

Indexation

. Extraction et Recherche d'Informations dans les Données Multimédias

A. ELHASSOUNY

GL ENSIAS

Master B2dS

Keywords

Planning prévisionnel

- Indexation des données multimédias
 - Indexation des données multimédias : Introduction
 - Obscription et indexation des images (CBIR 1)
 - Obscription et indexation des images (CBIR 2)
 - Description et indexation des vidéos (CBVR)
 - 5 Structures d'index 1, 2 et 3
- Introduction to Deep learning in computer vision
- Annexe : Evaluation de système de recherche de données multimédia

Indexation des données multimédias

- Introduction
 - Contexte
 - Bases de Données MultiMédia (MMDB)
 - Domaines d'application
 - Indexation
 - Outil OpenCV

Contexte Objectif

 Les techniques présentées ci-après, dite d'indexation, se proposent d'attacher à une image ou à une video un ensemble de descripteurs de leur contenu, dans le but de mesurer la ressemblance avec les descripteurs correspondant à la requête.

Contexte Objectif

• Les techniques présentées ci-après, dite d'indexation, se proposent d'attacher à une image ou à une video un ensemble de descripteurs de leur contenu, dans le but de mesurer la ressemblance avec les descripteurs correspondant à la requête.

Contexte

Chanllenge ...

Indexer?

- Indexer = extraire une information synthétique des images (documents multimédia) afin de faciliter l'accès à leur contenu
 - information = élément susceptible d'être codé pour être conservé, traité, communiqué
 - index = clé d'accès à l'information contenue dans l'image
- Pourquoi indexer ?
 - indexer pour retrouver, trier: conservation d'un patrimoine (culturel, scientifique,...)
 - indexer pour connaître : valorisation en facilitant l'accès et l'exploration
 - indexer pour naviguer : exploitation commerciale (photos numériques, TV numérique, . . .)

Le sujet de ce cours est la recherche automatique de documents visuels (images, séquences video, documents texte), dans des bases de données multimédias de grande taille, à partir de requêtes relatives au contenu de ces documents.

Indexer?

- Indexer = extraire une information synthétique des images (documents multimédia) afin de faciliter l'accès à leur contenu
 - information = élément susceptible d'être codé pour être conservé, traité, communiqué
 - index = clé d'accès à l'information contenue dans l'image
- Pourquoi indexer ?
 - indexer pour retrouver, trier: conservation d'un patrimoine (culturel, scientifique,...)
 - indexer pour connaître : valorisation en facilitant l'accès et l'exploration
 - indexer pour naviguer : exploitation commerciale (photos numériques, TV numérique, . . .)

Le sujet de ce cours est la recherche automatique de documents visuels (images, séquences video, documents texte), dans des bases de données multimédias de grande taille, à partir de requêtes relatives au contenu de ces documents.

Indexer?

- Indexer = extraire une information synthétique des images (documents multimédia) afin de faciliter l'accès à leur contenu
 - information = élément susceptible d'être codé pour être conservé, traité, communiqué
 - index = clé d'accès à l'information contenue dans l'image
- Pourquoi indexer ?
 - indexer pour retrouver, trier: conservation d'un patrimoine (culturel, scientifique,...)
 - indexer pour connaître : valorisation en facilitant l'accès et l'exploration
 - indexer pour naviguer : exploitation commerciale (photos numériques, TV numérique, . . .)

Le sujet de ce cours est la recherche automatique de documents visuels (images, séquences video, documents texte), dans des bases de données multimédias de grande taille, à partir de requêtes relatives au contenu de ces documents.

Définition

Quelles sont les bases de données multimédia (MMDB)?

Base de données (Databases) + Multimédia = BDMM

- Une base de données multimédia est un type de base de données consacré au stockage, à l'organisation et à l'interrogation de données multimédia
- Ces données peuvent être de différents types, en particulier :
 - Texte, Son, Image et Vidéo
 - Qui peuvent être combinés (exemple : film)

BDMM

Pourquoi les bases de données mutlimédia ?

