

# FCC 47CFR part 15C Test Report For EPOP900

Reference Standard: FCC 47CFR part 15C

Manufacturer: ZBD Displays Ltd

For type of equipment and serial number, refer to section 3

Report Number: 05-475/4696/3/11

Report Produced by: - R.N. Electronics Ltd.

1 Arnolds Court Arnolds Farm Lane Mountnessing

Essex

**CM13 1UT** 

U.K.

www.RNelectronics.com Telephone +44 (0) 1277 352219

Facsimile +44 (0) 1277 352968

| 1.   | Contents                                                         |    |
|------|------------------------------------------------------------------|----|
| 1.   | CONTENTS                                                         |    |
| 2.   | SUMMARY OF TEST RESULTS                                          |    |
| 3.   | EQUIPMENT UNDER TEST (EUT)                                       | 4  |
| 3.1  | Equipment Specification                                          |    |
| 3.2  | EUT Configurations for testing                                   | 4  |
| 3.3  | EUT Modes                                                        |    |
| 3.4  | Emissions Configuration                                          | 6  |
| 4.   | SPECIFICATIONS                                                   | 7  |
| 4.1  | Deviations                                                       |    |
| 4.2  | Test Fixture/ Antenna configuration                              | 7  |
| 4.3  | Measurement Uncertainties                                        | 7  |
| 5.   | TESTS, METHODS AND RESULTS                                       | 8  |
| 5.1  | Conducted Emissions                                              | 8  |
| 5.2  | Radiated Emissions                                               | 9  |
| 5.3  | Intentional Radiator Field Strength                              | 10 |
| 5.4  | Frequency Tolerance                                              | 11 |
| 5.5  | Duty Cycle                                                       | 11 |
| 5.6  | Maximum Spectral Power Density                                   | 11 |
| 5.7  | 20dB Bandwidth                                                   |    |
| 6.   | PLOTS AND RESULTS                                                | 13 |
| 6.1  | Conducted Emissions                                              | 13 |
| 6.2  | Radiated Emissions                                               | 14 |
| 6.3  | Fundamental Emissions                                            |    |
| 6.4  | Duty Cycle                                                       | 32 |
| 6.5  | 20dB Bandwidth                                                   | 33 |
| 6.6  | Band Edge Compliance                                             | 35 |
| 7    | Explanatory Notes                                                | 36 |
| 7.1  | Explanation of FAIL LIMIT 1 Statement                            |    |
| 7.2  | Explanation of limit line calculations for radiated measurements | 36 |
| 8.   | PHOTOGRAPHS                                                      | 37 |
|      | IDENTIFYING PHOTOGRAPHS OF THE EUT                               | 41 |
| 9.   | SIGNAL LEADS                                                     |    |
| 10.  | TEST EQUIPMENT CALIBRATION LIST                                  | 43 |
| 11.  | AUXILIARY EQUIPMENT                                              |    |
| 11.1 | Auxiliary equipment supplied by ZBD Displays Ltd                 |    |
| 11.2 | Auxiliary equipment supplied by RN Electronics Limited           |    |
| 12.  | MODIFICATIONS.                                                   |    |
| 12.1 | Modifications before test                                        |    |
| 12.2 | Modifications during test                                        |    |
| 13.  | Compliance information                                           |    |
| 14   | DESCRIPTION OF TEST SITES                                        |    |
| 15   | ADDDE VIATIONS AND LINES                                         |    |

## 2. Summary of Test Results

The EPOP900 was tested to the following standards: -

## FCC 47CFR Part 15C (effective date October 1st, 2010); Class DXT Intentional Radiator

Any compliance statements are made reliant on the modes of operation as instructed to us by the Manufacturer based on their specific knowledge of the application and functionality of the equipment tested. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard, particularly under different conditions to those during testing.

