Varieties of Minimal Rational Tangents on the Fano Varieties

Xiaolong Liu

January 13, 2024

Contents

1	Bas	ic Theory of Rational Curves	7
	1.1	Hilbert Schemes and Chow Schemes	7
		1.1.1 Hilbert Schemes, a Basic Introduction	7
		1.1.2 Chow Schemes, a Basic Introduction	10
		1.1.3 Small Applications to Curves	11
	1.2	Families of Rational Curves	12
	1.3	Free and Minimal Rational Curves	12
	1.4	Bend and Break	12
	1.5	Application I: Basic Theory of Fano Manifolds	12
	1.6	Application II: Boundedness of Fano Manifolds	13
	1.7	Application III: Hartshorne's Conjecture	13
2	Var	ieties of Minimal Rational Tangents	15
	2.1	Basic Properties	15
	2.2	Examples of VMRT	15
	2.3	Distributions and Its Properties	15
	2.4	Cartan-Fubini Type Extension Theorem	15
Index			17
Bibliography			19

4 CONTENTS

Preface

6 CONTENTS

Chapter 1

Basic Theory of Rational Curves

The main results here we follows the famous book [6].

1.1 Hilbert Schemes and Chow Schemes

1.1.1 Hilbert Schemes, a Basic Introduction

Definition 1.1.1. Let X be an S-scheme, we define the Hilbert functor $\mathscr{H}ilb_{X/S}$ sends an S-scheme Z to the set consists of subschemes $V \subset X \times_S Z$ which is proper and flat over Z.

Fix a Polynomial P and a relative ample line bundle $\mathcal{O}(1)$, we can define $\mathscr{H}ilb_{X/S}^P$ sends an S-scheme Z to the set consists of subschemes $V \subset X \times_S Z$ which is proper and flat over Z with Hilbert Polynomial P.

Theorem 1.1.2 (Grothendieck). Let S be a noetherian scheme, let $X \to S$ be a projective morphism, and \mathcal{L} a relatively very ample line bundle on X. Then for any polynomial P, the Hilbert functor $\mathscr{H}ilb_{X/S}^P$ is representable by a projective S-scheme $Hilb_{X/S}^P$. We also have $Hilb_{X/S} = \coprod_P Hilb_{X/S}^P$.

Proof. Note that this notion of projectivity is much general than [5], but is the same when $S = \operatorname{Spec} k$. The proof is to embed it into Grassmannian. The original proof in [4] and we also refer [8], [6] and [3].

Remark 1.1.3. In [2] we can remove the noetherian hypothesis, by instead assuming strong (quasi-)projectivity of $X \to S$. So also [1].

Example 1.1.1. Some examples and interesting results:

(a) We have $Hilb_{X/S}^1 = X/S$.

(b) Let C be a curve over a field k, then

$$\operatorname{Hilb}_{C/k}^m \cong S^m C := \underbrace{C \times \cdots \times C}_m / \mathfrak{S}_m.$$

Hence if C smooth, so is $Hilb_{C/k}^m$. See also [3] Theorem 7.2.3(1) and Proposition 7.3.3.

- (c) Let S be a smooth surface over a field k, then $\operatorname{Hilb}_{S/k}^m$ is also smooth of dimension 2m and hence $\operatorname{Hilb}_{S/k}^m \to S^m X$ (we will see this later for general settings) is a resolution of singularities. Note that $S^m X$ is smooth if and only if X is smooth and $\dim X = 1$ or m < 2. See [3] Theorem 7.2.3(2) and Theorem 7.3.4.
- (d) Let X be a nonsingular variety. Then $\operatorname{Hilb}_{X/k}^m$ is nonsingular for $m \leq 3$. Moreover, for any nonsingular 3-fold the scheme $\operatorname{Hilb}_{X/k}^4$ is singular. See [3] Remark 7.2.5 and 7.2.6.
- (e) Let \mathscr{E} be a vector bundle of rank m+1 over S and let $P_d(n) = \binom{m+n}{m} \binom{m+n-d}{m}$, then

$$\operatorname{Hilb}_{\mathbb{P}(\mathscr{E})/S}^{P_d} \cong \mathbb{P}((\operatorname{Sym}^d \mathscr{E})^{\vee}).$$

