Topology, Munkres Chapter 3

Aakash Ghosh

March 2021

1 Exercise set-1

Problem 1.1. Let τ and τ' be two topologies on X. If $\tau \subset \tau'$, what does connectedness of X in one topology imply about connectedness in the other?

Solution : Let X be connected in τ' . Then we claim that X is connected in τ . For if U, V be a separation in τ such that $X = U \cup V$ with $U \cap V = \phi$ then U, V is a separation of X in τ' too, leading to a contradiction. We note the converse is not true. Let $X = \{a, b, c\}$ and $\tau = \{\{a, b\}, \{b, c\}, \{b\}, \{a, b, c\}, \{a, b, c\}\}$. It is easy to check X is not separable in τ . Set τ' to be the discrete topology. It follows that $\tau \subset \tau'$ and a separation of X exists in τ' .

Problem 1.2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} = \phi$ for all n. Show that $\bigcup A_n$ is connected.

Solution: Let U, V be non-empty open sets such that $\bigcup A_n = U \cup V$ and $U \cap V = \phi$. Note that each A_i lies entirely in U or V (i.e $A_i \subset U$ or $A_i \subset V$) else $A_i \cap U$ and $A_i \cap V$ will be a separation of A_i leading to contradiction. Without loss of generality we can assume A_1 lies in U. As V is non empty, by the well ordering principle, there exist a minimum n > 1 such that $A_n \subset V$. But as $p = A_n \cap A_{n-1} \in V$, $A_{n-1} \subset V$ which contradicts the minimality of n.

Problem 1.3. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subspace of X. Show that if $A \cup A_{\alpha} \neq \phi$ for all α , then $A \cap (\bigcup A_{\alpha})$ is connected.

Solution : Let U, V be non-empty open sets such that $A \cup (\bigcup A_{\alpha}) = U \cup V$ and $U \cap V = \phi$. As we discussed in P2, each A_{α} and A is entirely in U or V. Without loss of generality assume $A \subset U$. For each A_{α} , there exist $p_{\alpha} \in A \cap A_{\alpha}$. As $p_{\alpha} \in U$, $A_{\alpha} \subset U$ for all α . Therefore, $A \cup (\bigcup A_{\alpha}) \subset U$. As $U \subset A \cup (\bigcup A_{\alpha})$ too, $A \cup (\bigcup A_{\alpha}) = U$. Therefore, V is empty, leading to contradiction.

Problem 1.4. Show that if X is an infinite set, it is connected in the finite complement topology.

Solution: Let U, V be non-empty open sets such that $X = U \cup V$ and $U \cap V = \phi$. As X is infinite, either U or V is infinite (else $U \cup V$ will be finite, leading to contradiction). Without loss of generality assume U is infinite. As V is open $V^c = U$ is finite, leading to contradiction.

Problem 1.5. A space is **totally disconnected** if its only connected subspaces are one-point sets. Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold?

Let $A \subset X$, have more than 1 point. Let $a \in A$. Then $\{a\}$ and $A \setminus \{a\}$ is a separation of A. Therefore, X is totally disconnected in discrete topology.

We define a topology on \mathbb{Z}^+ given by $\tau = \{A_n | A_n = \{n, n+1, n+2...\}\} \cup \{\phi\}$. It is easy to check this is indeed a topology:

1. $\mathbb{Z}^+ = A_1 \in \tau, \phi \in \tau$

- 2. Note, $A_i \cup A_j = A_j$ if $i \geq j$. Let $\{A_{\alpha_i}\}$ be a collection of open subsets where each $\alpha_{\mathbb{Z}}^+$. Then by the well ordering principle, there exist a minimum $\alpha_i = \alpha$. Then: $\bigcup A_{\alpha_i} = A_{\alpha} \in \tau$.
- 3. Note, $A_i \cap A_j = A_i$ if $i \geq j$. Therefore for a finite subcollection of sets of τ , $A_{\alpha_1}, A_{\alpha_2}, A_{\alpha_3} \dots A_{\alpha_n}$ we have: $\bigcap A_{\alpha_i} = A_{\alpha} \in \tau$ where $\alpha = \max(\alpha_i)$.

