

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2005/0261231 A1 Kubo et al.

Nov. 24, 2005 (43) Pub. Date:

(54) HEPATOCYTE GROWTH FACTOR NUCLEIC ACID SEQUENCE TO ENHANCE MUSCULOCUTANEOUS FLAP SURVIVAL

(75) Inventors: Tateki Kubo, Osaka (JP); Marvin A. Tanag, Osaka (JP); Kenji Yano, Osaka (JP); Ko Hosokawa, Osaka (JP); Ryuichi Morishita, Osaka (JP)

> Correspondence Address: FOLEY AND LARDNER **SUITE 500** 3000 K STREET NW WASHINGTON, DC 20007 (US)

(73) Assignee: AnGes MG Inc.

11/094,484 (21) Appl. No.:

(22) Filed:

Mar. 31, 2005

Related U.S. Application Data

(60) Provisional application No. 60/557,835, filed on Mar. 31, 2004.

Publication Classification

(51)	Int. Cl. ⁷	A61K 48/00
(52)	U.S. Cl.	

ABSTRACT (57)

The present invention relates to the use of growth factors in improving tissue survival. In particular, the invention describes methods for enhancing organ transplant, musculocutaneous flap or skin graft survival by administering a nucleic acid sequence encoding hepatocyte growth factor.

** indicates P<0.01.

** indicates P<0.01.

Figure 1

TRAM FLAP SURVIVAL

CONTROL (NSS)

EMPTY PLASMID

HGF

Figure 2

Figure 3

HEPATOCYTE GROWTH FACTOR NUCLEIC ACID SEQUENCE TO ENHANCE MUSCULOCUTANEOUS FLAP SURVIVAL

BACKGROUND

[0001] 1. Field of the Invention

[0002] This invention generally relates to the use of nucleic acid sequences encoding growth factors to promote angiogenesis and wound healing. In particular, described herein are methods and compositions for enhancing flap and skin graft survival by administering a nucleic acid sequence encoding hepatocyte growth factor.

[0003] 2. Background of the Invention

[0004] Hepatocyte growth factor (HGF) functions as a growth factor for particular tissues and cell types. HGF was initially identified as a mitogen for hepatocytes. Michalopoulos et al., *Cancer Res.*, 44:4414-4419 (1984); Russel et al., *J. Cell. Physiol.*, 119:183-192 (1984); Nakamura et al., *Biochem. Biophys. Res. Comm.*, 122:1450-1459 (1984). Nakamura et al. (supra), reported the purification of HGF from the serum of partially hepatectomized rats. Subsequently, the subunit structure of HGF was determined when HGF was purified from rat platelets. Nakamura et al., *Proc. Natl. Acad. Sci. USA*, 83:6489-6493 (1986); Nakamura et al., *FEBS Letters*, 224:311-316 (1987). Human HGF ("huHGF") has also been purified from human plasma. Gohda et al., *J. Clin. Invest.*, 81:414-419 (1988).

[0005] Comparisons of the amino acid sequence of rat HGF and huHGF revealed that the two sequences are highly conserved and have the same characteristic structural features. For example, the length of the four kringle domains in rat HGF is exactly the same as in huHGF, and the location of cysteine residues are in exactly the same positions. This is an indication that the three-dimensional structure of the two proteins is similar. Okajima et al. Eur. J. Bioch., 193:375-81 (1990); Tashiro et al., Proc. Natl. Acad. Sci., USA, 87:3200-4 (1990).

[0006] Furthermore, several reports revealed close sequence homology between HGF and scatter factor (SF). Gherardi and Stoker, *Nature*, 346:228 (1990); Weidner et al., *J. Cell Biol.*, 111:2097-2108 (1990); Coffer et al., *Biochem J.*, 278:35-41 (1991). SF is a polypeptide that stimulates dissociation of epithelial cell colonies in monolayer culture. Gherardi et al., *Proc. Natl. Acad. Sci. USA*, 86:5844-5848 (1989). In fact, there now is evidence indicating that the two factors are identical; they are identical in structure and biological activity. Weidner et al., *Proc. Natl. Acad. Sci. USA*, 88:7001-5 (1991); Bhargava et al., *Cell Growth Differ*. 3:11-20 (1992); Naldini et al., *EMBO J.*, 10:2867-78 (1991); Furlong et al., *J. Cell Sci.*, 100:173-7 (1991). HGF and HGF variants are described further in U.S. Pat. Nos. 5,227,158, 5,316,921, and 5,328,837.

[0007] Binding of HGF to its receptor is believed to be conveyed by a functional domain located in the N-terminal portion of the HGF molecule. Matsumoto et al., *Biochem. Biophys. Res. Commun.*, 181:691-699 (1991); Hartmann et al., *Proc. Natl. Acad. Sci. USA.*, 89:11574-11578 (1992); Lokker et al., *EMBO J.*, 11:2503-2510 (1992); Lokker and Godowski, *J. Biol. Chem.*, 268:17145-17150 (1991). The HGF receptor is usually referred to as "c-Met" or "p¹⁹⁰MET" and typically comprises, in its native form, a

190-kDa heterodimeric (a disulfide-linked 50-kDa α -chain and a 145-kDa β -chain) membrane-spanning tyrosine kinase protein. Park et al., *Proc. Natl. Acad. Sci. USA*, 84:6379-6383 (1987). The c-Met protein becomes phosphorylated on tyrosine residues of the 145-kDa β -subunit upon HGF binding.

[0008] Various biological activities have been described for HGF and its receptor. See, generally, Chan et al., HEPATOCYTE GROWTH FACTOR—SCATTER FAC-TOR (HGF-SF) AND THE C-MET RECEPTOR, Goldberg and Rosen, eds., Birkhauser Verlag-Basel (1993), pp. 67-79). For example, HGF has been shown to be a mitogen for certain cell types, including melanocytes, renal tubular cells, keratinocytes, certain endothelial cells and cells of epithelial origin. Matsumoto et al., Biochem. Biophys. Res. Commun., 176:45-51 (1991); Igawa et al., Biochem. Biophys. Res. Commun., 174:831-838 (1991); Han et al., Biochem., 30:9768-9780 (1991); Rubin et al., Proc. Natl. Acad. Sci. USA, 88:415-419 (1991). HGF has also been described as an epithelial morphogen, Montesano et al., Cell, 67:901-908 (1991), and therefore, HGF has been postulated to be important in tumor invasion, Comoglio, HEPATOCYTE GROWTH FACTOR—SCATTER FACTOR (HGF-SF) AND THE C-MET RECEPTOR, Goldberg and Rosen, eds., Birkhauser Verlag-Basel (1993), pp. 131-165. Until now, the intramuscular delivery of an HGF gene to promote flap and skin graft survival has not been described.

[0009] The use of skin flaps has gained increased acceptance and use in the course of reconstructive surgery, as well as in other forms of surgery. However, these techniques continue to be plagued by problems having to do with survival of the skin flaps which is, at least in part, due to the inefficient revascularization at the surgical site. Indeed, a number of approaches have been considered or evaluated for improving skin flap survival. See, for example, Waters et al., which provides a comparative analysis of the ability of five classes of pharmacological agents to augment skin flap survival in various models and species. *Annals of Plastic Surgery*, 23(2):117-22 (1989). Nevertheless, there still remains a need in the art for compositions and methods for enhancing survival of flap and skin grafts.

SUMMARY OF THE INVENTION

[0010] Therefore, the present invention describes the use of a nucleic acid sequence encoding HGF to enhance the survival of a flap or a skin graft.

[0011] In particular, described herein is a method for enhancing tissue survival, including survival of a flap or a skin graft following flap or skin graft surgery, comprising administering to a subject in need thereof a vector that comprises a nucleic acid sequence encoding hepatocyte growth factor. In specific embodiments, the vector is administered intramuscularly and is administered at least about 3-14 days prior to flap or skin graft surgery, at least about 5-10 days prior to surgery, or at least about 7 days prior to surgery. The instant invention is suitable for enhancing the survival of a flap, such as a skin flap, a muscle flap, a myocutaneous flap, or a cartilocutaneous flap, or a skin graft. Survival of the flap or skin graft may be enhanced by at least about 10-30% as compared to an untreated subject.

[0012] In one embodiment, the vector comprises the HGF nucleic acid sequence represented by SEQ ID NO. 1. The

vector also may comprise the pcDNA3.1(-) plasmid, as set forth in SEQ ID NO. 2, or the pVAX1 plasmid, as set forth in SEQ ID NO. 3.

[0013] In another embodiment, the present invention discloses a method for enhancing organ transplant survival in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a composition that comprises a nucleic acid sequence encoding HGF.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 compares musculocutaneous flap survival in an animal model after pretreatment with normal saline solution, an empty vector, or a vector comprising a nucleic acid sequence encoding HGF.

[0015] FIG. 2 depicts the survival (1 week after surgery) of a transverse rectus abdominis musculocutaneous (TRAM) flap in rats pre-treated 7 days prior to the surgery with (A) normal saline, (B) empty vector or (C) vector comprising a nucleic acid sequence encoding HGF. (N=8 for each group).

[0016] FIG. 3 is a histogram representing mean percentage blood flow in animals given normal saline solution (NSS), empty vector, or a vector comprising a nucleic acid sequence encoding HGF one week post-injection. Groups H1, H2 and H3 represent the experimental groups treated with $125 \mu g$, $250 \mu g$, and $500 \mu g$ HGF, respectively.

DETAILED DESCRIPTION OF THE INVENTION

[0017] 1. Introduction

[0018] The inventors have surprisingly discovered that pre-treating subjects with a nucleic acid sequence encoding HGF prior to flap, skin graft or organ transplant surgery significantly enhances survival of the tissue as compared to transplanted tissue in control subjects.

[**0019**] 2. Definitions

[0020] Unless otherwise specified, "a" or "an" means one or more

[0021] The terms "hepatocyte growth factor" and "HGF" as used herein include hepatocyte growth factor from humans ("huHGF") and any non-human mammalian species of HGF, including rat HGF. The term "HGF" as used herein includes mature, pre, pre-pro, and pro forms, including forms purified from a natural source, and chemically synthesized or recombinantly produced HGF.

[0022] "Sequence identity" is defined herein with reference the Blast 2 algorithm, which is available at the NCBI (http://www.ncbi.nhn.nih.gov/BLAST), using default parameters. References pertaining to this algorithm include those found at http://www.ncbi.nlm.nih.gov/BLAST/blast_references.html; Altschul, et al., J. Mol. Biol. 215: 403-410 (1990); Gish & States, Nature Genet. 3: 266-272 (1993); Madden et al., Meth. Enzymol. 266: 131-141 (1996); Altschul et al., Nucleic Acids Res. 25: 3389-3402 (1997), and Zhang & Madden, Genome Res. 7: 649-656 (1997).

