Package 'TCHazaRds'

September 20, 2024

Type Package

```
Title Tropical Cyclone (Hurricane, Typhoon) Spatial Hazard Modelling
Version 1.1.2
Date 2024-09-04
Maintainer Julian O'Grady < julian.ogrady@csiro.au>
Description Methods for generating modelled parametric Tropical Cyclone (TC) spatial haz-
      ard fields and time series output at point locations from TC tracks. R's compatibility to sim-
      ply use fast 'cpp' code via the 'Rcpp' package and the wide range spatial analy-
      sis tools via the 'terra' package makes it an attractive open source environ-
      ment to study 'TCs'. This package estimates TC vortex wind and pressure fields using paramet-
      ric equations originally coded up in 'python' by 'TCRM' <a href="https:">https:</a>
      //github.com/GeoscienceAustralia/tcrm> and then coded up in 'Cuda' 'cpp' by 'TCwind-
      gen' < https://github.com/CyprienBosserelle/TCwindgen>.
URL https://github.com/AusClimateService/TCHazaRds
License GPL (>= 3)
Imports Rcpp (>= 1.0.7), terra, utils, stats, geosphere, ncdf4,
      methods, sp, rasterVis, raster, latticeExtra
LinkingTo Rcpp
RoxygenNote 7.3.2
Encoding UTF-8
Suggests testthat (>= 3.0.0), knitr, rmarkdown
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Author Julian O'Grady [aut, cre] (<a href="https://orcid.org/0000-0003-3552-9193">https://orcid.org/0000-0003-3552-9193</a>)
Repository CRAN
Date/Publication 2024-09-20 12:10:12 UTC
```

2 Contents

Contents

Index

beta_modelsR
DoubleHollandPressureProfile
DoubleHollandPressureProfilePi
DoubleHollandWindProfile
DoubleHollandWindProfilePi
HollandPressureProfile
HollandPressureProfilePi
HollandWindProfile
HollandWindProfilePi
HubbertWindField
HubbertWindFieldPi 9
inlandWindDecay
JelesnianskiWindProfile
JelesnianskiWindProfilePi
KepertWindField
KepertWindFieldPi
land_geometry
McConochieWindField
McConochieWindFieldPi
NewHollandWindProfile
NewHollandWindProfilePi
predict_rmax
RankineWindProfilePi
Rdist
RdistPi
returnBearing
rMax175ms_solver
rMax2_modelsR
rMax_modelsR
TCHazaRdsWindField
TCHazaRdsWindFields
TCHazaRdsWindProfile
TCHazaRdsWindTimeSereies
TCpoints2lines
TCProfilePts
TCvectInterp
tunedParams
update_Track
vMax_modelsR

35

beta_modelsR 3

beta_modelsR	Compute the Exponential TC beta Profile-Curvature Parameter

Description

Compute the Exponential TC beta Profile-Curvature Parameter

Usage

```
beta_modelsR(betaModel, vMax, rMax, cPs, eP, vFms, TClats, dPdt, rho = 1.15)
```

Arguments

betaModel	0=Holland (2008),1=Powell (2005),2=Willoughby & Rahn (2004),3=Vickery & Wadhera (2008),4=Hubbert (1991)
vMax	maximum wind speed m/s. see vMax_modelsR
rMax	radius of maximum winds (km). see rMax_modelsR
cPs	Tropical cyclone central pressure (hPa)
eP	Background environmental pressure (hPa)
vFms	Forward speed of the storm m/s
TClats	Tropical cyclone central latitude
dPdt	rate of change in central pressure over time, hPa per hour from Holland 2008
rho	density of air

Value

exponential beta parameter

Examples

```
beta_modelsR(0,10,10,960,1013,3,-15,1)
```

DoubleHollandPressureProfile

Double Holland Pressure Profile

Description

Pressure profile at grid points

Usage

```
DoubleHollandPressureProfile(rMax, rMax2, dP, cP, beta, R)
```

Arguments

rMax	radius of maximum winds in km
rMax2	radius of outer radial winds in km
	11.00 .1.1

dP pressure differential, environmental less TC central pressure in hPa

cP TC central pressure in hPa

beta exponential term for Holland vortex

R vector of distances from grid points to TC centre in km

Value

vector of pressures. //@example DoubleHollandPressureProfile(20,20,980,1.2,50)

DoubleHollandPressureProfilePi

Double Holland Pressure Profile Time Series

Description

Pressure profile time series at a grid point

Usage

```
DoubleHollandPressureProfilePi(rMax, rMax2, dP, cP, beta, R)
```

Arguments

rMax	radius of maximum winds in km
rMax2	radius of outer radial winds in km

dP pressure differential, environmental less TC central pressure in hPa

cP TC central pressure in hPa

beta exponential term for Holland vortex

R vector of distances from grid points to TC centre in km

Value

 $vector\ of\ pressures.\ /\!/@example\ Double Holland Pressure Profile Pi(20,20,980,1.2,50)$

DoubleHollandWindProfile 5

DoubleHollandWindProfile

Double Holland Wind Profile

Description

McConochie *et al*'s double Holland vortex model based on Cardone *et al*, 1994. This application is the Coral Sea adaptation of the double vortex model and it can also be used for concentric eye - wall configurations.

Usage

```
DoubleHollandWindProfile(f, vMax, rMax, rMax2, dP, cP, rho, beta, R)
```

Arguments

f	single coriolis parameter at the centre of TC in hz
vMax	maximum wind velocity calculation in m/s
rMax	radius of maximum winds in km
rMax2	radius of outer radial winds in km
dP	pressure differential, environmental less TC central pressure in hPa
сР	TC central pressure in hPa
rho	density of air in Kg/m3
beta	exponential term for Holland vortex
R	vector of distances from grid points to TC centre in km

Value

array with two columns for velocity and then vorticity. //@example DoubleHollandWindProfile(-1e-4,20,20,10,980,1.15,1.2,50)

DoubleHollandWindProfilePi

Double Holland Wind Profile Time Series

Description

Wind profile time series at a grid point. McConochie *et al*'s double Holland vortex model based on Cardone *et al*, 1994. This application is the Coral Sea adaptation of the double vortex model and it can also be used for concentric eye - wall configurations.

