Recap

We have reviewed the relevant linear algebra

Matrices

Vectors

Scalars

Next, we will discuss:

Homogeneous representations of points and vectors

Coordinate systems

Transformations

Points vs Vectors

What is the difference?

Points have location, but no size or direction

Vectors have size and direction, but no location

Problem: We represent both as 3-tuples

Homogeneous Representation

Convention:

Vectors and Points are represented as 4x1 column matrices, as follows:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \hline \mathbf{0} \end{bmatrix} \quad P = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ \hline \mathbf{1} \end{bmatrix}$$

Switching Representations

Normal to homogeneous:

- Vector: append as fourth coordinate 0 $\mathbf{v}=\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix} \to \begin{bmatrix}v_1\\v_2\\v_3\\0\end{bmatrix}$
- Point: append as fourth coordinate 1 $P = \left[\begin{array}{c} p_1 \\ p_2 \\ p_3 \end{array}\right] \rightarrow \left[\begin{array}{c} p_1 \\ p_2 \\ p_3 \\ 1 \end{array}\right]$

Switching Representations

Homogeneous to normal:

 Vector: remove fourth coordinate (0)

fourth
$$\mathbf{v}=\left[egin{array}{c} v_1 \\ v_2 \\ v_3 \\ 0 \end{array}
ight]
ightarrow \left[egin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}
ight]$$

Point: remove fourth coordinate (1)

with
$$P = \left[\begin{array}{c} p_1 \\ p_2 \\ p_3 \\ 1 \end{array} \right] \to \left[\begin{array}{c} p_1 \\ p_2 \\ p_3 \end{array} \right]$$

Relationship Between Points and Vectors

A difference between two points is a vector:

$$Q - P = \mathbf{v}$$

We can consider a point as a base point plus a vector offset:

$$Q = P + \mathbf{v}$$

Coordinate Systems

Defined by: a,b,c,O

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \overline{\mathbf{c}}$$

$$P - O = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

$$P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

Homogeneous Representation of Points and Vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & O \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{bmatrix}$$

$$P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \to P = [\mathbf{a} \ \mathbf{b} \ \mathbf{c} \ O] \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix}$$

Does the Homogeneous Representation Support Operations?

Operations:

•
$$\mathbf{v} + \mathbf{w} = [v_1, v_2, v_3, 0]^T + [w_1, w_2, w_3, 0]^T$$

= $[v_1 + w_1, v_2 + w_2, v_3 + w_3, 0]^T$ Vector

•
$$a\mathbf{v} = a[v_1, v_2, v_3, 0]^{\mathrm{T}} = [av_1, av_2, av_3, 0]^{\mathrm{T}}$$
 Vector

•
$$a\mathbf{v} + b\mathbf{w} = a[v_1, v_2, v_3, 0]^{\mathrm{T}} + b[w_1, w_2, w_3, 0]^{\mathrm{T}}$$

= $[av_1 + bw_1, av_2 + bw_2, av_3 + bw_3, 0]^{\mathrm{T}}$ Vector

•
$$P + \mathbf{v} = [p_1, p_2, p_3, 1]^T + [v_1, v_2, v_3, 0]^T$$

= $[p_1 + v_1, p_2 + v_2, p_3 + v_3, 1]^T$ Point

•
$$P - Q = [p_1, p_2, p_3, 1]^T - [q_1, q_2, q_3, 1]^T$$

= $[p_1 - q_1, p_2 - q_2, p_3 - q_3, 0]^T$ Vector

Linear Combination of Points

Points P, Q scalars f, g:

$$fP + gQ = f[p_1, p_2, p_3, 1]^T + g[q_1, q_2, q_3, 1]^T$$

= $[fp_1 + gq_1, fp_2 + gq_2, fp_3 + gq_3, f+g]^T$

What is this?

Linear Combination of Points

Points P, Q scalars f, g:

$$fP + gQ = f[p_1, p_2, p_3, 1]^T + g[q_1, q_2, q_3, 1]^T$$

= $[fp_1 + gq_1, fp_2 + gq_2, fp_3 + gq_3, f+g]^T$

What is it?

- If (f + g) = 0 then vector!
- If (f + g) = 1 then point!
- Otherwise, ??

Affine Combinations of Points

Definition:

n points P_i : i=1,...,n n scalars f_i : i=1,...,n $f_1P_1+...+f_nP_n \quad \text{iff} \quad f_1+...+f_n=1$

Example (n = 2): $0.5P_1 + 0.5P_2$ Example (n = 2): $(1-s)P_1 + sP_2$

Lines and Planes

In addition to vectors and points, lines and planes are fundamental geometric entities in computer graphics

 Recall (from Analytic Geometry) how we represent them mathematically...

