CSE 486/586 Distributed Systems Logical Time

Steve Ko Computer Sciences and Engineering University at Buffalo

CSE 486/586, Spring 2013

Last Time

- Clock skews do happen
- External and internal synchronization
 - Cristian's algorithm: external synchronization
 - Berkeley algorithm: internal synchronization
 - Both designed for LAN
- NTP (Network Time Protocol)
 - Hierarchy of time servers
 - Estimates the actual offset between two clocks
 - Designed for the Internet
- Logical time
 - For ordering events, relative time should suffice.
 - Will continue today

CSE 486/586, Spring 2013

Basics: State Machine

- State: a collection of values of variables
- Event: an occurrence of an action that changes the state, (i.e., instruction, send, and receive)
- · As a program,
 - We can think of all possible execution paths.
- · At runtime,
 - There's only one path that the program takes.
- · Equally applicable to
 - A single process
 - A distributed set of processes

CSE 486/586, Spring 2013

Ordering Basics

- Why did we want to synchronize physical clocks?
- What we need: Ordering of events.
 - · Arises in many different contexts...

Abstract View

P1

a b m1

c d m2

Physical time

• Above is what we will deal with most of the time.
• Ordering question: what do we ultimately want?

- Taking two events and determine which one happened before the other one.

Logical Clocks

- · Lamport algorithm assigns logical timestamps:
 - All processes use a counter (clock) with initial value of zero
 - A process increments its counter when a send or an instruction happens at it. The counter is assigned to the event as its timestamp.
 - A send (message) event carries its timestamp
 - For a receive (message) event the counter is updated by max(local clock, message timestamp) + 1
- Define a logical relation happened-before (→) among events:
 - On the same process: a → b, if time(a) < time(b)
 - If p1 sends m to p2: send(m) → receive(m)
 - (Transitivity) If $a \rightarrow b$ and $b \rightarrow c$ then $a \rightarrow c$
 - Shows causality of events

CSE 486/586, Spring 2013

CSE 486/586 Administrivia

- PA2 is out.
 - Due on 3/1
 - Start with the content provider.
- · Please understand the flow of PA1.
- · Please be careful about your coding style.
- · Lecture slides
 - I will try posting them a day before.
- I will also post a PDF version.
- There is a course website.
 - Schedule, syllabus, readings, etc.

CSE 486/586, Spring 2013

Find the Mistake: Lamport Logical Time Physical Time P

Vector Logical Clocks

- · Vector Logical time addresses the issue:
 - All processes use a vector of counters (logical clocks), ith element is the clock value for process i, initially all zero.
 - Each process i increments the ith element of its vector upon an instruction or send event. Vector value is timestamp of the event.
 - A send(message) event carries its vector timestamp (counter vector)
 - For a receive(message) event, V_{receiver}[j] =
 - Max(V_{receiver}[j] , V_{message}[j]), if j is not self,
 - V_{receiver}[j] + 1, otherwise

CSE 486/586, Spring 2013

Physical Time Physical Time p 1 00.00 20.00 (4.0.2) p 2 00.00 (1.0.0) (2.0.0) (2.0.2) p 3 00.00 (2.0.0) (2.0.0) (2.0.2) p 4 00.00 (2.0.2) (2.0.2) (2.0.2) p 4 00.00 Message CSE 486/586, Spring 2013

Comparing Vector Timestamps

- VT₁ = VT₂,
 - iff $VT_1[i] = VT_2[i]$, for all i = 1, ..., n
- VT₁ <= VT₂,
 - iff VT₁[i] <= VT₂[i], for all i = 1, ..., n
- VT₁ < VT₂,
 - iff VT₁ <= VT₂ & ∃ j (1 <= j <= n & VT₁[j] < VT₂ [j])
- VT₁ is concurrent with VT₂
 - iff (not VT₁ <= VT₂ AND not VT₂ <= VT₁)

CSE 486/586, Spring 2013

The Use of Logical Clocks

- Is a design decision
- NTP error bound
 - Local: a few ms
 - Wide-area: 10's of ms
- If your system doesn't care about this inaccuracy, then NTP should be fine.
- Logical clocks impose an arbitrary order over concurrent events anyway
 - Breaking ties: process IDs, etc.

CSE 486/586, Spring 2013

Summary

- Relative order of events enough for practical purposes
 - Lamport's logical clocks
 - Vector clocks
- Next: How to take a global snapshot

CSE 486/586, Spring 2013

Acknowledgements

These slides contain material developed and copyrighted by Indranil Gupta at UIUC.

CSE 486/586, Spring 2013

3

C