Cours 4 – Introduction à la décision multicritère

Master ANDROIDE - Décision et Jeux

Patrice Perny

LIP6 - Sorbonne Université

Décision mono et multicritère

Le cadre classique d'un problème de décision (monocritère)

• Ensemble d'alternatives : X

ullet Critère : une fonction $f:X o\mathbb{R}$ à optimiser

• Recommandation : choix, rangement

Exemple:

La notion de préférence est naturellement induite par f

I) Introduction

2/21

Décision mono et multicritère

Le cadre d'un problème de décision multicritère

ullet Ensemble d'alternatives : X

ullet Critères : plusieurs fonctions $f_i:X o\mathbb{R}$ à optimiser

• Recommandation : choix, rangement

EXEMPLE:

La notion de préférence est mal définie. Choix? Rangement?

3/21 4/21

Exemple 1 : le choix dans un ensemble donné explicitement

Choix d'un moniteur TV

Modèles	Prix (euros)	Qualité image	Qualité son	Durée garantie	
T_1	1300	***	****	3	
T_2	1200	****	****	5	
T_3	1150	****	***	3	
T_4	1000	***	***	2	
T_5	950	***	***	3	
T_6	950	**	***	2	
T_7	900	****	***	3	
T_8	900	**	*	2	
Représentation dans l'espace \mathbb{R}^4 ex: $T_1 = (1300, 4, 4, 3)$					

4 critères : Prix (\downarrow) , Qualité image (\uparrow) , qualité son (\uparrow) , Durée garantie (\uparrow)

Changement de codage possibles :

- maximisation : $T_1 = (-1300, 4, 4, 3)$
- minimisation : $T_1 = (1300, -4, -4, -3)$

5 / 21

Exemple 3 : selection de comité

On doit constituer un comité de deux personnes. Il y a 5 candidats. Ces candidats sont diversement apprécié par les deux juges qui les ont évalués.

- Le juge 1 a mis les notes 7, 9, 4, 3, 4 aux candidats
- Le juge 2 a mis les notes 6, 3, 4, 7, 2 aux candidats

Quels candidats faut-il selectionner?

Modélisation : PLNE 0-1

$$\max z_1 = 7x_1 + 9x_2 + 4x_3 + 3x_4 + 4x_5$$

$$\max z_2 = 6x_1 + 3x_2 + 4x_3 + 7x_4 + 3x_5$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$

$$x_i \in \{0, 1\}, i = 1, \dots, 5$$

Exemple 2 : plus courts chemins

(temps, coût, utilité)

3 critères, 3 chemins optimaux distincts. Quel chemin choisir?

6/21

Exemple 4 : programmation linéaire

• Un produit p peut être fabriqué selon 2 procédés P_1 et P_2 à partir de 2 types de matières premières M_1 et M_2 .

$$ullet$$
 1 unité de p : $egin{array}{c|cccc} M_1 & M_2 & \text{Coûts (euros)} \\ \hline P_1 & 2 & 3 & 1000 \\ P_2 & 3 & 2 & 3000 \\ \hline \end{array}$

- Critères : Maximiser la quantité produite Minmiser les coûts de production
- Contraintes : $M_1 \le 30$ $M_2 \le 30$ $P_1 \le 8$ (par jour)

Modélisation :

$$\max z_1 = x_1 + x_2 \quad \min z_2 = x_1 + 3x_2$$

$$s.c. \begin{cases} 2x_1 + 3x_2 & \leq & 30 \\ 3x_1 + 2x_2 & \leq & 30 \\ x_1 & \leq & 8 \end{cases}$$

$$x_1 \geq 0, x_2 \geq 0$$

II) Préférences multicritères

10/21

Relations de dominance, efficacité

Dominance faible de Pareto

Pour toute paire de solutions $(x, y) \in X^2$, on dit que x domine y faiblement au sens de Pareto si $x_i \ge y_i$ pour i = 1, ..., n. Notation : $x \succsim_P y$.

Cette relation est reflexive, transitive et non-complète.

Dominance de Pareto

Pour toute paire de solutions $(x, y) \in X^2$, on dit que x domine y au sens de Pareto si $x_i \ge y_i$ pour i = 1, ..., n et $x_k > y_k$ pour au moins un $k \in \{1, ..., n\}$. Notation : $x \succ_P y$.

Cette relation est irreflexive, asymétrique, transitive et non-complète.

