O TRANSISTOR BIPOLAR NA AMPLIFICAÇÃO DE PEQUENOS SINAIS-CONFIGURAÇÃO SEGUIDOR DE EMISSOR

Relatório 09 de ELT 315

Wérikson Frederiko de Oliveira Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Introdução:

Este relatório contém uma analise teórica de um circuito com transistor bipolar de junção (TBJ), seguidos de dados coletados a partir da simulação realizada pelo Software **Qucs**, tendo por objetivo verificar a capacidade de amplificação de um estágio em **seguidor de emissor** e compreender a utilização do teorema da superposição para análise de um amplificador transistorizado.

Materiais Utilizados:

• 01 Resistor de 100 k Ω ;

• 01 Resistor de 10 k Ω ;

• 02 Resistor de 560 Ω ;

• 01 Resistor de 1 k Ω ;

• 02 Capacitores de 1 μ F;

• 01 transistor BC 547.

Parte Teórica:

MEDIÇÃO DO GANHO DE CORRENTE E CÁLCULOS

Seja o circuito da Figura 1.

Figura 1: Circuito teórico.

a) Com o valor obtido de β (h_{fe}) retirado do datasheet, calcular I_B , I_C , I_E , V_B , V_C , V_{CE} e V_{BE} e preencher as demais colunas da tabela 1.

R: Aplicando LKT na malha base- emissor: $V_{CC}-I_BR_B-V_{BE}-I_ER_E=V_{CC}-I_BR_B-V_{BE}-I_B\cdot\beta R_E=0$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)R_E} \approx 42,97 \,\mu A \tag{1}$$

$$I_C = \beta \cdot I_B = 12,46mA$$
 (2)

Aplicando LKT na malha coletor-emissor:

$$I_E = I_B + I_C = 12,50mA$$
 (3)
$$V_{CC} - V_{CE} - I_E R_E = 0$$

$$V_E = I_E R_E = 7V$$

$$V_{CE} = V_C - V_E = 4,99V$$
 (6)

Tabela 1: Valores calculados.

Transistor utilizado: BC 547B $I_B (\mu A)$ $I_C (mA)$ $I_E (mA)$ $V_B (V)$ $V_C (V)$ $V_{CE} (V)$ $\beta = 290$ 42,97 12,46 12,50 7,7 12 4,99

b) Efetuar os cálculos dos parâmetros do amplificador $Z_i,\,Z_o\,,A_v$ e $A_i.$ R:

$$r_e = \frac{26m}{I_E} = 2,08\Omega$$
 $Z_0 = R_E || r_e \approx 2,07\Omega$ (8)

$$Z_b = \beta r_e + (\beta + 1)R_E = 163,56k\Omega.$$

$$Z_i = R_B||Z_b = 62,06k\Omega \qquad (7) \qquad A_v = \frac{R_E}{R_E + r_e} = 0,996 \approx 1 \qquad (9)$$

$$A_i = -\frac{\beta R_B}{R_B + Z_b} = -110,03 \tag{10}$$

c) Desenhe o circuito equivalente (modelo r_e). R:

Bre R=603 Ohm

Vi

Rb G=0.01246

R=100 kOhm

RE RE R=560 Ohm

Figura 2: Circuito equivalente r_e .

d) Considerando $R_S=560\Omega$ (resistor entre o gerador de sinais e o capacitor) e $R_L=1k\Omega$ (resistor em paralelo com R_E após o capacitor), recalcule: Z_i, Z_o, A_v, A_{vS} e A_i . R:

Figura 3: Circuito equivalente r_e .

$$R_E' = R_E || R_L = 358,97\Omega$$

Usando as equações (1), (2) e (3), temos:

$$\begin{split} I_B &= \frac{V_{CC} - V_{BE}}{R_B + (1 + \beta)R_E'} \approx 55,27 \,\mu A \\ &I_C = \beta \cdot I_B = 16,03 mA \\ &I_E = I_B + I_C = 16,08 mA \\ &r_e = \frac{26m}{I_E} = 1,62\Omega \\ &Z_b = \beta r_e + (\beta + 1)R_E' = 104,93 k\Omega \end{split}$$

Agora, usando as equações (7), (8), (9) e (10), temos:

$$Z_i = 51,20k\Omega$$

$$Z_0 = 1,61\Omega$$

$$A_v = 0,995 \approx 1$$

$$A_i = -141,51$$

Parte Prática:

Medições das principais tensões e correntes e verificação dos parâmetros do amplificador e das formas de onda alternadas.

a) Montar o circuito da figura 1 sem conectar a fonte de tensão senoidal e os capacitores ao circuito, como mostrado na Figura 5. Medir os parâmetros relativos ao ponto quiescente e anotar na Tabela 2.
 R:

Figura 4: Circuito Pratico 1.

Tabela 2: Valores simulados.

	Tuccia 21 (tuccio siniciacos)						
$I_B(\mu A)$	$I_C(mA)$	$I_E (mA)$	$V_{RB}(V)$	$V_{RE}(V)$	$V_B(V)$	$V_C(V)$	$V_{CE}\left(V\right)$
41,3	12,7	12,8	4,13	7,16	7,87	12	4,84

b) Conectar ao circuito a uma fonte ou gerador de sinais (Sinal senoidal, $V_{SPP}=4\mathrm{V}$ e $f=5\mathrm{kHz}$) e medir os valores de pico-a-pico das tensões V_S , V_i , V_E e V_O . Calcular o ganho de tensão A_{VNL} . R:

Figura 5: Circuito Pratico 2.

