BEST AVAILABLE COPY

USAN 11/501,464 For IDS filed 11/10/06

Cyclopentan-1-amines

Patent number:

DE2658401

Publication date:

1978-07-06

Inventor:

ORTH DIETER DIPL CHEM DR: RADUNZ HANS-

ECKART DIPL CHEM D; BAUMGARTH MANFRED DR;

MAISENBACHER JUERGEN; LISSNER REINHARD DR

Applicant:

MERCK PATENT GMBH

Classification:

- International: A61K31/13; A61K31/135; A61K31/195; A61K31/21;

A61K31/215; A61K31/22; A61K31/27; A61K31/325; A61K; A61K31/13; A61K31/135; A61K31/185;

A61K31/21; A61K31/325; C07C; (IPC1-7): C07C93/12;

A61K31/13; C07C101/18

- european:

Application number: DE19762658401 19761223 Priority number(s): DE19762658401 19761223

Also published as:

US4188403 (A1)

NL7714258 (A)

JP53079844 (A)

GB1547127 (A)

FR2375187 (A1)

more >>

Report a data error here

Abstract not available for DE2658401

Abstract of corresponding document: US4188403

Compounds of the Formula and the physiologically acceptable salts thereof, wherein R1 and R2 each is hydrogen or benzyl; R3 is alkyl of 5-10 C-atoms or 2-hydroxyalkyl of 5-10 C-atoms; R4 is hydrogen, methyl or ethyl; R5 is alkyl of 5-10 C-atoms or -CnH2nCOOR6; R6 is hydrogen or alkyl of 1-4 C-atoms; and n is 0, 4, 5 or 6 are effective for inhibiting adhesion and/or agglomeration of thrombocytes.

Data supplied from the esp@cenet database - Worldwide

(21)

0

ຝ

(B) BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

26 58 401

Aktenzeichen:

P 26 58 401.0

Anmeldetag:

23. 12. 76

Offenlegungstag:

6. 7.78

Unionspriorität: 3

39 39 39

Cyclopentan-1-amine, Verfahren zu ihrer Herstellung und diese Bezeichnung:

Verbindungen enthaltende Mittel

Merck Patent GmbH, 6100 Darmstadt Anmelder: 1

Orth, Dieter, Dipl.-Chem. Dr., 6100 Darmstadt; Radunz, Hans-Eckart, Dipl.-Chem. Dr., 6101 Traisa; Erfinder: 0

Baumgarth, Manfred, Dr.; Maisenbacher, Jürgen, Dipl.-Biochem. Dr.;

6100 Darmstadt; Lissner, Reinhard, Dr., 6101 Lichtenberg

I

1. Cyclopentan-1-amine der allgemeinen Formel I

worin

10

R¹ und R² Wasserstoff oder Benzyl,

5 R³ Alkyl mit 5 bis 10 C~Atomen oder 2-Hydroxyalkyl mit 5 bis 10

C-Atomen,

R⁴ Wasserstoff, Methyl oder Athyl,

R⁵ Alky1 mit 5 bis 10 C-Atomen oder $-C_nH_{2n}COOR^6$,

R⁶ Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen, und

0, 4, 5 oder 6

bedeuten und eine Wellenlinie (~~) anzeigt, daß diese 15 Bindungen ~- oder ß-ständig sein können,

sowie deren physiologisch unbedenkliche Salze.

- 2. N-Heptyl-N-methyl-5-heptyloxy-2,4-dibenzyloxy-cyclo-pentan-1-amin.
- 3. N-Heptyl-N-methyl-5-heptyloxy-2,4-dihydroxy-cyclo-pentan-1-amin.
- N-(5-Hydroxycarbonylpentyl)-N-methyl-5-heptyloxy-2,4dihydroxy-cyclopentan-1-amin.
 - 5. N-(5-Hydroxycarbonylpentyl)-N-methyl-5-heptyloxy-2,4-dibenzyloxy-cyclopentan-1-amin.
- 6. N-(5-Athoxycarbonylpentyl)-N-methyl-5-heptyloxy-2,4-10 dihydroxy-cyclopentan-1-amin.
 - 7. N-(5-Athoxycarbonylpentyl)-N-methyl-5-heptyloxy-2,4-dibenzyloxy-cyclopentan-1-amin.
 - 8. N-Methyl-5-heptyloxy-2,4-dibenzyloxy-cyclopentan-1-amin.
- 9. N-tert.-Butoxycarbonyl-N-methyl-5-heptyloxy-2,4-dibenzyloxy-cyclopentan-1-amin.
 - 10. N-(5-Äthoxycarbonylpentyl)-N-methyl-2,4-dibenzyloxy-5-hydroxy-cyclopentan-1-amin.
- 11. N-Methyl-5-(2-hydroxyheptyloxy)-2,4-dibenzyloxy-cyclo-20 pentan-1-amin.
 - 12. N-(5-Athoxycarbonylpentyl)-N-methyl-5-(2-hydroxy-heptyloxy)-2,4-dibenzyloxy-cyclopentan-1-amin.

13. Verfahren zur Herstellung einer Verbindung der Formel ${\bf I}$

$$R^{10}$$
 $NR^{4}R^{5}$
 OR^{3}

worin

5 R¹ und R² Wasserstoff oder Benzyl,

R³
Alkyl mit 5 bis 10 C-Atomen
oder 2-Hydroxyalkyl mit 5 bis 10
C-Atomen,

R⁴ Wasserstoff, Methyl oder Athyl,

10 R^5 Alkyl mit 5 bis 10 C-Atomen oder $-C_nH_{2n}COOR^6$,

R⁶ Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen, und

n 0, 4, 5 oder 6

bedeuten und eine Wellenlinie (╭╭╭) anzeigt, daß diese Bindungen ⟨⟨-⟩ oder β-ständig sein können,

> sowie ihrer physiologisch unbedenklichen Salze, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin

 ${\tt R}^1$ bis ${\tt R}^4$ die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel III

worin

X C1, Br, J, eine Azido-, eine Alkylsulfonyloxy- oder eine Arylsulfonyloxygruppe bedeutet,
und

10 R⁵ die oben angegebene Bedeutung hat,

umsetzt, oder daß man eine Verbindung der Formel IV

$$R^{1}O$$
 $NR^{4}R^{5}$
 $R^{2}O$
 $NR^{4}R^{5}$

worin

M

15

H oder ein Aquivalent eines Alkali- oder Erdalkalimetallatoms bedeutet, und

809827/0131

 R^{1} , R^{2} , R^{4} und R^{5} die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel V

 $R^3 - X$

v

5 worin

 ${\tt R}^3$ und X die oben angegebenen Bedeutungen haben,

umsetzt, oder daß man eine Verbindung der Formel VI

$$R^{7}$$
 R^{8}
 R^{2}
 R^{2}
 R^{3}

worin

10 R

 OR^{1} oder gemeinsam mit R^{8} ein Sauerstoff-atom, und

_R8

X oder gemeinsam mit R^7 ein Sauerstoff-atom bedeuten, und

 R^1 , R^2 , R^3 und X die oben angegebenen Bedeutungen haben,

oder der Formel VII

worin

 ${\it R}^1$ und ${\it R}^2$ die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel VIII

worin

5

 ${\mathbb R}^4$ und ${\mathbb R}^5$ die oben angegebenen Bedeutungen haben, umsetzt, oder daß man eine Verbindung der Formel IX

10 worin

 R^{1} , R^{2} , R^{4} , R^{5} und X die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel X

R³OM

χ

worin

 ${\tt R}^3$ und M die oben angegebenen Bedeutungen haben,

5 umsetzt, oder daß man eine Verbindung der Formel XI

$$R^{10}$$
 $NR^{4}R^{5}$
 $OCH_{2}COR^{9}$
 $NR^{2}O$

worin

 R^{1} , R^{2} , R^{4} und R^{5} die oben angegebenen Bedeutungen haben, und

10 R⁹

Alkyl mit 3 - 8 C-Atomen bedeutet,

· mit einem hydrierenden Mittel umsetzt, oder daß man in einer Verbindung der Formel XII

$$R^{1}O$$
 $NR^{4}-C_{n}H_{2n}-R^{1}O$
 $R^{2}O$
 NR^{3}
 $NR^{4}-C_{n}H_{2n}^{2}-R^{1}O$

Worin

15 R¹⁰

einen in eine COOR⁶-Gruppe überführbaren Rest bedeutet, und 909827/0131

 R^{1} bis R^{4} und n die oben angegebenen Bedeutungen haben,

den Rest R^{10} durch Umsetzen mit einem solvolysierenden Mittel in eine $\text{COOR}^6\text{-Gruppe}$ umwandelt,

- und/oder daß man eine Verbindung der Formel I (R^1 und/oder R^2 = Benzyl) durch Umsetzen mit einem hydrogenolysierenden oder hydrolysierenden Mittel in eine andere Verbindung der Formel I (R^1 und R^2 = H) umwandelt,
- und/oder daß man eine Verbindung der Formel I (R^6 = H) durch Umsetzen mit einem veresternden Mittel in eine andere Verbindung der Formel I (R^6 = Alkyl mit 1 bis 4 C-Atomen) umwandelt,
- und/oder daß man eine Verbindung der Formel I (R⁶ =

 15 Alkyl mit 1 bis 4 C-Atomen) durch Umsetzen mit einem solvolysierenden Mittel in eine andere Verbindung der Formel I (R⁶ = H oder Alkyl mit 1 bis 4 C-Atomen) umwandelt,
- und/oder daß man eine Verbindung der Formel I (R⁴ = 20 H) durch Umsetzen mit einem methylierenden oder einem äthylierenden Mittel in eine andere Verbindung der Formel I (R⁴ = Methyl oder Äthyl) umwandelt,

und/oder daß man eine Verbindung der Formel I in ihre Racemate und/oder optischen Antipoden spaltet,

und/oder daß man eine Verbindung der Formel I durch Umsetzen mit einer Säure oder einer Base in eines ihrer physiologisch verträglichen Salze überführt und/oder daß man eine Verbindung der Formel I durch Umsetzen mit einer Base oder einer Säure aus einem ihrer Salze in Freiheit setzt.

- 14. Mittel, enthaltend in der Pharmazie übliche Trägeroder Hilfsstoffe, dadurch gekennzeichnet, daß es
 mindestens eine Verbindung der allgemeinen Formel I
 enthält.
- 15. Verfahren zur Herstellung eines Mittels nach Anspruch
 14, dadurch gekennzeichnet, daß man mindestens eine
 Verbindung der allgemeinen Formel I zusammen mit
 mindestens einem in der Pharmazie üblichen Trägeroder Hilfsstoff und gegebenenfalls mit einem weiteren
 Wirkstoff in eine geeignete Dosierungsform bringt.

Merck Patent Gesellschaft mit beschränkter Haftung Darmstadt

> Cyclopentan-1-amine, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltende Mittel

Die Erfindung betrifft Cyclopentan-1-amine der Formel I

$$R^{1}O$$

$$NR^{4}R^{5}$$

$$R^{2}O$$

$$I$$

worin

5

R¹ und R² Wasserstoff oder Benzyl,

R³
Alkyl mit 5 bis 10 C-Atomen oder
2-Hydroxyalkyl mit 5 bis 10 CAtomen,

R⁴ Wasserstoff, Methyl oder Äthyl,

809827/0131

 R^5 Alkyl mit 5 bis 10 C-Atomen oder $-C_nH_{2n}COOR^6$,

R⁶ Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen, und

5 n 0, 4, 5 oder 6

bedeuten und eine Wellenlinie ($\sim\sim$) anzeigt, daß diese Bindungen α - oder ß-ständig sein können,

sowie deren physiologisch unbedenkliche Salze.

Aufgabe der vorliegenden Erfindung ist die Schaffung 10 neuer Verbindungen, die vor allem vorteilhaft zur Herstellung von Arzneimittéln verwendet werden können. Diese Aufgabe wurde gelöst durch das Auffinden der neuen Verbindungen der Formel I.

Es wurde gefunden, daß die prostaglandinartigen Verbindungen der Formel I wertvolle pharmakologische
Eigenschaften besitzen. So weisen sie vor allem
thrombozytenaggregationshemmende und -adhäsionshemmende
Eigenschaften auf, welche beispielsweise in Analogie
zur Methode von Born, Nature (London), 194 (1962)
nachgewiesen werden können.

