

Lattice defects

Is order everything?

41680 Introduction to advanced materials

DTU Construct

Department of Civil and Mechanical Engineering

Cubic lattices

Simple cubic (sc)	Face-centered cubic (fcc)	Body-centered cubic (bcc)	
Elements	Al, Cu, Ni, Ag, Au, Pt, γ-Fe	$\alpha ext{-Fe, V, Nb, Ta, Cr,}$ Mo, W, K	
Atomic packing factor	74 %	68 %	
Packing of planes 3 DTU Conctruct, Technical University of	Close-packed planes	·	F24

Lattice defects

41680 Introduction to advanced materials

"Crystals are like people, it is the defects in them, which make them interesting!"
(Colin Humphreys)

DTU Construct

Department of Civil and Mechanical Engineering

Lattice defects

0-dimensional: point defects

vacancies, interstitials, substitutional atoms

1-dimensional: line defects

dislocations

2-dimensional: area (planar) defects interfaces (stacking faults, grain-, phase-, twin-boundaries, surfaces)

3-dimensional: volume (bulk) defects voids, pores, precipitates, inclusions, cracks

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Point defects

Vacancies

Vacant lattice site in a lattice

- Vacancies exist in thermal equilibrium
- Equilibrium density of vacancies

$$c_{V} = \frac{N_{V}}{N} = e^{-\frac{Q_{V}}{kT}}$$

 N_V number of vacancies N number of lattice sites Q_V vacancy formation energy (G_V) $k=1.38\cdot 10^{-23}$ J/K Boltzmann constant

Concentration at melting point 10⁻⁴

• Atoms sitting on an interstitial site (between lattice sites)

- High formation energy:
 No self-interstitial atoms in thermal equilibrium in metals
- High mobility
- 7 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Lattice defects

0-dimensional: point defects vacancies, interstitials, substitutional atoms

1-dimensional: line defects

dislocations

2-dimensional: area (planar) defects interfaces (stacking faults, grain-, phase-, twin-boundaries, surfaces)

3-dimensional: volume (bulk) defects voids, pores, precipitates, inclusions, cracks

Motion of (edge) dislocation

0 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Line defects Dislocations

Extra lattice plane inserted in crystal, not extending through all of the crystal (half-plane), ending in dislocation line.

Lattice disturbed along line → one-dimensional defect

Edge dislocation

Burgers vector (displacement vector)

- is a lattice vector
- defines slip direction

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F2

Line defects Dislocations as carrier of plastic deformation

• Caterpillar technique

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Line defects Dislocations as carrier of plastic deformation

- Caterpillar technique
- same trick as moving a

plastic deformation proceeds

- atomic step by atomic step
- by movement of dislocations

Line defects

Dislocation density

• Definition (dislocation line length per volume)

$$\rho = \frac{L}{V}$$

- SI unit $m/m^3 = m^{-2}$
- Whiskers containing a single (screw) dislocation
- Si wavers 10⁴ m⁻²
- Undeformed metals 10¹⁰ m⁻²
- Highly deformed metals 10¹⁶ m/m³
 - -Illustration:10 million km in a cm³

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Dislocations and crystalline lattice

Slip systems in metals

- plastic deformation = dislocation motion = slip (or glide)

Example: fcc lattice

41680 Intro to advanced materials

F24

Close-packed planes (hkl) and directions [uvw]

fcc

[111] = not close-packed in fcc

[110] = close-packed in fcc

(111) plane: close-packed in fcc,

bcc

Slip systems in metals

- plastic deformation = dislocation motion = slip (or glide)

Lattice	Examples	Close(st) packed planes (hkl)	Close(st) packed directions [uvw]	Slip systems
fcc	Al, Cu, Ag, Au, Ni, γ-Fe, 	{111} = close-packed	<110> face diagonals	4 x 3 = 12
bcc	Cr, W, α-Fe, 	{110} = not close- packed	<111> volume diagonals	6 x 2 = 12

18 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Lattice defects

0-dimensional: point defects

vacancies, interstitials, substitutional atoms

1-dimensional: line defects

dislocations

2-dimensional: area (planar) defects interfaces (stacking faults,

grain-, phase-, twin-boundaries, surfaces)

3-dimensional: volume (bulk) defects voids, pores, precipitates, inclusions, cracks

