Лінійна алгебра Семестр 2

Зміст

1	Лін	ійні простори	3	
	1.1	Основні означення лінійних просторів	3	
	1.2	Лінійні підпростори	4	
	1.3	Лінійна залежність/незалежність	5	
	1.4	Лінійні оболонки	9	
	1.5	Підпорядковані та еквівалентні системи	10	
	1.6	База та ранг. Базиси та розмірності	13	
	1.7	Сума, перетин, пряма сума лінійних просторів	16	
2	Дiï	з лінійними просторами	22	
	2.1	Лінійні оператори	22	
	2.2	Арифметичні дії з лінійними операторами		
	2.3	Ядро, образ	27	
	2.4	Лінійні функціонали	30	
	2.5	Обернений оператор, одиничний оператор	30	
	2.6	Ізоморфні лінійні простори, ізоморфізм	33	
	2.7	Матриця лінійного оператора, що побудована за лінійним		
		оператором	34	
	2.8	Матриця добутку операторів	37	
	2.9	Матриця лінійного функціоналу	37	
	2.10	Пряма сума операторів		
3	Теорія матриць			
	3.1	Основні властивості	39	
	3.2	Кососиметричні функціонали	41	
	3.3	Перестановки	42	
	3.4	Визначники п-го порядку	46	
	3.5	Обернена матриця	51	
	3.6	Матричні алгебраїчні рівняння	52	
	3.7	Інші теореми	53	
	3.8	Ранг	54	
	3.9	Системи лінійних рівнянь	55	
	2.11	Різні базиси в лінійному просторі, матриця оператора переход	У	
		від одного базису до іншого	57	
	2.12	Матриця лінійного оператору в різних базисах	59	
			60	
		Матриця оператора в базисі, розширенному з базису в інваріал	HTHOMY	
		просторі	61	
			U =	

4	Нов	а ера з матрицями	66
	4.1	Власні числа та власні вектори	66
	4.2	Приєднаний власний вектор	73
	4.3	Теорема Жордана	77
	4.4	Властивості жорданової форми матриці	82
	4.5	Застосування жорданової форми: функції від операторів,	
		матриць	84
5	Евк	лідові простори	86
	5.1	Ортогональність, процес Грама-Шмідта	86
	5.2	Нормований простір та інші поняття	89
	5.3	Ортонормований базис, побудова	90
	5.4	Ортогональні підпростори, ортогональне доповнення	92
	5.5	Застосування, спряжений оператор	96
	5.6	Матриця спряженого оператора, зв'язок	99
	5.7	Унітарний оператор	101
	5.8	Самоспряжений оператор	102
	5.9	Квадратичні форми	104
	5.10	Знаковизначеність лінійного оператора, матриці	107
	5.11	Зведення кривих та поверхень другого порядку до канонічног	O'
		вигляду	108
6	Аль	тернативні пояснення	111

1 Лінійні простори

1.1 Основні означення лінійних просторів

Definition 1.1.1. Лінійним простором називається множина L, на якій задані дві операції:

- 1. $\forall x, y \in L : \exists ! z \in L : z = x + y$ операція додавання;
- 2. $\forall x \in L, \forall \lambda \in \mathbb{R} : \exists! w \in L : w = \lambda x$ операція множення на скаляр; та які задовільняють наступним аксіомам:
- 1) $\forall x, y \in L : x + y = y + x$
- 2) $\forall x, y, z \in L : (x + y) + z = x + (y + z)$
- 3) $\exists 0 \in L : \forall x \in L : 0 + x = x$
- 4) $\forall x \in L : \exists \tilde{x} \in L : x + \tilde{x} = 0$
- 5) $\forall \alpha, \beta \in \mathbb{R} : \forall x \in L : (\alpha + \beta)x = \alpha x + \beta x$
- 6) $\forall \alpha \in \mathbb{R} : \forall x, y \in L : \alpha(x+y) = \alpha x + \alpha y$
- 7) $\forall \alpha, \beta \in \mathbb{R} : \forall x \in L : (\alpha \beta)x = \alpha(\beta x)$
- 8) $\forall x \in L : 1 \cdot x = x$

Remark 1.1.1. Якщо $\alpha, \beta \in \mathbb{R}$, то лінійний простір називається **виключно дійсним**. При \mathbb{C} - **комплексним**.

(я далі лише буду вказувати множину \mathbb{R} , для \mathbb{C} теж можна)

Example 1.1.2.(1) $L = \mathbb{R}^3$ - вектори в просторі - є лінійним простором.

Example 1.1.2.(2) $L = Mat(n \times m)$ - матриці - є лінійним простором.

Example 1.1.2.(3) $L = \mathbb{R}[x]$ - многочлени з дійсними коефіцієнтами - є лінійним простором.

Example 1.1.2.(4) L = C(A) - неперервні функції на множині A - є лінійним простором.

Proposition 1.1.3. Властивості лінійних просторів:

- $1) \exists ! 0 \in L : \forall x \in L : x + 0 = x$
- $2) \ \forall x \in L : \exists !x : x + \tilde{x} = 0$
- $3) \underset{\in \mathbb{R}}{0} \cdot x = \underset{\in L}{0}$
- $\begin{array}{l}
 \text{if } \in \mathbb{R} \\
 4) \ \tilde{x} = (-1) \cdot x = -x
 \end{array}$

Proof.

1) !Припустимо, що $\exists \tilde{0} \in L : x + \tilde{0} = x$ - ще один нуль

Тоді $\tilde{0} = 0 + \tilde{0} = 0$

Суперечність! Отже, елемент - єдиний

2) !Припустимо, що $\exists \tilde{\tilde{x}} \in L : x + \tilde{\tilde{x}} = 0$ - ще один обернений елемент Тоді $\tilde{\tilde{x}} = 0 + \tilde{\tilde{x}} = (\tilde{x} + x) + \tilde{\tilde{x}} = \tilde{x} + (x + \tilde{\tilde{x}}) = \tilde{x} + 0 = \tilde{x}$ Суперечність! Отже, елемент - єдиний

3)
$$0 \cdot x = (0+0)x = 0 \cdot x + 0 \cdot x \Rightarrow 0 \cdot x = 0$$

У нас остання рівність каже, що до елементу $0 \cdot x$ додається щось, що дорівнює $0 \cdot x$. І ось це щось буде рівне 0

4)
$$x + (-x) = 1 \cdot x + (-1) \cdot x = (1 + (-1))x = 0 \cdot x = 0$$

1.2 Лінійні підпростори

Definition 1.2.1. Підмножина M лінійного простору L називається **лінійним підпростором**, якщо:

- 1) $\forall x, y \in M : x + y \in M$
- 2) $\forall x \in M : \forall \lambda \in \mathbb{R} : \lambda x \in M$

Тобто M - замкнена відносно операцій на L

Theorem 1.2.2. Задані L - лінійний простір та M - лінійний підпростір Тоді M - лінійний простір

Proof.

На множині M вже задані операції за означенням

Перевіримо всі 8 аксіом: $\forall x, y, z \in M \Rightarrow x, y, z \in L : \forall \alpha, \beta \in \mathbb{R} \Rightarrow$

- 1) x + y = y + x
- 2) x + (y + z) = (x + y) + z
- 3) $0 \cdot x \in M \Rightarrow 0 \cdot x = 0 \in L \Rightarrow x + 0 = x$. Отже, $\exists 0 \in M$
- 4) $\tilde{x} = (-1) \cdot x \in M \Rightarrow \tilde{x} = (-1) \cdot x \in L \Rightarrow x + \tilde{x} = 0 \Rightarrow \exists \tilde{x} \in M$
- 5) $(\alpha + \beta)x = \alpha x + \beta x$
- 6) $\alpha(x+y) = \alpha x + \alpha y$
- 7) $(\alpha\beta)x = \alpha(\beta x)$
- 8) $1 \cdot x = 1$

Отже, M - лінійний простір \blacksquare

Example 1.2.3. $M = \mathbb{R}_n[x]$ - многочлен степені $\leq n$ - лінійний підпростір $L = \mathbb{R}[x]$. А тому є й лінійним простором

1.3 Лінійна залежність/незалежність

Definition 1.3.1. Задано L - лінійний простір

Система елементів $\{x_1, ..., x_n\} \subset L$ називається:

- **лінійно незалежною**, якщо з рівності $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$, де $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$, випливає $\alpha_1=\cdots=\alpha_n=0$
- лінійно залежною, якщо $\exists \alpha_1,\dots,\alpha_n\in\mathbb{R}: |\alpha_1|+\dots+|\alpha_n|\neq 0:$ $\alpha_1 x_1 + \dots + \alpha_n x_n = 0$

Definition 1.3.2. Вираз $\gamma_1 y_1 + \cdots + \gamma_n y_n$, де $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$. називається лінійною комбінацією

Example 1.3.3.(0) Будь-які вектори $\{\vec{a},\vec{b}\}$ - л.н.з. в $\mathbb{R}^2 \iff$ не колінеарні **Example 1.3.3.(1)** Задано лінійний простір $L = \mathbb{R}^4$ і вектори:

$$\vec{x_1} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \ \vec{x_2} = \begin{pmatrix} 4 \\ -1 \\ 2 \\ 1 \end{pmatrix}, \ \vec{x_3} = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 3 \end{pmatrix}, \ \vec{x_4} = \begin{pmatrix} 1 \\ -2 \\ 1 \\ -5 \end{pmatrix}$$

Перевіримо, чи будуть вони л.н

$$\alpha_{1}x_{1}' + \alpha_{2}x_{2}' + \alpha_{3}x_{3}' + \alpha_{4}x_{4}' = 0$$

$$\alpha_{1}\begin{pmatrix} 1\\0\\2\\3 \end{pmatrix} + \alpha_{2}\begin{pmatrix} 4\\-1\\2\\1 \end{pmatrix} + \alpha_{3}\begin{pmatrix} 2\\1\\-1\\3 \end{pmatrix} + \alpha_{4}\begin{pmatrix} 1\\-2\\1\\-5 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

$$\begin{cases} (1): \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0 \\ (2): -\alpha_2 + \alpha_3 - 2\alpha_4 = 0 \\ (3): 2\alpha_1 + 2\alpha_2 - \alpha_3 + \alpha_4 = 0 \\ (4): 3\alpha_1 + \alpha_2 + 3\alpha_3 - 5\alpha_4 = 0 \end{cases}$$

$$(2): -\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$(3): 2\alpha_1 + 2\alpha_2 - \alpha_3 + \alpha_4 = 0$$

$$(4): 3\alpha_1 + \alpha_2 + 3\alpha_3 - 5\alpha_4 = 0$$

$$(1): \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0$$

$$(2): \alpha_2 - \alpha_3 + 2\alpha_4 = 0$$

$$(3) - 2(1) : 6\alpha_2 + 5\alpha_3 + \alpha_4 = 0$$

$$\begin{cases} (1): \alpha_1 + 4\alpha_2 + 3\alpha_3 + \alpha_4 = 0 \\ (2): \alpha_2 - \alpha_3 + 2\alpha_4 = 0 \\ (3) - 2(1): 6\alpha_2 + 5\alpha_3 + \alpha_4 = 0 \\ (4) - 3(1): 11\alpha_2 + 3\alpha_3 + 8\alpha_4 = 0 \end{cases}$$

$$\begin{cases} (1): \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0 \\ (2): \alpha_2 - \alpha_3 + 2\alpha_4 = 0 \\ -6(2) + (3): 11\alpha_3 - 11\alpha_4 = 0 \\ -11(4) + (4): 14\alpha_3 - 14\alpha_4 = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = 9\alpha_4 \\ \alpha_2 = -3\alpha_4 \\ \alpha_3 = \alpha_4 \end{cases}$$

Звісно, є нульовий розв'язок, але такий розв'язок не буде єдиним. Можна взяти (9, -3, 1, 1), щоб наша лінійна комбінація була нулевою Отже, $\{\vec{x_1}, \vec{x_2}, \vec{x_3}, \vec{x_4}\}$ - л.з.

Example 1.3.3.(2) Перевіримо, чи буде система $\{\sin x, \cos x, \cos 2x\}$ л.н.з.

Remark. Тут не можна використовувати цю тотожність:

 $\cos 2x = \cos^2 x - \sin^2 x.$

Тому що - "квадрат": нема множення в лінійному просторі (лише на скаляр), $\cos^2 x$ або $\sin^2 x$ - це вже абсолютно інший елемент

 $\alpha_1 \sin x + \alpha_2 \cos x + \alpha_3 \cos 2x = 0(x)$, причому $\forall x \in \mathbb{R}$

Тут типу $0(x) = 0 \ \forall x \in \mathbb{R}$

Якщо ця рівність виконується для довільних x, то зокрема має виконуватись й для конкретних

При x = 0: $\alpha_2 + \alpha_3 = 0$ При $x = \frac{\pi}{2}$: $\alpha_1 - \alpha_3 = 0$

При $x = \frac{\pi}{4} : \frac{\sqrt{2}}{2}\alpha_1 + \frac{\sqrt{2}}{2}\alpha_2 = 0$

$$\begin{cases} \alpha_2 + \alpha_3 = 0 \\ \alpha_1 - \alpha_3 = 0 \\ \alpha_1 + \alpha_2 = 0 \end{cases} \Rightarrow \begin{cases} \alpha_2 = -\alpha_3 \\ \alpha_1 = \alpha_3 \end{cases}$$

Тут вже можуть виникати думки, що це - л.з. система, але...

Візьмемо ще один $x = \frac{\pi}{3} : \frac{\sqrt{3}}{2}\alpha_1 + \frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3 = 0$

У це рівняння підставимо отримані α_1, α_2 :

$$\sqrt{3}\alpha_3 - \alpha_3 + \alpha_3 = 0 \Rightarrow \alpha_3 = 0$$

A отже, $\alpha_1 = \alpha_2 = 0$

Якщо для таких x ми отримали нульові розв'язки, то для решта обраних буде така сама картина

Остаточно: $\{\sin x, \cos x, \cos 2x\}$ - л.н.з.

Proposition 1.3.4. Властивості л.н.з. та л.з. систем:

- 1) Якщо система $\{x_1\dots,x_n\}$ містить підсистему $\{x_{j_1}\dots,x_{j_k}\}$ що є л.з., то вся система - л.з.
- 2) Якщо система $\{x_1,\dots,x_n\}$ л.н.з., то будь-яка підсистема л.н.з.
- 3) Якщо $\{x_1 \dots, x_n\}$ містить принаймні один нульовий елемент, то ця система - л.з.
- 4) Система $\{x_1\dots,x_n\}$ л.з. \iff будь-який елемент можна виразити як лінійну комбінацію від інших
- 5) Задано систему $\{x_1, \dots, x_n\}$ і елемент y, що є лінійною комбінацією елементів системи

 $\{x_1,\ldots,x_n\}$ - л.н.з. \iff розклад елемента y ϵ единим

Proof.

1) $\{x_{j_1}\dots,x_{j_k}\}$ - л.з., тобто $\exists \alpha_1,\dots,\alpha_k$ ненулеві: $\alpha_1x_{j_1}+\dots+\alpha_kx_{j_k}=0$ Звідси випливає, що:

$$0x_1 + 0x_2 + \dots + 0x_{j_1-1} + \alpha_1 x_{j_1} + 0x_{j_1+1} + \dots + \alpha_k x_{j_k} + \dots + 0x_n = 0$$
 При цьому всі коефіцієнти в новій лінійної комбінації - ненулеві. Отже, $\{x_1 \dots, x_n\}$ - л.з.

- наслідок 1)
- 3) $\alpha_1 x_1 + \dots + \alpha_j x_j + \alpha_n x_n = 0$

Можна взяти $\alpha_1 = \cdots = \alpha_n = 0$, але $\alpha_i = 1$. Тому буде л.з.

4) В обидва боки доведення

$$\Longrightarrow$$
 Дано: $\{x_1,\ldots,x_n\}$ - л.з., тобто $\exists \beta_1,\ldots,\beta_n$ не всі нулеві: $\beta_1x_1+\cdots+\beta_nx_n=0$

Не всі нулеві, тобто $\exists \beta_i \neq 0$. Тоді

$$\beta_j x_j = -\beta_1 x_1 - \dots - \beta_{j-1} x_{j-1} - \beta_{j+1} x_{j+1} - \dots - \beta_n x_n$$

$$x_j = \frac{-\beta_1}{\beta_j} x_1 - \dots - \frac{-\beta_n}{\beta_j} x_n$$

А це й є розклад в лінійну комбінацію інших

$$\sqsubseteq$$
 Дано: $\exists x_j: \exists \alpha_1, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_n:$ $x_j = \alpha_1 x_1 + \dots + \alpha_{j-1} x_{j-1} + \alpha_{j+1} x_{j+1} + \dots + \alpha_n x_n$ $\Rightarrow \alpha_1 x_1 + \dots + \alpha_{j-1} x_{j-1} + (-1) x_j + \alpha_{j+1} x_{j+1} + \dots + \alpha_n x_n = 0$ Коефіцієнти не всі нулеві. Отже, $\{x_1, \dots, x_n\}$ - л.з.

5) В обидва боки доведення

$$\Rightarrow$$
 Дано: $\{x_1,\ldots,x_n\}$ - л.н.з.

!Припустимо, що розклад не є єдиним. Тобто існує ще одна лінійна комбінація для елемента y, тобто:

$$y = \beta_1 x_1 + \dots + \beta_n x_n$$

Тоді:

$$0 = y - y = (\alpha_1 - \beta_1)x_1 + \dots + (\alpha_n - \beta_n)x_n$$

Але з умови л.н.з випливає, що $\alpha_1 = \beta_1, \ldots, \alpha_n = \beta_n$. Суперечність! Отже, в лінійну комбінацію елементу y розкладається єдиним чином

 \blacksquare Дано: $\exists ! \alpha_1, \ldots, \alpha_n : y = \alpha_1 x_1 + \cdots + \alpha_n x_n$

Перевіримо систему $\{x_1,\ldots,x_n\}$ на л.н.з.

$$\gamma_1 x_1 + \dots + \gamma_n x_n = 0$$

$$y = y + 0 = (\alpha_1 + \gamma_1)x_1 + \dots + (\alpha_n + \gamma_n)x_n$$

Але за умовою розклад єдиний, тому $\alpha + \gamma_1 = \alpha_1, \dots, \alpha_n + \gamma_n = \alpha_n$ $\Rightarrow \gamma_1 = \dots = \gamma_n = 0$ Отже, л.н.з. \blacksquare

Елементарні перетворення л.н.з. та л.з. систем

Задано систему $\{x_1, \dots, x_n\}$. Її можна трохи видозмінити:

I.
$$P_{j \leftrightarrow k} : \{x_1, \dots, x_j, \dots, x_k, \dots, x_n\} \to \{x_1, \dots, x_k, \dots, x_j, \dots, x_n\}$$

- *j*-ий та *k*-ий елементи зміняться місцями

II.
$$P_{j\to\lambda j}:\{x_1,\ldots,x_j,\ldots,x_n\}\to\{x_1,\ldots,\lambda x_j,\ldots,x_n\}$$
 - до j -го елементу множимо скаляр $\lambda\neq 0$

III.
$$P_{j\to j+k}:\{x_1,\ldots,x_j,\ldots,x_k,\ldots,x_n\}\to\{x_1,\ldots,x_j,\ldots,x_k+x_j,\ldots,x_n\}$$
 - до j -го елементу додаємо k -ий елемент

Proposition 1.3.5. Перетворення I, II та III зберігають властивість лінійної залежності/незалежності

Proof.

Доведемо спочатку випадок л.н.з.:

Задано початкову систему $\{x_1, \ldots, x_n\}$ - л.н.з.

I.
$$P_{j \leftrightarrow k} \{ x_1, \dots, x_j, \dots, x_k \dots, x_n \} = \{ x_1, \dots, x_k, \dots, x_j \dots, x_n \}$$

 $\alpha_1 x_1 + \dots + \alpha_j x_k + \dots + \alpha_k x_j + \dots + \alpha_n x_n = 0 \stackrel{\text{початкова} - л.н.з.}{\Rightarrow}$
 $\alpha_1 = \dots = \alpha_n = 0$

II.
$$P_{j \to \lambda j} \{ x_1, \dots, x_j, \dots, x_n \} = \{ x_1, \dots, \lambda x_j, \dots, x_n \}$$
 $\alpha_1 x_1 + \dots + \alpha_j \lambda x_j + \dots + \alpha_n x_n = 0 \overset{\text{початкова - л.н.з.}}{\Rightarrow}$ $\alpha_1 = \dots = \alpha_j \lambda = \dots = \alpha_n = 0$. Але оскільки $\lambda \neq 0$, то $\alpha_j = 0$

III.
$$P_{j \to j+k} \{ x_1, \dots, x_j, \dots, x_k, \dots, x_n \} = \{ x_1, \dots, x_j, \dots, x_k + x_j, \dots, x_n \}$$
 $\alpha_1 x_1 + \dots + \alpha_j x_j + \dots + \alpha_k (x_k + x_j) + \dots + \alpha_n x_n = 0 \Rightarrow$ $\alpha_1 x_1 + \dots + (\alpha_k + \alpha_j) x_j + \dots + \alpha_k x_k + \dots + \alpha_n x_n = 0 \stackrel{\text{початкова - л.н.з.}}{\Rightarrow}$ $\alpha_1 = \alpha_j + \alpha_k = \dots = \alpha_k = \dots = \alpha_n = 0$. Тоді $\alpha_j = 0$

Отже, л.н.з. система після елементарного перетворення залишається л.н.з.

Лишилось довести випадок л.з.:

Задано початкову систему $\{x_1, \ldots, x_n\}$ - л.з.

!Припустимо, що л.з. система після будь-якого з трьох перетворень - $P_{\text{будь-яке}}\{x_1,\ldots,x_n\}$ - стане л.н.з. Тоді якщо зробити зворотнє перетворення, тобто:

 $I. \{x_1, \ldots, x_k, \ldots, x_j, \ldots, x_n\}$ - змінити ще раз j-ий,k-ий елементи місцями;

II. $\{x_1,\ldots,\lambda x_j,\ldots,x_n\}$ - помножити на $\frac{1}{\lambda}$ *j*-ий елемент;

III. $\{x_1, \ldots, x_j, \ldots, x_k + x_j, \ldots, x_n\}$ - помножити на (-1) елемент x_j , додати j-ий елемент до елементу $x_k + x_j$, а потім помножити на (-1) елемент $(-x_j)$.

- початкова система має стати л.н.з. А ми маємо л.з. за умовою. Тому суперечність!

Отже, л.з. система після елементарного перетворення залишається л.з.

1.4 Лінійні оболонки

Definition 1.4.1. Задано L - лінійний простір і система $\{x_1, \ldots, x_n\} \subset L$ Лінійною оболонкою цієї системи називають множину всіх лінійних комбінацій:

$$span\{x_1,\ldots,x_n\} \stackrel{\text{a6o}}{=} n.o.\{x_1,\ldots,x_n\} = \{\alpha_1x_1 + \cdots + \alpha_nx_n | \forall \alpha_1,\ldots,\alpha_n \in \mathbb{R}\}$$

Якщо взяти множину $M\subset L$ (нескінченна кількість елементів), то тут множина задається таким чином

$$spanM \stackrel{\text{a6o}}{=} n.o.M = \{\alpha_1 x_1 + \dots + \alpha_j x_j | \forall j \ge 1 : \forall x_j \in M : \forall \alpha_1, \dots, \alpha_n \in \mathbb{R} \}$$

Proposition 1.4.2. Лінійна оболонка є лінійним підпростором L **Proof.**

Доведення за означенням. Нехай є $span\{x_1, \ldots, x_n\}$:

 $\forall w_1, w_2 \in span\{x_1, \dots, x_n\}$, тобто:

$$w_1 = \alpha_1 x_1 + \dots + \alpha_n x_n$$

$$w_2 = \beta_1 x_1 + \dots + \beta_n x_n$$

Тоді отримаємо, що:

$$w_1 + w_2 = (\alpha_1 + \beta_1)x_1 + \dots + (\alpha_n + \beta_n)x_n \Rightarrow w_1 + x_2 \in span\{x_1, \dots, x_n\}$$

$$\lambda w_1 = \lambda \alpha_1 x_1 + \dots + \lambda \alpha_n x_n \Rightarrow \lambda w_1 \in span\{x_1, \dots, x_n\}$$

Отже, $span\{x_1,\ldots,x_n\}$ - підпростір L

Випадок для spanM ϵ аналогічним

Corollary 1.4.2. Якщо M - лінійний підпростір L, то span M = M Вказівка: показати, що якийсь елемент $w \in span M \iff w \in M$

Example 1.4.3. Задано $L = \mathbb{R}^3$ і система з трьох векторів:

$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Довести, що
$$span\{\vec{e_1}, \vec{e_2}, \vec{e_3}\} = \mathbb{R}^3$$

 $span\{\vec{e_1}, \vec{e_2}, \vec{e_3}\} \stackrel{\text{def}}{=} \{\alpha_1\vec{e_1} + \alpha_2\vec{e_2} + \alpha_3\vec{e_3}|\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \{(\alpha_1, \alpha_2, \alpha_3)^T | \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \mathbb{R}^3$

1.5 Підпорядковані та еквівалентні системи

Definition 1.5.1. Система $\{y_1, \ldots, y_n\}$ називається **підпорядкованою системою** під $\{x_1, \ldots, x_m\}$, якщо:

$$\forall y_j : \exists \alpha_1^j, \dots, \alpha_m^j : y_j = \alpha_1^j x_1 + \dots + \alpha_m^j x_m$$

Позначення: $\{y_1, \ldots, y_n\} \prec \{x_1, \ldots, x_m\}$

Для випадку з множиною Y, яка підпорядкована X, маємо:

$$\forall y \in Y : \exists x_1, \dots, x_n \in X : \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} : y = \alpha_1 x_1 + \dots + \alpha_n x_n$$

Позначення: $Y \prec X$

Proposition 1.5.2. $\{y_1, \ldots, y_n\} \prec \{x_1, \ldots, x_m\} \iff span\{y_1, \ldots, y_n\} \subset span\{x_1, \ldots, x_m\}$

Proof.

 \implies Дано: $\{y_1, \dots, y_n\} \prec \{x_1, \dots, x_m\}$, тобто за означенням: $\forall y_j : \exists \alpha_1^j, \dots, \alpha_m^j : y_j = \alpha_1^j x_1 + \dots + \alpha_m^j x_m \Rightarrow y_j \in span\{x_1, \dots, x_m\}$ $\forall w \in span\{y_1, \dots, y_n\}$, тобто $w = \beta_1 y_1 + \dots + \beta_n y_n \Rightarrow w \in span\{x_1, \dots, x_m\}$ $\Rightarrow span\{y_1, \dots, y_n\} \subset span\{x_1, \dots, x_m\}$

 \sqsubseteq Дано: $span\{y_1, \dots, y_n\} \subset span\{x_1, \dots, x_m\}$ $\Rightarrow \forall y_j \in span\{y_1, \dots, y_n\} \text{ (тому що } y_j = 0y_1 + \dots + 1y_j + \dots + 0y_n)$ $\Rightarrow y_j \in span\{x_1, \dots, x_m\}:$ $\exists \alpha_1^j, \dots, \alpha_m^j : y_j = \alpha_1^j x_1 + \dots + \alpha_m^j x_m \Rightarrow \{y_1, \dots, y_n\} \prec \{x_1, \dots, x_m\} \blacksquare$

Proposition 1.5.3. Властивості підпорядкованих систем

Підпорядкована система є рефлексивною, антисиметричною і транзитивною. Тобто це є відношенням порядку

Випливає з минулого твердження

Example 1.5.4. Нехай задано такі вектори з \mathbb{R}^3 :

$$\vec{y_1} = (0, 0, 1)$$
 $\vec{x_1} = (1, 0, 0)$
 $\vec{y_2} = (0, 1, 0)$ $\vec{x_2} = (1, 1, 0)$
 $\vec{y_3} = (1, 0, 0)$ $\vec{x_3} = (1, 1, 1)$

Перевірити, чи можна вважати, що:

$$\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \prec \{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$$

 $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} \prec \{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$

Розв'яжемо задачу на основі доведеного твердження:

$$LY = span\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \stackrel{\text{Ex. } 1.4.3.}{=} \mathbb{R}^3$$

$$LY = span\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \stackrel{\text{Ex. } \mathbf{1.4.3.}}{=} \mathbb{R}^3$$

$$LX = span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} = \{\beta_1 \vec{x_1} + \beta_2 \vec{x_2} + \beta_3 \vec{x_3} | \beta_1, \beta_2, \beta_3 \in \mathbb{R}\} =$$

$$= \{ (\beta_1 + \beta_2 + \beta_3, \beta_2 + \beta_3, \beta_3) | \beta_1, \beta_2, \beta_3 \in \mathbb{R} \} \stackrel{?}{=} \{ (a, b, c) | a, b, c \in \mathbb{R} \} = \mathbb{R}^3$$

Пояснення: в рівності зі знаком питання ми вирішили ствердити, що так теж можна записати. Перевіримо, чи є довільними взагалі a, b, c

$$\begin{cases} a = \beta_1 + \beta_2 + \beta_3 \\ b = \beta_2 + \beta_3 \\ c = \beta_3 \end{cases} \iff \begin{cases} \beta_1 = a - b \\ \beta_2 = b - c \\ \beta_3 = c \end{cases}$$

Отже, отримали, що LX=LY, або інакше $\begin{cases} LX\subset LY\\ LY\subset LX \end{cases}$

Theorem 1.5.5. Якщо
$$\{y_1, \dots, y_n\}$$
 $\prec \{x_1, \dots, x_m\}$, то $n \leq m$

Proof MI.

База індукції: для n=1 - все очевидно. Дійсно, y_1 не може мати лінійну комбінацію із жодних елементів. Тому або принаймні m=1, або m> $1 \Rightarrow n \leq m$

Крок індукції: нехай для підпорядкованої системи з n-1 елементами твердження є виконаним

Перевіримо для n

$$\begin{cases} y_1 = \alpha_1^1 x_1 + \dots + \alpha_m^1 x_m & (1) \\ y_2 = \alpha_1^2 x_1 + \dots + \alpha_m^2 x_m & (2) \\ \dots & \\ y_n = \alpha_1^n x_1 + \dots + \alpha_m^n x_m & (n) \end{cases}$$
 (не втрачаючи загальності, можемо вважати, що $\alpha_m^n \neq 0$)

(не втрачаючи загальності, можемо вважати, що $\alpha_m^n \neq 0$

Цю систему замінимо таким чином:

$$(1) = (1) - \frac{\alpha_m^1}{\alpha_m^n}(n)$$

$$(2) = (2) - \frac{\alpha_m^2}{\alpha_m^2}(n)$$
...
$$(n-1) = (n-1) - \frac{\alpha_m^{n-1}}{\alpha_m^{n-1}}(n)$$

Тоді отримаємо, що:

$$\begin{cases} y_{1} - \frac{\alpha_{m}^{1}}{\alpha_{m}^{n}} y_{n} = \left(\alpha_{1}^{1} - \alpha_{1}^{n} \frac{\alpha_{m}^{1}}{\alpha_{m}^{n}}\right) x_{1} + \dots + \left(\alpha_{m-1}^{1} - \alpha_{m-1}^{n} \frac{\alpha_{m}^{1}}{\alpha_{m}^{n}}\right) x_{m-1} + 0 x_{m} \\ \dots \\ y_{n-1} - \frac{\alpha_{m}^{n-1}}{\alpha_{m}^{n}} y_{n} = \left(\alpha_{1}^{n-1} - \alpha_{1}^{n} \frac{\alpha_{m}^{n-1}}{\alpha_{m}^{n}}\right) x_{1} + \dots + \left(\alpha_{m-1}^{n-1} - \alpha_{m-1}^{n} \frac{\alpha_{m}^{n-1}}{\alpha_{m}^{n}}\right) x_{m-1} + 0 x_{m} \\ y_{n} = \alpha_{1}^{n} x_{1} + \dots + \alpha_{m}^{n} x_{m} \end{cases}$$

Розглянемо таку систему: $\left\{y_1 - \frac{\alpha_m^1}{\alpha_m^n} y_n, \dots, y_{n-1} - \frac{\alpha_m^{n-1}}{\alpha_m^n} y_n\right\}$ та перевіримо

$$\beta_1 \left(y_1 - \frac{\alpha_m^1}{\alpha_m^n} y_n \right) + \dots + \beta_{n-1} \left(y_{n-1} - \frac{\alpha_m^{n-1}}{\alpha_m^n} y_n \right) = 0$$

Якщо розкрити дужки та звести цей вираз у формі лінійної комбінації $\{y_1,\ldots,y_{n-1},y_n\}$, то отримаємо

$$\beta_1 y_1 + \dots + \beta_{n-1} y_{n-1} + \Gamma y_n = 0 \stackrel{\text{за умовою л.н.з.}}{\Rightarrow} \beta_1 = \dots = \beta_{n-1} = \Gamma = 0$$

 Γ - це якесь число, що було сконструюване із α, β - не принципово

Отже, наша задана система - л.н.з. Більш того, ця система є підпорядкованою через отриману систему рівнянь:

$$\left\{ y_1 - \frac{\alpha_m^{\frac{1}{n}}}{\alpha_m^n} y_n, \dots, y_{n-1} - \frac{\alpha_m^{n-1}}{\alpha_m^n} y_n \right\} \prec \{x_1, \dots, x_{m-1}\}$$

 $\ddot{\text{Т}}$ оді за припущенням індукції, $n-1 \leq m-1 \Rightarrow n \leq m$

MI доведено **■**

Example 1.5.6. $\{\vec{i}\} \not\prec \{\vec{k}, \vec{j}\}$ - приклад того, що зворотня теорема не є вірною. Тут $\vec{i}, \vec{j}, \vec{k}$ - одиничні вектори простору

Definition 1.5.7. Системи $\{y_1, \ldots, y_n\}$ та $\{x_1, \ldots, x_m\}$ називаються **еквівалентними**, якщо:

$$\{y_1, \dots, y_n\} \prec \{x_1, \dots, x_m\}$$

 $\{x_1, \dots, x_m\} \prec \{y_1, \dots, y_n\}$

Позначення: $\{y_1, \ldots, y_n\} \sim \{x_1, \ldots, x_m\}$

Proposition 1.5.8. $\{y_1, \ldots, y_n\} \sim \{x_1, \ldots, x_m\} \iff span\{y_1, \ldots, y_n\} = span\{x_1, \ldots, x_m\}$ Bunnusae 3 Prp. 1.5.2.

Proposition 1.5.9. Властивості еквівалентних систем

Еквівалентна система ϵ рефлексивною, симетричною і транзитивною. Тобто це ϵ відношенням еквівалентності

Випливае з Ргр. 1.5.3.

Theorem 1.5.10. Якщо $\{y_1, \ldots, y_n\} \sim \{x_1, \ldots, x_m\}$, то n=m Випливае з **Th. 1.5.5.**

Example 1.5.11. $\{\vec{i}, \vec{j}, \vec{k}\} \not\sim \{\vec{i} - \vec{j}, \vec{j} - \vec{k}, \vec{k}\}$ - приклад того, що зворотня теорема не є вірною. Це знову одиничні вектори простору

1.6 База та ранг. Базиси та розмірності

Definition 1.6.1. Підсистема $\{x_{j_1}, \ldots, x_{j_k}\}$ системи $\{x_1, \ldots, x_m\}$ називається **повною**, якщо

$$\forall x_t \in \{x_1, \dots, x_m\} : \exists \alpha_t^1, \dots, \alpha_t^k : x_t = \alpha_t^1 x_{j_1} + \dots + \alpha_t^k x_{j_k}$$

Definition 1.6.2. Підсистема $\{x_{j_1},\ldots,x_{j_k}\}$ системи $\{x_1,\ldots,x_m\}$ називається **тах. лінійно незалежною**, якщо

$$\forall x_t \in \{x_1, \dots, x_m\} : \{x_{j_1}, \dots, x_{j_k}, x_t\}$$
 - лінійно залежна

Proposition 1.6.3. Підсистема є повною л.н.з. \iff вона є тах. л.н.з. Proof.

 \sqsubseteq Дано: $\{x_{j_1},\ldots,x_{j_k}\}$ - тах л.н.з.

Звідси $\forall x_t \in \{x_1, \dots, x_m\}$ система $\{x_{j_1}, \dots, x_{j_k}, x_t\}$ - л.з. Тоді кожний елемент виражається як лінійна комбінація інших. Зокрема:

$$x_t = \beta_1 x_{j_1} + \dots + \beta_k x_{j_k}$$

Оскільки для довільних x_t , то звідси $\{x_{j_1},\dots,x_{j_k}\}$ - повна л.н.з.

 \implies Дано: $\{x_{j_1}, \dots, x_{j_k}\}$ - повна л.н.з. Тоді $\forall x_t \in \{x_1, \dots, x_m\} : \exists \alpha_t^1, \dots, \alpha_t^k : x_t = \alpha_t^1 x_{j_1} + \dots + \alpha_t^k x_{j_k} \Rightarrow \alpha_t^1 x_{j_1} + \dots + \alpha_t^k x_{j_k} + (-1)x_t = 0$, коефіцієнти не всі нулі Тому $\{x_{j_1}, \dots, x_{j_k}, x_t\}$ - л.з., що й доводить тах. л.н.з.

Definition 1.6.4. Базою системи $\{x_1, \dots, x_m\}$ називається тах. л.н.з. або повна л.н.з. підсистема

Example 1.6.5. Задано система $\{\vec{i}, \vec{j}, \vec{i} + 2\vec{j}, \vec{i} - 3\vec{j}\}$. Тут є такі бази: $\{\vec{i}, \vec{j}\}$ або $\{\vec{i} + 2\vec{j}, \vec{i} - 3\vec{j}\}$. Не всі я перелічив

Theorem 1.6.6.(1) Задано система $\{x_1,\ldots,x_m\}$, для якої є база $\{x_{p_1},\ldots,x_{p_s}\}$. Тоді $\{x_1,\ldots,x_m\}\sim\{x_{p_1},\ldots,x_{p_s}\}$ **Proof.**

Зрозуміло, що $\{x_{p_1},\ldots,x_{p_s}\} \prec \{x_1,\ldots,x_m\}$. Дійсно, $\{x_{p_1},\ldots,x_{p_s}\}$ - тах. л.н.з., тоді $\{x_1,\ldots,x_{p_1},\ldots,x_{p_s},\ldots,x_m\}$ - л.з. Тоді $\forall x_{p_j}, j=1,\ldots,s$ виражається через лінійну комбінацію інших Перевіримо, що навпаки теж працює $\forall x_t \in \{x_1,\ldots,x_m\}: \exists \alpha_t^1,\ldots,\alpha_t^s: x_t = \alpha_t^1 x_{p_1} + \cdots + \alpha_t^s x_{p_s}$. Тоді за означенням, $\{x_1,\ldots,x_m\} \prec \{x_{p_1},\ldots,x_{p_s}\}$ Отже, $\{x_1,\ldots,x_m\} \sim \{x_{p_1},\ldots,x_{p_s}\}$

Theorem 1.6.6.(2) Задана система $\{x_1, \ldots, x_m\}$, для якої є дві бази: $\{x_{p_1}, \ldots, x_{p_s}\}$ та $\{x_{t_1}, \ldots, x_{t_l}\}$. Тоді $\{x_{p_1}, \ldots, x_{p_s}\} \sim \{x_{t_1}, \ldots, x_{t_l}\}$ Випливае з **Th. 1.6.6.(1)** та властивості транзитивності

Definition 1.6.7. Рангом системи $\{x_1, \ldots, x_m\}$ називається кількість елементів в (будь-якій) її базі Позначення: $rank\{x_1, \ldots, x_m\}$

Example 1.6.8. Задано система $\{f_1, f_2, f_3, f_4\}$, для якої треба знайти ранг, де:

$$f_1(t) = t^2 - 3t + 2$$
 $f_2(t) = 2t^2 + 3t - 5$
 $f_3(t) = -t^2 - t + 2$ $f_4(t) = -2t^2 + 5t - 3$

Загальна побудова: почергово додаємо елемент, допоки не дійдемо до л.з. А потім досліджуємо всі комбінації (раптом там виявиться л.н.з.) $\{f_1\}$ - л.н.з.? Зрозуміло, що тут л.н.з. $\{f_1, f_2\}$ - л.н.з.?

$$\alpha f_1 + \beta f_2 = 0 \iff f_1 = -\frac{\beta}{\alpha} f_2.$$

Але коефіцієнти не є пропорційними, тому $\{f_1, f_2\}$ - л.н.з. $\{f_1, f_2, f_3\}$ - л.н.з.?

$$\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0 \iff \begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 = 0 \\ -3\alpha_1 + 3\alpha_2 - \alpha_3 = 0 \\ 2\alpha_1 - 5\alpha_2 + 2\alpha_3 = 0 \end{cases} \iff \begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 = 0 \\ 9\alpha_2 - 4\alpha_3 = 0 \end{cases}$$

Отже, можна отримати ненульовий розв'язок. Отже, $\{f_1, f_2, f_3\}$ - л.з. Решта систем із 3-х елементів (треба перевіряти) також є л.з. Тому $\{f_1, f_2\}$ - тах. л.н.з. - база, а остаточно $rank\{f_1, f_2, f_3, f_4\} = 2$

Definition 1.6.9. Задано L - лінійний простір **Базисом** лінійного простору називають його базу

Theorem 1.6.10. Задано $\{x_1, \ldots, x_n\}$ - система в L. Наступні властивості еквівалентні:

$$1)\{x_1,\ldots,x_n\}$$
 - тах л.н.з.

$$2)\{x_1,\ldots,x_n\}$$
 - повна л.н.з.

$$3) \forall y \in L : \exists! \alpha_1, \dots, \alpha_n : y = \alpha_1 x_1 + \dots + \alpha_n x_n$$

Proof.

