Laboratorio 1

Juan Esteban Barrera Ortiz

17 de agosto de 2022

1. Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de sus nombres y apellidos. Distinguir entre mayúsculas/minúsculas, y sin acentos. Crear una tabla donde las filas sean los caracteres del nombre y las columnas sean (caracter Asscii, Decimal, Binario)

Letra Ascii	Decimal	Binario
J	74	1001010
u	117	1110101
a	97	1100001
n	110	1101110
ESPACIO	32	100000
Е	69	1000101
S	115	1110011
t	116	1110100
e	101	1100101
b	98	1100010
a	97	1100001
n	110	1101110
ESPACIO	32	100000
В	66	1000010
a	97	1100001
r	114	1110010
r	114	1110010
e	101	1100101
r	114	1110010
a	97	1100001
ESPACIO	32	100000
О	79	1001111
r	114	1110010
t	116	1110100
i	105	1101001
Z	122	1111010

Cuadro 1: Nombre en codigo Ascii decimal y binario.

2. Realiza la conversión a binario del número decimal 843, mostrar proceso.

 $843 \to \text{evaluando} \ 2^n \to 843$ el valor máximo que puede tomar n
 sin pasarse de 843 es 9

Entonces $2^9 = 512$ Ahora se empieza a sumar este 512 con numeros (n) de 1 potencia menor al anterior, siguiendo la misma regla (2^n) buscando obtener el valor exacto de 843.

De la siguiente manera $\rightarrow 2^9 + 2^8 \dots + 2^0 = 843$ Tambien se ignoran los valores de n que al sumar su resultado con la secuencia se pasa del numero 843. Así se obtiene

$$2^9 + 2^8 + 2^6 + 2^3 + 2^1 + 2^0 = 843$$

 $512 + 256 + 64 + 8 + 2 + 1 = 843$

Ahora, con esta información se obtiene el numero en base 2.

2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^3	2^2	2^1	2^{0}
1	1	0	1	0	0	1	0	1	1

Cuadro 2: Numero en base 2

Por lo que 843 en base 10, equivale a 1101001011 en base 2.

3. Realiza la conversión tanto a decimal como a hexadecimal de los números binarios, mostrar proceso.

3.1. 111001010111110

Se hace uso del método de 2^n , para comenzar determinamos el valor máximo de n el cual es el número de digitos menos 1, en este caso, el número de digitos es 14 por lo que $n_{max}=13$

Ahora se plantea el siguiente cuadro.

2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^7	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^{0}
1	1	1	0	0	1	0	1	0	1	1	1	1	0

Cuadro 3: Conversión de binario a decimal

Despues, tomando los valores a los que les corresponde "1", se plantea la suma que dará como resultado el valor del número en base 10.

$$2^{13} + 2^{12} + 2^{11} + 2^8 + 2^6 + 2^4 + 2^3 + 2^2 + 2^1 = 14686$$

 $8192 + 4096 + 2048 + 256 + 64 + 16 + 8 + 4 + 2 = 14686$

Ahora, para convertir este número a hexadecimal, se hacen agrupaciones de 4 digitos del numero en base 2, luego estos numeros se pasan a base 16, en caso de que se obtenga un grupo incompleto se debe completar con ceros a la izquierda.

0011 1001 0101 1110

Usando la misma lógica para pasar de binario a decimal, estos grupos se pasan a hexadecimal. El numero de digitos es conveniente, ya que, con 4 digitos el numero máximo que se puede obtener es 1111 en base 2, 15 en base 10 y F en base 16.

1.
$$0011_2 = 3_{16}$$

2.
$$1001_2 = 9_{16}$$

3.
$$0101_2 = 5_{16}$$

4.
$$1110_2 = E_{16}$$

Ahora, se juntan los numeros y se obtiene que $\rightarrow 111001010111110_2 = 395E_{16}$

3.2. 11111111111111

El numero de dígitos es 13 por lo que $n_{max} = 12$.

2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^7	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^{0}
1	1	1	1	1	1	1	1	1	1	1	1	1

Al estar todos las casillas llenas con "1", se calcula el valor de la forma $2^{\#~{\rm de~digitos}}-1\to 2^{13}-1=8191$

Ahora se siguen los mismos pasos mencionados anteriormente para la conversión a hexadecimal.

1.
$$0001_2 = 1_{16}$$

2.
$$1111_2 = F_{16}$$

3.
$$1111_2 = F_{16}$$

4.
$$1111_2 = F_{16}$$

3.3. 100000000001

El valor maximo que puede tomar n es 11.

2^{11}	2^{10}	2^{9}	2^{8}	2^7	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^{0}
1	0	0	0	0	0	0	0	0	0	0	1

Ahora para calcular el valor decimal solo se debe sumar 2 numeros.

$$2^{11} + 2^0 = 2049$$
$$2048 + 1 = 2049$$

Ahora, se procede a calcular el valor en hexadecimal.

1.
$$1000_2 = 8_{16}$$

2.
$$0000_2 = 0_{16}$$

3.
$$0001_2 = 1_{16}$$

Por lo que el valor de 100000000001 en base 2 es 801 en base 16.

3.4. 101010111110000

En este caso, el valor máximo de n es 13.

	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^0
ĺ	1	0	1	0	1	0	1	1	1	1	0	0	0	0

Se procede con la suma.

$$2^{13} + 2^{11} + 2^9 + 2^7 + 2^6 + 2^5 + 2^4 = 10992$$

 $8192 + 2048 + 512 + 128 + 64 + 32 + 16 = 10992$

Por último se calcula el valor en hexadecimal.

- 1. $0010_2 = 2_{16}$
- 2. $1010_2 = A_{16}$
- 3. $1111_2 = F_{16}$
- 4. $0000_2 = 0_{16}$

Por lo que el valor de 10101011110000 en base 2 es 2AF0 en base 16.

4. Construir una tabla con la representación de los 32 primeros números en los sistemas de numeración hexadecimal, decimal y binario.

La solución se encuentra en el anexo 1.

5. ¿Cuál es el siguiente número hexadecimal al 19F?

Al ser F el último digito en el sistema hexadecimal, solo se debe avanzar una unidad en el 9 y cambiar F por 0. Entonces:

$$19F + 1 = 1A0$$

Es decir, el siguiente dígito a 19F en el sistema hexadecimal (que sería lo mismo a sumar 19F + 1) es 1A0.

Anexo 1.

Decimal	Binario	Hexadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F
16	10000	10
17	10001	11
18	10010	12
19	10011	13
20	10100	14
21	10101	15
22	10110	16
23	10111	17
24	11000	18
25	11001	19
26	11010	1A
27	11011	1B
28	11100	1C
29	11101	1D
30	11110	1E
31	11111	1F