Microstructure - grains from solidification

• Single crystals

from a single nucleus

• Polycrystals

from many nuclei

21 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Single crystal

Planar defects

Grain boundaries in polycrystals

Nuclei form during solidification in melt

Nuclei grow and form grains

Planar defects Grain boundaries

Grain boundaries

• Separate two grains i.e. two regions of same crystal structure, but of different crystallographic orientation

23 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Planar defects Grain boundaries

Grain size D

Surface area S Volume V

Boundary density

$$S_V = \frac{S}{V} \approx \frac{2}{D}$$

Intermezzo Stacking of close-packed planes

DTU Construct

Department of Civil and Mechanical Engineering

Stacking sequences

fcc stacking sequence

Stacking sequences

Hexagonal close-packed (hcp)

- Atomic packing factor 0.74
- Coordination number 12
- Examples: Mg, Co, Ti

Elements – crystal structures

Н										He							
Li hcp	Ве	е								В	C cub	N	0	F	Ne		
Na hcp	Mg	Mg							Al	Si	Р	S	Cl	Ar			
K	Ca bcc	Sc fcc	Ti bcc	V	Cr	Mn	Fe fcc	Co fcc	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr bcc	Y bcc	Zr bcc	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn ttg	Sb	Те	I	Xe
Cs	Ва	L	Hf bcc	Та	W	Re	Os	Ir	Pt	Au	Hg	TI bcc	Pb	Bi	Ро	At	Rn
Fr	Ra	Α	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
		L	La fcc	Ce fcc	Pr bcc	Nd bcc	Pm bcc	Sm hcp	Eu	Gd bcc	Tb bcc	Dy bcc	Но	Er	Tm	Yb bcc	Lu
		Α	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Cub	oic primitive					Face-centered cubic					Dia	mond	d (cu	bic)		
	Bod	dy-centered cubic					Hexagonal				Non	meta	als				

Planar defect

Twin boundaries in polycrystals

• Twin = mirrored crystalline lattice

- Coherent boundaries on well-defined lattice planes (fcc {111})
- Twin formation causes shear
- Plastic deformation in non-cubic lattices ("tin cry")

Planar defects Twin boundaries

• Twin = mirror symmetry

Cu70-Zn30 wt%, α -phase, annealing twins

36 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Lattice defects

0-dimensional: point defects

vacancies, interstitials, substitutional atoms

1-dimensional: line defects

dislocations

2-dimensional: area (planar) defects

interfaces (stacking faults,

grain-, phase-, twin-boundaries, surfaces)

3-dimensional: volume (bulk) defects voids, pores, precipitates, inclusions, cracks

Volume defects

Self defects

- Clusters of point defects
- Pore = agglomerate of vacancies

• Requires many missing atoms!

40 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Alloys

mixture of two or more elements with metallic bonding

DTU Construct

Alloys - three principle types

- Solid solutionsforeign atoms in crystal lattice
- Atoms unordered in same lattice

- Mixture of different metallic phases
- Distinct phases with different composition and possibly different lattices

Intermetallic compounds

 Atoms ordered in possibly different lattice

45 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Point defects in alloys

- •Interstitial atoms
 - ⇒ sitting between lattice sites
 - ⇒ interstitial solid solution
- Substitutional atoms
 - ⇒ substitute atoms on latt. sites
 - ⇒ substitutional solid solution
- Crystal structure maintained for solid solutions
- Alternatives
 - immiscibility
 - intermetallic compounds (new phase of own structure)

Point defects in alloys

Substitutional atoms

substitutional solid solution (e.g. Ni in Cu)

Hume-Rothery rules

Complete miscibility for substitutional solid solution requires:

- Same crystal structure
- Difference in atomic radius not more than 15%
- Similar electronegativity
- Same valence

Example: Cu and Ni

Otherwise

- Partial miscibility
- Immiscibility

41680 Intro to advanced materials

F24

DTU Conctruct, Technical University of Denmark

Point defects in alloys

Substitutional atoms

substitutional solid solution (e.g. Ni in Cu)

- Foreign atoms on regular lattice sites
- Hume-Rothery rules

Interstitial atoms

interstitial solid solution (e.g. C in Fe)

- Foreign atoms on interstitial sites
- Only small atoms in holes (as B, C, N, O)

