Bifurcations in Dynamical systems with singularities

Debsankha Manik

August 21, 2012

DEFINITION

A simple piecewise smooth function:

$$f(x) = \begin{cases} g(x) & : x < \mu \\ h(x) & : x > \mu \end{cases}$$

Continuity demands $g(\mu) = h(\mu)$.

DEFINITION

A simple piecewise smooth function:

$$f(x) = \begin{cases} g(x) & : x < \mu \\ h(x) & : x > \mu \end{cases}$$

Continuity demands $g(\mu) = h(\mu)$.

Orger of singularity:

The power of the leading order term in the power series expansion of

$$g(x) - h(x)$$

around $x = \mu$

A system with singularity:

Figure:

A system with singularity:

$$f(x) = \begin{cases} \sqrt{(\mu - x) - \mu\nu} & : x < \mu \\ \nu x & : x > \mu \end{cases}$$

$$g(\mu - x) - h(\mu - x) = \sqrt{(x)} + O(x)$$

This is square root singularity.

COBWEB DIAGRAMS

Figure : Cobweb Diagram

Attractor must be bounded.

For $\mu < 0$, the stable fixed point is at x = 0. Border collision occurs at $\mu = 0$. What happens when μ crosses 0 to positive values? For μ < 0, the stable fixed point is at x = 0. Border collision occurs at μ = 0. What happens when μ crosses 0 to positive values?

- 1. $\frac{2}{3} < \nu < 1$: Immediate onset of chaos.
- 2. $\frac{1}{4} < \nu < \frac{2}{3}$: There is a period-adding cascade as mu decreases, with infinite-period orbits at $\mu = 0$. Moreover, chaotic regions between each periodm and periodm + 1 orbits.
- 3. $0 < \nu < \frac{1}{4}$: Periodic orbits.

Case 1: $\nu = 0.12$

Figure:

Case 2: $\nu = 0.5$

Figure :

Case 3: $\nu = 0.8$

Figure :

