Title: Are the complications after cranioplasty related to its timing? A systematic review and

meta-analysis

Authors: James G. Malcolm*, Ph.D.; Rima S. Rindler*, M.D.; Jason Chu, M.D.; Jonathan

Grossberg, M.D.; Gustavo Pradilla, M.D.; Faiz Ahmad, M.D., M.Ch.

*These authors contributed equally to the study and manuscript.

Affiliation: Department of Neurological Surgery, Emory University, Atlanta, Georgia, United

States of America

Corresponding Author's name and complete mailing address:

Faiz Ahmad, MD, MCh

Emory Faculty Office Building

49 Jesse Hill Drive SE

Room #341

Atlanta, GA 30303

Phone: 404-778-1398

Fax: 404-778-1307

Email: faiz.ahmad@emory.edu

Running title: Complications associated with timing of cranioplasty

Keywords: craniectomy, cranioplasty, complications, early, timing

There is no financial or material support for this work.

1

Portions of this work will be presented in abstract and poster form as proceedings at the 84^{th} AANS Annual Scientific Meeting at McCormick Place West in Chicago, Illinois April 30^{th} – May 4^{th} 2016.

Abstract

The optimal timing of cranioplasty after decompressive craniectomy has not been well established. The purpose of this study was to evaluate the relationship between timing of cranioplasty and related complications. A systematic search of MEDLINE, Scopus, and the Cochrane databases was performed using PRISMA guidelines for English-language articles published between 1990 and 2015. Case series, case-control and cohort studies, and clinical trials reporting timing and complication data for cranioplasty after decompressive craniectomy in adults were included. Extracted data included overall complications, infections, reoperations, intracranial hemorrhage, extra-axial fluid collections, hydrocephalus, seizures, and bone resorption for cranioplasty performed within (early) and beyond (late) 90 days. Twenty-five of 321 articles met inclusion criteria for a total of 3,126 patients (1,421 early vs 1,705 late). All were retrospective observational studies. Early cranioplasty had significantly higher odds of hydrocephalus than late cranioplasty (Odds Ratio [OR] 2.38, 95% Confidence Interval [CI] 1.25-4.52, p=0.008). There was no difference in odds of overall complications, infections, reoperations, intracranial hemorrhage, extra-axial fluid collections, seizures, or bone resorption. Subgroup analysis of trauma patients revealed a decreased odds of extra-axial fluid collection (OR 0.30, p=0.02) and an increased odds of hydrocephalus (OR 4.99, p=0.05). Early cranioplasty within 90 days after decompressive craniectomy is associated with an increased odds of hydrocephalus than with later cranioplasty, but no difference in odds of developing other complications. Earlier cranioplasty in the trauma population is associated with fewer extra-axial fluid collections.

Introduction

Cranioplasty after decompressive craniectomy is a common neurosurgical procedure that carries known perioperative risks and complications [1]. The initial decompressive procedure is often performed to relieve elevated intracranial pressure in the setting of traumatic brain injury [2], ischemic [3,4] or hemorrhagic stroke [5,6], or aneurysmal subarachnoid hemorrhage [7–9]. Subsequent cranioplasty to repair the skull defect is typically delayed several months to years after craniectomy to allow the patient to convalesce from the acute phase of illness and ensure resolution of elevated intracranial pressure. The goals of cranioplasty are to restore cerebral protection and craniofacial cosmesis [10]. Cranioplasty may also address post-craniectomy complications such early pseudomeningocele collection [1,11] and delayed paradoxical herniation (sinking skin flap syndrome) [12], and has been shown to improve patients' neurological status [13–17]. Furthermore, a recent systematic review showed no significant difference in infectious and overall complications between early and late cranioplasty [18]. For these reasons, earlier cranioplasty has been advocated in some patients, though optimal timing has yet to be determined.

The purpose of this study was to evaluate the relationship between cranioplasty timing (early versus late) after decompressive craniectomy, and the rate and type of related complications via a systematic review and meta-analysis of the literature. By identifying complications related to timing of cranioplasty, it may be possible to improve neurologic outcome and minimize complication risk by varying the delay between craniectomy and cranioplasty for select patients.

Methods 1

Search Strategy

A systematic review of the literature adherent to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines was performed for published articles reporting on timing of cranioplasty after craniectomy [19]. PubMed/MEDLINE, Scopus, and the Cochrane Database of Systematic Reviews were searched using the keywords "cranioplasty, early" or "cranioplasty, timing" included in the title, abstract, or keyword list. The search was restricted to original clinical studies published between January 1990 and December 2015. Thorough bibliographic searches of qualifying articles and relevant medical journals were also performed to identify additional articles for inclusion.

Study Selection

Articles reporting on the relationship between timing of cranioplasty (early versus late) after decompressive craniectomy, and type and rate of related complications in human adults were included in the analyses.

Case-control studies, cohort studies, or clinical trials that directly compared complication rates between early and late cranioplasty time-points were included. Case series that reported enough raw timing and outcome data to allow authors to make the necessary computations for at least 10 patients were also included. Case reports, technical notes, letters, and editorials were excluded. Meta-analyses and reviews were also excluded; however, referenced articles were thoroughly screened for possible inclusion [1,18,20–24]. Non-English articles were excluded, unless the article had been previously included in a related systematic review [25,26]. Studies that involved animals, included non-calvarial or maxillofacial procedures, or focused exclusively

on the pediatric population were excluded [21]. Studies were excluded if a significant proportion of patients underwent non-decompressive craniectomy (e.g. for resection of skull tumor). For articles that mentioned collection but no report of timing or complication data, attempts were made to contact authors for further details and potential inclusion.

The search results were independently screened by two authors (JGM and RSR); disagreements were resolved by consensus.

Data Extraction

The following data were extracted from each article, if reported: number of patients, indication for initial craniectomy, anatomic location of procedure, time interval between craniectomy and cranioplasty, incidence and types of cranioplasty-associated complications. Complications were grouped into the following categories: total overall complications; infection requiring treatment (antibiotics, drainage, or reoperation); reoperations (e.g. for infection, resorption, or drainage of fluid collection); intracranial hemorrhage (intracerebral hemorrhage, subdural hematoma, epidural hematoma); extra-axial fluid collection (non-hemorrhagic collections, subdural effusions, cerebrospinal fluid leaks, or hygroma); hydrocephalus (treated with or without a ventriculoperitoneal shunt); new-onset seizures; and bone resorption (by clinical exam or imaging).

Seventeen authors were contacted for further information regarding missing data [15,25,27–41]. Five authors responded and provided data that had not been included in the original publication [15,28,29,34,36]. These data were included in pooled analyses.

