SÉRIES ENTIÈRES, SÉRIES DE FOURIER

1. Séries entières

Exercice 1.1 Soit $P \in \mathbb{C}[X]$ un polynôme. Déterminer le rayon de convergence et calculer la somme de la série entière $\sum_{n=0}^{+\infty} P(n)z^n$.

Exercice 1.2 Soit (a_n) une suite périodique de période $T \in \mathbb{N}^*$. Étudier le rayon de conver-

gence de la série $\sum_{n=0}^{\infty} a_n z^n$. Simplifier $\sum_{n=0}^{\infty} a_k z^n$ et en déduire que pour $x \in]-1,1[$, la somme $\sum_{n=0}^{\infty} a_k z^n$ est une fraction rationnelle en x.

Exercice 1.3 On note $\overline{\Delta}$ le disque unité fermé. Soit f une fonction continue sur B développable en série entière sur le disque ouvert Δ . Montrer qu'il existe une suite de polynômes dans $\mathbb{C}[X]$ qui converge uniformément vers f sur $\overline{\Delta}$. (on pourra considérer pour r bien choisi, $g: z \mapsto f(rz)$.

Quelles sont les séries entières de rayon de convergence infini dont la somme est limite uniforme sur Δ d'une suite de polynômes?

Exercice 1.4 Soient $\sum a_n$ et $\sum b_n$ deux séries convergentes de somme A et B respectivement. On note, pour tout entier n, $c_n = \sum a_k b_{n-k}$ et on suppose que la série $\sum c_n$ converge et a pour somme C. Montrer que $C = A \times B$

Exercice 1.5 Donner le développement en série entière au voisinage de 0 de $\ln(x^2 - 5x + 6)$. Même question pour $x \mapsto \int_0^{+\infty} e^{-t^2} \sin(tx) dt$.

Exercice 1.6 Développer en série entière la fonction

$$f(x) = e^{-2x^2} \int_0^x e^{2t^2} dt.$$

Exercice 1.7 Montrer que pour tout $x \in [0, \pi/2[$ on a $\tan^{(n)}(x) \ge 0$.

Montrer que la série de Taylor de tan en 0 converge sur $]-\pi/2,\pi/2[$. Montrer que la somme de cette série est tan.

Montrer enfin que le rayon de convergence est égal à $\pi/2$.

Exercice 1.8 Soit $A \in \mathbf{M}_n(\mathbb{C})$. Montrer que la série $\sum kA^k$ converge si et seulement si toutes les valeurs propres de A sont de module strictement inférieur à 1.

La somme $S = \sum kA^k$ est-elle inversible?

Exercice 1.9 Soit $\sum_{0}^{+\infty} a_n x^n$ une série entière de rayon de convergence R > 0. On note f(x) sa somme sur]-R,R[.

Déterminer le rayon de convergence de la série entière $\sum \frac{a_n}{n!}x^n$. on note g(x) la somme de cette série sur son intervalle ouvert de convergence.

Montrer que pour tout $x \in]-R,R[$ on a

$$f(x) = \int_0^{+\infty} e^{-t} g(tx) dt.$$

On suppose que la suite (a_n) a une limite L quand n tend vers l'infini. Donner un équivalent de g(x) au voisinage de plus l'infini.

2. Séries de Fourier

Exercice 2.10 Existe-t-il une fonction continue 2π -périodique dont la série de Fourier soit

$$\sum_{1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}?$$

Exercice 2.11 Soit f une fonction continue sur $[0, 2\pi]$ telle que pour tout entier n,

$$\int_0^{2\pi} t^n f(t)dt = 0.$$

On se propose de démontrer, sans utiliser le théorème de Weierstrass, que f est identiquement nulle.

- (1) Démontrer que les coefficients de Fourier complexes de la fonction \tilde{f} de période 2π égale à f sur $]0,2\pi]$ sont tous nuls.
- (2) Conclure en utilisant le théorème de Parseval.

Exercice 2.12

Formule sommatoire de Poisson

Soit $f: \mathbb{R} \to \mathbb{C}$ de classe \mathcal{C}^1 . On suppose qu'il existe a > 1 tel que $f(x) = O(1/|x|^a)$ et $f'(x) = O(1/|x|^a)$ lorsque $|x| \to \infty$, et on pose $F(x) = \sum_{n \in \mathbb{Z}} f(x + 2n\pi)$.

Montrer que F est bien définie, \mathcal{C}^1 et 2π -périodique. En déduire la formule sommatoire de Poisson :

$$\sum_{n\in\mathbb{Z}} f(2n\pi) = \frac{1}{\sqrt{2\pi}} \sum_{n\in\mathbb{Z}} \hat{f}(n).$$

Exercice 2.13 Montrer qu'il existe une unique suite (B_n) de polynômes telle que :

- (1) $B_0 = 1$
- (2) Pour tout entier non nul n, $B'_n = nB_{n-1}$.
- (3) Pour tout entier n non nul, $\int_0^1 B_n(t)dt = 0$.

Montrer que pour tout entier n, B_n est un polynôme unitaire de degré n.

Démontrer les propriétés suivantes :

- (1) Pour tout entier n > 1 on a $B_n(1) = B_n(0)$.
- (2) Pour tout entier $n, B_n(X) = (-1)^n B_n(1 X)$.
- (3) Pour tout entier p non nul, $B_{2p+1}(0) = B_{2p+1}(1) = 0$.

On note f_p la fonction 2π périodique définie par

$$f_p(x) = B_p\left(\frac{x}{2\pi}\right)$$

pour $x \in [0, 2\pi[$.

- (1) Montrer que pour tout entier p > 1 la fonction f_p est continue.
- (2) Montrer que f_p a la parité de p.
- (3) Calculer les coefficients de Fourier complexes de f_1 puis, ceux de f_p pour p > 1.
- (4) Pour tout entier n on note $b_n = B_n(0)$. Exprimer $\zeta(2p) = \sum_{n \ge 1} \frac{1}{n^{2p}}$ en fonction de b_{2p} .
- (5) Démontrer que pour tout entier p on a

$$b_{2p} = \sum_{0}^{2p} \left(\begin{array}{c} 2p \\ k \end{array} \right) b_k$$

et en déduire que $\zeta(2p)$ est transcendant.

Exercice 2.14 Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique continue, f_n sa n-ème somme de Fourier et $g_n = \frac{f_0 + \dots + f_n}{n+1}$.

(1) Exprimer g_n à l'aide d'un produit de convolution, $g_n = f * k_n$. où

$$k_n(x) = \frac{1 - \cos((n+1)x)}{(n+1)(1 - \cos x)}.$$

(2) En déduire que la moyenne des sommes partielles de la série de Fourier de f converge uniformément vers f pour toute f continue.

Exercice 2.15 Montrer que l'équation : $y^{(4)} + y'' + y = |\sin x|$ admet une et une seule solution π -périodique.

Exercice 2.16 [Équiré partition modulo 1.] Soit $f:\mathbb{R}\to\mathbb{R}$ de classe \mathcal{C}^1 1-périodique, $\alpha\in$ $\mathbb{R} \setminus \mathbb{Q} \text{ et } x \in \mathbb{R}.$

Montrer que $\frac{f(x) + f(x + \alpha) + \dots + f(x + n\alpha)}{n+1}$ tend vers $\int_0^1 f(t) dt$ quand n tend vers l'in-

Montrer que le résultat est encore vrai en supposant seulement f continue. En déduire la nature de la série $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n}$.