দ্বাদশ অধ্যায়

সমতলীয় ভেক্টর

পাঠ সম্পর্কিত গুরুত্বপূর্ণ বিষয়াদি

- AB একটি ভেক্টর হলে একে AB বা AB দারা প্রকাশ করা হয়।
- কোনো ভেক্টরের দৈর্ঘ্য একক হলে তাকে একক ভেক্টর বলা হয়। a একটি একক ভেক্টর হলে একে a আকারে লেখা হয়।
- কোনো ভেক্টরের দৈর্ঘ্য শুন্য হলে তাকে শুন্য ভেক্টর বলা হয়। একে 0 দারা প্রকাশ করা হয়।
- দুটি ভেক্টরের দিক একই এবং তাদের ধারক রেখা একই রেখা বা সমান্তরাল রেখা হলে তাদের সদৃশ ভেক্টর বলে।
- সমজাতীয় দুটি ভেক্টর যদি একই দিকে ক্রিয়া না করে তবে তাদেরকে বিসদৃশ ভেক্টর বলে।
- 📱 যদি দুইটি ভেক্টরের দিক একই, দৈর্ঘ্য সমান এবং তাদের ধারক রেখা একই হয় বা সমান্তরাল হয় তাহলে তাদেরকে সমান ভেক্টর বলে।
- \blacksquare u যেকোনো ভেক্টর হলে যদি অপর একটি ভেক্টর \underline{v} নির্ণয় করা যায় যাতে $\underline{v}=-u$ হয় তাহলে v বা -u কে u ভেক্টরের বিপরীত ভেক্টর বলে।
- <u>u</u> এবং <u>v</u> দুইটি ভেক্টর হলে এদের যোগফল বা লব্ধিকে <u>u</u> + <u>v</u> দ্বারা প্রকাশ করা হয়।
- কোনো সামাশ্তরিকের দুইটি সন্নিহিত বাহু দারা দুইটি ভেক্টর <u>u</u> ও <u>v</u> এর মান ও দিক সূচিত হলে, ঐ সামাশ্তরিকের যে কর্ণ <u>u</u> ও <u>v</u> ভেক্টরদ্বয়ের সূচক রেখার ছেদবিন্দুগামী তা দারা <u>u</u> + <u>v</u> ভেক্টরের মান ও দিক সূচিত হয়। এটি ভেক্টর যোগের সামাশ্তরিক বিধি।
- দুই বা ততোধিক ভেক্টরের যোগফলকে তাদের লব্ধি বলে।
- দুটি ভেক্টর সমান্তরাল হলে তাদের যোগের বেত্রে সামান্তরিক বিধি প্রযোজ্য নয় কিন্তু ত্রিভুজ বিধি সব বেত্রেই প্রযোজ্য।
- lacktriangle যেকোনো দুটি ভেক্টর \underline{u} এবং \underline{v} এর জন্য $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ এটি ভেক্টর যোগের বিনিময় বিধি।
- lacktriangle যেকোনো তিনটি ভেক্টর \underline{u} , \underline{v} ও \underline{w} এর জন্য $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ এটি ভেক্টর যোজনের সংযোগ বিধি।
- ullet যেকোনো তিনটি ভেক্টর \underline{u} , \underline{v} ও \underline{w} এর জন্য \underline{u} + \underline{v} = \underline{u} + \underline{w} হলে \underline{v} = \underline{w} হবে। এটি ভেক্টর যোগের বর্জন বিধি।
- lacktriangledown m, n দুটি স্কেলার এবং \underline{u} , \underline{v} দুটি ভেক্টর হলে,
- \blacksquare $(m+n) \underline{v} = m\underline{v} + n\underline{v}$ (বর্ণনৈ সূত্র)
- m (u + y) = mu + my (বণ্টন সূত্ৰ)
- অবস্থান ভেক্টর সংক্রান্ত কতিপয় প্রতিজ্ঞা:
 - (i) দুইটি বিন্দু A, B এর অবস্থান ভেক্টর যথাক্রমে a, b হলে $\overline{AB} = b a$ হয়।
 - (ii) A,B,C এর অবস্থান ভেক্টর যথাক্রমে a,b,c হলে A,B,C সমরেখা হবে যদি ও কেবল যদি $\overline{AC}=k$. \overline{AB} হয়।
 - (iii) A, B, C বিন্দুর অবস্থান ভেক্টর যথাক্রমে <u>a</u> , <u>b</u>, <u>c</u> হলে, C বিন্দু যদি AB রেখাংশকে m : n অনুপাতে অন্তর্বিভক্ত করে তবে

 $C=\frac{m\underline{b}\ +n\underline{a}}{m+n}\$ হবে। যদি বহির্বিভক্ত হয়, তবে $C=\frac{m\underline{b}\ -n\underline{a}}{m-n}$ হবে।

অনুশীলনীর প্রশ্ন ও সমাধান

১. AB ∥ DC **হলে**–

→ → i. AB = m.DC, যেখানে m একটি স্কেলার রাশি

 \overrightarrow{a} \overrightarrow{AB} = DC

 \rightarrow \rightarrow iii. AB = CD

ওপরের বাক্যগুলোর মধ্যে কোনটি সঠিক?

• i

(1) ii

gi v ii

g i, ii g iii

২. দুটি ভেক্টর সমান্তরাল হলে—

- i. এদের যোগের ৰেত্রে সামান্তরিক বিধি প্রযোজ্য
- ii. এদের যোগের বেত্রে ত্রিভুজ বিধি প্রযোজ্য
- iii. এদের দৈর্ঘ্য সর্বদা সমান

ওপরের বাক্যগুলোর মধ্যে কোনটি সঠিক?

⊕ i

ii

டு i ७ ii

₹ i, ii 🕏 iii

- ব্যাখ্যা : (i) দুইটি ভেক্টর সমান্তরাল হলে এদের যোগের বেত্রে সামান্তরিকের বিধি প্রযোজ্য নয়। সূতরাং এটি সঠিক নয়।
 - (ii) দুইটি ভেক্টর সমাশ্তরাল হলে এদের যোগের বেত্রে সামাশ্তরিক বিধি প্রযোজ্য না হলেও ত্রিভুজ বিধি প্রযোজ্য। সুতরাং এটি সঠিক।
 - (iii) দুইটি ভেক্টর সমান্তরাল হলে এদের দৈর্ঘ্য সমান হতেও পারে আবার নাও হতে পারে। সুতরাং এটি সঠিক নয়।

৩. AB = CD এবং $AB \parallel CD$ হলে নিচের কোনটি সঠিক?

্ব AB = m.CD যেখানে m > 1

ব্যাখ্যা : \overrightarrow{AB} ও \overrightarrow{CD} দুইটি ভেক্টর এবং $\overrightarrow{AB} = \overrightarrow{CD}$ ও $\overrightarrow{AB} \parallel \overrightarrow{CD}$ হলে অবশ্যই $\overrightarrow{AB} = \overrightarrow{CD}$. বেমন : একটি সামান্তরিকের বিপরীত বাহু \overrightarrow{AD} ও \overrightarrow{BC} দুইটি ভেক্টরের জন্য \overrightarrow{AD} = \overrightarrow{BC} . কারণ সামান্তরিকের বিপরীত বাহুগুলোর দৈর্ঘ্য সমান ও এরা পরস্পর

নিচের তথ্যের আলোকে ৪ ও ৫ নং প্রশ্নের উত্তর দাও :

 ${f AB}$ রেখাংশের উপর যেকোনো বিন্দু ${f C}$ এবং কোনো ভেক্টর মূলবিন্দুর সাপেবে ${f A},$ ${f B}$ ও ${f C}$ বিন্দুর অবস্থান ভেক্টর যথাক্রমে ${f a},{f b}$ ও ${f c}$ ।

8. C বিম্পুটি AB রেখাংশকে 2 : 3 অনুপাতে অন্তর্বিভক্ত করলে নিচের কোনটি সঠিক?

$$\mathfrak{Q} \underline{\mathbf{c}} = \frac{2\underline{\mathbf{a}} + \underline{\mathbf{b}}}{5}$$

$$\bullet \ \underline{\mathbf{c}} = \frac{3\underline{\mathbf{a}} + 2\underline{\mathbf{b}}}{5}$$

৫. ভেক্টর মূলবিন্দুটি O হলে নিচের কোনটি সঠিক?

$$\overrightarrow{ } OA = \underline{a} - \underline{b}$$

$$\bullet AB = \underline{b} - \underline{a}$$

প্রশা । ৬ । ABCD সামান্তরিকের কর্ণদর \overrightarrow{AC} ও \overrightarrow{BD} হলে \overrightarrow{AB} ও \overrightarrow{AC} ভেক্টরদরকে \overrightarrow{AD} ও \overrightarrow{BD} ভেক্টরদরের মাধ্যমে প্রকাশ কর এবং দেখাও যে , \overrightarrow{AC} + \overrightarrow{DD} = 2BC এবং \overrightarrow{AC} – \overrightarrow{BD} = 2AB

সমাধান:

দেওয়া আছে, ABCD সামান্তরিকের দুটি কর্ণ $\stackrel{\longrightarrow}{AC}$ ও $\stackrel{\longrightarrow}{BD}$ । $\stackrel{\longrightarrow}{AB}$ ও $\stackrel{\longrightarrow}{AC}$ ভেক্টর দুটিকে $\stackrel{\longrightarrow}{AD}$ ও $\stackrel{\longrightarrow}{BD}$ ভেক্টরদুয়ের মাধ্যমে প্রকাশ করতে হবে এবং দেখাতে হবে $\stackrel{\longrightarrow}{AC}$ + $\stackrel{\longrightarrow}{BD}$ = $\stackrel{\longrightarrow}{2BC}$ এবং $\stackrel{\longrightarrow}{AC}$ – $\stackrel{\longrightarrow}{BD}$ = $\stackrel{\longrightarrow}{2AB}$

প্রমাণ: ভেক্টর যোগের ত্রিভুজ বিধি অনুযায়ী,

সোমান্তরিকের বিপরীত বাহু বলে DC = AB]

→ → →
= AD + AD - BD

(দেখানো হলো)

[সামান্তরিকের বিপরীত বাহু বলে, AD = BC]

জাবার , AC-BD=2AD-BD-BD [(ii) নং এর উভয় পাশে

$$\rightarrow$$
 \rightarrow \rightarrow \rightarrow \rightarrow \therefore AC – BD = 2AB (দেখানো হলো)

প্রশ্না ৭ ৷ দেখাও যে,
$$(\overline{\Phi}) - (\underline{a} + \underline{b}) = -\underline{a} - \underline{b}$$

(খ)
$$a + b = c$$
 হলে, $a = c - b$

সমাধান:

(ক) এখানে,
$$-(\underline{a}+\underline{b})$$

$$= (-1)(\underline{a}+\underline{b})$$

$$= (-1)(a) + (-1)(\underline{b})$$

$$= -\underline{a} - \underline{b}$$
 [স্কেলার ও ভেক্টর গুণন অনুসারে]

$$\therefore -(\underline{a} + \underline{b}) = -\underline{a} - \underline{b}$$
 (দেখানো হলো)

$$\underline{a} + \underline{b} = \underline{c}$$

বা, $\underline{a} + \underline{b} + (-\underline{b}) = \underline{c} + (-\underline{b})$

[উভয়পৰে (– <u>b</u>) যোগ করে]

বা,
$$\underline{a} + (1 - 1) \underline{b} = \underline{c} - \underline{b}$$

বা, $\underline{a} + 0 = \underline{c} - \underline{b}$
 $\therefore \underline{a} = \underline{c} - \underline{b}$ (দেখানো হলো)

প্রশ্ন \mathbb{L} ৮ \mathbb{L} (ক) দেখাও যে, $\underline{a}+\underline{a}=2\underline{a}$

সমাধান: বামপৰ = $\underline{a} + \underline{a}$

= $1\underline{a} + 1\underline{a}$ [সংখ্যা গুণিতকের নিয়মানুযায়ী] = (1+1) \underline{a} [সংখ্যা গুণিতকের নিয়মানুযায়ী] = $2\underline{a}$ = ডানপৰ

 $\therefore \underline{\mathbf{a}} + \underline{\mathbf{a}} = 2\underline{\mathbf{a}}$ (দেখানো হলো)

(খ) দেখাও যে, (m-n) $\underline{a}=m\underline{a}-n\underline{a}$

সমাধান : বামপৰ =
$$(m-n)\underline{a}$$
 = $\{m+(-n)\}a$ = $m\underline{a}+(-n)\underline{a}$ [সংখ্যা গুণিতকের নিয়মানুযায়ী] = $m\underline{a}+(-n\underline{a})$ [\cdots $(-n)\underline{a}=-n\underline{a}$] = $m\underline{a}-n\underline{a}$ = ডানপৰ

$$\therefore (m-n)\underline{a} = m\underline{a} - n\underline{a}$$
 (দেখানো হলো)

(গ) দেখাও যে,
$$m(\underline{a} - \underline{b}) = m\underline{a} - m\underline{b}$$

$$\therefore m(\underline{a} - \underline{b}) = m\underline{a} - m\underline{b}$$
 (দেখানো হলো)

প্রশ্ন $1\!\!1$ ৯ $1\!\!1$ (ক) a, b প্রত্যেকে অশূন্য ভেক্টর হলে দেখাও যে , a=mb হতে পারে কেবলমাত্র যদি a, b এর সমান্তরাল হয়।

সমাধান : যেকোনো অশুন্য ভেক্টর a ও b বিবেচনা করি।

মনে করি, \underline{a} , \underline{b} সমান্তরাল ভেক্টর। তাহলে \underline{a} , \underline{b} এর ধারক অভিনু বা সমান্তরাল এবং \underline{a} , \underline{b} এর দিক অভিনু বা বিপরীত।

ধরি,
$$\mathbf{m} = \frac{|\underline{\mathbf{a}}|}{|\mathbf{b}|}$$

এখানে, m>0, ফলে $\underline{a},\underline{b}$ এর ধারক অভিন্ন এবং তাদের দিকও অভিনু

তদুপরি ,
$$|m\underline{b}|=m|\underline{b}|=rac{|\underline{a}|}{|b|}$$
 , $|\underline{b}|=|\underline{a}|$

এখন \underline{a} ও \underline{b} এর দিক অভিনু হলে, $\underline{a} = m\underline{b}$

এবং \underline{a} , \underline{b} এর দিক বিপরীত হলে, $\underline{a} = -m\underline{b}$ কেননা,

- (i) $|\underline{m}\underline{b}| = |\underline{a}|, |-\underline{m}\underline{b}| = |\underline{m}\underline{b}| = |\underline{a}|$
- (ii) $m\underline{b}$ বা, $-m\underline{b}$ এর ধারক \underline{b} এর ধারকের সাথে অভিনু হলে তা \underline{a} এর ধারকের সাথে অভিনু বা সমাশ্তরাল

(iii) \underline{a} , \underline{b} এর দিকও অভিন্ন হলে \underline{a} , \underline{m} \underline{b} এর দিক ও অভিন্ন। অপরদিকে \underline{a} , \underline{b} এর দিক বিপরীত হলে, \underline{a} , \underline{m} \underline{b} এর দিকও অভিন্ন। সুতরাং $\underline{a} = \underline{m}$ \underline{b} (দেখানো হলো)

(খ) $\underline{a},\underline{b}$ অশূন্য অসমান্তরাল ভেক্টর এবং $m\underline{a}+n\underline{b}=0$ হলে, দেখাও যে, m=n=0

সমাধান: যেহেতু $m\underline{a} + n\underline{b} = 0$

সুতরাং nb = -ma

ফলে $m_{\underline{a}}, n_{\underline{b}}$ উভয়ে শূন্য ভেক্টর অথবা $n_{\underline{b}}, m_{\underline{a}}$ এর বিপরীত হতে পারে না।

সুতরাং $m\underline{a} = 0$ এবং $n\underline{b} = 0$

 $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ অশূন্য বলে $\mathbf{m} = \mathbf{0}$

এবং n = 0

 \therefore m = n = 0 (দেখানো হলো)

প্রশ্ন ॥ ১০ ॥ A,B,C,D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c},\underline{d}$ হলে দেখাও যে, ABCD সামান্তরিক হবে যদি এবং কেবলমাত্র যদি $\underline{b}-\underline{a}=\underline{c}-\underline{d}$ হয়।

সমাধান: দেওয়া আছে, A, B, C, D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে, $\underline{a}, \underline{b}, \underline{c}, \underline{d}$

্দেখাতে হবে যে, ABCD সামান্তরিক হবে যদি এবং কেবল যদি

$$\underline{\mathbf{b}} - \underline{\mathbf{a}} = \underline{\mathbf{c}} - \underline{\mathbf{d}}$$
 হয়।

A, B, C, D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে, $\underline{a}, \underline{b}, \underline{c}, \underline{d}$.

মনে করি, ABCD একটি সামান্তরিক।

তাহলে, AB ও DC পরস্পর সমান ও সমান্তরাল হবে।

b - a = c - d

বিপরীতক্রমে মনে করি, $\underline{b} - \underline{a} = \underline{c} - \underline{d}$

সুতরাং AB ও CD রেখা দুটি পরস্পর সমান ও সমান্তরাল অর্থাৎ ABCD একটি সামান্তরিক। ∴ ABCD একটি সামান্তরিক হবে যদি এবং কেবল যদি

$$\underline{\mathbf{b}} - \underline{\mathbf{a}} = \underline{\mathbf{c}} - \underline{\mathbf{d}}$$
 হয়।

ফলে $\underline{b} - \underline{a} = \underline{c} - \underline{d}$ (দেখানো হলো)

প্রশু ॥ ১১ ॥ ভেক্টরের সাহায্যে প্রমাণ কর যে, ত্রিভুজের এক বাহুর মধ্যবিন্দু থেকে অঞ্চিত অপর বাহুর সমান্তরাল রেখা তৃতীয় বাহুর মধ্যবিন্দুগামী।

সমাধান : ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, ত্রিভুজের এক বাহুর মধ্যবিন্দু থেকে অজ্ঞিত অপর বাহুর সমান্তরাল রেখা তৃতীয় বাহুর মধ্য বিন্দুগামী।

প্রমাণ : মনে করি, ABC গ্রিভুজের E, AB -এর মধ্যবিন্দু এবং EF \parallel BC প্রমাণ করতে হবে যে, F, AC এর মধ্যবিন্দু ।

F, AC-এর মধ্যবিন্দু না হলে মনে করি, G, AC-এর মধ্যবিন্দু তাহলে ভেক্টর বিয়োগের ত্রিভুজবিধি অনুযায়ী পাই,

আবার, ভেক্টর বিয়োগের ত্রিভুজবিধি অনুযায়ী পাই,

$$\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$$

 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$
 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$
 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$

কি**ন্**তু BC || EF

∴ EG ও EF অভিন্ন রেখা। অর্থাৎ G ও F অভিন্ন বিন্দু। অর্থাৎ F, AC এর মধ্যবিন্দু (প্রমাণিত)

প্রশ্ন ॥ ১২ ॥ প্রমাণ কর যে, কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে তা একটি সামান্তরিক হয়।

সমাধান : মনে করি, ABCD চতুর্ভুজের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে সমদ্বিখণ্ডিত করেছে। প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

প্রমাণ : মনে করি, কোনো নির্দিঊ মূলবিন্দুর প্রেৰিতে A, B, C এবং D বিন্দুগুলোর অবস্থান ভেক্টর $\underline{a},\underline{b},\underline{c}$ এবং \underline{d} ।

 \mathbf{AC} -এর মধ্যবিন্দু \mathbf{O} হওয়ায়, \mathbf{O} বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \; \left(\underline{a} + \underline{c} \right)$ । আবার \mathbf{DB}

এর মধ্যবিশু $_{f O}$ হওয়ায় $_{f O}$ বিশুর অবস্থান ভেক্টর $=rac{1}{2}\,$ $({f b}+{f d})$ ।

উভয়ই একই O বিন্দুর অবস্থান ভেক্টর বলে।

বা,
$$\frac{1}{2}$$
 (\underline{b} + \underline{d}) = $\frac{1}{2}$ (\underline{a} + \underline{c})

বা,
$$\underline{b} + \underline{d} = \underline{a} + \underline{c}$$

$$\overline{A}, (\underline{b} + \underline{d}) - (\underline{a} + \underline{d}) = (\underline{a} + \underline{c}) - (\underline{a} + \underline{d})$$

[উভয়পৰ থেকে <u>a</u> + <u>d</u> বিয়োগ করে] |

বা,
$$\underline{b} - \underline{a} = \underline{c} - \underline{d}$$

∴ ABCD একটি সামা**ন্**তরিক (**প্রমাণিত**)

প্রশ্ন ॥ ১৩ ॥ ভেক্টরের সাহায্যে প্রমাণ কর যে, ট্রাপিজিয়ামের অসমান্তরাল বাহুদ্যের মধ্যবিন্দুর সংযোজক সরলরেখা সমান্তরাল বাহুদ্যের সমান্তরাল ও তাদের যোগফলের অর্ধেক।

সমাধান: মনে করি, ABCD ট্রাপিজিয়ামের অসমান্তরাল বাহুদ্বয় AD ও BC এর মধ্যবিন্দু যথাক্রমে E ও F। E, F যোগ করি।

প্রমাণ করতে হবে যে, EF বাহু AB ও CD এর সমাশ্তরাল এবং EF = $\frac{1}{2}$ (AB + DC)

প্রমাণ : মনে করি, কোনো নির্দিষ্ট মূল বিন্দুর প্রেৰিতে A, B, C ও D বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{a}, \underline{b}, \underline{c}$ ও \underline{d} ।

তাহলে E বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}~(\underline{a}+\underline{d})$

$$F$$
 বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2} \ (\underline{b} + \underline{c})$

সূতরাং
$$\overrightarrow{EF} = \frac{1}{2} (\underline{b} + \underline{c}) - \frac{1}{2} (\underline{a} + \underline{d})$$

$$= \frac{1}{2} (\underline{b} + \underline{c} - \underline{a} - \underline{d})$$

$$= \frac{1}{2} (\underline{b} - \underline{a} + \underline{c} - \underline{d})$$

$$\rightarrow$$
 কিম্পু $AB = \underline{b} - \underline{a}$

এখন AB ও DC সমান্তরাল বলে (AB + DC) ভেক্টরটিও AB ও

→ DC এর সমান্তরাল।

এবং
$$|\overrightarrow{EF}| = \frac{1}{2}(|\overrightarrow{AB}| + |\overrightarrow{DC}|)$$

$$\therefore EF = \frac{1}{2} (AB + DC)$$

→ → → → সুতরাং EF ভেক্টর AB ও DC ভেক্টরের সমান্তরাল

এবং
$$EF = \frac{1}{2} (AB + DC)$$
 (প্রমাণিত)

প্রশ্ন ॥ ১৪ ॥ ভেক্টরের সাহায্যে প্রমাণ কর যে, ট্রাপিজিয়ামের কর্ণদয়ের মধ্যবিন্দুর সংযোজক সরলরেখা সমান্তরাল বাহুদয়ের সমান্তরাল এবং তাদের বিয়োগফলের অর্ধেক।

সমাধান : মনে করি, ABCD ট্রাপিজিয়ামের AB ও DC সমান্তরাল বাহু (AB > DC) এবং AC ও BD কর্ণের মধ্যবিন্দু যথাক্রমে E ও F। প্রমাণ করতে হবে যে, EF রেখা AB ও DC এর সমান্তরাল এবং EF = $\frac{1}{2}$ (AB – DC)।

প্রমাণ : মনে করি, কোনো নির্দিষ্ট মূলবিন্দুর প্রেৰিতে A, B, C এবং D বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{a}, \underline{b}, \underline{c}$ ও \underline{d}

$$\rightarrow$$
 \rightarrow \rightarrow তাহলে $AB = b - a$ এবং $DC = c - d$

এখন, E বিন্দুর অবস্থান ভেষ্টর =
$$\frac{1}{2}(\underline{a} + \underline{c})$$

F বিন্দুর অবস্থান ভেক্টর
$$=\frac{1}{2}\left(\underline{b}+\underline{d}\right)$$

সূতরাং
$$\overrightarrow{EF} = \frac{1}{2} (\underline{b} + \underline{d}) - \frac{1}{2} (\underline{a} + \underline{c})$$

$$= \frac{1}{2} (\underline{b} + \underline{d} - \underline{a} - \underline{c}) = \frac{1}{2} (\underline{b} - \underline{a} + \underline{d} - \underline{c})$$

$$\overrightarrow{\Phi^{n}} \overrightarrow{Q} AB = \underline{b} - \underline{a}, CD = \underline{d} - \underline{c}$$

$$\overrightarrow{\mathrm{EF}} = \frac{1}{2} (\overrightarrow{\mathrm{AB}} + \overrightarrow{\mathrm{CD}}) = \frac{1}{2} (\overrightarrow{\mathrm{AB}} - \overrightarrow{\mathrm{DC}})$$

→ → এখন AB ও DC সমান্তরাল কিন্তু বিপরীতমুখী।

ightarrow ightarrow ightarrow ightarrow সুতরাং m AB – DC ভেক্টর ও m AB ও DC এর সমান্তরাল

এবং
$$|\overrightarrow{EF}| = \frac{1}{2} |\overrightarrow{AB}| - \overrightarrow{DC}|$$

বা,
$$EF = \frac{1}{2} \left(\overrightarrow{AB} \mid - \mid \overrightarrow{DC} \mid \right)$$

$$\therefore EF = \frac{1}{2} (AB - DC)$$

সুতরাং EF,AB ও DC এর সমান্তরাল এবং $EF\!=\!\frac{1}{2}\,\left(AB-DC\right)$

(প্রমাণিত)

প্রশা ১৫ ॥

 ΔABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E.

