Задача 3.4.2 Закон Кюри-Вейсса

Лось Денис (группа 611) 24 ноября 2017

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтеметр, LC автогенератор, термопара медь-константант.

Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC автогенератора.

Рис. 1: Схема экспериментальной установки

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частиками образца. Кроме того, оно

улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры. Температура образца регулируется с помощью термостата.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 — её самоиндукцию в отсутствие образца, получим

$$(L-L_0)\sim\chi$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C — ёмкость контура автогенератора.

Период колебаний в отсутсвие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}$$

В результате получим, что

$$(L-L_0) \sim \left(\tau^2 - \tau_0^2\right)$$

А следовательно,

$$\chi \sim \left(\tau^2 - \tau_0^2\right)$$

Из приведённых формул следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)}$$

Измерения проводятся в интервале температур от 14 °C до 40 °C. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контрольриуется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Будем измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится меньше 0.5 °C (более точному измерению мешают паразитные ЭДС, возникающие в цепи термопары).

Ход работы

Исследуем зависимость периода колебаний LC генератора от температуры образца, отмечая период колебаний τ по частотометру, а температуру T — по показаниям дисплея и цифровому вольтметру (ΔU с учётом знака). Термопара у нас подключена так, что при знаке "+"на табло вольтметра температура образца выше температуры рабочей жидкости. Проведём измерения в диапазоне от $14\,^{\circ}$ С до $40\,^{\circ}$ С через $2\,^{\circ}$ С при нагревании и охлаждении.

В данной экспериментальной установке постоянная термопары $k=24\,\mathrm{град/mB},$ а период колебаний в отсутсвие образца $\tau_0=8.252\,\mathrm{mkc}.$

$T_{\rm жд}$, °С	ΔU , мкВ	τ , MKC	T, °C
15	1	10.035	15.02
17	13	9.885	17.31
19	17	9.625	19.41
21	11	9.211	21.26
23	15	8.859	23.36
25	15	8.665	25.36
27	12	8.568	27.29
29	15	8.511	29.36
31	15	8.473	31.36
33	15	8.444	33.36
35	13	8.422	35.31
37	11	8.405	37.26
39	12	8.392	39.29
37	15	8.401	37.36
34	16	8.426	34.38
32	17	8.448	32.41
30	17	8.478	30.40

Рис. 2: График зависимости $1 \, / \, (\tau^2 - \tau_0^2) = f(T)$

Построив график зависимости $1/(\tau^2-\tau_0^2)=f(T)$ и экстраполировав полученный график к оси абсцисс, найдём парамагнитную точку Кюри для гадолиния. В результате получим, что

$$\Theta_p = (18.1 \pm 0.5) \, ^{\circ}\text{C}$$