

UNIVERSITY OF ASIA PACIFIC

Department of Computer Science & Engineering

Course Title - Digital Logic & System Design Lab

Course Code - CSE 210

Experiment No. - 09

Experiment name – Design & Implement 4-bit ALU.

SUBMITTED BY

SUBMITTED TO

Shawan Das. Shammi Akhtar

ID – 19101020 Assistant Professor,

Section – A₁ University of Asia Pacific

Date of Performance - 16-03-2021

Date of Submission - 22-03-2021

PROBLEM STATEMENT:

a) Design & Implement 4-bit ALU(Arithmetic & Logic Unit.

OBJECTIVE: The objective of the experiment is to design implement logic expression and diagram of 4-bit ALU including function table.

APPARATUS:

- IC-7408(AND Gate)
- IC-7432(OR Gate)
- IC-7404(NOT Gate)
- IC-7486(X-OR)
- IC-74257
- IC-74153
- Logic Display
- Logic Switch

INTRODUCTION:

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and

logic operations. ALU has two parts. First one is Logic unit using logic gates. And second part is Arithmetic unit using Full Adder.

An ALU performs basic arithmetic and logic operations. Examples of arithmetic operations are addition, subtraction, multiplication, and division. Examples of logic operations are comparisons of values such as NOT, AND & OR.

BLOCK DIAGRAM:

FUNCTION TABLE:

Function selectors		Input to Adders		Output	Output		
S	S ₁	S ₀	Cin	В			
0	0	0	0	0	F = A	Transfer	
0	0	0	1	0	F = A+1	Increment	
0	0	1	0	В	F = A+B	Addition	
0	0	1	1	В	F = A+B+1	Addition with Carry	
0	1	0	0	\bar{B}	$F = A + \overline{B}$	Add 1's Complement of B to A	
0	1	0	1	$ar{B}$	$F = A + \overline{B} + 1 = A - B$	Subtraction	
0	1	1	0	1	F = A-1	Decrement (Output Carry Effect)	
0	1	1	1	1	F = A	Transfer (Output Carry Effect)	
1	0	0	X	-	X-OR		
1	0	1	X		OR		
1	1	0	X		AND		
1	1	1	X		NOT		

VERIFICATION

INPUTS: A= 12, B=10

 B_0 A_3 B_3 B_2 B_1 A_2 A_1 A_0 1 1 0 1 0 1 0 0

ARITHMETIC UNIT FUNCTION: S=0

Operation: $(S_1 S_0 C_{in})$

Operation-1: $F = A \quad (A = 12)$ Output: 1 1 0 0

Operation-2: F = A+1 (12+1=13)

Output (1 1 0 1) A_3 A_2 A_1 A_0 A_1 A_2 A_1 A_2 A_3 A_4 A_5 A_5 A_5 A_7 A_8 A_8 A_8 A_9 A_1 A_9 A_9 A_1 A_9 A_1 A_1 A_2 A_1 A_2

Operation-3: F = A + B (12+10=22)

Operation-4: F = A+B+1 (12+10+1=23)

1

1

0

0

Operation-5: $F = A + \overline{B}$

1 1 0 0 1 $\overline{B3}$ $\overline{B2}$ $\overline{B1}$ $\overline{B0}$ 0 0 0 0 1 1 0 0 1 Output (1 0 0 0 1)

Operation-6: $F=A+\bar{B}+1=A-B$ (12-10=2)

Operation-7: F = A-1(Carry Effect)
$$A_3$$
 A_2 A_1 A_0 A_2 A_1 A_0 A_2 A_1 A_0 A_1 A_2 A_1 A_2 A_3 A_4 A_5 A_5

Operation-8: F = A(Carry Effect) A = 12

Output (1 1 1 0 0)

LOGIC UNIT FUNCTION: S=1

Operation: $(S_1 S_0)$

A_3	A_2	A_1	A_0	B_3	B_2	B_1	B_0
1	1	0	0	1	0	1	0

Operation-9: Output (0 1 1 0)

A	1	1	0	0
В	1	0	1	0
X-OR	0	1	1	0

Operation-10: Output (1 1 1 0)

A	1	1	0	0
В	1	0	1	0
OR	1	1	1	0

Operation-11: Output (1 0 0 0)

A	1	1	0	0
В	1	0	1	0
AND	0	0	0	0

Operation-12: NOT operation on input A Output (0011)

CIRCUIT DIAGRAM:

DISCUSSION: From this experiment, we learn about the ALU circuit. And how to create an ALU circuit using. Full Adder and two different MUX. We also learn how to use the ALU for performing twelve different logical functions. We have to careful about MUX and their connection. If we connect LU in L1 then we cannot add AU in another L2. We have to maintain this serial. Also, here is lots of wire connection, so should careful about all wires. If any wire sorted with another wire, we will get a wrong output.

So, we should be careful about these points.