Why Agile Data Science?

Agenda

- Agile Data Science
- Introduction to Data Science
- Data Product Chain
- Data Product Lifecycle
- Machine Learning Lifecycle

Agile methodologies....

... for Data Science projects

Why?

Introduction to Data Science

Data...

3 Important Statistics About How Much Data Is Created Every Day

1 How much data is generated every minute?

Source: Domo

9 41,666,667

1,388,889

404,444

messages shared by WhatsApp users video / voice calls made by people worldwide hours of video streamed by Netflix users

347,222

150,000

47,000

stories posted by Instagram users

messages shared by Facebook users

photos shared by Facebook users

2 Estimated Data Consumption from 2021 to 2024

3 Data Growth in 2021

Sources: TechJury, Internet Live Stats, Cisco, PurpleSe

Q 2 TRILLION

1.134 TRILLION MB

3,026,626

searches on Google by the end of 2021

volume of data created every day

emails sent every second, 67% of which are spam

⊘ 278,108 PETABYTES

230,000

2829

global IP data per month by the end of 2021

new malware versions created every day

share of video in total global internet traffic at the end of 2021

...and 1 ZB is ???? Bytes... how many zeros?

	Multiple-byte units							
Decimal		Binary						
Value		Metric	Value		IEC	1	Legacy	
1000	kB	kilobyte	1024	KiB	kibibyte	KB	kilobyte	
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	MB	megabyte	
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte	
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte	
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		-	
1000 ⁶	ΕB	exabyte	1024 ⁶	EiB	exbibyte		-	
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		-	
10008	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		-	
Orders of magnitude of data								

1 ZB = 10000000000000000000 Bytes

So we have a lot of data, now...

... we need to know what are we going to do with it

Data Value Chain

Can we define what is a Data Product?

- for instance...

Usually, we can not use the data as-is, we need to prepare it:

- Delete duplicates
- ☐ Impute missing values
- Normalize numerical features
- Add meta-data

This is the most time-consuming process but it is absolutely necessary. Remember: Garbage, In Garbage Out. If we are not using clean data, we can not trust the insights.

Data Science, the way to create Data Products

Data Science is a **methodology** to define:

- 1. what we want to do with data,
- 2. how do we evaluate our actions,
- 3. what decisions can be grounded on data,
- 4. how do we combine evidences from several sources.

Data Product development is a team sport

Much more complex that you can imagine...

Continuum of Analytics Roles and Skills

why? The Data Product Lifecycle

Build data products is not any more just to run a Notebook to train a model in python... there are much more steps

Machine Learning... (aka AI in the Enterprises)

- Machine learning is a subfield of artificial intelligence.
- Its goal is to enable computers to learn on their own.
- A machine's learning algorithm enables computers
 - to identify patterns in observed data,
 - build models that explain the world, and
 - predict things without having explicit pre-programmed rules and models

"If we are ever to make a machine that will speak, understand or translate human languages, solve mathematical problems with imagination, practice a profession or direct an organization, either we must reduce these activities to a science so exact that we can tell a machine precisely how to go about doing them or we must develop a machine that can do things without being told precise."

R.M. Friedberg – IBM Journal of Research - 1958

- Four legs
- Snout
- Tail
- Hair

- Soft fur
- Long ears

The ML Model Lifecycle (simple version)

The ML Model Lifecycle (real version)

so... why Agile Data Science?

- Data products development is a team game
- A lot of things may change, we need an agile mindset and agile methodologies
- ML is tricky, we need a way to deal with the complexities
- ML lifecycle needs to be managed, so you need to understand the basic concepts and tools
- Enterprises and companies are working in this way, so you need to understand the basic concepts and tools