

部分因子实验设计与分析

2022

六西格玛黑带课程培训

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 4 部分因子实验设计分析实例
- 5 BB考试例题讲解

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 4 部分因子实验设计分析实例
- 5 BB考试例题讲解

实验设计基础知识回顾(基本步骤)

实验设计基础知识回顾(术语)

响应变量(Response):整个过程中关心的若干输出变量

因子(Factor):将影响响应变量的那些变量称为实验中的因子

水平(Level):为研究因子对响应的影响,需要用到因子的两个或更多的取值,这些取值称为因

子的"水平"

望大(小、目):响应输出的需求

A的主效应=[Y的平均值|A=高]-[Y的平均值|A=低]

AB交互效应=BA交互效应=[(A高B高+A低B低)-(A高B低+A低B高)]/2

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 部分因子实验设计分析实例
- 5 BB考试例题讲解

为何需要部分因子实验设计

- ➢假设一共有13个因子,每次实验花3分钟,每天工作8小时,一年工作250天,共需要约40年的时间!
- ▶假设一共8个因子,要估计的主效应项8项,二阶交互效应28项,三阶交互效应56 项.....

为何需要部分因子实验设计

一个28的完全因子实验的效应项数								
常数	1							
主效应	8							
二阶交互效应	28							
三阶交互效应	56							
四阶交互效应	70							
五阶交互效应	56							
六阶交互效应	28							
七阶交互效应	8							
八阶交互效应	1							
总计	258							

由前述内容可知:三阶以上交互效应在物理上已经没有实际意义,因此自然提出问题:能不能少做些实验,但还能估计出方程中的常数项、1阶及2阶系数呢?

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 部分因子实验设计分析实例
- 5 BB考试例题讲解

一个例子

4因子,2水平,预计安排8次试验,如何使试验效果最优?

Α	В	C	D	AB	AC	AD	ВС	BD	CD	ABC	ABD	ACD	BCD	ABCD
1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1

4因子,2水平,预计安排8次试验,如何使试验效果最优? 方案一:随机挑选8组

Α	В	С	D	AB	AC	AD	ВС	BD	CD	ABC	ABD	ACD	BCD	ABCD
1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1

- □ 通过分析,可以发现每个因子取高水平和低水平的次数并不恰好相等
- □正交试验设计的"均匀分散,整齐可比"的优点不复存在
- □故此方案不可行!

4因子,2水平,预计安排8次试验,如何使试验效果最优? 方案二:取ABCD=1的8组试验

Α	В	С	D	AB	AC	AD	BC	BD	CD	ABC	ABD	ACD	BCD	ABCD
1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	Α	BCD	В	ACD	С	ABD	D	ABC	AB	CD	AC	BD	AD	ВС	ABCD
ı	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1
ı	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	1	1
	-1	-1	1	1	-1	-1	1	1	-1	-1	T_1	1	-1	-1	1

- □ 通过分析,可以发现每个因子取高水平和低水平的次数相等
- □ 正交试验设计的"均匀分散,整齐可比"的优点依然保存
- □ 故此方案可行!

```
通过上例,可以看出当取ABCD=1时,会产生A=BCD、B=ACD、C=ABD、D=ABC.....则产生如下定义:
```

- ➤ 若ABCD=1,则分别称A与BCD、B与ACD......各列的效应相混杂(Confounded);
- ➤ 或A与BCD、B与ACD......互为别名(alias)。

混杂效应的性质:

- ➢ 若ABCD=1,则可推出A=BCD、B=ACD、C=ABD、D=ABC、AB=CD、AC=BD、AD=BC(可以不严格的认为这是因为 |A|=|B|=|C|=|D|=1);
- 即表示混杂的关系式中,任何字母在等式两侧都可以随意移动。

其他重要的概念

- 上例中的D=ABC, 称为 "生成元" (generator)
- ABCD=1称为 "定义关系" (definition relation),或字(word)

