Übungsblatt Nr. 5 Jörg und Elias

Aufgabe 1: Freier Fall auf einem rotierenden Planeten

- a) Für ein Bezugsystem S', welches sich mit der Winkelgeschwindigkeit ω um eine Achse dreht, gilt im Verhältnis zum Inerzialsystem S: $\vec{a}' = \vec{a} 2\vec{\omega} \times \vec{v}' \vec{\omega} \times (\vec{\omega} \times \vec{r}')$. Hier haben wir speziell die Erde in deren Bezugsystem sich ruhende Objekte gegebenüber einem Inerzialsyste, mit der Winkelgeschwindigkeit $\omega = \frac{2\pi}{8.6400 \cdot 10^4 \, \text{s}} \approx 7.272 \cdot 10^{-5} \, 1/\text{s}$ bei kleinen Geschwindigkeiten ist also $2\vec{\omega} \times \vec{v}'$ sehr klein und für Objekte am Äquator gilt $r \approx 6.3 \cdot 10^6 \, \text{m}$, dann gilt am Äquator, da $\vec{\omega}$ und \vec{r} orthogonal: $|2\vec{\omega} \times (\vec{\omega} \times \vec{r}')| = 2\omega^2 r \approx 6.7 \cdot 10^{-2} \, \text{m/s}^2$ also auch klein.
- b) Wenn ein Körper aus Ruhe von der Höhe h fallen gelassen wird, braucht er auf der Erde die Zeit $t = \sqrt{-\frac{2h}{a}}$, um auf der Erdoberfläche zu landen. Es gilt

$$\vec{F}' = \vec{F} + \vec{F}_C + \vec{F}_{ZF}$$

Da die Corioliskraft in Richtung der Schwerkraft vernachlässigt werden kann und die Zentrifugalkraft parallel zur Schwerkraft ist, gilt für die Kraft in Richtung der Schwerkraft:

$$\vec{F}'_z = \vec{F} + \vec{F}_{ZF}$$

$$m\vec{a}'_z = m\vec{a} - m\vec{\omega} \times (\vec{\omega} \times \vec{r}')$$

und da $\vec{\omega}$ nach Norden, \vec{r}' orthogonal dazu nach oben und somit $\vec{\omega} \times \vec{r}'$ nach Osten, zeigt $\vec{\omega} \times (\vec{\omega} \times \vec{r}')$ nach unten, mit dem negativen Vorzeichen, wiederrum nach oben und da $\vec{\omega}$, \vec{r}' , $\vec{\omega} \times \vec{r}'$ orthogonal zueinander stehen gilt

$$a_z' = a + \omega^2 r'$$

D.h. wenn sich das Objekt zu begin in Stillstand auf der Höhe h befand, gilt

$$v'_z = a't + \underbrace{v_0}_{=0 \text{ m/s}}$$
$$z' = \frac{1}{2}a't + \underbrace{z_0}_{=h}$$

D.h. wenn das Objekt die Höhe 0 m hat, dann ist die Zeit $t=\sqrt{\frac{-2h}{a'}}$ verstrichen.

Die Corioliskraft, die orthogonal zu Schwerkraft zeigt, bekommt man durch:

$$\begin{split} \vec{F}_C &= -2m\vec{\omega} \times \vec{v}' \\ \vec{F}_C &= -2m\vec{\omega} \times (\vec{v}_z' + \vec{v}_y') \\ \vec{F}_C &= \underbrace{-2m\vec{\omega} \times \vec{v}_z'}_{=\vec{F}_{C_y}} \underbrace{-2m\vec{\omega} \times \vec{v}_y'}_{=F_{C_z}} \end{split}$$

Es gilt für die Kraft orthogonal der Schwerkraft:

$$\begin{split} \vec{F}_y' &= \vec{F}_{C_y} \\ m\vec{a}_y' &= -2m\vec{\omega} \times \vec{v}_z' \\ \vec{a}_y' &= -2\vec{\omega} \times \vec{v}_z' \\ \frac{dv_y'}{dt} &= -2\vec{\omega} \times \vec{a}_z't \\ dv_y' &= -2\vec{\omega} \times a_z'tdt \\ \int_{v_{y_0}=0}^{v_y} dv_y' &= -2\int_{t_0=0}^t \vec{\omega} \times \vec{a}_z't'dt' \\ \vec{v}_y' &= -\vec{\omega} \times \vec{a}_z't^2 \\ \frac{d\vec{z}_y'}{dt} &= -\vec{\omega} \times \vec{a}_z't^2 \\ \int_{z_{y_0}=0 \text{ m}} d\vec{z}_y' &= -\int_0^t \vec{\omega} \times \vec{a}_z't'^2dt' \\ \vec{z}_y &= -\frac{1}{3}\vec{\omega} \times \vec{a}_z't^3 \end{split}$$

