(十) 图论: 树 (Trees)

魏恒峰

hfwei@nju.edu.cn

2021年05月13日

BLU-RAY" + DIGITAL 15TH ANNIVERSARY EDITION ROBIN WILLIAMS MATT DAMON ACADEMY AWARD NOMINATIONS BEST SUPPORTING ACTOR . BEST ORIGINAL SCREENPLAY

你, 真得, 看懂了吗?

Definition (Tree (树))

A tree is a connected acyclic undirected graph.

Definition (Tree (树))

A tree is a connected acyclic undirected graph.

Definition (Forest (森林))

A forest is a acyclic undirected graph.

Cayley Graph (4-regular tree)

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

Lemma

Any tree T with ≥ 2 vertices contains ≥ 1 leaf.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

Lemma

Any tree T with ≥ 2 vertices contains ≥ 1 leaf.

Otherwise, $\forall v \in V. \deg(v) \geq 2 \implies T$ has cycles.

2021 年 05 月 13 日

6/53

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

7/53

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

Consider the two endpoints of any maximal (nontrivial) path in T.

7/53

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

Consider the two endpoints of any maximal (nontrivial) path in T. They are leaves of T.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

G' = G - v is connected and acyclic.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

G' = G - v is connected and acyclic.

A leaf does not belong to any paths connecting two other vertices.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

G' = G - v is connected and acyclic.

A leaf does not belong to any paths connecting two other vertices.

This lemma can be used in induction for trees!

Theorem ((We call it) Characterization of Trees)

Let T be an undirected graph with n vertices.

Then the following statements are equivalent:

- (1) T is a tree;
- (2) T is acyclic, and has m = n 1 edges;
- (3) T is connected, and has m = n 1 edges;
- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

Theorem ((We call it) Characterization of Trees)

Let T be an undirected graph with n vertices.

Then the following statements are equivalent:

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges;
- (3) T is connected, and has m = n 1 edges;
- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

$$(1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (1)$$

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step: n = 1. m = 0 = n - 1.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step: n = 1. m = 0 = n - 1.

Induction Hypothesis: Any trees with n-1 vertices has n-2 edges.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step: n = 1. m = 0 = n - 1.

Induction Hypothesis: Any trees with n-1 vertices has n-2 edges.

Induction Step: Consider a tree T with $n \geq 2$ vertices.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step: n = 1. m = 0 = n - 1.

Induction Hypothesis: Any trees with n-1 vertices has n-2 edges.

Induction Step: Consider a tree T with $n \geq 2$ vertices.

T has a leaf v.

- (1) *T* is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step: n = 1. m = 0 = n - 1.

Induction Hypothesis: Any trees with n-1 vertices has n-2 edges.

Induction Step: Consider a tree T with $n \geq 2$ vertices.

T has a leaf v.

For
$$T' = T - v$$
, $m(T') = (n - 1) - 1 = n - 2$.

- (1) T is a tree;
- (2) T is acyclic, and has m = n 1 edges.

By induction on the number n of vertices of trees.

Basis Step:
$$n = 1$$
. $m = 0 = n - 1$.

Induction Hypothesis: Any trees with n-1 vertices has n-2 edges.

Induction Step: Consider a tree T with $n \geq 2$ vertices.

T has a leaf v.

For
$$T' = T - v$$
, $m(T') = (n - 1) - 1 = n - 2$.

$$m(T) = (n-2) + 1 = n - 1.$$

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

By Contradiction.

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

By Contradiction.

Suppose that T is disconnected.

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

By Contradiction.

Suppose that T is disconnected.

T is a forest, consisting of $k \geq 2$ trees T_1, T_2, \ldots

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

By Contradiction.

Suppose that T is disconnected.

T is a forest, consisting of $k \geq 2$ trees T_1, T_2, \ldots

By (2), for each T_i , $m(T_i) = n(T_i) - 1$.

- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges.

By Contradiction.

Suppose that T is disconnected.