Définitions préliminaires

- Espace des solutions : X
- *Critère :* fonction $f_i: X \to \mathbb{R}$ permettant d'ordonner les solutions selon le point de vue i
- Performance : evaluation $x_i = f_i(x)$ d'une solution $x \in X$ selon f_i
- Problème multicritère : problème où n fonctions f_1, \ldots, f_n sont à optimiser simultanément $(n \ge 2)$
- Espace des critères : \mathbb{R}^n
- Vecteur performance : vecteur de \mathbb{R}^n représentant l'évaluation d'une solution $x \in X$, notée $f(x) = (f_1(x), \dots, f_n(x))$
- Image de X dans l'espace des critères : $\{f(x), x \in X\}$

Optimalité de Pareto, Efficacité

Optimalité de Pareto

9/21

Une solution $x \in X$ est dite optimale au sens de Pareto ou Pareto-optimale dans X si elle est non-dominée au sens de Pareto dans X, c'est-à-dire qu'il n'existe pas de $y \in X$ tel que $y \succ_P x$. On dit alors que son image f(x) dans l'espace des critères est un point efficace.

L'ensemble des solutions non-dominées dans X au sens d'une relation de dominance (transitive) \succsim sera noté :

$$M(X, \succsim) = \{a \in X : \forall b \in X, b \succsim a \Rightarrow a \succsim b\}$$

= \{a \in X : \forall b \in X, \text{non}(b \gamma a)\}

où \succ est la partie asymétrique de $\succsim (x \succ y \text{ ssi } (x \succsim y \text{ et non}(y \succsim x)).$

Pour simplifier, dans la suite, on notera X_{Par} l'ensemble $M(X, \succsim_P)$ des solution non-dominées au sens de Pareto dans X.

11/21 12/21

Calcul des solutions non-dominées

Lorsque X est fini et donné en extension sous la forme $X = \{x^1, \dots, x^m\}$, l'ensemble des solutions non-dominées peut être calculé par l'algorithme suivant :

```
1: \mathsf{OP} \leftarrow X

2: \mathsf{for\ all}\ i \in \{1, \dots, m-1\}\ \mathsf{do}

3: \mathsf{for\ all}\ j \in \{i+1, m\}\ \mathsf{do}

4: \mathsf{if}\ x^i \succ x^j\ \mathsf{then}

5: \mathsf{OP} \leftarrow \mathsf{OP} \setminus \{j\}

6: \mathsf{else\ if}\ x^j \succ x^i\ \mathsf{then}

7: \mathsf{OP} \leftarrow \mathsf{OP} \setminus \{i\}

8: \mathsf{end\ if}

9: \mathsf{end\ for}
```

Au sortir de cet algorithme OP contient l'ensemble des indices des éléments non-dominés. Lorsque $\succ = \succ_P$ cet alorithme a une complexité de $O(m^2n)$ et retourne les solutions Pareto-optimales.

13 / 21

Autres exemples

Considérons les problèmes suivants admettant deux critères à minimiser.

Application à l'exemple 1

Graphe de la relation de dominance \succ_P

Solutions non-dominées : $X_{Par} = \{T_2, T_7\}$

Préférences Lexicographiques

Soit σ une permutation de $\{1, \ldots, n\}$ telle que $\sigma(i)$ est un critère plus important que $\sigma(i+1)$ pour $i=1,\ldots,n-1$.

Préférence lexicographique

La relation de préférence lexicographique associée à la permutation σ est la relation $\succsim_{\mathit{lex}}^{\sigma}$ dont les parties asymétriques et symétriques sont respectivement définies par :

- $x \sim_{lex}^{\sigma} y \text{ si } x = y$

Notation : on notera X_{lex}^{σ} l'ensemble $M(X, \succsim_{lex}^{\sigma})$ des optima lexicographiques.

Dans l'exemple 1, si $\sigma = Id$ on a $T_7 \succ T_8 \succ T_5 \succ T_6 \succ T_4 \succ T_3 \succ T_2 \succ T_1$ Si $\sigma(1,2,3,4) = (2,3,4,1)$ on a $T_2 \succ T_1 \succ T_7 \succ T_3 \succ T_5 \succ T_4 \succ T_6 \succ T_8$

15/21 16/21

Préférences lexicographiques sur l'exemple 1

Choix d'ur	ı téléviseur av	ec préférences	lexicographiq	ues
Modèles	Prix (euros)	Qualité image	Qualité son	Durée garantie
$\overline{T_1}$	1300	****	****	3
T_2	1200	****	****	5
T_3	1150	****	***	3
T_4	1000	***	***	2
T_5	950	***	***	3
T_6	950	**	***	2
T_7	900	****	***	3
T_8	900	**	*	2
$ \sigma = I $ $T_7 \succ$	-	$t \succ_{lex} T_6 \succ_{lex} T_6$	$T_4 \succ_{lex} T_3 \succ_l$	$I_{\text{ex}} T_2 \succ_{lex} T_1$
			, ,,,,	CA 2 PCA 1
	$(2,3,4) \rightarrow (2,3,4)$			
$T_2 \succ$	$l_{\text{lex}} I_1 \succ_{\text{lex}} T_7$	$r \succ_{lex} T_3 \succ_{lex} T_4 \succ_$	$I_5 \succ_{lex} T_4 \succ_l$	$_{\rm ex}$ $I_6 \succ_{\rm lex} T_8$

