

Institut für Mechanik

Prof. Dr.-Ing. W. Ehlers www.mechbau.uni-stuttgart.de

Ergänzung zur Vorlesung

Technische Mechanik III – Teil III

Formelsammlung

Stand WS 2012/13

letzte Änderung: 9.1.2013

TEIL I: Allgemeine Vorraussetzungen

1 Materieller Körper, Konfiguration und Bewegung

Definition:

Ein materieller Körper \mathcal{B} ist eine kontinuierlich verteilte Menge materieller Punkte \mathcal{P} , die sich eindeutig auf Gebiete des Anschauungsraums abbilden läßt. Eine solche Abbildung heißt Konfiguration.

Einführung der Plazierungsfunktion:

$$\mathbf{x} = \boldsymbol{\chi}(\mathcal{P}, t)$$

Bem.: Die Bewegungsfunktion χ weist jedem materiellen Punkt $\mathcal{P} \in \mathcal{B}$ zu jeder Zeit $t > t_0$ eine eindeutige Lage $\mathbf{x}(t)$ zu.

Anfangsbedingung $(t = t_0)$:

$$\mathbf{X} = \mathbf{x}(t = t_0) = \boldsymbol{\chi}(\mathcal{P}, t_0)$$

Folgerung: Man identifiziert die materiellen Punkte $\mathcal{P} \in \mathcal{B}$ durch ihre Ausgangslage X zum Zeitpunkt t_0 .

Einführung der Bewegungsfunktion:

$$\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t)$$

Geschwindigkeit und Beschleunigung:

• Einführung der Geschwindigkeit als zeitliche Änderung der Bewegung

$$\mathbf{v} := \dot{\mathbf{x}} = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\chi}(\mathbf{X}, t)$$

• Einführung der Beschleunigung als zeitliche Änderung der Geschwindigkeit

$$\mathbf{b} := \dot{\mathbf{v}} = \ddot{\mathbf{x}} = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{v}(\mathbf{X}, t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \boldsymbol{\chi}(\mathbf{X}, t)$$

Bem.: Bewegung, Geschwindigkeit und Beschleunigung sind **Feldfunktionen**, d. h. Funktionen von Ort und Zeit:

$$\{\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}}\} = \mathbf{f}(\mathbf{X}, t)$$

2 Darstellung der Bewegung in natürlichen Koordinaten

2.1 Darstellung der Bewegung im Raum

Darstellung der Bewegung in kartesischen Koordinaten in einem raumfesten Bezugssystem $\{\mathcal{O}, \mathbf{e}_i\}$:

Bewegung:

$$\mathbf{x} = x_i(X_1, X_2, X_3, t) \, \mathbf{e}_i$$

Tangentenvektoren:

$$\mathbf{a}_i := \frac{\partial \mathbf{x}}{\partial \Theta^i} = \frac{\partial \mathbf{x}}{\partial X_i}$$

Bemerkungen:

- ullet Die Parameterlinien X_i sind die natürlichen Koordinaten des Raumes.
- Bezüglich kartesischer Koordinaten sind die Tangentenvektoren \mathbf{a}_i (natürliche Basis) und die orthonormierten Basisvektoren \mathbf{e}_i identisch.
- Man identifiziert die speziellen natürlichen Koordinaten X_i mit den allgemeinen natürliche Koordinaten Θ^i .
- Die Parameterlinien Θ^i müssen nicht entlang einer Geraden gemessen werden (krummlinige Koordinaten).

Darstellung der Bewegung in krummlinigen Koordinaten in einem raumfesten Bezugssystem $\{\mathcal{O}, e_i\}$:

Bewegung:

$$\mathbf{x} = x_i(\Theta^1, \Theta^2, \Theta^3, t) \, \mathbf{e}_i$$

Tangentenvektoren:

$$\mathbf{a}_i := \frac{\partial \mathbf{x}}{\partial \Theta^i}$$

Darstellung der Bewegung in Zylinderkoordinaten:

Einführung natürlicher Koordinaten (Zylinderkoordinaten):

$$\Theta^1 = \rho$$
 ; $\Theta^2 = \varphi$; $\Theta^3 = X_3$

Transformationsbeziehungen zwischen X_i und Θ^i :

$$X_1 = \rho \cos \varphi = \Theta^1 \cos \Theta^2$$

$$X_2 = \rho \sin \varphi = \Theta^1 \sin \Theta^2$$

$$Y = \Theta^3$$

Ortsvektor ${\bf x}$ in natürlichen Koordinaten:

$$\mathbf{x} \; = \; \Theta^{1} \cos \Theta^{2} \, \mathbf{e}_{1} \; + \; \Theta^{1} \sin \Theta^{2} \, \mathbf{e}_{2} \; + \; \Theta^{3} \, \mathbf{e}_{3}$$

Differentiation nach Θ^i und Normierung der Tangentenvektoren liefert:

$$\mathbf{e}_{\rho} = \mathbf{a}_{1} = \cos \varphi \, \mathbf{e}_{1} + \sin \varphi \, \mathbf{e}_{2}$$

$$\mathbf{e}_{\varphi} = \frac{\mathbf{a}_{2}}{|\mathbf{a}_{2}|} = -\sin \varphi \, \mathbf{e}_{1} + \cos \varphi \, \mathbf{e}_{2}$$

$$\mathbf{e}_{3} = \mathbf{a}_{3}$$

Beispiel: Bewegung auf einer Zylindermantelfläche ($\rho = r = \text{konst.}$)

$$\mathbf{e}_{\rho} = \cos \varphi \, \mathbf{e}_{1} + \sin \varphi \, \mathbf{e}_{2}$$

$$\mathbf{e}_{\varphi} = -\sin \varphi \, \mathbf{e}_{1} + \cos \varphi \, \mathbf{e}_{2}$$

$$\mathbf{e}_{3} = \mathbf{e}_{3}$$

Beispiel: Bewegung auf einer Kreisbahn ($\rho = r = \text{konst.}$ und $X_3 = \text{konst.}$)

$$\mathbf{e}_{\varphi} = -\sin\varphi \,\mathbf{e}_1 + \cos\varphi \,\mathbf{e}_2$$

$$\mathbf{e}_{\rho} = \cos\varphi \,\mathbf{e}_1 + \sin\varphi \,\mathbf{e}_2$$

TEIL II: Kinematik der Massenpunkte und der Starrkörper

3 Kinematik der Massenpunkte

3.1 Geradlinige Bewegung

Charakterisierung der Bewegung mit Hilfe der Beschleunigung b:

$$b \quad \left\{ \begin{array}{l} > 0 : & \text{beschleunigte Bewegung} \\ = 0 : & \text{gleichf\"{o}rmige Bewegung} \\ < 0 : & \text{verz\"{o}gerte Bewegung} \end{array} \right.$$

Grundaufgaben der geradlinigen Bewegung:

Fall 1: b = konst. (konstante Beschleunigung)

$$b = \frac{\mathrm{d}v}{\mathrm{d}t} \longrightarrow v = b(t - t_0) + v_0$$

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} \longrightarrow s = \frac{1}{2}b(t - t_0)^2 + v_0(t - t_0) + s_0$$

Fall 2: b = b(t) (zeitabhängige Beschleunigung)

$$b(t) = \frac{\mathrm{d}v}{\mathrm{d}t} \longrightarrow v = \int_{t_0}^t b(\tilde{t}) \, \mathrm{d}\tilde{t} + v_0$$

$$v(t) = \frac{\mathrm{d}s}{\mathrm{d}t} \longrightarrow s = \int_{t_0}^t \int_{t_0}^t b(\tilde{t}) \, \mathrm{d}\tilde{t} \, \mathrm{d}\tilde{t} + v_0(t - t_0) + s_0$$

Fall 3: b = b(v) (geschwindigkeitsabhängige Beschleunigung)

$$dt = \frac{dv}{b(v)} \rightarrow t = \int_{v_0}^{v} \frac{1}{b(\tilde{v})} d\tilde{v} + t_0$$

$$ds = \frac{v dv}{b(v)} \rightarrow s = \int_{v_0}^{v} \frac{\tilde{v} d\tilde{v}}{b(\tilde{v})} + s_0$$

Fall 4: b = b(s) (wegabhängige Beschleunigung)

$$b(s) = \frac{v \, dv}{ds} \rightarrow \frac{1}{2} (v^2 - v_0^2) = \int_{s_0}^s b(\tilde{s}) \, d\tilde{s}$$
$$dt = \frac{ds}{v(s)} \rightarrow t = \int_{s_0}^s \frac{d\tilde{s}}{v(\tilde{s})} + t_0$$

