Introdução à Arquitetura de Computadores

Bloco 4 O Modelo de Von Neumann

Componentes básicos de um sistema Computacional

Pedro M. Lavrador

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro plavrador@ua.pt

Índice

- Conceitos fundamentais em Arquitectura de Computadores
 - Os elementos básicos de um computador
 - Modelo de Von Neumann
 - A noção de instrução e o ciclo básico de execução
- Arquitetura de Computadores
 - Arquitetura do Conjunto de Instruções
- Introdução à Arquitetura MIPS

23/03/2023

PML – IAC - 2023

ENIAC: Primeiro Computador Eletrónico

• Electronic Numerical Integrator and Computer (1946)

23/03/2023

PML – IAC - 2023

4

ENIAC: Primeiro Computador Eletrónico

- Era utilizado para realizar cálculos balísticos. Podia fazer até 5000 operações por segundo.
- O problema maior era reconfigurá-lo para fazer uma operação diferente. Podia demorar dias a reprogramar.
- John Von Neumann propôs a armazenagem dos dados e do programa na mesma memória.
 - Deste modo os programas poderiam ser guardados e reaproveitados.

23/03/2023 PML – IAC - 2023 5

Mas... quais os blocos básicos que constituem uma arquitetura computacional genérica?

23/03/2023 PML – IAC - 2023 6

Modelo Básico de um Sistema Computacional

- As unidades fundamentais que constituem um computador são:
 - Unidades de entrada permitem a recepção de informação vinda do exterior (dados, programas) e que é armazenada em memória
 - <u>Unidades de saída</u> permitem o envio de resultados para o exterior
 - Memória armazenamento de:
 - Programas
 - Dados para processamento
 - Resultados
 - <u>CPU</u> processamento da informação através da execução do programa armazenado em memória

23/03/2023 PML – IAC - 2023

Unidade de Processamento (CPU)

- A unidade central de processamento é organizada em várias unidades:
 - Unidade de Controlo
 - Responsável pela sequenciação da execução de cada instrução
 - Unidade Aritmética e Lógica
 - Executa as operações (somas, subtrações, operações lógicas...)
 - Registos
 - Armazenamento temporário de dados
 - Operandos e e resultados de operações
 - Valores de Controlo (p.e. endereços especiais)
- Comprimento da Palavra (p.e. processador de 32 bits)
 - Número de bits processados pela ALU; número de bits dos registos.

23/03/2023 PML – IAC - 2023 1

Unidade Central de Processamento

- O CPU consiste, fundamentalmente, em duas secções:
 - Secção de dados (datapath): elementos operativos:
 - Registos internos
 - Unidade Aritmética e Lógica (ALU)
 - Unidade de controlo: responsável pela coordenação dos elementos do datapath, durante a execução de um programa
 - Máquina de estados síncrona (estado seguinte é função do estado atual e das entradas)
 - As entradas correspondem a informação retirada de cada uma das instruções lidas da memória

23/03/2023 PML – IAC - 2023 14

Unidade de Controlo

- Controla a execução do programa:
 - Determina a operação a ser realizada no presente
 - Determina a próxima operação a ser realizada
- A unidade de controlo lê uma instrução da memória (Instruction Fetch) e Interpreta a instrução (Instruction Decode) gerando os sinais de controlo que indicam à unidade de processamento o que fazer.
 - A tarefa a realizar pode ser completada num ciclo de relógio ou precisar de vários ciclos.
- Instruction Register:
 - Contem a <u>Instrução</u> que está a ser executada
- Program Counter
 - Contem o endereço da próxima instrução

23/03/2023 PML – IAC - 2023 1

A noção de "Instrução"

- Independentemente do tipo de CPU e da sua estrutura interna, qualquer instrução deve permitir responder às seguintes questões:
 - Qual a operação a realizar ?
 - Qual a localização dos operandos (se existirem) ?
 - reg. Internos / memória
 - Onde colocar o resultado ?
 - reg. Internos / memória
 - Qual a próxima instrução ?
 - em condições normais é a instrução seguinte na sequência e, portanto, não é, normalmente, explicitamente mencionada
 - em instruções que alteram a sequência de execução a instrução deverá fornecer o endereço da próxima instrução a ser executada

23/03/2023 PML – IAC - 2023 16

Ciclo básico de execução de uma instrução

- 1º O processador acede à memória e lê a próxima instrução a ser executada.
- 2º O processador executa a Instrução
 - Acede aos operandos
 - Realiza a operação sobre eles
 - Guarda o resultado

 Chama-se a este processo o ciclo de leitura e execução.

