

Cálculo computacional II

Unidade 5: Integrais múltiplas

Cristina Vaz

C2-aula 11/8/25

UFPA

Sumário

<u>∂f</u> ∂t

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

- 1 Cálculo de área com a integral dupla
- 2 Integral dupla em coordenadas polares
- 3 Curvas em coordenadas polares
- 4 Exemplos

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplo

Podemos calcular área de uma região plana usando a integral dupla do seguinte modo:

Cálculo de área com a integral dupla

Integral dupla em coordenada polares

Curvas em coordenada polares

Exemplo

Podemos calcular área de uma região plana usando a integral dupla do seguinte modo:

Considere o cilindro sólido z=1 então seu volume é

$$V =$$
área da base \times $altura = A(D) \times 1 = A(D)$

com A(D) a área da base do cilindro que é a região plana D

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

$$A(D) = \iint_D 1 \, dx \, dy = \iint_D dx \, dy$$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Exemplo

Calcule a área do triângulo de vértices (0,0), (b,0) e (0,h)

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Note que a equação da reta que passa pelos ponto (b,0) e (0,h) é

$$y = -\frac{h}{b}x + h.$$

Assim, devemos calcular a seguinte integral:

$$A(T) = \int_0^b \int_0^{-\frac{n}{b}x + h} dy dx.$$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

$$= \int_0^b \left(\int_0^{-\frac{h}{b}} x + h dy \right) dx = \int_0^b \left(y \Big|_0^{-\frac{h}{b}} x + h \right) dx$$

$$= -\int_0^b \left(\frac{h}{b} x + h \right) dx = -\frac{h}{b} \frac{x^2}{2} + h x \Big|_0^b$$

$$= -\frac{h}{b} \frac{b^2}{2} + h b = -\frac{hb}{2} + h b = \frac{1}{2} b h$$

 $A(T) = \int_{0}^{b} \int_{0}^{-\frac{h}{b}} x + h dy dx =$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

Para calcularmos integrais em regiões circulares é mais interessante fazermos uma mudança de coordenadas.

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

Coordenadas Polares

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

coordenadas polares

Exemplos

Coordenadas Polares

$$r^2 = x^2 + y^2$$
, $x = r \cos(\theta)$ e $y = r \sin(\theta)$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

Queremos transformar a integral $\iint_D f(x,y) dx dy$ dada em coordenadas retangulares em coordenadas polares. Para isto, lembremos a definição da integral dupla:

$$\iint_{D} f(x,y) \, dx \, dy = \lim_{n,m \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}^{*}, y_{j}^{*}) A(R_{ij})$$

com $A(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})$ a área dos retângulos da partição de D.

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

No plano polar, vamos preencher a região de integração com vários **retângulos polares**:

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Como a área do setor circular é de raio r e ângulo θ é $C = \frac{1}{2}r^2\theta$ temos que

$$A(R_{ij}) = A(C_i) - A(C_{i-1}) = \frac{1}{2}r_i^2 \Delta \theta - \frac{1}{2}r_{i-1}^2 \Delta \theta$$

com
$$\Delta\theta = \theta_i - \theta_{i-1}$$
. Assim,

$$A(R_{ij}) = \frac{1}{2} \left(r_i^2 - r_{i-1}^2 \right) \Delta \theta = \frac{1}{2} (r_i + r_{i-1}) (r_i - r_{i-1}) \Delta \theta$$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Fazendo
$$\Delta r = r_i - r_{i-1}$$
 e $r_i^* = \frac{1}{2}(r_i + r_{i-1})$ obtemos

$$A(R_{ij}) = r_i^* \Delta r \Delta \theta$$

Assim, a soma de Riemann torna-se

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}^{*}, y_{j}^{*}) A(R_{ij}) = \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_{i}^{*} \cos(\theta_{i}^{*}), r_{j}^{*} \sin(\theta_{j}^{*})) r_{i}^{*} \Delta r \Delta \theta$$

Logo,

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

$$\iint_{D} f(x,y) dx dy =$$

$$= \lim_{n,m \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_{i}^{*} \cos(\theta_{i}^{*}), r_{j}^{*} \sin(\theta_{j}^{*})) r_{i}^{*} \Delta r \Delta \theta$$

$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos(\theta), r \sin(\theta)) r dr d\theta$$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Teorema (Mudança para coordenadas polares)

Seja $f:D\subset\mathbb{R}^2\to\mathbb{R}$ uma função integrável em D contida no retângulo polar $0\leq a\leq r\leq b$ e $\alpha\leq\theta\leq\beta$ com $0\leq\beta-\alpha\leq2\pi$ então

$$\iint_{D} f(x,y) dx dy = \int_{a}^{\beta} \int_{a}^{b} f(r\cos(\theta), r\sin(\theta)) r dr d\theta.$$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

Também pode acontecer que termos uma região mais geral do que um retângulo polar, como por exemplos

$$D = \left\{ (r, \theta); g_1(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta \right\}$$

Neste caso, temos

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Teorema (Mudança para coordenadas polares)

Seja $f:D\subset\mathbb{R}^2\to\mathbb{R}$ uma função integrável em D com $D=\left\{(r,\theta);g_1(\theta)\leq r\leq g_2(\theta),\,\alpha\leq\theta\leq\beta\right\}$ então

$$\iint_{D} f(x,y) dx dy = \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta.$$

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

ullet equação da reta que passa pela origem: $\theta = \alpha$

Curvas coordenadas polares

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

• círculo de centro (0,0) e raio a:

$$r^2 = x^2 + y^2 = a^2 \Longrightarrow r = a$$

Curvas coordenadas polares

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

• Cardióide: $r = a + b\cos(\theta)$ ou $r = a + b\sin(\theta)$

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Exemplos

• Rosácea: $r = a \cos(b \theta)$

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenada polares

Exemplos

Exemplo

Calcule a área do círculo de centro (0,0) e raio a > 0.

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

Cálculo de área com a integral dupla

Integral dupla em coordenadas polares

Curvas em coordenadas polares

$$A(C) = \iint_C dx \, dy = \int_0^{2\pi} \int_0^a r \, dr d\theta$$
$$= \int_0^{2\pi} \left[\frac{r^2}{2} \right]_0^a d\theta = \frac{a^2}{2} \int_0^{2\pi} d\theta$$
$$= 2\pi \frac{a^2}{2} = \pi a^2$$

OBRIGADA