MMAN2300

Engineering Mechanics 2

Part A: Week 5

Acceleration analysis (review)

(Chapter 5/6-5/7 Meriam & Kraige)

1. Acceleration analysis of rigid bodies (Review)

The motion of a rigid body can be considered as a combination of translation and rotation about a point on the body.

Relative velocity equation:

$$\boldsymbol{v}_B = \boldsymbol{v}_A + \boldsymbol{v}_{B/A}$$

where
$$\boldsymbol{v}_{B/A} = \omega \overline{AB} \boldsymbol{e}_t = \boldsymbol{\omega} \times \boldsymbol{r}_{AB}$$

Relative acceleration equation:

$$\boldsymbol{a}_B = \boldsymbol{a}_A + \boldsymbol{a}_{B/A}$$

 $\boldsymbol{a}_A = \text{Acceleration of point } A$

 \boldsymbol{a}_B = Acceleration of point B

 $a_{B/A}$ = Acceleration of point B relative to A due to rotation of the rigid body about point A

$$\mathbf{a}_{B/A} = (\mathbf{a}_{B/A})_n \mathbf{e}_n + (\mathbf{a}_{B/A})_t \mathbf{e}_t = \omega^2 \overline{AB} \mathbf{e}_n + \alpha \overline{AB} \mathbf{e}_t = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AB}) + \boldsymbol{\alpha} \times \mathbf{r}_{AB}$$

• Rotation about a fixed axis

$$\mathbf{a}_P = \mathbf{a}_O + \mathbf{a}_{P/O}$$

= $\mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) + \mathbf{\alpha} \times \mathbf{r}$

• General plane motion

Combination of translation and rotation

Translation

Rotation

$$\mathbf{a}_{B} = \mathbf{a}_{A} + \mathbf{a}_{B/A}$$
 and $\mathbf{a}_{B/A} = (\mathbf{a}_{B/A})_{n} \mathbf{e}_{n} + (\mathbf{a}_{B/A})_{t} \mathbf{e}_{t} = \omega^{2} \overline{AB} \mathbf{e}_{n} + \alpha \overline{AB} \mathbf{e}_{t}$

Example 1

The 1-m-diameter disk rolls, and point B of the 1-m-long bar slides, on the plane surface. Determine:

- (a) the angular velocity of the bar and the velocity of point B, and
- (b) the angular acceleration of the bar and the acceleration of point B.

Example 2

Slider crank mechanism

$$AB = 75 \text{ mm}$$

$$BC = 200 \text{ mm}$$

Find: (a) the angular velocity of link BC and the velocity of slider C,

(b) the angular acceleration of link BC and acceleration of slide C.