# Quinta série de exercícios Tópicos de Mecânica Estatística Transições de Fases - 2020

Renata Biaggi Biazzi 22 de maio de 2020

1

Com base no Hamiltoniano:

$$\mathcal{H} = -J \sum_{(i,j)} \sigma_i \sigma_j$$

Podemos escrever a função de partição:

$$\mathcal{Z} = \sum_{\sigma_i} \prod_{B_{ij}} e^{\beta J \sigma_i \sigma_j}$$

com  $K = \beta J$  e  $B_{ij}$  sendo cada vizinho mais próximos ij da rede. O número total de ligações (entre vizinhos mais próximos) é B = Nq/2, em que q é a coordenação da rede e N o número de sítios. As únicas possibilidades de valores para o termo  $e^{K\sigma_i\sigma_j}$  são:  $e^K$  ou  $e^{-K}$ , a depender de  $\sigma_i\sigma_j = \pm 1$ . Então:

$$e^{K} = \frac{1}{2} \left( e^{K} + \sigma_{i} \sigma_{j} e^{K} \right)$$
 se  $\sigma_{i} \sigma_{j} = 1$   
 $e^{-K} = \frac{1}{2} \left( e^{-K} - \sigma_{i} \sigma_{j} e^{-K} \right)$  se  $\sigma_{i} \sigma_{j} = -1$ 

então:

$$e^{K\sigma_i\sigma_j} = \frac{1}{2} \left( e^K + e^{-K} \right) + \frac{\sigma_i\sigma_j}{2} \left( e^K - e^{-K} \right) = \cosh K + \sigma_i\sigma_j \sinh K = \cosh K \left( 1 + \sigma_i\sigma_j \tanh K \right)$$

chamando  $t = \tanh K$ , na rede quadrada q = 4 temos:

$$\mathcal{Z} = (\cosh K)^{\frac{N4}{2}} \sum_{\sigma_i} \prod_{B_{ij}} (1 + t\sigma_i \sigma_j) = (\cosh K)^{\frac{N}{2}} \sum_{\sigma_i} (1 + t\sigma_1 \sigma_2)(1 + t\sigma_2 \sigma_3) \dots (1 + t\sigma_N \sigma_1)$$
$$= (\cosh K)^{\frac{N}{2}} (2^N) \left[ 1 + c_4 t^4 + c_6 t^6 + c_8 t^8 + \dots \right]$$

O termo  $2^N$  vem de que temos N spins  $\sigma_i$  e cada um pode ter 2 valores  $\pm 1$ . Então a soma sobre todas as configurações possíveis equivale a  $2^N$  possibilidades totais. As contribuições que não se anulam são aquelas em que há ligações fechadas. Ou seja, que cada sítio  $\sigma_i$  está conectado com pelo menos dois outros sítios, de forma que aparecerá um número par de vezes, e terá um expoente par. Na rede 2d com q=4, só é possível fazer ligações fechadas se consideramos pelo menos 4 ligações, pois com menos do que isso a rede fica aberta:



Assim, a série começa em  $t^4$  e não terá termos ímpares porque qualquer soma sobre as configurações em que pelo menos um expoente de um spin é ímpar irá se anular (haverá sítios abertos). Vejamos porque:

No primeiro exemplo, com ambos os spins com expoente 1 ou somente com um spin:

$$\sum_{i=\pm 1} \sigma_i^1 = 1 - 1 = 0$$

$$\sum_{i=\pm 1; j=\pm 1} \sigma_i^1 \sigma_j^1 = (1.1) + (1.-1) + (-1.1) + (-1.-1) = 1 - 1 - 1 + 1 = 0$$

então para outros casos:

$$\sum_{\substack{i=\pm 1; j=\pm 1; k=\pm 1}} \sigma_i^2 \sigma_j^2 \sigma_k^1 = \sum_{\substack{k=\pm 1}} \sigma_k^1 = 0$$
 
$$\sum_{\substack{i=\pm 1; j=\pm 1; k=\pm 1}} \sigma_i^1 \sigma_j^2 \sigma_k^1 = \sum_{\substack{i=\pm 1; k=\pm 1}} \sigma_i^1 \sigma_k^1 = 0$$

Ou seja, as únicas contribuições que não se anulam são para spins cujo expoente é par.

a) Para  $t^4$  o coeficiente  $c_4 = N$ , pois só há um único grafo possível com 4 ligações e ele pode aparecer em N posições diferentes na rede:



Para  $t^6$  só há um grafo possível com 6 ligações, porém rotacionando ele há duas formas possíveis de ele aparecer na rede. Assim, existem 2N possibilidades de encontrar 6 ligações na rede, e  $c_6 = 2N$ :



Para  $t^8$  os grafos possíveis são:



O primeiro grafo pode ser rotacionado, gerando 2N possibilidades. O segundo grafo, ao ser rotacionado, gera 4N possibilidades. O terceiro grafo é invariante a rotação, então só gera N possibilidades. Já o último grafo é mais complicado, vamos analisá-lo:

Esse último grafo deve ser entendido como dois quadrados independentes, cada um com quatro ligações, que devem aparecer juntos (para somar as 8 ligações) e cada um pode estar em qualquer lugar da rede. Assim, como cada um tem a possibilidade de aparecer em N lugares, e eles devem aparecer juntos, existem  $N^2$  possibilidades para ambos aparecerem. Entretanto, há 5 configurações que eles não podem estar (pois não concervam 8 ligações totais), elas são:



Devemos então subtrair de  $N^2$  as 5.N configurações que não mantém 8 conexões. Além disso, esses dois quadrados são indistinguíveis, então o número de configurações possíveis deve ser  $N^2 - 5N$  dividido por dois, para não contarmos duas vezes a mesma configuração. Assim, o número total de possibilidades de configurações para esse grafo de dois quadrados independentes (mantendo 8 conexões totais) é  $\frac{N^2-5N}{2}$ . Então, o coeficiente  $c_8$  é a soma dessas configurações todas:

$$c_8 = 2N + 4N + N + \frac{N^2 - 5N}{2} = 7N + \frac{N^2 - 5N}{2} = \frac{N(N+9)}{2} = \frac{N(N-9)}{2} + 9N$$

Assim, até o termo  $t^8$ , a série fica:

$$\mathcal{Z} = (\cosh K)^{\frac{N}{2}} 2^{N} \left[ 1 + Nt^{4} + 2Nt^{6} + \frac{N(N+9)}{2} t^{8} + \dots \right]$$

b)

A energia livre por spin no limite termodinâmico é calculada da seguinte forma:

$$g = \frac{-1}{\beta} \lim_{N \to \infty} \frac{1}{N} \log \mathcal{Z}$$

Sendo:

$$G = \log \mathcal{Z} = 2N \log \left[ \cosh K \right] + N \log \left[ 2 \right] + \log \left[ 1 + Nt^4 + 2Nt^6 + \frac{N(N+9)}{2}t^8 + \dots \right]$$

No limite  $t \to 0$ , podemos expandir o log e como a energia livre é extensiva, fazemos a aproximação de que os termos de ordem superior a N são descartados:

$$G = 2N \log \left[\cosh K\right] + N \log \left[2\right] + \left[Nt^4 + 2Nt^6 + \frac{9N}{2}t^8 + \dots\right]$$

Então, a energia livre por sítio é:

$$-\beta g = \lim_{N \to \infty} \frac{1}{N} G = 2 \log \left[ \cosh K \right] + \log \left[ 2 \right] + t^4 + 2t^6 + \frac{9}{2}t^8 + \dots$$

em concordância com o esperado.