3/2023 PML – IAC - 2023

10

Índice

- Conceitos fundamentais em Arquitectura de Computadores
 - Os elementos básicos de um computador
 - Modelo de Von Neumann
 - O ciclo básico de execução de uma instrução
- Arquitetura de Computadores
 - Arquitetura do Conjunto de Instruções
- Introdução à Arquitetura MIPS

/03/2023 PML – IAC - 2023

Arquitetura de Computadores

Arquitetura de Computadores =
 Arquitetura do Conjunto de Instruções (ISA)

+

Organização da Máquina

- Conjunto (*Set*) de Instruções:
 - a coleção de todas as operações que o processador pode executar
- Que estrutura de processador se define para executar o Conjunto de Instruções?
- Microarquitectura:
 - A organização do processador, incluindo as principais unidades funcionais e respetivas ligações e controlo.
 - A uma arquitetura podem corresponder várias microarquitecturas diferentes

23/03/2023 PML – IAC - 2023 20

Arquitetura do Conjunto de Instruções

- Também designada por "modelo de programação":
 - Uma abstração que representa a interface entre o hardware e o nível mais básico de software
- Descreve tudo o que o programador necessita de saber para programar corretamente, em linguagem máquina, um determinado processador
- Descreve a funcionalidade, independentemente do hardware que a implementa.
 - A organização do fluxo de dados e da unidade de controlo são do nível dos Sistemas Digitais, enquanto a sua implementação é do nível da MicroElectrónica.

23/03/2023 PML – IAC - 2023 2

Uma Arquitetura Múltiplas Implementações

- Pode falar-se de "arquitetura" e "implementação de uma arquitetura"
 - (Ex. Processadores AMD compatíveis com Intel x86)
- A manutenção da arquitetura mantem a compatibilidade com o software mais antigo enquanto permite melhorias de performance.
 - Por exemplo, a arquitetura atual x86 anda tem como base a original de 1978

23/03/2023 PML – IAC - 2023 2

Arquitetura do Conjunto de Instruções

- Aspetos a definir numa arquitetura:
 - Quais as instruções suportadas
 - Como organizar a memória (e os acessos)
 - Quantos registos
 - Registos específicos ou gerais
 - Tipos de dados e estruturas suportadas
 - Modos de endereçamento e de acesso a dados e instruções
 - Qual o formato das instruções
 - Condições de Exceção

23/03/2023 PML – IAC - 2023 2

Arquitetura do Conjunto de Instruções

 Fatores a ter em conta no desenho de uma arquitetura:

SOFTWARE

- As aplicações a que se destina
- A linguagem de programação
- O sistema operativo
- As possibilidades tecnológicas
- A compatibilidade histórica

- Implementação eficiente e simples em hardware
- Fácil de entender e programar
- Compiladores eficientes

23/03/2023 PML – IAC - 2023 2

Ciclo básico de execução de uma instrução Instruction Fetch Instruction Decode Operand Fetch Execute Store Result Next Instruction Next Instruction

Arquitetura de Computadores

- Arquitetura do conjunto de instruções define:
 - Formato e codificação das instruções
 - como são descodificadas?
 - Localização de operandos e resultados
 - onde?
 - quantos operandos explícitos?
 - como localizar?
 - quais podem residir na memória externa?
 - Tipo e dimensão dos dados
 - Operações
 - quais devem ser suportadas?
 - Instruções auxiliares
 - jumps, conditions, branches
 - fetch-decode-execute (implícito)!

