

International Centre for Radio Astronomy Research

Outline of Lecture

- **★** Source finding
 - ▶ 3D source finding
 - ▶ Software
 - Metrics
 - ► Algorithms

- **★** Source parameterisation
 - ▶ Basic parameters
 - ▶ Moment analysis
 - ► Spectral fitting
 - ► Frequency redshift velocity
 - ▶ Uncertainties

Source Finding

Source Finding – 3D Approach

★ Assumptions

- ▶ 3D image data cubes
 - 2 spatial dimensions: $(\alpha, \delta), (l, b)$
 - 1 spectral dimension: f, v, z
- ► Gaussian noise + source emission

★ Advantages

- ► Redshift / distance information
- ► Less source confusion

★ Disadvantages

- ► Larger data volume
- ▶ 3D approach required

Source Finding – Software

★ Software

- Duchamp/Sélavy
 - 3D source finder implemented in the ASKAPsoft pipeline
 - Developed by Matthew Whiting
 - Duchamp: https://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/
 - Sélavy: https://www.atnf.csiro.au/computing/software/askapsoft/sdp/docs/current/analysis/
- ► SoFiA (*Source Finding Application*)
 - Stand-alone 3D source finding pipeline
 - Originally developed for extragalactic H1 surveys
 - Graphical user interface
 - GitHub: https://github.com/SoFiA-Admin/SoFiA/
 - SoFiA wiki: https://github.com/SoFiA-Admin/SoFiA/wiki

Source Finding – Metrics

- **★** Source finding
 - ▶ Detection of signal in data containing statistical noise
 - ► WALLABY: 500,000 galaxies, 1 PB of data → automation required
- **★** Metrics
 - ▶ Completeness
 - Fraction of sources detected \rightarrow C = True /All
 - Reliability
 - Fraction of genuine detections \rightarrow R = True / (False + True)
 - ► Function of signal-to-noise ratio
 - ▶ Compromise between
 - Low threshold → high completeness, but false detections
 - High threshold → high reliability, but missing sources

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original \rightarrow $\sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original \rightarrow $\sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original $\rightarrow \sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 \rightarrow $\sigma = 0.20$, SNR = 5.00

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original \rightarrow $\sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 \rightarrow $\sigma = 0.20$, SNR = 5.00
 - Size 35 \rightarrow $\sigma = 0.17$, SNR = 4.23

- ★ Signal-to-noise ratio (SNR)
 - ► Simple 1D example
 - Box-shaped source of S = 1, w = 25
 - Add Gaussian noise of $\sigma = 1$
 - ► Convolve with boxcar filter
 - Original \rightarrow $\sigma = 1.00$, SNR = 1.00 (SNR_{int} = 5.00)
 - Size 5 $\rightarrow \sigma = 0.45$, SNR = 2.24
 - Size 25 \rightarrow $\sigma = 0.20$, SNR = 5.00
 - Size 35 \rightarrow $\sigma = 0.17$, SNR = 4.23
 - ▶ Conclusions
 - Smooth data to optimal resolution to maximise SNR of sources
 - Recovery of integrated SNR (± noise) for kernels that match shape and size of source

★ Smooth + clip algorithm

- ► Convolution with multiple 3D kernels for spatial and spectral smoothing on different scales
- ▶ Measure RMS on each scale and apply threshold of $N \times RMS$
- ► Add pixels above threshold to source mask

Source Finding – Wavelet Decomposition

★ Alternative algorithms

▶ Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^{J} w_j(x)$$

NGC 2997

15

Source Finding – Wavelet Decomposition

★ Alternative algorithms

▶ Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^{J} w_j(x)$$

▶ 2D-1D wavelet decomposition

$$D(x) = c_{J_1, J_2}(x)$$

$$+ \sum_{j_1} w_{j_1, J_2}(x) + \sum_{j_2} w_{J_1, j_2}(x)$$

$$+ \sum_{j_1, j_2} w_{j_1, j_2}(x)$$

► See Flöer & Winkel (2012) for details

Source Finding – Wavelet Decomposition

★ Alternative algorithms

▶ Wavelet decomposition

$$D(x) = c_J(x) + \sum_{j=1}^{J} w_j(x)$$

▶ 2D-1D wavelet decomposition

$$D(x) = c_{J_1, J_2}(x)$$

$$+ \sum_{j_1} w_{j_1, J_2}(x) + \sum_{j_2} w_{J_1, j_2}(x)$$

$$+ \sum_{j_1, j_2} w_{j_1, j_2}(x)$$

► See Flöer & Winkel (2012) for details

Source Finding – Statistical Methods

- ★ Alternative algorithms
 - Sources may be spatially unresolved
 - Source finding problem reduces from 3D to 1D
 - ► Characterised Noise H I source finder (CNHI)
 - Kuiper test in a running window along the spectral axis
 - → uncover regions statistically inconsistent with pure Gaussian noise
 - ► See Jurek (2012) for more details

★ Estimating reliability

- ► Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H I emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

★ Estimating reliability

- ► Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H I emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

- ► Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow Noise or source$

★ Estimating reliability

- ► Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H I emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

- ► Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow Noise or source$
- ► Compare density in parameter space

★ Estimating reliability

- ► Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H I emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

- ► Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow Noise or source$
- ► Compare density in parameter space
 - Reliability $R \equiv \frac{T}{T+F} \rightarrow \frac{P-N}{P}$

★ Estimating reliability

- ► Fundamental assumptions
 - Gaussian noise, no offset
 - Astronomical signal is positive (e.g. H I emission)
 - No artefacts (e.g. RFI, sidelobes, continuum residuals)

- ► Search for all signals with $|S| > N \times \sigma$
 - $S < 0 \rightarrow Noise$
 - $S > 0 \rightarrow Noise or source$
- ► Compare density in parameter space
 - Reliability $R \equiv \frac{T}{T+F} \rightarrow \frac{P-N}{P}$

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

▶ Retain sources above a meaningful threshold, e.g. R > 0.9

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

▶ Retain sources above a meaningful threshold, e.g. R > 0.9

- ► Highly reliable source catalogue
 - Dozens of false detections removed as unreliable
 - Enables use of low source finding threshold of $\approx 3 \, \sigma$

★ Estimating reliability

Serra et al. 2012, PASA, 29, 296

▶ Retain sources above a meaningful threshold, e.g. R > 0.9

- ► Highly reliable source catalogue
 - Dozens of false detections removed as unreliable
 - Enables use of low source finding threshold of $\approx 3 \, \sigma$

Requires clean data with Gaussian noise plus source emission and no artefacts!

Parameterisation

Parameterisation

★ Source parameterisation

- ▶ Process of measuring the basic observational parameters of a source
 - Position \rightarrow *sky position, frequency/radial velocity*
 - Size \rightarrow angular size, spectral line width
 - Flux → peak flux density/brightness temperature, integrated flux
 - Other \rightarrow orientation, morphology, asymmetry, etc.
- ► Conversion to physical parameters
 - Position → redshift, distance
 - Size \rightarrow diameter, rotation velocity, temperature
 - Flux \rightarrow luminosity, column density, mass
- ► Effect of noise
 - Statistical uncertainty
 - Parameterisation often dominated by systematic errors

Parameterisation – Source Position

★ Basic source parameters

- ▶ Position

Position
• Flux-weighted centroid:
$$\langle \vec{p} \rangle = \frac{\sum_i \vec{p}_i S(\vec{p}_i)}{\sum_i S(\vec{p}_i)}$$

- 3D $\rightarrow \langle \vec{p} \rangle = (\langle x \rangle, \langle y \rangle, \langle z \rangle)$
- Setting $S(\vec{p_i}) = \text{const.}$ will yield geometric centroid
- ► Important
 - Accurate source mask desirable
 - Negative signals must be excluded
 - Centroid in native pixel coordinates
 - → Conversion to sky coordinates required
 - → World Coordinate System (WCS)

FITS: https://fits.gsfc.nasa.gov/fits wcs.html wcslib: http://www.atnf.csiro.au/people/mcalabre/WCS/ Astropy: http://docs.astropy.org/en/stable/wcs/

Parameterisation – Source Flux

- **★** Basic source parameters

► Integrated flux
$$S_{\text{int}} = \frac{\Delta z}{\Omega_{\text{PSF}}} \sum_{i} S(\vec{p_i})$$

Division by beam solid angle required to correct for pixel-to-pixel correlation

$$\Omega_{\rm PSF} = \frac{\pi \, \theta_a \, \theta_b}{4 \ln(2)} \approx 1.133 \, \theta_a \, \theta_b$$
 for a Gaussian PSF where θ_a, θ_b = FWHM of major, minor axis of beam

- Units: $\mbox{Jy Hz} = 10^{-26} \mbox{ W m}^{-2} \rightarrow \mbox{correct} \\ \mbox{Jy km s}^{-1} \rightarrow \mbox{frequently used pseudo-flux unit; better not use}$
- ▶ HI mass

$$\frac{M_{\rm HI}}{M_{\odot}} = 0.236 \times \frac{S_{\rm int}}{\rm Jy\,km\,s^{-1}} \times \left(\frac{d}{\rm kpc}\right)^2$$

Only valid for optically thin gas at redshift 0

Parameterisation – Spectral Moments

★ Spectral moments

ightharpoonup 0th moment ightharpoonupSum of flux densities

$$M_0(x, y) = \Delta v \sum_{z} S(x, y, z)$$

▶ 1st moment → Flux-weighted centroid

$$M_1(x,y) = \frac{\sum_z v(z) S(x,y,z)}{\sum_z S(x,y,z)}$$

▶ 2nd moment → Standard deviation about 1st moment

$$M_2(x,y) = \sqrt{\frac{\sum_z [v(z) - M_1(x,y)]^2 S(x,y,z)}{\sum_z S(x,y,z)}}$$

- ▶ Higher-order moments rarely used
 - 3rd moment (*skewness*), 4th moment (*kurtosis*)

A mask or flux threshold is usually required when calculating moments, as the noise will otherwise dominate the result!

Parameterisation – Spectral Moments

★ Spectral moments

- ▶ Units
 - 0th moment
 - \rightarrow Jy Hz or Jy km s⁻¹
 - \rightarrow KHz or Kkm s⁻¹
 - 1st and 2nd moments
 - \rightarrow Hz or km s⁻¹
- ▶ 0th moment often converted to HI column density
 - $N_{\rm H\,I} = 1.823 \times 10^{18} \int T_{\rm B} \, {\rm d}v$ where $[N_{\rm H\,I}] = {\rm cm}^{-2}$, $[T_{\rm B}] = {\rm K}$, $[v] = {\rm km\,s}^{-1}$
 - Assumptions
 - Local source at z = 0
 - Emission is optically thin
 - Emission is diffuse and fills the telescope beam

Moment analysis is sensitive to noise!

Parameterisation – Spectral Fitting

- ★ Fitting of spectrum I Gaussian Function
 - ▶ Useful for fitting and parameterising simple line profiles
 - Definition

$$G(z) = A \exp\left(-\frac{(z - z_0)^2}{2\sigma^2}\right)$$

▶ Relation between w_{50} (FWHM) and σ

$$w_{50} = 2\sqrt{2\ln(2)} \ \sigma \approx 2.3548 \ \sigma$$

► Integrated flux

$$S_{\text{int}} = \int_{-\infty}^{\infty} G(z) \, dz = \sqrt{2\pi} A \sigma \quad \approx 2.5066 A \sigma$$

Parameterisation – Spectral Fitting

★ Fitting of spectrum II – Gauss–Hermite Polynomial

van der Marel & Marijn 1993, ApJ, 407, 525

- ► Useful for extracting velocity fields from spatially resolved galaxies for rotation curve analysis
- ► Implemented in GIPSY

$$ullet \phi(x) = a \, e^{-rac{1}{2}y^2} \left\{ 1 + rac{h_3}{\sqrt{6}} (2\sqrt{2}y^3 - 3\sqrt{2}y) + rac{h_4}{\sqrt{24}} (4y^4 - 12y^2 + 3)
ight\} + Z \quad ext{ where } y \equiv rac{x-b}{c}$$

Parameterisation – Spectral Fitting

★ Fitting of spectrum III – Busy Function

Westmeier et al. 2014, MNRAS, 438, 1176

- ► Designed to fit double-horn profile of spatially unresolved galaxies
- ▶ Product of two error functions and a polynomial

$$B(z) = \frac{a}{4} \times \left[\text{erf}(b_1(w + z - z_e)) + 1 \right] \times \left[\text{erf}(b_2(w - z + z_e)) + 1 \right] \times \left[c \left| z - z_p \right|^n + 1 \right]$$

► Software:

BusyFit BF dist

https://github.com/SoFiA-Admin/BusyFit

https://github.com/RussellJurek/busy-function-fitting

Parameterisation – Frequency/Velocity/Redshift

- ★ Frequency Redshift Velocity
 - ▶ Radio astronomical data cubes usually provided in frequency, f, with constant channel width, Δf
 - ▶ Relative motion between source and observer
 - Doppler shift between observed frequency, f, and rest frequency, f_0
 - 21-cm H I transition: $f_0 \approx 1.420405751786 \text{ GHz}$
 - ▶ Reference frames
 - Correction for motion of observer
 - Rotation and orbital motion of the earth
 - Peculiar motion of sun
 - Rotation of Milky Way
 - Motion of Milky Way in Local Group
 - etc.

★ Velocity rest frames

★ Velocity rest frames

Name	Reference	Description
Topocentric	Observer	Natural rest frame of any observation
Barycentric	Solar System barycentre	Often referred to as "heliocentric"; rest frame most commonly supplied with HI data cubes
Local Standard of Rest (LSR)	Solar neighbour- hood	Conversion between barycentric and LSRD: $v_{LSR} = v_{bar} + 9\cos(l)\cos(b) + 12\sin(l)\cos(b) + 7\sin(b)$
Galactic Standard of Rest (GSR)	Galactic centre	Conversion between LSRD and GSR: $v_{\text{GSR}} = v_{\text{LSR}} + 220 \sin(l) \cos(b)$
LG Standard of Rest (LGSR)	Local Group barycentre	Conversion between GSR and LGSR: $v_{LGSR} = v_{GSR} - 88\cos(l)\cos(b) + 64\sin(l)\cos(b) - 43\sin(b)$

These are the rest frames most commonly encountered in radio astronomy. Anything beyond the barycentric rest frame is inaccurate, in particular the LGSR.

- ★ Redshift and velocity
 - ▶ Definition of redshift: $z \equiv \frac{\lambda_{\text{obs}} \lambda_0}{\lambda_0} = \frac{f_0 f_{\text{obs}}}{f_{\text{obs}}}$ \Rightarrow $\frac{f_0}{f_{\text{obs}}} = 1 + z$
 - ► Redshift components
 - Cosmological redshift \rightarrow Hubble expansion of the universe
 - Peculiar redshift \rightarrow Doppler shift from peculiar velocities
 - Gravitational redshift → GR time dilation in gravitational potential (usually negligible)
 - ► Redshifts are multiplicative
 - $1 + z_{\text{obs}} = (1 + z_{\text{cos}}) \times (1 + z_{\text{pec}}) \times (1 + z_{\text{grav}})$
 - ▶ It is usually not possible to separate redshift components
 - Low redshift → Dominated by peculiar velocities
 - High redshift → Dominated by Hubble expansion

★ Peculiar redshift/velocity

- ► Non-relativistic Doppler effect:
- $z_{\rm pec} = v_{\rm pec} / c \equiv \beta$

- Valid for small $v_{pec} \ll c$
- Note that generally $c_{Zobs} \neq v \rightarrow$ "recession velocity" or "optical velocity"
- ► Relativistic Doppler effect:

$$1 + z_{\text{pec}} = \gamma \left[1 + \beta \cos(\vartheta) \right]$$
 where $\gamma \equiv (1 - \beta^2)^{-1/2}$ (Lorentz factor)

- Depends on transverse velocity!
- ϑ = angle between direction of motion and line-of-sight from observer to source at time of emission
- Pure line-of-sight motion:

$$1 + z_{\text{pec}} = \sqrt{\frac{1+\beta}{1-\beta}} \qquad \Leftrightarrow \qquad \frac{v_{\text{pec}}}{c} = \frac{f_0^2 - f^2}{f_0^2 + f^2}$$

- ★ Redshift corrections I Velocity width
 - Assumptions
 - Two objects at same cosmological redshift, z_{cos}
 - Redshift difference, $\Delta z_{\rm obs}$, due to velocity difference
 - ► Non-relativistic Doppler effect:

$$z_{\rm pec} = \beta = \frac{v_{\rm pec}}{c}$$

▶ Peculiar velocity difference along LOS

$$\frac{\Delta v_{\text{pec}}}{c} = \frac{\Delta z_{\text{obs}}}{1 + z_{\text{cos}}}$$

$$\frac{\Delta v_{\rm pec}}{c} \approx \frac{1 + z_{\rm cos}}{f_0} \Delta f_{\rm obs}$$

- ★ Redshift corrections II Flux-related parameters
 - ▶ Definition of flux

$$F = \int S \, \mathrm{d}f_{\rm obs} = \frac{L}{4\pi \, D_{\rm L}^2}$$

▶ Rayleigh-Jeans law

$$B = \frac{2 \, \mathrm{k_B} f^2 T}{\mathrm{c}^2}$$
 where $I = \frac{S}{\Omega} = \frac{B}{(1+z)^3}$ with telescope beam solid angle Ω

▶ Brightness temperature

Euclidian (
$$z = 0$$
):
$$T_{\rm B} = \frac{{\rm c}^2 S}{2 \,{\rm k_B} f_0^2 \Omega}$$

Relativistic:
$$T_{\rm B} = \frac{{\rm c}^2 (1+z)^3 S}{2 \, {\rm k_B} f_0^2 \Omega}$$

► Meyer et al. 2017, PASA, 34, 52

$$\frac{T_{\rm B}}{\rm K} \approx 6.06 \times 10^5 (1+z)^3 \frac{S}{\rm Jy} \left(\frac{a \times b}{\rm arcsec}^2\right)^{-1}$$

- ★ Redshift corrections II Flux-related parameters
 - ► H I column density

$$N_{\rm H\,I} = \frac{16\pi\,(1+z)^4\,S}{3\,{\rm h}\,f_0\,A_{\rm H\,I}\,\Omega}$$
 where $A_{\rm H\,I} = 2.86888\times10^{-15}\,{\rm s}^{-1}$ is the spontaneous emission rate of H I

► Evaluating the constants yields

$$\frac{N_{\rm H\,I}}{\rm cm^{-2}} = 2.64 \times 10^{20} \, (1+z)^4 \, \frac{\rm S}{\rm Jy\,Hz} \left(\frac{\Omega}{\rm arcsec^2}\right)^{-1}$$

$$= 2.33 \times 10^{20} \, (1+z)^4 \, \frac{\rm S}{\rm Jy\,Hz} \left(\frac{a \times b}{\rm arcsec^2}\right)^{-1} \quad \text{for a Gaussian beam}$$

- **★** Further information
 - ► Meyer et al. 2017, PASA, 34, 52

- ★ Redshift corrections II Flux-related parameters
 - ► HI mass

$$M_{\rm H\,I} = \frac{16\pi \, m_{\rm H} \, D_{\rm L}^2 \, S}{3 \, {\rm h} \, f_0 \, A_{\rm H\,I}}$$

- where
 - $A_{\rm H\,I} = 2.86888 \times 10^{-15} \,\rm s^{-1}$ is the spontaneous emission rate of H I
 - $m_{\rm H} = 1.673533 \times 10^{-27}$ kg is the mass of a hydrogen atom
 - $D_L(z)$ is the redshift- and cosmology-dependent luminosity distance
- ► HI mass depends on assumptions about cosmology
- **★** Further information
 - ► Meyer et al. 2017, PASA, 34, 52

Parameterisation – Uncertainties

★ Uncertainties

- ► Measurement errors usually dominated by systematic errors
 - flux calibration
 - continuum subtraction
 - spectral bandpass calibration
 - image deconvolution
 - radio frequency interference
 - missing diffuse flux (due to lack of short spacings)
 - parameterisation errors due to insufficient source mask
 - source confusion (multiple sources perceived as one)
 - systematic errors in source distance measurements
 - ...

Parameterisation – Uncertainties

★ Example

- ► Source with S = 1 Jy over N = 50 channels
- ► Noise level of $\sigma = 0.1$ Jy
- ► Flux calibration error of 5%
- ► Bandpass error of 0.1 Jy
- ★ True flux and statistical uncertainty

•
$$F_{\text{true}} = 50 \text{ Jy}, \ \sigma_{\text{stat}} = \sigma \times \sqrt{N} \approx 0.7 \text{ Jy}$$

- ★ Measured flux
 - $F_{\text{meas}} = 57.5 \pm 0.7 \text{ Jy} \quad (15.5\% \text{ too high})$
- ★ Discrepancy
 - $ightharpoonup (F_{\text{meas}} F_{\text{true}}) / \sigma_{\text{stat}} \approx 10.6$

Parameterisation – Uncertainties

- ★ How to get realistic error estimates?
 - ▶ Numerical methods
 - ▶ Common techniques
 - Injection of artificial sources into data
 - Shifting of source mask to "empty" regions of data cube

★ Additional problem

- ► Errors may not be Gaussian
- ► Mean & standard deviation $(\mu \pm \sigma)$ no longer meaningful
 - Numerical error analysis required
- ▶ Example
 - Busy Function
 - a is Gaussian, but not b_1

Summary

- ★ Key points to take away
 - ► Source finding is non-trivial and needs fine-tuning
 - ▶ Optimal convolution filters required to detect sources
 - ► Compromise between high completeness and high reliability
 - · Reliability calculation can help, but clean data required
 - ► Accurate source masks required for parameterisation
 - Beware of biases
 - ► Difference between observed frequency/redshift and source-frame velocity
 - ▶ Velocity resolution changes with redshift
 - Corrections required beyond redshift 0
 - ▶ Distance-dependent parameters (e.g. H I mass) are cosmology-dependent
 - ► Parameterisation errors usually dominated by systematic errors
 - Numerical error analysis required