SQL - Cours 1 Le modèle relationnel

Ikbel GUIDARA

<u>ikbel.guidara@univ-lyon1.fr</u> 24/10/2017

Organisation du cous

- Volume Horaire: 28h (+2h d'examen)
 - 3 séances de cours
 - 3 séances de TD
 - 8 séances de TP

- Modalités d'évaluation:
 - Compte rendu pour chaque TP 50%
 - DS du groupe (Sur machine 1h)
 - Examen 50%

Objectifs du cours

 Savoir comment définir le modèle relationnel d'une base de données

- Se familiariser avec l'algèbre relationnelle et le langage SQL:
 - Structurer une base de données
 - Manipuler/interroger une base de données (mettre à jour, insérer, consulter des données)

Bases de données: Donnée?

- Une donnée:
 - Un renseignement: e.g., cours, étudiant, université,...
 - Une relation entre des renseignements: e.g., un enseignant dispense le cours de SQL
- Les données numériques sont omniprésentes : entreprises, aéroports, hôpitaux, universités, ...
- Comment les structurer, les stocker pour les exploiter par des applications? : gestion du personnel d'une entreprise, ses commandes,...

Bases de données: Fichier?

Stockage des données dans des fichiers

- Problèmes:
 - Redondances des données et multiplication des fichiers
 - Les données sont mal structurés
 - Problèmes de mises à jour des données
 - Difficultés de recherche de l'information

Bases de données?

 Base de données (BD) c'est l'ensemble structuré de données accessibles et exploitables au moyen d'un ensemble de programmes informatiques.

Système de gestion de base de données (SGBD)

- Besoin d'un outil (logiciel) pour gérer une base de données: création, enregistrement, mise à jour, suppression des données, accès concurrents,...etc
- Système de gestion de bases de données (SGBD): outil (logiciel) permettant de:
 - Structurer des données d'une BD
 - Accéder aux données
 - Insérer, consulter, et mettre à jour des données
 - Gérer la concurrence d'accès
 - Gérer la confidentialité

Objectifs d'un SGBD

- Exploitation de gros volumes de données
 - Structures de données et méthodes d'accès efficaces
- Exploitation par différents types d'utilisateurs (Indépendance programme données)
 - Différents outils d'accès ou interfaces-utilisateurs
- Gestion de données sensibles
 - Sécurité et fiabilité des outils
- Aspect multi-utilisateurs
 - Mécanismes de protection
- Exemples de SGBD relationnels : Oracle, Mysql, SQLServer, Access, ...

Bases de données relationnelles

- Plusieurs modèles de données:
 - Hiérarchique
 - Relationnelle
 - Objet
 - **—** ...

- Structuration des données dans des tables
- Les tables sont reliées par des relations

Bases de données relationnelles

Algèbre relationnelle

Modèle relationnel de BD

- Intérêt de définir un modèle logique?
 - Obtenir un modèle proche du modèle physique (des tables) mais indépendant du SGBD
 - Vérifier et valider le modèle conçu avant l'implémentation
 - Améliorer/corriger le modèle conceptuel (réduire la complexité par exemple en décidant de ne pas créer certaines tables qui auraient été spécifiées dans le modèle conceptuel)

Attribut:

- Un **attribut** est un identificateur (un nom) décrivant une information stockée dans une base.
- Exemple :
 - Le numéro et le nom d'une personne sont des attributs.

Domaine:

- Le domaine d'un attribut est l'ensemble, fini ou infini, de ses valeurs possibles.
- Exemple :
 - L'attribut numéro a pour domaine un entier
 - L'attribut nom a pour domaine l'ensemble des combinaisons de lettres (chaîne de caractères).

Relation/Table:

- Une relation/table est un sous-ensemble du produit cartésien de n domaines d'attributs (n > 0)
- Une relation/table est représentée sous la forme d'un tableau à deux dimensions dans lequel les attributs correspondent aux titres des colonnes.
- Exemple: table Personne avec trois attributs

Schéma	
Contenu	

numero	nom	prenom
5	Durand	Caroline
1	Dubois	Jacques
12	Dupont	Lisa
3	Dubois	Rose-Marie

Schéma de la table :

Personne (numero : entier, nom :

chaine, prenom: chaine)

Ou en plus concis:

Personne (numero, nom, prenom) (12, Dupont, Lisa)

Degré = 3; cardinalité = 4

Clé candidate:

- C'est un ensemble minimal des attributs de la table dont les valeurs identifient à coup sûr une ligne.
- La valeur d'une clé candidate d'une table est donc distincte pour toutes les lignes.
- La notion de clé candidate est essentielle dans le modèle relationnel.
- Toute relation a au moins une clé candidate et peut en avoir plusieurs.
- Les clés candidates d'une relation n'ont pas forcément le même nombre d'attributs.

- Exemple:

- Numéro est une clé candidate de Personne si deux étudiants ne peuvent pas avoir le même numéro.
- (Nom, prenom) constituent une clé candidate si on est dans un contexte où il n'existe pas deux personnes de même nom et prénom.

Clé primaire:

- C'est une des clés candidates d'une table.
- La notion de clé primaire est plus importante que celle de clé candidate dans le modèle relationnel.
- Notation possible :
 - Les attributs qui constituent la clé primaire sont soulignés.

– Exemple :

- Personne (<u>Numero</u>, nom, prénom) indique que Numéro est la clé primaire de la table Personne.
- Personne (Numero, <u>nom</u>, <u>prenom</u>) indique que le couple (nom, prenom) constitue la clé primaire de la table Personne.

Clé étrangère:

- Référence une relation tierce
- Permet d'assurer la cohérence des données définies dans plusieurs tables
- Elle est formée d'un ou plusieurs des attributs qui constituent une clé primaire dans une autre relation.
- Notation possible :
 - Les attributs qui constituent la clé étrangère sont précédés du caractère #.

- Exemple:

- Personne (Numero, nom, prenom, #idlUT)
- IUT (<u>idIUT</u>, nomIUT, adresseIUT)
- #idIUT est une clé étrangère dans Personne et indique qu'une personne ne peut être affectée à un IUT que si celui-ci est connu dans la table IUT.

Perso	nne		
Numero	Nom	Prenom	idlUT
5	Durand	Caroline	1
1	Dubois	lacques	3
1		Jacques	J
12	Dupont	Lisa	1
3	Dubois	Rose-Marie	4

La valeur 4 est impossible/fausse car l'IUT n°4 n'existe pas

Remarquez que l'IUT N°2 peux exister même si aucun étudiant n'y est affecté

Schéma de la base de données

- Une base de données est un ensemble d'informations stocké dans un ordinateur selon une structure définie. Elle est définie par l'ensemble des tables/relations.
- Le contenu de la base de données est constitué du contenu de ses différentes tables.
- Le schéma de notre base de données (BD) est :
 - Personne(<u>Numéro</u>, nom, prénom, #idIUT)
 - IUT(<u>idIUT</u>, nom, adresse)