

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 628 639 A1

(12)

EUROPEAN PATENT APPLICATION
published in accordance with Art.
158(3) EPC

(21) Application number: 92909376.3

(51) Int. Cl. 5: C12P 21/08, C07K 15/28,
C12N 15/13, //C12P21/00,
(C12P21/08,C12R1:91)

(22) Date of filing: 24.04.92

(60) International application number:
PCT/JP92/00544

(67) International publication number:
WO 92/19759 (12.11.92 92/28)

(30) Priority: 25.04.91 JP 95476/91
19.02.92 JP 32084/92

Chugai Seiyaku Kabushiki Kaisha

1-135, Komakado

Gotenba-shi Shizuoka 412 (JP)

Inventor: BENDIG, Mary, Margaret

64 Solent Road

West Hampsted

London NW6 1TX (GB)

Inventor: JONES, Steven, Tarran

10 The Close

Radlett Hertfordshire WD7 8HA (GB)

Inventor: SALDANHA, José, William

22 Lincoln Way

Enfield Middlesex EN1 1TE (GB)

(43) Date of publication of application:
14.12.94 Bulletin 94/50

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU MC
NL SE

(71) Applicant: Chugai Seiyaku Kabushiki Kaisha
5-1, 5-chome, Ushima
Kita-ku
Tokyo 115 (JP)

(72) Inventor: TSUCHIYA, Masayuki
Chugai Seiyaku Kabushiki Kaisha
1-135, Komakado
Gotenba-shi Shizuoka 412 (JP)
Inventor: SATO, Koh

(74) Representative: Davies, Jonathan Mark
Reddie & Grose
16 Theobalds Road
London WC1X 8PL (GB)

(54) RECONSTITUTED HUMAN ANTIBODY AGAINST HUMAN INTERLEUKIN 6 RECEPTOR.

(57) A reconstituted human antibody against a human interleukin 6 receptor (IL-6R), which is composed of: (A) an L chain composed of (1) the C region of a human L chain and (2) the V region of an L chain comprising the framework region (FR) of a human L chain and the complementarity-determining region (CDR) of the L chain of a mouse monoclonal antibody against a human IL-6R, and (B) an H chain composed of (1) the C region of a human H chain and (2) the V region of an H chain comprising the FR of a human H chain and the CDR of the H chain of a mouse monoclonal antibody against a human IL-6R. Since most of the reconstituted human antibody originates in human antibodies and the CDR is lowly antigenic, this antibody is lowly antigenic against human and hence prospective as a therapeutic agent.

EP 0 628 639 A1

Fig. 14

Technical Field

The present invention relates to variable regions (V region) of a mouse monoclonal antibody to the human interleukin-6 receptor (IL-6R), human/mouse chimeric antibody to the human IL-6R, and reshaped human antibody comprising a human antibody wherein the complementarity determining regions (CDRs) of the human light chain (L chain) V region and of the human heavy chain (H chain) V region are grafted with the CDRs of a mouse monoclonal antibody to the human IL-6R. Moreover, the present invention provides DNA coding for the above-mentioned antibodies or part thereof. The present invention further provides vectors, especially expression vectors comprising said DNA, and host cells transformed or transfected with said vector. The present invention still more provides a process for production of a chimeric antibody to the human IL-6R, and process for production of a reshaped human antibody to the human IL-6R.

Background Art

15 Interleukin-6 (IL-6) is a multi-function cytokine that is produced by a range of cells. It regulates immune responses, acute phase reactions, and hematopoiesis, and may play a central role in host defense mechanisms. It acts on a wide range of tissues, exerting growth-inducing, growth inhibitory, and differentiation-inducing effects, depending on the nature of the target cells. The specific receptor for IL-6 (IL-6R) is expressed on lymphoid as well as non-lymphoid cells in accordance with the multifunctional properties of
20 IL-6. Abnormal expression of the IL-6 gene has been suggested to be involved in the pathogenesis of a variety of diseases, especially autoimmune diseases, mesangial proliferative glomerulonephritis, and plasmacytoma/myeloma (see review by Hirano et al., Immunol. Today 11, 443-449, 1990). Human myeloma cells are observed to produce IL-6 and express IL-6R. In experiments, antibody against IL-6 inhibited the in vitro growth of myeloma cells thus indicating that an autocrine regulatory loop is operating in oncogenesis
25 of human myelomas (Kawano et al., Nature, 332, 83, 1988).

26 The IL-6R is present on the surface of various animal cells, and specifically binds to IL-6, and the number of IL-6R molecules on the cell surface has been reported (Taga et al., J. Exp. Med. 196, 967, 1987). Further, cDNA coding for a human IL-6R was cloned and a primary structure of the IL-6R was reported (Yamasaki et al., Science, 241, 825, 1988).

30 Mouse antibodies are highly immunogenic in humans and, for this reason, their therapeutic value in humans is limited. The half-life of mouse antibodies in vivo in human is relatively short. In addition, mouse antibodies can not be administered in multiple doses without generating an immune response which not only interferes with the planned efficacy but also risks an adverse allergic response in the patient.

35 To resolve these problems methods of producing humanized mouse antibodies were developed. Mouse antibodies can be humanized in two ways. The more simple method is to construct chimeric antibodies where the V regions are derived from the original mouse monoclonal antibody and the C regions are derived from suitable human antibodies. The resulting chimeric antibody contains the entire V domains of the original mouse antibody and can be expected to bind antigen with the same specificity as the original mouse antibody. In addition, chimeric antibodies have a substantial reduction in the percent of the protein
40 sequence derived from a non-human source and, therefore, are expected to be less immunogenic than the original mouse antibody. Although chimeric antibodies are predicted to bind antigen well and to be less immunogenic, an immune response to the mouse V regions can still occur (LoBuglio et al., Proc. Natl. Acad. Sci. USA 84, 4220-4224, 1989).

45 The second method for humanizing mouse antibodies is more complicated but more extensively reduces the potential immunogenicity of the mouse antibody. In this method, the complementarity determining regions (CDRs) from the V regions of the mouse antibody are grafted into human V regions to create "reshaped" human V regions. These reshaped human V regions are then joined to human C regions. The only portions of the final reshaped human antibody derived from non-human protein sequences are the CDRs. CDRs consist of highly variable protein sequences. They do not show species-specific sequences.
50 For these reasons, a reshaped human antibody carrying murine CDRs should not be any more immunogenic than a natural human antibody containing human CDRs.

55 As seen from the above, it is supposed that reshaped human antibodies are useful for therapeutic purposes, but reshaped human antibodies to the human IL-6R are not known. Moreover, there is no process for construction of a reshaped human antibodies, universally applicable to any particular antibody. Therefore to construct a fully active reshaped human antibody to a particular antigen, various devices are necessary. Even though mouse monoclonal antibodies to the human IL-6R, i.e., PM1 and MT18, were prepared (Japanese Patent Application No. 2-189420), and the present inventors prepared mouse monoclonal antibodies to the human IL-6R, i.e., AUK12-20, AUK64-7 and AUK146-15, the present inventors are not

aware of publications which suggest construction of reshaped human antibodies to the human IL-6R.

The present inventors also found that, when the mouse monoclonal antibodies to the human IL-6R were injected into nude mice transplanted with a human myeloma cell line, the growth of the tumor was remarkably inhibited. This suggests that the anti-human IL-6 receptor antibody is useful as a therapeutic agent for the treatment of myeloma.

Disclosure of Invention

Therefore, the present invention is intended to provide a less immunogenic antibody to the human IL-6R. Accordingly, the present invention provides reshaped human antibodies to the human IL-6R. The present invention also provides human/mouse chimeric antibodies useful during the construction of the reshaped human antibody. The present invention further provides a part of reshaped human antibody, as well as the expression systems for production of the reshaped human antibody and a part thereof, and of the chimeric antibody.

More specifically, the present invention provides L chain V region of mouse monoclonal antibody to the human IL-6R; and H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides a chimeric antibody to the human IL-6R, comprising:

- (1) an L chain comprising a human L chain C region and an L chain V region of a mouse monoclonal antibody to the IL-6R; and
- (2) an H chain comprising a human H chain C region and an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides CDR of an L chain V region of a mouse monoclonal antibody to the human IL-6R; and CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention moreover provides a reshaped human L chain V region of an antibody to the human IL-6R, comprising:

- (1) framework regions (FRs) of a human L chain V region, and
- (2) CDRs of an L chain V region of a mouse monoclonal antibody to the human IL-6R; and a reshaped human H chain V region of an antibody to the human IL-6R comprising:

- (1) FRs of a human H chain V region, and
- (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.

The present invention also provides a reshaped human L chain of an antibody to the human IL-6R, comprising:

- (1) a human L chain C region; and
- (2) an L chain V region comprising human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R; and a reshaped human H chain of an antibody to the human IL-6R, comprising:

- (1) a human H chain C region, and
- (2) an H chain V region comprising a human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.

The present invention still more provides a reshaped human antibody to the human IL-6R, comprising:

- (A) an L chain comprising,
 - (1) a human L chain C region, and
 - (2) an L chain V region comprising human L chain FRs, and L chain CDRs of a mouse monoclonal antibody to the human IL-6R; and
- (B) an H chain comprising,
 - (1) a human H chain C region, and
 - (2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal antibody to the human IL-6R.

The present invention further provides DNA coding for any one of the above-mentioned antibody polypeptides or parts thereof.

The present invention also provides vectors, for example, expression vectors comprising said DNA.

The present invention further provides host cells transformed or transfected with the said vector.

The present invention still more provide a process for production of a chimeric antibody to the human IL-6R, and a process for production of reshaped human antibody to the human IL-6R.

Brief Description of Drawings

Fig. 1 represents expression vectors comprising human cytomegalovirus (HCMV) promoter/enhancer system, useful for the expression of the present antibody peptide.

5 Fig. 2 is a graph showing a result of ELISA for confirmation of an ability of the present chimeric antibody AUK12-20 to bind to the human IL-6R.

Fig. 3 is a graph showing a result of measurement of an ability of the present chimeric antibody AUK12-20 to inhibit the binding of IL-6 to the human IL-6R.

10 Fig. 4 is a graph showing a result of ELISA for binding of the present chimeric antibodies PM1a and PM1b to human IL-6R.

Fig. 5 is a graph showing a result of ELISA testing the ability of the present chimeric antibodies PM1a and PM1b to inhibit IL-6 from binding to the human IL-6R.

Fig. 6 is a diagram of the construction of the first version of a reshaped human PM-1 H chain V region.

Fig. 7 is a diagram of the construction of the first version of a reshaped human PM-1 L chain V region.

15 Fig. 8 represents a process for construction of an expression plasmid HEF-12h-g_y1 comprising a human elongation factor 1_α (HEF-1_α) promoter/enhancer, useful for the expression of an H chain.

Fig. 9 represents a process for construction of an expression plasmid HEF-12k-gk comprising the HEF-1_α promoter/enhancer system, useful for the expression of an L chain.

20 Fig. 10 represents a process for construction of an expression plasmid DHFR-PMh-g_y1 comprising HCMV promoter/enhancer and the dihydrofolate reductase (dhfr) gene linked to a defective SV40 promoter/enhancers sequence for amplification, useful for expression of an H chain.

Fig. 11 represents a process for the construction of an expression plasmid DHFR-ΔE-RVh-PM1-f comprising EF1_α promoter/enhancer and dhfr gene linked to a defective SV40 promoter/enhancer sequence for amplification, useful for expression of an H chain.

25 Fig. 12 is a graph showing an ability of version "a" and "b" of the reshaped human PM-1 L chain V region for binding to the human IL-6R.

Fig. 13 is a graph showing an ability of version "f" of the reshaped human PM-1 H chain V region plus version "a" of the reshaped PM-1 L chain V region for binding to the human IL-6R.

30 Fig. 14 is a graph showing an ability of version "f" of the reshaped PM-1 H chain V region plus version "a" of the reshaped PM-1 L chain V region to inhibit the binding of IL-6 to the human IL-6R.

Fig. 15 represents expression plasmids HEF-V_L-gk and HEF-V_H-g_y1 comprising a human EF1_α promoter/enhancer, useful for expression of an L chain and H chain respectively.

Fig. 16 shows a process for construction of DNA coding for reshaped human AUK 12-20 antibody L chain V region.

35 Fig. 17 is a graph showing results of an ELISA for confirmation of an ability of a reshaped human AUK 12-20 antibody L chain V region to bind to human IL-6R. In the Figure, "Standard AUK 12-20 (chimera)" means a result for chimeric AUK 12-20 antibody produced by CHO cells and purified in a large amount.

Fig. 18 is a graph showing a result of an ELISA for an ability of a reshaped human AUK 12-20 antibody (L chain version "a" + H chain version "b") to bind to human IL-6R.

40 Fig. 19 is a graph showing a result of an ELISA for an ability of a reshaped human AUK 12-20 antibody (L chain version "a" + H chain version "d") to bind to the human IL-6R.

Fig. 20 shows a process for chemical synthesis of a reshaped human sle 1220 H antibody H chain V region.

45 Fig. 21 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "a") to inhibit the binding of IL-6 to the human IL-6R.

Fig. 22 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "b") to inhibit the binding of IL-6 to the human IL-6R.

Fig. 23 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "c") to inhibit the binding of IL-6 to the human IL-6R.

50 Fig. 24 is a graph showing a result of an ELISA for an ability of a reshaped human sle 1220 antibody (L chain version "a" + H chain version "d") to inhibit the binding of IL-6 to the human IL-6R.

Best Mode for Carrying Out the Invention55 Cloning of DNA coding for mouse V regions

More specifically, to clone DNA coding for V regions of a mouse monoclonal antibody to a human IL-6R, the construction of hybridoma, which produces a monoclonal antibody to the human IL-6R, is necessary

as a gene source. As such a hybridoma, Japanese Patent Application No. 2-189420 describes a mouse hybridoma PM-1 which produces a monoclonal antibody PM1 and the properties thereof. Reference Examples 1 and 2 of the present specification describe the construction process of the hybridoma PM1. The present inventors have constructed hybridomas AUK12-20, AUK64-7, and AUK146-15, each producing 5 a mouse monoclonal antibody to the human IL-6R. The construction process of these hybridomas is described in the Reference Examples 3 of this specification.

To clone desired DNAs coding for V regions, of a mouse monoclonal antibody, hybridoma cells are homogenized and a total RNA is obtained according to a conventional procedure described by Chirgwin et al., *Biochemistry* 18, 5294, 1977. Next, the total RNA is used to synthesize single-stranded cDNAs 10 according to the method described by J.W. Larrick et al., *Biotechnology*, 7, 934, 1989.

Next, a specific amplification of a relevant portion of the cDNA is carried out by a polymerase chain reaction (PCR) method. For amplification of a \times L chain V region of a mouse monoclonal antibody, 11 groups of oligonucleotide primers (Mouse Kappa Variable; MKV) represented in SEQ ID NO: 1 to 11, and an oligonucleotide primer (Mouse Kappa Constant; MKC) represented in SEQ ID NO: 12 are used as 5'- 15 terminal primers and a 3'-terminal primer respectively. The MKV primers hybridize with the DNA sequence coding for the mouse \times L chain leader sequence, and the MKC primer hybridizes with the DNA sequence coding for the mouse \times L chain constant region. For amplification of the H chain V region of a mouse monoclonal antibody, 10 groups of oligonucleotide primers (Mouse Heavy Variable; MHV) represented in SEQ ID NO: 13 to 22, and a oligonucleotide primer (Mouse Heavy Constant MHC) represented in SEQ ID 20 NO: 23 are used as 5'-terminal primers and a 3'-terminal primer, respectively.

Note, the 5'-terminal primers contain the nucleotide sequence GTCGAC near the 5'-end thereof, which sequence provides a restriction enzyme Sal I cleavage site; and the 3'-terminal primer contains the nucleotide sequence CCCGGG near the 5-end thereof, which sequence provides a restriction enzyme Xma I cleavage site. These restriction enzyme cleavage sites are used to subclone the DNA fragments coding 25 for a variable region into cloning vectors.

Next, the amplification product is cleaved with restriction enzymes Sal I and Xma I to obtain a DNA fragment coding for a desired V region of a mouse monoclonal antibody. On the other hand, an appropriate cloning vector such as plasmid pUC19 is cleaved with the same restriction enzymes Sal I and Xma I and the above DNA fragment is ligated with the cleaved pUC19 to obtain a plasmid incorporating a DNA 30 fragment coding for a desired V region of a mouse monoclonal antibody.

The sequencing of the cloned DNA can be carried out by any conventional procedure.

The cloning of the desired DNA, and the sequencing thereof, are described in detail in Examples 1 to 3.

Complementarity Determining Regions (CDRs)

25 The present invention provides hypervariable or complementarity determining regions (CDRs) of each V region of the present invention. The V domains of each pair of L and H chains from the antigen binding site. The domains on the L and H chains have the same general structure and each domain comprises four framework regions (FRs), whose sequences are relatively conserved, connected by three CDRs (see Kabat, 40 E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M. and Perry, H., in "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services 1983). The four FRs largely adopt a β -sheet conformation and the CDRs form loops connecting FRs, and in some cases forming part of, the β -sheet structure. The CDRs are held in close proximity by FRs and, with the CDRs from the other domain, contribute to the formation of the antigen binding site. The CDRs are described in Example 4.

Construction of Chimeric Antibody

Prior to designing reshaped human V regions of an antibody to the human IL-6R, it is necessary to confirm that the CDRs to be used actually form an effective antigen binding region. For this purpose, 50 chimeric antibodies were constructed. In addition the amino acid sequences of V regions of mouse anti human IL-6R antibodies predicted from the nucleotide sequences of cloned DNAs of the 4 mouse monoclonal antibodies described in Example 1 and 2 were compared to each other and to V regions from known mouse and human antibodies. For each of the 4 mouse monoclonal antibodies, a set of typical, functional mouse L and H chain V regions had been cloned. All four mouse anti-IL-6R antibodies, however, 55 had relatively distinct V regions. The 4 antibodies were not simply minor variations of each other. Using the cloned mouse V regions, 4 chimeric anti-IL-6R antibodies were constructed.

The basic method for constructing chimeric antibodies comprises joining the mouse leader and V region sequences, as found in the PCR-cloned cDNAs, to human C regions-coding sequence already

present in mammalian cell expression vectors. Among said 4 monoclonal antibodies, construction of a chimeric antibody from the monoclonal antibody AUK12-20 is described in Example 5.

Construction of a chimeric antibody from the monoclonal antibody PM-1 is described in Example 6. The cDNA coding for the mouse PM-1 x L chain leader and V region was PCR-subcloned into an expression vector containing a genomic DNA coding for the human kappa C region. The cDNA coding for the mouse PM-1 H chain leader and V regions was PCR-subcloned into an expression vector containing a genomic DNA coding for the human gamma-1 C region. Using specially designed PCR primers, the cDNA coding for the mouse PM-1 V region were adapted at their 5'- and 3'-ends (1) so that they would be easy to insert into the expression vectors and (2) so that they would function properly in these expression vectors. The PCR-modified mouse PM-1 V regions were then inserted into HCMV expression vectors already containing the desired human C regions (Figure 1). These vectors are suitable for either transient or stable expression of genetically-engineered antibodies in a variety of mammalian cell lines.

In addition to constructing a chimeric PM-1 antibody with V regions identical to the V regions present in mouse PM-1 antibody (version a), a second version of chimeric PM-1 antibody was constructed (version b). In chimeric PM-1 antibody (version b), the amino acid at position 107 in the L chain V region was changed from asparagine to lysine. In comparing the L chain V region from mouse PM-1 antibody to other mouse L chain V regions, it was noticed that the occurrence of an asparagine at position 107 was an unusual event. In mouse x L chain V regions, the most typical amino acid at position 107 is a lysine. In order to evaluate the importance of having the atypical amino acid asparagine at position 107 in the L chain V region of mouse PM-1 antibody, position 107 was changed to the typical amino acid lysine at this position. This change was achieved using a PCR-mutagenesis method (M. Kamman et al., Nucl. Acids Res. (1989) 17:5404) to make the necessary changes in the DNA sequences coding for the L chain V region.

The chimeric PM-1 antibody version (a) exhibited an activity to bind to the human IL-6R. The chimeric MP-1 antibody version (b) also binds to the human IL-6R as well as version (a). Similarly, from other 2 monoclonal antibodies AUK64-7 and AUK146-15, chimeric antibodies were constructed. All 4 chimeric antibodies bound well to the human IL-6R thus indicating in a functional assay that the correct mouse V regions had been cloned and sequenced.

From the 4 mouse anti-IL-6R antibodies, PM-1 antibody was selected as the first candidate for the design and construction of a reshaped human antibody to the human IL-6R. The selection of mouse PM-1 antibody was based largely on results obtained studying the effect of the mouse anti-IL-6R antibodies on human myeloma tumor cells transplanted into nude mice. Of the 4 mouse anti-IL-6R antibodies, PM-1 antibody showed the strongest anti-tumor cell activity.

Comparison of the V regions from mouse monoclonal antibody PM-1 to V regions from known mouse and human antibodies

To construct a reshaped human antibody wherein the CDRs of a mouse monoclonal antibody are grafted into a human monoclonal antibody, it is desired that there is high homology between FRs of the mouse monoclonal antibody and FRs of the human monoclonal antibody. Therefore, the amino acid sequences of the L and H chain V regions from mouse PM-1 antibody were compared to all known mouse and mouse V regions as found in the OWL (or Leeds) database of protein sequences.

With respect to V regions from mouse antibodies, the L chain V region of PM-1 antibody was most similar to the L chain V region of mouse antibody musigkcko (Chen, H.-T. et al., J. Biol. Chem. (1987) 262:13579-13583) with a 93.5% identity. The H chain V region of PM-1 antibody was most similar to the H chain V region of mouse antibody musigvhr2 (F.J. Grant et al., Nucl. Acids Res. (1987) 15:5496) with a 84.0% identity. The mouse PM-1 V regions show high percents of identity to known mouse V regions thus indicating that the mouse PM-1 V regions are typical mouse V regions. This provides further indirect evidence that the cloned DNA sequences are correct. There is generally a higher percent identity between the L chain V regions than between the H chain V regions. This is probably due to the lower amount of diversity generally observed in L chain V regions as compared to H chain V regions.

With respect to V regions from human antibodies, the L chain V region of PM-1 antibody was most similar to the L chain V region of human antibody khure, also referred to as REI (W. Palm et al., Physiol. Chem. (1975) 356:167-191) with a 72.2% identity. The H chain V region of PM-1 antibody was most similar to the H chain V region of human antibody humighvap (VAP) (H.W. Schroeder et al., Science (1987) 238:791-793) with a 71.8% identity. The comparisons to human V regions are most important for considering how to design reshaped human antibodies from mouse PM-1 antibody. The percent identities to human V regions are less than the percent identities to mouse V regions. This is indirect evidence that the mouse PM-1 V regions do look like mouse V regions and not like human V regions. This evidence also

indicates that it will be best to humanize mouse PM-1 V regions in order to avoid problems of immunogenicity in human patients.

The V regions from mouse PM-1 antibody were also compared to the consensus sequences for the different subgroups of human V regions as defined by E. A. Kabat et al. ((1987) Sequences of Proteins of 5 Immunological Interest, Forth Edition, U.S. Department of Health and Human services, U.S. Government Printing Office). The comparisons were made between the FRs of the V regions. The results are shown in Table 1.

10

Table 1

15

Percent identities between the FRs from the mouse
PM-1 V regions and the FRs from the consensus
sequences⁽¹⁾ for the different subgroups of human
V regions.

20

A. FRs in the L chain V regions

25

	HSGI	HSGII	HSGIII	HSGIV
	70.1	53.3	60.7	59.8

B. FRs in the H chain V regions

30

	HSGI	HSGII	HSGIII
	44.1	52.9	49.2

35

⁽¹⁾The consensus sequences were taken from the
subgroups of human V regions as described in

40

Kabat et al., (1987).

The FRs of mouse PM-1 L chain V region are most similar to the FRs from the consensus sequence for 45 subgroup I (HSGI) of human L chain V regions with 70.1% identity. The FRs of mouse PM-1 H chain V region are most similar to the FRs from the consensus sequence for subgroup II (HSGII) of human H chain V regions with 52.9% identity. These results support the results obtained from the comparisons to known human antibodies. The L chain V region in human RE1 belongs to subgroup I of human L chain V regions and the H chain V region in human VAP belongs to subgroup II of human H chain V regions.

50 From these comparisons to the V regions in human antibodies, it is possible to select human V regions that will be the basis for the design of reshaped human PM-1 V regions. It would be best to use a human L chain V region that belongs to subgroup I (SGII) for the design of reshaped human PM-1 L chain V region and a human H chain V region that belongs to subgroup II (SGII) for the design of reshaped human PM-1 H chain V region.

55

Design of reshaped human PM-1 variable regions

The first step in designing the reshaped human PM-1 V regions was to select the human V regions that would be the basis of the design. The FRs in the mouse PM-1 L chain V region were most similar to the FRs in human L chain V regions belonging to subgroup I (Table 1). As discussed above, in comparing the mouse PM-1 L chain V region to known human L chain V regions, it was most similar to the human L chain V region REI, a member of subgroup I of human L chain V regions. In designing reshaped human PM-1 L chain V regions, the FRs from REI were used. Moreover the REI FRs were used as starting material for the construction of reshaped human PM-1 L chain V region.

In these human FRs based on REI, there were five differences from the FRs in the original human REI (positions 39, 71, 104, 105, and 107 according to Kabat et al., 1987; see Table 2). The three changes in FR4 (positions 104, 105, and 107) were based on a J region from another human kappa L chain and, therefore, do not constitute a deviation from human (L. Riechmann et al., Nature (1988) 322:21-25). The two changes at positions 39 and 71 were changes back to the amino acids that occurred in the FRs of rat CAMPATH-1 L chain V region (Riechmann et al., 1988).

