MATH 204 Cheat Sheet

Simple Linear Regression

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

 β_1 is the change in the mean of Y_i for a 1 unit increase in x_i , β_0 is the mean when $x_i = 0$

$$S_{XX} = \sum (x_i - \bar{x})^2, S_{YY} = \sum (y_i - \bar{y})^2, S_{XY} = \sum (x_i - \bar{x})(y_i - \bar{y})$$

Estimating σ^2

- 1. Standard deviation of $\hat{\beta}_1$: $\sigma_{\hat{\beta}_1} = \sqrt{var(\hat{\beta}_1)} = \sigma/\sqrt{S_{XX}}$
- 2. Variance of residuals: $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i \hat{y}_i)^2 = \frac{SSE}{n-2}$
- 3. $SSE = S_{YY} \hat{\beta}_1 S_{XY}$
- 4. $\hat{\sigma}_{\hat{\beta}_1} = \hat{\sigma}/\sqrt{S_{XX}}$

Inference about β_1

- 1. When the error terms are normal, $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma^2/S_{XX})$
- $2. T = \frac{\hat{\beta}_1 \beta_1}{\hat{\sigma}/S_{XX}} \sim t_{n-2}$

$$\mathcal{H}_0: \beta_1 = 0 \quad vs \quad \mathcal{H}_a: \beta_1 \neq 0$$

$$T_{obs} = \frac{\hat{\beta}_1}{\hat{\sigma}_{\beta_1}} = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{XX}}}$$

Compare T_{obs} with the student distribution $t_{n-2,\alpha/2}$ to get RR.

- Could get same conclusion from p-value, which illustrates the probability that our results occurred under H₀.
- 4. Confidence interval for β_1 : $\hat{\beta}_1 \pm t_{n-2,\alpha/2} \frac{\hat{\sigma}}{\sqrt{S_{XX}}}$.

ANOVA

- 1. $SS_{reg} = S_{YY} SSE = \sum (y_i \bar{y})^2 \sum (y_i \hat{y}_i)^2 = \sum (\hat{y}_i \bar{y})^2$
- 2. $T \sim t_v$, $T^2 \sim \mathcal{F}(1, v)$, where the latter is the Fisher-Snedecor dis.
- 3. ANOVA table guide:
 - $(X, Sum Sq) = SS_{reg}$
 - (Residuals, Sum Sq) = SSE
 - (Residuals, Df) = n-2
- 4. lm summary table
 - t-value (slope): $T_{obs} = \frac{\hat{\beta}_1}{\hat{\sigma}_{\hat{\beta}_1}}$
 - F-statistic : T_{obs}^2
 - Residual std error: $\hat{\sigma}$

Correlation

- $1. \ \operatorname{corr}(X,Y) = \operatorname{corr}(Y,X)$
- 2. $r = S_{XY}/\sqrt{S_{XX}S_{YY}}$ is an estimator for ρ (the true pop. correlation).
- 3. $(1-\alpha)100\%$ confidence interval for ρ : transform r to $z=0.5\ln(\frac{1+r}{1-r})$. Build an interval: $z\pm\frac{z_{\alpha/2}}{\sqrt{n-3}}=(c_l,c_u)$, where $z_{\alpha/2}$ is from the standard Normal table. Then, the interval is $\left(\frac{e^{2c}L-1}{e^{2c}L+1},\frac{e^{2c}U-1}{e^{2c}U+1}\right)$
- 4. Coefficient of determination: $R^2 = 1 SSE/S_{YY}$

Estimating response

- 1. Mean response confidence interval: $\hat{y}_0 \pm t_{n-2,\alpha/2} \hat{\sigma} \sqrt{1/n + (x_0 \bar{x})^2/S_{XX}}$
- 2. Individual value Y_0 confidence interval: $\hat{y}_0 \pm t_{n-2,\alpha/2} \hat{\sigma} \sqrt{1 + 1/n + (x_0 - \bar{x})^2/S_{XX}}$

Residual Analysis

- 1. Assumptions: ϵ_i are independent, $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- 2. Check Normality with QQ plot and histogram of the studentized residuals, which have mean 0, all residuals should lie within 3 std deviations.

3. Check $E(\epsilon_i)=0$ by plotting studentized residuals against fitted values. Points should have equal variance and zero mean, i.e. evenly distributed.

Polynomial Regression

 $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + ... + \beta_p x_i^p \epsilon_i$, not all intermediate powers need be present.

Higher-order terms are specified using the $I(\cdot)$ function in R.

- 1. Test that the quadratic term is zero: $H_0: \beta_2 = 0$.
- 2. If rejected, use linear and quadratic terms in model.
- 3. If not rejected, there is no evidence that the quadratic model gives significant improvement over the linear model.

Multiple Regression (2+ covariates)

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i$$

The model is linear in the parameters (β_i) , not necessarily in the covariates (x_i) . Same assumptions are made about the residuals.

 β_j is the change in the mean of Y_i for a 1 unit increase of x_{ij} when holding all other variables constant.

- 1. $\hat{\sigma}^2 = (n (K+1))^{-1} \sum (y_i \hat{y}_i)^2 = SSE/(n (K+1))$ where (K+1) is the number of coefficients β_i in the model.
- 2. Can test each coefficient individually with same hypothesis as in simple regression. In which case, we test for e.g. β_j after adjusting for all other variables.
- 3. Confidence interval for β_j : $\hat{\beta}_j \pm t_{n-(K+1),\alpha/2} \cdot \hat{\sigma}_{\hat{\beta}_j}$
- 4. Global Fit

$$R_a^2 = 1 - \frac{n-1}{n-(K+1)} \left(\frac{SSE}{S_{YY}} \right) = 1 - \frac{n-1}{n-K-1} (1 - R^2)$$

e.g. if $R_a^2=0.80,$ then we say that the model explains 80% of the variance in Y.

Overall hypothesis:

$$\mathcal{H}_0: \beta_1 = \beta_2 = \dots = 0$$
 $\mathcal{H}_a:$ at least one $\beta_i \neq 0$

$$F = \frac{(S_{YY} - SSE)/K}{SSE/(n - (K+1))} = \frac{R^2/K}{(1 - R^2)/(n - (K+1))}$$

 \mathcal{H}_0 is rejected for $F > \mathcal{F}_{\alpha,K,n-(K+1)}$.