Parte 4.4: Query DSL

Visão geral de DSL

- Método poderoso e comum de expressão de transformações
- O DSL consiste em:
 - A classe Column: Representa uma coluna
 - Métodos do DataFrame (e.g. agg, groupBy, select)
 - E alguns métodos declarados (Datasets) escritos em termos da classe Column
 - Funções auxiliares, e.g. spark.implicits._, spark.functions
 - Abaixo, a expressão DSL é: \$"age">25
 folksDF.filter(\$"age">25)
- Pode-se também obter transformações por meio de Expressões SQL
 - Suporta SQL comum
 - Abaixo, a expressão SQL é: "age>25"

```
folksDF.filter("age>25")
```


Introdução a Classe Column

- Column: Principal classe do DSL, representa uma coluna de um DataFrame
 - Geralmente é processada a partir dos dados de um DataFrame
 - pacote: org.apache.spark.sql
- Muitas operações de DataFrame recebem objetos Column como parâmetro
 - e.g. filter():
 - filter(condition: Column): Dataset[T]
 - DataFrame.col() permite acessar as informações de uma coluna específica
 - col(colName: String):Column
 - Column suporta muitos operadores de expressão
 - e.g. < (MaiorQue), > (MenorQue), === (equalidade), =!= (inequalidade), etc. (2)
 - Expressões são passadas para transformações em DataFrame

Exemplo: Usando o DSL

- Acesse uma coluna de um DataFrame usando a função col ()
 - col(colName: String):Column
 - Use operadores de classe Column para criar expressões
 - Abaixo, criamos uma instância de Column especificando "todas as linhas cujo valor da coluna age > 25"

```
folksDF.filter(folksDF.col("age") > 25)
```

O Scala permite outras variações do código com o mesmo resultado

```
folksDF.filter(folksDF("age") > 25)
folksDF.filter($"age" > 25)
folksDF.filter('age > 25)
```


Examinando uma Transformação

```
> folksDF.filter('age>25).groupBy('gender).avg("age").show
+----+
|gender|avg(age)|
+----+
| F| 46.0|
| M| 35.0|
+----+
```

- filter('age>25) obtem as linhas com "age">25
 - 'age é um símbolo para o Scala convertido para um objeto Column por conversões implícitas
 - filter() retorna um DataFrame
- groupBy('gender): Agrupa os valores a partir da coluna "gender"
 - groupBy() é usado para agregação
 - groupBy(cols: Column*): RelationalGroupedDataset
 - RelationalGroupedDataset define métodos de agregação
- avg("age"): Obtem a média do campo "age" para os grupos
 - Definido no RelationalGroupedDataset com assinatura
 - avg(colNames: String*): DataFrame

Trabalhando com o Query DSL

- Vamos nos aprofundas em vários exemplos para ter uma idéia de como as DSLs funcionam e quais são as suas habilidades
- Vamos ver tanto transformações tipadas quanto as não tipadas
 - O comum entre elas é o uso de DSL (e.g. Column instances)

Exemplo: Dataset.orderBy()

- Transformação tipada duas versões
 - orderBy(sortExprs: Column*): Dataset[T]
 - orderBy(sortCol: String, sortCols: String*): Dataset[T]
 - Ambas são sinônimos de sort()

```
// Ordenar por "age" em ordem decrescente
> folksDF.orderBy("age").show // O mesmo que folksDF.sort("age")
+---+---+
| age|gender|name|
+---+---+
| 20| M|Mike|
| 35| M|John|

// Ordenar por "age" em ordem decrescente
// 'age é um símbolo do Scala – convertido para Column via conversões
// implícitas
// desc é um método da classe Column
> folksDF.orderBy('age.desc).show // Resultados em ordem decrescente
```


Exemplo: RelationalGroupedDataset.agg()

- groupBy retorna um objeto RelationalGroupedDataset
 - Após agrupar, use os métodos do objeto RelationalGroupedDataset
 - Abaixo, exemplo de utilização do método agg()
- agg(exprs: Map[String, String]): DataFrame
 - Especifique um mapa contendo nome da coluna e o método de agregação
 - Métodos de agregação disponíveis: avg, max, min, sum, count

