

ПРМ-X.1

Модуль расширения дискретного ввода/вывода

Руководство по эксплуатации

02.2021 версия 1.13

Содержание

введение	3
Предупреждающие сообщения	4
Термины и аббревиатуры	5
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики	
2.2 Характеристики входов	
2.3 Характеристики выходов	
2.4 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж	
4.1 Установка	
4.2 Быстрая замена	
5 Подключение	
5.1 Рекомендации по подключению	
5.2 Порядок подключения	
5.3 Помехи и методы их подавления	
5.4 Схемы гальванической развязки	
5.5 Назначение контактов клеммника	
5.6 Подключение модуля к головному устройству	14
5.7 Подключение датчиков	15
5.7.1 Общие сведения	15
5.7.2 Подключение датчиков с дискретным выходом	16
5.7.3 Схема подключения дискретных датчиков с транзистором p-n-p-типа	
5.8 Подключение нагрузки к ВУ	
5.8.1 Подключение нагрузки к ВЭ типа «Р»	
6 Эксплуатация	
6.1 Принцип работы	18
6.2 Индикация	18
7 Настройка	19
7.1 Общие сведения	19
7.2 Добавление модулей в OwenLogic	
7.3 Конфигурирование модулей в OwenLogic	
7.4 Обновление встроенного ПО	20
8 Техническое обслуживание	21
8.1 Общие указания	21
9 Маркировка	22
10 Упаковка	
11 Транспортирование и хранение	
12 Комплектность	
13 Гарантийные обязательства	26

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля расширения дискретного ввода/вывода ПРМ-X.1, в дальнейшем по тексту именуемого «модуль» или «прибор».

Подключение, настройка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Прибор изготавливается в нескольких модификациях, отличающихся друг от друга напряжением питания и напряжением питания дискретных входов.

Прибор изготавливается в различных модификациях, указанных в коде полного условного обозначения:

Пример наименования модуля при заказе: ПРМ-220.1

Приведенное условное обозначение указывает, что изготовлению и поставке подлежит модуль, работающий при номинальным напряжении 230 В переменного тока, оснащенный:

- восемью дискретными входами для сигналов 230 В переменного тока;
- восемью дискретными выходами типа «электромагнитное реле».

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Термины и аббревиатуры

Выходной элемент (ВЭ) – элемент схемы прибора, служащий для подключения исполнительных механизмов или коммутации внешнего управляющего сигнала.

Исполнительный механизм (ИМ) – внешнее устройство, функционирующее под управлением прибора.

ПК – персональный компьютер.

Параметры – значения, определяющие конфигурацию прибора. Задаются в OwenLogic.

Слот 1, Слот 2 – местоположение модуля относительно головного устройства.

Формат данных – тип значений параметров (целое число, число с плавающей точкой и др.).

1 Назначение

Модуль предназначен для увеличения количества входов и выходов головного устройства.

По сигналам от головного устройства модуль управляет восемью встроенными дискретными ВЭ, которые используются для подключения исполнительных механизмов с дискретным управлением. Также модуль считывает состояние восьми дискретных входов и передает их в головное устройство.

Модуль выпускается согласно ТУ 26.51.85-001-46526536-2017.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Список модификаций

Модификация	T	Входы	Выходы	
МОДИФИКАЦИЯ	Тип питания	Дискретные	Дискретные	
ПРМ-1.220	~230 B	8 ДФ*	8 P	
ПРМ-1.24	=24 B	8Д	8 P	
			•	

ПРИМЕЧАНИЕ* Расшифровка обозначений приведена в таблице 2.2.