Study quality of individual articles was determined according to the Oxford Center for Evidence-Based Medicine (OCEBM) guidelines [42]. Risk of bias was assessed by the

Newcastle-Ottawa Scale, which is a three-category, 9-point scale assessing cohort selection, comparability, and outcome [43]. A higher score indicates higher quality.

Data Analysis

Data were analyzed using Review Manager 5.3.5 (The Cochrane Collaboration).

Complications were first grouped by specific type (e.g. overall complications, infection, seizure, etc.). If overall complications were not reported in a study, individual complications were summed. Complications were then grouped by "early" and "late" cranioplasty time-points. "Early" cranioplasty was defined as less than or equal to 90 days after craniectomy. The 90-day timepoint was chosen for several reasons: 1) in the authors' experience, cranioplasty procedures often occur around 90 days after initial craniectomy; 2) several studies utilized the median time to cranioplasty in their data as a cutoff for for defining early/late timepoints, which was around 90 days; 3) grouping around 90 days allowed for inclusion of more studies in the pooled analysis. Studies that provided raw timing data were dichotomized at this time-point for analysis. For studies that did not provide raw data or used a different time-point than 90 days, the study's reported definition was accepted, and the results were pooled in the overall analyses.

Odds ratios [OR, 95% Confidence Intervals (CI)] for each outcome were then calculated by "early" and "late" time-points. Odds ratios were pooled by using the Mantel-Haenszel method with fixed-effects model, except where the Chi² test indicated significant heterogeneity among studies, in which case a random-effects model was used. The I² metric was reported to further quantify heterogeneity (0%=no heterogeneity, 100%=maximal heterogeneity) [44]. P-values of less than 0.05 were considered statistically significant.

For each complication, a subgroup analysis comparing trauma and mixed populations was performed in addition to the overall analysis. The Chi² test was used to evaluate significant differences between subgroups.

Results

Literature review results are depicted in the PRISMA flow diagram (Fig. 1). Three hundred twenty-one non-duplicate studies were screened. This included 309 articles from the database search, three articles identified from review of relevant journals [28,37,45], and nine articles identified from bibliographic review [25,26,36,46–51]. Two of these were non-English articles, but were included because they appeared in a previous meta-analysis on cranioplasty [18,25,26]. Thirty three articles were excluded after full-text review. Reasons for exclusion were as follows: review article [18,20–24], lack of craniectomy to cranioplasty timing data [12,41,52–58], all procedures within 90 days [59,60], significant proportion of non-decompressive craniectomies [31], insufficient data (i.e. authors unreachable or unable to provide) [11,27,35,38,39,61–66], or cranioplasty complications not reported [67–69].

The final twenty-five studies that met inclusion criteria for analysis represented 3,126 cranioplasty procedures (1,421 early, 1,705 late) (Table 1). All were retrospective cohort studies with non-matched cohorts, with an OCEBM Level 4 evidence [14,27,33,70]. Indications for initial craniectomy included arteriovenous malformations, ischemic or hemorrhagic stroke, infection, ruptured aneurysm, trauma, or tumors. Cranial procedure locations, when specified, included unilateral, bilateral, and bifrontal. Six of twenty-five studies dichotomized early and late cranioplasty at a time-point other than 90 +/- 10 days (range 42-120 days), and the reported

data did not allow for regrouping around 90 days [49–51,70–72]. Six studies included only trauma patients [27,29,30,33,49,73].

Study quality ranged from 3 to 6 out of 9 on the Newcastle-Ottawa Scale. None had matched cohorts, which significantly increases the risk of selection bias. Most had adequate time to follow-up with low loss to follow-up.

Overall complications

Overall complications included infections (n=18 studies), complications requiring reoperation (n=11), intracranial hemorrhage (n=6), extra-axial fluid collections (n=5), hydrocephalus (n=6), seizures (n=4), and bone resorption (n=3; Fig. 2). The pooled rate of overall complications was 19.5% (n=609/3126) across all studies, ranging from 3.9% to 45.3% [25,51]. There was no difference in odds of overall complications in the early cranioplasty group (n=262/1421 procedures, 18.4%) compared with the late cranioplasty group (n=347/1705, 20.3%; OR 1.15, CI 0.86-1.54, p=0.34) using a random-effects model (I²=44%, p=0.010). In the subgroup analysis, there was no difference in the odds of overall complications within either the trauma population (n=425, OR 0.74, CI 0.30-1.83, p=0.51) or mixed population (n=2,701, OR 1.24, CI 0.92-1.66, p=0.16).

Infection

Eighteen studies reported infectious complications that required antibiotic treatment with or without reoperation for abscess drainage or implant removal (Fig. 3). There was a wide range of definitions for infection, as follows: infection requiring bone removal [25,28,29,46,48,72,74]; fever, heat, swelling, elevated laboratory values [73] with drainage [33,70], with or without findings on CT [33,70]; purulent [50] or any fluid drainage [33,70]; superficial infection [37];

deep wound infection [13,37]; cellulitis [50]; osteomyelitis [13,14,34,50], bone necrosis or bone graft displacement [14]; bacterial meningitis [50], cerebrospinal fluid findings (leukocytosis, elevated protein) with fever and meningismus [14]; intracranial abscess [36], extra-axial empyema [36,50], expanding extra-axial fluid collection [45]; need for > 2 weeks antibiotics [74], intravenous antibiotics [48,72]; wound dehiscence with flap exposure [45]; central nervous system infection [34]. Four studies reported an infection rate of 0%; these were listed in Fig. 3 for completeness, but were not included in the pooled calculations [11,27,30,49].

The pooled rate of infection was 7.7% (n=165/2021), ranging from 1.4% to 24.4% [45,71]. There was no difference in odds of infection in the early cranioplasty group (n=89/1003 procedures, 8.9%) compared with the late cranioplasty group (n=76/1018, 7.5%; OR 1.21, CI 0.85-1.68, p=0.30) using a fixed-effects model (I²=0%, p=0.48). In the subgroup analysis, there was no difference in odds of infection within either the trauma population (n=202, OR 0.46, CI 0.17-1.23, p=0.12) or mixed population (n=1,819, OR 1.38, CI 0.96-1.99, p=0.09).

Reoperation

Eleven studies reported complications requiring reoperation for infection, resorption, or drainage of extra-axial fluid collection (Fig. 4). Placement of a ventriculoperitoneal shunt for post-cranioplasty hydrocephalus was not considered a reoperation in this review and is addressed separately. The pooled rate of reoperations was 13.2% (n=191/1445), ranging from 3.9% to 25.8% [25,47]. There was no difference in odds of reoperation in the early cranioplasty group (n=73/670 procedures, 10.9%) compared with the late cranioplasty group (n=112/775, 14.5%; OR 0.78, CI 0.55-1.10, p=0.16) using a fixed-effects model (I²=0%, p=0.63). In the subgroup analysis, there was no difference in odds of reoperation within either the trauma (n=157, OR 0.52, CI 0.18-1.47, p=0.22) or mixed populations (n=1288, OR 0.82, CI 0.57-1.18, p=0.29).

