BUSS207

Assignment 4

- 1. WACC = (.7/1.7)(.06) + (1/1.7)(.16) = 11.88%project discount rate = 11.88% + 2.00% = 13.88%NPV = - PV(cost) + PV (inflows); PV (inflows)= [\$6M/(.1388 - .03)] = \$55,147,059 The project should only be undertaken if it's the present value of all cost is less than \$55,147,059.
- 2.
- A: Payback = 2 + (\$5,000 / \$10,000) = 2.50 years
- B: Payback = 3 + (\$12,000 / \$500,000) = 3.024 years Using the payback criterion and a cutoff of 3 years, accept project A and reject project B.

The followings are the cash flows from each project in present value terms.

Year	Cash Flow A	Cash Flow B
0	-\$50,000.00	-\$70,000.00
1	\$28,301.89	\$7,547.17
2	\$13,349.95	\$17,799.93
3	\$8,396.19	\$25,188.58
4	\$7,920.94	\$396,046.83

Therefore,

- A: Discount Payback = 2 + (\$8,348.17 / \$8,396.19) = 2.99 years
- B: Discount Payback = 3 + (\$19,464.32 / \$396,046.83) = 3.05 years

Using the discount payback criterion and a cutoff of 3 years, accept project A and reject project B.

3. Terminal value of inflows = $2.862*(FVIF_{8\%, 3vrs}) + 5.700*(FVIF_{8\%, 1vrs}) = $9.761.30$

$$PV(Cash \ outflows) = 504 + 6,070*(PVIF_{8\%, 2yrs}) + 1,000*(PVIF_{8\%, 4yrs}) = $6,443.08$$

Find the discount rate that satisfies the following:

$$PV(Cash\ outflows) = PV(Terminal\ value\ of\ inflows),$$
 or $\$6,443.08 = \$9,761.30\ (PVIF_{k\%,4yrs})$ $k=10.94\%$

Since the MIRR is greater the cost of capital, we should take the project.

4. PV of cash inflows = $C_1/(k-g)$ = \$40,000/(.14 - .07) = \$571,428.57 > 0

NPV of the project = -\$650,000 + \$571,428.57 = -\$78,571.43 < 0 so don't start cemetery business.

PV of cash inflows = $C_1/(k-g)$ = \$40,000/(.14 - .07) = \$571,428.57 > 0

NPV of the project = -\$650,000 + \$571,428.57 = -\$78,571.43 < 0 so don't start cemetery business.

- 5. The \$6 million cost of the land 3 years ago is a sunk cost and irrelevant; the \$9.25M appraised value of the land is an opportunity cost and is relevant.
 - a. Assuming that the firm will need to raise all \$14.9 million by the retained earnings, $CF_0 = -\$24.15$ (= opportunity cost of land + building cost + initial operational cost)
 - b. Since the company will use the retained earnings, using CAPM, WACC = Ks = 0.05 + 1.4(0.08) = 16.2%. But the project is riskier than the overall company. So WACC* = 16.2% + 2% = 18.2%
 - c. Since the company is using the straight line method, the annual depreciation amount will be (\$14M \$5M)/5 years = \$1.8 M per year.

,	J	
ι	ı	

Year		1	2	3	4	5
Unit						
Sale		10,000	10,000	10,000	10,000	10,000
Sales	\$	104,000,000	\$ 104,000,000	\$ 104,000,000	\$ 104,000,000	\$ 104,000,000
(\$10,400)					
per unit)						
-COGS	\$	(85,000,000)	\$ (85,000,000)	\$ (85,000,000)	\$ (85,000,000)	\$ (85,000,000)
-Depr.	\$	(1,800,000)	\$ (1,800,000)	\$ (1,800,000)	\$ (1,800,000)	\$ (1,800,000)
Fix						
Costs	\$	(350,000)	\$ (350,000)	\$ (350,000)	\$ (350,000)	\$ (350,000)
EBT	\$	16,850,000	\$ 16,850,000	\$ 16,850,000	\$ 16,850,000	\$ 16,850,000
-Tax						
(35%)	\$	(5,897,500)	\$ (5,897,500)	\$ (5,897,500)	\$ (5,897,500)	\$ (5,897,500)
Net						
Income	\$	10,952,500	\$ 10,952,500	\$ 10,952,500	\$ 10,952,500	\$ 10,952,500
+Depr	\$	1,800,000	\$ 1,800,000	\$ 1,800,000	\$ 1,800,000	\$ 1,800,000
OCF	\$	12,752,500	\$ 12,752,500	\$ 12,752,500	\$ 12,752,500	\$ 12,752,500

Additional Terminal Cash flow = \$5,000,000 (salvage value) - \$0 (Tax on salvage value) + \$9,250,000 (Recovery of opportunity cost) = \$14,250,000

e.	<u>Year</u>	<u>Cash Flow</u>	
	0	-\$24,150,000	IRR = 49.68% = Take it!
	1	\$12,752,500	NPV = \$21.73M => Take it!
	2	\$12,752,500	discount rate = $WACC^* = 18.2\%$
	3	\$12,752,500	
	4	\$12,752,500	
	5	\$27,002,500 (=	12,752,500 + 14,250,000)

Or alternatively, if you consider \$900,000 of additional operational cost as a part of NWC, we will be able to recover this amount at the end of project's life. Thus Terminal Cash flow will be \$15,150,000. Then

<u>Year</u>	Cash Flow	
0	-\$24,150,000	IRR = 49.98% = Take it!
1	\$12,752,500	NPV = \$22.12M => Take it!
2	\$12,752,500	discount rate = $WACC^* = 18.2\%$
3	\$12,752,500	
4	\$12,752,500	
5	\$ 27,902,500 (=	12,752,500 + 15,150,000)