

人脸特征拾取实战分析 AI工程师讲座

问题分析 数据准备 特征工程 模型设计 总结回顾

- 01 问题分析
- 02 数据准备
- 03 模型设计
- 04 参数调整
- 04 结果总结

Part / 01

问题分析

ANALYSIS

问题分析

ANALISYS

分析图片中是否包含 人脸以及存在位置

问题分析 ANALISYS

Part / 02

数据准备

DATA PROCESS

数据准备

数据准备

CSV文件说明

数据准备

数据准备

数据预处理

图片数据归一化

整形:0-256

浮点:0.0-1.0

特征信息归一化

整形:0-096

整形0.0-1.0

Part / 03

模型设计

MODEL DESIGN

定义损失函数:

$$J(s) = \left| \vec{y} - \vec{d} \right|^2$$

对于所有测试数据都是不收敛的

全链接

关键词:

- 1.维数灾
- 2.梯度消失
- 3.局部最优解

对于所有测试数据都是不收敛的

全链接

关键词:

- 1.维数灾
- 2.梯度消失
- 3.局部最优解

精度不理想

深度卷积

关键点:

在现有结构下粗暴 的增加神经网络深 度并不能增加分析 精度

Inception ResNet

Ref:

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning Deep Residual Learning for Image Recognition

模型设计

MODEL DESIGN

Inception ResNet

子节点示意

模型设计 MODEL DESIGN

Inception ResNet

子节点示意

Part / 04

参数调整

PARAMETER ADJUSTMENT

ReLU优势: 单边函数 不会出现梯度消失问题 计算简单 输出具备稀疏性

过大的初始值使得在用其他激活函数 时梯度下降缓慢 本次实践中初始值选取过大使得计算 结果溢出

过大的初始值使得在用其他激活函数 时梯度下降缓慢 本次实践中初始值选取过大使得计算 结果溢出

梯度参数

参数调整

PARAMETER ADJUSTMENT

过小的BATCH SIZE会使得梯度的选择有很大的随机性(方差)这会使得迭代过程收敛很慢,极端情况会无法收敛

过大的BATCH SIZE会使得内存计算消耗过大,同样 会减慢收敛速度

BATCH SIZE的选取应与梯度复杂程度相关

Batch_Size	5000	2000	1000	500	256	100	50	20	10	5	2	1	
Total Epoches	200	200	200	200	200	200	200	200	200	200	200	200	
Total Iterations	1999	4999	9999	19999	38999	99999	199999	499999	999999	1999999			
Time of 200 Epoches	1	1.068	1.16	1.38	1.75	3.016	5.027	8.513	13.773	24.055	cannot converge		
Achieve 0.99 Accuracy at Epoch	-	-	135	78	41	45	24	9	9				
Time of Achieve 0.99 Accuracy	-	-	2.12	1.48	1	1.874	1.7	1.082	1.729				
Best Validation Score	0.015	0.011	0.01	0.01	0.01	0.009	0.0098	0.0084	0.01	0.032			
Best Score Achieved at Epoch	182	170	198	100	93	111	38	49	51	17			
Best Test Score	0.014	0.01	0.01	0.01	0.01	0.008	0.0083	0.0088	0.008	0.0262			
Final Test Error (200 epoches)	0.0134	0.01	0.01	0.01	0.01	0.009	0.0082	0.0088	0.008	0.0662			

同样是关于梯度的参数 实验过程中选择的 $\eta = 0.05$ 如果选择 $\eta = 1$ 迭代过程会出现较大波动 如果选择 $\eta = 1$ e-4迭代过程收敛速度 会明显降低

梯度参数

防止过拟合参数, 迭代过程中随机选择一部分权值不变。 实验过程中选择的φ=0.5 在此次试验中并未产生明显影响

Dropout

Part / 05

结果总结

CONCLUSION

最终误差

- 迭代过程收敛速度很快,在60次左右已经能达到很好的结果
- 最终误差在0.003

结果总结

input_layer_1

input_layer_1/image/0

step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/6 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

12 D input_layer_1/image/12 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/1

step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/7 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

E3 E3 input_layer_1/image/13 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/2 step 195 (Mon Jul 03 2017 15:47:51

input_layer_1/image/8 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

C2 C3 input_layer_1/image/14 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/3

0

input_layer_1/image/9 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

C 🖸 input_layer_1/image/15 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/4 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/10 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

C 🖸 input_layer_1/image/16 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/5 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

input_layer_1/image/11 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

C 5 input_layer_1/image/17 step 195 (Mon Jul 03 2017 15:47:51 GMT+0800 (中国标准时间))

部分原始图像

结果总结

鼻子位置

结果总结

https://github.com/cangyeone/NNlearn/tree/master/examples/FACE

程序获取

THANKS AI工程师讲座

