Microprocessors

and

Assembly

Little Mu Computer

EN OUT ACC DO OI 02

EN OUT ACC DO OI 02

Enport of user inport

Ostast of especial Cfor addition a subtration)

Prostram Counter or starts at zero, increments print to eight instruction, but near be over written by the instruction taken from address in PC)

Mail bores: Stores data and prostram.

LMC Instruction Set

lxx	A00	Add value in mail box XX to accomplisher
ZXX	203	Subtract value "
3 x x	STA	Store contents of Acc into mail box XX.
5 XX	409	Loud contents of XX Mts
6 XX	BRA BRZ	set of to milber XX Set PIC milbox XX IF
8 X X	GRP	Ach is zero or positive
901	INO	load input to Acc
902	OUT	Send Acc to Ost
000	COB	Coffee Brenk

Example Multiplier

00	901	INP input "a"	
01	320	STA A state "" "	
02	901	INP hash "a"	
03	221	STA B store 6"	
04	711	LUOP BRZ DONE	
05	552	LOA SUM	
06	150	A OO A	
07	352	STA SUM	
08	551	LDA B	
09	253	SOB ONE	
10	604	BRA LOOP	100
11	552	DONE LOA SUM	
12	902	OUT	
13	000	COB	
	_		
50		A DAT	
51		13 DAT	
52	0	SUM DAT O	
53		ONE DAT 1	

*	Hw	LM2	to	integer	ع إن زاو	A/B
	*	6 3	-7	2		
		73	-	2		112.0
***************************************		Conpa	+		B > 3	

Adder (A+B) Exa-ple; INP 901 FIRST STA 350 INP 901 FIRST 8 13D 150 OUT 902 COB FIRST DAT 000 Subtrator (A-B) Example INP 901 STA FIRST 350 INP 901 STA SECOND 351 FIRST LDA 550 SECOVO SUB 251 OUT 902 COB

AB AMO 00000 001 AB NANO A + B OR 011 $\#_{F_{in}} = r_{i-1}$ 0 10

೦

YOR T

XNOR TO

For the minmalists.... NANO and NOR are each functionally complete ... you an construct all logic from enough at either, 1510 rc: Man tricks in wert:

AND: OR:

Half Adder

0 0 0 0 1 0 0 0 0 1

Full Adder

|Trick" +o understanding is tent |+1+(1)| = |1| = 3 is bisest realer possible |+1+(1)| = |1| = 3 is bisest realer possible

Multiplexing

MUK

OEMUX, Tri-State Buffer

DENUX

A	S	C	0	
0	0	0	0	
	0	()	0	
1	(0	1	

$$\frac{S}{O}$$
 $\frac{O}{t}$

3-5/1

As	A,	0,	0,	סי	D_3
0	ට		0	0	0
0		0	(0	0
1	٥	0	0	Į.	0
1	l	0	0	0	1

Multiplexer Nc' Number of imports i Number of outputs Number of address bits: NA 2NA = Ni /No es, 4:1 9

Wilt: Often, we might want to associate M-bits with a particular address (Accomplator in LMC requires 108its \$1024)
and Mailboxes -7 10 6:45 at address 0x3 adores Ox2 106:4, 4:1 106.45 4.201xP mput 26:45 n 5, ts N-6.4,

Mux es Generic Logic Fixed a. b Set to Configurable Cosic

RS later

$$R = 1$$
 $S = 0$, $S = 0$ forces $Q = 1$ (not)
 $Q = 1$ forces $Q = 0$

D-type Flip-Flop

E = 0 => R=S=1 => Q constant

E=1 => R=D S=D => Q=D Q=D

Note: R=S=0 is not possible

one to NOT at (*)

(Btw: that 0 = -[Do for NAND construction 5 NANDS per D ff)

5yn501 D 0

asynchronous NANO cononter

 $C \times X \times$

Edge - Trissered D- Flip Flop Q1 QF Q CLK _ CLK Q 0, * Work see new unlue until
after falling edge, ie, Next Clock Cycle Syn 5,13 D Q

Synchronous Accumulator Alor B - (rest of circuit) CLK CLK X B _ 1/ B . X B. 11 B. 11 B2 Bo XB2 B. B 80 As long as we feed B & cycle about accommistation handles one new input per cycle.

