e is a transcendental number

Basic definitions

- For any polynomial $f \in \mathbb{Z}[X] = a_0 + a_1 X + \dots + a_n X^n$, $\bar{f} := |a_0| + |a_1|X + \dots + |a_n|X^n$. This is f_bar in e_trans_helpers2.lean
- For any prime number p and natural number n we can define a polynomial $f_{p,n} \in \mathbb{Z}[X]$ as $X^{p-1}(X-1)^p \cdots (X-n)^p$. This is f_p in e transcendental.lean.
- $f_{p,n}$ has degree (n+1)p-1. This is deg_f_p in e_transcendental.lean.
- With f an integer polynomial and any nonnegative real number t, we associate f with an integral I(f,t) to be

$$\int_0^t e^{t-x} f(x) \mathrm{d}x$$

This is II in e trans helpers2.lean

• If f has degree n, then using integrating by part n times we have

$$I(f,t) = e^t \sum_{i=0}^n f^{(i)}(0) - \sum_{i=0}^n f^{(i)}(t)$$

This is II_eq_I in e_trans_helpers2.lean.

• For any polynomial $g \in \mathbb{Z}$ with degree n and coefficient $g_i,\,J_p(g)$ is defined to be

$$J_p(g) = \sum_{i=0}^n g_i I(f_{p,n}, i)$$

This is J in e transcendental.lean.

So if g(e) = 0, we will have

$$\begin{split} J_p(g) &= \sum_{i=0}^n g_i I(f_{p,d},i) & [\texttt{J_eq1 in e_transcendental.lean}] \\ &= \sum_{i=0}^n g_i e^i \sum_{j=0}^{(n+1)p-1} f_{p,n}^{(j)}(0) - \sum_{i=0}^n g_i \sum_{j=0}^{(n+1)p-1} f_{p,n}^{(j)}(i) & [\texttt{J_eq2 in e_transcendental.lean}] \\ &= 0 - \sum_{i=0}^n \sum_{j=0}^{(n+1)p-1} g_i f_{p,n}^{(j)}(i) & [\texttt{J_eq3 in e_transcendental.lean}] \\ &= - \sum_{i=0}^n \sum_{j=0}^{(n+1)p-1} g_i f_{p,n}^{(j)}(i) & [\texttt{J_eq in e_transcendental.lean}] \\ &= - \sum_{i=0}^{(n+1)p-1} \sum_{j=0}^n g_i f_{p,n}^{(j)}(i) & [\texttt{J_eq" in e_transcendental.lean}] \end{split}$$

We are going to deduce two contradictory bounds for $J_p(g)$ with a large prime p.

Lower bound

We want to prove that for some $M \in \mathbb{R}$, $J_p(g) = -g_0(p-1)!(-1)^{np}n^p + p!M$ where n is the degree of g. This is J_eq_final in e_transcendental.lean.

To evaluate the $J_p g$, we will split the big sum $\sum_{j=0}^{(n+1)p-1}$ to three sums: j < p-1, j = p-1 and j > p-1.

Using the notation as above, for any prime p and natural number n, we have the followings :

- If j < p-1 then in this case, in fact all the summand is zero. This is because
 - $-f_{p,n}^{(j)}(0)=0$. This is deriv_f_p_k_eq_zero_k_eq_0_when_j_lt_p_sub_one in e_transcendental.lean
 - $-f_{p,n}^{(j)}(i) = 0$ for all $0 < i \le d$. This is deriv_f_p_k_eq_zero_k_ge_1_when_j_lt_p_sub_one in e_transcendental.lean

Thus

$$\sum_{j=0}^{p-2} \sum_{i=0}^{n} g_i f_{p,n}^{(j)}(i) = 0$$

This is J_partial_sum_from_one_to_p_sub_one in e_transcendental.lean.

- If j = p 1 then
 - $-f_{p,n}^{(j)}(0)=(p-1)!(-1)^{np}n!^p$. This is deriv_f_p_zero_when_j_eq_p_sub_one in e_transcendental.lean
 - $-f_{p,n}^{(j)}(i)=0$ for all i>0. This is deriv_f_p_when_j_eq_p_sub_one in e_transcendental.lean

Thus

$$\sum_{i=0}^n g_i f_{p,n}^{(p-1)}(i) = (p-1)! g_0(-1)^{np} n!^p$$

This is J_partial_sum_from_p_sub_one_to_p in e_transcendental.lean.

• If j>p-1 then $p!|f_{p,n}^{(j)}(k)$ for all $k=0,\cdots,n$. This is when_j_ge_p_k in e_transcendental.lean.

Then

$$p! |\sum_{j=p}^{(n+1)p-1} \sum_{i=0}^n g_i f_{p,n}^{(j)}(i)$$

This is J partial sum rest in e transcendental.lean

Then if $g \in \mathbb{Z}$ is any polynomial with degree n and coefficient g_i with $g_0 \neq 0$ and e as a root then, from above we can show that there is some $M \in \mathbb{Z}$ such that

$$J_p(g) = -g_0(p-1)!(-1)^{np}n!^p + M \times p!$$

This is J_eq_final in e_transcendental.lean

So if we choose p to be a prime number such that p>n and $p>|g_0|$, then $|J_p(g)|=(p-1)!\,|-g_0(-1)^{np}n!^p+Mp|$. So $(p-1)!\leq J_p(g)$. Because otherwise $|-g_0(-1)^{np}n!^p+Mp|=0$. So $p|g_0n!^p$, then either $p|g_0$ or $p|n!^p$. The first case cannot happen as we chose $p>|g_0|$. The second happens if and only if p|n! but we chose p>n. This is basically what happened in abs_J_lower_bound in e_transcendental.lean

Upper bound

This time we utilize the integral definition of I. For a prime p and $g \in \mathbb{Z}$ is any polynomial with degree n and coefficient g_i and e as a root then. Let us define $M \in \mathbb{R}$ to be

$$(n+1)\left(\max_{0\leq i\leq n}\{|g_i|\}(n+1)e^{n+1}\right)(2(n+1))^{n+1}$$

Then

$$\begin{split} |J_p(g)| &\leq \sum_{i=0}^n \left|g_i i e^i \overline{f_{p,n}}(i)\right| & \text{[abs_J_ineq1'' in e_transcendent]} \\ &\leq (n+1) \max_{0 \leq i \leq n} \{|g_i|\}(n+1) e^{n+1} (2(n+1))^{p+pn} & \text{[sum_ineq_1 in e_transcendent]} \\ &\leq (n+1)^p \left(\max_{0 \leq i \leq n} \{|g_i|\}\right)^p (n+1)^p \left(e^{n+1}\right)^p (2(n+1))^{p+pn} & \text{[sum_ineq_2 in e_transcendent]} \\ &= M^p & \text{[abs_J_upper_bound in e_transcendent]} \end{split}$$

The point is for some real number c (independent of p, depending on g), $|J_p(g)| \le c^p$.

The desired contradiction

We use that for any real number $M \ge 0$ and an integer z then there is a prime number p > z such that $(p-1)! > M^p$ to get a contradiction. This fact is contradiction in e_transcendental.lean.

Assume e is algebraic and $g \in \mathbb{Z}[X]$ admits e as a root with degree n and coefficient g_i . We can assume $g_0 \neq 0$ by dividing a suitable power of X if necessary. This process is make_const_term_nonzero in e_transcendental.lean. The fact that after this possible change e is still a root of g is non_zero_root_same

in e_transcendental.lean. Then we know that for some real number c independent of g, we have $(p-1)! \leq J_p(g) \leq c^p$ for all $p > |g_0|$ and p > d. But this is not possible by the previous paragraph.