МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

СПОСОБЫ, АЛГОРИТМЫ УМНОЖЕНИЯ ДВОИЧНЫХ ЧИСЕЛ С ФЗ

Отчет по лабораторной работе №1 дисциплины «Информатика»

Выполнил студент группы ИВТ-11	/Рзаев А. Э./
Проверил преподаватель	/Шихов М. М./

1 Умножение первым способом

1.1 Постановка задачи

Перемножить два числа, представленных в двоичной системе счисления с фиксированной запятой в прямом коде, используя первый способ умножения. Для выполнения поставленной задачи использовать программную компьютерную модель. Исходными данными являются числа: $A = 52_{10} = 0.0110100_2$; $B = 56 = 0.0111000_2$. В результате должно получиться число $A * B = 2912 = 101101100000_2$.

1.2 Описание алгоритма умножения первым способом

Устройства, которые хранят операнды, регистры, имеют следующую разрядность:

- регистры множителя и множимого n-разрядные;
- регистр частичных произведений 2n-разрядный.

Суммирование множимого следует выполнять в старших п разрядах регистра суммы частичных произведений. Причем, разрядность его можно уменьшить вдвое, до п-разрядов, помещая при сдвиге младшие разряды суммы на место освобождающихся разрядов регистра множителя.

Особенность первым способом умножения состоит в том, что имеется, возможно, временное переполнение разрядной сетки (ПРС) в регистре суммы частичных произведений, которое ликвидируется при очередном сдвиге вправо.

1.3 Умножение первым способом

Экранная форма получения результатаумножения первым способом на программной компьютерной модели представлена на рисунке 1.

Рисунок 1 — Результат работы программы при умножении первым способом

Таблица расчётов умножения первым способом представлена на рисунке 2

Множитель>	СЧП>	Комментарий
0,011010 <u>0</u>	0,0000000 0000000	Сдвиги
.,001101 <u>0</u>	0,0000000 0000000	Сдвиги
.,.00110 <u>1</u>	0,0000000 0000000	Сложение
	0,0111000 0000000	Сдвиги
	0,0111000 0000000	
.,0011 <u>0</u>	0,0011100 0000000	Сдвиги
.,001 <u>1</u>	0,0001110 0000000	Сложение
	0,0111000 0000000	Сдвиги
	0,1000110 0000000	
.,00 <u>1</u>	0,0100011 0000000	Сложение
	0,0111000 0000000	Сдвиги
	0,1011011 0000000	
.,0 <u>0</u>	0,0101101 1000000	Сдвиги
.,0	0,0010110 1100000	Результат

Рисунок 2 — Таблица расчетов первым способом умножения

2 Умножение вторым способом

2.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется второй способ.

2.2 Описание алгоритма умножения вторым способ

Второй способ реализует умножение с младших разрядов множителя со сдвигом множимого влево. Этот способ требует n-разрядного регистра множителя, а также 2n-разрядных регистров множимого и суммы частичных произведений. Причем, первоначально множимое помещается в младшие разряды регистра, а затем в каждом такте сдвигается на один разряд влево

2.3 Умножение вторым способом

Экранная форма получения результата умножения вторым способом на программной компьютерной модели представлена на рисунке 3.

Рисунок 3 - Результат работы программы при умножении вторым способом

Таблица расчётов умножения вторым способом представлена на рисунке 4.

Множитель >	Множимое —	СЧП	Комментарий
0,011010 <u>0</u>	0,00000000111000	0,0000000 0000000	Сдвиги
.,001101 <u>0</u>	0,0000000 111000.	0,0000000 0000000	Сдвиги
.,.00110 <u>1</u>	0,0000001 11000	0,0000000 0000000	Сложение
	+	0,0000001 11000	Сдвиги
		0,0000001 1100000	
.,0011 <u>0</u>	0,0000011 1000	0,0000001 1100000	Сдвиги
.,001 <u>1</u>	0,0000111 000	0,0000001 1100000	Сложение
	+	0,0000111 000	Сдвиги
		0,0001000 1100000	
.,00 <u>1</u>	0,0001110 00	0,0001000 1100000	Сложение
	†	0,0001110 00	Сдвиги
		0,0010110 1100000	
.,0 <u>0</u>	0,0011100 0	0,0010110 1100000	Сдвиги
.,0	0,0111000	0,0010110 1100000	Результат

