Bachelorarbeit Medientechnologie

Effizientes und realistisches Partikelsystem zur Simulation von Feuer und Rauch in VR-Umgebung

vorgelegt von

Miro Steiger

Erstgutachter: Prof. Dr.-Ing. Arnulph Fuhrmann (Technische Hochschule Köln)

Zweitgutachter: Prof. Dr. rer. nat. Stefan Michael Grünvogel (Technische Hochschule Köln)

Köln, TT.MM.JJJJ

Fakultät für Informations-, Medienund Elektrotechnik

Bachelorarbeit I

Bachelorarbeit

Titel: Effizientes und realistisches Partikelsystem zur Simulation von Feuer und Rauch in VR-Umgebung

Gutachter:

- Prof. Dr. Arnulph Fuhrmann (TH Köln)
- Prof. Dr. rer. nat. Stefan Michael Grünvogel (TH Köln)

Zusammenfassung: Der Einsatz von Virtual Reality findet in immer mehr Bereichen seinen Nutzen. Die Technik wird stetig verbessert und es gibt keine überzeugendere Möglichkeit um den Nutzer in eine andere Realität zu versetzen. Im Bereich der Brandbekämpfung könnte die Technik eine sichere und kostengünstigere Alternative zu bestehenden Trainingsmethoden sein. Im Rahmen dieser Arbeit wird ein effizientes Partikelsystem in der Game-Engine Unity entwickelt, welches eine realistische Darstellung von Feuer und Rauch in VR ermöglicht.

Stichwörter: Virtual Reality, Partikelsystem, Volumen Rendering, Parallax Mapping, Echtzeitrendering

Datum:

Bachelors Thesis

Title: Efficient and realistic particle system to render fire and smoke in VR

Reviewers:

- Prof. Dr. Arnulph Fuhrmann (TH Köln)
- Prof. Dr. rer. nat. Stefan Michael Grünvogel (TH Köln)

Abstract: Virtual reality is being used in more and more areas. The technology is constantly being improved and there is no more convincing way to put the user into another reality. In the field of firefighting, the technique could be a safer and cheaper alternative to existing training methods. As part of this work, an efficient particle system is developed in the game engine unity, which creates a realistic representation of fire and smoke in VR.

Keywords: Virtual Reality, Particlesystem, Volume Rendering, Parallax Mapping, Real Time Rendering

Date:

Inhalt

Inhalt

1	Einle	Einleitung 1				
	1.1	Problem	1			
	1.2	Zielsetzung	1			
	1.3	Struktur der Arbeit	2			
2	Related Work					
	2.1	Partikelsysteme	3			
	2.2	Ray Marching	4			
3	Grui	ndlagen	4			
	3.1	Virtual Reality	4			
		3.1.1 Konzept	4			
		3.1.2 Stereoskopisches Sehen	5			
		3.1.3 Head-Mounted-Display	5			
	3.2	Feuer- und Rauchsimulationen	6			
		3.2.1 Partikelsysteme	6			
		3.2.2 Transparenz	6			
	3.3	Texture Mapping	6			
		3.3.1 Bump Mapping	6			
		3.3.2 Displacement Mapping	7			
		3.3.3 Parallax Mapping	7			
		3.3.4 Parallax Occlusion Mapping	7			
	3.4	Volume Rendering	7			
		3.4.1 Ray-Marching	7			
		3.4.2 Texturbasierte Volumen	7			
4	Hme	setzung	8			
4	4.1	Erstellung der Texturen				
		_				
		Unity (?)				
	4.3	Partikelsystem	8			
	4.4	Shader	8			
5		luierung der Methoden	9			
	5.1	Parallax Mapping	9			
	5.2	Ray Marching	9			
6	Erge	ebnisse	9			
	6.1	${\sf Zusammenfassung} \ \ldots \ $	9			
	6.2	Limitationen	9			
	6.3	Ausblick	9			
Quellenverzeichnis 1						
Eidesstattliche Erklärung 1						

