Resolving high dimensional conformational space of proteins

Resolving high dimensional conformational space of proteins

Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning

Machine Learning Subtle Conformational Change due to Phosphorylation in Intrinsically Disordered Proteins

Satyabrata Bandyopadhyay 0 ; Jagannath Mondal S 0

J. Chem. Phys. 155, 114106 (2021) https://doi.org/10.1063/5.0059965

Subinoy Adhikari and Jagannath Mondal*

Navjeet Ahalawat,** Mohammad Sahil," and Jagannath Mondal*

Random Forest - Supervised problem

Simulations

_			
te	at	ur	es

d_1	X ₁₁	X ₂₁	X ₃₁	X ₄₁
d_2	X ₁₂	X ₂₂	X ₃₂	X ₄₂
d_3	X ₁₃	X ₂₃	X ₃₃	X ₄₃
d_4	X ₁₄	X ₂₄	X ₃₄	X ₄₄
d_5	X ₁₅	X ₂₅	X ₃₅	X ₄₅
d_6	X ₁₆	X ₂₆	X ₃₆	X ₄₆
d_	X17	X27	X ₃₇	X47

_		
f_	↑ +ı	ıres
16	all	11 ES

d_1	X_{11}	X ₂₁	X ₃₁	X ₄₁
d_2	X ₁₂	X ₂₂	X ₃₂	X ₄₂
d ₃	X ₁₃	X ₂₃	X ₃₃	X ₄₃
d_4	X ₁₄	X ₂₄	X ₃₄	X ₄₄
d_5	X ₁₅	X ₂₅	X ₃₅	X ₄₅
d_6	X ₁₆	X ₂₆	X ₃₆	X ₄₆
d_7	X ₁₇	X ₂₇	X ₃₇	X ₄₇

Ф	X ₁₃	X ₂₅	X ₃₇	X
at	X ₁₆	X ₂₇	X ₃₅	X
ပ ပ	X ₁₄	X ₂₁	X ₃₂	X
eti	X ₁₁	X ₂₃	X ₃₆	X
the	X ₁₇	X ₂₂	X ₃₁	X
yn	X ₁₅	X ₂₆	X 34	X
S	X ₁₂	X ₂₄	X ₃₃	X

$$Y_{(m,f)} = X_{(m,f)} \odot (P_1, P_2, ..P_f)_{(1,f)}$$

$$Y_{(m,f)} = X_{(m,f)} \odot (P_1, P_2, ..P_f)_{(1,f)}$$

features la

			<u> </u>	
1 1	X ₁₁	X ₂₁	X ₃₁	X ₄₁
₂	X ₁₂	X ₂₂	X ₃₂	X ₄₂
₂ k	X ₁₃	X ₂₃	X ₃₃	X ₄₃

|--|

Simulations

σ
ٽن
Ф
О
$\overline{\circ}$
1
Ð
∓
\subseteq
$\overline{>}$

	X ₁₃	X ₂₅	X ₃₇	X ₄₄
	X ₁₆	X ₂₇	X ₃₅	X ₄
	X ₁₄	X ₂₁	X ₃₂	X ₄₆
	X ₁₁	X ₂₃	X ₃₆	X ₄₂
	X ₁₇	X ₂₂	X ₃₁	X ₄₃
,	X ₁₅	X ₂₆	X ₃₄	X ₄₁
	X ₁₂	X ₂₄	X ₃₃	X ₄ 5

 $Y_{(m,f)} = X_{(m,f)} \odot (P_1, P_2, ... P_f)_{(1,f)}$

1	
1	
1	
1	
1	
1	

proximity matrix

$$d_{ij} = \sqrt{1 - \frac{trees_{same_node}}{trees_{all}}}$$

$$n_{dp} = \sum_{i=1}^{n} (n-i)$$

	d ₁₂	d ₁₃	d ₁₄	d ₁₅	d ₁₆	d ₁₇
		d ₂₃	d ₂₄	d ₂₅	d ₂₆	d ₂₇
			d ₃₄	d ₃₅	d ₃₆	d ₃₇
100000				d ₄₅	d ₄₆	d ₄₇
					d ₅₆	d ₅₇
						d ₆₇

