

CMS-HIN-16-011

Measurement of the B $^\pm$ meson nuclear modification factor in PbPb collisions at $\sqrt{s_{_{\rm NN}}}=5.02\,{\rm TeV}$

The CMS Collaboration*

Abstract

The differential production cross sections of B[±] mesons are measured via the exclusive decay channels B[±] \rightarrow J/ ψ K[±] \rightarrow $\mu^+\mu^-$ K[±] as a function of transverse momentum in pp and PbPb collisions at a center-of-mass energy $\sqrt{s_{_{NN}}}=5.02$ TeV per nucleon pair with the CMS detector at the LHC. The pp (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 28.0 pb⁻¹ (351 μ b⁻¹). The measurement is performed in the B[±] meson transverse momentum range of 7 to 50 GeV/c, in the rapidity interval |y| < 2.4. In this kinematic range, a strong suppression of the production cross section by about a factor of two is observed in the PbPb system in comparison to the expectation from pp reference data. These results are found to be roughly compatible with theoretical calculations incorporating beauty quark diffusion and energy loss in a quark-gluon plasma.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.119.152301.

Relativistic heavy ion collisions allow the study of quantum chromodynamics (QCD) at high energy density. Under such extreme conditions, a state consisting of deconfined quarks and gluons, the quark-gluon plasma (QGP) [1, 2], is predicted by lattice QCD calculations [3]. Hard-scattered partons are expected to lose energy via elastic collisions and medium-induced gluon radiation as they traverse the QGP. This phenomenon, known as jet quenching [4–7], results in the suppression of the yield of high transverse momentum (p_T) hadrons, compared to the expectation based on proton-proton (pp) data, in which the outgoing partons traverse the QCD vacuum. Measurements of the jet quenching dependence on the type of initiating parton (both quark vs. gluon and light vs. heavy quarks) are key to constrain the QGP properties [8–12].

The production of B mesons was studied at the Large Hadron Collider (LHC) in pp collisions at center-of-mass energies of $\sqrt{s}=7\,\mathrm{TeV}$ [13–19], 8 TeV [20, 21] and 13 TeV [22] over wide p_T and rapidity (y) intervals, and in proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair $\sqrt{s_\mathrm{NN}}=5.02\,\mathrm{TeV}$ [23]. The CMS Collaboration also measured the nonprompt (i.e. from decays of b hadrons) J/ ψ meson production in lead-lead (PbPb) and pp collisions at $\sqrt{s_\mathrm{NN}}=2.76\,\mathrm{TeV}$ [24]. For nonprompt J/ ψ , a strong suppression was observed in the nuclear modification factor R_AA , the ratio of the nonprompt J/ ψ cross section in PbPb collisions with respect to that in pp collisions scaled by the number of binary nucleon-nucleon (NN) collisions. In this Letter, we extend the study of heavy-quark production by performing the first measurement of exclusive B[±] mesons decays in PbPb collisions. This provides direct information about the b hadron kinematics and flavor content, compared to the measurements of nonprompt J/ ψ , which are decay products of various beauty mesons and baryons.

The B[±] mesons are measured in the interval |y| < 2.4 and in five p_T bins ([7, 10], [10, 15], [15, 20], [20, 30], [30, 50] GeV/c), via the reconstruction of the decay channels B[±] \rightarrow J/ ψ K[±] \rightarrow $\mu^+\mu^-$ K[±], which have the branching fraction $\mathcal{B} = (6.12 \pm 0.19) \times 10^{-5}$ [25]. Throughout the paper, unless otherwise specified, the y and p_T variables given are those of the B[±] mesons. This analysis does not distinguish between the charge conjugates.

The central feature of the CMS detector is a superconducting solenoid which provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon tracker which measures charged particles within the pseudorapidity range $|\eta|$ < 2.5, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. For typical particles of $1 < p_T <$ $10 \,\mathrm{GeV/c}$ and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_{T} and 25–90 (45–150) $\mu\mathrm{m}$ in the transverse (longitudinal) impact parameter [26]. Muons are measured in the range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The muon reconstruction algorithm starts by finding tracks in the muon detectors, which are then fitted together with tracks reconstructed in the silicon tracker to form "global muons". Matching muons to tracks measured in the silicon tracker results in a relative p_T resolution for muons with $20 < p_T < 100 \,\text{GeV/}c$ of 1.3–2.0% in the barrel $(|\eta| < 1.2)$ and better than 6% in the endcaps (1.6 < $|\eta| < 2.4$). For muons with higher p_T up to 1 TeV/c, the p_T resolution in the barrel is better than 10% [27]. The hadron forward (HF) calorimeter uses steel as an absorber and quartz fibers as the sensitive material. The two halves of the HF are located 11.2 m away from the interaction point, one on each end, providing together coverage in the range 3.0 $< |\eta| < 5.2$. In this analysis, the HF information is used for performing an offline event selection. A detailed description of the CMS experiment and coordinate system can be found in Ref. [28].

For the decay channel measured in this analysis, the background consists primarily of two sources. A combinatorial background originates from randomly pairing a J/ψ with an unrelated charged particle. This gives rise to a falling contribution in the invariant mass spec-

trum. A heightened background in the invariant mass region below $5.4\,\mathrm{GeV}/c^2$ is also present, which corresponds to partially reconstructed b hadron decays from processes other than the one of interest. As an example, a heightened structure can be created by $\mathrm{B}^0 \to \mathrm{J}/\psi~\mathrm{K}^*(892)^0 \to \mu^+\mu^-\mathrm{K}^+\pi^-$ ($\mathrm{\overline{B}}^0 \to \mathrm{J}/\psi~\mathrm{\overline{K}}^*(892)^0 \to \mu^+\mu^-\mathrm{K}^-\pi^+$) decays in which one decay product is lost, resulting in a B+ (B-) candidate. Several Monte Carlo (MC) simulated event samples are used to evaluate background components, signal efficiencies and detector acceptance corrections. This includes samples containing only the B+ mesons decays channels being measured, and samples with inclusive (prompt and nonprompt) J/ ψ mesons. Proton-proton collisions are generated with PYTHIA 8 [29] tune CUETP8M1 [30] and propagated through the CMS detector using the GEANT4 package [31]. The decay of the B mesons is modeled with the EVTGEN 1.3.0 [32], and final-state photon radiation in the B decays is simulated with PHOTOS 2.0 [33]. For the PbPb MC samples, each PYTHIA 8 event is embedded into a PbPb collision event generated with HYDJET 1.8 [34], which is tuned to reproduce global event properties, such as the charged-hadron p_{T} spectrum and particle multiplicity.

