

Gokaraju Rangaraju Institute of Engineering & Technology
(Autonomous)

Bachupally, Kukatpally, Hyderabad

Engineering Chemistry
Unit-I: Atomic & Molecular Structure

Lesson-4

Molecular orbital Energy diagrams

M.Haritha Kiranmai, Faculty of Chemistry
Dept. of Humanities & Sciences

RECAP.....

Key points:

- Atomic orbitals combine to produce the same number of molecular orbitals.
- Atomic orbitals must have the proper symmetry and energy to interact and form molecular orbitals.
- As the overlap between two atomic orbitals increases, the difference in energy between the resulting bonding and antibonding molecular orbitals increases.
- When two atomic orbitals combine to form a pair of molecular orbitals, the bonding molecular orbital is stabilized about as much as the antibonding molecular orbital is destabilized.
- The interaction between atomic orbitals is greatest when they have the same energy.
- LCAO-MO Theory is a simple method for predicting the approximate electronic structure of molecules.

Filling of electrons in molecular orbitals

MO are arranged in the increasing order of their energy.

Electrons are filled in the same order based on

- Aufbau principle which states orbitals are filled with electrons in increasing order of their energy.
- Pauli's exclusion principle which states no two electrons in the same orbital will have the same quantum numbers.
- Hund's rule of maximum multiplicity which states that pairing of electrons in the degenerate orbitals occurs only after they are half-filled.

Molecular energy level diagram of homo nuclear diatomic molecules

The relative energies of MOs is in the increasing order.

• For H_2 to N_2

$$\sigma$$
1s σ 1s σ 2s σ 2s σ 2s σ 2s σ 5c σ 5c

For O₂ to Ne₂

$$\sigma$$
1s < σ *1s < σ 2s < σ *2s < σ 2p_z <[π 2p_x = π 2p_y] < [π *2p_x = π *2p_y] < σ *2p_z

- As 2s AO are of higher energy σ 2s and σ *2s posses higher energies than σ 1s and σ *1s which are formed from lower energy 1s AO.
- Within the same pair of MO, the ABMO has higher energy than the BMO.
- The MO π $2p_x = \pi$ $2p_y$ and π * $2p_x = \pi$ * $2p_y$ are degenerate.

The order of energy levels $\sigma 2p_z$, $\pi 2p_x = \pi 2p_y$ is reversed in case of O_2 , F_2 , Ne_2

- In elements of lower effective nuclear charge H₂ to N₂, the energy difference between the 2s & 2p is least.
- There are repulsive interactions between σ 2s, σ 2p and between σ
 *2s and σ*2p.
- This leads to stabilization of σ 2s and σ *2s & destabilization of σ 2pand σ *2p

MO energy level diagram of N₂

- The Electronic Configuration of Nitrogen is 1s²2s²2p³
- Nitrogen molecule has 14 electrons.
- The ground electronic configuration of Nitrogen molecule is

$$(\sigma 1s)^2(\sigma 1s^*)^2(\sigma 2s)^2(\sigma 2s^*)^2 (\pi 2px)^2(\pi 2py)^2 (\sigma 2pz)^2$$

- As there are no unpaired electrons, nitrogen is diamagnetic.
- Nb=10, Na=4, Bond order= ½(10-4)=3, which justifies the presence of triple bond in Nitrogen molecule

MO energy level diagram of O₂

- The Electronic Configuration of Oxygen atom is 1s²2s²2p⁴
- oxygen molecule has 16 electrons.
- The ground electronic configuration of Oxygen molecule is

$$(\sigma 1s)^2(\sigma 1s^*)^2(\sigma 2s)^2(\sigma 2s^*)^2(\sigma 2pz)^2(\pi 2px)^2(\pi 2py)^2$$

- As there are two unpaired electrons, oxygen is paramagnetic.
- Nb=10, Na=6,

Bond order= ½(10-6)=2, which justifies the presence of double bond in Oxygen molecule

