

Finite Automata

Reading: Chapter 2

Finite Automata

- Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or sequence) of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

Deterministic Finite Automata

- Q ==> a finite set of states
- $= \sum ==> a finite set of input symbols (alphabet)$
- q₀ ==> a <u>start state</u>
- F ==> set of <u>final states</u>
- δ ==> a <u>transition</u> function, which is a mapping between Q x Σ ==> Q
- A DFA is defined by the 5-tuple:
 - {Q, \sum , q₀,F, δ }

How to use a DFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the DFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the final states (F) then accept w;
 - Otherwise, reject w.

Regular Languages

- Let L(A) be a language recognized by a DFA A.
 - Then L(A) is called a "Regular Language".

 Locate regular languages in the Chomsky Hierarchy

-

Example #1

- Build a DFA for the following language:
 - L = {w | w is a binary string that contains 01 as a substring}
- Steps for building a DFA to recognize L:
 - $\sum = \{0,1\}$
 - Decide on the states: Q
 - Designate start state and final state(s)
 - δ: Decide on the transitions:
- Final states == same as "accepting states"
- Other states == same as "non-accepting states"

Regular expression: (0+1)*01(0+1)*

DFA for strings containing 01

What makes the DFA deterministic?

 What if the language allows empty strings?

• Q =
$$\{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

symbols

	,		
	δ	0	1
states	> q₀	q_1	q_0
	q_1	q_1	q_2
	*q ₂	q_2	q_2

Example #2

Clamping Logic:

- A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for two consecutive 1s in a row before clamping on.
- Build a DFA for the following language:
 L = { w | w is a bit string which contains the substring 11}

State Design:

- q₀: start state (initially off), also means the most recent input was not a 1
- q₁: has never seen 11 but the most recent input was a 1
- q₂: has seen 11 at least once

Example #3

Build a DFA for the following language:

L = { w | w has an even number of 0s and an even number of 1s}

Note: Alphabet implied is {0,1}

• ?

Extension of transitions (δ) to Paths ($\hat{\delta}$)

- $\delta(q_0, w)$ = ending state of the path taken from q_0 on input string w
- $\delta (q_0, wa) = \delta (\delta(q_0, w), a)$
- Exercise:
 - Work out example #3 using the input sequence w=10010, a=1

Language of a DFA

- A DFA A accepts w if there is exactly a path from q₀ to an accepting (or final) state that is labeled by w
- i.e., $L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$
- I.e., L(A) = all strings that lead to a final state from q₀

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one state at the same time
 - Outgoing transitions could be non-deterministic

 Each transition function therefore maps to a <u>set</u> of states

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - $= \sum ==> a finite set of input symbols (alphabet)$
 - $q_0 ==> a start state$
 - F ==> set of final states
 - $\delta ==>$ a transition function, which is a mapping between Q x $\sum ==>$ subset of Q
- An NFA is also defined by the 5-tuple:
 - $\{Q, \sum, q_0, F, \delta\}$

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all the possible next states from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, at least one of the current states is a final state then accept w;
 - Otherwise, reject w.

Regular expression: (0+1)*01(0+1)*

NFA for strings containing 01

Why is this non-deterministic?

What will happen if at state q₁ an input of 0 is received?

• Q =
$$\{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

symbols

	5		
	δ	0	1
states	> q₀	$\{q_0,q_1\}$	$\{q_0\}$
	q_1	Ф	{q ₂ }
	*q ₂	{q ₂ }	{q ₂ }

Example #2

Build an NFA for the following language:
L = { w | w ends in 01}

- ?
- How about a DFA now?

Advantages & Caveats for NFA

- Great for modeling regular expressions
- String processing
 - e.g., grep, lexical analyzer
- But "imaginary", in the sense that it has to be implemented deterministically in practice
- Could a non-deterministic state machine be implemented in practice?
 - E.g., toss of a coin, a roll of dice

Differences: DFA vs. NFA

DFA

- All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- Accepts input if the last state is in F
- 4. Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

NFA

- Transitions could be nondeterministic
 - A transition could lead to a subset of states
- 2. For each state, not all symbols necessarily have to be defined in the transition function
- 3. Accepts input if *one of* the last states is in F
- Generally easier than a DFA to construct
- 5. Practical implementation has to be deterministic (so needs conversion to DFA)

But, DFAs and NFAs are equivalent (in their power) !!

Extension of δ to NFA Paths

Basis: $\hat{\delta}$ (q,ε) = {q}

■ Induction:

• Let
$$\delta(q_0, w) = \{p_1, p_2, ..., p_k\}$$

•
$$\delta(p_i, a) = S_i$$
 for $i=1, 2..., k$

• Then,
$$\widehat{\delta}(q_0, wa) = S_1 U S_2 U \dots U S_k$$

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \Phi \}$

Equivalence of DFA & NFA

Theorem:

Should be true for any L

A language L is accepted by a DFA <u>if and only if</u> it is accepted by an NFA.

Proof:

- 1. If part:
 - Proof by subset construction (in the next few slides...)