Die Verbindungen der Formel I können daher als Arzneimittel und auch als Zwischenprodukte zur Herstellung anderer Arzneimittel verwendet werden.

Gegenstand der Erfindung sind die Verbindungen
der Formel I und deren pharmakologisch unbedenkliche Salze, in denen R¹ - R⁵ die oben angegebenen Bedeutungen haben.

In der Formel I und in den anderen Formeln dieser Anmeldung ist eine ≪-ständige Bindung punktiert und eine ß-ständige Bindung stark ausgezogen eingezeichnet. Bindungen, die ≪- oder ß-ständig sind, 5 sind durch eine Wellenlinie gekennzeichnet.

Die Verbindungen der Formel I enthalten 4
asymmetrische C-Atome am Fünfring. Es können aber
auch weitere Asymmetriezentren auftreten, beispielsweise wenn R³ einen verzweigten Alkylrest

10 mit 5 - 10 C-Atomen oder 2-Hydroxyalkyl mit 5 - 10
C-Atomen, oder wenn R⁵ verzweigtes Alkyl mit 5 - 10
C-Atomen oder verzweigtes -C_nH_{2n}COOR⁶ bedeuten.
Die Verbindungen der Formel I können daher in einer
Vielzahl stereoisomerer Formen auftreten; sie

15 liegen in der Regel als racemische Gemische gemeinsam mit ihren Spiegelbildern vor.

Bevorzugt sind solche Verbindungen der Formel I und deren physiologisch unbedenkliche Salze, in denen die Reste -OR³ und -NR⁴R⁵ trans-ständig 20 sind, insbesondere in denen OR³ &-ständig und -NR⁴R⁵ ß-ständig sind, wie in Formel Ia:

Besonders bevorzugt sind die Verbindungen der Formel Ia, in denen auch $R^{1}0$ - und $R^{2}0$ - α -ständig sind, wie in Formel Ib:

$$R^{1}O$$
 $NR^{4}R^{5}$
 OR^{3}
 $R^{2}O$

Gegenstand der Erfindung sind neben den einzelnen Racematen und racemischen Gemischen auch die optisch aktiven Isomeren der Formel I, insbesondere auch der Formeln Ia und Ib sowie deren Spiegelbilder und die physiologisch unbedenklichen Salze dieser Verbindungen.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung einer Verbindung der Formel I, O das darin besteht, daß man eine Verbindung der Formel II

$$R^{1}O$$

$$OR^{3}$$

$$II$$

worin

 ${\tt R}^1$ bis ${\tt R}^4$ die oben angegebenen Bedeutungen haben,

15 mit einer Verbindung der Formel III

 R^5-X

III

worin

χ

C1, Br, J, eine Azido-, eine Alkylsulfonyloxy- oder eine Arylsulfonyloxygruppe bedeutet, und

5 R⁵

die oben angegebene Bedeutung hat,

umsetzt, oder daß man eine Verbindung der Formel IV

$$R^{1}O$$
 $NR^{4}R^{5}$
 $NR^{2}O$
 $NR^{2}O$
 $NR^{4}R^{5}$

worin

M

10

H oder ein Aquivalent eines Alkali- oder Erdalkalimetallatoms bedeutet, und

 R^{1} , R^{2} , R^{4} und R^{5} die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel V

 R^3-X

V

15 worin

R³ und X die oben angegebenen Bedeutungen haben, umsetzt, oder daß man eine Verbindung der Formel VI

۷I

worin

R⁷

 OR^{1} oder gemeinsam mit R^{8} ein Sauerstoffatom, und

5 R⁸

 \boldsymbol{X} oder gemeinsam mit \boldsymbol{R}^{7} ein Sauerstoffatom bedeuten, und

 R^1 , R^2 , R^3 und X die oben angegebenen Bedeutungen haben,

. oder der Formel VII

10

VII

worin

 R^{1} und R^{2} die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel VIII

 R^4R^5NH

VIII

worin

 ${
m R}^4$ und ${
m R}^5$ die oben angegebenen Bedeutungen haben, umsetzt, oder daß man eine Verbindung der Formel IX

5 worin

 R^{1} , R^{2} , R^{4} , R^{5} und X die oben angegebenen Bedeutungen haben,

mit einer Verbindung der Formel X

$$R^{3}OM$$

10 worin

R³ und M die oben angegebenen Bedeutungen haben, umsetzt, oder daß man eine Verbindung der Formel XI

worin

 R^{1} , R^{2} , R^{4} und R^{5} die oben angegebenen Bedeutungen haben, und

R⁹ Alkyl mit 3 - 8 C-Atomen bedeutet,

5 mit einem hydrierenden Mittel umsetzt, oder daß man in einer Verbindung der Formel XII

$$\begin{array}{c}
R^{1}O \\
NR^{4}-C_{n}H_{2n}-R^{10}
\end{array}$$

$$\begin{array}{c}
XIII \\
R^{2}O
\end{array}$$

Worin

_R10

10

einen in eine COOR⁶-Gruppe überführbaren Rest bedeutet, und

 R^{1} bis R^{4} und n die oben angegebenen Bedeutungen haben,

den Rest \mathbb{R}^{10} durch Umsetzen mit einem solvolysierenden Mittel in eine $\mathsf{COOR}^6\text{-}\mathsf{Gruppe}$ umwandelt,

und/oder daß man eine Verbindung der Formel I (R^1 und/oder R^2 = Benzyl) durch Umsetzen mit einem hydrogenolysierenden oder hydrolysierenden Mittel in eine andere Verbindung der Formel I (R^1 und R^2 = H) umwandelt,

und/oder daß man eine Verbindung der Formel I
(R⁶ = H) durch Umsetzen mit einem veresternden
Mittel in eine andere Verbindung der Formel I
(R⁶ = Alkyl mit 1 bis 4 C-Atomen) umwandelt,

- 5 und/oder daß man eine Verbindung der Formel I $(R^6 = A1ky1 \text{ mit 1 bis 4 C-Atomen})$ durch Umsetzen mit einem solvolysierenden Mittel in eine andere Verbindung der Formel I $(R^6 = H \text{ oder A1ky1 mit 1 bis 4 C-Atomen})$ umwandelt,
- und/oder daß man eine Verbindung der Formel I $(R^4 = H)$ durch Umsetzen mit einem methylierenden oder einem äthylierenden Mittel in eine andere Verbindung der Formel I $(R^4 = Methyl)$ umwandelt,
- und/oder daß man eine Verbindung der Formel I in ihre Racemate und/oder optischen Antipoden spaltet,

und/oder daß man eine Verbindung der Formel I durch Umsetzen mit einer Säure oder einer Base in eines ihrer physiologisch verträglichen Salze über-20 führt,

und/oder daß man eine Verbindung der Formel I durch Umsetzen mit einer Base oder einer Säure aus einem ihrer Salze in Freiheit setzt.

Ebenso sind Mittel Gegenstand der Erfindung, welche in der Pharmazie übliche Träger- oder Hilfsstoffe enthalten, dadurch gekennzeichnet, daß sie mindestens eine Verbindung der allgemeinen Formel I enthalten. Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines der vorstehend genannten Mittel, dadurch gekennzeichnet, daß man mindestens eine Verbindung der allgemeinen Formel I zusammen mit mindestens einem in der Pharmazie üblichen Träger- oder Hilfsstoff und gegebenenfalls zusammen mit einem weiteren Wirkstoff in eine geeignete Dosierungsform bringt.

Bei den genannten Mitteln handelt es sich vor allem 10 um pharmazeutische Zubereitungen, die in einem therapeutischen Verfahren Verwendung finden können.

In Formel I haben die Reste R^1 bis R^6 und n die vorstehend angegebenen Bedeutungen.

R¹ und R² sind vorzugsweise gleich, können aber auch ungleich sein und bedeuten Wasserstoff oder insbesondere Benzyl.

R³ bedeutet vorzugsweise einen Alkylrest mit 5 bis 10 C-Atomen, welcher insbesondere unverzweigt ist, wie Pentyl, Hexyl, Octyl, Nonyl, Decyl und vor allem Heptyl. Von den ver-20 zweigten Alkylresten mit 5 bis 10 C-Atomen seien die folgenden bevorzugten Reste genannt: 1-Methylbutyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 1-Methylhexyl, 2-Methylhexyl, 3-Methylhexyl, 1-Methylheptyl, 2-Methylheptyl, 3-Methylheptyl, 25 6-Methylheptyl, 3,3-Dimethylheptyl, 6,6-Dimethylheptyl, 2-Athylheptyl, 3-Athylheptyl, 1-Methyloctyl, 2-Methyloctyl, 3-Methyloctyl, 1-Methylnonyl, 2-Methylnonyl und 3-Methylnonyl; besonders bevorzugt sind jene Reste, die 7 C-Atome in der längsten Kette enthalten. 30

R³ kann auch einen 2-Hydroxyalkylrest mit 5 - 10 C-Atomen bedeuten. Bevorzugt sind jene Reste, die unverzweigt sind oder nur eine Methylverzweigung in 2-Stellung enthalten, wie 2-Hydroxypentyl, 2-Hydroxyhexyl, 2-Hydroxyoctyl, 2-Hydroxynonyl, 2-Hydroxydecyl, 2-Hydroxy-2-methylbutyl, 2-Hydroxy-2-methylpentyl, 2-Hydroxy-2-methylhexyl, 2-Hydroxy-2-methyloctyl, 2-Hydroxy-2-methylnonyl und insbesondere 2-Hydroxyheptyl und 2-Hydroxy-2-methylheptyl.

- Daneben kommen beispielsweise noch folgende 2Hydroxyalkylreste mit 5 10 C-Atomen in Frage:
 2-Hydroxy-1-methylheptyl, 2-Hydroxy-1,2-dimethylheptyl, 2-Hydroxy-2,3-dimethylheptyl, 2-Hydroxy3,3-dimethylheptyl, 2-Hydroxy-6,6-dimethylheptyl,

 2-Hydroxy-2,3,3-trimethylheptyl, 2-Hydroxy-1-methylhexyl, 2-Hydroxy-1-methyloctyl, 2-Hydroxy-1-methylnonyl.
 - ${\tt R}^4$ bedeutet neben Wasserstoff oder Äthyl vorzugs-weise Methyl.
 - R^5 bedeutet entweder Alkyl mit 5 10 C-Atomen, von denen die bei R^3 als bevorzugt genannten auch bei R^5 bevorzugt sind, oder $-C_nH_{2n}COOR^6$.

n ist neben 0,4 und 6 vorzugsweise 5. Wenn n ungleich 0 ist, so bedeutet $-C_nH_{2n}$ vor allem eine Tetra25 methylen-, Hexamethylen und insbesondere Pentamethylengruppe; $-C_nH_{2n}$ kann aber auch eine verzweigte Alkylengruppe mit 4 - 6 C-Atomen sein, wie 1-Methyl-tetramethylen, 1,1-Dimethyltetramethylen, 1-Athyltetramethylen und insbesondere 1-Methyl-pentamethylen, wobei die Methylgruppe vorzugsweise der COOR Gruppe benachbart ist.

R⁶ ist insbesondere Wasserstoff, bedeutet aber auch Alkyl mit 1 - 4 C-Atomen, wobei die unverzweigten Alkylreste bevorzugt sind, wie Methyl, Propyl, Butyl und insbesondere Athyl. Andere Alkylreste R⁶ können sein: Isopropyl, sec.-Butyl, Isobutyl und tert.-Butyl. R⁶ ist vorzugsweise auch tert.-Butyl, wenn n = 0 ist.

Infolge der bevorzugten Bedeutungen von n und R⁶
ist R⁵ daher vor allem auch 4-Hydroxycarbonylbutyl,

4-Athoxycarbonylbutyl, 6-Hydroxycarbonylhexyl,

6-Athoxycarbonylhexyl, tert.-Butoxycarbonyl und
insbesondere 5-Hydroxycarbonylpentyl und 5-Athoxycarbonylpentyl. Andere bevorzugte Bedeutungen von
R⁵ sind: 4-Methyl-4-hydroxycarbonylbutyl, 5
Methyl-5-hydroxycarbonylpentyl, 5-Methyl-5-äthoxycarbonylpentyl, 5-Methoxycarbonylpentyl, 5-Propyloxycarbonylpentyl und 5-Butyloxycarbonylpentyl.