Quelques chiffres

- Croissance très importante, en raison de l'accumulation des contenus numériques (image, vidéo, ...) auto-produits par le grand public, par exemple :
 - Facebook : plus de 100 millions d'images/jour
 - Youtube : plus 24h de vidéo/minute
 - Films: http://www.imdb.org recense plus de 400 000 films
- Internet : nécessite Plus 5-10 To de capacité de stockage
 - Sept 2011 : 1 milliards de recherches/jour
- Fonds de document télévisuel de la SNRT (société nationale de radiodiffusion et de télévision)
 - Pour une seule chaîne TV : plus 8000h de vidéo /an
 - Pour plus 20 ans d'émission (plusieurs chaînes) : 1 million d'heures (vidéos, images, ...)

BDMM

Pourquoi les bases de données mutlimédia ?

Quelques chiffres

- Croissance très importante, en raison de l'accumulation des contenus numériques (image, vidéo, ...) auto-produits par le grand public, par exemple :
 - Facebook : plus de 100 millions d'images/jour
 - Youtube : plus 24h de vidéo/minute
 - Films: http://www.imdb.org recense plus de 400 000 films
- Internet : nécessite Plus 5-10 To de capacité de stockage
 - Sept 2011 : 1 milliards de recherches/jour
- Fonds de document télévisuel de la SNRT (société nationale de radiodiffusion et de télévision)
 - Pour une seule chaîne TV : plus 8000h de vidéo /an
 - Pour plus 20 ans d'émission (plusieurs chaînes) : 1 million d'heures (vidéos, images, ...)

Difficultés

- Très grands volumes de données multimédia à exploiter : Océan d'images, vidéos et son
 - Problèmes de gestion de bases de données
- "Fossé sémantique" : comment accéder à/coder une information visuelle ?, à la différence de données textuelles, le contenu sémantique n'est jamais explicite
- Les requêtes sont difficiles à exprimer, donc en général ambiguës, incomplètes

Historique

- 1980 : Annotation textuelle des images
- 1990 : Indexation par la couleur, la forme et la texture
- 1993 : Requête en utilisant la similarité des images
- 1997 : Requête par images exemplaires et retour de la pertinence (relevance feedback)
- 2000 : Apprentissage sémantique et adaptation à l'utilisateur
- Enjeux actuels: Deep learning in computer vision, Convolutional Neural Networks for Visual Recognition

Quelques Système de Recherche Multimédia

- Quelques Système de Recherche Multimédia
 - Systèmes industriels
 - QBIC (IBM, depuis 1995) : http://wwwqbic.almaden.ibm.com
 - ImageFinder (Attrasoft) : http://www.attrasoft.com
 - Virage (Virage Technologies, 1996): http://www.virage.com
 - Systèmes académiques
 - IMEDIA (INRIA) : http://www-rocq.inria.fr/imedia/
 - SAPIR (projet Européen) : http://milos.isti.cnr.it:8080/milos/album/
 - Tiltomo : http://www.tiltomo.com
- Quelques SGBD standard pour BDMM
 - Jasmine est une base de données orientée objet, livré avec quatre classes multimédias: (photo, image, vidéo et audio)
 - ORACLE (ORACLE Multimedia, le package ORDSYS, les classes ORDVideo, ORDAudio et ORDImage)
 - IBM DB2 Extenders

Quelques Système de Recherche Multimédia

- Quelques Système de Recherche Multimédia
 - Systèmes industriels
 - QBIC (IBM, depuis 1995) : http://wwwqbic.almaden.ibm.com
 - ImageFinder (Attrasoft) : http://www.attrasoft.com
 - Virage (Virage Technologies, 1996): http://www.virage.com
 - Systèmes académiques
 - IMEDIA (INRIA): http://www-rocq.inria.fr/imedia/
 - SAPIR (projet Européen) : http://milos.isti.cnr.it:8080/milos/album/
 - Tiltomo : http://www.tiltomo.com
- Quelques SGBD standard pour BDMM
 - Jasmine est une base de données orientée objet, livré avec quatre classes multimédias: (photo, image, vidéo et audio)
 - ORACLE (ORACLE Multimedia, le package ORDSYS, les classes ORDVideo, ORDAudio et ORDImage)
 - IBM DB2 Extenders

