

Left Recursive Grammar

A grammar is left recursive if it has a non terminal A such that there is a derivation $A \Rightarrow A\alpha$ for some string α . This process is also known as *immediate left recursive* grammar.

Problem

- ► Execute the production of a non-terminal symbol without checking the terminal symbol which prosuce infinite loop or iteration.
- ► As it executes the production of a non-terminal symbol, so, this is the way to increse possibility to make a grammar ambiguous.
- ▶ A left recursive grammar make the iteration with $\beta\alpha^*$, if the grammar is A → A α | β

Elimination of Left Recursive Grammar

Concept

We have to the eliminate the left recursion without changing the language $\beta\alpha^*$

Formula/Grammar to eliminate the Left Recursion

For the grammar A \rightarrow A α | β .

Example:

Eliminate the left recursion for the following grammar S \rightarrow S 0 S 1 S | 01

Solution:

Ambiguous Grammar

A grammar is called ambiguous if we find -

- more than one left most derivation, or
- more than one rightmost derivation, or
- more than one parse tree

Example:

We have a grammar:

$$E \rightarrow E + E \mid E * E \mid id$$

and the corresponding string is id + id * id, we will get two distinct left most derivation.

Solving issue

Care about the precedence of + and *, where we have to treat operator * as higher precedence than +, correspondiong to fact that we would normally evaluate an expression like id+id*id as id+(id*id) rather than (id+id)*id.

Assignment 04: Parse tree and Ambiguity

There is given some context free grammar with a string. You have to do the following operations for each grammar and string:

- I. You have to find the parse tree for each grammar corresponds to the string.
- II. Justify you answer whether each grammar is ambiguous or unambiguous.
- 1. $S \rightarrow S S + | S S * |$ a with the string aa+a*.
- 2. S \rightarrow 0 S 1 | 0 1 with the string 000111.
- 3. S \rightarrow + S S | * S S | a with the string +*aaa.
- 4. S \rightarrow S (S) S | ϵ with the string (()()).
- 5. S \rightarrow S + S | S S | (S) | S * | a with the string (a+a)*a.
- 6. S \rightarrow (L) | a and L \rightarrow L, S | S with the string ((a,a),a,(a)).
- 7. S \rightarrow a S b S | b S a S | ϵ with the string aabbab.

agnment 05: Left Recursion

Justify the following grammars and eliminate left recursion if it has.

1.
$$L \rightarrow L$$
 , $S \mid S$

2.
$$E \rightarrow E + T \mid T$$

3. E
$$\rightarrow$$
 E + T | T
T \rightarrow T * F | F

$$F \rightarrow (E) \mid id$$

5.
$$E \rightarrow E + E \mid E * E \mid id$$

Assignment 05: Left Recursion

7.
$$S \rightarrow A$$

$$A \rightarrow A d \mid A e \mid a B \mid a c$$

$$B \rightarrow b B c \mid f$$

8. A
$$\rightarrow$$
 A A α | β

9.
$$A \rightarrow B a \mid A a \mid c$$

 $B \rightarrow B b \mid A b \mid d$

10.
$$X \rightarrow X S b \mid S a \mid b$$

 $S \rightarrow S b \mid X a \mid a$

11.
$$A \rightarrow B \times y \mid x$$
 $B \rightarrow C D$
 $C \rightarrow A \mid c$
 $D \rightarrow d$

Eliminate the Left Recursion

Eliminate the Left Recursion for multiple productions Now, whatif you have more one or multiple productions as following grammar:

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Modified Grammar

Example

Eliminate the left recursion for the following grammar

$$E \,\rightarrow\, E \,+\, T \,\mid\, E \,*\, T \,\mid\, a \,\mid\, b$$

Solution

Non immediate left recursion

Consider the following grammar:

$$S \rightarrow A a \mid b$$

 $A \rightarrow A c \mid S d \mid \epsilon$

The non terminal S is left recursive because S \Rightarrow Aa \Rightarrow Sda, but this is not immediately left. On the other hand we can write A \rightarrow A c | A a d | b d | ϵ .

