CSSE2010/CSSE7201 Lecture 24

Floating Point Numbers

School of Information Technology and Electrical Engineering
The University of Queensland

Admin/Reminders

- Assignment 2 is due on Monday (01/11/21)
 4:00PM Brisbane time.
- No labs on Friday (29/10/21) due to holiday. EX students on Friday can join other online sessions for the week.
- Late submissions will incur penalties unless you have an approved extensions.
- Any extension requests must be submitted through my-UQ portal.
- Exam review session on Wed 9-10am and another
 2 hour review session during the revision week.

Please take 5 minutes provide your feedback for course CSSE2010/7201 and teaching SECAT surveys (https://eval.uq.edu.au/)

Fractions – fixed-point

- How do we represent fractions?
 - We can arbitrarily specify the location of a binary point (fixed point notation), e.g.:

Example: How do we represent 4.375?

 Problem: Not all numbers can be represented – how do we represent 4¹/₃

What does the 8-bit number 10110101 represent in unsigned fixed-point notation with 5 integer bits and 3 fractional bits?

What does the 8-bit number 10110101 represent in 2's complement fixed-point notation with 5 integer bits and 3 fractional bits?

Rank	Responses	100%
1		
2		
3		
4		
5		
6	Other	
		1

Real Numbers

- Examples:
 - Mass of an electron: 9 x 10⁻²⁸ grams
 - 0.00000000000000000000000000009g
 - Mass of the sun: 2 x 10³³ grams
- Scientific or Floating Point Notation:
 - \blacksquare number = f x 10 e
 - f = fraction (or mantissa)
 - e = exponent
- Same applies to binary, e.g.
 - $2.0 \times 10^{33} = 1.1000101... \times 2^{1101110}$

Exponent: Decimal 110

IEEE Standard Floating Point

Single Precision (32 bits)

- Double Precision (64 bits)
 - Exponent is excess 1023 format

 Mantissa always normalised (begins with 1) (so it doesn't actually need to be stored...)

Floating Point Example

Hexadecimal IEEE single precision representation of -23.25

Finite Precision

- Not every number can be represented precisely
 - e.g. 10/3
 - So (10.0/3.0) * 3.0 may not equal 10.0

IEEE Floating Point Number Characteristics

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10^{-38} to 10^{38}	approx. 10^{-308} to 10^{308}
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

[Tanenbaum]

IEEE Numerical Types

Normalized	±	0 < Exp < Max	Any bit pattern
Denormalized	±	0	Any nonzero bit pattern
Zero	±	0	0
Infinity	±	1111	0
Not a number	±	1111	Any nonzero bit pattern
	×	Sign bit	

[Tanenbaum]

Not A Number (NANs)

- Used to represent the result of functions that have no solution
 - e.g. infinity divided by infinity, taking the square root of a negative number
- When NaN results from a computation, it propagates as a NaN through all subsequent operations