ЛАБОРАТОРНАЯ РАБОТА № 1.1

<u>Необходимые и достаточные условия существования безусловного и условного экстремума.</u>

1. Необходимые и достаточные условии безусловного экстремума.

Постановка задачи

Дана дважды непрерывно дифференцируемая функция f(x), определенная на множестве $X \in \mathbb{R}^n$. Требуется исследовать функцию f(x) на экстремум, т.е. определить точки $x^e \in \mathbb{R}^n$ её локальных минимумов и максимумов на \mathbb{R}^n :

$$f(x^e) = \min_{x \in R^n} f(x); f(x^e) = \max_{x \in R^n} f(x)$$
(1)

Стратегия решения задачи

Находятся точки $x^e \in \mathbb{R}^n$ локальных экстремумов с помощью необходимых и достаточных условий первого и второго порядков. Вычисляются значения $f(x^e)$ функции в найденных точках экстремумов.

• Необходимые условия экстремума первого порядка.

Пусть точка $x^e \in \mathbb{R}^n$ - точка локального минимума (максимума) функции f(x) на множестве \mathbb{R}^n и f(x) дифференцируема в точке x^e . Тогда градиент функции f(x) в точке x^e равен нулю т.е. $\nabla f(x^e) = 0$. (2)

• Необходимое условие экстремума второго порядка.

Пусть точка $x^e \in R^n$ точка локального минимума (максимума) функции f(x) на множестве R^n и f(x) дважды дифференцируема в точке x^e . Тогда матрица Гессе $H(x^e)$ функции f(x), вычисленной в точке x^e является положительно полуопределенной (отрицательно полуопределенной) т.е.

$$H(x^e) \ge 0, \quad (H(x^e) \le 0) \tag{3}$$

• Достаточные условия экстремума.

Пусть функция f(x) в точке $x^e \in \mathbb{R}^n$ дважды дифференцируема, её градиент равен нулю, а матрица Гессе является положительно определенной (отрицательно определенной) т.е.

$$\nabla f(x^e) = 0 \ u \ H(x^e) > 0, (H(x^e) < 0)$$
 (4)

Тогда точка x^e есть точка локального минимума (максимума) функции f(x) на множестве R^n .

Определение 1. Рассмотрим определитель матрицы Гессе $H(x^e)$ вычисленной в стационарной точке x^e

$$\det H(x^e) = \begin{vmatrix} h_{11} & h_{12} & \dots & h_{1n} \\ h_{21} & h_{22} & \dots & h_{2n} \\ \dots & \dots & \dots & \dots \\ h_{n1} & h_{n2} & \dots & h_{nn} \end{vmatrix}.$$

1. Определители
$$\Delta_1=h_{11}$$
, $\Delta_2=\begin{vmatrix}h_{11}&h_{12}\\h_{21}&h_{22}\end{vmatrix},...,\Delta_n=\begin{vmatrix}h_{11}&...&h_{1n}\\...&...&.\\h_{n1}&...&h_{nn}\end{vmatrix}$ называются

угловыми минорами.

2. Определители m -го порядка (m < n), получающиеся из определителя матрицы $H(x^e)$ вычеркиванием каких либо (n-m) строк и (n-m) столбцов с одними и теми же номерами, называются главными минорами.

Для проверки выполнения достаточных условий экстремума и необходимых условий второго порядка используются два способа.

<u>Первый способ</u> (с помощью угловых и главных миноров).

А. Критерий проверки достаточных условий экстремума. (критерий Сильвестра).

1. Для того, чтобы матрица Гессе $H(x^e)$ была положительно определенной ($H(x^e)>0$) и точка x^e являлась точкой локального минимума, необходимо и достаточно, чтобы знаки угловых миноров были строго положительны:

$$\Delta_1 > 0, \Delta_2 > 0, ..., \Delta_n > 0.$$
 (5)

2. Для того, чтобы матрица Гессе $H(x^e)$ была отрицательно определенной ($H(x^e)<0$) и точка x^e являлась точкой локального максимума, необходимо и достаточно, чтобы знаки угловых миноров чередовались, начиная с отрицательного:

$$\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, ..., (-1)^n \Delta_n > 0.$$
 (6)

Б. Критерий проверки необходимых условий экстремума второго порядка.