Intracranial hemorrhage

Six studies reported hemorrhagic complications that included epidural hematoma, subdural hematoma, intracerebral hemorrhage, and extra-axial fluid collections requiring evacuation [28] (Fig. 5). The pooled rate of hemorrhagic complications was 4.9% (n=53/1084) ranging from 2.5% to 7.5% [14,33]. There was no difference in odds of intracranial hemorrhage in the early cranioplasty group (n=18/436 procedures, 4.1%) compared with the late cranioplasty group (n=35/648, 5.4%; OR 0.73, CI 0.40-1.36, p=0.33) using a fixed-effects model (I²=0%, p=0.53). In the subgroup analysis, there was no difference in the odds of hemorrhage within either the trauma (n=157, OR 3.12, CI 0.32-30.66, p=0.33) or mixed populations (n=927, OR 0.64, CI 0.33-1.23, p=0.18).

Extra-axial fluid collection

Five studies reported non-infectious, non-hemorrhagic extra-axial fluid collections, including epidural and subdural fluid collections [27,49,51,73], hygroma [71], dural tears [73], and CSF fistulas [71] (Fig. 6). The pooled rate of extra-axial fluid collections was 13.9% (n=71/510), ranging from 2.11% to 45.3% [51,71]. There was no difference in odds of fluid collection in the early cranioplasty group (n=19/147 procedures, 12.9%) compared with the late cranioplasty group (n=52/363, 14.3%; OR 0.64, CI 0.20-2.05, p=0.46) using a random-effects model (I²=59%, p=0.05). In the subgroup analysis, odds of fluid collection with early cranioplasty were significantly decreased within the trauma population (n=124, OR 0.24, CI 0.07-0.88, p=0.03), whereas there was no difference within the mixed population (n=386, OR 1.56, CI 0.69-3.53, p=0.29).

Hydrocephalus

Six studies reported post-cranioplasty hydrocephalus (Fig. 7). Four of these studies specifically defined hydrocephalus as requiring placement of a ventriculoperitoneal shunt [28,33,36,70]. The remaining two studies defined hydrocephalus by presence of enlarged ventricles on CT scan with [14] or without [49] neurological deterioration or lack of improvement. The pooled rate of hydrocephalus was 5.6% (n=47/840) ranging from 1.4% to 12.2% [14,70]. There was a significant increase in odds of hydrocephalus in the early cranioplasty group (n=31/397, 7.8%) compared with the late cranioplasty group (n=16/443, 3.6%; OR 2.40, CI 1.28-4.52, p=0.006) using a fixed-effects model (I²=0%, p=0.88). In the subgroup analysis, odds of hydrocephalus with early cranioplasty were increased within both the trauma (n=193, OR 4.99, CI 1.00-24.88, p=0.05) and mixed populations (n=647, OR 2.03, CI 1.01-4.07, p=0.05). Odds were also higher in the trauma subgroup compared with the overall population.

Seizures

Four studies reported new-onset seizures (Fig. 8). The pooled rate of seizures was 6.1% (n=39/643) ranging from 2.7% to 15.0% [14,28]. There was no difference in odds of seizure in the early cranioplasty group (n=18/290 procedures, 6.2%) compared with the late cranioplasty group (n=21/353, 5.9%; OR 0.98, CI 0.49-1.95, p=0.96) using a fixed-effects model (I²=0%, p=0.94). In the subgroup analysis, there was no difference in odds of seizures within either the trauma (n=70, OR 0.67, CI 0.07-6.79, p=0.73) or mixed populations (n=573, OR 1.02, CI 0.50-2.11, p=0.95).

Bone Resorption

Three studies reported bone graft resorption, which was determined either by clinical exam or imaging (Fig. 9). The pooled rate of bone resorption was 9.3% (n=39/418) ranging from 2.7% and 17.2% [28,70]. There was no difference in odds of graft resorption in the early cranioplasty group (n=20/236 procedures, 8.5%) compared with the late cranioplasty group (n=19/182, 10.4%; OR 0.90, CI 0.45-1.78, p=0.76) using a fixed-effects model (I²=0%, p=0.82). In the subgroup analysis, there was no difference in odds of resorption within either the trauma (n=157, OR 0.78, CI 0.34-1.79, p=0.55) or mixed populations (n=261, OR 1.23, CI 0.36-4.24, p=0.74).

Discussion

This systematic review investigated the difference in odds of complications between early and late cranioplasty following decompressive craniectomy. The results suggest that early cranioplasty (\leq 90 days) is associated with greater odds of hydrocephalus than late cranioplasty (>90 days), without difference in odds of other complications. These findings suggest that early cranioplasty, with expectant management of hydrocephalus, is otherwise as safe as late cranioplasty.

Comparison with previous reviews

The current review includes articles spanning the last twenty-five years of published literature, with the majority from the last five years, indicating increasing interest in this topic. Despite being one of the most common neurosurgical procedures, cranioplasty timing has not been the focus of any prospective studies until recently, with the planned German Cranial

Reconstruction Registry [75]. Four other reviews have recently examined complication rates associated with timing of cranioplasty [18,20–22]. Yadla et al. performed a systematic review and meta-analysis evaluating overall complications and infections associated with the timing of cranioplasty (early defined as occurring within three months). It also compared infection rates by material (autogenous bone graft or allograft) and by bone graft storage method (subcutaneous pocket or extracorporeal) [18]. Their review included only five studies examining timing (671 procedures), all of which are also included in our review [25,26,46–48]. In the complications analysis, there appears to be a discrepancy in total counts for Gooch et al.: Yadla et al. reported 17 complications among 47 patients in the "0-3 month" group, and 4 among the 15 patients in the ">3 months group," whereas Gooch et al. reported 9/31 and 12/31 respectively (Fig. 2) [18,47]. We were able to contact the primary authors who confirmed this discrepancy, although recalculation does not change the ultimate study conclusion.

Rocque et al. performed a systematic review of four articles reporting infection and resorption rates associated with timing in the pediatric population [21]. These studies, however, were not included in the present review because they included solely pediatric patients.

Tasiou et al. performed a qualitative systematic review of ten studies evaluating timing of cranioplasty after closed head injury [22]. Four of these were included in our review, but the remaining six were excluded due to unavailable timing data [11,32,38,60,63] or significant proportion of non-decompressive craniectomy cases [31]. Reported complications included infection, hydrocephalus, and subdural fluid collections. Neurological outcome was also evaluated to determine safety for early procedures [11,60]. There was a general trend for early cranioplasty to improve cerebrospinal fluid (CSF) dynamics and perfusion, while reducing the risk of a sunken flap; however, no comparative analyses were reported.