Lines

Representations of a line (in 2D)

- Explicit $y = \alpha x + \beta$ $y = m(x - x_0) + y_0; \quad m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0}$
- Implicit $f(x, y) = (x x_0)dy (y y_0)dx$ if f(x, y) = 0 then (x, y) is **on** the line f(x, y) > 0 then (x, y) is **below** the line f(x, y) < 0 then (x, y) is **above** the line
- Parametric $x(t) = x_0 + t(x_1 x_0)$ $y(t) = y_0 + t(y_1 y_0)$ $t \in [0,1] \text{ for line segment, or } t \in [-\infty, \infty] \text{ for infinite line}$ $P(t) = P_0 + t(P_1 P_0) \quad \text{or} \quad P(t) = P_0 + t \mathbf{v}$ $P(t) = (1 t)P_0 + tP_1$

Planes

Plane equations

- Explicit $\alpha = -a/c$ $z = \alpha x + \beta y + \gamma$ $\beta = -b/c$ $\gamma = -d/c$
- Implicit $c \neq 0$

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \bullet P + d$$

Points on Plane: F(x, y, z) = 0Parametric

> Plane $(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$ P_0, P_1, P_2 are not collinear or Plane $(s,t) = P_0 + s\mathbf{v}_1 + t\mathbf{v}_2$, where \mathbf{v}_1 , \mathbf{v}_2 are basis vectors Convex combination defines a triangle:

Triangle $(s,t) = (1 - s - t)P_0 + sP_1 + tP_2$, with $s, t \in [0,1]$

How Do We Draw Objects?

Z-buffer

- Polygon Based
- Fast

Raytracing

- Ray/Object intersections
- Slow

Preview: Raytracing Algorithm

for each pixel on screen

determine ray from eye through pixel

find closest intersection of ray with an object

cast off reflected and refracted ray, recursively

calculate pixel color

draw pixel

end

Preview: Z-Buffer Algorithm

set pixels to background color and z-buffer to maximum z-values for each polygon in model

project vertices of polygon onto viewing plane for each pixel inside the projected polygon

calculate pixel color

calculate pixel z-value

scen.

if <u>z-value</u> is less than z-value stored for pixel in z-buffer set pixel to <u>color</u> and store <u>z-value</u> into z-buffer

end

end

Z-Buffer Graphics Pipeline 4 stages Nodeling View Selection Perspective Division Displaying Output Device Independent

Transformations (2D)

General Form: $Q = \mathcal{T}(P), P \in \mathbb{R}^n, Q \in \mathbb{R}^m$ If n > m projection

Example:
$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(P_y)e^{-P_y} \\ \ln(P_x) \\ 1 \end{bmatrix}$$

Affine Transformations (2D)

Linear in the coordinates

$$Q = \mathcal{T}(P)$$

$$\begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \begin{bmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \end{bmatrix}$$

$$m_{11}, ..., m_{23} \in \Re$$

In homogeneous coordinates:

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \\ 1 \end{bmatrix}$$

Matrix Form of Affine Transformations

Transformation as a matrix multiplication

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

$$Q = MP$$

Elementary Affine Transformations

Any affine transformation is equivalent to a combination of four elementary affine transformations

- Translation
- Scaling
- Rotation
- Shearing

Transforming Points and Vectors

Points:

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Vectors:

$$\begin{bmatrix} W_x \\ W_y \\ 0 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} m_{13} \\ m_{23} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ 0 \end{bmatrix}$$

Note: Translation modifies points, but not vectors

Translation

$$Q = P + \mathbf{t}, \quad \mathbf{t} = (t_x \ t_y)^T$$

$$Q_x = P_x + t_x$$

$$Q_y = P_y + t_y$$

$$Q_y = P_y + t_y$$

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Scaling Around the Origin

$$Q_x = s_x P_x$$
$$Q_y = s_y P_y$$

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Uniform scaling: $s_x = s_y$

Shear Around the Origin

In the x-direction

$$Q_x = P_x + aP_y$$
$$Q_y = P_y$$

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Rotation Around the Origin

$$Q_x = \cos \theta P_x - \sin \theta P_y$$
$$Q_y = \sin \theta P_x + \cos \theta P_y$$

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Inverse of a Transformation

Inverse transformation: Q = MP, $P = M^{-1}Q$

We can use Cramer's rule to invert M, or we can be smarter about it

Inverse of Translation

$$Q = \mathcal{T}(t)P \to P = \mathcal{T}(-t)Q$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of Scaling

$$Q = \mathcal{S}(s_x, s_y)P \to P = \mathcal{S}(\frac{1}{s_x}, \frac{1}{s_y})Q$$

$$\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of a Shear in x

$$Q = Sh_x(a)P \rightarrow P = Sh_x(-a)Q$$

$$\begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of Rotation

$$Q = \mathcal{R}(\theta)P \to P = \mathcal{R}(-\theta)Q$$

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Composing 2D Affine Transformations

Composing two affine transformations produces an affine transformation

$$Q = \mathcal{T}_2(\mathcal{T}_1(P))$$

In matrix form:

$$Q = M_2(M_1P) = (M_2M_1)P = MP$$

Which transformation happens first?

Main Points

- Affine transformations are the main modeling tool in graphics
- They are applied as matrix multiplications
- Any affine transformation can be performed as a series of elementary affine transformations
- Make sure you understand the order of applied transformations

(i.e., ordering of matrix multiplications)

Other Examples

Rotation about an arbitrary point
Scaling around an arbitrary point
Reflection
Reflection about an arbitrary line

Example: Another 2D Transformation

Rotate -90 deg around an arbitrary point O:

Rotate Around an Arbitrary Point

Rotate Around an Arbitrary Point

We know how to rotate around the origin

y
$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Rotate Around an Arbitrary Point

...but that is not what we want to do!

So What Do We Do?

Transform it to the Known Case Step 1: Translate(-O_x,-O_y)

Rotation About Arbitrary Point

 $M = T(\bigcirc_{x^y}\bigcirc_y) R(-90) T(-\bigcirc_{x^y}-\bigcirc_y)$ Order is IMPORTANT!

