2025-03-10

Тематическое моделирование

Тематическое моделирование (моделирование топиков, topic modelling) — вид машинного обучения без учителя, основанный на статистическом моделировании.

Применяется для выявления тем в коллекции документов. Принцип тематического моделирования предполагает автоматическую кластеризацию слов, которые часто встречаются в документах в одном контексте (т.е. вместе), с целью выявления групп слов, характеризующих отдельные темы в коллекции документов. Конечная цель тематического моделирования — выявление K основных тем (топиков) в корпусе текстовых данных.

Основные сферы применения тематического моделирования

- 1. Кластеризация и классификацию документов: распределение документов по группам на основе их содержания (либо выявление этих групп, либо, когда топики уже есть, отнесение документов к какому-либо из них)
- 2. Информационный поиск: помощь поисковым системам в подборе наиболее релевантных документов
- 3. Квазиреферирование текста: сжатие больших фрагментов текста в более короткие рефераты с основной информацией
- 4. Сегментация клиентов: группировка клиентов на основе их отзывов или обзоров
- 5. Анализ тональности: определение положительного, отрицательного, нейтрального или иного заданного тона для большой коллекции текстов
- 6. Исследовательский анализ слабоструктурированных данных: обнаружение скрытых закономерностей и тем в большом корпусе текстовых данных

Основные этапы

- 1. Загрузить текстовые данные
- 2. Предварительная обработка данных: удаление стоп-слов, знаков препинания, другой нерелевантной информации; лемматизация.

- 3. Формирование матрицы «документ-термин»: предварительно обработанные текстовые данные преобразуются в матрицу количества слов, где каждая строка документ, каждый столбец уникальная лемма.
- 4. Запуск модели: наиболее популярные подходы включают латентное размещение (аллокацию) Дирихле (Latent Dirichlet Allocation, LDA), неотрицательное матричное разложение (non-negative matrix factorization, NMF), а также методы вроде структурного тематического моделирования (Structural Topic Models, STM). На вход модели подается сформированная ранее матрица.
- 5. В ходе моделирования формируется матрица «термин-топик»:

	hobby	pursue	ability	giving	
Topic 4	0.5	0.3	0.0	0.0	
Topic 5	0.0	0.0	0.0	0.8	
Topic 88	0.0	0.2	0.5	0.0	

6. Далее формируется набор наиболее релевантных терминов для каждого топика (обычно по 10):

Topic 4: hobby, rewarding, pursue, pursue hobby, leisure time, leisure, passion, family hobby, time hobby, friend, social

Topic 5: giving, woman, grateful, charitable, giving community, nonprofit, philosophy

Topic 88: ability, contribute, ability travel, time, ability work, pursue, time pursue, family, community, contribute community, contribute society

7. Полученные топики можно далее использовать для визуализации, анализа и решения иных задач на корпусе текстов.

Например, для группировки текстов по темам достаточно составить матрицу «документ-топик», опираясь на статистику встречаемости ключевых терминов топика в каждом конкретном документе (т.е. через определение функции принадлежности) — можно сформировать нечеткое множество для нечеткого отнесения текстов в множестве тем.

Document	Topic 4	Topic 5	 Topic 88	
I have a number of great hobbies and plenty of time to pursue them	0.7	0.3	0.0	
Life is most rewarding when I'm giving back to the community	0.5	0.2	0.8	
I have a great job that gives me the ability to pursue meaningful goals at work	0.3	0.7	0.0	

Лабораторная работа №5: Тематическое моделирование

- 1. Дана коллекция текстовых документов 2021_SPORT
- 2. Необходимо провести тематическое моделирование коллекции методами латентного размещения (аллокации) Дирихле и неотрицательного матричного разложения и визуализировать темы с разным количеством топ-слов, реализовав функцию plot_top_words.
 - 1. Для тематического моделирования понадобится matplotlib, sklearn.feature_extraction.text (TfidfVectorizer, CountVectorizer), sklearn.decomposition (NMF, LatentDirichletAllocation)
 - 2. Для препроцессинга нужно воспользоваться материалами прошлой лабораторной (в части стоп-слов, токенизации и лемматизации)
 - 3. Затем построить через CountVectorizer, TfidfVectorizer (попробуйте оба) векторное представление каждого текста (для визуализации полезно также сделать что-то вроде tfidf_feature_names = tfidf_vectorizer.get_feature_names())
 - 4. Полученные вектора передавать уже в модель для тематического моделирования
 - 5. Количество признаков начать с 1000, топиков 10, топ-слов 20

```
# как это может выглядеть (без реализации логики функций)

n_features = 1000

n_components = 10

n_top_words = 20
```

```
# тут все, собственно, происходит
if __name__ == '__main__':
   tfidf_vectorizer, tfidf = create_vectors_tf_idf('./sports')
    nmf = NMF(n_components=n_components, random_state=1, alpha=.1,
l1_ratio=.5).fit(tfidf)
   tfidf_feature_names = tfidf_vectorizer.get_feature_names()
    plot_top_words(nmf, tfidf_feature_names, n_top_words, 'Topics in NMF
model (Frobenius norm)')
    nmf_k = NMF(n_components=n_components, random_state=1,
            beta_loss='kullback-leibler', solver='mu', max_iter=1000,
alpha=.1,
           l1_ratio=.5).fit(tfidf)
    plot_top_words(nmf_k, tfidf_feature_names, n_top_words, 'Topics in
NMF model (generalized Kullback-Leibler divergence)')
   tf_vectorizer, tf = create_vectors_count('./sports')
   lda = LatentDirichletAllocation(n_components=n_components,
max_iter=5,
                                learning_method='online',
                                learning_offset=50.,
                                random_state=0)
   lda.fit(tf)
   tf_feature_names = tf_vectorizer.get_feature_names()
    plot_top_words(lda, tf_feature_names, n_top_words, 'Topics in LDA
model')
```


Topics in NMF model (generalized Kullback-Leibler divergence) Торіс 1 Topic 2 Topic 3 Topic 4 Topic 5 компания предприятие знание образовати предприятие отасіє программний торіс программний программний программний программний программний программний программирование образоватих программирование обеспечение обеспечение отакі программирование обеспечение обеспечение отакі программирование обеспечение обес

Ó

арі мобильный приложение свой пользователь