

2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 28, 2025

声明:请勿用于个人学习外其他用途!

目录

第1草	Linear Algebra $oxed{ ilde{ ilde{L}}}$ Topology of \mathbb{R}^N		3
第2章			
2.1	Metric Spaces		3
	2.1.1	Definition of Metric Spaces	3
	2.1.2	Examples of metrics in \mathbb{R}^N	3
2.2	Conve	rgence of sequences	3
	2.2.1	Definition of Convergence	3
	2.2.2	Cauchy Sequences and Complete Metric Spaces	4
	2.2.3	Example: Cauchy Sequence Not Convergent in $\mathbb Q$	4
	2.2.4	Properties of Convergent Sequences in \mathbb{R}^N	4
	2.2.5	Properties of Sequences in \mathbb{R}^N	4
	2.2.6	Limit Superior and Limit Inferior	4
2.3	Topological properties		5
	2.3.1	Open and Closed Sets	5
	2.3.2	Interior, Closure, and Boundary of Sets	5
	2.3.3	Bounded Sets and Compact Sets in \mathbb{R}^N	5
2.4	Continuous functions		6
	2.4.1	Cluster Points in Metric Spaces	6
	2.4.2	Limits of Functions at Cluster Points	6

第1章 Linear Algebra¹

内容提要

□ Leading Principal Minor: 顺序主子式

■ Positive definite matrix:正定矩阵

□ Orthogonal matrix:正交矩阵

□ Positive semi-definite matrix: 半正定矩阵

□ Symmetric matrix: 对称矩阵

□ Determinant: 行列式

定义 1.1

For $N \times N$ matrix $A = (a_{ij})$, using any row or column:

$$\det A = \sum_{i=1}^{N} (-1)^{i+j} a_{ij} \det A_{ij}$$

where A_{ij} is the $(N-1) \times (N-1)$ matrix obtained by deleting the i-th row and j-th column of A.

定理 1.1

$$A^{-1} = \frac{1}{\det A}\tilde{A}$$

where $\tilde{a_{mn}} = (-1)^{m+n} \det A_{nm}$.

\odot

定义 1.2

Orthogonal matrix : $P^TP = I$. **Symmetric** matrix : $A^T = A$.

Positive definite matrix : $x^T A x > 0$ for all $x \neq 0$. Positive semi-definite matrix : $x^T A x \geq 0$ for all x.

定义 1.3

Leading Principal Minor: determinant of the first $k \times k$ submatrix of A. For real symmetric matrix A, A is positive definite if and only if all its leading principal minors are positive.

定义 1.4

$$Av = \lambda v$$

where v is eigenvector, λ is eigenvalue. λ is a root of the characteristic polynomial $\det(A - \lambda I) = 0$.

*

定义 1.5

Complex inner product:

$$\langle x, y \rangle = x^* y = \sum_{i=1}^n \bar{x_i} y_i$$

where \bar{x} is the **complex conjugate** and x^* is the **conjugate transpose** (adjoint).

¹只记一些矩阵分解吧,以防忘了

定义 1.6

Hermitian matrix : $A^* = A$.

For real matrices, Hermitian matrix is symmetric.

For Hermitian matrix, all eigenvalues are real.

定理 1.2 (Diagonalization of Symmetric Matrices)

$$P^TAP = \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}$$

where P is orthogonal matrix, λ_i are eigenvalues of A.

 \Diamond

第 2 章 Topology of \mathbb{R}^{N1}

- □ Topology 拓扑
- Metric Space 度量空间
- ☐ Convergence 收敛
- interior 内部

- □ closure 闭包
- boundary 边界
- □ compact set 紧集
- □ cluster point 聚点

2.1 Metric Spaces

2.1.1 Definition of Metric Spaces

定义 2.1

Let X be a set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** (or **distance**) on X if:

- 1. (positivity) $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y.
- 2. (symmetry) d(x,y) = d(y,x) for all $x, y \in X$.
- 3. (triangle inequality) $d(x,y) \leq d(x,z) + d(z,y)$ for all $x,y,z \in X$.

A set X together with a metric d is called a **metric space**, denoted by (X, d).

2.1.2 Examples of metrics in \mathbb{R}^N

- $\begin{array}{ll} \bullet & \text{Euclidean metric: } d(x,y) = \sqrt{\sum_{i=1}^N (x_i-y_i)^2}. \\ \bullet & L^p \text{ metric (for } p \geq 1)\text{: } d(x,y) = (\sum_{i=1}^N |x_i-y_i|^p)^{1/p}. \end{array}$
- Sup norm (when $p = \infty$): $d(x, y) = \max_{i=1}^{N} |x_i y_i|$.

2.2 Convergence of sequences

2.2.1 Definition of Convergence

定义 2.2

Let (X, d) be a metric space. A sequence $\{x_n\}$ in X is said to **converge** to a point $x \in X$ if for every $\epsilon > 0$, there exists an integer N such that $d(x_n, x) < \epsilon$ for all $n \ge N$. In this case, we write $\lim_{n \to \infty} x_n = x$. A sequence that converges is called **convergent**, otherwise it is called **divergent**.

定义 2.3

When metric space is \mathbb{R}^N , we say that $\{x_n\}$ is **bounded** if there exists a real number M such that $||x_k|| \leq M$ for all n.

