

Definition (Field)

A field F, sometimes denoted by $(F,+,\times)$, is a set of elements with two binary operations, say addition and multiplication (note that these operations may be any binary operations), such that for all $a,b,c\in F$, the following axioms are obeyed:

- \bullet $(F, +, \times)$ is an *integral domain*, that is,
 - (A1-M4) hold
 - (M5) Multiplicative identity: $\forall a \in F$, $\exists 1 \in F$ such that 1a = a1 = a, 1 is called the multiplicative identity in F.
 - (M6) No zero divisors: If $a, b \in F$ and ab = 0, then either a = 0 or b = 0.
- **(M7) Multiplicative inverse:** For each $a \in F$, except 0, there is an element a^{-1} in F such that $aa^{-1} = a^{-1}a = 1$.

Example

The set of real numbers is a field under addition and multiplication.

Example

Let Q denote the set of rational numbers, that is, $Q = \{\frac{a}{b} | a, b \text{ are reals, with } b \neq 0 \text{ and } \gcd(a, b) = 1\}$. Then, $(Q, +, \times)$ is a field.

Example

Let C be the set of complex numbers. Then, $(C, +, \times)$ is also a field.

Example

The set Z of integers is NOT a field. Note that not every element of Z has a multiplicative inverse; in fact, only the elements 1 and -1 have the multiplicative inverses in the integers.

Problem: Consider the addition and multiplication arithmetic modulo 8 in the finite set $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

Construct the following composition table (addition modulo 8):

+8	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

The additive identity is 0.

Construct the following composition table (multiplication modulo 8):

×8	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Construct the following table of additive and multiplicative inverses:

W	-W	W^{-1}		
0	0	_		
1	7	1		
2	6	_		
3	5	3		
4	4	_		
2 3 4 5 6	4 3 2	5		
	2	_		
7	1	7		

- \bullet -w is the additive inverse of w
- w^{-1} is the multiplicative inverse of w
- Z_8 is NOT a field (only a commutative ring with identity 1)

Theorem

Let $Z_n = \{0, 1, 2, \dots, n-1\}.$

- (i) $\langle Z_n, +_n, ._n \rangle$ is a ring, for all $n \in \mathbb{N}$.
- (ii) $\langle Z_n, +_n, \cdot_n \rangle$ has a multiplicative identity 1.
- (iii) $\langle Z_n, +_n, \cdot_n \rangle$ is an integral domain.

Theorem

Let $Z_n = \{0, 1, 2, ..., n-1\}$. Then, $\langle Z_n, +_n, \cdot_n \rangle$ is a field if and only if n is prime.

Remark: $\langle Z_p, +_p, \cdot_p \rangle$ is known as **Galois field** or finite field, when p is a prime.

It is defined as $GF(p) = \langle Z_p, +_p, \cdot_p \rangle$; p being a prime.

Definition

Given two integers a and b, the greatest common divisor (gcd) of a and b is $d = \gcd(a, b)$ if the following conditions are satisfied:

- \bigcirc d|a and d|b
- 2 Any divisor c of a and b is also a divisor of d.

We have:

```
\gcd(a,0) = a

\gcd(0,0) = undefined

\gcd(a,-b) = \gcd(-a,b) = \gcd(-a,-b) = \gcd(|a|,|b|)
```

Euclid's GCD Algorithm

Given integers b, c > 0, we make a repeated application of division algorithms to obtain a series of equations which yield gcd(b, c):

$$\begin{array}{rcl} b & = & q_1c + r_1, 0 \le r_1 < c \\ c & = & q_2r_1 + r_2, 0 \le r_2 < r_1 \\ r_1 & = & q_3r_2 + r_3, 0 \le r_3 < r_2 \\ \vdots & = & \vdots \\ r_{j-2} & = & q_jr_{j-1} + r_j, 0 \le r_j < r_{j-1} \\ r_{j-1} & = & q_{j+1}r_j + \boxed{0} \end{array}$$

It is worth noticing that

$$0 \le r_j < r_{j-1} < r_{j-2} < \cdots < r_2 < r_1 < c$$

Therefore,

$$gcd(b, c) = gcd(c, r_1) = gcd(r_1, r_2) = \cdots = gcd(r_{i-1}, r_i) = r_i.$$

Euclid's GCD Algorithm

Algorithm: EUCLID(b, c)

To compute gcd(b, c)

- 1: Initialize: $A \leftarrow b$; $B \leftarrow c$
- 2: if B = 0 then
- 3: **return** $A = \gcd(b, c)$
- 4: end if
- 5: Compute $R \leftarrow A \mod B$
- 6: Set *A* ← *B*
- 7: Set *B* ← *R*
- 8: goto Step 2

Complexity: If j is the total number of iterations or steps needed to compute gcd(b, c), then $j < |3.\log_e(c)|$, where $c = \min\{b, c\}$.

Problem: Compute gcd(1970, 1066).

