БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Отчёт по лабораторной работе №4 «Приближенное вычисление интеграла»

Выполнил: Гаргома А.О.

Преподаватель: Горбачёва Ю. Н.

Содержание

1	Постановка задачи	1
2	Теория	1
3	Программа	2
4	Результаты работы	4
5	Вывол	5

1 Постановка задачи

Вычислить интеграл $\int_a^b f(x) dx$ с точностью $\varepsilon = 10^{-4}$, используя квадратурные формулы, указанные в варианте задания, и правило Рунге оценки погрешности. Вычислить интеграл $\int_a^b f(x)dx$ по квадратурной формуле Гаусса с 2, 3 и 4 узлами

единичной весовой функции на [a,b].

$$f(x) = \frac{x}{\ln(1+x+x^2)}, \ a = 2, \ b = 3$$

Квадратурные формулы: правых прямоугольников, трапеций, Симпсона.

2 Теория

Формула правых прямоугольников:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1})$$

Формула трапеций:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1})$$

Формула Симпсона:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} \frac{f(x_{i-1}) + 4f(\frac{x_{i-1} + x_{i}}{2}) + f(x_{i})}{6} (x_{i} - x_{i-1})$$

Погрешность вычисления значения интеграла при числе шагов, равном 2n определяется по формуле Рунге:

$$\Delta_{2n} \approx \Theta |I_{2n} - I_n|$$

Для формулы правых прямоугольников $\Theta=1$, для формулы трапеций $\Theta=\frac{1}{3}$, для формулы Симпсона $\Theta = \frac{1}{15}$.

Укажем квадратурные формулы Гаусса для весовой функции $p \equiv 1$ и отрезка интегрирования [-1, 1].

Формула Гаусса для двух узлов:

$$I \approx f(-0.5773502692) + f(0.5773502692)$$

Формула Гаусса для трёх узлов:

$$I \approx \frac{5}{9}f(-0.7745966692) + \frac{8}{9}f(0) + \frac{5}{9}f(0.7745966692)$$

Формула Гаусса для четырёх узлов:

$$I \approx 0.3478548451 f(-0.8611363116) + 0.6521451549 f(-0.3399810436) + 0.6521451549 f(0.3399810436) + 0.3478548451 f(0.8611363116)$$

Для применения формул Гаусса на отрезке [a,b], можно воспользоваться линейной заменой

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$

и домножить результат на

$$\frac{b-a}{2}$$

Значения узлов x_i метода Гаусса по n точкам являются корнями полинома Лежандра степени n. Значения весов вычисляются по формуле

$$a_i = \frac{2}{(1 - x_i^2)[P_n'(x_i)]^2}$$

где P_n' – первая производная полинома Лежандра.

3 Программа

```
import numpy as np
import math
```

```
\begin{array}{ll} \textbf{def} & f(x): \\ & \textbf{return} & 1/(np.\log(1{+}x{+}x{*}x{*}2)) \\ \\ a, & b = 2, 3 \\ \\ eps & = 10{*}*(-4) \end{array}
```

