

Dipartimento di Ingegneria "Enzo Ferrari"

Fondamenti di Informatica II

La struttura di dati coda di priorità

HEAP

Coda di Priorità

E' un particolare insieme, costituito da elementi che dispongono di una proprietà (chiave) sulla quale è definita una relazione di ordinamento totale

- Operazioni consentite (Min-Priorità):
 - Inserimento di un nuovo elemento: $S \leftarrow S \cup \{e\}$
 - Selezione minimo: restituisce l'elemento di S con la chiave x più piccola
 - Cancellazione minimo: restituisce l'elemento di S che ha la chiave x più piccola e lo elimina dall'insieme
 S ← S - {e}, con e = MIN(S) rispetto a x
 - Cancellazione di un elemento
 - Incremento (decremento) della chiave: incrementa
 (decrementa) il valore della chiave x di e di una quantità k
- Max-Priorità: stesse operazioni sostituendo massimo a minimo

Applicazioni della Coda di Priorità

- Max-Priorità: programmare la sequenza di esecuzione di operazioni su risorse condivise (ad esempio un computer)
- Min-Priorità: gestione di eventi, dove la chiave rappresenta il tempo (es. coda di un pronto soccorso)

Esempio

Gestione di processi: ad ogni processo viene associata una priorità. Una coda con priorità permette di conoscere in ogni istante il processo con priorità maggiore. In qualsiasi momento i processi possono essere eliminati dalla coda o nuovi processi con priorità arbitraria possono essere inseriti nella coda.

Per implementare efficientemente una coda con priorità utilizzeremo una struttura dati chiamata heap

Struttura dati Heap

Esistono diverse implementazioni della coda di Priorità:

D-heap (generalizzazione degli heap binari)

Heap Binomiali

Heap di Fibonacci

Una (Min) d-heap e' un albero radicato d-ario che:

- 1. E' quasi completo: completo almeno fino al penultimo livello
- 2. Ogni nodo v contiene un elemento e ed una chiave x(v) sul cui dominio e' definita una relazione di ordinamento totale
- 3. Ogni nodo n diverso dalla radice ha la chiave non minore del padre x(v) >= x(parent(v))

d-heap con d = 3 e 17 nodi

Proprietà:

- Dato un d-heap con n nodi, l'albero ha altezza O(log_d n)
- La radice dell'albero contiene sempre la chiave di valore minimo (o massimo), grazie alla proprietà 3 (ordinamento heap)
- Può essere rappresentato con un vettore considerando in modo implicito la posizione

d-heap con d = 3 e 17 nodi

Esempio di rappresentazione vettoriale:

Con d = 3

Dato il padre i, i figli sono

3*i - 1, 3*i, 3*i + 1 (in generale d*i - d + 2, ..., d*i + 1)

Chiave Pos.

3	5	4	7	8	20	16	13	10	14	11	15	18	9	32	12	25
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Operazioni fondamentali

FindMin(T) trova il minimo dell'insieme T

Insert(elemento e, chiave x) inserisce l'elemento e in T

DeleteMin() elimina il minimo dell'insieme T

Delete(elemento e) elimina e dall'insieme T

Increase(elemento e, valore d) incrementa di d la chiave x di e

Decrease(elemento e, valore d) decrementa di d la chiave x di e

Procedure di supporto: utili a riottenere la proprietà di ordinamento heap per nodi v che la violano

MoveUp(v), MoveDown(v)

MoveUp(nodo v)

Dato un nodo v, lo scambia con il padre finchè v non soddisfa l'ordinamento a heap

MoveUp(v)

While $(v \neq root(T) \text{ and } x(v) < x(parent(v))$

Scambia v e parent(v) in T

MoveUp(nodo v)

Dato un nodo v, lo scambia con il padre finchè v non soddisfa l'ordinamento a heap

MoveUp(v)

While $(v \neq root(T) \text{ and } x(v) < x(parent(v))$

Scambia v e parent(v) in T

 $T(n) = O(\log_d n)$

MoveDown(nodo v)

Dato un nodo v, lo scambia con il minore tra i figli finchè v non soddisfa l'ordinamento a heap

MoveDown(v)

Repeat

Sia u il figlio di v con x(u) minima

If (v non ha figli o $x(v) \le x(u)$) termina

Scambia v e u in T

MoveDown(nodo v)

Dato un nodo v, lo scambia con il minore tra i figli finchè v non soddisfa l'ordinamento a heap

MoveDown(v)

Repeat

Sia u il figlio di v con x(u) minima

If (v non ha figli o $x(v) \le x(u)$) termina

Scambia v e u in T

FindMin

FindMin(T)

Restituisce l'elemento radice di T

$$T(n) = O(1)$$

Insert(elemento e, chiave x)

Occorre creare un nuovo nodo v contenete un elemento e di chiave x come foglia (qualsiasi) di T.

