

3rd Romanian Master of Sciences 2010

Physics – Theoretical Tour

FIZICĂ CLASICĂ

A. ELECTRICITATE

În circuitul din figură sursa este ideală (rezistența internă este nulă) iar rezistențele celor două bobine se pot neglija. F este o siguranță fuzibilă (de rezistență nulă) ce se arde instantaneu atunci când curentul ajunge exact la valoarea $I_F = 200$ mA. La momentul t = 0 curenții în circuit sunt nuli, iar întrerupătorul S închide circuitul.

a. Calculați și reprezentați grafic dependențele de timp pentru curenții din circuit

până la momentul arderii siguranței. Calculați la ce moment de timp se arde siguranța.

- **b.** Determinați valorile și vitezele de variație ale tuturor curenților, imediat după arderea siguranței.
- **c.** Calculați valorile curenților pentru $t \to \infty$.

Aplicație numerică: V = 10 V; $L_1 = 10 \text{ mH}$; $L_2 = 5 \text{ mH}$; $I_F = 0.2 \text{ A}$; $R_1 = 1 \text{ k}\Omega$; $R_2 = 200 \Omega$.

(conf. dr. Petrică Cristea, conf. dr. Mihai Dincă, Facultatea de Fizică, Universitatea București)

B. "SCARA" LUI MICHELSON

Rețeaua de difracție "scara" lui Michelson este un aparat spectral interferențial compus dintr-un număr de lame de sticlă cu o foarte bună omogenitate, având fiecare grosimea h și indicele de refracție n, Lărgimea unei trăsături se notează cu a.

Un fascicul monocromatic de lumină cu lungimea de undă λ cade normal pe suprafața celei mai mari lame, așa ca în figură. Difracția se produce în punctul ultim comun a două lame vecine.

a. Deduceți condiția de obținere a maximelor principale de difracție, în funcție de a, h, n, λ , și unghiul α făcut de razele difractate cu direcția inițială.

b. Câte maxime principale sunt observabile practic? (Se consideră maxime observabile cele conținute în maximul principal de difracție corespunzător unei trăsături.) **c.** Deduceți domeniul de dispersie $\Delta \lambda$ (lărgimea maximă a domeniului spectral cu care poate fi iluminat aparatul pentru a nu exista suprapuneri între ordine).

Aplicație numerică: h = a = 1cm; n = 1,5; $\lambda = 500$ nm.

(lect. dr. Marian Băzăvan, Facultatea de Fizică, Universitatea București)