

Exhibit 1

1 UNITED STATES DISTRICT COURT
2 NORTHERN DISTRICT OF CALIFORNIA
3 SAN FRANCISCO DIVISION

4 ----- x
5 TAKEDA PHARMACEUTICAL CO., LTD.,
6 TAKEDA PHARMACEUTICALS NORTH
7 AMERICA, INC., TAKEDA
8 PHARMACEUTICALS LLC, AND TAKEDA
PHARMACEUTICALS AMERICA, INC.

Plaintiffs

10 Case No.: 10

3 : 1 1 - C V - 0 0 8 4 0 - J C R n

HANDA PHARMACEUTICALS, LTD.

Defendant

VIDEOTAPED DEPOSITION OF

16 ALAN MYERSON PH.D.

17 Tuesday, November 15, 2011

18 9:41 a.m.

20 Michigan Relations

55 Cambridge Parkway

Boston, Massachusetts

2

Plaintiffs

Case No:

12 V. 3:11-CV-01609-JCS
13 ANCHEN PHARMACEUTICALS, INC.
14 AND TWI PHARMACEUTICALS, INC.

Defendants

TUESDAY, NOVEMBER 15, 2011

19 9.41 a.m.

1 UNITED STATES DISTRICT COURT
2 NORTHERN DISTRICT OF CALIFORNIA
3 SAN FRANCISCO DIVISION

Plaintiffs

10 Case No.:

V. 3:11-cv-01610-CRB
12 IMPAX LABORATORIES, INC.

Defendant

14 - x

15 VIDEOTAPED DEPOSITION OF
16 ALLAN MYERSON, PH.D.

17 Tuesday, November 15, 2011

18 9:41 a.m.

19

20

21

22

23

24 Deborah Roth, RPR/CSR

1 PRESENT:

2

3 FOR THE PLAINTIFFS AND DEPONENT:

4 HEATHER E. TAKAHASHI, ESQ.

5 TED G. DANE, ESQ.

6 MUNGER TOLLES & OLSON LLP

7 335 South Grand Avenue, 35th Floor

8 Los Angeles, California 90071

9 213 683 9100

10 heather.takahashi@mto.com

11 ted.dane@mto.com

12

13 FOR THE DEFENDANT IMPAX LABORATORIES, INC.:

14 ERIC M. ACKER, ESQ.

15 MORRISON & FOERSTER

16 12531 High Bluff Drive, Suite 100

17 San Diego, California 92130

18 858 720 5109

19 eacker@moffo.com

20

21

22

23

24

1 PRESENT:

2

3 FOR THE DEFENDANTS ANCHEN PHARMACEUTICALS,

4 INC., AND TWI PHARMACEUTICALS, INC.:

5 DON J. MIZERK, ESQ.

6 HUSCH BLACKWELL

7 120 South Riverside Plaza, Suite 2200

8 Chicago, Illinois 60606

9 312 526 1546

10 don.mizerk@huschblackwell.com

11

12 FOR THE DEFENDANT HANDA PHARMACEUTICALS, LLC:

13 PAYSON LeMEILLEUR, ESQ.

14 KNOBBE MARTENS

15 2040 Main Street, 14th Floor

16 Irvine, California 92614

17 949 760 0404

18 plemeilleur@kmob.com

19

20 ALSO PRESENT: Jody Urbati, Videographer

21

22

23

24

1 INDEX

2 WITNESS: ALLAN MYERSON, PH.D.

3 EXAMINATION PAGE

4 By Mr. Acker 10

5 By Mr. LeMeilleur 130

6 By Mr. Mizerk 186

7

8 EXHIBITS PAGE

9 EX 12 Declaration of Allan Myerson in
10 Support of Takeda's Opening Claim

11 Construction Brief and Exhibits 11

12 EX 13 "Determination of Purity by
13 Differential Scanning Calorimetry"

14 (DEX0014495 - 0014498) 75

15 EX 14 "Introduction of Differential
16 Scanning Calorimetry in a General
17 Chemistry Laboratory Course:
18 Determination of Thermal Properties
19 of Organic Hydrocarbons"

20 (DEX0014506 - 0014508) 83

21 EX 15 "Solid State Chemistry of Drugs,
22 Second Edition"

23 (IPXL-0009816 - 0009825) 85

24

	EXHIBITS	PAGE
2	EX 16 Plaintiffs' Responses to Anchen	
3	Pharmaceuticals, Inc.'s First	
4	Set of Interrogatories	114
5	EX 17 "Executive Summary of TAK-390	
6	Solid State Chemistry"	
7	(DEX0014361 - 0014379)	114
8	EX 18 "Comprehensive Dictionary of	
9	Physical Chemistry"	
10	(DEX0003648 - 0003649)	143
11	EX 19 U.S. Patent 5,128,356	147
12	EX 20 International Patent Application	
13	WO 9602535A1	
14	(IPXL-0009053 - 0009121)	152
15	EX 21 "Remarks"	
16	(DEX0001945 - 0001951)	159
17	EX 22 International Patent Application	
18	WO 97/02261	
19	(IPXL-0009153 - 0009182)	162
20	EX 23 Joint Claim Construction and	
21	Prehearing Statement	166
22	EX 24 Document	
23	(DEX0001956 and 0001957)	173
24		

	EXHIBITS	PAGE
2	EX 25 "Solid State Chemistry of Drugs, Second Edition"	
4	(IPXL-0009876 - 0009893)	228
5	EX 26 "McGraw-Hill Dictionary of Scientific and Technical Terms, Third Edition"	
8	(IPXL-0009914 - 0009918)	229
9	EX 27 "Hawley's Condensed Chemical Dictionary, 12th Edition"	
11	(IPXL-0010283 - 0010286)	231
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

1 P-R-O-C-E-E-D-I-N-G-S

2 THE VIDEOGRAPHER: This is the video
3 operator speaking, Jodi Urbati, of Merrill
4 Legal Solutions, 225 Varick Street, New York,
5 New York 10014.

6 Today is November 15th, 2011. The
7 time is 9:41 a.m.

8 We are at the offices of Finnegan
9 Henderson, Cambridge, Massachusetts, to take
10 the videotaped deposition of Allan Myerson in
11 the matter of Takeda Pharmaceutical Company,
12 LTD, versus Handa Pharmaceuticals, LLC; Anchen
13 Pharmaceuticals, Inc., and TWI Pharmaceuticals,
14 Inc.; and Impax Laboratories, Inc., in the
15 United States District Court, Northern
16 District of California, San Francisco
17 Division.

18 Will counsel please introduce
19 themselves for the record, and then the
20 reporter, Deborah Roth, of Merrill Legal
21 Solutions will swear in the witness.

22 MR. ACKER: Eric Acker of Morrison &
23 Foerster on behalf of Impax Laboratories.

24 MS. TAKAHASHI: Heather Takahashi of

1 Munger Tolles & Olson on behalf of the Takeda
2 parties and the witness, Dr. Myerson.

3 MR. DANE: Ted Dane also Munger
4 Tolles & Olson.

5 MR. LeMEILLEUR: Payson LeMeilleur
6 of Knobbe Martens on behalf of the defendant,
7 Handa Pharmaceuticals.

8 MR. MIZERK: Don Mizerk of Husch
9 Blackwell on behalf of TWI Pharmaceuticals and
10 Anchen Pharmaceuticals.

11 ALLAN MYERSON, Ph.D.,
12 having been satisfactorily identified by the
13 production of his Massachusetts driver's
14 license, and duly sworn by the Notary Public,
15 was examined and testified as follows:

16 EXAMINATION

17 BY MR. ACKER:

18 Q. Good morning, Doctor.

19 A. Good morning.

20 Q. As I just indicated, my name is Eric
21 Acker and I represent Impax Laboratories. I
22 appreciate you taking time this morning to
23 answer some of ours questions.

24 You've had your deposition taken

1 So, normally, while you expect the
2 major peaks to be the major peaks on occasion
3 -- well, quite frequently, relative intensity
4 will change. So it's usually not used as a --
5 nearly as much as peak location in determining
6 whether a form is present or not.

7 Certainly, the larger intensity
8 peaks should still be the larger intensity
9 peaks, but the order sometimes will change;
10 particularly, due to preferred orientation
11 effects.

12 Q. And is that the full extent of the
13 experimental error that you believe one of
14 skill in the art would expected to see in 1999
15 or 2000 in an XRPD experiment that is up to
16 plus or minus .2 degrees?

17 A. Plus or minus .2 degrees two theta.
18 That's correct.

19 Q. And this experimental error in the
20 two theta values, after you did the analysis
21 would result in a corresponding error in the
22 d-values, correct? d-spacings?

23 A. Yes. It would not be a linear.
24 It's not linear because we have to

1 solve Bragg's law; and, of course, what you
2 would see is that you would have a bigger
3 variation in the d-spacings at low angles than
4 you would at high angles because that's just
5 how the calculation would work.

6 Q. And the result of .2 degrees in the two
7 theta angles or two theta degrees would result
8 in a larger error in the spacings, correct?

9 A. No. Actually, that's not correct.

10 Q. In the d-spacings?

11 A. No, it would not.

12 Q. As a numerical value, it would result
13 in a larger error in the d-spacings?

14 A. No. That's incorrect.

15 As I just testified, the change in
16 the d-spacings would be a function of the
17 angle. You would have a larger than .2 error
18 in the -- in the low angles, which are the
19 high d-spacings, and a much smaller than .2
20 error in the higher angles, which are the --
21 which are the smaller d-spacings.

22 Q. But the way that you would determine
23 what the error in the d-spacings were based on
24 some error in the two theta angles would be to

1 do the analysis under Bragg's law?

2 A. Exactly right. You would calculate the
3 delta d for each angle by substituting in the
4 Bragg's law equation, right, you'd say that
5 Bragg's law is $n \lambda = 2d \sin \theta$,
6 right?

7 So you would just substitute -- you
8 would get a difference of $\sin \theta + .1$
9 and $\sin \theta - .1$. You know, you could
10 just make an equation, delta d, have two
11 things. It would be very simple to do. It's
12 done all the time.

13 Q. So is it your opinion that one of skill
14 in the art in 1999 or 2000, when running an
15 XRPD experiment multiple times on the same
16 crystal, would expect to see up to a .2 degree
17 scientific error in the two theta results?

18 A. Yes.

19 Q. And would it also be your opinion that
20 one in nineteen ninety -- or 2000, if one were
21 to run multiple XRPD analysis on different
22 crystals of the same type, they would see the
23 same level of scientific error?

24 A. Well, I'm sorry. What do you mean by

1 A. Yes.

2 Q. Claim 1 of the '058 requires specific
3 characteristic peaks of interplanar spacings
4 or d-values as calculated Bragg's law for the
5 claimed compound, correct?