Quelques Système de Recherche Multimédia

- Quelques Système de Recherche Multimédia
 - Systèmes industriels
 - QBIC (IBM, depuis 1995) : http://wwwqbic.almaden.ibm.com
 - ImageFinder (Attrasoft) : http://www.attrasoft.com
 - Virage (Virage Technologies, 1996): http://www.virage.com
 - Systèmes académiques
 - IMEDIA (INRIA): http://www-rocq.inria.fr/imedia/
 - SAPIR (projet Européen) : http://milos.isti.cnr.it:8080/milos/album/
 - Tiltomo : http://www.tiltomo.com
- Quelques SGBD standard pour BDMM
 - Jasmine est une base de données orientée objet, livré avec quatre classes multimédias: (photo, image, vidéo et audio)
 - ORACLE (ORACLE Multimedia, le package ORDSYS, les classes ORDVideo, ORDAudio et ORDImage)
 - IBM DB2 Extenders

Deep Learning Frameworks

Caffe

No need to write code!

- 1. Convert data (run a script)
- 2. Define net (edit prototxt)
- Define solver (edit prototxt)
 Train (with pretrained weights)

TensorFlow

Torch

Theano

Section Control of the Control of th

Lasagne

Keras

```
The force quick layer beganish to the street in the street
```


Domaines d'application

Audiovisuel

 Exemples : détection de copies (droits), retrouver un plan spécifique d'un programme, annotation automatique de vidéos

Sécurité

 Exemples : biométrie (empreintes), vidéosurveillance

Internet

- Exemples : commerce électronique
- ..., Bases d'images médicales

Domaines d'application

Exemple d'application : Sécurité

 Les caméras sont partout : à London, "il y a au moins 500 000 caméras dans la ville, et une étude a montré que dans un seul jour, une personne pourrait atteindre d'être filmé 300 fois "

Domaines d'application

Exemple d'application : Sécurité

- Requêtes possibles
 - Exemple de requête par mots-clés: policier veut examiner des photos de Personne X
 - Requête: "récupérer toutes les images de la base d'images dans lesquelles Personne X apparaît"
 - Requête d'image par exemple: l'agent de police a une photo et veut trouver l'identité de la personne sur la photo

Comment indexer/interroger des documents multimédia ?

Indexation manuelle (par texte : annotation) ou automatique (par contenu) ?

- Requête de BD Multimédia : requête peut prendre des formes très différentes, elle peut être
 - Conceptuelle (ex : mot), indexation par texte (annotation)
 - Instancielle (ex : une autre image, vidéo), exp : récupérer tous les images similaires à une image requête
 - ...

Indexation manuelle ou automatique?

Type de requête ==> Type d'indexation

- Recherche par contenu
 - Qu'est-ce que ces images ont exactement en commun?

- Ou recherche par texte
 - Récupérer toutes les images montrant : "tournesol"

18 / 34

Indexation manuelle

Annotation

- l'approche dite classique consiste à indiquer des mots-clés attachés au document (ou indexés) décrivant, dans un vocabulaire restreint, les caractéristiques principales et bien identifiables des documents stockés.
- Par quoi indexer : mots-clés, métadonnées, ...

Mots-clés : tournesol, soleil

Inconvénients

- Même image peut avoir plusieurs annotations différentes
- Ambiguïté de l'annotation
- Dépendance du contexte
- Le coût d'annotation manuel est très important (10 fois la duré de document)
- Approche la plus ancienne et la plus répandue

Indexation manuelle

Annotation

- l'approche dite classique consiste à indiquer des mots-clés attachés au document (ou indexés) décrivant, dans un vocabulaire restreint, les caractéristiques principales et bien identifiables des documents stockés.
- Par quoi indexer : mots-clés, métadonnées, ...

Mots-clés : tournesol, soleil

- Inconvénients
 - Même image peut avoir plusieurs annotations différentes
 - Ambiguïté de l'annotation
 - Dépendance du contexte
 - Le coût d'annotation manuel est très important (10 fois la duré de document)
- Approche la plus ancienne et la plus répandue

Indexation manuelle

Dépendance du contexte

Indexation automatique

- Indexation par contenu
 - L'algorithme d'indexation attache des données de bas niveau sémantique, relatifs aux contenus géométrique, spectral, de l'image, à un niveau local ou global.

- Recherche par contenu (CBIR : Content-Based Information Retrieval)
 - Les requêtes se font en général par l'exemple, ou par modèle.

