

Exercise 4B

Question 14:

Given : AB and CD are two lines which are intersecting at O. OE is a ray bisecting the $_{\it L}$ BOD. OF is a ray opposite to ray OE.

To Prove: ∠AOF = ∠COF

Proof : Since \overrightarrow{OE} and \overrightarrow{OF} are two opposite rays, \overrightarrow{EF} is a straight line passing through O.

∴ ∠AOF = ∠BOE

and $\angle COF = \angle DOE$

[Vertically opposite angles]

But $\angle BOE = \angle DOE$ (Given)

∴ ∠AOF = ∠COF

Hence, proved.

Question 15:

Given: \overrightarrow{CF} is the bisector of \angle BCD and \overrightarrow{CE} is the bisector of \angle ACD.

To Prove: ∠ECF = 90°

Proof: Since \angle ACD and \angle BCD forms a linear pair.

 \angle ACD + \angle BCD = 180 $^{\circ}$

 \angle ACE + \angle ECD + \angle DCF + \angle FCB = 180° \angle ECD + \angle ECD + \angle DCF + \angle DCF = 180° because \angle ACE = \angle ECD and \angle DCF = \angle FCB $2(\angle ECD) + 2(\angle CDF) = 180^{\circ}$ $2(\angle ECD + \angle DCF) = 180^{\circ}$ $\angle ECD + \angle DCF = 180/2 = 90^{\circ}$ $\angle ECF = 90^{\circ} (Proved)$

********* END *******