- → → →

 ক. (AD + DE) কে AC ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, BC \parallel DE এবং DE $=\frac{1}{2}$ BC
- গ. BCED ট্রাপিজিয়ামের কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে M ও N হলে ভেক্টরের সাহায্যে প্রমাণ কর যে, MN \parallel DE \parallel BC এবং MN $=\frac{1}{2}$ (BC DE)

সমাধান :

ক.

ΔABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E,

$$\rightarrow$$
 \rightarrow \rightarrow চিত্র অনুযায়ী $\triangle ADE$ এ $AD + DE = AE$

[ভেক্টর যোগের ত্রিভূজ বিধি]

বা,
$$\overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2}\overrightarrow{AC}$$
 [E, \overrightarrow{AC} এর মধ্যবিন্দু]

খ. মনে করি, ABC ত্রিভুজের AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E এবং D, E যোগ করি।

প্রমাণ করতে হবে, DE \parallel BC এবং DE $=\frac{1}{2}$ BC

প্রমাণ: ভেক্টরের বিয়োগ ত্রিভুজবিধি অনুসারে,

$$\rightarrow$$
 \rightarrow \rightarrow AE - AD = DE(i)
 \rightarrow \rightarrow \rightarrow \rightarrow
역정 AC - AB = BC

কিম্ভূ
$$AC = 2AE$$
, $AB = 2AD$

[∵ D ও E বিন্দু যথাক্রমে AB ও AC এর মধ্যবিন্দু]

আবার
$$|\overrightarrow{DE}| = \frac{1}{2} |\overrightarrow{BC}|$$

$$\therefore$$
 DE = $\frac{1}{2}$ BC

→ → সুতরাং DE ও BC ভেক্টরদমের ধারক রেখা একই বা সমান্তরাল। কিন্তু এখানে ধারক রেখা এক নয়

সূতরাং \overrightarrow{DE} ও \overrightarrow{BC} ভেক্টরদ্বয়ের ধারক রেখাদ্বয় অর্থাৎ \overrightarrow{DE} এবং \overrightarrow{BC} সমান্তরাল এবং $\overrightarrow{DE}=\frac{1}{2}$ \overrightarrow{BC} (প্রমাণিত)

গ. মনে করি, BCDE ট্রাপিজিয়ামের BC ও DE সমাশ্তরাল বাহু (BC > DE) এবং BE ও CD কর্ণের মধ্যবিন্দু যথাক্রমে M ও N। প্রমাণ করতে হবে বে, MN || DE || BC এবং MN = $\frac{1}{2}$ (BC – DE)

প্রমাণ : মনে করি, কোনো নির্দিষ্ট মূলবিন্দুর সাপেবে B, C, E ও D বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{b}, \underline{c}, \underline{e}$ ও \underline{d}

$$\rightarrow$$
 \rightarrow তাহলে BC = $\underline{c} - \underline{b}$ এবং DE = $\underline{e} - \underline{d}$

$$\therefore$$
 M বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}~(\underline{b}+\underline{e})$

এবং N বিন্দুর অবস্থান ভেক্টর
$$=\frac{1}{2} \ (\underline{c} + \underline{d})$$

সুতরাৎ, MN =
$$\frac{1}{2}$$
 (\underline{c} + \underline{d}) - $\frac{1}{2}$ (\underline{b} + \underline{e})
$$= \frac{1}{2}$$
 (\underline{c} + \underline{d} - \underline{b} - \underline{e}) = $\frac{1}{2}$ (\underline{c} - \underline{b} + \underline{d} - \underline{c})

কিম্ছু,
$$\overrightarrow{BC} = \underline{c} - \underline{b}$$
 এবং $\overrightarrow{DE} = \underline{e} - \underline{d}$)

$$\therefore \overrightarrow{MN} = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{ED}) = \frac{1}{2} (\overrightarrow{BC} - \overrightarrow{DE})$$

→ → এখন BC ও DE সমান্তরাল কিন্তু বিপরীতমুখী।

→ → → → → সুতরাং BC – DE ভেক্টর BC ও DE এর সমান্তরাল।

এবং
$$|MN| = \frac{1}{2} |BC - DE|$$

বা, MN =
$$\frac{1}{2}$$
 (|BC|-|DE|)

$$\therefore MN = \frac{1}{2} (BC - DE)$$

সুতরাং, MN, DE ও BC এর সমান্তরাল।

অর্থাৎ, MN || DE || BC এবং MN = $\frac{1}{2}$ (BC – DE) (প্রমাণিত)

প্রশ্ন 🛚 ১৬ 🗈 🗛 ABC এর BC, CA ও AB বাহুর মধ্যবিন্দু যথাক্রমে D, E ও F.

- → → → ক. AB ভেক্টরকে BE ও CF ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. প্রমাণ কর যে, AD + BE + CF = 0
- গ. ভেক্টরের সাহায্যে প্রমাণ কর যে, F বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল রেখা অবশ্যই E বিন্দুগামী হবে।

সমাধান:

ক.
$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$
 [চিত্রানুযায়ী]

বা, $\overrightarrow{AB} = \overrightarrow{AE} - \overrightarrow{BE} = \frac{1}{2} \overrightarrow{AC} - \overrightarrow{BE}$

বা, $\overrightarrow{AB} = \frac{1}{2} (\frac{1}{2} \overrightarrow{AB} - \overrightarrow{CF}) - \overrightarrow{BE}$ [$\because \overrightarrow{AC} + \overrightarrow{CF} = \frac{1}{2} \overrightarrow{AB}$)

বা, $\overrightarrow{AB} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{CF} - \overrightarrow{BE}$

বা, AB
$$-\frac{1}{4}$$
 AB $=-\frac{1}{2}$ CF $-$ BE

$$\frac{3}{4}$$
 AB = $-\frac{1}{2}$ CF − BE

∴
$$\overrightarrow{AB} = -\frac{2}{3}\overrightarrow{CF} - \frac{4}{3}\overrightarrow{BE}$$
 [উভয়পৰকে $\frac{4}{3}$ দারা গুণ করে]

∆ABE এ ভেক্টরযোগের ত্রিভুজ সূত্র হতে পাই,

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{2}\overrightarrow{AC} \qquad [\because \overrightarrow{AE} = \overrightarrow{2}\overrightarrow{AC}]$$

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{2}\overrightarrow{AC}$$

$$\overrightarrow{AC} = 2(\overrightarrow{AB} + \overrightarrow{BE}) \dots (i)$$

$$\overrightarrow{AC} = 2(\overrightarrow{AB} + \overrightarrow{BE}) \dots (i)$$

$$\overrightarrow{AC} = \overrightarrow{AC}$$

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AC}$$

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AC}$$

$$\overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC}$$

$$\overrightarrow{AC} = \overrightarrow$$

 $\overrightarrow{=}$ AB + 2BE(ii) আবার, ∆ABD এ ভেক্টর যোগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

এবং $\overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} = \overrightarrow{AD}$ [: $\overrightarrow{BD} = \frac{1}{2} \overrightarrow{BC}$]

বা, $\overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2} (\overrightarrow{AB} + 2\overrightarrow{BE})$ [(ii) নং হতে]

 $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AB} + \overrightarrow{BE}$
 $\overrightarrow{AB} + \frac{1}{2} \overrightarrow{AB} + \overrightarrow{BE}$

Δ ACF এ ভেক্টর যোগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AF}$$

$$\overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{A}\overrightarrow{B}$$

$$\overrightarrow{AC} + \overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} \left[\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} \right]$$

$$\overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$$

$$= \frac{1}{2}\overrightarrow{AB} - 2(\overrightarrow{AB} + \overrightarrow{BE}) \left[(i) \overrightarrow{RR} \right]$$
₹₹5

$$= \frac{1}{2} \overrightarrow{AB} - 2\overrightarrow{AB} - 2\overrightarrow{BE} = -\frac{3}{2} \overrightarrow{AB} - 2\overrightarrow{BE}$$

এখন, বামপৰ =
$$\overrightarrow{AD}$$
 + \overrightarrow{BE} + \overrightarrow{CF}
= $\left(\frac{3}{2}\overrightarrow{AB} + \overrightarrow{BE}\right)$ + \overrightarrow{BE} + $\left(-\frac{3}{2}\overrightarrow{AB} - 2\overrightarrow{BE}\right)$
= $\frac{3}{2}\overrightarrow{AB}$ + \overrightarrow{BE} + \overrightarrow{BE} + $\frac{3}{2}\overrightarrow{AB}$ - $2\overrightarrow{BE}$
= $\frac{3}{2}\overrightarrow{AB}$ - $\frac{3}{2}\overrightarrow{AB}$ + $2\overrightarrow{BE}$ - $2\overrightarrow{BE}$
= 0 = ডানপৰ

ightarrow
ightarr

গ.

মনে করি, ABC ত্রিভুজে F, AB এর মধ্যবিন্দু এবং EF || BC। প্রমাণ করতে হবে, E, AC এর মধ্যবিন্দু।

প্রমাণ : E. AC এর মধ্যবিন্দু না হলে মনে করি, G. AC এর মধ্যবিন্দু। তাহলে ভেক্টর বিয়োগের ত্রিভুজবিধি অনুযায়ী পাই,

$$\overrightarrow{AG} - \overrightarrow{AF} = \overrightarrow{FG}$$

$$\overrightarrow{\rightarrow} \rightarrow \overrightarrow{\rightarrow} \rightarrow \rightarrow$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AG} - \overrightarrow{AF}) = 2\overrightarrow{FG}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AG} - 2\overrightarrow{AF}) = 2\overrightarrow{FG}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AC} - 2\overrightarrow{AF}) = 2\overrightarrow{FG}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AC} - 2\overrightarrow{AF}) = 2\overrightarrow{AF}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AC} - \overrightarrow{AB}) = 2\overrightarrow{AF}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AC} - \overrightarrow{AB}) = 2\overrightarrow{FG}$$

$$\overrightarrow{\rightarrow} (\overrightarrow{AC} - \overrightarrow{AB}) = 2\overrightarrow{FG}$$

আবার, ভেক্টর বিয়োগের ত্রিভুজবিধি অনুযায়ী

$$\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$$

 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$
 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$
 $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$

কিশ্তু, BC∥ FE

অতএব, EG ও FE অভিনু রেখা। তাই G ও E অভিনু বিন্দু। অর্থাৎ E, AC এর মধ্যবিন্দু (প্রমাণিত)

গুরুত্বপূর্ণ বহুনির্বাচনি প্রশ্রোত্তর

- যেকোনো ভেক্টর $\underline{\mathbf{u}}, \underline{\mathbf{v}}, \underline{\mathbf{w}}$ এর জন্য $(\underline{\mathbf{u}} + \underline{\mathbf{v}}) + \underline{\mathbf{w}} = \underline{\mathbf{u}} + (\underline{\mathbf{v}} + \underline{\mathbf{w}})$ হলে, এটা ভেক্টর
- ভেক্টরের কোনো নির্দিফ্ট দিক এবং ধারকরেখা নেই।
- শৃন্য
- গু সমান
- ত্ত অবস্থান
- ${f A}$ এবং ${f C}$ বিন্দু দুইটির অবস্থান ভেক্টর যথাক্রমে ${f a}$ এবং ${f b}$ হলে, $ec{{f CA}}$ = কোনটি ${f e}$

- 1 <u>a</u> + <u>b</u>

→ AB যেকোনো ভেক্টর হলে নিচের কোনটি সঠিক?

- $P(\underline{m} + \underline{n}) = \overline{\Phi o}$?
 - ⊕ Pm n

- ABCD আয়তবেত্রের
 - i. $\overrightarrow{AB} = \overrightarrow{DC}$ ii. $\overrightarrow{AC} = \overrightarrow{BD}$
- \rightarrow \rightarrow iii. AD = BC

নবম–দশম শ্রেণি : উচ্চতর গণিত ▶ ৫০২ iii. $\underline{r} + \underline{s} = t + \underline{s}$ **হ**লে $\underline{r} = \underline{s}$ নিচের কোনটি সঠিক? (সহজে) (iii & i (f) (1) ii v iii (i, ii & iii ABCD সামান্তরিকের AC ভেক্টর কোনটি? (সহজ) অভিনু তথ্যভিত্তিক বহুনির্বাচনি প্রশ্রোত্তর **1** <u>u − v</u> নিচের তথ্যের আলোকে ৬৮ ও ৬৯ নং প্রশ্নের উত্তর দাও: **۴٩.** সমতলস্থ কোনো নির্দিষ্ট O বিন্দু সাপেৰে ঐ সমতলের যেকোনো বিন্দু P এর ABC ত্রিভুজের AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E হলে, অবস্থান ভেক্টর কোনটি ? (মধ্যম) ৬৮. নিচের কোনটি সঠিক? (কঠিন) OP (1) PO (1) P \rightarrow DE = $\frac{1}{2}$ BC Δ ABC-এর AB বাহুর মধ্যবিন্দু D হলে CD এর মান কত? ĈЪ. (মধ্যম) $\textcircled{6} \overrightarrow{AB} - \overrightarrow{AC} \qquad \textcircled{6} \xrightarrow{1} \overrightarrow{AB} - \overrightarrow{AC} \qquad \textcircled{6} \xrightarrow{3} \overrightarrow{AB} - \overrightarrow{AC} \qquad \textcircled{6} \overrightarrow{AB} - \overrightarrow{CB}$ $\rightarrow \rightarrow \rightarrow \rightarrow$ \bigcirc AB + AC = BC ৫৯. শূন্য ভেক্টর বলতে কী বোঝায়? |DE| =6সে. মি. হলে |BC| এর মান কত সে. মি.? (মধ্যম) যে ভেক্টর রাশির মান শূন্য থি যে ভেক্টর রাশির মান এক একক **@** 6 সে. মি. **②** 9 সে. মি. গ্র যো রাশির মান অসীম থি যে রাশির মান ২ ৬০. দুই বা ততোধিক ভেক্টরের যোগফলকে কী বলা হয়? (সহজে) ১২-৫ : ভেক্টরের যোগের বিধিসমূহ ক্রি আয়তন থ) ওজন থি তারণ 🔳 🗌 সাধারণ বহুনির্বাচনি প্রশ্নোত্তর ৬১. ভেক্টরকে স্কেলার ঘারা গুণ করলে গুণফল হয়— (মধ্যম) ত্ব ফাঁকা 🗨 ভেক্টর কু শূন্য গ্ৰ প্ৰবক u, y ও w তিনটি ভেক্টর হলে ভেক্টর যোগের বিনিময় বিধি কোনটি? BA দিক নির্দেশক রেখাংশের মান কত? (সহজ ৬২. $(\underline{\mathbf{u}} + \underline{\mathbf{v}}) + \underline{\mathbf{w}} = \underline{\mathbf{u}} + (\underline{\mathbf{v}} + \underline{\mathbf{w}})$ $(\underline{\mathbf{u}} + \underline{\mathbf{v}} + \underline{\mathbf{w}}) = (\underline{\mathbf{u}} + \underline{\mathbf{v}} + \underline{\mathbf{w}})$ (1) BA 1 AB AB + BA ৭১. $\underline{\mathbf{u}} = -\underline{\mathbf{v}}$ ও $\underline{\mathbf{v}} = \underline{\mathbf{w}}$ হলে কোনটি সঠিক? 🔲 🔳 বহুপদী সমাপ্তিসূচক বহুনির্বাচনি প্রশ্রোত্তর $\bullet \ \underline{\mathbf{u}} + \underline{\mathbf{w}} = \mathbf{0}$ ৭২. 🔟 ও <u>v</u> ভেক্টরদয় সমান্তরাল না হলে এদের সাথে নিচের কোন ভেক্টরটি অবশ্যই ৬৩. ABC ত্রিভুজের AB বাহুর মধ্যবিন্দু D দিয়ে BC এর সমান্তরাল রেখা A-কে E ত্রিভুজ উৎপন্ন করবে? বিন্দুতে ছেদ করলে– $\bigcirc \underline{u} - \underline{v}$ $\sqrt[3]{v} - \underline{u}$ 1 uv \bullet u + v \rightarrow \rightarrow \rightarrow ii. AE = $\frac{1}{2}$ AC ৭৩. $|\hat{\mathbf{A}}| = \overline{\mathbf{A}}$ ত? (সহজ) $0^{\frac{1}{2}}$ iii. EC = $\frac{1}{2}$ AC **(1)** 0 **3** 2 নিচের কোনটি সঠিক? (কঠিন) ৭৪. \overrightarrow{AB} এবং \overrightarrow{AC} দুটো ভেক্টর হলে-(মধ্যম) ₁i છ i iii 😵 ii 1ii & i 🕞 • i, ii 🕏 iii $\overrightarrow{AC} - \overrightarrow{CB} = \overrightarrow{AB}$ $\textcircled{AB} - \overrightarrow{AC} = \overrightarrow{BC}$ ৬৪. \bullet $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$ $\overrightarrow{AB} - \overrightarrow{CB} = \overrightarrow{AC}$ i. DE || BC 🗌 বহুপদী সমাপ্তিসূচক বহুনির্বাচনি প্রশ্রোত্তর ii. DE = $\frac{1}{2}$ BC iii. DE = DA + AE৭৫. <u>u</u> = <u>v</u> হলে– i. u এর দৈর্ঘ্য v এর দৈর্ঘ্যের সমান নিচের কোনটি সঠিক? (কঠিন) $ii. \, \underline{u}$ এর দিক \underline{v} এর দিকের সাথে একমুখী ● i ଓ ii iii & i 🕞 iii. <u>u</u> ও <u>v</u> সমান্তরাল ভেক্টর ள் e ii டூ g i, ii g iii নিচের কোনটি সঠিক? (কঠিন) ৬৫. যেকোনো ভেক্টর a, b, c-এর জন্য-ரு i ও ii iii & i (6) • i, ii 🕏 iii இ ii ও iii i. $\underline{\mathbf{a}} + \underline{\mathbf{b}} + \underline{\mathbf{c}} = (\underline{\mathbf{a}} + \underline{\mathbf{b}}) + \underline{\mathbf{c}}$ ৭৬. m ও n দুইটি স্কেলার এবং a ও b দুইটি ভেক্টর হলে ii. a + b + c = a + c + bi. $(m-n) \underline{b} = m\underline{b} - n\underline{b}$ iii. $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$ ii. $|\underline{a} + \underline{b}| = a + b$ নিচের কোনটি সঠিক? (মধ্যম) iii. $m(\underline{a} - \underline{b}) = m\underline{a} - m\underline{b}$ ii 🤡 i 📵 iii 🗞 i 🚱 ள் ஒ ii டூ ● i, ii ଓ iii নিচের কোনটি সঠিক? (কঠিন) ৬৬. শুন্য ভেক্টরের g i, ii 🛭 iii ரு i பே ● i ଓ iii ளு ii ও iii i. পরমমান শুন্য ৭৭. mu + nu হলেii. দিক অনির্ণেয় i. m(u - u)iii. দৈর্ঘ্য শুন্য ii. $\underline{\mathbf{u}}$ $(\mathbf{m} + \mathbf{n})$ নিচের কোনটি সঠিক? (সহজ) iii. $(m + n)\underline{u} + \underline{u}$ i 🛭 ii iii છ i gii g iii নিচের কোনটি সঠিক? (সহজ) ভেক্টর যোগের বর্জন বিধি অনুসারে যেকোনো ${f r}, {f s}, {f t}$ –এর মধ্যে– 1ii iii & ii 🕝 $i. \underline{r} + \underline{s} = \underline{r} + \underline{t}$ ইলে $\underline{s} = \underline{t}$ m<u>u</u> + m<u>v</u> – m(<u>u</u> – <u>v</u>) সত্য হবে যদি– ii. $\underline{s} + \underline{t} = \underline{r} + t$ **হ**লে $\underline{s} = \underline{r}$

নবম–দশম শ্রেণি : উচ্চতর গণিত ▶ ৫০৫

১২১. C বিন্দু AB রেখাংশকে 3:5 অনুপাতে বিভক্ত করলে নিচের কোনটি সঠিক?

১২২. $\underline{\mathbf{u}} = \overrightarrow{\mathbf{AB}} \ \underline{\mathbf{v}} = \overrightarrow{\mathbf{AC}}$ হলে, $\underline{\mathbf{u}} - \underline{\mathbf{v}} = \overrightarrow{\mathbf{vo}}$?

- ⊕ BA
- (d) CA
- ิ์ ฤก BC

১২৩. মূলবিন্দু $\mathbf O$ এর সাপেৰে $\mathbf P$ এবং $\mathbf Q$ এর অবস্থান ভেক্টর যথাক্রমে

9<u>a</u> – 4<u>b</u> ও – 3<u>a</u> – <u>b</u> হলে, PQ এর মান কত?

- **③** $6\underline{a} 5\underline{b}$ **③** $12\underline{a} 3\underline{b}$ **●** $-12\underline{a} + 3\underline{b}$ **⑤** $12\underline{a} 3\underline{b}$

১২৪.

ABC ত্রিভুজের বেত্রে –

- $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$
- ii. $\overrightarrow{BA} + \overrightarrow{AC} = \overrightarrow{BC}$
- iii. BC + AC = AB
- নিচের কোনটি সঠিক?

- (1) i (S iii
- டு ii ப்
- (v) i, ii vs iii

১২৫. ΔABC এর AB ও AC এর মধ্যবিশ্বর যথাক্রমে D ও E হলে–

- i. DE || BC
- ii. DE = $\frac{1}{2}$ BC
- $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE}$

নিচের কোনটি সঠিক?

- ⊚i ાં છ ரு i ஒ ii
- ১২৬. PQ দিক নির্দেশক রেখাংশ
 - i. একটি ভেক্টর রাশি
 - ii. এর দৈর্ঘ্য | PQ |
 - iii. এর দিক P বিন্দু থেকে Q এর দিকে

নিচের কোনটি সঠিক?

- (d) ii
- ரு i ஒ ii

gii V iii

● i, ii ଓ iii

● i, ii ଓ iii

নিচের তথ্যের আলোকে ১২৭ ও ১২৮ নং প্রশ্নের উত্তর দাও:

🗆 🗖 🗆 বহুপদী সমাপ্তিসূচক বহুনির্বাচনি প্রশ্রোত্তর

১৩৫. u ও y দুইটি সমান ভেক্টরের বেত্রে—

- іі. ц -এর ধারক у -এর ধারকের অভিনু অথবা সমান্তরাল
- iii. u -এর দিক v -এর দিকের সঙ্গে একমুখী

নিচের কোনটি সঠিক?

ள் இ i

- (lii 😵 ii
- டு ii ஒ iii
- i, ii 😉 iii

(মধ্যম)

১৩৬. OA = \underline{a} , BO = \underline{b} হলে–

কোনো ভেক্টর মূলবিন্দুর সাপেৰে A ও B বিন্দুর অবস্থান ভেক্টর যথাক্রমে a ও b Cবিন্দুটি AB কে 2:1 অনুপাতে অন্তর্বিভক্ত করে।

১২৭. নিচের কোনটি AB?

- $\bullet \ \underline{b} \underline{a} \qquad \textcircled{1} \underline{a} \underline{b} \qquad \textcircled{2} \frac{1}{2} (\underline{a} \underline{b}) \qquad \textcircled{2} \frac{1}{2} (\underline{a} + \underline{b})$

১২৮. C বিন্দুর অবস্থান ভেক্টর কোনটি?

নিম্নোক্ত তথ্যের আলোকে ১২৯ ও ১৩০নং প্রশ্নের উত্তর দাও:

চিত্রে ABCD চতুর্ভুজের মধ্যবিন্দু S, P, Q, R এবং $AB = \underline{a}$, $BC = \underline{b}$, CD = c, DA = d

১২৯. RS এর অবস্থান ভেক্টর নিচের কোনটি?

- $\bullet \frac{a+b}{2}$ $\circ \frac{c-d}{2}$ $\circ \frac{d-c}{2}$

১৩০. PQRS চতুর্ভুজটি কী?

- 📵 আয়তৰেত্ৰ 🄞 রম্বস
- সামান্তরিক ত্বি বর্গবেত্র

নিম্নোক্ত তথ্যের আলোকে ১৩১ ও ১৩২নং প্রশ্নের উত্তর দাও:

১৩১. O বিন্দুর প্রেৰিতে A বিন্দুর অবস্থান ভেক্টর কোনটি?

- ⊙A
- (a) AO
- oa

১৩২. AB = **কত** ?

নিচের তথ্যের আলোকে ১৩৩ ও ১৩৪ নং প্রশ্নের উত্তর দাও:

১৩৩. AB কে \overrightarrow{AD} ও \overrightarrow{BD} এর মাধ্যমে প্রকাশ করলে কী হয়?

১৩৪. AC – BD = কত?

- \bullet 2 \overrightarrow{AB} 3 2 \overrightarrow{BC}
- (f) 2 CD
- থি 2 AD

- i. $AB = \underline{b} \underline{a}$
- \rightarrow ii. AB = $\underline{a} \underline{b}$

iii. $AB = -(\underline{b} - \underline{a})$

নিচের কোনটি সঠিক?

- iii & i 🕞
- iii & ii 🕝

🔳 🗌 অভিনু তথ্যভিত্তিক বহুনির্বাচনি প্রশ্রোত্তর

(1) ii

নিচের তথ্যের আলোকে ১৩৭– ১৩৯নং প্রশ্নের উত্তর দাও:

ABCD চতুর্ভুজের A,B,C,D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c},\underline{d}$.