Events were collected with the same trigger during the pp and PbPb data taking, requiring the presence of two muon candidates, with no explicit momentum threshold. For the offline analysis, events have to pass a set of selection criteria designed to reject events from background processes (beam-gas collisions and beam scraping events) as described in Ref. [35]. Events are required to have at least one reconstructed primary interaction vertex with a distance from the center of the nominal interaction region of less than 15 cm along the beam axis. In PbPb collisions, the shapes of the clusters in the pixel detector have to be compatible with those expected from particles produced by a PbPb collision [36]. The PbPb collision event is also required to have at least three towers in each of the HF detectors with energy deposits of more than 3 GeV per tower. These criteria select $(99 \pm 2)\%$ of inelastic hadronic PbPb collisions. Selection efficiencies higher than 100% are possible, reflecting the possible presence of ultra-peripheral (i.e. nonhadronic) collisions in the selected event sample. The PbPb sample corresponds to an integrated luminosity of approximately 351 μ b⁻¹. This value is indicative only, as the PbPb yield is normalized by the total number of minimum-bias events sampled, $N_{\rm MB}$. The pp data set corresponds to an integrated luminosity of 28.0 pb⁻¹, which is known to an accuracy of 2.3% from the uncertainty in the calibration based on a van der Meer scan [37].

Kinematic limits are imposed on the single muons so that their reconstruction efficiency stays above 10%. These limits are $p_{\rm T}^{\mu} > 3.5\,{\rm GeV}/c$ for $|\eta^{\mu}| < 1.2$, $p_{\rm T}^{\mu} > 1.8\,{\rm GeV}/c$ for $2.1 \le |\eta^{\mu}| < 2.4$, and linearly interpolated in the intermediate $|\eta^{\mu}|$ region. The muons are also required to match the muons that triggered the event online, and pass selection criteria optimized for low p_T (the so-called soft selection [27]). Two muons of opposite charge with an invariant mass within $150 \,\mathrm{MeV}/c^2$ of the world-average J/ ψ meson mass [25] are selected to reconstruct a J/ ψ candidate, with a mass resolution of typically $18-55 \,\mathrm{MeV}/c^2$, degrading as a function of the dimuon rapidity and p_T . Opposite-sign muon pairs are fitted with a common vertex constraint and are kept if the χ^2 probability of the fit is greater than 1%, lowering the background from charmand beauty-hadron semileptonic decays. Each B meson candidate is formed from the combination of a J/ ψ candidate with a charged-particle track, which are required to pass standard selections described in Ref. [35]. Without using particle identification, assumptions need to be made about the masses of the charged particles. In calculating the mass of the B^{\pm} candidates, the single charged particle is always assumed to have the mass of a charged kaon, and the muon pair is assumed to have the mass of a J/ ψ meson. A single-track low- p_T threshold of 0.5 GeV/c for pp collisions and 0.8 GeV/c for PbPb collisions is applied to reduce the combinatorial background, which is further minimized by additional selection criteria. In particular, B[±] candidates are selected according to the χ^2 probability of their decay vertex (the probability for

Figure 1: Invariant mass distributions of B[±] candidates in pp (left) and PbPb (right) collisions measured in |y| < 2.4 and in the p_T region 10–15 GeV/c.

the muon tracks from the J/ ψ meson decay and the other charged track to point to a common vertex), the three-dimensional (3D) flight distance (normalized by its uncertainty) between the primary and decay vertices, and the pointing angle, which is defined as the angle between the line segment connecting the primary and decay vertices and the momentum vector of the B $^{\pm}$ meson in the plane transverse to the beam direction. The selection is optimized in each $p_{\rm T}$ bin, separately for pp and PbPb results, using a multivariate technique that utilizes the genetics algorithm [38], in order to maximize the statistical significance of the B $^{\pm}$ mesons signal.

The raw yields of B^\pm mesons in pp and PbPb collisions are extracted using a binned maximum likelihood fit to the B^\pm mesons invariant mass distributions in the mass range 5–6 GeV/ c^2 . The estimation of the statistical uncertainties of the fitted raw yields is based on the second derivatives of the negative log-likelihood function. Examples of fits to the invariant mass distributions in pp and PbPb collisions are shown in Fig. 1, for the p_T region 10–15 GeV/c. The signal shape is modeled by two Gaussian functions with a common mean, a free parameter of the fit, and different widths determined from MC simulation for each p_T bin, individually for the pp and PbPb results. The relative contribution of the two Gaussian functions to the signal yield is also fixed at the value given by the MC sample. The combinatorial background is modeled by a first-order polynomial as determined by studies of the inclusive J/ψ MC sample. The peaking background, labeled $B \to J/\psi$ X in Fig. 1, is studied with the embedded MC sample including all B meson decays into final states with a J/ψ meson and found to be well described by the superposition of a double-sided Gaussian function and an error function. The shape is determined from a fit of the MC sample with all parameters free. The resulting functional form, with the overall normalization left floating, is included in the global fit function.

The differential cross section for B^{\pm} production in |y| < 2.4 is computed in each p_T interval according to

$$\frac{d\sigma^{B^{\pm}}}{dp_{T}}\bigg|_{|y|<2.4} = \frac{1}{2} \frac{1}{\mathcal{B} \mathcal{L}} \frac{1}{\Delta p_{T}} \left. \frac{N_{pp}^{(B^{+}+B^{-})}(p_{T})}{\alpha_{pp}(p_{T}) \epsilon_{pp}(p_{T})} \right|_{|y|<2.4}$$
(1)

Figure 2: The p_T -differential production cross section of B $^\pm$ in pp (left) and PbPb (right) collisions at $\sqrt{s}=5.02\,\text{TeV}$. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The systematic uncertainty boxes here include both the correlated and uncorrelated contributions added in quadrature. The global systematic uncertainty, listed in the legend and not included in the point-to-point uncertainties. For the pp cross section, they comprise the uncertainties in the integrated luminosity measurement and in the branching fraction \mathcal{B} . For the PbPb cross section, they comprise the uncertainties in T_{AA} , N_{MB} , and \mathcal{B} . The pp cross section is compared to FONLL calculations [40–42] represented by the colored boxes with the heights indicating the theoretical uncertainty.

