Лабораторная работа по системам массового обслуживания № 3

«Многоканальные системы массового обслуживания с бесконечной очередью»

Задание

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени t характеризуется числом заявок, находящихся в СМО. Для всех СМО задано количество приборов n, все приборы пронумерованы.

События в развитии СМО является переход из одного состояния в другое. События могут быть двух типов: 1 — появление в системе новой заявки, 2 — завершение обслуживания заявки прибором (при этом данный прибор освобождается, и, если есть заявки в очереди, то первая из них поступает сразу же на обслуживание в этот прибор). Если при появлении в системе новой заявки есть свободные приборы, то она сразу же принимается на обслуживание свободным прибором с наименьшим номером, в противном случае заявка становится в очередь типа FIFO.

I. Система массового обслуживания (D|M|n).

Дано:

- время между приходом заявок ΔT_3 (заданная постоянная величина);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

В момент поступлении каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{oбсn}$ в соответствии с показательным законом распределения с заданным параметром μ .

Предполагается, что в начальный момент времени t=0 в СМО нет заявок, т.е. состояние системы 0, и через заданное время ΔT_3 в СМО поступит первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен $t_{coo}(1) = \Delta T_3$, в этот момент определяется время обслуживания $t_{oocn}(1)$ заявки 1 в соответствии с показательным законом распределения с параметром μ . После события 1 система находится в состоянии 1.

II. Система массового обслуживания (M|D|n).

Дано:

- среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- время обслуживания заявки прибором $T_{o\delta}$ (заданная постоянная величина).

Предполагается, что в начальный момент времени $t\!=\!0$ система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_{_3}(1)$ в соответствии с показательным законом распределения с параметром λ .

III. Система массового обслуживания (M|M|n).

Дано:

- среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени $t\!=\!0$ система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ , а в момент поступления каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{oбсn}(1)$ в соответствии с показательным законом распределения с параметром μ .

Требуется:

- 1. Провести моделирование первых 100 событий в развитии каждой системы.
- 2. Составить таблицу 1 с данными о событиях:
- номер события l;
- момент наступления события $t_{coo}(l)$;
- тип события Type(l);
- состояние СМО C(l) после события l;

- минимальное оставшееся время $t_{ocmun}(l)$ обслуживания приборами заявок после события l (если после события все приборы свободны, то $t_{ocmun}(l) = -1$);
- время ожидания $t_{o\! n\! c\! s}(l),$ через которое после события l в СМО появится новая заявка;
- номер заявки j(l), участвующей в событии l.
- 3. Составить таблицу 2 с данными о всех поступивших заявках:
- номер заявки j;
- момент $t_3(j)$ появления заявки j в СМО;
- номер места в очереди q(j), на которое попала заявка j (если заявка сразу начала обслуживаться, то номер места в очереди q(j)=0);
- время пребывания заявки в очереди $t_{oq}(j)$;
- момент начала обслуживания заявки $t_{HOO}(j)$;
- время обслуживания заявки $t_{oбсл}(j)$;
- момент $t_{\kappa o \delta}(j)$ окончания обслуживания заявки j и выхода её из СМО.
- 4. Составить таблицу 3 с данными о приборах:
- номер прибора k;
- общее число заявок N(k), поступивших на обслуживание в данный прибор на интервале $[0,t_{coo}(100)];$
- общее время занятости прибора $t_{3ah}(k)$ на интервале $[0,t_{coo}(100)]$.
- коэффициент простоя прибора на интервале $[0,t_{co\delta}(100)]$ (отношение времени простоя прибора на интервале $[0,t_{co\delta}(100)]$ к $t_{co\delta}(100)$);
- 5. Найти:
- число заявок J(100), поступивших в СМО на интервале $[0,t_{coo}(100)]$;
- число $J\!F(100)$ полностью обслуженных заявок на интервале $[0,t_{coo}(100)];$
- среднее число заявок, находившихся в СМО, на интервале $[0,t_{co\delta}(100)]$, которое находится по формуле $\overline{z}(100) = \frac{1}{100} \sum_{l=1}^{100} z(l)$, где z(l) число заявок в СМО после события l:
- среднее время пребывания заявок в очереди на интервале $[0,t_{coo}(100)]$, которое находится по формуле $\overline{t}_{ou}(100) = \frac{1}{JF(100)} \sum_{i=1}^{JF(100)} t_{ou}(j)$;

— среднее время пребывания заявок в СМО на интервале $[0,t_{coo}(100)]$, которое находится по формуле $\overline{t}_{CMO}(100) = \frac{1}{JF(100)} \sum_{j=1}^{JF(100)} [t_{\kappa oo}(j) - t_3(j)];$

Для СМО (D|M|n) и (M|D|n) составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

i	<i>v</i> _i (100)
0	$v_0^{(100)}$
1	<i>v</i> ₁ (100)

где i — состояние СМО, $v_i(100)$ — отношение числа попаданий СМО в состояние i за 100 событий к 100.

