2021 年春 群与代数表示论 期末考试卷 (闭卷)

姓名: _____

学号: _____

(本卷中, F 为域, 群均为有限群, 表示 (模) 均为有限维表示 (左模)。 值 120 分, 卷面成绩超过 100 按 100 算。需要有详细解题过程。)	题目分
(2) 试确定 G 在 5 元域 \mathbb{Z}_5 上的所有不可约表示及 \mathbb{Z}_5 -特征标表;	(6') (7') (7')
 2. 设 G 是四元数群。 (1) 试确定 G 的所有一次不可约复表示; (8') (2) 试利用行、列正交关系确定 G 的复特征标表。 (7') 	
3. 设 $A = \begin{pmatrix} F & F \\ F & F \end{pmatrix}$ 是 F 上的 2 阶全矩阵代数. (1) 证明: A 是单代数; (5') (2) 试确定代数 A 上的所有单模、不可分解投射模和不可分解内射模(在同构
意义下); (5') (3) 考察 A 的子代数 $B = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. 试确定 B 上的所有单模、不可分射模和不可分解内射模(在同构意义下). (10')	分解投
4. (15') 设 H 是群 G 的子群, $M\in FG\text{-mod},N\in FH\text{-mod}.$ 证明:有性空间同构 $\operatorname{Hom}_{FG}(M,N^G)\simeq\operatorname{Hom}_{FH}(M,N).$	Ĩ F-线
5. 令 $G = \langle \sigma, \tau \sigma^7 = \tau^3 = 1, \tau \sigma = \sigma^2 \tau \rangle$. (1) 证明: G 是 Frobenius 群; (10') (2) 试确定 G 的所有不可约复表示. (10')	
6. 定义 \mathbb{C} -代数 $U = \mathbb{C}\langle e, f, h \rangle / \langle he - eh - 2e, hf - fh + 2f, ef - fe - h \rangle$. 为复数域上二元多项式环 $\mathbb{C}[x, y]$. (1) 证明: (V, ρ) 是 U 的一个表示,其中 $\rho(e) = x \frac{\partial}{\partial y}, \rho(y) = y \frac{\partial}{\partial x}, \rho(h) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}.$. 令 V