Santa Ana Sucker Habitat Evaluation

C. Flynn, E. Harris-Tyrrell, O. Howie, L. Israel, S. Janessn, N. Larson, F. Lyles, W. Norena, V. Sanchez-Jimenez, A. Vacas, D. Wagner, ed. Marc Los Huertos

October 24, 2016

Contents

1 Introduction			3
	1.1	Problem Statement	3
	1.2	Background (Literature Review)	3
	1.3	Objectives	5
2	Met	thods	5
	2.1	Materials and Equipment	5
	2.2	Site Descrition	6
	2.3	Videography	6
	2.4	Temperature Loggers	6
	2.5	Field Methods	8
	2.6	Laboratory Methods	8
	2.7	Statistical Methods	8
3	Results		8
4	4 Discussion		8
5	Conclusion and Recommendations		
6	Lite	erature Cited	8

1 Introduction

The Santa Ana sucker is a 16 cm fish that lives in the rivers of Southern California. They have recently been placed on the endangered species list, partially due to their losing over 70 percent of their habitat (FWS 2012). Also, in the 1960s, the habitat of the suckers would range from 10-26C, but when we tested the water in September 2016, we found temperatures in the Santa Ana river up to 35.5C (Greenfield, Ross & Deckert 1970). This rise in temperature is most likely due to the extreme industrialization of the stream; much of it runs over concrete, which heats up to extreme temperatures in the sunlight. A majority of the stream water also comes from discharge from a sewage treatment plant upstream, creating an unhealthy and unnatural environment. The river is also greatly diminished from what it used to be due to the extreme drought in Southern California. The river is shallower, slower moving, and has less ice melt coming from the mountains, all of which factor into an increase in temperature. Our goal of this study is to discover whether or not the Santa Ana suckers are coping with this dramatic increase in temperature by moving to cooler sections of the stream throughout the day.

The abundance of the red algae Cosmopogen Aeruginosus has recently risen significantly in the Santa Ana River. In a similar time period, the Santa Ana Sucker (*Catostomus Santaanae*), an endangered fish endemic to this and another three rivers in the Southern California region, has been experiencing population declines. This experiment explores the change in red algae presence in the Santa Ana River and the possible relationship it holds with Santa Ana Sucker's decline. Using measurments of river water temperature, overhead tree canopy cover, and sediment type we explore the connection these aspects of the river and their relationship with the red algae.

1.1 Problem Statement

1.2 Background (Literature Review)

Albertson, L.K., Koenig, L.E., Lewis, B.L., Zeug, S.C., Harrison, L.R., & Cardinale, B.J. (2012). How Does Restored Habitat for Chinook Salmon (Oncorhynchus Tshawytscha) in the Merced River in California Compare with other Chinook Streams? River Research and Applications, 29(4), 469-482). doi: 10.1002/rra.1604

By looking at Chinook salmon in the Merced river, restoration projects seemed to be failing to prevent the Chinook population from falling. The installation of gravel augmentation in a reconfigured channel seemed to have little impact on the salmon, suggesting that other factors were catalyzing the fall of the species. By comparing the restored portion with other portions of the Merced river, food web characteristics and flow discharge seemed to produce the same results on the various life stages of the salmon. However, higher temperatures, less woody debris, and minimal riparian cover seemed to limit populations in the restored portions. Restoration efforts are then presented with an

added challenge of ensuring that every aspect of the ecosystem is beneficial to the species, which demands more work toward temperature regulation and attempts to restore the river bank. To see how the Santa Ana sucker would react to similar conservation efforts would be interesting in discussions in attempting to determine solutions.

Coulter, D. P., Hk, T. O., Mahapatra, C. T., Guffey, S. C., & Seplveda, M. S. (2015). Fluctuating Water Temperatures Affect Development, Physiological Responses and Cause Sex Reversal in Fathead Minnows. Environmental Science & Technology, 49(3), 1921-1928. doi:10.1021/es5057159

Human activities can increase water temperature. Water-based organisms are sensitive to temperature change, especially young fish due to limited mobility. This paper explained how young Flathead Minnows exposed to warmer temperatures underwent a nondirectional sex reversal. This paper shows us how temperature can greatly affect fish and stress them out. Clearly, water temperature drastically affects fish, not necessarily in a positive way, and therefore, we should see if there is a correlation between stream temperature and where the Santa Ana Sucker chooses to live.

Los Huertos, Marc. (2016). Thermal Properties of Water. Environmental Science of Aquatic Systems. 297-308.

Temperature varies greatly in its impact on fish depending upon the conditions affecting the lake or river. Heat, temperature, thermal energy, and heat capacity all slightly change how heat is measured in an ecosystem. Water in general has a high heat capacity, which indicates its high specific heat. These aquatic systems therefore often retain their heat and are less susceptible to increase/decrease in temperature. Inflows/mixing can have an effect on water temperature but it is often hard to detect due to thermal stratification mixing, seasonal change in temperature profile depth, and small volume inflow in terms of fraction of the lake volume. This chapter sheds light that variations in temperature trigger chemicals dissolving/remaining, tend to raise/lower a fishs body temperature to the same degree, etc. Temperature impacts many other features of water quality, which will be important to keep in mind going forward with the project.

Sadler, K. (1980). Effect of the warm water discharge from a power station on fish populations in the river Trent. Journal Of Applied Ecology, 17(2):349-357.

