PSEUDO-RANDOM FUNCTIONS

Mihir Bellare UCSD 1

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
- •
- •

Mihir Bellare

Clearly, no such list is a satisfactory answer to the question.

UCSD

Recall

We studied security of function families (in particular, block ciphers) against key recovery.

But we saw that security against key recovery is not sufficient to ensure that natural usages of a block cipher are secure.

We want to answer the question:

What is a good block cipher?

where "good" means that natural uses of the block cipher are secure.

We could try to define "good" by a list of necessary conditions:

- Key recovery is hard
- Recovery of M from $C = E_K(M)$ is hard
- . .

3

But this is neither necessarily correct nor appealing.

Mihir Bellare UCSD

Turing Intelligence Test

Q: What does it mean for a program to be "intelligent" in the sense of a human?

Turing's answer: A program is intelligent if its input/output behavior is indistinguishable from that of a human.

Turing Intelligence Test

Behind the wall:

• Room 1: The program P

• Room 0: A human

Mihir Bellare UCSD 5

Real versus Ideal

Notion	Real object Ideal objec	
Intelligence	Program	Human
PRF	Block cipher	?

Turing Intelligence Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

Mihir Bellare UCSD 6

Real versus Ideal

Notion	Real object	ldeal object	
Intelligence	Program	Human	
PRF	Block cipher	Random function	

Random functions

Game Rand_R // here R is a set **procedure** $\operatorname{Fn}(x)$ if $\operatorname{T}[x] = \bot$ then $\operatorname{T}[x] \stackrel{\$}{\leftarrow} R$ return $\operatorname{T}[x]$

Adversary A

- Make queries to **Fn**
- Eventually halts with some output

We denote by

$$\Pr\left[\operatorname{Rand}_{R}^{A}\Rightarrow d\right]$$

the probability that A outputs d

Mihir Bellare UCSD

Random functions

Game Rand_{{0,1}³}
procedure
$$Fn(x)$$
if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}³$
return $T[x]$

adversary A
 $y \leftarrow Fn(01)$
return $(y = 000)$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{A}\Rightarrow\mathsf{true}\right]=2^{-3}$$

Random functions

Game
$$\operatorname{Rand}_{\{0,1\}^3}$$

procedure $\operatorname{Fn}(x)$
if $\operatorname{T}[x] = \bot$ then $\operatorname{T}[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$ adversary A
 $y \leftarrow \operatorname{Fn}(01)$
return $(y = 000)$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}}\Rightarrow\mathsf{true}\right]=$$

Mihir Bellare UCSD 10

Random function

9

11

Game Rand_{{0,1}3} adversary
$$A$$

procedure Fn(x) $y_1 \leftarrow$ Fn(00)
if T[x] = \bot then T[x] $\stackrel{\$}{\leftarrow}$ {0,1}3 $y_2 \leftarrow$ Fn(11)
return T[x] return $(y_1 = 010 \land y_2 = 011)$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{A}\Rightarrow\mathsf{true}\right]=$$

Mihir Bellare UCSD 12

Random function

Game Rand_{{0,1}3} adversary
$$A$$
 procedure $Fn(x)$ if $T[x] = \bot$ then $T[x] \stackrel{5}{\leftarrow} \{0,1\}^3$ return $T[x]$ return $(y_1 = 010 \land y_2 = 011)$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{A}\Rightarrow\mathsf{true}\right]=2^{-6}$$

Mihir Bellare UCSD 13

Random function

Game Rand<sub>{0,1}}³

procedure
$$Fn(x)$$

if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$

return $T[x]$

adversary A
 $y_1 \leftarrow Fn(00)$
 $y_2 \leftarrow Fn(11)$

return $(y_1 \oplus y_2 = 101)$</sub>

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}}\Rightarrow\mathsf{true}\right]=2^{-3}$$

Random function

Game Rand_{{0,1}3}

procedure
$$Fn(x)$$

if $T[x] = \bot$ then $T[x] \stackrel{5}{\leftarrow} \{0,1\}^3$

return $T[x]$

adversary A
 $y_1 \leftarrow Fn(00)$
 $y_2 \leftarrow Fn(11)$

return $(y_1 \oplus y_2 = 101)$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^3}^{\mathcal{A}}\Rightarrow\mathsf{true}\right]=$$

Mihir Bellare UCSD 14

Recall: Function families

A family of functions (also called a function family) is a two-input function $F: \text{Keys} \times D \to R$. For $K \in \text{Keys}$ we let $F_K: D \to R$ be defined by $F_K(x) = F(K,x)$ for all $x \in D$.

