Zusammenfassung Stochastik I

© M Tim Baumann, http://timbaumann.info/uni-spicker

Der abstrakte Maß- und Wkts-Begriff

Def. Eine Ereignisalgebra oder Boolesche Algebra ist eine Menge ℜ mit zweistelligen Verknüpfungen ∧ ("und") und ∨ ("oder"), einer einstelligen Verknüpfung - (Komplement) und ausgezeichneten Elementen $U \in \mathfrak{A}$ (unmögliches Ereignis) und $S \in \mathfrak{A}$ (sicheres Ereignis), sodass für alle $A, B, C \in \mathfrak{A}$ gilt:

- \bullet $A \wedge A = A$ • $A \wedge B = B \wedge A$ • $A \wedge S = A$
- $A \wedge U = U$ • $A \wedge \overline{A} = U$ • $A \wedge (B \wedge C) = (A \wedge B) \wedge C$
- \bullet $A \lor A = A$
- $A \lor B = B \lor A$ $A \lor S = S$ • $A \lor (B \lor C) = (A \lor B) \lor C$ • $A \lor U = A$ • $A \lor \overline{A} = S$
- $A \wedge (B \vee C) = (A \wedge B) \vee (\tilde{A} \wedge C)$

Def. Sei \mathfrak{A} eine Ereignisalgebra und A, B Ereignisse.

- Durch $A \leq B :\iff A \wedge B = B$ (gesprochen A impliziert B) ist auf A eine Partialordnung definiert.
- A und B heißen **äquivalent**, falls A < B und B < A.
- A und B heißen unvereinbar, falls $A \wedge B = U$.

Korollar. In einer Ereignisalgebra \mathfrak{A} gilt mit $A, B \in \mathfrak{A}$:

- $A < B \iff \overline{B} < \overline{A}$ (Kontraposition)
- $\overline{A \vee B} = \overline{A} \wedge \overline{B}$ $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ (De Morgansche Regeln)

Korollar. Durch Induktion folgt aus den De Morganschen Regeln:

$$\overline{\left(\bigvee_{i=1}^{n}A_{i}\right)}=\bigwedge_{i=1}^{n}\overline{A_{i}}\quad\text{und}\quad\overline{\left(\bigwedge_{i=1}^{n}A_{i}\right)}=\bigvee_{i=1}^{n}\overline{A_{i}}\quad\text{für }A_{1},...,A_{n}\in\mathfrak{A}.$$

Def. Eine Algebra (Mengenalgebra) über Ω ist ein System von Teilmengen $\mathfrak{A} \subset \mathcal{P}(\Omega)$ mit $\Omega \in \mathfrak{A}$, das unter endl. Vereinigungen und Komplementen stabil ist, d. h. für alle $A, B \in \mathfrak{A}$ gilt:

- $\Omega \in \mathfrak{A}$
- $A \cup B \in \mathfrak{A}$
- $A^c := \Omega \setminus A \in \mathfrak{A}$

Bemerkung. Aus den De Morganschen Regeln folgt, dass Mengenalgebren auch unter endlichen Schnitten stabil sind.

Satz (Isomorphiesatz von Stone). Zu jeder Ereignisalgebra A gibt es eine Menge Ω , sodass \mathfrak{A} isomorph zu einer Mengenalgebra über Ω ist.

Notation. $A \triangle B := (A \setminus B) \cup (B \setminus A)$ heißt symm. **Differenz**.

Def. Eine σ -Algebra über Ω ist eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$ über Ω , die auch unter abzählbaren Vereinigungen stabil ist, d.h.

$$\bigcup_{n=0}^{\infty} A_n \in \mathfrak{A} \quad \text{für alle Folgen } (A_n)_{n \in \mathbb{N}} \text{ in } \mathfrak{A}.$$

Bemerkung. Jede σ -Algebra ist auch unter abzählb. Schnitten stabil.

Def. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in einer σ -Algebra \mathfrak{A} . Setze

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n \in \mathfrak{A}, \quad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n \in \mathfrak{A}.$$

Bemerkung. In einer σ -Algebra, in der die Mengen mögliche Ereignisse beschreiben, ist der Limes Superior das Ereignis, das eintritt, wenn unendlich viele Ereignisse der Folge A_n eintreten. Der Limes Infinum tritt genau dann ein, wenn alle bis auf endlich viele Ereignisse der Folge A_n eintreten.

Def. Eine Folge $(A_n)_{n\in\mathbb{N}}$ in einer σ -Algebra \mathfrak{A} konvergiert gegen $A \in \mathfrak{A}$, notiert $\lim_{n \to \infty} A_n = A$, falls $A = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$.

Satz. Für isotone / antitone Folgen $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt:

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n \quad / \quad \lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Def. Ein Ring (Mengenring) über Ω ist ein System von Teilmengen $\mathfrak{R} \subset \mathcal{P}(\Omega)$ mit $\emptyset \in \mathfrak{R}$, das unter endlichen Vereinigungen und Differenzen stabil ist, d. h. für alle $A, B \in \Re$ gilt:

- $\emptyset \in \mathfrak{R}$
- $A \cup B \in \mathfrak{R}$
- A \ B ∈ ℜ

Bemerkung. Ein Ring ist auch unter Schnitten stabil, da

$$A \cap B = (A \cup B) \setminus (A \triangle B).$$

Def. Ein σ -Ring über Ω ist ein Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ über Ω , der auch unter abzählbaren Vereinigungen stabil ist, d. h.

$$\bigcup_{n=0}^{\infty} A_n \in \mathfrak{A} \quad \text{für alle Folgen } (A_n)_{n \in \mathbb{N}} \text{ in } \mathfrak{A}.$$

Bemerkung. Jeder σ -Ring ist auch unter abzählb. Schnitten stabil.

Satz. \mathfrak{A} ist $(\sigma$ -) Algebra $\iff \mathfrak{A}$ ist $(\sigma$ -) Ring mit $\Omega \in \mathfrak{A}$.

Satz. Sei $(\mathfrak{A}_i)_{i\in I}$ Familie von $(\sigma$ -) Ringen / $(\sigma$ -) Algebren über Ω . Dann ist der Schnitt $\bigcap \mathfrak{A}_i$ ein $(\sigma$ -) Ring / eine $(\sigma$ -) Algebra über Ω .

Def. Sei $E \subset \mathcal{P}(\Omega)$. Setze

$$\mathcal{R}(E) \coloneqq \{ \mathfrak{R} \subset \mathcal{P}(\Omega) \, | \, E \subset \mathfrak{R}, \mathfrak{R} \text{ σ-Ring} \} \text{ und}$$
$$\mathcal{A}(E) \coloneqq \{ \mathfrak{A} \subset \mathcal{P}(\Omega) \, | \, E \subset \mathfrak{A}, \mathfrak{A} \text{ σ-Algebra} \}.$$

 $\text{Dann heißen} \quad \rho(E) \coloneqq \bigcap_{\mathfrak{R} \in \mathcal{R}(E)} \mathfrak{R}, \quad \sigma(E) \coloneqq \bigcap_{\mathfrak{A} \in \mathcal{A}(E)} \mathfrak{A}$

von E erzeugter Ring bzw. von E erzeugte σ -Algebra.

Def. Die Borel-Mengen in \mathbb{R}^1 sind $\mathfrak{B}(\mathbb{R}^1) := \sigma(\mathcal{E})$, wobei wir \mathcal{E} aus folgenden äquivalenten Optionen wählen dürfen:

- $\{]a,b] \mid a \leq b\}$ $\{]a,b[\mid a \leq b\}$ $\{G \subset \mathbb{R}^1 \mid G \text{ abgeschl.}\}$ $\{[a,b] \mid a \leq b\}$ $\{[a,b] \mid a \leq b\}$ $\{F \subset \mathbb{R}^1 \mid F \text{ offen}\}$

Notation. $\overline{\mathbb{R}^1} := \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, \infty]$

Def. Funktionen mit Wertebereich \mathbb{R}^1 heißen numerisch.

Def. Sei \Re ein Ring über Ω . Eine Fkt. $\mu:\Re\to[0,\infty]$ heißt

• Inhalt auf \Re , falls $\mu(\emptyset) = 0$ und $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathfrak{R}$ mit $A \cap B = \emptyset$ gilt.

• Prämaß auf \mathfrak{R} , wenn μ ein Inhalt ist und für alle Folgen $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $A_i\cap A_j=\emptyset$ für $i\neq j$ und $\bigcup_{n=1}^{\infty}A_n\in\mathfrak{R}$ gilt:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$
 (\sigma-Additivit\text{\text{it}})

• Maß, wenn μ Prämaß und \Re in Wahrheit sogar eine σ -Algebra ist. Dann ist die letzte Vorraussetzung in Punkt 2 immer erfüllt.

Def. Ein Inhalt/Maß μ auf einem Ring / einer σ -Algebra \mathfrak{A}

- heißt endlich, falls $\mu(\Omega) < \infty$,
- heißt σ -endlich, falls eine Folge A_n in $\mathfrak A$ existiert, sodass

$$\Omega = \bigcup_{n \in \mathbb{N}} A_n \quad \text{und} \quad \forall i \in \mathbb{N} : \mu(A_i) < \infty.$$

Notation. Sei Ω eine Menge, $A \subset \Omega$. Dann heißt

$$\chi_1 = \mathbbm{1}_A : \Omega \to \mathbb{R}, \quad \omega \mapsto |\{\star \mid \omega \in A\}| = \begin{cases} 1, & \text{falls } \omega \in A \\ 0, & \text{falls } \omega \notin A \end{cases}$$

Indikatorfunktion von A.

Beispiel. Sei \Re ein Ring über Ω und $\omega \in \Omega$. Die Abbildung

$$\delta_{\omega}: \mathfrak{R} \to [0, \infty], \quad A \mapsto \mathbb{1}_A(\omega)$$

ist dann ein Prämaß auf R. genannt Dirac-(Prä)-Maß.

Lemma. Sei μ ein Inhalt auf einem Ring \Re . Seien $A, B \in \Re$ und $(A_n)_{n\in\mathbb{N}}$ Folge in \mathfrak{R} mit $\mu(A)<\infty$ und $\forall n\in\mathbb{N}:\mu(A_n)<\infty$. Dann:

- $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- $A \subset B \implies \mu(A) < \mu(B)$ (Isotonie)
- $A \subset B \implies \mu(B \setminus A) = \mu(B) \mu(A)$
- $\mu(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n \mu(A_i)$ (Subadditivität)

Satz. Sei \Re ein Ring und μ ein Inhalt. Es gelten für $n \in \mathbb{N}$ und $A_1, ..., A_n \in \Re$ die Ein- und Ausschlussformeln

$$\mu(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cap \dots \cap A_{i_k}),$$

$$\mu(A_1 \cap \dots \cap A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cup \dots \cup A_{i_k}).$$

Satz. Sei μ ein Inhalt auf $\mathfrak{R} \subset \mathcal{P}(\Omega)$. Wir betrachten die Aussagen:

- (i) μ ist ein Prämaß auf ℜ.
- (ii) Stetigkeit von unten: Für jede monoton wachsende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $A:=\lim_{n\to\infty}A_n=\bigcup_{n=0}^\infty A_n\in\mathfrak{R}$ gilt $\lim \mu(A_n) = \mu(A).$
- (iii) Stetigkeit von oben: Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $\mu(A_0) < \infty$ und $A := \lim_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} A_n \in \mathfrak{R}$ gilt $\lim_{n \to \infty} \mu(A_n) = \mu(A).$
- (iv) Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $\mu(A_0)<\infty$ und $\lim_{n\to\infty} A_n = \bigcap_{n=0}^{\infty} A_n = \emptyset$ gilt $\lim_{n\to\infty} \mu(A_n) = 0$.

Dann gilt (i) \iff (ii) \implies (iii) \iff (iv) Falls μ endlich ist, so gilt auch (iii) \Longrightarrow (ii). **Def.** Seien $a=(a_1,...,a_d), b=(b_1,...,b_d)\in\mathbb{R}^d$. Wir schreiben $a\leq b$, falls $a_i\leq b_i$ für alle $i\in\{1,...,d\}$ gilt. Dann heißt

$$]a,b] \coloneqq \{(x_1,...,x_d) \in \mathbb{R}^d \, | \, a_i < x_i \le b_i \text{ für alle } i \in \{1,...,d\}\}$$

von a und b aufgespannter Elementarquader in \mathbb{R}^d .

Def. Sei $f: \mathbb{R}^d \to \mathbb{R}^1$ eine Funktion, $x = (x_1, ..., x_d) \in \mathbb{R}^d$ und $h = (h_1, ..., h_d) \in \mathbb{R}^d_{>0}$. Dann heißt

$$(\triangle f)(]x, x+h]) := \sum_{\delta_1, \dots, \delta_d \in \{0,1\}} (-1)^{d-(\delta_1 + \dots + \delta_k)} f(x_1 + \delta_1 h_1, \dots, x_d + \delta_d h_d)$$

Zuwachs von f im Elementarquader]x, x + h].

