Asymptotics Drill HW

1. Ordering Run Times

- 1) n^2
 - a) Doubling: $(2n)^2/n^2 = 4$: algorithm increases by a factor of 4
 - b) Adding 1: $(n+1)^2/n^2 = (n^2 + 2n + 1)/n^2 = 1$ (as n gets arbitrarily big and n^2 in the denominator grows, the terms 2n and 1 in numerator become negligible): algorithm basically remains the same
- 2) n^{3}
 - a) Doubling: $(2n)^3/n^3 = 8$: algorithm increases by a factor of 8
 - b) Adding 1: $(n+1)^3/n^3 = (n^3 + 3n^2 + 3n + 1)/n^3 = 1$ (as n gets arbitrarily big, the terms $3n^2$, 3n, and 1 in numerator become negligible): algorithm basically remains the same
- 3) $100n^2$
 - a) Doubling: $100(2n^2)/100n^2 = 4$: algorithm increases by a factor of 4
 - b) Adding 1: $100(n+1)^2/100n^2 = (100n^2 + 200n + 200)/100n^2 = 1$ (as n gets arbitrarily big, the terms 200n and 200 in numerator become negligible) : algorithm basically remains the same
- 4) nlogn
 - a) Doubling: $2n(\log 2n)/n\log n = 2$ (as n becomes arbitrarily big, $\log 2n/\log n$ approaches 1): algorithm increases by a factor of 2
 - b) Adding 1: $(n + 1)(\log(n+1))/n\log n = 1$ (as n becomes arbitrarily big, the equation approaches 1)
- 5) 2^{n}
 - a) Doubling: $2^{2n}/2^n = 2^n$: algorithm increases by a factor of 2^n
 - b) Adding 1: $2^{n+1}/2^n = 2$: algorithm increases by a factor of 2

2. Really Understanding Order of Growth

 10^{10} operations per second * 60 seconds * 60 minutes = 3.6 * 10^{13} operations per hour

Solve for n value which will produce less than $3.6 * 10^{13}$ steps:

Eitan Kaszovitz

- 1) $n^2 = 3.6 * 10^{13}$: n < 6000000
- 2) $n^3 = 3.6 * 10^{13} : n < 33019.27249$
- 3) $100n^2 = 3.6 * 10^{13} : n < 600000$
- 4) $nlogn = 3.6 * 10^{13} : n < 2.8893 * 10^{12}$
- 5) $2^n = 3.6 * 10^{13}$: $n = log(3.6 * 10^{13})$: n < 13.5563
- 6) $2^{2n} = 3.6 * 10^{13} : n < 6.77815$