Projekt z przedmiotu Programowanie III

Dominika Limanówka RMS Informatyka Politechnika Śląska w Gliwicach

Pastwisko

24 stycznia 2020 r.

Temat projektu

Projekt powstał na bazie zadania 4 z konkursu "Algorytmion 2013". Oto treść tego zadania:

Rolnik ma pastwisko w kształcie koła o promieniu 1 m. Na okręgu tego koła przywiązuje kozę, której łańcuch ma długość r<1 m. Napisz program wyznaczający długość łańcucha, aby koza miała możliwość wygryzienia trawy z połowy pastwiska. Zadanie to można rozwiązać eksperymentalnie: przy ustalonym promieniu r, wylosować dostatecznie dużo (przykładowo n) punktów należących do tego pastwiska. Następnie zliczyć ile spośród tych punktów trafia w "wygryziony" obszar (przykładowo m). Ilość punktów trafionych w ten obszar do ilości wszystkich punktów ma się tak, jak pole tego obszaru do pola całego obszaru. Z tej zależności da się znaleźć (pośrednio lub w przybliżony sposób) wartość r.

Uwagi

Po konsultacji z autorem zadania (dr inż. Mariuszem Pleszczyńskim) okazało się, że wersja zadania dostępna na stronie konkursu jest błędna i w treści nie powinno być warunku ograniczającego długość łańcucha kozy do maksymalnie 1 m, ponieważ ten warunek sprawia, że zadanie jest niemożliwe do rozwiązania.

Sposób rozwiązania problemu

Program rozwiązuje zadany problem metodą eksperymentalną, poprzez losowanie punktów z terenu pola rolnika i sprawdzaniu, ile z tych punktów należy do pastwiska kozy, jeśli ta będzie miała łańcuch o długości 1m, później 1.01m, 1.02m, itd. aż do momentu, kiedy koza będzie w stanie zjeść trawę z połowy pola rolnika (kiedy 50% punktów z pola rolnika będzie należało do pastwiska kozy).

Dane wejściowe

Program jako jedyną daną wejściową przyjmuje od użytkownika ilość punktów, jaką ma wylosować z pola rolnika. Im więcej tych punktów, tym bardziej wiarygodny wynik zostanie otrzymany. Przyjęłam jednak pewne ograniczenia i program wykonuje się dla minimalnej liczby punktów równej 500, a maksymalnej 500 000. Program obsługuje również ewentualnie błędnie wprowadzone dane.

Dane wyjściowe

Program trzykrotnie zwraca długość łańcucha kozy z dokładnością 0.01m, dla której będzie mogła ona wyjeść trawę z połowy pola rolnika wyznaczoną z podanej przez użytkownika ilości punktów. Trzy próby wykonania programu pomagają ocenić, na ile wiarygodne wyniki otrzymano (jeśli między otrzymanymi wynikami istnieje duży rozstrzał, warto ponowić obliczenia dla większej ilości punktów).

Opis algorytmu i klas

Program składa się z czterech klas:

- Main.java zawiera funkcję główna, która tworzy obiekt klasy App
- App.java klasa odpowiedzialna przede wszystkim za stworzenie graficznego/okienkowego interfejsu aplikacji, korzystając z zasobów biblioteki graficznej Swing,
- ImagePanel.java klasa odpowiadająca za wczytanie obrazu i wyświetleniu go w okienku aplikacji
- Pastwisko.java klasa zawierająca główny algorytm liczący długość łańcucha

Działanie algorytmu liczącego długość łańcucha:

- funkcja double[[[] losujPunkty(Integer i) losuje punkty najpierw z kwadratu o boku 1m, a następnie sprawdza za pomocą nierówności koła, czy każdy punkt należy do okrągłego pola rolnika, jeśli nie- losuje w miejsce tego punktu kolejny aż do momentu, gdy będzie to punkt obszaru pola.
- funkcja double[][] sprawdzProcent(double[][] punkty) przyjmuje jako argument tablicę z wylosowanymi punktami i sprawdza w pętli, począwszy od długości koziego łańcucha wynoszącej 1m, ile procent z pola rolnika będzie w stanie ta koza zjeść (podobnie jak w poprzednim punkcie, sprawdzanie odbywa się za pomocą nierówności koła), następnie zwiększa długość łańcucha o 0.01m aż do momentu, kiedy koza będzie miała możliwość zjedzenia trawy z połowy pola. Wtedy pętla się kończy, a funkcja zwraca wyznaczoną długość łańcucha.

Schemat blokowy

Przeprowadzone testy na poprawność kodu

Wpisanie przez użytkownika liczby zbyt małej do uruchomienia programu:

Wpisanie przez użytkowniki liczby zbyt dużej do uruchomienia programu:

Wpisanie złej wartości:

Wnioski po wykonaniu projektu

Sam problem algorytmiczny nie był zbyt skomplikowany, większym wyzwaniem było zbudowanie funkcjonalnej aplikacji okienkowej przy wykorzystaniu Java Swing. Ciężko rozważać mój projekt w kategorii ewentualnego zastosowania komercyjnego, ponieważ jest to według mnie przykład czysto dydaktyczny.