Data Mining

Integrated Analytics Lab

whoami

Matteo Francia

- Email: m.francia@unibo.it
- Assistant professor @ UniBO

Research topics

- Big data / database
- Geo-spatial analytics

Materials

The materials are available here:

https://github.com/w4bo/2023-bbs-dm

Analytics

Business intelligence

Strategies to transform raw data into decision-making insights

Analytics

- A catch-all term for a variety of different business intelligence and application-related initiatives
- The process of analyzing data from a particular domain (e.g., sales and supply chain)

Advanced Analytics

 (Semi-)Autonomous transformation of data using techniques and tools, to discover deeper insights, make predictions, or generate recommendations

Integrated Analytics (Lab)

 Analytics are based on the usage of statistics, machine learning, operational research, and advanced visualization techniques

https://www.gartner.com/en/information-technology/glossary?glossarykeyword=analytics

The knowledge pyramid

Family of transformations are usually abstracted in the "knowledge pyramid"

- Data: symbols representing real-word objects (e.g., store product sales)
- Information: processed data (e.g., query the product with highest profit)
- Knowledge: understanding (e.g., mine products often sold together)
- Wisdom: knowledge in action (e.g., discount products to optimize profits)

Data transformation requires a structured approach

 Choosing the best algorithm is only one of the success factors

Cross-industry standard process for data mining (CRISP-DM) is a model that describes common approaches for data pipelines used by data mining experts

CRISP-DM breaks the process of data mining into six major phases

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

The sequence of phases is not strict

- Arrows indicate the most important and frequent dependencies between phases
- The outer circle in the diagram symbolizes the cyclic nature of data mining itself

Understanding the domain

 Understanding project goals from the user's point of view, translate the user's problem into a data mining problem, and define a project plan

Understanding the data

 Preliminary data collection aimed at identifying quality problems and conducting preliminary analyzes to identify the salient characteristics

Data preparation

 Includes all the tasks needed to create the final dataset: selecting attributes and records, transforming and cleaning data

Model Creation

 Several data mining techniques are applied to the dataset also with different parameters in order to identify what makes the model more accurate

Evaluation of model and results

The model(s) obtained from the previous phase are analyzed to verify that they are sufficiently precise and robust to respond adequately to the user's objectives

Deployment

The built-in model and acquired knowledge must be made available to users. This phase can therefore simply lead to the creation of a report or may require implementation of a usercontrolled data mining system

The full picture (data pipeline)

GOAL of this lab

Move through transformation phases

Disclaimer! (and my lesson learned)

This module covers a lot of teaching material

- Data Mining (6 CFU), Machine Learning (6 CFU)
- Business Intelligence (6 CFU), Big Data (6 CFU)
- 1 CFU = 25h, 24 CFU = 600h (almost a semester in University)

This module involves 3 abstraction levels:

- Theory: recall, understand, and discuss the main challenges
- Map theoretical issues into practice: slides
- Implementation: notebooks

Our journey is just about 3 hours + 4 hours lab

- We will discuss the integrated laboratory through the notebooks
- There is not time to focus on the programming aspect, but you have them for posterior study