Для СМО (M|M|n) найти первые значения стационарных вероятностей состояний $(r_0, r_1, r_2, ..., r_M)$, где $M = \max\{C(l), l = 1, ..., 100\}$ и составить таблицу относительных частот пребывания СМО в состояниях следующего вида:

i	r_i	$v_i^{(100)}$	$ v_i(100)-r_i $
0	r_0	<i>v</i> ₀ (100)	$ v_0(100)-r_0 $
1	r_1	<i>v</i> ₁ (100)	$ v_1(100)-r_1 $
M	$r_{_{M}}$	$v_{M}(100)$	$ v_{\scriptscriptstyle M}(100)-r_{\scriptscriptstyle M} $
	$\sum_{i=0}^{M} r_i$	$\sum_{i=0}^{M} v_i(100)$	$\max\{ v_i(100)-r_i \}$

Вывод результатов проводить с округлением до 0,00001.

Указания

В разделе отчета **Краткие теоретические сведения** следует привести сведения о многоканальных системах массового обслуживания с бесконечной очередью. Для СМО (M|M|n) привести формулы для следующих характеристик стационарного режима: стационарных вероятностей состояний, среднего числа занятых приборов, средней длины очереди, среднего времени пребывания заявок в очереди, среднего времени пребывания заявок в СМО.

В этом разделе должны быть описаны средства языка программирования, которые использованы в программе расчета.

В разделе отчета **Результаты расчетов** должно быть 3 части для СМО (D|M|1), (M|D|1), (M|M|1) соответственно.

В каждой части приводятся:

номер варианта;

исходные данные для данного варианта;

полностью заполненные таблицы 1 и 2.

Заполнение таблиц 1 и 2 должно проходить одновременно с моделированием событий в системе.

Если в момент появления заявки j в СМО все приборы заняты, и она становится в очередь, то в таблицу 2 временно заносится: $t_{ou}(j) = t_{noo}(j) = t_{oocn}(j) = t_{koo}(j) = -1.$ Настоящие значения заносятся позже по мере их определения.

Для определения $t_{ocmun}(l)$ и данных таблицы 3 следует создать и обновлять после каждого события l массив $Temp = \{(k, t_{ocm}(k, l), N(k, l), t_{3ah}(k, l)); k = 1, ..., n\}$, где k — номер прибора; $t_{ocm}(k, l)$ — оставшееся время обслуживания заявки в приборе k после события l ($t_{ocm}(k, l) = -1$, если прибор свободен); N(k, l) — число заявок, поступивших на обслуживание в прибор k на интервале $[0, t_{coo}(l)]$; $t_{3ah}(k, l)$ — время занятости прибора k на интервале $[0, t_{coo}(l)]$.

В разделе отчета **Анализ результатов** следует привести для каждой СМО данные по пунктам 4 и 5 Задания.

<u>Данные</u>

Вариант	n	$\Delta T_{_3}$	$T_{o\delta}$	λ	μ
1	3	0,208	0,558	5,103	1,737
2	8	0,203	1,58	4,949	0,624
3	13	0,226	2,759	4,636	0,361
4	6	0,18	1,042	5,561	0,94
5	11	0,202	2,149	5,011	0,46
6	16	0,264	3,844	4,08	0,26
7	4	0,168	0,623	6,121	1,538
8	9	0,168	1,351	6,609	0,737
9	14	0,157	2,101	6,614	0,474
10	7	0,131	0,863	7,938	1,149
11	12	0,165	1,805	6,554	0,551
12	5	0,176	0,79	6,151	1,247
13	10	0,159	1,383	7,096	0,715
14	15	0,235	3,19	4,604	0,312
15	3	0,15	0,394	7,317	2,46
16	8	0,212	1,549	5,048	0,641
17	13	0,152	1,704	7,539	0,583
18	6	0,177	1,006	5,818	0,972
19	11	0,308	3,26	3,307	0,304
20	16	0,15	2,105	7,49	0,473
21	4	0,181	0,69	5,644	1,418
22	9	0,15	1,261	6,987	0,781
23	14	0,213	2,675	5,139	0,372
24	7	0,156	0,963	7,205	1,038
25	12	0,16	1,839	6,406	0,541
26	5	0,169	0,818	6,023	1,219
27	10	0,26	2,443	4,024	0,405
28	15	0,253	3,598	4,105	0,277
29	3	0,169	0,498	5,926	1,997
30	8	0,273	2,033	3,853	0,49

