NeRV: Neural Representations for Videos

NeurIPS 2021 Poster

발표자: 석사과정 박여정

- Implicit Neural Representation
 - Parameterize a signal as a continuous function that maps the domain of the signal to whatever at that coordinate
 - 어떤 정보를 Neural net으로 나타내거나 저장하는 것

- NeRF Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
- represent a scene using a fully-connected (non-convolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, ϕ))

- SIREN Implicit Neural Representations with Periodic Activation Functions, NIPS 2020
- Use Sine activation function instead of ReLU

- NeRV, a novel representation that represents videos as implicit functions and encodes them into neural networks.
- $V = \{v_t\}_{t=1}^T$, where $v_t = f_{\theta}(t)$
- Can reformulate video compression into model compression

	Explicit (frame-based)		Implicit (unified)		
	Hand-crafted (e.g., HEVC [2])	Learning-based (e.g., DVC [3])	Pixel-wise (e.g., NeRF [4]	Image-wise (Ours)	
Encoding speed Decoding speed Compression ratio	Fast Medium Medium	Medium Slow High	Very slow Very slow Low	Slow Fast Medium	

(a) Explicit representations for videos (e.g., HEVC)

(b) Neural implicit representations for videos (e.g., NeRV)

Architecture

- $V = \{v_t\}_{t=1}^T$, where $v_t = f_{\theta}(t)$
- Video encoding by fitting a NN to a given video
- Time embedding for learning high frequency variations

$$\Gamma(t) = \left(\sin\left(b^0\pi t\right), \cos\left(b^0\pi t\right), \dots, \sin\left(b^{l-1}\pi t\right), \cos\left(b^{l-1}\pi t\right)\right)$$

Architecture

- Stack NeRV Blocks so that pixels at different locations can share conv kernels.
- PixelShuffle for upscaling method
- Up-scale (5,3,2,2,2) for 1080p videos
- Activation : GELU

(c) NeRV block

Architecture

- Loss objective
 - | 1
 - SSIM loss: calculated on various windows of an image

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

$$L = \frac{1}{T} \sum_{t=1}^{T} \alpha \|f_{\theta}(t) - v_{t}\|_{1} + (1 - \alpha)(1 - \text{SSIM}(f_{\theta}(t), v_{t}))$$

Iteration 32000 (Perceptual)

Iteration 32000 (Perceptual + SSIM)

Model compression

- Model Pruning
 - Global unstructured pruning

$$\theta_i = \begin{cases} \theta_i, & \text{if } \theta_i \ge \theta_q \\ 0, & \text{otherwise,} \end{cases}$$

- Model Quantization
 - Post-hoc

$$\mu_i = ext{round}\left(rac{\mu_i - \mu_{ ext{min}}}{2^{ ext{bit}}}
ight) * ext{scale} + \mu_{ ext{min}}, \quad ext{scale} = rac{\mu_{ ext{max}} - \mu_{ ext{min}}}{2^{ ext{bit}}}$$

- Entropy Encoding
 - Huffman Coding

Experiments

Table 2: Compare with pixel-wise implicit representations. Training speed means time/epoch, while encoding time is the total training time.

Methods	Parameters	Training Speed ↑	Encoding Time ↓	PSNR ↑	Decoding FPS ↑
SIREN [5]	3.2M	1×	$2.5 \times$	31.39	1.4
NeRF [4]	3.2M	$1 \times$	$2.5 \times$	33.31	1.4
NeRV-S (ours)	3.2M	25 ×	$1 \times$	34.21	54.5
SIREN [5]	6.4M	1×	5×	31.37	0.8
NeRF [4]	6.4M	$1 \times$	$5 \times$	35.17	0.8
NeRV-M (ours)	6.3M	50 ×	1 ×	38.14	53.8
SIREN [5]	12.7M	1×	7×	25.06	0.4
NeRF [4]	12.7M	$1 \times$	$7 \times$	37.94	0.4
NeRV-L (ours)	12.5M	70 ×	$1 \times$	41.29	52.9

SIREN (Pixel-wise)

NeRV: (Image-wise)

Experiments

Figure 6: Compression **pipeline** to show how much each step contribute to compression ratio.

Table 3: PSNR vs. epochs. Since video encoding of NeRV is an over-fit process, the reconstructed video quality keeps increasing with more training epochs. NeRV-S/M/L mean models with different sizes.

Epoch	NeRV-S	NeRV-M	NeRV-L
300	32.21	36.05	39.75
600	33.56	37.47	40.84
1.2k	34.21	38.14	41.29
1.8k	34.33	38.32	41.68
2.4k	34.86	38.7	41.99

Figure 7: PSNR vs. BPP on UVG dataset.

Figure 8: MS-SSIM vs. BPP on UVG dataset.

Table 4: **Decoding speed** with BPP 0.2 for 1080p videos

Methods	FPS ↑	
Habibian et al. [14]	$10^{-3.7}$	
Wu et al. [24]	10^{-3}	
Rippel et al. [57]	1	
DVC [3]	1.8	
Liu et al [58]	3	
H.264 [8]	9.2	
NeRV (FP32)	5.6	
NeRV (FP16)	12.5	

Figure 9: Video compression visualization. At similar BPP, NeRV reconstructs videos with better details.

Experiments

Table 5: PSNR results for **video denoising**. "baseline" refers to the noisy frames before any denoising

noise	white ↑	black ↑	salt & pepper ↑	random ↑	Average ↑
Baseline	27.85	28.29	27.95	30.95	28.74
Gaussian	30.27	30.14	30.23	30.99	30.41
Uniform	29.11	29.06	29.10	29.63	29.22
Median	33.89	33.84	33.87	33.89	33.87
Minimum	20.55	16.60	18.09	18.20	18.36
Maximum	16.16	20.26	17.69	17.83	17.99
NeRV	33.31	34.20	34.17	34.80	34.12

(a) Ground Truth Frame

(d) NeRV Output (39.27 PSNR)

(e) DIP Output (32.30 PSNR)-Iteration 3600

Discussion

- To achieve the comparable PSNR/MS-SSIM, the training time is longer than the encoding time of traditional video compression
- Architecture is not optimal yet
- NeRV is a novel way to represent videos as a function of time, which might be used in many video-related tasks.