Def. $G: \mathbb{R}^d \to \mathbb{R}$ heißt maßerzeugende Funktion, falls

- G ist nicht-fallend in jedem Argument, d. h. für alle $k \in \{1,...,d\}$ und $x_1,...,x_d \in \mathbb{R}$ ist $f(x_1,...,x_{k-1},-,x_{k+1},...,x_d)$ nicht-fallend.
- G ist rechtsseitig stetig in jedem Argument, d. h. für alle $k\in\{1,...,d\}$ und $x_1,...,x_d\in\mathbb{R}$ gilt

$$\lim_{h\downarrow 0} f(x_1,...,x_{k-1},x_k+h,x_{k+1},...,x_d) = f(x_1,...,x_d).$$

• Für alle $x \in \mathbb{R}^d$ und $h \in \mathbb{R}^d_{\geq 0}$ ist der Zuwachs $(\triangle G)(]x, x+h]) \geq 0.$

Def. Eine maßerzeugende Funktion F heißt **Verteilungsfunktion** (VF) in \mathbb{R}^d , falls zusätzlich gilt:

$$\lim_{\substack{x_1 \to \infty \\ x_d \to \infty}} F(x_1,...,x_d) = 1 \qquad \text{ und } \quad \lim_{\substack{x_i \to -\infty \\ x_d \to \infty}} F(x_1,...,x_d) = 0$$

für alle $i \in \{1, ..., d\}$ und $x_1, ..., \widehat{x_i}, ..., x_d \in \mathbb{R}$ fest.

Bemerkung. Sei $G_i: \mathbb{R}^1 \to \mathbb{R}^1_{>0}$ für $i \in \{1, ..., d\}$ maßerzeugende Funktion im \mathbb{R}^1 , dann ist

$$G: \mathbb{R}^d \to \mathbb{R}^1_{>0}, \quad (x_1, ..., x_d) \mapsto G_1(x_1) \cdot ... \cdot G_d(x_d)$$

eine maßerzeugende Funktion in \mathbb{R}^d und es gilt für jeden Elementarquader $[a,b] \subset \mathbb{R}^d$ mit $a=(a_1,...,a_d), b=(b_1,...,b_d)$:

$$(\triangle G)(]a,b]) = \prod_{i=1}^{d} (G_i(b_i) - G_i(a_i)).$$

Satz. Der Ring aller Elementarquader im \mathbb{R}^d ist

$$\mathfrak{R}\coloneqq \{\bigsqcup_{i=1}^{m}\left]a_{i},b_{i}\right]\mid m\in\mathbb{N}\text{ und }\left]a_{1},b_{1}\right],...,\left]a_{m},b_{m}\right]$$
disjunkte Elementarquader im \mathbb{R}^{d}

und für jede maßerzeugende Funktion $G:\mathbb{R}^d\to\mathbb{R}^1$ definiert

einen Inhalt auf R, der sogar ein Prämaß ist.

Def. Eine numerische Funktion $\mu^*: \mathcal{P}(\Omega) \to \overline{\mathbb{R}}$ heißt **äußeres Maß** auf Ω , wenn gilt:

$$\bullet \ \mu^*(\emptyset) = 0 \qquad \qquad \bullet \ A \subset B \implies \mu^*(A) \leq \mu^*(B) \qquad \text{(Monotonie)}$$

• Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ gilt $\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n=0}^{\infty}\mu^*(A_n)$.

Bemerkung. Wegen $\mu^*(\emptyset) = 0$ und der Monotonie nimmt ein äußeres Maß nur Werte in $[0, \infty]$ an.

Def. Eine Teilmenge $A \subset \Omega$ heißt μ^* -messbar, falls

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A)$$
 für alle $Q \subset \Omega$.

Satz (Carathéodory). Für ein äußeres Maß $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ ist

- $\mathfrak{A}^* := \{A \subset \Omega \mid A \text{ ist } \mu^*\text{-messbar }\}$ eine $\sigma\text{-Algebra und}$
- $\mu^*|_{\mathfrak{A}^*}$ ein Maß auf \mathfrak{A}^* .

Satz (1. Fortsetzungssatz). • Sei μ ein Prämaß auf einem Ring $\mathfrak R$ über Ω . Dann existiert eine Fortsetzung $\widetilde{\mu}$ von μ zu einem Maß auf der von $\mathfrak R$ erzeugten σ -Algebra $\mathfrak A := \sigma(\mathfrak R)$, sodass $\widetilde{\mu}|_{\mathfrak R} = \mu$.

• Falls μ σ -endlich ist, so ist die Fortsetzung eindeutig.

Bemerkung. Im Beweis wird ein äußeres Maß μ^* auf Ω so definiert:

$$\mathfrak{U}(Q) := \left\{ (A_n)_{n \in \mathbb{N}} \, \middle| \, Q \subset \bigcup_{n=0}^{\infty} A_n \text{ und } A_n \text{ Folge in } \mathfrak{R} \right\},$$
$$\mu^*(Q) := \inf \left(\left\{ \sum_{i=0}^{\infty} \mu(A_n) \, \middle| \, (A_n)_{n \in \mathbb{N}} \in \mathfrak{U}(Q) \right\} \cup \{\infty\} \right).$$

Das äußere Maß μ^* eingeschränkt auf $\mathfrak{A}^* \supset \mathfrak{A}(\mathfrak{R})$ ist ein Maß.

Def. Sei Ω eine Menge und $\mathfrak{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra auf Ω , sowie ggf. μ ein Maß auf \mathfrak{A} . Dann heißt

- das Tupel (Ω, \mathfrak{A}) messbarer Raum,
- das Tripel $(\Omega, \mathfrak{A}, \mu)$ Maßraum.

Satz. Unter den Bedingungen des 1. Fortsetzungssatzes ist \mathfrak{A}^* die größte σ -Algebra $\overline{\mathfrak{A}}$ mit $\mathfrak{A} \subset \overline{\mathfrak{A}}$, sodass $\mu^*|_{\overline{\mathfrak{A}}}$ ein Maß ist.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum. Eine Menge $N \subset \Omega$ heißt **Nullmenge**, falls es ein $A \in \mathfrak{A}$ gibt, sodass $N \subset A$ und $\mu(A) = 0$.

Def. Ein Maßraum $(\Omega, \mathfrak{A}, \mu)$ heißt vollständig, falls jede Nullmenge $N \subset \Omega$ ein Element von \mathfrak{A} ist.

Satz. $(\Omega, \mathfrak{A}^*, \mu^*|_{\mathfrak{A}^*})$ ist vollständig für jedes bel. äußere Maß μ^* .

Satz. Jeder Maßraum $(\Omega, \mathfrak{A}, \mu)$ kann zu einem vollständigen Maßraum $(\Omega, \mathfrak{A}_c, \mu_c)$ erweitert werden mit

$$\mathfrak{A}_c := \{ A \cup N \mid A \in \mathfrak{A}, N \text{ μ-Nullmenge} \}, \quad \mu_c(A \cup N) := \mu(A).$$

Satz. Sei μ ein σ -endliches Prämaß auf dem Ring \Re über Ω sowie $\widetilde{\mathfrak{A}} := \sigma(\mathfrak{R})$. Dann gilt $\mathfrak{A}^* = \mathfrak{A}_c$ und $\mu^*|_{\mathfrak{A}^*} = \widetilde{\mu}_c$, wobei $\widetilde{\mu}$ das eindeutig fortgesetzte Maß ist.

Sprechweise. Eine Eigenschaft oder Aussage gilt für **fast alle** $\omega \in \Omega$ oder μ -fast-überall, wenn es eine Nullmenge $N_0 \subset \Omega$ gibt, sodass die Aussage oder Eigenschaft für alle $\omega \in N_0^c$ gilt.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum.

• Dann heißt μ diffus (atomlos), falls $\mu(\{\omega\}) = 0$ für alle $\omega \in \Omega$.

• Sei η ein weiteres Maß auf (Ω, \mathfrak{A}) . Dann heißt μ absolut stetig bezüglich η (notiert $\mu \ll \eta$), falls

$$\eta(A) = 0 \implies \mu(A) = 0$$
 für alle $A \in \mathfrak{A}$.

Def. Die von den Elementarquadern im \mathbb{R}^d erzeugte σ -Algebra heißt Borel- σ -Algebra $\mathfrak{B}(\mathbb{R}^d)$. Das von der maßerzeugenden Funktion

$$G: \mathbb{R}^d \to \mathbb{R}, \quad (x_1, ..., x_d) \mapsto x_1 \cdot ... \cdot x_d$$

erzeugte Prämaß auf dem von den Elementarquadern erzeugten Ring μ_G , das zu einem Maß $\widetilde{\mu}_G$ auf $\mathfrak{B}(\mathbb{R}^d)$ fortgesetzt wird, heißt **Lebesgue-Borel-Maß**. Die durch Hinzunahme aller Nullmengen vervollständigte σ -Algebra $\mathfrak{A}^* = \mathfrak{B}(\mathbb{R}^d)_c$ heißt **Lebesgue-** σ -**Algebra** und das fortgesetzte Maß $\lambda_d := \mu_G^*$ **Lebesgue-Maß**.

Satz. Das Lebesgue-Maß auf dem \mathbb{R}^d ist bewegungsinvariant, d. h.

$$\forall A \in \mathfrak{B}(\mathbb{R}^d), O \in SO_d, x \in \mathbb{R}^d : \lambda_d(O \cdot A + x) = \lambda_d(A)$$

Das Lebesgue-Maß ist bis auf einen multiplikativen Faktor das einzige verschiebungsinvariante Maß auf $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$.

Sprechweise. Sei (Ω, \mathfrak{A}) ein messbarer Raum. Wir nennen Ω abstrakte Grundmenge und die Elemente von Ω Elementarereignisse. Die σ -Algebra \mathfrak{A} enthält zufällige Ereignisse, unter anderem das sichere Ereignis Ω und das unmögliche Ereignis \emptyset .

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein Maßraum mit $\mathbb{P}(\Omega) = 1$. Dann heißt \mathbb{P} **Wahrscheinlichkeitsmaß** (W-Maß) und das Tripel $(\Omega, \mathfrak{A}, \mathbb{P})$ **Wahrscheinlichkeitsraum** (W-Raum).

Sprechweise. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A, B \in \mathfrak{A}$. Wir sagen:

- A ist fast sicher, wenn $\mathbb{P}(A) = 1$.
- A ist fast unmöglich, wenn $\mathbb{P}(A) = 0$.
- A und B sind **äquivalent**, wenn $\mathbb{P}(A \triangle B) = 0$

Bemerkung. Sei μ ein W-Maß auf $\mathfrak{L}(\mathbb{R}^1)$. Dann definiert $x\mapsto F_{\mu}(x):=\mu(]-\infty,x])$ eine VF. Für eine VF $F:\mathbb{R}\to[0,1]$ definiert umgekehrt $\mu_F(]a,b]):=F(b)-F(a)$ ein W-Maß auf $\mathfrak{L}(\mathbb{R}^1)$. Analog funktioniert dies auf dem \mathbb{R}^d .

Def (Wichtige Verteilungsfunktionen).

• Exponential verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \max(0, 1 - \exp(-\lambda x))$$
 Exp(\lambda)

• Poisson-Verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \sum_{0 \le n \le x} \frac{\lambda^n}{n!} \exp(-\lambda)$$
 Poi(\lambda)

- Gleichverteilung auf [a, b]: $F(x) = \min(1, \max(0, \frac{x-a}{b-1}))$
- Normalverteilung (Gaußverteilung) mit EW μ und Varianz σ^2 :

$$F_{\mu\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right) dt \qquad \qquad \mathrm{N}(\mu,\,\sigma^2)$$

erfüllt
$$F'_{\mu\sigma^2}(x) = \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right), F_{\mu\sigma^2}(\mu-x) = 1 - F_{\mu\sigma^2}(\mu+x)$$

• d-dimensionale Normalverteilung mit Erwartungswertvektor $m \in \mathbb{R}^d$ positiv definiter Kovarianzenmatrix $C \in \mathbb{R}^{d \times d}$:

$$F(x) = \frac{1}{\sqrt{(2\pi)^d \det C}} \int_{|-\infty, x|} \exp(-\frac{1}{2}(y-m)^T C^{-1}(y-m)) \, dy$$

• 2-dimensionale Exponential verteilung mit $\lambda, \mu > 0, \nu \geq 0$:

$$F(x,y) = \begin{cases} 0, \text{ falls } x < 0 \text{ oder } y < 0, \text{ ansonsten:} \\ 1 - e^{-(\lambda + \nu)x} - e^{-(\mu + \nu)y} + e^{-(\lambda x + \mu y + \nu \max(x,y))} \end{cases}$$

Elementare Wahrscheinlichkeitsrechnung

Def. Ein Ereignis $A \in \mathfrak{A}$ trete bei n Versuchen genau $h_n(A) \in \mathbb{N}$ mal auf. Dann heißt

- $h_n(A)$ absolute Häufigkeit von A,
- $H_n(A) := \frac{h_n(A)}{n}$ relative Häufigkeit von A.

