Background

- We have a Solexa reads for yeast genome
- We want to know difference between mutant and wild type
- This time I focused on the details of mutated protein information

Methods

Overview

There are already numbers of softwares for this process

list of examples http://seqanswers.com/wiki/Special:BrowseData

Mapping the reads to Genome

SNP detection

Coding !!

Find Affected Protein

Give Protein Annotation

I.We have the Detected SNP positions on the genome

2. Only look at SNPs in the CDS region

3. Look only at SNPs that changes the AA sequence

4. look at features of protein at the mutation position

Methods

Software & Database

MAQ

- One of the most-used Mapping & SNP detection software for Solexa reads
- maqview, wich visualized the mapping result of MAQ is also available

http://maq.sourceforge.net/

Perl

- Useful when you handle string characters (like DNA, RNA, AA sequences)
- Easy to code (no need to compile)
- lots of modules in CPAN (http://search.cpan.org/)

http://www.perl.com/

bioperl

- Library of perl modules for bioinformatics
- Has many Classes for analysis
- Has lots of HOWTOs and documentation
- Installed in MSI server
- There are also biopython, bioruby, biojava, etc (FYI)

SRA

- Powered by NCBI
- Database that collects nextgen sequencing data
- I used this for the dummy data
- sometime, it is called "short read archive"
 and sometimes it is called "sequence read archive"

SGD

- Database for yeast
- Has Pathway information, Genome information
- SGD id is the primary identifier for each gene in this database

UniProt(Swiss-prot)

- Human curated protein database(Swiss-prot)
- Has lots of annotation like GO terms
- Has various links to database (SGD,KEGG,etc)

KEGG

- Pathway database for various species
- Has metabolic pathways, signal pathways and so on
- Users can color, map object to the pathway and use analysis tools for the pathway
- you use it from your code by KEGG API

http://www.kegg.jp/kegg/kegg2.html

Pathway Projector

- Made in IAB, Keio univ. Now in press (this is where I spent my undergrad)
- Has global metabolic pathway map integrated from KEGG, with google map interface
- User can color, map, draw objects on the map and use analysis tools for the pathway
- Please send us feedbacks if you have ANY suggestions or demands (please!)

http://www.g-language.org/PathwayProjector/

About perl and bioperl

maybe slides here would help you understand the codes, but you can Ignore the slides to go on

bioperl

- bioperl is made with object-orientation
 - ... with fastidious care
- So you will have to know what object-orientation is like to use bioperl

Super Easy guide to Object-orientation in perl

Image for getting started

Super Easy guide to Object-orientation in perl

Example

\$tom is the Person object

```
use Person;
my $tom = Person->new(-name => "Tom",-age=>"24",);
print $tom->name;
print $tom->age;
print $tom->age_in_seconds;
```

Example

\$tom is the Person object

```
"use" lets you to use the OBJECT, "Person"

use Person;
my $tom = Person->new(-name => "Tom", -age=>"24",);

print $tom->name;
print $tom->age;
print $tom->age_in_seconds;
(probably) prints "Tom"
(probably) prints "24"
(probably) prints "756,864,000"

[wrote probably) because it depends on how the methods are written
```

Example in bioperl

this script prints all the amino acid sequence in a genome (this example is not accurate, but will make things easier to explain)

```
use Bio::SeqIO;
my $seqio_object = Bio::SeqIO->new(-file => "ecoli.gbk");
my $seq_object = $seqio_object->next_seq;

for my $feat_object ($seq_object->get_SeqFeatures) {
    print $feat_object->seq->translate->seq;
}
```

Examples in bioperl

```
Bio::SeqIO object
        use Bio. SeqIO;
        my $seqio_object = Bio::SeqIO->new(-file => "ecoli.gbk");
         my $seq_object = $seqio_object->next_seq;
Bio::Seq object
         for my $feat_object ($seq_object->get_SeqFeatures) {
           print $feat_object->seq->translate->seq;
         }
                                                                 string of AA(not object)
                                      Bio::PrimarySeq object
      Bio::SeqFeature::Generic object
                                      (for AA)
                            Bio::PrimarySeq object
                            (for nucleotide)
                                                    you get the AA sequence printed out!!!
```

As a whole... bioperl!!!