১৩৭. ABCD সামান্তরিক হলে কোনটি সঠিক?

(মধ্যম)

 $\bullet \ \underline{\mathbf{b}} \ -\underline{\mathbf{a}} \ =\underline{\mathbf{c}} \ -\underline{\mathbf{d}}$

১৩৮. $\underline{\mathbf{b}} - \underline{\mathbf{a}} = \underline{\mathbf{c}} - \underline{\mathbf{d}}$ হলে ABCD কী?

থ্য ত্রিভুজ

্সহজ্ ● সামাশ্তরিক (ত্ব) রম্বস

১৩৯. AC ও BD কর্ণদয় পরস্পরকে সমদ্বিখন্ডিত করলে ABCD কী?

ক্ত বৰ্গৰেত্ৰ

● সামাশ্তরিক ﴿ ﴿ বৃত্ত

গ্র রম্বস

থ্য রেখা

নিচের চিত্রের আলোকে ১৪০–১৪২নং প্রশ্নের উত্তর দাও:

চিত্ৰে OA = a ও OB = b হলে

১৪০. 🕜 বিন্দুর প্রেৰিতে 🛦 বিন্দুর অবস্থান ভেক্টর কোনটি?

● <u>b</u> – <u>a</u>

(সহজ)

(মধ্যম)

(সহজ)

AB = **Φ**♥?

গুরুত্বপূর্ণ সৃজনশীল প্রশু ও সমাধান

প্রশ্ন-১ 🕨

ΔPQR-এর PQ ও PR বাহুর মধ্যবিন্দু যথাক্রমে D ও E.

- ক. $(\overrightarrow{PD} + \overrightarrow{DE})$ কে \overrightarrow{PR} ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. ভেষ্টরের সাহায্যে প্রমাণ কর যে, $DE \parallel QR$ এবং $DE = \frac{1}{2}QR$. 8
- গ. DERQ ট্রাপিজিয়ামের কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে F ও G হলে, ভেক্টরের সাহায্যে প্রমাণ কর যে,
 - FG || DE || QR এবং FG = $\frac{1}{2}$ (QR DE).

১ ১ ১নং প্রশ্রের সমাধান ১ ব

ক.

 $\triangle PDE$ –এ $\overrightarrow{PD} + \overrightarrow{DE} = \overrightarrow{PE}$ [ত্রিভুজবিধি]

 $=\frac{1}{2} \overrightarrow{PR}$ [যেহেতু, E, PR এর মধ্যবিন্দু]

$$\therefore \overrightarrow{PD} + \overrightarrow{DE} = \frac{1}{2} \overrightarrow{PR} (Ans.)$$

খ. মনে করি, PQR গ্রিভুজের PQ ও PR বাহুর মধ্যবিন্দু যথাক্রমে D ও E । $D, E \mbox{ যোগ করা হলো দেখাতে হবে যে, } DE \ | \ \mbox{QR} \ \ \mbox{ এবং } DE = \frac{1}{2} \mbox{QR}$

প্রমাণ : D ও E যথাক্রমে PQ ও PR এর মধ্যবিন্দু।

$$\therefore \overrightarrow{DQ} = \overrightarrow{PD} = \frac{1}{2} \overrightarrow{PQ} \text{ agr } \overrightarrow{PE} = \overrightarrow{ER} = \frac{1}{2} \overrightarrow{PR}$$

ΔPQR-এ ত্রিভুজবিধি অনুসারে পাই,

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

$$\therefore \overrightarrow{QR} = \overrightarrow{PR} - \overrightarrow{PQ} \dots (i)$$

এবং ΔPDE এ ত্রিভুজবিধি অনুসারে পাই, $\overrightarrow{PD} + \overrightarrow{DE} = \overrightarrow{PE}$

$$\overrightarrow{DE} = \overrightarrow{PE} - \overrightarrow{PD}$$

$$= \frac{1}{2} \overrightarrow{PR} - \frac{1}{2} \overrightarrow{PQ} \qquad [\because \overrightarrow{PE} = \frac{1}{2} \overrightarrow{PR} \text{ এবং } \overrightarrow{PD} = \frac{1}{2} \overrightarrow{PQ}]$$

$$= \frac{1}{2} (\overrightarrow{PR} - \overrightarrow{PQ}) = \frac{1}{2} \overrightarrow{QR} [(i)]$$

$$|\overrightarrow{DE}| = \frac{1}{2} \overrightarrow{QR}$$

 $\therefore \ DE = \frac{1}{2} \ QR \ \$ এবং $\overrightarrow{DE} \ \ \ \overrightarrow{QR} \ \$ এর ধারক রেখা একই অথবা সমান্তরাল।

কিম্তু DE এবং QR ভিন্ন ভিন্ন রেখা হওয়ায় DE || QR হবে।

 \therefore DE || QR এবং DE = $\frac{1}{2}$ QR (প্রমাণিত)

গ.

মনে করি, DERQ ট্রাপিজিয়ামের DE || QR এবং QE ও DR কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে F ও G । F ও G যোগ করি। প্রমাণ করতে হবে যে, FG \parallel DE \parallel QR এবং FG $=\frac{1}{2}$ (QR – DE).

প্রমাণ : মনে করি, কোনো ভেক্টর মধ্যবিন্দুর সাপেবে D, E, Q ও R এর অবস্থান ভেক্টর যথাক্রমে <u>d</u>, <u>e</u>, <u>q</u> ও <u>r</u>

$$\overrightarrow{DE} = \underline{e} - \underline{d}$$

$$\overrightarrow{QR} = \underline{r} - \underline{q}$$

∴ F বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}\left(\underline{e}+\underline{q}\right)\left[\because F, QE$ এর মধ্যবিন্দু $\right]$

এবং G কিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \left(\underline{r} + \underline{d} \right) \left[\ \colon \ G, \ DR \ \$ এর মধ্যকিন্দু $\right]$

 $DE \parallel QR$ হওয়ায় $(\overrightarrow{QR} - \overrightarrow{DE})$ ভেক্টরটি \overrightarrow{DE} ও \overrightarrow{QR} ভেক্টরের সমান্তরাল হবে। তাহলে \overrightarrow{FG} ভেক্টরটি \overrightarrow{DE} ও \overrightarrow{QR} ভেক্টরগ্নের সমান্তরাল হবে। আবার, $\overrightarrow{FG} = \frac{1}{2}(\overrightarrow{QR} - \overrightarrow{DE})$

$$\therefore \ |\overrightarrow{FG}| = \frac{1}{2} \ |(\overrightarrow{QR} - \overrightarrow{DE})| = \frac{1}{2} \ |(|\overrightarrow{QR}| - |\overrightarrow{DE}|)$$

$$\therefore FG = \frac{1}{2} (QR - DE)$$

অর্থাৎ $FG \parallel DE \parallel QR$ এবং $FG = \frac{1}{2} \left(QR - DE \right)$ (প্রমাণিত)

প্রশ্ন–২ ▶

ΔPQR , এর PQ এবং PR এর মধ্যকিদু যথাক্রমে S এবং T.

- ক. $\overrightarrow{PS} + \overrightarrow{ST}$ কে \overrightarrow{PR} এর মাধ্যমে প্রকাশ কর।
- খ. ভেষ্টরের সাহায্যে প্রমাণ কর যে, $ST \parallel QR$ এবং $ST = \frac{1}{2} QR$.
- গ. \square SQRT এর কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে M ও N হলে ভেষ্টরের সাহায্যে প্রমাণ কর যে, MN \parallel ST \parallel QR এবং MN $=\frac{1}{2}$ (QR ST).

১ ব ২নং প্রশ্রের সমাধান ১ ব

ক.

 ΔPST এ ত্রিভুজ বিধি প্রয়োগ করে পাই,

$$\overrightarrow{PS} + \overrightarrow{ST} = \overrightarrow{PT}$$
(i)
আবার, PR বাহুর মধ্যবিন্দু T

$$\therefore \overrightarrow{PT} = \frac{1}{2} \overrightarrow{PR} \dots (ii)$$

(i) ও (ii) হতে পাই,

$$\overrightarrow{PS} + \overrightarrow{ST} = \frac{1}{2} \overrightarrow{PR}$$

- খ. সূজনশীল ১(খ)নং সমাধানের অনুরু প।
- গ. সৃজনশীল ১(গ)নং সমাধানের অনুরূ প।

প্রশ্ন–৩ 🕨

চিত্রে, ΔABC এ AB বাহুর মধ্যবিন্দু দিয়ে অঙ্কিত PQ রেখাংশ BC এর সমান্তরাল।

- ক. APQ ত্রিভুজের বেত্রে ভেক্টর বিয়োগের ত্রিভুজবিধি বর্ণনা কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, Q, AC এর মধ্যবিশ্য।

🔰 ৩নং প্রশ্রের সমাধান 🔰

ক.

 ΔAPQ -এ \overrightarrow{AP} ও \overrightarrow{AQ} এর আদিবিন্দু একই এবং \overrightarrow{AP} এবং \overrightarrow{AQ} এর অন্তবিন্দু যথাক্রমে P ও Q । P ও Q যোগ করলে ভেক্টর বিয়োগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{AP} - \overrightarrow{AQ} = \overrightarrow{QP}$$

খ. দেওয়া আছে, ABC ত্রিভুজের AB বাহুর মধ্যবিন্দু দিয়ে অজ্ঞিত BC এর সমান্তরাল PQ, AC কে Q বিন্দুতে ছেদ করে। প্রমাণ করতে হবে O. AC এর মধ্যবিন্দু।

প্রমাণ : Q যদি AC এর মধ্যবিন্দু না হয়, তবে ধরি, E, AC এর মধ্যবিন্দু।

তাহলে $\overrightarrow{AP} = \frac{1}{2} \overrightarrow{AB} \ [\because P, \overrightarrow{AB} \ \text{এর মধ্যবিন্দু}]$

$$\therefore \overrightarrow{PE} = \frac{1}{2} \overrightarrow{BC}$$

অর্থাৎ, PE || BC কিম্তু PQ || BC (উদ্দীপক অনুসারে)

তাহলে $\stackrel{
ightarrow}{PE}$ ও $\stackrel{
ightarrow}{PQ}$ রেখাদ্বয় উভয়ে $\stackrel{
ightarrow}{P}$ কিন্দু দিয়ে যায় এবং $\stackrel{
ightarrow}{BC}$ এর সমান্তরাল।

অতএব, \overrightarrow{PE} ও \overrightarrow{PQ} অবশ্যই সমাপাতিত হবে, তাই E ও Q একই বিন্দু হবে। অর্থাৎ Q, AC এর মধ্যবিন্দু (প্রমাণিত)

গ.

PBCQ ট্রাপিজিয়ামে R ও S যথাক্রমে PB ও QS এর মধ্যবিন্দু।

প্রমাণ করতে হবে
$$\overrightarrow{RS} = \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{BC})$$

প্রমাণ : মনে করি, কোনো ভেক্টর মূলবিন্দুর সাপেবে P, B, C ও Q বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{p}, \underline{b}, \underline{c}$ ও \underline{q} .

∴ R বিন্দুর অবস্থান ভেক্টর
$$= \frac{p+b}{2}$$

S বিন্দুর অবস্থান ভেক্টর =
$$\frac{c+q}{2}$$

$$\overrightarrow{RS} = \frac{1}{2} (\underline{c} - \underline{q}) - \frac{1}{2} (\underline{b} + \underline{p}) = \frac{1}{2} (\underline{c} - \underline{b}) + \frac{1}{2} (\underline{q} - \underline{p})$$
$$= \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{PQ} = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{PQ})$$

$$\therefore \overrightarrow{RS} = \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{BC})$$
 (প্রমাণিত)

প্রশ্ন–৪ ▶

 ΔPQR এর PQ ও PR বাহুর মধ্যবিন্দু যথাক্রমে M ও N.

- ক. $(\overrightarrow{PM} + \overrightarrow{MN})$ কে \overrightarrow{PR} ভেষ্টরের মাধ্যমে প্রকাশ কর। ২
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, MN ।। QR এবং

 $MN = \frac{1}{2}QR$

প্রRNM ট্রাপিজিয়ামের কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে D
 ত E হলে, ভেক্টরের সাহায্যে প্রমাণ কর যে,

DE || MN || QR এবং DE = $\frac{1}{2}$ (QR – MN) |

♦ ৪নং পুশ্রের সমাধান
♦ 4

ক.

 Δ PQR এর PQ ও PR বাহুর মধ্যবিন্দু যথাক্রমে M ও N

$$\therefore \Delta PMN - 4 \overrightarrow{PM} + \overrightarrow{MN} = \overrightarrow{PN}$$

$$\overrightarrow{\mathsf{A}}$$
, $\overrightarrow{\mathsf{PM}}$ + $\overrightarrow{\mathsf{MN}}$ = $\frac{1}{2}$ $\overrightarrow{\mathsf{PR}}$

খ. সূজনশীল ১(খ)নং সমাধানের অনুরূ প।

গ.

মনে করি, QRNM ট্রাপিজিয়ামের QR ও MN সমান্তরাল বাহু এবং MR ও QN কর্ণের মধ্যবিন্দু D ও E। প্রমাণ করতে হবে যে, DE $\,$ II $\,$ MN $\,$ II

$$QR$$
 এবং $DE = \frac{1}{2}(QR - MN)$

ধরি, মূলবিন্দুর সাপেরে R, Q, N, M বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{b}, \underline{c}, \underline{e}$ ও \underline{d}

$$\therefore \overrightarrow{QR} = \underline{b} - \underline{c}$$
 এবং $\overrightarrow{MN} = \underline{e} - \underline{d}$

এখন D বিন্দুর অবস্থান ভেক্টর =
$$\frac{1}{2}$$
 (\underline{b} + \underline{e})

এবং E বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}$ (\underline{c} + \underline{d})

 $\therefore \overrightarrow{QR} \overset{
ightharpoonup}{
ightharpoonup} \overrightarrow{QR}$ ও \overrightarrow{NM} সমান্তরাল কিন্তু বিপরীতমুখী

$$\therefore |\overrightarrow{DE}| = \frac{1}{2} (|\overrightarrow{QR}| - |\overrightarrow{MN}|)$$

বা,
$$DE = \frac{1}{2}(QR - MN)$$
 (প্রমাণিত)

∴ DE, MN ও QR সমান্তরাল।

অর্থাৎ DE II MN II QR (প্রমাণিত)

প্রশ্ন–৫ 🕽

ΔΑΒC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E.

- ক. $\left(\overline{\mathrm{AD}}+\overline{\mathrm{DE}}
 ight)$ কে $\overline{\mathrm{AC}}$ এর মাধ্যমে প্রকাশ কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, $DE \parallel BC$ এবং $DE = \frac{1}{2}BC$
- গ. A ও B এর অবস্থান ভেক্টর A ও B এবং AB রেখাংশ

c বিন্দুতে m:n অনুপাতে বহিঃবিভক্ত হলে, C এর c অবস্থান ভেক্টর c হলে দেখাও যে, $c=rac{na-mb}{n-m}$ 8

১ ৫ ৫নং প্রশ্রের সমাধান ১ ৫

ক. AADE এ

$$\overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{AE}$$
 [ত্রিভুজ বিধি]
$$= \frac{1}{2}\overrightarrow{AC}$$
 [যেহেতু E, AC এর মধ্যবিশ্দু।]

সুতরাৎ, $\overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2}\overrightarrow{AC}$.

- খ. সূজনশীল ১(খ)নং সমাধানের অনুরু প।
- গ. মনে করি, O বিন্দুর সাপেৰে A ও B বিন্দুর অবস্থান ভেক্টর \underline{a} ও \underline{b} . AB রেখাংশ C বিন্দুতে m:n অনুপাতে বহির্বিভক্ত হলে দেখাতে হবে, C বিন্দুর অবস্থান ভেক্টর $\underline{c}=\frac{n\underline{a}-m\underline{b}}{n-m}$

প্রমাণ : AB রেখাংশ C বিন্দুতে m : n অনুপাতে বহির্বিভক্ত হয়েছে।

$$\therefore \frac{AC}{BC} = \frac{m}{n}$$

বা,
$$\frac{|\overrightarrow{AC}|}{|\overrightarrow{BC}|} = \frac{m}{n}$$

বা,
$$\cfrac{|\overrightarrow{AC}|-|\overrightarrow{BC}|}{|\overrightarrow{BC}|}=\cfrac{m-n}{n}$$
 [বিয়োজন করে]

বা,
$$\frac{AC - BC}{BC} = \frac{m - n}{n}$$

বা,
$$\frac{AB}{BC} = \frac{m-n}{n}$$

বা,
$$BC = \frac{n}{m-n}AB$$

বা,
$$\overrightarrow{BC} = \frac{n}{m-n} \overrightarrow{AB}$$
 [$:: \overrightarrow{AB}$ ও \overrightarrow{BC} এর দিক একই]

বা ,
$$\underline{c}-\underline{b}=\frac{n}{m-n}\left(\underline{b}-\underline{a}\right)$$
 [ভেক্টর বিয়োগের ত্রিভুজ বিধি অনুসারে]

বা,
$$\underline{c} = \frac{n\underline{b} - n\underline{a}}{m - n} + \underline{b}$$

বা,
$$\underline{c} = \frac{n\underline{b} - n\underline{a} + m\underline{b} - n\underline{b}}{m - n}$$

বা,
$$\underline{\mathbf{c}} = \frac{\mathbf{m}\underline{\mathbf{b}} - \mathbf{n}\underline{\mathbf{a}}}{\mathbf{m} - \mathbf{n}}$$

$$\therefore \underline{c} = \frac{m\underline{b} - n\underline{a}}{m-n}$$
 বা, $\frac{n\underline{a} - m\underline{b}}{n-m}$ (দেখানো হলো)

প্রশ্ন–৬ ১

- ক. ভেক্টর ত্রিভুজ বিধি কী? চিত্রসহ ব্যাখ্যা কর।
- খ. প্রমাণ কর যে, ABCD চতুর্ভুজের \overrightarrow{AC} ও \overrightarrow{BD} কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করলে তা একটি সামান্তরিক হবে। (ভেক্টর বিধি প্রযোজ্য)।

গ. উদ্দীপকে উলিরখিত চতুর্ভুজের \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{DC} এবং \overrightarrow{AD} এর মধ্যবিন্দু যথাক্রমে P, Q, R, S হলে, প্রমাণ কর যে, PQRS একটি সামান্তরিক।

▶∢ ৬নং প্রশ্রের সমাধান ▶∢

ক. কোন ত্রিভুজের একই ক্রমে গৃহীত দুইটি বাহু দারা দুই ভেক্টর <u>u</u> ও <u>v</u> এর মান ও দিক সূচিত হলে, ত্রিভুজের তৃতীয় বাহুটি বিপরীতক্রমে <u>u</u> + <u>v</u> ভেক্টরের মান ও দিক সূচিত করে।

মনে করি $\overrightarrow{AB} = \underline{u}, \overrightarrow{BC} = \underline{v}$ যেখানে \underline{u} এর প্রান্তবিন্দু \underline{v} এর আদি বিন্দু। তাহলে \underline{u} এর আদি বিন্দু এবং \underline{v} এর প্রান্তবিন্দুর

সংযোজক \overrightarrow{AC} ঘারা $\underline{u} + \underline{v}$ এর মান ও দিক

হয়। $\underline{\mathbf{u}}$ ও $\underline{\mathbf{v}}$ সমান্তরাল না হলে, $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$ এবং $\underline{\mathbf{u}}$ + $\underline{\mathbf{v}}$ ভেক্টরত্রয় একটি ত্রিভূজ উৎপন্ন করে বলে উপরিউক্ত যোজন পদ্ধতিতে ত্রিভূজ বিধি বলে।

খ. এখানে ABCD চতুর্ভুজ \overrightarrow{AC} ও \overrightarrow{BD} কর্ণন্বয় পরস্পকে O বিন্দুতে সমন্বিখন্ডিত করেছে। প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক। প্রমাণ:

 $\overrightarrow{AO} = \overrightarrow{AC}$ [: O, AC এর মধ্যবিন্দু]

এবং $\overrightarrow{BO} = \overrightarrow{OD}$ [:: O, BD এর মধ্যবিন্দু]

এখন $\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD}$ [ব্ৰিভুজ বিধি] $= \overrightarrow{OC} + \overrightarrow{BO} \quad [\because \overrightarrow{AO} = \overrightarrow{OC}, \overrightarrow{OD} = \overrightarrow{BO}]$ $= \overrightarrow{BC}$

$$\therefore |\overrightarrow{AD}| = |\overrightarrow{BC}|$$

এখন $|\stackrel{\longrightarrow}{AD}|=|\stackrel{\longrightarrow}{BC}|$ হলে $\stackrel{\longrightarrow}{AD}$ ও $\stackrel{\longrightarrow}{BC}$ এর ধারক রেখা একই বা সমান্তরাল হবে।

এখানে স্পষ্টতঃ \overrightarrow{AD} ও \overrightarrow{BC} এর ধারক রেখাদ্বয় সম্পূর্ণ ভিন্ন । অর্থাৎ $\overrightarrow{AD}=\overrightarrow{BC}$ এবং \overrightarrow{AD} \overrightarrow{II} \overrightarrow{BC} .

- ∴ ABCD একটি সামা**ন্**তরিক। **(প্রমাণিত**)
- গ. দেওয়া আছে, ABCD চতুর্ভুজের বাহুগুলোর মধ্যবিন্দু যথাক্রমে P, Q, R ও S। প্রমাণ করতে হবে যে, PQRS একটি সামান্তরিক।

প্রমাণ : মনে করি $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{BC} = \underline{b}$, $\overrightarrow{CD} = \underline{c}$ এবং $\overrightarrow{DA} = \underline{d}$ চিত্র হতে, $\overrightarrow{PQ} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{BC} \right)$

$$[\because \overrightarrow{PQ} = \overrightarrow{PB} + \overrightarrow{BQ} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}]$$

$$=\frac{1}{2}\left(\underline{\mathbf{a}}+\underline{\mathbf{b}}\right)$$

অনুরূ পভাবে, $\overrightarrow{QR} = \frac{1}{2} (\underline{b} + \underline{c})$

$$\overrightarrow{RS} = \frac{1}{2}(\underline{c} + \underline{d})$$
 এবং $\overrightarrow{SP} = \frac{1}{2}(\underline{d} + \underline{a})$

আবার,
$$\overrightarrow{AC} = (\underline{a} + \underline{b})$$
 [$:: \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$]

এবং $\overrightarrow{CA} = (c + d)$ [ভেক্টর যোগের ত্রিভুজ বিধি অনুসারে]

$$\therefore (\underline{a} + \underline{b}) + (\underline{c} + \underline{d}) = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AC} - \overrightarrow{AC} = \underline{0}$$

মু–৭ > তোমার বাড়ি হতে স্কুল সোজা দৰিণে অবস্থিত। বাড়ি হতে স্কুলে হেঁটে যেতে 1 ঘণ্টা এবং ছুটির পর সাইকেলে বাড়ি ফিরে আসতে 20 মিনিট সময় লাগে।

ক. বাড়ি হতে স্কুলের দূরত্ব ও 3 কিলোমিটার হলে স্কুলে হেঁটে যেতে তোমার গতিবেগ কত?

খ. স্কুল থেকে সাইকেলে বাড়ি ফিরে আসতে তোমার গতিবেগ নির্ণয় কর। সাইকেলের গতিবেগ হাঁটার গতিবেগের কতগুণ?

গ. বাসের গতিবেগ 36 কি.মি./ ঘন্টা হলে বাড়ি হতে স্কুলে যেতে তোমার কত সময় লাগবে? তিন মাধ্যমে তোমার গড় গতিবেগ কত?

🕨 বনং প্রশ্রের সমাধান 🕨 ব

ক. বাড়ির অবস্থানকে H দারা এবং স্কুলের অবস্থানকে S দারা চিহ্নিত

আমার গতিবেগ $\underline{\mathbf{u}}=\frac{\mathbf{r}_{\mathbf{x}}\mathbf{q}}{\mathbf{r}_{\mathbf{x}\mathbf{x}\mathbf{x}}}=\frac{\mathbf{HS}}{\mathbf{r}_{\mathbf{x}\mathbf{x}\mathbf{x}}}=\frac{3}{1}$ কি.মি./ ঘন্টা দৰিণ দিকে =3কি.মি./ ঘন্টা দৰিণ দিকে। (Ans.)

মোট দূরত্ব = 3 কি.মি.

মোট সময় = 20 মিনিট

আবার, এক ঘন্টা = 60 মিনিট

20 মিনিটে অতিক্রান্ত দূরত্ব = 3 কি.মি.

∴ স্কুল থেকে বাড়ি ফেরার সময় আমার গতিবেগ,

v = 9 কি. মি./ঘন্টা ৷ (Ans.)

এখন সাইকেলের গতিবেগ = 9 কি. মি./ ঘন্টা

= 3 × 3 কি.মি./ ঘন্টা

= 3 × হাঁটার গতিবেগ ['ক' হতে]

সুতরাং সাইকেলের গতিবেগ হাঁটার বেগের তিনগুণ। (Ans.)

'ক' হতে মোট দূরত্ব = 3 কি.মি.

গাড়ির গতিবেগ = 36 কি.মি.

বাসে 45 কি. মি. যায় 1 ঘন্টায়

$$\therefore$$
 1 " " " $\frac{1}{36}$ "

$$\therefore$$
 3 " " " $\frac{3}{36}$ "

অর্থাৎ (a + b) = - (c + d)

বা,
$$\frac{1}{2}(\underline{\mathbf{a}} + \underline{\mathbf{b}}) = -\frac{1}{2}(\underline{\mathbf{c}} + \underline{\mathbf{d}})$$

$$\therefore \overrightarrow{PQ} = -\overrightarrow{RS}$$

$$\overrightarrow{PO} = \overrightarrow{SR}$$

∴ PQ এবং SR সমান ও সমান্তরাল।

অনুর পভাবে, OR এবং PS সমান ও সমান্তরাল।

∴ PORS-একটি সামান্তরিক। (প্রমাণিত)

বা,
$$\frac{1}{12}$$
 ঘণ্টায় বা $\frac{60}{12}$ মিনিটে [$\because 1$ ঘণ্টা $= 60$ মিনিট] বা 5 মিনিটে।

∴ বাড়ি হতে বাসে স্কুলে যেতে আমার 5 মিনিট সময় লাগবে। (Ans.)

হেঁটে যেতে সময় লাগে 1 ঘণ্টা বা 60 মিনিট

সাইকেলে যেতে সময় লাগে 20 মিনিট।

তিন মাধ্যমে যেতে মোট সময় লাগে = (60 + 20 + 5) মিনিট।

= ৪5 মিনিট

তিন মাধ্যমে অতিক্রান্ত দূরত্ব = (3 + 3 + 3) বা 9 কি.মি.

∴ তিন মাধ্যমে গড় গতিবেগ
$$=\frac{9 \text{ ft. } \text{ম.}}{85 \text{ মিনিট}} = \frac{9 \text{ ft. } \text{ম.}}{\frac{85}{60}}$$
 ঘন্টা

$$=\frac{9\times60}{85}$$
 কি.মি./ ঘণ্টা $=6.35$ কি.মি./ ঘণ্টা (প্রায়) (Ans.)

প্রমৃ−৮৮ m ও n দুটি স্কেলার এবং u একটি ভেক্টর। (m + n) u = mu + nu

- ক. m ও n এর বিভিন্ন সার্থথ্যক মানের সূত্রটি যাচাই কর। ২
- খ. ভেক্টরের সংখ্যা গুণিতক সংক্রান্ত সূত্র হতে এটি প্রমাণ
- গ. অপর আরেকটি ভেক্টর u হলে $m(\underline{u} + \underline{v}) = m\underline{u} +$ $m \underline{v}$ সুত্রটি প্রমাণ কর।

১ ৬ ৮নং প্রশ্রের সমাধান ১ ব

$$\overline{\Phi}_{\bullet} \qquad (m+n)\underline{u} = m\underline{u} + n\underline{u}$$

$$m=1$$
 এবং $n=2$ হলে, বামপৰ $=(1+2)~\underline{u}$

ডানপৰ =
$$1\underline{\mathbf{u}} + 2\underline{\mathbf{u}} = \underline{\mathbf{u}} + 2\underline{\mathbf{u}} = 3\underline{\mathbf{u}}$$

∴ বামপৰ = ডানপৰ

জাবার,
$$m=2$$
 এবং $n=3$ হলে, বামপৰ = $(2+3)\underline{u}$

ডানপৰ =
$$2\underline{\mathbf{u}} + 3\underline{\mathbf{u}} = 5\underline{\mathbf{u}}$$

∴ বামপৰ = ডানপৰ

অতএব, m ও n এর বিভিন্ন প্রকার সার্থয়িক মান নিয়ে <u>u</u> ভেক্টরের জন্য $(m+n)\underline{u}=m\underline{u}\ +n\underline{u}$ সূত্রটি যাচাই করা হলো।

খ. প্রমাণ : m বা n শূন্য হলে সূত্রটি অবশ্যই খাটে।

মনে করি, m, n উভয়ে ধনাত্মক এবং $\overrightarrow{AB} = mu$

uu

 $\therefore \mid \overrightarrow{AB} \mid = m \mid \underline{u} \mid$ $AB \quad \text{ক } C \quad \text{পর্যান্য } \quad \text{বর্ধিত}$ করি যেন ,

এবং | \overrightarrow{AC} | = | \overrightarrow{AB} | + | \overrightarrow{BC} | = $m|\underline{u}|$ + $n|\underline{u}|$ = (m+n) $|\underline{u}|$

$$\overrightarrow{AC} = (m+n) \underline{u}$$

কিম্তু
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

 $\therefore m\underline{u} + n\underline{u} = (m+n)\underline{u}$

 m, n উভয়ে ঋণাতাক হলে m + n) u
 এর দৈর্ঘ্য হবে |m + n| |u| এবং

 দিক হবে u
 এর দিকের বিপরীত দিক, তখন mu + nu
 ভেক্টরটির দৈর্ঘ্য

 হবে |m| |u| + |n| |u| = (|m| + |n|) |u|

[∵ mu, nu ভেক্টরদ্বয় একই দিকে] খ.

এবং দিক হবে \underline{u} এর বিপরীত দিক। কিম্তু m<0 এবং n<0 হওয়ায় $|m|\ + |n| = |m+n|$ সেহেতু এবেত্রে $(m+n)\underline{u} = m\underline{u} + \underline{nu}$ পাওয়া গেল।

সর্বশেষ m এবং n এর মধ্যে $m>0,\,n<0$ হলে

(m+n) \underline{u} এর দৈর্ঘ্য হবে $\mid m+n\mid \underline{u}\mid$ এবং দিক হবে

(i) \underline{u} এর দিকের সাথে একমুখী যখন |m|>|n|

 $(ii)\ u$ এর বিপরীত দিক যখন |m|<|n|

তখন $m\underline{u}+n\underline{u}$ ভেক্টরটিও দৈর্ঘ্য ও দিকে (m+n) \underline{u} এর সাথে একমুখী হবে। (প্রমাণিত)

গ.

a + b b $m\underline{b}$ $m\underline{a} + n\underline{b}$ $m\underline{a} + n\underline{b}$ $m\underline{a} + n\underline{b}$

মনে করি,
$$\overrightarrow{OC} = \underline{u}$$
, $\overrightarrow{AB} = \underline{v}$

তাহলে
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = u + v$$

OA কে C পর্যন্ত বর্ধিত করি যেন $OC = m\ OA$ হয়। C বিন্দু দিয়ে অঙ্কিত AB এর সমান্তরাল CD রেখা OB এর বর্ধিতাংশকে D বিন্দুতে ছেদ করে। যেহেতু OAB এবং OCD গ্রিভুজ্বয় সদৃশ,

সেহেতু
$$\frac{|\overrightarrow{OC}|}{|\overrightarrow{OA}|} = \frac{|\overrightarrow{OD}|}{|\overrightarrow{AB}|} = \frac{|\overrightarrow{OD}|}{|\overrightarrow{OB}|} = m$$

$$\therefore$$
 CD = mAB = mv

চিত্র -১ এ m ধনাত্মক চিত্র -২ এ m ঋণাত্মক

$$\therefore$$
 OC = m. OA, CD = m. AB, OD = m. OB

এখন,
$$\overrightarrow{OC}$$
 + \overrightarrow{CD} = \overrightarrow{OD} বা, $m(\overrightarrow{OA})$ + $m(\overrightarrow{AB})$ = $m(\overrightarrow{OB})$

 $\therefore m\underline{u} + m\underline{v} = m(\underline{u} + \underline{v})$ (প্রমাণিত)

প্রশ্ল—৯ ▶ O কে মূলবিন্দু ধরে বিভিন্ন অবস্থানে A, B, C, D ও E পাঁচটি বিন্দু নিই। 9

ক. চিত্র এঁকে O বিন্দুর সাপেৰে বিন্দুগুলোর অবস্থান চিহ্নিত কর।

খ. দেখাও যে, \overrightarrow{OC} ভেক্টর \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{BC} ভেক্টরত্রয়ের যোগফলের সমান।

গ. প্রমাণ কর যে, $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$

🕨 🕯 ৯নং প্রশ্নের সমাধান 🌬

মনে করি, OABCDE বড়ভূজের মূলবিন্দু O মূলবিন্দু O এর সাপেৰে A, B, C, D, E এই পাঁচটি বিভিন্ন বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$, $\overrightarrow{OC} = c$, $\overrightarrow{OD} = d$ এবং $\overrightarrow{OE} = e$

খ. 'ক' হতে, = \underline{a} , $\overrightarrow{OB} = \underline{b}$ এবং $\overrightarrow{OC} = \underline{c}$

এখন, ∆OAB-এ

 $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ [ভেক্টর যোগের ত্রিভূজ বিধি]

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \underline{b} - \underline{a}$$

আবার, AOBC - এ

→
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →

$$\overrightarrow{A}$$
, \overrightarrow{BC} = \overrightarrow{OC} − \overrightarrow{OB} = \overrightarrow{C} − \overrightarrow{D}

সুতরাং $\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} = \underline{a} + \underline{b} - \underline{a} + \underline{c} - \underline{b}$

$$= c = \overrightarrow{OC}$$

অর্থাৎ $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC}$

∴ OC ভেক্টর OA + AB ও BC ভেক্টরত্রয়ের যোগফলের সমান।

(দেখানো হলো)

 $\label{eq:objective} \mathfrak{N}_{\bullet} \qquad \overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$

এখন, ∆OCD- এ

 $\overrightarrow{\mathrm{OC}} + \overrightarrow{\mathrm{CD}} = \overrightarrow{\mathrm{OD}}$ [ভেক্টর যোগের ত্রিভুজ বিধি]

$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = \underline{d} - \underline{c}$$
 ['ক' হতে]

আবার, ∆OAD- এ

→ → → → OD + DE = OE তেক্টর যোগের ত্রিভুজ বিধি]

সুতরাং $\overrightarrow{OC} + \overrightarrow{CD} + \overrightarrow{DE} = \underline{c} + \underline{d} - \underline{c} + \underline{e} - \underline{d}$

$$= \underline{\mathbf{e}} = \overrightarrow{OE}$$

 \overrightarrow{A} , $\overrightarrow{OE} = \overrightarrow{OC} + \overrightarrow{CD} + \overrightarrow{DE}$

 $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$ (প্রমাণিত)

প্রশ্ন–১০ ১

চিত্রে ABCD চতুর্ভুজের AB, BC, CD ও DA বাহুর মধ্যবিন্দু যথাক্রমে P, Q, R ও S.

?

ক. দেখাও যে, $\overrightarrow{PQ} \parallel \overrightarrow{AC}$

২

খ. ভেক্টর পদ্ধতিতে প্রমাণ কর, PQRS একটি সামান্তরিক। ৪

গ. ভেক্টর পদ্ধতিতে প্রমাণ কর, \overrightarrow{PQ} ও \overrightarrow{SQ} পরস্পারকে সমদিখন্ডিত করে।

🕨 🕯 ১০নং প্রশ্রের সমাধান 🕨

ক. ABC ত্রিভুজের AB ও BC বাহুর মধ্যবিন্দু যথাক্রমে P ও Q. আমরা জানি, ত্রিভুজের যেকোনো দুই বাহুর মধ্যবিন্দুদ্বয়ের সংযোজক রেখাংশ ঐ ত্রিভুজের তৃতীয় বাহুর সমান্তরাল ও তার অর্ধেক।

 $\therefore \overrightarrow{PQ} \parallel \overrightarrow{AC}$ (দেখানো হলো)

খ. মনে করি, ABCD চতুর্ভুজের AB, BC, DBD, DA বাহুগুলোর মধ্যবিন্দু P, Q, R, S। P ও Q, Q ও R, R ও S এবং S ও P যোগ করি।

প্রমাণ করতে হবে যে, PQRS একটি সামান্তরিক।

প্রমাণ :
$$\overrightarrow{AB} = \underline{a}$$
, $\overrightarrow{BC} = \underline{b}$, $\overrightarrow{CD} = \underline{c}$, $\overrightarrow{DA} = \underline{d}$

তাহলে,
$$\overrightarrow{PQ} = \overrightarrow{PB} + \overrightarrow{BQ} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} = \frac{1}{2} (\underline{a} + \underline{b})$$

অনুরূ পভাবে,
$$\overrightarrow{QR} = \frac{1}{2} \, (\underline{b} + \underline{c}), \ \overrightarrow{RS} = \frac{1}{2} \, (\underline{c} + \underline{d})$$

এবং
$$\overrightarrow{SP} = \frac{1}{2} (\underline{d} + \underline{a})$$

 $\overrightarrow{\text{Fang}}\ (\underline{a}+\underline{b})+(\underline{c}+\underline{d})=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=\underline{0}$

অর্থাৎ
$$\underline{a} + \underline{b} = -(\underline{c} + \underline{d})$$

$$\overrightarrow{PQ} = \frac{1}{2} (\underline{a} + \underline{b}) = -\frac{1}{2} (\underline{c} + \underline{d}) = -\overrightarrow{RS} = \overrightarrow{SR}$$

∴ PQ এবং SR সমান ও সমান্তরাল।

অনুর পভাবে, QR এবং PS সমান ও সমান্তরাল।

∴ PQRS একটি সামান্তরিক। (প্রমাণিত)

গ. মনে করি, PQRS সামান্তরিকের \overrightarrow{PR} ও \overrightarrow{SQ} কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করেছে।

মনে করি,
$$\overrightarrow{PO} = \underline{p}$$
, $\overrightarrow{QO} = \underline{q}$ ও $\overrightarrow{OR} = \underline{r}$ ও $\overrightarrow{OS} = \underline{s}$

প্রমাণ করতে হবে যে, $|\underline{p}| = |\underline{r}|, |\underline{s}| = |\underline{q}|$

প্রমাণ :
$$\overrightarrow{PO}$$
 + \overrightarrow{OR} = \overrightarrow{PR} এবং \overrightarrow{SO} + \overrightarrow{OQ} = \overrightarrow{SQ}

আমরা জানি, সামান্তরিকের বিপরীত বাহুদ্বয় পরস্পর সমান ও সমান্তরাল।

$$\overrightarrow{PS} = \overrightarrow{OR}$$

অর্থাৎ,
$$\overrightarrow{PO} + \overrightarrow{OS} = \overrightarrow{QO} + \overrightarrow{OR}$$

বা,
$$\underline{p} + \underline{s} = \underline{q} + \underline{r}$$

[উভয়পৰে – <u>s</u> – <u>r</u> যোগ করে]

এখানে, p ও r এর ধারক PR

∴ <u>p</u> – <u>r</u> এর ধারক PR.

g ও r এর ধারক QS,

∴ <u>q</u> – <u>s</u> এর ধারক QS.

 ${f p}-{f r}$ ও ${f q}-{f s}$ দুইটি সমান অশূন্য ভেক্টর হলে এদের ধারক রেখা একই অথবা সমান্তরাল হবে। কিন্তু PR ও QS দুইটি পরস্পরচ্ছেদী অসমান্তরাল সরলরেখা। সুতরাং ${f p}-{f r}$ ও ${f q}-{f s}$ ভেক্টরদ্বয় অশূন্য হতে পারে না বিধায় এদের মান শূন্য হবে।

 $\therefore p - \underline{r} = 0$ বা $p = \underline{r}$ এবং $\underline{q} - \underline{s} = 0$ বা, $\underline{q} = \underline{s}$

 $|\underline{p}| = |\underline{r}|$ এবং $|\underline{q}| = |\underline{s}|$

অর্থাৎ সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে। **(প্রমাণিত**)

প্রমু–১১ > ABC ত্রিভুজে BC, CA ও AB বাহুর মধ্যবিন্দু যথাক্রমে D, E ও F

ক. \overrightarrow{AB} কে \overrightarrow{BE} ও \overrightarrow{CF} এর মাধ্যমে প্রকাশ কর।

শশ কর। ২

খ. \overrightarrow{AC} , \overrightarrow{BC} ও \overrightarrow{AD} –কে \overrightarrow{AB} ও \overrightarrow{BE} এর মাধ্যমে প্রকাশ

গ. প্রমাণ কর যে, \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0

১ ব ১১নং প্রশ্রের সমাধান ১ ব

ক.

 Λ BOF হতে পাই.

$$\overrightarrow{BO} + \overrightarrow{OF} = \overrightarrow{BF}$$

$$\sqrt{3}$$
 BE + $\frac{2}{3}$ CF = $\frac{1}{2}$ AB

$$\therefore AB = \frac{4}{3}(BE + CF)$$

খ. 'ক' এর চিত্রানুসারে Δ BAE হতে পাই,

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$

$$\overrightarrow{A}$$
, $\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BE}$

$$\overrightarrow{AC} = 2(\overrightarrow{AB} + \overrightarrow{BE})$$
 (Ans.)

 Δ BCE থেকে পাই,

$$\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BE}$$

বা,
$$\overrightarrow{BC} = \overrightarrow{BE} - \overrightarrow{CE}$$

$$= \overrightarrow{BE} + \frac{1}{2} \overrightarrow{AC}$$

$$= \overrightarrow{BE} + \frac{1}{2}.2 (\overrightarrow{AB} + \overrightarrow{BE})$$

 $\therefore \overrightarrow{BC} = \overrightarrow{AB} + 2\overrightarrow{BE} (Ans.)$

 Δ AOB হতে পাই.

$$\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO}$$
 $\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO}$
 $\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{AO} + \overrightarrow{AO$

$$\therefore \overrightarrow{AD} = \frac{3}{2} \overrightarrow{AB} + \overrightarrow{BE} (Ans.)$$

গ. 'ক' এর চিত্রানুসারে,

মনে করি, ABC ত্রিভুজের মধ্যমাত্রয় O বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0

প্রমাণ :

 Δ ABD হতে পাই,

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$$
(i)

AACD থেকে পাই.

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$
(ii)

$$(i) + (ii)$$
 করে, $\overrightarrow{AD} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{AC} + \overrightarrow{CD}$

বা, $2\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BD} - \overrightarrow{BD}$

$$\overrightarrow{AD} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) \dots (iii)$$

একইভাবে দেখানো যায় যে,

$$\overrightarrow{BE} = \frac{1}{2} (\overrightarrow{BA} + \overrightarrow{BC}) \dots (iv)$$

এবং
$$\overrightarrow{CF} = \frac{1}{2} (\overrightarrow{CA} + \overrightarrow{CB}) \dots (v)$$

(iii), (iv) ও (v) যোগ করে পাই,

$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{CB})$$

$$= \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC} - \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} - \overrightarrow{BC})$$

$$= \frac{1}{2} \times 0$$

$$= 0$$

$$\therefore \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0$$
 (প্রমাণিত)

প্রমু-১২ \triangleright ${f A,B,C,D}$ বিন্দুগুলোর অক্যথান ভেক্টর যথাক্রমে ${f a}$, ${f b}$, ${f c}$, ${f d}$

খ. দেখাও যে, ADCD একটি সামাশ্তরিক হবে যদি ও কেবল যদি b –a = c – d হয়।

গ. AB রেখাংশ E বিন্দুতে অন্তর্বিভক্ত হলে দেখাও যে, E

বিন্দুর অবস্থান ভেক্টর
$$\dfrac{n\underline{a}+m\underline{b}}{m+n}$$
 হবে।

🌬 ১২নং প্রশ্রের সমাধান 🜬

ক

∆ABC হতে পাই,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.....(i)

 Δ ACD হতে পাই,

$$\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{CA}$$
(ii)

(i) ও (ii) যোগ করে পাই,

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CA}$$

$$= \overrightarrow{AC} - \overrightarrow{AC}$$

$$= 0$$

খ. A ও B বিন্দুর অবস্থান ভেক্টর a ও b

$$\overrightarrow{AB} = \underline{b} - \underline{a}$$
(i)

আবার, C ও D-এর অবস্থান ভেক্টর <u>c</u> ও <u>d</u>

$$\therefore \overrightarrow{DC} = \underline{c} - \underline{d} \dots (ii)$$

কিন্তু প্রদত্ত তথ্যানুসারে, $\underline{b} - \underline{a} = \underline{c} - \underline{d}$

$$\overrightarrow{AB} = \overrightarrow{DC}$$

AB ও DC সমান হওয়ায় এদের ধারক রেখা পরস্পার সমান্তরাল বা একই হবে।

কিন্তু \overrightarrow{AB} ও \overrightarrow{DC} এর ধারক রেখা একই হতে পারে না।

∴ \overrightarrow{AB} ও \overrightarrow{DC} এর ধারক রেখা সমান্তরাল।

$$\overrightarrow{AB} \parallel \overrightarrow{DC}$$

আবার, $\overrightarrow{AB} = \overrightarrow{DC}$

একইভাবে দেখানো যায় যে, $\overrightarrow{AD} = \overrightarrow{BC}$ ও $AD \parallel BC$

∴ ABCD একটি সামান্তরিক। **(দেখানো হলো**)

গ.

মনে করি, AB রেখাংশ E বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হয়েছে।
প্রমাণ করতে হবে যে, E বিন্দুতে অবস্থান ভেক্টর = $\frac{n\underline{a} + m\underline{b}}{m+n}$ প্রমাণ : AB রেখাংশ E বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হয়েছে।

$$\therefore \stackrel{\overrightarrow{AE}}{\longrightarrow} = \frac{m}{n}$$

$$\boxed{1,\frac{\overrightarrow{|AE|}}{\overrightarrow{|EB|}}} = \frac{m}{n}$$

$$\overrightarrow{\text{Al}, \frac{|\overrightarrow{EB}|}{|\overrightarrow{AE}|}} = \frac{n}{m}$$

$$\begin{array}{l} \overline{\text{AI}}, \frac{\overrightarrow{|AB|}}{\overrightarrow{|AE|}} = \frac{\overrightarrow{|AE|} + \overrightarrow{|EB|}}{\overrightarrow{|AE|}} = 1 + \frac{\overrightarrow{|EB|}}{\overrightarrow{|AE|}} \\ = 1 + \frac{n}{} = \frac{m+}{} \end{array}$$

$$\therefore \frac{\overrightarrow{AE}}{\overrightarrow{AB}} = \frac{m}{m+n}$$

$$\therefore \overrightarrow{AE} = \left(\frac{m}{m+n}\right) \overrightarrow{AB}$$

$$AE = \underline{c} - \underline{a} \, \mathfrak{G} \, AB = \underline{b} - \underline{a}$$

$$\therefore \underline{c} - \underline{a} = \frac{m}{m+n} (\underline{b} - \underline{a})$$

$$= \left(\frac{m}{m+n}\right) \left(\,\underline{b} - \underline{a}\,\,\right) + \underline{a}$$

 $\therefore \underline{c} = \frac{n\underline{a} + m\underline{b}}{m+n}$ (দেখানো হলো)

প্রশ্ল−১৩♪ ABCD সামান্তরিকের AC ও BD দুইটি কর্ণ।

- 9
- ক. $\stackrel{\longrightarrow}{AB}$ কে $\stackrel{\longrightarrow}{AD}$ ও $\stackrel{\longrightarrow}{BD}$ এর মাধ্যমে প্রকাশ কর।
 - খ. প্রমাণ কর যে, $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$
- 8
- গ. প্রমাণ কর যে, $\overrightarrow{AC} \overrightarrow{BD} = 2\overrightarrow{AB}$
 - O = 2AB

🕨 🕯 ১৩নং প্রশ্রের সমাধান 🕨 🕻

ক.

 Δ ABD থেকে.

$$\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$$

$$\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{BD} (Ans.)$$

খ. প্রমাণ করতে হবে যে, \overrightarrow{AC} + \overrightarrow{BD} = $2\overrightarrow{BC}$ $\triangle ADC$ থেকে,

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC}$$
.....(i)

 $\Delta \mathrm{BDC}$ থেকে,

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$
(ii)

(i) + (ii) করে পাই,

$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$= \overrightarrow{AD} + \overrightarrow{DC} - \overrightarrow{DC} + \overrightarrow{BC}$$

$$= \overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{BC} + \overrightarrow{BC} = 2\overrightarrow{BC}$$

$$\therefore \overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$$
 (প্রমাণিত)

গ. প্রমাণ করতে হবে যে, $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$ $\triangle ADC$ থেকে.

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC}$$
(i)

ΔBCD থেকে.

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$
....(ii)

(i) – (ii) করে পাই,

$$\overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{DC} - \overrightarrow{BC} - \overrightarrow{CD}$$
$$= \overrightarrow{BC} + \overrightarrow{DC} - \overrightarrow{BC} + \overrightarrow{DC}$$
$$= 2\overrightarrow{DC} = 2\overrightarrow{AB}$$

$$\therefore \overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$$
 (প্রমাণিত)

প্রশ্ন–১৪ ট ABC ত্রিভূজের BC, CA, ও AB বাহুত্রয়ের মধ্যবিন্দু যথাক্রমে D, E

ম–পশম শ্রোণ : ৬চচতর গাণত ▶ ৫১

ক. \overrightarrow{BC} কে \overrightarrow{BE} ও \overrightarrow{CF} ভেক্টরের সাহায্যে প্রকাশ কর।

খ. প্রমাণ কর যে, \overrightarrow{AD} , \overrightarrow{BE} ও \overrightarrow{CF} মধ্যমাত্রয় সমবিন্দু ও ছেদবিন্দুতে প্রত্যেক মধ্যমা 2:1 অনুপাতে বিভক্ত হয়। 8

গ. EFBC ট্রাপিজিয়ামের BE ও CF বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে P ও Q হলে প্রমাণ কর যে, EF || PQ || BC

$$9 PQ = \frac{1}{2} (BC - EF)$$

▶∢ ১৪নং প্রশ্নের সমাধান ▶∢

ক.

