Государственное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н. Э. Баумана» (МГТУ им. Н.Э. Баумана)

Дисциплина: анализ алгоритмов

Лабораторная работа №2

Студент: Власова Екатерина, гр. ИУ7-54

Содержание

I	Введ	цение	3
1 A	Ана	литическая часть	4
1	1.1	Описание алгоритмов	4
1	1.2	Задание на выполнение лабораторной работы	5
2	Ка	онструкторская часть	6
2	2.1 F	Разработка алгоритмов	6
	2.1	.1 Классическое умножение матриц	6
	••••		6
	2.1	.2 Алгоритм Винограда	7
	2.1	.3 Оптимизированный алгоритм Винограда	10
	2.2	2 Выводы по конструкторскому разделу	13
3	Te	хнологическая часть	14
3	3.1	Требования к программному обеспечению	14
3	3.2	Средства реализации	14
3	3.3	Листинг кода	14
	3.3	3.1 Классический алгоритм умножения матриц	14
	3.3	3.2 Алгоритм Винограда	15
	3.3	3.3 Оптимизированный алгоритм Винограда	16
3	3.4 I	Выводы по технологическому разделу	17
4	Эк	сспериментальная часть	18
۷	4.1	Примеры работы	18
۷	4.2	Постановка эксперимента	19
	4.2	2.1 Тестирование времени работы функций	19
۷	4.3	Сравнительный анализ на основе экспериментальных данных	20
۷	4.4	Вывод	21
Зa	ипи	лиение	22

Введение

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами. В физике и других прикладных науках матрицы — являются средством записи данных и их преобразования. В программировании — в написании программ. И если сложение и вычитание матриц не представляет проблем, то умножение матриц представляет собой достаточно занимательную задачу. В данной лабораторной будут рассмотрены алгоритмы умножения матриц и их оптимизации.

1 Аналитическая часть

Ссылаясь на [1], дадим определение матрицы:

Матрицей A размера $m \times n$ называется прямоугольная таблица чисел, функций или алгебраических выражений, содержащая m строк u n столбцов. Числа m u n определяют размер матрицы. Условимся обозначать матрицы прописными буквами латинского алфавита: A, B, C, D, ... Числа, функции или алгебраические выражения, образующие матрицу, называются матричными элементами. Будем обозначать их строчными буквами c двумя индексами. Первый индекс $i=1,2,\ldots,m$ указывает номер строки, а второй индекс $j=1,2,\ldots,m$ — номер столбца, в которых располагается соответствующий элемент. Таким образом,

$$A_{m \times n} \begin{pmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 (1)

Здесь и в последующих формулах рядом с символом матрицы указан её размер.

Умножение матрицы А на матрицу В определено, лишь когда число столбцов первой матрицы в произведении равно числу строк второй.

1.1 Описание алгоритмов

Описание рассматриваемых алгоритмов умножения матриц.

Базовое умножение матриц

Пусть даны две матрицы A и B. Согласно [1], умножение матрицы A на матрицу B определено, лишь когда число столбцов первой матрицы в произведении равно числу строк второй. Тогда произведением матриц A $m \times k$ B $k \times n$ называется матрица C $m \times n$, каждый элемент которой сіј равен сумме попарных произведений элементов i—й строки матрицы A на соответствующие элементы j—го столбца матрицы B, T. e.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{jk} = \sum_{s=1}^{k} a_{is}b_{sj}$$
 (1.1)

для всех $i=1,\,2,\,...,\,m$ и $j=1,\,2,\,...,\,n.$

Алгоритм Винограда

Если рассмотреть результат умножения двух матриц, то видно, что каждый элемент в нём представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Можно заметить также, что такое

умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Используя [4], рассмотрим два вектора V = (v1, v2, v3, v4) и W = (w1, w2, w3, w4). Их скалярное произведение равно:

$$V \cdot W = v1w1 + v2w2 + v3w3 + v4w4.$$
 (1.2)

Это равенство можно переписать в виде:

$$V \bullet W = (v1 + w2)(v2 + w1) + (v3 + w4)(v4 + w3) - v1v2 - v3v4 - w1w2 - w3w4$$
(1.3)

Выражение в правой части формулы 1.3 допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, что позволяет выполнять для каждого элемента лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения.

