CS15210: More Waves and Signals

Helen Miles (hem23@aber.ac.uk)

29/01/16

(based on slides by Mike Clarke)

Previously, in CS15210...

- Signals are sent as varying voltage over time
- How signals become damaged:
 - attenuation, dispertion, distortion

- Signals and data can be analogue or digital
 - Can send either kind of data as either kind of signal using converters (ADC, DAC)

Previously, in CS15210...

- Anatomy of a wave:
 - cycle, amplitude, wavelength, frequency
- How two waves can be compared:
 - amplitude, frequency, phase

Contents

- 1. Waves: Some Calculations...
- 2. More on Waves
- 3. Binary Signals
- 4. Wrapping Up

Measuring frequency

Frequency is measured in Hertz (cycles per second)

kilohertz (kHz)
$$1 \times 10^3$$
 Hz $1,000$ cycles/second megahertz (MHz) 1×10^6 Hz $1,000,000$ cycles/second gigahertz (GHz) 1×10^9 Hz $1,000,000,000$ cycles/second

Some calculations...

Example Question: A wave has a frequency of 10 MHz. How long does it take to complete one cycle?

- There are various tricks for helping us to do calculations with frequencies
- These are not particularly difficult; its just a question of remembering the techniques

 a^{r}

 a^n means n a's multiplied together:

$$2^3 = 2 \times 2 \times 2 = 8$$

$$10^2 = 10 \times 10 = 100$$

$$a^1 = a$$

 a^1 is just a on it's own!

$$2^1 = 2$$

$$10^1 = 10$$

$$a^m \times a^n = a^{(m+n)}$$

When two exponents are multiplied, if the base is the same, you can add powers together:

$$2^3 \times 2^2 = (2 \times 2 \times 2) \times (2 \times 2) = 2^5$$

 $10^2 \times 10^1 = (10 \times 10) \times (10) = 10^3$

$$a^m \times a^n = a^{(m+n)}$$

What happens if m = 0? a^0 becomes 1:

$$a^0 \times a^n = a^{(0+n)} = 1 \times a^n$$

 $10^0 \times 10^2 = 10^{(0+2)} = 1 \times 10^2$

$$a^0 = 1$$

 a^0 is equal to 1

$$2^0 = 1$$

$$10^0 = 1$$

Special case... $0^0 = 0$

Indices in Large Units

1 kHz	1000 Hz	$10^0\mathrm{Hz} imes 10^3\mathrm{Hz}$	10 ³ Hz
1 MHz	1000 kHz	$10^3\mathrm{Hz} imes 10^3\mathrm{Hz}$	10 ⁶ Hz
1 GHz	1000 MHz	$10^6\mathrm{Hz} imes 10^3\mathrm{Hz}$	10 ⁹ Hz

a^m

What happens if m is negative? Division is the opposite of multiplication:

$$2^{-3} = 1 \div 2 \div 2 \div 2$$
$$= 1 \div (2 \times 2 \times 2)$$
$$= \frac{1}{2^3}$$

$$a^{-n}=\frac{1}{a^n}$$

 a^{-n} is 1 divided by a^{+n}

$$2^{-3} = \frac{1}{2^3} = 0.125$$

$$10^{-5} = \frac{1}{10^5} = 0.00001$$

$$a^m \times a^n = a^{(m+n)}$$

What happens if n is negative? Division is the opposite of multiplication:

$$a^{m} \times a^{-n} = a^{(m-n)}$$
$$= a^{m} \times \frac{1}{a^{n}}$$
$$= \frac{a^{m}}{a^{n}}$$

$$a^{(m-n)} = \frac{a^m}{a^n}$$

 $a^{(m-n)}$ is a^m divided by a^n

$$2^{(5-3)} = \frac{2^5}{2^3} = \frac{32}{8} = 4$$

$$10^{(8-5)} = \frac{10^8}{10^5} = \frac{100,000,000}{100,000} = 1000$$

"Start with '1' and then multiply or divide as many times as the exponent says"

$1 \times a \times a$
$1 \times a$
1
1 ÷ a
$1 \div a \div a$

Rod Pierce, 2014, 'Negative Exponents', Math Is Fun,

http://www.mathsisfun.com/algebra/negative-exponents.html

Small Units of Time

We will be dealing with small units of time (measured in seconds)

millisecond (ms)	$1 imes 10^{-3}\mathrm{s}$	1/1,000 seconds
microsecond (μs)	$1 imes10^{-6}\mathrm{s}$	1/1,000,000 seconds
nanosecond (ns)	$1 \times 10^{-9} \mathrm{s}$	1/1,000,000,000 seconds
picosecond (ps)	$1 imes 10^{-12}\mathrm{s}$	1/1,000,000,000,000 seconds

A wave has a frequency of $10\,\mathrm{MHz}$. How long does it take to complete one cycle?

