

Dimensionality Reduction

Principal Component Analysis

Why reduce dimension?

Why use dimensionality reduction algorithms

- Data visualization ⇒ Visualize lots of features into a
 2-D graph
- Reduce Noise ⇒ Reduce redundancy in a data

Years of experience	Salary
1	10 000
2	13 000
3	13 500
4	15 000
5	17 000

Data Visualisation

Years of experience	Salary	Age
1	10 000	25
2	13 000	27
3	13 500	32
4	15 000	29
5	17 000	35

Data Visualisation

Years of experience	Salary	Age	Children
1	10 000	25	0
2	13 000	27	1
3	13 500	32	2
4	15 000	29	0
5	17 000	35	3

Data Visualisation

Reduce Noise

Reduce Noise

PCA

PCA

→ Why do PCA?

ХР	Salary	Age	Children
1	10 000	25	0
2	13 000	27	1
3	13 500	32	2
4	15 000	29	0
5	17 000	35	3

PC1	PC2
x1	y1
x2	y2
х3	у3
x4	у4
x5	y5

XP	Salary	Age	Children
1	10 000	25	0
2	13 000	27	1
3	13 500	32	2
4	15 000	29	0
5	17 000	35	3

PC1	PC2
x1	y1
x2	y2
х3	у3
x4	y4
x5	y5

0

How to do PCA?

$$\mathbf{x}_1 = a_1 \times 1 + a_2 \times 10000 + a_3 \times 25 + a_4 \times 0$$
 $\mathbf{x}_2 = a_1 \times 2 + a_2 \times 13000 + a_3 \times 27 + a_4 \times 0$
 $\mathbf{x}_3 = a_1 \times 3 + a_2 \times 13500 + a_3 \times 32 + a_4 \times 2$
 $\mathbf{x}_4 = a_1 \times 4 + a_2 \times 15000 + a_3 \times 29 + a_4 \times 0$
 $\mathbf{x}_5 = a_1 \times 5 + a_2 \times 17000 + a_3 \times 35 + a_4 \times 3$

This is a dot product

How to do PCA?

How do we find these?

Normalize X

Let's go back to a simple example

Years of experience	Salary
1	10 000
2	13 000
3	13 500
4	15 000
5	17 000

Let's go back to a simple example

Years of experience	Salary
1	10 000
2	13 000
3	13 500
4	15 000
5	17 000

Where:

 $\mu = mean$

 $\sigma = standard\ deviation$

Normalized

Years of experience	Salary
-1.41	-1.60
-0.71	-0.30
0	-0.09
0.71	0.56
1.41	1.42

Calculate Covariance Matrix

Definitions

- Variance ⇒ How data points are spread out in a given variable
- Covariance ⇒ How two variables are related to each other

Variance & Covariance

 Variance ⇒ How data points are spread out in a given variable

$$\frac{\sum (x_i - \bar{x})^2}{n-1}$$

Covariance ⇒ How two variables are related to each other

$$rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

High Variance

Low Variance

Let's calculate covariance matrix

Interpretation

$$-cov_{(x,y)}
ightarrow \pm \infty$$
 Statistically dependent

$$-cov_{(x,y)}
ightarrow 0$$
 Statistically independent

Why using Covariance Matrix?

Reminder

- We want to remove redundancy
- We want to decompose our dataset into a smaller dataset

Redundancy

$$-cov_{(x,y)}
ightarrow \pm \infty$$
 Statistically dependent

$$-cov_{(x,y)}
ightarrow 0$$
 Statistically independent

No Redundancy

Salary

Let's calculate covariance matrix

XP Salary XP 1.25

1.25

1.22

Ideal matrix with no redundancy

	XP	Salary
XP	λ_1	0
Salary	0	λ_2

SVD

Let's take our dataset back

Years of experience	Salary	
-1.41	-1.60	
-0.71	-0.30	
0	-0.09	A
0.71	0.56	
1.41	1.42	

