Application No.: 10/658,791

Docket No.: 22129-00003-US2

## AMENDMENTS TO THE CLAIMS

- 1. (Original) A brazing sheet comprising an aluminum 3xxx series core alloy wherein at least one side thereof is provided with an aluminum clad material comprising from 0.7-2.0% Mn and 0.7-3.0% Zn, wherein said clad is capable of being used as the inner-liner of a heat exchanger tube product.
- 2. (Original) A brazing sheet of claim 1, wherein one side of said core is provided a material that comprises from 0.7-2.0% Mn and 0.7-3.0% Zn and the other side of said core is provided with an aluminum alloy comprising at least 5.5 % Si.
  - 3. canceled
  - 4. canceled
- 5. (Original) A heat exchanger tube prepared from a brazing sheet according to claim 1.
  - 6. (Original) Tube stock prepared from a sheet according to claim 1.
- 7. (Original) A method for reducing corrosion and /or erosion associated with fluid velocity in the interior of heat exchange tubes comprising: obtaining a brazing sheet material that includes an inner clad layer including from 0.7 3.0% Zn and from 0.7 2.0% Mn and forming a heat exchanger tube wherein said inner clad is present on the interior of said heat exchanger tube.
- 8. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by maximum pit depth in microns for fluid velocity rates from 3.0-9.0 ft./sec.
- 9. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by average pit depth in microns for fluid velocity rates up to 10.0 m/sec (32 ft./sec.).

Application No.: 10/658,791

Docket No.: 22129-00003-US2

- 10. (Original) A method according to claim 7, wherein said method imparts a reduction from between 10% to 60% of the erosion/corrosion compared to AA7072 as measured by maximum pit depth in microns for fluid velocity rates up to 10 m/sec (32 ft./sec.).
- 11. (Original) A method according to claim 7, wherein said brazing sheet material includes an outer clad layer comprising at least 5.5% Si.
  - (Original) A heat exchanger prepared according to the method of claim 7.
  - 13. (Original) A heat exchanger prepared using a brazing sheet according to claim 1.
- 14. (Original) A brazing sheet according to claim 1 that has a thickness of 0.007" 0.015".
- 15. (Original) A heat exchanger according to claim 12, that has been formed from a brazing sheet having a size of 0.007" 0.015".
  - 16. canceled
- 17. (Original) A heat exchanger as claimed in claim 13, that shows substantially no difference in maximum and/or average pit depth after being exposed to fluid velocities from 3.0 9.0 ft./sec. for 250 hours.
- 18. (Original) Tube stock according to claim 6, wherein said tube stock will have a maximum pit depth of up to 40 microns when exposed to a fluid at a velocity of 7.75 ft./sec. for 250 hours.