Comprehensive and Reliable Crowd Assessment Algorithms

MANAS JOGLEKAR
HECTOR GARCIA-MOLINA
ADITYA PARAMESWARAN

Background

- Crowdsourcing: Tasks such as image tagging
- Workers are often unreliable
 - Lack of motivation
 - Lack of skill
- Need to assess worker quality
- Need for Confidence intervals
 - o 1/3 errors vs 10/30 errors
- Upper confidence threshold for worker filtering

Problem Setting

- **m** tasks (t₁...t_m)
- **n** workers (w₁...w_n)
- Non-regular data

	t ₁	t_2	t_3	t ₄	t_5
W_1	$\mathbf{r}_{_{1}}$	r_2	r_3	-	$\mathbf{r_{_1}}$
W_2	r_1	r_2	-	$\mathbf{r_{_1}}$	$\mathbf{r}_{_{1}}$
W_3	-	r_3	r_3	r_2	r_1
W_4	r_1	r_2	r_3	-	r_2

Problem Setting

- Binary tasks OR k responses (r₁...r_k)
- No gold standard
- Accuracy model
 - \circ Worker $\mathbf{w_i}$ has error rate $\mathbf{p_i}$, or confusion matrix $\mathbf{P_i}$
 - Non-malicious workers (better than random)
 - Worker response independent of each other, given true answer
- Goal: Given user-specified confidence level c, find cconfidence interval for p_i or entries in P_i

- Equal false positive and negative error rates
- To find: confidence intervals for p_i, for each i
- Can be found using
 - Mean estimate for p_i
 - Variance of p_i estimate
- Easy if gold standard available
- Agreement rate q_{ij} , probability of worker w_i , w_j agreeing

Compute agreement rates (q_{ij} for worker w_i, w_j)

	t ₁	t_2	t_3	t ₄	t ₅		
W_1	y	y	-	n	n	Εſα] = 2/3
W_2	n	-	У	n	n	$L[q_{12}]$	/ J
W_3	-	y	y	n	у		
Γrue	n	y	y	n	n		

- $q_{ij} \sim p_i p_j + (1-p_i)(1-p_j)$
- So $p_i = f_i(q_{ij}, q_{ik}, q_{jk})$ = $\frac{1}{2} - \frac{1}{2} \sqrt{((q_{ij} - \frac{1}{2})(q_{ik} - \frac{1}{2})/(q_{jk} - \frac{1}{2}))}$

- To find variance in p_i using q_{ij} 's we use:
- **Theorem**: $Y = f(X_1, X_2, X_3)$
 - o X_i's **normal**, f **linear** ($\sim a_1 X_1 + a_2 X_2 + a_3 X_3$)
 - \circ Var(Y) = $\Sigma_{i,j} a_i a_j \text{Cov}(X_i, X_j)$
- Works for approximately normal (binomial), locally linear (differentiable)
- Linear coefficients given by partial derivatives

- p_i is Y; q_{ij} , q_{ik} , q_{jk} are X's
- Variance in p estimate depends on
 - Variance in q estimates
 - Covariances between q estimates
 - \circ $\delta f_i/\delta q_{ij}$, $\delta f_i/\delta q_{jk}$
- $Var(p_i) = \Sigma_{q,q'} Cov(q,q') \times \delta f_i / \delta q \times \delta f_i / \delta q'$
- Estimate variances, derivatives
- Use E[p_i], Var(p_i) to get confidence interval

Calibration Experiment

- Accuracy is the fraction of times a confidence interval contains correct value
- Safe: Accuracy of c-confidence interval > c
- Tight: Accuracy <= c

Calibration Results (Synthetic Data)

Generalizing to many workers

- Example: To evaluate w1
 - o w4, w5 'good', 'w2, w3' bad
 - o groups (w1, w2, w3), (w1, w4, w5)

	t ₁	t ₂	t_3	t ₄	t ₅	t ₆
W_1	У	У	n	n	y	-
W_2	У	-	n	n	-	n
W_3	У	У	y	n	-	-
W_4	n	У	n	n	y	-
W_5	У	n	n	n	-	n

Generalizing to many workers

- Key Idea: Take multiple sets of 3 workers and combine estimates
- For each worker, form N/2 triples.
- Use each triple T_i to compute estimate e_i for p₁
- Compute variances, covariances of estimates
- Use weighted combination of estimates

$$o$$
 $p = \Sigma_i a_i e_i$

Generalizing to many workers

- Optimum weights for combining
 - Covariance matrix A
 - o Given by $A^{-1}L_{N/2}$ where L_k is a k-length vector with values 1/k
- Greedy way of group forming
 - Better to have two good workers in one group than one good worker in two groups, due to weighting
 - Greedily form groups

Results: Weight Optimization

3 Workers Non-binary Tasks

• Confusion matrix P_i, Selectivity vector S, diagonal S^D

e.g.

0.8	0.1	0.3
0.1	0.7	0.1
0.1	0.2	0.6

0.4	
0.2	
0.4	

0.4	0	0
0	0.2	0
0	0	0.4

- P_i's, S: Column-stochastic, unknown
- Observation probabilities given by P_iS

0.46

0.22

0.32

3 Workers Non-binary Tasks

- Compute comparison matrices (frequencies of response-pairs of workers w_i,w_j)
- $C_{ij} \sim P_i S^D P_j^T$
- Compute $D_i = C_{ij}(C_{jk}^T)^{-1}C_{ki} = P_iS^DP_i^T$
- Eigenvalue decomposition of D_i gives $V_i = U \sqrt{S^D P_i}$, for a unitary U.

3 Workers Non-binary Tasks

- U can be recovered using 3-way comparisons
- S^D can be recovered using column stochasticity of Pⁱ
- For confidence intervals, use variances/derivatives like in the binary tasks case
- Details in paper

Results: Calibration (Synthetic Data)

Results: Calibration (Real Data)

Conclusion

- We can come up with accurate, tight confidence intervals in very general scenarios
- Confidence Intervals are useful for filtering workers
- Thank You! Questions?