Usage

```
DoubleHollandWindProfilePi(f, vMax, rMax, rMax2, dP, cP, rho, beta, R)
```

6 HollandPressureProfile

Arguments

f	single coriolis parameter at the centre of TC in hz
vMax	maximum wind velocity calculation in m/s
rMax	radius of maximum winds in km
rMax2	radius of outer radial winds in km
dP	pressure differential, environmental less TC central pressure in hPa
сР	TC central pressure in hPa
rho	density of air in Kg/m3
beta	exponential term for Holland vortex

Value

R

array with two columns for velocity and then vorticity. # example DoubleHollandWindProfilePi(-1e-4,20,20,10,980,1.15,1.2,50)

vector of distances from grid points to TC centre in km

HollandPressureProfile

Holland Pressure Profile

Description

Pressure profile at grid points

Usage

```
HollandPressureProfile(rMax, dP, cP, beta, R)
```

Arguments

rMax	radius of maximum winds in km
dP	pressure differential, environmental less TC central pressure in hPa
сР	TC central pressure in hPa
beta	exponential term for Holland vortex
R	vector of distances from grid points to TC centre in km

Value

vector of pressures. //@example HollandPressureProfile(20,20,980,1.2,50)

HollandPressureProfilePi 7

HollandPressureProfilePi

Holland Pressure Profile Time Series

Description

Pressure profile time series at a grid point.

Usage

```
HollandPressureProfilePi(rMax, dP, cP, beta, R)
```

Arguments

rMax radius of maximum winds in km

dP pressure differential, environmental less TC central pressure in hPa

cP TC central pressure in hPa

beta exponential term for Holland vortex

R vector of distances from grid points to TC centre in km

Value

vector of pressures. //@example HollandPressureProfilePi(20,20,980,1.2,50)

HollandWindProfile Holland Wind Profile

Description

wind profile at grid points

Usage

```
HollandWindProfile(f, vMax, rMax, dP, rho, beta, R)
```

Arguments

f	single coriolis parameter at the centre of TC in hz
vMax	maximum wind velocity calculation in m/s
rMax	radius of maximum winds in km
dP	pressure differential, environmental less TC central pressure in hPa
rho	density of air in Kg/m3
beta	exponential term for Holland vortex

R vector of distances from grid points to TC centre in km

8 HubbertWindField

Value

array with two columns for velocity and then vorticity. //@example HollandWindProfile(-1e-4,20,20,10,1.15,1.2,50)

HollandWindProfilePi Holland Wind Profile Time Series

Description

wind profile time series at a grid point

Usage

```
HollandWindProfilePi(f, vMax, rMax, dP, rho, beta, R)
```

Arguments

f single coriolis parameter at the centre of TC in hz

vMax maximum wind velocity calculation in m/s

rMax radius of maximum winds in km

dP pressure differential, environmental less TC central pressure in hPa

rho density of air in Kg/m3

beta exponential term for Holland vortex

R vector of distances from grid points to TC centre in km

Value

array with two columns for velocity and then vorticity. //@example HollandWindProfilePi(-1e-4,20,20,10,1.15,1.2,50)

HubbertWindField Hubbert Wind Field

Description

Grid point vortex Wind field, wind vectors. Hubbert, G.D., G.J.Holland, L.M.Leslie and M.J.Manton, 1991: A Real - Time System for Forecasting Tropical Cyclone Storm Surges. *Weather and Forecasting*, **6 * *, 86 - 97

Usage

```
HubbertWindField(f, rMax, vFm, thetaFm, Rlam, V, surface)
```

HubbertWindFieldPi 9

Arguments

f single coriolis parameter at the centre of TC in hz

rMax radius of maximum winds in km
vFm input forward velocity of TC
thetaFm input forward direction of TC

Rlam two columns for distances and direction from grid points to TC centre in km

V velocity profile

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example HubbertWindField(-1e-4,20,2,10,rbind(c(50,35),c(45,40)),c(20,20))

HubbertWindFieldPi

Hubbert Wind Field Time Series

Description

Time series vortex Wind, wind vectors. Hubbert, G.D., G.J.Holland, L.M.Leslie and M.J.Manton, 1991: A Real - Time System for Forecasting Tropical Cyclone Storm Surges. *Weather and Forecasting*, **6 * *, 86 - 97

Usage

HubbertWindFieldPi(f, rMax, vFm, thetaFm, Rlam, V, surface)

Arguments

f single coriolis parameter at the centre of TC in hz

rMax radius of maximum winds in km
vFm input forward velocity of TC
thetaFm input forward direction of TC

Rlam two columns for distances and direction from grid points to TC centre in km

V velocity profile

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example HubbertWindFieldPi(-1e-4,20,2,10,rbind(c(50,35),c(45,40)),c(20,20))

10 JelesnianskiWindProfile

inlandWindDecay

Reduce Winds Overland

Description

Reduce Winds Overland

Usage

```
inlandWindDecay(d, a = c(0.66, 1, 0.4))
```

Arguments

d inland distance in km

a three parameter of decay model a1,a2,a3

Value

a reduction factor Km

Examples

inlandWindDecay(10)

