Chapitre 16 - TD - 27 avril 2020

TD 16 - Exercice 8:

Soit la fonction f définie, pour $x \in \mathbb{R}^*$, par : $f(x) = \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$.

- 1. Écrire le développement limité à l'ordre 4 de f(x) en 0. En déduire le prolongement par continuité de f en 0.
- 2. Montrer que f, ainsi prolongée, est dérivable en 0. Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0 et au voisinage de ce point.

On a $\int_0^{\infty} (x) = 0 + \frac{2}{3} \times + o(x)$ Janua DL1 and et Jeth définie en alors $\int_0^{\infty} (x) - \frac{3}{3}(0) = \frac{2}{3} + o(1) \int_0^{\infty} (x) - \frac{2}{3} donc$ Jet la tougenté est y = 0

TD 16 - Exercice 10:

On étudie la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1>0$ et $u_{n+1}=\frac{1}{n+1}e^{-u_n}$.

- 1. À l'aide d'un encadrement, montrer que (u_n) converge vers 0.
- 2. Déterminer un équivalent de u_n et en déduire un développement de la forme : $u_n = \frac{a}{n} + o\left(\frac{1}{n}\right)$.
- 3. Déterminer a, b réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + o\left(\frac{1}{n^2}\right)$.
- 4. Déterminer a, b, c réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + o\left(\frac{1}{n^3}\right)$.

avee	11 = -1 m	+ d 1) d'air	$o(u) = o(\frac{1}{m})$
Un+	$1 = \frac{1}{1 + 2}$	(1+(-1+0)	$\left(\frac{1}{m}\right) + 0 \left(\frac{1}{m}\right)$
	m = + = M +	1 - M(m+1)	$+ \circ \left(\frac{1}{N(N+1)} \right)$
ardécule	- dun rai	ng ,	
u	M = + 0	$\frac{1}{M}$ $ \frac{1}{(M-1)M}$	+ o(m-1)n
MM-1	$)$ + ∞ M^2	danc o (1	$(M-1)$ $+\infty$ (M^2)
M(m-	-1 $+\infty$ $=$	$\frac{1}{m^2} \times \frac{1}{1-\frac{1}{m}} = \frac{1}{m}$	$\frac{1}{2}\left(\frac{1}{2} + \frac{1}{m} + o\left(\frac{1}{m}\right)\right)$ $1 + u + o\left(u\right)$
alars		1-4	1 + U + 0(11)
llu	- M	$\frac{3}{M^2} + O\left(\frac{1}{M^2}\right)$	_
etan	commence		

TD 17 - Exercice 2:

Dans \mathbb{R}^4 , trouver le rang de la famille de vecteurs : $\vec{a} = (3, 2, 1, 0), \quad \vec{b} = (2, 3, 4, 5), \quad \vec{c} = (0, 1, 2, 3), \quad \vec{d} = (1, 2, 1, 2), \quad \vec{e} = (0, -1, 2, 1).$

Soul u E112 " avec u = (n,y,z,t) ũ ∈ Ved (ā, to, to, to, to) ≥> ∃(d,β, r, b, ε) ∈ 1125: to - da + 35 + 8 to + 6to + 6to =>](d,B, V, b, E): onfame à le version motricille la verelique devient 0 = x - y - 3 t E la matrice a 3 pavots dans de rang 3 dans Drafel dim (Vedrath, E, d, e) = ng(a, to, E, d, e) wifnry,3, €) € Veck(@15, €1, €) × N-y-3+ €=0 donc ceci est une equation de Ved(a,t,c,t,e) on resout l'équation n= y+3-t => = (1, N, V) =163 dance solutions espace de dem 3 er on moul = 38+50 et b = 20+e

TD 17 - Exercice 13 :

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + y + z, z). Montrer que f est linéaire. Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Déterminer f(P) où P est le plan vectoriel d'équation x + y + z = 0.

TD 17 - Exercice 8:

On considère la famille de polynômes (P_1,P_2,P_3) de $\mathbb{R}_2[X]$ définis par $P_1=1+3X-X^2$, $P_2=1+4X$, $P_3=2X-X^2$.

- 1. Montrer que $F = \text{Vect}(P_1, P_2)$ et $G = \text{Vect}(P_3)$ sont deux sous-espaces vectoriels supplémentaires.
- 2. Déterminer les expressions analytiques des projections sur F et G.

TD 17 - Exercice 6 :

Soit *E* l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui s'écrivent $\forall x \in \mathbb{R}$, $f(x) = (ax^2 + bx + c)e^{4x}$ avec $(a, b, c) \in \mathbb{R}^3$.

- 1. Montrer que E est un sous-espace vectoriel de dimension finie de l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$.
- 2. Soit D l'application définie sur E par $D: f \longmapsto f'$. Montrer que D est un automorphisme de E. Déterminer son application réciproque.

TD xx - Exercice xx :