Таблица 2.2 – Сводная таблица характеристик

Тип	Таблица характеристик
Характеристики приборов с питанием 230 В	таблица 2.3
Характеристики приборов с питанием 24 В	таблица 2.4
Дискретный вход для сигналов ~230 В (вход типа «ДФ»)	таблица 2.6
Дискретный вход для сигналов =24 В (вход типа «Д»)	таблица 2.7
Дискретный выход типа «электромагнитное реле» (выход типа «Р»)	таблица 2.8

Таблица 2.3 – Характеристики приборов с питанием 230 В

Наименование	Значение
Диапазон переменного напряжения питания	90264 В (номинальное 230 В, при 50 Гц)
Диапазон постоянного напряжения питания	127373 В (номинальное 230 В)
Гальваническая развязка	Есть
Электрическая прочность изоляции	2830 B
Потребляемая мощность, не менее	8 BA

Таблица 2.4 – Характеристики приборов с питанием 24 В

Наименование	Значение
Диапазон напряжения питания	=1930 В (номинальное =24 В)
Гальваническая развязка	Есть
Электрическая прочность изоляции	1780 B
Потребляемая мощность, не менее	4 Вт
Защита от подключения неверной полярности питающего напряжения	Есть

Таблица 2.5 – Общие технические характеристики

Наименование	Значение		
Программирование			
Среда программирования	раммирования OwenLogic		
Коммуникационный интерфейс			
Скорость обмена по внутренней шине пакетами данных по 16 бит	4000 пакет/с		
Частота внутренней шины	2,25 МГц		
Максимальное количество модулей на шине	2 шт.		
Конструкция			
Тип корпуса	Для крепления на DIN-рейку (35 мм)		
Габаритные размеры	88 × 90 × 58 мм		

Продолжение таблицы 2.5

Наименование	Значение
Степень защиты корпуса по ГОСТ 14254-2015	IP20
Масса модуля, не более	0,4 кг
Средний срок службы	8 лет

2.2 Характеристики входов

Таблица 2.6 – Характеристики дискретных входов типа «ДФ»

Наименование	Значение	
Номинальное напряжение питания	230 В (переменный ток)	
Максимальное допустимое напряжение питания	264 В (переменный ток)	
Тип датчика для дискретного входа	механические коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т. п.)	
Напряжение «логической единицы»	159264 B	
Ток «логической единицы»	0,751,5 мА	
Напряжение «логического нуля»	040 B	
Ток «логического нуля»	00,5 mA	
Минимальная длительность импульса, воспринимаемая дискретным входом	50 мс	
Максимальное время реакции прибора (изменения значения ВЭ связанного с дискретным входом)	100 мс	
Электрическая прочность изоляции между входами и между другими цепями прибора	2830 B	

Таблица 2.7 - Характеристики дискретных входов типа «Д»

Значение	
24 В (постоянный ток)	
30 В (постоянный ток)	
механические коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т. п.); датчики с выходными транзисторными ключами (например, транзистор p-n-p-типа с открытым коллектором на выходе)	
1530 B	
25 MA	
минус 3плюс 5 В	
01 mA	
5 мс*	
30 мс	
2830 B	

^{*} Максимальная частота воспринимаемая дискретным входом типа «Д» зависит от времени цикла пользовательской программы, скважности импульсов и установленного времени фильтра.

2.3 Характеристики выходов

Таблица 2.8 - Характеристики дискретных выходов типа «Р»

Наименование	Значение	
Тип выходного устройства	Электромагнитное реле (нормально разомкнутые контакты)	
Электрическая прочность изоляции между выходом и другими цепями	2830 B	
Коммутируемое напряжение в нагрузке:		
для цепи постоянного тока, не более	30 В (резистивная нагрузка)	
для цепи переменного тока, не более	250 В (резистивная нагрузка)	
Допустимый ток нагрузки, не более	5 А при напряжении не более 250 В переменного тока и cos(φ) > 0,95; 3 А при напряжении не более 30 В постоянного тока	
Допустимый ток нагрузки, не менее	10 мА (при 5 В постоянного тока)	
Электрический ресурс реле, не менее	200000 циклов: 5 А при 250 В переменного тока; 50000 циклов: 7 А при 250 В переменного тока; 100000 циклов: 3 А, 30 В постоянного тока, резистивная нагрузка	

2.4 Условия эксплуатации

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до плюс 55 °C;
- верхний предел относительной влажности воздуха: не более 80 % при +35 °C и более низких температурах без конденсации влаги;
- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений);
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931–2008.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931–2008 (частота вибрации от 10 до 55 Гц).

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ Р 52931–2008.

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.2–2013.

