

自动控制原理实验报告

院(系):智能工程学院 组务:第六组 组长:张瑞程

实验名称:一级倒立摆系统建模及稳定性分析、基于 Matlab 的一级倒立摆根轨迹校正、

PID 校正

一、实验目的

日期: 2024.12.19

1、了解一级倒立摆工作原理

2、建立一级倒立摆数学模型

3、掌握一级倒立摆的基本分析方法,并在 Matlab 中仿真验证

二、实验任务/要求:

1、一级倒立摆系统稳定性分析;

2、设计根轨迹校正环节使系统性能指标达到 t_s ≤1 秒, σ ≤10%;

3、设计 PID 校正环节使系统性能指标达到 t_s ≤1 秒, σ ≤10%。

三、实验仪器、设备及材料:

一级倒立摆本体、倒立摆电控箱、PC 机(Matlab 平台、运动控制卡)

四、实验原理

1、被控对象实体如下:

2、对整个系统进行建模和分析:

系统控制框图如下:

系统连接示意图如下:

直线一级倒立摆系统如下:

进行受力分析:

①对小车,水平方向: $F - F_x - f = M\ddot{x}$

②对摆杆,水平方向: $F_x = m \frac{d^2}{dt^2} (x - l sin\theta) = m \frac{d}{dt} (\dot{x} - l cos\theta \dot{\theta}) = m \ddot{x} + m l sin\theta \dot{\theta}^2 - m l cos\theta \dot{\theta}$

③对摆杆,垂直方向:
$$mg - F_y = m \frac{d^2}{dt^2}(lcos\theta) = m \frac{d}{dt}(-lsin\theta \dot{\theta}) = -mlcos\theta \dot{\theta}^2 - mlsin\theta \dot{\theta}$$

④摆杆力矩平衡: $I\ddot{\theta} = F_y l sin\theta + F_x l cos\theta$

由于控制的目的是保持倒立摆直立,摆杆允许转动的的转角一般较小,可得到如下假设条件: $sin\theta=\theta,cos\theta=1$

$$F_{x} = m\ddot{x} + ml\sin\theta \,\dot{\theta}^{2} - ml\cos\theta \,\ddot{\theta}$$

$$mg - F_{y} = -ml\cos\theta \,\dot{\theta}^{2} - ml\sin\theta \,\ddot{\theta}$$

$$I\ddot{\theta} = F_{y}l\sin\theta + F_{x}l\cos\theta$$

$$F_{x} = m\ddot{x} + ml\theta \,\dot{\theta}^{2} - ml \,\ddot{\theta}$$

$$F_{y} = mg + ml \,\dot{\theta}^{2} + ml\theta \,\ddot{\theta}$$

$$I\ddot{\theta} = F_{y}l\theta + F_{x}l$$
(3)

把方程(1)、(2)带入到(3)中:

$$I\ddot{\theta} = (mg + ml\theta \, \ddot{\theta}) l\theta + (m\ddot{x} - ml \, \ddot{\theta}) l$$

= $mgl\theta + ml^2\theta^2 \, \ddot{\theta} + ml \, \ddot{x} - ml^2 \, \ddot{\theta}$

因 $I = \frac{1}{3}ml^2$,利用 $\theta^2 = 0$, $\dot{\theta}^2 = 0$ 将上式线性化:

故一阶倒立摆的数学模型:

$$\frac{4}{3}ml \, \ddot{\theta} - mg\theta = m\ddot{x}$$

代入 mg = 1.176, I = 0.188 实际数据后: $\ddot{\theta} - 29.4 \theta = 3\ddot{x}$ 定义:

输入信号: $R(t)= \ddot{x}(t)$ 输出信号: $C(t)=\theta(t)$

则系统传递函数:

G(s)=
$$\frac{C(s)}{R(s)} = \frac{3}{s^2 - 29.4}$$

五、实验步骤及结果

任务 1: 一级倒立摆系统稳定性分析

①在 MATLAB Simulink 中构建如图所示的系统仿真程序:

②加入阶跃信号,点击运行按钮,双击 Scope 块,得到系统仿真曲线,此时系统不稳定,发散。

任务 2: 一级倒立摆系统根轨迹校正 搭建如图所示的 simulink 仿真系统

改变控制器的增益把实验数据填入下表:

控制器形式及参数	增益(K)	超调量 σ	调节时 间 ts	系统是否稳定?
$k \frac{s + 5.4222}{s + 13.42}$	29	0	1.72s	稳定
	32	0.939%	0.83	稳定
	35	4.43%	1.05	稳定

三种增益对应的仿真曲线如下:

① K = 29

② K = 32

③K = 35

SIMULINK 仿真图

任务 3: 一级倒立摆系统 PID 校正 搭建如图所示的 simulink 仿真系统:

改变控制器的 PID 值,观察实验现象并把实验数据填入下表:

控制器参数	PID 参数	系统性能	响应曲线
$\frac{K_d s^2 + K_p s + K_i}{s}$	K_p = 500	调节时间: 0.25s	
	K_i = 2000	超调量: 6.2%	1
	K_d = 50		
	K_p = 600	调节时间: 0.222s	
	K_i = 2500	超调量: 5.23%	2
	K_d = 60	~ \ //	170
	K_p = 500	调节时间: 0.239s	D / T
	K_i = 2500	超调量: 6.37%	3
	K_d = 50		1/0

响应曲线如下:

2

六、实验心得

在本实验中,对于一阶倒立摆系统,其闭环传递函数的一个极点位于右半平面,并且闭环系统的根轨迹关于虚轴对称,无论根轨迹增益如何变化,闭环根总是位于正实轴或者虚轴上,即系统总是不稳定或临界稳定的。

在任务二中,对系统新增加一个开环零点和一个开环极点可以有效提高其稳定性。增加了一个开环零点,使闭环极点可以远离虚轴,同时在 K 增大时,β 先增大后减小,超调量先增大后减小,调整时间在 K 增大时也会减小,不改变系统型别,所以不改变系统稳定精度。在虚轴左侧增加一个零点,右侧两个主导极点在 k 增大时, 增大,超调量逐渐增大,距离虚轴距离基本不变,调节时间基本没有优化。系统型别发生变化,变为二阶系统,提高稳态精度。

在任务三中,PID 环节为系统增加了一个位于原点的极点,两个可变的零点。可以通过调整根轨迹增益使闭环极点位于开环左极点的左侧,并且尽量靠近负实轴,设计出快速性、稳定性均较好的系统。