Tema 3. Integración en varias variables

3.0. Contenido y documentación

- 3.0. Contenido y documentación
- 3.1. Principio de Cavalieri
 - 3.1.1. Integrales iteradas
- 3.2. Integral de Riemann
 - 3.2.1. Propiedades de la integral de Riemann
 - 3.2.2. Teorema de Fubini
 - 3.2.3. Integrales sobre dominios generales
 - 3.2.4. Teorema del valor medio
- 3.3. Cambio de variables
- 3.4. Coordenadas polares, cilíndricas y esféricas
 - 3.4.1. Cambio a coordenadas polares
 - 3.4.2. Cambio a coordenadas cilíndricas
 - 3.4.3. Cambio a coordenadas esféricas

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d9549abb-2330-41dd-9620-323029 f2c7d8/U3_Integracion.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0e17eca0-2416-4d37-8dff-dd1777baa6d9/H6_IntegralesDobles.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/a1c06dc7-4e2a-4f56-95af-240f484 afde6/H7 CambioVariables.pdf

3.1. Principio de Cavalieri

Principio de Cavaleri. Sea S un sólido, y, para $a \leq x \leq b$, sea P_x una familia de planos paralelos tales que:

- 1. S está entre P_a y P_b .
- 2. El área de la sección transversal de S cortada por el plano P_x está dada por una función A(x).

Entonces, el volumen de S es igual a $\int_a^b A(x) dx$.

Demostración.

Tomamos una partición de [a,b], tal que $a=x_0 < x_1 < ... < x_n = b$. Si $c \in [x_i,x_{i+1}]$, entonces $A(c_i) \cdot (x_{i+1}-x_i)$ es el volumen de un cilindro que aproxima el volumen de la parte de S comprendida entre los planos P_{x_i} y $P_{x_{i+1}}$. La suma de todos esos cilindros en una suma de Riemann para la función

$$A(x)$$
 en el intervalo $[a,b]$, así que en el límite, $V(S)=\lim\sum A(c_i)\cdot (x_{i+1}-x_i)=\int_a^b A(x)\ dx$. \Box

3.1.1. Integrales iteradas

Empleando el principio de Cavaleri, se puede calcular el volumen de la región S de dos formas distintas:

- Seccionando S con planos de la forma $x=x_0$, de forma que el área de la sección a integrar sea $A(x_0)=\int_c^d f(x_0,y)\ dy$ y, por el principio de Cavaleri, $V(S)=\iint_R f(x,y)\ dxdy=\int_a^b A(x)\ dx=\int_a^b \left[\int_c^d f(x,y)\ dy\right]dx.$
- Seccionando S con planos de la forma $y=y_0$, de forma que el área de la sección a integrar sea $B(y_0)=\int_a^b f(x,y_0)\ dx$ y, por el principio de Cavaleri, $V(S)=\iint_R f(x,y)\ dxdy=\int_c^d B(y)\ dy=\int_c^d \left[\int_a^b f(x,y)\ dx\right]dy.$

3.2. Integral de Riemann

Integrabilidad de Riemann. Sea R un rectángulo en \mathbb{R}^2 y sea $f:R\to\mathbb{R}$ una función acotada. Diremos que f es **integrable en** R si $\sup_{\mathcal{P}}s_{\mathcal{P}}=\inf_{\mathcal{P}}S_{\mathcal{P}}=S$, donde el supremo y el ínfimo se toman sobre todas las particiones de R. Este valor también coincide con el límite de la sumas de Riemann. Escribimos $S=\iint_{\mathbb{R}}f(x,y)\;dxdy$.

Teorema. Toda función continua f(x,y) definida en un rectángulo cerrado es integrable.

Los mismo es cierto si f es acotada y el conjunto de discontinuidades de f se puede cubrir por una unión de rectángulos cuya suma de áreas sea tan pequeña como se quiera.

3.2.1. Propiedades de la integral de Riemann

- Linealidad: para $f,g:R o\mathbb{R}$ y $lpha,eta\in\mathbb{R}$ cualesquiera, tenemos $\iint_R(lpha f+eta g)\ dA=$ $lpha\iint_R f\ dA+eta\iint_R g\ dA.$
- Monotonía: $orall (x,y): f(x,y) \geq g(x,y) \Rightarrow \iint_R f \; dA \geq \iint_R g \; dA.$

• Aditividad: si Q es una unión de rectángulos $Q=\bigcup_i R_i$ tales que $\forall i
eq j, \check{R}_i \cap \check{R}_j = \emptyset$, entonces $\iint_Q f \ dA = \sum_i \iint_{R_i} f \ dA.$

3.2.2. Teorema de Fubini

Teorema de Fubini. Sea
$$R=[a,b] imes [c,d]$$
 un rectángulo en \mathbb{R}^2 y sea $f:R o\mathbb{R}$ una función continua. Entonces $\iint_R f(x,y)\ dA=\int_a^b \int_a^d f(x,y)\ dy dx=\int_a^b \int_a^b f(x,y)\ dx dy.$

Este teorema se extiende de forma natural a funciones más generales, siempre que el conjunto de discontinuidades se pueda cubrir con rectángulos cuya suma de áreas sea tan pequeña como se quiera.