6 A. It requires a specific set of
7 d-spacings for the same compound. That's
8 correct.

9 Q. And what is set out in the claim are 11
10 specific characteristic peaks measured out to
11 the hundreds decimal point, right?

12 A. Two decimal places, correct.

13 Q. And there's no mention in the claim of
14 experimental error, right?

15 A. That's correct.

16 Q. No use of the word "about," right?

17 A. That's correct.

18 Q. No use of the word "approximately"?

19 A. That's correct.

20 Q. No other qualifying language of any
21 sort in the claim, right?

22 A. That's correct.

23 Q. Just 11 measurements of interplanar
24 spacings or d-values measured out two decimal

1 points, right?

2 A. That's correct.

3 Q. And that's -- the same is true for
4 claim 2, correct?

5 A. That's correct.

6 Q. Again, there's no mention, no
7 qualifying language such as "about" or
8 "approximately" in claim 2, correct?

9 A. That's correct.

10 Q. And there's no mention of experimental
11 error in claim 2, correct?

12 A. That's correct.

13 Q. Again, just 11 d-spacing measurements
14 measured out to two decimal points, right?

15 A. That's correct.

16 Q. And you agree that the written
17 description of the patent plays the key role
18 in determining what one of skill in the art
19 would believe that a claim term meant?

20 A. You mean the specification?

21 Q. I'm talking about the claims and the
22 specifications?

23 A. Right. The patent itself?

24 Q. Yes.

1 A. Right. I agree with that.

2 Q. And would you agree with me that the
3 claims are the most important thing to review
4 in determining what is the meets and bounds of
5 an invention?

6 A. Well, the claim, certainly, is the most
7 important thing, but you interpret the claim
8 in light of the specification.

9 Q. And then next in line would be looking
10 at the specification; that is, the written
11 narrative in the patent, published patent,
12 before the claims, right?

13 A. Correct.

14 Q. And then you also might look at the
15 prosecution history to determine what claim
16 terms may mean, right?

17 A. That's possible, yes.

18 Q. And that is all -- you understand
19 that's all as what is referred to as intrinsic
20 evidence; that is, the claims, the
21 specification, and the file history?

22 You understand that?

23 A. Yes.

24 Q. And you also understand that what you

1 have done in this case with respect to this
2 term is you have looked to extrinsic evidence
3 to determine what you believe the claim term
4 to mean, right?

5 A. Yes.

6 Q. And extrinsic evidence, that is
7 evidence that's not in the claims, right?

8 A. Correct.

9 Q. And it's evidence that's not in the
10 specification, correct?

11 A. Correct.

12 Q. And it's evidence that's not in the
13 file history, right?

14 A. Not that I recall.

15 Q. And you would agree that in addition to
16 there being no mention of experimental error
17 anywhere in the claims, there's no mention
18 anywhere in the specification of experimental
19 error, right?

20 A. That's correct.

21 Q. You would also agree with me that there
22 is no mention in the file history for the '058
23 patent that one of skill in the art should
24 account for experimental error in the

1 d-spacing measurements, correct?

2 A. I don't, as I sit here, recall what it
3 says in the file history on that particular
4 subject, but I don't recall such a -- any
5 statement, but I can't recall.

6 Q. Okay. Just so we're clear, you would
7 agree that there's nothing in the claims or
8 nothing in the specification about
9 experimental error, right?

10 A. That's correct.

11 Q. And you have no recollection of
12 anything in the file history about
13 experimental error, correct?

14 A. That's correct.

15 Q. And your opinion that experimental
16 error should be accounted for in defining the
17 claim term is based solely on extrinsic
18 evidence, right?

19 MS. TAKAHASHI: Objection.

20 Mischaracterizes the witness' testimony.

21 A. On intrinsic evidence and my own
22 knowledge and experience.

23 Q. Okay. And intrinsic evidence is
24 documents that you've cited in your

1 declaration, correct?

2 A. Yes.

3 Q. And your own experience would also be
4 extrinsic evidence, correct?

5 A. Yes.

6 Q. So there's nothing anywhere in the
7 extrinsic -- intrinsic evidence for the '058
8 patent that would lead one of skill in the art
9 in 1999 or 2000 to believe that they should
10 count for some experimental error in the
11 d-spacing values, right?

12 A. Again, my opinion, one of ordinary
13 skill would understand that d-spacing values
14 are not accurate to two decimal places and
15 would understand that there's error in there,
16 but I guess you would call that extrinsic
17 evidence, as well.

18 Q. It's -- actually, the Federal Circuit
19 has, not me, but let me ask the question
20 again.

21 There's nothing in the intrinsic
22 records, the claims, the specification of the
23 file history that tells one of skill in the
24 art in 1999 or 2000 that they should account

1 for experimental error in the d-spacing values
2 listed in claims 1 and 2 of the '058 patent?

3 A. There's nothing in the patent
4 specification or the claims. I agree with
5 that.

6 Q. Okay. Let's look at the data that's
7 actually in the '058 patent, if we could.

8 If we start -- if we look at
9 column 7 and you -- column 7, lines 15 to 18,
10 you see there, there's a reference there to
11 the actual machine, the XRPD machine that was
12 used --

13 A. Yes.

14 Q. -- to do the analysis?

15 A. Yes.

16 Q. And it reads, "X-Ray powder diffraction
17 was determined using the x-ray powder
18 diffraction meter Rigaku RINT2500 (ultrax18)
19 No. PX-3."

20 Do you see that?

21 A. Yes.

22 Q. And that's just a reference to the XRPD
23 machine that was used, correct?

24 A. That's correct.

1 columns -- column 10, lines 16 and 17.

2 A. There are actually d-spacings reported
3 in two places in this example --

4 Q. Okay.

5 A. -- starting on column 9, line 1, which
6 is for the wet crystal. There are 4 d-spacings
7 -- 5 d-spacings reported.

8 And then later on, there's a further
9 processing, and then there's another sort of
10 d-spacings reported, which are the ones that
11 you just mentioned.

12 Q. And that's in column 10, lines --

13 A. I'm sorry.

14 Actually, continuing, there's
15 additional d-spacings in column 9, line 20;
16 and in column 9, line 58; followed by the
17 d-spacings in column 10, lines 14 and 15.

18 Q. And do you understand that the
19 d-spacings in column 10, lines 16 and 17 are
20 the d-spacings of the final product, the final
21 crystal?

22 A. Those are the d-spacings reported in
23 the claim, yes.

24 Q. So what it reads is, at column 10,

1 lines 14 to 17, "The crystal yielded a powder
2 x-ray diffraction pattern with characteristic
3 peaks appearing at powder x-ray diffraction
4 interplanar spacings d of 11.68, 6.77, 5.84,
5 5.73, 4.43, 4.09, 3.94, 3.89, 3.69, 3.41, and
6 3.11 Ångstrom"; is that right?

7 A. That's correct.

8 Q. And those are the exact d-spacings that
9 are claimed in claim 1 of the '058 patent,
10 right?

11 A. Yes, they are.

12 Q. There's no variation whatsoever between
13 the d-spacings in reference example 4 and the
14 claim -- claim 1 of the '058, right?

15 A. I would add there's no difference in
16 the d-spacings in reference example 4 shown in
17 lines 16 and 17 with the claims.

18 However, the d-spacings shown
19 previously are -- have differences.

20 Q. And you understand that the earlier
21 d-spacings are XRPD analysis of products of
22 the experiment before you get to the final
23 crystal that's reported in column 10 at
24 lines 15 through 18?

1 MS. TAKAHASHI: Objection. Vague.

2 A. (Witness reviewing document.)

3 The x-ray diffraction peaks reported
4 prior to the final ones reported in there are
5 for the title compound in less pure versions
6 because what they're doing is recrystallizing
7 it multiple times to get to a final purity and
8 then doing a final x-ray diffraction.

9 So it actually is the correct
10 compound, and it is -- does contain,
11 apparently, at least a portion of the correct
12 crystalline form, but it's not the final
13 product.

14 Q. And in the final product are the
15 d-spacings that we read a minute ago that are
16 the exact same d-spacings to two decimal
17 points as in the claim 1 of the '058, right?

18 A. That's correct.

19 Q. There's no variation whatsoever?

20 A. That's correct. They're the same.

21 Q. And if you go to example 1, beginning
22 on column 10 and going to column 11, again,
23 that's a preparation of crystal
24 (R)-lansoprazole; and, again, no d-values are

1 the two decimal points, the results for the
2 two theta values or the d-spacing values are
3 identical, it's true that there is no
4 experimental error between the XRPD analysis
5 in reference example 4 and in example 2 of the
6 '058, correct?

7 A. No. That's actually an incorrect
8 statement.

9 Q. Well, can you point to any specific
10 d-value and say that there is a different
11 d-value obtained because of experimental
12 error?

13 A. No, but that's not the question you
14 asked.

15 The question you asked was that
16 there was no experimental error, which is
17 incorrect, okay.

18 Q. Well, let's back up.

19 We have two experiments to prepare
20 crystalline hydrate (R)-lansoprazole: one in
21 reference 4 and one in example 2 --

22 A. Correct.

23 Q. -- of the '058, correct?

24 A. Correct.

1 Q. Different methods -- we can agree that
2 different methods were used to prepare the
3 crystal in reference example 4 and the crystal
4 in example 2, correct?

5 A. Correct.

6 Q. Once the experiment was completed and
7 there was crystalline hydrate (R)-lansoprazole
8 in each of those experiments, XRPD analysis
9 was done on each of the two crystals, right?

10 A. Correct.

11 Q. And the d-values obtained, the 11
12 d-values obtained for those crystals were
13 identical to two decimal points, correct?

14 A. That's correct. Identical to two
15 decimal places when you round the second set
16 to two decimal places, correct.

17 Q. And they not only were identical to one
18 another to two decimal points, they were also
19 identical to the d-spacings that are set forth
20 in claim 1 of the '058, right?

21 A. Right. But, obviously, the claim is
22 not an experiment. It's a claim.

23 Q. So one of skill in the art in 1999 or
24 2000, in looking at this data, would see that

1 there were two methods used to prepare
2 crystalline hydrate (R)-lansoprazole: one in
3 reference example 4 and one in example 2, and
4 the exact same d-values to two decimal points
5 were obtained that matched exactly to the
6 d-values in claim 1 of the '058, right?

7 A. That's correct.

8 Q. So given that data, in your opinion, is
9 there anywhere in the data of the '058 patent
10 that would cause one of skill in the art to
11 believe that they should add experimental
12 error into the definition for claim 1 of the
13 '058 patent?

14 A. Nothing in the data. It would be based
15 on the knowledge and experience of one of
16 ordinary skill who understands x-ray
17 diffraction analysis.

