# §3-5 反三角函數的基本概念

## (甲) 反函數的概念

#### (1)反函數的定義:

函數 $f(x) \cdot g(y)$ , 設x,y分別是 $f(x) \cdot g(y)$ 定義域內任意元素, 如果g(f(x))=x且f(g(y))=y則稱f(x)與g(y)万爲**反函數**,f(x)的反函數記爲 $f^{-1}(x)$ ,即 $g(x)=f^{-1}(x)$ 。

此時f(x)、g(x)的定義域與值域互換,即f(x)的定義域為 $f^{-1}(x)$ 的值域,f(x)的值 域為 $f^{-1}(x)$ 的定義域。

#### 例一:

設 $f(x)=2^x$ ,定義域=R,值域={ $y | y \ge 0$ },我們來討論f(x)的反函數g(y), 因爲 $2 \xrightarrow{f} 4$ ,  $0.5 \xrightarrow{f} 2^{0.5}$ ,  $\sqrt{3} \xrightarrow{f} 2^{\sqrt{3}}$ ,  $x \xrightarrow{f} 2^x$ 所以  $4 \xrightarrow{g} 2$ ,  $2^{0.5} \xrightarrow{g} 0.5$ ,  $2^{\sqrt{3}} \xrightarrow{g} \sqrt{3}$ ,  $2^x \xrightarrow{g} x$ 

由對數的定義可知 $g(y)=\log_2 y$ ,定義域= $\{y \mid y \ge 0\}$ ,值域=R



設 $f(x)=x^2$ ,定義域=R,值域={ $y \mid y \ge 0$ },觀察它的對應情形  $1 \xrightarrow{f} 1, -1 \xrightarrow{f} 1, 2 \xrightarrow{f} 4, -2 \xrightarrow{f} 4, \pm 3 \xrightarrow{f} 9, \pm x \xrightarrow{f} x^2,$  當我們求它的 反函數時,會遭遇到一個問題,到底 $x^2$ 要對應回去x或是-x呢?

g

因爲 $f(x)=x^2$ 是一個2對1的函數,因此反函數定義時會遭遇到1對2無法形 成函數,這個情形與(1)的情形不同,  $f(x)=2^x$ 是一個 1 對 1 的函數, 故直接對應 回來就能定義反函數;而 $f(x)=x^2$ 是一個2對1的函數,我們要定義反函數時, 就要採取彈性的方法,所謂彈性的方法就是限制原函數的定義域,使得原函數 在限制下的定義域是一個 1 對 1 的函數。當定義域限制成 $\{x|x\geq 0\}$ 時,可定義反 函數 $f^{-1}(y)=\sqrt{y}$ ,當定義域限制成 $\{x|x\leq 0\}$ 時,可定義反函數 $f^{-1}(y)=-\sqrt{y}$ 。

#### 例三:

處理三角函數的情形,與處理 $f(x)=x^2$ 的情形類似,考慮 $f(x)=\sin x$ ,因爲 $\frac{\pi}{3}$  $+2k\pi \xrightarrow{f} \sqrt{3}$  , 它是一個多對 1 的函數,所以要處理正弦函數的反函數問題時, 要將定義域做適當的限制,其它的5個三角函數也是用同樣的方法來處理。

# (乙)反正弦函數

#### (1)反正弦sin<sup>-1</sup>a的定義:

對於每一個實數 $a \in [-1,1]$ ,在區間 $[\frac{-\pi}{2},\frac{\pi}{2}]$ 內,都恰有一個實數x,使得 $\sin x = a$ 。這個唯一的實數x,就記爲 $\sin^{-1}a$ (有時也記爲 $\arcsin a$ ),讀做 $\arcsin a$ 

例如:因爲在 $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ 內只有 $\frac{\pi}{6}$ 使得 $\sin\frac{\pi}{6}=\frac{1}{2}$ ,所以 $\sin^{-1}\frac{1}{2}=\frac{\pi}{6}$ 。

因爲在 $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ 內只有 $\frac{-\pi}{4}$ 使得 $\sin \frac{-\pi}{4} = \frac{-\sqrt{2}}{2}$ ,所以 $\sin^{-1}\left(\frac{-\sqrt{2}}{2}\right) = \frac{-\pi}{4}$ 。

注意:

$$(a)\sin\frac{5\pi}{6} = \frac{1}{2}$$
,為什麼 $\sin^{-1}\frac{1}{2} \neq \frac{5\pi}{6}$ 呢?