| Title |                        | Reference                               | Results                 |
|-------|------------------------|-----------------------------------------|-------------------------|
| 1.    | Conducted Emissions    | FCC Part 15C §15.207                    | NOT                     |
|       |                        |                                         | APPLICABLE <sup>2</sup> |
| 2.    | Radiated Emissions     | FCC Part 15C §15.205, §15.209 & §15.249 | PASSED                  |
| 3.    | Modulation Bandwidth   | FCC Part 15C §15.215(c), §15.249        | PASSED                  |
| 4.    | Intentional Radiator   | FCC Part 15C §15.249                    | PASSED                  |
|       | Field Strength         |                                         |                         |
| 5.    | Frequency Tolerance    | FCC Part 15C §15.225, §15.229, §15.233, | NOT                     |
|       |                        | §15.249(b)                              | APPLICABLE <sup>1</sup> |
| 6.    | Duty Cycle             | FCC Part 15C §15.231, §15.240           | NOT                     |
|       |                        |                                         | APPLICABLE <sup>1</sup> |
| 7.    | Power Spectral Density | FCC Part 15C §15.247                    | NOT                     |
|       |                        |                                         | APPLICABLE <sup>1</sup> |

<sup>&</sup>lt;sup>1</sup> No specification requirement for this type of equipment.

This report relates to the equipment tested as identified by a unique serial number and at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed.

| Date of Test:            | 3rd & 4th May 2011 |  |  |
|--------------------------|--------------------|--|--|
| Tost Engineer            |                    |  |  |
| Test Engineer:           |                    |  |  |
| Approved By:             |                    |  |  |
|                          |                    |  |  |
| Customer Representative: |                    |  |  |

<sup>&</sup>lt;sup>2</sup> EUT is a battery powered product.

## 3. Equipment Under Test (EUT)

## 3.1 Equipment Specification

| Applicant                                          | ZBD Displays Ltd Longford Business Centre Orchard Lea Winkfield Lane Windsor SL4 4RU        |
|----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Manufacturer of EUT                                | ZBD Displays Ltd                                                                            |
|                                                    |                                                                                             |
| Brand name of EUT                                  | ZBD Displays Ltd                                                                            |
| Model Number of EUT                                | EPOP900                                                                                     |
| Serial Number of EUT                               | GA0000024B                                                                                  |
| Date when equipment was received by RN Electronics | 3rd May 2011                                                                                |
| Date of test:                                      | 3rd & 4th May 2011                                                                          |
|                                                    |                                                                                             |
| Customer order number:                             | 5816                                                                                        |
| Visual description of EUT:                         | Flat plastic enclosure with an LCD covering one side. On the rear is a battery compartment. |
| Main function of the EUT:                          | An electronic shelf edge label.                                                             |
| Height                                             | 120 mm                                                                                      |
| Width                                              | 155 mm                                                                                      |
| Depth                                              | 25 mm                                                                                       |
| Weight                                             | 0.2 g                                                                                       |
| Voltage                                            | 4.5V DC (3 off AA 1.5V batteries)                                                           |
| Current required from above voltage source         | 0.035 mA                                                                                    |

## 3.2 EUT Configurations for testing

| Frequency range                    | 902.5 – 927.5 MHz |
|------------------------------------|-------------------|
| Normal use position                | Shelf edge        |
| Normal test signals                | GFSK              |
| Declared Power Level               | +10dBm            |
| Declared Channel Bandwidth         | Wideband          |
| Highest Frequencies generated/used | 927.5MHz          |

## 3.3 EUT Modes

| Mode                            | Description of mode                    | Used for Testing |
|---------------------------------|----------------------------------------|------------------|
| Unmodulated carrier TX 902.5MHz | constant CW transmission               | YES              |
| Unmodulated carrier TX 915MHz   | constant CW transmission               | YES              |
| Unmodulated carrier TX 927.5MHz | constant CW transmission               | YES              |
| Standby /RX mode 902.5MHz       | Receive mode                           | YES              |
| Standby /RX mode 915MHz         | Receive mode                           | YES              |
| Standby /RX mode 927.5MHz       | Receive mode                           | YES              |
| Constant Transmit data 902.5MHz | constant system modulated transmission | YES              |
| Constant Transmit data 915MHz   | constant system modulated transmission | YES              |
| Constant Transmit data 927.5MHz | constant system modulated transmission | YES              |

Other channels between the frequencies selected above were available each at 500 kHz channel spacing, however only the top, middle & bottom channels (covering the entire range) were selected for tests.