18 Q. So, again, extrinsic evidence to the
19 '058 specification and its claims, correct?

20 A. Correct.

21 MR. ACKER: Why don't we take five
22 minutes.

23 THE VIDEOGRAPHER: Off the record,
24 10:26 a.m.

1 Q. So let me try again.

2 In your opinion, the phrase
3 "'melting start temperature' means 'the
4 temperature at which crystals start to melt,
5 represented by the onset temperature of
6 melting as measured by DSC.'"

7 And that is your opinion, correct?

8 A. Correct.

9 Q. And when you talk about the term
10 "melting start temperature," you're talking
11 about the term in the claims 9 and 10 of the
12 '668 patent, correct? And if you need to take
13 a look --

14 MS. TAKAHASHI: It's tab 4.

15 Q. -- tab 4 of your --

16 A. I'm sorry. What claim numbers?

17 Q. Claims 9 and 10.

18 A. That's correct.

19 Q. And can you point to a single
20 scientific paper, article, or other reference
21 other than the '688 patent that uses or
22 defines the term "melting start temperature"?

23 MS. TAKAHASHI: Objection.

24 Ambiguous.

1 A. I believe I provided this in some of
2 the extrinsic evidence attached in here.

3 The -- it's quite a common use,
4 "melting start temperature."

5 Q. Those words, "melting start
6 temperature"?

7 A. Oh, I don't know if -- the concept.
8 I'm not sure if they say exactly the same
9 words.

10 Q. So let me ask you again.

11 Are you -- can you point to a
12 single scientific paper, article, or other
13 reference other than the '668 patent that uses
14 the specific term "melting start temperature"?

15 MS. TAKAHASHI: Objection. Asked
16 and answered.

17 A. Yeah. Again, I would have to look at
18 the extrinsic evidence I cite in support of
19 this to see what exact language they use.

20 In my opinion, if they don't use
21 that exact language, they use synonymous
22 language that, in my opinion, means the same
23 thing.

24 Q. Okay. Let's take a look at

1 A. Yeah. I would, actually, just for
2 completeness, finish the sentence that says
3 "except as defined otherwise."

4 Q. Okay. But is there anywhere in this
5 section 741, can we find the term "melting
6 start temperature"?

7 A. There is -- the -- it doesn't say
8 "melting start temperature." It says defined
9 -- excuse me.

10 There's a quote that I have in
11 paragraph 73 from here which says, "The
12 temperature at which the column of the
13 substance under test is observed to collapse
14 definitely against the side of the tube at any
15 point as defined as the beginning of melting";
16 and, to me, "beginning" and "start" mean the
17 same thing.

18 So I consider that to be evidence
19 for "melting start temperature."

20 Q. Okay. And let's go back to the USP.

21 And that quote is actually the last
22 full paragraph in the column under 741, and it
23 reads, "The temperature at which the column of
24 the substance under test is observed to

1 collapse definitively [sic] against the side
2 of the tube at any point is defined as the
3 beginning of melting, and the temperature at
4 which the test substance becomes liquid
5 throughout is defined as the end of melting or
6 the 'melting point.'"

7 MS. TAKAHASHI: Objection.

8 Misstates document.

9 Q. Did I read that correctly?

10 A. I'm sorry. I wasn't actually looking
11 at the document while you were reading.

12 Where --

13 Q. If you go to column -- the 741, melting
14 range, starting temperature, if you go down to
15 the last full paragraph.

16 MR. ACKER: I think he wants you to
17 help him out there.

18 MS. TAKAHASHI: Right here.

19 (Indicating.)

20 THE WITNESS: Okay.

21 A. Right. And the final sentence says,
22 "The two temperatures fall within the limits
23 of the melting range."

24 Q. But in that sentence that we just read,

1 there's no mention of the term -- or the term
2 "melting start temperature" is not there?

3 A. The exact words "melting start
4 temperature" are not there. But, again, I
5 would say "beginning" and "start" are
6 synonymous.

7 So I consider beginning of melting
8 to be a synonym of "melting start."

9 Q. And the method that is described as
10 being used there is not DSC, right?

11 A. In this particular example, that's
12 correct. It's not DSC.

13 Q. In fact, nowhere in this section of the
14 USP, section 741, is there a description of
15 using DSC to measure melting start
16 temperature, right?

17 A. Not in --

18 MS. TAKAHASHI: Objection.

19 Ambiguous.

20 A. Not in this document, that's correct.
21 This is not talking about DSC.

22 Q. So the first document you referenced,
23 the 1995 USP, section 741, Melting Range or
24 Temperature, we can agree that there is

1 nowhere in that section the term "melting
2 start temperature," right?

3 MS. TAKAHASHI: Objection. Asked
4 and answered.

5 A. Well, as I've previously said, the
6 words "melting start temperature" don't
7 appear, but the synonymous words "beginning of
8 melting" appear.

9 Q. And nowhere in that section is there a
10 reference to using DSC to measure melting
11 start temperature, correct?

12 MS. TAKAHASHI: Objection. Asked
13 and answered.

14 A. Again, DSC does not appear in this
15 document.

16 Q. And if we go back to that section that
17 we just looked at, it's really talking about a
18 range between the beginning of melting and the
19 end of melting, right?

20 A. That's correct. All melting points are
21 reported as a range.

22 Q. So it's your opinion that all melting
23 points are reported in range form?

24 A. They should be because no method of --

1 no method of measurement of melting doesn't
2 measure a range.

3 Q. And what this section is talking
4 about -- what technique is this section
5 talking about to determine the beginning of
6 melting?

7 A. This is a -- this is a capillary
8 method. This is something I used to use when
9 I was a student. This is the old method they
10 used to use, put a capillary tube in an oil
11 bath and observe visually.

12 Q. So you put your substance in a
13 capillary tube and actually heat it in oil
14 bath; is that right?

15 A. That's correct.

16 Q. And then you observe the substance
17 while it's being heated, correct?

18 A. Right.

19 Q. And when -- according to the USP, when
20 the substance is observed to collapse
21 definitively [sic] against the side of the
22 tube, that point is defined as the beginning
23 of the melting, correct?

24 MS. TAKAHASHI: Objection.

1 Misstates the document.

2 A. Yeah. The document -- actually, the
3 document says that, yeah, when "...the column
4 of the substance under test is observed to
5 collapse definitely against the side of the
6 tube at any point is defined as the beginning
7 of melting."

8 And if you do these experiments,
9 actually, and you watch, I mean, your goal is
10 to see the beginning, which is what they
11 describe here; and when something is fully
12 melted, you know it's melted because you see a
13 meniscus because it's become liquid.

14 It's a very tedious experiment to
15 do, and I'm glad that I don't have to do them
16 anymore.

17 Q. But the document you're relying on to
18 help define the term "melting start
19 temperature" talks about using this capillary
20 method and actually observing this -- what is
21 the term called the "beginning of melting" and
22 the "end of melting," right?

23 MS. TAKAHASHI: Objection.

24 Misstates the witness' testimony.

1 A. The document is using the capillary
2 method, and it defines the "beginning of
3 melting," which is the term that we're looking
4 to define, the "melting start temperature,"
5 which I believe is synonymous; and, in fact,
6 no matter what device is used, the beginning
7 of melting is still the beginning of melting.

8 Q. But, again, we can agree that the term
9 "melting start temperature" is nowhere in this
10 document, and the use of DSC is nowhere in
11 this document?

12 MS. TAKAHASHI: Objection.
13 Compound. Asked and answered.

14 A. Yes. Well, as I've previously
15 answered, the term -- the words "melting start
16 temperature" are not there, but "beginning of
17 melting" are, which is a synonym, and DSC is
18 not mentioned. That's correct.

19 Q. So let's look at the next document that
20 you cite, which is the USP for 2005,
21 Exhibit 23.

22 Now, this document, the USP for
23 2005, would not have been available to one of
24 skill in the art to review in 1999 or 2000,

1 Q. There is a reference in this section to
2 the use of DSC, correct?

3 A. Correct.

4 Q. But as with the other section of the
5 USP from 2005, one of skill in the art would
6 not have had access to this document in 1999
7 or 2000, right?

8 A. This document, that's correct.

9 Q. And in this section, section 891,
10 there's no mention of a melting start
11 temperature anywhere, right?

12 MS. TAKAHASHI: Objection.

13 Ambiguous.

14 A. Again, this says, "In the case of
15 melting, both an 'onset' and a 'peak'
16 temperature can be determined objectively..."

17 "Onset" and "melting start" are the
18 same thing. They're synonymous.

19 Q. And you base your opinion that "onset"
20 and "melting start temperature" are the same
21 thing based on anything other than your
22 opinion?

23 A. My knowledge of the English language,
24 and that's my opinion.

1 That's -- I mean, synonyms are
2 synonyms. "Start"; "beginning"; and "onset"
3 all mean the same thing.

4 Q. But can you point to any other
5 reference other than your interpretation of
6 the English language to equate the word
7 "onset" with the term "melting start
8 temperature"?

9 A. I imagine if you looked in Roget's
10 Thesaurus, which I didn't do, you might find
11 that these things are considered to be
12 synonyms, the words -- the initial words
13 "beginning"; "onset"; and "start," though not
14 necessarily connected to the word "melting
15 point."

16 Q. So let's look at the reference under
17 "Transition Temperature."

18 If you go to the sentence that
19 begins "In the case of melting," do you have
20 that sentence?

21 A. Where -- I'm sorry. Where are we
22 looking?

23 Oh, I see. Yeah. Okay.

24 Q. Do you have that sentence?

1 A. Yes.

2 Q. And it reads, "In the case of melting,
3 both an 'onset' and a 'peak' temperature can
4 be determined objectively and reproducibly,
5 often to within a few tenths of a degree."

6 And we can agree that the words
7 "melting start temperature" aren't in that
8 sentence, correct?

9 A. Again, my answer is the same, that the
10 term "onset" is the synonym for the "start
11 temperature," and it's exactly describing the
12 melting onset and the peak.

13 Q. And then it continues, "While these
14 temperatures are useful for characterizing
15 substances," and these temperatures are -- and
16 "these temperatures are useful for
17 characterizing substances, and the difference
18 between the two temperatures is indicative of
19 purity, the values cannot be correlated with
20 subjective, visual 'melting-range' values..."

21 Do you see that?

22 A. Yes, I do.

23 Q. And what do you understand that to
24 mean, that those temperatures "cannot be

1 correlated with subjective, visual
2 'melting-range' values"?

3 A. It says what it means.

4 The fact is that when you do melting
5 range values with your eye, your eye is pretty
6 good, but it's not as accurate as automated
7 methods. So you can't necessarily correlate
8 your data from a DSC with any visual data.

9 It's -- my analogy might be if you
10 tried to visually pick peaks on a graph and
11 try to correlate that with what peak picking
12 software that used statistical analysis will
13 give you, you get different results because
14 people's eyes fool them; and so that's why --
15 that's why they call it subjective.

