Chapter 2.1: Introduction

Geerten Koers

Reading group Weak Convergence and Empirical Processes

2019-10-07

Outline

- Empirical processes
- 2 Limit distributions
- 3 Entropy
- Glivenko-Cantelli and Donsker classes
- **5** VC-classes
- **6** Miscellaneous
- Maximal Inequalities

Empirical measures

Definition

The *empirical measure* is defined by

$$\mathbb{P}_n(C) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in C)$$

for $C \subset X$.

Empirical measures

Definition

The empirical measure is defined by

$$\mathbb{P}_n(C) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in C)$$

for $C \subset X$.

This induces the map

$$f \mapsto \mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(X_i),$$

for any $f: X \to \mathbb{R}$.

Empirical process

Definition

The *empirical process* \mathbb{G}_n is defined by

$$f \mapsto \mathbb{G}_n f = \frac{1}{\sqrt{n}} \sum_{i=1}^n (f(X_i) - Pf)$$

with $Pf = \int f dP$.

For a fixed $f: \mathcal{X} \to \mathbb{R}$ we have

$$\mathbb{P}_n f \to P f,$$
 $\mathbb{G}_n \leadsto N(0, P(f - P f)^2)$

if $P|f| < \infty$ and $Pf^2 < \infty$.

For a fixed $f: X \to \mathbb{R}$ we have

$$\mathbb{P}_n f \to P f,$$
 $\mathbb{G}_n \leadsto N(0, P(f - P f)^2)$

if $P|f| < \infty$ and $Pf^2 < \infty$.

For what $\mathcal{F} \subset \mathbb{R}^{\chi}$ can we make these limits uniform?

Uniform convergence

Definition

For a measure Q on X, define

$$||Q||_{\mathcal{F}} := \sup\{|Qf| : f \in \mathcal{F}\}.$$

Uniform convergence

Definition

For a measure Q on χ , define

$$||Q||_{\mathcal{F}} := \sup\{|Qf| : f \in \mathcal{F}\}.$$

Definition

If $\|\mathbb{P}_n - P\|_{\mathcal{F}} \to 0$ in outer probability, then \mathcal{F} is called *Glivenko-Cantelli*.

Uniform convergence

Definition

For a measure Q on χ , define

$$||Q||_{\mathcal{F}} := \sup\{|Qf| : f \in \mathcal{F}\}.$$

Definition

If $\|\mathbb{P}_n - P\|_{\mathcal{F}} \to 0$ in outer probability, then \mathcal{F} is called *Glivenko-Cantelli*.

$$\sup \left\{ \frac{1}{n} \left| \sum_{i=1}^{n} f(X_i) - Pf(X_1) \right| : f \in \mathcal{F} \right\} \to 0.$$

Assume

$$\sup_{f\in\mathcal{F}}|f(x)-Pf|<\infty.$$

Now $\{\mathbb{G}_n f: f\in\mathcal{F}\}$ is a map into $\ell^{\infty}(\mathcal{F})$.

Assume

$$\sup_{f\in\mathcal{F}}|f(x)-Pf|<\infty.$$

Now $\{G_n f : f \in \mathcal{F}\}$ is a map into $\ell^{\infty}(\mathcal{F})$.

Definition

If

$$\mathbb{G}_n \leadsto \mathbb{G}$$

for a tight Borel measurable element $\mathbb{G} \in \ell^{\infty}(\mathcal{F})$, then \mathcal{F} is called a *P-Donsker class*.

Assume

$$\sup_{f\in\mathcal{F}}|f(x)-Pf|<\infty.$$

Now $\{\mathbb{G}_n f : f \in \mathcal{F}\}$ is a map into $\ell^{\infty}(\mathcal{F})$.

Definition

If

$$\mathbb{G}_n \leadsto \mathbb{G}$$

for a tight Borel measurable element $\mathbb{G} \in \ell^{\infty}(\mathcal{F})$, then \mathcal{F} is called a *P-Donsker class*.

G is a centered Gaussian process with covariance

$$\mathbb{EG}f_1\mathbb{G}f_2 = Pf_1f_2 - Pf_1Pf_2.$$

Technicality

We define the X_i on the product space $(\chi^{\infty}, \mathcal{B}^{\infty}, P^{\infty})$. This is possible since the projection on χ^n is perfect.

