

LEIBNIZ UNIVERSITÄT HANNOVER

INSTITUT FÜR ANTRIEBSSYSTEME UND LEISTUNGSELEKTRONIK FACHGEBIET ELEKTRISCHE MASCHINEN UND ANTRIEBSSYSTEME

Titel der Arbeit

Masterarbeit

Siming Gao Matrikelnummer: 10026836

Betreuer: M.Sc. Leon Fauth

Erstprüfer: Jun.-Prof. Dr.-Ing. Jens Friebe Zweitprüfer: Prof. Dr.-Ing. Axel Mertens

Eigenständigkeitserklärung

Siming Gao Haltenhoffstraße 1 30167 Hannover Deutschland

Matrikelnummer: 10026836

Studienrichtung: Elektrotechnik und Informationstechnik

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Hannover, den 4. März 2021

Aufgabenstellung

Hier steht die Aufgabenstellung.

Inhaltsverzeichnis

Inhaltsverzeichnis

Αŀ	bildu	ngsverzeichnis	ii
Та	beller	nverzeichnis	iii
Fc	rmelz	reichenkonvention	iv
1	Einle	eitung	1
2		ndlagen Elektromagnetisches Feld	2
3		x: Getting Started	3
	3.1	Bilder einfügen	3
	3.2	Plots	4
	3.3	Tabellen	5
	3.4	Gleichungen	6
		3.4.1 Einheiten	6
	3 5	Literaturverweise setzen	6

Abbildungsverzeichnis

3.1	Beispielcaption	3
3.2	Verlauf der Ströme auf der Primär- und der Sekundärseite in Abhängigkeit	
	von der Zeit	
3.3	Ströme in Abhängigkeit der Zeit 8	4

Tabellenverzeichnis

Tabellenverzeichnis

 $\Re\left\{\underline{A}\right\}$

 $\Im\left\{\underline{A}\right\}$

Formelzeichenkonvention

a	reelle Größe, Momentanwert
A	Effektivwert
\hat{A}	Amplitude
a, A	Matrix
a, α	komplexer Momentanwert
\vec{a} , \vec{A}	vektorielle Größe
$ec{a},ec{lpha}$	Raumzeiger, Raumvektor
\underline{A}	Zeitzeiger, komplexe Darstellung einer Wechselgröße
a	Betrag einer reellen Größe
$ \underline{A} $	Betrag einer komplexen Größe

Realteil einer komplexen Größe

Imaginärteil einer komplexen Größe

1 Abstract 1

1 Abstract

Die vorliegende Arbeit11...1

11	22
3321	4131

Column 1	Column 2	Column 3
second row		
third row		

2 Grundlagen

2 Grundlagen

2.1 Elektromagnetisches Feld

3 Latex: Getting Started

Zum Arbeiten mit dieser Hilfe bitte "Arbeit.tex" mit *TexStudio* öffnen und kompilieren (F5). Anschließend kann in der PDF-Ansicht von *TexStudio* per Rechtsklick auf die passende Stelle und "Gehe zu Quelltext" der zugehörige Quelltext nachgeschlagen werden. Es handelt sich hierbei nur um Minimalbeispiele um die allerersten Schritte in Latex zu schaffen.

3.1 Bilder einfügen

In Abbildung 3.1 ist das Welfenschloss dargestellt.

Abbildung 3.1: Beispielcaption

3.2 Plots

Gutes Beispiel

Abbildung 3.2: Verlauf der Ströme auf der Primär- und der Sekundärseite in Abhängigkeit von der Zeit

Schlechtes Beispiel

Abbildung 3.3: Ströme in Abhängigkeit der Zeit 8

Erläuterungen zum Plot

- 1) Einheiten nicht in eckige Klammer schreiben. Richtig ist:
 - Strom in A
 - Strom /A
 - Strom i in A
 - Strom i /A
 - *i* in A
 - i/A
 - Wichtig ist: immer eine einheitliche Darstellung verwenden
 - zur Info: diese Schreibweise ist korrekt: [i] = A, wird aber nicht als Achsenbeschriftung verwendet
- 2) In deutschen Arbeiten Dezimalkomma verwenden. In englischen Veröffentlichungen Dezimalpunkte verwenden.
- 3) Indizes gerade (es sei denn, der Index ist eine Variable, z.B. Zählvariable)
- 4) Legende muss an einer günstigen Stelle platziert sein, möglichst Verdeckung vermeiden
- 5) Abbildung darf nicht über den Rand des Dokuments ragen
- 6) Verläufe sollten bis zum Ende des Plots gehen. Die Achse muss nicht zwingend mit einem Zahlenwert abgeschlossen werden.
- 7) Einheiten immer gerade schreiben, nicht kursiv
- 8) Es heißt immer: in Abhängigkeit von ...
- 9) Geeignete Plotfarben wählen, die gut erkennbar sind. Für s/w-Ausdrucke ist es sinnvoll auch die Art des Plots zu unterscheiden (durchgezogen, gestrichelt, gepunktet, markiert)

Tipps

- Bildunterschrift muss vollständig und eindeutig sein
- Möglichst nicht mehr als drei bis vier Verläufe pro Plot abbilden
- Skalierung der Achsen sinnvoll wählen

3.3 Tabellen

Tabellen sind recht umfangreich und etwas aufwendiger als in Word. Gute Beispiele gibt es unter anderem hier: https://en.wikibooks.org/wiki/LaTeX/Tables.

3.4 Gleichungen

3.4.1 Einheiten

Einheiten sind nicht kursiv zu schreiben. Da dies innerhalb der Mathematikumgebung häufig schief geht, wird empfohlen den Befehl \$\SI{40}{\N\m}\$ zu verwenden. Die Darstellung von Einheiten kann dadurch global eingestellt werden (immer gerade, Einheiten mit Bruchstrich oder negativen Exponenten, Komma als Dezimaltrenner, usw.). Beispiel:

Damit beträgt das Drehmoment beträgt $M=40\,\mathrm{N}\,\mathrm{m}.$

Weitere Beispiele:

- $1. \, 1 \, \mathrm{m \, s^{-2}}$
- 2. 100 nF
- 3. 100 Mvar

Neue Einheiten können über \DeclareSIUnit \var {var} in "Pakete.tex" erstellt werden.

3.5 Literaturverweise setzen

In [?] sind die notwendigen Formeln dargestellt.

[11pt, oneside]article geometry letterpaper graphicx amssymb

Brief Article

The Author

4. März 2021