Computer System Design

陈浩东 Chen Haodong

232320029

2023.9.19

Variant number: 9

1. Verify functional correctness in simulation

The function is correct as shown in Figure 1. *LED*[31:0] in Figure 1 approves the correct output value of *ln* function, the program works as intended. Now, measure the number of clock cycles needed to execute the program by various CPU configurations, and the results is shown in Table 1. Figure 2 shows the design latency of *riscv_5stage*, simulation frequency set in the testbench is 140Mhz clock, so 157.124 ns equals to around 22 clock cycles. For my example, the waveform simulation outputs of each *riscv* stage are put in the appendix.

Figure 1: simulation waveform

Figure 2: design latency of riscv_5stage

CPU configuration	Latency, clock cycles
riscv_1stage	42
riscv_2stage	24
riscv_3stage	33
riscv_4stage	24
riscv_5stage	22
riscv_6stage	23

Table 1: Performance (in clock cycles) of software implementations based on various

CPU configurations

2. Implement the design and collect metrics of the implementation

Characteristics of provided *sigma_tile* configurations are shown in Table 2. The program outputs of each element in Table 2 are shown in the appendix.

CPU configuration	Frequency, MHz	LUTs	FFs
riscv_1stage	70	2835	1665
riscv_2stage	70	3193	1766
riscv_3stage	80	3200	1920
riscv_4stage	140	3565	2198
riscv_5stage	140	3739	2273

riscv_6stage	150	3937	2406
--------------	-----	------	------

Table 2: Characteristics of provided sigma_tile implementations

3. Analyze performance of implementations

The absolute performance values of target functionality implementations based on various CPU configurations is shown in table 3.

CPU configuration	Latency, ns	
riscv_1stage	600	
riscv_2stage	343	
riscv_3stage	413	
riscv_4stage	171	
riscv_5stage	157	
riscv_6stage	153	

Table 3: Absolute performance of target functionality implementations based on various

CPU configurations

4. Appendix:

Figure 3: design latency of riscv_1stage

Figure 4: design latency of riscv_2stage

Figure 5: design latency of riscv 3stage

Figure 6: design latency of riscv 4stage

Figure 7: design latency of riscv_6stage

Name 1	Slice LUTs (63400)	Slice Registers (126800)
∨ N NEXYS4_DDR	3289	2111
✓ I sigma (sigma)	3288	2111
■ debouncer (debounce	28	23
reset_sync (reset_syn	2	4
sigma_tile (sigma_tile)	2835	1665
■ arb_cpu (arb_2m3s	101	6
> I genexu_MUL_DIV (g	334	231
I irq_adapter (irq_ad	31	24
> I ram (ram_dual_mer	109	53
	2214	1227
sfr (sfr)	44	124
> I udm (udm)	423	338
> I sys_clk (sys_clk)	0	0

Figure 8: LUTs and FFs of riscv_1stage sigma_tile

Name 1	Slice LUTs (63400)	Slice Registers (126800)
√ N NEXYS4_DDR	3636	2212
✓ I sigma (sigma)	3635	2212
debouncer (debounce)	28	23
reset_sync (reset_sync	2	4
v I sigma_tile (sigma_tile)	3193	1766
arb_cpu (arb_2m3s)	6	6
> I genexu_MUL_DIV (g	353	231
I irq_adapter (irq_ada	30	24
> I ram (ram_dual_men	110	53
riscv (riscv_2stage)	2555	1328
sfr (sfr)	137	124
> I udm (udm)	412	338
> I sys_clk (sys_clk)	0	0

Figure 9: LUTs and FFs of riscv_2stage sigma_tile

Figure 10: LUTs and FFs of riscv_3stage sigma_tile

Figure 11: LUTs and FFs of riscv_4stage sigma_tile

Figure 12: LUTs and FFs of riscv_5stage sigma_tile

Name 1	Slice LUTs (63400)	Slice Registers (126800)
√ N NEXYS4_DDR	4338	2852
✓ I sigma (sigma)	4337	2852
debouncer (debounce)	28	23
reset_sync (reset_sync	2	4
v I sigma_tile (sigma_tile)	3937	2406
arb_cpu (arb_2m3s)	33	6
> I genexu_MUL_DIV (g	285	231
I irq_adapter (irq_ada	30	24
> I ram (ram_dual_men	158	53
	3330	1968
sfr (sfr)	99	124
> I udm (udm)	370	338
> I sys_clk (sys_clk)	0	0

Figure 13: LUTs and FFs of riscv_6stage sigma_tile