I know this is super ultra hard for beginners to understand. Sometimes, It is also driving me nuts. But, bioperl is useful.

Here is the list of all the Classes in bioperl

http://search.cpan.org/~cjfields/BioPerl-I.6.I/

There is a useful copy & paste scripts around the internet. In the bioperl wiki, there are helpful tutorials, HOWTOs, and Mailing lists where people can ask questions about bioperl.

http://www.bioperl.org/wiki/Main_Page

Implementation

How the program works

for each entry in Uniprot make the SGD and Uniprot ID relation hash table

Step

for each SNPs
for each CDS check if SNP is in the CDS region
if so, check if SNP changes the AA
if so, get UniProt id by using the hash table in step!
check if mutation is in the feature tables
get bunch of annotations

Print the result

Step2

Outputs

- Protein_List.txt
 tells you what protein had SNPs
 (GO terms, protein definition)
- Protein_details.txt
 tells you more info in to the domain (FT)

Protein_List.txt (maybe better looking with Excel)

1				, and the second se
YNL176C	S000005120	YNR6_YEAST	sce:YNL176C	GO:0000324,GO:0016021 RecName: Full=Uncharacterized protein YNL176C;
PKH1	S000002898	PKH1_YEAST	sce:YDR490C	GO:0005829,GO:0005524,GO:0005515,GO:0004674,GO:0006897,GO:0000196,GO:0006468 RecName: Full=Serine/threonine-pro
YPR097W	S000006301	YP097_YEAST	sce:YPR097W	GO:0019898,GO:0005739,GO:0035091,GO:0005515,GO:0007154 RecName: Full=PX domain-containing protein YPR097W;
UFD2	S000002349	UFD2_YEAST	sce:YDL190C	GO:0005737,GO:0005634,GO:0000151,GO:0005515,GO:0034450,GO:0016567,GO:0006950,GO:0006511 RecName: Full=Ubiquitin co
RAD4	S000000964	RAD4_YEAST	sce:YER162C	GO:0000111,GO:0000108,GO:0003684,GO:0005515,GO:0000715 RecName: Full=DNA repair protein RAD4;
PKC1	5000000201	KPC1_YEAST	sce:YBL105C	GO:0005737,GO:0005856,GO:0005634,GO:0001950,GO:0030427,GO:0005524,GO:0005509,GO:0019992,GO:0005515,GO:0004697,GO:0
POS5	S000006109	POS5_YEAST	sce:YPL188W	GO:0005759,GO:0005524,GO:0003951,GO:0042736,GO:0006741,GO:0006979 RecName: Full=NADH kinase POS5, mitochondr
ATP1	S000000195	ATPA_YEAST	sce:YBL099W	GO:0042645,GO:0005754,GO:0005524,GO:0046933,GO:0046961,GO:0015986 RecName: Full=ATP synthase subunit alpha,
YNL193W	S000005137	YNT3_YEAST	sce:YNL193W	RecName: Full=Uncharacterized protein YNL193W;
OAF1	S000000048	OAF1_YEAST	sce:YAL051W	GO:0005634,GO:0005515,GO:0043565,GO:0016563,GO:0003700,GO:0008270,GO:0006631,GO:0016481,GO:0007031,GO:0045941,GO:0
MCH2	S000001704	MCH2_YEAST	sce:YKL221W	GO:0016021,GO:0015293,GO:0006810 RecName: Full=Probable transporter MCH2;
VPS15	S000000301	VPS15_YEAST	sce:YBR097W	GO:0031225,GO:0005768,GO:0000139,GO:0005739,GO:0034271,GO:0034272,GO:0005524,GO:0005515,GO:0004674,GO:0048017,GO:0
THI22	S000006325	THI22_YEAST	sce:YPR121W	GO:0005576,GO:0009228 RecName: Full=Thiamine biosynthesis protein THI22; Flags: Precursor;
SR077	S000000202	SNI2_YEAST	sce:YBL106C	GO:0005886,GO:0006887,GO:0006893 RecName: Full=Protein SNI2; AltName: Full=Suppressor of RHO3 protein 77;
YMR027W	S000004629	YMR7_YEAST	sce:YMR027W	GO:0005737,GO:0005634 RecName: Full=UPF0364 protein YMR027W;
RTC1	S000005498	Y0128_YEAST	sce:YOL138C	GO:0000324,GO:0005515,GO:0008270 RecName: Full=Uncharacterized WD repeat-containing protein YOL138C;
NAB6	S000004585	NAB6_YEAST	sce:YML117W	GO:0005737,GO:0003723 RecName: Full=RNA-binding protein NAB6; AltName: Full=Nucleic acid-binding protein 6;
MKK1	S000005757	MKK1_YEAST	sce:YOR231W	GO:0005934,GO:0005524,GO:0004674,GO:0006468,GO:0007165 RecName: Full=MAP kinase kinase MKK1/SSP32; EC=2.7.12.2;
	S000005656	ORT1_YEAST	sce:YOR130C	GO:0016021,GO:0005743,GO:0005488,GO:0000064,GO:0006526,GO:0000066 RecName: Full=Mitochondrial ornithine carr
SST2	S000004444	SST2_YEAST	sce:YLR452C	GO:0005886,GO:0005096,GO:0005515,GO:0004871,GO:0000754,GO:00007242 RecName: Full=Protein SST2;
PAT1	S000000673	PAT1_YEAST	sce:YCR077C	GO:0000932,GO:0022627,GO:0005515,GO:0007049,GO:0051301,GO:0007059,GO:0033962,GO:0000290,GO:0006446 RecName: F
PDR3	S000000101	PDR3_YEAST	sce:YBL005W	GO:0005737,GO:0005634,GO:0003704,GO:0016563,GO:0003700,GO:0016564,GO:0008270,GO:0000122,GO:0045944,GO:0042493,GO:0
YET1	S000001548	YET1_YEAST	sce:YKL065C	GO:0005783,GO:0016021,GO:0005515,GO:0006886,GO:0016192 RecName: Full=Endoplasmic reticulum transmembrane protein
PSK1	S000000015	KAB7_YEAST	sce:YAL017W	GO:0005737,GO:0005524,GO:00042802,GO:0004674,GO:0004871,GO:0006078,GO:0019318,GO:0006468,GO:0007165 RecName: F
	S000005505	CTR9_YEAST	sce:Y0L145C	GO:0016593,GO:0016944,GO:0045142,GO:0007059,GO:0016571,GO:0045449,GO:0006368 RecName: Full=RNA polymerase-assoc
DPB2	S000006379	DPB2_YEAST	sce:YPR175W	GO:0005737,GO:0008622,GO:0003677,GO:0003887,GO:0007049,GO:0006273,GO:0006272,GO:0006298,GO:0006289 RecName: F
	S000001244	PPX1_YEAST	sce:YHR201C	GO:0005829,GO:0005759,GO:0005886,GO:0004309,GO:0030145,GO:0006798 RecName: Full=Exopolyphosphatase; Short=Ex
	S000005076	YNN2_YEAST	sce:YNL132W	GO:0030686,GO:0005730,GO:0005524,GO:0042274 RecName: Full=UPF0202 protein YNL132W;
GLN1	S000006239	GLNA_YEAST	sce:YPR035W	GO:0005737,GO:0005524,GO:0004356,GO:0005515,GO:0006542 RecName: Full=Glutamine synthetase; Short=GS; EC=6.3.1.2;