Exemplo: Dataset.agg()

- agg(expr: Column, exprs: Column*): DataFrame
 - Agregar em todo o DataFrame
 - Abaixo, as funções min, max, e avg fazem parte do objeto org.apache.spark.sql.functions
 - As funções estão disponíveis para todas as operações de DataFrame

Exemplo: Operadores de Column

```
// && - "and" (age entre 25, 50)
> folksDF.filter('age>25 && 'age<50).show
> folksDF.filter('age === 35) // Age é igual a 35 - Equalidade é expressada
                             // com 3 sinais de igual
> folksDF.filter('age.equalTo(35)) // Equalidade usando o equalTo
> folksDF.filter('age =!= 35) // Age não é igual a 35 - Inequalidade é
                             // expressada com =!=
> folksDF.agg(avg('age).alias("avgAge")).show // Definindo outro nome para a
                                              // coluna
+----+
|avgAge|
+----+
 36.75
+----+
> folksDF.filter('name.startsWith("J")) // Filtro: Nomes que começam com J
> folksDF.filter('name.like("%e")) // Filtro: Nomes que terminam com E
```


Exemplo: Select

- Abaixo, usamos os seletores do objeto Column para criar uma visualização
 - O resultado é um DataFrame com duas colunas (gender, age)

Exemplo: Literals

- Literals suportam operações em colunas usando operadores simples
- lit() transforma um valor literal em uma instancia do objeto Column
 - Isso pode também ser usado de forma simples com DSL

```
> folksDF.select('age*lit(2), 'name, 'gender).show
+-----+
|(age * 2)|name|gender|
+-----+
| 70|John| M|
| 80|Jane| F|
| 40|Mike| M|
| 104| Sue| F|
```


Dados mais Complexos

 Suponha que os seus dados de pessoas (people.json) tenham dentro do JSON um elemento com um valor "aninhado" — e.g.

```
{"name": "John", "gender": "M", "age": 35,
   "address":{"street":"123 Aspen St.", "city":"Buffalo",
"state":"NY","zip":"14205"} }
```

• Acesse elementos aninhados usando o operador . (ponto), exemplo:

UDF: User Defined Function

- UDFs definem novas funções baseadas no objeto Column
- Para definir e catalogar uma UDF:
 - Defina uma função regular
 - Use o método udf() para catalogar (org.apache.spark.sql.functions)
 - Utilize a função como DSL

Exemplo de uma UDF mais complexa

- Abaixo, criamos uma UDF que recebe dois parâmetros
 - Desempenha quase a mesma função do exemplo anterior.

```
// Definindo uma função regular para validar os campos "age" e "gender"
> val youngMale : (Int, String) => Boolean = (age, gender) =>
                                   (age<45 \&\& gender=="M")
youngMale: (Int, String) => Boolean = <function2>
// Catalogando a função como uma UDF
> import org.apache.spark.sql.functions.udf
> val youngMaleUDF = udf(youngMale)
youngMaleUDF: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function2>,BooleanType,Some(List(IntegerType,
StringType)))
// Use it
> folksDF.filter(youngMaleUDF('age, 'gender)).show
+---+
|age|gender|name|
+---+
 35| M|John|
 201 MlMikel
+---+
```


Introdução ao objeto Row

- Row: Objeto que representa uma linha de um DataFrame
 - Lembre-se, DataFrame == DataSet[Row]
 - Geralmente n\u00e3o lidamos com objetos Row diretamente
 - pacote: org.apache.spark.sql
- Acessando valores do objeto Row
 - apply(i: Int): Any Acesso genérico ordinal
 - getXXX(i: Int): XXX Acesso de tipos primitivos
 - getInt(i: Int): Int, getString(i: Int): String, etc.

```
> folksDF.map(r => (r.getLong(0), r.getString(1), r.getString(2))).show
+---+---+
| _1| _2| _3|
+---+---+
| 35| M|John|
> folksDF.rdd.map(r => (r(0), r(1), r(2))).collect
res14: Array[(Any, Any, Any)] = Array((35,M,John), ,,,)
```


