Subjectul A. MECANICĂ

Nr. item	Soluție/Rezolvare
III.a.	
	$E_p = mgh$
	$h = l \sin \alpha$
	Rezultat final: $E_{\rho} = 175J$
b.	
	$L = Fd\cos(\vec{F}, \vec{d})$
	$F_f = \mu N$
	$N = mg \cos \alpha$
	$L_{F_r} = -\mu mgl\cos\alpha$
	Rezultat final: $L_{F_i} \cong -30,27J$
C.	
	$L_t = \Delta E_c$
	$L_{G} = mgl \sin \alpha$, $L_{N} = 0$
	Rezultat final: $E_c \cong 144,73J$
d.	$mgx = \frac{mv_B^2}{2}$
	2
	$\frac{mv_B^2}{2} = mg(h-x) - \mu mg \cos \alpha \frac{h-x}{\sin \alpha}; \ h = \ell \sin \alpha$
	$x = \ell \frac{1 - \mu ctg\alpha}{2 - \mu ctg\alpha} \sin \alpha$
	rezultat final: $x \cong 1,58 m$