$12a_{0511} \ (K12a_{0511})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{52} - u^{51} + \dots - u^2 + 1 \rangle$$

$$I_2^u = \langle u^{10} - 2u^8 + 3u^6 + u^5 - 2u^4 - u^3 + u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 62 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{52} - u^{51} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{10} + u^{8} - 2u^{6} + u^{4} - u^{2} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{15} - 2u^{13} + 4u^{11} - 4u^{9} + 4u^{7} - 4u^{5} + 2u^{3} - 2u \\ -u^{15} + 3u^{13} - 6u^{11} + 7u^{9} - 6u^{7} + 4u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{20} - 3u^{18} + \dots - 3u^{2} + 1 \\ -u^{20} + 4u^{18} + \dots - 5u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{27} + 4u^{25} + \dots - u^{3} - 2u \\ u^{29} - 5u^{27} + \dots - 5u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{47} - 8u^{45} + \dots - 42u^{5} + 10u^{3} \\ -u^{47} + 9u^{45} + \dots - 4u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{51} + 40u^{49} + \cdots + 16u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{52} + 23u^{51} + \dots + 2u + 1$
c_{2}, c_{6}	$u^{52} - u^{51} + \dots - 2u + 1$
c_3, c_4, c_8 c_9	$u^{52} - 4u^{51} + \dots + 36u + 4$
c_5, c_{11}	$u^{52} - u^{51} + \dots - u^2 + 1$
c_7	$u^{52} - 3u^{51} + \dots - 8u + 5$
c_{10}, c_{12}	$u^{52} - 19u^{51} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{52} + 13y^{51} + \dots - 6y + 1$
c_2, c_6	$y^{52} - 23y^{51} + \dots - 2y + 1$
c_3, c_4, c_8 c_9	$y^{52} - 60y^{51} + \dots - 696y + 16$
c_5, c_{11}	$y^{52} - 19y^{51} + \dots - 2y + 1$
c_7	$y^{52} - 3y^{51} + \dots - 534y + 25$
c_{10}, c_{12}	$y^{52} + 29y^{51} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.998941 + 0.045978I	5.28620 - 0.93871I	15.9673 + 0.9512I
u = -0.998941 - 0.045978I	5.28620 + 0.93871I	15.9673 - 0.9512I
u = -0.728323 + 0.685940I	-3.57521 - 0.97987I	0.260565 + 0.640305I
u = -0.728323 - 0.685940I	-3.57521 + 0.97987I	0.260565 - 0.640305I
u = 1.002230 + 0.089379I	3.67626 + 5.72177I	12.7013 - 6.5868I
u = 1.002230 - 0.089379I	3.67626 - 5.72177I	12.7013 + 6.5868I
u = -0.665641 + 0.720471I	-1.78289 + 5.70739I	3.97022 - 5.89201I
u = -0.665641 - 0.720471I	-1.78289 - 5.70739I	3.97022 + 5.89201I
u = 0.530837 + 0.816404I	6.92563 - 8.79045I	7.25155 + 4.85962I
u = 0.530837 - 0.816404I	6.92563 + 8.79045I	7.25155 - 4.85962I
u = -0.522819 + 0.813333I	8.75278 + 3.37930I	9.83163 - 0.35758I
u = -0.522819 - 0.813333I	8.75278 - 3.37930I	9.83163 + 0.35758I
