

Direction Départementale des Enseignements Secondaire, Technique et de la Formation Professionnelle ALIBORI (DDESTFP)

Lycée Technique Professionnel de KANDI (LTCI-KANDI)

EXAMEN-BLANC: 2021-2022 DT / IMI

DUREE: 3 HEURES

MATHÉMATIQUES APPLIQUÉES

SUJET

Matériel autorisé : Calculatrice non programmable.

Exercice 1:

La table de vérité ci-contre représente les états d'un circuit à 3 entrées (A, B et C) et 2 sorties (S0 et S1)

- 1- Observez les états des sorties S1 et S0 et donnezen les équations.
- 2- Dessinez le montage de portes logiques pour réaliser ces fonctions.
- 3- Déterminez le complément 2 de 205
- 4- Montrez que le circuit ci-dessous est un demiadditionneur

A	В	C	Sı	S_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Exercice 2:

On considère le polynôme P de la variable complexe z défini par :

$$P(z) = z^3 - 2z^2 + 4z - 8.$$

Page 1 sur 2

- 1) Calculez P(2).
- 2) Déterminez les nombres réels a et b tels que $P(z) = (z-2)(z^2 + az + b).$
- 3) Déduisez les solutions dans \mathbb{C} de l'équation P(z) = 0.
- 4) On désigne par A, B et C les points d'affixes respectives Z_A , Z_B et Z_C solutions de l'équation P(z) = 0, avec $Im(Z_A) = 0$, $Im(Z_C) < Im(Z_B)$. Déterminez la nature du triangle ABC.

Problème:

Partie A:

On considère la fonction g définie sur]-1; $+\infty$ [$par\ g(x) = \frac{2x^2 + 3x + 2}{x + 1}$.

- 1) Déterminez le signe de $u(x) = 2x^2 + 3x + 2$, pour tout x élément de \mathbb{R} .
- 2) Déduisez que pour tout x > -1; g(x) > 0.
- 3) Déterminez les nombres réels α , β , γ tels que pour tout x > -1: $g(x) = \alpha x + \beta + \frac{\gamma}{x+1}$.
- 4) Déterminez la primitive G de g définie $sur]-1; +\infty[$ telle que G(0) = 1.

Partie B:

On désigne par f la fonction définie sur $I =]-1; +\infty[$ par $f(x) = x^2 + x + 1 + \ln(x + 1)$. On désigne par \mathcal{H} la courbe représentative de f dans un repère orthonormé $(0; \vec{i}; \vec{j})$ d'unité 1 cm.

- 5) Calculez les limites suivantes et donnez, le cas échéant, une interprétation graphique du résultat : $\underset{>}{\lim} f(x), \underset{x \to +\infty}{\lim} f(x), \underset{x \to +\infty}{\lim} f(x)$.
- 6) Etudiez les variations de f et dressez son tableau des variations.
- 7) On pose I = f(I) et on considère l'application h de I vers I définie par h(x) = f(x).
 - a) Déterminez *I*.
 - b) Justifiez que h est une bijection. On note h^{-1} sa bijection réciproque.
- 8) Démontrez que l'équation f(x) = 0 admet une unique solution x_0 et que $-0.53 < x_0 < -0.52$.
- 9) Tracez dans le même repère, la courbe \mathcal{H} et la courbe \mathcal{H}' représentant les variations de h^{-1} .

Bon courage. FIN.