Einleitung 1

1 Einleitung

Die Simulation von Feuer und Rauch ist ein viel diskutiertes Thema in der Computergrafik. Einerseits spielen diese besonders in Videospielen und Filmproduktionen eine außerordentlich große Rolle. Auf der anderen Seite helfen solche Simulationen auch im Bereich der Gefahrenbekämpfung und -vorbeugung. So kann eine realistische Feuersimulation dazu beitragen, einen Trainingssimulator für die Feuerwehr zu entwerfen [Schlager, 2017]. Der Nutzer kann dabei mithilfe von Head-Mounted-Displays in ein virtuelles Brandszenario versetzt werden, ohne dabei wirklichen Gefahren ausgesetzt zu sein. Eine solche Anwendung findet seinen Nutzen sowohl im Training von Einsatzkräften, als auch bereits bei der Entscheidung einem solchen Beruf nachzugehen. Hierbei gibt es verschiedenste Ansätze um ein künstliches erzeugtes Feuer auf einem Bildschirm anzeigen zu lassen. Eine gängige Methode für das Rendering von Gasen und Flüssigkeiten in Videospielen, in denen sich auch Feuer und Rauch aufgrund ihrer physikalischen Eigenschaften wiederfinden, sind der Einsatz von Partikelsystemen. Die physikalisch korrekte Simulation kann dabei, unter anderem mithilfe von Fluidsimulationen, sehr realitätsnah dargestellt werden. Auf realen physikalischen Eigenschaften basierdende Simulationen sind jedoch sehr aufwändig in der Berechnung und bisher kaum für die Echtzeitanwendung gedacht. Gerade in Virtual-Reality-Systemen, in denen die Performance extrem wichtig für das Nutzererlebnis sind, eignet sich die aufwändige Simulation von Fluiden aufgrund ihrer Performance nicht. Als Alternative haben sich hierfür eine Art von Partikelsystemen etabliert, welche sich anstatt der physikalisch korrekten Eigenschaften eher an einer optischen Illusion mithilfe animierter Texturen bedienen. Hierbei ist das Konzept des "Billboardingsëin weit verbreiteter und beliebter Ansatz, um realistischere Renderings der Partikel zu erzeugen. Diese bieten eine optisch überzeugende und dabei noch hocheffiziente Lösung.

1.1 Problem

Ein solches Partikelsystem, basierend auf Texturen, kann auf einem flachen Bildschirm realistisch und optisch überzeugend aussehen. In einer VR-Umgebung gerät diese Methode jedoch leider an seine Grenzen. Die Illusion basiert auf der Eigenschaft, dass die flachen Partikel immer zum Nutzer, also der Kamera ausgerichtet sind. Dadurch lässt sich nicht erkennen, dass lediglich flache Texturen zum Einsatz kommen. Die Partikel sehen voluminös aus und täuschen Tiefe vor. In VR-Anwendungen müssen jedoch immer zwei Bilder erzeugt werden, eins für jedes Auge. Dadurch, dass sich die flachen Billboards immer zur jeweiligen Kamera, bzw. zum Mittelpunkt zwischen beiden Augen orientieren, zerstört dies die Illusion und es lässt sich erkennen, dass die Partikel ihre Tiefe lediglich vortäuschen. So sieht ein Feuer-Parikelsystem, basierend auf Texturen, schnell sehr unecht aus und die Immersion ist gestört. Um in einem Traingsszenario der Feuerwehr jedoch einen wirklichen Nutzen zu finden, sollte das Feuer so realistisch wie möglich aussehen. Erst dann wird der Nutzer in eine echte Stresssituation versetzt und kann sich somit besser auf einen Einsatz in der realen Welt vorbereiten.