[0023] The terms "alteration," "amino acid alteration," variant," and "amino acid sequence variant" refer to HGF molecules with some differences in their amino acid sequences as compared to a native human HGF. Ordinarily,

the variants will possess at least about 80%, 85%, or 90% homology with the domains of native human HGF, including sequences at least about 95% homologous or at least about 99% homologous to native human HGF.

[0024] 3. Hepatocyte Growth Factor Nucleic Acid Sequence and Variants Thereof

[0025] The nucleic acid sequences encoding HGF for use in the present invention may encode a hepatic parenchymal cell growth factor. The encoded HGF may have a structure with six domains (finger, Kringle 1, Kringle 2, Kringle 3, Kringle 4 and serine protease domains).

[0026] One human HGF nucleic acid sequence suitable for use in the present invention is represented as SEQ ID NO:1 herein. Other human HGF nucleic acids also are suitable for use in the present invention, such as the hepatic parenchymal cell growth factor sequence disclosed in Kitamura et al., U.S. Pat. No. 5,500,354.

[0027] Likewise, non-mammalian HGF nucleic acids are suitable for use in the present invention. Rat HGF, for example, shares the same structural features as human HGF and is described in Tashiro et al., Proc. Nat'l. Acad. Sci. USA, 87(8):3200-4 (1990) and GenBank Accession No. NM 017017.

[0028] In other embodiments, the nucleic acid encoding HGF useful in the present invention has at least about 80% sequence identity, at least about 85% sequence identity, at least about 90% sequence identity, at least about 95% sequence identity, or at least 99% sequence identity with a native mammalian HGF gene. For example, genes having at least about 80% sequence identity, at least about 85% sequence identity, at least about 95% sequence identity, at least about 95% sequence identity, or at least about 99% sequence identity to SEQ ID NO:1 can be used in the present invention. As used herein, two nucleic acid molecules or proteins are said to "share significant sequence identity" if the two contain regions which possess greater than 90% sequence (amino acid or nucleic acid) identity over the entire length of the gene.

[0029] The invention also includes nucleic acid sequences that encode HGF proteins that are variants of a native HGF protein. For example, such HGF variants may have at least about 80% sequence identity, at least about 85% sequence identity, at least about 95% identity, or at least about 99% sequence identity to the protein encoded by the nucleic acid sequence represented in SEQ ID NO. 1. Given the known genetic code, and recombinant and synthetic DNA techniques, the skilled scientist readily can construct DNAs encoding the conservative amino acid variants described herein. Examples of suitable variants are described below.

[0030] Fragments of HGF constitute HGF with fewer than all six domains (finger, Kringle 1, Kringle 2, Kringle 3, Kringle 4 and serine protease domains). Variants of HGF may have some of the domains of HGF repeated. Both fragments and variants are included within the scope of the invention if they still retain their respective ability to bind a HGF receptor, as determined by means known in the art.

[0031] Substituted HGF variants are those that have at least one amino acid residue in the corresponding wild-type HGF sequence removed and a different amino acid inserted

in its place at the same position. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule. Conservative substitutions are contemplated in the present invention. For example, (a) nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; (b) polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; (c) positively charged (basic) amino acids include arginine, lysine, and histidine; and (d) negatively charged (acidic) amino acids include aspartic acid and glutamic acid, and substitutions typically may be made within groups (a)-(d). In addition, glycine and proline may be substituted for one another based on their ability to disrupt α-helices. Similarly, certain amino acids, such as alanine, cysteine, leucine, methionine, glutamic acid, glutamine, histidine and lysine are more commonly found in α-helices, while valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in β-pleated sheets. Glycine, serine, aspartic acid, asparagine, and proline are commonly found in turns. Some preferred substitutions may be made among the following groups: (i) S and T; (ii) P and G; and (iii) A, V, L and I.

[0032] Insertional HGF variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in the wild-type HGF molecule. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid. The insertion may be of one or more amino acids. Ordinarily, the insertion will consist of one or two conservative amino acids. As stated above, amino acids similar in charge and/or structure to the amino acids adjacent to the site of insertion are defined as conservative. Alternatively, this invention includes insertion of an amino acid with a charge and/or structure that is substantially different from the amino acids adjacent to the site of insertion.

[0033] Deletional variants are those with one or more amino acids in the wild-type HGF molecule removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the HGF molecule. Such deletional variants are also contemplated in the present invention

[0034] All variants suitable for use in the present invention retain HGF activity. Such activity can be assayed by one of skill in the art according to known methods.

[0035] 4. Recombinant Vector Production

[0036] Recombinant vector production is well known in the art and is outlined in a brief exemplary fashion below.

[0037] Generally speaking, the constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a genomic DNA or DNA fragment or cDNA bearing an open reading frame is inserted, in either orientation. The invention further contemplates cells containing these vectors.

[0038] Bacterial Expression

[0039] Useful vectors for bacterial expression may be constructed by inserting a structural DNA sequence encoding a desired protein, together with suitable translation initiation and termination signals in operable reading phase

with a functional promoter. The vector may comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli, Bacillus subtilis, Salmonella typhimurium* and various species within the genera *Pseudomonas, Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice. In one embodiment, the prokaryotic host is *E. coli*.

[0040] Bacterial vectors may be, for example, bacteriophage-, plasmid- or cosmid-based. These vectors can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pGEM 1 (Promega Biotec, Madison, Wis., USA), pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pKK232-8, pDR540, and pRIT5 (Pharmacia).

[0041] These "backbone" sections may be combined with an appropriate promoter and the structural sequence to be expressed. Bacterial promoters include lac, T3, T7, lambda $P_{\rm R}$ or $P_{\rm L}$, trp, and ara.

[0042] These vectors optionally may be used for recombinant protein production. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be derepressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells may be cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification and isolation of the recombinant protein.

[0043] Eukaryotic Expression Vectors

[0044] In one embodiment, HGF cDNA is subcloned into a mammalian expression vector. Various mammalian cell culture systems can be employed to express recombinant protein. Examples of mammalian expression systems include selected mouse L cells, such as thymidine kinasenegative (TK) and adenine phosphoribosyl transferase-negative (APRT) cells. Other examples include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors may comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required non-transcribed genetic elements.

[0045] Mammalian promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. In one embodiment, the HGF cDNA is subcloned into any expression vector in which the expression is driven by a CMV promoter. Exemplary mammalian vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV,

pMSG, and pSVL (Pharmacia). In one specific embodiment, the mammalian expression vector is pcDNA3.1 (Invitrogen) or pVAX1 (Invitrogen). pVAX1 is a 3.0 kb plasmid vector designed for use in the development of DNA vaccines. HGF cDNA can be inserted, for example, into a multiple cloning site of the pVAX1 vector. pcDNA3.1(-) has the same multiple cloning site as pcDNA3.1(+) but in a reverse orientation.

[0046] In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a target protein in infected hosts. (See, e.g., Logan et al., 1984, Proc. Natl. Acad. Sci. USA 81: 3655-3659). If a viral vector is chosen as the delivery vehicle it may be one which is capable of integrating into the host genome so that the gene can be expressed permanently. In cases where the vector does not integrate into the host genome, the expression of the gene may be transient rather than permanent.

[0047] Adenoviral vectors ("Ad") are currently among the most efficient gene transfer vehicles for both in vitro and in vivo delivery, but the utilization of a first generation Ad for many gene therapy applications is limited due to the transient nature of transgene expression obtained by these vectors. Several factors have been shown to contribute to and modulate the duration of Ad-mediated gene expression as well as the immunogenicity of these vectors, including "leaky" viral protein expression and the transgene delivered. The development of Ad vectors, deleted in all viral protein coding sequences offers the prospects of a potentially safer, less immunogenic vector with an insert capacity of up to approximately 37 kb. This vector requires supplementation of viral regulatory and structural proteins in trans for packaging and rescue and is therefore helper dependent (HD). This is further described in Parks et al., Proc. Natl. Acad. Sci. USA, 93:13565-13570 (1996).

[0048] Use of retroviral vectors for protein expression are also known in the art. See, for example, Veres, et al., J. Virol., 72:1894-1901 (1998); Agarwal et al., J. Virol., 72:3720-3728 (1998); Forestell et al., Gene Therapy, 4:600-610 (1997); Plavec et al., Gene Therapy, 4:128-139, 1997; Forestell et al., *Gene Therapy*, 2:723-730 (1995); and Rigg et al., *J. Virol.*, 218:290-295, 1996. The genome of a recombinant retroviral vector is comprised of long terminal repeat (LTR) sequences at both ends which serve as a viral promoter/enhancer and a transcription initiation site, and a Psi site which serves as a virion packaging signal and a selectable marker gene. In one embodiment, the HGF polynucleotide sequences disclosed herein can be cloned into a suitable cloning site in the retroviral genome. Expression is under the transcriptional control of the retroviral LTR. Tissue selectivity is determined by both the origin of the viral genome (e.g., sarcoma virus, leukemia virus, or mammary tumor virus) and the cell line used to package the virus.

[0049] The recombinant vector useful in the present invention may include the exogenous DNA and regulatory

sequences necessary and sufficient for expression of the encoded product (e.g., HGF) upon entry into the target cell. In one embodiment of the present invention, the vector includes exogenous DNA encoding the desired product (i.e., HGF), and, optionally, DNA encoding a selectable marker, along with additional sequences necessary for expression of the exogenous DNA in a target cell. In one specific embodiment, the vector comprises the nucleic acid sequence of SEQ ID NO. 1 and a pcDNA3.1(-) plasmid or a pVAX1 plasmid is used. See, e.g., SEQ ID NOs. 2 and 3. In yet another embodiment, the vector does not comprise an enhancer element. Additionally, infectious vectors can be used in the present invention, such as adenoviral, retroviral, and adenovirus-associated viral vectors, to express the exogenous DNA sequence in a target cell.

[0050] In accordance with the invention, a vector encoding HGF may be administered by intramuscular injection, or by intravenous, intraperitoneal, oral or subcutaneous means, or by other means of delivery. Suitable titers will depend on a number of factors, such as the particular vector chosen, the host, and the strength of promoter used.

[0051] In accordance with the invention, the vector encoding HGF is administered (for example, by intramuscular injection) prior to organ transplant, skin flap or skin graft surgery, up to a week or more prior to surgery. Administration at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 7 days, at least about 8 days, at least about 9 days, or at least about 10 days prior to organ transplant or flap or skin graft surgery is expressly contemplated and included within the invention. Administration up to about 14 days prior to organ transplant or flap or skin graft surgery is also contemplated and included within the invention. The term "about" in this context connotes up to one day before the specified number of days. For example, the phrase "at least about 3 days" means that the construct encoding HGF is administered between 2-3 days prior to organ transplant or flap or skin graft surgery. Thus, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 24 hours prior to precisely 3 days before the surgery is within the meaning of the term "about."

[0052] Administration of the vector encoding HGF may be by direct injection, i.e., at or near the site of the flap, graft or organ transplant. In one embodiment, the construct encoding HGF is administered intramuscularly, such into the rectus abdominus muscle.

[0053] The inventive methods described herein enhance flap or skin graft survival by at least about 10%, at least about 15%, at least about 20%, at least about 25%, or at least about 30% or more compared to an untreated control subject. The term "about" in this context connotes a range of up to 5% before or after the specified percentage. Thus, the phrase "about 10%" refers to a range of 5%-15%, but also specifically includes 10%.

[0054] 5. Pharmaceutically Acceptable Formulations

[0055] The HGF vector or HGF nucleic acid sequence compositions as described herein can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the inventive compositions, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human

proteins, e.g., human serum albumin, are described, for example, in *Remington's Pharmaceutical Sciences* (16th ed., Osol, A., Ed., Mack, Easton Pa. (1980)). To form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the vectors of the present invention, together with a suitable amount of carrier vehicle.

[0056] Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Thus, the HGF vector or HGF nucleic acid sequence compositions described herein, and their physiologically acceptable salts and solvate, may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, rectal, subcutaneous or intramuscular administration. In one embodiment, the HGF nucleic acid sequence or HGF vector compositions are formulated for intramuscular administration.

[0057] For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they maybe presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); nonaqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate. Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the composition may take the form of tablets or lozenges formulated in conventional manner.

[0058] For administration by inhalation, the HGF vector or HGF nucleic acid sequence compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

[0059] The HGF vector or HGF nucleic acid sequence compositions may be formulated for intravenous, subcuta-

neous or intramuscular administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The HGF compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use

[0060] The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

[0061] In addition to the formulations described previously, the HGF vector or HGF nucleic acid sequence compositions may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

[0062] The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

[0063] The present invention describes therapy with HGF nucleic acid sequences to enhance organ transplant, flap and skin graft survival. In particular, a nucleic acid sequence encoding HGF can be administered prior to organ transplant, flap or skin graft surgery. The invention is useful in any type of organ transplant, flap or skin graft surgery. For example, the invention is useful in conjunction with transplantation of a wide variety of organs, including skin, kidney, heart, liver, spleen, bone marrow, pancreas, lung, and islet of langerhans. There are many different kinds of flaps that can be used to address cutaneous defects, defects of muscle, defects of subcutaneous tissues, and defects in bone. For example, the HGF methods and compositions of the present invention can be used in conjunction with (including prior to) a cutaneous flap, muscle flap, myocutaneous flap, or cartilocutaneous flap surgery. Likewise, the HGF methods and compositions of the present invention can be used in conjunction with (including prior to) skin graft surgery.

[0064] The therapeutic methods of the present invention involve administering to a subject in need of treatment a therapeutically effective amount of the HGF vector or HGF nucleic acid sequence compositions described herein. "Therapeutically effective" is employed here to denote the amount of the HGF composition that is of sufficient quantity to promote angiogenesis and accelerate wound healing. In particular, it is desirable to administer a therapeutically effective amount of an HGF composition that will enhance organ transplant, musculocutaneous flap or skin graft survival. Some methods contemplate combination therapy with known medicaments or therapies that also promote angiogenesis or organ or flap survival.

[0065] The therapeutically effective amount of the HGF composition for use in this invention largely will depend on particular patient characteristics, the route of administration, and the nature of the disorder being treated (such as the type of organ transplant or the size, location, and thickness of the flap or skin graft at issue). General guidance can be found, for example, in the publications of the International Conference on Harmonisation and in REMINGTON'S PHAR-MACEUTICAL SCIENCES, chapters 27 and 28, pp. 484-528 (Mack Publishing Company 1990). In addition, the therapeutically effective amount may depend on such factors as toxicity and efficacy of the medicament. Toxicity may be determined using methods well known in the art and found in the foregoing references. Efficacy may be determined utilizing the same guidance in conjunction with the methods described below in the Examples. A pharmaceutically effective amount, therefore, is an amount that is deemed by the clinician to be toxicologically tolerable, yet efficacious. Efficacy, for example, can be measured by the decrease in necrosis, or the increase in angiogenesis or organ transplant or flap or graft survival. As illustrated by the foregoing references, the determination of a therapeutically effective amount can be determined by those skilled in the art, as guided by this disclosure.

[0066] In one embodiment, the therapeutically effective amount is from about 0.1 to about 50 mg per treatment, such as from about 0.5 to about 25 mg per treatment, and from about 1 to about 10 mg per treatment. In a specific embodiment, the plasmid is administered in several injections to the same area of the body as part of a single treatment.

[0067] The patient may be a human or non-human mammal, or another animal. A patient typically will be in need of treatment when scheduled to receive flap or skin graft surgery.

[0068] The invention is further described by reference to the following examples, which are provided for illustration only. The invention is not limited to the examples but rather includes all variations that are evident from the teachings provided herein.

EXAMPLE 1

Plasmid Constructs

[0069] Human HGF is subcloned into the pcDNA3.1(-) (Invitrogen) into the NotI site, which produces the human HGF protein under the control of the CMV promoter. See, e.g., SEQ ID NO. 2. The HGF gene plasmid concentrate is reconstituted with normal saline solution (NSS) to obtain a 1 μ g/ μ l concentration.

EXAMPLE 2

HGF Nucleic Acid Sequence Enhances Flap Survival

[0070] The experiment is conducted following the guidelines set by the animal laboratory of the Institute of Animal and Experimental Sciences, Osaka University. Twenty four male Sprague-Dawley rats weighing 300-350 grams are used and equally divided into three groups (N=8). Animals are anesthetized with an intraperitoneal injection of pentobarbital (2 mg/100 g). In group 1, 250 μ l of NSS is injected into the left rectus abdominus muscle, while 250 μ g (1 μ g/ μ l)

of empty plasmid (pcDNA3.1(-)) and 250 µg (1 µg/µl) of HGF gene containing plasmid is injected into the same site in Group 2 and Group 3, respectively. After 7 days, a simulated transverse rectus abdominus musculocutaneous (TRAM) flap measuring 4.5 cm×9 cm is elevated. TRAM flap based on the left rectus abdominus muscle as the carrier and the superior epigastric vessels as the vascular pedicle are designed on the lower half of the abdomen. The flap is sutured to its original location and monitored for 1 week for infection, necrosis and flap survival. All the animals are sacrificed using an overdose of pentobarbital given intraperitonally. Direct measurement is made on the area of necrosis and flap survival using a transparent metric template.

[0071] The data indicate the following with regard to flap survival one week post-surgery:

TABLE 1

	NSS	Empty Vector	HGF IM
% Flap Survival	54.125	53.875	87.75
Standard Deviation	22.96853438	25.41336825	17.88654722
Sample Size	8	8	8

[0072] The superiority of pre-treating a TRAM flap with a gene encoding HGF is also exemplified in FIG. 2. FIG. 2 demonstrates that flap survival is markedly enhanced one week post-surgery in animals receiving a gene encoding HGF (designated as "H" animals; n=8) at least 7 days prior to flap surgery, compared to control animals (designated as "C" animals; n=8) and animals treated with the empty vector (designated as "V" animals; n=8). (The number following the letters "H,""C" or "V" indicate the animal number.)

[0073] In a separate study, 20 Sprague Dawley rats were randomized into 5 groups, 4 rats per group, and were directly injected with 125 μ g, 250 μ g, or 500 μ g of a plasmid encoding HGF, NSS, or an empty vector into the left rectus abdominus muscle, (the likely TRAM flap cite). One week post-injection, skin blood flow measurements were taken by a laser color Doppler (Laser Doppler Imager, Moor Instruments), which determines blood flow velocity and correlates with capillary density. The results indicated that blood flow was higher in the treated area for the HGF treated groups compared to the groups given NSS or the empty vector (FIG. 3 and Table 2).

TABLE 2

	NSS	Empty Vector	HGF IM (125 μg)	HGF IM (250 μg)	HGF IM (500 μg)
Mean % Blood Flow	282.675	278.175	343.333	392.900	396.725
Standard Error	5.923593	16.7246	15.59202	37.70972	33.55604
Sample Size	4	4	4	4	4

[0074] FIG. 3 was generated by quantitatively converting the laser images from the laser Doppler, creating a histogram with the amount of blood flow provided on the y-axis and each experimental group, i.e., animals given NSS, the empty vector, H1(125 µg HGF), H2 (250 µg HGF) or H3 (500 µg

HGF), on the x-axis. Use of the laser Doppler to visualize blood vessels and measure blood flow is described in Wong et al., Gastrointest. Endosc., 55(1): 88-95 (2002).

[0075] Additional embodiments are within the scope of the invention. For example, the invention is further illustrated by the following numbered embodiments:

[0076] 1. A method for enhancing tissue survival, including survival of a flap or a skin graft following flap or skin graft surgery, comprising administering to a subject in need thereof a vector that comprises a nucleic acid sequence encoding hepatocyte growth factor.

[0077] 2. The method of embodiment 1, wherein said flap is selected from the group consisting of a skin flap, a muscle flap, a myocutaneous flap and a cartilocutaneous flap.

[0078] 3. The method of embodiment 1, wherein said vector is administered intramuscularly.

[0079] 4. The method of embodiment 1, wherein said nucleic acid encoding HGF is represented by SEQ ID NO. 1.

[0080] 5. The method of embodiment 4, wherein said vector is administered at least 3-14 days prior to flap or skin graft surgery.

[0081] 6. The method of embodiment 4, wherein said vector is administered at least 5-10 days prior to flap or skin graft surgery.

[0082] 7. The method of embodiment 4, wherein said vector is administered at least 7 days prior to flap or skin graft surgery.

[0083] 8. The method of embodiment 5, wherein said vector is a plasmid selected from the group consisting of pcDNA3.1(-) and pVAX1.

[0084] 9. The method of embodiment 5, wherein said vector comprises the sequence of SEQ ID NO. 2.

