Лекция 7

Ilya Yaroshevskiy

27 марта 2021 г.

Содержание

1	Ста	индартное дискретное распределение	1
	1.1	Распределение Бернулли	1
	1.2	Биноминальное распределение	1
	1.3	Геометрическое распределение	2
	1.4	Распределение Пуассона	2
		Функция распределения	
		1.5.1 Свойства функции распределения	
2	Абсолютно непрерывные случайные величины		4
	2.1	Свойства плотности и функции распределения	4
	2.2	Числовые характеричтики	5

1 Стандартное дискретное распределение

1.1 Распределение Бернулли

Обозначение. $B_p, \ 0$

Определение.

- ξ число успехов при одном испытии
- p вероятность успеха при одном испытании

$$\begin{array}{c|c} \xi & 1 & 0 \\ \hline p & p & 1-p \end{array}$$

$$E\xi = 0 \cdot (1-p) + 1 \cdot p = p$$

$$D\xi = pq$$

1.2 Биноминальное распределение

Обозначение. $B_{n,p}$

Определение.

- ξ число успехов при n испытаниях
- ullet p вероятность успеха при одном испытании

$$\xi \in B_{n,p} \Leftrightarrow p(\xi = x) = \binom{n}{k} p^k q^{n-k}$$

Примечание. $B_p = B_{1,p}$

1

$$\xi=\xi_0+\xi_1+\dots+\xi_n$$
 , при $\xi_i\in B_{n,p}$
$$E\xi=0\cdot(1-p)+1\cdot p=p$$

$$D\xi=pq$$

$$E\xi=\sum_{i=0}^n E\xi_i=np$$

$$D\xi=\sum_{i=0}^n D\xi_i=npq$$

1.3 Геометрическое распределение

Обозначение. G_p

Определение.

- ξ номер первого успешного испытания
- ullet p вероятность успеха при одном испытании

$$\xi \ inG_p \Leftrightarrow p(\xi = k) = (1 - p)^{k - 1} \cdot p \quad , 1 \le k \le \infty$$

$$\frac{xi \mid 1}{p \mid p \quad (1 - p) \cdot p \quad \dots \quad (1 - p)^{k - 1} \cdot p \quad \dots}$$

$$E\xi = \sum_{k = 1}^{\infty} kq^{k - 1}p = p\sum_{k = 0}^{\infty} (q^k)' = p\left(\sum_{n = 0}^{\infty} q\right)' = p \cdot \left(\frac{1}{1 - q}\right)' = \frac{1}{p}$$

$$E\xi^2 = \sum_{k = 1}^p k^2 q^{k - 1}p = p\sum_{k = 1}^{\infty} (k \cdot (k - 1) + k) \cdot q^{k - 1} + p\sum_{k = 1}^{\infty} k\dot{q}^{k - 1} = \frac{22q}{p^2} + \frac{1}{p}$$

$$D\xi = \frac{q}{p^2}$$

1.4 Распределение Пуассона

Определение. Сличайная величина ξ имеет распределение ПУассона с парметром k>0, если

$$p(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad , 0 \le k < \infty$$

$$\frac{\xi \mid 0 \quad 1 \quad 2 \quad \dots \quad k \quad \dots}{p \mid e^{-\lambda} \quad \lambda \cdot e^{-\lambda} \quad \frac{\lambda^2}{2} \cdot e^{-\lambda} \quad \dots \quad \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \dots}$$

$$E\xi = \lambda$$

$$E\xi^2 = \lambda^2 + \lambda$$

$$D\xi = \lambda$$

$$= \sqrt{\lambda}$$

1.5 Функция распределения

Определение. $F\xi(x)$ случайной величины ξ называется функция

$$F\xi(x) = p(\xi < x)$$

$$\Pi p u \text{мер.} \quad \frac{\xi \mid \quad 0 \quad 1}{p \mid 1 - p \quad p}$$

$$F(x) = \begin{cases} 0 & x \leq 0 \\ 1 - p \quad 0 < x \leq 1p, x > 1 \end{cases}$$

1.5.1 Свойства функции распределения

Свойство 1. F(x) — ограниченая функция

Свойство 2. F(x) — неубывающая функция

$$x_1 < x_2 \Rightarrow F(x_1) \le F(x_2)$$

Доказательство. Доделать

Свойство 3.

$$p(x_1 < \xi < x_2) = F(x_2) - F(x_1)$$

Доказательство. Доделать

Следствие 1.0.1. Т.к. Борелевская σ -алгебра порождается интервалами, то зная функцию распределения можем найти вероятность попадания случайной величины в любое Борелевское ножество $B \in \mathfrak{B}$, а значит полностью задается функцией распределения

Свойство 4.

$$\lim_{x \to 0} F(x) = 0$$

$$\lim_{x \to +\infty} F(x) = 1$$

 $T.\kappa.$ функция F(x) — ограничена и монотонна, то эти пределы существуют.

Свойство 5. $x_n \to \pm \infty$

$$\begin{split}]A_n &= \{\omega \in \Omega | n-1 \leq \xi(\omega) < n \} \\ 1 &= p(\Omega) = \sum_{n=0}^{\infty} p(A_n) = \sum_{n=0}^{\infty} (F(n) - F(n-1) = \lim_{n \to 0}) = \lim_{N \to 0} \sum_{-N}^{N} (F(n) - F(n-1)) = \\ &= \lim_{N \to 0} (F(N) - F(-N-1)) = \lim_{N \to 0} F(N) - \lim_{N \to \infty} F(-N-1) = 1 \Rightarrow \lim_{N \to \infty} F(N) = 1 \end{split}$$

Доделать

Свойство 6. F(x) — непрерывна слева, т.е. $F(x_0 - 0) = F(x_0)$

Доказательство.

