Insiemi dinamici

Sono strutture:

- che hanno un numero finito di elementi
- che hanno elementi che possono cambiare
- dove assumiamo che ogni elemento ha un attributo diverso che serve da chiave
- le chiavi son tutte diverse

Possiamo inoltre definire principalmente due tipi di operazioni:

- Interrogazione(query)
- Modifiche

Operazioni tipiche possono essere:

- Insert
- Search
- Delete

Se gli insiemi sono **totalmente ordinati**, è possibile effettuare anche le seguenti operazioni:

- Ricerca del minimo
- Ricerca del massimo
- Ricerca del prossimo elemento più grande(successor)
- Ricerca del prossimo elemento più piccolo(predecessor)

La complessità è misurata in funzione della dimensione dell'insieme, inoltre dipende anche dalla struttura dati utilizzata.

Infatti alcune operazioni possono risultare pesanti su alcune strutture dati e leggere su altre.

Array

Un array è una sequenza di caselle **grandi uguali** allocate nella memoria **contiguamente**.

Ogni casella può contenere un elemento dell'insieme.

Il **calcolo** dell'indirizzo di qualunque elemento dell'array ha **costo costante.**Dunque anche **accedere** ad un elemento qualsiasi ha un **costo costante.**

Array statico

E' un array il cui numero di elementi massimo è prefissato

Quindi, quand'è che ci conviene usare un array statico e quanto costano le varie operazioni?

Se l'array non è ordinato:

• Per quanto riguarda l'inserimento in un array, il **costo** è **costante** ($\in O(1)$)

ARRAYINSERT(A, k)

```
if A.N \neq A.M then
A.N \leftarrow A.N + 1
A[N] \leftarrow k
return k
else
return nil
```

Il primo if serve a controllare che ci sia abbastanza spazio per inserire il nuovo elemento

• L'eliminazione di un elemento, invece è lineare $(\in O(n))$.

Anche se conoscessimo già la posizione dell'elemento da eliminare, dovremmo spostare tutti gli elementi.

```
ARRAYDELETE(A, k)

for i \leftarrow 1 to A.N do

if A[i] == k then

A.N \leftarrow A.N - 1

for j \leftarrow i to A.N do

A[j] \leftarrow A[j + 1]

return k
```

Anche la ricerca di un elemento è lineare.
 Infatti dobbiamo scorrere tutto l'array per trovare l'elemento.
 Stessa cosa si applica per la ricerca del minimo e del massimo

"array_search.png" is not created yet. Click to create.

Ricerca di un generico elemento in un array non ordinato

 Per quanto riguarda la ricerca del successor (e del predecessor), l'algoritmo è leggermente più complicato rispetto alla classica ricerca ma il suo tempo computazionale rimane lineare

Se l'array è ordinato invece:

- L'inserimento è lineare visto che bisogna spostare tutti gli elementi
- L'eliminazione rimane lineare
- La **ricerca** invece, diventa **logaritmica**($\in O(\log n)$, visto che possiamo applicare un algoritmo dicotomico
- La ricerca del minimo, massimo, del predecessor e del successor diventano costanti ($\in O(1)$)

Array ridimensionabile

Se non conosciamo a priori il **numero massimo** di elementi, possiamo **espandere** l'array quando finisce lo spazio.

Tuttavia espandere costa tempo lineare

Una **prima idea** sarebbe quella di **aumentare** la dimensione dell'array **di una cella** ogni volta che viene inserito un elemento nell'array(se è pieno ovviamente). Tuttavia, così facendo, **ogni inserimento** su un array pieno avrebbe costo **lineare**

Dunque il costo dell'inserimento dipende dallo stato dell'array e dalle operazioni precedenti

Una **seconda idea** potrebbe essere quella di **raddoppiare** la dimensione dell'array quando questo è pieno e **dimezzarla** quando il **numero** degli elementi presenti nell'array diventa $\leq \frac{1}{4}$

```
DYNARRAYINSERT2(A, k)

if A.N == A.M then
A \leftarrow ARRAYEXTEND(A, A.M)
ARRAYINSERT(A, k)
```

