	关于	F榔	[率	发展	史:	櫻	率	论是	と 数	学的	勺一	个	重引	更分	支	Ę	己的	起	原利	发	展ヌ	寸许	多:	须垣	於	生 -	了深	远	仢景	涧	。 1	列如	1,	从』	最初	的	赌博	前门	题到	Ŋ
如	1今的	内绍	tit:	学、	金	融学	ź	物野	里学	等:	领垃	或,	概	率理	即论	먇	戊为	科:	学与	5技	术。	中不	可	或缸	央的	Į	Į.	通	过又	其	历	史的	勺学	习.	F	以	更如	子地	理	解
栂	率	生解	杂	实际	问	题中	的	作月	#J <i>=</i>	局	狠性	ŧ.																												

· 关于Bertrand悖论:这是一个著名的概率悖论,最早由法国数学家Joseph Bertrand提出。它探讨了在不同的假设下,如何通过 随机选择的方法得到不同的结果。这种悖论揭示了在概率论中的一些直观反直觉的现象,尤其是在与几何概率相关的情境下,

Q3 发 不 线 止. 邓 寿.

其中 等之 3 甲 3 3 四种

那名意路里 150元 结250元

Q4 P. 25 + (1-p). 0 = 20 > p = 0.8

 $Q_{\xi} \qquad P(A) = 0.5 \qquad P(B) = 0.3 \qquad P(C) = 0.3$

Q6 人牟耳/赞为·泛差:

 Q_{7} . (a) $AB+AB^{c}=A(B+B^{c})=A$

(1) A+B 是 +B 至少发生1寸

A-B 是 A 发 全 B 不发 生.

那么 (A+B) - (A-B) 夏, AB 飞发生14 并且有

而达之名了"A发生B发生"与"A不发生B发生"的精流。

 $P \quad (A+B)-(A-B)=AB+A^{C}B=B$

B-A 是 B发生并不发生 ⇒ A+(B-A) 壹. B发生A不发生 和A发生 高少发至11. 世印 AB至少发至1个 $A(B-A) = ABA^c = \emptyset$ (d) (A-B) + (B-A) 是 A、B两事经产发生了一个。 AB 图本、B两事结局对发生 (A-B)+(B-A)+AB 置. A.B两事。至少发至了一个 FATB A-B与B-A显然不能同时发生 A-B FFB不发生 AB FFB发生。 PEA (PS. 沒 Y XE (AtB) 其用 Venn 图也考别自出以上心点.) 先运至红.有. Prost: Kはり後m>n (Am- ま Ai)・(An- ま Ai) Am (U Ai) (An (U Ai)

(c)
$$A+(B-A) = A U(B \cap A^{c})$$

$$= (A \cup B) \cap (A \cup A^{c})$$

$$= A \cup B$$

$$= A + B$$

$$= A \cap (B-A) = A \cap B \cap A^{c}$$

$$= (A \cap B^{c}) \cup (B \cap A^{c}) \cup (A \cap B)$$

$$= A \cap (B \cup B^{c}) \cup (B \cap A^{c})$$

$$= A \cup (B \cap A^{c})$$

$$= (A \cup B) \cap (A \cup A^{c})$$

$$= A \cup B$$

$$= A + B$$

$$= (A \cap B^{c}) \cap (B \cap A^{c}) = A \cap B \cap A \cap B$$

$$= (A \cap B^{c}) \cap (B \cap A^{c}) = A \cap B \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = A \cap B \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = A \cap B \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = B \cap A \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = B \cap A \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = B \cap A \cap A \cap B$$

$$= (B \cap B^{c}) \cap (B \cap A^{c}) = B \cap A \cap A \cap B$$