In-EVM Mina State Verification Circuit Description

Cherniaeva Alisa

a.cherniaeva@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

Shirobokov Ilia

i.shirobokov@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

November 16, 2021

1 Introduction

WIP

High level description according to RfP¹

- 1. Computing several hash values from the data of the proof. This involves using the Poseidon hash function with 55 full rounds both over \mathbb{F}_p and \mathbb{F}_q with round constants and MDS matrix specified for \mathbb{F}_p^2 and for \mathbb{F}_q^3 .
- 2. Checking arithmetic equations.
- 3. Performing one multi-scalar multiplication (MSM) of size $2n_2 + 4 + (2 + 25) = 63$, for which some of the bases are fixed and some are variable.
- 4. For each $i \in \{1, 2\}$, performing a multi-scalar multiplication over \mathbb{G}_i of size 2^{n_i} with a fixed array of bases, and with scalars that can be very efficiently computed from the proof.

Note that for MSM in Step 4:

$$\begin{split} \sum_{i=0}^{2^{n_k}-1} s_i \cdot G_i &= H \\ s_i &\coloneqq \prod_{\substack{0 \leq j \leq n_k \\ \mathrm{bits}(i)[j]=1}} \phi(c_j), \end{split}$$

where:

- $\phi: \{0,1\}^{128} \to \mathbb{F}$ is defined as to_field in the implementation⁴.
- Given an integer $i < 2^{n_k}$, bits(i) is defined as the little-endian bit array of length n representing the binary expansion of i.
- $G_0, ..., G_{2^{n_k-1}} \in \mathbb{G}_k$ is a fixed sequence of group elements⁵.
- $c_0, ..., c_{n_k-1} \in \{0,1\}^{128}$ is a sequence of challenges.

We use the same 15-wires PLONK circuits that are designed for Mina.⁶

2 Preliminaries

WIP

¹https://hackmd.io/u_2Ygx8XS5Ss1aObgOFjkA

²https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fp.rs

³https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fq.rs

 $^{^4 \}text{https://github.com/ol-labs/proof-systems/blob/49f81edc9c86e5907d26ea791fa083640ad0ef3e/oracle/src/sponge.rs\#L33}$

⁵https://github.com/o1-labs/proof-systems/blob/master/dlog/commitment/src/srs.rs#L70

 $^{^6\}mathrm{https://o1-labs.github.io/mina-book/specs/15_wires/15_wires.html}$

2.1Pasta Curves

Let $n_1 = 17$, $n_2 = 16$. Pasta curves parameters:

- $p = 2^{254} + 45560315531419706090280762371685220353$
- $q = 2^{254} + 45560315531506369815346746415080538113$
- Pallas:

$$\mathbb{G}_1 = \{(x, y) \in \mathbb{F}_p | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_1| = q$

• Vesta:

$$\mathbb{G}_2 = \{(x, y) \in \mathbb{F}_q | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_2| = p$

Verification Algorithm 2.2

Notations:

$N_{\mathtt{wires}}$	Number of wires ('advice columns')
$N_{\mathtt{perm}}$	Number of wires that are included in the permutation argument
$N_{\mathtt{prev}}$	Number of previous challenges
$S_{\sigma_i}(\mathbf{X})$	Permutation polynomials for $0 \le i < N_{\tt perm}$
pub(X)	Public input polynomial
$w_i(X)$	Witness polynomials for $0 \le i < N_{\tt wires}$
$\eta_i(X)$	Previous challenges polynomials for $0 \le i < N_{\tt prev}$
ω	<i>n</i> -th root of unity

Proof π constains (here \mathbb{F}_r is a scalar field of \mathbb{G}):

