

SEQUENCE LISTING

<110> Virca, Duke

Bird, Timothy A.
Anderson, Dirk M.
Marken, John S.

<120> Human cDNAs Encoding Polypeptides Having Kinase Functions

<130> 2877-US

<160> 16

<170> PatentIn Ver. 2.0

<210> 1

<211> 181

<212> DNA

<213> Homo sapiens

<400> 1

gtacgccatg aagggtctgc gcaaggccgc gctggtgtag cgccccaaga cgcaagagca 60
cacgcgcacc gagcgctcgg tgctggagct ggtgcgcagg gcgccttcc tggtcacgct 120
gcactacgct ttccagacgg atgcacaagct gcacacctcatc ctggactatg tgagcggcgg 180
g 181

<210> 2

<211> 221

<212> DNA

<213> Homo sapiens

<400> 2

cccgagaggt gccacatca g accgcctccg acttcgtgcg ggactcggcg gccagccacc 60
aggccggagcc cgaggcgtag gagcggcgcg tgtgcttctc gcttctgcaa ctctgcaacg 120
ggctggagca cctgaaggag cacgggatca tccacccggga cctgtgcctg gagaacctgc 180
tgctggtgca ctgcaccctc caggccggcc ccggggccgc c 221

<210> 3

<211> 1085

<212> DNA

<213> Homo sapiens

<400> 3

cgggcaggc tggagctggg ctgggatccc gagctcggca gcagcgcagc gggccggccc 60
acctgcttgt gcccctggagg ctctgagccc cggcggcgcc cggggccacg cggAACGACG 120
gggcgagatg cgagccaccc ctctggctgc tcctgcgggt tccctgtcca ggaagaagcg 180
gttggagttt gatgacaact tagataccga gcgtcccgca cagaaacgag ctcgaagtgg 240
gccccagccc agactgcccc cctgcctgtt gccccctgagc ccacctactg ctccagatcg 300
tgcaactgct gtggccactg cctccctgtt tggcccttat gtcctcctgg agccccgagga 360
gggcggggcg gccttaccagg ccctgcactg ccctacagac actgagata cctgcaaggt 420
gtaccccgctc caggaagccc tggccctgtt ggagccctac ggcggcgtgc cccgcacaa 480
gcatgtggct cggcccaactg aggtcctgtt tggttacccag ctcctctacg cttttttcac 540
tcggaccat ggggacatgc acagcctgtt gcaagccgc caccgtatcc ctgagcctga 600
ggctggcgctg ctcttccggcc agatggccac cgccttggcg cactgtcacc agcacggct 660
ggtcctgcgt gatctcaagc tgtgtcgctt tgtcttcgtt gaccgtgaga ggaagaagct 720
ggtgctggag aacctggagg actcttcgtt gctgactggg ccagatgtt ccctgtggga 780
caagcacgcg tgcccagctt acgtgggacc tgagatactc agctcacggg cctcataactc 840
gggcaaggca gcccgtgtt ggagcctggg cgtggcgctc ttccatgc tggccggcca 900
ctacccttc caggactcgg agcctgtctt gcttctcgcc aagatccgccc gcccccccta 960
cgccctgcct gcaggccctt cggccctgc cgcgtgtctg gttcgctgcc ttcttcgtcg 1020
ggagccagct gaacggctca cagccacagg catcctcctg cacccttggc tgcgacagagga 1080

cccgaa

1085

<210> 4

<211> 388

<212> DNA

<213> Homo sapiens

<400> 4

cagcggagaag ccgacatgca tcgcctcttc aatcacccca acatccttcg cctcgtggct 60
tactgtctga gggAACGGGG tgctaaggcat gagggcctgca tgctgctacc attcttcaag 120
agaggtacgc tggaaatgat gatagaaaagg ctgaaggaca aaggcaactt cctgaccgag 180
gatcaaattcc ttggctgct gctggggatc tgcagaggcc ttgaggccat tcatgccaa 240
ggttatgcct acagagactt gaagcccacc aatatattgc ttggagatga gggcagcca 300
gttttaatgg acttgggttc catgaatcaa gcatgcatcc atgtggaggg ctcccgccag 360
gctctgaccc tgcaggactg ggcagccc 388

