Infinite-Horizon Problems

PRELIMINARIES

- In a stationary infinite-horizon Markov decision process, each policy $\pi = (d_1, d_2, ...)$ induces a bivariate discrete-time reward process $\{r(X_t, d_t(X_t)), t = 1, 2, ...\}$.
- The expected total reward of policy π , $V^{\pi}(s)$ is defined to be

$$V^{\pi}(s) = \lim_{N \to \infty} \mathbb{E}_{s}^{\pi} \left\{ \sum_{t=1}^{N} r(X_{t}, d_{t}(X_{t})) \right\}$$
$$= \lim_{N \to \infty} V_{N+1}^{\pi}(s).$$

 In some models, the limit may not exist. When the limit exists and when interchanging the limit and expectation is valid, we write

$$V^{\pi}(s) = \mathbb{E}_{s}^{\pi} \left\{ \sum_{t=1}^{\infty} r(X_{t}, d_{t}(X_{t})) \right\}.$$

PRELIMINARIES

• The expected total discounted reward of policy π , $V_{\lambda}^{\pi}(s)$ is defined to be

$$V_{\lambda}^{\pi}(s) = \lim_{N \to \infty} \mathbb{E}_{s}^{\pi} \left\{ \sum_{t=1}^{N} \lambda^{t-1} r(X_{t}, d_{t}(X_{t})) \right\},$$

for $0 \le \lambda < 1$. The limit exists when

$$\sup_{s\in S}\sup_{a\in A_s}|r(s,a)|=M<\infty.$$

 When the limit exists and interchaning the limit and expectation are valid, we write

$$V_{\lambda}^{\pi}(s) = \mathbb{E}_{s}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_{t}, d_{t}(X_{t})) \right\}.$$

THE VALUE OF A POLICY

• We use the notation $d^{\infty} = (d, d, ...)$ to denote the policy that decision rule d is used in each period.

- Decision Epochs: $T = \{1, 2, ..., N\}, N \leq \infty$.
- States: $S = \{s_1, s_2\}$
- Actions: $A_{s_1} = \{a_{1,1}, a_{1,2}\}, A_{s_2} = \{a_{2,1}\}$

THE VALUE OF A POLICY

- Rewards: $r_t(s_1, a_{1,1}) = 5$, $r_t(s_1, a_{1,2}) = 10$, $r_t(s_2, a_{2,1}) = -1$, $r_N(s_1) = r_N(s_2) = 0$ if $N < \infty$
- Transition Probabilities:

$$p_t(s_1 \mid s_1, a_{1,1}) = 0.5, p_t(s_2 \mid s_1, a_{1,1}) = 0.5$$

$$p_t(s_1 \mid s_1, a_{1,2}) = 0, p_t(s_2 \mid s_1, a_{1,2}) = 1$$

$$p_t(s_1 \mid s_2, a_{2,1}) = 0, p_t(s_2 \mid s_2, a_{2,1}) = 1$$

THE VALUE OF A POLICY

• Suppose there are two decision rules d and e, where $d(s_1)=a_{1,1},\,e(s_1)=a_{1,2}$ and $d(s_2)=e(s_2)=a_{2,1}$. Based on the decision rules, compute $V_N^{e^\infty}(s),\,V_N^{d^\infty}(s),\,V_\lambda^{e^\infty}(s)$ and $V_\lambda^{d^\infty}(s)$ for $s=s_1,s_2$.

POLICY EVALUATION

• If $\pi = (d, d, ...)$, then the value function

$$V_{\lambda}^{\pi}(s) = r(s, d) + \lambda \sum_{j \in S} p(j \mid s, d) V_{\lambda}^{\pi}(j),$$

or

$$V_{\lambda}^{\pi} = r_d + \lambda P_d V_{\lambda}^{\pi}.$$

Define the linear transformation L_d by

$$L_d V \equiv r_d + \lambda P_d V.$$

In this notation, the DP equation becomes

$$V_{\lambda}^{\pi}=L_{d}V_{\lambda}^{\pi}.$$

This means that V_{λ}^{π} is a fixed point of L_d .

POLICY EVALUATION

• The above discussion leads to the following important result: V_{λ}^{π} is the unique solution of

$$V = r_d + \lambda P_d V.$$

Further, V_{λ}^{π} may be written as

$$V_{\lambda}^{\pi}=(I-\lambda P_d)^{-1}r_d.$$

OPTIMALITY EQUATION

We define operator L by

$$LV = \max_{d} \{ r_d + \lambda P_d V \}.$$

We now represent the optimality equations in vector notation that

$$V = \max_{d} \{ r_d + \lambda P_d V \} = LV.$$

In component notation the optimality equations then become

$$V(s) = \max_{a} \{r(s, a) + \lambda \sum_{j \in S} p(j \mid s, a) V(j)\}.$$

• The optimality equations are

VALUE ITERATION ALGORITHM

- 1. Set $V_0 = 0$, specify $\epsilon > 0$, and set n = 0 for all $s \in S$
- 2. For each $s \in S$, compute $V_{n+1}(s)$ by

$$V_{n+1}(s) = \max_{a \in A_s} \{r(s, a) + \lambda \sum_{j \in S} p(j \mid s, a) V_n(j)\}$$

3. If

$$||V_{n+1}-V_n||<\epsilon(1-\lambda)/2\lambda,$$

go to step 4. Otherwise increment *n* by 1 and return to step 2.

4. For each $s \in S$, choose

$$d(s) = \underset{a \in A_s}{\operatorname{argmax}} \{ r(s, a) + \lambda \sum_{j \in S} p(j \mid s, a) V_{n+1}(j) \}$$

and stop.

• Use value iteration to solve this model. We set $\epsilon=0.01$, $\lambda=0.95$, and choose $V(s_1)=V_0(s_2)=0$. The recursions become

$$\begin{array}{lcl} V_{n+1}(s_1) & = & \max\{5 + 0.5\lambda \, V_n(s_1) + 0.5\lambda \, V_n(s_2), 10 + \lambda \, V_n(s_2)\} \\ V_{n+1}(s_2) & = & -1 + \lambda \, V_n(s_2). \end{array}$$

• It requires 162 iterations to satisfy stopping criterion

$$||V_{n+1} - V_n|| < 0.01 \cdot 0.05/1.9 = 0.00026$$

n	$v''(s_1)$	$v^n(s_2)$	$ v^n - v^{n-1} $
0	0	0	
1	10.00000	-1	10.0
2	9.27500	-1.95	0.95
3	8.47937	-2.8525	0.9025
4	7.67276	-3.70988	0.857375
5	6.88237	-4.52438	0.814506
6	6.12004	-5.29816	0.773781
7	5.39039	-6.03325	0.735092
8	4.69464	-6.73159	0.698337
9	4.03244	-7.39501	0.66342
10	3.40278	-8.02526	0.630249
20	-1.40171	- 12.8303	0.377354
30	-4.27865	- 15.7072	0.225936
40	-6.00119	-17.4298	0.135276
50	-7.03253	- 18.4611	0.080995
60	-7.65003	- 19.0786	0.048495
70	-8.01975	- 19.4483	0.029035
80	-8.24112	- 19.6697	0.017385
90	-8.37366	-19.8022	0.010409
100	-8.45302	-19.8816	0.006232
120	-8.52898	- 19.9576	0.002234
130	-8.54601	- 19.9746	0.001338
140	-8.55621	- 19.9848	0.000801
150	- 8.56232	- 19.9909	0.000480
160	- 8.56597	- 19.9945	0.000287
161	-8.56625	- 19.9948	0.000273
162	-8.56651	- 19.9951	0.000259
163	- 8.56675	- 19.9953	0.000246

POLICY ITERATION

Policy iteration is another method for solving infinite-horizon Markov decision problems

- 1. Set n = 0, and select an arbitrary decision rule $d_0 \in D$
- 2. (Policy evaluation) Obtain V_n by solving

$$(I - \lambda P_{d_n}) V_n = r_{d_n}$$

3. (Policy improvement) Choose d_{n+1} to satisfy

$$d_{n+1} = \underset{d \in D}{\operatorname{argmax}} \{ r_d + \lambda P_d V_n \}$$

setting $d_{n+1} = d_n$ if possible.

4. If $d_{n+1} = d_n$, stop and set $d^* = d_n$. Otherwise increment n by 1 and return to step 2.

POLICY ITERATION

- This algorithm yields a sequence of deterministic Markovian decision rules $\{d_n\}$ and value functions $\{V_n\}$.
- Implementation of the maximization in step 3 is *componentwise*. This means that, for each $s \in S$, we choose $d_{n+1}(s)$ so that

$$d_{n+1}(s) = \underset{a \in A_s}{\operatorname{argmax}} \{ r(s, a) + \lambda \sum_{j \in S} p(j \mid s, a) V_n(j) \}.$$

• The following result establishes the monotonicity of the sequence $\{V_n\}$.

Proposition

Let V_n and V_{n+1} be successive values generated by the policy iteration algorithm. Then $V_{n+1} \ge V_n$.

• Use policy iteration to solve this model. We set $\lambda=0.95$, and choose $d_0(s_1)=a_{1,2}$ and $d_0(s_2)=a_{2,1}$.