matlab工作窗口中所有显示的内容。

*clf

擦除当前窗口中的图形。

∜dir√ls

列出指定目录下的文件和子目录清单。

disp

在运行中显示变量或文字内容。

cho on/off |

控制运行文字指令是否显示。

pack

一收集内存碎块以扩大内存空间。

命令名称
❖quit

关闭并
❖type test
□以及文

指令功能 关闭并退出Matlab。

显示所指定的文件test.m的全部内容。

列出当前目录下所有的M文件。

❖delete test :删除フ

删除文件test.m。

which test

列出指定名字文件test.m所在的目录。

*hold on/offi控制当前图形窗口对象是否被刷新。

exist

检查指定名字的变量或函数文件的存在性。

who

列出工作内存中的变量。

*whos

列出工作内存中的变量名称以及细节

第二章 MATLAB基础

●第二节 MATLAB基础

一、MATLAB的基本计算功能

- 1.变量与数值显示格式变量规则:
 - → 每一个变量都具有一个名字
 - ❖ 变量在内存中占据一定的空间
 - ❖ 变量名必须以字母开头(不能超过19个字符), 之 后可以是任意字母、数字,或下划线();
 - ❖变量区分字母的大小写,同一名字的大写 与小写被视为两个不同的变量;
 - ❖变量中不能含有标点符号。

特殊变量	取值	特殊变量	取值
ans	缺省的结构(变量名)	i,j	$\sqrt{-1}$
pi /	圆周率 (flops	浮点运算数
nargin	函数输入变 量数目	nargout	函数输出变量 数目
realmax	最大的可用 正实数	realmin	最小的可用正 实数
inf	无穷大如1/0	NaN	不定量 如0/0
eps	计算机的最小	数	

■ eps、realmax、realmin三个常量具体的数值 与运行MATLAB的计算机相关,不同的计算 机系统可能具有不同的数值

```
>> eps
ans =
 2.2204e-016
>> realmax
ans =
 1.7977e+308
>> realmin
ans =
```

2.2251e-308

■ MATLAB的常量数值是可以修改的

```
>> pi=100
pi =
 100
>> clear
>> pi
ans =
  3.1416
```

```
例:最小复数单位的使用
   >> a=i
        0 + 1.0000i
   >> i=1
   i = 1
   >> b=i+i
   b =
     1.0000 + 1.0000i
   >> clear
   >> C=i+i
   C =
```

MATLAB的常量 是可以赋予性的 数值的。一旦被 赋予了新的数值, 则常量代表的就 是新值,而不是 原有的值, 只有 执行clear命令后, 常量才会代表原 来的值

0 + 2.0000i

数值显示格式:双字长浮点数

缺省:整数 > 用整数显示; 实数 > 小数点后4位

format命令改变 430/12显示结果

注释

format short 35.833 3

缺省显示

format long 35.833 333 333 333 34

16位

♦ format short e 35.8 3e+01

5位加指数

format long e

3.583 333 333 334e+01

16位加指数

format hex

4041eaaaaaaaaaab

16进制

format bank

35.83

2个十进制位

format +

正、负、零

format rat

215/6

有理数近似

2. MATLAB的基本数学函数

❖abs(x) 纯量的绝对值或者复数的摸

❖angle(z) 复数z的相角

❖sqrt(x) :开平方

❖real(z) i复数z的实部

❖imag(z) 复数z的虚部

❖conj(z) 复数z的共轭复数

❖round(x);四舍五入到最近的整数

❖fix(x) 无论正负,舍去小数至最近的整数

2. MATLAB的基本数学函数

舍去正小数至最近的整数 \Leftrightarrow floor(x)

加入正小数至最近的整数 **⇔**ceil(x)

:将实数x化为分数表示 rat(x)

将实数x化为多项分数展开 \Rightarrow rats(x)

符号函数-1; 0; +1。 sign(x)

求x除以y的余数 rem(x,y)

整数x和y的最大公因数 \Leftrightarrow gcd(x,y)

整数x和y的最小公倍数 $\star lcm(x,y)$

2. MATLAB的基本数学函数

 \Leftrightarrow exp(x)

自然指数

pow2(x)

2的指数

log(x)

以e为底的对数ln(x)

log 2(x)

以2为底的对数log2(x)

log 10(x)

以10为底的对数log₁₀(x)