- Commitments:
 - Witness polynomials: $w_{0,\text{comm}},...,w_{N_{\text{wires}},\text{comm}} \in \mathbb{G}$
 - Permutation polynomial: $z_{\texttt{comm}} \in \mathbb{G}$
 - Quotinent polynomial: $t_{\texttt{comm}} = (t_{1,\texttt{comm}}, t_{2,\texttt{comm}}, ..., t_{N_{\texttt{perm}},\texttt{comm}}) \in (\mathbb{G}^{N_{\texttt{perm}}} \times \mathbb{G})$
- Evaluations:
 - $w_0(\zeta), ..., w_{N_{\text{wires}}}(\zeta) \in \mathbb{F}_r$
 - $w_0(\zeta\omega),...,w_{N_{\mathrm{wires}}}(\zeta\omega)\in\mathbb{F}_r$
 - $z(\zeta), z(\zeta\omega) \in \mathbb{F}_r$
 - $S_{\sigma_0}(\zeta), ..., S_{\sigma_{N_{\text{perm}}}}(\zeta) \in \mathbb{F}_r$
 - $S_{\sigma_0}(\zeta\omega), ..., S_{\sigma_{N_{\text{perm}}}}(\zeta\omega) \in \mathbb{F}_r$
 - $\bar{L}(\zeta\omega) \in \mathbb{F}_r$
- Opening proof o_{π} :
 - $(L_i, R_i) \in \mathbb{G} \times \mathbb{G}$ for $0 \le i < lr_rounds$
 - $\delta, \hat{G} \in \mathbb{G}$
 - $z_1, z_2 \in \mathbb{F}_r$
- previous challenges:
 - $\{\eta_i(\xi_i)\}_i, \eta_{i,\text{comm}}, \text{ for } 0 \leq i < \text{prev}$

 $\sum_{s_i \in \mathbf{s}, G_i \in \mathbf{G}} [s_i] G_i \text{ by MSM}(\mathbf{s}, \mathbf{G}) \text{ for } l_{\mathbf{s}} = l_{\mathbf{G}} \text{ where } l_{\mathbf{s}} = |\mathbf{s}|, \ l_{\mathbf{G}} = |\mathbf{G}|.$ Denote multi-scalar multiplication If $l_{\mathbf{s}} < l_{\mathbf{G}}$, then we use only first $l_{\mathbf{s}}$ elements of \mathbf{G}

Remark: For simplicity, we do not use distinct proofs index i for each element in the algorithm below. For instance, we write pub_{comm} instead of $pub_{i,comm}$.