Ejemplo 1. Calcula
$$\iint_R (x^2+y)dA \text{ para } R = [0,1] \times [0,1].$$
 Calculamos
$$\int_0^1 \int_0^1 (x^2+y)dxdy = \int_0^1 \left[\frac{x^3}{3} + xy\right]_0^1 dy = \int_0^1 \left(\frac{1}{3} + y\right) dy = \left[\frac{y}{3} + \frac{y^2}{2}\right]_0^1 = \frac{5}{6}.$$
 También podemos calcular
$$\int_0^1 \int_0^1 (x^2+y)dydx = \int_0^1 \left[x^2y + \frac{y^2}{2}\right]_0^1 = \int_0^1 \left(x^2 + \frac{1}{2}\right) dy = \left[\frac{x^3}{3} + \frac{x}{2}\right]_0^1 = \frac{5}{6}.$$

3.2.3. Integrales sobre dominios generales

Para integrar regiones más generales que rectángulos, estudiaremos regiones delimitadas por gráficas de funciones continuas. Para ello, podemos considerar las funciones $y=\phi_1(x)$ e $y=\phi_2(x)$, o bien $x=\psi_1(y)$ y $x=\psi_2(y)$. A estas las llamaremos respectivamente regiones elementales de Tipo 1, $\phi(x)$, y Tipo 2, $\psi(y)$.

- 1. Llamamos **regiones de Tipo 1** a aquellas que pueden escribirse como $D_1=\{(x,y)\in\mathbb{R}^2:x\in[a,b],\phi_1(x)\leq y\leq\phi_2(x)\}.$ En este caso, definimos $\iint_{D_1}f(x,y)\ dA=\int_a^b\int_{\phi_1(x)}^{\phi_2(x)}f(x,y)\ dydx.$
- 2. Llamamos **regiones de Tipo 2** a aquellas que pueden escribirse como $D_2=\{(x,y)\in\mathbb{R}^2:y\in[c,d],\psi_1(y)\leq x\leq\psi_2(y)\}.$ En este caso, definimos $\iint_{D_2}f(x,y)\;dA=\int_c^d\int_{\psi_1(y)}^{\psi_2(y)}f(x,y)\;dxdy.$
- 3. Lamamos regiones de Tipo 3 a aquellas que son de Tipo 1 y Tipo 2 de forma simultánea.

3.2.4. Teorema del valor medio

Teorema del valor medio para integrales dobles. Sea f continua en la región compacta y conexa $D\subseteq\mathbb{R}^2$. Entonces existe un punto $(x_0,y_0)\in D$ tal que $\iint_D f(x,y)\ dA=f(x_0,y_0)|D|.$

Definición. La **media integral** de f sobre un dominio D viene dada por M=

$$\frac{1}{\text{Área }(D)}\iint_D f(x,y) \, dA.$$

Ejemplo 2. Halla el área de la región D delimitada por las parábolas $y=3x^2$ e $y=4-x^2$, con $x,y\geq 0$.

Hallamos los puntos de corte entre las gráficas: $3x^2=4-x^2\Rightarrow x=\pm 1$, como $x,y\geq 0$, la única solución válida es x=1, de forma que el punto de corte buscado es (x,y)=(1,3).

Consideramos la región de Tipo 1: $D=\{(x,y)\in\mathbb{R}^2:0\leq x\leq 1,3x^2\leq y\leq 4-x^2\}.$

Así,
$$ext{Area}(D) = \iint_D dA = \int_0^1 \left(\int_{3x^2}^{4-x^2} dy \right) dx = \int_0^1 (4-4x^2) dx = \left[4x - \frac{4x^3}{3} \right]_0^1 = \frac{8}{3}.$$

3.3. Cambio de variables

A la hora de integrar sobre dominios más generales, usamos cambios de variables. Sea D^* un abierto en \mathbb{R}^2 y $T:D^*\to\mathbb{R}^2$ una función diferenciable, podemos escribir $D=T(D^*)$, simplificando el dominio sobre el que se integra.