16 Q. And what they're talking about there,
17 or one of the techniques they're talking about
18 there, is the capillary method that you
19 described that was set out in the 1995 USP,
20 correct?

21 MS. TAKAHASHI: Objection.

22 Ambiguous.

23 A. That's correct.

24 Q. And so what the USP in 2005 is saying,

1 MR. ACKER: Do you want to testify
2 for him, or do you want to let him answer?

3 MS. TAKAHASHI: I object to the form
4 of the question.

5 A. I'm sorry. Could I hear the question
6 again?

7 Q. Sure.

8 Have we now gone through all of the
9 extrinsic references that you have cited in
10 your declaration to support your interpretation
11 of the term "melting start temperature"?

12 A. I lost the rest of my declaration.
13 It's here somewhere.

14 Q. Do you want to take a minute and sort
15 it out?

16 A. Here we go. Okay. To the other -- I'm
17 sorry. You said extrinsic evidence?

18 Q. Yes, sir.

19 A. That's all the extrinsic evidence that
20 I have cited.

21 Q. And that being the 1995 and the 2005
22 versions of the USP, right?

23 A. Correct.

24 Q. Now, let's take a look at the

1 specification itself of the '668. I think
2 it's tab 4.

3 A. I'm just trying to get myself in order.

4 Q. Okay.

5 A. Okay. Tab 4?

6 Q. I believe so.

7 A. Okay.

8 Q. And if we go to column 12.

9 A. Yes.

10 Q. And if we look at the line 4, it reads
11 "as used herein."

12 Do you see that?

13 A. Yes.

14 Q. "As used herein, the 'melting start
15 temperature' refers to the temperature at
16 which crystals start to melt when heated
17 under, for example, the DSC measurement
18 conditions to be mentioned below."

19 Do you see that?

20 A. Yes.

21 Q. And you rely on that language in your
22 declaration to support your definition of
23 "melting start temperature," correct?

24 A. That's correct.

1 Q. Now, the reference to the use of DSC is
2 illustrative in that sentence, correct?

3 MS. TAKAHASHI: Objection.
4 Ambiguous.

5 A. It says, "...when heated under, for
6 example, the DSC measurement conditions to be
7 mentioned below." So that implies that other
8 methods could be used.

9 Q. And so the inventors here are simply
10 giving one example of a method that could be
11 used, DSC, but they're not saying that other
12 methods should not be used, right?

13 A. That's correct.

14 Q. Now, in your definition of the term
15 "melting start temperature," you indicate or
16 your definition requires that DSC be used to
17 measure melting start temperature, correct?

18 Can you take a look at 86,
19 paragraph 86, 86C?

20 A. Uh-huh. Well, what I say is, in my
21 opinion, the phrase "melting start
22 temperature" means the temperature at which
23 crystals start to melt represented by the
24 onset temperature of melting as measured by

1 differential scanning calorimetry.

2 Q. So your definition of "melting start
3 temperature" does not allow for the use of any
4 technique other than differential scanning
5 calorimetry to measure melting start
6 temperature, right?

7 A. Correct.

8 Q. And that's inconsistent with the
9 specification of the '668, correct?

10 A. They use DSC as their example.

11 Q. But they use it as an example, not as a
12 comprehensive list of all the techniques that
13 could be used?

14 A. I would agree that it just says "for
15 example" in this place. I'm not sure -- I
16 would have to look further to see if they have
17 other statements about DSC in here, but I
18 agree that there it says "for example."

19 Q. Well, look and see if there's anywhere
20 else that you would like to point me to?

21 A. Okay. Well, in column 16, they, of
22 course have very specific information about
23 how they measured the melting start
24 temperature using a DSC under certain

1 as an example of one technique?

2 A. We were -- I'm going back to our
3 earlier discussion about the "melting start
4 temperature" being ill-defined. Well, it's
5 exactly defined in here.

6 Q. And they say it can be measured by, for
7 example, DSC, right?

8 A. That's what it --

9 MS. TAKAHASHI: Objection. Asked
10 and answered.

11 A. Yeah.

12 Q. And your definition requires the use of
13 DSC, correct?

14 MS. TAKAHASHI: Objection. Asked
15 and answered.

16 A. As I previously said, that's correct.

17 Q. Does -- in this specification, do the
18 inventors say at what point along the DSC
19 curve should be interpreted to be the melting
20 start temperature?

21 A. They don't -- they don't indicate this,
22 but one of ordinary skill with a DSC knows
23 that all DSCs, even back in 1999, come with
24 software that will calculate melting start

1 temperature as well as peak melting
2 temperature, standard thermal analysis
3 technique.

4 Q. Just so we're clear, nowhere in the
5 specification is it set out where along the
6 DSC curve should be determined to be the
7 melting start temperature, right?

8 MS. TAKAHASHI: Objection.

9 Ambiguous. Asked and answered.

10 A. Well, it says -- it defines "melting
11 start temperature," the temperature at which
12 crystals start to melt when heated, for
13 example, the DSC measurement conditions, which
14 means that when -- which says using a DSC, is
15 when the heat flow curve starts to move
16 detectably off the baseline which is what DSC
17 software measures when it gives you a melting
18 start temperature.

19 Q. And anywhere in your definition of
20 "melting start temperature," have you included
21 anything to indicate where it is along the DSC
22 curve that melting start temperature should be
23 defined?

24 A. It's -- again, it's intrinsic in the

1 measurement device and the detector and the
2 software that's included.

3 Q. And is it -- and you said a second ago
4 that it's -- it's the point at which there is
5 any measurable movement above the baseline?

6 A. It --

7 MS. TAKAHASHI: Objection.

8 Mischaracterizes the witness' testimony.

9 A. Melting start temperature is clearly
10 when you start to see, in the case of melting,
11 an endotherm off the baseline, but you don't
12 visually detect it again. You use software to
13 detect it.

14 Q. So it's when there is an endotherm off
15 the baseline, that's the point that you would
16 peg as melting start temperature?

17 A. It's not what I would peg. It's how
18 it's defined.

19 I mean, it's how it's defined. It's
20 actually in that USP section. There was a --
21 we were just looking at it. It defines it
22 exactly the same way.

23 Q. So any endotherm off the baseline would
24 be the melting start temperature along a DSC

1 curve?

2 A. No.

3 MS. TAKAHASHI: Objection.

4 Mischaracterizes the witness' testimony.

5 A. No. When you have a full melting peak
6 and you want to know when the melting start
7 temperature is, okay, the DSC software would
8 detect when the melting began, okay, which is
9 when you're getting an endotherm off the
10 baseline.

11 But you would use the software to
12 detect it, and it would tell you where the
13 peak is, the place where you have the maximum
14 melting, and that would be considered the
15 melting point peak; and it would give you the
16 area under the curve, which is the enthalpy
17 change of melting.

18 That's how much heat you had to add
19 to do the melting.

20 Q. Let's go to your declaration, and if
21 you can go to page 12.

22 A. Right.

23 Q. And you see paragraph 42, you have a
24 DSC curve?

1 A. Yes.

2 Q. And you've taken that from an article,
3 Exhibit 8, entitled "Differential Scanning
4 Calorimetry," the University of Southern
5 Mississippi Polymer Science Learning Center."

6 Do you see that?

7 A. Correct.

8 Q. In your opinion, where along that curve
9 would the melting start temperature be?

10 MS. TAKAHASHI: Objection.

11 Ambiguous.

12 A. Well, as I previously have said, at
13 least three times, eyeballing melting start
14 temperature is not particularly appropriate.

15 However, if you're asking me to
16 eyeball melting start temperature, you have a
17 baseline here that's, in this case, perfectly
18 horizontal and the curve is starting to move
19 off this baseline. There's a standard
20 algorithm, which is included in the DSC
21 software, to analyze the baseline, which is
22 sometimes noisy, and the movement off the
23 baseline to tell you when you have a
24 statistically significant movement off the

1 baseline on the way up to this -- this peak.

2 So it's somewhere in this initial
3 region here, when they move off the baseline.
4 Again, I would not by eye give you an exact
5 place.

6 Q. So for one of skill in the art in 1999
7 or 2000 would have to not only use DSC but
8 also use a software algorithm with DSC in
9 order to determine, in your opinion, melting
10 start temperature, correct?

11 MS. TAKAHASHI: Objection.

12 Mischaracterizes the witness' testimony.

13 A. That's what one of ordinary skill would
14 use because all DSCs in 1999 came with normal
15 analysis packages.

16 Now, you could -- in years before
17 that, we used to graphically analyze these
18 things, which is still possible, but I don't
19 think anybody in 1999 would be doing that.

20 Q. Okay. Let's take a look at --

21 A. I think we're going to see one of my
22 papers.

23 Q. We might see one of your papers.

24 A. Yeah. Yeah. I bet I know which one:

1 the "Solubility Measurement Using [the] DSC."

2 That one?

3 MR. ACKER: Well, let's take a look.

4 Let's mark this as -- it's going to be 14.

5 MR. DANE: Don't give him any ideas.

6 THE COURT REPORTER: Thirteen.

7 A. I like that one. That's a good paper.

8 EXHIBIT 13 MARKED

9 MR. ACKER: Thirteen?

10 THE COURT REPORTER: It'll be 13.

11 A. No. Not one of mine.

12 BY MR. ACKER:

13 Q. Feel free to look at any portion of the
14 article, Doctor, but I'm going to ask you
15 about figure 1.

16 A. Okay. I will start out with the fact
17 that I've never seen this article before.

18 Q. Okay. Fair enough.

19 If you take a look, it's an article
20 we've marked as Exhibit 13. It's an article
21 by M.E. Brown entitled the "Determination of
22 Purity by Differential Scanning Calorimetry
23 (DSC)," and if you take a look at the second
24 page, down on the bottom right, you see

1 there's a volume number with the date of
2 May 5th, 1979.

3 Do you see that?

4 A. Uh-huh.

5 Q. You just have to answer yes or no.

6 A. Yes.

7 Q. And so this article, it would have been
8 in the art and available for one skilled in
9 the art looking at the '668 patent in 1999 or
10 2000, correct?

11 A. Yes.

12 Q. And if you take a look at the graph,
13 the DSC curve in figure 1, there's a spot
14 there, " T_o ."

15 Do you see that?

16 A. Yes.

17 Q. And T_o is defined in this article as
18 the melting point, correct?

19 A. I don't see that.

20 Q. If you take a look in the narrative
21 below figure 1.

22 A. Oh, okay. I see.

23 Q. So in that line, T_o is near the point
24 where the DSC curve comes off the baseline,

1 correct?

