Reinforcement Learning Cheat Sheet

Notation

In general, random variables are upper case and the values of the random variable are lower case. Matrices are bold.

Symbol	Meaning
t	a discrete time
S_t	state at time t
A_t	action at time t
R_t	reward at time t
${\mathcal S}$	set of all non-terminal states
\mathcal{A}	set of all actions
$\mathcal R$	set of all rewards

Problem setup: Markov decision processes

In a Markov decision process, a game agent interacts with an environment to achieve a certain goal. The interaction happens at every discrete time t = 1, 2, 3, The agent observes certain state of the environment $S_t \in \mathcal{S}$, it selects some action $A_t \in \mathcal{A}$ and then receive certain reward $R_{t+1} \in \mathcal{R}$.

Inner Product Spaces

1. $\langle v, v \rangle \geq 0$ Furthermore, $\langle v, v \rangle = 0 \leftrightarrow v = 0$		
$2. \langle v, u \rangle = \langle u, v \rangle$		
3. $\langle ku, v \rangle = k \langle u, v \rangle$		
4. $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$		
$ v = \langle v, v \rangle$		
$\cos^{-1}\left(\frac{\langle v, u \rangle}{ v u }\right)$		

Variation of Parameters

$$F(x) = y'' + y'$$

$$y_h = b_1 y_1(x) + b_2 y_2(x), y_1 y_2 \text{ are L.I.}$$

$$y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$$

$$u_1 = \int_0^t -\frac{y_2 F(t) dt}{w[y_1, y_2](t)}$$

$$u_2 = \int_0^t \frac{y_1 F(t) dt}{w[y_1, y_2](t)}$$

$$y = y_h + y_p$$

ODEs	
1st Order Linear	Use integrating factor,
	$I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	dy/dx = f(x,y) = f(xt,yt)
	sub $y = xV$ solve, then sub
	V = y/x
Exact:	If $M(x,y) + N(x,y)dy/dx =$
	0 and $M_y = N_x$ i.e.
	$\langle M, N \rangle = \nabla F$ then $\int_x M +$
	$\int_{y} N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y,
	$\frac{dv}{dx} = v\frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$
J	$F \text{ contains } \ln x, \sec x, \tan x,$
	÷
Bernoulli	$y' + P(x)y = Q(x)y^n$
	$\div y^n$
	$y^{-n}y' + P(x)y^{1-n} = Q(x)$
	Let $U(x) = y^{1-n}(x)$
	$\frac{dU}{dx} = (1-n)y^{-n}\frac{dy}{dx}$ $\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
	$\frac{dx}{1} \frac{du}{dt} + P(x)U(x) = Q(x)$
	solve as a 1st order
Cauchy-Euler	solve as a 1st order $x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \dots +$
J	$a_{n-1}y^{n-2} + a_ny = 0$
	guess $y = x^r$
3 Cases:	
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots	$y = Ax^r + y_2$
, 1	Guess $y_2 = x^r u(x)$
	Solve for $u(x)$ and choose
	one $(A = 1, C = 0)$
3) Distinct complex roots	$y = B_1 x^a \cos(b \ln x) +$
5) = 1000000 00 mp1000 10000	$B_2 x^a \sin(b \ln x)$
	22. 5111(011111)

Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
$$Guess \quad y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\frac{e^x}{\sin x} \frac{\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}}{\cos x} \frac{(-1)^n}{\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}}$$

Systems ————	
by stems	
$\vec{x}' = A\vec{x}$	
$A\ is\ diagonalizable$	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \cdots +$
	$a_n e^{\lambda_n t} \vec{v_n}$
A is not diagonalizable	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1}) + a_3 e^{\lambda t} (\vec{w} + \vec{v_1}) + a_4 e^{\lambda_1 t} (\vec{w} + \vec{v_1}) + a_5 e^{\lambda_1 t} (\vec{w} + \vec{v_1}) +$
	$t \vec{v})$
	where $(A - \lambda I)\vec{w} = \vec{v}$
	\vec{v} is an Eigenvector w/ value
	λ
	i.e. \vec{w} is a generalized Eigen-
	vector
$\vec{x}' = A\vec{x} + \vec{B}$	Solve y_h
	$\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$
	$ec{X} = [ec{x_1}, ec{x_2}]$
	$ec{X}ec{u}'=ec{B}$
	$y_p = \vec{X}\vec{u}$
	$y = y_h + y_p$

Matrix Exponentiation

$$A^n = SD^nS^{-1}$$

D is the diagonalization of A

Laplace Transforms

$$\begin{split} L[f](s) &= \int_0^\infty e^{-sx} f(x) dx \\ f(t) &= t^n, n \geq 0 & F(s) = \frac{n!}{s^{n+1}}, s > 0 \\ f(t) &= e^{at}, a \ constant & F(s) = \frac{1}{s-a}, s > a \\ f(t) &= \sin bt, b \ constant & F(s) = \frac{b}{s^2+b^2}, s > 0 \\ f(t) &= \cos bt, b \ constant & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= t^{-1/2} & F(s) = \frac{s}{s^{1/2}}, s > 0 \\ f(t) &= \delta(t-a) & F(s) = e^{-as} \\ f' & L[f'] &= sL[f] - f(0) \\ f'' & L[f''] &= s^2L[f] - sf(0) - f'(0) \\ L[e^{at}f(t)] & L[f](s-a) \\ L[u_a(t)f(t-a)] & L[f]e^{-as} \end{split}$$

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi}^n}{\sqrt{\det A}}$$

Complex Numbers	
$Systems\ of\ equations$	If $\vec{w_1} = u(t) + iv(t)$ is a so-
	lution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$
	are solutions
	i.e. $\vec{x_h} = c_1 \vec{x_1} + c_2 \vec{x_2}$
Euler's Identity	$e^{ix} = \cos x + i\sin x$