

Technical University of Denmark

Written examination date: May 23, 2023

Page 1 of 16 pages

Course title: Computer Science Modelling

Course number: 02141

Aids allowed: All aid

Exam duration: 4 hours

Weighting: 7-step scale

NOTES:

• You can submit your answers digitally or as a paper submission.

- Digital submissions must be done as a single pdf-file.
- You must clearly indicate on each page your student number, and which task you attempt to solve.
- We recommend that you first skim all tasks before deciding in which order you want to solve them.

Exercise 1 (15%) Semantics

Consider the program graphs PG1 - PG3 in Figures 1 - 3 on page 3.

Question 1a: For each program graph PGi ($i \in \{1, 2, 3\}$) on page 3, determine whether there exists a program C_i in Guarded Command Language such that $\mathbf{edges}(q_{\triangleright} \leadsto q_{\blacktriangleleft}) \llbracket C_i \rrbracket$ generates it. If a suitable program exists, provide it. Otherwise, argue (in 1-2 sentences) why no such program exists.

Question 1b: For each of the program graphs PG1 - PG3 in Figures 1 - 3 on page 3, determine whether it is a deterministic system.

Justify your answer in one sentence.

Question 1c: Consider the program graph PG2 in Figure 2 on page 3. How many different execution sequences of the form

$$\langle q_{\triangleright}; \sigma \rangle \stackrel{\omega}{\Longrightarrow}^* \langle q_{\blacktriangleleft}; \sigma' \rangle$$

exist if the set of variables is $Var = \{x, y, z\}$?

Justify your answer in 1-3 sentences.

Question 1d: Prove or disprove (in 1-5 lines): every program graph that constitutes a deterministic and evolving system has at least one complete execution sequence.

Question 1e: Suppose we extend the Guarded Command Language by a new command for Java-style for loops

$$for(i := a_1; b; i := a_2) \{ C \}$$

where i is an (integer) variable, a_1, a_2 are arithmetic expressions, b is a Boolean expression, and C is a command. Informally, the above loop

- 1. sets variable i to the value of arithmetic expression a_1 ;
- 2. executes the loop body C if the loop guard b holds (otherwise, the loop terminates);
- 3. updates i to the value of a_2 after termination of loop body C; and
- 4. continues with step (2).

Formalise the above informal semantics by defining the program graph of forloops. That is, give a formal definition of

$$edges(q_{\triangleright} \leadsto q_{\blacktriangleleft}) \llbracket for(i := a_1; b; i := a_2) \mid C \mid \rrbracket.$$

Briefly explain your definition in 1-3 sentences.

Figure 1: Program graph PG1

Figure 2: Program graph PG2 with $b = \neg(x > 0) \land \neg(x < 0) \land \neg(x > 0)$.

Figure 3: Program graph PG3 with $b = \neg(x > y + 1) \land \neg(y > x - 1)$.

Exercise 2 (20%) Formal Languages

Alice and Bob want to formalise correct usages of an API with endpoints o (open), w (write), r (read), and c (close).

Alice proposes automaton A:

Bob proposes regular expression B:

or*w*c

where the set $\{o, r, w, c\}$ is the input alphabet for A and B.

(a) Fill the table below. In the empty cell corresponding to language L provide a short as possible word that belongs to L. Write "——" if no such word exists.

Language	Shortest word
$\mathcal{L}(A)\cup\mathcal{L}(B)$	
$\mathcal{L}(A)\cap\mathcal{L}(B)$	
$\mathcal{L}(A) \setminus \mathcal{L}(B)$	
$\mathcal{L}(B)\setminus\mathcal{L}(A)$	
$\overline{\mathcal{L}(A)}\cap\overline{\mathcal{L}(B)}$	
$\boxed{ \mathcal{L}(A)^* \cup \mathcal{L}(B)^* }$	

(b) Alice and Bob decide to transform the regular expression B into a finite state automaton to easily compare their solutions. Alice correctly applies the transformations seen in class to obtain a minimized DFA A_B .

Provide A_B as transition diagram. Do *not* include the so-called "dead"/"error" state and its transitions. Explain at a high-level which transformations you have applied (1 sentence per transformation). You do not need to provide the details of each transformation.

(c) Bob does not like to have too many ϵ transitions and decides to modify the algorithm for transforming regular expressions into finite automata by changing the rules below:

transforming R* into an automaton E R E S

The modifications of Bob are:

- In the transformation of RS, states p and q are merged.
- In the transformation of R^* , p is merged with q, and r is merged with s.

After applying the new algorithm, Bob obtains the automaton B_B . Provide B_B as minimized DFA (again as a transition diagram, with no "error"/"dead" state). You do not need to explain how you obtained it.

(d) Answer the following questions with a short sentence (as a rule of thumb, your answer should fit in the table). The sentence must start with "YES" or "NO".

Question	Short answer
$\boxed{ \mathcal{L}(A_B) = \mathcal{L}(B_B)? }$	
$\mathcal{L}(A_B) = \mathcal{L}(B)$?	
$\mathcal{L}(B_B) = \mathcal{L}(B)$?	
$\mathcal{L}(A_B) = \mathcal{L}(A)$?	
$\mathcal{L}(B_B) = \mathcal{L}(A)$?	

Exercise 3 (20%) Program Verification

Question 3a: Complete the following annotated GCL program to a formal program proof (that is, all annotations must result from applying the proof rules of Floyd-Hoare logic introduced in the course).

Question 3b: Show that the GCL program below computes n^3 by constructing a formal program proof for the given contract (that is, all annotations must result from applying the proof rules of Floyd-Hoare logic introduced in the course).

Question 3c: The course material does not consider a proof rule for verifying assignments of the form A[x] := a, where A is an array, x is a variable and a is an arithmetic expression. Suppose we treat an assignment to an array element like any other assignment, that is, we construct the triple

$$\{P\}A[x] := a\{\exists y : P[y/A[x]] \land A[x] = a[y/A[x]]\},$$

where $P[\underline{y} / A[x]]$ and $a[\underline{y} / A[x]]$ denote the substitution (i.e. syntactic replacement) of every occurrence of A[x] by y in P and a, respectively.

Show that the above rule is **not** correct. To this end, find a GCL program C, predicates P and Q, and memories σ and σ' such that

- one can construct a program proof $\{P\}C\{Q\}$ using our existing rules and the above rule for assigning to array elements, and
- there is a complete execution sequence of C with initial memory σ and final memory σ' such that $\sigma \models P$ and $\sigma' \not\models Q$.

Give both the program proof and the complete execution sequence for your example to demonstrate that you have indeed chosen adequate C, P, Q, σ, σ' .

Hint: Notice that A[i] and A[j] are syntactically different array elements but refer to the same array element if variables i and j store the same value.

Exercise 4 (10%) Program Analysis

Question 4a: Explain whether the following statements about the program graphs PG4 and PG5 in Figures 5 - 7 (on page 10) are true, false, or unknown (that is, no conclusive answer is possible). Your answers must be based on the results of the detection of signs analysis in [FM, chapter 4]. You can safely assume that formalmethods.dk implements this analysis. Explain your answer to each question in 1-3 sentences.

- (a) PG4 has no complete execution sequences.
- (b) For every execution sequence of PG4, the sign of y will eventually become equal to the sign of z.
- (c) For every complete execution sequence of PG5, no element of array A is 0 whenever x is positive upon termination.
- (d) There exist executions of PG5 that can get stuck.

Question 4b: Consider the abstract memory $\hat{\sigma}[x \mapsto +][y \mapsto +]$ and the following guarded command:

if
$$x > y \rightarrow x := x - y [] x \le y \rightarrow x := 17 fi$$

What are the possible signs of x upon termination according to a detection of signs analysis (as defined in [FM, chapter 4]) for the above initial abstract memory? For each of those signs, explain in 1-3 sentences whether it is realistic (that is if there exists a concrete execution sequence in which we can observe variables whose values have those signs).

Page 9 of 16

Figure 5: Program graph PG4

Figure 7: Program graph PG5

Exercise 5 (10%) Language-based Security

In this exercise we focus on the classical confidentiality policy with public and private variables. Let ${\tt h}$ be a private variable and ${\tt l}$ be a public variable. Alice does not like that the program

```
1 := h ; 1 := 0
```

is considered as *not secure* with the security analysis seen in the course, while it is considered as *non-interferent*. To remedy this, she proposes a new security analysis based on the following (underlined) modification to the function actualFlows (see essential exercises in the lecture on language-based security):

```
\begin{aligned} &\mathsf{actualFlows}(c_1; c_2, X) \\ &= (\mathsf{actualFlows}(c_1, X) \backslash \{\{y\} \vec{\Rightarrow} \mathsf{updates}(c_2) \mid y \in V\}) \cup \mathsf{actualFlows}(c_2, X) \end{aligned}
```

where V is the set of all variables, and function updates is intended to determine the set of variables that are necessarily updated in a program (i.e. updated in all possible executions):

```
\begin{array}{rcl} \operatorname{updates}(\operatorname{skip}) &=& \emptyset \\ \operatorname{updates}(x{:=}e) &=& \{x\} \\ \operatorname{updates}(A[e_1]{:=}e_2) &=& \{A\} \\ \operatorname{updates}(c_1;c_2) &=& \operatorname{updates}(c_1) \cup \operatorname{updates}(c_2) \\ \operatorname{updates}(\operatorname{if}\ gc\ \operatorname{fi}) &=& \operatorname{updates}(gc) \\ \operatorname{updates}(\operatorname{do}\ gc\ \operatorname{od}) &=& \emptyset \\ \operatorname{updates}(b \ {\to}\ c) &=& \operatorname{updates}(c) \\ \operatorname{updates}(gc_1[]gc_2) &=& \operatorname{updates}(gc_1) \cap \operatorname{updates}(gc_2) \end{array}
```

Question 5a: Would the new analysis determine that the above program 1 := h; 1 := 0 is secure? Write "YES" or "NO" and explain your answer in 1 sentence.

Question 5b: Is there a program that has the non-interference property but that is deemed as not secure by the new analysis function? If the answer is "YES" provide the smallest example you can find and explain in 2-3 lines why it is secure but it does not have the non-interference property. If the answer is "NO", provide your argument in 2-3 lines.

Question 5c: Bob implements the new security analysis of Alice but does a mistake when computing the updates function: He writes \cup instead of \cap in this case of the function:

```
\operatorname{updates}(gc_1||gc_2) = \operatorname{updates}(gc_1) \cup \operatorname{updates}(gc_2)
```

Provide an example of a program that exploits Bob's bug to deem the program as secure but such that the program does not have the non-interference property. Explain your example in 2-3 lines.

Question 5d: Now, forget about Bob's bug. Are we guaranteed that if a program is deemed as secure with the new definition of Alice, it will be non-interferent? If the answer is "NO" provide the smallest example you can find and explain in 2-3 lines why it is secure but it does not have the non-interference property. If the answer is "YES", provide your argument in 2-3 lines.

Question 5e: Are the following statements correct or incorrect? Provide your argument in 1 sentence.

- (a) According to the lecture's security analysis, if c_1 ; c_2 is secure then c_2 ; c_1 is secure.
- (b) According to Alice's new security analysis, if c_1 ; c_2 is secure then c_2 ; c_1 is secure.
- (c) If c_1 ; c_2 is non-interferent then c_2 ; c_1 is non-interferent.

Exercise 6 (15%) Context-free Languages

The following context-free grammar provides a syntax for positive modal logic formulas:

where the set of non-terminal symbols is $N = \{F, P\}$, the set of terminal symbols is $T = \{\Box, \diamondsuit, \mathsf{a}, \mathsf{b}, \mathsf{c}, \}$ and the initial symbol is F. We call a string accepted by the grammar a "formula".

(a) Design a set of data types that are suitable to store abstract representations (ASTs) of formulas and show how the formula

$$a \land \Diamond \Box b$$

would be represented as a value of your datatype.

(b) Consider the following operators for composing models: $_{-}\wedge_{-}$, \diamond_{-} , and \square_{-} . Fill the table below as follows: in the cell corresponding to row (horizontal) x and column (vertical) y write YES if, according to the above grammar (without any additional operator precedence), the operators x and y can yield an ambiguity. Otherwise, write "——".

	^	♦_	
^			

- (c) If you have discovered at least one ambiguity in (b) that involves at least one modal operator (□ or ⋄), showcase it by providing an example of a formula that has at least two distinct parse trees. Otherwise, explain in 2-3 lines why no formula exists that can have two parse trees.
- (d) If you have discovered at least one ambiguity in (b) that involves at least one modal operator (□ or ⋄) change the grammar to remove the ambiguity. You do not need to solve all ambiguities you have discovered. Explain in 2-3 lines the change that you have done and why it solves the ambiguity.

(e) Consider the following PDA which accepts by final state and is defined by the tuple ($\{q0, q_1, q_2\}, T, T \cup N, \delta, F, \{q_2\}$) where the transition function δ is defined as follows:

```
\begin{array}{lcl} \delta(q_0,u,F) & = & \{(q_0,F)\} & \text{if } u \in \{\diamondsuit,\Box\} \\ \delta(q_0,v,F) & = & \{(q_1,P)\} & \text{if } v \in \{\mathsf{a},\mathsf{b},\mathsf{c}\} \\ \delta(q_1,\epsilon,P) & = & \{(q_2,F)\} \\ \delta(q_2,\wedge,F) & = & \{(q_0,F)\} \end{array}
```

The PDA accepts the same language as the grammar. Check this by showing how the PDA can accept the string $a \land \Diamond \Box b$.

(f) Can we build a DFA that recognizes the set of formulas accepted by the grammar described at the beginning of the exercise? Provide a short answer in 1-2 sentences. If your answer is positive, provide the DFA.

Exercise 7 (5%) Model Checking

Fill the following table according to the rules explained below:

φ	$TS1 \models \phi$	$TS2 \not\models \phi$
AF p		
AGp		
A(pUq)		
$AG(p\toAF\;q)$		
$\neg p \land AFp$		

In column $TS1 \models \phi$ draw the smallest transition system TS1 that you can find that satisfies the formula ϕ . In column $TS2 \not\models \phi$ provide the minimal extension you can do to TS1 (i.e. TS2 has the same states, transitions, initial states, labels, etc. but possibly more) that does *not* satisfy the formula. If you cannot find a transition system, write "——".

Here, "smallest" refers to the size of a transition system, counted as the number of states and transitions. As in the book, the transition systems cannot have stuck states.

Exercise 8 (5%) Induction Proofs

Consider the function dup: $\Sigma^* \to \Sigma^*$, given by the following recursive definition:

$$\mathsf{dup}(w) \; = \; \begin{cases} \varepsilon, & \text{if } w = \varepsilon \\ \mathsf{dup}(w') \; a \; a, & \text{if } w = w'a, a \in \Sigma, w' \in \Sigma^* \end{cases}$$

Furthermore, let $A=(Q,\Sigma,\delta,q_0,F)$ be a DFA. We transform A into another DFA A_2 as follows:

- $A_2 = (Q_2, \Sigma, \delta_2, q_0, F),$
- $Q_2 = \{q_e\} \cup Q \cup \bigcup_{q \in Q} \{q_a \mid a \in \Sigma\}$ (where the error state q_e is fresh and the state q_a is fresh for every $q \in Q$ and $a \in \Sigma$),

•
$$\delta_2(q, a) = \begin{cases} q_a & \text{if } q \in Q \\ \delta(q', a) & \text{if } q \text{ is of the form } q'_a \text{ for some } q' \in Q \text{ and } a \in A \\ q_e & \text{otherwise} \end{cases}$$

Complete the proof below to show that A_2 accepts dup(w) if and only if A accepts w by filling the blank lines.

We first show by induction on the structure of words that, for every word $w \in \Sigma^*$ and all states $q \in Q$ (but not necessarily the states in $Q_2 \setminus Q$), we have

$$\delta^*(q,w) = \delta_2^*(q,\operatorname{dup}(w)).$$

Induction base: For $w = \varepsilon$, we have ... (1-2 lines suffice)

Induction hypothesis: For every word $w \in \Sigma^*$ and all states $q \in Q$,

$$\delta^*(q, w) = \delta_2^*(q, \mathsf{dup}(w)).$$

Induction step: Let w = w'a, where $a \in \Sigma$ and $w' \in \Sigma^*$, ... (5-6 lines suffice)

Hence, $\delta^*(q, w) = \delta_2^*(q, \mathsf{dup}(w))$, which finishes the proof by induction.

Now, using the above property for $q=q_0$, we conclude (for all words $w\in \Sigma^*$) that $\delta^*(q_0,w)\in F$ if and only if $\delta^*(q_0,\operatorname{dup}(w))\in F$. Thus, A_2 accepts $\operatorname{dup}(w)$ if and only if A accepts w.