T is a forest, consisting of $k \geq 2$ trees T_1, T_2, \ldots

By (2), for each
$$T_i$$
, $m(T_i) = n(T_i) - 1$.

$$m(T) = \sum_{i=1}^{k} m(T_i) = n - k \neq n - 1.$$

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

Definition (Bridge (桥))

A bridge of a graph G is an edge e such that

$$c(G - e) > c(G)$$
.

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

Consider any edge e of T.

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

Consider any edge e of T.

$$m(T - e) = (n - 1) - 1 = n - 2.$$

- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge.

Consider any edge e of T.

$$m(T - e) = (n - 1) - 1 = n - 2.$$

T - e must be disconnected.

- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path.

- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path.

Consider any two vertices u and v.

- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path.

Consider any two vertices u and v.

T is connected $\implies u$ and v are connected by ≥ 1 path.

- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path.

Consider any two vertices u and v.

T is connected $\implies u$ and v are connected by ≥ 1 path.

If u and v are connected by two paths, the edges on these two paths are not bridges.

- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

If T has a cycle C,

any two vertices in C is connected by ≥ 2 paths.

- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

If T has a cycle C,

any two vertices in C is connected by ≥ 2 paths.

Consider the addition of edge $\{u, v\}$ to T.

It creates a cycle, consisting of $\{u, v\}$ and the path from u to v.

- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

If T has a cycle C,

any two vertices in C is connected by ≥ 2 paths.

Consider the addition of edge $\{u, v\}$ to T.

It creates a cycle, consisting of $\{u, v\}$ and the path from u to v.

Lemma

If two distinct cycles of a graph G share a common edge e, then G has a cycle that does not contain e.

- $(6)\ T\ is\ acyclic,\ but\ the\ addition\ of\ any\ edge\ creates\ exactly\ one\ cycle;$
- (1) T is a tree.

- (6) T is acyclic, but the addition of any edge creates exactly one cycle;
- (1) T is a tree.

Suppose that T is disconnected.

- (6) T is acyclic, but the addition of any edge creates exactly one cycle;
- (1) T is a tree.

Suppose that T is disconnected.

T is a forest, consisting of ≥ 2 trees T_1, T_2, \ldots

- (6) T is acyclic, but the addition of any edge creates exactly one cycle;
- (1) T is a tree.

Suppose that T is disconnected.

T is a forest, consisting of ≥ 2 trees T_1, T_2, \ldots

Choose
$$u \in V(T_1), v \in V(T_2)$$
.

 $T + \{u, v\}$ does **not** create cycles.

Definition (Spanning Tree (生成树))

A spanning tree T of an undirected graph G is a subgraph that is a tree with all vertices of G.

Definition (Spanning Tree (生成树))

A spanning tree T of an undirected graph G is a subgraph that is a tree with all vertices of G.

Definition (Subgraph (子图))

Definition (Subgraph (子图))

Definition (Induced Subgraph (诱导子图))

Theorem

Every connected undirected graph G admits a spanning tree.

Theorem

Every connected undirected graph G admits a spanning tree.

Repeatedly deleting vertices in cycles until the graph is acyclic.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Existence?

Uniqueness?

Algorithms?

20/53

Theorem

Every weighted connected undirected graph G admits a minimum spanning tree.

Theorem

Every weighted connected undirected graph G admits a minimum spanning tree.

Joseph Kruskal (1928 $\sim 2010)$

Robert C. Prim $(1921 \sim)$

Cut Property

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T_2 of G.

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T_2 of G.

