Oral UC2 Big Data et données "-omiques"

ALLYNDREE J., CLERC T., LACOSTE L., LORTHIOS T.

- Méthode de sélection
- 2 Sélection des métabolites
- 3 Sélection des protéines
- Métabolites KEGG
- 5 Protéines ThaleMine, UniProt

Section 1

Méthode de sélection

Méthode de sélection

La méthode utilisée pour sélectionner les métabolites et protéines repose sur le package MultiVarSel et utilise la méthode du Lasso.

Section 2

Sélection des métabolites

Sélection des métabolites

Seuil défini à 0.94

Infos sur les données de métabolisme

- Nombre de colonne dont la moyenne est nulle : 0
- Nombre de colonne où la variable est constante : 0
- Nombre de NAs dans le dataframe : 0

Matrices Y et X

Lignes	Valeur	Colonnes	Valeur
X	9	Χ	3
Υ	9	Υ	199

Test de Blancheur

Test réalisé :

 H_0 : { E suit un bruit blanc et donc $\Sigma = Id$ } contre

 $H_1: \{E \text{ ne suit pas un bruit blanc et } \Sigma \neq Id\}$

P-valeur du test de blancheur : 0.0303858. Donc on rejette H_0 et E ne suit pas un bruit blanc, les colonnes ne sont pas indépendantes et $\Sigma \neq Id$.

Structure du bruit des résidus

AR1 0.035 NO WHITE NOISE nonparam 0.741 WHITE NOISE ARMA 2 1 0.029 NO WHITE NOISE

Test réalisé pour chaque méthode :

 $H_0: \{E\Sigma_{m{lpha}thode}^{-1/2} \text{ suit un bruit blanc et donc } \Sigma_{corrig{lpha}} = Id\}$ contre

 $H_1: \{E\Sigma_{m{\'e}thode}^{-1/2}$ ne suit pas un bruit blanc et $\Sigma_{corrig\'e} \neq Id\}$ On voit donc que lorsque l'on applique la structure non paramétrique la P-valeur de 0.741 nous indique que parmi les fonctions testées c'est la structure non paramétrique qui permet de blanchir la matrice.

Sélection de variables

Les 50 métabolites les plus fréquents

Liste des fréquences

1, 0.998, 0.9812, 0.9784, 0.9628, 0.9554, 0.9544, 0.9516, 0.9458, 0.9428, 0.9422, 0.9402, 0.9372, 0.9366, 0.9356, 0.9346, 0.9312, 0.9298, 0.9272, 0.9258, 0.9256, 0.924, 0.9238, 0.9206, 0.9196, 0.9194, 0.9184, 0.9166, 0.9152, 0.912, 0.9098, 0.9084, 0.9082, 0.9062, 0.905, 0.9048, 0.9036, 0.9022, 0.9018, 0.9016, 0.9008, 0.897, 0.8954, 0.895, 0.8942, 0.894, 0.8914, 0.8906, 0.8888, 0.8888

Les 50 métabolites les plus fréquents

Liste des noms de métabolites

Alanine, Asparagine, Leucine, Threonine, Threonine, Tryptophan, Tryptophan, Valine, gamma. Tocopherol, Eicosanoate, Quercetin, Quercitrin, X4MTB, X4MTB, X5MTP, X6MTH, X6MTH, X7MTH, BenzoylGlucosinolate.3Breakdown, Hexanenitrile.6methylthio, Nonanenitrile.9.methylthio, U2609.4.361, U3122.4.202.I3M., U3122.4.202.I3M., UGlucosinolate140.1, UGlucosinolate140.1, Pentonate.4, Threonate, Allantoin, Allantoin, Xylitol, Galactinol, Glucopyranose.. H2O., U1093.6.147, U1270.1.240, U1270.1.240, U1767.3.243, U1852.0.217, U2012.7.361, U2197.2.494, U2315.2.245, U2529.8.361, U2688.5.333, U2692.9.361, U2798.377, U2839.3.312, U2882.5.297, U3080.7.361, U3218.5.297, U3279.7.361

Réponses des métabolites dépassant le seuil 0.94

Boxplots des réponses des métabolites dépassant le seuil 0.94

Using temperature as id variables

Métabolites retenus au seuil 0.94

Table des métabolites retenues

Metabolites

Threonine

X4MTB

X6MTH

Benzoyl Glucosino late. 3 Breakdown

Nonanenitrile.9.methylthio

Threonate

Allantoin

U1270.1.240

U2012.7.361

U2798.377

Boxplots de Tukey (avec cld)

Les graphiques suivants présentent les boxplots pour les métabolites sélectionnés par la méthode du lasso

Exportation des Métabolites sélectionnés par GLM Lasso

Le fichier metabolites_selection_lasso_0.94.csv existe déjà.