<210> 5

<211> 1555

<212> DNA

<213> Homo sapiens

<400> 5

atgctaacta gtttaaacag atcttggAAC gagacgacct gctgtggaaag agcgagctt 60
ttggaaactgt gcacggaca gattggacgc acacccctcg ggaggcgcga aggcatggaa 120
aatttgaagc atattatcac cttggccag gtcatccaca aacggtgtga agagatgaaa 180
tactgcaaga aacagtgcgg ggcgcctggc caccgcgtcc tcggcctgat caaggcctcg 240
gagatgctcc aggaccaagg aaagaggagc gtgcctctg agaagttaac cacagccatg 300
aaccgcgttca aggctgccc ggaggaggct aatggggaga tagaaaagtt cagcaataga 360
tccaatatct gcaggttct aacagaaggc caggacaaaa tactcttcaa ggacgtgaac 420
aggaagctga gtatgtctg gaaggagctc tcgctgttac ttcaagggttga gcaacgcgt 480
cctgtttcac ccataagcca aggacgcgtcc tgggcacagg aagatcagca ggatgcagac 540
gaagacaggc gagctttcca gatgctaaga agagataatg aaaaaataga agcttcactg 600
agacgattag aaatcaacat gaaagaaaatc aaggaaactt tgaggcagta tttaccacca 660
aaatgcgtgc aggagatccc gcaagagcaa atcaaggaga tcaagaaggaa gcagctttca 720
ggatccccgt ggattctgct aagggaaaat gaagttagca cactttataa aggagaatac 780
cacagagctc cagtggccat aaaagtattc aaaaaactcc aggctggcag cattgcaata 840
gtgaggcaga cttcaataa ggagatcaaa accatgaaga aatttcaacat tcccaacatc 900
ctgcgtatata tgggattt cattgtatgaa acagtgtactc cgccctcaatt ctccattgtc 960
atggagtaactgtgacactcg gaccctgagg gagctgttgg ataggaaaaa agacctcaca 1020
cttggcaagc gcatggtcct agtcctgggg gcagcccgag gcctataccg gctacaccat 1080
tcagaagcac ctgaacttca cggaaaaatc agaagctcaa acttcctgtt aactcaaggc 1140
taccaagtga agtttgaggcatttggatggcagg agggaaaacac agacttccat gagtttggg 1200
actacgagag aaaaagacaga cagacttcaaa tctacagcat atcttcacc tcagggactg 1260
gaagatgtat ttatcaata tgatgtaaag tctgaaatatac agactttgg aatcgttcctc 1320
tgggaaatcg ccactggaga tatcccgtt caaggctgtt attctgagaa gatccgcaag 1380
ctgggtgctg tgaagcggca gcaggagcca ctgggtgaag actgccttc agagctgcgg 1440
gagatcatttgcggatggcaggctgtcgttcaagatctgt agcggccgccc 1500
cgccctcg acgtttaaac gctgtggccct cgagaggttt tccgatccgg tcgtat 1555

<210> 6

<211> 1498

<212> DNA

<213> Homo sapiens

<400> 6

cttcccgtg gacgtggagt acggaggccc agaccggagg tgcccgctc cgccctaccc 60
gaagcacctg ctgctgcgca gcaagtgcgg acaactgcgtc gagtacgcac ctggacagcc tggcgcagg 120
catggagcag agcctccgtg cggggccca cgagcccgag ggcggcgaca agagccgcaa 180
aagcgccaaag gggacaaag gcgaaagga taaaaagcag attcagaccc ctcccggttc 240
cgtccgcataa aacagcagag acgaagagaa gagagagtc cgcacatcaaga gctactcgcc 300
atacgccctt aagttttca tggagcagca cgtggagaat gtcacatcaaaa cctaccagca 360

