Ipari informatika – IMSc feladat – 2022 őszi félév

Az IMSc feladatot a Matlab (R2018a verziónál nem régebbi), Simulink és Control System Toolbox felhasználásával kell megoldani. A feladat megoldása egy **áttekinthető** dokumentációból (pdf formátumban) és egy Matlab (Simulink) programból áll. A megoldást elektronikusan, a tárgy kari Moodle oldalán kérjük leadni!

Az IMSc feladat megoldására összesen 20 IMSc pont szerezhető.

A rendszer leírása

A daruk és más anyagmozgató egységek (robotok, autonóm földi járművek vagy AGV-k) irányítása az egyik népszerű szabályozástechnikai probléma.

Az 1. ábra egy síkban mozgó rakodódarut mutat. A feladatkiírás végén megtalálja a vezetékneve kezdőbetűjéhez tartozó paraméterértékeket. Az egyszerűség kedvéért a teher mozgását a z-y, függőleges síkra korlátozzuk. Jelölje R a sínen mozgó kocsira szerelt sodronydob középpontjának y irányú pozícióját, L a sodrony hosszát és θ a sodrony függőlegessel bezárt szögét. Ismert geometriai paraméternek tekinthető a sodronyt tekercselő dob sugara, melyet ρ -val jelöltünk. (A geometriai összefüggésekben a dob sugarát elhanyagoljuk, azaz $\theta=0$ esetben $y_0=L$.) Szintén ismertek az inercia paraméterek: M a kocsi tömege; m a mozgatott teher tömege és M a sodronyt tekercselő hajtás és a dob eredő tehetetlenségi nyomatéka. A rendszer bemenetei, vagy másképpen a beavatkozó jelek: M a kocsira ható erő, valamint a sodronyt tekercselő dobra ható M forgatónyomaték. A mért kimeneti változók: M0 és M1.

1. ábra. A hasznos terhet síkban mozgó daru a változók jelölésével

A fentiekből kiindulva, a fizika (mechanika) törvényei alapján felírhatók a rendszer viselkedését (modelljét) leíró nemlineáris, időinvariáns differenciálegyenletek:

$$m(\ddot{R} + \ddot{L}\sin\theta + 2\dot{L}\dot{\theta}\cos\theta + L\ddot{\theta}\cos\theta - L\dot{\theta}^{2}\sin\theta) + M\ddot{R} = F$$

$$m(\ddot{R}\sin\theta + \ddot{L}) + \frac{J}{\rho^{2}}\ddot{L} - mL\dot{\theta}^{2} - mg\cos\theta = -\frac{T}{\rho}$$

$$m(\ddot{R}\cos\theta + \dot{L}\dot{\theta} + L\ddot{\theta}) + mg\sin\theta = 0$$

Belátható, hogy a daru nyugalomban marad, ha a sodrony függőleges és a dobra ható nyomaték éppen ellentart a teher súlya miatt keletkező kötélerőnek, továbbá a kocsira nem hat oldalirányú erő. A nyugalmi konfigurációkban a sebességek nullák. A nyugalmi konfigurációkhoz (munkaponthoz) tartozó értékek legyenek rendre R_0 , L_0 és θ_0 = 0! Külön váltózókat rendelhetünk a nyugalmi konfigurációhoz képesti eltérésekhez:

$$R = R_0 + r, \theta = \theta_0 + \vartheta, L = L_0 + l, F = F_0 + f, T = T_0 + \tau,$$

ahol L_0 értéke a hallgató vezetékneve kezdőbetűjéhez rendelt paraméter, továbbá

$$\theta_0 = 0$$
, $F_0 = 0$, $\frac{T_0}{\rho} = mg$.

konstans munkaponti értékek és r, ϑ, l, f, τ a munkapont körüli kis változások. A munkapontban a sebességeket nullának tekintjük, így a munkapont közelében a sebességben kvadratikus tagokat elhanyagolhatjuk, továbbá a $\sin \vartheta \approx \vartheta$ és $\cos \vartheta \approx 1$ közelítéssel élve a

$$m(\ddot{r} + L_0 \ddot{\vartheta}) + M\ddot{r} = f$$

$$m\ddot{l} + \frac{J}{\rho^2}\ddot{l} = -\frac{\tau}{\rho}$$

$$m(\ddot{r} + L_0 \ddot{\vartheta}) + mg\vartheta = 0$$

összefüggéseket kapjuk, ahonnan az utolsó két sor felcserélésével és némi átrendezéssel a

$$\begin{bmatrix} m+M & mL_0 & 0 \\ m & mL_0 & 0 \\ 0 & 0 & m+\frac{J}{\rho^2} \end{bmatrix} \begin{pmatrix} \ddot{r} \\ \ddot{\vartheta} \\ \ddot{l} \end{pmatrix} = \begin{pmatrix} f \\ -mg\vartheta \\ -\frac{\tau}{\rho} \end{pmatrix}$$

mátrixos alakot írhatjuk fel. Innen kifejezhetők az \ddot{r} , $\ddot{\vartheta}$, \ddot{l} gyorsulások, és felírható a linearizált rendszer állapotegyenlete az

$$x = (r, \vartheta, l, \dot{r}, \dot{\vartheta}, \dot{l})^{T}$$
$$u = (f, \tau)^{T}$$
$$y = (r, l)^{T}$$

választás mellett. Vegye észre, hogy ez valójában két egyváltozós (egy bemenetű és egy kimenetű) rendszer rendre a kiskocsi pozíciójára és a sodrony hosszára!