Using the Euclid's gcd algorithm, we have the following computations:

$$1970 = 1 \times 1066 + 904$$

$$1066 = 1 \times 904 + 162$$

$$904 = 5 \times 162 + 94$$

$$162 = 1 \times 94 + 68$$

$$94 = 1 \times 68 + 26$$

$$68 = 2 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

Therefore, gcd(1970, 1066) = 2.

We see that j = number of iterations needed to compute gcd(1970, 1066)

Lemma

If $d = \gcd(a, b)$, then there exist integers x and y such that d = ax + by, where x and y are called the multipliers of a and b, respectively.

Problem: Find the multipliers x, y and z such that

gcd(170, 128, 217) = 170x + 128y + 217z.

Solution: We know,

$$gcd(170, 128, 217) = gcd[gcd(170, 128), 217].$$
 (1)

To compute gcd(170, 128), we proceed as follows:

$$170 = 1 \times 128 + 42 \tag{2}$$

$$128 = 3 \times 42 + 2 \tag{3}$$

$$42 = 21 \times 2 + 0.$$

Therefore, we have:

$$2 = \gcd(170, 128)$$

$$= 128 - 3 \times 42, \text{ using Eqn (3)}$$

$$= 128 - 3 \times [170 - 1 \times 128] \text{ using Eqn (2)}$$

$$= (-3) \times 170 + 4 \times 128. \tag{4}$$

Now, to compute gcd(2,217), we proceed as follows:

$$217 = 108 \times 2 + 1$$

$$2 = 2 \times 1 + 0.$$
(5)

Then,

$$\begin{array}{lll} 1 &=& \gcd(2,217) \\ &=& \gcd[\gcd(170,128),217] \\ &=& \gcd(170,128,217) \\ &=& 217-108\times 2, \text{using Eqn (5)} \\ &=& 217-108\times [(-3)\times 170+4\times 128], \text{using Eqn (4)} \\ &=& 324\times 170+(-432)\times 128+1\times 217. \end{array}$$

Hence, we have: x = 324, y = -432, z = 1.

Finding the multiplicative inverse in GF(p)

If gcd(m, b) = 1, then b has a multiplicative inverse modulo n. In other words, for positive integer b < m, there exists $b^{-1} < m$ such that $b.b^{-1} = 1 \pmod{m}$, where 1 is the multiplicative identity in GF(p).

Algorithm: EXTENDED EUCLID(m, b)

```
1: Initialize: (A1, A2, A3) \leftarrow (1, 0, m) and (B1, B2, B3) \leftarrow (0, 1, b)
```

2: **if**
$$B3 = 0$$
 then

3: **return**
$$A3 = gcd(m, b)$$
; no inverse

5: **if**
$$B3 = 1$$
 then

6: **return**
$$B3 = \gcd(m, b)$$
; $B2 = b^{-1} \pmod{m}$

8: Set
$$Q = \lfloor \frac{A3}{B3} \rfloor$$
, quotient when A3 is divided by B3

9: Set
$$(T1, T2, T3) \leftarrow (A1 - Q.B1, A2 - Q.B2, A3 - Q.B3)$$

10: Set
$$(A1, A2, A3) \leftarrow (B1, B2, B3)$$

11: Set
$$(B1, B2, B3) \leftarrow (T1, T2, T3)$$

Problem: Find the multiplicative inverse of 550 in GF(1759).

Here, m = 1759 and b = 550. We need to find $b^{-1} \pmod{m}$, i.e., $550^{-1} \pmod{1759}$.

Applying the extended Euclid's gcd algorithm, we have the following table.

Q	<i>A</i> 1	<i>A</i> 2	<i>A</i> 3	<i>B</i> 1	B2	<i>B</i> 3	<i>T</i> 1	T2	<i>T</i> 3
_	1	0	1759	0	1	550	_	_	_
3	0	1	550	1	-3	109	1	-3	109
5	1	-3	109	-5	16	5	-5	16	5
21	-5	16	5	106	-339	4	106	-339	4
1	106	-339	4	-111	355	1	-111	355	1

Since B3 = 1, so gcd(m, b) = B3 = 1 and multiplicative inverse will be $b^{-1} \pmod{m} = B2 = 355$.

Verification: $b.b^{-1} \pmod{m} = 550.355 \pmod{1759} = 1.$

Definition (Irreducible Polynomial)

A polynomial f(x) of degree n > 0 over the field K is *irreducible* over K if and only if there do not exist polynomials g(x) and h(x) of degree > 0 over K such that

$$f(x)=g(x).h(x),$$

where multiplication is ordinary polynomial multiplication with coefficients operations in *K*.

- In other words, a polynomial f(x) is said to be irreducible if it can not be factored into non-trivial polynomials over the same field K.
 1 and f(x) are trivial factors of f(x).
- A polynomial f(x) is irreducible over K if and only if there does not exist a polynomial d(x), 0 < deg.d(x) < deg.f(x), where deg.f(x) means the degree of the polynomial f(x), such that d(x)|f(x) over K.

Problem: Determine which of the following are reducible over the Galois (finite) field GF(2):

- $f(x) = x^4 + 1$
- 2 $f(x) = x^3 + x + 1$
- 3 $f(x) = x^3 + 1$