Instruction
Fetch
Instruction
Decode
Operand
Fetch
Execute
Store
Result
Next
Instruction

23/03/202

PML – IAC - 2023

703/2023 PML – IAC - 2023

Variáveis da Arquitetura de Computadores

- Formato das instruções
 - Tamanho variável
 - Código mais pequeno
 - · maior flexibilidade
 - Instruction fetch em vários passos
 - Tamanho fixo
 - Instruction fetch e decode mais simples
 - Mais simples de implementar em pipeline

23/03/2023

PML – IAC - 2023

28

Variáveis da Arquitetura de Computadores

- Número de registos: muitos ou poucos?
 - Vantagens de um número pequeno de registos
 - Menos hardware
 - · Acesso mais rápido
 - Menos bits para identificação do registo
 - Mudança de contexto mais rápida
 - Vantagens de um número elevado de registos
 - Menos acessos à memória
 - Variáveis em registos
 - Certos registos podem ter restrições de utilização

23/03/2023 PML – IAC - 2023 29

Variáveis da Arquitetura de Computadores

- Localização dos operandos
 - Acumulador
 - Resultado das operações é armazenado num registo especial designado de acumulador
 - Baseados em Stack
 - Operandos e resultado armazenados numa stack de registos
 - Register-Memory
 - Operandos residem em registos ou em memória
 - Load-store architecture
 - Operandos residem em registos de uso geral.

23/03/2023 PML – IAC - 2023 30

Exemplos de ISAs (Instruction Set Architecture)

- Intel x86
 - Computadores Pessoais
 - Servidores
- MIPS
 - Equipamentos de rede (CISCO)
 - Sistemas Embebidos
- IBM
 - Mainframes
- ARM
 - Sistemas Embebidos

23/03/2023

PML – IAC - 2023

Organização da máquina

- Características operativas e de performance das principais unidades funcionais
 - (ALU, Registos, Shifters, Unidades Lógicas, ...)
- De que modo esses componentes são interligados
- Fluxo de informação entre componentes
- Lógica e meios através dos quais esse fluxo é controlado
- Coreografia das Unidades Funcionais para implementar a Instruction Set Architecture.

23/03/2023

PML – IAC - 2023

32

Resumindo...

- Arquitetura é a visão que o programador tem do computador
 - Define-se (basicamente) pelo conjunto de instruções e localização dos operandos
- Microarquitetura é o modo de implementar no hardware a arquitetura.

23/03/2023

PML – IAC - 2023

22

Resumindo...

- O conjunto de instruções
 - É o conjunto de todas as instruções que um processador pode implementar
- Diferentes processadores têm diferentes conjuntos de instruções
 - Mas muitos aspetos são comuns (pelo menos ao nível dos conceitos).

23/03/2023

PML – IAC - 2023

34

Índice

- Conceitos fundamentais em Arquitectura de Computadores
 - Os elementos básicos de um computador
 - Modelo de Von Neumann
 - O ciclo básico de execução de uma instrução
- Arquitetura de Computadores
 - Arquitetura do Conjunto de Instruções
- Introdução à Arquitetura MIPS

03/2023

25

Arquitetura MIPS

 Foi desenvolvida nos anos 80, em Stanford, por John Henessy.

PML – IAC - 2023

- É usada atualmente pela Cisco, Nintendo e em muitos sistemas de computação dedicada (controladores, etc.)
 - Em 2004 já tinham sido vendidos mais de 300 milhões de processadores MIPS.
- É uma arquitetura RISC (Reduced Instruction Set Computer)

23 PML – IAC - 2023

Linguagem Assembly

- Instruções: são comandos em linguagem de computador
 - Linguagem assembly é formato das instruções para humano ler.

add \$t0, \$t1, \$t2

 Linguagem máquina é o formato das instruções para computador ler.

0x012a4020

 Depois de aprender uma arquitetura é fácil aprender outras por comparação.

23/03/2023 PML – IAC - 2023 3

Critérios de Seleção de um Conjunto de Instruções (ISA)

- A escolha de uma arquitetura para o conjunto de instruções deve garantir:
 - A simplicidade da máquina que o implementa;
 - A clareza da sua aplicação aos problemas que realmente importam;
 - Uma solução tão rápida quanto possível dos problemas.
- 1º Princípio: A regularidade favorece a Simplicidade
- 2º Princípio: *Smaller is Faster*

3/03/2023 PML – IAC - 2023 38

As instruções da arquitetura MIPS

- <u>Adição</u>: a = b + c;
- A instrução assembly correspondente é:

add a, b, c

- add é a mnemónica que indica a operação a realizar
- **b** e **c** são os operandos fonte
- a é o operando destino (quem guarda o resultado)