部分因子实验的标记: 2_R^{k-p}

K代表全部因子的个数,p代表新安排的因子个数。

R代表分辨度。

- 分辨度: 所有的字中字长最短的那个字的长度称为整个设计的分辨度 (resolution), 例ABCD=1的分辨度就是IV,ABC=1的分辨度就是Ⅲ
- 分辨度的性质

分辨度为Ⅲ的设计:各主效应间没有混杂,但某些主效应与某些二阶效应相混杂(1+2);分辨度为Ⅳ的设计:各主效应间没有混杂,主效应与二阶效应没有混杂;但主效应与某些三阶效应相混杂(1+3),某些二阶效应之间相互混杂(2+2);

分辨度为**V**的设计:主效应会与某些四阶效应混杂(1+4),二阶效应与某些三阶效应相混杂(2+3),其余效应之间不发生混杂。

思考题

有A、B、C、D、E、F共6个可控2水平实验因子,要在16次试验中取得最好的混杂结果,现有两种方案,请比较优劣:

方案A: 令生成元为E=BCD, F=ABCD;

方案B:令生成元为E=ABC,F=ABD。

分析过程

- ✓ 方案A:由生成元关系可得定义关系:I=BCDE=ABCDF,既得E=AF,A=EF,F=AE。即主效应与某些二阶效应相混杂,辨识度为皿;
- ✓ 方案B:由生成元关系可得定义关系:I=ABCE=ABDF,即得CEDF=1,辨识度为IV;
- ✓ 综上所述:方案B优于方案A!

部分因子试验分辨度表

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	FULL	Ш													
8		FULL	IV	Ш	Ш	Ш									
16			FULL	V	IV	IV	IV	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
32				FULL	VI	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV
64					FULL	VΠ	V	IV							
128						FULL	VШ	VI	V	V	IV	IV	IV	IV	IV

第一行: 试验因子个数;

第一列:试验的总次数(不含中心点)

用途:

- 1.明确试验的最佳分辨度值;
- 2.保证分辨度值的情况下,确定试验次数

如何使用分辨度表?

- □ 要考察8个因子, 做多少次实验可以保证分辨度不低于IV?
- □ 条件限制最多做16次试验,如何确保分辨度不低于V?

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
4	FULL	Ш													
8		FULL	IV	Ш	Ш	Ш									
16			FULL	V	IV	IV	IV	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
32				FULL	VI	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV
64					FULL	VΠ	V	IV							
128						FULL	VШ	VI	V	V	IV	IV	IV	IV	IV

如何设计部分因子实验?

- ◆ 熟悉实验背景,哪些是重点关心的,哪些是无所谓的?
- ◆ 如何选择生成元?
- ◆ 全部的定义关系(字)是什么?
- ◆ 哪些效应间会产生混杂?

利用成熟软件 (MINITAB)

背景描述(刨制工作台平面的工艺条件实验)

再用刨床刨制工作台平面实验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。共考察6个因子:

序号	因子名称	单位	低水平 (-1)	高水平 (+1)
A	进刀速度	mm/73	1. 2	1. 4
В	切削角度	度	10	12
C	吃刀深度	mm	0.6	0.8
D	刀背后角	度	70	76
E	刀前槽深度	mm	1. 4	1.6
F	润滑油进给量	毫升/分钟	6	8

要求:连中心点在内不超过20次试验,考察各因子的主效应和二阶效应AB、AC、CF、DE是否显著。

初步分析(刨制工作台平面的工艺条件实验)

由实验要求可知分辨度至少要达到IV,并要确保AB、AC、CF、DE之间不发生混杂。

软件操作(刨制工作台平面的工艺条件实验)

创建因子设计		×
设计类型	(2 至 15 · (2 至 15 · (2 至 47 · (2 至 15 ·	个因子) 个因子)
因子数 (제): 6 ▼	显示可用设	设计(Y)
	设计(0)(因子(〒)
	选项(P)	结果(R)
帮助	确定(0)	取消