По уровню излучения радиопомех (помехоэмиссии) прибор соответствует ГОСТ 30805.22-2013 (для приборов класса A).

Прибор устойчив к прерываниям, провалам и выбросам напряжения питания:

- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11–2013 (степень жесткости PS2);
- для постоянного тока в соответствии с требованиями ГОСТ IEC 61131–2–2012 длительность прерывания напряжения питания до 10 мс включительно, длительность интервала от 1 с и более.

3 Меры безопасности

По способу защиты обслуживающего персонала от поражения электрическим током, прибор относится к классу II ГОСТ IEC 61131-2-2012.

Во время эксплуатации, технического обслуживания и поверки прибора следует соблюдать требования ГОСТ 12.3.019—80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступных только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Прибор запрещено использовать в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж

4.1 Установка

Для монтажа прибора следует:

1. Подготовить на DIN-рейке место для установки прибора с учетом размеров корпуса (см. рисунок 4.2).

Рисунок 4.1 – Установка прибора

- 2. Установить прибор на DIN-рейку в соответствии с в направлении стрелки 1 (рисунок 4.1, 2);
- 3. Вставив отвертку в проушину, оттянуть защелку рисунок 4.1, 1).
- 4. Прижать прибор к DIN-рейке в направлении, показанном стрелкой 2. Зафиксировать защелку (см. рисунок 4.1, 3).
- 5. Смонтировать внешние устройства с помощью ответных клеммников из комплекта поставки.

Рисунок 4.2 - Габаритные размеры

Для демонтажа прибора следует:

- 1. Отсоединить клеммы внешних устройств без их демонтажа.
- 2. Проделать действия с рисунка 4.1 в обратном порядке.

4.2 Быстрая замена

Конструкция клемм модуля позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи. Для замены модуля следует:

- 1. Обесточить все линии связи, подходящие к модулю, в том числе линии питания.
- 2. Отделить от модуля съемные части каждой из клемм с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 3. Снять прибор с DIN-рейки, на его место установить другой прибор (аналогичной модификации по питанию) с предварительно удаленными разъемными частями клемм.
- 4. К установленному модулю подсоединить разъемные части клемм с подключенными внешними линиями связи.

5 Подключение

5.1 Рекомендации по подключению

Для обеспечения надежности электрических соединений рекомендуется использовать медные многожильные кабели, концы которых перед подключением следует тщательно зачистить и залудить или использовать кабельные наконечники. Жилы кабелей следует зачищать так, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение жил кабелей должно быть не более 2,5 мм².

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи.
- для защиты входов прибора от влияния промышленных электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей с экранирующими оплетками следует подключить к контакту функционального заземления (FE) в щите управления.
- фильтры сетевых помех следует устанавливать в линиях питания прибора.
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

При монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии прокладывать по схеме «звезда» с обеспечением хорошего контакта с заземляемым элементом;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой «Общая» и заземляющие линии.

5.2 Порядок подключения

ОПАСНОСТЬ

После распаковки прибора следует убедиться, что во время транспортировки прибор не был поврежден.

В случае изменения температуры окружающего воздуха с низкой на высокую в приборе возможно образование конденсата. Чтобы избежать выхода прибора из строя, рекомендуется выдержать его в выключенном состоянии в помещении с температурой, соответствующей рабочему диапазону, не менее часа.

ВНИМАНИЕ

Перед подачей питания на модуль следует проверить правильность подключения напряжения питания и его уровень:

- если напряжение ниже 19 В, то модуль прекращает функционировать, но не выходит из строя, поэтому не гарантируется его работа;
- если напряжение выше 30 В, то модуль может выйти из строя;
- в случае неверного подключения к источнику постоянного напряжения (перепутана полярность) модуль не включится.

Для подключения модуля следует:

- 1. Подключить модуль к головному устройству с помощью кабеля из комплекта поставки.
- 2. Подключить источник питания к модулю, питание не подавать.
- 3. Подготовить кабели для соединения модуля с ИМ, датчиками и источником питания.
- 4. Подключить линии связи:
 - «модуль исполнительные механизмы»:
 - аналоговых датчиков к входам модуля.
- 5. Подать питание на модуль и головное устройство.

