NEURAL NETWORKS

DR. FARHAD RAZAVI

OUTLINE

- Artificial Neural Networks
 - History
 - Biological Neural Networks
 - Perceptron
 - Multi-layered Perceptron
 - Feedforward Propagation
- TensorFlow implementation

HISTORY OF ARTIFICIAL NEURAL NETWORKS

- 1958: Frank Rosenblatt introduced the idea of perceptron (a form of neural network).
- 1969: Minsky's book "Perceptron", proved a one-layer perceptron cannot mimic the XOR logic.
 - Many contributes first Al winter to this book!

HISTORY OF ARTIFICIAL NEURAL NETWORKS

- 1975: Werbos effectively solve the XOR problem by implementing the backpropagation algorithm.
- 1980-1990: Neural networks got traction again after showing promising results in handwritten digits recognition.
- 2000: Significant change toward data collection rather than algorithm development.
- 2005: Neural networks successfully was implemented in speech recognition.
- 2006: Al researcher Fei-Fei Li (Stanford) began working on the idea for ImageNet in 2006 (14 millions images).
- 2012: AlexNet achieved 15.3% error.
- Speech → Images → text (NLP) → Climate change, medical imaging, online advertisement, ...

WHY THE HYPE ABOUT NEURON NETWORK

- Rise of big data.
- Rise of computational powers (GPUs).

ANATOMY OF A BIOLOGICAL NEURON

- Dendrites acts as inputs to neurons. Each neuron can have multiple inputs.
- Inside the cell some computation will happen (mostly chemically).
- Neuron will then send an electrical impulse depending passing a threshold or not to another neorons.

ARTIFICIAL NEURON INSPIRATION

Biological Model of Neuron

Inputs Outputs Computations

Simplified Mathematical Model

- The research is no longer focused to mimic the biological neurons.
- In the simplified mathematical model gets some input numbers and carry outs some computation and then outputs some number.
- Even with this simplified model of neuron we can still do power computation.

ARTIFICIAL NEURON INSPIRATION-SIMPLE PERCEPTRON

We are going to adapt the simplified model of neuron to our previously studied models.

TUMOR ANALYSIS (LOGISTIC REGRESSION)

We can define a very simple model of the neuron in which a unit neuron accepts an input x and generates an output a which is the probability of a tumor being malignant.

$$a = f_{w,b}(x) = \frac{1}{1 + e^{-(wx+b)}}$$

- Remember the sigmoid function for logistic regression.
- We will switch the terminology to apply the logistic function as an activation function a.

SIMPLE YET POWERFUL

- Except for KNN, all the different models that we have studied so far can be reduced to this "simple" model!
- Linear Regression

$$\hat{y} = f(\vec{x}) = \vec{w} \cdot \vec{x} + \vec{b}$$

Logistic Regression

$$\hat{y} = f(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

- Bayesian Classifier
 - Gaussian model

$$\hat{\mathbf{y}} = f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^2 |\mathbf{\Sigma}_K|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_K)^T \mathbf{\Sigma}_K^{-1} (\vec{x} - \vec{\mu}_K)}$$

Simplified Mathematical Model

$$a(\vec{x}) = f(\vec{x}) = activation function$$

BUILDING MORE SOPHISTICATED MODELS

- Remember the multi-class logistic regression.
- One of the methods we used was one-vs-all

MULTI LAYERED PERCEPTRON (MLP)

NOTATION

- $a_i^{[j]}$ is the activation function for the *ith* neuron of the *jth* hidden layer.
- Remember that each activation function has its own set of parameters $(\overrightarrow{w}_i^{[j]}, b_i^{[j]})$.
- Layer jth activation functions can be represented as a vector $\vec{a}^{[j]} = (a_1^{[j]}, a_2^{[j]}, ..., a_m^{[j]})$ with m representing the total number of neurons in that layer.
- $a_i^{[j]} = f\left(\vec{w}_i^{[j]}.\vec{a}^{[j-1]} + b_i^{[j]}\right)$, with f being the sigmoid function.
- The process of calculating $a_i^{[j]}$ at each layer from the previous layer is called Forward Propagation.

HANDWRITTEN DIGIT RECOGNITION

$$\vec{a}^{[1]} = \begin{cases} f\left(\vec{w}_{1}^{[1]}.\vec{x} + b_{1}^{[1]}\right) \\ \vdots \\ f\left(\vec{w}_{25}^{[1]}.\vec{x} + b_{25}^{[1]}\right) \end{cases} \vec{a}^{[2]} = \begin{cases} f\left(\vec{w}_{1}^{[2]}.\vec{a}^{[1]} + b_{1}^{[2]}\right) \\ \vdots \\ f\left(\vec{w}_{15}^{[2]}.\vec{a}^{[1]} + b_{15}^{[2]}\right) \end{cases} \vec{a}^{[3]} = f\left(\vec{w}_{1}^{[1]}.\vec{a}^{[2]} + b_{1}^{[1]}\right)$$

$$\vec{a}^{[3]} = f\left(\vec{w}_1^{[1]}.\,\vec{a}^{[2]} + b_1^{[1]}\right)$$

TENSOR FLOW NEURAL NETWORK ARCHITECTURE


```
x = np.array([[0, ..., 255, 0, 255, ..., 0]])
layer_1 = Dense(units = 25, activation='sigmoid')
a1 = layer_1(x)

layer_2 = Dense(units = 15, activation='sigmoid')
a2 = layer_2(a1)

layer_3 = Dense(units = 1, activation='sigmoid')
a3 = layer_3(a2)

if a3 >= 0.5:
    yhat = 1
else:
    yhat = 0
```

BUILDING A NEURAL NETWORK ARCHITECTURE

хI	x2	Y
119	200	I
112	12	0
34	323	0
100	43	I

```
layer 1 = Dense(units = 3, activation='sigmoid')
layer 1 = Dense(units = 1, activation='sigmoid')
model = Sequential([layer 1, layer 2])
x = np.array([[119, 200],
               [112, 12],
               [34, 323],
               [100, 43]])
y = np.array([1, 0, 0, 1])
model.compile(...)
model.fit(x, y)
x \text{ new} = \text{np.array}([[120, 40]])
model.predict(x new)
```

BUILDING A NEURAL NETWORK ARCHITECTURE

хI	x2	Y
119	200	I
112	12	0
34	323	0
100	43	I

```
model = Sequential([
    Dense (units = 3, activation='sigmoid'),
    Dense(units = 1, activation='sigmoid')])
x = np.array([[119, 200],
               [112, 12],
               [34, 323],
               [100, 43]])
y = np.array([1, 0, 0, 1])
model.compile(...)
model.fit(x, y)
x \text{ new} = \text{np.array}([[120, 40]])
model.predict(x new)
```