u = 0.521713 + 0.791233I	3.07937 - 1.57482I	4.02266 + 0.18175I
u = 0.521713 - 0.791233I	3.07937 + 1.57482I	4.02266 - 0.18175I
u = -0.833280 + 0.443412I	0.09032 - 4.10436I	9.88532 + 7.11286I
u = -0.833280 - 0.443412I	0.09032 + 4.10436I	9.88532 - 7.11286I
u = 0.650819 + 0.682385I	0.204162 - 1.159700I	7.88295 + 1.51609I
u = 0.650819 - 0.682385I	0.204162 + 1.159700I	7.88295 - 1.51609I
u = 0.492028 + 0.801217I	7.16166 + 5.41348I	7.59584 - 4.65169I
u = 0.492028 - 0.801217I	7.16166 - 5.41348I	7.59584 + 4.65169I
u = -0.850769 + 0.649712I	-2.04278 - 2.52764I	4.28217 + 3.73621I
u = -0.850769 - 0.649712I	-2.04278 + 2.52764I	4.28217 - 3.73621I
u = 0.823932 + 0.690742I	-4.74803 - 0.75860I	-0.678268 + 1.202668I
u = 0.823932 - 0.690742I	-4.74803 + 0.75860I	-0.678268 - 1.202668I
u = 0.874578 + 0.686205I	-4.59465 + 6.05228I	0 7.84880I
u = 0.874578 - 0.686205I	-4.59465 - 6.05228I	0. + 7.84880I
u = 0.982865 + 0.602859I	2.10133 + 4.69499I	11.88053 - 6.10182I
u = 0.982865 - 0.602859I	2.10133 - 4.69499I	11.88053 + 6.10182I
u = -0.946937 + 0.662515I	-2.91580 - 4.23415I	0. + 5.26094I
u = -0.946937 - 0.662515I	-2.91580 + 4.23415I	0 5.26094I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.158760 + 0.014478I	12.9367 - 7.2052I	13.29023 + 4.77271I
u = -1.158760 - 0.014478I	12.9367 + 7.2052I	13.29023 - 4.77271I
u = 1.159210 + 0.007998I	14.7139 + 1.7466I	15.7254 + 0.I
u = 1.159210 - 0.007998I	14.7139 - 1.7466I	15.7254 + 0.I
u = 0.984648 + 0.652855I	1.18503 + 6.34235I	6.00000 - 6.57485I
u = 0.984648 - 0.652855I	1.18503 - 6.34235I	6.00000 + 6.57485I
u = -0.986168 + 0.671138I	-0.83243 - 11.04580I	0. + 10.84993I
u = -0.986168 - 0.671138I	-0.83243 + 11.04580I	0 10.84993I
u = 1.064000 + 0.654185I	4.67776 + 7.01331I	0
u = 1.064000 - 0.654185I	4.67776 - 7.01331I	0
u = -1.074140 + 0.648969I	10.57820 - 5.44672I	0
u = -1.074140 - 0.648969I	10.57820 + 5.44672I	0
u = -1.072330 + 0.660031I	10.38760 - 8.89731I	0
u = -1.072330 - 0.660031I	10.38760 + 8.89731I	0
u = 1.071430 + 0.664123I	8.5369 + 14.3344I	0
u = 1.071430 - 0.664123I	8.5369 - 14.3344I	0
u = 0.649830 + 0.190765I	0.943472 + 0.087273I	11.64609 - 1.04296I
u = 0.649830 - 0.190765I	0.943472 - 0.087273I	11.64609 + 1.04296I
u = -0.355914 + 0.492873I	-0.32921 - 4.26537I	5.60545 + 7.03160I
u = -0.355914 - 0.492873I	-0.32921 + 4.26537I	5.60545 - 7.03160I
u = -0.114095 + 0.393922I	-1.45941 + 1.41253I	0.827325 - 0.785575I
u = -0.114095 - 0.393922I	-1.45941 - 1.41253I	0.827325 + 0.785575I

II.