YCR024C-			04_YEAST sce:YCR	·
	S000003503	SLH1_YEAST	sce:YGR271W	G0:0005737,G0:0005524,G0:0008026,G0:0003676,G0:0005515,G0:0006417,G0:0009615 RecName: Full=Antiviral helicase S
	S000004797	YM48_YEAST	sce:YMR185W	GO:0005515 RecName: Full=Uncharacterized protein YMR185W;
	S000006145	MMT2_YEAST	sce:YPL224C	G0:0016021,G0:0005739,G0:0008324,G0:0005506,G0:0006879,G0:0006826 RecName: Full=Mitochondrial metal transpor
	S000000049	FLC2_YEAST	sce:YAL053W	G0:0005783,G0:0016021,G0:0015230,G0:0005515,G0:0015883,G0:0009272,G0:0006457,G0:0055085 RecName: Full=Flavin carri
	S000000408	YB54_YEAST	sce:YBR204C	G0:0005777,G0:0042802,G0:0017171,G0:0016042 RecName: Full=Putative peroxisomal lipase YBR204C; EC=3.1.1;
	S000000193	CND2_YEAST	sce:YBL097W	G0:0005737,G0:0000799,G0:0005515,G0:0051301,G0:0007076,G0:0070058 RecName: Full=Condensin complex subunit 2;
	S000004914	DYN3_YEAST		5737,GO:0005868,GO:0005881,GO:0003774,GO:0005515,GO:0030473 RecName: Full=Cytoplasmic dynein intermediate ligh
	S000001345	YII3_YEAST	sce:YIL083C	G0:0005737,G0:0005634,G0:0005515,G0:0015937 RecName: Full=Uncharacterized protein YIL083C;
	S000000803	MNN1_YEAST	sce:YER001W	G0:0005794,G0:0016021,G0:0000033,G0:0006491,G0:0006493 RecName: Full=Alpha-1,3-mannosyltransferase MNN1; EC=2.4.1
	S000000875	ALDH5_YEAST	sce:YER073W	G0:0005759,G0:0004029,G0:0033721,G0:0004030,G0:0005515,G0:0019413,G0:0055114 RecName: Full=Aldehyde dehydrogena
	S000005823	TIM18_YEAST	sce:YOR297C	G0:0016021,G0:0042721,G0:0020037,G0:0008565,G0:0006915,G0:0006612,G0:0006626,G0:0001101,G0:0046685,G0:0006970,G0:0
	S000003725	RL39_YEAST	sce:YJL189W	G0:0022625,G0:0003735,G0:0006412 RecName: Full=60S ribosomal protein L39; AltName: Full=L46; AltName: Full=
	S000000272	BAP2_YEAST	sce:YBR068C	G0:0016021,G0:0015171,G0:0005515,G0:0006865 RecName: Full=Leu/Val/Ile amino-acid permease; AltName: Full=Branc
TRZ1	S000001787	RNZ_YEAST	sce:YKR079C	G0:0005739, G0:0005634, G0:0042781, G0:0008270, G0:0034414 RecName: Full=Ribonuclease Z; Short=RNase Z; EC=3.1.26.11;
	S000000163	UBP13_YEAST	sce:YBL067C	G0:0004221,G0:0004843,G0:0006511 RecName: Full=Ubiquitin carboxyl-terminal hydrolase 13; EC=3.1.2.15; AltNa
	S000000045	YAE7_YEAST	sce:YAL047C	G0:0005824,G0:0005200,G0:0007020,G0:0031578,G0:00000070,G0:00000022,G0:0030473 RecName: Full=Uncharacterized prot
ERG7	S000001114	ERG7_YEAST	sce:YHR072W	G0:0005783,G0:0019898,G0:0012511,G0:0005886,G0:0042802,G0:0000250,G0:0006694 RecName: Full=Lanosterol synthase;