Therefore, τ is a topology. Let $X \subset \mathbb{Z}^+$ with more than one point. Let U, V be a separation of X. Then we can write $U = A_u \cap X$, $V = A_v \cap X$ for some A_u, A_v . Without loss of generality, assume u > v. Then $A_v \subset A_u$ and $U \subset V$ leading to contradiction. Therefore, (\mathbb{Z}^+, τ) is totally disconnected where τ is not the discrete topology. Therefore, the converse doesn't hold.

Problem 1.6. Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and $X \setminus A$, then C intersects Bd(A).

Solution :Assume C doesn't intersects $\operatorname{Bd}(A)$. Note we can interpret $\operatorname{Bd}(A) = \overline{A} \setminus \operatorname{Int} A$. It follows $A \setminus \operatorname{Bd} A = \operatorname{Int} A$ is open and $\operatorname{Int}(X \setminus A) = X \setminus \overline{A} = (X \setminus A) \setminus \operatorname{Bd}(A)$ is open. Therefore $C \cap X = C \cap \operatorname{Int} X$ and $C \cap (X \setminus A) = C \cap \operatorname{Int}(X \setminus A)$ is a separation of C, leading to contradiction.

Problem 1.7. Is the space \mathbb{R}_l connected? Justify your answer.

Solution: No. $(-\infty,0) = \bigcup_{n \in \mathbb{N}} [-n,0)$ and $[0,\infty) = \bigcup_{n \in \mathbb{N}} [0,n)$ is a separation.

Problem 1.8. Determine whether or not \mathbb{R}^{ω} is connected in the uniform topology.

Problem 1.9. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that

$$(X \times Y) - (A \times B)$$

is connected.

Solution: First note that:

$$(X \times Y) - (A \times B) = (X \times B^c) \cup (A^c \times Y)$$

Note, $X \times \{y\}$, $y \in B^c$ is connected (Else if U_1, V_1 is a separation of $X \times \{y\}$ then $\pi_1(U_1)$ and $\pi_1(V_1)$ is a separation of X). Similarly, $\{x\} \times Y, x \in A^c$ is connected. Let U, V is a separation. Let $(x, y) \in U$ where $(x, y) \in X \times B^c$. Then $X \times \{y\} \subset U$.

- Case 1: $(x_1, y_1) \in A^c \times Y$. As $X \times \{y\} \subset U$, $(x_1, y) \in U$. Therefore, $\{x_1\} \times Y \subset U$ and $(x_1, y_1) \in U$.
- Case 2: $(x_2, y_2) \in X \times B^c$. Choose some $x_1 \in A^c$. Then $(x_1, y_2) \in A^c \times Y$. So $(x_1, y_2) \in U$ and $X \times \{y_2\} \subset U$. Therefore, $(x_1, y_2) \in U$.

Therefore, V is empty leading to a contradiction. Therefore, the set is connected.

Note: The set looks like inter crossed lines. We first show each line is connected and then show any two line lie on the same set, U.

Problem 1.10. Let $\{X_{\alpha}\}_{\alpha} \in J$ be an indexed family of connected spaces; let X be the product space

$$X = \prod_{\alpha \in J} X_{\alpha}$$

Let $a = (a_0)$ be a fixed point of X.

- 1. Given any finite subset K of J, let X_K denote the subspace of X consisting of all points $x=(x_\alpha)$ such that $x_\alpha=a_\alpha$ for $\alpha\notin K$. Show that X_K is connected
- 2. Show that the union Y of the spaces X_K is connected.
- 3. Show that X equals the closure of Y; conclude that X is connected.

Solutions:

1.

Problem 1.11. Let $p: X \to Y$ be a quotient map. Show that if each set $p^{-1}(y)$ is connected, and if Y is connected, then X is connected.

Solution: Let be the equivalence relation such that p(x) = p(y) and let [x] be the equivalence class of x under . Assume U, V is a separation of X. Let $x \in U$.

