Optimisation perspective on state space models

- recursive least squares
- block least squares
- Kalman filter as an optimisation problem
- relation to additive models
- extensions to non-Gaussian state and observation noise

Least squares

standard least squares problem:

minimise
$$||X\mathbf{b} - \mathbf{y}||_2^2 = \sum_{i=1}^m (\mathbf{x}_i^T \mathbf{b} - y_i)^2$$

where $\mathbf{x}_i \in \mathbb{R}^n$, i = 1, ..., m are the rows of $X \in \mathbb{R}^{m \times n}$

- ullet $\mathbf{b} \in \mathbb{R}^m$ is the parameter vector to be estimated
- ullet each pair (y_i, \mathbf{x}_i) corresponds to an observation
- solution is given by:

$$\mathbf{b}^* = (X^T X)^{-1} X^T \mathbf{y} = \left(\sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \sum_{i=1}^m y_i \mathbf{x}_i$$

Incremental least squares

- assume pairs (y_i, \mathbf{x}_i) become available over time, i.e. m increases, then we can express the least squares solution \mathbf{b}^* as a function of m
- this corresponds to the following state estimation problem:

$$\mathbf{b}_{i+1} = \mathbf{b}_i \qquad y_i = \mathbf{x}_i^T \mathbf{b}_i + \epsilon_i$$
$$\epsilon_i \sim \mathcal{N}(0, 1)$$

• one approach is to directly compute:

$$\mathbf{b}^*(m) = \left(\sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T\right)^{-1} \sum_{i=1}^m y_i \mathbf{x}_i$$

Recursive incremental least squares

- if speed is important (hard real time constraints, Monte Carlo simulation etc) we can compute $\mathbf{x}^*(m)$ recursively:
- initialise $\Sigma(0) = 0 \in \mathbb{R}^{n \times n}, \mathbf{r}(0) = 0 \in \mathbb{R}^n$
- then we have:

$$\Sigma(m+1) = \Sigma(m) + \mathbf{x}_{m+1}\mathbf{x}_{m+1}^{T} \quad \mathbf{r}(m+1) = \mathbf{r}(m) + y_{m+1}\mathbf{x}_{m+1}$$

• if $\Sigma(m)$ is invertible we can calculate $\mathbf{b}^*(m) = \Sigma^{-1}(m)\mathbf{r}(m)$

Rank one update

• can further speed up calculation by applying rank one update to Σ^{-1} :

$$(\Sigma + \mathbf{x}\mathbf{x}^T)^{-1} = \Sigma^{-1} - \frac{1}{1 + \mathbf{x}^T \Sigma^{-1} \mathbf{x}} (\Sigma^{-1} \mathbf{x}) (\Sigma^{-1} \mathbf{x})^T$$

- \bullet reduces computational cost of computing $\Sigma^{-1}(m+1)$ from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$
- this is a computational trick and is conceptually largely irrelevant, yet the tratidional presentation of state estimation (Kalman filter etc) makes it appear central.

Block least squares

partition design matrix X and response vector \mathbf{y} into m row blocks:

$$X = \left[egin{array}{c} X_1 \ \cdots \ X_m \end{array}
ight] \quad \mathbf{y} = \left[egin{array}{c} \mathbf{y}_1 \ \cdots \ \mathbf{y}_m \end{array}
ight]$$

then we can transform the least squares problem:

minimise
$$||X\mathbf{b} - \mathbf{y}||_2^2$$

to the following equivalent form with m copies of the parameter vector:

minimise
$$\mathbf{b}_{1,...,\mathbf{b}_{m},\mathbf{z}}$$
 $\sum_{i=1}^{m} \|X_{i}\mathbf{b}_{i} - \mathbf{y}_{i}\|_{2}^{2}$ subject to $\mathbf{b}_{i} = \mathbf{b}_{i+1}, \quad i = 1,...,m-1$

State space estimation as an optimisation problem

• The above block least squares problem corresponds to this state space model (same as recursive least squares earlier but with blocks of observations in each time period):

$$\mathbf{b}_{i+1} = \mathbf{b}_i$$
 $\mathbf{y}_i = X_i \mathbf{b}_i + \boldsymbol{\epsilon}_i$ $\boldsymbol{\epsilon}_i \sim \mathcal{N}(0, I)$

 now add state transition noise (or equivalently, relax the equality constraints on the parameter vectors):

$$\mathbf{b}_{i+1} = \mathbf{b}_i + \boldsymbol{\nu}_i \qquad \mathbf{y}_i = X_i \mathbf{b}_i + \boldsymbol{\epsilon}_i$$

$$\boldsymbol{\nu}_i \sim \mathcal{N}(0, I) \qquad \boldsymbol{\epsilon}_i \sim \mathcal{N}(0, I)$$

• we can now write down the resulting estimation problem as follows:

$$\begin{array}{ll}
\text{minimise} & \sum_{i=1}^{m} \|X_i \mathbf{b}_i - \mathbf{y}_i\|_2^2 + \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1} - \mathbf{b}_i\|_2^2
\end{array}$$

