局所等長写像と被覆

1

命題 **1.1.** (M,g),(N,h) を同じ n 次元の連結リーマン多様体とする. M が完備で、局所等長写像 $f:(M,g)\to (N,h)$ が存在するとき、次が成り立つ. (1)N は完備である. (2)f は全射である. (3)f は被覆写像である.

証明。(1) 局所等長写像は測地線を保存するので、任意に N の測地線 γ^N をとる。 $f^{-1}(\gamma_0^N)$ を始点、 $df_{\gamma_0^N}^{-1}(\dot{\gamma}_0)$ を始方向とする M の測地線を γ^M で表すと、 $f\circ\gamma^M=\gamma^N$ が M の完備性より $\mathbb R$ 上で成り立つ。従って、N の測地線は $\mathbb R$ を定義域に含むので N は完備である。

- (2) 適当に 2 点 $q_1,q_2\in N$ をとると、ある正規測地線 γ^N で $\gamma_0^N=q_1,\gamma_l^N=q_2$ を満たすものがとれる. (1) の 証明と同様に、対応する測地線を γ^M で表すと、 $f(\gamma_l^M)=\gamma_l^N=q_2$ となるので、f は全射である.
- (3) 任意に $q \in N$ をとる. r > 0 を q における単射半径より小さくとる. $\{p_{\alpha}\} = f^{-1}(q)$ とする. f が 測地線の長さを保つことに注意すると, $f^{-1}(B(q;r)) \subset \bigcup B(p_{\alpha};r)$ と $B(p_{\alpha}) \subset f^{-1}(B(q;r))$ が成り立つので, $\bigcup B(p_{\alpha};r) = f^{-1}(B(q;r))$ が成り立つ. また, $\exp_{p_{\alpha}}$ の $B(p_{\alpha};r)$ への制限は微分同相となることから, $f = \exp_{p_{\alpha}}^{-1} \circ df_{p_{\alpha}} \circ \exp_{q}$ の $B(Op_{\alpha};r)$ への制限は微分同相である. また, $p' \in B(p_{\alpha};r) \cap B(p_{\beta};r)$ がとれるとする (背理法). p' から p_{α} への測地線 $\gamma^{M,\alpha}$ と, p' から p_{β} への測地線 $\gamma^{M,\beta}$ をそれぞれとって, N へうつすと, ともに $f(p') \in N$ から $q \in N$ への測地線 (γ^{N}) とする) であるので, N において互いに一致する. $df_{p'}$ は同型写像であるので, $\gamma^{M,\alpha}$, $\gamma^{M,\beta}$ の始方向はともに $df_{p'}^{-1}(\dot{\gamma}_{0}^{N})$ であるので, $\gamma^{M,\alpha} = \gamma^{M,\beta}$ であるので, $p_{\alpha} = p_{\beta}$ となり $\alpha = \beta$ なので矛盾する. $\alpha \neq \beta \Rightarrow B(p_{\alpha};r) \cup B(p_{\beta};r)$ である. よって f は被覆写像である.