- Uma gramática consiste de uma coleção de regras que especificam como derivar strings de uma linguagem.
- A partir de gramáticas definimos Linguagens regulares (LR) e Nãoregulares (LNR).
- LR são representadas por formalismos pouco complexos, muito eficientes e de fácil implementação.
- LR são restritas e limitadas.

•
$$S \rightarrow A$$

$$A \rightarrow 0A1$$

$$A \rightarrow \mathcal{E}$$

- S \rightarrow A \rightarrow 0A1 \rightarrow 00A11 \rightarrow 000A111 \rightarrow 000111.
- $L(G) = \{0^n1^n \mid n \ge 0\}$

Gramáticas Lineares

- G = (V,T,P,S)
 - Sejam A e B elementos de V e w uma palavra de T*.
 - G será:
 - Gramática Linear à Direita (GLD) se todas as regras de produção são da forma: A → wB ou A → w
 - Gramática Linear à Esquerda (GLE) se todas as regras de produção são da forma: A → Bw ou A → w
 - Gramática Linear Unitária à Direita (GLUD) se são como GLD e |w| <= 1
 - Gramática Linear Unitária à Esquerda (GLUE) se são como GLD e |w| <= 1

Exemplos GL

• GLD:

$$({A, B}, {0, 1}, {A \rightarrow 0A \mid B, B \rightarrow 1B \mid \varepsilon}, A)$$

- L(GLD) = $\{0^*1^*\}$

• GLE:

$$(\{S\}, \{0, 1\}, \{S \rightarrow S10 \mid 0\}, S)$$

- L(GLE) = {w | w começa e termina com 0}
- GLUD:

$$(\{S,A,B\},\{a,b\},\{S \rightarrow aA, A \rightarrow bB \mid \epsilon, B \rightarrow aA\}, S)$$

- $L(GLUD) = \{a(ba)^*\}$

• GLUE:

$$(\{S,A\},\{a,b\},\{S\rightarrow Aa\mid a,A\rightarrow Sb\},S)$$

Equivalência das GL's

- Seja GD e GE tal que cada regra de produção α → βd de Pd tem uma regra de produção α→ βe correspondente em Pe, tal que βd = (βe)^R (βd e βe são invertidas).
- Lemma 1: GD é uma GLD sse GE é uma GLE.
- Lemma 2: A linguagem gerada por GD é a inversa da linguagem gerada por GE :

$$L(GD) = (L(GE))^{R}$$
.

- GR é qualquer GL.
- Exemplo:
 - A linguagem a(ba)* é gerada por uma:
 - **GLD**: G = ({S,A}, {a,b},P,S), onde P possui as regras:

$$S \rightarrow aA$$
 e $A \rightarrow baA \mid \mathcal{E}$

• GLE: G = ({S}, {a,b},P,S), onde P possui as regras:

- GR é qualquer GL.
- Exemplo:
 - A linguagem a(ba)* é gerada por uma:
 - GLUD: G = ({S,A,B}, {a,b},P,S), onde P possui as regras:

$$S \rightarrow aA \quad A \rightarrow bB \mid \mathcal{E} \quad B \rightarrow aA$$

• GLUE: G = ({S,A}, {a,b},P,S), onde P possui as regras:

$$S \rightarrow Aa \mid a \quad A \rightarrow Sb$$

- Exemplo:
 - A linguagem (a+b)*(aa+bb) é gerada por uma:
 - GLD:

• GLE:

- Exemplo:
 - A linguagem (a+b)*(aa+bb) é gerada por uma:
 - GLD: G = ({S,A},{a,b},P,S), onde P possui as regras:

$$S \rightarrow aS \mid bS \mid A$$
 $A \rightarrow aa \mid bb$

• GLE:

- Exemplo:
 - A linguagem (a+b)*(aa+bb) é gerada por uma:
 - GLD: G = ({S,A},{a,b},P,S), onde P possui as regras:

$$S \rightarrow aS \mid bS \mid A$$
 $A \rightarrow aa \mid bb$

GLE: G =({S,A},{a,b},P,S), onde P possui as regras:

$$S \rightarrow Aaa \mid Abb \quad A \rightarrow Aa \mid Ab \mid \mathcal{E}$$

$GR \rightarrow LR$

- Se L é gerada por uma GR, então L é uma LR.
- Duvida?! Então, contrua um AF que reconheça L! :)

- Tome uma GLUD G = (V,T,P,S).
- OAF ε M = (Q, Σ , δ ,q0, F), onde

$$-\Sigma = T$$

$$-Q = VU \{qf\}$$

$$-F = \{qf\}$$

$$- Q0 = S$$

 δ :

Tipo da produção	Transição gerada
$A \rightarrow \mathcal{E}$	$(A,\mathcal{E}) = qf$
$A \rightarrow a$	(A,a) = qf
$A \rightarrow B$	$(A,\mathcal{E}) = B$
$A \rightarrow aB$	(A,a) = B
	$A \rightarrow \mathcal{E}$ $A \rightarrow a$ $A \rightarrow B$

- ACEITA(M) = GERA(G)?
- Base de indução: $S \rightarrow^1 \alpha$, se

```
-\alpha = \varepsilon, há uma regra S \to \varepsilon e \delta(S, \varepsilon) = qf
```