gaaggtaac cggaggctgc agctggagca agaaaatggcc aaagctggac tctgtgaagc 420
tgagcaggag cagatgcgga agatcctcta ccagaaagag tctaattaca acaggtaaa 480
gagggccaag atggacaagt ctatgttgc caagatcaaa accctggga tcggtgccct 540
tggagaagtg tgccttgctt gtaaggtgga cactcacgccc ctgtacgcca tgaagaccct 600
aaggaaaaag gatgtcctga accggaatca ggtggccac gtcaaggccg agagggacat 660
cctggcccgag gcagacaatg agtgggtggt ccaaactctac tactccttcc aagacaaaga 720
cagcctgtac tttgtgatgg actacatccc tggtgccgac atgatgagcc tgctgatccg 780
gatggaggc ttcctgagc acctggcccg gttctacatc gcagagctga ctttggccat 840
tgagagtgtc cacaagatgg gcttcatcca ccgagacatc aagcctgata acattttgat 900
agatctggat ggtcacatc aactcacaga tttcgccctc tgcactgggt tcaggtggac 960
tcacaattcc aaatattacc agaaaggag ccatgtcaga caggacagca tggagcccg 1020
cgacctctgg gatgtgtgt ctaactgtcg gtgtgggac aggctgaaga ccctagagca 1080
gagggcgcgg aagcagcacc agaggtgcct ggcacattca ctgggggac ctccaaacta 1140
catcgacccc gaggtgcctcc tccgcaaaagg gtacactcaa ctctgtgact ggtggagtgt 1200
tggagtgatt ctttcgaga tgctgggggac cagccgccc ttttggcac ctactccac 1260
agaaaccagg ctgaaggtga tcaactggga gaacacgctc cacattccag cccaggtgaa 1320
gctgagccct gaggccaggg acctcatcac caagctgtgc tgctccgac accaccgcct 1380
ggggcgaat gggccgatg acctgaaggc ccacccttc ttcaagcgcac ttgacttctc 1440
cagtgacatc cgaaagcata cagcccccta cgttcccacc atcagccacc ccatggag 1498

<210> 7
<211> 60
<212> PRT
<213> Homo sapiens

<400> 7
Tyr Ala Met Lys Val Leu Arg Lys Ala Ala Leu Val Gln Arg Ala Lys
1 5 10 15

Thr Gln Glu His Thr Arg Thr Glu Arg Ser Val Leu Glu Leu Val Arg
20 25 30

Gln Ala Pro Phe Leu Val Thr Leu His Tyr Ala Phe Gln Thr Asp Ala
35 40 45

Lys Leu His Leu Ile Leu Asp Tyr Val Ser Gly Gly
50 55 60

<210> 8
<211> 73
<212> PRT
<213> Homo sapiens

<400> 8
Arg Glu Val Pro His Gln Thr Ala Ser Asp Phe Val Arg Asp Ser Ala
1 5 10 15

Ala Ser His Gln Ala Glu Pro Glu Ala Tyr Glu Arg Arg Val Cys Phe
20 25 30

Leu Leu Leu Gln Leu Cys Asn Gly Leu Glu His Leu Lys Glu His Gly
35 40 45

Ile Ile His Arg Asp Leu Cys Leu Glu Asn Leu Leu Leu Val His Cys
50 55 60

Thr Leu Gln Ala Gly Pro Gly Pro Ala
65 70

<210> 9
<211> 360
<212> PRT
<213> Homo sapiens

<400> 9
Gly Gln Gly Trp Ser Trp Ala Gly Ile Pro Ser Ser Ala Ala Ala Gln
1 5 10 15

Arg Ala Gly Pro Pro Ala Gly Ala Leu Glu Ala Leu Ser Pro Gly Gly
20 25 30

Ala Arg Ala His Ala Glu Arg Arg Gly Glu Met Arg Ala Thr Pro Leu
35 40 45

Ala Ala Pro Ala Gly Ser Leu Ser Arg Lys Lys Arg Leu Glu Leu Asp
50 55 60

Asp Asn Leu Asp Thr Glu Arg Pro Val Gln Lys Arg Ala Arg Ser Gly
65 70 75 80

Pro Gln Pro Arg Leu Pro Pro Cys Leu Leu Pro Leu Ser Pro Pro Thr
85 90 95

Ala Pro Asp Arg Ala Thr Ala Val Ala Thr Ala Ser Arg Leu Gly Pro
100 105 110

Tyr Val Leu Leu Glu Pro Glu Glu Gly Gly Arg Ala Tyr Gln Ala Leu
115 120 125

His Cys Pro Thr Gly Thr Glu Tyr Thr Cys Lys Val Tyr Pro Val Gln
130 135 140

Glu Ala Leu Ala Val Leu Glu Pro Tyr Ala Arg Leu Pro Pro His Lys
145 150 155 160

His Val Ala Arg Pro Thr Glu Val Leu Ala Gly Thr Gln Leu Leu Tyr
165 170 175

Ala Phe Phe Thr Arg Thr His Gly Asp Met His Ser Leu Val Arg Ser
180 185 190

Arg His Arg Ile Pro Glu Pro Glu Ala Ala Val Leu Phe Arg Gln Met
195 200 205

Ala Thr Ala Leu Ala His Cys His Gln His Gly Leu Val Leu Arg Asp
210 215 220

Leu Lys Leu Cys Arg Phe Val Phe Ala Asp Arg Glu Arg Lys Lys Leu
225 230 235 240

Val Leu Glu Asn Leu Glu Asp Ser Cys Val Leu Thr Gly Pro Asp Asp
245 250 255

Ser Leu Trp Asp Lys His Ala Cys Pro Ala Tyr Val Gly Pro Glu Ile
260 265 270

Leu Ser Ser Arg Ala Ser Tyr Ser Gly Lys Ala Ala Asp Val Trp Ser
275 280 285

Leu Gly Val Ala Leu Phe Thr Met Leu Ala Gly His Tyr Pro Phe Gln

290

295

300

Asp Ser Glu Pro Val Leu Leu Phe Gly Lys Ile Arg Arg Gly Ala Tyr
305 310 315 320

Ala Leu Pro Ala Gly Leu Ser Ala Pro Ala Arg Cys Leu Val Arg Cys
325 330 335

Leu Leu Arg Arg Glu Pro Ala Glu Arg Leu Thr Ala Thr Gly Ile Leu
340 345 350

Leu His Pro Trp Leu Arg Gln Asp
355 360

<210> 10

<211> 146

<212> PRT

<213> Homo sapiens

<221> UNSURE

<222> (140)..(140)<223> UNSURE

<400> 10

Gln Arg Glu Ala Asp Met His Arg Leu Phe Asn His Pro Asn Ile Leu
1 5 10 15

Arg Leu Val Ala Tyr Cys Leu Arg Glu Arg Gly Ala Lys His Glu Ala
20 25 30

Trp Leu Leu Leu Pro Phe Phe Lys Arg Gly Thr Leu Trp Asn Glu Ile
35 40 45

Glu Arg Leu Lys Asp Lys Gly Asn Phe Leu Thr Glu Asp Gln Ile Leu
50 55 60

Trp Leu Leu Leu Gly Ile Cys Arg Gly Leu Glu Ala Ile His Ala Lys
65 70 75 80

Gly Tyr Ala Tyr Arg Asp Leu Lys Pro Thr Asn Ile Leu Leu Gly Asp
85 90 95

Glu Gly Gln Pro Val Leu Met Asp Leu Gly Ser Met Asn Gln Ala Cys
100 105 110

Ile His Val Glu Gly Ser Arg Gln Ala Leu Thr Leu Gln Asp Trp Ala
115 120 125

Ala Gln Arg Cys Thr Ile Ser Tyr Arg Ala Pro Xaa Leu Phe Ser Val
130 135 140

Gln Ser
145

<210> 11

<211> 505

<212> PRT

<213> Homo sapiens

<400> 11

Met Leu Thr Ser Leu Asn Arg Ser Trp Asn Glu Thr Thr Cys Cys Gly
 1 5 10 15

Arg Ala Ser Phe Leu Glu Leu Cys Thr Gly Gln Ile Gly Arg Thr Pro
 20 25 30