1.2 Zielsetzung

Ziel dieser Arbeit ist es, ein Partikelsystem zu entwickeln, welches alle Vorteile der Billboard-Technik nutzen kann, um auch in Virtual Reality-Umgebung ein realistisches Bild von Feuer und Einleitung 2

Rauch erzeugen zu können. Durch eine bessere, plausible Darstellung in der Stereo-Ansicht kann beim Nutzer ein realeres Gefühl von Gefahr hervorgerufen werden, welches den Trainingseffekt deutlich erhöhen kann. Dabei soll ein solches Partikelsystem in Unity entworfen werden, welches sowohl in der Stereoansicht funktioniert, als auch in Hinblick auf die benötigte Performance für VR-Renderings die Mindest-Framerate einhalten kann. Hierzu muss ein Shader für die Billboard-Partikel entworfen werden, welcher beide Augen berücksichtigt. Aufgrund der verscheidenen visuellen Eigenschaften und des Verhaltens von Feuer und Rauch müssen jeweils eigene Systeme konzipiert werden.

1.3 Struktur der Arbeit

2 Related Work 3

2 Related Work

Der Literaturteil ist das Kapitel Deiner Arbeit, in dem Du Deinen Prüfern zeigen kannst, dass Du die zentralen Autoren, Theorien und Konzepte eines Themenbereichs erarbeiten kannst, diese miteinander verknüpfen und auch einen soliden Überblick des Forschungsbereichs geben kannst.

Die Idee eines Einsatztrainings für die Brandbekämpfung in Virtual Reality ist nicht neu. Es gibt mit 'Serious Games' sogar eine eigene Kategorie, bei der es sich um Videospiele handelt, bei denen der Bildungsaspekt im Vordergrund steht. Es gibt auch in der Brandvorbeugung und -bekämpfung bereits einige Anwendungen, welche versuchen, sich die Möglichkeiten von VR zunutze zu machen. Das Ziel der Anwendungen ist dabei oft das selbe. Sowohl um die Einsatzkräfte in realistischen Szenarios zu trainieren, ohne dabei die physische Gesundheit der Personen aufs Spiel zu setzen, als auch die Umwelt und die finanziellen Mittel zu schonen.

2.1 Partikelsysteme

Für die Simulation von Feuer und Rauch werden in computergenerierten Welten aufgrund ihrer Performance seit vielen Jahren überwiegend Partikelsysteme benutzt. Partikelsysteme sind ein kostengünstige Lösung, was die Rechenzeit angeht und eignen sich daher um eben solche volumetrischen Effekte, die schwer zu modellieren und zu berechnen sind, in Echtzeitsystemen darzustellen zu können. Dies erzeugt auf flachen Bildschirmen die Illusion, dass diese Texturen keine flachen Bilder, sondern voluminös sind. Hierbei handelt es sich um Systeme von einzelnen Partikeln, welche über verschiedene Eigenschaften verfügen und diverse Formen annehmen können. Ein solches System kann Partikel in Form von beispielsweise Punkten, Linien, Sprites oder Meshes emitieren [Reeves, 1983].

In Schlager [2017] wurde bereits mithilfe von Partikelsystemen ein interaktiver Trainingssimulator für die Anwendung eines Feuerlöschers entwickelt. Der Nutzer lernt den korrekten Umgang mit einem Feuerlöscher und muss für die gegebenen Situationen aus verschiedenen Löschmitteln das jeweils am besten geeignete Mittel auswählen und den Brand löschen. Solche Trainings gibt es zwar bereits mit echtem Brand und Feuerlöschern, jedoch lernt der Nutzer hierbei nichts darüber, wie sich ein Feuer in Innenräumen verhält. Auch die Rauchentwicklung im Raum wird hier nicht weiter betrachtet. Der Fokus der Arbeit liegt hier auf der approximiert-realistischen Simulation der Ausbreitung des Feuers, basierend auf Daten des Fire Dynamics Simulators (FDS) [McGrattan und Forney, 2004]. FDS ist eine auf Computational Fluid Dynamics (CFD) basierende Open-Source Software vom National Institute of Standards and Technology (NIST). Brennbare Objekte werden durch ein Voxelgitter repräsentiert, in dem jedes Voxel Informationen wie Temperatur und Brennbarkeit beinhaltet. Bei Schlager liegt der Fokus nicht auf dem realistischen Rendering. In Hinblick auf die Performance kam Schlager zu dem Fazit, dass man einen Kompromiss zwischen realistischem Rendering und realitätsnahem Verhalten des Feuers finden muss.