 $1) \Leftrightarrow 2)$ вже було

$$(2) \Rightarrow 3)$$
 Дано: $\{x_1, \dots, x_n\}$ - повна л.н.з.

$$\forall y \in L : \exists \alpha_1, \dots, \alpha_n : y = \alpha_1 x_1 + \dots + \alpha_n x_n$$

Із властивості систем л.н.з. елементів, отримаємо, що розклад є єдиним

[2)
$$\Leftarrow$$
 3)] Дано: $\forall y \in L : \exists ! \alpha_1, \dots, \alpha_n : y = \alpha_1 x_1 + \dots + \alpha_n x_n$
Тоді $\{x_1, \dots, x_n\}$ - повна і, за властивістю, л.н.з.

Definition 1.6.11. Розмірністю лінійного простору L називають кількість елементів в базисі

Позначення: $\dim L$

Example 1.6.12.(1) Задано $L = \mathbb{R}_n[x]$

Розглянемо систему $\{1, x, x^2, \dots, x^n\}$ та перевіримо, що це - базис. І дійсно,

$$\forall f(x) \in \mathbb{R}_n[x] : \exists ! a_0, a_1, \dots, a_n \in \mathbb{R} : f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 $\Rightarrow \{1, x, \dots, x^n\}$ - базис $\mathbb{R}_n[x]$

 $\dim \mathbb{R}_n[x] = n+1$

Remark 1.6.12. Надалі працюємо з лінійними просторами, в яких скінченна кількість елементів в базисі

Example 1.6.12.(2) Задано $L = \{\vec{a} \in \mathbb{R}^4 : a_1 - a_2 + a_3 - 5a_4 = 0\}.$ Знайдемо базис цього простору

$$a_{1} - a_{2} + a_{3} - 5a_{4} = 0 \Rightarrow a_{1} = a_{2} - a_{3} + 5a_{4}$$

$$\forall \vec{a} \in L : \vec{a} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \end{pmatrix} = \begin{pmatrix} a_{2} - a_{3} + 5a_{4} \\ a_{2} \\ a_{3} \\ a_{4} \end{pmatrix} = a_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_{3} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + a_{4} \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Тому
$$\left\{ \vec{x_1} = \begin{pmatrix} a_4 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \vec{x_3} = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 - базис, $\dim L = 3$

Можна знайти також інший базис:

$$a_3 = -a_1 + a_2 + 5a_4$$

$$\forall \vec{a} \in L : \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ -a_1 + a_2 + 5a_4 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + a_4 \begin{pmatrix} 0 \\ 0 \\ 5 \\ 1 \end{pmatrix}$$
 Тому
$$\left\{ \vec{x_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \vec{x_4} = \begin{pmatrix} 0 \\ 0 \\ 5 \\ 1 \end{pmatrix} \right\} - \text{базис, dim } L = 3$$

1.7 Сума, перетин, пряма сума лінійних просторів

Definition 1.7.1. Задано L - лінійний простір та M_1, M_2 - лінійні підпростори - **Перетином** лінійних підпросторів називається множина

$$M_1 \cap M_2 = \{x \in L | x \in M_1, x \in M_2\}$$

- Сумою лінійних підпросторів називається множина

$$M_1 + M_2 = \{z \in L : z = x + y | x \in M_1, y \in M_2\}$$

Lemma 1.7.2. $M_1 + M_2 = span\{M_1, M_2\}$ Proof.

 $\{z\in L: z=x+y: x\in M_1, y\in M_2\}\subset span\{M_1,M_2\}$ - випливає з означення л.о.

Перевіримо, що $span\{M_1,M_2\}\subset\{z\in L:z=x+y:x\in M_1,y\in M_2\}$ Справді:

 $\forall w \in span\{M_1, M_2\} : w = \alpha_1 x_1 + \dots + \alpha_n x_n + \beta_1 y_1 + \dots + \beta_m y_m \\ x_1, \dots, x_m \in M_1; y_1, \dots, y_m \in M_2$

 $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \mathbb{R}$

 $w = (\alpha_1 x_1 + \dots + \alpha_n x_n) + (\beta_1 y_1 + \dots + \beta_m y_m) \Rightarrow x \in M_1$ $= x \in M_1$ $= y \in M_2$

 $w = x + y \in \{z \in L : z = x + y : x \in M_1, y \in M_2\}$

Отже, $span\{M_1, M_2\} = \{z \in L : z = x + y : x \in M_1, y \in M_2\} = M_1 + M_2$

Theorem 1.7.3. $\frac{1}{2}M_1 \cap M_2 -$ лінійні підпростори L

Proof.

1) $M_1 \cap M_2$ - лінійний підпростір?

$$\forall t_1, t_2 \in M_1 \cap M_2 : \forall \alpha_1, \alpha_2 \in \mathbb{R} : \begin{cases} t_1, t_2 \in M_1 \\ t_1, t_2 \in M_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 t_1 + \alpha_2 t_2 \in M_1 \\ \alpha_1 t_1 + \alpha_2 t_2 \in M_2 \end{cases} \Rightarrow$$

 $\alpha_1 t_1 + \alpha_2 t_2 \in M_1 \cap M_2$ - лінійний підпростір

2)
$$M_1+M_2$$
 - лінійний підпростір?
$$\forall z_1,z_2\in M_1+M_2: \forall \alpha_1,\alpha_2\in \mathbb{R}: \begin{cases} z_1=x_1+y_1\\ z_2=x_2+y_2 \end{cases} x_1,x_2\in M_1; y_1,y_2\in M_2$$
 $\Rightarrow \alpha_1z_1+\alpha_2z_2=(\alpha_1x_1+\alpha_2x_2)+(\alpha_1y_1+\alpha_2y_2)\in M_1+M_2$ - лінійний

підпростір

Example 1.7.4.
$$L = \mathbb{R}^2$$
, $M_1 = OX$, $M_2 = OY$
 $M_1 \cap M_2 = (0,0)$
 $\vec{z} \in M_1 + M_2 : \vec{z} = \vec{x} + \vec{y} = \alpha \vec{i} + \beta \vec{j}$.
 $M_1 + M_2 = \mathbb{R}^2 = XOY$

Remark 1.7.4. $M_1 \cup M_2 \neq XOY$. Ця множина описує вектори, які мають принаймні одну нульову координату. Водночас $M_1 + M_2 = XOY$ - абсолютно довільний вектор площини

Проте не завжди прозоро знаходиться перетин підпросторів. Для цього є зв'язок між розмірностями, але перед цим наведу лему

Lemma 1.7.5. Задано M - підпростір лінійного простору L Тоді $\dim M \leq \dim L$

Proof.

Виділимо базис $\{f_1, \ldots, f_k\} \subset L$ в M, тоді $\dim M = k$ Звідси в L система $\{f_1, \ldots, f_k\}$ є л.н.з. Тоді ми можемо доповнити цю систему елементами $g_1, \ldots, g_n \in L$, щоб утворити базис $\{f_1, \ldots, f_k, g_1, \ldots, g_n\}$. А отже, $\dim L = k + n = \dim M + n \Rightarrow \dim M \leq \dim L$

Theorem 1.7.6. $\dim M_1 + \dim M_2 = \dim(M_1 + M_2) + \dim(M_1 \cap M_2)$ **Proof.**

Нехай базис $M_1 \cap M_2$ - $\{h_1, \dots, h_k\}$

Оскільки $M_1\cap M_2$ - підпростір M_1 , то $\dim(M_1\cap M_2)\leq \dim M_1$. Тоді базисом в M_1 буде система $\{h_1,\ldots,h_k,g_1,\ldots,g_m\}$

Так само для M_2 отримаємо базис $\{h_1,\ldots,h_k,f_1,\ldots,f_n\}$

Покажемо, що $\{h_1,\ldots,h_k,f_1,\ldots,f_n,g_1,\ldots,g_m\}$ - базис M_1+M_2

I. Перевіримо на л.н.з.

$$\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n + \gamma_1 g_1 + \dots + \gamma_m g_m = 0$$

$$\Rightarrow (\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n) = (-\gamma_1 g_1 - \dots - \gamma_m g_m)(*)$$

$$\in M_2$$

Вони обидва тоді належать $M_1 \cap M_2$. Тому

 $(-\gamma_1 g_1 - \dots - \gamma_m g_m) = \tau_1 h_1 + \dots + \tau_k h_k$ - це розклад за базисом $M_1 \cap M_2$ $\Rightarrow \tau_1 h_1 + \dots + \tau_k h_k + \gamma_1 g_1 + \dots + \gamma_m g_m = 0$ $\{h_1, \dots, h_k, g_1, \dots, g_m\}$ - базис, тому $\tau_1 = \dots = \tau_k = \gamma_1 = \dots = \gamma_m = 0$ Отже, рівнняння (*) матиме вигляд: $\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n = 0$ $\{h_1, \dots, h_k, f_1, \dots, f_k\}$ - базис, тому $\alpha_1 = \dots = \alpha_k = \beta_1 = \dots = \beta_n = 0$ Всі коефіцієнти в нас нульові, тоді $\{h_1, \dots, h_k, f_1, \dots, f_n, g_1, \dots, g_m\}$ - л.н.з.

II. Перевіримо на повноту

$$\forall z \in M_1 + M_2 : z = x + y,$$

$$x = x_1 h_1 + \dots + x_k h_k + \tilde{x_1} g_1 + \dots + \tilde{x_m} g_m \in M_1$$

$$y = y_1 h_1 + \dots + y_k h_k + \tilde{y_1} f_1 + \dots + \tilde{y_n} f_n \in M_2$$

$$\Rightarrow z = (x_1 + y_1) h_1 + \dots + (x_k + y_k) h_k + \tilde{x_1} g_1 + \dots + \tilde{x_m} g_m + \tilde{y_1} f_1 + \dots + \tilde{y_n} f_n$$
 Тобто система є повною

Остаточно $\{h_1, \ldots, h_k, f_1, \ldots, f_n, g_1, \ldots, g_m\}$ - базис $M_1 + M_2$ Залишилось показати рівність розмірностей: $\dim(M_1 + M_2) = k + m + n, \qquad \dim(M_1 \cap M_2) = k$ $\dim M_1 = k + m, \qquad \dim M_2 = k + n$ $\Rightarrow \dim M_1 + \dim M_2 = \dim(M_1 + M_2) + \dim(M_1 \cap M_2)$

Перед прикладом наведу ще дві корисні леми, якими будемо часто користуватись

Lemma 1.7.7.(1) Задано L - лінійний простір та M - такий лінійний підпростір, що $M\subset L$ та $\dim M=\dim L$

Тоді L=M

Proof.

Нехай $\{f_1,\ldots,f_n\}$ - базис в M Тоді $\{f_1,\ldots,f_n\}$ - л.н.з. в L, але оскільки $\dim M=\dim L$, то $\{f_1,\ldots,f_n\}$ - базис в L А тому $\forall y\in L:y=\alpha_1x_1+\cdots+\alpha_nx_n\Rightarrow y\in M$ Тобто маємо, що $L\subset M$. За умовою $M\subset L$ Отже, L=M

Lemma 1.7.7.(2) Задано L - лінійний простір, $L = span\{x_1, \ldots, x_n\}$ Тоді якщо $\{x_1, \ldots, x_n\}$ - база, то вона є базисом L Ба більше, $rank\{x_1, \ldots, x_n\} = \dim L$ **Proof.**

Маємо, що
$$\{x_1,\ldots,x_n\}\sim span\{x_1,\ldots,x_n\}=L$$
 Тому $\dim L=rank\{x_1,\ldots,x_n\}$ Також $\{x_1,\ldots,x_n\}\subset L$, тоді $\{x_1,\ldots,x_n\}$ - тах. л.н.з. в $L\Rightarrow$ базис L

Example 1.7.8. Нехай задані такі простори:

$$L_{1} = span \left\{ \vec{x_{1}} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}, \vec{x_{2}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{x_{3}} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}$$

$$L_{2} = span \left\{ \vec{y_{1}} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \vec{y_{2}} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}, \vec{y_{3}} = \begin{pmatrix} 3 \\ 7 \\ -4 \end{pmatrix} \right\}$$

Перед знаходженням треба замодифікувати лінійні оболонки

Якщо обережно перевірити, то $\{\vec{x_1},\vec{x_2},\vec{x_3}\}$ - л.з., але водночас $\{\vec{x_1},\vec{x_2}\}$ - л.н.з.

В чому проблема? Оскільки $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ - л.з., то кожний елемент є лінійною комбінацією інших. Зокрема

$$\vec{x_3} = \vec{x_1} - \vec{x_2}$$

Тоді
$$L_1 = span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} = \{\alpha_1\vec{x_1} + \alpha_2\vec{x_2} + \alpha_3\vec{x_3}|\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \{(\alpha_1 + \alpha_3)\vec{x_1} + (\alpha_2 - \alpha_3)\vec{x_2}|\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \{\beta_1\vec{x_1} + \beta_2\vec{x_2}|\beta_1, \beta_2 \in \mathbb{R}\} = span\{\vec{x_1}, \vec{x_2}\}$$

З цього можемо зробити висновок, що ми можемо закреслювати елементи лінійної оболонки, допоки не виникне л.н.з. система

Також $\{\vec{y_1},\vec{y_2},\vec{y_3}\}$ - л.з., але $\{\vec{y_1},\vec{y_2}\}$ - л.н.з. Тому в лінійній оболонці залишається лише їх

Отже:

$$L_1 = span \{\vec{x_1}, \vec{x_2}\}\$$

 $L_2 = span \{\vec{y_1}, \vec{y_2}\}\$

$$L_1 + L_2 = span\{L_1, L_2\} = span\{\vec{x_1}, \vec{x_2}, \vec{y_1}, \vec{y_2}\}$$

Тут знову треба перевірити. Проте оскільки наші вектори з простору \mathbb{R}^3 , то тах. л.н.з. система містить не більше 3 елементів.

Можна переконатись самостійно, що $\{\vec{x_1}, \vec{x_2}, \vec{y_1}\}$ - л.н.з.

Отже,
$$L_1 + L_2 = span\{\vec{x_1}, \vec{x_2}, \vec{y_1}\}$$

Оскільки $\dim(L_1+L_2)=3$ та $L_1+L_2\subset\mathbb{R}^3$, то $L_1+L_2=\mathbb{R}^3$ за $\mathbf{Lm.}$ 1.7.7.(1)

Скористаємось зв'язком між розмірностями:

$$\dim L_1 + \dim L_2 = \dim(L_1 + L_2) + \dim(L_1 \cap L_2)
=2 = 3
\Rightarrow \dim(L_1 \cap L_2) = 1$$

Тоді
$$L_1 \cap L_2 = span\{\vec{z}\}$$

Якщо
$$\vec{z} \in L_1$$
, то $\vec{z} = \alpha_1 \vec{x_1} + \alpha_2 \vec{x_2}$

Якщо
$$\vec{z} \in L_2$$
, то $\vec{z} = \beta_1 \vec{y_1} + \beta_2 \vec{y_2}$

З іншого боку, коли
$$\vec{z} \in L_1 \cap L_2$$
, то $\alpha_1 \vec{x_1} + \alpha_2 \vec{x_2} = \beta_1 \vec{y_1} + \beta_2 \vec{y_2}$

$$\alpha_{1}\begin{pmatrix} 3\\2\\-1 \end{pmatrix} + \alpha_{2}\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \beta_{1}\begin{pmatrix} 1\\3\\-2 \end{pmatrix} + \beta_{2}\begin{pmatrix} 2\\4\\-2 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 3\alpha_{1} + \alpha_{2} = \beta_{1} + 2\beta_{2} \\ 2\alpha_{1} + \alpha_{2} = 3\beta_{1} + 4\beta_{2} \\ -\alpha_{1} = -2\beta_{1} - 2\beta_{2} \end{cases}$$

Розв'язуючи систему, ми отримаємо:

$$\alpha_1 = 2\beta_1 + 2\beta_2$$

$$\alpha_2 = -\beta_1$$

$$\alpha_2 = -5\beta_1 - 4\beta_2$$

$$\Rightarrow \beta_1 = -\beta_2$$

Тоді
$$\vec{z} = \beta_1 \vec{y_1} - \beta_1 \vec{y_2} = \beta_1 \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

Остаточно $L_1 \cap L_2 = span \left\{ \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\}$

Definition 1.7.9. Задано L - лінійний простір та M_1, M_2 - лінійні підпростори Прямою сумою називають множину

$$M_1 + M_2 = \{z \in L | \exists ! x \in M_1, \exists ! y \in M_2 : z = x + y \}$$

Lemma 1.7.10. Критерій прямої суми

Сума $M_1 + M_2$ є прямою $\iff M_1 \cap M_2 = \{0\}$

Proof.

 \Rightarrow Дано: $M_1 + M_2$, тобто пряма сума

Нехай
$$z \in M_1 \cap M_2 \Rightarrow \begin{cases} z \in M_1 \\ z \in M_2 \end{cases} \Rightarrow \begin{cases} z = 0 + z \\ M_1 & M_2 \\ z = z + 0 \\ M_1 & M_2 \end{cases}$$

За умовою розклад z - єдиний, тому $z=0+z=z+0 \Rightarrow z=0$

$$\sqsubseteq$$
Дано: $M_1 \cap M_2 = \{0\}$

!Припустимо, що z має не один розклад, тобто $\begin{cases} z = z_1 + y_1 \\ z = z_2 + y_2 \end{cases}$,

$$x_1, x_2 \in M_1, y_1, y_2 \in M_2$$

$$x_1, x_2 \in M_1, y_1, y_2 \in M_2$$

 $\Rightarrow 0 = z - z = (x_1 - x_2) + (y_1 - y_2) \Rightarrow x_2 - x_1 = y_1 - y_2$
 $\in M_1$
 $\in M_2$

Tomy $x_1 - x_2 \in M_1, M_2$, to $y_1 - y_2 \in M_2, M_1 \Rightarrow x_2 - x_1 \in M_1 \cap M_2$,

 $y_2 - y_1 \in M_1 \cap M_2$

Отже, $x_1 = x_2, y_1 = y_2$. Суперечність!

Таким чином, $\forall z \in M_1 + M_2 : \exists ! x \in M_1, \exists ! t \in M_2 : z = x + y$, тобто пряма сума \blacksquare

Corollary 1.7.10. $\dim(M_1 + M_2) = \dim M_1 + \dim M_2$

Example 1.7.11. Перевірити, чи буде $\mathbb{R}^4 = L_1 \dot{+} L_2$, якщо нам задані:

$$L_1 = \{ \vec{x} \in \mathbb{R}^4 : 3x_1 - x_2 + x_3 - 5x_4 = 0 \}$$

$$L_2 = \{\vec{x} \in \mathbb{R}^4 : x_1 = x_2 = x_3 = x_4\}$$

Якщо
$$\vec{x} \in L_1$$
, то $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ 3x_1 + x_3 - 5x_4 \\ x_3 \\ x_4 \end{pmatrix} =$

$$= x_1 \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -5 \\ 0 \\ 1 \end{pmatrix}$$

Отримаємо базис з трьох векторів, тобто $\dim L_1=3$

Якщо
$$\vec{x} \in L_2$$
, то $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \\ x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

Отримаємо базис з одного вектора, тобто $\dim L_2 = 1$

Тоді $L_1 + L_2 = span\{L_1, L_2\}$ - якщо обережно перевірити, то отримані 4 вектори будуть л.н.з., отже, $\dim(L_1 + L_2) = 4$

За формулою про зв'язок між розмірностями, маємо, що

$$\dim(L_1 \cap L_2) = 0$$

Таким чином, $L_1 + L_2$ є прямою сумою

I нарешті, за **Lm. 1.7.7.**, $\dim(L_1 \dotplus L_2) = \dim \mathbb{R}^4$ та $L_1 \dotplus L_2 \subset \mathbb{R}^4 \Rightarrow L_1 \dotplus L_2 = \mathbb{R}^4$

2 Дії з лінійними просторами

2.1Лінійні оператори

Definition 2.1.1. Задані L, M - лінійні простори

Відображення $A:L\to M$, тобто: $\forall x\in L:Ax=y\in M$, для якого виконані наступні умови:

- 1) $\forall x_1, x_2 \in L : A(x_1 + x_2) = Ax_1 + Ax_2$
- 2) $\forall \lambda \in \mathbb{R} : A(\lambda x) = \lambda Ax$

називається лінійним оператором

Proposition 2.1.2. Властивості лінійних операторів

- 1) Якщо A лінійний оператор, то A(0) = 0
- 2) A лінійний оператор $\iff \forall x_1, x_2 \in L : \forall \alpha_1, \alpha_2 \in \mathbb{R} :$

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2$$

3) $\forall x_1, \ldots, x_n \in L : \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R} :$

$$A(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 A x_1 + \dots + \alpha_n A x_n$$

Proof.

1)
$$A(0) = A(x - x) = Ax + A(-x) = Ax - Ax = 0$$

- 2) Доведення в обидві боки
- \Rightarrow Дано: A лінійний оператор

Тоді $\forall x_1, x_2 \in L : \forall \alpha_1, \alpha_2 \in \mathbb{R} : A(\alpha_1 x_1 + \alpha_2 x_2) = A(\alpha_1 x_1) + A(\alpha_2 x_2) =$ $\alpha_1 A x_1 + \alpha_2 A x_2$

 \Box Дано: $\forall x_1, x_2 \in L : \forall \alpha_1, \alpha_2 \in \mathbb{R} : A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2$ Тоді:

- 1)) $\alpha_1 = \alpha_2 = 1 \Rightarrow A(x_1 + x_2) = Ax_1 + Ax_2$
- 2)) $\alpha_1 = 0 \Rightarrow A(\alpha_1 x_1) = \alpha_1 A x_1$

Ці умови і показують, що A - лінійний оператор

3) випливає з другого, доведення за MI за кількістю $x \blacksquare$

Example 2.1.3.(1) Нехай задано оператор $A: \mathbb{R}^2 \to \mathbb{R}^2$

$$A\vec{x} = \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix}$$

 $A\vec{x} = \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix}$ Перевіримо, що такий оператор є лінійним

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ \vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$\Rightarrow A(\vec{x} + \vec{y}) = \begin{pmatrix} (x_1 + y_1) - 2(x_2 + y_2) \\ 3(x_2 + y_2) + (x_1 + y_1) \end{pmatrix} = \dots = \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix} + \begin{pmatrix} y_1 - 2y_2 \\ 3y_2 + y_1 \end{pmatrix} =$$

$$A\vec{x} + A\vec{y}$$
 $\alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \end{pmatrix}$
 $\Rightarrow A(\alpha \vec{x}) = \begin{pmatrix} (\alpha x_1) - 2(\alpha x_2) \\ 3(\alpha x_2) + (\alpha x_1) \end{pmatrix} = \cdots = \alpha \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix} = \alpha A\vec{x}$
Отже, A - лінійний оператор

Example 2.1.3.(2) Нехай задано оператор $A: \mathbb{R}^2 \to \mathbb{R}^2$

$$A\vec{x} = \begin{pmatrix} x_1 + x_2 + 3 \\ x_1 - x_2 \end{pmatrix}$$
$$A(\vec{0}) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \neq \vec{0}$$

Отже, за другою властивістю, A - НЕ лінійний оператор

Example 2.1.3.(3) Головний приклад

Нехай задано оператор $A: \mathbb{R}^n \to \mathbb{R}^m$

Розглянемо матрицю
$$\mathbb{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in Mat(m \times n)$$

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

$$A\vec{x} = \mathbb{A}\vec{x} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix}$$

Цей оператор є лінійним, оскільки

$$A(\alpha \vec{x} + \beta \vec{y}) = \mathbb{A}(\alpha \vec{x} + \beta \vec{y}) + \alpha \mathbb{A}\vec{x} + \beta \mathbb{A}\vec{y} = \alpha A\vec{x} + \beta A\vec{y}$$

Висновок: матриці задають лінійні оператори в арифметичному просторі

Поставимо обернену задачу: $A: \mathbb{R}^n \to \mathbb{R}^m$ - лінійний оператор. Чи буде існувати матриця, яка задає цей оператор?

Нехай $\{\vec{e_1},\ldots,\vec{e_n}\}$ - базис в $\mathbb{R}^n\Rightarrow \vec{x}=x_1\vec{e_1}+\cdots+x_n\vec{e_n}$

Подіємо цим вектором на оператор:

$$A\vec{x} = A(x_1\vec{e_1} + \dots + x_n\vec{e_n}) = x_1A\vec{e_1} + \dots + x_nA\vec{e_n} \equiv$$

$$A\vec{e_1} = \begin{pmatrix} a_{11} \\ \dots \\ a_{m1} \end{pmatrix} \in \mathbb{R}^m$$

$$A\vec{e_n} = \begin{pmatrix} a_{1n} \\ \dots \\ a_{mn} \end{pmatrix} \in \mathbb{R}^m$$

$$\equiv x_1 \begin{pmatrix} a_{11} \\ \dots \\ a_{m1} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ \dots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \mathbb{A}\vec{x}$$

Матриця \mathbb{A} складається із стовпчиків дії A на базиси елементів $A\vec{e_1}$ - 1-й стовпчик, ..., $A\vec{e_n}$ - n-й стовпчик, тобто

$$\mathbb{A} = \begin{pmatrix} A\vec{e_1} & \cdots & A\vec{e_n} \end{pmatrix}$$

Висновок: на заданому відображені наш лінійний оператор можна представити через матрицю

А чи буде така матриця єдиною?

!Припустимо, що $\exists \mathbb{B} \in Mat(m \times n): \mathbb{A}\vec{x} = \mathbb{B}\vec{x}$, але $\mathbb{A} \neq \mathbb{B}$ - ще одна матриця

Тоді
$$\forall j = 1, \dots, n : \mathbb{A}\vec{e_j} = \mathbb{B}\vec{e_j} \Rightarrow \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{mj} \end{pmatrix}$$

$$\Rightarrow \forall j = 1, \dots, n : \forall i = 1, \dots, m : a_{ij} = b_{ij}$$

Але ж $\mathbb{A} \neq \mathbb{B}$. Суперечність!

Висновок: матриця лінійного оператора задається єдиним чином

2.2 Арифметичні дії з лінійними операторами

Definition 2.2.1. Задані лінійні оператори $A,B:L \to M$

- **сумою** лінійних операторів називають відображення $A+B:L\to M,$ яке задається правилом: (A+B)x=Ax+Bx
- множення константи на лінійний оператор називають відображення $\alpha A: L \to M$, яке задається правилом: $(\alpha A)(x) = \alpha(Ax)$ Означення виконуються $\forall x \in L$

Lemma 2.2.2. Задані лінійні оператори $A, B: L \to M$. Тоді

- 1) A + B лінійний оператор
- $2) \forall \alpha \in \mathbb{R} : \alpha A$ лінійний оператор

Proof.

 $\forall x_1, x_2 \in L; \forall \alpha, \beta \in \mathbb{R}:$

1.1)
$$(A+B)(x_1+x_2) = A(x_1+x_2) + B(x_1+x_2) = Ax_1 + Bx_1 + Ax_2 + Bx_2 = (A+B)x_1 + (A+B)x_2$$

1.2)
$$(A + B)(\beta x_1) = A(\beta x_1) + B(\beta x_1) = \beta(Ax_1 + Bx_1) = \beta(A + B)x_1$$

2.1) $(\alpha A)(x_1 + x_2) = \alpha(A(x_1 + x_2)) = \alpha(Ax_1 + Ax_2) = \alpha Ax_1 + \alpha Ax_2 = (\alpha A)x_1 + (\alpha A)x_2$

2.2)
$$(\alpha A)(\beta x_1) = \alpha A(\beta x) = \beta(\alpha Ax) = \beta(\alpha A)x \blacksquare$$

Remark 2.2.2. Множину всіх лінійних операторів $L \to M$ позначають $\mathcal{L}(L,M)$ і є лінійним простором

Вказівка: перевірити 8 аксіом

Definition 2.2.3. Задані лінійні оператори $A: L \to M, B: M \to N$ Добутком лінійних операторів називають відображення $B \cdot A: L \to N$, яке визначено правилом: $\forall x \in L: (BA)x = B(Ax)$

Lemma 2.2.4. Задані лінійні оператори $A:L\to M, B:M\to N$. Тоді BA - лінійний оператор

Proof.

 $\forall x_1, x_2 \in L; \forall \alpha \in \mathbb{R}:$

- 1) $(BA)(x_1+x_2) = B(A(x_1+x_2)) = B(Ax_1+Ax_2) = B(Ax_1) + B(Ax_2) = (BA)x_1 + (BA)x_2$
- 2) $(BA)(\alpha x_1) = B(A(\alpha x_1)) = B(\alpha Ax_1) = \alpha B(Ax_1) = \alpha (BA)x_1$

Remark 2.2.4.(1) Якщо $A,B:L\to L$ та задані $BA,AB:L\to L$, то взагалі $BA\ne AB$ (прикладом є матриці лінійних операторів)

Definition 2.5.1. Оператор $I:L\to L$, такий, що $\forall x\in L:Ix=x$, називають **одиничним**

Theorem 2.2.5. Властивості

Задані A,B,C:L o L - лінійні оператори. Тоді

- $1) (A \cdot B) \cdot C = A \cdot (B \cdot C)$
- $2) A \cdot I = I \cdot A$
- 3) $A \cdot (B+C) = A \cdot B + A \cdot C$ $(A+B) \cdot C = A \cdot C + B \cdot C$ Proof.
- 1) З одного та іншого боків маємо

$$((A \cdot B) \cdot C)x = (A \cdot B) \cdot (Cx) = A \cdot (B \cdot (Cx))$$

$$(A \cdot (B \cdot C))x = A \cdot ((B \cdot C)x) = A \cdot (B \cdot (Cx))$$

Таким чином, $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

- 2) $(A\cdot I)x=A\cdot (Ix)=Ax=I\cdot (Ax)=(I\cdot A)x$ Таким чином, $A\cdot I=I\cdot A$
- 3.1) $[A \cdot (B+C)]x = A \cdot [(B+C)x] = A \cdot (Bx+Cx) = A(Bx) + A(Cx) = (A \cdot B)x + (A \cdot C)x = (A \cdot B + A \cdot C)x$

3.2)
$$[(A+B)\cdot C]x = (A+B)\cdot (Cx) = A(Cx) + B(Cx) = (A\cdot C)x + (B\cdot C)x = (A\cdot C+B\cdot C)x$$
 Таким чином, $A\cdot (B+C) = A\cdot B + A\cdot C$ $(A+B)\cdot C = A\cdot C + B\cdot C$

Remark 2.2.4.(2) Множина $\mathcal{L}(L,L)$ є кільцем, алгеброю

Example 2.2.5. Добуток матриці як лінійний оператор

Задані два лінійних оператори $A: \mathbb{R}^n \to \mathbb{R}^m$ та $B: \mathbb{R}^m \to \mathbb{R}^k$

За Ех. 2.1.3.(3), першому оператору відповідає матриця А, а другому - матриця **B**, тобто

$$A\vec{x} = \mathbb{A}x, \ B\vec{x} = \mathbb{B}x$$

Знайдемо добуток операторів:

 $BA: \mathbb{R}^n \to \mathbb{R}^k$, тут їй теж буде відповідати матриця (якась інша)

$$(BA)\vec{x} = B(A\vec{x}) = B(A\vec{x}) = \mathbb{B}(A\vec{x})$$

$$\mathbb{A} = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots \dots \vdots \\ a_{m1} \dots a_{mn} \end{pmatrix}, \mathbb{A}\vec{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix} = \vec{y}$$

$$\mathbb{B} = \begin{pmatrix} b_{11} \dots b_{1m} \\ \vdots \dots \vdots \\ b_{k1} \dots b_{km} \end{pmatrix}, \mathbb{B}\vec{y} = \begin{pmatrix} b_{11}y_1 + \dots + b_{1m}y_m \\ \dots \\ b_{k1}y_1 + \dots + b_{km}y_m \end{pmatrix}$$

$$= \begin{pmatrix} b_{11}(a_{11}x_1 + \dots + a_{1n}x_n) + \dots + b_{1m}(a_{m1}x_1 + \dots + a_{mn}x_n) \\ \dots \\ b_{k1}(a_{11}x_1 + \dots + a_{1n}x_n) + \dots + b_{km}(a_{m1}x_1 + \dots + a_{mn}x_n) \end{pmatrix} = \begin{pmatrix} (b_{11}a_{11} + \dots + b_{1m}a_{m1})x_1 + \dots + (b_{11}a_{1n} + \dots + b_{1m}a_{mn})x_n \\ \dots \\ (b_{k1}a_{11} + \dots + b_{km}a_{m1})x_1 + \dots + (b_{k1}a_{1n} + \dots + b_{km}a_{mn})x_n \end{pmatrix} \stackrel{\text{IIO3H}}{=} \begin{pmatrix} c_{11}x_1 + \dots + c_{1n}x_n \\ \dots \\ c_{k1}x_1 + \dots + c_{kn}x_n \end{pmatrix} = \mathbb{C}\vec{x}$$

Розпишемо останню матрицю більш детально:
$$\mathbb{C} = \begin{pmatrix} c_{11} \dots c_{1n} \\ \vdots \dots \vdots \\ c_{k1} \dots c_{kn} \end{pmatrix} = \begin{pmatrix} b_{11}a_{11} + \dots + b_{1m}a_{m1} \dots b_{11}a_{1n} + \dots + b_{1m}a_{mn} \\ \vdots \dots \vdots \\ b_{k1}a_{11} + \dots + b_{km}a_{m1} \dots b_{k1}a_{1n} + \dots + b_{km}a_{mn} \end{pmatrix} = \begin{pmatrix} b_{11} \dots b_{1m} \\ \vdots \dots \vdots \\ b_{k1} \dots b_{km} \end{pmatrix} \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots \dots \vdots \\ a_{m1} \dots a_{mn} \end{pmatrix} = \mathbb{B}\mathbb{A}$$

$$(BA)\vec{x} = (\mathbb{BA})\vec{x}$$

2.3 Ядро, образ

Definition 2.3.1. Задано лінійний оператор $A: L \to M$

- **ядром** лінійного оператора A називають множину

$$Ker A = \{x \in L : Ax = 0\}$$

- образом лінійного оператора A називають множину

$$\operatorname{Im} A = \{ y \in M : \exists x \in L : y = Ax \}$$

Theorem 2.3.2. Ker A та Im A - лінійні підпростори відповідно простору L та M

Proof.

I. Ker A

 $\forall x_1, x_2 \in \text{Ker} A : \forall \lambda \in \mathbb{R} :$

$$A(x_1 + x_2) = Ax_1 + Ax_2 = 0 + 0 = 0 \Rightarrow x_1 + x_2 \in \text{Ker} A$$

$$A(\lambda x_1) = \lambda A x_1 = 0 \Rightarrow \lambda x_1 \in \text{Ker} A$$

Тому це ε підпростором простора L

II. $\operatorname{Im} A$

 $\forall y_1, y_2 \in \operatorname{Im} A \Rightarrow \forall y_1, y_2 \in M : \exists x_1, x_2 \in L : y_1 = Ax_1, y_2 = Ax_2, \forall \lambda \in \mathbb{R} :$

$$y_1 + y_2 = Ax_1 + Ax_2 = A(x_1 + x_2) \Rightarrow y_1 + y_2 \in \text{Im } A$$

$$\lambda y_1 = \lambda A x_1 = A(\lambda x_1) \Rightarrow \lambda y_1 \in \operatorname{Im} A$$

Тому це ϵ підпростором простора M

_

Example 2.3.3.(1) Задано $A: \mathbb{R}^3 \to \mathbb{R}^3$ - такий лінійний оператор:

$$A\vec{x} = \begin{pmatrix} x_1 - x_2 + x_3 \\ 2x_1 + x_2 - 3x_3 \\ x_1 + 2x_2 - 4x_3 \end{pmatrix}$$

Знайдемо ядро та образ:

I.
$$\vec{x} \in \text{Ker} A \iff A\vec{x} = \vec{0} \iff \begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 + x_2 - 3x_3 = 0 \\ x_1 + 2x_2 - 4x_3 = 0 \end{cases} \iff \begin{cases} x_1 - x_2 + x_3 = 0 \\ 3x_2 - 5x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 = \frac{2}{3}x_3 \\ x_2 = \frac{5}{3}x_3 \end{cases}$$

$$\iff \vec{x} = \begin{pmatrix} \frac{2}{3}x_3 \\ \frac{5}{3}x_3 \\ x_3 \end{pmatrix} = \frac{1}{3}x_3 \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$$

Отже, Ker A =
$$span \left\{ \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \right\}$$

Ми ще сюди повернемось: тут не так просто знаходити образ за означенням

Example 2.3.3.(2) Задано $A: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ - такий лінійний оператор: (Af)(x) = f'(x)

Знайдемо ядро та образ:

I.
$$f \in \text{Ker A} \Rightarrow (Af)(x) = 0 \Rightarrow f'(x) \equiv 0 \Rightarrow f(x) = const$$

Отже, $\text{Ker} A = \{f(x) = const\} \stackrel{\text{afo}}{=} \mathbb{R}_0[x]$

II.
$$g \in \text{Im } A$$
, тобто $\exists f : g(f) = (Af)(x) \Rightarrow g(x) = f'(x)$
Отже, $\text{Im } A = \mathbb{R}_{n-1}[x]$

Lemma 2.3.4. Структура образа

Якщо $\{e_1,\ldots,e_n\}$ - базис L, то $\operatorname{Im} A=\operatorname{span}\{Ae_1,\ldots,Ae_n\}$ **Proof.**

$$y \in \operatorname{Im} A \Rightarrow \exists x \in L : y = Ax$$
 $y = Ax \stackrel{\text{оскільки є базис}}{=} A(x_1e_1 + \dots + x_ne_n) = x_1Ae_1 + \dots + x_nAe_n$
Отже, $y \in \operatorname{Im} A \Rightarrow y \in span\{Ae_1, \dots, Ae_n\} \Rightarrow \operatorname{Im} A = span\{Ae_1, \dots, Ae_n\}$

Повернемось до Ех. 2.3.3.(1)

II. Оберемо базис в \mathbb{R}^3 множину $\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ - одиничні вектори

$$A\vec{e_1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, A\vec{e_2} = \begin{pmatrix} -1\\1\\2 \end{pmatrix}, A\vec{e_3} = \begin{pmatrix} 1\\-3\\-4 \end{pmatrix}$$

$$Tomy Im A = span \left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\-3\\-4 \end{pmatrix} \right\}$$

Тут трохи з лінійною оболонкою проблематично, оскільки треба переконатись, що ці 3 вектори - л.н.з. Але впадлу перевіряти. Тому знову ми згодом повернемось

Theorem 2.3.5. Зв'язок розмірностей ядра та образа

 $\dim(\operatorname{Ker} A) + \dim(\operatorname{Im} A) = \dim L$

Proof.