URF can recapitulate supervised results on T4-Lysozyme

URF can recapitulate supervised results on T4-Lysozyme

The Classification extent:: separability of functional states

a fes is a n×m bins

100×100 in this case

divided into zero and non-zero bins (tb)

each tb bin represent probability (0-1) of a particular functional states

$$b_{ph} = tb >= (1 - c)$$

$$b_{pl} = tb <= c$$

$$ph = w_p \left[card(b_{ph}) + \frac{\Sigma(b_{ph} - (1 - c))}{card(b_{ph})} \right]$$

$$pl = w_p \left[card(b_{pl}) + \frac{\Sigma(b_{pl} - c)}{card(b_{pl})} \right]$$

$$imp = w_{imp}[card((tb < (1-c))\&(tb > c))]$$

$$c.e. = w_h(\frac{ph}{ph+imp}) + w_l(\frac{pl}{pl+imp})$$

The Classification extent:: separability of functional states

a fes is a n×m bins

100×100 in this case

divided into zero and non-zero bins (tb)

each tb bin represent probability (0-1) of a particular functional states

$$b_{ph} = tb >= (1 - c)$$

$$b_{pl} = tb <= c$$

$$ph = w_p[card(b_{ph}) + \frac{\Sigma(b_{ph} - (1-c))}{card(b_{ph})}] \qquad pl = w_p[card(b_{pl}) + \frac{\Sigma(b_{pl} - c)}{card(b_{pl})}]$$

$$imp = w_{imp}[card((tb < (1-c))\&(tb > c))]$$

$$c.e. = w_h(\frac{ph}{ph+imp}) + w_l(\frac{pl}{pl+imp})$$

Reproducibility on other systems

α -synuclien

Reproducibility on other systems

Cytochrome P450

Reproducibility on other systems

Cytochrome P450

Multi-state Phenol biosensor MopR

α-synuclien

cytochrome P450

MopR

Is all this useful ?????

Is all this useful ?????

Detecting allosteric network in T4 Lysozyme

Detecting allosteric network in T4 Lysozyme

Top Urf features common to supervised are adequate to define T4L allostery based on:

- 1. feature importances
- 2. known hinge motions in T4L

JcTc-2017, 13, 5076-5088 Jmb-2022, 434, 167679 JcTc-2023, 19, 2644-2657

using pca shift as a measure of conformational change in proteins

PNAS-2020, 117(41), 25445-25454

using pca shift as a measure of conformational change in proteins

PNAS-2020, 117(41), 25445-25454

Dynamic allostery in biosensor MopR

JBC-2022, 298(10), 102399

using pca shift as a measure of conformational change in proteins

PNAS-2020, 117(41), 25445-25454

Dihedral PCA of MopR simulation ensembles

apo-wt bound-wt apo-mt bound-mt

Dynamic allostery in biosensor MopR

JBC-2022, 298(10), 102399

using pca shift as a measure of conformational change in proteins

PNAS-2020, 117(41), 25445-25454

Dihedral PCA of MopR simulation ensembles

Dynamic allostery in biosensor MopR

JBC-2022, 298(10), 102399

residues based on top FI

Can we build better MSM with urf???

Can we build better MSM with urf???

an example MSM

JACS-2018, 140(50), 17743-17752

Prelimnary analysis indicates relatively better MSM with Urf

Approach-1: Detecting existence of crucial states

- only 1 state resolved
- any 2 states are resolved
- all three states are resolved

Prelimnary analysis indicates relatively better MSM with Urf

Approach-1: Detecting existence of crucial states

- only 1 state resolved
- any 2 states are resolved
- all three states are resolved

Its on-going

Approach-2: Measuring the impurity in MSM generated metastable states

Its on-going

Approach-2: Measuring the impurity in MSM generated metastable states

$$wp = \frac{e*p/b}{\Sigma e*p/b} \\ gi = 1 - \Sigma (wp_i^2) \\ \text{e = [0.33, 0.33, 0.33]} \\ \text{b = [w1, w2, w3]}$$

$$[0.33, 0.34, 0.33] \rightarrow [1.0, 0, 0]$$

 $[0.7, 0.05, 0.25] \rightarrow [1.0, 0, 0]$
 $[0.7, 0.05, 0.25] \rightarrow [0, 1.0, 0]$

Thanks