2.2 Ray Marching

Partikelsysteme, basierend auf Billboards, haben das Problem der Darstellung in VR. Alle Vorteile, die diese Art von Partikelsystem mit sich bringt gehen durch stereoskopisches Rendering verloren, da die Partikel plötzlich flach aussehen oder sich zusammen mit der Bewegung des VR-Headset drehen und kippen können. Eine weitere Methode um solche volumetrischen Effekte zu rendern ist das Ray-Marching. Dieses bietet neben deutlich realistischeren Renderings den Vorteil, dass dieses auch in der Stereoansicht gut funktioniert und überzeugende Ergebnisse liefert [Wald et al., 2006]. Die Methode bietet jedoch den Nachteil einer aufwändigeren Berechnung und daher auch längeren Renderingzeiten. Es wurde außerdem bereits von [Zhang, 2020] versucht, die Charakteristiken von volumetrischen Effekten auf ein Billboard-System anzuwenden. Hierbei hängt die Real Time-Performance allerdings stark von der Komplexität der zu rendernden Szene ab.

3 Grundlagen

3.1 Virtual Reality

3.1.1 Konzept

Hinter dem Begriff Virtual Reality (VR) verbirgt sich das Konzept einer künstlichen, von Computern generierten Welt. Der Nutzer kann in diese Welt eintauchen und hat dabei die Möglichkeit sich als Betrachter in dieser Welt umzuschauen oder sogar mit dieser Welt zu interagieren. Das erste Konzept eines VR-Headsets mit Kopftracking wurde bereits in den 60er Jahren von Ivan Sutherland entworfen. [Sutherland, 1965, 1968]

Heutzutage gibt es verschiedene Arten von VR. Zum einen die "Non-immersive Virtual Reality". Hierbei steuert der Nutzer seine virtuelle Umgebung, ist sich dabei aber noch bewusst in welcher Realität er sich tatsächlich befindet. Die Interaktion geschieht üblicherweise durch Eingabegeräte wie Controller, Maus oder Tastatur. Ein weit verbreitetes Anwendungsgebiet sind dabei herkömmliche Videospiele. Gegenüberstehend gibt es dagegen die "Fully Immersive Virtual Reality". Hierbei wird der Nutzer durch spezielle Hardware, zum Beispiel mithilfe eines Head-Mounted-Displays (HMD), einem sogenannten VR-Headset, selbst in eine virtuelle dreidimensionale Umgebung versetzt. Durch visuelles, auditives und teilweise auch haptisches Feedback kann der Nutzer dabei immer weiter in die virtuelle Welt eintauchen. Auch hier verfügt der Nutzer über spezielle Eingabegeräte wie dem Headset, Controllern oder Laufbändern. Diese sind jedoch in ihrer Benutzung näher an der bekannten Realität. So kann sich der Nutzer zb. mit einer Kopfbewegung in der virtuellen Welt umsehen oder Dinge anfassen und mit diesen interagieren. Dieser Einfluss auf die Umgebung sorgt dafür, dass sich eine Simulation echter anfühlen kann.

Die Idee von Fully Immersive Virtual Realities baut dabei darauf auf, die Sinne des Nutzers so überzeugend zu täuschen, sodass dieser glaubt, er befinde sich in einer anderen Welt. Die nächste Stufe nach Immersion ist die Präsenz. Präsenz beschreibt hierbei das Gefühl, bzw. die Illusion, dass sich der Nutzer tatsächlich physisch in dieser computergenerierten Welt befindet und diese nicht mehr von seiner wirklichen Realität unterscheiden kann [Schuemie et al., 2001].

