Correction de la feuille 5 : intégrale de Riemann

Exercice 1.

(a) Si
$$a \neq -1$$
, $\int_{1}^{2} x^{a} dx = \left[\frac{x^{a+1}}{a+1} \right]_{1}^{2} = \frac{2^{a+1} - 1}{a+1}$.
Pour $a = -1$, $\int_{1}^{2} x^{-1} dx = [\ln x]_{1}^{2} = \ln 2$.

(b) Soit on reconnaît la dérivée de arcsinus sous l'intégrale, de sorte que le résultat est arcsin $1 - \arcsin 0 = \pi/2$. Soit on fait le changement de variable $x = \sin t$ et on trouve

$$\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \int_0^{\frac{\pi}{2}} \frac{\cos t \, dt}{\sqrt{1-\sin^2 t}} = \int_0^{\frac{\pi}{2}} \frac{\cos t \, dt}{\cos t} = \frac{\pi}{2}.$$

(c) Pour x > 0, par intégration par parties,

$$\int_{1}^{x} \ln t \, dt = \int_{1}^{x} 1 \times \ln t \, dt = [t \ln t]_{1}^{x} - \int_{1}^{x} \frac{t}{t} dt = x \ln x - x + 1.$$

Les primitives de ln sur l'intervalle \mathbb{R}_+^* sont donc les fonctions $x\mapsto x\ln x - x + c$, où c est une constante.

(d) Pour x > 0, $\ln'(x) = \frac{1}{x}$. Pour x < 0, $\frac{d}{dx}(\ln(-x)) = -\frac{1}{-x} = \frac{1}{x}$. Donc $x \mapsto \ln|x|$ est une primitive de $x \mapsto 1/x$. \mathbb{R}^* n'est pas un intervalle, mais l'union disjointe des intervalles \mathbb{R}_+^* et \mathbb{R}_-^* donc les primitives de $x \mapsto 1/x$ sur \mathbb{R}^* sont les fonctions $f_{a,b}: \mathbb{R}^* \to \mathbb{R}$ telles que $f_{a,b}(x) = \ln|x| + a$ pour x > 0 et $f_{a,b}(x) = \ln|x| + b$ pour x < 0, pour des constantes a et b quelconques.

(e)
$$\int_0^{\frac{\pi}{4}} \tan(x) dx = \int_0^{\frac{\pi}{4}} \frac{-\cos'(x)}{\cos(x)} dx = \left[-\ln\cos(x)\right]_0^{\frac{\pi}{4}} = -\ln\frac{\sqrt{2}}{2} = \frac{\ln 2}{2}.$$

(f) On fait le changement de variable $y = \sin x$ puis une intégration par parties :

$$\int_0^{\frac{\pi}{2}} e^{\sin(x)} \sin(x) \cos(x) dx = \int_0^1 e^y y \, dy = [e^y y]_0^1 - \int_0^1 e^y \, dy = e - (e - 1) = 1.$$

(g) Soit on fait le changement de variable $y = \cos x$:

$$\int_0^{\pi} \sin(x)^3 dx = \int_0^{\pi} (1 - \cos^2(x)) \sin(x) dx = -\int_1^{-1} (1 - y^2) dy = 2\left(1 - \frac{1}{3}\right) = \frac{4}{3}.$$

Soit on fait intervenir des exponentielles complexes : pour tout $x \in \mathbb{R}$,

$$\sin(x)^3 = \frac{(e^{ix} - e^{-ix})^3}{(2i)^3} = \frac{e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}}{-4 \cdot 2i} = -\frac{\sin(3x)}{4} + \frac{3\sin(x)}{4},$$

d'où

$$\int_0^{\pi} \sin(x)^3 dx = \int_0^{\pi} \frac{3\sin(x) - \sin(3x)}{4} dx = \left[-\frac{3\cos(x)}{4} + \frac{\cos(3x)}{12} \right]_0^{\pi} = \frac{4}{3}.$$

Exercice 2. On veut calculer $I = \int_0^{2\pi} \frac{dt}{2 + \sin t}$.