Examples:

15

- DES: Keys = $\{0,1\}^{56}$, D = R = $\{0,1\}^{64}$
- Any block cipher: D = R and each F_K is a permutation

Real versus Ideal

Notion	Real object	Ideal object	
PRF Family of functions (eg. a block cipher)		Random function	

F is a PRF if the input-output behavior of F_K looks to a tester like the input-output behavior of a random function.

Tester does not get the key K!

Mihir Bellare UCSD 17

PRF advantage

A's output d	Intended meaning: I think I am in game	
1	Real	
0	Random	

 $\mathbf{Adv}_F^{\mathrm{prf}}(A) \approx 1$ means A is doing well and F is not prf-secure. $\mathbf{Adv}_F^{\mathrm{prf}}(A) \approx 0$ (or ≤ 0) means A is doing poorly and F resists the attack A is mounting.

Mihir Bellare UCSD 19

Games defining prf advantage of an adversary against F

Let $F: \text{Keys} \times D \rightarrow R$ be a family of functions.

Game Real_F

procedure Initialize $K \stackrel{\$}{\leftarrow} \text{Keys}$ procedure Fn(x)Return $F_K(x)$

Game Rand_R **procedure Fn**(x)

if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} R$ Return T[x]

Associated to F, A are the probabilities

$$\Pr\left[\operatorname{Real}_F^A \Rightarrow 1\right] \qquad \left[\Pr\left[\operatorname{Rand}_R^A \Rightarrow 1\right]\right]$$

that A outputs 1 in each world. The advantage of A is

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{F}}(A) = \mathsf{Pr}\left[\mathrm{Real}^A_{\mathsf{F}}{\Rightarrow}1\right] - \mathsf{Pr}\left[\mathrm{Rand}^A_{\mathsf{R}}{\Rightarrow}1\right]$$

Mihir Bellare UCSD 18

PRF security

Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $Adv_F^{prf}(A)$ is "small" for ALL A that use "practical" amounts of resources.

Example: 80-bit security could mean that for all n = 1, ..., 80 we have

$$\mathsf{Adv}_F^{\mathrm{prf}}(A) \leq 2^{-n}$$

for any A with time and number of oracle queries at most 2^{80-n} .

Insecurity: *F* is insecure (not a PRF) if we can specify an *A* using "few" resources that achieves "high" advantage.

Example

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ by $F_K(x) = K \oplus x$ for all $K, x \in \{0,1\}^{\ell}$. Is F a secure PRF?

Game $\operatorname{Real}_{\mathcal{F}}$ procedure Initialize $\mathcal{K} \overset{\$}{\leftarrow} \{0,1\}^{\ell}$ procedure $\operatorname{Fn}(x)$

Return $K \oplus x$

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{\$} \{0,1\}^{\ell}$ Return T[x]

So we are asking: Can we design a low-resource A so that

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{F}}(A) = \mathsf{Pr}\left[\mathrm{Real}^{A}_{\mathsf{F}}{\Rightarrow}1\right] - \mathsf{Pr}\left[\mathrm{Rand}^{A}_{\{0,1\}^{\ell}}{\Rightarrow}1\right]$$

is close to 1?

Mihir Bellare UCSD 21

Example: The adversary

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{K}(x) = K \oplus x.$

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

Example

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ by $F_{K}(x) = K \oplus x$ for all $K, x \in \{0,1\}^{\ell}$. Is F a secure PRF?

Game Real_F

procedure Initialize $K \leftarrow \{0,1\}^{\ell}$ procedure $\operatorname{Fn}(x)$ Return $K \oplus x$

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{s} \{0,1\}^{\ell}$ Return T[x]

22

24

So we are asking: Can we design a low-resource A so that

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{F}}(A) = \mathsf{Pr}\left[\mathrm{Real}^A_{\mathsf{F}}{\Rightarrow}1\right] - \mathsf{Pr}\left[\mathrm{Rand}^A_{\{0,1\}^\ell}{\Rightarrow}1\right]$$

is close to 1?