2. Only-if part:

 Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- If-part: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to construct a DFA from an NFA?
 - Observation: the transition function of an NFA maps to subsets of states
 - Idea: Make one DFA state for every possible subset of the NFA states
 Subset construction

NFA to DFA by subset construction

- Let N = { $Q_N, \sum, \delta_N, q_0, F_N$ }
- Goal: Build D= $\{Q_D, \sum, \delta_D, \{q_0\}, F_D\}$ s.t. L(D)=L(N)
- Construction:
 - Q_D = all subsets of Q_N (i.e., power set)
 - F_D=set of subsets S of Q_N s.t. S∩F_N≠Φ
 - $δ_D$: for each subset S of Q_N and for each input symbol a in Σ :
 - $\bullet \quad \delta_{D}(S,a) = \bigcup_{p \text{ in } s} \delta_{N}(p,a)$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

• $L = \{ w \mid w \text{ ends in } 01 \}$

NFA:

δ_{N}	0	1
\rightarrow q ₀	${q_0,q_1}$	{q ₀ }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

DFA:

	δ_{D}	0	1
	Ø	Ø	Ø
	►{q ₀ }	${q_0,q_1}$	{q ₀ }
	{q₁}	Ø	{q ₂ }
	*{q ₂ }	Ø	Ø
	{q ₀ ,q ₁ }	$\{q_0,q_1\}$	$\{q_0,q_2\}$
	*{q ₀ ,q ₂ }	{q ₀ ,q ₁ }	{q ₀ }
_	[†] {q ₁ ,q ₂ }	Ø	{q ₂ }
_	*{q ₀ ,q ₁ ,q ₂ }	{q ₀ ,q ₁ }	{q ₀ ,q ₂ }

	δ_{D}	0	1
	▶ {q ₀ }	$\{q_0,q_1\}$	$\{q_0\}$
>	${q_0,q_1}$	${q_0,q_1}$	$\{q_0,q_2\}$
	*{q ₀ ,q ₂ }	{q ₀ ,q ₁ }	$\{q_0\}$

Remove states unreachable from q₀

NFA to DFA: Repeating the example using *LAZY CREATION*

• $L = \{ w \mid w \text{ ends in } 01 \}$

NFA:

δ_{N}	0	1
\rightarrow q ₀	${q_0,q_1}$	{q ₀ }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

DFA:

	δ_{D}	0	1
→	$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
	${q_0,q_1}$	${q_0,q_1}$	$\{q_0,q_2\}$
•	*{q ₀ ,q ₂ }	$\{q_0, q_1\}$	$\{q_0\}$

Main Idea:

Introduce states as you go (on a need basis)

Correctness of subset construction

- Theorem: If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N)
- Proof:
 - Show that $\delta_D(\{q_0\}, w) = \delta_N(q_0, w)$
 - Using induction on w's length:
 - Let w = xa
 - $\bullet \ \widehat{\delta}_D(\{q_0\},xa) = \delta_D(\widehat{\delta}_N(q_0,x\},a) = \widehat{\delta}_N(q_0,w)$

A bad case for subset construction

- L = {w | w is a binary string s.t., the nth symbol from its end is a 1}
 - NFA has n+1 states
 - DFA needs to have at least 2ⁿ states
- Pigeon hole principle
 - m holes and >m pigeons
 - => at least one hole has to contain two or more pigeons

Dead states

- Example:
 - A DFA for recognizing the key word "while"

Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
 - Example: Google querying
- Extensions of this idea:
 - PATRICIA tree, suffix tree

FA with Epsilon-Transitions

- We can allow ε-transitions in finite automata
 - i.e., a state can jump to another state without consuming any input symbol
- Use:
 - Makes it easier sometimes for NFA construction
- ε -NFAs have to one more column in their transition table

Example of an ε-NFA

L = {w | possibily empty w s.t. if non-empty will end in 01}

ε-closure of a state q,
 ECLOSE(q), is the set of all states that can be reached from q by repeatedly making ε-transitions (including itself).

Equivalency of DFA, NFA, ε-NFA

 Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA

Proof:

 Idea: Use the same subset construction except include ε-closures

•

Eliminating ε-transitions

- Let E = { $Q_E, \sum, \delta_E, q_0, F_E$ }
- Goal: Build D= $\{Q_D, \sum, \delta_D, \{q_D\}, F_D\}$ s.t. L(D)=L(E)
- Construction:
 - Q_D= all reachable subsets of Q_F factoring in €-closures
 - $q_d = ECLOSE(q_0)$
 - F_D=subsets S in Q_D s.t. $S \cap F_F \neq \Phi$
 - δ_D: for each subset S of Q_E and for each input symbol a in Σ :
 - Let R^{⊉ir}⊌ δ_E(p,a)
 - $\delta_D(S,a) = i \bigcup ECLOSE(r)$

Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA & NFA
- Removal of redundant states and including dead states
- E-transitions in NFA
- Pigeon hole principles
- Text searching applications