Leu Gly Arg Arg Glu Gly Met Glu Asn Leu Lys His Ile Ile Thr Leu
 35 40 45

Gly Gln Val Ile His Lys Arg Cys Glu Glu Met Lys Tyr Cys Lys Lys
 50 55 60

Gln Cys Arg Arg Leu Gly His Arg Val Leu Gly Leu Ile Lys Pro Leu
 65 70 75 80

Glu Met Leu Gln Asp Gln Gly Lys Arg Ser Val Pro Ser Glu Lys Leu
 85 90 95

Thr Thr Ala Met Asn Arg Phe Lys Ala Ala Leu Glu Glu Ala Asn Gly
 100 105 110

Glu Ile Glu Lys Phe Ser Asn Arg Ser Asn Ile Cys Arg Phe Leu Thr
 115 120 125

Ala Ser Gln Asp Lys Ile Leu Phe Lys Asp Val Asn Arg Lys Leu Ser
 130 135 140

Asp Val Trp Lys Glu Leu Ser Leu Leu Leu Gln Val Glu Gln Arg Met
 145 150 155 160

Pro Val Ser Pro Ile Ser Gln Gly Ala Ser Trp Ala Gln Glu Asp Gln
 165 170 175

Gln Asp Ala Asp Glu Asp Arg Arg Ala Phe Gln Met Leu Arg Arg Asp
 180 185 190

Asn Glu Lys Ile Glu Ala Ser Leu Arg Arg Leu Glu Ile Asn Met Lys
 195 200 205

Glu Ile Lys Glu Thr Leu Arg Gln Tyr Leu Pro Pro Lys Cys Met Gln
 210 215 220

Glu Ile Pro Gln Glu Gln Ile Lys Glu Ile Lys Lys Glu Gln Leu Ser
 225 230 235 240

Gly Ser Pro Trp Ile Leu Leu Arg Glu Asn Glu Val Ser Thr Leu Tyr
 245 250 255

Lys Gly Glu Tyr His Arg Ala Pro Val Ala Ile Lys Val Phe Lys Lys
 260 265 270

Leu Gln Ala Gly Ser Ile Ala Ile Val Arg Gln Thr Phe Asn Lys Glu
 275 280 285

Ile Lys Thr Met Lys Lys Phe Glu Ser Pro Asn Ile Leu Arg Ile Phe
 290 295 300

Gly Ile Cys Ile Asp Glu Thr Val Thr Pro Pro Gln Phe Ser Ile Val
 305 310 315 320

Met Glu Tyr Cys Glu Leu Gly Thr Leu Arg Glu Leu Leu Asp Arg Glu

325

330

335

Lys Asp Leu Thr Leu Gly Lys Arg Met Val Leu Val Leu Gly Ala Ala
 340 345 350

Arg Gly Leu Tyr Arg Leu His His Ser Glu Ala Pro Glu Leu His Gly
 355 360 365

Lys Ile Arg Ser Ser Asn Phe Leu Val Thr Gln Gly Tyr Gln Val Lys
 370 375 380

Leu Ala Gly Phe Glu Leu Arg Lys Thr Gln Thr Ser Met Ser Leu Gly
 385 390 395 400

Thr Thr Arg Glu Lys Thr Asp Arg Val Lys Ser Thr Ala Tyr Leu Ser
 405 410 415

Pro Gln Glu Leu Glu Asp Val Phe Tyr Gln Tyr Asp Val Lys Ser Glu
 420 425 430

Ile Tyr Ser Phe Gly Ile Val Leu Trp Glu Ile Ala Thr Gly Asp Ile
 435 440 445

Pro Phe Gln Gly Cys Asn Ser Glu Lys Ile Arg Lys Leu Val Ala Val
 450 455 460

Lys Arg Gln Gln Glu Pro Leu Gly Glu Asp Cys Pro Ser Glu Leu Arg
 465 470 475 480

Glu Ile Ile Asp Glu Cys Arg Ala Ala Gly Arg Leu Val Pro Arg Ser
 485 490 495

Val Ala Ala Ala Arg Ala Val Asp Val
 500 505

<210> 12

<211> 499

<212> PRT

<213> Homo sapiens

<400> 12

Phe Pro Leu Asp Val Glu Tyr Gly Gly Pro Asp Arg Arg Cys Pro Pro
 1 5 10 15

Pro Pro Tyr Pro Lys His Leu Leu Leu Arg Ser Lys Ser Glu Gln Tyr
 20 25 30

Asp Leu Asp Ser Leu Cys Ala Gly Met Glu Gln Ser Leu Arg Ala Gly
 35 40 45

Pro Asn Glu Pro Glu Gly Gly Asp Lys Ser Arg Lys Ser Ala Lys Gly
