Official Documentation: Visual Dialogue Agent Based on Deep Q Learning and Memory Module Network

1. Introduction

The Visual Dialogue Agent (VDA) is an AI system that integrates Computer Vision (CV) and Natural Language Processing (NLP) to engage in meaningful image-based conversations with users. The system utilizes Deep Q Learning and Memory Module Networks to improve dialog quality, understand user preferences, and answer both Relational and Non-Relational questions about images.

2. Features

- Image Understanding: Uses Convolutional Neural Networks (CNNs) to analyze images.
- Conversational Ability: Engages in multi-turn dialogues using NLP techniques.
- Memory-Driven Responses: Leverages End-to-End Memory Module Networks for relational question answering.
- User Inclination Awareness: Utilizes Deep Q Learning Policies to understand user preferences.
- Training on Large Datasets: Trained on CLEVR and VQA datasets for robust learning.

3. System Architecture

The system consists of:

- Image Encoder: CNN-based encoder for feature extraction.
- Question Processor: Uses Recurrent Neural Networks (RNNs) for language understanding.
- Memory Module Network: Stores conversation history for context-aware answers.
- Deep Q Learning Module: Optimizes responses based on user engagement.

4. Datasets Used

- CLEVR Dataset: 70,000 training images with 699,989 questions.
- VQA Dataset: 265,016 images with multiple questions per image.

5. Implementation Details

- **Programming Language:** Python
- **Deep Learning Frameworks:** TensorFlow / PyTorch
- **Model Training:** CNN for image features, RNN for text, and RL for learning user preferences.

6. Results & Performance

- Achieved 94.4% accuracy on CLEVR dataset.
- Improved Relational Question Accuracy from 73.69% to 75.52%.
- Enhanced dialog coherence and user engagement through reinforcement learning.

7. Future Enhancements

- Improve user personalization for tailored responses.
- Extend to **real-world datasets** beyond CLEVR/VQA.
- Optimize dialog efficiency using advanced RL techniques.