無機化学

8

8

9

10

10

10

10

第Ⅰ部	非金属元素	2
1	水素	2
1.1	性質	2
1.2	同位体	2
1.3	製法	2
1.4	反応	2
2	貴ガス	2
2.1	性質	2
2.2	生成	2
2.3	ヘリウム	2
2.4	ネオン	2
2.5	アルゴン	2
3	ハロゲン	3
3.1	単体	3
3.2	ハロゲン化水素	4
3.3	ハロゲン化銀	5
3.4	次亜塩素酸塩	5
3.5	水素酸カリウム	5
4	酸素	6
4.1	酸素原子	6
4.2	酸素	6
4.3	オゾン	6
4.4	酸化物	7
4.5	水	7

目次

5

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6

硫黄

窒素

6.3	一酸化二窒素(笑気ガス)	10
6.4	一酸化窒素	10
6.5	二酸化窒素	11
6.6	硝酸	11
7	リン	12
7.1	リン	12
7.2	十酸化四リン	12
7.3	リン酸	12
第Ⅱ部	典型金属	13
8	アルカリ金属	13
8.1	単体	13
8.2	水酸化ナトリウム(苛性ソーダ)	13
第Ⅲ部	3 APPENDIX	15
9	気体の乾燥剤	15

硫黄

二酸化硫黄(亜硫酸ガス)

チオ硫酸ナトリウム (ハイポ)

重金属の硫化物

第I部

非金属元素

1 水素

1.1 性質

- 無色無臭の気体
- 最も軽い
- 水に溶けにくい

1.2 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{1-\rho Z}{C}$ に $\frac{x \, \overline{X}}{N}$ を吹き付ける $\frac{x \, \overline{X}}{N}$ と $\frac{x \, \overline{X}}{N}$ と
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \, \mathrm{H_2O} \longrightarrow 2 \, \mathrm{H_2} + \mathrm{O_2}$
- イオン化傾向がH₂ より大きい金属と希薄強酸
 - $norm Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$
- 水酸化ナトリウムと水 ${\rm NaH} + {\rm H_2O} \longrightarrow {\rm NaOH} + {\rm H_2}$

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2\,\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O}$
- 加熱した酸化銅(II)と水素 $CuO + H_2 \longrightarrow Cu + H_2O$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が極めて小さい
- 電気陰性度が定義されない

2.2 生成

⁴⁰K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い(約 1%)。

無機化学 2/15

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小 ——			大
分子間力	弱 ———			
反応性	強 =====			
沸点・融点	低 ———			——————————————————————————————————————
常温での状態	<u>気体</u>	<u>気体</u>	液体	<u>固体</u>
色	<u>淡黄</u> 色	黄緑色	赤褐色	<u>黒紫</u> 色
特徴	<u>特異</u> 臭	<u>刺激</u> 臭	揮発性	昇華性
H ₂ との反応	<u>冷暗所</u> でも	<u>常温</u> でも <u>光</u> で	<u>加熱</u> して	高温で平衡状態
112 2007	爆発的に反応	爆発的に反応	<u>触媒</u> により反応	<u>加熱</u> して <u>触媒</u> により一部反応
水との反応	水を酸化して酸素と	一部とけて反応	一部とけて反応	反応しない
八での)文/心	<u>激しく</u> 反応			KIaq には可溶
用途	保存が困難	<u>ClO</u> _による	C=C ❖	<u>ヨウ素デンプン</u> 反応で
1130	Kr や Xe と反応	殺菌・漂白作用	C≡C の検出	<u>青紫</u> 色