### $\mathbf{2}$

Para analisar o comportamento da função f(x) ao redor do que seria o ponto crítico  $x_c$ , iremos fazer a aproximação de que para x perto do ponto crítico, ou seja  $x/x_c << 1$  essa função pode ser escrita na forma:

$$f(x) \approx A(x_c - x)^{-\gamma}$$

Assim, utilizando a expansão binomial, escrevemos:

$$A(x_c - x)^b = \sum_{n=0.1}^{\infty} A_n x^n$$

com

$$A_n = \binom{b}{n} x_c^{b-n} = \frac{b!}{(b-n)!n!} x_c^{b-n}$$

O método da razão utiliza a seguinte relação: se uma série converge pelo método da razão, temos que seu raio de convergência  $r_c$  será dado pelo limite da razão dos coeficientes:

$$\frac{1}{r_c} = \lim_{n \to \infty} \frac{A_n}{A_{n-1}}$$

utilizaremos essa propriedade para extrapolar na nossa série com termos finitos. Fazendo:

$$\frac{A_n}{A_{n-1}} = \frac{\binom{b}{n} x_c^{b-n}}{\binom{b}{n-1} x_c^{b-n+1}} = \frac{\frac{b!}{(b-n)!n!} x_c^{b-n}}{\frac{b!}{(b-n+1)!(n-1)!} x_c^{b-n+1}} = \frac{(b-n+1)}{n x_c} = \frac{1}{x_c} \left(\frac{b+1}{n} - 1\right)$$

Iremos fazer um ajuste com  $y = \frac{A_n}{A_{n-1}}$  e x = 1/n nos pontos do tipo:

$$y = \alpha x + \beta$$

$$\frac{A_n}{A_{n-1}} = -\frac{b+1}{x_c} \frac{1}{n} + \frac{1}{x_c}$$

então teremos que pelo  $\lim_{n\to\infty} \frac{A_n}{A_{n-1}}$ :  $x_c=\frac{1}{\beta}$ . Já o parâmetro  $\gamma=-b$  é dado por  $-b=\alpha x_c+1$ . Então temos o ajuste e os coeficientes:



$$\alpha = 3.08614$$
  $\beta = 0.852466$ 

Então obtemos a seguinte aproximação pelo método da razão:

$$x_c \approx 1.1731 \qquad \gamma \approx 4.6203$$

 $\mathbf{3}$ 

A série de baixas temperaturas para o modelo de Ising  $2d\ \sigma=\pm 1$  pode também ser construída por argumentos geométricos. Da mesma forma que na série de altas temperaturas, começamos com a função de partição para o modelo de Ising 2d a campo nulo:

$$\mathcal{Z} = \sum_{\sigma_i} \prod_{B_{ij}} e^{\beta J \sigma_i \sigma_j}$$

com  $K = \beta J$  e  $B_{ij}$  sendo cada vizinho mais próximos ij da rede. O número total de ligações (entre vizinhos mais próximos) é B = Nq/2, em que q é a coordenação da rede e N o número de sítios. Nessas condições, o estado de energia mais baixo é dado pelo estado com todos os spins alinhados, seja  $\sigma = 1$  ou  $\sigma = -1$ , que é um estado degenerado de  $\mathcal{H}_{ef} = -2JN$  Assim, temos a função de partição do estado fundamental:

$$\mathcal{Z}_{ef} = \sum_{\sigma_i} \prod_{N4/2} e^{\beta J \sigma_i \sigma_j} = \sum_{\sigma_i} e^{\beta J 2N \sigma_i \sigma_j} = 2e^{\beta J 2N} = 2e^{K2N}$$

Para baixas temperaturas, o termo  $K=\frac{J}{k_BT}$  é grande, então as configurações típicas podem ser enumeradas como pequenas flutuações ao redor do estado fundamental, mudando alguns spins de direção e contando a energia de ligação desses estados. Por exemplo, o próximo termo é definido se mudamos apenas a orientação de um spin. Nesse caso, na rede quadrada o custo para fazer isso é de 8J, pois ele está conectado com quatro vizinhos mais próximos, e a diferença de energia com a mudança de orientação do spin com cada um dos seus vizinhos é de 2J, pois a diferença de energia entre dois vizinhos próximos com essa mudança é calculada como:

$$\Delta \mathcal{H}_{ij}^{\sigma_i \to -\sigma_i} = -J\Delta(\sigma_i \sigma_j)^{\sigma_i \to -\sigma_i} = -J((-\sigma_i)\sigma_j - \sigma_i \sigma_j) = -J((-1) - 1) = 2J$$

Podemos mudar esse spin em N lugares, e chamaremos a função de partição dessa primeira flutuação de  $Z_4$  devido ao expoente 4 na mudança de energia, e temos:

$$Z_4 = Ne^{2KN - 8K} = Z_{ef}N(e^{-2K})^4$$

O próximo termo é devido a mudarmos a orientação de dois spins vizinhos. O número de conexões com spins opostos que os dois têm juntos é 6, e podemos colocá-los em N lugares, assim como rotacioná-los em 2 orientações, então temos:

$$Z_6 = N2e^{2KN-12K} = Z_{ef}2N(e^{-2K})^6$$

Com esses termos, já podemos começar a escrever a série de baixas temperaturas:

$$\mathcal{Z}_{\text{baixas}} = Z_{ef} \left[ 1 + N(e^{-2K})^4 + 2N(e^{-2K})^6 + \dots \right]$$

que tem uma forma muito semelhante com a de altas temperaturas:

$$\mathcal{Z}_{\text{altas}} = (\cosh K)^{\frac{N}{2}} 2^{N} \left[ 1 + Nt^{4} + 2Nt^{6} + \frac{N(N+9)}{2}t^{8} + \dots \right]$$

Essa correspondência vem de um paralelo que podemos fazer da contagem dos grafos. No caso das séries de altas temperaturas, estamos contando todos as possibilidades de grafos fechados com x ligações. No caso da série de baixas temperaturas, estamos contando todas as conexões que um conjunto de spins que foi invertido têm com um conjunto de y spins vizinhos. O número de combinações possíveis para as x ligações é o mesmo que o número de todas as possibilidades para as y conexões. Um exemplo para simplificar essa ideia é visto nessa representação do termo de ordem quarta:



Em ambos os casos estamos contando todas as possibilidades em que essas linhas vermelhas podem aparecer, como as duas figuras em linhas vermelhas são geometricamente equivalentes na rede, o número de possibilidades em que elas podem aparecer é o mesmo. É dessa relação que vem a semelhança das séries para altas e baixas temperaturas. Sendo assim, com a mudança de variáveis:

$$t = \tanh K = e^{-2K^*}$$

que também pode ser escrita de outra maneira:

$$e^{2K} - e^{-2K} = \frac{\cosh{(K^*)}}{\sinh{(K^*)}} - \frac{\sinh{(K^*)}}{\cosh{(K^*)}} = \frac{\cosh^2{(K^*)} - \sinh^2{(K^*)}}{\cosh{(K^*)}\sinh{(K^*)}} = \frac{2}{\sinh{(2K^*)}}$$

$$\sinh(2K)\sinh(2K^*) = 1$$

resgatamos a equivalência das séries. A singularidade, conforme o trabalho de Hendrik Kramers e Gregory Wannier (H. A. Kramers and G. H. Wannier (1941). "Statistics of the two-dimensional ferromagnet", Physical Review 60: 252–262), ocorre quando essas variáveis são iguais, em que definimos a temperatura crítica como o valor "autodual"em que ocorre a transição entre a fase "altas temperaturas"e a fase "baixas temperaturas"em  $K = K^* = K_c$ :

$$\exp\left(\frac{-2J}{k_BT_c}\right) = \tanh\left(\frac{J}{k_BT_c}\right)$$

Dessa maneira, fica assegurada a mesma temperatura crítica para as duas séries. Isso é a dualidade: a simetria em relação a  $T_c$  entre duas temperaturas diferentes (de séries diferentes). Resolvendo essa relação, escrita com  $K_c = J\beta_c$ , chegamos em:

$$e^{2K_c} = \frac{\cosh K_c}{\sinh K_c} = \frac{e^{2K_c} + 1}{e^{2K_c} - 1} = 1 + \frac{2}{e^{2K_c} - 1}$$

Então:

$$(e^{2K_c} - 1)^2 = 2$$

De onde chegamos na temperatura crítica dada por:

$$K_c = \frac{1}{2}\log\left(1 + \sqrt{2}\right)$$

Esse é o resultado fornecido pela solução exata de Onsager, que no seu artigo "A Two-Dimensional Model with an Order-Disorder Transition", Physical Review, 1944; chega na mesma relação:  $\sinh{(2K_c)} \sinh{(2K_c^*)} = 1$  como condição para temperatura crítica. Já com modelos de campo médio:  $J\beta_c^{CM} = 1/4$ , um resultado consideravelmente diferente.

