Separable Least-Mean Squares Beamforming

Kenneth B. dos A. Benício

Department of Teleinformatics Engineering Federal University of Ceará

Fortaleza, 2021

Outline

Introduction

System Model

Implemented Algorithms

Numerical Results

References

Introduction

- ► Comparisons with LMS, NLMS, ATLMS and TLMS.
- ► Convergence Analysis ?

System Model

Implemented Algorithms I

Algorithm 1 Tensor LMS algorithm

```
Require: Step parameter \mu, sample size K
  1: k \leftarrow 1
  2: Initialize \mathbf{w}_h[k] and \mathbf{w}_v[k] as [1,0,\ldots,0]^\mathsf{T}
  3: for k = 1 : K do \triangleright Note we use MATLAB's notation
  4: \mathbf{u}_h[k] \leftarrow \mathbf{X}[k]\mathbf{w}_u^*[k]
  5: \mathbf{u}_{v}[k] \leftarrow \mathbf{X}[k]^{\mathsf{T}} \mathbf{w}_{k}^{*}[k]
  6: e[k] \leftarrow s_d[k] - (\mathbf{w}_v[k] \otimes \mathbf{w}_h[k])^{\mathsf{H}} \mathbf{x}[k]
  7: \tilde{\mu}[k] \leftarrow \frac{\mu}{\|\mathbf{u}_h[k]\|_2^2 + \|\mathbf{u}_h[k]\|_2^2}
  8: \mathbf{w}_h[k+1] \leftarrow \tilde{\mathbf{w}}_h[k] + \tilde{\tilde{\mu}}[k]\mathbf{u}_h[k]e^*[k]
  9: \mathbf{w}_v[k+1] \leftarrow \mathbf{w}_v[k] + \tilde{\mu}[k]\mathbf{u}_v[k]e^*[k]
             Check convergence
10:
11: end for
12: return \mathbf{w}_v[k+1] \otimes \mathbf{w}_h[k+1]
```

Figure TLMS algorithm from [1].

Implemented Algorithms II

Algorithm 2 Alternating Tensor LMS algorithm

```
Require: Step parameter \mu, sample parameters K, K_h, K_v
   1: k ← 1
  2: K_b \leftarrow \lfloor \frac{K}{K_b + K_c} \rfloor
  3: Initialize \mathbf{w}_h[k] and \mathbf{w}_v[k] as [1,0,\ldots,0]^{\mathsf{T}}
  4: for k = 1 : K_b + K_v : K_b(K_b + K_v) do
               for k_b = k : k + K_b - 1 do
                      \mathbf{u}_h[k_h] \leftarrow \mathbf{X}[k_h]\mathbf{w}_{v}^*[k_h]
                      e[k_h] \leftarrow s_d[k_h] - (\mathbf{w}_v[k_h] \otimes \mathbf{w}_h[k_h])^\mathsf{H} \mathbf{x}[k_h]
                     \begin{split} \tilde{\mu}_h[k_h] \leftarrow \frac{\mu}{\|\mathbf{u}_h[k_h]\|_2^2} \\ \mathbf{w}_h[k_h+1] \leftarrow \mathbf{w}_h[k_h] + \tilde{\mu}_h[k_h]\mathbf{u}_h[k_h]e^*[k_h] \end{split}
              end for
 10:
               for k_v = k + K_h : k + K_h + K_v - 1 do
 11:
                      \mathbf{u}_{\cdot \cdot}[k_{\cdot \cdot}] \leftarrow \mathbf{X}[k_{\cdot \cdot}]^{\mathsf{T}} \mathbf{w}_{b}[k_{\cdot \cdot}]^{*}
 12:
                      e[k_v] \leftarrow s_d[k_v] - (\mathbf{w}_v[k_v] \otimes \mathbf{w}_h[k_h+1])^\mathsf{H} \mathbf{x}[k_v]
 13:
                     \tilde{\mu}_v[k_v] \leftarrow \frac{\mu}{\|\mathbf{u}_v[k_v]\|_2^2}
                      \mathbf{w}_v[k_v+1] \leftarrow \mathbf{w}_v[k_v] + \tilde{\mu}_v[k_v]\mathbf{u}_v[k_v]e^*[k_v]
 15:
               end for
 16:
               Check convergence
 17:
 18: end for
 19: return \mathbf{w}_{v}[k_{v}+1] \otimes \mathbf{w}_{h}[k_{h}+1]
```

Figure ATLMS algorithm from [1].

Numerical Results I

Figure Monter Carlo Experiment with 2500 runs for LMS algorithm.

Numerical Results II

Figure Monter Carlo Experiment with 2500 runs for LMS algorithm.

Numerical Results III

Figure Monter Carlo Experiment with 2500 runs for LMS algorithm.

Numerical Results IV

Figure Monter Carlo Experiment with 2500 runs for LMS algorithm.

Numerical Results V

Figure Monter Carlo Experiment with 2500 runs for the ATLMS with different sampling intervals.

Numerical Results VI

Figure Run time process for ATLMS with different sampling intervals.

References

[1] L. N. Ribeiro, B. Sokal, A. L. de Almeida, and J. C. M. Mota, "Separable least-mean squares beamforming,"

Thank you for your presence!