JelesnianskiWindProfile

Jelesnianski Wind Profile

Description

wind profile at grid points

Usage

```
JelesnianskiWindProfile(f, vMax, rMax, R)
```

Arguments

f single coriolis parameter at the centre of TC in hz vMax maximum wind velocity calculation in m/s

rMax radius of maximum winds in km

R vector of distances from grid points to TC centre in km

Value

array with two columns for velocity and then vorticity. //@example JelesnianskiWindProfile(-1e-4,20,20,50)

JelesnianskiWindProfilePi 11

JelesnianskiWindProfilePi

Jelesnianski Wind Profile Time Series

Description

wind profile time series at a grid point

Usage

```
JelesnianskiWindProfilePi(f, vMax, rMax, R)
```

Arguments

f single coriolis parameter at the centre of TC in hz

vMax maximum wind velocity calculation in m/s

rMax radius of maximum winds in km

R vector of distances from grid points to TC centre in km

Value

array with two columns for velocity and then vorticity. //@example JelesnianskiWindProfilePi(-1e-4,20,20,50)

KepertWindField

Kepert Wind Field

Description

Grid point vortex Wind field, wind vectors. Kepert, J., 2001: The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core.Part I: Linear Theory.J.Atmos.Sci., 58, 2469 - 2484

Usage

```
KepertWindField(rMax, vMax, vFm, thetaFm, f, Rlam, VZ, surface)
```

Arguments

rMax radius of maximum winds in km

vMax maximum wind velocity calculation in m/s

vFm input forward velocity of TC thetaFm input forward direction of TC

f single coriolis parameter at the centre of TC in hz

12 KepertWindFieldPi

Rlam two columns for distances and Cartesian direction clocwise from the x axis from

grid points to TC centre in km

VZ array two columns velocity then vorticity

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example KepertWindField(20,20,2,10,-1e-4,rbind(c(50,35),c(45,40)),rbind(c(20,2),c(22,3)))

KepertWindFieldPi Kepert Wind Field

Description

Time series vortex Wind, wind vectors. Kepert, J., 2001: The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core.Part I: Linear Theory.J.Atmos.Sci., 58, 2469 - 2484

Usage

KepertWindFieldPi(rMax, vMax, vFm, thetaFm, f, Rlam, VZ, surface)

Arguments

rMax radius of maximum winds in km

vMax maximum wind velocity calculation in m/s

vFm input forward velocity of TC thetaFm input forward direction of TC

f single coriolis parameter at the centre of TC in hz

Rlam two columns for distances and direction from grid points to TC centre in km

VZ array two columns velocity then vorticity

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example KepertWindField(20,20,2,10,-1e-4,rbind(c(50,35),c(45,40)),rbind(c(20,2),c(22,3)))

land_geometry 13

land	geometry
------	----------

Calculate the Geometric Parameters for Terrestrial Wind

Description

Returns geometric data to compute wind fields.

Usage

```
land_geometry(dem, inland_proximity, returnpoints = FALSE)
```

Arguments

dem SpatRaster object, digital elevation model			
inland_proximity			
	SpatRaster object, distance from the coast inland		
returnpoints	Return SpatVector of points or SpatRaster		

Value

SpatVector with attributes or SpatRaster

Abbreviated attribute	description	units
dem	Digital Elevation Model	m
lat	Latitude	degs
lon	Longitude	degs
slope	slope of terrain	-
aspect	DEM aspect	-
inlandD	distance inland from coast	m
f	Coriolis parameter	hz

```
require(terra)
dem <- rast(system.file("extdata/DEMs/YASI_dem.tif", package="TCHazaRds"))
land <- dem; land[land > 0] = 0
inland_proximity = distance(land, target = 0)
GEO_land = land_geometry(dem,inland_proximity)
plot(GEO_land)
```

14 McConochieWindFieldPi

McConochieWindField McConochie Wind Field

Description

Grid point vortex Wind field, wind vectors. McConochie, J.D., T.A.Hardy and L.B.Mason, 2004: Modelling tropical cyclone over - water wind and pressure fields. Ocean Engineering, 31, 1757 - 1782.

Usage

McConochieWindField(rMax, vMax, vFm, thetaFm, Rlam, V, f, surface)

Arguments

rMax radius of maximum winds in km

vMax maximum wind velocity calculation in m/s

vFm input forward velocity of TC thetaFm input forward direction of TC

Rlam two columns for distances and direction from grid points to TC centre in km

V velocity profile

f coriolis parameter at the centre of TC in hz

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example McConochieWindField(-1e-4,20,2,10,rbind(c(50,35),c(45,40)),c(20,20))

McConochieWindFieldPi McConochie Wind Field Time Series

Description

Time series vortex Wind, wind vectors. McConochie, J.D., T.A.Hardy and L.B.Mason, 2004: Modelling tropical cyclone over - water wind and pressure fields. Ocean Engineering, 31, 1757 - 1782.

Usage

McConochieWindFieldPi(rMax, vMax, vFm, thetaFm, Rlam, V, f, surface)

NewHollandWindProfile 15

Arguments

rMax radius of maximum winds in km

vMax maximum wind velocity calculation in m/s

vFm input forward velocity of TC thetaFm input forward direction of TC

Rlam two columns for distances and direction from grid points to TC centre in km

V velocity profile

f coriolis parameter at the centre of TC in hz

surface equals one if winds are reduced from the gradient level to the surface, otherwise

gradient winds.

Value

array with two columns for zonal and meridional wind speed vector-components. //@example McConochieWindFieldPi(-1e-4,20,2,10,rbind(c(50,35),c(45,40)),c(20,20))

NewHollandWindProfile New Holland Wind Profile Time Series

Description

Wind profile time series at a grid point. Holland et al. 2010. In this version, the exponent is allowed to vary linearly outside the radius of maximum wind. I.e. rather than take the square root, the exponent varies around 0.5. Currently this version does not have a corresponding vorticity profile set up in wind Vorticity, so it cannot be applied in some wind field modelling.