Description of ancillary equipment connected to the equipment under test, for the purpose of tests, can be found in Section 10.

Any modifications made to the EUT, whilst under test, can be found in Section 11.

This report was printed on: 25 May 2011

## 3.4 Emissions Configuration

Inside test area

Outside test area



New batteries were fitted into the unit before tests began and monitored to ensure supply parameters were maintained.

\*The unit was only connected to the test jig and laptop for programming of channels and modes, and once programmed the EUT was disconnected from the programming jig and placed back into the test area.

The spectrum analyser was only used to ensure the correct operating channel and modes of operation were programmed by detecting the RF carrier signal. Power level settings for tests were as described in section 3.3.

Bottom, middle & top channels were selected for tests were appropriate in combination with the above mentioned modes. These were:-

Bottom = 902.5 MHz Middle = 915.0 MHz Top = 927.5 MHz

The EUT had no ports of any kind available to the end user.

## 4. Specifications

The tests were performed by RN Electronics Engineer Daniel Sims who set up the tests, the test equipment, and operated it in accordance with the *R.N. Electronics Ltd* procedures manual, FCC Part 15 and those specifications incorporated by reference into 47CFR15 (e.g. ANSI C63.4-2003).

R.N. Electronics Ltd sites M and OATS are listed with the FCC. Registration Number 293246

| -  | - | _  | -   |                |                                         |   |
|----|---|----|-----|----------------|-----------------------------------------|---|
| 4. | 1 | De | vis | <b>1</b> + i / | n                                       | c |
| ͺ  |   | UG | vic |                | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - |

None.

## 4.2 Test Fixture/ Antenna configuration

| ☐ A permanent internal RF port was used for testing.  |
|-------------------------------------------------------|
| A test fixture was used for testing.                  |
| A temporary RF port was created for testing.          |
| ☐ The equipment integral Antenna was used for testing |
|                                                       |

## 4.3 Measurement Uncertainties

| Parameter                   | Uncertainty |  |
|-----------------------------|-------------|--|
| Transmitter Tests           |             |  |
| Bandwidth                   | <± 1.9 %    |  |
| Radiated RF Power           | <± 3.5 dB   |  |
| Radiated Spurious Emissions | <± 3.4 dB   |  |
| H-Field Emissions           | <± 2.8 dB   |  |
| Spectrum Mask               | <± 4.1 dB   |  |
| Receiver Tests              |             |  |
| Radiated Spurious Emissions | <± 3.4 dB   |  |

## 5. Tests, Methods and Results

## 5.1 Conducted Emissions

Test not applicable, EUT is battery powered only.

## 5.2 Radiated Emissions

## 5.2.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.209)

Test Method: ANSI C63.4, Reference (8.)

## 5.2.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a new battery.

## 5.2.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Below 30MHz, measurements were made in a semi-anechoic chamber (pre-scan) with final measurements on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment and the antenna were rotated 360° to record the worst case emissions.

30 MHz - 1 GHz, measurements were made on a site listed with the FCC. The equipment was rotated  $360^{\circ}$  and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

Above 1GHz, measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. The antenna was placed 1m above the ground in line with the EUT, which was rotated through 360° to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

## 5.2.2 Test results

Tests were performed using Test Site M.

**Test Environment: M** 

Temperature: 16-18°C Humidity: 38-40%

Analyser plots for the Quasi-Peak / Average values as applicable and any table of signals within 20dB of the limit line can be found in Section 6.2 of this report. Band Edge Compliance plots can be found in section 6.6 of this report.

These show that the **EUT** has **PASSED** this test.

## 5.2.2.1 Test Equipment used

E410, E411, E412, TMS933E268, E342, E429, TMS82

See Section 10 for more details

## 5.3 Intentional Radiator Field Strength

## 5.3.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.249)

Test Method: FCC Part 15C, Reference (15.249)

## 5.3.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The antenna was scanned 1-4m in height in both Horizontal and Vertical polarisations. The EUT was rotated in all three orthogonal planes.

## 5.3.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber.

The equipment was rotated 360° to record the maximised emission.

## 5.3.2 Test results

**Test Environment:** Temperature: 16°C Humidity: 39%

Any Analyser plots can be found in Section 6.3 of this report.

| Channel | Duty cycle adjustment (dB) | Total<br>(dBuV/M @3m) | Result<br>(mW) |
|---------|----------------------------|-----------------------|----------------|
| Bottom  | N/A                        | 90.9                  | 0.369          |
| Middle  | N/A                        | 90.6                  | 0.344          |
| Тор     | N/A                        | 90.8                  | 0.360          |

Limits: 94dBuV/M @ 3metres.

The maximised field strength measured was 90.9dBuV/m @ 3metres, measured on the bottom channel with a horizontal measuring antenna with the EUT in a flat horizontal plane.

These results show that the EUT has PASSED this test.

## 5.3.2.1 Test Equipment used

E410, E411, E412, TMS933

See Section 10 for more details

## 5.45.4 Frequency Tolerance

Test not applicable. No requirement for this type of device and frequency range.

## 5.5 Duty Cycle

Test not applicable. No requirement for this type of device and frequency range.

## 5.6 Maximum Spectral Power Density

Test not applicable. No requirement for this type of device and frequency range.

## 5.7 20dB Bandwidth

## 5.7.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.215)

Test Method: FCC Part 15C, Reference (15.215)

## 5.7.1.1 Configuration of EUT

The EUT was tested on a bench within a test fixture and referenced to the Intentional radiator field strengths as listed within this report.

## 5.7.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

## 5.7.2 Test results

Tests were performed using Test Site B.

Temperature of test Environment: 16°C

Analyser plots for the 20dB bandwidth can be found in Section 6.5 of this report.

| Channel | Result | Plot reference                                                    |
|---------|--------|-------------------------------------------------------------------|
| Bottom  | 78 kHz | J4696-3, Bottom channel 20dB BW (repeated transmit packet bursts) |
| Middle  | 78 kHz | J4696-3, Centre channel 20dB BW (repeated transmit packet bursts) |
| Тор     | 78 kHz | J4696-3, Top channel 20dB BW (repeated transmit packet bursts)    |

Limits: Remain within the assigned band (902 – 928 MHz).

These results show that the EUT has PASSED this test.

## 5.7.2.1 Test Equipment used

E001

See Section 10 for more details.

6.1

6. Plots and Results

Test not applicable, EUT is battery powered.

**Conducted Emissions** 

# 6.2 Radiated Emissions Plots shown are for Middle channel Transmit mode only.



# Plot of peak Parallel emissions 9kHz – 150kHz against the quasi-peak limit line.



Plot of peak Perpendicular emissions 9kHz – 150kHz against the quasipeak limit line.



Plot of peak Parallel emissions 150kHz - 30MHz against the quasi-peak limit line.



Plot of peak Perpendicular emissions 150kHz - 30MHz against the quasipeak limit line.



Plot of peak horizontal emissions 30MHz - 300MHz against the quasipeak limit line.



Plot of peak vertical emissions 30MHz - 300MHz against the quasi-peak limit line.



Plot of peak horizontal emissions 300MHz - 1GHz against the quasi-peak limit line.



Plot of peak vertical emissions 300MHz - 1GHz against the quasi-peak limit line.