for pp data, and for PbPb data according to

$$\frac{1}{T_{AA}} \frac{dN_{PbPb}^{B^{\pm}}}{dp_{T}} \bigg|_{|y|<2.4} = \frac{1}{2} \frac{1}{\mathcal{B} N_{MB} T_{AA}} \frac{1}{\Delta p_{T}} \left. \frac{N_{PbPb}^{(B^{+}+B^{-})}(p_{T})}{\alpha_{PbPb}(p_{T}) \epsilon_{PbPb}(p_{T})} \right|_{|y|<2.4}.$$
(2)

The $N_{\rm pp,PbPb}^{({\rm B}^++{\rm B}^-)}$ is the raw signal yield extracted in each $p_{\rm T}$ interval of width $\Delta p_{\rm T}$, $(\alpha\,\varepsilon)_{\rm pp,PbPb}$ represents the corresponding acceptance times efficiency, and ${\cal B}$ is the branching fraction of the decay chain. For the pp cross section, ${\cal L}$ represents the integrated luminosity. For the PbPb cross section, the $T_{\rm AA}$ is the nuclear overlap function [39], equal to the number of NN binary collisions divided by the NN total inelastic cross section, and which can be interpreted as the NN-equivalent integrated luminosity per heavy ion collision.

The $T_{\rm AA}$ value for inclusive PbPb collisions at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$ is $5.61\,{\rm mb}^{-1}$, as estimated from a Monte Carlo Glauber model [35, 39].

Assuming that in the kinematic region accessible by the present measurement B⁺ and B⁻ production cross sections are equal, the factor 1/2 accounts for the fact that the yields are measured for particles and antiparticles added together, but the cross section is given for one species only.

The cross sections are affected by several sources of systematic uncertainties arising from the signal extraction, corrections, \mathcal{B} , \mathcal{L} or T_{AA} determination. The uncertainty of the modeling of the signal and background shapes (2.9% and 2.6% for pp and PbPb cases, respectively) is evaluated on the p_T integrated bin, by varying the probability distribution functions used to describe the signal and background distributions. As an alternative combinatorial background shape, an exponential function, and also second- and a third-order polynomials are used. The uncertainty of the signal modeling is evaluated by considering two fit variations: (i) leaving the

width parameters free and (ii) using a sum of three Gaussian functions with common mean. The maximum of the signal variations is added in quadrature to the maximum of all the background variations, and propagated as the systematic uncertainty.

The systematic uncertainty due to the selection of the B meson candidates (3.8% for pp and 12.0% for PbPb collisions) is estimated, in the $p_{\rm T}$ integrated bin, from several variations of the selection value for each of the following: χ^2 probability of the decay vertex, the 3D flight distance, the pointing angle, the track $p_{\rm T}$, the track η , and the choice of the algorithm in the multivariate analysis. In each case, a systematic uncertainty is estimated from all variations, as the maximum of 1 minus the ratio of the selection efficiencies (the ratio of the nominal yield and the yield after applying the modified selection) estimated in data and simulation. The total uncertainty for the selection of the B meson candidates is the quadratic sum of the individual contributions from the six settings.

The bin-by-bin systematic uncertainties associated with the acceptance correction (0.1% to 0.4%) are estimated by varying the shape of the generated B^{\pm} meson p_T and y spectra within limits defined by differences (including their statistical uncertainties) between data and MC calculations. Using these shape variations, "toy" MC simulations are used to recalculate the acceptance in each kinematic bin, the maximum variation between the nominal acceptance and the toys being propagated as the systematic uncertainty.

The uncertainty (2.8% to 5.5% in pp and 3.4% to 6.3% in PbPb collisions) in the efficiency of the trigger, muon reconstruction, and muon identification is evaluated bin-by-bin using a data driven technique [43]. Another systematic uncertainty is assigned for the track reconstruction efficiency (4% per track in pp collisions [26] and 6% in PbPb collisions [35]). This uncertainty, together with all the other listed above as estimated on the $p_{\rm T}$ integrated bin, are considered as correlated systematic uncertainties. The uncertainties calculated bin-by-bin are considered uncorrelated. The systematic uncertainty in the cross section measurement is computed as the sum in quadrature of the different contributions mentioned above. The uncertainty of the B[±] meson decay \mathcal{B} is 3.1% [25]. The uncertainty of the number of minimum bias events in PbPb, $N_{\rm MB}$, is 1.0%. The $T_{\rm AA}$ uncertainty is +2.8%, -3.4% [35].

In Fig. 2, the $p_{\rm T}$ -differential production cross sections in pp and PbPb collisions measured in the interval |y| < 2.4 are presented. The pp result is compared to the cross section obtained from fixed-order plus next-to-leading logarithm (FONLL) calculations [42]. The FONLL reference cross section is obtained by scaling the FONLL total b-quark production [40–42] by the world-average production fractions of B⁺ of 40.2% [25]. The calculated B⁺ FONLL reference is consistent with the measured B[±] pp spectrum, similarly to what was observed in the previous publications in pp collisions at $\sqrt{s} = 7$ TeV [13–17].

The nuclear modification factor R_{AA} , shown in Fig. 3, is computed as:

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{T_{\rm AA}} \frac{\mathrm{d}N_{\rm PbPb}^{\rm B^{\pm}}}{\mathrm{d}p_{\rm T}} / \frac{\mathrm{d}\sigma_{\rm pp}^{\rm B^{\pm}}}{\mathrm{d}p_{\rm T}},\tag{3}$$

A clear suppression ($R_{\rm AA} < 1$) of B[±] mesons production in PbPb collisions at $\sqrt{s_{\rm NN}} = 5.02\,{\rm TeV}$ is observed. The $R_{\rm AA}$ is around 0.3 to 0.6 for B[±] mesons $p_{\rm T}$ from 7 to 50 GeV/c.