Calcul des optima lexicographiques

Calcul de $M(X, \succsim_{lex}^{\sigma})$ (en supposant $\sigma = Id$ pour simplifier)
1: $X_1 \leftarrow X$; $i \leftarrow 1$
2: Résoudre \mathcal{P}_i : $\max_{x \in X_i} f_i(x)$
3: if \mathcal{P}_i a une unique solution x_i^* then
4: STOP
5: else if \mathcal{P}_i non bornée (cas infini) then
6: Problème non borné
7: else if $i = n$ et \mathcal{P}_n a une solution optimale then
8: STOP $(X_{lex} = \{x \in X_n \mid f_n(x) = \max_{x \in X_n} f_n(x)\})$
9: else
10: $X_{i+1} \leftarrow \{x \in X \mid f_i(x) = \max_{x \in X_i} f_i(x)\}$
11: $i \leftarrow i + 1$
12: Aller en 2
13: end if

Si $\sigma \neq Id$ on peut préalablement renuméroter les critères par ordre d'importance et appliquer l'algorithme ci-dessus.

17/21 18/21

Optimalité lexicographique et optimalité de Pareto

Proposition

 $X_{lex}^{\sigma} \subseteq X_{Par}$

Preuve. On suppose, sans perte de généralité, que $\sigma = Id$. Soit $x \in X_{lex}$. Supposons que $x \notin X_{Par}$, alors $\exists y \in Y, y \succ_P x$ et donc $\exists i$ tel que $y_i > x_i$. Soit $k = \min\{i : y_i > x_i\}$. Comme $y \succ_P x$ on a aussi $y_i = x_i$ pour tout i < k et donc $y \succ_{lex} x$ ce qui contredit le fait que $x \in X_{lex}$.

Soit $X_{LEX} = \bigcup_{\sigma} X_{lex}^{\sigma}$.

Proposition

 $X_{LEX} \subseteq X_{Par}$

Preuve. Corollaire direct de la proposition précédente.

Remarque : L'inclusion de la proposition ci-dessus est généralement stricte. Il suffit de considérer par exemple le cas où $X=[0,1],\ f_1(x)=x$ et $f_2(x)=1-x$. Dans ce cas $X_{LEX}=\{0,1\}$ alors que $X_{Par}=[0,1]$.

Préférences induites par une somme pondérée

Somme pondérée

Soit $w = (w_1, \ldots, w_n)$ un vecteur de poids strictement positifs. Alors on défini la relation induite par la somme pondérée par $x \succsim_{SP}^w y$ si $\sum_{i=1}^n w_i x_i \ge \sum_{i=1}^n w_i y_i$.

Cette relation est reflexive, transitive et complète.

NOTATIONS:

- On notera X_{SP}^w l'ensemble $M(X, \succsim_{SP}^w)$
- On notera X_{SP} l'ensemble $\bigcup_{w \in int(\mathbb{R}^n)} X_{SP}^w$

Proposition

 $X_{SP} \subseteq X_{Par}$

Preuve. Soit $x \in X_{SP}$. Alors il existe un vecteur de coefficients strictement positifs $w = (w_1, \ldots, w_n)$ tel que $x \in X_{SP}^w$. Supposons que $x \notin X_{Par}$, alors $\exists y \in Y, y \succ_P x$. Donc, il existe k tel que $y_k > x_k$ et pour tout $i \neq k, y_i \geq x_i$. Multiplions ces inégalités par les poids de même indice (can echange pas le sens de l'inégalité car les poids sont positifs) il vient : $w_k y_k > w_k x_k$ et pour tout $i \neq k, w_i y_i \geq w_i x_i$. Si l'on somme ces n inégalités il vient : $\sum_{i=1}^n w_i y_i > \sum_{i=1}^n w_i x_i$ et donc $y \succ_{SP}^w x$ ce qui contredit le fait que $x \in X_{SP}$. \square

Limites de la somme pondérée

Il convient de remarque que l'inclusion $X_{SP} \subseteq X_{Par}$ est généralement stricte (sauf dans le cas où X est convexe) ce qui signifie qu'il existe des solutions Pareto optimales qui ne peuvent arriver en tête avec une somme pondérée, et ce quelque soit le jeu de poids utilisé comme on peut le voir ci-dessous. Le choix d'agréger par somme pondérée les condamne avant même qu'on ait choisi les poids!

Exercice:

4 candidats a, b, c, d à un poste de technico-commercial en informatique ont passé deux types de tests, évaluant d'une part leur aptitude technique en informatique (Test 1) et leur sens du contact et aptitude commerciale (Test 2). Les notes obtenues aux tests sont les suivantes :

	а	b	С	d
Test 1	18	6	11	7
Test 2	6	18	11	7

Etudier les ensembles X_{SP} et X_{Par} et conclure.