Usage

```
NewHollandWindProfile(f, rMax, rMax2, dP, rho, R, vMax, beta)
```

Arguments

f single coriolis parameter at the centre of TC in hz

rMax radius of maximum winds in km rMax2 radius of outer 17.5ms winds in km

dP pressure differential, environmental less TC central pressure in hPa

rho density of air in Kg/m3

R vector of distances from grid points to TC centre in km

vMax maximum wind velocity calculation in m/s beta exponential term for Holland vortex

Value

array with two columns for velocity and then vorticity. //@example NewHollandWindProfile(-1e-4,20,20,1.15,-14,50,1.3)

predict_rmax

NewHollandWindProfilePi

New Holland Wind Profile Time Series

Description

Wind profile time series at a grid point. Holland et al. 2010. In this version, the exponent is allowed to vary linearly outside the radius of maximum wind. I.e. rather than take the square root, the exponent varies around 0.5. Currently this version does not have a corresponding vorticity profile set up in wind Vorticity, so it cannot be applied in some wind field modelling.

Usage

```
NewHollandWindProfilePi(f, rMax, rMax2, dP, rho, R, vMax, beta)
```

Arguments

f	single coriolis parameter at the centre of TC in hz
rMax	radius of maximum winds in km
rMax2	radius of outer 17ms winds in km
dP	pressure differential, environmental less TC central pressure in hPa
rho	density of air in Kg/m3
R	vector of distances from grid points to TC centre in km
vMax	maximum wind velocity calculation in m/s
beta	exponential term for Holland vortex

Value

array with two columns for velocity and then vorticity. # example NewHollandWindProfilePi(-1e-4,20,20,1.15,-14,50,1.3)

Description

Predicts the radius of maximum winds (rmax) based on the radius of 17.5 m/s winds (rMax175ms) using the Chavas and Knaff (2022) model.

Usage

```
predict_rmax(rMax175ms, vMax, TClats)
```

RankineWindProfilePi 17

Arguments

rMax175ms Numeric. A vector of radius of 17.5 m/s winds (in km).
vMax Numeric. A vector of maximum wind speeds (m/s).

TClats Numeric. A vector of latitudes of tropical cyclones (in degrees).

Value

A vector of predicted rmax values (in km).

Examples

```
rMax175ms <- c(100, 120, 140)

vMax <- c(50, 55, 60)

TClats <- c(20, 25, 30)

predict_rmax(rMax175ms, vMax, TClats)
```

RankineWindProfilePi Rankine Wind Profile Time Series

Description

wind profile time series at a grid point

Usage

```
RankineWindProfilePi(f, vMax, rMax, R)
```

Arguments

f single coriolis parameter at the centre of TC in hz

vMax maximum wind velocity calculation in m/s

rMax radius of maximum winds in km

R vector of distances from grid points to TC centre in km

Value

array with two columns for velocity and then vorticity. //@example RankineWindProfilePi(-1e-4,20,20,50)

18 RdistPi

Rdist

TC Distance and Direction From Output Grid Points

Description

Grid points distance and direction to TC.

Usage

```
Rdist(Gridlon, Gridlat, TClon, TClat)
```

Arguments

Gridlon vector of Grid point longitudes
Gridlat vector of Grid point latitudes

TClon single TC longitude
TClat single TC latitude

Value

two columns for distance in km and cartesian direction in degrees, counter clockwise from the x axis. //@example Rdist(c(144,145),c(-11,-12),142,-14)

RdistPi

TC Track Distance and Direction From Output Grid Point

Description

Grid point time series of TC distance and direction.

Usage

```
RdistPi(Gridlon, Gridlat, TClon, TClat)
```

Arguments

Gridlon single Grid point longitude
Gridlat single Grid point latitude
TClon vector of TC longitudes
TClat vector of TC latitudes

Value

two columns for distance in km and cartesian direction in degrees, counterclockwise from the x axis. //@ example RdistPi(142,-14,c(144,145),c(-11,-12))

returnBearing 19

returnBearing

Return the Bearing for Line Segments

Description

Return the Bearing for Line Segments

Usage

```
returnBearing(x)
```

Arguments

Х

spatial vector with line segments (two connected points)

Value

array of bearings see geosphere::bearing, i.e the Forward direction of the storm geographic bearing, positive clockwise from true north

Examples

```
### IBTRACS HAS the WRONG BEARING!!
require(terra)
northwardTC <- vect(cbind(c(154,154),c(-26.1,-26)),"lines",crs="epsg:4283") #track line segment
easthwardTC <- vect(cbind(c(154,154.1),c(-26,-26)),"lines",crs="epsg:4283") #track line segment
southhwardTC <- vect(cbind(c(154,154),c(-26,-26.1)),"lines",crs="epsg:4283") #track line segment
westwardTC <- vect(cbind(c(154.1,154),c(-26,-26)),"lines",crs="epsg:4283") #track line segment
returnBearing(northwardTC)
returnBearing(southhwardTC)
returnBearing(southhwardTC)
returnBearing(westwardTC)</pre>
```

rMax175ms_solver

rMax175ms_solver

Description

A helper function for numerically solving the radius of 17.5 m/s winds using the Chavas and Knaff (2022) model. This function is called by 'uniroot' to compute the difference between the guessed and actual rmax values.

Usage

```
rMax175ms_solver(rMax175ms_m, vMax, rmax_predict_m, TClats)
```

20 rMax2_modelsR

Arguments

rMax175ms_m Numeric. Guessed radius of 17.5 m/s winds in meters.

vMax Numeric. Maximum wind speed (m/s).

rmax_predict_m Numeric. Target radius of maximum winds in meters.

TClats Numeric. Latitude of the tropical cyclone in degrees.

