

Réseaux, information et communication

Canal bruité
Entropie conditionnelle
Information mutuelle
Capacité d'un canal

Yves Roggeman

FACULTÉ DES SCIENCES - DÉPARTEMENT D'INFORMATIQUE

Boulevard du Triomphe - CP212 B-1050 Bruxelles (Belgium)

Tél.: +32-2-650 5598

E-mail: yves.roggeman@ulb.ac.be

Information croisée et conditionnelle

- Rappel : probabilités
 - ▶ Distributions multivariées : P[X, Y]
 - Corrélation, indépendance...
 - ▶ Probabilité conditionnelle : P[X | Y]
 - Th. Bayes (XVIIIe): $\mathbb{P}[X \land Y] = \mathbb{P}[X \mid Y]$. $\mathbb{P}[Y]$
- Idem pour information et entropie ?
 - ► I(S, T), I(S | T)...
 - ► H(S, T), H(S | T)...
 - Pas immédiat, si on veut garder le sens

Canal bruité : problème

- Distinguer source et destination
 - Source émet
 - $S = \{s_i\}$ et $\mathbb{P}[s_i] = p_i$, |S| = q
 - Code $K(s_i) = w_i \in C^*$, $|w_i| = \ell_i$, |C| = r
 - Destination reçoit
 - $c_{i1}c_{i2}...c_{in} = ? \neq w_i, n = ? \neq \ell_i$
 - ⇒ Comment décoder, retrouver si
- Simplifier ⇒ Modèle = canal bruité
 - Se concentrer sur la transmission

Canal bruité: modèle

Données

► Input : $X = \{x_i\}, |X| = m$

► Output : $Y = \{y_i\}, |Y| = n$

► Transfert : P[y_j | x_i] = recevoir y_j si x_i émis

- \Rightarrow induit proba sur $y_i : \forall i : \sum_i \mathbb{P}[y_i \mid x_i] = 1$
- Markovien (oubli du passé, stable)

Si distribution sur l'input (P[x_i]):

▶ Distr. liée : $\mathbb{P}[x_i, y_i] = \mathbb{P}[x_i] \cdot \mathbb{P}[y_i \mid x_i]$

▶ Distr. marginale : $\mathbb{P}[y_i] = \sum_i \mathbb{P}[x_i, y_j]$

► Donc : $\mathbb{P}[x_i \mid y_j] = \mathbb{P}[x_i, y_j] / \mathbb{P}[y_j]$

ves.roggeman@ulb.ac.be

Entropie conditionnelle et croisée

- Conditionnelle : en 2 étapes
 - $\rightarrow \forall j \ H(X \mid y_j) = -\sum_i \mathbb{P}[x_i \mid y_j] \ \log \mathbb{P}[x_i \mid y_j]$

 - Et symétrique : H(Y | X)
- Croisée ou jointe :
 - $+ H(X, Y) = -\sum_{i} \sum_{j} \mathbb{P}[x_{i}, y_{j}] \log \mathbb{P}[x_{i}, y_{j}]$ $= H(X) + H(Y \mid X)$ $= H(Y) + H(X \mid Y)$

es.roggeman@ulb.ac.be

Information mutuelle

- Idée : se déduit de l'entropie
 - ▶ P[x_i] : probabilité <u>a priori</u> de l'input x_i
 - ▶ P[x_i | y_j] : probabilité x_i émis si y_j reçu
 - ⇒ probabilité <u>a posteriori</u> de x_i
 - Gain d'information = info mutuelle
- Définition

 - $\vdash I(x_i, y_j) = I(x_i) I(x_i \mid y_j) \leq I(x_i)$

Propriétés

Information

$$0 \le I(X, Y) = H(X) + H(Y) - H(X, Y)$$

= $H(X) - H(X | Y)$
= $H(Y) - H(Y | X)$

Entropie

$$0 \le H(X \mid Y) \le H(X)$$

 $0 \le H(Y \mid X) \le H(Y)$

$$0 \le H(X, Y) = H(X) + H(Y) - I(X, Y)$$

 $\le H(X) + H(Y)$

Capacité d'un canal

- Définition
 - Idée : trouver le meilleur input
 Pour minimiser les pertes, les erreurs
 - $ightharpoonup \Rightarrow C = Max_{P[X]} I(X, Y)$
 - ▶ Propriété : ne dépend que de P[xi, yi]
- Cas particulier : canal binaire symétrique
 - ▶ Définition P[swap] = p
 - ► Théorème : C = 1 H(p, 1-p)

