

GRUPPENARBEIT

- Haltet eine Präsentation über
 - 1. RCD
 - 2. Leitungsschutzschalter
 - 3. Schmelzsicherungen
- Inhalte sollen sein
 - Typen
 - Funktionsprinzip
 - Kennlinien/Charakteristiken
 - Kriterien für Selktivität
 - Bilder ☺

RCD - REDUAL CURRENT DEVICE

EINFÜHRUNG

- RCD = Redual Current Device
- RCD schaltet bei Fehlerströmen ab
- Daher -> Fehlerstromschutzschalter (FI-Schalter)

TYPEN

Eigenschaften	RCBO (FI-Schalter kombiniert mit LS-Schalter) OLI-Serie	RCCB (FI-Schutzschalter) LFN-Serie			
	Тур А	Тур А	Тур В	Typ B+	Typ F
Max. Stromamplitude	10 kA	10 kA	10 kA	10 kA	10 kA
Bemessungsstrom und -spannung	6 40 A 230 V AC	16 80 A 230/ 400 V AC	16 80 A 230/ 400 V AC	25 80 A 230/ 400 V AC	25 80 A 230/ 400 V AC
Differenzstrom	30 oder 300 mA	10, 30, 100, 300, 500 mA	30, 300 oder 500 mA	30 oder 300 mA	30 oder 300 mA
Polzahl	1N	2 oder 4	2 oder 4	4	2 oder 4
Kurzzeitverzögerung	181	G oder S	G oder S	G oder S	G oder S
Auslösecharakteristik bei Kurzschluss	В, С	-	-	(4)	74

Bildquellen: OEZ

FUNKTIONSPRINZIP - TYP A

FUNKTIONSPRINZIP - TYP B

- Sind mit Hallsonden ausgestattet
- Hallsonde erkennt unregelmäßigkeiten im Gleichstrom durch Hall-Effekt

SELEKTIVITÄT

- die kürzeste Nichtauslösezeit der vorgeschalteten FI-Schutzeinrichtung muss höher sein als die höchstzulässige Auslösezeit der nachgeschalteten FI-Schutzeinrichtung
- der Bemessungsfehlerstrom der vorgeschalteten FI-Schutzeinrichtung muss mindestens 3mal so groß wie der der nachgeschalteten FI-Schutzeinrichtung sein

Leitungsschutzschalter

Funktionsweise

- Typ B: Standard in Wohngebäuden. Auslösung bei 3–5-fachem Nennstrom.
- Typ C: In Anlagen mit höheren Einschaltströmen, z. B. für Motoren. Auslösung bei 5–10-fachem Nennstrom.
- Typ D: Für industrielle Anwendungen mit sehr hohen Einschaltströmen. Auslösung bei 10–20-fachem Nennstrom.
- Weitere Typen: Z.B. Typ K (für elektrische Heizungen) und Typ Z (für empfindliche elektronische Geräte).

Kennlinien/Charakteristiken

Selektivität

- Grundsätzlich nicht selektiv
- Durch Abstufung der Nennstromstärken kann bei einem Kurzschluss nicht sichergestellt werden, dass die LS selektiv auslösen
- Lösung: Selektiver Leitungsschutzschalter (SLS)
- → Wird vor andere LS geschaltet
- → Elektromagnetische Auslösung bei Kurzschluss und Begrenzung des Kurzschlussstroms mit Widerstand, dann zeitabhängige Auslösung mittels Bi-Metall

SLS

- 1.Lichtbogen-Löschkammer
- 2. Hauptkontakt 25 kA
- 3.Betätigungsspule für Hauptkontakte (Hauptstrompfad)
- 4.Strombegrenzungswiderstand (Nebenstrompfad)
- 5.thermische Überstromauslösung (Bimetall im Hauptstrompfad)
- 6.thermische verzögerte Auslösung im Kurzschlussfall (Bimetall im Nebenstrompfad)

Schmelzicherung

Stecksicherungen

• Streifensicherungen

• Feinsicherungen (Geräteschutzsicherung)

Prägung	Charakteristik	
FF	superflink	
F	flink	
М	mittelträge	
Т	träge	
TT	superträge	

Ausschaltvermögen typische Werte bei 250 V AC			typische Bauform	
L	niedrig	10 × <i>I</i> _n (min. 35 A)	Glasrohr	
E	erhöht	min. 100 A	Glasrohr, verstärkt oder gefüllt	
Н	hoch	min. 1500 A	Keramikrohr, sandgefüllt	

Feinsicherung mit Glasgehäuse ohne und mit Sandfüllung und mit Keramikgehäuse (ebenfalls mit nicht sichtbarer Sandfüllung)

• NH Sicherung

Größe 000 und 00

Größe 1, 2 und 3

Schraubsicherungen

• DIAZED (alt) Sicherung

• NEOZED (neu) Sicherung

Funktionsklassen

- g Ganzbereichssicherungen (übernehmen den Überlastschutz und den Kurzschlussschutz.
- a Teilbereichssicherungen schützen nur Kurzschluss.

Betriebsklassen

- gG Ganzbereichs-Kabel- und Leitungsschutz G allgemeiner Schutz
- gR Ganzbereichs-Halbleiterschutz
- gB Ganzbereichs-Bergbauanlagenschutz
- gTr Ganzbereichs-Transformatorenschutz
- aM Teilbereichs-Schaltgeräteschutz
- aR Teilbereichs-Halbleiterschutz

Funktionsprinzip

- Wirkprinzip: Strom fließt durch einen dünnen Draht innerhalb der Sicherung. Bei normalem Stromfluss bleibt der Draht intakt.
 - Bei Überstrom (Überlast oder Kurzschluss) erhitzt sich der Draht.

Schmelzleiter

Fußkontakt

 Erreicht die Temperatur einen bestimmten Punkt, schmilzt der Draht, und der Stromkreis wird unterbrochen.

Unterbrechungsmelder

(Kennmelder)

 Material des Drahts: Besteht häufig aus Zinn oder einer speziellen Metalllegierung, die bei einer vorgegebenen Temperatur Porzellankörper Haltedraht Feder Kopfkontakt

schmilzt.

Kennlinien/Charakteristiken

BSP:

- 1,5-fachen Nennstrom mindestens eine Stunde halten
- Bei 2,1-fachem Nennstrom muss sie spätestens nach 2 Minuten auslösen,
- bei 4-fachem nach 3
 Sekunden und bei 10-fachem nach spätestens 0,3
 Sekunden.

Selektivität

- **Selektivität**: Fähigkeit, bei einer Störung nur den fehlerhaften Stromkreis abzuschalten, ohne andere Stromkreise zu beeinträchtigen.
- Faktor 1,6 zur Nachgelagerten Sicherung

VIELEN DANK!

B. Eng. Richard Sein

ri-stein@outlook.de