 50 55 60

Asp Lys Gly Gly Lys Asp Lys Lys Gln Ile Gln Thr Ser Pro Val Pro
 65 70 75 80

Val Arg Lys Asn Ser Arg Asp Glu Glu Lys Arg Glu Ser Arg Ile Lys
 85 90 95

Ser Tyr Ser Pro Tyr Ala Phe Phe Met Glu Gln His Val Glu

	100	105	110
Asn Val Ile Lys Thr Tyr Gln Gln Lys Val Asn Arg Arg Leu Gln Leu			
115	120	125	
Glu Gln Glu Met Ala Lys Ala Gly Leu Cys Glu Ala Glu Gln Glu Gln			
130	135	140	
Met Arg Lys Ile Leu Tyr Gln Lys Glu Ser Asn Tyr Asn Arg Leu Lys			
145	150	155	160
Arg Ala Lys Met Asp Lys Ser Met Phe Val Lys Ile Lys Thr Leu Gly			
165	170	175	
Ile Gly Ala Phe Gly Glu Val Cys Leu Ala Cys Lys Val Asp Thr His			
180	185	190	
Ala Leu Tyr Ala Met Lys Thr Leu Arg Lys Lys Asp Val Leu Asn Arg			
195	200	205	
Asn Gln Val Ala His Val Lys Ala Glu Arg Asp Ile Leu Ala Glu Ala			
210	215	220	
Asp Asn Glu Trp Val Val Lys Leu Tyr Tyr Ser Phe Gln Asp Lys Asp			
225	230	235	240
Ser Leu Tyr Phe Val Met Asp Tyr Ile Pro Gly Gly Asp Met Met Ser			
245	250	255	
Leu Leu Ile Arg Met Glu Val Phe Pro Glu His Leu Ala Arg Phe Tyr			
260	265	270	
Ile Ala Glu Leu Thr Leu Ala Ile Glu Ser Val His Lys Met Gly Phe			
275	280	285	
Ile His Arg Asp Ile Lys Pro Asp Asn Ile Leu Ile Asp Leu Asp Gly			
290	295	300	
His Ile Lys Leu Thr Asp Phe Gly Leu Cys Thr Gly Phe Arg Trp Thr			
305	310	315	320
His Asn Ser Lys Tyr Tyr Gln Lys Gly Ser His Val Arg Gln Asp Ser			
325	330	335	
Met Glu Pro Ser Asp Leu Trp Asp Asp Val Ser Asn Cys Arg Cys Gly			
340	345	350	
Asp Arg Leu Lys Thr Leu Glu Gln Arg Ala Arg Lys Gln His Gln Arg			
355	360	365	
Cys Leu Ala His Ser Leu Val Gly Thr Pro Asn Tyr Ile Ala Pro Glu			
370	375	380	
Val Leu Leu Arg Lys Gly Tyr Thr Gln Leu Cys Asp Trp Trp Ser Val			
385	390	395	400
Gly Val Ile Leu Phe Glu Met Leu Val Gly Gln Pro Pro Phe Leu Ala			
405	410	415	
Pro Thr Pro Thr Glu Thr Gln Leu Lys Val Ile Asn Trp Glu Asn Thr			
420	425	430	

Leu His Ile Pro Ala Gln Val Lys Leu Ser Pro Glu Ala Arg Asp Leu
435 440 445

Ile Thr Lys Leu Cys Cys Ser Ala Asp His Arg Leu Gly Arg Asn Gly
450 455 460

Ala Asp Asp Leu Lys Ala His Pro Phe Phe Ser Ala Ile Asp Phe Ser
465 470 475 480

Ser Asp Ile Arg Lys His Pro Ala Pro Tyr Val Pro Thr Ile Ser His
485 490 495

Pro Met Glu

<210> 13

<211> 375

<212> DNA

<213> Homo sapiens

<400> 13

cttgcaggat tttagtttag gaaaacacag acttccatga gtttggaaac tacgagagaa 60
aagacagaca gagtcaaatac tacagcatat ctctcacctc aggaactgga agatgtattt 120
tatcaatatg atgttaaagt taaaatatac agctttggaa tcgtcctctg ggaaatcgcc 180
actggagata tcccgtttca aggctgtaat tctgagaaga tccgcaagct ggtggctgtg 240
aaggccgcgc aggagccact gggtaagac tgcccttcag agctgcgggaa gatcattgtat 300
gagtgcgcggg cccatgatcc ctctgtgcgg ccctctgtgg atgaaatctt aaagaaaactc 360
tccacccctttt ctaag 375