Extraire automatiquement d'une image (ou document multimédia) des descripteurs significatifs et compacts, qui seront utilisés pour la recherche ou la structuration

Indexation automatique

- Indexation par contenu
 - L'algorithme d'indexation attache des données de bas niveau sémantique, relatifs aux contenus géométrique, spectral, de l'image, à un niveau local ou global.

- Recherche par contenu (CBIR : Content-Based Information Retrieval)
 - Les requêtes se font en général par l'exemple, ou par modèle.

Extraire automatiquement d'une image (ou document multimédia) des descripteurs significatifs et compacts, qui seront utilisés pour la recherche ou la structuration

Indexation automatique

BDMM : Architecture générale

 Off-line: production d'indexes issus de l'analyse du contenu des images (extraction de caractéristiques pertinentes, organisation...)

• On-line : gestion des requêtes des utilisateurs

Définitions

Indice, Descripteur, Signature

- Indices visuels : caractéristiques de l'image, au sens de perception humaine, que l'on cherche à utiliser pour la tâche considérée
 - Principaux indices visuels : couleur, forme, texture, régions, mouvement (essentiellement pour la vidéo) (Ici, focus sur l'image, mais s'applique à la vidéo)
- Descripteur d'image : méthode d'extraction du contenu visuel de l'image
 - Exemple : histogramme couleur
- Signature d'image (caractéristiques) : vecteur numérique représentant le contenu visuel de l'image
 - Exemple : 1 vecteur de dimension 216 pour l'histogramme couleur
- Espace de description (de représentation) des images
 - ullet 1 image = 1 ou plusieurs points dans un espace multimensionnel
- Espace de recherche dans la base d'images
 - Structuration de l'espace de description pour une recherche efficace (index)

Mesure de similarité

Distance

• En mathématiques, on appelle distance sur un ensemble E une application d définie sur le produit $E^2 = E \times E$ et à valeurs dans l'ensemble R^+ des réels positifs

$$d: E \times E \rightarrow R^+$$

· · · vérifiant les propriétés suivantes :

Nom	Proprièté	
Symétrie	$\forall (a,b) \in E^2, \ d(a,b) = d(b,a)$	
Séparation	$\forall (a,b) \in E^2, \ d(a,b) = 0 \Leftrightarrow a = b$	
Inégalité triangulaire	$\forall (a,b,c) \in E^3, \ d(a,c) \leq d(a,b) + d(b,c)$	

• Un ensemble muni d'une distance est un espace métrique

Mesure de similarité

Distance

- Dans Rⁿ, on peut définir de plusieurs manières la distance entre deux points
- Soient deux points de E, $(x1, x2, \dots, xn)$ et $(y1, y2, \dots, yn)$, on exprime les différentes distances ainsi

Nom	Paramètre	Fonction
distance de Manhattan	1-distance	$\sum_{i=1}^{n} x_i - y_i $
distance euclidienne	2-distance	$\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}$
distance de Minkowski	p-distance	$\sqrt[p]{\sum_{i=1}^{n} x_i - y_i ^p}$
distance de Tchebychev	∞ -distance	$\lim_{p\to\infty} \sqrt[p]{\sum_{i=1}^n x_i-y_i ^p}$
		$= \sup_{1 \le i \le n} x_i - y_i $

Introduction

- Bibliothèque de traitement d'images et de vision par ordinateur en langage C/C++, python, java
- Projet initié par Intel (en 1999, actuellement 3.)
- Multi-plateformes: disponible pour Linux, Windows et Mac OS
- Elle est Open Source
- Fortement orientée temps réel
- Optimisée pour les processeurs multi-coeurs
- Que contient-elle ?
 - Des fonctionnalités (structures et routines,≥2500 algos) de base et avancées
 - pour bâtir rapidement des applications autour de la vision par ordinateur.
- Téléchargeable sur http://sourceforge.net/projects/opencvlibrary/

Introduction

OpenCV regroupe plusieurs modules :

- Core : contient les fonctionnalités de base, notamment l'accès aux pixels, le changement de luminosité, de contraste, le changement d'espace couleur, la possibilité de dessiner sur les images, etc.
- Imgproc :
 - permet d'appliquer différents filtres (moyen, gaussien, médian)
 - permet d'appliquer différentes opérations morphologiques (dilatation, érosion, ouverture, fermeture, gradient morphologique etc)
 - contient différents algorithmes de seuillage et de détection de contours (Sobel, opérateur de Laplace, Canny Edge Detector), mais aussi des détecteur de droites ou d'ellipse (Hough Line/Cercle Transform).
- **Highgui** : permet l'ajout de composants graphiques de base, mais aussi avancés.
- Calib3D : permet la calibration des caméras et la reconstruction 3