Two versions of reshaped human PM-1 L chain V region were designed. In the first version (version "a"), the human FRs were identical to the REI-based FRs present in reshaped human CAMPATH-1H (Riechmann et al., 1988) and the mouse CDRs were identical to the CDRs in mouse PM-1 L chain V region. The second version (version "b") was based on version "a" with only one amino acid change at position 71 in human FR3. Residue 71 is part of the canonical structure for CDR1 of the L chain V region as defined by C. Chothia et al., (J. Mol. Biol (1987) 196:901-917). The amino acid at this position is predicted to directly influence the structure of the CDR1 loop of the L chain V region and, therefore, may well influence antigen binding. In the mouse PM-1 L chain V region, position 71 is a tyrosine. In the modified REI FRs used in the design of version "a" of reshaped human PM-1 L chain V region, position 71 was a phenylalanine. In version "b" of reshaped human PM-1 L chain V region, the phenylalanine at position 71 was changed to a tyrosine as found in mouse PM-1 L chain V region. Table 2 shows the amino acid sequences of mouse PM-1 L chain V region, the FRs of REI as modified for use in reshaped human CAMPATH-1H antibody (Riechmann et al., 1988), and the two versions of reshaped human PM-1 L chain V region.

30

35

40

45

50

55

Table 2

5 Design of two different versions of reshaped human
PM-1 L chain V region.

10	FR1	CDR1
	1 2	3
	12345678901234567890123	45678901234

15	V_L PM-1	DIQMTQTTSSLASALGDRVTISC	RASQDISSYLN
	REI	DIQMTQSPSSLASAVGDRVTITC	
	RV_L a	DIQMTQSPSSLASAVGDRVTITC	RASQDISSYLN
20	RV_L b	-----	-----

25	FR2	CDR2
	4 5	
	567890123456789	0123456

30	V_L PM-1	WYQQKPDGTIKLLIY	YTSRLHS
	REI	WYQQ <u>KPGKAPK</u> LLIY	
	RV_L a	WYQQKPGKAPKLLIY	YTSRLHS
35	RV_L b	-----	-----

40	FR3	CDR3	
	6 7 8	9	
	78901234567890123456789012345678	901234567	
	V_L PM-1	GVPSRFSGSGSGTDYSLTINNLEQEDIATYFC	QQGNTLPYT
45	REI	GVPSRFSGSGSGTD <u>F</u> TFTISSLQPEDIATYYC	
	RV_L a	GVPSRFSGSGSGTDFTFTISSLQPEDIATYYC	QQGNTLPYT
	RV_L b	-----Y-----	-----

50

55

FR4

	10
	8901234567
5	V _L PM-1
	FGGGTKLEIN
	REI
	FGQGTK <u>VEIK</u>
10	RV _L a
	FGQGTKVEIK

	RV _L b

15 Note: The FRs given for REI are those found in the reshaped human CAMPATH-1H antibody (Riechmann *et al.*, 1988). The five underlined amino acid residues in the REI FRs are those that differ from the amino acid sequence of human REI (Palm *et al.*, 1975; O. Epp *et al.*, Biochemistry (1975) 14:4943-4952).

25 The FRs in the mouse PM-1 H chain V region were most similar to the FRs in human H chain V regions belonging to subgroup II (Table 1). As discussed above, in comparing the mouse PM-1 H chain V region to known human H chain V regions, it was most similar to the human H chain V region VAP, a member of subgroup II of human H chain V regions. DNA sequences coding for the FRs in human H chain V region 30 NEW, another member of subgroup II of human H chain V regions, were used as starting material for the construction of reshaped human PM-1 H chain V region, and as a base for designing the reshaped human PM-1 H chain V region.

35 Six versions of reshaped human PM-1 H chain V region were designed. In all six versions, the human FRs were based on the NEW FRs present in reshaped human CAMPATH-1H (Riechmann *et al.*, 1988) and the mouse CDRs were identical to the CDRs in mouse PM-1 H chain V region. Seven amino acid residues in the human FRs (positions 1, 27, 28, 29, 30, 48, and 71, see Table 3) were identified as having a possible adverse influence on antigen binding. In the model of mouse PM-1 V regions, residue 1 in the H chain V region is a surface residue that is located close to the CDR loops. Residues 27, 28, 29, and 30 are either part of the canonical structure for CDR1 of the H chain V region, as predicted by C. Chothia *et al.*, Nature (1989) 34:877-883, and/or are observed in the model of the mouse PM-1 V regions to form part of the first structural loop of the H chain V region (Chothia, 1987). Residue 48 was observed in the model of the mouse 40 PM-1 V regions to be a buried residue. Changes in a buried residue can disrupt the overall structure of the V region and its antigen-binding site. Residue 71 is part of the canonical structure for CDR2 of the H chain V region as predicted by Chothia *et al.*, (1989). The six versions of reshaped human PM-1 antibody 45 incorporate different combinations of amino acid changes at these seven positions in the human NEW FRs (see Table 3).

Table 3

5 Design of six different versions of reshaped human
 PM-1 H chain V region.

		FR1		CDR1
10		1 12345678901234567890	2 1234567890	3 123455 A
	V _H PM-1	DVQLQESGPVLVKPSQSLSLTCTVTGYSIT		SDHAWs
15	NEW	QVQLQESGPGLVRPSQTLSLTCTVSGSTFS		
	RV _H a	QVQLQESGPGLVRPSQTLSLTCTVSG <u>T</u> F <u>T</u>		SDHAWs
	RV _H b	-----Y--T		-----
20	RV _H c	D-----Y--T		-----
	RV _H d	-----Y--T		-----
	RV _H e	D-----Y--T		-----
25	RV _H f	-----YSIT		-----
		FR2	<th>CDR2</th>	CDR2
30		4 67890123456789	5 01223456789012345 A	6
	V _H PM-1	WIRQFPGNKLEWMG	YIS-YSGITTYNPSLKS	
	NEW	WVRQPPGRGLEWIG		
35	RV _H a	WVRQPPGRGLEWIG	YIS-YSGITTYNPSLKS	
	RV _H b	-----	-----	
	RV _H c	-----	-----	
40	RV _H d	-----M-	-----	
	RV _H e	-----M-	-----	
	RV _H f	-----	-----	
45				

		FR3		
		7	8	9
5		67890123456789012222345678901234		
			ABC	
	V _H PH-1	RISITRDTSKNQFFLQLNSVTGDTSTYYCAR		
	NEW	RVTMLVDTSKNQFSLRLSSVTAADTAVYYCAR		
10	RV _H a	RVTMLVDTSKNQFSLRLSSVTAADTAVYYCAR		
	RV _H b	-----R-----		
	RV _H c	-----R-----		
15	RV _H d	-----R-----		
		-----R-----		
	RV _H e			
20	RV _H f	-----R-----		
		CDR3	FR4	
		10	11	
25		5678900012	34567890123	
		AB		
	V _H PM-1	SLARTTAMDY	WGQGTSVTVSS	
	NEW		WGQGSLVTVSS	
30	RV _H a	SLARTTAMDY	WGQGSLVTVSS	
	RV _H b	-----	-----	
	RV _H c	-----	-----	
35	RV _H e	-----	-----	
	RV _H e	-----	-----	
	RV _H f	-----	-----	
40				

Note: The FRs given for NEW are those found in the first version of reshaped human CAMPATH-1H antibody (Riechmann *et al.*, 1988).

Construction of reshaped human PM-1 V regions

The first versions of the reshaped human PM-1 L and H chain V regions were each constructed using a novel PCR-based method. Essentially, a plasmid DNA coding for reshaped human V region that already contained suitable human FRs was modified using PCR primers to replace the CDRs present in the starting reshaped human V region with the CDRs from mouse PM-1 antibody. The starting material for the construction of the reshaped human PM-1 L chain V region was a plasmid DNA containing the reshaped human D1.3 L chain V region. The reshaped human D1.3 L chain V region was constructed based on the FRs present in the human L chain V region of REI. The starting material for the construction of the reshaped human PM-1 H chain V region was a plasmid DNA containing the reshaped human D1.3 H chain

V region. The reshaped human D1.3 H chain V region was constructed based on the FRs present in the human H chain V region of NEW (M. Verhoeven et al., *Science* (1988) 239:1534-1536).

Once the starting plasmid DNAs containing the desired human FRs were selected, PCR primers were designed to enable the substitution of the mouse PM-1 CDRs in place of the mouse D1.3 CDRs. For each reshaped human PM-1 V region, three primers containing the DNA sequences coding for the mouse PM-1 CDRs and two primers flanking the entire DNA sequence coding for the reshaped human V region were designated and synthesized. Using the five PCR primers in a series of PCR reactions yielded a PCR product that consisted of the human FRs present in the starting reshaped human V region and the CDRs present in mouse PM-1 V region (see Example 7, and Figures 7 and 8). The PCR products were cloned and sequenced to ensure that the entire DNA sequence of version "a" of reshaped human PM-1 L and H chain V region coded for correct amino acid sequence (SEQ ID NO 55).

The remaining versions of the reshaped human PM-1 V regions were constructed using slight modifications of published PCR-mutagenesis techniques (Kamman et al., 1989). As described for the design of the reshaped human PM-1 V regions, one additional version (version "b") of the reshaped human PM-1 L chain V region was constructed and five additional versions (versions "b", "c", "d", "e", and "f") of the reshaped human PM-1 H chain V region were constructed. These additional versions contain a series of minor changes from the first versions. These minor changes in the amino acid sequences were achieved using PCR mutagenesis to make minor changes in the DNA sequences. PCR primers were designed that would introduce the necessary changes into the DNA sequence. Following a series of PCR reactions, a PCR product was cloned and sequenced to ensure that the changes in the DNA sequence had occurred as planned. Sequence of the reshaped human PM-1 antibody H chain V region version "f" is shown in SEQ ID NO 54).

Once the DNA sequences of the different versions of reshaped human PM-1 V regions were confirmed by sequencing, the reshaped human PM-1 V regions were subcloned into mammalian cell expression vectors already containing human C regions. Reshaped human PM-1 L chain V regions were joined to DNA sequences coding for human α C region. Reshaped human PM-1 H chain V regions were joined to DNA sequences coding for human gamma-1 C region. In order to achieve higher levels of expression of the reshaped human PM-1 antibodies, the HCMV expression vectors, as shown in Figure 1, were modified to replace the HCMV promoter-enhancer region with the human elongation factor (HEF-1 α) promoter-enhancer (see Figure 15).

Next, all combinations of the reshaped human L chain versions (a) and (b) with the H chain V region versions (a) to (f) were tested for binding to human IL-6R, and as a result, a reshaped human antibody comprising the L chain version (a) and the H chain version (f) exhibited an ability to bind to IL-6R at a same level as that of chimeric PM-1 (a) (Fig. 13) as described in detail in Example 11.

35

Modifications in the DNA sequences coding for the reshaped human PM-1 V regions to improve the levels of expression.

In reviewing the levels of reshaped human PM-1 antibodies being produced in cos cells, it became apparent that the levels of expression of the reshaped human H chains were always approximately 10-fold lower than the levels of expression of the reshaped human L chains or of the chimeric L or H chains. It appeared that there was a problem in DNA coding for the reshaped human H chain V region that caused low levels of expression. In order to identify whether the lower levels of protein expression were the result of lower levels of transcription, RNA was prepared from cos cells co-transfected with vectors expressing reshaped human PM-1 L and H chains. First-strand cDNA was synthesized as described for the PCR cloning of the mouse PM-1 V regions. Using PCR primers designed to flank the ends of DNA coding for the reshaped human L or H chain V regions, PCR products were generated from the cDNAs that corresponded to reshaped human L chain V region or to reshaped human H chain V region.

For the reshaped human L chain V region, there were two PCR products, one 408 bp long, as expected, and a shorter PCR product 299 bp long. The correct size PCR product made up approximately 90% of the total yield of PCR product and the shorter PCR product made up approximately 10% of the total yield. For the reshaped human H chain V region, there were also two PCR products, one 444 bp long, as expected, and a shorter PCR product 370 bp long. In this case, however, the incorrect, shorter PCR product made up the majority of the total yield of PCR product, approximately 90%. The correct size PCR product made up only approximately 10% of the total yield of PCR product. These results indicated that some of the RNAs coding for the reshaped human V regions contained deletions.

In order to determine which sequences were being deleted, the shorter PCR products were cloned and sequenced. From the DNA sequences, it became clear that for both the L and H chain V regions specific

sections of DNA were being deleted. Examination of the DNA sequences flanking the deleted sequences revealed that these sequences corresponded to the consensus sequences for splice donor-acceptor sequences (Breathnach, R. et al., Ann. Rev. Biochem (1981) 50:349-383). The explanation for the low levels of expression of the reshaped human H chains was that the design of the reshaped human H chain V regions had inadvertently created a rather efficient set of splice donor-acceptor sites. It also appeared that the design of the reshaped human L chain V regions had inadvertently created a rather inefficient set of splice donor-acceptor sites. In order to remove the splice donor-acceptor sites, minor modifications in the DNA sequences coding for versions "a" and "f", respectively, of the reshaped human PM-1 L and H chain V regions were made using the PCR-mutagenesis methods described earlier.

Another possible cause of reduced levels of expression was thought to be the presence of introns in the leader sequences in both the reshaped human L and H chain V regions (SEQ ID NOs: 54 and 55). These introns were originally derived from a mouse mu H chain leader sequence (M.S. Neuberger et al., Nature 1985 314:268-270) that was used in the construction of reshaped human D1.3 and V regions (Verhoeven et al., 1988). Since the reshaped human D1.3 was expressed in a mammalian cell vector that employed a mouse immunoglobulin promoter, the presence of the mouse leader intron was important. The leader intron contains sequences that are important for expression from immunoglobulin promoters but not from viral promoters like HCMV (M.S. Neuberger et al., Nucl. Acids Res. (1988) 16:6713-6724). Where the reshaped human PM-1 L and H chains were being expressed in vectors employing non-immunoglobulin promoters, the introns in the leader sequences were deleted by PCR cloning cDNAs coding for the reshaped human V regions (see Example 12).

Another possible cause of reduced levels of expression was thought to be the presence of a stretch of approximately 190 bp of non-functional DNA within the intron between the reshaped human PM-1 H chain V region and the human gamma-1 C region. The reshaped human PM-1 H chain V region was constructed from DNA sequences derived originally from reshaped human B1-8 H chain V region (P.T. Jones et al., Nature (1986) 321:522-525). This first reshaped human V region was constructed from the mouse NP H chain V region (M.S. Neuberger et al., Nature (1985); M.S. Neuberger et al., EMBO J. (1983) 2:1373-1378). This stretch of approximately 190 bp occurring in the intron between the reshaped human H chain V region and the BamHI site for joining of the reshaped human V regions to the expression vector was removed during the PCR cloning of cDNAs coding for the reshaped human V regions.

The DNA and amino acid sequences of the final versions of reshaped human PM-1 L and H chain V regions, as altered to improve expression levels, are shown in SEQ ID NOs: 57 and 56. These DNA sequences code for version "a" of the reshaped human PM-1 L chain V region as shown in Table 2 and version "f" of the reshaped human PM-1 H chain V region as shown in Table 3. When inserted into the HEF-1 α expression vectors (Figure 15), these vectors transiently produce approximately 2 μ g/ml of antibody in transfected *cos* cells. In order to stably produce larger amounts of reshaped human PM-1 antibody, a new HEF-1 α expression vector incorporating the dhfr gene was constructed (see Example 10, Fig. 11). The "crippled" dhfr gene was introduced into the HEF-1 α vector expressing human gamma-1 H chains as was described for the HCMV vector expressing human gamma-1 H chains. The HEF-1 α vector expressing reshaped human PM-1 L chains and the HEF-1 α -dhfr vector expressing reshaped human PM-1 H chains were co-transfected into CHO dhfr(-) cells. Stably transformed CHO cell lines were selected in Alpha-Minimum Essential Medium (α -MEM) without nucleosides and with 10% FCS and 500 μ g/ml of G418. Prior to any gene amplification steps, CHO cell lines were observed that produced up to 10 μ g/ 10^6 cells/day of reshaped human PM-1 antibody.

45 Comparison of V regions from mouse monoclonal antibody AUK 12-20 to V regions from known human antibodies

The homology of FRs of \times L chain V region of the mouse monoclonal antibody AUK 12-20 with FRs of human \times L chain V region subgroup (HSG) I to IV, and the homology of FRs of H chain V region of the mouse monoclonal antibody AUK 12-20 with FRs of human H chain V regions subgroup (HSG) I to III are shown in Table 4.

Table 4

Percent identities between FRs from the mouse
 5 AUK 12-20 V regions and FRs from the consensus
 sequence for the different subgroups of human
 10 V regions

FRs in the L chain V regions

	HSG1	HSG2	HSG3	HSG4
15	65.8	64.0	67.6	67.6

FRs in the H chain V regions

	HSGI	HSGII	HSGIII
20	58.6	53.6	49.1

As seen from Table 4, the xL chain V region of the mouse monoclonal, antibody AUK 12-20 is
 25 homologous in a similar extent (64 to 68%) with the human xL chain V region subgroups (HSG) I to IV. In a
 search of the Data base "LEEDS" for protein, L chain V region of human antibody Len (M. Schneider et al.,
 Physiol. Chem. (1975) 366:507-557) belonging to the HSG-IV exhibits the highest homology 68%. On the
 other hand, the human antibody REI, used for construction of a reshaped human antibody from the mouse
 30 monoclonal antibody PM-1 belongs to the HSG I, exhibits a 62% homology with L chain V region of the
 mouse monoclonal antibody AUK 12-20. In addition, the CDRs in the AUK 12-20 antibody L chain V region
 particularly CDR2, corresponded better to canonical structures of the CDRs in REI rather than those in LEN.

Considering the above, it is not necessary to choose a human antibody used for humanization of the
 mouse monoclonal antibody AUK 12-20 L chain V region from those antibodies belonging to the HSG IV.
 Therefore, as in the case of the humanization of the mouse monoclonal antibody PM-1 L chain V region, the
 35 FRs of REI are used for humanization of the mouse monoclonal antibody AUK 12-20 L chain V region.

As shown in Table 4, H chain V region of the antibody AUK 12-20 exhibits the highest homology with
 the HSG I. Moreover, in a search of Data base "LEEDS", human antibody HAX (Stollar, B.O. et al., J.
 Immunol. (1987) 139:2496-2501) also belonging to the HSG I exhibits an about 66% homology with the AUK
 12-20 antibody H chain V region. Accordingly, to design reshaped human AUK 12-20 antibody H chain V
 40 region, the FRs of the human antibody HAX belonging to the HSG I, and FRs of humanized 425 antibody H
 chain V region which has FRs consisting of HSGI consensus sequence (Ketteborough C.A. et al., Protein
 Engineering (1991) 4:773-783) are used. Note, the AUK 12-20 antibody H chain V region exhibits an about
 64% homology with version "a" of the humanized 425 antibody H chain V region.

45 Design of reshaped human AUK 12-20 antibody L-chain V regions

According to the above reason, reshaped human AUK 12-20 antibody L chain V regions is designed as
 shown in Table 5 using FRs of the REI.

Table 5

5	FR1	CDR1
10	1 2	3
	12345678901234567890123	4567778901234 ABCD
15		
	V _L AUK 12-20 DIVLTQSPASILGVSLGQRATISC	RASKSVSTSGYSYM
	REI DIQMTQSPSSLSASVGDRVITIC	
	RV _L DIQMTQSPSSLSASVGDRVITIC	RASKSVSTSGYSYM
20		
	FR2	CDR2
	4 5	
	567890123456789	0123456
25		
	V _L AUK 12-20 WYQQKPGQTPKLLIY	ASNLES
	REI WYQQTPGKAPKLLIY	
	RV _L WYQQKPGKAPKLLIY	ASNLES
30		
	FR3	CDR3
	6 7 8	
	78901234567890123456789012345678	9 90123456
35		
	V _L AUK 12-20 GVPARFSGSGSGTDFTLNIHPVEEDAATYYC	QHSRENPY
	REI GVPSRFSGSGSGTDYTFTISSLQPEDIATYYC	
	RV _L GVPSRFSGSGSGTDFTFTISSLQPEDIATYYC	QHSRENPY
40		
	FR4	
	10	
	8901234567	
	V _L AUK 12-20 FGGGTKLEIK	
	REI FGQGTKLQIT	
	RV _L FGQGT <u>K</u> VEIK	

Note: 5 underlined nucleotides are those changed in the
design of CAMPATH-1H antibody (see the note of
Table 2).

55 Design of reshaped human AUK 12-20 antibody H chain V regions

According to the above reason, reshaped human AUK 12-20 antibody H chain V regions are designed using FRs of the reshaped human VH₄ 425. It is found, however, that nucleotide sequence of DNA coding

for reshaped human AUK 12-20 antibody H chain V region thus designed has a sequence well conforming to a splicing donor sequence. Therefore, as in the case of reshaped human PM-1 antibody there is a possibility of an abnormal splicing in the reshaped human AUK 12-20 antibody. Therefore, the nucleotide sequence was partially modified to eliminate the splicing donor-like sequence. The modified sequence is 5 designated as version "a".

In addition, version "b" to "d" of the reshaped human AUK 12-20 antibody H chain V region were designed. Amino acid sequences of the versions "a" to "d" are shown in Table 6.

10

Table 6

		FR1	CDR1
		1 2 3	
15		123456789012345678901234567890	12345
	V _H AUK 12-20	EIQLQQSGPELMKPGASVKISCKASGYSFT	SYYIH
20	SGI	ZVQLVQSGAEVKKPGXSVXVSCKASGYTFS	
	RV _H a	QVQLVQSGAEVKKPGASVKVSCKASGYS <u>F</u> T	SYYIH
	RV _H b	-----	-----
25	RV _H c	-----	-----
	RV _H d	-----	-----

30

35

40

45

50

55

		FR2		CDR2
		4 67890123456789		5 01223456789012345 A
5	V _H AUK 12-20	WVKQSHGKSLEWIG		YIDPFNGGTSYNQKFKG
	SGI	WVRQAPGXGLEWVG		
10	RV _H a	WVRQAPGQGLEWVG		YIDPFNGGTSYNQKFKG
	RV _H b	-----		-----
	RV _H c	-----I-		-----
15	RV _H d	-----I-		-----
			FR3	
		7 67890123456789012222345678901234	8 ABC	9
20	V _H AUK 12-20	KATLTVDKSSSTAYMHLSSLTSEDSAVYYCAR		
	SGI	RVTXTXDXSXNTAYMELSSLRSEDTAVYYCAR		
25	RV _H a	RVTMTLDTSTNTAYMELSSLRSEDTAVYYCAR		
	RV _H b	K----V-----		
	RV _H c	-----		
30	RV _H d	K----V-----		
			CDR3	
		10 5678900012 AB	FR4	
			11 34567890123	
35	V _H AUK 12-20	GGN-RF--AY		WGQGTLVTVSA
	SGI			WGQGTLVTVSS
40	RV _H a	GGN-RF--AY		WGQGTLVTVSS
	RV _H b	-----		-----
	RV _H c	-----		-----
45	RV _H d	-----		-----

Note: The position where one common amino acid residue
 50 is not identified in the HSG I V_H regions (SGI) is
 shown as "X". Two underlined amino acid residues

are different from those in SGI consensus sequence. For RV_Bb, RV_Bc and RV_Bd, only amino acid residues different from those of RV_Ba are shown.

Moreover, version "a" to "d" of reshaped human AUK 12-20 antibody H chain V region are designed as shown in Table 7, using FRs of the human antibody HAX (J. Immunology (1987) 139:2496-2501; an antibody produced by hybridoma 21/28 cells derived from B cells of a SLE patient; its amino acid sequence is described in Fig. 6 and nucleotide sequence of DNA coding for the amino acid sequence is shown in Figs. 4 and 6, of this literature).

Table 7

		FR1	CDR1
		1 2 3	12345
20		123456789012345678901234567890	
	V _B AUK 12-20	EIQLQQSGPELMKPGASVKISCKASGYSFT	SYYIH
	SGI	QVQLVQSGAEVKPGASVKVSCKASGYTFT	
25	sle: 1220Ha	QVQLVQSGAEVKPGASVKVSCKASGYSFT	SYYIH
	1220Hb	-----S--	-----
30	1220Hc	-----S--	-----
	1220Hd	-----S--	-----

35

40

45

50

55

		FR2		CDR2
5		4 67890123456789		5 0122223456789012345 ABC
V _B AUK 12-20		WVKQSHGKSLEWIG		YIDP--FNGGTSYNQKFKG
HAX		WVRQAPGQRLEWMG		
10	sle:			
1220Ha		WVRQAPGQRLEWMG		YIDP--FNGGTSYNQKFKG
1220Hb		-----I-		-----
1220Hc		-----		-----
15	1220Hd	-----I-		-----
20		FR3		
		7 67890123456789012222345678901234	8 ABC	9
V _B AUK 12-20		KATLTVDKSSSTAYMHLSSLTSEDAVYYCAR		
HAX		RVТИTRDTSASTAYMELSSLRSEDTAVYYCAR		
sle:				
1220Ha		RVTI <u>T</u> DTSASTAYMELSSLRSEDTAVYYCAR		
1220Hb		-----V-----		
30	1220Hc	K---V-----		
	1220Hd	K---V-----		
35		CDR3		FR4
		10 5678900012 AB		11 34567890123
V _B AUK 12-20	GGN-RF--AY		WGQGTLVTVSA	
HAX			WGQGTLVTVSS	
sle:				
1220Ha	GGN-RF--AY		WGQGTLVTVSS	
45	1220Hb	-----	-----	
	1220Hc	-----	-----	
	1220Hd	-----	-----	
50	Note:	The two underlined residues in sle1220Ha		

5
 are changes from the HAX FRs. For
 sle1220Hb, sle1220Hc, and sle1220Hd, only
 the amino acids in the FRs that differ
 from those in the HAX FRs are shown.

For the production of the present chimeric or reshaped human antibodies to the human IL-6R, any
 10 expression system, including eucaryotic cells, for example, animal cells, such as established mammalian
 cell lines, fungal cells, and yeast cells, as well as procaryotic cells, for example, bacterial cells such as
E.coli cells, may be used. Preferably the present chimeric or reshaped human antibodies are expressed in
 mammalian cells such as cos cells or CHO cells.

In such cases, a conventional promoter useful for the expression in mammalian cells can be used. For
 15 example, viral expression system such as human cytomegalovirus immediate early (HCMV) promoter is
 preferably used. Examples of the expression vector containing the HCMV promoter include HCMV-V_H-
 HC_γ1, HCMV-V_L-HC_K, HCMV-12h-g_γ1, HCMV-12k-gk and the like derived from pSV2neo, as shown in Fig.
 1.

Another embodiment of promoter useful for the present invention is the human elongation factor 1 α -
 20 (HEF-1 α) promoter. Expression vectors containing this promotor include HEF-12h-g_γ1 and HEF-12h-g_x -
 (Figs. 8 and 9), as well as HEF-V_H-g_γ1 and HEF-V_L-g_x (Fig. 15).

