electroussafi.ueuo.com 1/4

Diode

Exercice 1

Calculer le courant I, pour les schémas suivants :

Exercice 2

Soient les schémas suivants :

$$V_D = 0.7V \quad R_1 = R_2 = 1k\Omega$$

- **1.** E = 5V, calculer la tension aux bornes de R_2 (U_{R2})
- 2. On remplace le générateur de tension continue E par un générateur de tension alternative : $e(t) = 5V\sin(2\pi t / T)$ avec T = 20ms

Déterminer la tension aux bornes de R2 (U_{R2}).

<u>electroussafi.ueuo.com</u> 2/4

Exercice 3

Pour le montage suivant :

$$e(t) = 5V \, sin \, (2\pi t \, / \, T) \hspace{0.5cm} avec \hspace{0.2cm} T = 20ms \hspace{0.2cm} R_1 = R_2 = 1k\Omega \hspace{0.2cm} V_{D1} = V_{D2} = 0.6V$$

Déterminer la tension aux bornes de R_2 (U_{R2}).

Exercice 4

Pour le montage suivant :

$$R_1=2k\Omega \quad \ R_2=1k\Omega \quad \ R_3=2k\Omega$$

Calculer le courant I et la tension U_{R3} aux bornes de R_3 , dans les cas suivants :

$$E = +5V$$
 et $E = 1,5V$ $(V_D = 0,6V)$

electroussafi.ueuo.com 3/4

Exercice 5

Soit le montage suivant

- 1. Calculer Us lorsque la diode est bloquée
- 2. Quelle est la tension minimale d'entrée (U_{emin}) pour que la diode conduise ?
- **3.** si Ue = 10V, Vcc = 5V et $V_D = 0.6V$,
 - **a.** calculer U_{R3} (utiliser le théorème de superposition)
 - **b.** calculer Us

Exercice 6

$$E_1 = 30V$$
 $E_2 = 10V$ $E_3 = 15V$ $E = 10V$ $R = 20\Omega$

a) Montrer qu'une seule des trois diodes est passante et préciser laquelle ?

electroussafi.ueuo.com 4/4

b) Déterminer l'intensité dans la résistance R ainsi que les tensions U_{D1} , U_{D2} et U_{D3} aux bornes des diodes.

V1 et V2 sont des tensions égales à 0V ou 5V.

- 1) Déterminer l'état des diodes et calculer les valeurs des tensions V_{D1} , V_{D2} , Vs dans chacun des cas suivants :
 - **a)** $V_1 = 0V$ et $V_2 = 0V$
 - **b)** $V_1 = 5V$ et $V_2 = 0V$
 - **c)** $V_1 = 0V$ et $V_2 = 5V$
 - **d)** $V_1 = 5V$ et $V_2 = 5V$
- 2) En supposant que l'on attribue le niveau logique 0 à des tensions comprises entre 0V et 0,8V et le niveau logique 1 à des tensions comprises entre 3V et 5V, donner la table de vérité de ce montage.
- 3) Quelle est la fonction logique réalisée ?