2 MS. TAKAHASHI: Objection.

3 Ambiguous.

4 A. I would define this as the melting
5 start temperature, myself.

6 Q. Okay. So, in your opinion, that point
7 T_o in this article would be the melting start
8 temperature, although the authors here have
9 defined it as the melting point, correct?

10 A. That's correct. In some -- there's
11 some literature where people actually define
12 the melting start temperature as the melting
13 point as opposed to using the peak, which here
14 would be point B, as a melting point.

15 I think you can go to the literature
16 and find both definitions.

17 Q. Okay. So when you say the peak -- the
18 second line in figure 1 is labeled B at the
19 top?

20 A. Right.

21 Q. A is T_o , and that is defined in this
22 article as the melting point, right?

23 A. Correct.

24 Q. But the B line in this figure 1, which

1 is the peak of the DSC curve, you understand
2 that some folks in the art also label that as
3 the melting point?

4 MS. TAKAHASHI: Objection.

5 Ambiguous.

6 A. On occasion. And most accurately, most
7 people report a melting point range which
8 would be A -- T_o at A and C.

9 Q. But you would agree with me that in the
10 1999 or 2000 time frame, there was no
11 consistency in the literature as to whether
12 the earlier point, the T_o , or point A in
13 figure 1, or the B, the height of the graph,
14 was labeled as melting point?

15 MS. TAKAHASHI: Objection. Vague.
16 Calls for speculation.

17 A. I only know what I knew at that time,
18 which would be that in most analyses that I'm
19 familiar with, people would consider A a
20 melting onset, and they would use B as their
21 melting point; or more accurately, they'd
22 actually report the range.

23 And, in any case, if A is -- even if
24 you define A as melting point, it's only the

1 your declaration?

2 A. Page --

3 Q. I'm sorry. Here.

4 A. Page 5, yeah. This one (indicating).

5 Q. No. At the bottom left, there's
6 numbers.

7 A. Oh, okay.

8 Q. And the graph at the top, is it the DSC
9 curve that you have in your declaration,
10 correct?

11 A. Yes.

12 Q. And it's labeled T_m , the height of the
13 DSC curve, correct?

14 A. Right.

15 Q. And the authors in this article that
16 you rely on refer to that as the melting
17 temperature, T_m , right?

18 A. Correct.

19 Q. So they don't call it the "melting
20 point," they call it the "melting
21 temperature," right?

22 A. They do.

23 Q. Let me show you another article. We're
24 going to mark this as 14.

1

EXHIBIT 14 MARKED

2 A. Yes.

3 Q. Have you had a chance to look at that?

4 A. Well, I've never seen it before, but
5 I've look at the title.6 Q. Okay. This is an article by a Ronald
7 Amelia -- a D'Amelia, d'-A-M-E-L-I-A,
8 Department of Chemistry, Hofstra University,
9 and if we go down to the -- halfway down or
10 two-thirds of the way down the first column,
11 you see there's a reference to the use of DSC?

12 A. Yes.

13 Q. And then if you go to the right column
14 there, you see the paragraph that begins with
15 "All melting point data."

16 A. Yes.

17 Q. And it reads, "All melting point data
18 or endothermic transition temperatures are
19 obtained by taking the onset temperature of
20 the endothermic change from the thermal
21 baseline."

22 Do you see that?

23 A. Yes.

24 Q. There's no reference there of "melting

1 start temperature," correct?

2 A. No. But "onset temperature" and "start
3 temperature," again, are synonyms.

4 Q. And in this article, they equate
5 melting point to the onset temperature of the
6 endothermic change, correct?

7 A. Yes.

8 Q. So if you take a look at the next page,
9 and if you go down to the graph, figure 1, on
10 the bottom left side.

11 Do you see that?

12 A. Yes.

13 Q. So instead of the melting point being
14 the height of the DSC graph in this article,
15 the melting point is actually where the DSC
16 curve begins to move off of the baseline,
17 right?

18 A. They're defining that as their melting
19 point, correct.

20 Q. And, again, there's no reference -- you
21 haven't had a chance to read the article, but
22 you don't see any reference in this article to
23 "melting start temperature," correct?

24 MS. TAKAHASHI: Objection. Vague.

1 A. Again, they use the term "onset
2 temperature," which means the same thing.

3 Q. And they actually point to the area
4 that you would call the "melting start
5 temperature," and they call it the "melting
6 point"?

7 A. Right. They also call it the "onset
8 temperature."

9 Q. But don't use the term "melting start
10 temperature," we can agree on that?

11 A. We can agree that they don't say --
12 they use a synonym for "start" as "onset."

13 Q. And they also refer to that point as
14 the "melting point"?

15 A. Right.

Q. Let me show you another article.

17 Exhibit 15.

18 EXHIBIT 15 MARKED

19 Q. You might want to flip those over or
20 you're going to get -- they're going to get
21 lost in a sea of documents there.

22 A. Uh-huh.

23 Q. This is an article that you actually
24 relied on in reaching your opinions in this

1 If something becomes more pure, its
2 melting point goes up and, typically, the
3 melting point range, that is, the difference
4 between the onset temperature and the final
5 temperature declines. The peaks become
6 sharper, although they don't show these
7 getting that much sharper.

8 I don't believe this indicates
9 anything about the -- what the melting points
10 are because -- I mean, what -- are they using
11 the peak or somewhere else on the curve? It
12 just lists the purity for each of these three.

13 Q. So looking at this graph, figure 5.4 in
14 the Byrn article you relied on, just looking
15 at the graph, you can't tell where along the
16 graph the Byrn authors decided was the melting
17 point of each of these substances?

18 MS. TAKAHASHI: Objection.

19 Ambiguous. Mischaracterizes the witness'
20 testimony.

21 A. Well, what I would -- actually, it says
22 exactly what I would say here, which is -- I
23 just saw it a second ago.

24 Yeah. It just says, in general, a

1 Q. Yes, sir.

2 A. Yes.

3 Q. And if you go to the third paragraph
4 down that begins with "A limitation."

5 Do you see that?

6 A. Yes.

7 Q. That sentence reads -- or Dr. Brittain
8 wrote, "A limitation of DSC is that although
9 it reveals the existence of thermally induced
10 transitions, the nature of these transitions
11 can be difficult to determine."

12 Do you see that?

13 A. Yes.

14 Q. And you agree with that statement?

15 A. Well, I mean, it can be. It depends on
16 the sample and the situation.

17 Q. You also reference a declaration by one
18 of the inventors in the case, a -- I believe
19 it's a doctor, but I'm not sure -- Urai,
20 U-R-A-I, correct?

21 You reference that declaration?

22 A. I believe that's correct.

23 Q. I think it's tab 21 of your materials.

24 A. Yes.

1 Q. And in that declaration, Tadashi,
2 T-A-d-A-S-H-I, Urai, U-R-A-I, makes a
3 declaration, and he is one of the inventors of
4 the '668 patent, correct?

5 A. Yes.

6 Q. And it looks like he is not a doctor,
7 but has a master's in engineering.

8 Do you see that? He graduated
9 from --

10 A. Oh, yeah. I see that. Yeah.

11 Q. Okay. And then, this is part of the
12 file history, this declaration is part of the
13 file history of the '668 patent, correct?

14 A. Yes.

15 Q. And that's the patent that in claims 9
16 or 10 contains this term "melting start
17 temperature" that we've been discussing,
18 right?

19 A. Yes.

20 Q. And in his declaration, Mr. Urai lays
21 out experiments that he conducted to determine
22 the -- what he calls the "melting start
23 temperature" of two samples in an earlier
24 patent, the '058 patent?

1 MS. TAKAHASHI: Objection.

2 Misstates the document.

3 A. Yes. He reports on reference example 4
4 of the '058 and then crystal example 1 of the
5 '058 and example 2 of the '058.

6 Q. And if you look at the declaration on
7 the right side, he says, under "method," he
8 writes, or he wrote, "The melting start
9 temperature was measured using DSC," and then
10 he lays out the conditions, correct?

11 A. Correct.

12 Q. And DSC is, again, the method that is
13 contained in your claim interpretation of
14 melting start temperature as the method that
15 should be used to determine melting start
16 temperature, right?

17 A. Yes. And also in the specification of
18 the patent.

19 Q. And then he sets out the results that
20 he got for melting start temperature for
21 crystal example 1 of -- crystal example 1 of
22 the '058 patent and crystal example 2 of the
23 '058 patent, right?

24 A. Correct.

1 Q. And the melting start temperature he
2 got for crystal example 1 of the U.S. -- of
3 U.S. Patent '058 was 128.3 degrees Celsius,
4 right?

5 A. That's what it says.

6 Q. And if we go to the '058 patent which
7 is tab 1, okay?

8 A. Tab 1.

9 Q. And if you go to column 10.

10 A. Column 10.

11 Q. You see example 1 there?

12 A. Correct.

13 Q. And there's a melting point range
14 that's listed.

15 Do you see that, "MP"?

16 A. Yes.

17 Q. And it's a range of 144 to 144.5
18 degrees Celsius, right?

19 MS. TAKAHASHI: Objection.

20 Misstates the document.

21 A. Yes. It does say -- give a melting
22 point range of 144.0 to 144.5.

23 Q. So one of skill in the art reading the
24 '668 patent and its file history would see

1 that there's a reported melting point range of
2 144 to 144.5 degrees Celsius for example 1,
3 but there's also a reported melting start
4 temperature for that same example of 16 point
5 -- 16 degrees Celsius lower of 128.3, right?

6 A. Where is the -- what number is the
7 declaration? I'm sorry.

8 Q. Twenty-one.

9 A. They were also clearly different as
10 reported in this declaration as reported in
11 the '058 patent.

12 Q. Okay. When you say "this declaration,"
13 the melting start temperature for example 1 of
14 the '058 patent reported in the file history
15 of the '668 patent is not within the melting
16 range that is reported for that same crystal
17 in the '058 patent, right?

18 MS. TAKAHASHI: Objection.

19 Ambiguous. Misstates the documents.

20 A. That's correct. My understanding of
21 this, if we read the material, the resulting
22 crystals according to reference example at 4
23 is stored at 30 degrees in the chemical
24 development -- minus 30 degrees, chemical

1 development laboratory -- okay. Same thing.

2 The resulting crystals according to
3 examples 1 and 2 of U.S. Patent No. 6,462,058
4 were provided, and, again, this is indicating
5 who gave it to him, and these crystals have
6 been stored at minus 30 degrees C in the Osaka
7 Research Center.

8 So these are crystals that were
9 prepared and saved.

10 Q. And when Mr. Urai used DSC to obtain a
11 melting start temperature for example 1, the
12 crystal in example 1 of the '058 patent, he
13 got a reading of 128.3, which is 16 degrees
14 lower than the melting range reported in the
15 '058 patent for that same crystal?