因子	名称	类型	1	低	高
C	C吃刀深度	数字	_	0.6	0.8
D	D刀背后角	数字	T	70	76
E	E刀前槽深度	数字	T	1.4	1. 6
· F	F润滑油量	数字	•	6	8

软件操作(刨制工作台平面的工艺条件实验)

+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
	标准序	运行序	中心点	区组	A进刀速度	B切削角度	C吃刀業度	D刀背后角	E刀前槽深度	F润滑油蟹
输入方向	9	1	1	1	1.2	10	0.6	76	1.4	8
2	12	2	1	1	1.4	12	0.6	76	1.4	6
3	15	3	1	1	1.2	12	0.8	76	1.4	8
4	16	4	1	1	1.4	12	0.8	76	1.6	8
5	17	5	0	1	1.3	11	0.7	73	1.5	7
6	4	6	1	1	1.4	12	0.6	70	1.4	8
7	8	7	1	1	1.4	12	0.8	70	1.6	6
8	1	8	1	1	1.2	10	0.6	70	1.4	6
9	3	9	1	1	1.2	12	0.6	70	1.6	8
10	18	10	0	1	1.3	11	0.7	73	1.5	7
11	14	11	1	1	1.4	10	0.8	76	1.4	6
12	2	12	1	1	1.4	10	0.6	70	1.6	6
13	11	13	1	1	1.2	12	0.6	76	1.6	6
14	7	14	1	1	1.2	12	0.8	70	1.4	6
15	10	15	1	1	1.4	10	0.6	76	1.6	8
16	20	16	0	1	1.3	11	0.7	73	1.5	7
17	19	17	0	1	1.3	11	0.7	73	1.5	7
18	13	18	1	1	1.2	10	0.8	76	1.6	6
19	6	19	1	1	1.4	10	0.8	70	1.4	8
20	5	20	1	1	1.2	10	0.8	70	1.6	8

设计生成元: E=ABC, F=BCD

口 仅仅得到实验计划表是不够的,还要检验所出现的混杂是否能满足实验的要求

A + BCE + DEF + ABCDF C + ABE + BDF + ACDEF E + ABC + ADF + BCDEF AB + CE + ACDF + BDEF AD + EF + ABCF + BCDE AF + DE + ABCD + BCEF BF + CD + ABDE + ACEF ABF + ACD + BDE + CEF B + ACE + CDF + ABDEF D + AEF + BCF + ABCDE F + ADE + BCD + ABCEF AC + BE + ABDF + CDEF AE + BC + DF + ABCDEF BD + CF + ABEF + ACDE ABD + ACF + BEF + CDE I + ABCE + ADEF + BCDF

如果发生因子的混杂怎么办?

- ◆ 将因子名称互换一般可以解决
- ◆ 自行选定设计生成元
- ◆ 所提出的实验要求是无法满足的。

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 4 部分因子实验设计分析实例
- 5 BB考试例题讲解

软件操作(微型变压器耗电量问题)

在微型变压器生产的6S改进活动中,经过团队成员头脑风暴,认为影响变压器耗电量的因子有4个必须考虑:绕线速度、矽钢厚度、漆包厚度和密封剂量。根据经验已知绕线速度和密封剂量间无交互作用,且实验成本很高,最多安排12次试验。各因子水平如下:

序号	因子名称	单位	低水平 (-1)	高水平 (+1)
A	绕线速度	圈/秒	2	3
В	矽钢厚度	mm	0. 2	0. 3
C	漆包厚度	mm	0.6	0.8
D	密封剂量	mg	25	35

实验设计(微型变压器耗电量问题)