<210> 14

<211> 125

<212> PRT

<213> Homo sapiens

<400> 14

Leu Ala Gly Phe Glu Leu Arg Lys Thr Gln Thr Ser Met Ser Leu Gly
1 5 10 15

Thr Thr Arg Glu Lys Thr Asp Arg Val Lys Ser Thr Ala Tyr Leu Ser
20 25 30

Pro Gln Glu Leu Glu Asp Val Phe Tyr Gln Tyr Asp Val Lys Ser Glu
35 40 45

Ile Tyr Ser Phe Gly Ile Val Leu Trp Glu Ile Ala Thr Gly Asp Ile
50 55 60

Pro Phe Gln Gly Cys Asn Ser Glu Lys Ile Arg Lys Leu Val Ala Val
65 70 75 80

Lys Arg Gln Gln Glu Pro Leu Gly Glu Asp Cys Pro Ser Glu Leu Arg
85 90 95

Glu Ile Ile Asp Glu Cys Arg Ala His Asp Pro Ser Val Arg Pro Ser
100 105 110

Val Asp Glu Ile Leu Lys Leu Ser Thr Phe Ser Lys
115 120 125

<210> 15
<211> 1961
<212> DNA
<213> Homo sapiens

<400> 15
tcccgctgga cgtggagtag ggaggccccag accggagggtg cccgcctcg ccctaccg 60
agcacctgct gctgcgcagc aagtggagc agtacgacact ggacagcctg tgccgaggca 120
tggagcagag cctccgtcg ggcccaaacg agcccgaggg cggcgacaag agccgaaaa 180
gcccgggg ggacaaaggc ggaaggata aaaagcagat tcagacctct cccgttcccg 240
tccgaaaaaa cagcagagac gaagagaaga gagagtcacg catcaagagc tactcgccat 300
acgccttaa gttcttcatg gacgacacg tggagaatgt catcaaaaacc taccagcaga 360
aggtaaccg gaggctgcag ctggagcaag aaatggccaa agctggactc tgtgaagctg 420
agcaggagca gatgcggaag atcctctacc agaaagagtc taattacaac aggttaaaga 480
ggcccaagat ggacaaagtct atgttgtca agatcaaaaac cctggggatc ggtgccttg 540
gagaagtgtc cttgtttgt aaggtggaca ctcacgcct gtacgccatg aagaccctaa 600
ggaaaaagga tgcctgaac cgaaatcagg tggcccaacgt caagggcgag agggacatcc 660
tggccgaggc agacaatgag tgggtggta aactctacta ctccttccaa gacaaagaca 720
gcctgtactt tgcgtatggac tacatccctg gtggggacat gatgagccctg ctgatccg 780
tggaggtctt ccctgagcac ctggcccggt tctacatcgc agagctgact ttggccattg 840
agagtgtcca caagatggc ttcatccacc gagacatcaa gcctgataac attttgatag 900
atctggatgg tcacattaaa ctcacagatt tcggcctcg cactgggttc aggtggactc 960
acaattccaa atattaccag aaaggggagcc atgtcagaca ggacagcatg gagcccaagcg 1020
acctctggga tgcgtgtct aactgtcggt gtggggacag gctgaagacc ctagagcaga 1080
gggcgcggaa gcagcaccag aggtgcctgg cacattcaact ggtggggact cccaaactaca 1140
tcgcacccga ggtgcctc cgcacccgggt acactcaact ctgtgacttgg tggagtggt 1200
gagtgattct ctcgagatg ctgggggggc agccgcctt tttggcacct actcccacag 1260
aaaccaggct gaaggtgatc aactgggaga acacgctcca cattccagcc caggtgaagc 1320
tgagccctga gcccgaggac ctcatcacca agctgtgcgtc ctccgcagac caccgcctgg 1380
ggcgaatgg gcccgatgac ctgaaggccc acccccttcc cagcgcctt gacttctcca 1440
gtgacatccg gaagcatcca gcccctacg ttcccacccat cagccacccccc atggacacct 1500
cgaatttcga ccccgtagat gaagaaagcc cttggAACGA tgccagcgaa ggtagcacca 1560
aggcctggga cacactcacc tcgccaata acaagcatcc tgagcacgca ttttacgaat 1620
tcacccctcg aagggtctt gatgacatcg gctacccctt tcgatgccc aagccttcag 1680
gagcagaagc ttcacaggtc gagagctc tagatggaaag ctctgatctg gtggatcaga 1740
ctgaaggctg ccagcctgtg tacgtgtaga tggggggccag gcaccccccac cactcgctgc 1800
ctcccaaggc agggtccccgg agccgggtgcc ctcacaggcc aatagggaaag ccgagggctg 1860
ttttgtttta aattagtccg tcgattactt cacttggaaat tctgctttc accaagaaaa 1920
cccaaacagg acactttga aaacacgcggt gccgcgaatt c 1961

<210> 16
<211> 588
<212> PRT
<213> Homo sapiens

<400> 16
Pro Leu Asp Val Glu Tyr Gly Pro Asp Arg Arg Cys Pro Pro Pro
1 5 10 15
Pro Tyr Pro Lys His Leu Leu Leu Arg Ser Lys Ser Glu Gln Tyr Asp
20 25 30
Leu Asp Ser Leu Cys Ala Gly Met Glu Gln Ser Leu Arg Ala Gly Pro
35 40 45
Asn Glu Pro Glu Gly Gly Asp Lys Ser Arg Lys Ser Ala Lys Gly Asp
50 55 60
Lys Gly Gly Lys Asp Lys Lys Gln Ile Gln Thr Ser Pro Val Pro Val