#### $\mathbf{4}$

Partimos da hipótese de escala em que, sendo a energia livre de gibbs uma função que pode ser dividida entre a soma de uma função bem comportada com uma função singular:  $g(t,\pi) = g_0(t,\pi) + g_s(t,\pi)$ .

Então, a parte singular da energia livre obedece a relação de escala:

$$q_s(t,\pi) = \lambda q_s(\lambda^a t, \lambda^b \pi)$$

como  $\lambda$  é arbitrário, podemos escolhê-lo tal que:  $\lambda^a t = 1$ , então  $\lambda = t^{-1/a}$ , e

$$g_s(t,\pi) = t^{-1/a}g_s(1, t^{-b/a}\pi) = t^{-1/a}F\left(\frac{\pi}{t^{b/a}}\right)$$

e definindo a tal que  $-1/a = 2 - \alpha$  e chamando  $\Delta = b(\alpha - 2)$ :

$$g_s(t,\pi) = t^{2-\alpha} F\left(\frac{\pi}{t^{\Delta}}\right)$$

A energia livre por partícula na representação de Gibbs é:

$$dg = -sdT + vdp$$

Assim, iremos calcular os expoentes críticos das grandezas termodinâmicas seguindo o caminho  $\pi = 0$  no diagrama de fases p - T.

i) Lembrando que  $t = \frac{T - T_c}{T_c}$ . Nessas condições do diagrama de fases, a entropia é calculada como:

$$s(t, \pi = 0) = -\left(\frac{\partial g_s}{\partial T}\right)_{p=p_c} = -\frac{1}{T_c} \left(\frac{\partial g_s}{\partial t}\right)_{\pi=0} = \frac{-1}{T_c} \left[ (2-\alpha)t^{1-\alpha}F\left(\frac{\pi}{t^{\Delta}}\right) - t^{2-\alpha}\Delta t^{-\Delta-1}\pi F'\left(\frac{\pi}{t^{\Delta}}\right) \right] \Big|_{\pi=0}$$
$$= \frac{-1}{T_c} \left[ (2-\alpha)t^{1-\alpha}F\left(0\right) \right]$$

Então, o expoente crítico da entropia, associado a quando nos aproximamos de t=0 por  $\pi=0$ , é  $1-\alpha$ :

$$s(t, \pi = 0) \propto t^{1-\alpha}$$

ii)

A compressibilidade isotérmica mede a variação relativa do volume com a pressão à temperatura fixa:

$$\kappa_T = \frac{-1}{v} \left( \frac{\partial v}{\partial p} \right)_T$$

Então, primeiro temos que obter o volume a partir da energia livre:

$$v = \left(\frac{\partial g}{\partial p}\right)_T = \frac{1}{p_c} \left(\frac{\partial g}{\partial \pi}\right)_t = \frac{1}{p_c} t^{2-\alpha-\Delta} F'\left(\frac{\pi}{t^{\Delta}}\right)$$

e então:

$$\kappa_T = \frac{-1}{v} \left( \frac{\partial v}{\partial p} \right)_T = \frac{-1}{v p_c} \left( \frac{\partial v}{\partial \pi} \right)_t = \frac{-t^{-(2-\alpha-\Delta)}}{F'\left(\frac{\pi}{t^{\Delta}}\right)} \frac{1}{p_c} t^{2-\alpha-2\Delta} F''\left(\frac{\pi}{t^{\Delta}}\right)$$
$$= \frac{-t^{-\Delta}}{p_c} \frac{F''\left(\frac{\pi}{t^{\Delta}}\right)}{F'\left(\frac{\pi}{t^{\Delta}}\right)}$$

assim, quando nos aproximamos do ponto crítico por  $\pi=0$ , o expoente crítico da compressibilidade é  $-\Delta$ :

$$\kappa_T(t,0) \propto t^{-\Delta}$$

iii)

O calor específico a volume constante é dado por:

$$c_v = T \left( \frac{\partial s}{\partial T} \right)_v = T \left[ \left( \frac{\partial s}{\partial T} \right)_p \left( \frac{\partial v}{\partial p} \right)_T - \left( \frac{\partial s}{\partial p} \right)_T \left( \frac{\partial v}{\partial T} \right)_p \right] \left( \frac{\partial p}{\partial v} \right)_T$$

relação essa em que foram usadas as transformações jacobianas. Resolvendo essa equação fazendo todas as derivadas, com  $\pi=0$ , e usando a relação  $\left(\frac{\partial s}{\partial p}\right)_T=-\left(\frac{\partial v}{\partial T}\right)_p=-v\alpha_p$ , usando os resultados obtidos nos outros itens temos:

$$c_v = c_p + \frac{T_c(t+1)v\alpha_p^2}{\kappa_T}$$

Chegamos então que a dependência de  $c_v$  com t quando  $\pi=0$  e  $t\to 0$  o termo que domina faz com que o expoente crítico dominante seja:

$$c_v \propto t^{-\alpha}$$

iv)

O calor específico a pressão constante é calculado por:

$$c_{p} = T \left( \frac{\partial s}{\partial T} \right)_{p} = t \left( \frac{\partial s}{\partial t} \right)_{p} + \left( \frac{\partial s}{\partial t} \right)_{p}$$
$$= (t+1) \left( \frac{\partial}{\partial t} \frac{-1}{T_{c}} \left[ (2-\alpha)t^{1-\alpha} F \left( \frac{\pi}{t^{\Delta}} \right) - t^{1-\alpha-\Delta} \Delta \pi F' \left( \frac{\pi}{t^{\Delta}} \right) \right] \right)_{p}$$

Então, usando a função da entropia calculada em i:

$$c_p(t, \pi = 0) = \frac{-(t+1)}{T_c} \left[ (2-\alpha)(1-\alpha)t^{-\alpha}F\left(\frac{\pi}{t^{\Delta}}\right) + (2-\alpha)t^{-\alpha-\Delta}\pi F'\left(\frac{\pi}{t^{\Delta}}\right) + \mathcal{O}(\pi) + \mathcal{O}^2(\pi) \right]$$
$$= \frac{-(t+1)}{T_c} \left[ (2-\alpha)(1-\alpha)t^{-\alpha}F(0) \right]$$

$$c_p(t, \pi = 0) \propto t^{1-\alpha} + t^{-\alpha}$$

temos que o expoente crítico, quando nos aproximamos do ponto crítico  $t \to 0$  é dado pelo maior termo, que corresponde a descartar o termo de ordem maior, de forma que o expoente crítico é  $(-\alpha)$ :

$$c_v(t \to 0, \pi = 0) \propto t^{-\alpha}$$

 $\mathbf{v})$ 

O coeficiente de dilatação térmica mede a dilatação relativa de um sistema a pressão constante e é dado por:

$$\alpha_{p} = \frac{1}{v} \left( \frac{\partial v}{\partial T} \right)_{p} = \frac{1}{vT_{c}} \left( \frac{\partial v}{\partial t} \right)_{p}$$

$$= \frac{p_{c}}{T_{c}} t^{-(2-\alpha-\Delta)} \frac{1}{F'\left(\frac{\pi}{t\Delta}\right)} \left[ \frac{1}{p_{c}} (2-\alpha-\Delta) t^{1-\alpha-\Delta} F'\left(\frac{\pi}{t\Delta}\right) + \frac{1}{p_{c}} t^{2-\alpha-2\Delta} \pi F''\left(\frac{\pi}{t\Delta}\right) \right]$$

