Plan d'étude et représentation graphique de $y = f(x) = \frac{1}{x^2+1}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{1}{x^2 + 1} \Rightarrow D_f = \circ = (-\infty, +\infty)$$

Etudier la fonction au bornes de D_f

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{1}{x^2 + 1} = 0$$

Alors la droite d'équation Y = 0 est une asymptote horizontale pour la courbe de f .

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{1}{x^2 + 1} = 0$$

Alors la droite d'équation $\it Y=0$ est une asymptote horizontale pour la courbe de $\it f$.

Le sens de variation de f

$$y' = f'(x) = \frac{-2x}{(x^2 + 1)^2}$$

$$-2x = 0 \Rightarrow x = 0 \Rightarrow y = 1 \Rightarrow \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$

Convexité de f

$$y'' = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$

$$2(3x^{2}-1) = 0 \Rightarrow \begin{cases} x = 0.58 \Rightarrow y = 0.75 \Rightarrow \begin{vmatrix} 0.58\\0.75 \end{cases} \\ x = -0.58 \Rightarrow y = 0.75 \Rightarrow \begin{vmatrix} -0.58\\0.75 \end{cases}$$

$$m_{x=-0.58} = f'(-0.58) = 0.65$$

$$m_{x=0.58} = f'(0.58) = -0.65$$

Le tableau de variation

x			- 0.58		0		0.58		+∞
$\mathcal{Y}^{'}$		+	0.65	+	0	_	-0.65	_	
У"		+	0	_		_	0	+	
У	0		0.75		1		0.75		0
		\bigcirc	Inf		Max		Inf	\bigcirc	

La courbe