Definition (2.1.5)

Definition (2.1.5)

Definition (2.1.5)

Definition (2.1.5)

Definition (2.1.6)

The *bracketing number* $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$ is the mimimum number of brackets $[l, u] := \{g \in \mathcal{F} : l \leq g \leq u\}$ with $\|u - l\| < \epsilon$ such that \mathcal{F} is covered.

The *entropy with bracketing* is $\log N_{||}(\epsilon, \mathcal{F}, || \cdot ||)$.

Definition (2.1.6)

The *bracketing number* $N_{[]}(\epsilon, \mathcal{F}, \|\cdot\|)$ is the mimimum number of brackets $[l, u] := \{g \in \mathcal{F} : l \leq g \leq u\}$ with $\|u - l\| < \epsilon$ such that \mathcal{F} is covered.

The *entropy with bracketing* is $\log N_{[]}(\epsilon, \mathcal{F}, ||\cdot||)$.

Figure: Lower and upper bounds on sine functions.

Relation between coverings

For norms such that $|f| \le |g|$ implies $||f|| \le ||g||$, we have

$$N(\epsilon, \mathcal{F}, \|\cdot\|) \leq N_{[]}(2\epsilon, \mathcal{F}, \|\cdot\|).$$

Relation between coverings

For norms such that $|f| \le |g|$ implies $||f|| \le ||g||$, we have

$$N(\epsilon, \mathcal{F}, \|\cdot\|) \leq N_{||}(2\epsilon, \mathcal{F}, \|\cdot\|).$$

• There is no general reverse inequality.

Relation between coverings

For norms such that $|f| \le |g|$ implies $||f|| \le ||g||$, we have

$$N(\epsilon, \mathcal{F}, \|\cdot\|) \leq N_{||}(2\epsilon, \mathcal{F}, \|\cdot\|).$$

- There is no general reverse inequality.
- For the uniform norm, this is an equality.

Entropy and envelopes

Definition

An *envelope function* for a class \mathcal{F} is a function $F : \mathcal{X} \to \mathbb{R}$ with $|f(x)| \leq F(x)$ for all $x \in \mathcal{X}$, $f \in \mathcal{F}$.

Entropy and envelopes

Definition

An *envelope function* for a class \mathcal{F} is a function $F : \mathcal{X} \to \mathbb{R}$ with $|f(x)| \leq F(x)$ for all $x \in \mathcal{X}$, $f \in \mathcal{F}$.

Definition

The uniform entropy numbers are defined as

$$\sup_{Q} \log N(\epsilon ||F||_{Q,r}, \mathcal{F}, L_r(Q)),$$

with the supremum over all probability measures Q on (X, A) with $0 < QF^r < \infty$.

2.4: Glivenko-Cantelli classes

Theorem

 \mathcal{F} is a P-Glivenko-Cantelli class if

$$N_{||}(\epsilon, \mathcal{F}, L_1(P)) < \infty$$
, for all $\epsilon > 0$.

This is a corollary of Theorem 2.4.3.

2.4: Glivenko-Cantelli Theorems

Theorem (2.4.3)

 \mathcal{F} is a P-Glivenko-Cantelli class if

$$\sup_{Q} N(\epsilon ||F||_{Q,1}, \mathcal{F}, L_1(Q)) < \infty, \quad \text{for all } \epsilon > 0$$

with $P^*F < \infty$ and

$$(X_1,\ldots,X_n)\mapsto \left\|\sum_{i=1}^n e_i f(X_i)\right\|_{\mathcal{F}}$$

is measurable in the completion of (X^n, A^n, P^n) for every vector $(e_1, \ldots, e_n) \in \mathbb{R}^n$.

Symmetrization

The measurability of

$$(X_1,\ldots,X_n)\mapsto \left\|\sum_{i=1}^n e_i f(X_i)\right\|_{\mathcal{F}}$$

is needed for the bound

$$\mathbb{E}^*\Phi\left(\|\mathbb{P}_n - P\|_{\mathcal{F}}\right) \leq \mathbb{E}^*\Phi\left(2\|\mathbb{P}_n^o\|_{\mathcal{F}}\right)$$
,

with $\Phi: \mathbb{R} \to \mathbb{R}$ nondecreasing, convex,

Symmetrization

The measurability of

$$(X_1,\ldots,X_n)\mapsto \left\|\sum_{i=1}^n e_i f(X_i)\right\|_{\mathcal{F}}$$

is needed for the bound

$$\mathbb{E}^*\Phi\left(\|\mathbb{P}_n - P\|_{\mathcal{F}}\right) \leq \mathbb{E}^*\Phi\left(2\|\mathbb{P}_n^o\|_{\mathcal{F}}\right)$$
,

with $\Phi: \mathbb{R} \to \mathbb{R}$ nondecreasing, convex, and

$$\mathbb{P}_n^o f = \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i),$$

where
$$\mathbb{P}(\epsilon_1 = 1) = \mathbb{P}(\epsilon_1 = -1) = \frac{1}{2}$$
.