- (a) La fonction $f: t \mapsto \frac{1}{2+\sin t}$ est continue sur \mathbb{R} , comme quotient de fonctions continues, avec un dénominateur ne s'annulant $(2+\sin \geq 1)$. Il est donc intégrable sur le segment $[0, 2\pi]$.
- (b) Puisque f est 2π -périodique, on a $I = \int_{-\pi}^{\pi} \frac{dt}{2 + \sin t} = F(\pi) F(-\pi)$, où F est une primitive de f. Par continuité de F (qui est même dérivable : c'est une primitive), on en déduit :

$$I = \lim_{T \to \pi} (F(T) - F(-T)) = \lim_{T \to \pi} \int_{-T}^{T} \frac{dt}{2 + \sin t}.$$

- (c) $\sin(t) = 2\sin(t/2)\cos(t/2) = 2\tan(t/2)\cos^2(t/2) = \frac{2\tan(t/2)}{1+\tan^2(t/2)}$.
- (d) La fonction $\phi: t \mapsto \tan(t/2)$ est une bijection C^1 entre $]-\pi,\pi[$ et $]-\infty,+\infty[$, donc on peut faire le changement de variable $x=\tan(t/2)$ dans l'intégrale du (b) (notons que sur $]0,2\pi[$, on n'aurait pas pu, puisque ϕ n'est pas définie en π). Ainsi, avec (c), et en posant $X=\tan(T/2)$, on trouve :

$$\int_{-T}^{T} \frac{dt}{2 + \sin t} = \int_{-X}^{X} \frac{1}{2 + \frac{2x}{1 + x^2}} \frac{2dx}{1 + x^2} = \int_{-X}^{X} \frac{dx}{x^2 + x + 1}.$$

Pour tout $x \in \mathbb{R}$,

$$\frac{1}{x^2 + x + 1} = \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{1}{\frac{3}{4}} \frac{1}{\left(\frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)^2 + 1} = \frac{2}{\sqrt{3}} \frac{d}{dx} \arctan\left(\frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right).$$

Donc

$$\int_{-T}^{T} \frac{dt}{2 + \sin t} = \frac{2}{\sqrt{3}} \left(\arctan\left(\frac{X + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) - \arctan\left(\frac{-X + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) \right).$$

En faisant $T \to \pi$, donc $X = \tan(T/2) \to +\infty$, on arrive à

$$I = \frac{2}{\sqrt{3}} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{2\pi}{\sqrt{3}}.$$

Exercice 3.

(a) Pour simplifier le dessin, on suppose que f et f^{-1} sont positives. L'intégrale de f^{-1} est l'aire située entre le graphe de f^{-1} et l'axe des abscisses. Par symétrie par rapport à la diagonale, c'est donc aussi l'aire entre le graphe de f et l'axe

des ordonnées.

(b) Le dessin montre que la somme des intégrales est l'aire du grand rectangle, de côtés b et d, moins l'aire du petit rectangle, de côtés a et c.

(c) Comme $f:[a,b] \to [c,d]$ est une bijection croissante de classe C^1 , on peut effectuer le changement de variable y=f(x). En remarquant que f(a)=c et f(b)=d (bijection croissante), on trouve

$$\int_{c}^{d} f^{-1}(y)dy = \int_{a}^{b} f^{-1}(f(x))f'(x)dx = \int_{a}^{b} xf'(x)dx.$$

Une intégration par parties donne alors :

$$\int_{c}^{d} f^{-1}(y)dy = bf(b) - af(a) - \int_{a}^{b} f(x)dx.$$

D'où
$$\int_{a}^{b} f + \int_{c}^{d} f^{-1} = bd - ac$$
.