Bemerkung. Unmittelbar klar:

- $H_n(A) \in [0,1]$ $H_n(A) \le H_n(B)$ für $A \subset B$
- $H_n(A \sqcup B) = H_n(A) + H_n(B)$ für $A \cap B = \emptyset$

Bemerkung. Bei wachsendem n stabilisiert sich normalerweise der Wert $H_n(A)$. Dieser Grenzwert ist die Wahrscheinlichkeit von A.

 $\mathbf{Def.}\,$ Seien $A,B\in\mathfrak{A}\,$ Ereignisse, $n\in\mathbb{N}$ die Anzahl der Versuche. Dann heißt

$$H_n(A \mid B) := \frac{H_n(A \cap B)}{H_n(B)} = \frac{h_n(A \cap B)}{h_n(B)}$$

die relative Wahrscheinlichkeit von A unter der Bedingung B.

Bemerkung. Offenbar gilt:

- $H_n(A \mid B) \in [0,1]$ $H_n(A_1 \mid B) < H_n(A_2 \mid B)$ für $A_1 \subset A_2$
- $H_n(A_1 \sqcup A_2 \mid B) = H_n(A_1 \mid B) + H_n(A_2 \mid B)$ für $A_1 \cap A_2 = \emptyset$

Def. Sei $\Omega \in \mathfrak{L}(\mathbb{R}^d)$ mit $\lambda_d(\Omega) > 0$. Dann heißt das W-Maß

$$\mathbb{P}:\mathfrak{L}(\Omega)\to[0,1],\quad A\mapsto \frac{\lambda_d(A)}{\lambda_d(\Omega)}$$
 Gleichverteilung.

Def. Sei Ω eine endliche Menge. Dann definiert

$$\mathbb{P}: \mathcal{P} \to [0,1], \quad A \mapsto \frac{|A|}{|\Omega|} = \frac{\# \text{ günstige Fälle}}{\# \text{ mögliche Fälle}}$$

ein W-Maß auf $(\Omega, \mathcal{P}(\Omega))$, genannt Laplace'sche Wkt.

Bemerkung. Damit sind Berechnungen von Wkten mit kombinatorischen Überlegungen möglich.

Lemma (Fundamentalprinzip des Zählens). Seien $A_1, ..., A_n$ endliche Mengen. Dann gilt $|A_1 \times ... \times A_n| = |A_1| \cdots |A_n|$.

Lemma. Sei A eine endliche Menge, $r \le n \coloneqq |A| < \infty$. Dann ist die Anzahl der r-Tupel mit Elementen aus A gleich

Lemma. Sei A eine endliche Menge, $n \coloneqq |A| < \infty$. Dann ist die Anzahl der möglichen Zerlegungen von A in disjunkte Mengen $B_1, ..., B_k$ mit $|B_i| = n_i$ und $n_1 + ... + n_k = n$ gleich

$$\binom{n}{n_1,\dots,n_k} := \frac{n!}{n_1!\dots n_k!}$$
. (Multinomialkoeffizient)

Modell. Eine Urne enthalte N Kugeln, darunter $M \leq N$ schwarze. Dann ist ist die Wkt für das Ereignis A_m^n , dass sich unter n gezogenen Kugeln genau $m \leq \min(n, M)$ schwarze Kugeln befinden,

$$\mathbb{P}(A_m^n) = \frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}}.$$
 (hypergeometrische Verteilung)

Bemerkung. Für Maximum-Likelihood-Schätzungen:

- Der Ausdruck $\binom{N-M}{n-m} / \binom{N}{n}$ wird maximal bei $N := \lfloor \frac{n-M}{m} \rfloor$.
- Der Ausdruck $\binom{M}{m}\cdot \binom{N-M}{n-m}$ wird maximal bei $M\coloneqq \lfloor \frac{m(N-1)}{n}\rfloor.$

Modell. Eine Urne enthalte N Kugeln in $k \leq N$ verschiedenen Farben, darunter N_1 in der ersten Farbe, ..., N_k in der k-ten Farbe, $N_1 + \ldots + N_k = N$. Dann ist ist die Wkt für das Ereignis $A^n_{n_1,\ldots,n_k}$, dass sich unter n gezogenen Kugeln genau $n_1 \leq N_1$ Kugeln der ersten Farbe, ..., und $n_k \leq N_k$ Kugeln der k-ten Farbe befinden, $n_1 + \ldots + n_k = n$, gleich

$$\mathbb{P}(A^n_{n_1,...,n_k}) = \frac{\binom{N_1}{n_1} \cdots \binom{N_k}{n_k}}{\binom{N}{n}}.$$

Diese W-Verteilung heißt polyhypergeometrische Verteilung.

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A, B \in \mathfrak{A}$. Dann heißt

$$\mathbb{P}(A \mid B) := \begin{cases} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, & \text{falls } \mathbb{P}(B) > 0\\ 0, & \text{falls } \mathbb{P}(B) = 0 \end{cases}$$

Wahrscheinlichkeit von A unter der Bedingung B.

Bemerkung. Falls $\mathbb{P}(B)>0$ gilt, so ist $\mathbb{P}(-\mid B)$ ein W-Maß über B auf der Spur-σ-Algebra $\mathfrak{A}\mid_B$.

Lemma. Seien $A_1, ..., A_k \in \mathfrak{A}$, dann gilt die Pfadregel:

$$\mathbb{P}(A_1 \cap \dots \cap A_k) = \mathbb{P}(A_1) \cdot \prod_{i=2}^k \mathbb{P}(A_i \mid A_1 \cap \dots \cap A_{i-1}).$$

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A_1, \ldots \in \mathfrak{A}$ ein vollständiges Ereignissystem, d. h. paarweise disjunkt mit

$$\Omega = \bigsqcup_{i=1}^{\infty} A_i.$$

Dann gilt für jedes $B \in \mathfrak{A}$ mit $\mathbb{P}(B) > 0$

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i) \quad \text{(Formel der totalen Wkt)}$$

$$\mathbb{P}(A_n \mid B) = \frac{\mathbb{P}(B \mid A_n) \cdot \mathbb{P}(A_n)}{\sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i)}$$
(Bayessche Formel)

Sprechweise. In der Bayesischen Statistik heißt

- $\mathbb{P}(A_i)$ A-priori-Wahrscheinlichkeit,
- $\mathbb{P}(A_i \mid B)$ A-posteriori-Wahrscheinlichkeit.

Def. Zwei Ereignisse $A, B \in \mathfrak{A}$ heißen (P-)unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Bemerkung. • $A \in \mathfrak{A}$ mit $\mathbb{P}(A) = 0$ ist unabhängig zu jedem $B \in \mathfrak{A}$.

• Wenn $A, B \in \mathfrak{A}$ unabhängig, dann sind auch unabhängig:

$$(A^c, B), \quad (A, B^c), \quad (A^c, B^c)$$

Satz. $A, B \in \mathfrak{A}$ unabhängig $\iff \mathbb{P}B \mid A = \mathbb{P}(B)$.

Def. Sei $(A_i)_{i\in I}$ (I bel.) eine Familie von Ereignissen in \mathfrak{A} .

• vollständig unabhhängig, falls

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_n})$$

für alle $i_1, ..., i_n \in I$ mit $2 \le n < \infty$ und

paarweise unabhängig, falls

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j)$$
 für alle $i, j \in I, i \neq j$.

Achtung. Aus paarweiser Unabhängigkeit folgt nicht vollständige Unabhängigkeit (Gegenbeispiel: Bernsteins Tetraeder).

Def. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ Ereignissysteme. Dann heißen \mathfrak{A}_1 und \mathfrak{A}_2 unabhängig, falls

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$$
 für alle $A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2$.

Satz. Seien $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ unabhängige Ereignissysteme, die Algebren sind. Dann sind auch die σ -Algebren $\sigma(\mathfrak{A}_1)$ und $\sigma(\mathfrak{A}_2)$ unabhängig.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $(A_i)_{i \in \mathbb{N}}$ Folge von unabhängigen Ereignissen mit gleicher Erfolgswkt $\mathbb{P}(A_i) = p$ für alle $i \in \mathbb{N}$. Für $k \leq n, k, n \in \mathbb{N}$ ist dann die Wahrscheinlichkeit, dass genau k Stück der Ereignisse $A_1, ..., A_n$ eintreten, genau

$$B(k, n, p) := \binom{n}{k} p^k (1 - p)^{n - k}$$

Die zugehörige VF $x\mapsto \sum\limits_{0\leq k\leq x}\!\!B(k,n,p)$ heißt Binomialverteilung.

Lemma. Voraussetzung wir im vorherigen Satz. Sei $r, k \in \mathbb{N}, 1 \leq r$, dann ist die Wkt für das Ereignis $A_k^{(r)}$, dass beim Versuch A_{k+r} der r-te Erfolg eintritt, gleich

$$\mathbb{P}(A_k^{(r)}) = {\binom{k+r-1}{r-1}} p^r (1-p)^k.$$

Im Spezialfall r = 1 ist $\mathbb{P}(A_k^{(1)}) = p(1-p)^k$.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $A_1, ..., A_r \in \mathfrak{A}$ mit $p_i := \mathbb{P}(A_i)$ für i = 1, ..., k und $p_1 + ... + p_r = 1$. Dann ist die Wahrscheinlichkeit, dass bei $n \in \mathbb{N}$ Versuchen A_1 genau n_1 -mal, A_2 genau n_2 -mal, ..., A_r genau n_r -mal auftritt $(n_1 + ... + n_r = n)$, genau

$$B(n_1,...,n_r,n,p_1,...,p_r) := \binom{n}{n_1,...,n_r} p_1^{n_1} \cdots p_r^{n_r}.$$

Diese W-Verteilung heißt Multinomialverteilung.

Satz. Für $0 < m < n, p \in [0, 1]$ gilt

$$\frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}} \quad \xrightarrow{M,N\to\infty} \quad \binom{n}{m} p^m (1-p)^{n-m}.$$

Satz (GWS von Poisson). Für $m \in \mathbb{N}$, $\lambda \in \mathbb{R}_{>0}$ gilt

$$\binom{n}{m} p_n^m (1 - p_n)^{n-m} \xrightarrow[np_n \to \lambda]{n \to \infty} \frac{\lambda^m}{m!} \exp(-\lambda).$$

Def. Sei (Ω, \mathfrak{A}) ein messbarer Raum mit zwei W-Maßen \mathbb{P}_1 und \mathbb{P}_2 . Dann heißt

$$d_{\infty}(\mathbb{P}_1, \mathbb{P}_2) \coloneqq \sup_{A \in \mathfrak{A}} |\mathbb{P}_1(A) - \mathbb{P}_2(A)|$$

Totalvariation des signierten Maßes $\mathbb{P}_1 - \mathbb{P}_2$.

Satz. Seien \mathbb{P}_1 und \mathbb{P}_2 zwei W-Maße auf $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, $\mathbb{P}_1(\{i\}) = p_i$, $\mathbb{P}_2(\{i\}) = q_i$ für alle $i \in \mathbb{N}$. Dann gilt

$$d_{\infty}(\mathbb{P}_1, \mathbb{P}_2) = \frac{1}{2} \sum_{i=0}^{\infty} |p_i - q_i|.$$

Lemma. Für $n, k \in \mathbb{N}, p \in [0, 1]$ und \mathbb{P}_1 und \mathbb{P}_2 wie eben definiert durch $p_i := \binom{n}{l} p^k (1-p)^{n-k}, q_i := \frac{(np)^k}{l!} \exp(-np)$ gilt

$$d_{\infty}(\mathbb{P}_1,\mathbb{P}_2) \leq 2np^2$$
.

Lemma (Borel-Cantelli). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von Ereignissen über $(\Omega, \mathfrak{A}, \mathbb{P})$. Dann gilt für $A = \limsup A_n$

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A) = 0.$$

Falls die Ereignisse $(A_n)_{n\in\mathbb{N}}$ unabhängig sind, so gilt

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1,$$

also zusammengefasst $\mathbb{P}(A) \in \{0,1\}.$

Def. Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ Folge von σ -Algebren über Ω . Dann ist

$$\mathcal{T}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{T}_n \quad \text{mit} \quad \mathcal{T}_n \coloneqq \sigma \left(\bigcup_{k=n}^{\infty} \mathfrak{A}_k \right)$$

die terminale σ -Algebra von $(\mathfrak{A}_n)_{n\in\mathbb{N}}$.

Satz (Null-Eins-Gesetz von Kolmogorow). Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ eine Folge von unabhängigen Unter- σ -Algebren in einem W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$. Dann gilt $\mathbb{P}(A) \in \{0,1\}$ für alle Ereignisse $A \in \mathcal{T}_{\infty}$ der terminalen σ -Algebra.

Integrationstheorie

Def. Seien $(\Omega_1, \mathfrak{A}_1)$ und $(\Omega_2, \mathfrak{A}_2)$ messbare Räume. Dann heißt $f:\Omega_1\to\Omega_2$ ($\mathfrak{A}_1,\mathfrak{A}_2$)-messbar, falls

$$f^{-1}(A_2) \in \mathfrak{A}_1$$
 für alle $A_2 \in \mathfrak{A}_2$.