Finally, Xu et al. performed a systematic review and meta-analysis of nine studies (1,209 procedures) evaluating various complications and procedure duration related to timing of cranioplasty also using a threshold of 90 days [20]. They evaluated differences in operative time in addition to other outcomes included in our study (overall complications, infections, hydrocephalus, hematoma, and subdural fluid collections). Several data extraction errors were identified in this study resulting in conclusions different from those published. Specifically, a revised analysis found no difference in operative time and a decreased incidence of subdural fluid collections with early cranioplasty [76]. We identified additional errors affecting the analyses for overall complication [48,73], infection [73], and hydrocephalus [14]. Given these errors, it is difficult to draw reliable conclusions from their review. All nine studies included in Xu et al. were included in our analysis, along with sixteen additional studies from the literature search to make for a comprehensive review to date.

Overall complications

The overall complication rate in this study was 19.5%, and ranged widely across studies (3.9% to 45.3%).[25,51] Kurland et al. reported a lower overall complication rate of 6.4% [1]. Similar to our study, Yadla et al. reported no difference in odds of overall complications with early cranioplasty [47,48]; and the mathematical discrepancy described above did not appear to affect the ultimate study conclusions. Similarly, Rocque et al. identified three articles reporting no significant association between timing and overall complications in children (infection and resorption) [21]. Due to the varied reporting of complication types and their management, it may be useful for future studies to narrow the list of complications and differentiate those that resolved without intervention.

Infection

The pooled infection rate in this review (8.1%) is comparable to the combined infectious and inflammatory rate of 6.0% reported by Kurland et al. [1] Interestingly, there was a slightly increased rate of infection with trauma in their review (7.4% versus 5.8% for ischemic stroke, 5.1% for hemorrhagic stroke, and 5.6% for other/unspecified). Our analysis revealed no difference in overall odds of infection with early cranioplasty, which is consistent with Yadla et al.'s findings [18].

Several studies examined potential risk factors for infection. In patients that remained hospitalized in the time between the craniectomy and cranioplasty, infection rates were higher in those with a systemic infection within 30 days preceding cranioplasty, a low hemoglobin, or poor neurologic status (motor deficit, Glasgow Outcome Scale < 4) [45]. However, these factors may simply be markers for the most debilitated patients [45]. Infection rates were also higher in patients that underwent an additional operation between the initial craniectomy and subsequent cranioplasty (OR 3.25, p=0.01), or patients that had a stroke rather than a trauma that required craniectomy (OR 2.45, p=0.03) [36]. These factors are certainly worth closer attention when choosing timing of cranioplasty for specific populations to control the infectious risk.

Reoperation

Reoperations for complications lead to longer hospital stays, additional surgical risk, and increased cost. Many studies report complications that often resolve with antibiotics or watchful waiting; however, few distinctly report those that require a return to the operating room, and no previous reviews have systematically investigated this question. The reoperation rate in our review was high at 12.9%, nearing the overall complication rate of 19.5%. We did not consider placement of a ventriculoperitoneal shunt for hydrocephalus as a reoperation, and it was

evaluated separately. Of note, odds of reoperation with early cranioplasty was slightly lower than late cranioplasty and trended toward significance. It is possible that sicker patients require deliberate delay in their cranioplasty procedure, and harbor specific risk factors that increase their risk of complications requiring reoperation. However, this is only answerable with a prospective observational study. Additional risk factors for reoperation include bifrontal defects [47].

Intracranial hemorrhage

Kurland et al. reported a rate of 3.6% for intracranial hemorrhage, which is consistent with our review (4.6%) [1]. Specific risk factors for intracranial hematoma that require reoperation include male sex, African-American race, and hypertension [56]. No other review has systematically evaluated the odds of intracranial hemorrhage in early versus late cranioplasty.

Extra-axial fluid collection

Kurland et al. reported a rate of 5.8% for subdural effusions/hygroma and 6.8% for CSF leaks/fistulas, for an overall rate of 6.1% [1]. In the corrected analysis of Xu et al., odds of subdural fluid collections were reduced in early cranioplasty [76]; however, in the overall analysis, this was true only in the trauma subpopulation (OR 0.24, p=0.03). Among the studies included in this analysis, Chun et al. was the only one to find a significant decrease in collections with early cranioplasty [73]. It is possible that the potential space between the cranioplasty flap and brain is much smaller at earlier time points due to residual cerebral edema, which resolves and may even paradoxically sink at later time points.

Hydrocephalus

Our study revealed a relatively low rate of hydrocephalus (6.0%), similar to Kurland et al. (7.5%). However, our study found a significant increase in odds of hydrocephalus with early cranioplasty (OR 2.38, p=0.008), which was even higher for the trauma subgroup (OR 4.99, p=0.05). In contrast to our findings, Kurland et al. reported a similar rate of hydrocephalus for trauma (6.8%) and the overall population (7.5%) [1]. It is unclear whether hydrocephalus is a consequence of the initial brain insult, craniectomy, or cranioplasty itself. Other predictors of hydrocephalus independent of cranioplasty timing include age, subarachnoid hemorrhage and trauma [56]. Pre-existing hydrocephalus from the initial insult also increases the risk of persistent hydrocephalus despite simultaneous ventriculoperitoneal shunt placement at the time of cranioplasty [67]. Longer delays to cranioplasty in these patients also strongly correlate with persistent hydrocephalus. Early cranioplasty with simultaneous shunting might be beneficial for this population, but may also increase the risk of complications in simultaneous rather than staged procedures [69]. For trauma patients without pre-existing hydrocephalus, our results suggest an even greater risk of hydrocephalus and so later cranioplasty may prevent its occurrence. It will be important for future studies to assess out whether the presence of preexisting hydrocephalus in different populations affects optimal cranioplasty timing.

Seizures

The rate of post-cranioplasty seizures is relatively low (6.1%) and has no association with the timing of cranioplasty. However, other factors, such as reoperation for an intracranial hematoma, may increase seizure risk [56]. Regardless of timing, peri-procedural anti-epileptic prophylaxis is a low risk and effective intervention to prevent the increased mortality risk associated with peri-operative seizures [36,56].

Bone resorption

Resorption is an often underappreciated complication, especially if asymptomatic or if serial imaging is not performed. Kurland et al. estimated incidence of aseptic bone flap resorption to be as high as 16% in adult patients, with flap depression or other cosmetic defects occurring at a rate of 3.1% [1]. This is higher than our rate of 10.8%. Resorption occurs significantly more frequently in the pediatric population, particularly if performed beyond six weeks [21,77]. Our study found no difference in odds of resorption in adults before and after 12 weeks. It is possible that younger age and ultra-early cranioplasty increases risk of resorption; however, this has not been specifically evaluated in adults.

