Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 4

Abgabe auf Moodle bis zum 4. Dezember

Die obere Halbebene ist $\mathbb{H}=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$. Darauf operiert $\mathrm{SL}(2,\mathbb{R})$ und insbesondere auch die Modulgruppe $\mathrm{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Die besten vier Aufgaben werden gewertet.

- **14. Aufgabe:** (2+2=4 Punkte, 2 Bonuspunkte) Für eine natürliche Zahl $N \ge 1$ definieren wir $\Gamma(N) = \{M \in \mathrm{SL}(2,\mathbb{Z}) \mid M \equiv E_2 \pmod{N} \}$. Zeigen Sie:
 - (a) $\Gamma(N)$ ist eine Untergruppe von $SL(2, \mathbb{Z})$.
 - (b) $\Gamma(N)$ ist ein Normalteiler in $SL(2, \mathbb{Z})$.
 - (c) (Bonusaufgabe) Der Quotient $SL(2,\mathbb{Z})/\Gamma(N)$ ist isomorph zur Gruppe $SL(2,\mathbb{Z}/N\mathbb{Z})$.

Lösung: Sei $p:\Gamma\to \mathrm{SL}(2,\mathbb{Z}/N\mathbb{Z})$ die Abbildung, die jeden Matrixeintrag auf die zugehörige Restklasse modulo N abbildet. Dann prüft man elementar nach, dass p ein Gruppenhomomorphismus ist. Damit ist $\Gamma[N]=\ker(\varphi)$ eine Untergruppe und ein Normalteiler. Für die Bonusaufgabe genügt es zu zeigen, dass p surjektiv ist. Den Beweis dazu finden Sie in Kapitel 9.10 im Skript.

15. Aufgabe: (2+2=4 Punkte) Sei $\mathcal{F} \subseteq \mathbb{H}$ der Fundamentalbereich wie in der Vorlesung definiert. Seien $\tau \in \mathcal{F}$ und $M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$ in der Modulgruppe $\mathrm{SL}(2,\mathbb{Z})$ sodass

$$\operatorname{Im}(M\left\langle \tau\right\rangle)\geq\operatorname{Im}(\tau)$$
 .

Zeigen Sie für die folgenden beiden Fälle

- (a) |c| = |d| = 1,
- (b) |c| = 1 und d = 0.

die Aussage: Falls $\tau' := M \langle \tau \rangle \in \mathcal{F}$, dann gilt $\tau' = \tau$. Bestimmen Sie jeweils M und τ .

Lösung: Nach Annahme gilt $\tau' = \frac{a\tau + b}{c\tau + d}$ und $\operatorname{Im}(\tau') = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2} \ge \operatorname{Im}(\tau)$, also $|c\tau + d|^2 = c^2 \operatorname{Im}(\tau)^2 + (c\operatorname{Re}(\tau) + d)^2 \le 1$.

- (a) Für $c, d \in \{\pm 1\}$ gilt:
 - (1) $|c\text{Re}(\tau) + d| \ge 1/2$ nach umgekehrter Dreiecksungleichung, weil $|\text{Re}(\tau)| \le 1/2$ und $c, d = \pm 1$.
 - (2) $|c\operatorname{Im}(\tau)| \ge \sqrt{3}/2$, weil $\tau \in \mathcal{F}$.

Damit folgt $|c\tau + d| \ge 1$. Wegen der obigen Abschätzung folgt Gleichheit, also $|c\tau + d| = 1$. Damit ist $\text{Im}(\tau) = \sqrt{3}/2$. Wegen $|c\tau + d| = 1$ ist der Imaginärteil von τ' gleich dem von τ , also gleich $\sqrt{3}/2$. Es gibt aber nur einen Punkt in \mathcal{F} mit diesem Imaginärteil, und zwar $\tau = \tau' = \rho - 1$. Außerdem gilt $|c\text{Re}(\tau) + d| = 1/2$ und damit

$$\tau = \tau' = \rho^2 = \rho - 1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 , $c = d$.

Die gesuchten Werte für a, b sind die Lösungen der Gleichung $a\tau + b = c\tau^2 + d\tau = -c$. Damit folgt a = 0 aufgrund des Imaginärteils und -b = c = d. Also $M = \pm \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

- (b) Für d=0 und $c=\pm 1$ gilt $|c\tau+d|\leq 1$, also $|\tau|\leq 1$. Nach Annahme ist τ im Fundamentalbereich, damit folgt $|\tau|=1$. Insbesondere gilt $\mathrm{Im}(\tau)=\mathrm{Im}(\tau')$. Die Determinantenbedingung ad-bc=1 liefert $b=-c=\mp 1$. Also ist $M=\left(\begin{smallmatrix} a&\mp 1\\\pm 1&0\end{smallmatrix}\right)=\left(\begin{smallmatrix} \pm 1&a\\0&\pm 1\end{smallmatrix}\right)\left(\begin{smallmatrix} 0&-1\\1&0\end{smallmatrix}\right)$. Daraus folgt $\mathrm{Re}(\tau')=\mathrm{Re}\left(\begin{smallmatrix} 0&-1\\1&0\end{smallmatrix}\right)\tau)\pm a=-\mathrm{Re}(\tau)\pm a$ und dieser Term liegt im Intervall [-1/2,1/2). Nach Definition des Fundamentalbereichs ist das nur möglich für den Fall $\tau=i$ und a=0 und für den Fall $\tau=\rho^2$ und $a=\mp 1$. Es gibt also zwei Lösungen:
 - (1) $\tau = i \text{ und } M = \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 - (2) $\tau = \rho^2 = \rho 1$ und $M = \pm \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$.

In beiden Fällen prüft man sofort nach dass $\tau = \tau'$.

16. Aufgabe: (2+2=4 Punkte) Sei $M \in SL(2,\mathbb{R})$. Zeigen Sie: Es gilt $M\langle z\rangle = z$ für exakt ein $z \in \mathbb{H}$ genau dann, wenn $|\operatorname{Spur}(M)| < 2$.

Lösung: Nach Definition der Möbiustransformation erfüllt jeder Fixpunkt die Gleichung

$$cz^2 + (-a+d)z - b = 0$$
.

Wenn c=0, dann ist $a=d=\pm 1$ wegen der Determinantenbedingung. Entweder ist b=0 und jeder Punkt der oberen Halbebene ist Fixpunkt oder $b\neq 0$ und es gibt keine Fixpunkte. Die Bedingung an die Spur ist in beiden Fällen nicht erfüllt weil $|\mathrm{Spur}|=|a+d|=2$. Im Folgenden nehmen wir an $c\neq 0$. Nach Mitternachtsformel gilt dann

$$z = \frac{1}{2c} \left((d-a) \pm \sqrt{(d-a)^2 + 4bc} \right) .$$

Dieser Ausdruck hat genau dann exakt ein z in der oberen Halbebene, wenn der Ausdruck unter der Wurzel negativ ist. Also genau dann wenn

$$0 > (d-a)^2 + 4bc = a^2 + d^2 - 2ad + 4bc = a^2 + d^2 + 2ad - 4 = (a+d)^2 - 4.$$

Dies ist äquivalent zu |a+d| < 2.

17. Aufgabe: (4 Punkte) Sei $q \in \mathbb{Q}$ eine rationale Zahl und $(\tau_n)_n$ eine Folge in \mathbb{H} , deren Imaginärteil gegen Unendlich konvergiert. Dann gibt es ein $M \in \mathrm{SL}(2,\mathbb{Z})$ mit

$$\lim_{n\to\infty} M\tau_n = q .$$

Hinweis: Aus der elementaren Zahlentheorie können Sie benutzen: "Zwei ganze Zahlen a, b sind teilerfremd genau dann wenn es ganze Zahlen r, s gibt mit ra + sb = 1."

Lösung: Sei $q=\frac{a}{c}$ die gegebene rationale Zahl. Wir können annehmen, dass (a,c) ein Paar teilerfremder ganzer Zahlen ist mit c>0. Nach dem Hinweis gibt es r und s mit ra+cs=1. Für b=-s und d=r gilt ad-bc=1. Die Matrix $M=\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)\in \mathrm{SL}(2,\mathbb{Z})$ erfüllt die Voraussetzungen: Es bleibt die Konvergenz zu prüfen für $M\left\langle \tau_{n}\right\rangle =\frac{a\tau_{n}+b}{c\tau_{n}+d}=\frac{a+b\tau_{n}^{-1}}{c+d\tau_{n}^{-1}}$. Nach Annahme konvergiert der Imaginärteil von τ_{n} gegen Unendlich, damit wächst $|\tau_{n}|$ gegen Unendlich, also konvergiert τ_{n}^{-1} gegen Null. Damit konvergieren Zähler und Nenner:

$$\lim_{n \to \infty} M \langle \tau_n \rangle = \frac{\lim_{n \to \infty} a + b\tau_n^{-1}}{\lim_{n \to \infty} c + d\tau_n^{-1}} = \frac{a}{c} = q.$$

Dies war zu zeigen.

18. Aufgabe: (4 Punkte) Sei \wp_{Γ} die Weierstraß- \wp -Funktion zum Gitter $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$. Seien $e_1(\tau) = \wp_{\Gamma}(1/2)$ und $e_2(\tau) = \wp_{\Gamma}(\tau/2)$. Zeigen Sie:

$$\lim_{\tau \to i\infty} e_1(\tau) \neq \lim_{\tau \to i\infty} e_2(\tau)$$

.

Lösung: Die Reihenentwicklung

$$e_1(\tau) = \frac{1}{(1/2)^2} + \sum_{\substack{0 \neq (a,b) \in \mathbb{Z}^2 \\ }} \left(\frac{1}{(1/2 - a - b\tau)^2} - \frac{1}{(a + b\tau)^2} \right)$$

konvergiert kompakt. Damit können wir den Limes $\tau \to i\infty$ termweise bilden. Für $b \neq 0$ gehen die Terme unter der Summe jeweils gegen Null. Wir betrachten also nur die verbleibenden Ausdrücke

$$\lim_{\tau \to i\infty} e_1(\tau) = \frac{1}{(1/2)^2} + \sum_{0 \neq a \in \mathbb{Z}} \left(\frac{1}{(1/2 - a)^2} - \frac{1}{a^2} \right) .$$

Die Brüche unter der Summe sind jeweils für sich über a summierbar und wir erhalten

$$\lim_{\tau \to i\infty} e_1(\tau) = \sum_{a \in \mathbb{Z}} \frac{1}{(\frac{1}{2} - a)^2} - 2 \sum_{a=1}^{\infty} \frac{1}{a^2} .$$

Mit dem entsprechenden Argument zeigen wir für

$$e_2(\tau) = \frac{1}{(\tau/2)^2} + \sum_{0 \neq (a,b) \in \mathbb{Z}^2} \left(\frac{1}{(\tau/2 - a - b\tau)^2} - \frac{1}{(a + b\tau)^2} \right)$$

den Grenzwert

$$\lim_{\tau \to i\infty} e_2(\tau) = \lim_{\tau \to i\infty} \frac{1}{(\tau/2)^2} + \sum_{0 \neq (a,b) \in \mathbb{Z}^2} \lim_{\tau \to i\infty} \left(\frac{1}{(\tau/2 - a - b\tau)^2} - \frac{1}{(a + b\tau)^2} \right)$$
$$= 0 + \sum_{0 \neq (a,b) \in \mathbb{Z}^2} \lim_{\tau \to i\infty} \left(\frac{1}{(\tau/2 - a - b\tau)^2} - \lim_{\tau \to i\infty} \frac{1}{(a + b\tau)^2} \right) = -2 \sum_{a=1}^{\infty} \frac{1}{a^2}.$$

Es bleibt nur noch zu zeigen, dass $\sum_{a\in\mathbb{Z}}\frac{1}{(\frac{1}{2}-a)^2}$ nicht gegen Null konvergiert. Das ist aber klar, weil jeder Summand positiv ist.