AMENDMENTS TO THE CLAIMS

This listing of claims will replace without prejudice all prior versions and listings of claims in the application.

Claim 1 (currently amended): A compound of the formula (I) or a salt thereof

RECEIVED

AUG 0 6 2003

TECH CENTER 1600/2900

$$X^{1}-X^{2}-C^{1}(C^{2})_{q}(C^{3})_{o}-[L_{p}-R^{3}]_{v}$$
 $X^{1}-X^{2}-C^{1}(C^{2})_{q}(C^{3})_{o}$
 $X^{1}-X^{2}-C^{1}(C^{2})_{q}(C^{3})_{o}$
 $X^{1}-X^{2}-C^{1}(C^{2})_{q}(C^{3})_{o}$

A2

in which

X¹ is a divalent unit selected from the group consisting of O, S(O)_n, NH, N[L_P-R³];

 X^2 is a straight-chain or branched (C₁-C₆)-alkylene, (C₂-C₆)-alkenylene or (C₂-C₆)-alkynylene chain which is substituted by w halogen atoms and by k radicals [L_P-R³];

 $C^1(C^2)_q(C^3)_o$ is a mono-, bi- or tricyclic radical, where

- e) the rings C¹, C² and C³ are in each case a 3- to 8-membered, saturated or partially saturated ring selected from the group consisting of cycloalkyl, cycloalkenyl, oxiranyl and oxetanyl,
- f) the rings C^1 , C^2 and C^3 are in each case linked to each other via one or two joint atoms;

R¹ and R² independently of one another are hydrogen, mercapto, nitro, cyano, halogen, thiocyanato, (C_1-C_6) -alkyl-CO-O, (C_1-C_6) -alkyl-S(O)_n-O, (C_1-C_6) -alkyl-S(O)_n, di- (C_1-C_6) -alkyl-NH-SO₂, (C_1-C_6) -alkyl-SO₂-NH, (C_1-C_6) -alkyl-NH-CO, (C_1-C_6) -alkyl-SO₂-[(C_1-C_6) -alkyl]amino, (C_1-C_6) -alkyl-CO-((C_1-C_6) -alkyl)amino, 1,2,4-triazol-1-yl, (C_1-C_6) -alkyl-O-CH₂, (C_1-C_6) -alkyl-S(O)_n-CH₂, (C_1-C_6) -alkyl-NH-CH₂, [(C_1-C_6) -alkyl]₂N-CH₂, 1,2,4-triazol-1-yl-CH₂, or are (C_1-C_6) -alkyl-(D)_p, (C_2-C_6) -alkenyl-(D)_p, (C_2-C_6) -alkynyl-(D)_p, (C_3-C_9) -cycloalkyl-(D)_p, or (C_3-C_9) -cycloalkyl-(D)_p, each of which is substituted by v radicals selected from the group consisting of cyano, nitro and halogen;

A2

R³ is hydrogen, hydroxyl, halogen, mercapto, amino, nitro, a carbon-containing radical or, if p in X¹ is zero, R³ is oxo, NR⁸, N-OR⁸ or N-NR⁸R⁹;

D is oxygen or sulfur;

L is in each case straight-chain or branched A_p -[$C(R^6)_2$]_w-[A_p - $C(R^6)_2$]_x- A_p or A_p -M- A_p [[;]] with the proviso that 2 or 3 of the variable terms p, w and x shall not simultaneously be zero;

A is a divalent unit selected from the group consisting of O, S(O)_n, NH, N-(C₁-C₆)-alkyl, N-(C₂-C₆)-alkenyl and N-(C₂-C₆)-alkynyl;

M is (C_1-C_6) -alkylene, (C_2-C_6) -alkenylene or (C_2-C_6) -alkynylene, each of which is substituted by w radicals R^6 ;

