

L78M00AB/AC series

Precision 500mA regulators

Feature summary

- Output current to 0.5A
- Output voltages of 5; 6; 8; 9; 10; 12; 15; 18; 24V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- ±2% Output voltage tolerance
- Guaranteed in extended temperature range

Description

The L78M00AB series of three-terminal positive regulators is available in TO-220 and DPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation eliminating the distribution problems associated with single point regulation. Each type

employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Schematic diagram

Contents

1	Pin configuration	3
2	Maximum ratings	4
3	Test circuits	5
4	Electrical characteristics	6
5	Typical performance	. 16
6	Applications information	
7	Package mechanical data	. 20
8	Order code	. 24
n.	Pavision history	25

L78M00AB/AC series Pin configuration

1 Pin configuration

Figure 1. Pin connections (top view)

Figure 2. Schematic diagram

Maximum ratings L78M00AB/AC series

2 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V	DC Input voltage		35	V
V _I	for V_0 = 20, 24V	40	V	
Io	Output current		Internally Limited	mA
P _D	Power dissipation		Internally Limited	mW
T _{STG}	Storage temperature range		-65 to 150	°C
_	Operating junction temperature range	for L78M00AC	0 to 125	°C
T _{OP}	Operating junction temperature range	for L78M00AB	-40 to 125	C

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 2. Thermal data

Symbol	Parameter	TO-220	DPAK	Unit
R _{thJC}	Thermal resistance junction-case	3	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	100	°C/W

Figure 3. Application circuits

L78M00AB/AC series Test circuits

3 Test circuits

Figure 4. DC Parameter

Figure 5. Load regulation

Figure 6. Ripple rejection

Electrical characteristics L78M00AB/AC series

4 Electrical characteristics

Table 3. Electrical characteristics of L78M05XX (refer to the test circuits, V_I = 10V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.9	5	5.1	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 7 to 20 V	4.8	5	5.2	V
4)/	Line regulation	$V_{I} = 7 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			100	m\/
ΔV _O	Line regulation	$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			50	mV
A\/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			100	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			50	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
41	0	I _O = 5 to 350 mA			0.5	m A
Δl_d	Quiescent current change	I _O = 200 mA, V _I = 8 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 8 \text{ to } 18 \text{ V, f} = 120 \text{Hz, I}_O = 300 \text{mA,}$ $T_J = 25 ^{\circ}\text{C}$	62			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		40		μV
V _d	Dropout voltage	T _J = 25°C		2		٧
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		300		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 4. Electrical characteristics of L78M06XX (refer to the test circuits, V_I = 11V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.88	6	6.12	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 8 to 21 V	5.75	6	6.3	V
4)/	Line regulation	$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			100	mV
ΔV _O	Line regulation	$V_{I} = 9 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			30	IIIV
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			120	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			60	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 9 to 25 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 9 \text{ to } 19 \text{ V, f} = 120 \text{Hz, I}_O = 300 \text{mA,}$ $T_J = 25 ^{\circ}\text{C}$	59			dB
eN	Output noise voltage	B =10Hz to 100KHz		45		μV
V _d	Dropout voltage	T _J = 25°C		2		٧
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		270		mA
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 5. Electrical characteristics of L78M08XX (refer to the test circuits, V_I = 14V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.84	8	8.16	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 10.5 \text{ to } 23 \text{ V}$	7.7	8	8.3	V
ΔV _O	Line regulation	$V_I = 10.5 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 11 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			160	m\/
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			80	mV
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Outroport surrent shares	I _O = 5 to 350 mA			0.5	A
Δl_{d}	Quiescent current change	I _O = 200 mA, V _I = 10.5 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120Hz I _O = 300mA, T _J = 25°C	56			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		52		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		250		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 6. Electrical characteristics of L78M09XX (refer to the test circuits, V_I = 15V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	8.82	9	9.18	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 11.5 to 24 V	8.64	9	9.36	V
ΔV _O	Line regulation	$V_I = 11.5 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 12 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
A\/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			180	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			90	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mΛ
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 12.5 to 23 V, f = 120Hz, I _O = 300mA, T _J = 25°C	56			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		52		μV
V _d	Dropout voltage	T _J = 25°C		2		٧
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		250		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 7. Electrical characteristics of L78M10XX (refer to the test circuits, V_I = 16V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	9.8	10	10.2	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 12.5 to 25 V	9.6	10	10.4	V
ΔV_{O}	Line regulation	$V_I = 12.5 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 13 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
۸\/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			200	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			100	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
∆l _d	Quiescent current change	I _O = 200 mA, V _I = 12.5 to 30 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 13.5 to 24 V, f = 120Hz, I _O = 300mA, T _J = 25°C	56			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		64		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		245		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 8. Electrical characteristics of L78M12XX (refer to the test circuits, V_I = 19V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.75	12	12.25	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 14.5 \text{ to } 27 \text{ V}$	11.5	12	12.5	V
ΔV _O	Line regulation	V_{I} = 14.5 to 30 V, I_{O} = 200 mA, T_{J} = 25°C			100	mV
		$V_I = 16 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
4)/	Load regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			240	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			120	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quiescent current change	I _O = 5 to 350 mA			0.5	m A
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	$V_I = 15 \text{ to } 25 \text{ V}, \text{ f} = 120 \text{Hz}, I_O = 300 \text{mA}, \\ T_J = 25 ^{\circ}\text{C}$	55			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		75		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 9. Electrical characteristics of L78M15XX (refer to the test circuits, V_I = 23V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	14.7	15	15.3	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 17.5 \text{ to } 30 \text{ V}$	14.4	15	15.6	V
ΔV _O	Line regulation	$V_I = 17.5 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$			100	mV
		$V_{I} = 20 \text{ to } 30 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			30	
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			300	m\/
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			150	mV
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Outroport surrent shares	I _O = 5 to 350 mA			0.5	A
Δl_{d}	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120Hz, I _O = 300mA, T _J = 25°C	54			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		90		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 10. Electrical characteristics of L78M18XX (refer to the test circuits, V_I = 26V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	17.64	18	18.36	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 20.5 \text{ to } 33 \text{ V}$	17.3	18	18.7	V
A\/	Line regulation	$V_I = 21 \text{ to } 33 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			100	m\/
ΔV _O	Line regulation	$V_I = 24 \text{ to } 33 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	mV
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			360	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			180	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 21 to 33 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
SVR	Supply voltage rejection	$V_I = 22 \text{ to } 32 \text{ V, f} = 120 \text{Hz, I}_O = 300 \text{mA,}$ $T_J = 25 ^{\circ}\text{C}$	53			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		100		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 11. Electrical characteristics of L78M20XX (refer to the test circuits, V_I = 29V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	19.6	20	20.4	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 23 \text{ to } 35 \text{ V}$	19.2	20	20.8	V
41/	Line regulation	$V_{I} = 23 \text{ to } 35 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			100	mV
ΔV_{O}	Line regulation	$V_I = 24 \text{ to } 35 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	mv
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			400	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			200	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	I _O = 200 mA, V _I = 23 to 35 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
SVR	Supply voltage rejection	$V_I = 24 \text{ to } 34 \text{ V, f} = 120 \text{Hz, I}_O = 300 \text{mA,}$ $T_J = 25 ^{\circ}\text{C}$	53			dB
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		110		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Table 12. Electrical characteristics of L78M24XX (refer to the test circuits, V_I = 33V, I_O = 350 mA, C_I = 0.33 μF, C_O = 0.1 μF, T_J = -40 to 125°C (AB), T_J = 0 to 125°C (AC) unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	23.5	24	24.5	V	
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 27 to 38 V	23	24	25	V	
4)/	Line regulation	V _I = 27 to 38 V, I _O = 200 mA, T _J = 25°C			100	\/	
ΔV _O		$V_I = 28 \text{ to } 38 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	mV	
A\/ .	Load regulation	$I_{O} = 5 \text{ to } 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			480	mV	
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			240	IIIV	
I _d	Quiescent current	T _J = 25°C			6	mA	
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA	
Δl _d		I _O = 200 mA, V _I = 27 to 38 V			0.8	IIIA	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1.2		mV/°C	
SVR	Supply voltage rejection	$V_I = 28 \text{ to } 38 \text{ V}, \text{ f} = 120 \text{Hz}, I_O = 300 \text{mA}, \\ T_J = 25 ^{\circ}\text{C}$	50			dB	
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		170		μV	
V _d	Dropout voltage	T _J = 25°C		2		V	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA	
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA	