Besonders bevorzugt sind diejenigen Verbindungen der Formel I, in denen mindestens eines der Symbole 20 R¹ bis R⁶ und n eine der vorstehend als bevorzugt angegebenen Bedeutungen hat. Einige dieser bevorzugten Gruppen von Verbindungen können durch die nachstehenden Teilformeln Ic bis Im gekennzeichnet werden, die sonst der Formel I entsprechen und in denen die nicht näher bezeichneten Symbole die bei der Formel I angegebenen Bedeutungen haben, worin jedoch

809827/0131

in II
$$R^1 = R^2 = Benzy1$$
,
 $R^3 = Hepty1$,
 $R^4 = Methy1$,
 $R^5 = Hepty1$, $-(CH_2)_5$ -COOH oder
 $-(CH_2)_5$ -COOC₂H₅,
in Im $R^1 = R^2 = H$,
 $R^3 = Methy1$,
 $R^4 = Hepty1$,
 $R^5 = Hepty1$, $-(CH_2)_5$ -COOH oder $-(CH_2)_5$ -10

Vor allem sind jene Verbindungen der Formeln Ic bis Im bevorzugt, bei denen die in den Formeln Ia und Ib angegebenen sterischen Verhältnisse vorliegen.

Die Herstellung der Verbindungen der Formel I er-15 folgt im übrigen nach an sich bekannten Methoden, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart; Organic Reactions, John Wiley & Sons, Inc., New York) be-20 schrieben sind, und zwar unter den für die genannten Umsetzungen bekannten und geeigneten Reaktionsbedingungen. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen. Das gleiche gilt auch für die Her-25 stellung der Ausgangsverbindungen II bis XI, welche man gewünschtenfalls auch in situ herstellen kann, derart, daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Die Verbindungen der Formel II sind teils neu, teils bekannt. R¹ bis R⁴ haben die bei der Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen. Die neuen Verbindungen der Formel II können nach literaturbekannten Standardmethoden aus bekannten Vorprodukten hergestellt werden, beispielsweise nach folgender Reaktionssequenz:

Man setzt ein Epoxid der Formel VII mit einem Amin $R^4 NH_2$ zu dem Aminoalkohol der Formel XIII

$$R^{10}$$
 NHR^{4}
 R^{20}
 NHR^{4}
 NHR^{4}
 NHR^{4}

worin

10

 R^{1} , R^{2} und R^{4} die oben angegebenen Bedeutungen haben,

um, welcher seinerseits mit z. B. tert.-Butyloxy-carbonylazid (III; $R^5 = -C_nH_{2n}COO$ -tert.- C_4H_9 , n = 0, X = N₃) zur Verbindung der Formel XIV

umgesetzt wird. Die Verbindung der Formel XIV wird nun ihrerseits mit einer Verbindung der Formel V (X = J) in Gegenwart einer Base oder frisch gefälltem Silberoxid zu einer Verbindung In

umgesetzt, aus der man die gewünschte Verbindung der Formel II z. B. durch Behandeln mit Trifluoressigsäure erhält.

- 10 Die Verbindungen der Formel III sind bekannt. R⁵
 hat die oben bei Formel I angegebenen, insbesondere
 die als bevorzugt genannten Bedeutungen. X bedeutet
 vorzugsweise Br oder J, aber auch Cl, Alkylsulfonyloxy mit vorzugsweise bis zu 4 C-Atomen, wie
- 15 Methylsulfonyloxy oder Athylsulfonyloxy, oder Arylsulfonyloxy mit vorzugsweise bis zu 10 C-Atomen, wie Phenylsulfonyloxy, p-Tolylsulfonyloxy oder ≪-Naphthylsulfonyloxy und, wenn R⁵ den -COO-tert.- C₄H₉-Rest bedeutet, insbesondere auch eine N₃-Gruppe.

Die Umsetzung einer Verbindung der Formel II mit einer Verbindung der Formel III erfolgt entweder durch Reaktion der reinen Komponenten miteinander, oder vorzugsweise auch in Gegenwart von Lösungsmitteln, z. B. Kohlenwasserstoffen wie Benzol, Toluol, Xylol; Halogenkohlenwasserstoffen wie Chloroform, 1,2-Dichloräthan, Chlorbenzol; Ketonen wie Aceton oder Butanon; aprotisch dipolaren Lösungsmitteln wie Dimethylformamid (= DMF), Acetonitril, Dimethylsulfoxid, Tetramethylharnstoff, Tetrahydro-10 thiophen-1,1-dioxid; Alkoholen wie Methanol, Athanol; Athern wie Tetrahydrofuran oder Dioxan, gegebenenfalls auch in Gemischen dieser Lösungsmittel untereinander oder mit Wasser. Günstig ist der Zusatz eines säurebindenden Mittels, beispielsweise eines 15 Hydroxids, Carbonats, Bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Natriums, Kaliums oder Calciums, einer organischen Base wie Triäthylamin, Dimethylanilin, Pyridin oder Chinolin. 20 Die Reaktionszeit liegt je nach den angewandten Bedingungen etwa zwischen einigen Minuten und 24 Stunden, die Reaktionstemperatur etwa zwischen 20 0 und 180°, vorzugsweise beim Siedepunkt des Reaktionsgemisches. 25 .

Die Verbindungen der Formel IV sind teils neu, teils bekannt. R¹ und R² bedeuten Benzyl. R⁴ und R⁵ haben die bei der Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen. M bedeutet neben H ein Aquivalent eines Alkali- oder Erdalkalimetall- atoms, vorzugsweise Natrium oder Kalium.

30

Die Verbindungen der Formel IV können ihrerseits erhalten werden beispielsweise durch Umsetzen einer Verbindung der Formel VII (R¹ = R² = Benzyl) mit einer Verbindung der Formel VIII und gegebenenfalls

5 Oberführung des erhaltenen Di-benzyloxyaminocyclopentanols in das entsprechende Alkali- oder Erdalkalimetallalkoholat, beispielsweise mit Hilfe von Alkalimetall- oder Erdalkalimetallhydriden, wie NaH.

- 10 Die Verbindungen der Formel V sind bekannt. R³ hat die oben bei Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen. X hat die bei Formel III genannten Bedeutungen und ist insbesondere Br oder J.
- Bei der Umsetzung einer Verbindung der Formel IV mit einer Verbindung der Formel V handelt es sich um Sauerstoffalkylierungen. Man arbeitet bei den für diese Reaktionen bekannten und in der Literatur näher beschriebenen Reaktionsbedingungen. Man kann
- die Reaktionspartner in stöchiometrischen Mengenverhältnissen miteinander umsetzen. Zweckmäßiger ist es jedoch, das Verätherungsmittel der Formel V im Oberschuß anzuwenden. Besonders vorteilhaft ist es, die Verbindungen der Formel IV (M ungleich H) in
- 25 situ herzustellen, und zwar aus den Verbindungen der Formel IV, in denen aber M Wasserstoff bedeutet. Die freien Alkohole der Formel IV können auch in Gegenwart von Katalysatoren, wie Natrium- oder Kaliumhydroxid oder Natrium- oder Kaliumcarbonat oder auch
- 30 in Gegenwart katalytischer Mengen eines tertiären Amins wie Pyridin, Kollidin oder Triäthylamin, das

10

15

auch als Lösungsmittel dienen kann, insbesondere aber in Gegenwart von Silberoxid mit den Verbindungen der Formel V umgcsetzt werden. Vorzugsweise arbeitet man in Gegenwart eines Lösungsmittels, beispielsweise eines Kohlenwasserstoffs, wie Benzol, Toluol oder Xylol oder, insbesondere bei Zusatz von Kaliumcarbonat als basischem Katalysator, unter Verwendung von Ketonen wie Aceton als Lösungsmittel. Besonders geeignete Lösungsmittel sind auch aprotischdipolare Lösungsmittel, wie DMF, Dimethylsulfoxid oder Dimethylacetamid. Die Reaktionstemperaturen für die Verätherung liegen vorzugsweise zwischen etwa 40 $^{\mathrm{o}}$ und etwa 140 °, insbesondere beim Siedepunkt des Reaktionsgemisches. Die Reaktionszeiten sind im wesentlichen von der Art des Verätherungsmittels der Formel V und der gewählten Reaktionstemperatur abhängig; sie liegen im allgemeinen zwischen rund 30 Minuten und etwa 24 Stunden.

Die Verbindungen der Formel VI sind teils bekannt, teils neu. R² bedeutet Benzyl und R³ hat die oben 20 bei Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen. R⁷ bedeutet entweder Benzyloxy oder gemeinsam mit R⁸ ein Sauerstoffatom. R^8 bedeutet entweder X, wobei X die oben bei der Formel III angegebene Bedeutung hat, oder ge-25 meinsam mit R^7 ein Sauerstoffatom. Die Verbindungen der Formel VI (R^7 = Benzyloxy und R^8 = X) sind beispielsweise erhältlich durch Umsetzen einer Verbindung der Formel VII $(R^1 = R^2 = Benzy1)$ mit einem Natriumalkoholat NaOR³, hydrolysierende Auf-30 arbeitung des Reaktionsproduktes und Umsetzen des erhaltenen 2-R30-3,5-dibenzyloxy-cyclopentanols, beispielsweise mit Salzsäure in Gegenwart von Zinkchlorid zur gewünschten Ausgangsverbindung der Formel VI $(R^8 = C1)$. 35

Bei den Verbindungen der Formel VI, in denen R⁷ gemeinsam mit R⁸ ein Sauerstoffatom bedeutet, handelt es sich um Epoxiverbindungen der Formel VIa

worin

R² und R³ die oben bei Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen haben.

Die Verbindungen der Formel VIa sind beispielsweise erhältlich durch Umsetzen des bekannten
3-Cyclopenten-1-ols mit Natriumhydrid zum entsprechenden Natriumalkoholat, Überführen des
Natriumalkoholats mit Benzylchlorid zum 3-Benzyloxy-cyclopenten, Bromierung in Allyl-Stellung,
beispielsweise mit N-Bromsuccinimid, Umsetzen des
erhaltenen 2-Brom-3-benzyloxy-cyclopentens mit
einem Natriumalkoholat der Formel X und Epoxydieren des erhaltenen Produktes, beispielsweise
mit m-Chlorbenzoepersäure.

Die wichtigste Verbindung der Formel VII ist das 1,4-Dibenzyloxy-2,3-epoxy-cyclopentan.

Bei den Verbindungen der Formel VIII handelt es sich großteils um bekannte Verbindungen. Die neuen Verbindungen der Formel VIII können in Analogie zu den bekannten Verbindungen der Formel VIII, bei-

15

20

25

30

spielsweise durch Umsetzen eines Amins R⁴NH₂ mit einer Verbindung der Formel III hergestellt werden.

In einer Verbindung der Formel VIII haben die Reste R⁴ und R⁵ die oben bei Formel I angegebenen, insbesondere die als bevorzugt genannten Bedeutungen.

Bei der Umsetzung einer Verbindung der Formel VI oder VII mit einer Verbindung der Formel VIII handelt es sich ebenfalls um eine Stickstoffalkylierung. Sie kann daher unter den für solche Umsetzungen bekannten und in der Literatur näher beschriebenen Reaktionsbedingungen erfolgen. Vorzugsweise arbeitet man unter Beachtung der oben bereits für die Umsetzung einer Verbindung der Formel II mit einer Verbindung der Formel III angegebenen Reaktionsparameter. Dies gilt auch, wenn es sich bei den Verbindungen der Formel VI um Epoxide der Formel VIa handelt.

Die Verbindungen der Formel IX sind teils neu, teils bekannt. Die Reste R¹, R², R⁴, R⁵ und X haben die vorstehend bei Formel I bzw. Formel III angegebenen, insbesondere die als bevorzugt genannten Bedeutungen. Besonders vorteilhaft ist es, solche Verbindungen der Formel IX als Ausgangsprodukte einzusetzen, bei denen R¹ = R² = Benzyl ist. Die Verbindungen der Formel IX sind beispielsweise erhältlich aus 2-Cyclopenten-1,4-diol durch überführen in das entsprechende Dinatriumalkoholat (beispielsweise mit NaH), Umsetzen mit Benzylchlorid, Anlagerung von Brom an das erhaltene 3,5-Dibenzyloxy-cyclopenten und Umsetzen des so erhaltenen 1,4-Dibenzyloxy-2,3-dibromcyclopenfans mit einem Aquivalent einer Verbindung der Formel VIII. Auf

diesem Weg sind beispielsweise die Verbindungen der Formel IX mit X = Br erhältlich.