- (f) Let $Z \to S$, we have $\text{Hilb}_{X \times_S Z/Z} \cong \text{Hilb}_{X/S} \times_S Z$.
- (g) Hartshorne's Connectedness Theorem: for every connected noetherian scheme S, $\operatorname{Hilb}_{\mathbb{P}_n^n/S}^P$ is connected.
- (h) Let X be a connected variety over k, then $\operatorname{Hilb}_{X/k}^n$ is connected for all n > 0.
- (i) Murphy's Law: It has many singularities, that is, for every scheme X finite type over $\mathbb Z$ and point $x \in X$, there exists a point $q \in \operatorname{Hilb}_{\mathbb P^n/k}^P$ of some Hilbert scheme and an isomorphism

$$\widehat{\mathscr{O}}_{X,p}[[x_1,...,x_s]] \cong \widehat{\mathscr{O}}_{\mathrm{Hilb}_{\mathbb{P}^n/k}^P,q}[[y_1,...,y_t]].$$

See [11]. In fact, it can be arranged that the Hilbert scheme parameterizes smooth curves in \mathbb{P}^n for some n. It turns out that various other moduli spaces also satisfy Murphy's Law: Kontsevich's moduli space of maps, moduli of canonically polarized smooth surfaces, moduli of curves with linear systems, and the moduli space of stable sheaves.

(j) In [10] they gave a full classification of the situation where $\operatorname{Hilb}_{\mathbb{P}^n/k}^P$ smooth.

Definition 1.1.4. Let X/S, Y/S are S-schemes, then we have a functor $\mathscr{H}om_S(X,Y)$ send S-scheme T into a set of T-morphisms $X \times_S T \to Y \times_S T$.

For a subscheme $B \subset X$ proper over S and $g: B \to Y$, we have a functor $\mathscr{H}om_S(X,Y;g)$ send S-scheme T into a set of T-morphisms $X \times_S T \to Y \times_S T$ such that $f|_{B \times_S T} = g \times_S \operatorname{id}_T$.

Proposition 1.1.5. If X/S and Y/S are both projective over S and X is flat over S, then $\mathscr{H}om_S(X,Y)$ represented by an open subscheme $\operatorname{Hom}_S(X,Y) \subset \operatorname{Hilb}_{X \times_S Y/S}$.

Proof. Any $X \times_S T \to Y \times_S T$ correspond to its graph which is a closed immersion $\Gamma: X \times_S T \to X \times_S Y \times_S T$. As X is flat over S, then $X \times_S T$ is flat over T. Hence we get a morphism $\text{Hom}_S(X,Y) \to \text{Hilb}_{X \times_S Y/S}$. We omit the more details and refer Theorem I.1.10 in [6].

Proposition 1.1.6. If X/S and Y/S are both projective over S and X, B are both flat over S, then $\mathscr{H}om_S(X,Y;g)$ represented by a subscheme $\operatorname{Hom}_S(X,Y;g) \subset \operatorname{Hom}_S(X,Y)$.

Proof. Consider the restriction map $R: \operatorname{Hom}_S(X,Y) \to \operatorname{Hom}_S(B,Y)$, then $g: B \to Y$ gives a section $G: S \to \operatorname{Hom}_S(B,Y)$. Hence $\operatorname{Hom}_S(X,Y;g) := R^{-1}(G(S)) \subset \operatorname{Hom}_S(X,Y)$ represents $\mathscr{H}om_S(X,Y;g)$.

Now we state the deformation theory of Hilbert schemes. We only consider the simpler case that all schemes over a field k. For general case we refer Section 1.2 in [6].

Theorem 1.1.7. Let Y be a projective scheme over a field k and $Z \subset Y$ is a subscheme. Then

(a) We have

$$T_{[Z]} \operatorname{Hilb}_Y \cong \operatorname{Hom}_Z(\mathscr{I}_Z/\mathscr{I}_Z^2, \mathscr{O}_Z).$$

(b) The dimension of every irreducible components of $Hilb_Y$ at [Z] is at least

$$\dim \operatorname{Hom}_{Z}(\mathscr{I}_{Z}/\mathscr{I}_{Z}^{2},\mathscr{O}_{Z}) - \dim \operatorname{Ext}_{Z}^{1}(\mathscr{I}_{Z}/\mathscr{I}_{Z}^{2},\mathscr{O}_{Z}).$$

Proof. See Theorem I.2.8 in [6]. For family case we refer Theorem I.2.15 in [6]. \Box

Corollary 1.1.8. Let X, Y are projective varieties over a field k with a morphism $f: X \to Y$. Let Y is smooth over k. Then