Exercice 4. La relation de Chasles et la définition de la partie entière donnent :

$$\int_{m}^{n} E(t)dt = \sum_{k=m}^{n-1} \int_{k}^{k+1} E(t)dt = \sum_{k=m}^{n-1} \int_{k}^{k+1} kdt = \sum_{k=m}^{n-1} k.$$

On reconnaît la somme d'une progression arithmétique :

$$\int_{m}^{n} E(t)dt = ((n-1) - (m-1))\frac{m+n-1}{2} = \frac{(n-m)(m+n-1)}{2}.$$

Exercice 5.

- (a) On peut noter que M est un nombre réel (fini) par continuité de f sur le segment [a,b]. Soit $n \in \mathbb{N}^*$. Pour tout $x \in [a,b]$, on a $0 \le f(x) \le M$. Par croissance de $t \mapsto t^n$ sur \mathbb{R}^+ , on en déduit $f(x)^n \le M^n$. En intégrant cette inégalité sur [a,b], on arrive à $\int_a^b f(x)^n dx \le M^n(b-a)$. Puisque la fonction $t \mapsto t^{\frac{1}{n}}$ est croissante sur \mathbb{R}_+ , il vient : $u_n \le M(b-a)^{\frac{1}{n}}$.
- (b) Par continuité de f sur le segment [a,b], f y atteint un maximum : il existe $x_0 \in [a,b]$ tel que $f(x_0) = M$. Par continuité de f, il existe $\delta > 0$ tel que

$$\forall x \in [a, b], \quad |x - x_0| \le \delta \implies f(x) \ge M - \epsilon.$$

Si $x_0 < b$, on peut supposer $x_0 + \delta < b$ (quitte à rétrécir δ) et alors $[c, d] = [x_0, x_0 + \delta]$ convient. Si $x_0 = b$, on peut de même supposer $b - \delta > a$ et alors $[c, d] = [b - \delta, b]$ convient.

(c) Si f est identiquement nulle, (u_n) est la suite constante à 0. Sinon, M > 0. Soit $\epsilon \in]0, M[$. Par (b), on dispose d'un segment [c,d] de longueur non nulle où $f \geq M - \epsilon$. Puisque $M - \epsilon \geq 0$, on en déduit pour tout $n \in \mathbb{N}^* : f^n \geq (M - \epsilon)^n$. En intégrant, il vient $\int_c^d f^n \geq (M - \epsilon)^n (d - c)$. Par positivité de f, la relation de Chasles donne $\int_a^b f^n \geq (M - \epsilon)^n (d - c)$ et, finalement, $u_n \geq (M - \epsilon)(d - c)^{\frac{1}{n}}$. Avec le (a), on obtient l'encadrement suivant :

$$\forall n \in \mathbb{N}^*, \qquad (M - \epsilon)(d - c)^{\frac{1}{n}} \le u_n \le M(b - a)^{\frac{1}{n}}.$$

Pour t>0, $t^{\frac{1}{n}}=e^{\frac{1}{n}\ln(t)}$ tend vers 1 quand n tend vers $+\infty$. Le membre de droite tend donc vers M, et celui de gauche vers $M-\epsilon$. Il existe donc $N\in\mathbb{N}^*$ tel que

$$\forall n \ge N, \qquad M - 2\epsilon \le u_n \le M + \epsilon.$$

Et cela prouve que (u_n) converge vers M.

Exercice 6.

- (a) Pour $t \in [k, k+1]$, $\frac{1}{k+1} \le \frac{1}{t} \le \frac{1}{k}$. En intégrant cet encadrement, on trouve $\frac{1}{k+1} = \int_{k}^{k+1} \frac{dt}{k+1} \le \int_{k}^{k+1} \frac{dt}{t} \le \int_{k}^{k+1} \frac{dt}{k} = \frac{1}{k}.$
- (b) Pour $n \in \mathbb{N}^*$, on considère $u_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$. L'inégalité de gauche de (a) donne pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \int_{n}^{n+1} \frac{dt}{t} \le 0.$$

Donc (u_n) est décroissante. Pour $n \in \mathbb{N}^*$, l'inégalité de droite de (a) donne

$$u_n \ge \sum_{k=1}^n \int_k^{k+1} \frac{dt}{t} - \ln(n) = \int_1^{n+1} \frac{dt}{t} - \ln(n) = \ln(n+1) - \ln(n) \ge 0.$$

Donc (u_n) est minorée par 0. La suite (u_n) , décroissante et minorée, converge vers $\gamma \in \mathbb{R}$, ce qui signifie exactement que $u_n = \gamma + o(1)$ ou encore

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1) \qquad \text{quand } n \to +\infty.$$

Et comme (u_n) reste positive, sa limite γ est aussi positive.