16 MS. TAKAHASHI: Objection. Vague.
17 Misstates the document.

18 A. That's correct.

19 Q. And if we take a look at example -- the
20 reference to the melting start temperature for
21 example 2 of the '058 patent in Mr. Urai's
22 declaration, he used DSC and obtained a
23 melting start temperature of 129.1 degrees
24 Celsius, correct?

1 A. That's correct.

2 Q. And if we go to the '058 patent and
3 look at example 2 in column 11, you see
4 there's a melting point range there of 147 to
5 148 degrees Celsius.

6 A. Yes.

7 Q. So one of skill in the art reading the
8 '668 patent and its file history would find
9 that for example 2 of the '058 patent, the
10 melting start temperature is 129.1 degrees,
11 and the melting point is a range of 147 to 148
12 degrees, right?

13 A. Well, they would see the -- they would
14 see that the difference between these reported
15 melting points, the melting point range in the
16 patent was substantially different than the
17 melting start temperature reported in the
18 declaration.

19 Q. And the melting start temperature that
20 was determined by the method that you believe
21 should be the method used to determine melting
22 start temperature, correct?

23 A. Using the DSC.

24 Q. And when DSC was used to analyze the

1 melting start temperature of example 1 and
2 example 2 of the '058 patent, melting start
3 temperatures were obtained that were 16 and
4 17 degrees lower than the melting point range
5 reported in the '058 patent?

6 MS. TAKAHASHI: Objection.

7 Misstates the document.

8 A. Different values were obtained in the
9 declaration than those reported in the patent.
10 That's correct.

11 Q. And this information, that is, the Urai
12 declaration, would be a part of the file
13 history that one of skill in the art would
14 look to when trying to understand what the
15 term "melting start temperature" meant in the
16 '668 patent, correct?

17 A. I assume they could. Though, as I
18 previously testified, I think one of ordinary
19 skill would understand what the term means
20 from the patent and the specification.

21 Q. Let me ask you about the term "about."

22 The term "about" was another term
23 that you were asked to provide an opinion
24 about it's meaning as part of your work in

1 Q. Claim 10 reads, "The crystal of claim 9
2 wherein the melting start temperature is about
3 135 degrees Celsius."

4 Do you see that?

5 A. Yes.

6 Q. And your definition of "about" is
7 "approximately." So, in your opinion, can you
8 place a -- quantitatively place a number of
9 degrees on what "approximately 135 degrees
10 Celsius" means?

11 A. Well, in the context of my previous
12 claim construction about melting start
13 temperature being measured with a DSC, okay,
14 and based on one of ordinary skill in the art
15 understanding of how a DSC would work, it
16 would be probably on the order of about .2,
17 .3 degrees C, maximum.

18 Q. Each way, up and down?

19 A. Plus or minus, yeah.

20 Q. So if --

21 A. I'm sorry. Let me modify my answer to
22 say for repeating identical samples at
23 identical conditions.

24 Q. Okay. So let me ask it this way.

1 If there was a compound that was a
2 crystal that met the limitations of claim 9
3 and it had a melting start temperature of
4 135.5, do you believe it would fall within the
5 meets and bounds of claim 10?

6 MS. TAKAHASHI: Objection.

7 Ambiguous.

8 A. So the question is, would 135.5 meet
9 claim 10?

10 Q. No. Let me -- I think you just said
11 that in your opinion, "approximately" would
12 allow you to go above or below 135 by .2
13 degrees Celsius.

14 A. Correct.

15 Q. So --

16 A. I said .2 or .3, actually, but.

17 Q. .2 or .3?

18 A. Uh-huh.

19 Q. So -- and that's the full extent of
20 "approximately" that you would -- as one of
21 skill in the art would put on it? That
22 "approximately" would extend claim 10 up to
23 135.3 and down to 134.7 degrees Celsius?

24 A. Correct.

1 Q. And if a compound had a melting start
2 temperature that was greater than 135.3 degrees
3 Celsius, then it wouldn't fall within the
4 scope of claim 10 under your definition?

5 A. That's correct.

6 Q. And similarly, if a compound that met
7 the limitations of claim 9 had a melting start
8 temperature of 134.6, it would not meet the
9 limitations of claim 10?

10 A. No. That's not correct.

11 Q. What have I got wrong about that?

12 A. Because claim 10 says a melting start
13 temperature of not lower than 131 point C. It
14 has no upper range.

15 Q. No. It says, is "about" 135 degrees
16 Celsius.

17 A. Not lower than about 131 degrees C. So
18 you can be anything above 131 C.

19 Q. Yeah. I'm looking at claim 10, not 9.

20 A. You actually just said "9."

21 Q. Well, let me start over then.

22 When I said "9," it's a dependent
23 claim, claim 10. So you have to satisfy all
24 the claim limitations of claim 9.

1 A F T E R N O O N S E S S I O N

2 EXHIBITS 16 AND 17 MARKED

3 THE VIDEOGRAPHER: Back on the
4 record, 1:23 p.m.

5 BY MR. ACKER:

6 Q. Good afternoon, Doctor.

7 A. Good afternoon.

8 Q. Let me hand you what we've marked as
9 Exhibit 16.

10 MS. TAKAHASHI: Thank you.

11 Q. Then I'm going to hand you another
12 document, what we've marked as Exhibit 17,
13 Doctor.

14 Exhibit 16 is a document we marked
15 that's entitled "Plaintiffs' Responses to
16 Achen Pharmaceutical Inc.'s First Set of
17 Interrogatories," and I want to direct your
18 attention to, if I might, Interrogatory No. 2
19 on page 4; and this is a document in which
20 Achen is asking Takeda to respond to the
21 following question: "Identify all facts
22 supporting Takeda's assertion that Takeda's
23 Dexilant product, which is the subject of New
24 Drug Application (NDA) 22-287, is covered by

1 the asserted claims of the listed patents
2 identified in Takeda's disclosure of asserted
3 claims and infringement contentions, including
4 but not limited to, any dissolution tests, XRP
5 [sic] analyses, studies, research, and
6 literature."

7 And if you go down to the response
8 to that question, if you go down to lines 24
9 and 25, you see there's a reference to
10 claims 9 and 10 of the '688 patent.

11 Do you see that, Doctor?

12 A. Uh-huh.

13 Q. You have to answer yes or no.

14 A. Yes.

15 Q. Okay. And then if you go to the next
16 page, page 5, lines 1 and 2, Takeda is
17 responding to that interrogatory saying "NDA
18 No. 22-287 (hereinafter the Dexilant NDA)
19 generally contains facts and analyses that
20 demonstrate that Takeda's Dexilant product
21 satisfied the claims listed above."

22 And then if you go over to page 6,
23 at lines 6 through 9, you see Takeda responds
24 "SSCI also measured a melting start temperature

1 of 140 degrees Celsius for the dexlansoprazole
2 drug substance by hot stage microscopy,
3 demonstrating that the Dexilant product meets
4 the limitations of claim 9 and 10 of the '668
5 patent." And you see there's a reference
6 there to a certain document.

7 Do you see that, Doctor?

8 A. Yes.

9 Q. And then if you take look at exhibit
10 seven -- the other document I handed you,
11 Exhibit 17.

12 A. Yes.

13 Q. You see that Exhibit 17 is entitled
14 "Executive Summary."

15 Do you have that?

16 A. Uh-huh. Seventeen, yes.

17 Q. "Executive Summary of TAK-390 Solid
18 State Chemistry," and you see in the title, it
19 says, "A report generated for Takeda
20 Pharmaceutical, Limited, on 12/28/2007."

21 Do you see that?

22 A. Yes.

23 Q. And if you go into the document, under
24 the summary, under the first page --

1 A. Yes.

2 Q. -- the first paragraph reads, "This
3 document summarizes multiple studies performed
4 at SSCI, Inc., including a polymorph screen
5 preparation/characterization/physical
6 stability of solid forms [2,3], computational
7 study of the solid forms [4],
8 solubility/chemical study of solid forms [5],
9 and method development of an XRP [sic] limited
10 test for impurity forms B, C, d, and F in
11 TAK-390MR Granules-h [6]."

12 Do you see that?

13 A. Yes.

14 Q. And then if you go down to the third
15 paragraph, it reads in the first sentence
16 there, "In summary, form A is the anhydrous
17 form and is the final form of choice."

18 Do you see that?

19 A. "Anhydrous"?

20 Q. "Anhydrous," yes. Do you see that?

21 A. Yes.

22 Q. Okay. And then if we go to page 6 of
23 19, do you see the B up there? It says
24 "form A."

1 A. Yes.

2 Q. It says, "Form A is anhydrous
3 non-hygroscopic crystalline material which
4 melts at 140 degrees Celsius."

5 A. It actually says 148 degrees.

6 Q. I'm sorry. "148 degrees Celsius."

7 Do you see that?

8 A. Yes.

9 Q. And then if you go down to the chart
10 below, you see that the melting point of
11 148 degrees Celsius, that was determined by
12 DSC.

13 Do you see that?

14 A. Yeah. There's one DSC, 10 degrees C,
15 data of a major endotherm, 148 degrees C.

16 Q. But if you go down lower, you see
17 there's a reference to something called "HSM."

18 Do you see that test?

19 A. Yes.

20 Q. And if you go back to the page before,
21 you see there's an abbreviation there for HSM
22 of hot stage microscopy?

23 A. Yes.

24 Q. And what is hot stage microscopy?

1 A. Hot stage microscopy is a technique
2 where you have a stage on a microscope that --
3 generally, they're programmable stages where
4 you can put a microscope slide that's sealed
5 or unsealed, as you wish, and you can increase
6 the temperature in a desired way, or you can
7 hold the temperature, and you can observe
8 through the microscope the crystal while it's
9 being heated.

10 Q. So this is another method unlike --
11 it's different than DSC to determine a melting
12 point of a solid?

13 A. Right. It's closer -- it's closer in a
14 sense to the capillary method because you're
15 using visual observation as your means of
16 determining whether -- when something starts
17 to melt and when it's completely melted.

18 But, yes, it's another method.

19 Q. If you go back to the page with the
20 actual data on it for the crystalline
21 material, you see under the HSM study, it
22 says, "Melt onset at 140 degree Celsius. Melt
23 completed by 145 degrees Celsius."

24 Do you see that?

1 A. Yes, I do.

2 Q. Now, if we go back to the interrogatory,
3 Exhibit 16, and you go to page 6, in lines 6
4 through 9, Takeda indicated in response to
5 Anchen's interrogatory question, "SSCI also
6 measured a melting start temperature of 140
7 degrees Celsius for the dexlansoprazole drug
8 substance by hot stage microscopy,
9 demonstrating that the Dexilant product meets
10 the limitations of claims 9 and 10 of the '668
11 patent."