3.1.2 Stereoskopisches Sehen

Der Mensch ist ein visuell orientiertes Lebewesen. Daher ist der Einsatz einer VR-Brille einer der wichtigsten Faktoren um eine solche Illusion zu erzeugen. Der Eindruck von Raum und Tiefe wird dabei vom Gehirn erzeugt. Die Information dazu werden aus den Bildern beider Augen generiert. Das Gehirn hat einige Möglichkeiten sich ein Verständnis des Raumes zu entwickeln. Die Tiefenwahrnehmung wird mithilfe binokularer Disparität erzeugt. Dieser Begriff bezeichnet grob gesagt den kleinen, aber bedeutenden Unterschied zwischen den beiden einzelnen Bildern, welche von den Augen erzeugt werden. Daraus kann das Gehirn etwa abschätzen, wie weit ein Objekt entfernt ist. Diese Disparitäten entstehen durch Informationen wie Verdeckung, Schattenwurf oder die unterschiedlichen Orientierungen von Linien zwischen beiden Blickwinkeln. [Tauer, 2010] Mit Hilfe aller dieser Informationen entsteht ein räumlicher Eindruck. »GRAFIK VON STEREOVIEW MENSCH«

3.1.3 Head-Mounted-Display

Die meisten kommerziellen Systeme basieren heutzutage auf der Nutzung eines HMD. Diese können sowohl Bild, als auch Ton ausgeben. Für diese Arbeit ist jedoch nur die visuelle Komponente interessant. Ein HMD basiert auf zwei Displays, welche sich direkt vor den Augen des Nutzers befinden [Sutherland, 1968]. Diese Displays machen sich die Eigenschaften des menschlichen Sehens zunutze um die Illusion von Tiefe hervorzurufen. Auf jedem Display wird jeweils ein Bild gerendert, welches aus leicht verschobenen Positionen heraus berechnet wird. Dabei werden in der Software, anstatt der üblichen einzelnen Kamera für das Rendering, die Bilder von zwei virtuellen Kameras aufgenommen, welche die Abstände der beiden Augen simulieren [Gateau und Nash, 2010]. Dieser Abstand beträgt den durchschnittlichen Augenabstand eines Menschen. Normalerweise liegt dieser bei ca. 65mm.

Der Einsatz einer VR-Brille bringt einige technische Anforderungen mit sich, welche sich deutlich von denen eines herkömmlichen Monitors unterscheiden. Die empfohlenen Spezifikationen unterscheiden sich dabei je nach Art und Hersteller der Brille. Für die Implementierung und das Testing der Methoden dieser Arbeit wurde die HP Reverb G2 mit den folgenden Spezifikationen verwendet.

Bildschirm	$2 \times 2,89$ -Zoll-LCD
Auflösung	2160 x 2160 pro Auge 4320 x 2160 kombiniert
Field OF View	~114°
Bildrate	90Hz
Trackingarchitektur	6DoF
Augenabstand	64 mm +/- 4 mm durch Hardware Slider

Tabelle 1 HP Reverb G2 Spezifikationen und Anforderungen [HP Development Company, 2022]

3.2 Feuer- und Rauchsimulationen

3.2.1 Partikelsysteme

3.2.2 Transparenz

3.3 Texture Mapping

Texture Mapping bezeichnet ein Shading-Verfahren, welches zweidimensionale Texturen auf ein dreidimensionales Objekt abbildet. Um die flachen Texturen auf die Oberfläche des Meshs abbilden zu können, muss das Objekt 'UV-unwrapped' werden. Durch diesen Vorgang wird jedem Punkt auf der Oberfläche des Meshs ein Punkt auf der Textur zugewiesen [Catmull, 1974] [Blinn und Newell, 1976]. Ein sehr einfaches Beispiel zur Veranschaulichung ist dabei das Würfelnetz. » GRAFIK VON WÜRFELNETZ/UV-UNWRAPPING«