Нехай
$$\{f_1,\ldots,f_n\}$$
 - базис $\mathrm{Ker}A$ та $\{g_1,\ldots,g_m\}$ - базис $\mathrm{Im}\,A$ $\forall j=1,\ldots,m:g_j\in\mathrm{Im}\,A\Rightarrow\exists h_j\in L:Ah_j=g_j$

У нас тут
$$\dim(\operatorname{Ker} A) = n$$
, а $\dim(\operatorname{Im} A) = m$
Перевіримо, що $\{f_1, \dots, f_n, h_1, \dots, h_m\}$ - базис L

І. л.н.з.?

$$\alpha_1 f_1 + \dots + \alpha_n f_n + \beta_1 h_1 + \dots + \beta_m h_m = 0 \ (*)$$

Подіємо оператором на всю комбінацію:

$$A(\alpha_1 f_1 + \dots + \alpha_n f_n + \beta_1 h_1 + \dots + \beta_m h_m) = A(0)$$

$$\alpha_1 A f_1 + \dots + \alpha_n A f_n + \beta_1 A h_1 + \dots + \beta_m A h_m = 0$$

$$0+\cdots+0+\beta_1g_1+\cdots+\beta_ng_n=0 \overset{\text{базис}}{\Rightarrow} \beta_1=\cdots=\beta_n=0$$

Підставимо отримане в (*):

$$\alpha_1 f_1 + \dots + \alpha_n f_n = 0 \stackrel{\text{базис}}{\Rightarrow} \alpha_1 = \dots = \alpha_n = 0$$

Отже, з наших міркувань $\alpha_1=\dots=\alpha_n=\beta_1=\dots=\beta_n=0$

Таким чином, довели л.н.з.

II. повнота?

$$\forall z \in L : Az \in \operatorname{Im} A \Rightarrow Az = \gamma_1 g_1 + \dots + \gamma_m g_m$$

Розглянемо елемент із L таким чином, що:

$$w = z - (\gamma_1 h_1 + \dots + \gamma_m h_m), w \in L$$

Перевіримо, що $w \in \text{Ker} A$

$$Aw = A(z - (\gamma_1 h_1 + \dots + \gamma_m h_m)) = Az - \gamma_1 Ah_1 - \dots - \gamma_m Ah_m =$$

$$=Az-\gamma_1g_1-\cdots-\gamma_mg_m=0\Rightarrow w\in\mathrm{Ker}A$$

Тоді
$$\exists \tau_1, \ldots, \tau_n \in \mathbb{R} : w = \tau_1 f_1 + \cdots + \tau_n f_n$$
 (за базисом)

Отримали:

$$\tau_1 f_1 + \dots + \tau_n f_n = z - (\gamma_1 h_1 + \dots + \gamma_m h_m)$$

$$\Rightarrow z = \tau_1 f_1 + \dots + \tau_n f_n + \gamma_1 h_1 + \dots + \gamma_m h_m$$

Таким чином, маємо повну л.н.з. систему

Остаточно: $\{f_1,\ldots,f_n,h_1,\ldots,h_m\}$ - базис L, а отже, $\dim L=m+n$ $\dim L=\dim(\operatorname{Ker} A)+\dim(\operatorname{Im} A)$

Повернемось до Ех. 2.3.3.(1) вдруге

Ми знайшли Ker
$$A = span \left\{ \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \right\}$$

Також Im
$$A = span \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix} \right\}$$

У нас $\dim \mathbb{R}^3 = \dim L = 3$, а $\dim(\operatorname{Ker} A) = 1$. Тому $\dim(\operatorname{Im} A) = 2$

Тому варто писати, що
$$\operatorname{Im} A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

2.4 Лінійні функціонали

Definition 2.4.1. Задано L - лінійний простір Лінійним функціоналом на L називається лінійний оператор $\varphi:L\to\mathbb{R}$

Example 2.4.2.
$$L = \mathbb{R}^4, \ \varphi : \mathbb{R}^4 \to \mathbb{R} : \varphi(\vec{x}) = x_1 + 3x_2 - \pi x_3 + \sqrt{17}x_4$$

2.5 Обернений оператор, одиничний оператор

Definition 2.5.2. Задано $A:L\to M$ - лінійний оператор **Оберненим оператором** називають такий оператор $B:M\to L$, що

$$\forall x \in L : BAx = x$$
$$\forall y \in M : ABy = y$$

, якщо він існує Можна переписати умову інакше

$$BA = I_L, I_L : L \to L$$
$$AB = I_M, I_M : M \to M$$

Definition 2.5.3. Оператор A називають **зворотним**, якщо існує обернений оператор B (та справедливі два тотожності) Позначення: $B \stackrel{\text{позн}}{=} A^{-1}$

Example 2.5.4.(1) Задано $T: \mathbb{R}_3[x] \to Mat(2 \times 2)$ - такий лінійний оператор:

$$f(x) = a + bx + cx^{2} + dx^{3}$$
$$(Tf)(x) = \begin{pmatrix} a+b & a-2c \\ d & b-d \end{pmatrix}$$

Визначимо оператор $S: Mat(2 \times 2) \to \mathbb{R}_3[x]$ таким чином, що:

$$\mathbb{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$SA = (a - c - d) + (c + d)x + \frac{1}{2}(a - b - c - d)x^{2} + cx^{3}$$

Перевіримо, що S - обернений оператор зліва та справа. Справді:

$$\forall f \in \mathbb{R}_3[x] : (STf)(x) = S(Tf(x)) = S(T(a+bx+cx^2+dx^3)) = S(a+b,a-2c) = S(a+b,a$$

$$= [a+b-d-(b-d)] + [d+(b-d)]x + \frac{1}{2}[(a+b)-(a-2c)-d-(b-d)] + dx^3 = a + bx + cx^2 + dx^3 = f(x)$$

$$\begin{split} \forall \mathbb{A} \in Mat(2 \times 2) : TS\mathbb{A} &= T(S\mathbb{A}) = T\left(S\left(\begin{matrix} a & b \\ c & d \end{matrix}\right)\right) = \\ &= T\left[(a-c-d) + (c+d)x + \frac{1}{2}(a-b-c-d)x^2 + cx^3\right] = \\ &= \begin{pmatrix} (a-c-d) + (c+d) & (a-c-d) - 2\frac{1}{2}(a-b-c-d) \\ c & (c+d) - c \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Отримали: (STf)(x) = f(x) та $TS\mathbb{A} = \mathbb{A}$ Отже, S - обернений оператор, або $S = T^{-1}$

Example 2.5.4.(2) Задано $A: \mathbb{R}^2 \to \mathbb{R}^2$ - такий лінійний оператор

$$A\vec{x} = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix} A\vec{x} = \vec{y} \Rightarrow \begin{cases} x_1 + x_2 = y_1 \\ 2x_1 + 2x_2 = y_2 \end{cases}$$

Відносно x_1, x_2 система не містить розв'язків.

Отже, не існує оберненого оператора

Proposition 2.5.5. Задано $A: L \to M$ - лінійний та зворотний оператор. Тоді обернений оператор A^{-1} - лінійний

$$\forall y_1,y_2 \in M \Rightarrow y_1 = AA^{-1}y_1, y_2 = AA^{-1}y_2 : \forall \alpha_1,\alpha_2 \in \mathbb{R}$$

$$A^{-1}(\alpha_1y_1 + \alpha_2y_2) = A^{-1}(\alpha_1AA^{-1}y_1 + \alpha_2AA^{-1}y_2) =$$

$$= A^{-1}[A(\alpha_1A^{-1}y_1 + \alpha_2A^{-1}y_2)] = A^{-1}A(\alpha_1A^{-1}y_1 + \alpha_2A^{-1}y_2)) =$$

$$= \alpha_1A^{-1}y_1 + \alpha_2A^{-1}y_2$$
Отже, A^{-1} - лінійний

Proposition 2.5.6. Задано $A:L\to M$ - лінійний та зворотний оператор. Тоді обернений оператор A_1^{-1} є єдиним

Proof.

!Припустимо, що існує також
$$A_2^{-1}$$
. Тоді $\forall y \in M$: $A_1^{-1}y = A_1^{-1}I_My = A_1^{-1}AA_2^{-1}y = (A_1^{-1}A)(A_2^{-1}y) = I_L(A_2^{-1}y) = A_2^{-1}y$ $\Rightarrow A_1^{-1} = A_2^{-1}$. Суперечність!

Proposition 2.5.7. Задано $A: L \to M$ - лінійний та зворотний оператор. Тоді $A^{-1}: M \to L$ теж є зворотним та $(A^{-1})^{-1} = A$ **Proof.**

Якщо A - зворотний, то $\exists A^{-1},$ для якого $AA^{-1}=I_M,$ $A^{-1}A=I_L.$ Ну й

ба більше, цей оператор - єдиний

Створимо якийсь обернений оператор $T: L \to M$, щоб $A^{-1}T = I_L$, $TA^{-1} = I_M$

Тоді: $I_L = A^{-1}A = A^{-1}T$ та $I_M = AA^{-1} = TA^{-1}$

Звідси T = A. Отже, A^{-1} зворотний до $A = (A^{-1})^{-1}$

Lemma 2.5.8. Задано $A:L\to M$ - лінійний оператор

A - зворотний \iff A має бієктивне відображення

Proof.

 \Rightarrow Дано: A - зворотний, тобто $\exists A^{-1}$

Доведемо ін'єктивність $\forall y \in M: \exists x \stackrel{\text{встановимо}}{=} A^{-1}y: Ax = AA^1y = y$

Отже, оператор ε ін'єктивним

Доведемо сюр'єктивність

!Припустимо, що $\forall x_1, x_2 \in L : x_1 \neq x_2 \Rightarrow Ax_1 = Ax_2$

Тоді звідси $Ax_1 - Ax_2 = A(x_1 - x_2) = 0 = AA^{-1}0 \Rightarrow x_1 - x_2 = 0.$

Суперечність!

Отже, $\forall x_1, x_2 \in L : x_1 \neq x_2 \Rightarrow Ax_1 \neq Ax_2$

Тобто є сюр'єктивним

Остаточно ін'єктивний + сюр'єктивний = бієктивний

 $\sqsubseteq \exists \exists x \in L : y = Ax$

Побудуємо оператор $B:M\to L$, такий, що $\forall y\in M:x=By\in L$ Толі:

 $\forall y \in M : ABy = Ax = y$

 $\forall x \in L : BAx = By = x$

Тому $B = A^{-1}$, а наш оператор A - зворотний

Theorem 2.5.9. Задано $A:L \to M$ - лінійний оператор

$$A$$
 - зворотний $\iff \begin{cases} \operatorname{Ker} A = \{0\} \\ \operatorname{Im} A = M \end{cases}$

Proof.

1) $x \in \text{Ker} A \Rightarrow x \in L$. Тоді $x = A^{-1}Ax = A(0) = 0$

Tomy $Ker A = \{0\}$

2) $\forall y \in M : y = A(A^{-1}y) \in \operatorname{Im} A$

Tomy $M \subset \operatorname{Im} A$

За означенням образу, $\operatorname{Im} A \subset M$

Отже, $\operatorname{Im} A = M$

Треба знайти обернену матрицю A^{-1}

 $\operatorname{Im} A = M \Rightarrow \forall y \in M : \exists x \in L : y = Ax$

!Припустимо, що $\exists \tilde{x} \in L : y = A\tilde{x}$

Тоді $0 = y - y = Ax - A\tilde{x} = A(x - \tilde{x}) \Rightarrow x - \tilde{x} \in \text{Ker} A$

Отже, $x - \tilde{x} = 0$, тобто $x = \tilde{x}$. Суперечність!

Таким чином, ми маємо: $\exists ! x \in L : y = Ax$

Тоді маємо бієкцію $\Rightarrow A$ - зворотний

Corollary 2.5.9. $A: L \to L$ - зворотний $\iff \begin{bmatrix} \operatorname{Ker} A = \{0\} \\ \operatorname{Im} A = L \end{bmatrix}$

2.6 Ізоморфні лінійні простори, ізоморфізм

Definition 2.6.1. Лінійні простори L, M називаються **ізоморфними**, якщо $\exists A: L \to M$ - зворотний

А оператор A називають **ізоморфізмом**

Позначення: $L \cong M$

Theorem 2.6.2. Задано $A:L \to M$ - лінійний оператор $=g_1$

A - ізоморфізм \iff якщо $\{f_1,\ldots,f_n\}$ - базис в L, то $\{Af_1,\ldots,Af_n\}$ - базис в M

Proof.

 \Longrightarrow Дано: $L\cong M$, або $A:L\to M$ - ізоморфізм

Також в нас відомий базис $\{f_1, \ldots, f_n\}$ в L. Перевіримо, що $\{g_1, \ldots, g_n\}$ - базис

I дійсно, $\forall y \in M : y = Ax = A(\alpha_1 f_1 + \dots + \alpha_n f_n) = \alpha_1 A f_1 + \dots + \alpha_n A f_n = \alpha_1 g_1 + \dots + \alpha_n g_n$

Отримали розклад єдиним чином. Отже, $\{g_1,\ldots,g_n\}$ - базис в M

 \sqsubseteq Дано: $\{f_1,\ldots,f_n\},\{Af_1,\ldots,Af_n\}$ - відповідно базиси в L,M

Тобто маємо, що $Ax = A(\alpha_1 f_1 + \dots + \alpha_n f_n) = \alpha_1 A f_1 + \dots + \alpha_n A f_n = y$

Покажемо, що цей оператор є зворотним

Із щойно 'маємо' отримали, що $\forall y \in M: y \in \operatorname{Im} A \Rightarrow M \subset \operatorname{Im} A$

За означенням образа, $\operatorname{Im} A \subset M$

Тоді $\operatorname{Im} A = M \Rightarrow \dim(\operatorname{Ker} A) = 0 \Rightarrow \operatorname{Ker} A = \{0\}$

Отже, A - зворотний, а тому - ізоморфізм \blacksquare

Theorem 2.6.3. $L \cong M \iff \dim L = \dim M$ Випливає під час доведення минулої теореми

Corollary 2.6.3. Будь-який простір розмірності $n \in \mathsf{i}$ зоморфним арифметичному простору. Або коротко: $L \cong \mathbb{R}^n$

Example 2.6.4. $\mathbb{R}_2[x] \cong \mathbb{R}^3$, оскільки $\dim(\mathbb{R}_2[x]) = \dim(\mathbb{R}^3) = 3$ $\forall f \in \mathbb{R}_2[x] : f(x) = ax^2 + bx + c \leftrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \vec{x} \in \mathbb{R}^3$

Матриця лінійного оператора, що побудована за 2.7лінійним оператором

Задані L, M - лінійні простори, $A: L \to M$ - лінійний оператор За щойно отриманим наслідком, буде у нас наступна картина: $L \cong \mathbb{R}^n$

 $\{f_1,\ldots,f_n\}$ - базис в L переводить в $\{\vec{e_1},\ldots,\vec{e_n}\}$ - базис в \mathbb{R}^n

A оператор $J_f: L \to \mathbb{R}^n$:

 $J_f(f_j) = \vec{e_j}$ - ізоморфізм

 $M \cong \mathbb{R}^m$

 $\{g_1,\ldots,g_n\}$ - базис в M переводить в $\{ec{e_1},\ldots,ec{e_m}\}$ - базис в \mathbb{R}^m A оператор $J_g: M \to \mathbb{R}^m$:

 $J_q(g_k) = \vec{e_k}$ - ізоморфізм

Але ми знаємо, що відображення $\mathbb{R}^n \to \mathbb{R}^m$ задає матрицю А. Якраз її треба знайти

Коротше, у нас виникне така картина:

$$\begin{array}{ccc}
L & \xrightarrow{A} & M \\
\downarrow^{J_f} & & \downarrow^{J_g} \\
\mathbb{R}^n & \xrightarrow{\mathbb{A}} & \mathbb{R}^m
\end{array}$$

Матрицю отримаємо наступним чином:

$$\mathbb{A}\vec{x} = J_g(A(J_f^{-1}\vec{x}))$$

спочатку із \mathbb{R}^n переводимось в L, далі в M і згодом в \mathbb{R}^m

Тобто ми побудували оператор:

$$\mathbb{A} = J_g A J_f^{-1}$$

А тепер дізнаємось, яким чином будується матриця:

$$\forall \vec{x} \in \mathbb{R}^n : \vec{x} = x_1 \vec{e_1} + \dots + x_n \vec{e_n}$$

$$J_f^{-1}\vec{e_j} = f_j$$

$$\Rightarrow J_f^{-1}\vec{x} = x_1 f_1 + \dots + x_n f_n$$

$$\Rightarrow A(J_f^{-1}\vec{x}) = x_1 A f_1 + \dots + x_n A f_n$$

$$\forall j=1,\ldots,n: Af_j \in M \text{ - розкладається за базисом } \{g_1,\ldots,g_m\} \text{ в } M \\ Af_1=a_{11}g_1+\cdots+a_{m1}g_m \\ \ldots \\ Af_n=a_{1n}g_1+\cdots+a_{mn}g_m \\ \Rightarrow J_g(A(J_f^{-1}\vec{x}))=J_g(x_1Af_1+\cdots+x_nAf_n)= \\ =J_g\left(x_1\sum_{k=1}^m a_{k1}g_k+\cdots+x_n\sum_{k=1}^m a_{kn}g_k\right)=J_g\left(\sum_{k=1}^m (a_{k1}x_1+\cdots+a_{kn}x_n)g_k\right)= \\ =\begin{pmatrix}a_{11}x_1+\cdots+a_{1n}x_n\\ \ldots\\ a_{m1}x_1+\cdots+a_{mn}x_n\end{pmatrix}=\begin{pmatrix}a_{11}&\ldots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{m1}&\ldots&a_{mn}\end{pmatrix}\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}=\mathbb{A}\vec{x}$$

Та сама шукана матриця. Тепер можемо записати словесний алгоритм

Алгоритм побудови матриці оператора:

Оператором A діємо на:

- 1-й базисний вектор з L, результат розкладаємо за базисом M. Коефіцієнти розкладу утворюють 1-й стовпчик матриці $\mathbb A$
- 2-й базисний вектор з L, результат розкладаємо за базисом M. Коефіцієнти розкладу утворюють 2-й стовпчик матриці $\mathbb A$

•••

тощо

Example 2.7.1. Задано $A: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ - такий лінійний оператор (Af)(x) = f(x+1)

Розглянемо для обох просторів базис $\{1, x, x^2\}$ Знайдемо матрицю оператора:

$$\mathbb{R}_{2}[x] \xrightarrow{A} \mathbb{R}_{2}[x]$$

$$\downarrow^{J} \qquad \downarrow^{J}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{A}} \mathbb{R}^{3}$$

$$f_{0}(x) = 1 \qquad f_{1}(x) = x \qquad f_{2}(x) = x^{2}$$

$$(Af_{0})(x) = f_{0}(x+1) = 1 = 1 + 0x + 0x^{2}$$

$$(Af_{1})(x) = f_{1}(x+1) = x + 1 = 1 + x + 0x^{2}$$

$$(Af_{2})(x) = f_{2}(x+1) = (x+1)^{2} = 1 + 2x + x^{2}$$
Otke, $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

Remark 2.7.1. Порядок базису тепер є важливим. Якщо змінити елементи місцями, то відповідно може змінитись матриця

*Зміна матриці лінійного оператора при деяких змін базисів

Задано $A:L\to M$ - лінійний оператор

Також є базиси $\{f_1,\ldots,f_n\}$ в L та $\{g_1,\ldots,g_m\}$ в M

Також є базиси
$$\{f_1, \dots, f_n\}$$
 в L та $\{g_1, \dots, g_m\}$ в M Нехай нам вже відома матриця $\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$

Для деяких змін в базисах нас цікавитиме подальший вигляд матриці. Зробимо наступні зміни:

Висновок: j-ий та k-ий стовпчики матриці $\mathbb A$ зміняться місцями

2.
$$f_j \to \lambda f_j$$

Було Стало $Af_j = a_{1j}g_1 + \dots + a_{mj}g_m$ $A(\lambda f_j) = \lambda Af_j = \lambda a_{1j}g_1 + \dots + \lambda a_{mj}g_m$

Висновок: j-ий стовпчик матриці $\mathbb A$ помножиться на λ

3.
$$f_j \to f_j + f_k$$

Було Стало $Af_j = a_{1j}g_1 + \dots + a_{mj}g_m$ $A(f_j + f_k) = Af_j + Af_k = (a_{1j} + a_{1k})g_1 + \dots + (a_{mj} + a_{mk})g_m$

Висновок: до j-го стовпчику матриці $\mathbb A$ буде додано k-ий стовпчик

4.
$$g_j \leftrightarrow g_k$$

Було Стало $Af_1 = a_{11}g_1 + \dots + a_{j1}g_j + Af_1 = a_{11}g_1 + \dots + a_{k1}g_k + \dots + a_{k1}g_k + \dots + a_{j1}g_j + \dots + a_{j1}$

5.
$$g_{j} \to \lambda g_{j}$$

Було Стало $Af_{1} = a_{11}g_{1} + \dots + a_{j1}g_{j} + \dots + a_{m1}g_{m}$ $Af_{1} = a_{11}g_{1} + \dots + \frac{a_{j1}}{\lambda}(\lambda g_{j}) + \dots + a_{m1}g_{m}$ $Af_{n} = a_{1n}g_{1} + \dots + a_{jn}g_{j} + \dots + a_{mn}g_{m}$ \dots $Af_{n} = a_{1n}g_{1} + \dots + \frac{a_{jn}}{\lambda}(\lambda g_{j}) + \dots + a_{mn}g_{m}$ Висновок: j -ий рядок матриці \mathbb{A} помножиться на $\frac{1}{\lambda}$

Висновок: j-ий рядок матриці \mathbb{A} помножиться на $\frac{1}{\lambda}$

6.
$$g_j \to g_j + g_k$$

Було Стало
 $Af_1 = a_{11}g_1 + \dots + a_{j1}g_j + Af_1 = a_{11}g_1 + \dots + a_{j1}(g_j + g_k) + \dots + a_{k1}g_k + \dots + a_{m1}g_m$
...
$$Af_n = a_{1n}g_1 + \dots + a_{jn}g_j + Af_n = a_{1n}g_1 + \dots + a_{jn}(g_j + g_k) + \dots + a_{kn}g_k + \dots + a_{mn}g_m$$

$$+ \dots + (a_{kn} - a_{jn})g_k + \dots + a_{mn}g_m$$

Висновок: до k-го рядку матриці \mathbb{A} буде віднято j-ий рядок

2.8 Матриця добутку операторів

Задані $A:L\to M,\,B:M\to K$ - лінійні оператори Також є базиси $\{f_1,\ldots,f_n\},\ \{g_1,\ldots,g_m\},\ \{h_1,\ldots,h_k\}$ відповідно для L, M, K

BA:L o M - добуток

 \mathbb{A} - матриця A в базисі $\{f_1,\ldots,f_n\}$

 \mathbb{B} - матриця B в базисі $\{g_1,\ldots,g_m\}$

Хочемо знайти ВА

$$L \xrightarrow{A} M \xrightarrow{B} K$$

$$\downarrow^{J_f} \qquad \downarrow^{J_g} \qquad \downarrow^{J_h}$$

$$\mathbb{R}^n \xrightarrow{\mathbb{A}} \mathbb{R}^m \xrightarrow{\mathbb{B}} \mathbb{R}^k$$

$$Mat(BA)\vec{x} = J_h(BA(J_f^{-1}\vec{x})) = J_h(BJ_g^{-1}J_gA(J_f^{-1}\vec{x})) = (J_hBJ_g^{-1})(J_gAJ_f^{-1})\vec{x}$$

= $\mathbb{B}A\vec{x}$

2.9 Матриця лінійного функціоналу

Задано $\varphi:L o\mathbb{R}$ - лінійний функціонал Також є базиси $\{f_1,\ldots,f_n\}$, $\{1\}$ відповідно для L,\mathbb{R} Хочемо знайти матрицю Ф

$$L \xrightarrow{\varphi} \mathbb{R}$$

$$\downarrow^{J} \qquad \downarrow^{I}$$

$$\mathbb{R}^{n} \xrightarrow{\Phi} \mathbb{R}$$

Отримати матрицю можна вже за готовим алгоритмом (п. 2.7)

$$\varphi(f_1) = a_1 = a_1 \cdot 1$$

$$\varphi(f_2) = a_2 = a_2 \cdot 1$$

. . .

$$\varphi(f_n) = a_n = a_n \cdot 1$$

$$\Rightarrow \Phi = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$$
 - її ще називають **ковектором**

2.10 Пряма сума операторів

Definition 2.10.1. Задано наступне:

L - лінійний простір, $L = L_1 \dot{+} L_2$

M - лінійний простір, $M = M_1 \dot{+} M_2$

 $A_1: L_1 \to M_1, A_2: L_2 \to M_2$

Прямою сумою операторів A_1 та A_2 називають оператор $A_1\dot{+}A_2$:

 $L_1 \dot{+} L_2 \to M_1 \dot{+} M_2$ - таке відобржання, яке визначено за правилом:

$$\forall x_1 \in L_1, x_2 \in L_2, x_1 + x_2 \in L_1 \dotplus L_2 : (A_1 \dotplus A_2)(x_1 + x_2) = A_1 x_1 + A_2 x_2 \in M_1 \dotplus M_2$$

Proposition 2.10.2. $A_1 \dotplus A_2$ - лінійний оператор **Proof.**

 $\forall x \in L_1 + L_2 : \exists ! x_1 \in L_1, \exists ! x_2 \in L_2$

 $\forall y \in L_1 + L_2 : \exists ! y_1 \in L_1, \exists ! y_2 \in L_2$

 $\forall \alpha, \beta \in \mathbb{R}$

 $(A_1 + A_2)(\alpha x + \beta y) = (A_1 + A_2)((\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2)) = 0$

 $=A_1(\alpha x_1 + \beta y_1) + A_2(\alpha x_2 + \beta y_2) = \alpha A_1 x_1 + \beta A_1 y_1 + \alpha A_2 x_2 \beta A_2 y_2 =$

 $= \alpha(A_1x_1 + A_2x_2) + \beta(A_1y_1 + A_2y_2) =$

 $= \alpha (A_1 + A_2)(x_1 + x_2) + \beta (A_1 + A_2)(y_1 + y_2) = \alpha (A_1 + A_2)x + \beta (A_1 + A_2)y \blacksquare$

Навіщо це все, дізнаємось скоро. А зараз буде невеличкий відступ, до операторів ми ще повернемось

3 Теорія матриць

3.1 Основні властивості

Повертаємось до Ех. 2.1.3.(3)

Задано $A:\mathbb{R}^n \to \mathbb{R}^m$ - лінійний оператор

Нехай $\{ \vec{e}_1, \dots, \vec{e}_n \}$ - базис \mathbb{R}^n

Definition 3.1.1. Матрицею лінійного оператора називають таблицю, що містить розклад кожного елементу $A\vec{e}_1, \ldots, A\vec{e}_n$

$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Надалі ми будемо називати просто матрицею як прямокутний набір чисел

А тепер розглянемо одиничний оператор $I:\mathbb{R}^n \to \mathbb{R}^n$ та зафіксуємо $\{\vec{e}_1,\dots,\vec{e}_n\}$ - базис

$$I\vec{x} = I \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \cdot x_1 + \dots + 0 \cdot x_n \\ \vdots \\ 0 \cdot x_1 + \dots + 1 \cdot x_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} \vec{x} = \mathbb{I}\vec{x}$$

Отримали квадратну одиничну матрицю

$$\mathbb{I} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

I нарешті, розглянемо нульовий оператор $O:\mathbb{R}^n \to \mathbb{R}^n$ та зафіксуємо $\{\vec{e}_1,\dots,\vec{e}_n\}$ - базис $O\vec{x}=\vec{0}$

Маємо в цьому випадку нульову матрицю

$$\mathbb{O} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Ми вже задали основні арифметичні дії з лінійними операторами: це додавання та множення на скаляр. Через них ми зможемо отримати арифметичні дії з матрицями

Задані $A,B:\mathbb{R}^n \to \mathbb{R}^m$ - лінійні оператори та їхні матриці \mathbb{A},\mathbb{B}

Створимо $A + B : \mathbb{R}^n \to \mathbb{R}^m$, тод

Створимо
$$A + B : \mathbb{R}^n \to \mathbb{R}^n$$
, тодп
$$(A+B)\vec{x} = A\vec{x} + B\vec{x} = \mathbb{A}\vec{x} + \mathbb{B}\vec{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} + \begin{pmatrix} b_{11}x_1 + \dots + b_{1n}x_n \\ \vdots \\ b_{m1}x_1 + \dots + b_{mn}x_n \end{pmatrix} = \begin{pmatrix} (a_{11} + b_{11})x_1 + \dots + (a_{1n} + b_{1n})x_n \\ \vdots \\ (a_{m1} + b_{m1})x_1 + \dots + (a_{mn} + b_{mn})x_n \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} \vec{x}$$

Створимо
$$\lambda A: \mathbb{R}^n \to \mathbb{R}^m$$
, тоді
$$(\lambda A)\vec{x} = \lambda A\vec{x} = \lambda A\vec{x} = \lambda \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{pmatrix}$$

Таким чином, ми нарешті змогли створити лінійний простір $Mat(m \times n)$, в якому задано:

1. Операція додавання

$$\mathbb{A} + \mathbb{B} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

 $\forall \mathbb{A} \in Mat(n \times m) : \forall \lambda \in \mathbb{R} : \lambda \mathbb{A} \in Mat(m \times n)$

$$\lambda \mathbb{A} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

Ба більше, в Ех. 2.2.5. ми змогли визначити множення двох матриць таким чином

 $\forall \mathbb{B} \in Mat(k \times m), \forall \mathbb{A} \in Mat(m \times n) : \mathbb{B} \cdot \mathbb{A} \in Mat(k \times n)$

$$\mathbb{B} \cdot \mathbb{A} = \begin{pmatrix} b_{11}a_{11} + \dots + b_{1m}a_{m1} & \dots & b_{11}a_{1n} + \dots + b_{1m}a_{mn} \\ \vdots & & \ddots & & \vdots \\ b_{k1}a_{11} + \dots + b_{km}a_{m1} & \dots & b_{k1}a_{1n} + \dots + b_{km}a_{mn} \end{pmatrix}$$

Для множення матриці виконуються властивості як в лінійному операторі

3.2 Кососиметричні функціонали

Definition 3.1.1. Задано L - лінійний простір n-лінійним функціоналом на L називають відображення:

 $F: L \times L \times \cdots \times L \to \mathbb{R}$

$$\forall x_1 \dots, x_n \in L : F(x_1, \dots, x_n) \in \mathbb{R}$$

для якого виконані властивості:

$$\forall j = \overline{1, n} : \forall x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n \in L : \forall x_j^1, x_j^2 \in L : \forall \alpha, \beta \in \mathbb{R} : F(x_1, \dots, x_{j-1}, \alpha x_j^1 + \beta x_j^2, x_{j+1}, \dots, x_n) = \frac{\alpha}{n} F(x_1, \dots, x_{j-1}, x_j^1, x_{j+1}, \dots, x_n) + \frac{\beta}{n} F(x_1, \dots, x_{j-1}, x_j^2, x_{j+1}, \dots, x_n)$$

Тобто за кожним аргументом виконується лінійність

Example 3.1.2.(1).
$$L = \mathbb{R}^3$$
, $F(\vec{x}, \vec{y}, \vec{z}) = (\vec{x}, \vec{y}, \vec{z})$
Example 3.1.2.(2). $L = \mathbb{R}_n[x]$, $F(f_0, f_1, \dots, f_n) = \int_{\sqrt{e}}^{\pi^{17}} f_0(0) f_1(1) \dots f_n(n) dx$

Definition 3.1.3. *n*-лінійний функціонал називається **кососиметричним**, якщо виконується властивість:

$$\forall x_1 \dots, x_n \in L : \forall j, k = \overline{1, n}$$
$$F(x_1, \dots, x_j, \dots, x_k, \dots, x_n) = -F(x_1, \dots, x_k, \dots, x_j, \dots, x_n)$$

Тобто якщо переставити 2 аргументи, то це значення буде однаковим зі знаком мінус

Example 3.1.4. $F(\vec{x}, \vec{y}, \vec{z}) = (\vec{x}, \vec{y}, \vec{z})$ - кососиметричний

Theorem 3.1.5. F - кососиметричний $\iff \forall x_1 \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n \in L : \forall y \in L : F(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_n) = 0$ **Proof.**

⇒ чисто за означенням

⇐ Дано: права умова

Нехай $y = x_j + x_k$. Тоді за лінійністю:

$$0 = F(x_1, \dots, x_{j-1}, x_j + x_k, x_{j+1}, \dots, x_{k-1}, x_j + x_k, x_{k+1}, \dots, x_n) \stackrel{\text{no nepmomy } x_j + x_k}{=}$$

$$=F(x_1,\ldots,x_{j-1},x_j,x_{j+1},\ldots,x_{k-1},x_j+x_k,x_{k+1},\ldots,x_n)+\\+F(x_1,\ldots,x_{j-1},x_k,x_{j+1},\ldots,x_{k-1},x_j+x_k,x_{k+1},\ldots,x_n)\stackrel{\text{обидва по другому }x_j+x_k}{=}$$

$$=\underbrace{F(x_1,\ldots,x_{j-1},x_j,x_{j+1},\ldots,x_{k-1},x_j,x_{k+1},\ldots,x_n)}_{=0}+\\ +F(x_1,\ldots,x_{j-1},x_j,x_{j+1},\ldots,x_{k-1},x_k,x_{k+1},\ldots,x_n)+\\ +F(x_1,\ldots,x_{j-1},x_k,x_{j+1},\ldots,x_{k-1},x_j,x_{k+1},\ldots,x_n)+\\ +\underbrace{F(x_1,\ldots,x_{j-1},x_k,x_{j+1},\ldots,x_{k-1},x_k,x_{k+1},\ldots,x_n)}_{=0}+\\ \Rightarrow F(x_1,\ldots,x_j,\ldots,x_k,\ldots,x_n)=-F(x_1,\ldots,x_k,\ldots,x_j,\ldots,x_n)$$
 Отже, кососиметричний

3.3 Перестановки

Definition 3.2.1. Розглядаємо перші n натуральних чисел $\{1, 2, ..., n\}$ **Перестановками** назвемо наступні таблиці:

$$\tau = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$$

Де $j_1,j_2,\ldots,j_n=\overline{1,n}$ - всі вони різні

Remark 3.2.1. Стовичики переставляти ми можемо, без жодної різниці

Тотожня перестановка:
$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} = id$$

Обернена перестановка:
$$\begin{pmatrix} j_1 & j_2 & \cdots & j_n \\ 1 & 2 & \cdots & n \end{pmatrix} = \tau^{-1}$$

Композиція (множення)

$$\tau_1 = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}, \ \tau_2 = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

Переставимо стовпчики в τ_2 таким чином, щоб $\tau_2 = \begin{pmatrix} j_1 & j_2 & \dots & j_n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix}$

$$\tau_1 \tau_2 = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \begin{pmatrix} j_1 & j_2 & \dots & j_n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix}$$

З властивостей композиції відображень маємо: $(\tau_1\tau_2)\tau_3=\tau_1(\tau_2\tau_3)$ $\tau\cdot id=id\cdot \tau=\tau$ $\tau\tau^{-1}=id$

Таким чином, множина перестановок утворює групу S_n

Definition 3.2.2. Транспозицією називають перестановку двох елементів

$$\sigma_{j,k}\begin{pmatrix} 1 & \dots & j & \dots & k & \dots & n \\ 1 & \dots & k & \dots & j & \dots & n \end{pmatrix}$$

Властивість: $\sigma_{j,k}^2 = id$

Факт: кожна перестановка τ може бути розкладена в добуток транспозиції (транспозицій сусідів). Цей розклад не є однозначним, але в усіх розкладах зберігається парність/непарність кількості множників

Example 3.2.3.
$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \sigma_{3,4}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix} \sigma_{3,4} = \sigma_{2,4}\sigma_{1,4}\sigma_{3,4}$$

Definition 3.2.4. Перестановка називається **парною (непарною)**, якщо в її розкладі в добуток транспозиції кількість множників парна (непарна)

Функція парності на перестановках: $l: S_n \to \{0, 1\}$ $l(\tau) = \begin{cases} 0, \tau\text{- парна} \\ 1, \tau\text{- непарна} \end{cases}$

Definition 3.2.5. Задано L - лінійний простір, $\dim L = n$ та F - n-лінійне кососиметричне відображення. Також задано $\tau = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \in S_n$ - перестановка

Дією перестановки на кососиметричну функцію називається

$$\tau F(x_1,\ldots,x_n) = F(x_{i_1},\ldots,x_{i_n})$$

Lemma 3.2.6. Задано L - лінійний простір, $\dim L = n$ та F - n-лінійне кососиметричне відображення. Також задано $\tau = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \in S_n$ - перестановка

Тоді
$$\tau F(x_1, \dots, x_n) = (-1)^{l(\tau)} F(x_1, \dots, x_n)$$

Proof.

 $au=\sigma_1\dots\sigma_k$ - розклад в добуток транспозицій $\sigma_{j,k}F(x_1,\dots,x_{j-1}, {\color{red} x_j},x_{j+1},\dots,x_{k-1}, {\color{red} x_k},x_{k+1},\dots,x_n)==F(x_1,\dots,x_{j-1}, {\color{red} x_k},x_{j+1},\dots,x_{k-1}, {\color{red} x_j},x_{k+1},\dots,x_n)==-F(x_1,\dots,x_{j-1},x_j,x_{j+1},\dots,x_{k-1},x_k,x_{k+1},\dots,x_n)$

Тоді
$$au F(x_1,\ldots,x_n) = \sigma_1\ldots\sigma_k F(x_1,\ldots,x_n)$$
 \equiv Якщо діяти по черзі, то отримаємо бажану формулу $\equiv (-1)^{l(\tau)} F(x_1,\ldots,x_n)$

Повертаємось до п. 3.1.

