LIFLC – Logique classique CM1 – rappels

Licence informatique UCBL - Automne 2018-2019

https://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:logique: start

Objectifs du cours

Apprendre à spécifier/modéliser un problème formellement pour faire des programmes corrects

Comprendre comment mécaniser le raisonnement à travers des systèmes de règles

Appréhender les techniques de preuve par induction

- Introduction
- 2 Booléens
- 3 Ensembles
- 4 Ordres

Programme

- Rappels
- Ensembles inductifs
- Calcul propositionnel
- Systèmes de règles
- Termes
- Formules du premier ordre
- Introduction à la logique de Hoare et à la preuve de programme

 \triangle L'emploi du temps change presque toutes les semaines \triangle

Évaluation

> Examen (2/3 note UE) En janvier 2019

 \triangle penser à toujours avoir du correcteur blanc (pour le QCM) \triangle

Évaluation

Contrôle continu (1/3 note UE)

Des QCM en TP/TD

Un contrôle intermédiaire le lundi 22/10/2017

Examen (2/3 note UE) En janvier 2019

 \triangle penser à toujours avoir du correcteur blanc (pour le QCM) \triangle

- Introduction
- 2 Booléens
- 3 Ensembles
- 4 Ordres

Rappels sur les booléens

Deux valeurs:

Des opérateurs :

$$\neg$$
 (non), \lor (ou), \land (et) et \Rightarrow (implique)

X	$\neg \chi$
1	0
0	1

	X	У	$x \lor y$	$x \wedge y$	$x \Rightarrow y$
Ī	1	1	1	1	1
	1	0	1	0	0
	0	1	1	0	1
İ	0	0	0	0	1

Exemple d'expression booléenne :

$$(0 \lor 1) \land (1 \lor (0 \Rightarrow 1)) = \dots$$

- Introduction
- 2 Booléens
- 3 Ensembles
- 4 Ordres

Rappels sur les ensembles

Notation : $\{a, b, c, ...\}$ $\{x \in E \mid ...\}$

Appartenance : $x \in E$

Inclusion : $E \subseteq F$

pour tout $x : si x \in E$ alors $x \in F$

Intersection : $E \cap F$

 $x \in E \cap F$ si et seulement si

 $x \in E$ et $x \in F$

Différence : $E \setminus F$

 $x \in E \setminus F$ si et seulement si

 $x \in E$ et $x \notin F$

Union : $E \cup F$

 $x \in E \cup F$ si et seulement si

 $x \in E$ ou $x \in F$

Soient *I*, *J*, *K* des ensembles. Indiquer les égalités justes parmi les suivantes :

- $(I \cap J) \cap K = I \cap (K \cap J)$
- $I \cup (J \cap K) = (I \cup J) \cap K$
- $I \cap (J \cup K) = I \cup (J \cap K)$
- $I \cap (J \cup K) = (I \cap J) \cup (J \cap K)$

Soient *I*, *J*, *K* des ensembles. Indiquer les égalités justes parmi les suivantes :

- $\bullet \ (I \cap J) \cap K = I \cap (K \cap J)$
- $I \cup (J \cap K) = (I \cup J) \cap K$
- $I \cap (J \cup K) = I \cup (J \cap K)$
- $I \cap (J \cup K) = (I \cap J) \cup (J \cap K)$

Soient I, J, K des ensembles. Indiquer les inclusions justes parmi les suivantes :

- $I \subseteq (J \cap I) \cup K$
- $(I \cap J) \cup (J \cap K) \subseteq J$
- $I \cap J \cap K \subseteq I \cup J \cup K$
- $I \cap J \cap K \subseteq I \cap J \cap K$

Soient I, J, K des ensembles. Indiquer les inclusions justes parmi les suivantes :

- $I \subseteq (J \cap I) \cup K$
- $(I \cap J) \cup (J \cap K) \subseteq J$
- $I \cap J \cap K \subseteq I \cup J \cup K$
- $I \cap J \cap K \subseteq I \cap J \cap K$

Rappels sur les relations

n-uplet

Suite de n valeurs $x = (e_1, ..., e_n)$

Projection:

$$x[i] = e$$

Produit cartésien
$$E_1 \times \cdots \times E_n$$
:

Ensemble des *n*-uplets $(e_1, ..., e_n)$ tels que $e_i \in E_i$ pour $1 \le i \le n$

Relation
$$R$$
 (d'arité n) sur $E_1 \times \cdots \times E_n$:

Ensemble de *n*-uplets tel que $R \subseteq E_1 \times \cdots \times E_n$.

Si
$$(e_1, \ldots, e_n) \in R$$
, on écrit $R(e_1, \ldots, e_n)$.

Exercice: définitions

Définir les notions suivantes :

- La projection R[i] d'une relation R sur son $i^{\text{ième}}$ composant.
- La projection multiple $x[i_1, ..., i_k]$ d'un n-uplet x sur les composants $i_1, ..., i_k$.
- La projection multiple $R[i_1, \ldots, i_k]$ d'une relation R sur les composants i_1, \ldots, i_k .