3.2 Krummlinige Bewegung

Darstellung in Zylinderkoordinaten (Bezug der Bewegung auf \mathbf{e}_{ρ} , \mathbf{e}_{φ} , \mathbf{e}_{3}):

$$\begin{array}{llll} \mathbf{e}_{\rho} & = & \cos\varphi\,\mathbf{e}_{1} & + & \sin\varphi\,\mathbf{e}_{2} \\ \mathbf{e}_{\varphi} & = & -\sin\varphi\,\mathbf{e}_{1} & + & \cos\varphi\,\mathbf{e}_{2} \\ & & & \\ \mathbf{e}_{3} & = & & & \\ \end{array} & & & \\ \begin{array}{lll} \dot{\mathbf{e}}_{\rho} & = & \dot{\varphi}\,\mathbf{e}_{\varphi} \\ \\ \dot{\mathbf{e}}_{\varphi} & = & -\dot{\varphi}\,\mathbf{e}_{\rho} \\ \\ \dot{\mathbf{e}}_{3} & = & & \\ \end{array}$$

Ortsvektor, Geschwindigkeit und Beschleunigung:

$$\mathbf{x} = \rho \cos \varphi \, \mathbf{e}_{1} + \rho \sin \varphi \, \mathbf{e}_{2} + x_{3} \, \mathbf{e}_{3}$$

$$= \rho \, \mathbf{e}_{\rho} + x_{3} \, \mathbf{e}_{3}$$

$$\mathbf{v} = \dot{\mathbf{x}} = \dot{\rho} \, \mathbf{e}_{\rho} + \rho \, \dot{\mathbf{e}}_{\rho} + \dot{x}_{3} \, \mathbf{e}_{3}$$

$$= \dot{\rho} \, \mathbf{e}_{\rho} + \dot{\rho} \, \dot{\mathbf{e}}_{\rho} + \dot{\rho} \, \dot{\mathbf{e}}_{\rho} + \dot{\rho} \, \dot{\mathbf{e}}_{\rho} + \dot{\rho} \, \dot{\mathbf{e}}_{\varphi} + \dot$$

Bewegung auf der Zylindermantelfläche ($\rho = r = \text{konst.}$):

$$\mathbf{x} = r \mathbf{e}_{\rho} + x_3 \mathbf{e}_3$$

$$\mathbf{v} = r \dot{\varphi} \mathbf{e}_{\varphi} + \dot{x}_3 \mathbf{e}_3$$

$$\mathbf{b} = -r \dot{\varphi}^2 \mathbf{e}_{\rho} + r \ddot{\varphi} \mathbf{e}_{\varphi} + \ddot{x}_3 \mathbf{e}_3$$

Bewegung auf einer Kreisbahn ($\rho = r = \text{konst.}$ und $x_3 = \text{konst.}$):

$$\mathbf{x} = r \, \mathbf{e}_{\rho} + x_3 \, \mathbf{e}_3$$

$$\mathbf{v} = \underbrace{r \, \dot{\varphi}}_{v_{\varphi}} \, \mathbf{e}_{\varphi}$$

$$\mathbf{b} = \underbrace{-r \, \dot{\varphi}^2}_{b_{\rho}} \, \mathbf{e}_{\rho} + \underbrace{r \, \ddot{\varphi}}_{b_{\varphi}} \, \mathbf{e}_{\varphi}$$

$$\mathbf{mit} \begin{cases} v_{\varphi} : \text{Umfangsgeschwindigkeit} \\ b_{\rho} : \text{Zentripetalbeschleunigung} \\ b_{\varphi} : \text{Umfangsbeschleunigung} \end{cases}$$

3.3 Relativbewegung

Bem.: Manchmal kann es sinnvoll sein, Bewegungen in einem mitbewegten Bezugssystem $\{ \overset{*}{\mathcal{O}}, \overset{*}{\mathbf{e}}_1 \}$ zu formulieren. Dabei ist zu beachten, daß bei Zeitableitungen die Basis des Relativsystems ebenfalls eine Zeitableitung besitzt.

Veranschaulichung:

Zusammenhang zwischen Absolut- und Relativbewegung:

$$\mathbf{x} = \mathbf{r} + \overset{*}{\mathbf{x}}$$
 mit $\left\{ egin{array}{l} \mathbf{v} = \dot{\mathbf{x}} = \dot{\mathbf{r}} + \overset{\dot{*}}{\mathbf{x}} \\ \mathbf{b} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} + \overset{\dot{*}}{\mathbf{x}} \end{array}
ight.$

Zeitableitung der Basisvektoren:

Zeitableitung im Relativsystem:

Für einen beliebigen Vektor $\mathbf{u} = u_i \mathbf{e}_i$ im Relativsystem gilt:

Allgemeine Formel für Absolutgeschwindigkeit und Absolutbeschleunigung:

$$\mathbf{v} = \underbrace{\ddot{\mathbf{r}} + \boldsymbol{\omega} \times \ddot{\mathbf{x}}}_{\text{F\"{u}hrungsgeschwindigkeit}} + \underbrace{\ddot{\mathbf{v}}}_{\text{Relativgeschwindigkeit}}$$

$$\mathbf{b} = \underbrace{\ddot{\mathbf{r}} + \dot{\boldsymbol{\omega}} \times \ddot{\mathbf{x}} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \ddot{\mathbf{x}})}_{\text{F\"{u}hrungsbeschleunigung}} + \underbrace{2\,\boldsymbol{\omega} \times \ddot{\mathbf{v}}}_{\text{Coriolis-Beschleunigung}} + \underbrace{\frac{\mathbf{b}}{\mathbf{b}}}_{\text{Relativbeschleunigung}}$$

Möglichkeit zur Berechnung von Relativaufgaben:

- (a) Einsetzen in die Formeln, d. h., Formulierung von $\dot{\mathbf{r}}$, $\boldsymbol{\omega}$, $\dot{\mathbf{x}}$, $\dot{\mathbf{v}}$, $\ddot{\mathbf{r}}$, $\dot{\boldsymbol{\omega}}$, $\dot{\mathbf{b}}$
- (b) Aufstellen des Ortsvektors und anschließendes zeitliches Ableiten (Koeffizienten und Basis)

Einschub Koordinatentransformationen für Drehung in der Ebene:

4 Kinematik der Starrkörper

Allgemeine Bewegung des starren Körpers

Bem.: Der Starrkörper besitzt 6 Freiheitsgrade im Raum (3 Translationen und 3 Rotationen). Bei der Bewegung des Starrkörpers erfahren die Vektoren $\bar{\mathbf{x}}$ und $\hat{\mathbf{x}}$ lediglich eine Rotation, d. h. $\dot{\bar{\mathbf{x}}} = \boldsymbol{\omega} \times \bar{\mathbf{x}}$ und $\dot{\hat{\mathbf{x}}} = \boldsymbol{\omega} \times \hat{\mathbf{x}}$.

Geschwindigkeit und Beschleunigung bei Bezug auf $\bar{\mathcal{O}}$:

$$\mathbf{v} = \dot{\mathbf{x}} = \dot{\mathbf{x}}_{\bar{\mathcal{O}}} + \dot{\bar{\mathbf{x}}}$$

$$= \mathbf{v}_{\bar{\mathcal{O}}} + \boldsymbol{\omega} \times \bar{\mathbf{x}}$$

$$\mathbf{b} = \dot{\mathbf{v}} = \dot{\mathbf{v}}_{\bar{\mathcal{O}}} + (\boldsymbol{\omega} \times \bar{\mathbf{x}})^{\cdot}$$

$$= \mathbf{b}_{\bar{\mathcal{O}}} + \dot{\boldsymbol{\omega}} \times \bar{\mathbf{x}} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \bar{\mathbf{x}})$$

Wechsel des Bezugspunkts::

$$\mathbf{v}_{\hat{\mathcal{O}}} = \mathbf{v}_{\bar{\mathcal{O}}} + \boldsymbol{\omega} \times (\bar{\mathbf{x}} - \hat{\mathbf{x}})$$
 $\mathbf{v} = \mathbf{v}_{\hat{\mathcal{O}}} + \hat{\boldsymbol{\omega}} \times \hat{\mathbf{x}}$
 $= \mathbf{v}_{\bar{\mathcal{O}}} + \boldsymbol{\omega} \times \bar{\mathbf{x}} + (\hat{\boldsymbol{\omega}} - \boldsymbol{\omega}) \times \hat{\mathbf{x}}$
 $\rightarrow \boldsymbol{\omega} = \hat{\boldsymbol{\omega}}$

Reduktion auf eine Geschwindigkeitsschraube ($\mathbf{v}_{\bar{\mathcal{O}}}$ und $\boldsymbol{\omega}$ besitzen eine gemeinsame Wirkungslinie):

$$egin{aligned} ar{\mathbf{x}}_B = rac{oldsymbol{\omega} imes \mathbf{v}_{ar{\mathcal{O}}}}{oldsymbol{\omega} \cdot oldsymbol{\omega}} &
ightarrow & \mathbf{v}_B = rac{oldsymbol{\omega} \cdot \mathbf{v}_{ar{\mathcal{O}}}}{oldsymbol{\omega} \cdot oldsymbol{\omega}} oldsymbol{\omega} \end{aligned}$$

Ebene Bewegung des Starrkörpers

Bem.: Die ebene Bewegung des Starrkörper ist ein Sonderfall der allgemeinen Bewegung. Es verbleiben 3 kinematische Freiheitsgrade, nämlich zwei Translationen in der Ebene und eine Rotation senkrecht zu Ebene. Damit entspricht der Ortsvektor $\bar{\mathbf{x}}_B$ bei Reduktion auf eine Geschwindigkeitsschraube der Lage des momentanen Geschwindigkeitspols mit $\mathbf{v}_B = \mathbf{0}$, da $\mathbf{v}_{\bar{\mathcal{O}}} \parallel \boldsymbol{\omega}$.