Theorem 3.1.6. Єдиність n-лінійного кососиметричного функціоналу

Задано L-лінійний простір, $\dim L = n$ та F, Φ - n-лінійні кососиметричні функціонали $F \not\equiv 0$

Тоді
$$\exists c \in \mathbb{R} : \forall x_1, \dots, x_n \in L : F(x_1, \dots, x_n) = c\Phi(x_1, \dots, x_n)$$

Remark 3.1.6.(1) Константа c не залежить від x_1, \ldots, x_n

Remark 3.1.6.(2) $\dim L = n =$ кількість аргументів **Proof.**

Нехай n=2 і задано базис $\{e_1,e_2\}$. Тоді $L=span\{e_1,e_2\}$

 $\forall x_1 \in L : x_1 = x_{11}e_1 + x_{12}e_2$

 $\forall x_2 \in L : x_2 = x_{21}e_1 + x_{22}e_2$

$$\Rightarrow F(x_1, x_2) = F(x_{11}e_1 + x_{12}e_2, x_{21}e_1 + x_{22}e_2)$$

Скористаємось лінійністю за кожним аргументом

схожий на визначник 2 порядку

Так само
$$\Phi(x_1, x_2) = \cdots = \Phi(e_1, e_2)(x_{11}x_{22} - x_{12}x_{21})$$

 ${f Remark.}\ F\not\equiv 0\iff F(e_1,e_2)
eq 0.$ Так само і для Φ

Оберемо
$$C=rac{F(e_1,e_2)}{\Phi(e_1,e_2)}$$
 Тоді $rac{F(x_1,x_2)}{\Phi(x_1,x_2)}=rac{F(e_1,e_2)(x_{11}x_{22}-x_{12}x_{21})}{\Phi(e_1,e_2)(x_{11}x_{22}-x_{12}x_{21})}=C$

Для інших n це аналогічно, тобто ми довели, але зробимо ту саму справу для n=3

Нехай n=3 і задано базис $\{e_1,e_2,e_3\}$. Тоді $L=span\{e_1,e_2,e_3\}$

$$\forall x_1 \in L : x_1 = \sum_{j_1=1}^{3} x_{1j_1} e_{j_1}$$

$$\forall x_2 \in L : x_2 = \sum_{j_2=1}^3 x_{2j_2} e_{j_2}$$

$$\forall x_3 \in L : x_3 = \sum_{j_1=1}^3 x_{3j_3} e_{j_3}$$

$$\Rightarrow F(x_1, x_2, x_3) = F\left(\sum_{j_1=1}^3 x_{1j_1} e_{j_1}, \sum_{j_2=1}^3 x_{2j_2} e_{j_2}, \sum_{j_1=1}^3 x_{3j_3} e_{j_3}\right) =$$

$$= \sum_{j_1=1}^3 \sum_{j_2=1}^3 \sum_{j_3=1}^3 x_{1j_1} x_{2j_2} x_{3j_3} F(e_{j_1}, e_{j_2}, e_{j_3}) =$$

Залишуться лише 6 доданків, де в F стоять різні елементи за базисом $\equiv x_{11}x_{22}x_{33}F(e_1,e_2,e_3)+x_{11}x_{23}x_{32}F(e_1,e_3,e_2)+x_{12}x_{21}x_{33}F(e_2,e_1,e_3)+x_{12}x_{23}x_{31}F(e_2,e_3,e_1)+x_{13}x_{21}x_{32}F(e_3,e_1,e_2)+x_{13}x_{22}x_{31}F(e_3,e_2,e_1)\equiv$ Змінимо в усіх функціоналах порядок елементів базису на e_1,e_2,e_3 та винесемо за дужки

схожий на визначник 3 порядку

Ну а далі абсолютно аналогічні міркування, тут нам треба було акцентувати увагу на останній вираз

I нарешті, загальний випадок, $\dim L = n, L = span\{e_1, \dots, e_n\}$

$$\forall k = 1, \dots, n : \forall x_k \in L : x_k = \sum_{j_k=1}^n x_{kj_k} e_{j_k}$$

$$\Rightarrow F(x_1, \dots, x_n) = F\left(\sum_{j_1=1}^n x_{1j_1} e_{j_1}, \dots, \sum_{j_n=1}^n x_{kn_k} e_{j_n}\right) =$$

$$= \sum_{j_1=1}^n \dots \sum_{j_n=1}^n (x_{1j_1} \dots x_{nj_n} F(e_{j_1}, \dots, e_{j_n})) =$$

Знову ж таки, зникають доданки, де принаймні 2 елементи однакові. Якщо математично:

$$\exists j_k = j_l \Rightarrow F(e_1, \dots, e_{j_k}, \dots, e_{j_l}, \dots, e_n) = 0$$

Тоді залишаються доданки, де $j_k \neq j_l$ - різні. Тому буде перестановка $\sum x_{1j_1}x_{2j_2}\dots x_{nj_n}F(e_{j_1},e_{j_2}\dots,e_{j_n}) =$

I переставимо елементи базису в природному порядку, завдяки **Lm. 3.2.6.**

$$\sum_{\tau \in S_n} x_{1j_1} x_{2j_2} \dots x_{nj_n} \tau F(e_1, e_2 \dots, e_n) =$$

$$= \sum_{\tau \in S_n} x_{1j_1} x_{2j_2} \dots x_{nj_n} (-1)^{l(\tau)} F(e_1, e_2 \dots, e_n) =$$

$$= F(e_1, \dots, e_n) \sum_{\tau \in S_n} (-1)^{l(\tau)} x_{1j_1} x_{2j_2} \dots x_{nj_n}$$
Позначимо $A(x_1, \dots, x_n) = \sum_{\tau \in S_n} (-1)^{l(\tau)} x_{1j_1} x_{2j_2} \dots x_{nj_n}$

$$\Rightarrow F(x_1, \dots, x_n) = F(e_1, \dots, e_n) A(x_1, \dots, x_n)$$
I далі все абсолютно аналогічно \blacksquare

Remark 3.1.6.(3). Якщо $\dim L = n$, але тепер F - (n+1)-лінійний кососиметричний функціонал, то $F \equiv 0$

3.4 Визначники п-го порядку

Definition 3.3.1. Визначником n-го порядку називають відображення $\det: Mat(n \times n) \to \mathbb{R}$, який визначений наступним чином: $F: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ - n-лінійний кососиметричний функціонал $\forall \mathbb{A} \in Mat(n \times n): \mathbb{A} = (\vec{a_1}, \dots, \vec{a_n}) \Rightarrow \det \mathbb{A} = F(\vec{a_1}, \dots, \vec{a_n})$ Додаткова умова на F: ми розглядаємо базис одиничних векторів $\{\vec{e_1}, \dots, \vec{e_n}\}$, тоді $F(\vec{e_1}, \dots, \vec{e_n}) = 1$, або $\det \mathbb{I} = 1$ Це робиться для того, щоб детермінант можна було б знайти однозначним чином

Remark 3.3.1. З доведення попередньої теореми випливає, що $\det \mathbb{A} = \sum_{\tau \in S_n} (-1)^{l(\tau)} a_{j_1 1} \dots a_{j_n n}$ $\begin{pmatrix} a_{11} & \dots & a_{1n} \end{pmatrix}$

При
$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = (\vec{a_1}, \dots, \vec{a_n})$$

Theorem 3.3.2. Властивості

0) $\det \mathbb{I} = 1$ Нехай далі $\mathbb{A} = (\vec{a_1}, \dots, \vec{b} + \vec{c}, \dots, \vec{a_n})$

1) Нехай
$$\mathbb{A}_b = (\vec{a}_1, \dots, \vec{b}, \dots, \vec{a_n}), \, \mathbb{A}_c = (\vec{a}_1, \dots, \vec{c}, \dots, \vec{a_n})$$
 та $\mathbb{A}_{b+c} = (\vec{a}_1, \dots, \vec{b} + \vec{c}, \dots, \vec{a_n})$. Тоді $\det \mathbb{A}_{b+c} = \det \mathbb{A}_b + \det \mathbb{A}_c$

2) Нехай
$$\mathbb{A}_{\lambda} = (\vec{a}_1, \dots, \lambda \vec{a}_j, \dots, \vec{a}_n)$$
. Тоді

 $\det \mathbb{A}_{\lambda} = \lambda \det \mathbb{A}$

3) Нехай $\mathbb{A}_{jk} = (\vec{a}_1, \dots, \vec{a}_j, \dots, \vec{a}_k, \dots, \vec{a}_n)$. Тоді $\det \mathbb{A}_{ik} = -\det \mathbb{A}_{ki}$

Всі щойно перелічені властивості випливають з означення детермінанта - п-лінійний кососиметричний функціонал

- 4) Нехай $\mathbb{A}_{j+\lambda k}=(\vec{a_1},\ldots,\vec{a_j}+\lambda\vec{a_k},\ldots,\vec{a_n})$. Тоді $\det(\mathbb{A}_{i+\lambda k}) = \det \mathbb{A}$ Випливає з вл. 1,2 та кососиметричності
- 5) $\det \mathbb{A}^T = \det \mathbb{A}$

$$\det \mathbb{A} = \sum_{\tau = \begin{pmatrix} 1 & \dots & n \\ j_1 & \dots & j_n \end{pmatrix}} (-1)^{l(\tau)} a_{j_1 1} \dots a_{j_n n}$$

$$\det \mathbb{A}^T = \sum_{\theta = \begin{pmatrix} 1 & \dots & n \\ k_1 & \dots & k_n \end{pmatrix}} (-1)^{l(\theta)} a_{1k_1} \dots a_{nk_n} =$$

Переставимо множники таким чином, щоб другий індекс був впорядкованим
$$=\sum_{\theta=\begin{pmatrix}m_1&\dots&m_n\\1&\dots&n\end{pmatrix}}(-1)^{l(\theta)}a_{m_11}\dots a_{m_nn}=\sum_{\theta^{-1}=\begin{pmatrix}1&\dots&n\\m_1&\dots&m_n\end{pmatrix}}(-1)^{l(\theta^{-1})}a_{m_11}\dots a_{m_nn}=$$

$$=\sum_{\tau=\begin{pmatrix}1&\dots&n\\m_1&\dots&m_n\end{pmatrix}}(-1)^{l(\tau)}a_{m_11}\dots a_{m_nn}=\det\mathbb{A}\blacksquare$$

Обчислення - розкриття за рядком

Definition 3.3.2. Задана матриця $\mathbb{A} \in Mat(n \times n)$

Мінором матриці \mathbb{A} називається визначник M_{ik} , який був отриманий в результаті викреслення рядка j та стовпчика k

6) Розкриття за рядком

$$\det \mathbb{A} = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} M_{jk}$$

Доведемо розкриття за 1-м рядком. Для решти аналогічно Скористаємось теоремою про єдиність n-лінійного кососиметричного функціоналу Розглянемо два функціонала:

1)
$$F(\vec{a_1}, \dots, \vec{a_n}) = \det \mathbb{A}$$

2)
$$\Phi(\vec{a_1}, \dots, \vec{a_n}) = \sum_{k=1}^{k} (-1)^{k+1} a_{1k} M_{1k} =$$

$$= a_{11} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} + \dots + (-1)^{n+1} a_{1n} \det \begin{pmatrix} a_{21} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots \end{pmatrix}$$

Перевіримо на лінійність за 1-м аргументом: $\vec{a_1} = \vec{b} + \alpha \vec{c}$. Тоді $\Phi(\vec{b} + \alpha \vec{c}, \dots, \vec{a_n}) =$

$$= (b_1 + \alpha c_1) \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} - a_{12} \det \begin{pmatrix} b_2 + \alpha c_2 & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ b_n + \alpha c_n & \dots & a_{nn} \end{pmatrix} + \dots +$$

$$+ (-1)^{n+1} a_{1n} \det \begin{pmatrix} b_2 + \alpha c_2 & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ b_n + \alpha c_n & a_{n2} & \dots \end{pmatrix} =$$

Починаючи з другого доданку, ми використаємо властивості детермінанту

$$= b_{1} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} + \alpha c_{1} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} - a_{12} \det \begin{pmatrix} b_{2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ b_{n} & \dots & a_{nn} \end{pmatrix} - \alpha a_{12} \det \begin{pmatrix} c_{2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ c_{n} & \dots & a_{nn} \end{pmatrix} + \dots + a_{nn} + (-1)^{n+1} a_{1n} \det \begin{pmatrix} b_{2} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots \end{pmatrix} + (-1)^{n+1} \alpha a_{1n} \det \begin{pmatrix} c_{2} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ c_{n} & a_{n2} & \dots \end{pmatrix} = a_{n2} + a_{n$$

Перший стовпчик доданків відповідає першому функціоналу, а другий другому

$$=\Phi(\vec{b},\ldots,\vec{a_n}) + \alpha\Phi(\vec{c},\ldots,\vec{a_n})$$

Отже, лінійний за 1-м аргументом. Для інших аргументів все аналогічно

Перевіримо на кососиметричність для 1-го та 2-го аргументу:

$$= a_{12} \det \begin{pmatrix} a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} - a_{11} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} + \dots + (-1)^{n+1} a_{1n} \det \begin{pmatrix} a_{22} & a_{21} & \dots \\ \vdots & \ddots & \vdots \\ a_{n2} & a_{n1} & \dots \end{pmatrix} =$$

Перші два доданки ми змінимо місцями. А для решти за властивістю детермінанта, ми змінимо перший та другий стовпчики, зі знаком мінус

$$= -a_{11} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} + a_{12} \det \begin{pmatrix} a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} - \dots - (-1)^{n+1} a_{1n} \det \begin{pmatrix} a_{21} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots \end{pmatrix} =$$

$$= -\Phi(\vec{a_1}, \vec{a_2}, \dots, \vec{a_n})$$

Отже, кососиметричний за 1-м та 2-м аргументом. Для інших все аналогічно

Таким чином, за теоремою про єдиність, обидві функціонали відрізняються на константу

Знайдемо $\Phi(\mathbb{I})$ та $F(\mathbb{I})$

За визначенням, $F(\mathbb{I})=1$

 $\Phi(\mathbb{I}) =$

Залишиться лише єдиний доданок, оскільки решта мають множення на нуль

$$= 1 \det \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = 1$$

Оскільки $F(\mathbb{I}) = C \cdot \Phi(\mathbb{I})$, то C = 1

Остаточно, $F(\mathbb{A}) = \Phi(\mathbb{A})$

6) Corollary 1.
$$\sum_{k=1}^{n} (-1)^{k+j} b_k M_{jk} = \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Елементи b_1, b_2, \ldots, b_n знаходяться в j-му рядку

6) Corollary 2.
$$\sum_{k=1}^{n} (-1)^{k+j} a_{mk} M_{jk} = \begin{bmatrix} 0, m \neq j \\ \det \mathbb{A}, m = j \end{bmatrix}$$

Proof.

Випадок m=j

$$\sum_{k=1}^{n} (-1)^{k+j} a_{jk} M_{jk} \stackrel{6)}{=} \det \mathbb{A}$$

Випадок $m \neq j$

$$\sum_{k=1}^{n} (-1)^{k+j} a_{mk} M_{jk} \stackrel{6)}{=} \stackrel{\mathbf{Crl} \mathbf{1}}{=} \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ = a_{m1} & = a_{m2} & & = a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = 0$$

За властивістю 5), ми можемо транспонувати матрицю. А за критерієм кососиметричного фукнціоналу, це має бути рівним нулю через два однакових стовпчика

Це називається фальшивим розкладом детермінанта за рядком (тобто коли ми беремо не той рядок) ■

5), 6) **Corollary 1.** Розкладати детермінант можна за елементами за стовпчиком

5), 6) Corollary 2.
$$\sum_{j=1}^{n} (-1)^{j+k} a_{jm} M_{jk} = \begin{bmatrix} 0, m \neq k \\ \det \mathbb{A}, m = k \end{bmatrix}$$

Використання методу Гауса для обчислення детермінанту

$$\det \mathbb{A} = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} =$$

Варто змінити рядки місцями, щоб діагональні елементи були ненульовими. А далі мета - зробити перетворення, щоб під діагональними елементами всі вони були нулевими

$$= (-1)^{?} \det \begin{pmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} & \dots & \tilde{a}_{1n} \\ 0 & \tilde{a}_{22} & \tilde{a}_{23} & \dots & \tilde{a}_{2n} \\ 0 & 0 & \tilde{a}_{33} & \dots & \tilde{a}_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \tilde{a}_{nn} \end{pmatrix} =$$

Якщо розкрити за першим стовпчиком, то ми отримаємо добуток діагональних елементів

$$=(-1)^{?}\tilde{a_{11}}\tilde{a_{22}}\tilde{a_{33}}\ldots\tilde{a_{nn}}$$

7) $\det(\mathbb{AB}) = \det \mathbb{A} \det \mathbb{B}$

Proof.

Зафіксуємо матрицю А, розглядатимемо 2 функціонала від стовпчика В

1) $F(\vec{b_1},\ldots,\vec{b_n})=\det\mathbb{A}\det\mathbb{B}$ - лінійний кососиметричний за означенням $\mathbb{A}\mathbb{B}=\mathbb{A}(\vec{b_1},\ldots,\vec{b_n})=(\mathbb{A}\vec{b_1},\ldots,\mathbb{A}\vec{b_n})$

2) $\Phi(\vec{b_1},\ldots,\vec{b_n}) = \det(\mathbb{AB})$ - лінійний та кососиметриний теж

Таким чином, спрацьовує теорема про єдиність функціоналу: $F(\mathbb{B}) = C\Phi(\mathbb{B})$

Але при $\mathbb{B}=\mathbb{I}$ отримаємо, що C=1

Отже, $F(\mathbb{B}) = \Phi(\mathbb{B})$

8)
$$\det \left(\begin{array}{c|c} \mathbb{A} & \mathbb{C} \\ \hline \mathbb{O} & \mathbb{B} \end{array} \right) = \det \mathbb{A} \det \mathbb{B}$$
, де

 $\mathbb{A} \in Mat(n \times n), \mathbb{B} \in Mat(k \times k), \mathbb{C} \in Mat(n \times k)$

Proof.

Розглянемо матриці \mathbb{B}, \mathbb{C}

I розглянемо два функціонала від стовпчиків матриці А

 $F(\mathbb{A}) = \det \mathbb{A} \det \mathbb{B}$ - n-лінійний кососиметричний функціонал

Позначу
$$\left(\begin{array}{c|c} \mathbb{A} & \mathbb{C} \\ \hline \mathbb{O} & \mathbb{B} \end{array}\right) = \mathbb{D}$$

$$\Phi(\mathbb{A}) = \det \mathbb{D}$$

Якщо змінити стовпчики матриці $\mathbb A$ місцями, то зміниться загалом стовпчик блочно трикутної матриці

Також нескалдно показати, що виконується властивість лінійності

Тому $\Phi(\mathbb{A})$ - n-лінійний кососиметричний функціонал

Отже,
$$F(\mathbb{A}) = c \cdot \Phi(\mathbb{A})$$

Якщо взяти матрицю \mathbb{I} , то $\Phi(\mathbb{I})=\det\mathbb{B}$, якщо розкрити за першим стовпчиком

Hy i
$$F(\mathbb{I}) = \det \mathbb{B}$$

Отже, отримаємо, що c=1 \blacksquare

3.5 Обернена матриця

Definition 3.5.1. Матриця \mathbb{A}^{-1} називається **оберненою**, якщо

$$\mathbb{A}^{-1}\mathbb{A}=\mathbb{A}\mathbb{A}^{-1}=\mathbb{I}$$

,якщо вона існує

Водночас матрицю А називають оборотною

Theorem 3.5.2. Матриця \mathbb{A} - оборотна $\iff \det \mathbb{A} \neq 0$ **Proof.**

⇒ Дано: А - оборотна

Тоді
$$\exists \mathbb{A}^{-1} : \mathbb{A} \mathbb{A}^{-1} = \mathbb{I}$$

 $\Rightarrow \det (\mathbb{A} \mathbb{A}^{-1}) = \det \mathbb{A} \det \mathbb{A}^{-1} = \det \mathbb{I} = 1$
Тому $\det \mathbb{A} \neq 0$
Додатково зауважу, що $\det \mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}}$

 $\overline{\mathrm{Cnp}}$ обуємо сконструювати обернену матрицю \mathbb{A}^{-1}

Для цього розглянемо матрицю
$$\tilde{\mathbb{A}} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}$$
 - приєднана

матриця

 $\mathrm{Tyr}\, A_{jk} = (-1)^{j+k} M_{jk}$ - алгебраїчне доповнення

Головною мотивацією цієї побудови слугує 6)Crl. 2., використання цієї формули

Щоб це зробити, нам необхідно розглянути добуток таких матриць

$$\mathbb{A} \cdot \tilde{\mathbb{A}}^{T} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} \det \mathbb{A} & 0 & \dots & 0 \\ 0 & \det \mathbb{A} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \det \mathbb{A} \end{pmatrix}$$

Отже, $\mathbb{A} \cdot \tilde{\mathbb{A}}^T = \mathbb{A}\mathbb{I}$

Але оскільки $\det \mathbb{A} \neq 0$ за умовою, то маємо, що

$$\mathbb{A} \cdot \frac{\tilde{\mathbb{A}}^T}{\det \mathbb{A}} = \mathbb{I}$$

Якщо встановити $\mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}} \tilde{\mathbb{A}}^T$, то отримаємо

$$\mathbb{A}\mathbb{A}^{-1}=\mathbb{I}$$

(додати властивості обернених матриць)

Побудова оберненої матриці методом Гауса

Побудуємо так називаєму розширену матрицю (згодом додам)

Матричні алгебраїчні рівняння 3.6

Розглядаються такі рівняння

1)
$$\mathbb{A}X = \mathbb{D}_1$$

$$2) X\mathbb{B} = \mathbb{D}_2$$

3)
$$\mathbb{A}X\mathbb{B} = \mathbb{D}_3$$

Причому $\mathbb{A} \in Mat(n \times n)$ та $\mathbb{B} \in Mat(m \times m)$ - обидва оборотні Також $\mathbb{D}_1 \in Mat(n \times k), \mathbb{D}_2 \in Mat(k \times m), \mathbb{D}_3 \in Mat(n \times m)$ Розв'язки

1)
$$\mathbb{A}^{-1}\mathbb{A}X = \mathbb{A}^{-1}\mathbb{D}_1 \Rightarrow X = \mathbb{A}^{-1}\mathbb{D}_1$$

2)
$$X\mathbb{B}\mathbb{B}^{-1} = \mathbb{D}_2\mathbb{B}^{-1} \Rightarrow X = \mathbb{D}_2\mathbb{B}^{-1}$$

3) Комбінація 1) та 2)
$$\Rightarrow X = \mathbb{A}^{-1} \mathbb{D}_3 \mathbb{B}^{-1}$$

Особливий випадок:

$$\mathbb{A}\vec{x} = \vec{b}$$

Причому $\mathbb{A} \in Mat(n \times n)$ - оборотна

Тоді
$$\vec{x} = \mathbb{A}^{-1}\vec{b}$$

Розпишемо це покоординати

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\det \mathbb{A}} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Зауважимо, що
$$A_{11}b_1 + A_{21}b_2 + \dots + A_{n1}b_n \stackrel{6)}{=} \operatorname{Crl} \mathbf{1} \det \begin{pmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \dots & a_{nn} \end{pmatrix} = \Delta_1$$

$$A_{12}b_1 + A_{22}b_2 + \dots + A_{n2}b_n \stackrel{6)}{=} \operatorname{Crl} \mathbf{1} \det \begin{pmatrix} a_{11} & b_1 & \dots & a_{1n} \\ a_{21} & b_2 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_n & \dots & a_{nn} \end{pmatrix} = \Delta_2$$

$$\vdots$$

$$A_{12}b_1 + A_{22}b_2 + \dots + A_{n2}b_n \stackrel{6)}{=} \stackrel{\mathbf{Crl} \ \mathbf{1}}{=} \det \begin{pmatrix} a_{11} & b_1 & \dots & a_{1n} \\ a_{21} & b_2 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_n & \dots & a_{nn} \end{pmatrix} = \Delta_2$$

$$A_{1n}b_1 + A_{2n}b_2 + \dots + A_{nn}b_n \stackrel{6)}{=} \stackrel{\mathbf{Crl}}{=} \stackrel{\mathbf{1}}{=} \det \begin{pmatrix} a_{11} & a_{12} & \dots & b_1 \\ a_{21} & a_{22} & \dots & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_n \end{pmatrix} = \Delta_n$$

Отримали ось що

Theorem 3.6.1. Метод Крамера

Розв'язком рівняння $\mathbb{A}\vec{x} = \vec{b}$ є

$$x_1 = \frac{\Delta_1}{\det \mathbb{A}}, \dots, x_n = \frac{\Delta_n}{\det \mathbb{A}}$$

3.7Інші теореми

Theorem 3.7.1. Задана матриця $\mathbb{A} = (\vec{a}_1, \dots, \vec{a}_n)$ Система $\{\vec{a}_1,\ldots,\vec{a}_n\}$ є л.н.з. $\iff \det \mathbb{A} \neq 0$

Proof.

 $\{ec{a}_1,\ldots,ec{a}_n\}$ - л.н.з. $\iff \{ec{a}_1,\ldots,ec{a}_n\}$ - базис в $\mathbb{R}^n \iff \mathbb{A}=(ec{a}_1,\ldots,ec{a}_n)$ задає ізоморфізм $A: \mathbb{R}^n \to \mathbb{R}^n \iff$ має обернений $A^{-1} \iff \det \mathbb{A} \neq 0$

Час повернутись до формули $\det(\mathbb{AB}) = \det \mathbb{A} \det \mathbb{B}$

Розглянемо випадок, коли $\det \mathbb{B} = 0$

Тоді звідси $\{\vec{b}_1,\dots,\vec{b}_n\}$ - л.з., зокрема $\{\mathbb{A}\vec{b}_1,\dots,\mathbb{A}\vec{b}_n\}$ - л.з. \Rightarrow $\det\mathbb{A}\mathbb{B}=0$ Тепер ця властивість є коректною

Повернімось теперь до $\det \begin{pmatrix} \mathbb{A} & \mathbb{C} \\ \mathbb{O} & \mathbb{B} \end{pmatrix} = \det \mathbb{A} \det \mathbb{B}$ Знову нехай $\det \mathbb{B} = 0 \Rightarrow \det \mathbb{A} \mathbb{B} = 0$

Тоді звідси $\{\vec{b}_1,\ldots,\vec{b}_n\}$ - л.з. А оскільки $\det\mathbb{B}=\det\mathbb{B}^T$, то звідси $\{\overleftarrow{b}_1,\ldots,\overleftarrow{b}_n\}$ - система рядків матриці В - л.з.

А тому рядки блочно трикутної матриці - л.з. $\Rightarrow \det \left(\frac{\mathbb{A} \mid \mathbb{C}}{\mathbb{O} \mid \mathbb{B}} \right) = 0$

3.8 Ранг

Definition 3.8.1. Задано $A: L \to M$ - лінійний оператор **Рангом** оператора A називають rank $A = \dim \operatorname{Im} A$ Дефектом оператора A називають $\operatorname{def} A = \operatorname{dim} \operatorname{Ker} A$

Випадок матриці

Маємо $A: \mathbb{R}^n \to \mathbb{R}^m$

 $\operatorname{Im} A = \operatorname{span} \{ A\vec{e}_1, \dots, A\vec{e}_n \} = \operatorname{span} \{ \vec{a}_1, \dots, \vec{a}_n \}$

Маємо такі означення

Definition 3.8.2.(1) Стовпчиковим рангом матриці А називають ранг системи стовпчиків

$$\operatorname{rank}_{\operatorname{col}} \mathbb{A} = \operatorname{span}\{\vec{a}_1, \dots, \vec{a}_n\}$$

Definition 3.8.2.(2) Рядковим рангом матриці А називають ранг системи рядків

$$\operatorname{rank}_{\operatorname{row}} \mathbb{A}$$

Definition 3.8.3. Задана матриця $\mathbb{A} \in Mat(n \times m)$

Мінором матриці А називається її визначник, яка складається з елементів,

які стоять на перехресті i_1, \ldots, i_m рядків та j_1, \ldots, j_k стовпчиків (інше означення мінору)

Позначення: $M^{i_1,\dots,i_m}_{j_1,\dots,j_k}$

Definition 3.8.4. Мінорним рангом матриці А називається розмірність максимального за розмірністю ненульового мінора

Позначення: rank_{minor} A

Lemma 3.8.5. Про базисний мінор

Задана матриця $\mathbb{A} \in Mat(n \times m)$

Відомо, що $M^{i_1,\dots,i_k}_{j_1,\dots,j_k}\neq 0$, але $\forall t=\overline{1,n}, \forall s=\overline{1,m}:M^{i_1,\dots,i_k,s}_{j_1,\dots,j_k,t}=0$ Тоді $\{\vec{a}_{j_1},\dots,\vec{a}_{j_k}\}$ - база системи стовпчиків матриці $\mathbb A$

Tomy rank_{col} $\mathbb{A} = \operatorname{rank_{minor}} \mathbb{A} = k$

Proof.

Згодом додам

Метод обвідних мінорів

Задана матриця $\mathbb{A} \in Mat(n \times m)$

Знайдемо ненульовий мінор порядку 1 (порядку 2)

Нехай це мінор M_{1,j_1}^{1,i_1}

Шукаємо для нього ненульовий обвідний мінор $M_{1,j_1,j_2}^{1,i_1,i_2}$, тобто той мінор, що містить минулий ненульовий мінор:

- якщо для всіх цих таких мінорів буде 0, то тоді $\operatorname{rank} \mathbb{A} = 2$
- якщо знайдеться такий мінор, що не буде 0, то розглядаємо $M_{1,j_1,j_2,j_3}^{1,i_1,i_2,i_3}$. І робимо все знову за двома пунктами

3.9 Системи лінійних рівнянь

Однорідні рівняння

Розглянемо таке рівняння

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \end{cases}$$

Це можна записати в матричному вигляді

 $\mathbb{A}\vec{x} = \vec{0}$

Proposition 3.9.1. Множину розв'язків $\mathbb{A}\vec{x}=\vec{0}$ утворює лінійний простір Ker \mathbb{A}

Definition 3.9.2. Фундаментальною системою розв'язків називають базис лінійного простору розв'язків $\{\vec{f}_1,\ldots,\vec{f}_k\}$ Загальний розв'язок: $\vec{x}_{g.h.}=c_1\vec{f}_1+\cdots+c_k\vec{f}_k$ **Повертаємось до п. 2**

2.11Різні базиси в лінійному просторі, матриця оператора переходу від одного базису до іншого

Задано L - лінійний простір, в якому два різних базиси:

$$\{f_1,\ldots,f_n\},\,\{g_1,\ldots,g_n\}$$

Елемент $x \in L$ можна розкласти двома шляхами:

$$x = a_1 f_1 + \dots + a_n f_n$$

$$x = b_1 g_1 + \dots + b_n g_n$$

Вже відомо, що $L\cong \mathbb{R}_g^n$, а з іншого боку, $L\cong \mathbb{R}_f^n$ Звідси візьмемо базиси $\{\vec{e_1},\ldots,\vec{e_n}\}_g$ та $\{\vec{e_1},\ldots,\vec{e_n}\}_f$

Тут лінійні оператори працюють наступним чином:

$$J_{f}x = a_{1}J_{f}f_{1} + \dots + a_{n}J_{f}f_{n} = a_{1}\vec{e_{1}} + \dots + a_{n}\vec{e_{n}} = \begin{pmatrix} a_{1} \\ \dots \\ a_{n} \end{pmatrix} = \vec{x}_{f}$$

$$J_{g}x = b_{1}J_{g}g_{1} + \dots + a_{n}J_{g}g_{n} = b_{1}\vec{e_{1}} + \dots + b_{n}\vec{e_{n}} = \begin{pmatrix} b_{1} \\ \dots \\ b_{n} \end{pmatrix} = \vec{x}_{g}$$

Спробуємо знайти зв'язок

Побудуємо матрицю оператора \mathbb{U} : (тут U - це якийсь оператор)

$$U\vec{x}_g = U(b_1\vec{e_1} + \dots + b_n\vec{e_n}) = b_1U\vec{e_1} + \dots + b_nU\vec{e_n} = 0$$

$$=b_1J_fJ_g^{-1}\vec{e_1} + \dots + b_1J_fJ_g^{-1}\vec{e_n} = b_1J_fg_1 + \dots + b_nJ_fg_n \equiv$$

Розкладемо g_1, \ldots, g_n за базисом $\{f_1, \ldots, f_n\}$

$$g_1 = u_{11}f_1 + \dots + u_{n1}f_n$$

$$g_n = u_{1n}f_1 + \dots + u_{nn}f_n$$

$$\equiv \sum_{k=1}^n b_k J_f g_k = \sum_{k=1}^n b_k J_f \left(\sum_{j=1}^n u_{jk} f_j\right) = \sum_{k=1}^n \sum_{j=1}^n b_k u_{jk} \vec{e_j} = \sum_{j=1}^n \left(\sum_{k=1}^n u_{jk} b_k\right) \vec{e_j} = \sum_{k=1}^n \left(\sum_{k=1}^n u_{jk} b_k\right) \vec{e_j} = \sum_{k=1$$

$$= \left(\frac{\sum_{k=1}^{n} u_{1k} b_k}{\dots \sum_{k=1}^{n} u_{nk} b_k} \right) = \mathbb{U} \vec{x_g}$$

де
$$\mathbb{U} = \begin{pmatrix} u_{11} & \dots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{n1} & \dots & u_{nn} \end{pmatrix}$$

Алгоритм побудови матриці оператора переходу з одного базису в інший:

- розкладаємо g_1,\ldots,g_n за базисом $\{f_1,\ldots,f_n\}$
- коефіцієнти записуємо в матрицю $\mathbb{U}_{g o f}$ в стовпчик

Example 2.11.1. $L = \mathbb{R}^3$

Знайдемо матрицю переходу з базису $\{\vec{f}_1,\vec{f}_2,\vec{f}_3\}$ в базис $\{\vec{e_1},\vec{e_2},\vec{e_3}\}$

$$\vec{f}_{1} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \vec{f}_{2} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{f}_{3} = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$$

$$\vec{f}_{1} = 3\vec{e}_{1} - \vec{e}_{2} + \vec{e}_{3}$$

$$\vec{f}_{2} = \vec{e}_{1} + 2\vec{e}_{2} + 3\vec{e}_{3}$$

$$\vec{f}_{3} = 2\vec{e}_{1} - 2\vec{e}_{2} - 2\vec{e}_{3}$$

$$\Rightarrow \mathbb{U}_{f \to e} = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 2 & -2 \\ 1 & 3 & -2 \end{pmatrix}$$

А тепер знайдемо вектор \vec{x}_f в старому базисі, якщо в новому базисі

$$\vec{x}_e = \begin{pmatrix} 5\\1\\7 \end{pmatrix}$$

$$\vec{x}_e = \mathbb{I} I_e \cdot \vec{x}$$

 $\vec{x}_e = \mathbb{U}_{f \to e} \vec{x}_f$

Звідси випливає, що:

$$\vec{x}_f = \mathbb{U}_{f \to e}^{-1} \vec{x}_e = \mathbb{U}_{e \to f} \vec{x}_e$$

 $\vec{x}_f = \mathbb{U}_{f \to e}^{-1} \vec{x}_e = \mathbb{U}_{e \to f} \vec{x}_e$ Декілька магій обчислень для одержання оберненої матриці:

$$\mathbb{U}_{e \to f} = \frac{1}{8} \begin{pmatrix} -2 & -8 & 6 \\ 4 & 8 & -4 \\ 5 & 8 & -7 \end{pmatrix}$$
 Тоді, додавши ще магії, отримаємо:

$$\vec{x}_f = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$

Remark 2.11.1. Знаходження матриці дужа схожа з випадком із пункту 2.7. Тут встановити оператор $A: L_f \to L_q$, в якому для першого старий базис, а в другому відповідно новий, то отримаємо наш поточний випадок

Матриця лінійного оператору в різних базисах 2.12

Задано $A:L\to M$ - лінійний оператор

В L задані два базиси: $\{f_1, \ldots, f_n\}, \{g_1, \ldots, g_n\}$

В M задані два базиси: $\{h_1, \ldots, h_k\}, \{p_1, \ldots, p_k\}$

Маємо більш складну картину:

$$\mathbb{A}_{g,p}\vec{x}_g = J_p(A(J_g^{-1}\vec{x}_g)) = J_p(J_h^{-1}\mathbb{A}_{f,h}J_f)(J_g^{-1}\vec{x}_g) = (J_pJ_h^{-1})\mathbb{A}_{f,h}(J_fJ_g^{-1})\vec{x}_g =$$

$$= \mathbb{U}_{h \to p} \mathbb{A}_{f,h} \mathbb{U}_{q \to f} \vec{x}_q$$

Таким чином, маємо зв'язок:

$$\mathbb{A}_{g,p} = \mathbb{U}_{h \to p} \mathbb{A}_{f,h} \mathbb{U}_{g \to f}$$

Example 2.12.1. Нехай задано оператор $A: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$

$$(Af)(x) = x(f(x+1) - f(x))$$

Мали базис $\{f_0,f_1,f_2\}$, а стане базис $\{g_0,g_1,g_1,g_2\}$ $=x^2+x-1$ $=x^2-3x+2$ $=x^2-2x+1$

Наш випадок

Знайдемо матрицю \mathbb{A}_a

$$Af_0 = 0 = 0f_0 + 0f_1 + 0f_2$$

$$Af_1 = x = 0f_0 + 1f_1 + 0f_2$$

$$Af_2 = 2x^2 + x = 0f_0 + 1f_1 + 2f_2$$

$$Af_2 = 2x^2 + x = 0f_0 + 1f_1 + 2f_2$$

$$\Rightarrow A_f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$g_0 = x^2 + x - 1 = -1f_0 + 1f_1 + 1f_2$$

$$g_1 = x^2 - 3x + 2 = 2f_0 - 3f_1 + 1f_2$$

$$g_2 = x^2 - 2x + 1 = 1f_0 - 2f_1 + 1f_2$$

$$a_1 = x^2 - 3x + 2 = 2f_0 - 3f_1 + 1f_2$$

$$g_2 = x^2 - 2x + 1 = 1f_0 - 2f_1 + 1f_2$$

$$\Rightarrow \mathbb{U}_{g \to f} = \begin{pmatrix} -1 & 2 & 1 \\ 1 & -3 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\Rightarrow \mathbb{A}_g = \mathbb{U}_{g \to f}^{-1} \mathbb{A}_f \mathbb{U}_{g \to f} = \dots = \begin{pmatrix} 4 & 0 & 1 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{pmatrix}$$

Чому не знайти цю матрицю як в п. 2.7.? Тому що базис є взагалі неприємним для розкладання. Враховуючи вигляд оператора, ми отримуємо подвійний біль. В канонічному базису з часом матриці отримуються миттєво, тому цей пункт і існує

2.13 Інваріантні підпростори

Definition 2.13.1. Задано $A: L \to L$ - лінійний оператор Підпростір L_1 називається **інваріантним** для оператора A, якщо

$$\forall x \in L_1 : Ax \in L_1$$

або пишуть так

$$AL_1 \subset L_1$$

Example 2.13.2.(1) $L_1 = \text{Ker} A$, тому що $\forall x \in \text{Ker} A : Ax = 0 \in \text{Ker} A$ Example 2.13.2.(2) $L_1 = \text{Im } A$, тому що $\forall y \in \text{Im } A : Ay \in \text{Im } A$

Definition 2.13.3. Задано $A:L\to L$ - лінійний оператор та L_1 - інваріантний підпростір

Звуженням оператора A на підпросторі L_1 називається лінійний оператор: $A|_{L_1}:L_1\to L_1$

$$\forall x \in L_1 : Ax \in L_1 : A|_{L_1}x = Ax$$

Remark 2.13.3. От паралель. Припустимо, що ϵ дві функції:

$$f(x) = \sin x, x \in \mathbb{R}$$

$$g(x) = \sin x, x \in [0, 2\pi]$$

Функції є <u>різними</u> в силу області визначення, хоча закон однаковий. Але навіть не в цьому суть: можна привести 'криву паралель', що f(x) - це A, в той час g(x) - це $A|_{L_1}$

Example 2.13.2.(3) Розглянемо лінійний оператор $A: \mathbb{R}^3 \to \mathbb{R}^3$

$$A\vec{x} = \begin{pmatrix} x_1 - x_2 \\ -x_2 + 4x_3 \\ x_3 \end{pmatrix}$$

Розглянемо $L_1 = XOY$ - цей підпростір буде дійсно інваріантним для A, оскільки

$$\forall \vec{x} \in XOY \Rightarrow \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : A\vec{x} = \begin{pmatrix} x_1 - x_2 \\ -x_2 \\ 0 \end{pmatrix} \in XOY$$

А тому маємо права звузити оператор $A|_{XOY}:XOY\to XOY$

$$A\vec{x} = \begin{pmatrix} x_1 - x_2 \\ -x_2 \end{pmatrix}$$

Remark 2.13.2. Для кожного оператора може бути безліч інваріантних підпросторів. Власне в **Ex. 2.13.2.(3)** інваріантними є \mathbb{R}^2 , $\{\vec{0}\}$, \mathbb{R}^3

Lemma 2.13.4. Задано $A:L\to L$ - лінійний оператор та L_1,L_2 - інваріантні підпростори

Тоді $L_1 \cap L_2$ та $L_1 + L_2$ - обидва інваріантні підпростори

Proof.

