Module: 3: Network Theorem

Tutorial Sheet Set 1

THEVENIN'S THEOREM

1. In the below network, find the current flowing through the 10 Ω resistor utilising Thevenin's theorem. [Ans: I = 1.2 A]

2. In the below circuit, find the power loss in r_L = 5 Ω utilising Thevenin's theorem. [Ans: P_L = 0.31 W]

3. Find Thevenin's voltage across a-b terminal in the circuit of below fig. Also find the internal resistance across open circuit a-b terminal. [Ans: $V_{th} = R_{th} = R_{th}$]

4. Find the Thevenin's equivalent impedance of the given circuit in fig. Looking from x-y terminals. [Ans: $Z_{int} = r_1 / (r_1 - r_2)$]

5. Thevenised the bridge circuit across a-b in figure.

[Ans:
$$R_{int}$$
=($r_1 r_2 r_3 + r_1 r_2 r_3 + r_1 r_2 r_3 + r_1 r_2 r_3 + r_1 r_2 r_3$) / ($r_1 + r_2$) ($r_2 + r_3$)]

6. Obtain Thevenin's equivalent circuit across x-y in the figure. $[R_{\text{th}} = 4~\Omega~]$

7. Find the Thevenin equivalent of the circuit in Fig as seen from terminals a-b. [Ans: $V_{th}=55 \angle -90^{\circ}$ V, $Z_{th}=4-j0.6667 \Omega$]

8. Determine the Thevenin equivalent of the circuit in Fig. as seen from the terminals a-b. [Ans: $Z_{th}=12.166 \angle 136.3^{0}\Omega$, Vth= $7.35\angle 72.9^{0}$ V

9. Convert the source below into a Thèvenin equivalent and determine the current I_{ab} through the load resistor.

10. Convert the source below into a Thèvenin equivalent.

11. Find the Thevenin equivalent circuit for the network external to the branch *a-a*'. [Ans: Boylestad, *Introductory Circuit Analysis*, 12th ed., Prentice Hall, 2010]

12. For the circuit in below Figure, determine the Thevenin voltage as seen by R_L . [Ans: V_{th} =4.75 \angle -18.4°]

13. For Figure, find V_{th} for the circuit external to R_L . [Ans: $3.54 \angle 45^0$]

SUPERPOSITION THEOREM

1. Use superposition to find i_0 in the circuit in figure. [Ans: $i_0 = 2.5 \text{ mA}$]

2. Find the voltage V_1 using the superposition principle. [Ans: $V_1 = 82.5 \text{ V}$]

3. Refer to the circuit shown below. Before the 10 mA current source is attached to terminals x-y, the current i_a is found to be 1.5 mA. Use the superposition theorem to find out the value of i_a after the current source is connected.

Verify your solution by finding ia, when all the three source are acting simultaneously.

[Ans:
$$i_a =$$
]

4. Using superposition theorem, find the current in each branch of the network shown. [Ans. -0.768, -0.074, -0.842]

5. Find the coil current in Figure. Assume the sources are ideal [Ans: 104∠16.70 mA]

6. Find the current in R of Figure internal source impedances are zero. using the superposition theorem. Assume the internal source impedances are zero. [Ans: Ir=7.64∠27.9° mA]

7. Find the total current (by using Superposition Theorem) in the resistor R_L in Figure. Assume the sources are ideal. [Ans: $1.69 \angle 47$. 3° mA]

MAXIMUM POWER TRANSFER THEOREM

1. Find the value of R in the circuit of fig.1 such that maximum power transfer takes place. What is the amount of this power? [Ans: $R_{th} = 0.85 \Omega$, $P_{max} = 12 W$]

Fig. 1.

2. What should be the value of R such that maximum power transfer can take place from the rest of the network to R in the fig.2? Obtain the amount of this power.

[Ans: $R = 5.33 \Omega$, $P_{max} = 188 \text{ mW}$]

Fig. 2.

3. What resistance should be connected across x-y in the circuit shown in fig.3 such that maximum power is developed across this load resistance? What is the amount of this maximum power? [Ans: $R_{th} = 421/65 \Omega$, $P_{max} = 3.34 W$]

Fig. 3.

4. Find R to have maximum power transfer in the circuit of fig.4. Also obtain the amount of maximum power. [Ans: $R_{th} = 1.765 \Omega$, $P_{max} = 19.221 W$]

Fig. 4.

5. Assuming maximum power transfer find the source to R, find the value of this amount of power in the circuit of fig. 5. [Ans: $R = 8.33 \Omega$, $P_{max} = 33.34 W$]

Fig. 5.

NORTON'S THEOREM

1. Find the current through R_L in the circuit shown below using Norton's theorem. [Ans: I = 4A]

2. Find the power loss in 10 Ω resistor in the circuit of below fig. Using Norton's theorem. [Ans: $P_L = 0.195$ W]

3. Find Norton's equivalent to the left of x-y terminals for the CE configuration of transistor equivalent circuit shown in fig. Assume $h_r = 2 \times 10^{-4}$; $h_f = 50$.

[Ans:
$$R_{int} = 62.82 \text{ k}\Omega \text{ I}_N = -45.45 \text{ mA}$$
]

4. Find the current through 1.6 Ω resistor in the circuit in the below fig. [Ans: 6 A]

5. Find the current in the 5 Ω resistor for the circuit shown in fig. [Ans: I = 509.6 mA]

6. Obtain current Io in Fig. using Norton's theorem. [Ans: Z_n =5 Ω , I_n =(3+j8 A), I_0 =1.465 \angle 38.48° A]

7. Determine the Norton equivalent of the circuit in Fig. as seen from terminals a-b. Use the equivalent to find Io. [Ans: Z_n =3.176+j0.706 Ω , I_n =8.396 \angle -32.68° A, I_o =1.971 \angle -2.101° A]

8. Show the complete Norton equivalent circuit for the circuit in Figure.

[Ans: $I_n = 344 \angle 121^\circ \text{ mA}$, $Z_n = (24.8 - j28) \Omega$]

