

Wir schaffen Wissen – heute für morgen

Reference Distribution and Synchronization System for SwissFEL: Concept and First Results

Stephan Hunziker, Vladimir Arsov, Florian Buechi, Maik Kaiser, Albert Romann, Volker Schlott
Paul Scherrer Institut, CH-5232 Villigen, Switzerland
Peter Orel, Sebastjan Zorzut
Instrumentation Technologies d.d., SI-5250 Solkan, Slovenia
IBIC 2014, Monterey, CA (USA), 15 Sept. 2014

- 1. SwissFEL Reference Distribution Clients
- 2. Concept of SwissFEL Reference Distribution
- 3. CW Optical Link for RF Reference Distribution
- 4. Laser Sync
- 5. Status & Outlook

1. SwissFEL Reference Distribution Clients

- SwissFEL uses US and (slightly detuned) European RF frequencies
 - → highest common subharmonic from which all reference signals can be derived is as low as 142.8MHz
- reference distribution system is based on pulsed OMO laser (f_{rep}=142.8MHz), from which mutually stable ref. signals are derived

Client,#	reference signal at client	distribution (link type)	stability goal jitter¹/drift² ()³	remark
BAM,4 (later 6)	142.8MHz optical fs pulses	stabilized pulsed optical	few fs _{rms} /<10fs _{p-p} (<1fs _{rms} /few fs _{p-p})	BAM modulates ref. pulse intensity
gun & exp. lasers ,2	142.8MHz optical fs pulses	stabilized pulsed optical	few fs _{rms} /<10fs _{p-p} (<1fs _{rms} /few fs _{p-p})	laser locked to ref. w. opt. cross corr.
S band RF,6	2998.8MHz RF (21f _{rep})	stabilized cw opt.	<10fs _{rms} /<30fs _{p-p} (<3fs _{rms} /<20fs _{p-p})	-
C band RF,27	5712MHz RF (40f _{rep})	stabilized cw opt.	<10fs _{rms} /≈40fs _{p-p} ⁴	2856MHz over S band link, doubled at RX
X band RF (S band front end),1	2998.8MHz RF (ref.) 8996.4MHz RF (DWC) 11'995.2MHz RF (ref.)	stabilized pulsed optical	<10fs _{rms} /<30fs _{p-p} (<3fs _{rms} /<10fs _{p-p})	1st IF, RF extracted from opt. pulses RF extracted from opt. pulses RF VCO locked to (RF extr. from) opt. pulses
BPM,46	142.8MHs RF	VHF cw opt.,coax	uncrit.	8 non-stab. opt. low cost links, coax subdistr.
event syst.,1	1428MHz RF	coax	uncrit.	uncritical

¹ 10Hz..10MHz offset frequency range; ² per half day .. day; ³ potential of technology; ⁴ up to 500fs_{p-p} (depends on station)

2. Concept of SwissFEL Reference Distribution

3. CW Optical Link for RF Reference Distribution

RX

Libera Sync 3 cw optical link (3GHz): PSI - I-Tech collaboration

- intensity modulation, cw laser diode ("radio-over-fiber")
- stabilization of RF phase of reflected light, Rayleigh scattering
 - → low-noise unidir. link locked to low-drift link
- laser wavelength variation (temp.) & fiber dispersion used for delay variation compensation (BW≈1Hz)
- temp. controlled fiber spool for coarse delay correction

3. CW Optical Link for RF Reference Distribution (contd.)

<u>Libera Sync 3 prototype (2998.8MHz):</u> <u>Added phase noise and jitter measurement</u>

Setup located in SwissFEL Test Injector Facility gun laser hutch (vibration isoled rack)

PSI, 16. September 2014

3. CW Optical Link for RF Reference Distribution (contd.)

<u>Libera Sync 3 prototype (2998.8MHz):</u> Typ. link group delay and gain drift measurement

Setup located in SwissFEL Test Injector Facility gun laser hutch (vibration isolated rack)

Stabilized link gain variation over 24h:

 $0.012dB_{p-p}$ (2.2min avg.), $0.007dB_{p-p}$ (1h avg.)

Stabilized link group delay variation over 24h:

 23.7fs_{p-p} (2.2min avg.), 15.0fs_{p-p} (1h avg.)

3. CW Optical Link for RF Reference Distribution (contd.)

<u>Libera Sync 3 prototype (2998.8MHz):</u>

Typ. link group delay and gain drift measurement (cont.)

Stabilized link gain variation over 85h:

 $0.013dB_{p-p}$ (2.2min avg.), $0.007dB_{p-p}$ (1h avg.)

Stabilized link group delay variation over 85h:

29.5fs_{rms} (2.2min avg.), 18.6fs_{rms} (1h avg.)

4. Laser Sync

Mode-locked laser OMO, laser sync

- low noise PLL reduces laser phase noise
- SwissFEL RF MO R+S SMA 100A as reference
- digital PLL with superperiod, RF and opt. x-corr.
 under development (avail. Q2/2016)

- Onefive Origami (1560nm, frep=142.8MHz,FWHM≈100fs)
- very low free running phase noise, delivers ultra-low jitter S band and C band RF reference RF signals*
- used as OMO in SwissFEL (redundant)

*) Measured with Discovery DSC50 photodiode

5. Status & Outlook

important SwissFEL deadlines

- → T+S installation starting Q1/2015
- → injector commissioning starting Q1/2016
- → Linac commissioning starting Q1/2017
- → Experimental station commissioning starting Q3/2017

• stable reference signal generation

- → RF MO (Rb locked), OMO (redundant) OK
- → stabilized RF power amplifiers (3GHz): under development
- → stable harmonic extraction from opt. pulse train: under development
- → OMO laser PLL OK
- \rightarrow ready by end of 2015

RF reference distribution

- → S & C band cw optical links developed & successfully tested OK series production starting Q4/2014, avail. from Q1/2015..Q2/2016
- → freq. doubler & stabilized RF amplifier (6GHz): under development & ready by end of 2015
- Pulsed optical reference distribution → WTO call for tender for optical amplifier and pulsed links in preparation
 - \rightarrow system ready by end of 2015

BPM reference distribution

→ non-stabilized low-cost low-noise optical links (142.8MHz): developed in house & currently in production OK

Backup slides

PSI, 16.09.2014 Seite 11

RF Master Oscillator

Pulsed Optical Links

<u>Measured performance</u> (<u>Elettra, f_{rep}=157.79MHz</u>)

Jitter: <3.5fs_{rms} (10Hz..10MHz)

Drift: $<10 fs_{pp}/d$ (typ.)

out-of-loop long term (10 days) drift measurement; local optical reference vs. 150m loop-back stabilized link

Elettra

BPM Reference Distribution

FO links and amplifiers

- 1310nm, 142.8MHz, added jitter (10Hz..10MHz) 73fs
- PSI design, manufactured by Sintec Microwave (D)

totally 46 racks that need reference signal

