Solutions for Lab Assignment

Solutions

1. Streamlines for Uniform Flow:

The streamlines for a uniform flow with u = 1, v = 0 are parallel lines along the x-direction. Use the Python function 'streamplot()' to visualize the uniform flow pattern.

2. Pathlines for Uniform Flow:

The pathline of a particle starting from (0,0) in a uniform flow u=1, v=0 is a straight line. The trajectory can be computed as x(t)=t, y(t)=0.

3. Streamlines for a Vortex:

For u = -y, v = x, the streamlines are circular around the origin. Use a 2D grid and plot with Python's 'streamplot()' to observe the circular patterns.

4. Flow Over a Flat Plate:

Streamlines for u = y, v = 0 are parallel lines spaced increasingly with higher y-values. The flow represents a simple shear flow.

5. Pathlines in Rotational Flow:

Pathlines in u = -y, v = x result in circular trajectories. Numerically integrate the velocity field for initial conditions (1,0).

6. Irrotational Source Flow:

The velocity field from a source at the origin can be derived as $u = \frac{x}{r^2}$, $v = \frac{y}{r^2}$. The streamlines radiate outwards from the origin.

7. Time-Dependent Flow:

In u = t, v = y, the pathlines are computed as $x(t) = \frac{1}{2}t^2$, $y(t) = y_0e^t$. Use numerical methods to integrate the equations.

8. Vorticity and Irrotationality:

The vorticity for u = x, v = -y is zero, confirming the flow is irrotational. Use numerical differentiation to compute $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$.

9. Source and Sink Flow:

Combine source and sink flows and visualize using their velocity potentials. Streamlines show symmetrical flow connecting the source and sink.

10. Unsteady Linear Flow:

For $u = x\cos(t)$, $v = y\sin(t)$, streamlines evolve dynamically over time. Simulate at different time intervals to observe the patterns.