Least squares formulation of state estimation

 state estimation can also be expressed as a standard least squares problem:

$$\min_{\mathbf{b}_1, \dots, \mathbf{b}_m} \left\| \begin{bmatrix} X_1 \\ -I & I \\ & & \ddots \\ & & -I & I \\ & & X_m \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_{m-1} \\ \mathbf{b}_m \end{bmatrix} - \begin{bmatrix} \mathbf{y}_1 \\ 0 \\ \vdots \\ 0 \\ \mathbf{y}_m \end{bmatrix} \right\|_2^2$$

- the above formulation performs both "filtering" and "smoothing" conditional on all the observations up to time m.
- if new information becomes available, augment the optimisation problem and solve again to obtain new estimates $\mathbf{b}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_m^*, \mathbf{b}_{m+1}^*)$

State estimation and additive models

- the simplified state estimation model is closely related to additive models.
- we could fit an additive model with a a single smooth effect in the time dimension by solving the following optimisation problem:

$$\begin{array}{ll}
\text{minimise} & \sum_{i=1}^{m} \|\mathbf{1}b_i - \mathbf{y}_i\|_2^2 + \sum_{i=1}^{m-1} \|b_{i+1} - b_i\|_2^2
\end{array}$$

which is the same as state space estimation applied to a constant term.

General linear Gaussian setting

 state equations for the general linear Gaussian state space model are as follows:

$$\mathbf{b}_{i+1} = F\mathbf{b}_i + \boldsymbol{\nu}_i \qquad \mathbf{y}_i = X_i^T\mathbf{b}_i + \boldsymbol{\epsilon}_i$$

$$\boldsymbol{\nu}_i \sim \mathcal{N}(0, \Sigma_{\nu}) \qquad \boldsymbol{\epsilon}_i \sim \mathcal{N}(0, \Sigma_{\epsilon})$$

• denoting $\|\mathbf{a}\|_P = (\mathbf{a}^T P \mathbf{a})^{\frac{1}{2}}$, P-quadratic norm for a positive semidefinite matrix P, the resulting estimation problem is:

minimise
$$\sum_{i=1}^{m} \|X_i \mathbf{b}_i - \mathbf{y}_i\|_{\Sigma_{\epsilon}^{-1}}^2 + \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1} - F\mathbf{b}_i\|_{\Sigma_{\nu}^{-1}}^2$$

Non-Gaussian observations

 we can use any convex loss for the observations, such as quantile, logistic, Poisson, Huber etc:

minimise
$$\sum_{i=1}^{m} \mathcal{L}(X_i \mathbf{b}_i, \mathbf{y}_i) + \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1} - \mathbf{b}_i\|_2^2$$

ullet for example for the quantile loss, where au is the quantile of interest we would have:

$$\mathcal{L}(X_i \mathbf{b}_i, \mathbf{y}_i) = \psi(\mathbf{y}_i - X_i \mathbf{b}_i), \quad \psi(\mathbf{a}) = (\tau - 1) \sum_{a_j < 0} a_j + \tau \sum_{a_j \ge 0} a_j$$

Non-Gaussian state noise

• it may be beneficial to apply ℓ_1 norm penalty to state changes provided most of the time parameters stay constant with occasional large jumps:

minimise
$$\sum_{i=1}^{m} \mathcal{L}(X_i \mathbf{b}_i, \mathbf{y}_i) + \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1} - \mathbf{b}_i\|_1$$

 another possibility is a combination of norms - this will attempt to decompose the state trajectory into a smooth and a piecewise constant component:

minimise
$$\sum_{i=1}^{m} \mathcal{L}(X_i(\mathbf{b}_i + \mathbf{c}_i), \mathbf{y}_i) + \lambda \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1} - \mathbf{b}_i\|_1 + \mu \sum_{i=1}^{m-1} \|\mathbf{c}_{i+1} - \mathbf{c}_i\|_2^2$$

ℓ_1 -norm vs. squared Euclidean norm regularisation

Other modifications

 we can allow linear trends in the parameters (this formulation can be reduced to the standard state space model by expanding the state vector):

minimise
$$\sum_{i=1}^{m} \mathcal{L}(X_i \mathbf{b}_i, \mathbf{y}_i) + \sum_{i=1}^{m-2} \|\mathbf{b}_{i+2} - 2\mathbf{b}_{i+1} + \mathbf{b}_i\|_1$$

 seasonality adjustments can be handled through the introduction of some equality constraints:

minimise
$$\mathbf{b}_{1,...,\mathbf{c}_{m}}$$
, $\sum_{i=1}^{m} \mathcal{L}(X_{i}(\mathbf{b}_{i}+\mathbf{c}_{i}),\mathbf{y}_{i}) + \sum_{i=1}^{m-1} \|\mathbf{b}_{i+1}-\mathbf{b}_{i}\|_{2}^{2}$ subject to $\mathbf{c}_{i} = \mathbf{c}_{i+k}, \quad i = 1,\ldots,m-k$ $\sum_{i=1}^{m} \mathbf{c}_{i} = 0$

Conclusions

- for many modelling tasks it may be worthwhile to try to formulate a convex optimisation problem and use existing modelling software for prototyping
- formulating state space models as regularised regression can make them more intuitive for people without background in control theory (e.g. actuaries)