11/3/24, 3:21 PM ChatGPT

To find the coefficients in partial fraction decomposition quickly, especially for complex rational functions, you can use the following numerical technique. This method simplifies finding coefficients A, B, C, D, E, \ldots without needing to derive a system of equations explicitly.

Steps for Numerical Coefficient Extraction

- 1. **Identify the Function**: Consider a rational function $R(x) = \frac{P(x)}{Q(x)}$ where P(x) and Q(x) are polynomials.
- 2. **Perform Long Division**: If the degree of P(x) is greater than or equal to the degree of Q(x), perform polynomial long division first to separate the polynomial part from the proper fraction.
- 3. **Factor the Denominator**: Factor Q(x) into its linear or irreducible quadratic factors:

$$Q(x) = (x - r_1)(x - r_2)(x^2 + ax + b)$$

4. **Set Up the Partial Fraction Form**: Write the partial fraction decomposition in the form:

$$R(x) = \frac{A_1}{(x - r_1)^{n_1}} + \frac{A_2}{(x - r_2)^{n_2}} + \frac{Bx + C}{(x^2 + ax + b)^m} + \dots$$

- 5. Use Residue Method for Coefficients:
 - To find the coefficient A_1 corresponding to the factor $(x-r_1)^{n_1}$:

$$A_1 = \lim_{x \to r_1} (x - r_1)^{n_1} R(x)$$

- Repeat for each A_2 , B, C, etc., using their respective roots or factors.
- 6. Solve Using the Method of Residues: For complex roots or higher-order factors, if r is a root of multiplicity n:

$$A = \frac{1}{(n-1)!} \lim_{x \to r} \frac{d^{n-1}}{dx^{n-1}} \left[(x-r)^n R(x) \right]$$

Here, you differentiate n-1 times and then evaluate at x=r.

- 7. Numerical Evaluation: For numerical approximation, you can use:
 - **Direct Substitution**: Substitute values close to the roots into R(x) and calculate the limits to find coefficients.
 - **Software Tools**: Use computational tools (e.g., Python, MATLAB) to evaluate limits numerically, especially for complex rational functions.

Example

For example, if you have $R(x) = \frac{2x^2+3}{(x-1)(x+2)}$, you'd identify:

1. Setup:

11/3/24, 3:21 PM

$$R(x) = \frac{A}{x-1} + \frac{B}{x+2}$$

2. Find Coefficients:

• For *A*:

$$A = \lim_{x \to 1} (x - 1)R(x) = \lim_{x \to 1} (x - 1) \frac{2x^2 + 3}{(x - 1)(x + 2)} = \frac{2(1)^2 + 3}{1 + 2} = \frac{5}{3}$$

• For *B*:

$$B = \lim_{x \to -2} (x+2)R(x) = \frac{2(-2)^2 + 3}{(-2-1)} = \frac{8+3}{-3} = -\frac{11}{3}$$

Conclusion

This numerical approach using limits and residues allows for a quick extraction of coefficients for partial fraction decomposition. It minimizes the algebra involved in solving systems of equations and can be particularly useful for complex or higher-order functions.