МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ государственное БЮДЖЕТНОЕ образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра вычислительной техники

КОНТРОЛЬНАЯ РАБОТА по дисциплине «ИНФОРМАТИКА»

Факультет: ABT Преподаватель:

Группа: ДТ-460а Копылова О.А.

Студент: Пантюхин А.Е.

Содержание

ЗАДАНИЕ №1. Анализ программ	3
Решение	3
Пояснения к коду:	4
Пример работы программы	4
ЗАДАНИЕ №2. Строки	4
Решение	5
Пояснения к коду:	5
Пример работы программы	6
ЗАДАНИЕ №3. Итерационные циклы	6
Решение:	6
Пример работы программы	8
Pupo nu	Ω

ЗАДАНИЕ №1. Анализ программ

Содержательно сформулировать результат выполнения функции, определить «смысл» отдельных переменных, найти стандартные контексты, их определяющие, написать вызов функции.

В тексте программы в комментариях указать назначение основных переменных. Для функций в комментариях указать их назначение, а также назначения входных и выходного параметров.

```
Вариант задания 8:
```

```
int F8(int a) {
int n,k,s;
for (n=a, s=0; n!=0; n=n/10)
{ k=n%10; s=s+k;}
return s;
```

Решение

Исходный код программы с комментариями и вызовом функции:

```
#include <stdio.h>
```

```
int F8(int a) { //на вход принимаем целое число
  int n,k,s; //объявляем три переменных, n - бесполезная
  //k тоже бесполезная, но чуть менее.
  делим число нацело на 10, пока оно не станет равным нулю
  */
  for (n = a,s=0; n!=0;n=n/10) {
    k = n%10; //на каждой итерации деления записываем остаток в k
    s=s+k; //прибавляя к s - в итоге получим сумму остатков от деления на 10.
  }
  //возвращаем сумму остатков
  return s;
}
int main(void) {
  fprintf(stdout, "F8(18745)=%d\n", F8(18745));
  fprintf(stdout, "F8(-648)=%d\n", F8(-648));
  return 0;
```

}

Пояснения к коду:

Функция возвращает сумму цифр полученного на вход числа. Переменная п бесполезна по причине того, что переменная а – уже копия исходного значения, и мы могли использовать её безо всяких проблем. Аналогично, вычисление остатка можно было сократить до s+=n%10.

Данная функция при работе с отрицательными числами выдаст отрицательную же сумму цифр.

Пример работы программы

Пример работы программы представлен на рисунке:

Рисунок 1 – Пример работы программы

ЗАДАНИЕ №2. Строки

Содержательно определите действие, производимое над строкой.

Напишите вызов функции (входные неизменяемые строки могут быть представлены фактическими параметрами – строковыми константами). В тексте программы в комментариях указать назначение основных переменных. Для функций в комментариях указать их назначение, а также назначения входных и выходного параметров.

Вариант задания 7:

```
int F7(char c[])
{
    int i,s;
    for (i=0; c[i] !='\0'; i++)
    if (c[i] >='0' && c[i]<='7') break;
    for (s=0; c[i] >='0' && c[i] <='7'; i++)
        s = s * 8 + c[i] - '0';
    return s;
}</pre>
```

Решение

#include <stdio.h>

```
int F7(char c[]) { //на вход получаем строку
  int i,s; //объявляем счётчики
  /*
  движемся по строке, пока не встретим
  цифру в восьмеричной системе счисления
  */
  for (i=0; c[i] !='\0'; i++)
    if (c[i] >='0' && c[i]<='7') break;
  /*
  с места встречи считаем данный участок строки
  числом в восьмеричной с.с., до тех пор, пока
  не встретим неподходящий символ
  */
  for (s=0; c[i] >='0' && c[i] <='7'; i++)
    //в s формируется равное число в десятичной с.с.
    s = s * 8 + c[i] - '0';
  //возвращаем число в десятичной с.с.
  return s;
}
int main(void) {
  printf("F7(\"fd44\")==%d\n", F7("fd44"));
  printf("F7(\"fd22sd884\")==%d\n", F7("fd22sd884"));
  return 0;
}
```

Пояснения к коду:

Функция возвращает число в десятичной системе счисления, равное первому найденному во входной строке числу в восьмеричной системе счисления.

Функция воспринимает любое число как положительное.

Пример работы программы

Рисунок 2 – Пример работы программы

ЗАДАНИЕ №3. Итерационные циклы

Для заданного варианта написать функцию вычисления суммы ряда. Стандартный диапазон значений х =0.1...1.0, шаг 0.1. Убедиться, что на этом диапазоне элемент суммы ряда стремится к 0, при необходимости скорректировать диапазон. Вычислить значения суммы ряда и контрольной функции, к которой он сходится, с точностью до 2, 4 и 5 знаков после запятой.