1)
$$\forall x \in L_1 \cap L_2 \Rightarrow \begin{cases} x \in L_1 \\ x \in L_2 \end{cases} \Rightarrow \begin{cases} Ax \in L_1 \\ Ax \in L_2 \end{cases} \Rightarrow Ax \in L_1 \cap L_2$$

2)
$$\forall x \in L_1 + L_2 \Rightarrow x = \overset{\in L_1}{x_1} + \overset{\in L_2}{x_2} \Rightarrow Ax = \overset{\in L_1}{Ax_1} + \overset{\in L_2}{Ax_2} \Rightarrow Ax \in L_1 + L_2 \blacksquare$$

Proposition 2.13.5. Задано $A:L\to L$ - лінійний оператор та $L=L_1\dot{+}L_2$, де L_1,L_2 - інваріантні підпростори

Тоді
$$A = A|_{L_1} + A|_{L_2}$$

Proof.

$$\forall x \in L : \exists ! x_1 \in L_1, \exists ! x_2 \in L_2 : x = x_1 + x_2$$

$$Ax = Ax_1 + Ax_2 = A|_{L_1}x_1 + A|_{L_2}x_2 = (A|_{L_1} + A|_{L_2})(x_1 + x_2) = (A|_{L_1} + A|_{L_2})x$$

2.14 Матриця оператора в базисі, розширенному з базису в інваріантному просторі

Задано $A:L\to L$ - лінійний оператор та L_1 - інваріантний підпростір, в якому є базис $\{f_1,\ldots,f_k\}$

Продовжимо його до базису L, $\{f_1, \ldots, f_k, f_{k+1}, \ldots, f_n\}$

I треба знайти матрицю для розширеного базису

$$Af_1 \in L_1 \Rightarrow Af_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{k1}f_k$$

$$Af_k \in L_1 \Rightarrow Af_k = a_{1k}f_1 + a_{2k}f_2 + \dots + a_{kk}f_k$$

 $Af_{k+1} \in L$, але $Af_{k+1} \not\in L_1 \Rightarrow$
 $Af_{k+1} = a_{1,k+1}f_1 + a_{2,k+1}f_2 + \dots + a_{k,k+1}f_k + a_{k+1,k+1}f_{k+1} + \dots + a_{n,k+1}f_n$

 $Af_n \in L$, але $Af_n \not\in L_1 \Rightarrow$

 $Af_n = a_{1,n}f_1 + a_{2,n}f_2 + \dots + a_{k,n}f_k + a_{k+1,n}f_{k+1} + \dots + a_{n,n}f_n$

ПОДП МАТИМЕМО НАСТУПНИИ ВИГЛЯД:
$$\mathbb{A}_f = \begin{pmatrix} a_{11} & \dots & a_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{21} & \dots & a_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} & a_{k,k+1} & \dots & a_{k,n} \\ \hline 0 & \dots & 0 & a_{k+1,k+1} & \dots & a_{k+1,n} \\ 0 & \dots & 0 & a_{k+2,k+1} & \dots & a_{k+2,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,k+1} & \dots & a_{n,n} \end{pmatrix}$$

Тепер розглянемо звужений оператор $A|_{L_1}$ в базисі $\{f_1,\ldots,f_k\}$ Тоді $A|_{L_1}f_1 = Af_1, \dots, A|_{L_1}f_k = Af_k$

Матриця матиме вигляд:

$$\mathbb{A}_{|_{L_1}f} = \begin{pmatrix} a_{11} & \dots & a_{1,k} \\ a_{21} & \dots & a_{2,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} \end{pmatrix}$$

Можна тоді сказати, що

$$\mathbb{A}_f = \begin{pmatrix} \mathbb{A}_{|L_1f} & * \\ \mathbb{O} & * \end{pmatrix}$$
 - остаточна матриця

Залишається питання, що буде, якщо є 2 інваріантних підпростори:

Задано A:L o L - лінійний оператор та $L=L_1\dot{+}L_2$, де L_1,L_2 інваріантні підпростори

$$\{f_1,\ldots,f_k\}$$
 - базис L_1 $\{f_{k+1},\ldots,f_n\}$ - базис L_2 Тоді $\{f_1,\ldots,f_k,f_{k+1},\ldots,f_n\}$ - базис L Дійсно, якщо $z\in L$, то $\exists!x\in L_1,\exists!y\in L_2:z=x+y$ $\Rightarrow z=\alpha_1f_1+\cdots+\alpha_kf_k+\beta_1f_{k+1}+\cdots+\beta_{n-k}f_n$

Побудуємо в цьому базисі матрицю:

$$A|_{L_1}f_1 = Af_1 = a_{11}f_1 + \dots + a_{k1}f_k$$

$$A|_{L_{1}}f_{k} = Af_{k} = a_{1k}f_{1} + \dots + a_{kk}f_{k}$$

$$A|_{L_{2}}f_{k+1} = Af_{k+1} = a_{k+1,k+1}f_{k+1} + \dots + a_{n,k+1}f_{n}$$
...
$$A|_{L_{2}}f_{n} = Af_{n} = a_{k+1,n}f_{k+1} + \dots + a_{n,n}f_{n}$$
Тоді
$$A_{f} = \begin{pmatrix} a_{11} & \dots & a_{1,k} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} & 0 & \dots & 0 \\ \hline 0 & \dots & 0 & a_{k+1,k+1} & \dots & a_{k+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,k+1} & \dots & a_{n,n} \end{pmatrix} = \begin{pmatrix} A_{|L_{1}} & \mathbb{O} \\ \mathbb{O} & A_{|L_{2}} \end{pmatrix}$$

Якщо виникне випадок $L = L_1 \dot{+} L_2 \dot{+} L_3$, то

$$\mathbb{A}_f \begin{pmatrix} \mathbb{A}_{|L_1} & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & \mathbb{A}_{|L_2} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \mathbb{A}_{|L_3} \end{pmatrix}$$

За МІ (або за аналогічними міркуваннями) можна довести і для прямої суми із n підпросторів

А тепер розглянемо $L = L_1 + L_2$ - вже не пряма сума. Позначу

 $L_1 \cap L_2 = L_{12}$ (теж інваріантний за **Lm. 2.13.4.**)

 $\{h_1,\ldots,h_n\}$ - базис L_{12}

Продовжимо його до базисів L_1 та L_2 :

 $L_1:\{f_1,\ldots,f_s,h_1,\ldots,h_n\}$

 $L_2:\{g_1,\ldots,g_t,h_1,\ldots,h_n\}$

Тоді матриця матиме такаий вигляд:

$$\mathbb{A} = \left(egin{array}{c|ccc} * & \mathbb{O} & \mathbb{O} \\ * & \mathbb{A}_{|_{L_{12}}} & * \\ \mathbb{O} & \mathbb{O} & * \end{array}
ight)$$

Перший квадрат відповідає матриці $\mathbb{A}_{|_{L_1}}$, а другий квадрат - $\mathbb{A}_{|_{L_2}}$

2.15 Оператор проєктування

Definition 2.15.1. Задано $L = L_1 \dotplus L_2$ - лінійний простір **Оператором проєктування** на L_1 вздовж L_2 називають такий оператор $P:L\to L$, що

$$\forall z \in L : z = \underset{\in L_1}{x} + \underset{\in L_2}{y} : P(x+y) = x$$

Example 2.15.2. $P: \mathbb{R}^2 \to \mathbb{R}^2$ - проєкція вектора на вісь ОХ - є оператором проєктування

Proposition 2.15.2. Властивості

- 1) $\operatorname{Ker} P = L_2$ $\operatorname{Im} P = L_1$
- 2) $P^2 = P$
- 3) $L = \operatorname{Im} P + \operatorname{Ker} P$

Proof.

- 1) $\forall z \in \text{Ker} P \iff Pz = x = 0 \iff z = y \in L_2 \ \forall w \in \text{Im} \ P \iff w = Pz = x \in L_1$
- 2) $P^2z = P(Pz) = Px = P(x+0) = x = Pz$
- 3) виплива ϵ з означення

Proposition 2.15.3. Задано $P:L\to L$ - такий оператор, що $P^2=P$ Тоді P - оператор проєктування **Proof.**

- 1) Покажемо, що $\operatorname{Im} P \cap \operatorname{Ker} P = \{0\}$ Дійсно, $\forall z \in (\operatorname{Im} P \cap \operatorname{Ker} P) \Rightarrow \begin{cases} z \in \operatorname{Im} P \\ z \in \operatorname{Ker} P \end{cases} \Rightarrow \begin{cases} z = Pw \\ Pz = 0 \end{cases}$ $\Rightarrow 0 = Pz = P^2z = P(Pz) = Pw = z$
- 2) Доведемо, що $L=\operatorname{Im} P\dot{+}\operatorname{Ker} P$ Зафіксуємо елемент $w=z-Pz,\ z\in L$ Тоді $Pw=Pz-P(Pz)=Pz-P^2z=Pz-Pz=0\Rightarrow w\in\operatorname{Ker} P$ $\Rightarrow z=\underset{\in\operatorname{Im} P}{Pz}+\underset{\in\operatorname{Ker} P}{w}$ Отже, $\forall z\in L:\exists!x\in\operatorname{Im} P=L_1,\exists!y\in\operatorname{Ker} P=L_2:z=x+y$ Оскільки $x\in\operatorname{Im} P,$ то x=Pw $\Rightarrow Pz=P(Pw+y)=P^2w=Pw=x$ Остаточно, P оператор проєктування \blacksquare

 \mathbf{Remark} 2.15.3. Задано $P:L\to L$ - оператор проєктування, $L=\mathrm{Ker}_IP\dot{+}\mathrm{Im}_IP$

 $=L_1$ $=L_2$

 L_1, L_2 - інваріантні підпростори (це вже було). Тоді $P = P|_{L_1} \dot{+} P|_{L_2}$ Дізнаємось, хто ці $P|_{L_1}, P|_{L_2}$

$$z \in L_1 \Rightarrow z = x = x + 0 \Rightarrow \tilde{P}|_{L_1} z = Pz = x = z$$

Тобто $P|_{L_1}=I$ - тотожній оператор

$$z \in L_2 \Rightarrow z = y \in \text{Ker}P \Rightarrow P|_{L_2} = Pz = Py = 0$$

Тобто $P|_{L_2} = O$ - нульовий оператор

Тобто $P = I \dot{+} O$

Тепер покажемо, що ϵ матрицею для оператора P

Нехай $\{e_1,\ldots,e_k\}$ - базис $\operatorname{Im} P$ та $\{e_{k+1},\ldots,e_n\}$ - базис $\operatorname{Ker} P$

$$Pe_1 = e_1 \dots Pe_k = e_k$$

$$Pe_{k+1} = 0 \dots Pe_n = 0$$

Отже, маємо таку матрицю:

$$\mathbb{P} = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ \hline 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} \mathbb{I} & \mathbb{O} \\ \hline{\mathbb{O}} & \overline{\mathbb{O}} \end{pmatrix}$$

4 Нова ера з матрицями

4.1 Власні числа та власні вектори

Definition 4.1.1. Задано $A:L\to L$ - лінійний оператор **Власним вектором** оператора A називається такий елемент $f\neq 0\in L$, що:

$$\exists \lambda \in \mathbb{R} : Af = \lambda f$$

Водночає число λ називається власним числом оператора A

Remark 4.1.1. Із означення випливає, що власному вектору відповідає <u>єдине</u> власне число. А власному числу може відповідати безліч власних векторів (див. нижче властивість 1)

Proposition 4.1.2. Властивості власних чисел та векторів

- 1. Нехай L_{λ} множина всіх власних векторів з цим власним числом λ , який також містить елемент 0. Тоді L_{λ} лінійний підпростір
- 2. Нехай f_1,\dots,f_k власні вектори з попарно різними власними числами. Тоді $\{f_1,\dots,f_k\}$ л.н.з.
- 3. f власний вектор оператора A з власним числом $\lambda \iff f$ власний вектор оператора $(A-\mu I)$ з власним числом $(\lambda-\mu)$
- 4. f власний вектор з числом $\lambda \iff f \in \operatorname{Ker}(A \lambda I)$

Наслідок 4. $L_{\lambda} = \operatorname{Ker}(A - \lambda I)$

- 5. Нехай $\{g_1,\ldots,g_n\}$ базис L, також \mathbb{A}_g матриця A для нашого базису.
- λ власне число $A\iff\lambda$ власне число \mathbb{A}_q
- f власний вектор A з власним числом $\lambda \iff J_g f$ власний вектор \mathbb{A}_g
- 6. Нехай $\mathbb{A} \in Mat(n \times n)$
- λ власне число оператора $\mathbb{A} \iff \det(\mathbb{A} \lambda \mathbb{I}) = 0$

Proof.

1.
$$\forall f_1, f_2 \in L_{\lambda} \Rightarrow Af_1 = \lambda f_1; Af_2 = \lambda f_2; \forall \alpha_1, \alpha_2 \in \mathbb{R}:$$
 $A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 Af_1 + \alpha_2 Af_2 = \alpha_1 \lambda f_1 + \alpha_2 \lambda f_2 = \lambda(\alpha_1 f_1 + \alpha_2 f_2)$ Тобто $\alpha_1 f_1 + \alpha_2 f_2 \in L_{\lambda}$. Отже, це є лінійний підпростір

2. Доведення за МІ

При k=1 маємо $\{f_1\}$ - л.н.з. автоматично

Припустимо, що $\{f_1, \dots, f_k\}$ - л.н.з.

Перевіримо л.н.з. системи $\{f_1, \ldots, f_k, f_{k+1}\}$

$$\alpha_1 f_1 + \dots + \alpha_k f_k + \alpha_{k+1} f_{k+1} = 0$$
 (1)

Подіємо оператором на обидві частини. Матимемо:

$$A(\alpha_1 f_1 + \dots + \alpha_k f_k + \alpha_{k+1} f_{k+1}) = \alpha_1 A f_1 + \dots + \alpha_k A f_k + \alpha_{k+1} A f_{k+1} =$$

$$= lpha_1 \lambda_1 f_1 + \dots + lpha_k \lambda_k f_k + lpha_{k+1} \lambda_{k+1} f_{k+1}$$
 - ліва частина. Тоді:

$$\alpha_1 \lambda_1 f_1 + \dots + \alpha_k \lambda_k f_k + \alpha_{k+1} \lambda_{k+1} f_{k+1} = 0$$
 (2)

З першого рівняння маємо: $\alpha_{k+1}f_{k+1} = -\alpha_1f_1 - \cdots - \alpha_kf_k$

Його підставимо в друге, тоді отримаємо:

$$\alpha_1(\lambda_1 - \lambda_{k+1})f_1 + \dots + \alpha_k(\lambda_k - \lambda_{k+1})f_k = 0 \stackrel{\text{\tiny J.H.3.}}{\Rightarrow}$$

$$\alpha_1(\lambda_1 - \lambda_{k+1}) = 0, \dots, \alpha_k(\lambda_k - \lambda_{k+1}) = 0$$

Оскільки власні числа попарно не є рівними, то $\alpha_1 = \cdots = \alpha_k = 0$

Підставимо отримані значення в рівняння (1). Автоматично отримаємо $\alpha_{k+1} = 0$

Остаточно, $\{f_1, \dots, f_k, f_{k+1}\}$ - л.н.з.

MI доведено

3. f - власний вектор A з власним числом $\lambda \iff Af = \lambda f \iff Af - \mu f = \lambda f - \mu f \iff Af - \mu I f = (\lambda - \mu)f \iff (A - \mu I)f = (\lambda - \mu)f \iff f$ - власний вектор $(A - \mu I)$ з власним число $(\lambda - \mu)$

4.
$$Af = \lambda f \iff Af - \lambda f = 0 \iff Af - \lambda If = 0 \iff (A - \lambda I)f = 0 \iff f \in \text{Ker}(A - \lambda I)$$

5. Маємо наступну картину

$$\begin{array}{ccc}
L & \xrightarrow{A} & L \\
J_g \downarrow & & \downarrow J_g \\
\mathbb{R}^n & \xrightarrow{\mathbb{A}_g} & \mathbb{R}^n
\end{array}$$

Тоді

 $Af=J_g^{-1}\mathbb{A}_gJ_gf=\lambda f.$ Обидві частини множимо на $J_g\Rightarrow \mathbb{A}_g(J_gf)=\lambda(J_gf)$

6.
$$\lambda$$
 - власне число для $\mathbb{A} \iff \exists \vec{f} \neq 0 : A\vec{f} = \lambda \vec{f} \iff \iff \vec{f} \in \operatorname{Ker}(A - \lambda I) \iff \operatorname{Ker}(A - \lambda I) \neq \{0\} \iff \not\exists (\mathbb{A} - \lambda \mathbb{I})^{-1} \iff \det(\mathbb{A} - \lambda \mathbb{I}) = 0 \blacksquare$

Remark 4.1.2. З рівняння $\det(\mathbb{A} - \lambda \mathbb{I}) = 0$ знаходимо власні числа. А власні вектори - як розв'язок рівняння $(\mathbb{A} - \lambda \mathbb{I})\vec{f} = \vec{0}$

Example 4.1.3.(1). Задана матриця
$$\mathbb{A} = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
. Знайдемо всі

власні числа та власні вектори

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det\begin{pmatrix} 4 - \lambda & -1 & -2 \\ 2 & 1 - \lambda & -2 \\ 1 & -1 & 1 - \lambda \end{pmatrix} = \dots = -\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0$$

$$\Rightarrow (\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$$

Розглянемо кожне власне число окремо для знаходження власних векторів: $\lambda_1=1$

$$(\mathbb{A} - \lambda_1 \mathbb{I}) \vec{f} = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 1 & -1 & 0 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_1 - 2f_3 = 0 \\ f_1 - f_2 = 0 \end{cases} \Rightarrow f_1 = f_2 = f_3$$

$$\vec{f} = f_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Можемо обрати $\vec{f_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$\lambda_{2} = 2$$

$$(\mathbb{A} - \lambda_{2} \mathbb{I}) \vec{f} = \begin{pmatrix} 2 & -1 & -2 \\ 2 & -1 & -2 \\ 1 & -1 & -1 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_{1} - f_{2} - 2f_{3} = 0 \\ f_{1} - f_{2} - f_{3} = 0 \end{cases} \Rightarrow \begin{cases} f_{1} = f_{3} \\ f_{2} = 0 \end{cases}$$

$$\vec{f} = f_{1} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Можемо обрати $\vec{f_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$\lambda_{3} = 3$$

$$(\mathbb{A} - \lambda_{3} \mathbb{I}) \vec{f} = \begin{pmatrix} 1 & -1 & -2 \\ 2 & -2 & -2 \\ 1 & -1 & -2 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_{1} - 2f_{2} - 2f_{3} = 0 \\ f_{1} - f_{2} - 2f_{3} = 0 \end{cases} \Rightarrow \begin{cases} f_{1} = f_{2} \\ f_{3} = 0 \end{cases}$$

$$\vec{f} = f_{1} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Можемо обрати $\vec{f_3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Example 4.1.3.(2). Знайдемо власні значення та власні вектори для оператора $A: \mathbb{R}^3 \to \mathbb{R}^3$

$$A\vec{x} = [\vec{x}, \vec{a}]$$

Тут \vec{a} - якийсь фіксований вектор

За означенням маємо:

$$A\vec{f} = \lambda \vec{f} \Rightarrow [\vec{f}, \vec{a}] = \lambda \vec{f}$$

Ліворуч маємо вектор, що перпендикулярний до \vec{f} , але водночас він дорівнює цьому ж вектору \vec{f} , який є домноженим на скаляр.

Тоді звідси маємо єдиний випадок рівності, якщо $\lambda=0$

Знайдемо власні вектори:

$$A\vec{f} = [\vec{f}, \vec{a}] = \vec{0} \Rightarrow \vec{f} ||\vec{a}|$$

Таким чином, власні вектори - це вектори \vec{f} , що колінеарні \vec{a} , з власним числом $\lambda=0$

Definition 4.1.4. Вираз $\det(\mathbb{A} - \lambda \mathbb{I})$ називається характеристичним многочленом, а саме рівняння називається характеристичним рівнянням

Proposition 4.1.5.(1) Задано $A: L \to L$ - лінійний оператор та матриці $\mathbb{A}_f, \mathbb{A}_g$ в різних базисах. Тоді $\det(\mathbb{A}_f - \lambda \mathbb{I}) = \det(\mathbb{A}_g - \lambda \mathbb{I})$ **Proof.**

Матриці \mathbb{A}_f , \mathbb{A}_g пов'язані тотожністю:

$$\mathbb{A}_f = U \mathbb{A}_g U^{-1}$$

$$\Rightarrow \det(\mathbb{A}_f - \lambda I) = \det(U\mathbb{A}_g U^{-1} - \lambda I) = \det(U\mathbb{A}_g U^{-1} - \lambda U U^{-1}) =$$

$$= \det(U(\mathbb{A}_g - \lambda I)U^{-1}) = \det U \det U^{-1} \det(\mathbb{A}_g - \lambda I) = \det(\mathbb{A}_g - \lambda I) \blacksquare$$

Proposition 4.1.5.(2) Характеристичний многочлен має таку формулу:

$$\det(\mathbb{A} - \lambda \mathbb{I}) = (-1)^n \lambda^n + \sum_{k=1}^{n-1} \left(\sum_{1 \le j_1 < j_2 < \dots < j_k \le n} (-1)^{n-k} M_{j_1 \dots j_n}^{j_1 \dots j_n} \right) \lambda^{n-k} + \det \mathbb{A}$$

Proof.

Розглянемо випадок матриці $\mathbb A$ розмірності 2×2

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + \det \mathbb{A}$$

Далі - матриця \mathbb{A} розмірності 3×3

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} = -\lambda^3 + (a_{11} + a_{22} + a_{31} + a_{32} + a_{32} + a_{33} - \lambda)$$

$$(a_{33})\lambda^{2} - \left(\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - \det\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} + \det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \right) \lambda + \det \mathbb{A}$$

$$= M_{12}^{12} \qquad = M_{13}^{23} \qquad = M_{23}^{23}$$

Зауважимо, що коефіцієнт при λ є сумою головних мінорів (тобто тих

мінорів, де номера рядка та стовпчиків співпадають)

I нарешті, матриця $\mathbb{A} n \times n$

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} =$$

Аналізуємо цю матрицю

- доданок при λ^n отримується при множенні тільки елементів головної діагоналі, тобто маємо коефіцієнт $(-1)^n$:

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

- доданок при λ^{n-1} отримується при множенні всіх елементів головної діагоналі, крім, можливо, одного, по черзі, тобто маємо коефіцієнт

$$\begin{pmatrix}
a_{11} - \lambda & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} - \lambda & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn} - \lambda
\end{pmatrix} + \begin{pmatrix}
a_{11} - \lambda & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} - \lambda & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn} - \lambda
\end{pmatrix} + \begin{pmatrix}
a_{11} - \lambda & a_{12} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{22} - \lambda & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn} - \lambda
\end{pmatrix} + \cdots + \begin{pmatrix}
a_{11} - \lambda & a_{12} & \dots & a_{nn} - \lambda \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn} - \lambda
\end{pmatrix}$$

- доданок при λ^{n-2} отримується при множенні всіх елементів головної діагоналі, крім, можливо, двох, по черзі

Наприклад, розглянемо один із доданків, в якому множимо елементи головної діагоналі з номерами $3,4,\ldots,n$, при множенні цих елементів обираємо λ^{n-2} , залишається цей вираз помножити на

$$\det \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Оскільки нам потрібна степінь n-2, то ми обираємо останній доданок, що є M_{12}^{12}

Для інших випадків все аналогічно

Загалом маємо коефіцієнт при λ^{n-2} :

Загалом маемо коефицент при
$$\lambda$$
 .
$$(-1)^{n-2}(M_{12}^{12}+M_{13}^{13}+\cdots+M_{1n}^{1n}+M_{23}^{23}+\cdots+M_{2n}^{2n}+\cdots+M_{n-1,n}^{n-1,n}+M_{nn}^{nn})= = (-1)^{n-2}\sum_{1\leq j< m\leq n}M_{jm}^{jm}$$
 - сума всіх головних мінорів 2-го порядку

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix} + \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$- \text{ вее аналогічно для } \lambda^{n-3}, \text{ коефіціент:}$$

$$(-1)^{n-3} \sum_{1 \le j < m < p \le j} M_{jmp}^{jmp} - \text{ сума всіх головних мінорів 3-го порядку}$$

$$\vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$B \text{ результаті маємо:}$$

$$\det(\mathbb{A} - \lambda \mathbb{I}) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + (-1)^{n-2} \sum_{1 \le j < m \le n} M_{jm}^{jm} \lambda^{n-2} + \dots + \det \mathbb{A} =$$

$$= (-1)^n \lambda^n + (-1)^{n+1} \lambda^{n-1} \text{tr } A + \sum_{k=2}^{n-1} (-1)^{n-k} \left(\sum_{1 \le j_1 < j_2 < \dots < j_k} M_{j1j_2 \dots j_k}^{j,1j_2 \dots j_k} \lambda^{n-k} \right) +$$

$$\det \mathbb{A}$$

Розглянемо випадок, коли у оператора $A:L \to L$ є n л.н.з. власних

векторів $\{f_1,\ldots,f_n\}$, $\dim L=n$

Тоді $\{f_1,\ldots,f_n\}$ - базис

$$Af_1 = \lambda_1 f_1 = \lambda_1 f_1 + 0 f_2 + \dots + 0 f_n$$

$$Af_2 = \lambda_2 f_2 = 0f_1 + \lambda_2 f_2 + \dots + 0f_n$$

$$Af_n = \lambda_n f_n = 0f_1 + 0f_2 + \dots + \lambda_n f_n$$

Тоді матриця оператора A в базисі власних векторів має вигляд:

$$\mathbb{A}_f = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Remark 4.1.6. Якщо оператор A має n штук різних власних чисел (тобто всі мають кратність 1), то A має n л.н.з. власних векторів

В **Ex. 4.1.3.(1)** мали 3 власних числа: $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$

I також ми мали власні вектори: $\vec{f_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{f_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{f_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\text{Тому } \mathbb{A}_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Ба більше, ми можемо розкрити деякі цікаві факти

$$\mathbb{R}_f^3 \xrightarrow{\mathbb{A}_f} \mathbb{R}_f^3$$

$$U$$
 $\bigcup U$

$$\mathbb{R}^3_e \xrightarrow{A} \mathbb{R}^3_e$$

$$\text{Тут } U = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

З картинки можна знайти:

$$A = U \mathbb{A}_f U^{-1}$$

$$A^{2} = A \cdot A = U \mathbb{A}_{f} U^{-1} U \mathbb{A}_{f} U^{-1} = U \mathbb{A}_{f}^{2} U^{-1}$$

$$A^{2} = A \cdot A = U \mathbb{A}_{f} U^{-1} U \mathbb{A}_{f} U^{-1} = U \mathbb{A}_{f}^{2} U^{-1}$$

$$A^{3} = A^{2} \cdot A = U \mathbb{A}_{f}^{2} U^{-1} U \mathbb{A}_{f} U^{-1} = U \mathbb{A}_{f}^{3} U^{-1}$$

Ну і т.д.

4.2 Приєднаний власний вектор

Remark 4.2.0. Надалі ми будемо враховувати комплексні корені з характеристичного полінома, щоб ми мали змогу завжди знайти власні числа

Розглянемо особливий випадок, коли $A:L\to L$ має єдиний (взагалі єдиний) л.н.з. власний вектор f. Тому й єдине власне число $\lambda.$ При цьому $\dim L=n$

За вимогою, $\dim(\operatorname{Ker}(A - \lambda I)) = \dim L_{\lambda} = 1$

Отже, dim $(\text{Im}(A - \lambda I)) = n - 1$

Нехай $M = \text{Ker}(A - \lambda I) \cap \text{Im}(A - \lambda I)$

Оскільки $M \subset \operatorname{Ker}(A - \lambda I)$, то $\dim M \leq \dim(\operatorname{Ker}(A - \lambda I)) = 1$

Маємо або $\dim M = 0$, або $\dim M = 1$

Перед цим доведемо, що $\mathrm{Ker}(A-\lambda I), \mathrm{Im}(A-\lambda I)$ - інваріантні підпростори для оператора A

За вимогою, $Ker(A - \lambda I) = L_{\lambda} = span\{f\}$

Тоді $\forall g \in span\{f\}: g = \alpha f \Rightarrow Ag = A(\alpha f) = \alpha Af = (\alpha \lambda)f$

 $\Rightarrow Ag \in span\{f\}$

Або теж саме, що $\forall g \in (\operatorname{Ker}(A - \lambda I)) \Rightarrow Ag \in \operatorname{Ker}(A - \lambda I))$

Тоді $\forall y \in \operatorname{Im}(A - \lambda I) : \exists x \in L : y = (A - \lambda I)x$ $\Rightarrow Ay = A(A - \lambda I)x = (A^2 - \lambda A)x = (A - \lambda I)(Ax) \in \operatorname{Im}(A - \lambda I)$ Отже, $\operatorname{Ker}(A - \lambda I)$ та $\operatorname{Im}(A - \lambda I)$ - два інваріантних підпростори

Розглянемо випадок $\dim M = 0$

 $\Rightarrow M = \text{Ker}(A - \lambda I) \cap \text{Im}(A - \lambda I) = \{0\}$

Розглянемо $A|_{\mathrm{Ker}(A-\lambda I)}:\mathrm{Ker}(A-\lambda I)\to\mathrm{Ker}(A-\lambda I)$ - звужений оператор У нього є власний вектор f

Також розглянемо $A|_{\mathrm{Im}(A-\lambda I)}:\mathrm{Im}(A-\lambda I)\to\mathrm{Im}(A-\lambda I)$ - звужений оператор

У цього оператора є власне число μ та власний вектор g (згідно з $\mathbf{Rm.}$ 4.2.0.)

 $Ag = A|_{\operatorname{Im}(A-\lambda I)}g = \mu g$

Таким чином, $\hat{f} \in \text{Ker}(A-\lambda I)$ та $g \in \text{Im}(A-\lambda I)$. Оскільки $\text{Ker}\{A-\lambda I\} \cap \text{Im}\{A-\lambda I\} = \{0\}$, то вони утворюють пряму суму, а водночас $\{f,g\}$ - л.н.з. і є власними векторами для A - суперечність. Отже, $\dim M \neq 0$

Залишається єдиний випадок - це $\dim M=1$

$$\begin{cases} M \subset \operatorname{Ker}(A - \lambda I) \\ \dim(\operatorname{Ker}(A - \lambda I)) = 1 \end{cases} \Rightarrow M = \operatorname{Ker}(A - \lambda I)$$

Тоді як можна побачити, ${\rm Ker}(A-\lambda I)={\rm Ker}(A-\lambda I)\cap {\rm Im}(A-\lambda I)$, тобто ${\rm Ker}(A-\lambda I)\subset {\rm Im}(A-\lambda I)$

$$f \in \operatorname{Ker} A - \lambda I \Rightarrow f \in \operatorname{Im}(A - \lambda I)$$

Тоді $\exists h \in L : f = (A - \lambda I)h$

Ми прийшли до нового означення

Definition 4.2.1. Задано $A:L\to L$ - лінійний оператор, в якому f - власний вектор з власним числом λ

Елемент $h \in L$ називається **приєднаним вектором** до власного вектора f (висоти 1), якщо

$$(A - \lambda I)h = f$$

Lemma 4.2.2. Задано $A: L \to L$ - лінійний оператор

 $\exists ! f$ - л.н.з. власний вектор та $\dim L > 1,$ то для нього $\exists h$ - приєднаний власний вектор

Доведення було перед означенням приєданого вектора

Definition 4.2.1.(2) Задано $A: L \to L$ - лінійний оператор, в якому f - власний вектор з власним числом λ

Елемент $h^{(k)} \in L$ називається **приєднаним вектором** до власного вектора f висоти k, якщо

$$(A - \lambda I)h^{(k)} = h^{(k-1)}$$

Remark 4.2.1.(1) $h^{(1)} = h$

Remark 4.2.1.(2) Рівняння для приєднаного висоти k можна записати наступним чином:

$$(A - \lambda I)f = 0 (A - \lambda I)h^{(1)} = f \Rightarrow (A - \lambda I)^{2}h^{(1)} = 0 (A - \lambda I)h^{(2)} = h \Rightarrow (A - \lambda I)^{3}h^{(2)} = 0$$

$$(A - \lambda I)^{k+1} h^{(k)} = 0$$

Остаточно отримаємо таку форму:

$$(A - \lambda I)^{k+1} h^{(k)} = 0$$

Взагалі-то кажучи, можна це проілюструвати ось так

$$0 \underset{A-\lambda I}{\longleftarrow} f \underset{A-\lambda I}{\longleftarrow} h^{(1)} \underset{A-\lambda I}{\longleftarrow} h^{(2)} \underset{A-\lambda I}{\longleftarrow} \dots \underset{A-\lambda I}{\longleftarrow} h^{(k)}$$

Theorem 4.2.3. Задано $A:L\to L$ - лінійний оператор, в якому f - власний вектор з власним числом λ

 $\{f,h,h^{(2)},\ldots,h^{(k)}\}$ - ланцюг власного та приєднаних до нього векторів Тоді $\{f,h,h^{(2)},\ldots,h^{(k)}\}$ - л.н.з.

Proof.

$$\alpha_0 f + \alpha_1 h^{(1)} + \dots + \alpha_k h^{(k)} = 0$$

Подіємо оператором $(A - \lambda I)$ покроково k разів:

$$(A - \lambda I)(\alpha_0 f + \alpha_1 h^{(1)} + \dots + \alpha_k h^{(k)}) = 0$$

$$\alpha_1 f + \alpha_2 h^{(1)} + \dots + \alpha_k h^{(k-1)} = 0$$

$$\alpha_2 f + \dots + \alpha_k h^{(k-2)} = 0$$

. . .

$$\alpha_{k-1}f + \alpha_k h^{(1)} = 0$$

$$\alpha_k f = 0$$

$$\Rightarrow \alpha_k = 0 \Rightarrow \alpha_{k-1} = 0 \Rightarrow \cdots \Rightarrow \alpha_2 = 0 \Rightarrow \alpha_1 = 0 \Rightarrow \alpha_0 = 0$$

Отже, л.н.з. ■

Theorem 4.2.4. Задано $A:L\to L$ - лінійний оператор, в якому f - єдиний власний вектор з власним числом λ

Тоді в L існує базис з власного вектору f та ланцюга приєднаних до них, тобто

$$\{f,h,\dots,h^{(n-1)}\}$$
 - базис, $(\dim L=n)$

Proof.

Лінійна незалежність вже ϵ . Але єдине, що залишається довести, - це те, що існує ланцюг саме довжини n

Ми вже в курсі, що $\dim(\mathrm{Ker}(A-\lambda I))=1$ та $\mathrm{Im}(A-\lambda I)\stackrel{\text{позн.}}{=} L_1$ - інваріантний підпростір для $A, \dim L_1=n-1$

Більш того, $Ker(A - \lambda I) \subset Im(A - \lambda I)$

Розглянемо оператор $A_1=A|_{L_1}:L_1\to L_1$

У нього єдиний л.н.з. власний вектор f, оскільки $\operatorname{Ker}(A - \lambda I) \subset L_1 \subset L$ Тоді $\operatorname{Ker}(A_1 - \lambda I) = \operatorname{Ker}(A - \lambda I) = \operatorname{span}\{f\}$

Тому $\dim(\operatorname{Ker}(A_1 - \lambda I)) = 1 \Rightarrow \dim(\operatorname{Im}(A_1 - \lambda I)) = (n-1) - 1 = n-2$ $L_2 = \operatorname{Im}(A_1 - \lambda I)$ - інваріантний підпростір для A_1 , а отже, й для A. Доводиться аналогічним чином як на початку цього пункту

Зауважимо, що $\forall y \in L_2 : \exists z \in L_1 :$

$$y = (A_1 - \lambda I)z = (A - \lambda I)z \equiv 1$$

$$z \in L_1 = \operatorname{Im}(A - \lambda I) \Rightarrow \exists x \in L : z = (A - \lambda I)x$$

$$\equiv (A-\lambda I)^2 x$$

Отримали, що $\operatorname{Im}(A_1-\lambda I)=\operatorname{Im}(A-\lambda I)^2=L_2,\, \dim L_2=n-2$

Розглянемо оператор $A_2 = A|_{L_2}: L_2 \to L_2$

У нього єдиний л.н.з. власний вектор f за аналогічними міркуваннями Тоді $Ker(A_2 - \lambda I) = Ker(A - \lambda I) = span\{f\}$

Tomy dim(Ker $(A_2 - \lambda I)$) = 1 \Rightarrow dim(Im $(A_2 - \lambda I)$) = (n-2) - 1 = n-3 $L_3 = \operatorname{Im}(A_2 - \lambda I)$ - інваріантний підпростір для A_2 , а отже, й для AОтримаємо, що $\dim(A_2 - \lambda I) = \dim(A - \lambda I)^3$

I знову теж саме...

Тоді остаточно,
$$L\supset L_1 \supset L_2 \supset \cdots \supset L_{n-1} \supset \{0\}$$
 =Im $(A-\lambda I)^2 \supset \cdots \supset L_{n-1} \supset \{0\}$

Зауважимо,

$$\begin{cases} \dim(\operatorname{Im}(A - \lambda I)^{n-1}) = 1 \\ \dim(\operatorname{Ker}(A - \lambda I)) = 1 \\ \operatorname{Ker}(A - \lambda I) \subset \operatorname{Im}(A - \lambda I)^{n-1} \end{cases} \Rightarrow \operatorname{Im}(A - \lambda I)^{n-1} = \operatorname{Ker}(A - \lambda I)$$

Знайдемо ланцюг власного та приєднаного векторів довжини nf - власний

$$f \in L_{n-1} \Rightarrow f \in L_1 \Rightarrow \exists h^{(1)} \in L_1 \Rightarrow h^{(1)} \in L : (A - \lambda I)h = f$$

$$f \in L_{n-1} \Rightarrow f \in L_2 \Rightarrow \exists h^{(2)} \in L_2 \Rightarrow h^{(2)} \in L : (A - \lambda I)^2 h^{(2)} = f$$

$$f \in L_{n-1} \Rightarrow \exists h^{(n-1)} \in L_{n-1} \Rightarrow h^{(n-1)} \in L : (A - \lambda I)^{(n-1)} h^{(n-1)} = f \blacksquare$$

Тоді можемо отримати матрицю оператора $A:L \to L$ в базисі $\{f,h,h^{(2)},\dots,h^{(k)}\}$

$$(A - \lambda I)f = 0$$

$$(A - \lambda I)h = f = f + 0h + \dots + 0h^{(k)}$$

$$(A - \lambda I)h = f = f + 0h + \dots + 0h^{(k)}$$

$$(A - \lambda I)h^{(2)} = h = 0f + h + \dots + 0h^{(k)}$$

$$(A - \lambda I)h^{(k)} = h^{(k-1)} = 0f + 0h + \dots + h^{(k-1)} + 0h^{(k)}$$

$$(\mathbb{A} - \lambda \mathbb{I}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Ну а звідси випливає, що

$$\mathbb{A} = (\mathbb{A} - \lambda \mathbb{I}) + \lambda \mathbb{I}$$

$$Tyt \lambda \mathbb{I} = \begin{pmatrix} \lambda & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda \end{pmatrix}$$

$$\Rightarrow \mathbb{A} = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix} \stackrel{\text{\tiny IIO3H.}}{=} J(\lambda)$$

Таку матрицю називають клітиною Жордана

4.3 Теорема Жордана

Theorem 4.3.1. Теорема Жордана

Задано $A:L \to L$ - лінійний оператор

Тоді в L є базис з власних та приєднаних векторів

$$\{f_1,h_1^1,\ldots,h_1^{k_1},\qquad f_2,h_2^1,\ldots,h_2^{k_2},\qquad \ldots \qquad f_m,h_m^1,\ldots,h_m^{k_m}\}$$

Proof MI.

