

Machine Learning

Support Vector Machines

Optimization objective

Alternative view of logistic regression

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

If y=1, we want $h_{\theta}(x)\approx 1$, $\theta^Tx \gg 0$ If y=0, we want $h_{\theta}(x)\approx 0$, $\theta^Tx\ll 0$

Alternative view of logistic regression

Cost of example:
$$-(y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x))) \leftarrow$$

$$= \left| \frac{1}{1 + e^{-\theta^T x}} \right| - \left| (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}}) \right| \le$$

If y = 1 (want $\theta^T x \gg 0$):

If y = 0 (want $\theta^T x \ll 0$):

Support vector machine

Logistic regression:

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(\underbrace{-\log h_{\theta}(x^{(i)})}_{\text{cost0}} \right) + \underbrace{(1-y^{(i)}) \left((-\log(1-h_{\theta}(x^{(i)})) \right)}_{\text{cost0}} \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Support vector machine
$$(0, 0)$$
 $+ (1-y^i)$ $\cos(1, (0x^i)) + \frac{\lambda}{2m}$ $\sin(1-x^i)$ $\cos(1, (0x^i)) + \frac{\lambda}{2m}$ $\cos(1-x^i)$ $\cos($

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

SVM hypothesis

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