2	Fixed Program Complex
	Enly computers applied a fixed set of steps to variable input data
	C1 0 0 1
	R1 ? ? ? ? R2 ? ? ? ? R3 ? ? ? ! +ine.
	First conputers his a hird-wired Cu, no easy way to crosse it.
.A.	Turing / Von Weumin / Zuse developed idea to
	Store Instructions in Menory, Increditly poweful:
d	Source Possible Aborton (Goto) and bracking (conditional)

Control Unit of tetch instruction wird from memory
at current address in program counter (IR)

increment program counter (PC++) - IR contains both OP code and address. a fixed set of steps that take olice. CLIK Coster 1 2 3 4 5 6 0 0 00 101 111011 Key point: the control operations are ey. chinge program counter, providing flow control, and conditional execution,

CU M ROM Mensiy OP CODE COUNTER That's really it. except for literally Trilling of & invested to improve porformace: Microsoft - \$500 B Apple - \$700 B Google - \$534 B Ann 200 - \$373 B Microsoft

Python:
- Jun 14trut (complementry) to e/c++
-> dynamic type checking (no int x = 2)
(no new/delete, no pointers)
-> recolability -> mountain used instead wift &
Great resource at
www.python.org
For example, to turing!: http://developers.gooyle.com/edu
(python /
Etrings (m um)
(nonpy, met plat 1.5)

Convend Live Interpreter Calculator m interactive -> Sho-I hello world? - prnt As script.17 Subroutnes : dett(xy) It /el, t/else Conditure 1s; while / break x in [1,2,3] For For ! 5 in more (10) Fur Lists X. append (5) X. apperd (2) print /em (x)

Radioactive Occay

After Hydrosen, need a nix of pla to reach stable avalled... -> n are unstable (outrise of nuclei) beta decay. . _ Too many neutrons, beta decay (B) -> p are stable out side nuclei, but too may, Comlows force donitides (p) d Too many protons, Electron capture

Too many proteon, an neutrons: N=2, P=2 which is really just special case instace of nucleu fission: Large - Smill + Smill + X oter (circl) de cay pricesses i -> proton entosin -> neutrin emission Excess por a simply ejected. - neutra enimien is cornon as result of fission (extra neutros)

opportuntally (quant um tomellis)

(27) Co 60
(0.31 MeV)

B (4120)

Y (1.17 MeV

Y (1.37 MeV

(28) N: 60

Radio-adre Decay

nucleus deenys. (like homans!)

-> Equally probable that my nucleus will deary at any time (unlike horms) (Nuclei unt set ald and die!)

dr = - kN =)

 $N(t) = N \exp(-kt)$

 $N(0) = N_0$ $N(9/2) = N_0/2$

 $N(t) = N_0 = p(-kt)$

N(TIZ) = No exp(-kTIZ) = 0./2

=> 2 = exp (k7112) 1032 = k7112

K = 1002 7 1/2

N(+) = No exp (-t)

	Rassue of charses particles:
	2
	As chirold perfected note through medium, loose energy is a number of medium,
	-> I sinize atoms by liberating electrons
-,	-> Millible Scattering, from nuclei
	-> For light putiles acceleration convex resistan (bremsstration)
	Photos
	(a) Photo-alectic effect
6-47	(b) Compton Scattering V
V	(c) Prir production Y
	Cascades:

.

Often, nuclear decays result in a nucleus trut is not in its ground state, It reaches ground state, It reaches ground state by 8 emaissim

 $(55) Cs 137 B^{-1}$ $(56) B_{n} 137 (4)$ $(56) B_{n} 137 (4)$ 1.174 MeV
<math display="block">= 0.6617 MeV $56 B_{1} 137$ 55 Cs 137: 136, 40709 and

55 Cs 137: 136, 90709 and 56 Ba 137: 136, 90582 and

Dm = 0.00127 ans (ans) c² = 931 ×10° eV Dm c² ~ (1.18 MeV) Geizer Canter

HV

Re

Chinber

4.50