《最小生成树求解器》设计报告

计 35 朱俸民 2012011894

2014年9月7日

1 程序简介

MST 求解器 (MST Solver) 用于求解二维平面上的点所构成的最小生成树 (Minimal Spanning Tree)。用户输入一系列点的坐标,程序可以求解出这些点构成的 MST, 并且 将它绘制在画布区域,方便用户进行查看和修改。

本程序提供两种求解 MST 的方法:

方法一 直接生成输入点的完全图,对完全图利用 Prim 算法求解。

方法二 先利用 Clarkson-Delaunay 算法求出输入点的三角剖分,再对此三角剖分 对应的无向图利用 Prim 算法求解。

2 特色

- 1. 支持多种方式读入数据: 数据文件、随机生成、输入坐标以及在画布上绘制。
- 2. 数据加载后,用户可随时对已经加载的样本进行编辑:添加、删除和移动。提供了样本坐标列表以便进行快速编辑。
- 3. 支持两种求解算法的选择:即可选择其一,也可两者皆选以便测试和比较。
- 4. 自动记录求解过程的算法执行时间,并生成报告。
- 5. 画布区域支持缩放和拖动,并支持快速定位与图形显示自适应。
- 6. 求解结果可视化。求解完成后,用户可查看 MST。如果用户使用了**方法二**求解, 还可以查看三角剖分图。
- 7. 大部分功能设有快捷键,以便有经验的用户进行快速操作。

3 功能介绍

3.1 样例载入 (Load problem)

本程序提供以下三种载入方式:

- 1. 从文件载入 (From file): 选择一个本地的样例文件,此样例文件需要满足一定的格式 (参见"样本文件"部分)。
- 2. 随机生成 (From random sample): 使用程序提供的样例生成器 (Sample Generator),指定点的数据类型 (整数或小数)、样本大小 (6——20000) 和存储文件的路径,即可加载此生成的样例。
 - 3. 手动绘制 (Manually): 直接在画布上进行点的绘制。

3.2 样本编辑

在样例载入之后,用户可以随时编辑已经载入的样本点。编辑的方式可以分为两种: 画 布编辑和菜单编辑。

画布编辑 利用此方法编辑样本,用户需要在两种模式中切换:正常模式 (Normal mode) 和清除模式 (Remove mode)。在正常模式,用户将鼠标移动至某一位置按下后,即在此处添加一个点。若用户选中某点进行拖动,则该点将被移动至鼠标弹开的位置。在清除模式,用户需要选中待删除的点,当该点变亮时单击,即可删除该点。

菜单编辑 此方法需要使用到 Sample 菜单项的一些命令:

- 1. Add a point 添加一个点。
- 2. Add points 添加多个点。
- 3. Remove a point 在列表中选中一个点,再使用此命令删除。
- 4. Remove points 使用此命令后,列表呈现多选状态,用户通过依次选中待删除的点后,单击列表下方的 Remove 按钮即可删除所选择的所有点。
- 5. Edit a point 在列表中选中一个点,再使用此命令修改点的坐标。用户也可通过双击列表上的点来进行编辑。
 - 6. Clear 清除当前的所有样本点。

3.3 图形查看

程序中央部分的画布用于实时查看所有的样本点位置以及生成的 MST 和三角剖分图。 为了更加方便的查看,用户可以对画布区域进行如下的操作:

- 1. 缩放 使用鼠标滚轮或者拖动画布左侧的滑动条可以对画布区域进行缩放。如果用户需要更加精确的调整,可以使用视图 (View) 菜单或工具栏中的放大 (Magnify) 和缩小 (Narrow) 命令。
- 2. 移动 用户需要先切换至移动模式 (Move mode),它可以在视图菜单或者工具栏中找到。当光标变为手型时,拖动画布,即可移动。
- 3. 快速定位 此功能可以迅速定位至用户需要查看的区域。首先,从视图菜单或者工具栏切换至定位模式 (Locale mode)。移动鼠标至要定位的样本点,会发现画布中

该点被点亮,单击该点,画布会自动调整,使该点位于画布的中心。

4. 自适应 (Suitable scale) 此功能可以自动缩放和移动画布,使样本点尽量分散显示在画布区域中。

3.4 问题求解

载入和修改好样本后,用户只需执行 Solver 菜单或者工具栏的求解 (solve) 命令来求解。由于本程序提供了两种方法,用户可以在算法 (Algorithm) 选项中设置所使用的算法,也可把两者都勾选上,这样就会利用两种算法各求解一次。用户还可以通过偏好设置 (Preference) 菜单选择默认的算法。

求出解后, 画布区域会自动显示得到的 MST。用户可以从这四种视图模式中选择, 查看所需要的图:

- 1. Sample view 仅显示样本点
- 2. MST view 显示 MST 与样本点
- 3. Graph view 显示三角剖分图与样本点(需使用方法二)
- 4. MST with view 显示 MST、三角剖分图以及样本点(需使用**方法二**) 这些均可以在视图菜单或者工具栏中找到。

请**注意**:用户在求解后,依然可以继续使用此样本进行再编辑,或者换用其他方法 后再次求解。

3.5 测试报告

在求解过程中,本程序已经自动记录下了算法执行的时间,用户可以通过 Solver 菜单的 Result → Show 命令进行查看,还可以通过 Save as 命令保存测试报告。

4 样本文件

本程序支持直接从本地载入样本点文件进行求解。样本文件需要满足如下的格式要求:

- 1. 文件开头可以有注释, 注释行需要以井号(#)开头;
- 2. 样本数据部分的第一行为一个整数 n, 表示此文件的样本大小,即点的个数(或者用户需要测试的点数目,此时自动载入前 n 个样本点);
- 3. 接下来有 2n 个数(整数和小数皆可),数与数之间用空格、TAB 或者换行等隔开,这些数字会依次解析为第 1 个点的 X 坐标,第 1 个点的 Y 坐标,第 n 个点的 Y 坐标。为方便查看,强烈建议按照共 n 行,每行 2 个用空格分开的数字,分别表示该点的 X 坐标和 Y 坐标的格式来输入数据。程序自带的样例生成器所生成的文件就符合这样的格式;

4. 为便于样本的显示,程序要求所提供的样本点中不能有特别接近甚至完全相同的 点,即点与点之间的横、纵坐标的差不能小于 1.0。程序会在加载样本文件以及用户修 改样本的时候进行检测,不符合标准的样本将无法进行求解。

5 测试结果

以下是采用随机样本,对两种求解方法进行测试的结果:(衡量标准为运行时间,单位:秒)

样本大小	方法一	方法二			更快的方法
		三角剖分	Prim	总计	文状的方法
100	0.000265	0.001498	0.000135	0.001633	方法一
1000	0.023703	0.013868	0.010101	0.023969	方法一
5000	0.516154	0.082384	0.254978	0.337362	方法二
10000	2.060580	0.190668	1.037330	1.228000	方法二
20000	8.323420	0.420125	4.290440	4.710560	方法二

由于本程序采用的 Prim 算法进行了优化,实际的复杂度小于 $O(n^2)$,故即使样本较大时依然可以较为快速的求解。但是通过三角剖分处理后的图,显然比完全图"小"很多,故再调用 Prim 算法搜索时,时间也大大减少了。

6 联系作者

电子邮箱: zhufengminpaul@163.com