Introduction to machine learning

Victor Kitov

v v kit ov@yandex ru

Course information

- Instructor Victor Vladimirovich Kitov
- Tasks of the course
- Structure:
 - lectures, seminars
 - assignments: theoretical, labs, competitions
 - exam
- Tools
 - python
 - ipython notebook
 - numpy, scipy, pandas
 - matplotlib, seaborn
 - scikit-learn.

Recommended materials

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2nd Edition, Springer, 2009.
- Data Mining: The Textbook. Charu C. Aggarwal, Springer, 2015.
- Statistical Pattern Recognition. 3rd Edition, Andrew R. Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.
- Vorontsov's SHAD video lectures (Russian).
- Vorontsov's textual lectures (Russian).
- Any additional public sources:
 - wikipedia, articles, tutorials, video-lectures.
- Practical questions:
 - StackOverflow, scikit-learn documentation, kaggle forum.

Table of Contents

- Problem statement
- 2 Visual examples
- 3 Function class
- Function estimation
- 5 Notation used in the course

Formal definitions of machine learning

- Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure
 P, if its performance P at tasks in T improves with experience E.

Examples

- Spam filtering
 - if sender belongs to black-list -> spam
 - if contains phrase 'buy now' and sender is unknown -> spam
 - •
- Part-of-speech tagger.
 - if ends with 'ed' -> verb
 - if previous word is 'the' -> noun
 - •
- ML finds decision rules automatically with labelled data!

Formal problem statement

- Set of objects O
- Each object is described by a vector of known characteristics $\mathbf{x} \in \mathcal{X}$ and predicted characteristics $y \in \mathcal{Y}$.

$$o \in O \longrightarrow (\mathbf{x}, y)$$

- Task: find a mapping f, which could accurately approximate $\mathcal{X} \to \mathcal{Y}$.
 - using a finite known set of objects.
 - apply model for objects from the test set.
- test set way be known or not.

Specification of known/test sets

Known set

- supervised learning: $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$
 - e.g. regression, classification.
- unsupervised learning: $x_1, x_2, ... x_N$ -
 - e.g. dimensionality reduction, clustering, outlier analysis
- semi-supervised learning:

$$(x_1, y_1), (x_2, y_2), ...(x_N, y_N), x_{N+1}, x_{N+2}, ...x_{N+M}$$

If test set objects \mathbf{x}_1' , \mathbf{x}_2' , ... \mathbf{x}_K' are known in advance, then this is transductive learning.

Reinforcement learning

- Reinforcement learning setup:
 - a set of environment and agent states S;
 - a set of actions A, of the agent
 - $P(s_{t+1} = s' | s_t = s, a_t = a)$ is the probability of transition from state s to state s' under action a.
 - $R_a(s, s')$ is the (expected) immediate reward after transition from s to s' with action a.
 - rules that describe what the agent observes
 - full / partial observability
- Well-suited to problems which include a long-term versus short-term reward trade-off
- Applications: robot control, elevator scheduling, games (chess, go), etc.

Table of Contents

- Problem statement
- Visual examples
 - Supervised learning
 - Unsupervised learning
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

Introduction to machine learning - Victor Kitov Visual examples Supervised learning

- 2 Visual examples
 - Supervised learning
 - Unsupervised learning

Regression

Classification

Predict class y shown with color for any point.

Semi-supervised classification

Introduction to machine learning - Victor Kitov Visual examples Unsupervised learning

- Visual examples
 - Supervised learning
 - Unsupervised learning

Clustering

Cluster points into distinct similarity groups.

Dimensionality reduction

Reduce dimension from 3D to 2D with minimal distortion.

Outlier detection

Detect untypical observations.

General problem statement

- We want to find $f(x): X \to Y$.
- How it may be used:
 - prediction of Y
 - ullet qualitative analysis, understanding of $X \to Y$ dependency
 - untypical objects detection (where model fails)
- Questions solved in ML:
 - what target y we are predicting?
 - how to select object descriptors (features) x?
 - what is the kind of mapping f?
 - in what sense a mapping f should approximate true relationship?
 - how to tune f?

Types of target variable (supervised learning)²

- ullet $\mathcal{Y}=\mathbb{R}$ regression
 - e.g. flat price
- ullet $\mathcal{Y}=\mathbb{R}^M$ vector regression
 - e.g. stock price dynamics
- $\mathcal{Y} = \{\omega_1, \omega_2, ...\omega_C\}$ classification.
 - C=2: binary classification.
 - e.g. spam / not spam
 - C>2: multi-class classification
 - e.g. identity recognition, activity recognition
- \mathcal{Y} set of all sets of $\{\omega_1, \omega_2, ... \omega_C\}$ labeling.¹
 - e.g. news categorization

¹How to solve labeling using classification?