12 Do you see that?

13 A. Yes.

14 Q. So when Takeda is measuring its
15 Dexilant product to determine whether or not
16 it falls within the claims of claims 9 and 10
17 of the '668 patent and that whether it meets
18 the melting start temperature, it's not using
19 DSC, but it's using HSM to conduct that
20 measurement, correct?

21 MS. TAKAHASHI: Objection. Calls
22 for a legal conclusion. Mischaracterizes the
23 documents, and this witness hasn't seen these
24 documents before today.

1 A. What's referenced in this Exhibit 16
2 certainly has to do with hot stage microscopy.

3 What's been measured in the report
4 -- I'm sure if I look at the full report,
5 there might be more information -- is both DSC
6 and hot stage microscopy for measuring a
7 melting start temperature and melting point.

8 Q. Okay. If we look at page 6 of 10 of
9 the report, for form A, HSM was used to
10 determine a melt onset at 140 degrees Celsius.

11 Do you see that?

12 A. It's reported as a melt onset and a
13 melt completed. That's correct.

14 Q. And under your interpretation of melt
15 start temperature of claims 9 and 10 in the
16 '668 patent, that would not be the proper
17 technique to use to determine a melt start
18 temperature, right?

19 A. As I previously testified, I would
20 think that a DSC would be proper, and they
21 have this data available.

22 They don't report it in this table,
23 but they report a DSC measurement, and they
24 only report the major endotherm, but the DSC

1 trace is part of this report somewhere, or in
2 the appendix, which would allow one to get a
3 melting start temperature from this, as well.

4 Q. But what they relied on in the
5 interrogatory response to say that they --
6 that their Dexilant product fell within
7 claims 9 and 10 of the '668 patent was the
8 140 degree Celsius melt start temperature
9 determined using HSM, correct?

10 MS. TAKAHASHI: Objection. Calls
11 for a legal conclusion.

12 A. All I can tell you is that's what they
13 wrote in this interrogatory. I have no other
14 knowledge of why they used that as opposed to
15 something else.

16 Q. And in your opinion as a scientist, do
17 you think that using a melting start
18 temperature determined by HSM is the proper
19 way to determine whether or not a compound
20 falls within the claims of 9 and 10 of the
21 '668 patent?

22 MS. TAKAHASHI: Objection. Vague
23 and ambiguous. Calls for a legal conclusion.

24 A. As I previously testified and wrote in

1 my expert report, I think the proper way to do
2 this is through DSC.

3 Q. So a melting start temperature obtained
4 using HSM would not be the proper way to
5 determine whether or not a product fell under
6 claims 9 and 10 of the '668 patent, right?

7 A. Well, not according to my
8 interpretation of the proper claim
9 construction.

10 Q. Now, so if Takeda is relying on a
11 melting start temperature obtained by using
12 HSM to claim that its Dexilant product falls
13 within claims 9 and 10 of the '668 patent, in
14 your opinion, that's an improper analysis?

15 A. I have no --

16 MS. TAKAHASHI: Objection. Calls
17 for a legal conclusion.

18 You can answer.

19 THE WITNESS: Sorry.

20 A. I have no opinion of what's on Takeda's
21 mind. I mean, I previously testified that I
22 think the proper claim construction involves
23 using a DSC, and that's just my answer to the
24 question.

1 disputed term 'amorphous compound' to mean 'a
2 noncrystalline solid that lacks the long-range
3 order characteristic of a crystal.'"

4 Did I read that correctly?

5 A. Yes.

6 Q. And that is your opinion?

7 A. Yes.

8 Q. Back in paragraph 52 of your
9 declaration --

10 A. Yes.

11 Q. -- you also stated that, "I further
12 understand that unless a patentee defines a
13 term differently in the patent specification,
14 either expressly or by clear implication, a
15 claim term generally should be afforded its
16 ordinary and customary meaning as it would be
17 understood by a person of ordinary skill in
18 the art taking into the account the language
19 of the claims themselves and the teachings of
20 the specification."

21 Did I read that correctly?

22 A. Yes, you did.

23 Q. Is it correct that the term "amorphous
24 compound" in claims 1 and 2 of the '282 patent

1 is not expressly defined in the specification?

2 A. I don't believe there is a definition
3 expressly in the specification.

4 Q. Is it true that the specification does
5 not even use the term "amorphous compound"?

6 A. I would have to look. I don't recall.

7 Q. Turning back to paragraph 80 in your
8 definition -- or your -- excuse me, your
9 construction of amorphous compound.

10 A. Yes.

11 Q. Do I understand your construction
12 correctly to mean that amorphous compound,
13 basically, means a noncrystalline solid?

14 A. As used in this -- in the '282 patent,
15 that's correct.

16 Q. In general, is it your opinion that
17 the word "compound" and the word "solid" are
18 synonymous?

MS. TAKAHASHI: Objection. Vague.

20 A. Compound and?

21 O. Solid.

22 A. No. Not necessarily.

23 Q. And why is that?

A. There are compounds that are liquid.

1 solids, or gases.

2 Q. So it's correct that a compound can be
3 a nonsolid?

4 A. That's correct.

5 Q. Am I also correct that a noncrystalline
6 can be a nonsolid?

7 A. I'm sorry. Could you repeat that?

8 Q. Am I also correct that a noncrystalline
9 could be a nonsolid?

10 MS. TAKAHASHI: Objection.

11 Ambiguous.

12 A. Okay. When -- typically, the term
13 "noncrystalline" is used to describe
14 crystalline or noncrystalline solids; but,
15 clearly, a liquid or a gas are not crystalline
16 either, I mean, but that's not a normal usage.

17 When you say something -- referring
18 to crystallinity, you're referring to the
19 solid state, generally.

20 Q. And so it is understood that
21 noncrystalline is essentially a nonsolid?

22 MS. TAKAHASHI: Objection.

23 Mischaracterizes the witness' testimony.

24 A. No. That's not what I said at all.

1 is noncrystalline because that's obvious.

2 Everyone knows that.

3 Q. Am I correct that there is no express
4 definition in the '282 specification that
5 limits amorphous compound to a solid compound?

6 MS. TAKAHASHI: Objection. Asked
7 and answered.

8 A. There's nothing in the '282 patent
9 except the claim and the examples in the
10 specification where they prepare what they
11 call amorphous material.

12 Q. So it's correct that there's no express
13 definition in the specification limiting
14 amorphous compound to a solid compound?

15 MS. TAKAHASHI: Objection. Asked
16 and answered.

17 A. No. There's no definition of amorphous
18 at all in the '282 patent.

19 Q. And it's also correct that there's no
20 express disavow of amorphous nonsolids in the
21 specification, correct?

22 MS. TAKAHASHI: Objection. Vague.

23 A. There's no discussion at all about
24 amorphous nonsolids.

1 Q. So am I correct that a person of
2 ordinary skill in the art in 1999 would
3 understand that an amorphous compound, as it's
4 claimed in claims 1 and 2 of the '282 patent,
5 could be referring to an amorphous solid or a
6 nonsolid?

7 A. I don't believe so in interpreting that
8 claim in light of the specification and the
9 examples and their knowledge. I think they
10 would look at the examples that prepare the
11 amorphous material and realize it's amorphous
12 solid.

13 Q. But according to the plain and ordinary
14 meaning of the term "amorphous compound," a
15 person of ordinary skill in the art would
16 understand that that could be referring to a
17 solid or a nonsolid compound, correct?

18 A. If one interpreted "amorphous compound"
19 without reference to the specification at all,
20 okay, in a vacuum, that's correct. But one of
21 ordinary skill would read the specification
22 and interpret the term in light of the
23 specification.

24 Q. Looking at paragraph 81 of your

1 fact, I would assume that the same material
2 would be in earlier editions, which I don't
3 think I was able to find. So earlier editions
4 of this would have been available.

5 We quoted my Second Edition in 2001,
6 but I believe in my First Edition, I have the
7 same definition, which would be 1991, but I
8 don't remember that for a fact, and...

9 Yeah, again, these are -- reference
10 Exhibit 27 is a Fourth Edition. So I'm
11 assuming there is an edition prior to 1999
12 with the same definition.

13 Reference 14 would not have been
14 available. That's a relative new book.

15 Q. Strictly speaking, as the references
16 are identified here, only Exhibits 10 and 11,
17 based on their date, would be available to
18 persons of ordinary skill in 1999, correct?

19 A. That's correct.

20 Q. And these references that you have
21 identified here support the understanding of
22 what an amorphous solid is, correct?

23 A. That's correct.

24 Q. But the claim term at issue is

1 "amorphous compound," correct?

2 A. That's the claim term.

3 Q. And am I correct that the none of the
4 references you've listed define the exact
5 claim term "amorphous compound"?

6 A. No. They all use either "amorphous
7 material" or "amorphous solid."

8 Q. Is it correct that the '282 patent
9 specification does not use the term "amorphous
10 solid"?

11 MS. TAKAHASHI: Objection. Asked
12 and answered.

13 A. No. I believe in the claim, as we're
14 discussing, it uses "amorphous compound," and
15 in the specification and the examples, it just
16 says "amorphous."

17 Q. Do you understand the reference in the
18 '282 patent specification to be to "amorphous
19 substance"?

20 A. I would have to look at the
21 specification.

22 Q. Okay. Let's turn to the '282 patent.
23 I believe that's Exhibit 5 to your declaration.
24 And I believe you reference a couple of

1 MS. TAKAHASHI: Objection.

2 Ambiguous.

3 A. Well, it's my opinion that these two
4 examples, they're amorphous substances
5 described in an amorphous solid. So I think
6 they -- the amorphous compound and the
7 amorphous substance, in both cases, is an
8 amorphous solid.

9 Q. I understand that that's your stated
10 construction, but would you agree with me that
11 whatever "amorphous compound" means in the
12 claims, it must mean something that's as broad
13 as the term "amorphous substance" used in
14 these reference examples?

15 MS. TAKAHASHI: Objection.

16 Ambiguous.

17 A. It should mean the same thing, in my
18 opinion.

19 Q. Okay. Would it mean something more
20 broad than the term "amorphous substance" used
21 in these examples?

22 A. No. I think it should mean -- it means
23 the identical thing.

24 MS. TAKAHASHI: Objection.

1 solids?

2 A. This definition is certainly not
3 limited to solids.

4 Q. Am I correct that a person of ordinary
5 skill in the art in 1999 would know that the
6 term "amorphous substance" was not limited to
7 solids?

8 MS. TAKAHASHI: Objection.

9 Ambiguous.

10 A. The -- one of ordinary skill would
11 understand, in a vacuum by itself, the term
12 "amorphous substance" could include liquids,
13 vapors, or solids.

14 However, one of ordinary skill
15 interpreting the statement of amorphous
16 substance in the '282 patent, in these
17 examples, would understand them to be meaning
18 an amorphous solid.

