Introduction to the Phase-Field Method and Its Applications

Hands on tutorials and exercises

Xiaoxing Cheng June, 24th, 2020

Materials Science and Engineering, The Pennsylvania State University

Outline

- 1. MUPRO
- 2. Part One: Tutorials

Project 1: Ferroelectric

Project 2: Ferromagnetic

Project 3: Effective Property

Visualization

3. Part Two: Exercises

Exercise 1: Ferroelectric

Exercise 2: Ferromagnetic

Exercise 3: Effective Property

MUPRO

μ_{for} Mesoscale icrostructure PRO perty Fessional

Part One: Tutorials

Preparation

Connect to the online portal:

portal.aci.ics.psu.edu

Most used commands

ls list directory

cd change directory

cp copy

mkdir make directory
module list loaded modules
module avail available modules
module load load module

qsub submit job

qstat status of job

Preparation


```
cd ~/scratch # Go to your scratch folder
mkdir pfm # Create a folder for the tutorial
cd pfm # Go into the created folder
module load python/3.6.3-anaconda5.0.1
cp -r /gpfs/group/dml129/default/matse_sc_data/lchen/doc .
```

Project 1: Ferroelectric - Preparation

- cp -r /gpfs/group/dml129/default/matse_sc_data/lchen/project1 .

 cd project1

 ls
 - input.in Boundary conditions and applied external field

 pot.in Thermodynamic and physical properties of the material
 ferro.pbs The PBS submission script

 Ferroelectric.exe The executable that we are using

$$\frac{\partial \eta}{\partial t} = -L \frac{\delta F}{\delta \eta}$$

$$\begin{split} \frac{\partial \eta}{\partial t} &= -L \frac{\delta F}{\delta \eta}, \quad F = \int_{\Omega} (f_{land} + f_{grad}) d\Omega \\ f_{land}(\mathbf{p}) &= \alpha_i p_i^2 + \alpha_{ij} p_i^2 p_j^2 + \alpha_{ijk} p_i^2 p_j^2 p_k^2 \\ f_{grad}(\mathbf{p}) &= \frac{1}{2} G_{ijkl}^p p_{i,j} p_{k,l} \end{split}$$

$$\begin{split} \frac{\partial \eta}{\partial t} &= -L \frac{\delta F}{\delta \eta}, \quad F = \int_{\Omega} (f_{land} + f_{grad} + f_{elas}) d\Omega \\ f_{land}(\mathbf{p}) &= \alpha_i p_i^2 + \alpha_{ij} p_i^2 p_j^2 + \alpha_{ijk} p_i^2 p_j^2 p_k^2 \\ f_{grad}(\mathbf{p}) &= \frac{1}{2} G_{ijkl}^p p_{i,j} p_{k,l} \\ f_{elas}(\mathbf{p}, \boldsymbol{\epsilon}) &= \frac{1}{2} C_{ijkl} (\epsilon_{ij} - \epsilon_{ij}^0) (\epsilon_{kl} - \epsilon_{kl}^0) \end{split}$$

$$\begin{split} \frac{\partial \eta}{\partial t} &= -L \frac{\delta F}{\delta \eta}, \quad F = \int_{\Omega} (f_{land} + f_{grad} + f_{elas} + f_{elec}) d\Omega \\ f_{land}(\boldsymbol{p}) &= \alpha_i p_i^2 + \alpha_{ij} p_i^2 p_j^2 + \alpha_{ijk} p_i^2 p_j^2 p_k^2 \\ f_{grad}(\boldsymbol{p}) &= \frac{1}{2} G_{ijkl}^p p_{i,j} p_{k,l} \\ f_{elas}(\boldsymbol{p}, \boldsymbol{\epsilon}) &= \frac{1}{2} C_{ijkl} (\epsilon_{ij} - \epsilon_{ij}^0) (\epsilon_{kl} - \epsilon_{kl}^0) \\ f_{elec}(\boldsymbol{p}, \boldsymbol{E}) &= -\frac{1}{2} \epsilon_0 E_i E_j - E_i p_i \end{split}$$