$$I_2^u = \langle u^{10} - 2u^8 + 3u^6 + u^5 - 2u^4 - u^3 + u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} + u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{8} + u^{6} + u^{5} - u^{4} - u^{3} + u \\ -u^{5} + u^{3} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} - 1 \\ -u^{5} + u^{3} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 10

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{10} + 4u^9 + 10u^8 + 16u^7 + 19u^6 + 19u^5 + 16u^4 + 13u^3 + 7u^2 + 3u + 1$
c_2, c_5, c_6 c_{11}	$u^{10} - 2u^8 + 3u^6 + u^5 - 2u^4 - u^3 + u^2 + u - 1$
c_3, c_4, c_8 c_9	$(u^2 + u - 1)^5$
c_7	$u^{10} - 2u^8 + 2u^7 + 9u^6 - 5u^5 - 12u^4 + u^3 + 13u^2 - 7u + 1$
c_{10}, c_{12}	$u^{10} - 4u^9 + 10u^8 - 16u^7 + 19u^6 - 19u^5 + 16u^4 - 13u^3 + 7u^2 - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_{10}, c_{12}	$y^{10} + 4y^9 + 10y^8 + 4y^7 - 17y^6 - 51y^5 - 48y^4 - 21y^3 + 3y^2 + 5y + 1$
c_2, c_5, c_6 c_{11}	$y^{10} - 4y^9 + 10y^8 - 16y^7 + 19y^6 - 19y^5 + 16y^4 - 13y^3 + 7y^2 - 3y + 1$
c_3, c_4, c_8 c_9	$(y^2 - 3y + 1)^5$
<i>c</i> ₇	$y^{10} - 4y^9 + \dots - 23y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.501486 + 0.805060I	8.88264	10.0000
u = -0.501486 - 0.805060I	8.88264	10.0000
u = -0.974665 + 0.570706I	0.986960	10.0000
u = -0.974665 - 0.570706I	0.986960	10.0000
u = -1.14608	8.88264	10.0000
u = 0.802076	0.986960	10.0000
u = 0.573627 + 0.524384I	0.986960	10.0000
u = 0.573627 - 0.524384I	0.986960	10.0000
u = 1.074530 + 0.643996I	8.88264	10.0000
u = 1.074530 - 0.643996I	8.88264	10.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{10} + 4u^9 + 10u^8 + 16u^7 + 19u^6 + 19u^5 + 16u^4 + 13u^3 + 7u^2 + 3u + 1)$ $\cdot (u^{52} + 23u^{51} + \dots + 2u + 1)$
c_2, c_6	$(u^{10} - 2u^8 + \dots + u - 1)(u^{52} - u^{51} + \dots - 2u + 1)$
$c_3, c_4, c_8 \ c_9$	$((u^2+u-1)^5)(u^{52}-4u^{51}+\cdots+36u+4)$
c_5, c_{11}	$(u^{10} - 2u^8 + \dots + u - 1)(u^{52} - u^{51} + \dots - u^2 + 1)$
c_7	$(u^{10} - 2u^8 + 2u^7 + 9u^6 - 5u^5 - 12u^4 + u^3 + 13u^2 - 7u + 1)$ $\cdot (u^{52} - 3u^{51} + \dots - 8u + 5)$
c_{10}, c_{12}	$(u^{10} - 4u^9 + 10u^8 - 16u^7 + 19u^6 - 19u^5 + 16u^4 - 13u^3 + 7u^2 - 3u + 1)$ $\cdot (u^{52} - 19u^{51} + \dots - 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{10} + 4y^9 + 10y^8 + 4y^7 - 17y^6 - 51y^5 - 48y^4 - 21y^3 + 3y^2 + 5y + 1)$ $\cdot (y^{52} + 13y^{51} + \dots - 6y + 1)$
c_2, c_6	$(y^{10} - 4y^9 + 10y^8 - 16y^7 + 19y^6 - 19y^5 + 16y^4 - 13y^3 + 7y^2 - 3y + 1)$ $\cdot (y^{52} - 23y^{51} + \dots - 2y + 1)$
c_3, c_4, c_8 c_9	$((y^2 - 3y + 1)^5)(y^{52} - 60y^{51} + \dots - 696y + 16)$
c_5, c_{11}	$(y^{10} - 4y^9 + 10y^8 - 16y^7 + 19y^6 - 19y^5 + 16y^4 - 13y^3 + 7y^2 - 3y + 1)$ $\cdot (y^{52} - 19y^{51} + \dots - 2y + 1)$
<i>c</i> ₇	$(y^{10} - 4y^9 + \dots - 23y + 1)(y^{52} - 3y^{51} + \dots - 534y + 25)$
c_{10}, c_{12}	$(y^{10} + 4y^9 + 10y^8 + 4y^7 - 17y^6 - 51y^5 - 48y^4 - 21y^3 + 3y^2 + 5y + 1)$ $\cdot (y^{52} + 29y^{51} + \dots - 6y + 1)$