The p_T dependence of R_{AA} is compared to the predictions of: a) two perturbative QCD based models that include both collisional and radiative energy loss (Djordjevic [46], CUJET3.0 [47–49]); b) a transport theoretical model based on a Langevin equation that includes collisional energy loss and heavy quark diffusion in the medium (TAMU [44, 45]) and c) a model based

Figure 3: The $p_{\rm T}$ dependence of the nuclear modification factor $R_{\rm AA}$ of B[±] measured in PbPb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The global systematic uncertainty, represented as a grey box at $R_{\rm AA}=1$, comprises the uncertainties in the integrated luminosity measurement and $T_{\rm AA}$ value. Four theoretical calculations are also shown for comparison: TAMU [44, 45], Djordjevic [46], CUJET3.0 [47–49], and AdS/CFT HH [50, 51]. The line width of the theoretical calculation from Ref. [44, 45] represents the size of its statistical uncertainty.

on the anti-de-Sitter/conformal field theory correspondence, that includes thermal fluctuations in the energy loss for heavy quarks in a strongly-coupled plasma (AdS/CFT HH [50, 51].) The AdS/CFT HH calculation is provided for two settings of the diffusion coefficient D of the heavy quark propagation through the medium: either dependent on or independent of the quark momentum. The four theoretical calculations differ in several aspects, e.g. the modeling of the PbPb medium (hydrodynamically [45, 47] or via a Glauber model [46]) and of the energy loss sources (partonic only [45, 47] or also hadronic [45]), the set of the (nuclear) parton distribution functions used for the initial heavy-quark p_T distributions, etc. Given the current statistical and systematic uncertainties, all these theoretical predictions are roughly compatible with the measurement presented. However, while the present results can not help to resolve the disagreements between different models because of the large uncertainties, including those of the theoretical calculations, they can already be used to optimize parameters settings in such models (e.g. the parton-medium coupling parameters in the AdS/CFT model). More precise measurements of the B^{\pm} mesons R_{AA} and future results on the angular correlations of B^{\pm} mesons with other hadrons will allow one to draw a firmer conclusion on the relevance of collisional and radiative processes in the b quark energy loss [52, 53]. The measurement of exclusive B[±] gives for the first time an unambiguous access to the b hadron quark-flavor content, and represents the first attempt to understand the interactions of beauty and light quarks with each other and with the medium they traverse before hadronization. This lays the groundwork for

future measurements of azimuthal asymmetries or relative production ratios like $B_{\rm s}/B^{\pm}$ [54].

In summary, the first measurement of the differential production cross section of B^\pm mesons in pp and PbPb collisions at $\sqrt{s_{_{\rm NN}}}=5.02\,{\rm TeV}$ has been presented. The B^\pm mesons are measured with the CMS detector at the LHC in the rapidity range |y|<2.4 and transverse momentum interval $7< p_T<50\,{\rm GeV}/c$ via the reconstruction of one of their exclusive hadronic decay channels, $B^\pm\to J/\psi$ $K^\pm\to \mu^+\mu^-K^\pm$. The nuclear modification factor of B^\pm is measured as a function of its p_T . A strong suppression by about a factor of two is observed in the PbPb system in comparison to expectations from the scaled pp reference data. The results are found to be roughly compatible with theoretical calculations incorporating beauty quark diffusion and energy loss in a quark-gluon plasma.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

- [1] É. V. Shuryak, "Theory of hadronic plasma", Sov. Phys. JETP 47 (1978) 212.
- [2] J. C. Collins and M. J. Perry, "Superdense matter: Neutrons or asymptotically free quarks?", *Phys. Rev. Lett.* **34** (1975) 1353, doi:10.1103/PhysRevLett.34.1353.
- [3] F. Karsch and E. Laermann, "Thermodynamics and in-medium hadron properties from lattice QCD", in *Quark-Gluon Plasma III*, R. Hwa (ed.), 2003. arXiv:hep-lat/0305025.
- [4] J. D. Bjorken, "Energy loss of energetic partons in quark-gluon plasma: Possible extinction of high p_T jets in hadron-hadron collisions", Fermilab PUB 82-059-THY, 1982.
- [5] R. Baier, D. Schiff, and B. G. Zakharov, "Energy loss in perturbative QCD", Ann. Rev. Nucl. Part. Sci. 50 (2000) 37, doi:10.1146/annurev.nucl.50.1.37, arXiv:hep-ph/0002198.

[6] CMS Collaboration, "Observation and studies of jet quenching in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 2.76\,\mathrm{TeV}$ ", Phys. Rev. C 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957.

- [7] ATLAS Collaboration, "Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ with the ATLAS detector at the LHC", *Phys. Rev. Lett.* **105** (2010) 252303, doi:10.1103/PhysRevLett.105.252303, arXiv:1011.6182.
- [8] Y. L. Dokshitzer and D. E. Kharzeev, "Heavy quark colorimetry of QCD matter", Phys. Lett. B 519 (2001) 199, doi:10.1016/S0370-2693(01)01130-3, arXiv:hep-ph/0106202.
- [9] N. Armesto, C. A. Salgado, and U. A. Wiedemann, "Medium-induced gluon radiation off massive quarks fills the dead cone", *Phys. Rev. D* **69** (2004) 114003, doi:10.1103/PhysRevD.69.114003, arXiv:hep-ph/0312106.
- [10] S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, "Heavy quark jet quenching with collisional plus radiative energy loss and path length fluctuations", *Nucl. Phys. A* **783** (2007) 493, doi:10.1016/j.nuclphysa.2006.11.102, arXiv:nucl-th/0701063.
- [11] B.-W. Zhang, E. Wang, and X.-N. Wang, "Heavy quark energy loss in nuclear medium", Phys. Rev. Lett. 93 (2004) 072301, doi:10.1103/PhysRevLett.93.072301, arXiv:nucl-th/0309040.
- [12] A. Adil and I. Vitev, "Collisional dissociation of heavy mesons in dense QCD matter", Phys. Lett. B 649 (2007) 139, doi:10.1016/j.physletb.2007.03.050, arXiv:hep-ph/0611109.
- [13] CMS Collaboration, "Measurement of the B^+ production cross section in pp collisions at $\sqrt{s} = 7 \,\text{TeV}$ ", Phys. Rev. Lett. 106 (2011) 112001, doi:10.1103/PhysRevLett.106.112001, arXiv:1101.0131.
- [14] CMS Collaboration, "Measurement of the B^0 production cross section in pp collisions at $\sqrt{s} = 7 \, \text{TeV}$ ", Phys. Rev. Lett. 106 (2011) 252001, doi:10.1103/PhysRevLett.106.252001, arXiv:1104.2892.
- [15] CMS Collaboration, "Measurement of the B_s^0 production cross section with $B_s^0 \to J/\psi\phi$ decays in pp collisions at $\sqrt{s}=7\,\text{TeV}''$, Phys. Rev. D **84** (2011) 052008, doi:10.1103/PhysRevD.84.052008, arXiv:1106.4048.
- [16] ATLAS Collaboration, "Measurement of the differential cross-section of B⁺ meson production in pp collisions at $\sqrt{s} = 7$ TeV at ATLAS", *JHEP* **10** (2013) 042, doi:10.1007/JHEP10 (2013) 042, arXiv:1307.0126.
- [17] LHCb Collaboration, "Measurement of B meson production cross-sections in proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$ ", JHEP **08** (2013) 117, doi:10.1007/JHEP08 (2013) 117, arXiv:1306.3663.
- [18] LHCb Collaboration, "Measurement of the $\chi_b(3P)$ mass and of the relative rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ production", *JHEP* **10** (2014) 88, doi:10.1007/JHEP10 (2014) 088, arXiv:1409.1408.

