High Spin-Orbit Misalignment is Sometimes Attracting: Cassini State Systems with Weak Tidal Friction Group Meeting

Yubo Su

May 31, 2019

Introduction

- Close-in planet to a star w/ \vec{l} gstarts with random spin \hat{s} (e.g. collision). Evolves under tides + precession around perturber \hat{l}_p .
- Toy Problem: Assume constant tidal dissipation, fate?
- Cassini States: $H^{(0)} = \frac{\left(\hat{s} \cdot \hat{l}\right)^2}{2} + \eta \hat{s} \cdot \hat{l}_p$. CS4 is saddle point, separatrix.

Constant Tides

• Constant tides $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \epsilon \sin\theta$, EOM $(\mu = \cos\theta)$:

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}\tau} = (\hat{s} \cdot \hat{l})(\hat{s} \times \hat{l}) - \eta \hat{s} \times \hat{l}_p + \epsilon \hat{s} \times (\hat{l} \times \hat{s}).$$

• Review: Last meeting, found $P_{hop} \propto \eta^{3/2} \epsilon^0$.

Flow Boundaries (optional)

• Key result:

$$P_{hop} = \frac{16\eta^{3/2}\cos I \sqrt{\sin I}}{\pi}.$$

Analytical, similar to MMR capture probability.

Realistic Tides

- In realistic tides, η can evolve as s spins down.
- $\eta \equiv \frac{s_c}{s}$, so s_c is critical spin at which perturber strength is of order spin-orbit coupling.

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}\tau} = \frac{s}{s_c} (\hat{s} \cdot \hat{l}) (\hat{s} \times \hat{l}) - \hat{s} \times \hat{l}_p + \frac{\epsilon 2\Omega}{s} (1 - \frac{s}{2\Omega} (\hat{l} \cdot \hat{s})) \hat{s} \times (\hat{l} \times \hat{s}), \quad (1)$$

$$\frac{\mathrm{d}s}{\mathrm{d}\tau} = \epsilon 2\Omega \left(\hat{s} \cdot \hat{l} - \frac{s}{2\Omega} \left(1 + \left(\hat{s} \cdot \hat{l} \right)^2 \right) \right). \tag{2}$$

Compare to Problem 1:

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}\tau} = (\hat{s} \cdot \hat{l})(\hat{s} \times \hat{l}) - \eta \hat{s} \times \hat{l}_p + \epsilon \hat{s} \times (\hat{l} \times \hat{s}).$$

Outcomes

Three zones:

- According to work from Problem 1, expect:
 - I Goes to CS1/alignment.
 - II Goes to CS2/misalignment.
 - III P_{hop} to CS2 or CS1.

 s_c = 0.2, Zone I

 s_c = 0.2, Zone II

$s_c = 0.2$, Zone III, Separatrix Hopping

$s_c = 0.2$, Zone III, Separatrix Crossing

$s_c = 0.7$, Zone I, Separatrix Crossing!

$s_c = 0.7$, Zone III, Always Separatrix Crossing!

Outcome Distribution

- In summary, going from $s_c=0.2$ to $s_c=0.7$ makes CS2 attracting in zone I, sets $P_{hop}=1$ for zone III.
- Interesting histories
 - CS1, no sep crossing (I).
 - CS2, no sep crossing (II).
 - Cross to CS1 (III).
 - Hop to CS2 (III).
- At $s_c \lesssim 0.3$, $P_{hop} \propto \sqrt{s}$, so closer to sep \Rightarrow higher P_{hop} .

Evolution of Outcome Distribution with $s_{\it c}$

Phase Portrait

- In the absence of perturber (just the weak tide components), phase portrait takes on shape:
- Green is μ_4 Cassini State 4, above red is $\dot{\mu} < 0$.

Sign of $\left\langle \frac{\mathrm{d}\mu}{\mathrm{d}t} \right\rangle$