Tale foglia deve rispettare la proprietà di ordinamento heap tramite la chiamata MoveUp, che opera gli scambi necessari

Delete(elemento e) deleteMin()

Viene scambiato il nodo v dell'elemento e (o la radice) con una foglia qualunque p, poi elimina p.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Delete(elemento e) deleteMin()

Viene scambiato il nodo v dell'elemento e (o la radice) con una foglia qualunque p, poi elimina p.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Delete(elemento e) deleteMin()

Viene scambiato il nodo v dell'elemento e (o la radice) con una foglia qualunque p, poi elimina p.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Increase(elemento e, valore d)

Incrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Increase(elemento e, valore d)

Incrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Increase(elemento e, valore d)

Incrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveDown(v)

Decrease(elemento e, valore d)

Decrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveUp(v)

Decrease(elemento e, valore d)

Decrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveUp(v)

Decrease(elemento e, valore d)

Decrementa di d il valore della chiave x del nodo v contenente l'elemento e.

L'ordinamento heap viene ripristinato attraverso la procedura MoveUp(v)

Heap Binaria (max)

Una heap binaria è un albero radicato binario T che risulta:

- 1. Completo almeno fino al penultimo livello (le foglie sono compattate a sinistra)
- 2. Ogni nodo v contiene un elemento e ed una chiave x(v) sul cui dominio è definita una relazione di ordinamento totale
- Ogni nodo n diverso dalla radice ha la chiave non maggiore del padre

$$x(v) \le x(parent(v))$$

Proprietà

- Il massimo è contenuto nella radice di T
- L'altezza di T è O(log₂ n)

Heap Binaria

ESEMPIO

Albero con 10 nodi

Chiave

Pos.

23	16	17	12	8	10	15	9	3	2
1	2	3	4	5	6	7	00	9	10

Padre i = 4 FiglioSinistro(i) = 2*i = 8 FiglioDestro(i) = 2*i + 1 = 9

Heap Binaria con vettore

La radice dell'albero è A[1]

- L'indice del padre di un nodo di posizione i è i/2 (estremo inferiore)
- L'indice del figlio sinistro di un nodo i è 2 * i
- L'indice del figlio destro di un nodo i è 2 * i +1

```
Parent(i)
return i/2;

Left(i)
return 2 * i;

Right(i)
return 2 * i + 1;
```

26

Costruzione Heap binaria

 A seguito di varie operazioni sullo heap può accadere che un nodo violi la proprietà dello heap. Ad esempio quando rimuoviamo o sostituiamo un nodo dello heap.

 La procedura MoveDown prende in ingresso uno heap A e l'indice i di un nodo che potenzialmente viola la proprietà e ristabilisce la proprietà di ordinamento parziale sull'intero heap

 Si assume che i sottoalberi figli del nodo i siano radici di heap che rispettano la proprietà di ordinamento parziale

Spiegazione

 L'idea è di far "affondare" il nodo che viola la proprietà di ordinamento parziale fino a che la proprietà non viene ripristinata

 Per fare questo si determina il nodo figlio più grande e si scambia il valore della chiave fra padre e figlio

 Poi si procede ricorsivamente sul nodo figlio per cui e' avvenuto lo scambio

Procedure di supporto

Vediamo come cambia MoveDown nella Heap Binaria

```
MoveDown(v, T)
    If v è foglia return
      else
      If (x(left(v)) > x(right(v))) then u = left(v)
                                else u = right(v)
         If (x(v) \le x(u)) then
           Scambia v e u in T
           MoveDown(u, T)
    T(n) = O(\log_2 n)
```

Costruzione Heap binaria

Dato un albero T qualunque la funzione Heapify lo rende una Heap Binaria

```
Heapify(T)

If (T è vuoto) return

Else

heapify(left(T))

heapify(right(T))

MoveDown(root(T), T)
```

n dimensione input

2 numero chiamate ricorsive all'algoritmo
n/2 dimensione dell'input chiamata ricorsiva