Algorithm 1 Verification

```
Input: \pi_0, \ldots, \pi_{\text{batch\_size}} (see 2.2)
 Output: acc or rej
             1. for each \pi_i:
                              1.1 pub_{comm} = MSM(\mathbf{L}, pub) \in \mathbb{G}, where \mathbf{L} is Lagrange bases vector
                              1.2 random_oracle(p_{\text{comm}}, \pi_i):
                                          1.2.1 H_{\mathbb{F}_q}.absorb(pub_{\mathtt{comm}}||w_{0,\mathtt{comm}}||...||w_{N_{\mathtt{wires}},\mathtt{comm}})
                                          1.2.2 \ \beta, \gamma = H_{\mathbb{F}_q}.\mathtt{squeeze}()
                                         1.2.3 H_{\mathbb{F}_a}.absorb(z_{\text{comm}})
                                          1.2.4 \alpha = \phi(H_{\mathbb{F}_q}.\mathtt{squeeze}())
                                          1.2.5~H_{\mathbb{F}_q}.\mathtt{absorb}(t_{1,\mathtt{comm}}||...||t_{N_{\mathtt{perm}},\mathtt{comm}}||...||\infty||)
                                         1.2.6 \zeta = \phi(H_{\mathbb{F}_q}.\mathtt{squeeze}())
                                         1.2.7 Transfrorm H_{\mathbb{F}_q} to H_{\mathbb{F}_r}
                                         1.2.8~H_{\mathbb{F}_r}.\mathtt{absorb}(pub(\zeta)||w_0(\zeta)||...||w_{N_{\mathrm{wires}}}(\zeta)||S_0(\zeta)||...||S_{N_{\mathrm{perm}}}(\zeta))
                                         1.2.9 \ H_{\mathbb{F}_r}.\mathtt{absorb}(pub(\zeta\omega)||w_0(\zeta\omega)||...||w_{N_{\mathrm{wires}}}(\zeta\omega)||S_0(\zeta\omega)||...||S_{N_{\mathrm{perm}}}(\zeta\omega))
                                    1.2.10~H_{\mathbb{F}_r}.absorb(\bar{L}(\zeta\omega))
                                    1.2.11 v = \phi(H_{\mathbb{F}_r}.\mathtt{squeeze}())
                                    1.2.12 u = \phi(H_{\mathbb{F}_r}.\mathtt{squeeze}())
                                    1.2.13 Compute evaluation of \eta_i(\zeta), \eta_i(\zeta\omega) for 0 \le i < N_{\text{prev}}
                                    1.2.14 Compute evaluation of L(\zeta)
                              1.3 \ \mathbf{f}_{\mathrm{base}} \coloneqq \{S_{\sigma_{N_{\mathtt{perm}}-1},\mathtt{comm}}, \mathtt{gate}_{\mathrm{mult},\mathtt{comm}}, w_{0,\mathtt{comm}}, w_{1,\mathtt{comm}}, w_{2,\mathtt{comm}}, q_{\mathtt{const},\mathtt{comm}}, \mathtt{gate}_{\mathrm{psdn},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},\mathtt{comm}}, \mathtt{gate}_{\mathrm{psdn},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},\mathtt
                                                \texttt{gate}_{\texttt{ec\_add},\texttt{comm}}, \texttt{gate}_{\texttt{ec\_dbl},\texttt{comm}}, \texttt{gate}_{\texttt{ec\_endo},\texttt{comm}}, \texttt{gate}_{\texttt{ec\_vbase},\texttt{comm}} \}
                              1.4 s_{\text{perm}} := (w_0(\zeta) + \gamma + \beta \cdot S_{\sigma_0}(\zeta)) \cdot \dots \cdot (w_5(\zeta) + \gamma + \beta \cdot S_{\sigma_{N_{\text{near}}}}(\zeta))
                              1.5 \ \mathbf{f}_{\text{scalars}} \coloneqq \{ -z(\zeta\omega) \cdot \beta \cdot \alpha_0 \cdot zkp(\zeta) \cdot s_{\text{perm}}, w_0(\zeta) \cdot w_1(\zeta), w_0(\zeta), w_1(\zeta), 1 \}
                                                s_{\text{psdn}}, s_{\text{rc}}, s_{\text{ec\_add}}, s_{\text{ec\_dbl}}, s_{\text{ec\_endo}}, s_{\text{ec\_vbase}}
                              1.6 f_{\text{comm}} = \text{MSM}(\mathbf{f}_{\text{base}}, \mathbf{f}_{\text{scalars}})
                              1.7 \bar{L}_{\text{comm}} = f_{\text{comm}} - t_{\text{comm}} \cdot (\zeta^n - 1)
                              1.8 PE is a set of elements of the form (f_{\texttt{comm}}, f(\zeta), f(\zeta\omega)) for the following polynomials:
                                                \eta_0, \ldots, \eta_{N_{\text{prev}}}, pub, w_0, \ldots, w_{N_{\text{wires}}}, z, S_{\sigma_0}, \ldots, S_{\sigma_{N_{\text{perm}}}}, L
                              1.9 \mathcal{P}_i = \{H_{\mathbb{F}_q}, \zeta, v, u, \mathbf{PE}, o_{\pi_i}\}
             2. final_check(\mathcal{P}_0, \dots, \mathcal{P}_{\mathtt{batch\_size}})
```

Algorithm 2 Final Check

Input: $\pi_0, \dots, \pi_{\mathtt{batch_size}}$, where $\pi_i = \{H_{i,\mathbb{F}_q}, \zeta_i, \zeta_i\omega, v_i, u_i, \mathbf{PE}_i, o_{\pi_i}\}$

