PROYECTO COMPILANDO CONOCIMIENTO

ECUACIONES DIFERENCIALES

La Transformada de Laplace

Introducción

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	La T	Transformada de Laplace	2
	1.1.	Definición	3
	1.2.	Tabla de Transformación	4
	1.3.	Demostraciones de la Tabla	5
		1.3.1. $f(t) = k$	5
		1.3.2. $f(t) = e^{at}$	5
	1.4.	Ejemplos Útiles	6

Capítulo 1

La Transformada de Laplace

1.1. Definición

Dada una función f(t) definida para toda $t \ge 0$ la tranformada de Laplace de f es la función F(s) definida de la Siguiente manera:

$$\mathcal{L}\lbrace f(t)\rbrace = F(s) = \int_0^\infty e^{-st} f(t)dt \tag{1.1}$$

en todos los valoers de S para los cuales la Integral Impropia converge. Recuerda que una Integral Impropia:

$$\int_0^\infty g(t)dt = \lim_{b\to\infty} \int_a^b g(t)dt$$

1.2. Tabla de Transformación

f(s)	$\mathscr{L}\{f(s)\} = F(s)$
\overline{k}	$\frac{k}{s}$
e^{at}	$\frac{1}{s-a}$

1.3. Demostraciones de la Tabla

1.3.1. f(t) = k

Calcule la Tranformada de Laplace cuando f(t)=kRecuerda que podemos hacer que: $\mathcal{L}\{k\}=k\cdot\mathcal{L}\{1\}$

$$\mathcal{L}\{1\} = F(s) = \int_0^\infty e^{-st} 1 dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-st} dt$$

$$= \lim_{b \to \infty} \frac{e^{-st}}{-s} \Big|_0^b$$

$$= \lim_{b \to \infty} \left[\frac{1}{s} - \frac{e^{-sb}}{s} \right]$$

$$= \frac{1}{s}$$

Por lo tanto:

$$\mathcal{L}\{k\} = \frac{k}{s} \tag{1.2}$$

1.3.2. $f(t) = e^{at}$

Calcule la Tranformada de Laplace cuando $f(t) = e^{at}$

$$\mathcal{L}\lbrace e^{at}\rbrace = F(s) = \int_0^\infty e^{-st} \cdot e^{at} dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-st + at} dt$$

$$= \lim_{b \to \infty} \int_0^b e^{-(s-a)t} dt$$

$$= \lim_{b \to \infty} \frac{e^{-(s-a)t}}{-(s-a)} \Big|_0^b$$

$$= \lim_{b \to \infty} \left[\frac{e^{-(s-a)b}}{-(s-a)} - \frac{e^{-(s-a)0}}{-(s-a)} \right]$$

$$= \frac{1}{s-a}$$

1.4. Ejemplos Útiles

$$f(t) = e^{t+7}$$

Calcule la Tranformada de Laplace cuando $f(t)=e^{t+7}\,$

$$\mathcal{L}\lbrace e^{t+7}\rbrace =$$

$$= \mathcal{L}\lbrace e^t \cdot e^7\rbrace$$

$$= e^7 \cdot \mathcal{L}\lbrace e^t\rbrace$$

$$= e^7 \frac{1}{s-1}$$

$$= \frac{e^7}{s-1}$$

Bibliografía

[1] ProbRob Youtube.com