•
$$]B_n = \{x_0 - \frac{1}{n} \le \xi < x_o\}$$

$$B_0 \supset B_1 \supset \cdots \supset B_n \supset \dots$$
$$\bigcap_{n=0}^{\infty} B_n = \emptyset$$

Следовательно по аксиоме непрерывности

$$\lim_{n \to \infty} p(B_n) = 0 \Rightarrow \lim_{n \to \infty} p(B_n) = \lim_{n \to \infty} (F(x_0) - F(x_0 - \frac{1}{n})) =$$

$$= F(x_0) - \lim_{n \to \infty} F\left(x_0 - \frac{1}{n}\right) = 0$$

$$\lim_{n \to \infty} F\left(x_0 - \frac{1}{n}\right) = F(x_0) \Rightarrow F(x_0 - 0) = F(x_0)$$

Свойство 7. Скачок в точке x_0 равен вероятности в этой точке.

$$F(x_0 + 0) - F(x_0) = p(\xi = x_0)$$

$$F(x_0 + 0) = F(x_0) + p(\xi = x_0) = p(\xi < x_0)$$

Доказательство.

•
$$C_n = \{x_0 < \xi < x_0 + \frac{1}{n}\}$$

По аксиоме непрерывности $\lim_{n\to\infty} p(C_n) = 0$

$$p(C_n) + p(\xi < x_0) = p(\xi = x_0)$$

$$p(x_0 \le \xi < x_0 + \frac{1}{n}) \xrightarrow[n \to \infty]{} p(\xi = x_0)$$

$$F(x_0 + \frac{1}{n}) - F(x_n) \xrightarrow[n \to \infty]{} p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) = p(\xi = x_0)$$

Свойство 8. Если F(x) непрерывна в точке x_0 , то $p(\xi=0)=0$. Следствие из 6

Свойство 9. Если F(x) непрерывна то, $p(x_1 \le \xi < x_2) = p(x_1 < \xi < x_2) = p(x_1 \le \xi \le x_2) = p(x_1 < \xi \le x_2) = p(x_1 \le \xi \le x_2) = p(x_1 \le$

Свойство 10. Случайная величина ξ имеет дискретное распредление \Leftrightarrow ее функция распределения – ступенчатая функция

2 Абсолютно непрерывные случайные величины

Определение. Случайная величина ξ имеет абсолютно непрерывное распределение, если для любового Борелевского множества $B \in \mathfrak{B}$

$$p(\xi \in B) = \int_{B} f_{\xi}(x)dx$$

для некоторой функции $f_{\xi}(x)$. Интеграл Лебега а не Римана.

Определение. $f_{\xi}(x)$ — плотность распределения случайной величины ξ

2.1 Свойства плотности и функции распределения

Свойство 1. Вероятностный геометрический смысл плотности.

$$p(\alpha < \xi < \beta) = \int_{\alpha}^{\beta} f_{\xi}(x) dx$$

$$S = p(\alpha < \xi < \beta)$$

Доказательство. Из определения распределения $B = (\alpha, \beta)$

Свойство 2. Условие нормировки

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Доказательство. По определению $p(\xi \in \mathbb{R}) = 1$ а $B = \mathbb{R} \in \mathfrak{B}$ Исправить

Свойство 3.

$$F\xi(x) = \int_{-\infty}^{+\infty} f(x)dx$$

Доказательство. По поределению

$$F_{\xi}(x) = p(\xi < x) = \int_{-\infty}^{x} f(x)dx \quad B = (-\infty, x)$$

Свойство 4. $F_{\xi}(x)$ — непрерывная функция. Как интеграл c переменным верхним пределом

Свойство 5. $F_{\xi}(x) - \partial u \phi \phi e p e н u u p y e ма почти в сюду u$

$$f_{\xi}(x) = F'(x)$$

почти для всех х

Доказательство. Теорема Барроу.

 $\Pi puмечание.$ Почти для всех, кроме возможно x из множества нулевой меры Лебега.

Свойство 6. $f_{\xi}(x) > 0$

Доказательство. Из определения или из 5

Свойство 7. $p(\xi = x_0) = 0$

Свойство 8. $p(x_1 < / \le \xi < / \le x_2) = F(x_2) - f(x_1)$

Свойство 9. Если для f(x) выолнено свойства 2 и 6 то она является плотностью некоторой случайной величины

2.2 Числовые характеричтики

Определение. Математическим ожиданием абсолютно непрерывной случайной величины ξ называется число

$$E\xi = \int_{-\infty}^{+\infty} x f(x) dx$$

при условии что данный интеграл сходится абсолютно, т.е. $\int\limits_{-\infty}^{+\infty}|x|f(x)dx<\infty$

Определение. Дисперсией абсолютно непрерывной случайной величины ξ называется число

$$D\xi = E(\xi - E\xi) = \int_{-\pi}^{+\infty} (x - E\xi)^2 f(x) dx$$

при условии что интеграл сходится абсолютно

Примечание.

$$D\xi = E\xi^{2} - (E\xi)^{2} = \int_{-\infty}^{+\infty} x^{2} f(x) dx - (E\xi)^{2}$$

Определение. Среднее квадратическое отклонение $\sigma_{\xi} = \sqrt{D\xi}$

Примечание. Смысл свойств этих числовых характеристик полоностью идентичны дискретной случайной величины