EXERCICE 2 5 points

On considère la suite numérique (u_n) définie par son premier terme $u_0 = 2$ et pour tout entier naturel n, par :

$$u_{n+1} = \frac{2u_n + 1}{u_n + 2}$$

On admet que la suite (u_n) est bien définie.

- **1.** Calculer le terme u_1 .
- **2.** On définit la suite (a_n) pour tout entier naturel n, par :

$$a_n = \frac{u_n}{u_n - 1}$$

On admet que la suite (a_n) est bien définie.

- **a.** Calculer a_0 et a_1 .
- **b.** Démontrer que, pour tout entier naturel n, $a_{n+1} = 3a_n 1$.
- **c.** Démontrer par récurrence que, pour tout entier naturel *n* supérieur ou égal à 1,

$$a_n \geqslant 3n - 1$$

- **d.** En déduire la limite de la suite (a_n) .
- **3.** On souhaite étudier la limite de la suite (u_n) .
 - **a.** Démontrer que pour tout entier naturel n, $u_n = \frac{a_n}{a_n 1}$.
 - **b.** En déduire la limite de la suite (u_n) .
- **4.** On admet que la suite (u_n) est décroissante.

On considère le programme suivant écrit en langage Python :

```
1 def algo(p):
2 u=2
3 n=0
4 while u-1>p:
5 u=(2*u+1)/(u+2)
6 n=n+1
7 return (n,u)
```

- **a.** Interpréter les valeurs n et u renvoyées par l'appel de la fonction algo(p) dans le contexte de l'exercice.
- **b.** Donner, sans justifier, la valeur de n pour p = 0,001.