Texture Mapping sorgt dafür die Objekte 'anzumalen'. Reale Objekte haben oft sehr detaillierte Oberflächeneigenschaften und sind eigentlich niemals wirklich glatt. Geometrische Unebenheiten und Feinheiten, wie Kratzer, Rillen und Schmutz lassen sich zwar mithilfe von Texturen andeuten, jedoch bleibt die Oberfläche komplett glatt. Diese rauhen Oberflächen zu modellieren resultiert aber in einer deutlich höheren Polygon-Anzahl, was die Performance in großen Szenen schnell negativ beeinflussen kann. Daher wurden Mapping-Verfahren als Ergänzung entwickelt um die virtuelle Auflösung solch komplexer Oberflächen kostengünstig zu erhöhen, ohne dabei die Komplexität der Geometrie zu verändern. Dabei gibt es verschiedenste Shader, welche mithilfe weiterer, spezieller Texturen eine deutlich detailliertere Oberfläche simulieren können.

3.3.1 Bump Mapping

Eine Möglichkeit, mit der sich die Oberflächen mit mehr Details rendern lassen, ist das Rendering mithilfe von sogenannten Bump Maps. Hierbei werden mithilfe von Texturen, welche zusätzliche Informationen zu den Oberflächen enthalten, Details generiert, welche den Eindruck einer realistischen Struktur der Oberfläche erzeugen. Dabei ist es nicht notwendig, dass die Geometrie an sich Informationen dazu beinhaltet [Blinn, 1978].

Bump Maps sind Texturen, basierend auf Graustufen, bei denen die Helligkeit eines Pixels einen Höhenwert repräsentiert. Eine verbesserte Variante der Bump Maps sind die Normal Maps. Hier werden die Richtungen der Normalen in jedem Pixel durch einen Vektor repräsentiert, welcher sich aus den RGB-Werten eines jeden Pixels ergibt. Daraus lassen sich Schattierungen simulieren, welche kleine Unebenheiten (mit geringer Tiefe) wie Beulen oder Kratzer realistischer aussehen lassen. Dieser wird aus Lichtquellen, deren Einfallsrichtung und den Normalen aus der Textur berechnet. Somit wird auch bei geringer Polygonanzahl eine deutlich realistischer aussehende Oberfläche gerendert. [Cohen et al., 1998].

Diese Texturen bieten einen sehr kostengünstigen Ansatz um Tiefe zu simulieren, Shader basierend auf diesen Methoden sind dabei aber stark blickwinkelabhängig und sehen schnell unnatürlich verzerrt aus. Von vorne betrachtet funktioniert die Illusion, je spitzer jedoch der Winkel zwischen Betrachter und Oberfläche wird, desto auffälliger wird die Tatsache, dass die Silhouette des Objekts immer noch flach ist, da die Geometrie hierbei nicht verändert wird.

3.3.2 Displacement Mapping

Mit Displacement Mapping werden dagegen tatsächlich mithilfe von Heightmaps die Positionen der Vertices entlang ihrer Normalen versetzt [Cook, 1984; Cook et al., 1987]. Dadurch kommt es nicht zu blickwinkelabhängigen Artefakten und die Illusion von Tiefe wird real. Objekte sehen aus einem flachen Winkel betrachtet nicht mehr glatt aus, sondern haben tatsächlich Struktur in ihrer Oberfläche. Damit dieser Effekt jedoch zustande kommt, muss das Mesh in einer gewissen Auflösung zur Verfügung stehen. Je nach Detailreichtum der Heightmap muss die Geometrie dabei in weitere Polygone unterteilt werden. Der Vorteil hierbei ist der hohe Grad an Realismus. Ein deutlicher Nachteil liegt dabei allerdings in der Performance. Ein weitgehender Einsatz von Displacement Mapping kann eine hohe Polygonanzahl schnell negativen Einfluss auf die Renderingzeiten nehmen. »PERFORMANCEVERGLEICH MAPPINGVARIANTEN«