23/03/2023

PML – IAC - 2023

39

As instruções da arquitetura MIPS

- <u>Subtração</u>: a = b c;
- A instrução *assembly* correspondente é similar à adição, apenas muda a mnemónica:

sub a, b, c

- **sub** é a mnemónica (indica a operação)
- **b** e **c** são os operandos fonte
- a é o operando destino

23/03/2023

PML – IAC - 2023

40

1º Princípio de Design

- Todas as instruções aritméticas seguem este padrão.
 - Dois operandos fonte e um destino
- A simplicidade favorece a regularidade.
 - O formato das instruções é sempre consistente
 - São mais simples de codificar e de processar em hardware

23/03/2023 PML – IAC - 2023 4

Múltiplas Instruções

• E como se resolve:

$$a = b + c - d$$
;

- Operações mais complexas são codificadas em múltiplas instruções do MIPS.
- MIPS:

```
add t, b, c
sub a, t, d
```

23/03/2023 PML – IAC - 2023 42

2º Princípio de Design

- Tornar rápido o caso comum
 - O MIPS apenas tem instruções simples e frequentes
 - O hardware que implementa essas instruções simples é simples, pequeno e rápido
 - As operações mais complexas (menos comuns) são executadas usando múltiplas instruções simples
 - Exemplo: somar 2 operandos em memória.

Lw t1, op1 Lw t2, op2 Add dst, t1,t2

- O MIPS é um processador RISC
- Outras arquiteturas, como a família x86, segue uma filosofia CISC (Complex Instruction Set Computer)

23/03/2023 PML – IAC - 2023 4

Operandos

- Os operandos podem estar localizados:
 - Nos registos internos
 - Na memória (apenas nas instruções de acesso à memória)
 - lw e sw
 - Na própria instrução (constantes)

3/03/2023 PML – IAC - 2023 44

Operandos: Registos

- O MIPS tem 32 registos de 32 bits.
 - Numerados de 0 a 31;
 - Com palavras de 32 bits
- O acesso a informação contida nos registos é mais rápido do que o acesso à memória.
 - Porque "Smaller is Faster"
 - É mais rápido aceder a 1 de 32 registos do que a 1 posição de entre milhões na memória.
- A arquitetura MIPS é de 32 bits porque opera com dados de 32 bits.

23/03/2023 PML – IAC - 2023 45

Os registos do MIPS

- Registos:
 - São indicados com o símbolo \$
 - Por exemplo \$0, "o registo zero" ou "dólar zero"
- Alguns registos são usados com funções específicas:
 - \$0 guarda a constante zero
 - Os registos \$s0-\$s7 guardam variáveis (chamam-se saved registers)
 - Os registos \$t0-\$t9, guardam valores temporários.

23/03/2023 PML – IAC - 2023 46

Os Registos do MIPS

Name	Register Number	Usage				
\$0	0	the constant value 0				
\$at	1	assembler temporary				
\$v0-\$v1	2-3	Function return values				
\$a0-\$a3	4-7	Function arguments				
\$t0-\$t7	8-15	temporaries				
\$s0-\$s7	16-23	saved variables				
\$t8-\$t9	24-25	more temporaries				
\$k0-\$k1	26-27	OS temporaries				
\$gp	28	global pointer				
\$sp	29	stack pointer				
\$fp	30	frame pointer				
\$ra	31	Function return address				

23/03/2023 PML – IAC - 2023 47

A instrução <u>add</u> de novo

• <u>Adição</u>: a = b + c;

• \$t0 -> a

• \$t1 -> b

• \$t2 -> c

add \$t0, \$t1, \$t2

23/03/2023 PML – IAC - 2023 4

Operandos: Memória

- Um problema real não pode ser resolvido apenas com 32 registos de memória.
 - Para armazenar mais dados usa-se a memória externa.
 - A memória é grande, mas lenta...
- Então...
 - Procura-se que as variáveis usadas mais frequentemente sejam guardadas em registos.
- Para efetuar operações aritméticas com operandos em memória
 - 1º carregam-se os dados em registos
 - 2º faz-se a operação
 - 3º Guarda-se o resultado

23/03/2023 PML – IAC - 2023 4

Operandos em Memória

- A memória é usada para armazenar dados
 - Podem ser arrays, estruturas, etc.
- A memória no MIPS é byte addressable.
 - É possível endereçar cada byte individualmente.
- Cada palavra (4 bytes) em memória tem que ser armazenada num endereço múltiplo de 4
 - Alinhamento das palavras em memória
- Problema:
 - Qual o ordem dos bytes? Isto é, o byte mais significativo coloca-se no endereço de memória mais alto ou mais baixo?