Lemma 1. For $x \in U$, $[x] \subset U$

Proof. If this is not so then $U \cap [x]$ and $V \cap [x]$ will be a separation of $p^{-1}(x)$ which leads to a contradiction

Lemma 2. $U = p^{-1}(p(U)),$

Proof. Let this be not true. Then there exist $x \notin U$ such that $x \in p^{-1}(p(U))$. Therefore, $p(x) \in U$. Let p(x) = p(y) where $y \in U$. Then $[y] \notin U$ leading to a contradiction.

Similarly we get $V = p^{-1}(p(V))$ Therefore we note:

- 1. p(U) and p(v) are non empty and open as U, V is non-empty and open.
- 2. p(U) and p(V) are disjoint. Else if $r \in p(U) \cap p(V)$ then there exists $u \in U$ and $v \in V$ such that p(u) = p(v) and thus $[u] \not\subset U$ leading to contradiction.

But this implies p(U), p(V) is a separation of Y leading to contradiction.

Problem 1.12. Let $Y \subset X$; let X and Y be connected. Show that if A and B form a separation of $X \setminus Y$, then $Y \cup A$ and $Y \cup B$ are connected.

Solution:

2 Exercise Set-2

Problem 2.1. 1. Show that no two of the spaces (0,1), (0,1] and [0,1] are homeomorphic. [Hint: What happens if you remove a point from each of these spaces?)]

- 2. Suppose that there exist imbeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic.
- 3. Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

Solution:

- 1. Let [0,1) and (0,1) be homeomorphic with φ as the homeomorphism. Note $[0,1)-\{0\}=(0,1)$ is connected. Therefore $(0,1)-\{\varphi(0)\}$ is connected (as continuous image of connected spaces are connected). But it is not true as $(0,\varphi(0))$ and $(\varphi(0),1)$ is a separation which is a contradiction. The same logic can be used to show [0,1] and (0,1) is not homeomorphic.
 - Let [0,1) and [0,1] be homeomorphic with ψ as the homeomorphism. As before, we note $[0,1)-\{\psi(0),\psi(1)\}$ is connected as $[0,1]-\{0,1\}$ is connected. We consider two cases:
 - Either $\psi(0)$ or $\psi(1)$ is 0: Without loss of generality, assume that $\psi(0) = 0$. Then $(0 = \psi(0), \psi(0))$ and $(\psi(1), 1)$ is a separation of $[0, 1] \{\psi(0), \psi(1)\} = (0, 1] \{\psi(1)\}$
 - $\psi(0), \psi(1) \neq 0$: Without loss of generality, assume that $\psi(0) < \psi(1)$ [As ψ is homeomorphism, bijection is not possible]. Then $[0, \psi(0)) \cup (\psi(0), \psi(1))$ and $(\psi(1), 1)$ is a separation of $[0, 1] \{\psi(0), \psi(1)\}$

In either case as the image set is disconnected, ψ can't be homeomorphism, leading to a contradiction.

- 2. Set X = (0,1) and Y = (0,1]. Set $f: X \to Y, f(x) = x$ and $g: Y \to X, g(y) = \frac{y}{2}$. It is easy to check they are embedding and non-homeomrphism follows from above.
- 3. Let φ be the homeomorhism. Note $\mathbb{R}^n \{0\}$ is path connected, Therefore, $\varphi(\mathbb{R}^n \{0\}) = \mathbb{R} \{\varphi(0)\}$ is path connected which is a contradiction.

Problem 2.2. Let $f: S^1 \to \mathbb{R}$ be a continuous map. Show there exists a point x of S^1 such that f(x) = f(-x).

Solution: Set $h: S^1 \to \mathbb{R}$, h(x) = f(x) - f(-x). Take any $x \in S^1$. If f(x) = f(-x) then we are done. If f(x) > f(-x) set x' = x, if f(-x) > f(x) set x' = -x. Note f(x') > f(-x'). Then h(x') > 0 and h(-x') < 0. As S^1 is (path) connected and \mathbb{R} is connected, by the intermediate value theorem, there exists x_0 such that $h(x_0) = 0 \Rightarrow f(x_0) = f(-x_0)$.