Project 1: Ferroelectric - Input: pot.in


```
"name": "PbTiO3".
         "Comment": "",
         "Reference": "Li Y.L. et al., Acta Materialia 2002 50(2)".
         "Prerequisite": {
             "CurieT": "752.15"
         "Normalizer": {
             "P0": "0.757"
10
         "Landau": {
12
             "a1": "3.8*10^5*(TEM-CurieT)".
             "a11": "-73000000".
14
             "a12": "7.5*10^8".
             "a111": "2.6*10^8",
             "a112": "6.1*10^8",
16
17
             "a123": "-37000000000"
18
19
         "Flectrostrictive": {
20
              "Q11": "0.089",
             "012": "-0.026".
21
              "044": "0.03375"
22
23
24
         "ElasticStiffness": {
25
              "C11": "1746000000000".
26
             "C12": "79370000000".
             "C44": "1111000000000"
28
```

pot.in is a json format input file for the MUPRO ferroelectric module, which feeds those necessary physical parameters into the program, such as the landau coefficient, the electrostrictive coefficient, the elastic stiffness, etc.

Project 1: Ferroelectric – Input: input.in


```
SYSDIM = 128 128 36
     REALDIM = 128 128 36
     IBULK = False
     FILMTHICK = 20
     SUBTHICK = 12
     TEM = 298
     LPNOISE = T
     PNOTSMAG = 0.1
11
     GRADPCON = 0.6 - 0.6 0.6
12
13
     TTOTAL = 50000
14
     TSTART = 0
15
     TOUTPUT = 10000
16
     LEL\Delta S = t
     CELASBC = 0
18
19
     MISFIT = -0.005 - 0.005 0.0
20
     LELEC = t
21
     CELECBC = 2
23
     DIFLECON = 45 45 45
24
     LOUTELAS = T
     LOUTELEC = T
```

input.in is a free format input file for the MUPRO ferroelectric module. It controls how the simulation will be executed.

Project 1: Ferroelectric - Execution

- ./Ferroelectric.exe # Run directly
 # Or vou may submit a job
 - Valid to use, thanks for using MUPRO -----Simulation system general setup-----Input parameters |Simulation dimension nx (unitless) = 128 |Simulation dimension by (unitless) = 128 |Simulation dimension nz (unitless) = Real dimension lx (nm) = 128.0000Real dimension ly (nm) = 128.0000 Real dimension lz (nm) = 36,0000 Bulk system condition = |Film thickness (unitless) = 20 |Substrate thickness (unitless) = 12 Temperature (K) = 298,0000 Add noise to polarization = |Polarization noise magnitude = 0.100000 |Gradient coefficient g11 (unitless) = 0.600000 |Gradient coefficient g12 (unitless) = -0.600000 Gradient coefficient g44 (unitless) = 0.600000 Total simulation timesteps = Initial simulation timesteps = |Output for every # timesteps = 10000 Consider elastic effect = Elastic BC is Use thin film misfit strain as elastic BC-----Misfit exx = -0.0050 |Misfit evv = Misfit exv = 0.0000 Consider electric effect Flectric BC is 45.000000 |Dielectric constant ensilon11 = Dielectric constant epsilon22 = 45.000000 45.000000 |Dielectric constant epsilon33 = |Export stress/strain = Export electric related =

- qsub ferro.pbs gastat -u [vour username]
 - #PBS -1 nodes=1:ppn=4 #PRS -1 walltime=48:00:00 #PBS -1 pmem=5g #PBS -A sbs5563 e g lc default #PBS -N lchen-p1 #PBS -i oe module load intel module load mkl module load impi 13 cd \$PBS O WORKDIR echo 'date'

mpirun ./Ferroelectric.exe

echo `date`

Project 2: Ferromagnetic - Preparation


```
cd .. # Go back to the pfm folder
cp -r /gpfs/group/dml129/default/matse_sc_data/lchen/project2 .
cd project2
ls
```

parameter.in Boundary conditions and applied external field magn.pbs The PBS submission script