 R^4 is OR^7 , (C_1-C_4) -alkylthio, halo- (C_1-C_4) -alkylthio, (C_1-C_4) -alkenylthio, halo- (C_2-C_4) -alkynylthio, (C_2-C_4) -alkynylthio, (C_2-C_4) -alkynylthio, (C_2-C_4) -alkylsulfinyl, halo- (C_2-C_4) -alkynylsulfinyl, (C_2-C_4) -alkynylsulfinyl, (C_2-C_4) -alkynylsulfinyl, (C_2-C_4) -alkynylsulfinyl, (C_1-C_4) -alkylsulfonyl, halo- (C_1-C_4) -alkylsulfonyl, (C_2-C_4) -alkynylsulfonyl, halo- (C_2-C_4) -alkynylsulfonyl, halo- (C_2-C_4) -alkynylsulfonyl, halo- (C_2-C_4) -alkynylsulfonyl, halo- (C_2-C_4) -alkynylsulfonyl, cyano, cyanato, thiocyanato, halogen or phenylthio;

A2

is hydrogen, tetrahydropyran-3-yl, tetrahydropyran-4-yl, tetrahydrothiopyran-3-yl, (C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, (C₁-C₄)-alkyl, (C₁-C₄)-alkylcarbonyl, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkylthio, phenyl, the eight last-mentioned groups being substituted by v radicals selected from the group consisting of halogen, (C₁-C₄)-alkylthio and (C₁-C₄)-alkoxy, or two radicals R⁵ bonded to a joint carbon atom form a chain selected from the group consisting of OCH₂CH₂O, OCH₂CH₂CH₂O, SCH₂CH₂S and SCH₂CH₂CH₂S, this group being substituted by w methyl groups, or two radicals R⁵ bonded to directly adjacent carbon atoms, together with the carbon atoms to which they are attached, form a 3- to 6-membered ring which is substituted by w radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-alkylthio and (C₁-C₄)-alkoxy;

R⁶ is (C₁-C₄)-alkyl, halogen, cyano or nitro;

R⁷ is hydrogen, (C_1-C_4) -alkyl, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy- (C_1-C_4) -alkyl, formyl, (C_1-C_4) -alkylcarbonyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkylaminocarbonyl, di- (C_1-C_4) -

alkylaminocarbonyl, (C_1-C_4) -alkylsulfonyl, halo- (C_1-C_4) -alkylsulfonyl, benzoyl or phenylsulfonyl, the two last-mentioned groups being substituted by v radicals selected from the group consisting of (C_1-C_4) -alkyl, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halo- (C_1-C_4) -alkyl, halo- (C_1-C_4) -alkyl

 R^8 is hydrogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_8) -cycloalkyl, aryl, aryl- (C_1-C_6) -alkyl, heteroaryl, heterocyclyl, halo- (C_1-C_4) -alkyl;

is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₉)-cycloalkyl, aryl, aryl-(C₁-C₆)-alkyl, heterocyclyl, halo-(C₁-C₄)-alkyl, or, if R⁸ and R⁹ are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five- to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur;

Y is a divalent unit selected from the group consisting of O, S, N-H, N-(C_1 - C_4)-alkyl, CHR⁵ and $C(R^5)_2$;

Z is a divalent unit selected from the group consisting of O, S, SO, SO₂, N-H, N-(C₁-C₄)-alkyl, CHR⁵ and C(R⁵)₂;

m and n are each 0, 1 or 2;

o, p and q are each 0 or 1;

w and x are each 0, 1, 2, 3 or 4;

v is 0, 1, 2 or 3.

Claim 2 (original): A benzoylcyclohexanedione as claimed in claim 1, in which X^1 is a divalent unit selected from the group consisting of O, S and NH;

R¹ is chlorine, bromine, fluorine, methyl, ethyl, cyano, nitro, halo-(C₁-C₂)-alkyl;

R² is halogen, halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkylsulfenyl, (C_1-C_4) -alkylsulfinyl, (C_1-C_4) -alkylsulfonyl or nitro;

is (C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, (C₁-C₄)-alkyl, (C₁-C₄)-alkylcarbonyl, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkylthio, phenyl, or two radicals R⁵ bonded to a joint carbon atom form a chain selected from the group consisting of OCH₂CH₂O, OCH₂CH₂CH₂O, SCH₂CH₂S and SCH₂CH₂CH₂S, this group being substituted by w methyl groups, or two radicals R⁵ bonded to directly adjacent carbon atoms form a bond or, together with the carbon atoms to which they are attached, form a 3- to 6-membered ring which is substituted by w radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-alkylthio and (C₁-C₄)-alkoxy;

 R^8 is hydrogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_8) -cycloalkyl, aryl, aryl- (C_1-C_6) -alkyl, halo- (C_1-C_4) -alkyl;

-7-

R⁹ is hydrogen, (C₁-C₄)-alkyl, or, if R⁸ and R⁹ are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five- to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur.

Claim 3 (currently amended): A benzoylcyclohexanedione as claimed in claim 1, in which

 X^2 is a straight-chain or branched (C_1 - C_4)-alkylene, (C_2 - C_4)-alkenylene or (C_2 - C_4)-alkynylene chain, each of which is substituted by w halogen atoms;

 R^3 is

- a) hydrogen, hydroxyl, halogen, mercapto, amino, nitro, cyano, formyl,
- b) phenyl, oxazolyl, furanyl or tetrahydropyrrolyl, each of which is substituted by w radicals selected from the group consisting of halogen, cyano, (C₁-C₄)-alkyl, halo-(C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halo-(C₁-C₄)-alkoxy, (C₁-C₄)-alkylthio, halo(C₁-C₄)-alkylthio and R¹⁰,
- c) (R¹¹)(C₁-C₄)-alkylamino, (R¹¹)₂-amino, R¹¹-oxycarbonyl, R¹¹-carbonyl, R¹¹-carbonyloxy; (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkoxy-(C₁-C₆)-alkyl, (C₃-C₉)-cycloalkyl, (C₃-C₉)-cyloalkenyl, (C₁-C₆)-alkoxy or (C₁-C₆)-alkylthio, each of which is substituted by v radicals selected from the group consisting of formyl, halogen, cyano, nitro, (C₁-C₄)-alkylamino, (C₁-C₄)-dialkylamino, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkylcarbonyl, (C₁-C₄)-alkylcarbonyloxy, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl,

halo- (C_1-C_4) -alkyl, (C_1-C_4) -alkylthio, halo- (C_1-C_4) -alkylthio, (C_1-C_4) -alkoxy and halo- (C_1-C_4) -alkoxy;

- d) a radical of the formula Va, Vb, Vc, Vd, Vj or Vp, or
- e) if p is zero, then R³ is oxo, NR⁸, N-OR⁸ or N-NR⁸R⁹;
- R^7 is hydrogen, (C_1-C_4) -alkylsulfonyl, benzoyl or phenylsulfonyl, the two last-mentioned groups being substituted by v radicals selected from the group consisting of (C_1-C_2) -alkyl, halo- (C_1-C_2) -alkoxy, halo- (C_1-C_2) -alkoxy, halogen, cyano and nitro, and

 R^{11} is hydrogen, (C_1-C_4) -alkyl, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl or (C_3-C_8) cycloalkyl.

A2

Claim 4 (original): A benzoylcyclohexanedione as claimed in claim 1, in which X^1 is the divalent unit O;

 R^4 is OR^7 , (C_1-C_4) -alkylthio, (C_2-C_4) -alkenylthio, (C_1-C_4) -alkylsulfonyl, cyano, cyanato, thiocyanato, or else phenylthio which is substituted by v radicals selected from the group consisting of halogen, (C_1-C_2) -alkyl, (C_1-C_2) -alkoxy, halo- (C_1-C_2) -alkoxy and nitro;

R⁵ is hydrogen, (C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkylthio, phenyl, or two radicals R⁵ bonded to directly adjacent carbon atoms, together with the carbon atoms to which they are bonded, form a substituted 3- to 6-membered ring;

R¹² is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, or, if R¹¹ and R¹² are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five- to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur;

- Y is a divalent unit selected from the group consisting of CHR⁵ and C(R⁵)₂, and
- Z is a divalent unit selected from the group consisting of O, S, SO₂, N-(C₁-C₄)alkyl, CHR⁵ and $C(R^5)_2$.