Exercice 7.

- (a) Par hypothèse, $f(x) p(x) = o(x^n)$, donc $\frac{f(x) p(x)}{x^n}$ tend vers 0 quand $x \to 0$. Il existe donc $\eta > 0$ tel que, si $|x| < \eta$, $\left| \frac{f(x) p(x)}{x^n} \right| \le \epsilon$ ou encore $|f(x) p(x)| \le \epsilon |x|^n$.
- (b) f est continue sur l'intervalle I donc y admet une primitive F et on choisit celle qui s'annule en 0. Pour tout x dans I, on peut écrire

$$F(x) = \int_0^x f(t)dt = \int_0^x p(t)dt + \int_0^x (\underbrace{f(t) - p(t)}_{r(t)})dt.$$

Soit $\epsilon > 0$, auquel on associe un η comme au (a). Si $0 < x < \eta$, on a avec (a) :

$$\left| \int_0^x r(t)dt \right| \le \int_0^x |r(t)|dt \le \epsilon \int_0^x t^n dt = \frac{\epsilon x^{n+1}}{n+1} \le \epsilon x^{n+1}.$$

Si $-\eta < x < 0$, on pose x' = -x et le changement de variable s = -t donne

$$\left| \int_0^x r(t)dt \right| = \left| \int_0^{x'} r(-s)ds \right| \le \int_0^{x'} |r(-s)|dt \le \epsilon \int_0^{x'} s^n ds = \frac{\epsilon (x')^{n+1}}{n+1} \le \epsilon |x|^{n+1}.$$

On a donc prouvé le résultat suivant :

$$\forall \epsilon > 0, \exists \eta > 0, \forall x \in I, 0 < |x| < \eta \implies \left| \frac{1}{x^{n+1}} \int_0^x r(t) dt \right| \le \epsilon.$$

Cela veut dire que $\frac{1}{x^{n+1}} \int_0^x r(t)dt$ tend vers 0 quand $x \to 0$, ou encore que $\int_0^x r(t)dt = o(x^{n+1})$ quand $x \to 0$. D'où :

$$F(x) = \int_0^x (a_0 + a_1 t + \dots + a_n t^n) dt + o(x^{n+1})$$
$$= a_0 x + a_1 \frac{x^2}{2} + \dots + a_n \frac{x^{n+1}}{n+1} + o(x^{n+1}).$$

(c) Considérons $f: x \mapsto \frac{1}{1+x^2}$. Soit $n \in \mathbb{N}$. On calcule quand $x \to 0$. En partant du développement limité $\frac{1}{1-x} = 1 + x + \dots + x^n + o(x^n)$ et en changeant x en $-x^2$, on trouve

$$\frac{1}{1+x^2} = 1 - x^2 + \dots + (-1)^n x^{2n} + o(x^{2n}).$$

Le (b) permet d'intégrer terme à terme ce développement limité :

$$\arctan(x) = x - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1}).$$

En particulier,
$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + o(x^7)$$
.

Exercice 8. Supposons que $f:[a,b] \to \mathbb{R}$ est intégrable. Ses intégrales supérieure I_+ et inférieure I_- sont donc égales. Soit $\epsilon > 0$. Par définition de I_+ , il existe une fonction φ en escaliers sur [a,b] telle que $f \le \varphi$ et $I_+ \le \int_a^b \varphi \le I_+ + \epsilon$. Par définition de I_- , il existe une fonction ψ en escaliers sur [a,b] telle que $\psi \le f$ et $I_- - \epsilon \le \int_a^b \psi \le I_-$. Alors $\psi \le f \le \varphi$ et $\int_a^b (\varphi - \psi) \le I_+ + \epsilon - I_- + \epsilon = 2\epsilon$.

Réciproquement supposons que, pour tout $\epsilon>0,$ il existe des fonctions en escalier ψ et φ telles que

$$\psi \le f \le \varphi$$
 et $\int_a^b (\varphi - \psi) \le \epsilon$.

En particulier, f est comprise entre deux fonctions en escalier donc bornée. Soit $\epsilon>0$. En utilisant les fonctions φ et ψ données par l'hypothèse, on trouve que les intégrales supérieure et inférieure de f vérifient $I_+ \leq \int_a^b \varphi$ et $I_- \geq \int_a^b \psi$ donc $I_+ - I_- \leq \int_a^b (\varphi - \psi) \leq \epsilon$. Comme c'est vrai pour tout $\epsilon>0$, $I_+ - I_- \leq 0$. Comme on a toujours $I_- \leq I_+$, on en conclut que $I_+ = I_-$: f est intégrable.

Exercice 9.

(a) L'intégrale est bien définie puisque f est intégrable sur un segment contenant $[\alpha, \beta]$. Comme f est positive, $\int_{\alpha}^{\beta} f \geq 0$. De plus, la relation de Chasles donne

$$\underbrace{\int_{a}^{\alpha} f}_{\geq 0} + \int_{\alpha}^{\beta} f + \underbrace{\int_{\beta}^{b} f}_{> 0} = \int_{a}^{b} f = 0,$$

donc $\int_{\alpha}^{\beta} f \leq 0$. Finalement, cette intégrale est nulle.

- (b) Comme f est intégrable d'intégrale nulle sur $[\alpha, \beta]$, l'intégrale supérieure de f sur $[\alpha, \beta]$ est nulle. Par définition, cela veut dire qu'on peut trouver des fonctions en escaliers $\phi \geq f$ dont l'intégrale est arbitrairement proche de 0, donc par exemple telles que $\int_{\alpha}^{\beta} \phi \leq (\beta \alpha)\epsilon$.
- (c) Soit $\{\alpha = x_0 < \dots < x_p = \beta\}$ une subdivision adaptée à la fonction en escalier ϕ . Si $\phi > \epsilon$ sur chacun des intervalles $]x_{i-1}, x_i[$, $\int_{\alpha}^{\beta} \phi > \sum_{i=1}^{p} (x_i x_{i-1})\epsilon = (\beta \alpha)\epsilon$, ce qui n'est pas vrai. Donc sur l'un de ces intervalles, disons $]x_{k-1}, x_k[$, on a bien $\phi \leq \epsilon$. Il suffit de choisir un segment $[\alpha', \beta'] \subset]x_{k-1}, x_k[$ et de longueur non nulle.
- (d) En choisissant $\epsilon = 1$, on obtient donc un segment $[\alpha_0, \beta_0] \subset [\alpha, \beta]$, avec $\alpha_0 < \beta_0$ et sur lequel $f \leq 1$.

Par récurrence, on peut de même bâtir des segments $[\alpha_n, \beta_n]$ tels que $[\alpha_n, \beta_n] \subset [\alpha_{n-1}, \beta_{n-1}]$, $\alpha_n < \beta_n$ et $f \leq 1/2^n$ sur $[\alpha_n, \beta_n]$, pour tout $n \in \mathbb{N}^*$. En effet, on vient de construire $[\alpha_0, \beta_0]$ (initialisation) et, si on suppose $[\alpha_{n-1}, \beta_{n-1}]$ construit pour un certain $n \in \mathbb{N}^*$, on bâtit $[\alpha_n, \beta_n]$ en appliquant (b) et (c) dans le segment $[\alpha_{n-1}, \beta_{n-1}]$ et avec $\epsilon = 1/2^n$.

La suite (α_n) est croissante, majorée par b, donc converge vers un point x. Comme (α_n) reste dans l'intervalle fermé $[\alpha, \beta]$, sa limite x y est aussi. Pour évaluer f(x), il faut prendre garde au fait que f n'est pas supposée continue. Fixons $N \in \mathbb{N}$ et observons que pour $n \geq N$, $\alpha_N \leq \alpha_n (\leq \beta_n) \leq \beta_N$, donc $\alpha_N \leq x \leq \beta_N$ en passant à la limite; ceci assure que $f(x) \leq 1/2^N$. Comme c'est vrai pour tout $N \in \mathbb{N}$, $f(x) \leq 0$. Comme f est positive, f(x) = 0.

(e) On vient de voir que si f est intégrable, positive et d'intégrale nulle sur [a, b], alors f s'annule au moins une fois dans chaque sous-segment de longueur non nulle de [a, b].

Réciproquement, supposons que f est intégrable, positive et s'annule au moins une fois dans chaque sous-segment de longueur non nulle de [a,b]. Soit $\psi \leq f$ une fonction en escalier et soit $\{a=x_0<\cdots< x_p=b\}$ une subdivision adaptée à ψ . Comme f s'annule au moins une fois dans chaque intervalle $]x_{i-1},x_i[$, la fonction en escalier ψ y est constante à une valeur négative. Donc en particulier $\int_a^b \psi \leq 0$. Comme c'est vrai pour toute fonction en escalier $\psi \leq f$, cela veut dire que l'intégrale inférieure de f est négative. Comme f est intégrable, cela signifie $\int_a^b f \leq 0$. Comme f est positive, son intégrale aussi,

La condition nécessaire et suffisante est que f s'annule au moins une fois sur tout segment $[\alpha, \beta] \subset [a, b]$ tel que $\alpha < \beta$.

Exercice 10. Il s'agit de sommes de Riemann!

et finalement cette intégrale est nulle.

Pour
$$n \in \mathbb{N}^*$$
, $u_n = \frac{1}{n} \sum_{k=0}^{n-1} f(k/n)$ avec $f: [0,1] \to \mathbb{R}$ définie par $f(x) = \frac{1}{x+1}$.

La fonction f étant continue sur [0,1], le théorème sur les sommes de Riemann dit que (u_n) converge vers

$$\int_0^1 f = \int_0^1 \frac{dx}{x+1} = [\ln(x+1)]_0^1 = \ln(2).$$

De même, pour $n \in \mathbb{N}^*$, $v_n = \frac{1}{n} \sum_{k=0}^{n-1} g(k/n)$ avec $g: [0,1] \to \mathbb{R}$ définie par g(x) = 1

 $\frac{1}{x^2+3}$. La fonction g étant continue, (v_n) converge vers

$$\int_0^1 \frac{dx}{x^2 + 3} = \int_0^{\frac{1}{\sqrt{3}}} \frac{\sqrt{3}dt}{3(x^2 + 1)} = \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6\sqrt{3}}$$

(grâce au changement de variable $x = \sqrt{3}t$). Toujours selon le même principe, (w_n) converge vers

$$\int_0^1 \sin\left(\frac{x\pi}{3}\right) \cos\left(\frac{x\pi}{3}\right) dx = \frac{1}{2} \int_0^1 \sin\left(\frac{2x\pi}{3}\right) dx = \frac{3}{4\pi} \left(1 - \cos(2\pi/3)\right) = \frac{9}{8\pi}.$$

Exercice 11.

- (a) La fonction ϕ_i , affine, est de la forme indiquée : il s'agit de calculer les coefficients α_i et β_i . Le premier est la pente de la droite représentant graphiquement $\phi: \alpha_i = \frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i}$. Le second s'obtient en calculant au point x_i : $\beta_i = \phi_i(x_i) = f(x_i)$.
- (b) Pour i = 1, ..., n 1, $\phi_{i-1}(x_i) = f(x_i) = \phi_i(x_i)$, donc ϕ est bien définie et continue (les morceaux affines se recollent bien). Son intégrale est donc bien définie et c'est la somme des intégrales des ϕ_i sur $[x_i, x_{i+1}]$, i.e.

$$\int_{x_i}^{x_{i+1}} (\alpha_i(x - x_i) + \beta_i) dx = \alpha_i \frac{(x_{i+1} - x_i)^2}{2} + \beta_i (x_{i+1} - x_i)$$
$$= (x_{i+1} - x_i) \frac{f(x_{i+1}) + f(x_i)}{2}.$$

(Si f est positive, disons, on reconnaît l'aire du trapèze situé sous le graphe : hauteur fois demi-somme des longueurs des côtés parallèles.)

En sommant, on conclut:

$$\int_{a}^{b} \phi = \sum_{i=0}^{n-1} (x_{i+1} - x_i) \frac{f(x_{i+1}) + f(x_i)}{2}.$$

(c) Le théorème des accroissements finis donne un réel $\mu \in [x_i, x_{i+1}]$ tel que

$$\alpha_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = f'(\mu).$$

Ainsi, avec $\beta_i = f(x_i)$, on trouve

$$f(x) - \phi_i(x) = f'(\mu)(x - x_i) + f(x_i) - f(x).$$

Et le théorème des accroissements finis donne aussi un réel $\nu \in [x_i, x_{i+1}]$ tel que $f(x_i) - f(x) = f'(\nu)(x_i - x)$, donc on obtient

$$f(x) - \phi_i(x) = (f'(\mu) - f'(\nu))(x - x_i).$$

(d) Puisque f est de classe C^2 sur le segment [a,b], |f''| est continue sur ce segment donc bornée : soit M un majorant de |f''| sur [a,b].

Soit x un réel du segment $[x_i, x_{i+1}]$, de longueur (b-a)/n. Pour majorer $|f(x) - \phi_i(x)|$, on utilise la formule ci-dessus en observant que l'inégalité des accroissements finis (appliquée à f') borne $|f'(\mu) - f'(\nu)|$ par $M|\mu - \nu|$. On en déduit :

$$|f(x) - \phi(x)| = |f(x) - \phi_i(x)| \le M|\mu - \nu||x - x_i| \le M \frac{(b-a)^2}{n^2}.$$

Ainsi:

$$\left|\int_a^b f - \int_a^b \phi\right| = \left|\int_a^b (f-\phi)\right| \le (b-a) \sup_{[a,b]} |f-\phi| \le M \frac{(b-a)^3}{n^2}.$$

Exercice 12. Soit $x \in \mathbb{R}$. Comme l'exponentielle est égale à toutes ses dérivées et vaut 1 en 0, la formule de Taylor-Lagrange dit que, pour tout $n \in \mathbb{N}$, il existe c_n entre 0 et x tel que

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + e^{c_{n}} \frac{x^{n+1}}{(n+1)!}.$$

La suite (e^{c_n}) est bornée (par e^x si $x \ge 0$, par 1 si $x \le 0$). La suite $(x^{n+1}/(n+1)!)$ tend vers 0, comme on l'a vu dans la feuille de TD 2. Donc la suite $\left(\sum_{k=0}^n \frac{x^k}{k!}\right)$ converge vers e^x .

Exercice 13. Soit $x \in \mathbb{R}_+$. La formule de Taylor-Lagrange donne $c \in [0, x]$ tel que

$$\ln(1+x) - x + \frac{x^2}{2} = \frac{x^3}{6} \ln^{(3)}(1+c)$$

Puisque $\ln^{(3)}(1+c) = \frac{2}{(1+c)^3}$ est compris entre 0 et 2, cela implique

$$\left| \ln(1+x) - x + \frac{x^2}{2} \right| \le \frac{x^3}{3}.$$

Faisons $x = 0,003 = 3.10^{-3}$. Alors $x^3/3 = 9.10^{-9} \le 10^{-8}$ et

$$x - \frac{x^2}{2} = 3.10^{-3} - 4,5.10^{-6} = 0,0029955.$$

Une valeur approchée de ln(1,003) à 10^{-8} près est donc 0,0029955.