Value

The difference between the guessed rmax and the target rmax.

Examples

```
rMax175ms_solver(100000, 50, 36000, 20)
```

Description

Numerically solves for the radius of 17.5 m/s winds (rMax175ms) using the Chavas and Knaff (2022) model and 'uniroot'.

Usage

```
rMax2_modelsR(rMax2Model, rMax, vMax, TClats)
```

Arguments

rMax2Model TC outer radius of 17.5m/s winds model ('150km'=1,'CK22'=2)

rMax Numeric. A vector of radius of maximum winds (km).
vMax Numeric. A vector of maximum wind speeds (m/s).

TClats Numeric. A vector of latitudes of tropical cyclone cwntre in degrees.

Value

A vector of predicted rMax175ms values (in km).

```
rMax <- c(30, 36, 40)

vMax <- c(50, 55, 60)

TClats <- c(20, 25, 30)

rMax2_modelsR(2,rMax, vMax, TClats)
```

rMax_modelsR 21

rMax_modelsR Com	npute the Tropical Cyclone	Radius of Maximum Winds
------------------	----------------------------	-------------------------

Description

Compute the Tropical Cyclone Radius of Maximum Winds

Usage

```
rMax_modelsR(
  rMaxModel,
  TClats,
  cPs,
  eP,
  R175ms = 150,
  dPdt = NULL,
  vFms = NULL,
  rho = 1.15
)
```

Arguments

rMaxModel	0=Powell et.al.(2005),1=McInnes et.al.(2014),2=Willoughby & Rahn (2004), 3=Vickery & Wadhera (2008), 4=Takagi & Wu (2016), 5 = Chavas & Knaff (2022)
TClats	Tropical cyclone central latitude (nautical degrees)
cPs	Tropical cyclone central pressure (hPa)
eP	Background environmental pressure (hPa)
R175ms	radius of 17.5m/s wind speeds (km)
dPdt	rate of change in central pressure over time, hPa per hour from Holland 2008
vFms	Forward speed of the storm m/s
rho	density of air

Value

```
radius of maximum winds (km)
```

```
rMax_modelsR(0,-14,950,1013,200,0,0,1.15)
```

22 TCHazaRdsWindField

TCHazaRdsWindField	Compute the Wind and Pressure Spatial Hazards Field Associated with TCs Single Time Step.
	ICs Single Time Step.

Description

Compute the Wind and Pressure Spatial Hazards Field Associated with TCs Single Time Step.

Usage

```
TCHazaRdsWindField(GEO_land, TC, paramsTable, returnWaves = FALSE)
```

Arguments

GEO_land	SpatVector or dataframe hazard geometry generated with land_geometry
TC	SpatVector or data.frame of Tropical cyclone track parameters for a single time step.
paramsTable	Global parameters to compute TC Hazards.
returnWaves	Return ocean wave parameters (default = FALSE)

Value

SpatRaster with the following attributes

abbreviated attribute	description	units
P	Atmospheric pressure	hPa
Uw	Meridional wind speed	m/s
Vw	Zonal wind speed	m/s
Sw	Wind speed	m/s
Dw	The direction from which wind originates	deg clockwise from true north.
Hs0	Deep water significant wave height	m
Tp0	Deep water Peak wave period	S
Dp0	The peak direction in which wave are heading	deg clockwise from true north.

```
require(terra)
dem <- rast(system.file("extdata/DEMs/YASI_dem.tif", package="TCHazaRds"))
land <- dem; land[land > 0] = 0
inland_proximity = distance(land, target = 0)
GEO_land = land_geometry(dem,inland_proximity)

TCi = vect(cbind(c(154,154),c(-26.1,-26)),"lines",crs="epsg:4283") #track line segment
TCi$PRES = 950
TCi$RMAX = 40
TCi$VMAX = 60
```

TCHazaRdsWindFields 23

```
TCi\$B = 1.4
TCi$ISO_TIME = "2022-10-04 20:00:00"
TCi$LON = geom(TCi)[1,3]
TCi$LAT = geom(TCi)[1,4]
TCi\$STORM\_SPD = perim(TCi)/(3*3600) \#m/s
TCi$thetaFm = 90-returnBearing(TCi)
TC <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))</pre>
TC$PRES <- TC$BOM_PRES
TCi = TC[47]
plot(dem);lines(TCi,lwd = 4,col=2)
paramsTable = read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
#calculate the wind hazard
HAZ = TCHazaRdsWindField(GEO_land,TCi,paramsTable)
plot(HAZ)
#require(rasterVis) #pretty spatial vector plot
\#ats = seq(0, 80, length=9)
#UV = as(c(HAZ["Uw"],HAZ["Vw"]),"Raster") #need to convert back to raster
#vectorplot(UV, isField='dXY', col.arrows='white', aspX=0.002,aspY=0.002,at=ats ,
#colorkey=list( at=ats), par.settings=viridisTheme)
```

 ${\sf TCHazaRdsWindFields}$

Compute the Wind and Pressure Spatial Hazards Field Associated with TC track.

Description

Compute the Wind and Pressure Spatial Hazards Field Associated with TC track.