Die Verbindungen der Formel X sind bekannt.

Bei der Umsetzung einer Verbindung der Formel IX mit einer Verbindung der Formel X handelt es sich um eine Sauerstoffalkylierung, genauer gesagt um eine Sauerstoffcycloalkylierung. Man arbeitet daher unter Reaktionsbedingungen, wie sie für solche Umsetzungen bekannt und in der Literatur genauer beschrieben sind. Vorzugsweise kann man unter solchen Reaktionsbedingungen arbeiten, wie sie bereits oben für die Umsetzung einer Verbindung der Formel IV mit einer Verbindung der Formel V genannt wurden. In einer besonders vorteilhaften Variante werden die Verbindungen der Formel X (M ungleich H) aus 15 den ihnen zugrunde liegenden Alkoholen der Formel X (M = H) in situ hergestellt. Man arbeitet dann vorteilhafterweise unter Verwendung eines basischen Katalysators, beispielsweise eines Alkalioder Erdalkalimetallhydroxids oder eines Alkali- oder Erdalkalimetallcarbonats, insbesondere in Gegenwart von Kaliumcarbonat. In dieser Variante verwendet man zweckmäßigerweise DMF als Lösungsmittel.

Man kann auch Verbindungen der Formel XI mit
lydrierenden Mitteln, vorzugsweise komplexen
Metallhydriden wie Natriumborhydrid oder Lithiumaluminiumhydrid in die gewünschten Verbindungen
der Formel I mit R³ = 2-Hydroxyalkyl mit 5 - 10

C-Atomen umwandeln. Die Reduktion kann auch mit
Hilfe von Aluminiumalkoxiden nach der Methode
von Meerwein-Ponndorf erfolgen. Die Reaktionsgedingungen für solche Reduktionen sind bekannt
(vgl. z. B. L. F. Fieser, M. Fieser, Reagents for
Organic Synthesis, John Wiley & Sons, Inc.,
New York - London - Sydney, 1967, Seite 35).

Die meisten Verbindungen der Formel XI sind neu. Sie können beispielsweise aus den Verbindungen der Formel IV (R¹ = R² = Benzyl, R⁴ ungleich Wasserstoff) durch Umsetzen mit Brommethylketonen CH₂BrCOR⁹ hergestellt werden. In manchen Fällen ist die Verwendung solcher Brommethylketone vorteilhaft, da diese Verbindungen reaktiver sind als die entsprechenden Carbinole CH₂BrCH(OH)R⁹. In Formel XI bedeutet R⁹ einen Alkylrest mit 3 - 8 C-Atomen. Bevorzugte Reste R⁹ sind unverzweigte Alkylreste mit 3 - 8 C-Atomen, wie Propyl, Butyl, Hexyl, Heptyl, Octyl oder insbesondere Pentyl.

Auch die Verbindungen der Formel XII sind überwiegend neu. Sie können in einfacher Weise aus den Verbindungen der Formel II durch Umsetzen mit Verbindungen der Formel XV

$$x-c_nH_{2n}R^{10}$$
 xv

25 worin

n die bei Formel I angegebene Bedeutung,

X die bei Formel III angegebene Bedeutung und die bei Formel XII angegebene Bedeutung haben,

erhalten werden.

R¹⁰ bedeutet einen in eine COOR⁶-Gruppe überführbaren Rest. Als solche kommen prinzipiell in Frage: solvolysierbare Reste, vorzugsweise eine funktionell abgewandelte Carboxylgruppe, insbesondere eine stickstoffhaltige funktionell abgewandelte Carboxylgruppe, wie $-CON_{\tau}$, $-CONR^{11}R^{12}$, $-C(=NH)OR^{15}$ oder -C=N; oder 10 eine nur Sauerstoff enthaltende funktionell abgewandelte Carboxylgruppe, insbesondere $-C(OR^{11})_3$. R^{11} und R^{12} sind gleich oder ungleich und bedeuten neben H einen organischen Rest, beispielsweise Alkylgruppen, vorzugsweise unverzweigt mit insbesondere bis zu 4 C-Atomen; durch C1, Br, 15 J, OH, Alkoxymit bis zu 4 C-Atomen, Acyloxy mit bis zu 4 C-Atomen, Phenyl oder Naphthyl substituiertes Alkyl mit bis zu 4 C-Atomen; Cycloalkyl mit bis zu 6 C-Atomen; gegebenenfalls ein- oder mehrfach durch C1, Br, NO₂, OH, Alkoxy mit bis zu 4 C-Atomen, Acyloxy mit bis zu 4 C-Atomen, substituiertes Aryl mit bis zu 10 C-Atomen; siliciumorganische Reste, vorzugsweise Trialkylsilyl, beispielsweise Trimethylsilyl; gemeinsam auch Polymethylen mit bis zu 6 C-Atomen, vorzugsweise unsubstituiertes Poly-25 methylen mit bis zu 6 C-Atomen wie $-(CH_2)_4$ -, $-(CH_2)_5$ oder $-(CH_2)_6$ -; oder gemeinsam auch ein durch O-, Noder S-Atome unterbrochenes Polymethylen mit vorzugsweise bis zu 6 C-Atomen.

Verbindungen der Formel XII, in denen der Rest R¹⁰ eine funktionell abgewandelte Carboxylgruppe ist, können nach in der Literatur beschriebenen Methoden zu den Verbindungen der allgemeinen Formel I solvolysiert bzw. thermolysiert, insbesondere hydrolysiert werden. Die Hydrolyse wird in saurem oder auch alkalischem Medium bei Temperaturen zwischen - 20 und 300 °, vorzugsweise bei der Siedetemperatur des gewählten Lösungsmittels, durchgeführt. Als saure 10 Katalysatoren eignen sich beispielsweise Salz-, Schwefel-, Phosphor- oder Bromwasserstoffsäure; als basische Katalysatoren verwendet man zweckmäßig Natrium-, Kalium- oder Calciumhydroxid, Natrium- oder Kaliumcarbonat. Als Lösungsmittel wählt man vorzugs-15 weise Wasser; Alkohole wie Äthanol, Methanol; Äther, wie Dioxan, Tetrahydrofuran; oder deren Gemische, besonders die Wasser enthaltenden Gemische.

Insbesondere werden die Verbindungen der Formel I
aber auch durch Solvolyse von Nitrilen der Formel

XII (R¹⁰ = CN) erhalten. Diese Solvolyse kann als
Hydrolyse in an sich bekannter Weise in wässerigen
Medien durchgeführt werden und führt dann zu den Säuren
der Formel I, oder sie kann analog in der Literatur
beschriebenen Methoden unter Ausschluß von Wasser

und in Gegenwart eines Alkohols ausgeführt werden
und ergibt dann Ester der Formel I. Die Reaktion
wird in Gegenwart eines sauren oder basischen
Katalysators durchgeführt.

Verwendet man einen basischen Katalysator, so kommt vorzugsweise ein Alkalimetall- oder Erdalkalimetallhydroxid wie NaOH, KOH oder Ba(OH)₂ oder auch ein basisches Salz wie K₂CO₃ oder Na₂CO₃ in Frage. Man arbeitet in H₂O oder H₂O/Alkoholgemischen bei erhöhter Temperatur, vorzugsweise beim Siedepunkt des Reaktionsgemisches, gegebenenfalls auch im Autoklaven bei erhöhtem Druck.

Die Solvolyse von Amiden der Formel XII (R^{10} = 10 CONR¹¹ R^{12}) erfolgt unter den bei den Nitrilen angegebenen Reaktionsbedingungen.

Die Verbindungen der Formel I (R¹ = R² = H) erhält
man aus anderen Verbindungen der Formel I (R¹ und/oder
R² = Benzyl) durch Behandeln mit einem hydrogenolysie15 renden oder einem hydrolysierenden Mittel. Hydrogenolysierende Mittel sind entweder chemisch oder
ketalytisch aktivierter Wasserstoff. Bevorzugt
ist eine Hydrogenolyse mit Wasserstoff in Gegenwart eines Pd-Katalysators, z. B. Pd-Kohle. Die
20 Hydrogenolyse wird zweckmäßigerweise in einem geeigneten Lösungsmittel durchgeführt, beispielsweise in einem Alkohol wie Methanol oder Athanol,
einer Carbonsäure wie Essigsäure oder einem Ester
wie Athylacetat. Die Reaktion erfolgt zwischen - 20 °
25 : und + 140 °, vorzugsweise zwischen + 10° und + 40 °.

Es ist aber auch möglich z. B. mit Lithium in flüssigem Ammoniak zu hydrogenolysieren. Hydrolysen gelingen z. B. mit Wasser in Gegenwart starker Säuren wie $\rm H_2SO_4$, aber auch mit Lewis-Säuren wie BF₃ (als Ätherat).

Verbindungen der Formel I (R⁶ = H) können nach an sich bekannten Methoden mit einem veresternden Mittel verestert werden. Man verwendet als veresternde Mittel beispielsweise Alkohole mit bis zu 4 C-Atomen, vorzugsweise in Gegenwart einer anorganischen oder organischen Säure, wie HCl, HBr, HJ, H₂SO₄, H₃PO₄, Trifluoressigsäure einer Sulfonsäure wie Benzolsulfonsäure oder p-Toluolsulfonsäure oder eines sauren

15 Ionenaustauschers, Diazoalkane mit bis zu 4 C-Atomen, vorzugsweise Diazomethan, Olefine (z. B.

Atomen, vorzugsweise Diazomethan, Olefine (z. B. Isobutylen), vorzugsweise in Gegenwart von sauren Katalysatoren (z. B. ZnCl₂, BF₃, H₂SO₄, Arylsulfonsäuren, Pyrophosphorsäure, Borsäure, Oxalsäure),

Alkylhalogenide mit bis zu 4 C-Atomen, vorzugsweise Bromide, wie Äthyl-, Propyl-, Isopropyloder Butylbromid, aber auch die entsprechenden -chloride oder -jodide, Carbonsäure- oder Sulfonsäurealkylester, wobei der Säurerest beliebig

sein kann und der Alkylrest bis zu 4 C-Atome enthält, vorzugsweise Methyl-, Äthyl-, Propyl-, Isopropyl- oder Butylacetat, -formiat, -methylsulfonat, -äthylsulfonat oder -p-toluolsulfonat und insbesondere auch die Alkylschwefelsäureester mit

30 bis zu 4 C-Atomen, wie Dimethylsulfat oder Diäthylsulfat.

Man verestert in einem geeigneten inerten, vorzugsweise wasserfreien Lösungsmittel, beispielsweise einem Äther wie Diäthyläther oder THF, einem

809828/0131

35 Alkanol wie Methanol, Athanol,

Propanol, Isopropylalkohol oder Butanol oder auch in einem Kohlenwasserstoff wie Petroläther, Hexan, Benzol oder Toluol oder Gemischen dieser Lösungsmittel bei Temperaturen zwischen etwa – 10 0 und 85 0. Die Reaktionszeiten liegen in der Regel zwischen 30 Minuten und 24 Stunden. Besonders vorteilhaft ist es, eine Veresterung mit Hilfe von Diazoalkanen, insbesondere mit Diazomethan oder Diazoäthan durchzuführen.

10 Die Verseifung von Verbindungen der Formel I (R⁶ = Alkyl mit 1 - 4 C-Atomen) zu anderen Verbindungen der Formel I (R⁶ = H) gelingt nach an sich bekannten Methoden durch Umsetzen mit wässerigen Basen z. B. wässerigen Lösungen von Alkalimetallhydroxiden oder -carbonaten wie NaOH, KOH oder Na₂CO₃.

Man kann auch Verbindungen der Formel I (R⁶ = Alkyl mit 1 - 4 C-Atomen) durch Umsetzen mit einem solvolysierenden Mittel in eine andere Verbindung der Formel I (R⁶ = Alkyl mit 1 - 4 C-Atomen) umwandeln. Bei dieser Umsetzung handelt es sich um eine Umesterung, wobei als solvolysierendes Mittel beispielsweise die bereits vorstehend erwähnten Carbonsäurealkylester verwendet werden können, bei denen der Carbonsäurerest beliebig sein kann und der aus der alkoholischen Komponente des Esters stammende Alkylrest bis zu 4 C-Atome enthält.

Man kann auch eine erhaltene Verbindung der Formel I (R⁴ = H) durch Umsetzen mit einem methylierenden oder einem äthylierenden Mittel in eine andere Verbindung der Formel I (R⁴ = Methyl oder Äthyl) umwandeln. Als methylierende Mittel kommen die Verbindungen CH₃X oder C₂H₅X in Frage, bei denen X die oben bei Formel III angegebene Bedeutung hat. Bevorzugte methylierende bzw. äthylierende Mittel sind: Methylbromid, Methyljodid, Äthylbromid und Athyljodid. Die Methylierung bzw. Äthylierung kann als Stickstoffalkylierung unter den oben z. B. für die Umsetzung einer Verbindung der Formel II mit einer Verbindung der Formel III angegebenen Reaktionsbedingungen durchgeführt werden.

Die Verbindungen der Formel I haben, wie bereits erläutert, im allgemeinen mehrere Asymmetriezentren, stets aber wenigstens vier. Sie werden daher meist als Gemische verschiedener stereoisomerer Formen erhalten, d. h. als Racemate oder in der Regel als Gemische von Racematen. Da ver-20 schiedene Racemate zueinander diastereomer sind, können sie aufgrund ihrer unterschiedlichen physikalischen Eigenschaften aus ihren Gemischen isoliert und rein erhalten werden, beispielsweise durch Umkristallisieren aus geeigneten Lösungs-25 mitteln (wobei anstelle der Verbindungen selbst auch gut kristallisierende Derivate eingesetzt werden können), durch destillative Trennung, insbesondere aber mit Hilfe chromatographischer Methoden, wobei sowohl adsorptionschromatographische oder ver-30 teilungschromatographische Methoden als auch Mischformen in Frage kommen.

Die Racemate können nach einer Vielzahl bekannter Methoden, wie sie in der Literatur angegeben sind, in ihre optischen Antipoden getrennt werden. Die Methode der chemischen Trennung ist zu bevorzugen. Danach werden aus dem racemischen Gemisch durch Umsetzung mit einem optisch aktiven Hilfsmittel Diastereomere gebildet.

So kann man gegebenenfalls eine optisch aktive Base mit der Carboxylgruppe einer Verbindung der Formel I umsetzen. Zum Beispiel kann man dia-10 stereomere Salze der Verbindungen der Formel I (Rb = H) mit optisch aktiven Aminen, wie Chinin, Brucin, 1-Phenyläthylamin, 1-(≪-Naphthyl)-äthylamin oder basischen Aminosäuren, wie Lysin, Arginin, bilden. In ähnlicher Weise lassen sich Ester-15 diastereomere durch Veresterung von Verbindungen der Formel I (R⁶ = II) mit optisch aktiven Alkoholen, wie Borneol, Menthol oder Octanol-2, herstellen. Der Unterschied in der Löslichkeit der anfallenden diastereomeren Salze bzw. Ester erlaubt die 20 selektive Kristallisation der einen Form und die Regeneration der jeweiligen optisch aktiven Verbindungen aus dem Gemisch.

Man kann aber auch die Aminogruppe in dieser

Verbindung der Formel I mit einer optisch aktiven

Säure, wie (+)- und (-)-Weinsäure, Dibenzoyl-(+)
und (-)-weinsäure, Camphersäure, ß-Camphersulfon
säure, (+)- und (-)-2-Phenylbuttersäure oder (+)
und (-)-Dinitrodiphensäure umsetzen. Auch hier er
folgt die Racematspaltung aufgrund der unterschied
lichen Löslichkeit der erhaltenen diastereomeren

Salze.

Weiterhin ist es natürlich möglich, optisch aktive Verbindungen nach den beschriebenen Methoden zu erhalten, in dem man Ausgangsstoffe verwendet, die bereits optisch aktiv sind.

5 Man kann die freien Carbonsäuren der Formel I (R⁶

= II) durch Umsetzung mit einer Base in eines ihrer
physiologisch unbedenklichen Metall- bzw. Ammoniumsalze überführen. Als Salze kommen insbesondere die
Natrium-, Kalium-, Magnesium, Calcium- und Ammoniumsalze in Betracht, ferner substituierte Ammoniumsalze, wie z. B. die Dimethyl- und Diäthylammonium-,
Monoäthanol-, Diäthanol- und Triäthanolammonium-,
Cyclohexylammonium-, Dicyclohexylammonium- und Dibenzyläthylendiammonium-Salze. Umgekehrt können
5 Säuren der Formel I aus ihren Metall- und Ammoniumsalzen durch Behandlung mit Säuren, vor allem
Mineralsäuren wie Salz- oder Schwefelsäure, in
Freiheit gesetzt werden.

Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden. Für diese Umsetzung kommen solche Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z. B. Schwefelsäure, Salpetersäure; Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasser-25 stoffsäure; Phosphorsäuren wie Orthophosphorsäure; ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, wie Ameisensäure, 30 Essigsäure, Propionsäure, Pivalinsäure, Diäthylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Apfelsäure, Benzoesäure, Salicylsäure, 2-Phenyl-

809827/0131

propionsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Athansulfonsäure, Athandisulfonsäure, 2-Hydroxyäthansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, säure, Naphthalin-mono- und -disulfonsäuren oder Laurylschwefelsäure. Umgekehrt können die Basen der Formel I aus ihren Säureadditionssalzen durch Behandlung mit einer Base, vor allem einer anorganischen Base wie NaOH oder KOH, in Freiheit gesetzt werden.

Die neuen Verbindungen der Formel I können mit mindestens einem festen, flüssigen und/oder halbflüssigen in der Pharmazie üblichen Träger- oder Hilfsstoff vermischt werden. Die Gemische der Verbindungen der Formel I mit den in der Pharmazie üblichen Träger- oder Hilfsstoffen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen solche organischen oder anorganischen Stoffe in Frage, die 20 für die parenterale, enterale (z. B. orale) oder topikale Applikation geeignet sind und mit den neuen Verbindungen der Formel I nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Polyäthylenglykole, Glycerintriacetat, 25 Gelatine, Lactose, Stärke, Magnesiumstearat, Talk, Vaseline, Cholesterin. Für die orale Applikation eignen sich Tabletten, Dragees, Kapseln, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien; zur parenteralen Anwendung Lösungen, 30 vorzugsweise ölige oder wässerige Lösungen, ferner Suspensionen, Emulsionen oder Implantate; für die topikale Anwendung Salben, Cremes oder Puder.

Die neuen Verbindungen können auch lyophilisiert und der erhaltenen Lyophilisate z. B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert

5 und/oder mit Hilfsstoffen, wie Gleit-, Konservierungs-, Stabilisierungs- oder Netzmitteln, Emulgatoren, Salzen zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und/oder Aromastoffen versetzt werden. Sie können, falls erwünscht, auch einen oder mehrere weitere Wirkstoffe enthalten z. B. ein oder mehrere Vitamine.

Die erfindungsgemäßen Substanzen werden in der Regel in Analogie zu bekannten, im Handel befindlichen Thromboseprophylaktika verabreicht, vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 50 mg pro Dosierungseinheit. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden bestimmten Patienten hängt jedoch 20 von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabfolgungszeitpunkt und -weg, von der Ausscheidungs-25 geschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

IR-Spektren (IR) wurden durch Angabe der Hauptbanden charakterisiert (als Film).

Die NMR-Spektren (NMR) wurden in CDC1₃ gegen
Tetramethylsilan gemessen und durch Angabe der

Signale in ppm charakterisiert; dabei bedeuten
m = Multiplett, q = Quartett, t = Triplett,
d = Duplett und s = Singulett.

Jede der in den folgenden Beispielen genannten Verbindungen der Formel I ist für die Herstellung von 10 Arzneimitteln besonders geeignet.

Es sei darauf hingewiesen, daß die Angaben der Symbole & und ß keine Festlegung der absoluten Konfiguration bedeutet, sondern nur die relative Stellung der Substituenten zueinander zum Ausdruck bringt; ist bei einem Rest nicht angegeben, ob er &- oder ß-ständig ist, so kann er beide Orientierungen einnehmen.

Beispiel 1

Man erhitzt 20 g 1α , 4α -Dibenzyloxy- 2α , 3α -epoxycyclopentan 20 Stunden mit 400 ml einer 40 % igen Methylaminlösung in Methanol im Autoklaven auf 100 und erhält nach Abdestillieren des Lösungsmittels als Rückstand 3α , 5α -Dibenzyloxy- 2β -methylamino- 1α -cyclopentanol, F = 50 - 52 (aus Petroläther).

Man mischt 16 g 3α,5α-Dibenzyloxy-2β-methylamino-1α-cyclopentanol mit 3,1 g MgO, suspendiert diese Mischung in 140 ml 50 %igem wässerigem Dioxan, 5 tropft unter Rühren 11 g tert.-Butyloxycarbonylazid zu, rührt 16 Stunden bei 50 °, läßt über Nacht bei Raumtemperatur stehen, trennt die untere Phase ab, rührt sie in 500 ml Wasser ein, extrahiert 3 mal mit je 100 ml Äthylacetat, wäscht die organische 10 Phase 2 mal mit je 60 ml wässeriger NaHCO₃-Lösung und einmal mit 60 ml Wasser, trocknet über Natriumsulfat, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform) 3α,5α-Dibenzyloxy-2β-(Nmethyl-N-tert.-butoxycarbonylamino)-1α-cyclopentanol;

IR: 700, 740, 1670 und 3450 cm⁻¹.

Beispiel 3

Man tropft unter Rühren zu einem Gemisch, bestehend aus 4,3 g 3∞,5∞-Dibenzyloxy-2ß-(N-methyl-N-tert.-butyl-20 oxycarbonylamino)-1∞-cyclopentanol, 20 ml trockenem DMF und 6,9 g Silberoxid, bei 80 o innerhalb von 4 Stunden 13,55 g 1-Jodheptan, gelöst in 20 ml trockenem DMF, rührt weitere 16 Stunden bei 80 o, destilliert das Lösungsmittel weitgehend ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Methylenchlorid:Aceton = 9 : 1) N-Methyl-N-tert.-butyloxycarbonyl-5∞-heptyloxy-2∞,4∞-dibenzyloxy-cyclopentan-1ß-amin;

IR: 1700, 735 und 695 cm⁻¹,

NMR: 0,9 (t), 1,4 (s), 2,95 (s), 4,5 (s), 4,65 (s), 7,3 (s).

Beispiel 4

- 5 (a) Man läßt ein Gemisch, bestehend aus 0,8 g N-Methyl-N-tert.-butoxycarbonyl-5α-heptyloxy-2α,4α-dibenzyloxy-cyclopentan-1β-amin und 1 ml Trifluoressigsäure, 24 Stunden bei Raumtemperatur stehen, rührt in 5 ml gesättigte wässerige Natriumbicarbonatlösung ein, extrahiert 3 mal mit je 10 ml Diäthyläther, wäscht die vereinigten organischen Phasen mit Wasser, trocknet über Natriumsulfat, leitet trockenes HBr-Gas ein und erhält das Hydrobromid des N-Methyl-5α-heptyloxy-2α,4α-dibenzyloxycyclopentan-1β-amins,
 15 F = 138 (aus Aceton/Diäthyläther).
- (b) Man behandelt 0,5 g des Hydrobromids des N-Methyl5%-heptyloxy-2%,4%-dibenzyloxy-cyclopentan-1-amins
 mit wässeriger 1n-Natronlauge, extrahiert mit Diäthyläther, wäscht die Atherphase mit Wasser
 neutral, trocknet über Natriumsulfat und erhält
 nach Abdestillieren des Lösungsmittels N-Methyl5%-heptyloxy-2%,4%-dibenzyloxy-cyclopentan-1ß-amin;

IR: 700, 740 cm⁻¹

NMR: 0,9 (t), 2,5 (s), 4,55 (m) und 7,3 (s).

Man kocht ein Gemisch, bestehend aus 2,3 g N-Methyl-5α-heptyloxy-2α,4α-dibenzyloxy-cyclopentan-1β-amin, 2,1 g 1-Jodheptan und 40 ml trockenem Äthanol, 18 Stunden, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform:Aceton = 9 : 1) N-Heptyl-N-methyl-5α-heptyloxy-2α,4α-dibenzyloxy-cyclopentan-1β-amin;

10 NMR: 0,9 (t), 2,0 (t), 2,6 (s), 4,6 (m), 7,3 (s).

Beispiel 6

Man läßt ein Gemisch, bestehend aus 1,4 g N-HeptylN-methyl-5∝-heptyloxy-2∞,4∞-dibenzyloxy-cyclopentan15 1ß-amin, 37 ml trockenem Benzol und 14 ml Bortrifluoridätherat, 6 Tage bei Raumtemperatur stehen,
rührt das Reaktionsgemisch in wässerige Natriumbicarbonatlösung (pH-Wert ca. 7), trennt die organische
Phase ab, extrahiert die wässerige Phase mit Chloro20 form, vereinigt die organischen Phasen, trocknet
sie über Natriumsulfat, destilliert das Lösungsmittel
ab und erhält nach chromatographischer Reinigung
des Rückstands (Kieselgel/Chloroform:Methanol =
85: 15) N-Heptyl-N-methyl-5≪-heptyloxy-2∞,4∞-dihydroxy25 cyclopentan-1ß-amin;

NMR: 0,9 (t), 2,45 (s),

IR: 3350 cm^{-1} .

Analog Beispiel 5 sind durch Umsetzen von N-Methyl5∞-heptyloxy-2∞, 4∞-dibenzyloxy-cyclopentan-1β-amin mit
den entsprechenden Verbindungen der Formel III
(X = J) die in den folgenden Beispielen 7 bis 23
5 genannten Verbindungen der Formel I erhältlich:

	Bei- spiel	Verbindung der Formel I
	7	N-Pentyl-N-methyl-5∝-heptyloxy-2∝,4∝-
		dibenzyloxy-cyclopentan-1ß-amin,
10	8.	N-Hexy1-N-methy1-5α-hepty1oxy-2α,4α-
		dibenzyloxy-cyclopentan-18-amin,
	9	N-Octy1-N-methy1-5∝-heptyloxy-2∝,4α-
		dibenzyloxy-cyclopentan-18-amin,
	10	N-Nony1-N-methy1-5≪-heptyloxy-2∝,4∞-
15		dibenzyloxy-cyclopentan-1ß-amin,
	11	N-Decy1-N-methy1-5×heptyloxy-2×,4≪-
		dibenzyloxy-cyclopentan-18-amin,
	12	N-(1-Methylpentyl)-N-methyl-5억-heptyloxy-
		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
20	13	N-(1-Methylhexyl)-N-methyl-5≪-heptyloxy-
		2∝,4∝-dibenzyloxy-cyclopentan-18-amin,
•	14	N-(1-Methylheptyl)-N-methyl-5x-heptyloxy-
		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
	15	N-(2-Methylheptyl)-N-methyl-5≪-heptyloxy-
25		2∝,4≪-dibenzyloxy-cyclopentan-18-amin,
23	16	N-(6,6-Dimethylheptyl)-N-methyl-5∝-heptyl-
		oxy-2%,4%-dibenzyloxy-cyclopentan-18-amin,
	17	N-(5-Athoxycarbonylpentyl)-N-methyl-5x-
		heptyloxy-2\alpha,4\alpha-dibenzyloxy-cyclopentan-
30		18-amin;
	,	•

NMR: 0,85 (t), 1,25 (t), 3,75 (s), 4,1 (2d), 4,5 (m), 7,3 (s),

809827/0131

	Bei- spiel	Verbindung der Formel I
	18	N-(5-Methoxycarbonylpentyl)-N-methyl-5∞-
5	19	heptyloxy-2≪,4≪-dibenzyloxy-cyclopentan- 1ß-amin, N-(4-Xthoxycarbonylbutyl)-N-methyl-5%-
	13	heptyloxy-2\approx, 4\alpha-dibenzyloxy-cyclopentan- 1\beta-amin,
10	20	N-(6-Äthoxycarbonylhexyl)-N-methyl-5 heptyloxy-2∞,4 dibenzyloxy-cyclopentan-
	2!	1ß-amin, N-(5-Methy1-5-äthoxycarbony1penty1)-N- methy1-5%-hepty1oxy-2∞,4≪-dibenzyloxy-
15	22	cyclopentan-1ß-amin', N-(5-Propyloxycarbonylpentyl)-N-methyl-
		5α-heptyloxy-2α, 4α-dibenzyloxy-cyclopentan- 1β-amin,
	23	N-(5-Butyloxycarbonylpentyl)-N-methyl- 5\alpha-heptyloxy-2\alpha,4\alpha-dibenzyloxy-cyclopentan- 1\beta-amin.
20		1D-0mrn.

Analog Beispiel 3 sind aus N-Methyl-N-tert.-butyloxycarbonyl-5∞-hydroxy-2∞,4∞-dibenzyloxy-cyclopentan1ß-amin durch Umsetzen mit der entsprechenden Verbindung der Formel V die in den folgenden Beispielen
25 24 bis 36 genannten Verbindungen der Formel I erhältlich:

	Bei- spiel	Verbindung der Formel I
30	2.4	N-Methyl-N-tertbutyloxycarbonyl-5α- pentyloxy-2α,4α-dibenzyloxy-cyclopentan- 1β-amin,

809827/0131

	Bei- spiel	Verbindung der Formel I
	25	N-Methyl-N-tertbutyloxycarbonyl-5≪-
		hexyloxy-2∝,4∝-dibenzyloxy-cyclopentan-
5		1ß-amin,
	26	N-Methyl-N-tertbutyloxycarbonyl-5α-
	•	octyloxy-2∝,4∝-dibenzyloxy-cyclopentan-
		1ß-amin,
	27	N-Methyl-N-tertbutyloxycarbonyl-5≪-
10		nonyloxy-2∝,4∝-dibenzyloxy-cyclopentan-
		1ß-amin,
	28	N-Methyl-N-tertbutyloxycarbonyl-5≪-
		(2-hydroxypentyloxy)-2∝,4∝-dibenzyloxy-
•	•	cyclopentan-18-amin,
15	29	N-Methyl-N-tertbutyloxycarbony1-5∝-
		(2-hydroxyhexyloxy)-2∝,4≪-dibenzyloxy-
		cyclopentan-18-amin,
	30	N-Methyl-N-tertbutyloxycarbonyl-5≪-
		(2-hydroxyheptyloxy)-2∞,4≪-dibenzyloxy-
20		cyclopentan-18-amin,
	31	N-Methyl-N-tertbutyloxycarbonyl-5≪-
		(2-hydroxy-2-methylheptyloxy)-2∞,4∞-
		dibenzyloxy-cyclopentan-18-amin,
•	32	N-Methyl-N-tertbutyloxycarbonyl-5≪-
25		(2-hydroxy-3,3-dimethy1hepty1oxy)-2∞,4∞-
•		dibenzyloxy-cyclopentan-18-amin,
	33	N-Methyl-N-tertbutyloxycarbonyl-5~-
		(2-Hydroxy-2,3-dimethylheptyloxy)-2∞,4∞-
		dibenzyloxy-cyclopentan-18-amin,
30	34	N-Methy1-N-tertbuty1oxycarbony1-5∞-
		(2-hydroxy-2,3,3-trimethylheptyloxy)-
		2∝, 4~-dibenzyloxy-cyclopentan-18-amin,
	· ·	•

	Bei- spiel	Verbindung der Formel I
	35	N-Methyl-N-tertbutyloxycarbonyl-5~- (2-hydroxyoctyloxy)-2∝,4≪-dibenzyloxy-
5		cyclopentan-18-amin,
	36	N-Methyl-N-tertbutyloxycarbonyl-5≪-
		(2-hydroxynonyloxy)-2∝,4∞-dibenzyloxy-
		cyclopentan-16-amin.

Analog Beispiel 4a und 4b sind aus den in den Beispielen 24 bis 36 genannten Verbindungen der Formel I
durch Umsetzen mit Trifluoressigsäure, Fällen des
Reaktionsprodukts als Hydrobromid und Behandeln des
Salzes mit NaOH, die in den folgenden Beispielen
37 bis 49 genannten Verbindungen der Formel II
erhältlich:

	Bei- spiel	Verbindung der Formel II
	37	N-Methyl-5∝-pentyloxy-2∝,4≪-dibenzyloxy-cyclopentan-1β-amin,
)	38	N-Methy1-5∝-hexyloxy-2∝,4∝-dibenzyloxy- cyclopentan-1ß-amin,
	39	N-Methy1-5∝-octyloxy-2∝,4∝-dibenzyloxy- cyclopentan-1ß-amin,
	40	N-Methy1-5∝-nonyloxy-2∝,4∝-dibenzyloxy-
	41	cyclopentan-1ß-amin, N-Methyl-5&-(2-hydroxypentyloxy)-2&,4&-
	42	dibenzyloxy-cyclopentan-1β-amin, N-Methyl-5&-(2-hydroxyhexyloxy)-2∞,4∞-
		dibenzyloxy-cyclopentan-18-amin,

	Bei- spiel	Verbindung der Formel I
	43	N-Methyl-5d-(2-hydroxyheptyloxy)-2d,4d- dibenzyloxy-cyclopentan-1ß-amin,
5	4 4	N-Methyl-5\(\pi\)-(2-hydroxy-2-methylheptyloxy)- 2\(\alpha\), 4\(\pi\)-dibenzyloxy-cyclopentan-1\(\beta\)-amin,
	45	N-Methy1-5\alpha-(2-hydroxy-3,3-dimethylheptyl-oxy)-2\alpha,4\alpha-dibenzyloxy-cyclopentan-1\beta-amin,
	46	N-Methyl-5<-(2-hydroxy-2,3-dimethylheptyl-oxy)-2,4-dibenzyloxy-cyclopentan-1 N-Methyl-5<-(2-hydroxy-2,3-dimethylheptyl-oxy) -
10	47	N-Methyl-5≪-(2-hydroxy-2,3,3-trimethyl- heptyloxy)-2∞,4∞-dibenzyloxy-cyclopentan- 1ß-amin,
1 г	48	N-Methyl-5≪-(2-hydroxyoctyloxy)-2∞,4∞- dibenzyloxy-cyclopentan-18-amin,
15	49	N-Methyl-5x-(2-hydroxynonyloxy)-2x,4x- dibenzyloxy-cyclopentan-1β-amin.

Analog Beispiel 5 sind aus den in den Beispielen 37 bis 49 genannten Verbindungen der Formel II durch 20 Umsetzen mit 1-Jodheptan oder 6-Jodhexansäureäthylester die in den folgenden Beispielen 50 bis 75 genannten Verbindungen der Formel I erhältlich:

Bei- spiel	Verbindung der Formel I
50	N-Methyl-N-heptyl-5∝-pentyloxy-2∞,4∞- dibenzyloxy-cyclopentan-18-amin,
51	N-Methyl-N-heptyl-5≪-hexyloxy-2∝,4≪- dibenzyloxy-cyclopentan-1ß-amin,
	spiel 50

	Bei- spiel	Verbindung der Formel I
	52	N-Methy1-N-hepty1-5∝-octy1oxy-2~,4∝-
		dibenzyloxy-cyclopentan-18-amin,
5	53	N-Methy1-N-hepty1-5≪-nonyloxy-2∞,4∞-
		dibenzyloxy-cyclopentan-18-amin,
	54	N-Methyl-N-heptyl-5∞-(2-hydroxypentyl-
		oxy)-2\alpha,4\alpha-dibenzyloxy-cyclopentan-1β-amin,
	55	N-Methyl-N-heptyl-5x-(2-hydroxyhexyloxy)-
10		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
	56	N-Methyl-N-heptyl-5x-(2-hydroxyheptyl-
		oxy)-2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
	57	N-Methyl-N-heptyl-5∝-(2-hydroxy-2-methyl-
		heptyloxy)-2∝,4∝-dibenzyloxy-cyclopentan-
15		1ß-amin,
	58	N-Methy1-N-hepty1-5≪-(2-hydroxy-3,3-di-
		methylheptyloxy)-2∝,4∝-dibenzyloxy-
		cyclopentan-18-amin,
	59	N-Methy1-N-hepty1-5≪-(2-hydroxy-2,3-di-
20	:	methy1hepty1oxy)-2∝,4∝-dibenzy1oxy-cyc1o-
		pentan-16-amin,
	60	N-Methyl-N-heptyl-5x-(2-hydroxy-2,3,3-tri-
		methy1heptyloxy)-2≪,4≪-dibenzyloxy-cyclo-
		pentan-1ß-amin,
25	61	N-Methyl-N-heptyl-5<-(2-hydroxyoctyloxy)-
,		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
	62	N-Methyl-N-heptyl-5x-(2-hydroxynonyloxy)-
		2¢,4k-dibenzyloxy-cyclopentan-1ß-amin,
	63	N-Methyl-N-(5-äthoxycarbonylpentyl)-
30		5∞-pentyloxy-2∝,4∞-dibenzyloxy-cyclopentan-
		1ß-amin,
		•

-	Bei- spiel	Verbindung der Formel I
•	64	N-Methyl-N-(S-äthoxycarbonylpentyl)-
		5\infty\logy-2\infty,4\infty\logy\logy\logy\logy\logy\logy\logy\log
5	1.	1ß-amin,
	65	N-Methyl-N-(5-äthoxycarbonylpentyl)-
		5~-octyloxy-2~,4~-dibenzyloxy-cyclopentan-
		1ß-amin,
	66	N-Methyl-N-(5-äthoxycarbonylpentyl)-
10	•	5∞-nonyloxy-2~,4~-dibenzyloxy-cyclopentan-
		1ß-amin,
	67	N-Methyl-N-(5-äthoxycarbonylpentyl)-
	-	5\(\pi\)-2\(\pi\),4\(\pi\)-dibenzyloxy-
		cyclopentan-1ß-amin,
15	- 68	N-Methyl-N-(5-äthoxycarbonylpentyl)-
		5∝-(2-hydroxyhexyloxy)-2∝,4∝-dibenzyloxy-
•		cyclopentan-18-amin,
	69	N-Methyl-N-(5-äthoxycarbonylpentyl)-
		5∝-(2-hydroxyheptyloxy)-2∞,4∞-dibenzyloxy-
20	-	cyclopentan-18-amin,
		NMR: 0,9 (t), 1,2 (t), 2,9 (s), 4,15 (m),
- '		4,6 (m), 7,3 (s);
		(3),
•	70	N-Methyl-N-(5-äthoxycarbonylpentyl)-
		5∝-(2-hydroxy-2-methylheptyloxy)-2∞,4∝-
25		dibenzyloxy-cyclopentan-1ß-amin,
	71	N-Methyl-N-(5-äthoxycarbonylpentyl)-
	•	5≪-(2-hydroxy-3,3-dimethylheptyloxy)-
		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
	72.	N-Methyl-N-(5-äthoxycarbonylpentyl)-
30	·	5℃-(2-hydroxy-2,3-dimethylheptyloxy)-
		2∝,4∝-dibenzyloxy-cyclopentan-1ß-amin,
-	73	N-Methyl-N-(5-äthoxycarbonylpentyl)-
	. 1	5≪-(2-hydroxy-2,3,3-trimethylheptyloxy)-
		24,44-dibenzyloxy-cyclopentan-16-amin,
	. '	809827/0131

	Bei- spiel	Verbindung der Formel I
	74	N-Methyl-N-(5-äthoxycarbonylpentyl)- 5~-(2-hydroxy-octyloxy)-2~,4~-dibenzyl-
5	75	oxy-cyclopentan-1&-amin, N-Methyl-N-(5-äthoxycarbonylpentyl)- 5\(\preceq=(2-hydroxy-nonyloxy)-2\preceq,4\preceq=dibenzyl- oxy-cyclopentan-1&-amin.

Analog Beispiel 6 sind aus den in den Beispielen
10 7 bis 16 und 50 bis 62 genannten Dibenzyloxyverbindungen der Formel I durch Umsetzen mit Bortrifluoridätherat die in den folgenden Beispielen 76
bis 97 genannten Dihydroxyverbindungen der Formel I
erhältlich:

15	Bei- spiel	Verbindung der Formel I
	76	N-Pentyl-N-methyl-5∝-heptyloxy-2≪,4∝-
		dihydroxy-cyclopentan-18-amin,
	77	N-Hexy1-N-methy1-5∞-hepty1oxy-2∞,4∞-
20		dihydroxy-cyclopentan-18-amin,
	78	N-Octyl-N-methyl-5≪-heptyloxy-2≪,4≪-
		dihydroxy-cyclopentan-18-amin,
	79	N-Nony1-N-methy1-5\infty-heptyloxy-2\infty,4\infty-
		dihydroxy-cyclopentan-18-amin,
25	80	N-Decy1-N-methy1-5≪-heptyloxy-2≪,4≪-
		dihydroxy-cyclopentan-18-amin,
	81	N-(1-Methylpentyl)-N-methyl-5≪-heptyloxy-
		204,404-dihydroxy-cyclopentan-16-amin,
	82	N-(1-Methylhexyl)-N-methyl-5≪-heptyloxy-
30		2∝,4~-dihydroxy-cyclopentan-1ß-amin,

	Bei- spiel	Verbindung der Formel I
	83	N-(1-Methylheptyl)-N-methyl-5≪-heptyl-
		oxy-2∝,4∝-dihydroxy-cyclopentan-
5		1ß-amin,
	84	N-(6,6-Dimethylheptyl)-N-methyl-5∝-
		heptyloxy-2∝,4∝dihydroxy-cyclopentan-
		18-amin,
•	85	N-Methyl-N-heptyl-5∝-pentyloxy-2∞,4∞-
10		dihydroxy-cyclopentan-18-amin,
	86	N-Methyl-N-heptyl-5∝-hexyloxy-2∝,4∝-
	•	dihydroxy-cyclopentan-18-amin,
	87	N-Methyl-N-heptyl-5∝-octyloxy-2∝,4∝-
		dihydroxy-cyclopentan-18-amin,
15	88	N-Methyl-N-heptyl-5≪-nonyloxy-2∞,4≪-
		dihydroxy-cyclopentan-18-amin,
	89	N-Methyl-N-heptyl-5≪-(2-hydroxypentyloxy)-
		2∝,4∝-dihydroxy-cyclopentan-1ß-amin,
	90	N-Methyl-N-heptyl-5\(\pi\)-(2-hydroxyhexyloxy)-
20		2∝,4∝-dihydroxy-cyclopentan-1ß-amin,
	91	N-Methyl-N-heptyl-5x-(2-hydroxyheptyloxy)-
		2∝,4∝-dihydroxy-cyclopentan-1ß-amin,
•	92	N-Methyl-N-heptyl-54-(2-hydroxy-2-methyl-
		heptyloxy)-24,44-dihydroxy-cyclopentan-
25		1ß-amin,
	93	N-Methyl-N-heptyl-5\(\alpha\)-(2-hydroxy-3,3-di-
		methylheptyloxy)-2~,4~-dihydroxy-cyclo-
		pentan-18-amin,
	94	N-Methyl-N-heptyl-5oc-(2-hydroxy-2,3-di-
30		methylheptyloxy)-2\infty,4\infty-dihydroxy-cyclo-
20		pentan-18-amin,
	95	N-Methyl-N-heptyl-5∝-(2-hydroxy-2,3,3-
		trimethylheptyloxy)-244dihydroxy-cyclo-
		pentan-18-amin,
		1

	Bei- spiel	Verbindung der Formel I
	96	N-Methyl-N-heptyl-5≪-(2-hydroxyoctyloxy)- 2≪,4≪-dihydroxy-cyclopentan-1ß-amin,
5	97	N-Methyl-N-heptyl-5≪-(2-hydroxynonyloxy)- 2∞,4≪-dihydroxy-cyclopentan-1ß-amin.

Man kocht ein Gemisch aus 0,5 g N-(5-Xthoxycarbonylpentyl)-N-methyl-5≪-heptyloxy-2≪, 4∞-dibenzyloxy10 cyclopentan-1β-amin, 15 ml Methanol und 4,5 ml wässerige
1n Natronlauge 2 Stunden, rührt das Reaktionsgemisch
in 50 ml Wasser ein und bringt mit Salzsäure auf pH =
6. Die wässerige Lösung wird mit Chloroform extrahiert,
die organische Phase mit Wasser gewaschen, über
15 Natriumsulfat getrocknet, das Lösungsmittel wird abdestilliert und man erhält nach chromatographischer
Reinigung des Rückstands (Kieselgel/Chloroform:
Methanol = 8 : 2) N-(5-Hydroxycarbonylpentyl)-Nmethyl-5α-heptyloxy-2α, 4α-dibenzyloxy-cyclopentan20 1β-amin,

IR: 1700, 740 und 700 cm⁻¹,

NMR: 0,8 (t), 2,5 (s), 4,5 (m), 7,3 (s).

Analog können durch Verseifen mit methanolischer Natronlauge aus den in den Beispielen 17 bis 23 und 63 bis 75 genannten Estern der Formel I ($R^5 = -C_n H_{2n} COOR^6$, R^6 ungleich Wasserstoff) die entsprechen-

den freien Säuren der Formel I $(R^5 = -C_nH_{2n}COOH)$ hergestellt werden.

Beispiel 99

Man rührt über Nacht bei Raumtemperatur ein Gemisch aus 0,1 g N-(5-Athoxycarbonylpentyl)-N-methyl- 5α heptyloxy-24,44-dibenzyloxy-cyclopentan-1β-amin, 2,5 m1 trockenem Benzol und 1 m1 Bortrifluoridätherat, gibt noch 1 ml Bortrifluoridätherat zu, rührt weitere 24 Stunden bei 30 °, rührt das Reaktionsgemisch in eine gesättige wässerige Natriumbicarbonat-10 lösung ein (pH = 4), extrahiert die wässerige Lösung mit Chloroform, wäscht die organische Phase mit Wasser, trocknet über Natriumsulfat, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform: 15 Methanol = 8 : 2) N-(5-Athoxycarbonylpentyl)-Nmethyl-5x-heptyloxy-2x,4x-dihydroxy-cyclopentan-1ß-amin;

IR: 1730 und 3400 cm⁻¹,

20 NMR: 0,8 (t), 2,6 (s), 4,15 (2d).

Analog sind aus den in den Beispielen 18 bis 23 und 63 bis 75 genannten Dibenzyloxyverbindungen der Formel I ($R^5 = -C_n H_{2n} COOR^6$, R^6 ungleich Wasserstoff, $R^1 = R^2 = Benzyl$) die entsprechenden Dihydroxyverbindungen der Formel I ($R^5 = -C_n H_{2n} COOR^6$, R^6 ungleich Wasserstoff, $R^1 = R^2 = Wasserstoff$) erhältlich.

Analog Beispiel 99 erhält man aus 1,4 g N-(5-Hydroxy-carbonylpentyl)-N-methyl-5\(\alpha\)-heptyloxy-2\(\alpha\),4\(\alpha\)-dibenzyl-oxy-cyclopentan-1\(\beta\)-amin durch Umsetzen mit Bortri-fluoridätherat N-(5-Hydroxycarbonylpentyl)-N-methyl-5\(\alpha\)-heptyloxy-2\(\alpha\),4\(\alpha\)-dihydroxy-cyclopentan-1\(\beta\)-amin;

IR: $1720 \text{ und } 3350 \text{ cm}^{-1}$,

NMR: 0,95 (t) und 2,6 (s).

10 Beispiel 101

15

20

Man kocht 2,96 g 1,4~Dibenzyloxy-2~,3~epoxycyclopentan und 1,3 g Heptyl-methylamin 12 Stunden in 40 ml Isopropylalkohol, gießt nach dem Erkalten in 60 ml gesättigte wässerige NaCl-Lösung, gibt 5 ml 1 %iger wässeriger NaOH-Lösung zu, extrahiert mit Diäthyläther, trocknet die organische Phase über MgSO4, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung (Kieselgel/Chloroform) 3~,5~Dibenzyloxy-2ß-(N-heptyl-N-methylamino)-1~-cyclopentanol.

Analog Beispiel 101 sind die'in den folgenden Beispielen 102 bis 110 genannten Verbindungen der Formel IV (R¹ = R² = Benzyl, M = Wasserstoff) durch Umsetzen von 1∞,4∞-Dibenzyloxy-2∞,3∞-epoxicyclopentan mit dem entsprechenden Amin der Formel VIII erhältlich:

	Bei- spiel	Verbindung der Formel IV
10	102	3∠,5∠-Dibenzyloxy-2ß-(N-heptyl-N-äthyl- amino)-1∠-cyclopentanol,
	103	3∠,5∠-Dibenzyloxy-2ß-heptylamino-1∠-cyclo- pentanol,
	104	3√,5√-Dibenzyloxy-2ß-(N-pentyl-N-methyl- amino)-1√-cyclopentanol,
15	105	3√,5<-Dibenzyloxy-2ß-hexylamino-1<-cyclo- pentanol,
	106	3∝,5∝-Dibenzyloxy-2ß-(N-hexyl-N-methyl- amino)-1∝-cyclopentanol,
20	107	3∝,5∝-Dibenzyloxy-2β-(N-hexyl-N-äthylamino)- 1∝-cyclopentanol,
20	108	3∝,5∝-Dibenzyloxy-2ß-(N-octyl-N-methyl- amino)-1∞-cyclopentanol,
	109 ·	3¢,5¢-Dibenzyloxy-2ß-(N-nonyl-N-methyl- amino)-1¢-cyclopentanol,
25	110	3¢,5c-Dibenzyloxy-2ß-(N-decyl-N-methyl-amino)-1¢-cyclopentanol.