(a) Geschwindigkeitzustand und momentaner GeschwindigkeitspolMV:

Lage des momentanen Geschwindigkeitspols MV:

$$\mathbf{x}_{MV} = rac{oldsymbol{\omega} imes \mathbf{v}_{ar{\mathcal{O}}}}{oldsymbol{\omega} \cdot oldsymbol{\omega}} \quad ext{mit} \quad \mathbf{v}_{MV} = \mathbf{0}$$

Betrag von \mathbf{x}_{MV} : $\bar{x}_{MV} = \frac{v_{\bar{\mathcal{O}}}}{\omega}$

Graphische Methoden zur Bestimmung des momentanen Geschwindigkeitspols:

- Ist in einem Punkt A die Geschwindigkeit \mathbf{v}_A bekannt, so liegt der momentane Geschwindigkeitspol MV auf der Senkrechten zu \mathbf{v}_A in A.
- Sind in A und B die Geschwindigkeiten \mathbf{v}_A und \mathbf{v}_B bekannt, so liegt MV im Schnittpunkt der beiden in A und B auf \mathbf{v}_A und \mathbf{v}_B errichteten Senkrechten.
- \bullet Ist ein Punkt bekannt, für den $\mathbf{v} = \mathbf{0}$ gilt, so ist dieser Punkt der momentane Geschwindigkeitspol MV.

Gangpolbahn und Rastpolbahn:

- Gangpolbahn (körperfest): Menge aller momentanen Geschwindigkeitspole des Körpers.
- Rastpolbahn (bahnfest): Menge aller momentanen Geschwindigkeitspole der Bahn, auf der der Körper abrollt.

Beispiel: Rollendes Rad

(b) momentaner Beschleunigungspol MB:

$$\mathbf{x}_{MB} = rac{\dot{oldsymbol{\omega}} imes \mathbf{b}_{ar{\mathcal{O}}} + (oldsymbol{\omega} \cdot oldsymbol{\omega}) \mathbf{b}_{ar{\mathcal{O}}}}{\dot{oldsymbol{\omega}} \cdot \dot{oldsymbol{\omega}} + (oldsymbol{\omega} \cdot oldsymbol{\omega})^2} \quad ext{mit} \quad \mathbf{b}_{MB} = \mathbf{0}$$

TEIL III: Kinetik der Massenpunkte und der Massenpunktsysteme

5 Impuls- und Drallsatz

5.1 Impulssatz der Punktkinetik

Bem.: Der Impulssatz hat axiomatischen Charakter und basiert auf der Naturbeobachtung.

Newtonsche Gesetze:

- 1. Ein Körper, auf den keine resultierende Kraft einwirkt, verharrt im Zustand der Ruhe bzw. der gleichförmigen Bewegung (**v** = konst.).
- 2. Newtonsches Grundgesetz (Impulssatz): "Kraft = Masse \times Beschleunigung"
- 3. Reaktionsgesetz: "Actio = Reactio"
- 4. Gesetz vom Kräfteparallelogramm

Formelmäßige Darstellung der Gesetze 1. und 2.:

• Das 1. Newtonsche Gesetz (Impulserhaltungssatz) lautet:

$$\mathbf{0} = \mathbf{k} \quad \longleftrightarrow \quad m \mathbf{v} = \text{konst.}$$

• Das 2. Newtonsche Gesetz (Impulssatz) lautet:

$$m \mathbf{b} = \mathbf{k}$$
 mit $\begin{cases} m = \text{konst.} \\ \mathbf{k} : \text{auf den Massenpunkt einwirkende} \\ \text{resultierende Kraft} \end{cases}$

Axiomatische Einführung des Impulssatzes:

"Impuls (Bewegungsgröße) = Masse × Geschwindigkeit"
$$\longrightarrow$$
 $\mathbf{l} = m \mathbf{v}$

Axiom: Die zeitliche Änderung des Impulses enspricht der Summe der auf den Massenpunkt m angreifenden Kräfte. \longrightarrow $\mathbf{i} = \mathbf{k}$

Diskussion des Impulssatzes:

Impulssatz für Systeme mit veränderlichen Massen: $m \, \dot{\mathbf{v}} + \dot{m} \, \mathbf{v} = \mathbf{k}$

Massenänderung in Abhängigkeit von \mathbf{v} nach Einstein:

$$m = \frac{m_0}{\sqrt{1 - (\frac{v}{c})^2}} \qquad \text{mit} \begin{cases} m_0 : \text{Ruhemasse} \\ c : \text{Lichtgeschwindigkeit} \end{cases}$$

Allgemeine Vorgehensweise:

- 1. Massenpunkt freischneiden und alle Kräfte antragen.
- 2. Impulssatz in Koordinatenrichtungen aufstellen.
- 3. Durch Integration \mathbf{x} bestimmen oder bei bekannter Bewegung \mathbf{k} berechnen.

Inertialsysteme und Galilei-Transformation:

Definition: Alle Bezugssysteme, in denen das *Newton*sche Grundgesetz gilt, sind Inertialsysteme.

Wechsel des Bezugssystems:

$$\mathbf{b} = \mathbf{b}_f + \mathbf{b}_c + \mathbf{b}_r$$

mit
$$\begin{cases} \mathbf{b}_f &= \ddot{\mathbf{r}} + \dot{\boldsymbol{\omega}} \times \overset{*}{\mathbf{x}} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \overset{*}{\mathbf{x}}) \\ \mathbf{b}_c &= 2\boldsymbol{\omega} \times \overset{*}{\mathbf{v}} \\ \mathbf{b}_r &= \overset{*}{\mathbf{b}} \end{cases}$$

Im Absolutsystem (Inertialsystem) bzgl. $\{0, \mathbf{e}_i\}$ gilt: $\mathbf{k} = m \mathbf{b} = m (\mathbf{b}_f + \mathbf{b}_c + \mathbf{b}_r)$

Im Relativsystem bzgl. $\{\stackrel{*}{0},\stackrel{*}{\mathbf{e}_i}\}$ gelte: $\mathbf{k}=m\,\mathbf{b}_r$

Forderung, damit auch $\{\stackrel{*}{0},\stackrel{*}{e_i}\}$ Inertialsystem ist:

$$\mathbf{b} \equiv \mathbf{b}_r \; o \; \left\{ egin{array}{l} \mathbf{b}_f \equiv \mathbf{0} \ \mathbf{b}_c \equiv \mathbf{0} \end{array}
ight\} \; o \; \left\{ egin{array}{l} \ddot{\mathbf{r}} = \mathbf{0} \; o \; \dot{\mathbf{r}} = \mathrm{konst.} \ \dot{m{\omega}} = m{\omega} = \mathbf{0} \end{array}
ight.$$

Jedes Bezugssystem, daß durch eine gleichförmige Translationsbewegung ($\dot{\mathbf{r}} = \text{konst.}$) aus einem Inertialsystem hergeleitet wird, ist selbst ein Inertialsystem. Die Ortsvektoren genügen der *Galilei*-Transformation:

$$\mathbf{x} \ = \ \overset{*}{\mathbf{x}} \ + \ \mathbf{\dot{r}} \, t$$

Beispiele zum Impulssatz der Punktkinetik

Schiefer Wurf

Bem.: Freier Wurf im Schwerefeld (2-d Problem) ohne Luftwiderstand.

gegeben: $v_0, \varphi_0, h_0, \mathbf{g}$.

gesucht: Wurfbahn $x_2(x_1)$, Wurfzeit t_w ,

Wurfweite x_{1w} , Wurfhöhe $\max x_2$.