3. MATLAB的常用三角函数

❖sin(x) 正弦函数

❖cos(z) 余弦函数

❖tan(x) 正切函数

❖asin(x) 反正弦函数

❖acos(z) 反余弦函数

❖atan(z) 反正切函数

❖atan2(x,y) 四象限反正切

❖sinh(x) 双曲正弦函数

❖cosh(z) 双曲余弦函数

❖tanh(x) 双曲正切函数

❖asinh(x) 反双曲正弦函数

❖acosh(z)反双曲余弦函数

❖atanh(z) 反双曲正切函数

二、MATLAB矩阵和数组的创建和保存

- ★ 1. MATLAB的矩阵输入
 - ❖直接输入创建矩阵
 - ❖由矩阵编辑器创建和修改矩阵
 - ❖由函数创建和修改矩阵

❖直接输入创建矩阵

整个矩阵以"[","]"作为首尾,按行方式输入每个元素。

- 》同一行中的元素用逗号","或者用空格符来分隔,且空格个数不限;
- 〉行与行之间用";"分隔,或按Enter键分割。

当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。

矩阵元素可以是任何MATLAB表达式,可以是实数,也可以是复数,复数用i,i输入

❖由矩阵编辑器创建和修改矩阵

步骤:

- > 预先定义一个变量
- 产在Workspace视图中选中该变量,双击或点击 open selection打开矩阵编辑器。
- > 改变维数、元素的值。可以是数值也可以是表达式

- ❖由函数创建和修改矩阵
- (1).特殊矩阵的生成
 - >zeros(m,n)
 - >ones(m,n)
 - >eye(m,n)
 - rand(m,n)
 - randn(m,n)
 - >compan(A)
 - > gallery
 - ► hankel(m,n)

零矩阵

全部元素都为1的矩阵

单位阵

0一1分布的随机矩阵

正态分布的随机矩阵

矩阵A的伴随矩阵

测试矩阵

n维Hankel矩阵

- (1).特殊矩阵的生成
 - >diag(A) A矩阵的对角阵
 - >hilb(n) n维Hilbert矩阵
 - ▶invhilb(n) n维逆Hilbert矩阵
 - >magic(n) n维Magic魔方阵 7/791、MMMY
 - ➤ toeplitz(m,n) toeplitz矩阵
 - >eilkinson(n) n维Wilkinson特征值测试矩阵
 - ▶handamard(n) n维Handamard矩阵
 - ► vander(A) 由矩阵A产生的vandermonde矩阵 P48例: 2.1.2.7~2.1.2.10

例2-14 矩阵生成函数示例

0.9501

0.2311

0.6068

0.4860

0.8913

0.7621

A =

0.4565

0.0185

0.8214

```
例2-14 矩阵生成函数示例
>> A=magic(3)
  8
          6
  3
               (15)
     5 7
      9
>> A=magic(4)
A =
         3
  16
             13
          10
      11
              8
                   (34)
  5
  9
          6
             12
      14
          15
  4
```

```
例2-15 矩阵生成函数示例
                    >>diag(A)
>>A=pascal(3)
                    ans
ans =
                    >> diag(ans)
                    ans =
>>tril(A)
ans =
      0
```

```
例2-15 矩阵生成函数示例
                     >>diag(A)
>>A=pascal(3)
                     ans
ans =
                     >> diag(ans)
>>tril(A)
                     ans =
                            0
                                0
ans =
                                0
      0
                            0
                                 6
      3
```

```
例2-15 矩阵生成函数示例
                     >>diag(A)
>>A=pascal(3)
                     ans
ans =
                     >> diag(ans)
>>tril(A)
                     ans =
ans =
                             0
                                 0
      0
                        0
                                 0
                        0
                             0
                                 6
      3
```

>> diag(ans)
ans =
 ?

```
例2-15 矩阵生成函数示例
                     >>diag(A)
>>A=pascal(3)
                     ans
ans =
                     >> diag(ans)
>>tril(A)
                     ans =
ans =
                             0
                                 0
      0
                        0
                                 0
                        0
                             0
                                 6
      3
```

```
例2-15 矩阵生成函数示例
                     >>diag(A)
>>A=pascal(3)
                     ans
ans =
                      >> diag(ans)
>>tril(A)
                     ans =
ans =
                             0
                                 0
       0
                         0
                                 0
                             0
                         0
                                 6
       3
```

```
>> diag(ans)
ans =
diag(*)
*是向量,则执
行该指令生成对
角矩阵
*是矩阵,
      则执
行该指令获取矩
```

