

矩阵理论

谷海波

guhaibo@buaa.edu.cn

自动化科学与电气工程学院

第一章 线性空间引论

- □ 线性空间
- □ 线性子空间
- □ 基与坐标
- □ 内积空间
- □ 直和与投影
- □ 应用:多项式插值

第一章 线性空间引论

1.3 基 与 坐 标

定义1.3.1(线性相关与线性无关)设V是F上的线性空间, α_1 , …, α_n 是V的一组向量。若向量方程 $k_1\alpha_1+\dots+k_n\alpha_n=\theta$, k_1 , …, $k_n\in F$ 只有平凡解,即 $k_1=k_2=\dots=k_n=0$,则称向量组 α_1 , …, α_n 是线性无关;否则称向量组 α_1 , …, α_n 是线性相关。

注1:单个零向量线性相关;

单个非零向量线性无关.

注2:线性无关向量组的任一子集是线性无关的; 线性相关向量组的任一扩集仍是线性相关的.

例1.3.1 考查定义在 \mathbb{C} 上的线性空间 \mathbb{C} , 讨论空间中向量i和向量1的线性相关性.

分析:考查方程

$$k_1 \cdot i + k_2 \cdot 1 = \boldsymbol{\theta}, \quad k_1, k_2 \in \mathbb{C}$$

显然, $k_1 = -1$, $k_2 = i$ 是方程的一组解.

即向量 i 和向量1线性相关.

思考:若定义在ℝ上的线性空间 ℂ呢?

此时 $k_1 \cdot i + k_2 \cdot 1 = \theta$ 在实数域无解. 即向量 i 和向量 1 线性无关.

例1.3.2 设信号子空间

$$\tilde{S} = \operatorname{span}(\{x_k\}, \{y_k\}, \{z_k\})$$

其中 $x_k = (-1)^k$, $y_k = 2^k$, $z_k = 3^k$. 试判断信号 $\{x_k\}$, $\{y_k\}$, $\{z_k\}$ 是否线性无关.

例1.3.2 设信号子空间

$$\tilde{S} = \operatorname{span}(\{x_k\}, \{y_k\}, \{z_k\})$$

其中 $x_k = (-1)^k$, $y_k = 2^k$, $z_k = 3^k$. 试判断信号 $\{x_k\}$, $\{y_k\}$, $\{z_k\}$ 是否线性无关.

$$\begin{bmatrix} x_k & y_k & z_k \\ x_{k+1} & y_{k+1} & z_{k+1} \\ x_{k+2} & y_{k+2} & z_{k+2} \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} = 0, \forall k$$

其中,系数矩阵称为信号的Casorati矩阵,行列式 称为 $\{x_k\}$, $\{y_k\}$, $\{z_k\}$ 的Casorati行列式.

例1.3.2 设信号子空间

$$\tilde{S} = \operatorname{span}(\{x_k\}, \{y_k\}, \{z_k\})$$

其中 $x_k = (-1)^k$, $y_k = 2^k$, $z_k = 3^k$. 试判断信号 $\{x_k\}$, $\{y_k\}$, $\{z_k\}$ 是否线性无关.

取k = 0时,Casorati矩阵为

$$C = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$$

该矩阵可逆. 因此, 信号 $\{x_k\}$, $\{y_k\}$, $\{z_k\}$ 线性无关.

定理1.3.1 设线性空间V中向量组 $\alpha_1, \dots, \alpha_n$ 线性无关,而向量组 $\alpha_1, \dots, \alpha_n$, β 线性相关($\beta \neq \theta$),则 β 可由向量组 $\alpha_1, \dots, \alpha_n$ 线性表示且表示法唯一.

分析: 由线性相关知,必存在不全为零的数 k_1 ,..., k_n , k_{n+1} 使得

$$k_1 \boldsymbol{\alpha}_1 + \dots + k_n \boldsymbol{\alpha}_n + k_{n+1} \boldsymbol{\beta} = \boldsymbol{\theta}$$

其中 $k_{n+1} \neq 0$,故

$$\boldsymbol{\beta} = -\frac{k_1}{k_{n+1}}\boldsymbol{\alpha}_1 - \dots - \frac{k_n}{k_{n+1}}\boldsymbol{\alpha}_n$$

定理1.3.1 设线性空间V中向量组 $\alpha_1, \dots, \alpha_n$ 线性无关,而向量组 $\alpha_1, \dots, \alpha_n$, β 线性相关($\beta \neq \theta$),则 β 可由向量组 $\alpha_1, \dots, \alpha_n$ 线性表示且表示法唯一.