Wurfbahn:
$$x_2(x_1) = h_0 + \tan \varphi_0 \ x_1 - \frac{g}{2v_0^2 \cos^2 \varphi_0} x_1^2$$

Wurfzeit:
$$t_w = \frac{v_0 \sin \varphi_0}{g} + \sqrt{\left(\frac{v_0 \sin \varphi_0}{g}\right)^2 + \frac{2h_0}{g}}$$

Wurfweite:
$$x_{1w} = x_1(t_w) = v_0 \cos \varphi_0 \ t_w$$
 mit $h_0 = 0$ folgt $x_{1w} = \frac{v_0^2}{q} \sin^2 \varphi_0$

Wurfhöhe:
$$\max x_2 = h_0 + \frac{v_0^2 \sin^2 \varphi_0}{2g}$$

Geführte Bewegung

Bem.: Klotz auf schiefer Ebene im Schwerefeld mit Coulombscher Gleitreibung.

gegeben: $m, \alpha, \mu_G, x_0, v_0, \mathbf{g}$.

gesucht: Bewegung, Geschwindigkeit, Beschleunigung

$$m\ddot{\mathbf{x}} = \mathbf{k} \rightarrow \begin{cases} \mathbf{e}_1 : m\ddot{x}_1 = G_1 - R \\ \mathbf{e}_2 : m\ddot{x}_2 = F - G_2 \end{cases}$$

Bewegung in \mathbf{e}_2 -Richtung nicht möglich (Führung): $x_2 \equiv 0 \rightarrow \dot{x}_2 = \ddot{x}_2 = 0$

Bewegung in
$$\mathbf{e}_1$$
-Richtung
$$\begin{cases} \ddot{x}_1 = g\left(\sin\alpha - \mu_G\cos\alpha\right) = b_1 = \text{konst.} \\ \dot{x}_1 = g\left(\sin\alpha - \mu_G\cos\alpha\right)t + v_0 \\ x_1 = \frac{1}{2}g\left(\sin\alpha - \mu_G\cos\alpha\right)t^2 + v_0t + x_0 \end{cases}$$

5.2 Drallsatz der Punktkinetik

Drall (Drehimpuls) h_B des Massenpunkts m:

$$\mathbf{h}_B = (\mathbf{x} - \mathbf{x}_B) \times \mathbf{l}$$

Bem.: B ist ein beliebiger raumfester Punkt

Zeitableitung von \mathbf{h}_B : $\dot{\mathbf{h}}_B = (\mathbf{x} - \mathbf{x}_B) \times \dot{\mathbf{l}}$

$$\dot{\mathbf{h}}_{\mathit{B}} = (\mathbf{x} - \mathbf{x}_{\mathit{B}}) \times \mathbf{\dot{l}}$$

Drallsatz: Die zeitliche Änderung des Drallvektors entspricht dem Moment der auf den Massenpunkt m einwirkenden Kräfte bzgl. desselben raumfesten Punkts B.

$$\dot{\mathbf{h}}_{\mathcal{B}} = \mathbf{m}_{\mathcal{B}}$$

Der Drallsatz der Punktkinetik ist kein eigenständiges Axiom, da er aus dem Impulssatz hergeleitet werden kann.

5.3 d'Alembertsche Trägheitskräfte

Die Einführung d'Alembertscher Trägheitskräfte basiert auf der Interpretation der Trägheitswirkungen (Scheinkräfte) als eingeprägte Kräfte.

d'Alembertsches Kräftegleichgewicht (dynamisches Gleichgewicht):

aus dem Impulssatz folgt

$$\mathbf{t} = -m\ddot{\mathbf{x}} \rightarrow \mathbf{0} = \mathbf{k} + \mathbf{t}$$

mit t : d'Alembertsche Trägheitskraft

Veranschaulichung: Freier Fall

Newtonsche Formulierung d'Alembertsche Formulierung

6 Impuls- und Drallbilanzsätze

Impuls- und Drallbilanz

Bem.: Impuls- und Drallbilanz sind die integrierten Formen von Impuls- und Drallsatz. Die Impuls- und Drallbilanz können z.B. bei Stoßvorgängen zwischen Massenpunkten und starren Körpern verwendet werden.

Impulsbilanz:

$$\dot{\mathbf{l}} = \mathbf{k} \rightarrow \mathbf{l}(t_2) - \mathbf{l}(t_1) = \int_{t_1}^{t_2} \mathbf{k} \, \mathrm{d}t =: \mathbf{K}$$

mit **K** : Kraftantrieb

Drallbilanzsatz:

$$\dot{\mathbf{h}}_B = \mathbf{m}_B \rightarrow \mathbf{h}_B(t_2) - \mathbf{h}_B(t_1) = \int_{t_1}^{t_2} \mathbf{m}_B \, \mathrm{d}t =: \mathbf{M}_B$$
mit \mathbf{M}_B : Momentenantrieb

Impuls- und Drallerhaltung

Bem.: Sonderfälle für k = 0 bzw. $m_B = 0$.

Impulserhaltungssatz:

$$\mathbf{l}(t_2) - \mathbf{l}(t_1) = 0 \rightarrow \mathbf{l}(t) = \text{konst.}$$

Drallerhaltungssatz:

$$\mathbf{h}_B(t_2) - \mathbf{h}_B(t_1) = 0 \rightarrow \mathbf{h}_B(t) = \text{konst.}$$

7 Energie- und Arbeitssatz

Arbeitssatz der Mechanik

$$\underbrace{\mathcal{K}_{\scriptsize{\^{\tiny 1}}} - \mathcal{K}_{\scriptsize{\textcircled{\tiny 2}}}}_{\text{kinetische Energie in den Zuständen $\scriptsize{\^{\tiny 1}}$ und $\scriptsize{\textcircled{\tiny 2}}$ und $\scriptsize{\textcircled{\tiny 2}}$ Arbeit der auf m einwirkenden Kräfte die zwischen $\scriptsize{\textcircled{\tiny 1}}$ und $\scriptsize{\textcircled{\tiny 2}}$ geleistet wird$$

allgemein gilt:

$$\mathcal{A}_{12} = \int_{x_1}^{x_2} \mathbf{F} \cdot \mathrm{d}\mathbf{x}$$

 \rightarrow Projektion der Summe der eingeprägten Kräfte **F** in Wegrichtung durch Skalarprodukt (nur Kräfte in Bewegungsrichtung interessieren).

Arbeit konservativer und nicht-konservativer Kräfte:

$$\mathcal{A}_{12} = \underbrace{\tilde{\mathcal{A}}_{12}}_{\text{nicht-konservative}} + \underbrace{\bar{\mathcal{A}}_{12}}_{\text{konservative Kräfte}}$$

$$\text{Kräfte (z. B. Reibung)} \quad \text{(z. B. Gewichtskräfte)}$$

Konservative Kräfte: Eine Kraft ist konservativ, wenn ihre Arbeit \mathcal{A}_{12} nicht vom Weg abhängt, auf dem sie zwischen den Zuständen ① mit t_1 und ② mit t_2 geleistet wird.

Arbeit und Potential konservativer Kräfte:

$$ar{\mathcal{A}}_{12} = -\mathcal{U}_{12} = -\int_{\bigcirc}^{\bigcirc} \frac{\mathrm{d}\,\mathcal{U}}{\mathrm{d}\mathbf{x}} \,\mathrm{d}\mathbf{x} = \mathcal{U}_{\bigcirc} - \mathcal{U}_{\bigcirc}$$

Bem.: Die Anwendung des Energieerhaltungssatzes setzt $\tilde{\mathcal{A}}_{12}$ vorraus, d. h., es wirken nur konservative Kräfte.

Kinetische Energie \mathcal{K} :

- * Translation: $\frac{1}{2} m v^2$
- * Rotation: $\frac{1}{2} \theta_M \omega^2$ (nur ausgedehnte Körper)

Potentielle Energie \mathcal{U} :

- * Lageenergie: mgh
- * Normalkraftfeder: $\frac{1}{2} c_f f^2$
- * Momentenfeder: $\frac{1}{2} c_{\varphi} \varphi^2$

TEIL IV: Kinetik der starren Körper

8 Impuls- und Drallsatz

Bilanzrelationen für Impuls und Drall

- * Kinetik der Massenpunkte
 - Impulssatz: axiomatische Einführung
 - Drallsatz: Herleitung aus dem Impulssatz, d. h. kein eigenständiges Axiom
- * Kinetik der materiellen Körper
 - Impulssatz: axiomatische Einführung
 - Drallsatz: ist ein eigenständiges Axiom

Massenbilanz des materiellen Körpers

Axiom: In einem geschlossenen System bleibt die Masse eines materiellen Körpers \mathcal{B} konstant.

$$m(\mathcal{B}, t) = \text{konst.}$$

 $\dot{m}(\mathcal{B}, t) = 0$

Impulssatz des materiellen Körpers

Axiom: Die zeitliche Änderung des Impulses entspricht der am Körper \mathcal{B} angreifenden resultierenden Kraft.

$$\mathbf{i}(\mathcal{B},t) = \mathbf{k}(\mathcal{B},t)$$

$$\text{mit} \left\{ \begin{array}{ll} \dot{\mathbf{l}}(\mathcal{B},t) &= \left(\int_{V} \dot{\mathbf{x}} \, \mathrm{d}m \right) \dot{} = \int_{V} \ddot{\mathbf{x}} \, \mathrm{d}m \ \, (\text{mit Massenerhaltungssatz}) \\ \mathbf{k}\left(\mathcal{B},t\right) &: \text{ resultierende Kraft} \end{array} \right.$$

daraus folgt:

$$\int_{V} \ddot{\mathbf{x}} \, \mathrm{d}m = \mathbf{k} \left(\mathcal{B}, t \right)$$

Formulierung des Impulssatzes bzgl. des Massenmittelpunkts:

Lage des Massenmittelpunkts:

$$\mathbf{x}_M = \frac{1}{m} \int_V \mathbf{x} \, \mathrm{d}m \quad \to \quad m \, \dot{\mathbf{x}}_M = \int_V \dot{\mathbf{x}} \, \mathrm{d}m \quad \to \quad m \, \ddot{\mathbf{x}}_M = \int_V \ddot{\mathbf{x}} \, \mathrm{d}m$$

Schwerpunktsatz (Impulssatz bzgl. des Massenmittelpunkts):

$$m \ddot{\mathbf{x}}_{M} = \mathbf{k} \left(\mathcal{B}, t \right)$$

Drallsatz des materiellen Körpers

Formulierung des Drallsatzes

Axiom: Die zeitliche Änderung des Drallvektors entspricht der Summe der Momente aller am Körper \mathcal{B} angreifenden Kräfte bzgl. desselben raumfesten Punkts B.

