Le réseau

	1
LESSON 1	

Dans la norme IPv4, une adresse IP est définie sur découpée en deux parties: <net-id> <host-id> <net-id><0> permet d'identifier le réseau auquel appartient l'adresse IP; <0><host-id> permet d'identifier la machine sur le sous-réseau; La notation permet de préciser la taille de l'identifiant réseau.

Exercice 1:

Pour chacune des adresses IP ci-dessous, préciser le réseau et l'hôte :

192.168.1.1/24 172.26.17.100/20 193.48.57.163/27

Dans une adresse IPv4 de la forme

<net-id> <host-id>

lorsque tous les bits de la partie hôte sont à

on obtient le

Il s'agit de l'adresse de

du réseau.

Exercice 2:

Déterminer l'adresse du broadcast pour les hôtes suivants :

145.67.138.17/24

223.34.134.42/20

165.30.132.150/27

Exercice 3:

À la maison, la box internet fournit un réseau local donc l'adresse est 192.168.1.0/24. On souhaite isoler certains appareils en créant des sous-réseaux. On veut :

- un sous-réseau pour les trois télévisions de la maison;
- un sous-réseau pour les deux consoles;
- un sous-réseau pour les quatre ordinateurs;
- un sous-réseau pour les trois appareils ménager;
- 1. Proposer un découpage en sous-réseau en affectant une adresse IP en notation CIDR à chaque élément.

Un appareil destiné à être connecté à un réseau possède

aussi appelée

Pour communiquer sur un même réseau, deux ordinateurs ont besoin de faire le lien entre l'adresse IP

et cette adresse. C'est le rôle du protocole

Exercice 4:

Lors d'une requête ARP, une trame de 28 octets est transmise. Cette trame possède la structure suivante :

Le type de matériel	Le type de protocole	La taille adresse matériel			Le code de l'opération ARP	
2 octets	2 octets	1 octe	ts	1 octet	2 octets	
Adresse MAC source 6 octets				Adresse IP sou 4 octets	rce	
Adresse MAC destination 6 octets				Adresse IP des 4 octets	tination	

Le code de l'opération est généralement « 1 » pour une requête et « 2 » pour une réponse.

1. On possède la trame ARP suivante :

- a. Identifier s'il s'agit d'une requête ou d'une réponse.
- b. Quelle est l'adresse MAC de l'émetteur? et son adresse IP?
- c. Quelle est l'adresse IP de la machine recherchée?
- d. Expliquer la présence de la suite 00 00 00 00 00 pour l'adresse MAC du destinataire.
- 2. En retour de cette requête, on reçoit la trame :

0000	00	01	80	00	06	04	00	02	д6	70	Ь3	71	Ь3	Ь6	c0	a8
0010	01	la	a4	ЬЬ	6d	Ы	2d	85	c0	a8	01	03				

a. Quelle est l'adresse MAC de l'émetteur?

Trois postes informatiques viennent d'être installés dans un nouveau réseau avec les caractéristiques :

	Poste 1	Poste 2	Poste 3
Adresse IP	172.13.68.240	172.13.68.24	172.13.68.80
Adresse MAC	0e:49:cc:18:8e:20	ac:9b:0a:4d:6d:00	80:20:da:22:d9:88

- 1. Poste 1 ping Poste 3. Quelle trame ARP est envoyée? Qui la reçoit?
- 2. Quelle trame ARP reçoit Poste 1 en retour?

Dans un réseau, les postes sont connecté	es à un		
C'est cet appareil qui gère la transmission	n des données ent	ntre postes.	
Il a besoin d'une		pour connaître les routes auxquelles s	sont
destinés les paquets. Ces routes peuvent	être fournies de f	façon :	
	: fournies par le g	gestionnaire du réseau;	
٥	: fournies par un a	algorithme interne au routeur.	

Exercice 6:

On considère la configuration suivante :

1. Compléter la table de routage du routeur R1 :

Destination	Passerelle	Masque	Interface

Exercice 7:

On considère la configuration suivante :

1. Établir la table de routage du routeur R2.

Exercice 8:

On considère la configuration suivante :

- 1. Établir la table de routage du routeur R2.
- 2. On a établi une nouvelle connexion entre les routeurs R1 et R4.

On souhaite que les messages de M1 vers M2 empruntent la route R1 > R4 et que les messages de M2 vers M1 empruntent la route R4 > R3 > R2 > R1.

Donner les tables de routage de R1 et R4.