²Actually any type is possible. Listed are most common types.

Types of features³

- Full object description $\mathbf{x} \in \mathcal{X}$ consists of individual features $x^i \in \mathcal{X}_i$
- Types of feature (e.g. for credit scoring):
 - $\mathcal{X}_i = \{0, 1\}$ binary feature
 - e.g. marital status
 - ullet $|\mathcal{X}_i| < \infty$ categorical (nominal) feature
 - e.g. occupation
 - $|\mathcal{X}_i| < \infty$ and \mathcal{X}_i is ordered ordinal feature
 - e.g.education level
 - ullet $\mathcal{X}_i = \mathbb{R}$ real feature
 - e.g. age

³Actually any type is possible. Listed are most common types.

Table of Contents

- 2 Visual examples
- Sunction class

Function class. Linear example.

• Function class - parametrized set of functions $F = \{f_{\theta}, \ \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.

 $^{^4}$ Are discriminant functions uniquely defined for fixed mapping X o Y?

Function class. Linear example.

- Function class parametrized set of functions $F = \{f_{\theta}, \ \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.
- Regression: $\hat{y} = f(x|\theta)$,
- Classification: $\hat{y} = f(x|\theta) = \arg\max_{c} \{g_c(x|\theta)\},\ c = 1, 2, ... C.$
 - c = 1, 2, ...C: possible classes, $g_c(x)$ score of class c, given x called discriminant function⁴.

 $^{^4}$ Are discriminant functions uniquely defined for fixed mapping X o Y?

Examples

linear regression $y \in \mathbb{R}$:

$$f(x|\theta) = \theta_0 + \theta_1 x$$

Examples

linear regression $y \in \mathbb{R}$:

$$f(x|\theta) = \theta_0 + \theta_1 x$$

linear classification $y \in \{1, 2\}$:

$$g_c(\mathbf{x}|\theta) = \theta_c^0 + \theta_c^1 x^1 + \theta_c^2 x^2, \ c = 1, 2.$$

$$f(\mathbf{x}|\theta) = \arg\max_{c} g_c(\mathbf{x}|\theta)$$

Table of Contents

- Problem statement
- 2 Visual examples
- Function class
- 4 Function estimation
 - Separate validation set
 - Cross-validation
 - A/B testing
- 6 Notation used in the course

Known set

Known set:
$$(\mathbf{x}_1, y_1), ...(\mathbf{x}_M, y_M),$$

design matrix $X = [\mathbf{x}_1, ... \mathbf{x}_M]^T, Y = [y_1, ... y_M]^T.$

features

Known set

Known set:
$$(\mathbf{x}_1, y_1), ...(\mathbf{x}_M, y_M),$$
 design matrix $X = [\mathbf{x}_1, ... \mathbf{x}_M]^T, Y = [y_1, ... y_M]^T.$

features

Known set

Known set:
$$(\mathbf{x}_1, y_1), ...(\mathbf{x}_M, y_M),$$

design matrix $X = [\mathbf{x}_1, ... \mathbf{x}_M]^T, Y = [y_1, ... y_M]^T.$

features

Known set, test set

- Known sample $X, Y: (x_1, y_1), ...(x_M, y_M)$
- Test sample X', Y': $(x'_1, y'_1), ...(x'_K, y'_K)$

Score versus loss

- In machine learning predictions, functions, objects can be assigned:
 - score, rating this should be maximized
 - loss, cost this should be minimized⁵

⁵how can one convert score↔|oss?

Loss function $\mathcal{L}(\widehat{y},y)^6$

- Examples:
 - classification:
 - misclassification rate

$$\mathcal{L}(\widehat{y}, y) = \mathbb{I}[\widehat{y} \neq y]$$

- regression:
 - MAE (mean absolute error):

$$\mathcal{L}(\widehat{y}, y) = |\widehat{y} - y|$$

MSE (mean squared error):

$$\mathcal{L}(\widehat{y}, y) = (\widehat{y} - y)^2$$

 $^{^6}$ Selecting realistic loss is not trivial. Consider e.g. demand forecasting.