For gene amplification dhfr in a host cell line, an expression vector may contain a dhfr gene. Expression
 vectors containing the dhfr gene, are for example, DHFR-ΔE-PMh-g_γ1 (Fig. 10), DHFR-ΔE-RVh-PM1-f (Fig.
 11) and the like.

25 In summary, the present invention first provides an L chain V region and an H chain V region of a
 mouse monoclonal antibody to the human IL-6R, as well as DNA coding for the L chain V region and DNA
 coding for the H chain V region. These are useful for the construction of a human/mouse chimeric antibody
 and reshaped human antibody to the human IL-6R. The monoclonel antibodies are, for example, AUK12-20,
 30 PM-1, AUK64-7 and AUK146-15. The L chain V region has an amino acid sequence shown in, for example,
 SEQ ID NOs: 24, 26, 28 or 30; and the H chain V region has an amino acid sequence shown in SEQ ID
 NOs: 25, 27, 29, or 31. These amino acid sequences are encoded by nucleotide sequences, for example,
 shown in SEQ ID NOs: 24 to 31 respectively.

The present invention also relates to a chimeric antibody to the human IL-6R, comprising:

(1) an L chain comprising a human L chain C region and a mouse L chain V region; and
 35 (2) an H chain comprising a human H chain C region and a mouse H chain V region. The mouse L chain
 V region and the mouse H chain V region and DNA encoding them are as described above. The human
 L chain C region may be any human L chain C region, and for example, is human C_x. The human H
 chain C region may be any human H chain C region, and for example human C_γ1.

For the production of the chimeric antibody, two expression vectors, i.e., one comprising a DNA coding
 40 for a mouse L chain V region and a human L chain C region under the control of an expression control
 region such as an enhancer/promoter system, and another comprising a DNA coding for a mouse H chain V
 region and a human H chain C region under the expression control region such as an enhancer/promotor
 system, are constructed. Next, the expression vectors are co-transfected to host cells such as mammalian
 cells, and the transfected cells are cultured in vitro or in vivo to produce a chimeric antibody.

45 Alternatively, a DNA coding for a mouse L chain V region and a human L chain C region and a DNA
 coding for a mouse H chain V region and a human H chain C region are introduced into a single expression
 vector, and the vector is used to transfet host cells, which are then cultured in-vivo or in-vitro to produce a
 desired chimeric antibody.

The present invention further provides a reshaped antibody to the human IL-6R, comprising:

50 (A) an L chain comprising,
 (1) a human L chain C region, and
 (2) an L chain V region comprising a human L chain FRs, and L chain CDRs of a mouse monoclonal
 antibody to the human IL-6R; and
 (B) an H chain comprising,
 55 (1) a human H chain C region, and
 (2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal
 antibody to the IL-6R.

In a preferred embodiment, the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9; the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9; human L chain FRs are derived from the REI; and human H chain FRs are derived from the NEW or HAX.

5 In the preferred embodiment, the L chain V region has an amino acid sequence shown in Table 2 as RV_{LA}; and the H chain V region has an amino acid sequence shown in Table 3 as RV_{HA}, RV_{Hb}, RV_{HC}, RV_{HD}, RV_{HE} or RV_{HF}. The amino acid sequence RV_{HF} is most preferable.

10 For the production of the reshaped human antibody, two expression vectors, i.e., one comprising a DNA coding for the reshaped L chain as defined above under the control of an expression control region such as an enhancer/promoter system, and another comprising a DNA coding for the reshaped human H chain as defined above under the expression control region such as an enhancer/promoter system, are constructed. Next, the expression vectors are co-transfected to host cells such as mammalian cells, and the transfected cells are cultured in vitro or in-vivo to produce a reshaped human antibody.

15 Alternatively, a DNA coding for the reshaped human L chain and a DNA coding for the reshaped H chain are introduced into a single expression vector, and the vector is used to transfect host cells, which are then cultured in vivo or in vitro to produce a desired reshaped human antibody.

20 A chimeric antibody of a reshaped human antibody thus produced can be isolated and purified by conventional processes such as Protein A affinity chromatography, ion exchange chromatography, gel filtration and the like.

The present chimeric L chain or reshaped human L chain can be combined with an H chain to construct a whole antibody. Similarly, the present chimeric H chain or reshaped human H chain can be combined with an L chain to construct a whole antibody.

25 The present mouse L chain V region, reshaped human L chain V region, mouse H chain V region and reshaped human H chain V region are intrinsically a region which binds to an antigen, human IL-6R, and therefore considered to be useful as such or as a fused protein with other protein, for preparing pharmaceuticals or diagnostic agents.

30 Moreover, the present L chain V region CDRs and H chain V region CDRs are intrinsically regions which bind to an antigen, human IL-6R, and therefore considered to be useful as such or as a fused protein with other protein, for preparing pharmaceuticals or diagnostic agents.

DNA coding for a mouse L chain V region of the present invention is useful for construction of a DNA coding for a chimeric L chain or a DNA coding for a reshaped human L chain.

35 Similarly, DNA coding for a mouse H chain V region of the present invention is useful for construction of a DNA coding for a chimeric H chain or a DNA coding for a reshaped human H chain. Moreover, DNA coding for L chain V region CDR of the present invention is useful for construction of a DNA coding for a reshaped human L chain V region and a DNA coding for a reshaped human L chain. Similarly, DNA coding for H chain V region CDR of the present invention is useful for construction of a DNA coding for a reshaped human H chain V region and a DNA coding for a reshaped human H chain.

40 EXAMPLES

The present invention will be further illustrated by, but is by no means limited to, the following Examples.

45 Example 1 Cloning of DNA coding for V region of mouse monoclonal antibody to human IL-6R (1)

A DNA coding for the V region of a mouse monoclonal antibody to a human IL-6R was cloned as follows.

50 1. Preparation of total RNA

Total RNA from hybridoma AUK12-20 was prepared according to a procedure described by Chirgwin et al., Biochemistry 18, 5294 (1979). Namely, 2.1×10^8 cells of the hybridoma AUK12-20 were completely homogenized in 20 ml of 4 M guanidine thiocyanate (Fulka). The homogenate was layered over a 5.3 M cesium chloride solution layer in a centrifuge tube, which was then centrifuged in a Beckman SW40 rotor at 31000 rpm at 20°C for 24 hours to precipitate RNA. The RNA precipitate was washed with 80% ethanol and dissolved in 150 µl of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA and 0.5% SDS, and after adding Protease (Boehringer) thereon to 0.5 mg/ml, incubated at 37°C for 20 minutes. The mixture was

extracted with phenol and chloroform, and RNA was precipitated with ethanol. Next, the RNA precipitate was dissolved in 200 µl of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA.

2. Synthesis of single stranded cDNA

To synthesize single stranded cDNA according to a procedure described by J.W. Lerrick et al., Biotechnology, 7, 934 (1989), about 5 µg of the total RNA prepared as described above was dissolved in 10 µl of 50 mM Tris-HCl (pH 8.3) buffer solution containing 40 mM KCl, 6 mM MgCl₂, 10 mM dithiothreitol, 0.5 mM dATP, 0.5 mM dGTP, 0.5 mM dCTP, 0.5 mM dTTP, 35 µM oligo dT primer (Amersham), 48 units of RAV-2 reverse transcriptase (RAV-2: Rous associated virus 2; Amersham) and 25 units of human placenta ribonuclease inhibitor (Amersham), and the reaction mixture was incubated at 37°C for 60 minutes and directly used for the subsequent polymerase chain reaction (PCR) method.

3. Amplification of cDNA coding for antibody V region by PCR method

The PCR method was carried out using a Thermal Cycler Model PHC-2 (Techne).

(1) Amplification of cDNA coding for mouse x light (x L) chain variable region

The primers used for the PCR method were MKV (Mouse Kappa Variable) primers represented in SEQ ID NO: 1 to 11, which hybridize with a mouse x L chain reader sequence (S.T. Jones et al., Biotechnology, 9, 88, 1991), and an MKC (Mouse Kappa Constant) primer represented in SEQ ID NO: 12, which hybridizes with a mouse x L chain C region (S.T. Jones et al., Biotechnology, 9, 88, 1991).

First, 100 µl of a PCR solution comprising 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.1 mM dATP, 0.1 mM dGTP, 0.1 mM dCTP, 0.1 mM dTTP, 1.5 mM MgCl₂, 2.5 units of DNA polymerase Ampli Taq (Perkin Elmer Cetus), 0.25 µM of each group of MKV primer, 3µM MKC primer and 1 µl of the reaction mixture of the single-stranded cDNA synthesis was heated at an initial temperature of 94°C for 1.5 minutes, and then at 94°C for 1 minute, 50°C for 1 minute and 72°C for 1 minute, in this order. After this temperature cycle was repeated 25 times, the reaction mixture was further incubated at 72°C for 10 minutes.

(2) Amplification of cDNA coding for mouse H chain V region

As primers for the PCR, MHV (Mouse Heavy Variable) primers 1 to 10 represented in SEQ ID NO: 13 to 22 (S.T. Jones et al., Biotechnology, 9, 88, 1991), and an MHC (Mouse Heavy Constant) primer represented in SEQ ID NO: 23 (S.T. Jones et al., Biotechnology, 9, 88, 1991) were used. Amplification was carried out according to the same procedure as described for the amplification of the x L chain V region gene in section 3. (1).

4. Purification and Digestion of PCR Product

The DNA fragments amplified by the PCR as described above were purified using a QIAGEN PCR product purification kit (QIAGEN Inc. US), and digested with 10 units of restriction enzyme Sal I (GIBCO BRL) in 100 mM Tris-HCl (pH 7.6) containing 10 mM MgCl₂ and 150 mM NaCl, at 37°C for three hours. The digestion mixture was extracted with phenol and chloroform, and the DNA was recovered by ethanol precipitation. Next, the DNA precipitate was digested with 10 units of restriction enzyme Xma I (New England Biolabs), at 37°C for two hours, and resulting DNA fragments were separated by agarose gel electrophoresis using low melting agarose (FMC Bio Products USA).

An agarose piece containing DNA fragments of about 450 bp in length was excised and melted at 65°C for 5 minutes, and an equal volume of 20 mM Tris-HCl (pH 7.5) containing 2 mM EDTA and 200 mM NaCl was added thereon. The mixture was extracted with phenol and chloroform, and the DNA fragment was recovered by ethanol precipitation and dissolved in 10 µl of 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA. In this manner, a DNA fragment comprising a gene coding for a mouse x L chain V region, and a DNA fragment comprising a gene coding for a mouse H chain V region were obtained. Both of the above DNA fragments had a Sal I cohesive end at the 5'-end thereof and an Xma I cohesive end at the 3'-end thereof.

5. Ligation and Transformation

About 0.3 µg of the Sal I - Xma I DNA fragment comprising a gene coding for a mouse x L chain V region, prepared as described above, was ligated with about 0.1 µg of a pUC19 vector prepared by digesting plasmid pUC19 by Sal I and Xma I, in a reaction mixture comprising 50 mM Tris-HCl (pH 7.4), 10mM MgCl₂, 10 mM dithiothreitol, 1 mM spermidine, 1 mM dATP, 0.1 µg/ml of bovine serum albumin and 2 units of T4 DNA ligase (New England Biolabs), at 16 °C for 16 hours.

Next, 7 µl of the above ligation mixture was added to 200 µl of competent cells of *E. coli* DH5α, and the cells were incubated for 30 minutes on ice, for one minute at 42 °C, and again for one minute on ice. After adding 800 µl of SOC medium (*Molecular Cloning: A Laboratory Manual*, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989), the cell suspension was incubated at 37 °C for one hour, and inoculated onto an 2xYT agar plate (*Molecular Cloning: A Laboratory Manual*, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989), which was then incubated at 37 °C overnight to obtain an *E.coli* transformant. The transformant was cultured in 5 ml of 2xYT medium containing 50 µg/ml ampicillin, at 37 °C overnight, and a plasmid DNA was prepared from the culture according to an alkaline method (*Molecular Cloning: A Laboratory Manual*, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989). The thus-obtained plasmid containing a gene coding for a mouse x L chain V region derived from the hybridoma AUK12-20, was designated p12-k2.

According to the same procedure as described above, a plasmid containing a gene coding for a mouse H chain V region derived from the hybridoma AUK12-20 was constructed from the Sal I - Xma I DNA fragment, and designated p12-h2.

Example 2 Cloning of DNA coding for V region of mouse monoclonal antibody (2)

Substantially the same procedure as described in Example 1 was applied to the hybridoma PM1, AUK64-7, and AUK146-15, to obtain the following plasmids:
 a plasmid pPM-k3 containing a gene coding for a x L chain V region derived from the hybridoma PM1;
 a plasmid pPM-h1 containing a gene coding for an H chain V region derived from the hybridoma PM1;
 a plasmid p64-k4 containing a gene coding for a x L chain V region derived from the hybridoma AUK64-7;
 a plasmid p64-h2 containing a gene coding for an H chain V region derived from the hybridoma AUK64-7;
 a plasmid p146-k3 containing a gene coding for a x L chain V region derived from the hybridoma AUK146-15; and
 a plasmid p146-h1 containing a gene coding for an H chain V region derived from the hybridoma AUK146-15.

Note *E. coli* strains containing the above-mentioned plasmid were deposited with the National Collections of Industrial and Marine Bacteria Limited under the Budapest Treaty on February 11, 1991, and were given the accession number shown in Table 8.

40

Table 8

Plasmid	SEQ ID NO	Accession No.
p12 - k2	24	NCIMB 40367
p12 - h2	25	NCIMB 40363
pPM - k3	26	NCIMB 40366
pPM - h1	27	NCIMB 40362
p64 - k4	28	NCIMB 40368
p64 - h2	29	NCIMB 40364
p146 - k3	30	NCIMB 40369
p146 - h1	31	NCIMB 40365

55

Example 3 Sequencing of DNA

Nucleotide sequences of a cDNA coding region in the above-mentioned plasmids were determined using a kit, Sequenase™ Version 2.0 (U.S. Biochemical Corp. USA).

First, about 3 µg of plasmid DNA obtained as described above was denatured with 0.2 N NaOH, annealed with a sequencing primer, and labeled with ³⁵S-dATP according to a protocol of the supplier. Next, the labeled DNA was applied to 6% polyacrylamide gel containing 8 M urea, and, after electrophoresis, the gel was fixed with 10% methanol and 10% acetic acid, dried, and subjected to autoradiography to determine the nucleotide sequence.

5 The nucleotide sequence of cDNA coding region in each plasmid is shown in SEQ ID NOs 24 to 31.

Example 4 Determination of CDRs

10 General structures of L chain and H chain V regions are similar each other, wherein 4 frame works (FRs) are linked through 3 super variable regions, i.e., complementarity determining regions (CDRs). While amino acid sequences in the FRs are relatively well conserved, amino acid sequences in CDRs are very highly variable (Kabat, E.A. et al., "Sequences of Proteins of Immunological Interest", US Dept. Heath and Human Services 1983).

15 On the basis of the above-determined amino acid sequences of V regions of mouse monoclonal antibodies to human IL-6R, and according to Kabat, E.A. et al., "Sequences of Proteins of Immunological Interest", US Dept. Health and Human Services 1983, CDRs of each V region of mouse monoclonal antibodies to the human IL-6R were determined as shown in Table 9.

20

Table 9

plasmid	SEQ ID NO	CDR(1)	CDR(2) (Amino acid No.)	CDR(3)
25	p12-K2	24	24-38	54-60
	p12-h2	25	31-35	50-66
	pPM-k3	26	24-34	50-56
	pPM-h1	27	31-36	51-66
	p64-k4	28	24-38	54-60
	p64-h2	29	31-35	50-66
30	p146-k3	30	24-34	50-56
	p146-h1	31	31-35	50-66

35

Example 5 Confirmation of expression of cloned cDNA(1) (Construction of Chimeric AUK12-20 antibody)

Construction of Expression Plasmid

40 A chimeric L chain/H chain was constructed from PCR-cloned cDNAs coding for V regions x L chain and H chain of AUK12-20. In order to easily join a cDNA coding for the mouse AUK12-20 V region to a DNA coding for a human C region in a mammalian expression vector containing an enhancer and promoter of human cytomegalovirus (HCMV) expression vector, it is necessary to introduce convenient restriction enzyme cleavage sites to the 5'- and 3'- termini of the mouse cDNA.

45 This modification of the 5'- and 3'- termini was carried out by PCR method. Two sets of primers were designed and synthesized. An L chain V region backward primer (SEQ ID NO: 32) and H chain V region backward primer (SEQ ID NO: 33) were designed so that the primers hybridize with a DNA coding for the beginning of the leader sequence, maintain a DNA sequence essential for efficient translation (Kozak, M., J. Mol. Biol. 196: 947-950, 1987) and form a HindIII site for cloning into the HCMV expression vector. An L chain V region forward primer (SEQ ID NO: 34) and an H chain V region forward primer (SEQ ID NO: 35) were designed so that the primers hybridize with a DNA coding for the terminal portion of the J' region, maintain a DNA sequence essential for splicing into the C region and form a Bam HI site for joining to the human C region in the HCMV expression vector.

50 Following the amplification by the PCR, the PCR product was digested with Hind III and BamHI, cloned into the HCMV vector containing the human x and γ1 chain C regions DNA and sequenced to confirm that errors were not introduced during the PCR amplification. The resulting expression vectors are designated as HCMV-12k-gk and HCMV-12h-gyl.

The structures of the HCMV expression plasmids are shown in Fig. 1. In the plasmid HCMV-V_L-HC_K, V_L region may be any mouse L chain V region. In this example, AUK12-20 xL chain V region was inserted to obtain the HCMV-12k. In the plasmid HCMV-V_H-HC_{Gy}, V_H region may be any mouse H chain V region. In

this example, AUK12-20 H chain V region was inserted to obtain HCMV-12h-gyl.

Transient expression in COS cells

- 5 To observe transient expression of a chimeric AUK12-20 antibody in COS cells, the expression vectors constructed as described above were tested in the COS cells. The vector DNAs were introduced into COS cells by electroporation using a Gene Pulsar apparatus (Bio Rad). Namely, COS cells were suspended in phosphate-buffered saline (PBS) to a cell concentration of 1×10^7 cells / ml, and to 0.8 ml aliquot of the suspension was added 10 µg (per each plasmid) of DNA. Pulses were applied at 1,900 V and 25 µF.
- 10 After recovery period of 10 minutes at a room temperature, the electroporated cells were added to 8 ml of DMEM (GIBCO) containing 10% fetal bovine serum. After incubation for 72 hours, a culture supernatant is collected, centrifuged to eliminate cell debris, and aseptically stored for a short period at 4 °C or for a long period at -20 °C.

15 Quantification of chimeric antibody by ELISA

A culture supernatant of the transfected COS cells was assayed by ELISA to confirm the production of chimeric antibody. To detect the chimeric antibody, a plate was coated with goat anti-human IgG whole molecule (Sigma). The plate was blocked, and serially diluted supernatant from the COS cell culture was 20 added to each well. After incubation and washing, alkaline phosphatase-linked goat anti-human IgG (γ -chain specific, Sigma) was added to each well. After incubation and washing, substrate buffer was added thereon. The reaction mixture was incubated, and after termination of the reaction, optical density at 405 nm was measured. As a standard, purified human IgG (Sigma) was used.

25 ELISA for confirmation of an ability to bind to human IL-6R

A culture supernatant of the transformed COS cells was assayed by ELISA to determine whether the produced antibody can bind to the antigen. To detect the binding to the antigen, a plate was coated with MT18 mouse monoclonal antibody (Reference Example 1), and after blocking with 1% bovine serum albumin (BSA) soluble recombinant human IL-6R (SR 344) was added thereon. After washing, a serially diluted culture supernatant from the COS cells was added to each well. After incubation and washing alkaline phosphatase-linked goat anti-human IgG was added. The reaction mixture was incubated, and after washing a substrate buffer was added. After incubation, the reaction was terminated, and optical density at 405 nm was measured.

35 A result is shown in Fig. 2. Transfection of gene coding for a chimeric antibody AUK12-20 into COS cells was twice repeated. Both the culture supernatant samples exhibited a strong binding to IL-6R, and optical density at 405 nm was changed in a sample dilution (monoclonal antibody concentration) - dependent manner as shown in Fig. 2 by open circles and closed circles revealing the presence of an antibody to IL-6R in the sample.

40 Determination of an ability to inhibit the binding to IL-6R with IL-6

To determine whether an antibody present in a medium inhibits the binding of IL-6R with IL-6, a plate was coated with MT18 monoclonal antibody (Reference Example 1). After blocking, soluble recombinant human IL-6R (SR 344) was added thereon. After washing, serially diluted sample from COS cell culture was added to each well with biotinylated IL-6.

45 After washing, alkaline phosphatase-linked streptoavidin was added, and after incubation and washing, a substrate buffer was added. The reaction mixture was incubated, and after termination of the reaction, optical density at 405 nm was measured, purified mouse AUK12-20 monoclonal antibody was added as a positive control, and a culture medium from COS cells expressing a non-related antibody was used as a negative control.

50 A result is shown in Fig. 3. A culture supernatant of COS cells transfected with genes coding for chimeric antibody AUK 12-20 exhibited the binding of IL-6R with IL-6 at the highest and second highest concentrations. Namely, as shown by closed circles in Fig. 3, optical density at 405 nm changed in a sample dilution (antibody concentration) dependent manner, revealing the inhibition of the binding to IL-6R with IL-6 by an antibody in the sample. This is further confirmed by substantive conformity with antibody concentration dependent change of the positive control (open circles). Note, the negative control did not exhibit inhibition activity (open triangles).

Example 6 Confirmation of expression of cloned cDNA (2) (Construction of chimeric PM-1 antibody)(Construction of expression vectors)

5 In order to construct vectors expressing chimeric PM-1 antibody, the cDNA clones pPM-k3 and pPM-h1, coding for the mouse PM-1 α L chain and the H chain V regions, respectively, were modified by a PCR technique, and then introduced into the HCMV expression vectors (see Figure 1). The backward primers pmk-s (SEQ NO: 38) for L chain V region and pmh-s (SEQ NO: 40) for H chain V region were designed to hybridize to the DNA sequences coding for the beginning of the leader sequences, and to have Kozak 10 consensus sequence and a HindIII restriction site. The forward primers pmk-a (SEQ No: 36) for L chain V region and pmh-a (SEQ No: 39) for H chain V region were designed to hybridize to the DNA sequences coding for the ends of the J regions, and to have a splice donor sequence and a BamHI restriction site.

For the kappa L chain V region, two forward primers were synthesized. Although in most kappa L chains lysine at position 107 is conserved, in mouse PM-1 kappa L chain position 107 is an asparagine. In 15 order to investigate the effect of this change on the antigen-binding activity of the chimeric PM-1 antibody, the forward primer pmk-b (SEQ NO: 37) was designed to mutate position 107 from an asparagine to a lysine. Following the PCR reaction, the PCR products were purified, digested with HindIII and BamHI, and subcloned into a pUC19 vector (Yanishe-Perron et al., Gene (1985) 33:103-109). After DNA sequencing, the HindIII-BamHI fragments were excised and cloned into the expression vector HCMV-V_H-HC_{k1} to obtain 20 HCMV-pmh-g_{y1} for the chimeric H chain, and into the expression vector HCMV-V_L-HC_k to obtain HCMV-pmka-g_k and HCMV-pmkb-g_k for the chimeric L chain.

Transfection of cos cells

25 The vectors were tested in cos cells to look for transient expression of chimeric human PM-1 antibodies. The HCMV-pmh-g_{y1}, and either HCMV-pmka-g_k or HCMV-pmkb-g_k were co-transfected into the cos cells by electroporation using the Gene Pulsar apparatus (BioRad). DNA (10 μ g of each plasmid) was added to a 0.8 ml aliquot of 1×10^7 cells/ml in PBS. A pulse was delivered at 1,900 volts, 25 microfarads capacitance. After a 10 min recovery period at a room temperature, the electroporated cells were added to 30 20 ml of Dulbecco's Modified Eagle Medium (DMEM) (GIBCO) containing 10% gamma-globulin-free fetal calf serum. After 72 h incubation, the medium was collected, centrifuged to remove cellular debris, and stored under sterile conditions at 4 °C for short periods of time, or at -20 °C for longer periods.

Expression and analysis of the chimeric PM-1 antibodies

35 After 3 days of transient expression, medium from the cos cells was collected and tested for chimeric PM-1 antibody. The medium was first analyzed by ELISA to determine if human-like antibody was being produced by the transfected cos cells. By using known amounts of purified human IgG as a standard in this assay, it is also possible to estimate an amount of human-like antibody (in this case, chimeric PM-1 40 antibody) present in the medium from the cos cells. For the detection of human antibody, plates were coated with goat anti-human IgG (whole molecule, Sigma). Following blocking, the samples from cos cells were serially diluted and added to each well. After incubation and washing, alkaline phosphatase-conjugated goat anti-human IgG (gamma chain specific, Sigma) was added. After incubation and washing, substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. 45 Purified human IgG (Sigma) was used as a standard.

The medium from the cos cells transfected with the vectors carrying the chimeric PM-1 genes was positive for the expression of a human-like antibody and the approximate amounts were quantified as described.

Next, the same medium from the cos cells transfected with the vectors carrying the chimeric PM-1 50 genes was assayed for an ability to bind to human IL-6R. For the detection of binding to the antigen, plates were coated with MT18 mouse monoclonal antibody (Reference Example 1), an antibody to the human IL-6R. Following blocking, soluble recombinant human IL-6R (SR344) was added. After washing, the samples were serially diluted and added to each well. After incubation and washing, alkaline phosphatase-conjugated goat anti-human IgG (gamma chain specific sigma) was added. After incubation and washing, 55 substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. There was no standard available for this assay.

Two samples were from transfection with genes coding for a chimeric antibody with V regions identical to those found in mouse PM-1 antibody (chimeric PM-1a antibody, Figure 4). One sample was from

transfection with genes coding for a chimeric antibody with a single amino acid change at position 107 in the L chain V region as described above (chimeric PM-1b antibody, Figure 4). All samples showed strong binding to IL-6R that decreased with dilution of the sample. Thus, the chimeric PM-1 antibody, as constructed, is functional and can bind well to its antigen. Most importantly, the demonstration of a functional chimeric PM-1 is direct evidence that the correct mouse PM-1 V regions have been cloned and sequenced. The chimeric PM-1 antibody, with either amino acid at position 107 in the L chain V region, bound well to its antigen, IL-6R. It appears that position 107 in the mouse PM-1 L chain V region is not very critical in antigen-binding and that either an asparagine or a lysine at this position will function satisfactorily. Since the mouse PM-1 antibody has an asparagine at this position in its L chain V region, all future work with chimeric PM-1 antibody was done with version a, the version that has V regions identical to those found in mouse PM-1 antibody.