[0085] 10. The method of embodiment 5, wherein said vector comprises sequence of SEQ ID NO. 3.

[0086] 11. The method of embodiment 1, wherein the survival of the flap or skin graft is enhanced by at least 10-30% as compared to an untreated subject.

[0087] 12. A method for enhancing organ transplant survival in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a composition that comprises a nucleic acid encoding HGF.

[0088] 13. The method of embodiment 3, wherein said vector is administered in the rectus abdominus muscle.

[0089] 14. A method for enhancing tissue survival, including survival of a flap or a skin graft following flap or skin graft surgery, comprising administering to a subject in need thereof a vector that comprises a nucleic acid sequence encoding hepatocyte growth factor, wherein administration of the vector results in enhanced blood flow.

[0090] Although the foregoing refers to particular preferred embodiments, it will be understood that the present invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the present invention. All

of the publications, patent applications and patents cited in this specification are incorporated herein by reference in their entirety.

Hepatocyte Growth Factor Nucleic Acid Sequence SEQ ID NO. 1 ATGTGGGTGACCAAACTCCTGCCAGCCCTGCTGCTGCAGCATGTCCTCCT GCATCTCCTCCTGCTCCCCATCGCCATCCCCTATGCAGAGGGACAAAGGA AAAGAAGAATACAATTCATGAATTCAAAAAATCAGCAAAGACTACCCTA ATCAAAATAGATCCAGCACTGAAGATAAAAACCAAAAAAGTGAATACTGC AGACCAATGTGCTAATAGATGTACTAGGAATAAAGGACTTCCATTCACTT ${\tt GCAAGGCTTTTGTTTTTGATAAAGCAAGAAAACAATGCCTCTGGTTCCCC}$ TTCAATAGCATGTCAAGTGGAGTGAAAAAAGAATTTGGCCATGAATTTGA CCTCTATGAAAACAAAGACTACATTAGAAACTGCATCATTGGTAAAGGAC GCAGCTACAAGGGAACAGTATCTATCACTAAGAGTGGCATCAAATGTCAG CCCTGGAGTTCCATGATACCACACGAACACAGCTTTTTGCCTTCGAGCTA TCGGGGTAAAGACCTACAGGAAAACTACTGTCGAAATCCTCGAGGGGAAG AAGGGGGACCCTGGTGTTTCACAAGCAATCCAGAGGTACGCTACGAAGTC TGTGACATTCCTCAGTGTTCAGAAGTTGAATGCATGACCTGCAATGGGGA GAGTTATCGAGGTCTCATGGATCATACAGAATCAGGCAAGATTTGTCAGC GCTGGGATCATCAGACACCACACCGGCACAAATTCTTGCCTGAAAGATAT $\verb|CCCGACAAGGGCTTTGATGATAATTATTGCCGCAATCCCGATGGCCAGCC|$ GAGGCCATGGTGCTATACTCTTGACCCTCACACCCGCTGGGAGTACTGTG ${\tt CAATTAAAACATGCGCTGACAATACTATGAATGACACTGATGTTCCTTTG}$ GAAACAACTGAATGCATCCAAGGTCAAGGAGAAGGCTACAGGGGCACTGT CAATACCATTTGGAATGGAATTCCATGTCAGCGTTGGGATTCTCAGTATC CTCACGAGCATGACATGACTCCTGAAAATTTCAAGTGCAAGGACCTACGA GAAAATTACTGCCGAAATCCAGATGGGTCTGAATCACCCTGGTGTTTTAC CACTGATCCAAACATCCGAGTTGGCTACTGCTCCCAAATTCCAAACTGTG ATATGTCACATGGACAAGATTGTTATCGTGGGAATGGCAAAAATTATATG GGCAACTTATCCCAAACAAGATCTGGACTAACATGTTCAATGTGGGACAA GAACATGGAAGACTTACATCGTCATATCTTCTGGGAACCAGATGCAAGTA AGCTGAATGAGAATTACTGCCGAAATCCAGATGATGATGCTCATGGACCC TGGTGCTACACGGGAAATCCACTCATTCCTTGGGATTATTGCCCTATTTC TCGTTGTGAAGGTGATACCACACCTACAATAGTCAATTTAGACCATCCCG TAATATCTTGTGCCAAAACGAAACAATTGCGAGTTGTAAATGGGATTCCA ACACGAACAAACATAGGATGGATGGTTAGTTTGAGATACAGAAATAAACA TATCTGCGGAGGATCATTGATAAAGGAGAGTTGGGTTCTTACTGCACGAC AGTGTTTCCCTTCTCGAGACTTGAAAGATTATGAAGCTTGGCTTGGAATT CATGATGTCCACGGAAGAGGGAGATGAGAAATGCAAACAGGTTCTCAATGT TTCCCAGCTGGTATATGGCCCTGAAGGATCAGATCTGGTTTTAATGAAGC

AATTATGGATGCACAATTCCTGAAAAGACCAGTTGCAGTGTTTATGGCTG
GGGCTACACTGGATTGATCAACTATGATGGCCTATTACGAGTGGCACATC
TCTATATAATGGGAAATGAGAAATGCAGCCAGCATCATCGAGGGAAGGTG
ACTCTGAATGAGTCTGAAATATGTGCTGGGGCTGAAAAGATTGGATCAGG

-continued

ACCATGTGAGGGGGATTATGGTGGCCCACTTGTTTGTGAGCAACATAAAA

TGAGAATGGTTCTTGGTGTCATTGTTCCTGGTCGTGGATGTGCCATTCCA

AATCGTCCTGGTATTTTTGTCCGAGTAGCATATTATGCAAAATGGATACA

CAAAATTATTTTAACATATAAGGTACCACAGTCATAG

pcDNA3.1(-)F	pcDNA3.1(-)HGF Sequence								SEO ID NO. 2
GACGGATCGG	GAGATCTCCC	GATCCCCTAT	GGTGCACTCT	CAGTACAATC	TGCTCTGATG	CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	
GGAGGTCGCT	GAGTAGTGCG	CGAGCAAAAT	TTAAGCTACA	ACAAGGCAAG	GCTTGACCGA	CAATTGCATG	AAGAATCTGC	TTAGGGTTAG	GCGTTTTGCG
CIGCIICGCG	ATGTACGGGC	CAGATATACG	CGTTGACATT	GATTATTGAC	TACTTATTAA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA
TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT
AACGCCAATA	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC
CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGIA	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA
TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	ACTCACGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA
TGGGAGTTTG	TTTGGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ACAACTCCGC	CCCATTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG
GTCTATATAA	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	CTGCTTACTG	GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC
GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCTCTAGAA	CTAGCTGGAT	CCTGCCAGCC	CGTCCAGCAG	CACCATGTGG	GTGACCAAAC	TCCTGCCAGC
CCTGCTGCTG	CAGCATGICC	TCCTGCATCT	CCICCIGCIC	CCCATCGCCA	TCCCCTATGC	AGAGGGACAA	AGGAAAAGAA	GAAATACAAT	TCATGAATTC
AAAAAATCAG	CAAAGACTAC	CCTAATCAAA	ATAGATCCAG	CACTGAAGAT	AAAAACCAAA	AAAGTGAATA	CTGCAGACCA	ATGTGCTAAT	AGATGTACTA
GGAATAAAGG	ACTICCATIC	ACTIGCAAGG	CTTTTGTTTT	TGATAAAGCA	AGAAAACAAT	GCCTCTGGTT	CCCCTTCAAT	AGCATGTCAA	GTGGAGTGAA
AAAAGAATTT	GGCCATGAAT	TIGACCICIA	TGAAAACAAA	GACTACATTA	GAAACTGCAT	CATTGGTAAA	GGACGCAGCT	ACAAGGGAAC	AGTATCTATC
ACTAAGAGTG	GCATCAAATG	TCAGCCCTGG	AGTTCCATGA	TACCACACGA	ACACAGCTTT	TTGCCTTCGA	GCTATCGGGG	TAAAGACCTA	CAGGAAAACT
ACTGTCGAAA	TCCTCGAGGG	GAAGAAGGGG	GACCCTGGTG	TTTCACAAGC	AATCCAGAGG	TACGCTACGA	AGTCTGTGAC	ATTCCTCAGT	GTTCAGAAGT
TGAATGCATG	ACCTGCAATG	GGGAGAGTTA	TCGAGGTCTC	ATGGATCATA	CAGAATCAGG	CAAGATTTGT	CAGCGCTGGG	ATCATCAGAC	ACCACACCGG
CACAAATTCT	TGCCTGAAAG	ATATCCCGAC	AAGGGCTTTG	ATGATAATTA	TTGCCGCAAT	CCCGATGGCC	AGCCGAGGCC	ATGGTGCTAT	ACTCTTGACC
CTCACACCCG	CTGGGAGTAC	TGTGCAATTA	AAACATGCGC	TGACAATACT	ATGAATGACA	CTGATGTTCC	TTTGGAAACA	ACTGAATGCA	TCCAAGGTCA
AGGAGAAGGC	TACAGGGGCA	CTGTCAATAC	CATTTGGAAT	GGAATTCCAT	GTCAGCGTTG	GGATTCTCAG	TATCCTCACG	AGCATGACAT	GACTCCTGAA
AATTTCAAGT	GCAAGGACCT	ACGAGAAAAT	TACTGCCGAA	ATCCAGATGG	GTCTGAATCA	CCCTGGTGTT	TTACCACTGA	TCCAAACATC	CGAGTTGGCT
ACTGCTCCCA	AATTCCAAAC	TGTGATATGT	CACATGGACA	AGATTGTTAT	CGTGGGAATG	GCAAAAATTA	TATGGGCAAC	TTATCCCAAA	CAAGATCTGG
ACTAACATGT	TCAATGTGGG	ACAAGAACAT	GGAAGACTTA	CATCGTCATA	TCTTCTGGGA	ACCAGATGCA	AGTAAGCTGA	ATGAGAATTA	CTGCCGAAAT
CCAGATGATG	ATGCTCATGG	ACCCTGGTGC	TACACGGGAA	ATCCACTCAT	TCCTTGGGAT	TATTGCCCTA	TTTCTCGTTG	TGAAGGTGAT	ACCACACCTA
CAATAGTCAA	TTTAGACCAT	CCCGTAATAT	CTTGTGCCAA	AACGAAACAA	TTGCGAGTTG	TAAATGGGAT	TCCAACACGA	ACAAACATAG	GATGGATGGT
TAGTTTGAGA	TACAGAAATA	AACATATCTG	CGGAGGATCA	TTGATAAAGG	AGAGTTGGGT	TCTTACTGCA	CGACAGTGTT	TCCCTTCTCG	AGACTTGAAA
GATTATGAAG	CITGGCTTGG	AATTCATGAT	GTCCACGGAA	GAGGAGATGA	GAAATGCAAA	CAGGTTCTCA	ATGTTTTCCA	GCTGGTATAT	GGCCCTGAAG
GATCAGATCT	GGTTTTAATG	AAGCTTGCCA	GGCCTGCTGT	CDTGGATGAT	TTTGTTAGTA	CGATTGATTT	ACCTAATTAT	GGATGCACAA	TTCCTGAAAA
GACCAGTTGC	AGTGTTTATG	GCTGGGGCTA	CACTGGATTG	ATCAACTATG	ATGGCCTATT	ACGAGTGGCA	CATCTCTATA	TAATGGGAAA	TGAGAAATGC
AGCCAGCATC	ATCGAGGGAA	GGTGACTCTG	AATGAGTCTG	AAATATGTGC	TGGGGCTGAA	AAGATTGGAT	CAGGACCATG	TGAGGGGGAT	TATGGTGGCC
CACTTGTTTG	TGAGCAACAT	AAAATGAGAA	TGGTTCTTGG	TGTCATTGTT	CCTGGTCGTG	GATGTGCCAT	TCCAAATCGT	CCTGGTATTT	TTGTCCGAGT
AGCATATTAT	GCAAAATGGA	TACACAAAAT	TATTTAACA	TATAAGGTAC	CACAGTCATA	GCTGTTAACC	CGGGTCGAAG	CGGCCGCCAC	TGTGCTGGAT
ATCTGCAGAA	TTCCACCACA	CTGGACTAGT	GGATCCGAGC	TCGGTACCAA	GCTTAAGTTT	AAACCGCTGA	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG
CCATCTGTTG	TITGCCCCTC	CCCCGTGCCT	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT	GICCILICCI	AATAAAATGA	GGAAATTGCA	TCGCATTGTC
TGAGTAGGTG	TCATTCTATT	CIGGGGGGIG	GGGTGGGGCA	GGACAGCAAG	GGGGAGGATT	GGGAAGACAA	TAGCAGGCAT	GCTGGGGATG	CGGTGGGCTC
TATGGCTTCT	GAGGCGGAAA	GAACCAGCTG	GGGCTCTAGG	GGGTATCCCC	ACGCCCCTG	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC
AGCGTGACCG	CTACACTIGC	CAGCGCCCTA	CCCCCCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA
ATCGGGGGCT	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	CCCAAAAAAC	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC	CATCGCCCTG
ATAGACGGTT	TTICGCCCTT	TGACGTTGGA	GICCACGIIC	TTTAATAGTG	GACTCTTGTT	CCAAACTGGA	ACAACACTCA	ACCCTATCTC	GGTCTATTCT
TTTGATTTAT	AAGGGATTTT	GCCGATTTCG	GCCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA	ACGCGAATTA	ATTCTGTGGA	ATGTGTCA
GTTAGGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCAGGT	GTGGAAAGTC	CCCAGGCTCC
CCAGCAGGCA	GAAGTATGCA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAT	AGTCCCGCCC	CTAACTCCGC	CCATCCGCC	CCTAACTCCG	CCCAGTTCCG
CCCATTCTCC	GCCCCATGGC	TGACTAATTT	TTTTATTTA	TGCAGAGGCC	GAGGCCGCCT	CIGCCICIGA	GCTATTCCAG	AAGTAGTGAG	GAGGCTTTT
TGGAGGCCTA	GGCTTTTGCA	AAAAGCTCCC	GGGAGCTTGT	ATATCCATTT	TCGGATCTGA	TCAAGAGACA	GGATGAGGAT	CGTTTCGCAT	GATTGAACAA
GATGGATTGC	ACGCAGGTIC	TCCGGCCGCT	TGGGTGGAGA	GGCTATTCGG	CTATGACTGG	GCACAACAGA	CAATCGGCTG	CTCTGATGCC	GCCGTGTTCC
GGCTGTCAGC	GCAGGGGCGC	CCGGTTCTTT	TTGTCAAGAC	CGACCTGTCC	GGTGCCCTGA	ATGAACTGCA	GGACGAGGCA	GCGCGGCTAT	CGTGGCTGGC
CACGACGGGC	GTTCCTTGCG		CGACGLTGTC	ACTGAAGCGG	GAAGGGACTG	GCTGCTATTG	GGCGAAGTGC	CGGGGCAGGA	TCTCCTGTCA
TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC	ATCATGGCTG	ATGCAATGCG	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC	CACCAAGCGA
AACATCGCAT	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG	CCGAACTGTT

0091

	CCCCTTTTCT	GAATGGGCTG	TCTGGGGTTC	TTCCGGGACG	AAAGCAATAG	ACCGTCGACC	AGCATAAAGT	AGCTGCATTA	GCTGCGGCGA	AAGGCCAGGA	GAAACCCGAC	CTTTCTCCT	CCCCCGTIC	ACAGGATTAG	TCTGCTGAAG	ACGCGCAGAA	GATTATCAAA	ATGCTTAATC	TTACCATCTG	GAAGTGGTCC	TGCCATTGCT	TTGTGCAAAA	CTCTTACTGT	CCCGCCGTCA	CCGCTGTTGA	GGCAAAATGC	TCTCATGAGC	
	TGGAAAATGG	GCTTGGCGGC	TGAGCGGGAC	CGGAATCGTT	GGTTACAAAT	ATGTCTGTAT	ACGAGCCGGA	CTGTCGTGCC	CGGTCGTTCG	AGGCCAGCAA	CAGAGGTGGC	ACCTGTCCGC	TGTGCACGAA	GCCACTGGTA	GTATCTGCGC	GCAGCAGATT	TTGGTCATGA	ACAGTTACCA	ACGGGAGGGC	GCCGAGCGCA	GCAACGTTGT	ATCCCCCATG	CTGCATAATT	GTIGCICTIG	AAGGATCTTA	AAAACAGGAA	AGGGTTATTG	C
	AATATCATGG	TTGCTGAAGA	CGAGTTCTTC	GGTTGGGCTT	AGCTTATAAT	GTATCTTATC	CACACAACAT	GTCGGGAAAC	TCGCTGCGCT	TGTGAGCAAA	ACGCTCAAGT	CTTACCGGAT	AGCTGGGCTG	ACTGGCAGCA	ACAGTATTTG	TTGTTTGCAA	TTAAGGGATT	ACTTGGTCTG	TAACTACGAT	AGCCGGAAGG	AATAGTTTGC	GAGTTACATG	TATGGCAGCA	CGGCGACCGA	GAAAACTCTC	TGGGTGAGCA	AGCATTTATC	CACCTGACGT
	CICCIICCC	ACCCGTGATA	GCCTTCTTGA	TTCTATGAAA	TGTTTATTGC	ACTCATCAAT	CTCACAATTC	CCGCTTTCCA	GCTCACTGAC	GGAAAGAACA	ACAAAAATCG	GACCCTGCCG	GTTCGCTCCA	ACTTATCGCC	CACTAGAAGA	AGCGGTTTTT	AAAACTCACG	ATATGAGTAA	GTCGTGTAGA	TAAACCAGCC	TICGCCAGII	CGATCAAGGC	CACTCATGGT	ATAGTGTATG	TCTTCGGGGC	CCAGCGTTTC	ATATTATTGA	CGAAAAGTGC
-continued	ATGGCGATGC	AGCGTTGGCT	GCCTTCTATC	CACCGCCGCC	CACCCCAACT	GTTTGTCCAA	TTGTTATCCG	CGCTCACTGC	CCGCTTCCTC	GGATAACGCA	GACGAGCATC	CICCIGIICC	GGTGTAGGTC	GTAAGACACG	ACTACGGCTA	CACCGCTGGT	CAGTGGAACG	TCTAAAGTAT	CIGACICCCC	TTATCAGCAA	GAGTAAGTAG	CGGTTCCCAA	GCAGTGTTAT	CATTCTGAGA	TGGAAAACGT	TITACITICA	TCCTTTTCA	CACATTTCCC
	GTCGTGACCC	ATOAGGACAT	GCAGCGCATC	ATTCGATTC	GTTCTTCGCC	TCTAGTTGTG	CTGTGTGAAA	AATTGCGTTG	GGGCGCTCTT	CAGAATCAGG	CCGCCCCCT	CTCGTGCGCT	ATCTCAGTTC	GTCCAACCCG	TGGTGGCCTA	GCAAACAAAC	GTCTGACGCT	TTTAAATCAA	CCATAGITGC	GGCTCCAGAT	CGGGAAGCIA	CATTCAGCTC	TAAGTTGGCC	TCAACCAAGT	TGCTCATCAT	TTCAGCATCT	CTCATACTCT	GGGTTCCGCG
	CGAGGATCTC	GCGGACCGCT	CTCCCGATTC	CCATCACGAG	TCATGCTGGA	TTCACTGCAT	TAGCTGTTTC	AACTCACATT	TTTGCGTATT	CGGTTATCCA	TCCATAGGCT	TGGAAGCTCC	CGCTGTAGGT	ATCGTCTTGA	GTTCTTGAAG	TCTTGATCCG	TTTCTACGGG	AAAATGAAGT	TTTCGTTCAT	CACGCTCACC	TAATIGITGC	GGTATGGCTT	TTGTCAGAAG	TGGTGAGTAC	ACTTTAAAAG	CCAACTGATC	ATGTTGAATA	AAACAAATAG
	TGCCCGACGG	GCTGGGTGTG	GGTATCGCCG	GCCCAACCTG	CGCGGGGATC	AAGCATTTT	ATCATGGTCA	TGAGTGAGCT	GGAGAGGCGG	GGCGGTAATA	CIGCCGITII	CGTTTCCCCC	TCATAGCTCA	TCCGGTAACT	GTGCTACAGA	AGTTGGTAGC	CCTTTGATCT	TTTAAATTA	GATCTGTCTA	CCGCGAGACC	TCCAGTCTAT	CICGICGILI	CCTCCGATCG	TTTCTGTGAC	ACATAGCAGA	ACTCGTGCAC	CGACACGGAA	TTAGAAAAT
	AAGGCGCGCA	ACTGTGGCCG	CGTGCTTTAC	ACCAAGCGAC	GATCCTCCAG	TTCACAAATA	GCTTGGCGTA	GGGTGCCTAA	CAACGCGCGG	CTCACTCAAA	GGCCGCGTTG	AGATACCAGG	TGGCGCTTTC	CIGCGCCTIA	TATGTAGGCG	TCGGAAAAAG	TCAAGAAGAT	ACCTAGATCC	CTATCTCAGC	TGCAATGATA	TCCGCCTCCA	TGGTGTCACG	CICCLICGGI	GTAAGATGCT	ATACCGCGCC	GATGTAACCC	GGAATAAGGG	TTGAATGTAT
	CGCCAGGCTC	GGATTCATCG	ACCGCTTCCT	GAAATGACCG	CCGGCTGGAT	CATCACAAAT	TCTAGCTAGA	GTAAAGCCTG	ATGAATCGGC	GCGGTATCAG	ACCGTAAAAA	AGGACTATAA	TCGGGAAGCG	AGCCCGACCG	CAGAGCGAGG	CCAGTTACCT	AAAAACGATC	AAGGATCTTC	AGTGAGGCAC	GCCCCAGTGC	TGCAACTTTA	ACAGGCATCG	AAGCGGTTAG	CATGCCATCC	ATACGGGATA	GATCCAGTTC	CGCAAAAAG	GGATACATAT

[0092]

pVAX1HGF/MGB1 SEQ ID NO. 3 ${\tt GCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGA}$ CTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATAT ATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACC GCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAG TAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGG TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC CCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGT ACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTC ATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGG ATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCA ATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGT AACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGA GGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACT GGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAG CGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCGCCAGCCCGTCCAGC AGCACCATGTGGGTGACCAAACTCCTGCCAGCCCTGCTGCTGCAGCATGT CCTCCTGCATCTCCTCCTGCTCCCCATCGCCATCCCCTATGCAGAGGGAC AAAGGAAAAGAAATACAATTCATGAATTCAAAAAATCAGCAAAGACT ACCCTAATCAAAATAGATCCAGCACTGAAGATAAAAACCAAAAAAGTGAA TACTGCAGACCAATGTGCTAATAGATGTACTAGGAATAAAGGACTTCCAT TCACTTGCAAGGCTTTTGTTTTTGATAAAGCAAGAAAACAATGCCTCTGG TTCCCCTTCAATAGCATGTCAAGTGGAGTGAAAAAAGAATTTGGCCATGA ATTTGACCTCTATGAAAACAAAGACTACATTAGAAACTGCATCATTGGTA AAGGACGCAGCTACAAGGGAACAGTATCTATCACTAAGAGTGGCATCAAA TGTCAGCCCTGGAGTTCCATGATACCACACGAACACAGCTTTTTGCCTTC GAGCTATCGGGGTAAAGACCTACAGGAAAACTACTGTCGAAATCCTCGAG GGGAAGAAGGGGGACCCTGGTGTTTCACAAGCAATCCAGAGGTACGCTAC GAAGTCTGTGACATTCCTCAGTGTTCAGAAGTTGAATGCATGACCTGCAA TGGGGAGAGTTATCGAGGTCTCATGGATCATACAGAATCAGGCAAGATTT GTCAGCGCTGGGATCATCAGACACCACACCGGCACAAATTCTTGCCTGAA AGATATCCCGACAAGGGCTTTGATGATAATTATTGCCGCAATCCCGATGG CCAGCCGAGGCCATGGTGCTATACTCTTGACCCTCACACCCGCTGGGAGT CCTTTGGAAACAACTGAATGCATCCAAGGTCAAGGAGAAGGCTACAGGGG CACTGTCAATACCATTTGGAATGGAATTCCATGTCAGCGTTGGGATTCTC AGTATCCTCACGAGCATGACATGACTCCTGAAAATTTCAAGTGCAAGGAC

CTACGAGAAAATTACTGCCGAAATCCAGATGGGTCTGAATCACCCTGGTG

-continued

TTTTACCACTGATCCAAACATCCGAGTTGGCTACTGCTCCCAAATTCCAA ACTGTGATATGTCACATGGACAAGATTGTTATCGTGGGAATGGCAAAAAT TATATGGGCAACTTATCCCAAACAAGATCTGGACTAACATGTTCAATGTG ${\tt GGACAAGAACATGGAAGACTTACATCGTCATATCTTCTGGGAACCAGATG}$ CAAGTAAGCTGAATGAGAATTACTGCCGAAATCCAGATGATGATGCTCAT ${\tt GGACCCTGGTGCTACACGGGAAATCCACTCATTCCTTGGGATTATTGCCC}$ TATTTCTCGTTGTGAAGGTGATACCACACCTACAATAGTCAATTTAGACC ATCCCGTAATATCTTGTGCCAAAACGAAACAATTGCGAGTTGTAAATGGG ATTCCAACACGAACAAACATAGGATGGATGGTTAGTTTGAGATACAGAAA TAAACATATCTGCGGAGGATCATTGATAAAGGAGAGTTGGGTTCTTACTG CACGACAGTGTTTCCCTTCTCGAGACTTGAAAGATTATGAAGCTTGGCTT GGAATTCATGATGTCCACGGAAGAGGGAGATGAGAAATGCAAACAGGTTCT CAATGTTTCCCAGCTGGTATATGGCCCTGAAGGATCAGATCTGGTTTTAA TGAAGCTTGCCAGGCCTGCTGTCCTGGATGATTTTGTTAGTACGATTGAT TTACCTAATTATGGATGCACAATTCCTGAAAAGACCAGTTGCAGTGTTTA TGGCTGGGGCTACACTGGATTGATCAACTATGATGGCCTATTACGAGTGG CACATCTCTATATAATGGGAAATGAGAAATGCAGCCAGCATCATCGAGGG AAGGTGACTCTGAATGAGTCTGAAATATGTGCTGGGGCTGAAAAGATTGG ATAAAATGAGAATGGTTCTTGGTGTCATTGTTCCTGGTCGTGGATGTGCC ATTCCAAATCGTCCTGGTATTTTTGTCCGAGTAGCATATTATGCAAAATG GATACACAAAATTATTTTAACATATAAGGTACCACAGTCATAGCTGTTAA $\verb|CCCGGGTCGAAGCGGCCGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTG|$ ATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCT CCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCC TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT TCTGGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACA ATAGCAGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTACTGGGCGG TTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGT AAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAG GATCTGATGGCGCAGGGGATCAAGCTCTGATCAAGAGACAGGATGAGGAT CGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCT TGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTG CTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTT TTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCA GCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCT CGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGC CGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCC

-continued ATCATGCTGATGCAATGCGGCGGCTGCATACGTTGATCCGGCTACCTG CCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGA TGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGG CTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGG $\tt CGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGG$ ${\tt TGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTG}$ ${\tt GCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGA}$ GCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCG CTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTC TGAATTATTAACGCTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCA ${\tt TCTGTGCGGTATTTCACACCGCATCAGGTGGCACTTTTCGGGGAAATGTG}$ CGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCC GCTCATGAGACAATAACCCTGATAAATGCTTCAATAATAGCACGTGCTAA AACTTCATTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAAT CTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGA

-continued CCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG

TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGT ${\tt TTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAG}$ ${\tt CAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCC}$ ACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATC $\tt CTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTT$ GGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGG GGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTG AGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAG AAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCA CGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGG TTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGG CCTTTTGCTGGCCTTTTGCTCACATGTTCTT

[0093]

SEOUENCE LISTING

<160> NUMBER OF SEO ID NOS: 3

<210> SEQ ID NO 1

<211> LENGTH: 2187

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

atgtgggtga ccaaactcct gccagccctg ctgctgcagc atgtcctcct gcatctcctc 60 ctgctcccca tcgccatccc ctatgcagag ggacaaagga aaagaagaaa tacaattcat gaattcaaaa aatcagcaaa gactacccta atcaaaatag atccagcact gaagataaaa accaaaaaag tgaatactgc agaccaatgt gctaatagat gtactaggaa taaaggactt ccattcactt gcaaggcttt tgtttttgat aaagcaagaa aacaatgcct ctggttcccc 300 ttcaatagca tgtcaagtgg agtgaaaaaa gaatttggcc atgaatttga cctctatgaa 360 aacaaagact acattagaaa ctgcatcatt ggtaaaggac gcagctacaa gggaacagta 420 tctatcacta agagtggcat caaatgtcag ccctggagtt ccatgatacc acacgaacac 480 agctttttgc cttcgagcta tcggggtaaa gacctacagg aaaactactg tcgaaatcct 540 cgaggggaag aagggggacc ctggtgtttc acaagcaatc cagaggtacg ctacgaagtc 600 tgtgacattc ctcagtgttc agaagttgaa tgcatgacct gcaatgggga gagttatcga 660 ggtctcatgg atcatacaga atcaggcaag atttgtcagc gctgggatca tcagacacca 720 caccggcaca aattcttgcc tgaaagatat cccgacaagg gctttgatga taattattgc 780 cgcaatcccg atggccagcc gaggccatgg tgctatactc ttgaccctca cacccgctgg 840

gagtactgtg	caattaaaac	atgcgctgac	aatactatga	atgacactga	tgttcctttg	900
gaaacaactg	aatgcatcca	aggtcaagga	gaaggctaca	ggggcactgt	caataccatt	960
tggaatggaa	ttccatgtca	gcgttgggat	tctcagtatc	ctcacgagca	tgacatgact	1020
cctgaaaatt	tcaagtgcaa	ggacctacga	gaaaattact	gccgaaatcc	agatgggtct	1080
gaatcaccct	ggtgttttac	cactgatcca	aacatccgag	ttggctactg	ctcccaaatt	1140
ccaaactgtg	atatgtcaca	tggacaagat	tgttatcgtg	ggaatggcaa	aaattatatg	1200
ggcaacttat	cccaaacaag	atctggacta	acatgttcaa	tgtgggacaa	gaacatggaa	1260
gacttacatc	gtcatatctt	ctgggaacca	gatgcaagta	agctgaatga	gaattactgc	1320
cgaaatccag	atgatgatgc	tcatggaccc	tggtgctaca	cgggaaatcc	actcattcct	1380
tgggattatt	gccctatttc	tcgttgtgaa	ggtgatacca	cacctacaat	agtcaattta	1440
gaccatcccg	taatatcttg	tgccaaaacg	aaacaattgc	gagttgtaaa	tgggattcca	1500
acacgaacaa	acataggatg	gatggttagt	ttgagataca	gaaataaaca	tatctgcgga	1560
ggatcattga	taaaggagag	ttgggttctt	actgcacgac	agtgtttccc	ttctcgagac	1620
ttgaaagatt	atgaagcttg	gcttggaatt	catgatgtcc	acggaagagg	agatgagaaa	1680
tgcaaacagg	ttctcaatgt	ttcccagctg	gtatatggcc	ctgaaggatc	agatctggtt	1740
ttaatgaagc	ttgccaggcc	tgctgtcctg	gatgattttg	ttagtacgat	tgatttacct	1800
aattatggat	gcacaattcc	tgaaaagacc	agttgcagtg	tttatggctg	gggctacact	1860
ggattgatca	actatgatgg	cctattacga	gtggcacatc	tctatataat	gggaaatgag	1920
aaatgcagcc	agcatcatcg	agggaaggtg	actctgaatg	agtctgaaat	atgtgctggg	1980
gctgaaaaga	ttggatcagg	accatgtgag	ggggattatg	gtggcccact	tgtttgtgag	2040
caacataaaa	tgagaatggt	tcttggtgtc	attgttcctg	gtcgtggatg	tgccattcca	2100
aatcgtcctg	gtatttttgt	ccgagtagca	tattatgcaa	aatggataca	caaaattatt	2160
ttaacatata	aggtaccaca	gtcatag				2187

<400> SEQUENCE: 2

gacggatcgg	gagateteee	gateeectat	ggtgeaetet	cagiacaaic	tgetetgatg	60
ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600

<210> SEQ ID NO 2
<211> LENGTH: 7681
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic vector sequence

tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagc	900
gtttaaacgg	gccctctaga	ctcgagcggc	cgctctagaa	ctagctggat	cctgccagcc	960
cgtccagcag	caccatgtgg	gtgaccaaac	tcctgccagc	cctgctgctg	cagcatgtcc	1020
tcctgcatct	cctcctgctc	cccatcgcca	tcccctatgc	agagggacaa	aggaaaagaa	1080
gaaatacaat	tcatgaattc	aaaaaatcag	caaagactac	cctaatcaaa	atagatccag	1140
cactgaagat	aaaaaccaaa	aaagtgaata	ctgcagacca	atgtgctaat	agatgtacta	1200
ggaataaagg	acttccattc	acttgcaagg	cttttgtttt	tgataaagca	agaaaacaat	1260
gcctctggtt	ccccttcaat	agcatgtcaa	gtggagtgaa	aaaagaattt	ggccatgaat	1320
ttgacctcta	tgaaaacaaa	gactacatta	gaaactgcat	cattggtaaa	ggacgcagct	1380
acaagggaac	agtatctatc	actaagagtg	gcatcaaatg	tcagccctgg	agttccatga	1440
taccacacga	acacagcttt	ttgccttcga	gctatcgggg	taaagaccta	caggaaaact	1500
actgtcgaaa	tcctcgaggg	gaagaagggg	gaccctggtg	tttcacaagc	aatccagagg	1560
tacgctacga	agtctgtgac	attcctcagt	gttcagaagt	tgaatgcatg	acctgcaatg	1620
gggagagtta	tcgaggtctc	atggatcata	cagaatcagg	caagatttgt	cagcgctggg	1680
atcatcagac	accacaccgg	cacaaattct	tgcctgaaag	atatcccgac	aagggctttg	1740
atgataatta	ttgccgcaat	cccgatggcc	agccgaggcc	atggtgctat	actcttgacc	1800
ctcacacccg	ctgggagtac	tgtgcaatta	aaacatgcgc	tgacaatact	atgaatgaca	1860
ctgatgttcc	tttggaaaca	actgaatgca	tccaaggtca	aggagaaggc	tacaggggca	1920
ctgtcaatac	catttggaat	ggaattccat	gtcagcgttg	ggattctcag	tatcctcacg	1980
agcatgacat	gactcctgaa	aatttcaagt	gcaaggacct	acgagaaaat	tactgccgaa	2040
atccagatgg	gtctgaatca	ccctggtgtt	ttaccactga	tccaaacatc	cgagttggct	2100
actgctccca	aattccaaac	tgtgatatgt	cacatggaca	agattgttat	cgtgggaatg	2160
gcaaaaatta	tatgggcaac	ttatcccaaa	caagatctgg	actaacatgt	tcaatgtggg	2220
acaagaacat	ggaagactta	catcgtcata	tcttctggga	accagatgca	agtaagctga	2280
atgagaatta	ctgccgaaat	ccagatgatg	atgctcatgg	accctggtgc	tacacgggaa	2340
atccactcat	tccttgggat	tattgcccta	tttctcgttg	tgaaggtgat	accacaccta	2400
caatagtcaa	tttagaccat	cccgtaatat	cttgtgccaa	aacgaaacaa	ttgcgagttg	2460
taaatgggat	tccaacacga	acaaacatag	gatggatggt	tagtttgaga	tacagaaata	2520
aacatatctg	cggaggatca	ttgataaagg	agagttgggt	tcttactgca	cgacagtgtt	2580
tcccttctcg	agacttgaaa	gattatgaag	cttggcttgg	aattcatgat	gtccacggaa	2640
gaggagatga	gaaatgcaaa	caggttctca	atgttttcca	gctggtatat	ggccctgaag	2700
gatcagatct	ggttttaatg	aagcttgcca	ggcctgctgt	cdtggatgat	tttgttagta	2760
cgattgattt	acctaattat	ggatgcacaa	ttcctgaaaa	gaccagttgc	agtgtttatg	2820
gctggggcta	cactggattg	atcaactatg	atggcctatt	acgagtggca	catctctata	2880

taatgggaaa tgagaaatgc agccagcatc atcgagggaa ggtgactctg aatgagtctg 3000 aaatatgtgc tggggctgaa aagattggat caggaccatg tgagggggat tatggtggcc cacttgtttg tgagcaacat aaaatgagaa tggttcttgg tgtcattgtt cctggtcgtg 3060 gatgtgccat tccaaatcgt cctggtattt ttgtccgagt agcatattat gcaaaatgga 3120 tacacaaaat tattttaaca tataaggtac cacagtcata gctgttaacc cgggtcgaag 3180 cggccgccac tgtgctggat atctgcagaa ttccaccaca ctggactagt ggatccgagc 3240 tcggtaccaa gcttaagttt aaaccgctga tcagcctcga ctgtgccttc tagttgccag 3300 ccatctgttg tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc cactcccact 3360 3420 gtcctttcct aataaaatga ggaaattgca tcgcattgtc tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt gggaagacaa tagcaggcat 3480 3540 gctggggatg cggtgggctc tatggcttct gaggcggaaa gaaccagctg gggctctagg 3600 gggtatcccc acgcgccctg tagcggcgca ttaagcgcgg cgggtgtggt ggttacgcgc 3660 tttctcgcca cgttcgccgg ctttccccgt caagctctaa atcgggggct ccctttaggg 3720 ttccqattta qtqctttacq qcacctcqac cccaaaaaac ttqattaqqq tqatqqttca 3780 cgtagtgggc catcgccctg atagacggtt tttcgccctt tgacgttgga gtccacgttc 3840 tttaatagtg gactcttgtt ccaaactgga acaacactca accctatctc ggtctattct tttgatttat aagggatttt gccgatttcg gcctattggt taaaaaatga gctgatttaa caaaaattta acgcgaatta attctgtgga atgtgtgtca gttagggtgt ggaaagtccc 4020 caggeteece ageaggeaga agtatgeaaa geatgeatet caattagtea geaaceaggt 4080 gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt 4140 cagcaaccat agtcccgccc ctaactccgc ccatcccgcc cctaactccg cccagttccg 4200 cccattctcc gccccatggc tgactaattt tttttattta tgcagaggcc gaggccgcct 4260 ctgcctctga gctattccag aagtagtgag gaggcttttt tggaggccta ggcttttgca 4320 aaaagctccc gggagcttgt atatccattt tcggatctga tcaagagaca ggatgaggat 4380 cgtttcgcat gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga 4440 ggctattcgg ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc 4500 ggctgtcagc gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga 4560 atgaactgca ggacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg 4620 cagctgtgct cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc 4680 cggggcagga tctcctgtca tctcaccttg ctcctgccga gaaagtatcc atcatggctg 4740 atgcaatgcg gcggctgcat acgcttgatc cggctacctg cccattcgac caccaaqcga 4800 aacatcgcat cgagcgagca cgtactcgga tggaagccgg tcttgtcgat caggatgatc 4860 tggacgaaga gcatcagggg ctcgcgccag ccgaactgtt cgccaggctc aaggcgcgca 4920 tgcccgacgg cgaggatctc gtcgtgaccc atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct 5040 atcaggacat agcgttggct acccgtgata ttgctgaaga gcttggcggc gaatgggctg 5100 accgcttcct cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc 5160

qccttcttqa cqaqttcttc tqaqcqqqac tctqqqqttc qaaatqaccq accaaqcqac gcccaacctg ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt 5280 cggaatcgtt ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga 5340 gttcttcgcc caccccaact tgtttattgc agcttataat ggttacaaat aaagcaatag 5400 catcacaaat ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa 5460 actcatcaat gtatcttatc atgtctgtat accgtcgacc tctagctaga gcttggcgta 5520 atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat 5580 acgagccgga agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt 5640 5700 aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc 5760 5820 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 5880 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 5940 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 6000 6060 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc 6120 tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg 6180 tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 6300 6360 cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta 6420 cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggttttt ttgtttgcaa 6480 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 6540 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 6600 aaggatotto acctagatoo ttttaaatta aaaatgaagt tttaaatcaa totaaagtat 6660 atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 6720 gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 6780 acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 6840 ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc 6900 tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag 6960 ttcgccagtt aatagtttgc gcaacgttgt tgccattgct acaggcatcg tggtgtcacg 7020 ctcqtcqttt qqtatqqctt cattcaqctc cqqttcccaa cqatcaaqqc qaqttacatq 7080 atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag 7140 taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 7200 catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga 7260 atagtgtatg cggcgaccga gttgctcttg cccggcgtca atacgggata ataccgcgcc 7320 acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 7380 aaggatotta cogotgttga gatocagtto gatgtaacco actogtgcac ccaactgato 7440

ttcagcatct	tttactttca	ccagcgtttc	tgggtgagca	aaaacaggaa	ggcaaaatgc	7500
cgcaaaaaag	ggaataaggg	cgacacggaa	atgttgaata	ctcatactct	tcctttttca	7560
atattattga	agcatttatc	agggttattg	tctcatgagc	ggatacatat	ttgaatgtat	7620
ttagaaaaat	aaacaaatag	gggttccgcg	cacatttccc	cgaaaagtgc	cacctgacgt	7680
С						7681
<220> FEATU <223> OTHER	TH: 5181 : DNA NISM: Artific JRE:			ficial Seque	ence: Synthe	tic
<400> SEQUE	ENCE: 3					
gctgcttcgc	gatgtacggg	ccagatatac	gcgttgacat	tgattattga	ctagttatta	60
atagtaatca	attacggggt	cattagttca	tagcccatat	atggagttcc	gcgttacata	120
acttacggta	aatggcccgc	ctggctgacc	gcccaacgac	ccccgcccat	tgacgtcaat	180
aatgacgtat	gttcccatag	taacgccaat	agggactttc	cattgacgtc	aatgggtgga	240
gtatttacgg	taaactgccc	acttggcagt	acatcaagtg	tatcatatgc	caagtacgcc	300
ccctattgac	gtcaatgacg	gtaaatggcc	cgcctggcat	tatgcccagt	acatgacctt	360
atgggacttt	cctacttggc	agtacatcta	cgtattagtc	atcgctatta	ccatggtgat	420
gcggttttgg	cagtacatca	atgggcgtgg	atagcggttt	gactcacggg	gatttccaag	480
tctccacccc	attgacgtca	atgggagttt	gttttggcac	caaaatcaac	gggactttcc	540
aaaatgtcgt	aacaactccg	ccccattgac	gcaaatgggc	ggtaggcgtg	tacggtggga	600
ggtctatata	agcagagctc	tctggctaac	tagagaaccc	actgcttact	ggcttatcga	660
aattaatacg	actcactata	gggagaccca	agctggctag	cgtttaaact	taagcttggt	720
accgagctcg	gatccgccag	cccgtccagc	agcaccatgt	gggtgaccaa	actcctgcca	780
gccctgctgc	tgcagcatgt	cctcctgcat	ctcctcctgc	tccccatcgc	catcccctat	840
gcagagggac	aaaggaaaag	aagaaataca	attcatgaat	tcaaaaaatc	agcaaagact	900
accctaatca	aaatagatcc	agcactgaag	ataaaaacca	aaaaagtgaa	tactgcagac	960
caatgtgcta	atagatgtac	taggaataaa	ggacttccat	tcacttgcaa	ggcttttgtt	1020
tttgataaag	caagaaaaca	atgcctctgg	ttccccttca	atagcatgtc	aagtggagtg	1080
aaaaaagaat	ttggccatga	atttgacctc	tatgaaaaca	aagactacat	tagaaactgc	1140
atcattggta	aaggacgcag	ctacaaggga	acagtatcta	tcactaagag	tggcatcaaa	1200
tgtcagccct	ggagttccat	gataccacac	gaacacagct	ttttgccttc	gagctatcgg	1260
ggtaaagacc	tacaggaaaa	ctactgtcga	aatcctcgag	gggaagaagg	gggaccctgg	1320
tgtttcacaa	gcaatccaga	ggtacgctac	gaagtctgtg	acattcctca	gtgttcagaa	1380
gttgaatgca	tgacctgcaa	tggggagagt	tatcgaggtc	tcatggatca	tacagaatca	1440
ggcaagattt	gtcagcgctg	ggatcatcag	acaccacacc	ggcacaaatt	cttgcctgaa	1500
202+2+0000	20220000++	+ 4 2 + 4 2 + 2 2 +	++++44444	2+444444	~~~~~~~~	1560

agatatcccg acaagggctt tgatgataat tattgccgca atcccgatgg ccagccgagg ccatggtgct atactcttga ccctcacacc cgctgggagt actgtgcaat taaaacatgc

gctgacaata	ctatgaatga	cactgatgtt	cctttggaaa	caactgaatg	catccaaggt	1680
caaggagaag	gctacagggg	cactgtcaat	accatttgga	atggaattcc	atgtcagcgt	1740
tgggattctc	agtatcctca	cgagcatgac	atgactcctg	aaaatttcaa	gtgcaaggac	1800
ctacgagaaa	attactgccg	aaatccagat	gggtctgaat	caccctggtg	ttttaccact	1860
gatccaaaca	tccgagttgg	ctactgctcc	caaattccaa	actgtgatat	gtcacatgga	1920
caagattgtt	atcgtgggaa	tggcaaaaat	tatatgggca	acttatccca	aacaagatct	1980
ggactaacat	gttcaatgtg	ggacaagaac	atggaagact	tacatcgtca	tatcttctgg	2040
gaaccagatg	caagtaagct	gaatgagaat	tactgccgaa	atccagatga	tgatgctcat	2100
ggaccctggt	gctacacggg	aaatccactc	attccttggg	attattgccc	tatttctcgt	2160
tgtgaaggtg	ataccacacc	tacaatagtc	aatttagacc	atcccgtaat	atcttgtgcc	2220
aaaacgaaac	aattgcgagt	tgtaaatggg	attccaacac	gaacaaacat	aggatggatg	2280
gttagtttga	gatacagaaa	taaacatatc	tgcggaggat	cattgataaa	ggagagttgg	2340
gttcttactg	cacgacagtg	tttcccttct	cgagacttga	aagattatga	agcttggctt	2400
ggaattcatg	atgtccacgg	aagaggagat	gagaaatgca	aacaggttct	caatgtttcc	2460
cagctggtat	atggccctga	aggatcagat	ctggttttaa	tgaagcttgc	caggcctgct	2520
gtcctggatg	attttgttag	tacgattgat	ttacctaatt	atggatgcac	aattcctgaa	2580
aagaccagtt	gcagtgttta	tggctggggc	tacactggat	tgatcaacta	tgatggccta	2640
ttacgagtgg	cacatctcta	tataatggga	aatgagaaat	gcagccagca	tcatcgaggg	2700
aaggtgactc	tgaatgagtc	tgaaatatgt	gctggggctg	aaaagattgg	atcaggacca	2760
tgtgaggggg	attatggtgg	cccacttgtt	tgtgagcaac	ataaaatgag	aatggttctt	2820
ggtgtcattg	ttcctggtcg	tggatgtgcc	attccaaatc	gtcctggtat	ttttgtccga	2880
gtagcatatt	atgcaaaatg	gatacacaaa	attattttaa	catataaggt	accacagtca	2940
tagctgttaa	cccgggtcga	ageggeeget	cgagtctaga	gggcccgttt	aaacccgctg	3000
atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	gtttgcccct	cccccgtgcc	3060
ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	taataaaatg	aggaaattgc	3120
atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	ggggtggggc	aggacagcaa	3180
gggggaggat	tgggaagaca	atagcaggca	tgctggggat	gcggtgggct	ctatggcttc	3240
tactgggcgg	ttttatggac	agcaagcgaa	ccggaattgc	cagctggggc	gccctctggt	3300
aaggttggga	agccctgcaa	agtaaactgg	atggctttct	tgccgccaag	gatctgatgg	3360
cgcaggggat	caagctctga	tcaagagaca	ggatgaggat	cgtttcgcat	gattgaacaa	3420
gatggattgc	acgcaggttc	tccggccgct	tgggtggaga	ggctattcgg	ctatgactgg	3480
gcacaacaga	caatcggctg	ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	3540
ccggttcttt	ttgtcaagac	cgacctgtcc	ggtgccctga	atgaactgca	agacgaggca	3600
gcgcggctat	cgtggctggc	cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	3660
actgaagcgg	gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	3720
tctcaccttg	ctcctgccga	gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	3780
acgcttgatc	cggctacctg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	3840
cgtactcgga	tggaagccgg	tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	3900

ctcgcgccag	ccgaactgtt	cgccaggctc	aaggcgagca	tgcccgacgg	cgaggatctc	3960
gtcgtgaccc	atggcgatgc	ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	4020
ggattcatcg	actgtggccg	gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	4080
acccgtgata	ttgctgaaga	gcttggcggc	gaatgggctg	accgcttcct	cgtgctttac	4140
ggtatcgccg	ctcccgattc	gcagcgcatc	gccttctatc	gccttcttga	cgagttcttc	4200
tgaattatta	acgcttacaa	tttcctgatg	cggtatttc	tccttacgca	tctgtgcggt	4260
atttcacacc	gcatcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	4320
atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	gataaatgct	4380
tcaataatag	cacgtgctaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	4440
ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	4500
ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	4560
cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	4620
aactctttt	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgttcttct	4680
agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	4740
tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	4800
ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	4860
cacacagccc	agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagct	4920
atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	4980
ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	5040
tcctgtcggg	tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	5100
gcggagccta	tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	5160
gccttttgct	cacatgttct	t				5181

What is claimed:

- 1. A method for enhancing tissue survival, comprising administering to a subject in need thereof a vector that comprises a nucleic acid sequence encoding hepatocyte growth factor.
- 2. The method of claim 1, wherein said tissue is selected from the group consisting of a flap and a skin graft.
- 3. The method of claim 2, wherein said flap is selected from the group consisting of a skin flap, a muscle flap, a myocutaneous flap and a cartilocutaneous flap.
- 4. The method of claim 2, wherein said vector is administered at least 3-14 days prior to flap or skin graft surgery.
- 5. The method of claim 2, wherein said vector is administered at least 5-10 days prior to flap or skin graft surgery.
- 6. The method of claim 2, wherein said vector is administered at least 7 days prior to flap or skin graft surgery.
- 7. The method of claim 2, wherein the survival of the flap or skin graft is enhanced by at least 10-30% as compared to an untreated subject.
- 8. The method of claim 2, wherein said vector is administered intramuscularly, at or near the planned cite of flap or skin graft.
- **9.** The method of claim 8, wherein said vector is administered in the rectus abdominus muscle.
- 10. The method of claim 1, wherein said vector comprises the nucleic acid sequence of SEQ ID NO. 1.

- 11. The method of claim 10, wherein said vector is a plasmid selected from the group consisting of pcDNA3.1(-) and pVAX1.
- 12. The method of claim 11, wherein said vector comprises the sequence of SEQ ID NO. 2.
- 13. The method of claim 11, wherein said vector comprises sequence of SEQ ID NO. 3.
- 14. A method for enhancing organ transplant survival in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a composition that comprises a nucleic acid sequence encoding HGF.
- 15. The method of claim 14, wherein said composition further comprises a pharmaceutically acceptable excipient.
- 16. A method for enhancing tissue survival, comprising administering to a subject in need thereof a vector that comprises a nucleic acid sequence encoding hepatocyte growth factor, wherein administration of the vector results in enhanced blood flow.
- 17. The method of claim 16, wherein said tissue is selected from the group consisting of a flap and a skin graft.
- 18. The method of claim 16, wherein said tissue is a transplanted organ.

* * * *