Real Analysis I : Measure Theory

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. I	Measure spaces	5
Chapter 2. I	Riesz spaces	7
Chapter 3.	Topological measures	S
1. Radon	measures	10
2. Riesz-N	Markov-Kakutani representation theorem	12
2.1. Th	e first theorem	12
Chapter 4. I	Hmmmm	13
0.2. Co	nvergence in measure	13

CHAPTER 1

Measure spaces

$CHAPTER \ 2$

Riesz spaces

CHAPTER 3

Topological measures

1. Radon measures

In this section, we assume every base space X is locally compact Hausdorff (Why?). In locally compact Hausdorff spaces, compact finiteness and locally finiteness are equivalent. We will consider locally finite Borel measures as the minimally compatible measures with a given topology on X.

DEFINITION 1.1. A Radon measure is a Borel measure on X which satisfies the following three conditions:

- (1) locally finite,
- (2) outer regular on all Borel sets,
- (3) inner regular on all open sets.

Radon measures are rather simply characterized when the base space X is σ -compact. The following proposition proves the equivalence between regularity and Radonness of locally finite Borel measure on a σ -compact space.

Proposition 1.1. A Radon measure is inner regular on all σ -finite Borel sets.

PROOF. First we prove for Borel sets of finite measure. Let E be a Borel set with $\mu(E) < \infty$ and U be an open set containing E. By outer regularity, there is an open set $V \supset U - E$ such that

$$\mu(V) < \mu(U - E) + \frac{\varepsilon}{2}.$$

By inner regularity, there is a compact set $K \subset U$ such that

$$\mu(K) > \mu(U) - \frac{\varepsilon}{2}.$$

Then, we have a compact set $K - V \subset K - (U - E) \subset E$ such that

$$\begin{split} \mu(K-V) &\geq \mu(K) - \mu(V) \\ &> \left(\mu(U) - \frac{\varepsilon}{2}\right) - \left(\mu(U-E) + \frac{\varepsilon}{2}\right) \\ &> \mu(E) - \varepsilon. \end{split}$$

It implies that a Radon measure is inner regular on Borel sets of finite measures.

Suppose E is a σ -finite Borel set so that $E = \bigcup_{n=1}^{\infty} E_n$ with $\mu(E_n) < \infty$. We may assume E_n are pairwise disjoint. Let K_n be a compact subset of E_n such that

$$\mu(K_n) > \mu(E_n) - \frac{\varepsilon}{2^n},$$

and define $K = \bigcup_{n=1}^{\infty} K_n \subset E$. Then,

$$\mu(K) = \sum_{n=1}^{\infty} \mu(K_n) > \sum_{n=1}^{\infty} \left(\mu(E_n) - \frac{\varepsilon}{2^n} \right) = \mu(E) - \varepsilon.$$

Therefore, a Radon measure is inner regular on all σ -finite Borel sets.

We get a corollary:

COROLLARY 1.2. If X is σ -compact, then a locally finite Borel measure is Radon if and only if it is regular.

Theorem 1.3. If every open set in X is σ -compact, then every locally finite Borel measure is regular.

Proposition 1.4. In a second countable space, every open set is σ -compact.

Corollary 1.5. If X is second countable, then every locally finite Borel measure is regular and also Radon.

Two corollaries are presented as follows:

Many applications assume X is an open subset of a Euclidean space, so X is usually second countable. In this case, the followings will be synonym: A measure is

(1)

 L^1_{loc} = absolutely continuous measures \subset Radon measures $\subset \mathcal{D}'$.

2. Riesz-Markov-Kakutani representation theorem

In this section, we always assume X is a locally compact Hausdorff space. Hence we can use the Urysohn lemma in the following way: If a compact subset K and a closed subset F are disjoint, then by applying the Urysohn lemma on a compact neighborhood of K, we can find a continuous function $f: X \to [0,1]$ such that $f|_K = 1$ and $f|_F = 0$. In particular, there always exists a "continuous characteristic function" $\phi \in C_c(X)$ with $\phi|_K = 1$.

There are two Riesz-Markov-Kakutani theorems: the first theorem describes the positive elements in $C_c(X)^*$ as Radon measures when the natural colimit topology is assumed, and the second theorem describes $C_c(X)^*$ as the space of finite Radon measures when uniform topology is assumed.

2.1. The first theorem. Positivity of linear functional itself implies a rather strong continuity property.

THEOREM 2.1. Let X be a locally compact Hausdorff space. If a linear functional on $C_c(X)$ is positive, then it is continuous with respect to the colimit topology.

PROOF. Let I be a positive linear functional on $C_c(X)$. We want to show that on every compact subset K of X we have $|I(f)| \lesssim_K ||f||$ for all $f \in C_K(X)$. The proof idea comes from the Hölder inequality $|\int_K f \, d\mu| \leq \mu(K) ||f||$.

Choose $\phi \in C_c(X)$ such that $\phi|_K = 1$ using the Urysohn lemma. Since $f = \phi f \le I(\phi) ||f||$, we have

$$I(f) \le I(\phi || f ||) = I(\phi) || f ||.$$

Putting -f instead of f, we also get $-I(f) \leq I(\phi) ||f||$. Therefore, $|I(f)| \leq I(\phi) ||f||$. \square Jordan decomposition: $(C_0(X), ||\cdot||)^* = (C_c(X), ||\cdot||)^* \subset (C_c(X), \lim_{\to})^*$ converse?

CHAPTER 4

Hmmmm

0.2. Convergence in measure. Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0, \quad \forall n_0 > 0. \quad \exists n > n_0 : \quad |f_n(x) - f(x)| > n^{-1},$$

we have

$$\{x : \{f_n(x)\}_n \text{ diverges}\} = \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x : |f_n(x) - f(x)| > n^{-1}\}$$
$$= \bigcup_{k>0} \limsup_n \{x : |f_n(x) - f(x)| > n^{-1}\}.$$

Since for every k

$$\lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > k^{-1}\} \subset \lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > n^{-1}\},$$

we have

$${x: \{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x: |f_n(x) - f(x)| > n^{-1}\}.}$$

Theorem 0.2. Let f_n be a sequence of measurable functions on a measure space (X,μ) . If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

PROOF. Since $d_{f_n-f}(1/k) \to 0$ as $n \to \infty$, we can extract a subsequence f_{n_k} such that

$$\mu(\lbrace x : |f_{n_k}(x) - f(x)| > k^{-1}\rbrace) > 2^{-k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.