Clase Practica 3 : Demostración en Programación Funcional (Haskell)

Tomás Felipe Melli

July 11, 2025

${\rm \acute{I}ndice}$

1	Demostrando propiedades	2
2	Igualdad de funciones	2
3	Pares y unión disjunta / tipo suma	3
4	Funciones como estructuras de datos	3
5	Inducción en los naturales	4
6	Inducción en listas	4
7	Inducción estructural (caso general)	4
8	Desplegando foldr	5
9	Demostrando implicaciones	5
10	Vuelta de tuerca : length ys = length (reverse ys) 10.1 Generalizamos propiedades	7 8
11	Ejercicio: take	8
12	Demostrando propiedades sobre árboles	10
13	Últimas preguntas	11

1 Demostrando propiedades

```
Sean

doble :: Integer -> Integer

doble x = 2 * x

cuadrado :: Integer -> Integer

cuadrado x = x * x

Queremos probar que doble 2 = cuadrado 2

doble 2 = doble 2 * 2 = cuadrado cuadrado 2
```

2 Igualdad de funciones

```
Queremos ver que
```

```
curry . uncurry = id
```

Cómo encaramos esto?

Dadas f, g :: $a \rightarrow b$, probar f = g se reduce a probar :

$$\forall x :: a. f x = g x$$

Podemos usar ciertas propiedades en nuestras demostraciones :

 $\forall \ F \ :: \ a \rightarrow b. \ \forall \ G \ :: \ a \rightarrow b. \ \forall \ Y \ :: \ b. \ \forall \ Z \ :: \ a$

```
F = G \\ F = \xspace x \Rightarrow \forall \xspace x :: a. F x = G x \\ \Leftrightarrow \forall \xspace x :: a. F x = Y \\ (\xspace x \Rightarrow Y z) \\ \Rightarrow \forall \xspace x :: a. F x = Y \\ \Rightarrow \forall \xspace x \Rightarrow Y \\ \Rightarrow \forall \xspac
```

 $F,\ G,\ Y\ y\ Z$ pueden ser expresiones complejas, siempre que la variable x no aparezca libre en $F,\ G$ ni Z Tenemos :

```
1 curry :: ((a, b) -> c) -> (a -> b -> c)
2 {C} curry f = (\x y -> f (x, y))
3
4 uncurry :: (a -> b -> c) -> ((a, b) -> c)
5 {U} uncurry f = (\((x, y) -> f x y)\)
6
7 (.) :: (b -> c) -> (a -> b) -> (a -> c)
8 {COMP} (f . g) x = f (g x)
9
10 id :: a -> a
11 {I} id x = x
```

Por extensionalidad, es lo mismo que probar (curry . uncurry) f = id f $\forall f :: a \to b \to c$

(curry . uncurry)
$$f \stackrel{\text{{\footnotesize comp}}}{=} \text{curry (uncurry f)}$$

$$\stackrel{\{\underline{U}\}}{=} \text{curry (} (\langle x,y \rangle) \rightarrow f \ x \ y)$$

$$\stackrel{\{\underline{C}\}}{=} \langle x', y', \rightarrow (\langle x,y \rangle) \rightarrow f \ x \ y) \ (x',y')$$

$$\stackrel{\beta}{=} \langle x', y', \rightarrow f \ x', y'$$

$$\stackrel{\eta}{=} \langle x', \rightarrow f \ x'$$

$$\stackrel{\eta}{=} f$$

$$\stackrel{\{\underline{I}\}}{=} \text{ id } f$$

También se podía aplicar extensionalidad dos veces más y hacer que le entre x e y y se evitaban las lambdas.