1.2 Задание на выполнение лабораторной работы

- Реализовать классический алгоритм умножения матриц и алгоритм Винограда;
- Провести оптимизацию алгоритма Винограда;
- Оценить трудоёмкость рассматриваемых алгоритмов;
- Сравнить эффективность алгоритмов по времени.

2 Конструкторская часть

В данном разделе представлены блок-схемы рассматриваемых алгоритмов и вычислена их трудоёмкость.

2.1 Разработка алгоритмов

2.1.1 Классическое умножение матриц

Рисунок 1. Классическое умножение матриц

Трудоёмкость

Операция	Стоимость
Арифметические операторы	1
Операторы присваивания	1
	1
Другие операторы	1

Оператор	Количество			
	F body			
<	1			
	F outer			
+	M			
<	M			
F middle				
+	M * Q			
<	M *Q			
	F inner			
[]	6 * M * Q * N			
*	M * Q * N			
+=	M *Q * N			
<	M * Q * N			

F inner = 2 + 11N

$$F \ middle = 2 + R * (1 + F \ inner) = 2 + 3 * R + 11 * R * N$$

$$F \ outer = 2 + M * (1 + F \ middle) = 2 + 3 * M + 3 * R * M + 11 * R * N * M$$

$$F \ body = 3 + 3 * M + 3 * R * M + 11 * R * N * M$$

2.1.2 Алгоритм Винограда

Оператор	Количество		
	Fall		
=	2		
/	2		
	Frf		
<	1		
=	1		
	Frf_inner		
	5		
+	1		
*	3		
<	1		
=	1		
	Fcf		
<	1		
=	1		
	Fcf_inner		
*	3		
[]	5		
=	1		
+	1		
<	1		
	Fmult		
<	1		
+=	1		
	Fmouter		
<	1		
+=	2		
	4		
*	1		
	Fminner		
<	1		
+=	1		
[]	10		
*	5		
+	3		
Fodd			
=	11		
%	1		
=	1		
<	1		

Foddout			
=	1		
	6		
%	2		
-	1		

Рассчитаем трудоёмкость алгоритма Винограда:

Foddinner =
$$1+14Q$$

Foddout = $1 + 2M + 14QM$
Fodd = $5 + 2M + 14QM$
Fminner = $2 + 21D$
Fmouter = $2+9Q+21DQ$

Fmult = 2+ 3 M+9QM+21DQM+5 + 2M + 14QM=7+5M+23QM+21DQM

Fcfinner =
$$2 + 12D$$

Fcf = $2+3Q+12DQ$

Frfinner =
$$2+12D$$

Frf = $2+3m+12DM$

$$Fall = 2 + 7 + 5M + 23QM + 21DQM + 2 + 3Q + 12DQ + 2 + 3M + 12DM =$$

$$13 + 8M + 23QM + 21DQM + 3Q + 12DQ + 12DM$$

2.1.3 Оптимизированный алгоритм Винограда

Чтобы оптимизировать алгоритм Винограда, в него было внесено несколько изменений:

- 1) избавление от деления в цикле;
- 2) цикл по вычислению элементов в случае нечётной матрицы был объединён с основным циклом алгоритма;
- 3) накопление результата, чтобы не записывать каждую итерацию результат в переменную, а только после завершения цикла.

Количество			
all			
4			
11			
ody			
1			
1			
ctor			
1			
1			
r_body			
6			
10			
2			
2			
nult			
1			
1			
_outer			
1			
2			
3			
_inner			
1			
1			
Fmult_body			
16			
5			
4			
2			
2			

Рассчитаем трудоёмкость для оптимизированного алгоритма Винограда:

$$Fmult_body = 26$$

$$Fmult_inner = 2 + D + 26D$$

$$Fmult_outer = 9 + 3Q + DQ + 26 DQ$$

$$Fmult = 11 + 9M + 3QM + DQM + 26DQM$$

$$Ffactor = 2 + 24M$$

$$Fbody = 2 + 2M + 24M*M$$

$$Fall = 19 + 11M + 24MM + 3QM + DQM + 26DQM$$

2.2 Выводы по конструкторскому разделу

Были сделаны блок-схемы реализуемых алгоритмов. Рассмотрена оптимизация алгоритма Винограда. Для каждого алгоритма была оценена трудоёмкость.

3 Технологическая часть

В данном разделе был сделан выбор используемого языка программирования, предоставлен код алгоритмов.

3.1 Требования к программному обеспечению

Программа должна поддерживать пользовательский режим, в котором пользователь может с клавиатуры задать размер матриц и значения их элементов; а также операционный режим, в котором пользователь вводит размер матриц, он автоматически заполняется, и для каждого алгоритма выводится время его работы.

3.2 Средства реализации

В качестве языка программирования в данной работе был выбран Forth – конкатентативный язык программирования, в котором программы записываются последовательностью лексем. Этот язык был выбран с целью ознакомления с особенностями его работы. Его стандарт приведён в [9].

3.3 Листинг кода

3.3.1 Классический алгоритм умножения матриц Листинг 0

```
: [!] ( value index array -- ) swap cells + ! ;
: matrix_multi ( -- . outer to inner: K J I)
rows1 0 ?DO
columns2 0 ?DO
0
columns1 0 ?DO
matrix1 K columns1 * I + cells + @
matrix2 I columns2 * J + cells + @

+
dup K columns2 * J + result [!]
LOOP
drop
LOOP LOOP;
```

Заметим, что реализация алгоритмов умножения матриц на Forth требует другой трудоёмкости, нежели было рассмотрено в конструкторском разделе. Рассчитаем трудоёмкость классического умножения матриц на Forth:

F inner =
$$2 + 10 * N$$

F outer = $2 + 2 * R + 10 * R * N$

3.3.2 Алгоритм Винограда

Листинг 1

```
: winograd
 rows10?DO
 rows2 2 / 0 ?DO
 row factor J cells + @
 matrix1 J columns1 * 2 I * + cells + @
 matrix1 J columns1 * 2 I * 1 + + cells + @
 * +
 J row factor [!]
 LOOP LOOP
 columns2 0 ?DO
 rows2 2 / 0 ?DO
 column_factor J cells + @
 matrix2 2 I columns2 * * J + cells + @
 matrix2 2 I columns2 * * J + columns2 + cells + @
 * +
 J column_factor [!]
 LOOP LOOP
 rows10?DO
 columns2 0 ?DO
 row_factor J cells + @ column_factor I cells + @ +
 -1 *
 J columns2 * I + result [!]
 Rows2 2 / 0 ?DO
 result K columns2 * J + cells + @
 matrix1 K columns1 * I 2 * + cells + @
 matrix2 I columns2 2 * * J + columns2 + cells + @
 matrix1 K columns1 * I 2 * + 1 + cells + @
 matrix2 I columns2 2 * * J + cells + @
 + * +
 K columns2 * J + result [!]
 LOOP LOOP LOOP
 rows2 2 MOD 1 = IF
 rows10?DO
 columns2 0 ?DO
 result J columns2 * I + cells + @
 matrix1 J columns1 * rows2 1 - + cells + @
 matrix2 rows2 1 - columns2 * I + cells + @
```

```
* +
J columns2 * I + result [!]
LOOP LOOP THEN;
```

3.3.3 Оптимизированный алгоритм Винограда Листинг 2

```
: opt_winograd
 (ROW FACTOR)
 rows1 0 ?DO
 d 0 ?DO
 row_factor J cells + @
 matrix1 J columns1 * 2 I * + cells + @
 matrix1 J columns1 * 2 I * 1 + + cells + @
 +
 J row_factor [!]
 column factor J cells + @
 matrix2 2 I columns2 * * J + cells + @
 matrix2 2 I columns2 * * J + columns2 + cells + @
 J column_factor [!]
 LOOP LOOP
 ( MULTIPLICATION )
 rows1 0 ?DO
 columns2 0 ?DO
 row_factor J cells + @
 column factor I cells + @
 +
 -1 *
 J columns2 * I + result [!]
 0
 d 0 ?DO
 matrix1 K columns1 * I 2 * + cells + @
 matrix2 I columns2 2 * * J + columns2 + cells + @
 matrix1 K columns1 * I 2 * + 1 + cells + @
 matrix2 I columns2 2 * * J + cells + @
 + * +
 LOOP
 result J columns2 * I + cells + @
```

```
J columns2 * I + result [!]

req 1 = IF

result J columns2 * I + cells + @

matrix1 J columns1 * rows2 1 - + cells + @

matrix2 rows2 1 - columns2 * I + cells + @

*

J columns2 * I + result [!]

THEN

LOOP LOOP

;
```