3.1.2 製法

- フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解 $\boxed{\mathrm{T業的製法}}$ $\mathrm{KHF}_2 \longrightarrow \mathrm{KF} + \mathrm{HF}$
- 塩化ナトリウムの電気分解 塩素 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン(IV) に<u>濃硫酸</u>を加えて加熱 塩素 $\operatorname{MnO}_2 + 4\operatorname{HCl} \xrightarrow{\Delta} \operatorname{MnCl}_2 + \operatorname{Cl}_2 \uparrow + 2\operatorname{H}_2\operatorname{O}$
- 高度さらし粉と塩酸 塩素 ${\rm Ca(ClO)_2\cdot 2\,H_2O+4\,HCl} \longrightarrow {\rm CaCl_2+2\,Cl_2}\uparrow + 4\,{\rm H_2O}$
- <u>さらし粉</u>と<u>塩酸</u> 塩素 $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \, \longrightarrow \, \operatorname{CaCl}_2 + \operatorname{Cl}_2 \uparrow \, + 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素
 臭素 $\mathrm{MgBr}_2 + \mathrm{Cl}_2 \longrightarrow \mathrm{MgCl}_2 + \mathrm{Br}_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \operatorname{KI} + \operatorname{Cl}_2 \longrightarrow 2 \operatorname{KCl} + \operatorname{I}_2$

3.1.3 反応

- 塩素と水素 ${\rm H_2 + Cl_2} \xrightarrow{{\rm \textit{H}}{\rm \textit{E}}{\rm \textit{E}}{\rm \textit{H}}{\rm \textit{S}}{\rm \textit{L}}{\rm \textit{G}}{\rm \textit{E}}{\rm \textit{M}}{\rm \textit{E}}{\rm \textit{A}}{\rm \textit{E}}{\rm \textit{C}}{\rm \textit{E}}{\rm \textit{A}}{\rm \textit{E}}{\rm \textit{A}}{\rm \textit{E}}{\rm \textit{A}}{\rm \textit{E}}{\rm \textit{E}}{\rm \textit{E}}{\rm \textit{A}}{\rm \textit{E}}{\rm E}{\rm E}{\rm \textit{E}}{\rm e}{\rm E}$
- 臭素と水素 ${\rm H_2} + {\rm Br_2} \xrightarrow{\bar{\rm Ala}^{\rm TC}\bar{\rm C}^{\rm LC}} 2\,{\rm HBr}$
- ヨウ素と水素 $\mathrm{H}_2 + \mathrm{I}_2 \xleftarrow{\mathrm{\overline{a}} \mathrm{\underline{H}} \mathrm{\underline{C}} \mathrm{\underline{T}} \mathrm{\underline{M}}} 2 \, \mathrm{HI}$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 $\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O} \Longleftrightarrow \operatorname{HCl} + \operatorname{HClO}$
- 臭素と水 $Br_2 + H_2O \Longrightarrow HBr + HBrO$
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 ${\rm I_2} + {\rm I^-} \longrightarrow {\rm I_3}^-$

無機化学 3/15

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}\,\,\mathrm{Cl_2,HCl,H_2O}$ \downarrow 水 に通す(HCl の除去) $\mathrm{Cl_2,H_2O}$ \downarrow 濃硫酸に通す(H_2O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸・・・酸素を含む酸性物質

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF HCl		HBr	HI		
色・臭い		<u>無</u> 色 <u>刺激</u> 臭				
沸点	20°C	$-85^{\circ}\mathrm{C}$	−67°C	$-35^{\circ}\mathrm{C}$		
水との反応	よく溶ける					
水溶液	フッ化水素酸	塩酸	臭化水素酸	ヨウ化水素酸		
(強弱)	弱性	<u>竣</u> ≪ <u>強酸</u> < <u>強</u>	酸 < 強酸			
用途	<mark>ガラス</mark> と反応	<mark>アンモニア</mark> の検出	半導体加工	インジウムスズ		
/ 九/匹	⇒ ポリエチレン瓶	各種工業	一一一一一	酸化物の加工		

3.2.2 製法

- <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱(<mark>弱酸遊離</mark>) フッ化水素 ${\rm CaF_2} + {\rm H_2SO_4} \longrightarrow {\rm CaSO_4} + 2\,{\rm HF}$ \uparrow
- 水素と塩素 塩化水素 工業的製法