Und da $\vec{\omega}$ orthogonal zu \vec{a}_z :

$$z_y = -\frac{1}{3}\omega a't^3$$

$$z_y = -\frac{1}{3}\omega a'\sqrt{-\frac{2^3h^3}{a'^3}}$$

$$z_y = -\frac{2}{3}\omega\sqrt{-\frac{2h^3}{a'}}$$

Die Richtung kann erlesen werden aus

$$\vec{z}_y = -\frac{1}{3}\vec{\omega} \times \vec{a}_z' t^3$$

Da nämlich $\vec{\omega}$ Richtung Norden und a_z' gen Erdmittelpunkt zeigt, zeigt $\vec{\omega} \times \vec{a}_z'$ Richtung Westen.

c) Da dann \vec{r}' und $\vec{\omega}$ nicht mehr orthogonal zueinaner stehen würden, wäre die Zentrifugalkraft kleiner, also die scheinbare Schwerkraft wäre größer. Und da das Objekt in Richtung der Schwerkraft beschleunigt wird, und diese parallel zu \vec{r}' ist, ist auch die Corioliskraft $\vec{F}_C = 2\vec{\omega} \times \vec{v}'$ kleiner, und die Ablenkung wird geringer.

2 Einwegachterbahn 3

Aufgabe 2: Einwegachterbahn

Es gilt:

$$E_1 = E_0$$

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_0 + \frac{1}{2}mv_1^2$$

$$mgh_1 + \frac{1}{2}mv_1^2 = mgh_0$$

$$v_1^2 = 2g(h_0 - h_1)$$

$$v_1 = \sqrt{2g(h_0 - h_1)}$$

a) $v_1=\sqrt{2g(h_0-2R)}$ Wenn $2R>h_0$ dann steht etwas negatives unter der Wurzel, das ist nicht so schön... $R_{max}=\frac{1}{2}h_0$

b)
$$v_3 = \sqrt{2g(h_0 - h_3)} = \sqrt{2g(h_0 - (h_0 - h_0 \cos \alpha))} = \sqrt{2gh_0 \cos \alpha}$$
, also:
$$\vec{v} = \sqrt{2gh_0 \cos \alpha} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$

c)
$$v_y = \sqrt{2gh_0 \cos \alpha} \sin(\alpha) - gt$$

$$h = \sqrt{2gh_0 \cos \alpha} \sin(\alpha)t - \frac{1}{2}gt^2 + h_0(1 - \cos \alpha)$$

wenn also das Teilchen auf Höhe 0 ist:

$$0 = \sqrt{2gh_0 \cos \alpha} \sin(\alpha)t - \frac{1}{2}gt^2 + h_0(1 - \cos \alpha)$$

$$t = \frac{\sqrt{2gh_0 \cos \alpha} \sin(\alpha) + \sqrt{2gh_0 \cos \alpha} \sin^2 \alpha + 2gh_0(1 - \cos \alpha)}{g}$$

$$t = \sqrt{\frac{2h_0}{g}} \cdot \left(\sqrt{\cos \alpha} \sin(\alpha) + \sqrt{\cos \alpha} \sin^2 \alpha + (1 - \cos \alpha)\right)$$

$$t = \sqrt{\frac{2h_0}{g}} \cdot \left(\sqrt{\cos \alpha} \sin(\alpha) + \sqrt{\cos \alpha(1 - \cos^2 \alpha) + 1 - \cos \alpha}\right)$$

$$t = \sqrt{\frac{2h_0}{g}} \cdot \left(\sqrt{\cos \alpha} \sin(\alpha) + \sqrt{\cos \alpha - \cos^3 \alpha + 1 - \cos \alpha}\right)$$

$$t = \sqrt{\frac{2h_0}{g}} \cdot \left(\sqrt{\cos \alpha} \sin(\alpha) + \sqrt{1 - \cos^3 \alpha}\right)$$

2 Einwegachterbahn 4

und dann hat es die Strecke $\delta x = v_3 \cos(\alpha)t$ zurückgelegt:

$$\delta x = \sqrt{2gh_0 \cos \alpha} \cos \alpha \cdot \sqrt{\frac{2h_0}{g}} \cdot \left(\sqrt{\cos \alpha} \sin(\alpha) + \sqrt{1 - \cos^3 \alpha}\right)$$

$$\delta x = 2gh_0 \cdot \sqrt{\cos^3 \alpha} \cdot \left(\sqrt{\cos \alpha} \sin \alpha + \sqrt{1 - \cos^3 \alpha}\right)$$

$$\delta x = 2gh_0 \cdot \left(\sqrt{\cos^4 \alpha} \sin \alpha + \sqrt{\cos^3 \alpha - \cos^6 \alpha}\right)$$

$$\delta x = 2gh_0 \cdot \left(\sin \alpha \cos^2 \alpha + \sqrt{\cos^3 \alpha - \cos^6 \alpha}\right)$$

was quasi zu zeigen war