Exploitable weakness of F: For all K we have

$$F_{\mathcal{K}}(0^\ell) \oplus F_{\mathcal{K}}(1^\ell) = (\mathcal{K} \oplus 0^\ell) \oplus (\mathcal{K} \oplus 1^\ell) = 1^\ell$$

Mihir Bellare

UCSD

Example: Real game analysis

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{K}(x) = K \oplus x.$

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

 $\mathsf{Game}\ \mathrm{Real}_{\textit{\textbf{F}}}$

procedure Initialize

 $K \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$

procedure Fn(x)

Return $K \oplus x$

$$\Pr\left[\operatorname{Real}_F^A \Rightarrow 1\right] =$$

Mihir Bellare UCSD 23

Example: Real game analysis

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{K}(x) = K \oplus x.$

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

Game Real_F

procedure Initialize $K \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$

procedure Fn(x)

Return $K \oplus x$

$$\mathsf{Pr}\left[\mathrm{Real}_{\mathit{F}}^{\mathit{A}}{\Rightarrow}1\right]=1$$

because

$$\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = F_{\mathcal{K}}(0^\ell) \oplus F_{\mathcal{K}}(1^\ell) \quad = \quad (\mathcal{K} \oplus 0^\ell) \oplus (\mathcal{K} \oplus 1^\ell) = 1^\ell$$

Mihir Bellare

UCSD

25

Example: Rand game analysis

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ is defined by $F_{K}(x) = K \oplus x$.

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

 $\mathsf{Game}\ \mathrm{Rand}_{\{0,1\}^\ell}$

procedure Fn(x)

if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell}$ Return T[x]

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^{\mathcal{A}}{\Rightarrow}1\right]=\mathsf{Pr}\left[\mathsf{Fn}(1^\ell)\oplus\mathsf{Fn}(0^\ell)=1^\ell\right]=$$

Mihir Bellare UCSD 27

Example: Rand game analysis

 $F \colon \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ is defined by $F_{K}(x) = K \oplus x$.

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

Game Rand_{{0,1} $^{\ell}$} procedure Fn(x)

if T[x] = \bot then T[x] $\stackrel{\$}{\leftarrow}$ {0,1} $^{\ell}$ Return T[x]

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^{\mathcal{A}}{\Rightarrow}1\right]=$$

Mihir Bellare UCSD 26

Example: Rand game analysis

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ is defined by $F_{K}(x) = K \oplus x$.

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $\mathsf{T}[x] = \bot$ then $\mathsf{T}[x] \xleftarrow{\$} \{0,1\}^{\ell}$ Return $\mathsf{T}[x]$

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^{\pmb{A}}{\Rightarrow}1
ight]=\mathsf{Pr}\left[\pmb{\mathsf{Fn}}(1^\ell)\oplus \pmb{\mathsf{Fn}}(0^\ell)=1^\ell
ight]=2^{-\ell}$$

because $\mathbf{Fn}(0^{\ell})$, $\mathbf{Fn}(1^{\ell})$ are random ℓ -bit strings.

Example: Conclusion

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{K}(x) = K \oplus x.$

adversary A

if $\mathsf{Fn}(0^\ell) \oplus \mathsf{Fn}(1^\ell) = 1^\ell$ then return 1 else return 0

Then

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \underbrace{\mathsf{Pr}\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right]}_{1} - \underbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}_{2}$$
$$= 1 - 2^{-\ell}$$

and A is efficient.

Conclusion: F is not a secure PRF.

Mihir Bellare UCSD 29

Exercise

Let $G: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$ be a family of functions (it is arbitrary but given, meaning known to the adversary) and let $r \geq 1$ be an integer. The *r-round Feistel cipher associated to G* is the family of functions $G^{(r)}: \{0,1\}^k \times \{0,1\}^{2l} \to \{0,1\}^{2l}$, defined as follows for any key $K \in \{0,1\}^k$ and input $x \in \{0,1\}^{2l}$:

Function $G^{(r)}(K,x)$

$$L_0 \parallel R_0 \leftarrow x$$
For $i=1,\ldots,r$ do
 $L_i \leftarrow R_{i-1}$; $R_i \leftarrow G(K,R_{i-1}) \oplus L_{i-1}$
Return $L_r \parallel R_r$

By a||b we are denoting the concatenation of strings a, b. (For example 01||10 = 0110.) In the first line, we are parsing x as $x = L_0||R_0$ with $|L_0| = |R_0| = I$, meaning L_0 is the first I bits of X and X is the rest.

Mihir Bellare UCSD 31

Exercise

Define the family of functions $F: \{0,1\}^{128} \times \{0,1\}^{128} \to \{0,1\}^{128}$ by F(K,M) = AES(M,K). Show that F is not a secure PRF by presenting in pseudocode an adversary A such that

- $Adv_F^{prf}(A) = 1 2^{-128}$
- A makes at most 2 queries to its **Fn** oracle
- *A* is very efficient.