Extraindo dados de Row para dentro de uma Classe

- É relativamente simples extrair dados para dentro de um classe
 - Geralmente é usado uma classe case

```
scala> case class Person (age: Long, gender: String, name: String)
defined class Person

scala> folksDF.map( r => Person(r.getLong(0), r.getString(1),
r.getString(2))).show
+---+----+
| age|gender|name|
+---+----+
| 35| M|John|
| 40| F|Jane|

// Uma alternativa é usar o pattern match - obtem-se o mesmo resultado.
> folksDF.map{
    case Row (age:Long, gender:String, name:String) => Person(age, gender, name)
}.show
```


Por quê usar o DSL

- Interface fluida, simples para utilizar e entender
 - E geralmente se desempenha melhor
- Observe o exemplo abaixo
 - Uma representação do mesmo exemplo usando RDD ficara assim:

```
folksRDD.filter(p=>p.age>25)
    .map(p=>(p.gender, p.age)).collect
```

Qual é mais simples de entender?

```
folksDF.filter('age>25).select('gender, 'age).show
+----+
|gender|age|
+----+
| M| 35|
| F| 40|
| F| 52|
+----+
```


Usando SQL

- createOrReplaceTempView(): Registra um nome de tabela
 - i.e. Portanto, isso fica catalogado no SQL Parser
 - Atrelada ao o SparkSession, é destruída quando a sessão é finalizada
- SparkSession.sql(): Executa uma consulta SQL usando o Spark
 - Suporta o SQL 2003
 - sql(sqlText: String): DataFrame

```
folksDF.createOrReplaceTempView("people") // Configurando a tabela

// Obter a média por grupos da coluna "gender"
spark.sql("SELECT gender, avg(age) FROM people GROUP BY gender").show
+----+
| gender|avg(age)|
+----+
| F| 46.0|
| M| 27.5|
+----+
```


SQL vs Consultas DSL em DataFrame

- Desempenham a mesma execução
 - Depois de analisados, são processados pela mesma interface
 - O Catalyst Analisa e otimiza a consulta de ambas as formas
 - A performance é a mesma
- Escolha o melhor para você
 - Se prefere SQL, então essa deve ser a sua escolha
 - Se prefere códigos, então consultas DSL devem te atender melhor

MINI-LAB — Reveja a Documentação

- Acesse a documentação do Spark em:
 - http://spark.apache.org/docs/latest/
 - Busque por org.apache.spark.sqlas
- Rejeva a classe Dataset, e faça o seguinte:
 - Reveja os métodos que usamos e como a classe Column é usada
 - Observe que existem várias versões de muitos métodos (para flexibilidade)
- Reveja brevemente a classe Column
 - Visite a sessão de operadores
- Reveja brevemente a classe RelationalGroupedDataset
 - Visite a sessão de operadores
- Reveja brevemente o pacote org.apache.spark.sql.functions

Lab 4.3: Transformações em DataFrames

Parte 4.4: Datasets

Criando um Datasets[T]

- Geralmente criados a partir de DataFrames usando a função as [T]
 as [U] (implicit arg0: Encoder [U]): Dataset [U]
 - Pelo fato do SparkSession geralmente carregar os dados em DataFrames

```
// Assumindo que folksDF foi criado anteriormente

case class Person (name: String, gender: String, age: Long)

val folksDS=folksDF.as[Person]
folksDS: org.apache.spark.sql.Dataset[Person] = [age: bigint, gender: string
... 1 more field]

folksDS.show
+---+----+
| age|gender|name|
+---+----+
| 35| M|John|
| 40| F|Jane|
```


A API Dataset : Transformações tipadas

- Possue muitas transformações
 - A maioria utiliza lambdas parecido com as transformações em RDDs
- filter(func: (T) ⇒
 Boolean): Dataset[T]:
 - Filtro baseado em uma função
- flatMap[U](func: (T) ⇒
 TraversableOnce[U]):
 Dataset[U]
 - Parecido com a versão para RDDs

- groupByKey[K](func:(T)
 ⇒ K):
 KeyValueGroupedDataset[K, T]
 - Agrupar por uma chave (do tipo K) retornada por uma função
- select[U1](c1: TypedColumn[T, U1]): Dataset[U1]
 - Retorna um novo Dataset composto pelas colunas indicadas

