1. The weights of Pearson students are distributed normally. The weights in kilograms of a random sample of five Pearson students are 53, 72, 65, 58 and 61. Find a 95% confidence interval for the mean weight of all Pearson students.

2. Prove that every simple planar graph contains a vertex whose degree is at most five.

Suppose a simple planar graph have all vertices' degrees more than 5. Let v=n. We have $e=\frac{\sum deg(v)}{2} \Rightarrow \frac{6n}{2}=3n$. For simple planar graphs, $e \leq 3v-b$ for v>3. However $e \geqslant 3n > 3n-b=3v-b$. The Contradiction proves the result.

Also connected and n = 3. This should be $x^2 + v^2$ considered in your proof.

3. Solve the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ given y(1) = 2.

$$\frac{dy}{dx} = \frac{x}{y} + \frac{y}{yx} \cdot \text{ Let } y = ux \cdot \frac{dy}{dx} = \frac{dx}{dx} \cdot x + u \cdot \frac{y}{x} = u \cdot \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{u} + \frac{1}{2} \cdot u = \frac{dx}{dx} \cdot x + u \cdot \frac{y}{x} = \frac{1}{x} \cdot dx \cdot \frac{y}{x} = \frac{1}{x} \cdot dx \cdot \frac{y}{x} = \frac{1}{x} \cdot dx = -\frac{1}{x} \cdot \frac{y}{x} \cdot \frac{x}{x} = \frac{1}{x} \cdot \frac{y}{x} \cdot \frac{y}{x} = \frac{1}{x} \cdot \frac{y}{x} \cdot \frac{x}{x} = \frac{1}{x} \cdot \frac{y}{x} \cdot \frac{y}{x} = \frac{1}{x} \cdot \frac{y}{x} = \frac{1}{x} \cdot \frac{y}{x} \cdot \frac{y}{x} = \frac{1}{x} \cdot \frac{y}{$$

- 4. Let G be a simple graph. Prove that G and its complement \bar{G} cannot both be disconnected.
 - · Suppose G is disconnected. It has a separate parts where vertices within each part are connected. A > 2. Suppose n=3.

 For G, there will be a path from every vertex in Part A C to all vertices in B and C, so A, B, and C are connected between each other. Also, there will be a path from every vertex in Part B to all vertices in A and C. There's always a path for two vertices within A by first going to B and then return to A. Hence, A, B, C are connected within itself and between each other. So G must be connected.
 - · For cases when G is disconnected, we can show G most be connected using the same legic. Therefore, G and G can't be both disconnected.
- 5. Suppose $\phi: \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a group homomorphism with $\phi(7) = 6$.
 - (a) Write down $\phi(21)$.

 $\phi(21) = \phi(7+7+7) = \phi(7) + \phi(7) + \phi(7) = 18$, but $\phi(21)$ should be less than is. 50 $\phi(21) = 18 - 15 = 3$.

(b) Find $\phi(1)$.

 ϕ (7) = ϕ ((+1+1+1+1+1+1) = 7ϕ (1), ϕ (1) have to be integer, so 6+15=21. ϕ (1) = $21 \stackrel{.}{=} 7 = 3$.

- (c) Find ran(ϕ). $\phi(1) = 3$, $\phi(2) = 6$, $\phi(3) = 9$, $\phi(4) = 12$. $\phi(5) = 0$. $\phi(6) = 3$, $\phi(7) = 6$, $\phi(8) = 9$, $\phi(9) = 12$, $\phi(10) = 0$.

 Hence, $\varphi(9) = 9$, $\varphi(9) = 12$.
- (d) Find $ker(\phi)$.

|cer(4) = {0,5,10,15,20,25,30,35,40,45} by inspection from the 5th column in (c).

(e) Solve the equation $\phi(x) = 12, x \in \mathbb{Z}_{50}$.

By inspection of the 4th column in (1), x = 4, 9, 14, 19, 24, 29, 34, 39, 44, 49.