OpenCV Introduction

- **Feature2D**: contient des descripteurs 2D souvent utilisés basés sur les couleurs, la forme, la texture, les points d'intérêt · · · et des algorithmes de mises en correspondance.
- Video: contient les fonctionnalités de base de traitement de vidéos (algorithmes de détection de mouvement, de suivi, d'extraction de plan principal etc...).
- Objdetect : contient des algorithmes de détection d'objet, notamment la détection de visages · · ·
- ML : contient les algorithmes d'apprentissage et de classification.
- GPU: contient les algorithmes permettant l'utilisation de la carte graphique afin d'accélérer le temps d'exécution grâce au parallélisme des GPU.

Classes de bases

- La classe Point_
 - Structure de données générique pour représenter des points dans espace de dimension 2.

```
Template <typename _Tp> class Point_ {
   public: Point_();
   Point_(_Tp _x, _Tp _y);
   Point_(const Point_& pt); ... _Tp x, y;
};
```

• Pour les types courants : points à coordonnées entières, flottantes, simple ou double précision, on dispose des alias suivants:

```
typedef Point_cint> Point2i;
typedef Point_cfloat> Point2f;
typedef Point_cdouble> Point2d;

typedef Point_cdouble> Point2d;

// Exemple d'utilisation :
Point2f a(0.3f, 0.f), b(0.f, 0.4f);
Point pt = (a + b)*10.f;
cout << pt.x << ", " << pt.y << endl;</pre>
```


Classes de bases

- Dimension Size_
 - Représente la taille d'un objet rectangulaire a 2 dimensions. Comme pour les points il s'agit d'une structure générique.

• Et on dispose des alias suivant :

```
//Et on dispose des alias suivant :
typedef Size_cint> Size2i;
typedef Size_i Size;
typedef Size_<float> Size2f;
```


Classes de bases

- Vecteur Vec
 - Représente un vecteur générique de faible dimension (≤ 10).

```
Template <typename Tp, int cn> class Vec
    public:
   // default constructor: all elements are set to 0
        Vec();
    // constructors taking up to 10 first elements as parameters
    Vec(_Tp v0);
    Vec( Tp v0, Tp v1);
    Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6,
    Tp v7, Tp v8, Tp v9);
    Vec (const Vec Tp, cn>& v);
   // constructs vector with all the components set to alpha.
    static Vec all ( Tp alpha);
    //data
    Tp val[cn];
```


Classes de bases

- Vecteur Vec
 - Et on dispose des alias suivant :

```
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
....
typedef Vec<double, 6> Vec6d;
```


Classes de bases

- La classe MAT
 - La classe Mat (pour matrice) permet de stocker l'image sous forme matricielle.
 - Chaque objet Mat possède deux parties :
 - L'entête
 - Les données
 - Allocation par constructeur: La classe Mat propose un nombre important de constructeur, viola ceux qui vous seront le plus utile:

```
Mat::Mat(int rows, int cols, int type)

Mat::Mat(Size size, int type)

//Exemple:
// allocate a matrix of 1024 rows by 768 columns with 32 bits floating precison and 3 channels
Mat iml(1024,768,CV_32FC3);
Size s(768,1024);
// allocate a matrix of 1024 rows by 768 columns with unsigned 8 bits integer precison and 1 channel
Mat im2(s,CV_8UC1);
```


4 D > 4 A > 4 B > 4 B >

Classes de bases

La classe MAT

 Types : représenté par CV_ < Datatype > C < Channels >, tels que CV_8UC1, CV_32UC3

OpenCV Tag	Representation	OpenCV Value
CV_8U	8 bit unsigned integer	0
$CV_{-}8S$	8 bit signed integer	1
$CV_{-}16U$	16 bit unsigned integer	2
$\mathrm{CV}_{-}16\mathrm{S}$	16 bit signed integer	3
CV _32S	32 bit signed integer	4
$CV_{-}32F$	32 bit floating point number	5
$\mathrm{CV}_{-}64\mathrm{F}$	64 bit floating point number	6