Il primo if controlla se l'array è pieno, e se lo è aumenta la dimensione dell'array

```
DYNARRAYDELETE(A, k)
ARRAYDELETE(A, k)
if A.N \le 1/4 \cdot A.M then
B \leftarrow un array di dimensione A.M/2
B.M \leftarrow A.M/2
B.N \leftarrow A.N
for i \leftarrow 1 to A.N do
B[i] \leftarrow A[i]
A \leftarrow B
```

Tuttavia, visto che c'è una dipendenza tra le varie operazioni, bisogna calcolare la complessità ammortizzata:

complessità ammortizzata di un inserimento con la **prima idea** in una lunga seria di $n = 2^K$ inserimenti con M = 1 inizialmente:

$$T_{amm} = \frac{d+c+2c+3c+\cdots+(n-1)c}{n} \in O(n)$$

cioè la a complessità ammortizzata è O(N)

complessità ammortizzata di un inserimento con la seconda idea in una lunga seria di 2^K inserimenti con M=1 inizialmente:

$$T_{amm} = rac{\left(c + 2c + 4c + 8c + \dots + 2^{K-1}c
ight) + 2^{K}d}{2^{K}}$$

$$= rac{\left(2^{K} - 1
ight)c + 2^{K}d}{2^{K}} \in O(1)$$

cioè la a complessità ammortizzata è O(1)

Liste Concate

E' una struttura dati **lineare** il cui **ordine** è determinato dai puntatori che indicano l'elemento **successivo**.

Data una lista L, il primo elemento è indicato dal puntatore L. head

Può essere anche doppiamente concatenata:

oltre al puntatore all'elemento successivo, abbiamo un puntatore all'**elemento precedente**

Se il **prev** del primo elemento lo facciamo puntare all'ultimo elemento, otteniamo una lista **circolare

Per ognuna di queste versioni ovviamente esiste anche la variante **ordinata** dove gli elementi sono, banalmente, ordinati secondo la **chiave**

Sulle **liste doppiamente concatenate non ordinate** possiamo ovviamente **ricercare** un elemento:

LISTSEARCH(
$$L, k$$
)
 $x \leftarrow L.head$
while $x \neq nil$ and $x.key \neq k$ do
 $x \leftarrow x.next$
return x

dove è facile notare che la sua complessità è $\mathcal{O}(n)$

Chiaramente possiamo anche inserire un elemento in testa

```
LISTINSERT(L, x)

x.next \leftarrow L.head

if L.head \neq nil then

L.head.prev \leftarrow x

L.head \leftarrow x

x.prev \leftarrow nil

L.head
```

Il prev ora punterà all'elemento in testa, e il nuovo prev sarà nil. Inoltre il next ora punterà all'elemento che prima era in testa.

La complessità è costante(O(1)), infatti non dipende dal numero degli elementi

Si può inoltre **rimuovere** un elemento **puntato** da x:

ISTDELETE(L, x)

if $x.prev \neq nil$ then $x.prev.next \leftarrow x.next$ else $L.head \leftarrow x.next$ if $x.next \neq nil$ then $x.next.prev \leftarrow x.prev$

Х

Bisogna controllare se l'elemento da eliminare è il primo(primo if) o l'ultimo(secondo if)

Anche in questo caso la complessità è costante

Tuttavia è un po' macchinoso e di difficile comprensione(bisogna effettuare dei controlli in testa e in coda).

Possiamo aggiungere un elemento fittizio che non contiene dati: una **sentinella** che serve a far sì che la nostra lista non sia mai effettivamente vuota lista circolare vuota (solo sentinella);

lista circolare non vuota:

In questo modo, l'algoritmo di rimozione diventa più leggibile:

LISTDELETESEN(L, x)

 $x.prev.next \leftarrow x.next$

 $x.next.prev \leftarrow x.prev$

Non devo più fare i controlli per vedere se l'elemento che devo rimuovere sia il primo o l'ultimo

La complessità rimane inoltre costante

Versione con sentinella della ricerca di un elemento:

LISTSEARCHSEN(L, k)

 $x \leftarrow L.sen.next$

while $x \neq L.sen$ and $x.key \neq k$ do

 $x \leftarrow x.next$

return x

In modo analogo, anche per l'inserimento in testa evitiamo dei controlli da fare:

LISTINSERTSEN(L, x)

 $x.next \leftarrow L.sen.next$

 $L.sen.next.prev \leftarrow x$

L.sen.next \leftarrow x

 $x.prev \leftarrow L.sen$

Hash Table

Per array(e liste) molte operazioni hanno costo lineare(O(N)).