 $-\alpha = a$, há uma regra $S \rightarrow a e \delta(S, a) = qf$

 $-\alpha = A$, há uma regra $S \rightarrow A e \delta(S, \varepsilon) = A$

 $-\alpha = aA$, há uma regra $S \rightarrow aA \ e\delta(S, a) = A$

- ACEITA(M) = GERA(G)?
- Hipótese de indução: $S \rightarrow^n \alpha$, n>1, se

$$-\alpha = w$$
, então $\delta(S, w) = qf$

$$-\alpha = wA$$
, então $\delta(S, w) = A$

- ACEITA(M) = GERA(G)?
- Passo de indução: S →ⁿ⁺¹ α, se
 - Somente $\alpha = wA$ ocorre e S \rightarrow^n wA $\rightarrow^1 \alpha$ portanto, se:
 - $\alpha = w \in w$, existe uma regra $A \to \mathcal{E}$ $\delta(S, w \in \varepsilon) = \delta(\delta(S, w), \varepsilon) = \delta(A, \varepsilon) = qf$
 - $\alpha = wb$, existe uma regra A \rightarrow b

$$\delta(S, wb) = \delta(\delta(S, w), b) = \delta(A, b) = qf$$

• $\alpha = wB$, existe uma regra A \rightarrow B

$$\delta(S, w\varepsilon) = \delta(\delta(S, w), \varepsilon) = \delta(A, \varepsilon) = B$$

• $\alpha = wbB$, existe uma regra A \rightarrow bB

$$\delta(S, wb) = \delta(\delta(S, w), b) = \delta(A, b) = B$$

GR → LR - Exemplo

Construindo um AFε a partir de uma GR:

$$G = (\{S,A,B\},\{a,b\},P,S)$$

P: $S \rightarrow aA$ $A \rightarrow bB \mid \varepsilon$ $B \rightarrow aA$

– AF que reconhece a linguagem de G é: $M = (\{a,b\},\{S,A,B,qf\},\delta,S,\{qf\})$

GR → LR - Exemplo

Construindo um AFε a partir de uma GR

$$G = (\{S,A,B\},\{a,b\},P,S)$$

P:
$$S \rightarrow aA$$
 $A \rightarrow bB \mid \mathcal{E}$ $B \rightarrow aA$

AF que reconhece a linguagem de G é:
 M = ({a,b},{S,A,B,qf}, δ,S,{qf})

Produção	Transição
$S \rightarrow aA$	$\delta(S, a) = A$
$A \rightarrow bB$	$\delta(A,b)=B$
$A \rightarrow \mathcal{E}$	$\delta(A, \varepsilon) = qf$
$B \rightarrow aA$	$\delta(B,a)=A$

$LR \rightarrow GR$

- Se L é LR, então existe uma GR que gera L.
- Prova: Construa uma GLD a partir do autômato M, onde GERA(G) = ACEITA(M).
- Tome

$$G = (V,T,P,S)$$

 $V = Q U \{S\}$

Т	= /	∖lfa	abe	eto
_	_			

Transição	Produção
-	$S \rightarrow q_0$
-	$q_f \rightarrow \epsilon$
δ (q _i ,a)=q _k	$q_i \rightarrow aq_k$

qi e q0 pertencem a Q, qf é elemento de F e a pertence ao alfabeto

LR → GR - Prova

- GERA(G) = ACEITA(M): tamanho da palavra.
- Base de indução:
 - Seja |w| = 0, por definição $S \rightarrow q0$. Se \mathcal{E} pertence à ACEITA(M), q0 é estado final e $S \rightarrow q0 \rightarrow \mathcal{E}$ (opa!)
- Hipótese de indução:
 - Seja |w| = n (n>= 1) e $\delta(q0, w) = q$
 - q não é final, suponha que S → wq.
 - q é final , suponha que S → wq → w (o que não é importante para o passo).

LR → GR - Prova

- Passo de indução:
 - Seja |wa| = n+1 e $\delta(q0, wa) = p$ $\delta(\delta(q0, w), a) = p$
 - p não é final, então S → wq → wap
 - p é final, então S → wq → wap → wap

LR → GR - Exemplo

• Dado M = $({a,b,c},{q0,q1,q2}, \delta,q0, {q0,q1,q2})$, construa G tal que ACEITA(M) = GERA(G).

LR → GR - Exemplo

• $G = (\{q0,q1,q2,S\},\{a,b,c\},S,P)$

Transição	Produção
-	
-	
-	
-	
δ (q0,a) = q0	
δ (q0,b) = q1	
δ (q1,b) = q1	
δ (q1,b) = q2	
δ (q2,b) = q2	

LR → GR - Exemplo

• $G = (\{q0,q1,q2,S\},\{a,b,c\},S,P)$

Produção
$S \rightarrow q0$
$q0 ightarrow \mathcal{E}$
$q1 o \mathcal{E}$
$q2 ightarrow \mathcal{E}$
$q0 \rightarrow aq0$
$q0 \rightarrow bq1$
$q1 \rightarrow bq1$
$q1 \rightarrow cq2$
$q2 \rightarrow cq2$