MATH 3022 KRITIK ASSIGNMENT 3

Question 1. Why do the axioms of a vector space appear to only have four conditions, rather than the ten you may have seen the first time you saw an axiomatic definition?

Vector spaces have a similar structure compared to groups and rings, in which we are able to use the axioms defined for groups and rings and apply it for vector spaces.

Question 2. The set $V = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{11} : a, b \in \mathbb{Q}\}$ is a vector space. Carefully define the operations on this set that will make this possible. Describe the subspace spanned by $S = \{\vec{u}\}$, where $\vec{u} = 3 + \frac{2}{7}\sqrt{11} \in V$.

Let $\vec{u}, \vec{v} \in V$. Then we have the following operations defined by the mappings: $+: V \times V \to V$ and $\cdot: V \times V \to V$ where,

$$\vec{u} + \vec{v} = (a + b\sqrt{11}) + (c + d\sqrt{11}) = (a + c) + (b + d)\sqrt{2}$$

and

$$\vec{u} \cdot \vec{v} = (a + b\sqrt{11})(c + d\sqrt{11}) = (ac + 11bd) + (ad + bc)\sqrt{11}$$

where a+c, b+d, ac+11bd, and $ad+bc \in \mathbb{Q}$.

The subspace spanned by $S = \{3 + \frac{2}{7}\sqrt{11}\}$ is the set of the form

$$W = \left\{ 3a + \frac{2}{7}b\sqrt{11} : a, b \in \mathbb{Q} \right\}$$

for some coefficients $a, b \in \mathbb{Q}$.

Date: February 22, 2024.