G0:0000329,G0:0016021,G0:0042802,G0:0005506,G0:0005381,G0:0006897,G0:0006827

RecName: Full=Iron transporter FTH

S000000411

FTH1_YEAST

sce:YBR207W

FTH1

Protein_details.txt

01	41240	GPB2	S000000052	٨	C	GPB2_YEAST	661	т	V	CONFITCT: V (in Dof 1: DADO4042)
01 01		FLC2	S000000032 S0000000049	A G	G ^	FLC2_YEAST	661 312	I D	V N	CONFLICT:I -> V (in Ref. 1; BAD04042) TOPO_DOM:Lumenal (Potential)
		OAF1	5000000049		Α		70	W	R	
01		OAF1		T	Α	OAF1_YEAST		νν Τ	K	DNA_BIND:Zn(2)-C6 fungal-type
01		SPC72	5000000048	C	A T	OAF1_YEAST	588 302	I		
01		PSK1	S000000045 S000000015	A	G	YAE7_YEAST	73		N	
01				C	G	KAB7_YEAST		Q	E C	
01		BUD14	S000000069 S000000074	G	۸	BUD14_YEAST	439	V	G	and doll are details because AA in CCD 0 UniDust is different
01				C	A	YAJ3_YEAST	20		r	couldn't see details, becuase AA in SGD & UniProt is different
02	11379	SR077	5000000202	A	۸	SNI2_YEAST	834	V	G	REPEAT:WD 14
02		SR077	S000000202	C	A ^	SNI2_YEAST	260	A P	S S	REPEAT:WD 5
02 03		SR077	5000000202	G	A T	SNI2_YEAST	135	Г	Т	REPEAT:WD 3
02	13492	SR077	5000000202	A	ſ	SNI2_YEAST	130	T T	1	REPEAT: WD 3
02		PKC1	S000000201	T	G	KPC1_YEAST	866	I	L	DOMAIN:Protein kinase
02		PKC1	S000000201	T	C	KPC1_YEAST	621	K	R	and dall are delails because AA in CCD 0 Hailand in different
02		ATP1	S000000195	C	ı	ATPA_YEAST	340	P	S	couldn't see details, becuase AA in SGD & UniProt is different
02		BRN1	S000000193	C	G	CND2_YEAST	517	A	G	CONFLICT:A -> G (in Ref. 3; AAS56403)
02		TEL1	5000000184	A	C	ATM_YEAST	1412	F	(
02		UBP13	5000000163	G	1	UBP13_YEAST	180	Н	Ų	
02		PDR3	S000000101	C	A	PDR3_YEAST	140	Q	K	TODO DOMETIL DE COLUMNICAL
02		BAP2	S000000272	C	A	BAP2_YEAST	203	G	W	TOPO_DOM:Extracellular (Potential)
02			S000000272	T	A	BAP2_YEAST	139	E	V	TRANSMEM: Potential
02	437344		S000000301	A	G	VPS15_YEAST	134	T	A	DOMAIN:Protein kinase, CONFLICT:T -> A (in Ref. 1; AAA35214)
02		VPS15	S000000301	T	G	VPS15_YEAST	851	I	R	
02			S000000408	T	A	YB54_YEAST	63	E	V	TRANSMENT DEL CONTENTE TOTAL F. C. o. D. C. 1. AARES 100
02	635192		S000000411	A	G	FTH1_YEAST	18	K	E	TRANSMEM: Potential, CONFLICT: K -> E (in Ref. 1; AAD53168)