Eliminate the left recursion

factoring not removes ambiguity

dangling-else

Consider the following grammar, which is called "dangling-else".

We can write the grammar as $S \to i E t S \mid i E t S e S \mid a$. Here, stmt means S, if means i, expr means E, and then means t. So, this grammar is ambigous for the string if E_1 then if E_2 then S_1 else S_2 as it produced two different perse trees.

Left factoring not removes ambiguity

Left factoring the "dangling-else" grammar

$$S \rightarrow i E t S S' \mid a$$

 $S' \rightarrow \epsilon \mid e S$

Now, if we derive the string $i \ E \ t \ i \ E \ t \ S \ e \ S$, then we will get again two different parse trees.

In that case, we can say that eliminating the non-determinism by left factoring does not remove the ambiguity of a grammar.

Non-determinism

Introduction

Non-determinism means you have many options on a single symbol. Consider the following grammar: A $\rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \alpha \beta_3$. From this grammar you have to derive the string $\alpha \beta_3$. In order to derive the string from the grammar you may have needed the **backtracking**. In addition, that backtrack is happened because of **common prefixes** and this is the concept of non-determinism.

Left Factoring

If you have a non-deterministic grammar as following: A $\rightarrow \alpha\beta_1 \mid \alpha\beta_2 \mid \alpha\beta_3 \mid \ldots \mid \gamma$ So, you have to postpone the decision making problem until find to β_3 .

Left Factoring

The equivalent deterministic grammar is:

Example

Do left factoring the following grammar:

Solution

$$S \rightarrow b$$
 S S' | a $S' \rightarrow S$ a a S | S a S b | b $S' \rightarrow S$ a S'' | b $S'' \rightarrow a$ S | S b

oduction to FIRST and FOLLOW

FIRST

 $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of terminals that begin strings derived from α . If $\alpha \Rightarrow \epsilon$, then ϵ is also in FIRST(α).

Example: Consider the following grammar:

```
S \rightarrow a A B C D
A \rightarrow b
B \rightarrow c
C \rightarrow d
D \rightarrow e
FIRST(S) = FIRST(a) = \{a\}
FIRST(A) = FIRST(b) = \{b\}
FIRST(B) = FIRST(c) = \{c\}
FIRST(C) = FIRST(d) = \{d\}
FIRST(D) = FIRST(e) = \{e\}
```

Introduction to FIRST and FOLLOW

Example: Consider the following grammar:

```
S \rightarrow A B C D
A \rightarrow b \mid \epsilon
B \rightarrow D c \mid \epsilon
C \rightarrow d
D \rightarrow e \mid f \mid \epsilon
Solution:
```

```
FIRST(S) = FIRST(A) = \{b, \epsilon\} = \{b\}
= FIRST(B) = \{e, f, c, \epsilon\} = \{e, f, c\}
= FIRST(C) = {d} = {b, e, f, c, d}
FIRST(A) = FIRST(b) = \{b\} = FIRST(\epsilon) = \{\epsilon\}
= \{b, \epsilon\}
FIRST(B) = FIRST(D) = \{e, f, \epsilon\} = \{e, f\}
= FIRST(c) = {c} = FIRST(\epsilon) = {\epsilon} = {e, f, c, \epsilon}
FIRST(C) = \{d\}
FIRST(D) = \{e, f, \epsilon\}
```

Assignment 06: Left factoring

- 1. Do left factoring for the following grammar: S-a S S b S | a S a S b | a b b | a
- 2. There is given a perse tree. Find the corresponding grammar and make deterministic if it is not.

3. Why a non-deterministic grammar can not work to design a compiler?

Assignment 06: Left Factoring

- 4. Describe the following terms:
 - i. Ambuguity
 - ii. Left recursion
 - iii. Deterministic and non-deterministic grammar
 - iv. Left factoring
- 5. The determinism of a grammar does not remove the ambiguity - describe it.
- 6. Do left factoring for the following grammars:

```
i. A - a A B | a B c | a A c
ii. S -> a | ab | ab c | ab c d
```

iii. S -> a A d l a B $A \rightarrow a \mid a \mid b$ $B \rightarrow c c d | d d c$