Transformações com Datasets

Algumas transformações retornam valores do mesmo tipo

```
    e.g. filter() que possue algumas variações, como por exemplo:
filter(func: (T) ⇒ Boolean): Dataset[T]
filter(conditionExpr: String): Dataset[T]
filter(condition: Column): Dataset[T]
```

```
// Assumindo que folksDS foi criado anteriormente
// As funções de filtro geram o mesmo resultado
// Elas expressam a mesma condição de formas diferentes

folksDS.filter(p => p.age>25) // lambda
folksDS.filter("age > 25").show // SQL
folksDS.filter($"age" > 25) // DSL
folksDS.filter('age > 25) // DSL (com um símbolo do Scala)
```


Exemplo: Transformações com mudança de tipo

- Algumas transformações retornam tipos diferentes do inicial
 - Abaixo, usamos o método groupByKey() para agrupar valores pela coluna "gender"

```
groupByKey[K](func: (T) ⇒ K)(implicit arg0: Encoder[K]):
KeyValueGroupedDataset[K, T]
```

Os dados são agrupados a partir da função (que converte T para K)

```
// Assumindo que folksDS foi criado anteriormente
> val folksDSGrouped = folksDS.groupByKey(p => p.gender)
folksDSGrouped: org.apache.spark.sql.KeyValueGroupedDataset[String,Person] =
...
> folksDS.groupByKey(T => T.gender).count.show // Usando o agrupamento
+----+
| value|count(1)|
+----+
| F| 2|
| M| 2|
+----+
```


Exemplo: Média dos valores da coluna "Age"

- Abaixo, calculamos a média do campo "age" dos grupos de "gender"
 - Usando o método KeyValueGroupedDataset.agg, que representa:

```
agg[U1](col1: TypedColumn[V, U1]): Dataset[(K, U1)]
```

- Observe o argumento TypedColumn
 - A forte tipificação do método
- Criamos o objeto TypedColumn via Column.as [Double]

```
as[U](...): TypedColumn[Any, U]
```

```
folksDS.groupByKey(T => T.gender).agg(avg('age).as[Double])
res5: org.apache.spark.sql.Dataset[(String, Double)] = [value: string,
avg(age): double]

folksDS.groupByKey(T => T.gender).agg(avg('age).as[Double]).show
+----+
|value|avg(age)|
+----+
|F| 46.0|
|M| 27.5|
+----+
```


Exemplo: Select

- O primeiro exemplo abaixo seleciona colunas (com um tipo explicito)
 - Observe o uso do método as [] em cada seletor de coluna
 - Isso as converte em um objeto do tipo TypedColumn
 - Isso faz com que a versão tipada do objeto seja chamada
 - O resultado é um Dataset de pares (String, Long)
- O segundo exemplo abaixo, usa seletores comuns do objeto Column
 - Isso faz com que um Select de colunas sem tipos seja chamado
 - O resultado é um DataFrame

```
folksDS.select('gender.as[String], 'age.as[Long])
res6: org.apache.spark.sql.Dataset[(String, Long)] = [gender: string, age:
bigint]

folksDS.select('gender,'age)
res130: org.apache.spark.sql.DataFrame = [gender: string, age: bigint]
```


De Datasets para DataFrames

- É simples migrar um Dataset para um DataFrame
 - Apenas utilize o método toDF(), ou use qualquer método não tipado
 - Métodos não tipados retornam DataFrames

```
// groupBy('gender) é uma operação não tipada (DataFrame)
// Realizando esta operação, os dados passam a fazer parte de um DataFrame

val results = folksDS.filter('age > 25).groupBy('gender).avg("age")
results: org.apache.spark.sql.DataFrame = [gender: string, avg(age): double]

results.show
+----+
| gender|avg(age)|
+-----+
| F| 46.0|
| M| 35.0|
+-----+
```


Confuso?