5 Typical performance

L78M00AB/AC series Typical performance

Figure 13. Load transient response

Figure 14. Line transient response

Figure 15. Quiescent current vs input voltage

<u>-7/</u>

6 Applications information

6.1 Design considerations

The L78M00AB Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 16. Current regulator

Figure 17. Adjustable output regulator

Figure 18. Current boost regulator

Figure 19. Short-circuit protection

Note:

The circuit of figure 19 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

577

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TO-220 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

DPAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		2.28			0.090	
e1	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°

577

Tape &	Reel D	PAK-PPAK	MECHA	NICAL	DATA
--------	--------	----------	-------	--------------	------

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76	
Во	10.40	10.50	10.60	0.409	0.413	0.417	
Ko	2.55	2.65	2.75	0.100	0.104	0.105	
Ро	3.9	4.0	4.1	0.153	0.157	0.161	
Р	7.9	8.0	8.1	0.311	0.315	0.319	

Order code L78M00AB/AC series

8 Order code

Table 13. Order code

Doub	Packaging					
Part numbers	TO-220	DPAK	Output voltage			
L78M05AB	L78M05ABV	L78M05ABDT-TR	5 V			
L78M05AC		L78M05ACDT-TR	5 V			
L78M06AB	L78M06ABV	L78M06ABDT-TR	6 V			
L78M06AC		L78M06ACDT-TR	6 V			
L78M08AB	L78M08ABV	L78M08ABDT-TR	8 V			
L78M08AC		L78M08ACDT-TR	8 V			
L78M09AB	L78M09ABV	L78M09ABDT-TR	9 V			
L78M09AC		L78M09ACDT-TR	9 V			
L78M10AB	L78M10ABV ⁽¹⁾	L78M10ABDT-TR	10 V			
L78M10AC		L78M10ACDT-TR	10 V			
L78M12AB	L78M12ABV	L78M12ABDT-TR	12 V			
L78M12AC		L78M12ACDT-TR	12 V			
L78M15AB	L78M15ABV	L78M15ABDT-TR	15 V			
L78M15AC		L78M15ACDT-TR	15 V			
L78M18AB	L78M18ABV ⁽¹⁾	L78M18ABDT-TR	18 V			
L78M18AC		L78M18ACDT-TR	18 V			
L78M24AB	L78M24ABV	L78M24ABDT-TR	24 V			
L78M24AC		L78M24ACDT-TR	24 V			

^{1.} Available on request

L78M00AB/AC series Revision history

9 Revision history

Table 14. Revision history

Date	Revision	Changes
30-Aug-2006	4	Order Codes has been updated and new template.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