Para aplicar los cambios de variable, es importante tener en cuenta:

- 1. Cómo se describen f y el dominio D^* en términos de las nuevas variables.
- 2. Cómo afecta el cambio a los elementos infinitesimales de área $dA o dar{A}$.
- 3. El cambio está justificado si la nueva expresión f(x(u,v),y(u,v)) o el nuevo dominio D^* son más manejables que los originales.

Si suponemos que T es una transformación tal que $T(u,v)=(a_0,b_0)+B\cdot(u,v)$, con B una matriz 2×2 de terminante no nulo, y D un cuadrado de unidad, entonces $D^*=T^{-1}(D)$ sería un paralelogramo de área $|\det B|^{-1}$. Tomando $f\equiv 1$, entonces

$$\operatorname{Area}\left(D^{*}\right)\operatorname{por}dar{A}=\iint_{D^{*}}1\;dar{A}=\iint_{D}1\;dA=\operatorname{Area}\left(D\right)\operatorname{por}dA=1.$$

Luego, $|\det B|^{-1}dar{A}=dA\Leftrightarrow dar{A}=|\det B|dA.$

En general, podemos tomar la transformación definida por $(a_0,b_0)+DT(u_0,v_0)\cdot(u,v)$, donde $DT(u_0,v_0)$ es la matriz jacobiana de T(u,v) evaluada en (u_0,v_0) . De forma que $d\bar{A}=|\det(DT)|dA$.

Definición. Sea $T:D^*\subset\mathbb{R}^2 o\mathbb{R}^2$, (u,v) o(x,y) una transformación de clase \mathcal{C}^1 dada por x=x(u,v), y=y(u,v). El **jacobiano** de T, denotado por $\dfrac{\partial(x,y)}{\partial(u,v)}$, es el determinante de DT.

Teorema (cambio de variables). Sean D,D^* dos regiones elementales en \mathbb{R}^2 , y sea $T:D^*\to D$ una aplicación biyectiva de clase \mathcal{C}^1 . Entonces, para cualquier

función integrable
$$f:D o \mathbb{R}$$
, tenemos $\iint_D f(x,y)\,dxdy=\int_{D^*} f(x(u,v),y(u,v))\left|rac{\partial(x,y)}{\partial(u,v)}\right|\,dudv$, donde $\left|rac{\partial(x,y)}{\partial(u,v)}\right|$ es el valor absoluto del determinante jacobiano $\frac{\partial(x,y)}{\partial(u,v)}$.

Ejemplo 3. Calcular
$$\int_{\Omega} (x-y)^2 \mathrm{sen}^2(x+y) \ dx dy$$
, donde Ω es el paralelogramo de vértices $(\pi,0)$, $(2\pi,\pi), (\pi,2\pi), (0,\pi)$. Definimos $\begin{cases} u=x-y \\ v=x+y \end{cases}$, de forma que $T^{-1}(x,y)=(x-y,x+y)$. Tenemos que $\begin{cases} x=\frac{1}{2}(u+v) \\ y=\frac{1}{2}(v-u) \end{cases}$, luego $T(u,v)=\left(\frac{1}{2}(u+v),\frac{1}{2}(v-u)\right)$. Así, $I=\int_{\Omega^*} u^2 \mathrm{sen}^2 v \frac{1}{2} \ du dv$, de forma que aplicando $T,\Omega^*=[-\pi,\pi]\times[\pi,3\pi]$. Luego, $I=\frac{1}{2}\int_{-\pi}^{\pi} \left(\int_{\pi}^{3\pi} \mathrm{sen}^2 v \ dv \right) u^2 \ du=\frac{1}{2}\cdot\frac{1}{2}\cdot 2\pi\cdot 2\cdot\frac{\pi^3}{3}=\frac{\pi^4}{3}$.

3.4. Coordenadas polares, cilíndricas y esféricas

3.4.1. Cambio a coordenadas polares

Las **coordenadas polares** se definen por el sistema
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$
. El jacobiano es $\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r$.

3.4.2. Cambio a coordenadas cilíndricas

Las **coordenadas cilíndricas** se definen por el sistema $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \text{ . El jacobiano es } \frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \\ z = z \end{cases}$ $\begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r(\cos^2\theta + \sin^2\theta) = r.$

3.4.3. Cambio a coordenadas esféricas

Las **coordenadas cilíndricas** se definen por el sistema
$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \end{cases} . \text{ El jacobiano es} \\ \frac{\partial (x,y,z)}{\partial (\rho,\phi,\theta)} = \begin{vmatrix} \sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & 0 \end{vmatrix} = \rho^2 \sin \phi.$$