В тексте программы в комментариях указать назначение основных переменных. Для функций в комментариях указать их назначение, а также назначения входных и выходного параметров.

```
Вариант задания 4:
Функция: ln(x)
Ряд: (x-1)/x+(x-1)<sup>2</sup>/2x<sup>2</sup>+(x-1)<sup>3</sup>/3x<sup>3</sup>+...+(x-1)<sup>n</sup>/nx<sup>n</sup>
```

Решение:

```
#include <stdio.h>
#include <math.h>
#include <locale.h>

double getValue(double x, double n) {
    return (double)(pow(x-1.0f, n)/(n*pow(x, n))); //вычисляем значение n-го члена ряда
}

double sumSequence(double x, double epsilon) {
    double result = 0.0f; //изначально сумма равна нулю
    int idx = 1; //ряд начинается с первого элемента, n==1
    double elem = getValue(x, idx); //вычисляем первый элемент

while (fabs(elem) > epsilon) { //пока n-й элемент по модулю меньше нашего "эпсилон"
    result += elem; //суммируем элементы
```

```
elem = getValue(x, (double)++idx); //вычисляем следующий (++idx обеспечивает
увеличение счётчика ДО копирования значения в функцию)
  }
  return result;//возвращаем результат
}
int main(void) {
  setlocale(LC_ALL, "RUSSIAN"); //установили локаль
  const double startX = 0.5f; //начало диапазона значений X
  const double increment = 0.1f; //приращение X
  const double target_epsilon[3] = {1e-2, 1e-4, 1e-5}; //целевые значения точности
  double referenceResult[3][10] = {}; //массив под результаты ln(x)
  double sumSequenceResult[3][10] = {}; //массив под результаты sumSequence(x, epsilon)
  for (int i = 0; i < 3; i++) { //вычисляем сразу три точности
    for (int j = 0; j < 10; j++) {// для каждой - по 10 экземпляров значения функции и суммы
ряда
       referenceResult[i][i] = log(startX+increment*i); //несмотря на то, что i,i - int, их можно
так использовать
       sumSequenceResult[i][j] = sumSequence(startX+increment*j, target_epsilon[i]);
    }
  }
  /*
  Форматированный вывод
  */
  printf("Точность сходимости: %.e\t\t", target_epsilon[0]);
  printf("Точность сходимости: %.e\t\t\t", target_epsilon[1]);
  printf("Точность сходимости: %.e\n", target_epsilon[2]);
  printf("%8s\t%10s\t%8s\t", "X", "Сумма ряда", "ln(x)");
  printf("%8s\t%10s\t%8s\t", "X", "Сумма ряда", "ln(x)");
  printf("%8s\t%10s\t%8s\n", "X", "Сумма ряда", "ln(x)");
  for (int row = 0; row < 10; row++) { //выводим значения по рядам.
    for (int i = 0; i < 3; i++) {
       printf("%8.1lf\t%10.5lf\t%8.5lf\t", startX+0.1f*(double)(row), sumSequenceResult[i][row],
referenceResult[i][row]);
    }
```

```
printf("\n");
}
return 0;
```

Получение значения n-го элемента ряда было решено вынести в отдельную функцию для улучшения читабельности кода. Было обнаружено, что стандартный диапазон значений показывает расходимость на промежутке [0.1;0.4], диапазон скорректирован до [0.5;1.4].

Пример работы программы

kuuk@ALumin	m ~/OSS/NSTU_C	PP/University	/ inftech_s2kr	<pre>gcc src/main3.c</pre>	: -lm && ./a.out			
Точность сходимости: 1e-02			Точность сходимости: 1e-04			Точность сходимости: 1e-05		
X	Сумма ряда	ln(x)	X	Сумма ряда	ln(x)	X	Сумма ряда	ln(x)
0.1	-nan	-2.30259	0.1	-nan	-2.30259	0.1	-nan	-2.30259
0.2	-nan	-1.60944	0.2	-nan	-1.60944	0.2	-nan	-1.60944
0.3	-nan	-1.20397	0.3	-nan	-1.20397	0.3	-nan	-1.20397
0.4	-nan	-0.91629	0.4	-nan	-0.91629	0.4	-nan	-0.91629
0.5	-0.69817	-0.69315	0.5	-0.69268	-0.69315	0.5	-0.69268	-0.69315
0.6	-0.50553	-0.51083	0.6	-0.51088	-0.51083	0.6	-0.51082	-0.51083
0.7	-0.36297	-0.35667	0.7	-0.35664	-0.35667	0.7	-0.35667	-0.35667
0.8	-0.21875	-0.22314	0.8	-0.22318	-0.22314	0.8	-0.22314	-0.22314
0.9	-0.11111	-0.10536	0.9	-0.10540	-0.10536	0.9	-0.10536	-0.10536
1.0	0.00000	0.00000	1.0	0.00000	0.00000	1.0	0.00000	0.00000

Рисунок 3 - результаты без корректировки диапазона.

Рисунок 4 - результаты на скорректированном диапазоНе.

Выводы

В рамках данной контрольной работы были закреплены навыки работы с языком С, я получил возможность продемонстрировать знание и понимание языковых конструкций и базовых алгоритмов.