REVISION QUESTIONS(1)

2D VECTORS

- Equation of straight line:
 - **I.** Point Slope form : $\hat{r} = r_1 + \lambda \hat{p}$ where $r_1 = position \ vector \ in \ line$ $\hat{p} = a \ free \ vector \ parallel \ to \ the \ line$
 - II. Two point form: $\hat{r} = r_1 + \lambda(r_2 r_1)$; where r_2 is another position vector on line
 - III. Normal (perpendicular) form : $\hat{r} \cdot n = \hat{r} \cdot r_1$: where n is the normal FREE vector to the line
- Three types of equations:

Parametric form, Cartesian Form, Normal Form

QUESTIONS

1. Given A = (2,3); B = (5,5); C = (-2,-1): Find equation of \overrightarrow{CE} in vector form given \overrightarrow{CE} is perpendicular to \overrightarrow{AB}

$$[ANS = \hat{r} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \end{pmatrix}]$$

2. If L_1 { (x,y): 3x + 4y = 12} and point A = (-2,4). Find the shortest distance from A to L_1 .

$$[ANS = \frac{2}{5}]$$

3. If
$$L_1$$
: $y = 2x - 4$ and L_1 : $y - 2x = 5$ then find the minimum distance between these two lines:

$$[ANS = \frac{9}{\sqrt{5}}]$$

a) Find the vector and cartesian equation of the circle with centre C:(1,2) and which passes through (4,6).

$$[ANS = \left| \hat{r} - \binom{1}{2} \right| = 5]$$

b) Find the vector equation of the line that is tangential to the circle at (4,6):

$$[ANS = \hat{r} = \binom{26}{3} + \lambda \binom{3}{-2}]$$

5. Find the cartesian equation of
$$\hat{r} = 2\cos(\theta) i + 3\sin(\theta) j$$

$$[ANS = 9x^2 + 4y^2 = 36]$$

6. At what position does line
$$L_1 = {2 \choose -1} + \mu {4 \choose 3}$$
 meet line $L_2 = r \cdot {-4 \choose 5} = -10$:
$$[ANS = (-10, -10) \ and \ NOT {-10 \choose -10} : when \ \mu = -3]$$