65	70	75	80
Arg Lys Asn Ser Arg Asp Glu Glu Lys Arg Glu Ser Arg Ile Lys Ser			
85	90	95	
Tyr Ser Pro Tyr Ala Phe Lys Phe Met Glu Gln His Val Glu Asn			
100	105	110	
Val Ile Lys Thr Tyr Gln Gln Lys Val Asn Arg Arg Leu Gln Leu Glu			
115	120	125	
Gln Glu Met Ala Lys Ala Gly Leu Cys Glu Ala Glu Gln Glu Gln Met			
130	135	140	
Arg Lys Ile Leu Tyr Gln Lys Glu Ser Asn Tyr Asn Arg Leu Lys Arg			
145	150	155	160
Ala Lys Met Asp Lys Ser Met Phe Val Lys Ile Lys Thr Leu Gly Ile			
165	170	175	
Gly Ala Phe Gly Glu Val Cys Leu Ala Cys Lys Val Asp Thr His Ala			
180	185	190	
Leu Tyr Ala Met Lys Thr Leu Arg Lys Lys Asp Val Leu Asn Arg Asn			
195	200	205	
Gln Val Ala His Val Lys Ala Glu Arg Asp Ile Leu Ala Glu Ala Asp			
210	215	220	
Asn Glu Trp Val Val Lys Leu Tyr Tyr Ser Phe Gln Asp Lys Asp Ser			
225	230	235	240
Leu Tyr Phe Val Met Asp Tyr Ile Pro Gly Gly Asp Met Met Ser Leu			
245	250	255	
Leu Ile Arg Met Glu Val Phe Pro Glu His Leu Ala Arg Phe Tyr Ile			
260	265	270	
Ala Glu Leu Thr Leu Ala Ile Glu Ser Val His Lys Met Gly Phe Ile			
275	280	285	
His Arg Asp Ile Lys Pro Asp Asn Ile Leu Ile Asp Leu Asp Gly His			
290	295	300	
Ile Lys Leu Thr Asp Phe Gly Leu Cys Thr Gly Phe Arg Trp Thr His			
305	310	315	320
Asn Ser Lys Tyr Tyr Gln Lys Gly Ser His Val Arg Gln Asp Ser Met			
325	330	335	
Glu Pro Ser Asp Leu Trp Asp Asp Val Ser Asn Cys Arg Cys Gly Asp			
340	345	350	
Arg Leu Lys Thr Leu Glu Gln Arg Ala Arg Lys Gln His Gln Arg Cys			
355	360	365	
Leu Ala His Ser Leu Val Gly Thr Pro Asn Tyr Ile Ala Pro Glu Val			
370	375	380	
Leu Leu Arg Lys Gly Tyr Thr Gln Leu Cys Asp Trp Trp Ser Val Gly			
385	390	395	400

Val Ile Leu Phe Glu Met Leu Val Gly Gln Pro Pro Phe Leu Ala Pro
405 410 415

Thr Pro Thr Glu Thr Gln Leu Lys Val Ile Asn Trp Glu Asn Thr Leu
420 425 430

His Ile Pro Ala Gln Val Lys Leu Ser Pro Glu Ala Arg Asp Leu Ile
435 440 445

Thr Lys Leu Cys Cys Ser Ala Asp His Arg Leu Gly Arg Asn Gly Ala
450 455 460

Asp Asp Leu Lys Ala His Pro Phe Phe Ser Ala Ile Asp Phe Ser Ser
465 470 475 480

Asp Ile Arg Lys His Pro Ala Pro Tyr Val Pro Thr Ile Ser His Pro
485 490 495

Met Asp Thr Ser Asn Phe Asp Pro Val Asp Glu Glu Ser Pro Trp Asn
500 505 510

Asp Ala Ser Glu Gly Ser Thr Lys Ala Trp Asp Thr Leu Thr Ser Pro
515 520 525

Asn Asn Lys His Pro Glu His Ala Phe Tyr Glu Phe Thr Phe Arg Arg
530 535 540

Phe Phe Asp Asp Asn Gly Tyr Pro Phe Arg Cys Pro Lys Pro Ser Gly
545 550 555 560

Ala Glu Ala Ser Gln Ala Glu Ser Ser Asp Leu Glu Ser Ser Asp Leu
565 570 575

Val Asp Gln Thr Glu Gly Cys Gln Pro Val Tyr Val
580 585