E.M.B

Chapter 7: Groups of Symmetry

Mphako-Banda

SCHOOL OF MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- define the set of elements moved by the permutation
- prove a property of the set of moved elements
- prove that a product of disjoint permutations is commutative
- find the inverse of a permutation written in cycle notation
- use cycle notation to determine a product of two permutations

Lemma (7.4.2)

Let $M_{\sigma} = \{x \in X | \sigma(x) \neq x\}$ be the set of elements that are moved by σ .

Then if k is moved by σ (i.e. $k \in M_{\sigma}$) then $\sigma(k)$ is also moved by σ .

That is $k \in M_{\sigma} \Rightarrow \sigma(k) \in M_{\sigma}$.

PROOF: $\sigma \in S_n$ so σ is a bijection and is invertible, so $\sigma^{-1} \in S_n$. If σk is fixed by σ , then $\sigma(\sigma(k)) = \sigma(k)$. $\sigma^{-1}[\sigma(\sigma(k))] = \sigma^{-1}\sigma(k)$ and hence $\sigma^{-1}\sigma(\sigma(k)) = k$. $\sigma(k) = k$ and $k \notin M_{\sigma}$ contradiction. **σ =** sigma

T = tau

Theorem (7.4.3)

If σ and τ in S_n are disjoint, then $\sigma \tau = \tau \sigma$.

PROOF: Let $k \in X$ where |X| = n. There are 4 cases to consider:

- (i) σ and τ both fix k.
- (ii) σ moves k and τ fixes k.
- (iii σ fixes k and τ moves k.
- $\overline{\mathbb{N}}$ σ and τ both move k. (cannot exist by assumption).

CASE(i):
$$\sigma(k) = k$$
 and $\tau(k) = k$. $\sigma\tau(k) = \sigma(k) = k$ and $\tau\sigma(k) = \tau k = k$. $\therefore \sigma\tau = \tau\sigma$.

CASE(ii) Let $\sigma(k) = p$ and $k \in M_{\sigma}$. By Lemma above $p = \sigma(k) \in M_{\sigma}$. $\tau(k) = k \Rightarrow \sigma \tau(k) = \sigma(k) = p$

Also $\tau \sigma(\mathbf{k}) = \tau(\mathbf{p})$.

But $p \in M_{\sigma}$ and is moved by σ so $p \notin M_{\tau}$ since σ and τ are disjoint.

$$\therefore \quad \tau(p) = p.$$

$$\tau \sigma(\mathbf{k}) = \tau(\mathbf{p}) = \mathbf{p} \text{ and } \tau \sigma = \sigma \tau.$$

CASE(iii) as in case (ii)

CASE(iv)Cannot exist since τ and σ are disjoint.

Theorem (7.4.4)

If σ is an r-cycle, then σ^{-1} is also an r-cycle. Infact if $\sigma = (k_1 \quad k_2 \quad \cdots \quad k_r)$ then $\sigma^{-1} = (k_r \quad k_{r-1} \quad \cdots \quad k_1)$.

PROOF:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma^{-1}(1) & \sigma^{-1}(2) & \cdots & \sigma^{-1}(n) \end{pmatrix}.$$

NOTE 7.4.5: Cycle Representation

(1)
$$\sigma = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$$
 or $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}$.
 $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$ or $\sigma^{-1} = \begin{pmatrix} 1 & 4 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 3 & 1 \end{pmatrix}$.

- (2) $\sigma = (1 \ 2 \ 4)$ in S_4 fixes 3 but in S_5 fixes 3 and 5.
- (3) $\sigma = (1 \ 3 \ 7 \ 2)(4 \ 6)(8 \ 5 \ 10)(9).$ $[1] = \{1,3,7,2\}; \quad [4] = \{4,6\}; \quad [8] = \{8,5,10\};$ $[9] = \{9\}$ $X = [1] \cup [4] \cup [8] \cup [9].$

Examples on multiplication of cycles of permutations

NB: When faced with the product α en disjoin of cycles follow the following procedure in S_n :

(i) Choose any number $1 \le r_0 \le n$. Conveniently choose r_0 . Check in the most right cycle for r_0 . If it appears, find where r_0 moves to, say r_1 . If r_0 does not appear check the next cycle. If it never appears then α leaves r_0 fixed.

Part 3 E.M.B

(ii) Having located r_1 , check for an appearance of r_1 only to the left of its first position. Once located find where r_0 moves to. If r_1 does not appear to the left of its first appearance, then r_0 is mapped to r_1 . Start procedure again with extreme right cycle and r_1 .

Part 3 E.M.B

Find the products below:

$$\alpha \gamma = (1 \ 3 \ 2 \ 5 \ 6)(1 \ 2)(4 \ 6)$$

$$= (1 \ 5 \ 6 \ 4)(2 \ 3)$$

$$(1 \ 5 \ 6 \ 4)(2 \ 3)$$

$$\gamma \alpha = (1 \ 2)(4 \ 6)(1 \ 3 \ 2 \ 5 \ 6)$$

$$= (1 \ 3)(4 \ 6 \ 2 \ 5)$$

$$\alpha \beta = (1 \ 3 \ 2 \ 5 \ 6)(1 \ 6 \ 5 \ 4 \ 2 \ 3)$$

$$= (1)(2)(3)(4 \ 5)(6)$$

$$= (4 \ 5)$$

$$\beta \alpha = (1 \ 6 \ 5 \ 4 \ 2 \ 3)(1 \ 3 \ 2 \ 5 \ 6)$$

$$= (1)(2 \ 4)(3)(5)(6)$$

$$= (2 \ 4)$$

Eg)(1 3 4 5)(3 2 6)(2 4 1)(3 2) =
$$(16435)(2)$$

(1 6 4 3 5)(2).