$$\begin{array}{lll} nodes &=& \{2\colon \left[-0.55773502692\,,\ 0.55773502692\right],\\ &=& 3\colon \left[-0.7745966692\,,\ 0,\ 0.7745966692\right],\\ &=& 4\colon \left[-0.8611363116\,,\ -0.3399810436\,,\ 0.3399810436\,,\\ 0.8611363116\right]\} \end{array}$$

```
gauss\_coeffs = \{2: [1, 1],
           3: [5/9, 8/9, 5/9],
           4: [0.3478548451, 0.6521451549, 0.6521451549,
   0.3478548451
\# преобразование [-1,1] \longrightarrow [a,b]
def transform(x):
    return (a + b) / 2 + (b - a) * x / 2
# погрешность по правилу Рунге
def runge (prev, curr, theta):
    return np.abs(curr - prev) * theta
def right_rectangles_method(n):
    xs = np.linspace(a, b, n+1)
    h = xs[1:] - xs[:-1] \# h_i = x_i - x_i \{i-1\}, i = 1,...
    return np.sum(f(xs[1:]) * h) \# cymma f(x_i)*h_i
def trapezium method(n):
    xs = np.linspace(a, b, n+1)
    h = xs[1:] - xs[:-1]
    return np.sum ((f(xs[:-1]) + f(xs[1:])) / 2 * h)
def simpsons method(n):
    xs = np.linspace(a, b, n+1)
    h = xs[1:] - xs[:-1]
    return np.sum((f(xs[:-1]) + 4 * f((xs[:-1] + xs[1:])/2) +
        + f(xs[1:])) * h / 6)
def gauss formula(n):
    result = 0
    for (xi, ai) in zip(nodes[n], gauss coeffs[n]):
        result += ai * f(transform(xi))
    return result * (b-a)/2
def calculate (method, method name):
    theta = runge coeffs [method name]
    n = 1
    h \,=\, b\,-\, a
    curr = method(n)
    error = math.inf
```

```
print(f'& $h = {h:.6f}$ & $I_h={curr:.6f}$ & \\\\\cline
{{2-4}} ')
while error > eps:
    n *= 2
    h /= 2
    prev, curr = curr, method(n)
    error = runge(prev, curr, theta)
    print(f'& $h/{n} = {h:.6f}$ & $I_{{h/{n}}}={curr:.6f}$ & $R_{{h/{n}}}={curr:.6f}$ & $R_{{h/{n}}}={curr:.
```

4 Результаты работы

Формула	Шаг	Значение	Погрешность
	h = 1.000000	$I_h = 0.389871$	
	h/2 = 0.500000	$I_{h/2} = 0.414497$	$R_{h/2} = 0.024626$
	h/4 = 0.250000	$I_{h/4} = 0.428352$	$R_{h/4} = 0.013855$
	h/8 = 0.125000	$I_{h/8} = 0.435688$	$R_{h/8} = 0.007336$
	h/16 = 0.062500	$I_{h/16} = 0.439459$	$R_{h/16} = 0.003772$
Прорин	h/32 = 0.031250	$I_{h/32} = 0.441371$	$R_{h/32} = 0.001912$
Правых прямоугольн.	h/64 = 0.015625	$I_{h/64} = 0.442334$	$R_{h/64} = 0.000962$
	h/128 = 0.007812	$I_{h/128} = 0.442817$	$R_{h/128} = 0.000483$
	h/256 = 0.003906	$I_{h/256} = 0.443058$	$R_{h/256} = 0.000242$
	h/512 = 0.001953	$I_{h/512} = 0.443179$	$R_{h/512} = 0.000121$
	h/1024 = 0.000977	$I_{h/1024} = 0.443240$	$R_{h/1024} = 0.000061$
	h = 1.000000	$I_h = 0.451885$	
	h/2 = 0.500000	$I_{h/2} = 0.445504$	$R_{h/2} = 0.002127$
 Трапеций	h/4 = 0.250000	$I_{h/4} = 0.443855$	$R_{h/4} = 0.000549$
т рапеции	h/8 = 0.125000	$I_{h/8} = 0.443439$	$R_{h/8} = 0.000139$
	h/16 = 0.062500	$I_{h/16} = 0.443335$	$R_{h/16} = 0.000035$
Симпсона	h = 1.000000	$I_h = 0.443377$	
Симпсона	h/2 = 0.500000	$I_{h/2} = 0.443306$	$R_{h/2} = 0.000005$

	Приближенное
Количество	значение
узлов	интеграла
2	0.4429706518
3	0.4432999292
4	0.4433004909

5 Вывод

Из количества итераций методов в таблице выше можно сделать вывод, что сходимости этих методов можно расположить по возрастанию: метод правых прямоугольников < метод трапеций < метод Симпсона. Квадратуры Гаусса также позволяют быстро получить ответ с высокой точностью, но для оценки погрешности требуется много вычислений.