Magnetic.exe The executable that we are using

Project 2: Ferromagnetic - Input: parameter.in


```
# Standard Problem #3 Flower Structure
     # size
     REALDIM = 105.75 1 105.75
    SYSDIM =
                50 1 50
     TSLANDTHTCK = 40
     ISLANDLENGTH = 40 1
     # spin
     SATURATION =
                    5 F5
     # anisotropy
    FLAGANI = true
     CHOTCEANT = 2
     \DeltaNTSOTROPY = 15.708E3
15
     # strav field
     FLAGSTRAY = true
     FLAGPERTODIC = false
19
     # exchange
     EXCHANGE = 15.708E-12
22
     # time
    TIMESTEP = 1.E-14
     NTMAX = 500000
     NTOUTTABLE =
                    10000
    NTOUTDIST = 50000
    CHOICEINITMAG = 2
     INITMAG = 0, 0, 1,
```

parameter.in is a free format input file for the MUPRO magnetic module. It controls the simulation program.

Project 2: Ferromagnetic - Execution

./Magnetic.exe

qsub magn.pbs

```
#PBS -l nodes=1:ppn=1
     #PBS -1 walltime=48:00:00
     \#PBS -1 pmem=5g
     #PBS -A sbs5563 e g lc default
     #PBS -N lchen-p2
     #PBS -i oe
     module load intel
     module load mkl
     module load impi
12
13
     cd $PBS O WORKDIR
     echo `date`
     mpirun ./Magnetic.exe
     echo `date`
16
```

Project 3: Effective Property – Preparation


```
cd .. # Go back to the pfm folder
cp -r /gpfs/group/dml129/default/matse_sc_data/lchen/project3 .
cd project2
ls
```

parameter.in Boundary conditions and applied external field struct.in Composite structure setup eff.pbs The PBS submission script

EffProperty.exe The executable that we are using

Project 3: Effective Property - Input: parameter.in


```
# Example with Dielectricity
     # size
     SYSDIM =
     REALDIM = 300 300 300
     # system
     CHOICESYS = 2
     NPHASES = 2
     CHOTCESTRUCT = 2
10
     # distribution
12
     OUTDIST = +
     ELECFIELD = 1.E5
                        9 9
14
     # coefficients of phase 1
     PHASEID = 1
     PERMITTIVITY = 1. 1. 1. 0. 0. 0.
18
19
     # coefficients of phase 2
21
     PH\Delta SETD = 2
22
     PERMITTIVITY = 1000. 1000.
                                   1000.
```

parameter.in is a free format input file for the MUPRO effective property module. It controls the simulation program.

Project 3: Effective Property – Input: struct.in

1	00	90	90	! Svstem size
1	80	80	80	
2	1	1	1	1
3	1	1	2	1
4	1	1	3	1
5	1	1	4	1
6	1	1	5	1
7	1	1	6	1
8	1	1	7	1
9	1	1	8	1
10	1	1	9	1
11	1	1	10	1
12	1	1	11	1
13	1	1	12	1
14	1	1	13	1
15	1	1	14	1
16	1	1	15	1
17	1	1	16	1
18	1	1	17	1
19	1	1	18	1
20	1	1	19	1
21	1	1	20	1
22	1	1	21	1
23	1	1	22	1
24	1	1	23	1

struct.in specify the composite structure.

