

SORBONNE UNIVERSITÉ Master ANDROIDE

DISCO: Contextually Improving Command Discoverability

Stage de Master 1

Réalisé par :

Alexandre XIA

Encadré par :

Gilles BAILLY, ISIR, Sorbonne Université Julien GORI, ISIR, Sorbonne Université

Référent:

Thibaut Lust, LIP6, Sorbonne Université

3 juillet 2023

Table des matières

1	Introduction	1
2	État de l'art	2
	2.1 4 domains of interface performance improvement	2
		3
	2.2.1 Exemple avec des similarités avec notre cas	3
	2.2.2 Autre exemple qui s'approche beaucoup plus de notre cas	
3	Contribution	5
4	Conclusion	6
\mathbf{A}	Cahier des charges et Manuel Utilisateur	8
	A.1 Cahier des charges (MODIFIER LES SCHEMAS)	8
	A.1.1 Introduction	
	A.1.2 Logiciel	
	A 2 Manuel Utilisateur 1	ın

Introduction

Les applications telles que Microsoft word, photoshop ou illustrator procurent de nombreuses commandes pour une production plus efficace. Certaines commandes peuvent combiner plusieurs commandes simples accélérant une tâche. Par exemple, Microsoft Powerpoint a la commande "Aligner à gauche" qui alignera un groupe d'objet vers la gauche. Pour la plupart des utilisateurs, cette commande serait inconnue et ils essayeraient probablement de déplacer chaque objet jusqu'à ce que le groupe d'objets soit aligné visuellement. Ce qui est beaucoup plus lent. Un autre exemple est la commande "retirer les yeux rouges" proposée par photoshop qui serait plus rapide que de choisir un pinceau et changer sa couleur.

Plusieurs méthodes pour recommander des commandes ont été proposées mais une partie suggère que l'utilisateur est déjà familier avec les commandes optimales. Les outils permettant à l'utilisateur de découvrir de nouvelles commandes utilisent en majorité des recommandations en fonction de ce que l'utilisateur emploie comme outils.

Dans la continuité du projet de Master I, nous avons durant le stage essayer d'aboutir à une preuve de concept pour la création d'un modèle de recommandation de commandes. Ce modèle se baserait plus sur l'intention de l'utilisateur en utilisant l'état de l'application (une image ou un vecteur de descripteurs avant et après modification pour l'utilisateur) plutôt que la façon dont il s'y prend pour atteindre son objectif.

Pour le projet, nous sommes encadré par Gilles BAILLY et Julien GORI

Le lien du dépôt git est ici : NOTRE GITHUB

État de l'art

2.1 4 domains of interface performance improvement

En ce qui concerne le concept d'aide pour les commandes, il existe différentes approches permettant d'améliorer les performances de l'utilisateur avec les interfaces. Ces approches se basent sur 4 points :

- L'amélioration intramodale (intramodal improvement) concerne la vitesse et l'ampleur des performances d'une méthode spécifique du logiciel. Par exemple, aider l'utilisateur à prendre en main un clavier spécifique (ShapeWriter [1])
- L'amélioration intermodale (intermodal improvement) pour le passage vers des méthodes d'accès plus efficace pour une fonction spécifique avec un plafond ("ceiling") de performances plus élevé. Par exemple, Le passage d'une commande sélectionnée à la souris vers l'équivalent en raccourci clavier.
- L'extension vocabulaire (vocabulary extension) par rapport aux connaissances de l'utilisateur vis-à-vis des outils du logiciel. On voudrait que l'usager découvre et apprend un certain nombre de commandes d'un logiciel qui lui serait utile. Par exemple, l'utilisateur qui utilise habituellement "copier-coller" pourrait utiliser la commande "dupliquer" qui est une alternative (plus rapide dans ce cas).

Il faut noter que l'amélioration intermodale concerne une fonction spécifique et une alternative pour l'utiliser alors que l'extension vocabulaire concerne les commandes que l'utilisateur connaît.

- La planification des tâches (tasks mapping) qui concerne les stratégies employées par l'utilisateur pour faire une tâche (plus difficile). Pour dessiner 2 rectangles, il y aurait l'utilisateur qui en dessinerait 2 et un autre qui dupliquerait un rectangle qu'il aurait dessiné.

Ces notions sont toutes précisées dans l'article Supporting Novice to Expert Transitions in User Interfaces [1]

(a) Performance characteristics of a method. *Intramodal improvement* concerns the user's performance ability within one method.

(b) Range of methods for a function. *Intermodal improvement* concerns the user's transition to faster methods for activating a function.

(c) Range of functions available. Vocabulary extension concerns the user's knowledge and use of the functions available.

FIGURE 2.1 – Représentation des approches amélioration intramodale (a), amélioration intermodale (b) et de l'extension vocabulaire (c) [1]

2.2 Exemples d'interfaces pour l'extension vocabulaire (vocabulary extension) et lien avec notre projet

On s'intéresse de notre point de vue, plutôt à la notion d'extension vocabulaire. En effet, l'utilisateur n'a probablement pas conscience de l'existence des commandes et notre objectif est de pouvoir lui donner la possibilité de les découvrir.

2.2.1 Exemple avec des similarités avec notre cas

Une méthode étudiée est des exemples alternatifs pour les boutons cachés lorsqu'on consulte des mails sur un Iphone ont été étudiés. Par défaut il faut glisser horizontalement sur le mail en question pour faire apparaître les commandes. L'alternative qui a été étudiée propose de suggérer leur existence (comme montré dans la figure suivante). C'est une méthode qui est un peu en lien avec notre assistant. En effet, on souhaite que l'utilisateur découvre des commandes dont il ne connaît pas l'existence (comme les commandes cachées) et qu'en plus, il les utilise dans la bonne situation.

FIGURE 2.2 – Autres versions pour découvrir des boutons cachés [2]

Ce sont des alternatives un peu plus directes qui rendent ces boutons connus pour les

nouveaux utilisateurs et ceux qui sont plus habitués. Dans notre cas, on essaye d'afficher la bonne commande en question à l'usager pour l'inciter à utiliser une commande selon la situation plutôt que de juste montrer l'existence de ces fonctions qui nécessiteront à l'usager de découvrir lui-même leur utilité.

2.2.2 Autre exemple qui s'approche beaucoup plus de notre cas

L'article "Sequence Prediction Applied to BIM Log Data, an Approach to Develop a Command Recommender System for BIM Software Application" propose l'implémentation d'un outil de recommandation de commande pour les utilisateurs de logiciels de modélisation des données du bâtiments [quotation to add].

FIGURE 2.3 – AutoDesk Revit (image de l'article) [1]

L'approche consiste à utiliser les journaux ("logs") d'un logiciel tel que Autodesk Revit. Les données de ces journaux seront traitées puis employées pour développer un modèle de "Machine learning" pour suggérer des commandes à l'utilisateur afin d'améliorer leur rythme de travail. L'article emploie l'étude de l'apprentissage supervisé pour prédire une suite de commande qui serait utile à l'utilisateur. Notre cas serait de recommander la commande dans le cas où l'usager n'utiliserait pas la commande optimale ce qui est en partie similaire à l'étude proposer par l'article.

Cependant, la principale différence est que dans notre cas on utilise en entrée l'état du logiciel (image avant et après l'utilisation d'une commande) alors que l'article étudie l'historique des commandes.

Contribution

Dans cette partie nous allons présenter les différents points traités avec nos encadrants pour mener à bien notre projet.

Conclusion

Pour conclure, nous avons donc pour notre travail conçu un assistant qui aide l'utilisateur à utiliser les bonnes commandes. Les différents points énoncés dans le sujet ont été fait. Nous avons généré une base de données à partir d'une simulation d'utilisateur, nous avons entraîné un modèle (classifieur) à prédire des commandes à suggérer et enfin l'assistant peut utiliser cette prédiction pour faire la bonne suggestion de commande.

Dans notre cas de flèches directionnelles et de dessin de figures, les données sont relativement simples et la plupart des modèles de classifications sont assez efficaces pour bien prédire les commandes et les données générées par simulation permettent d'avoir une base d'entraînement assez facilement accessible.

Cependant, il faut noter que si nous passons à des données plus compliquées, tous les modèles ne fonctionneraient probablement pas, une image en entrée par exemple, pourrait nécessiter des réseaux de convolution. Transformer la donnée en image est une piste qu'il est possible d'explorer avec donc une entrée qui est une matrice de pixels.

Une autre piste qu'il faudrait explorer est l'emploie d'un logiciel avec plus de commandes que la version simplifiée qui nous permet surtout de voir si le concept d'assistant autonome était possible. Il faut donc pouvoir expérimenter plus pour comprendre à quel point ce système est robuste.

Bibliographie

- [1] Andy Cockburn Carl Gutwin Joey Scarr Sylvain MALACRIA. « Supporting Novice to Expert Transitions in User Interfaces ». In: *ACM Comput. Surv.* (2014). URL: https://inria.hal.science/hal-02874746/document (pages 2-4).
- [2] Nicole Ke Cheng Pong. « Understanding and Increasing Users' Interaction Vocabulary ». In: 29ème conférence francophone sur l'Interaction Homme-Machine, AFIHM (2017). URL: https://hal.science/hal-01577901/file/RD-pong.pdf (page 3).