You must *prove* that your A has the above properties.

Mihir Bellare UCSD 30

Exercise

- 1. Show that $G^{(1)}$ is not a secure PRF by presenting in pseudocode a practical adversary A such that $\mathbf{Adv}^{\mathrm{prf}}_{G^{(1)}}(A) = 1 2^{-I}$ and A makes one **Fn** query.
- 2. Show that $G^{(2)}$ is not a secure PRF by presenting in pseudocode a practical adversary A such that $\mathbf{Adv}^{\mathrm{prf}}_{G^{(2)}}(A) = 1 2^{-l}$ and A makes two **Fn** queries.

Birthday Problem

We have q people $1, \ldots, q$ with birthdays $y_1, \ldots, y_q \in \{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

$$C(365, q) = Pr[2 \text{ or more persons have same birthday}]$$

= $Pr[y_1, ..., y_q \text{ are not all different}]$

- What is the value of C(365, q)?
- How large does q have to be before C(365, q) is at least 1/2?

Mihir Bellare UCSD 33

Birthday Problem

We have q people $1, \ldots, q$ with birthdays $y_1, \ldots, y_q \in \{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

$$C(365, q) = Pr[2 \text{ or more persons have same birthday}]$$

= $Pr[y_1, ..., y_q \text{ are not all different}]$

- What is the value of C(365, q)?
- How large does q have to be before C(365, q) is at least 1/2?

Naive intuition:

- $C(365, q) \approx q/365$
- q has to be around 365

The reality

- $C(365, q) \approx q^2/365$
- q has to be only around 23

Mihir Bellare UCSD 35

Birthday Problem

We have q people $1, \ldots, q$ with birthdays $y_1, \ldots, y_q \in \{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

$$C(365, q) = Pr[2 \text{ or more persons have same birthday}]$$

= $Pr[y_1, ..., y_q \text{ are not all different}]$

- What is the value of C(365, q)?
- How large does q have to be before C(365, q) is at least 1/2?

Naive intuition:

- $C(365, q) \approx q/365$
- q has to be around 365

Mihir Bellare UCSD 34

Birthday collision bounds

C(365, q) is the probability that some two people have the same birthday in a room of q people with random birthdays

q	C(365, q)	
15	0.253	
18	0.347	
20	0.411	
21	0.444	
23	0.507	
25	0.569	
27	0.627	
30	0.706	
35	0.814	
40	0.891	
50	0.970	

Birthday Problem

Pick $y_1, \ldots, y_q \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$ and let

$$C(N, q) = \Pr[y_1, \dots, y_q \text{ not all distinct}]$$

Birthday setting: N = 365

Mihir Bellare

UCSD

37

Birthday collisions formula

Let $y_1, \ldots, y_q \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$. Then

$$1 - C(N, q) = \Pr[y_1, \dots, y_q \text{ all distinct}]$$

$$= 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \dots \cdot \frac{N-(q-1)}{N}$$

$$= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

SO

$$C(N, q) = 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

Mihir Bellare UCSD 39

Birthday Problem

Pick $y_1, \ldots, y_q \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$ and let

$$C(N,q) = \Pr[y_1, \dots, y_q \text{ not all distinct}]$$

Birthday setting: N = 365

Fact: $C(N,q) \approx \frac{q^2}{2N}$

Mihir Bellare

UCSD

38

40

Birthday bounds

Let

$$C(N,q) = \Pr[y_1, \dots, y_q \text{ not all distinct}]$$

Fact: Then

$$0.3 \cdot \frac{q(q-1)}{N} \leq C(N,q) \leq 0.5 \cdot \frac{q(q-1)}{N}$$

where the lower bound holds for $1 \le q \le \sqrt{2N}$.

Block ciphers as PRFs

Let $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher.

Game Real_E procedure Initialize $K \stackrel{\$}{\leftarrow} \{0,1\}^k$ procedure $\operatorname{Fn}(x)$ Return $E_K(x)$

Game
$$\operatorname{Rand}_{\{0,1\}^\ell}$$

procedure $\operatorname{Fn}(x)$

if $\operatorname{T}[x] = \bot$ then $\operatorname{T}[x] \xleftarrow{\$} \{0,1\}^\ell$

Return $\operatorname{T}[x]$

Can we design A so that

$$\mathsf{Adv}_{E}^{\mathrm{prf}}(A) = \mathsf{Pr}\left[\mathrm{Real}_{E}^{A}{\Rightarrow}1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A}{\Rightarrow}1\right]$$

is close to 1?