02		FTH1	S000000411	A	G	FTH1_YEAST	36 VEAST	D	G	TOPO_DOM:Cytoplasmic (Potential), CONFLICT:D -> G (in Ref. 1; AAD53168)
03 03	162636 250563	YCR024C	-в зийи S000000673	028818	I T	G YC204 ₋ PAT1_YEAST		76 V	S	R
03 03			S0000000687	Α	G	KIN82_YEAST	688 341	M	V	DOMAIN:Protein kinase
03 04	121289			A	۸		102	S	V I	
04	121289		S000002349 S000002822	G C	G	UFD2_YEAST ERD1_YEAST	168	G	Δ	CONFLICT:S -> L (in Ref. 1; AAC49024) TOPO_DOM:Cytoplasmic (Potential), CONFLICT:G -> A (in Ref. 1; CAA36211)
04	1433703		S000002822 S000002898	A	T	PKH1_YEAST	187	G E	A T	DOMAIN: Protein kinase
			S000002898	A	, ,	YD541_YEAST		F	0	DOMAIN. Procein kindse
04 05	154530		50000002949	T	۸	MNN1_YEAST	341 338	S	Ų T	TOPO_DOM:Lumenal (Potential), CONFLICT:S -> T (in Ref. 1; AAA53676)
05 05		ALD5	S000000875	G	Α .	ALDH5_YEAST	411	G	E	CONFLICT: G -> E (in Ref. 1; AAB01220)
0 5		RAD4	S0000000873	T	Α .	RAD4_YEAST	223	G .	V	couldn't see details, becuase AA in SGD & UniProt is different
05 06			5000000304	C	۸ ۸	YFD4_YEAST	323	N	K	TOPO_DOM:Cytoplasmic (Potential)
00 07		PEF1	5000001800	T	G	CPNSH_YEAST	324	Y	D	DOMAIN: EF-hand 3
07 07			S000003290 S000003299	A	T	YG2A_YEAST	795	! *	υ V	DOMAIN.EF-Hullu 3
07 07	783805		S000003299 S000003377	A	, ,	NOL10_YEAST	678	E	D V	
07 07	1031948		S000003577 S000003503	A .	Δ	SLH1_YEAST	51	P	0	
07 07	1031948		S000003503	C	T	SLH1_YEAST	438	r P	Q C	DOMAIN:Helicase ATP-binding 1
07 08	240687		S000001114	G	۸	ERG7_YEAST	530	D	ر N	couldn't see details, becuase AA in SGD & UniProt is different
		PPX1	5000001114		T	PPX1_YEAST	396	Б Б	IN V	couldn't see detutts, because AA th SOD & ontroc is different
08 09			S000001244 S000001345	C A	ſ	YII3_YEAST	338	∟ T	Γ C	
09 09		VID28	S000001343 S000001279	A T	٨	VID28_YEAST	758	N	ر ۷	
		PDR11	S000001279 S000001275	Γ	A A	PDR11_YEAST	738 776	in G	T V	TODO DOM: (ytop) asmic (Dotontial) DOMATN: ADC transportor 2
09 10		RPL39	S000003725	C	A C	RL39_YEAST	776 104	u V	v H	TOPO_DOM:Cytoplasmic (Potential), DOMAIN:ABC transporter 2 couldn't see details, becuase AA in SGD & UniProt is different
		MCH2		ſ	C			I D	П С	·
11	<u>/131</u>		S000001704		u	MCH2_YEAST	342	ĸ	u	TOPO DOM:Extracellular (Potential)

