Lecture Notes on Sets and Maps

Sets

Sets of Numbers

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, \ldots\}$$

$$\mathbb{Q} = \left\{\frac{k}{n} | k, n \in \mathbb{N}, n \neq 0\right\}$$

$$\mathbb{R} =$$

$$\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$$

$$\text{where } i \text{ is the } imaginary \ unit \ characterized \ by } i^2 = -1.$$

$$\mathbb{R}^d = \{(a_1, ..., a_d) | a_i \in \mathbb{R}\}$$

$$\mathbb{R}^{\infty} = \{(a_0, a_1, a_2, ...) | a_i \in \mathbb{R}\}$$

$$space \ of \ infinite \ sequences \ of \ reals$$

Set Operations

Let A, B be sets. We can perform operations on these sets:

- **Union $(A \cup B)$ **: $\{c | c \in A \text{ or } c \in B\}$
- **Intersection $(A \cap B)$ **: $\{c | c \in A \text{ and } c \in B\}$
- **Difference $(A \setminus B)$ **: $\{c \mid c \in A \text{ and } c \notin B\}$
- **Symmetric Difference $(A\Delta B)^{**}$: $(A \cup B) \setminus (A \cap B)$

Indexed Families of Sets

Let $(A_{\alpha})_{{\alpha}\in I}$ be an indexed family of sets (with the index set being I).

Examples

1.
$$I = \mathbb{N}, A_{\alpha} = \{\alpha, \alpha + 1\}$$
 2. $I = \mathbb{R}^+ = \{x \in \mathbb{R} | x > 0\}, A_{\alpha} = [\alpha, \infty)$

Union and Intersection of Indexed Families

$$\bigcup_{\alpha \in I} A_{\alpha} = \{a | a \in A_{\alpha} \text{ for some } \alpha \in I\}$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{a | a \in A_{\alpha} \text{ for every } \alpha \in I\}$$

Maps

* **Map** = **function** = **mapping** = **transformation**.

Let A, B be sets. A map $f: A \to B$ is an assignment that assigns to each element $a \in A$ a unique element $b \in B$, called the value of f at a, denoted by f(a).

The set A is called the **domain** of f, and the set B is called the **target space** of f.

Restriction of a Map

If $A' \subseteq A$, then the map $f': A' \to B$ defined by f'(a) = f(a) for all $a \in A'$ is called the **restriction** of f to A' (denoted by $f' = f|_{A'}$).

Examples of Maps

- ** $f : \mathbb{R} \to \mathbb{R}, x \mapsto sin(x)$ ** (f is the sine function)
- ** $f: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \sqrt{x}$ ** (f is the square root function)
- ** $g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 1/x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$ ** (g is the reciprocal function with a special case at x = 0)
- ** $f: V \to \text{set of subspaces of V}, v \mapsto span(v)^{**}$ (f is the span function)
- ** $D: P(\mathbb{R}) \to P(\mathbb{R}), p(x) \mapsto p'(x)^{**}$ (D is the derivative operator for polynomials)