24Fall MGCR372-001

Operation Management HW1

Shawn Cheng September 14, 2024

Problem 1.

Figure 1: Gantt Chart

From the Gantt Chart, the minimum amount of time to complete a rush order of 2 is 40 minutes.

Problem 2.

(a)

Resources	Number available	Acticities where needed	Time required per bike	Capacity
Jeff	1	Handlebars	2 min	30 bikes/hour
Anna	1	Frames & Kickstand	$6+2=8 \min$	7.5 bikes/hour
Paul	1	Wheels	3 min	20 bikes/hour

Table 1: Capacity Analysis

(b)

Anna is the bottleneck. The capacity of the process is 7.5 bikes/hour

(c)

$$\label{eq:total_total} \mbox{Utilization of resource} = \frac{\mbox{Throughput rate of resource}}{\mbox{Capacity of the resource}}$$

Jeff:

$$U_{Jeff} = \frac{7.5}{30} = 0.25$$

Anna:

$$U_{Anna}=1$$

Paul:

$$U_{Paul} = \frac{7.5}{20} = 0.375$$

(d) Ignoring production of the first bike, 7.5 bikes are produced in an hour. Jeff's average working time per hour is $0.25 \times 1hour = 0.25hour$. Anna's average working time per hour is $1 \times 1hour = 1hour$. Paul's average working time per hour is $0.375 \times 1hour = 0.375hour$

Total cost per hour = $60\$ \times 7.5 + 20\$ \times 0.25 + 30\$ \times 1 + 16\$ \times 0.375 = 491\$$

$$Profit\ per\ hour = 1500\$ - 491\$ = 1009\$$$