In order to stably produce larger amounts of chimeric PM-1 antibody, a new HCMV expression vector incorporating the dhfr gene was constructed. The first step in achieving higher levels of expression of the chimeric PM-1 antibody was to modify the vector HCMV-V_H-HC_{γ1} (Figure 1) so that this vector contained a dhfr gene being expressed by a "crippled" SV40 promoter-enhancer. The SV40 enhancer elements were deleted from the pSV2-dhfr vector (S. Subramani et al., Mol. Cell. Biol. (1981) 1:854-864) and the dhfr gene being expressed by the "crippled" SV40 promoter was inserted into the HCMV-V_H-HC_{γ1} vector in place of the neo gene being expressed by the SV40 promoter-enhancer. The mouse PM-1 V region was then inserted into this new HCMV-V_H-HC_{γ1}-dhfr vector. Construction of the improved expression vector is described in Example 10 in detail.

CHO dhfr(-) cells (G. Urlaub et al., Proc. Natl. Acad. Sci. USA (1980) 77:4216-4220) were co-transfected with two plasmid DNAs, the HCMV-V_L-HC_γ vector for expressing chimeric PM-1a L chain (HCMV-pmka-gk) and the HCMV-V_H-HC_{γ1}-dhfr vector for expressing chimeric PM-1 H chain (DHFR-ΔE PMh-gyl; Example 10). DNA (10 µg/ml of each plasmid) was added to a 0.8 ml aliquot of 1 × 10⁷ cells/ml in PBS. A pulse was delivered at 1900 volts, 25 microfarads capacitance. After a 10 min recovery period at a room temperature, the electroporated cells were added to 10 ml of Alpha minimum essential medium (α-MEM) containing nucleosides and 10% FCS. After overnight incubation, the medium was changed to α-MEM without nucleosides and with 10% FCS and 500 µg/ml of G418 (GIBCO) for the selection of dhfr⁺ and neo⁺ transformed cells. After selection, the selected clones were used for gene amplification. After one round of amplification in 2 × 10⁻⁸ M methotrexate (MTX), a cell line (PM1k3-7) was selected that produced approximately 3.9 µg/10⁶ cells/day of chimeric PM-1a antibody.

ELISA assay for the ability of chimeric antibodies to inhibit IL-6 from binding to human IL-6R.

Antibodies produced in transfected cos cells or in stable CHO cell lines were assayed to determine whether the antibodies could compete with biotinylated IL-6 for binding to IL-6R. Plates were coated with MT18 mouse monoclonal antibody. Following blocking, soluble recombinant human IL-6R (SR344) was added. After washing, the samples from the cos cells were serially diluted and added together with biotinylated IL-6 to each well. After washing, alkaline phosphatase-conjugated streptavidin was added. After incubation and washing, substrate buffer was added. After incubation, the reaction was stopped and the optical density at 405 nm measured. The Results are shown in Fig. 5.

Example 7 Construction of reshaped human PM-1 antibodies

In order to achieve CDR-grafting more rapidly and efficiently, a method for sequential CDR-grafting by PCR was developed. This method is based on PCR-mutagenesis methods (Kamman et al., 1989).

In order to prepare the template DNAs containing the selected human FRs for CDR-grafting, it was necessary to reclone suitable reshaped human V regions into convenient vectors. Plasmid DNAs alys11 and F10 code for reshaped human D1.3 L and H chains and contain the FRs from human REI and NEW, respectively. An approximately 500 bp Ncol-BamHI fragment containing DNA sequence coding for the reshaped human D1.3 L chain V region was excised from alys11 and subcloned into HindIII-BamHI cleaved-pBR327 to obtain a vector V1-lys-pBR327. HindIII-BamHI fragment from the V1-lys-pBR327 was inserted into HindIII-BamHI cleaved pUC19 to obtain a vector V1-lys-pUC19. An approximately 700 bp Ncol-BamHI fragment containing DNA sequence coding for the reshaped human D1.3 H chain V region was excised from F10 and subcloned into the HindIII-BamHI site of pBR327 vector, using a HindIII-Ncol adaptor, yielding Vh-lys-pBR327. A HindIII-BamHI fragment was then excised from this vector and subcloned into HindIII-BamHI cleaved pUC19 vector yielding Vh-lys-pUC19.

Note the construction of the plasmid alysII and the DNA sequence coding for the reshaped human D1.3 L chain V region used in a template is described. The DNA sequence coding for the reshaped human D1.3 H chain V region in the plasmid F10 used as a template is described in V. Verhoey et al., Science 237:1534-1536 (1988) Fig. 2.

Figure 6 diagrams the primers and the PCR reactions used in the construction of the first version of reshaped human PM-1 H chain V region. A backward primer A (APCR1; SEQ NO: 41) and a forward primer E (APCR4; SEQ NO: 42) hybridize to DNA sequences on the vector. Although APCR1 and APCR4 were specifically designed for pUC19 vector, universal M13 sequence primers could be used.

The CDR1-grafting/mutagenic primer B (phv-1; SEQ NO: 43), CDR2-grafting primer C (phv-2; SEQ NO: 44) and CDR3-grafting primer D (phv-3; SEQ NO: 45) were 40-60 bp in length, consisting of DNA sequences coding for CDRs from the mouse PM-1 H chain V region and the human FRs in the template DNA that flank the CDR regions. In the first PCR reaction, the forward primer APCR4 and the backward primer D were used. The first PCR product, which contains the mouse PM-1 CDR3 sequence, was purified and used in the second PCR reaction as a forward primer with primer C as the backward primer. In the same manner, the second and third PCR products, which contain mouse PM-1 CDR2 and CDR3, and all three mouse PM-1 CDRs, respectively, were used as primers in the following PCR step. The fourth PCR product, which has the complete reshaped human PM-1 H chain V region, was purified, digested with HindIII and BamHI, and subcloned into a pUC19 vector for further analysis.

Three mutagenic primers phv-1, phv-2, and phv-3 were synthesized for the construction of reshaped human PM-1 H chain V region. They were purified on 12% polyacrylamide gels containing 8M urea. The mutagenic primer phv-1 was designed not only for mouse PM-1 CDR1-grafting but also for mutations at positions 27 and 30 in human FR1, Ser to Tyr and Ser to Thr, respectively. Each 100 µl PCR reaction typically contained 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 250 µM dNTPs, 50 ng of the template DNA (Vh-lys-pUC19), 2.5 u of AmpliTaq (Perkin Elmer Cetus) and the primers. The first PCR reaction containing 1 µM of each of the phv-3 and APCR4 primers was carried out, after an initial denaturation at 94°C for 1.5 min, for 30 cycles of 94°C for 1 min, 37°C for 1 min and 72°C for 1 min were repeated. The ramp time between the annealing and synthesis steps was set for 2.5 min. The completion of the last cycle was followed by a final extension at 72°C for 10 min. A 523 bp PCR product was purified using a 1.6% low melting temperature agarose gel and then used as a primer in the second PCR reaction.

In the second PCR reaction approximately 1 µg of the purified first PCR product and 25 pmoles of the mutagenic primer phv-2 were used as primers. The PCR conditions were the same as described for the first PCR reaction. In the same manner, a 665 bp PCR product from the second PCR reaction and a 737 bp PCR product from the third reaction were used as primers in the third PCR reaction with the primer phv-1, and in the fourth PCR reaction with the primer APCR1, respectively. A 1.172 kb PCR product from the fourth PCR reaction was purified, digested with HindIII and BamHI, and then an approximately 700 bp fragment containing the reshaped human PM-1 H chain V region was subcloned into a pUC19 vector. Two of four clones sequenced had the DNA sequence coding for the correct amino acid sequence and were designated pUC-RVh-PM1a.

In order to construct other versions of reshaped PM-1 H chain V region, five mutagenic PCR primers were synthesized. Each PCR reaction was essentially carried out under the same condition as described above. For version "b", mutagenic primer phv-m4 (Val-71 to Arg-71; the number is according to Kabat et al; see Table 3) (SEQ ID NO: 46) and APCR4 were used in the first PCR reaction with template DNA, pUC-RVh-PM1a. The PCR product from this first PCR reaction was purified and was used as a forward primer in the second PCR reaction with the primer APCR1. The PCR product from the second PCR reaction was purified using a 1.6% low melting temperature agarose gel, digested with HindIII and BamHI, and subcloned into a pUC19 vector yielding pUC-RVh-PM1b. In the same manner, version "c" (pUC-RVh-PM1c) was obtained using a mutagenic primer phv-nm (Asp-1 to Gln-1) (SEQ ID NO: 47) and a template pUC-RVh-PM1b; version "d" (pUC-RVh-PM1d) was obtained using a mutagenic primer phv-m6 (Ile-48 to Met-48) (SEQ ID NO: 48) and a template pUC-RVh-PM1b; version "e" (pUC-RVh-PM1e) was obtained using the mutagenic primer phv-m6 and a template pVC-RVh-PM1c; and "version f" (pUC-RVh-PM1f) was obtained using a mutagenic primer phv-m7 (Thr-28 to Ser-28, and Phe-29 to Ile-29) (SEQ ID NO: 49) and a template pUC-RVh-PM1b. Amino acid sequence of the version "f" of the reshaped human H chain V region, and a nucleotide sequence codin therefor is shown in SEQ ID NO: 54.

Figure 7 diagrams the primers and the PCR reactions used in the construction of the first version of reshaped human PM-1 L chain V region. For the construction of the first version of reshaped human PM-1 L chain V region, CDR1-grafting primer pkv-1 (SEQ ID NO: 50), CDR2-grafting primer pkv-2 (SEQ ID NO: 51) and CDR3-grafting primer pkv-3 (SEQ ID NO: 52) were synthesized and purified on a 12% polyacrylamide gel containing 8M urea. PCR reactions were carried out as described above. The first PCR reaction

contained 1 μ M of each of the pkv-3 and APCR4 primers. A 350 bp PCR product from the first PCR reaction was purified using a 1.5% low melting temperature agarose gel and used as a forward primer in the second PCR reaction. The PCR product from the second PCR reaction was purified, digested with BamHI and HindIII, and the 500 bp fragment containing the CDR3-grafted DNA was subcloned into a pUC19 vector for DNA sequencing. A plasmid DNA having the correct sequence was identified and used as the template DNA in the following PCR reaction. In the third PCR reaction, 25 pmoles of mutagenic primers pkv-2 and APCR4 were used. The PCR product from the third PCR reaction was purified and used as a primer, with the primer pkv-1, in the fourth PCR reaction. In the same manner, the PCR product from the fourth PCR reaction was used as a primer, with the APCR1 primer, in the fifth PCR reaction.

A 972 bp PCR product from the fifth PCR reaction was purified, digested with BamHI and HindIII, and subcloned into a pUC19 vector for DNA sequencing. A problem was identified in the CDR2 region. Two additional PCR reactions were necessary. In the sixth and seventh PCR reactions, the PCR product from the fifth PCR reaction, as cloned into pUC19 vector, was used as template DNA. In the sixth PCR reaction, the primers were pkv-2 and APCR4. The PCR product from the sixth PCR reaction was purified and used as a primer, with the APCR1 primer, in the seventh PCR reaction. The PCR product of the seventh PCR reaction was purified, digested with BamHI and HindIII, and a 500 bp DNA fragment was subcloned into a pUC19 vector for DNA sequencing. Two of five clones sequenced had the correct DNA sequence. The clone was designated pUC-RV1-PM1a. The sequence is shown in SEQ ID NO: 55.

For the construction of the other version of reshaped human PM-1 L chain V region, a mutagenic primer pkv-m1 (SEQ ID NO: 53) was synthesized. The PCR reactions were essentially as described above. In the first PCR reaction, the mutagenic primer pkv-m1 (Phe-71 to Tyr-71) and the APCR4 primer were used with the template DNA pUC-RV1-PM1a. The PCR product of the first PCR reaction was purified and used as a primer, with the APCR1 primer, in the second PCR reaction. The PCR product of the second PCR reaction was purified, digested with BamHI and HindIII, and subcloned into a pUC19 vector for DNA sequencing. The clone was designated pUC-RV1-PM1b.

Example 8 Construction of vectors that employ the human cytomegalovirus immediate early (HCMV) promoter to express genetically-engineered antibodies in mammalian cells (Fig. 1).

The DNA fragments coding for the chimeric PM-1 L and H chain V regions were initially inserted into HCMV vectors (HCMV-V_L-HC_K and HCMV-V_H-HC_{Y1}) designed to express either human kappa L chains or human gamma-1 H chains in mammalian cells (see Figure 1). A detailed description of the construction of the HCMV expression vectors is published in Maeda et al., Human Antibodies and Hybridomas (1991) 2:124-134; C. A. Kettleborough et al., Protein Engineering (1991) 4:773-783. Both vectors are based on pSV2neo (P.J. Southern et al., J. Mol. Appln. Genet. (1982) 1:327-341) and contain the human cytomegalovirus (HCMV) promoter and enhancer (M. Boshart et al., Cell (1985) 41:521-530) for high level transcription of the immunoglobulin L and H chains. The L chain expression vector contains genomic DNA coding for the human kappa C region (T. H. Rabbits et al., Curr. Top. Microbiol. Immunol. (1984) 113:166-171) and the H chain expression vector contains genomic DNA coding for the human gamma-1 C region (N. Takahashi et al. Cell (1982) 29:671-679). The HCMV expression vectors are versatile and can be used for both transient and stable expression in a variety of mammalian cell types.

Example 9 Construction of vectors that employ the human elongation factor 1 α (HEF-1 α) promoter to express genetically-engineered antibodies in mammalian cells (Fig. 8 and Fig. 9)

The human polypeptide chain elongation factor 1 α (HEF-1 α) is one of the most abundant proteins. It is expressed in most cells. The transcriptional activity of the human EF-1 α promoter-enhancer is about 100-fold stronger than that of the SV40 early promoter-enhancer (D.W. Kim et al., Gene (1990) 91:217-223, and T. Uetsuki et al., J. Biol. Chem. (1989) 264:5791-5798). The 2.5 kb HEF-1 α promoter-enhancer region consists of approximately 1.5 kb of DNA flanking the 5'-end of the gene, 33 bp in the first exon, 943 bp in the first intron, and 10 bp of the first part of the 2nd exon. The approximately 2.5 kb HindIII-EcoRI fragment was excised from plasmid DNA pEF321-CAT (D.W. Kim et al., Gene (1990) 91:217-223, and T. Uetsuki et al., J. Biol. Chem. (1989) 264:5791-5798) and cloned into pdKCR vector DNA (M. Tsuchiya et al., EMBO J. (1987) 6:611-616) (K. O'Hare et al., Proc. Natl. Acad. Sci USA Vol. 78, No. 3, 1527-1531, 1981) to replace an approximately 300 bp HindIII-EcoRI fragment containing the SV40 early promoter-enhancer sequence thus yielding pTEF-1. pTEF-1 was digested with EcoRI, filled-in with the Klenow polymerase, and ligated to HindIII linkers. An approximately 1.6 kb HindIII-SmaI fragment was then excised from the modified pTEF-1 vector DNA.

Plasmid DNA HCMV-12h-g_y1 (Δ E2) was constructed from the HCMV-12h-g_y1 constructed in Example 5 by partially digesting HCMV-12h-g_y1 with EcoRI, filling-in with Klenow polymerase, and self-ligating.

The plasmid HCMV-12h-g_y1 (Δ E2) was digested with EcoRI, filled-in with Klenow polymerase, and digested with HindIII. The resulting approximately 7 kb fragment containing the DNA sequence coding for 5 human gamma-1 C region was ligated to the above-prepared 1.6 kb HindIII-SmaI fragment containing the HEF-1 α promoter-enhancer yielding HEF-12h-g_y1. The HEF-1 α promoter-enhancer region in this vector was the same as that in pTEF-1 except for 380 bp of DNA flanking the 5'-region. The H chain V region, present as a HindIII-BamHI fragment, was easily interchangeable with other H chain V regions.

HindIII-BamHI DNA fragments containing the reshaped H chain V region were excised from the pUC-10 RVh-PM1a, pUC-RVh-PM1b, pUC-RVh-PM1c, pUC-RVh-PM1d, pUC-RVh-PM1e, and pUC-RVh-PM1f (Example 7), and inserted into the HindIII-BamHI portion of the HEF-12h-g_y1 to obtain expression vectors RVh-PM1a, RVh-PM1b, RVh-PM1c, RVh-PM1d, RVh-PM1e and RVh-PMhf, respectively. The expression vectors RVh-PM1a, RVh-PM1b, RVh-PM1c, RVh-PM1d, RVh-PM1e and RVh-PM1f, as well as HEF-PMh-g_y1 have the reshaped human PM-1 H chain V regions versions "a", "b", "c", "d", "e" and "f", as well as the mouse 15 PM-1 H chain V region, respectively.

To construct the L chain expression vector, HEF-12k-gk, an approximately 3.0 kb Pvul-HindIII fragment containing the HEF-1 α promoter-enhancer region was excised from the HEF-12h-g_y1 and ligated to an approximately 7.7 kb Pvul-HindIII fragment from the HCMV L chain expression vector HCMV-12k-gk constructed in Example 5 to obtain HEF-12k-gk. As for the H chain expression vector HEF-12h-g_y1, the L 20 chain V region in HEF-12k-gk, present as a HindIII-BamHI fragment, is easily interchangeable with other L chain V regions.

HindIII-BamHI DNA fragments containing the reshaped human L chain V region were excised from the pUC-RV1-PM1a and pUC-RV1-PM1b (Example 7), and inserted into the HindIII-BamHI portion of the HEF-12k-gk to obtain expression vectors RV1-PM1a and RV1-PM1b, respectively. The expression vectors RV1-25 PM1a, RV1-PM1b, and HEF-PMk-gk have the reshaped human L chain V regions "a", "b", and the mouse PM-1 L chain V region, respectively.

Example 10 Construction of vectors that employ the dihydrofolate reductase (dhfr) gene linked to a defective SV40 promoter-enhancer sequence to achieve high levels of expression of genetically-engineered 30 antibodies in CHO cells (Fig. 10 and Fig. 11).

In order to remove the enhancer sequence from the SV40 early promoter, the plasmid DNA pSV2-dhfr (S.Subramani et al., Mol. Cell. Biol. (1981) 1: 854-864) (ATCC 33694) was digested with SphI and PvuII, filled-in with Klenow polymerase, and self-ligated to yield pSV2-dhfr- Δ E (see Figure 10). An approximately 35 3.7 kb EcoRI fragment containing the HCMV promoter, the H chain V region, and the human gamma-1 C region was excised from HCMV-PMh-g_y1 by partially digesting with EcoRI. This fragment was ligated to EcoRI-digested pSV2-dhfr- Δ E to yield DHFR- Δ E-PMh-g_y1.

A similar vector was constructed based on the H chain expression vector that employs the HEF-1 α 40 promoter-enhancer (see Figure 11). An approximately 3.7 kb EcoRI fragment derived from HCMV-12h-g_y1 was ligated with EcoRI-digested pSV2-dhfr- Δ E to yield DHFR- Δ E-12h-g_y1. The BamHI site following the dhfr cDNA sequence in DHFR- Δ E-12h-g_y1 was removed by partially digesting with BamHI, filling-in with Klenow polymerase, and self-ligating. An approximately 4 kb Pvul-BamHI fragment containing the dhfr 45 cDNA was excised from the modified DHFR- Δ E-12h-g_y1 DNA and ligated to an approximately 3 kb Pvul-BamHI fragment from RVh-PM1f-4 (constructed in Example 12) to yield DHFR- Δ E-RVh-PM1f.

The improved expression plasmids as prepared above can be used for the production of the reshaped 50 human PH-1 antibodies of the present invention.

Example 11 Expression and analysis of different versions of reshaped human PM-1 antibody

50 The HEF-1 α vectors expressing reshaped human PM-1 L and H chains were co-transfected into cos cells. As a standard control, HEF-1 α vectors expressing chimeric PM-1 L and H chains were also co-transfected into cos cells. After 3 days the medium from the transfected cos cells was collected and analyzed by ELISA (1) for the amount of human IgG antibody present in the supernatant and (2) for the ability of that human IgG to bind to IL-6R. Later the same samples were also tested by ELISA for the ability 55 of the antibody to inhibit human IL-6 from binding to human IL-6R.

Evaluation of the two versions of reshaped human PM-1 L chain V regions were conducted by co-transfecting cos cells with one of the two vectors expressing reshaped human PM-1 L chains (RV1-PM1a or RV1-PM1b) and the vector expressing chimeric PM-1 H chain (HCMV-PMh-g_y1). Cells were also co-

transfected with vectors expressing chimeric PM-1 L and H chains (HCMV-PMka-gk and HCMV-PMh-g γ 1). Data using unpurified cos cell supernatants showed that version "a" of reshaped human PM-1 L chain was equivalent to chimeric PM-1 L chain in assays for binding to IL-6R. Version "b" of reshaped human PM-1 L chain, however, virtually abolished binding to IL-6R (Figure 12). From these results, it was concluded that 5 the change at position 71 in FR3 from phenylalanine (as present in the human REI as modified for CAMPATH-1H) to tyrosine (as present in natural human REI and in mouse PM-1) was very detrimental to the formation of a functional antigen-binding site.

Version "a" of the reshaped human PM-1 L chain V region was selected as the best version. In subsequent experiments evaluating the different versions of reshaped human PM-1 H chain V regions, 10 version "a" of the reshaped human PM-1 L chain V region was always used.

Evaluation of the six versions of reshaped human PM-1 H chain V regions were conducted by co-transfecting cos cells with one of the six vectors expressing reshaped human PM-1 H chains (RVh-PM1a, RVh-PM1b, RVh-PM1c, RVh-PM1d, RVh-PM1e or RVh-PM1f) and the vector expressing version "a" of the reshaped human PM-1 L chain (RV1-PM1a). Cells were also co-transfected with vectors expressing 15 chimeric PM-1 L and H chains (HEF-PMK-gk and HEF-PMh-g γ 1). Preliminary data using unpurified cos cell supernatants showed that version "a" of reshaped human PM-1 L chain and version "f" of reshaped human PM-1 H chain were equivalent to chimeric PM-1 L and H chains in assays for binding to IL-6R.

To confirm this preliminary data, chimeric and reshaped human PM-1 antibodies were concentrated and purified from cos cell supernatants using Protein A. Namely the media from cos cells was concentrated 20 using a 100 kd cut-off ultrafiltration device (Amicon). The concentrated media was purified using Protein A agarose (Affi-Gel Protein A MAPSII kit, BioRad). Briefly, the concentrated media was applied to a Protein A agarose column that was equilibrated with five bed volumes of binding buffer. The column was washed with 15 bed volumes of the binding buffer, followed by 5 bed volumes of the elution buffer. The eluate was concentrated and the buffer changed to PBS using a microconcentrator (Centricon 10, Amicon). The 25 purified antibodies were used for further analysis.

The analysis of purified samples of chimeric PM-1 antibody, and reshaped human PM-1 antibodies with version "a" of the L chain V region and versions "a", "b", "c", "d", "e", and "f" of the reshaped human H chain V region was carried out. Version "a" of the L chain plus version "f" of the H chain is clearly the best reshaped human PM-1 antibody. It binds to IL-6R as well as chimeric PM-1 antibody does (Figure 13). It 30 also inhibits human IL-6 from binding to the IL-6R as well as both the mouse and chimeric PM-1 antibodies do (Figure 14).

Example 12 Reconstruction of the reshaped human PM-1 V regions to improve the levels of expression.

In order to remove the introns within the DNA sequences coding for the leader sequences of the reshaped human PM-1 L and H chain V regions (see SEQ ID Nos: 54 and 55), the cDNAs coding for the V 35 regions were recloned using the PCR primers. The L and H chain expression vectors RV1-PM1a and RVh-PM1f were co-transfected into cos cells. After 48 hrs, total RNA was prepared (Chirgwin et al., Biochemistry (1979) 18:5294-5299) and .5 μ g of total RNA was used for the first strand cDNA synthesis as described for 40 the PCR cloning of mouse antibody V regions. Three PCR primers were designed and synthesized. LEV-P1 (SEQ ID NO: 60) and HEV-P1 (SEQ ID NO: 58) contain the splice donor sequence and the BamHI site and were used as forward primers for the L and H chain V regions, respectively. HEV-P2 (SEQ ID NO: 59) contains the Kozak consensus sequence before the ATG initiation codon and the HindIII site and was used as a backward primer for both the L and H chain V regions. Each 100 μ l PCR reaction contained 20 mM 45 Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₄, 0.1% Triton X-100, 0.1 μ g BSA, 250 μ M dNTPs, 2.5 u of Vent DNA polymerase (Biolabs, U.K.), 50% of the first-strand cDNA synthesis reaction and 100 pmoles each of the forward and backward primers. Each PCR tube was overlayed with 50 μ l of mineral oil and then cycled, after an initial melt at 94 °C for 1.5 min, at 94 °C for 1 min, 50 °C for 1 min, and 72 °C 50 for 1 min, and then at 72 °C for 10 min. The 408 bp PCR product containing the L chain V region and the 444 bp PCR product containing the H chain V region were purified using 2.0% low melting temperature agarose gels, digested with BamHI and HindIII, and subcloned into a pUC19 vector to obtain pUC-RV1-PM1a-3 and pUC-RVh-PM1f-3 respectively.

It was revealed that the DNA sequences of the reshaped human PM-1 L and H chain V regions contain 55 inappropriate splice donor and acceptor sites (see SEQ ID NOS: 54 and 55). The sites within the L chain V region are not frequently used (approximately 10% of the mRNA), but the sites within the H chain V region are used frequently (approximately 90% of the mRNA). This aberrant splicing resulted in low levels of expression of the reshaped human PM-1 antibody. In order to avoid aberrant splicing in the V regions, the splice donor sites were removed using a PCR-based method. For the H chain V region, the backward

primer NEW-SP1 (SEQ ID NO: 61) and the forward primer NEW-SP2 (SEQ ID NO: 62) were synthesized, changing the DNA sequence TGG GTG AGA to the DNA sequence TGG GTT CGC. The conditions for the PCR reactions were as described above for cDNA cloning except that the template DNA was 50 ng of pUC-RVh-PM1f-3 and the primers were either HEV-P2 and NEW-SP2, or HEV-P1 and NEW-SP1.

