물리계층

편집: 김혜영

계층모델

TCP/IP 프로토콜 계층

OSI -7 Layers

		응용계층
응용계층 (telnet, ftp, http, snmp)		표현계층
		세션계층
전송 계층(TCP, UDP)		전송계층
네트워크 계층(IP, ICMP, IGMP)		네트워크계층
데이터링크계층		데이터링크계층
물리계층		물리계층

데이터 전송 시 고려사항

• 감쇄(attenuation)

- 데이터가 전송 도중 흡수되거나 열에 의해서 변화가 되기 때문에 발생하는 전자파의 에너지 손실
- 최대 이용할 수 있는 거리는 전파가 전력을 감소하는 비율과 수신 측이 전자 기파를 감지할 수 있는 전력량에 의존

• 왜곡(distortion)

- 링크상에서의 전파현상은 서로 다른 주파수에 따라 서로 다르게 감쇄되고 지연되어, 수신 신호가 전송 신호와 다르게 되는 현상
- 등화기(equalizer) : 서로 다른 주파수에서 서로 다른 왜곡을 보상해주는 장 치

• 잡음(noise)

• 도전체에서 전자의 열운동(thermal agitation)으로 인한 광자수의 불확실함으로 발생

부호화 방식

❖ 부호화(encoding) 과정

이진수 정보 '0'은 음의 전압값을 갖는 신호로 바꾸고, 이진수 정보 '1'은 양의 전압값을 갖는 신호로 변환함 → encoding

- RZ(Return to Zero) : 가장 단순한 부호화 방식으로, 어떤 신호에 대해서도 0V의 전압상태로 복귀하는 방식을 말함
- 맨체스터 코딩(manchester coding) : 임의의 비트 구간의 절반만 펄스가 존재하는 방식으로서 신호의 발생이 용이하여 널리 사용

부호화 방식

[그림 2-5] 여러 가지 부호화 방식

동기식 전송방식

- 동기식 전송방식은 데이터를 전송하고자 할 때 전송 측과 수신 측 사이에 클록을 일치시켜
 동기화를 수행하여 전송하는 방식
- 효율적인 전송이 가능하지만, 유연한 인터페이스의 제공이 어렵고 스위칭 구조가 복잡
- 데이터 프레임

SYN	에러체크	데이터	제어비트	SYN	SYN	
-----	------	-----	------	-----	-----	--

- 예) SONET(Synchronous Optical Network) : 북미방식 SDH(Synchronous Digital Hierarchy) : 유럽방식
- 전송데이터의 분량이 상당히 큰 경우에 비동기식 전송방식보다 효율적

비동기식 전송방식

- 전송장치에서 한 번에 하나씩 문자정보와 동기화 비트를 함께 전송하고, 수신 측에서는 각 문자 마다 동기화가 되도록 하는 방식
- 사용하는 이유
 - 비동기 전송방식에서는 각 문자정보마다 동기화 비트를 포함하고 있어서 동기식 전송방식 에서처럼 전송 측과 수신 측 사이에 클록을 일치시키는 과정이 중요하지 않기 때문

- 예) RS-232(Recommended Standard 232) 방식, USB(Universal Serial Bus)
- 범용직렬버스(USB)
 - 컴퓨터와 주변기기의 연결에 사용되는 대표적인 입출력 표준규격 가운데 하나로, 키보드, 마우스, 게임패드, 조이스틱, 스캐너, 디지털 카메라, 프린터, PDA, 메모리와 같은 다양한 기기를 연결하는 데 사용

패킷 전송의 개념과 다중화 기법

• 다중화기

n개의 입력 디바이스가 동시에 하나의 데이터링크를 상호 공유하도록 해주는 특별한 장치

• 다중화 기법

• 데이터링크의 효율성을 극대화하기 위해 다수의 디바이스가 단일 데이터링크를 공유하여 전송하는 효율적인 데이터 전송 기법

• 다중화 기법의 종류

- 주파수분할 다중화(FDM: Frequency Division Multiplexing) 기법
- 시분할 다중화(TDM: Time Division Multiplexing) 기법
- 통계적 시분할 다중화(Statistical TDM) 기법

다중화 기법의 종류

• 주파수분할 다중화 방식(FDM)

- 데이터링크(채널)의 주파수 대역폭을 몇 개의 작은 주파수 대역으로 나누어서 각각을 부채널(sub channel)로 재구성한 다음, 각 부채널을 여러 개의 디바이스에 할당함으로써 각 디바이스로부터 나오는 신호를 동시에 전송하는 방식
- 장점: 비교적 간단한 구조, 비용 저렴, 별도의 변복조기가 필요하지 않음
- 단점 : 대역폭 낭비로 인한 채널의 이용률 저하

• 시분할 다중화 기법(TDM)