## Table of signals measured below 1GHz.

## Horizontal bottom Channel

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp (dBuV) | QP - Lim1 (dB) |
|------------|------------|--------------------|---------------|----------------|
| 1          | 889.503    | 43.4               | 41.7          | -4.3           |
| 2          | 915.503    | 44                 | 42.3          | -3.7           |

## Vertical bottom channel

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp (dBuV) | QP - Lim1 (dB) |
|------------|------------|--------------------|---------------|----------------|
| 1          | 889.503    | 42.8               | 40.8          | -5.2           |
| 3          | 915.503    | 43.1               | 41.2          | -4.8           |

## Horizontal middle Channel

| Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp (dBuV) | QP - Lim1 (dB) |
|------------|------------|--------------------|---------------|----------------|
| 1          | 902.003    | 43.8               | 41.8          | -4.2           |
| 3          | 928.003    | 43.5               | 41.3          | -4.7           |

## Vertical middle channel

|   | Signal No. | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp (dBuV) | QP - Lim1 (dB) |
|---|------------|------------|--------------------|---------------|----------------|
| ſ | 1          | 902.003    | 41.5               | 38.1          | -7.9           |
| ſ | 3          | 928.003    | 40.7               | 37.7          | -8.3           |

## Horizontal Top Channel

| 1 10112011tai 10p | Onamio     |                    |               |                |
|-------------------|------------|--------------------|---------------|----------------|
| Signal No.        | Freq (MHz) | Peak Amp<br>(dBuV) | QP Amp (dBuV) | QP - Lim1 (dB) |
| 1                 | 914.503    | 42.3               | 39.9          | -6.1           |
| 3                 | 940.503    | 43.9               | 41.6          | -4.4           |

Vertical Top channel No signals measureable.

# Plots of Average horizontal emissions 1GHz - 9.3GHz against the Average limit line.







## 3-4 GHz Horiz Mid channel











## 7-8GHz Horiz Mid channel









# Plot of Average Vertical emissions 1GHz – 9.3GHz against the Average limit line.







Start: 2.700000 GHz Res BW: 1 MHz 03/05/2011 15:06:27 Atten: 10 dB Vid BW: 3 MHz Stop: 3.000000 GHz Sweep: 50.00 ms HP8563E













## 7-8GHz Vert Mid channel





## 9-9.3GHz Vert Mid channel



## Table of signals measured above 1GHz.

## Horizontal

Bottom channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 1805               | 38.5             | 30.0                | -24.0     |
| 5415               | 50.7             | 46.0                | -8.0      |

## Middle channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 5490               | 48.1             | 39.0                | -15.0     |
| 6405               | 54.8             | 53.2                | -0.8      |
| 7320               | 52.8             | 51.0                | -3.0      |
| 8235               | 50.5             | 48.0                | -6.0      |
| 9150               | 52.9             | 49.7                | -4.3      |

## Top channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 5565               | 54.0             | 51.0                | -3.0      |
| 6492               | 47.0             | 40.0                | -14.0     |

## **Vertical**

Bottom channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 1805               | 39.0             | 30.0                | -24.0     |
| 5415               | 48.0             | 41.5                | -12.5     |
| 6317               | 40.0             | 36.0                | -18.0     |

## Middle channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 1830               | 39.0             | 31.0                | -23.0     |
| 5490               | 50.0             | 44.5                | -9.5      |
| 6405               | 42.5             | 40.0                | -14.0     |
| 7320               | 54.5             | 50.0                | -4.0      |
| 8235               | 43.8             | 40.0                | -14.0     |
| 9150               | 51.0             | 47.5                | -6.5      |

## Top channel

| Frequency<br>(MHz) | Measured<br>Peak | Measured<br>Average | AV- Limit |
|--------------------|------------------|---------------------|-----------|
| 7420               | 50.0             | 44.0                | -10.0     |
| 8347               | 52.0             | 49.0                | -5.0      |
| 9275               | 53.1             | 48.0                | -6.0      |

#### 6.3 **Fundamental Emissions**

## **Bottom Channel**



Horizontal ERP 902.500855 MHz 90.8957 dBuV

 $\nabla$ 

## **Middle Channel**



Horizontal ERP 915.001770 MHz 90.5957 dBuV





Horizontal ERP∇ 927.500183 MHz90.8037 dBuV

6.4 Duty Cycle

Not applicable.