Claim 5 (original): A benzoylcyclohexanedione as claimed in claim 1, in which R^2 is halogen, halo- (C_1-C_2) -alkyl or (C_1-C_2) -alkylsulfonyl;

R⁵ is (C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkylthio, phenyl, or two radicals R5 bonded to directly adjacent carbon atoms together with the carbon atoms to which they are attached form a substituted 3- to 6-membered ring;

- R⁷ is hydrogen, (C₁-C₄)-alkylsulfonyl, benzoyl or phenylsulfonyl, and
- R⁸ is hydrogen, methyl or ethyl, and
- R² is in the 4-position of the phenyl ring.

Claim 6 (original): A benzoylcyclohexanedione as claimed in claim 1, in which

-10-

 X^2 is a straight-chain or branched (C₁-C₄)-alkylene, (C₂-C₄)-alkenylene or (C₂-C₄)-alkynylene chain;

R¹ is chlorine, bromine, methyl, trifluoromethyl, cyano or nitro-;

R² is chlorine, bromine, methylsulfonyl, ethylsulfonyl, trifluoromethyl or nitro;

R⁴ is OR⁷, (C₁-C₄)-alkylthio, (C₂-C₄)-alkenylthio or phenylthio;

A2

R⁵ is hydrogen, (C₁-C₄)-alkyl, or two radicals R⁵ bonded to directly adjacent carbon atoms together with the carbon atoms to which they are attached form a substituted 3- to 6-membered ring;

A is a divalent unit selected from the group consisting of O, $S(O)_n$, NH and N- (C_1-C_6) -alkyl;

M is (C_1-C_6) -alkylene;

Y and Z independently of one another are a divalent unit selected from the group consisting of CHR^5 and $C(R^5)_2$.

Claim 7 (original): A herbicidal composition which comprises a herbicidally active content of at least one compound of the formula (I) as claimed in claim 1.

Claim 8 (original): A herbicidal composition as claimed in claim 7 in mixture with formulation auxiliaries.

Claims 9-12 (canceled)

Claim 13 (currently amended): A compound of the formula (IIIa)

A2

$$T = \begin{bmatrix} R^{1} \\ X^{1} - X^{2} - C^{1}(C^{2})_{q}(C^{3})_{o} - [L_{p} - R^{3}]_{v} \\ R^{2} \end{bmatrix}$$
(IIIa)

in which T is (C_1-C_4) -alkoxy, hydroxyl or halogen and R^1 , R^2 , R^3 , X^1 , X^2 , C^1 , C^2 , C^3 , L, o, p, q and v have the meanings stated in claim 1, with the exception of compounds in which C^1 are exiranyl or exetanyl and the variable terms o and q are both simultaneously zero;

X¹ is a divalent unit selected from the group consisting of O, S(O)_n, NH, N[L_P-R³];

 \underline{X}^2 is a straight-chain or branched ($\underline{C_1}$ - $\underline{C_6}$)-alkylene, ($\underline{C_2}$ - $\underline{C_6}$)-alkynylene chain which is substituted by w halogen atoms;

 $C^{1}(C^{2})_{0}(C^{3})_{0}$ is a mono-, bi- or tricyclic radical, where

- e) the rings C¹, C² and C³ are in each case a 3- to 8-membered, saturated or partially saturated ring selected from the group consisting of cycloalkyl, cycloalkenyl, oxiranyl and oxetanyl,
- f) the rings C¹, C² and C³ are in each case linked to each other via one or two joint atoms;

