Overview of Today's Topics

- 802.11
- Ethernet

- Discussion of Sample Code
- Discussion of Assignment
- Discussion of Report

Primary contacts stations to determine if they have data to transmit

Static Channel Allocation

Frequency Division Multiplexing (FDM)

Time Division Multiplexing (TDM)

Reservation Access Method

- Station that wants to transmit data
 - transmits 1 during its slot in the reservation frame
- All stations are informed about all planned communication
- Limited number of pre-allocated slots/stations

CDMA Multiplexer

5

CDMA De-Multiplexer

Decoding of received signal

Collision Detection vs Collision Avoidance

CSMA/CD

CSMA/CA

Binary Exponential Backoff

Backoff Time = Random() \times aSlotTime

where

Random() = Pseudorandom integer drawn from a uniform distribution over the interval [0,CW], where CW is an integer within the range of values of the PHY characteristics aCWmin and aCWmax, aCWmin ≤ CW ≤ aCWmax. It is important that designers recognize the need for statistical independence among the random number streams among STAs.

aSlotTime = The value of the correspondingly named PHY characteristic.

MAC Layer

802.11 DCF & PCF

Point coordinator polls stations

Stations compete for the medium

- PCF Point Coordination Function Access Points
- DCF Distributed Coord. Function between Stations

CS2031 Telecommunications II

802.11

802.11

- DCF ⇒ Distributed Coordination Function
 - Stations compete for access to the medium
 - Hidden Station / Expose Station Problem
 - CSMA/CA + RTS/CTS
- PCF ⇒ Point Coordination Function
 - Access point polls stations
- IFS ⇒ Inter-Frame Space
 - Time between frames

IEEE 802

SECURITY 802.10

ARCHITECTUR MANAGEMENT OVERVIEW & 802.1

802.2 LOGICAL LINK CONTROL

802.1 BRIDGING

DATA LINK LAYER

802.3 MEDIUM ACCESS 802.3

PHYSICAL

MEDIUM ACCESS 802.4

PHYSICAL

802.4

ACCESS 802.5

PHYSICAL

802.5

MEDIUM

802.6 MEDIUM ACCESS

802.6

PHYSICAL

802.9 PHYSICAL

802.9

MEDIUM

ACCESS

802.11 MEDIUM ACCESS

MEDIUM ACCESS

802.11 PHYSICAL PHYSICAL

802.12 PHYSICAL LAYER

802.12

802.3: Ethernet

802.5: Token Ring

802.11: Wifi

802

802.16: WIMAX

802.15.1: Bluetooth

IEEE 802.11 Standards

- IEEE 802.11 The original 1 Mbit/s and 2 Mbit/s, 2.4 GHz RF and IR standard
- IEEE 802.11a 54 Mbit/s, 5 GHz standard
- IEEE 802.11b Enhancements to 802.11 to support 5.5 and 11 Mbit/s
- IEEE 802.11c Bridge operation procedures; included in the IEEE 802.1D standard
- IEEE 802.11d International (country-to-country) roaming extensions
- IEEE 802.11e Enhancements: QoS
- IEEE 802.11F Inter-Access Point Protocol

IEEE 802.11g - 54 Mbit/s, 2.4 GHz standard

- IEEE 802.11h Spectrum Managed 802.11a (5 GHz)
- IEEE 802.11i Enhanced security
- IEEE 802.11j Extensions for Japan
- IEEE 802.11k Radio resource measurement enhancements
- IEEE 802.11m Maintenance of the standard; odds and ends.

IEEE 802.11n - Higher throughput improvements

- IEEE 802.11p WAVE Wireless Access for the Vehicular Environment
- IEEE 802.11r Fast roaming
- IEEE 802.11s ESS Mesh Networking
- IEEE 802.11t Wireless Performance Prediction (WPP)
- IEEE 802.11u Interworking with non-802 networks
- IEEE 802.11v Wireless network management
- IEEE 802.11w Protected Management Frames

802.11 Structure

- PCF Point Coordination Function Access Points
- DCF Distributed Coord. Function between Stations

Distributed Coordination Function (DCF)

- Stations compete for access to the medium
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- No collision detection
 - Not practical on wireless network
 - Transmitting station cannot distinguish incoming weak signals from noise and effects of own transmission

CSMA in Wireless Media

Collision is at the receiver !!!