- channel에 할당된 데이터 전송 허용시간을 일정한 time slot으로 나누고, 채널도 다시 부채널로 나누어, 각 시간 슬롯을 부채널에 순차적으로 할당하여 사용하는 방식
- 장점 : 비교적 간단한 구조로 되어 있어 구현이 용이, 저렴한 비용, 데이터 전송률 조절 가능
- 단점 : 시간 슬롯의 낭비

(a) 주파수분할 다중화

(b) 시분할 다중화

[그림 2-11] 주파수분할 다중화와 시분할 다중화

다중화 기법의 종류

- 통계적 시분할 다중화 기법(Statistical TDM)
 - 동기식 시분할 다중화의 단점을 보완한 기술로서, 동적으로 대역폭을 각각의 부채널에 할당하는 방식
 - 시간 슬롯을 데이터 전송을 하고자 하는 부채널에만 데이터통신 기회를 허용 → 동적 할당기법
 - 장점: 대역폭 낭비 최소화
 - 단점 : 회로가 복잡해지고 비용이 증가

[그림 2-13] 동기식 TDM과 통계적 TDM

교환기술

- 교환기술
 - 다수의 디바이스 상호 간에 최적의 연결성을 제공해주는 기술
- 데이터통신 네트워크의 구분(데이터를 전송하는 데 사용되는 기술과 구조에 따라)
 - 교환 데이터통신 네트워크 (switched data communication network)
 - 방송 데이터통신 네트워크 (broadcast data communication network)

• 교환 네트워크

- 회선교환 네트워크
- 메시지교환 네트워크
- 패킷교환 네트워크

• 방송 네트워크

- 패킷 라디오 네트워크
- 위성통신 네트워크
- 지역(local) 네트워크

스테이션 A에서 출발한 데이터는 <노드 1 - 노드 3 - 노드 5>, <노드 1 - 노드 2 - 노드 4 - 노드 6 - 노드 5>, <노드 1 - 노드 2 - 노드 4 - 노드 3 - 노드 5>, <노드 1 - 노드 3 - 노드 4 - 노드 6 - 노드 5> 등과 같은 데이터 전송로 중 하나를 거쳐 스테이션 E로 전송됨

회선교환 방식과 메시지교환 방식

• 회선교환 방식

- 회선 설정, 데이터 전송, 회선 해제 단계
- 데이터가 전송되기 전에 스테이션 사이에 회선이 설정
- 스테이션 A에서 스테이션 E로의 회선이 <노드 1-노드 3-노드 4-노드 6-노드 5>로 설정됨 [그림 2-16]

• 메시지교환 방식

- 메시지(message)라고 하는 데이터의 논리적 단위를 교환하는 방식
- 두 스테이션 사이에 전용 전송로를 설정할 필요 없음
- 메시지에 목적지 주소를 첨부하여 전송하며, 메시지는 노드에서 노드로 네트워크를 통해 이동
- 축적 후 전달(store and forward) 방식이라고 함

[그림 2-17] 메시지교환 방식

패킷교환 방식

- 메시지교환 방식과 회선교환 방식의 장점을 결합하고 단점을 최소화한 방식
- 패킷을 목적지 주소에 따라 적절한 경로를 선택하여 전송하도록 하는 교환 방식
- 패킷 stream을 처리하는 방법에 따라 datagram 방식과 virtual circuit 방식으로 구분
- 연결설정 단계가 불필요하고 혼잡을 피해 경로구성이 가능하기 때문에 융통성이 개선
- 논리적 연결설정, 에러제어와 흐름제어가 가능하여 신뢰성 향상

[그림 2-18] 패킷교환 방식의 개념도

교환 방식의 비교

[표 2-4] 교환 방식의 특성

방식 특징	회선교환	메세지교환	가상회선 패킷교환	데이터그램 패킷교환
전용 전송로	٩	무	무	무
전송 단위	연속적인 데이터	메시지	패킷	패킷
메시지의 저장 여부	저장하지 않음	저장, 필요 시 검색	일시적 저장, 검색기능 없음	일시적 저장, 검색기능 없음
이용에 적합한 전송 형태	길이가 긴 연속적 전송	저속 메시지 전송	순간적인 대량 데이터의 고속전송	순간적인 대량 데이터의 고속전송
전송 경로의 형태	동일한 전송경로	메시지마다 경로설정	전체 패킷 전송을 위해 경로설정	각 패킷마다 경로설정
지연 시간 영향	연결호출 설정 지연, 전송 지연은 무시	메시지 전송 지연	연결호출 설정 지연, 패킷 전송 지연	패킷 전송 지연
과부하 시	연결호출 설정 중단	메시지 전송 지연 증가	연결호출 설정 중단 : 연결설정 후에는 패킷 전송 지연 증가	패킷 전송 지연 증가
코드 및 속도 변환	무	۾	유	유
전송 데이터와 수신 데이터의 순서 일치 여부	일치	불일치	일치	불일치
대역폭	고정	동적사용 가능	동적사용 가능	동적사용 가능
회전 에러발생 시	다른 회선 재설정	여러 경로 중 선택	다른 회선 재설정	여러 경로 중 선택
오버헤드	연결설정 후 불필요	메시지마다 필요	각 패킷마다 필요	각 패킷마다 필요
응용 분야	실시간 대화형	실시간 대화형 부적합	실시간 대화형	실시간 대화형