Output: acc or rej

- 1. $\rho_1 \to \mathbb{F}_r$
- 2. $\rho_2 \to \mathbb{F}_r$
- 3. $r_0 = r'_0 = 1$
- 4. for $0 \le i < \mathtt{batch_size}$:
 - 4.1 $cip_i = \texttt{combined_inner_product}(\zeta_i, \zeta_i\omega, v_i, u_i, \mathbf{PE}_i)$
 - $4.2~H_{i,\mathbb{F}_a}$.absorb (cip_i-2^{255})
 - 4.3 $U_i = (H_{i,\mathbb{F}_q}.\mathtt{squeeze}()).\mathtt{to_group}()$
 - 4.4 Calculate opening challenges $\xi_{i,j}$ from o_{π_i}
 - 4.5 $h_i(X) := \prod_{k=0}^{\log(d+1)-1} (1 + \xi_{\log(d+1)-k} X^{2^k})$, where $d = \text{lr_rounds}$
 - $4.6 \ b_i = h_i(\zeta) + u_i \cdot h_i(\zeta\omega)$
 - 4.7 $C_i = \sum_j v_i^j (\sum_k r_i^k f_{j,\text{comm}})$, where $f_{j,\text{comm}}$ from \mathbf{PE}_i .
 - 4.8 $Q_i = \sum (\xi_{i,j} \cdot L_{i,j} + \xi_{i,j}^{-1} \cdot R_j) + cip_i \cdot U_i + C_i$
 - $4.9 \ c_i = \phi(H_{i,\mathbb{F}_q}.\mathtt{squeeze}())$
 - 4.10 $r_i = r_{i-1} \cdot \rho_1$
 - 4.11 $r'_i = r'_{i-1} \cdot \rho_2$
 - 4.12 Check $\hat{G}_i = \langle s, G \rangle$, where s is set of h(X) coefficients.

Remark: This check can be done inside the MSM below using r'_i .

5.
$$res = \sum_{i} r^{i} (c_{i}Q_{i} + delta_{i} - (z_{i,1}(\hat{G}_{i} + b_{i}U_{i}) + z_{i,2}H))$$

6. return res ==0

Algorithm 3 Combined Inner Product

Input: $\xi, r, f_0(\zeta_1), \dots, f_k(\zeta_1), f_0(\zeta_2), \dots, f_k(\zeta_2)$

Output: s

1.
$$s = \sum_{i=0}^{k} \xi^{i} \cdot (f_{i}(\zeta_{1}) + r \cdot f_{i}(\zeta_{2}))$$

3 Elliptic Curve Arithmetic

WIP

3.1 Addition

Constraints:

- $(x_2-x_1)\cdot(y_3+y_1)-(y_1-y_2)\cdot(x_1-x_3)$
- $(x_1 + x_2 + x_3) \cdot (x_1 x_3) \cdot (x_1 x_3) (y_3 + y_1) \cdot (y_3 + y_1)$
- $\bullet \ (x_2 x_1) \cdot r = 1$

3.2 Doubling and Tripling

```
Row
       0
                       3
                                           7
                                                       9
                                                             10
                                                                         12
                                                                               13
                            4
                                 5
                                      6
                                                8
                                                                  11
                                                                                     14
       x_1
                 x_2
                       y_2
                            x_3
                                 y_3
                                      r_1
                                           r_2
```

Constraints:

- Doubling:
 - $4 \cdot y_1^2 \cdot (x_2 + 2 \cdot x_1) = 9 \cdot x_1^4$
 - $2 \cdot y_1 \cdot (y_2 + y_1) = (3 \cdot x_1^2) \cdot (x_1 x_2)$
 - $y_1 \cdot r_1 = 1$
- Addition (for tripling):
 - $(x_2-x_1)\cdot(y_3+y_1)-(y_1-y_2)\cdot(x_1-x_3)$
 - $(x_1 + x_2 + x_3) \cdot (x_1 x_3) \cdot (x_1 x_3) (y_3 + y_1) \cdot (y_3 + y_1)$
 - $(x_2 x_1) \cdot r_2 = 1$

3.3 Variable Base Scalar Multiplication

For
$$S = [r]T$$
, where $r = 2^n + k$ and $k = [k_n...k_0], k_i \in \{0, 1\}$:

- 1. S = [2]T
- 2. for i from n-1 to 0:

$$2.1 \ Q = k_{i+1} ? T : -T$$

$$2.2 R = S + Q$$

$$2.3 \ S = R + S$$

3.
$$S = k_0 ? S - T : S$$

Constraints for i + z, where $z \mod 2 = 0$:

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $s_1^2 s_2^2 = x_T x_R$
- $(2 \cdot x_P + x_T s_1^2) \cdot (s_1 + s_2) = 2y_P$
- $\bullet \ (x_P x_R) \cdot s_2 = y_R + y_P$
- $(x_R x_T) \cdot s_3 = y_R (2b_2 1) \cdot y_T$
- $s_3^2 s_4^2 = x_T x_S$
- $(2 \cdot x_R + x_T s_3^2) \cdot (s_3 + s_4) = 2 \cdot y_R$
- $\bullet (x_R x_S) \cdot s_4 = y_S + y_R$
- $n = 32 \cdot \text{next}(n) + 16 \cdot b_1 + 8 \cdot b_2 + 4 \cdot \text{next}(b_1) + 2 \cdot \text{next}(b_2) + \text{next}(b_3)$

Constraints for i + z, where $z \mod 2 = 1$:

⁷Using the results from https://arxiv.org/pdf/math/0208038.pdf

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $(2 \cdot x_P + x_T s_1^2) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2y_P$
- $(y_R + y_P)^2 = (x_P x_R)^2 \cdot (s_1^2 x_T + x_R)$
- $(x_T x_R) \cdot s_3 = (2b_2 1) \cdot y_T y_R$
- $(2x_R s_3^2 + x_T) \cdot ((x_R x_V) \cdot s_3 + y_V + y_R) = (x_R x_V) \cdot 2y_R$
- $(y_V + y_R)^2 = (x_R x_V)^2 \cdot (s_3^2 x_T + x_V)$
- $(x_T x_V) \cdot s_5 = (2b_3 1) \cdot y_T y_V$
- $(2x_V s_5^2 + x_T) \cdot ((x_V x_S) \cdot s_5 + y_S + y_V) = (x_V x_S) \cdot 2y_V$
- $(y_S + y_V)^2 = (x_V x_S)^2 \cdot (s_5^2 x_T + x_S)$

3.4 Variable Base Endo-Scalar Multiplication

For S = [r]T, where $r = [r_n ... r_0]$ and $r_i \in \{0, 1\}$: 8

- 1. $S = [2](\phi(T) + T)$
- 2. for i from $\frac{\lambda}{2} 1$ to 0:

2.1
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

- 2.2 R = S + Q
- $2.3 \ S = R + S$

Constraints:

- $b_1 \cdot (b_1 1) = 0$
- $\bullet \ b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $b_4 \cdot (b_4 1) = 0$
- $((1 + (\text{endo} 1) \cdot b_2) \cdot x_T x_P) \cdot s_1 = (2 \cdot b_1 1) \cdot y_T y_P$
- $(2 \cdot x_P s_1^2 + (1 + (\text{endo} 1) \cdot b_2) \cdot x_T) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2 \cdot y_P$
- $(y_R + yP)^2 = (xP x_R)^2 \cdot (s_1^2 (1 + (endo 1) \cdot b_2) \cdot x_T + x_R)$
- $((1 + (\text{endo} 1) \cdot b_2) \cdot x_T x_R) \cdot s_3 = (2 \cdot b_3 1) \cdot y_T y_R$
- $\bullet \ (2 \cdot x_R s_3^2 + (1 + (\texttt{endo} 1) \cdot b_4) \cdot x_T) \cdot ((x_R x_S) \cdot s_3 + y_S + y_R) = (x_R x_S) \cdot 2 \cdot y_R$
- $(y_S + y_R)^2 = (x_R x_S)^2 \cdot (s_3^2 (1 + (\text{endo} 1) \cdot b_4) \cdot x_T + x_S)$
- $n = 16 \cdot \text{next}(n) + 8 \cdot b_1 + 4 \cdot b_2 + 2 \cdot b_3 + b_4$

