Pesquisa 4 Periféricos

Integrantes:

Thiago M. Mendes 12.03387-5 Eric M. C. Gomes 13.01703-9 Rodrigo M. Ferreira 13.04537-7

1-) periféricos:

RTC - Serve para disponibilização de relógio e calendário, bem como definições de alarmes e geração de waveforms.

TC - Serve para contagem de eventos e frequência, modulação de pulso e atraso de clock.

Endereços dos seguintes periféricos:

PIOA: $0x400E0E00 \sim 0x400E1000$

PIOB: 0x400E1000 ~~ 0x400E1200

ACC: $0x40040000 \sim 0x40044000$

UARTI: 0x400E0600 0x400E0740

UARTI2: 0x400E0800 0x400E0A00

2-) PIO

Pinos associados:

PA01: não esta associado a pino.

PB22: não existe.

PC12: 29.

Periféricos que podem ser configuráveis nos I/Os

PC20: PWMH2 e A2

PB3: UTXD1 e PCK2

Debouncing:

Debouncing é um tipo de filtro que pode ser aplicado no PIO para evitar interferências de pequenas oscilações, como por exemplo o ruído do apertar de um botão.

Algoritmo:

Porta->PIO_IFSCER = (1 << Pino) seta o debouncing em um determinado pino de uma determinada porta.

Race Conditions:

Race Condition é o termo usado para referenciar um problema de concorrência, onde uma ação do processo pode interferir na resposta de outra por estarem sendo executadas simultaneamente.

A configuração de um registrador para dar um set em uma função e outro para dar o clear controlados por um controlador em comum impede o conflito de eventos.

Pino em modo de saída:

O trecho explica que a partir do controle do PIO_ODR(disable) e PIO_OER(enable) é possível setar o controlador em 1 para que a linha de I/O seja controlada pelo correspondente controlador PIO, ou quando definido para 0, fica definida como entrada.