#### 6.5 20dB Bandwidth



-20.250000 kHz -19.2000 dB

Trace A

Trace A

902.484250 MHz 87.2700 dBuV

 $\nabla$ 

Trace A 78.000000 kHz 0.6900 dB

Start: 902.350000 MHz Res BW: 1 kHz

04/05/2011 10:29:58

13

3

-7

Vid BW: 3 kHz

Stop: 902.650000 MHz Sweep: 900.00 ms

HP8542E

HP8542E





- Trace A 914.984250 MHz 88.8800 dBuV
- 2-1 Trace A  $\bigvee$ 
  - -19.500000 kHz -18.8000 dB

0.2300 dB

Trace A 78.000000 kHz

04/05/2011 10:33:18





- Trace A  $\nabla$ 927.484250 MHz
- 90.0000 dBuV
- 2-1 Trace A
- -20.250000 kHz -18.9100 dB
- Trace A
- 78.000000 kHz -0.2300 dB

## 6.6 Band Edge Compliance







1 Trace A

∇ 927.492500 MHz
90.9300 dBuV

2-1 Trace A ∇ 510,000

√ 510.000000 kHz -23.2100 dB

## 7 Explanatory Notes

## 7.1 Explanation of FAIL LIMIT 1 Statement

The **FAIL MARGIN 1** statement(s) may appear on the graphical plots when the receiver used to measure your equipment detects a signal that exceeds the dashed line. This does not mean that the **EUT** has failed the test, only that the 10 dB calculation margin set, has been exceeded on a peak measurement.

Following the indication that the margin has been exceeded, measurements are made at the frequency (ies) of the peaks. These peaks have been calculated to either Quasi Peak or Average Peak dependant on the test. A table of results has been printed on the reverse of the page. This table looks similar to the one illustrated below: -

| Signal | Frequency  | Peak          | PK Delta | Avg           | Av Delta |
|--------|------------|---------------|----------|---------------|----------|
| Number | (MHz)      | ( $dB\mu V$ ) | L1 (dB)  | ( $dB\mu V$ ) | L1 (dB)  |
|        |            |               |          |               |          |
| 1      | 12345.0000 | 12.9          | -2.5     | 10.2          | -5.2     |

The First column, labelled Signal Number, is a number that the receiver has given to each signal, which has been calculated.

Column Two, labelled Frequency (MHz), is the frequency of the signal received.

Column Three, labelled Peak ( $dB\mu V$ ), (can also be labelled, in the case of Quasi Peak, Peak  $dB\mu V/m$ ) is the Level that was received at peak amount in dB above  $1\mu V$ .

Column Four, labelled PK Delta L1 (dB), is the same level as Column three but is given in a level relative to the limit line required.

Column Five, labelled AVG (dB $\mu$ V), (can also be labelled, in the case of Quasi Peak, QP dB $\mu$ V/m) when undertaking a Quasi peak test, This is the Average or Quasi peak calculation results given in dB $\mu$ V or dB $\mu$ V/m above 1 $\mu$ V.

Column Six, labelled AV Delta L 1 (dB), (can also be labelled, in the case of Quasi Peak, QP Delta L 1 (dB)) is the Average or Quasi Peak calculation relevant to the limit line. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

## 7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in  $\mu$ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu$ V/m referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500  $\mu$ V/m equates to 20.log (500) = 54 dB  $\mu$ V/m.
- (b) limit of 300  $\mu$ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB  $\mu$ V/m at 3m

8. Photographs





Photograph of the EUT as viewed from in front of the antenna, site M.



Diagram of the radiated emissions test setup.

NOT APPLICABLE, EUT IS BATTERY POWERED

# Photograph of the EUT as viewed from screened room (conducted emissions)



Diagram of the conducted emissions test setup.





**Identifying Photographs of the EUT** 

## 9. Signal Leads

EUT did not have any ports or signal leads.

