Quantum Chemistry on Quantum Computers

#8 Techniques for Resource and Error Reductions

Kenji Sugisaki^{1,2,3}

¹Department of Chemistry, Graduate School of Science, Osaka City University, Japan

²JST PRESTO, Japan

³CQuERE, TCG CREST, India

Motivations

I want to execute 6-qubit VQE on real quantum devices, but the largest system I can access has only 5-qubits.

Can I reduce the number of qubits for wave function mapping?

I want to carry out quantum simulation of the time evolution, but the quantum circuit is too deep to execute.

Can I make the quantum circuit shallower?

I performed the QPE-based full-CI calculations, but the obtained energy is somewhat different from that computed by traditional quantum chemical calculations.

I suspect that Trotter decomposition is responsible for the error. How can I make the Trotter decomposition error smaller?

H₂, STO-3G basis set (4 spin orbitals), BKT

$$H = f_0 \mathbf{1} + f_1 Z_0 + f_2 Z_1 + f_3 Z_2 + f_1 Z_0 Z_1 + f_4 Z_0 Z_2 + f_5 Z_1 Z_3 + f_6 X_0 Z_1 X_2 + f_6 Y_0 Z_1 Y_2$$
$$+ f_7 Z_0 Z_1 Z_2 + f_4 Z_0 Z_2 Z_3 + f_3 Z_1 Z_2 Z_3 + f_6 X_0 Z_1 X_2 Z_3 + f_6 Y_0 Z_1 Y_2 Z_3 + f_7 Z_0 Z_1 Z_2 Z_3$$

$$H = g_1 \mathbf{1} + g_2 Z_0 + g_3 Z_1 + g_4 Z_0 Z_1 + g_5 X_0 X_1 + g_6 Y_0 Y_1$$

Jordan–Wigner transformation (JWT), Bravyi–Kitaev transformation (BKT), and parity basis (PB) needs $N_{\rm orb}$ of qubits, where $N_{\rm orb}$ is the number of spin orbitals.

Full-CI/STO-3G calculations of the spin-singlet state of HeH⁺ molecule

HeH⁺ has two electrons, one is spin-up and another is spin-down.

Number of qubits in the $|1\rangle$ state (Hamming weight) of $|q_1, q_3\rangle$ is always 1. Hamming weight of $|q_2, q_4\rangle$ is always 1, too.

Two qubit reduction scheme is possible in JWT, but it is not so efficient.

H₂O molecule, with STO-3G basis set → 7 molecular orbitals

$$|q_{13}\rangle = |5 - q_1 - q_3 - q_5 - q_7 - q_9 - q_{11}\rangle$$

$$|q_{14}\rangle = |5 - q_2 - q_4 - q_6 - q_8 - q_{10} - q_{12}\rangle$$

Quantum state of the 13th qubit depends on the quantum states of six qubits.

Qubit reduction is more easy and efficient for BKT and parity basis

arXiv:1701.08213

Tapering off qubits to simulate fermionic Hamiltonians

Sergey Bravyi, ¹ Jay M. Gambetta, ¹ Antonio Mezzacapo, ¹ and Kristan Temme ¹ IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA (Dated: January 31, 2017)

Bravyi–Kitaev transformation matrix

8 spin orbital systems with N_{α} and N_{β} of spin-up and spin-down electrons.

$$\alpha\beta\alpha\beta$$
 format $|n_{1\alpha}n_{1\beta}n_{2\alpha}n_{2\beta}n_{3\alpha}n_{3\beta}n_{4\alpha}n_{4\beta}\rangle$

$$n_1$$
 n_2 n_3 n_4 n_4 n_5 n_5 n_5

$$\alpha\alpha\beta\beta$$
 format $|n_{1\alpha}n_{2\alpha}n_{3\alpha}n_{4\alpha}n_{1\beta}n_{2\beta}n_{3\beta}n_{4\beta}\rangle$

 $|q_1q_2q_3q_4q_5q_6q_7q_8\rangle$

$$q_4 = N_{\alpha} \pmod{2}$$

$$q_8 = (N_{\alpha} + N_{\beta}) \pmod{2}$$

$$UH_{tgt}U^{\dagger} = H_{sim}$$

$$H_{sim} = \sum_{j} h_{sim}(j), \quad h_{sim}(j) = * * * \sigma_{z} * * \sigma_{z}$$

Bravyi–Kitaev transformation matrix

$$\beta_{2^{3}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Parity basis transformation matrix

$$\alpha\alpha\beta\beta$$
 format $|n_{1\alpha}n_{2\alpha}n_{3\alpha}n_{4\alpha}n_{1\beta}n_{2\beta}n_{3\beta}n_{4\beta}\rangle$

BKT or parity basis

 $|q_1q_2q_3q_4q_5q_6q_7q_8\rangle$

$$q_4 = N_{\alpha} \pmod{2}$$

$$q_8 = (N_{\alpha} + N_{\beta}) \pmod{2}$$

Two-qubit reduction scheme is applicable only for non-relativistic calculations

In relativistic quantum chemistry, S is no longer a good quantum number and instead the total angular momentum quantum number J = L + S becomes a good quantum number.

Qubit reduction: General procedure

pubs.acs.org/JCTC Article

Reducing Qubit Requirements for Quantum Simulations Using Molecular Point Group Symmetries

Kanav Setia,* Richard Chen, Julia E. Rice, Antonio Mezzacapo, Marco Pistoia, and James D. Whitfield

Conservation of the N_{α} and N_{β} (mod 2) \rightarrow 2 qubit reduction

By using \mathbb{Z}_2 symmetries, we can reduce more qubits.

C _{2v}	E	C_2	$\sigma_{\nu}(xz)$	σ _ν '(yz)
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B ₂	1	-1	-1	1

4 irreps can be discriminated by C_2 and $\sigma_{\nu}(xz) \rightarrow 2$ qubit reduction

- Quantum circuits (a) and (b) depicted above are equivalent
- The quantum circuits in (a) is often used, because it contains no CNOT gates acting on the non-nearest neighbor qubits.

• Quantum circuit (c) is also equivalent to the quantum circuit (a)

 $(M_1, M_2, M_3, M_4) =$ $\{(H, H, H, H), (Y, Y, Y, Y),$ (H, Y, H, Y), (Y, H, Y, H),(Y,Y,H,H),(H,H,Y,Y),(Y, H, H, Y), (H, Y, Y, H)

M. B. Hasting et al, Quantum Inf. Comp. 2015, 15, 1-21; arXiv:1403.1539.

Quantum gates in blue are cancelled out when sequentially applying the circuits with above (M_1, M_2, M_3, M_4) sets

Classical gates

Phase gates

Non-unitary operators and modifiers

Hadamard gate

Quantum gates

RXX gate

The RXX gate implements $\exp(-i\theta/2X\otimes X)$. The Mølmer–Sørensen gate, the native gate on ion-trap systems, can be expressed as a sum of RXX gates.

For more information about the RXX gate, see RXXGate [in the Qiskit Circuit Library.

Composer reference

OpenQASM reference

Q-sphere

Note about q-sphere representations

rxx(angle) q[0], q[1];

The q-sphere representation shows the state after the gate operates on the initial equal superposition where n is the number of qubits needed to support the gate.

In IBM Quantum Composer, the default value for angle is $\pi/2$.

Y. Nam et al, npj Quantum Info. 2020, 6, 33.

This quantum gate reduction is meaningful if the R_{xx} gate is available as a basis gate. In IBM-Q machines the R_{xx} gate is transpiled to nine R_{y} gates + four \sqrt{X} gates, and two CNOT gates.

```
Gate set supported by the Rigetti device:

['cz', 'xy', 'ccnot', 'cnot', 'cphaseshift', 'cphaseshift00', 'cphaseshift01', 'cphaseshift10', 'cswap', 'h', 'i', 'iswap', 'phaseshift', 'pswap', 'rx', 'ry', 'rz', 's', 'si', 'swap', 't', 'ti', 'x', 'y', 'z']

IonQ machine supports R_{xx}, R_{yy}, and R_{zz} gates!

Gate set supported by the IonQ device:

['x', 'y', 'z', 'rx', 'ry', 'rz', 'h', 'cnot', 's', 'si', 't', 'ti', 'v', 'vi', 'xx', 'yy', 'zz', 'swap', 'i']
```

Quantum gate reduction based on wave function mapping

Simulate the time evolution of wave function $\exp(-iS^2t)|\Psi\rangle$

$$\exp(-i\mathbf{S}^2t)|\Psi\rangle = \exp\{-iS(S+1)t\}|\Psi\rangle$$

Second quantization → Pauli operators → Quantum circuits

$$\mathbf{S}^{2} = \sum_{p,q}^{N} \mathbf{S}(p) \cdot \mathbf{S}(q) = \sum_{p,q}^{N} \left[\mathbf{S}_{Z}(p) \mathbf{S}_{Z}(q) + \frac{1}{2} \{ \mathbf{S}_{+}(p) \mathbf{S}_{-}(q) + \mathbf{S}_{-}(p) \mathbf{S}_{+}(q) \} \right]$$

$$\mathbf{S}_{Z}(p) \mathbf{S}_{Z}(q) = \frac{1}{4} \left(a_{p\alpha}^{\dagger} a_{p\alpha} a_{q\alpha}^{\dagger} a_{q\alpha} + a_{p\beta}^{\dagger} a_{p\beta} a_{q\beta}^{\dagger} a_{q\beta} - a_{p\alpha}^{\dagger} a_{p\alpha} a_{q\beta}^{\dagger} a_{q\beta} - a_{p\beta}^{\dagger} a_{p\beta} a_{q\alpha}^{\dagger} a_{q\alpha} \right)$$

$$\mathbf{S}_{+}(p) \mathbf{S}_{-}(q) + \mathbf{S}_{-}(p) \mathbf{S}_{+}(q) = \underline{a_{p\alpha}^{\dagger} a_{p\beta} a_{q\beta}^{\dagger} a_{q\alpha} + a_{p\beta}^{\dagger} a_{p\alpha} a_{q\alpha}^{\dagger} a_{q\beta}}$$
2e excitation operators

R. Pauncz, The Construction of spin eigenfunctions. An Exercise Book, Kluwer/Plenum, 2000.

Quantum gate reduction based on wave function mapping

S² operator can also be defined as follows:

$$\mathbf{S}^2 = \sum_{p,q}^{N} \mathbf{S}(p) \cdot \mathbf{S}(q) = \sum_{p}^{N} \frac{3}{4} n_p^{\text{spin}} + \sum_{p \neq q}^{N} \left(-\frac{1}{4} n_p^{\text{spin}} n_q^{\text{spin}} + \frac{1}{2} \mathbf{P}_{pq} \right)$$

 n_p^{spin} : Number operator of electron spin acting on the p-th molecular orbital

$$\begin{aligned}
\mathbf{P}_{pq} | \cdots \alpha_{p} \cdots \alpha_{q} \cdots \rangle &\longrightarrow | \cdots \alpha_{p} \cdots \alpha_{q} \cdots \rangle \\
\mathbf{P}_{pq} | \cdots \alpha_{p} \cdots \beta_{q} \cdots \rangle & | \cdots \alpha_{p} \cdots \beta_{q} \cdots \rangle \\
\mathbf{P}_{pq} | \cdots \beta_{p} \cdots \alpha_{q} \cdots \rangle & | \cdots \beta_{p} \cdots \alpha_{q} \cdots \rangle \\
\mathbf{P}_{pq} | \cdots \beta_{p} \cdots \beta_{q} \cdots \rangle &\longrightarrow | \cdots \beta_{p} \cdots \beta_{q} \cdots \rangle
\end{aligned}$$

$$\begin{bmatrix} n_p^{ ext{spin}}, n_q^{ ext{spin}} \end{bmatrix} = 0$$
 $\begin{bmatrix} n_p^{ ext{spin}}, \mathbf{P}_{pq} \end{bmatrix} = 0$ $\begin{bmatrix} \mathbf{P}_{pq}, \mathbf{P}_{pr} \end{bmatrix}
eq 0$

$$\exp(-i\mathbf{S}^2t) = \prod_{p} \underbrace{\exp\left(-i\frac{3}{4}n_p^{\text{spin}}t\right)} \times \prod_{p\neq q} \underbrace{\exp\left(i\frac{1}{4}n_p^{\text{spin}}n_q^{\text{spin}}t\right)} \times \prod_{p\neq q} \underbrace{\exp\left(-i\frac{1}{2}\mathbf{P}_{pq}t\right)}$$

Number operators of electron spins

Permutation of spins

R. Pauncz, The Construction of spin eigenfunctions. An Exercise Book, Kluwer/Plenum, 2000.

Quantum gate reduction based on wave function mapping

	JWT spin-α, spin-β⟩	Generalized spin coordinate mapping (GSCM)
Unoccupied	00>	[00)
Occupied by spin-β	01>	11>
Occupied by spin-α	10>	10 }
Doubly occupied	11>	<mark>01</mark> }

1st qubit: Open shell $(|1\rangle)$ or not $(|0\rangle)$

2nd qubit: Occupied by spin- β electron ($|1\rangle$) or not ($|0\rangle$)

$$\exp(-i\mathbf{S}^2t) = \prod_{p} \underbrace{\exp\left(-i\frac{3}{4}n_p^{\rm spin}t\right)} \times \prod_{p\neq q} \underbrace{\exp\left(i\frac{1}{4}n_p^{\rm spin}n_q^{\rm spin}t\right)} \times \prod_{p\neq q} \underbrace{\exp\left(-i\frac{1}{2}\mathbf{P}_{pq}t\right)}$$

Number operators of electron spin

Phase or controlled-Phase gates

Permutation of spins cc-(1e excitation)

Quantum gate reduction: QDrift Method

PHYSICAL REVIEW LETTERS 123, 070503 (2019)

PRX QUANTUM 2, 040305 (2021)

Editors' Suggestion

Footured in Physics

Random Compiler for Fast Hamiltonian Simulation

Earl Campbell
Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom

Concentration for Random Product Formulas

Chi-Fang Chen, 1,*,† Hsin-Yuan Huang, 2,3,† Richard Kueng, 2,3,4 and Joel A. Tropp³

¹Department of Physics, Caltech, Pasadena, California, USA

²Institute for Quantum Information and Matter, Caltech, Pasadena, California, USA

³Department of Computing and Mathematical Sciences, Caltech, Pasadena, California, USA

⁴Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

$$U = \exp(-iHt) \xrightarrow{\text{Divide into } r \text{ segments}} U_r = \exp(-iHt/r), \quad U = U_r^r$$

$$H = \sum_j w_j P_j \qquad \text{Approximate } U_r \text{ by } V_r = \prod_{j=1}^L \exp\left(i\frac{P_j\sum_k|w_k|}{L}t/r\right)$$

Select randomly, with a probability proportional to the coefficient $|w_i|$

$$H = -0.5Z_0 + 0.4Z_1 + 0.6Z_0Z_1 + 0.25X_0X_1 + 0.25Y_0Y_1$$

$$\begin{array}{c} -2Z_0/L \\ 2Z_1/L \\ 2X_0Z_1/L \\ 2Y_0Y_1/L \end{array} \quad \text{with a probability} \quad \begin{array}{c} 0.5/2 = 0.25 \\ 0.4/2 = 0.20 \\ 0.6/2 = 0.30 \\ 0.25/2 = 0.125 \\ 0.25/2 = 0.125 \end{array}$$

Trotter decomposition error

Time evolution operator

QPE
$$H = \sum_{j} w_{j} P_{j}$$
 $U = \exp(-iHt) = \exp\left(-i\sum_{j} w_{j} P_{j} t\right)$ $\rightarrow \left\{ \prod_{j} \exp(-iw_{j} P_{j} t/M) \right\}^{M}$

$$\mathbf{VQE\text{-}UCCSD} \quad T = \sum_{ja} t_{ja} a_a^\dagger a_j + \sum_{jkab} t_{jkab} a_a^\dagger a_b^\dagger a_k a_j$$

Cluster operator

$$\exp\left\{\sum_{ja} t_{ja} \left(a_a^{\dagger} a_j - a_j^{\dagger} a_a\right) + \sum_{jkab} t_{jkab} \left(a_a^{\dagger} a_b^{\dagger} a_k a_j - a_j^{\dagger} a_k^{\dagger} a_b a_a\right)\right\}$$

$$\to \prod_{ja} \exp\{t_{ja} \left(a_a^{\dagger} a_j - a_j^{\dagger} a_a\right)\} \prod_{jkab} \exp\{t_{jkab} \left(a_a^{\dagger} a_b^{\dagger} a_k a_j - a_j^{\dagger} a_k^{\dagger} a_b a_a\right)\}$$

Trotter decomposition error

arXiv:1910.10329; J. Chem. Theory Comput. **2020**, 16, 1–6.

Is the Trotterized UCCSD Ansatz usefully well-defined?

Harper R. Grimsley, Daniel Claudino, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

Trotterized UCCSD ansatz is not equivalent to the original "un-Trotterized" one.

(Figure taken from arXiv:1910.10329)

Trotter decomposition error reduction

This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Article

Cite This: J. Chem. Theory Comput. 2018, 14, 5617-5630

pubs.acs.org/JCTC

A Comparison of the Bravyi-Kitaev and Jordan-Wigner Transformations for the Quantum Simulation of Quantum Chemistry

Andrew Tranter, Peter J. Love, Florian Mintert, and Peter V. Coveney*, Ion

$$\prod_{j} \exp(-iw_{j}P_{j}t/M)$$

\Leftrightarrow Lexicographical ordering $(I \rightarrow X \rightarrow Y \rightarrow Z)$

IIII, IIIX, IIIY, IIIZ, IIXI, IIXX, IIXY, IIXZ, IIYI, IIYX, IIYY, IIYZ, IIZI, IIZX, IIZY, IIZZ, IXII, ...

☆ Magnitude ordering

Apply terms in descending order of $|w_j|$

Magnitude ordering gave smaller Trotter decomposition error than Lexicographical ordering

[†]Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

[‡]Centre for Computational Science, University College London, London WC1H 0AJ, United Kingdom

[¶]Department of Physics, Tufts University, Medford, Massachusetts 02155, United States

Trotter decomposition error reduction

First order Trotter decomposition

$$\exp\left(-i\sum_{j}w_{j}P_{j}t\right) \longrightarrow \left\{\prod_{j}\exp\left(-iw_{j}P_{j}t/M\right)\right\}^{M}$$

Second order Trotter decomposition

$$\exp\left(-i\sum_{j=1}^{J}w_{j}P_{j}t\right) \to \left[\left\{\prod_{j=1}^{J}\exp(-iw_{j}P_{j}t/2M)\right\}\left\{\prod_{j=J}^{1}\exp(-iw_{j}P_{j}t/2M)\right\}\right]^{M}$$
ascending order
descending order

- The number of quantum gates in the second order Trotter decomposition is about twice of that in the first order Trotter decomposition
- In my experiences, using the second order Trotter decomposition with *M* gives smaller Trotter error than the first order Trotter decomposition with 2*M*.

Trotter decomposition error reduction

Entropy 2019, 21, 1218.

Article

Ordering of Trotterization: Impact on Errors in Quantum Simulation of Electronic Structure

Andrew Tranter 1,*, Peter J. Love 1, Florian Mintert 2, Nathan Wiebe 3,4 and Peter V. Coveney 5

- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA; peter.love@tufts.edu
- Department of Physics, Imperial College London, London SW7 2AZ, UK; f.mintert@imperial.ac.uk
- Department of Physics, University of Washington, Seattle, WA 98105, USA; nwiebe@uw.edu
- Pacific Northwest National Laboratory, Richland, WA 98382, USA
- Centre for Computational Science, University College London, London WC1H 0AJ, UK; p.v.coveney@ucl.ac.uk
- * Correspondence: andrew.tranter@tufts.edu

☆ DepleteGroups strategy

- 1) Dividing the Hamiltonian terms into mutually commuting subsets.
- 2) The sets are cycled through, picking the highest magnitude term from each and appending this to the ordered Hamiltonian.

Algorithmic error mitigation

PHYSICAL REVIEW A 99, 012334 (2019)

Mitigating algorithmic errors in a Hamiltonian simulation

Suguru Endo, ^{1,*} Qi Zhao, ² Ying Li, ³ Simon Benjamin, ¹ and Xiao Yuan ^{1,†}

¹Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

²Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

³Graduate School of China Academy of Engineering Physics, Beijing 100193, China

Trotter decomposition error:

$$U = \exp\left(-i\sum_{j} w_{j} P_{j} t\right) \xrightarrow{\text{1st order Trotter}} \left[\prod_{j} \exp(-iw_{j} P_{j} t/N)\right]^{N} + O\left(\frac{t^{2}}{N}\right)$$

Summary

Qubit reduction

- Number of spin- α and spin- β electrons ... 2 qubits reduction
- Using point group symmetry ... $log_2 N_{irrep}$ qubits reduction

Quantum gate reduction

- Using equivalence of the CNOT ladder
- Using R_{xx} , R_{yy} , and R_{zz} gates
- Adopt operator-specific fermion-qubit mapping technique
- Approximated time evolution using QDrift

Trotter error reduction

- Magnitude ordering
- DepleteGroups strategy
- Algorithmic error mitigation

Acknowledgements

Professor Bhanu P. Das Professor Debashis Mukherjee Dr. Srinivasa Prasannaa V.

and

People in CQuERE, TCG CREST

All the lecture slides (and additional contents) are available at https://github.com/Kenji-Sugisaki/QC_seminar_at_CQuERE

All the lecture videos are available at

https://www.youtube.com/channel/UClSrgcVpVYM1J6PSeNyHXaA

THANK YOU VERY MUCH!