Beispiel 111

Man rührt 2,1 g 3∞ , 5∞ -Dibenzyloxy-2ß-(N-heptyl-N-methylamino)- 1∞ -cyclopentanol, 0,9 g Heptylbromid und 1,5 g K_2 CO $_3$ 24 Stunden unter N_2 bei 60 o in 30 ml

DMF, gießt in 80 ml gesättigte wässerige NaCl-Lösung, extrahiert mit Benzol, trocknet die organische Phase über Na₂SO₄, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform: Aceton = 9: 1) N-Heptyl-N-methyl-5\(\omega-\text{heptyloxy-}\) 2\(\omega, 4\(\omega-\text{dibenzyloxy-cyclopentan-1}\)B-amin;

NMR: 0,9 (t), 2,0 (t), 2,6 (s), 4,6 (m), 7,3 (s).

10 Beispiel 112

15

20

Man tropft bei 40 ° unter Stickstoff und Rühren innerhalb von 30 Minuten 5,25 g 3∝,5∝-Dibenzyloxy-2ß(N-heptyl-N-methylamino)-1∞-cyclopentanol, gelöst in
80 ml Benzol, zu einer Suspension von 0,23 g Natrium
in 70 ml Toluol, rührt 30 Minuten bei Raumtemperatur,
tropft 1,36 g Heptylchlorid, gelöst in 20 ml Benzol, zu,
rührt 1 Stunde bei 80 °, filtriert nach dem Erkalten
das ausgefallene Natriumchlorid ab, destilliert das
Lösungsmittel ab und erhält nach chromatographischer
Reinigung des Rückstands (Kieselgel/Chloroform:
Aceton = 9: 1) N-Heptyl-N-methyl-5∞-heptyloxy-2∞,4∞dibenzyloxy-cyclopentan-1ß-amin;

NMR: 0,9 (t), 2,0 (t), 2,6 (s), 4,6 (m), 7,3 (s).

Man kocht 3,04 g 1,2-Epoxy-4-benzyl-3-heptyloxy-oxycyclopentan und 1,3 g Heptyl-methylamin 8
Stunden in 60 ml Isopropylalkohol, arbeitet das
Reaktionsgemisch wie in Beispiel 101 beschrieben
auf und erhält nach chromatographischer Reinigung
(Kieselgel / Chloroform) 4-Benzyloxy-2-(N-heptyl-N-methylamino)-3-heptyloxy-1-cyclopentanol.

Das Ausgangsmaterial ist wie folgt erhältlich:

4-Benzyloxy-1-cyclopenten wird mit N-Bromsuccinimid in 3-Stellung bromiert, das erhaltene 4-Benzyloxy-3-brom-1-cyclopenten mit 1-Heptanol in Gegenwart von Silberoxid umgesetzt und das so erhaltene 4-Benzyloxy-3-heptyloxy-1-cyclopenten mit m-Chlorbenzoepersäure epoxidiert.

Beispiel 114

20

25

30

Man tropft bei 85 ° zu einem Gemisch aus 1,3 g
Heptyl-methylamin, 1,2 g K₂CO₃ und 80 ml Dimethylsulfoxid innerhalb von 2 Stunden 3,85 g 4-Benzyloxy-2-brom-3-heptyloxy-1-cyclopentanol (erhältlich
aus 1,2-Epoxy-4-benzyloxy-3-heptyloxy-cyclopentan
durch Umsetzen mit HBr), gelöst in 40 ml Dimethyl=
sulfoxid, rührt noch 4 Stunden bei 80 °, gießt
nach dem Erkalten in 250 ml gesättigte wässerige
NaCl-Lösung, extrahiert erschöpfend mit Methylenchlorid, trocknet die organische Phase mit Na₂SO₄,
destilliert das Lösungsmittel ab und erhält nach
chromatographischer Reinigung des Rückstands
4-Benzyloxy-3-heptyloxy-2-(N-heptyl-N-methylamino)1-cyclopentanol.

5

Man löst in 30 ml 1-Heptanol bei 50 ° unter Stickstoff 0,23 g Natrium, tropft unter Rühren 4,88 g N-Heptyl-N-methyl-2-brom-4,5-dibenzyloxycyclopentan-1-amin (erhältlich aus 3,5-Dibenzyloxy-2-cyclopenten durch Addition von Brom und Umsetzen mit 1 Aquivalent Methyl-heptylamin), gelöst in 30 ml Benzol, zu, rührt 6 Stunden bei 50 °, gibt nach dem Erkalten 100 ml Benzol zu, wäscht mit Wasser, trocknet die organische Phase über MgSO₄, destilliert das Lösungsmittel ab 10 und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform : Aceton = 9 : 1) N-Heptyl-N-methyl-5-heptyloxy-2,4-dibenzyloxy-cyclopentan-1-amin.

Beispiel 116 15

Man gibt zu einem Gemisch aus 0,5 g N-Heptyl-Nmethyl-20,4x-dibenzyloxy-5x-(2-oxoheptyloxy)-cyclopentan-1ß-amin (erhältlich aus 3√,5∞-Dibenzyloxy-28-(N-hepty1-N-methylamino)-1∞-cyclopentanol durch Umsetzen mit 1-Brom-heptan-2-on), 8 ml Methanol und 20 7 ml Tetrahydrofuran 0,4 g NaBH₄, rührt 2 Stunden bei Raumtemperatur, gießt in 40 ml H₂O, extrahiert dreimal mit je 20 ml CHCl₃, wäscht die organische Phase mit Wasser, trocknet über MgSO₄, destilliert das Lösungsmittel ab und erhält nach chromato-25 graphischer Reinigung des Rückstands (Kieselgel/ Chloroform : Aceton = 9 : 1) N-Heptyl-N-methyl-2∝, 4∝dibenzyloxy-5\(\pi\)-(2-hydroxyheptyloxy)-cyclopentan-1\(\mathcal{B}\)amin.

Man kocht ein Gemisch aus 2 g N-Methyl-N-(6-cyan-hexyl)-2

,4

dedibenzyloxy-5

heptyloxy-cyclopentan-1

B-amin (erhältlich aus N-Methyl-2

,4

dibenzyloxy-5

-heptyloxy-cyclopentan-1

B-amin durch Umsetzen mit

1-Jod-6-cyan-hexan in Gegenwart von Silberoxid),

20 ml Dioxan und 10 ml konzentrierter Salzsäure 2

Stunden, destilliert das Lösungsmittel ab, nimmt

den Rückstand in Wasser auf, neutralisiert durch

Zugabe von Natriumbicarbonat, extrahiert erschöpfend

mit Chloroform, trocknet die organische Phase über

Na₂SO₄, destilliert das Lösungsmittel ab und erhält

nach chromatographischer Reinigung des Rückstands

(Kieselgel/Chloroform: Methanol = 1:1) N-(5
Hydroxycarbonylpentyl)-N-methyl-5

Hydroxycarbonylpentyl)-N-methyl-5

Hydroxy-cyclopentan-1

B-amin;

IR: 1720 und 3350 cm⁻¹, NMR: 0,95 (t) und 2,6 (s).

Beispiel 118

Man hydriert 4 g N-Heptyl-N-methyl-2,4≪-dibenzyloxy-5≪-heptyloxy-cyclopentan-1ß-amin, gelöst in 50 ml Athylacetat in Gegenwart von 2 g 5 %igem Pd-C-Katalysator bei 30 o und Normaldruck. Man filtriert nach Aufnahme der berechneten Wasserstoffmenge, destilliert das Lösungsmittel ab und erhält N-Heptyl-N-methyl-2≪,4≪-dihydroxy-5≪-heptyloxy-cyclopentan-1ß-amin.

Man leitet 6 Stunden durch eine Lösung von 0,3 g N-(5-Hydroxycarbonylpentyl)-N-methyl-2α,4α-di-hydroxy-5α-heptyloxy-cyclopentan-1β-amin in 15 ml trockenem Äthanol bei Raumtemperatur trockenes HCl-Gas, gießt dann das Reaktionsgemisch in 50 ml Eiswasser, neutralisiert mit Natriumcarbonat, extrahiert dreimal mit je 15 ml Methylenchlorid, trocknet über MgSO₄, destilliert das Lösungsmittel ab und erhält als Rückstand N-(5-Äthoxycarbonylpentyl)-N-methyl-2α,4α-dihydroxy-5α-heptyloxy-cyclopentan-1β-amin;

IR: 1730 und 3400 cm⁻¹,
NMR: 0,8 (t), 2,6 (s), 4,15 (2d).

15 Beispiel 120

Man tropft zu 0,2 g N-(5-Hydroxycarbonylpenty1)-Nmethyl-2√,4√-dibenzyloxy-5ベ-heptyloxy-cyclopentan1β-amin, gelöst in 10 ml Diäthyläther, ätherische
Diazomethanlösung bis die gelbe Farbe gerade bestehen bleibt, wäscht mit 10 ml 0,2 %iger wässeriger
Essigsäure und mit Wasser, trocknet über Na₂SO₄,
destilliert das Lösungsmittel ab und erhält N-(5Methoxycarbonylpentyl)-N-methyl-2√,4√-dibenzyloxy5ベ-heptyloxy-cyclopentan-1β-amin.

Man erhitzt 5,09 g N-Heptyl-2∞,4∞-dibenzyloxy-5∞-heptyloxy-cyclopentan-1β-amin (erhältlich aus 3∞,5∞-Dibenzyloxy-2β-heptylamino-1∞-cyclopentanol durch Umsetzen mit tert.-Butyloxycarbonylazid analog Beispiel 2, Umsetzen des Reaktionsprodukts mit 1-Jodheptan analog Beispiel 3 und Abspalten des tert.-Butoxycarbonylrests analog Beispiel 4a mit CF₃COOH) mit 1,5 g Methyljodid und 10 ml Methanol im Autoklaven 4 Stunden auf 100 °, destilliert das Lösungsmittel ab und erhält nach chromatographischer Reinigung des Rückstands (Kieselgel/Chloroform: Aceton = 9:1) N-Heptyl-N-methyl-2∞,4∞-dibenzyloxy-5∞-heptyloxy-cyclopentan-1β-amin;

5 NMR: 0,9 (t), 2,0 (t), 2,6 (s), 4,6 (m), 7,3 (s).

Die nachstehenden Beispiele betreffen Mischungen von Verbindungen der Formel I mit in der Pharmazie üblichen Träger- oder Hilfsstoffen, welche vor allem als Arzneimittel verwendet werden können:

Beispiel A: Tabletten

20

Ein Gemisch, bestehend aus 30 g N-Heptyl-N-methyl-5%-heptyloxy-2%, 4%-dibenzyloxy-cyclopentan-1ß-amin·HCl, 50 g Lactose, 16 g Maisstärke, 2 g Cellulosepulver und 2 g Magnesiumstearat, wird in üblicher Weise zu Tabletten gepreßt, derart, daß jede Tablette 10 mg des Wirkstoffs enthält.

2658401

Beispiel B: Dragees

5

Analog Beispiel A werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Oberzug, bestehend aus Zucker, Maisstärke, Talk und Tragant, überzogen werden.

Beispiel C: Ampullen

Man löst 20 g N-Heptyl-N-methyl-5<-heptyloxy-2∠, 1</th>

dibenzyloxy-cyclopentan-1β-amin in einem Gemisch

aus 9,5 l zweifach destilliertem Wasser und 0,5 l

10 Äthylenglykol, filtriert steril und füllt unter

sterilen Bedingungen je 5 ml der erhaltenen

Lösung in Ampullen, welche anschließend abgeschmolzen

werden.

Analog sind Tabletten, Dragees und Ampullen erhältlich, die einen oder mehrere der übrigen Wirkstoffe der Formel I enthalten.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not infinited to the items checked.
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USTIO)