(i)
$$f = X^7 - 5$$
.

(ii)
$$g = 2X^2 + 3X - 2$$
.

in
$$d = 2 \cdot (x^2 + \frac{3}{2}x - 1) =$$

= $2 \cdot (x + 2) \cdot (x - \frac{1}{2})$

Zefallep höpe
$$mg = \mathbb{Q}(-2,\frac{1}{2}) = \mathbb{Q}$$
 $\Rightarrow \mathbb{Q}(\mathbb{Q}) = 1$

Aufgabe (Frühjahr 2007, T3A5)

Gegeben sei das Polynom $f = X^4 - 3 \in \mathbb{Q}[X]$.

Beweisen Sie, dass $L = \mathbb{Q}(\sqrt[4]{3}, i)$ Zerfällungskörper von f ist.

b Bestimmen Sie den Grad der Körpererweiterung $L|\mathbb{Q}$.

Beweisen Sie: $a = \sqrt[4]{3} + i$ ist ein primitives Element von L über Q.

a)
$$x_{k} = 473 \cdot \left(e^{\frac{2\pi i}{4}}\right)^{k}$$
 $k = 0, 1, 2, 3$ $x_{0} = 473 \cdot e^{\frac{\pi i}{4}}$ $e^{\frac{\pi i}{4}}$

 $\Rightarrow \lambda = 2$ mit μ_{i} , $\alpha(45) = \chi^{2} + \Lambda$

$$x_{0} = 473$$

$$x_{0} = 473$$

$$x_{1} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{2} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{3} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

$$x_{4} = 473 \cdot e^{2\pi i} = 473 \cdot e^{2\pi i}$$

Satz 3.14 (Satz vom primitiven Element). Sei L|K eine endliche, separable Körpererweiterung. Dann existiert ein primitives Element der Erweiterung C) L|K, d. h. ein Element $\alpha \in L$ mit $L = K(\alpha)$.

Aufgabe (Frühjahr 2007, T3A5)

Gegeben sei das Polynom $f = X^4 - 3 \in \mathbb{Q}[X]$.

Beweisen Sie, dass $L = \mathbb{Q}(\sqrt[4]{3}, i)$ Zerfällungskörper von f ist.

Bestimmen Sie den Grad der K\u00f6rpererweiterung L|Q.

Beweisen Sie: $a = \sqrt[4]{3} + i$ ist ein primitives Element von L über Q.

Binchische Fermel
$$(a+b)^n = \sum_{k=0}^{N} \binom{n}{k} \cdot a^k \cdot b^{n-k}$$

$$\binom{4}{2} = \frac{4!}{2! \cdot 2!} = 6$$

ist ein primitives Element von L über
$$Q$$

$$Q(473+i) = Q(473,i)$$

$$Q(473+i) = Q(473+i)$$

a Man bestimme ein primitives Element für die Körpererweiterung $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5})|\mathbb{Q}$.

Sei
$$\alpha = {}^{3}\sqrt{2} \cdot {}^{4}\sqrt{5}$$

The zeigh: $\mathbb{Q}(\alpha) = \mathbb{Q}({}^{3}\sqrt{2}, {}^{4}\sqrt{5})$

$$= {}^{11} \text{ Mov}$$

$$= {}^{12} \cdot {}^{11} \text{ Mov}$$

$$= {}^{11} \cdot {}^{11} \text{ Mov}$$

$$= {}^{12} \cdot {}^{11} \text{ Mov}$$

$$= {}^{11} \cdot {}^{11} \text{ Mov}$$

$$= {}^{12} \cdot {}^{11} \text{ Mov}$$

$$= {}^{11} \cdot {}^{$$

NK Hapusoh SS18

Aufgabe 1 (2 Punkte):

Gibt es eine Untergruppe von $\mathbb{Z}/12\mathbb{Z}$, die isomorph zu $\mathbb{Z}/8\mathbb{Z}$ ist?

6 grupe, 16/200 U=6 Uatesgrupe => 14/16/

Aufgabe 2 (1+2 Punkte):

Sei G eine endliche Gruppe und seien $H,H'\subsetneq G$ zwei echte Untergruppen. Zeigen Sie:

- (a) Ist $H \subsetneq H'$, so ist $\#H \leq \frac{1}{4} \#G$.
- (b) Ist $H \neq H'$, so ist $\#(H \cap H') \leq \frac{1}{4} \#G$.

Aufgabe 2 (2+2 Punkte):

(a) Geben Sie ein Element $a \in \mathbb{Q}^{\times}$ der Ordnung 2 und ein Element $b \in \mathbb{Q}^{\times}$ der Ordnung ∞ an.

(b) Geben Sie einen injektiven Gruppenhomomorphismus von Z × Z/2Z nach Q[×] an. Hinweis: Die Elemente a und b aus (a) sind nützlich.

 $(1, \overline{0}) \longrightarrow 5$

(6,+), (H, \circ) lyapper (6,+), (H, \circ) lyapper (6,+), (6,+) frapper (6,+)

Laderd daderd ein deutig Let gelen

$$(-1, \overline{0}) \longmapsto \frac{1}{5}$$

$$\xi((3, \overline{1})) = \xi((1, \overline{0}) + (1, \overline{0}) + (1, \overline{0}) + (0, \overline{1}))$$

$$= \xi((1, \overline{0})) \cdot \xi((1, \overline{0})) \cdot \xi((1, \overline{0})) \cdot \xi((0, \overline{1}))$$

$$= 5. \ 5. \ 5. \ (-1) = -125$$

Aufgabe 4 (2 Punkte):

Sei G eine Gruppe der Ordnung 16, die auf einer Menge X mit 11 Elementen operiert. Zeigen Sie, dass eine solche Operation mindestens drei Bahnen hat.

Hinweis: Was können Sie über Bahnlängen sagen?

Zwei Balnen ind entweder gleich oder gleich oder

Angromen es gible zwei Dubren
$$G(x_1)$$
 i.d $G(x_2)$

1. Fall $|G(x_1)| = 5$ $|G(x_2)| = 6$ Yelt milt, du $5 \neq 1.6$

2. Fall $|G(x_1)| = 4$ $|G(x_2)| = 7$ 11 $7 \neq 1.6$

3. Fall $|G(x_1)| = 4$ $|G(x_2)| = 7$ 11 $3 \neq 1.6$

4. Fall $|G(x_1)| = 1$ $|G(x_2)| = 1$ 9 $|G(x_2)| = 1$ 9 $|G(x_2)| = 1$ 11 $|G($

=) jubt mind. 3 Bullown