Es gilt mit dem Massenerhaltungssatz

$$\dot{\mathbf{h}}_B = \int_V (\mathbf{x} - \mathbf{x}_B) \times \ddot{\mathbf{x}} \, \mathrm{d}m$$

es folgt:

$$\int_{V} (\mathbf{x} - \mathbf{x}_{B}) \times \ddot{\mathbf{x}} \, dm = \mathbf{m}_{B} (\mathcal{B}, t)$$

Formulierung des Drallsatzes bzgl. des Massenmittelpunkts

Drallvektor und Massenträgheitstensor

Drallvektor bzgl. des Massenmittelpunkts

$$\mathbf{h}_{M}\left(\mathcal{B},t\right)=\int_{M}\bar{\mathbf{x}}\times\left(\boldsymbol{\omega}\times\bar{\mathbf{x}}\right)\mathrm{d}m=:\boldsymbol{\theta}_{M}\,\boldsymbol{\omega}\qquad\mathrm{mit}\left\{\begin{array}{l}\mathbf{h}_{M}\left(\mathcal{B},t\right)\ :\ \mathrm{Drallvektor}\,\mathrm{bzgl}.\,M\\\\\boldsymbol{\theta}_{M}\qquad :\ \mathrm{Massentr\ddot{a}gheitstensor}\end{array}\right.$$

Massenträgheitstensor bzgl. des Massenmittelpunkts

$$\boldsymbol{\theta}_{M} = \int_{M} [(\overline{\mathbf{x}} \cdot \overline{\mathbf{x}}) \mathbf{I} - (\overline{\mathbf{x}} \otimes \overline{\mathbf{x}})] dm$$

Auswertung des Massenträgheitstensors

Bezüglich des Massenmittelpunkts eines starren Körpers folgt

$$\boldsymbol{\theta}_{M} = \underbrace{\int_{M} \left[(\overline{x}_{1}^{2} + \overline{x}_{2}^{2} + \overline{x}_{3}^{2}) \delta_{ij} - \overline{x}_{i} \overline{x}_{j} \right] dm}_{\overline{\boldsymbol{\theta}}_{ij}} (\overline{\mathbf{e}}_{i} \otimes \overline{\mathbf{e}}_{j})$$

mit $\overline{\theta}_{ij}$: Koeffizienten des Massenträgheitstensors $\boldsymbol{\theta}_{M}$

• axiale Massenträgheitsmomente

$$\bar{\theta}_{11} = \int_{M} (\bar{x}_{2}^{2} + \bar{x}_{3}^{2}) \, dm$$

$$\bar{\theta}_{22} = \int_{M} (\bar{x}_{1}^{2} + \bar{x}_{3}^{2}) \, dm$$

$$\bar{\theta}_{33} = \int_{M} (\bar{x}_{1}^{2} + \bar{x}_{2}^{2}) \, dm$$

• Deviationsmomente

$$\bar{\theta}_{12} = \bar{\theta}_{21} = -\int_{M} \bar{x}_{1} \, \bar{x}_{2} \, dm$$

$$\bar{\theta}_{13} = \bar{\theta}_{31} = -\int_{M} \bar{x}_{1} \, \bar{x}_{3} \, dm$$

$$\bar{\theta}_{23} = \bar{\theta}_{32} = -\int_{M} \bar{x}_{2} \, \bar{x}_{3} \, dm$$

• polares Massenträgheitsmoment

$$\bar{\theta}_P := \int_M (\bar{x}_1^2 + \bar{x}_2^2 + \bar{x}_3^2) \, dm = \frac{1}{2} (\bar{\theta}_{11} + \bar{\theta}_{22} + \bar{\theta}_{33})$$

Massenträgheitsmomente in unterschiedlichen Bezugssystemen

(a) Wechsel des Bezugssystems

Veranschaulichung:

Drallvektor bzgl. 0:

$$\mathbf{h}_{\hat{\mathcal{O}}}\left(\mathcal{B},t\right)=oldsymbol{ heta}_{\hat{\mathcal{O}}}\,oldsymbol{\omega}$$

Translation des Bezugssystems (Satz von Steiner-Huygens):

$$\boldsymbol{\theta}_{\hat{\mathcal{O}}} = \boldsymbol{\theta}_M + \left[(\hat{\mathbf{x}}_M \cdot \hat{\mathbf{x}}_M) \, \mathbf{I} - (\hat{\mathbf{x}}_M \otimes \hat{\mathbf{x}}_M) \right] m$$

bzw. in Koeffizientendarstellung:

$$\hat{\theta}_{ij} = \bar{\theta}_{ij} + \underbrace{\left[\left(\hat{x}_{M1}^2 + \hat{x}_{M2}^2 + \hat{x}_{M3}^2 \right) \delta_{ij} - \hat{x}_{Mi} \hat{x}_{Mj} \right] m}_{Steiner-Anteile}$$

• axiale Massenträgheitsmomente

$$\hat{\theta}_{11} = \bar{\theta}_{11} + m \left(\hat{x}_{M2}^2 + \hat{x}_{M3}^2 \right)
\hat{\theta}_{22} = \bar{\theta}_{22} + m \left(\hat{x}_{M1}^2 + \hat{x}_{M3}^2 \right)
\hat{\theta}_{33} = \bar{\theta}_{33} + m \left(\hat{x}_{M1}^2 + \hat{x}_{M2}^2 \right)$$

• Deviationsmomente für $i \neq j$

$$\hat{\theta}_{ij} = \bar{\theta}_{ij} - m(\hat{x}_{Mi}\,\hat{x}_{Mj})$$

Rotation des Bezugssystems bzgl. des Massenmittelpunkts

 $\boldsymbol{\theta}_{M}$ bleibt erhalten, seine Koeffizienten ändern sich jedoch mit der Rotation des Bezugssystems

$$oldsymbol{ heta}_{M} = ilde{ heta}_{op} \left(ilde{\mathbf{e}}_{o} \otimes ilde{\mathbf{e}}_{p}
ight)$$

mit $ilde{ heta}_{op} = ilde{R}_{oi} \, ar{ heta}_{ij} \, ilde{R}_{pj}$

$$\operatorname{mit} \quad \tilde{\theta}_{op} = \tilde{R}_{oi} \, \bar{\theta}_{ij} \, \tilde{R}_{pj}$$

Bem.: $\tilde{\mathbf{R}}$ kann dargestellt werden durch:

- 3 voneinander unabhängige Richtungs-Cosini
- 3 Cardanosche Winkel
- 3 Eulersche Winkel
- 1 Euler-Rodriguez-Winkel

Hauptträgheitsmomente

Hauptträgheitsmomente für den allgemeinen 3-dimensionalen Fall durch Lösen des Eigenwertproblems bzw. durch Drehung des Basissystems bis ein Zustand erreicht wird, bei dem alle Deviationsmomente verschwinden

$$\boldsymbol{\theta}_{M} = \theta_{ij} \left(\mathbf{e}_{i} \otimes \mathbf{e}_{j} \right) = \sum_{i=1}^{3} \theta_{i} \left(\mathbf{e}_{i} \otimes \mathbf{e}_{i} \right) \quad \text{mit} \quad \theta_{ij} = \begin{bmatrix} \theta_{1} & 0 & 0 \\ 0 & \theta_{2} & 0 \\ 0 & 0 & \theta_{3} \end{bmatrix}$$

mit $\begin{cases} \theta_i : \text{zugehörige Hauptträgheitsmomente (Eigenwerte } \lambda_i \equiv \theta_i \text{ von } \boldsymbol{\theta}_M) \\ \mathbf{e}_i : \text{zugehörige Hauptrichtungen} \end{cases}$

Charakteristische Gleichung des Eigenwertproblems

$$III_{\boldsymbol{\theta}_{M}} - \lambda II_{\boldsymbol{\theta}_{M}} + \lambda^{2} I_{\boldsymbol{\theta}_{M}} - \lambda^{3} = 0$$

$$\text{mit} \left\{ \begin{array}{ll} I_{\pmb{\theta}_M} & = & \pmb{\theta}_M \cdot \mathbf{I} \\ II_{\pmb{\theta}_M} & = & \frac{1}{2} \left[(\pmb{\theta}_M \cdot \mathbf{I})^2 - \pmb{\theta}_M \, \pmb{\theta}_M \cdot \mathbf{I} \right] \\ III_{\pmb{\theta}_M} & = & \det \pmb{\theta}_M \end{array} \right\} \text{Hauptinvarianten}$$