Annexe A

Cahier des charges et Manuel Utilisateur

A.1 Cahier des charges (MODIFIER LES SCHEMAS)

A.1.1 Introduction

Ce projet a pour objectif de créer un assistant qui incite l'utilisateur à découvrir l'usage de certaines commandes qui sont potentiellement meilleures que d'autres. L'assistant devra dans un premier temps analyser les commandes utilisées par l'usager et en fonction des commandes détectées et de l'état du logiciel, il proposera une meilleure commande s'il en existe une (une commande qui combinerait les actions). Pour mener à bien la preuve de concept, on implémentera cette assistant dans 3 logiciels différents : Un éditeur de texte (type word), Un programme de présentation (Google slide, Powerpoint) et enfin un logiciel de traitement d'images/dessins. En prenant un exemple dans un éditeur de texte, l'utilisateur pourrait faire 4 sauts d'espaces au lieu de juste appuyer sur le bouton TAB qui serait plus efficace au niveau du temps et effort.

Le travail à réaliser sera représenté dans un premier temps par le schéma suivant (cela permettra de faire la base du projet) :

FIGURE A.1 – Génération des données et apprentissage du modèle

FIGURE A.2 – Passage en ligne

Le travail consiste à :

généralisée à différents contextes (Éditeurs de forme; éditeur photo, éditeur de texte).

- Réaliser un composant qui capture l'ensemble des commandes de l'application
- Réaliser un modèle qui, à partir de deux états de l'application retourne la commande la plus appropriée.
- Réaliser un assistant qui repose sur les composants précédents pour présenter les raccourcis les plus pertinents aux bons moments.
- Réaliser des évaluations techniques pour comprendre les performances du modèle
- Réaliser des études utilisateurs pour évaluer la pertinence de l'approche.
- Réaliser des démonstrateurs pour étudier dans quelle mesure cette approche peut être

A.1.2 Logiciel

Les 3 Logiciels

Pour ce qui concerne les logiciels, on a décidé de faire les logiciels d'éditeur de texte et présentation par nous même à l'aide de python (librairie PyQt) avec des fonctionnalités qui nous semblent pertinentes. On a grâce à cela, un meilleur contrôle sur ce qu'il passe dans les commandes.

Pour le logiciel de traitement d'images, nous avons décidé qu'il serait intéressant d'utiliser directement un des logiciels déjà entièrement fait entre krita (qui est open source) et photoshop. En fin de compte, nous avons décidé qu'il serait peut-être mieux avec le temps qu'on a d'utiliser plutôt le logiciel photoshop dont on ne peut cependant pas directement accéder aux historiques.

Les décisions prisent sur quelles commandes nous semblaient intéressantes à utiliser sur l'assistant sont :

Pour le logiciel de type Word:

- Chercher et remplacer (CTRL + R dans notre logiciel)
- Les commandes de sauts entre les mots (CTRL + -> ou <-)

- Les commandes de sauts vers le début et vers la fin d'une ligne (home ou end sur un clavier querty)
- Les commandes de selections de mots (CTRL + SHIFT + <- ou ->) et du document (CTRL + A)
- La commande d'indentation (TAB)

Chacune de ces commandes peuvent être effectuées de façon un peu moins efficace (niveau temps et nombre de commandes)

Pour le Logiciel de type Powerpoint

- Commandes alignements
- Commandes de groupage (CTRL + G) et dégroupage (CTRL + SHIFT + G)
- Les commandes de sauts vers le début et vers la fin d'une ligne (home ou end sur un clavier qwerty)
- Les commandes de selections de mots (CTRL + SHIFT + <- ou ->) et du document (CTRL + A)
- La commande d'indentation (TAB)

Pour photoshop

— blur (gaussien, surface et iris)

Une grande partie du projet de stage a pour objectif d'implémenter les éléments de l'article suivant :

A.2 Manuel Utilisateur

Certaines librairies ont été utilisé pour notre implémentation :

- Numpy, matplotlib, pandas (librairies mathématiques)
- scikit-learn
- pyQT
- networkx
- pyvis
- csv

Ensuite il existe plusieurs versions du projet :

- Projet V4 correspond à la dernière version du projet avec des points d'ouverture qu'on a commencé à traiter et une interface utilisateur (expériences utilisateurs).
- Projet V3 est la version sans l'interface utilisateur.
- PlotTime correspond correspond à la version V3 avec la possibilité d'étudier les temps en fonction de la taille de l'historique (l'hyperparamètre size dans la partie AllAssistant dans MainWindow).
- projet est la version fonctionnelle du projet sans les explorations des bonus (points d'ouverture).
- Projet-Androide-Logiciel correspond au premier logiciel simplifié.

Pour pouvoir lancer le code, il faut se lancer un terminal et exécuter la commande suivante dans le bon répertoire (ProjetV4, ProjetV3, PlotTime, projet ou Dessin pour Projet-Androide-Logiciel1) :

python MainWindow.py (ou python3).