DATA SCIENCE II: Machine Learning MTH 9899 Baruch College

Adrian Sisser

Lecture 2: Machine Learning

April 5, 2017



#### Outline

- Linear Models
  - Subset Selection
- 2 K-Means, Clustering, and EM
  - The K-Means Algorithm
  - The EM Algorithm
- Training Neural Networks

#### Outline

- Linear Models
  - Subset Selection
- K-Means, Clustering, and EM
  - The K-Means Algorithm
  - The EM Algorithm
- Training Neural Networks

#### Linear Methods

- One hard problem with Regression, is to choose which variables are relevant to your model.
- You might have dozens of predictors, most of which might be irrelevant
- This problem is much harder in the context of low  $\mathbb{R}^2$  and correlated predictors.

One technique is "Best Subset" regression, which finds the optimal subset of size k regressors for each value k. Computationally, this is very expensive.

## Forward Stepwise Regression

- We look for the best variable from the remaining ones at each stage and add it into the regression,
- This again this gives us k models
- This is a greedy algorithm that might not be best.
- It will ALWAYS be worse than the corresponding best subset, but has lower variance.
- Caveat: Imagine you have 2 highly correlated x variables that predict y, but both are measured with significant noise.
   What will Forward Stepwise do? What would you prefer?

## **Backward Stepwise Regression**

- We start off with all variabales and remove the 'worst' one at each stage.
- Same Caveat as Forward Stepwise Regression

#### **Model Selection**

 AIC - Akaike Information Criterion. This can be shown to be asymptotically equivalent to N-Fold Cross-Validation [Stone, 1977].

$$AIC = 2k - 2\ln(\mathcal{L})$$

BIC - Bayesian Information Criterion

$$BIC = \ln(n)k - 2\ln(\mathcal{L})$$

## Lasso Regression

 Lasso is similar to Ridge Regression, except we use the L1 penalty:

$$\min_{\beta^L} \|Y - X \hat{\beta}^L\| + \lambda \|\beta^L\|_1$$

• Can we compute an analytical solution to this?

#### LARS

LARS - Least Angle Regression, is a technique with an intuitive geometric explanation that leads to a very efficient implementation of LASSO. For more details, the class text, Elements of Statistical Learning provides the best intuition of how it works

## Lasso vs Ridge Regression

- Lasso works well for Feature Selection
- Ridge works well for Correlation features

Elements of Statistical Learning (2nd Ed.)  $\,$  ©Hastie, Tibshirani & Friedman 2009 Chap 3



# **Elastic Net Regression**

 Let's get the best of both worlds - we can use an L1 and L2 Penalty:

$$\min_{\beta^{EN}} \|Y - X\hat{\beta}^{EN}\| + \lambda_1 \|\beta^{EN}\|_1 + \lambda_2 \|\beta^{EN}\|_2$$

#### Outline

- Linear Models
  - Subset Selection
- 2 K-Means, Clustering, and EM
  - The K-Means Algorithm
  - The EM Algorithm
- Training Neural Networks

K-Means is a method of classifying points into 'groups' or 'clusters', based on their 'proximity'. For traditional k-means, the proximity measure is Euclidean distance, ie  $\|\cdot\|_2$ . If we want to form K clusters, we minimize as follows:

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=0}^{K} \sum_{x \in S_i} \|x - C_i\|$$

where  $C_i$  is the geometric center of all of the points belonging to  $S_i$ , the set of all points in cluster i. This is equivalent to assuming the points are normally distributed around each center.

Here is sample of clusters in 2 dimensions.



Here is sample of clusters in 2 dimensions.



Here is sample of clusters in 2 dimensions.



## K-Means Algorithm

So how do we do this? We need an algorithm to solve the minimization problem from earlier:

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=0}^{K} \sum_{x \in S_i} \|x - C_i\|$$

Solving this problem directly isn't tractable - in fact, it's NP-hard for almost all cases.

