PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-169376

(43)Date of publication of application: 20.06.2000

(51)Int.CI.

A61K 31/7016 A61K 31/702 A61P 3/00 A61P 7/00 A61P 43/00

(21)Application number: 10-351955

(71)Applicant :

SUNTORY LTD

(22)Date of filing:

10.12.1998

(72)Inventor:

KISO YOSHINOBU

IINO TAEKO

KATO SHINZO

(54) THERAPEUTIC AGENT FOR HYPERAMMONEMIA

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an agent for lowering ammonia in blood, scarcely having adverse effects, readily drinkable and capable of developing sure pharmacodynamic effects by a small amount of administration and administering to patients with garactosemia and diabetes mellitus, and useful for treatment of hyperammonemia, or the like, by including xylobiose as an active ingredient.

SOLUTION: This ammonia lowering agent comprises xylobiose as an active ingredient. The xylobiose is preferably contained as xylooligosaccharide consisting essentially of xylobiose. The xylooligosaccharide preferably contains ≥30 wt% of xylobiose. The daily effective dose of the xylooligosaccharide is preferably 0.7-7.5 g and daily dose in the case in which the xylobiose is alone administered is preferably 0.2-3 g.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-169376 (P2000-169376A)

(43)公開日 平成12年6月20日(2000.6.20)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)	
A 6 1 K	31/7016		A 6 1 K 31/70		604	4 C 0 8 6	
	31/702				605		
A 6 1 P	3/00		31/00		603	•	
	7/00				6 0 7		
	43/00				643		
			審査請求	未請求	請求項の数18	OL (全 9 頁)	
(21)出願番		特顧平10-351955	(71)出願人	000001904			
		·		サントリ	J一株式会社		
(22)出顧日		平成10年12月10日(1998.12.10)		大阪府	大阪市北区堂島的	美2丁目1番40号	
			(72)発明者	木曽」	良信		
				大阪府	三島郡島本町若山	山台1丁目1番1号	
				サン	トリー株式会社と	基礎研究所内	
			(72)発明者	飯野 タ	ゆ子		
				大阪府3	三島郡島本町若口	心台1丁目1番1号	
				サン	トリー株式会社は	基礎研究所内	
			(74)代理人	1000897	705		
				弁理士	社本 一夫	(外4名)	
						最終頁に鏡ぐ	

(54) 【発明の名称】 高アンモニア血症治療剤

(57)【要約】

【課題】従来、血中アンモニア低下剤、高アンモニア血症治療剤、又は肝性脳症治療剤として使用されていたラクツロースは、高い投与量が必要であり、また、ガラクトース血症、糖尿病患者に対する投与に安全性の問題があった。