동선(copper wire)

- 모양 : 두 가닥의 절연된 동선이 균일하게 서로 감겨 있는 형태
- 구성 : 서로 꼬임선(twisted pair)이 되도록 구성함으로써 신호 간의 간섭효과를 최소화
- 동선의 굵기: 0.016~0.036인치 정도
- 거리, 대역폭, 전송률에 있어서 많은 제약이 있고, 또한 간섭이나 잡음에 매우 민감함
- 동선의 길이와 데이터 전송률과의 관계

[그림 2-19] 동선의 길이에 따른 전송률의 변화

동축케이블

- 구성 : 두 개의 단일 전선과 감싸고 있는 원통형의 외부도체
- 용도 : 장거리 전화 및 video 전송, 케이블TV 분배, LAN, RF 및 마이크로파 전송, 컴퓨터와 계측기간 데이터 연결
- 감쇄, 열잡음, 상호잡음변조 등에 따른 제약이 있어서 장거리 전송 시 수 km마다 리피터 필요
- 높은 주파수를 사용할수록 리피터의 사용이 더욱 필요하게 됨

(b) RG-59 동축 케이블

[그림 2-20] 동축 케이블의 형태와 실제 모습

광섬유

- 구성 : 두 개의 단일 전선과 감싸고 있는 원통형의 매우 가는(2~125 μm정도) 전송미디어로, 유리 또는 플라스틱을 이용하여 구성
- 구조 : core, cladding, jacket 등 3개의 동심 부분으로 구성된 원통형 구조
- 기본적인 제약 중, 감쇄에 의한 제약은 광을 증폭함으로써 개선하며, 분산에 따른 제약은 산란에 영향이 적은 파장대역으로 천이하는 방법으로 개선
- 전파모드 수에 따라 단일모드와 다중모드 광섬유로 분류됨
 - 빛의 전파모드가 여러 개이면 다중모드 광섬유, 기본모드 빛만 통과시키면 단일모드 광섬유
- 장점: 고속 대용량의 전송이 가능, 장거리 전송, 고품질의 전송 가능, 가볍고 내구성이 강함
- 단점 : 높은 비용과 접속이 쉽지 않음

[그림 2-21] 다발로 이루어진 광섬유 케이블

[그림 2-22] 광섬유의 구성

광섬유

- ❖ 광섬유의 특성
- 광대역폭 : 넓은 대역폭의 사용이 가능하여 수 Gbps 이상의 전송률까지 가능 (동축케이블은 수백 Mbps까지 가능, 트위스트페어인 경우 수 Mbps 정도)
- 경량 구조 : 크기가 아주 작으며, 무게가 가벼워서 설치와 지지에 필요한 구조물 최소화가 가능
- 적은 감쇄현상 : 동축케이블이나 동선(트위스트 페어)에 비하여 감쇄현상이 현저히 적음
- 전자기적 격리 : 외부적 전자기장에 영향을 받지 않으므로 간섭, 충격잡음, 누화 현상 등에 유리
- 넓은 리피터 설치 간격: 리피터 설치의 수가 적으므로 비용 면에서 유리 (예, 독일의 Lorenz AG 사: 111km 간격에서 5Gbps 광섬유 전송시스템을 개발)

[그림 2-23] 광섬유 매설 장치

마이크로파와 위성통신 링크

• 마이크로파

- 대기의 전리층을 이용한 microwave 통신은 장거리 전송에 널리 이용됨
- 마이크로파 통신 시스템은 송신기, 가시관 전송경로, 수신기 등으로 구성
- 수신기로 도착하는 전파의 다중경로 현상인 fading 현상으로 인해 양질의 서비스를 보장할 수 없는 경우도 발생

• 위성통신 링크

• SHF 이상의 대역을 사용하는 통신 방식으로, 가장 넓은 통신 영역을 포함할 수 있는 통신기술

[표 2-6] 위성통신 링크의 주파수 대역과 명칭

주파수 대역(Band)	주파수 범위(GHz)
L	1~2
S	2~4
С	4~8
Х	8~12
Ku	12~18
K	18~27
Ka	27~40
Militer	40~300

주요 전송미디어의 비교

[표 2-7] 전송미디어의 장단점 비교

전송미디어	장점	단점
동선	저비용, 설치가 용이	비교적 협대역, 외부 충격에 취약
동축케이블	차폐성, 넓은 대역폭	감쇄 및 열잡음 등에 따른 제약
광섬유	잡음에 강함, 매우 넓은 대역폭	높은 설치 비용
마이크로파	넓은 대역폭, 장애물 극복, 페이딩 현상의 영향을 받음	높은 초기 설치 비용
위성통신 링크	넓은 대역폭, 케이블 필요 없음, 광역성	높은 초기 투자 비용, 시간 지연