Рисунок 4 — Таблица расчетов первым способом умножения

3 Умножение третьим способом

3.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

3.2 Описание алгоритма умножения третьим способом

III способ — умножение со старших разрядов множителя со сдвигом суммы частичных произведений влево. Этот способ требует два п-разрядных регистра множителя и множимого и одного 2празрядных регистра суммычастичных произведений. Суммирование множимого следует выполнять в младшие п разрядов регистра суммы частичных произведений. Особенность III способа умножения состоит в том, что в последнем такте не следует выполнять сдвиг в регистре сумм частичных произведений.

3.3 Умножение третьим способом

Экранная форма получения результата умножения третьим способом на программной компьютерной модели представлена на рисунке 5.

Рисунок 5 - Результат работы программы при умножении третьим способом

Таблица расчётов умножения третьим способом представлена на рисунке 6.

Множитель ←	СЧП ←	Комментарий
0, <u>0</u> 110100	0,0000000 0000000	Сдвиги
0, <u>1</u> 10100.	0,0000000 000000.	Сложение
†	0,00000000111000	Сдвиги
	0,0000000 0111000	
1, <u>1</u> 0100	0,0000000 111000.	Сложение
Ť	0,0000000 0111000	Сдвиги
	0,0000001 0101000	
1, <u>0</u> 100	0,0000010 101000.	Сдвиги
0,100	0,0000101 01000	Сложение
+	0,0000000 0111000	Сдвиги
	0,0000101 1011000	
0, <u>0</u> 0	0,0001011 011000.	Сдвиги
0, <u>0</u>	0,001011011000	
0, <u>0</u>	0,0010110 1100000	Результат

Рисунок 6 – Таблица расчетов первым способом умножения

4 Умножение четвертым способом

4.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

4.2 Описание алгоритма умножения третьим способом

IV способ — умножение со старших разрядов множителя со сдвигом множимого вправо. Этот способ требует одного п-разрядного регистра множителя и двух 2n-разрядных регистров множимого и суммы частичных произведений. Причем первоначально множимое помещается в старшие разряды регистра, а затем в каждом такте сдвигается на один разряд вправо. Особенность IV способа умножения состоит в том, что перед началом цикла умножения следует множимое сдвинуть на один разряд вправо.

4.3 Умножение четвертым способом

Экранная форма получения результата умножения четвертым способом на программной компьютерной модели представлена на рисунке 7.

Рисунок 7 - Результат работы программы при умножении четвертым способом

Таблица расчётов умножения четвертым способом представлена на рисунке 8.

Множитель ←	Множимое <i>→</i>	СЧП	Комментарий
0, <u>0</u> 110100	0,0011100 0000000	0,0000000 0000000	Сдвиги
0 <u>,1</u> 10100.	0,0001110 0000000	0,0000000 0000000	Сложение
		0,0001110 0000000	Сдвиги
		0,0001110 0000000	
1, <u>1</u> 0100	0,0000111 0000000	0,0001110 0000000	Сложение
		0,0000111 0000000	Сдвиги
		0,0010101 0000000	
1, <u>0</u> 100	0,0000011 1000000	0,0010101 0000000	Сдвиги
0, <u>1</u> 00	0,0000001 1100000	0,0010101 0000000	Сложение
		+ <u>0,0000001 1100000</u>	Сдвиги
		0,0010110 1100000	
1 <u>,0</u> 0	0,0000000 1110000	0,0010110 1100000	Сдвиги
0, <u>0</u>	0,0000000 0111000	0,0010110 1100000	Сдвиги
0,	0,0000000 0011100	0,0010110 1100000	Результат

Рисунок 8 – Таблица расчетов первым способом умножения