Strengths and Limitations

This study has both strengths and limitations. To our knowledge, it is the largest and most comprehensive systematic review and meta-analysis exploring the role of cranioplasty timing in complication rates. It builds upon and extends the findings from other systematic reviews addressing this question [18,20–22]. It also adds new data obtained through author correspondence from published articles. These factors strengthen the validity and generalizability of the findings and conclusions in this review.

There are also some limitations, particularly regarding the heterogeneity of the population. We were broad in our definition of "craniectomy," regarding both indication and anatomic location. Although many studies in this review performed decompressive craniectomies for the purpose of reducing intracranial pressure, it is possible that some non-decompressive indications were also included. We excluded any studies that explicitly described craniectomy for skull tumor if it comprised a significant portion of procedures [31]; however, we

were unable to quantify the exact proportion of non-decompressive craniectomies in this review as these data were not always specified in the studies.

All but six studies in this analysis included a mix of indications for decompressive craniectomy [27,29,30,33,49,73]. These factors might have made the study population too heterogenous to find significant differences in complication rates. It has been suggested that optimal cranioplasty timing might be different for patients with discrete diseases due to unique disease pathophysiology [56,78]. For instance, it has been suggested that hemorrhagic complications after cranioplasty following large ischemic middle cerebral artery stroke could be related to the brain's natural inflammatory response to ischemic and necrotic tissue. This inflammation would increase tissue friability and, therefore, risk of hemorrhage when the cranial flap is replaced [78]. For these reasons, it may be advantageous to delay cranioplasty until the inflammatory process has resolved. Alternatively, patients that have undergone craniectomy for evacuation of subdural hematoma after trauma may benefit from early cranioplasty if no significant postoperative cerebral edema is present in order to reduce risk of pseudomeningocele or sinking skin flap syndrome [79]. Few studies have specifically compared complication rates of cranioplasty across craniectomy indications, and only a handful have stratified complication rates by both indication and cranioplasty timing. For instance, Kurland et al. reported differences in hemorrhagic complication rates by craniectomy indication, which surprisingly varied only slightly (hemorrhagic stroke 5.5%, ischemic stroke 4.6%, and trauma 5.4%) [1]. Only six studies in our review reported on a single patient population (traumatic brain injury) which allowed for a limited subgroup analysis [27,29,30,33,49,73]. It would be fruitful to further explore whether complications vary by both craniectomy indication and cranioplasty timing in future studies.

Anatomic heterogeneity of cranioplasty is another challenging factor to consider. This review pooled patients with unilateral, bilateral, and bifrontal craniectomies. Many studies did not specify cranioplasty location. Complications may vary by anatomical location due to differences in underlying cerebral anatomy, blood supply, cerebrospinal fluid circulation, and surface area of the defect. Bifrontal procedures have significantly higher infection rates⁷ and increased risk for reoperation [47]. Size and location of craniectomy also depends significantly on the initial indication and goal of surgery, as discussed above. These factors should be further explored in future studies with subgroup analyses by anatomic location and craniectomy indication in order to evaluate whether optimal cranioplasty timing differs in these populations.

The definition of early and late cranioplasty has not been clearly established in the literature. Most studies in this review could be grouped around a 90-day time-point; however, five of the included studies used other time-points as dictated by institutional practices or to partition their patient population into two balanced cohorts (range 42-120 days) [49–51,71,72]. Some case series have shown that ultra-early cranioplasty (8-12 weeks) after trauma has low complication rates [11,60]. These were excluded in this present review since all procedures were early thus not allowing comparison. Including ultra-early cranioplasty in the early cranioplasty subgroup might have obscured important differences in complication rates between early and late time-points. The ultra-early time-point for cranioplasty is worth further exploration. Although most studies dichotomize timing data, it may be more appropriate to analyze data by month or perform regression analysis to prospectively identify the optimal time point.

Definitions of complications also varied across studies, particularly for infection. Some studies only considered infection a complication if it required reoperation [25,29], whereas others included wound dehiscence with flap exposure [45]. Others included various definitions

for cellulitis, meningitis, osteomyelitis, intracranial abscess, or empyema. Given that these distinct infectious entities were grouped into a single category, it is impossible to parse any differences regarding severity of infection, the treatment of which might vary widely from a short antibiotic course to aggressive operative debridement with cranioplasty flap removal. The risk of specific infectious complications should be a focus of future prospective studies.

Conclusions

This systematic literature review investigated the difference in complication rates between early and late cranioplasty following decompressive craniectomy. The results suggest that early cranioplasty (≤ 90 days) is associated with greater odds of developing hydrocephalus, particularly in the trauma population, but that the odds of other complications are no different from late cranioplasty (> 90 days). These findings suggest that early cranioplasty, with expectant management of hydrocephalus, is otherwise as safe as late cranioplasty. Future studies should determine optimal cranioplasty timing for specific patient populations, as well as appropriate management of hydrocephalus after early cranioplasty.

References

[1] Kurland DB, Khaladj-Ghom A, Stokum JA, Carusillo B, Karimy JK, Gerzanich V, et al. Complications Associated with Decompressive Craniectomy: A Systematic Review.

Neurocrit Care 2015;23:292–304. doi:10.1007/s12028-015-0144-7.

- [2] Bohman L-E, Schuster JM. Decompressive craniectomy for management of traumatic brain injury: an update. Curr Neurol Neurosci Rep 2013;13:392. doi:10.1007/s11910-013-0392-x.
- [3] Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007;6:215–22. doi:10.1016/S1474-4422(07)70036-4.
- [4] Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol 2009;8:326–33. doi:10.1016/S1474-4422(09)70047-X.
- [5] Fung C, Murek M, Z'Graggen WJ, Krahenbuhl AK, Gautschi OP, Schucht P, et al. Decompressive Hemicraniectomy in Patients With Supratentorial Intracerebral Hemorrhage. Stroke 2012;43:3207–11. doi:10.1161/STROKEAHA.112.666537.
- [6] Esquenazi Y, Savitz SI, Khoury R El, McIntosh M a, Grotta JC, Tandon N.

