EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

2004

1.ª FASE VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de dez.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\, maior + Base\, menor}{2} imes Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio da base; q - geratriz$)

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta + 2 \, k \, \pi}{n} \, \, , \, k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- · Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- · Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- 1. Para um certo valor de k, é **contínua** em \mathbb{R} a função g, definida por

$$g(x) = \begin{cases} k + \cos x & se \ x \le 0 \\ \frac{\ln(1+x)}{x} & se \ x > 0 \end{cases}$$

 $(\ln \text{ designa logaritmo de base } e)$

Qual é o valor de k ?

- **(A)** -1 **(B)** 0
- **(C)** 1
- **(D)** 2

2. Na figura junta está parte da representação gráfica de uma função polinomial h.

> O ponto de abcissa 1 é o único ponto de inflexão do gráfico de h.

Qual das expressões seguintes pode definir h'', segunda derivada da função h?

(A) $(x-1)^2$

(B) $(1+x)^2$

(C) x-1

(D) 1-x

Sabe-se que $\log_2 a = \frac{1}{5}$ 3.

Qual é o valor de $\log_2\!\left(\frac{a^5}{8}\right)$?

- **(A)** -1 **(B)** -2

- 4. Na figura abaixo está parte da representação gráfica de uma função f, par e positiva, da qual a recta de equação $y=0\,$ é assimptota.

Qual é o valor de $\lim_{x \to -\infty} \frac{1}{f(x)}$?

- **(A)** 0
- **(B)** 1

- 5. Qual das afirmações seguintes é necessariamente verdadeira?
 - (A) A soma das probabilidades de dois acontecimentos incompatíveis é 1
 - (B) O produto das probabilidades de dois acontecimentos incompatíveis é 1
 - (C) A soma das probabilidades de dois acontecimentos contrários é 1
 - (D) O produto das probabilidades de dois acontecimentos contrários é 1

6. Uma pessoa vai visitar cinco locais, situados no Parque das Nações, em Lisboa: o Pavilhão de Portugal, o Oceanário, o Pavilhão Atlântico, a Torre Vasco da Gama e o Pavilhão do Conhecimento.

De quantas maneiras diferentes pode planear a sequência das cinco visitas, se quiser começar na Torre Vasco da Gama e acabar no Oceanário?

- **(A)** 6
- **(B)** 12
- **(C)** 24
- **(D)** 120
- 7. Na figura está representado, no plano complexo, um triângulo rectângulo isósceles.

Os catetos têm comprimento $\ 1$, estando um deles contido no eixo dos números reais. Um dos vértices do triângulo coincide com a origem do referencial.

Qual das condições seguintes define a região sombreada, incluindo a fronteira?

- (A) $Re(z) \ge 0 \quad \land \quad Im(z) \le 0 \quad \land \quad |z| \le 1$
- **(B)** $Re(z) \le 0 \quad \land \quad Im(z) \ge 0 \quad \land \quad |z| \le 1$
- (C) $Re(z) \geq -1 \quad \land \quad Im(z) \geq 0 \quad \land \quad |z-i| \geq |z+1|$
- **(D)** $Re(z) \geq -1 \quad \land \quad Im(z) \geq 0 \quad \land \quad |z-i| \leq |z-1|$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

- **1.** Em $\mathbb C$, considere os números complexos: $z_1=-6+3\,i$ e $z_2=1-2\,i$ Sem recorrer à calculadora, determine $\dfrac{z_1+i^{23}}{z_2}$, apresentando o resultado final na forma trigonométrica.
- **2.** Seja z um número complexo, cuja imagem geométrica pertence ao primeiro quadrante (eixos não incluídos).

 Justifique que a imagem geométrica de z^3 não pode pertencer ao quarto quadrante.
- **3.** O João tem, no bolso, **seis** moedas: duas moedas de 1 euro e quatro moedas de 50 cêntimos.
 - O João retira, simultaneamente e ao acaso, **duas** moedas do bolso.
 - **3.1.** Seja X a quantia, em euros, correspondente às moedas retiradas pelo João. Construa a tabela de distribuição de probabilidades da variável X, apresentando as probabilidades na forma de fracção irredutível.
 - **3.2.** Depois de ter retirado as duas moedas do bolso, o João informou a sua irmã Inês de que elas eram iguais. Ela apostou, então, que a quantia retirada era de 2 euros. Qual é a probabilidade de a Inês ganhar a aposta? Apresente o resultado sob a forma de fracção irredutível.
- **4.** Considere a função f , de domínio \mathbb{R} , definida por $f\left(x\right)=1+3~x^{2}\,e^{-x}$
 - **4.1.** Sem recorrer à calculadora, mostre que a função f tem um único mínimo relativo e determine-o.
 - **4.2.** Sem recorrer à calculadora (a não ser para efectuar eventuais cálculos numéricos), mostre que, no intervalo]-1,0[, existe pelo menos um objecto cuja imagem, por meio de f, é 4.

5. A figura 1 representa um depósito de forma cilíndrica, que contém um certo volume de um combustível.

Figura 2

$$V(x) = 80 (x - \sin x),$$

dá o volume, em metros cúbicos, de combustível existente no depósito, em função da amplitude x, em **radianos**, do arco ABC (que, como se sabe, é igual à amplitude do ângulo ao centro correspondente, assinalado na figura 2).

5.1. Qual é a capacidade total do depósito, em metros cúbicos? Apresente o resultado arredondado às unidades.

Nota: se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

- **5.2.** Recorra à calculadora para determinar **graficamente** a solução da equação que lhe permite resolver o seguinte problema: Qual terá de ser a amplitude, em radianos, do arco ABC, para que existam $300\ m^3$ de combustível no depósito? Apresente todos os elementos recolhidos na utilização da calculadora, nomeadamente o **gráfico**, ou **gráficos**, obtido(s). Apresente o resultado na forma de dízima, arredondado às décimas.
- **5.3.** Determine, em metros cúbicos, o volume do combustível existente no depósito, no momento em que a sua altura é $\frac{1}{4}$ da altura máxima. Apresente o resultado arredondado às unidades.

Nota: se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

5.4. Admita agora que o depósito está vazio e que, num certo instante, se começa a introduzir combustível a uma taxa constante, até ficar cheio, o que acontece ao fim de cinco horas.

Seja h(t) a altura do combustível no depósito, t horas após o instante em que começa a ser introduzido.

Qual dos gráficos seguintes pode ser o da função h ?

Numa pequena **composição**, com cerca de dez linhas, **indique as razões que o levam a rejeitar os restantes gráficos** (indique **três** razões, uma por cada gráfico rejeitado).

COTAÇÕES

rupo I	
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	3
Nota: um total negativo neste grupo vale 0 (zero) pontos.	
upo II	1
1	. 10
2	. 11
3.1.	. 32
4.	. 28
5.1. 14 5.2. 14 5.3. 14 5.4. 14	. 56