Usage

```
TCHazaRdsWindFields(
  outdate = NULL,
  GEO_land,
  TC,
  paramsTable,
  outfile = NULL,
  overwrite = FALSE,
  returnWaves = FALSE)
```

Arguments

outdate array of POSITx date times to linearly interpolate TC track

GEO_land SpatVector or dataframe hazard geometry generated with land_geometry

TC SpatVector of Tropical cyclone track parameters for a single time step

24 TCHazaRdsWindFields

paramsTable	Global parameters to compute TC Hazards
outfile	character. Output netcdf filename
overwrite	TRUE/FALSE, option to overwrite outfile
returnWaves	Return ocean wave parameters (default = FALSE)

Value

SpatRasterDataset with the following attributes.

abbreviated attribute	description	units
P	Atmospheric pressure	hPa
Uw	Meridional wind speed	m/s
Vw	Zonal wind speed	m/s
Sw	Wind speed	m/s
Dw	The direction from which wind originates	deg clockwise from true north
Hs0	Deep water significant wave height	m
Tp0	Deep water Peak wave period	S
Dp0	The peak direction in which wave are heading	deg clockwise from true north.

```
require(terra)
dem <- rast(system.file("extdata/DEMs/YASI_dem.tif", package="TCHazaRds"))</pre>
land <- dem; land[land > 0] = 0
inland_proximity = distance(land, target = 0)
GEO_land = land_geometry(dem,inland_proximity)
TCi = vect(cbind(c(154,154),c(-26.1,-26)),"lines",crs="epsg:4283") #track line segment
TCi\$PRES = 950
TCi\$RMAX = 40
TCi$VMAX = 60
TCi\$B = 1.4
TCi$ISO_TIME = "2022-10-04 20:00:00"
TCi$LON = geom(TCi)[1,3]
TCi$LAT = geom(TCi)[1,4]
TCi\$STORM\_SPD = perim(TCi)/(3*3600) \#m/s
TCi$thetaFm = 90-returnBearing(TCi)
TC <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))</pre>
TC$PRES <- TC$BOM_PRES
plot(dem); lines(TC, lwd = 4, col=2)
paramsTable = read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
#calculate the wind hazard
outdate = seq(strptime(TC\$ISO\_TIME[44],"\%Y-\%m-\%d \%H:\%M:\%S",tz="UTC"),\\
              strptime(TC$ISO_TIME[46],"%Y-%m-%d %H:%M:%S",tz="UTC"),
              3600*3)
HAZi = TCHazaRdsWindFields(outdate=outdate, GEO_land=GEO_land, TC=TC, paramsTable=paramsTable)
```

TCHazaRdsWindProfile 25

```
plot(min(HAZi$Pr))
```

TCHazaRdsWindProfile Compute the Wind and Pressure Spatial Hazards Profile Associated with TCs Single Time Step.

Description

Compute the Wind and Pressure Spatial Hazards Profile Associated with TCs Single Time Step.

Usage

```
TCHazaRdsWindProfile(GEO_land, TC, paramsTable)
```

Arguments

GEO_land	SpatVector or dataframe hazard geometry generated with land_geometry
TC	SpatVector or data.frame of Tropical cyclone track parameters for a single time step.

paramsTable Global parameters to compute TC Hazards.

Value

SpatRaster with the following attributes

abbreviated attribute	description	units
P	Atmospheric pressure	hPa
Uw	Meridional wind speed	m/s
Vw	Zonal wind speed	m/s
Sw	Wind speed	m/s
Dw	Wind direction	deg clockwise from true north

```
require(terra)
dem <- rast(system.file("extdata/DEMs/YASI_dem.tif", package="TCHazaRds"))
land <- dem; land[land > 0] = 0
inland_proximity = distance(land,target = 0)
GEO_land = land_geometry(dem,inland_proximity)

TCi = vect(cbind(c(154,154),c(-26.1,-26)),"lines",crs="epsg:4283") #track line segment
TCi$PRES = 950
TCi$PRES = 950
TCi$PRES = 00
TCi$PRES = 1.4
TCi$ISO_TIME = "2022-10-04 20:00:00"
```

```
TCi$LON = geom(TCi)[1,3]
TCi$LAT = geom(TCi)[1,4]
TCi\$STORM\_SPD = perim(TCi)/(3*3600) \#m/s
TCi$thetaFm = 90-returnBearing(TCi)
TC <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))</pre>
TC$PRES <- TC$BOM_PRES
TCi = TC[47]
TCi$thetaFm = 90-returnBearing(TCi)
#extract a profile/transect at right angles (90 degrees) from the TC heading/bearing direction
pp <- TCProfilePts(TC_line = TCi,bear=TCi$thetaFm+90,length =100,step=1)</pre>
#plot(dem);lines(TCi,lwd = 4,col=2)
#points(pp)
GEO_land_v = extract(GEO_land,pp,bind=TRUE,method = "bilinear")
paramsTable = read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
#calculate the wind hazard
HAZ = TCHazaRdsWindProfile(GEO_land_v,TCi,paramsTable)
#plot(HAZ$radialdist,HAZ$Sw,type="1",xlab = "Radial distance [km]",ylab = "Wind speed [m/s]");grid()
#plot(HAZ, "Sw", type="continuous")
```

TCHazaRdsWindTimeSereies

Compute the Wind Hazards Associated Over the Period of a TCs Event at one Given Location

Description

Compute the Wind Hazards Associated Over the Period of a TCs Event at one Given Location

Usage

```
TCHazaRdsWindTimeSereies(
  outdate = NULL,
  GEO_land = NULL,
  TC,
  paramsTable,
  returnWaves = FALSE
)
```

Arguments

outdate array of POSITx date times to linearly interpolate TC track, optional.

GEO_land dataframe hazard geometry generated with land_geometry

TC SpatVector of Tropical cyclone track parameters paramsTable Global parameters to compute TC Hazards.

returnWaves Return ocean wave parameters (default = FALSE)

TCpoints2lines 27

Details

The function calculates wind speed and direction time series from a tropical cyclone track using various wind profile models.

