yeast_post.csv_run_3_20250529_134858

May 29, 2025

/Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3
Loading file from: /Users/navehr/Dropbox/naveh/weizmann/uri
alon/aging/code_3/baysian02/posterior_csvs_baysian01/yeast_post.csv
Reading Yeast

1 # 1. Density coner plot

A sample is 1 parameter set scanned. For the corner plot below, the quantiles (represented by the solid lines) are 0.16,0.5,0.84 of the samples. Dots represent individual samples (outside the line surrounding 0.84 of the samples) The parameter search is performed in the transformed space of x_c/η , β/η , x_c^2/ϵ , x_c but we also show the regular parameters (16,)

2 2. Heat map corner plot of raw samples

This plot shows all the raw sample points and their lnprobability

3. Posterior distributions of parameters

1d marginalizations of posterior distributions. we use a grid of size nbins=100-150

2D marginalizations of posterior distributions

2D Marginalized Posterior

Rescaling the samples TIME by 0.125

4 4. Table of results

mode is the marginalized mode, max_likwlihood is the sample with highest likelihood mode_overall is the 4D posterior mode

	maan		a+ d	mode	\
xc/eta	mean 590.478	std [0.843, 0.842]		mode 590.444	\
beta/eta	0.375	[0.0353, 0.0323]		0.404	
xc^2/epsilon	153.599	[0.364, 0.364]		153.29	
xc	185.998	[34.586, 29.163]		190.126	
eta	0.0851	[0.244, 0.0631]		0.0726	
beta	0.0154	[0.0814, 0.013]		0.0123	
epsilon	16.058	[221.664, 14.973]		10.41	
sqrt(xc/eta)	24.299	[0.021, 0.021]		24.299	
s= eta^0.5*xc^1.5/epsilon	6.312	[0.0148, 0.0148]		6.305	
beta*xc/epsilon	0.0975	[0.0104, 0.00938]		0.104	
eta*xc/epsilon	0.257	[0.00486, 0.00477]		0.257	
Fx=beta^2/eta*xc	0.000164	[0.000393, 0.000116]		0.000079	
<pre>Dx =beta*epsilon/eta*xc^2</pre>	0.00205	[0.00176, 0.000947]		0.00138	
Pk=beta*k/epsilon	0.000871	[0.00216, 0.000621]		0.000102	
Fk=beta^2/eta*k	0.00199	[0.00248, 0.00111]		0.00176	
Dk =beta*epsilon/eta*k^2	11.599	[355.594, 11.233]		1.248	
Fk^2/Dk=beta^3/eta*epsilon	0.000005	[0.000116, 4.71e-06]		0.000001	
epsilon/beta^2	72702.405	[292590.644,	58232.818]	64383.786	
k/beta	49.134	[180.873, 38.638]		40.711	
k^2/epsilon	0.0359	[0.329, 0.0323]		0.024	
best fit_MedianLifetime	26.84		0.51	26.84	
<pre>best fit_MaxLifetime</pre>	70.0		0	70.0	
${\tt data_MedianLifetime}$	27.0		0.51	27.0	
data_MaxLifetime	75.0		0	75.0	
	р	ercentile_16	ре	ercentile_50	\
xc/eta	[589.7	88, 591.101]	[588.47	78, 593.735]	
beta/eta	[0	.366, 0.417] [0.342, 0.543]			
xc^2/epsilon	[153.1	15, 153.465] [151.723, 153.815]			
xc	[169.9	32, 197.377] [100.624, 286.979]			
eta	[0.0	648, 0.0754] [0.0517, 0.0876]			
beta	[0.0	[0.0116, 0.0147] [0.00713, 0.0166]			
epsilon	[9.659, 13.03] [7.16, 17.579]				
sqrt(xc/eta)	[24.286, 24.34] [24.232, 24.34]				
s= eta^0.5*xc^1.5/epsilon	[6.29, 6.309] [6.233, 6.319				
beta*xc/epsilon		0946, 0.115]		0946, 0.16]	
eta*xc/epsilon		.256, 0.257]		255, 0.258]	
Fx=beta^2/eta*xc		5, 9.65e-05]		5, 0.000246]	
Dx =beta*epsilon/eta*xc^2		25, 0.00153]		17, 0.00246]	
Pk=beta*k/epsilon		5, 0.000122]		5, 0.000282]	
Fk=beta^2/eta*k		16, 0.00231]		1, 0.00481]	
Dk =beta*epsilon/eta*k^2	[1.14, 1.641]).791, 5.88]	
Fk^2/Dk=beta^3/eta*epsilon		-07, 1.72e-06] [7.74e-07, 3			
epsilon/beta^2		54, 68823.852] [46127.953, 78643.694]			
k/beta		.97, 43.243]		885, 48.789]	
k^2/epsilon	[0.0	192, 0.0258]	[0.01	42, 0.0349]	

best fit_MedianLifetime best fit_MaxLifetime data_MedianLifetime data_MaxLifetime	[26.35, 27.35] [70.0, 70.0] [26.51, 27.51] [75.0, 75.0]	[26.35, 27.35] [70.0, 70.0] [26.51, 27.51] [75.0, 75.0]	
xc/eta beta/eta xc^2/epsilon xc eta beta epsilon sqrt(xc/eta) s= eta^0.5*xc^1.5/epsilon beta*xc/epsilon eta*xc/epsilon Fx=beta^2/eta*xc Dx =beta*epsilon/eta*xc^2 Pk=beta*k/epsilon Fk=beta^2/eta*k Dk =beta*epsilon/eta*k^2 Fk^2/Dk=beta^3/eta*epsilon epsilon/beta^2 k/beta k^2/epsilon best fit MedianLifetime	·	max_likelihood 1 590.968 0.385 153.48 185.273 0.314 0.121 223.651 24.31 6.313 0.0999 0.26 0.00025 0.00251 0.00027 0.0928 344.158 0.000025 15375.194 4.146 0.00112 26.84	
best fit_MaxLifetime data_MedianLifetime data_MaxLifetime	[70.0, 70.0] [26.51, 27.51] [75.0, 75.0]	70.0 27.0 75.0	NaN NaN NaN

5 5. Fits of simulations to data

best params is the sample with highest likelihood. mode trans is the 4D posterior mode in the transformed space of $x_c/\eta,\,\beta/\eta,\,x_c^2/\epsilon,\,x_c$

