Part A: Data Preprocessing

using mean centering

Steps take: I did normalization in dataset (ratings-2.csv) file using

- 1. First calculating avg by doing grouping of user's ratings
 - a. Used Excel filtering and formulas for calculating mean centering
- 2. Subtracting his rating from the average.

Note: Steps can be seen in meancentering_steps.csv (attached in submission)

Part B: User Based Recommendation

- 1. Created data model on normalized/mean-centered dataset(refer **ratings-2.csv** attached with submission)
- 2. Create similarity matrix using four types of similarity
 - Loglikelyhood, Spearman Correlation, Euclidean Distance, Pearson Correlation
- 3. Created UserNeighbourHood object
- 4. Created a recommender list (top 3 recommendations for userId 269)
- 5. Printed out recommendations for all types of similarities (on mean centered data)
- 6. Evaluation for RMSE, Precision, Recall, F-score (Refer

UserRecommendationEvaluation.java)

Item Based recommendation:

- 1. Created data model on normalized/mean-centered dataset(refer **ratings-2.csv** attached with submission)
- 2. Create similarity matrix using four types of similarity
 - Loglikelyhood, Euclidean Distance, Pearson Correlation
- 3. Created a recommender list (top 3 recommendations for userId 269)
- 4. Printed out recommendations for all types of similarities (on mean centered data)
- 5. Evaluation for RMSE, Precision, Recall, F-score (Refer

ItemRecommendationEvaluation.java).

Part C: Matrix Factorization : CSV used :(refer ratings-1.csv and movies.csv) Steps taken:

- 1. Calling spark session to register application
- 2. Loaded ratings-1.csv and parsed the dataset.
- 3. Created **movies.csv** (movield, title) and loaded it. (took dataset from in-class exercise)
- 4. Created a tuple of (UserID, MovieID, Rating)
- 5. In order to determine the best ALS parameters, split the dataset into train, validation, and test datasets.
- 6. Prepared test and validation set.
- 7. Set parameter value for ALS method. Changed regularization_parameter value for different RMSE calculation.
- 8. Converted data frame to RDD and printed top 3 ranked item, and finally found best ranked item with lowest RMSE value.
- 9. Evaluated the matrix model by computing RMSE.

- 10. Visualized predictions generated by ALS Model.
- 11. Defined "getRecommendations(user,testDf,trainDf,model)" function to calculate recommendation for specific Userid.
- 12. Called above function to get recommendation for my Userld (269) and Made a matrix sorted in decreasing order of ratings and printed the result.
- 13. Made a matrix and printed the result with the movie titles respective to their movield.

Part D: Evaluation Test:

1. (Three Evaluation per method) Recommendation table for different values

User based

Similarity type	1st recommendation	2nd recommendation	3rd recommendation
PearsonCorrelationSimi larity	12	8	1
LoglikelihoodSimilarity:	12	8	9
Euclidean similarity	12	8	9
Spearman similarity	12	8	1

Item Based

Similarity type	1st recommendation	2nd recommendation	3rd recommendation
PearsonCorrelationsimil arity	14	18	19
Loglikelihoodsimilarity:	1	14	19
Euclidean similarity	8	14	6

2. Evaluation(RMSE, Recall, Precision, F-score) for item Base and User Based using different lambda values:

relevance Threshold	RMSE	F-score	Precision	Recall
-3	0.8891726342077508	0.97499999999 9999	0.97499999999 99999	0.9749999999999999

Relevance Threshold	RMSE	F-score	Precision	Recall
-4	1.0499976735831267	0.94	0.94	0.94

3. Comparison in Userbased and Item Based Recommendations (both are using Euclidean Similarity)

RMSE for different lambda	Lambda value : -4	Lambda value :-1	Lambda value :-3
User based	0.9379408782071857	0.9643800972316054	0.8891726342077508
Item based	1.0499976735831267	1.0715936596901925	1.066313017517381

Regularization_parameter (Matrix factorization Based)	0.01	.15	.5
RMSE	2.06493562009	1.33667158335	1.39750103

Final RMSE Table for evaluation is below:

	UserBased	ItemBased	MatrixFactorization
RMSE	0.8891726342077508	1.0499976735831267	1.33667158335

From the above table , we can evaluate that best Recommendation is using **User Based Recommendation** , as the **lowest RMSE is found is : 0.8891726342077508** (evaluated by UserBased recommendation)