

ANÁLISIS NUMÉRICO

Mag. Carlos Alberto Ardila Albarracín

BLOQUE 1. RAÍCES DE ECUACIONES DE UNA VARIABLE
1.1. MÉTODO DE BISECCIÓN

MÉTODO DE BISECCIÓN

En el método de bisección se ejecutan los siguientes pasos:

Sea f(x) continua,

- (i) Encontrar valores iniciales Xa y Xb tales que f(Xa) y f(Xb) tengan signos opuestos, es decir: f(Xa)* f(Xb) < 0
- (ii) La primera aproximación a la raíz se toma igual al punto medio entre Xa y Xb

$$Xr = \frac{(Xa + Xb)}{2}$$

MÉTODO DE BISECCIÓN

(iii) Evaluar f(Xr). Puede darse uno de los siguientes casos:

$$\rightarrow f(Xa) * f(Xr) < 0$$

En este caso, tenemos que f(Xa) y f(Xr) tienen signos opuestos. Por lo tanto, la raíz se encuentra en el intervalo [Xa, Xr].

$$\rightarrow f(Xa) * f(Xr) > 0$$

En este caso, tenemos que f(Xa) y f(Xr) tienen el mismo signo, y de aquí que f(Xr) y f(Xb) tienen signos opuestos. Por lo tanto, la raíz se encuentra en el intervalo [Xr, Xb].

$$\rightarrow f(Xa) * f(Xr) = 0$$

En este caso, se tiene que f(Xr) = 0 y se ha localizado la raíz.

MÉTODO DE BISECCIÓN

El proceso se vuelve a repetir con el nuevo intervalo, hasta que

Es decir,

Ejemplo 1. Aproximar la raíz de $f(x) = e^{-x}$ - In f(x) Hasta que el error relativo porcentual sea menor al f(x)

Este valor se denomina TOLERANCIA. Se define ANTES de ejecutar el método y se usa como valor de referencia (o meta).

Gráfico de e^-x-ln(x)

MÉTODO DE BISECCIÓN

Así pues, tenemos todos los requisitos satisfechos para aplicar el método de bisección. Comenzamos:

(i) Calculamos el punto medio (De hecho, es la primera aproximación a la raíz)

Xanterior =
$$(a + b) / 2 = (1 + 1.5) / 2 = 1.25$$

(ii) Evaluamos
$$f(1.25) = e^{-1.25} - \ln(1.25) = 0.0636 > 0$$

(iii) Para identificar mejor en cual de los 2 sub-intervalos se encuentra la raíz, hacemos la siguiente figura:

Y vemos que la raíz se encuentra en el intervalo [1.25, 1.5]

En este punto, vemos que todavía no podemos calcular ningún error relativo, puesto que solamente tenemos la primera aproximación.

Así, repetimos el proceso con el nuevo intervalo [1.25, 1.5]

Calculamos el punto medio del nuevo sub-intervalo (Es la segunda aproximación a la raíz)

$$X_{\text{nueva}} = (1.25 + 1.5) / 2 = 1.375$$

Aquí podemos calcular el error relativo porcentual, puesto que contamos ya con la aproximación nueva y la aproximación anterior

Puesto que no se ha logrado el objetivo, continuamos con el proceso

Dado que Xnueva no sirvió, se reasigna como Xanterior

MÉTODO DE BISECCIÓN

Evaluamos
$$f(1.375) = e^{-1.375} - \ln(1.375) = -0.06561 < 0$$

y elaboramos la figura:

Por lo tanto, vemos que la raíz se encuentra en el intervalo [1.25, 1.375]

Calculamos el punto medio del nuevo sub-intervalo:

$$X_{\text{nueva}} = (1.25 + 1.375) / 2 = 1.3125$$

Calculamos el nuevo error relativo porcentual:

¡El proceso debe seguir hasta lograr el objetivo!

MÉTODO DE BISECCIÓN

En la siguiente tabla resumimos los resultados que se obtienen:

Aproximación a la raíz	Error relativo porcentual
1.25	
1.375	9.09
1.3125	4.76
1.28125	2.43
1.296875	1.20
1.3046875	0.59

Como el Erp es menor al 1% planteado inicialmente (TOLERANCIA) se termina el proceso.

Así, obtenemos como aproximación a la raíz X = 1.3046875

MÉTODO DE BISECCIÓN

Para encontrar una solución de f(x) = 0 dada la función f en el intervalo [a, b] donde f(a) y f(b) tienen signos opuestos (y garantizando que haya raíz única)

Entradas: extremos a y b, tolerancia TOL, número máximo de iteraciones N

Salida: Solución aproximada Xnueva ó mensaje de fracaso

Paso 1: tomar i = 1. (La variable **i** es la contadora de iteraciones).

Paso 2: Calcular el primer punto medio y evaluar en cuál sub-intervalo continuar

Xanterior = (a + b)/2

si f(a)*f(Xanterior)>0 entonces tomar a=Xanterior, si no, tomar b=Xanterior

Paso 3: Mientras (i<=N) seguir pasos 4 a 7:

Paso 4: Cálculo de nueva raíz y del error relativo

Xnueva = (a + b)/2;

er = (Xnueva - Xanterior)/Xnueva;

Paso 5: si f(Xnueva) = 0 ó (error relativo < TOL) entonces mostrar Xnueva y PARAR

Paso 6: tomar i = i + 1

Paso 7: Redefinición del intervalo y actualización de raíz. Si f(a)*f(Xnueva)>0 entonces tomar a=Xnueva, si no, tomar b=Xnueva. Tomar Xanterior = Xnueva

Paso 8: SALIDA. El método ha fracasado después de N iteraciones y PARAR