Індукція буде за $\dim L$

 $A:L\to L$ - у нього існує власне число λ

Розглянемо оператор $B = A - \lambda I : L \to L$

База індукції: $\dim L = 1$

Тоді $L=span\{f\},\, Af\in L\Rightarrow Af=\alpha f\Rightarrow f$ - власний вектор

Ще одна база: $\dim L=2$

Тоді $\exists f: Af = \lambda f$

Далі є два варіанти:

- 1) $\exists f_2$ другий власний вектор. Тоді $\{f_1, f_2\}$ базис одразу
- 2) f єдиний власний вектор, тоді за попередньою теоремою, $\exists h$ приєднаний. Тоді $\{f_1,h_1\}$ базис

Крок індукції: нехай твердження виконується для $\dim L < n$

Доведемо для $\dim L = n$

$$B = A - \lambda I : L \to L, \ \lambda$$
 - власне число $\Rightarrow \operatorname{Ker} B \neq \{0\}$ $\Rightarrow \dim(\operatorname{Im} B) < n$

Покажемо, що $\operatorname{Im} B$ - інваріантний для A

$$\forall y \in \operatorname{Im} B = \operatorname{Im}(A - \lambda I) : \exists x \in L : y = (A - \lambda I)x$$

Тоді
$$Ay = A(A - \lambda I)x = (A - \lambda I)(Ax) \in \text{Im}(A - \lambda I)$$

Або $Ay \in \operatorname{Im} B$

За припущенням індукції, в ${\rm Im}\, B$ існує базис з власних та приєднаних для $A|_{{\rm Im}\, B}: {\rm Im}\, B \to {\rm Im}\, B$

$$\lambda: \left\{ egin{array}{ll} 0 &\longleftarrow_{B} & f_{1} &\longleftarrow_{B} & h_{1}^{1} &\longleftarrow_{B} & \ldots &\longleftarrow_{B} & h_{1}^{k_{1}} \\ dots & 0 &\longleftarrow_{B} & f_{s} &\longleftarrow_{B} & h_{s}^{1} &\longleftarrow_{B} & \ldots &\longleftarrow_{B} & h_{s}^{k_{s}} \\ \lambda_{2} &\colon f_{s+1}, h_{s+1}^{1}, \ldots, h_{s+1}^{k_{s+1}} &dots & dots &$$

$$\lambda: \begin{cases} 0 \leftarrow_{\overline{B}} f_1 \leftarrow_{\overline{B}} h_1^1 \leftarrow_{\overline{B}} \dots \leftarrow_{\overline{B}} h_1^{k_1} \leftarrow_{\overline{B}} h_1^{k_1+1} \\ \vdots \\ 0 \leftarrow_{\overline{B}} f_s \leftarrow_{\overline{B}} h_s^1 \leftarrow_{\overline{B}} \dots \leftarrow_{\overline{B}} h_s^{k_s} \leftarrow_{\overline{B}} h_s^{k_s+1} \end{cases}$$

А тут не продовжуються ланцюги

$$\lambda_2: f_{s+1}, h^1_{s+1}, \dots, h^{k_{s+1}}_{s+1}$$

:

$$\lambda_m:f_p,h_p^1,\ldots,h_p^{k_p}$$

До того ж, є ще додатково g_1, \ldots, g_r - л.н.з., що належать $\mathrm{Ker}(A-\lambda I)$ Все це лише 'заяви'. Нам треба визначитись, чи буде ОСЬ ЦЯ МАХИНА базисом L

Розглянемо лінійні підпростори $L_j = \{f_j, h_j^1, \dots, h_j^{k_j}\}$ в Іт B Покажемо, що L_j - інваріантний для A та B f_j - власне число λ_j , а $h_j^1, \dots, h_j^{k_j}$ - ланцюг приєднаних $(A - \lambda_j I)h_j^q = h_j^{q-1}$ $(A - \lambda_j I)f_j = 0$ Тому $Af_j = \lambda_j f_j$ $Ah_j^q = h_j^{q-1} + \lambda_j h_j^q$ $\Rightarrow Bf_j = (A - \lambda I)f_j = (A - \lambda_j I + (\lambda_j - \lambda)I)f_j = (A - \lambda_j I)f_j + (\lambda_j - \lambda)f_j$ $\Rightarrow Bh_j^q = (A - \lambda_j I + (\lambda_j - \lambda)I)h_j^q = h_j^{q-1} + (\lambda_j - \lambda)h_j^q$ Отримані елементи, що подіяні оператором A та B, належать L_j . Отже, інваріантні

Покажемо, що
$$L_j \cap L_i = \{0\}, j \neq i$$

$$z \in L_j \cap L_i \Rightarrow z = \begin{bmatrix} z_j^0 f_j + z_j^1 h_j^1 + \dots + z_j^{k_j} h_j^{k_j} \\ z_i^0 f_i + z_i^1 h_i^1 + \dots + z_i^{k_i} h_i^{k_i} \end{bmatrix}$$

$$\Rightarrow z_j^0 f_j + z_j^1 h_j^1 + \dots + z_j^{k_j} h_j^{k_j} + (-z_i^0) f_i + (-z_i^1) h_i^1 + \dots + (-z_i^{k_i}) h_i^{k_i} = 0$$

За побудовою, $\{L_i, L_i\}$ - елементи з базису $\operatorname{Im} B$, тому ε л.н.з.

$$\Rightarrow z_j^0 = z_j^1 = \dots = z_j^{k_j} = z_i^0 = z_i^1 = \dots = z_i^{k_i} = 0$$

Отже, z = 0, а тому $L_i \cap L_i = \{0\}$

Таким чином, отримали, що $\operatorname{Im} B = L_1 \dot{+} L_2 \dot{+} \dots \dot{+} L_p$ і кожна з цих множин інваріантна $\operatorname{Im} B$

Тепер розглянемо оператор $B|_{L_j}$, тут $j \in \{s+1,\ldots,p\}$

Покажемо, що $\mathrm{Ker} B|_{L_j} = \{0\}$

$$z \in \text{Ker} B|_{L_j} \Rightarrow B|_{L_j} z = 0 \Rightarrow B|_{\text{Im } B} z = 0$$

Отже,
$$z \in \operatorname{Ker} B|_{L_j}$$
 та $z \in L_j \Rightarrow z = \alpha_1 f_1 + \dots + \alpha_s f$

A елемент $z \in L_1 \dotplus \ldots \dotplus L_s$

Оскільки
$$L_j \cap (L_1 \dot{+} \dots \dot{+} L_s) = \{0\}$$
, то $z = 0$

Остаточно,
$$\mathrm{Ker}B|_{L_j}=\{0\}$$
 для оператора $B|_{L_j}:L_j\to L_j$

А це - гарант на існування оберненого оператора та $\operatorname{Im} B|_{L_j} = L_j$

$$h_j^{k_j} = B|_{L_j}B^{-1}|_{L_j}h_j^{k_j} = B|_{L_j}z_j^{k_j}$$

$$h_j^q = B|_{L_j}B^{-1}|_{L_j}h_j^q = B|_{L_j}z_j^q$$

Всі елементи з ланцюгів $\{f_j,h_j^1,\ldots,h_j^{k_j}\}$ є прообразами елментів з підпросторів L_i

Тому ланцюги не мають продовження за межами ${\rm Im}\, B$

$$f_j = Bh_j^1, \dots, h_j^{k_j-1} = Bh_j^{k_j}$$

Розглянемо окремо
$$L_j, j = \{1, \dots, s\}$$
 $f_j = Bh_j^1, \dots, h_j^{k_j-1} = Bh_j^{k_j}$ $\operatorname{Ker} B|_{L_j} = \operatorname{span}\{f_j\} \Rightarrow \dim(\operatorname{Ker} B|_{L_j}) = 1$

$$\Rightarrow \dim(\operatorname{Im} B|_{L_j}) = \dim L_j - 1 = k_j$$

$$\Rightarrow \dim(\operatorname{Im} B|_{L_j}) = \dim L_j - 1 = k_j$$

Тому $h_j^{k_j} = Bh_j^{k_j+1}$, де $h_j^{k_j+1} \not\in L_j$

Тобто продовження ланцюга все ж таки існує. Ба більше,

$$Ker B|_{Im B} = span\{f_1, \ldots, f_s\}$$

$$\dim(\operatorname{Ker} B|_{\operatorname{Im} B}) = s$$

$$\operatorname{Ker} B \supset \operatorname{Ker} B|_{\operatorname{Im} B}$$

Тому
$$\mathrm{Ker} B|_{\mathrm{Im}\, B} = span\{f_1,\ldots,f_s,g_1\ldots,g_r\}$$
 - базис $\mathrm{Ker} B$

Ми це лише побудували елементи

Доведемо тепер, що все ПОБУДОВАНЕ є базисом, тобто

$$\{f_1, h_1^1, \dots, h_1^{k_1}, h_1^{k_1+1}, \dots f_s, h_s^1, \dots, h_s^{k_s}, h_s^{k_s+1}, f_{s+1}, h_{s+1}^1, \dots, h_{s+1}^{k_{s+1}}, \dots f_p, h_p^1, \dots, h_p^{k_p}, g_1, \dots, g_r\}$$

$$f_{s+1}, h_{s+1}^1, \dots, h_{s+1}^{k_{s+1}}, \dots, f_p, h_p^1, \dots, h_p^{k_p}, g_1, \dots, g_r$$

I. Перевіримо на л.н.з.

$$\alpha_1^0 f_1 + \alpha_1^1 h_1^1 + \dots + \alpha_1^{k_1} h_1^{k_1} + \alpha_1^{k_1+1} h_1^{k_1+1} + \dots$$

$$+ \alpha_s^0 f_s + \alpha_s^1 h_s^1 + \dots + \alpha_s^{k_s} h_s^{k_s} + \alpha_s^{k_s+1} h_s^{k_s+1} +$$
 $+ \alpha_{s+1}^0 f_{s+1} + \alpha_{s+1}^1 h_{s+1}^1 + \dots + \alpha_{s+1}^{k_{s+1}} h_{s+1}^{k_{s+1}} + \dots + \alpha_p^0 f_p + \alpha_p^1 h_p^1 + \dots + \alpha_p^{k_p} h_p^{k_p} +$
 $+ \beta_1 g_1 + \dots + \beta_r g_r = 0$
Подіємо це чудо оператором $B = A - \lambda I$

$$\begin{aligned} &\alpha_1^0 0 + \alpha_1^1 f_1 + \dots + \alpha_1^{k_1} h_1^{k_1 - 1} + \alpha_1^{k_1 + 1} h_1^{k_1} + \dots \\ &+ \alpha_s^0 0 + \alpha_s^1 f_1 + \dots + \alpha_s^{k_s} h_s^{k_s - 1} + \alpha_s^{k_s + 1} h_s^{k_s} + \\ &+ \alpha_{s+1}^{\tilde{0}} f_{s+1} + \alpha_{s+1}^{\tilde{1}} h_{s+1}^1 + \dots + \alpha_{s+1}^{\tilde{k}_{s+1}} h_{s+1}^{k_{s+1}} + \dots \\ &+ \alpha_p^{\tilde{0}} f_p + \tilde{\alpha_p^1} h_p^1 + \dots + \tilde{\alpha_p^k} h_p^{k_p} + \\ &+ 0 = 0 \end{aligned}$$

Оскільки $\{f_1,h_1^1,\ldots,h_1^{k_1},\quad f_2,h_2^1,\ldots,h_2^{k_2},\quad\ldots\quad f_p,h_p^1,\ldots,h_p^{k_p}\}$ - базиси $\mathrm{Im}\,B$, то звідси

$$\begin{array}{l} \prod_{D,\ 10\ \mathrm{SBPQCH}} & \alpha_1^1 = \cdots = \alpha_1^{k_1} = \alpha_1^{k_1+1} = \cdots = \alpha_s^1 = \cdots = \alpha_s^{k_1} = \alpha_s^{k_1+1} = \\ &= \alpha_{s+1}^{\tilde{0}} = \alpha_{s+1}^{\tilde{1}} = \alpha_{s+1}^{\tilde{1}} = \cdots = \alpha_{s+1}^{\tilde{k}_{s+1}} = \cdots = \tilde{\alpha_p^0} = \tilde{\alpha_p^1} = \cdots = \tilde{\alpha_p^{k_p}} = 0 \\ \mathrm{Ockiльku} \ \exists B^{-1}|_{L_{s+1}}, \dots, \exists B^{-1}|_{L_p}, \ \mathrm{To} \ \alpha_{s+1}^0 = \alpha_{s+1}^1 = \cdots = \alpha_{s+1}^{k_{s+1}} = \cdots = \alpha_p^0 = \alpha_p^1 = \cdots = \alpha_p^{k_p} = 0 \end{array}$$

Отримані нулі підставимо в початкову рівність:

$$\alpha_1^0 f_1 + \dots + \alpha_s^0 f_s + \beta_1 g_1 + \dots + \beta_r g_r = 0$$

Оскільки $\{f_1, \dots, f_s, g_1, \dots, g_r\}$ - базис ядра, то тоді

$$\alpha_1^0 = \dots = \alpha_s^0 = \beta_1 = \dots = \beta_r = 0$$

Нарешті, доведено л.н.з.

II. Перевіримо на повноту

$$\forall z \in L : Bz \in \operatorname{Im} B \Rightarrow$$

$$Bz=lpha_1^0f_1+lpha_1^1h_1^1+\cdots+lpha_1^{k_1}h_1^{k_1}+\cdots+lpha_s^0f_s+lpha_s^1h_s^1+\cdots+lpha_s^{k_s}h_s^{k_s}+lpha_{s+1}^0f_1+lpha_{s+1}^1h_{s+1}^1+\cdots+lpha_{s+1}^{k_{s+1}}h_{s+1}^{k_{s+1}}+\cdots+lpha_p^0f_p+lpha_p^1h_p^1+\cdots+lpha_p^kh_p^k$$
 Розглянемо елемент $w\in L$:

$$w = \alpha_1^0 h_1^1 + \alpha_1^1 h_1^2 + \dots + \alpha_1^{k_1} h_1^{k_1+1} + \dots + \alpha_s^0 h_s^1 + \alpha_s^1 h_s^2 + \dots + \alpha_s^{k_s} h_s^{k_s+1} + \alpha_{s+1}^{\tilde{0}} f_{s+1} + \alpha_{s+1}^{\tilde{1}} h_{s+1}^1 + \dots + \alpha_{s+1}^{\tilde{k}_{s+1}} h_{s+1}^{k_{s+1}} + \dots + \alpha_s^{\tilde{1}} h_s^{\tilde{1}} h_s^{\tilde{1}} h_s^{\tilde{1}} h_s^{\tilde$$

$$+\tilde{\alpha_p^0}f_p + \tilde{\alpha_p^1}h_p^1 + \dots + \tilde{\alpha_p^{k_p}}h_p^{k_p}$$

Спеціально ми так підібрали, щоб подіявши оператором B, ми могли отримати елемент z

Тут $\tilde{\alpha}$ підібрані так, що:

$$B(\tilde{\alpha}_{j}^{0}f_{j} + \dots + \tilde{\alpha}_{j}^{k_{j}}h_{j}^{k_{j}}) = \alpha_{j}^{0}f_{j} + \dots + \alpha_{j}^{k_{j}}h_{j}^{k_{j}}, j = \{s + 1, \dots, p\}$$

 $\Rightarrow B(z - w) = Bz - Bw = 0, \text{ отже, } z - w \in \text{Ker}B$
 $\Rightarrow z = w + \tau_{1}f_{1} + \dots + \tau_{s}f_{s} + \gamma_{1}g_{1} + \dots + \gamma_{r}g_{r}$

Завершальний етап:

$$z = \tau_1 f_1 + \alpha_1^0 h_1^1 + \alpha_1^1 h_1^2 + \dots + \alpha_1^{k_1} h_1^{k_1+1} + \dots \\ + \tau_s f_s + \alpha_s^0 h_s^1 + \alpha_s^1 h_s^2 + \dots + \alpha_s^{k_s} h_s^{k_s+1} + \\ + \alpha_{s+1}^{\tilde{0}} f_{s+1} + \alpha_{s+1}^{\tilde{1}} h_{s+1}^1 + \dots + \alpha_{s+1}^{\tilde{k}_{s+1}} h_{s+1}^{k_{s+1}} + \dots + \\ + \alpha_p^{\tilde{0}} f_p + \tilde{\alpha}_p^1 h_p^1 + \dots + \tilde{\alpha}_p^{\tilde{k}_p} h_p^{k_p} + \\ + \gamma_1 g_1 + \dots + \gamma_r g_r \\ \text{Тобто елемент } z \text{ розклався як лінійна комбінація нашої системи} \\ \Phi_{\text{інал: }} \{ f_1, h_1^1, \dots, h_1^{k_1}, h_1^{k_1+1}, \dots, f_s, h_s^1, \dots, h_s^{k_s}, h_s^{k_s+1}, \\ f_{s+1}, h_{s+1}^1, \dots, h_{s+1}^{k_{s+1}} \dots, f_p, h_p^1, \dots, h_p^{k_p}, \quad g_1, \dots, g_r \} \text{ - базис} \blacksquare (\text{CHECK})$$

Заданий $A:L\to L$ - лінійний оператор

В L є базис з власних на ланцюга приєднаних векторів

$$\{f_1,h_1^1,\ldots,h_1^{k_1},\qquad f_2,h_2^1,\ldots,h_2^{k_2},\qquad \ldots \qquad f_m,h_m^1,\ldots,h_m^{k_m}\}$$
 λ_1 λ_2 λ_3 λ_4 λ_5 - інваріантний відносно A (вже доведено)

 $L = L_1 \dot{+} \cdots + \dot{+} L_m$

Тому матриця оператора A в цьому базисі має вигляд:

$$\mathbb{A}_J = \left(egin{array}{cccc} \mathbb{A}_{|_{L_1}} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \mathbb{A}_{|_{L_2}} & \dots & \mathbb{O} \\ dots & dots & \ddots & dots \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{A}_{|_{L_m}} \end{array}
ight)$$

Розглянемо матриці звужених операторів $A|_{L_j},\ j=1,\ldots,m$

 $L_j = span\{f_j, h_j^1, \ldots, h_j^{k_j}\}$ - базис з одного власного вектора та приєднаних до нього

Тоді матриця $A|_{L_j}$ в цьому базисі має вигляд:

 $\mathbb{A}|_{L_j} = J(\lambda_j)$ - клітина Жордана

Остаточний вигляд матриці:

$$\mathbb{A}_J = \left(egin{array}{cccc} oxed{J(\lambda_1)} & \mathbb{O} & \dots & \mathbb{O} \ & \mathbb{O} & oxed{J(\lambda_2)} \dots & \mathbb{O} \ & dots & dots & \ddots & dots \ & \mathbb{O} & \mathbb{O} & \dots & oxed{J(\lambda_m)} \end{array}
ight)$$

Ії ще називають Жордановою формою матриці

Зв'язок матриці оператора $A:L\to L$ в деякому базисі та жордановою

Отримаємо зв'язок:

$$\mathbb{A}_e = \mathbb{U}\mathbb{A}_J\mathbb{U}^{-1}$$

4.4 Властивості жорданової форми матриці

Задано $A:L \to L$ - лінійний оператор

1. Кількість клітин Жордана, що відповідають власному числу λ_0 , дорівнює кількістю л.н.з. власних векторів з власним числом λ_0

Proof.

Кожна клітина Жордана задається ланцюгом $\{f, h^1, \dots, h^k\}$ з базису власних та приєднаних. Тому кількість клітин = кількість л.н.з. власних для $\lambda_0 = \dim(\operatorname{Ker}(A - \lambda_0 I))$

2. Кількість клітин Жордана для власного числа λ_0 розмірністю не менше за $\begin{bmatrix} 2\times 2 \\ m\times m \end{bmatrix}$ дорівноює $r_2 = \dim(\operatorname{Ker}(A-\lambda_0I)^2) - \dim(\operatorname{Ker}(A-\lambda_0I)) \\ r_m = \dim(\operatorname{Ker}(A-\lambda_0I)^m) - \dim(\operatorname{Ker}(A-\lambda_0I)^{m-1})$

Proof.

Кількість клітин Жордана для власного числа λ_0 розмірністю 2×2 дорівнює кількістю приєднаних векторів для λ_0 висоти 1 в базисі L. Кількість л.н.з. власних та приєднаних висоти 1 дорівнює $\dim(\operatorname{Ker}(A-\lambda_0 I)^2)$

$$\begin{cases} (A - \lambda_0 I)f = 0 \\ (A - \lambda_0 I)h^1 = f \end{cases} \Rightarrow (A - \lambda_0 I)^2 f = 0, (A - \lambda_0 I)^2 h^1 = 0$$

$$(A - \lambda_0 I)h^2 = h^1 \Rightarrow (A - \lambda_0 I)^2 h^2 = f \neq 0$$

Із кількості всіх власних та приєднаних векторів висоти 1 для λ_0 вилучаємо кількість власних для λ_0 . Отримуємо

$$r_2 = \dim(\operatorname{Ker}(A - \lambda_0 I)^2) - \dim(\operatorname{Ker}(A - \lambda_0 I))$$

Кількість клітин Жордана для власного числа λ_0 розмірністю $m \times m$

дорівнює кілкістю приєднаних висоти m-1 для λ_0 в базисі L. Кількість власних та приєднаних висоти $1,2,\ldots,m-1$ дорівнює $\dim(\operatorname{Ker}(A-\lambda_0 I)^m)$

Із кількості всіх власних та приєднаних аж до висоти m-1 для λ_0 треба вилучити кількість власних та приєднаних аж до m-2 для λ_0 Тобто $r_m = \dim(\operatorname{Ker}(A - \lambda_0 I)^m) - \dim(\operatorname{Ker}(A - \lambda_0 I)^{m-1})$

3. Кількість клітин Жордана для власного числа λ_0 розмірності $m \times m$ дорівнює $r_m - r_{m+1} = R_m$

Proof.

Комбінаторне міркування: $'=m\times m'='\geq m\times m'-'\geq (m-1)\times (m-1)'$

4. Нехай λ_0 - власне число

Сумарна розмірність клітин Жордана дорівнює кратності власних чисел як кореня характеристичного полінома $\det(\mathbb{A} - \lambda \mathbb{I})$

Proof.

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det(\mathbb{A}_{J} - \lambda I) = \det\begin{pmatrix} J(\lambda_{1}) - \lambda I & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J(\lambda_{p}) - \lambda I \end{pmatrix} = \\ = \det(J(\lambda_{1}) - \lambda I) \det(J(\lambda_{2}) - \lambda I) \dots \det(J(\lambda_{p}) - \lambda I) \boxed{\equiv} \\ J(\lambda_{j}) - \lambda I = \begin{pmatrix} \lambda_{j} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{j} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{j} \end{pmatrix} - \lambda \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = \\ = \begin{pmatrix} \lambda_{j} - \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda_{j} - \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{j} - \lambda \end{pmatrix}$$

Звідси якщо розмірність клітин $J(\lambda_j)$ дорівнює $k_j \times k_j$, то $\det(J(\lambda_j) - \lambda I) = (\lambda_j - \lambda)^{k_j}$ $\equiv (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_p - \lambda)^{k_p} \blacksquare$

Theorem 4.4.1. Єдиність форми

Жорданова форма оператора A визначена єдиним чином із точністю до перестановок клітин Жордана

Proof.

Із попередніх властивостей випливає, що власні числа та їхня кратінсть - незмінні фактори. Кількість клітин Жордана даного розміру для кожного власного числа λ_j є число, що залежить від розмірності ядер $\dim(\operatorname{Ker}(A-\lambda_0 I)^k)$ і не залежить від базису.

Наостанок: переставленню клітин у Жорданової формі відповідає переставлення ланцюжків з власного та башти приєднаних до нього векторів

Застосування жорданової форми: функції від операторів, 4.5матриць

І. Многочлен від оператора, матриці

Задано $A:L \to L$ - лінійний оператор, $\mathbb{A} \in Mat(n \times n)$ - матриця

С у нас многочлен:

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

Визначимо, чому дорівнює
$$f(A)$$

 $f(A) = a_n A^n + \cdots + a_1 A + a_o A^0$

Обчислення:

$$A = UA_JU^{-1}$$

$$A = UA_JU^{-1}$$

$$A^2 = (UA_JU^{-1})(UA_JU^{-1}) = UA_J^2U^{-1}$$

$$A^k = UA^k_I U^{-1}$$

$$\begin{array}{l}
\dots \\
A^{k} = U A_{J}^{k} U^{-1} \\
\Rightarrow f(A) = U (a_{n} A_{J}^{n} + \dots + a_{1} A_{J} + a_{o} I) U^{-1} = U f(A_{J}) U^{-1}
\end{array}$$

$$\Rightarrow f(A) = U(a_n A_J^n + \dots + a_1 A_J + a_o I)U^{-1} = Uf(A_J)U^{-1}$$
Ми вже знаємо, що $\mathbb{A}_J = \begin{pmatrix} \boxed{J(\lambda_1)} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \boxed{J(\lambda_2)} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \boxed{J(\lambda_m)} \end{pmatrix}$

Тоді
$$\mathbb{A}^k_J = \left(\begin{array}{cccc} \boxed{J^k(\lambda_1)} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \boxed{J^k(\lambda_2)} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \boxed{J^k(\lambda_m)} \end{array} \right)$$

Таким чином,
$$f(\mathbb{A}_J) = \begin{pmatrix} \boxed{f(J(\lambda_1))} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \boxed{f(J(\lambda_2))} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \boxed{f(J(\lambda_m))} \end{pmatrix}$$

I це ще не все, ми знайдемо $f(J(\lambda_i))$

Нашу початкову функцію ще можна записати як таким чином:

$$f(x) = f(\lambda_j) + \frac{f'(\lambda_j)}{1!}(x - \lambda_j) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}(x - \lambda_j)^n$$

$$\Rightarrow f(J(\lambda_j)) = f(\lambda_j)I + \frac{f'(\lambda_j)}{1!}(J(\lambda_j) - \lambda_j I) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}(J(\lambda_j) - \lambda_j I)^n \sqsubseteq$$
 Зауважимо, що $J(\lambda_j) - \lambda_j I = \begin{pmatrix} \lambda_j - \lambda_j & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_j - \lambda_j & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_j - \lambda_j & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda_j - \lambda_j \end{pmatrix} =$

$$= \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix} = J(0)$$

$$\equiv f(\lambda_j)I + \frac{f'(\lambda_j)}{1!}J(0) - \lambda_jI) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}J^n(0)$$

Знайдемо $J^k(0)$ тепер (або просто згадаю д/з)

Збільшуючи степінь, ми зсуваємо діагональ з одиничок. А там буде степінь, починаючи з якого, всі матриці будуть нулевими А далі в формулі два випадки:

$$k \ge n : \Rightarrow f(J(\lambda_j)) = f(\lambda_j)J(0) + \dots + \frac{f^{(k-1)}(\lambda_j)}{(k-1)!}J^{k-1}(0)$$
$$k < n : \Rightarrow f(J(\lambda_j)) = f(\lambda_j)J(0) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}J^n(0)$$

Але в цьому випадку $f^{(n+1)}(\lambda_j) = \cdots = f^{(k)}(\lambda_j) = 0$. Все одно буде матриця той самої форми, як в першому випадку

матриця той самог форми, як в першому випадку
$$\Rightarrow f(J(\lambda_j)) = \begin{pmatrix} f(\lambda_j) & \frac{f'(\lambda_j)}{1!} & \frac{f''(\lambda_j)}{2!} & \dots & \frac{f^{(k-1)}(\lambda_j)}{(k-1)!} \\ 0 & f(\lambda_j) & \frac{f'(\lambda_j)}{1!} & \dots & \frac{f^{(k-2)}(\lambda_j)}{(k-2)!} \\ 0 & 0 & f(\lambda_j) & \dots & \frac{f^{(k-3)}(\lambda_j)}{(k-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & f(\lambda_j) \end{pmatrix}$$

Ну а далі просто підсумуємо і отримуємо остаточні дані

5 Евклідові простори

Definition 5.0.1. Задано L - лінійний простір над $\mathbb C$

Відображення $\varphi:L\times L\to\mathbb{C}$ називається півторалінійним

(білінійним) функціоналом, якщо для нього виконано такі властивості:

- 1) $\forall x, y, z \in L : \forall \alpha, \beta \in \mathbb{C} : \varphi(\alpha x + \beta y, z) = \alpha \varphi(x, z) + \beta \varphi(y, z)$
- 2) $\forall x, y, z \in L : \forall \alpha, \beta \in \mathbb{C} : \varphi(x, \alpha y + \beta z) = \overline{\alpha}\varphi(x, y) + \overline{\beta}\varphi(x, z)$

(якщо поле \mathbb{R} , то 2 пункту нема - це білінійний)

Example 5.0.2. Наступні функціонали є білінійними

- 1) $L = \mathbb{R}^3, \varphi(\vec{x}, \vec{y}) = (\vec{x}, \vec{y})$
- 2) $L = \mathbb{R}_n[x], \varphi(f,g) = \int_a^b f(x)g(x) dx$
- 3) $L = Mat(n \times n), \varphi(A, B) = tr(AB)$

Приклади комплексного випадку:

- 4) $L = \mathbb{C}^2, \varphi(\vec{z}, \vec{w}) = z_1 \overline{w_1} + z_2 \overline{w_2}$
- 5) $L = \mathbb{C}_n[x], \varphi(f,g) = \int_a^b f(x)\overline{g}(x) dx$
- 6) $L = Mat(n \times n), \varphi(A, B) = tr(A\overline{B}^T)$

Definition 5.0.3. Евклідовим простором називають лінійний простір E, на якому задано півторалінійний функціонал $\varphi: E \times E \to \mathbb{C}(\mathbb{R})$, для якого виконуються такі властивості:

- 1) $\forall x \in E : \varphi(x, x) \ge 0$
- $2) \varphi(x,x) = 0 \iff x = 0$
- 3) $\forall x, y \in E : \varphi(x, y) = \overline{\varphi(y, x)}$

Example 5.0.4. Приклади 1,2,4,6) лінійні простори є евклідовими

5.1 Ортогональність, процес Грама-Шмідта

Definition 5.1.1.(1). Задано E - евклідовий простір із (\cdot,\cdot)

Елементи $x,y\in E$ називаються **ортогональними**, якщо (x,y)=0 Позначення: $x\perp y$

Definition 5.1.1.(2). Задано E - евклідовий простір із (\cdot, \cdot)

Система елементів $\{x_1, \ldots, x_n\}$ називається **ортогональною**, якщо

 $\forall j \neq k : (x_j, x_k) = 0$

Позначення: $x_i \perp x_k$

Definition 5.1.1.(3). Задано E - евклідовий простір із (\cdot, \cdot) Система елементів $\{x_1, \dots, x_n\}$ називається **ортонормованою**, якщо $\forall j \neq k : (x_j, x_k) = 0$, а також $(x_j, x_j) = 1$ Скорочено: $(x_j, x_k) = \delta_{jk}$ - символ Кронекера

Proposition 5.1.2. Задано E - евклідовий простір із (\cdot, \cdot) Система $\{x_1, \dots, x_m\}$ - ортогональна. Тоді вона ж - л.н.з. **Proof.**

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0 \Rightarrow \forall j : (\alpha_1 x_1 + \dots + \alpha_n x_n, x_j) = 0$$
 $\Rightarrow \alpha_1(x_1, x_j) + \dots + \alpha_j(x_j, x_j) + \dots + \alpha_m(x_m, x_j) = 0$
Отримали, що $\alpha_j(x_j, x_j) = 0 \Rightarrow \alpha_j = 0$
I це $\forall j$. Отже, л.н.з. \blacksquare

Corollary 5.1.2. Ортонормована система - л.н.з.

Задано E - евклідовий простір із (\cdot, \cdot)

Нехай є система $\{x_1, \ldots, x_m\}$. Побудуємо еквівалентну їй ортонормовану систему

0)
$$\tilde{e_1} = x_1$$

1)
$$\tilde{e_2} = x_2 - \alpha_{21}\tilde{e_1}$$

Знайдемо $lpha_{21}$ з умови $(ilde{e_2}, ilde{e_1})=0$

$$(\tilde{e_2}, \tilde{e_1}) = (x_2 - \alpha_{21}\tilde{e_1}, \tilde{e_1}) = (x_2, \tilde{e_1}) - \alpha_{21}(\tilde{e_1}, \tilde{e_1})$$

$$\Rightarrow \alpha_{21} = \frac{(x_2, \tilde{e_1})}{(\tilde{e_1}, \tilde{e_1})}$$

Зауважимо, що $\{x_1, x_2\} \sim \{\tilde{e_1}, \tilde{e_2}\}$

2)
$$\tilde{e_3} = x_3 - \alpha_{31}\tilde{e_1} - \alpha_{32}\tilde{e_2}$$

Знайдемо α_{31}, α_{32} з умов $\tilde{e_3} \perp \tilde{e_1}, \tilde{e_2} \perp \tilde{e_1}$

$$\begin{cases} (\tilde{e_3}, \tilde{e_1}) = 0 \\ (\tilde{e_3}, \tilde{e_2}) = 0 \end{cases}$$
 Аналогічним чином отримаємо:

$$\alpha_{31} = \frac{(x_3, \tilde{e_1})}{(\tilde{e_1}, \tilde{e_1})}$$
 $\alpha_{32} = \frac{(x_3, \tilde{e_2})}{(\tilde{e_2}, \tilde{e_2})}$

Зауважимо, що $\{x_1, x_2, x_3\} \sim \{\tilde{e_1}, \tilde{e_2}, \tilde{e_3}\}$

:

Узагальнюючи, отримаемо наступне:

$$\alpha_{ks} = \frac{(x_k, \tilde{e_s})}{(\tilde{e_s}, \tilde{e_s})}, \text{ TYT } s = 1, \dots, k-1$$

Більш того, $\{x_1,\ldots,x_k\} \sim \{\tilde{e_1},\ldots,\tilde{e_k}\}$

Важливі властивості:

1)
$$\{x_1, \ldots, x_k\}$$
 - л.н.з. $\{x_1, \ldots, x_k\} \sim \{\tilde{e_1}, \ldots, \tilde{e_k}\} \Rightarrow \forall j : \tilde{e_j} \neq 0$ rank = k

2)
$$\{x_1,\ldots,x_{k-1}\}$$
 - л.н.з $\{x_1,\ldots,x_{k-1},x_k\}$ - л.з. $\{\tilde{e_1},\ldots,\tilde{e_{k-1}},\tilde{e_k}\}\sim\{x_1,\ldots,x_{k-1},x_k\}\sim\{x_1,\ldots,x_{k-1}\}\sim\{\tilde{e_1},\ldots,\tilde{e_{k-1}}\}$ Остання система містить $\mathrm{rank}=k-1$

Тому перша система містить $\operatorname{rank} = k - 1$

Більш того, $\{\tilde{e_1}, \dots, \tilde{e_{k-1}}\}$ - л.н.з.

Якщо $\tilde{e_k} \neq 0$, то наша система буде л.н.з., що суперечить рангу Отже, $\tilde{e_k} = 0$

Остаточний висновок:

$$\{x_1,\ldots,x_m\} \stackrel{\Gamma_{\mathrm{P}\text{-}\mathrm{IIIM}}}{ o} \{\tilde{e_1},\ldots,\tilde{e_m}\}$$
 - ортогональна $\forall k: \{x_1,\ldots,x_k\} \sim \{\tilde{e_1},\ldots,\tilde{e_k}\}$ Якщо $\{x_1,\ldots,x_{k-1}\}$ - max. л.н.з., то $\tilde{e_k}=0$

Остання дія, ортонормуємо нашу систему:

$$orall k = \{1, \dots, m\} : e_k = \frac{\tilde{e_k}}{\sqrt{(\tilde{e_k}, \tilde{e_k})}}$$
Тоді $(e_k, e_j) = \frac{(\tilde{e_k}, \tilde{e_j})}{\sqrt{(\tilde{e_k}, \tilde{e_k})}\sqrt{(\tilde{e_j}, \tilde{e_j})}} = 0$
 $(e_k, e_k) = \frac{(\tilde{e_k}, \tilde{e_k})}{(\tilde{e_k}, \tilde{e_k})} = 1$

Theorem 5.1.3. Нерівність Коші-Буняковського

Заданий E - евклідовий простір із (\cdot, \cdot)

$$\forall x, y \in E : |(x,y)|^2 \le (x,x)(y,y)$$

Proof.

І. Випадок ℝ

Зауважимо, що
$$\forall t \in \mathbb{R}(x+ty,x+ty) \geq 0$$

 $\Rightarrow (x,x)+t(x,y)+t(y,x)+t^2(y,y)=t^2(y,y)+2t(x,y)+(x,x) \geq 0$
 $D=4(x,y)^2-4(x,x)(y,y)\leq 0$
 $\Rightarrow (x,y)^2\leq (x,x)(y,y)$

II. Випадок С

$$\forall z \in \mathbb{C} : z = |z|e^{i\varphi}$$

$$\Rightarrow |z| = e^{i\varphi}z$$

$$(x,y) = |(x,y)|e^{i\varphi}$$

Розглянемо $\forall t \in \mathbb{R} : (x + te^{i\varphi} + x + te^{i\varphi}) \geq 0$

$$\Rightarrow (x,x) + \underbrace{(x,te^{i\varphi}y) + (te^{i\varphi}y,x) + (te^{i\varphi}y,te^{i\varphi}y)}_{= (x,x) + te^{i\varphi}(x,y) + te^{i\varphi}(y,x) + te^{i\varphi}te^{i\varphi}(y,y) = 3$$
Зауважимо, що $e^{i\varphi} = e^{-i\varphi}$

$$= (x,x) + te^{-i\varphi}(x,y) + te^{i\varphi}(y,x) + t^2(y,y) = 1$$
Далі $(x,y) = \underbrace{|(x,y)|e^{i\varphi}}_{= (x,y)} \Rightarrow \underbrace{e^{-i\varphi}(x,y) = |(x,y)|}_{= (x,y)} = e^{-i\varphi}(x,y) = |(x,y)|$

$$\Rightarrow e^{i\varphi}(y,x) = \underbrace{e^{-i\varphi}(x,y)}_{= (x,y)} = \underbrace{|(x,y)|}_{= (x,y)} = 0$$

$$D = 4|(x,y)|^2 - 4(x,x)(y,y) \blacksquare$$

5.2 Нормований простір та інші поняття

Definition 5.2.1. Задано E - евклідовий простір із (\cdot, \cdot) **Нормаллю** елемента x називають величину

$$||x|| = \sqrt{(x,x)}$$

Proposition 5.2.2. Задано E - евклідовий простір із (\cdot, \cdot)

Для нормалі виконуються умови:

- $1) \ \forall x \in E : ||x|| \ge 0$
- $2) ||x|| = 0 \iff x = 0$
- 3) $\forall x \in E : \forall \lambda \in \mathbb{C} : ||\lambda x|| = |\lambda| \cdot ||x||$
- 4) $\forall x, y \in E : ||x + y|| \le ||x|| + ||y||$

Proof.

1),2) все зрозуміло

3)
$$||\lambda x|| = \sqrt{(\lambda x, \lambda x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \cdot ||x||$$

4)
$$||x + y||^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) = (y, x) = \overline{(x, y)}$$

 $\Rightarrow (x, y) + (y, x) = 2 \operatorname{Re}(x, y)$

$$= ||x||^2 + 2 \operatorname{Re}(x, y) + ||y||^2 \le ||x||^2 + 2|(x, y)| + ||y||^2 \le ||x||^2 + 2||x||^2 + 2$$

$$= ||x||^2 + 2\operatorname{Re}(x,y) + ||y||^2 \le ||x||^2 + 2|(x,y)| + ||y||^2 \le ||x||^2 + 2||x||||y|| + ||y||^2 = (||x|| + ||y||)^2 \blacksquare$$

Definition 5.2.3. Нормованим простором називають лінійний простір N із заданою на ньому функцією $||\cdot||:N\to\mathbb{R}$, що задовільняють умовам 1)-4)

Example 5.2.4.(1). $E, (\cdot, \cdot),$ евклідовий, $||x|| = \sqrt{(x,x)}$ - евклідова норма

Example 5.2.4.(2).
$$N = \mathbb{R}^n$$
, $||\vec{x}|| = \sum_{j=1}^n |x_j|$
Example 5.2.4.(3). $N = \mathbb{C}^n$, $||\vec{z}|| = \sqrt[p]{\sum_{j=1}^n |z_j|^p}$, $p > 1$
Example 5.2.4.(4). $N = C([a, b])$, $||f|| = \max_{[a, b]} |f(x)|$

Definition 5.2.5. Відстанню між елементами x та y евклідового простору E із (\cdot,\cdot) (або нормованого простору N) називають число

$$\rho(x,y) = ||x - y||$$

Proposition 5.2.6. Властивості

- 1) $\forall x, y : \rho(x, y) \geq 0$
- 2) $\rho(x,y) = 0 \iff x = y$
- 3) $\rho(x,y) = \rho(y,x)$
- 4) $\forall x, y, z : \rho(x, y) \leq \rho(x, z) + \rho(z, x)$

Definition 5.2.7. Задано E - дійсний евклідовий простір із (\cdot, \cdot) **Косінусом кута між** x, y називається число:

$$\cos \alpha = \frac{(x,y)}{||x|| \cdot ||y||}$$

Ортонормований базис, побудова 5.3

Задано E - евклідовий простір із (\cdot,\cdot)

Нехай $\{f_1,\ldots,f_n\}$ - базис в E

Застосуємо до цієї системи ортогоналізацію Грама-Шмідта

Отримаємо ортонормовану систему $\{e_1, \dots, e_n\}$

$$\{f_1,\ldots,f_n\}\sim \{e_1,\ldots,e_n\}\Rightarrow span\{f_1,\ldots,f_n\}=E=span\{e_1,\ldots,e_n\}$$

Отже, $\{e_1,\ldots,e_n\}$ - ортонормований базис E

Крім того,
$$(e_j, e_k) = \delta_{jk} = \begin{cases} 0, j \neq k \\ 1, j = k \end{cases}$$

Lemma 5.3.1. Розклад Фур'є

Задано E - евклідовий простір із (\cdot,\cdot) та $\{e_1,\ldots,e_n\}$ - ортонормований базис

Тоді
$$\forall x \in E : x = (x, e_1)e_1 + \dots + (x, e_n)e_n$$

Proof.

