18.01, October 7, 2003 Differentials and indefinite integration

- 1. Talked about makeup exams, grading policy, etc.
- 2. Differentials. Just notation: if F'(x) = f(x) then d(F(x)) = f(x)dx. Useful for transforming deriv. identities into integral indentities (e.g. chain rule in diff. notation is $d(F(U(x))) = F'(U) \cdot U'(x) dx$ suggests "integ. by substit.": $\int f(U(x)) \cdot U'(x) dx = \int f(U) dU$
- 3. Antiderivative=indef. integral $\int f(x)dx$
 - Doesn't always have simple expression, e.g. $\frac{\sin x}{x}$.
 - Guess-and-check, e.g. $\ln(x) \to guess \to x \ln(x)$ $(no) \to guess \to x \ln(x) x$
 - Linearity of $\int f dx$, $\int (f+g) dx = \int f dx + \int g dx$, $\int af(x) dx = a \int f(x) dx$ antideriv of $x^n = \frac{1}{n+1} x^{n+1} + C$ if $n \neq -1$ $\int \frac{1}{x} dx = \ln(x) + C$ (or $\ln(-x) + C$ if x negative). $\int e^x dx = e^x + C$, $\int \cos(x) dx = \sin(x) + C$, $\int \sin(x) dx = -\cos(x) + C$
- 4. Integr. By substitution. If a term U(x) appears in integrand and also U'(x) appears substit and use $\int f(U(x)) \cdot U'(x) dx = \int f(U) dU$.

e.g.
$$\int \frac{x}{\sqrt{x^2 + a}} dx = \sqrt{x^2 + a} + C$$
, $\int [\cos(x)]^n \sin(x) dx = -\frac{1}{n+1} [\cos(x)]^{n+1} + C$

More complicated: $\int \cos^3(x) dx = \int (1 - \sin^2(x)) \cdot \cos(x) dx = \sin(x) - \frac{1}{3} \sin^3(x) + C$.