阵的对角线元素

(2). 矩阵的结构变换

B = rot 90(A)

 \bullet B=rot90(A,k)

B = fliplr(A)

♦B=flipud(A)

:A逆时针旋转90°得B;

A逆时针旋转k×90°得B;

iB由A左右翻转而得;

.B由A上下翻转而得;

◆B=reshape(A,m,n):B阵的维数为(m × n)

m×n等于A的列维和行维之积

(3). 矩阵的提取和保存

❖保存矩阵:

Mymatrix是用户自定义的文件名;

系统默认的路径为matlabr11/bin,可以 在前面加上路径而改变。

save mymatrix A B

❖提取矩阵:

load mymatrix

Toad命令不能指定变量名,系统仍将A、B.作为矩阵的名称。

2. MATLAB的数组的建立和保存

- ❖在Matlab中数组可以看做是行向量,即只有一列的矩阵。
- ❖前面介绍的所有矩阵的建立和保存方法对于数组都可以适用。
- ❖Matlab系统还提供了一些创建数组的特殊命令

- 例1. 创建等差数列
- ▶方法一、 a=0:0.5:10

说明:

- ✓以":"间隔起始值(=0)、增量值(=0.5)、 终止值(=10);
- ✓如果增量值省略不写,默认增量值为1;

▶方法二、利用函数 x=linspace(0,1,75)

说明:

- ✓利用函数linspace以间隔起始值(=0)、终止值(=1)和元素数目(=75);
- ✓常用于绘图中区间的分割;

>方法三、 从原来的数组创建新的数组

$$a=1:4; b=1:2:7;$$
 $c=1 3 5 7 1 2 3 4$
 $c=[b,a];$ $d=1 3 4 .2 8$
 $d=[a(1:2:4),4 0.2 8];$

说明:

✓数组的元素和矩阵一样可以通过下标来 访问。 例2. 利用函数logspace创建等比数列

logspace(0,2,11)

ans =

Columns 1 through 7

1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489

Columns 8 through 11

25.1189 39.8107 63.0957 100.0000

说明:

✓ 该函数产生一个起点为10°、终点为10²、 包含11个数据的等比数列。

3. MATLAB的矩阵运算和数组运算

 A^n

A B

B/A

□矩阵运算

◆+加 : A+B

❖-減 : A-B

❖*乘 i A*B

⋄^幂

❖∖左除

❖/右除

❖'转置i (A

A,B具有相同的行列数。

→A的列数和B的行数相同

A是方阵。

 $A \setminus B = (A^{-1}) * B$

 $\rightarrow B A = (A'/B')'$

矩阵求逆函 数inv(A) ❖矩阵的乘方 A^p A是方阵。 ▶p是整数时

> A^p=A*A*A*....A*A p>0; A^p=(A*A*A....A*A)⁻¹ p<0; A^p=与A同维的单位阵 p=0;

p是非整数时

若A可以被分解成A=WDW⁻¹,D为对角阵 则A^p=WD^pW⁻¹

说明:

- ✓ 如果A的特征值有重根,以上指令不适合。
- ✓ 有些矩阵的非整数次方有多个解,Matlab只是给出一个解。
- ✓ Matlab有一个专门计算矩阵平方根的函数sqrtm(A) 算法同上。

3. MATLAB的矩阵运算和数组运算

- □矩阵运算
- 1. 矩阵加、减运算 (A+B、A-B) 规则:
- 相加、减的两矩阵必须有相同的行和列,两矩阵对应元素相加减。
- MATLAB允许参与运算的两矩阵之一是标量, 标量与矩阵的所有元素分别进行加减操作。

例: A=[123; 456] B=[345; 789] C=3

A+B=[4 6 8; 11 13 15]

A+C=[4 5 6; 7 8 9]

B+C=[6 7 8; 10 11 12]

- □矩阵运算
- 2.矩阵乘运算
- A*B: A矩阵的列数必须等于B矩阵的行数。
- s*A 或 A*s: 标量可与任何矩阵相乘,标量s分别与矩阵A每个元素相乘。

```
例: A = [ 1 2 3; 4 5 6; 7 8 0 ]; B=[ 1; 2; 3 ];
C = A*B
C = 14
32
23
D = [ -1; 0; 2 ];
F = pi*D
F = -3.1416
```