A wave has a frequency of 10 MHz. How long does it take to complete one cycle?

$$10\,\mathrm{MHz} = 10 \times 10^6\,\mathrm{Hz}$$

The wave is performing 10,000,000 (1 \times 10⁷) cycles per second To complete one cycle, it therefore takes 1 /10,000,000 seconds

$$=1 imes10^{-7}\,\mathrm{s}$$

$$= 10^{-1} \times 10^{-6} \,\text{s} = 0.1 \,\mu\text{s}$$

 $= 10^2 \times 10^{-9} \,\text{s} = 100 \,\text{ns}$

An electrical signal travels at a speed of 2×10^8 metres per second in copper wire*.

How long does it take to travel the length of a 1 km cable?

$$\textit{speed} = \frac{\textit{distance}}{\textit{time}}$$

^{*}This is around $^2/_3$ the speed of light in a vacuum (3 imes 10 8 m s $^{-1}$)

An electrical signal travels at a speed of $2\times 10^8 \mbox{ metres per second in copper wire}.$ How long does it take to travel the length of a $1\,\mbox{km}$ cable?

$$2 \times 10^{8} = \frac{1000}{time} \longrightarrow time = \frac{10^{3}}{2 \times 10^{8}}$$

$$= 10^{3} \times 2^{-1} \times 10^{-8}$$

$$= \frac{1}{2^{1}} \times 10^{(3-8)}$$

$$= 0.5 \times 10^{-5} \text{ s}$$

$$= 5 \times 10^{-6} \text{ s} = 5 \text{ µs}$$

An FM radio station broadcasts on 100 MHz. Radio waves travel at the speed of light (3 \times 10 8 m s $^{-1}$).

Given that the ideal[†] length for a normal radio aerial is ¹/₄ of the wavelength[‡], how long should my aerial be?

$$distance = speed \times time$$

(distance = wavelength)

 $^{^\}dagger$ there are variants, but in this module we use $^{1/4}\lambda$

[‡]if you're interested why, see: https://en.wikipedia.org/wiki/Dipole_antenna#Quarter-wave_monopole

An FM radio station broadcasts on $100\,\mathrm{MHz}$. Radio waves travel at the speed of light $(3\times10^8\,\mathrm{m\,s^{-1}})$. Given that the ideal length for a normal radio aerial is $^{1}/_{4}$ of the wavelength, how long should my aerial be?

If frequency is $100\,\mathrm{MHz}$ ($10^8\,\mathrm{Hz}$), one cycle takes $10^{-8}\,\mathrm{s}$

$$distance = (3 \times 10^8) \times 10^{-8}$$

$$= 3 \times 10^{(8-8)} = 3 \times 1$$

Station wavelength $= 3 \, \text{m}$

Aerial length = 3/4m = 75 cm

Alternative Formula

$$v = f\lambda$$

 $velocity = frequency \times wavelength$

$$\textit{wavelength} = \frac{\textit{velocity}}{\textit{frequency}} = \frac{3 \times 10^8}{10^8} = 3\,\text{m}$$

Why Waves are Important

- Any analogue signal can be represented as a combination of waves of different frequencies and amplitudes
 - Fourier Analysis break down the wave into a number of simpler waves
 - see: http://en.wikipedia.org/wiki/Fourier_analysis
 - You don't need to be able to do the maths for this module, but it's worth reading up on
- Attenuation, dispersion and distortion affect different frequencies and mediums (cables, etc.) to a different extent and in different ways

Why Waves are Important

- Each transmission medium has a range of frequencies that it can transmit
 - A range of frequencies that it can transmit with least damage
 - e.g. Wi-Fi at 2.4 GHz and 5 GHz
- The most widely available network is the telephone network (PSTN - Public Switched Telephone Network)
 - Designed to transmit analogue signals for voice
 - Uses lots of different technologies, more in a later lecture...

- Binary signals are digital signals with only two possible values
 - Conventionally written 0 and 1
 - But may be any pair of contrasting values,
 e.g. {long, short}, {yes, no}, {hot, cold}

- Could use a basic threshold:
 - Anything below 2.5 V is a 0
 - Anything above 2.5 V is a 1

But... signals aren't perfect

- So instead we can use ranges:
 - 0 V to 2 V is a 0
 - 3V to 5V is a 1
 - Anything in the middle (2 V to 3 V) is undefined
 - This will at least give us a hint when something might be going wrong...

- Binary signals are very widely used because they are technically easy to generate and to recognise
- Any digital data can be represented as a sequence of binary signals

The important things to remember:

- How to do basic calculations for waves
 - use the indices tricks
- Different SI units:
 - giga (G), mega (M), kilo (k),
 milli (m), micro (μ), nano (n), ...
- Binary signals are a specific digital signal with only two values
 - don't have to be $\{1, 0\}$

Indices crib sheet

a

 a^n means n a's multiplied together

Special cases:

$$a^1 = a$$

$$a^0 = 1$$

$$0^0 = 0$$

Useful tricks:

$$a^m \times a^n = a^{(m+n)}$$

$$a^m \div a^n = a^{(m-n)}$$

$$a^{-n} = 1/a^n$$

Next time...

Modes and Media (Monday at 13:10, HO-A12)