 $O(log_2 n)$ costo di suddivisione e ricostruzione soluzione (MoveDown) $C = O(n) + O(log_2 n) = O(n)$

Coda di priorita' con Heap binaria

Risulta semplice implementare le varie operazioni di una coda con priorità utilizzando uno heap

- Extract Max: basta restituire la radice dello heap
- Heap Extract Max: dopo la restituzione dell'elemento massimo, posiziona l'ultimo elemento dello heap (non il più piccolo!) nella radice ed esegue MoveDown per ripristinare la proprietà di ordinamento parziale
- Heap Insert: la procedura inserisce il nuovo elemento come elemento successivo all'ultimo e lo fa salire fino alla posizione giusta facendo "scendere" tutti padri

Uso della struttuta dati Heap

Algoritmo HeapSort

Basato su una heap binaria

- 1. Costruisci heap mediante heapify O(n)
- Estrai il massimo per n 1 volte O(n * log₂n)
 Memorizzandolo nella posizione liberata (l'ultima occupata dal vettore)

Complessità: O(n * log₂n)

```
struct Heap{
    ElemType *data;
    size t size;
};
typedef struct Heap Heap;
int HeapLeft(int i) {
    return 2 * i + 1; }
int HeapRight(int i) {
    return 2 * i + 2; }
int HeapParent(int i) {
    return (i - 1) / 2; }
```



```
void MoveUpMinHeap(Heap *h, int i) {
              (i != 0 && ElemCompare(GetNodeValueHeap(h,i),
   while
GetNodeValueHeap(h,ParentHeap(i))) < 0) {</pre>
       ElemSwap(GetNodeValueHeap(h,i), GetNodeValueHeap(h,ParentHeap(i)));
       i = ParentHeap(i);
void InsertNodeMinHeap(Heap *h, const ElemType *e) {
   h->size++;
   h->data = realloc(h->data, sizeof(ElemType)*h->size);
   h->data[h->size - 1] = ElemCopy(e);
   MoveUpMinHeap(h, h->size - 1);
```

```
void HeapMinMoveDown(Heap *h, int i) {
    int 1, r, smallest = i; bool done;
    do {
        done = true;
        1 = HeapLeft(i);
        r = HeapRight(i);
        if ((1 < (int)h->size) && ElemCompare(HeapGetNodeValue(h, 1),
                                    HeapGetNodeValue(h, smallest)) < 0) {</pre>
            smallest = 1;}
        if ((r < (int)h->size) && ElemCompare(HeapGetNodeValue(h, r),
                                     HeapGetNodeValue(h, smallest)) < 0) {</pre>
            smallest = r; }
        if (smallest != i) {
            ElemSwap(HeapGetNodeValue(h, i), HeapGetNodeValue(h, smallest));
            i = largest; done = false;}
    } while (!done); }
```

```
void HeapWrite(const Heap *h, FILE *f) {
    fprintf(f, "[");
   for (size_t i = 0; i < h->size; ++i) {
        ElemWrite(HeapGetNodeValue(h,i), f);
        if (i != h->size - 1) {
            fprintf(f, ", ");
    fprintf(f, "]\n");
void HeapWriteStdout(const Heap *h) {
    HeapWrite(h, stdout); }
```

```
Heap* HeapMinHeapify(const ElemType *v, size t v size) {
    // Costruisco la heap con gli elementi del vettore v
    Heap *h = HeapCreateEmpty();
    h->size = v size;
    h->data = malloc(sizeof(ElemType)*(v size));
    memcpy(h->data, v, v_size * sizeof(ElemType));
for (int i = (int)h -> size / 2 - 1; i >= 0; i--) {
        HeapMinMoveDown(h, i);
    return h;
```

```
void HeapMinHeapsort(Heap *h)
{
    size_t origin_size = h->size; // Salviamo la dimensione originaria per
                                  // ripristinarla al termine.
    while(h->size >= 2) {
        ElemSwap(HeapGetNodeValue(h, 0), HeapGetNodeValue(h, h->size - 1));
        h->size--;
        HeapMinMoveDown(h, 0);
    h->size = origin size; // Ripristiniamo la dimensione originaria
```