A power station discharged water that was on average 7 degrees Celsius above normal in the River Trent. This meant that in affected areas, the winter migration was delayed from Sep/Oct to Dec/Jan, while in unaffected areas, migration continued at normal times. Also, below the power station, fish preferred to live further downstream, in terms of diversity and population density. This tells us that fish are able to change their living patterns based on water temperature, and shows that fish were noticeably affected by the temperature change.

U.S. Fish & Wildlife Service. 2012. Recovery Outline for Santa Ana sucker. Sacramento, California. 38 pp.

This report discusses Santa Ana Suckers and possible recovery plans. In

order to do so, it clearly outlines Sucker habitat preferences, behavior, and threats. We used this source to determine preferred temperature for the Santa Ana Sucker and in general to inform ourselves more about the fish. Little research has been done on specific threats to the Santa Ana Sucker, but the document did point out possible threats arising from hydrological modification and urban development in general. Sophie and I thought that potentially water coming out of a treatment plant could be a threat under hydrological modification or urban development, so that will be what our research focuses on.

1.3 Objectives

Our goal with this experiment was to find out whether or not temperature was affecting the population and/or livelihood of the Santa Ana Sucker in the Santa Ana River.

Our goal is to obtain footage clearly showing the density of Santa Ana suckers in the different locations at different points in the day. We hope to get accurate enough footage to count the number of fish in each video, then run an ANOVA test on each location to see if the quantity of fish significantly varies at different times of the day. If they do, we will be able to conclude that the suckers move throughout the day to find their preferred temperature.

Does the Santa Ana Sucker shift its distribution in the Santa Ana River based on natural temperature changes that occur throughout the day? We believe that if we monitor the relative distribution of the Santa Ana Suckers throughout the day we will see a difference in sucker abundance between an upstream and downstream location in response to changing temperature throughout a 24-hour period.

2 Methods

2.1 Materials and Equipment

- 2 Waterproof GoPro Hero 4 Silver cameras with mounts
- 4 64GB microSD SanDisk memory cards
- 4 Waterproof Re-Fuel 6-Hour ActionPack Battery for GoPro HERO by DigiPower
- 2 HOBO Tidbit water temperature data loggers
- \bullet 2 Grey Cinder block cubes open on two parallel sides, 8in x 8in x 8in, Home Depot
- 2 Grey Cinder block backs, 8in x 8in
- 1 bottle of Original Sticks to Everything Gorilla Glue
- 4 HOBO Tidbit Water Temperature Data Logger,

- 1 Optic USB U-4 Base Station with coupler and HOBOware software,
- 4 Green Garden stakes to hold loggers in stream channel
- Red flags,
- Yellow marking tape,
- Ice Bath for calibrating loggers

2.2 Site Descrition

We collected our video on-site at the Santa Ana River. As a class we chose to collect data from four points along a small stretch of the river that was easily accessible by car. Because of this, the part of the river we took data from was relatively close to roadways and traffic. The specific sites for our project consisted of one upstream location (site 2) and one downstream location (site 4), located roughly one kilometer apart. Site 2 was located just below the Rialto concrete channel and site 4 was a plunge pool. The upstream location was significantly more encumbered with large debris like rocks and branches. The downstream location was smooth and flat, with a bed of pebbles and smaller coarse sediments (Figure 1).

We evaluated the Santa Ana River between... near Colton, California (Figure 1).

2.3 Videography

We acquired all the necessary equipment for an underwater filming project, keeping in mind the length of time we wanted to keep our cameras underwater. We chose the GoPro Hero 4 Silver because of its battery life and recording time. We also considered safety and theft prevention for the cameras, and for this reason decided to mount the cameras in cube-shaped cinderblock structures with one open side that we constructed ourselves. In the lab, we set up all the equipment, built the cinderblock structures, and prepared everything for the field. Once in the field, we selected appropriate data sites, set up our cameras, and placed them at certain specific times of the day. More detailed information on these processes can be found in the following sections.

2.4 Temperature Loggers

We will obtain four HOBO Tidbit water temperature Data Loggers to set up at the Rialto Channel at Agua Mansa (site 4), another at the point where the other discharge site meets the river (site 2), another just above that site (site 3), and a fourth in the pool where Suckers have previously been observed (site 1). Before going to the river, we programmed the loggers via our base station and the HOBOware software to collect water temperature data every 15 minutes. In order to start the data process, we put each logger into the coupler and

Figure 1: Google Earth –Example of a map. What's wrong with this image?

pushed the level til the light was flashing. We then put them in the river by looping a garden stake through one, sticking it into the substrate, and securing it with rocks. We then put yellow marking tape on plants nearby and red flags along the bank to show where we left the main path. We repeated this for each site, making sure the loggers were secure and fairly hidden. After seven nights (for site 3) and eleven nights (for the other sites), we returned to the river and collected the loggers. In the lab, using the software, we loaded our data and transferred it to RStudio. Later, to calibrate the loggers, we put them in an ice bath for 6 minutes to ensure that the temperature settled around zero and each logger was measuring to the same temperature with the same accuracy.

- 2.5 Field Methods
- 2.6 Laboratory Methods
- 2.7 Statistical Methods
- 3 Results

The tempeature data suggests... (Figure 2).

- 4 Discussion
- 5 Conclusion and Recommendations
- 6 Literature Cited

Greenfield, D. W., Ross, S. T., & Deckert, G. D. (1970). Some aspects of the life history of the Santa Ana sucker, Catostomus (Pantosteus) santaanae (Snyder). Calif. Fish Game, 56(3), 166-179.

Time Series of Temperature Data

Figure 2: Temperature time...