- Sim, a API é complexa e pode parecer confuso
 - Diferentes formas de fazer uma transformação
 - DSL, SQL, lambdas
 - DataFrames e Datasets
 - Com um limite bastante fluido entre eles
 - Qual devemos usar?
- Para nos ajudar com isso, vamos compara-los nos seguintes tópicos
 - Erros: Quando erros acontecen
 - Simplicidade de uso: Quão simples é usar a API
 - Maturidade e Estabilidade: Quão completa e estável é a API
 - **Performance**: Escolhas que afetam a performance

Erros

- As APIs capturam erros em momentos diferentes
 - A tabela abaixo mostra a diferença
 - Erro de sintaxe: e.g. erro ortográfico: "SLECT" ou df. filler()
 - Erro de análise: e.g. propriedade desconhecida, e.g
 - SQL: "GROUP BY gnder"
 - DataFrame: df.groupBy("gnder")
 - Dataset: ds.groupByKey(p=>p.gndr)
- Datasets capturam mais erros em tempo de compilação
 - Isso é bom

Tipo de Erro	SQL	DataFrame	Dataset
Erro de sintaxe	Tempo de execução	Tempo de compilação	Tempo de compilação
Erro de análise	Tempo de execução	Tempo de execução	Tempo de compilação

Simplicidade de uso

- Abaixo, mostramos três formas de transformação
 - A forma usando Dataset é a mais complexa
 - Pode ser ainda mais difícil de compreender em transformações mais complexas
- A segurança de tipo do Dataset leva mais complexidade para o código

```
// DataFrame
folksDF.filter('age>25).groupBy('gender).avg("age")

// Dataset
folksDS.groupByKey(T => T.gender).agg(avg('age).as[Double])

// SQL
spark.sql("SELECT gender, avg(age) FROM people GROUP BY gender").show
```


Maturidade e Estabilidade

- DataFrames e SQL estão em versões bem antigas
 - 1.0/1.3
- Datasets foram introduzidos na versão 1.6, e refinados na versão 2.0
 - Muitos dos modelos tipados de API (Dataset) estão marcados como experimentais
- Isso significa que Datasets vão continuar a evoluir
 - Se você o utiliza, então vai ter que evoluir seu código também
 - Também é provável que você encontre métodos que não atendam às suas necessidades

Performance

- DataFrames e SQL basicamente performam igual
 - São otimizados e transformados para passarem pelo mesmo processo de execução
- Datasets são baseados em lambdas (para lidarem bem com a API tipada)
 - O uso de lambdas pode afetar a performance
 - O otimizador Catalyst não pode inferi-las
 - Podem trazer um impacto negativo de performance

Resumo

- Você possue muitas opções
- Consultas com operadores DSL, API tipada do Dataset, e consultas SQL são melhores que RDDs
 - A não ser que você precise fazer algo que é suportado apenas por RDDs
- Consultas com operadores DSL e SQL são equivalentes
 - Use o que te agrada mais
- A API tipada do Dataset permite ter segurança de tipo em tempo de compilação
 - Captura boa parte dos erros em tempo de compilação
 - Mas existem outros atalhos

Lab 4.4: A API Tipada do Dataset

Parte 4.5: Métodos flatMap, explode, split

Divisão de dados — flatMap()

- Divisão das linhas recebidas é uma função muito útil
- Existem muitas formas de dividir os dados, com resultados parecidos
 - Vamos ver algumas técnicas comuns.
- flatMap() é uma escolha popular
 flatMap[U](func: (T) ⇒ TraversableOnce[U]): Dataset[U]
 - func cria uma coleção de cada elemento
 - As coleções são combinadas em um resultado
 - Parte da API Tipada do Dataset

Exemplo do uso do flatMap() em um DataFrame

- Abaixo, vamos dividir as linhas usando o flatMap
 - flatMap recebe uma função lambda
 - Cada elemento representa uma instância do objeto Row
 - Nós acessamos via Row.getString()

```
> val linesDF = sc.parallelize(Seq("Twinkle twinkle little star", "How I
wonder what you are", "Twinkle twinkle little star")).toDF("line")

// Dividindo as linhas usando a expressão regular que representa espaços
// Cada linha cria uma coleção de palavras, que são combinadas
> val flatMappedWords =
    linesDF.flatMap(_.getString(0).toLowerCase().split("\\s+"))

// O uso do flatMap abaixo utiliza um atalho para essa mesma lambda
// flatMap(line => line.getString(0).toLowerCase().split("\\s+"))
```