Singular Value Decomposition

$$A = U\Sigma V^{\mathsf{T}}$$

Singular Value Decomposition

$$U = \begin{pmatrix} u_{11} & \cdots & u_{m1} \\ u_{12} & \cdots & u_{m2} \\ \vdots & \ddots & \vdots \\ u_{1m} & \cdots & u_{mm} \end{pmatrix} \quad \Sigma = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & & 0 \\ 0 & \sqrt{\lambda_2} & & & \vdots \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & & & 0 \end{pmatrix} \quad V^\mathsf{T} = \begin{pmatrix} v_{11} & \cdots & v_{n1} \\ v_{12} & \cdots & v_{n2} \\ \vdots & \ddots & \vdots \\ v_{1n} & \cdots & v_{nn} \end{pmatrix}$$

Eigen Vectors of
$$AA^{\mathsf{T}}$$

$$\Sigma = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & & & 0 \\ 0 & \sqrt{\lambda_2} & & & & \vdots \\ \vdots & & \ddots & & & \\ & & & \sqrt{\lambda_r} & & \\ & & & & \ddots & \\ 0 & \cdots & & & & 0 \end{pmatrix}$$

Eigen Values of AA^{T} and $A^{\mathsf{T}}A$

$$V^{\mathsf{T}} = \begin{pmatrix} v_{11} & & v_{n1} \\ v_{12} & \cdots & v_{n2} \\ \vdots & \ddots & \vdots \\ v_{1n} & \cdots & v_{nn} \end{pmatrix}$$

Eigen Vectors of $A^{T}A$

Let's take our example

Years of experience	Salary
-1.41	-1.60
-0.71	-0.30
0	-0.09
0.71	0.56
1.41	1.42

Let's take our example

XP	-1.41	-0.71	0	0.71	1.41
Salary	-1.60	-0.30	-0.09	0.56	1.42

Let's take our example

$$AA^{\mathsf{T}} = \begin{pmatrix} 1.25 & 1.22 \\ 1.22 & 1.25 \end{pmatrix}$$
Covariance Matrix!!

$$A^{\mathsf{T}}A = \begin{pmatrix} 4.55 & 1.48 & 0.14 & -1.90 & -4.27 \\ 1.48 & 0.59 & 0.26 & -0.67 & -1.43 \\ 0.14 & 0.26 & 0.007 & -0.048 & -0.12 \\ -1.90 & -0.67 & -0.05 & 0.81 & 1.80 \\ -4.27 & -1.43 & -0.12 & 1.80 & 4.03 \end{pmatrix}$$

How to find Eigen Vectors & Eigen Values?

$$AX = \lambda X$$

$$AX - \lambda X = 0$$

$$(A - \lambda)X = 0$$

Linear Algebra problem - can be solved using Numpy

This is what we can use to find lambda

Let's find Eigen values

$$AA^{\mathsf{T}}X = \lambda X$$
$$AA^{\mathsf{T}}X - \lambda X = 0$$

$$(AA^{\mathsf{T}} - \lambda)X = 0$$

Let's find Eigen values

$$(AA^{\mathsf{T}} - \lambda) = \begin{pmatrix} 1.25 & 1.22 \\ 1.22 & 1.25 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$(AA^{\mathsf{T}} - \lambda) = \begin{pmatrix} 1.25 - \lambda & 1.22 \\ 1.22 & 1.25 - \lambda \end{pmatrix}$$

Should be equal to 0

上 Let's find Eigen values

$$(AA^{\mathsf{T}} - \lambda) = \begin{pmatrix} 1.25 - \lambda & 1.22 \\ 1.22 & 1.25 - \lambda \end{pmatrix}$$