由实验要求限制,可以安排8组部分因子试验,中心点数=4,所设计实验的分辨度可以达到IV。

+	C1	C2	C3	C4	C5	C6	C7	C8
	标准序	运行序	中心点	区组	A袋绒速度	B砂钢厚度	C漆包厚度	D密封刻里
1	10	1	0	1	2.5	0.25	0.7	30
2	8	2	1	1	3.0	0.30	0.8	35
3	12	3	0	1	2.5	0.25	0.7	30
4	7	4	1	1	2.0	0.30	0.8	25
5	5	5	1	1	2.0	0.20	0.8	35
6	6	6	1	1	3.0	0.20	0.8	25
7	11	7	0	1	2.5	0.25	0.7	30
8	3	8	1	1	2.0	0.30	0.6	35
9	4	9	1	1	3.0	0.30	0.6	25
10	9	10	0	1	2.5	0.25	0.7	30
11	2	11	1	1	3.0	0.20	0.6	35
12	1	12	1	1	2.0	0.20	0.6	25

 I + ABCD
 A + BCD

 B + ACD
 C + ABD

 D + ABC
 AB + CD

 AC + BD
 AD + BC

模型拟合(微型变压器耗电量问题)

模型拟合(微型变压器耗电量问题)

拟合因子: 耗电量 与 A绕线速度, B矽钢厚度, C漆包厚度, D密封剂量

T 111.1-

耗电量 的效应和系数的估计(已编码单位)

			糸数标		
项	效应	系数	准误	T	Р
常量		246.50	2. 189	112.61	0.000
A绕线速度	2.00	1.00	2. 189	0.46	0. 679
B矽钢厚度	49.00	24. 50	2. 189	11. 19	0.002
C漆包厚度	-33.50	-16.75	2. 189	-7.65	0. 005
D密封剂量	-19.50	-9.75	2. 189	-4.45	0.021
A绕线速度*B矽钢厚度	-1.00	-0.50	2. 189	-0.23	0.834
A绕线速度*C漆包厚度	-1.50	-0.75	2. 189	-0.34	0. 754
A绕线速度*D密封剂量	-44.50	-22.25	2.189	-10.16	0.002

S = 6.19139 PRESS = *

R-Sq = 99.03% R-Sq (预测) = 94.53% R-Sq (调整) = 96.46%

对于 耗电量 方差分析 (已编码单位)

自由度	Seq SS	Adj SS	Adj MS	F	P	
4	7815.0	7815.00	1953.75	50.97	0.004	
3	3967.0	3967.00	1322.33	34.50	0.008	
1	2.7	2.67	2.67	0.07	<u>0.809</u>	
3	115.0	115.00	38.33			_
3	115.0	115.00	38.33			
11	11899.7					
	4 3 1 3	4 7815. 0 3 3967. 0 1 2. 7 3 115. 0 3 115. 0	4 7815. 0 7815. 00 3 3967. 0 3967. 00 1 2. 7 2. 67 3 115. 0 115. 00 3 115. 0 115. 00	4 7815.0 7815.00 1953.75 3 3967.0 3967.00 1322.33 1 2.7 2.67 2.67 3 115.0 115.00 38.33 3 115.0 115.00 38.33	4 7815.0 7815.00 1953.75 50.97 3 3967.0 3967.00 1322.33 34.50 1 2.7 2.67 2.67 0.07 3 115.0 115.00 38.33 3 115.0 115.00 38.33	4 7815.0 7815.00 1953.75 50.97 0.004 3 3967.0 3967.00 1322.33 34.50 0.008 1 2.7 2.67 2.67 0.07 0.809 3 115.0 115.00 38.33 3 115.0 38.33

⑤主效应检验,除了A之外,别的 都显著。

@小小: !!

从分析结果看,AD显著。但根据 前述混杂表,AD=BC,且实验背 景中AD无交互影响,故实际为 BC显著!!!