Beispiele zur Berechnung von Massenträgheitsmomenten

Geometrie	θ_{11}	θ_{22}	θ_{33}
schlanker prismatischer Stab $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\frac{ml^2}{12}$	$\frac{ml^2}{12}$
dünne Kreisscheibe $R \longrightarrow R $	$\frac{mR^2}{4}$	$\frac{mR^2}{4}$	$\frac{mR^2}{2}$
Zylinder $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m(\frac{R^2}{4} + \frac{h^2}{12})$	$m(\frac{R^2}{4} + \frac{h^2}{12})$	$\frac{mR^2}{2}$
e_3 e_1 R	$\frac{2mR^2}{5}$	$\frac{2mR^2}{5}$	$\frac{2mR^2}{5}$
Quader $\begin{array}{c c} & & & & \\ \hline & & & & \\ h & & & & \\ \hline & & & & \\ h & & & & \\ \hline & & & & \\ & & & & \\ \end{array}$	$\frac{m}{12}(b^2+h^2)$	$\frac{m}{12}(l^2+h^2)$	$\frac{m}{12}(b^2+l^2)$

9 Energie- und Arbeitssatz

9.1 Energiesatz des materiellen Körpers

Energiesatz (Bilanz der mechanischen Leistung)

$$\dot{\mathcal{K}} = \mathcal{L}_a + \mathcal{L}_i$$
 mit $\left\{ \begin{array}{l} \mathcal{L}_a & : \text{ Leistung der äußeren Kräfte} \\ \mathcal{L}_i & : \text{ Leistung der inneren Spannungen} \end{array} \right.$

Sonderfall des starren Körpers

Bem.: Am starren Körper verschwindet die Leistung der inneren Spannungen (keine Verzerrungsgeschwindigkeiten), d. h.

$$\mathcal{L}_i \equiv 0 \qquad \longrightarrow \qquad \qquad \dot{\mathcal{K}} = \mathcal{L}_a$$

Für die kinetische Energie des starren Körpers gilt

$$\mathcal{K} = \frac{1}{2} m \dot{\mathbf{x}}_M \cdot \dot{\mathbf{x}}_M + \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_M (\mathcal{B}, t)$$
$$= \frac{1}{2} m \dot{\mathbf{x}}_M \cdot \dot{\mathbf{x}}_M + \frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{\theta}_M \boldsymbol{\omega}$$

Bem.: Die kinetische Energie \mathcal{K} setzt sich aus der Translationsenergie bzgl. des Massenmittelpunkts und der Rotationsenergie um den Massenmittelpunkt zusammen.

Leistung der äußeren Kräfte

$$\mathcal{L}_{a} = \dot{\mathbf{x}}_{M} \cdot \mathbf{k}(\mathcal{B}, t) + \boldsymbol{\omega} \cdot \mathbf{m}_{M}(\mathcal{B}, t)$$

$$\text{mit} \begin{cases} \mathbf{k}(\mathcal{B}, t) = \sum_{i=1}^{n} \mathbf{f}_{i} \\ \mathbf{m}_{M}(\mathcal{B}, t) = \sum_{i=1}^{n} \bar{\mathbf{x}}_{i} \times \mathbf{f}_{i} \end{cases}$$

Einsetzen in den Energiesatz liefert

$$\dot{\mathcal{K}} = \mathcal{L}_a \iff \dot{\mathbf{x}}_M \cdot m \, \ddot{\mathbf{x}}_M + \boldsymbol{\omega} \cdot \dot{\mathbf{h}}_M(\mathcal{B}, t) = \dot{\mathbf{x}}_M \cdot \mathbf{k}(\mathcal{B}, t) + \boldsymbol{\omega} \cdot \mathbf{m}_M(\mathcal{B}, t)$$

9.2 Arbeitssatz und Energieerhaltungssatz

Arbeitssatz für starre Körper (konservative und nicht-konservative Kräfte)

$$\mathcal{K}_{\textcircled{2}} - \mathcal{K}_{\textcircled{1}} = \mathcal{A}_{a12}(\mathcal{B}, t) = \int_{1}^{2} \mathcal{L}_{a}(\mathcal{B}, t) dt$$

$$\text{mit} \begin{cases} \mathcal{K} = \frac{1}{2} m \dot{\mathbf{x}}_{M} \cdot \dot{\mathbf{x}}_{M} + \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_{M} \\ \mathcal{A}_{a12} = \int_{1}^{2} (\dot{\mathbf{x}}_{M} \cdot \mathbf{k} + \boldsymbol{\omega} \cdot \mathbf{m}_{M}) dt \end{cases}$$

$$\mathcal{A}_{a12} = \tilde{\mathcal{A}}_{a12} + \bar{\mathcal{A}}_{a12} \begin{cases} \tilde{\mathcal{A}}_{a12} : \text{Arbeit der nicht-konservativen Kräfte} \\ \bar{\mathcal{A}}_{a12} : \text{Arbeit der konservativen Kräfte} (\mathcal{U}_{a}\textcircled{1}) - \mathcal{U}_{a}\textcircled{2}) \end{cases}$$

$$\mathcal{K}_{\textcircled{2}} + \mathcal{U}_{a}\textcircled{2} = \mathcal{K}_{\textcircled{1}} + \mathcal{U}_{a}\textcircled{1} + \tilde{\mathcal{A}}_{a12}$$

Energieerhaltungssatz für starre Körper $(\tilde{\mathcal{A}}_{a12} \equiv 0)$

$$\mathcal{K}(\mathcal{B}, t) + \mathcal{U}_a(\mathcal{B}, t) = \text{konst.}$$

$$\rightarrow \mathcal{K}_{2} + \mathcal{U}_{a2} = \mathcal{K}_{1} + \mathcal{U}_{a1}$$

9.3 Das Prinzip von d'Alembert

Bem.: Das Prinzip von d'Alembert (Pvd'A) hat in der Kinetik denselben Stellenwert wie das Prinzip der virtuellen Arbeit (PdvA) in der Statik.

Formulierung des Prinzips:

Bem.: Man ersetzt im Energiesatz (Bilanz der mechanischen Leistung) die Translations- und Rotationsgeschwindigkeit durch virtuelle Größen, d. h.

 $\dot{\mathbf{x}}_{M} \rightarrow \delta \mathbf{x}_{M}$: virtuelle Verschiebung $\boldsymbol{\omega} \rightarrow \delta \boldsymbol{\varphi}$: virtuelle Verdrehung

$$[\mathbf{k}(\mathcal{B}, t) - m\ddot{\mathbf{x}}_M] \cdot \delta \mathbf{x}_M + [\mathbf{m}_M(\mathcal{B}, t) - \dot{\mathbf{h}}_M(\mathcal{B}, t)] \cdot \delta \boldsymbol{\varphi} = 0$$

- **Bem.:** Führungskräfte und -momente sind orthogonal zu virtuellen Größen $\delta \mathbf{x}_M$ und $\delta \boldsymbol{\varphi}$
 - Für den Fall der Statik geht das Prinzip von d'Alembert (Pvd'A) in das Prinzip der virtuellen Arbeit (PdvA) über, es gilt: $\ddot{\mathbf{x}}_M \equiv \mathbf{0}, \ \ddot{\boldsymbol{\varphi}} = \dot{\boldsymbol{\omega}} \equiv \mathbf{0}$

10 Die ebene Starrkörperbewegung

Beschreibende Gleichungen

Bem.: Darstellung der ebenen Bewegung in der **e**₁-**e**₂-Ebene; von den 6 Kinematen der allgemeinen Bewegung verbleiben 3 Kinematen bei ebener Bewegung:

2 Translationsgeschwindigkeiten : $\mathbf{\dot{x}}_{\mathrm{M1}},\mathbf{\dot{x}}_{\mathrm{M2}}$

1 Rotationsgeschwindigkeit: $\omega_3 = \dot{\varphi}_3$

Koeffizientendarstellung von Schwerpunkt- und Drallsatz:

$$\left\{
 \begin{array}{l}
 \mathbf{e}_1 : m \ddot{x}_{M1} = k_1 \\
 \mathbf{e}_2 : m \ddot{x}_{M2} = k_2
 \end{array}
 \right\} \text{Schwerpunktsatz}$$

$$\left\{
 \begin{array}{l}
 \mathbf{e}_3 : \theta_M \dot{\omega}_3 = m_{M3} : \text{Drallsatz}
 \end{array}
 \right.$$

Energiesatz (Bilanz der mechanischen Leistung) bei ebener Starrkörperbewegung:

• Auswertung bezüglich M:

$$\dot{\mathcal{K}} = \mathcal{L}_a \to (m \dot{v}_M) v_M + (\theta_M \dot{\omega}_3) \omega_3 = k_1 \dot{x}_{M1} + k_2 \dot{x}_{M2} + m_{M3} \omega_3$$

• Auswertung bezüglich MV:

$$\dot{\mathcal{K}} = \mathcal{L}_a \longrightarrow (\theta_{MV} \dot{\omega}_3) \omega_3 = m_{MV3} \omega_3$$