(a) We have

$$T_{[f]}\operatorname{Hom}_k(X,Y)\cong \operatorname{Hom}_X(f^*\Omega^1_Y,\mathscr{O}_X).$$

(b) The dimension of every irreducible components of $\operatorname{Hom}_k(X,Y)$ at [f] is at least

$$\dim \operatorname{Hom}_X(f^*\Omega^1_Y, \mathscr{O}_X) - \dim \operatorname{Ext}^1_X(f^*\Omega^1_Y, \mathscr{O}_X).$$

Proof. Let $Z \subset X \times_k Y$ be the graph of f, we claim that $\mathscr{I}_Z/\mathscr{I}_Z^2 \cong f^*\Omega_Y^1$. Indeed we have an exact sequence $\mathscr{I}_Z/\mathscr{I}_Z^2 \to \Omega_{X \times_k Y}^1|_Z \to \Omega_Z^1 \to 0$. This is split by $\mathscr{O}_Z \cong \mathscr{O}_X \xrightarrow{(\mathrm{id}_X,1)} \mathscr{O}_{X \times_k Y}$. Then we can show the claim. Hence the results follows from Theorem 1.1.7. The family version we refer Theorem I.2.17 in [6].

1.1.2 Chow Schemes, a Basic Introduction

Here we only consider the schemes over a field k such that char(k) = 0. The positive characteristic case is very complicated and we refer Section I.4 in [6].

Definition 1.1.9. Let $g_i: U_i \to W$ be a proper morphism of schemes over W. Assume that W is reduced and U_i is irreducible. By generic flatness there is an open subset $W_i \subset g_i(U_i) \subset W$ such that g_i is flat of relative dimension d over W_i . Let $T = \operatorname{Spec} \Delta$ be the spectrum of a DVR Δ and $h: T \to W$ a morphism such that $h(T_g) \in W_i$ and $h(T_0) = w \in W$. Let $h^*U_i = U_i \times_h T$ and $\mathscr{J} \subset \mathscr{O}_{h^*U_i}$ the ideal of those sections whose support is contained in the special fiber of $h * U_i \to T$. Let $(U_i)'_T := \operatorname{Spec}_T \mathscr{O}_{h^*U_i} / \mathscr{J}$ which is flat over T. Then we let $[Z_0]$ be the fundamental cycle of the central fiber of $(U_i)'_T \to T$, and define

$$\lim_{h \to w} (U_i/U) := [Z_0] \in Z_d(g_i^{-1}(w) \times_{\kappa(w)} T_0)$$

which is called the cycle theoretic fiber of g_i at w along h.

Definition 1.1.10. A well defined family of d-dimensional proper algebraic cycles over W is a pair $(g: U \to W)$ satisfying the following properties:

- (a) There is a reduced scheme supp U with irreducible components U_i such that $U = \sum_i m_i[U_i]$ is an algebraic cycle.
- (b) W is a reduced scheme and $g: \operatorname{supp} U \to W$ is a proper morphism.
- (c) Let $g_i := g|_{U_i}$. Then every g_i maps onto an irreducible component of W and every fiber of g_i is either empty or has dimension d. In particular there is a dense open subset $W_0 \subset W$ such that every g_i is flat over W_0 .
- (d) For every $w \in W$ there is a cycle $g^{[-1]}(w) \in Z_d(g^{-1}(w))$ such that for any $h: T \to W$ of spectrum of DVR such that $h(T_0) = w$ and $h(T_g) \in W_0$ we have

$$g^{[-1]}(w) =_{\text{ess}} \sum_{i} m_i \lim_{h \to w} (U_i/W).$$

That is, both two cycles from a single cycle of $Z_d(g^{-1}(w))$.

Definition 1.1.11. Let X be a scheme over S. A well defined family of proper algebraic cycles of X/S over W/S is a pair $(q:U/S \to W/S)$ satisfying the following properties:

- (a) supp U is a closed subscheme of $X \times_S W$ and g is the natural projection morphism.
- (b) $(g: U \to W)$ is a well defined family of d-dimensional proper algebraic cycles over W for some d.

Definition 1.1.12 (Chow Schemes of Characteristic Zero). Let X/S and we define a functor $\mathscr{C}how_{X/S}$ sends Z/S to the set consists of well defined families of nonnegative proper algebraic cycles of $X \times_S Z/Z$.