2.5: Donsker Theorems

Theorem

 \mathcal{F} is a P-Donsker class if

$$\int_0^\infty \sqrt{\log N_{[]}(\epsilon, \mathcal{F}, L_2(P))} \ d\epsilon < \infty.$$

2.5: Donsker Theorems

Theorem

 \mathcal{F} is a P-Donsker class if

$$\int_0^\infty \sqrt{\log N_{[]}(\epsilon, \mathcal{F}, L_2(P))} \ d\epsilon < \infty.$$

Theorem (2.5.2)

 \mathcal{F} is a P-Donsker class if

$$\int_0^\infty \sup_{Q} \sqrt{\log N(\epsilon ||F||_{Q,2}, \mathcal{F}, L_2(Q))} \ d\epsilon < \infty$$

for all P such that $P^*F^2 < \infty$. The supremum is taken over all finitely discrete probability measures Q on (X, A) with $\int F^2 dQ > 0$.

Definition

 $C \subset \mathcal{P}(X)$ *picks out* a subset A of $\{x_1, \ldots, x_n\} \subseteq X$ if there is a $C \in C$ such that $A = \{x_1, \ldots, x_n\} \cap C$.

Definition

 $\mathcal{C} \subset \mathcal{P}(\mathcal{X})$ *picks out* a subset A of $\{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ if there is a $C \in \mathcal{C}$ such that $A = \{x_1, \ldots, x_n\} \cap C$.

Definition

C shatters $\{x_1, \ldots, x_n\}$ if C picks out every $A \subseteq \{x_1, \ldots, x_n\}$.

Definition

 $\mathcal{C} \subset \mathcal{P}(\mathcal{X})$ *picks out* a subset A of $\{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ if there is a $C \in \mathcal{C}$ such that $A = \{x_1, \ldots, x_n\} \cap C$.

Definition

C shatters $\{x_1, \ldots, x_n\}$ if C picks out every $A \subseteq \{x_1, \ldots, x_n\}$.

Definition

The *VC-index* V(C) is the smallest n such that for all $B \subseteq X$ with $|B| \ge n$, C does not shatter B.

Definition

 $\mathcal{C} \subset \mathcal{P}(\mathcal{X})$ *picks out* a subset A of $\{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ if there is a $C \in \mathcal{C}$ such that $A = \{x_1, \ldots, x_n\} \cap C$.

Definition

C shatters $\{x_1, \ldots, x_n\}$ if C picks out every $A \subseteq \{x_1, \ldots, x_n\}$.

Definition

The *VC-index* V(C) is the smallest n such that for all $B \subseteq X$ with $|B| \ge n$, C does not shatter B.

Definition

A collection of measurable sets C is a VC-class if $V(C) < \infty$.

2.6: VC-Classes and Covering Numbers

A VC-class picks out $O(n^{V(\mathcal{C})-1})$ **subsets of** $\{x_1, \ldots, x_n\}$ **if** $n \geq V(\mathcal{C})$.

2.6: VC-Classes and Covering Numbers

A VC-class picks out $O(n^{V(\mathcal{C})-1})$ subsets of $\{x_1, \ldots, x_n\}$ if $n \geq V(\mathcal{C})$.

"Some thought shows that the number of subsets picked out (...) is closely related to the covering numbers (...)".

2.6: VC-Classes and Covering Numbers

A VC-class picks out $O(n^{V(\mathcal{C})-1})$ **subsets of** $\{x_1, \ldots, x_n\}$ **if** $n \geq V(\mathcal{C})$.

"Some thought shows that the number of subsets picked out (...) is closely related to the covering numbers (...)".

Theorem (2.6.4)

There exists a universal K such that for all VC-classes C and measures Q,

$$N(\epsilon, \mathcal{C}, L_r(Q)) \leq KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}$$

for all $r \ge 1$ and $0 < \epsilon < 1$.

2.6: VC-Classes and Covering Numbers

A VC-class picks out $O(n^{V(\mathcal{C})-1})$ **subsets of** $\{x_1, \ldots, x_n\}$ **if** $n \geq V(\mathcal{C})$.

"Some thought shows that the number of subsets picked out (...) is closely related to the covering numbers (...)".

Theorem (2.6.4)

There exists a universal K such that for all VC-classes C and measures Q,

$$N(\epsilon, \mathcal{C}, L_r(Q)) \leq KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}$$

for all $r \ge 1$ and $0 < \epsilon < 1$.

This thought requires 2.5 pages.

2.6: VC-classes of Functions

Definition

A general \mathcal{F} is called a VC-subgraph class if the collection of all subgraphs

$$\{(x,t) \in \mathcal{X} \times \mathbb{R} : t \le f(x)\}$$

of $f \in \mathcal{F}$ is a VC-class in $\mathcal{X} \times \mathbb{R}$.

2.6: VC-classes of Functions

Definition

A general \mathcal{F} is called a VC-subgraph class if the collection of all subgraphs

$$\{(x,t) \in \mathcal{X} \times \mathbb{R} : t \le f(x)\}$$

of $f \in \mathcal{F}$ is a VC-class in $\mathcal{X} \times \mathbb{R}$.

If \mathcal{F} is a VC-subgraph class, it is a Glivenko-Cantelli and Donsker class.

2.7: Bracketing Numbers

Classes of smooth functions have nice entropy properties.

 $C_1^{\alpha}(\chi)$ is (roughly) the set of functions on $\chi \subseteq \mathbb{R}^d$ with uniformly bounded partial derivatives up to order α .

2.7: Bracketing Numbers

Classes of smooth functions have nice entropy properties.

 $C_1^{\alpha}(X)$ is (roughly) the set of functions on $X \subseteq \mathbb{R}^d$ with uniformly bounded partial derivatives up to order α .

Theorem (2.7.1 and 2.7.2)

$$\log N(\epsilon, C_1^{\alpha}(X), \|\cdot\|_{\infty}) \leq K\epsilon^{-d/\alpha},$$

and

$$\log N_{[]}(\epsilon, C_1^{\alpha}(\chi), L_r(Q)) \leq K\epsilon^{-d/\alpha}.$$

2.7: Bracketing Numbers

Classes of smooth functions have nice entropy properties.

 $C_1^{\alpha}(X)$ is (roughly) the set of functions on $X \subseteq \mathbb{R}^d$ with uniformly bounded partial derivatives up to order α .

Theorem (2.7.1 and 2.7.2)

$$\log N(\epsilon, C_1^{\alpha}(\chi), \|\cdot\|_{\infty}) \leq K\epsilon^{-d/\alpha},$$

and

$$\log N_{[]}(\epsilon, C_1^{\alpha}(\chi), L_r(Q)) \leq K\epsilon^{-d/\alpha}.$$

Theorem (2.7.5)

The class \mathcal{F} *of monotone functions* $f: \mathbb{R} \to [0,1]$ *satisfies*

$$\log N_{[]}(\epsilon, \mathcal{F}, L_r(Q)) \leq K\epsilon^{-1}.$$

2.8: Uniformity in the Underlying Distribution

Some results can be stated uniformly in the distribution of the X_i 's.

2.8: Uniformity in the Underlying Distribution

Some results can be stated uniformly in the distribution of the X_i 's.

Theorem (2.8.1)

Let \mathcal{F} be a P-measurable class of functions on a measurable space for every probability measure P in a class \mathcal{P} . Suppose that, for some measurable envelope function F,

$$\lim_{M\to\infty} \sup_{P\in\mathcal{P}} PF\{F>M\} = 0,$$

$$\sup_{Q\in\mathcal{Q}_n} \log N(\epsilon ||F||_{Q,1}, \mathcal{F}, L_1(Q)) = o(n), \qquad \textit{for every } \epsilon > 0,$$

where the supremum is taken over the set Q_n of all discrete probability measures with atoms of size integer multiples of 1/n. Then \mathcal{F} is Glivenko-Cantelli uniformly in $P \in \mathcal{P}$.