 $\mathrm{H_2} + \mathrm{Cl_2} \longrightarrow 2\,\mathrm{HCl}\,\!\!\uparrow$

• $\frac{$ 塩化ナトリウム $}{NaCl+H_2SO_4}$ に $\frac{$ 濃硫酸 $}{\Delta}$ に加えて加熱 $\frac{$ 塩化水素 $}{\Delta}$ ($\frac{37}{68}$ 酸・ $\frac{$ 揮発性</u>酸の追い出し)

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$
- <u>塩化水素</u>による<u>アンモニア</u>の検出 $\mathrm{HCl} + \mathrm{NH_3} \longrightarrow \mathrm{NH_4Cl}$

無機化学 4/15

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	黄褐色	<u>白</u> 色	淡黄色	黄色
水との反応	水との反応 よく溶ける		んど溶けフ	ない
光との反応	感光	感分	匕性(→ <u>A</u>	g)

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 ${\rm Ag_2O+2\,HF} \longrightarrow 2\,{\rm AgF} + {\rm H_2O}$

• ハロゲン化水素イオンを含む水溶液と $\frac{$ 硝酸銀水溶液} $Ag^+ + X^- \longrightarrow AgX \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

<u>酸化</u>剤として反応(<u>殺菌・漂白</u>作用) $\mathrm{ClO^-} + 2\,\mathrm{H^+} + 2\,\mathrm{e^-} \longrightarrow \mathrm{Cl^-} + \mathrm{H_2O}$

3.4.2 製法

・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

化学式:KClO₃

3.5.1 性質

<u>酸素</u>の生成(<u>二酸化マンガン</u>を触媒に加熱) $2 \, \text{KClO}_3 \xrightarrow{\text{MnO}_2} 2 \, \text{KClO} + 2 \, \text{O}_2 \uparrow$

無機化学 5/15

4 酸素

4.1 酸素原子

同<u>位</u>体:酸素 (O_2) ,<u>オゾン</u> (O_3) 地球の地殻に<mark>最も多く</mark>存在

- 地球の地殻における元素の存在率 -

$$rac{O}{mbs} > rac{Si}{27.7\%} > rac{Al}{7 ll} > rac{Fe}{20.00\%} > rac{Ca}{21.00\%} > rac{Na}{21.00\%} > rac{Na}{21.00\%}$$

4.2 酸素

化学式: O_2

4.2.1 性質

- 無色無臭の気体
- 沸点 -183°C

4.2.2 製法

- 液体空気の分留 工業的製法
- 水 (水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 \uparrow + \operatorname{O}_2 \uparrow$
- 過酸化水素水 (<u>オキシドール</u>) の分解 $2 \, \mathrm{H_2O_2} \xrightarrow{\mathrm{MnO_2}} \mathrm{O_2} \uparrow + 2 \, \mathrm{H_2O}$
- <u>塩素酸カリウム</u>の熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: O_3

4.3.1 性質

- ニンニク臭(<mark>特異</mark>臭)を持つ<mark>淡青</mark>色の<mark>気体</mark>(常温)
- 水に少し溶ける
- 殺菌・脱臭作用

オゾンにおける酸素原子の運動・

4.3.2 製法

酸素中で<u>無声放電</u>/強い<mark>紫外線</mark>を当てる $3\,{
m O}_2\longrightarrow 2\,{
m O}_3$

4.3.3 反応

- 酸化剤としての反応 $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせた<u>ヨウ化カリウムでんぷん紙</u>を<u>青</u>色に変色 $O_3 + 2 \text{ KI} + \text{H}_2 \text{O} \longrightarrow \text{I}_2 + O_2 + 2 \text{ KOH}$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	<u>陽性の大きい金属</u> 元素	陽性の小さい金属元素	<u>非金属</u> 元素
水との反応	塩基性	ほとんど溶けない	酸性(オキソ酸)
中和	酸と反応	<u>酸・塩基</u> と反応	<u>塩基</u> と反応

両性酸化物 · · · <u>アルミニウム</u> (<u>Al</u>) <u>,亜鉛</u> (<u>Zn</u>) <u>,スズ</u> (<u>Sn</u>) <u>,鉛</u> (<u>Pb</u>)*1

- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $\mathrm{CuO} + 2\,\mathrm{HCl} \longrightarrow \mathrm{CuCl_2} + \mathrm{H_2O}$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $\mathrm{Al_2O_3} + 2\,\mathrm{NaOH} \longrightarrow 3\,\mathrm{H_2O} + 2\,\mathrm{Na[Al(OH)^+]}$

4.5 水

4.5.1 性質

- 極性分子
- 周りの4つの分子と水素結合
- 異常に高い沸点
- ・ 隙間の多い結晶構造(密度:固体
- 特異な融解曲線

4.5.2 反応

● 酸化カルシウムと水

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

• 二酸化窒素と水

$$3 \text{ NO}_2 + \text{H}_2 \text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

無機化学 7/15

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

F 41.	AN	W Avi 256 446	. "
名称	斜方硫黄	単斜硫黄	<u>ゴム状</u> 硫黄
化学式	$\underline{S_8}$	$\underline{\mathrm{S}_8}$	$\underline{\mathrm{S}_x}$
色	<u>黄</u> 色	<u>黄</u> 色	<u>黄</u> 色
構造	塊状結晶	<u>針状</u> 結晶	<u>不定形</u> 固体
融点	113°C	119°C	不定
構造	S S S		
CS_2 との反応	溶ける	溶ける	溶けない

 $\overline{\mathrm{CS}_2}$ ··・無色・芳香性・揮発性 \Rightarrow <mark>無極性</mark>触媒

5.1.2 反応

- 高温で多くの金属(Au、Pt を除く)との反応 $Fe + S \longrightarrow FeS$
- 空気中で<u>青</u>色の炎を上げて燃焼 $S + O_2 \longrightarrow SO_2$

5.2 硫化水素

化学式:H2S

5.2.1 性質

- 無色腐卵臭
- 弱酸性

$$\begin{cases} \frac{\text{H}_2\text{S} \Longrightarrow \text{H}^+ + \text{HS}^-}{\text{HS}^- \Longrightarrow \text{H}^+ + \text{S}^{2-}} & K_1 = 9.5 \times 10^{-8} \text{ mol/L} \\ \frac{\text{HS}^- \Longrightarrow \text{H}^+ + \text{S}^{2-}}{\text{HS}^- \Longrightarrow \text{H}^+ + \text{S}^{2-}} & K_2 = 1.3 \times 10^{-14} \text{ mol/L} \end{cases}$$

● 還元剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

• 重金属イオン M_2^+ と<mark>難容性の塩</mark>を生成 $M_2^+ + S^{2-} \Longrightarrow MS \downarrow$

5.2.2 製法

● 酸化鉄(Ⅱ)と希塩酸

 $\mathrm{FeS} + 2\,\mathrm{HCl} \longrightarrow \mathrm{FeCl}_2 + \mathrm{H}_2\mathrm{S}\!\uparrow$

• 酸化鉄(II)と希硫酸 ${\rm FeS} + {\rm H_2SO_4} \longrightarrow {\rm FeSO_4} + {\rm H_2S} \! \uparrow \!$

5.2.3 反応

• 硫化水素とヨウ素

 $H_2S + I_2 \longrightarrow S + 2HI$

酢酸鉛(Ⅱ)水溶液と硫化水素(H₂Sの検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式:<mark>SO₂ 電子式</mark>:

: O : S :: O

5.3.1 性質

- 無色、刺激臭の気体
- 水に溶けやすい
- 弱酸性

$$SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$$

還元剤(漂白作用)

$$SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$$

• 酸化剤($\underline{H_2S}$ などの強い還元剤に対して) $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

・ 硫黄や硫化物の燃焼 工業的製法

 $2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$

● 亜硫酸ナトリウムと希硫酸

$$Na_2SO_3 + H_2SO_4 \longrightarrow NaHSO_4 + SO_2 \uparrow + H_2O$$

• 銅と熱濃硫酸

 $\mathrm{Cu} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{CuSO}_4 + \mathrm{SO}_2 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$

