Содержание

1	Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.	2
2	Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.	2
3	Сколькими способами можно разложить n_1 предметов одного сорта, , n_k предметов k -го сорта в два ящика? Следствия.	4
4	Даны n различных предметов и k ящиков. Требуется положить в первый ящик n_1 предметов, в k -ый — n_k предметов, где $n_1+\cdots+n_k=n$. Сколькими способами можно сделать такое распределение, если не интересует порядок распределения предметов в ящике?	4
5	Даны n различных предметов и k одинаковых ящиков. Требуется положить в каждый ящик $n=\frac{n}{k}$ предметов. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике и все ящики одинаковы?	5
6	Сколькими способами можно распределить n одинаковых предметов в k ящиков?	5
7	Сколько существует способов разложить n различных предметов в k ящиков, если нет никаких ограничений?	5
8	Сколькими способами можно положить n различных предметов в k ящиков, если не должно быть пустых ящиков?	5
9	Имеется n_1 предметов одного сорта, , n_s — s -го сорта. Сколькими способами их можно разложить по k ящикам, если не должно быть пустых ящиков?	6

1 Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.

Правило суммы:

Если объект A можно выбрать m способами, а объект B, после выбора A, можно выбрать n способами, то пару (A,B) можно выбрать $n \times m$ способами.

Правило произведения:

Если A можно выбрать n способами, а B — m способами, то объект A или B можно выбрать n+m способами. (Выбор B никак не согласуется с выбором A.)

Размещения с повторениями:

Размещениями с повторениями из n типов по k элементов (k и n в произвольном соотношении) называются все такие последовательности k элементов, принадлижащих n типам, которые отличаются друг от друга составом или последовательностью элементов.

$$\overline{A_n^k} = n^k$$

Размещения без повторений:

Размещениями без повторений из n различных типов по k элементам называются все такие последовательности из k различных элементов, такие, что они различаются по составу или по порядку. Причём k < n.

$$A_n^k = \frac{n!}{(n-k)!}$$

2 Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.

Перестановки с повторениями:

Перестановками с повторениями из n_1, \ldots, n_k элементов k-го типа называются всевозможные последовательности длины n, отличающиеся друг от друга последовательностью элементов.

$$\overline{P}(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}$$

Перестановски без повторений:

Перестановками без повторений из n элементов называются всевозможные последовательности из n элементов.

$$P_n = n!$$

Сочетания с повторениями:

Сочетаниями с повторениями из n по k (k и n в произвольном соотношении) называются все такие комбинации из k элементов $\in n$ типам, которые отличаются только составом элементов.

$$\overline{C^k}_n = C^k_{n+k-1} = \overline{P}(n-1,k)$$

Сочетания без повторений:

Сочетаниями без повторений из n по k ($k \le n$) называются все такие комбинации из k различных элементов, выбранных из n исходных элементов, которые отличаются друг от друга составом.

$$C_n^k = \frac{n!}{(n-k)!k!}$$

Свойства биномиальных коэффициентов:

1. $C_n^k = \overline{P}(k, n - k)$

 $C_n^k = C_n^{n-k}$

3. $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$

4. $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$

5. $C_n^0 - C_n^1 + C_n^2 - C_n^3 + \dots + C_n^n = 0$

3 Сколькими способами можно разложить n_1 предметов одного сорта, . . . , n_k предметов k-го сорта в два ящика? Следствия.

Схема: n_1 предметов 1-го типа . . . n_k предметов k-го типа раскладываются в два различных ящика:

$$(n_1+1)\cdot (n_2+1)\cdot \cdots \cdot (n_k+1)$$
 способов.

Следствие 1:

Если все предметы различны, то:

$$n_1 = 1 = n_2 = \dots = n_k = 1 \Rightarrow 2^k$$
 способов.

Следствие 2:

Не менее r_i предметов i-го типа в каждый ящик:

$$(n_1-2r_1+1)\cdot (n_2-2r_2+1)\cdot \cdots \cdot (n_k-2r_k+1)$$
 способов.

4 Даны n различных предметов и k ящиков. Требуется положить в первый ящик n_1 предметов, в k-ый — n_k предметов, где $n_1 + \cdots + n_k = n$. Сколькими способами можно сделать такое распределение, если не интересует порядок распределения предметов в ящике?

Схема: n различных предметов раскладываются в k различных ящиков (порядок внутри ящиков не важен):

$$\frac{n!}{n_1!\cdots n_k!}$$
 способов

5 Даны n различных предметов и k одинаковых ящиков. Требуется положить в каждый ящик $n=\frac{n}{k}$ предметов. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике и все ящики одинаковы?

Схема: n различных предметов в k одинаковых ящиков (порядок внутри ящиков не важен) $\frac{n}{k}$ предметов в каждый ящик:

$$\frac{n!}{k!((\frac{n}{k})!)^k}$$
 способов.

6 Сколькими способами можно распределить n одинаковых предметов в k ящиков?

Схема: n одинаковых предметов в k разных ящиков:

$$\overline{P}(n,k-1) = \frac{(n+k-1)!}{n!(k-1)!}$$
 способов.

7 Сколько существует способов разложить n различных предметов в k ящиков, если нет никаких ограничений?

Схема: n различных предметов в k разных ящиков:

$$k^n$$
 способов.

8 Сколькими способами можно положить п различных предметов в k ящиков, если не должно быть пустых ящиков?

Схема: n различных предметов в k разных ящиков, причём не должно быть пустых ящиков:

 A_i — количество способов, когда i="ый ящик пустой.

$$|A \setminus \bigcup_{i=1}^k A_i| = |A| - \sum_{i=1}^k |A_i| + \sum |A_i \cap A_j| + \dots + (-1)^{k-1} \sum_{i_1 \dots i_{k-1}} |A_{i_1} \cap \dots \cap A_{i_{k-1}}| + (-1)^k |A_1 \cap \dots \cap A_k| = k^n - C_k^1 (k-1)^n + C_k^2 (k-2)^n + \dots + (-1)^{k-1} C_k^{k-1} \cdot 1^n$$
 способов.

9 Имеется n_1 предметов одного сорта, ..., n_s —s-го сорта. Сколькими способами их можно разложить по k ящикам, если не должно быть пустых ящиков?

Схема n_1 предметов первого типа . . . n_m предметов m-го типа по k различным ящикам, причём нет пустых ящиков:

 A_i — i-ый ящик пустой $i = \overline{1, k}$.

$$|A| = C_{n_1+k-1}^{k-1} \cdot C_{n_2+k-1}^{k-1} \cdot \dots \cdot C_{n_m+k-1}^{k-1}$$

$$|A_i| = C_{n_1+k-2}^{k-2} \cdot C_{n_2+k-2}^{k-2} \cdot \dots \cdot C_{n_m+k-2}^{k-2}$$

$$|A \setminus \bigcup_{i=1}^k A_i| = C_{n_1+k-1}^{k-1} \cdots C_{n_m+k-1}^{k-1} - C_k^1 C_{n_1+k-2}^{k-2} \cdots C_{n_m+k-2}^{k-2} + C_k^2 C_{n_1+k-3}^{k-3} \cdot \cdots \cdot C_{n_m+k-3}^{k-3} + \cdots + (-1)^{k-1} C_k^{k-1} 1^n.$$