分析: 证明唯一性通常采用反证法.

假设 β 的表法不唯一,不妨设有两种不同表示:

$$\boldsymbol{\beta} = a_1 \boldsymbol{\alpha}_1 + \dots + a_n \boldsymbol{\alpha}_n = b_1 \boldsymbol{\alpha}_1 + \dots + b_n \boldsymbol{\alpha}_n$$

其中 a_i 和 b_i ($i = 1, \dots, n$)不同时为零.

$$a_1 \boldsymbol{\alpha}_1 + \dots + a_n \boldsymbol{\alpha}_n + \left(-(b_1 \boldsymbol{\alpha}_1 + \dots + b_n \boldsymbol{\alpha}_n) \right) = \boldsymbol{\theta}$$
$$(a_1 - b_1) \boldsymbol{\alpha}_1 + \dots + (a_n - b_n) \boldsymbol{\alpha}_n = \boldsymbol{\theta}$$

定义1.3.2(极大线性无关组与秩)设 $\alpha_1, \dots, \alpha_n$ 是 线性空间V的一组向量. 若 $\alpha_1, \dots, \alpha_n$ 中存在r个线 性无关的向量 $\alpha_{i_1}, \cdots, \alpha_{i_r}$,并且 $\alpha_1, \cdots, \alpha_n$ 中任一向 量均可由向量组 $\alpha_{i_1},\cdots,\alpha_{i_r}$ 线性表示,则称向量组 $\alpha_{i_1}, \cdots, \alpha_{i_r}$ 为向量组 $\alpha_1, \cdots, \alpha_n$ 的极大线性无关组, 数r称为向量组 $\alpha_1, \dots, \alpha_n$ 的秩, 记为 $\operatorname{rank}[\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n]=r$

小结: 向量组中的任一向量都可由极大线性无关组性唯一表示.

例1.3.3 求向量组 α_1 , α_2 , α_3 的极大线性无关组, 其中

$$\alpha_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} i-1 \\ 0 \end{bmatrix}$

注3: 向量组 $\alpha_1, \dots, \alpha_n$ 的极大线性无关组不唯一.

小结: \mathbb{R}^2 中的任一向量都可由向量 e_1 和 e_2 唯一表示. 向量 e_1 和 e_2 给 \mathbb{R}^2 强加一个"坐标系".

定义1.3.4(基)设V是数域F上的线性空间,

 $\alpha_1, \cdots, \alpha_n$ 是V中一组向量. 若

- (1) 向量组 $\alpha_1, \cdots, \alpha_n$ 线性无关;
- (2)V中任一向量均可由 $\alpha_1, \dots, \alpha_n$ 线性表示;则称 $\alpha_1, \dots, \alpha_n$ 是V的一个基底(或一组基).

小结: 在线性空间, 明确一组基的重要原因在于给线性空间强加一个"坐标系".

例1.3.4 单位矩阵I的n列可构成 \mathbb{R}^n (或 \mathbb{C}^n)的一组基. 特别地, 令 e_1, \dots, e_n 是单位矩阵的n列, 则 e_1, \dots, e_n 称为 \mathbb{R}^n 的标准基.

例1.3.4 单位矩阵I的n列可构成 \mathbb{R}^n (或 \mathbb{C}^n)的一组基. 特别地, 令 e_1, \dots, e_n 是单位矩阵的n列, 则 e_1, \dots, e_n 称为 \mathbb{R}^n 的标准基.

例1.3.5 已知
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, 求 $N(A)$ 的一组基.

定理1.3.2(唯一表示定理)设 x_1, \dots, x_n 是线性空间V的一组基,则V中任一向量x都可由基 x_1, \dots, x_n 唯一表示.

定理1.3.2(唯一表示定理)设 x_1, \dots, x_n 是线性空间V的一组基,则V中任一向量x都可由基 x_1, \dots, x_n 唯一表示.

定义1.3.5(坐标)设 x_1, \dots, x_n 是数域F上线性空间V的一组基,对任意向量 $x \in V$,令

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i = [\mathbf{x}_1, \cdots, \mathbf{x}_n] \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

称有序数组 $[\alpha_1, \dots, \alpha_n]^T \in F^n$ 是x在基 x_1, \dots, x_n 下的坐标,它由x与基 x_1, \dots, x_n 唯一确定.

例1.3.6 证明
$$E_{ij} \in \mathbb{R}^{2\times 2}$$
 ($i,j=1,2$) 是 $\mathbb{R}^{2\times 2}$ 的一

组基, 并求矩阵
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
在该组基下的坐标.

