SSID: WWCode Password: password

WOMEN WHO CODE MANILA

Machine Learning & Al Study Group

Twitter: @wwcodemanila FB: fb.com/wwcodemanila

#WWCodeManila #YourProgrammingLanguage #StudyGroup

Issa Tingzon

Research Fellow

Philippine-California Advanced Research Institutes

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

STUDY GROUP

Study groups are events where women can come together and help each other learn and understand a specific programming language, technology, or anything related to coding or engineering.

GUIDELINES

- If you have a question, just **ask**
- If you have an idea, share it
- Make friends and learn from your study groupmates
- **Do not** promote your recruit or promote your business

New Member's Introduction

SHOW & TELL

STUDY GROUPS

Study Group 1: Machine Learning Basics

Study Group 2: Data Preprocessing

AGENDA

- 1. Quick Review: KNN Algorithm
- 2. New Topic: Data Preprocessing
- 3. Exercise
- 4. Presentations

REVIEW

K-Nearest Neighbor (KNN)

- One of the simplest ML Algorithms
- Steps:
 - 1. Compute the Euclidean distance between the "new observation" and all training data points
 - 2. Select the K nearest observations and perform a majority vote
 - 3. Assign the corresponding label to the observation

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Point Distance

$$\bigcirc \cdots \bigcirc \qquad 2.4 \longrightarrow 2 \text{nd NN}$$

$$\bigcirc \cdots \bigcirc \qquad 3.1 \longrightarrow 3rd NN$$

$$\bigcirc \cdots \bigcirc \qquad 4.5 \longrightarrow 4th NN$$

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Class wins

Class wins

the vote!

Point is
therefore predicted
to be of class .

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

KNN Cheat Sheet

Importing the library:

from sklearn.neighbors import KNeighborsClassifier

Instantiating a model:

knn = KNeighborsClassifier(n_neighbors=3)

Fitting model to training set:

knn.fit(X_train, y_train)

Predicting test set:

y_pred = knn.predict(X_test)

k-fold Cross Validation

For hyperparameter tuning (i.e. choosing the "right" K)

	◄ Total Number of Dataset — ▶	
Experiment 1		
Experiment 2		Training
Experiment 3		
Experiment 4		Validation
Experiment 5		

TODAY'S TOPIC

DATA PRE-PROCESSING: FEATURE SCALING

FEATURE SCALING

Different features → measured on different scales.

- height centimetres
- weight kilograms
- blood pressure in mmHg
- o etc.

Some classifiers combine and compare feature values (e.g. Euclidean distance).

FEATURE SCALING

Features with a broad range of values \rightarrow dominate features with a smaller range of values:

- o percentage of unemployment in a city ranges from 0.0 to 1.0
- o population of the city can range up to 500,000

Scaling transforms the data so that the features have, more or less, uniform range.

Scales values to a range of [0, 1].

Computing the norm of feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

$$z_1 = \frac{22 - 22}{42 - 22} = 0$$

ID	Age	Age _{scaled}
1	22	0.00
2	25	
3	30	
4	42	

Computing the norm of feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

$$z_2 = \frac{25 - 22}{42 - 22} = 0.15$$

ID	Age	Age _{scaled}
1	22	0.00
2	25	0.15
3	30	
4	42	

Computing the norm of feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

$$z_3 = \frac{30 - 22}{42 - 22} = 0.4$$

ID	Age	Age _{scaled}
1	22	0.00
2	25	0.15
3	30	0.40
4	42	

Computing the norm of feature vector *X*:

$$z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

$$z_4 = \frac{42 - 22}{42 - 22} = 1$$

ID	Age	Age _{scaled}
1	22	0.00
2	25	0.15
3	30	0.40
4	42	1.00

FEATURE SCALING

- Standardization
- Min-max Scaling
- Normalization
- Binarization

Task: Read the Feature Scaling Tutorial

Partner/Group/Individual Exercise:

WINE DATA CLASSIFICATION

Note: Python beginners can partner up with more advanced users for better guidance

Partner/Group/Individual Presentation

Assignment

Binarize features in the Handwritten Digit Recognition Exercise

References:

WWCodeLondon Slides

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

http://scikit-learn.org/stable/modules/preprocessing.html

http://sebastianraschka.com/Articles/2014_about_feature_scaling. html

T.I.L.

SHARE IT! In front!

On Twitter: @wwcodemanila

Or FB: fb.com/wwcodemanila

Don't forget to tag WWCodeManila so we can retweet or share it.

THANK YOU:)