[19] LHCb Collaboration, "Measurements of B_c^+ production and mass with the $B_c^+ \to J/\psi \pi^+$ decay", *Phys. Rev. Lett.* **109** (2012) 232001, doi:10.1103/PhysRevLett.109.232001, arXiv:1209.5634.

- [20] LHCb Collaboration, "Study of the production of Λ_b^0 and \overline{B}^0 hadrons in pp collisions and first measurement of the $\Lambda_b^0 \to J/\psi p K^-$ branching fraction", *Chin. Phys. C* **40** (2016) 011001, doi:10.1088/1674-1137/40/1/011001, arXiv:1509.00292.
- [21] LHCb Collaboration, "Measurement of B_c^+ production in proton-proton collisions at $\sqrt{s}=8$ TeV", Phys. Rev. Lett. **114** (2015) 132001, doi:10.1103/PhysRevLett.114.132001, arXiv:1411.2943.
- [22] CMS Collaboration, "Measurement of the total and differential inclusive B^+ hadron cross sections in pp collisions at $\sqrt{s} = 13 \,\text{TeV}$ ", *Phys. Lett. B* **771** (2017) 435, doi:10.1016/j.physletb.2017.05.074, arXiv:1609.00873.
- [23] CMS Collaboration, "Study of *B* meson production in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV using exclusive hadronic decays", *Phys. Rev. Lett.* **116** (2016) 032301, doi:10.1103/PhysRevLett.116.032301, arXiv:1508.06678.
- [24] CMS Collaboration, "Suppression of non-prompt J/ ψ , prompt J/ ψ , and Y(1S) in PbPb collisions at $\sqrt{s_{\rm NN}} = 2.76\,\text{TeV}$ ", JHEP **05** (2012) 063, doi:10.1007/JHEP05 (2012) 063, arXiv:1201.5069.
- [25] Particle Data Group, C. Patrignani et al., "Review of Particle Physics", *Chin. Phys. C* **40** (2016), no. 10, 100001, doi:10.1088/1674-1137/40/10/100001.
- [26] CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- [27] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at $\sqrt{s}=7$ TeV", JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
- [28] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [29] T. Sjöstrand et al., "An introduction to PYTHIA 8.2", Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- [30] CMS Collaboration, "Event generator tunes obtained from underlying event and multiparton scattering measurements", Eur. Phys. J. C 76 (2016) doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- [31] GEANT4 Collaboration, "GEANT4 a simulation toolkit", Nucl. Instrum. Meth. A **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
- [32] D. J. Lange, "The EvtGen particle decay simulation package", Nucl. Instrum. Meth. A 462 (2001) 152, doi:10.1016/S0168-9002(01)00089-4.
- [33] E. Barberio, B. van Eijk, and Z. Was, "Photos a universal Monte Carlo for QED radiative corrections in decays", *Comput. Phys. Commun.* **66** (1991) 115, doi:10.1016/0010-4655 (91) 90012-A.

[34] I. P. Lokhtin and A. M. Snigirev, "A model of jet quenching in ultrarelativistic heavy ion collisions and high- p_T hadron spectra at RHIC", Eur. Phys. J. C 45 (2006) 211, doi:10.1140/epjc/s2005-02426-3, arXiv:hep-ph/0506189.

- [35] CMS Collaboration, "Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$ ", JHEP **04** (2017) 039, doi:10.1007/JHEP04 (2017) 039, arXiv:1611.01664.
- [36] CMS Collaboration, "Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.76 TeV", JHEP **02** (2010) 041, doi:10.1007/JHEP02 (2010) 041, arXiv:1002.0621.
- [37] CMS Collaboration, "CMS luminosity calibration for the pp reference run at $\sqrt{s} = 5.02 \text{ TeV}$ ", CMS Physics Analysis Summary CMS-PAS-LUM-16-001, 2016.
- [38] H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, "TMVA, the toolkit for multivariate data analysis with ROOT", in *XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT)*, p. 40. 2007. arXiv:physics/0703039.
- [39] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, "Glauber modeling in high-energy nuclear collisions", *Ann. Rev. Nucl. Part. Sci.* **57** (2007) 205, doi:10.1146/annurev.nucl.57.090506.123020, arXiv:nucl-ex/0701025.
- [40] M. Cacciari, M. Greco, and P. Nason, "The p_T spectrum in heavy-flavour hadroproduction", JHEP 05 (1998) 007, doi:10.1088/1126-6708/1998/05/007, arXiv:hep-ph/9803400.
- [41] M. Cacciari and P. Nason, "Charm cross sections for the Tevatron Run II", *JHEP* **09** (2003) 006, doi:10.1088/1126-6708/2003/09/006, arXiv:hep-ph/0306212.
- [42] M. Cacciari et al., "Theoretical predictions for charm and bottom production at the LHC", *JHEP* **10** (2012) 137, doi:10.1007/JHEP10 (2012) 137, arXiv:1205.6344.
- [43] CMS Collaboration, "Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7 \,\text{TeV}$ ", JHEP **01** (2011) 080, doi:10.1007/JHEP01 (2011) 080, arXiv:1012.2466.
- [44] M. He, R. J. Fries, and R. Rapp, "Heavy-quark diffusion and hadronization in quark-gluon plasma", *Phys. Rev. C* **86** (2012) 014903, doi:10.1103/PhysRevC.86.014903, arXiv:1106.6006.
- [45] M. He, R. J. Fries, and R. Rapp, "Heavy flavor at the large hadron collider in a strong coupling approach", *Phys. Lett. B* **735** (2014) 445, doi:10.1016/j.physletb.2014.05.050, arXiv:1401.3817.
- [46] M. Djordjevic, B. Blagojevic, and L. Zivkovic, "Mass tomography at different momentum ranges in quark-gluon plasma", *Phys. Rev. C* **94** (2016) 044908, doi:10.1103/PhysRevC.94.044908, arXiv:1601.07852.
- [47] J. Xu, J. Liao, and M. Gyulassy, "Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0", *JHEP* **02** (2016) 169, doi:10.1007/JHEP02(2016)169, arXiv:1508.00552.

