MATH102-Statistics

Solutions to the Exercises (W7)

Tuesday 5/9/06

1.
$$Cov(X,Y) = E(X - \mu_x)(Y - \mu_y) = E(XY) - E(X)E(Y)$$

and

$$E(X) = \mu_x$$

with

$$E(Y) = \mu_y = E(a + bX) = a + b\mu_x$$

which gives

$$E(XY) = EX(a + bX) = a\mu_x + bE(X^2)$$

Therefore

$$Cov(X, Y) = a\mu_x + bEX^2 - \mu_x(a + b\mu_x) = bEX^2 - b(EX)^2 = bV(X)$$

2.

$$\rho_{xy} = \frac{\text{Cov}(X, Y)}{\sigma_x \sigma_y} = \frac{bV(X)}{\sqrt{V(X)b^2 V(X)}} = 1$$

as expected since we have a perfect linear relation between X and Y.

- 3. Cov(X,Y) = -bV(X) and $\rho_{xy} = -1$ since Y = a bX, and the solution to 1. and 2. is for general b.
- 4. In general,

$$V(X_1 + X_2) = V(X_1) + V(X_2) + 2Cov(X_1, X_2)$$

- (i) If $X_1 \propto X_2$ then $Cov(X_1, X_2)$ is positive, and so the independence form for the variance of the sum $V(X_1) + V(X_2)$ will under–estimate the true value.
- (ii) If $X_1 \propto -X_2$ then $Cov(X_1, X_2)$ is negative, and so the sum of the individual variances will over–estimate the true variance.

5. In general,

$$V(X_1 - X_2) = V(X_1) + V(X_2) - 2Cov(X_1, X_2)$$

- (i) If $X_1 \propto X_2$ then $Cov(X_1, X_2)$ is positive, and so the independence form for the variance of the difference $V(X_1)+V(X_2)$ will over–estimate the true value.
- (ii) If $X_1 \propto -X_2$ then $Cov(X_1, X_2)$ is negative, and so the sum of the individual variances will under–estimate the true variance.

6.

X	Y	$(X - \bar{X})$	$(Y - \bar{Y})$	$(X - \bar{X})(Y - \bar{Y})$	$(X - \bar{X})^2$	$(Y - \bar{Y})^2$
1	3	-2	-3	6	4	9
2	3	-1	-3	3	1	9
3	6	0	0	0	0	0
4	7	1	1	1	1	1
5	11	2	5	10	4	25
				20	10	44

$$\widehat{\text{Cov}}(X, Y) = 20/4 = 5$$
 and

$$\hat{\rho} = \frac{5}{\sqrt{10/4 \times 44/4}} = 0.95346$$

The covariance is positive, as expected since Y is effectively 2X, and the correlation is close to 1 for the same reason.

> cov(x,y)

[1] 5

> cor(x,y)

[1] 0.9534626