(b)sin<sup>-1</sup>4/3有意義嗎?爲什麼?

| а            | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | $-\frac{1}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1 |
|--------------|---|---------------|----------------------|----------------------|---|----------------|-----------------------|-----------------------|----|
| $\sin^{-1}a$ |   |               |                      |                      |   |                |                       |                       |    |

#### 結論:

$$\sin^{-1}a = \theta \Leftrightarrow a \in [-1,1], \ \theta \in [\frac{-\pi}{2}, \frac{\pi}{2}] \ \exists \sin\theta = x$$

#### (2)反正弦函數:



由 $y=\sin x$  的圖形可知定義域限制在 $\left[\frac{\pi}{2},\frac{-\pi}{2}\right]$ 內時, $y=\sin x$ 爲一個 1–1 函數。

#### (a)定義反正弦函數:

根據 $\sin^{-1}x$ 的定義,可知我們限制 $y=\sin x$ 的定義域到 $\left[\frac{\pi}{2},\frac{-\pi}{2}\right]$ ,

此時 $y=\sin x$  爲 1 對 1 的函數,因此可以定義反正弦函數  $y=f(x)=\sin^{-1}x$ ,

可知定義域= $\{x|-1 \le x \le 1\}$ ,值域= $\{y|\frac{-\pi}{2} \le y \le \frac{\pi}{2}\}$ 。

## (b)反正弦函數的圖形:

對於  $a \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ , 點(a,b)在  $y=\sin x$ ,的圖形上

⇔ 點(b,a)在 $y=\sin^{-1}x$ 的圖形上。

所以 $y=\sin x$ , $x\in [\frac{-\pi}{2},\frac{\pi}{2}]$ 與 $y=\sin^{-1}x$ 的圖形對稱於直線y=x。



#### (3)反正弦函數的性質:

性質  $1: y=\sin^{-1}x$ 圖形對稱原點,爲奇函數。  $\sin^{-1}(-x)=-\sin^{-1}(x)$ , $-1 \le x \le 1$ 

性質 2:若-1≤x≤1,則sin(sin<sup>-1</sup>x)=x。

性質 3: 若 $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$ , 則 $\sin^{-1}(\sin x) = x$ 。

性質 4: 若 $x \in \mathbb{R}$ ,則 $\sin^{-1}(\sin x) \neq x$ ,例 $\sin^{-1}(\sin \frac{5\pi}{6}) = \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \neq \frac{5\pi}{6}$ 。

# [例題1] 求下列各式的值:

(1)  $\sin^{-1}(\sin\frac{\pi}{5})$  (2)  $\sin^{-1}\sin\frac{4\pi}{3}$  (3)  $\sin^{-1}\sin 1$  (4)  $\sin^{-1}\sin 2$ 

Ans : (1)  $\frac{\pi}{5}$  (2)  $-\frac{\pi}{3}$  (3)1 (4) $\pi$ -2

#### [例題2] 求下列各式的值:

(1)sin  $\sin^{-1}\frac{2}{5}$  (2)sin  $\sin^{-1}(\frac{-2}{5})$  (3)sin  $\sin^{-1}1$  (4)sin  $\sin^{-1}2$ 

Ans:  $(1)\frac{2}{5}(2)\frac{-2}{5}(3)1(4)$ 無意義

## (練習1) 求下列各小題的值:

 $(1)\sin^{-1}1=$  ?  $(2)\sin^{-1}\frac{2}{5}$  [利用三角函數值表]  $(3)\sin^{-1}\frac{\pi}{3}=$  ?

 $(4)\sin^{-1}(\cos\frac{5\pi}{6}) = ? (5)\sin(\sin^{-1}\frac{\sqrt{3}}{2}) = ? (6)\sin^{-1}(\sin 10) (7)\sin^{-1}\sin\frac{5\pi}{8}$ 

Ans:  $(1)\frac{\pi}{2}$  (2)約 0.41 弧度 (3)無意義 (4) $\frac{-\pi}{3}$  (5)  $\frac{\sqrt{3}}{2}$  (6)  $3\pi$ -10 (7)  $\frac{3\pi}{8}$ 

# (練習2) 在 $\triangle$ ABC中,若 $\overline{BC}$ = $2\sqrt{2}$ , $\overline{CA}$ =6, $\angle$ B=135°,求 $\angle$ A。

Ans:  $\angle A = \sin^{-1}\frac{1}{3}$ 

# (丙) 反餘弦函數

(1)反餘弦cos<sup>-1</sup>a的定義:

對於每一個a, $-1 \le a \le 1$ ,在區間 $\{x | 0 \le x \le \pi\}$ 上都恰有一個實數x使得 $\cos x = a$ 這個唯一的實數x,就記爲 $\cos^{-1}a$ (有時也記做 $\arccos a$ ),讀做 $arc\ cosinea$ 。

例如:因爲  $0 \le \frac{\pi}{3} \le \pi$ , $\cos \frac{\pi}{3} = \frac{1}{2}$ ,所以 $\cos^{-1} \frac{1}{2} = \frac{\pi}{3}$ 。

因爲 
$$0 \le \frac{5\pi}{6} \le \pi$$
,  $\cos \frac{5\pi}{6} = \frac{-\sqrt{3}}{2}$ , 所以 $\cos^{-1}(\frac{-\sqrt{3}}{2}) = \frac{5\pi}{6}$ .

注意:

$$(1)\cos\frac{5\pi}{3} = \frac{1}{2}$$
,爲何 $\cos^{-1}\frac{1}{2} \neq \frac{5\pi}{3}$ 呢?

$$(2)\cos^{-1}\frac{3}{2}$$
是否有意義?

| а                         | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | $-\frac{1}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1 |
|---------------------------|---|---------------|----------------------|----------------------|---|----------------|-----------------------|-----------------------|----|
| $\cos^{-1}a$              |   |               |                      |                      |   |                |                       |                       |    |
| $\sin^{-1}a$              |   |               |                      |                      |   |                |                       |                       |    |
| $\sin^{-1}a + \cos^{-1}a$ |   |               |                      |                      |   |                |                       |                       |    |

結論:

$$\cos^{-1} a = \theta \quad \Leftrightarrow a \in [-1,1] \quad \theta \in [0,\pi] \quad \exists \cos \theta = x$$

(2)反餘弦函數:



由  $y=\cos x$  的圖形可知定義域限制在 $[0,\pi]$ 內時, $y=\cos x$  爲一個 1-1 函數。

(a)定義反餘弦函數:

根據 $\cos^{-1}x$ 的定義,可知我們限制 $y=\cos x$ 的定義域到 $[0,\pi]$ ,此時 $y=\cos x$ 爲 1

對 1 的函數,因此可以定義反餘弦函數  $y=f(x)=\cos^{-1}x$ ,

可知**定義域**= $\{x|-1 \le x \le 1\}$ ,值域= $\{y|0 \le y \le \pi\}$ 。



對於 $a \in [0,\pi]$ ,點(a,b)在 $y = \cos x$ 的圖形上

 $\Leftrightarrow$  點(b,a)在 $y=\cos^{-1}x$  的圖形上。



## 所以 $y=\cos x$ , $x \in [0,\pi]$ 與 $y=\cos^{-1}x$ 的圖形對稱於直線y=x。

#### (3)反餘弦函數的性質:

性質  $1: y=\cos^{-1}x$ 圖形無對稱原點,不爲奇函數。  $\cos^{-1}(-x)\neq -\cos^{-1}x$ 

性質 2:若-1≤x≤1,則cos (cos<sup>-1</sup>x)=x。

性質 3:若 0≤x≤π,則cos<sup>-1</sup>(cosx)=x。

性質 4: 若 $x \in \mathbb{R}$ ,則 $\cos^{-1}(\cos x) \neq x$ 

 $\sqrt[6]{9}$ :  $\cos^{-1}(\cos\frac{4\pi}{3}) = \cos^{-1}(\frac{-1}{2}) = \frac{2\pi}{3} \neq \frac{4\pi}{3}$ 

性質 5 :  $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ 

性質 6: 若 $-1 \le a \le 1$ ,則 $\cos^{-1}(-a) = \pi - \cos^{-1}a$ 

例: $\cos(-\frac{1}{2}) = \frac{2\pi}{3} = \pi - \frac{\pi}{3} = \pi - \cos^{-1}\frac{1}{2}$ 

[例題3] 求下列各式的值:

 $(1)\cos^{-1}\cos\frac{5\pi}{7}$   $(2)\cos^{-1}(\cos\frac{-\pi}{3})$   $(3)\cos^{-1}\cos4$ 

Ans:  $(1)\frac{5\pi}{7} (2)\frac{\pi}{3} (3)2\pi - 4$ 

[例題4]  $(1)\cos(\cos^{-1}(-1))$   $(2)\cos(\cos^{-1}(\frac{\pi}{2}))$   $(3)\cos[\cos^{-1}(-\frac{2}{3})]$ Ans: (1)-1  $(2)無意義 <math>(3)\frac{-2}{3}$ 

#### (練習3) 求下列各小題的值:

$$(1)\cos^{-1}\frac{\sqrt{3}}{2}$$
  $(2)\cos^{-1}\pi$   $(3)\cos^{-1}(\cos 1000\pi)$  Ans  $:(1)\frac{\pi}{6}$   $(2)$ 無意義  $(3)0$ 

### (練習4) 求下列各小題的值:

$$(1)\cos^{-1}(\cos 2\pi)$$
  $(2)\cos^{-1}(\frac{-\pi}{3})$   $(3)\cos^{-1}(\cos \frac{4\pi}{3})$ 

Ans: (1)0 (2)無意義 (3)
$$\frac{2\pi}{3}$$

#### (練習5) 求下列各小題的值:

$$\begin{array}{cccc} (1)\cos^{-1}(\cos 1) & (2)\cos^{-1}(\cos 2) & (3)\cos^{-1}(\cos 3) \\ (4)\cos^{-1}(\cos 4) & (5)\cos^{-1}(\cos 5) & (6)\cos^{-1}(\cos 6) \end{array}$$

Ans: 
$$(1)1(2)2(3)3(4)2\pi-4(5)2\pi-5(6)2\pi-6$$

(練習6) 設 
$$0 \le x \le 2\pi$$
,且 $\cos x = \frac{1}{3}$ ,請問 $x = ?$ 

Ans: 
$$x = \cos^{-1}\frac{1}{3}$$
  $\Re 2\pi - \cos^{-1}\frac{1}{3}$ 

# (丁) 反正切函數

## (1)反正切 $\tan^{-1}a$ 的意義:

對於每一個實數a,在區間 $(\frac{-\pi}{2},\frac{\pi}{2})$ 內,都恰有一個實數x,使得 $\tan x = a$ 。這個唯一 的實數x,就記爲 $\tan^{-1}a$ (有時也記爲 $\arctan a$ ),讀做 $\arctan a$ 

例如:因爲在
$$(\frac{-\pi}{2},\frac{\pi}{2})$$
內只有 $\frac{\pi}{4}$ 使得 $\tan\frac{\pi}{4}=1$ ,所以 $\tan^{-1}1=\frac{\pi}{4}$ 。

因爲在
$$(\frac{-\pi}{2},\frac{\pi}{2})$$
內只有 $\frac{-\pi}{3}$ 使得 $\tan\frac{-\pi}{3}=-\sqrt{3}$ ,所以 $\tan^{-1}(-\sqrt{3})=\frac{-\pi}{3}$ 。

注意:
$$\tan \frac{5\pi}{6} = \frac{-1}{\sqrt{3}}$$
,爲什麼 $\tan^{-1}(\frac{-1}{\sqrt{3}}) \neq \frac{5\pi}{6}$ 呢?

