作者: 张陈成

学号: 023071910029

K-理论笔记

交换环的 Picard 群

1 交换环的 Picard 群

定理 1. 给定交换环 R 与连续函数 $f: \operatorname{Spec}(R) \to X$, 其中 X 具备离散拓扑. 存在分解 $R \simeq \prod R_i$ 使得 $\coprod \operatorname{Spec}(R_i) \simeq \operatorname{Spec}(R)$, 且 $f|_{\operatorname{Spec}(R_i)}$ 为常映射.

证明.

定义 1 (可逆模). 称 M 是交换环 R 上有限生成的模. 称 M 可逆, 若以下等价命题成立.

- 1. 存在 R-模 N 使得 $M \otimes N \simeq R$, 且 $M \simeq \operatorname{Hom}_R(N,R)$.
- 2. $M \otimes_R$ 为 R-模范畴到自身的等价.
- 3. M 是有限生成的秩恒为 1 的投射模.

实际上有 $\operatorname{Hom}_R(N,R) \simeq M$.

定义 2 (Picard 群). 记环 R 中 Picard 群为 Pic(R) 有限生成可逆模 $\langle M \rangle$ 构成的乘法群. 其中

- 1. $\langle M \otimes_R N \rangle = \langle M \rangle \cdot \langle N \rangle$.
- 2. $\langle \operatorname{Hom}_R(M,R) \rangle = \langle M \rangle^{-1}$.
- 3. 〈R〉为乘法单位.
- 注 1. Pic: Ring → Ab 为 (协变) 函子. 特别地,

$$\mathrm{Pic}: \left[R \stackrel{f}{\longrightarrow} S\right] \mapsto [P \mapsto S \otimes_R P].$$