Estimating CERES-based Broadband Flux from 1km MODIS observations

Presented by Mitchell Dodson

The EOS satellites Terra and Aqua carry a broadband sensor called **CERES**, and a 36-channel narrow-band sensor, **MODIS**.

CERES has ~16x24km resolution; MODIS has a ~1km² resolution.

Since CERES and MODIS can be directly co-located, my hypothesis is that the 1km MODIS pixels can be used to predict the broad-band fluxes observed by CERES at their finer spatial scale.

CERES SW (Y_{SW}) CERES LW (Y_{LW})

MODIS

Flux versus spectral radiance

Flux: (W m⁻²); Spectral radiance: (W m⁻²um⁻¹sr⁻¹)

Hindu Kush Himalaya

lat:[32,38] lon:[69,79]

Mountainous region including borders between Afghanistan, Pakistan, and Tajikistan

Common surfaces:

- Year-round snow caps with seasonal variation in extent
- Vegetation
- Barren and desert land surfaces.
- High-altitude clouds

Day Cloud Phase R:1.38um G:.64um B:1.6um

True Color R:.64um G:.55um B:.45um

R:12-11um G:11-8.6um B:11um

Amazon Rainforest

lat:[-3,-8] lon:[-65,-75]

Densely forested and largely undeveloped region of Northern Peru, just south of the equator

Common surfaces:

- Deep tropical convective systems
- Numerous small cumulus clouds
- Dense vegetated surfaces
- Cirrus clouds
- Biomass burning smoke

Indonesia

lat:[-5,5] lon:[120,130]

Tropical oceanic region with several islands spanning the equator.

Common surfaces:

- Water
- Vegetation
- Sun glint

Neural network architecture

