Lecture Notes: Real Analysis — Characterizing the Reals (Course: MIT 18.100A)

Thobias K. Høivik

March 17, 2025

Abstract Algebra revision

Recall the definition of the field from abstract algebra:

Definition 1 (Field). A field $(F, +, \cdot)$ is a set with two operations denoted as + and \cdot satisfying the following conditions,

- 1. Closure of addition; If $x, y \in F \Rightarrow x + y \in F$
- 2. Commutativity of addition; $x + y = y + x, \forall x, y \in F$
- 3. Associativity of addition; $\forall x, y, z \in F : (x + y) + z = x + (y + z)$
- 4. Additive identity; $\forall x \in F : x + 0 = 0 + x = x$
- 5. Additive inverses; $\forall x \in F, \exists (-x) : x + (-x) = (-x) + x = 0$
- 6. Closure of multiplication; If $x, y \in F \Rightarrow x \cdot y \in F$
- 7. Commutativity of multiplication; $x \cdot y = y \cdot x, \forall x, y \in F$
- 8. Associativity of multiplication; $\forall x, y, z \in F : (xy)z = x(yz)$
- 9. Multiplicative identity; $\forall x \in F : 1 \cdot x = x \cdot 1 = x$
- 10. Multiplicative inverses: $\forall x \in F, (x \neq 0) \Rightarrow \exists x^{-1} \in F : x \cdot x^{-1} = x^{-1} \cdot x = 1$
- 11. (Left & right) distributive property $x(y+z) = xy + xz \land (x+y)z = xz + yz \quad \forall x,y,z \in F$

Examples:

A clear example of this would be \mathbb{Q} . \mathbb{Z} , however, may only have sufficient structure for an integral domain or even a euclidean domain if we want to be a bit more specific.

Theorem 1. If F is a field then $\forall x \in F$,

$$0 \cdot x = 0$$

Proof. If $x \in F$,

$$0 = 0x + (-0x) = (0+0)x + (-0x) = 0x + 0x + (-0x)$$
$$= 0x + 0 = 0x$$

Definition 2 (Ordered Field). An ordered field is a field F which is also an ordered set such that

- 1. $\forall x, y, z \in F$, if $x < y \Rightarrow x + z < y + z$
- 2. If x > 0 and y > 0 then xy > 0

If x > 0 we say x is positive and for $x \ge 0$ we say x is non-negative.

Example:

Here \mathbb{Q} is an example, yet again.

Theorem 2. If F is an ordered field, then if $x > 0 \Rightarrow -x < 0$

Proof. If
$$0 < x \Rightarrow -x + 0 < -x + x \Rightarrow -x < 0$$

The same can be said for $x < 0 \Rightarrow -x > 0$ and it is equally trivial to prove.

Field with the Least Upper Bound property

Theorem 3. Let F be an ordered field with the least upper bound property. Then if $A \subset F$, $A \neq \emptyset$ and bounded below then $\inf(A)$ exists in F.

Proof. We are given that for any $\emptyset \neq A \subset F \Rightarrow \exists sup(A)$. Consider then the set $-A = \{-x : x \in A\}$. Clearly -A is nonempty and since F is a field $x \in F \Rightarrow -x \in F$ so $-A \subset F$. Thus -A is a nonempty subset of F. We assume there exists a supremum of -A since F has the least upper bound property. If $b \geq x, \forall x \in -A$ is an arbitrary upper bound of -A, the supremum sup(A) is the bound $b_0 \leq b$, observe what happens when we take their inverses.

$$b \ge x$$

$$b + (-b) \ge x + (-b)$$

$$0 \ge x + (-b)$$

$$(-x) + 0 \ge (-x) + x + (-b)$$

$$-x \ge -b$$

Thus the additive inverse of any arbitrary upper bound of -A is a lower bound of the set containing the additive inverses of -A

$$b_0 \le b$$

$$b_0 + (-b_0) \le b + (-b_0)$$

$$0 \le b + (-b_0)$$

$$(-b) + 0 \le (-b) + b + (-b_0)$$

$$-b \le -b_0$$

Thus the inverse of the supremum of -A is the infimum of the set of A's inverses. Recall that $-A = \{-x : x \in A\}$ so $A = \{x : -x \in -A\}$. Thus, a subset Abounded below of an ordered field has $\inf(A) = -\sup(-A)$ and so a ordered field with the least upper bound property has the greates lower bound property, also.

The reals again

Theorem 4. There exists a unique (up to isomorphisms) ordered field with the least upper bound property containing \mathbb{Q} . This is the field denoted by \mathbb{R} .

This is not trivial to prove and will, once again, not be done here.

Theorem 5. There exists unique $r \in \mathbb{R}$ such that $r > 0 \land r^2 = 2$.

Proof. Let $E = \{x \in \mathbb{R} : x > 0 \land x^2 < 2\}$. Then E is bounded above by 2, so $\sup E$ exists by the least upper bounde property. Let $r = \sup E$. We will show that $r^2 = 2$. Assume for contradiction that $r^2 < 2$ or $r^2 > 2$.

Case 1: $r^2 < 2$ Since r is the least upper bound, for any $\mathcal{E} > 0$, there exists $x \in E$ such that $r - \mathcal{E} < x$. Choose $\mathcal{E} > 0$ small enough such that $(r + \mathcal{E})^2 < 2$. Then $r + \mathcal{E} \in E$, contradicting that r is an upper bound. Hence, $r^2 \ge 2$.

Case 2: $r^2 > 2$ Choose $\mathcal{E} > 0$ small enough such that $(r - \mathcal{E})^2 > 2$. Then $r - \mathcal{E}$ is an upper bound of E, contradicting the assumption that $r = \sup E$. Hence, $r^2 \leq 2$.

Since both cases lead to contradictions, we conclude that $r^2 = 2$.

Uniqueness: Suppose there exists another s > 0 such that $s^2 = 2$. If s > r, then s is an upper bound smaller than $\sup E$, contradicting the definition of r. If s < r, then r is not the least upper bound, also a contradiction. Hence, r = s, proving uniqueness.