結論: 
$$tan^{-1}a=\theta \Leftrightarrow a \in \mathbb{R}, \ \theta \in (\frac{\pi}{2}, \frac{-\pi}{2}) \ \underline{\text{Ltan}}\theta = x \circ (2)$$
 反正切函數:



由  $y=\tan x$  的圖形可知限制定義域在 $(\frac{\pi}{2},\frac{-\pi}{2})$ 時, $y=\tan x$  是 1–1 的函數。

#### (a)定義反正切函數

根據 $\tan^{-1}x$ 的定義,可知我們限制 $y=\tan x$ 的定義域到 $(\frac{\pi}{2},\frac{-\pi}{2})$ ,此時 $y=\tan x$ 爲 1 對 1

的函數,因此可以定義反正切函數  $y=f(x)=\tan^{-1}x$ ,

可知定義域=R,值域= $\{y|\frac{-\pi}{2} < y < \frac{\pi}{2}\}$ 。



對於 $b \in (\frac{-\pi}{2}, \frac{\pi}{2})$ ,點(a,b)在 $y=\tan x$ ,的圖形上

⇔ 點(b,a)在 $y=\tan^{-1}x$ 的圖形上。

所以 $y=\tan x$ , $x \in (\frac{-\pi}{2}, \frac{\pi}{2})$ 與 $y=\tan^{-1}x$ 的圖形對稱於直線y=x。



#### (3)反正切函數的性質:

性質  $1: y=\tan^{-1}x$ 圖形對稱原點,爲奇函數。 $\tan^{-1}(-x)=-\tan^{-1}x$ 

性質 2: 若 $x \in \mathbb{R}$ ,則 $\tan \tan^{-1} x = x$ 

性質 3: 若 $-\frac{\pi}{2} < x < \frac{\pi}{2}$ ,則 $\tan^{-1} \tan x = x$ 

性質 4:若 $x \in \mathbb{R}$ ,則 $tan^{-1}tanx \neq x$ 

例如: $\tan^{-1}(\tan\frac{3\pi}{4})=\tan^{-1}(-1)=\frac{-\pi}{4}\neq\frac{3\pi}{4}$ 

# [例題5] 求下列各小題的值:

 $(1)\tan^{-1}(-1) \quad (2)\tan^{-1}(\tan\frac{7\pi}{12}) \quad (3)\tan^{-1}(\tan\frac{\pi}{2}) \quad (4)\tan(\tan^{-1}(100))$ 

Ans:  $(1)\frac{-\pi}{4}$   $(2)\frac{-5\pi}{12}$  (3)無意義 (4)100

# (練習7) 求下列各小題的值:

 $(1)\tan^{-1}(\sqrt{3})(2)\tan^{-1}(\tan 200\pi)(3)\tan^{-1}(\tan\frac{\pi}{4})$  (4) $\tan(\tan^{-1}123)$ 

Ans:  $(1)\frac{\pi}{3}$  (2)0  $(3)\frac{\pi}{4}$  (4)123

[例題6] 求下列各小題的值:

$$(1)\sin[\sin^{-1}\frac{1}{\sqrt{10}}+\cos^{-1}(\frac{-2}{\sqrt{5}})] \quad (2)\cos[\frac{1}{2}\cdot\tan^{-1}\frac{\sqrt{5}}{2}]$$

$$Ans : (1)\frac{\sqrt{2}}{10} \quad (2)\cdot\sqrt{\frac{5}{6}}$$

(練習8) 試求
$$\cos[\tan^{-1}(\frac{-4}{3}) + \sin^{-1}\frac{12}{13}] = ?$$
 Ans:  $\frac{63}{65}$ 