5.3 Помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи:

- возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на прибор и на линии связи с внешним оборудованием;
- в питающей сети.

Для уменьшения влияния электромагнитных помех рекомендуется:

- надежно экранировать сигнальные линии, экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединить к заземленному контакту щита управления;
- установить прибор в металлическом шкафу, внутри которого не должно быть никакого силового оборудования, корпус шкафа должен быть заземлен.

Для уменьшения помех, возникающих в питающей сети рекомендуется:

- монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления и прокладки заземленных экранов:
 - все заземляющие линии и экраны прокладывать по схеме «звезда» с обеспечением хорошего контакта с заземляемым элементом;
 - заземляющие цепи должны быть выполнены кабелями наибольшего сечения.

Для уменьшения уровня помех можно применять программные фильтры, которые настраиваются индивидуально для каждого входа. Программные фильтры доступны для:

- всех типов аналоговых датчиков;
- дискретных входов с номинальным напряжением 24 В.

ТРИМЕЧАНИЕУвеличение значения постоянной времени фильтра аналогового входа замедляет реакцию прибора на быстрые изменения входной величины.

5.4 Схемы гальванической развязки

Рисунок 5.1 – Схемы гальванической развязки (1) 220 В и (2) 24 В модификаций

5.5 Назначение контактов клеммника

Рисунок 5.2 – Назначение контактов клеммника прибора с питанием 24 В

Таблица 5.1 – Назначение контактов клеммника прибора с питанием 24 В

Номер контакта	Назначение контакта	Номер контакта	Назначение контакта
1	Клемма «-» для питания 24 В/ вход питания 230 В	13	Клемма выхода 1
2	Клемма «+» для питания 24 В/ вход питания 230 В	14	Общая клемма выходов 1 и 2
3	Общая клемма входов 14	15	Клемма выхода 2
4	Клемма входа 1	16	Клемма выхода 3
5	Клемма входа 2	17	Общая клемма выходов 3 и 4
6	Клемма входа 3	18	Клемма выхода 4
7	Клемма входа 4	19	Клемма выхода 5
8	Общая клемма входов 58	20	Общая клемма выходов 5 и 6
9	Клемма входа 5	21	Клемма выхода 6
10	Клемма входа 6	22	Клемма выхода 7
11	Клемма входа 7	23	Общая клемма выходов 7 и 8
12	Клемма входа 8	24	Клемма выхода 8

Рисунок 5.3 – Назначение контактов клеммника прибора с питанием 230 В

Таблица 5.2 – Назначение контактов клеммника прибора с питанием 230 В

Номер контакта	Назначение контакта	Номер контакта	Назначение контакта
1	Клемма питания 230 В	13	Клемма выхода 1
2	Клемма питания 230 В	14	Общая клемма выходов 1 и 2
3	Общая клемма входов 14	15	Клемма выхода 2
4	Клемма входа 1	16	Клемма выхода 3
5	Клемма входа 2	17	Общая клемма выходов 3 и 4
6	Клемма входа 3	18	Клемма выхода 4
7	Клемма входа 4	19	Клемма выхода 5
8	Общая клемма входов 58	20	Общая клемма выходов 5 и 6
9	Клемма входа 5	21	Клемма выхода 6
10	Клемма входа 6	22	Клемма выхода 7
11	Клемма входа 7	23	Общая клемма выходов 7 и 8
12	Клемма входа 8	24	Клемма выхода 8

5.6 Подключение модуля к головному устройству

ВНИМАНИЕ

Подключение модулей к головному устройству и подключение устройств к модулям следует выполнять только при отключенном питании всех устройств.

Модуль подключается к головному устройству с помощью шлейфа длиной 4,5 см из комплекта поставки. После подключения шлейф следует поместить в специальное углубление под крышкой модуля (рисунок 5.4, стрелка 1), тем самым позволяя придвинуть модуль вплотную к головному устройству (рисунок 5.4, стрелка 2).