Let a relative ample line bundle $\mathcal{O}(1)$, we can define $\mathcal{C}how_{X/S}^{d,d'}$ sends Z/S to the set consists of well defined families of nonnegative proper algebraic cycles of $X \times_S Z/Z$ which is of dimension d and degree d'.

Theorem 1.1.13. Let X/S be a scheme, projective over S and $\mathcal{O}(1)$ relatively ample. Then the functor $\mathscr{C}how_{X/S}^{d,d'}$ is representable by a semi-normal and projective S-scheme $\operatorname{Chow}_{X/S}^{d,d'}$. We also have $\operatorname{Chow}_{X/S} = \coprod_{d,d'} \operatorname{Chow}_{X/S}^{d,d'}$.

Proof. Very complicated, we refer Theorem I.3.21 in [6].

Example 1.1.2. Let X be a semi-normal variety, then $\operatorname{Chow}_{X/k}^{0,m} \cong S^m X$.

Remark 1.1.14. Note that we have the Hilbert-Chow morphism in such zero-dimensional case. See Section I.6 in [6].

1.1.3 Small Applications to Curves

For more applications we refer Section II.1 in [6]. Here we only need some easy case. We assume over a field k.

Theorem 1.1.15. Let C be a proper curve and $f: C \to Y$ a morphism to a smooth variety Y of dimension n. Then

$$\dim_{[f]} \operatorname{Hom}(C, Y) \ge -C \cdot K_Y + n\chi(\mathscr{O}_C).$$

And equality holds if $H^1(C, f * T_Y) = 0$, in this case it is smooth at [f].

Proof. By Corollary 1.1.8(b) we have

$$\dim_{[f]} \operatorname{Hom}(C, Y) \ge \dim \operatorname{Hom}_X(f^*\Omega^1_Y, \mathscr{O}_X) - \dim \operatorname{Ext}^1_X(f^*\Omega^1_Y, \mathscr{O}_X)$$
$$= h^0(C, f^*T_Y) - h^1(C, f^*T_Y) = \chi(C, f^*T_Y)$$
$$= \deg f^*T_Y + n\chi(\mathscr{O}_C)$$

by Riemann-Roch theorem. The final statement follows from Corollary 1.1.8(a).

Proposition 1.1.16. Assume that X/S is flat, B/S is flat and finite of degree m and Y/S is smooth of relative dimension n. Then $\dim \operatorname{Hom}(X,Y;g) \geq \dim \operatorname{Hom}(X,Y) - kn$.

Proof. Let $p: B \to S$ be the projection. By Corollary 1.1.8 we find that $\operatorname{Hom}(B,Y)$ is smooth over S of relative dimension rank kn. Thus $g(S) \subset \operatorname{Hom}(B,Y)$ is locally defined by kn equations. Pulling back these equations by R we obtain local defining equations.

Theorem 1.1.17. Let C be a projective curve over k and Y a smooth variety over k. Let $B \subset C$ be a closed subscheme which is finite over k. Assume that C is smooth along B. Let $g: B \to Y$ be a morphism. Then

(a) We have

$$T_{[f]}\operatorname{Hom}(C,Y;g)\cong H^0(C,f^*T_Y\otimes\mathscr{I}_B).$$

(b) The dimension of every irreducible component of Hom(C, Y; g) at [f] is at least

$$h^0(C, f^*T_Y \otimes \mathscr{I}_B) - h^1(C, f^*T_Y \otimes \mathscr{I}_B).$$

Proof. The original proof we refer [7]. A simple case of family version we refer Theorem II.1.7 in [6]. Here we assume k is algebraically closed. Here $\mathscr{I}_B = \mathscr{O}_C(-s_1 - \ldots - s_m)$.

Let $X_0 := C \times_k Y$ and let $\gamma_0 : C \cong \Gamma_0 \subset X_0$ be the graph of f. Let $\pi_1 : X_1 := \operatorname{Bl}_{\{s_1\}} X_0 \to X_0$ and Γ_1 be the strict transform of Γ_0 . Let $\gamma_1 : C \cong \Gamma_1 \subset X_1$ as C is smooth at s_1 . Repeat the process and finally we get $\pi_m : X_m := \operatorname{Bl}_{\{s_m\}} X_{m-1} \to X_{m-1}$ and Γ_m be the strict transform of Γ_{m-1} . Let $\gamma_m : C \cong \Gamma_m \subset X_m$. Then we have $\gamma_0^*(\mathscr{I}_{\Gamma_0}/\mathscr{I}_{\Gamma_0}^2) \cong f^*\Omega_Y^1$ and $\gamma_{i+1}^*(\mathscr{I}_{\Gamma_{i+1}}/\mathscr{I}_{\Gamma_{i+1}}^2) \cong \gamma_i^*(\mathscr{I}_{\Gamma_i}/\mathscr{I}_{\Gamma_i}^2) \otimes \mathscr{O}_C(-s_{i+1})$. Hence we get $\gamma_m^*(\mathscr{I}_{\Gamma_m}/\mathscr{I}_{\Gamma_m}^2) \cong f^*\Omega_Y^1 \otimes \mathscr{I}_B$.