(練習9) 試求
$$\sin[\frac{1}{2}\cos^{-1}(\frac{-2}{3})] = ?$$
 Ans:  $\frac{\sqrt{30}}{6}$ 

# 綜合練習

- (1) 求下列各式的值:
  - (a) $\sin(\sin^{-1}\frac{\pi}{4})$  (b) $\sin^{-1}(\sin 2)$  (c) $\cos(\cos^{-1}\frac{\pi}{3})$
  - $(d)\cos^{-1}(\cos 3\pi)$  (e)tan(tan<sup>-1</sup>2 $\pi$ ) (f)tan<sup>-1</sup>(tan2 $\pi$ )
- (2)下列有關反函數的敘述那些是正確的?

(A)
$$\sin^{-1}\sin\frac{4\pi}{3} = \frac{4\pi}{3}$$
 (B) $\tan^{-1}\tan 4 = 4$  (C) $\cos[\cos^{-1}\pi] = \pi$  (D) $\sin(\cos^{-1}\frac{1}{2}) = \frac{\sqrt{3}}{2}$  (E) $\cos^{-1}(\cos\frac{-\pi}{3}) = \frac{\pi}{3}$   $\circ$ 

- (3) 有關 $f(x) = \sin^{-1}x$ ,  $-1 \le x \le 1$  的敘述,何者正確?
  - (A) f(x)爲一對一函數 (B) f(x)的反函數爲正弦函數
  - (C) f(x)為遞增函數 (D) f(x)之定義域為 $\{x | -1 \le x \le 1\}$
  - (E) f(x)的値域為 $\{y \mid -\frac{\pi}{2} \le y \le \frac{\pi}{2}\}$ 。
- (4) 有關 $f(x) = \cos^{-1}x$ , $-1 \le x \le 1$ 的敘述,何者正確?
  - (A) f(x)爲一對一函數 (B) f(x)的反函數爲餘弦函數
  - (C) f(x) 為遞增函數 (D) f(x) 之定義域為  $\{x | -1 \le x \le 1\}$
  - (E) f(x)的値域為{ $y | -\frac{\pi}{2} \le y \le \frac{\pi}{2}$ } 。
- (5) 計算下列各小題:

(a) 
$$\tan \left[\sin^{-1}\frac{-4}{5} + \cos^{-1}\frac{-5}{13}\right]$$
 (b)  $\cos \left[2 \cdot \sin^{-1}\left(\frac{-4}{5}\right)\right]$  (c)  $\cos \left[3 \cdot \tan^{-1}\left(\frac{-4}{3}\right)\right]$  (d)  $\sin \left[\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{5}{13}\right]$  (e)  $\cos \left[2\sin^{-1}\frac{4}{5} - \frac{\pi}{3}\right]$ 

(6) 解下列方程式:

(a)
$$\cos^{-1}x = \sin^{-1}\frac{1}{3}$$
 (b) $\cos^{-1}\frac{x}{2} = -\sin^{-1}\frac{3}{5}$  (c) $\cos^{-1}\frac{7}{25} = \tan^{-1}(3x+3)$ 

- (7) 化簡tan<sup>-1</sup>3+tan<sup>-1</sup>2=\_\_\_\_。
- (8) 比較 $a=\sin^{-1}\sin 1$ , $b=\cos^{-1}\cos 2$  , $c=\tan^{-1}\tan 3$ ,的大小。
- (9) 試比較 $a=\sin^{-1}(\frac{-3}{4})$ , $b=\cos^{-1}\frac{5}{6}$ , $c=\tan^{-1}(\frac{-1}{2})$  之大小。
- (10) 設a,b為方程式 $x^2-3x+2=0$ 的二根,試求 $\tan(\tan^{-1}a+\tan^{-1}b)$ 之值。