Empirical risk

• Want to minimize expected risk:

$$\int \int \mathcal{L}(f_{ heta}(\mathbf{x}),y)p(\mathbf{x},y)d\mathbf{x}dy
ightarrow \min_{ heta}$$

⁷We assume that objects are i.i.d.

Empirical risk

• Want to minimize expected risk:

$$\int \int \mathcal{L}(f_{ heta}(\mathbf{x}),y)p(\mathbf{x},y)d\mathbf{x}dy
ightarrow \min_{ heta}$$

• Can minimize only *empirical risk*⁷:

$$L(\theta|X,Y) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_n), y_n)$$

• Method of empirical risk minimization:

$$\widehat{\theta} = \arg\min_{\theta} L(\theta|X, Y)$$

⁷We assume that objects are i.i.d.

Estimation of empirical risk

• What is the relationship between $L(\widehat{\theta}|X,Y)$ and $L(\widehat{\theta}|X',Y')$?

Estimation of empirical risk

- What is the relationship between $L(\widehat{\theta}|X,Y)$ and $L(\widehat{\theta}|X',Y')$?
- Typically

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

• How to get realistic estimate of $L(\widehat{\theta}|X',Y')$?

Estimation of empirical risk

- What is the relationship between $L(\widehat{\theta}|X,Y)$ and $L(\widehat{\theta}|X',Y')$?
- Typically

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

- How to get realistic estimate of $L(\widehat{\theta}|X',Y')$?
 - separate validation set
 - cross-validation
 - leave-one-out method

- 4 Function estimation
 - Separate validation set
 - Cross-validation
 - A/B testing

Separate validation set

- Known sample $X, Y: (\mathbf{x}_1, y_1), ...(\mathbf{x}_M, y_M)$
- Test sample X', Y': $(\mathbf{x}_1', y_1'), ...(\mathbf{x}_K', y_K')$

Separate validation set

Divide known set randomly or randomly with stratification:

- 4 Function estimation
 - Separate validation set
 - Cross-validation
 - A/B testing

Divide training set into K parts, referred as «folds» (here K=4). Variants:

- randomly
- randomly with stratification (w.r.t target value or feature value).

Use folds 1,2,3 for model estimation and fold 4 for model evaluation.

Use folds 1,2,4 for model estimation and fold 3 for model evaluation.

Use folds 1,3,4 for model estimation and fold 2 for model evaluation.

Use folds 2,3,4 for model estimation and fold 1 for model evaluation.

- Denote
 - k(n) fold to which observation (\mathbf{x}_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

⁸will samples be correlated?

- Denote
 - k(n) fold to which observation (\mathbf{x}_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

⁸will samples be correlated?

- Denote
 - k(n) fold to which observation (\mathbf{x}_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

- For K-fold CV we have:
 - K parameters $\widehat{\theta}^{-1}, ... \widehat{\theta}^{-K}$
 - K models $f_{\widehat{\theta}^{-1}}(\mathbf{x}), ... f_{\widehat{\theta}^{-K}}(\mathbf{x})$.
 - can use ensembles
 - K estimations of empirical risk:

$$\widehat{L}_k = \frac{1}{|I_k|} \sum_{n \in I_k} \mathcal{L}(f_{\widehat{\theta}^{-k}}(\mathbf{x}_n), y_n), \ k = 1, 2, ... K.$$

• can estimate variance & use statistics!8

Introduction to machine learning - Victor Kitov
Function estimation

Cross-validation

Comments on cross-validation

- When number of folds *K* is equal to number of objects *N*, this is called **leave-one-out method**.
- Cross-validation uses the i.i.d.9 property of observations
- ullet Stratification by target y helps for imbalanced/rare classes.

⁹i.i.d.=independent and identically distributed

Introduction to machine learning - Victor Kitov
Function estimation
A/B testing

- 4 Function estimation
 - Separate validation set
 - Cross-validation
 - A/B testing

- Observe test set after the models were built.
- A/B testing procedure:
 - divide test objects randomly into two groups A and B.
 - apply base model to A
 - apply modified model to B
 - compare final results

- Observe test set after the models were built.
- A/B testing procedure:
 - divide test objects randomly into two groups A and B.
 - apply base model to A
 - apply modified model to B
 - compare final results

Cross-validation vs. A/B testing

Comparison of cross-validation and A/B test:

	cross-validation	A/B test
realism	use retrospective	full realism
	analysis, rely on i.i.d.	
	assumption	
overfitting	possible (when use it	almost impossible
	multiple times)	(possible if A/B split is
		inadequate)
costs	uses available data, only	requires time and resources
	computational costs	for collecting & evaluating
		feedback from objects of
		groups A and B

 When forecast affects true outcome (e.g. in recommender system) A/B test is more adequate.

