$3a\partial a$ ча 1. Докажите, что у броуновского движения почти наверное бесконечная полная вариация.

 $\it 3adaчa$ 2. Пусть $\it B_t$ – броуновское движение. Вычислить:

$$Z_t = \int_0^t 2B_t dB_t$$

Задача 3. Доказать формулу Ито для процесса Ито.

 $3a\partial aua$ 4. При каком α процесс $X_t = e^{\alpha t + \sigma B_t}$ является мартингалом?

 $3a\partial aua$ 5. Пусть $X_t=B_t^4$, где B_t – броуновское движение. Найти $\mathbb{E} X_t$.

Задача 6. Пусть

$$\begin{cases} dX_t = X_t(\mu_x dt + \sigma_x dB_t), \\ dY_t = Y_t(\mu_y dt + \sigma_y dZ_t), \end{cases}$$

где $dB_t\cdot dZ_t=\rho dt$ – броуновские движения с корреляций ρ . Выписать уравнения для процессов $X_t^\alpha, X_t\cdot Y_t, \frac{X_t}{Y_t}$

 $3a\partial a$ ча 7. Пусть процесс X_t удовлетворяет следующуему СДУ:

$$dX_t = \alpha X_t dt + \sigma_t dB_t$$

для некоторого процесса σ_t и $\alpha \in \mathbb{R}$. Найти $\mu(t) = \mathbb{E} X_t$.

3a da va 8 (Уравнение Орнштейна-Уленбека). Решить стохастическое дифференциальное уравнение на X_t :

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

При каком распределении X_0 процесс X_t стационарен?