Forced Oscillations

Forced Oscillation, no clamping:

loudspeaker, we took readings of the complitude of Oscillation and phone angle as a function of driving frequency With this I plated amplitude (which is proportional to velocity from Founday's law) cyclist driving frequency. The amplitude is maximum when the driving frequency is equal to the resonant frequency. Therefore, reading the peak of the grouph: fr= 18.01 Hz The data is shown on the next page.

Now a plot of amplitude squared (proportional to power) against driving frequency Can be used to find the peak power. Reading this from the graph: Pmax = 1.3 Halving this value and reading the

width of the graph oil this point: Pmax = 0.65 => 4f = 0.115 = fyuhm

Then Calculating the Q factor of the bar for a forced Oscillation with no damping: Q= fo = 18.01-156

Frequency of Driving Voltage		
	Amplitude Output Voltage	Phase
(Hz)	(V)	Difference (*)
17.35 17.45	0.092 0.110	-84.0 -80.0
17.45	0.110	-80.0
17.60	0.146	-78.0
17.65	0.164	-78.0
17.70	0.188	-78.0
17.75 17.80	0.224 0.272	-75.0 -71.0
17.84	0.272	-68.0
17.86	0.360	-66.0
17.88	0.408	-63.0
17.90	0.464	-60.0
17.92 17.93	0.544 0.592	-56.0 -55.0
17.93	0.648	-53.0
17.95	0.720	-48.0
17.96	0.800	-44.0
17.97	0.880	-37.0
17.98 17.99	0.960 1.040	-30.0 -21.0
18.00	1.100	-10.0
18.01	1.150	0.0
18.02	1.140	10.0
18.03 18.04	1.110 1.060	20.0
18.04	0.984	38.0
18.06		44.0
18.07	0.848	52.0
18.08		56.0
18.09 18.10		62.0 62.0
18.10	0.672	67.0
18.12		69.0
18.14	0.520	74.0
18.16		77.0
18.18 18.20		78.0 82.0
18.20		82.0 86.0
18.30		88.0
18.35	0.220	92.0
18.40		94.0
18.45		95.0 97.0
18.55 18.65		98.0
18.75		100.0

driving frequency giving a power resonance Curve: Pmax = 0.39

Pmox = 0. 195 2 4f = fyuh = 0.42

Now plotting Amplitude Squard against

 $Q = f_0 = \frac{17.95}{0.42} = 42.7$ (3sf)

											Fr	
											requency of Dri	
18.05 18.06 18.07 18.08 18.09 18.1 18.11	17.97 17.98 17.99 18 18.01 18.02 18.03 18.04	17.91 17.92 17.93 17.94 17.95 17.96	18.8 18.9 19 17.87 17.88 17.89	18.38 18.45 18.5 18.55 18.6 18.65 18.7	18.19 18.2 18.22 18.24 18.26 18.3 18.34	18.13 18.14 18.15 18.16 18.17 18.18	17.78 17.8 17.82 17.84 17.86 18.12	17.72 17.73 17.74 17.75 17.76	17.62 17.64 17.66 17.68 17.69 17.7	17.3 17.35 17.4 17.45 17.5 17.5 17.6	17 17.1 17.2	
0.548 0.548 0.528 0.516 0.512 0.51 0.484	0.6 0.596 0.592 0.588 0.58 0.572	0.612 0.616 0.624 0.624 0.624 0.616 0.608	0.172 0.156 0.146 0.584 0.592 0.6 0.608	0.284 0.256 0.238 0.226 0.21 0.196 0.186	0.412 0.404 0.384 0.372 0.356 0.324 0.304	0.468 0.452 0.448 0.436 0.428	0.488 0.508 0.536 0.552 0.576	0.416 0.428 0.44 0.456 0.464 0.476	0.328 0.34 0.368 0.38 0.388 0.4	0.178 0.194 0.208 0.228 0.256 0.28 0.316	0.13 0.14 0.156	
											Phase Differe	
59 61 63 65 66.5 69 70.5	43.5 46 47 49 52 55 57	22.5 25 29 32 35 37 41	114 117 118 11.5 14.5 17 19.5	100 103 106 107 110 111 112	83.5 85 87 88.5 89.5 94	74 76 77.5 79 80 82	-8 -5 -0.5 4 9.5 72	-17.5 -16.5 -15 -13.5 -11	-30 -28.5 -25.5 -24 -22.5 -21 -20	-47.5 -46 -43 -40 -37 -36 -31.5	-56 -54 -50	

Selfing the bor into a free oscillation but with the Same current through the Helmholtz coils give this clecay graph. Following the scure method as the previous free oscillation give the graph below.

paints

	Length(mm)	Resonant Frequency (Hz)	Uncertainty on F	Log Length	Log Frequency
	120	46.3	0.1	2.079181246	1.66558099
	131	39.24	0.1	2.117271296	1.59372899
	144	33.64	0.05	2.158362492	1.52685598
	157	28.9	0.05	2.195899652	1.46089784
	166	26.04	0.02	2.220108088	1.4156409
	176	23.61	0.02	2.245512668	1.37309598
	186	21	0.01	2.269512944	1.32221929
	195	19.12	0.01	2.290034611	1.28148788
	200	47.05	0.04	0.04000700	4.0540000

We also Studied Now Changing a mechanical property (in this Case length of the bor). We did this by recording the resonant frequency as a function of length. By taking the log of both of their values and pholing it, we find that the gradient is -1.78. If we Sum the uncertainties on f, the bold is 0.37. Therefore the range of trailus for the gradient is -1.71.20.37

Using LSFR, χ^2 = 0.97 at 7 degree g freedom. This is lower than the Critical value of 14.07 So we can claim there is no significant different between the expected and actual doba.

Summorising: Forced ascillations, no damping: Q=156 Free obcillation, no damping: Q=396 Forced ascillation, damping: Q=42.7 Free oscillations, damping: Q=80.8

The a factor represents how good of an oscillator the system is. A higher a indicate a Slower rate of energy loss; therefore for an

Undamped ascillator it is expected that the Q factor is higher. This matchey the data. For the Undamped for ad oscillations the Q factor is approximately 3 times larger which neather expectations. Also for the free ascillation the Q factor is roughly 5 times larger for the undamped System, this are fits

The uncertainties for frequency was negligable, for the voltage 0.01v

and for phone difference between 1 and 3 degrees. The uncertainty on phase was due to air currents in the roam, unsertunately this could not be prevented.

But to improve the experiment these currons can be prevented by Ualing window and reducing People walking around the lab.

expedations

-2 is within this ronge which is the expected Value for the powe of the length.

The Chi Square for the first to experiments were very high, this could mean that the linear fit (required for LSFA) is not surtable or the error were underestimated

It can also be concluded that the redonant frequency is proportional to the length to the pow -2.