Mihir Bellare UCSD 41

Real world analysis

Let $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game $\operatorname{Real}_{\mathcal{E}}$ procedure Initialize $K \xleftarrow{\$} \{0,1\}^k$ procedure $\operatorname{Fn}(x)$

Return $E_K(x)$

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$Pr\left[\operatorname{Real}_{E}^{A}{\Rightarrow}1\right]=$$

Mihir Bellare UCSD 43

Block ciphers as PRFs

Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $\mathbf{Fn} = E_K \Rightarrow \mathbf{Fn}(x_1), \dots, \mathbf{Fn}(x_q)$ distinct
- Fn random \Rightarrow Fn(x_1),...,Fn(x_q) not necessarily distinct

This leads to the following attack:

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Mihir Bellare UCSD 42

Real world analysis

Let $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game Real_E

procedure Initialize $K \leftarrow \{0,1\}^k$

procedure Fn(x)Return $E_K(x)$ adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{E}^{A}{\Rightarrow}1\right]=1$$

because y_1, \ldots, y_q will be distinct because $E_{\mathcal{K}}$ is a permutation.

Rand world analysis

Let $E: \{0,1\}^K \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot \operatorname{then} T[x] \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$ Return T[x]

adversary A

Let $x_1, \ldots, x_q \in \{0,1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^A{\Rightarrow}1
ight]=\mathsf{Pr}\left[y_1,\ldots,y_q \;\mathsf{all}\;\mathsf{distinct}
ight]=1-\mathit{C}(2^\ell,q)$$

because y_1, \ldots, y_q are randomly chosen from $\{0, 1\}^{\ell}$.

Mihir Bellare UCSD 45

Birthday attack on a block cipher

Conclusion: If $E:\{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

	$ \ell $	$2^{\ell/2}$	Status
DES, 2DES, 3DES3	64	2^{32}	Insecure
AES	128	2 ⁶⁴	Secure

Birthday attack on a block cipher

 $E:\{0,1\}^k imes\{0,1\}^\ell o\{0,1\}^\ell$ a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

$$\begin{array}{ccc} \mathbf{Adv}_E^{\mathrm{prf}}(A) & = & \overbrace{\Pr\left[\mathrm{Real}_E^A \Rightarrow 1\right]}^{1} - \overbrace{\Pr\left[\mathrm{Rand}_{\{0,1\}^\ell}^A \Rightarrow 1\right]}^{1-C(2^\ell,q)} \\ & = & C(2^\ell,q) \, \geq \, 0.3 \cdot \frac{q(q-1)}{2^\ell} \end{array}$$

SO

$$qpprox 2^{\ell/2}\Rightarrow \mathsf{Adv}^{\mathrm{prf}}_{\mathsf{E}}(\mathsf{A})pprox 1$$
 .

Mihir Bellare UCSD

KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

- (T)KR-security: It should be hard to find the target key, or a key consistent with input-output examples of a hidden target key.
- PRF-security: It should be hard to distinguish the input-output behavior of E_K from that of a random function.

Fact: PRF-security of *E* implies

- KR (and hence TKR) security of E
- Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.

Mihir Bellare UCSD 47 Mihir Bellare UCSD 48

Our Assumptions

DES, AES are good block ciphers in the sense that they are PRF-secure up to the inherent limitations of the birthday attack and known key-recovery attacks.

You can assume this in designs and analyses.

But beware that the future may prove these assumptions wrong!

Mihir Bellare UCSD 49

Exercise

We are given a PRF $F: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k$ and want to build a PRF $G: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^{2k}$. Which of the following work?

- 1. Function G(K,x) $y_1 \leftarrow F(K,x)$; $y_2 \leftarrow F(K,\overline{x})$; Return $y_1 || y_2$
- 2. Function G(K,x) $y_1 \leftarrow F(K,x)$; $y_2 \leftarrow F(K,y_1)$; Return $y_1 || y_2$
- 3. Function G(K, x) $L \leftarrow F(K, x)$; $y_1 \leftarrow F(L, 0^k)$; $y_2 \leftarrow F(L, 1^k)$; Return $y_1 || y_2 \leftarrow F(L, 1^k)$
- 4. Function G(K, x)[Your favorite code here]