

planetmath.org

Math for the people, by the people.

proof of complete partial orders do not add small subsets

 ${\bf Canonical\ name} \quad {\bf ProofOfCompletePartialOrdersDoNotAddSmallSubsets}$

Date of creation 2013-03-22 12:53:35 Last modified on 2013-03-22 12:53:35

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)

Entry type Proof Classification msc 03E40 Take any $x \in \mathfrak{M}[G]$, $x \subseteq \kappa$. Let \hat{x} be a name for x. There is some $p \in G$ such that

 $p \Vdash \hat{x}$ is a subset of κ bounded by $\lambda < \kappa$

Outline:

For any $q \leq p$, we construct by induction a series of elements q_{α} stronger than p. Each q_{α} will determine whether or not $\alpha \in \hat{x}$. Since we know the subset is bounded below κ , we can use the fact that P is κ complete to find a single element stronger than q which fixes the exact value of \hat{x} . Since the series is definable in \mathfrak{M} , so is \hat{x} , so we can conclude that above any element $q \leq p$ is an element which forces $\hat{x} \in \mathfrak{M}$. Then p also forces $\hat{x} \in \mathfrak{M}$, completing the proof.

Details:

Since forcing can be described within \mathfrak{M} , $S = \{q \in P \mid q \Vdash \hat{x} \in V\}$ is a set in \mathfrak{M} . Then, given any $q \leq p$, we can define $q_0 = q$ and for any q_{α} ($\alpha < \lambda$), $q_{\alpha+1}$ is an element of P stronger than q_{α} such that either $q_{\alpha+1} \Vdash \alpha + 1 \in \hat{x}$ or $q_{\alpha+1} \Vdash \alpha + 1 \notin \hat{x}$. For limit α , let q'_{α} be any upper bound of q_{β} for $\alpha < \beta$ (this exists since P is κ -complete and $\alpha < \kappa$), and let q_{α} be stronger than q'_{α} and satisfy either $q_{\alpha+1} \Vdash \alpha \in \hat{x}$ or $q_{\alpha+1} \Vdash \alpha \notin \hat{x}$. Finally let q^* be the upper bound of q_{α} for $\alpha < \lambda$. $q^* \in P$ since P is κ -complete.

Note that these elements all exist since for any $p \in P$ and any (first-order) sentence ϕ there is some q < p such that q forces either ϕ or $\neg \phi$.

 q^* not only forces that \hat{x} is a bounded subset of κ , but for every ordinal it forces whether or not that ordinal is contained in \hat{x} . But the set $\{\alpha < \lambda \mid q^* \Vdash \alpha \in \hat{x}\}$ is defineable in \mathfrak{M} , and is of course equal to $\hat{x}[G^*]$ in any generic G^* containing q^* . So $q^* \Vdash \hat{x} \in \mathfrak{M}$.

Since this holds for any element stronger than p, it follows that $p \Vdash \hat{x} \in \mathfrak{M}$, and therefore $\hat{x}[G] \in \mathfrak{M}$.