6.2832

- 3. MATLAB的矩阵运算和数组运算
 - □矩阵运算
- 3. 矩阵除运算及线性方程组的解

在线性代数中没有矩阵的除运算,只有矩阵逆的运算,在MATLAB中有两种矩阵除运算。

A/B — 矩阵右除,相当于 A*iny(B) / 1-161

A\B — 矩阵左除,相当于 inv(A)*B A - B

因此, x = A\B 是线性方程组Ax=B的解。

- □矩阵运算
- 3. 矩阵除运算及线性方程组的解

```
例: 求解方程组
                   3x_1 + x_2 - x_3 =
                   x_1 + 2x_2 + 4x_3 = 2.1
                   -x_1 + 4x_2 + 5x_3 = -1.4
           >> A = [31-1;124;-145];
           >> B = [ 3.6 ; 2.1 ; -1.4 ];
           >> x = A \setminus B
           \chi =
               1.4818
               -0.4606
               0.3848
```

□矩阵运算 4.矩阵乘方 **A^n** —— A自乘n次幂 方阵 >1的整数 例 >>a = [1, 2, 3; 4, 5, 6; 7, 8, 9]; >>a^2 ans = 30/3642 66 81 96 102 126 150

□数组运算

❖数组乘方→所得结果与A同维 A+B**❖**.+加法

▶A.^p 数组A对应元素的p次方 ❖.-减法 A-B

>p.^A p的数组A对应元素次方 ❖ *乘法 A*B

❖.^幂 A^n A = [3,6,7;9,2,5;1,6,3],作业: p = 0.4 ° A B

❖.\左除

求A.^p以及p.^A ❖./右除 B/A

❖.' 共轭 A

无论那种运算都是对元素逐个进行的。

- 3. MATLAB的矩阵运算和数组运算
 - □数组运算
- 数组运算指<u>元素对元素</u>的算术运算,与通常意义 上的由符号表示的线性代数矩阵运算不同。
- (**1**) 数组加减(+,-) 运算规则:
- 相加、减的两数组必须有相同的行和列,两数组对应元素相加减。
- MATLAB允许参与运算的两数组之一是标量,标量与数组的所有元素分别进行加减操作

A+B

与矩阵加减运算等效,数组之一也可为标量。

A-B

- 3. MATLAB的矩阵运算和数组运算
 - □数组运算
 - (2) 数组乘(.*) 运算
 - A.*B
 - A,B两数组必须有相同的行和列,两数组相应元素相乘。
 - s.*A或A.*s标量与数组相乘,标量s分别与数组A每个 元素相乘,与s*A或A*s相同。

□数组运算

```
例16: >>A = [123; 456; 789];

>>B = [246; 135; 7910];

>>A.*B

ans =

2

4

4

49

72

90
```

```
>>A = [ 1 2 3; 4 5 6; 7 8 9 ];

>>B = [ 2 4 6; 1 3 5; 7 9 10 ];

>>A*B

ans =

25 37 46

55 85 109

85 133 172
```

□数组运算

(3) 数组除(./,.\)运算

C=A./B — 数组右除

C(i,j) = A(i,j)/B(i,j)

C=A.\B — 数组左除

C(i,j) = B(i,j)/A(i,j)

A./B=B.A

 $A./s = s.\A — A$ 的元素分别被标量s除

s./A = A./s — 标量s分别被A的元素除

□数组运算

```
例: >>A = [123];
   >>B = [456]
    >>C1 = A./B
                     0.4000
                               0.5000
      C1 = 0.2500
   >>C2 = B.\A
      C2 = 0.2500
                     0.4000
                               0.5000
   >> C3 = A.\B
      C3 = 4.0000 \quad 2.5000 \quad 2.0000
   >> A = [ 1 2 3 ]; B = [ 4 5 6 ]; >> A/B
   ans =
      0.4156
   >> A\B
   ans =
                          2.0000
                 .6667
```

- 3. MATLAB的矩阵运算和数组运算
 - □数组运算
- (4)数组乘方(.^)
- A.^n —— A的每个元素自乘n次
- A.^p —— 对A各元素分别求非整数幂
- p.^A —— 以p为底,分别以A的元素为指数求幂值
- C = A.^B 元素对元素的幂
- $C(i,j) = A(i,j) .^B(i,j)$

