Analiza Matematyczna I.1

Piotr Nayar, podstawowe fakty I

1. Jeśli
$$a_1, \ldots, a_n > 0$$
, to $\frac{n}{a_1^{-1} + \ldots + a_n^{-1}} \le \sqrt[n]{a_1 \ldots a_n} \le \frac{a_1 + \ldots + a_n}{n} \le \sqrt{\frac{a_1^2 + \ldots + a_n^2}{n}}$.

- 2. Mamy $(\sum_{k=1}^{n} a_k b_k)^2 \le (\sum_{k=1}^{n} a_k^2)(\sum_{k=1}^{n} b_k^2)$.
- 3. Jeśli $a_n \leq b_n \leq c_n$ oraz $a_n, c_n \to g$, to $b_n \to g$.
- 4. Dla $a_1, \ldots, a_k > 0$ mamy $\sqrt[n]{a_1^n + \ldots + a_k^n} \to \max(a_1, \ldots, a_k)$, gdy $n \to \infty$.
- 5. Jeśli $a_n \to g$, to $\frac{a_1 + \dots + a_n}{n} \to g$.
- 6. Jeśli $a_n > 0$ oraz $\frac{a_{n+1}}{a_n} \to g$, to $\sqrt[n]{a_n} \to g$.
- 7. Jeśli $a_n > 0$ oraz $a_n \to g$, to $\sqrt[n]{a_1 \dots a_n} \to g$.
- 8. Załóżmy, że $b_n \neq 0$ oraz (b_n) jest ściśle monotoniczny oraz $\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \rightarrow g$. Załóżmy ponadto, że $a_n, b_n \rightarrow 0$ lub $b_n \rightarrow \infty$. Wtedy $\frac{a_n}{b_n} \rightarrow g$.
- 9. $\limsup_{n \to \infty} a_n \le M \iff \forall_{\varepsilon > 0} \exists_N \forall_{n \ge N} \ a_n < M + \varepsilon$.
- 10. $\liminf_{n\to\infty} a_n \ge m \iff \forall_{\varepsilon>0} \exists_N \forall_{n\ge N} \ a_n > m-\varepsilon$.
- 11. Niech f będzie niemalejąca. Wtedy ciąg (a_n) spełniający $a_{n+1} = f(a_n)$ jest monotoniczny.
- 12. Ciąg $a_n = \left(1 + \frac{1}{n}\right)^n$ jest rosnący, a ciąg $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ malejący. Ponadto $a_n, b_n \to e$.
- 13. Mamy $(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1}$. Po zlogarytmowaniu $\ln(n+1) \ln(n) < \frac{1}{n} < \ln(n) \ln(n-1)$.
- 14. Jeśli x > -1 oraz $n \in \mathbb{Z}$, $n \ge 0$, to $(1+x)^n \ge 1 + nx$. Jeśli $-1 < x < \frac{1}{n}$, to $(1+x)^n \le \frac{1}{1-nx}$.
- 15. Dla $x \in \mathbb{R}$ mamy $e^x \ge 1 + x$. Dla x < 1 mamy $e^x \le \frac{1}{1-x}$.
- 16. Dla x > -1 mamy $\frac{x}{1+x} \le \ln(1+x) \le x$.
- 17. Jeśli $x_n \to 0$, $x_n \neq 0$, to $\frac{e^{x_n} 1}{x_n} \to 1$ oraz $\frac{\ln(1 + x_n)}{x_n} \to 1$.
- 18. Jeśli $x_n \to 0$, to $e^{x_n} = 1 + x_n + \frac{x_n^2}{2!} + \ldots + \frac{x_n^k}{k!} + o(x_n^k)$
- 19. Jeśli $x_n \to 0$, to $\ln(1+x_n) = x_n \frac{1}{2}x_n^2 + \frac{1}{3}x_n^3 \ldots + \frac{(-1)^{k-1}}{k}x_n^k + o(x_n^k)$.
- 20. Jeśli $a_n \to 0$ oraz $a_n b_n \to g$, to $(1 + a_n)^{b_n} \to e^g$.
- 21. Warunek Cauchy'ego: (a_n) zbieżny $\iff \forall_{\varepsilon>0} \exists_N \forall_{n,m>N} |a_n-a_m| < \varepsilon$.
- 22. Jeśli a, b > 0, to $\frac{(\ln n)^a}{n^b} \to 0$.
- 23. Jeśli $a\in\mathbb{R}$ oraz|b|<1 , to $b^nn^a\to 0.$
- 24. Jeśli a,b>0, to $a^n n^{bn}\to\infty$ oraz $\frac{e^{n^a}}{n^b}\to\infty$
- 25. Dla $n \ge 1$ mamy $e(\frac{n}{e})^n \le n! \le ne(\frac{n}{e})^n$.