(11) 解方程式  $\cos x = \frac{-2}{3}$ ,  $0 \le x \le 2\pi$ 

# 進階問題

- (12) 解方程式: 2cos2x+sinx+1=0, 其中 0≤x≤2π。
- (13) (a)證明: $|x| \le 1$ , $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ 。
  (b)解方程式  $4\cos^{-1}x + \sin^{-1}x = \frac{3\pi}{4}$ 。

# 綜合練習解答

- (1)  $(a)\frac{\pi}{4}$  (b) $\pi$ -2 (c)無意義 (d) $\pi$  (e) $2\pi$  (f)0
- (2) (D)(E)
- (3) (A)(C)(D)(E)
- (4) (A)(D)
- (5)  $(a)\frac{56}{33}$   $(b)\frac{-7}{25}$   $(c)\frac{-117}{125}$   $(d)\frac{56}{65}$   $(e)\frac{1}{50}(24\sqrt{3} 7)$
- (6)  $(a)\frac{2\sqrt{2}}{3}$   $(b)\frac{8}{5}$   $(c)\frac{1}{7}$  [提示: (a)令 $\alpha = \cos^{-1}x = \sin^{-1}\frac{1}{3}$   $\Rightarrow \cos\alpha = x$ 且 $\sin\alpha = \frac{1}{3}$ ,  $0 \le \alpha \le \frac{\pi}{2}$   $\Rightarrow x = \frac{2\sqrt{2}}{3}$ ]
- (7)  $\frac{3\pi}{4}$ [提示:令 $\alpha$ =  $\tan^{-1}3$ , $\beta$ =  $\tan^{-1}2$ , $\tan\alpha$ =3, $\tan\beta$ =2, 計算 $\tan(\alpha+\beta)$ = $\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$ 之值]
- (8) c < a < b[提示: $a = \sin^{-1} \sin 1 = 1$ , $b = \cos^{-1} \cos 2 = 2$  , $c = \tan^{-1} \tan 3 = 3 \pi$ ]
- (9) b > c > a
- (10) -3 [提示:今 $\tan^{-1}a=\alpha$ , $\tan^{-1}b=\beta$   $\Leftrightarrow$   $\tan\alpha=a$ , $\tan\beta=b$  所以 $\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$  $=\frac{a+b}{1-ab}=-3$ ]

(11)  $2\pi - \cos^{-1}\frac{-2}{3}$ 或 $\cos^{-1}\frac{-2}{3}$ [提示:  $x = \cos^{-1}\frac{-2}{3}$ 是一個解,且 $\frac{\pi}{2} < \cos^{-1}\frac{-2}{3} < \pi$ ,但是在

 $0 \le x \le 2\pi$ 的範圍內,還有其他的解,如圖這個解爲  $2\pi - \cos^{-1}\frac{-2}{3}$ 。]



- (12)  $\frac{\pi}{2}$ 或  $2\pi + \sin^{-1}(\frac{-3}{4})$ 或 $\pi \sin^{-1}(\frac{-3}{4})$ [提示:原方程式⇒ $2(1-\sin^2 x) + \sin x + 1 = 0$ ] ⇒ $4\sin^2 x \sin x 3 = 0$  ⇒ $\sin x = 1$  或  $\frac{-3}{4}$  ⇒ 因爲  $0 \le x \le 2\pi$  所以 $x = \frac{\pi}{2}$ 或  $2\pi + \sin^{-1}(\frac{-3}{4})$ ] 或 $\pi \sin^{-1}(\frac{-3}{4})$ ]
- (13)  $\frac{\sqrt{6}+\sqrt{2}}{4}$  [提示:(a)令 $\sin^{-1}x=\theta$ ,欲證明 $\cos^{-1}x=\frac{\pi}{2}$   $-\theta\Leftrightarrow\cos(\frac{\pi}{2}-\theta)=x$ ]