 Decompressive hemicraniectomy with or without clot evacuation for large spontaneous supratentorial intracerebral hemorrhages. Clin Neurol Neurosurg 2015;128:117–22. doi:10.1016/j.clineuro.2014.11.015.
- [7] Zhao B, Zhao Y, Tan X, Cao Y, Wu J, Zhong M, et al. Primary decompressive craniectomy for poor-grade middle cerebral artery aneurysms with associated intracerebral hemorrhage. Clin Neurol Neurosurg 2015;133:1–5. doi:10.1016/j.clineuro.2015.03.009.
- [8] Hwang US, Shin HS, Lee SH, Koh JS. Decompressive Surgery in Patients with Poor-

- grade Aneurysmal Subarachnoid Hemorrhage: Clipping with Simultaneous

 Decompression Versus Coil Embolization Followed by Decompression. J Cerebrovasc

 Endovasc Neurosurg 2014;16:254–61. doi:10.7461/jcen.2014.16.3.254.
- [9] Holsgrove DT, Kitchen WJ, Dulhanty L, Holland JP, Patel HC. Intracranial hypertension in subarachnoid hamorrhage: outcome after decompressive craniectomy. Acta Neurochir. Suppl., vol. 119, Cham: Springer International Publishing; 2014, p. 53–5. doi:10.1007/978-3-319-02411-0 9.
- [10] Feroze AH, Walmsley GG, Choudhri O, Lorenz HP, Grant GA, Edwards MSB. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg 2015;123:1–10. doi:10.3171/2014.11.JNS14622.
- [11] Liang W, Xiaofeng Y, Weiguo L, Gang S, Xuesheng Z, Fei C, et al. Cranioplasty of large cranial defect at an early stage after decompressive craniectomy performed for severe head trauma. J Craniofac Surg 2007;18:526–32. doi:10.1097/scs.0b013e3180534348.
- [12] Stiver SI, Wintermark M, Manley GT. Reversible monoparesis following decompressive hemicraniectomy for traumatic brain injury. J Neurosurg 2008;109:245–54. doi:10.3171/JNS/2008/109/8/0245.
- [13] Archavlis E, Carvi Y Nievas M. The impact of timing of cranioplasty in patients with large cranial defects after decompressive hemicraniectomy. Acta Neurochir (Wien) 2012;154:1055–62. doi:10.1007/s00701-012-1333-1.
- [14] Bender A, Heulin S, Röhrer S, Mehrkens J-H, Heidecke V, Straube A, et al. Early cranioplasty may improve outcome in neurological patients with decompressive craniectomy. Brain Inj 2013;27:1073–9. doi:10.3109/02699052.2013.794972.
- [15] Paredes I, Castaño-León AM, Munarriz PM, Martínez-Perez R, Cepeda S, Sanz R, et al.

- Cranioplasty after decompressive craniectomy. A prospective series analyzing complications and clinical improvement. Neurocirugia 2015;26:115–25. doi:10.1016/j.neucir.2014.10.001.
- [16] Dujovny M, Aviles A, Agner C, Fernandez P, Charbel FT. Cranioplasty: cosmetic or therapeutic? Surg Neurol 1997;47:238–41. doi:10.1016/S0090-3019(96)00013-4.
- [17] Stefano C Di, Rinaldesi ML, Quinquinio C, Ridolfi C, Vallasciani M, Sturiale C, et al. Neuropsychological changes and cranioplasty: A group analysis. Brain Inj 2015;9052:1–8. doi:10.3109/02699052.2015.1090013.
- [18] Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD. Effect of early surgery, material, and method of flap preservation on cranioplasty infections: A systematic review. Neurosurgery 2011;68:1124–30.

 doi:10.1227/NEU.0b013e31820a5470.
- [19] Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys Ther 2009;89:873–80. doi:10.1371/journal.pmed.1000097.
- [20] Xu H, Niu C, Fu X, Ding W, Ling S, Jiang X, et al. Early cranioplasty vs. late cranioplasty for the treatment of cranial defect: A systematic review. Clin Neurol Neurosurg 2015;136:33–40. doi:10.1016/j.clineuro.2015.05.031.
- [21] Rocque BG, Amancherla K, Lew SM, Lam S. Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 2013;12:120–5. doi:10.3171/2013.4.PEDS12605.
- [22] Tasiou A, Vagkopoulos K, Georgiadis I, Brotis AG, Gatos H, Fountas KN. Cranioplasty optimal timing in cases of decompressive craniectomy after severe head injury: a

- systematic literature review. Interdiscip Neurosurg 2014;1:107–11. doi:10.1016/j.inat.2014.06.005.
- [23] Kakar V, Nagaria J, John Kirkpatrick P. The current status of decompressive craniectomy. Br J Neurosurg 2009;23:147–57. doi:10.1080/02688690902756702.
- [24] Stiver SI. Complications of decompressive craniectomy for traumatic brain injury.

 Neurosurg Focus 2009;26:E7. doi:10.3171/2009.4.FOCUS0965.
- [25] Nagayama K, Yoshikawa G, Somekawa K, Kohno M, Segawa H, Sano K, et al.

 Cranioplasty using the patient's autogenous bone preserved by freezing An examination of post-operative infection rates. Neurol Surg 2002;30:165–9.
- [26] Kim Y-W, Yoo D-S, Kim D-S, Huh P-W, Cho K-S, Kim J-G, et al. [The Infection Rate in Case of Cranioplasty According to Used Materials and Skull Defect Duration]. J Korean Neurosurg Soc 2001;30:S216–20.
- [27] Song J, Liu M, Mo X, Du H, Huang H, Xu GZ. Beneficial impact of early cranioplasty in patients with decompressive craniectomy: Evidence from transcranial Doppler ultrasonography. Acta Neurochir (Wien) 2014;156:193–8. doi:10.1007/s00701-013-1908-5.
- [28] Hng D, Bhaskar MI, Khan FM, Budgeon MC, Damodaran O, Knuckey MSN, et al.

 Delayed Cranioplasty: Outcomes Using Frozen Autologous Bone Flaps. Craniomaxillofac

 Trauma Reconstr 2015;1:190–7. doi:10.1055/s-0034-1395383.
- [29] Chaturvedi J, Botta R, Prabhuraj AR, Shukla D, Bhat DI, Devi BI. Complications of cranioplasty after decompressive craniectomy for traumatic brain injury. Br J Neurosurg 2015:1–5. doi:10.3109/02688697.2015.1054356.
- [30] Zhang G, Yang W, Jiang Y, Zeng T. Extensive duraplasty with autologous graft in