Листинг 3 Замер времени

```
: time: ( "word" -- )
utime 2>R ' EXECUTE
utime 2R> D-
<# # # # # # [CHAR] . HOLD #S #> TYPE ." seconds" ;
```

3.4 Выводы по технологическому разделу

Выбран язык программирования Forth, средство реализации языка Gforth. Была определена функция для замера времени в секундах, а также реализованы алгоритмы умножения матриц. Описаны требования к ПО.

Трудоёмкость алгоритмов отличается от той, что была рассмотрена в конструкторской части, если реализовывать программу на Forth. Так, трудоёмкость классического алгоритма умножения матриц на Forth получается равной F body = 2 + 3 * M + 2 * R * M + 10 * R * N, в то время как трудоёмкость этого же алгоритма на «обычных» языках - F body = 3 + 3 * M + 3 * R * M + 11 * R * N * M.

4 Экспериментальная часть

В данном разделе предоставлены примеры работы программы и сравнительные анализы алгоритмов по времени.

4.1 Примеры работы

```
1. OPERATIONAL MODE.
2. USER MODE.
2
Number of rows of the first matrix:
Number of columns of the first matrix:
Number of rows of the second matrix:
Number of columns of the second matrix:
Multip. is possible
INPUT FIRST MATRIX:
Input: 1
Input: 2
Input: 3
Input: 4
INPUT SECOND MATRIX:
Input: 5
Input: 6
Input: 7
Input: 8
FIRST MATRIX:
1 2
3 4
SECOND MATRIX:
5 6
7 8
CLASSIC MATRIX MULT.:
19 22
43 50
WINOGRAD ALGORITHM:
19 22
43 50
rowfact:2 12 colfa:35 48
OPTIMIZED WINOGRAD ALGORITHM:
19 22
43 50
```

Рисунок 4.1 Пример работы программы

```
1. OPERATIONAL MODE.
2. USER MODE.
1
Number of rows of the first matrix:
20
Number of columns of the first matrix:
20
Number of rows of the second matrix:
20
Number of columns of the second matrix:
20
Number of columns of the second matrix:
20
Multip. is possible

CLASSIC MATRIX MULT.:
0.000000seconds
WINOGRAD ALGORITHM:
0.004000seconds
OPTIMIZED WINOGRAD ALGORITHM:
0.0000000seconds ok
```

Рисунок 4.2 Пример работы программы

4.2 Постановка эксперимента

Алгоритмы тестируются по времени с помощью функции, возвращающей время работы в секундах, её код представлен в конструкторском разделе.

Алгоритмы умножения матриц были протестированы на матрицах размером 100, ..., 500 с шагом 100 и на матрицах размером 101, ..., 501 с шагом 100.

4.2.1 Тестирование времени работы функций

Размерность	Классический	Алгоритм	Оптимизированный
матриц	алгоритм	Винограда, сек.	алгоритм
	умножения		Винограда, сек.
	матриц, сек		
100 × 100	0.030	0.030	0.029
200 × 200	0.266	0.234	0.188
300 × 300	0.900	0.797	0.672
400 × 400	2.203	1.984	1.625
500 × 500	4.405	4.000	3.281

Размерность	Классический	Алгоритм	Оптимизированный
матриц	алгоритм	Винограда,	алгоритм
	умножения	сек.	Винограда, сек.
	матриц, сек		
101 × 101	0.046	0.030	0.030
201 × 201	0.249	0.234	0.204
301 × 301	0.921	0.828	0.703
401 × 401	2.234	2.000	1.671
501 × 501	4.437	4.031	3.312

4.3 Сравнительный анализ на основе экспериментальных данных

4.4 Вывол

Алгоритмы умножения матриц были протестированы на матрицах чётных размеров 100, ..., 501 с шагом 100 и на матрицах нечётных размеров 101, ..., 501 с шагом 100. Рассмотрены матрицы со случайными значениями.

