R02 - Regression diagnostics

STAT 587 (Engineering) Iowa State University

March 30, 2021

All models are wrong!

George Box (Empirical Model-Building and Response Surfaces, 1987): All models are wrong, but some are useful.

"All models are wrong" that is, every model is wrong because it is a simplification of reality. Some models, especially in the "hard" sciences, are only a little wrong. They ignore things like friction or the gravitational effect of tiny bodies. Other models are a lot wrong - they ignore bigger things.

"But some are useful" - simplifications of reality can be quite useful. They can help us explain, predict and understand the universe and all its various components.

This isn't just true in statistics! Maps are a type of model; they are wrong. But good maps are very useful.

Simple Linear Regression

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

this can be rewritten as

$$Y_i = \beta_0 + \beta_1 X_i + e_i \quad e_i \stackrel{iid}{\sim} N(0, \sigma^2).$$

Key assumptions are:

- The errors are
 - normally distributed,
 - have constant variance, and
 - are independent of each other.
- There is a linear relationship between the expected response and the explanatory variables.

Multiple Regression

The multiple regression model is

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + e_i \quad e_i \stackrel{iid}{\sim} N(0, \sigma^2).$$

Key assumptions are:

- The errors are
 - normally distributed,
 - have constant variance, and
 - are independent of each other.
 - There is a specific relationship between the expected response and the explanatory variables.

Telomere data

Case statistics

To evaluate these assumptions, we will calculate a variety of case statistics:

- Leverage
- Fitted values
- Residuals
 - Standardized residuals
 - Studentized residuals
- Cook's distance

Default diagnostic plots in R

Leverage

The leverage $(0 \le h_i \le 1)$ of an observation i is a measure of how far away that observation's explanatory variable value is from the other observations. Larger leverage indicates a larger potential influence of a single observation on the regression model. In simple linear regression,

$$h_i = \frac{1}{n} + \frac{(\overline{x} - x_i)^2}{(n-1)s_X^2}$$

which is involved in the standard error for the line for a location x_i .

The variability in the residuals is a function of the leverage, i.e.

$$Var[r_i] = \sigma^2(1 - h_i)$$

Telomere data

```
leverage
   years
37
      12 0.15113547
      10 0.08504307
      9 0.06115897
      8 0.04338293
      7 0.03171496
20
      6 0.02615505
      5 0.02670321
10
      4 0.03335944
       3 0.04612373
      2 0.06499608
       1 0.08997651
       1 0.08997651
```

Residuals and Fitted values

A regression model can be expressed as

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$
 and $\mu_i = \beta_0 + \beta_1 X_i$

A fitted value \hat{Y}_i for an observation i is

$$\hat{Y}_i = \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

and the residual is

$$r_i = Y_i - \hat{Y}_i$$

Standardized residuals

Often we will standardize residuals, i.e.

$$\frac{r_i}{\sqrt{\widehat{Var[r_i]}}} = \frac{r_i}{\widehat{\sigma}\sqrt{1 - h_i}}$$

If $|r_i|$ is large, it will have a large impact on $\hat{\sigma}^2 = \sum_{i=1}^n r_i^2/(n-2)$. Thus, we can calculate an externally studentized residual

$$\frac{r_i}{\hat{\sigma}_{(i)}\sqrt{1-h_i}}$$

where
$$\hat{\sigma}_{(i)} = \sum_{j \neq i} r_j^2 / (n-3)$$
.

Both of these residuals can be compared to a standard normal distribution.

Telomere data: residuals

	years	telomere.length	leverage	residual	standardized	studentized
1	1	1.63	0.08997651	0.288692247	1.84050794	1.90475158
2	1	1.24	0.08997651	-0.101307753	-0.64587021	-0.64070443
3	1	1.33	0.08997651	-0.011307753	-0.07209064	-0.07111476
4	2	1.50	0.06499608	0.185066562	1.16399233	1.16977226
5	2	1.42	0.06499608	0.105066562	0.66082533	0.65571510
6	2	1.36	0.06499608	0.045066562	0.28345009	0.27989750
7	2	1.32	0.06499608	0.005066562	0.03186659	0.03143344
8	3	1.47	0.04612373	0.181440877	1.12984272	1.13420749
9	2	1.24	0.06499608	-0.074933438	-0.47130041	-0.46628962
10	4	1.51	0.03335944	0.247815192	1.53293696	1.56251168
11	4	1.31	0.03335944	0.047815192	0.29577555	0.29209673
12	5	1.36	0.02670321	0.124189507	0.76558098	0.76121769
13	5	1.34	0.02670321	0.104189507	0.64228860	0.63711129
14	3	0.99	0.04612373	-0.298559123	-1.85914473	-1.92601533
15	4			-0.232184808	-1.43625042	
16	4	0.84	0.03335944	-0.422184808	-2.61155376	-2.85227987
17	5	0.94	0.02670321	-0.295810493	-1.82355895	-1.88546999
18	5		0.02670321	-0.205810493	-1.26874325	
19	5	1.14	0.02670321	-0.095810493	-0.59063518	-0.58536500
20	6	1.17	0.02615505	-0.039436179	-0.24304058	-0.23992534
21	6	1.23	0.02615505	0.020563821	0.12673244	0.12503525
22	6	1.25	0.02615505	0.040563821	0.24999011	0.24679724
23	6	1.31	0.02615505	0.100563821	0.61976313	0.61452870
24		1.34	0.02615505	0.130563821	0.80464964	0.80073848
25	7		0.03171496	0.176938136	1.09357535	1.09656310
26	6	1.22	0.02615505	0.010563821	0.06510360	0.06422148

Cook's distance

The Cook's distance for an observation i ($d_i > 0$) is a measure of how much the regression parameter estimates change when that observation is included versus when it is excluded.

Operationally, we might be concerned when d_i is

- larger than 1 or
- larger then 4/n.

Residuals vs fitted values

Linearity Curvature
Constant variance Funnel shape

QQ-plot

(STAT587@ISU)

Absolute standardized residuals vs fitted values

(STAT587@ISU)

Cook's distance

(STAT587@ISU)

Residuals vs leverage

Cooks' distance vs leverage

This plot is pretty confusing.

Additional plots

Default plots do not assess all model assumptions.

Two additional suggested plots:

- Residuals vs row number
- Residuals vs (each) explanatory variable

Plot residuals vs row number (index)

plot(residuals(m))

Assumption Violation
Independence A pattern suggests temporal correlation

Residual vs explanatory variable

```
plot(Telomeres$years, residuals(m))
```


Assumption Violation

Linearity A pattern suggests non-linearity

ggResidpanel: R default

resid_panel(m, plots = "R")

ggResidpanel: R all plots

ggResidpanel: R explanatory

resid_xpanel(m)

Plots of Residuals vs Predictor Variables

ggResidpanel: SAS

Summary

Case statistics:

- Fitted values
- Leverage
- Residuals
 - Standardized residuals
 - Studentized residuals
- Cook's distance

Model assumptions:

- Normality
- Constant variance
- Independence
- Linearity