O ganho de tensão pode ser obtido dividindo a tensão de saída pela de entrada, logo

$$A_{VNL} = V_{0_{rms}} / V_{i_{rms}} = 0,995$$

- . Podemos observar que o resultado se aproxima muito do esperado na parte teórica.
- c) Desenhar as formas de ondas de V_S , V_i , V_E e V_O . Medir e desenhar com a componente continua (circuito físico acoplamento CC dos canais 1 e 2 do osciloscópio habilitados).

 R:

Figura 6: Formas de ondas para V_S , V_i , V_E e V_O .

- d) Qual é a componente contínua presente no emissor? R: A componente continua presente no emissor é $V_E \approx 7,14$ V.
- e) Os sinais de VS e VO estão em fase? Explique: R: Sim, pois como pode ser observado anteriormente, o ganho é $A_v=1=1+j0$, logo ambos os sinais se encontram na mesma fase.
- f) Compare com os valores teóricos e práticos.R:

Tabela 4: Erros relativos Parâmetro I_B I_C I_E V_B V_C V_E $V_C E$ A_v Erro (%) 4,04 1,89 2,34 2,16 0,00 2,23 3,10 0,10

g) Conectar ao circuito RS=560 (resistor entre o gerador de sinais e o capacitor) e RL= 1k (resistor em paralelo com RE após o capacitor) e medir os valores de pico-a-pico das tensões VS, Vi e VO. Calcular os ganhos de tensão AV e AVS. Desenhar as formas de ondas de VS, Vi, VE e VO . Desenhar com a componente continua.
R:

Tabela 5: Valores simulados.				
$V_{spp}(V)$	$V_{ipp}(V)$	$V_{0pp}\left(V\right)$		
4,00	3,96	3,94		

Figura 8: Formas de ondas para V_S , V_i , V_E e V_O .

h) Compare com os valores teóricos e práticos. O que aconteceu com o ganho de tensão? Por quê?
 R:

Tabela 6: Erros relativos.				
Parâmetro	A_V	A_{VS}		
Teórico	0,996	0,977		
Simulado	0,990	0,980		
Erro (%)	-0,60	0,31		

Não houve uma mudança expressiva com o ganho, ou seja, possui um erro relativamente baixo. Além disso, pode-se confirmar os resultados encontrados pela relação: $A_{VS} < A_{VL} < A_{V}$.

i) Montar o circuito da figura abaixo (sem conectar a fonte de tensão senoidal e os capacitores ao circuito). Medir os parâmetros relativos ao ponto quiescente e anotar na tab 7 e 8.

Figura 9: Circuito pratico 4.

Tabela 7: Valores simulados.

$I_{B1} (\mu A)$	$I_{C2} (mA)$	$I_{E1} (mA)$	$V_{RB1}(V)$	$V_{RB2}(V)$	$V_{B1}(V)$	$V_{C1}(V)$	$V_{CE1}(V)$
21,71	3,7	3,78	7,29	5,88	4,83	10,00	5,88

Tabela 8: Valores simulados.

$V_{RB3}(V)$	$V_{RE}(V)$	$V_{B2}(V)$	$V_{C2}(V)$	V_{CE2}
4,83	4,16	10,7	11,3	1,24

j) Conectar ao circuito a uma fonte ou gerador de sinais (Sinal senoidal, Vi1PP=20mV e f=1kHz) e medir os valores de pico-a-pico das tensões Vo1 e Vo2. Calcular o ganho de tensão AVNL. R:

 $A_{VNL1} = \frac{-20m}{20m} = -1,00$

 $A_{VNL2} = \frac{-2.86}{20m} = -143,00$

(11)

(12)

rabeia 9: vaior	es simurados		
$V_{o1_{pp}} (mV)$	$V_{o2_{pp}}\left(V\right)$		
20,00	2,86		

Figura 10: Circuito pratico 5.

k) Desenhar as formas de ondas de Vi1, Vo1 e VO2. Desenhar com a componente continua (circuito físico - acoplamento

REFERÊNCIAS REFERÊNCIAS

CC dos canais 1 e 2 do osciloscópio habilitados).

R:

Figura 11: Tensões de saída.

- 1) Qual é a componente contínua presente no coletor de Q2?
 - R: A componente contínua presente no coletor de Q2 é 11,3 V.
- m) Os sinais de Vi e VO estão em fase? Explique:
 - R: Os sinais não estão em fase, pois pelo gráfico podemos perceber que o sinal de entrada começa com fase 0° e para esse mesmo instante a fase na saída está com fase 180°, ou seja, ganho negativo.
- n) Compare com os valores teóricos e práticos. O que aconteceu com o ganho de tensão? Por quê?
 R: O ganho de tensão foi próximo do esperado.

Conclusão:

Por meio deste relatório, para uma analise do seguidor de emissor, percebemos que a tensão na saída não é em sua totalidade a tensão aplicada na entrada e que esta configuração não altera a fase na saída com relação a entrada. Já para a configuração cascode, foi encontrado as componentes continuas e verificada que a tensão de saída está defasada em 180°. Outro detalhe interessante é que com o cascode pode-se obter ganhos maiores, como pôde ser observado nas simulações acima.

Referências

- [1] R. L. Boylestad and L. Nashelsky, *Dispositivos eletrônicos e teoria de circuitos*, vol. 11. Prentice-Hall do Brasil, 2013.
- [2] Alldatasheet, "https://html.alldatasheet.com/html-pdf/2894/motorola/bc547b/518/2/bc547b.html."