- decompressive craniectomy and subsequent early cranioplasty for severe head trauma. Chinese J Traumatol (English Ed 2010;13:259–64. doi:10.3760/cma.j.issn.1008-1275.2010.05.001.
- [31] Thavarajah D, Lacy P De, Hussien A, Sugar A. The minimum time for cranioplasty insertion from craniectomy is six months to reduce risk of infection- a case series of 82 patients. Br J Neurosurg 2012;26:78–80. doi:10.3109/02688697.2011.603850.
- [32] Beauchamp KM, Kashuk J, Moore EE, Bolles G, Rabb C, Seinfeld J, et al. Cranioplasty After Postinjury Decompressive Craniectomy: Is Timing of the Essence? J Trauma 2010;69:270–4. doi:10.1097/TA.0b013e3181e491c2.
- [33] Piedra M, Nemecek A, Ragel B. Timing of cranioplasty after decompressive craniectomy for trauma. Surg Neurol Int 2014;5:25. doi:10.4103/2152-7806.127762.
- [34] Tsang AC-O, Hui VK-H, Lui W-M, Leung GK-K. Complications of post-craniectomy cranioplasty: Risk factor analysis and implications for treatment planning. J Clin Neurosci 2015;22:834–7. doi:10.1016/j.jocn.2014.11.021.
- [35] Lee L, Ker J, Quah BL, Chou N, Choy D, Yeo TT. A retrospective analysis and review of an institution's experience with the complications of cranioplasty. Br J Neurosurg 2013;27:629–35. doi:10.3109/02688697.2013.815313.
- [36] Walcott BP, Kwon C-S, Sheth S a, Fehnel CR, Koffie RM, Asaad WF, et al. Predictors of cranioplasty complications in stroke and trauma patients. J Neurosurg 2013;118:757–62. doi:10.3171/2013.1.JNS121626.
- [37] Piitulainen JM, Kauko T, Aitasalo KMJ, Vuorinen V, Vallittu PK, Posti JP. Outcomes of Cranioplasty with Synthetic Materials and Autologous Bone Grafts. World Neurosurg 2015;83:708–14. doi:10.1016/j.wneu.2015.01.014.

- [38] De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A. Cranial repair: how complicated is filling a "hole"? J Neurotrauma 2012;29:1071–6. doi:10.1089/neu.2011.2116.
- [39] Caro-Osorio E, De la Garza-Ramos R, Martínez-Sánchez SR, Olazarán-Salinas F.
 Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes. Surg Neurol Int 2013;4:136.
 doi:10.4103/2152-7806.119535.
- [40] Honeybul S, Janzen C, Kruger K, Ho KM. The impact of cranioplasty on neurological function. Br J Neurosurg 2013;27:636–41. doi:10.3109/02688697.2013.817532.
- [41] Cong Z, Shao X, Zhang L, Zhao D, Zhou X, Yi C, et al. Early Cranioplasty Improved Rehabilitation in Patients. Neurosurg Q 2014;00:1–6.

 doi:10.1097/WNQ.0000000000000133.
- [42] OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Oxford Cent Evidence-Based Med 2012. http://www.cebm.net/index.aspx?o=5653 (accessed December 13, 2015).
- [43] Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

 Ottawa Heal Res Inst 2006.

 http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed February 23, 2016).
- [44] Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ Br Med J 2003;327:557–60. doi:10.1136/bmj.327.7414.557.
- [45] Rosseto RS, Giannetti AV, de Souza Filho LD, Faleiro RM. Risk Factors for Graft

- Infection After Cranioplasty in Patients with Large Hemicranial Bony Defects. World Neurosurg 2015;84:431–7. doi:10.1016/j.wneu.2015.03.045.
- [46] Cheng Y-KK, Weng H-HH, Yang J-TT, Lee M-HH, Wang T-CC, Chang C-NN. Factors affecting graft infection after cranioplasty. J Clin Neurosci 2008;15:1115–9. doi:10.1016/j.jocn.2007.09.022.
- [47] Gooch MR, Gin GE, Kenning TJ, German JW. Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 2009;26:E9. doi:10.3171/2009.3.FOCUS0962.
- [48] Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D. Outcomes of cranial repair after craniectomy. J Neurosurg 2010;112:1120–4. doi:10.3171/2009.6.JNS09133.
- [49] Cho K, Park S. Safety and efficacy of early cranioplasty after decompressive craniectomy in traumatic brain injury patients. J Korean Neurotraumatol Soc 2011;7:74–7.
- [50] Yang S, Park H, Cho S. The Current Analysis of the Risk Factors for Bone Graft Infection after Cranioplasty. Korean J Neurotrauma 2013;9:57–63.
- [51] Kim SP, Kang DS, Cheong JH, Kim JH, Song KY, Kong MH. Clinical analysis of epidural fluid collection as a complication after cranioplasty. J Korean Neurosurg Soc 2014;56:410–8. doi:10.3340/jkns.2014.56.5.410.
- [52] Williams LR, Fan KF, Bentley RP. Custom-made titanium cranioplasty: early and late complications of 151 cranioplasties and review of the literature. Int J Oral Maxillofac Surg 2015;44:599–608. doi:10.1016/j.ijom.2014.09.006.
- [53] Winkler P a, Stummer W, Linke R, Krishnan KG, Tatsch K. The influence of cranioplasty on postural blood flow regulation, cerebrovascular reserve capacity, and cerebral glucose metabolism. Neurosurg Focus 2000;8:e9. doi:10.3171/jns.2000.93.1.0053.

- [54] Lazaridis C, Czosnyka M. Cerebral Blood Flow, Brain Tissue Oxygen, and Metabolic Effects of Decompressive Craniectomy. Neurocrit Care 2012;16:478–84. doi:10.1007/s12028-012-9685-1.
- [55] Schuss P, Vatter H, Oszvald Á, Marquardt G, Imöhl L, Seifert V, et al. Bone flap resorption: Risk factors for the development of a long-term complication following cranioplasty after decompressive craniectomy. J Neurotrauma 2012;95:120912140809000. doi:10.1089/neu.2012.2542.
- Zanaty M, Chalouhi N, Starke RM, Clark SW, Bovenzi CD, Saigh M, et al. Complications following cranioplasty: incidence and predictors in 348 cases. J Neurosurg 2015;123:182–8. doi:10.3171/2014.9.JNS14405.
- [57] Kim H, Sung SO, Kim SJS-R, Kim SJS-R, Park I-S, Jo KW. Analysis of the factors affecting graft infection after cranioplasty. Acta Neurochir (Wien) 2013;155:2171–6. doi:10.1007/s00701-013-1877-8.
- [58] Zins JE, Langevin CJ, Nasir S. [In search of the ideal skull reconstruction]. Pol Przegl Chir 2008;80:960–74.
- [59] Chibbaro S, Tacconi L. Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol 2007;68:632–8. doi:10.1016/j.surneu.2006.12.046.
- [60] Chibbaro S, Di Rocco F, Mirone G, Fricia M, Makiese O, Di Emidio P, et al.