ALL RIGHTS RESERVED

## 10. Test Equipment Calibration list

The following table lists the test equipment used, last calibration date and calibration interval. All test equipment used has been maintained within the calibration requirements of **R.N. Electronics Ltd.** test facility quality system. Calibration intervals are regularly reviewed dependent on equipment manufacturer's recommendations and actual usage of the equipment.

| RNNo   | Model    | Description                             | Manufacturer         | Date Calibrated | Period |
|--------|----------|-----------------------------------------|----------------------|-----------------|--------|
|        |          |                                         |                      |                 |        |
| E268   | BHA 9118 | 1-18 GHz Horn Antenna                   | Schaffner            | 02-Mar-09       | 60     |
| E342   | 8563E    | Spectrum Analyser 26.5 GHz              | HP                   | 30-Mar-11       | 24     |
| E410   | N5181A   | 3 GHz MXG Signal Generator              | Agilent Technologies | 06-Oct-10       | 12     |
| E411   | N9039A   | 9 kHz - 1 GHz RF Filter Section         | Agilent Technologies | 05-Oct-10       | 12     |
| E412   | E4440A   | 3 Hz - 26.5 GHz PSA                     | Agilent Technologies | 05-Oct-10       | 12     |
| E429   | -        | 5 Switch Filter Box 0.91 GHz - 16.3 GHz | RN Electronics       | N/A             | N/A    |
| TMS81  | 6502     | Active Loop Antenna                     | EMCO                 | 13-Apr-10       | 24     |
| TMS82  | 8449B    | Pre Amplifier 1 - 26 GHz                | Agilent              | 29-Oct-10       | 12     |
| TMS933 | CBL6141A | Bilog Antenna 30MHz - 2GHz              | York EMC             | 09-Sep-10       | 36     |

### 11. Auxiliary equipment

#### 11.1 Auxiliary equipment supplied by ZBD Displays Ltd

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

| Manufacturer     | Description                | Model Number       | Serial Number |
|------------------|----------------------------|--------------------|---------------|
| Microsoft        | USB Mouse                  | X08-70400          | -             |
| Toshiba          | Laptop PC & power supply   | Satellite Pro A120 | Y6043523H     |
| ZBD Displays Ltd | Bounce Communicator        | version 2          | 770           |
| ZBD Displays Ltd | EPOP900 test jig Interface | 120-0050-02        | 016           |

## 11.2 Auxiliary equipment supplied by RN Electronics Limited

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

No auxiliary equipment was supplied by RN Electronics Ltd.

#### ALL RIGHTS RESERVED

#### 12. Modifications

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

#### 12.1 Modifications before test

There were no modifications made by R.N. Electronics Ltd before testing commenced.

## 12.2 Modifications during test

There were no modifications made by R.N. Electronics Ltd during testing.

## 13. Compliance information

Products subject to the Declaration of Conformity procedure are required to be supplied with a compliance information statement. A copy of this statement may be included here:

EUT is not subject to the DoC Authorisation procedure.

## 14 Description of Test Sites

Site A Radio / Calibration Laboratory and anechoic chamber

Site B Semi-anechoic chamber

Site B1 Control Room for Site B

Site C Transient Laboratory

Site D Screened Room (Conducted Immunity)

Site E Screened Room (Control Room for Site D)

Site F Screened Room (Conducted Emissions)

VCCI Registration No. C-2823

Site K Screened Room (Control Room for Site M)

Site M 3m Semi-anechoic chamber (indoor OATS)

FCC Registration No. 293246

Site Q Fully-anechoic chamber

Site OATS 3m and 10m Open Area Test Site

FCC Registration No. 293246 IC Registration No. 5612A-1 VCCI Registration No. R-2580