- Sense carrier to determine if medium is free
- Once free pick a random number
 - then start sending

Hidden Station Problem

A wants to send to B but cannot hear that B is busy

(a) Hidden Station Problem

Exposed Station Problem

B wants to send to C but mistakenly thinks the transmission will fail

(b) Exposed Station Problem

CSMA/CA and NAV

- Ready-To-Send (RTS) announces the intention to send traffic
- Clear-To-Send (CTS) announces that the receiving station is ready
- SIFS is the smallest possible Inter-Frame Space that separates two transmissions
- The Network Allocation Vector (NAV) as part of RTS/CTS announces the length of the subsequent transmission

 * Figure is courtesy of B

Inter-Frame Space (IFS)

- Short IFS (SIFS) defines the minimum time between frames
- DCF IFS (DIFS) defines the time between the end of one transmission and the beginning of a subsequent transmission

802.11 MAC

- Station with frame senses medium
 - •If idle, wait to see if remains idle for one IFS.
 - If so, may transmit immediately
- •If busy either initially or becomes busy during IFS station defers transmission
 - Continue to monitor until current transmission is over
- Once current transmission over, delay for another IFS
 - •If remains idle, back off random time and again sense
 - •If medium still idle, station may transmit
 - •During backoff time, if becomes busy, backoff timer is halted and resumes when medium becomes idle

Contention & Backoff

- DIFS defines the minimum time between the end of one transmission and the beginning of a subsequent transmission
- All stations that want to send sense the medium
- Once the sending station is silent all stations start their DIFS timer
- After the DIFS timer every station starts a random exponential backoff

DCF & RTS/CTS new random random station 1 NAV CTS ACK backoff FACK backoff S (7 slots) (10 slots) reset S S station 2 NAV RTS DATA DATA station defers F F S S S remaining random station 3 NAV back-off backoff FIACK (9 slots) (2 slots) S reset station defers, but keeps backoff counter (=2) D station 4 NAV DATA station sets NAV upon receiving RTS reset F S S station 5 station sets NAV upon receiving RTS station sets NAV upon receiving CTS, station 6 this station is hidden to station 1 DATA time with 802.11a: slot: 9us SIFS: 16us PIFS: 25us DIFS: 34us

TRINITY COLLEGE DUBLIN UNIVERSITY OF DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH
OF DUBLIN

DCF

CS2031 Telecommunications II

with 802.11a:

slot: 9us

SIFS: 16us PIFS: 25us

DIFS: 34us

with 802.11a:

slot: 9us

SIFS: 16us PIFS: 25us

DIFS: 34us

Computer Science & Statistics

with 802.11a:

slot: 9us

SIFS: 16us PIFS: 25us

DIFS: 34us

school of | Computer Science & Statistics

with 802.11a:
slot: 9us
SIFS: 16us
PIFS: 25us
DIFS: 34us
AIFS: >=34us

The lines indicate which nodes will receive their neighbours signals

DIFS

 N_5

 N_6

school of | Computer Science & Statistics

NAV

DIFS

Data

ACK

DCF Example

IFS

ACK

Data

 N_7

 N_8

 N_9

 N_{10}

DIFS

DIFS

DIFS

DIFS

DCF vs. PCF

 Stations compete for the medium Point coordinator polls stations

Point Coordination Function (PCF)

- Used by access points
- Polling by centralized polling master or point coordinator
- Uses PIFS
 - PIFS smaller than DIFS
 - Gives coordinator priority over individual stations
- Point coordinator polls in round-robin to stations configured for polling
 - When poll issued, polled station may respond within SIFS
 - If point coordinator receives response, it issues another poll

Primary contacts stations to determine if they have data to transmit

Contention Free Period

- Time= Contention Period + Contention Free Period
 - Contention Period: All stations compete for the medium
 - Contention Free Period: The AP coordinates communication

- Time= Contention Period + Contention Free Period
 - Contention Period: All stations compete for the medium
 - Contention Free Period: The AP coordinates communication