Arbeitssatz bei ebener Starrkörperbewegung:

$$\mathcal{K}_{2} - \mathcal{K}_{1} = \mathcal{A}_{a12}(\mathcal{B}, t) = \int_{1}^{2} \mathcal{L}_{a}(\mathcal{B}, t) dt$$

$$\mathcal{K} = \begin{cases}
\frac{1}{2} m \left(\dot{x}_{M1}^{2} + \dot{x}_{M2}^{2} \right) + \frac{1}{2} \theta_{M} \omega_{3}^{2} & : \text{bzgl. } M \\
\frac{1}{2} \theta_{MV} \omega_{3}^{2} & : \text{bzgl. } MV
\end{cases}$$

$$\mathcal{L}_{a} = \begin{cases}
k_{1} \dot{x}_{M1} + k_{2} \dot{x}_{M2} + m_{M3} \omega_{3} & : \text{bzgl. } M \\
m_{MV3} \omega_{3} & : \text{bzgl. } MV
\end{cases}$$

Energieerhaltungssatz bei ebener Starrkörperbewegung:

$$\mathcal{K}_{2} + \mathcal{U}_{a2} = \mathcal{K}_{1} + \mathcal{U}_{a1}$$

11 Stoßvorgänge

11.1 Beschreibende Gleichungen

exzentrischer Stoß

zentrischer Stoß

- Zentrischer bzw. zentraler Stoß: Die Stoßnormale führt durch die Massenmittelpunkte beider Körper.
- Exzentrischer Stoß: sonst

Bem.: Es können sehr komplexe Prozesse beim Stoßvorgang entstehen, die hier unter den folgenden, stark idealisierenden Annahmen beschrieben werden.

Annahmen zur Beschreibung des Stoßproblems:

- Die Stoßdauer τ sei vernachlässigbar klein: $\tau \to 0$.
- Während der Stoßdauer ändern die Körper ihre Lage nicht. Deformationen treten nur in der Berührungszone auf. Sonst bleibt der Körper starr.
- Es existiert ein Grenzwert des Zeitintegrals über $\mathbf{k}\left(\mathcal{B},t\right)$:

 $\mathbf{S}\left(\tau\right):=\lim_{\tau\to0}\int\limits_{0}^{\tau}\mathbf{k}\left(\mathcal{B},t\right)\mathrm{d}t\qquad \quad \mathrm{mit}\; \left\{ \begin{array}{ll} \mathbf{k}\left(\mathcal{B},t\right) & : \;\; \mathrm{resultierende}\;\; \mathrm{Stoßkraft} \\ \mathbf{S}\left(\tau\right) & : \;\; \mathrm{Stoßimpuls}\;\; (\mathrm{Stoßantrieb}) \end{array} \right.$

- Die in der Berührungszone während des Stoßvorgangs auftretenden Kontaktkräfte sind so groß, daß alle anderen am Körper auftretenden Kräfte dagegen vernachlässigt werden können.
- Die Berührungsfläche sei eine Ebene, so daß die Stoßkraft $\mathbf{k}(\mathcal{B},t)$ nur in Richtung der Stoßnormalen wirkt: \rightarrow Vernachlässigung der Tangentialanteile beim Stoß.
- Die Stoßdauer kann in eine Kompressions- und eine Restitutionsphase zerlegt werden. Es folgt für den Stoßimpuls:

$$\mathbf{S}\left(\tau\right) = \mathbf{S}_R + \mathbf{S}_K$$

Allgemeiner Stoß (teilelastisch): $\mathbf{S}_R = e \; \mathbf{S}_K$

Newtonsche Stoßhypothese mit $0 \leq e \leq 1$ (Stoßkennziffer bzw. Stoßzahl)

Grenzfälle:
$$e=\left\{ egin{array}{ll} 1 & \to {f S}_R={f S}_K & : {\it elastischer Stoß} \\ 0 & \to {f S}_R={f 0} & : {\it plastischer Stoß} \end{array} \right.$$

11.2 Ebener, zentraler Stoß

Gerader, zentraler Stoß:

$$v_a'' = v_a' - \frac{m_b}{m_a + m_b} (v_a' - v_b')(1 + e)$$

$$v_b'' = v_b' - \frac{m_a}{m_a + m_b} (v_b' - v_a')(1 + e)$$

 $(\cdot)''$: Komponente nach dem Stoß

 $(\cdot)'$: Komponente vor dem Stoß

Stoßbedingung:

$$e = \frac{v_a'' - v_b''}{v_b' - v_a'}$$

Energieverlust:

$$\Delta E = \frac{1}{2} \frac{m_a m_b}{m_a + m_b} (v'_a - v'_b)^2 (1 - e^2)$$

Sonderfälle des geraden zentralen Stoßes:

elastischer Stoß: $e = 1 \rightarrow \mathbf{S}_R \equiv \mathbf{S}_K$

$$v_a'' = v_a' - \frac{2 m_b}{m_a + m_b} (v_a' - v_b')$$

$$v_b'' = v_b' - \frac{2 m_a}{m_a + m_b} (v_b' - v_a')$$

$$\Delta E = 0$$

plastischer Stoß: $e = 0 \rightarrow \mathbf{S}_R \equiv \mathbf{0}$

$$v_a'' = v_b'' = \frac{m_a v_a' + m_b v_b'}{m_a + m_b}$$
$$\Delta E = \frac{1}{2} \frac{m_a m_b}{m_a + m_b} (v_a' - v_b')^2$$

Schiefer, zentraler Stoß:

$$v''_{a1} = v'_{a1} - \frac{m_b}{m_a + m_b} (v'_{a1} - v'_{b1})(1 + e)$$

$$v''_{a2} = v'_{a2}$$

$$v''_{b1} = v'_{b1} - \frac{m_a}{m_a + m_b} (v'_{b1} - v'_{a1})(1 + e)$$
$$v''_{b2} = v'_{b2}$$

Stoßbedingung:

$$e = \frac{v''_{a1} - v''_{b1}}{v'_{b1} - v'_{a1}}$$

Energieverlust:

$$\Delta E = \frac{1}{2} \frac{m_a m_b}{m_a + m_b} (v'_{a1} - v'_{b1})^2 (1 - e^2)$$

11.3 Ebener, exzentrischer Stoß

Bem.: Beim exzentrischen Stoß müss neben den Impulsbilanzen bzgl. der Massenmittelpunkte von \mathcal{B}_a und \mathcal{B}_b auch die Drallbilanzen für beide Körper ausgewertet werden.

Allgemeine Gleichungen für:

mit
$$\left\{ \begin{array}{lll} \mathbf{S}_a(\tau) &=& -S(\tau)\,\mathbf{e}_1 \\ \mathbf{S}_b(\tau) &=& S(\tau)\,\mathbf{e}_1 \end{array} \right\}$$
 keine Anteile in \mathbf{e}_2 -Richtung

Bemerkungen:

- Bei Lagerungen der Körper \mathcal{B}_a und \mathcal{B}_b sind Auflagerreaktionen (Impulsantriebe) infolge der Stoßimpulse $\mathbf{S}_a(\tau)$ und $\mathbf{S}_b(\tau)$ zu berücksichtigen.
- Bei Bezug der Drallbilanzen auf den momentanen Geschwindigkeitspol entfallen die Impulsbilanzen, d. h. in der Drallbilanz muss Θ_M durch Θ_{MV} und x_{M2} durch x_{MV2} ersetzt werden.
- Oben genanntes Gleichungssystem enthält 6 Gleichungen für die 7 Unbekannten: $v''_{Ma1}, \ v''_{Ma2}, \ \omega''_a, \ v''_{Mb1}, \ v''_{Mb2}, \ \omega''_b, \ S(\tau) \rightarrow \text{Zusatzgleichung wird benötigt.}$
- Entwicklung einer Zusatzgleichung in Anologie zur Stoßbedingung beim geraden zentralen Stoß.

$$e = \frac{v''_{Ba1} - v''_{Bb1}}{v'_{Bb1} - v'_{Ba1}}$$

TEIL V: Einführung in die Schwingungslehre

Grundlagen und Voraussetzungen 12

Vorbemerkungen und Begriffe 12.1

Harmonische, periodische Schwingungen

Zusammenstellung wichtiger Begriffe:

 $A = \frac{1}{2}(x_{max} - x_{min})$ Schwingungsamplitude

Kreisfrequenz

Phasenwinkel

 $\alpha + \beta = \frac{\pi}{2}$ $T = \frac{2\pi}{\omega}$ Schwingungsdauer (Periode)

 $f = \frac{1}{T} = \frac{\omega}{2\pi}$ Frequenz

Klassifikation von harmonischen Schwingungen:

freie Schwingung		erzwungene Schwingung		
ungedämpft	gedämpft	ungedämpft	gedämpft	
c		$u(t) \downarrow F(t)$ c	$u(t) \downarrow F(t)$ $c \searrow d$	

12.2 Federsteifigkeiten und Federschaltungen

(a) Ersatzfedersteifigkeiten:

Dehnfedern:

Analogie: Federgesetz: $F = c_F f \rightarrow c_F = \frac{F}{f}$

"1-Kraft":
$$F = 1$$
 $\rightarrow c_F = \frac{1}{f}$

Vorgehen:

- Berechnung der Durchbiegung infolge einer Kraft F = 1 (z. B. mit Hilfe des PdvK)
- \bullet Berechnung der Federsteifigkeit c_F

Drehfedern:

Analogie: Federgesetz: $M = c_D \varphi \rightarrow c_D = \frac{M}{\varphi}$

"1-Moment":
$$M=1$$
 \rightarrow $c_D=\frac{1}{\varphi}$

Vorgehen:

- Berechnung der Durchbiegung infolge eines Moments M=1 (z. B. mit Hilfe des PdvK)
- \bullet Berechnung der Federsteifigkeit c_D

(b) Federschaltungen:

Parallelschaltung:

Kriterien der Parallelschaltung:

$$F = F_1 + F_2$$
 (unterschiedliche Kraft)
 $f = f_1 = f_2$ (gleicher Weg)

$$\overset{*}{c} = c_1 + c_2$$

Reihenschaltung:

Kriterien der Reihenschaltung:

$$F = F_1 = F_2$$
 (gleiche Kraft)
 $f = f_1 + f_2$ (unterschiedlicher Weg)

$$\overset{*}{c} = \frac{c_1 \, c_2}{c_1 + c_2}$$

13 Freie Schwingungen mit einem Freiheitsgrad

13.1 Freie ungedämpfte Schwingung

• lineare Schwingung (Schwingungsdifferentialgleichung)

Lösung der normierten Schwingungsdifferentialgleichung

$$x(t) = C_1 \sin(\omega t) + C_2 \cos(\omega t)$$

Lösung mit der Berücksichtigung von Anfangsbedingungen

$$x(t) = \frac{v_0}{\omega} \sin(\omega t) + x_0 \cos(\omega t)$$
 mit
$$\begin{cases} x_0 : \text{Anfangsauslenkung} \\ v_0 : \text{Anfangsgeschwindigkeit} \end{cases}$$

Schwingungsamplitude und Phasenwinkel

$$A = \sqrt{C_1^2 + C_2^2} = \sqrt{\left(\frac{v_0}{\omega}\right)^2 + x_0^2}$$

$$\tan \beta = \frac{C_2}{C_1} \rightarrow \beta = \arctan \frac{C_2}{C_1} = \arctan \frac{x_0 \omega}{v_0}$$

• Nichtlineare Schwingungen am Beispiel des mathematischen Pendels

Anwendung des Drallsatzes bezüglich A liefert:

$$\ddot{\varphi} + \omega^2 \sin \varphi = 0$$

$$\text{mit } \omega = \sqrt{\frac{g}{l}}$$

13.2 Freie gedämpfte Schwingung

• gedämpfter Einmassenschwinger

$$F_F = c x$$

$$F_D = d\dot{x}$$

Fall A: überkritische (starke) Dämpfung (D > 1)

$$x(t) = e^{-D\omega_0 t} \left(\frac{v_0 + D\omega_0 x_0}{\bar{\nu}} \sinh(\bar{\nu} t) + x_0 \cosh(\bar{\nu} t) \right)$$

 $\bar{\nu} = \omega_0 \sqrt{D^2 - 1}$: Kreisfrequenz der stark gedämpften Schwingung

Fall B: kritische Dämpfung (Aperiodischer Grenzfall) (D = 1)

$$x(t) = e^{-\omega_0 t} [x_0 + (v_0 + x_0 \omega_0) t]$$

Fall C: unterkritische (schwache) Dämpfung (D < 1)

$$x(t) = e^{-D\omega_0 t} \left(\frac{v_0 + D\omega_0 x_0}{\nu} \sin(\nu t) + x_0 \cos(\nu t) \right)$$

mit
$$\nu = \omega_0 \sqrt{1 - D^2}$$
 : gedämpfte Kreisfrequenz

Alternative Darstellung der Lösung:

$$x(t) = A e^{-D\omega_0 t} \sin(\nu t + \beta)$$
 mit
$$\begin{cases} A = \sqrt{\left(\frac{v_0 + D\omega_0 x_0}{\nu}\right)^2 + x_0^2} \\ \beta = \arctan \frac{x_0 \nu}{v_0 + D\omega_0 x_0} \end{cases}$$

Erzwungene Schwingungen mit einem Freiheits-14 grad

Erzwungene ungedämpfte Schwingung mit periodischer 14.1 Erregung

(1) krafterregtes System

(2) wegerregtes System

Aufstellung der Schwingungsdifferentialgleichungen (reibungsfrei)

(1) kraftregtes System: $m\ddot{x} = F(t) - cx \longrightarrow m\ddot{x} + cx = F(t)$

(2) we greates System: $m\ddot{x} = -c(x - u(t)) \longrightarrow m\ddot{x} + cx = cu(t)$

Bem.: Kraft- und Wegerregung führen auf denselben Typ Differentialgleichung mit dem Störglied F(t) = c u(t). Das Störglied repräsentiert in jedem Fall eine Erregerkraft.

Harmonische Erregung:

Normierung der Schwingungsdifferentialgleichung.:

Lösung der normierten Schwingungsdifferentialgleichung:

$$x(t) = x_h(t) + x_p(t)$$
 mit
$$\begin{cases} x_h(t) : \text{Lösung der homogenen Dgl.} \\ x_p(t) : \text{Partikulärlösung} \end{cases}$$

(a) homogene Lösung:

Lösung der homogenen Schwingungsdifferentialgleichung gemäß 13.1.

(b) spezielle Lösung:

Bem.: Man wählt einen Ansatz in Abhängigkeit des Störglieds.

$$\longrightarrow x_p(t) = A_0 \cos{(\Omega t)}$$
 mit A_0 : Amplitude der Partikularlösung

Einsetzen in die inhomogene Schwingungsdifferentialgleichung liefert die Vergrößerungsfunktion und die statische Amplitude.

Vergrößerungsfunktion und statische Amplitude:

$$A_0 = \frac{a}{\omega^2 - \Omega^2} =: V_a A_{stat.}$$

weiterhin gilt:

$$A_{stat.} = \frac{a}{\omega^2}$$
 ; $\eta = \frac{\Omega}{\omega_0} \rightarrow V_a = \frac{1}{1 - \eta^2}$

 $\min \left\{ \begin{array}{ll} \eta & : & \text{Frequenzverh\"{a}ltnis} \\ V_a & : & \text{Vergr\"{o}Berungsfunktion} \\ A_{stat.} & : & \text{stat. Auslenkung infolge der Erregeramplitude} \end{array} \right.$

Erzwungene gedämpfte Schwingung mit periodischer 14.2Erregung

Aufstellung der Schwingungsdifferentialgleichung:

$$m \ddot{x} = F(t) - c x - d \dot{x}$$
 \longrightarrow $m \ddot{x} + d \dot{x} + c x = F(t)$

Normierung der Schwingungsdifferentialgleichung:

$$\ddot{x} + 2 D \omega_0 \dot{x} + \omega_0^2 x = a \cos(\Omega t)$$

$$\text{mit} \left\{ \begin{array}{ll} \omega_0 = \sqrt{\frac{c}{m}} & : & \text{Eigenkreisfrequenz} \\ \\ D = \frac{d}{2\,m\,\omega_0} & : & Lehr \text{sches D\"{a}mpfungsma} \\ \\ a = \frac{F_0}{m} & : & \text{Amplitude der Erregerbeschleunigung} \end{array} \right.$$

(a) homogene Lösung:

Lösung der homogenen Schwingungsdifferentialgleichung gemäß 13.2.

(b) spezielle Lösung:

Bem.: Man wählt einen Ansatz in Abhängigkeit des Störglieds.

$$\longrightarrow x_p(t) = A_0 \cos(\Omega t)$$
 mit A_0 : Amplitude der Partikularlösung

Einsetzen in die inhomogene Schwingungsdifferentialgleichung liefert die Vergrößerungsfunktion und die statische Amplitude.

Amplitude der Partikularlösung und Vergrößerungsfunktion:

$$A_0 = \frac{a}{\sqrt{\left(\omega_0^2 - \Omega^2\right)^2 + \left(2 D \omega_0 \Omega\right)^2}} =: V_a A_{stat.}$$

Es gilt für die Vergrößerungsfunktion

$$V_a = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + (2 D \omega_0 \Omega)^2}} = \frac{1}{\sqrt{(1 - \eta^2)^2 + 4 D^2 \eta^2}}$$

$$\text{mit} \left\{ \begin{array}{ll} \eta = \frac{\Omega}{\omega_0} & : & \text{Frequenzverh\"{a}ltnis} \\ A_{stat.} = \frac{a}{\omega_0^2} & : & \text{stat. Auslenkung infolge der Erregeramplitude} \end{array} \right.$$

Vergrößerungsfunktion V_a (Amplituden-Frequenzgang)