e temos que:

$$\alpha_p(t, \pi = 0) = \frac{(2 - \alpha - \Delta)t^{-1}}{T_c}$$

então quanto  $t \to 0$ , definimos como o expoente crítico da dilatação térmica (-1):

$$\alpha_p(t,\pi=0) \propto t^{-1}$$

5

Primeiro, iremos converter as temperaturas da tabela para Kelvin, a primeira linha da tabela fica:

em que o valor em vermelho marca a temperatura maior do que a temperatura crítica  $T_c=627.4K$  fornecida pela questão. Com essa mudança, e utilizando a correção para o campo magnético de que cada ponto:  $H_i^{corrigido}=H_i-39.3m_i$ 

| T = 621.93K |        | T = 623.81K |        | T = 625.68K |        | T = 631.33K |        |
|-------------|--------|-------------|--------|-------------|--------|-------------|--------|
| m           | н      | m           | н      | m           | н      | m           | н      |
| 11,36       | -16    | 10,45       | 19     | 8,11        | 111    | -           | -      |
| 13,79       | 348    | -           | -      | -           | -      | -           | -      |
| 14,31       | 793    | 12,65       | 858    | 10,63       | 937    | 4,24        | 1.189  |
| 15,65       | 2.615  | 14,32       | 2.667  | 12,75       | 2.729  | 7,57        | 2.933  |
| 16,94       | 5.349  | 15,78       | 5.395  | 14,52       | 5.444  | 10,31       | 5.610  |
| 18,21       | 9.354  | 17,27       | 9.391  | 16,20       | 9.433  | 12,78       | 9.568  |
| 19,21       | 13.455 | 18,35       | 13.489 | 17,40       | 13.526 | 14,39       | 13.645 |
| 19,98       | 16.990 | 19,14       | 17.023 | 18,29       | 17.056 | 15,50       | 17.166 |

Figura 1: Tabela de dados. Para melhor visualização, as casas decimais de H foram suprimidas. Entretanto, elas foram consideradas no plot, apesar de não serem relevantes para a escala do plot  $\log X \log$ .

Vamos reescrever também os valores de T na variável  $|t|=\frac{|T-T_c|}{T_c}$  :

t | 
$$8.71852.10^{-3}$$
 |  $5.72202741.10^{-3}$  |  $2.74147274.10^{-3}$  |  $6.26394644.10^{-3}$ 

Os dados correspondentes a coluna em vermelho devem ter um comportamento diferente dos dados das outras colunas, pois estão acimada da temperatura crítica. Dada a forma de escala e os valores dos expoentes críticos mencionados na apresentação da questão, os dados devem ser aproximados por curvas do tipo:

$$\frac{m}{|t|^{\beta}} = Y_{\pm} \left( \frac{H}{|t|^{\Delta}} \right)$$

Com os expoentes tendo os valores:  $\gamma = 1.34$ ,  $\beta = 0.378$ ,  $\delta = 4.58$  e  $\Delta = \beta(\delta - 1)$ . Esses valores estão de acordo com a relação de escala:  $\gamma = \beta(\gamma - 1)$ , pois:  $\beta(\delta - 1) = 0.378(3.58) = 1.353 \approx$ 

 $1.34 = \gamma$ . Então, a partir dos dados da Figura1: Tabela de dados, plotamos em um gráfico os valores de  $\log m|t|^{-\beta}$  por  $\log H|t|^{-\Delta}$ :



Como esperado, os dados abaixo da temperatura crítica tem o mesmo comportamento e colapsam aproximadamente em uma mesma curva. Já os dados acima da temperatura crítica (linha vermelha) tem um comportamento bastante distinto. Dessa forma, os dados se comportam conforme a relação de escala prevista.

### 6 Urna de Ehrenfest

a) Usando Python, foi feito um programa para fazer as simulações (disponíveis no Apêndice A) com o qual foram geradas as duas figuras abaixo. Para ambos os casos i)N=20 e ii)N=200, vemos que conforme o aumento de t, o sistema tende a flutuar ao redor da posição de equilíbrio N/2. Entretanto, as flutuações são em média da ordem de 10 bolas, então para o caso i (Figura 1), como há poucas bolas (somente N=20), as flutuações são da ordem do número de bolas. Assim, conforme N aumenta, as flutuações passam a ser cada vez mais desprezíveis e, na Figura 2, em que estão simulados os dois casos i e ii, fica explícito o comportamento, principalmente no caso ii, que em  $t \to \infty$  o sistema tende para N/2.



b) Supondo que  $P(N_1, t + \Delta t)$  é a probabilidade de encontrar  $N_1$  bolas na urna 1 no instante de tempo  $t + \Delta t$ , podemos pensar que a evolução temporal desse sistema a cada passo de tempo  $\Delta t$  deve ser dada por dois termos:

i) um deles representando a probabilidade de no tempo t o sistema ter  $N_1 - 1$  bolas na urna 1 e ganhar uma bola da urna 2.

ii) O outro representando a probabilidade de no tempo t o sistema ter  $N_1 + 1$  bolas na urna 1 e perder uma bola da urna 1 para a urna 2.

Essas são as duas únicas possibilidades de se chegar no estado de  $N_1$  bolas na urna 1 em somente um passo de tempo  $\Delta t$ .

No primeiro caso, a probabilidade da urna 1 ter  $N_1 - 1$  bolas no tempo  $t \in P(N_1 - 1, t)$ . A probabilidade de estando nesse estado ganhar uma bola da urna 2 é igual a probabilidade de se sortear um número que pertença a urna 2, como nesse estado a urna 2 tem  $N-(N_1-1)$  bolas, essa probabilidade é  $W_1 = \frac{N-(N_1-1)}{N}$ . Logo, o primeiro termo, associado a ter  $N_1-1$  bolas na urna 1 no tempo  $t \to ganhar uma bola da urna 2 é <math>P(N_1 - 1, t)W_1$ .

No segunda caso, a probabilidade da urna 1 ter  $N_1 + 1$  bolas no tempo  $t \in P(N_1 + 1, t)$ . A probabilidade de estando nesse estado perder uma bola da urna 1 é igual a probabilidade de sortear uma bola que pertença a urna 1, como a urna 1 nesse estado tem  $N_1 + 1$  bolas, essa probabilidade é  $W_2 = \frac{N_1+1}{N}$ . Logo, o segundo termo, associado a ter  $N_1+1$  bolas na urna 1 no tempo t E perder uma bola da urna 1 é  $P(N_1+1,t)W_2$ .

Logo, a equação que representa essa evolução temporal na urna 1 é a soma desses dois termos:

$$P(N_1, t + \Delta t) = P(N_1 - 1, t)W_1 + P(N_1 + 1, t)W_2$$

com 
$$W_1 = \frac{N - (N_1 - 1)}{N}$$
 e  $W_2 = \frac{N_1 + 1}{N}$ 

com  $W_1 = \frac{N - (N_1 - 1)}{N}$  e  $W_2 = \frac{N_1 + 1}{N}$ . A hipótese envolvida nessa formulação é de que a cada tempo necessariamente uma bola muda de caixa e, para decidir qual será essa bola, sup $\tilde{\text{o}}$ e-se que cada uma das N bolas tenha um número de 1 a N associado a ela (sem repetições), e que a cada intervalo de tempo  $\Delta t$  sorteia-se aleatoriamente um número de 1 a N que designará a bola que irá mudar de caixa.

No estado de equilíbrio, a equação do modelo da urna corresponde a uma situação em que as probabilidade não dependem mais do tempo, então reescreveremos a equação de evolução temporal

$$\pi_{j+1} = \pi_j \frac{N-j}{N} + \pi_{j+2} \frac{j+2}{N}$$

Ou seja, com  $p_j = \frac{N-j}{N}$  e  $q_{j+2} = \frac{j+2}{N}$ :

$$\pi_0 = 0 + \pi_1 q_1$$

$$\pi_1 = \pi_0 p_0 + \pi_2 q_2$$

$$\pi_2 = \pi_1 p_1 + \pi_3 q_3$$

$$\pi_3 = \pi_2 p_2 + \pi_4 q_4$$
...
$$\pi_j = \pi_{j-1} p_{j-1} + \pi_{j+1} q_{j+1}$$
...
$$\pi_N = \pi_{N-1} p_{N-1}$$

Resolvendo esse sistema por indução, usando a relação  $p_i + q_i = 1$ , e  $p_0 = 1$ , pois  $q_0 = 0$  chegamos em:

$$\pi_{1} = \frac{\pi_{0}}{q_{1}}$$

$$\pi_{2} = \frac{1}{q_{2}} (\pi_{1} - \pi_{0} p_{0}) = \frac{1}{q_{2}} \left( \frac{\pi_{0}}{q_{1}} - \pi_{0} p_{0} \right) = \frac{1}{q_{2}} \left( \frac{1}{q_{1}} - \frac{p_{0} q_{1}}{q_{1}} \right) \pi_{0} = \frac{1 - p_{0} (1 - p_{1})}{q_{2} q_{1}} \pi_{0} = \frac{p_{0} p_{1} + 1 - p_{0}}{q_{2} q_{1}} \pi_{0}$$

$$= \frac{p_{0} p_{1}}{q_{2} q_{1}} \pi_{0}$$

$$\pi_{3} = \frac{1}{q_{3}} (\pi_{2} - \pi_{1} p_{1}) = \frac{1}{q_{3}} \left( \frac{p_{0} p_{1}}{q_{2} q_{1}} \pi_{0} - \pi_{1} p_{1} \right) = \frac{1}{q_{3}} \left( \frac{p_{0} p_{1}}{q_{2} q_{1}} \pi_{0} - \frac{\pi_{0}}{q_{1}} p_{1} \frac{q_{2}}{q_{2}} \right) = \frac{1}{q_{3}} \left( \frac{p_{0} p_{1}}{q_{2} q_{1}} - p_{1} \frac{(1 - p_{2})}{q_{2} q_{1}} \right) \pi_{0}$$

$$= \frac{(p_{0} p_{1} - p_{1} + p_{1} p_{2})}{q_{3} q_{2} q_{1}} \pi_{0} = \frac{p_{1} (p_{0} + p_{2} - 1)}{q_{3} q_{2} q_{1}} \pi_{0} = \frac{p_{1} p_{2}}{q_{3} q_{2} q_{1}} \pi_{0}$$

$$= \frac{p_{0} p_{1} p_{2}}{q_{3} q_{2} q_{1}} \pi_{0}$$

dessa forma, por indução, chegamos que:

$$\pi_j = \frac{p_{j-1}p_{j-2}...p_0}{q_jq_{j-1}...q_1}\pi_0$$

que podemos escrever como:

$$\pi_j = \frac{[N - (j-1)][N - (j-2)]...[N]}{j(j-1)...1} \pi_0 = \frac{N!}{j!(N-j)!} \pi_0 = \binom{N}{j} \pi_0$$

que é a distribuição binomial. Para encontrar  $\pi_0$ , usamos a condição  $\pi_0 + \pi_1 + ... \pi_N = 1$ , então:

$$\sum_{j=0}^{N} \pi_{j} = 1 \quad \text{então} \quad \pi_{0}(1 + \dots) = \pi_{0}(2^{N}) = 1 \quad \rightarrow \quad \pi_{0} = \frac{1}{2^{N}}$$

Assim, mostramos que a distribuição binomial:

$$P(N_1) = \frac{1}{2^N} \binom{N}{N_1}$$

é solução da equação de evolução temporal na situação de equilíbrio.

O valor médio pode ser calculado, fazendo a mudança de variável  $N'_1 = N_1 - 1$ , como:

$$\begin{split} \langle N_1 \rangle &= \sum_{N_1=0}^N N_1 P_N(N_1) = \sum_{N_1=0}^N N_1 \frac{N!}{N_1!(N-N_1)!} \frac{1}{2^N} = \sum_{N_1=1}^N \frac{N!}{(N_1-1)!(N-N_1)!} \frac{1}{2^N} \\ &= \sum_{N_1=1}^N \frac{N}{2} \frac{(N-1)!}{(N_1-1)!(N-N_1)!} \frac{1}{2^{N-1}} = \frac{N}{2} \sum_{N_1=1}^N \frac{(N-1)!}{(N_1-1)!(N-1-(N_1-1))!} \frac{1}{2^{N-1}} \\ &= \frac{N}{2} \sum_{N_1'=0}^{N-1} \frac{(N-1)!}{(N_1')!(N-1-N_1')!} \frac{1}{2^{N-1}} = \frac{N}{2} \sum_{N_1'=0}^{N-1} P_{N-1}(N_1') = \frac{N}{2} \end{split}$$

Como previso na simulação, o valor esperado desse sistema é N/2. O cálculo de  $\langle (N_1 - \langle N_1 \rangle) \rangle$  é feito usando esse resultado:

$$\langle (N_1 - \langle N_1 \rangle) \rangle = \sum_{N_1 = 0}^{N} (N_1 - N/2) P_N(N_1) = \sum_{N_1 = 0}^{N} N_1 P_N(N_1) - \frac{N}{2} \sum_{N_1 = 0}^{N} P_N(N_1)$$
$$= \frac{N}{2} - \frac{N}{2} = 0$$

Faz sentido que o deslocamento médio em relação a média seja zero. Agora vamos calcular a variância  $\sigma^2$ , fazendo também uma mudança de variáveis  $N_1-2=N_1'$ :

$$\begin{split} \sigma^2 &= \langle (N_1 - \langle N_1 \rangle)^2 \rangle = \langle N_1^2 + \langle N_1 \rangle^2 - 2N_1 \langle N_1 \rangle) \rangle = \langle N_1^2 \rangle + \langle N_1 \rangle^2 - \langle 2N_1 \langle N_1 \rangle \rangle = \langle N_1^2 \rangle + \langle N_1 \rangle^2 - 2\langle N_1 \rangle^2 \\ &= \langle N_1^2 \rangle - \langle N_1 \rangle^2 = \sum_{N_1 = 0}^N N_1^2 P_N(N_1) - \frac{N^2}{4} \quad \text{então vamos resolver o primeiro termo:} \end{split}$$

$$\begin{split} \langle N_1^2 \rangle &= \sum_{N_1=0}^N N_1^2 \frac{N!}{N_1!(N-N_1)!} \frac{1}{2^N} = \sum_{N_1=0}^N (N_1^2 - N_1) \frac{N!}{N_1!(N-N_1)!} \frac{1}{2^N} + \sum_{N_1=0}^N N_1 \frac{N!}{N_1!(N-N_1)!} \frac{1}{2^N} \\ &= \sum_{N_1=0}^N (N_1^2 - N_1) \frac{N!}{N_1!(N-N_1)!} \frac{1}{2^N} + \frac{N}{2} = \sum_{N_1=1}^N (N_1 - 1) \frac{N!}{(N_1 - 1)!(N-N_1)!} \frac{1}{2^N} + \frac{N}{2} \\ &= \sum_{N_1=2}^N \frac{N!}{(N_1 - 2)!(N-N_1)!} \frac{1}{2^N} + \frac{N}{2} = \sum_{N_1'=0}^{N-2} \frac{N(N-1)(N-2)!}{(N_1')!(N-2-N_1')!} \frac{1}{2^N} + \frac{N}{2} \\ &= \frac{N(N-1)}{4} \sum_{N_1'=0}^{N-2} \frac{(N-2)!}{(N_1')!(N-2-N_1')!} \frac{1}{2^{N-2}} + \frac{N}{2} = \frac{N(N-1)}{4} \sum_{N_1'=0}^{N-2} P_{N-2}(N_1') + \frac{N}{2} = \frac{N(N-1)}{4} + \frac{N}{2} \end{split}$$

então:

$$\sigma^2 = \frac{N(N-1)}{4} + \frac{N}{2} - \frac{N^2}{4} = \frac{-N}{4} + \frac{N}{2} = \frac{N}{4}$$

Então o coeficiente de variação, é:

$$\frac{\sqrt{\sigma^2}}{\langle N_1 \rangle} = \frac{\sqrt{N/2}}{N/2} = \frac{1}{\sqrt{N}}$$

d)

Utilizando a equação estocástica deduzida anteriormente, podemos escrever uma expressão para a evolução temporal do valor esperado  $\langle N_1 \rangle_t$ :

$$\langle N_1 \rangle_{t+\Delta t} = \sum_{N_1=0}^{N} N_1 P_{(N_1,t+\Delta t)} = \sum_{N_1=0} N_1 \left[ P_{(N_1-1,t)} \frac{N - (N_1-1)}{N} + P_{(N_1+1,t)} \frac{N_1+1}{N} \right]$$

Vamos analisar o primeiro termo da somatória:

$$S_1 = \sum_{N_1=0}^{N} N_1 \left[ P_{(N_1-1,t)} \frac{N - (N_1-1)}{N} \right]$$

quando  $N_1 = 0$ , devemos ter  $P_{(N_1-1,t)} = 0$ , pois não pode haver probabilidade de ter um número negativo de bolas. Então podemos reescrever a somatória começando em  $N_1 = 1$  e fazer uma mudança de variáveis  $N_1' = N_1 - 1$ :

$$S_{1} = \sum_{N_{1}=1}^{N} N_{1} \left[ P_{(N_{1}-1,t)} \frac{N - (N_{1}-1)}{N} \right] = \sum_{N'_{1}=0}^{N-1} (N'_{1}+1) \left[ P_{(N'_{1},t)} \frac{N - N'_{1}}{N} \right]$$
$$= \sum_{N'_{1}=0}^{N} (N'_{1}+1) \left[ P_{(N'_{1},t)} \frac{N - N'_{1}}{N} \right] = \sum_{N'_{1}=0}^{N} P_{(N'_{1},t)} \frac{NN'_{1} - N'_{1}^{2} + N - N'_{1}}{N}$$

sendo que na segunda linha incluímos o termo  $N_1'=N$  na somatória, pois ele é nulo. Já para o termo  $S_2$  temos:

$$S_2 = \sum_{N_1=0}^{N} N_1 \left[ P_{(N_1+1,t)} \frac{N_1+1}{N} \right]$$

Quando  $N_1 = N$ , o termo  $P_{(N_1+1,t)}$  deve ser nulo, pois não pode haver probabilidade de existir mais do que N bolas. Usando isso e fazendo uma mudança de variável:  $N_1 + 1 = N_1''$ , podemos escrever:

$$S_{2} = \sum_{N_{1}=0}^{N-1} N_{1} \left[ P_{(N_{1}+1,t)} \frac{N_{1}+1}{N} \right] = \sum_{N_{1}''=1}^{N} (N_{1}''-1) \left[ P_{(N_{1}'',t)} \frac{N_{1}''}{N} \right]$$
$$= \sum_{N_{1}''=0}^{N} N_{1}'' \left[ P_{(N_{1}'',t)} \frac{N_{1}''-1}{N} \right] = \sum_{N_{1}''=0}^{N} P_{(N_{1}'',t)} \frac{N_{1}''^{2}-N_{1}''}{N}$$

em que na última linha adicionamos o termo  $N_1''=0$ , pois ele é nulo. Juntando agora as duas somatórias, como as duas somam sobre termos iguais, podemos reescrevê-las com uma mesma variável, por exemplo  $N_1''=N_1'=N_1$  e obtemos:

$$\begin{split} \langle N_1 \rangle_{t+\Delta t} &= \sum_{N_1'=0}^N P_{(N_1',t)} \frac{N N_1' - {N_1'}^2 + N - N_1'}{N} + \sum_{N_1''=0}^N P_{(N_1'',t)} \frac{N_1''^2 - N_1''}{N} \\ &= \sum_{N_1=0}^N P_{(N_1,t)} \frac{N N_1 - N_1^2 + N - N_1}{N} + \sum_{N_1=0}^N P_{(N_1,t)} \frac{N_1^2 - N_1}{N} \\ &= \sum_{N_1=0}^N P_{(N_1,t)} \frac{N N_1 + N - 2N_1}{N} = \sum_{N_1=0}^N P_{(N_1,t)} \left(N_1 + 1 - \frac{2}{N} N_1\right) \\ &= \langle N_1 \rangle_t + 1 - \frac{2}{N} \langle N_1 \rangle_t \end{split}$$

Então temos que:

$$\langle N_1 \rangle_{t+\Delta t} - \langle N_1 \rangle_t = 1 - \frac{2}{N} \langle N_1 \rangle_t$$

e para  $\Delta t \rightarrow 0,$  podemos pensar na forma diferencial dessa equação como:

$$\frac{\partial}{\partial t}\langle N_1(t)\rangle = 1 - \frac{2}{N}\langle N_1(t)\rangle$$

que é uma equação diferencial que tem como solução geral:

$$\langle N_1(t)\rangle = Ae^{\frac{-2t}{N}} + \frac{N}{2}$$

Usando então como condição inicial que em t = 0:  $N_1(0) = N$ , igual ao que fizemos na simulação, conseguimos encontrar o parâmetro a:

$$N_1(0) = a + N/2 = N \rightarrow a = N/2$$

Logo chegamos na solução:

$$\langle N_1(t)\rangle = \frac{N}{2}e^{\frac{-2t}{N}} + \frac{N}{2}$$

que coincide com o que encontramos na simulação, que para t<br/> grande, quando  $t \to \infty$ , temos:

$$\langle N_1(t)\rangle \to \frac{N}{2}$$

Assim, para t grande a solução tende para o valor médio N/2, tal como vimos na simulação.

# 7 Método de Monte Carlo - Ising 2D

Na Mecânica Estatística nós estamos interessados em calcular as médias canônicas de uma grandeza A, tal que  $\langle A \rangle$  é definida através da soma de todas as configurações microscópicas **possíveis** de um sistema com N sítios. Em sistemas grandes, a medida que N aumenta, essa soma se torna numericamente impraticável. A ideia do método de Monte Carlo consiste em obter uma estimativa para a média das grandezas  $\langle A \rangle$  através de uma média aritmética simples em que somamos através de poucas configurações, porém selecionadas de forma a serem significativas, pois são representativas do equilíbrio.

Aqui iremos simular uma rede quadrada de lado de tamanho N com condições periódicas de contorno para obter uma estimativa do comportamento da magnetização espontânea. Pelo resultado obtido por Osanger, a magnetização espontânea é dada pela seguinte expressão:

$$m_0 = \left[1 - \left(\sinh\frac{2}{T}\right)^{-4}\right]^{\frac{1}{8}}$$

em que essa temperatura é definida como  $T = \frac{1}{\beta J}$ . A temperatura crítica é definida pelo ponto em que  $m_0 = 0$ , ou seja:  $\sinh \frac{2}{T} = 1$ , que define o valor:

$$T_c = 2.269185 \frac{J}{k_B}$$

Magnetização espontânea - Ising rede quadrada



O algoritmo que iremos simular é o **Algoritmo de Metrópolis**, e o código feito para simulálo e gerar as figuras foi feito em Python 3 e está disponível no Apêndice B. Começamos com a condição inicial corresponde a todos os spins para baixo ( $\sigma = -1$ ). Então percorremos todos os sítios da rede, passando por todos da primeira linha, depois todos da segunda linha, e assim por diante. Em cada sítio, dado pelas coordenadas (i, j), calculamos a diferença de energia entre sua orientação inicial  $\sigma_{i,j}^i$  e sua orientação invertida  $\sigma_{i,j}^i = -\sigma_{i,j}^i$ :

$$\Delta E = -J(\sigma_{i,j}^f - \sigma_{i,j}^i)(\sigma_{i-1,j} + \sigma_{i+1,j} + \sigma_{i,j-1} + \sigma_{i,j+1})$$

essa diferença de energia corresponde a soma das diferenças de energia da mudança de orientação do sítio (i,j) com cada um dos seus 4 vizinhos mais próximos, com quem tem ligação.

Se  $\Delta E < 0$ , isso significa que essa mudança diminue a energia do sistema, ou seja, é "energeticamente favorável", e portanto é mais provável de ocorrer, levando o sistema para o estado de equilíbrio; é por isso que nesse caso aceitamos a mudança sempre, o sítio (i,j) passa a terorientação  $\sigma_{i,j}^f$ , e seguimos adiante para analisar outro sítio.

Se  $\Delta E \geq 0$ , isso significa que essa mudança aumenta ou não muda a energia do sistema, ou seja, é "energeticamente desfavorável", e portanto mais improvável de ocorrer espontaneamente em um sistema. Nesse caso, nós calculamos  $r = \exp\left(-\frac{\Delta E}{T}\right)$  e geramos um número uniformemente aleatório no intervalo [0,1[, que chamamos de z. Se r>z aceitamos a mudança e o sítio (i,j) passa a ter orientação  $\sigma^f_{i,j}$ , ou seja, quanto maior r maior a chance de ele ser aceito. Isso significa que quanto menor for a relação  $\frac{\Delta E}{T}$ , maior é a chance de se aceitar a mudança. Ou seja, se T é grande temos bastante chance de aceitá-la, e podemos entender isso pensando que se a temperatura na rede é grande, há mais energia no sistema, aumentam as flutuações e a probabilidade de haver uma mudança de orientação "custosa"em um sítio é maior. Seguindo o mesmo raciocínio, se  $\Delta T$  é positivo, porém pequeno, as chances de você aceitar a mudança também aumentam, pois apesar de essa ser uma mudança de energia "custosa", o custo dela não é tão alto. Obviamente então, se r < z não aceitamos a mudança, e o sítio (i,j) continua sendo  $\sigma^f_{i,j}$ . Isso porque esse é o caso inverso do que acabamos de analisar:  $\Delta E$  é grande (mudança de energia custosa) e/ou a temperatura T é pequena, havendo pouca energia no sistema.

Fazemos essa análise de  $\Delta E$  passando por todos os NxN sítios do sistema fazendo, e fazemos isso K vezes no sistema. K é o número de passos/iterações de Monte Carlo, e nossa hipótese é que depois de K>100 o sistema deve convergir para um estado de equilíbrio, ou seja, K>100 é suficiente para sair da região transiente associada à condição inicial. Nós fizemos no total K=300 iterações de Monte Carlo, ou seja, geramos 300 configurações diferentes, cada uma delas sendo identificada como k, com k=0,1,2,...299.



Figura 2: Vizualização de redes de diferentes tamanhos N, todas elas foram simuladas para mesma temperatura e usando o algoritmo descrito acima, com mesma condição inicial. Todas elas correspodem a configuração k=299.

A variável que queremos estudar é a magnetização, ou seja, queremos calcular a magnetização média para cada rede de tamanho N. Para isso iremos considerar somente as configurações entre  $100 \le k \le 299$ , que designamos as configurações representativas da rede, pois consideramos que representam o estado de equilíbrio.

O módulo da magnetização de uma configuração, para cada uma das k configurações "representativas" de uma rede de tamanho N, com k = 100, ..., 299, é calculado como:

$$|m_k(T)| = \Big| \sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_{(i,j)} \Big|$$

Com esses valores, fazemos a média da magnetização para a rede de tamanho N, ou seja:

$$m_N(T) = \sum_{k=100}^{299} |m_k(T)|$$

Nas figuras abaixo (Figura 3) vemos que conforme N aumenta as flutuações estatísticas diminuem. Além disso, plotamos os gráficos para três temperaturas, uma delas muito abaixo da  $T_c$ : T=1.2 (cor azul), outra muito acima: T=4 (cor verde) e uma ao redor de  $T_c$ : T=2.2692 (laranja). Com isso, vemos também que para valores ao redor da temperatura crítica, as flutuações estatísticas também são maiores.



Figura 3: Magnetização de cada configuração. O eixo x é a variável k, e o y a variável  $|m_k(T)|$ . As retas horizontais são as médias para cada N,  $m_N(T)$ , definida acima como das configurações  $100 \le k \le 299$ .

Então, escolhemos alguns valores de temperatura e calculamos a média  $m_N(T)$  para cada uma das redes N, obtendo a relação esperada:



A linha preta tracejada representa a temperatura crítica  $T_c$ . Como esperado, quanto maior a rede, melhor é a aproximação de Monte Carlo, obtendo um comportamento mais próximo da relação teórica obtida por Onsager. Além disso, apesar de ser difícil de vizualizar devido a alta densidade de pontos e linhas, ao redor do ponto  $T_c$ , próximo de  $m_N(T) \sim 0.7$ , vemos que há uma flutuação maior dos pontos, que oscilam muito devido à proximidade do ponto crítico.

Para vizualizar esse resultado na rede, geramos a imagem da configuração k=299 da rede N=128 para algumas temperaturas. Para uma temperatura muito baixa, os spins deveme estar alinhados, não havendo (T=0.1) ou havendo pouquíssimos (T=1.2) spins com orientação diferente. Nesse caso, com alta ordenação da rede, obtemos magnetização média  $m_N(T)\sim 1$ , como esperado.

Para temperaturas muito altas (T=4), os spins estão completamente desordenados, e obtemos magnetização média  $m_N(T) \sim 0$ .

Para temperaturas ao redor da temperatura crítica, há magnetização diferente de zero, porém de uma configuração para outra há grande flutuação.



Figura 4: Rede 128x128, k=299 para diferentes temperaturas, mostrando vizualmente o comportamento esperado.

## APÊNDICE A

```
from matplotlib import pyplot as plt
import random as rand
#Simulação
def urna_T(N,T):
    N1 = N
    N2 = N - N1
    n1 = [N1]
    n2 = [N2]
    for t in range(T):
        r = rand.uniform(0,1)
        if (r \le N1/N):
            N1 = N1 - 1
            N2 = N2 + 1
        else:
            N1 = N1 + 1
            N2 = N2 - 1
        n1.append(N1)
        n2.append(N2)
    return n1,n2
#Parâmetros
N = 200 #200
T = 2000
#Figura
n1_20,n2 = urna_T(20,T)
n1_200,n2 = urna_T(200,T)
t = [i for i in range(T+1)]
plt.plot(t,n1_20,'-',label="N=20")
plt.plot(t,n1_200,'-',label="N=200")
plt.hlines(100,0,T,'orange')
plt.hlines(10,0,T,'blue')
plt.xlabel('Tempo')
plt.ylabel('N1')
plt.ylim(0,N+1)
plt.xlim(0,T+1)
plt.legend()
plt.title('Número de bolas na caixa 1 com o tempo')
```

### APÊNDICE B

```
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
      FUNÇÕES QUE REALIZAM SIMULAÇÃO:
        #Função que analisa deltaE e devolve o sigma novo para cada sítio da rede
def deltaE_analysis(i:int,j:int,Matrix:tuple,T:float):
        sigma_i = Matrix[i][j]
        sigma_f = Matrix[i][j]*(-1) #Muda o valor do spin
#Condições de contorno:
if (i == N-1 and j == N-1):
        deltaE = - (sigma_f - sigma_i)*(Matrix[i-1][j] + Matrix[0][j] + Matrix[i][j-1] + Matrix[i][0])
                 #na unidade de J
elif(i == N-1):
        deltaE = - (sigma_f - sigma_i)*(Matrix[i-1][j] + Matrix[0][j] + Matrix[i][j-1] + Matrix[i][j+1] + Matrix[i
                 #na unidade de J
elif(j == N-1):
        deltaE = -(sigma_f - sigma_i)*(Matrix[i-1][j] + Matrix[i+1][j] + Matrix[i][j-1] + Matrix[i][0]
                 #na unidade de J
else:
        deltaE = -(sigma_f - sigma_i)*(Matrix[i-1][j] + Matrix[i+1][j] + Matrix[i][j-1] + Matrix[i][j]
                 #na unidade de J
        #Análise do deltaE
        if (deltaE<0):</pre>
                return sigma_f
        else:
                r = math.exp(-deltaE/T)
                 z = np.random.uniform(0,1)
                 if (r>z):
                         return sigma_f
                 else:
                         return sigma_i
#Simulação de Monte Carlo, passa por todos os sítios da rede,
#e faz isso com um número de iterações de
#Monte carlo dado por "n_configs", que será o número de configurações simuladas.
#A simulação é feita para uma temperatura e um tamanho de
#rede específicos.
#Devolve em Matrix a última configuração da rede (para vizualização apenas)
#Devolve em mag o valor absoluto da magnetização média de
#cada configuração das "n_configs" configurações
def montecarlo(N,orientation,n_configs,T):
        Matrix = [[orientation for i in range(N)] for j in range(N)] #Matrix[i][j] (i=linha, j=coluna)
        for p in range(n_configs):
                 for i in range(N):
                         for j in range(N):
                                  Matrix[i][j] = deltaE_analysis(i,j,Matrix,T)
                mag.append(np.absolute(np.sum(Matrix))/(N*N))
```

```
#Simulação para diferentes temperaturas e UM tamanho de rede:
#Devolve em Matrix a última configuração da rede (para vizualização apenas) de cada temperatura
#Devolve em mag o valor absoluto da magnetização média de cada configuração das "n_configs" config
def montecarlo_variasT(N, orientation, n_configs, T):
   Matrix = []
   mag = []
   for i in range(len(T)):
       mat,b = montecarlo(N,orientation,n_configs,T[i])
       #é a Matriz da última configuração para cada T
        #para vizualização
       Matrix.append(mat)
        #é o vetor com a magnetização para cada
        #uma das configurações em passos, para cada T
       mag.append(b)
   return Matrix, mag
   # Calcula e devolve a magnetização média para cada temperatura em um vetor de tamanho T
#Essa média é calculada com todas as configurações a partir de init iterações
#(descartamos as primeiras init configurações)
def mag_media(mag,n_configs,T,init):
   return [sum(mag[i][init:])/(n_configs-init) for i in range (len(T))]
   TIPOS DE PLOTS PARA VIZUALIZAÇÃO:
   #Plot para ver a última configuração simulada por T e por N: você vê a rede quadrada
#Chamar da seguinte maneira: fig_rede(Matrix_N[i][j],N_plot[i],n_configs,T[j]),
#i = indice que define o N; j = indice que define a T
def fig_rede(Matrix,N,n_configs,T):
    #Mostra a matriz como uma figura
   plt.matshow(Matrix,cmap='Greys',origin='upper',extent=(0, N, N, 0))
   #Legenda para as marcações branca e preta na rede
   patches = [mpatches.Patch(color='black',label="Spin +1"),
              mpatches.Patch(color='white',label="Spin -1")]
               #Se todos os spins estiverem alinhados igualmente,
               # o mapa será branco independente de ser -1 ou 1
            #devido ao modo como a função colormap distribue cores.
   plt.legend(handles=patches,bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
   plt.title('MC na rede %1.fx%1.f após %1.f passos e T=%1.4f' %(N,N,n_configs,T),y=1.08)
   plt.savefig('Simulação T=%1.3f e rede N=%1.f .png' %(T,N),bbox_inches="tight" )
   plt.show()
```

return Matrix, mag

return

```
#Plot para ver um grafico da magnetização para
#todas as configurações, Y:mag/config X:n_configs
#Chamar da seguinte maneira:
#fig_mag_por_config(mag_N[i],n_configs,mag_med_N[i],T,posicoes,N_plot[i])
#o indice i chama o N certo
#Ela define vetores T_plot, mag_plot, mag_med_plot que terão somente as T,mag,mag_med que vc
#quer que sejam plotada, definidas pelas posições
#Pois se plotar todas as T fica muito poluído
def fig_mag_por_config(mag,n_configs,mag_med,T,posicoes,N):
   plt.figure(figsize=(6,4))
   x_plot = [i for i in range(n_configs)]
   T_plot = []
   mag_plot = []
   mag_med_plot = []
   for i in (posicoes):
       T_plot.append(T[i])
        mag_plot.append(mag[i])
       mag_med_plot.append(mag_med[i])
   color = ['C0','C1','C2','C3','C4','C5','C6']
   for i in range(len(posicoes)):
        plt.plot(x_plot,mag_plot[i],label="T=%1.4f"%T_plot[i])
        plt.hlines(mag_med_plot[i],0,n_configs,color[i])
   plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
   plt.xlabel('Número de iterações que geram configurações')
   plt.ylabel('Magnetização de cada configuração')
   plt.title('Magnetização para diferentes temperaturas, N = %1i"'%N)
   plt.savefig('Simulação varias T e rede N=%1.f .png' %(N),bbox_inches="tight" )
   plt.show()
# Plot para ver magnetização média por temperatura para diferentes redes de tamanho N:
#Chamar da seguinte maneira: fig_mag_por_T(mag_med_N,T,N)
#Em que N é um vetor com os tamanhos de rede simulados, em ordem, também salvar nos vetores:
#mag_med_N a magnetização média para cada simulação de rede tamanho N
def fig_mag_por_T(mag_med_N,T,N):
   plt.figure(figsize=(5,9))
   for i in range(len(N)):
        plt.plot(T,mag_med_N[i],'-o',label="N=%1i"%N[i])
   plt.vlines(2.269185,0,0.8,colors='k',linestyles='dashed')
   lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
   plt.xlabel('Temperatura [$k_BT$ / J]')
   plt.ylabel('Magnetização média $|m|$')
   plt.ylim(0,1.02)
   plt.title('Magnetização para diferentes redes de NxN')
   plt.savefig('Simulação varias T e varios N .png',bbox_inches="tight")
```

#### **Parâmetros**

```
#Parametros fixos sempre
up = 1; down = -1
orientation = down
#Parametros fixos para todas as simulações
np.random.seed(1)
T = [0.1, 1.2, 2, 2.2, 2.269185, 2.28, 2.4, 2.8, 3.4, 4] #Temperatura crítica é Tc = 2.269185
n_configs = 300 #número de configurações geradas/iterações de Monte Carlo
#Quero as seguintes posições de T para plotar no gráfico:
posicoes = [T.index(1.2),T.index(2.269185),T.index(4)]
#Parâmetros que devem ser modificados por simulação:
#N = ; #Tamanho de uma lateral da rede quadrada
N_plot = [0 for i in range(5)]
mag_N = [0 \text{ for i in range}(5)]
Matrix_N = [0 for i in range(5)]
mag_med_N = [0 for i in range(5)]
   EXEMPLO DE COMO CHAMAR FUNÇÕES:
#Para simular uma rede de tamanho N
N = 8
i = 0
N_plot[0] = N
Matrix_N[0], mag_N[0] = montecarlo_variasT(N, orientation, n_configs, T)
init = 100
#Número de configurações iniciais (antes do equilíbrio) que serão descartadas para a média
mag_med_N[0] = mag_media(mag_N[0],n_configs,T,init)
#Para vizualizar:
fig_mag_por_config(mag_N[0],n_configs,mag_med_N[0],T,posicoes,N_plot[i])
fig_rede(Matrix_N[0][4],N_plot[0],n_configs,T[4])
#Para gerar o plot para ver magnetização média por temperatura para diferentes
#redes de tamanho N, deve-se primeiro simular os 5 tamanhos de rede.
```