¹点集拓扑对应数分高代这一级别的数学基础课, 只有 sms 和图班的同学学过, 所以我简单记一下, 无需关注证明, 数理经济学只用到结论

2.2.2 Cauchy Sequences and Complete Metric Spaces

- Cauchy sequence: A sequence $\{x_n\}$ in a metric space (X,d) is called a Cauchy sequence if for every $\epsilon > 0$, there exists an integer N such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge N$.
- Complete metric space: A metric space (X, d) is called **complete** if every Cauchy sequence in X converges to a point in X.

定理 2.1

Any convergent sequence in a metric space is a Cauchy sequence.

\Diamond

2.2.3 Example: Cauchy Sequence Not Convergent in $\mathbb Q$

Consider the metric space (\mathbb{Q}, d) , where d(x, y) = |x - y|.

Fibonacci sequence: Let $\{F_k\}$ be the Fibonacci sequence, defined by

$$F_1 = F_2 = 1, F_{k+1} = F_k + F_{k-1}, k \ge 2$$

A Special Sequence: Define $a_k = \frac{F_{k+1}}{F_k}$. Then $\{a_k\}$ is a Cauchy sequence in \mathbb{Q} but does not converge in \mathbb{Q} .

2.2.4 Properties of Convergent Sequences in \mathbb{R}^N

Consider \mathbb{R}^N with the Euclidean metric. Let $\{x_n\}$ and $\{y_n\}$ be two sequences.

- Preservation of Addition/Subtraction: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} (x_n \pm y_n) = x \pm y$.
- Preservation of Multiplication: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} (x_n \cdot y_n) = x \cdot y$.
- Preservation of Division: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y \neq 0$, then $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$.
- Preservation of Inequality: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $x_n \leq y_n$ for all n implies $x \leq y$.

2.2.5 Properties of Sequences in \mathbb{R}^N

性质 A convergent sequence in \mathbb{R}^N is bounded.

A sequence $\{x_{n_k}\}$ is called a **subsequence** of $\{x_n\}$ if $n_1 < n_2 < n_3 < \cdots$.

性质 subsequences of a convergent sequence in \mathbb{R}^N also converge to the same limit.

2.2.6 Limit Superior and Limit Inferior

定义 2.4

Let $\{x_n\}$ be a sequence in \mathbb{R}^N . The **limit superior** of $\{x_n\}$ is defined by

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right)$$

The **limit inferior** of $\{x_n\}$ is defined by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

2.3 Topological properties

2.3.1 Open and Closed Sets

定义 2.5

In a metric space (X,d), a set $U\subset X$ is called **open** if for every $x\in U$, there exists an $\epsilon>0$ such that $B(x,\epsilon)\subset U$. A set $F\subset X$ is called **closed** if its complement $F^c\stackrel{\mathrm{def}}{=} X\backslash F$ is open.

性质 For open sets:

- 1. The union of any collection of open sets is open.
- 2. The intersection of finitely many open sets is open.

For closed sets:

- 1. The intersection of any collection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

2.3.2 Interior, Closure, and Boundary of Sets

定义 2.6

The **interior** of a set $A \subset X$ is defined as:

$$\operatorname{int}(A) = \bigcup \{ U \subset A : U \text{ is open} \}$$

The **closure** of a set $A \subset X$ is defined as:

$$\overline{A} = \bigcap \{F \supset A : F \text{ is closed}\}\$$

The **boundary** of a set $A \subset X$ is defined as:

$$\partial A = \overline{A} \backslash \operatorname{int}(A)$$

定理 2.2

- $A \subset X$ is open if and only if $\partial A \subset A$.
- $A \subset X$ is closed if and only if $\partial A \subset A$.

2.3.3 Bounded Sets and Compact Sets in \mathbb{R}^N

定义 2.7

A set $A \subset \mathbb{R}^N$ is called **bounded** if there exists a real number M such that $||x|| \leq M$ for all $x \in A$. A set $A \subset \mathbb{R}^N$ is called **compact** if for any sequence $\{x_n\}$ in A, there exists a subsequence $\{x_{n_k}\}$ that converges to a point in A.

定理 2.3 (Heine-Borel Theorem)

In \mathbb{R}^N , a set A is compact if and only if it is closed and bounded.

2.4 Continuous functions

2.4.1 Cluster Points in Metric Spaces

定义 2.8

Let (X,d) be a metric space and $A \subset X$. A point $x \in X$ is called a **cluster point** of A if for every $\epsilon > 0$, there exists a point $y \in A$ such that $d(x,y) < \epsilon$ and $x \neq y$.

Equivalently, x is a cluster point of A if there exists a sequence $\{x_n\}$ in A such that $\lim_{n\to\infty} x_n = x$ and $x_n \neq x$ for all n.

2.4.2 Limits of Functions at Cluster Points

定义 2.9

Let (X,d) and (Y,ρ) be metric spaces, $A\subset X$, $f:A\to Y$, and x be a cluster point of A. We say that f has a **limit** $y\in Y$ at x if for every $\epsilon>0$, there exists a $\delta>0$ such that $\rho(f(y),y)<\epsilon$ for all $y\in A$ with $0< d(x,y)<\delta$. Equivalently, using neighborhoods: f has a limit y at x if for every neighborhood V of y, there exists a neighborhood U of X such that X such that X if X such that X if X is a limit X if X is a