CSCD70 Compiler Optimization

Tutorial #4 Dataflow Analysis (ii)

Bojian Zheng bojian@cs.toronto.edu

Department of Computer Science, University of Toronto

Acknowledgement: Thanks to Professor Gennady Pekhimenko, Professor Nandita Vijaykumar and students from previous offerings of CSCD70.

Abstract

In this tutorial, we will be discussing the following topics:

- ► Dataflow Analysis Case Study:
 - Ominator
 - Constant Propagation
- Assignment 1 Q & A

Dominator

Problem Statement

Given a basic block A, determine all the basic blocks B s.t. $B \operatorname{dom} A$.

Domain: Basic Blocks

▶ Transfer Function: $f_B = B \cup x$

▶ Direction: Forward

► Meet Operator: ∩

Constant Propagation

Problem Statement

Given a variable, determine whether it is constant or not.

- **Domain**: Variables
- ► Transfer Function:

$$f_A(x) = \begin{cases} A \cup x & \text{if } \forall d \in \text{Def}(A), d = c_0 \in \mathbb{C} \\ x \setminus A & \text{otherwise} \end{cases}$$

- Direction: Forward
- ▶ Meet Operator: $\cap \Rightarrow$ Initial Conditions: Assumes ALL variables are constant (unless proven otherwise).

Constant Propagation

Q: Why $FP \leq MFP \leq MOP \leq Perfect$?

Constant Propagation

- Our current implementation might not yield the most satisfactory result ...
- Conditional Constant Propagation (later in lecture)

Review

In this tutorial, we have discussed about the followings:

- ► Dataflow Analysis Case Study:
 - ① Dominator
 - Constant Propagation