- Time= Contention Period + Contention Free Period
 - Contention Period: All stations compete for the medium
 - Contention Free Period: The AP coordinates communication

- Time= Contention Period + Contention Free Period
 - Contention Period: All stations compete for the medium
 - Contention Free Period: The AP coordinates communication

NAV

- Time= Contention Period + Contention Free Period
 - Contention Period: All stations compete for the medium
 - Contention Free Period: The AP coordinates communication

Example of IFSs for 802.11a

IFS in 802.11

- SIFS influences replies
- PIFS gives PCF priority over DCF
- DIFS is the time between two DCF communications

Control Frames

Type:management (00), control (01), or data (10).

Subtype	Meaning	
1011	Request to send (RTS)	
1100	Clear to send (CTS)	
1101	Acknowledgment (ACK)	

2 bytes 2 bytes 6 bytes 6 bytes 4 bytes FC FCS Address 2 D Address 1

2 bytes 2 bytes 6 bytes 4 bytes **FCS** FC D Address 1

RTS CTS or ACK

IEEE 802.11 MAC Frame Format

Frame format as described in the standard:

Figure 12—MAC frame format

Figure 13—Frame Control field

Types of Frames

Type value b3 b2	Type description	Subtype value b7 b6 b5 b4	Subtype description
00	Management	0000	Association request
00	Management	0001	Association response
00	Management	0010	Reassociation request
00	Management	0011	Reassociation response
00	Management	0100	Probe request
00	Management	0101	Probe response
00	Management	0110-0111	Reserved
00	Management	1000	Beacon
00	Management	1001	Announcement traffic indication message (ATIM)
00	Management	1010	Disassociation
00	Management	1011	Authentication
00	Management	1100	Deauthentication
00	Management	1101–1111	Reserved
01	Control	0000-1001	Reserved
01	Control	1010	Power Save (PS)-Poll

Types of Frames

01	Control	1011	Request To Send (RTS)
01	Control	1100	Clear To Send (CTS)
01	Control	1101	Acknowledgment (ACK)
01	Control	1110	Contention-Free (CF)-End
01	Control	1111	CF-End + CF-Ack
10	Data	0000	Data
10	Data	0001	Data + CF-Ack
10	Data	0010	Data + CF-Poll
10	Data	0011	Data + CF-Ack + CF-Poll
10	Data	0100	Null function (no data)
10	Data	0101	CF-Ack (no data)
10	Data	0110	CF-Poll (no data)
10	Data	0111	CF-Ack + CF-Poll (no data)
10	Data	1000-1111	Reserved
11	Reserved	0000-1111	Reserved

Control Frames

- Assist in reliable data delivery
- Power Save-Poll (PS-Poll)
 - Sent by any station to station that includes AP
 - Request AP transmit frame buffered for this station while station in powersaving mode
- Request to Send (RTS)
 - First frame in four-way frame exchange
- Clear to Send (CTS)
 - Second frame in four-way exchange
- Acknowledgment (ACK)
- Contention-Free (CF)-end
 - Announces end of contention-free period part of PCF
- CF-End + CF-Ack:
 - Acknowledges CF-end
 - Ends contention-free period and releases stations from associated restrictions

Data Frames – Data Carrying

- Eight data frame subtypes, in two groups
- First four carry upper-level data from source station to destination station
- Data
 - Simplest data frame
 - May be used in contention or contention-free period
- Data + CF-Ack
 - Only sent during contention-free period
 - Carries data and acknowledges previously received data
- Data + CF-Poll
 - Used by point coordinator to deliver data
 - Also to request station send data frame it may have buffered
- Data + CF-Ack + CF-Poll

Management Frames

- Used to manage communications between stations and APs
- E.g. management of associations
 - Requests, response, reassociation, dissociation, and authentication

Summary: 802.11

- Hidden Station / Expose Station
- DCF

 ⇒ Distributed Coordination Function
 - Stations compete for access to the medium
- CSMA/CA + RTS/CTS
- PCF ⇒ Point Coordination Function
 - Access point polls stations
- IFS ⇒ Inter-Frame Space
 - Time between frames
- Three types of frames:
 - Control frames
 - Data frames
 - Management frames

That's all folks