[48] J. Xu, J. Liao, and M. Gyulassy, "Consistency of perfect fluidity and jet quenching in semi-quark-gluon monopole plasmas", *Chin. Phys. Lett.* **32** (2015) 092501, doi:10.1088/0256-307X/32/9/092501, arXiv:1411.3673.

- [49] J. Xu, A. Buzzatti, and M. Gyulassy, "Azimuthal jet flavor tomography with CUJET2.0 of nuclear collisions at RHIC and LHC", *JHEP* **08** (2014) 063, doi:10.1007/JHEP08 (2014) 063, arXiv:1402.2956.
- [50] W. A. Horowitz, "Fluctuating heavy quark energy loss in a strongly coupled quark-gluon plasma", *Phys. Rev. D* **91** (2015) 085019, doi:10.1103/PhysRevD.91.085019, arXiv:1501.04693.
- [51] R. Hambrock and W. A. Horowitz, "AdS/CFT predictions for azimuthal and momentum correlations of bb pairs in heavy ion collisions", 2017. arXiv:1703.05845.
- [52] M. Rohrmoser, P. B. Gossiaux, T. Gousset, and J. Aichelin, "Constraining in-medium heavy-quark energy-loss mechanisms via angular correlations between heavy and light mesons", J. Phys. Conf. Ser. 779 (2017) 012032, doi:10.1088/1742-6596/779/1/012032, arXiv:1611.01854.
- [53] S. Cao, G.-Y. Qin, and S. A. Bass, "Heavy flavor dynamics in QGP and hadron gas", in XXIV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, volume 931, p. 569. 2014. arXiv:1408.0503. Nucl. Phys. A 931 (2014) 931. doi:10.1016/j.nuclphysa.2014.09.011.
- [54] M. He, R. J. Fries, and R. Rapp, " D_s -meson as quantitative probe of diffusion and hadronization in nuclear collisions", *Phys. Rev. Lett.* **110** (2013) 112301, doi:10.1103/PhysRevLett.110.112301, arXiv:1204.4442.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth¹, V.M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler¹, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, H. Rohringer, J. Schieck¹, J. Strauss, W. Waltenberger, C.-E. Wulz¹

Institute for Nuclear Problems, Minsk, Belarus

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

N. Shumeiko

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang²

Ghent University, Ghent, Belgium

A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, W. Verbeke, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium

N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato³, A. Custódio, E.M. Da Costa, G.G. Da Silveira⁴, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote³, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil

S. Ahuja^a, C.A. Bernardes^a, T.R. Fernandez Perez Tomei^a, E.M. Gregores^b, P.G. Mercadante^b, C.S. Moon^a, S.F. Novaes^a, Sandra S. Padula^a, D. Romero Abad^b, J.C. Ruiz Vargas^a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China

W. Fang⁵, X. Gao⁵

Institute of High Energy Physics, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, T. Susa

University of Cyprus, Nicosia, Cyprus

M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic

M. Finger⁶, M. Finger Jr.⁶

Universidad San Francisco de Quito, Quito, Ecuador

E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran^{7,8}, M.A. Mahmoud^{9,8}, A. Mahrous¹⁰

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen

Lappeenranta University of Technology, Lappeenranta, Finland

J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

J.-L. Agram¹¹, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte¹¹, X. Coubez, J.-C. Fontaine¹¹, D. Gelé, U. Goerlach, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov¹², V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia

A. Khvedelidze⁶

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze⁶

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl¹³

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras¹⁴, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo¹⁵, J. Garay

Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel¹⁶, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann¹⁶, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing

University of Hamburg, Hamburg, Germany

S. Bein, V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo¹³, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann¹³, S.M. Heindl, U. Husemann, F. Kassel¹³, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

M. Csanad, N. Filipovic, G. Pasztor

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath¹⁷, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁸, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi¹⁹, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary

M. Bartók¹⁸, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India

S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India

S. Bahinipati²⁰, S. Bhowmik, P. Mal, K. Mandal, A. Nayak²¹, D.K. Sahoo²⁰, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India

Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India

P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty¹³, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity²², G. Majumder, K. Mazumdar, T. Sarkar²², N. Wickramage²³

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

S. Chenarani²⁴, E. Eskandari Tadavani, S.M. Etesami²⁴, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi²⁵, F. Rezaei Hosseinabadi, B. Safarzadeh²⁶, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari ^a, Università di Bari ^b, Politecnico di Bari ^c, Bari, Italy

M. Abbrescia^{a,b}, C. Calabria^{a,b}, C. Caputo^{a,b}, A. Colaleo^a, D. Creanza^{a,c}, L. Cristella^{a,b}, N. De Filippis^{a,c}, M. De Palma^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, G. Maggi^{a,c}, M. Maggi^a, G. Miniello^{a,b}, S. My^{a,b}, S. Nuzzo^{a,b}, A. Pompili^{a,b}, G. Pugliese^{a,c}, R. Radogna^{a,b}, A. Ranieri^a, G. Selvaggi^{a,b}, A. Sharma^a, L. Silvestris^{a,13}, R. Venditti^a, P. Verwilligen^a

INFN Sezione di Bologna ^a, Università di Bologna ^b, Bologna, Italy

G. Abbiendi^a, C. Battilana, D. Bonacorsi^{a,b}, S. Braibant-Giacomelli^{a,b}, L. Brigliadori^{a,b}, R. Campanini^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^a, S.S. Chhibra^{a,b}, M. Cuffiani^{a,b}, G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b}, P. Giacomelli^a, L. Guiducci^{a,b}, S. Marcellini^a, G. Masetti^a, F.L. Navarria^{a,b}, A. Perrotta^a, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, G.P. Siroli^{a,b}, N. Tosi^{a,b,13}