Рисунок 5.4 – Укладка шлейфа в углубление

Модули подключаются только последовательно. Ближайший модуль к головному устройству всегда будет располагаться в слоте 1. Подключение модуля в слот 2 без модуля в слоте 1 невозможно.

Рисунок 5.5 – Расположение модулей расширения на шине

Каждый модуль запитывается независимо от головного устройства. Допускается подключение модулей с различным напряжением питания к одному головному устройству в различных комбинациях.

Например, к Π P200-24.x.x.x можно подключать одновременно Π PM-220.x и Π PM-24.x и, аналогично, к Π P200-220.x.x.x можно подключить Π PM-24.x и Π PM-220.x

В случае подключения двух модулей обмен данными между головным устройством и модулем в слоте 2 осуществляется через модуль в слоте 1. Если модуль в слоте 1 обесточить, то модуль в слоте 2 перестанет принимать команды от устройства.

5.7 Подключение датчиков

5.7.1 Общие сведения

ОПАСНОСТЬ

Монтаж должен производить только обученный специалист с допуском на проведение электромонтажных работ. Для монтажа использовать индивидуальные защитные средства и специальный электромонтажный инструмент с изолирующими свойствами до 1000 В.

ВНИМАНИЕ

Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчик», перед подключением к клеммнику прибора их жилы следует на 1–2 секунды соединить с винтом функционального заземления (FE) щита.

Во время проверки исправности датчика и линии связи следует отключить прибор от сети питания. Во избежание выхода прибора из строя при «прозвонке» связей следует использовать измерительные устройства с напряжением питания не более 4,5 В. Для более высоких напряжений питания этих устройств отключение датчика от прибора обязательно.

5.7.2 Подключение датчиков с дискретным выходом

Рисунок 5.6 – Схема подключения дискретных датчиков с питанием 24 В

Рисунок 5.7 – Схема подключения дискретных датчиков с питанием 230 В

5.7.3 Схема подключения дискретных датчиков с транзистором р-n-p-типа

В случае подключения дискретных датчиков можно использовать один и тот же блок питания для питания двух групп входов. Внутри одной группы можно одновременно использовать датчики с выходом типа «сухой контакт» и с выходным транзистором.

Рисунок 5.8 – Схема подключения датчиков с выходным транзистором p-n-p-типа

5.8 Подключение нагрузки к ВУ

5.8.1 Подключение нагрузки к ВЭ типа «Р»

Рисунок 5.9 – Схема подключения нагрузки к ВЭ типа «Р»

6 Эксплуатация

6.1 Принцип работы

Модуль является пассивным устройством, которое работает по внутренней шине с головным устройством и не может функционировать как самостоятельная единица. Для подключения модуля к головному программируемому реле используется кабель из комплекта поставки.

6.2 Индикация

На лицевой панели прибора расположены элементы индикации – 18 светодиодов (см. рисунок ниже):

Рисунок 6.1 – Лицевая панель прибора (крышки отсеков подключения условно не показаны)

Таблица 6.1 – Назначение светодиодов

Светодиод	Состояние	Цвет	Значение
Питание	Светится	Зеленый	Наличие питания на модуле
Авария			Отсутствие связи с головным устройством
	Мигает	Красный	В данной позиции установлен прибор модификации, не соответствующей, указанной в проекте OwenLogic
			Версия встроенного ПО модуля не соответствует версии встроенного ПО головного устройства
DO 18	Светится	Желтый	Активное состояние соответствующего выхода
DI 18	Светится	Желтый	Активное состояние соответствующего входа

Под левой крышкой на лицевой панели расположен разъем «МОДУЛИ» (тип MIMS-10-TR-U) — для подключения к головному устройству или к первому модулю.

Под правой крышкой на лицевой панели расположен разъем «МОДУЛИ» (тип MIMS-10-TR-U) — для подключения второго модуля.

7 Настройка

7.1 Общие сведения

Высокоскоростная внутренняя шина, соединяющая головное устройство и модуль, обеспечивает быстродействие входов/выходов модулей на одинаковом уровне со встроенными входами/выходами головного устройства. Это позволяет записывать и считывать значения аналоговых входов/выходов каждый цикл пользовательской программы, выполняемой в головном устройстве.