В результате тестирования было получено, что алгоритмы работают приблизительно одинаково по времени на матрицах маленькой размерности (< 100×100): так, время для классического алгоритма умножения матриц равняется 0.030 для матриц чётной размерности и 0.040 сек. для матриц нечётной размерности; алгоритм Винограда — 0.030 сек. и 0.032 сек. соответственно и оптимизированный алгоритм Винограда 0.029 сек. и 0.030 сек. соответственно. Алгоритмы работают медленнее для матриц нечётных размерностей: уже при размерности 301×301 классический алгоритм отрабатывает за 0.928 сек, алгоритм Винограда за 0.828 сек., а оптимизированный алгоритм Винограда — за 0.703 сек. При этом время работы алгоритмов для матрицы чётной размерности 300×300 равняется 0.900 сек., 0.797 сек и 0.672 сек. Соответственно.

При увеличении размерности матриц увеличивается и время выполнения алгоритмов. Лучшие результаты показывает оптимизированный алгоритм Винограда: при матрицах размерностями 500×500 и 501×501 алгоритм отрабатывает за 3.281 сек. и 3.312 сек., в то время как обычный алгоритм Винограда за 4.000 сек. И 4.031 сек., а классический алгоритм умножения матриц — за 4.405 сек. И 4.437 сек. Соответственно.

Заключение

В результате выполнения данной лабораторной работы были реализованы классический алгоритм умножения матриц и алгоритм Винограда. Была проведена оптимизация алгоритма Винограда, благодаря чему уменьшилось его время работы. Проведено сравнение эффективности алгоритмов по времени: в результате тестирования было получено, что алгоритмы работают приблизительно одинаково по времени на матрицах маленькой размерности (менее 100×100): так, время для классического алгоритма умножения матриц равняется 0.030 для матриц чётной размерности и 0.040 сек. для матриц нечётной размерности; алгоритм Винограда – 0.030 сек. и 0.032 сек. соответственно и оптимизированный алгоритм Винограда 0.029 сек. и 0.030 сек. соответственно. Алгоритмы работают медленнее для матриц нечётных размерностей: уже при размерности 301×301 классический алгоритм отрабатывает за 0.928 сек, алгоритм Винограда за 0.828 сек., а оптимизированный алгоритм Винограда – за 0.703 сек. При этом время работы алгоритмов для матрицы чётной размерности 300×300 равняется 0.900 сек., 0.797 сек и 0.672 сек. Соответственно.

При увеличении размерности матриц увеличивается и время выполнения алгоритмов. Лучшие результаты показывает оптимизированный алгоритм Винограда: при матрицах размерностями 500×500 и 501×501 алгоритм отрабатывает за 3.281 сек. и 3.312 сек., в то время как обычный алгоритм Винограда за 4.000 сек. И 4.031 сек., а классический алгоритм умножения матриц — за 4.405 сек. И 4.437 сек. Соответственно.

Список использованной литературы

- 1. Белоусов И. В. Матрицы и определители, 2006 г.
- 2. Корнг Г., Корн Т., Справочник по математике, 1973 г.
- 3. Хорн Р., Джонсон Ч., Матричный анализ, 2013 г.
- 4. Погорелов Д. А., Таразанов А. М., Волкова Л. Л., Оптимизация классического алгоритма Винограда для перемножения матриц, 2019 г.
- 5. Беллман Р. Введение в теорию матриц, 1969.
- 6. Голуб Дж., Ван Лоун Ч., Матричные вычисления, 1999.
- 7. Ланкастер П., Теория матриц, 1973.
- 8. Курош А. Г. Курс высшей алгебры, 1968.
- 9. Стандарт Forth, [Электронный ресурс], URL: https://forth-standard.org/
- 10.Л. Броуди, Начальный курс программирования на языке ФОРТ, 1990.
- 11. Stephen Pelc, Programming Forth Stephen Pelc, 2005.
- 12. Leo Brodie, Thinking Forth, 1984.
- 13. J. L. Bezemer, And so forth, 2004.
- 14. С. Н. Баранов, Н. Р. Ноздрунов, Язык Форт и его реализации, 1988.
- 15. Язык Форт [Электронный ресурс] URL: https://www.forth.org.ru/
- 16. Gforth Manual [Электронный ресурс] URL: http://www.complang.tuwien.ac.at/forth/gforth/Docs-html/