H

Roll No.

MB-201 (BA1)

M. B. A. (SECOND SEMESTER) END SEMESTER EXAMINATION, June, 2023

DATA SCIENCE USING R

Time: Three Hours

Maximum Marks: 100

- Note: (i) This questions paper contains two Sections—Section A and Section B.
 - (ii) Both sections are compulsory.
 - (iii) Answer any two sub-questions among(a), (b) and (c) in each main questionof Section A. Each sub-questioncarries 10 marks.
 - (iv) Section B consisting of case study in compulsory. Section B is of 20 marks.

Section-A

- 1. (a) Define data science and state its benefits for business. Explain the stages in data science. (CO1)
 - (b) Elaborate upon the basic Data management process in R Studio. (CO1)
 - (c) Describe the use of Packages in R. Explain few important packages required in Data Visualization. (CO1)
- 2. (a) Summarize in detail regarding data frame and arrays with an example R code. (CO2)
 - (b) What are the different categories of functions used in R? With the help of R code create a function to print squares of numbers in a sequence. (CO2)
 - (c) Interprete the usage of conditional statement in decision making. With relevant R code implement "if" and "if-else" conditional statement in R Studio. (CO2)
- 3. (a) With relevant R code explain the process of loading a "csv" file and converting a data frame to "csv" file as output. (CO3)

- (b) What is the use of working directory?
 With R code demonstrate how to set up a new working directory. (CO3)
- (c) Explain the process of error handling in R. (CO3)
- 4. (a) Illustrate the importance of descriptive statistics? Write R code to obtain descriptive statistics for a csv file named "data". (CO4)
 - (b) What is correlational analysis? With relevant code explain the steps of correlation hypothesis testing in R. (CO4)
 - (c) What is cluster analysis? Explain K-means cluster and Hierarchical cluster analysis.

(CO4)

Section—B

5. Case Study:

Table 1 presents a subset (named data saved in "csv" format) of "diamonds" dataset available with ggplot2 package. (CO5)

Table 1

abio		colour	clarity	depth	table	price
carat	cut	Coloui	_	-	55	326
0.23	Ideal Premium	E	SI2	61.5	33	
		, E	SII	59.8	61	326
			7701	56.9	65	327
0.23	Good	E	VS1			224
0.29	Premium	I	I VS2	62.4	58	334
		1	CIO	63.3	58	335
0.31	Good	J	SI2	03.3		1 4

MB-201 (BA1)

"data" file contains information about 53,940 round-cut diamonds with 7 columns; cut, color and clarity are categorical variables, while the remaining follow a numeric structure.

Table 2 contains the description regarding the variables:

Table 2

Variable	Description	Values	
price	price in US dollars	\$326-\$18,823	
carat	weight of the diamond	0.2-5.01	
cut	quality of the	Fair, Good, Very Good, Premium, Ideal	
color	diamond	J (worst) to D (best)	

clarity	measurement of how clear	I1 (worst), SI2, SI1, VS2, VS1,	
	the diamond is	VVS2, VVS1, 1F (best)	
depth	total depth percentage	43-79	
table	width of top of diamond relative to widest point	43-95	

Based upon the above data answer the following questions:

- (i) Which graph type you feel should be used for visualizing "cut" variable?
- (ii) Can the same graph type be extended to visualize "color" and "price" variable. Justify your answers.
- (iii) With R code formulate a linear regression model to check the effect of "carat" variable on "price" variable.
- (iv) How will you test the hypothesis that "carat" has no effect on the "price" of a diamond.

MB-201(BA1)