3 Pares y unión disjunta / tipo suma

```
Se define la siguiente función, que permite multiplicar pares y enteros entre sí (usando producto escalar entre pares)
1 prod :: Either Int (Int, Int) -> Either Int (Int, Int) -> Either Int (Int, Int)
_{2} {PO} prod (Left x) (Left y) = Left (x * y)
3 {P1} prod (Left x) (Right (y,z)) = Right (x * y, x * z)
4 {P2} prod (Right (y,z)) (Left x) = Right (y * x, z * x)
5 {P2} prod (Right (w,x)) (Right (y,z)) = Left (w * y + x * z)
  Queremos probar
       \forall p :: Either Int (Int,Int).\forall q :: Either Int (Int,Int). prod p q = prod q p
 Recordamos los lemas de generación de pares y sumas. Dado p :: (a,b), siempre podemos usar el hecho de que
 existen x :: a, y :: b tales que p = (x,y).
 De la misma manera, dado e :: Either a b, siempre podemos usar el hecho de que :
       e = Left x con x :: a
         0
       e = Right y con y :: b
 Por tanto, procedemos a la demo.
 Por lema de generación de suma, p puede ser Left n con n :: Int, o Right parUno con parUno :: (Int,Int)
 y que puede ser Left m con m :: Int o Right parDos con parDos :: (Int,Int)
 Por lema de generación de pares, parUno = (w,x) con w,x :: Int y parDos = (y,z) con y,z :: Int
       Caso p = Left n, q = Left m
                                                                                 prod p q \stackrel{\{P0\}}{=} Left (n*m)
                                                                                              \stackrel{Int}{=} Left (m*n)
                                                                                              \stackrel{\{P0\}}{=} prod q p
       Caso p = Left n, q = Right (y,z)
                                                                           prod p q \stackrel{\{P1\}}{=} Right (n*y,n*z)
                                                                                        \stackrel{Int}{=} Right (y*n,n*z)
                                                                                        \stackrel{Int}{=} Right (y*n,z*n)
                                                                                              \stackrel{\{P2\}}{=} \texttt{prod} \ \texttt{q} \ \texttt{p}
       Caso p = Right(w,x), q = Left m
                                                                          prod p q \stackrel{\{P2\}}{=} Right (w*m,x*m)
                                                                                      \overset{Int}{=} Right (m*w,x*m)
                                                                                      \overset{Int}{=} Right (m*w,m*x)
                                                                                             \stackrel{\{P1\}}{=} \text{prod q p}
       Caso p = Right(w,x), q = Right(y,z)
                                                                         prod p q \stackrel{\{P3\}}{=} Left (w*y + x*z)
                                                                                     \stackrel{Int}{=} Left (y*w + x*z)
                                                                                     \stackrel{Int}{=} Left (y*w + z*x)
                                                                                              \overset{\{P3\}}{=} prod q p
```

4 Funciones como estructuras de datos

Se cuenta con la siguiente representación de conjuntos : type Conj a = (a \rightarrow Bool) caracterizados por su función de pertenencia. De este modo, si c es un conjunto y e un elemento, la expresión c e devuelve True si $e \in c$ y False en caso contrario. Contamos con las siguientes definiciones:

```
1 vacio :: Conj a
2 {V} vacio = \ -> False
 4 interseccion :: Conj a-> Conj a-> Conj a
 5 {I} interseccion c d = \e -> c e && d e
  agregar :: Eq a => a -> Conj a -> Conj a
  \{A\} agregar e c = \e -> e == x || c e
10 diferencia :: Conj a -> Conj a-> Conj a
11 {D} diferencia c d = e - c e &  not (d e)
   Queremos demostrar la siguiente propiedad:
        \forall c :: Conj a. \forall d :: Conj a. interseccion d (diferencia c d) = vacio
  Por extensionalidad, basta ver que \forall x :: a
         interseccion d (diferencia c d) x = vacio x
                                                   \overset{\{V\}}{=} (\_- \rightarrow False) x
        intersection d (differencia c d) x \stackrel{\{D\}}{=} intersection d (\e \rightarrow c e && not (d e)) x
                                                   \stackrel{\{I\}}{=} (\h 
ightarrow d h && (\e 
ightarrow c e && not (d e)) h) x
                                                   \stackrel{\beta}{=} (\h \rightarrow d h && (c h && not (d h)) x
                                                   \stackrel{\beta}{=} d x && (c x && not (d x))
```

 $\overset{Bool}{=} \mathtt{false} \ \&\& \ \mathtt{c} \ \mathtt{x}$

 $\overset{Bool}{=}$ false

5 Inducción en los naturales

Es inducción estructural en la estructura de los naturales

- Pruebo P(0)
- Pruebo que si vale P(n) entonces P(n+1)

6 Inducción en listas

- Pruebo P([])
- Pruebo que si vale P(xs) entonces para todo elemento x vale P(x:xs)

7 Inducción estructural (caso general)

- Pruebo para P el o los casos base (para los constructores no recursivos)
- Pruebo que si vale P(arg1), ..., P(argK) entonces vale P(C arg1 .. argK) para cada constructor C y sus argumentos recursivos arg1, ... , argK (los argumentos no recursivo quedan cuatificados universalmente)

Pasos a seguir

- 1. Leer la propiedad, entenderla, convencerse de que es verdadera.
- 2. Plantear las propiedad como **predicado unario** (o sea, que depende de un sólo parámetro que va a ser la estructura sobre la que vamos a hacer inducción. Si hay varios para $todo(\forall)$, elegimos uno, lo sacamos y lo que queda es el predicado. Sacar un para $todo(\forall)$)

- 3. Plantear el esquema de inducción.
- 4. Plantear y resolver el o los casos base.
- 5. Plantear y resolver el o los casos recursivos.

8 Desplegando foldr

Veamos que estas dos definiciones de length son equivalentes

```
1 length1 :: [a] -> Int
2 {L10} length1 [] = 0
3 {L11} length1 ( :xs) = 1 + length1 xs

4
5 length2 :: [a] -> Int
6 {L2} length2 = foldr (\ res -> 1 + res) 0

7
8 Recordemos:
9 foldr :: (a -> b -> b) -> b -> [a] -> b
10 {F0} foldr f z [] = z
11 {F1} foldr f z (x:xs) = f x (foldr f z xs)

Queremos ver que
length2 = length1
length2 = foldr (\_ res -> uno + res) 0
```

Por extensionalidad, queremos ver que para todo xs :: [a], foldr ($\$ res \rightarrow uno + res) 0 xs = length1 xs. Hacemos inducción estructural sobre xs, (se va a necesitar la HI, sino se podría demostrar por lema de generación de listas). P(xs) = foldr ($\$ res \rightarrow uno + res) 0 xs = length1 xs

• Paso inductivo : xs = (y:ys)

```
HI : foldr (\_ res \rightarrow uno + res) 0 ys = length1 ys

TI : foldr (\_ res \rightarrow uno + res) 0 (y:ys) = length1 (y:ys)

foldr (\_ res \rightarrow uno + res) 0 (y:ys) = length1 (y:ys) \stackrel{\text{renombre}}{=} foldr f 0 (y:ys)

\stackrel{\{F1\}}{=} foldr f y (foldr f 0 ys)

\stackrel{\beta}{=} (\res \rightarrow uno + res) (foldr f 0 ys)

\stackrel{\beta}{=} uno + (foldr f 0 ys)

\stackrel{HI}{=} uno + length1 ys

\stackrel{\{L11\}}{=} length1 (y:ys)
```

9 Demostrando implicaciones

Queremos probar que

```
Ord a \Rightarrow \forall e::a. \forall ys:: [a]. (elem e ys \Rightarrow e \leq maximum ys)
Quién es P. Sobre qué estructura vamos a hacer inducción ?
P(ys) = Ord a \Rightarrow \forall e::a. (elem e ys \Rightarrow e \leq maximum ys)
```

Ahora bien, si no vale Ord a, la implicación de afuera es trivialmente verdadera (recordar que las implicaciones asocian a derecha). Además, si vale Ord a, también vale Eq a (por la jerarquía de clases de tipos en Haskell). Suponemos que todo eso vale y vamos a probar los que nos interesa. Miremos

```
1 elem :: Eq a => a -> [a] -> Bool
2 {E0} elem e [] = False
_{3} {E1} elem e (x:xs) = (e == x) || elem e xs
5 maximum :: Ord a => [a] -> a
6 \{MO\}  maximum [x] = x
7 = \{M1\} maximum (x:y:ys) = if x < maximum (y:ys) then maximum (y:ys) else x
  Sabemos que valen Eq a y Ord a. Queremos ver que para toda lista ys vale
       \forall e :: a. (elem e ys \Rightarrow e \leq maximum ys)
  Queremos ver que \forall ys :: [a]. P(ys)
  Por inducción estructural en ys, veamos que vale P([]) y \forall x :: a. P(xs) \Rightarrow P(x:xs)
     • Caso base: P([]) = \forall e :: a. (elem e [] \Rightarrow e \leq maximum []
             elem e [] \stackrel{E0}{=} False por tanto vale la implicación
     • Paso inductivo : \forall y :: a. P(ys) \Rightarrow P(y:ys)
        Nuestra HI será : P(ys) = ∀ e :: a. elem e ys ⇒ e ≤ maximum ys y queremos ver que vale P(y:ys) = ∀ e
        :: a. elem e (y:ys) \Rightarrow e \leq maximum (y:ys)
        Sea e :: a tal que True = elem e (y:ys). Queremos ver que e ≤ maximum (y:ys)
       Por lema de generación de listas
         a) ys = []
         b) \exists z :: a, zs ::[a] tal que ys = z:zs
        Veamos el caso a
                                     e \le maximum (y:ys) \equiv e \le maximum [y]
                                                             \stackrel{M0}{\equiv} {\tt e} \, \leq \, {\tt y}
              como sabemos que True = elem e (y:ys) en este caso True = elem e (y:[])
                                    True = elem e (y:[]) \stackrel{E1}{\equiv} (e == y) || elem e []
                                                             \stackrel{E0}{\equiv} (e == y) || False
                                                             \stackrel{Bool}{\equiv} (e == y)
                                          Entonces e = y en particular e \leq y
        Veamos el caso b
              e \le maximum (y:ys) \equiv e \le maximum (y:z:zs)
                                     \stackrel{M1}{\equiv} e \leq if y < maximum (z:zs) then maximum (z:zs) else y
                                     \equiv e \leq if y < maximum (ys) then maximum (ys) else y
                                     ≡ *
       Por lema de generación de bool, separamos en dos casos
        Caso b1: y < maximum ys = True
                                         (*) \equiv e \leq \text{if True then maximum ys else y}
                                             \overset{Bool}{\equiv} e \leq if True then maximum ys
             Habíamos asumido \rightarrow True = elem e (y:ys)
                                             = elem e (y:ys) = (e == y) || elem e ys
       Por lema de generación de Bool, separamos en casos
        Caso b11 : (e == y) = True
             e \le maximum ys \equiv y \le maximum ys
                                \stackrel{B1}{\equiv} True Esto vale ya que por Hip B1 y < maximum ys
```

```
Caso b12 : (e == y) = False
             True = (e == y) || elem e ys \equiv False || elem e ys
                                               \stackrel{Bool}{\equiv} elem e ys
              Recordamos la HI : P(ys) = \forall e:: a elem e ys \Rightarrow e \leq maximum ys
                                              \stackrel{HI}{\equiv} True
                                              П
        Caso b2: y < maximum ys = False
                                                         (*) \equiv e \leq \text{if False then (maximum ys) else y}
                                                             \stackrel{If}{\equiv} e < v
             Habíamos asumido el antecedente : True = elem e (y:ys) = (e == y) || elem e ys
        Por lema de generación de bool, separamos en casos
        Caso b21 : (e == y) = True
             e = y \Rightarrow e \leq y
                   Caso b22 : (e == y) = False
             elem e ys = True \Rightarrow e \leq maximum ys
                                   e \le maximum ys \le y
                                   \mathsf{e} \leq \mathsf{y}
                                    10
         Vuelta de tuerca: length ys = length (reverse ys)
1 length :: [a] -> Int
2 {LO} length [] = 0
3 {L1} length (x:xs) = 1 + (length xs)
5 foldl :: (b -> a -> b) -> b -> [a] -> b
6 {F0} foldl f ac [] = ac
_{7} {F1} foldl f ac (x:xs) = foldl f (f ac x) xs
9 reverse :: [a] -> [a]
10 {R} reverse = foldl (flip (:)) []
11 flip :: (a -> b -> c) -> (b -> a -> c)
12 \{FL\}  flip f x y = f y x
  Queremos probar que \forallys :: [a]. length ys = length (reverse ys) que por reverse es lo mismo que :
        ∀ys :: [a]. length ys = length (foldl (flip (:)) [] ys)
  P(ys) := \forall lenght ys = length (foldl (flip (:)) [] ys) Hacemos inducción
     • Caso base : P([])
             P([]) = length [] \stackrel{L0}{=} 0
                    = length (fold (flip (:)) [] []) \stackrel{F0}{=} length [] \stackrel{L0}{=} 0
                    = \square
      • Paso inductivo: Queremos ver que vale P(y:ys) = length (y:ys) = length (foldl (flip (:)) [] (y:ys)).
        Planteamos la siguiente hipótesis inductiva
             HI : P(ys) = length ys = length (foldl (flip (:)) [] ys)
```

length (foldl (flip (:)) [] (y:ys))
$$\stackrel{F1}{\equiv}$$
 length (foldl (flip (:)) (flip (:) [] y) ys) $\stackrel{FL}{\equiv}$ length (foldl (flip (:)) [y] ys)

Por otro lado, length (y:ys) $\stackrel{L1}{=}$ 1 + length ys

El problema es que suele suceder que con fold1 no nos queda algo cómodo para aplicar la HI. Por tanto, con lo que tenemos no alcanza.

10.1 Generalizamos propiedades

Nosotros necesitamos entonces algo como :

La solución es, demostrar una propiedad más general. Probemos que

Luego tomamos zs = [] y sabiendo que length [] = 0, obtenemos lo que buscamos. Suponemos que vale el lema :

• Caso base

P([]) =
$$\forall$$
 zs :: [a]. length zs + length [] = length (foldl (flip (:)) zs [])
$$\stackrel{L0}{\equiv} \text{length zs} = \text{length (foldl (flip (:))} \text{ zs [])}$$

$$\stackrel{F0}{\equiv} \text{length zs} = \text{length zs}$$

• Paso inductivo

$$\forall x :: a. P(xs) \Rightarrow P(x:xs)$$

Nuestra hipótesis inductiva es:

$$P(xs) = \forall zs :: [a].$$
 length $zs + length xs = length (foldl (flip (:)) $zs xs$)$

Y queremos probar

$$P(x:xs) = \forall zs :: [a]. length zs + length (x:xs) = length (foldl (flip (:)) zs (x:xs))$$

Sea zs' :: [a],

length (foldl (flip (:)) zs' (x:xs))
$$\stackrel{F1}{\equiv}$$
 length (foldl (flip (:)) (flip (:) zs' x) xs) $\stackrel{FL}{\equiv}$ length (foldl (flip (:)) (x:zs') xs) (*)

length zs' + length (x:xs))
$$\equiv$$
 length zs' + 1 + length xs) (**)

Tomando zs = x : zs' la Hi dice que length (x:zs') + length xs = length (foldl (flip (:)) (x:zs') xs) (*)

length (x:zs') + length xs
$$\stackrel{L1}{=}$$
 1 + length zs' + length xs (**)

11 Ejercicio: take

```
take' :: [a] -> Int -> [a]
2 {T0} take' [] = []
3 {T1} take' (x:xs) n = if n == 0 then [] else x : take' xs (n-1)

flipTake :: [a] -> Int -> [a]
6 {FT} flipTake = foldr (\x rec n -> if n == 0 then [] else x : rec (n-1)) (const [])

foldr :: (a -> b -> b) -> b -> [a] -> b
9 {F0} foldr f z [] = z
10 {F1} foldr f z (x:xs) = f x (foldr f z xs)

const :: (a -> b -> a)
12 const :: (a -> b -> a)
13 {C} const = (\x ->\ -> x)

Queremos probar que take' = flipTake.
Por extensionalidad basta ver que \foragca xs :: [a]. take' xs = flipTake xs
```

Por inducción en listas, P(xs) = take' xs = flipTake xs.

• Caso base

Paso inductivo

take' (y:ys)
$$\frac{\eta}{\equiv} \setminus n \rightarrow \text{(take' (y:ys) n)}$$

$$\stackrel{T1}{\equiv} \setminus n \rightarrow \text{(if n == 0 then [] else y:take' ys (n-1))}$$

$$\stackrel{HI}{\equiv} \setminus n \rightarrow \text{(if n == 0 then [] else y:flipTake ys (n-1))}$$
(*)

HI: P(ys) = take' ys = flipTake ys queremos ver que P(y:ys) = take' (y:ys) = flipTake (y:ys)

flipTake (y:ys)
$$\stackrel{FT}{\equiv}$$
 foldr (\x rec n \rightarrow if n == 0 then [] else x:rec(n-1)) (const []) (y:ys) $\stackrel{F1}{\equiv}$ (\x rec n \rightarrow if n == 0 then [] else x:rec(n-1)) y (foldr (\x rec n \rightarrow if n == 0 then [] else x:rec(n-1)) (const []) (ys)) $\stackrel{FT}{\equiv}$ (\x rec n \rightarrow if n == 0 then [] else x:rec(n-1)) y (flipTake ys) $\stackrel{\beta}{\equiv}$ (\rec n \rightarrow if n == 0 then [] else y:rec(n-1)) (flipTake ys) $\stackrel{\beta}{\equiv}$ (\n \rightarrow if n == 0 then [] else y:(flipTake ys)(n-1)) (*)

12 Demostrando propiedades sobre árboles

```
1 cantNodos :: AB a -> Int
2 {CNO} cantNodos Nil = 0
3 {CN1} cantNodos (Bin i r d) = 1 + (cantNodos i) + (cantNodos d)
5 inorder :: AB a -> [a]
6 {IO} inorder Nil = []
7 {I1} inorder (Bin i r d) = (inorder i) ++ (r:inorder d)
9 length :: [a] -> Int
10 {LO} length [] = 0
11 {L1} length (x:xs) = 1 + (length xs)
  Queremos probar que
       \forall t :: AB a. cantNodos t = length (inorder t)
  Por inducción sobre AB a:
        P(t) = cantNodos = length (inorder t)

    Caso base

             P(Nil) = cantNodos Nil = length (inorder Nil)
                                      0\stackrel{CN0}{=} length (inorder Nil)
                            length [] \stackrel{L0}{=} length (inorder Nil)
               length (inorder Nil) \stackrel{I0}{=} length (inorder Nil)

    Paso inductivo

             \forall x :: a. (P(i) \land P(d)) \Rightarrow P(Bin i x d)
       Definimos nuestras hipótesis inductivas :
             P(i) \equiv cantNodos i = length (inorder i)
             P(d) \equiv cantNodos d = length (inorder d)
        Queremos ver que P(Bin i x d) = cantNodos (Bin i x d) = length (inorder (Bin i x d))
                     cantNodos (Bin i x d) \stackrel{CN1}{\equiv} 1 + cantNodos i + cantNodos d
                                               \stackrel{HI}{\equiv} 1 + length (inorder i) + length (inorder d)
             length (inorder (Bin i x d)) \stackrel{11}{\equiv} length (inorder i ++ (x:inorder d))
       y ahora? Necesitamos un lema!
             \forall xs :: [a]. \forall ys :: [a]. length (xs ++ ys) = length xs + length ys
        Hay que probar el lema!
  Demostramos el lema
1 (++) :: [a] -> [a] -> [a]
_{2} {CO} [] ++ ys = ys
3 \{C1\} (x:xs) ++ ys = x : (xs ++ ys)
5 length :: [a] -> Int
6 {LO} length [] = 0
7 \{L1\}  length (x:xs) = 1 + (length xs)
       \forall xs :: [a]. \forall ys :: [a]. length (xs++ys) = length xs + length ys
```

13 Últimas preguntas

Si quisiéramos demostrar una propiedad sobre el tipo Árbol123 a b mediante inducción estructural:

 \forall t1, t2 ,t3 :: Arbol123 a b. \forall y::b. \forall z :: b. (P(t1) \wedge P(t2) \wedge P(t3) \Rightarrow P(Tres y z t1 t2 t3))