3.3.3 Parallax Mapping

Parallax Mapping (oder auch Offset (Bump-)Mapping) ist eine weiter Methode, um sich die Möglichkeiten von Bump Mapping-Verfahren zu nutze zu machen. Anders als bei tatsächlicher Modifizierung der Vertices durch Displacement Maps werden hier nur die Texturkoordinaten abhängig vom Blickwinkel verschoben. [Kaneko et al., 2001] Durch Bewegung der Oberfläche oder des Betrachters entsteht somit ein realistischerer Eindruck von Tiefe in der Textur, welcher den des Displacement Mappings approximiert darstellt. Dabei ist Parallax Mapping allerdings immer noch deutlich effizienter als echtes Vertex-Displacement und eignet sich daher eher für Echtzeitrenderings. Parallax Mapping alleine simuliert zwar den Parallax-Effekt, jedoch ist es hiermit nicht Möglich die Sillhoutte zu verändern und Selbstschattierung oder -verdeckung vorzutäuschen.

3.3.4 Parallax Occlusion Mapping

Parallax Occlusion Mapping (POM) ist eine komplexere, verbesserte Variante des Parallax Mapping. Im Gegensatz zu klassischem Parallax Mapping berücksichtigt POM Eigenschaften wie Verdeckung und Selbstschattierung. Für POM wird sowohl eine Normal Map, als auch eine Heightmap benötigt. Auch bei POM wird keinerlei Änderung an der Geometrie vorgenommen, sondern lediglich ein Vortäuschen von Tiefe. Die Information aus der Heightmap wird hierbei für Berechnungen im Fragmentshader verwendet [Tatarchuk, 2006]. Dazu wird die Heightmap invertiert, denn anstatt wie beim Displacement Mapping Details zu extrudieren wird bei POM in die Tiefe simuliert. Zunächst wird mittels Ray Casting vom Betrachter zur Mesh-Oberfläche ein Schnittpunkt ausfindig gemacht. Von dort wird mithilfe des Schnittpunktes