Exemplo do uso de explode/split em DataFrame

- Abaixo, nós dividimos as linhas utilizando DSL
 - split() divide os dados em colunas baseando-se em uma expressão regular
 split(str: Column, pattern: String): Column
 - explode() cria uma instância de Row para cada elemento em um Array/Map
 explode(e: Column): Column

```
// Dividir linhas pelo método split() usando a mesma expressão regular
// split retorna instâncias do objeto Row contendo um array<string>
// explode retorna instâncias do objeto Row contendo strings
> val splitWordsDF = linesDF.select(explode (split('line, "\\s+")).as("word")
).select(lower('word).as("word"))
```


Exemplo do uso do método flatMap() em Dataset/RDD

- Em Datasets é parecido com DataFrame
 - O Dataset possue Strings simples, não instâncias do objeto Row
- Em RDD é parecido com Dataset (mas o processamento vai ser em um nível mais baixo)
 - explode/split n\u00e3o est\u00e3o dispon\u00eaveis para RDD ou Dataset

```
// Dataset: Use nosso DataFrame para fazer isso
> val linesDS = linesDF.as[String]
linesDS: org.apache.spark.sql.Dataset[String] = [line: string]

// Divida a linha usando o flatMap - os elementos são do tipo String agora
> val splitWordsDS = linesDS.flatMap(_.toLowerCase().split("\\s"))

// RDD: Crie a partir do método parallelize
> val linesRDD = sc.parallelize(Seq("Twinkle twinkle ...", "...", "..."))
res12: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[602] at flatMap at <console>:27

// Divida a usando o flatMap - os elementos são do tipo String agora
> val splitWordsRDD = linesRDD.flatMap(_.toLowerCase().split("\\s"))
```


- Tem muitas formas de uma simples divisão de dados ser feita
 - DataFrames vs. Datasets vs. RDDs
 - flatMap() vs. explode/split
 - A API é grande, com muitas opções
- Geralmente, escolha entre Dataset ou DataFrame em vez de RDD
 - Simplistas, e tem um desempenho melhor
- Iremos explorar os benefícios do Catalyst e do Tungsten em breve

Lab 4.5: Divisão de dados

Questões de revisão

- O que é Spark SQL, e por que temos que usá-los?
- Como você lê dados utilizando o SparkSession? Quais tipos de dados podem ser lidos?
- O que é DataFrame? E Dataset?
- O que é a consulta DSL em DataFrame?

- Spark SQL é um componente para processamento de dados estruturados
 - Ele adiciona um schema ao dado que estamos trabalhando
 - Ele prove uma API simples com processamento mais eficiente se usarmos o Catalyst e o Tungsten
- Use SparkSession, DataFrameReader, e DataFrameWriter para ler e armazenar dados
 - Muitos tipos de dados comuns são suportados, entre eles:
 - JSON, CSV, database, parquet, text
- O DataFrame adiciona informação de schema nos dados
 - Em alguns casos (e.g. JSON) o Spark pode inferir o schema
- O Dataset adiciona segurança de tipo em tempo de compilação

- Você pode consultar dados de um DataFrames usando:
 - DSL
 - SQL
 - Transformações tipadas

Parte 5: "Shuffling" de Transformações e Performance

Agrupando e Reduzindo

"Shuffling"

O otimizador Catalyst

O otimizador Tungsten

Parte 4.1: Agrupando e Reduzindo ("Grouping and Reducing")

Visão geral de agrupamento

- O agrupamento organiza os dados em grupos
 - Baseando-se no valor escolhido de cada coluna
 - Geralmente usado para agregação (e.g. count, max, sum, etc.)
 - Em exemplos anteriores, fizemos o agrupamento pela coluna "gender"
 - Um grupo para 'M', outro para 'F'
- O agrupamento envolve o embaralhamento ("shuffling") dos dados
 - Representa a distribuição dos dados entre as partições
 - Implicações importantes de performance mais detalhes em breve
- Os métodos de agrupamento de Dataset/DataFrame são simples
 - Os obetos [KeyValue/Relational]GroupedDataset lidam com a agregação
- O método groupByKey do RDD é mais complexo
 - Baixo nível, você lida com o peso da agregação