## KMeans Algorithm

### Algorithm 1 KMeans Algorithm (Lloyd's Algorithm)

```
 \begin{array}{l} \textbf{Require: } N > K > 1 \\ centers \leftarrow \textbf{select } K \textbf{ random entries from } points \\ \textbf{repeat} \\ \textbf{for } i < N \textbf{ do} \\ assigned\_centers[i] \leftarrow \textbf{find\_nearest\_center}(points[i]) \\ \textbf{end for} \\ \textbf{for } i < K \textbf{ do} \\ centroids[i] \leftarrow \textbf{find\_centroid}(i) \\ \textbf{end for} \\ \textbf{until } assigned\_centers \textbf{ does not change} \\ \end{array}
```

#### Initialization

So how do we *randomly* assign the initial clusters? There are a few popular choices:

- Choose K random points from the initial list (Forgy Method).
- The Random partition method assigns each point a cluster at random, then calculates the centroids.































Our original data





#### **Actual Centers**

Calculated Centers

 $\rightarrow$  (1.9, 4.7)

$$\rightarrow$$
 (1.9, 0.2)



#### **Notes**

- The algorithms discussed will only find a LOCAL minimum.
   To be sure we're getting a near-optimal solution, we should repeat this with different starting centroids.
- How do we know how many clusters, K, to look for?
   Adding more clusters will always improve the metrics.

#### **GMeans**

G-Means offers a way for us to intuit K:

### Algorithm 2 GMeans Algorithm

$$K \leftarrow 0$$
  
repeat  
 $K \leftarrow K + 1$   
 $centers \leftarrow \mathsf{KMeans}(points, K)$   
until  $(points - centers) \sim \mathcal{N}$ 

#### Outline

- Linear Models
  - Subset Selection
- 2 K-Means, Clustering, and EM
  - The K-Means Algorithm
  - The EM Algorithm
- Training Neural Networks

"Expectation-Maximization" is a generic algorithm for estimating MLE parameters. The derivation is complex, and we will go through it quickly here. An excellent reference is Andrew Ng's ML Notes.

$$X = \{x_0, x_1, ..., x_{n-2}, x_{n_1}\}$$
 
$$Z = \{z_0, z_1, ..., z_{n-2}, z_{n_1}\} \text{ # These are our latent variables}$$
 
$$\mathcal{L}(\theta|X,Z) = \prod_{i=0}^N P(x_i;\theta)$$
 
$$\ell(\theta|X,Z) = \sum_{i=0}^N \log P(x_i;\theta)$$
 
$$\ell(\theta|X,Z) = \sum_{i=0}^N \log \sum_{j=0}^K P(x_i, z_j;\theta)$$

Let's define  $Q_i$  as a probability distribution of  $z_i$ . Now we can say:

$$\ell(\theta|X,Z) = \sum_{i=0}^{N} \log \sum_{j=0}^{K} P(x_i, z_i; \theta)$$
  
$$\ell(\theta|X,Z) = \sum_{i=0}^{N} \log \sum_{j=0}^{K} Q_i(z_j) \frac{P(x_i, z_i; \theta)}{Q_i(z_j)}$$

Let's define  $Q_i$  as a probability distribution of  $z_i$ . Now we can say:

$$\ell(\theta|X,Z) = \sum_{i=0}^{N} \log \sum_{j=0}^{K} P(x_i, z_i; \theta)$$

$$\ell(\theta|X,Z) = \sum_{i=0}^{N} \log \sum_{j=0}^{K} Q_i(z_j) \frac{P(x_i, z_i; \theta)}{Q_i(z_j)}$$

$$\ell(\theta|X,Z) = \sum_{i=0}^{N} \log \mathbb{E}_{z_j \sim Q_i(z_j)} \frac{P(x_i, z_i; \theta)}{Q_i(z_j)}$$