2.8: Uniformity in the Underlying Distribution

Theorem (2.8.2)

Let \mathcal{F} be a class of measurable functions with envelope function F that is square integrable uniformly in $P \in \mathcal{P}$. Then the following statements are equivalent:

- **①** \mathcal{F} is Donsker and pre-Gaussian, both uniformly in $P \in \mathcal{P}$;
- the sequence $G_{n,P}$ is asymptotically ρ_P -equicontinuous uniformly in $P \in \mathcal{P}$ and $\sup_{P \in \mathcal{P}} N(\epsilon, \mathcal{F}, \rho_P) < \infty$ for every $\epsilon > 0$.

2.9: Multiplier Central Limit Theorem

When are the following equivalent:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n(\delta_{X_i}-P)\leadsto\mathbb{G},$$

and

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n \xi_i(\delta_{X_i}-P) \leadsto \mathbb{G},$$

with convergence in $\ell^{\infty}(\mathcal{F})$.

2.9: Multiplier Central Limit Theorem

When are the following equivalent:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n(\delta_{X_i}-P)\leadsto\mathbb{G},$$

and

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n \xi_i(\delta_{X_i}-P) \leadsto \mathbb{G},$$

with convergence in $\ell^{\infty}(\mathcal{F})$.

Theorem

If ξ_i are i.i.d. with zero mean and variance 1, and

$$\|\xi_1\|_{2,1} = \int_0^\infty \sqrt{P(|\xi_1| > t)} dt < \infty,$$

then it is equivalent to the \mathcal{F} being Donsker.

If \mathcal{F} and \mathcal{G} are Donsker, then so are

• The convex hull of \mathcal{F} ;

If \mathcal{F} and \mathcal{G} are Donsker, then so are

- The convex hull of \mathcal{F} ;
- **2** $\{\phi(f_1,\ldots,f_k), f_i \in \mathcal{F}\}\$ if ϕ is a Lipschitz function on \mathbb{R}^k ;

If \mathcal{F} and \mathcal{G} are Donsker, then so are

- The convex hull of \mathcal{F} ;
- **②** $\{\phi(f_1,\ldots,f_k),f_i\in\mathcal{F}\}$ if ϕ is a Lipschitz function on \mathbb{R}^k ;
- \bullet $\mathcal{F} + \mathcal{G}$, $\mathcal{F} \wedge \mathcal{G}$, and $\mathcal{F} \cup \mathcal{G}$;

If \mathcal{F} and \mathcal{G} are Donsker, then so are

- The convex hull of \mathcal{F} ;
- **②** $\{\phi(f_1,\ldots,f_k),f_i\in\mathcal{F}\}$ if ϕ is a Lipschitz function on \mathbb{R}^k ;
- \bullet $\mathcal{F} + \mathcal{G}$, $\mathcal{F} \wedge \mathcal{G}$, and $\mathcal{F} \cup \mathcal{G}$;
- \mathcal{FG} and \mathcal{F}/\mathcal{G} if they are uniformly bounded from above, or uniformly bounded away from zero.

2.11: Central limit theorem for Processes

We can extend the Donsker theorem to sums of independent, but not identically distributed processes $\sum_{i=1}^{n} Z_{n,i}$.

2.12: Partial-Sum Processes

For $s \in [0, 1]$, consider

$$\mathbb{Z}_n(s,f) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} (f(X_i) - Pf).$$

2.12: Partial-Sum Processes

For $s \in [0, 1]$, consider

$$\mathbb{Z}_n(s,f) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} (f(X_i) - Pf).$$

It converges in $\ell^{\infty}([0,1] \times \mathcal{F})$ to a tight limit if and only if \mathcal{F} is Donsker.

2.12: Partial-Sum Processes

For $s \in [0, 1]$, consider

$$\mathbb{Z}_n(s,f) = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor ns \rfloor} (f(X_i) - Pf).$$

It converges in $\ell^{\infty}([0,1] \times \mathcal{F})$ to a tight limit if and only if \mathcal{F} is Donsker.

It converges to the centered process \mathbb{Z} with

$$\mathbf{cov}(\mathbb{Z}(s,f),\mathbb{Z}(t,g)) = (s \wedge t)(Pfg - PfPg).$$

2.13: Other Donsker Classes

Theorem (2.13.1)

Any sequence $\{f_i\}$ of square-integrable, measurable functions with $\sum_{i=1}^{\infty} P(f_i - Pf_i)^2 < \infty$ is P-Donsker.

