12310401
$$\pm 3 + 9 \pm 1$$

R_{2.1}

a) $3n^2 + 5n - 2 = \Theta(n^2)$ since for all $n \ge n_0$
 $C_1n^2 \le 3n^2 + 5n - 2 \le C_2n^2$

when saying $C_1 = 1$, $C_2 = 10$, $n_0 = 5$

b) $42 = \Theta(1)$ since for all $n \ge n_0$

b)
$$42 = \Theta(1)$$
 since for all $n \ge n$.
$$C_1 \le 42 \le C_2$$

when saying
$$C_1 = 41$$
, $C_2 = 43$, $N_0 = 1$
c) $4n^2(1+\log n) - 2n^2 = \Theta(n^2\log n)$ since for all $n \ge n_0$
 $C_1n^2\log n \le 4n^2(1+\log n) - 2n^2 \le C_2n^2\log n$

when saying $C_1 = 1$, $C_2 = 100$, $N_0 = 10$

Q2.2

f(n)	g(n)	0	o	Ω	ω	Θ
$\log n$	\sqrt{n}	yes	yes	no	No	ND
n	\sqrt{n}	no	้นบ	yes	yes	NO
n	$n \log n$	yes	yes	no	no	NO
n^2	$n^2 + (\log n)^3$	yes	no	yes	no	yes
2^n	n^3	no	no	yes	yes	ho
$2^{n/2}$	2^n	yes	yes	no.	้กง	M
$\log_2 n$	$\log_{10} n$	yes	No	yes	NO	ÿ03
		1 / 1		,		

A:

$$1+3n(n-2) = 3n^2-6n+1 = \Theta(n)$$

as $C_1 n^2 \leq 3n^2 + 6n + 1 \leq C_2 n^2$ for all $n \geq n_0$

when saying
$$c_1 = 1$$
, $c_2 = 5$, $n_0 = 6$.

B: $1+n+\frac{n}{2}+\frac{n}{2}=2n+1=D(n)$

as
$$C, n \leq 2n+1 \leq C_2 n$$
 for all $n \geq n_0$

when saying $C_1 = |C_2 = 4 \quad n_0 = |$

C:

$$1 + \frac{(n+1)n}{2} + n+1 = \frac{1}{2}n^2 + \frac{3}{2}n+2 = \Theta(n^2)$$

as $C_1 n^2 \leq \frac{1}{2} n^2 + \frac{3}{2} n + 2 \leq C_2 n^2$ for all nan.

when saying
$$c_1 = \frac{1}{4}$$
, $c_2 = 8$ $n_0 = 8$.

- 1. True because O(sn) = O(n)
- 2. False select $N = O(n^2)$ thus $2N = \omega(n)$ is false because $\lim_{n \to \infty} \frac{2n}{n} = 2 \neq 0$
- 3. True because $n \log n \le 3n \log n + 0 \le 10n \log n$ when $n \ge 10$

The O(a) describe an upper bound but 'at least' describe A's lower bound without upper bound, which means A has no lower or upper bound from the sentence that is meaningless.

Q2.5

$$\theta(n) \cdot \theta(n) \cdot (\theta(i) + \theta(n)) = \theta(n) \cdot \theta(n) \cdot \theta(n)$$

$$= \theta(n^3)$$