$$det(AA^{\mathsf{T}} - \lambda) = (1.25 - \lambda)^2 - 1.22^2$$

$$det(AA^{\mathsf{T}} - \lambda) = 0.07 - 2.5\lambda + \lambda^2$$

Let's find Eigen values

$$\lambda_1 = 9.89$$

$$\sqrt{\lambda_1} = 3.14$$

$$\lambda_2 = 0.11$$

$$\sqrt{\lambda_2} = 0.34$$

Let's find Eigen Vectors

$$AA^{\mathsf{T}}X = \lambda X$$

Eigen Vectors

Let's find Eigen Vectors

$$(AA^{\mathsf{T}} - \lambda)X = 0$$

$$(AA^{\mathsf{T}} - \lambda)X = \begin{pmatrix} 1.25 & 1.22 \\ 1.22 & 1.25 \end{pmatrix} - \begin{pmatrix} 0.11 & 0 \\ 0 & 9.89 \end{pmatrix}) \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Let's find Eigen Vectors

$$1.14x + 1.22y = 0$$

$$1.22x + -8.64y = 0$$

Fast Forward

$$U = \begin{pmatrix} -0.71 & -0.71 \\ -0.71 & 0.71 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 3.14 & 0 & 0 & 0 & 0 \\ 0 & 0.37 & 0 & 0 & 0 \end{pmatrix} \quad V^{\mathsf{T}} = \begin{pmatrix} -0.68 & 0.39 & -0.07 & 0.17 & 0.60 \\ -0.23 & -0.85 & 0.17 & 0.39 & 0.20 \\ -0.02 & 0.18 & 0.98 & -0.03 & -0.00 \\ 0.28 & 0.31 & -0.02 & 0.90 & -0.13 \\ 0.64 & -0.02 & 0.02 & -0.08 & 0.76 \end{pmatrix}$$
 Eigen-values

Deduct PCA

⇔ Rem

Reminder

$$U = \begin{pmatrix} -0.71 & -0.71 \\ -0.71 & 0.71 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 3.14 & 0 & 0 & 0 & 0 \\ 0 & 0.37 & 0 & 0 & 0 \end{pmatrix} \quad V^{\mathsf{T}} = \begin{pmatrix} -0.68 & 0.39 & -0.07 & 0.17 & 0.60 \\ -0.23 & -0.85 & 0.17 & 0.39 & 0.20 \\ -0.02 & 0.18 & 0.98 & -0.03 & -0.00 \\ 0.28 & 0.31 & -0.02 & 0.90 & -0.13 \\ 0.64 & -0.02 & 0.02 & -0.08 & 0.76 \end{pmatrix}$$

Eigen-vectors

Eigen-values

Reminder

$$U = \begin{pmatrix} -0.71 & -0.71 \\ -0.71 & 0.71 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 3.14 & 0 & 0 & 0 & 0 \\ 0 & 0.37 & 0 & 0 & 0 \end{pmatrix} \quad V^{\mathsf{T}} = \begin{pmatrix} -0.68 & 0.39 & -0.07 & 0.17 & 0.60 \\ -0.23 & -0.85 & 0.17 & 0.39 & 0.20 \\ -0.02 & 0.18 & 0.98 & -0.03 & -0.00 \\ 0.28 & 0.31 & -0.02 & 0.90 & -0.13 \\ 0.64 & -0.02 & 0.02 & -0.08 & 0.76 \end{pmatrix}$$

Principal Components

Eigen-values

Let's compute Principal Components

AU

Let's compute Principal Components

$$AU = \begin{pmatrix} 2.13 & -0.13 \\ 0.71 & 0.29 \\ 0.06 & -0.06 \\ -0.90 & -0.10 \\ -2.00 & 0.01 \end{pmatrix}$$

Let's check our new covariance

cov(AU)

	PC1	PC2
PC1	2.47	0
PC2	0	0.03

How to reduce dimension?

	PC1		Р	C2	
PC1	2.47	,		0	
PC2	0		0	.03	
	/ariance	expla	ined		

	PC1	PC2
PC1	99%	0
PC2	0	0.1%

Variance explained ratio

How to reduce dimension?

	PC1	PC2
PC1	2.47	0
PC2	0	0.03

	PC1	PC2
PC1	99%	0
PC2	0	0.1%

We can keep only PC1!

Thanks!

See you in the next course

