

Markscheme

May 2017

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а	i	$n(Ag) = \frac{3.275 \text{ g}}{107.87 \text{ g mol}} = 0.03036 \text{ mol}$ AND	Accept other valid methods for M1. Award [1 max] for correct empirical formula if method not shown.	
			$n(O) = \frac{3.760 \text{g} - 3.275 \text{g}}{16.00 \text{gmol}^{-1}} = \frac{0.485}{16.00} \implies 0.03031 \text{«mol»} \checkmark$		2
			$ \frac{0.03036}{0.03031} $ ≈ 1 / ratio of Ag to O approximately 1 : 1, so» AgO \checkmark		
1.	а	ii	temperature too low	Accept "not heated strongly enough".	
			OR		
			heating time too short	If M1 as per markscheme, M2 can only	
			OR	be awarded for constant mass technique.	
			oxide not decomposed completely ✓	·	
			heat sample to constant mass «for three or more trials» ✓	Accept "soot deposition" (M1) and any suitable way to reduce it (for M2).	2
				Accept "absorbs moisture from atmosphere" (M1) and "cool in dessicator" (M2).	
				Award [1 max] for reference to impurity AND design improvement.	
1.	b		A _r closer to 107/less than 108 «so more ¹⁰⁷ Ag»	Accept calculations that gives greater	
			OR	than 50% ¹⁰⁷ Ag.	1
			$A_{\rm r}$ less than the average of (107 + 109) «so more $^{107}{\rm Ag}$ » \checkmark		

C	Questi	on		Ans	wers	Notes	Total
1	С	i	Flask containing	Colour of solution	Product formula	Do not accept name for the products. Accept "Na $^+$ + OH $^-$ " for NaOH.	
			Na ₂ O	blue AND	NaOH ✓	Ignore coefficients in front of formula.	3
			P ₄ O ₁₀	yellow ✓	H₃PO₄ ✓		
1.	С	ii			l particles <i>AND</i> conducts electric	mobile charges being present	
				city/is poor conductor of e		Award [1 max] if type of bonding or electrical conductivity correctly identified in each compound.	2
						Do not accept answers based on electrons.	_
						Award [1 max] if reference made to solution.	
1.	d			·	erent shells/energy levels 🗸	Accept appropriate diagram for M1, M2 or both.	
			OR	converge/get closer togethe		Do not give marks for answers that refer to the lines in the spectrum.	2

C	uesti	on	Answers	Notes	Total
2.	а	i	$\operatorname{Sn^{2+}}(\operatorname{aq}) \to \operatorname{Sn^{4+}}(\operatorname{aq}) + 2e^{-} \checkmark$	Accept equilibrium sign. Accept $Sn^{2+}(aq) - 2e^- \rightarrow Sn^{4+}(aq)$.	1
2.	а	ii	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3Sn^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(I) + 3Sn^{4+}(aq) \checkmark$	Accept equilibrium sign.	1
2.	b	i	«13.239 g ± 0.002 g so percentage uncertainty» 0.02 «%» ✓	Accept answers given to greater precision, such as 0.0151 %.	1
2.	b	ii	« [K ₂ Cr ₂ O ₇] = $\frac{13.239 \text{ g}}{294.20 \text{ g mol}^{-1} \times 0.100 \text{ dm}^{3}}$ =» 0.450 «mol dm ⁻³ » ✓		1
2.	b	iii	$n(Sn^{2+}) = \text{``}0.450 \text{ mol dm}^{-3} \times 0.01324 \text{ dm}^{3} \times \frac{3 \text{ mol}}{1 \text{ mol}} = \text{``}0.0179 \text{``mol}\text{``} \checkmark$ $\text{``}[Sn^{2+}] = \frac{0.0179 \text{ mol}}{0.0100 \text{ dm}^{3}} = \text{``}1.79 \text{``mol dm}^{-3}\text{``} \checkmark$	Award [2] for correct final answer.	2

C	Questic		Answers	Notes	Total
3.	а	i			1
3.	а	ii	decrease in temperature ✓ endothermic «reaction» <i>AND</i> «equilibrium» shifts to the left/reactants OR endothermic «reaction» <i>AND</i> K _c decreases OR endothermic «reaction» <i>AND</i> concentration of PCI ₅ increased/concentration of PCI ₃ and CI ₂ decreased OR	Do not accept "temperature change". Accept "∆H positive" in place of "endothermic". Accept "products" instead of "PCI₃ and CI₂".	2
3.	b		«equilibrium» shifts in exothermic direction ✓ Lewis structure: Cl P Cl Cl Molecular geometry: trigonal/triangular pyramidal ✓	Penalize missing lone pairs once only between this question and 4(b). Accept any combination of lines, dots or crosses to represent electrons. Do not apply ECF.	2