2.13: Other Donsker Classes

Theorem (2.13.1)

Any sequence $\{f_i\}$ of square-integrable, measurable functions with $\sum_{i=1}^{\infty} P(f_i - Pf_i)^2 < \infty$ is P-Donsker.

Theorem (2.13.2)

Let $\{f_i\}$ be a sequence of measurable functions such that $Pf_if_j = 0$ for every $i \neq j$ and $\sum_{i=1}^{\infty} Pf_i^2 < \infty$. Then the class of all pointwise converging series $\sum_{i=1}^{\infty} c_i f_i$, such that $\sum_{i=1}^{\infty} c_i^2 \leq 1$, is P-Donsker.

By Kolmogorov's Extension Theorem, there always exists a zero-mean Gaussian process $\{\mathbb{G}f: f\in\mathcal{F}\}$ with covariance function

$$\mathbb{EG}f_1\mathbb{G}f_2 = Pf_1f_2 - Pf_1Pf_2.$$

By Kolmogorov's Extension Theorem, there always exists a zero-mean Gaussian process $\{\mathbb{G}f:f\in\mathcal{F}\}$ with covariance function

$$\mathbb{EG}f_1\mathbb{G}f_2 = Pf_1f_2 - Pf_1Pf_2.$$

 ${\mathcal F}$ is pre-Gaussian if G is a tight, Borel measurable map into $\ell^\infty({\mathcal F}).$

Pre-Gaussianity is necessary for being Donsker, but not sufficient.

Pre-Gaussianity is necessary for being Donsker, but not sufficient. \mathcal{F} is Donsker if and only if

$$\lim_{\delta \searrow 0} \limsup_{n \to \infty} \mathbb{P}^* \left(\sup_{\rho_P(f-g) < \delta} |\mathbb{G}_n(f-g)| > \epsilon \right) = 0,$$

and \mathcal{F} is totally bounded in $\mathcal{L}_2(P)$.

Pre-Gaussianity is necessary for being Donsker, but not sufficient. \mathcal{F} is Donsker if and only if

$$\lim_{\delta \searrow 0} \limsup_{n \to \infty} \mathbb{P}^* \left(\sup_{\rho_P(f-g) < \delta} |\mathbb{G}_n(f-g)| > \epsilon \right) = 0,$$

and \mathcal{F} is totally bounded in $\mathcal{L}_2(P)$.

Here

$$\rho_P(f) = (P(f - Pf)^2)^{1/2}.$$

2.1.1: If \mathcal{F} is totally bounded in $L_2(P)$, then it is totally bounded for the seminorm ρ_P . If \mathcal{F} is totally bounded for ρ_P and $\|P\|_{\mathcal{F}} = \sup\{|Pf| : f \in \mathcal{F}\}$ is finite, then it is totally bounded in $L_2(P)$.

2.1.2: Suppose $\sup\{|Pf|: f \in \mathcal{F}\}$ is finite. Then a class \mathcal{F} of measurable functions is P-Donsker if and only if \mathcal{F} is totally bounded in $L_2(P)$ and the empirical process is asymptotically equicontinuous in probability for the $L_2(P)$ -semimetric.

2.1.5: If $a_n : [0,1] \to [0,\infty)$ is a sequence of nondecreasing functions, then there exist $\delta_n \searrow 0$ such that $\limsup a_n(\delta_n) = \lim_{\delta \to 0} \limsup \sup_{n \to \infty} a_n(\delta)$.

2.1.5: If $a_n : [0,1] \to [0,\infty)$ is a sequence of nondecreasing functions, then there exist $\delta_n \searrow 0$ such that $\limsup a_n(\delta_n) = \lim_{\delta \to 0} \limsup \sup_{n \to \infty} a_n(\delta)$.

Deduce that $\lim_{\delta \to 0} \limsup_{n \to \infty} a_n(\delta) = 0$ if and only if $a_n(\delta_n) \to 0$ for every $\delta_n \to 0$.

Chapter 2.1: Introduction

Geerten Koers

Reading group Weak Convergence and Empirical Processes

2019-10-07

Chapter 2.2: Maximal Inequalities

Geerten Koers

Reading group Weak Convergence and Empirical Processes

2019-10-07

Orlicz norm

Definition

The Orlicz norm is defined as

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\},$$

with ψ non-decreasing, convex and $\psi(0) = 0$.

