Muscles and Animal Movement

Evolution of Muscle and Movement

- Animals are the only multicellular organisms that actively move.
- Movement is due to muscle cells (motor proteins)
- Muscle proteins have homologues in other eukaryotes (eg. Dynein, Kinesin)
- First muscle-like cells in Cnidarians (e.g. Hydra)
- Muscle complexity has increased with more recent and larger animals
- Vertebrates have the greatest diversity in muscle types (especially terrestrials vertebrates)

2 types of vertebrate muscle

- Striated
 - Skeletal (movements)
 - Cardiac (heart)
- Smooth (blood vessels, intestines, etc.)
- Use very similar contraction mechanisms

Skeletal Muscle Structure/Organization

- Muscle Fibers
 - Long, cylindrical, multinucleate
- Myofibrils
 - Sarcomeres
- Sarcomere
 - The functional unit of striated muscle
 - Made up of myofilaments
 - Thin filaments (actin)
 - Thick filaments (myosin)
 - Structural proteins (titin & nebulin)

Actin (thin filament)

Helical protein

 $0.1~\mu m$

Troponin & Tropomyosin

- Tropomyosin
 - (filamentous protein)
- Troponin Complex (3 protein subunits)
 - TnC binds to Ca2+
 - TnT binds to tropomyosin
 - Tnl binds to actin and TnC

Myosin

Thick filament structure

Sarcomeres

Sarcomeres

How do Sarcomeres (Muscles) Shorten?

- Sliding-Filament Theory
 - Pulling a rope
 - Actin = rope
 - Myosin = your arm

Sliding-Filaments Continued

(c) Each sarcomere shortens Chain shortens

How do the filaments slide?

- Cross-bridge cycle!
- Cross-bridge
 - Projection from myosin thick filament that binds on actin thin filaments
- 3 steps
 - Formation of cross-bridge
 - power stroke
 - release
- Main players
 - Actin, myosin, & ATP

Cross-Bridge Cycle

Two processes

- Chemical
 - Myosin binds to actin (Cross-bridge)
- Structural
 - Myosin bends(Power stroke)
- Need ATP to release and attach in a cycle.

Cross-bridge cycle continued

- ATP breaks bond b/t actin & myosin
- Myosin head extends, hydrolizes ATP to ADP+Pi (but slowly), & attaches to actin.
- Energy released is used to generate force.
- Once attached, Pi is released which:
 - Bond b/t actin & myosin strengthened
 - Energy is released
- ADP is removed from myosin & replaced by ATP

Force production & Movement

- Cross-bridges
 - Develop force
- Power stroke
 - Produces movement

How do you get a muscle contraction?

- Excitation Contraction Coupling
 - Muscles are activated by motor neurons.
 - Motorneurons, motorendplates & motor pool.
- Inward flow of depolarization conducted through transverse-tubule system (<u>T tubules</u>)

T tubules

Depolarization of muscle fibers & action potential triggers release of Ca²⁺

- Why is Ca²⁺ important for muscle contractions?
 - Troponin & Tropomyosin block the Myosin binding site!
 - This is why muscles don't always contract in the presence of ATP.
 - The presence of calcium moves troponin & tropomyosin

How Does Ca²⁺ Allow for Contractions?

- 1. Ca²⁺ binds to troponin (*TnC*)
- 2. Reorganization of *troponin-tropomyosin*
- 3. Expose myosinbinding site on actin(No contraction without Ca²⁺)

Calcium is Regulated by the Sarcoplasmic Reticulum

- Sarcoplasmic Reticulum (SR) Functions:
 - Actively uptakes Ca²⁺ from surrounding medium.
 - Sequesters Ca²⁺ to keep Ca²⁺ concentration low during resting (using Ca²⁺/Mg²⁺ pumps).
 - Action potential along muscle triggers SR to release of Ca²⁺

Sarcoplasmic Reticulum

Summary of Muscle Activation & Contraction

- Motor neuron stimulates muscle.
 - AP travels down T tubules
- Depolarization of membrane triggers release of Ca²⁺ from SR.
- Ca²⁺ binds to troponin.
 - Troponin & tropomyosin reorganize to expose myosin binding site on actin

Summary continued

- Breakdown of ATP allows myosin head to attach & detach from actin (cross-bridge cycle).
 - When cross bridges form (and energy is released), force is developed
- Myosin (thick filament) pull along actin (thin filament) and Sarcomere shortens (sliding filament theory).
- Sarcomeres shorten and muscle shortens pulling on elastic or skeletal elements resulting in movement.

Function of Muscles is to Produce Force/ Movement

- Important Factors in force development
 - Summation
 - Length of Sarcomeres
 - Velocity of shortening
- Work (produces movement)
 - Isometric
 - Isotonic
- Force & velocity

 (and thus, Power) of contraction is important for movement

Activation & Summation

Length Effects Force (Length-tension curves)

Velocity Affects Force

Power

- Power = work/time = (force*∆ L)/time
- Power = force * velocity (shortening)
- Power is important for many movements.
 - Jumping, flying, acceleration

Power production

Power = Force * Velocity

Determinants of Power

- Power is greatest at intermediate shortening velocities
 - Ratio of V/V_{max} is important

Muscle & Fiber Design takes into account Power, speed, & energetics.

- A wide variety of motor tasks are required by muscle.
- Some require high speed contractions, powerful contraction, repetitive sustained contraction, or forceful sustained contractions.
- By altering the traits and design of fibers/ muscle a muscle can be specialized for a specific function.
- Energetics are also important (faster contracting muscles use ATP faster).

Fast glycolytic (FG)

Fast oxidative glycolytic (FOG)

O IIa

IIa

Slow oxidative (SO)

Property	FG	FOG	SO
Force/fiber	High	Intermediate	Low
Contractile speed	Fast	Intermediate	Slow
Endurance	Low	Intermediate	High