Notation. Für solches f schreiben wir $f:(\Omega_1,\mathfrak{A}_1)\to(\Omega_2,\mathfrak{A}_2)$.

Beobachtung. Sei (Ω, \mathfrak{A}) messbarer Raum, $A \subset \Omega$, dann gilt

$$\mathbb{1}_A (\mathfrak{A}, \mathfrak{L}(\mathbb{R}^1))$$
-messbar $\iff A \in \mathfrak{A}.$

Lemma. Die Verkettung messbarer Abbildungen ist messbar, d. h. für $f:(\Omega_1,\mathfrak{A}_1)\to(\Omega_2,\mathfrak{A}_2)$ und $g:(\Omega_2,\mathfrak{A}_2)\to(\Omega_3,\mathfrak{A}_3)$ gilt $g \circ f : (\Omega_1, \mathfrak{A}_1) \to (\Omega_3, \mathfrak{A}_3).$

Lemma. Sei $f: \Omega \to \Omega'$ eine Abb. und $\mathcal{E}' \subset \mathcal{P}(\Omega)$, dann ist

$$\mathfrak{A}(f^{-1}(\mathcal{E}'))=f^{-1}(\mathfrak{A}(\mathcal{E}')).$$

Lemma. Sei (Ω, \mathfrak{A}) ein messbarer Raum und $f: \Omega \to \Omega'$ eine Abbildung, sowie $\mathcal{E} \subset \mathbb{P}(\Omega')$. Dann gilt

$$f$$
 ist $(\mathfrak{A}, \sigma(\mathcal{E}))$ -messbar \iff $f^{-1}(E) \in \mathfrak{A}$ für alle $E \in \mathcal{E}$.

Notation. Seien $f, g: \Omega \to \overline{\mathbb{R}^1}$ zwei numerische Funktionen. Setze

$$\{f \leq g\} \coloneqq \{\omega \in \Omega \,|\, f(\omega) \leq g(\omega)\} \subset \Omega$$

und definiere analog $\{f < g\}, \{f \ge g\}, \{f > g\}, \{f = g\}, \{f \ne g\}.$

Satz. Für eine Funktion $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}})$ sind äquivalent:

- f ist messbar $\forall a \in \mathbb{R} : \{f \ge a\} = f^{-1}([a, \infty]) \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f > a\} \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$

Def. • Sei (Ω, \mathfrak{A}) ein messbarer Raum, $f: \Omega' \to \Omega$ eine Abbildung, dann heißt

$$\sigma(f) := f^{-1}(\mathfrak{A}) := \{ f^{-1}(A) \mid A \in \mathfrak{A} \}$$

die von f erzeugte σ -Algebra.

• Sei $(\Omega_i, \mathfrak{A}_i)_{i \in I}$ eine Familie von messbaren Räumen, $f_i : \Omega' \to \Omega_i$ für alle $i \in I$ eine Abbildung. Dann heißt

$$\sigma((f_i)_{i \in I}) := \sigma(\bigcup_{i \in I} \sigma(f_i)) = \sigma(\bigcup_{i \in I} f_i^{-1}(\mathfrak{A}_i))$$

die von der Familie $(f_i)_{i \in I}$ erzeugte σ -Algebra.

Def. Sei $(\Omega', \mathfrak{A}', \mu')$ ein Maßraum, (Ω, \mathfrak{A}) ein messbarer Raum, $f:(\Omega',\mathfrak{A})\to(\Omega,\mathfrak{A})$. Dann ist durch

$$\mu_f' \coloneqq \mu' \circ f^{-1} : \mathfrak{A} \to [0, \infty], \quad A \mapsto \mu'(f^{-1}(A))$$

ein Maß auf (Ω, \mathfrak{A}) , das sog. Bildmaß von μ' unter f, definiert.

Satz. Für zwei numerische Funktionen $f, q: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \overline{\mathfrak{B}})$ gilt:

- $\{f < q\} \in \mathfrak{A}$
- $\{f > g\} \in \mathfrak{A}$ $\{f = g\} \in \mathfrak{A}$

- $\{f < q\} \in \mathfrak{A}$
- $\{f > a\} \in \mathfrak{A}$
- $\{f \neq q\} \in \mathfrak{A}$

Satz. Seien $f, g: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \overline{\mathfrak{B}})$ messbare numerische Funktionen und $\lambda, \mu \in \mathbb{R}$. Dann auch messbar (\ddagger : falls $0 \notin \text{Bild}(f)$):

- $\lambda \cdot f$ $f + \mu \cdot g$ $f \cdot g$
- $\frac{1}{f}$ (‡) $\bullet \quad \frac{g}{f} \ (\ddagger)$

Satz. Seien $f_n:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}}), n\in\mathbb{N}$ messbare numerische Funktionen, dann auch messbar:

• $\sup f_n$ • $\inf_{n\in\mathbb{N}} f_n$ • $\lim \inf f_n$ • $\limsup f_n$ $n \in \mathbb{N}$ Dabei werden Infimum, Supremum, usw. punktweise gebildet.

Def. Für $f:\Omega\to\overline{\mathbb{R}^1}$ heißen die Funktionen

- $|f| := \max(f, -f) : \Omega \to [0, \infty]$ Betrag von f
- $f^+ := \max(f,0) : \Omega \to [0,\infty]$ Positivteil von f
- $f^- := -\min(f, 0) : \Omega \to [0, \infty]$ Negativteil von f

Satz. Falls $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}^1},\overline{\mathfrak{B}})$ messbar, dann auch $|f|,f^+$ und

Satz. • Sei (Ω, \mathcal{O}) ein topologischer Raum und $f: \Omega \to \mathbb{R}^n$ stetig. Dann ist $f(\sigma(\mathcal{O}), \mathfrak{B}(\mathbb{R}^n))$ -messbar.

• $\sigma(\mathcal{O})$ ist die kleinste σ -Algebra, bezüglich der alle stetigen Funktionen $f: \Omega \to \mathbb{R}^n$ Borel-messbar sind.

Satz (von Lusin). Sei $M \in \mathfrak{L}(\mathbb{R}^n)$ mit $\lambda_n(M) < \infty$ und $f: M \to \mathbb{R}$ beschränkt. Dann ist f genau dann Borel-messbar, wenn gilt:

 $\forall \epsilon > 0 : \exists K_{\epsilon} \subset M \text{ kompakt } : \lambda_n(M \setminus K_{\epsilon}) < \epsilon \text{ und } f|_{K_{\epsilon}} \text{ stetig.}$

Def. Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt Càdlàg-Funktion (continue à droite, limite à gauche), falls für alle $x \in \mathbb{R}$ gilt:

$$\lim_{y \uparrow x} f(y) \text{ existiert} \quad \text{und} \quad \lim_{y \downarrow x} f(y) = f(x).$$

Beobachtung. Jede kumulierte VF ist eine Càdlàg-Funktion.

Def. Die Variation von $g:[a,b]\to\mathbb{R}$ bzgl. einer Zerlegung $Z = \{a = x_0 < \dots < x_n = b\}$ von [a, b] ist die nicht-negative Zahl

$$V(g, Z) := \sum_{j=1}^{n} |g(x_j) - g(x_{j-1})|.$$

Die **Totalvariation** von $g:[a,b] \to \mathbb{R}$ ist

 $V_a^b(q) := \sup \{V(q, Z) : Z \text{ Zerlegung von } [a, b]\} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$

Falls $V_a^b(q) < \infty$, so heißt q von beschränkter Variation.

Satz. Es sind messbar:

- Càdlàg-Funktionen • Monotone Funktionen
- Funktionen von beschränkter Variation

Def. Eine \mathfrak{A} -messbare numerische Funktion X über einem W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$ heißt **Zufallsgröße** (ZG) oder **Zufallsvariable**.

Bemerkung. Häufig fordert man zusätzlich $\mathbb{P}(X = \pm \infty) = 0$.

Notation. Für eine ZG X und eine Fkt. $a: \mathbb{R}^1 \to \overline{\mathbb{R}^1}$ schreiben wir

$$f(X) := f \circ X : \Omega \to \overline{\mathbb{R}^1}.$$

Def. Das durch die ZG X induzierte Bildmaß

$$P_X: \mathfrak{L}(\mathbb{R}^1) \to [0,1], \quad B \mapsto \mathbb{P}(\{X \in B\}) = \mathbb{P}(X^{-1}(B))$$

heißt Verteilungsgesetz der ZG X und

$$F_X : \mathbb{R} \to \mathbb{R}, \quad x \mapsto P_X(]-\infty, x]) = \mathbb{P}(\{X \le x\})$$

heißt Verteilungsfunktion (VF) der ZG X.

Satz. Sei F eine VF auf \mathbb{R}^1 . Dann existiert ein W-Raum $(\Omega, \mathfrak{A}, \mathbb{P})$ und eine ZG X auf Ω derart, dass $F_X = F$.

Beweis. 1. Möglichkeit: Wähle $\Omega := \mathbb{R}^1$, $\mathfrak{A} := \mathfrak{L}(\mathbb{R}^1)$ und $\mathbb{P} := \mu_F$ als das von von F erzeugte Maß und setze $X := \mathrm{id}$.

2. Möglichkeit: Wähle $\Omega := [0, 1], \mathfrak{A} := \mathcal{L}([0, 1]), \mathbb{P} := \lambda_1$. Setze

$$X(w) \coloneqq F^-(w) \coloneqq \inf\{F \ge w\} \quad \text{für } w > 0, \quad X(0) \coloneqq \lim_{w \downarrow 0} F^-(w)$$

Def. Sei $X_1, ..., X_n$ eine endliche Familie von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$. Diese Familie heißt stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} \mathbb{P}(\{X_i \in B_i\}) \text{ für alle } B_1, ..., B_n \in \mathfrak{L}(\overline{\mathbb{R}^1}).$$

Satz. Seien $X_1, ..., X_n$ unabhängige ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ und $g_1, ..., g_n : \mathbb{R} \to \mathbb{R}$ Borel-messbar. Setze $Y_i := g_i(X_i) := g_i \circ X_i$ für i = 1, ..., n, dann sind auch $Y_1, ..., Y_n$ unabhängige ZGn.

Def. Eine Funktion $f:(\Omega,\mathfrak{A})\to(\mathbb{R},\mathfrak{B})$ heißt **einfache Funktion** oder **Elementarfunktion** auf (Ω,\mathfrak{A}) , wenn gilt:

• f ist messbar • $f(\Omega) \subset [0, \infty[$ • $f(\Omega)$ ist endlich Die Menge aller elementaren Funktionen auf (Ω, \mathfrak{A}) ist $\mathbb{E}(\Omega, \mathfrak{A})$.

Notation. $a \wedge b := \min\{a, b\}$ und $a \vee b := \max\{a, b\}$

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$ und $a \geq 0$. Dann auch in $\mathbb{E}(\Omega, \mathfrak{A})$:

$$ullet$$
 $f+g$ $ullet$ $f \cdot g$ $ullet$ $f \wedge g$ $ullet$ $a \cdot f$

Def. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $\Omega = A_1 \sqcup ... \sqcup A_k$ eine disjunkte Vereinigung von Mengen mit $A_j \in \mathfrak{A}$ für alle j = 1, ..., k, sodass $f(A_j) = \{y_j\}$, dann heißt die Darstellung

$$f = \sum_{j=1}^{k} y_j \cdot \mathbb{1}_{A_j}$$
 kanonische Darstellung.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, $f: \Omega \to \mathbb{R}$ elementar. Dann heißt die (von der Darstellung $f = \sum\limits_{j=1}^k y_j \cdot \mathbbm{1}_{A_j}$ unabh.) Zahl

$$\int_{\Omega} f \, \mathrm{d}\mu \coloneqq \sum_{j=1}^{k} y_j \mu(A_j) \quad \mu\text{-Integral von } f.$$

Satz. Es gilt für $f, g \in \mathbb{E}(\Omega, \mathfrak{A}), a, b > 0$:

$$\bullet \int_{\Omega} \mathbb{1}_A \, \mathrm{d}\mu = \mu(A) \quad \bullet \quad f \le g \implies \int_{\Omega} f \, \mathrm{d}\mu \le \int_{\Omega} g \, \mathrm{d}\mu$$

$$\bullet \int_{\Omega} a \cdot f + b \cdot g \, d\mu = a \cdot \int_{\Omega} f \, d\mu + b \cdot \int_{\Omega} g \, d\mu$$

Satz. Sei $(f_n)_{n\in\mathbb{N}}$ eine isotone (= monotone) Folge elementarer Funktionen über (Ω,\mathfrak{A}) . Dann gilt für jede elementare Funktion f mit $f\leq \sup_{n\in\mathbb{N}} f_n$ die Ungleichung $\int\limits_{\Omega} f\,\mathrm{d}\mu\leq \sup\limits_{n\in\mathbb{N}} \int\limits_{\Omega} f_n\,\mathrm{d}\mu$.