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n = \sum_{j=1}^n \alpha_j e_j$$

$$\forall e_k : (x, e_k) = \left(\sum_{j=1}^n \alpha_j e_j, e_k\right) = \sum_{j=1}^n \alpha_j (e_j, e_k) = \alpha_k$$

I BCe ■

Тепер розглянемо розклад елемента евклідового простору за довільним базисом

$$\{f_1,\ldots,f_n\}$$
 - базис

$$e \in E : x = \alpha_1 f_1 + \dots + \alpha_n f_n = \sum_{j=1}^n \alpha_j f_j$$

Знайдемо коефіцієнти:

$$(x, f_1) = \left(\sum_{j=1}^{n} \alpha_j f_j, f_1\right) = \sum_{j=1}^{n} \alpha_j (f_j, f_1)$$

$$(x, f_2) = \sum_{j=1}^{n} \alpha_j(f_j, f_2)$$

$$(x, f_n) = \sum_{j=1}^n \alpha_j(f_j, f_n)$$

Отримали систему рівнянь відносно
$$\alpha_1, \dots, \alpha_n$$
:
$$\begin{cases} \alpha_1(f_1, f_1) + \alpha_2(f_2, f_1) + \dots + \alpha_n(f_n, f_1) = (x, f_1) \\ \alpha_1(f_1, f_2) + \alpha_2(f_2, f_2) + \dots + \alpha_n(f_n, f_2) = (x, f_2) \\ \dots \\ \alpha_n(f_1, f_n) + \alpha_2(f_2, f_n) + \dots + \alpha_n(f_n, f_n) = (x, f_n) \end{cases}$$

Або маємо матричний вид:

Або маємо матричний вид:
$$\Gamma = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix} - \text{матриця Грама}$$

$$\vec{\alpha} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix} \qquad [\vec{x}] = \begin{pmatrix} (x, f_1) \\ (x, f_2) \\ \vdots \end{pmatrix}$$

$$\Rightarrow \Gamma \vec{\alpha} = [\vec{x}]$$

Оскільки $\forall x: \exists! \alpha_1, \ldots, \alpha_n$, то система має єдиний розв'язок, тому $\exists \Gamma^{-1}$ Тоді:

$$\vec{\alpha} = \Gamma^{-1}[\vec{x}]$$

5.4 Ортогональні підпростори, ортогональне доповнення

Definition 5.4.1. Задано E - евклідовий простір із (\cdot, \cdot) Підпростори L_1, L_2 називаються **ортогональними**, якщо

$$\forall x \in L_1, \forall y \in L_2 : (x, y) = 0$$

Позначення: $L_1 \perp L_2$

Proposition 5.4.2. Задано E - евклідовий простір із (\cdot, \cdot) $L_1 \perp L_2$ - два підпростори. Тоді $L_1 \cap L_2 = \{0\}$ **Proof.**

$$z \in L_1 \cap L_2 \Rightarrow \begin{cases} z \in L_1 \\ z \in L_2 \end{cases} \Rightarrow (z, z) = 0 \Rightarrow z = 0 \blacksquare$$

З цього випливає, що ортогональні простори є прямою сумою: $L_1 \bigoplus L_2$

Definition 5.4.3. Задано E - евклідовий простір із (\cdot, \cdot) та L - підпростір **Ортогональним доповненням до** L називається множина

$$L^{\perp} = \{ y \in E : \forall x \in L : (x, y) = 0 \}$$

Proposition 5.4.4. Задано E - евклідовий простір із (\cdot,\cdot) та L - підпростір Тоді L^\perp - теж лінійний підпростір

Proof.

$$\forall y_1, y_2 \in L^{\perp} : \forall \alpha, \beta \in \mathbb{R}(\mathbb{C}) : \\ \forall x \in L : (x, \alpha y_1 + \beta y_2) = \overline{\alpha}(x, y_1) + \overline{\beta}(x, y_2) = \overline{\alpha} \cdot 0 + \overline{\beta} \cdot 0 = 0 \\ \Rightarrow \alpha y_1 + \beta y_2 \in L^{\perp} \blacksquare$$

Theorem 5.4.5. Ортогональний розклад евклідового простору

Задано E - евклідовий простір із (\cdot,\cdot) та L - підпростір

Тоді
$$E = L \bigoplus L^{\perp}$$

Proof.

$$\{f_1,\ldots,f_k\}$$
 - базис L $\{f_1,\ldots,f_k\} \stackrel{\Gamma_{\text{p.-IIIM.}}}{\to} \{e_1,\ldots,e_k\}$ - базис L Доповнимо його до базису $E\colon\{e_1,\ldots,e_k,f_{k+1},f_n\}$ $\{e_1,\ldots,e_k,f_{k+1},f_n\} \stackrel{\Gamma_{\text{p.-IIIM.}}}{\to} \{e_1,\ldots,e_k,e_{k+1},\ldots,e_n\}$ - ортонормований базис E

(перші k елементи взагалі не змінюються)

Перевіримо, що
$$\forall \alpha_{k+1}, \dots, \alpha_n \in \mathbb{R}(\mathbb{C})$$
:

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_ne_n \in L^{\perp}$$

$$\forall x \in L : x = \sum_{j=1}^{k} \alpha_j e_j$$

$$y = \sum_{m=k+1}^{n} \alpha_m e_m$$

Перемножимо ці два елементи:

$$(x,y) = \left(\sum_{j=1}^{k} \alpha_j e_j, \sum_{m=k+1}^{n} \alpha_m e_m\right) = \sum_{j=1}^{k} \sum_{m=1}^{n} \alpha_j \overline{\alpha_m}(e_j, e_m) = j \le k, m \ge k+1 \Rightarrow j \ne m \Rightarrow (e_j, e_m) = 0$$

Отже,
$$y = \alpha_{k+1}e_{k+1} + \cdots + \alpha_n e_n \in L^{\perp}$$

Tomy
$$span\{e_{k+1},\ldots,e_k\}\subset L^{\perp}$$

$$\dim L^{\perp} \ge n - k$$

Крім того, L, L^{\perp} - підпростори, $L \perp L^{\perp}$, тому $L \bigoplus L^{\perp}$ - ортогональна сума

Tomy
$$L \bigoplus L^{\perp} \subset E$$

$$\Rightarrow \dim(L \bigoplus L^{\perp}) = \dim L + \dim L^{\perp} \le n$$

$$\Rightarrow \dim L^{\perp} \leq n - k$$

Остаточно, $\dim L^{\perp} = n - k$

Підсумовуючи, отримаємо, що $L^{\perp}=span\{e_{k+1},\ldots,e_n\}$

I нарешті, $E = L \bigoplus L^{\perp} \blacksquare$

Theorem 5.4.6. Єдиність ортогонального розкладу

Задано E - евклідовий простір із (\cdot,\cdot) та L,M - такі підпростри, що $E=L \bigoplus M$

Тоді
$$M = L^{\perp}$$

Proof.

За умовою,
$$M \perp L$$
, тож $M \subset L^{\perp}$
$$\begin{cases} \dim M = \dim E - \dim L \\ \dim L^{\perp} = \dim E - \dim L \end{cases} \Rightarrow M = L^{\perp} \blacksquare$$

Remark 5.4.6. Інколи використовують позначення: $E \ominus L = L^{\perp}$

Theorem 5.4.7. Задано E - евклідовий простір із (\cdot,\cdot) та L,L_1,L_2 - підпростори

Тоді:

$$0) E^{\perp} = \{0\} \qquad \{0\}^{\perp} = E$$

1)
$$(L^{\perp})^{\perp} = L$$

2)
$$L_1 \subset L_2 \Rightarrow L_2^{\perp} \subset L_1^{\perp}$$

3)
$$(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$$

4)
$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$$

Proof.

$$0) \ y \in E^{\perp} \Rightarrow \forall z \in E : (y, z) = 0$$

Беремо $z = y \Rightarrow (y, y) = 0 \Rightarrow y = 0$
 $\{0\}^{\perp} = E$ - зрозуміло

1)
$$E = L \bigoplus L^{\perp}$$
 $E = L^{\perp} \bigoplus (L^{\perp})^{\perp}$ 3 единості розкладу, маємо: $(L^{\perp})^{\perp} = L$

2)
$$\forall y \in L_2^{\perp}$$
 маємо: $\forall x \in L_1 \Rightarrow x \in L_2 : (y, x) = 0 \Rightarrow y \in L_1^{\perp}$ Отже, $L_2^{\perp} \subset L_1^{\perp}$

4)
$$\forall z \in (L_1 + L_2)^{\perp} : \forall x \in L_1, y \in L_2 : x + y \in L_1 + L_2 : (z, x + y) = 0$$

Tomy $(z, x + y) = 0 \iff \begin{cases} (z, x) = 0 \\ (z, y) = 0 \end{cases} \iff \begin{cases} z \in L_1^{\perp} \\ z \in L_2^{\perp} \end{cases} \iff z \in L_1^{\perp} \cap L_2^{\perp}$

3)
$$L_1^{\perp} = M_1, L_2^{\perp} = M_2$$

 $\Rightarrow L_1 = M_1^{\perp}, L_2 = M_2^{\perp}$
З властивості 4) маємо:
 $(M_1 + M_2)^{\perp} = M_1^{\perp} \cap M_2^{\perp}$
 $(L_1^{\perp} + L_2^{\perp})^{\perp} = L_1 \cap L_2$
 $L_1^{\perp} + L_2^{\perp} = ((L_1^{\perp} + L_2^{\perp})^{\perp})^{\perp} = (L_1 \cap L_2)^{\perp} \blacksquare$

Definition 5.4.8. Задано E - евклідовий простір із (\cdot, \cdot) та L - підпростір $E = L \bigoplus L^{\perp}$, тобто $\forall z \in E : \exists ! x \in L : \exists ! y \in L^{\perp} : z = x + y$

Елемент x називають **ортогональною проєкцією** елемента z на L Позначення: $x=pr_Lz$

Елемент y називають **ортогональною складовою** елемента z відносно L

Позначення: $y = ort_L z$ $\Rightarrow z = pr_L z + ort_L z$ $pr_L z \in L, ort_L z \in L^{\perp}$ Тому розклад є єдиним

Example 5.4.9.
$$E = \mathbb{R}^3$$
, $L = span\{\vec{a_1} = \begin{pmatrix} 1 & -2 & 3 \end{pmatrix} \vec{a_2} = \begin{pmatrix} 3 & 1 & 1 \end{pmatrix}\}$
 $\vec{z} = (5, 2, -1)$
 $pr_L \vec{z} = \alpha_1 \vec{a_1} + \alpha_2 \vec{a_2}$

$$\begin{aligned}
ort_L \vec{z} &= z - pr_L \vec{z} = z - \alpha_1 \vec{a_1} - \alpha_2 \vec{a_2} \perp \vec{a_1}, \vec{a_2} \\
\Rightarrow \begin{cases}
(ort_L \vec{z}, \vec{a_1}) &= 0 \\
(ort_L \vec{z}, \vec{a_2}) &= 0
\end{cases} \Rightarrow \begin{cases}
(\vec{z}, \vec{a_1}) - \alpha_1 (\vec{a_1}, \vec{a_1}) - \alpha_2 (\vec{a_2}, \vec{a_1}) &= 0 \\
(\vec{z}, \vec{a_2}) - \alpha_1 (\vec{a_1}, \vec{a_2}) - \alpha_2 (\vec{a_2}, \vec{a_2}) &= 0
\end{cases}$$

Знайдемо всі скалярні добутки

$$(\vec{a_1}, \vec{a_1}) = 14, (\vec{a_1}, \vec{a_2}) = 4, (\vec{a_2}, \vec{a_2}) = 11$$

$$(\vec{z}, \vec{a_1}) = -2, (\vec{z}, \vec{a_2}) = 16$$

Отримуємо:

Отримуемо.
$$\begin{cases} 14\alpha_1 + 4\alpha_2 = -2 \\ 4\alpha_1 + 11\alpha_2 = 16 \end{cases}$$

$$\alpha_1 = -\frac{43}{69}, \alpha_2 = \frac{116}{69}$$

$$\Rightarrow pr_L \vec{z} = -\frac{43}{69} \vec{a_1} + \frac{116}{69} \vec{a_2} = \dots$$

$$\Rightarrow ort_L \vec{z} = \vec{z} - pr_L \vec{z}$$

Загальний пошук проєкції та складової:

Маємо E, (\cdot, \cdot)

 $L = span\{a_1, \ldots, a_m\}$ (вже нехай буде л.н.з.)

$$z \in E \Rightarrow z = pr_L z + ort_L z$$

$$pr_L z = \sum_{j=1}^m \alpha_j a_j$$

$$ort_L z = z - pr_L z = z - \sum_{j=1}^m \alpha_j a_j$$

Причому $\forall k = 1, \dots, m : ort_L z \perp a_k \Rightarrow$

Причому
$$\forall k=1,\ldots,m: ort_Lz\perp a_k\Rightarrow$$

$$\begin{cases} (ort_Lz,a_1)=0\\ \ldots\\ (ort_Lz,a_m)=0 \end{cases} \Rightarrow \begin{cases} (z-\sum_{j=1}^m\alpha_ja_j,a_1)=0\\ \ldots\\ (z-\sum_{j=1}^m\alpha_ja_j,a_m)=0 \end{cases} \Rightarrow \begin{cases} \sum_{j=1}^m\alpha_j(a_j,a_1)=(z,a_1)\\ \ldots\\ \sum_{j=1}^m\alpha_j(a_j,a_m)=(z,a_m) \end{cases}$$
 Матриця системи:
$$\begin{pmatrix} (a_1,a_1)&\ldots&(a_m,a_1)\\ \vdots&\ddots&\vdots\\ (a_1,a_m)&\ldots&(a_m,a_m) \end{pmatrix} = \Gamma \text{ - матриця Грама}$$
 Оскільки $\{a_1,\ldots,a_m\}$ - л.н.з., то $\exists \Gamma^{-1}$, а тому існує єдиний розв'язок

Матриця системи:
$$\begin{pmatrix} (a_1,a_1) & \dots & (a_m,a_1) \\ \vdots & \ddots & \vdots \\ (a_1,a_m) & \dots & (a_m,a_m) \end{pmatrix} = \Gamma$$
 - матриця Грама

Оскільки $\{a_1,\ldots,a_m\}$ - л.н.з., то $\exists \Gamma^{-1},$ а тому існує єдиний розв'язок

5.5 Застосування, спряжений оператор

Задано E - евклідовий простір із (\cdot, \cdot) та L - лінійний підпростір, $z \in E$ **Definition 5.5.1. Відстань від** z до L називаєтья число:

$$\rho(z,L) = \inf_{y \in L} ||z - y||$$

Lemma 5.5.2. $\rho(z,L) = ||ort_L z||$ і ця відстань досягається на елементі $y = pr_L z$

Proof.

$$||z-y||^2 = (z-y,z-y) = \underbrace{(ort_L z + pr_L z - y, ort_L z + pr_L z - y)}_{\in L} + \underbrace{(pr_L z - y, ort_L z)}_{\in L} + \underbrace{(pr_L z - y, ort_L z)}_{\in L} + \underbrace{(pr_L z - y, ort_L z)}_{=0} + \underbrace{(pr_L z - y, pr_L z - y)}_{=0} + ||pr_L z - y||^2 \ge ||ort_L z||^2$$

$$\Rightarrow \forall y: ||z-y|| \ge ||ort_L z||$$
А рівність досягається при $y = pr_L z$

$$\text{Тому inf}_{y \in L} ||z-y|| = ||ort_L z|| = \rho(z, L) \blacksquare$$

Definition 5.5.3. Задано L - лінійний простір

Множина всіх лінійних функціоналів над L утворює **спряжений лінійний простір**

Позначення: L^*

Remark 5.5.3. B E, (\cdot, \cdot)

 $\forall f \in E$: відображення $\varphi: E \to \mathbb{R}(\mathbb{C}): \varphi(x) = (x,f)$ - є лінійним функціоналом

Theorem 5.5.4. Теорема Pica (для лінійних функціоналів)

Задано E - евклідовий простір із (\cdot,\cdot)

$$\forall \varphi \in E^* : \exists! f \in E : \forall x \in E : \varphi(x) = (x, f)$$

Proof.

Для
$$\varphi \equiv 0 \Rightarrow f = 0$$

Тепер $\varphi \not\equiv 0$:

1-й спосіб: нехай $\{e_1,\dots,e_n\}$ - ортонормований базис в E

Тоді покладемо $f = \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n$

$$\forall x \in L : \varphi(x) = \varphi\left(\sum_{j=1}^{n} x_j e_j\right) = \sum_{j=1}^{n} x_j \varphi(e_j)$$

$$(x,f) = \left(\sum_{j=1}^{n} x_j e_j, \sum_{k=1}^{n} \overline{\varphi(e_k)} e_k\right) = \sum_{j=1}^{n} \sum_{k=1}^{n} x_j \overline{\overline{\varphi(e_k)}} (e_j, e_k) = \sum_{j=1}^{n} x_j \varphi(e_j) \cdot 1$$

Отже, $\varphi(x) = (x, f)$

2-й спосіб:
$$\varphi: E \to \mathbb{R}(\mathbb{C}), L = \mathrm{Ker} \varphi, \dim L = n-1$$

Розглянемо L^{\perp} , $\dim L^{\perp} = 1$

Нехай $w \in L^{\perp}, w \neq 0$

Оберемо $f \in L$

$$f(w) = (w, f), f = \alpha w$$

$$\varphi(w) = (w, \alpha w) = \overline{\alpha}(w, w)$$

$$\Rightarrow \overline{\alpha} = \frac{\varphi(w)}{(w,w)} \Rightarrow \alpha = \frac{\overline{\varphi(w)}}{(w,w)}$$

Покажемо, що $f = \alpha w$ для знайденого щойно α є шуканою

 $\forall x \in E : x = pr_L x + ort_L x = pr_L x + \beta f$

$$\varphi(x) = \varphi(pr_L x + \beta f) = \beta \varphi(f)$$

$$(x, f) = (pr_L x + \beta f, f) = (pr_L x, f) + \beta(\alpha w, f) = \beta \alpha(w, f) = \beta \alpha \varphi(w) = \beta \varphi(\alpha w) = \beta \varphi(f)$$

Отже,
$$\varphi(x) = (x, f)$$

Доведемо єдиність

Нехай $\exists f' \in E : \varphi(x) = (x, f')$

В той же час, $\varphi(x) = (x, f)$

$$\Rightarrow \forall x \in E : (x, f) - (x, f') = (x, f - f') = 0$$

$$\Rightarrow f - f' \in E^{\perp} = \{0\} \Rightarrow f' = f \blacksquare$$

Theorem 5.5.5. Теорема Pica (для півторалінійних функціоналів)

Задано E - евклідовий простір із (\cdot, \cdot)

 $\varphi(\cdot,\cdot):E imes E o \mathbb{R}(\mathbb{C})$ - наш півторалінійний функціонал

Тоді $\exists !A: E \to E$ - такий лінійний оператор, що:

$$\forall x, y \in E : \varphi(x, y) = (x, Ay)$$

Proof.

Зафіксуємо $y\in E$, тоді $\varphi(x,y)=\psi_y(x)$ - лінійний функціонал над E За попередньою теоремою, для нього $\exists!f_y\in E:\psi_y(x)=(x,f_y)$

Отримаємо відображення $E \ni y \stackrel{A}{\to} f_u \in E$

$$Ay = f_y$$
, тобто

$$\varphi(x,y) = \psi_y(x) = (x, f_y) = (x, Ay)$$

Доведемо, що побудоване відображення $A \in \pi$ інійним оператором $\forall y_1, y_2 \in E : \forall \alpha \in \mathbb{R}(\mathbb{C}) :$

$$y = \alpha y_1 + y_2$$

З одного боку:

$$\varphi(x,y) = (x,Ay)$$

З іншого боку:

$$\varphi(x,y) = \varphi(x,\alpha y_1 + y_2) = \alpha \varphi(x,y_1) + \varphi(x,y_2) = \alpha(x,Ay_1) + (x,Ay_2) = (x,\alpha Ay_1) + (x,Ay_2) = (x,\alpha Ay_1 + Ay_2)$$

Таким чином: $Ay = A(\alpha Ay_1 + Ay_2) = \alpha Ay_1 + Ay_2$

Доведемо єдиність Нехай $\exists A': \forall x,y \in E: \varphi(x,y) = (x,A'y)$

Тоді $\forall x, y \in E : (x, Ay) = \varphi(x, y) = (x, A'y)$

$$\Rightarrow 0 = (x, Ay) - (x, A'y) = (x, (A - A')y)$$

$$\Rightarrow (A - A')y = 0 \Rightarrow A = A' \blacksquare$$

Definition 5.5.6. Задано E - евклідовий простір із (\cdot,\cdot) та $A:E\to E$ - лінійний опреатор

За теоремою Ріса, $\exists !B: E \to E: \forall x,y \in E: (Ax,y) = \varphi(x,y) = (x,By)$

Оператор B називається **спряженим** до A

Позначення: A^*

Тобто якщо $\forall A: E \to E: \exists !A^*: E \to E:$

 $\forall x, y \in E : (Ax, y) = (x, A^*y)$

Proposition 5.5.7. Властивості

- 0) $I: E \to E: I^* = I$ $0: E \to E: 0^* = 0$
- 1) $(A+B)^* = A^* + B^*$
- 2) $(\alpha A)^* = \overline{\alpha} A^*$
- 3) $(AB)^* = B^*A^*$
- 4) $(x, Ay) = (A^*x, y)$
- 5) $(A^*)^* = A$

Proof.

0) $\forall x, y \in E : (Ix, y) = (x, y) = (x, Iy)$

З іншого боку,

$$(Ix, y) = (x, I^*y)$$

$$\Rightarrow I = I^*$$

Так само й для 0

- 1) $(x, (A+B)^*y) = ((A+B)x, y) = (Ax+Bx, y) = (Ax, y) + (Bx, y) = (x, A^*y) + (x, B^*y) = (x, (A^*+B^*)y)$
- $\Rightarrow (A+B)^* = A^* + B^*$
- 2) аналогічно
- 3) $(x, (AB)^*y) = (ABx, y) \stackrel{Bx=z}{=} (Az, y) = (z, A^*y) = (Bx, A^*y) \stackrel{A^*y=w}{=} (Bx, w) = (x, B^*w) = (x, B^*A^*y)$ $\Rightarrow (AB)^* = B^*A^*$
- 4) $(x, Ay) = \overline{Ay}, \overline{x} = \overline{y}, \overline{A^*x} = (A^*x, y)$
- 5) $((A^*)^*x, y) = (x, A^*y) = (Ax, y) \Rightarrow (A^*)^* = A \blacksquare$

Theorem 5.5.8. Задано E - евклідовий простір із (\cdot, \cdot) та $A: E \to E$ лінійний оператор

Тоді $E = \operatorname{Ker} A^* \bigoplus \operatorname{Im} A$

Або $E = \text{Ker} A \bigoplus \text{Im } A^*$

Proof.

 $\forall x \in \text{Ker} A^* : A^* x = 0$

$$\iff \forall y \in E : 0 = (A^*x, y) = (x, Ay) \iff x \in (\operatorname{Im} A)^{\perp}$$

$$\operatorname{Ker} A^* = (Im A)^{\perp} \Rightarrow E = \operatorname{Im} A \bigoplus (\operatorname{Im} A)^{\perp} = \ker A^* \bigoplus \operatorname{Im} A$$

Друга рівність аналогічна ■

Матриця спряженого оператора, зв'язок 5.6

Пригадаємо дещо:

Задано E - евклідовий простір із (\cdot,\cdot) та $\{f_1,\ldots,f_n\}$ - деякий базис

$$x=lpha_1f_1+\cdots+lpha_nf_n$$
 - розклад

Вже отримували, що $\Gamma \vec{\alpha} = [\vec{x}]$

$$\Gamma = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix} \qquad \vec{\alpha} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \qquad [\vec{x}] = \begin{pmatrix} (x, f_1) \\ (x, f_2) \\ \vdots \\ (x, f_n) \end{pmatrix}$$

Розглянемо оператор A:E' -

Побудуємо його матрицю в базисі $\{f_1,\ldots,f_n\}$

$$Af_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{n1}f_n$$

Коефіцієнти $a_{11}, a_{21}, \ldots, a_{n1}$ знаходяться за алгоритмом: $\Gamma \vec{\alpha} = [\vec{x}]$

$$\text{Тут } \vec{a_1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$

$$\Gamma \vec{a_1} = [\vec{Af_1}] \Rightarrow \vec{a_1} = \Gamma^{-1}[\vec{Af_1}]$$

$$\Gamma \vec{a_1} = [\vec{Af_1}] \Rightarrow \vec{a_1} = \Gamma^{-1}[\vec{Af_1}]$$
де $[\vec{Af_1}] = \begin{pmatrix} (Af_1, f_1) \\ (Af_1, f_2) \\ \vdots \\ (Af_1, f_n) \end{pmatrix}$

Такі самі процедури для $\vec{a_2}, \ldots, \vec{a_n}$

Тоді
$$\Gamma \mathbb{A} = [A] \iff \mathbb{A} = \Gamma^{-1}[A]$$

$$[A] = ([\vec{Af_1}], [\vec{Af_2}], \dots, [\vec{Af_n}])$$

Аналогічні побудови проведемо для спряженого оператора $A^*: E \to E$ Тоді $\Gamma \mathbb{A}^* = [A^*] \Rightarrow \mathbb{A}^* = \Gamma^{-1}[A^*]$

$$[A^*] = ([A^*f_1], [A^*f_2], \dots, [A^*f_n])$$
 Пограемось з ним більш детально:
$$[A^*] = \begin{pmatrix} (A^*f_1, f_1) & (A^*f_2, f_1) & \dots & (A^*f_n, f_1) \\ (A^*f_1, f_2) & (A^*f_2, f_2) & \dots & (A^*f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (A^*f_1, f_n) & (A^*f_2, f_n) & \dots & (A^*f_n, f_n) \end{pmatrix} = \begin{pmatrix} (f_1, Af_1) & (f_2, Af_1) & \dots & (f_n, Af_1) \\ (f_1, Af_2) & (f_2, Af_2) & \dots & (f_n, Af_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, Af_n) & (f_2, Af_n) & \dots & (f_n, Af_n) \end{pmatrix}^T = \begin{pmatrix} (Af_1, f_1) & (Af_2, f_1) & \dots & (Af_n, f_1) \\ (Af_1, f_2) & (Af_2, f_2) & \dots & (Af_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (Af_1, f_n) & (Af_2, f_n) & \dots & (Af_n, f_n) \end{pmatrix}^T = [A]^T$$

$$Todi Maemo: [A^*] = [A]^T = \overline{\Gamma}^T$$

$$T^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (Af_n, f_n) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_n) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_n) \\ (f_2, f_1) & (f_2, f_2) & \dots & (f_n, f_n) \\ (f_2, f_1) & (f_2, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_1, f_2) & \dots & (f_n, f_n) \\ (f_1, f_1) & (f_1, f_2) & \dots & (f_n, f_n) \\ \vdots & \vdots & \ddots & \vdots \\ (f_n, f_1) & (f_n, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \Gamma$$

$$CTPIMMATHE: 1) \overline{\Gamma}^T = \Gamma$$

Remark 5.6. Тепер в евкілдовому просторі нехай $\{e_1,\ldots,e_n\}$ - ортонормований базис. Тоді $\Gamma=I,$ а отже, $\mathbb{A}^*=\overline{\mathbb{A}}^T$

2) $\mathbb{A}^* = \Gamma^{-1} \overline{\mathbb{A}}^T \Gamma$

5.7 Унітарний оператор

Definition 5.7.1.Заданий E - евклідовий простір із (\cdot, \cdot) Оператор $U: E \to E$ називають **унітарним**, якщо

$$\forall x, y \in E : (Ux, Uy) = (x, y)$$

Proposition 5.7.2. Властивості

1) $Ker U = \{0\}$

 $\operatorname{Im} U = E$

Proof.

1) $x \in \text{Ker}U \Rightarrow Ux = 0 \Rightarrow 0 = (Ux, Ux) = (x, x) \Rightarrow x = 0$ $\dim(\text{Im }U) = \dim E - \dim(\text{Ker}U) = \dim E$ $\text{Im }U \subset E \Rightarrow \text{Im }U = E$

Remark 5.7.2. У випадку дійсного евклідового простору унітарний оператор ще називають ортогонаьним

2) U - унітарний $\iff U^* = U^{-1}$

Proof.

 \Longrightarrow Дано: U - унітарний

 $Ker U = \{0\}, Im U = E \Rightarrow \exists U^{-1}$

Далі $\forall x, y \in E : (Ix, y) = (x, y) = (Ux, Uy) = (U^*(Ux), y) = (U^*Ux, y)$ $\Rightarrow U^*U = I$

3) Якщо U - унітарний, то U^* - унітарний теж

Proof.

$$\forall x, y \in E : (x, y) = (Ix, y) = (UU^{-1}x, y) = (UU^*x, y) = (U^*x, U^*y)$$

4) U - ортонормований $\iff U$ переводить ортонормований базис в ортонормований

Proof.

 \Longrightarrow Дано: U - унітарний

 $\overline{\operatorname{Hexa}}$ й $\{f_1,\ldots,f_n\}$ - якийсь ортонормований базис

$$(f_j, f_k) = \delta_{jk}$$

Перевіримо, чи буде ця система $\{g_1=Uf_1,\ldots,f_n=Uf_n\}$ - ортонормованою Дійсно, $(g_j,g_k)=(Uf_j,Uf_k)=(f_j,f_k)=\delta_{jk}$

 \sqsubseteq Дано: $\{f_1,\ldots,f_n\},\,\{g_1,\ldots,g_n\}$ - два ортонормованих базиси $Uf_j=g_j$

$$\forall x \in E : x = \sum_{j=1}^{n} x_j f_j \qquad \forall y \in E : y = \sum_{k=1}^{n} y_k f_k$$

$$Ux = U\left(\sum_{j=1}^{n} x_j f_j\right) = \sum_{j=1}^{n} x_j g_j$$

$$Uy = U\left(\sum_{k=1}^{n} y_k f_k\right) = \sum_{k=1}^{n} y_k g_k$$

$$(Ux, Uy) = \left(\sum_{j=1}^{n} x_j g_j, \sum_{k=1}^{n} y_k g_k\right) = \sum_{j=1}^{n} \sum_{k=1}^{n} x_j \overline{y_k} (g_j, g_k) = (g_j, g_k) = \delta_{jk} = (f_j, f_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} x_j \overline{y_k} (f_j, f_k) = \left(\sum_{j=1}^{n} x_j f_j, \sum_{k=1}^{n} y_k f_k\right) = (x, y) \blacksquare$$

5.8 Самоспряжений оператор

Definition 5.8.1. Заданий E - евклідовий простір із (\cdot, \cdot) Оператор $A: E \to E$ називають **самоспряженим**, якщо

$$A^* = A$$

Proposition 5.8.2. Властивості

Задані A, B - самоспряжені, тоді

- 0) I,0 самоспряжені
- 1) A+B самоспряжений $\forall \alpha \in \mathbb{R} : \alpha A$ самоспряжений
- (2) AB самоспряжений, якщо AB = BA
- 3) $\forall x, y : (Ax, y) = (x, Ay)$

Proof.

0) див. вл. 5.5.7. 0)

1)
$$(A + B)^* = A^* + B^* = A + B$$
 $(\alpha A)^* = \overline{\alpha} A^* = \alpha A$

2)
$$(AB)^* = B^*A^* = BA = AB$$

3)
$$(Ax, y) = (x, A^*y) = (x, Ay) \blacksquare$$

Corollary 5.8.2. Наслідок Th. 5.5.8.

Заданий E - евклідовий простір із (\cdot,\cdot) та $A:E\to E$ - самоспряжений Тоді $E=\operatorname{Ker} A\bigoplus\operatorname{Im} A$

Proposition 5.8.3. Властивості власних чисел та власних векторів

- 1) Якщо λ власне число A, тоді $\lambda \in \mathbb{R}$
- 2) Якщо f_1, f_2 власні вектори з різними власними числами $\lambda_1, \lambda_2,$ то $f_1 \perp f_2$

Proof.

1) f - власний вектор для власного числа λ :

$$Af = \lambda f$$

Оскільки $f \neq 0$, то $(f, f) \neq 0$

$$\Rightarrow \lambda(f, \underline{f}) = (\lambda f, f) = (Af, f) = (f, Af) = (f, \lambda f) = \overline{\lambda}(f, f)$$
$$\Rightarrow \lambda = \overline{\lambda} \in \mathbb{R}$$

2)
$$\lambda_1(f_1, f_2) = (\lambda_1 f_1, f_2) = (Af_1, f_2) = (f_2, Af_1) = (f_1, \lambda_2 f_2) = \overline{\lambda_2}(f_1, f_2) = \lambda_2(f_1, f_2) = 0$$
 \blacksquare

Theorem 5.8.4. Спектральна теорема

Заданий E - евклідовий простір із (\cdot,\cdot) та $A:E\to E$ - самоспряжений Тоді в E існує ортонормований базис із власних векторів A

Proof MI.

Індукція за $\dim E$

База: $\dim E = 1$

$$E = span\{f\} : Af = \lambda f$$

$$||f||=1\Rightarrow \{f\}$$
 - ортонормований

Крок: нехай для $\dim E < n$ теорема вкионується

Перевіримо для $\dim E = n$

 λ_0 - власне число A, розглянемо $B=A-\lambda_0 I$ - теж самоспряжений

 $E = \operatorname{Ker} B \bigoplus \operatorname{Im} B$

1) Ker $B \neq \{0\}, \{e_1, \dots, e_k\}$ - базис KerB

Зауважимо, що $\{e_1,\ldots,e_k\}$ - власні вектори для A із власним числом λ_0

2) Іт B є інваріантним для A. Дійсно:

$$\forall y \in \operatorname{Im} B : y = Bx = (A - \lambda_0 I)x$$

$$\Rightarrow Ay = A(A - \lambda_0 I)x = (A - \lambda_0 I)(Ax) = B(Ax) \in \text{Im } B$$

 $\dim \operatorname{Im} B < \dim E$

Розглянемо $A|_{\operatorname{Im} B}$ - звужений оператор - теж самоспряжений

Дійсно, $\forall y_1,y_2\in \operatorname{Im} B: (A|_{\operatorname{Im} B}y_1,y_2)=(Ay_1,y_2)=(y_1,Ay_2)=(y_1,A|_{\operatorname{Im} B}y_2)$ За припущенням індукції, $\exists\{e_{k+1},\ldots,e_n\}$ - ортонормований базис власних векторів $A|_{\operatorname{Im} B}$

$$\lambda_j e_j = A|_{\operatorname{Im} B} e_j = A e_j$$

Отже, $\{e_{k+1},\ldots,e_n\}$ - ортонормований базис власних векторів A в $\operatorname{Im} B$ Розглянемо $\{e_1,\ldots,e_k,e_{k+1},\ldots,e_n\}$

Оскільки $E = \operatorname{Ker} B \bigoplus \operatorname{Im} B$, то $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ - ортонормований базис в E та всі вони є власними векторами для A

5.9 Квадратичні форми

Definition 5.9.1. Заданий E - евклідовий простір із (\cdot, \cdot) та $A: E \to E$ - лінійний оператор

Квадратичною формою на E називають відображення: $S:E\to\mathbb{R}(\mathbb{C}),$ таке, що:

$$\forall x \in E : S(x) = (x, Ax)$$

Інший варіант: $S(x) = \varphi(x,x)$ - півторалінійний функціонал

Відновлення оператора за квадратичною формою Proposition 5.9.2. Поляризаційна тотожність

Заданий E - евклідовий простір із (\cdot,\cdot) та S(x) - квадратична форма на E, що задається півторалінійним фукнціоналом $\varphi(x,y)$ на $\mathbb C$ Тоді

$$\forall x,y \in E: 4\varphi(x,y) = S(x+y) - S(x-y) + i(S(x+iy) - S(x-iy))$$
 В дійсному випадку:

$$2\varphi(x,y) - 2\varphi(y,x) = S(x+y) - S(x-y)$$

Proof.

Випадок С

$$S(x+y) - S(x-y) + i(S(x+iy) - S(x-iy)) =$$

$$\varphi(x+y,x+y) - \varphi(x-y,x-y) + i(\varphi(x+iy,x+iy) - \varphi(x-iy,x-iy)) =$$

$$= \varphi(x,x) + \varphi(x,y) + \varphi(y,x) + \varphi(y,y) -$$

$$- (\varphi(x,x) - \varphi(x,y) - \varphi(y,x) + \varphi(y,y)) +$$

$$+ i(\varphi(x,x) - i\varphi(x,y) - i\varphi(y,x) - ii\varphi(y,y)) -$$

$$- i(\varphi(x,x) + i\varphi(x,y) - i\varphi(y,x) - ii\varphi(y,y)) =$$

$$= 2\varphi(x,y) + 2\varphi(y,x) + 2\varphi(x,y) - 2\varphi(y,x) = 4\varphi(x,y)$$

2) Випадок ℝ - аналогічно ■

Corollary 5.9.2. В комплексному випадку в нас виникає однозначна відповідність

$$A$$
 лін. опер. $\xrightarrow{\text{побудова}}$ $\varphi(x,y)=(x,Ay)$ $\xrightarrow{\text{побудова}}$ $S(x)=\varphi(x,x)$ квадр. форма

Випадок дійсно значної квадратичної форми:

$$\forall x \in E : S(x) = \varphi(x, x) = (x, Ax) \in \mathbb{R}$$

Покажемо, що A - самоспряжений

$$\overline{\frac{S(x)}{S(x)}} = \frac{(x, Ax)}{(x, Ax)} = \overline{(Ax, x)} = (x, Ax) = S(x)$$

Тобто $S(x) \in \mathbb{R}$

 \sqsubseteq Дано: $(x, Ax) \in \mathbb{R}$

Скористаємось розкладом: $\forall B: E \to E: \exists !B_1, B_2$ - самоспряжені:

$$B = B_1 + iB_2$$
 (згодом доведу)

$$A = A_1 + iA_2$$

$$S(x) = (x, Ax) = (x, A_1x) + (x, iA_2x) = (x, A_1x) - i(x, A_2x) \in \mathbb{R}$$

$$\Rightarrow (x, A_2 x) = 0 \Rightarrow A_2 = 0$$

Отже, $A = A_1$ - самоспряжений

Proposition 5.9.3. Заданий E - евклідовий простір із (\cdot, \cdot) над $\mathbb C$

Тоді $\forall B: E \to E: \exists !B_1, B_2$ - самоспряжені: $B=B_1+iB_2$

Proof.

