Procesado de Información Biológica Sesión 7

Mónica Rojas Martínez

Contenido

- > Introducción a la clasificación
- > Regresión logística
 - Hipotesis
 - Modelo
 - Función de coste
 - Algorimto
- > Clasificación múltiples clases
 - Todos vs. uno

Clasificación

→ Modelo donde la salida es discreta → clases

- > 2 clases: salida binaria (1,0)
- › Múltiples clases
- > Ejemplos... enfermos / sanos, riesgo/ seguro, etc.

Problema de clasificación

x (tamaño	y (cáncer,
tumor, cm)	si-1 / no- 0)
1	0
2	0
3	0
4	0
5	1
6	1
7	1
8	1

Cualquier tumor de mas de 4.5x10³ mm es cancer

Para clasificar puedo establecer un umbral sobre h(x):

Regresión logística

- > Clasificación binaria
- > Regresión lineal $h_{\theta}(\mathbf{x}) = \mathbf{\theta}^{T}\mathbf{x} \rightarrow \text{valores continuos (recta o hiperplano)}$
- ightarrow Regresión logística ightarrow queremos que $0 \le h_{ heta}(x) \le 1$
- > En este caso h_{θ} (x) se puede entender como la probabilidad (de pertenencia a una clase)

Regresión logística- Hipótesis

- \rightarrow Queremos que $0 \leq h_{ heta}(x) \leq 1$
- > Si tenemos $h_{\theta}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}}\mathbf{x}$ (regresión lineal) podemos buscar una transformación de $h_{\theta}(\mathbf{x})$ de manera que su salida esté entre 0 y 1
- > Sigmoide (función logística)

$$g(z) = \frac{1}{1 + e^{-z}}$$
, con $z = \theta^T \mathbf{x}$

-6 -4 -2 0 2 4 0 Z

> Transformación:

$$h_{\theta}(x) = g(z) = \frac{1}{1 + e^{-\theta^T x}}$$

Regresión Lógistica- Hipótesis (II)

> Interpretación

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}}$$
 $0 < h_{\theta}(x) < 1$

 $h_{\theta}(x)$ es la probabilidad de tener una salida y=1 dada la entrada x

$$h_{\theta}(x) = P(y = 1/x); \quad P(y = 0/x) = 1 - P(y = 1/x)$$

Regresión logística: umbral de decisión

> Si predecimos y= 1 si $h_{\theta} \ge 0.5$ \rightarrow $\theta^{T}X > 0$ y por tanto y=0 si $h_{\theta} < 0.5$ es decir $\theta^{T}X < 0$

Umbral de decisión

Lineal:
$$h(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 = x_1 - x_2$$
, $\text{si } x_1 - x_2 \ge 0$, $y = \triangle$, $\text{si } x_1 - x_2 < 0$, $y = \triangle$

No lineal
$$h(x)=\theta_{o}x_{o}+\theta_{1}x_{1}+\theta_{2}x_{2}+\theta_{3}x_{1}^{2}+\theta_{4}x_{2}^{2}=-1+x_{1}^{2}+x_{2}^{2}$$
 si $x_{1}^{2}+x_{2}^{2}\geq 1, y=\Delta$, $\sin x_{1}^{2}+x_{2}^{2}<1, y=\Box$

Regresión logística- Modelo

Tenemos un modelo con m datos de entrenamiento así:

$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})\}$$

x son las variables de entrada y y las salidas de la forma:

$$x = \left[egin{array}{c} x_0 \ x_1 \ \dots \ x_n \end{array}
ight] \qquad x_0 = 1, y \in \{0,1\}$$

Y finalmente una hipótesis de la forma:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}}$$

Problema: Como escogemos los parámetros θ_j de la hipótesis?

Regresión logística- Función de coste (I)

En regresión lineal teníamos una función de coste convexa de la forma:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

Escoger una función J(θ) convexa para garantizar un único mínimo

Se puede escoger una función del estilo:

$$\operatorname{Cost}(h_{ heta}(x),y) = \left\{ egin{array}{ll} -\log(h_{ heta}(x)) & ext{if } y=1 \ -\log(1-h_{ heta}(x)) & ext{if } y=0 \end{array}
ight.$$

Regresión logística- Función de coste (II)

Simplificación:

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Regresión logística- Ajuste

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Para encontrar el mínimo $\rightarrow \frac{\partial J(\theta)}{\partial \theta}$

> Gradiente descendente

Repetir hasta que converja {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

La misma que en el caso de regresión lineal

Se puede demostrar que:

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Clasificación múltiples clases

Múltiples clases- Uno vs. todos

> Modelo

Recordar, h_k es p(y=1/x) para una clase

Regularización (I)

- > Evitar el sobreajuste en casos como:
 - Un número muy alto de variables de entrada
 - Modelos de orden superior donde es difícil estimar el orden
- > Es una forma de "castigar" los parámetros de la hipótesis para evitar que la función de coste llegue al mínimo

××/o

Regularización, Regresión Logística (II)

> Modificacion a la función de coste

$$J(\mathbf{\theta}) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{i} \log \left(h(x^{i}) \right) + \left(1 - y^{i} \right) \log \left(1 - h(x^{i}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Donde el término de la derecha el es término de regularización y λ es el factor de regularización. Observe que el término de regularización solo se aplica a los parámetros $[\theta_1, \theta_2, ..., \theta_n]$ sin tener en cuenta el término θ_o asociado a x_o =1!!!

> Modificación al gradiente

$$\frac{\partial J}{\partial \theta_o} = \frac{1}{m} \sum_{i=1}^{m} (h(x^i) - y^i) \quad \text{sii } j = 0$$

$$\frac{\partial J}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h(x^i) - y^i) x_j^i + \frac{\lambda}{m} \theta_j \quad \text{sii } j \neq 0$$