Inequality

Let's define  $Q_i$  as a probability distribution of  $z_i$ . Now we can say:

$$\ell(\theta|X,Z) = \sum_{i=0}^N \log \sum_{j=0}^K P(x_i,z_i;\theta)$$
 
$$\ell(\theta|X,Z) = \sum_{i=0}^N \log \sum_{j=0}^K Q_i(z_j) \frac{P(x_i,z_i;\theta)}{Q_i(z_j)}$$
 
$$\ell(\theta|X,Z) = \sum_{i=0}^N \log \mathbb{E}_{z_j \sim Q_i(z_j)} \frac{P(x_i,z_i;\theta)}{Q_i(z_j)}$$
 By Jensen's Inequality 
$$\ell(\theta|X,Z) \geq \sum_{i=0}^N \mathbb{E}_{z_j \sim Q_i(z_j)} \log \frac{P(x_i,z_i;\theta)}{Q_i(z_j)}$$

The next steps are tricky (again, refer to Andrew Ng's ML Notes for more details). We said that  $Q_i$  was a PDF for  $z_i$ , so let's choose a good one:

$$Q_i(z_i) = \frac{P(x_i, z_i; \theta)}{\sum_j P(x_i, z_j; \theta)}$$
$$= P(z_i | x_i; \theta)$$

Now, we're ready to look at the algorithm itself.

#### The EM Algorithm

#### Algorithm 3 EM Algorithm

$$\begin{array}{l} \theta^0 = \text{initial guess} \\ m \leftarrow 1 \\ \textbf{repeat} \\ Q_i^m = P(z_i|x_i;\theta^m) \\ \theta^{m+1} = \arg\max_{\theta} \sum_{i=0}^{N} \sum_{j=0}^{K} Q_i^m(z_j) \log \frac{P(x_i,z_i;\theta^{m+1})}{Q_i^m(z_j)} \\ m \leftarrow m+1 \\ \textbf{until convergence of } \ell \end{array}$$

Take careful note of  $\theta$  in the MLE step. Proof of convergence can be found in the Ng reference mentioned above.

# An EM Application: Soft KMeans

Let's look at this in the context of a 'soft' KMeans Algorithm with 2 clusters. This means that instead of assuming each point is in a given cluster, C, we'll assign a probability that it's in each cluster. Here's our setup:

$$X = \{x_0, x_1, ..., x_n\}$$

$$Z = \{z_0, z_1, ..., z_n\}$$

$$\theta = \{\mu_0, \sigma_0^2, \mu_1, \sigma_1^2, \pi_0, \pi_1\}$$

# Soft KMeans: The "E" Step

$$Q_{i}(z_{j}) = \frac{P(x_{i}, z_{j}; \theta)}{\sum_{m} P(x_{i}, z_{m}; \theta)}$$
$$= \frac{\phi_{j}(x_{i}; \theta)}{\sum_{m} \phi_{m}(x_{i}; \theta)}$$

 $Q_i(z_j)$  is the probability that point i belongs to  $C_j$ . Since we don't make a hard assignment to any cluster, this is why we call this a 'Soft K-Means' algorithm.

# Soft KMeans: The "M" Step

To make notation simpler, now that we've done the "E" step, we'll say  $w_{i,j}$  is the probability that point i is in  $C_j$ . The "M" step is:

$$\arg \max_{\theta} \quad \sum_{i=0}^{N} \sum_{j=0}^{K} \quad w_{i,j} \log \frac{P(x_i, z_j; \theta)}{w_{i,j}}$$

$$\arg \max_{\theta} \quad \sum_{i=0}^{N} \sum_{j=0}^{K} \quad w_{i,j} \log \frac{P(x_i|z_j; \theta)P(z_j)}{w_{i,j}}$$

$$\arg \max_{\theta} \quad \sum_{i=0}^{N} \sum_{j=0}^{K} \quad w_{i,j} \log \frac{\phi_{j;\theta}(x_i)\pi_j}{w_{i,j}}$$

# Soft KMeans: The "M" Step

$$\arg\max_{\theta} \quad \sum_{i=0}^{N} \sum_{j=0}^{K} \quad w_{i,j} \log \frac{\phi_{j;\theta}(x_i)\pi_j}{w_{i,j}}$$

If we take our function from before, and take some derivatives, we get very simple update rules:

$$\mu_{j} = \frac{\sum_{i=0}^{N} w_{ij} x_{i}}{\sum_{i=0}^{N} w_{ij}}$$

$$\pi_{j} = \frac{1}{N} \sum_{i} w_{ij}$$

$$\sigma_{j}^{2} = \frac{\sum_{i=0}^{N} w_{ij} ||x_{i} - \mu_{j}||_{2}}{\sum_{i=0}^{N} w_{ij}}$$



0 iterations



1 iterations



2 iterations



5 iterations



10 iterations



20 iterations



50 iterations



Our original data





#### **Actual Centers** Calculated Centers (2.0, 5.0) $\rightarrow$ (1.9, 4.7) $\rightarrow$ (1.8, 0.2) (2.0, 0.0)

(-1.0, -1.0)(-0.7, -1.0)

# Why Training is Important

It can be show that a sufficiently large NN can learn any function. The hardest part is training the weights in the network. Why is it hard?

- The number of weights in a network is huge. Connections between an N and M neuron layer create a total of  $\mathcal{O}(NM)$  connections.
- A training algorithm on a deep network based on gradients suffers from the Vanishing/Exploding Gradient Problem.

In summary, if we design a network that can learn anything, it's REALLY hard to make it learn what we want.

#### **Basic Training**

- When we talk about training a NN, we're talking about finding weights and biases for the neurons.
- We want to adjust the weights, such that we reduce the error.
- To do this, we'll follow the gradient of the error with respect to the weights.

#### **Activation Functions**

Before we can talk about training, we need to talk about Activation Functions. For now, let's talk about sigmoid - a very common and simple activation function. Later, we'll see why we need this.

$$\varphi(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d\varphi}{dz} = \varphi(z)(1 - \varphi(z))$$



Based on the last lecture, let's assume that a neuron can be modeled as:

$$n_j = A(\sum_i w_{ij}n_i + b_j)$$

And a simple network topology:



We're going to come up with a learning rule. The goal is to reduce the total error. For a simple regression problem:

$$E = \sum_{i} \frac{1}{2} (\hat{y}_i - y_i)^2$$

Now that we know the error, let's calculate the derivative with respect to  $\hat{y}$ :

$$\frac{\partial E}{\partial \hat{y}_i} = (\hat{y}_i - y_i)$$

Now, we need to propagate the errors backwards, through the NN. First, let's setup some notations:

- $x_i$  Row i of the feature matrix, X.
- $n_{l,i}$  is the value of the output of neuron i in layer l
- $\hat{y}_i$  The prediction for sample i, ie the output of the neuron
- $w_{l,ij}$  The weights from the (l) layer, neuron i, to the l+1 layer, neuron j.
- $b_{l,j}$  The bias of of neuron j in layer l

Let's look at the error term for the hidden layer in the topology we talked about. We'll say  $z=\sum\limits_i w_{h,ij}n_{h,i}+b_j$  for notation.

$$\begin{array}{lcl} \displaystyle \frac{\partial E}{\partial w_{h,i0}} & = & \displaystyle \frac{\partial E}{\partial n_{o,0}} \frac{\partial n_{o,0}}{\partial w_{h,i0}} \\ \\ \displaystyle \frac{\partial E}{\partial w_{h,i0}} & = & \displaystyle \frac{\partial E}{\partial n_{o,0}} \frac{\partial A(z)}{\partial w_{h,i0}} \\ \\ \displaystyle \frac{\partial E}{\partial w_{h,i0}} & = & \displaystyle \frac{\partial E}{\partial n_{o,0}} \frac{\partial \varphi(z)}{\partial z} \frac{\partial z}{\partial w_{h,i0}} \\ \\ \displaystyle \frac{\partial E}{\partial w_{h,i0}} & = & \displaystyle (\hat{y}_i - y_i) \varphi(z) (1 - \varphi(z)) n_{h,i} \end{array}$$

Now we can finally turn this into a learning rule.

$$w'_{l,ij} = w_{l,ij} - \eta \frac{\partial E}{\partial w_{l,ij}}$$