#### ALL RIGHTS RESERVED

## 15 Abbreviations and Units

| %      | Percent                    | LO     | Local Oscillator       |
|--------|----------------------------|--------|------------------------|
| μA/m   | microAmps per metre        | mA     | milliAmps              |
| μV     | microVolts                 | max    | maximum                |
| μW     | microWatts                 | mbar   | milliBars              |
| AC     | Alternating Current        | Mbit/s | MegaBits per second    |
| ALSE   | Absorber Lined Screened    | MHz    | MegaHertz              |
|        | Enclosure                  | mic    | Microphone             |
| AM     | Amplitude Modulation       | min    | minimum                |
| Amb    | Ambient                    | mm     | milliMetres            |
| ATPC   | Automatic Transmit Power   | ms     | milliSeconds           |
|        | Control                    | mW     | milliWatts             |
| BER    | Bit Error Rate             | NA     | Not Applicable         |
| °C     | Degrees Celsius            | nom    | Nominal                |
| C/I    | Carrier / Interferer       | nW     | nanoWatt               |
| CEPT   | European Conference of     | OATS   | Open Area Test Site    |
|        | Postal and                 | OFDM   | Orthogonal Frequency   |
|        | Telecommunications         |        | Division Multiplexing  |
|        | Administrations            | ppm    | Parts per million      |
| COFDM  | Coherent OFDM              | PRBS   | Pseudo Random Bit      |
| CS     | Channel Spacing            |        | Sequence               |
| CW     | Continuous Wave            | QAM    | Quadrature Amplitude   |
| dB     | deciBels                   |        | Modulation             |
| dBµA/m | deciBels relative to 1µA/m | QPSK   | Quadrature Phase Shift |
| dΒμV   | deciBels relative to 1µV   |        | Keying                 |
| dBc    | deciBels relative to       | R&TTE  | Radio and              |
|        | Carrier                    |        | Telecommunication      |
| dBm    | deciBels relative to 1mW   |        | Terminal Equipment     |
| DC     | Direct Current             | Ref    | Reference              |
| DTA    | Digital Transmission       | RF     | Radio Frequency        |
|        | Analyser                   | RFC    | Remote Frequency       |
| EIRP   | Equivalent Isotropic       |        | Control                |
|        | Radiated Power             | RSL    | Received Signal Level  |
| ERP    | Effective Radiated Power   | RTP    | Room Temperature and   |
| EU     | European Union             |        | Pressure               |
| EUT    | Equipment Under Test       | RTPC   | Remote Transmit Power  |
| FM     | Frequency Modulation       |        | Control                |
| FSK    | Frequency Shift Keying     | Rx     | Receiver               |
| g      | Grams                      | S      | Seconds                |
| ĞHz    | GigaHertz                  | SINAD  | Signal to Noise And    |
| Hz     | Hertz                      |        | Distortion             |
| IF     | Intermediate Frequency     | Tx     | Transmitter            |
| kHz    | kiloHertz                  | V      | Volts                  |
| LBT    | Listen Before Talk         |        |                        |
|        |                            |        |                        |



# Certificate of Test 4696/3

The equipment noted below has been tested by *R.N. Electronics Limited* and conforms with the relevant subpart of FCC 47CFR part 15, subject to deviations as detailed in this report.

This certificate relates to the unit, as identified by unique serial number(s) and further detailed in the referenced report, in the condition(s) at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Furthermore, this is a certificate of test only and should not be confused with an equipment authorisation.

EPOP900

| EPOP900                                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------|--|--|
| GA00000024B                                                                                                          |  |  |
| ZBD Displays Ltd<br>Longford Business Centre<br>Orchard Lea<br>Winkfield Lane<br>Windsor<br>SL4 4RU                  |  |  |
| 5816                                                                                                                 |  |  |
| 05-475/4696/3/11                                                                                                     |  |  |
| FCC 47CFR Part 15C:<br>effective date <b>October 1</b> <sup>st</sup> <b>2010</b> ,<br>Class DXT Intentional Radiator |  |  |
| 3rd to 4th May 2011                                                                                                  |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |

QMF21J - 3: FCC PART 15C: RNE ISSUE 02: - JUN 10

Equipment: