Digital System Design Module 4 - SEQUENTIAL LOGIC CIRCUITS

Dr. Deepthi Sasidharan

Assistant Professor, Department of Information Technology
GEC Barton Hill, Thiruvananthapuram

October 22, 2020

SEQUENTIAL CIRCUITS

- A combinational circuit its output depends only and immediately on its inputs — they have no memory
- Sequential circuits, however, act as storage elements and have memory
- They can store, retain, and then retrieve information when needed at a later time
- The binary information stored in these elements at any given time defines the state of the sequential circuit at that time

SEQUENTIAL CIRCUITS

Block diagram of sequential circuit

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states

SEQUENTIAL CIRCUITS

- There are two main types of sequential circuits, and their classification is a function of the timing of their signals.
 - A synchronous sequential circuit: it is a system whose behavior can be defined from the knowledge of its signals at discrete instants of time.
 - Synchronization is achieved by a timing device called a clock generator, which provides a clock signal having the form of a periodic train of clock pulses.
 - An asynchronous Sequential Circuit: The behavior depends upon the input signals at any instant of time and the order in which the inputs change.
 - The storage elements commonly used in asynchronous sequential circuits are time-delay devices

Synchronous Circuit

A flip-flop is a binary storage device capable of storing one bit of information

STORAGE ELEMENTS: LATCHES

- Storage elements that operate with signal levels (rather than signal transitions) are referred to as latches; those controlled by a clock transition are flip-flops.
- Latches are said to be level sensitive devices; flip-flops are edge-sensitive devices.
- The two types of storage elements are related because latches are the basic circuits from which all flip-flops are constructed

SR Latch

	S	R	Q	Q'				
	1	0	1	0				
	0	0	1	0	(after $S = 1, R = 0$)			
	0	1	0	1				
	0	0	0	1	(after $S = 0, R = 1$) (forbidden)			
	1	1	0	0	(forbidden)			
(b) Function table								

SR latch with NOR gates

SR Latch

SR latch with NAND gates

Because the NAND latch requires a 0 signal to change its state, it is sometimes referred to as an S'R' latch.

SR Latch

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

SR latch with control input