2009年10月30日金曜日

Additional scripts

- map_protein_to_kegg_in_png.pl
 map the result of Protein_List.txt to png images in KEGG
- map_protein_to_kegg_in_html.pl
 map the result of Protein_List.txt to html images in KEGG
- input_for_pp.pl
 create an input file for Pathway Projector from Protein_List

map_protein_to_kegg_in_html.pl map_protein_to_kegg_in_png.pl

enzymes in green is the genes in yeast, frame with red is the mutated protein

HOW to use

An actual example

Data Download

Get the Yeast Solexa read in NCBI SRA

from: http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=SRX003233&report=full

• Get the fungi swiss-prot data in UniProt

from: ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/

Get the Genome/FASTA data of yeast in SGD

from: http://downloads.yeastgenome.org/sequence/NCBI_genome_source/

prepare Data for MAQ

- From the data you got from SGD, Make a big FASTA that contains all chromosomes
- FASTQ in SRA has little trouble with running MAQ, so we'll have to fix the format

I wrote a simple script "fix_format_SRA.pl" that does that. You only have to get rid of the space in the read name in FASTQ file.

Post about this topic in seqanswers

http://seqanswers.com/forums/showthread.php?t=1488&highlight=short+read+archive

RUN the program!

- Do MAQ against the SRA data and SGD genome
- Run perl scripts


```
login to MSI workstation
> ssh [ your user name] @cl2.msi.umn.edu
> cd [ your working directory]
> mkdir lib
> cd lib
> cp [all the perl scripts I wrote]
> cd ../
                                                                                                 creating the working directory
> mkdir -p data/SRA
> mkdir -p data/SGD
> mkdir -p data/UniProt
> cd data/SRA
> wget ftp://ftp.ncbi.nlm.nih.gov/sra/static/SRX003/SRX003233/SRR014437.fastq.gz
> gunzip SRR014437.fastq.qz
                                                                                                             download the SRA
> cd ../UniProt
> wget ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
uniprot_sprot_fungi.dat.gz
> gunzip uniprot_sprot_fungi.dat.qz
                                                                                                         download the UniProt
> cd ../SGD
> wget --level=1 -A gbf,fsa -r -nd <a href="http://downloads.yeastgenome.org/sequence/NCBI_genome_source/">http://downloads.yeastgenome.org/sequence/NCBI_genome_source/</a>
                                                                                                            download the SGD
> cat chr01.fsa chr02.fsa chr03.fsa chr04.fsa chr05.fsa chr06.fsa chr07.fsa chr08.fsa chr09.fsa chr10.fsa
chr11.fsa chr12.fsa chr13.fsa chr14.fsa chr15.fsa chr16.fsa > all.fsa
> cd ../../lib
> perl5.10.0 fix_format_SRA.pl ../data/SRA/SRR014437.fastq > ../data/SRA/fixed_ SRR014437.fastq
                                                                                                             prepare for MAQ
> module load bioinformatics
> maq.pl easyrun -d maqout data/SGD/all.fasta data/SRA/fixed_SRR014437.fastq
                                                                                                                 run MAO
> perl5.10.0 maq_to_genbank_and_uniprot.pl --up=../data/Uniprot/uniprot_sprot_fungi.dat --sqd_dir=../
data/SGD --maq=../data/magout/cns.final.snp
                                                                                                            running the scripts
```

how to run the additional scripts

```
> cd [your working dir]
> mkdir -p data/KEGG
> cd data/KEGG
> wget ftp://ftp.genome.jp/pub/kegg/genes/organisms/sce/S.cerevisiae.ent
> wget ftp://ftp.genome.jp/pub/kegg/genes/organisms/sce/sce_sgd-sce.list
> cd ../../lib
> perl5.10.0 map_protein_to_kegg_in_png.pl Protein_List.txt
> perl5.10.0 input_data_for_pp.pl Protein_List.txt
```

Very important notes

- module load bioinformatics
 be sure to do this before using the bioinformatics software
- perl5.10.0
 if you are working on the MSI workstation, use "perl5.10.0" instead of "perl"!
 there is a bug in bioperl version 1.4 with perl 5.8.8

you can always check the version of bioperl by typing the following

> perl -MBio::Root::Version -e 'print \$Bio::Root::Version::VERSION,"\n"

Discussion

- Needs more improvement in detecting SNP positions
 (Just running the MAQ in the default parameter)
- Maybe, there is a better software that does these kinds of things

Future Works

- Look at SNPs out of the CDS region, like TF binding sites. And look at their regulation network
- Look for database that has information of known SNPs
- use GO slim to get the overview of protein groups. You can do this online, or map2slim have to be installed in the MSI servers
- See the rate of mapped reads between the wild type and mutant to find gene duplication, deletion

Conclusion

- Creating new Mapping/Alignment software for nextgen sequencing is a tough work to do
- Although there are numbers of useful tools,
- And we don't want to re-invent the wheels
- Scripts here will show you what kinds of information you can get by combing the existing software/database
- I don't know if this script is actually useful, but I am happy if you could get any ideas from this.

Thank you

 Feel free to contact me at any time, for anything

Satoshi Tamaki

coela.st@gmail.com

NARA INSTITUTE of SCIENCE and TECHNOLOGY Comparative Genomics Lab