General modelling pipeline¹⁰

- Understand business problem
- Problem formalization
- Data collection
- Data preprocessing
- Modelling
- Model evaluation
- Deployment
- Maintenance

¹⁰Bold - steps covered in kaggle competitions.

Major niches of ML

- hard to formulate explicit rules
 - complex inter-relationships
 - e.g. image recognition
 - too many attributes
 - e.g. text categorization
- fine-tuning performance on huge datasets
 - e.g. threshold for credibility in credit scoring
- fast adaptation to changing conditions
 - e.g. stock prices/volatility prediction
- further adaptation to usage conditions is required
 - e.g. voice detection

Examples of ML applications by domain

- WEB
 - Web-page ranking
 - Spam filtering
 - e-mails, web pages in search results
- Computer networks
 - Authentication systems
 - by voice, face, fingerprint
 - by behavior
 - Intrusion detection
- Business
 - Fraud detection
 - Churn prediction
- Banking
 - Credit scoring
 - Stock prices forecasting
 - Risks estimation

Examples of ML applications by data type

- Texts
 - Document classification
 - POS tagging, semantic parsing,
 - named entities detection
 - sentimental analysis
 - automatic summarization
- Images
 - Handwriting recognition
 - Face detection, pose detection
 - Person identification
 - Image classification
 - Image segmentation
 - Adding artistic style
- Other
 - Target detection / classification
 - Particle classification

Connection of ML with other fields

- Pattern recognition
 - recognize patterns and regularities in the data
- Computer science
- Artificial intelligence
 - create devices capable of intelligent behavior
- Time-series analysis
- Theory of probability, statistics
 - when relies upon probabilistic models
- Optimization methods
- Theory of algorithms

Table of Contents

- Problem statement
- 2 Visual examples
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

Notation used in the course¹¹

Objects and outputs:

- x vector of known input characteristics of an object
- ullet y predicted target characteristics of an object specified by x
- x_i i-th object of a set, y_i corresponding target characteristic
- x^k k-th feature of object specified by x
- x_i^k k-th feature of object specified by x_i

General definitions:

- D dimensionality of the feature space: $x \in \mathbb{R}^D$
- N the number of objects in the training set
- C total number of classes in classification.
- Possible classes: $\{1,2,...C\}$ or $\{\omega_1,\omega_2,...\omega_C\}$

¹¹If this corresponds the context and there are no redefinitions

Notation used in the course

- Training set:
 - ullet X design matrix, $X \in \mathbb{R}^{\mathit{NxD}}$
 - ullet $Y \in \mathbb{R}^N$ target characteristics of a training set
- Optimization:
 - $\mathcal{L}(\widehat{y}, y)$ loss function for 1 object
 - ullet y is the true value and \widehat{y} is the predicted value.
 - $L(\theta) = \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$ loss function for the whole the training set.

Notation used in the course

Special functions:

• $[x]_+ = \max\{x, 0\}$ • $\mathbb{I}[\operatorname{condition}] = \begin{cases} 1, & \text{if condition is satisfied} \\ 0, & \text{if condition is not satisfied} \end{cases}$ • $\operatorname{sign}(x) = \begin{cases} 1, & x \geq 0 \\ -1, & x < 0 \end{cases}$

Other definitions:

- \widehat{z} defines an estimate of z, based on the training set: for example, $\widehat{\theta}$ is the estimate of θ , \widehat{y} is the estimate of y, etc.
- r.v.=random variable, w.r.t.=with respect to, e.g.=for example.
- $A \geq 0$ means that A is a square positive semi-definite matrix.
- All vectors are vectors-columns, e.g. if $x \in \mathbb{R}^D$ its dimensions are Dx1.

Summary

- Machine learning algorithms reconstruct relationship between features x and outputs y.
- Relationship is reconstructed by optimal function $\widehat{y} = f_{\widehat{\theta}}(x)$ from function class $\{f_{\theta}(x), \theta \in \Theta\}$.
- $m{ heta}$ is particular controls model complexity, models may be too simple and too complex.
- $\widehat{\theta}$ selected to minimize empirical risk $\frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$ for some loss function $\mathcal{L}(\widehat{y}, y)$.
- Overfitting non-realistic estimate of expected loss on the training set.
- To avoid overfitting use validation sets, cross-validation, A/B test.