Розпишемо самоспряжений оператор B таким чином:

$$B = \frac{B + B^*}{2} + i \frac{B - B^*}{2i}$$

$$B_1 = \frac{B + B^*}{2} \Rightarrow (B_1)^* = \left(\frac{B + B^*}{2}\right)^* = \frac{B + B^*}{2} = B_1$$

$$B_2 = \frac{B - B^*}{2i} \Rightarrow (B_2)^* = \left(\frac{B^* - B}{2i}\right)^* = \frac{B^* - B}{-2i} = \frac{B - B^*}{2i} = B_2$$

Доведемо єдиність:

Припустимо, що $B = B_3 + iB_4$

Тоді
$$B_1 + iB_2 = B_3 + iB_3 \iff B_1 - B_3 = i(B_4 - B_2)$$

Тоді
$$B_1 - B_3 = (B_1 - B_3)^* = (i(B_4 - B_2))^* = -i(B_4 - B_2)^* = -i(B_4 - B_2) = -(B_1 + B_3)$$

$$\Rightarrow B_1 = B_3$$
, a tomy $B_2 = B_4 \blacksquare$

Заданий E - евклідовий простір із (\cdot,\cdot) над $\mathbb R$

$$S(X) = \varphi(x, x)$$

Ми отримали рівність:

$$S(x+y) - S(x-y) = 2\varpi(x,y) + 2\varphi(y,x)$$

Таким чином, за квадратичною формою відновлюється симетрична частина півторалінійного (білінійного) функціоналу:

$$arphi(x,y)$$
 - білінійний

$$\varphi(x,y) = \underbrace{\frac{1}{2} \left(\varphi(x,y) + \varphi(y,x) \right)}_{=\varphi_{sim}} + \underbrace{\frac{1}{2} \left(\varphi(x,y) - \varphi(y,x) \right)}_{=\varphi_{cosim}}$$

Маємо, що $\varphi_{sim}(y,x)=\varphi_{sim}(x,y)$ - симетричний

А $\varphi_{cosim}(y,x) = -\varphi_{cosim}(x,y)$ - кососиметричний

Отже, $\varphi = \varphi_{sim} + \varphi_{cosim}$

Пригадаємо, що $\varphi(x,y)=(x,Ay)$

$$\Rightarrow \varphi_{sim}(x,y) = \dots = \left(x, \frac{A+A^*}{2}x\right)$$

Отже, отримали, що в дійсному випадку квадратичній формі однозначно відповідає

$$S(x) \xrightarrow{\text{поперед.}} \varphi_{sim}(x,y) \xrightarrow{\text{Th. Pica}} A$$

Proposition 5.9.4. Заданий E - евклідовий простір із (\cdot, \cdot)

Тоді $\forall B:\exists !B_1$ - самоспряжений, $\exists !B_2$ - кососпряжений, тобто $B_2^*=-B_2$: $B = B_1 + B_2$

Proof.

Запишемо
$$B$$
 таким чином: $B = \frac{B + B^*}{2} + \frac{B - B^*}{2} = B_1 + B_2$

Зрозуміло, що перший - сампоспряжений, а другий - кососпряжений Єдиність доводиться аналогічно ■

Розглянемо таку квадратичну форму:

$$S_B(x) = (x, Bx) = (x, B_1x) + (x, B_2x) \equiv (x, B_2x) = (B_2 * x, x) = -(B_2x, x) = -(x, B_2x) \Rightarrow (x, B_2x) = 0$$

Тобто квадратична форма для кососиметричного оператору $\equiv 0$ $=(x,B_1x)$

Приведення квадратичної форми до канонічного вигляду

Заданий E - евклідовий простір із (\cdot,\cdot)

$$S(x) = (x, Ax)$$
 - дійсно значна, і A - самоспряжений

Тоді в E існує ортонормований базис з власних векторів A - $\{f_1, \ldots, f_n\}$

$$\mathbb{A}_f = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

U - перехід від розкладу за $\{f_1,\ldots,f_n\}$ до розкладу в стандартний базис Тоді

$$A = U \mathbb{A}_f U^{-1} = U \mathbb{A}_f U^*$$

Толі

$$S(x) = (x, Ax) = (x, U \mathbb{A}_f U^* x) = (U^* x, \mathbb{A}_f U^* x) =$$

$$U^*x = y = y_1 f_1 + \dots + y_n f_n$$

$$= \left(\sum_{j=1}^n y_j f_j, \mathbb{A}_f \sum_{k=1}^n y_k f_k\right) \sum_{j=1}^n \sum_{k=1}^n y_j \overline{y_k} (f_j, \mathbb{A}_f f_k) = \sum_{j=1}^n \sum_{k=1}^n y_j \overline{y_k} \lambda_k (f_j, f_k) =$$

$$\sum_{j=1}^n \lambda_j (y_j)^2$$

Висновок: дійснозначна квадратична форма S(x) = (x, Ax) має канонічний вигляд:

$$S(x) = \sum_{j=1}^{n} \lambda_j (y_j)^2$$
$$U^* x = y = \sum_{j=1}^{n} y_j f_j$$

5.10 Знаковизначеність лінійного оператора, матриці

Заданий E - евклідовий простір із (\cdot, \cdot) і A - самоспряжений оператор (Або заданий $E = \mathbb{R}^n(\mathbb{C}^n)$ - евклідовий простір із (\cdot, \cdot) і \mathbb{A} - симетрична матриця)

Definition 5.10.1. Оператор A (матриця \mathbb{A}) називається:

- **строго додатньо визначеною**, якщо $\forall x \neq 0 : S(x) = (x, Ax) > 0$
- **строго від'ємно визначеною**, якщо $\forall x \neq 0 : S(x) = (x, Ax) < 0$
- **невід'ємно визначеною**, якщо $\forall x \neq 0 : S(x) = (x, Ax) \geq 0$
- **недодатньо визначеною**, якщо $\forall x \neq 0 : S(x) = (x, Ax) \leq 0$ Позначення: A > 0 і т.д.

Theorem 5.10.2. Критерій знаковизначеності

Заданий E - евклідовий простір із (\cdot,\cdot) і A - самоспряжений оператор Тоді:

$$A>0\iff$$
 всі власні числа $\lambda_i>0$

$$A < 0 \iff$$
 всі власні числа λ_i < 0

Для нестрогих нерівностей теж саме

Proof.

$$S(x) = (Ax, x) = \sum_{j=1}^{n} \lambda_j |y_j|^2$$

$$A > 0 \Rightarrow \forall x \Rightarrow \forall \vec{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} : \sum_{j=1}^{n} \lambda_j |y_j|^2 > 0 \Rightarrow$$

$$\vec{y} = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, \lambda_1 > 0 \dots \vec{y} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}, \lambda_n > 0$$

A якщо $\lambda_1,\ldots,\lambda_n>0$, то автоматично S(x)>0, тоді A>0Решта випадків аналогічні

Proposition 5.10.3. $A \le 0 \iff (-A) \ge 0$

За визначенням

Theorem 5.10.4. Критерій Сільвестра (знаковизначеність матриці)

Задана матриця A - симетрична

Обчислимо $\Delta_1=M_1^1,\Delta_2=M_{12}^{12},\dots,\Delta_k=M_{12\dots k}^{12\dots k}$ - головні кутові мінори

 $A > 0 \iff \forall k : \Delta_k > 0$

 $A < 0 \iff \forall k : (-1)^k \Delta_k > 0$

Для нестрогої визначеності теж саме

Без доведення (див. підручник Гантмахер "Теория матриц")

5.11Зведення кривих та поверхень другого порядку до канонічного вигляду

Маємо загальний вигляд кривої другого порядку:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0$$

Розглянемо квадратну частину

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix}$$
 - квадратична форма,

а матриця
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
 - відповідно самоспряжена матриця

Також маємо загальний вигляд поверхну другого порядку:

 $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + c = 0$

Аналогічно розглянемо квадратну частину:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix}$$
 - квадратична форма, з матрицею $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$

- квадратична форма, з матрицею
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Тоді рівняння кривої (випадок \mathbb{R}^2) та поверхні (випадок \mathbb{R}^3) другого порядку записується таким чином:

$$(\vec{x}, A\vec{x}) + (\vec{b}, \vec{x}) + c = 0$$

Це рівняння зведемо до канонічного вигляду:

1. Оскільки A - самоспряжений, то існує ортонормований базис із власних векторів A

U - унітарна матриця переходу: $A = UA_{\mathrm{diag}}U^*$

$$(\vec{x}, A\vec{x}) = (\vec{x}, UA_{\text{diag}}U^*\vec{x}) = (U^*\vec{x}, A_{\text{diag}}U^*\vec{x}) = (\vec{y}, A_{\text{diag}}\vec{y}) = \begin{vmatrix} \lambda_1 y_1^2 + \lambda_2 y_2^2 \\ \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 \end{vmatrix}$$

2.
$$(\vec{b}, \vec{x}) = (U^*\vec{b}, U^*\vec{x}) = (U^*\vec{b}, \vec{y})$$
 Знаходимо $\tilde{\vec{b}} = U^*\vec{b}$, тоді

$$(\vec{b}, \vec{x}) = (\vec{b}, \vec{y}) = \begin{bmatrix} \tilde{b_1} y_1 + \tilde{b_2} y_2 \\ \tilde{b_1} y_1 + \tilde{b_2} y_2 + \tilde{b_3} y_3 \end{bmatrix}$$

Остаточно отримаєм

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 + \tilde{b_1} y_1 + \tilde{b_2} y_2 + \tilde{b_3} y_3 + c = 0$$

Нехай $\lambda_1, \lambda_2, \lambda_3 \neq 0$

Виділимо повні квадрати:

$$\lambda_1 \left(y_1 + \frac{\tilde{b_1}}{2\lambda_1} \right)^2 + \lambda_2 \left(y_2 + \frac{\tilde{b_2}}{2\lambda_2} \right)^2 + \lambda_3 \left(y_3 + \frac{\tilde{b_3}}{2\lambda_3} \right)^2 = -c + \frac{\tilde{b_1}^2}{4\lambda_1} + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$$

Зробимо заміни:

$$z_1 = y_1 + \frac{\tilde{b_1}}{2\lambda_1} \quad z_2 = y_2 + \frac{\tilde{b_2}}{2\lambda_2} \quad z_3 = y_3 + \frac{\tilde{b_3}}{2\lambda_3} \quad \tilde{c} = -c + \frac{\tilde{b_1}^2}{4\lambda_1} + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$$

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + \lambda_3 z_3^2 = \tilde{c}$$

Випадок, коли лише $\lambda_1 = 0$:

Робимо ті самі процедури та отримаємо:

$$\lambda_2 \left(y_2 + \frac{\tilde{b_2}}{2\lambda_2} \right)^2 + \lambda_3 \left(y_3 + \frac{\tilde{b_3}}{2\lambda_3} \right)^2 + \tilde{b_1} y_1 = -c + \frac{\tilde{b_1}^2}{4\lambda_1} + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$$

Зробимо заміни:

$$z_2 = y_2 + \frac{\tilde{b_2}}{2\lambda_2}$$
 $z_3 = y_3 + \frac{\tilde{b_3}}{2\lambda_3}$ $\tilde{c} = -c + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$ $z_1 = y_1 - \frac{\tilde{c}}{\tilde{b_1}}$

 $\lambda_2 z_2^2 + \lambda_3 z_3^2 + \tilde{b_1} z_1 = 0$ - а це є параболоїдом Випадок $b_1=0$: в \mathbb{R}^3 - циліндр, а в \mathbb{R}^2 - пара прямих

Випадок, коли $\lambda_1 = \lambda_2 = 0$ (це вже лише для \mathbb{R}^3):

$$\lambda_3 y_3^2 + \tilde{b_1} y_1 + \tilde{b_2} y_2 + \tilde{b_3} y_3 + c = 0$$

Виникає одна мрія: $b_1 = 0$

$$\vec{\tilde{b}} = U^* \vec{b}$$

 $U=(\vec{f_1},\vec{f_2},\vec{f_3})$, де $\vec{f_1},\vec{f_2}$ - власні числа для $\lambda_1=\lambda_2$, а $\vec{f_3}$ - для $\lambda_3 \neq 0$

$$U^*\vec{b} = \begin{pmatrix} \overleftarrow{f_1} \cdot \vec{b} \\ \overleftarrow{f_2} \cdot \vec{b} \\ \overleftarrow{f_3} \cdot \vec{b} \end{pmatrix} = \begin{pmatrix} (\vec{f_1}, \vec{b}) \\ (\vec{f_2}, \vec{b}) \\ (\vec{f_3}, \vec{b}) \end{pmatrix} = \begin{pmatrix} \widetilde{b_1} \\ \widetilde{b_2} \\ \widetilde{b_3} \end{pmatrix}$$

Щоб здійснити мрію, треба, щоб $(\vec{f}_1, \vec{b}) = 0$

Знаходимо $ec{f_3}$ - власний для λ_3

Тоді $span\{e_3\}^{\perp}$ - простір власних векторів для $\lambda_1=\lambda_2=0$

Тоді $\vec{f_1} = [\vec{f_3}, \vec{b}] \perp \vec{b} \Rightarrow \tilde{b_1} = 0$

 f_1 - власний для $\lambda=0$ та $f_2=[\vec{f_1},\vec{f_3}]\perp \vec{f_1},\vec{f_3}$

Параметризуємо $\vec{f}_1, \vec{f}_2, \vec{f}_3$ - отримаємо ортонормований базис

$$U$$
 - матриця перехода $\vec{\tilde{b}} = \begin{pmatrix} 0 \\ \tilde{b_2} \\ \tilde{b_3} \end{pmatrix}$

Тоді:

$$\lambda_3 y_3^2 + \tilde{b_3} y_3 + \tilde{b_2} y_2 + c = 0$$

$$\lambda_3 \left(y_3 + \frac{\tilde{b_3}}{2\lambda_3} \right)^2 + \tilde{b_2} \left(y_2 + \frac{c - \frac{\tilde{b_3}^2}{4\lambda_3}}{\tilde{b_2}} \right) = 0$$

Зробимо заміни:

$$z_1 = y_1$$
 $z_2 = y_2 + \frac{c - \frac{\tilde{b_3}^2}{4\lambda_3}}{\tilde{b_2}}$ $z_3 = y_3 + \frac{\tilde{b_3}}{2\lambda_3}$

Отримаємо:

 $\lambda_3 z_3^2 + \tilde{b_2} z_2 = 0$ - а це ϵ параболічним циліндром

При $\tilde{b_2} = 0$ отримаємо пару площин

The end

6 Альтернативні пояснення

Theorem 1.5.5. Якщо
$$\{y_1, \dots, y_n\}$$
 $\prec \{x_1, \dots, x_m\}$, то $n \leq m$

Proof.

(вже не MI)

!Припустимо, що все ж таки n > m

Розглянемо елемент y_1 . За умовою теореми,

$$y_1 = \alpha_1 x_1 + \dots + \alpha_m x_m$$

Оскільки система $\{y_1, \dots, y_n\}$ - л.н.з., то $y_1 \neq 0$

Тоді, не втрачаючи загальності, $\alpha_1 \neq 0$. Виразимо тепер x_1 , маємо:

$$x_1 = \alpha_1^{-1} y_1 - \alpha_1^{-1} \alpha_2 x_2 - \dots - \alpha_1^{-1} \alpha_m x_m$$
. Для довідки, $x_1 \neq 0$

З цього рівняння випливає, що $\{x_1, x_2, \ldots, x_m\} \prec \{y_1, x_2, \ldots, x_m\}$

Розглянемо елемент y_2 . За щойно отриманою умовою та властивості транзитивності,

$$y_2 = \beta_1 y_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

Аналогічно $y_2 \neq 0$, отже, не втрачаючи загальності знову, $\beta_2 \neq 0$. Виражаємо x_2 :

$$x_2 = \beta_2^{-1} y_2 - \beta_2^{-1} \beta_1 y_1 - \dots - \beta_2^{-1} \beta_m x_m$$
. I теж $x_2 \neq 0$

З цього рівняння випливає, що $\{y_1, x_2, \dots, x_m\} \prec \{y_1, y_2, \dots, x_m\}$

I так можемо продовжувати допоки не дістанемося до ланцюга:

$$\{y_1,\ldots,y_{n-1},x_m\} \prec \{y_1,\ldots,y_n\}$$

Остаточно: $\{y_1,\ldots,y_n\} \prec \{y_1,\ldots,y_n\}$ - суперечність! Тому що система ліворуч - л.н.з., тому жодний елемент не виражається через лінійну комбінацію системи праворуч

Tomy
$$n ≤ m$$
 ■

Про власні числа та вектори

Definition Алгебраїчною кратністю власного числа λ_0 ми будемо називати степінь дужки $(\lambda - \lambda_0)$, яка виникає в результаті розв'язання характеристичного полінома

Definition Геометричною кратністю власного числа λ_0 ми будемо називати кількість л.н.з. власних векторів \vec{f} , пов'язаних з ним Або $r=\mathrm{dim}L_\lambda$

Example Дано
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $\det(A - \lambda I) = (1 - \lambda)^2$

Розглянемо
$$\lambda = 1$$
:

$$(A - I)\vec{f} = \vec{0}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \vec{f} = \vec{0}$$

Тому маємо вектор
$$\vec{f} = \begin{pmatrix} f_1 \\ 0 \end{pmatrix} = f_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Отже: алгебраічна кратність = 2, а геометрична = 1

Corollary Нехай в нас є матриця оператора A розміром $n \times n$. Якщо для кожного власного числа геометрична кратність дорівнює алгебраїчної, то тоді \mathbb{A}_f - діагоналізована матриця

Theorem Якщо алгебраїчна кратність власного числа λ дорівнює k, то її геометрична кратність принаймні 1, але не більше k

Definition Задано $A:L\to L$ - лінійний оператор, $\dim L=n$

Ланцюгом узагальнених власних векторів для A із власним числом λ називають послідовність векторів h_1, \ldots, h_k , такі, що:

$$f(h_1) = \lambda h_1$$

$$f(h_i) = \lambda h_i + h_{i-1}, i = 2, \dots, k$$

Це по суті означення приєднаних векторів

Lemma Задано $A:L \to L$ - лінійний оператор, $\dim L = n$

Тоді існує ланцюги C_1, \dots, C_m узагальнених власних векторів такі що вони формують базис L

Proof MI.

Задано λ - власне число для f

Нехай $B:L\to L$ визначене наступним чином:

$$Bx = Ax - \lambda x = (A - \lambda I)x$$

Оскільки існує ненульовий власний вектор для власного числа $\lambda,$ то $\dim(\operatorname{Ker} B) \neq 0$

Tomy dim $(\operatorname{Im} B) \neq n$

Чернетка

$$A: \underset{\mathbb{R}^8}{L} \to L, \dim L = 8$$

$$\begin{pmatrix} 2 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -9 & 0 & 0 \\ 2 & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \end{pmatrix}$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det(A - \lambda I) = -(\lambda - 2)^6(\lambda - 4)^2 = 0$$

$$\det$$

$$\mathbb{A}_f = \begin{pmatrix} 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Замість початкової матриці будемо розглядувати щойно отриману: все рівно власні числа не змінюються від цього

$$\Rightarrow$$
 створимо $A|_{\operatorname{Im} B}:\operatorname{Im} B o \operatorname{Im} B$

$$A|_{\operatorname{Im}B} = \begin{pmatrix} 4 & 2 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

Чернетка 2

$$A: \underset{=\mathbb{R}^4}{L} \to L, \dim L = 4$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -2 & 2 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$\det(A - \lambda I) = (\lambda - 1)^3 (\lambda + 1) = 0$$

$$\lambda = 1$$

$$B = A - I = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix}$$

$$\dim(\operatorname{Im} B) = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ -2 \end{pmatrix} \right\} - \operatorname{ihbapiahthum nightpoctip},$$

$$\dim(\operatorname{Im} B) = 2$$

Розширимо до базису L векторами $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$

Отримаємо матрицю:

$$A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ \frac{1}{2} & -1 & 0 & -\frac{1}{2} \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Оскільки ${\rm Im}\, B$ - інваріантний до A, то створимо звужений оператор $A|_{{\rm Im}\, B}: {\rm Im}\, B \to {\rm Im}\, B$

$$A|_{\text{Im}B} : \text{Im}B : \text{Im}B : \text{Im}B$$

$$A|_{\text{Im}B} = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & -1 \end{pmatrix} \lambda = 1 :$$

$$(A|_{\text{Im}B} - I)\vec{f} = \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & -2 \end{pmatrix} \vec{f} = \vec{0}$$

$$\Rightarrow \vec{f} = \begin{pmatrix} -4f_2 \\ f_2 \end{pmatrix} = f_2 \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$(A-I)\vec{f} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \vec{f} = \vec{0}$$

$$\Rightarrow \vec{f} = f_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + f_4 \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

7 Трошки про матриці

7.1 Основні означення

Definition 1.1.1. Матрицею називають прямокутну таблицю з чисел

Позначення:
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Тут матриця містить такий розмір: m рядків \times n стовпчиків a_{ij} - елемент матриці, $i=\overline{1,m}; i=\overline{1,n};$

Якщо кількість рядків та стовпчиків однакова, то така матриця - квадратна

Definition 1.1.2. Дві матриці A, B однакових розмірів називають **рівними**, якщо $a_{ij} = b_{ij}$, тут $i = \overline{1, m}; i = \overline{1, n};$

Definition 1.1.3. Одиничну матрицю визначають таку квадратну матрицю

Позначення:
$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definition 1.1.4. Нульову матрицю називають матрицю (не обов'язково квадратну), де всі елементи нулеві

Позначення:
$$O = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Definition 1.1.5. Задані операції над матрицями:

- додавання;

$$\forall A, B : A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

- множення на скаляр;

$$\forall A : A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$\forall \lambda \in \mathbb{R} : \lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

А також задані наступні властивості (як доводити, думаю, зрозуміло): $\forall A, B, C : \forall \lambda, \mu \in \mathbb{R}$:

- 1) A + B = B + A
- 2) (A + B) + C = A + (B + C)
- 3) $\exists O : A + 0 = A$
- 4) $\exists (-A) : A + (-A) = O$
- 5) $\lambda(A+B) = \lambda A + \lambda B$
- 6) $A(\lambda + \mu) = \lambda A + \mu A$
- 7) $\lambda(\mu A) = (\lambda \mu) A$
- 8) $1 \cdot A = A$

Definition 1.1.6. Узгодженими називають матриці A, B, якщо кількість стовпчиків A співпадає із кількістю рядків B

Definition 1.1.7.(1) Визначається **множення матриць** для $1 \times m$ та $m \times 1$

$$p_{11} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{m1} \end{pmatrix} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + \dots + a_{1m} \cdot b_{m1}$$

Definition 1.1.7.(2) Для довільних узгоджених матриць визначено **множення матриць**:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1k} \\ b_{21} & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nk} \end{pmatrix}$$

$$\xrightarrow{\mathbf{m} \times n} \qquad \qquad \mathbf{m} \times \mathbf{k}$$

$$A \cdot B = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1k} \\ p_{11} & p_{12} & \dots & p_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \dots & p_{mk} \end{pmatrix}$$

де, за $\mathbf{Def.}\ \mathbf{1.1.7.(1)},\ p_{ij}$ - множення i-го рядка матриці A на j-ий стовпчик матриці B

Розмір матриці $A \cdot B$ становить $m \times k$

Remark 1.1.7. $A \cdot B \neq B \cdot A$

Один із таких прикладів - це матриці $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix}$$

Для множення виконуються такі властивості:

1)
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

2)
$$A \cdot I = I \cdot A$$

3)
$$(\lambda A) \cdot B = A \cdot (\lambda B)$$

4)
$$A \cdot (B+C) = A \cdot B + A \cdot C \quad (A+B) \cdot C = A \cdot C + B \cdot C$$

Proof.

Зроблю деякі позначення:

$$(A \cdot B) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} = \begin{pmatrix} q_{11} & \dots & q_{1k} \\ \vdots & \ddots & \vdots \\ q_{m1} & \dots & q_{mk} \end{pmatrix} = Q$$

де $q_{ij} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj}$ (*)

$$(B \cdot C) = \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} \begin{pmatrix} c_{11} & \dots & c_{1l} \\ \vdots & \ddots & \vdots \\ c_{k1} & \dots & c_{kl} \end{pmatrix} = \begin{pmatrix} r_{11} & \dots & r_{1l} \\ \vdots & \ddots & \vdots \\ r_{k1} & \dots & r_{nl} \end{pmatrix} = R$$

де $r_{ij} = b_{i1}c_{1j} + \cdots + b_{ik}c_{kj}$ (**)

Фактично ми доводимо, що:

$$Q \cdot C = A \cdot R$$

Розглянемо ліву частину:

$$Q \cdot C = \begin{pmatrix} q_{11} & \dots & q_{1k} \\ \vdots & \ddots & \vdots \\ q_{m1} & \dots & q_{mk} \end{pmatrix} \begin{pmatrix} c_{11} & \dots & c_{1l} \\ \vdots & \ddots & \vdots \\ c_{k1} & \dots & c_{kl} \end{pmatrix} =$$

$$= \begin{pmatrix} q_{11}c_{11} + \dots + q_{1k}c_{k1} & \dots & q_{11}c_{1l} + \dots + q_{1k}c_{kl} \\ \vdots & \ddots & \vdots \\ q_{m1}c_{11} + \dots + q_{mk}c_{k1} & \dots & q_{m1}c_{1l} + \dots + q_{mk}c_{kl} \end{pmatrix} =$$
Візьмемо один з елементів матриці (для решти аналогічно): $q_{11}c_{11} + \dots + q_{1k}c_{k1} \stackrel{(*)}{=} \begin{pmatrix} c_{11} & \dots & c_{1l} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots$

$$\stackrel{(*)}{=} (a_{11}b_{11} + \dots + a_{1n}b_{n1})c_{11} + \dots + (a_{11}b_{1k} + \dots + a_{1n}b_{nk})c_{k1}$$
 Розкриемо та винесемо по черзі за дужки a_{11}, \dots, a_{1n}

- 2) Вказівка: перемножити А на І, а потім навпаки
- 3), 4) Зрозуміло ■

Definition 1.1.9. Транспонованою називають наступну матрицю:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Тобто кожний рядок матриці перетворюється в стовпчик

Для транспонування виконуються такі властивості:

$$(A^T)^T = A^T$$

2)
$$(A + B)^T = A^T + B^T$$

3)
$$(\lambda A)^T = \lambda A^T$$

4) $(A \cdot B)^T = B^T \cdot A^T$

Proof.

1), 2), 3) Зрозуміло

$$4) (A \cdot B)^{T} = \begin{pmatrix} a_{11}b_{11} + \cdots + a_{1n}b_{n1} & \dots & a_{11}b_{1k} + \cdots + a_{1n}b_{nk} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{11} + \cdots + a_{mn}b_{n1} & \dots & a_{m1}b_{1k} + \cdots + a_{mn}b_{nk} \end{pmatrix}^{T} = \\ = \begin{pmatrix} a_{11}b_{11} + \cdots + a_{1n}b_{n1} & \dots & a_{m1}b_{11} + \cdots + a_{mn}b_{n1} \\ \vdots & \ddots & \vdots \\ a_{11}b_{1k} + \cdots + a_{1n}b_{nk} & \dots & a_{m1}b_{1k} + \cdots + a_{mn}b_{nk} \end{pmatrix} = \\ = \begin{pmatrix} b_{11}a_{11} + \cdots + b_{n1}a_{1n} & \dots & b_{11}a_{m1} + \cdots + b_{n1}a_{mn} \\ \vdots & \ddots & \vdots \\ b_{1k}a_{11} + \cdots + b_{nk}a_{1n} & \dots & b_{1k}a_{m1} + \cdots + a_{mn}b_{nk} \end{pmatrix} = \\ = \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} b_{11} & \dots & b_{n1} \\ \vdots & \ddots & \vdots \\ b_{1k} & \dots & b_{nk} \end{pmatrix}^{T} \begin{pmatrix} a_{11} & \dots & a_{mn} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{mn} \end{pmatrix}^{T} = \\ BTA^{T} \blacksquare$$

Definition 1.1.10. Головною діагоналлю матриці A розміру $m \times n$ називають всі елементи a_{ii} , тут $i = \overline{1,n}$ (якщо n < m)

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Definition 1.1.11. Слідом матриці A назвемо величину

$$tr A = a_{11} + a_{22} + \dots + a_{nn}$$

Тобто сума всіх елементів головної діагоналі

7.2 Трошки про визначники

Definition 1.2.1.(1) Задана матриця $A = (a_{11})$ **Визначником** матриці 1×1 називають число:

$$\det A = a_{11}$$

Definition 1.2.1.(2) Задана матриця $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

Визначником матриці 2 × 2 називають число:

$$\det A = a_{11}a_{22} - a_{21}a_{12}$$

Цю формулу можна звести до інакшого вигляду, щоб надати ідею, як обчислювати визначники вищих порядків, але спочатку наведу означення

Definition 1.2.2. Мінором матриці A називають визначник, в якому викреслені i-ий рядок та j-ий стовпчик:

Позначення: M_{ij}

Definition 1.2.3. Алгебраїчним доповненням матриці *A* називають число:

Позначення: $A_{ij} = (-1)^{i+j} M_{ij}$

У випадку 2×2 маємо наступне:

$$a_{22}=A_{11},\,-a_{21}=A_{12}.$$
 Тоді

$$\det A = a_{11}A_{11} + a_{12}A_{12}$$

Це - розклад визначника через перший рядок матриці. Так само й для вищих порядків можна розписати

Definition 1.2.1.(n) Задана матриця $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$

Визначник матриці $n \times n$ рахується ща розкладом в алгебраїчне доповнення через перший рядок

$$\det A = a_{11}A_{11} + \dots + a_{1n}A_{1n}$$

Для визначників є ще таке позначення: $|A| = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$

Definition 1.2.4. Якщо $\det A = 0$, то матриця A називається **виродженою** Інакше - **невироджена**

Строге означення визначника $n \times n$ та звідки взялась формула розкладу, ми надамо вже в іншому PDF файлі. Так само властивості детермінантів будуть вже там

7.3 Обернена матриця

Definition 1.3.1. Матриця A^{-1} називається **оберненою**, якщо

$$A^{-1}A = AA^{-1} = I$$

якщо вона існує

Водночас матрицю А називають оборотною

Remark 1.3.1. Із означення випливає, що матриці A та A^{-1} мають бути квадратними

Example 1.3.2.(1) Для матриці $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ існує обернена матриця $A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$, оскільки за означенням,

$$AA^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$A^{-1}A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 2f \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

Example 1.3.2.(2) A ось для матриці $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ не існує оберненої

Припустимо, що така матриця $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ існує, що є оберненою, тобто

$$AB = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+2c & b+2d \\ a+2c & b+2d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Звідси маємо, що 1=a+2c=0 - суперечність!

Такий підхід не завжди зручний для визначення неіснування оберненої матриці, проте для цієї мети існує критерій, доведення якої буде лише в наступному PDF

Theorem 1.3.3. Матриця A - оборотна $\iff \det A \neq 0$

Отже, в **Ex. 1.3.2.(2)** оскільки $\det A = 1 \cdot 2 - 1 \cdot 2 = 0$, то звідси оберненої матриці не існує

Proposition 1.3.4. Властивості

- 1) Існуюча обернена матриця є єдиною
- 2) $I^{-1} = I$
- 3) $(A^{-1})^{-1} = A$
- $(A^{-1})^k = (A^k)^{-1}$
- 5) $(A^T)^{-1} = (A^{-1})^T$
- 6) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$

наслідок) $(A_1 \dots A_n)^{-1} = A_n^{-1} \dots A_1^{-1}$ 7) $(\alpha A)^{-1} = \alpha^{-1} A^{-1}$

Proof.

1) Припустимо, що $\exists A_1^{-1}, A_2^{-1}$ - дві обернені матриці Тоді $AA_1^{-1} = A_1^{-1}A = I$ Тоді $AA_2^{-1} = A_2^{-1}A = I$

Але отримаємо такий ланцюг:

$$A_1^{-1} = A_1^{-1}I = A_1^{-1}(AA_2^{-1}) = (A_1^{-1}A)A_2^{-1} = IA_2^{-1} = A_2^{-1}$$
 Суперечність!

2) Нехай ε одинична матриця I

I нехай існує обернена матриця T. Тоді,

$$T = I \cdot T = T \cdot I = I$$

Тоді
$$T = I^{-1} = I$$

3) Нехай для A існує A^{-1} , тобто $AA^{-1} = A^{-1}A = I$

Перевіримо, що для матриці A^{-1} існує обернена матриця $T = (A^{-1})^{-1}$, шо:

$$A^{-1}T = TA^{-1} = I$$

I дійсно, вона існує, якщо T=A, тоді тотожність виконується за умовою

4) Відомо, що $AA^{-1} = A^{-1}A = I$

Перевіримо, що для A^k матриця $(A^k)^{-1}=(A^{-1})^k$ є оберненою. Справді $A^k(A^k)^{-1}=A^k(A^{-1})^k=A^{k-1}AA^{-1}(A^{k-1})^{-1}=A^{k-1}(A^{k-1})^{-1}=A^{k-2}AA^{-1}(A^{k-2})^{-1}$ = \cdots = AA^{-1} = I

5)
$$A^{T}(A^{T})^{-1} = A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

6)
$$(AB) \cdot (AB)^{-1} = (AB) \cdot (B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = I$$

7)
$$(\alpha A) \cdot (\alpha A)^{-1} = (\alpha A) \cdot (\alpha^{-1} A^{-1}) = I \blacksquare$$

7.4Елементарні матриці

Definition 1.4.1. Елементарною матрицею назвемо матрицю E, якщо $\ddot{\text{II}}$ можна отримати із одиничної матриці I наступними шляхами:

- зміною рядків місцями $E_{i\leftrightarrow j}$
- множенню рядка на скаляр $E_{i \to \lambda i}$
- додаванню одного рядка на друге, що помножене на число $E_{i \to i + \lambda i}$

Example 1.4.2. У нас є матриця
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Наступні перелічені

матриці будуть елементарними

матриці будуть елементарними

1.
$$E_{1\leftrightarrow 2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, ми змінили перший та другий рядки місяцми

2. $E_{1\to'3'\cdot 1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, перший рядок помножили на скаляр 3

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

2.
$$E_{1\to'3'\cdot1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, перший рядок помножили на скаляр 3

$$3.\ E_{2 o 2+'2'\cdot 3}=egin{pmatrix}1&0&0\\0&1&2\\0&0&1\end{pmatrix}$$
, до другого рядка додали третій, що помножений на 2

Proposition 1.4.3. Задана матриця A. Тоді:

 $E_{i\leftrightarrow j}A$ - матриця, для якої рядки i та j змінились місцями $E_{i \to \lambda i} A$ - матриця, для якої i-ий рядок помножиться на скаляр $\lambda \neq 0$ $E_{i \to i + \lambda j} A$ - матриця, для якої до i-ого рядка додаєть рядок j, помножений на скаляр λ

Proof.

Зафіксуємо елементарну матрицю
$$E_{i \to i\lambda} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

Тоді
$$E_{i \to i\lambda} A \stackrel{\text{перемножуємо}}{=} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Решта випадків - аналогічно

Proposition 1.4.4. Матриці $E_{i\leftrightarrow j}, E_{i\to\lambda i}, E_{i\to i+\lambda j}$ є оборотними **Proof.**

Для перестановки
$$E_{i\leftrightarrow j}=egin{pmatrix} 1&0&\ldots&0&\ldots&0&\ldots&0\\ 0&1&\ldots&0&\ldots&0&\ldots&0\\ \vdots&\vdots&\ddots&\vdots&\ddots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\ldots&0&\ldots&1&\ldots&0\\ \vdots&\vdots&\ddots&\vdots&\ddots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\ldots&1&\ldots&0&\ldots&1 \end{pmatrix}$$

фіксуємо $E_{i \leftrightarrow j}^{-1} = E_{i \leftrightarrow j}$

Для множення на скаляр
$$E_{i \to i \lambda} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

фіксуємо
$$E_{i \to i \lambda}^{-1} = E_{i \to i \frac{1}{\lambda}} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{\lambda} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

Для додаванню
$$E_{i \to i + \lambda j} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

$$\phi$$
фіксуємо $E_{i \to i + \lambda j}^{-1} = E_{i \to i - \lambda j} = \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$

Якщо обережно їх перемножити для кожного випадку, то $E \cdot E^{-1} = E^{-1} \cdot E = I \blacksquare$

Зокрема, в Ех. 1.4.2. маємо:

$$E_{1\to 2}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_{1\to 3'\cdot 1}^{-1} = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_{2\to 2'\cdot 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Theorem 1.4.5. Будь-яка оборотна матриця A може бути представлена як добуток елементарних матриць

Proof.

Ідея доведення полягає у використанні факту із Ргр. 1.4.3.

Нехай
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{nn} \end{pmatrix}$$

 a_{m1} a_{m2} ... a_{nn} Зведемо її до одиничної матриці, використовуючи перетворення

Позначу
$$T=egin{bmatrix} E_{i \leftrightarrow j} \\ E_{i \to \lambda i} \end{aligned}$$
 - тобто матриця, що є одним з перетворень. Тоді $E_{i \to i + \lambda j}$

$$T_n \dots T_2 T_1 A = \begin{pmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a'_{nn} \end{pmatrix}$$

Отримана матриця шляхом елементарних перетворень називається **методом Гаусса**, коли під діагональними елементами залишаються нулі. Це ще називають "прямим ходом"

$$T'_m \dots T'_2 T'_1 \begin{pmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a'_{nn} \end{pmatrix} = \begin{pmatrix} a''_{11} & 0 & \dots & 0 \\ 0 & a''_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a''_{nn} \end{pmatrix}$$

А це вже називають "зворотнім ходом" метода Гаусса

$$T_k'' \dots T_2'' T_1'' \begin{pmatrix} a_{11}'' & 0 & \dots & 0 \\ 0 & a_{22}'' & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}'' \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = I$$

Підсумовуючи, ми маємо:

$$I = T_k'' \dots T_2'' T_1'' \cdot T_m' \dots T_2' T_1' \cdot T_n \dots T_2 T_1 A (*)$$

Залишилось знайти матрицю A

$$A = T_1^{-1} T_2^{-1} \dots T_n^{-1} \cdot T_1'^{-1} T_2'^{-1} \dots T_m'^{-1} T_1''^{-1} T_2''^{-1} \dots T_k''^{-1} \blacksquare$$

Ба більше, за означенням оберненої матриці та з рівняння (*), ми можемо отримати, що

$$A^{-1} = T_k'' \dots T_2'' T_1'' \cdot T_m' \dots T_2' T_1' \cdot T_n \dots T_2 T_1 \cdot I$$

Допоки ми матрицю A зводили перетвореннями до матриці I, матриця I водночає зводилась цими самими перетвореннями цією самою послідовністю до якоїсь іншої матриці, що й є A^{-1}

Example 1.4.6. Нехай є матриця $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$

Розкладемо її на композицію елементарних:

$$E_{1}A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$E_{2}(E_{1}A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

Таким чином, ми маємо:

$$E_2 E_1 A = I$$

$$E_1 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \Rightarrow E_1^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$E_2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \Rightarrow E_2^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Тоді $A = E_1^{-1} E_2^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

Знайдемо також обернену матрицю A^{-1}

$$A^{-1} = E_2 E_1 I = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$

Ще раз спробуємо побачити, якими шляхами ми знайшли A^{-1}

Ми A зводили перетвореннями до I, а I - до якоїсь матриці, що й є A^{-1} Не обов'язково намагатись розписувати матрицю A як декомпозицію елементарних матриць

Запишемо ось таку матрицю (A|I) - розширену матрицю

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix}$$

I тепер замість того, щоб ми писали елементрані матриці, ми будемо просто почергово вказувати, яке перетворення було зроблено, та оновлювати таким чином вигляд обох матриць. Зокрема

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{l_2 \to l_2 + (-1)l_1} \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \xrightarrow{l_1 \to l_1 + (-2)l_2} \begin{pmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

Отримали розширену матрицю $(I|A^{-1})$