Faculty of Computers & Information Fourth Year, CS department Embedded Systems

Instructor: Dr. Anas Youssef

Midterm Exam Time: I hour Number of Pages: 2 Total marks: 20

Student Name					
Student Section No.					
Question 1:					(8 Marks
(a) What does ASIC	stand for in an embed	ded system archite	ecture?		
	the difference betwee example for each of		realtime system	and a non-cri ti	cal hard-realtime
(c) Draw a simple of	liagram that shows the	e behavioral speci erent states.	fication of an er	mbedded system	that controls an
	pseudocode that imp embedded system.	lements a power-	saving super loc	op for a sequence	e of tasks that are
Question 2:				1.7	(12 Marks)
(a) Briefly describe	the purpose of having	a Realtime Kerne	I in building an e	mbedded system.	

					tite.	r an embedded sys	
prot	mem that may	difference between occur in process re critical effect o	sor scheduling	of tasks in re	al time embed	unbounded prior ded systems. Whi	rity inversion of the
				aradinos. o	isting with reas	ons.	
	11 0 00				. the fall and a	execution orofile	men a
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is tasks be success to the first instance to the first instance	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	100 ms and execu	the deadli
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadli
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadle
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the dead!
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadle
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadli
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadli
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadli
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadle
hz a	and Task T3 e Can the three Suppose that for each tash uses rate m	execution time is e tasks be success t the first instanc k is less than its	ation rate is 10 150 ms and ex sfully schedule the of each of the scorresponding uling to show	hz, Task T2 e ecution rate is ed using perfe- e three tasks ag execution	execution time is 5 hz. ct scheduling? Varrives at time 1 period by 10%	Why? = 0. Assume that Draw a timing of	the deadle

- ASICs application-specific integrated circuit

1. Critical Hard Real-Time:

- These are tasks or processes within an embedded system that have strict, non-negotiable timing requirements.
- Failure to meet the specified deadlines can lead to catastrophic consequences, safety hazards, or system failure.
- Examples include control systems in automotive applications (like ABS braking), medical devices (like pacemakers), or avionics in aircraft (like flight control systems).
- These tasks are time-critical and must be completed within specified time limits for the system to operate safely and correctly.

2. Non-Critical Hard Real-Time:

- These are tasks within an embedded system that have timing requirements, but missing a deadline doesn't result in catastrophic failure or safety hazards.
- While timing is important, missing a deadline might lead to degraded performance or reduced efficiency rather than a system failure.
- Examples might include user interface updates, background maintenance tasks, or some communication processes in the system.
- Though these tasks have timing constraints, they're not as critical as those in the critical hard real-time category.

Embedded System Design Behavior/Architecture Co-Design Methodology

Behavioral Specification and Architectural Specification -> Mapping -> High Level Performance Simulation with the ability of returning back modifying specification -> System Synthesis ()بناء السبينة كهاردوبر

HDL: Hardware Description Language

Power-Saving Super Loop Architecture

```
Function Main_Function()
{
    Initialization();
    Do_Forever
    {
        Check_Status_of_Task();
        Perform_Calculations();
        Output_Result();
        Delay_Before_Starting_Next_Loop();
    }
}
```

HOL Code -> Compiler -> Assembler with Assembly code -> object files with real time kernel and reentrant libraries (like runtime libraries in desktop process) -> Linker -> Executable image file -> Locator -> ROM image file -> ROM Burner -> ROM (Flash) -> program initialize Read Write memory (RAM)

Embedded System Design HW/SW Co-Design Methodology

Hardware/Software partitioning and allocation -> HW Design & Build with SW Design and Code with Interface Design, with the ability of returning back modifying any Design-> HW/SW Integration and going back if any modification.

Priority Inversion

Best-known instance involved the Mars Pathfinder mission in 1997, occurs when circumstances within the system force a higher priority task to wait for a lower priority task.

If a lower-priority task has locked a resource and a higher-priority task attempts to lock that resource, the higher-priority task will be put in a blocked state until the resource is available.

If the lower-priority task soon finishes with the resource and releases it, the higher-priority task may quickly resume and it is possible that no real time constraints are violated.

Unbounded Priority Inversion

The duration of a priority inversion depends not only on the time required to handle a shared resource, but also on the unpredictable actions of other unrelated tasks