Feladatok

Tervezzen diszkrét időben állapot-visszacsatoláson (7 pont), aktuális állapotmegfigyelőn és terhelésbecslőn (5 pont), továbbá alapjel korrekción (2 pont) alapuló szabályozásokat a kiskocsi r pozíciójára és a kötél l hosszára. A tervezéshez javasolt (ettől el lehet térni) specifikációk folytonos időben:

$$a = \sqrt{\frac{(m+M)g}{mL_0}}, \omega_0 = \frac{a}{2}, \xi = \frac{\sqrt{2}}{2}, s_{c\infty} = -1.5a, s_{o\infty} = -3a, T_{d,start} = \frac{4}{a}.$$

Válassza meg a T mintavételi időt úgy, hogy a Shannon-tétel elvárásai a leggyorsabb $s_{o\infty}$ specifikációhoz is jó közelítéssel teljesüljenek. Adja meg a specifikációkhoz tartozó értékeket a z-tartományban. Tervezze meg a szabályozót és dokumentálja az eredményeket.

2. Egy Simulink diagram segítségével határozza meg a linearizált szabályozási kör

$$r(t), \vartheta(t), l(t), f(t), \tau(t), x_d(t)$$

jeleinek tranzienseit $r_a = 0.1y_0 \left(1 - e^{-\frac{t}{T}}\right)$ és $l_a = 0$ alapjelek, $x(0) = (0.0,0.0,0.0)^T$ kezdeti állapot és

$$d(t) = d_{norm} \binom{0.1(m+M)g}{0.1mg\rho} \varepsilon \left(t - T_{d,start}\right)$$

bemenetekre ható zavarás (terhelés) esetén (6 pont). Vegyük észre, hogy itt két egyváltozós rendszerhez kell visszacsatolást tervezni, hogy mindkét rendszer bemenetére hathat külön zavarás.

Ügyeljen arra, hogy az alapjelváltás és a zavaró jelek kompenzálásának tranziensei ne lapolódjanak át, így szükség esetén módosítsa a bemeneti zavarások $T_{d,start}$ időpontját. A d_{norm} normalizáló tényezőt válassza meg úgy, hogy az alapjelváltás és a zavarójel váltás tranziensei a kimeneteken hasonló nagyságrendbe essenek, és így összerajzolva a tranzienseket a kimenetre gyakorolt hatásuk könnyen megítélhető legyen.

sorsz.	m	M	J	ρ	L_0	y_0
1	2	0.9	1,2e-4	0,05	0,7	0,5
2	3	1	1,5e-4	0,05	0,7	0,5
3	2,5	1,1	1,4e-4	0,05	0,8	0,6
4	3,5	1,2	1,5e-4	0,05	0,7	0,7
5	3	1,3	1e-4	0,05	1	0,7
6	3	1,4	1e-4	0,04	1	0,7
7	3	1,5	2e-4	0,04	1,5	0,8
8	4	1,6	2e-4	0,04	1,5	0,8
9	4	1,7	1.6e-4	0,04	1	0,8
10	5	1,8	1.4e-4	0,04	1,5	0,9
11	4	1,9	2e-4	0,04	1	1
12	4	2	2e-4	0,05	1	1
13	1,5	0,7	9e-4	0,05	0,8	1,1
14	2	0,8	9e-4	0,05	0,9	2
15	4	1,2	1e-4	0,05	1,3	1
16	4	1,3	1.1e-4	0,05	1	1
17	5	2	2e-4	0,05	1	1,5
18	180	54	1.5	0,5	15	5
19	280	90	2.5	0,5	20	7
20	31	10	1	0,3	7	2
21	28	4	5e-4	0,3	2	1
22	5	3	6e-4	0,05	0,6	1
23	7	3,6	4e-4	0,05	0,7	1
24	9	4	3,5e-4	0,05	0,6	0,7
25	8	4,5	3,5e-4	0,05	1	0,8

1. táblázat. Paraméterértékek

A nehézségi gyorsulás értéke $g = 9.81 \frac{m}{s^2}$.

Sorszám	Vezetéknév kezdőbetűje			
1	A-B			
2	C-D			
3	E-F			
4	G-H			
5	I-J			
6	K-L			
7	M-N			
8	O-R			
9	S-T			
10	U-W			
11	X-Z			