分析:

$$k_1 E_{11} + k_2 E_{12} + k_3 E_{21} + k_4 E_{22} = 0$$

对任意的 $A \in \mathbb{R}^{2 \times 2}$, 有

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$

$$A = E_{11} + 2E_{12} + E_{21} + E_{22}$$

思考:同一空间不同基所包含的向量个数一定相同?

分析: 设 $x_1, \dots, x_n, y_1, \dots, y_m$ 分别是V的两组基,不设妨m > n.

由于 y_1, \dots, y_m 可由基 x_1, \dots, x_n 表示,即

$$\begin{cases} \mathbf{y}_{1} = a_{11}\mathbf{x}_{1} + a_{12}\mathbf{x}_{2} \dots + a_{1n}\mathbf{x}_{n} \\ \vdots \\ \mathbf{y}_{m} = a_{m1}\mathbf{x}_{1} + a_{m2}\mathbf{x}_{2} \dots + a_{mn}\mathbf{x}_{n} \end{cases}$$

又知 y_1 ,…, y_m 线性无关,故 $k_1y_1+\cdots+k_my_m=\boldsymbol{\theta}$ 只有零解.

思考:同一空间不同基所包含的向量个数一定相同?

分析:即

$$(k_1 a_{11} + \dots + k_m a_{m1}) x_1 + \dots + (k_1 a_{1n} + \dots + k_m a_{mn}) x_n = \theta$$

又知 x_1, \dots, x_n 线性无关,所以

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_m \end{bmatrix} = 0$$

注意 $rank(A) \le n < m$,故上方程组必有非零解.

思考:同一空间不同基所包含的向量个数一定相同?

分析: 这与方程 $k_1y_1 + \cdots + k_my_m = \theta$ 只有零解矛盾. 故n = m.

这表明同一空间不同基所包含的向量个数相同.

再思考:同一空间不同基有何关系?

定义1.3.6(**过渡矩阵**)设 x_1, \dots, x_n 和 y_1, \dots, y_n 是数域F上线性空间V的两组基, 令

$$\mathbf{y}_i = a_{1i}\mathbf{x}_1 + \dots + a_{ni}\mathbf{x}_n = [\mathbf{x}_1, \dots, \mathbf{x}_n] \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix}$$

引入矩阵表示:

$$[\boldsymbol{y}_1,\cdots,\boldsymbol{y}_n]=[\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n]A$$

其中 $A = (a_{ij}) \in F^{n \times n}$,称A是由基 x_1, \dots, x_n 到基 y_1, \dots, y_n 的过渡矩阵(或变换矩阵).

命题1.3.1(过渡矩阵的性质)设V是数域F上的线性空间, $A \in F^{n \times n}$ 是由基 x_1, \dots, x_n 到基 y_1, \dots, y_n 的过渡矩阵, 则以下命题成立

- (1) 过渡矩阵A可逆(为什么);
- (2)由基 y_1, \dots, y_n 到基 x_1, \dots, x_n 的过渡矩阵为 A^{-1} ;
 - (3) 任取 $x \in V$, 设 $x = \sum_{i=1}^{n} \alpha_i x_i = \sum_{i=1}^{n} \beta_i y_i$, 则

$$\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = A^{-1} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$
或
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = A \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

例1.3.7 设 $f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n$, 在基1,x, \dots , x^n 下的坐标: $f(x) \in P_n[x], 1, x, \dots, x^n$ 线性无关.

例1.3.7 设 $f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n$, 在基1,x, \dots , x^n 下的坐标:

$$f(0), f'(0), \dots, \frac{f^{(n)}(0)}{n!}$$

例1.3.7 设 $f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n$, 在基1, x, \dots , x^n 下的坐标:

$$\left[f(0), f'(0), \dots, \frac{f^{(n)}(0)}{n!}\right]^{T}$$

在基 $1, x - x_0, \cdots, (x - x_0)^n$ 下的坐标:

$$f(x_0), f'(x_0), \dots, \frac{f^{(n)}(x_0)}{n!}$$

例1.3.7 设
$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

$$(x - x_0)^k = \sum_{i=0}^k C_k^i x^i (-x_0)^{k-i}$$

$$[1, x - x_0, \dots, (x - x_0)^n]$$

$$= [1, x, \dots, x^n] \begin{bmatrix} 1 & -x_0 & \dots & (-x_0)^n \\ 0 & 1 & \dots & n(-x_0)^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

定义1.3.7(维数)在线性空间V中,不同线性无关组中向量个数最大者叫作V的维数,记为dimV. 当 dim $V < \infty$,称V为有限维空间,否则称为无限维空间,记dim $V = \infty$.

定义1.3.7(维数)在线性空间V中,不同线性无关组中向量个数最大者叫作V的维数,记为dimV. 当 dim $V < \infty$,称V为有限维空间,否则称为无限维空间,记dim $V = \infty$.

例1.3.8 离散时间信号空间

$$S = \{ \{x_k\} = [\cdots, x_{-2}, x_{-1}, x_0, x_1, x_2, \cdots] | x_i \in \mathbb{R} \}$$

是ℝ上的无限维线性空间.

思考:单个零向量线性组成的空间的维数?

定理1.3.3(维数与基的关系) 设V是有限维线性空间,则 $\dim V = n$ 当且仅当V的任一基底的向量个数为n.

注4: 可直接用线性空间中基所包含的向量个数定义该空间的维数.

例1.3.9 求空间C在实数域ℝ和复数域C上的维数.

例1.3.9 求空间C在实数域R和复数域C上的维数.

解:(1)考查在实数域 R上的线性空间 C

向量1和 i 线性无关,且C中任一复数均可由1和i线性表示. 故向量组1和 i 是C的一组基,即定义在尼上的线性空间C的维数为2.

例1.3.9 求空间C在实数域R和复数域C上的维数.

解:(1)考查在实数域 R上的线性空间 C

向量1和 i 线性无关,且C中任一复数均可由1和i线性表示. 故向量组1和 i 是C的一组基,即定义在尼上的线性空间C的维数为2.

(2)考查在复数域C上的线性空间C

向量1和 i 线性相关,且C中任一复数均可由1或 i 线性表示. 故向量组1和 i 分别构成C的一组基,即定义在C上的线性空间C的维数为1.

推论1.3.1(**基扩充定理**)n维线性空间中任意n个线性无关的向量均为V的一个基底,且任一线性无关向量组 x_1, \dots, x_r ($1 \le r < n$)可扩充为V的一个基底.

注5: 在构造子空间的一组基时, 优先利用"加法"原则, 尽量避免"减法"原则.

定理1.3.4(维数定理)设 W_1 和 W_2 是线性空间V的两个子空间,则

 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$

例1.3.10 设 $W_1 = \text{span}(\alpha_1, \alpha_2, \alpha_3), W_2 = \text{span}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2), 其中<math>\alpha_1 = [1,2,1,0]^T, \alpha_2 = [1,1,1,0]^T, \alpha_3 = [1,0,1,1]^T, \boldsymbol{\beta}_1 = [2,1,0,0]^T, \boldsymbol{\beta}_2 = [0,1,0,0]^T, 求dim(W_1 + W_2)和dim(W_1 \cap W_2).$

例1.3.10 设 $W_1 = \text{span}(\alpha_1, \alpha_2, \alpha_3), W_2 = \text{span}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2), 其中\alpha_1 = [1,2,1,0]^T, \alpha_2 = [1,1,1,0]^T, \alpha_3 = [1,0,1,1]^T, \boldsymbol{\beta}_1 = [2,1,0,0]^T, \boldsymbol{\beta}_2 = [0,1,0,0]^T, 求dim(W_1 + W_2)和dim(W_1 \cap W_2).$

解: 观察知 α_1 , α_2 , α_3 线性无关, β_1 , β_2 线性无关, 故有 $\dim(W_1) = 3$, $\dim(W_2) = 2$

再对如下矩阵进行初等变换,得

$$[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2] \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

例1.3.10 设 $W_1 = \text{span}(\alpha_1, \alpha_2, \alpha_3), W_2 = \text{span}(\beta_1, \beta_2), 其中<math>\alpha_1 = [1,2,1,0]^T, \alpha_2 = [1,1,1,0]^T, \alpha_3 = [1,0,1,1]^T, \beta_1 = [2,1,0,0]^T, \beta_2 = [0,1,0,0]^T, 求dim(<math>W_1 + W_2$)和dim($W_1 \cap W_2$).
解: 于是,

 $\dim(W_1 + W_2) = \operatorname{rank}(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2) = 4$ 由维数定理可知dim $(W_1 \cap W_2) = 3 + 2 - 4 = 1$.

思考:设 $A \in \mathbb{C}^{n \times n}$,其零空间和列空间有可能相同吗?若这两个空间相同,则矩阵A具有何性质?(课后作业)