Problem 2.3. Let $f: X \to X$ be continuous. Show that if X = [0,1], there is a point x such that f(x) = x. The point x is called a fixed point of f. What happens if X equals [0,1) or (0,1)?

Solution :Set h(x) = f(x) - x. If f(1) = 1 or f(0) = 0 then we are done. Else 1 > f(1), h(1) < 0 and 0 < f(0), h(0) > 0. Then by intermediate value theorem there exists x_0 such that $h(x_0) = 0$ and $f(x_0) = x_0$. Let $f(x) = \frac{1+x}{2}$. Then there is no fixed point for X = [0,1) and X = (0,1).

Problem 2.4. Let X be an ordered set in the order topology. Show that if X is connected, then X is a linear continuum.

Solution:

Lemma 3. If x < y, there exists z such that x < z < y.

Proof. Let no such z exist. Then $U = \{p | p \in X, p > x\}$ and $V = \{p | p \in X, p < y\}$ form a separation of X, leading to a contradiction. If such a z exists, then the proof breaks down as $U \cap V$ at least has z in it and is therefore non-empty.

Lemma 4. X has the least upper bound property.

Proof. Let $\{a_n\}_{n\in\mathbb{N}}$ be a set of elements bounded above without a least upper bound. Let $B=\{b|b\in X, b \text{ is a upper bound of } \{a_n\}\}$. Then $U=\bigcup_{n\in\mathbb{N}}\{p|p\in X, p< a_n\}$ and $V=\bigcup_{b\in B}\{p|p\in X, p>b\}$ is a separation of X: They are clearly disjoint and every $x\in X$ is either an upper bound or less than a_n for some n.

The result follows.

Problem 2.5. Consider the following sets in the dictionary order. Which are linear continua?

- 1. $Z^+ \times [0,1)$
- 2. $[0,1) \times Z^+$
- 3. $[0,1) \times [0,1]$
- 4. $[0,1] \times [0,1)$

Solution:

- 1. Yes. It is obvious that between any two elements we can get another element. Let $\{a_n\}$ be a sequence of elements bounded above. Let $z = \max(\pi_1(a_n))$ Let $S = \{a_n | \pi_1(a_n) = z\}$.
 - Case 1: $r = \sup\{\pi_2(a_n) | a_n \in S\} < 1$. Then (z, r) is least upper bound
 - Case 2: r=1. Then (z+1,0) is the upper bound.
- 2. No. There are no element between (p, z) and (p, z + 1) where $p \in [0, 1)$ and $z \in \mathbb{Z}^+$
- 3. Yes.

4. Yes.

3,4 is to be done in the same way as that of a ordered square.

Problem 2.6. Show that if X is a well-ordered set, then $X \times [0,1)$ in the dictionary order is a linear continuum.

A well-order (or well-ordering or well-order relation) on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering.

Solution: Let (x_1, r_1) and (x_2, r_2) be two elements of $X \times [0, 1)$. Let $(x_1, r_1) > (x_2, r_2)$. If $x_1 > x_2$, set $x = x_1, y = \frac{1+r_1}{2}$, If $x_1 = x_2$, set $x = x_1, y = \frac{r_1+r_2}{2}$. Then $(x_1, r_1) > (x, y) > (x_2, r_2)$. Let $(x_i, y_i)_{i \in \mathbb{N}}$ be a bounded sequence of elements in $X \times [0, 1)$. In particular, let (a, b) be an upper bound. Let $L_x = \{\pi_1(p) | p \text{ is an upper bound of the sequence}\}$ Then by well ordering, a minimum $x \in L_x$ exists.

- Case 1: No element of the form (x, p) exists: Then (x, 0) is the least upper bound.
- Case 2:Some element of the form (x,p) exists. Set $L_y = \{\pi_2(p)|p = (x,y) \text{ is in the sequence}\}$. If $\sup L_y \neq 1$ then $(x,\sup L_y)$ is the desired upper bound. Else if $\sup L_y = 1$ set $S = \{a|a > x\}$ and let s be the least element in S. Then (s,0) is the least upper bound.