

WHAT IS ASSOCIATION RULE MINING?

•Association rule mining searches for relationships between items in a dataset:

• aims at discovering associations between items in a

transactional database.

find combinations of items that occur typically together

Rule form: "Body → Head [support, confidence]".

buys(x, "bread") → buys(x, "milk") [0.6%, 65%]
major(x, "CS") ^ takes(x, "DB") → grade(x, "A") [1%, 75%]

TRANSACTIONAL DATABASES

Transaction

Frequent itemset

Rule

Automatic diagnostic Background, Motivation and General Outline of the Proposed Project

{term₁, term₂,...,term_n}

(term₂, term₂₅ term2 → term25

{f1, f2,...,Ca}

(f3, f5, f α) \Rightarrow f3^f5 \Rightarrow f α

ASSOCIATION RULE MINING

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},

{Milk, Bread} \rightarrow {Eggs,Coke},

{Beer, Bread} \rightarrow {Milk},
```

Implication means cooccurrence, not causality!

DEFINITION: FREQUENT ITEMSET

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

• An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

DEFINITION: ASSOCIATION RULE

- Association Rule
 - An implication expression of the form X → Y, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}

IID	1 tems
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

ASSOCIATION RULE MINING TASK

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support $\geq minsup$ threshold
 - confidence $\geq minconf$ threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

MINING ASSOCIATION RULES

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk,Diaper} → {Beer} (s=0.4, c=0.67)

{Milk,Beer} → {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} → {Milk} (s=0.4, c=0.67)

{Beer} → {Milk,Diaper} (s=0.4, c=0.67)

{Diaper} → {Milk,Beer} (s=0.4, c=0.5)

{Milk} → {Diaper,Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

MINING ASSOCIATION RULES

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

FREQUENT ITEMSET GENERATION

FREQUENT ITEMSET GENERATION

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim O(NMw) => Expensive since M = 2^d !!!$

COMPUTATIONAL COMPLEXITY

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

FREQUENT ITEMSET GENERATION STRATEGIES

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

REDUCING NUMBER OF CANDIDATES

• Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

ILLUSTRATING APRIORI PRINCIPLE

5]

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

APRIORI ALGORITHM

• Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

REDUCING NUMBER OF COMPARISONS

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

FACTORS AFFECTING COMPLEXITY

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

COMPACT REPRESENTATION OF FREQUENT ITEMSETS

• Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Number of frequent itemsets

• Number of frequent itemsets

• Need a compact representation

$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

MAXIMAL FREQUENT ITEMSET

An itemset is maximal frequent if none of its immediate supersets is

57

MAXIMAL VS CLOSED ITEMSETS

An itemset is closed if none of its immediate supersets has exactly the same support.

MAXIMAL VS CLOSED FREQUENT ITEMSETS

MAXIMAL VS CLOSED ITEMSETS

PROBLEMS WITH APRIORI

- Generation of candidate itemsets are expensive (Huge candidate sets)
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - o To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- High number of data scans

Frequent Pattern Growth

- First algorithm that allows frequent pattern mining without generating candidate sets
- Requires Frequent Pattern Tree

- FP-GROWTH
 Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB | abc
 - "d" is a local frequent item in DB | abc → abcd is a frequent pattern

FREQUENT PATTERN TREE

- Prefix tree.
- Each node contains the item name, frequency and pointer to another node of the same kind.
- Frequent item header that contains item names and pointer to the first node in FP tree.

Database Compression Using FP-tree (on T10I4D100k)

DISCUSSION (1/2)

- Association rules are typically sought for very large databases → efficient algorithms are needed
- The Apriori algorithm makes 1 pass through the dataset for each different itemset size
 - The maximum number of database scans is k+1, where k
 is the cardinality of the largest large itemset (4 in the
 clothing ex.)
 - potentially large number of scans weakness of Apriori
- Sometimes the database is too big to be kept in memory and must be kept on disk
- The amount of computation also depends on the min.support; the confidence has less impact as it does not affect the number of passes
- Variations
 - Using sampling of the database
 - Using partitioning of the database
 - Generation of incremental rules

DISCUSSION (2/2)

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

PATTERN EVALUATION

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support & confidence
- Interestingness measures can be used to prune/ rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

APPLICATION OF INTERESTINGNESS MEASURE

Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Υ	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

f₁₁: support of X and Y f₁₀: support of X and Y

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

• support, confidence, lift, Gini, J-measure, etc.

DRAWBACK OF CONFIDENCE

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

- ⇒ Although confidence is high, rule is misleading
- \Rightarrow P(Coffee|Tea) = 0.9375

STATISTICAL INDEPENDENCE

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $P(S \land B) = P(S) \times P(B) => Statistical independence$
 - $P(S \land B) > P(S) \times P(B) \Rightarrow Positively correlated$
 - $P(S \land B) < P(S) \times P(B) => Negatively correlated$

STATISTICAL-BASED MEASURES

 Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

EXAMPLE: LIFT/INTEREST

	Coffee	Coffee	
Tea	15	5	20
Tea	Tea 75		80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

There are lots of					
measures proposed					
in the literature					

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}} \\ \frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{P(A,B)P(AB)+\sqrt{P(A,B)}P(A,B)}{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}$
7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{\sum_{i} \sum_{j} P(A_i)}{P(A_i)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max \Big(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
		$-P(B)^2-P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2-P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}} \times \frac{\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness via Unexpectedness

• Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- **±** Expected Patterns
- Unexpected Patterns

 Need to combine expectation of users with evidence from data (i.e., extracted patterns)

CONTINUOUS AND CATEGORICAL ATTRIBUTES

How to apply association analysis formulation to non-asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No
				•••		

Example of Association Rule:

 $\{ \text{Number of Pages} \in [5,10) \land (\text{Browser=Mozilla}) \} \rightarrow \{ \text{Buy} = \text{No} \}$

HANDLING CATEGORICAL ATTRIBUTES

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
 - Browser Type = Mozilla

HANDLING CATEGORICAL ATTRIBUTES

- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items

HANDLING CONTINUOUS ATTRIBUTES

- Different kinds of rules:
 - Age \in [21,35) \land Salary \in [70k,120k) \rightarrow Buy
 - Salary \in [70k,120k) \land Buy \rightarrow Age: μ =28, σ =4
- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

DISCRETIZATION ISSUES

 Size of the discretized intervals affect support & confidence

```
\{\text{Refund} = \text{No}, (\text{Income} = \$51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}\
\{\text{Refund} = \text{No}, (60\text{K} \leq \text{Income} \leq 80\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}\
\{\text{Refund} = \text{No}, (0\text{K} \leq \text{Income} \leq 1\text{B})\} \rightarrow \{\text{Cheat} = \text{No}\}\
```

- If intervals too small
 - o may not have enough support
- If intervals too large
 - o may not have enough confidence
- Potential solution: use all possible intervals

DISCRETIZATION ISSUES

- Execution time
 - If intervals contain n values, there are on average O(n²) possible ranges

Too many rules

$$\{ \text{Refund} = \text{No}, (\text{Income} = \$51,250) \} \rightarrow \{ \text{Cheat} = \text{No} \}$$
 $\{ \text{Refund} = \text{No}, (51\text{K} \le \text{Income} \le 52\text{K}) \} \rightarrow \{ \text{Cheat} = \text{No} \}$
 $\{ \text{Refund} = \text{No}, (50\text{K} \le \text{Income} \le 60\text{K}) \} \rightarrow \{ \text{Cheat} = \text{No} \}$

STATISTICS-BASED METHODS

• Example:

Browser=Mozilla ∧ Buy=Yes → Age: μ=23

- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

STATISTICS-BASED METHODS

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu \quad \text{versus} \quad A \Rightarrow B: \mu'$$

- Statistical hypothesis testing:
 - Null hypothesis: H0: $\mu' = \mu + \Delta$
 - Alternative hypothesis: H1: $\mu' > \mu + \Delta$
 - Z has zero mean and variance 1 under null hypothesis

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

STATISTICS-BASED METHODS

• Example:

r: Browser=Mozilla ∧ Buy=Yes → Age: μ=23

- Rule is interesting if difference between μ and μ ' is greater than 5 years (i.e., $\Delta = 5$)
- For r, suppose n1 = 50, s1 = 3.5
- For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

REFERENCES

- [DM-CT]: Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber
- [IDM]: Introduction to Data Mining, by P.-N. Tan, M. Steinbach, and V. Kumar
- [Zaïane]: Principles of Knowledge Discovery in Data, Course Notes by O. Zaïane