④R-Sq&R-Sq(调整)都很好, 说明回归效果度量也很好。

①p<0.05,模型整体有效

②p<0.05,二阶效应整体显著

③p>0.05,数据无弯曲

总结:

- □ 与全因子试验相比,当某些2阶效应显著时,不能仅从表面上的结果进行取舍,要结合混杂结构,根据实际背景材料予以判断,最终决定谁入选。
- □ 从本实验残差图可以看出,不存在任何问题。

改进:模型优化(微型变压器耗电量问题)

拟合因子: 耗电量 与 B砂钢厚度, C漆包厚度, D密封剂量

耗电量 的效应和系数的估计(已编码单位)

			系数标		
项	效应	系数	准误	T	P
常量		246.50	1.643	150.07	0.000
B矽钢厚度	49.00	24.50	1.643	14.92	0.000
C漆包厚度	-33.50	-16.75	1.643	-10.20	0.000
D密封剂量	-19.50	-9.75	1.643	-5.94	0.001
B矽钢厚度*C漆包厚度	-44.50	-22.25	1.643	-13.55	0.000

S = 4.64579 PRESS = 258.540

R-Sq = 98.91% R-Sq (預測) = 97.83% R-Sq (调整) = 98.00%

对于 耗电量 方差分析 (已编码单位)

来源	自由度	Seq SS	Adj SS	Adj MS	F	Р
主效应	3	7807.0	7807.00	2602.33	120.57	0.000
2因子交互作用	1	3960.5	3960.50	3960.50	183.50	0.000
弯曲	1	2.7	2.67	2.67	0.12	0.737
残差误差	6	129.5	129.50	21.58		
失拟	3	14.5	14.50	4.83	0.13	0.939
纯误差	3	115.0	115.00	38. 33		
合计	11	11899.7				

模型优化(微型变压器耗电量问题)

	全模型	变化	缩减模型
R-Sq	99. 03%	↓	98. 91%
R-Sq(调整)	96. 46%	1	98.00%
S	6. 19139	1	4. 64579
R-Sq(预测)	94. 53%	1	97.83%

模型优化(微型变压器耗电量问题)

模型优化(微型变压器耗电量问题)

模型解释分析(微型变压器耗电量问题)

模型解释分析(微型变压器耗电量问题)

结论:

- ✓ 从主效应图中可知, B,C,D影响确实很显著, A确实不显著;
- ✓ 从交互效应图可知,B,C对耗电量影响确实显著,由于BC交互作用太强,单纯从主效应最优考虑的设置 不一定是最好设置,还要结合等值线图和曲面图综合分析。

模型解释分析(微型变压器耗电量问题)

实现最优化(微型变压器耗电量问题)

点	拟合值	拟合值标准误	95%置信区间	95%预测区间
1	207.083	3.319	(199.236,214.931)	(194.154,220.012)

课程内容

- 1 实验设计基础知识回顾
- 2 为何需要部分因子实验设计
- 3 部分因子实验的设计
- 部分因子实验设计分析实例
- 5 BB考试例题讲解

65. 某工序过程有六个因子A、B、C、D、E、F,工程师希望做部分因子试验确定主要的影响因素,准备采用 2^{6-2} 设计,而且工程师根据工程经验判定AB、BC、AE、 DE之间可能存在交互作用,但是MINITAB 给出的生成元(Generators)为 E = ABC, F = BCD,为了不让可能显著的二阶交互作用相互混杂,下列生成元可行的是:

- A. E=ABD, F=ABC
- B. E=BCD, F=ABC
- C. E=ABC, F=ABD
- D. E=ACD, F=BCD

解题思路:

A.I=ABDE=ABCF→AB=DE,不可行!

B.I=BCDE=ABCF→DE=BC,不可行!

C.I=ABCE=ABDF→BC=AE,不可行!

D.I=ACDE=BCDF,可行!