Orlicz norm

Definition

The Orlicz norm is defined as

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\},$$

with ψ non-decreasing, convex and $\psi(0) = 0$.

• If $\psi(x) = x^p$, then $||X||_{\psi} = ||X||_p = (E|X|^p)^{1/p}$, $p \ge 1$.

Definition

The Orlicz norm is defined as

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\},$$

with ψ non-decreasing, convex and $\psi(0) = 0$.

- If $\psi(x) = x^p$, then $||X||_{\psi} = ||X||_p = (E|X|^p)^{1/p}$, $p \ge 1$.

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\}$$

is indeed a norm:

• $||X||_{\psi} \geq 0$;

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\}$$

is indeed a norm:

- $||X||_{\psi} \geq 0;$

$$||X||_{\psi} = \inf \left\{ C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1 \right\}$$

is indeed a norm:

- $||X||_{\psi} \geq 0$;
- **1** $||X||_{\psi} = 0$ if and only if X = 0 a.s.;

$$\|X\|_{\psi} = \inf\left\{C > 0 : \mathbb{E}\psi\left(\frac{|X|}{C}\right) \le 1\right\}$$

is indeed a norm:

- $||X||_{\psi} \geq 0$;
- **1** $||X||_{\psi} = 0$ if and only if X = 0 a.s.;

Exponential norms give better bounds than L_p -norms:

• $||X||_{\psi_p} \le ||X||_{\psi_q} (\log 2)^{p/q}, \quad p \le q$,

Exponential norms give better bounds than L_p -norms:

Bound on norm

Lemma (2.2.1)

If for all $x \ge 0$, $\mathbb{P}(|X| > x) \le Ke^{-Cx^p}$ for some constants K and C, then

$$||X||_{\psi_p} \leq ((1+K)/C)^{1/p}.$$

Bound on norm

Lemma (2.2.1)

If for all $x \ge 0$, $\mathbb{P}(|X| > x) \le Ke^{-Cx^p}$ for some constants K and C, then

$$||X||_{\psi_p} \le ((1+K)/C)^{1/p}.$$

This follows from

$$\mathbb{E}(e^{D|X|^{p}}-1) = \mathbb{E}\int_{0}^{|X|^{p}} De^{Ds} ds = \int_{0}^{\infty} \mathbb{P}(|X| > s^{1/p}) De^{Ds} ds.$$

Theorem (2.2.2)

Assume ψ is a convex, nondecreasing, nonzero function, with $\psi(0) = 0$ and such that $\limsup_{x,y\to\infty} \psi(x)\psi(y)/\psi(cxy) < \infty$ for some $c \in \mathbb{R}$. Then we have

$$\left\| \max_{1 \le i \le m} X_i \right\|_{\psi} \le K\psi^{-1}(m) \max_{1 \le i \le m} \|X_i\|_{\psi},$$

for K depending only on ψ .

Theorem (2.2.4)

Assume that ψ satisfies the previous conditions. Then for any $\eta, \delta > 0$, we have

$$\left\| \sup_{d(s,t) \le \delta} |X_s - X_t| \right\|_{\psi} \le K \left[\int_0^{\eta} \psi^{-1}(N(\epsilon,d)) d\epsilon + \delta \psi^{-1}(N^2(\eta,d)) \right],$$

with $d(s,t) = ||X_s - X_t||_{\psi}$.

Definition

If the ψ_2 -norms of $X_s - X_t$ are finite, then $\{X_t : t \in T\}$ is *sub-Gaussian*.

Definition

If the ψ_2 -norms of $X_s - X_t$ are finite, then $\{X_t : t \in T\}$ is *sub-Gaussian*.

This happens if and only if

$$\mathbb{P}(|X_s - X_t| > x) \le 2e^{-\frac{1}{2}x^2/d^2(s,t)}, \quad x > 0.$$

Definition

If the ψ_2 -norms of $X_s - X_t$ are finite, then $\{X_t : t \in T\}$ is *sub-Gaussian*.

This happens if and only if

$$\mathbb{P}(|X_s - X_t| > x) \le 2e^{-\frac{1}{2}x^2/d^2(s,t)}, \quad x > 0.$$

Now the equality in the theorem can be simplified to

$$\mathbb{E} \sup_{d(s,t)\leq \delta} |X_s - X_t| \leq K \int_0^{\delta} \sqrt{\log N(\epsilon, T, d)} \ d\epsilon.$$