Tuttavia per le Hash Table vengono fornite le operazioni di base con tempo

costante

Tavole ad indirizzamento diretto

Una idea di base per le **Hash Table** è quella delle **Tavole ad indirizzamento diretto:** Sia U l'universo delle chiavi $U=\{0,1,\ldots,m-1\}$

L'insieme dinamico viene rappresentato con un array T di dimensione min cui ogni posizione corrisponde ad una chiave.

T è ad **indirizzamente diretto** perchè ogni sua cella corrisponde direttamente ad una chiave

universo delle chiavi:

$$U = \{0, 1, 2, ..., 9\}$$

insieme delle chiavi:

$$S = \{0, 2, 3, 4, 6, 7\}$$

L'inserimento/eliminazione/ricerca però diventa con costo costante:

TABLEINSERT(T, x)

$$T[x.key] \leftarrow x$$

TABLEDELETE(T, x)

$$T[x.key] \leftarrow nil$$

TABLESEARCH(k)

return T[k]

E' proprio ciò che faremo in un array statico

Dal punto di vista **computazionale** è senza dubbio efficiente.

Tuttavia non è sempre così dal punto di vista dello spazio occupato

Analizzando i seguenti casi, possiamo capire in quali contesti conviene usare le **tavole ad indirizzamento diretto:**

- consideriamo il seguente scenario:
 - studenti identificati con matricola composta da 6 cifre: abbiamo 10⁶ possibili chiavi
 - T occupa 8 · 10⁶ byte di memora (se un puntatore ne occupa 8)
 - di ogni studente si memorizza 10⁵ byte di dati (100kB)
 - ci sono 20000 studenti
- spazio occupato ma non utilizzato in assoluto (i nil): 8(10⁶ – 20000)=7840000B=7.84MB
- frazione di spazio occupato ma non utilizzato rispetto al totale: $\frac{7.84\cdot 10^6}{8\cdot 10^6 + 20000\cdot 10^5} = 0.0039$

cioè circa 0.4%

- quindi in questo contesto è ragionevole
- se si memorizza solo 1kB di dati per studente:

$$\frac{7.84 \cdot 10^6}{8 \cdot 10^6 + 20000 \cdot 10^3} = 0.28$$

cioè circa 28% della memoria è occupata "inutilmente"

se si memorizza solo 1kB di dati per studente e ci sono solo 200 studenti (quelli di un corso):

$$\frac{7.84 \cdot 10^6}{8 \cdot 10^6 + 200 \cdot 10^3} = 0.956$$

cioè circa 95.6% della memoria è occupata "inutilmente"

Hash Table nel dettaglio

L'indirizzamento diretto non è praticabile se l'universo delle chiavi è grande e come abbiamo visto **non** è **efficiente** dal punto di vista della memoria utilizzata.

Idea di base: Utilizziamo una tabella T con dimensione m con m molto più piccolo di |U|

La posizione della chiave k è determinata utilizzando una funzione:

la cosiddetta funzione hash

$$h: U \to \{0, 1, \ldots, m-1\}$$

Esempio di funzione hash:

- universo delle chiavi:
 U = {0, 1, 2, ..., 9}
- insieme delle chiavi:
 S = {0,3,7,9}
- funzione hash:
 h(k) = k mod 5
- h(k) è il valore hash della chiave k

In questo modo perdiamo l'indirizzamento diretto.

Infatti ora l'elemento k non si trova più nella posizione k ma in h(k). Riduciamo però lo spazio utilizzato(dal momento che m < |U|).

Tuttavia c'è rischio di collisione

nel caso dell'esempio precedente le coppie (0,5), (1,6), (2,7), (3,8) e (4,9) sono in collisione

Una buona funzione hash dunque deve ridurre al minimo le collisioni.

Un **hash perfetto** intuitivamente è una funzione che non crea mai collisioni.

