1 Flots

Exercice 1

- 1. Exécutez l'algorithme de Ford-Fulkerson sur le réseau suivant.
- 2. Quelle est la valeur du flot maximum?
- 3. Quels sont les arcs dans la coupe minimum?

Exercice 2 Réalisation d'une séquence de degré d'un graphe biparti. On dispose de deux séquences d'entiers $\mathbf{r}=(\mathbf{r_1},\mathbf{r_2},\ldots,\mathbf{r_n})$ et $\mathbf{b}=(\mathbf{b_1},\mathbf{b_2},\ldots,\mathbf{b_m})$. Nous avons de plus l'égalité suivante :

$$\sum_{\mathbf{i} \in \{1,\dots,n\}} \mathbf{r_i} = \sum_{\mathbf{j} \in \{1,\dots,m\}} \mathbf{b_j} \tag{1}$$

La question est de savoir s'il existe un graphe biparti G=(R,B,E) où $R=\{\rho_1,\ldots,\rho_n\}$ et $B=\{\beta_1,\ldots,\beta_m\}$ et où $d(\rho_i)=r_i$ et $d(\beta_i)=b_i$.

- 1. Modélisez ce problème en un problème de flot maximum.
- 2. Donnez deux séquences ${\bf r}$ et ${\bf b}$ qui vérifient l'équation 1 mais qui ne peuvent être réalisés en un graphe biparti.
- 3. Peut-on résoudre le problème si maintenant on dispose d'une seule séquence d et on souhaite savoir si cette séquence correspond à un graphe non-orienté?