Now we claim that there is an open neighborhood $[\Gamma_m] \in U \subset \operatorname{Hilb}_{X_m}$ such that $\operatorname{Hom}(C,Y;g) \cong U$. Indeed, let $U \subset \operatorname{Hilb}_{X_m}$ be the open set parametrizing those 1-cycles D for which the projection $D \to C$ is an isomorphism. This is open by Lemma I.1.10.1 in [6].

First, the universal family of U is contained in $\operatorname{Hom}(C,Y;g)(U)$. Conversely consider $[p_0: C \times R \to Y \times R] \in \operatorname{Hom}(C,Y;g)(R)$. Let its graph is $G_0 \subset X_0 \times R$. As $\{s_1\} \times R \subset G_0$ and $G_0 \to R$ smooth along $\{s_1\} \times R$, we let $G_1 \subset X_1 \times R$ be the strict transform of G_0 . Then $G_1 \cong G_0 \cong C \times R$. Repeat the process and finally we get $X_m \times R \supset C \times R \cong G_m \in \operatorname{Hilb}_{X_m}(R)$. Hence this give the isomorphism $\operatorname{Hom}(C,Y;g) \cong U$. Hence by Theorem 1.1.7 and we get the result.

1.2 Families of Rational Curves

- 1.3 Free and Minimal Rational Curves
- 1.4 Bend and Break
- 1.5 Application I: Basic Theory of Fano Manifolds

- 1.6 Application II: Boundedness of Fano Manifolds
- 1.7 Application III: Hartshorne's Conjecture

Chapter 2

Varieties of Minimal Rational Tangents

We will assume the base field is \mathbb{C} .

- 2.1 Basic Properties
- 2.2 Examples of VMRT
- 2.3 Distributions and Its Properties
- 2.4 Cartan-Fubini Type Extension Theorem

Index

 $\begin{array}{l} \operatorname{Chow}_{X/S}, \, 11 \\ \operatorname{Hilb}_{X/S}^P, \, 7 \\ \operatorname{Hom}_S(X,Y), \, 9 \\ \operatorname{Hom}_S(X,Y;g), \, 9 \\ \mathscr{H}ilb_{X/S}, \, 7 \\ \mathscr{H}ilb_{X/S}^P, \, 7 \end{array}$

Chow scheme, 11

cycle theoretic fiber, 10

Hilbert functor, 7

well defined family of proper algebraic cycles, 10 well defined family of proper algebraic cycles over some base, 10

Bibliography

- [1] Jared Alper. Stacks and Moduli. Working draft, November 15, 2023.
- [2] Allen B. Altman and Steven L. Kleiman. Compactifying the picard scheme. Adv. in Math., 35(1):50–112, 1980.
- [3] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angele Vistoli. Fundamental algebraic geometry Grothendieck's FGA explained. American Mathematical Society, 2005.
- [4] Alexander Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert. Soc. Math. France, Paris, 1960-61.
- [5] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg,
- [6] János Kollár. Rational Curves on Algebraic Varieties. Springer Berlin, Heidelberg, 1996.
- [7] Shigefumi Mori. Projective manifolds with ample tangent bundles. *Ann. of Math.*, 110:593–606, 1979.
- [8] David Mumford. Lectures on curves on an algebraic surface. Princeton University Press, 1966.
- [9] A.N. Parshin and I.R. Shafarevich. *Algebraic Geometry V: Fano Varieties*. Springer Berlin, Heidelberg, 1999.
- [10] Roy Skjelnes and Gregory G. Smith. Smooth hilbert schemes: their classification and geometry. arXiv:2008.08938., 2020.
- [11] Ravi Vakil. Murphy's law in algebraic geometry: badly-behaved deformation spaces. *Invent. Math.*, 164(3):569–590, 2006.