Geometry and Topology Individual

Please solve 5 out of the following 6 problems.

- 1. Let X be the quotient space of S^2 under the identifications $x \sim -x$ for x in the equator S^1 . Compute the homology groups $H_n(X)$. Do the same for S^3 with antipodal points of the equator $S^2 \subset S^3$ identified.
- **2.** Let $M \to \mathbb{R}^3$ be a graph defined by z = f(u, v) where $\{u, v, z\}$ is a Descartes coordinate system in \mathbb{R}^3 . Suppose that M is a minimal surface. Prove that:
- (a) The Gauss curvature K of M can be expressed as

$$K = \Delta \log \left(1 + \frac{1}{W}\right), \quad W := \sqrt{1 + \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2},$$

where Δ denotes the Laplacian with respect to the induce metric on M (i.e., the first fundamental form of M).

- (b) If f is defined on the whole uv-plane, then f is a linear function (Bernstein theorem).
- **3.** Let $M = \mathbb{R}^2/\mathbb{Z}^2$ be the two dimensional torus, L the line 3x = 7y in \mathbb{R}^2 , and $S = \pi(L) \subset M$ where $\pi : \mathbb{R}^2 \to M$ is the projection map. Find a differential form on M which represents the Poincaré dual of S.
- **4.** Let $p:(\tilde{M},\tilde{g})\to (M,g)$ be a Riemannian submersion. This is a submersion $p:\tilde{M}\to M$ such that for each $x\in \tilde{M},\ Dp:\ker^{\perp}(Dp)\to T_{p(x)}(M)$ is a linear isometry.
 - (a) Show that p shortens distances.
 - (b) If (\tilde{M}, \tilde{q}) is complete, so is (M, q).
 - (c) Show by example that if (M, g) is complete, (\tilde{M}, \tilde{g}) may not be complete.
- **5.** Let $\Psi: M \to \mathbb{R}^3$ be an isometric immersion of a compact surface M into \mathbb{R}^3 . Prove that $\int_M H^2 d\sigma \geq 4\pi$, where H is the mean curvature of M and $d\sigma$ is the area element of M.
- **6.** The unit tangent bundle of S^2 is the subset

$$T^1(S^2) = \{(p, v) \in \mathbb{R}^3 \mid ||p|| = 1, (p, v) = 0 \text{ and } ||v|| = 1\}.$$

Show that it is a smooth submanifold of the tangent bundle $T(S^2)$ of S^2 and $T^1(S^2)$ is diffeomorphic to $\mathbb{R}P^3$.