Métodos de agrupamento

Métodos para DataFrame:

```
groupBy(cols: Column*): RelationalGroupedDataset
```

- Agrupamento usando uma coluna específica
- groupBy(col1: String, cols: String*):
 RelationalGroupedDataset
 - Agrupamento usando mais de uma coluna específica
- Métodos para Dataset:

```
groupByKey[K](func:(T) ⇒ K):KeyValueGroupedDataset[K, T]
```

- Agrupar por uma chave (do tipo K) retornada pela função
- Métodos para RDD (em org.apache.spark.rdd.PairRDDFunctions) groupByKey(): RDD[(K, Iterable[V])]
 - Trabalha com pares (chave, valor)
 - Retorna outro RDD

Contagem de palavras usando DataFrame

- Simples apenas agrupar e contar
 - Os métodos de agregação são simples de usar
 - Instâncias do objeto RelationalGroupedDataset
 - Este exemplo usa o DSL

```
// Use splitWordsDF visto em casos anteriores
// Agrupe por "word", e então faça a contagem
> val countDF = splitWordsDF.groupBy('word).count

> countDF.show
+----+
| word|count|
+----+
| you| 1|
| how| 1|
```


Contagem de palavras usando Dataset

- Simples também groupByKey e faça a contagem
 - Também é simples utilizar os métodos de agregação
 - Instâncias do objeto KeyValueGroupedDataset
 - Este exemplo utiliza lambda

```
// Use splitWordsDF visto em casos anteriores
// Agrupe por "word", e então faça a contagem
> val countDS = splitWordsDS.groupByKey(s => s).count

countDS.show
+----+
| value|count(1)|
+----+
| you| 1|
| how| 1|
```


Agrupamento em RDD

- São necessários pares de RDD para realizar o agrupamento
 - RDD contendo pares de chave/valor (chave, valor)
 - e.g. (M, 35) ou (twinkle, 1)
 - Muitos outrso métodos necessitam de pares de RDD
 - PairRDDFunctions define funções extras para pares de RDDs
- Nossos pares de RDD possuem a estrutura:
 - chave: Campo "age", valor: Contagem (1 nesse caso)
 - A agregação é codificada por nós
- O agrupamento para RDD é mais difícil de compreender que para DataFrame/Dataset
 - O agrupamente retorna uma chave (o grupo) em par com um objeto do tipo Iterable (os elementos do grupo) — codificação complexa e de baixo nível

```
groupByKey(): RDD[(K, Iterable[V])]
```


Contagem de palavras usando agrupamento em RDD

- Nós criamos pares de RDDs (obrigatório para agrupar)
 - Nossos pares tem o formato (twinkle, 1)
- O agrupamento é ineficiente para este exemplo
 - Existem outros métodos melhores (e.g. reduceByKey)
 - Mas isso serve de um exemplo de agrupamento

```
// Use splitWordsDF visto em casos anteriores

splitWordsRDD.map(x => (x, 1)) // Cria pares (word, 1)
    .groupByKey() // Agrupa por chave
    .map( x => (x._1, x._2.size)) // 0 resultado do valor representa a contagem
    .collect

res15: Array[(String, Int)] = Array((how,1), (i,1), (star,2), (wonder,1),
    (are,1), (twinkle,4), (what,1), (little,2), (you,1))
```


Contagem de palavras em RDD com reduceByKey

- Pode ser feito de forma mais eficiciente usando o reduceByKey()
 reduceByKey(func: (V, V) ⇒ V): RDD[(K, V)]
 - Mescla os valores para a chave que é especificada, utiliza uma função de redução associativa e comutativa
 - Mescla de forma local em cada mapeador antes de enviar os resultados para um redutor

```
// Use splitWordsDF visto em casos anteriores

splitWordsRDD.map(x => (x, 1)) // Criando os pares de (word, 1)
    .reduceByKey(_+_) // Reduz pela adição (contagem)
    .collect

res18: Array[(String, Int)] = Array((how,1), (i,1), (star,2), (wonder,1),
    (are,1), (twinkle,4), (what,1), (little,2), (you,1))
```

