

Go Beyond Adhesion: the Dual Functionality of Tie Layers

Yong Zheng, Brian Walther, Cagatay Berilgen and Santosh Bawiskar

Presented by:

Yong, Zheng TS&D Specialist Dow Chemical Company

Agenda

- Introduction
 - What to expect from a tie-layer
 - Multifunctional concept
- AMPLIFY™ TY 1057H (concentrate A)
 - Adhesion
 - Toughness
 - Haze
 - Extrudability
- Conclusion

^{® ™}Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

What to Expect from a Tie Layer

Tie Layers help adhere polar (EVOH, PA etc.) resins to non-polar (PE etc.) resins in <u>single-step coextrusion process</u>

- Production: Polymer synthesis + reactive extrusion
 - Maleic anhydride is grafted to a polymer backbone
 - Free radical process

Polar resins (EVOH, PA (nylon)) are used for their <u>barrier</u> properties

MAH (maleic anhydride)

Polyethylene Film – Multifaceted Approach

Tie layer selection

Current: 1. Fully Formulated Grades

"Bread and butter" products

2. Concentrates

Customer customization

Future: 3. Multifunctional Tie Resins

Adhesion + toughness

Adhesion + barrier

Value in Multifunctional

- Value in building two functions in a single film layer:
 - Streamlined process
 - Down-gauging potential
 - > Better film property
 - > Additional values to customers
- Concentrate A: adhesion + toughness

Experimental

- Concentrate A vs. a competitive tie-layer concentrate (0.910 g/cc, 2.7MI) (Conc. B)
- Concentrates blended with a LLDPE let-down resin at 20%, 15%, 10% and 7% loadings.
- Comparison in a model 5-layer and 4 mil barrier film
 - LLDPE (30%)/Tie (10%)/EVOH or polyamide (20%)/Tie (10%) /LLDPE (30%)
- •Labtech 5-layer blown film line in the Packstudio at Freeport, TX.
- Adhesion, dart, puncture and haze.

Adhesion

Tie-layer Conc. A and B demonstrate similar adhesion levels to polyamide and EVOH.

Toughness

At 20% loading (or ~4 wt% of the film), tie-layer Conc. A demonstrates up to 20% improvement in film toughness vs. Conc. B.

Haze

Conc. A may slightly increase total haze vs. Conc. B by an average of ~2%.

Extrusion

	Back Pressure (psi)		Torque (Current %)	
	Conc. A	Conc. B	Conc. A	Conc. B
20%	3105	3206	65	73
15%	3303	3325	70	79
10%	3343	3440	74	81
7%	3482	3514	77	77

Use of conc. A can lead to less back pressure and torque than Conc. B in extruders.

Conclusions

- Tie-layer Concentrate A can improve the dart and puncture of coextruded barrier films vs. tie-layer Concentrate B.
- Tie-layer Concentrate A and B have similar performances in adhesion, haze and extrudability.
- Concentrate A is the preferred grade to use in applications where better dart and puncture properties are desirable.

Thank you

PRESENTED BY

Yong Zheng
TS&D Specialist
Dow Chemical Company
yzheng4@dow.com