INFN Sezione di Catania ^a, Università di Catania ^b, Catania, Italy

S. Albergo^{a,b}, S. Costa^{a,b}, A. Di Mattia^a, F. Giordano^{a,b}, R. Potenza^{a,b}, A. Tricomi^{a,b}, C. Tuve^{a,b}

INFN Sezione di Firenze ^a, Università di Firenze ^b, Firenze, Italy

G. Barbagli^a, K. Chatterjee^{a,b}, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, P. Lenzi^{a,b}, M. Meschini^a, S. Paoletti^a, L. Russo^{a,27}, G. Sguazzoni^a, D. Strom^a, L. Viliani^{a,b,13}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera¹³

INFN Sezione di Genova ^a, Università di Genova ^b, Genova, Italy

V. Calvelli^{a,b}, F. Ferro^a, E. Robutti^a, S. Tosi^{a,b}

INFN Sezione di Milano-Bicocca ^a, Università di Milano-Bicocca ^b, Milano, Italy

L. Brianza^{a,b}, F. Brivio^{a,b}, V. Ciriolo^{a,b}, M.E. Dinardo^{a,b}, S. Fiorendi^{a,b}, S. Gennai^a, A. Ghezzi^{a,b}, P. Govoni^{a,b}, M. Malberti^{a,b}, S. Malvezzi^a, R.A. Manzoni^{a,b}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, K. Pauwels^{a,b}, D. Pedrini^a, S. Pigazzini^{a,b,13}, S. Ragazzi^{a,b}, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli ^a, Università di Napoli 'Federico II' ^b, Napoli, Italy, Università della Basilicata ^c, Potenza, Italy, Università G. Marconi ^d, Roma, Italy

S. Buontempo^a, N. Cavallo^{a,c}, S. Di Guida^{a,d,13}, M. Esposito^{a,b}, F. Fabozzi^{a,c}, F. Fienga^{a,b}, A.O.M. Iorio^{a,b}, W.A. Khan^a, G. Lanza^a, L. Lista^a, S. Meola^{a,d,13}, P. Paolucci^{a,13}, C. Sciacca^{a,b}, F. Thyssen^a

INFN Sezione di Padova ^a, Università di Padova ^b, Padova, Italy, Università di Trento ^c, Trento, Italy

P. Azzi^{a,13}, N. Bacchetta^a, L. Benato^{a,b}, D. Bisello^{a,b}, A. Boletti^{a,b}, R. Carlin^{a,b}, A. Carvalho Antunes De Oliveira^{a,b}, M. Dall'Osso^{a,b}, P. De Castro Manzano^a, T. Dorigo^a, F. Gasparini^{a,b}, U. Gasparini^{a,b}, A. Gozzelino^a, S. Lacaprara^a, M. Margoni^{a,b}, A.T. Meneguzzo^{a,b}, D. Pantano^a, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, R. Rossin^{a,b}, M. Sgaravatto^a, F. Simonetto^{a,b}, E. Torassa^a, S. Ventura^a, M. Zanetti^{a,b}, P. Zotto^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

A. Braghieri^a, F. Fallavollita^{a,b}, A. Magnani^{a,b}, P. Montagna^{a,b}, S.P. Ratti^{a,b}, V. Re^a, M. Ressegotti, C. Riccardi^{a,b}, P. Salvini^a, I. Vai^{a,b}, P. Vitulo^{a,b}

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy

L. Alunni Solestizi^{a,b}, G.M. Bilei^a, D. Ciangottini^{a,b}, L. Fanò^{a,b}, P. Lariccia^{a,b}, R. Leonardi^{a,b}, G. Mantovani^{a,b}, V. Mariani^{a,b}, M. Menichelli^a, A. Saha^a, A. Santocchia^{a,b}, D. Spiga

INFN Sezione di Pisa ^a, Università di Pisa ^b, Scuola Normale Superiore di Pisa ^c, Pisa, Italy K. Androsov^a, P. Azzurri^{a,13}, G. Bagliesi^a, J. Bernardini^a, T. Boccali^a, L. Borrello, R. Castaldi^a, M.A. Ciocci^{a,b}, R. Dell'Orso^a, G. Fedi^a, A. Giassi^a, M.T. Grippo^{a,27}, F. Ligabue^{a,c}, T. Lomtadze^a, L. Martini^{a,b}, A. Messineo^{a,b}, F. Palla^a, A. Rizzi^{a,b}, A. Savoy-Navarro^{a,28}, P. Spagnolo^a, R. Tenchini^a, G. Tonelli^{a,b}, A. Venturi^a, P.G. Verdini^a

INFN Sezione di Roma ^a, Sapienza Università di Roma ^b, Rome, Italy

L. Barone^{a,b}, F. Cavallari^a, M. Cipriani^{a,b}, D. Del Re^{a,b,13}, M. Diemoz^a, S. Gelli^{a,b}, E. Longo^{a,b}, F. Margaroli^{a,b}, B. Marzocchi^{a,b}, P. Meridiani^a, G. Organtini^{a,b}, R. Paramatti^{a,b}, F. Preiato^{a,b}, S. Rahatlou^{a,b}, C. Rovelli^a, F. Santanastasio^{a,b}

INFN Sezione di Torino ^a, Università di Torino ^b, Torino, Italy, Università del Piemonte Orientale ^c, Novara, Italy

N. Amapane^{a,b}, R. Arcidiacono^{a,c,13}, S. Argiro^{a,b}, M. Arneodo^{a,c}, N. Bartosik^a, R. Bellan^{a,b}, C. Biino^a, N. Cartiglia^a, F. Cenna^{a,b}, M. Costa^{a,b}, R. Covarelli^{a,b}, A. Degano^{a,b}, N. Demaria^a, B. Kiani^{a,b}, C. Mariotti^a, S. Maselli^a, E. Migliore^{a,b}, V. Monaco^{a,b}, E. Monteil^{a,b}, M. Monteno^a,