5 The PCR products from the two PCR reactions were purified using a 2.0% low melting temperature agarose gel and used in a PCR joining reaction. A 98 μ l PCR reaction containing 0.5 μ g of each of the first PCR products and 5 u of Vent DNA polymerase was incubated at 94°C for 2 min, 50°C for 2 min, and 72°C for 5 min, and then 100 pmoles each of HEV-P1 and HEV-P2 primers were added. The PCR tube was overlayed with 30 μ l of mineral oil and subjected to 25 cycles of PCR, at 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min, and then incubated at 72°C for 10 min.

10 In the same manner, the splice donor site in the reshaped human PM-1 L chain V region was removed using PCR primers REI-SP1 (SEQ ID NO: 63) and REI-SP2 (SEQ ID NO: 64) that changed the DNA sequence CAG GTA AGG to the DNA sequence CAG GAA AGG (see). Both PCR products, a 408 bp DNA fragment for the L chain V region and a 444 bp DNA fragment for the H chain V region, were purified using 15 a 2.0% low melting temperature agarose gel, digested with HindIII and BamHI, and subcloned into a pUC19 vector to yield pUC-RV1-PM1a-4 and pUC-RVh-RM1f-4, respectively.

15 RVh-PM1f-4 was constructed by replacing the HindIII-BamHI fragment of RVh-PM1f with the HindIII-BamHI fragment excised from pUC-RVh-PM1f-4. Sequence of reshaped human PM-1 antibody L chain V region version "a" wherein introns have been deleted is shown in SEQ ID NO: 57, and sequence of reshaped human PM-1 antibody H chain V region version "f" wherein have been deleted is shown in SEQ 20 ID NO: 56.

Example 13 Construction of DNA coding for reshaped human AUK 12-20 antibody L chain V region

25 A process for construction of DNA coding for a reshaped human AUK 12-20 antibody L chain V region is shown in Fig. 16. A gene coding for a human antibody L chain V region is incorporated into pUC19 vector using restriction enzymes HindIII and BamHI. Eight PCR primers (A to H) are prepared, and in the first PCR 4 regions which form a gene coding for the V region are amplified. The primers A and H have homology to 30 DNA sequences on the pUC19 vector. The primers B, C and D are primers of 40 to 60 bp length each having a gene sequence of CDR to be grafted, respectively. The primers E, F and G have homology to DNA sequence of 15 to 20 bp length of the 5'-terminus of the primers B, C and D, respectively. Four first PCR use pairs of primers A and E, B and F, C and G, as well as D and H, respectively.

35 The PCR product A-E encodes FR1, and the PCR product B-F encodes CDR1 and FR2. The 3'-terminal portion of the A-E fragment and the 5'-terminal portion of the B-F fragment have homology in their 15 to 20 bp length, allowing to join there fragments at latter stage. Similarly, the B-F fragment has a homology with the C-G fragment which encodes CDR2 and FR3. The C-G fragment further has a homology with the D-H fragment which encodes CDR3 and FR4. Thus, these 4 fragments can be joined by their mutual homology. After joining these 4 fragments in a PCR reaction mixture, primers A and H are added thereon in the 40 second PCR to amplify a product formed by correct joining of the 4 fragment. The second PCR product thus obtained has three grafted CDRs, and after digestion with HindIII and BamHI, is subcloned into pUC19 vector.

More specifically, as a template, plasmid pUC-RV1-PM1a-4 constructed by inserting a DNA encoding reshaped human PM-1 antibody L chain V region version "a" into plasmid pUC19 was used.

The above-mentioned primers A to H have the following sequences.

45

Backward Primer	SEQ ID NO.	Forward primer	SEQ ID NO.
A. REVERSE	83	1220-L16	66
B. 1220-L1	65	1220-L2b	68
C. 1220-L2	67	1220L3b	70
D. 1220-L3	69	UNIVERSAL	82

50 The backward primers 1220-L1, 1220-L2 and 1220L3 for CDR grafting were purified with 12% polyacrylamide gel containing 8M urea prior to using them.

55 A 100 μ l PCR reaction mixture contained 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM $(\text{NH}_4)_2\text{SO}_4$, 2 mM MgSO₄, 0.1% Triton X-100, 1 μ g BSA, 250 μ M dNTPs, 5 units Vent DNA polymerase (BioLabs. U.K.), 50 ng pUC-RV1-PM1a-4 DNA, and 100 pmoles each of the forward and backward primers. Each PCR tube was overlaid with 50 μ l of mineral oil, and after an initial denaturation at 94°C for 1.5 minutes, 30 cycles of

reaction at 94 °C for 1 minute, 50 °C for 1 minute and 72 °C for 1 minute was carried out, followed by an incubation at 72 °C for 10 minutes.

Each of the PCR products, 252 bp (A-E), 96 bp (B-F), 130 bp (C-G) and 123 bp (D-H) was purified with a 2.0% low melting agarose (FMC, Bio. Products, USA). Namely, an agarose piece containing a DNA fragment was excised, melted at 65 °C for 5 minutes, and added to the same volume of 20 mM Tris-HCl (pH 7.5) containing 2 mM EDTA and 200 mM NaCl. The mixture was extracted with phenol and chloroform. The DNA fragment was recovered by an ethanol precipitation, dissolved in 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA, and used for PCR joining reaction.

Next, 98 µl of a PCR reaction mixture containing 0.2 µg each of the first PCR products and 5 units of Vent DNA polymerase was incubated at 94 °C for 2 minutes, 50 °C for 2 minutes and 72 °C for 5 minutes for a joining reaction. Next, 100 p moles each of the primers A (REVERSE) and H(UNIVERSAL) were added to the reaction mixture to make it to 100 µl volume, and the reaction mixture was overlaid with 50 µl of mineral oil and subjected to 30 cycles of a reaction at 94 °C for 1 minute, 50 °C for 1 minute and 72 °C for 1 minute, followed by an incubation at 72 °C for 10 minutes.

The second PCR product of 558 bp length containing an L chain V region into which CDRs of the mouse monoclonal antibody AUK 12-20 L chain had been grafted was purified by a 2.0% low melting agarose gel, and after digestion with BamHI and HindIII, subcloned into a pUC19 vector to obtain pUC-RL-1220a, and sequenced. A resulting amino acid sequence of the L chain V region and a nucleotide sequence encoding the amino acid sequence is shown in SEQ ID NO: 71.

Next, for construction of an L chain expression vector, a HindIII-BamHI DNA fragment containing a reshaped human AUK 12-20 antibody L chain V region was excised from the above-mentioned plasmid pUC-RV_L-1220a, and inserted to HindIII-BamHI site of an L chain expression vector HEF-12k-gk to obtain an expression vector RV_L-1220a for reshaped human AUK 12-20 antibody L chain V region version "a".

Example 14. Expression and analysis of reshaped human AUK 12-20 antibody L chain

Transient expression in COS cells

The expression vector RV_L-1220a for reshaped human AUK 12-20 antibody L chain and the expression vector HEF-12h-g_y1 for chimeric 12-20 antibody H chain (Example 5) were cotransfected into COS cells to evaluate the reshaped human AUK 1220 antibody L chain version "a". Namely, COS cells were suspended in a phosphate-buffered saline (PBS) at a concentration of 1×10^7 cells 1 ml, and to 0.8 ml of the suspension were added the plasmid DNAs (10 µg for each plasmid). Pulses were applied to the suspension at an electric capacity of 1,900 V, 25 µF using a Gene Pulser apparatus (Bio Rad).

After restoration at a room temperature for 10 minutes, electroporated cells were added to 8 ml of DMEM medium (GIBCO) containing 10% bovine fetal serum. After incubation for 72 hours, supernatant was collected, centrifuged to eliminate cell debris, and stored in an aseptic condition at 4 °C for short period or at -20 °C for longer period.

Determination of human-like antibody by ELISA

A supernatant of the transfected COS cells was assayed by ELISA and the production of chimeric antibody was confirmed. To detect human-like antibody, a plate was coated with a goat anti-human IgG (whole molecule) (Sigma). After blocking, the supernatant from COS cells was sequentially diluted and added to each well.

The plate was incubated and washed, and an alkaline phosphatase-conjugated goat anti-human IgG (α -chain specific, Sigma) was added thereon. After incubation and washing, a substrate solution was added. After further incubation, the reaction was terminated and an optical density at 405 nm was measured. As a standard, purified IgG (Sigma) was used.

ELISA for confirmation of an ability to bind to human IL-6R

A supernatant from the transfected COS cells was assayed by ELISA to determine whether the produced human-like antibody can bind to the antigen, human IL-6R. A plate was coated with a mouse monoclonal antibody MT18 (Reference Example 1). After blocking with 1% BSA, soluble recombinant human IL-6R (SR 344) was added to the plate. After washing the plate, supernatant from COS cells was sequentially diluted and added to each well of the plate. After inclusion and washing, alkaline phosphatase-conjugated goat anti-human IgG was added to the wells, and after further incubation and washing, a

substrate solution was added thereon. After incubation, the reaction was terminated and optical density at 405 nm was measured.

A result is shown in Fig. 17. The human-like antibody comprising a combination of a reshaped human AUK 12-20 antibody L chain version "a" and a chimeric 12-20 antibody H chain exhibited a binding ability 5 to IL-6R as strong as chimeric 12-20 antibody. Optical density at 405 nm changed in a dilution rate-dependent manner, confirming that the sample contains an antibody to IL-6R. In addition, this result shows that the reshaped human AUK 12-20 antibody L chain version "a" has an antigen binding ability as high as chimeric AUK 12-20 antibody L chain.

10 Example 15. Construction of gene coding for reshaped human AUK 12-20 antibody H chain using HSGI consensus sequence

According to the same procedure as described in Example 13. CDRs of AUK 12-20 antibody H chain V region were grafted into the reshaped human $V_{Ha}425$ containing HSG I consensus sequences as its FRs 15 (Kettleborough et al., Protein Engineering (1991) 4:773-783). First, a HindIII-BamHI DNA fragment encoding the reshaped human $V_{Ha}425$ (Fig. 3 in the literature) was excised from a plasmid HCMV-RV $V_{Ha}425-\gamma 1$ and subcloned at HindIII-BamHI sites in pUC 19 vector to obtain pUC-RV $H-425a$, which was then used as a template. 8 PCR primers (A1 to H1) were synthesized. The primer 1220-H1 was designed to graft CDR1 and to induce a mutation from T-28 to S-28, and the primer 1220-H3 was designed to graft CDR3 and to 20 induce a mutation from S-94 to R-94. The primers 1220-H1, 1220-H2 and 1220-H3 were purified using a 12% polyacrylamide gel containing 8 M urea prior to using them. Nucleotide sequence of each primer was as follow.

25	Backward primer	SEQ ID NO.	Forward primer	SEQ ID NO.
	A1. REVERSE	83	E1. 1220-H1b	73
	B1. 1220-H1	72	E1. 1220-H2b	75
	C1. 1220-H2	74	G1. 1220-H3b	77
	D1. 1220-H3	76	H1. UNIVERSAL	82

30

Condition of PCR was the same as that described in Example 13, except that the pUC-RV $H-425a$ was used as a template DNA and the above-mentioned primers were used for grafting H chain CDRs. Primer pairs of A1 and E1, B1 and F1, C1 and G1, as well as D1 and H1 were used to carry out first PCR reactions, and the respective first PCR products, 186 bp (A1-E1), 75 bp (B1-F1), 173 bp (C1-G1) and 105 bp (D1-H1) were purified with 2.0% low melting agarose gel, and used in subsequent second PCR joining reaction. According to the condition described in Example 13, 0.2 μ g each of the first PCR products were 35 used to carry out the second PCR reaction (including PCR joining reaction) to obtain a PCR product of 495 bp containing DNA coding for a human H chain V region into which mouse AUK 12-20 antibody H chain V region CDRs had been grafted, and the PCR product was purified using 2.5% low melting agarose gel. 40 After digesting the PCR product with BamHI and HindIII, resulting BamHI-HindIII DNA fragment was subcloned into pUC19 and sequenced to obtain pUC-RV $H-1220a$.

It was revealed that DNA sequence coding for reshaped human AUK 12-20 antibody H chain V region contains a sequence well conforming to a splicing donor sequence, which may cause an abnormal splicing 45 which was troublesome in the production of the reshaped human PM-1 antibody. Therefore, this DNA sequence was modified by PCR. Mutagenetic primers, SGI-SP1 (SEQ ID NO: 97) and SGI-SP2 (SEQ ID NO: 98) were synthesized. These primers convert the DNA sequence AAG GTG AGC to the DNA sequence AAA GTC AGC. Condition of PCR reaction was same as described above, except that 50 ng of pUC-RV $H-1220a$ was used as a template DNA, and the SGI-SP1 and UNIVERSAL (SEQ ID NO: 82), or the SGI-SP2 and REVERSE (SEQ ID NO: 83) were used as primers.

50 PCR products from two PCR reactions were purified by 2% low melting agarose gel and used in a PCR joining reaction. 98 μ l of PCR reaction mixture containing 0.2 μ g each of the first PCR products and 5 units of Vent DNA polymerase was incubated at 94°C for 2 minutes, at 55°C for 2 minutes and at 72°C for 5 minutes for a joining reaction. Next, 100 pmoles each of UNIVERSAL and REVERSE primers were added to the reaction mixture, which was then overlaid with 50 μ l of mineral oil and subjected to 30 cycles of second 55 PCR reaction consisting of incubations at 94°C for 1 minutes, at 50°C for 1 minute and at 72°C for 1 minute, followed by an incubations at 72°C for 10 minutes. DNA fragment of 495 bp obtained in the second PCR was purified by a 2.0% low melting agarose gel, and subcloned into pUC19 vector and sequenced to obtain pUC-RV $H-1220a-2$.

Next, HindIII-BamHI DNA fragment containing DNA coding for reshaped human AUK 12-20 antibody H chain V region was excised from the pUC-RV_H-1220a-2, and inserted at HindIII-BamHI sites of an H chain expression vector HEF-12h-g_γ1 to obtain an expression vector RV_H-1220a for the reshaped human AUK 12-20 antibody H chain version "a".

For construction of genes coding for reshaped human AUK 12-20 antibody H chain V region versions "b" to "d", two pairs of mutagenic primers were synthesized. Each PCR reaction was carried out under substantially the same condition as described above. For construction of version "b", in two first PCR reactions, either UNIVERSAL primer (SEQ ID NO: 82) and mutagenic primer 120H-m1 (SEQ ID NO: 78), or REVERSE primer (SEQ ID NO: 83) and mutagenic primer 1220H-mlb (SEQ ID NO: 79), as well as pUC-RV_H-1220a as a template were used. The first PCR products of 202 bp and 323 bp were purified by a 2.0% low melting agarose gel, and used in second PCR (including PCR joining reaction) under the same condition as described above to obtain a 495 bp product (version "b"). The product was digested with HindIII and BamHI, and subcloned into pUC19 vector to obtain pUC-RV_H-1220b.

Similarly, mutagenic primer 1220H-m2 (SEQ ID NO: 80), 1220H-m2b (SEQ ID NO: 81) and a template pUC-RV_H-1220a were used in a PCR to obtain a PCR product (version "c"). The product was digested with HindIII-BamHI and inserted at HindIII-BamHI sites of pUC19 vector to obtain pUC-RV_H-1220c. Moreover, mutagenic primers 1220H-mla (SEQ ID NO: 78), 1220H-mlb (SEQ ID NO: 79), and a template pUC-RV_H-1220c were used to obtain a PCR Product (version "d"), which was then digested with HindIII and BamHI and inserted into HindIII-BamHI sites of pUC19 vector to obtain pUC-RV_H-1220d.

Note, an amino acid sequence of the reshaped human AUK 12-20 antibody H chain V region version "b" and a nucleotide sequence coding therefor in the plasmid pUC-RV_H-1220b is shown in SEQ No. 84; and an amino acid sequence of the reshaped human AUK 12-20 antibody H chain V region version "d" and a nucleotide sequence coding therefor in the plasmid pUC-RV_H-1220d is shown in SEQ ID NO: 85.

Next, to construct the expression vectors, HindIII-BamHI fragments containing a reshaped human AUK 12-20 antibody H chain V region were excised from pUC-RV_H-1220b, pUC-RV_H-1220c and pUC-RV_H-1220d and inserted into HindIII-BamHI sites of H chain expression vector HEF-12h-g_γ1 to obtain RV_H-1220b, RV_H-1220c and RV_H-1220d respectively.

Example 16. Expression and analysis of various versions of reshaped human AUK 12-20 antibody.

COS cells were cotransfected with one of 4 expression vectors for reshaped human AUK 12-20 antibody H chain (RV_H-1220a, RV_H-1220b, RV_H-1220c or RV_H-1220d) and an expression vector VR_L-1220a to evaluate 4 versions of the reshaped human AUK 12-20 antibody H chain V region. For reference, COS cells were cotransfected with expression vectors for chimeric 12-20 antibody L chain and H chain (HEF-12h-g_γ1 and FEF-12-gk). In an assay for binding to the human IL-6R, a reshaped human AUK 12-20 antibody consisting of reshaped human AUK 12-20 antibody L chain and reshaped human AUK 12-20 antibody H chain version "b", and a reshaped human AUK 12-20 antibody consisting of reshaped human AUK 12-20 antibody L chain and reshaped human AUK 12-20 antibody H chain version "d" shows good binding as well as chimeric 12-20 antibody. These results are shown in Figs. 18 and 19.

Example 17. Construction of gene coding for reshaped human sle 1220 antibody H chain using human antibody HAX

A human antibody having the highest homology with the mouse monoclonal antibody AUK 12-20 H chain V region is HAX (J. Immunology (1987) 139:2496-2501; an antibody produced by hybridoma 21/28 derived from B cells of an SLE patient; its amino acid sequence is shown in Fig. 6, and nucleotide sequence therefor is shown in Figs. 4 and 5 of this literature), according to a protein data base "Leeds". Reshaped human sle 1220H antibody H chain V region was constructed using FRs of the antibody HAX and CDRs of mouse monoclonal antibody AUK 12-20 H chain V region.

An entire DNA coding for a reshaped human sle 1220 H antibody H chain V region version "a" was chemically synthesized. DNA coding for sle 1220 H antibody H chain V region of an entire length 439 bp was designed by dividing the DNA into 6 oligonucleotides of 90 to 94 bp length overlapping each other by 21 bp (sle 1220 h 1 to 6; SEQ ID NOs: 86 to 91, respectively). In designing the oligonucleotides, secondary structure was tested and for sites having structural problems the third nucleotide in a codon was changed without change of amino acid encoded thereby. The relationship of these oligonucleotides and a process for construction of double-stranded synthetic DNA are shown in Fig. 20.

The reaction shown in Fig. 20 is carried out using PCR technique. Namely, 6 synthetic oligonucleotides were added to a single PCR reaction tube to carry out the first PCR reaction, thereby two oligonucleotides

are annealed and extended, and further 4 oligonucleotides or an entire oligonucleotide are obtained.

Next, terminal primers A (SEQ ID NO: 92) and B (SEQ ID NO: 93) are added to carry out the second PCR reaction, wherein only a correct oligonucleotide having an entire length can be amplified. The resulting product is digested with BamHI and HindIII, and subcloned into pUC19 vector, followed by sequencing.

More specifically, 98 µl of a reaction mixture containing 100 mM tris-HCl (pH 8.5), 50mM KCl, 0.1mM dATP, 0.1mM dGTP, 0.1mM dCTP, 0.1mM dTTP, 1.5mM MgCl₂ and 2.5 U of DNA polymerase AmpliTaq (Perkin Elmer Cetus) as well as 5 pmoles each of the oligonucleotides was denatured at 94°C for 1.5 minutes and subjected to 3 cycles of reaction by incubation at 92°C for 3 minutes, 50°C for 2 minutes and 72°C for 5 minutes, followed by an incubation at 72°C for 10 minutes. One µl each of 50 mM terminal primers A and B were added to the reaction mixture, which was then overlaid with 80 µl of mineral oil, and after denaturation of 94°C for 1.5 minutes, subjected to 30 cycles of reaction by incubation at 94°C for 1 minute, 50°C for 1 minute and at 72°C for 1 minute, followed by an incubation at 72°C for 10 minutes. The PCR product of 439 bp was purified by a 1.5% low melting agarose gel, digested with restriction enzymes BamHI HindIII, and subcloned into pUC19 vector, followed by confirmation of sequence. A clone thus obtained was designated pUC-RV_H-sle 1220Ha. An amino acid sequence of reshaped human sle 1220H antibody H chain V region version "a" and a nucleotide coding therefor in the plasmid pUC-RV_H-sle 1220Ha are shown in SEQ ID NO: 94.

Next, HindIII-BamHI DNA fragment containing a gene coding for reshaped human 12-20 (sle 1220H) antibody H chain V region was excised from the pUC-RV_H-sle 1220Ha and inserted at HindIII-BamHI sites of an H chain expression vector HEF-12h-gyl to obtain RV_H-sle 1220Ha.

For construction of version "b" to "d" of reshaped human sle 1220H antibody H chain V region, two mutagenic primers sle 1220Hm1 (SEQ ID NO 95) and sle 1220Hm2 (SEQ ID NO: 96) were synthesized. In each PCR, Vent DNA polymerase and reaction mixture composition described in Example 13 were used. In each PCR reaction, a reaction mixture containing pUC-RV_H-sle 1220Ha as template, 50 pmolles of a mutagenic primer sle 1220Hm1 or sle 1220Hm2, and 50 pmolles of the terminal primer B was denatured at 94°C for 1.5 minutes, and subjected to 30 cycles of reaction by incubation at 94°C for 1 minute, at 50°C for 1 minute and at 72°C for 1 minute, followed by an incubation at 72°C for 10 minutes. The product of 235 bp or 178 bp was purified by a 1.5% low melting agarose gel to use as a primer in the second PCR reaction. Namely the second PCR reaction was carried out using 50 pmolles of the terminal primer A, 0.2 µg of the PCR product and pUC-RV_H-sle 1220Ha as a template, and resulting product of 439 bp was purified by a 1.5% low melting agarose gel, digested with BamHI and HindIII, and subcloned into pUC19 vector to obtain pUC-RV_H-sle 1220Hb or pUC-RV_H-sle 1220Hc, which encodes reshaped human sle 1220 antibody H chain V region version "b" or "c", respectively.

A DNA coding for reshaped human sle 1220 H antibody H chain V region version "d" was constructed also follow. As a template pUC-RV_H-sle 1220Hb was used. 50 pmolles each of a mutagenic primer sle 1220Hm2 and the terminal primer B was used to carry out 30 cycles of the first PCR reaction. Resulting 176bp PCR product was purified on a 1.6% low melting agarose gel to use as a primer in the second PCR. This primer and 50pmolles of the terminal primer A was used in the second PCR to obtain a 439 bp DNA fragment. The PCR product thus obtained was purified, digested with BamHI and HindIII, and subcloned into pUC 19 vector to obtain pUC-RV_H-sle 1220Hd.

Next, to construct expression vectors for various versions of reshaped human sle 1220H antibody H chain V region, BamHI-HindIII fragments containing a DNA encoding reshaped human sle 1220 antibody H chain V region were excised from pUC-RV_H-sle 1220Hb, pUC-RV_H-sle 1220Hc and pUC-RV_H-sle 1220Hd, and inserted into HindIII-BamHI sites of the H chain expression vector HEF-12h-gyl to obtain expression vectors RV_H-sle 1220Hb, RV_H-sle 1220Hc and RV_H-sle 1220Hd respectively.

Each of four vectors expressing reshaped human sle 1220H antibody H chain (RV_H-sle 1220Ha, RV_H-sle 1220Hb and RV_H-sle 1220Hc or RV_H-sle 1220Hd) and the vector RV_L-1220a expressing reshaped human AUK 12-20 antibody L chain were cotransfected to COS cells to evaluate the four versions of the reshaped human sle 1220H antibody H chain V region for an ability to inhibit the binding of IL-6 to IL-6R. Results is shown in Figs. 21 to 24. Note, these result were obtained after purifying the produced antibodies by protein A.

As seen from the above, according to the present invention, in a chimeric L chain or a reshaped human L chain, or a chimeric H chain or a reshaped human H chain, and especially in RF, one or more than one amino acid can be replaced with other amino acid maintaining an ability to bind to human IL-6R. Therefore, the present invention includes chimeric antibody and reshaped human antibody, chimeric L chain and reshaped human L chain, chimeric H chain and reshaped human H chain, reshaped L chain V region, and reshaped H chain V region, wherein one or more than one amino acid is replaced with other as well as DNA coding therefor, as far as they maintain their native property.

Starting hybridomas used in the present invention were constructed as follows.

Reference Example 1 Construction of Hybridoma MT18

5 To construct a hybridoma producing monoclonal antibody to human IL-6R, as an immunogen, a mouse T cell line expressing human IL-6R on the cell surface was constructed as follows. Namely, a plasmid pBSF2R.236 disclosed in Japanese Patent Application No. H1-9774 and pSV2neo was transfected into a mouse T cell line CTLL-2 (ATCC TIB214) according to a conventional procedure, and the resultant transformant was screened using G418 according to a conventional procedure to obtain a cell line 10 expressing about 30,000 IL-6Rs per cell. This cell line was designated CTBC3.

The CTBC3 cells were cultured in RPMI 1640 according to a conventional procedure, the cultured cells were washed four times with PBS buffer, and 1×10^7 cells were intraperitoneally injected to C57BL/6 mice for immunization. The immunization was carried out once a week for 6 weeks.

Spleen cells were obtained from the immunized mice and fused with myeloma P3U1 cells using 15 polyethylene glycol according to a conventional procedure, and the fused cells were screened as follows. The IL-6R negative human T cell line JURKAT (ATCC CRL 8163) was co-transfected with the plasmids pBSF2R.236 and pSV2neo, and transformed cells were screened to obtain a cell line expressing about 100,000 IL-6Rs per cell. The cell line was designated NJBC8. A hybridoma cell clone producing an antibody which recognized NP40-lysed NJBC8 but did not recognize NP40-lysed JURKAT was cloned and 20 designated MT18. The hybridoma MT18 was deposited with the Fermentation Research Institute Agency of Industrial Science and Technology (FRI), under the Budapest Treaty, as FERM BP-2999 on July 10, 1990.