Вариант	n	$\Delta T_{_3}$	T_{o6}	λ	μ
31	6	0,163	0,858	6,771	1,141
32	11	0,149	1,598	6,771	0,618
33	16	0,2	3,058	5,151	0,327
34	4	0,19	0,659	5,771	1,459
35	9	0,301	2,625	3,354	0,38
36	14	0,185	2,301	5,926	0,431
37	7	0,142	0,897	7,67	1,108
38	12	0,251	2,952	4,001	0,337
39	5	0,208	1,024	4,815	0,966
40	10	0,201	1,795	5,453	0,552
41	15	0,166	2,275	6,509	0,439
42	3	0,144	0,364	8	2,682
43	8	0,194	1,444	5,489	0,688
44	13	0,21	2,468	5,203	0,405
45	6	0,142	0,726	7,981	1,333
46	11	0,242	2,469	4,354	0,401
47	16	0,267	3,915	4,041	0,254
48	4	0,17	0,612	6,427	1,629
49	9	0,235	1,975	4,451	0,505
50	14	0,249	3,31	4,117	0,3
51	7	0,147	0,897	7,571	1,085
52	12	0,143	1,593	7,448	0,623
53	5	0,185	0,881	5,526	1,124
54	10	0,154	1,399	6,936	0,704
55	15	0,294	4,093	3,638	0,244
56	3	0,277	0,809	3,625	1,234
57	8	0,255	1,835	4,224	0,538
58	11	0,175	1,712	6,315	0,578
59	16	0,19	2,7	5,818	0,369
60	4	0,188	0,676	5,704	1,43

Вариант	n	$\Delta T_{_3}$	$T_{o\delta}$	λ	μ
61	9	0,259	2,293	3,884	0,434
62	14	0,159	2,106	6,567	0,473
63	7	0,201	1,373	4,976	0,714
64	12	0,262	2,864	4,076	0,347
65	5	0,172	0,771	6,335	1,275
66	10	0,175	1,547	6,33	0,638
67	15	0,172	2,462	5,99	0,405
68	3	0,254	0,726	4,002	1,367
69	8	0,157	1,101	7,094	0,897
70	13	0,178	2,052	6,303	0,487
71	6	0,167	0,897	6,536	1,105
72	11	0,178	1,741	6,178	0,571
73	16	0,162	2,481	6,312	0,401
74	4	0,149	0,526	7,345	1,848
75	9	0,141	1,158	7,668	0,855
76	14	0,2	2,544	5,4	0,393
77	7	0,188	1,21	5,574	0,81
78	12	0,204	2,223	5,327	0,446
79	5	0,195	0,875	5,425	1,107
80	10	0,215	2,082	4,747	0,477
81	15	0,16	2,332	6,312	0,424
82	3	0,221	0,623	4,641	1,561
83	8	0,327	2,534	3,068	0,392
84	11	0,32	3,445	3,133	0,289
85	16	0,162	2,471	6,401	0,403
86	4	0,164	0,594	6,529	1,655
87	9	0,148	1,251	7,081	0,795
88	14	0,296	3,857	3,568	0,259
89	7	0,133	0,904	7,57	1,09
90	12	0,186	2,044	5,712	0,484

Вариант	n	$\Delta T_{_3}$	$T_{o\delta}$	λ	μ
91	7	0,145	0,873	7,836	1,127
92	12	0,144	1,626	7,276	0,608
93	5	0,158	0,716	6,86	1,387
94	10	0,191	1,789	5,526	0,556
95	15	0,28	3,812	3,826	0,262
96	3	0,163	0,432	6,463	2,166
97	8	0,154	1,181	6,517	0,827
98	13	0,277	3,362	3,751	0,296
99	6	0,24	1,32	4,409	0,75
100	11	0,302	3,23	3,324	0,309
101	16	0,132	2,086	7,606	0,479
102	4	0,303	1,15	3,354	0,85
103	9	0,152	1,262	6,952	0,78
104	14	0,319	4,087	3,332	0,243
105	7	0,128	0,849	7,927	1,139
106	12	0,162	1,861	6,259	0,53
107	5	0,148	0,675	7,137	1,435
108	10	0,256	2,47	3,979	0,402
109	15	0,166	2,243	6,574	0,442
110	3	0,26	0,692	4,099	1,393
111	8	0,328	2,437	3,192	0,406
112	11	0,175	1,876	5,825	0,533
113	16	0,165	2,33	6,708	0,426
114	4	0,197	0,758	5,103	1,282
115	9	0,237	2,044	4,326	0,484
116	14	0,195	2,459	5,615	0,404
117	7	0,328	2,124	3,208	0,47
118	12	0,181	2,06	5,705	0,483
119	5	0,321	1,481	3,238	0,663
120	10	0,147	1,283	7,664	0,769