C	uesti	ion	Answers	Notes	Total
4.	а	i	triple bond in nitrogen «molecule» <i>AND</i> single bond in hydrazine ✓ triple bond stronger than single bond	Accept bond enthalpy values from data booklet (158 and 945 kJ mol ⁻¹).	0
			OR more shared «pairs of» electrons make bond stronger/attract nuclei more ✓		2
4.	а	ii	hydrogen bonding «between molecules, dinitrogen tetraoxide does not» ✓		1
4.	а	iii	N_2H_4 : -2 AND N_2O_4 : +4 \checkmark		1
4.	а	iv	N ₂ H ₄ AND oxidized/oxidation state increases OR	Accept "N ₂ H ₄ AND gives electrons «to N ₂ O ₄ »".	
			N ₂ H ₄ AND loses hydrogen		1
			OR		
			N ₂ H ₄ AND reduces/removes oxygen from N ₂ O ₄ ✓		
4.	b		10 0	Accept any combination of lines, dots or crosses to represent electrons.	
				Do not penalize missing lone pairs if already done in 3b.	2
			(o) <u>,</u> ō।	Do not accept structure that represents 1.5 bonds.	

C	Question		Answers	Notes	Total
5.	а	i	concentration of acid decreases OR surface area of magnesium decreases ✓	Accept "less frequency/chance/rate/ probability/likelihood of collisions". Do not accept just "less acid" or "less magnesium".	1
				Do not accept "concentrations of reagents decrease".	
5.			Volume of hydrogen		1
5.	b		« <i>E</i> _{a(rev)} = 226 + 132 =» 358 «kJ» ✓	Do not accept -358.	1
5.	С		$2NO_2(g) + H_2O(I) \rightarrow HNO_3(aq) + HNO_2(aq)$ OR $4NO_2(g) + 2H_2O(I) + O_2(g) \rightarrow 4HNO_3(aq) \checkmark$	Accept ionised forms of the acids.	1

C	Question	Answers	Notes	Total
6.	а	Initiation: CI−CI → CI• + CI• ✓	Do not penalize missing electron dot on radicals if consistent throughout.	
			Accept CI ₂ , HCI and CH ₃ CI without showing bonds.	
		Propagation:	Do not accept hydrogen radical, H• or	3
		$Cl \cdot + CH_4 \rightarrow Cl - H + \cdot CH_3 \checkmark$	H, but apply ECF to other propagation steps.	
		$CI-CI + {}_{\bullet}CH_3 \rightarrow CI-CH_3 + CI {}_{\bullet} \checkmark$		
6.	b	hexane <i>AND</i> hex-1-ene ✓	Accept "benzene AND hexane AND hex-1-ene".	1
6.	С	H ₂ C=CHCl	Accept "CH ₂ CHCI" or "CHCICH ₂ ".	
		OR	Do not accept "C₂H₃CI".	
		H C=C		1

C	uesti	on		Ar	swers Notes	Total
7.	а	i	water/H ₂ O ✓		Accept "hydroxide ion/OH-".	1
7.	а	ii	Acid	Base		
			HOCI AND	OCI-		_
			OR			1
			H ₂ O AND	OH⁻ ✓		
7.	b	i	« 0.100 mol dm ^{−3} × 0.	0250 dm^3 = 0.00	250 «mol» ✓	1
7.	b	ii		» 204 «g mol⁻¹» ₁		1
7.	b	iii	$(1.00 \times 10^{-14} = [H^+])$	< 0.100 »		_
			1.00×10^{-13} «mol dm	⁻³ » √		1

C	Questi	ion	Answers	Notes	Total
8.	а	i	$\Delta H = 177.0 - \frac{189.2}{2} - 285.5 \text{ «kJ» }\checkmark$	Accept other methods for correct manipulation of the three equations.	
			«∆ <i>H</i> =» – 203.1 «kJ» ✓	Award [2] for correct final answer.	2
8.	а	ii	203.1 «kJ» = 0.850 «kg» × 4.18 «kJ kg $^{-1}$ K $^{-1}$ » × ΔT «K»	Award [2] for correct final answer.	
			«∆ <i>T</i> =» 57.2 «K» ✓	Units, if specified, must be consistent	
			« <i>T_{final}</i> = (57.2 + 21.8) °C =» 79.0«°C» / 352.0 «K» ✓	with the value stated.	
			If 200.0 kJ was used:		2
			200.0 «kJ» = 0.850 «kg» × 4.18 «kJ kg $^{-1}$ K $^{-1}$ » × ΔT «K»		
			OR		
			«∆ <i>T</i> =» 56.3 «K» ✓		
			« <i>T_{final}</i> = (56.3 + 21.8) °C =» 78.1 «°C» / 351.1 «K» ✓		
8.	b		C ₆ H ₄ (OH) ₂ ⁺ ✓	Accept "molecular ion".	
				Do not accept " $C_6H_4(OH)_2$ " (positive charge missing).	1
8.	С		«highest m/z» 108 ✓	Only accept exactly 108, not values close to this.	1