3.4 Volume Rendering

3.4.1 Ray-Marching

3.4.2 Texturbasierte Volumen

4 Umsetzung 8

Abbildung 1 Parallax Occlusion Mapping

4 Umsetzung

- 4.1 Erstellung der Texturen
- 4.2 Unity (?)
- 4.3 Partikelsystem
- 4.4 Shader

6 Ergebnisse 9

5 Evaluierung der Methoden

- 5.1 Parallax Mapping
- 5.2 Ray Marching

6 Ergebnisse

Hier kommen die Erkenntnisse meiner Arbeit rein

- 6.1 Zusammenfassung
- 6.2 Limitationen
- 6.3 Ausblick

6 Ergebnisse 10

Abbildung 2 Entwicklung seit 2006

Literatur 11

Literatur

- Blinn, James (1978). "Simulation of wrinkled surfaces". In: *Proceedings of the 5th annual conference on Computer graphics and interactive techniques SIGGRAPH '78*. ACM Press, S. 286–292. DOI: 10.1145/800248.507101.
- Blinn, James und Martin E. Newell (Okt. 1976). "Texture and Reflection in Computer Generated Images". In: *Commun. ACM* 19.10, S. 542–547. ISSN: 0001-0782. DOI: 10.1145/360349.360353.
- Catmull, Edwin (1974). "Computer display of curved surfaces". Diss., S. 35–41. DOI: 10.1145/280811.280920.
- Cohen, Jonathan, Marc Olano und Dinesh Manocha (1998). "Appearance-Preserving Simplification". In: *Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques.* SIGGRAPH '98. Association for Computing Machinery, S. 115–122. DOI: 10.1145/280814.280832.
- Cook, Robert L. (1984). "Shade Trees". In: *Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques*. SIGGRAPH '84. Association for Computing Machinery, S. 223–231. DOI: 10.1145/800031.808602.
- Cook, Robert L., Loren Carpenter und Edwin Catmull (1987). "The Reyes Image Rendering Architecture". In: *Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques*. SIGGRAPH '87. Association for Computing Machinery, S. 95–102. DOI: 10.1145/37401.37414.
- Gateau, Samuel und Steve Nash (20. Sep. 2010). Implementing Stereoscopic 3D in Your Applications. NVIDIA. URL: https://www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf (besucht am 30.06.2022).
- HP Development Company, L.P (2022). HP Reverb G2 Virtual Reality Headset Specifications. URL: https://support.hp.com/de-de/document/c06938191#AbT2 (besucht am 30.06.2022).
- Kaneko, Tomomichi, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Yasuyuki Yanagida, Taro Maeda und Susumu Tachi (Jan. 2001). "Detailed shape representation with parallax mapping". In: *In Proceedings of the ICAT* 2001.
- McGrattan, Kevin B und Glenn P Forney (2004). Fire Dynamics Simulator User's Guide (Sixth Edition). Techn. Ber. Version 6. DOI: 10.6028/NIST.SP.1019.
- Reeves, William (1983). "Particle systems—a technique for modeling a class of fuzzy objects". In: *Proceedings of the 10th annual conference on Computer graphics and interactive techniques SIGGRAPH '83*. ACM Press, S. 359–375. DOI: 10.1145/800059.801167.

Literatur 12

Schlager, Bettina (2017). "Building a Virtual Reality Fire Training with Unity and HTC Vive". In: *Proceedings of Central European Seminar on Computer Graphics for students (CESCG 2017)*. URL: https://www.vrvis.at/publications/PB-VRVis-2017-008.

- Schuemie, Martijn J, Peter Van Der Straaten, Merel Krijn und Charles APG Van Der Mast (2001). "Research on presence in virtual reality: A survey". In: *CyberPsychology & Behavior* 4.2, S. 183–201.
- Sutherland, Ivan E. (1965). "The Ultimate Display". In: *Proceedings of the IFIP Congress*, S. 506–508.
- (1968). "A head-mounted three dimensional display". In: AFIPS Conference Proceedings.
 Bd. 33. ACM, S. 295–302. DOI: 10.1145/280811.281016.
- Tatarchuk, Natalya (2006). "Practical Parallax Occlusion Mapping with Approximate Soft Shadows for Detailed Surface Rendering". In: *ACM SIGGRAPH 2006 Courses*. SIGGRAPH '06. Association for Computing Machinery, S. 81–112. DOI: 10.1145/1185657.1185830.
- Tauer, H. (2010). Stereo-3D: Grundlagen, Technik und Bildgestaltung. Fachverlag Schiele & Schoen, S. 20–70. ISBN: 9783794907915. URL: https://books.google.de/books?id=mfJ4HjD6CwEC (besucht am 26.06.2022).
- Wald, Ingo, Andreas Dietrich, Carsten Benthin, Alexander Efremov, Tim Dahmen, Johannes Gunther, Vlastimil Havran, Hans-peter Seidel und Philipp Slusallek (2006). "Applying Ray Tracing for Virtual Reality and Industrial Design". In: *2006 IEEE Symposium on Interactive Ray Tracing*, S. 177–185. DOI: 10.1109/RT.2006.280229.
- Zhang, Tianli (2020). "FOLAR: A FOggy-LAser Rendering Method for Interaction in Virtual Reality". Masterarb. URL: http://www.diva-portal.org/smash/get/diva2:1420642/FULLTEXT01.pdf (besucht am 30.06.2021).

Zum Inhalt 13

Eidesstattliche Erklärung

Hilfe verfasst, andere als die angegebenen	elegte Abschlussarbeit selbständig und ohne fremde Quellen und Hilfsmittel nicht benutzt und die den
benutzten Quellen wortlich oder inhaltlich	entnommenen Stellen als solche kenntlich gemacht
habe.	
Ort, Datum	Rechtsverbindliche Unterschrift

TH Köln Gustav-Heinemann-Ufer 54 50968 Köln www.th-koeln.de