Section 3

Sélection des protéines

Sélection des protéines

Seuil défini à 0.95

Infos sur les données de métabolisme

- Nombre de colonne dont la moyenne est nulle : 0
- Nombre de colonne où la variable est constante : 0
- Nombre de NAs dans le dataframe : 0

Matrices Y et X

Lignes	Valeur	Colonnes	Valeur
X	9	Χ	3
Υ	9	Υ	724

Test de Blancheur

Test réalisé :

 H_0 : { E suit un bruit blanc et donc $\Sigma = Id$ } contre

 $H_1: \{E \text{ ne suit pas un bruit blanc et } \Sigma \neq Id\}$

P-valeur du test de blancheur : 0.0624035. Donc on rejette H_0 et E ne suit pas un bruit blanc, les colonnes ne sont pas indépendantes et $\Sigma \neq Id$.

Structure du bruit des résidus

AR1 Pvalue Decision

O.187 WHITE NOISE

NONPARAM 2 1 0.179 WHITE NOISE

Test réalisé pour chaque méthode :

 $H_0: \{E\Sigma_{mcute{e}thode}^{-1/2} \text{ suit un bruit blanc et donc } \Sigma_{corrig\'e} = Id\}$ contre

 $H_1: \{E\Sigma_{mcute{thode}}^{-1/2} \text{ ne suit pas un bruit blanc et } \Sigma_{corrig\'e}
eq Id\}$

On voit donc que lorsque l'on applique la structure non paramétrique la P-valeur de 1 nous indique que parmi les fonctions testées c'est la structure non paramétrique qui permet de blanchir la matrice.

Sélection de variables

Les 50 Protéines les plus fréquents

Liste des fréquences

0.9868, 0.981, 0.976, 0.9734, 0.9712, 0.9636, 0.9612, 0.9544, 0.952, 0.9474, 0.9452, 0.9422, 0.9418, 0.9388, 0.936, 0.9348, 0.9282, 0.926, 0.925, 0.9228, 0.9212, 0.9192, 0.9168, 0.9162, 0.9134, 0.9058, 0.9054, 0.9016, 0.9006, 0.898, 0.8976, 0.8972, 0.8966, 0.895, 0.891, 0.8882, 0.8856, 0.8842, 0.8814, 0.8708, 0.8704, 0.8692, 0.868, 0.865, 0.863, 0.86, 0.8592, 0.8538, 0.8532, 0.8528

Les 50 métabolites les plus fréquents

Liste des noms de protéines

```
AT1G03030.1. AT1G04480.1. AT1G07985.1. AT1G07985.1.
AT1G08110.1, AT1G08830.1, AT1G14950.1, AT1G18500.1,
AT1G18500.1. AT1G20260.1. AT1G20620.1. AT1G22300.1.
AT1G43170.1, AT1G53750.1, AT1G64110.1, AT1G68010.1,
AT1G68010.1. AT1G69800.1. AT1G72680.1. AT1G77090.1.
AT1G77120.1. AT2G02930.1. AT2G25970.1. AT2G32120.1.
AT2G37660.1, AT2G38380.1, AT3G02530.1, AT3G02560.1,
AT3G05190.1, AT3G13300.1, AT3G21720.1, AT3G26060.1,
AT3G53990.1, AT3G54400.1, AT4G02340.1, AT4G16155.1,
AT4G16210.1, AT4G16760.1, AT4G27520.1, AT4G34670.1,
AT4G36360.1, AT5G04885.1, AT5G04885.1, AT5G11520.1,
AT5G20950.1, AT5G26830.1, AT5G42740.1, AT5G52840.1,
AT5G66190.1, AT5G66190.1
```

Réponses des Protéines dépassant le seuil 0.95

Boxplots des réponses des Protéines dépassant le seuil 0.95

Using temperature as id variables

Protéines retenues au seuil 0.95

Table des protéines retenues

Proteines

AT1G07985.1

AT1G08830.1

AT1G18500.1

AT1G22300.1

AT3G02530.1

AT3G53990.1

AT4G27520.1

Boxplots de Tukey (avec cld)

Les graphiques suivants présentent les boxplots pour les protéines sélectionnées par la méthode du lasso

Exportation des Protéines sélectionnés par GLM Lasso

Le fichier **proteines_selection_lasso_0.95.csv** existe déjà.

Section 4

Métabolites KEGG

Section 5

Protéines ThaleMine, UniProt