M.M. Obertino^{a,b}, L. Pacher^{a,b}, N. Pastrone^a, M. Pelliccioni^a, G.L. Pinna Angioni^{a,b}, F. Ravera^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c}, R. Sacchi^{a,b}, K. Shchelina^{a,b}, V. Sola^a, A. Solano^{a,b}, A. Staiano^a, P. Traczyk^{a,b}

INFN Sezione di Trieste ^a, Università di Trieste ^b, Trieste, Italy

S. Belforte^a, M. Casarsa^a, F. Cossutti^a, G. Della Ricca^{a,b}, A. Zanetti^a

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonbuk National University, Jeonju, Korea

A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon

Hanyang University, Seoul, Korea

J.A. Brochero Cifuentes, J. Goh, T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea

J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea

M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali²⁹, F. Mohamad Idris³⁰, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz³¹, R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³², K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev^{33,34}, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Y. Ivanov, V. Kim³⁵, E. Kuznetsova³⁶, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia

T. Aushev, A. Bylinkin³⁴

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

R. Chistov³⁷, M. Danilov³⁷, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³⁴, I. Dremin³⁴, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia

V. Blinov³⁸, Y.Skovpen³⁸, D. Shtol³⁸

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic³⁹, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain

J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco⁴⁰, M. Dobson, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban¹⁶, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer¹³, M.J. Kortelainen, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic⁴¹, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi⁴², M. Rovere, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas⁴³, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns⁴⁴, G.I. Veres¹⁸, M. Verweij, N. Wardle, A. Zagozdzinska³², W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov⁴⁵, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland

T.K. Aarrestad, C. Amsler⁴⁶, L. Caminada, M.F. Canelli, A. De Cosa, S. Donato, C. Galloni,

A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Yang, A. Zucchetta

National Central University, Chung-Li, Taiwan

V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Arun Kumar, P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

A. Adiguzel⁴⁷, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos⁴⁸, E.E. Kangal⁴⁹, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut⁵⁰, K. Ozdemir⁵¹, S. Ozturk⁵², A. Polatoz, B. Tali⁵³, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey

B. Bilin, G. Karapinar⁵⁴, K. Ocalan⁵⁵, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, M. Kaya⁵⁶, O. Kaya⁵⁷, E.A. Yetkin⁵⁸

Istanbul Technical University, Istanbul, Turkey

A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold⁵⁹, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

A. Belyaev⁶⁰, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko⁴⁵, J. Pela, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta⁶¹, T. Virdee¹³, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

Catholic University of America, Washington, USA

R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA

A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

University of California, Davis, Davis, USA

R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA

E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA

J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech⁶², F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA

D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

M.B. Andrews, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, I. Fisk, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA

S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, T. Perry, H. Prosper, A. Santra, R. Yohay

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA

B. Bilki⁶³, W. Clarida, K. Dilsiz⁶⁴, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁶⁵, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul⁶⁶, Y. Onel, F. Ozok⁶⁷, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA

A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, A. Turner, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA

A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA

M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA

N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko³³, M. Planer, A. Reinsvold, R. Ruchti, N. Rupprecht, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA

A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, A. Svyatkovskiy, C. Tully

University of Puerto Rico, Mayaguez, USA

S. Malik, S. Norberg

Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, J.F. Schulte, J. Sun, F. Wang, W. Xie

Purdue University Northwest, Hammond, USA

T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA

A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA

R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

O. Bouhali⁶⁸, A. Castaneda Hernandez⁶⁸, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon⁶⁹, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

C. Clarke, R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA

D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
- 3: Also at Universidade Estadual de Campinas, Campinas, Brazil

- 4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
- 5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
- 6: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 7: Also at Suez University, Suez, Egypt
- 8: Now at British University in Egypt, Cairo, Egypt
- 9: Also at Fayoum University, El-Fayoum, Egypt
- 10: Now at Helwan University, Cairo, Egypt
- 11: Also at Université de Haute Alsace, Mulhouse, France
- 12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 15: Also at University of Hamburg, Hamburg, Germany
- 16: Also at Brandenburg University of Technology, Cottbus, Germany
- 17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 18: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
- 19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
- 20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- 21: Also at Institute of Physics, Bhubaneswar, India
- 22: Also at University of Visva-Bharati, Santiniketan, India
- 23: Also at University of Ruhuna, Matara, Sri Lanka
- 24: Also at Isfahan University of Technology, Isfahan, Iran
- 25: Also at Yazd University, Yazd, Iran
- 26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 27: Also at Università degli Studi di Siena, Siena, Italy
- 28: Also at Purdue University, West Lafayette, USA
- 29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 30: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 31: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- 32: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- 33: Also at Institute for Nuclear Research, Moscow, Russia
- 34: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
- 35: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 36: Also at University of Florida, Gainesville, USA
- 37: Also at P.N. Lebedev Physical Institute, Moscow, Russia
- 38: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 39: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 40: Also at INFN Sezione di Roma; Sapienza Università di Roma, Rome, Italy
- 41: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 42: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 43: Also at National and Kapodistrian University of Athens, Athens, Greece
- 44: Also at Riga Technical University, Riga, Latvia
- 45: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 46: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- 47: Also at Istanbul University, Faculty of Science, Istanbul, Turkey

- 48: Also at Istanbul Aydin University, Istanbul, Turkey
- 49: Also at Mersin University, Mersin, Turkey
- 50: Also at Cag University, Mersin, Turkey
- 51: Also at Piri Reis University, Istanbul, Turkey
- 52: Also at Gaziosmanpasa University, Tokat, Turkey
- 53: Also at Adiyaman University, Adiyaman, Turkey
- 54: Also at Izmir Institute of Technology, Izmir, Turkey
- 55: Also at Necmettin Erbakan University, Konya, Turkey
- 56: Also at Marmara University, Istanbul, Turkey
- 57: Also at Kafkas University, Kars, Turkey
- 58: Also at Istanbul Bilgi University, Istanbul, Turkey
- 59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 61: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
- 62: Also at Utah Valley University, Orem, USA
- 63: Also at BEYKENT UNIVERSITY, Istanbul, Turkey
- 64: Also at Bingol University, Bingol, Turkey
- 65: Also at Erzincan University, Erzincan, Turkey
- 66: Also at Sinop University, Sinop, Turkey
- 67: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 68: Also at Texas A&M University at Qatar, Doha, Qatar
- 69: Also at Kyungpook National University, Daegu, Korea