【解決手段】ラクツロースに代えてキシロビオースを使用することにより、投与量を減少し、副作用の心配のない上記薬剤を提供することができる。

【特許請求の範囲】

【請求項1】キシロビオースを有効成分として含有する ことを特徴とする血中アンモニア低下剤。

【請求項2】キシロビオースを主成分とするキシロオリゴ糖を含有することを特徴とする請求項1記載の血中アンモニア低下剤。

【請求項3】前記キシロオリゴ糖が、キシロビオースを30重量%以上含有することを特徴とする請求項2記載の血中アンモニア低下剤。

【請求項4】前記キシロビオースまたは前記キシロオリ 10 ゴ糖と、薬学的に許容される担体とからなる請求項1-3のいずれか1項記載の血中アンモニア低下剤。

【請求項5】キシロビオースを有効成分として含有する ことを特徴とする高アンモニア血症治療剤。

【請求項6】キシロビオースを主成分とするキシロオリゴ糖を含有することを特徴とする請求項5記載の高アンモニア血症治療剤。

【請求項7】前記キシロオリゴ糖が、キシロピオースを30重量%以上含有することを特徴とする請求項6記載の高アンモニア血症治療剤。

【請求項8】前記キシロビオースまたは前記キシロオリゴ糖と、薬学的に許容される担体とからなる請求項5-7のいずれか1項記載の高アンモニア血症治療剤。

【請求項9】キシロビオースを有効成分として含有する ことを特徴とする肝性脳症治療剤。

【請求項10】キシロビオースを主成分とするキシロオリゴ糖を含有することを特徴とする請求項9記載の肝性 脳症治療剤。

【請求項11】前記キシロオリゴ糖が、キシロビオースを30重量%以上含有することを特徴とする請求項10 30記載の肝性脳症治療剤。

【請求項12】前記キシロビオースまたは前記キシロオリゴ糖と、薬学的に許容される担体とからなる請求項9-11のいずれか1項記載の肝性脳症治療剤。

【請求項13】血中アンモニア低下剤を製造するための キシロビオースの使用。

【請求項14】血中アンモニア低下剤を製造するためのキシロビオースを主成分とするキシロオリゴ糖の使用。 【請求項15】高アンモニア血症治療剤を製造するためのキシロビオースの使用。

【請求項16】高アンモニア血症治療剤を製造するためのキシロビオースを主成分とするキシロオリゴ糖の使用。

【請求項17】肝性脳症治療剤を製造するためのキシロ ビオースの使用。

【請求項18】肝性脳症治療剤を製造するためのキシロビオースを主成分とするキシロオリゴ糖の使用。

【発明の詳細な説明】

[0001]

【産業上の技術分野】キシロビオースを有効成分として 50 窒素などの割合が著明に増大する。肝臓は予備能力に極

2

含有することを特徴とする血中アンモニア低下剤、並び に、高アンモニア血症または肝性脳症の治療剤に関す る。

[0002]

【従来の技術】高アンモニア血症および肝性脳症の病態 はおおよそ以下のように考えられている。

【0003】生体内の臓器でアミノ酸、アミン、ブリン・ビリミジン塩基などの含窒素化合物が代謝されると、アンモニアが産生される。このような代謝過程で生成するアンモニアのほかに、食物中の蛋白質が消化・分解されてできるアミノ酸も小腸粘膜で吸収後代謝されてアンモニアになり、門脈中に放出される。また大腸内の腸内細菌により生成されるアンモニアも吸収される。従って、腸管は血中アンモニアの動きに関し、大きな位置を占めている。

【0004】アンモニアは毒性物質であるため、どの臓器にもアンモニアを解毒・処理する代謝機構が存在している。肝臓以外では、グルタミン酸脱水素酵素による、アンモニアをα一ケトグルタール酸に取り込んでグルタミン酸を合成する反応と、生じたグルタミン酸にさらにアンモニアを結合させてグルタミンにするグルタミン合成の反応がある。

【0005】一方、肝臓におけるアンモニアの処理は尿素回路で活発に行われる。正常状態ではアンモニア代謝は厳密に調節され、血中アンモニア濃度は一定に維持される。しかし、その解毒機構のどこかに異常が生じたり、肝不全等によりアンモニアの解毒、処理が十分機能しなくなると、血中のアンモニアが増加して高アンモニア血症を発現することになる。また、蛋白質摂取量が増加すれば、肝臓での尿素産生量が増加し、上部消化管内に分泌される尿素量も増加する。その結果、腸内細菌のウレアーゼ反応による尿素からのアンモニアの生成量が増加し、血中アンモニア濃度が高くなる。

【0006】高アンモニア血症を引き起こす代表的な疾患として肝不全があげられ、その際にみられる脳症を肝性脳症という。細胞内のアンモニア濃度が増加すると、上記のようにクエン酸(TCA)回路の中央に位置するαーケトグルタール酸とアンモニアとが反応してグルタミン酸となり、さらにもう1分子のアンモニアが反応してグルタミンになる。この反応により、ATPが消費されることと、αーケトグルタール酸の減少によりTCA回路の代謝回転が悪くなることから、結果として正味のATP産生量が減少する。このような代謝障害は脳幹部位で強く、意識レベルの維持に重要な脳幹網様体の機能を障害し、意識障害を引き起こすとされる(渡邊明治、臨床肝不全学、p26~33、永井書店、1994)。

【0007】肝不全が進行すると、血中尿素が減少し、アンモニアが増加する。そして尿中では尿素体窒素が減少し、尿中総窒素に対するアンモニア体窒素、アミノ体容素などの割合が禁胆に増大する。 旺暖は予備能力に極

7, 1994).

めて富んだ臓器で、その80~90%を切除しても尿素 合成能はほとんど変化しないことから、血中アンモニア 量の増大は、尿素合成能の低下というよりは、肝実質の 障害により肝内外に門脈-大循環短絡が形成され、アン モニアはこの副血行路を介して肝臓を通過することな く、直接大循環に運び込まれることによると考えられて いる(坂口平、肝疾患とタンパク質代謝、薬学領域の病 態生化学、廣川書店、p152-155、1976)。 【0008】肝不全の悪化に伴い、血中アンモニア値が 上昇すると、精神神経症状が現れるようになる。初期に 10 は指南力(見当識)、注意力、集中力の低下がみられ、 進行すると意識が混濁して昏睡に至る。末期には上肢に 振戦や羽ばたき様の不随意運動(羽ばたき振戦)がみら れる。脳波では三相波という周期性同期性の特徴的な波 形が出現する(医学大辞典第18版、南山堂、199 8).

【0009】高アンモニア血症治療の基本は、アンモニアの生成を抑制すると同時に、アンモニアの解毒・処理を促進することにある。アンモニアの生成を抑制する有力な手段としては、食事からの蛋白質摂取量を減少させ 20ることであり、低蛋白食が治療に用いられるが、体内蛋白質の分解が亢進し、血清アルブミン濃度が低下している肝不全患者には、最少維持量の蛋白質(1.27g/kg体重/日)はどうしても必要になる。しかし、このような蛋白不耐状態では、この最少維持量の蛋白質を摂取することも問題である。そこで、低蛋白食以外の高アンモニア血症の治療方法が必要となる(渡邊明治、臨床肝不全学、p297-307、1994)。

【0010】低蛋白食以外の高アンモニア血症の治療方 法として、ラクツロースや非吸収性抗生物質ネオマイシ 30 ンの投与が従来より行われてきた。また、1966年に 肝性脳症の治療にラクツロースがはじめて使用され(Bi rcher J. et al, Lancet 1:890-893, 1966)、その有効 性(80~90%) が二重盲検試験で確認されて(Conn HO, et al, Gastroenterol. 72:573-583, 1977.)以 来、今日まで劇症肝炎や肝硬変でみられる肝性脳症の予 防と治療にも広く用いられてきた。なお、ラクツロース (4-0-β-D-galactopyranosyl-D-fructose) は1930 年E. M. Montgomeryらによって乳糖から作られた物質 で、ガラクトース及びフルクトース各1分子よりなる天 40 然には存在しないオリゴ糖である。ネオマイシンなど非 吸収性抗生物質には副作用(腎障害と難聴)があるため にその使用頻度は比較的少なく、ラクツロースが高アン モニア血症の第一選択薬と位置づけられてきた(渡邊明 治、臨床肝不全学、p297-307、1994)。 【0011】ラクツロースが高アンモニア血症および肝 性脳症を予防・改善する作用機序は、以下のように考え

【0012】1)ビフィズス菌などの有機酸を産生する 腸内細菌の増殖を促進し、大腸内pHを低下させること により腸管内のアンモニアをイオン型(NH・)に変え、アンモニアの吸収を抑制する。2)腸管内のアンモニア産生菌の増殖を抑え、腸管内でのアンモニア産生を抑制する。3)糖質をエネルギー源として供給すると、腸内細菌は窒素化合物(尿素、アンモニアなど)を取り込み、アミノ酸・蛋白質の合成素材として利用するため、腸管内のアンモニア濃度が低下する(ラクツロース・末「日研」添付書類、日研化学株式会社、1998年、および渡邊明治、臨床肝不全学、p297-30

【0013】ヒト消化管内にはラクツロースをガラクトースとフルクトースに分解する酵素がないため、ラクツロースは小腸で吸収されることなく大腸まで到達して腸内細菌に利用され、上記の各種効能を現すと考えられている。

【0014】ラクツロースはわが国では粉末剤、シロップ剤、ドライシロップ剤、ゼリー剤が市販されている。粉末剤は、通常成人1日量ラクツロース換算で18~40gを2~3回に分けて用時、水又は湯水に溶解後経口投与する。また、シロップ剤の場合には、65%のラクツロース溶液を、通常成人1日量30~60mlを3回に分けて服用することとされている。

【0015】しかしながら、ラクツロースにはいくつかの欠点が指摘されている。例えば、ラクツロースは他のオリゴ糖に比較して腸内細菌増殖効果が低いことから、上記の効果を得るためには、大量投与を余儀なくされている。ところが、ラクツロースは甘味が強いため、毎日大量に摂取するととは、患者にとってかなりの苦痛である。更に、ラクツロースのような難消化性の糖類を大量摂取すると下痢を惹起することが多く、ラクツロースの副作用として問題視されている。

【0016】また、ラクツロースはガラクトース血症の患者には禁忌とされている(ラクツロース・末「日研」添付書類、日研化学株式会社、1998)。なぜなら、ラクツロース製剤には、ガラクトース(11%以下)および乳糖(6%以下)が含まれているためガラクトース代謝系の酵素が先天的に欠損している先天性代謝異常であるガラクトース血症の患者には使用できない。

[0017]糖尿病の患者にも、ラクツロースは慎重に 投与することとされている(ラクツロース・末「日研」 添付書類、日研化学株式会社、1998)。糖尿病の場合には、ラクツロース製剤中のガラクトース(11%以下) および乳糖(6%以下) が分解・吸収後、グルコースに代謝変換され、血糖値が上昇するためである。ラクツロースはまた、糖尿病薬として用いられている αーグルコシダーゼ阻害剤との併用に注意することとされている(ラクツロース・末「日研」添付書類、日研化学株式会社、1998年)。 αーグルコシダーゼ阻害剤は食物中の炭水化物の分解を阻害することにより、グルコース の吸収量を低下させることから、食後の血糖値上昇を抑

制することを目的に使用されている。 α – グルコシダー ゼ阳害剤の投与は消化器系の副作用(腸内細菌による異 常発酵など)を惹起することが知られているが、ラクツ ロースも腸内細菌の発酵を促進することから、併用した 場合には副作用の増強が懸念される。

【0018】ラクツロースの高アンモニア血症使用例の 副作用については以下のように記載されている。

【0019】消化器;下痢、また、ときに腹痛、腹鳴、 鼓腸、食欲不振、嘔吐等が現れることがある。水様便が 引き起こされた場合には、投与量を減ずるか、又は中止 10 する (日本医療情報センター編、日本医薬品集、薬業時 報社、1997)。

【0020】上述したように、ラクツロースに代わる高 アンモニア血症治療薬としては、一部非吸収性の抗生物 質(ネオマイシンなど)が使用されていたが、副作用が 多くかつ実際使用してもあまり効果が認められないケー スも多いため、現在ではあまり使用されなくなってきて いる。

[0021]

【発明が解決しようとする課題】とのような状況から、 安全(副作用が少ない)で、飲みやすく、しかも少量の 投与で確実な薬効を発現し、且つガラクトース血症患者 や糖尿病患者にも投与できる高アンモニア血症の治療剤 および肝性脳症の治療剤の開発が望まれていた。

【課題を解決するための手段】本発明者らは、課題を解 決すべく、これまで第一選択薬と位置づけられていたラ クツロースの作用メカニズムおよびその構造に着目し て、鋭意検討を進めた結果、髙蛋白食を摂取させたラッ トにキシロビオースまたはキシロビオースを主成分とす るキシロオリゴ糖を溶解させた飲料水を摂取させること により、有意に血中アンモニア濃度を低下させることを 見出した。さらに、このキシロビオースを主成分とする キシロオリゴ糖を肝性脳症を発症している肝硬変患者に 摂取させたところ、軟便や下痢を伴わず、また有効投与 量がラクツロースに比較して格段に少ないことから摂取 時の不快感もなく、有効に血中アンモニウム濃度を低下 させることを確認して、本発明を完成した。

【0023】まず、本発明者らは、有機酸を生成する腸 内細菌の増殖促進活性という、ラクツロースと類似した 40 作用を有するオリゴ糖に着目した。このようなオリゴ糖 は、現在では多数知られており、本発明のキシロオリゴ 糖 (構成単糖:キシロース)のほかにも、例えばフラク トオリゴ糖(構成単糖;グルコース、フルクトース)、 乳果オリゴ糖 (構成単糖 : ガラクトース、グルコース、 フルクトース)、ガラクトオリゴ糖(構成単糖;ガラク トース、グルコース)、イソマルトオリゴ糖(構成単 糖;グルコース)などが挙げられる。これらは、構成単 糖の種類の違いだけでなく、単糖同士の結合様式や重合 度も異なることが知られている。

【0024】これらのオリゴ糖が腸内細菌の増殖促進活 性を有することは知られているが、実際にこれらのオリ ゴ糖を各種腸内細菌の培養液に入れて、それぞれの増殖 活性を比較すると、その増殖促進活性は一様ではなく、 オリゴ糖の種類により、大きく異なることが知られてい る(光岡知足、ビフィズス菌の研究、(財)日本ビフィ ズス菌センター、1994年)。キシロオリゴ糖の場合 には、大腸での善玉菌と呼ばれるビフィズス菌の増殖活 性が高く、特にBifidobacterium adolescentisおよびB. longumの増殖活性が高いが、その活性はキシロースやキ シロビオースなど構成単糖の重合度の違いにより異なっ ている (M. Okazaki et al, Bifidobacteria Microflor a, 9, 77-86, 1990)。また、実際にヒトに摂取させた場 合の、糞便中の各種腸内細菌の比率もオリゴ糖の種類に より異なることも知られている。

【0025】血中アンモニアを低下させるのにどの腸内 細菌が最も効果があるのかについては明らかにされてい ない。更に、一般に腸内細菌の増殖活性を有することが 知られているオリゴ糖も、どの腸内細菌の増殖を促進す 20 るか、腸内細菌の比率をどう変化させるかは、上記のよ うに構成単糖の違いや重合度の違いによって大きく異な っており、ある特定の腸内細菌の増殖を促進したい場合 に、どのオリゴ糖を選択すれば良いかは明らかにされて いない。

【0026】キシロオリゴ糖が血中アンモニア濃度を下 げる効果があることが示唆されているが(J. Nut r., vol. 125, Pl010-1016, 199 5)、これは重合度の異なるキシロオリゴ糖の混合物で 行った実験であり、構成単糖であるキシロースの最適な 重合度は明らかにされていない。

【0027】医薬品としての安定した効果を確保し、副 作用を少なくするためには、不純物を出来るだけ少なく することは必須のことであり、オリゴ糖の場合は構成単 糖の重合度の異なるものは全て不純物となる可能性もあ ることから、最適の重合度を見出すことは重要な要素で ある。本発明者らは、キシロビオースを単独で用いた場 合と、キシロビオースを主成分として含有するキシロオ リゴ糖を用いた場合を比較検討することにより、キシロ ビオースが活性の本体であることを明らかにした。

【0028】医薬品としての安定した効果を確保するた めには、安定性、特に生体内での安定性も重要な要因と なる。オリゴ糖の酸に対する安定性、消化酵素に対する 安定性は、オリゴ糖の種類によって異なることが知られ ている。各種オリゴ糖の中でキシロオリゴ糖は消化管内 での安定性に優れ、キシロビオースおよびキシロオリゴ 糖は胃酸や消化酵素によって分解されることなく大腸に 達することが報告されている(岡崎昌子ら、日本栄養・ 食糧学会誌、44巻、1号、p41-44、1991 年、岡崎昌子ら、Digestion & Absorption、15巻、2

50 号、p19-22、1992年)。

【0029】さらに、キシロビオースやキシロオリゴ糖 は、腸内細菌のキシラン分解酵素を誘導することができ るため、食物中に含まれるキシランを有効に利用する効 果も期待できるととから、少量の摂取量で確実な効果が 得られる。例えば、成人女性の便秘改善作用では、キシ ロオリゴ糖は1日0.4gの摂取量で有効であることが 報告されている(飯野妙子ら、日本食物繊維研究会誌、 1巻、1号、19-24, 1997)。従って、キシロ オリゴ糖は、血中アンモニア濃度を低下させ、高アンモ ニア血症や肝性脳症の治療剤として用いる場合にも、ラ 10 クツロースや他のオリゴ糖に比べて少量の投与で効果を 発現し、服用量が多く飲むのが苦痛であるというラクツ ロースの欠点を改善することができる。

【0030】また、キシロオリゴ糖は構成単糖としてガ ラクトースを全く含有しないから、ラクツロースの禁忌 とされるガラクトース血症の患者に対しても、投与する ことができる。さらに、ラクツロースの投与を慎重に行 わなければならない糖尿病患者に対しても、グルコース に代謝変換されることがないキシロオリゴ糖は安全に投 与することができるので、この点でも有用である。

[0031] さらに、運動によって上昇する血中アンモ ニアの量を下げる効果も期待することができ、例えば、 肝炎治療における運動療法の際に服用することによって その運動を持続させることが出来るようになり、運動療 法の効果を髙めることもできる。また、マラソンなど長 時間の運動を行う場合に、その持続力の向上という効果 ももたらすことができる。

[0032]

【発明の実施の態様】本発明において用いられるキシロ オリゴ糖は、キシランを含む天然物をキシラナーゼ又は 30 酸で加水分解して製造することができる。例えば、綿実 セリ、コーンコブ、バーチウッド等を原料として、トリ コデルマ由来のキシラナーゼで処理することにより、キ シロビオースを30重量%以上含有するキシロオリゴ糖 を製造することができる。また、キシランを含む天然物 をカラムに充填した基質充填型リアクターを用いること により、効率よく生産することができる。具体的には、 キシランをカラムに充填し、キシランに吸着するキシラ ナーゼを選択してカラムに流し、連続的に基質と接触さ 成分とするキシロオリゴ糖を生成させ、カラム外に流出 させ、活性炭カラムやイオン交換クロマトグラフィー等 により、効率よくキシロビオースを生産することができ る。

【0033】このようにして得られたキシロオリゴ糖 は、日本健康・栄養食品協会の特定保健用食品に関する 学術委員会において厚生省第64号の許可要件に基づき 検討された結果、0.7~7.5g/日の摂取により、 腸内菌叢改善、便性改善、腸内有害性産物の抑制の用途 を示す成分として適当と認められている。本発明におい 50 増加し(p < 0.001)、また糞便からのN排泄も約

ても、キシロビオースを主成分とするキシロオリゴ糖の 有効投与量は、同様と考えられ、症状により適宜投与す ることができるが、好ましくは、1日あたり0.7~ 7. 5gである。またキシロビオースを単独で投与する 場合も、年齢、症状により適宜投与することができ、好 ましくは0.2g~3gである。

【0034】本発明に係るキシロオリゴ糖を医薬品とし て使用する場合、錠剤、カプセル剤、粉末剤、マイクロ カプセル剤、ドライシロップ剤、経腸栄養剤等の剤形、 水若しくはそれ以外の薬学的に許容される担体との溶液 として、シロップ剤に使用できる。例えば、キシロオリ ゴ糖と生理学的に認められる担体、香味剤、賦形剤、安 定剤とを、一般に認められた形態で混和することによっ て製造するととができる。錠剤等に混和するととができ る添加剤としては、例えば、ゼラチンのような結合剤、 結晶性セルロースのような賦形剤、ステアリン酸マグネ シウムのような潤滑剤等を用いることができる。カプセ ルの剤形である場合には、更に液状担体を含有すること ができる。

[0035] 20

【実施例】次いで、実施例により本発明をさらに詳細に 説明するが、本発明はこれらの実施例に限定されるもの

【0036】実施例1. 高蛋白食摂取ラットに対するキ シロオリゴ糖の効果

高蛋白食を摂取すると、血中および盲腸内の尿素量が増 加し、その結果血中のアンモニア濃度が上昇することが 知られている。そとで、髙蛋白飼料で飼育したラットの N排泄に対するキシロオリゴ糖の効果を調べ、肝性脳症 の治療に使用されているラクツロースとの比較を行っ

【0037】成長期のSD系雄性ラット(20匹)を髙 タンパク飼料(カゼイン50%配合)で飼育し、キシロオ リゴ糖投与群(7匹)にはキシロビオースを42重量% 含有するキシロオリゴ糖(2%水溶液)を、ラクツロー ス投与群(7匹)にはラクツロース(2%水溶液)を、コ ントロール群(6匹)には蒸留水を飲料水として3週間 自由摂取させた。試験期間中、ラットの摂餌量、摂水 量、体重増加量に影響は見られなかった。累積摂取量は せ、この酵素による加水分解反応でキシロビオースを主 40 キシロオリゴ糖が13.1±0.8 g. ラクツロース12.6±0.5 gであり、1日あたりの摂取量はキシロオリゴ糖が0.62 g ラクツロース0.6 gであった。

> 【0038】試験終了直前の5日間、各個体の糞尿を分 離採取して、それぞれのN含有量をケルダール法で測定 した。また、試験終了時にラットを解剖し、血中アンモ ニア、BUN(血中尿素窒素)、盲腸内N含有量を測定 した。

> 【0039】その結果、キシロオリゴ糖投与群では、コ ントロール群と比較して、盲腸内のN量が約3.5倍に

2倍に促進された(p<0.05)。一方、ラクツロース投与群では、盲腸内のN量は約2倍に増加したものの(p<0.05)、糞便からのN排泄の有意な促進は認められなかった(図1 および図2)。尿中へのN排泄量は、各群間でほとんど差がなかった(図3)。

【0040】また、キシロオリゴ糖投与群の血中アンモニア濃度はコントロール群と比較して有意に低く(p<0.05)、BUN濃度も有意ではないが低下傾向が伺える(図4および図5)。一方、ラクツロース投与群では、いずれにおいても明らかな作用は認められなかった。

【0041】以上の結果から、キシロオリゴ糖は効果的に血中のアンモニア濃度を低下させ、その分、糞便量を増加させ、糞便からのN排泄を亢進させているととが明らかになった。ラクツロースでは盲腸内N含量の増加は認められたが、血中アンモニア濃度を低下させるまでには至らなかった。

【0042】実施例2. 高蛋白食摂取ラットに対するキシロピオースの効果

成長期のSD系雄性ラット(15匹)を高タンパク飼料 20 (カゼイン50%配合)で飼育し、キシロビオース0.5 %投与群(5匹)、キシロビオース1.0%投与群(5匹)、には各濃度のキシロビオースを、コントロール群(5匹)には蒸留水を飲料水として3週間自由摂取させた。試験期間中、ラットの摂餌量、摂水量、体重増加量に影響は見られなかった。キシロビオース累積摂取量はキシロビオース0.5%投与群が4.7±0.2 g、キシロビオース1.0%投与群が7.5±0.6gであり、1日あたりの2つの群のキシロビオース摂取量は、それぞれ0.24 g、0.37 gであった。 30

【0043】試験終了時にラットの血液を採取し、血中アンモニア濃度を測定した。その結果、図6に示したように、キシロビオース投与群の血中アンモニア濃度はいずれの濃度においてもコントロール群より低く、特に、キシロビオース1.0%投与群では有意に低かった(p<0.05)。

【0044】実施例1で用いたキシロオリゴ糖中のキシロビオース含量は約42重量%である。従って、実施例1のキシロオリゴ糖投与群(2%)と実施例2のキシロビオース1%投与群がほぼ同量のキシロビオースを摂取40したことになるが、同程度の効果が認められていることから、キシロオリゴ糖中の活性成分はキシロビオースであることが確認された。

【0045】実施例3. 肝性脳症患者に対するキシロオリゴ糖の効果(1)

顕性脳症がなく血中アンモニア値が軽度高値の肝硬変症例を対象に、キシロオリゴ糖3g (糖組成(重量%)は以下のとおり。キシロビオース約34%、キシロトリオースまたはそれ以上のオリゴマー約39%、キシロース約26%、その他約1%)を4~8週間毎日摂取しても 50

5い、2週間後の血中アンモニア値を測定した。その結果、肝硬変の5症例ではキシロオリゴ糖の投与により、血中アンモニア値の有意な低下を認めた(前値90.8 $\pm 29.2 \mu mo1/L$;投与2週間後45.0 $\pm 13.3 \mu mo1/L$)。なお、特にキシロオリゴ糖による副作用は認めなかった。

[0046] 実施例4. 肝性脳症患者に対するキシロオリゴ糖の効果(2)

キシロオリゴ糖(実施例3と同じ)1日3gを肝性脳症 患者に2週間摂取させたところ、摂取開始1週間後から 血中アンモニア値の低下が認められた。その後、摂取を 中止したら、1週間後には血中アンモニア値の再上昇を 認め、再びキシロオリゴ糖の摂取を開始したら、血中ア ンモニア値はまた低下した。

【0047】なお、キシロオリゴ糖の摂取量が3g/日で済むことから、摂取時の苦痛は訴えられていない。また、下痢あるいは軟便等の副作用もなかった。

【0048】実施例5. 肝性脳症患者に対するキシロオリゴ糖の効果(3)

ラクツロース1日75ml(60%ラクツロース溶液) を長期間摂取している肝性脳症患者のケースで、ラクツロースでは血中アンモニア値の上昇は抑えられていなかった。そこで、キシロオリゴ糖(実施例3と同じ)1日3gの併用を開始したところ、血中アンモニア値の低下が認められた。その後ラクツロースの摂取を中止してキシロオリゴ糖単独摂取にしても、血中アンモニア値は低値を維持した。

【0049】なお、キシロオリゴ糖の摂取量が3g/日で済むことから、摂取時の苦痛は訴えられていない。ま 30 た、下痢あるいは軟便等の副作用もなかった。

【0050】以上のことから、動物実験およびヒト試験の結果、キシロビオースまたはキシロビオースを主成分とするキシロオリゴ糖は血中アンモニア値の低下作用を示し、また、摂取時の苦痛はなく、軟便化も起こらないことから、特に高アンモニア血症、肝性脳症の患者の症状改善には効果的と判断される。

[0051]

【発明の効果】従来の技術では、高アンモニア血症、肝性脳症の場合に起とる血中アンモニア値の上昇を、患者の苦痛および不快感を伴わずに、有効に抑制する手段はなかった。しかし、本発明によれば、キシロビオースまたはキシロビオースを主成分とするキシロオリゴ糖を摂取させれば摂取時の苦痛等はなくして、有効に血中アンモニア値を低下させることができ、高アンモニア血症、肝性脳症の症状を改善することができる。

【図面の簡単な説明】

【図1】実施例1による高蛋白食摂取ラットの糞中N量における、キシロオリゴ糖又はラクツロース投与による影響を示すグラフである。

) 【図2】実施例1による高蛋白食摂取ラットの盲腸内容

1

物N量における、キシロオリゴ糖又はラクツロース投与 による影響を示すグラフである。

11

【図3】実施例1による高蛋白食摂取ラットの尿中N量における、キシロオリゴ糖又はラクツロース投与による影響を示すグラフである。

【図4】実施例1による高蛋白食摂取ラットの血中アン モニア濃度における、キシロオリゴ糖又はラクツロース* * 投与による影響を示すグラフである。

【図5】実施例1による高蛋白食摂取ラットの血中尿素 窒素(BUN)における、キシロオリゴ糖又はラクツロ ース投与による影響を示すグラフである。

【図6】実施例2による髙蛋白食摂取ラットの血中アン モニア濃度における、キシロビオース投与による影響を 示すグラフである。

【図1】

図 1. 糞中 N量
コントロール
キシロオリゴ糖
ラクツロース
0 100 200 300
(*: p<0.05で有意差あり) (mg)

【図2】

図2. 盲腸内容物 N量

【図3】

図3. 尿中 N量

【図4】

【図5】

図5. BUN

【図6】

図6. 血中アンモニア

(9)

フロントページの続き

(72)発明者 加藤 眞三

東京都新宿区信濃町35 慶應大学医学部内

科学教室内

Fターム(参考) 4C086 AA01 AA02 EA01 MA01 MA02 MA04 MA05 MA52 NA14 ZA66

ZA75 ZC21 ZC54