Value

list() containing a timeseries

abbreviated attribute	description	units
date	POSIX data time object of TC or outdate if provided	as.POSIX
P	Atmospheric pressure	hPa
Uw	Meridional wind speed	m/s
Vw	Zonal wind speed	m/s
Sw	Wind speed	m/s
R	distance to TC centre	m
rMax	radius of maximum wind	km
vMax	TC maximum velocity	m/s
b	TC wind profile exponent	-
CP	TC central Pressure	hPa
dPdt	change in TC CP per hour	hPa/hr
vFm	velocity of TC forward motion	m/s
Hs0	Deep water significant wave height	m
Tp0	Deep water Peak wave period	S
Dp0	The peak direction in which wave are heading	deg clockwise from true north.

Examples

```
GEO_land = data.frame(dem=0,lons = 147,lats=-18,f=-4e-4,inlandD = 0)
require(terra)
TCi <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))
TCi$PRES <- TCi$BOM_PRES

paramsTable = read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
HAZts = TCHazaRdsWindTimeSereies(GEO_land=GEO_land,TC=TCi,paramsTable = paramsTable)
main = paste(TCi$NAME[1],TCi$SEASON[1],"at",GEO_land$lons,GEO_land$lats)
#with(HAZts,plot(date,Sw,format = "%b-%d %H",type="l",main = main,ylab = "Wind speed [m/s]"))</pre>
```

TCpoints2lines	Convert Points to Line Segments	

Description

This function converts a set of point geometries into line segments. The input vector must be a set of points, and the function will draw line segments between consecutive points. An additional point is extrapolated from the last two points to ensure the final segment is complete.

28 TCProfilePts

Usage

```
TCpoints2lines(pts_v)
```

Arguments

pts_v

A 'SpatVector' of points (from the 'terra' package).

Value

A 'SpatVector' containing line geometries created from the input points.

Examples

```
library(terra)
# Create example points
pts <- vect(matrix(c(1, 1, 2, 2, 3, 3), ncol=2), type="points")
# Convert points to line segments
TClines <- TCpoints2lines(pts)</pre>
```

TCProfilePts

Transect points from a origin through a point or with a bearing and to the opposite side.

Description

Transect points from a origin through a point or with a bearing and to the opposite side.

Usage

```
TCProfilePts(
  TC_line,
  Through_point = NULL,
  bear = NULL,
  length = 200,
  step = 2
)
```

Arguments

TC_line origin of the transect
Through_point a point to pass through

bear the bearing

length the length of the transect in Km step the spacing of the transect in Km

TCvectInterp 29

Value

spatial vector of transect profile points with distances in Km (negative for left hand side)

Examples

```
require(terra)
TCi <- vect(cbind(c(154.1,154),c(-26.1,-26)),"lines",crs="epsg:4283") #track line segment
TCi$PRES <- 950
TCi$PRES <- 40
TCi$RMAX <- 40
TCi$B <- 1.4
TCi$RMAX2 <- 90
TCi$ISO_TIME <- "2022-10-04 20:00:00"
TCi$LON <- geom(TCi)[1,3]
TCi$LAT <- geom(TCi)[1,4]
TCi$STORM_SPD <- perim(TCi)/(3*3600) #m/s
TCi$thetaFm <- 90-returnBearing(TCi)
#Through_point <- isd[isd$0ID==isdsi]
pp <- TCProfilePts(TC_line = TCi,Through_point=NULL,bear=TCi$thetaFm+90,length =100,step=10)
plot(pp,"radialdist",type="continuous")
lines(TCi,col=2)</pre>
```

TCvectInterp Temporally Interpolate Along a Tropical Cyclone Track And Compute Along-Track Parameters

Description

Temporally Interpolate Along a Tropical Cyclone Track And Compute Along-Track Parameters

Usage

```
TCvectInterp(outdate = NULL, TC, paramsTable)
```

Arguments

outdate POSIX times to be interpolated to. The output date in "YYYY-MM-DD" format.

Default is NULL.

TC SpatVector of Tropical cyclone track parameters

paramsTable Global parameters to compute TC Hazards.

Value

SpatVector of Tropical cyclone track parameters

30 tunedParams

Examples

```
require(terra)
TCi <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))
TCi$PRES <- TCi$BOM_PRES
TCi$PRES[is.na(TCi$PRES)] = 1010
outdate = seq(strptime(TCi$ISO_TIME[1],"%Y-%m-%d %H:%M:%S",tz="UTC"),
strptime(rev(TCi$ISO_TIME)[1],"%Y-%m-%d %H:%M:%S",tz="UTC"),3600)
paramsTable = read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
TCii = TCvectInterp(outdate = outdate,TC=TCi,paramsTable = paramsTable)</pre>
```

tunedParams

Update Parameter List to Calibrated Values

Description

Update Parameter List to Calibrated Values

Usage

```
tunedParams(
  paramsTable,
  infile = system.file("extdata/tuningParams/QLD_modelSummaryTable.csv", package =
    "TCHazaRds")
)
```

Arguments

paramsTable Global parameters to compute TC Hazards.

infile File containing tuning parameters in a .csv. Default for QLD calibration.

Value

list of params with updated tuning wind parameters.

```
paramsTable <- read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))
tunedParams(paramsTable)</pre>
```

update_Track 31

update_Track	Calculate Additional TC Parameters,	and temporally Interpolate
	Along a Tropical Cyclone Track	

Description

Calculate Additional TC Parameters, and temporally Interpolate Along a Tropical Cyclone Track

Usage

```
update_Track(
 outdate = NULL,
  indate,
 TClons,
 TClats,
  vFms,
  thetaFms,
  cPs,
  rMaxModel,
  vMaxModel,
  betaModel,
  rMax2Model,
  eР,
  rho = NULL,
 RMAX,
  VMAX,
 В,
 RMAX2
)
```