Korollar. Seien $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ isotone Folgen elementarer Funktionen mit $\sup_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} g_n$. Dann ist $\sup_{n\in\mathbb{N}} \int f_n \,\mathrm{d}\mu = \sup_{n\in\mathbb{N}} \int g_n \,\mathrm{d}\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ nichtnegativ. Dann gibt es eine isotone Folge $(f_n)_{n\in\mathbb{N}}$ elementarer Funktionen mit $\sup_{n\in\mathbb{N}}f_n=f$.

Def. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ nichtnegativ und $(f_n)_{n\in\mathbb{N}}$ eine Folge elementarer Funktionen mit $\sup_{n\in\mathbb{N}}f_n=f$. Dann heißt

$$\int_{\Omega} f \, \mathrm{d}\mu \coloneqq \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu \quad \mu\text{-Integral von } f.$$

Def. Eine \mathfrak{A} -messbare, numerische Fkt. $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ heißt μ -integrierbar, falls

$$\int_{\Omega} f^{+} d\mu < \infty \quad \text{und} \quad \int_{\Omega} f^{-} d\mu < \infty.$$

In diesem Fall definieren wir das Lebesgue-Integral von f als

$$\int_{\Omega} f \, \mathrm{d}\mu := \int_{\Omega} f^+ \, \mathrm{d}\mu - \int_{\Omega} f^- \, \mathrm{d}\mu.$$

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathfrak{L}(\mathbb{R}^1))$ messbar. Dann sind äquivalent:

- f ist μ -integrierbar f^+ und f^- sind μ -integrierbar
- |f| ist μ -integrierbar \exists μ -integrierbare Funktion g mit $|f| \leq g$

Satz. Seien $f,g:(\Omega,\mathfrak{A},\mu)\to (\overline{\mathbb{R}^1},\mathfrak{L}(\overline{\mathbb{R}^1}))$ μ -integrierbar und $\alpha,\beta\in\mathbb{R}$. Dann sind auch μ -integrierbar:

- $f \pm g$ $f \lor g$ $f \land g$ $\alpha \cdot f$
- Es gilt: $\bullet \int_{\Omega} (\alpha \cdot f + \beta \cdot g) \, \mathrm{d}\mu = \underset{\Omega}{\alpha} \int_{\Omega} \mathrm{d}\mu + \beta \int_{\Omega} g \, \mathrm{d}\mu$ (Linearität
- $\bullet \ | \smallint_{\Omega} f \, \mathrm{d} \mu | \leq \smallint_{\Omega} |f| \, \mathrm{d} \mu \qquad \bullet \ |f \leq g| \Longrightarrow \int_{\Omega} f \, \mathrm{d} \mu \leq \smallint_{\Omega} g \, \mathrm{d} \mu \quad \text{(Monotonie)}$

Achtung. Das Produkt $(f \cdot q)$ ist i. A. nicht μ -integrierbar!

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathfrak{A}) \to (\mathbb{R}^1, \mathcal{L}(\mathbb{R}^1))$. Für $p \in [1, \infty[$ heißt f p-integrierbar, falls $|f|^p$ μ -integrierbar ist.

$$L^p(\Omega,\mathfrak{A},\mu)\coloneqq\{f:\Omega\to\overline{\mathbb{R}^1}\,|\,f\ \text{p-integrierbar, also}\,\smallint_{\Omega}|f|^p\,\mathrm{d}\mu<\infty\},$$

$$L^{\infty}(\Omega,\mathfrak{A},\mu)\coloneqq\{f:\Omega\to\overline{\mathbb{R}^1}\,|\,\exists\,C>0\,:\,|f|\le C\text{ fast "überall}\}$$

ist dann ein VR, genannt Lebesgue-Raum (L^p -Raum), mit Norm

$$||f||_p := \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}$$

$$||f||_{\infty} := \operatorname{ess\,sup}_{\omega \in \Omega} |f(\omega)| := \inf\{C \in \mathbb{R} \mid |f| \le C \text{ fast-"uberall}\}$$

Wir betrachten in L^p zwei Funktionen als gleich, wenn sie bis auf einer Nullmenge übereinstimmen. Die \triangle -Ungleichung in L^p wird auch **Minkowski-Ungleichung** genannt.

Satz. Der $L^p(\mu)$ ist ein vollständiger normierter Raum, d. h. jede Cauchy-Folge bzgl. der Norm $\|-\|_n$ ist auch konvergent.

Satz. Sei $f \in L^p(\Omega, \mathfrak{A}, \mu)$, $g \in L^q(\Omega, \mathfrak{A}, \mu)$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Dann ist $fg \in L^1(\Omega, \mathfrak{A}, \mu)$ und es gilt

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$
 (Hölder-Ungleichung).

Bemerkung. Für p=2 ist $L^p(\Omega,\mathfrak{A},\mu)$ der Hilbertraum der quadratisch integrierbaren Funktionen mit dem Skalarprodukt

$$\langle f, g \rangle \coloneqq \int_{\Omega} (f \cdot g) \, \mathrm{d}\mu.$$

Mit q=2 folgt aus der Hölder-Ungleichung

$$|\langle f, g \rangle| = ||fg||_1 \le ||f||_2 \cdot ||g||_2$$
 (Cauchy-Schwarz-Ungl.)

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}^1},\mathcal{L}(\overline{\mathbb{R}^1}))$ nichtnegativ. Dann gilt

$$\int_{\Omega} f \, \mathrm{d}\mu = 0 \quad \iff \quad f \stackrel{\mathrm{f.ü.}}{=} 0.$$

Satz (von der monotonen Konvergenz). Sei für alle $n \in \mathbb{N}$ die Funktion $f_n : (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ nicht negativ und \mathfrak{A} -messbar, sodass $(f_n)_{n \in \mathbb{N}}$ eine isotone Folge ist. Dann gilt

$$\smallint_{\Omega} \lim_{n \to \infty} f_n \, \mathrm{d}\mu = \smallint_{\Omega} \sup_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \smallint_{\Omega} f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \smallint_{\Omega} f_n \, \mathrm{d}\mu.$$

Korollar (Beppo Levi). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge nicht negativer, \mathfrak{A} -messbarer, numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$. Dann gilt

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}^1}, \mathcal{L}(\overline{\mathbb{R}^1}))$ nichtnegativ und μ -integrierbar. Dann definiert

$$\nu: \mathfrak{A} \to [0, \infty], \quad A \mapsto \int_A f \, \mathrm{d}\mu = \int_\Omega f \cdot \chi_A \, \mathrm{d}\mu$$

ein zu μ absolut stetiges, endliches Maß auf (Ω, \mathfrak{A}) .

Lemma (Fatou). Sei für $n \in \mathbb{N}$ die Fkt. $f_n : (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ nicht negativ und \mathfrak{A} -messbar. Dann gilt

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Falls $\int\limits_{\Omega}\sup_{n\in\mathbb{N}}f_n\,\mathrm{d}\mu<\infty,$ gilt zusätzlich

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, \mathrm{d}\mu \ge \limsup_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Def. Eine Folge $(f_n)_{n\in\mathbb{N}}$ \mathfrak{A} -messbarer, numerischer Fktn. über $(\Omega, \mathfrak{A}, \mu)$ konvergiert μ -fast-überall gegen $f: \Omega \to \mathfrak{A}$, falls

$$\lim_{n\to\infty} f_n(\omega) = f(\omega) \quad \text{für } \mu\text{-fast-alle } \omega \in \Omega \text{ gilt.}$$

Satz (Riesz). Sei $(f_n)_{n\in\mathbb{N}}$ Folge in $L^p(\Omega,\mathfrak{A},\mu)$, $f_n \xrightarrow{\text{f.ü.}} f$ mit $f \in L^p(\mu)$. Dann gilt

$$f_n \xrightarrow[n \to \infty]{L^p(\mu)} f \iff \int_{\Omega} |f_n|^p d\mu \xrightarrow[n \to \infty]{} \int_{\Omega} |f|^p d\mu.$$

Satz (von der majorisierten Konvergenz). Sei $(f_n)_{n\in\mathbb{N}}$ Folge \mathfrak{A} -messbarer numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$ und $g \in L^1(\mu)$ nicht negativ, sodass $|f_n| < q$ für alle $n \in \mathbb{N}$. Sei desweiteren $f:\Omega\to\overline{\mathbb{R}^1}$ messbar mit $f_n\xrightarrow[n\to\infty]{}f$. Dann ist

$$f \in L^1(\mu)$$
 mit $\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\Omega',\mathfrak{A}')$ und $\mu':=\mu\circ f^{-1}$ das Bildmaß von μ unter f. Sei $q:(\Omega',\mathfrak{A}')\to(\mathbb{R}^1,\mathfrak{B}(\mathbb{R}^1))$ nicht negativ. Dann gilt

$$\int_{\Omega'} g \, \mathrm{d}\mu' = \int_{\Omega} (g \circ f) \, \mathrm{d}\mu.$$

Satz (Transformationssatz). Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi: U \to \widetilde{U}$ ein \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f: \widetilde{U} \to \overline{\mathbb{R}^1}$ genau dann auf \widetilde{U} Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}^1}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\int_{U} (f \circ \phi) \cdot |\det(D\phi)| \, d\lambda_d = \int_{\phi(U)} f \, d\lambda_d = \int_{\widetilde{I}} f \, d\lambda_d.$$

Obige Gleichung ist auch erfüllt, wenn lediglich f > 0 gilt.

Def. Für eine ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\overline{\mathbb{R}^1},\mathfrak{B}(\overline{\mathbb{R}^1}))$ heißt die Zahl

$$\mathbb{E} X := \int_{\Omega} X \, \mathrm{d} \mathbb{P} \qquad \mathbf{Erwartungswert} \ \text{von} \ X.$$

Bemerkung. Für eine konstante ZGe $X: \Omega \to \mathbb{R}$, also $\forall \omega \in \Omega : X(\omega) = x, \text{ gilt } \mathbb{E}X = x.$

Satz. Der Erwartungswert ist linear, d. h. für ZGn X und Y und $\lambda \in \mathbb{R} \text{ gilt } \mathbb{E}(\lambda X + Y) = \lambda \mathbb{E}X + \mathbb{E}Y.$

Satz. $\mathbb{E}X = \int_{\mathbb{D}^1} \operatorname{id} dP_X$, wobei $P_X := \mathbb{P} \circ X^{-1}$.

Korollar. Sei $q: \mathbb{R}^1 \to \mathbb{R}^1$ messbar und P_X -integrierbar. Dann gilt

$$\mathbb{E}g(X) = \int_{\mathbb{R}^1} g \, dP_X = \int_{-\infty}^{\infty} g(x) \, dP_X(x),$$

wobei rechts ein uneigentliches Riemann-Stielties-Integral steht.

Def. Für Zufallsvektoren $X = (X_1, ..., X_k)$ mit Werten in \mathbb{R}^k definieren wir $\mathbb{E}X := (\mathbb{E}X_1, ..., \mathbb{E}X_k)$.

Bemerkung. Sei $X = (X_1, ..., X_k)$ ein Zufallsvektor und $g: \mathbb{R}^k \to \mathbb{R}$ Borel-messbar und P_X -integrierbar. Dann ist

$$\mathbb{E}g(X_1,...,X_k) = \int_{\mathbb{R}^k} g \, \mathrm{d}P_X.$$

Satz. Sei F_X VF einer ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1).$ Dann existiert für Lebesgue-fast-alle $x \in \mathbb{R}^1$ die Ableitung F'(x).

Def. Sei F_X VF einer ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1).$

• F_X heißt **diskret**, falls F_X höchstens abzählbar viele Sprungstellen $x_1, x_2, ... \in \mathbb{R}$ besitzt mit

$$\forall j \in J \subset \mathbb{N} : p_j := F_X(x_j) - \lim_{x \uparrow x_j} F_X(x) > 0, \quad \sum_{j=1}^{\infty} p_j = 1.$$

Dann ist F_X zwischen den Sprüngen konstant.

• F_X heißt stetig (diffus, atomlos), wenn F_X in jedem Punkt stetig ist. Dann gilt $P_X(\{X=x\})=0$ für alle $x\in\mathbb{R}$.

Für stetige Verteilungen ergibt sich eine weitere Unterteilung:

• F_X heißt absolutstetig (totalstetig), wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass für höchstens abzählbar viele, disjunkte Intervalle $I_k = [a_k, b_k]$ mit $k \in J \subset \mathbb{N}$ gilt:

$$\sum_{k \in J} (b_k - a_k) < \delta \implies \sum_{k \in J} (F_X(b_k) - F_X(a_k)) < \epsilon.$$

• F_X heißt singulärstetig (stetig, aber nicht absolutstetig), wenn die Wachstumspunkte von F_X eine Nullmenge bilden, also

$$\lambda_1(\{x \in \mathbb{R}^1 \mid \forall \epsilon > 0 : F(x+\epsilon) - F(x-\epsilon) > 0\}) = 0$$

oder äguivalent dazu die Ableitung fast-überall verschwindet, also

$$\lambda_1(\{x \in \mathbb{R}^1 \mid F_X'(x) = 0\}) = 1.$$

Satz. Jede VF F auf \mathbb{R}^1 besitzt eine eindeutige Zerlegung (Lebesgue-Zerlegung) als konvexe Linearkombination einer diskreten, einer singulär-stetigen und einer absolut-stetigen VF

$$F = \alpha_d F_d + \alpha_s F_s + \alpha_a F_a$$
 mit $\alpha_d, \alpha_s, \alpha_a \ge 0, \alpha_d + \alpha_s + \alpha_a = 1.$

Def. Falls F_X absolut-stetig, dann heißt die nicht negative, Lebesgue-messbare Funktion

$$f = f_X = F_X' : \mathbb{R} \to \mathbb{R}_{\geq 0}, \quad x \mapsto \begin{cases} F_X'(x), & \text{falls Ableitung ex.} \\ 0, & \text{sonst} \end{cases}$$

(Wahrscheinlichkeits-)Dichte (WD) von F_X bzw. von X.