 Decompressive craniectomy and early cranioplasty for the management of severe head injury: A prospective multicenter study on 147 patients. World Neurosurg 2011;75:558–62. doi:10.1016/j.wneu.2010.10.020.
- [61] Wachter D, Reineke K, Behm T, Rohde V, D. W, K. R, et al. Cranioplasty after

- decompressive hemicraniectomy: Underestimated surgery-associated complications? Clin Neurol Neurosurg 2013;115:1293–7. doi:10.1016/j.clineuro.2012.12.002.
- [62] Coulter IC, Pesic-Smith JD, Cato-Addison WB, Khan SA, Thompson D, Jenkins AJ, et al. Routine but risky: A multi-centre analysis of the outcomes of cranioplasty in the Northeast of England. Acta Neurochir (Wien) 2014;156:1361–8. doi:10.1007/s00701-014-2081-1.
- [63] Huang Y-HH, Lee T-CC, Yang K-YY, Liao C-CC. Is timing of cranioplasty following posttraumatic craniectomy related to neurological outcome? Int J Surg 2013;11:886–90. doi:10.1016/j.ijsu.2013.07.013.
- [64] Kuo J-RR, Wang C-CC, Chio C-CC, Cheng T-JJ. Neurological improvement after cranioplasty Analysis by transcranial doppler ultrasonography. J Clin Neurosci 2004;11:486–9. doi:10.1016/j.jocn.2003.06.005.
- [65] Carvi y Nievas MN, Höllerhage H-G. Early combined cranioplasty and programmable shunt in patients with skull bone defects and CSF-circulation disorders. Neurol Res 2006;28:139–44. doi:10.1179/016164106X98008.
- [66] Rahme R, Weil AG, Sabbagh M, Moumdjian R, Bouthillier A, Bojanowski MW. Decompressive craniectomy is not an independent risk factor for communicating hydrocephalus in patients with increased intracranial pressure. Neurosurgery 2010;67:675–8. doi:10.1227/01.NEU.0000383142.10103.0B.
- [67] Waziri A, Fusco D, Mayer S a, McKhann GM, Connolly ES. Postoperative hydrocephalus in patients undergoing decompressive hemicraniectomy for ischemic or hemorrhagic stroke. Neurosurgery 2007;61:489–93; discussion 493–4. doi:10.1227/01.NEU.0000290894.85072.37.
- [68] Heo J, Park SQ, Cho SJ, Chang JC, Park H-K. Evaluation of simultaneous cranioplasty

- and ventriculoperitoneal shunt procedures. J Neurosurg 2014;121:1–6. doi:10.3171/2014.2.JNS131480.
- [69] Schuss P, Borger V, Güresir Á, Vatter H, Güresir E. Cranioplasty and Ventriculoperitoneal Shunt Placement after Decompressive Craniectomy: Staged Surgery Is Associated with Fewer Postoperative Complications. World Neurosurg 2015:1–4. doi:10.1016/j.wneu.2015.05.066.
- [70] Piedra MP, Ragel BT, Dogan A, Coppa ND, Delashaw JB. Timing of cranioplasty after decompressive craniectomy for ischemic or hemorrhagic stroke. J Neurosurg 2013;118:109–14. doi:10.3171/2012.10.JNS121037.
- [71] Schuss P, Vatter H, Marquardt G, Imöhl L, Ulrich CT, Seifert V, et al. Cranioplasty after Decompressive Craniectomy: The Effect of Timing on Postoperative Complications. J Neurotrauma 2012;29:1090–5. doi:10.1089/neu.2011.2176.
- [72] Mukherjee S, Thakur B, Haq I, Hettige S, Martin AJ. Complications of titanium cranioplasty—a retrospective analysis of 174 patients. Acta Neurochir (Wien) 2014;156:989–98. doi:10.1007/s00701-014-2024-x.
- [73] Chun H-J, Yi H-J. Efficacy and safety of early cranioplasty, at least within 1 month. J Craniofac Surg 2011;22:203–7. doi:10.1097/SCS.0b013e3181f753bd.
- [74] Im S-HH, Jang D-KK, Han Y-MM, Kim J-TT, Chung DS, Park YS. Long-Term Incidence and Predicting Factors of Cranioplasty Infection after Decompressive Craniectomy. J Korean Neurosurg Soc 2012;52:396. doi:10.3340/jkns.2012.52.4.396.
- [75] Giese H, Sauvigny T, Sakowitz OW, Bierschneider M, Güresir E, Henker C, et al. German Cranial Reconstruction Registry (GCRR): protocol for a prospective, multicentre, open registry. BMJ Open 2015;5:e009273. doi:10.1136/bmjopen-2015-009273.

- [76] Jiang J-W, Rong W-L, Zhao J-L, Li M-H. The timing of cranioplasty affect mean operative time and postoperative subdural fluid collection. Clin Neurol Neurosurg 2016:8–9. doi:10.1016/j.clineuro.2016.01.022.
- [77] Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ. Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 2012;10:268–72. doi:10.3171/2012.6.PEDS1268.
- [78] Salma A, Abou Al-Shaar H, Hassounah M. Letter to the Editor: Cranioplasty complications and the timing of surgery. J Neurosurg 2016;124:280–1. doi:10.3171/2015.6.JNS151378.
- [79] Annan M, De Toffol B, Hommet C, Mondon K. Sinking skin flap syndrome (or Syndrome of the trephined): A review. Br J Neurosurg 2015;8697:1–5.

 doi:10.3109/02688697.2015.1012047.

DISCLOSURE

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Figure Legends

Figure 1. PRISMA flow diagram.

Table 1. Characteristics of included studies reporting complications related to cranioplasty timing

Figure 2. Forest plot of studies reporting overall complications with early or late cranioplasty stratified by population type (trauma versus mixed). The blue square data markers indicate odds ratios (ORs) from primary studies, with sizes reflecting the statistical weight of the study using random-effects meta-analysis. The horizontal lines indicate 95% CIs. The diamond data markers represent the subtotal and overall OR and 95% CIs. The vertical solid line indicates the line of no effect (OR 1). Results indicate no difference in odds of overall complications with early cranioplasty.

Figure 3. Forest plot of studies reporting infectious complications with early or late cranioplasty stratified by population type. Results indicate no difference in odds of infection with early cranioplasty.

Figure 4. Forest plot of studies reporting reoperations with early or late cranioplasty stratified by population type. Results indicate no difference in odds of reoperations with early cranioplasty.

Figure 5. Forest plot of studies reporting intracranial hemorrhage with early or late cranioplasty stratified by population type. Results indicate no difference in odds of hemorrhage with early cranioplasty.

Figure 6. Forest plot of studies reporting non-hemorrhagic extra-axial fluid collections with early or late cranioplasty stratified by population type. Results indicate no difference in odds of extra-axial fluid collection with early cranioplasty. The trauma subgroup had significantly decreased odds of fluid collection with early cranioplasty.

Figure 7. Forest plot of studies reporting hydrocephalus with early or late cranioplasty stratified by population type (trauma versus mixed). Results indicate a significant increase in odds of hydrocephalus with early cranioplasty in the overall population, as well as trauma and mixed subgroups.

Figure 8. Forest plot of studies reporting seizures with early or late cranioplasty stratified by population type. Results indicate no difference in odds of seizures with early cranioplasty.

Figure 9. Forest plot of studies reporting resorption with early or late cranioplasty stratified by population type. Results indicate no difference in odds of resorption with early cranioplasty.