Composition of binary alloys containing A and B

- Composition (weight percentage)
- Proper term: mass fraction

$$C_A = \frac{m_A}{m_A + m_B}$$

$$C_B = \frac{m_B}{m_A + m_B}$$

Conversion

$$m_A = n_A \mu_A$$

$$C_{A} = \frac{n_{A}\mu_{A}}{n_{A}\mu_{A} + n_{B}\mu_{B}} = \frac{C_{A}^{*}\mu_{A}}{C_{A}^{*}\mu_{A} + C_{B}^{*}\mu_{B}} \qquad C_{A}^{*} = \frac{C_{A}/\mu_{A}}{C_{A}/\mu_{A} + C_{B}/\mu_{B}}$$

- Composition (atomic percentage)
- Proper term: amount fraction

$$C_A^* = \frac{n_A}{n_A + n_B}$$

$$C_B^* = \frac{n_B}{n_A + n_B}$$

Conversion

$$\mu_A = m_A/n_A$$

$$C_A^* = \frac{C_A/\mu_A}{C_A/\mu_A + C_B/\mu_B}$$

m mass

n amount of substance (number of atoms) 49 μ molar mass (atomic mass, atomic weight) to to advanced materials

F24

Composition of binary alloys Applications

$$\rho = \frac{m}{V} = \frac{m_A + m_B}{V}$$

Naïve estimate: additivity of volumes

- Lattice constant a of solid solutions
 - Vegard's rule

$$a_{ss} = C_A^* a_A + C_B^* a_B$$

- -Limited validity
- Example CuNi

Points defects

- local distortion of the lattice
- interaction
- external stress
- 1. Vacancy
- 2. self-interstitial
- 3. interstitial impurity
- 4. small substitutional impurity
- 5. large substitutional impurity

53 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interaction: dislocations and point defects

Which position is likely to be occupied by

- an interstitial atom
- a substitutional atom larger than the host ones
- a substitutional atom smaller than the host ones?

Interaction: dislocations and point defects

Which position is likely to be occupied by

- an interstitial atom
- a substitutional atom larger than the host ones
- a substitutional atom smaller than the host ones?

55 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Lattice defects

0-dimensional: point defects

vacancies, interstitials, substitutional atoms

1-dimensional: line defects

dislocations

2-dimensional: area (planar) defects interfaces (stacking faults,

grain-, phase-, twin-boundaries, surfaces)

3-dimensional: volume (bulk) defects voids, pores, precipitates, inclusions, cracks

Volume defects

Self defects

- Clusters of point defects
- Pore = agglomerate of vacancies

 Requires many missing atoms! Alien defects

- Particles of second phase
- Precipitates
 - -coherent

Requires many atoms!

57 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Overview

Rôle of defects

- diffusion
- mechanical properties
- electrical properties
- magnetic properties
- plastic deformation
- strengthening mechanisms !!!
- various interactions e.g. interstitial atoms = obstacles to dislocation movement

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interstitial lattice sites

Where is space for foreign atoms?

Cubic lattices - comparison

	*	Close- packed direction	Neighbor closest to origin	Atomic dia- meter 2R	Atomic packing factor	Coordi- nation number	Examples
SC	1	<100>	[100] <i>a</i>	а	0.52	6	only α -Po
bcc	2	<111>	[111] <i>a</i> /2	$\sqrt{3}a/2$	0.68	8	Cr, W, V, Ta, α -Fe
fcc	4	<110>	[110] <i>a</i> /2	$\sqrt{2}a/2$	0.74	12	Al, Cu, Ag, Au, Ni, γ- Fe

* Number of atoms in unit cell

Lattice parameter a

Random close-packed spheres Ordered close-packed spheres 0.64

0.74

Only fcc is close-packed!

61 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Wanted Simple cubic lattice

1

 Coordination number (# nearest neighbors)

III • Ratio between edge length and atomic radius

$$a/R = 2$$

Atomic packing factor

$$APF = \frac{\pi}{6} \approx 0.52$$

 Closest packed direction <100>

Closest packed planes

Close-packed

Not close-packed DTU Conctruct, Techn

Along edges

- X Atoms touch each other
- o Atoms do not touch each other
- Distance between centers

а

- Distance between neighbors

- Along face diagonals
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers

√2*a*

– Distance between neighbors $\sqrt{2}a - 2R$

- Along volume diagonals
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers

√3*a*

– Distance between neighbors $\sqrt{3}a - 2R$

Simple cubic lattice - Interstitial site

• Crystallographic planes

- Hard sphere model
- Interstitial site (hexahedral site)

$$2\mathbf{r}_{H} = \sqrt{3}\mathbf{a} - 2\mathbf{R}_{at} = 2\mathbf{R}_{at} \left(\sqrt{3} - 1\right)$$

$$r_{H}/R_{at} = 0.73$$

 $(100) \qquad (110)$ $a \qquad \qquad \sqrt{3}a$ $\sqrt{2}a$

(111)

64 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interstitial sites - octahedral sites

Radius of interstitial site rRadius of host atoms $R_{\rm at}$

Wanted Face centered cubic lattice

- Atoms in unit cell
- 4
- Coordination number (# nearest neighbors)
- Along edges o Atoms touch each other

TT

- 12
 - X Atoms do not touch each other
 - Distance between centers
 - Distance between neighbors
- а a - 2R

III • Ratio between edge length and atomic radius

$$a/R = 4/\sqrt{2}$$

Atomic packing factor

$$APF = 4\frac{4\pi}{3} \left(\frac{\sqrt{2}}{4}\right)^3 = \frac{\pi\sqrt{2}}{6} \approx 0.74$$

- Closest packed direction <110>
- Closest packed planes

_		_	
Į	111	ι	
ι	TTT	ſ	

- ★ Close-packed
- DTU Conctruct. Techn O Not close-packed

- Along face diagonals
 - X Atoms touch each other
 - Atoms do not touch each other
 - Distance between centers
- √2*a*/2
- Distance between neighbors
- Along volume diagonals
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers

- Distance between neighbors $\sqrt{3}a - 2$

41680 Intro to advanced materials

F24

Wanted **Body centered cubic lattice**

2

- Coordination number (# nearest neighbors)
- 8

$$a/R = 4/\sqrt{3}$$

Atomic packing factor

$$APF = 2\frac{4\pi}{3} \left(\frac{\sqrt{3}}{4}\right)^{\frac{2}{3}} = \frac{\pi\sqrt{3}}{8} \approx 0.68$$

- Closest packed direction <111>
- Closest packed planes

Close-packed

Not close-packed DTU Conctruct, Techn

- Along edges
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers

а a - 2R

- Distance between neighbors
- Along face diagonals
 - o Atoms touch each other ★ Atoms do not touch each other
 - Distance between centers

√2*a*

- Distance between neighbors $\sqrt{2}a 2R$
- Along volume diagonals X Atoms touch each other
 - Atoms do not touch each other
 - Distance between centers - Distance between neighbors

√3*a*/2

Group exercises

F24

41680 Intro to advanced materials

72 DTU Conctruct, Technical University of Denmark

Interstitial sites in fcc

number: 4 $r_{\rm O}/R_{\rm at} = 0.414$

Radius of interstitial site rRadius of host atoms $R_{\rm at}$

tetrahedral

number: 8

 $r_{\rm T}/R_{\rm at} = 0.230$

$$a = 2R_{at} + 2r_O \rightarrow r_O = \frac{a}{2} - R_{at}$$

fcc

(110)

(111)

 $R_{at} = \sqrt{2}a/4$

 $\sqrt{2}a$

(100)

(111)

bcc

 $R_{at} = \sqrt{3}a/4$

DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interstitial sites in bcc

octahedral

tetrahedral

number: 6

Radius of interstitial site r $r_{\rm O}/R_{\rm at} = 0.150$ Radius of host atoms R

number: 12

 $r_{\rm T}/R_{\rm at} = 0.290$ 41680 Intro to advanced materials

Interstitial lattice sites Octahedral interstitial sites

Face-centered cubic

- Number of sites in unit cell Number of sites in unit cell 1+12/4 = 4
- Number of atoms in unit cell
- 6/2+12/4=6
- Number of atoms in unit cell

76 DTU Conctruct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interstitial lattice sites Overview

Lattice	Simple cubic	Body-centerd cubic	Face-centered cubic	
Atoms in uc	1	2	4	
Coordination	6	8	12	
APF	52 %	68 %	74 %	
Туре	Hexahedral	Octahedral	Octahedral	
-relative size	0.732	0.150	0.414	
-number in uc	1	6	4	
Sites/atom	1	3	1	