 Δ BOC হতে পাই,

$$\overrightarrow{BO} + \overrightarrow{OC} = \overrightarrow{BC}$$

$$\therefore \overrightarrow{BC} = \frac{2}{3} (\overrightarrow{BE} + \overrightarrow{CF}) \text{ Ans.}$$

খ. ধরি A,B,C বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে <u>a</u>,<u>b</u> ও <u>c</u> এখন, BC এর মধ্যবিন্দু D

∴ D এর অবস্থান ভেক্টর =
$$\frac{1}{2}$$
 (\underline{b} + \underline{c})

যে বিন্দুটি ${
m AD}$ -কে 2:1 অনুপাতে বিভক্ত করে তার অবস্থান ভেক্টর =

$$\frac{2 \times \frac{1}{2} (\underline{b} + \underline{c}) + 1 \times \underline{a}}{2 + 1}$$
$$= \frac{1}{3} (\underline{a} + \underline{b} + \underline{c})$$

একইভাবে দেখানো যায় যে, বিন্দুটি BE ও CF-কে 2:1 অনুপাতে বিভক্ত করে তার অবস্থান ভেক্টর = $\frac{1}{2}$ (\underline{b} + \underline{c} + \underline{a})

অর্থাৎ দেখা যাচ্ছে যে, \overrightarrow{AD} , \overrightarrow{BE} ও \overrightarrow{CF} –কে যে বিন্দুগুলো 2:1 অনুপাতে বিভক্ত করে তাদের অবস্থান ভেক্টর একই অর্থাৎ তারা একই বিন্দু ।

∴ AD, BE ও CF মধ্যমাত্রয় সমবিন্দু এবং ছেদবিন্দুতে প্রত্যেকে 2 : 1 অনুপাতে বিভক্ত হয়। (প্রমাণিত)

গ.

দেওয়া আছে, EFBC ট্রাপিজিয়ামের BE ও CF বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে P ও Q । P,Q যোগ করা হলো।

প্রমাণ করতে হবে যে, $EF \parallel PQ \parallel BC \, \Im PQ = \frac{1}{2} (BC - EF)$

প্রমাণ : মনে করি, যেকোনো ভেক্টর মূলবিন্দুর সাপেবে B, C, E ও F ভেক্টরগুলোর অবস্থান ভেক্টর যথাক্রমে \underline{b} , \underline{c} , \underline{e} ও \underline{f}

$$\therefore \overrightarrow{CB} = \underline{b} - \underline{c}, \overrightarrow{FE} = \underline{e} - \underline{f}$$

P বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}(\underline{b} + \underline{e})$

Q বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2} \left(\underline{c} + \underline{f} \right)$

$$\therefore PQ = \frac{1}{2} (\underline{c} + \underline{f}) - \frac{1}{2} (\underline{b} + \underline{e})$$
$$= \frac{1}{2} \{ (\underline{c} - \underline{b}) - (\underline{e} - \underline{f}) \}$$

$$\therefore PQ = \frac{1}{2} (\overrightarrow{BC} - \overrightarrow{FE})$$

বা,
$$|\overrightarrow{PQ}| = \frac{1}{2}(|\overrightarrow{BC}| - |\overrightarrow{FE}|) = \frac{1}{2}(BC - FE)$$

কিন্দুত্ $PQ = \frac{1}{2}(\overrightarrow{BC} - \overrightarrow{EF})$ হওয়ায় \overrightarrow{PQ} ভেক্টরটি $-(\overrightarrow{BC} - \overrightarrow{EF})$ ভেক্টরের সমান্তরাল হবে। আবার \overrightarrow{BC} ও \overrightarrow{EF} ভেক্টরেদয় পরস্পার সমান্তরাল হওয়ায় $(\overrightarrow{BC} - \overrightarrow{FE})$ ভেক্টরিটিও \overrightarrow{BC} ও \overrightarrow{FE} এর সমান্তরাল হবে।

প্রশ্ন−১৫ চ Q, R ও S.

ক. \overrightarrow{AR} কে \overrightarrow{DA} ও \overrightarrow{DC} এর মাধ্যমে প্রকাশ কর।

খ. প্রমাণ কর যে, $\overrightarrow{SR} \parallel \overrightarrow{AC}$ এবং $\overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$ 8

গ. প্রমাণ কর যে, PQRS একটি সামান্তরিক। 8

১৫ ১৫নং প্রশ্রের সমাধান ১৫

ক.

 Δ ADR থেকে পাই,

$$\overrightarrow{AR} = \overrightarrow{AD} + \overrightarrow{DR} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC}$$

$$\overrightarrow{AR} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC}$$
 (Ans.)

খ, 'ক' চিত্র থেকে.

A , C যোগ করা হলো।

প্রমাণ করতে হবে যে, $\overrightarrow{SR} \parallel \overrightarrow{AC}$ এবং $\overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$

AD ও CD এর মধ্যবিন্দু যথাক্রমে S ও R.

$$\therefore \overrightarrow{AS} = \overrightarrow{SD} = \frac{1}{2} \overrightarrow{AD}$$

বা,
$$\overrightarrow{DR} = \overrightarrow{RC} = \frac{1}{2} \overrightarrow{DC}$$

ৰা,
$$\overrightarrow{SR} = \overrightarrow{SD} + \overrightarrow{DR}$$

$$= \frac{1}{2} \overrightarrow{AD} + \frac{1}{2} \overrightarrow{DC} = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{DC})$$

$$\therefore \overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$$

 $\overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$ এবং এর ধারক রেখা একই বা সমান্তরাল। কিন্তু এখানে SR ও AC এর ধারক রেখা এক হতে পারে না।

$$\therefore \overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$$
 এবং $SR \parallel AC$ (প্রমাণিত)

গ. চিত্র 'ক' থেকে

প্রমাণ করতে হবে যে, PQRS একটি সামান্তরিক।

AD ও DC এর মধ্যবিন্দু S ও R

$$\therefore \overrightarrow{AS} = \overrightarrow{SD} = \frac{1}{2} \overrightarrow{AD}$$

এবং
$$\overrightarrow{DR} = \overrightarrow{RC} = \frac{1}{2} \overrightarrow{DC}$$

এখন,
$$\overrightarrow{SR} = \overrightarrow{SD} + \overrightarrow{DR}$$

$$= \frac{1}{2} \overrightarrow{AD} + \frac{1}{2} \overrightarrow{DC} = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{DC}) = \frac{1}{2} \overrightarrow{AC}$$

 \therefore $\overrightarrow{SR} = \frac{1}{2} \overrightarrow{AC}$ এর ধারক রেখা একই বা সমাশ্তরাল কিশ্তু স্পষ্টতই

SR ও AC এর ধারক রেখা এক নয়।

∴ SR || AC

একইভাবে দেখানো যায় যে,

 $PQ \parallel AC$

অর্থাৎ SR || PO

অনুরূ পভাবে পাই, PS || QR

∴ PQRS একটি সামান্তরিক। (প্রমাণিত)

প্রমূ—১৬ চ ${f c}$, ${f a}$ ও ${f b}$ 3টি অশূন্য অসমান্তরাল ভেক্টর এবং ${f m}$ ও ${f n}$ দুটি স্কেলার গুণিতক।

ক. দেখাও যে,
$$\underline{a} + \underline{a} + \underline{b} + \underline{b} = 2(\underline{a} + \underline{b})$$

খ.
$$\underline{a} + \underline{b} = \underline{c}$$
 হলে দেখাও যে, $\underline{a} = \underline{c} - \underline{b}$

গ.
$$m\underline{a} + n\underline{b} = 0$$
 হলে প্রমাণ কর যে, $m = n = \underline{0}$

১ ১৬নং প্রশ্রের সমাধান ১ ব

ক. দেওয়া আছে, a ও b দুটি ভেক্টর।

এখন,
$$\underline{a} + \underline{a} + \underline{b} + \underline{b} = 1$$
. $\underline{a} + 1$. $\underline{a} + 1$. $\underline{b} + 1$. \underline{b}

$$= \underline{a} (1 + 1) + \underline{b} (1 + 1)$$

$$= 2\underline{a} + 2\underline{b} = 2(\underline{a} + \underline{b})$$

$$\therefore \underline{a} + \underline{a} + \underline{b} + \underline{b} = 2(\underline{a} + \underline{b})$$
 (দেখানো হলো)

বা,
$$(\underline{a} + \underline{b}) + (-\underline{b}) = \underline{c} + (-\underline{b})$$

$$\overline{a}$$
, $a + b + (-b) = c - b$

বা,
$$a + \{b + (-b)\} = c - b$$

বা,
$$\underline{a} + (\underline{b} - \underline{b}) = \underline{c} - \underline{b}$$

বা,
$$\underline{a} + 0 = \underline{c} - \underline{b}$$

বা,
$$\underline{a} = \underline{c} - \underline{b}$$

$$\therefore \underline{a} = \underline{c} - \underline{b}$$
 (দেখানো হলো)

গ. $m\underline{a} + n\underline{b} = 0$

বা, ma + nb - nb =
$$0 - nb$$

বা,
$$m\underline{a} = -n\underline{b}$$

 \underline{a} ও \underline{b} সমান্তরাল হলে $m\underline{a}$, \underline{b} \underline{n} এর বিপরীত ভেক্টর হতে পারে না।

$$\therefore m\underline{\mathbf{a}} = \underline{\mathbf{0}} \, \mathfrak{G} \, \underline{\mathbf{n}}\underline{\mathbf{b}} = \underline{\mathbf{0}}$$

কিম্তু a ও b অশুন্য ভেক্টর

$$\therefore \mathbf{m} = \underline{\mathbf{0}} \, \mathbf{S} \, \mathbf{n} = \underline{\mathbf{0}}$$

ক.

∴ m = n = 0 (প্রমাণিত)

প্রমু—১৭ $oldsymbol{c}$, $oldsymbol{a}$ ও $oldsymbol{b}$ তিনটি অশূন্য ভেক্টর রাশি এবং $oldsymbol{m}$, $oldsymbol{n}$ ফেবলার গুণিতক।

ক. দেখাও যে <u>a</u> + <u>a</u> = 2<u>a</u>

খ. প্রমাণ কর যে, (m - n) a = ma - na এবং

$$m(\underline{a} - \underline{b}) = m\underline{a} + m(-\underline{b})$$

গ. দেখাও যে, $\underline{a} + (\underline{b} + \underline{c}) = (\underline{a} + \underline{b}) + \underline{c}$

১৭ ১৭নং প্রশ্রের সমাধান ১৭

$$\underline{a} + \underline{a} = 1\underline{a} + 1\underline{a} = \underline{a}(1+1) = 2\underline{a}$$

$$\therefore \underline{a} + \underline{a} = 2\underline{a}$$
 (দেখানো হলো)

₹.
$$(m-n) \underline{a} = \{m + (-n)\} \underline{a} = m\underline{a} + (-n) \underline{a}$$

$$= m\underline{a} - n\underline{a}$$

$$\therefore (m-n) \underline{a} = m\underline{a} - n\underline{a}$$

আবার , m
$$(\underline{a} - \underline{b}) = m \{\underline{a} + (-\underline{b})\}$$

$$= m\underline{a} + m(-\underline{b})$$

$$\therefore$$
 m $(\underline{a} - \underline{b}) = m \underline{a} + m (-\underline{b})$ (প্রমাণিত)

গ. মনে করি,

OABC চতুর্ভুন্সে $\overrightarrow{OA} = a$

 $\overrightarrow{AB} = b$ এবং $\overrightarrow{BC} = c$

প্রমাণ করতে হবে যে.

$$\underline{\mathbf{a}} + (\underline{\mathbf{b}} + \underline{\mathbf{c}}) = (\underline{\mathbf{a}} + \underline{\mathbf{b}}) + \underline{\mathbf{c}}$$

প্রমাণ :

 Δ AOB হতে পাই,

$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

$$\overrightarrow{OB} = a + b$$

 Δ OBC হতে পাই,

$$\overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC}$$

বা,
$$(\underline{a} + \underline{b}) + \underline{c} = \overrightarrow{OC}$$

$$\overrightarrow{OC} = (\underline{a} + \underline{b}) + \underline{c} \dots (i)$$

 Δ ABC থেকে,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{AC} = \underline{b} + \underline{c}$$

 Δ OAC হতে পাই.

$$\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$$

$$\therefore \underline{\mathbf{a}} + (\underline{\mathbf{b}} + \underline{\mathbf{c}}) = \overrightarrow{\mathbf{OC}} \dots (\mathbf{ii})$$

(i) ও (ii) থেকে পাই,

$$\underline{a} + (\underline{b} + \underline{c}) = (\underline{a} + \underline{b}) + \underline{c}$$
 (Given equal)

প্র—১৮≯ m, n স্কেলার এবং <u>a</u> , <u>b</u> ভেক্টর।

ক. প্রমাণ কর যে, (m-n) $\underline{a} = m\underline{a} - n\underline{a}$

খ. $a \neq 0$ ও $b \neq 0$ হলে প্রমাণ কর যে, a = mb হতে পারে কেবলমাত্র যদি <u>a</u> ও <u>b</u> সমান্তরাল হয়।

গ. $\underline{a} \neq 0$ ও $\underline{b} \neq 0$; \underline{a} ও \underline{b} অসমাশ্তরাল এবং $m\underline{a} + n\underline{b} =$

0 হলে দেখাও যে, m=n=0.

 $(m-n) \underline{a} = \{m+(-n)\} \underline{a}$ = ma + (-n) a

১ ১৮নং প্রশ্রের সমাধান ১ ব

= ma - na

∴ (m-n) a = ma - na (প্রমাণিত)

খ. মনে করি, a = mb

তাহলে a, b এর সমান্তরাল দেখানোই যথেষ্ট হবে।

 $\underline{a} = m\underline{b}$ হওয়ায় \underline{a} , \underline{b} এর স্কেলার গুণিতক।

 \therefore a ও b এর দিক একই যদি m > 0 হয় এবং বিপরীতমুখী হবে যদি m < 0 হয়। এখন $m \neq 0$ কারণ m = 0 হলে a = 0 হবে যা অসম্ভব এখন, \underline{a} ও \underline{b} এর দিক যদি একই হয় তাহলে তারা সদৃশ সমান্তরাল আর যদি বিপরীত হয় তাহলে তারা বিসদৃশ সমান্তরাল হবে। সূতরাং উভয় ৰেত্ৰে <u>a</u> || <u>b</u> (প্ৰমাণিত)

দেওয়া আছে, ma + nb = 0

বা, ma + nb - nb =
$$0 - nb$$

বা, $m\underline{a} = -n\underline{b}$

যদি $m \neq 0$ ও $n \neq 0$ হয় তাহলে a ও b

(i) বিপরীতমুখী হবে যদি m ও n এর চিহ্ন একই হয়,

(ii) সমমুখী হবে যদি m ও n এর চিহ্ন বিপরীত হয়।

উভয় ৰেত্ৰেই <u>a</u> ও <u>b</u> সমান্তরাল হবে যা অসম্ভব কেননা দেওয়া আছে <u>a</u> ও b পরস্পর অসমান্তরাল।

∴ m ≠ 0 ও n ≠ 0 হতে পারে না।

 \therefore m = n = 0 (দেখানো হলো)

প্রশ্ল–১৯ > ABCD চতুর্ভুজের কর্ণদর AC ও BD.

খ. যদি ACও BD কর্ণদ্বয় পরস্পর O বিন্দুতে সমদ্বিখণ্ডিত হয় তবে প্রমাণ কর যে. ABCD একটি সামান্তরিক।

গ. AB ও AC ভেক্টরত্বয়কে AD ও BD এর সাহায্যে প্রকাশ কর।

🕨 🕯 ১৯নং প্রশ্রের সমাধান 🕨 🕯

ক.

 Δ ABC থেকে পাই,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
....(i)

△ CDA থেকে পাই,

$$\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{CA}$$
.....(ii)

(i) + (ii) থেকে পাই,

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AC} - \overrightarrow{AC} = 0$$
 (Ans.)

খ.

দেওয়া আছে.

$$\overrightarrow{AO} = \overrightarrow{OC}$$
 এবং $\overrightarrow{OB} = \overrightarrow{DO}$

$$\overrightarrow{AO} = \overrightarrow{OC}$$
....(i)

$$\overrightarrow{OB} = \overrightarrow{DO}$$
(ii)

$$(i) + (ii)$$
 থেকে $\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{DO}$

$$\overrightarrow{AB} = \overrightarrow{DC}$$

সুতরাং AB ও DC এর ধারক রেখা একই বা সমান্তরাল। কিন্তু এখানে ধারক রেখা এক নয়।

প্রশু−২০ ≯ ΔABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E.

- ক. (AD + DE) কে AC ভেক্টরের সাহায্যে প্রকাশ কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, DE || BC এবং DE =

$$\frac{1}{2}$$
 BC.

- গ. BCED ট্রাপিজিয়ামের BD ও CE বাহুর মধ্যবিন্দু যথাক্রমে M ও N হলে ভেক্টরের সাহায্যে প্রমাণ কর যে,
 - $MN \parallel DE \parallel BC$ এবং $MN = \frac{1}{2} (DE + BC)$

২০নং প্রশ্নের সমাধান >

ক. AADE-এ

$$\overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{AE}$$
 [ত্রিভুজ বিধি]
$$= \frac{1}{2} \overrightarrow{AC}$$
 [যেহেতু E, AC এর মধ্যবিন্দু ।]

সুতরাং, $\overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2}\overrightarrow{AC}$

খ. সৃজনশীল ১(খ) নং সমাধানের অনুরূ প।

গ

DBCE ট্রাপিজিয়ামে M ও N যথাক্রমে BD ও CE-এর মধ্যবিন্দু । ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, MN \parallel DE \parallel BC এবং MN $=\frac{1}{2}$ (BC + DE)

$$\overrightarrow{AB} \parallel \overrightarrow{DC} \otimes \overrightarrow{AB} = \overrightarrow{DC}$$

অনুর পভাবে, AD || BC ও AD = BC.

- ∴ ABCD একটি সামান্তরিক (প্রমাণিত)
- গ. 'খ' এর চিত্র থেকে, ABCD একটি সামান্তরিক।

 Δ ABD হতে পাই.

$$\overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB}$$

$$\overrightarrow{AB} = -\overrightarrow{DA} - \overrightarrow{BD}$$

$$\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{BD} (Ans.)$$

এবং Λ ACD থেকে .

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{AD} - \overrightarrow{BD}$$

$$\overrightarrow{AC} = 2\overrightarrow{AD} - \overrightarrow{BD}$$
 (Ans.)

প্রমাণ : মনে করি, কোনো ভেক্টর মূলবিন্দুর সাপেবে D, B, C ও E বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{\mathbf{d}}$, $\underline{\mathbf{b}}$, $\underline{\mathbf{c}}$ ও $\underline{\mathbf{e}}$.

∴
$$\overrightarrow{BC} = \underline{c} - \underline{b}$$
 এবং $\overrightarrow{DE} = \underline{e} - \underline{d}$

$$\therefore$$
 M কিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}$ $(\underline{d}+\underline{b})$ [\because M, DB-এর মধ্যকিন্দু]

এবং N বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}\left(\underline{e}+\underline{c}\right)\left[\because N, EC$ -এর মধ্যবিন্দু $\right]$

$$\therefore \overrightarrow{MN} = \frac{1}{2} (\underline{e} + \underline{c}) - \frac{1}{2} (\underline{d} + \underline{b})$$

$$= \frac{1}{2} (\underline{e} + \underline{c} - \underline{d} - \underline{b}) = \frac{1}{2} \{ (\underline{c} - \underline{b}) + (\underline{e} - \underline{d}) \}$$

$$\therefore \overrightarrow{MN} = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{DE})$$

কিন্দুত্ব \overrightarrow{DE} ও \overrightarrow{DE} পরস্পর সমান্তরাল হওয়ায় $\overrightarrow{BC} + \overrightarrow{DE}$ ভেক্টরটিও তাদের সমান্তরাল হবে।

∴ MN ||BC ||DE এবং MN = $\frac{1}{2}$ (BC + DE) (প্রমাণিত)

엠嶌-২১ ▶

P,Q,R,S বিন্দুগুলো ABCD চতুর্ভুজের বাহুসমূহের মধ্যবিন্দু।

- ক. \overrightarrow{PQ} ভেক্টরকে \overrightarrow{AB} ও \overrightarrow{BC} ভেক্টরের মাধ্যমে প্রকাশ কর। ২
- খ. ভেষ্টরের সাহায্যে প্রমাণ কর যে, PQRS একটি সামাশ্তরিক।
- গ. ভেক্টর পদ্ধতিতে প্রমাণ কর যে, PQ II AC এবং PQ $= \frac{1}{2} \, \text{AC}.$

ক.

চিত্ৰ হতে,

$$\overrightarrow{PO} = \overrightarrow{PB} + \overrightarrow{BO}$$

$$\overrightarrow{A}$$
, $\overrightarrow{PQ} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC}$

$$\therefore \overrightarrow{PQ} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC})$$

খ. দেওয়া আছে, ABCD চতুর্ভুজের বাহুগুলোর মধ্যবিন্দু যথাক্রমে P, Q, R ও S

প্রমাণ করতে হবে যে, PQRS একটি সামান্তরিক।

প্রমাণ: মনে করি,
$$\overrightarrow{AB} = \underline{a}$$
 , $\overrightarrow{BC} = \underline{b}$, $\overrightarrow{CD} = \underline{c}$ এবং $DA = \underline{d}$

'ক' হতে পাই ,
$$\overrightarrow{PQ} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2} (\underline{a} + \underline{b})$$

অনুরূ পভাবে,
$$\overrightarrow{QR} = \frac{1}{2} \, (\underline{b} + \underline{c})$$
 এবং $\overrightarrow{RS} = \frac{1}{2} \, (\underline{c} + \underline{d})$

আবার,
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \underline{a} + \underline{b}$$

এবং
$$\overrightarrow{CA} = \overrightarrow{CD} + \overrightarrow{DA} = \underline{c} + \underline{d}$$

[ভেক্টর যোগের ত্রিভুজ বিধি অনুযায়ী]

$$\therefore (\underline{a} + \underline{b}) + (\underline{c} + \underline{d}) = \overrightarrow{AC} + \overrightarrow{CA}$$

$$= \overrightarrow{AC} - \overrightarrow{AC} [\because \overrightarrow{CA} = - \overrightarrow{AC}]$$

$$= \underline{0}$$

অর্থাৎ $(\underline{a} + \underline{b}) = -(\underline{c} + \underline{d})$

$$\frac{1}{2}\left(\underline{\mathbf{a}} + \underline{\mathbf{b}}\right) = -\frac{1}{2}\left(\underline{\mathbf{c}} + \underline{\mathbf{d}}\right)$$

$$\overrightarrow{PQ} = -\overrightarrow{RS}$$

$$\therefore \overrightarrow{PQ} = \overrightarrow{SR}$$

∴ PQ এবং SR সমান ও সমান্তরাল।

অনুরূ পভাবে, QR ও PS সমান ও সমান্তরাল।

- ∴ PQRS একটি সামান্তরিক।(প্রমাণিত)
- গ. মনে করি, ΔABC এর AB ও BC বাহুর মধ্যবিন্দু যথাক্রমে P ও Q ; P,Q যোগ করি।

প্রমাণ করতে হবে যে, PQ \parallel AC এবং PQ = $\frac{1}{2}$ AC.

প্রমাণ: ভেক্টর বিয়োগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{PQ} - \overrightarrow{PB} = \overrightarrow{BQ}$$
(i)

এবং
$$\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$$
(ii)

কিম্তু
$$\overrightarrow{AB} = 2\overrightarrow{PB}, \overrightarrow{BC} = 2\overrightarrow{BQ}$$

এখন (ii) নং সমীকরণ হতে পাই,

$$\overrightarrow{AC} - 2\overrightarrow{PB} = 2\overrightarrow{BO}$$

বা,
$$\overrightarrow{AC} = 2 \overrightarrow{PB} + 2 \overrightarrow{BQ}$$

বা,
$$\overrightarrow{AC} = 2(\overrightarrow{PB} + \overrightarrow{BQ})$$

বা,
$$\overrightarrow{AC} = 2 \overrightarrow{PQ}$$

বা,
$$\frac{1}{2} \overrightarrow{AC} = \overrightarrow{PQ}$$

$$\therefore \overrightarrow{PQ} = \frac{1}{2} \overrightarrow{AC}$$

আবার,
$$|\overrightarrow{PQ}| = \frac{1}{2} |\overrightarrow{AC}|$$
 বা, $PQ = \frac{1}{2}$ AC (প্রমাণিত)

আবার, \overrightarrow{PQ} ও \overrightarrow{AC} ভেক্টরের ধারক রেখা একই বা সমান্তরাল। কিন্তু এখানে ধারক রেখা এক নয়। সুতরাং \overrightarrow{PQ} ও \overrightarrow{AC} ভেক্টরদ্বয়ের ধারক রেখাদ্বয় অর্থাৎ \overrightarrow{PQ} ॥ \overrightarrow{AC} (প্রমাণিত)

প্রা–২২ ight
angle m ABCD চতুর্ভুজের m AB, m BC, m CD এবং m DA বাহুর মধ্য বিন্দু যথাক্রমে m P, m Q, m R এবং m S । m A, m B, m C এবং m D বিন্দুর অবস্থান ভেক্টর যথাক্রমে m a, m b, m c এবং m d.

ক. R বিন্দুর অবস্থান ভেক্টর নির্ণয় কর।

খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, PQRS একটি

গ. PBDS ট্রাপিজিয়াম–এ PB ও SD এর তীর্যক বাহুর মধ্যবিন্দু যথাক্রমে M ও N হলে ভেক্টরের সাহায্যে প্রমাণ

কর যে, MN | | BD | | PS এবং MN = $\frac{1}{2}$ (BD + PS). 8

🕨 🕯 ২২নং প্রশ্রের সমাধান 🕨 🕯

ক. দেওয়া আছে, A, B, C ও D বিন্দুর অবস্থান ভেক্টর \underline{a} , \underline{b} , \underline{c} ও \underline{d} এবং R বিন্দু CD বাহুর মধ্যবিন্দু।

সুতরাং R বিন্দুর অবস্থান ভেক্টর $=\frac{c+d}{2}$ (Ans.)