56

□数组运算

```
(5) 数组转置(.')
例: >> A=[1 3 5;2 4 6]
   >> A'
       ans =
                2
4
6
   >> A.'
       ans =
```

结论:对于实数矩阵,矩 阵转置和数组转置的计算 结果是一致的。

□数组运算

```
例: >> A=A*i
                       0 + 3.0000i
       + 1.0000i
      0 + 2.0000i
                       0 + 4.0000i
 ans =
                     0 - 2.0000i
     0 - 1.0000i
                     0 - 4.0000i
     0 - 3.0000i
     0 - 5.0000i
                     0 - 6.0000i
 >> A.'
 ans =
                      0 + 2.0000i
     0 + 1.0000i
     0 + 3.0000i
                      0 + 4.0000i
      0 + 5.0000i
                      0 + 6.0000i
```

0 + 6.0000i

结论:

0 + 5.0000i

对于复数矩阵,矩阵转置

和数组转置的计算结果不一致。

矩阵转置运算——共轭转置

人数组转置运算——非共轭转置

❖访问和操作向量或矩阵元素的方法——利用矩阵或向量元素的索引完成相应的操作。

注意: MATLAB的矩阵或数组的索引起始数值为1

- ❖ 介绍的内容
 - > 向量元素的访问
 - > 矩阵元素的访问

- ■访问向量的元素只要使用相应元素的索引即可
- 访问向量元素的结果是创建新的向量
- ■访问向量的元素直接给出元素在向量中的序号
 - 一元素的序号可以是单一的整数
 - ■元素的序号可以是元素序号组成的向量
- ■关键字end在访问向量元素时,表示向量中最后一个元素的序号
- ■访问向量元素时,序号的数值必须介于1~end之间
- ■可以通过访问元素的方法,对具体的元素赋值

```
例2-11 B=[3 2 7 4 9 6 1 8 0 5]
访问向量中的元素
                >> B([end-3:end])
>> B(3)
ans =
                ans =
                            OB(152345 54321)
                >> B([1:5,5:-1:1])
>> B([1 3 7])
                ans =
ans =
>> B([1:3:5])
                >> B([1:5;5:-1:1])
                ans =
ans =
```

```
例2-11 B=[3 2 7 4 9 6 1 8 0 5]
访问向量中的元素
                >> B([end-3:end])
>> B(3)
ans =
                ans =
                        8
                            0
                >> B([1:5,5:-1:1])
>> B([1 3 7])
                ans =
ans =
                                      9 4
                                 9
                          7 4
>> B([1:3:5])
                >> B([1:5;5:-1:1])
                ans =
ans =
       4
```

```
例2-11 B=[3 2 7 4 9 6 1 8 0 5]
访问向量中的元素
                 >> B([end-3:end])
>> B(3)
ans =
                 ans =
                         8
                             0
                 >> B([1:5,5:-1:1])
>> B([1 3 7])
                 ans =
ans =
                                       9
                                   9
>> B([1:3:5])
                 >> B([1:5;5:-1:1])
                 ans =
ans =
       4
                    9
```

```
例2-12 对向量的元素进行赋值
>> B(3)=-3
B =
                             8
>> B(15)= -15
B
 Columns 1 through 13
                           8
                     6 1
      2 -3
 Columns 14 through 15
     -15
  0
```

三、MATLAB矩阵和数组的索引 2矩阵元素的访问

- ■访问矩阵的元素需要使用矩阵元素的索引
 - ●使用矩阵元素的行列全下标形式A (*,*)
 - ●使用全下标形式访问矩阵元素的方法简单、 直接,同线性代数的矩阵元素的概念—— 对应
 - ■使用矩阵元素的单下标形式A(*)
 - ●矩阵元素的单下标是矩阵元素在内存中存储的序列号,一般地,同一个矩阵的元素在连续的内存单元中(元素的排列以列元素优先)

全下标形式的矩阵标识和子矩阵 矩阵的子阵可以通过标量、向量、冒号的标识来引用和赋值

❖子阵的序号向量标识方式A(v,w)

v,w可以是任何排列的向量。v,w中任一个可以是冒号":",它表示全部行(在v的位置)或列(在w的位置)。

例:

- (1)产生一个五阶魔方阵B;
- (2)提取B阵的第1行,第2行的第1,3,5个元素;
- (3)提取B阵的第三行和第一行全部元素; (4)使得B阵的第一行和第三行第2,4个元素为
- (5)标出B阵的第一行中小于5的元素;
- (6)获得B阵的第一行中小于5的子向量;

ZONOS[0,0;0,0]

= B(I1,2], [1,3,5])

2 矩阵元素的访问

例13A=

A(1,2) A(5)

4	1	105	1/9	6 13	2 1/
8	2	2 6	9	4	7/18
7	3	5	7	1 15	5 19
0	4	3 8	4	5 16	8 20

A(2:4,2:3)

A([2 3 4],[2 3])

A(1:4,5) A(:,5) A(:,end) A(17:20)'

三、MATLAB矩阵和数组的索引 2矩阵元素的访问

- 矩阵元素的单下标与全下标之间的转换关系
 - ■以m×n的矩阵为例 第i行第j列的元素全下标转换为单下标 l=(j-1)×m+i

例: $A(1,2) \rightarrow A(5)$ m=4,n=5,i=1,j=2 $l=(j-1) \times m+i=(2-1) \times 4+1=5$

- ■MATLAB提供的两个函数
 - ■sub2ind: 根据全下标计算单下标
 - Ind2sub: 根据单下标计算全下标

2 矩阵元素的访问

```
例: >> A=[4 10 1 6 2;8 2 9 4 7;7 5 7 1 5;0 3 4 5 8]
    A =
           10
    >> sub2ind(size(A),2,2)
    ans =
    >> [i,j]=ind2sub(size(A),7)
```

2 矩阵元素的访问

使用索引访问矩阵元素的方法

矩阵元素的访问	说明
A(i,j)	访问矩阵A的第i行第j列上的元素,其中i和j为标量
A(I,J)	访问由向量I和J指定的矩阵A中的元素
A(i,:)	访问矩阵A中第i行的所有元素
A(:,j)	访问矩阵A中第j列的所有元素
A(:)	访问矩阵A中的所有元素,将矩阵看成一个向量
A(1)	使用单下标的方式访问矩阵元素,其中l为标量
A(L)	访问由向量L指定的矩阵A的元素,向量L中的元
	素为矩阵元素的单下标数值

在索引矩阵或数组的元素时,若直接用冒号运算符且不给任何的参数,则表示选择该行或列,或维中的所有元素

2 矩阵元素的访问

```
例:用不同的方法访问矩阵的元素
>>A=1:25
                            >> A(:,4)
>>A=reshape(A,5,5)
                            ans =
  A=
                               16
         6
             11
                  16
                      21
                               17
             12
                  17
                      22
                               18
         8
             13
                  18
                     23
                               19
             14
                     24
                 19
                               20
         10 15
                  20
                      25
>>A(3,1)或A(3)
ans =
  3
>> A(3,:)
ans =
```

```
>> A(end,:)
ans =
   5 10
            15
                 20
                      25
>>I=[1 3 5];J=[2 4];
>>A(I,J)
>>A([1 3 5], [2 4])
ans =
   6
       16
   8
       18
   10
       20
           12
                    22
           13
                    23
                    24
           14
```

四、MATLAB矩阵和数组的操作函数 用于矩阵(数组)操作的常用函数

函数	说明
size	获取矩阵的行、列数,对于多维数组,获取数组的各个维的尺寸
length	获取向量长度, 若输入参数为矩阵或多维数组, 则返回各个维尺寸的最大值
ndims	获取矩阵或多维数组的维数
numel	获取矩阵或数组的元素个数
disp	显示矩阵或者字符串内容
cat	合并不同的矩阵或数组
reshape	保持矩阵元素的个数不变,修改矩阵的行数和列数
repmat	复制矩阵元素并扩展矩阵
fliplr	交换矩阵左右对称位置上的元素
flipud	交换矩阵上下对称位置上的元素
flipdim	获取指定的方向翻转交换矩阵元素
find	基取矩阵或者数组由非 氮元素的索引

四、MATLAB矩阵和数组的操作函数

```
例2-18: reshape函数使用示例
>> A=1:8
>> B=reshape(A,2,4)
                       将矩阵A改成2行4列,也可写成
                       B = reshape(1:8,2,4)
                         不能改变矩阵包含元素的个数
>> C=reshape(A,3,3)
??? Error using ==> reshape
To RESHAPE the number of elements must not change.
```