R¹ and R² independently of one another are hydrogen, mercapto, nitro, cyano, halogen, thiocyanato, (C_1-C_6) -alkyl-CO-O, (C_1-C_6) -alkyl-S(O)_n-O, (C_1-C_6) -alkyl-S(O)_n, di- (C_1-C_6) -alkyl-NH-SO₂, (C_1-C_6) -alkyl-SO₂-NH, (C_1-C_6) -alkyl-NH-CO, (C_1-C_6) -alkyl-SO₂-[(C_1-C_6) -alkyl]amino, (C_1-C_6) -alkyl-CO-((C_1-C_6) -alkyl)amino, 1,2,4-triazol-1-yl, (C_1-C_6) -alkyl-O-CH₂, (C_1-C_6) -alkyl-S(O)_n-CH₂, (C_1-C_6) -alkyl-NH-CH₂, $[(C_1-C_6)$ -alkyl]₂N-CH₂, 1,2,4-triazol-1-yl-CH₂, or are (C_1-C_6) -alkyl-(D)_p, (C_2-C_6) -alkenyl-(D)_p, (C_2-C_6) -alkyl-(D)_p, or (C_3-C_9) -cycloalkyl-(D)_p, (C_3-C_9) -cycloalkenyl-(D)_p, each of which is substituted by v radicals selected from the group consisting of cyano, nitro and halogen;

R³ is hydrogen, hydroxyl, halogen, mercapto, amino, nitro, a carbon-containing radical or, if p in X¹ is zero, R³ is oxo, NR⁸, N-OR⁸ or N-NR⁸R⁹:

D is oxygen or sulfur;

L is in each case straight-chain or branched A_p -[$C(R^6)_2$]_w-[A_p - $C(R^6)_2$]_x- A_p or A_p -M- A_p with the proviso that 2 or 3 of the variable terms p, w and x shall not simultaneously be zero;

A2

A is a divalent unit selected from the group consisting of O, S(O)_n, NH, N-(C₁-C₆)-alkyl, N-(C₂-C₆)-alkenyl and N-(C₂-C₆)-alkynyl;

M is (C_1-C_6) -alkylene, (C_2-C_6) -alkenylene or (C_2-C_6) -alkynylene, each of which is substituted by w radicals R^6 ;

R⁶ is (C₁-C₄)-alkyl, halogen, cyano or nitro;

is hydrogen, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_8) -cycloalkyl, aryl, aryl- (C_1-C_6) -alkyl, heteroaryl, heterocyclyl, halo- (C_1-C_4) -alkyl;

is hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₉)-cycloalkyl, aryl, aryl-(C₁-C₆)-alkyl, heteroaryl, heterocyclyl, halo-(C₁-C₄)-alkyl, or, if R⁸ and R⁹ are bonded to one atom or to two directly adjacent atoms, they together with the atoms to which they are bonded form a saturated, partially or fully unsaturated five- to six-membered ring which contains p hetero atoms selected from the group consisting of oxygen, nitrogen and sulfur;

m and n are each 0, 1 or 2;

o, p and q are each 0 or 1;

w and x are each 0, 1, 2, 3 or 4; and

<u>v is 0, 1, 2 or 3;</u>

with the exception of compounds in which C¹ is oxiranyl or oxetanyl and the variable terms o and q are both simultaneously zero.

Claim 14 (new): A method of controlling undesired plants, which comprises applying an effective amount of at least one compound of the formula (I) as claimed in claim 1 to the undesired plants or to the site of the undesired plant growth.

Claim 15 (new): The method of claim 14, wherein the undesired plants are in crops of useful plants.

Claim 16 (new): The method of claim 15, wherein the useful plants are transgenic.

Claim 17 (new): A method of controlling undesired plants, which comprises applying an effective amount of a herbicidal composition as claimed in claim 7 or 8 to the undesired plants or to the site of the undesired plant growth.

Claim 18 (new): The method of claim 17, wherein the undesired plants are in crops of useful plants.

Claim 19 (new): The method of claim 18, wherein the useful plants are transgenic.

-15-