Project 3: Effective Property – Execution

./EffProperty.exe

```
Valid to use thanks for using MIPRO
Hello, I am processor 0 of 0
Reading parameter in
Input parameters-----
Simulation dimension nx (unitless) = 80
Simulation dimension nv (unitless) = 80
Simulation dimension nz (unitless) = 80
Real dimension lx (nm) = 300.0000
Real dimension ly (nm) = 300.0000
Real dimension lz (nm) = 300.0000
Choice of system type is 2
Number of phases = 2
Choice of the format of the input file "struct in" = 2
Flag to control whether simulate the distribution of variables-
Applied electric field ------
Applied electric field x =
                      100000.0000
Applied electric field v =
Applied electric field z =
                         0.0000
Reading Phase ID-
Reading permittivity(epsilon) of phase ID = 1
Reading Phase ID-----
Phase ID =
Reading permittivity(ensilon) of phase ID = 2
-----Input done-----
```

qsub eff.pbs

```
#PBS -l nodes=1:ppn=1
     #PBS -1 walltime=48:00:00
     #PBS -1 pmem=5g
     #PBS -A sbs5563 e g lc_default
     #PBS -N lchen-p3
     #PBS -i oe
     module load intel
     module load mkl
     module load impi
     cd $PBS O WORKDIR
     echo 'date'
     mpirun ./EffProperty.exe
     echo `date`
16
```

Visualization: Preparation


```
1 cd .. # Go back to the pfm folder
2 export PATH=/gpfs/group/dml129/default/matse_sc_data/lchen/visualize:$PATH
3 export PYTHONPATH=/gpfs/group/dml129/default/matse_sc_data/lchen/visualize:$PYTHONPATH
```

The second command will give you direct access to the shell scripts we put in that folder.

The third command will enable import python file from the path as a module.

Visualization: Domain

- cd project1
- plot_domain.sh 1 128 1 1 1 36 0.1 0.1 0.1 Polar.00050000.dat
 - 1,2 Minimum and maximum in X direction of the plotting region
 - 3,4 Minimum and maximum in Y direction of the plotting region
 - 5,6 Minimum and maximum in Z direction of the plotting region
 - 7,8,9 Threshold for vector to be considered as valid polarization
 - 10 Data file name
- display Apersp_P_Polar.00050000.png

Visualization: 2D

- 1 cd ../project3
- plot_2ds.sh 1 80 20 20 1 80 3 eleField.00000000.dat
 - 1,2 Minimum and maximum in X direction of the plotting region
 - 3,4 Minimum and maximum in Y direction of the plotting region
 - 5,6 Minimum and maximum in Z direction of the plotting region
 - 7 The column of the data file to be plotted
 - 8 Data file name
- display fig2ds_eleField.00000000_4_80.png

Visualization: VTK


```
cd ../project2
```

2 python

Now in the python console, type the following commands

```
import nt_vtk # a module for data conversion
data = nt_vtk.Data("magnt.00500000.dat",nt_vtk.SCALAR)
data.get_vtk_file('magnt.00500000.vtk')
# You can also convert to numpy array using data.get_np_array()
```

Or you may put the above commands into a file, such as data.py run it as below python data.py

Next, we will use Paraview to visualize the vtk file.

- module load paraview
- 2 paraview

Visualization: VTK

Part Two: Exercises

Get the doc


```
cd .. # Go back to the pfm folder
cd doc
xpdf [the pdf name you want to open]
```

Read the documentation for information of the **keywords** you may use for each program.

Exercise 1: Ferroelectric

In project 1, we have a thin film setup with 0 misfit strain. Please modify the input.in file and run simulations with compressive (-0.5%) and tensile (0.5%) biaxial misfit strain.

Change **MISFIT**.

Exercise 2: Ferromagnetic

In project 2, we have got a flower structure. For exercise 2, please modify the parameter.in file to obtain a vortex structure.

Set CHOICEINITMAG to be 3, INITMAG to be 0 -1 0

Exercise 3: Effective Propert

In project 3, we have computed the effective dielectric permittivity. For exercise 3, please modify the parameter.in file to calculate the effective thermal conductivity, for the following setup.

- · CHOICESYS set to 8
- TEMGRAD set to 1.E4 0 0
- THERMCOND of phase 1 to 0.2 0.2 0.2 0 0 0
- THERMCOND of phase 2 to 200 200 200 0 0