Bemerkung. Dann gilt für alle $y \in \mathbb{R}$:

$$\int_{-\infty}^{y} f_X(x) \, \mathrm{d}x = F_X(y), \quad \text{also insbesondere} \quad \int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$$

Bemerkung. F_X ist als VF genau dann absolut stetig, wenn das Maß P_X bezüglich λ_1 absolut stetig ist (also $P_Y \ll \lambda_1$ gilt).

Satz (Erwartungswerte bekannter Zufallsverteilungen).

• Für $X \sim \text{Poi}(\lambda)$: $\mathbb{E}X = \lambda$ • Für $N \sim N(\mu, \sigma^2)$: $\mathbb{E}X = \mu$

• Für $X \sim \text{Exp}(\lambda)$: $\mathbb{E}X = \frac{1}{\lambda}$ • Für $N \sim N(0, 1)$: $\mathbb{E}|X| = \sqrt{\frac{2}{\pi}}$

Bemerkung. Die Cauchy-Verteilung hat die VF bzw. die W-Dichte

$$F(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}, \qquad f(x) = \frac{1}{\pi(1+x^2)}.$$

Eine Cauchy-verteilte ZG X hat keinen EW, da $\int |x| \cdot f(x) dx = \infty$.

Def. Seien $X_1, ..., X_d : (\Omega, \mathfrak{A}, \mathbb{P}) \to (\mathbb{R}^1, \mathfrak{B}(\mathbb{R}^1))$ ZGn, $F = F_{(X_1,...,X_d)} : \mathbb{R}^d \to [0,1], \quad (x_1,...,x_d) \mapsto \mathbb{P}(X_1 \le x_1,...,X_k \le x_k)$ die dazugehörige VF und $P = P_{(X_1,...,X_d)}$ das von der VF induzierte Maß auf $\mathfrak{B}(\mathbb{R}^d)$.

• F heißt diskret, falls es eine höchstens abzählbare Menge $\{y_i \in \mathbb{R}^d \mid i \in I\} \text{ mit } I \subset \mathbb{N} \text{ gibt, sodass}$

$$\forall i \in I : P(\{y_i\}) > 0 \text{ und } \sum_{i \in I} P(\{y_i\}) = 0.$$

- F heißt stetig, wenn $P(\{y\}) = 0$ für alle $y \in \mathbb{R}^1$.
- F heißt absolut stetig, falls das Maß P absolut stetig bzgl. dem Lebesgue-Maß ist, also $P \ll \lambda_d$ gilt. Dazu äquivalent: Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, sodass für höchstens abzählbar viele, disjunkte Elementarquader $Q_i = [a_i, b_i]$ mit $j \in J \subset \mathbb{N}$ gilt:

$$\sum_{j \in J} \lambda_d(Q_j) \le \delta \implies \sum_{j \in J} P(Q_j) = \sum_{j \ge J} (\Delta F) Q_j \le \epsilon.$$

• F heißt singulär stetig, wenn F stetig ist und eine Lebesgue-Menge S mit $\lambda_d(S) = 0$ und P(S) = 1 existiert.

Bemerkung. Falls F absolut stetig, ex. die W-Dichte, die f. ü. durch

$$f = f_{(X_1,...,X_d)} : \mathbb{R}^d \to \mathbb{R}_{\geq 0}, \quad (x_1,...,x_d) \mapsto \frac{\partial^d}{\partial x_1 \cdots \partial x_d} F(x_1,...,x_d)$$

gegeben ist und $\int f(y) \, \mathrm{d}y = F(x)$ für alle $x \in \mathbb{R}^d$ erfüllt.

Satz. Sei X eine ZG und $g: \mathbb{R}^1 \to \mathbb{R}^1$ messbar. Dann gilt

$$\mathbb{E}g(X) = \begin{cases} \int g(x) \cdot f_X(x) \, \mathrm{d}x, & \text{falls } F_X \text{ absolutstetig mit WD } f_X \\ \sum\limits_{j \in J} g(x_j) \cdot p_j, & \text{falls } F_X \text{ diskret mit Sprüngen } j_k \\ \text{bei } x_j, \ j \in J \subset \mathbb{N} \text{ (und wohldefiniert)} \end{cases}$$

Def. Eine **Zerlegung** eines Intervalls [a, b] ist eine geordnete endliche Menge $Z = \{a = x_0 < x_1 < ... < x_k = b\} \subset [a, b]$. Eine weitere Zerlegung \widetilde{Z} desselben Intervalls heißt Verfeinerung von Z, falls $\widetilde{Z} \supset Z$.

Notation. Die Menge aller Zerlegungen von [a, b] ist $\mathcal{Z}([a, b])$.

Def. Eine Menge von Stützstellen bzgl. einer Zerlegung $\{x_0 < ... < x_k\}$ von [a, b] ist eine Menge $\{\xi_1, ..., \xi_k\}$ mit $\xi_i \in [x_{i-1}, x_i] \text{ für } i \in \{1, ..., k\}.$

Def. Für zwei Funktionen $f, g: [a, b] \to \mathbb{R}$, eine Zerlegung $Z = \{a = x_0 < ... < x_n = b\}$ von [a, b] und Stützstellen $\xi_1, ..., \xi_n$ bzgl. Z heißt die Summe

$$S(f, dg, Z, \xi_1, ..., \xi_n) := \sum_{j=1}^{n} f(\xi_j) (g(x_j) - g(x_{j-1}))$$

Riemann-Stieltjes-Summe von f bzgl. g und der Zerlegung Zmit Stützstellen $\xi_1, ..., \xi_n$.

Def. Seien $f, G : [a, b] \to \mathbb{R}$. Die Funktion f heißt Riemann-Stieltjes-integrierbar (RS-integrierbar) bzgl. der **Gewichtsfunktion** G, wenn gilt: Es gibt ein $\iota \in \mathbb{R}$, sodass für alle $\epsilon > 0$ eine Zerlegung Z_{ϵ} von [a, b] existiert, sodass für alle Verfeinerungen $Z \supset Z_{\epsilon}$ und Wahlen von Stützstellen $\xi_1, ..., \xi_n$ gilt:

$$|\iota - S(f, dG, Z, \xi_1, ..., \xi_n)| \le \epsilon.$$

Dieses (eindeutig bestimmte) ι heißt Riemann-Stieltjes-Integral (RS-Integral) von f bzgl. G, geschrieben

$$\int_{a}^{b} f(x) \, \mathrm{d}G(x) := \iota.$$

Bemerkung. Mit G := id erhalten wir aus dem RS-Integral das gewöhnliche Riemann-Integral.

Satz. Das RS-Integral ist sowohl in der integrierten Funktion als auch der Gewichtsfunktion linear.

Satz. Für f bzgl. G auf [a, b] RS-int'bar und G stetig diff'bar gilt

$$\int_{a}^{b} f(x) dG(x) = \int_{a}^{b} f(x) \cdot G'(x) dx.$$

Satz (Partielle Integration). Sei $f:[a,b]\to\mathbb{R}$ bzgl. $G:[a,b]\to\mathbb{R}$ RS-integrierbar. Dann ist auch G bzgl. f RS-integrierbar und es gilt

$$\int_{a}^{b} f(x) \, dG(x) = [G(x) \cdot f(x)]_{a}^{b} - \int_{a}^{b} G(x) \, df(x).$$

Bemerkung. Wir können uneigentliche RS-Integrale analog zu uneigentlichen Riemann-Integralen definieren.

Satz.
$$\mathbb{E}X = \int_{\mathbb{R}^1} \operatorname{id} dP_X = \int_{-\infty}^{\infty} x \, dF_X(x)$$

Def. Sei X eine ZG über $(\Omega, \mathfrak{A}, \mathbb{P})$ und $k \in \mathbb{N}$. Dann heißt

- $\mathbb{E}X^k$ k-tes Moment.
- $\mathbb{E}|X|^k$ k-tes absolutes Moment,
- $\mathbb{E}(X \mathbb{E}X)^k$ k-tes zentriertes Moment,
- $\mathbb{E}|X \mathbb{E}X|^k$ k-tes zentriertes absolutes Moment,
- $Var(X) := \mathbb{D}^2 X := \mathbb{E}(X \mathbb{E}X)^2$ Varianz (Dispersion, Streuung).
- $\sqrt{\operatorname{Var}(X)}$ Standardabweichung von X.

Lemma. Es gilt $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2 > 0$.

Bemerkung. Falls $\mathbb{E}|X|^k < \infty$, dann existiert auch $\mathbb{E}X^k$.

Lemma. Es gilt für eine ZG X und $a, b, c \in \mathbb{R}^1$:

- $Var(aX + b) = a^2 Var(X)$ • $Var(X) < \mathbb{E}(X-c)^2$
- $Var(X) = 0 \iff \mathbb{E}(X \mathbb{E}X) = 0 \iff X \equiv \text{const } \mathbb{P}\text{-fast-sicher}$

Satz (Verallgemeinerte Tschebyschow-Ungleichung). X sei eine ZG und $q:[0,\infty[\to [0,\infty[$ monoton steigend. Dann gilt für alle $\epsilon>0$:

$$\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}g(|X|)}{g(\epsilon)}$$

Korollar. • Markow-Ungleichung: $\mathbb{P}(|X| \geq \epsilon) \leq \frac{\mathbb{E}X}{\epsilon}$.

- Tschebyschow-Ungleichung: $\mathbb{P}(|X \mathbb{E}X| \ge \epsilon) \le \frac{\text{Var}(X)}{2}$.
- Für alle a > 0 gilt $\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}\exp(a|X|)}{\exp(a\epsilon)}$

$$0 > B = \mathbb{E}\exp(a|X|) \ge \frac{a^n \mathbb{E}|X|^n}{n!}$$

- $\implies \mathbb{E}|X|^n \le \frac{B}{a^n} n! \text{ für alle } n \in \mathbb{N}$ $\implies |\mathbb{E}X^n| \le \frac{B}{a^n} n!$ $\implies \mathbb{E}\exp(zX) \text{ ist analytisch für } |z| < a$

Def. $\mathbb{E} \exp(zX)$ heißt momenterzeugende Funktion der ZG X oder $VF F_{V}$.

$$X=N(\mu,\sigma^2)\implies \mathbb{E}\exp(zX)=\exp\left(z\mu+rac{\sigma^2}{2}z^2
ight)$$
 für $z\in\mathbb{C}$ Höldersche Ungleichung:

 $|\mathbb{E}XY| \le \mathbb{E}|XY| \le (\mathbb{E}|X|^p)^{\frac{1}{p}} \cdot (\mathbb{E}|X|^q)^{\frac{1}{q}} \text{ für } p, q \ge 1$ \implies Cauchy-Schwarz-Bunjakowski-Ungleichung für p=q=2: $|\mathbb{E}XY| \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$

Verallgemeinerung:

veraligementung:
$$\mathbb{E}(X_1^{n_1}\cdots X_k^{n_k}) \leq (\mathbb{E}|X_1|^n)^{\frac{n_1}{n}}\cdots (\mathbb{E}|X_k|^n)^{\frac{n_k}{n}}, \ n=n_1+\ldots+n_k$$
 Jensensche Ungleichung

Sei $q: \mathbb{R}^1 \to \mathbb{R}^1$ konvex auf einem Intervall J, d. h. $g(\alpha x + (1-\alpha)y) \le \alpha g(x) + (1-\alpha)g(y)$ für alle $x, y \in I$ und $\alpha \in [0, 1]$ Per Induktion folgt: $g(\sum_{i=1}^{n} \alpha_i x_i) \leq \sum_{i=1}^{n} \alpha_i g(x_i)$ für $x_1, ..., x_n \in J$, $\alpha_i \geq 0, \alpha_1 + ... + \alpha_n = 1$

Satz. $q(\mathbb{E}X) < \mathbb{E}q(X)$, falls $\mathbb{P}(X \in J) = 1$ und $\mathbb{E}|X| < \infty$

$$g(x) = |x|^{\frac{n}{m}}$$
 für $0 < m \le n$, \Longrightarrow Ljapunow-Ungleichung

Problem (Momentenproblem). Unter welchen Bedingungen ist eine Zahlenfolge $c_0 = 1, c_1, c_2, \dots$ eine Momentenfolge einer ZG X, d. h. $c_n = \mathbb{E}X^n$.

$$0 \le \mathbb{E}(z_0 + z_1 X + \dots + z_n X^n)^2 = \mathbb{E}(\sum_{i,j=1}^n z_i z_j X^{i+j}) = \sum_{i,j=1}^n z_i z_j c_{i+j}$$
genau dann, wenn

$$\det \begin{pmatrix} c_0 & c_1 & \cdots & c_n \\ c_1 & c_2 & \cdots & c_{n+1} \\ \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & \cdots & c_{2n} \end{pmatrix} \ge 0.$$

Problem. Wann ist die zugehörige VF F_X eindeutig festgelegt? $c_n = \int_0^\infty x^n dF_X(x)$ (Stieltjes-MP), $c_n = \int_0^\infty x^n dF_X(x)$ (Hamburger MP)

Hinreichende Bedingung für Bestimmtheit:

Stieltjes-MP:
$$\sum_{n=1}^{\infty} \frac{1}{c_{2n}^{\frac{1}{n}}} = \infty$$

Hamburger MP:
$$\sum_{n=1}^{\infty} \frac{1}{c_{2n}^{\frac{1}{2n}}} = \infty$$

(Carleman-Kriterien)

Def. Sei $X = (X_1, ..., X_k)$ eine k-dimensionale ZV über $(\Omega, \mathfrak{A}, \mathbb{P})$. $X_1,...,X_k$ heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^{k} \{X_i \in B_i\}) = \prod_{i=1}^{k} \mathbb{P}(\{X_i \in B_i\})$$

für alle $B_1, ..., B_k \in \mathcal{L}(\mathbb{R}^1)$. Dies ist genau dann der Fall, wenn

$$\mathbb{P}(X_1 \le x_1, ..., X_k \le x_k) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_k \le X_k)$$

für alle $x_1,...,x_k\in\mathbb{R}$. Falls die W-Dichte $f_X(x_1,...,x_k)=rac{\partial}{\partial x_1\cdots\partial x_k}F(x_1,...,x_k)$ existiert (also F_X absolut stetig), ist dies äquivalent zu

$$f_X(x_1,...,x_k) = f_{X_1}(x_1) \cdots f_{X_k}(x_k).$$

Für diskrete Verteilungen ist dies äquivalent zu

$$\mathbb{P}(X_1 = x_1, ..., X_k = x_k) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_k = x_k)$$

für alle $x_1, ..., x_k \in \mathbb{R}$.

Def. Für eine k-dimensionale ZV $X = (X_1, ..., X_k)$ heißt

$$F_{(X_{i_1},...,X_{i_l})}(x_{i_1},...,x_{i_l}) = \lim_{x_j \to \infty} \lim_{i \in \{1,...,k\} \setminus \{i_1,...,i_l\}} F_{(X_1},...,X_k)(x_1,...,x_k)$$

für $1 \le i_1 < ... < i_l \le k, l = 1, ..., k-1$ l-dimensionale Rand-(Marginal-)verteilungsfunktion.

Falls $f_X(x_1,...,x_k)$ existiert, so existieren sämtliche Randdichten

$$f_{(X_{i_1},...,X_{i_k})}(x_{i_1},...,x_{i_k}) = \int\limits_{\mathbb{R}^{k-l}} f_{(X_1,...,X_k)}(x_1,...,x_k) \, \mathrm{d}(x_1,\widehat{x_{i_1}},...,\widehat{x_{i_k}},...,x_k) \tag{Lebesgue-messbar}, \\ \geq 0, \int\limits_{\mathbb{R}^2} f_{(X,Y)}(x,y) \, \mathrm{d}(x,y) = 1) \tag{Beispiel: 2-dimensionale Normal verteilungs dichters}$$

Analog folgt für eine diskrete ZV die Diskretheit der Randverteilungen k = 2:

$$\begin{split} \mathbb{P}(X_1 = x_m^{(1)}) &= \sum_{x_m^{(2)}} \mathbb{P}(X_1 = x_m^{(1)}, X_2 = x_m^{(2)}) \\ \mathbb{P}(X_2 = x_m^{(2)}) &= \sum_{x_m^{(1)}} \mathbb{P}(X_1 = x_m^{(1)}, X_2 = x_m^{(2)}) \end{split}$$

wobei $x_m = (x_m^{(1)}, ..., x_m^{(k)})$ die Massenschwerpunkte sind.

Wichtig: Im allgemeinen bestimmen die Randverteilungen nicht die gemeinsame Verteilung des Vektors.

Def. (X,Y) sei eine zweidimensionale ZVüber $(\Omega,\mathfrak{A},\mathbb{P})$ mit $\mathbb{E}X^2 < \infty$, $\mathbb{E}Y^2 < \infty$. Dann heißt

$$Cov(X, Y) := \mathbb{E}(XY) - \mathbb{E}X\mathbb{E}Y = \mathbb{E}((X - \mathbb{E}X) \cdot (Y - \mathbb{E}Y))$$

Kovarianz von X und Y und

$$Cor(X, Y) := \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

Korrelation von X und Y.

Satz. • Falls X, Y unabhängig, so gilt Cov(X, Y) = Cor(X, Y) = 0

- |Cor(X,Y)| < 1
- $Cor(X,Y) = 1 \iff \exists a,b \in \mathbb{R}^1 : \mathbb{P}(Y = aX + b) = 1.$

Def. Falls Cor(X, Y) = 0, so heißen X, Y unkorreliert.

Achtung. Aus Unkorreliertheit folgt i. A. nicht Unabhängigkeit!

Beispiel. Sei X eine ZG mit der symmetrischen Dichte $f_X(x) = f_X(-x)$ und $\int_{-\infty}^{\infty} |x|^3 f_X(x) dx < \infty$, dann ist $Cov(X, X^2) = 0$, aber X und X^2 nicht unabhängig.

Bemerkung. • Cor(X,Y) = 1: positive Korrelation

- Cor(X, Y) = -1: negative Korrelation
- Cor(X, Y) = 0: Unkorreliertheit

Wichtig: Falls (X, Y) eine zweidimensionale Normalverteilung besitzt, so folgt aus Cor(X,Y) = 0 die Unabhängigkeit von X und Y.

Satz. $X_1,...,X_n$ seien paarweise unkorrelierte ZGn mit $\mathbb{E}X_i^2<\infty$ für i = 1, ..., n. Dann gilt

$$Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$$

Wir wollen die Kovarianz der ZG X und Y berechnen.

1. Fall: Es existiert eine gemeinsame WD von (X,Y), $f_{(X,Y)}(x,y)$

Beispiel: 2-dimensionale Normalverteilungsdichte

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}\left(\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)\ln \frac{1}{2}}{\sigma_2^2} - \frac{\text{Belief: } \mu_1)(y-\mu_2)}{\sigma_1\sigma_2}\right)\right),$$

wobei $\mu_1 = \mathbb{E}X$, $\mu_2 = \mathbb{E}Y$, $\sigma_1^2 = \text{Var}(X)$, $\sigma_2^2 = \text{Var}(Y)$

$$\mathbb{E}(X \cdot Y) = \int_{\mathbb{R}^2} x \cdot y \cdot f_{(X,Y)}(x,y) \, \mathrm{d}(x,y) = \mu_1 \cdot \mu_2 + \sigma_1 \cdot \sigma_2 \cdot \rho$$

Also: $Cov(X, Y) = \sigma_1 \cdot \sigma_2 \cdot \rho$ und $Cor(X, Y) = \rho \in [-1, 1]$ Randverteilungen:

$$f_X(x) = \int\limits_{-\infty}^{\infty} f_{(X,Y)}(x,y) \,\mathrm{d}y \ f_Y(y) = \int\limits_{-\infty}^{\infty} f_{(X,Y)}(x,y) \,\mathrm{d}x$$

$$\mathbb{E}X = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{(X,Y)}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

2. Fall: (X,Y) mit Werten in einer höchstens abzählbaren Menge an (x_i, y_i) wird mit Wahrscheinlichkeit $p_{ij} > 0$ angenommen, $i, i = 1, 2, \dots$

$$\mathbb{P}((X,Y)=(x_i,y_i))=\mathbb{P}(X=x_1,Y=y_j)$$

$$\mathbb{E}(X \cdot Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot y_j p_{ij}$$

$$\mathbb{E}X = \sum_{i=1} x_i \mathbb{P}(X = x_i) = \sum_{i=1} \sum_{j=1} x_i p_{ij}$$

$$\mathbb{E}Y = \sum_{j=1} y_j \mathbb{P}(Y = y_j) = \sum_{j=1} \sum_{i=1} y_j p_{ij}$$

$$Cov(X, Y) = \mathbb{E}(X \cdot Y) - (\mathbb{E}X) \cdot (\mathbb{E}Y) = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i y_j (p_{ij} - p_i \cdot q_j)$$

mit $p_i \coloneqq \sum_{i=1}^{n} p_{ij}, q_j \coloneqq \sum_{i=1}^{n} p_{ij}$

3. Fall: (X, Y) ist singulär-stetig verteilt oder besitzt eine singulär-stetige Komponente

Beispiel: Zweidimensionale Exponentialverteilung . . .

$$\overline{F}(x,y) = \mathbb{P}(X > x, Y > y) = \exp\left(-(\lambda x + \mu y + \nu \max(x,y))\right)$$

$$F(x,y) = \mathbb{P}(A^c \cap B^c) = \mathbb{P}((A \cup B)^c) = 1 - \mathbb{P}(A \cup B) = 1 - \mathbb{P}(A) - \mathbb{P}(B) + \mathbb{P}(A \cap B) = 1 - \overline{F}(x,0) - \overline{F}(0,y) + \overline{F}(x,y)$$
Ausgelassen: Rechnungen

Für $(X,Y) \in \mathbb{R}^2$ gilt

$$\mathbb{E}(XY) = \int_{0}^{\infty} \int_{0}^{\infty} \underbrace{\mathbb{P}(X > x, Y > y)}_{=\overline{F}(x,y)} dx dy$$

Falls $(X,Y) \in \mathbb{R}^2$, so gilt:

$$\mathbb{E}(X \cdot Y) = \int_{0}^{\infty} \int_{0}^{\infty} (\mathbb{P}(X > x, Y > y) + \mathbb{P}(X \le -x, Y \le -y) - \mathbb{P}(X \ge x, Y \le y) - \mathbb{P}(X \ge x, Y \le -y) - \mathbb{P}(X \ge x, Y \le y) - \mathbb{P}(X \ge x, Y \ge y) - \mathbb{P$$

$$\mathbb{E}(X \cdot Y) = \int_0^\infty \int_0^\infty \exp(-\lambda x - \mu y - \nu \max(x, y)) \, \mathrm{d}x \, \mathrm{d}y = \dots = \frac{1}{\lambda(\mu + \nu)} + \frac{1}{\mu(\lambda + \nu)}$$

$$\mathbb{E}X = \int_{0}^{\infty} x \, dF(x) = \int_{0}^{\infty} \mathbb{P}(X > x) \, dx = \frac{1}{\lambda + \nu}$$

$$Cor(X,Y) = \dots = \frac{\nu}{(\lambda + \nu)(\mu + \nu)(\lambda + \mu + \nu)}$$

Also: $\nu = 0$ genau dann, wenn X und Y unabhängig

 $Y = q(X), q: \mathbb{R}^1 \to \mathbb{R}^1$ Borel-messbar

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Yin] - \infty, y[) = \mathbb{P}(X \in g^{-1}(] - \infty, y])$$

Beispiel: $Y = X^2$, y > 0

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(|X| \le \sqrt{y}) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y}) = \mathbb{P}(X = -\sqrt{y}) + F_X(\sqrt{y}) - F_X(-\sqrt{y}) = F_X(\sqrt{y}) - \lim_{z \uparrow - \sqrt{y}} F_X(z)$$

Satz. X sei absolut stetig mit Dichte f_X und $\mathbb{P}(X \in D) = 1$ für $D \subset \mathbb{R}^1$ offen und $g: D \to \mathbb{R}^1$ eine \mathcal{C}^1 -Funktion mit g'(x) > 0 für alle $x \in D$. Dann ist Y = q(X) absolut-stetig mit der Dichte

$$f_Y(y) = \begin{cases} 0, & \text{für } y \in \mathbb{R}^1 \setminus g(D) \\ \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|} & \text{für } y \in g(D) \end{cases}$$

Beispiel. $Y = e^{N(\mu, \sigma^2)} + c$

Dann heißt Y logarithmisch normalverteilt

$$g(x) = e^{x} \pm c$$

+\mathbb{P}(A\cap B) = 1-\overline{F}(x,0)-\overline{F}(0,y)+\overline{F}(x,y)
Ausgelassen: Rechnungen

Beispiel. $Y = e^{N(\mu, \sigma^2) + c}$, speziell $\mu = 0$, $\sigma^2 = 1$, c = 0, dann

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{(\log y)^2}{2}).$$

Die Funktion

$$f_a(y) \coloneqq f_Y(y) \cdot (1 + a \cdot \sin(2\pi \log y)), y \in \mathbb{R}^1_{>0}, a \in [0, 1]$$
 Für $a \in [0, 1]$ ist dann
$$\int_{-\infty}^{\infty} f_a(y) \, \mathrm{d}y = 1$$

$$\mathbb{E}Y^n = \int_0^\infty y^n f_Y(y) \, \mathrm{d}y = \dots = \exp(-\frac{n^2}{2})$$

und

$$\int_{0}^{\infty} y^{n} f_{a}(y) \, \mathrm{d}y = \exp(-\frac{n^{2}}{2})$$

Sei $X = (X_1, ..., X_k)$ ein k-dimensionaler Zufallsvektor, $q = (q_1, ..., q_k) : \mathbb{R}^k \to \mathbb{R}^k \text{ mit } q_i : \mathbb{R}^k \to \mathbb{R}^1 \text{ für } i = 1, ..., k$ Borel-messbar. Dann ist Y = g(X) ein k-dimensionaler ZV mit $P_Y = P_X \circ g^{-1}$ Falls $f_{(X_1, \dots, X_k)}$ eine W-Dichte von X ist und g ein \mathcal{C}^1 -Diffeomorphismus ist, dann existiert die W-Dichte von $f_{(Y_1,\ldots,Y_k)}$ von Y.