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est indecaive
- si, pour chaque $e' \in E'$, il existe au moins une paire $(e, e') \in f$, f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque $e' \in E'$, il existe au moins une paire $(e, e') \in f$, f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque e' ∈ E', il existe au moins une paire (e, e') ∈ f,
 f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque e' ∈ E', il existe au moins une paire (e, e') ∈ f,
 f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque $e' \in E'$, il existe au moins une paire $(e, e') \in f$, f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque $e' \in E'$, il existe au moins une paire $(e, e') \in f$, f est surjective
- si f est injective et surjective alors f est bijective

```
Fonction f: E \to E':
Relation sur E \times E' telle que
pour chaque e \in E
il existe au plus 1 paire (e, e') \in f.
```

- s'il en existe exactement 1, f est totale
- si, pour chaque $e' \in E'$, il existe au plus une paire $(e, e') \in f$, f est injective
- si, pour chaque $e' \in E'$, il existe au moins une paire $(e, e') \in f$, f est surjective
- si f est injective et surjective alors f est bijective

Exercice: définitions

Définir les notions suivantes :

- dom(f) : domaine de définition f
- img(f): l'image du domaine de f par f (ou co-domaine)
- $f_{\mid E}$: la restriction (du domaine) de f à E

Fonctions à plusieurs arguments (c.f. LIFAP5)

Deux manières de les représenter : n-uplet et curryfication

n-uplets

Soit $f: E \to E'$ telle que $E = E_1 \times \cdots \times E_n$.

Un seul argument réel qui est un n-uplet unique qui contient les *n* arguments "que l'on voudrait avoir".

$$f((e_1, \ldots, e_n))$$
 s'écrit $f(e_1, \ldots, e_n)$

Fonctions à plusieurs arguments (c.f. LIFAP5)

Curryfication

$$f: E_1 \rightarrow (E_2 \rightarrow (...(E_n \rightarrow E')...))$$

"Fonction prenant le premier argument et renvoyant une fonction qui prend le second argument, etc jusqu'à obtenir une fonction qui prend le dernier argument et renvoie une valeur dans E'"

$$f(e_1)(e_2)...(e_n)$$
 à la place de $f(e_1,...,e_n)$

- Introduction
- 2 Booléens
- 3 Ensembles
- Ordres

Propriétés de relations binaires

R relation binaire sur E ($R \subseteq E \times E$) est :

- symétrique si pour tout $R(e_1, e_2)$, on a également $R(e_2, e_1)$
- antisymétrique si pour toute paire (e_1, e_2) , si $R(e_1, e_2)$ et $R(e_2, e_1)$, alors $e_1 = e_2$
- réflexive si pour tout $e \in E$, on a R(e, e)
- antiréflexive si pour tout $e \in E$, on a pas R(e, e)
- transitive si pour tout triplet (e_1, e_2, e_3) si on a $R(e_1, e_2)$ et $R(e_2, e_3)$ alors on a $R(e_1, e_3)$.

(Pré)ordres

R est un *préordre* :

- R est réflexive
- R est transitive

R est un ordre:

- R est un préordre
- R est antisymétrique

R est un ordre total sur E

Pour tous e_1 et $e_2 \in E$, $R(e_1, e_2)$ ou $R(e_2, e_1)$

Notation : $R(e_1, e_2)$ peut se noter $e_1 R e_2$

Ordres stricts

R est un ordre strict

- R est antiréflexive
- R est transitive
- R est antisymétrique

La partie stricte associée à un préordre R

est la relation $R \setminus R^{-1}$

avec R^{-1} la relation $\{(e_2, e_1) \mid R(e_1, e_2)\}$

Ordres bien fondés

R est bien fondé

il n'existe pas de suite infinie $(e_i)_{i\in\mathcal{N}}$ strictement décroissante, *i.e.* telle que pour tout $i\in\mathcal{N}$, $R(e_{i+1},e_i)$ et $e_i\neq e_{i+1}$

Composition d'ordres : ordre lexicographique

Ordre lexicographique R_{lex} sur $E_1 \times \cdots \times E_n$

On suppose un ordre R_i sur E_i pour $1 \le i \le n$ On a $R_{lex}((e_1, ..., e_n), (e'_1, ..., e'_n))$ ssi

- soit il existe $1 \le i \le n$ tel que :
 - pour tout $1 \le j < i$, $e_j = e'_i$
 - $e_i \neq e'_i$ et $R_i(e_i, e'_i)$
- soit $(e_1, ..., e_n) = (e'_1, ..., e'_n)$

Totalité

Si R_i est total pour $1 \le i \le n$ alors R_{lex} est total

Bonne fondation

Si R_i est bien fondé pour $1 \le i \le n$ alors R_{lex} est bien fondé

Exercices

Pour chacun des ordres suivants, dire s'il est total, et s'il est bien fondé :

- ullet Ordre naturel sur les entiers naturels ${\cal N}$
- ullet Ordre naturel sur les entiers relatifs ${\mathcal Z}$
- Soit E un ensemble fini et soit $\mathcal{P}(E)$ l'ensemble de ses parties. On considère l'ordre d'inclusion sur $\mathcal{P}(E)$.
- Même question si E est infini
- L'ordre alphabétique sur les mots formé sur l'alphabet $\{a,b\}$