23/03/2023 PML – IAC - 2023 50

Endereçamento de Palavras na Memória

- Alguns processadores usam representação Big-Endian, isto é, o fim do número está no endereço mais alto.
 - Ou seja o byte menos significativo do número está no endereço de memória mais alto.
- Outros usam representação Little-Endian, isto é, o fim do número está no endereço de memória mais baixo:
 - Ou seja o byte menos significativo do número está no endereço de memória mais baixo.
- Exemplo para o valor 0x23456789, guardado no endereço 0:

PML – IAC - 2023

Instruções para acesso à memória

- Acesso à memoria para leitura: load
- Mnemónica: load word (lw)
- Formato:
 - lw \$t0, 8(\$t1)
- Determinação do endereço:
 - Soma-se ao endereço base (o valor contido em \$t1) o valor
 8
 - Endereço = \$t1+8
- Resultado:
 - O registo \$t0 fica com a palavra armazenada na memória no endereço \$t1+8.

23/03/2023 PML – IAC - 2023 52

Instruções para acesso à memória

 Exemplo ler a palavra do endereço 4 para o registo \$t2.

- lw \$t2, 4(\$0)

• \$t2 fica com o valor 0xF2F1AC07

Address		Data							
•				•					•
•									•
	•						•		
000000C	4	0	F	3	0	7	8	8	Word 3
8000000	0	1	Ε	Ε	2	8	4	2	Word 2
0000004	F	2	F	1	Α	С	0	7	Word 1
00000000	Α	В	С	D	Ε	F	7	8	Word 0

PML – IAC - 2023

/03/2023

E2

Instruções para acesso à memória

- Acesso à memoria para escrita: store
- Mnemónica: store word (sw)
- Formato:
 - sw \$t0, 4(\$0)
- Determinação do endereço:
 - Tal como no lw
- Resultado:
 - O valor contido no registo \$t0 é escrito na memória na posição 4.

23/03/2023

PML – IAC - 2023

54

Instruções para acesso à memória

- Já vimos que o MIPS é byte addressable.
- Então deve ser possível fazer load e/ou store de apenas um byte.
- Isso é feito com as instruções **lb** e **sb**

23/03/2023

PML – IAC - 2023

cc

Big Endian, Little Endian?

- Numa máquina Big Endian, qual o resultado (em \$t1) das seguintes instruções:
 - Suponha que \$t0 contem 0x12345678.

```
- sw $t0, 0($s0)
- lb $t1, 1($s0)
```

• \$t0 vai ser armazenado nos endereços a partir de \$s0

```
$s0+0: 0x12 0b 0001 0010
$s0+1: 0x34
$s0+2: 0x56
$s0+3: 0x78
```

• Então \$t1 assume o valor 0x34.

23/03/2023 PML – IAC - 2023

56

Operandos: Constantes/Imediatos

- As instruções lw/sw usam constantes.
- São valores que estão imediatamente disponíveis na instrução
 - Codificados como um número representado em complemento para 2 com 16 bits.
- As instruções aritméticas e lógicas também podem usar imediatos.
- Por exemplo:

```
- a = a+4; -> add<u>i</u> $t0, $t0, 4
```

23/03/2023

PML – IAC - 2023

57

Linguagem Máquina

- A representação binária das instruções.
 - Os computadores só entendem 0's e 1's.
- As instruções (no MIPS) são codificadas em palavras de 32 bits:
 - A simplicidade favorece a regularidade:
 - Palavras de 32 bits para dados e instruções.
- Existem 3 tipos de instruções possíveis:
 - Tipo R: para operandos em registos
 - Tipo I: para um operando imediato
 - Tipo J: para saltos

23/03/2023

PML – IAC - 2023

58