19 Q. Is the basis for your position that
20 you just stated reflected in paragraph 83 of
21 your declaration?

22 A. Yes.

23 Q. Can you explain for me the basis for
24 your statements in paragraph 83?

1 A. If one evaporates to an oil, okay, it
2 usually means that the evaporation isn't
3 necessarily complete because an oil still has
4 a vapor pressure. So they usually say they
5 evaporated, and the result was an oil.

6 You always specify when you have an
7 oil because you could keep evaporating, you
8 could keep heating forever and distill the
9 whole material off if that was the case.

10 So when you say "evaporate to
11 dryness," you mean a solid, as described here.

12 Q. If you've evaporated to an oil, is it
13 correct that all you would simply need to do
14 would be evaporate further to achieve the
15 solid that's disclosed in the '282 patent?

16 A. No. Not if the oil was a true liquid.
17 You could just keep evaporating it forever
18 until you had nothing left.

19 Q. What do you mean by "true liquid"?

20 A. An oil is a liquid, right? It's just a
21 viscous liquid, right?

22 If there is no solid -- there is --
23 if the condition you're working with, no
24 potential for making a solid, you can distill

1 your opinion that evaporation in reference
2 examples 1 and 2 of the '282 patent would not
3 also, at least possibly, afford an oil,
4 correct?

5 MS. TAKAHASHI: Objection.

6 Ambiguous. Lacks foundation.

7 A. As I say, they would have said "oil" if
8 they meant oil.

9 Q. And is that your only basis for
10 concluding that reference examples 1 and 2 of
11 the '282 patent result in solids?

12 MS. TAKAHASHI: Objection. Asked
13 and answered.

14 A. Yeah. I think I've testified to this a
15 number of times.

16 They -- if somebody produces an oil
17 in an example, they say an oil. If they
18 produce an amorphous solid, they would
19 normally say an amorphous -- in this case, let
20 me make sure I get the language correct --
21 amorphous substance.

22 Q. But they didn't say "amorphous solid,"
23 correct?

24 A. No. But, again, it's my interpretation

1 A. Yes.

2 Q. Claim 9.

3 Okay. It references a crystal of
4 dexlansoprazole having a melting start
5 temperature of not lower than 131 C?

6 Do you see that?

7 A. Yes.

8 Q. Okay. Now, how would you go about
9 getting at sample of a crystal of
10 dexlansoprazole to subject to this test?

11 A. Oh, I would not interpret that to mean
12 a single crystal. It means crystalline
13 dexlansoprazole.

14 So you normally would not find a
15 single crystal to do a DSC on. You would take
16 a sample of a known mass, which would have
17 multiple crystals.

18 Q. Okay. And so you would -- you would --
19 so explain to me how would you then obtain the
20 sample of the dexlansoprazole material for DSC
21 testing as you've defined it in your claim
22 construction?

23 MS. TAKAHASHI: Objection. Vague.

24 A. You -- well, I mean, if we were doing

1 molecules with long-range order and three
2 dimensions"; is that correct?

3 A. Yes.

4 Q. Okay. By -- are you intending to limit
5 the meaning of the word "crystal" by using
6 this definition?

7 MS. TAKAHASHI: Objection.

8 Ambiguous.

9 A. I guess I'm not sure what you mean by
10 "limit"?

11 It's the definition of what a
12 crystal is, and in reference to this patent,
13 we're dealing with molecules. So it's a
14 molecular crystal.

15 Q. So you think the scope and the meaning
16 of "crystal" is equivalent to the scope and
17 meaning of the phrase you've chosen,
18 "regularly repeating pattern of molecules
19 with long-range order and three dimensions";
20 is that correct?

21 MS. TAKAHASHI: Objection.

22 Ambiguous. Mischaracterizes the witness'
23 testimony.

24 A. I'm sorry. Could you repeat that one

1 you to determine that something is crystalline,
2 but the -- but those are generally the ways
3 you would determine if something's a crystal
4 or not.

5 Q. And what does "long-range order" mean?

6 A. It means that this repeating pattern
7 continues in exactly the same way for lots of
8 molecules.

9 Q. How much?

10 A. Certainly, it would have to be the
11 number of molecules equal to the minimum size
12 crystal you can get of something, which in the
13 case of these organic molecular materials
14 would be on the order of a couple of microns,
15 a micron, two microns, and that's still a lot
16 of molecules.

17 I have to calculate how many, but
18 it's many.

19 Q. And in your proposed construction, what
20 does "three dimensions" mean?

21 A. It means the normal usage of three
22 dimensions, three spatial dimensions.

23 Q. Now, why is your proposed construction,
24 or if it is, why is your proposed construction

1 regularly repeating pattern, et cetera, more
2 helpful than just simply the word "crystal" or
3 "crystalline compound"?

4 MS. TAKAHASHI: Objection. Calls
5 for a legal conclusion.

6 A. I don't know. The -- my definition is
7 what a crystal is. So I guess I'm not sure I
8 know why.

9 I mean, that is what a crystal is.
10 So it's a description of what a crystal is.

11 Q. Now, if we look at -- I think we still
12 have '058 patent. If we go back, I think, to
13 example 10 -- or example 1 on column 10.

14 A. I'm sorry. The '058?

15 Q. '058, yes.

16 MS. TAKAHASHI: That's the right
17 one.

18 THE WITNESS: This is it?

19 MS. TAKAHASHI: Yeah.

20 THE WITNESS: Okay. I got it.

21 Q. It's Exhibit 1 to your declaration.

22 A. Okay.

23 THE WITNESS: Column 10?

24 MS. TAKAHASHI: Yeah.

1 Q. Column 10.

2 A. Okay.

3 Q. I think we talked a little bit about
4 example 1 where we said "after a crystal began
5 to form."

6 A. Yes.

7 Q. Would it be appropriate to simply say
8 after a repeating -- regularly repeating
9 pattern of molecules with long-range order and
10 three dimensions began to form, diethyl ether
11 was added and the container was stoppered and
12 kept standing at room temperature?

13 A. If you wanted to be very wordy. I
14 mean, it means the same thing.

15 Q. So what the inventor, or someone,
16 observed in example 1 that they called a
17 crystal, you're saying it would've -- the same
18 thing would be they observed a regularly
19 repeating pattern of molecules with long-range
20 order in three dimensions?

21 That's what they meant?

22 MS. TAKAHASHI: Objection. Calls
23 for a legal conclusion. Asked and answered.

24 A. That is the definition of a crystal.

1 Q. Well --

2 A. So what I am saying is, if you -- if
3 you substitute the definition of a crystal for
4 the word "crystal," you end up saying exactly
5 the same thing.

6 Q. Well isn't -- isn't regularly repeating
7 pattern of molecules with long-range order and
8 three dimensions a characteristic of a
9 crystal?

10 A. That's exactly what a crystal is.

11 Q. Well, let's turn to your definition of
12 "amorphous compound."

13 You say that an amorphous compound
14 as used in the '282 patent, it means "a
15 noncrystalline solid that lacks the long-range
16 order characteristic of a crystal."

17 A. That's correct.

18 Q. So isn't it fair to say that this
19 long-range order that you're talking about is
20 a characteristic of a crystal?

21 MS. TAKAHASHI: Objection.

22 Argumentative. Calls for a legal conclusion.

23 A. It's the definition of a crystal. If
24 you don't have the long-range order, it's not

1 a crystal.

2 Q. So did I mean your -- did I misread
3 your -- then why did you choose the word
4 "characteristic" when you -- when you offered
5 a definition for "amorphous compound," why did
6 you call the long-range order a "characteristic
7 of a crystal"?

8 MS. TAKAHASHI: Objection.

9 Ambiguous. Argumentative.

10 A. Well, it is a characteristic of a
11 crystal because it is the definition of a
12 crystal.

13 Q. Thank you.

14 I'm trying to avoid going over
15 things that you've already addressed. So I
16 apologize for that.

17 MS. TAKAHASHI: Take your time, Don.

18 Q. In your definition of "amorphous," you
19 state -- the definition you chose was "a
20 noncrystalline solid that lacks the long-range
21 order characteristic of a crystal."

22 A. Yes.

23 Q. Why didn't you say "a noncrystalline
24 solid that lacks the long-range order

1 characteristic of a regularly repeating
2 pattern of molecules with long-range order in
3 three dimensions"?

4 A. That's redundant because I'm already
5 referring to the long-range order. I mean,
6 those are synonyms of what a crystal is.

7 Q. Why didn't you say "a nonregularly
8 repeating pattern of molecules with long-range
9 order and three dimensions that lacks the
10 long-range order characteristic of a regularly
11 repeating pattern of molecules with long-range
12 order in three dimensions"?

13 A. Because that's a horribly -- that's a
14 horrible sentence, number one; and, number
15 two, it's saying the exact same thing twice,
16 okay.

17 So in a sense, you could say
18 crystals are shorthand for the long-range
19 three-dimensional order. So -- and that's
20 what I'm describing.

21 Q. Prior to 2000, did the phrase
22 "amorphous solid" exist?

23 A. Yes.

24 Q. Okay. So if the inventors wanted to

1 refer to an amorphous solid, they could have
2 -- they would have been familiar with the term
3 "amorphous solid," correct?

4 MS. TAKAHASHI: Objection. Assumes
5 facts not in evidence.

6 A. The term "amorphous solid" existed.
7 That's correct.

8 Q. On page 23 of your declaration, which
9 is Exhibit 12 --

10 A. Page 23?

11 Q. I'm sorry. Paragraph 23.

12 A. Paragraph 23.

13 Q. Strike that. You've already answered
14 that.

15 Let's go to paragraph 57 of your
16 declaration.

17 A. Yes.

18 Q. I think -- you have a number of
19 exhibits that you think support your
20 definition of the term "crystal," and they're
21 listed in the table that begins on page 15; is
22 that correct?

23 A. Yes.

24 Q. Okay. And I assume that the -- the far

1 CERTIFICATE

2 COMMONWEALTH OF MASSACHUSETTS)

3 COUNTY OF SUFFOLK)

4

I, Deborah Roth, a Registered
Professional Reporter and Notary Public duly
commissioned and qualified in and for the
Commonwealth of Massachusetts, do hereby
certify: That Allan Myerson, Ph.D., the
witness whose deposition is hereinbefore set
forth, was duly identified and sworn by me,
and that the foregoing transcript is a true
record of the testimony given by such witness
to the best of my ability.

15 I further certify that I am not
16 related to any of the parties in this matter
17 by blood or marriage, and that I am in no way
18 interested in the outcome of this matter.

19 IN WITNESS WHEREOF, I have
20 hereunto set my hand and affixed my notarial
21 seal this 17th day of November 2011.

22 Deborah Roth

23 Deborah Roth, CSR: 14700-S, RPR: 34250

24 My Commission Expires: January 23, 2015