MAAZ KARIM 24503 Date
) Let us assume P() exists and halts for every input:
We use that to create a new machine D.
)
D takes as input (M) and uses as & P() as a subrouting.
D takes as input (M) and uses as a P() as a subroutine, such that if P() accepts, D rejects and if P() rejects, D accepts.
D (m) = l'accept il Pand= rej
reject if P(an) = rej
D
D Ad vej
(M) rey Acc
Now let us take the case where <m> = <0> since (m)</m>
could be the encoding of this any machine.
> Now if P((D)) returns true accept, that means D((D))
returns reject implying that (D) \(\mathbb{E} L(D) , which means
P((D)) should're returned reject.
> Similarly if P((D)) returned reject, that means D((D)) returns
accept, implying (D) (D) EL(D), which mean P(CD)
shouldre returned accept.
> So P(<d) a="" accept,="" can't="" go="" into="" its<="" loop="" or="" reject="" th="" violating="" without=""></d)>
Since we have reached a contradiction, our previous assumption of
L(P) being decidable is vrong and the machine P cannot
exist.

3 PAREENA

Date	
2) We create a new machine TILE you which was the	
HALTER as let a subsorting in the following way.	
TILEIM	
-C MB HALTAN OF ACC	
10 10 100	
Ma does the fill in while the sank of the fill	
Me does the following writes the encoding for the following program on the tape:	_
on the Type	
for i from I to oof Number of i by i combinations possible	e.
for i from 1 to 001 Number of i by i combinations possible check the false K from set C	
22.	
tor j from 1 to 101 { creates new pattern (i) of in tiles	_
if (is-legal (combination))? Checks if no coinciding borders have	
check - true	
3 break from inner lopp. 3	
if (not check) return true Hilting condition	-4
i++	-
3	-
	1
This code halting > There exists an 4 i for which now combination of ixi tilings from C is legal which would mean the	1
of ixi fillings from C is leggl which would mean with	4
C # L(TILETM).	. `
This program never halting => a legal combination exists $\forall n \in Z^{\dagger}$. $\in EL(III)$	19
101 = 5	_
We have shown that TILE & HALT	_
3 BARRETA	

*

3)a) Since the COUNT problem dakes as input a fixed integer n, we have to consider a finite number of n-state turing machines. Our program works in the following way. (istarts at o) for all n-state TM's & Create - new - TIM Temp & Create_new_TM(n)
if (HALTIM (Temp, BLANK)) itti return is COUNT S-HALT

8) b) We create HALTIM using COUNTIM such that in the following
We count the number of states given as in
=) We modify imput (M, w) such that we create a new mechine
Mo which has we hard cooled so it runs on a starting on a
blank tape.
=> We imp count the number of states in Mw and create all
- valid TM's with these many states and start simulating all
including Mas on a blank tape.
> We input the No. of states into (OUNT to get H(n).
) We keep count of number of machines that have halted.
> When H(n) = No. machines halted (which is gagranteed to happen
by def of COUNTAIN) at we check if Mis has halted or
Not.
=> 3f Mw has halted Peturn true, else return false
HALT & COUNT

.

Date
3) Let M be a machine that constructed in the following way
→ M takes input <n, a="">.</n,>
 ⇒ M takes input (n,a). ⇒ it & creates all possible TM's with n-states. ⇒ As soon as a or more turing machines halt, it returns halts and returns accept.
=) As soon as a or more turing machines helt, it return
halts and returns accept.
This means that if $\langle n, a \rangle \in L$ there must be at least a out of these n-state machines that will halt, implying $M(\langle n, a \rangle) = Accept$.
a out of these n-state machines that will halt implying
$M(\langle n,q \rangle) = Accept.$
is Turing-Recognicable.

	L'6008
This	meany that <x> \(\x\) \(\in \) = Accept.</x>
So	DIAG & L(m) and L(m) is TR -> DIAG is TR
	contradiction.
, ,	M cannot exist

.