5.3.3 反応

• 二酸化硫黄の水への溶解

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

• 二酸化硫黄と硫化水素

$$SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄 $2\,{\rm KMnO_4}\,+\,5\,{\rm SO_2}\,+\,2\,{\rm H_2O}\,\,\longrightarrow\,\,2\,{\rm MnSO_4}\,+\,2\,{\rm H_2SO_4}\,+\,{\rm K_2SO_4}$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 無色無臭の液体
- 水に非常によく溶ける
- 溶解熱が非常に大きい
- 水に濃硫酸を加えて希釈
- 不揮発性で密度が大きく、粘度が大きい 濃硫酸
- 吸湿性・脱水作用 濃硫酸
- 強酸性 希硫酸

 $\left(\begin{array}{c} \text{H}_2\text{SO}_4 \Longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$

- 弱酸性 濃硫酸 (水が少なく、H₃O+の濃度が小さい)
- 酸化剤として働く 熱濃硫酸

 $H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_4 + 2H_2O$

▼ルカリ性土類金属 (<u>Ca,Be</u>)、<u>Pb</u>と難容性の塩を生成
 成 希硫酸

5.4.2 製法

- 接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4\operatorname{FeS}_2 + 11\operatorname{O}_2 \longrightarrow 2\operatorname{Fe}_2\operatorname{O}_3 + 8\operatorname{SO}_2$$

$$(\operatorname{S} + \operatorname{O}_2 \longrightarrow \operatorname{SO}_2)$$

2. 酸化バナジウム触媒で酸化

$$2 SO_2 + O_2 \xrightarrow{V_2O_5} 2 SO_3$$

3. <u>濃硫酸</u>に吸収させて<u>発煙硫酸</u>とした後、希硫酸 を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

$$\mathrm{KNO_3} + \mathrm{H_2SO_4} \longrightarrow \mathrm{HNO_3} + \mathrm{KHSO_4}$$

• スクロースと濃硫酸

$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$$

• 水酸化ナトリウムと希硫酸

$$\mathrm{H_2SO_4} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2SO_4} + 2\,\mathrm{H_2O}$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$$

• 塩化バリウム水溶液と希硫酸

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2 HCl$$

5.5 チオ硫酸ナトリウム (ハイポ)

化学式:Na₂S₂O₃

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- 還元剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$2\,S_2O_3^{2-} \longrightarrow S_4O_6 + 2\,e^-$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

$$Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

$$I_2 + 2 \operatorname{Na_2S_2O_3} \longrightarrow 2 \operatorname{NaI} + \operatorname{Na_2S_4O_6}$$

5.6 重金属の硫化物

Į.	酸性でも沈澱(全液性で沈澱)					中性・	塩基性	で沈澱	(酸性では溶解)
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
<u>黒</u> 色	<u>黒</u> 色	黒色	黒色	褐色	黒色	黒色	黒色	白色	淡赤色

低 イオン化傾向 高 極小 塩の溶解度積 (K_{sp}) 小

6 窒素

6.1 窒素

化学式:N2

6.1.1 性質

- 無色無臭の気体
- 空気の 78% を占める
- 水に溶けにくい(無極性分子)
- 常温で不活性(食品などの酸化防止)
- 高エネルギー状態(<mark>高温・放電</mark>)では反応

6.1.2 製法

- 液体窒素の分留 工業的製法
- <u>亜硝酸アンモニウム</u>の<u>熱分解</u> $\mathrm{NH_4NO_2} \xrightarrow{\Delta} \mathrm{N_2} + 2\,\mathrm{H_2O}$

6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2 \left\{ \begin{array}{c} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{array} \right.$$

• 窒素とマグネシウム $3\,\mathrm{Mg} + \mathrm{N}_2 \longrightarrow \mathrm{Mg}_3\mathrm{N}_2$