Satz. Seien $G, H \otimes \mathbb{R}^k$ offen und $g = (g_1, ..., g_k) : G \to H$ ein \mathcal{C}^1 -Diffeomorphismus. Dann findet man Funktionen $h_i: H \to \mathbb{R}^1$, $i = 1, ..., k \text{ mit } h(y_1, ..., y_k) = (h_1(y_1, ..., y_k), ..., h_k(y_1, ..., y_k)) \text{ für}$ $(y_1,...,y_k) \in H$, sodass für die Dichte von $Y = (Y_1,...,Y_k)$ gilt:

$$f_{(Y_1,...,Y_k)}(y_1,...,y_k) = \begin{cases} \frac{f_{(X_1,...,X_k)}(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))}{|\det Dg(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))|} \\ 0, \end{cases}$$

$$\det D(h)(y_1,...,y_k) = \frac{1}{\det D(g)(h_1(y_1,...,y_k),...,h_k(y_1,...,y_k))}$$

Beispiel (Box-Muller-Transformation).

$$Y_1 = g_1(X_1, X_2) = \sqrt{-2\log(X_1)}\sin(2\pi X_2)$$
$$Y_2 = g_2(X_1, X_2) = \sqrt{-2\log(X_1)}\cos(2\pi X_2)$$

mit X_1 und X_2 gleichverteilt auf [0,1].

$$\begin{split} f_{(X_1)}(x_1,x_2) &= \mathbbm{1}_{]0,1[} \\ \text{Behauptung: Dann ist } f_{(Y_1,Y_2)} &= \phi(y_1) \cdot \phi(y_2), \text{ wobei} \\ \phi(y) &= \frac{1}{\sqrt{2\pi}} \exp(-\frac{y^2}{2}) \text{ oder } Y_1,Y_2 \sim N(0,1) \text{ und unabhängig.} \end{split}$$

Beispiel.

$$Y_{1} = g_{1}(X_{1}, X_{2}) = \sqrt{X_{1}^{2} + X_{2}^{2}}$$

$$Y_{2} = g_{2}(X_{1}, X_{2}) = \begin{cases} \arctan(\frac{X_{2}}{X_{1}}) & \text{für } X_{2} \geq 0, X_{1} \in \mathbb{R}^{1} \setminus \{0\} \\ \arctan(\frac{X_{2}}{X_{1}}) + \pi, & \text{für } X_{2} < 0, X_{1} \in \mathbb{R}^{1} \setminus \{0\} \end{cases}$$

Wenn $X_1, X_2 \sim N(0, \sigma^2)$, unabhängig \Longrightarrow

$$f_{(X_1, X_2)}(x_1, x_2) = \phi(\frac{x_1}{\sigma})\phi(\frac{x_2}{\sigma})$$

Ergebnis:
$$f_{(Y_1,Y_2)}(y_1,y_2) = \frac{1}{2\pi} \cdot \underbrace{\frac{y_1}{\sigma^2} \exp(-\frac{y_1^2}{\sigma^2})}$$
 fü

 $(y_1, y_2) \in]0, \infty[\times]0, 2\pi]$

$$F_{Y_1}(y) = \dots = 1 - \exp(-\frac{y^2}{2x^2})$$

Satz. (X,Y) besitze eine gemeinsame Dichte $f_{(X,Y)}$ (also $\mathbb{P}(X=0)=\mathbb{P}(Y=0)=0$). Dann gilt für die Dichten von $Z_1 := X + Y, Z_2 := X \cdot Y, Z_3 := \frac{X}{Y}.$

$$f_{Z_1}(z) = \int_{-\infty}^{\infty} f_{(X,Y)}(z - y, y) \, \mathrm{d}y = f_{Z_2}(z)$$

$$f_{Z_2}(z) = \int_{-\infty}^{\infty} f_{(X,Y)}(z/y, y) \cdot \frac{1}{|y|} \, \mathrm{d}y = \dots$$

$$f_{Z_3}(z) = \int_{-\infty}^{\infty} f_{(X,Y)}(x \cdot y, y) \cdot |y| \, \mathrm{d}y = \dots$$

Beispiel. Seien X, Y unabhängig, N(0,1)-verteilt, $Z := \frac{X}{Y}$. Dann:

$$f_Z(z) = \dots = \frac{1}{\pi(1+z^2)}$$

Beispiel. Sei nun $X \sim F_X$ unabhängig von $Y \sim F_Y$. Dann

$$\mathbb{E}g(X,Y) = \int\limits_{\mathbb{R}^2} g(x,y) \, \mathrm{d}P_{(X,Y)} = \dots = \int\limits_{\mathbb{R}^1 \mathbb{R}^1} \int\limits_{\mathbb{R}^1} g(x,y) \, \mathrm{d}P_X(x) \, \mathrm{d}P_Y(y)$$

Mit Verteilungsfunktionen kann man schreiben:

$$\mathbb{E}g(X,Y) = \int\limits_{\mathbb{R}^2} g(x,y) \, \mathrm{d}F_{X,Y}(x,y) = \int\limits_{\mathbb{R}^1 \mathbb{R}^1} g(x,y) \, \mathrm{d}F_X(x) \, \mathrm{d}F_Y(y)$$
 für $(y_1,...,y_k) \in H$
$$\sup\limits_{\mathrm{Sonst}} \mathbb{P}(X+Y \leq z) = ... = \int\limits_{\mathbb{R}^1} F_X(z-y) \, \mathrm{d}F_Y(y) =: (F_X * F_Y)(z)$$

Faltung von F_X und F_Y

Bemerkung. • $F_X * F_Y = F_Y * F_X$

- $\bullet \ F_{X+Y} = F_X * F_Y$
- Falls X oder Y eine Dichte besitzen, so auch X + Y:

$$f_{X+Y}(z) = \int\limits_{-\infty}^{\infty} f_X(z-y) \, \mathrm{d}F_Y(y) = \int\limits_{-\infty}^{\infty} f_Y(z-x) \, \mathrm{d}F_X(x) = \int\limits_{-\infty}^{\infty} f_Y(z-\mathbf{g}) \, \mathrm{d}f_X(x) = \int\limits_{-\infty}^{\infty} f_Y(z-\mathbf{g}) \, \mathrm{d}f_X(x) = \mathcal{L}(\mathbb{R}^1) \otimes \ldots \otimes \mathcal{L}(\mathbb{R}^1)$$

• Verallgemeinerung: $F_{X_1+...+X_n} = F_{X_1} * ... * F_{X_n}$, falls $X_1,...,X_n$ unabhängig.

Gewisse Verteilungen sind "faltungsstabil", d. h. bei der Faltung bleibt der Verteilungstyp erhalten

Beispiel. X_i sei Poisson-verteilt mit Paramter $\lambda_i > 0$, i = 1, 2. Dann ist $X_1 + X_2$ Poisson-verteilt mit Parameter $\lambda_1 + \lambda_2$, falls X_1 und X_2 unabhängig sind.

Beispiel. Sei $X_i \stackrel{\sim}{=} N(\mu_i, \sigma_i^2), i = 1, 2$ unabhängig. Dann: $X_1 + X_2 = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$

 ${\bf Satz.}\,$ Falls X_1 und X_2 unabhängig und X_1+X_2 normalverteilt (also X_1+X_2 = $N(\mu,\sigma^2)$), dann sind X_1 und X_2 normal verteilt. Falls X_1 und X_2 unabhängig und X_1+X_2 Poisson-verteilt (also

 $X_1 + X_2 \stackrel{\circ}{=} Poi(\lambda)$), dann sind X_1 und X_2 Poisson-verteilt.

Wichtige Ergebnisse über Summen unabhängiger ZGn:

• $\frac{1}{n}(X_1 + ... + X_n) \xrightarrow{n \to \infty} \mathbb{E}X_1$ falls $X_1, ..., X_n$ unabhängig, identisch verteilt und $\mathbb{E}|X_1| < \infty$ (GGZ)

• $\sqrt{n}(\frac{1}{n}(X_1 + ... + X_n) - \mathbb{E}X_1) \xrightarrow{n \to \infty} N(0, \operatorname{Var}(X_1)), \text{ falls}$ $Var(X_1) < \infty$

Seien $(\Omega_i, \mathfrak{A}_i)$ für $i \in \{1, ..., n\}$ messbare Räume.

Dann ist $\Omega = \Omega_1 \times ... \times \Omega_n$ das kartesische Produkt der Mengen.

Def.

$$\mathfrak{A} \coloneqq \sigma \left(\pi_1^{-1}(\mathfrak{A}_1) \cup \ldots \cup \pi_n^{-1}(\mathfrak{A}_n) \right),\,$$

wobei $\pi_i: \Omega \to \Omega_i, (\omega_1, ..., \omega_1) \mapsto \omega_i$ die Projektionsabbildungen sind, heißt **Produkt-** σ **-Algebra** von $\mathfrak{A}_1, ..., \mathfrak{A}_n$, notiert $\mathfrak{A} = \mathfrak{A}_1 \otimes ... \otimes \mathfrak{A}_n$.

$$\mathfrak{A} = \sigma\left(\left\{A_1 \times ... \times A_n \mid A_1 \in \mathfrak{A}_1, ..., A_n \in \mathfrak{A}_n\right\}\right)$$
$$\pi_i^{-1}(A_i) = \Omega_1 \times ... \times A_i \times ... \times \Omega_n.$$

Lemma. Sei \mathcal{E}_i mit $\sigma(E_i) = \mathfrak{A}_i$ und es existieren Folgen $(E_i^k)_{k \in \mathbb{N}}$ in \mathcal{E}_i mit $E_i^k \uparrow \Omega_i$. Dann gilt:

$$\bigotimes_{i=1}^{n} = \sigma\left(\left\{E_1 \times ... \times E_n \mid E_1 \in \mathcal{E}_1, ..., E_n \in \mathcal{E}_n\right\}\right)$$

Bemerkung. Auf die Zusatzvoraussetzung der monoton aufsteigenden Mengenfolge können wir nicht verzichten.

$$(z-\mathbf{S}_{\mathbf{A}}\mathbf{d}_{\mathbf{Z}}X\mathcal{L}(\mathbb{R}^n)=\mathcal{L}(\mathbb{R}^1)\otimes...\otimes\mathcal{L}(\mathbb{R}^1)$$

Lemma. $(\widetilde{\Omega}', \widetilde{\mathfrak{A}})$ sei ein messbarer Raum. Dann gilt: $f: \widetilde{\Omega} \to \Omega_1 \times ... \times \Omega_n$ genau dann $(\widetilde{\mathfrak{A}}, \mathfrak{A})$ -messbar, wenn für alle $i \in \{1, ..., n\}$ die Abbildung $f_i := \pi_i \circ f : \widetilde{\Omega} \to \Omega_i \ (\widetilde{\mathfrak{A}}, \mathfrak{A}_i)$ -messbar ist.

Satz. Sei μ_1 auf $(\Omega_1, \mathfrak{A}_1)$ und μ_2 auf $(\Omega_2, \mathfrak{A}_2)$ zwei σ -endliche Maße. Dann existiert genau ein Maß $\mu := \mu_1 \times \mu_2$ auf $\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2$ mit der Eigenschaft

$$\forall A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2 : (\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2).$$

Das Maß μ ist dann auch σ -endlich auf (Ω, \mathfrak{A}) .

Korollar. Das Produkt-W-Maß $\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2$ ist das einzige W-Maß auf $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ mit der Eigenschaft:

- $\mathbb{P}(A_1 \times \Omega_2) = \mathbb{P}_1(A_1)$ und $\mathbb{P}(\Omega_1 \times A_2) = \mathbb{P}_2(A_2)$
- $\mathbb{P}(B_1 \cap B_2) = \mathbb{P}(B_1) \times \mathbb{P}(B_2)$ für $B_1 = A_1 \times \Omega_2$, $B_2 = \Omega_1 \times A_2$

Korollar. Für $k, l \in \mathbb{N}_{>0}$ mit k + l = n gilt $\lambda_n = \lambda_k \times \lambda_l$