- 1. Для того чтобы матрица Гессе $H(x^e)$ была положительно полуопределенной $(H(x^e) \ge 0)$ и точка x^e может быть являлась точкой локального минимума, необходимо и достаточно, чтобы все главные миноры матрицы Гессе были неотрицательны.
- 2. Для того чтобы матрица Гессе $H(x^e)$ была отрицательно полуопределенной $(H(x^e) \le 0)$ и точка x^e возможно являлась точкой локального максимума, необходимо и достаточно, чтобы все главные миноры четного порядка были неотрицательны, а все главные миноры нечетного порядка были положительны.

Второй способ (с помощью собственных значений матрицы Гессе).

Собственные значения λ_i , i=1,...,n матрицы $H(x^e)$ размера $(n\times n)$ находятся как корни характеристического уравнения(a) находятся как

$$|H(x^{e}) - \lambda E| = \begin{vmatrix} h_{11} - \lambda & h_{12} & \dots & h_{1n} \\ h_{21} & h_{22} - \lambda & \dots & h_{2n} \\ \dots & \dots & \dots & \dots \\ h_{n1} & h_{n2} & \dots & h_{nn} - \lambda \end{vmatrix} = 0.$$
 (7)

В этом случае, для того чтобы точка экстремума была минимумом все собственные значения должны быть положительными т.е. $\forall \lambda_i > 0, i = 1,...,n$.

Замечание1. Собственные значения вещественной симметричной матрицы $H(x^e)$ вещественны.

Алгоритм решения задачи

- **Шаг 1.** Записать необходимые условия экстремума первого порядка в форме (2) и найти стационарные точки x^e в результате решения системы n в общем случае нелинейных алгебраических уравнений с n неизвестными. Для численного решения могут быть использованы методы простой итерации, Зейделя, Ньютона.
- **Шаг 2.** В найденных стационарных точках x^e проверить выполнение достаточных, а если они не выполняются, то необходимых условий второго порядка с помощью одного из двух способов.

Шаг 3. Вычислить значения $f(x^e)$ в точках экстремума.

ЗАДАНИЯ

1. Найти экстремум функций:

1.1.
$$f(x) = -x_1^2 - x_2^2 - x_3^2 - x_1 + x_1x_2 + 2x_3$$
;

1.2.
$$f(x) = x_1^3 + x_2^2 + x_3^2 - 3x_1 + x_2x_3 + 6x_2 + 2$$
;

1.3.
$$f(x) = -x_1^2 + 2x_1x_2 - x_2^2 - 4x_3^2$$
;

1.4.
$$f(x) = x^3 - 2x^2 + x + 1$$
;

1.5.
$$f(x) = (x_1^2 - x_2)^4 + (x_2^2 - x_1)^2$$
;

1.6.
$$f(x) = 5x^6 - 36x^5 - \frac{165}{2}x^4 - 60x^3 + 36$$
;

1.7.
$$f(x) = \sum_{i=1}^{3} (x_i - 1)^2 - \sum_{i=2}^{3} x_i x_{i-1}$$
;

1.8.
$$f(x) = \sum_{i=1}^{2} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2);$$

1.9.
$$f(x) = (x_1^2 - 4x_2)^2 + (x_2^2 - 2x_1 + 4x_2)^2$$

На множестве \mathbb{R}^n .

- 2. Записать необходимые условия экстремума первого порядка.
- 3. Проверить выполнение достаточных и необходимых условий второго порядка в каждой стационарной точке двумя способами.
- 4. Найти все стационарные точки и значения функций соответствующие этим точкам.