খ. অনুশীলনী ১২-এর উদাহরণ ৫ দেখ।

গ.

মনে করি, PBDS ট্রাপিজিয়ামের BD \parallel PS এবং PB ও SD বাহুর মধ্যবিন্দু যথাক্রমে M ও N \mid

M, N যোগ করি । প্রমাণ করতে হবে যে, MN | | BD || PS এবং MN = $\frac{1}{2}$ (BD + PS)

প্রমাণ : দেওয়া আছে, A, B, C ও D বিন্দুর অবস্থান ভেক্টর যথাক্রমে \underline{a} , \underline{b} , \underline{c} এবং \underline{d} । \underline{P} ও \underline{S} যথাক্রমে $\underline{A}\underline{B}$ ও $\underline{A}\underline{D}$ বাহুর মধ্যবিন্দু।

মনে করি, PBDS ট্রাপিজিয়ামের BD $| \ |$ PS এবং PB ও SD বাহুর মধ্যবিন্দু যথাক্রমে M ও N $| \ |$

 $M,\,N$ যোগ করি। প্রমাণ করতে হবে যে, $MN\mid\mid BD\mid\mid PS$ এবং $MN=\frac{1}{2}$ (BD+PS)

প্রমাণ : দেওয়া আছে, A, B, C ও D বিন্দুর অবস্থান ভেক্টর যথাক্রমে \underline{a} , \underline{b} , \underline{c} এবং \underline{d} । P ও S যথক্রমে AB ও AD বাহুর মধ্যবিন্দু।

$$\therefore$$
 P বিন্দু অবস্থান ভেক্টর $\underline{p} = \frac{1}{2} (\underline{a} + \underline{b})$

S " "
$$\underline{s} = \frac{1}{2} (\underline{a} + \underline{d})$$

আবার, M ও N যথাক্রমে PB ও DS বাহুর মধ্যবিন্দু।

$$\therefore$$
 M বিন্দুর অবস্থান ভেক্টর $\underline{\mathbf{m}} = \frac{1}{2} \left(\underline{\mathbf{p}} + \underline{\mathbf{b}} \right)$

$$= \frac{\underline{a}}{4} + \frac{\underline{b}}{4} + \frac{\underline{b}}{2}$$

N বিন্দুর অবস্থান ভেক্টর $\underline{n} = \frac{1}{2}(\underline{s} + \underline{d}) = \frac{\underline{d}}{2} + \frac{\underline{a}}{4} + \frac{\underline{d}}{4}$

$$\overrightarrow{MN} = \underline{n} - \underline{m}$$

$$= \underline{\frac{d}{2}} + \underline{\frac{a}{4}} + \underline{\frac{d}{4}} - \underline{\frac{a}{4}} - \underline{\frac{b}{4}} - \underline{\frac{b}{2}}$$

$$= \underline{\frac{1}{2}} (\underline{d} - \underline{b}) + \underline{\frac{1}{4}} (\underline{d} - \underline{b}) = \underline{\frac{1}{2}} \overrightarrow{BD} + \underline{\frac{1}{4}} (\overrightarrow{BD})$$

$$= \underline{\frac{1}{2}} \overrightarrow{BD} + \underline{\frac{1}{4}} (2\overrightarrow{PS})$$

$$= \underline{\frac{1}{2}} \overrightarrow{BD} + \underline{\frac{1}{4}} (2\overrightarrow{PS})$$

$$= \underline{\frac{1}{2}} \overrightarrow{BD} + \underline{\frac{1}{4}} (2\overrightarrow{PS})$$

দুই বাহুর মধ্যবিন্দুর সংযোজক সরলরেখা তৃতীয় বাহুর অর্ধেক]

$$= \frac{1}{2} \overrightarrow{BD} + \frac{1}{2} \overrightarrow{PS} = \frac{1}{2} (\overrightarrow{BD} + \overrightarrow{PS})$$

 $BD \parallel PS$ হওয়ায় $\overrightarrow{BD} + \overrightarrow{PS}$ ভেক্টরটিও \overrightarrow{BD} ও \overrightarrow{PS} ভেক্টরের সমান্তরাল হবে।

অহলে MN ভেক্টরটিও BD ও PS ভেক্টরের সমাশ্তরাল হবে কারণ–

$$\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{BD} + \overrightarrow{PS})$$

$$\therefore \qquad |\overrightarrow{MN}| = \frac{1}{2} |\overrightarrow{BD} + \overrightarrow{PS}| = \frac{1}{2} (|\overrightarrow{BD} + \overrightarrow{PS}|)$$

$$\therefore MN = \frac{1}{2} (BD + PS)$$

অর্থাৎ MN || BD || PS এবং MN = $\frac{1}{2}$ (BD + PS) (প্রমাণিত)

প্রশ্ল–২৩ **>** ABCD সামান্তরিকের কর্ণদ্বয় AC ও BD

- ক. \overrightarrow{AC} , \overrightarrow{BD} ভেক্টরদ্বয়কে \overrightarrow{AB} এবং \overrightarrow{AD} ভেক্টরদ্বয়ের মাধ্যমে প্রকাশ কর।
- খ. ভেক্টর পদ্ধতিতে প্রমাণ কর যে, প্রদন্ত কর্ণদ্বয় পরস্পরকে সমদিখন্ডিত করে।
- গ. প্রমাণ কর যে, কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে তা একটি সামান্তরিক।

২০নং প্রশ্রের সমাধান >

ক.

চিত্ৰ হতে পাই.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD} \ [\because \overrightarrow{AD} = \overrightarrow{BC} \]$$

এবং
$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

$$\therefore \overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}$$

- খ. অনুশীলনী ১২ এর উদাহরণ–৪ দেখ।
- গ. মনে করি, ABCD চতুর্ভুজের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে সমদ্বিখণ্ডিত করেছে। প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

প্রমাণ : $\overrightarrow{DO} = \overrightarrow{OB}$ [: O, BD এর মধ্যবিন্দু]

এবং $\overrightarrow{OC} = \overrightarrow{AO}$ [:: O, AC এর মধ্যবিন্দু]

এখন, $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ [ত্রিভুজ বিধি]

$$= \overrightarrow{OC} + \overrightarrow{DO} \qquad [\because \overrightarrow{AO} = \overrightarrow{OC}, \overrightarrow{OB} = \overrightarrow{DO}]$$
$$= \overrightarrow{DO} + \overrightarrow{OC}$$

 \therefore $\overrightarrow{AB} = \overrightarrow{DC}$ [ঞ্জিজুজ বিধি $\overrightarrow{DC} = \overrightarrow{DO} + \overrightarrow{OC}$]

 \therefore AB = DC এবং \overrightarrow{AB} ও \overrightarrow{DC} এর ধারক রেখাদ্বয় একই বা সমান্তরাল হবে। এখানে স্পষ্টত : \overrightarrow{AB} ও \overrightarrow{DC} এর ধারক রেখাদ্বয় সম্পূর্ণ ভিন্ন। অর্থাৎ $AB \parallel DC$

∴ ABCD একটি সামান্তরিক।

[∵ সামান্তরিকের বিপরীত বাহুদ্বয় সমান ও সমান্তরাল]
(প্রমাণিত)

প্রমূ–২৪ \blacktriangleright \triangle ABC \lor D, E যথাক্রমে AB \lor AC এর মধ্যবিন্দু \mid P, Q যথাক্রমে BE \lor CD এর মধ্যবিন্দু \mid কোন ভেক্টর মূলবিন্দুর সাপেবে A, B, C বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে \underline{a} , \underline{b} , \underline{c}

- ক. কোনো বিন্দুর অবস্থান ভেক্টর বলতে কী বোঝায়?
- খ. ভেষ্টরের সাহায্যে দেখাও যে, $PQ \parallel DE$ এবং $PQ = \frac{1}{2}$

গ. ভেক্টরের সাহায্যে প্রমাণ কর যে, DP || AC এবং DP

$$= \frac{1}{4} AC$$

♦ ২৪নং প্রশ্নের সমাধান ▶

ক. সমতলস্থ কোনো নির্দিষ্ট বিন্দু O এর সাপেৰে ঐ সমতলের যেকোনো বিন্দু P এর অবস্থান \overrightarrow{OP} কে O বিন্দুর সাপেৰে P বিন্দুর অবস্থান ভেক্টর বলা হয় এবং O বিন্দুকে ভেক্টর মূলবিন্দু বলা হয়।

থ. দেওয়া আছে, ∆ABC-এ D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু।

∴ BCED একটি ট্রাপিজিয়াম।

জাবার, BE ও CD এর মধ্যবিন্দু যথাক্রমে P ও Q P, Q যোগ করি। প্রমাণ করতে হবে PQ \parallel DE এবং PQ $=\frac{1}{2}$ (BC - DE)

প্রমাণ : মনে করি কোন ভেক্টর মূলবিন্দুর সাপেবে D ও E বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{\mathbf{d}}$ ও $\underline{\mathbf{e}}$

$$\overrightarrow{BC} = \underline{c} - \underline{b}$$

$$\overrightarrow{DE} = e - d$$

 \therefore P বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}\left(\underline{b}+\underline{e}\right)\left[\ \because P,BE\ এর মধ্যবিন্দু
ight]$

এবং Q বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} (\underline{b} + \underline{d}) [\because Q, CD]$ এর মধ্যবিন্দু]

$$\overrightarrow{PQ} = \frac{1}{2} (\underline{c} + \underline{d}) - \frac{1}{2} (\underline{b} + \underline{e})$$

$$= \frac{1}{2} (\underline{c} + \underline{d} - \underline{b} - \underline{e}) = \frac{1}{2} \{ (\underline{c} - \underline{b}) - (\underline{e} - \underline{d}) \}$$

$$= \frac{1}{2} (\overrightarrow{BC} - \overrightarrow{DE})$$

 $DE \parallel BC$ হওয়ায় $\overrightarrow{BC} - \overrightarrow{DE}$ ভেক্টরটি ও \overrightarrow{BC} ও \overrightarrow{DE} ভেক্টরের ক. সমান্তরাল হবে, তাহলে \overrightarrow{PQ} ভেক্টরটি ও \overrightarrow{BC} ও \overrightarrow{DE} এর সমান্তরাল হবে।

আবার,
$$|\overrightarrow{PQ}| = \frac{1}{2}|\overrightarrow{BC} - \overrightarrow{DE}|$$

$$\boxed{PQ = \frac{1}{2} \left(|\overrightarrow{BC}| - |\overrightarrow{DE}| \right) = \frac{1}{2} (BC - DE)}$$

 \therefore PQ || DEএবং PQ = $\frac{1}{2}$ (BC – DE) (দেখানো হলো)

~

চিত্রে, ABC ত্রিভুজে D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু। P, BE এর মধ্যবিন্দু।

যেকোনো ভেক্টর মূলবিন্দুর সাপেৰে A, B ও C এর অবস্থান ভেক্টর $\underline{a}, \underline{b}$ ও \underline{c}

$$\therefore \overrightarrow{AB} = \underline{b} - \underline{a}$$

এবং
$$\overrightarrow{AC} = c - a$$

 \therefore D বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}$ (\underline{a} + \underline{b})

 \mathbf{E} বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}\left(\underline{\mathbf{a}}+\underline{\mathbf{c}}\right)$

এবং P বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}$ $\left\{ b + \frac{1}{2} \left(\underline{a} + \underline{c} \right) \right\}$

$$\overrightarrow{DP} = \frac{1}{2} \left\{ b + \frac{1}{2} (\underline{a} + \underline{c}) \right\} - \frac{1}{2} (\underline{a} + \underline{b})$$
$$= \frac{1}{2} b + \frac{1}{4} (a + c) - \frac{1}{2} a - \frac{1}{2} b$$
$$= \frac{1}{4} (\underline{c} - \underline{a}) = \frac{1}{4} \overrightarrow{AC}$$

সুতরাং
$$|\overrightarrow{DP}| = \frac{1}{4} |\overrightarrow{AC}|$$

$$\therefore$$
 DP || AC এবং DP = $\frac{1}{4}$ AC (প্রমাণিত)

প্রশ্ন–২৫ ≯ A, B, C ও D বিন্দুগুলোর অকথান ভেক্টর যথাক্রমে <u>a, b, c</u> ও <u>d</u>।

২

খ. দেখাও যে, ABCD সামান্তরিক হবে যদি ও কেবল যদি <u>b – a = c – d</u> হয়।

গ. AB রেখাংশ C বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হলে,

দেখাও যে, C বিন্দুর অবস্থান ভেক্টর $\underline{c} = \frac{m\underline{b} + n\underline{a}}{m+n}$

২৫নং প্রশ্রের সমাধান >

ক. মনে করি, কোনো সমতলে O বিন্দু সাপেৰে A বিন্দুর অবস্থান ভেক্টর $\overrightarrow{OA} = \underline{a}$ এবং B বিন্দুর অবস্থান ভেক্টর,

$$\overrightarrow{OB} = \underline{b}$$
 তাহলে $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$

 \overline{A} , $\underline{a} + \overrightarrow{AB} = \underline{b}$

∴
$$\overrightarrow{AB} = \underline{b} - \underline{a}$$
 (দেখানো হলো)

খ. দেওয়া আছে, A, B, C, D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u> দেখাতে হবে যে, ABCD সামান্তরিক হবে যদি ও কেবল যদি <u>b</u> – <u>a</u> = <u>c</u> – <u>d</u> হয়।

A, B, C ও D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে <u>a, b, c</u> ও <u>d</u>

∴
$$\overrightarrow{AB} = \underline{b} - \underline{a}$$
 এবং $\overrightarrow{DE} = \underline{c} - \underline{d}$

মনে করি, ABCD একটি সামান্তরিক।

তাহলে AB ও DC পরস্পর সমান ও সমান্তরাল হবে।

$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\therefore \underline{b} - \underline{a} = \underline{c} - \underline{d}$$

$$\overrightarrow{AB} = \overrightarrow{DC}$$

সুতরাং AB ও DC রেখা দুটি পরস্পর সমান ও সমান্তরাল অর্থাৎ

ABCD একটি সামান্তরিক।

∴ ABCD একটি সামান্তরিক হবে যদি ও কেবল যদি

$$b-a=c-d$$
 হয়। (দেখানো হলো)

গ. মনে করি, কোনো মূলবিন্দু O এর সাপেৰে A ও B এর অবস্থান ভেক্টর যথাক্রমে \underline{a} ও \underline{b} । AB রেখাংশ C বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হলে দেখাতে হবে যে, C বিন্দুর অবস্থান ভেক্টর

$$\underline{c} = \frac{m\underline{b} + n\underline{a}}{m+n}$$

প্রমাণ :
$$\frac{AC}{CB} = \frac{m}{n}$$

[∵ AB রেখাংশ C বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হয়েছে।]

বা,
$$\frac{|\overrightarrow{AC}|}{|\overrightarrow{CB}|} = \frac{m}{n}$$

বা,
$$\frac{\overrightarrow{CB}|}{|AC|} = \frac{n}{m}$$
 [ব্যস্তকরণ করে]

বা,
$$\frac{|\overrightarrow{CB}| + |\overrightarrow{AC}|}{|\overrightarrow{AC}|} = \frac{n+m}{m}$$
 [যোজন করে]

বা,
$$\frac{AC + CB}{AC} = \frac{n + m}{m}$$

বা,
$$\frac{AB}{AC} = \frac{m+n}{m}$$

$$\overrightarrow{A}, \frac{|\overrightarrow{AB}|}{|\overrightarrow{AC}|} = \frac{m+n}{m}$$

বা,
$$\frac{\overrightarrow{|AC|}}{|AB|} = \frac{m}{m+n}$$
 [ব্যস্তকরণ করে]

বা,
$$|\overrightarrow{AC}| = \left(\frac{m}{m+n}\right) |\overrightarrow{AB}|$$

বা,
$$\overrightarrow{AC} = \left(\frac{m}{m+n}\right) \overrightarrow{AB}$$
 [$\because \overrightarrow{AC} =$ এবং \overrightarrow{AB} এর দিক একই]

বা,
$$\underline{c} - \underline{a} = \frac{m}{m+n} (\underline{b} - \underline{a}) [\because \overrightarrow{AC} = \underline{c} - \underline{a} \ \ \overrightarrow{AB} = \underline{b} - \underline{a}]$$

বা,
$$\underline{c} = \frac{m}{m+n} (\underline{b} - \underline{a}) + \underline{a}$$

বা,
$$\underline{\mathbf{c}} = \frac{\underline{\mathbf{m}}\underline{\mathbf{b}} - \underline{\mathbf{m}}\underline{\mathbf{a}} - \underline{\mathbf{m}}\underline{\mathbf{a}} + \underline{\mathbf{n}}\underline{\mathbf{a}}}{\underline{\mathbf{m}} + \underline{\mathbf{n}}}$$

$$\therefore \underline{c} = \frac{m\underline{b} + m\underline{a}}{m+n}$$
 (দেখানো হলো)

প্রশ্ন–২৬ > P,Q,R,S একটি চতুর্ভুজের চারটি শীর্ষবিন্দু। চতুর্ভুজের বাহুগুলোর মধ্যবিন্দু যথাক্রমে A,B,C ও D।

- ক. AB এর অবস্থান ভেক্টর PQ ও QR এর মাধ্যমে প্রকাশ কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, ABCD একটি সামান্তরিক।
- গ. ভেক্টরের সাহায্যে প্রমাণ কর যে, ABCD এর কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করে।

১ ব ২৬নং প্রশ্রের সমাধান ১ ব

ক. চিত্ৰ হতে,

$$\overrightarrow{AB} = \overrightarrow{AQ} + \overrightarrow{QB}$$

বা,
$$\overrightarrow{AB} = \frac{1}{2} \overrightarrow{PQ} + \frac{1}{2} \overrightarrow{QR}$$

$$\therefore \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{PQ} + \overrightarrow{QR} \right)$$

প্রমাণ : মনে করি,
$$\overrightarrow{PQ} = \underline{a}$$
, $\overrightarrow{QR} = \underline{b}$, $\overrightarrow{RS} = \underline{c}$ এবং $\overrightarrow{SP} = \underline{d}$

'ক' হতে পাই,
$$\overrightarrow{AB} = \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{QR}) = \frac{1}{2} (\underline{a} + \underline{b})$$

অনুরূ পভাবে
$$\overrightarrow{BC} = \frac{1}{2} (\underline{b} + \underline{c})$$
 এবং $\overrightarrow{CD} = \frac{1}{2} (\underline{c} + \underline{d})$

এবং
$$\overrightarrow{DA} = \frac{1}{2} (\underline{d} + \underline{a})$$

আবার,
$$\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR} = a + b$$

এবং
$$\overrightarrow{RP} = \overrightarrow{RS} + \overrightarrow{SP} = (\underline{c} + \underline{d})$$
 [ভেক্টর যোগের ত্রিভুজ বিধি অনুযায়ী]

$$\therefore (\underline{a} + \underline{b}) + (\underline{c} + \underline{d}) = \overrightarrow{PR} + \overrightarrow{RP}$$

$$=\overrightarrow{PR}-\overrightarrow{PR}$$
 [$::\overrightarrow{RP}=-\overrightarrow{PR}$]

অর্থাৎ
$$(\underline{a} + \underline{b}) = (\underline{c} + \underline{d})$$

বা,
$$\frac{1}{2}(\underline{a} + \underline{b}) = \frac{1}{2}(\underline{c} + \underline{d})$$

$$\overrightarrow{AB} = -\overrightarrow{CD}$$

$$\overrightarrow{AB} = \overrightarrow{DC}$$

∴ AB এবং DC সমান ও সমানতরাল। অনুরূ পভাবে BC এবং AD সমান ও সমানতরাল।

∴ABCD একটি সামা**ন্**তরিক। (**প্রমাণিত**)

গ.

মনে করি, ABCD সামান্তরিকের \overrightarrow{AC} ও \overrightarrow{BD} কর্ণদ্বয় পরস্পারকে O বিন্দুতে ছেদ করে।

মনে করি,
$$\overrightarrow{OA} = \underline{a}$$
, $\overrightarrow{OB} = \underline{b}$

$$\overrightarrow{OC} = \underline{c}$$
 এবং $\overrightarrow{OD} = \underline{d}$

প্রমাণ করতে হবে যে, $|\mathbf{a}| = |\mathbf{c}|, |\mathbf{b}| = |\mathbf{d}|$

প্রমাণ :
$$\overrightarrow{AO} + \overrightarrow{OD} = \overrightarrow{AD}$$
 এবং $\overrightarrow{BO} + \overrightarrow{OC} = \overrightarrow{BC}$

'খ' হতে পাই,
$$\overrightarrow{AD} = \overrightarrow{BC}$$

অর্থাৎ
$$\overrightarrow{AO} + \overrightarrow{OD} = \overrightarrow{BO} + \overrightarrow{OC}$$

বা,
$$\underline{a} + \underline{d} = \underline{b} + \underline{c}$$

বা,
$$\underline{a} + \underline{d} - \underline{c} - \underline{d} = \underline{b} + \underline{c} - \underline{c} - \underline{d}$$

[উভয় পৰে –<u>c</u> – <u>d</u> যোগ করে]

$$\therefore \underline{\mathbf{a}} - \underline{\mathbf{c}} = \underline{\mathbf{b}} - \underline{\mathbf{d}}$$

এখানে, a ও c এর ধারক AC

∴ <u>a</u> – <u>c</u> এর ধারক AC

আবার, b ও d এর ধারক BD

∴ b – d এর ধারক BD

 $\underline{a}-\underline{c}$ ও $\underline{b}-\underline{d}$ দুইটি সমান করে অশূন্য ভেক্টর তাদের ধারকরেখা একই অথবা সমান্তরাল হবে। কিন্তু AC ও BD দুইটি পরস্পরচ্ছেদী অসমান্তরাল সরলরেখা।

সুতরাং $\underline{a}-\underline{c}$ ও $\underline{b}-\underline{d}$ ভেক্টর অশূন্য হতে পারে না বিধায় এদের মান শূন্য হবে।

$$\therefore \underline{\mathbf{a}} - \underline{\mathbf{c}} = 0$$

বা,
$$\underline{\mathbf{a}} = \underline{\mathbf{c}}$$

এবং
$$\underline{\mathbf{b}} - \underline{\mathbf{d}} = \mathbf{0}$$

$$\therefore \underline{\mathbf{b}} = \underline{\mathbf{d}}$$

$$|\underline{\mathbf{a}}| = |\underline{\mathbf{c}}|$$
 এবং $|\underline{\mathbf{b}}| = |\underline{\mathbf{d}}|$

∴ ABCD এর কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে। (প্রমাণিত)

প্রশ্ল−২৭ ▶ ABCD একটি সামান্তরিক যার কর্ণদয় AC ও BD।

- ক. \overrightarrow{AC} , \overrightarrow{BD} ভেক্টরদ্বয়কে \overrightarrow{AB} ও \overrightarrow{AD} ভেক্টরদ্বয়ের মাধ্যমে প্রকাশ কর।
- খ. ভেক্টর পদ্ধতিতে প্রমাণ কর যে, প্রদ**ত্ত** কর্ণদ্বয় পরস্পরকে সমদিখন্ডিত করে।
- গ. AB ও CD বাহুর মধ্যবিন্দু যথাক্রমে P ও Q হলে প্রমাণ কর যে, APCQ একটি সামান্তরিক।

🕨 🕯 ২৭নং প্রশ্রের সমাধান 🕨 🕻

ABCD একটি সামান্তরিক যার কর্ণদ্বয় AC ও BD যাদের ছেদ বিন্দু O।

△ABD-এ ভেক্টরের ত্রিভুজ বিধি অনুযায়ী,

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

$$\therefore \overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} \dots (i)$$

 ΔABC -এ ভেক্টরের ত্রিভুজ বিধি অনুযায়ী,

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

বা,
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$
.....(ii) $\overrightarrow{BC} = \overrightarrow{ABCD}$ সামাম্ভরিক $\overrightarrow{BC} = \overrightarrow{AD}$

 \therefore (i) ও (ii) নং সমীকরণে \overrightarrow{AC} , \overrightarrow{BD} ভেক্টরণয়কে \overrightarrow{AC} ও \overrightarrow{BD} ভেক্টরণয়ের মাধ্যমে প্রকাশ করা হলো।

খ. অনুশীলনী ১২ এর উদাহরণ ৪ দেখ।

গ.

ABCD সামান্তরিকের AB ও CD বাহুর মধ্যবিন্দু যথাক্রমে

P ও Q । P, Q যোগ করি।

প্রমাণ করতে হবে যে, APCO একটি সামান্তরিক।

প্রমাণ : মনে করি, $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{BC} = \underline{b}$, $\overrightarrow{CD} = \underline{c}$ এবং $\overrightarrow{DA} = \underline{d}$ $\triangle PBC - এ ভেক্টর যোগের ত্রিভূজবিধি অনুযায়ী,$

$$\overrightarrow{PC} = \overrightarrow{PB} + \overrightarrow{BC}$$

$$= \frac{1}{2} \overrightarrow{AB} + \overrightarrow{BC} \qquad [\because P, AB \text{ এর মধ্যবিন্দু}]$$

$$\therefore \overrightarrow{PC} = \frac{1}{2} \underline{a} + \underline{b} \dots (i)$$

△ADQ - এ ভেক্টর যোগের ত্রিভুজ বিধি অনুযায়ী,

$$\overrightarrow{QA} = \overrightarrow{QD} + \overrightarrow{DA}$$

$$= \frac{1}{2} \overrightarrow{CD} + \overrightarrow{DA} \quad [\because Q, CD \quad \text{এর মধ্যবিন্দু}]$$

$$= \frac{1}{2} \underline{c} + \underline{d}$$

$$= \frac{1}{2} \underline{a} + \underline{b} \dots (ii) \quad [\because ABCD সামান্তরিক]$$

$$\because \underline{a} = \underline{c} \quad \text{এবং} \, \underline{b} = \underline{d}$$

(i) ও (ii) থেকে পাই,

$$\overrightarrow{PC} = \overrightarrow{OA}$$

ভেক্টরদ্বয় সমান। অর্থাৎ তাদের ধারক রেখা একই অথবা সমান্তরাল কিন্তু এখানে ধারক রেখা এক নয়।

$$\overrightarrow{AP} = \frac{1}{2} \underline{a}$$
(iii)

এবং Q, CD এর মধ্যবিন্দু বলে, $\overrightarrow{CQ} = \frac{1}{2} \overrightarrow{CD}$

বা,
$$\overrightarrow{CQ} = \frac{1}{2} \underline{c}$$

$$\overrightarrow{CQ} = \frac{1}{2} \underline{a}$$

সূতরাং \overrightarrow{AP} ও \overrightarrow{CQ} ভেক্টরন্বয়ের সমান ও সমান্তরাল।

∴ APCQ একটি সামান্তরিক (প্রমাণিত)

প্রশ্ন–২৮ 🕨

উপরের চিত্রে ABC ত্রিভুজের AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E এবং BCFD একটি সামান্তরিক।

- ক. $(\overrightarrow{AD} + \overrightarrow{DE})$ কে \overrightarrow{AC} ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. ভেষ্টরের সাহায্যে প্রমাণ কর যে, DE || BC এবং DE

$$=\frac{1}{2}\overrightarrow{BC}$$

গ. BCFD সামান্তরিকের কর্ণদ্বয় $\overrightarrow{\mathrm{BF}}$ ও $\overrightarrow{\mathrm{CD}}$ হলে, BC ও BF ভেক্টরদয়কে BD ও CD ভেক্টরের মাধ্যমে প্রকাশ কর এবং দেখাও যে, $\overrightarrow{BF} + \overrightarrow{CD} =$ $2\overrightarrow{CF}$ এবং $\overrightarrow{BF} - \overrightarrow{CD} = 2\overrightarrow{BC}$

১ ব ২৮নং প্রশ্রের সমাধান ১ ব

∆ADE-এ

$$\overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{AE}$$
 [ব্রিভুজ বিধি]
$$= \frac{1}{2} \overrightarrow{AC}$$
 [যেহেতু E, AC এর মধ্যবিন্দু]

সুতরাং $\overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2} \overrightarrow{AC}$

অনুশীলনী ১২ এর উদাহরণ-৩ দেখ।

এখানে BF ও CD, BCED সামান্তরিকের কর্ণদ্বয়।

 \overrightarrow{BC} ও \overrightarrow{BF} ভেক্টরত্বয়কে \overrightarrow{BD} ও \overrightarrow{CD} ভেক্টরের মাধ্যমে প্রকাশ করতে

$$\Delta BCD$$
 –এ $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$ [ত্রিভুজ বিধি]

$$\therefore \overrightarrow{BC} = \overrightarrow{BD} - \overrightarrow{CD} \dots (i)$$

আবার,
$$\triangle BDF - \circlearrowleft \overrightarrow{BF} = \overrightarrow{BD} + \overrightarrow{DF}$$

$$\therefore \overrightarrow{BF} = \overrightarrow{BD} + \overrightarrow{BC}$$

[BCFD] সামান্তরিক বলে $\overrightarrow{BC} = \overrightarrow{DF}$]

$$=\overrightarrow{BD}+\overrightarrow{BD}-\overrightarrow{CD}$$
 [(i) নং হতে]

$$\overrightarrow{BF} = 2 \overrightarrow{BD} - \overrightarrow{CD}$$
(ii)

অতএব, (i) ও (ii) নং সমীকরণ \overrightarrow{BC} , \overrightarrow{BF} ভেক্টরন্বয়কে \overrightarrow{BD} ও \overrightarrow{CD} ভেক্টরদ্বয়ের মাধ্যমে প্রকাশ করা হলো।

আবার, (ii) নং থেকে পাই,

$$\overrightarrow{BF} = 2 \overrightarrow{BD} - \overrightarrow{CD}$$

বা,
$$\overrightarrow{BF} + \overrightarrow{CD} = 2\overrightarrow{BD} - \overrightarrow{CD} + \overrightarrow{CD}$$
 [উভয় পৰে \overrightarrow{CD} যোগ করে]

বা,
$$\overrightarrow{BF} + \overrightarrow{CD} = 2 \overrightarrow{BD}$$

 $\overrightarrow{BF} + \overrightarrow{CD} = 2\overrightarrow{CF}$ (iii) [BCFD সামান্তরিক বলে $\overrightarrow{BD} =$ CF 1

জাবার ,
$$\overrightarrow{BF}$$
 – \overrightarrow{CD} = 2 \overrightarrow{BD} – \overrightarrow{CD} – \overrightarrow{CD} [(iii) নং ব্যবহার করে]

বা,
$$\overrightarrow{BF}$$
 – \overrightarrow{CD} = 2 \overrightarrow{BD} – 2 \overrightarrow{CD} = 2(\overrightarrow{BD} – \overrightarrow{CD})

$$\overrightarrow{BF}$$
 − \overrightarrow{CD} = 2(\overrightarrow{BD} + \overrightarrow{CD}) [: \overrightarrow{CD} = − \overrightarrow{DC}]

বা,
$$\overrightarrow{BF} - \overrightarrow{CD} = 2 \overrightarrow{BC}$$

$$\therefore \overrightarrow{BF} - \overrightarrow{CD} = 2 \overrightarrow{BC} \dots (iv)$$

সমীকরণ (iii) ও (iv) হতে পাই,

 $\overrightarrow{BF} + \overrightarrow{CD} = 2 \overrightarrow{CF}$ এবং $\overrightarrow{BF} - \overrightarrow{CD} = 2 \overrightarrow{BC}$ (দেখানো হলো)

সৃজনশীল প্রশ্নব্যাংক উত্তরসহ

প্রমূ—২৯ ho $_{1}$ একটি অশূন্য ভেক্টর ও ${f m}$ একটি স্কেলার রাশি।

ক. দেখাও যে,
$$-(-\underline{a}) = \underline{a}$$

খ. প্রমাণ কর যে,
$$(-m)(\underline{a}) = m(-\underline{a}) = -m\underline{a}$$

প্রশ্ল−৩০ ≯ ABCD একটি সামান্তরিক। এর কর্ণ যথাক্রমে AC ও BD.

ক. দেখাও যে
$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{AD}$$

গ. দেখাও যে, $\frac{a}{|a|}$ একটি একক ভেক্টর।

নবম-দশম শ্রেণি : উচ্চতর গণিত ▶ ৫২৪

- খ. \overrightarrow{AC} ও \overrightarrow{BD} কে \overrightarrow{AB} ও \overrightarrow{AD} এর মাধ্যমে প্রকাশ কর।
- গ. AB ও CD বাহুর মধ্যবিন্দু যথাক্রমে P ও Q হলে প্রমাণ কর যে, APCQ একটি সামান্তরিক।

প্রশ্নullet \mathbf{m},\mathbf{n} দুটি ন্কেলার এবং \mathbf{u},\mathbf{v} ও \mathbf{w} তিনটি ভেক্টর।

- ক $\underline{\mathbf{u}} + \underline{\mathbf{v}} = \underline{\mathbf{u}} + \underline{\mathbf{w}}$ হলে প্রমাণ কর যে $\underline{\mathbf{v}} = \underline{\mathbf{w}}$
- $\forall . \quad (m+n) \, \underline{u} = m\underline{u} + n \, \underline{u}$
- $\mathfrak{I}. \quad m(\underline{u} + \underline{v}) = m\underline{u} + m\underline{v}$

প্রমু–৩২ > ABC ত্রিভুজে BC, CA, ও AB বাহুত্রয়ের মধ্যবিন্দু যথাক্রমে D, E

- ক. \overrightarrow{BC} ও \overrightarrow{CA} ভেক্টরগুলোকে \overrightarrow{BE} ও \overrightarrow{CF} ভেক্টরের মাধ্যমে প্রকাশ কর।
- $\overrightarrow{\mathrm{BC}}$, $\overrightarrow{\mathrm{AD}}$, $\overrightarrow{\mathrm{BE}}$ ও $\overrightarrow{\mathrm{CF}}$ ভেক্টরগুলোকে $\overrightarrow{\mathrm{AB}}$ ও $\overrightarrow{\mathrm{AC}}$ এর মাধ্যমে প্রকাশ
- গ. প্রমাণ কর যে, $\overrightarrow{\mathrm{EF}} = \frac{1}{2} \overrightarrow{\mathrm{BC}}$ ও $\overrightarrow{\mathrm{EF}} \parallel \overrightarrow{\mathrm{BC}}$

প্রশ্ন–৩৩ 🕨

ABC ত্রিভুজের BC, CA, AB বাহুদ্বরের মধ্যবিন্দু যথাক্রমে D, E, F।

- ক. নির্দিষ্ট মূলবিন্দুর প্রেৰিতে В ও С এর অবস্থান ভেক্টর ь ও с হলে D বিন্দুর অবস্থান ভেক্টর নির্ণয় কর।
- খ. BC ভেক্টরকে $\overrightarrow{BE} = \overrightarrow{CE}$ ভেক্টরের মাধ্যমে প্রকাশ কর।

- গ. প্রমাণ কর যে, $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0$
- উত্তর : ক. $\frac{b+c}{2}$; খ. $\overrightarrow{BC} = \frac{2}{3} (\overrightarrow{BE} \overrightarrow{CF})$

ΔΑΒC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E.

- ightarrow ightarrow
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, DE | BC এবং DE = $\frac{1}{2}$ BC. 8
- গ. A ও B এর অবস্থান ভেক্টর, <u>a</u> ও <u>b</u> এবং AB রেখাংশ C বিন্দুতে m : ${f n}$ অনুপাতে বহিঃবিভক্ত হলে ${f C}$ এর অবস্থান ভেক্টর ${f c}$ হলে, দেখাও যে,

$$\underline{\mathbf{c}} = \frac{\mathbf{n}\underline{\mathbf{a}} - \mathbf{m}\underline{\mathbf{b}}}{\mathbf{n} - \mathbf{m}}$$

প্রমু-৩৫ \triangleright $_{f a}$ ও $_{f b}$ দুইটি ভেক্টর এবং $_{f m}$ স্কেলার গুণিতক ।

- ক. দেখাও যে $-(\underline{a} + \underline{b}) = -\underline{a} \underline{b}$
- খ. প্রমাণ কর যে, $\underline{a} = m\underline{b}$ হতে পারে যদি ও কেবল যদি \underline{a} , \underline{b} এর সমান্তরাল হয়।
- গ. দেখাও যে, m এর সকল মানের জন্য $m\underline{a}+m\underline{b}=m$ $(\underline{a}+\underline{b})$ সূত্রটি

অধ্যায় সমন্বিত সৃজনশীল প্রশু ও সমাধান

প্রশ্ল−৩৬ চ ABC ত্রিভুজের উচ্চতা h = 3.5 cm, শীর্ষবিন্দু A থেকে ভূমি BC এর উপর মধ্যমা AD = 4 সে.মি. এবং $\angle B = 60^\circ$ ।

- ক. সংৰিপত বিবরণসহ ত্রিভুজটি অজ্ঞকন কর।
- খ. প্রমাণ কর যে, $AB^2 + AC^2 = 2AD^2 + 2BD^2$.
- গ. ভেক্টরের সাহায্যে প্রমাণ কর যে, AB ও AC এর মধ্যবিন্দুর সংযোজক রেখাংশ BC এর সমান্তরাল এবং দৈর্ঘ্যে তার অর্ধেক।
 - 🕨 🕯 ৩৬নং প্রশ্রের সমাধান 🕨 🕻

ক.

অঙ্জনের বিবরণ : ধাপ−১ : যেকোনো BM এর B বিন্দুতে $\angle B = 60^\circ$ এর সমান করে ∠PBM অঙ্কন করি।

ধাপ–২: BM রেখার ওপর B বিন্দুতে লম্ব BN অজ্ঞকন করি।

ধাপ-৩ : BN রেখা হতে উচ্চতা h = 3.5 cm এর সমান করে BO অংশ কেটে নেই।

ধাপ-8 : O বিন্দুতে BM এর সমান্তরাল OR অজ্ঞকন করি যা BP কে A বিন্দুতে ছেদ করে।

ধাপ-ে: A বিন্দুকে কেন্দ্র করে মধ্যমা AD = d এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি যা BM কে Dও D' কিন্দুতে ছেদ করে।

ধাপ-৬: DM হতে BDএর সমান করে DC এবং D'M হতে BD' এর সমান করে D'C' অংশ কেটে নেই।

ধাপ- 9 : A, C এবং A,C' যোগ করি।

তাহলে, ∆ABC এবং ∆ABC'-ই নির্ণেয় ত্রিভুজ।

অঙ্কন : BC বাহুর উপর (ক) (চিত্র-১) এবং BC বাহুর বর্ধিতাংশের (চিত্র-২) (খ) AE লম্ব অজ্ঞকন করি।

প্রমাণ : △ABD এর ∠ADB স্থূলকোণ এবং BD রেখার বর্ধিতাংশের উপর AD রেখার লম্ব অভিবেপ DE [উভয় চিত্রে]

∴ স্থূলকোণের ৰেত্রে, পিথাগোরাসের উপপাদ্যের বিস্তৃতি অনুসারে, আমরা পাই, AB² = AD² + BD² + 2BD.DE (i)

আবার, △ACD এর ∠ADC সুক্ষকোণ এবং DC রেখার উপর (চিত্র–১) এবং DC রেখার বর্ধিতাংশের চিত্র–২ উপর AD রেখার লম্ব অভিবেপ DE.

∴ সৃষ্মকোণের বেত্রে, পিথাগোরাসের উপপাদ্যের বিস্তৃতি অনুসারে পাই,

$$AC^2 = AD^2 + CD^2 - 2CD.DE$$
(ii)

এখন, সমীকরণ (i) ও (ii) যোগ করে পাই,

$$AB^{2} + AC^{2} = 2AD^{2} + BD^{2} + CD^{2} + 2BD.DE - 2CD.DE$$

= $2AD^{2} + BD^{2} + BD^{2} + 2BD.DE - 2BD.DE$

[::BD = CD]

$$= 2AD^2 + 2BD^2 = 2(AD^2 + BD^2)$$
 (প্রমাণিত)

মনে করি, ABC ত্রিভুজের AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E. D, E যোগ করি।

প্রমাণ করতে হবে যে DE || BC এবং DE = $\frac{1}{2}$ BC.

ভেক্টর বিয়োগের ত্রিভুজবিধি অনুসারে,

$$\overrightarrow{AE} - \overrightarrow{AD} = DE$$
(i)

এবং
$$\overrightarrow{AC}$$
 – AB = BC(ii)

কিম্পু
$$\overrightarrow{AC} = 2\overrightarrow{AE}$$
 , $\overrightarrow{AB} = 2\overrightarrow{AD}$

[∵D ও E যথাক্রমে AB ও AC বাহুর মধ্যবিন্দু]

(ii) নং থেকে পাই

$$2\overrightarrow{AE} - 2\overrightarrow{AD} = \overrightarrow{BC}$$

অর্থাৎ
$$2(\overrightarrow{AE} - \overrightarrow{AD}) = \overrightarrow{BC}$$

বা,
$$2\overrightarrow{DE} = \overrightarrow{BC}$$
 [(i) হতে]

$$\therefore \overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC}$$

আবার,
$$|\overrightarrow{DE}| = \frac{1}{2} |\overrightarrow{BC}|$$

বা,
$$\overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC}$$

সূতরাং \overrightarrow{DE} ও \overrightarrow{BC} ভেক্টরন্বয়ের ধারক রেখা একই বা সমান্তরাল, কিন্তু এখানে ধারক রেখা এক নয়।

সূতরাং DE ও BC ভেক্টরদ্বয়ের ধারক রেখাদ্বয় অর্থাৎ DE এবং BC সমান্তরাল এবং দৈর্ঘ্যে তার অর্ধেক। (প্র**মাণিত**)

প্রা–৩৭ ১ ABCD চতুর্ভুজের A(6, – 4), B(2, 2), C(– 2, 2) এবং D (– 6 – 4) শীর্ষসমূহ ঘড়ির কাঁটার বিপরীত দিকে আবর্তিত।

ক. AC কর্ণের দৈর্ঘ্য নির্ণয় কর।

চতুর্ভুজবে<u>ত্রে</u>র খ. ABCD <u>ৰেত্রফলের</u> সমান ৰেত্রফলবিশিষ্ট বর্গৰেত্রের পরিসীমা নির্ণয় কর।

গ. P ও Q যথাক্রমে AB ও CD এর মধ্যবিন্দু হলে, ভেক্টরের সাহায্যে প্রমাণ কর যে, PQ || AD || BC এবং

$$PQ = \frac{1}{2} (AD + BC).$$

১ ৩৭নং প্রশ্রের সমাধান ১ ব

ক. AC কর্ণের দৈর্ঘ্য = $\sqrt{(6+2)^2 + (-4-2)^2}$ একক

$$=\sqrt{8^2+(-6^2)}$$
 একক

$$= \sqrt{64 + 36}$$
 একক

=
$$\sqrt{100}$$
 একক

খ. এখানে, A(6, -4), B(2, 2), C(-2, 2) এবং D(-6, -4) শীর্ষসমূহ ঘড়ির কাটার বিপরীত দিকে আবর্তিত।

∴ চতুর্ভুজবেত্র ABCD এর বেত্রফল

$$=\frac{1}{2} \begin{vmatrix} 6 & 2 & -2 & -6 & 6 \\ -4 & 2 & 2 & -4 & -4 \end{vmatrix}$$
 বর্গ একক

$$= \frac{1}{2} \left\{ 6 \times 2 + 2 \times 2 + (-2) \times (-4) + (-6) \times (-4) - (-4) \times 2 - 2 \times (-4) + (-6) \times (-6) \times (-6) + (-6) \times (-6) \times (-6) + (-6) \times (-6)$$

$$(-2) - 2 \times (-6) - (-4) \times 6$$
 বর্গ একক

$$=\frac{1}{2}\left\{12+4+8+24+8+4+12+24\right\}$$
 বৰ্গ একক

$$=\frac{1}{2}\times 96$$
 বৰ্গ একক $=48$ বৰ্গ একক

যেহেতু ABCD চতুর্ভুজের বেত্রফল বর্গবেত্রের বেত্রফলের সমান।

∴ বর্গবেত্রের বেত্রফল, $a^2 = 48$ বর্গ একক

 \therefore বর্গবেত্রের এক বাহুর দৈর্ঘ্য, $a=\sqrt{48}$ একক

$$=4\sqrt{3}$$
 একক

 \therefore বর্গবেত্রের পরিসীমা = $4 \times a = 4 \times 4\sqrt{3}$ একক

 $= 16\sqrt{3}$ একক (Ans.)

গ.

বিশেষ নির্বচন : মনে করি, ABCD চতুর্ভুজের AB ও CD এর মধ্যবিন্দু যথাক্রমে P ও Q। P, Q যোগ করি।

প্রমাণ করতে হবে যে, $PQ \parallel AD \parallel BC$ এবং $PQ = \frac{1}{2} \left(AD + BC\right)$

মনে করি কোনো নির্দিষ্ট মূল বিন্দুর প্রেৰিতে $A, B, C \lor D$ বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\underline{a}, \underline{b}, \underline{c} \lor \underline{d}$.

তাহলে P বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}(\underline{a} + \underline{b})$

Q " =
$$\frac{1}{2}(\underline{c} + \underline{d})$$

সূতরাং
$$\overrightarrow{PQ} = \frac{1}{2} (\underline{c} + \underline{d}) - \frac{1}{2} (\underline{a} + \underline{b})$$

$$= \frac{1}{2} (\underline{c} + \underline{d} - \underline{a} - \underline{b}) = \frac{1}{2} \{ (\underline{a} - \underline{b}) + (\underline{d} - \underline{a}) \}$$

কিম্তু
$$\overrightarrow{AD} = \underline{d} - \underline{a}$$

$$\overrightarrow{CD} = \underline{c} - \underline{b}$$

এবং
$$PQ = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{AD})$$

এখন AD ও BC সমান্তরাল বলে $\overrightarrow{(AD} + \overrightarrow{BC})$ ভেক্টরটিও তাদের অর্থাৎ BC ও AD এর সমান্তরাল হবে।

সুতরাং \overrightarrow{PQ} ভেক্টরটিও BC ও AD এর সমান্তরাল হবে।

এবং
$$\mid \overrightarrow{PQ} \mid = \frac{1}{2} \mid \overrightarrow{AB} + \overrightarrow{BC} \mid$$

বা,
$$PQ = \frac{1}{2} (|\overrightarrow{AD}| + |\overrightarrow{BC}|)$$

$$\therefore PQ = \frac{1}{2} (AD + BC)$$

সুতরাং $PQ \parallel AD \parallel BC$ এবং $PQ = \frac{1}{2} (AD + BC)$ (প্রমাণিত)

প্রশ্ন**-৩৮ >** A

PMN সমদিবাহু ত্রিভুজে PM = PN এবং $PA \perp MN$.

- ক. ΔAPM এর বেত্রে \overrightarrow{AP} ভেষ্টরকে \overrightarrow{MA} এবং \overrightarrow{MP} ভেষ্টরদ্বয়ের মাধ্যমে প্রকাশ কর।
- খ. B, MN রেখার ওপর যেকোনো বিন্দু হলে, দেখাও যে, $PM^2 PB^2 = MB.BN. \label{eq:mass}$
- গ. PMN ত্রিভুজের পরিব্যাসার্ধ R হলে, প্রমাণ কর যে,
 PM²=2R.PA. 8

🕨 🕯 ৩৮নং প্রশ্রের সমাধান 🕨

ক.

 $\triangle APM$ এ ভেক্টর যোগের ত্রিভূজবিধি অনুসারে পাই, $\overrightarrow{MA} + \overrightarrow{AP} = \overrightarrow{MP}$ $\therefore \overrightarrow{AP} = \overrightarrow{MP} - \overrightarrow{MA}$ (Ans.)

খ.

দেওয়া আছে, ΔPMN এ PM=PN ভূমি MN এর উপর B যেকোনো বিন্দু। দেখাতে হবে যে, $PM^2-PB^2=MB.BN.$

অঙ্কন : P, B যোগ করি।

প্রমাণ : PBA সমকোণী ত্রিভুজে

$$PB^2 = PA^2 + AB^2$$
(i)

[পিথাগোরাসের সূত্রানুসারে]

আবার, PMA সমকোণী ত্রিভুজে

$$PM^2 = PA^2 + MA^2$$
....(ii)

সমীকরণ (ii) থেকে (i) বিয়োগ করে পাই,

$$\begin{split} PM^2 - PB^2 &= PA^2 + MA^2 - PA^2 - AB^2 \\ &= MA^2 - AB^2 \\ &= (MA + AB) (MA - AB) \\ &= (AN - AB). \ MB = MB. \ BN \ [\because MA = AN] \end{split}$$

$$\therefore PM^2 - PB^2 = MB. BN.$$
 (দেখানো হলো)

গ.

দেওয়া আছে PMN সমদ্বিবাহু ত্রিভুজে PM = PN ও PA \perp MN এবং ত্রিভুজের পরিব্যাসার্ধ R.

প্রমাণ করতে হবে যে, $PM^2 = 2R.PA$.

অঙ্কন : O, ΔPMN এর পরিকেন্দ্র I O, P যোগ করে Q পর্যন্ত বর্ধিত করি যা পরিধিকে Q বিন্দুতে ছেদ করে I তাহলে OP + OQ = 2R বা PQ = 2R, O, N যোগ করি I

প্রমাণ : APMA এবং APNQ এ

∠PAM = ∠PNQ উভয়ে এক সমকোণ

∠AMP = ∠PQN [একই জ্যা PN এর উপর অবস্থিত]

এবং অবশিষ্ট $\angle MPA =$ অবশিষ্ট $\angle QPN$

∴ ΔPMA ও ΔPNQ সদৃশকোণী ও সদৃশ

তাহলে,
$$\frac{PM}{PA} = \frac{PQ}{PN}$$

[:: সদৃশকোণী ত্রিভুজদয়ের অনুরূ প বাহুগুলোর অনুপাত সমান]

বা, PM.PN = PA.PO

বা, PM.PM = 2R.DA [∵ PM = PN ও PQ = 2R]

∴ PM² = 2R.PA (প্রমাণিত)

প্রশ্নullet ΔABC এর BC, AC ও AB বাহুত্রয়ের মধ্যবিন্দু যথাক্রমে D, E ও F এবং শীর্ষবিন্দুত্রয়ের স্থানাঙ্গ্ক A(2,3), B(5,6), C(-1,4).

খ. ভেক্টরের সাহায্য প্রমাণ কর যে, $\mathrm{EF} \mid \mid \mathrm{BC}$ এবং $\mathrm{EF} = \frac{1}{2}\,\mathrm{BC}$.

গ. ΔABC এর বাহুত্রয়ের দৈর্ঘ্য নির্ণয় করে এর বেত্রফল নির্ণয় কর।

🕨 🗸 ৩৯নং প্রশ্রের সমাধান 🌬

ক. মনে করি, $\triangle ABC$ এ AD, BE ও CF মধ্যমা তিনটি পরস্পর P বিন্দুতে ছেদ করেছে।

ভেক্টর যোগের ত্রিভুজবিধি অনুযায়ী ΔABE থেকে,

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$
বা, $\overrightarrow{AB} = \overrightarrow{AE} - \overrightarrow{BE}$

$$= \frac{1}{2} \overrightarrow{AC} - \overrightarrow{BE} [\because E, \overrightarrow{AC} \text{ এর মধ্যবিন্দু }]$$

$$= \frac{1}{2} (\overrightarrow{AF} + \overrightarrow{FC}) - \overrightarrow{BE} = \frac{1}{2} (\frac{1}{2} \overrightarrow{AB} - \overrightarrow{CF}) - \overrightarrow{BE}$$

$$= \frac{1}{4} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{CF} - \overrightarrow{BE}$$

বা,
$$\overrightarrow{AB} - \frac{1}{4} \overrightarrow{AB} = -\frac{1}{2} \overrightarrow{CF} - \overrightarrow{BE}$$

বা,
$$\frac{3}{4}\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{CF} - \overrightarrow{BE}$$

বা,
$$\overrightarrow{AB} = \frac{4}{3} \left(-\frac{1}{2} \overrightarrow{CF} - \overrightarrow{BE} \right)$$

$$\therefore \overrightarrow{AB} = -\frac{2}{3}\overrightarrow{CF} - \frac{4}{3}\overrightarrow{BE} (\mathbf{Ans.})$$

খ

প্রমাণ : E ও F যথাক্রমে \overrightarrow{AC} ও \overrightarrow{AB} এর মধ্যবিন্দু।

$$\therefore \overrightarrow{FB} = \overrightarrow{AF} = \frac{1}{2} \overrightarrow{AB} \text{ agr} \overrightarrow{AE} = \overrightarrow{EC} = \frac{1}{2} \overrightarrow{AC}$$

$$\overrightarrow{AB} = 2\overrightarrow{AF}$$
 এবং $\overrightarrow{AC} = 2\overrightarrow{AE}$

ত্রিভূজবিধি অনুসারে.

$$\overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{FE} \text{ agr} \overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$$

$$\overrightarrow{A}$$
, $\overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{BC}$

$$\overrightarrow{AE} - \overrightarrow{AF} = \overrightarrow{BC}$$

বা,
$$2\overrightarrow{FE} = \overrightarrow{BC}$$

$$\therefore \overrightarrow{FE} = \frac{1}{2}\overrightarrow{BC}$$

জাবার , $|\overrightarrow{\mathrm{EF}}| = \frac{1}{2} |\overrightarrow{\mathrm{BC}}|$ বা , $\mathrm{EF} = \frac{1}{2} \, \mathrm{BC}$ ।

সূতরাং EF ও BC ভেক্টরদ্বের ধারক রেখা একই বা সমান্তরাল। কিন্তু এখানে ধারক রেখা এক নয়।

সুতরাং EF ও BC ভেক্টর রেখাদ্বয় অর্থাৎ EF ও BC সমান্তরাল।

∴ EF | | BC এবং EF =
$$\frac{1}{2}$$
 BC (প্রমাণিত)

গ. A, B & C বিন্দুন্তায়ের স্থানাজ্ঞ্চ যথাক্রমে A, B & C বিন্দুন্তায়ের স্থানাজ্ঞ্চ A(2,3), B(5,6) এবং C(-1,4)

AB বাহুর দৈর্ঘ্য =
$$\sqrt{(2-5)^2 + (3-6)^2}$$
 A(2, 3) = $\sqrt{(-3)^2 + (-3)^2}$ = $\sqrt{9+9}$ = $\sqrt{18} = 3\sqrt{2}$ একক $C(-1,4)$ B(5,6)

BC বাহুর দৈর্ঘ্য =
$$\sqrt{(5+1)^2 + (6-4)^2}$$
 = $\sqrt{(6)^2 + (2)^2} = \sqrt{36+4} = \sqrt{40}$ = $2\sqrt{10}$ একক

AC বাহুর দৈর্ঘ্য
$$=\sqrt{(2+1)^2+(3-4)^2}=\sqrt{(3)^2+(-1)^2}$$
 $=\sqrt{9+1}=\sqrt{10}$ একক

অর্ধপরিসীমা s
$$=\frac{3\sqrt{2}+2\sqrt{10}+\sqrt{10}}{2}=6.8647$$
 একক

$$\therefore$$
 ΔABC এর বৈত্রফল = $\sqrt{s(s-AB)~(s-BC)~(s-AC)}$ বর্গ একক

=
$$\sqrt{(6.8647)(6.8647 - 3\sqrt{2})(6.8647 - 2\sqrt{10})(6.8647 - \sqrt{10})}$$

= $\sqrt{35.9964883} = 5.9997$ বৰ্গ একক

প্রশ্ন–৪০ 🕨

EC ও FB এর মধ্যবিন্দু P এবং B,E,F,C এর অবস্থান ভেক্টর যথাক্রমে $\underline{b},\underline{e},$

- ক. AB এর মধ্যবর্তী দূরত্ব নির্ণয় কর।
- খ. AB রেখার সমীকরণ ও AABC এর বেত্রফল নির্ণয়
- গ. অবস্থান ভেক্টরের সাহায্যে প্রমাণ কর যে, BEFC একটি সামান্তরিক।

♦ ४ ৪০নং প্রশ্রের সমাধান
♦ ४

ক. AB এর দূরত্ব =
$$\sqrt{(6-2)^2+(6-4)^2}$$
 একক

$$=\sqrt{(4)^2 + (2)^2}$$
 একক
 $=\sqrt{16+4}$ একক
 $=\sqrt{20}$ একক
 $=2\sqrt{5}$ একক (Ans.)

খ. AB রেখার সমীকরণ,

$$\frac{y-6}{6-4} = \frac{x-6}{6-2}$$

বা,
$$\frac{y-6}{2} = \frac{x-6}{4}$$

বা,
$$y - 6 = \frac{x - 6}{2}$$

বা,
$$2y - 12 = x - 6$$

$$4$$
, $x - 6 - 2y + 12 = 0$

$$\therefore x - 2y + 6 = 0$$
 (Ans.)

C এর ভুজ এবং A এর ভূজ একই

C এর কোটি এবং B এর কোটি একই

∴ C এর স্থানাজ্ঞ্ক (6, 4)

$$\therefore$$
 AC এর দূরত্ব = $\sqrt{(6-6)^2 + (6-4)^2}$

$$= \sqrt{0 + (2)^2} = 2$$
BC এর দূরত্ব = $\sqrt{(2-6)^2 + (4-4)^2} = \sqrt{(-4)^2} = 4$

$$\therefore$$
 $\triangle ABC$ এর বৈত্রফল = $\frac{1}{2} \times AC \times BC$ বর্গ একক = $\frac{1}{2} \times 2 \times 4$ বর্গ একক = 4 বর্গ একক (Ans.)

গ

P বিন্দুটি EC এবং FB **এর মধ্যবিন্দু**। B, E, F এবং C এর অবস্থান ভেক্টর যথাক্রমে \underline{b} , \underline{e} , \underline{f} এবং \underline{c} । অবস্থান ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, BEFC একটি সামান্তরিক।

 \overrightarrow{EC} বরাবর P বিন্দুর অবস্থান ভেক্টর = $\frac{e+c}{2}$

এবং \overrightarrow{FB} বরাবর P বিন্দুর অবস্থান ভেক্টর = $\frac{f+b}{2}$

যেহেতু, P বিন্দুটি $\overset{\longrightarrow}{EC}$ এবং $\overset{\longrightarrow}{FB}$ এর মধ্যবিন্দু

অতএব,
$$\frac{\underline{e} + \underline{c}}{2} = \frac{\underline{f} + \underline{b}}{2}$$

বা,
$$\underline{c} + \underline{e} = \underline{b} + \underline{f}$$

বা,
$$b-e=c-f$$

$$\overrightarrow{A}$$
, \overrightarrow{EB} = \overrightarrow{FC} [∴ \overrightarrow{EB} = \overrightarrow{PB} - \overrightarrow{PE} = \overrightarrow{b} - \overrightarrow{e} \overrightarrow{A} \overrightarrow{FC} = \overrightarrow{PC} - \overrightarrow{PF} = \overrightarrow{c} - \overrightarrow{b}]

আবার ,
$$|\overrightarrow{EB}| = |\overrightarrow{FC}|$$

দুইটি ভেক্টর সমান হবে যদি তাদের ধারক রেখা একই অথবা সমান্তরাল

হয়। কিন্তু, এবেত্রে EB এবং FC এর ধারক রেখা একই নয়। অতএব,
তারা সমান্তরাল অর্থাৎ EB || FC

∴ BEFC একটি সামা**ন্**তরিক। (প্রমাণিত)

প্রশ্ন–৪১ ▶

O কেন্দ্র বিশিষ্ট বৃত্তের ব্যাস PR=10 সে. মি. এবং PQRS চতুর্ভুজের সন্নিহিত বাহুগুলোর মধ্যকিন্দু যথাক্রমে A,B,C ও D.

2

5

খ. প্রমাণ কর যে, PQ. PS= PR.PT

0

গ. ভেক্টরের সাহায্যে দেখাও যে, ABCD একটি সামান্তরিক।

🕨 🕯 ৪১নং প্রশ্রের সমাধান 🕨 🕯

ক. দেওয়া আছে,

ব্যাস, PR = 10 সে. মি.

ব্যাসার্ধ,
$$r = \frac{10}{2} = 5$$
 সে. মি.

আমরা জানি , বৃত্তের বেত্রফল = πr^2

খ. মনে করি, PQS ত্রিভুজের পরিকেন্দ্র Ο এবং PR পরিবৃত্তের একটি ব্যাস। ΔPQS এর শীর্ষ বিন্দু P থেকে বিপরীত বাহু QS এর উপর PT লম্ঘ। প্রমাণ করতে হবে যে, PQ.PS = PR.PT

প্রমাণ: একই চাপ PQ এর জন্য ∠PRQ এবং ∠PST বৃত্তাংশস্থিত কোণ।
PR বৃত্তের ব্যাস বলে ∠PQR অর্ধবৃত্তস্থ কোণ এবং QS বাহুর উপর PT
লম্ব হওয়ায় ∠PTS ∠PTS সমকোণ।

এখন $\triangle POR$ ও $\triangle PTS$ এর মধ্যে,

∠PRQ = ∠PST

[একই বৃত্তাংশস্থিত কোণ সমান]

 $\angle PQR = \angle PTS$

[উভয়ই এক সমকোণ]

অবশিফ $\angle QPR$ = অবশিফ $\angle TPS$

ΔPQR ও ΔPTS সমৃশকোণী

অর্থাৎ
$$\frac{PQ}{PT} = \frac{PR}{PS}$$

∴ PO.PS = PR.PT (প্রমাণিত)

গ.

PQRS চতুর্ভুজের সন্নিহিত বাহুগুলোর মধ্যবিন্দু যথাক্রমে A, B, C, D।
A, B; B, C; C, D এবং A, D যোগ করি। প্রমাণ করতে হবে যে, ABCD চতুর্ভুজটি একটি সামান্তরিক।

প্রমাণ : মনে করি,
$$\frac{\rightarrow}{PQ} = \underline{p}, \frac{\rightarrow}{RS} = \underline{r}, \frac{\rightarrow}{SP} = \underline{s}$$

P, R যোগ করি।

তাহলে,
$$\overrightarrow{AB} = \overrightarrow{AQ} + \overrightarrow{OB} = \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{OR}) = \frac{1}{2} (\underline{p} + \underline{q})$$

অনুরূ পভাবে
$$\overrightarrow{CD}$$
 $=$ \overrightarrow{CS} $=$ $\frac{1}{2}$ $(\overrightarrow{RS}$ $+$ \overrightarrow{SP} $)$ $=$ $\frac{1}{2}$ $(\underline{r}$ $+$ $\underline{s})$

$$\overrightarrow{\text{farg}} \ (p+q) + (r+s) = \overrightarrow{PR} \ + \overrightarrow{RP} = \overrightarrow{PR} \ - \overrightarrow{PR} = 0$$

$$\overrightarrow{\mathsf{q}}, \ (\underline{\mathsf{p}} + \underline{\mathsf{q}}) + (\underline{\mathsf{r}} + \underline{\mathsf{s}}) = 0$$

বা,
$$(\underline{p} + \underline{q}) = -(\underline{r} + \underline{s})$$

$$\overline{\mathbf{q}}, \frac{1}{2}(\underline{\mathbf{p}} + \underline{\mathbf{q}}) = -\frac{1}{2}(\underline{\mathbf{r}} + \underline{\mathbf{s}})$$

$$\overrightarrow{AB} = -\overrightarrow{CD}$$

$$\overrightarrow{AB} = \overrightarrow{DC}$$

- ∴ AB ও DC সমান ও সমান্তরাল।
- ∴ ABCD চতুর্ভুজটি একটি সামান্তরিক। (দেখানো হলো)

প্রশ্ন—8২ \blacktriangleright (-2,-3) কিদুগামী একটি রেখার ঢাল 3 এবং রেখাটি x অক্ষ ও y অক্ষকে যথাক্রমে P ও Q কিদুতে ছেদ করে। অপর একটি রেখা R(4,3) এবং S(3,0) কিদু দিয়ে যায়।

২

- খ. P, Q, R, S বিন্দু চারটি লেখ কাগজে স্থাপন করে দেখাও যে, PQRS একটি সামান্তরিক।
- গ. PQRS এর সন্নিহিত বাহুগুলোর মধ্যবিন্দুর সংযোজক রেখাসমূহ দ্বারা গঠিত চতুর্ভুজটি কী ধরনের হবে তা ভেক্টর পন্ধতিতে নির্ণয় কর।

🕨 🕯 ৪২নং প্রশ্রের সমাধান 🕨 🕯

ক. S ঢালবিশিষ্ট এবং (-2, -3) বিন্দুবিশিষ্ট রেখার সমীকরণ

$$y - (-3) = 3\{x - (-2)\}$$

$$\overline{1}$$
, $y + 3 = 3(x + 2)$

বা,
$$y + 3 = 3x + 6$$

বা,
$$y = 3x + 6 - 3$$

বা,
$$y = 3x + 3$$

$$\therefore$$
 y = 3x + 3

খ. 'ক' হতে পাই,

রেখাটির সমীকরণ y = 3x + 3

দেওয়া আছে, রেখাটি x অব y অবকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে।

যেহেতু y=3x+3 রেখাটি x অবকে P বিন্দুতে ছেদ করে। সুতরাং P বিন্দুর কোটি বা y স্থানাঙ্ক শুন্য।

$$0 = 3x + 3$$

বা,
$$3x = -3$$

বা,
$$x = -1$$

$$\therefore x = -1$$

সুতরাং P বিন্দুতে স্থানাজ্ঞ্ক (-1, 0)

আবার, y = 3x + 3 রেখাটি y অবকে Q বিন্দুতে ছেদ করে।

সুতরাং Q বিন্দুর ভুজ বা x স্থানাজ্ঞ শূন্য।

$$y = 3.0 + 3$$

বা,
$$y = 0 + 3$$

$$\therefore y = 3$$

সুতরাং Q বিন্দুর স্থানাজ্ঞ্ক (0,3)

জাবার R এবং S বিন্দুদ্বয়ের স্থানাজ্ঞ্ক যথাক্রমে (4,3) এবং (3,0). এখন স্থানাজ্ঞায়িত লেখ কাগজের প্রতি ছোট পাঁচ ঘরকে এক একক ধরে $P(-1,0),\ Q(0,3),\ R(4,3)$ ও S(3,0) বিন্দু চারটি লেখ এবং কাগজে স্থাপন করি এবং বিন্দুগুলো পর্যায় ক্রমে সরলরেখা দ্বারা যুক্ত করি। ফলে PQRS চতুর্ভুজটি পাওয়া গেল।

লেখচিত্র থেকে দেখা যায় যে, PQRS চতুর্ভুজের দুটি বিপরীত বাহু RS ও QR পরস্পর সমান ও সমান্তরাল। যেহেতু কোনো চতুর্ভুজের দুটি বিপরীত বাহু পরস্পর সমান ও সমান্তরাল।

গ.

সূতরাং PORS একটি সামান্তরিক। (দেখানো হলো)

মনে করি, PQRS চতুর্ভুজের PQ, QR, RS এবং SP বাহুগুলোর মধ্যবিন্দু যথাক্রমে A, B, C, D। A ও B, B ও C, C ও D, D ও A যোগ করা হলো। ফলে ABCD চতুর্ভুজটি উৎপন্ন হলো। ABCD চতুর্ভুজটি কীধরনের হবে তা ভেক্টর পন্ধতিতে নির্ণয় করতে হবে।

ধরি,
$$\overrightarrow{PQ} = \underline{a}$$
, $\overrightarrow{QR} = \underline{b}$, $\overrightarrow{RS} = \underline{c}$, $\overrightarrow{SP} = \underline{d}$

তাহলে,
$$\overrightarrow{AB} = \overrightarrow{AQ} + \overrightarrow{QB} = \frac{1}{2}\overrightarrow{PQ} + \frac{1}{2}\overrightarrow{QR}$$

$$= \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{QR}) = \frac{1}{2} (\underline{a} + \underline{b})$$

অনুরূ পভাবে,
$$\overrightarrow{BC} = \frac{1}{2}(\underline{b} + \underline{c}), \overrightarrow{CD} = \frac{1}{2}(\underline{c} + \underline{d})$$

এবং
$$\overrightarrow{DA} = \frac{1}{2} (\underline{d} + \underline{a})$$

কিম্ছ
$$(\underline{a} + \underline{b}) + (\underline{c} + \underline{d}) = \overrightarrow{PR} + \overrightarrow{RP} = \overrightarrow{PR} - \overrightarrow{PR} = 0$$

অর্থা,
$$(a + b) = -(c + d)$$

$$\overline{4}$$
, $\frac{1}{2}$ $(\underline{a} + \underline{b}) = -\frac{1}{2}(\underline{c} + \underline{d})$

$$\overrightarrow{AB} = -\overrightarrow{CD} = \overrightarrow{DC}$$

∴ AB ও AD সমান ও সমান্তরাল।

অনুরূ পভাবে BC ও AD সমান ও সমান্তরাল।

সুতরাং ABCD একটি সামান্তরিক।

প্রশ্ন–৪৩ 🕨

চিত্রে AB II CD

- ক. সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব ৪ সে.মি. এবং বাহুদ্বয়ে একটি অপরটি অপেক্ষা ৪ সে.মি. বড়। ABCD এর ক্ষেত্রফল 128 বর্গ সে.মি. হলে CD বাহুর দৈর্ঘ্য নির্ণয় কর।
- খ. অর্ধবৃত্তের AB ব্যাস এবং AC ও BD দুইটি জ্যা পরস্পর P বিন্দুতে ছেদ করে। প্রমাণ কর যে, AB² = AC.AP+BD.BP
- গ. মূলবিন্দুর সাপেক্ষে AC বাহুর A ও C বিন্দুর অবস্থান ভেক্টর \underline{a} ও \underline{c} । P, AC কে m:n অনুপাতে অন্তর্বিভক্ত করে। দেখাও যে, P বিন্দুর অবস্থান ভেক্টর $\dfrac{m\underline{c}+n\underline{a}}{m+n}$

🕨 🕯 ৪৩নং প্রশ্রের সমাধান 🕨 🕯

ক. উদ্দীপকে ABCD একটি ট্রাপিজিয়াম। যেহেতু AB ও CD সমান্তরাল। এখানে, বাহুদ্বয়ের মধ্যবর্তী দূরত্ব h = 8 সে.মি. এবং এর বেত্রফল 128 বর্গ সে.মি.।

ধরি, CD বাহুর দৈর্ঘ্য n সে.মি.

যেহেতু, AB > CD

সেহেতু, AB বাহুর দৈর্ঘ্য (x + 8) সে.মি.

$$\therefore$$
 ট্রাপিজিয়ামের বেত্রফল $=$ $\left(\frac{AB+CD}{2}\right) \times h$ বর্গ একক $=$ $\left(\frac{x+8+x}{2}\right) \times 8$ বর্গ একক $=$ $8(x+4)$ বর্গ সে.মি.

শর্তমতে, 8(x+4)=128

বা,
$$x + 4 = \frac{128}{8}$$

বা,
$$x + 4 = 16$$

বা,
$$x = 16 - 4$$

$$\therefore x = 12$$

অতএব, CD বাহুর দৈর্ঘ্য 12 সে.মি.। (Ans.)

খ

দেওয়া আছে, AB ব্যাসের ওপর ABCD একটি অর্ধবৃত্ত। AC ও BD জ্যাদ্বয় পরস্পর P বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, $AB^2=AC.AP+BD.BP$ ।

অজ্জন: A, D; B, C ও C, D যোগ করি।

প্রমাণ : △CPD ও △APB-এ

∠PDC = ∠PAB [একই চাপ BC-এর ওপর অবস্থিত]

এবং ∠DPC = ∠APB [বিপ্রতীপ কোণ বলে।]

ত্রিভুজ দুইটি সদৃশকোণী।

∴ ত্রিভুজদ্বয় সদৃশ।

$$\frac{AP}{DP} = \frac{BP}{CP}$$

বা, AP.CP = BP.DP

বা, $AP.CP + AP^2 = BP.DP + AP^2$ [উভয়পৰে AP^2 যোগ করে]

[AB ব্যাস বলে \angle ADP = \angle ADB = 90°;

 $\therefore AP^2 = AD^2 - BD^2$

বা, $AP.AC = DP(BP + DP) + AD^2$

বা, $AP.AC = DP.BD + AB^2 - BD^2$

 $[\angle ABD = 90^{\circ}$ বলে $\triangle ABD$ – এ $AB^2 = AD^2 + BD^2$

 $AD^2 = AB^2 - BD^2$

বা, $AP.AC = AB^2 - BD.BP$

$$\therefore AB^2 = AP.AC + BD.BP$$
 (প্রমাণিত)

মনে করি, মূল বিন্দু O এবং A, C দুইটি বিন্দু। O বিন্দুর সাপেৰে A ও C

বিন্দুর অবস্থান ভেক্টর $\overrightarrow{OA} = \underline{a}$ ও $\overrightarrow{OC} = \underline{c}$ O, A; O, C যোগ করি। P.AC কে m:n অনুপাতে অন্তর্বিভক্ত করে। O, P যোগ করি।

প্রমাণ করতে হবে যে, P বিন্দুর অবস্থান ভেক্টর $\left(rac{m\underline{c}+n\underline{a}}{m+n}
ight)$

প্রমাণ : যেহেতু P, AC কো m:n অনুপাতে অন্তর্বিভক্ত করে যেহেতু APPC = m : n

বা,
$$\frac{AP}{PC} = \frac{m}{n}$$

বা,
$$\frac{AP}{PC} + 1 = \frac{m}{n} + 1$$

বা,
$$\frac{AP + PC}{PC} = \frac{m+n}{n}$$

বা,
$$\frac{AC}{PC} = \frac{m+n}{n}$$

$$\overrightarrow{A}, \frac{\overrightarrow{AC}}{\overrightarrow{PC}} = \frac{m+n}{n} \qquad [\because AC = |\overrightarrow{AC}|]$$

$$[\because AC = |\overrightarrow{AC}|]$$

বা,
$$|\overrightarrow{AC}| = \left(\frac{m+n}{n}\right)|\overrightarrow{PC}|$$

তাহলে,
$$\overrightarrow{AC} = \left(\frac{m+n}{n}\right) \overrightarrow{PC}$$

বা,
$$\overrightarrow{OC} - \overrightarrow{OA} = \left(\frac{m+n}{n}\right) \overrightarrow{PC}$$

বা,
$$\underline{c} - \underline{a} = \left(\frac{m+n}{n}\right)(\underline{c} - \overrightarrow{OP})$$

$$\overrightarrow{\mathsf{d}}, \ \underline{c} - \underline{a} = \left(\frac{m+n}{n}\right)\underline{c} - \left(\frac{m+n}{n}\right)\overrightarrow{\mathsf{OP}}$$

$$\overrightarrow{A}$$
, $\left(\frac{m+n}{n}\right)\overrightarrow{OP} = \left(\frac{m+n}{n}\right)\underline{c} + \underline{a} - \underline{c}$

$$\overrightarrow{\text{Al}}, \left(\frac{m+n}{n}\right) \overrightarrow{OP} = \left(\frac{m+n}{n} - 1\right) \underline{c} + \underline{a}$$

বা,
$$\left(\frac{m+n}{n}\right)\overrightarrow{OP} = \frac{m}{n} \underline{c} + \underline{a}$$

$$\overrightarrow{\text{al}}, \left(\frac{m+n}{n}\right) \overrightarrow{OP} = \frac{m\underline{c} + n\underline{a}}{n}$$

$$\overrightarrow{\text{Al}}, (m+n) \overrightarrow{\text{OP}} = m\underline{c} + n\underline{a}$$

$$\therefore \overrightarrow{OP} = \frac{m\underline{c} + n\underline{a}}{m+n}$$

অর্থাৎ O বিন্দুর সাপেৰে P বিন্দুর অবস্থান ভেক্টর $\dfrac{(mc+n\underline{a})}{m+n}$

(দেখানো হলো)