3.5 Fixed-base scalar multiplication circuit

We precompute all values $w(B, s, k) = (k_i + 2) \cdot 8^s B$, where $k_i \in \{0, ...7\}$, $s \in \{0, ..., 83\}$ and $w(B, s, k) = (k_i \cdot 8^s - \sum_{j=0}^{84} 8^{j+1}) \cdot B$, where $k_i \in \{0, ...7\}$, s = 84.

```
Row
               1
                                 4
                                       5
                                             6
                                                    7
                                                          8
                                                               9
                                                                     10
                                                                           11 12
                                                                                             14
                           3
                                                                                       13
                     b_2
                         b_3
                                b_4
                                      b_5
                                             u_0
                                                               v_1
                                                                     x_1
                                                                                             acc
                                                    u_1
                                                         v_0
                                                                           y_1
                                                                                 x_2
                                                                                       y_2
                                      x_w
i + 42 \quad b_0
              b_1
                     b_2
                          u_0
                                v_0
                                                   \alpha
                                                          β
                                             y_w
```

⁸Using the results from https://eprint.iacr.org/2019/1021.pdf

Define the following functions:

- 1. $\phi_1:(x_1,x_2,x_3,x_4)\mapsto$ $x_3 \cdot \left(-u_0' \cdot x_2 \cdot x_1 + u_0' \cdot x_1 + u_0' \cdot x_2 - u_0' + u_2' \cdot x_1 \cdot x_2 - u_2' \cdot x_2 + u_4' \cdot x_1 \cdot x_2 - u_4' \cdot x_2 - u_6' \cdot x_1 \cdot x_2 + u_2' \cdot x_1 \cdot x_2 - u_2' \cdot x_2$ $u_1' \cdot x_2 \cdot x_1 - u_1' \cdot x_1 - u_1' \cdot x_2 + u_1' - u_3' \cdot x_1 \cdot x_2 + u_3' \cdot x_2 - u_5' \cdot x_1 \cdot x_2 + u_5' \cdot x_2 + u_7' \cdot x_1 \cdot x_2) - (x_4 - x_1 - - x_1 - x_1 - x_1 - x_2) - (x_4 - x_1 - x$
 - $u'_0 \cdot x_2 \cdot x_1 + u'_0 \cdot x_1 + u'_0 \cdot x_2 u'_0 + u'_2 \cdot x_1 \cdot x_2 u'_2 \cdot x_2 + u'_4 \cdot x_1 \cdot x_2 u'_4 \cdot x_2 u'_6 \cdot x_1 \cdot x_2)$
- $2. \ \phi_2: (x_1, x_2, x_3, x_4) \mapsto$
 - $x_{3} \cdot \left(-v'_{0} \cdot x_{2} \cdot x_{1} + v'_{0} \cdot x_{1} + v'_{0} \cdot x_{2} v'_{0} + v'_{2} \cdot x_{1} \cdot x_{2} v'_{2} \cdot x_{2} + v'_{4} \cdot x_{1} \cdot x_{2} v'_{4} \cdot x_{2} v'_{6} \cdot x_{1} \cdot x_{2} + v'_{1} \cdot x_{2} + v'_{2} \cdot x_{1} \cdot x_{2} v'_{2} \cdot x_{2} + v'_{2} \cdot x_{1} \cdot x_{2} v'_{2} \cdot x_{2} + v'_{2} \cdot x_{1} \cdot x_{2} v'_{2} \cdot x_{2}$

Constraints:

- For i + 0:
 - $b_i \cdot (b_i 1) = 0$, where $i \in \{0, ..., 5\}$
 - $\phi_1(b_0, b_1, b_2, u_0) = 0$, where $(u_i', v_i') = w(B, 0, i)$
 - $\phi_1(b_3, b_4, b_5, u_1) = 0$, where $(u_i', v_i') = w(B, 1, i)$
 - $\phi_2(b_0, b_1, b_2, v_0) = 0$, where $(u_i', v_i') = w(B, 0, i)$
 - $\phi_2(b_3, b_4, b_5, v_1) = 0$, where $(u_i', v_i') = w(B, 1, i)$
 - $acc = b_0 + b_1 \cdot 2 + b_2 \cdot 2^2 + b_3 \cdot 2^3 + b_4 \cdot 2^4 + b_5 \cdot 2^5$
 - $(x_1, y_1) = (u_0, v_0)$
 - $(x_2, y_2) = (x_1, y_1) + (u_1, v_1)$ incomplete addition, where $x_1 \neq u_1$
- For $i + z, z \in 1, ..., 41$:
 - $b_i \cdot (b_i 1) = 0$, where $i \in \{0, ..., 5\}$
 - $\phi_1(b_0, b_1, b_2, u_0) = 0$, where $(u_i', v_i') = w(B, z \cdot 2, i)$
 - $\phi_1(b_3, b_4, b_5, u_1) = 0$, where $(u'_i, v'_i) = w(B, z \cdot 2 + 1, i)$
 - $\phi_2(b_0, b_1, b_2, v_0) = 0$, where $(u_i', v_i') = w(B, z \cdot 2, i)$
 - $\phi_2(b_3, b_4, b_5, v_1) = 0$, where $(u_i', v_i') = w(B, z \cdot 2 + 1, i)$
 - $acc = b_0 + b_1 \cdot 2 + b_2 \cdot 2^2 + b_3 \cdot 2^3 + b_4 \cdot 2^4 + b_5 \cdot 2^5 + acc_{prev} \cdot 2^6$
 - $(x_1, y_1) = (u_0, v_0) + (x_2, y_2)_{prev}$ incomplete addition, where $u_0 \neq x_2$
 - $(x_2, y_2) = (x_1, y_1) + (u_1, v_1)$ incomplete addition, where $x_1 \neq u_1$
- For i + 42:
 - $b_i \cdot (b_i 1) = 0$, where $i \in \{0, ..., 2\}$
 - $\phi_1(b_0, b_1, b_2, u_0) = 0$, where $(u_i', v_i') = w(B, 84, i)$
 - $\phi_2(b_0, b_1, b_2, v_0) = 0$, where $(u_i', v_i') = w(B, 84, i)$
 - $b = b_0 + b_1 \cdot 2 + b_2 \cdot 2^2 + acc_{prev} \cdot 2^3$
 - $(x_w, y_w) = (u_0, v_0) + (x_2, y_2)_{prev}$ complete addition from Orchard

Multi-Scalar Multiplication Circuit

Input: $G_0, ..., G_{k-1} \in \mathbb{G}, s_0, ..., s_{k-1} \in \mathbb{F}_r$, where \mathbb{F}_r is scalar field of \mathbb{G} .

Output:
$$S = \sum_{i=0}^{k} s_i \cdot G_i$$

Naive Algorithm

Using endomorphism:

- 1. $A=\infty$
- 2. for j from 0 to k-1:
 - $2.1 \ r \coloneqq s_i, T \coloneqq G_i$
 - $2.2 S = [2](\phi(T) + T)$
 - 2.3 for i from $\frac{\lambda}{2} 1$ to 0:

$$2.3.1 \ Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

$$2.3.2 \ R = S + Q$$

$$2.3.3 \ S = R + S$$

$$2.4 \ A = A + S$$

rows
$$\approx k \cdot (sm_rows + 1 + 2) \approx 67k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

Without endomorphism:

- 1. $A = \infty$
- 2. for j from 0 to k-1:

$$2.1 \ r \coloneqq s_j, T \coloneqq G_j$$

$$2.2 \ S = [2]T$$

2.3 for i from n-1 to 0:

$$2.3.1 \ Q = k_{i+1} ? T : -T$$

$$2.3.2 R = S + Q$$

$$2.3.3 \ S = R + S$$

$$2.4 \ S = k_0 ? S - T : S$$

$$2.5 \ A = A + S$$

rows
$$\approx k \cdot (sm_rows + 1 + 1) \approx 105k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

4.2 Simultanious Doubling

Using endomorphism:

1.
$$A = \sum_{j=0}^{k} [2](\phi(G_j) + G_j)$$

2. for i from
$$\frac{\lambda}{2} - 1$$
 to 0:

2.1 for
$$j$$
 from 0 to $k-1$:

$$2.1.1 \ r \coloneqq s_j, T \coloneqq G_j$$

2.1.2
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

$$2.1.3 \ A = A + Q$$

2.2 if $i \neq 0$:

$$2.2.1 \ A = 2 \cdot A$$

$$\mathrm{rows} \approx \tfrac{\lambda}{2} \cdot (k \cdot \mathtt{add_rows} + \mathtt{dbl_rows}) + 2k \approx 64 \cdot (k+1) \approx 66k + 64,$$

where

- add_rows is the number of rows in the addition circuit.
- dbl_rows is the number of rows in the doubling circuit.

Without endomorphism:

1.
$$A = \sum_{j=0}^{k} [2]G_j$$

2. for i from n-1 to 0:

2.1 for j from 0 to k-1:

$$2.1.1 \ r := s_j, T := G_j$$

$$2.1.2 \ Q = k_{i+1} ? T : -T$$

$$2.1.3 \ A = A + Q$$

2.2 if $i \neq 0$:

$$2.2.1 \ A = 2 \cdot A$$

3.
$$A = A + \sum_{j=0}^{k} [1 - s_{j,0}]G_j$$

$$rows \approx \frac{2}{5}n \cdot (k \cdot add_rows + dbl_rows) + k \approx 103 \cdot (k+1) + 2k \approx 104k + 103,$$

where

- add_rows is the number of rows in the addition circuit.
- dbl_rows is the number of rows in the doubling circuit.

Poseidon Circuit 5

WIP

Mina uses Poseidon hash with width = 3. Therefore, each permutation state is represented by 3 elements and each row contains 5 states.

Denote *i*-th permutation state by $T_i = (T_{i,0}, T_{i,1}, T_{i,2})$.

State change constraints:

$$STATE(i+1) = STATE(i)^{\alpha} \cdot MDS + RC$$

Denote the index of the first state in the row by start (e.g. start = 50 for 10-th row). We can expand the previous formula to:

- For i from start to start + 5:

 - $$\begin{split} \bullet \ \, & T_{i+1,0} = T_{i,0}^5 \cdot \mathtt{MDS}[0][0] + T_{i,1}^5 \cdot \mathtt{MDS}[0][2] + T_{i,2}^5 \cdot \mathtt{MDS}[0][2] + \mathtt{RC}_{i+1,0} \\ \bullet \ \, & T_{i+1,1} = T_{i,0}^5 \cdot \mathtt{MDS}[1][0] + T_{i,1}^5 \cdot \mathtt{MDS}[1][2] + T_{i,2}^5 \cdot \mathtt{MDS}[1][2] + \mathtt{RC}_{i+1,1} \\ \bullet \ \, & T_{i+1,2} = T_{i,0}^5 \cdot \mathtt{MDS}[2][2] + T_{i,1}^5 \cdot \mathtt{MDS}[2][2] + T_{i,2}^5 \cdot \mathtt{MDS}[2][2] + \mathtt{RC}_{i+1,2} \end{split}$$

Notice that the constraints above include the state from the next row (start + 5).

6 Other Circuits

WIP

6.1 Combined Inner Product

$$\sum_{i=0}^{k} \xi^{i} \cdot (f_{i}(\zeta_{1}) + r \cdot f_{i}(\zeta_{2}))$$

Constraints for i + z, where $z \mod 2 = 0$:

- $(w_0 + w_1 \cdot \mathtt{next}(w_5)) \cdot w_6 = w_7$
- $\bullet \ (w_2 + w_3 \cdot \mathtt{next}(w_5)) \cdot w_9 = w_8$
- $\bullet \ w_5 \cdot w_6 = w_9$
- $w_5 \cdot w_9 = \operatorname{next}(w_9)$
- $w_5 \cdot \mathtt{next}(w_9) = \mathtt{next}(w_5)$
- $w_4 + w_7 + w_8 + \text{next}(w_7) + \text{next}(w_8) = \text{next}(w_4)$

Constraints for i + z, where $z \mod 2 = 1$:

- $(w_0 + w_1 \cdot w_5) \cdot w_9 = w_7$
- $\bullet (w_2 + w_3 \cdot w_5) \cdot w_6 = w_8$

References