69. 经过团队的头脑风暴确认,影响过程的因子有 A、B、C、D、E 及 F 共六个。其中除因子的主效应 外,还要考虑 3 个二阶交互效应 AB、AC 及 DF,所有三阶以上交互作用可以忽略不计。由于试验成本较高,限定不可能进行全面的重复试验,但仍希望估计出随机误差以准确检验各因子显著性。在这种情况下,应该选择进行:

- A. 全因子试验
- B. 部分实施的二水平正交试验,且增加若干中心点
- C. 部分实施的二水平正交试验,不增加中心点
- D. Plackett-Burman 设计

解题思路:

实验成本高,则实施部分因子实验;

增加中心点,可以估计随机误差。

故选B

70. 在部分实施的因子试验设计中,考虑了 A, B, C, D, E 及 F 共 6 个因子, 准备进行 16 次试验。在计算机提供的混杂别名结构表(Alias Structure Table)中,看到有二阶交互作用效应 AB 与 CE 相混杂(Confounded),除此之外还有另一些二阶交互作用效应相混杂,但未看到任何主效应与某二阶交互作用效应相混杂。此时可以断定本试验设计的分辩度(Resolution)是

- A. 3
- B. 4
- C. 5
- D. 6

解题思路:

2+2,分辨度=IV

71. 在部分实施的因子设计中,如何利用下面这张表格来制订试验计划非常重要。六西格玛团队在分析过程改进时,大家共同确认至少要考虑7个因子。经费的限制使得连中心点在内的试验总次数不能超过20次。对于在试验中是否应考虑第8个因子,大家意见不统一。你赞成下列哪个人的意见?

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4	Full	Ш												
8		Full	IV	Ш	ш	ш								
16			Full	\mathbf{v}	IV	IV	IV	Ш	Ш	Ш	Ш	ш	Ш	Ш
32				Full	VI	IV	IV	IV	IV	IV	IV	IV	IV	IV
64					Full	VII	v	IV	IV	IV	IV	IV	IV	IV
128						Full	VIII	VI	\mathbf{v}	v	IV	IV	IV	IV

- A. 由7个因子增加到8个因子,必然要增加试验次数,既然试验总次数限定了,不可能考虑增加此因子。
- B. 从表中看到,7个因子在16次试验时可以达到分辨度为4,8个因子在16次试验时也可以达到分辨度为4,多增加因子没使试验计划分辨度减小,所以可以增加到8个因子。
- C. 正交试验着重看正交表中一共有多少列。16次的正交表(L16)中,共有15列,可以一直增加到15个因子,增加到8个因子当然没问题了。
- D. 这张表根本决定不了最多可以排多少因子,要根据实际经验判断第8个因子是否重要,然后根据其重要性再决定是否选入。

72. 六西格玛团队在研究过程改进时,大家共同确认要考虑8个因子。经费的限制使得试验总次数应 尽可能地少,但仍希望不要使主效应与二阶交互作用相混杂。除了应安排4个中心点外,对于还该进 行多少次试验,大家意见不一致。参考有关表格,你赞成下列哪个人的意见?

A. 32 次。

B. 16 次。

- C. 12次 (Plackett-Burman 设计)。
- D. 8次。

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4	Full	Ш												
8		Full	IV	ш	ш	ш								
16			Full	\mathbf{v}	IV	IV	IV	Ш	Ш	Ш	ш	Ш	Ш	Ш
32				Full	VI	IV	IV	IV	IV	IV	IV	IV	IV	IV
64					Full	VII	v	IV						
128						Full	VIII	VI	v	v	IV	IV	IV	IV

B

在部分因子设计中,利用下面这张表格来制定试验计划非常重要,六西格玛团队在分析过程改进时,大家共同确认至少主要考虑9个因子。但试验目标中,不但要考虑9个因子的主效应,还要求这 9 个主效应不能与任何二阶交互作用效应相混杂 (Confounded),试验者还想知道 9个因子的影响是否存在弯曲性,考虑增加4个中心点。这时安排试验至少要多少次?

A.32

B.36

C.68

D.132

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4	Full	Ш												
8		Full	IV	ш	ш	ш								
16			Full	v	IV	IV	IV	Ш	ш	ш	ш	ш	ш	Ш
32				Full	VI	IV	IV	IV	IV	IV	IV	IV	IV	IV
64					Full	VII	v	IV						
128						Full	VIII	VI	v	v	IV	IV	IV	IV