Настройка модуля производится в OwenLogic.

7.2 Добавление модулей в OwenLogic

Для подключения модуля в OwenLogic следует:

- 1. Создать новый проект в среде OwenLogic или открыть уже существующий проект с головным устройством, поддерживающим подключение модулей.
- 2. Выбрать пункт меню **Прибор/Настройка прибора**. Далее нажатием правой кнопки мыши по пункту меню «Модули расширения» вызвать меню. Выбрать модуль из списка (см. рисунок 7.1).

Рисунок 7.1 – Подключение модуля в OwenLogic

Первый добавленный модуль автоматически занимает первый слот, следующий модуль — второй слот. Номер слота определяет физическое расположение модуля относительно головного устройства (см. рисунок 7.2).

Рисунок 7.2 - ПР200 с подключенными модулями

Удалить модуль из проекта OwenLogic можно только после отсоединения всех связей, подключенных к его входам и выходам. Допускается смена позиции модуля в проекте в любое время через меню настройки модуля. Допускается запись пользовательской программы в головное устройство без подключения модулей расширения.

После добавления модуля на холсте появятся дополнительные входы **I1**... **I8** и выходы **Q1**... **Q8**. В скобках указывается номер позиции установленного модуля. Для примера на рисунке 7.3 входы **I6(1)**... **I8(1)** относятся к модулю, установленному в первой позиции, входы **I1(2)** и **I2(2)** относятся к модулю, установленному во второй позиции.

Рисунок 7.3 - Настройка входов ПРМ

После добавления модуля в проект головного устройства, его входы и выходы становятся доступны для опроса.

Для опроса входов или задания состояния выходов следует создать переменные соответствующего типа и связать с ними входы и выходы модуля. Если необходимо работать с состояниями входов и выходов модуля по сети, то их следует привязать к сетевым переменным.

7.3 Конфигурирование модулей в OwenLogic

Для каждого модуля предусмотрен параметр «Статус», к которому можно привязать булевскую переменную, и использовать ее в пользовательской программе.

Если связь с модулем установлена или модификация модуля соответствует указанной в проекте OwenLogic, то параметр Статус принимает значение 1.

Если связь с модулем потеряна или позиция установленной модификации не соответствует, указанной в проекте OwenLogic, то параметр Статус принимает значение 0.

Для каждого ВЭ модуля могут быть настроены безопасные состояния. Данная настройка находится в меню **Прибор/Настройка прибора/Выходы**, где для каждого выхода каждого модуля может быть установлено состояние выхода в случае потери связи с головным устройством. Это позволяет повысить безопасность системы в нештатных ситуациях.

Для модулей ПРМ-24.1 доступны настройки времени фильтрации дискретного входа, расположенные в меню **Настройка прибора/Входы**.

Для каждого дискретного входа может быть включено программное подавление дребезга контактов. Программное подавление задается параметром **Фильтр дребезга контактов**, **мс** (допустимые значения 0...255 мс) в панели свойств дискретного входа. Данный параметр указывает в течение какого времени сигнал будет отсекаться прежде, чем изменится состояние на выходе фильтра.

ВНИМАНИЕ

Для работы с сигналами частотой более 90 Гц при их скважности 50 % и менее не следует включать подавление дребезга контактов, т. к. полезный сигнал будет принят за дребезг и пропущен.

7.4 Обновление встроенного ПО

Для обновления встроенного ПО модуля следует:

- 1. Подключить к головному устройству модуль.
- 2. Далее подключить их к ПК. Подать питание на головное устройство и модуль.
- 3. В OwenLogic выполнить **Прибор** \rightarrow **Обновить встроенное ПО**:
 - выбрать вкладку Модули, указать номер слота и модификацию модуля;
 - нажать кнопку Выбрать.
- 4. Во время обновления следить за непрерывностью подачи питания на головное устройство и модули.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

9 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

10 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

11 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

12 Комплектность

Наименование	Количество
Модуль ПРМ	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство	1 экз.
Кабель для подключения модуля	1 шт.
Комплект клеммных соединений	1 к-т

ПРИМЕЧАНИЕ Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-51644-1.13