Relaxation time mapping in MRI

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

How are these different?

Geekymedics.com

MR relaxation: the most important source of MRI contrast

- Relaxation times vary among tissues
 - Depends on the environment of water—e.g., other molecules neighboring H₂O
 - Basis of contrast in routine diagnostic imaging
 - Varies with physiological and pathological state
- Quantifying relaxation times helps in optimizing
 - Contrast
 - Differentiate healthy tissues/organs
 - Improve detection of diseased tissue
 - Accuracy of calculated quantities (T₂ example)

MRI measures magnetization (M)

- M is usually in an equilibrium state between
 - Polarizing influence of external field (B₀ || z axis)
 - Randomizing influence of thermal energy
- When the spin system is disturbed, it takes some time to return to equilibrium
 - How is equilibrium restored?
 - How long until equilibrium is restored?
- In equilibrium, $M_z = M_0$, $M_x = M_y = 0$.

Transverse Relaxation

Transverse relaxation

- No net M_x or M_y in equilibrium state
- After spins are put in the xy plane, large transverse magnetization:

Over time, spin orientations are randomized:

Occurs at rate R₂ = 1/T₂

- Magnitude of magnetization perpendicular to B₀ is M_{xy}
- Bloch's phenomenological equation for M_{xy}:

$$\frac{dM_{xy}}{dt} = -R_2 \cdot M_{xy}$$

- Magnitude of magnetization perpendicular to B₀ is M_{xy}
- Bloch's phenomenological equation for M_{xy}:

$$\frac{dM_{xy}}{dt} = -R_2 \cdot M_{xy}$$

$$\frac{dM_{xy}}{dt} = -R_2 \cdot dt$$

- Magnitude of magnetization perpendicular to B₀ is M_{xy}
- Bloch's phenomenological equation for M_{xv}:

$$\frac{dM_{xy}}{dt} = -R_2 \cdot M_{xy}$$

$$\frac{dM_{xy}}{M_{xy}} = -R_2 \cdot dt$$

$$ln\left(\frac{M_{xy}(t)}{M_{xy}(0)}\right) = -R_2 \cdot t$$

- Magnitude of magnetization perpendicular to B₀ is M_{xy}
- Bloch's phenomenological equation for M_{xv}:

$$\frac{dM_{xy}}{dt} = -R_2 \cdot M_{xy}$$

$$\frac{dM_{xy}}{M_{xy}} = -R_2 \cdot dt$$

$$ln\left(\frac{M_{xy}(t)}{M_{xy}(0)}\right) = -R_2 \cdot t$$

$$M_{xy}(t) = M_{xy}(0) \cdot e^{-R_2 t}$$

Multiple echo time measurements of R₂

- Acquire a series of images, each at a different time after the tipping B₁ pulse
- Signal intensity decays exponentially with rate constant R₂.

Recall the effects of a transverse field

- B₁ field should be ⊥ B₀ to tip spins into the transverse plane
- A time-independent B₁ just tilts the polarizing field
 - Does not create large transverse magnetization, \mathbf{M}_{\perp}
- A time-varying B₁ field at the precession frequency can create large M₁

At time = 0

At time = $\tau/2$

At time = τ

At time = $3\tau/2$

Tip angle = 90°

Time dependence of B₁ field

Frequency =
$$\omega = \gamma B_0$$

Effect of a transverse field

- A small, time-varying B₁ field can create large
 M₁
 - If the B₁ field precesses with the spins, slow tipping can accumulate over time
- Frequency of B₁ field must match spin precession frequency to have a significant effect
 - B₁ must be resonant with spin precession

What causes relaxation?

- Spins are influenced by fields generated by neighboring spins
 - Larger magnetic moments have greater effect
- Tumbling molecules produce timevarying magnetic fields, b₁(t), in their neighborhoods
- A transverse magnetic field at frequency
 ~ω₀ changes μ_z
- Frequency components of b₁(t) at ~ω₀
 drive magnetization towards equilibrium
 - Equilibrium between randomizing effect of thermal energy and ordering effect of the external (B₀) magnetic field

Determinants of R₂

- Neighboring spins drive transverse relaxation
- b₁(t) = transverse magnetic field from neighbors
 - randomizes spin orientation in xy plane
- b_z = longitudinal magnetic field from neighbors
 - randomizes spin orientation in xy plane
- b₁ and b_z contribute to R₂

b_z drives precession in the xy plane

b₁ drives precession between z and the xy plane

Molecular motion

- The correlation time, τ_c , is the interval required for a molecule to change orientation or position appreciably
- The frequency spectrum of $b_1(t)$ depends on τ_c :

Frequency

Determinants of R₂

- Magnetic moments of neighbors
- Tumbling motion of neighbors (τ_c)
 - Time-varying $b_1(t)$ at $\sim \omega_0$
 - Slow b₂ component at ~0 Hz

Frequency

In-class exercise

- Which part of the image has the smallest R₂?
- Which part has the largest R₂?

$$M_{xy}(t) = M_{xy}(0) \cdot e^{-R_2 t}$$

Longitudinal Relaxation

Quantitative description of longitudinal relaxation

- The z axis is defined by B₀
- Magnetic moment per unit volume is magnetization, M
- The component of magnetization along B₀
 is M₇
- Bloch's phenomenological equation for M_z:

$$\frac{d\left(M_0 - M_z\right)}{dt} = -R_1 \cdot \left(M_0 - M_z\right)$$

$$\frac{d\left(M_0 - M_z\right)}{dt} = -R_1 \cdot \left(M_0 - M_z\right)$$

$$\begin{split} \frac{d\left(M_{0}-M_{z}\right)}{dt} &= -R_{1}\cdot\left(M_{0}-M_{z}\right)\\ \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot dt \end{split}$$

$$\frac{d\left(M_0 - M_z\right)}{dt} = -R_1 \cdot \left(M_0 - M_z\right)$$

$$\frac{d\left(M_0 - M_z\right)}{\left(M_0 - M_z\right)} = -R_1 \cdot dt$$

$$\int_0^t \frac{d\left(M_0 - M_z\right)}{\left(M_0 - M_z\right)} = -R_1 \cdot \int_0^t dt$$

$$\begin{split} \frac{d\left(M_{0}-M_{z}\right)}{dt} &= -R_{1}\cdot\left(M_{0}-M_{z}\right)\\ &\frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot dt\\ &\int_{0}^{t} \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot\int_{0}^{t} dt\\ ln\left(M_{0}-M_{z}\left(t\right)\right) - ln\left(M_{0}-M_{z}\left(0\right)\right) &= -R_{1}\cdot\left(t-0\right) \end{split}$$

$$\begin{split} \frac{d\left(M_{0}-M_{z}\right)}{dt}&=-R_{1}\cdot\left(M_{0}-M_{z}\right)\\ \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)}&=-R_{1}\cdot dt\\ \int_{0}^{t}\frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)}&=-R_{1}\cdot\int_{0}^{t}dt\\ ln\left(M_{0}-M_{z}\left(t\right)\right)-ln\left(M_{0}-M_{z}\left(0\right)\right)&=-R_{1}\cdot\left(t-0\right)\\ ln\frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)}&=-R_{1}t \end{split}$$

$$\begin{split} \frac{d\left(M_{0}-M_{z}\right)}{dt} &= -R_{1}\cdot\left(M_{0}-M_{z}\right) \\ &\frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} = -R_{1}\cdot dt \\ &\int_{0}^{t} \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot\int_{0}^{t} dt \\ ln\left(M_{0}-M_{z}\left(t\right)\right) - ln\left(M_{0}-M_{z}\left(0\right)\right) &= -R_{1}\cdot\left(t-0\right) \\ &ln\frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)} &= -R_{1}t \\ &\frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)} &= e^{-R_{1}t} \end{split}$$

$$\begin{split} \frac{d\left(M_{0}-M_{z}\right)}{dt} &= -R_{1}\cdot\left(M_{0}-M_{z}\right) \\ \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot dt \\ \int_{0}^{t} \frac{d\left(M_{0}-M_{z}\right)}{\left(M_{0}-M_{z}\right)} &= -R_{1}\cdot\int_{0}^{t} dt \\ ln\left(M_{0}-M_{z}\left(t\right)\right) - ln\left(M_{0}-M_{z}\left(0\right)\right) &= -R_{1}\cdot\left(t-0\right) \\ ln\frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)} &= -R_{1}t \\ \frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)} &= e^{-R_{1}t} \\ \frac{M_{0}-M_{z}\left(t\right)}{M_{0}-M_{z}\left(0\right)} &= e^{-R_{1}t} \end{split}$$

$$M_z(t) = M_0 - \left[M_0 - M_z(0)\right]e^{-R_1t}$$

$$M_z(t) = M_0 - [M_0 - M_z(0)]e^{-R_1t}$$

At time t=0 the magnetization is inverted,

$$M_z(0) = -M_0$$

$$M_z(t) = M_0 - [M_0 - M_z(0)]e^{-R_1t}$$

At time t=0 the magnetization is inverted,

$$M_z(0) = -M_0$$

SO

$$M_z(t) = M_0 - [2M_0]e^{-R_1t}$$

$$M_z(t) = M_0 - [M_0 - M_z(0)]e^{-R_1t}$$

At time t=0 the magnetization is inverted,

$$M_z(0) = -M_0$$

SO

$$M_z(t) = M_0 - [2M_0]e^{-R_1t}$$

$$M_z(t) = M_0 \cdot \left(1 - 2e^{-R_1 t}\right)$$

This gives the time dependence of the longitudinal magnetization in terms of the relaxation rate $R_1=1/T_1$.

Inversion recovery measurements of R₁

- Apply an 'inversion' B₁ pulse to orient M along –Z
- Wait some delay (inversion) time, TI, during which M_z recovers toward M₀
- Tip spins into the transverse plane and measure magnetization immediately

Determinants of R₁

- Neighboring spins drive transverse relaxation
- b₁(t) = transverse magnetic field from neighbors
 - Drives precession between z and the xy plane (and –z)
 - Randomizes spin orientation in xy plane
- b_z = longitudinal magnetic field from neighbors
 - Randomizes spin orientation in xy plane
- b₁ and b_z contribute to R₂
- b₁ (only) contributes to R₁

$$R_2 \geq R_1$$

b₁ drives precession between z and -z

Molecular motion

- The correlation time, τ_c , is the interval required for a molecule to change orientation or position appreciably
- The frequency spectrum of $b_1(t)$ depends on τ_c :

Frequency

Determinants of R₁ and R₂ in tissues

- Water content
- Concentration of macromolecules
- State of water (free vs. bound to protein)
- Exchange of water between bound and free pools
- Ion concentration
- Paramagnetic ion concentration

What makes these different?

Geekymedics.com

Summary

- NMR relaxation times reveal changes in the molecular environment of tissue water
- T₂ can be measured from images acquired at different echo (measurement) times

$$M_{xy}(t) = M_{xy}(0) \cdot e^{-R_2 t}$$

 T₁ can be measured from images acquired at different inversion delay times

•
$$M_Z(t) = M_0 \cdot (1 - 2e^{-R_1 t})$$

- Coming up next:
 - Image analysis in MATLAB (on Brightspace)
 - Project 1—mapping NMR relaxation times