		西安交通大学考试题									
课	程	计算	方法 A					,,,			
系	别				考	试 日 其	期 20	01 年	1月11	日	
专业3	班号										
姓	名		<u>2</u>	学 号			期	中	期表	#	
题号	+ -	二	三	四	五.	六	七	八	九	+	
得分	•										
一. (10分)填空:											
(1)	在科学	学计算中,	计算结	果与客	观实际	存在着证	吴差,说	是差按其	上来源通	常分为	
		误差、		误差、		_误差和	<u> </u>	_误差;	在计算	方法课	
	程中,	主要研究	₹ Ĺ	_误差和	П	误差。					
称为稳定的方法。											
(2) 设在点集 $x = \{x_1, x_2,, x_m\}$ 上,已知函数 $y = y(x)$ 的值为 $y_1, y_2,, y_m$ 和一组权											
系数								p(x),			
1	使得										
_							的	- - - - - - - - - - - - - - - - - - -	· 逼近多	项式。	
(3) 将方程 $f(x) = 0$ 化为一个等价(同解)的方程,建立迭代											
格式,给定一个初值 x_0 ,若迭代序列 $\{x_n\}$ 收敛,则必有											
$f(x^*)=0$,这种求根方法称为简单迭代法。											
(4) 考虑典型的常微分方程(称为试验方程),在											
把某一解法应用于该试验方法且步长取为 h 时,如果只是在计算开始时产生											
误差,而这误差以后,我们就说这种解法相								解法相			
对该 $\overline{h} = \lambda h$ 是											

(5) 设 $y_0, y_1, ..., y_n$ 是不全等的一串数,满足

$$\begin{cases} l(y_i) \equiv (y_{i-1} - 2y_i + y_{i+1}) / h^2 - q_i y_i \ge 0 \\ q_i \ge 0, & i = 1, 2, ..., n - 1 \end{cases}$$

那么 (极值原理): _____

若 $y_0 = -1$, $y_n = 2$, 则对 y_i , i = 1, 2, ..., n-1 可有估计______

- 二. (20分) 计算填空:
- (1) 已知

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 10 & 20 & 30 \\ 0 & 5 & 20 \\ 0 & 0 & 1 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} 25 \\ 55 \\ 95 \end{pmatrix}$$

方程组 Ax = b 的解是

(2) 已知方程组的系数矩阵A,求雅可比迭代矩阵B

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$
, $B =$ _______, 曲此

可知雅可比迭代是否收敛?_____

- (3) 某圆形场地的半径为 10m,若测量半径时产生 0.1m 的误差,在计算场地的面积时,大约误差(不计 π 的误差) $\Delta S \approx$ ______。
- (4) S(x) 是定义在[0,2]上的函数:

$$S(x) = \begin{cases} x^3 + x, & x \in [0,1] \\ 3x^3 - 5x + 4, & x \in [1,2] \end{cases},$$

S(x) 是不是为[0,1]、[1,2]上的三次样条函数?_____

(5) 已知 $\{g_k(x)\}$ 是区间[a,b]上以 \sqrt{x} 为权函数的正交函数系,化简 ($a \ge 0$):

$$\int_{a}^{b} \sqrt{x} (xg_{2}(x) + 3x^{2})g_{4}(x)dx = \underline{\hspace{1cm}}$$

三. (7 分) 已知数据点 (1.0, 3.0), (1.5, 4.0), (2.0, 4.5), 求 y 的一次近似多项式。

解:

四 解:	(6分)试设计一种求√11的算法,并说明其可行性。
	(7 分)已知用 $f(h)$ 计算 S 时,有误差 $S-f(h)=a_1h^3+a_2h^6+a_3h^9+$ 试建立一种新的计算公式 $g(h)$,使得 $S-g(h)=0$ 。
州午 :	

六. (7分) 设 $a \le x_0 < x_1 < ... < x_n \le b$, $\int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$ 为高斯型求积公式,

试证明求积系数具有非负性,即 $A_i > 0, i = 1, 2, ..., n$. (提示: 考虑利用函数

$$g_i(x) = [(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)]^2$$

证明:

七. (10 分) 常微分方程初值问题 $\begin{cases} y'(x) = f(x, y(x)), & a \le x \le b \\ y(a) = y_0 \end{cases}$ 的一个数值求

解公式是: $y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1})$.

- (1) 试确定此公式的代数精度;
- (2) 求出此公式的局部截断误差估计式。

解:

八.(8 分)如图是用差分法求椭圆方程的第一类边值问题数值解的部分网格, R(i,j) 为一节点,T 为求解区域边界上一点,h 为横向步长, $\left|RT\right|=h'$ 。试证 明在节点 R(i,j) 处有

$$\left| \frac{\partial^2 u}{\partial x^2} \right|_{(i,j)} \approx \frac{2}{h+h'} \left(\frac{u(T) - u(x_i, y_j)}{h'} - \frac{u(x_i, y_j) - u(x_{i-1}, y_j)}{h} \right)$$

解:

九. (10分)常微分方程边值问题

$$\begin{cases} - \left(py' \right)' + qy = f(x), & a < x < b, & \sharp \vdash p(x) > 0, \ q(x) > 0 \\ y(a) = d_1, & y(b) = d_2 \end{cases}$$

的有限元算法, 其单元刚度矩阵和右端向量的计算公式如下

$$K^{(i)} = -\frac{p_i}{l_i} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} + \frac{l_i q_i}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \qquad b^{(i)} = \frac{l_i f_i}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

试用有限元方法求边值问题 $\begin{cases} y'' - xy + 2 = 0, \quad 0 < x < 1 \\ y(0) = 0, \ y(1) = 1 \end{cases}$ 的数值解。

(求解时将[0,1]等分为两个小区间)

解: