CS 224S/LING 281 Speech Recognition, Synthesis, and Dialogue

Dan Jurafsky

Lecture 14:

Dialogue: MDPs

and

Speaker Detection

Outline for today

- MDP Dialogue Architectures
- Speaker Recognition

Now that we have a success metric

- Could we use it to help drive learning?
- In recent work we use this metric to help us learn an optimal policy or strategy for how the conversational agent should behave

New Idea: Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.

What do we mean by actions A and policies π ?

- Kinds of decisions a conversational agent needs to make:
 - When should I ground/confirm/reject/ask for clarification on what the user just said?
 - When should I ask a directive prompt, when an open prompt?
 - When should I use user, system, or mixed initiative?

A threshold is a humandesigned policy!

- Could we learn what the right action is
 - Rejection
 - Explicit confirmation
 - Implicit confirmation
 - No confirmation
- By learning a policy which,
 - given various information about the current state,
 - dynamically chooses the action which maximizes dialogue success

Another strategy decision

- Open versus directive prompts
- When to do mixed initiative

- How we do this optimization?
- Markov Decision Processes

Review: Open vs. Directive Prompts

- Open prompt
 - System gives user very few constraints
 - User can respond how they please:
 - "How may I help you?" "How may I direct your call?"
- Directive prompt
 - Explicit instructs user how to respond
 - "Say yes if you accept the call; otherwise, say no"

Review: Restrictive vs. Nonrestrictive gramamrs

- Restrictive grammar
 - Language model which strongly constrains the ASR system, based on dialogue state
- Non-restrictive grammar
 - Open language model which is not restricted to a particular dialogue state

Kinds of Initiative

 How do I decide which of these initiatives to use at each point in the dialogue?

Grammar	Open Prompt	Directive Prompt
Restrictive	Doesn't make sense	System Initiative
Non-restrictive	User Initiative	Mixed Initiative

Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - a set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.

Goals are not enough

- Goal: user satisfaction
- OK, that's all very well, but
 - Many things influence user satisfaction
 - We don't know user satisfaction til after the dialogue is done
 - How do we know, state by state and action by action, what the agent should do?
- We need a more helpful metric that can apply to each state

Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent
- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility

Maximum Expected Utility

- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility
- Action A has possible outcome states Result_i(A)
- E: agent's evidence about current state of world
- Before doing A, agent estimates prob of each outcome
 - P(Result_i(A)|Do(A),E)
- Thus can compute expected utility:

$$EU(A \mid E) = \sum_{i} P(Result_{i}(A) \mid Do(A), E)U(Result_{i}(A))$$

Utility (Russell and Norvig)

Markov Decision Processes

- Or MDP
- Characterized by:
 - a set of states S an agent can be in
 - a set of actions A the agent can take
 - A reward r(a,s) that the agent receives for taking an action in a state
 - (+ Some other things I'll come back to (gamma, state transition probabilities))

A brief tutorial example

- Levin et al (2000)
- A Day-and-Month dialogue system
- Goal: fill in a two-slot frame:
 - Month: November
 - Day: 12th
- Via the shortest possible interaction with user

What is a state?

- In principle, MDP state could include any possible information about dialogue
 - Complete dialogue history so far
- Usually use a much more limited set
 - Values of slots in current frame
 - Most recent question asked to user
 - Users most recent answer
 - ASR confidence
 - etc

State in the Day-and-Month example

- Values of the two slots day and month.
- Total:
 - 2 special initial state s_i and s_f.
 - 365 states with a day and month
 - 1 state for leap year
 - 12 states with a month but no day
 - 31 states with a day but no month
 - 411 total states

Actions in MDP models of dialogue

- Speech acts!
 - Ask a question
 - Explicit confirmation
 - Rejection
 - Give the user some database information
 - Tell the user their choices
- Do a database query

Actions in the Day-and-Month example

- a_d: a question asking for the day
- a_m: a question asking for the month
- a_{dm}: a question asking for the day+month
- a_f: a final action submitting the form and terminating the dialogue

A simple reward function

- For this example, let's use a cost function
- A cost function for entire dialogue
- Let
 - N_i=number of interactions (duration of dialogue)
 - N_e=number of errors in the obtained values (0-2)
 - N_f=expected distance from goal
 - (0 for complete date, 1 if either data or month are missing, 2 if both missing)
- Then (weighted) cost is:
- $C = w_i \times N_i + w_e \times N_e + w_f \times N_f$

2 possible policies

Policy 1 (directive)

$$c_1 = -3w_i + 2p_d w_e$$

Policy 2 (open)

$$c_2 = -2w_i + 2p_o w_e$$

P_d=probability of error in directive prompt

P_o=probability of error in open prompt

2 possible policies

Strategy 1 is better than strategy 2 when improved error rate justifies longer interaction:

$$p_o - p_d > \frac{w_i}{2w_e}$$

Policy 1 (directive)

$$c_1 = -3w_i + 2p_d w_e$$

Policy 2 (open)

$$c_2 = -2w_i + 2p_o w_e$$

That was an easy optimization

- Only two actions, only tiny # of policies
- In general, number of actions, states, policies is quite large
- So finding optimal policy π^* is harder
- We need reinforcement leraning
- Back to MDPs:

MDP

We can think of a dialogue as a trajectory in state space

- The best policy π^* is the one with the greatest expected reward over all trajectories
- How to compute a reward for a state sequence?

$$s_1 \rightarrow_{a1,r_1} s_2 \rightarrow_{a2,r_2} s_3 \rightarrow_{a3,r_3} \cdots$$

Reward for a state sequence

- One common approach: discounted rewards
- Cumulative reward Q of a sequence is discounted sum of utilities of individual states

$$Q([s_0, a_0, s_1, a_1, s_2, a_2 \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots,$$

- Discount factor γ between 0 and 1
- Makes agent care more about current than future rewards; the more future a reward, the more discounted its value

The Markov assumption

 MDP assumes that state transitions are Markovian

$$P(s_{t+1} | s_t, s_{t-1}, ..., s_o, a_t, a_{t-1}, ..., a_o) = P_T(s_{t+1} | s_t, a_t)$$

Expected reward for an action

 Expected cumulative reward Q(s,a) for taking a particular action from a particular state can be computed by Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

- Expected cumulative reward for a given state/ action pair is:
 - immediate reward for current state
 - + expected discounted utility of all possible next states s'
 - Weighted by probability of moving to that state s'
 - And assuming once there we take optimal action a'

What we need for Bellman equation

- A model of p(s'|s,a)
- Estimate of R(s,a)
- How to get these?
- If we had labeled training data
 - P(s'|s,a) = C(s,s',a)/C(s,a)
- If we knew the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)
- Given these parameters, can use value iteration algorithm to learn Q values (pushing back reward values over state sequences) and hence best policy

Final reward

- What is the final reward for whole dialogue R(s1,a1,s2,a2,...,sn)?
- This is what our automatic evaluation metric PARADISE computes!
- The general goodness of a whole dialogue!!!!!

How to estimate p(s'|s,a) without labeled data

- Have random conversations with real people
 - Carefully hand-tune small number of states and policies
 - Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
 - Set probabilities from this corpus
- Have random conversations with simulated people
 - Now you can have millions of conversations with simulated people
 - So you can have a slightly larger state space

An example

- Singh, S., D. Litman, M. Kearns, and M. Walker. 2002. Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. Journal of AI Research.
- NJFun system, people asked questions about recreational activities in New Jersey
- Idea of paper: use reinforcement learning to make a small set of optimal policy decisions

Very small # of states and acts

- **States**: specified by values of 8 features
 - Which slot in frame is being worked on (1-4)
 - ASR confidence value (0-5)
 - How many times a current slot question had been asked
 - Restrictive vs. non-restrictive grammar
 - Result: 62 states
- Actions: each state only 2 possible actions
 - Asking questions: System versus user initiative
 - Receiving answers: explicit versus no confirmation.

Ran system with real users

- 311 conversations
- Simple binary reward function
 - 1 if competed task (finding museums, theater, winetasting in NJ area)
 - 0 if not
- System learned good dialogue strategy: Roughly
 - Start with user initiative
 - Backoff to mixed or system initiative when re-asking for an attribute
 - Confirm only a lower confidence values

State of the art

- Only a few such systems
 - From (former) ATT Laboratories researchers, now dispersed
 - And Cambridge UK lab
- Hot topics:
 - Partially observable MDPs (POMDPs)
 - We don't REALLY know the user's state (we only know what we THOUGHT the user said)
 - So need to take actions based on our BELIEF, I.e. a probability distribution over states rather than the "true state"

Summary

- Utility-based conversational agents
 - Policy/strategy for:
 - Confirmation
 - Rejection
 - Open/directive prompts
 - Initiative
 - **+**?????
 - MDP
 - POMDP

Summary

- The Linguistics of Conversation
- Basic Conversational Agents
 - ASR
 - NLU
 - Generation
 - Dialogue Manager
- Dialogue Manager Design
 - Finite State
 - Frame-based
 - Initiative: User, System, Mixed
- VoiceXML
- Information-State
 - Dialogue-Act Detection
 - Dialogue-Act Generation
- Evaluation
- Utility-based conversational agents
 - MDP, POMDP

Part II: Speaker Recognition

Speaker Recognition tasks

- Speaker Recognition
 - Speaker Verification (Speaker Detection)
 - Is this speech sample from a particular speaker

Is that Jane?

- Speaker Identification
 - Which of this set of speakers does this speech sample come from Who is that?
 - Related tasks: Gender ID, Language ID

Is this a woman or a man?

- Speaker Diarization
 - Segmenting a dialogue or multiparty conversation

Who spoke when?

Speaker Recognition tasks

- Two Modes of Speaker Verification
 - Text-dependent (Text-constrained)
 - There is some constraint on the type of utterance that users of the system can pronounce
 - Text-independent
 - Users can say whatever they want

Introduction (cont.)

- Two Cases of Speaker Identification
 - Closed Set
 - A reference model for the unknown speaker may not exist
 - Open Set
 - An additional decision alternative, "the unknown does not match any of the models", is required

Speaker Verification

- Basic idea: likelihood ratio detection
 - Assumption: A segment of speech Y contains speech from only one speaker
 - Hypothesis test:

H0: Y is from the hypothesized speaker S

H1: Y is not from the hypothesized speaker S

A likelihood ratio (LR) test given by

$$p(Y|H0)$$
 $> \Theta$, accept H0, $p(Y|H1)$ $< \Theta$, accept H1,

Speaker ID

Log-Likelihood Ratio Score

We determine which hypothesis is true using the ratio:

$$\begin{split} & \underbrace{p(X \mid H_0)}_{p(X \mid H_1)} \bigg\} \ge \text{threshold, accept } H_0 \\ & \underbrace{p(X \mid H_1)}_{C} \bigg\{ \le \text{threshold, reject } H_0 \\ & \Lambda(X) = \log[p(X \mid \lambda_C)] - \log[p(X \mid \lambda_{\overline{C}})] \\ & \Lambda(X) \bigg\{ \ge \text{threshold, } X \text{ generated by } \lambda_C \\ & < \text{threshold, } X \text{ generated by } \lambda_{\overline{C}} \end{split}$$

 We use the log-likelihood ratio score to decide whether an observed speaker, language, or dialect is the target

Statistical Modeling (cont.)

Figure 5: Likelihood-ratio-based speaker verification system.

How do we get H1?

- Pool speech from several speakers and train a single model:
 - a universal background model (UBM)
- Main advantage :
 - a single speaker-independent model (λ_{bkg}) can be trained once for a particular task and then used for all hypothesized speakers in that task

How to compute P(H|X)?

 For text-independent speaker recognition, the most successful likelihood function has been GMMs

Gaussian Mixture Models

- A Gaussian mixture model (GMM) represents features as the weighted sum of multiple Gaussian distributions
- Each Gaussian state i has a
 - Mean μ_i
 - Covariance
 - Weight

 \sum_{i}

Gaussian Mixture Models

Gaussian Mixture Models

GMM training

- A recognition system makes decisions about observed data based on a knowledge of past data
- During training, the system learns about the data it uses to make decisions
 - A set of features are collected from a certain language, dialect, or speaker
 - A model is generated to represent the data

Language, Speaker, and Dialect Models

In LID, DID, and SID, we train a set of *target models* λ_{c} for each dialect, language, or speaker

Universal Background Model

We also train a *universal background* model $\lambda_{\overline{c}}$ representing all speech

Hypothesis Test

 Given a set of test observations, we perform a hypothesis test to determine whether a certain class produced it H_0 : X_{test} is from the hypothesized class

 H_1 : X_{test} is not from the hypothesized class

Hypothesis Test

 Given a set of test observations, we perform a hypothesis test to determine whether a certain class produced it H_0 : X_{test} is from the hypothesized class

 H_1 : X_{test} is not from the hypothesized class

Hypothesis Test

 Given a set of test observations, we perform a hypothesis test to determine whether a certain class produced it

Log-Likelihood Computation

• The observation log-likelihood given a model is:

Gaussian mixture models

• For a *D*-dimensional feature vector \vec{x} , the mixture density used for the likelihood function is defined as follows:

$$p(\vec{x} \mid \lambda) = \sum_{i=1}^{M} w_i p_i(\vec{x})$$
 $\sum_{i=1}^{M} w_i = 1$

• Gaussian densities $p_i(\vec{x})$, each parameterized by a $D \times 1$ mean vector \vec{u}_i and a $D \times D$ covariance matrix Σ i:

$$p_i(\vec{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} e^{-(1/2)(\vec{x} - \vec{\mu}_i)' \sum_{i=1}^{-1} (\vec{x} - \vec{\mu}_i)}$$

• Collectively, the parameters of the density model are denoted as $\lambda = (w_i, \vec{u}_i, \Sigma_i)$, i = (1, ..., M)

Gaussian mixture models

• Under the assumption of independent feature vectors, the log-likelihood of a model λ for a sequence of feature vectors $X = \{\vec{x}_1,...,\vec{x}_T\}$ is computed as follows:

$$\log p(X \mid \lambda) = \frac{1}{T} \sum_{t} \log p(\vec{x}_{t} \mid \lambda)$$

- GMMs are comptuationally inexpensive
 - For homework: single gaussian.
 - Real systems:
 - UBM background model: 512–2048 mixtures
 - Speaker's GMM: 64–256 mixtures
- Recent work:
 - Combining high-level information (such as speaker-dependent word usage or speaking style) with GMMs

Doddington (2001)

 Word bigrams can be very informative about speaker identity

Speaker diarization

- Tasks
 - Conversational telephone speech
 - 2 speakers
 - Broadcast news
 - Many speakers although often in dialogue (interviews) or in sequence (broadcast segments)
 - Meeting recordings
 - Many speakers, lots of overlap and disfluencies
- General 2-step algorithm
 - Segmentation into speakers
 - Detection of speaker-change (insert boundaries)
 - Clustering (MFCC)s of segments

Speaker diarization

- General 2-step algorithm
 - Segmentation into speakers
 - Detection of speakerchange (insert boundaries)
 - Clustering (MFCC)s of segments

Picture from slide by Moraru, Besacier, Meignier, Fredouille, Bonastre

Outline for today

- MDP Dialogue Architectures
- Speaker Recognition