Reference Example 2 Construction of Hybridoma PM1

25 To construct a hybridoma producing monoclonal antibody to the IL-6R, as an antigen, human IL-6R was extracted as follows. 3×10^9 human myeloma U266 cells (IL-6R-producing cells) were lysed in 1 ml of 1% digitonin, 10 mM triethanolamine buffer (pH 7.4), 0.15 M NaCl and 1 mM PMSF (phenylmethylsulfonyl fluoride; Wako Pure Chemicals). On the other hand, an MT18 antibody produced by the MT18 hybridoma prepared in Reference Example 1 was bonded to cyanogen bromide-activated Sepharose 4B (Pharmacia) 30 according to a conventional procedure. This MT18 antibody-conjugated Sepharose 4B was mixed with the above-prepared cell lysate to bind the solubilized IL-6R to the MT18 antibody on Sepharose 4B. Substances non-specifically bonded to the Sepharose 4B were washed off, and the IL-6R bound to Sepharose 4B via the MT18 antibody was used as an immunogen.

BALB/c mice were intraperitoneally immunized with the above-prepared immunogen, once a week for 4 weeks. Next, spleen cells were obtained from the immunized mice, and fused with myeloma cells P3U1 using polyethylene glycol according to a conventional procedure. The fused cells were screened as follows. First, a culture supernatant and 0.01 ml of Protein G Sepharose (Pharmacia) were mixed to adsorb immunoglobulin in the supernatant to the Protein G Sepharose. On the other hand, 10^7 U266 cells internally labeled with 35 S-methionine were lysed, and the IL-6R was affinity-purified using the MT18-conjugated 40 Sepharose 4B. Next, the 35 S-methionine-labeled IL-6R was immunoprecipitated with the above-prepared Protein G Sepharose on which an immunoglobulin had been bonded, and the precipitate was analyzed by SDS/PAGE. As a result, one hybridoma clone producing antibody which specifically bound to the IL-6R was isolated, and designated PM1. The hybridoma PM1 was deposited with the FRI under the Budapest Treaty as FERM BP-2998, on July 10, 1990.

Reference Example 3 Construction of Hybridoma AUK12-20, AUK64-7 and AUK146-15

As an immunogen, a soluble IL-6R (SR 344) was prepared according to a procedure described by Yasukawa, K. et al., J. Biochem. 108, 673-676, 1990. Namely, a plasmid pCEEdhfr 344 containing a cDNA 50 coding for IL-6R wherein the 345th codon from the N-terminus had been replaced by a stop codon was transfected to CHO (5E27) cells, the transfected cells were cultured in a serum-free medium (SF-O medium, Sanko Junyaku), and a resulting supernatant was concentrated with an HF-Lab1 system (Tosoh), and purified by Blue-5PW column and Phenyl-5PW column. The purified soluble IL-6R showed a single band in an SDS-PAGE.

A female BALB/cAnNCrj mouse (Nippon CREA) was subcutaneously injected with 10 μ g/mouse of the immunogen in Freund's complete adjuvant (Bacto Adjuvant Complete H 37 Ra, Difco), followed by the second and third injections of the same amount of the immunogen in Freund's incomplete adjuvant (Bacto Adjuvant Incomplete Freund, Difco) two and three weeks after the first injection, respectively. A final

immunization (the fourth injection) was carried out without adjuvant into a tail vein one week after the third injection. A serum sample was prepared from the immunized mice, serially diluted with a dilution buffer, and assayed by ELISA according to a procedure described by Goldsmith, P.K., Analytical Biochemistry, 117, 53-60, 1981. Namely, an SR344 (0.1 µ/ml)-coated plate was blocked with 1% BSA, and the diluted sample 5 was added thereon. Mouse IgG bound to the SR344 was measured using goat anti-mouse IgG/alkaline phosphatase (A/P) (ZYMED) and a substrate for alkaline phosphatase (Sigma-104).

After confirming an increase of the anti-SR344 antibody in the serum, spleen cells were obtained from 5 BALB/c mice three days after the final immunization. The spleen cells and myeloma cells (P3U1) were mixed at a ratio of 25 : 1, fused using PEG1500, and cultured in 2000 wells at a cell concentration of 0.7 to 10 1.1×10^6 cells/well. Supernatants from the wells were screened for their ability to bind SR344 (the first screening designated as R344 recognition assay), and for their ability to inhibit a binding of SR344 with an interleukin-6 by a IL-6/sIL-6R binding inhibition assay (RBIA). The first screening provided 240 positive wells, and the second screening provided 36 positive wells.

The above-mentioned R344 recognition assay was carried out as follows: Goat anti-mouse Ig (Cappel) 15 (1 µg/ml)-coated plate (MaxiSorp, Nunc) was blocked with 1% BSA, and 100 µl/well of hybridoma culture supernatant was added thereon, followed by an incubation at room temperature for one hour. After washing the plate, 20 µg/ml of SR344 was added to each well, and incubation was carried out at room temperature for one hour. The amount of SR344 captured by the immobilized antibody derived from the supernatant was determined by addition of rabbit anti-SR344 IgG (#2, 5 µg/ml), goat anti-rabbit IgG-alkaline phosphatase 20 (A/P) (1:3000, Tago), and of a substrate (1 mg/ml, Sigma-104), followed by measurement of the optical density at 405-600 nm.

The above-mentioned RBIA was carried out as follows. MT18 antibody-coated plate was filled with 100 µg/ml of SR344 (100 µl/well), and incubation was carried out at a room temperature for one hour. After washing the plate, 50 µl/well of hybridoma supernatant and 50 µg/well of biotin-interleukin-6 conjugate (20 µg/ml) were simultaneously added to each well, and the wells were incubated at room temperature for one hour. An amount of biotin-IL-6 bound to SR344 was measured by an addition of streptavidin-A/P (1 : 7000, PIERCE) and a corresponding substrate (Sigma-104), followed by a measurement of the optical density at 405-600 nm.

Finally, positive clones were purified by a twice-repeated limiting dilution method, and three hybridoma 30 clones, i.e., AUK12-20, AUK145-15 and AUK64-7, which inhibit the binding of SR344 with the IL-6; and a hybridoma clone AUK181-6, which does not inhibit the binding of SR344 with the IL-6, were obtained.

Industrial Applicability

35 The present invention provides a reshaped human antibody to the human IL-6R, comprising a human antibody wherein the CDRs of the human V regions are replaced with the CDRs of a mouse monoclonal antibody to the human IL-6R. Since major portion of the reshaped human antibody is derived from a human antibody and the mouse CDRs which are less antigenic, the present reshaped human antibody is less immunogenic to human, and therefore is promised for therapeutic uses.

40 Reference to Deposited Microorganisms under Rule 13-2 of Budapest Treaty

Depository Authority: National Collections of Industrial and Marine Bacteria Limited
Address: 23 St Macher Drive, Aberdeen AB2 1RY, UNITED KINGDOM

45

50

55

Identification of Microorganism	Deposition No.	Deposition Date
E. Coli DH5α, pPM-h1	NCIMB 40362	Feb. 12, 1991
E. Coli DH5α, p12-h2	NCIMB 40363	Feb. 12, 1991
E. Coli DH5α, p64-h2	NCIMB 40364	Feb. 12, 1991
E. Coli DH5α, p146-h1	NCIMB 40365	Feb. 12, 1991
E. Coli DH5α, pPM-k3	MCIMB 40366	Feb. 12, 1991
E. Coli DH5α, p12-k2	NCIMB 40367	Feb. 12, 1991
E. Coli DH5α, p64-k4	NCIMB 40368	Feb. 12, 1991
E. Coli DH5α, p146-k3	NCIMB 40369	Feb. 12, 1991

Depository Authority: Fermentation Research Institute, Agency of industrial Science and Technology
Address: 103, Higashi 1-chome Tsukuba-shi Ibaraki Japan

Identification of Microorganism	Deposition No.	Deposition Date
MT 18	FERM BP-2999	July 10, 1990
PM 1	FERM BP-2998	July 10, 1990

5

Sequence Listing

10 SEQ. ID NO : 1

SEQUENCE LENGTH : 40

SEQUENCE TYPE : Nucleic acid

15 STRANDEDNESS : Single

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGAAGTTGC CTGTTAGGCT GTTGGTCCGT

40

25

SEQ. ID NO : 2

SEQUENCE LENGTH : 39

30 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

35 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

40

ACTAGTCGAC ATGGAGWCAG ACACACTCCT GYTATGGCT

39

45

SEQ. ID NO : 3

SEQUENCE LENGTH : 40

SEQUENCE TYPE : Nucleic acid

50 STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

55 SEQUENCE

ACTAGTCGAC ATGAGTGTCC TCACTCAGGT CCTGGSCTTG

40

SEQ. ID NO : 4

SEQUENCE LENGTH : 43

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGAGGRCCC CTGCTCAGWT TYTTGGMWTC TTG

43

SEQ. ID NO : 5

SEQUENCE LENGTH : 40

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTACTCGAC ATCGATTWC AGGTGCACAT TWTCAAGCTTC

40

SEQ. ID NO : 6

SEQUENCE LENGTH : 37

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGAGGCKCY YTGYTSACYT YCTGRGG

37

SEQ. ID NO : 7

SEQUENCE LENGTH : 41

5 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 ACTAGTCGAC ATGGGCWTCA AGATGGAGTC ACAKWYYCWG G

41

20 SEQ. ID NO : 8

SEQUENCE LENGTH : 41

SEQUENCE TYPE : Nucleic acid

25 STRANDEDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

35 ACTAGTCGAC ATCTGGGAY CTKTTTYCMM TTTTTCAATT G

41

35

SEQ. ID NO : 9

SEQUENCE LENGTH : 35

40

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50

ACTAGTCGAC ATGGTTRCCW CASCTCACTT CCTTG

35

55

SEQ. ID NO : 10

SEQUENCE LENGTH : 37

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGTATATAT GTTTGTTGTC TATTCT

37

SEQ. ID NO : 11

SEQUENCE LENGTH : 38

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATCCAAGCCC CACCTCACCT TCTCTTCC

38

SEQ. ID NO : 12

SEQUENCE LENGTH : 27

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

GGATCCCCGGG TGGATGGTGG GAAGATG

27

SEQ. ID NO : 13

SEQUENCE LENGTH : 37

5 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 ACTACTCGAC ATGAAATGCA CCTGGGTCA STTCTTC

37

20 SEQ. ID NO : 14

SEQUENCE LENGTH : 36

SEQUENCE TYPE : Nucleic acid

25 STRANDEDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGGGATGGA GCTRTATCAT SYTCTT

36

36 SEQ. ID NO : 15

SEQUENCE LENGTH : 37

40 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50 ACTACTCGAC ATGAAAGWTGT GGTTAAACTG GGTTTTT

37

55

SEQ. ID NO : 16

SEQUENCE LENGTH : 35

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGRAC TTTG GGYTCAGCTT GRTTT

35

SEQ. ID NO : 17

SEQUENCE LENGTH : 40

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGGACTCCA GCCTCAATT AGTTTCCTT

40

SEQ. ID NO : 18

SEQUENCE LENGTH : 37

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGGCTGTCTY TRGSGCTRCT CTTCTGC

37

SEQ. ID NO : 19

SEQUENCE LENGTH : 36

5 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 ACTACTCGAC ATGGRATGGA GCKGGRTCTT TMTCTT

36

20 SEQ. ID NO : 20

SEQUENCE LENGTH : 33

SEQUENCE TYPE : Nucleic acid

25 STRANDEDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGAGAGTGCG TGATTCTTT GTG

33

35

SEQ. ID NO : 21

SEQUENCE LENGTH : 40

40 SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50

ACTAGTCGAC ATGGMTGGG TGTGGAMCTT GCTATTCCCTG

40

55

SEQ. ID NO : 22

SEQUENCE LENGTH : 37

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

ACTAGTCGAC ATGGCCAGAC TTACATTCTC ATTCCCTG

37

SEQ. ID NO : 23

SEQUENCE LENGTH : 28

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

CGATCCCCGG CCAGTGGATA GACAGATG

28

SEQ. ID NO : 24

SEQUENCE LENGTH : 393

SEQUENCE TYPE : Nucleic acid

STRANDEDNESS : Double

TOPOLOGY : Linear

MOLECULE TYPE : cDNA

ORIGINAL SOURCE

ORGANISM : Mouse

55

IMADIATE SOURCE

CLONE : p12-k2

5

FEATURE : 1..60 sig peptide

61..393 mat peptide

10 SEQUENCE

ATG GAG TCA GAC ACA CTC CTG CTA TGG CTA CTG CTG CTC TGG GTT CCA 48

Met Glu Ser Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

75

-20 -15 -10 -5

GGT TCC ACT GGT GAC ATT GTG CTG ACA CAG TCT CCT GCT TCC TTA GGT 96

20 Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Gly

1 5 10

GTA TCT CTG GGG CAG AGG GCC ACC ATC TCA TGC AGG CCC AGC AAA AGT 144

25 Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Lys Ser

15 20 25

30 GTC AGT ACA TCT GGC TAT AGT TAT ATG CAC TGG TAC CAA CAG AAA CCA 192

Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Tyr Gln Gln Lys Pro

35 30 35 40

35 GGA CAG ACA CCC AAA CTC CTC ATC TAT CTT GCA TCC AAC CTA GAA TCT 240

Gly Gln Thr Pro Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser

40 45 50 55 60

GGG GTC CCT GCC AGG TTC AGT GGC AGT GGG TCT GGG ACA GAC TTC ACC 288

Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr

45 65 70 75

CTC AAC ATC CAT CCT GTG GAG GAG GAT GCT GCA ACC TAT TAC TGT 336

50 Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys

80 85 90

CAG CAC ACT AGG GAG AAT CCG TAC ACG TTC GCA CCC CGG ACC AAG CTG 384

5 Gin His Ser Arg Glu Asn Pro Tyr Thr Phe Gly Gly Thr Lys Leu

95 100

105

GAA ATA AAA 393

10 Glu Ile Lys

110

15

SEQ. ID NO : 25

SEQUENCE LENGTH : 405

20 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

TOPOLOGY : Linear

25 MOLECULE TYPE : cDNA

ORIGINAL SOURCE

30 ORGANISM : Mouse

IMADIATE SOURCE

CLONE : p12-h2

35 FEATURE : 1..57 sig peptide

58..405 mat peptide

SEQUENCE

40 ATG GGA TGG AGC GGG ATC TTT CTC TTC CTT CTG TCA GGA ACT GCA GGT 48

Met Gly Trp Ser Gly Ile Phe Leu Phe Leu Leu Ser Gly Thr Ala Gly

45 -15 -10 -5

GTC CAC TCT GAG ATC CAG CTG CAG CAG TCT GGA CCT GAG CTG ATG AAG 96

50 Val His Ser Glu Ile Gin Leu Gin Gin Ser Gly Pro Glu Leu Met Lys

-1 5 10

EP 0 628 639 A1

CCT	GGG	GCT	TCA	CTG	AAG	ATA	TCC	TCC	AAG	GCT	TCT	GGT	TAC	TCA	TTC	144
Pro	Gly	Ala	Ser	Val	Lys	Ile	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Ser	Phe	
5	15					20				25						
ACT	AGC	TAT	TAC	ATA	CAC	TCG	CTG	AAG	CAG	ACC	CAT	GCA	AAG	AGC	CTT	192
Thr	Ser	Tyr	Tyr	Ile	His	Trp	Val	Lys	Gln	Ser	His	Gly	Lys	Ser	Leu	
10	30						35			40			45			
GAG	TGG	ATT	GCA	TAT	ATT	GAT	CCT	TTC	AAT	GGT	GGT	ACT	AGC	TAC	AAC	240
Glu	Trp	Ile	Gly	Tyr	Ile	Asp	Pro	Phe	Asn	Gly	Gly	Thr	Ser	Tyr	Asn	
15																
CAG	AAA	TTC	AAG	GGC	AAG	GCC	ACA	TTG	ACT	GTT	GAC	AAA	TCT	TCC	AGC	288
Gln	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Val	Asp	Lys	Ser	Ser	Ser	
20									65	70		60				
ACA	GCC	TAC	ATG	CAT	CTC	AGC	AGC	CTG	ACA	TCT	GAG	GAC	TCT	GCA	GTC	336
Thr	Ala	Tyr	Met	His	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	
25									80	85		75				
TAT	TAC	TCT	GCA	AGC	GGG	GGT	AAC	GGC	TTT	GCT	TAC	TGG	GGC	CAA	GGG	384
Tyr	Tyr	Cys	Ala	Arg	Gly	Gly	Asn	Arg	Phe	Ala	Tyr	Trp	Gly	Gln	Gly	
30																
ACT	CTG	GTC	ACT	GTC	TCT	GCA										405
35	Thr	Leu	Val	Thr	Val	Ser	Ala									
40	110			115												

SEQ. ID NO : 26

45 SEQUENCE LENGTH : 381

SEQUENCE TYPE : Nucleic acid

50 STRANDNESS : Double

TOPOLOGY : Linear

MOLECULE TYPE : cDNA

ORIGINAL SOURCE

5 ORGANISM : Mouse

IMMEDIATE SOURCE

10 CLONE : pPM-k3

15 FEATURE : 1..60 sig peptide

61..381 mat peptide

20 15 SEQUENCE

ATG CTG TCC TCA GCT CAG TTC CTT CGT CTC CTG TTG CTC TGT TTT CAA 48

Met Val Ser Ser Ala Gln Phe Leu Gly Leu Leu Leu Cys Phe Gln

20 -20 -15 -10 -5

CGT ACC AGA TGT GAT ATC CAG ATG ACA CAG ACT ACA TCC TCC CTG TCT 96

25 Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser

1 5 10

CCC TCT CTG GGA GAC AGA GTC ACC ATC ACT TGC AGG GCA AGT CAG GAC 144

30 Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp

15 20 25

35 ATT ACC ACT TAT TTA AAC TCG TAT CAC CAG AAA CCA GAT CCA ACT ATT 192

Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Ile

30 35 40

40 AAA CTC CTG ATC TAC TAC ACA TCA AGA TTA CAC TCA GGA GTC CCA TCA 240

Lys Leu Leu Ile Tyr Tyr Ser Arg Leu His Ser Gly Val Pro Ser

45 50 55 60

45 AGG TTC ACT CCC ACT GGG TCT GGA ACA CAT TAT TCT CTC ACC ATT AAC 288

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn

50 65 70 75

AAC CTG GAG CAA GAA GAC ATT GCC ACT TAC TTT TGC CAA CAG GGT AAC	336
Asn Leu Glu Gin Glu Asp Ile Ala Thr Tyr Phe Cys Gin Gin Gly Asn	
5	
80 85 90	
ACG CTT CCC TAC ACG TTC GCA GGG GGG ACC AAG CTG GAA ATA AAT	381
Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Asn	
10	
95 100 105	

15 SEQ. ID NO : 27
 SEQUENCE LENGTH : 411
 20 SEQUENCE TYPE : Nucleic acid
 STRANDEDNESS : Double
 25 TOPOLOGY : Linear
 STRANDNESS : Double
 MOLECULE TYPE : cDNA

ORIGINAL SOURCE
 30 ORGANISM : Mouse

IMADIATE SOURCE

35 CLONE : pPM-h1
 FEATURE : 1..54 sig peptide
 55..411 mat peptide

40 SEQUENCE
 ATG AGA GTG CTG ATT CTT TTG TGG CTG TTC ACA GCC TTT CCT GGT ATC 48
 Met Arg Val Leu Ile Leu Leu Trp Leu Phe Thr Ala Phe Pro Gly Ile
 45 -15 -10 -5
 CTG TCT GAT GTG CAG CTT CAG GAG TCG GGA CCT GTC CTG GTG AAG CCT 96
 50 Leu Ser Asp Val Gin Leu Gin Glu Ser Gly Pro Val Leu Val Lys Pro
 -1 5 10

EP 0 628 639 A1

TCT CAG TCT CTG TCC CTC ACC TGC ACT GTC ACT GCC TAC TCA ATC ACC	144
Ser Gln Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr	
5 15 20 25 30	
AGT GAT CAT GCC TGG AGC TGG ATC CGG CAG TTT CCA GGA AAC AAA CTG	192
Ser Asp His Ala Trp Ser Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu	
10 35 40 45	
GAG TGG ATG GGC TAC ATA AGT TAC ACT GGT ATC ACT ACC TAC AAC CCA	240
Glu Trp Met Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro	
15 50 55 60	
TCT CTC AAA AGT CGA ATC TCT ATC ACT CGA GAC ACA TCC AAG AAC CAG	288
Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln	
20 65 70 75	
TTC TTC CTA CAG TTG AAT TCT GTG ACT ACT GGG GAC ACG TCC ACA TAT	336
Phe Phe Leu Gln Leu Asn Ser Val Thr Thr Gly Asp Thr Ser Thr Tyr	
25 80 85 90	
TAC TCT GCA AGA TCC CTA GCT CGG ACT ACC GCT ATC GAC TAC TGG GGT	384
Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly	
30 95 100 105 110	
CAA GGA ACC TCA GTC ACC GTC TCC TCA	411
Gln Gly Thr Ser Val Thr Val Ser Ser	
35 115	

SEQ. ID NO : 28

45 SEQUENCE LENGTH : 393

SEQUENCE TYPE : Nucleic acid

50 STRANNESS : Double

TOPOLOGY : Linear

MOLECULE TYPE : cDNA

ORIGINAL SOURCE

5

ORGANISM : Mouse

IMMEDIATE SOURCE

10

CLONE : p64-k4

FEATURE : 1..60 sig peptide

61..393 mat peptide

15

SEQUENCE

ATG GAG TCA GAC ACA CTC CTG CTA TGG GTG CTG CTG CTC TGG GTT CCA 48

Met Glu Ser Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

-20 -15 -10 -5

GCT TCC ACA CCT GAC ATT GTG TTG ATC CAA TCT CCA CCT TCT TTG CCT 96

25 Gly Ser Thr Gly Asp Ile Val Leu Ile Gin Ser Pro Ala Ser Leu Ala

-1 5 10

GTG TCT CTA CGG CAG AGG CCC ACC ATA TCC TGC AGA GCC ACT CAA AGT 144

30 Val Ser Leu Gly Gin Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser

15 20 25

GTT GAT AGT TAT GGC AAT AGT TTT ATG CAC TGG TAC CAG CAG AAA CCA 192

Val Asp Ser Tyr Gly Asn Ser Phe Met His Trp Tyr Gin Gin Lys Pro

30 35 40

40 GGA CAG CCA CCC AAA CTC CTC ATC TAT CGT GCA TCC AAC CTA GAA TCT 240

Gly Gin Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser

45 50 55 60

GGG ATC CCT GCC AGG TTC AGT GGC AGT GGG TCT AGG ACA GAC TTC ACC 288

Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr

50

65 70 75

55

CTC ACC ATT AAT CCT GTG GAG GCT GAT GAT CTT GCA ACC TAT TAC TGT 336

Leu Thr Ile Asn Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys

5

80

85

90

CAG CAA ACT AAT GAG GAT CCT CCC ACG TTC GCT GCT GGG ACC AAG CTG 384

10

Gln Gln Ser Asn Glu Asp Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu

95

100

105

GAG CTC AAA 393

15

Glu Leu Lys

110

20

SEQ. ID NO : 29

SEQUENCE LENGTH : 417

25

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

30

TOPOLOGY : Linear

MOLECULE TYPE : cDNA

ORIGINAL SOURCE

35

ORGANISM : Mouse

IMADIATE SOURCE

40

CLONE : p64-h2

FEATURE : 1..57 sig peptide

58..417 mat peptide

45

SEQUENCE

ATG CGA TCG AGC CGG GTC TTT ATC TTC CTC CTG TCA GTC ACT GCA GGT 48

Met Gly Trp Ser Gly Val Phe Ile Phe Leu Leu Ser Val Thr Ala Gly

50

-15

-10

-5

55

EP 0 628 639 A1

	GTG CAC TCC CAG GTT CAA TTG CAG CAG TCT GGA GCT GAG TTG ATG AAG	96
	Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Met Lys	
5	-1	5
	CCT GGG GCC TCA GTG AAC ATC TCC TCC AAC GCT ACT GGC TAC ACA TTC	144
	Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Thr Gly Tyr Thr Phe	
10	15	20
	ACT AGT TAT TCG ATA GTG TGG ATA AAG CAG AGG CCT CGA CAT GGC CTT	192
	Ser Ser Tyr Trp Ile Val Trp Ile Lys Gln Arg Pro Gly His Gly Leu	
15	30	35
	CAG TGG ATT GGA GAG ATT TTA CCT GGA ACC GGT AGT ACT AAC TAC AAT	240
	Glu Trp Ile Gly Glu Ile Leu Pro Gly Thr Gly Ser Thr Asn Tyr Asn	
20	50	55
	GAG AAA TTC AAC GGC AAG GCC ACA TTC ACT GCA GAT ACA TCT TCC AAC	288
25	Glu Lys Phe Lys Gly Lys Ala Thr Phe Thr Ala Asp Thr Ser Ser Asn	
	65	70
	ACA GCC TAC ATG CAA CTC ACC ACC CTG ACA TCT GAG GAC TCT GCC GTC	336
	Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val	
30	80	85
	TAT TAC TGT GCA ACT CTA GAC ACC TCG GGC TAC TAT GCT ATG GAC TAT	384
	Tyr Tyr Cys Ala Ser Leu Asp Ser Ser Gly Tyr Tyr Ala Met Asp Tyr	
35	95	100
	TGG GGT CAA GGA ACC TCA GTC ACC GTC TCC TCA	417
	Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser	
40	110	115
	120	

SEQ. ID NO : 30

SEQUENCE LENGTH : 381

SEQUENCE TYPE : Nucleic acid

STRANNESS : Double

5

TOPOLOGY : Linear

MOLECULE TYPE : cDNA

10

ORIGINAL SOURCE

ORGANISM : Mouse

IMADIATE SOURCE

15

CLONE : p146-k3

FEATURE : 1..60 sig peptide

20

61..381 mat peptide

SEQUENCE

ATG GTC TCC ACA CCT CAG TTC CTT GGT CTC CTG TTG ATC TGT TTT CAA 48

25

Met Val Ser Thr Pro Gln Phe Leu Gly Leu Leu Leu Ile Cys Phe Gln

-20 -15 -10 -5

30

GGT ACC AGA TGT GAT ATC CAC ATC ACA CAG ACT ACA TCC TCC CTG TCT 96

Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser

-1 5 10

35

GCC TCT CTG GGA GAC AGA GTC ACC ATC ACT TGC AGG GCA ACT CAG GAC 144

Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp

15 20 25

40

ATT ACT AAT TAT TTA AAC TCG TAT CAA CAG AAA CCA CAT GGA ACT GTT 192

Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val

45

30 35 40

AAA CTC CTG ATC TAC TAT ACA TCA AGA TTA CAC TCA GGA GTC CCA TCA 240

Lys Leu Leu Ile Tyr Tyr Ser Arg Leu His Ser Gly Val Pro Ser

50

45 50 55 60

55

AGG TTC AGT GGC ACT GGG TCT GGA ACA GAT TAT TCT CTC ACC ATT AGC	288
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser	
5 65 70 75	
AAC CTG GAG CAA GAA GAT ATT GCC ACT TAC TTT TGC CAA CAG CGT TAT	336
Asn Leu Glu Gln Glu Asp Ile Ala Ser Tyr Phe Cys Gln Gln Gly Tyr	
10 80 85 90	
ACG CCT CCC TGG ACG TTC GGT GGA GGC ACC AAG TTG GAA ATC AAA	381
Thr Pro Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys	
15 95 100 105	

20 SEQ. ID NO : 31

SEQUENCE LENGTH : 402

25 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

TOPOLOGY : Linear

30 MOLECULE TYPE : cDNA

ORIGINAL SOURCE

35 ORGANISM : Mouse

IMADIATE SOURCE

CLONE : p146-h1

40 FEATURE : 1..51 sig peptide

52..402 mat peptide

SEQUENCE

ATG GAG CTG GAT CTT TAT CTT ATT CTG TCA GTA ACT TCA CGT GTC TAC	48
Met Glu Leu Asp Leu Tyr Leu Ile Leu Ser Val Thr Ser Gly Val Tyr	

50 -15 -10 -5	
---------------	--

EP 0 628 639 A1

TCA CAG GTT CAG CTC CAG CAG TCT GGG GCT GAG CTG GCA AGA CCT GGG	96
Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly	
5 -1 5 10 15	
GCT TCA GTG AAG TTG TCC TGC AAG GCT TCT GGC TAC ACC TTT ACT AAC	144
Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn	
10 15 20 25 30	
TAC TCG GTG CAG TCG GTA AAA CAG AGG CCT GGA CAG CCT CTG GAA TGG	192
Tyr Trp Val Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp	
15 20 25 30 35 40 45	
ATT GGG TCT ATT TAT CCT GGA GAT GGT GAT ACT AGG AAC ACT CAG AAG	240
Ile Gly Ser Ile Tyr Pro Gly Asp Gly Asp Thr Arg Asn Thr Gln Lys	
20 25 30 35 40 45 50 55 60	
TTC AAG CGC AAG GCC ACA TTG ACT GCA GAT AAA TCC TCC ATC ACA GCC	288
Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ile Thr Ala	
25 30 35 40 45 50 55 60 65 70 75	
TAC ATG CAA CTC ACC ACC TTG GCA TCT GAG GAC TCT GCG GTC TAT TAC	336
Tyr Met Gln Leu Thr Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr	
30 35 40 45 50 55 60 65 70 75 80 85 90 95	
TGT GCA AGA TCG ACT GGT AAC CAC TTT GAC TAC TGG GCC CAA GGC ACC	384
Cys Ala Arg Ser Thr Gly Asn His Phe Asp Tyr Trp Gln Gly Thr	
35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110	
ACT CTC ACA GTC TCC TCA	402
Thr Leu Thr Val Ser Ser	
45 50 55 60 65 70 75 80 85 90 95 100 105 110 115	

SEQ. ID NO : 32

SEQUENCE LENGTH : 35

5 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 ACAAAAGCTTC CACCATGGAG TCAGACACAC TCCTG

35

20 SEQ. ID NO : 33

SEQUENCE LENGTH : 36

SEQUENCE TYPE : Nucleic acid

25 STRANDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

35 GGCTAAGCTT CCACCATGGG ATGGACCGGG ATCTTT

36

35

SEQ. ID NO : 34

SEQUENCE LENGTH : 35

40

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50

CTTGGATCCA CTCACGTTT ATTCAGCT TGGTC

35

55

SEQ. ID NO : 35

SEQUENCE LENGTH : 36

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

GTTGGATCCA CTCACCTCCA GAGACAGTTA CCAGAG

36

SEQ. ID NO : 36

SEQUENCE LENGTH : 35

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

CTTGGATCCA CTCACCGATT ATTCCAGCT TGGTC

35

SEQ. ID NO : 37

SEQUENCE LENGTH : 35

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

CTTGGATCCA CTCACGTTT ATTCCAGCT TGGTC

35

SEQ. ID NO : 38

SEQUENCE LENGTH : 36

5 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 ACAAAAGCTTC CACCATGGTG TCCTCAGCTC ACTTCC

36

SEQ. ID NO : 39

20 SEQUENCE LENGTH : 39

SEQUENCE TYPE : Nucleic acid

25 STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

30 SEQUENCE

TGTTAGATCT ACTCACCTGA GGAGACAGTG ACTGAGGTT

39

35

SEQ. ID NO : 40

SEQUENCE LENGTH : 36

40 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50 GTCTAAGCTT CCACCATGAG AGTGCTGATT CTTTG

36

55

SEQ. ID NO : 41

SEQUENCE LENGTH : 17

5 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 TACGCCAAACC GCCTCTC 17

20 SEQ. ID NO : 42

SEQUENCE LENGTH : 18

25 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

35 GAGTCCACCA TATGCGGT 18

36

SEQ. ID NO : 43

40 SEQUENCE LENGTH : 55

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

50 SEQUENCE

55 ACCGTGTCTG CCTACACCTT CACCAGCGAT CATGCCTGGA CCTGGGTGAG ACAGC 55

56

SEQ. ID NO : 44
SEQUENCE LENGTH : 63
5 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
10 MOLECULE TYPE : Synthetic DNA
SEQUENCE
15 TGAGTGGATT GGATACATTA GTTATACTGG AATCACAACC TATAATCCAT 50
CTCTCAAATC CAG 63

20 SEQ. ID NO : 45
SEQUENCE LENGTH : 54
SEQUENCE TYPE : Nucleic acid
25 STRANDNESS : Single
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
30 SEQUENCE
TATTATTGTG CAAGATCCCT AGCTCGGACT ACGGCTATGG ACTACTGGGG TCAA 54
35
SEQ. ID NO : 46
SEQUENCE LENGTH : 27
40 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
45 MOLECULE TYPE : Synthetic DNA
SEQUENCE
50 GTGACAATGC TGAGAGACAC CACCAAG 27

SEQ. ID NO : 47
SEQUENCE LENGTH : 24
5 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
10 MOLECULE TYPE : Synthetic DNA
SEQUENCE
15 GGTGTCCACT CCGATGTCCA ACTG 24

SEQ. ID NO : 48
20 SEQUENCE LENGTH : 27
SEQUENCE TYPE : Nucleic acid
25 STRANDNESS : Single
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
30 SEQUENCE
GGTCTTGACT CCATGGATA CATTACT 27

35 SEQ. ID NO : 49
SEQUENCE LENGTH : 29
40 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
45 MOLECULE TYPE : Synthetic DNA
SEQUENCE
50 GTGTCTGGCT ACTCAATTAC CAGCATCAT 29

SEQ. ID NO : 50

SEQUENCE LENGTH : 48

5 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

10 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

15 TGTAGACCCA CCCAGGACAT CAGCACTTAC CTGAACCTGGT ACCACCAAG

48

20 SEQ. ID NO : 51

SEQUENCE LENGTH : 42

SEQUENCE TYPE : Nucleic acid

25 STRANDNESS : Single

TOPOLOGY : Linear

30 MOLECULE TYPE : Synthetic DNA

SEQUENCE

ATCTACTACA CCTCCAGACT GCACCTCTGGT GTGCCAAGCA GA

42

35

SEQ. ID NO : 52

SEQUENCE LENGTH : 50

40 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

45 TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

50

ACCTACTACT GCCAACACGGG TAACACGGCTT CCATACACGT TCGGCCAAGG

50

55

SEQ. ID NO : 53
SEQUENCE LENGTH : 27
5 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
10 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
15 AGCGGTACCC ACTACACCTT CACCATC 27

SEQ. ID NO : 54
20 SEQUENCE LENGTH : 706
SEQUENCE TYPE : Nucleic acid
25 STRANDNESS : Double
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
30 ORIGINAL SOURCE
ORGANISM : Mouse and Human
IMADIATE SOURCE
35 CLONE : pUC-RVh-PMIf
FEATURE : gene coding for H chain V region version (f) of reshaped
40 human PM-1 antibody to human IL-6R
amino acid -20--1 : leader
amino acid 1 - 30 : FR1
45 amino acid 31 - 36 : CDR1
amino acid 37 - 50 : FR2
amino acid 51 - 66 : CDR2
50 amino acid 67 - 98 : FR3

amino acid 99 - 108: CDR3

amino acid 109 - 119: FR4

5 nucleotide 1 - 6 Hind III site

nucleotide 54 - 135 intron

10 nucleotide 258 - 348 intron/aberrant splicing

nucleotide 505 - 706 intron

nucleotide 701 - 706 Bam HI site

15
SEQUENCE

AAGCTTC ATG GGA TCG AGC TGT ATC ATC CTC TTC TTG CTA GCA ACA GCT	49
20 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala	
-15	-10
ACA G GTAACGGGCT CACAGTAGCA GGCTTCAGCT CTGGACATAT ATATGGGTGA	103
25 Thr	
-5	
30 CAATGACATC CACTTGCCT TTCTCTCCAC AG GT GTC CAC TCC CAG GTC CAA	155
Gly Val His Ser Gln Val Gln	
1	
35 CTG CAG GAG ACC GGT CCA GGT CTT GTG AGA CCT AGC CAG ACC CTG AGC	203
Leu Gln Glu Ser Gly Pro Gly Leu Val Arg Pro Ser Gln Thr Leu Ser	
40 5 10 15	
CTG ACC TCC ACC GTG TCT GCC TAC TCA ATT ACC AGC GAT CAT CCC TGG	251
Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Thr Ser Asp His Ala Trp	
45 20 25 30 35	
ACC TGG GTC AGA CAG CCA CCT GGA CGA GGT CTT GAG TGG ATT GGA TAC	299
50 Ser Trp Val Arg Gln Pro Pro Gly Arg Gly Leu Glu Trp Ile Gly Tyr	
40 45 50	

	ATT ACT TAT ACT GGA ATC ACA ACC TAT AAT CCA TCT CTC AAA TCC AGA	347
5	Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn Pro Ser Leu Lys Ser Arg	
	55 60 65	
	GTG ACA ATG CTG AGA GAC ACC ACC AAC AAC CAG TTC ACC CTG AGA CTC	395
10	Val Thr Met Leu Arg Asp Thr Ser Lys Asn Gln Phe Ser Leu Arg Leu	
	70 75 80	
15	AGC AGC GTG ACA GCC GCC GAC ACC GCG GTT TAT TAT TGT GCA AGA TCC	443
	Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser	
	85 90 95	
20	CTA GCT CGG ACT ACC CCT ATG GAC TAC TGG CGT CAA GGC AGC CTC GTC	491
	Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp Gly Gln Gly Ser Leu Val	
	100 105 110 115	
25	ACA GTC TCC TCA G GTGAGTCCTT ACAACCTCTC TCTTCTATTG AGCTTAAATA	544
	Thr Val Ser Ser	
30	GATTTTACTG CATTGTTGG CGGGGAAATG TGTGTATCTG AATTTCAGGT CATGAAGGAC	604
	TAGGGACACC TTGGGAGTCA GAAAGGGTCA TTGGGAGGCC GGGCTGATGC AGACAGACAT	664
	CCTCAGCTCC CAGACTTCAT GGCCAGAGAT TTATAGGGAT CC	706
35	SEQ. ID NO : 55	
	SEQUENCE LENGTH : 506	
40	SEQUENCE TYPE : Nucleic acid	
	STRANDNESS : Double	
45	TOPOLOGY : Linear	
	MOLECULE TYPE : Synthetic DNA	
	ORIGINAL SOURCE	
50	ORGANISM : Mouse and Human	

IMMEDIATE SOURCE

CLONE : PUC-RV1-PM1a

SEQUENCE

35 AAGCTTC ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT 49
 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala
 40 -15 -10
 ACA G GTAAGGGGCT CACAGTAGCA GGCTTGACGGT CTGGACATAT ATATGGGTGA 103
 Thr
 45 -5
 CAATCACATC CACTTTGCCCT TTCTCTCCAC AG GT GTC CAC TCC GAC ATC CAG 155
 Gly Val His Ser Asp Ile Gin

EP 0 628 639 A1

	ATG ACC CAG AGC CCA AGC AGC CTG AGC GCC AGC GTG GGT GAC AGA GTG	203
	Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val	
5	5 10 15	
	ACC ATC ACC TGT AGA GCC AGC CAG GAC ATC AGC ACT TAC CTG AAT TGG	251
10	Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Tyr Leu Asn Trp	
	20 25 30 35	
	TAC CAG CAG AAG CCA GGT AAG GCT CCA AAG CTG CTG ATC TAC TAC ACC	299
15	Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr	
	40 45 50	
20	TCC AGA CTG CAC TCT GGT CTG CCA AGC AGA TTC AGC GGT ACC GGT AGC	347
	Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser	
	55 60 65	
25	GGT ACC GAC TTC ACC TTC ACC ATC AGC AGC CTC CAG CCA CAG CAC ATC	395
	Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile	
	70 75 80	
30	GCT ACC TAC TAC TCC CAA CAG GGT AAC ACG CTT CCA TAC ACG TTC GGC	443
	Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr Leu Pro Tyr Thr Phe Gly	
	85 90 95	
35	CAA GGG ACC AAG GTG GAA ATC AAA C GTGAGTACAA TTTAAACTTT	488
	Gln Gly Thr Lys Val Glu Ile Lys	
40	100 105	
	GCTTCCTCAG TTGGATCC	506

45 SEQ. ID NO : 56

SEQUENCE LENGTH : 438

50 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

5

ORIGINAL SOURCE

ORGANISM : Mouse and Human

10

IMADIATE SOURCE

CLONE : pUC-RVh-PM1f-4

FEATURE : gene, excluding introns, coding for H chain V region

15

version (f) of reshaped human PM-1 antibody to human IL-6R

amino acid -20--1 : leader

20

amino acid 1 - 30 : FRI

amino acid 31 - 36 : CDR1

25

amino acid 37 - 50 : FR2

amino acid 51 - 66 : CDR2

amino acid 67 - 98 : FR3

30

amino acid 99 - 108 : CDR3

amino acid 109 - 119 : FR4

35

nucleotide 1 - 6 : Hind III site

nucleotide 432 - 438 : Bam HI site

SEQUENCE

40 AACCTTCCAC C ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA 50

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr

-15

-10

45 GCT ACA GGT GTC CAC TCC CAG GTC CAA CTG CAG GAG AGC GGT CCA GGT 98

Ala Thr Gly Val His Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly

50 -5 1 5 10

55

EP 0 628 639 A1

	CTT GTG AGA CCT ACC CAG ACC CTG AGC CTG ACC TCC ACC CTG TCT GGC	146		
	Leu Val Arg Pro Ser Gin Thr Leu Ser Leu Thr Cys Thr Val Ser Gly			
5	15	20	25	
	TAC TCA ATT ACC AGC GAT CAT GCC TGG AGC TGG GTT CGC CAG CCA CCT	194		
10	Tyr Ser Ile Thr Ser Asp His Ala Trp Ser Trp Val Arg Gin Pro Pro			
	30	35	40	
	GGA CGA CGT CTT GAG TGG ATT GGA TAC ATT AGT TAT AGT GGA ATC ACA	242		
15	Gly Arg Gly Leu Glu Trp Ile Gly Tyr Ile Ser Tyr Ser Gly Ile Thr			
	45	50	55	
20	ACC TAT AAT CCA TCT CTC AAA TCC AGA GTG ACA ATG CTG AGA GAC ACC	290		
	Thr Tyr Asn Pro Ser Leu Lys Ser Arg Val Thr Met Leu Arg Asp Thr			
	60	65	70	
25	AGC AAG AAC CAG TTC AGC CTG AGA CTC AGC AGC GTG ACA GCC GAC GAC	338		
	Ser Lys Asn Gin Phe Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp			
	75	80	85	90
30	ACC CGG GTT TAT TAT TGT GCA AGA TCC CTA GCT CGG ACT ACG GCT ATG	386		
	Thr Ala Val Tyr Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met			
	95	100	105	
35	GAC TAC TGG CCT CAA CCC AGC CTC GTC ACA GTC TCC TCA G GTGAGTGGAT	436		
	Asp Tyr Trp Gly Gin Gly Ser Leu Val Thr Val Ser Ser			
40	110	115		
	CC	438		

45 SEQ. ID NO : 57

SEQUENCE LENGTH : 402

SEQUENCE TYPE : Nucleic acid

50 STRANNESS : Double

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

5

ORIGINAL SOURCE

ORGANISM : Mouse and Human

10

IMADIATE SOURCE

CLONE : pUC-RV1-PM1a

FEATURE : gene, excluding introns, coding for L chain V region

15

version (a) of reshaped human PM-1 antibody to human IL-6R

amino acid - 1 -- 19:leader

20

amino acid 1 - 23 : FRI

amino acid 24 - 34 : CDR1

amino acid 35 - 49 : FR2

25

amino acid 50 - 56 : CDR2

amino acid 57 - 88 : FR3

30

amino acid 89 - 97 : CDR3

amino acid 98 - 107:FR4

nucleotide 1 - 6 : Hind III site

35

nucleotide 397 - 402: Bam H1 site

SEQUENCE

40

AACCTTCCAC C ATG GCA TCG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA 50

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr

-15 -10

45

GCT ACA GGT GTC CAC TCC GAC ATC CAG ATG ACC CAG AGC CCA ACC AGC 98

Ala Thr Gly Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser

50

-5

1

5

10

55

CTG AGC GCC AGC GTG GGT GAC AGA GTG ACC ATC ACC TGT AGA GCC AGC 146
 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
 5 15 20 25
 CAG GAC ATC AGC AGT TAC CTG AAT TGG TAC CAG CAG AAG CCA GGA AAG 194
 10 Gln Asp Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
 15 30 35 40
 CCT CCA AAG CTG CTG ATC TAC TAC ACC TCC AGA CTG CAC TCT GGT GTG 242
 20 Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val
 25 45 50 55
 CCA AGC AGA TTC ACC GGT ACC GGT AGC GGT ACC GAC TTC ACC TTC ACC 290
 30 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr
 35 60 65 70
 ATC AGC AGC CTC CAG CCA GAG GAC ATC GCT ACC TAC TAC TGC CAA CAG 338
 40 Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln
 45 75 80 85 90
 GGT AAC ACG CTT CCA TAC ACG TTC CCC CAA CGG ACC AAG GTG GAA ATC 386
 50 Gly Asn Thr Leu Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 55 95 100 105
 55 AAA C GTGAGTGGAT CC 402
 Lys

40 SEQ. ID NO : 58

45 SEQUENCE LENGTH : 36

50 SEQUENCE TYPE : Nucleic acid

55 STRANNESS : Single

TOPOLOGY : Linear

55 MOLECULE TYPE : Synthetic DNA

SEQUENCE

TAAGGATCCA CTCACCTGAG GAGACTGTGA CGAGGC

36

5

SEQ. ID NO : 59

SEQUENCE LENGTH : 32

10

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

15

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

20

ATCAAGCTTC CACCATGGGA TGGAGCTGTA TC

32

SEQ. ID NO : 60

25

SEQUENCE LENGTH : 30

SEQUENCE TYPE : Nucleic acid

30

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

35

SEQUENCE

AATGGATCCA CTCACCTTG ATTTCCACCT

30

40

SEQ. ID NO : 61

SEQUENCE LENGTH : 33

SEQUENCE TYPE : Nucleic acid

45

STRANDNESS : Single

TOPOLOGY : Linear

50

MOLECULE TYPE : Synthetic DNA

55

SEQUENCE

CATGCCCTGGA CCTGGGTTCG CCAGCCACCT CGA

33

5

SEQ. ID NO : 62

10

SEQUENCE LENGTH : 33

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

15

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

20

SEQUENCE
TCCAGGTGGC TGGCGAACCC ACCTCCAGGC ATG

33

25

SEQ. ID NO : 63

SEQUENCE LENGTH : 30

SEQUENCE TYPE : Nucleic acid

30

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

35

SEQUENCE

CAGCACAAAGC CAGGAAAGGC TCCAAAGCTG

30

40

SEQ. ID NO : 64

SEQUENCE LENGTH : 30

45

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

50

MOLECULE TYPE : Synthetic DNA

55

SEQUENCE

CAGCTTTGGA GCCTTCCTG GCTTCTGCTG

30

5

SEQ. ID NO : 65

SEQUENCE LENGTH : 66

10

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

15

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

SEQUENCE

20

ACCTGTAGAG CCACCAACAG TCTTACTACA TCTGGCTATA GTTATATGCA

50

CTGGTACCAAG CAGAAC

66

25

SEQ. ID NO : 66

SEQUENCE LENGTH : 15

30

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

35

MOLECULE TYPE : Synthetic DNA

SEQUENCE

40

GCTGGCTCTA CACGT

15

SEQ. ID NO : 67

45

SEQUENCE LENGTH : 48

SEQUENCE TYPE : Nucleic acid

50

STRANDNESS : Single

TOPOLOGY : Linear

55

MOLECULE TYPE : Synthetic DNA

SEQUENCE

5 AAGCTGCTGA TCTACCTTCC ATCCACCCCTG GAATCTGGTG TGCCAAGC 48

10 SEQ. ID NO : 68

SEQUENCE LENGTH : 15

SEQUENCE TYPE : Nucleic acid

15 STRANDNESS : Single

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

SEQUENCE

25 GTAGATCAGC AGCTT 15

25

SEQ. ID NO : 69

SEQUENCE LENGTH : 48

30 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

35 TOPOLOGY : Linear

35 MOLECULE TYPE : Synthetic DNA

SEQUENCE

40 CCTACCTACT ACTGCCAGCA CACTAGGGAG ACCCCATACA CGTTCCGC 48

45 SEQ. ID NO : 70

SEQUENCE LENGTH : 15

SEQUENCE TYPE : Nucleic acid

50 STRANDNESS : Single

TOPOLOGY : Linear

55

MOLECULE TYPE : Synthetic DNA

SEQUENCE

5

CTGGCACTAG CTAGC

15

10 SEQ. ID NO : 71

SEQUENCE LENGTH : 414

SEQUENCE TYPE : Nucleic acid

15

STRANDNESS : Double

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

ORIGINAL SOURCE

ORGANISM : Mouse and Human

25 IMMEDIATE SOURCE

CLONE : pUC-RV1-1220a

30 FEATURE : gene, excluding introns, coding for L chain V region version
(a) of reshaped human AUK12-20 antibody to human IL-6R

35 amino acid -19--1:leader

amino acid 1 - 23 : FR1

amino acid 24 - 38 : CDR1

amino acid 39 - 53 : FR2

40 amino acid 54 - 60 : CDR2

amino acid 61 - 92 : FR3

45 amino acid 93 - 101:CDR3

amino acid 102 - 111:FR4

nucleotide 1 - 6 : Hind III site

50

nucleotide 408 - 414: Bam HI site

55

SEQUENCE

AAGCTTCCAC	C	ATG	GCA	TGG	ACC	TGT	ATC	ATC	CTC	TTC	TTG	GTA	GCA	ACA	50		
5		Met	Gly	Trp	Ser	Cys	Ile	Ile	Leu	Phe	Leu	Val	Ala	Thr			
							-15							-10			
10	GCT	ACA	GGT	GTC	CAC	TCC	GAC	ATC	CAG	ATG	ACC	CAG	AGC	CCA	AGC	98	
	Ala	Thr	Gly	Val	His	Ser	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser		
15	-5		-1	1					5						10		
20	CTG	AGC	GCC	ACC	CTG	GGT	GAC	AGA	GTG	ACC	ATC	ACC	TGT	AGA	GCC	AGC	146
	Leu	Ser	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	
25							15			20					25		
30	AAG	ACT	GTT	AGT	ACA	TCT	GGC	TAT	ACT	TAT	ATG	CAC	TGG	TAC	CAG	CAG	194
	Lys	Ser	Val	Ser	Thr	Ser	Gly	Tyr	Ser	Tyr	Met	His	Trp	Tyr	Gln	Gln	
35							30			35					40		
40	AAG	CCA	GGA	AAG	GCT	CCA	AAG	CTG	CTG	ATC	TAC	CTT	GCA	TCC	AAC	CTG	242
	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile	Tyr	Leu	Ala	Ser	Asn	Leu	
45							45			50					55		
50	GAA	TCT	GGT	GTG	CCA	ACC	ACA	TTC	ACC	GGT	ACC	GGT	ACC	GAC		290	
	Glu	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	
55							60			65					70		
60	TTC	ACC	TTC	ACC	ATC	ACC	AGC	CTC	CAG	CCA	GAC	GAC	ATC	GCT	ACC	TAC	338
	Phe	Thr	Phe	Thr	Ile	Ser	Ser	Leu	Gln	Pro	Glu	Asp	Ile	Ala	Thr	Tyr	
65							75			80					85		
70	TAC	TGC	CAG	CAC	ACT	AGC	GAG	AAC	CCA	TAC	ACG	TTC	GCC	CAA	GGG	ACC	386
75	Tyr	Cys	Gln	His	Ser	Arg	Glu	Asn	Pro	Tyr	Thr	Phe	Gly	Gln	Gly	Thr	
80							95								100		
85																105	

AAG GTC GAA ATC AAA CGTGACTGGA TCC

414

Lys Val Glu Ile Lys

5

110

10

SEQ. ID NO : 72

SEQUENCE LENGTH : 45

SEQUENCE TYPE : Nucleic acid

15

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

20

SEQUENCE

GGTTATTCCAT TCACTAGTTA TTACATACAC TGGGTTAGAC AGGCC

45

25

SEQ. ID NO : 73

SEQUENCE LENGTH : 27

30

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

35

MOLECULE TYPE : Synthetic DNA

SEQUENCE

40

ACTGAATCAA TAACCGCTAG CTTTACA

27

SEQ. ID NO : 74

45

SEQUENCE LENGTH : 69

SEQUENCE TYPE : Nucleic acid

50

STRANDNESS : Single

TOPOLOGY : Linear

55

MOLECULE TYPE : Synthetic DNA

SEQUENCE

5 GAGTGGGTGG CCTATATTGA TCCTTTCAAT CCTGGTACTA GCTATAATCA 50

CAAGTTCAAG CCCAGGGTT 69

10 SEQ. ID NO : 75

SEQUENCE LENGTH : 15

15 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

20 TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

SEQUENCE

25 ATAGCCCACC CACTC 15

30 SEQ. ID NO : 76

SEQUENCE LENGTH : 36

35 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

35 TOPOLOGY : Linear

40 MOLECULE TYPE : Synthetic DNA

SEQUENCE

40 CGGGGTAACC CCTTTGCTTA CTGGGGACAG CCTACC 36

45 SEQ. ID NO : 77

SEQUENCE LENGTH : 36

50 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

5

SEQUENCE

AGCAAAGCGG TTACCCCTC TGCCCCACTA CTAGAC

36

10

SEQ. ID NO : 78

SEQUENCE LENGTH : 30

15

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

20

MOLECULE TYPE : Synthetic DNA

SEQUENCE

25

CAACGTTACC ATGACCGTGG ACACCTCTAC

30

SEQ. ID NO : 79

30

SEQUENCE LENGTH : 30

SEQUENCE TYPE : Nucleic acid

35

STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

40

SEQUENCE

CACGGTCATG GTAACCTTGC CCTTGAACTT

30

45

SEQ. ID NO : 80

SEQUENCE LENGTH : 30

50

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

55

TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
5 SEQUENCE
GGGCTCGAAT CGATTGGCTA TATTGATCCT 30
10 SEQ. ID NO : 81
SEQUENCE LENGTH : 30
15 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
20 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
AGGATCAATA TAGCCAATCC ATTCCGAGCCC 30
25
SEQ. ID NO : 82
SEQUENCE LENGTH : 16
SEQUENCE TYPE : Nucleic acid
30 STRANDNESS : Single
35 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
40 SEQUENCE
GTAAAACGAG GCCAGT 16
45 SEQ. ID NO : 83
SEQUENCE LENGTH : 17
50 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

5 SEQUENCE

AACACCTATG ACCATGA

17

10

SEQ. ID NO : 84

SEQUENCE LENGTH : 433

15 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

ORIGINAL SOURCE

25 ORGANISM : Mouse and Human

IMMEDIATE SOURCE

CLONE : pUC-RVh-1220b

30 FEATURE : gene, excluding intron, coding for H chain V region version
(b) of reshaped human AUK12-20 antibody to human IL-6R

amino acid -19--1:leader

35 amino acid 1 - 30 : FR1

amino acid 31 - 35 : CDR1

40 amino acid 36 - 49 : FR2

amino acid 50 - 66 : CDR2

amino acid 67 - 98 : FR3

45 amino acid 99 - 105:CDR3

amino acid 106 - 116:FR4

nucleotide 1 - 6 : Hind III site

50 nucleotide 427 - 433: Bam HI site

55

SEQUENCE

5	AAGCTTGGCG CCACC ATG GAC TGG ACC TGG CGC GTG TTT TGC CTG CTC GCC	51	
	Met Asp Trp Thr Trp Arg Val Phe Cys Leu Leu Ala		
	-15	-10	
10	GTG CCT CCT GGG GCC CAC AGC CAG GTG CAA CTA GTG CAG TCC GCC GCC	99	
	Val Ala Pro Gly Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala		
	-5	-1 1	5
15	GAA GTG AAG AAA CCC GGT GCT TCC GTG AAA GTC ACC TGT AAA CCT AGC	147	
	Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser		
20	10 15 20 25		
	GGT TAT TCA TTC ACT ACT TAT TAC ATA CAC TGG GTT AGA CAG GCC CCA	195	
	Gly Tyr Ser Phe Thr Ser Tyr Tyr Ile His Trp Val Arg Gln Ala Pro		
25	30 35 40		
	GCC CAA GGG CTC GAG TGG GTG GCC TAT ATT GAT CCT TTC AAT GGT GGT	243	
	Gly Gln Gly Leu Glu Trp Val Gly Tyr Ile Asp Pro Phe Asn Gly Gly		
30	45 50 55		
	ACT AGC TAT AAT CAG AAG TTC AAG GCC AAC CTT ACC ATG ACC GTG GAC	291	
	Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Val Thr Met Thr Val Asp		
35	60 65 70		
	ACC TCT ACA AAC ACC GCC TAC ATG GAA CTG TCC AGC CTG CGC TCC GAG	339	
	Thr Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu		
40	75 80 85		
	GAC ACT GCA GTC TAC TAC TGC GCC AGA CGG GGT AAC CGC TTT GCT TAC	387	
	Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Gly Asn Arg Phe Ala Tyr		
45	90 95 100 105		

TGG GGA CAG GGT ACC CTT GTC ACC GTC ACT TCA GGTGAGTGGA TCC

433

Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser

5

110

115

10 SEQ. ID NO : 85

SEQUENCE LENGTH : 433

SEQUENCE TYPE : Nucleic acid

15

STRANDNESS : Double

TOPOLOGY : Linear

20 MOLECULE TYPE : Synthetic DNA

ORIGINAL SOURCE

ORGANISM : Mouse and Human

25 IMMEDIATE SOURCE

CLONE : pUC-RVh-1220d

30 FEATURE : gene, excluding intron, coding for H chain V region version

(d) of reshaped human antibody AUK12-20 to human IL-6R

amino acid -19--1:leader

35 amino acid 1 - 30 : FR1

amino acid 31 - 35 : CDR1

40 amino acid 36 - 49 : FR2

amino acid 50 - 66 : CDR2

amino acid 67 - 98 : FR3

45 amino acid 99 - 105:CDR3

amino acid 106 - 116:FR4

50 nucleotide 1 - 6 : Hind III site

nucleotide 427 - 433: Bam HI site

55

SEQUENCE

	AAG CTT GCGG	CCACC ATG GAC TGG ACC TGG CGC GTG TTT TGC CTG CTC CCC	51
5	Met Asp Trp Thr Trp Arg Val Phe Cys Leu Leu Ala		
		-15 -10	
10	GTG GCT CCT GGG GCC CAC ACC CAG GTG CAA CTA GTG CAG TCC GGC GCC	99	
	Val Ala Pro Gly Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala		
15	-5 -1 1 5		
	CAA GTG AAG AAA CCC GGT GCT TCC GTG AAA GTC AGC TGT AAA GCT AGC	147	
	Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser		
20	10 15 20 25		
	GGT TAT TCA TTC ACT AGT TAT TAC ATA CAC TGG GTT AGA CAG GCC CCA	195	
	Gly Tyr Ser Phe Thr Ser Tyr Tyr Ile His Trp Val Arg Gln Ala Pro		
25	30 35 40		
	GGC CAA CGG CTC GAA TGG ATT CCC TAT ATT GAT CCT TTC AAT GGT CGT	243	
30	Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asp Pro Phe Asn Gly Gly		
	45 50 55		
35	ACT AGC TAT AAT CAG AAG TTC AAG GGC AAG GTT ACC ATG ACC GTC GAC	291	
	Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Val Thr Met Thr Val Asp		
	60 65 70		
40	ACC TCT ACA AAC ACC CCC TAC ATG GAA CTG TCC ACC CTG CCC TCC GAG	339	
	Thr Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu		
45	75 80 85		
	GAC ACT GCA GTC TAC TAC TCC GCC AGA CGG CGT AAC CCC TTT CCT TAC	387	
	Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Gly Asn Arg Phe Ala Tyr		
50	90 95 100 105		

TGG GGA CAG CGT ACC CTT GTC ACC GTC AGT TCA CGTGAGTGGAA TCC 433
 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 110 115

10 SEQ. ID NO : 86
SEQUENCE LENGTH : 90
SEQUENCE TYPE : Nucleic acid
15 STRANDNESS : Single
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
20
SEQUENCE
GATAAGCTTG CCGCCACCAT GGACTG
25 GGCTGTAGCT CCAGGTGCTC ACTCCCC

SEQ. ID NO : 87
SEQUENCE LENGTH : 90
SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
CACTCCCACC TGCAGCTTGT GCAGTCTGGA GCTGAGGTGA AGAAGCCTGG
GGCCTCAGTC AACGTTTCCT GCAAGGCTTC TGGATACTCA

SEQ. ID NO : 88
50 SEQUENCE LENGTH : 90
SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

5 MOLECULE TYPE : Synthetic DNA

SEQUENCE

10 TGCAAGGCTT CTGGATACTC ATTCACTAGT TATTACATAC ACTGGGTGCC 50
 CCAGGGCCCC GCACAAAGGC TTGACTGGAT CCCATATATT 90

15 SEQ. ID NO : 89

SEQUENCE LENGTH : 90

20 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

25 MOLECULE TYPE : Synthetic DNA

SEQUENCE

30 CTTGACTGGA TCGGATATAT TGACCCTTTC AATGCTGCTA CTACCTATAA 50
 TCAGAACGTT AAGCCCAGAC TCACCATTAC CGTAGACACA 90

35 SEQ. ID NO : 90

SEQUENCE LENGTH : 90

40 SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

TOPOLOGY : Linear

45 MOLECULE TYPE : Synthetic DNA

SEQUENCE

50 GTCACCATT A CGTAGACAC ATCCGGAGC ACAGCCTACA TGGAGCTGAG 50
 CAGCCTGAGA TCTGAAGACA CGGCTGTGTA TTACTGTGCC 90

SEQ. ID NO : 91
SEQUENCE LENGTH : 94
5 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
10 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
15 ACGGCTGTGT ATTACTGTGC GAGAGGGGGT AACCGCTTTG CTTACTGGGG 50
CCAGGGAAACC CTGGTCACCG TCTCCTCAGG TGAGTGGATC CGAC 94

20 SEQ. ID NO : 92
SEQUENCE LENGTH : 15
25 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
TOPOLOGY : Linear
30 MOLECULE TYPE : Synthetic DNA
SEQUENCE
35 GATAAGCTTG CCCGC 15

SEQ. ID NO : 93
40 SEQUENCE LENGTH : 15
SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
45 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
50 CTCCGATCCA CTCAC 15

SEQ. ID NO : 94

SEQUENCE LENGTH : 433

5

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Double

10

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

ORIGINAL SOURCE

15

ORGANISM : Mouse and Human

IMMEDIATE SOURCE

20

CLONE : pUC-RV_n -sle 1220Ha

FEATURE : gene, excluding intron, coding for H chain V region version

"a" of reshaped human sleAUK1220 antibody to human IL-6R

25

amino acid -19--1:leader

amino acid 1 - 30 : FR1

30

amino acid 31 - 35 : CDR1

amino acid 36 - 49 : FR2

amino acid 50 - 66 : CDR2

35

amino acid 67 - 98 : FR3

amino acid 99 - 105:CDR3

amino acid 109 - 116:FR4

40

nucleotide 1 - 6 : Hind III site

nucleotide 427 - 433: Bam HI site

45

SEQUENCE

AAGCTTGGCC CCACC ATC GAC TCG ACC TCG ACC GTC TTC TTC TTG CTG GCT 51

Met Asp Trp Thr Trp Arg Val Phe Phe Leu Leu Ala

50

-15

-10

55

EP 0 628 639 A1

	GTA GCT CCA GGT GCT CAC TCC CAG GTG CAG CTT GTG CAG TCT GGA GCT	99
	Val Ala Pro Gly Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala	
5	-5 -1 . 1 5	
	GAG GTG AAG AAG CCT GGG CCC TCA GTG AAG GTT TCC TGC AAG GCT TCT	147
10	Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser	
	10 15 . 20 25	
	GGA TAC TCA TTC ACT ACT TAT TAC ATA CAC TGG GTG CGC CAG GCC CCC	195
15	Gly Tyr Ser Phe Thr Ser Tyr Tyr Ile His Trp Val Arg Gln Ala Pro	
	30 35 40	
20	GGA CAA AGG CTT GAG TGG ATG GGA TAT ATT GAC CCT TTC AAT GGT GGT	243
	Gly Gln Arg Leu Glu Trp Met Gly Tyr Ile Asp Pro Phe Asn Gly Gly	
	45 50 55	
25	ACT ACC TAT AAT CAG AAG TTC AAG GGC ACA GTC ACC ATT ACC GTA GAC	291
	Thr Ser Tyr Asn Gln Lys Phe Lys Gly Arg Val Thr Ile Thr Val Asp	
	60 65 70	
30	ACA TCC CCG ACC ACA GCC TAC ATG GAG CTG ACC ACT CTG AGA TCT GAA	339
	Thr Ser Ala Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu	
	75 80 85	
35	GAC ACG GCT GTG TAT TAC TGT GCG AGA GGG GGT AAC CGC TTT GCT TAC	387
	Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Gly Asn Arg Phe Ala Tyr	
40	90 95 100 105	
	TGG GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA GGTGAGTGGA TCC	433
	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser	
45	110 115 .	

50 SEQ. ID NO : 95

SEQUENCE LENGTH : 27

SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
5 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
10 AGGCTTGAGT GGATTGGATA TATTGAC

27

15 SEQ. ID NO : 96
SEQUENCE LENGTH : 27
SEQUENCE TYPE : Nucleic acid
20 STRANDNESS : Single
TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
25 AAGTTCAAGG CCAAGGTAC CATTACC

27

30
SEQ. ID NO : 97
SEQUENCE LENGTH : 30
35 SEQUENCE TYPE : Nucleic acid
STRANDNESS : Single
40 TOPOLOGY : Linear
MOLECULE TYPE : Synthetic DNA
SEQUENCE
45 CGTCCTTCCG TGAAGTCAG CTGTAAAGCT

30

50 SEQ. ID NO : 98
SEQUENCE LENGTH : 30

SEQUENCE TYPE : Nucleic acid

STRANDNESS : Single

5

TOPOLOGY : Linear

MOLECULE TYPE : Synthetic DNA

10 SEQUENCE

ACCTTTACAG CTGACTTTCA CGGAAGCACC

30

15

Claims

1. A light chain (L chain) variable region (V region) of mouse monoclonal antibody to the human interleukin-6 receptor (IL-6R).

20

2. An L chain V region according to claim 1, having an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30.

3. A heavy chain (H chain) V region of a mouse monoclonal antibody to the human IL-6R.

25

4. An H chain V region according to claim 3, having an amino acid sequence shown in SEQ ID NOs: 25, 27, 29 and 31.

5. A chimeric antibody to the human IL-6R, comprising:

30

(1) an L chain comprising a human L chain constant region (C region) and an L chain V region of a mouse monoclonal antibody to the human IL-6R; and

(2) an H chain comprising a human H chain C region and an H chain V region of a mouse monoclonal antibody to the human IL-6R.

35 6. A chimeric antibody according to claim 5, wherein the mouse L chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30; and the mouse H chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31.

7. Complementarity determining regions (CDRs) of an L chain V region of a mouse monoclonal antibody to the human IL-6R.

40 8. CDR according to claim 7, having amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretch of the amino acid sequence is defined in Table 9.

45 9. CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.

10. CDR according to claim 9, having amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29, and 31 wherein the stretch of the amino acid sequence is defined in Table 9.

50 11. A reshaped human L chain V region of an antibody to the human IL-6R, comprising:

(1) framework regions (FRs) of a human L chain V region, and

(2) CDRs of an L chain V region of a mouse monoclonal antibody to the human IL-6R.

55 12. A reshaped human L chain V region according to claim 11, wherein the CDRs have amino acid sequences shown in any one of SEQ ID Nos.: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9.

13. A reshaped human L chain V region according to claim 11, wherein the FRs are derived from the human antibody REI.
14. A reshaped human L chain V region according to claim 11, having an amino acid sequence shown as RV_La or RV_Lb in Table 2.
15. A reshaped human L chain V region according to claim 11, having an amino acid sequence shown as RV_L in Table 5.
16. A reshaped human H chain V region of an antibody to the human IL-6R, comprising:
- (1) FRs of a human H chain V region, and
 - (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
17. A reshaped human H chain V region according to claim 16, wherein the CDRs have amino acid sequences shown in SEQ ID NOS: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9.
18. A reshaped human H chain V region according to claim 16, wherein the FRs are derived from the human antibody NEW or HAX.
19. A reshaped human H chain V region according to claim 16, having an amino acid sequence shown in Table 3 as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf.
20. A reshaped human H chain V region according to claim 17, having an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 7.
21. An L chain of a reshaped human antibody to human IL-6R comprising:
- (1) a human L chain C region; and
 - (2) an L chain V region comprising human L chain FRs and L chain CDRs of mouse monoclonal antibody to human IL-6R.
22. A reshaped human antibody L chain according to claim 21, wherein the human L chain C region is a human γ -1C region, the human L chain FRs are derived from REI, and the L chain CDRs have amino acid sequences shown in SEQ ID Nos. 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9.
23. A reshaped human antibody L chain according to claim 21, wherein the L chain V region has an amino acid sequence shown as RV_La or RV_Lb in Table 2.
24. A reshaped human antibody L chain according to claim 21, wherein the L chain V region has an amino acid sequence shown as RV_L in Table 5.
25. An H chain of a reshaped human antibody to human IL-6R comprising:
- (1) a human H chain C region, and
 - (2) an H chain V region comprising human H chain FRs, and H chain CDRs of mouse monoclonal antibody to human IL-6.
26. A reshaped human antibody H chain according to claim 25, wherein the human H chain C region is human α C region, the human H chain FRs are derived from NEW or HAX, the H chain CDRs have amino acid sequences shown in SEQ ID NOS: 25, 27, 29 or 31 wherein the stretches of the amino acid sequences are defined in Table 9.
27. A reshaped human antibody H chain according to claim 25, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 3.
28. A reshaped human antibody H chain according to claim 25, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 7.

29. A reshaped antibody to the human IL-6R, comprising:
(A) an L chain comprising,
(1) a human L chain C region, and
(2) an L chain V region comprising human L chain FRs, and L chain CDRs of a mouse monoclonal antibody to the human IL-6R; and
5 (B) an H chain comprising,
(1) a human H chain C region, and
(2) an H chain V region comprising human H chain FRs, and H chain CDRs of a mouse monoclonal antibody to the human IL-6R.
- 10 30. A reshaped human antibody according to claim 29, wherein the L chain CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of the amino acid sequences are defined in Table 9; the H chain CDRs have amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9; the human L chain C region and human L chain FRs are derived from the REI; and the human H chain C region and human FRs are derived from the NEW or HAX.
- 15 31. A reshaped human antibody according to claim 29, wherein the L chain V region has an amino acid sequence shown as RV_La or RV_Lb in Table 2.
- 20 32. A reshaped human antibody according to claim 29, wherein the L chain V region has an amino acid sequence shown as RV_L in Table 5.
- 25 33. A reshaped human antibody according to claim 29, wherein the H chain V region has an amino acid sequence shown in Table 3 as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf.
34. A reshaped human antibody according to claim 29, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hd in Table 7.
- 30 35. A DNA coding for an L chain V region of a mouse monoclonal antibody to the human IL-6R.
36. A DNA according to claim 35, wherein the L chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 24, 26, 28 and 30.
- 35 37. A DNA coding for an H chain V region of a mouse monoclonal antibody to the human IL-6R.
38. A DNA according to claim 37, wherein the H chain V region has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31.
- 40 39. A DNA coding for CDR of an L chain V region of a mouse monoclonal antibody to the human IL-6R.
- 40 40. A DNA coding for CDR according to claim 39, wherein the CDR has an amino acid sequence in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretch of the amino acid sequence is defined in Table 9.
- 45 41. A DNA coding for CDR of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
42. A DNA coding for CDR according to claim 41, wherein the CDR has an amino acid sequence shown in any one of SEQ ID NOs: 25, 27, 29 and 31 wherein the stretch of the amino acid sequence is defined in Table 9.
- 50 43. A DNA coding for a reshaped human L chain V region of an antibody to the human IL-6R, wherein the reshaped human L chain V region comprises:
(1) FRs of a human L chain V region, and
55 (2) CDRs of a mouse L chain V region of a monoclonal antibody to the human IL-6R.
44. A DNA coding for a reshaped human L chain V region according to claim 43, wherein the CDRs have amino acid sequences shown in any one of SEQ ID NOs: 24, 26, 28 and 30 wherein the stretches of

the amino acid sequences are defined in Table 9.

45. A DNA coding for a reshaped human L chain V region according to claim 43, wherein the FRs are derived from the REI.
5
46. A DNA according to claim 43, wherein the L chain V region has an amino acid sequence shown as RV_La or RV_Lb in Table 2.
47. A DNA according to claim 43, wherein the L chain V region has an amino acid region shown as RV_L in
10 Table 5.
48. A DNA according to claim 43, having a nucleotide sequence shown in SEQ ID No: 57.
49. A DNA coding for a reshaped human H chain V region of an antibody to the human IL-6R, wherein the
15 reshaped Human V region comprises:
 - (1) FRs of a human H chain V region, and
 - (2) CDRs of an H chain V region of a mouse monoclonal antibody to the human IL-6R.
50. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the CDRs have
20 amino acid sequences shown in SEQ ID NOs: 25, 27, 29 and 31 wherein the stretches of the amino acid sequences are defined in Table 9.
51. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the FRs are derived from the NEW or HAX.
25
52. A DNA coding for a reshaped human H chain V region according to claim 49, wherein the H chain V region has an amino acid sequence shown as RV_Ha, RV_Hb, RV_Hc, RV_Hd, RV_He or RV_Hf in Table 3.
53. A DNA according to claim 49, wherein the H chain V region has an amino acid sequence shown as
30 RV_La, RV_Hb, RV_Hc or RV_Hd in Table 6, or RV_Ha, RV_Hb, RV_Hc or RV_Hd in Table 7.
54. A DNA according to claim 49, having a nucleotide sequence shown in SEQ ID NO: 56.
55. A DNA coding for a reshaped human L chain of an antibody to the human IL-6R, wherein the reshaped
35 human L chain comprises:
 - (1) a human L chain C region; and
 - (2) an L chain V region comprising a human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.
- 40 56. A DNA according to claim 55, wherein the L chain V region has the nucleotide sequence shown in SEQ ID NO: 57.
57. A DNA coding for a reshaped human H chain of an antibody to the human IL-6R, wherein the reshaped
45 human H chain comprises:
 - (1) a human H chain C region, and
 - (2) a H chain V region comprising human FRs, and CDRs of a mouse monoclonal antibody to the human IL-6R.
58. A DNA according to claim 57, wherein the H chain V region has the nucleotide sequence shown in SEQ
50 ID NO: 56.
59. A vector comprising a DNA according to any one of claims 35, 37, 39, 41, 43, 49, 55 and 57.
60. A host cell transformed or transfected with a vector comprising a DNA according to any one of claims
55 35, 37, 39, 41, 43, 49, 55 and 57.
61. A DNA coding for a chimeric L chain of an antibody to the human IL-6R, wherein the chimeric L chain
comprises:

(1) a human L chain C region; and
(2) an L chain V region of a mouse monoclonal antibody to the human IL-6R.

62. A DNA coding for a chimeric H chain of an antibody to the human IL-6R wherein the chimeric H chain 5 comprises:
(1) a human H chain C region; and
(2) an H chain V region of a mouse monoclonal antibody to the human IL-6R.
63. A process for production of a chimeric antibody to the human IL-6R, comprising the steps of:
10 culturing host cells cotransfected with an expression vector comprising a DNA according to claim 61 and with an expression vector comprising a DNA according to claim 62; and
recovering a desired antibody.
64. A process for production of a reshaped human antibody to the human IL-6R, comprising the steps of:
15 culturing host cells cotransfected with an expression vector comprising a DNA according to claim 55 and with an expression vector comprising a DNA according to claim 57; and recovering desired antibody.
65. A DNA according to claim 49, having a nucleotide sequence shown in SEQ ID NO: 85, 86 or 94.
20
66. A DNA according to claim 44, having a nucleotide sequence shown in SEQ IN NO: 71.

25

30

35

40

45

50

55

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig.16

Fig.17

Fig.18

Fig.19

Fig.20

Fig.21

Fig.22

Fig.23

Fig.24

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/00544

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl⁵ C12P21/08, C07K15/28, C12N15/13//C12P21/00
(C12P21/08, C12R1:91)

II. FIELDS SEARCHED

Minimum Documentation Searched *

Classification System	Classification Symbols
IPC	C12P21/00, 21/02, 21/08, C12N15/12, 15/13, C07K15/28

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

Biological Abstracts Data Base (BIOSIS)

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category *	Citation of Document, ** with indication, where appropriate, of the relevant passages ***	Relevant to Claim No. ***
Y	Journal of Immunology, Vol. 143, No. 9, (1989), Y. Hirata et al. "Characterization of IL-6 receptor expression by monoclonal and polyclonal antibodies" p. 2900-2906	1-64
Y	EP, A2, 409607 (Tadamitsu Kishimoto), January 23, 1991 (23. 01. 91), & JP, A, 3-139293 & CA, A, 2021594	1-64
Y	EP, A2, 413908 (Yeda Research and Development Ltd.), February 27, 1991 (27. 02. 91), & JP, A, 3-157400	1-64
Y	Nature, Vol. 312, (1984), G. L. Boulianne et al. "Production of functional chimaeric mouse/human antibody" p. 643-646	1-64
Y	JP, A, 61-47500 (Research Development Corporation of Japan), March 7, 1986 (07. 03. 86), & EP, A2, 171496	1-64

* Special categories of cited documents: **

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search July 27, 1992 (27. 07. 92)	Date of Mailing of this International Search Report August 18, 1992 (18. 08. 92)
International Searching Authority Japanese Patent Office	Signature of Authorized Officer

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

Y	JP, A, 62-500352 (Celltech Ltd.), February 19, 1987 (19. 02. 87), & WO, A1, 86/1533 & EP, A1, 194276 & GB, A, 2177096	1-64
Y	JP, A, 62-296890 (Gregory Poel Winter), December 24, 1987 (24. 12. 87), & EP, A2, 239400 & GB, A, 2188638	7-34, 43-60, 64

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim numbers because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING ²

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.