E' dunque una funzione iniettiva:

$$k_1 \neq k_2 \Rightarrow h(k_1) \neq h(k_2)$$

Ma un hash perfetto è realizzabile soltanto se l'insieme non è dinamico

Una possibile soluzione alle collisioni è di concatenare in una lista gli elementi in collisione

universo delle chiavi:

$$U = \{0, 1, 2, ..., 9\}$$

insieme delle chiavi:

$$S = \{0, 2, 3, 7, 9\}$$

funzione hash:

$$h(k) = k \mod 5$$

e dunque, in caso di concatenamento, le operazioni diventeranno:

 $\mathsf{HashInsert}(T,x)$

$$L \leftarrow T[h(x.key)]$$

LISTINSERT(L, x)

 $\mathsf{HashSearch}(T,k)$

$$L \leftarrow T[h(k)]$$

return LISTSEARCH(L, k)

 $\mathsf{HASHDELETE}(T, x)$

$$L \leftarrow T[h(x.key)]$$

LISTDELETE(L, x)

T[h(x.key)] è una lista

- Inserimento: E' O(1) visto che il valore hash si calcola in tempo costante
- Cancellazione: Essendo una lista doppiamente concatenata, l'eliminazione di un elemento individuato è costante
- Ricerca: Dipende dalla lunghezza della lista T[h(k)] dunque dipende da:
 - Numero di elementi
 - Caratteristiche della funzione hash

Analizziamo dunque l'operazione di ricerca ma prima parliamo di

Funzionie hash uniforme semplice

E' una funzione **hash** che distribuisce le chiavi in modo uniforme tra le celle. Dunque **ogni cella** è destinazione dello stesso numero di chiavi la seguente funzione hash è uniforme semplice?

$$U = \{0, 1, 2, \dots, 99\}, m = 10, h(k) = k \mod 10$$

cioè h restituisce l'ultima cifra della chiave l'ultima cifra c è 0,1,2,...,8 o 9 (c \in {0,1,2,...,9}) ognuno di questi numeri appare 10 volte come ultima cifra ogni cella è destinazione di 10 chiavi è uniforme semplice

Esempio di funzione hash che gode dell'uniformità semplice

la seguente funzione hash è uniforme semplice?

$$U = \{0, 1, 2, \dots, 99\}, m = 19,$$

$$h(k) = \lfloor k/10 \rfloor + (k \mod 10)$$

cioè h restituisce la somma delle cifre della chiave

$$h(k) = 0 \text{ per } k = 0$$

$$h(k) = 1 \text{ per } k = 1 \text{ e } k = 10$$

$$h(k) = 2 \text{ per } k = 2 \text{ e } k = 11 \text{ e } k = 20$$

frequenza dei vari valori hash:

non è uniforme semplice

Esempio di funzione hash che NON gode dell'uniformità semplice

Worst, Best e Average Case

Worst Case:

Supponendo che:

- Universo delle chiavi(U): matricole con 6 cifre

- Numero di celle nella Hash-Table(m): 200

- Funzione hash: $h(k) = k \mod 200$

Se inseriamo i seguenti numeri 000123, 100323, 123723, 343123, 333123 tutte le chiavi saranno associate alla stessa cella di T dunque in questo caso la ricerca costerà, nel **caso peggiore**, $\Theta(N)$

Best Case:

Se la lista è vuota oppure contiene un solo elemento, la ricerca costerà O(1)

Average Case:

Assumiamo di avere una funzione hash che:

- è facile da calcolare, dunque O(1)
- gode della proprietà di uniformità semplice

Sia n_i il numero di elementi nella lista T[i] con $i=0,1,\ldots,m-1$ Il numero medio di elementi in una lista è:

$$\overline{n} = rac{n_0 + n_1 + \ldots + n_{m-1}}{m} = rac{N}{m} = lpha$$

Tempo medio per cercare un elemento che non c'è:

- La funzione di hash abbiamo detto che è **costante** dunque il costo per individuare la lista è $\Theta(1)$
- La lista ha in media α elementi e quindi percorerre la lista costa in media $\Theta(\alpha)$
- Dunque in totale il tempo richiesto è $\Theta(1) + \Theta(\alpha) = \Theta(1 + alpha)$

Attenzione: α non è costante

Tempo medio per cercare un elemento che c'è:

- Per individuare la lista il costo è sempre $\Theta(1)$
- Supponendo che vogliamo trovare l'elemento x_i , dobbiamo esaminare x_i stesso e
 - gli elementi che son stati inseriti dopo x_i (inserimento in testa)
 - · gli elementi hanno una chiave con lo stesso valore hash

Dopo x_i vengono inseriti N-i elementi (intuitivamente, se ho inserito i elementi, ne rimangono N-i da inserire)

Ogni elemento inserito ha $\frac{1}{m}$ probabilità di finire nella stessa lista di x_i (ovvero $\frac{1}{m}$ di probabilità che l'elemento abbia la chiave con lo stesso valore hash)

Dunque **in media** $rac{N-i}{m}$ elementi precedono x_i nella lista di x_i

Quindi:

tempo per ricercare x_i , calcolo del valore hash a parte, è proporzionale a

$$1+\frac{N-i}{m}$$

tempo per ricercare un elemento scelto a caso, calcolo del valore hash a parte, è proporzionale a

$$\frac{1}{N}\sum_{i=1}^{N}\left(1+\frac{N-i}{m}\right)$$

dove l'ultima quantità la possiamo elaborare in

$$\frac{1}{N} \sum_{i=1}^{N} \left(1 + \frac{N-i}{m} \right) = \frac{1}{N} \sum_{i=1}^{N} 1 + \frac{1}{N} \sum_{i=1}^{N} \frac{N}{m} - \frac{1}{N} \sum_{i=1}^{N} \frac{i}{m} = 1 + \frac{N}{m} - \frac{1}{N} \frac{N(N+1)}{2m} = 1 + \frac{N-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2N}$$

tempo richiesto in totale è

$$\Theta(1) + \Theta\left(1 + \frac{\alpha}{2} - \frac{\alpha}{2N}\right) = \Theta(1 + \alpha)$$

Conclusione:

Visto che $\alpha = O(m)$, la ricerca è O(1)

Dunque tutte e tre le operazione hanno tempo computazionale costante(sempre sotto l'assunzione che le liste siano doppiamente concatenate)

Metodi per l'hashing

Metodo della divisione: $h(k) = k \bmod m$

- · E' molto veloce
- Bisogna scegliere m bene tuttavia stringhe come numeri naturali secondo il codice ASCII

oca
$$\rightarrow$$
 111 · 128² + 99 · 128¹ + 97 · 128⁰

posizioni con diverse scelte di m

parola	m = 2048	m = 1583
le	1637	695
variabile	1637	1261
molle	1637	217
bolle	1637	680

Esempio di metodo della divisione con m=2048 e m=1583

Un buon valore per m potrebbe essere 2^p se si ha la certezza che gli ultimi bit hanno distribuzione uniforme

Un altro buon valore potrebbe essere un **numero primo** non vicino ad una potenza di 2

Metodo della moltiplicazione: $h(k) = |m(Ak \ mod \ 1)|$

con 0 < A < 1

dove $Ak \mod 1$ è la parte frazionaria di Ak

In queso caso il valore di m non è critico e un valore ragionevole può essere una potenza di 2.

La scelta ottimale di A dipende dai dati ma $A=rac{\sqrt{5}-1}{2}$ è un valore ragionevole

Indirizzamento aperto

Con l'**indirizzamento aperto**, tutti gli elementi sono memorizzati nella tavola T. L'elemento con chiave \mathbf{k} viene inserito nella posizione h(k) se essa è libera. Altrimenti si cerca una posizione libera secondo uno **schema d'ispezione**.

Quello più semplice è l'**ispezione lineare:** a partire dalla posizione h(k), l'elemento verrà inserito nella prima cella libera.

```
Insert con indirizzamento aperto:
HashInsert(T, x)
  i \leftarrow 0
  while i < m \, do
      j \leftarrow h(x.key, i)
      if T[j] == nil then
           T[j] \leftarrow x
          return j
      i \leftarrow i + 1
  return nil
Search con indirizzamento aperto:
HashSearch(T, k)
  i \leftarrow 0
 while i < m do
     j \leftarrow h(k, i)
      if T[j] == nil then
          return nil
      if T[j].key == k then
          return T[j]
      i \leftarrow i + 1
  return nil
```