6.2 アンモニア

化学式: NH_3

6.2.1 性質

- 無色刺激臭の気体
- 水素結合
- 水に非常によく溶ける (上方置換)
- 塩基性

$$\left(\begin{array}{c}
\underline{\text{NH}_3 + \text{H}_2\text{O}} & \Longrightarrow \text{NH}_4^+ + \text{OH}^- \\
K_1 = 1.7 \times 10^{-5} \text{ mol/L}
\end{array}\right)$$

- 塩素の検出
- 高温・高圧で二酸化炭素と反応して、尿素を生成

6.2.2 製法

- ハーバーボッシュ法 工業的製法
 低温高圧で、四酸化三鉄 (Fe₃O₄) 触媒
 N₂ + 3 H₂ ⇒ 2 NH₃
- <u>塩化アンモニウム</u>と水酸化カルシウムを混ぜて加熱
 2 NH₄Cl+Ca(OH)₂ → 2 NH₃↑+CaCl₂+2 H₂O

6.2.3 反応

- 硫酸とアンモニア $2 NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$
- 塩素の検出 NH₃ + HCl → NH₄Cl↓
- アンモニアと二酸化炭素 $2\,\mathrm{NH_3} + \mathrm{CO_2} \longrightarrow (\mathrm{NH_2})_2\mathrm{CO} + \mathrm{H_2O}$

6.3 一酸化二窒素(笑気ガス)

化学式:N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 麻酔効果

6.3.2 製法

硝酸アンモニウムの熱分解 $NH_4NO_2 \xrightarrow{\Delta} N_2O + 2H_2O$

6.4 一酸化窒素

化学式: <u>NO</u>

6.4.1 性質

- 無色無臭の気体
- 中性で水に溶けにくい
- ・ 空気中では酸素とすぐに反応
- 血管拡張作用·神経伝達物質

6.5 二酸化窒素 6 窒素

6.4.2 製法

銅と希硝酸

 $3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2 \text{O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式:NO₂

6.5.1 性質

- 赤褐色刺激臭の気体
- 水と反応して<mark>強酸性(酸性雨</mark>の原因)
- 常温では $\underline{\text{四酸化}}$ 二窒素 (無色) と $\underline{\text{平衡状態}}$ $2 \, \text{NO}_2 \Longrightarrow \text{N}_2 \text{O}_4$
- 140° C 以上で熱分解 $2NO_2 \longrightarrow 2NO + O_2$

6.5.2 製法

銅と濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式:HNO₃

6.6.1 性質

- 無色刺激臭で揮発性の液体
- 水によく溶ける
- 強酸性

 $\left(\begin{array}{c} \text{HNO}_3 \Longrightarrow \text{H}^+ + \text{NO}_3^- & K_1 = 6.3 \times 10^1 \text{mol/L} \end{array}\right)$

- 褐色瓶に保存(光分解)
- 酸化剤としての反応 希硝酸

 $\mathrm{HNO_3} + \mathrm{H^+} + \mathrm{e^-} \longrightarrow \mathrm{NO_2} + \mathrm{H_2O}$

- 酸化剤としての反応 濃硝酸 ${\rm HNO_3 + 3\,H^+ + 3\,e^- \longrightarrow NO + 2\,H_2O}$
- ◆ イオン化傾向が小さい Cu、Hg、Ag も溶解
- <u>Al,Cr,Fe,Co,Ni</u>は<u>酸化皮膜</u>が生じて不溶 <u>濃硝酸</u> =**不動態**
- 王水 (濃塩酸:1濃硝酸=3:1) は、Pt,Au も溶解
- NO₃ ⁻ は沈殿を作らない ⇒ 褐輪反応で検出

6.6.2 製法

• オストワルト法

$$NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$$

- 1. <u>白金</u>触媒で<u>アンモニア</u>を<u>酸化</u> $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$
- 2. 空気酸化

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

3. <u>水</u>と反応

$$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

• 硝酸塩に濃硫酸を加えて加熱

$$NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$$

6.6.3 反応

● アンモニアと硝酸

$$NH_3 + HNO_3 \longrightarrow NH_4NO_3$$

• 硝酸の光分解

$$4 \text{ HNO}_3 \xrightarrow{\mathcal{H}} 4 \text{ NO}_2 + 2 \text{ H}_2 \text{O} + \text{O}_2$$