Arguments

outdate

indate	POSIX input times
TClons	input central TC longitude
TClats	input central TC latitude
vFms	input forward velocity of TC
thetaFms	input forward direction
cPs	central pressure
rMaxModel	empirical model for radius of maximum wind calculation (rMax in km)
vMaxModel	empirical model for maximum wind velocity calculation (vMax in m/s)
betaModel	empirical model for TC shape parameter beta (dimensionless Beta)
rMax2Model	empirical model for radius of outer 17.5ms wind calculation (rMax2 in km)
eP	background environmental pressure (hPa)

POSIX times to be interpolated to

32 update_Track

rho air density

RMAX If params rMaxModel value is NA, use input TC\$RMAX

VMAX If params rMaxModel value is NA, use input TC\$VMAX

B If params rMaxModel value is NA, use input TC\$B

RMAX2 If params rMax2Model value is NA, use input TC\$RMAX2

Value

list of track data inclining the rMax vMax and Beta.

```
paramsTable <- read.csv(system.file("extdata/tuningParams/defult_params.csv",package = "TCHazaRds"))</pre>
params <- array(paramsTable$value,dim = c(1,length(paramsTable$value)))</pre>
colnames(params) <- paramsTable$param</pre>
params <- data.frame(params)</pre>
require(terra)
TCi <- vect(system.file("extdata/YASI/YASI.shp", package="TCHazaRds"))</pre>
TCi$PRES <- TCi$BOM_PRES
TCi$RMAX <- TCi$BOM_RMW*1.852 #convert from nautical miles to km
TCi$VMAX <- TCi$BOM_WIND*1.94 #convert from knots to m/s
TCi$B <- 1.4
TCi$RMAX2 <- 150
t2 <- strptime(rev(TCi$ISO_TIME)[1],"%Y-%m-%d %H:%M:%S", tz = "UTC") #last date in POSIX format
outdate <- seq(t1,t2,"hour") #array sequence from t1 to t2 stepping by "hour"
# defult along track parameters are calculated
TCil = update_Track(outdate = outdate,
                  indate = strptime(TCi$ISO_TIME,"%Y-%m-%d %H:%M:%S", tz = "UTC"),
                  TClons = TCi$LON,
                  TClats = TCi$LAT,
                  vFms=TCi$STORM_SPD.
                  thetaFms=TCi$thetaFm,
                  cPs=TCi$PRES,
                  rMaxModel=params$rMaxModel,
                  vMaxModel=params$vMaxModel,
                  betaModel=params$betaModel,
                  rMax2Model = params$rMaxModel,
                  eP = params eP,
                  rho = params$rhoa,
                  RMAX = TCi\$RMAX,
                  VMAX = TCi$VMAX,
                  B = TCi\$B,
                  RMAX2 = TCi\$RMAX2
# 'observed' along tack parameters are calculated (#Model = NA)
TCil = update_Track(outdate = outdate,
                  indate = strptime(TCi$ISO_TIME,"%Y-%m-%d %H:%M:%S", tz = "UTC"),
                  TClons = TCi$LON,
                  TClats = TCi$LAT,
                  vFms=TCi$STORM_SPD,
```

vMax_modelsR 33

```
thetaFms=TCi$thetaFm,
cPs=TCi$PRES,
rMaxModel=NA,
vMaxModel=NA,
betaModel=NA,
rMax2Model = NA,
eP = params$eP,
rho = params$rhoa,
RMAX = TCi$RMAX,
VMAX = TCi$VMAX,
B = TCi$B,
RMAX2 = TCi$RMAX2
)
```

vMax_modelsR

Compute the Tropical Cyclone Maximum Wind Speeds

Description

Compute the Tropical Cyclone Maximum Wind Speeds

Usage

```
vMax_modelsR(
  vMaxModel,
  cPs,
  eP,
  vFms = NULL,
  TClats = NULL,
  dPdt = NULL,
  beta = 1.3,
  rho = 1.15
)
```

Arguments

vMaxModel	0=Arthur (1980),1=Holland (2008),2=Willoughby & Rahn (2004).3=Vickery & Wadhera (2008),4=Atkinson and Holliday (1977)
cPs	Tropical cyclone central pressure (hPa)
eP	Background environmental pressure (hPa)
vFms	Forward speed of the storm m/s
TClats	Tropical cyclone central latitude
dPdt	rate of change in central pressure over time, hPa per hour from Holland 2008
beta	exponential term for Holland vortex
rho	density of air

vMax_modelsR

Value

maximum wind speed m/s.

```
vMax_modelsR(vMaxModel=1,cPs=950,eP=1010,vFms = 1,TClats = -14,dPdt = .1)
```

Index

beta_modelsR, 3	TCHazaRdsWindProfile, 25
DoubleHollandPressureProfile, 3 DoubleHollandPressureProfilePi, 4 DoubleHollandWindProfile, 5 DoubleHollandWindProfilePi, 5	TCHazaRdsWindTimeSereies, 26 TCpoints2lines, 27 TCProfilePts, 28 TCvectInterp, 29 tunedParams, 30
HollandPressureProfile, 6 HollandPressureProfilePi, 7 HollandWindProfile, 7 HollandWindProfilePi, 8 HubbertWindField, 8 HubbertWindFieldPi, 9	<pre>update_Track, 31 vMax_modelsR, 33</pre>
$\verb inlandWindDecay , 10 \\$	
JelesnianskiWindProfile, 10 JelesnianskiWindProfilePi, 11	
KepertWindField, 11 KepertWindFieldPi, 12	
land_geometry, 13	
McConochieWindField, 14 McConochieWindFieldPi, 14	
NewHollandWindProfile, 15 NewHollandWindProfilePi, 16	
predict_rmax, 16	
RankineWindProfilePi, 17 Rdist, 18 RdistPi, 18 returnBearing, 19 rMax175ms_solver, 19 rMax2_modelsR, 20 rMax_modelsR, 21	
TCHazaRdsWindField, 22 TCHazaRdsWindFields, 23	