> Metode Calumn/tabus/Circin B. Volume Benda Putar 1. Metode Californ (i) Dipitar the Sumbu-X -> minp taking tipis/ alexan Vp=TK3+ - TK7+ = T(1,2-12) t Up = TT (f(x)2-9(x)) / AX $V = II \left((1x)^2 - 3(x) \right) dx$

Luas vs Volume
$$V = \int_{0}^{\alpha} (f(x)^{2} - g(x)) dx$$

$$V = \int_{0}^{\alpha} (f(x)^{2} - g(x)^{2}) dx$$

 $95000 = X^{2}$

$$\sum_{x=1}^{4} x^{2} = \sqrt{x}$$

$$x^4-x=0$$

$$(=0)$$
 $(=0)$

$$\Gamma = \frac{1}{2}(x^2 - x^3) \, 9x + \frac{1}{2}(x^3 - (x)) \, 9x$$

$$V = \prod_{n=1}^{\infty} \left(x - x^4 \right)^{-n} dx + \int_{-\infty}^{\infty} (x^4 - x^3) dx$$

$$= \pi \left(\left[\frac{x^2}{2} - \frac{x^5}{5} \right]_0^1 + \left[\frac{x^5}{5} - \frac{x^2}{2} \right]_1^2 \right)$$

(ii) Dipotar that fumbu y

$$\frac{y}{y} = \frac{f(x)}{g(x)}$$

$$L = \int_{0}^{b} (g^{-1}(y) - f^{-1}(y)) dy + \int_{0}^{c} (g - f^{-1}(y)) dy$$

Controls:
$$y = \chi^{2}$$
, $y = \chi^{2}$, $y = \chi^{2}$, $y = \chi^{2} \rightarrow \sqrt{y} = \chi$ (bind)
 $y = \chi^{2} \rightarrow y^{2} = \chi$ (merch)

$$V = \pi \left[\int_{0}^{1} (y - y^{4}) dy + \int_{0}^{12} (y^{4} - y) dy + \int_{0}^{4} (4 - y) dy \right]$$

$$= \pi \left[\frac{y^{2}}{2} - \frac{y^{4}}{5} \right]_{0}^{1} + \frac{y^{5}}{5} - \frac{y^{2}}{2} \right]_{0}^{12} + 4y - \frac{y^{2}}{2} \Big|_{0}^{4} \Big]$$

$$= \pi \left[\frac{1}{2} - \frac{1}{5} - D + \frac{\pi^{5}}{5} - 1 - \left(\frac{1}{5} - \frac{1}{2} \right) + 16 - 8 - \frac{1}{5} - 1 - \left(\frac{1}{5} - \frac{1}{2} \right) + 16 - 8 - \frac{1}{5} - 1 - \frac{1}{5} - \frac{1}{$$

Contable:
$$y = x^2$$
, $y = \sqrt{x}$, $y = \sqrt{x$

Panjang lintagan/Kurva

$$|f(x)| \rightarrow |f(x)|^{2} |f(x)|^{2}$$

$$= \sqrt{1 + (\frac{\Delta f(x)}{\Delta x})^{2}} |f(x)|^{2}$$

$$= \sqrt{1 + (\frac{\Delta f(x)}{\Delta x})^{2}} |f(x)|^{2}$$

$$= \sqrt{1 + f'(x)^{2}} |f(x)|^{2} |f(x)|^{2}$$

$$= \sqrt{1 + f'(x)^{2}} |f(x)|^{2}$$

Contoh: Alcan diari panjans lintus an houtra
$$y = \frac{1}{2} \times 12$$

Pada $[0, 1]$

$$= \int_{0}^{1} \frac{1 + (\frac{3}{4}x^{\frac{1}{2}})^{2}}{1 + (\frac{3}{4}x^{\frac{1}{2}})^{2}} dx$$

$$= \int_{0}^{1} \frac{1 + (\frac{3}{4}x^{\frac{1}{2}})^{2}}$$

Surplus produsen Jan Konsumen surgus longumen (Sv.)

Surgus longumen (Sv.)

(ft)

Total surplus

Surplus - fursi permintaan (Fm)