• 亜鉛と希硝酸

$$\operatorname{Zn} + 2 \operatorname{HNO}_3 \longrightarrow \operatorname{Zn}(\operatorname{NO}_3)_2 + \operatorname{H}_2 \uparrow$$

• 銀と濃硝酸

$$Ag + 2HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

7 リン

7.1 リン

化学式: P_4O_{10}

7.1.1 性質

三種類の同<mark>素</mark>体がある

名称	<u>黄</u> リン	<u>赤</u> リン	黒リン
化学式	$\underline{P_4}$	$\underline{P_x}$	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	_
<i>FLJCK</i>	水中に保存	マッチの側薬	_
密度	$1.8\mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7\mathrm{g/cm^3}$
毒性	猛毒	微毒	微毒
構造	PPP	$P \rightarrow P \rightarrow$	省略
CS ₂ への溶解	溶ける	溶けない	溶けない

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法
- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200° C、 1.2×10^{9} Pa で加熱 \mathbb{E} リン

7.2 十酸化四リン

化学式: P_4O_{10}

7.2.1 性質

- 白色で昇華性のある固体
- 潮解性 (水との親和性が非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(加水分解)

7.2.2 製法

リンの燃焼

7.3 リン酸

化学式:H₃PO₄

無機化学 12/15

7.3.1 性質

7.3.2 反応

第Ⅱ部

典型金属

8 アルカリ金属

8.1 単体

8.1.1 性質

- 銀白色で柔らかい金属
- 全体的に反応性が高く、<mark>灯油</mark>中に保存
- 原子一個粗利の自由電子が<u>1</u>個(<mark>弱</mark>い金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs			
融点	181°C	98°C	64°C	39°C	28°C			
密度	0.53	0.97	0.86	1.53	1.87			
構造		体心立方格子(軽金属)						
イオン化エネルギー	大							
反応力	小 —				一 大			
炎色反応	<u>赤</u> 色	<u>黄</u> 色	赤紫色	深赤色	青紫色			
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池年代測定	光電管 電子時計 (一秒の基準)			

8.1.2 製法

水酸化物や塩化物の溶融塩電解 工業的製法

8.2 水酸化ナトリウム(苛性ソーダ)

化学式: NaOH

8.2.1 性質

- 白色の固体
- 潮解性
- ・ 水によくとける(水との親和性が非常に高い)
- 乾燥剤
- 強塩基性

NaOH \Longrightarrow Na⁺ + OH⁻ $K_1 = 1.0 \times 10^{-1} \text{mol/L}$

8.2.2 製法

水酸化ナトリウム水溶液の電気分解工業的製法

無機化学 13/15

8.2.3 反応

 \bullet hoge

無機化学 14/15

第Ⅲ部

APPENDIX

9 気体の乾燥剤

固体の乾燥剤は<mark>U字管</mark>につめて、液体の乾燥剤は<mark>洗気瓶</mark>に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	十酸化四リン	P_4O_{10}	酸性・中性	塩基性の気体(<mark>NH₃</mark>)
段江	濃硫酸	$\underline{\mathrm{H_2SO_4}}$	段压"个压	+ <u>H</u> ₂ S (<u>還元剤</u>)
中性	塩化カルシウム	$CaCl_2$	ほとんど全て	$\overline{\mathrm{NH_{3}}}$
十庄	シリカゲル	$\mathrm{SiO}_2 \cdot n\mathrm{H}_2\mathrm{O}$	はこんと主じ	特になし
塩基性	酸化カルシウム	<u>CaO</u>	中性・塩基性	酸性の気体
塩 <u>基</u> 性	ソーダ石灰	CaO と NaOH	中住、塩基性	$\underline{\text{Cl}_2},\underline{\text{HCl}},\underline{\text{H}_2}\text{S},\underline{\text{SO}_2},\underline{\text{CO}_2},\underline{\text{NO}_2}$

無機化学 15/15