Correctness of Prim's and Kruskal's algorithms.

$$T' = \underbrace{T}_{X \subseteq T} + \{e\} - \{e'\}$$
if $e \notin T$

28 / 53

$$T' = \underbrace{T}_{X \subseteq T} + \{e\} - \{e'\}$$
if $e \notin T$

"a" \rightarrow "the" \Longrightarrow "some" \rightarrow "all"

Cut Property (Version II)

A cut $(S, V \setminus S)$

Let e = (u, v) be <u>a</u> lightest edge across $(S, V \setminus S)$

 \exists MST T of $G: e \in T$

Cut Property (Version II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be <u>a</u> lightest edge across $(S, V \setminus S)$

 \exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

Cut Property (Version II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across $(S, V \setminus S)$

\exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

"a"
$$\rightarrow$$
 "the" \Longrightarrow " \exists " \rightarrow " \forall "

- ightharpoonup Let C be any cycle in G
- ▶ Let e = (u, v) be **a** maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

- \blacktriangleright Let C be any cycle in G
- Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

- \blacktriangleright Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

"a"
$$\rightarrow$$
 "the" \Longrightarrow " \exists " \rightarrow " \forall "

Joseph Kruskal (1928 $\sim 2010)$

Anti-Kruskal Algorithm

Reverse-delete algorithm (wiki; clickable)

Anti-Kruskal Algorithm

Reverse-delete algorithm (wiki; clickable)

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

Anti-Kruskal Algorithm

Reverse-delete algorithm (wiki; clickable)

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem"

— Kruskal, 1956.

33 / 53

Otakar Borůvka (1899 $\sim 1995)$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

Let G be an edge-weighted undirected graph. If each edge has a distinct weight, then there is a unique MST of G.

Let G be an edge-weighted undirected graph. If each edge has a distinct weight, then there is a unique MST of G.

By Contradiction.

 \exists MSTs $T_1 \neq T_2$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists \text{ MSTs } T_1 \neq T_2$$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

Let G be an edge-weighted undirected graph.

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

$$e \in T_1 \setminus T_2 \ (w.l.o.g)$$

$$T_2 + \{e\} \implies C$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T' = T_2 + \{e\} - \{e'\} \implies w(T') < w(T_2)$$

Condition for Uniqueness of MST

Unique MST \implies Distinct weights

Condition for Uniqueness of MST

Unique MST \implies Distinct weights

Rooted Trees in Computer Science

Definition (Rooted Trees (有根树))

bfs

42 / 53

dfs: in-order, pre-order, post-order

search trees

Theorem (Cayley's Formula)

The number T_n of labeled trees on $n \ge 2$ vertices is n^{n-2} .

Theorem (Cayley's Formula)

The number T_n of labeled trees on $n \ge 2$ vertices is n^{n-2} .

Arthur Cayley (1821 $\sim 1895)$

47/53

Chapter 33: Cayley's formula for the number of trees

By Double Counting.

— Jim Pitman

By Double Counting.

— Jim Pitman

https://en.wikipedia.org/wiki/Double_counting_(proof_technique)#Counting_trees

By Double Counting.

— Jim Pitman

https://en.wikipedia.org/wiki/Double_counting_(proof_technique)#Counting_trees

How many ways are there of forming a rooted tree from an empty graph by adding directed edges one by one? Choose one of the T_n labeled trees on n vertices.

Choose one of the T_n labeled trees on n vertices.

Choose one of its n vertices as root.

Choose one of the T_n labeled trees on n vertices.

Choose one of its n vertices as root.

Choose one of the (n-1)! possible sequences in which to add its n-1 directed edges.

$$\frac{T_n n(n-1)!}{T_n n!} = T_n n!$$

Suppose that we have added n-k directed edges.

Suppose that we have added n-k directed edges.

We obtain a rooted forest with k trees.

Suppose that we have added n - k directed edges.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

51/53

Suppose that we have added n-k directed edges.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

Suppose that we have added n-k directed edges.

We obtain a rooted forest with k trees.

There are n(k-1) choices for the next edge to add.

$$\prod_{k=2}^{n} n(k-1) = n^{n-1}(n-1)! = n^{n-2}n!$$

$$T_n n! = n^{n-2} n!$$

$$T_n n! = n^{n-2} n!$$

$$T_n = n^{n-2}$$

$$T_n n! = n^{n-2} n!$$

$$T_n = n^{n-2}$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

Homeomorphically Irreducible Trees of size n = 10

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn