# Plan for Module 16

| Wednesday 6/22 | 1:30-3:00   | Introduction                  | Philip      |
|----------------|-------------|-------------------------------|-------------|
|                | 3:30-4:00   | Introduction (continued)      | Philip      |
|                | 4:00-5:00   | Introduction                  | Mary        |
| Thursday 6/23  | 8:30-10:00  | Recombination                 | Philip      |
|                | 10:30-12:00 | Recombination practical       | Philip      |
|                | 1:30-3:00   | Population size and structure | Mary        |
|                | 3:30-5:00   | Gene flow practical           | Mary        |
|                | 5:00-7:00   | Tutorial                      | Mary/Philip |
| Friday 6/24    | 8:30-10:00  | Selection                     | Philip      |
|                | 10:30-12:00 | Selection practical           | Philip      |
|                | 1:30-3:00   | Applications and study design | Mary        |
|                | 3:30-5:00   | Coalescent practical          | Mary        |

## **Details-Wednesday**

- Wednesday afternoon: Introduction to the Coalescent
  - population genetics, Wright-Fisher model
  - 2-sample coalescent
  - n-sample coalescent
  - Coalescent and sequence variation
  - Parameters of the coalescent
  - Case studies

#### **Details-Thursday**

- Thursday morning: Recombination
  - Genetic recombination
  - Linkage disequilibrium
  - LDhat, RJMCMC, Phase
  - Hands-on recombination exercise
- Thursday afternoon: Growth and Gene Flow
  - Population growth and shrinkage
  - Population subdivision and gene flow
  - Population divergence
  - Genealogy samplers: Migrate-N, Lamarc, Beast, IM
  - Hands-on gene flow exercise

#### **Details-Friday**

- Friday morning: Selection
  - Phylogenetic approaches
  - Population genetics approaches
  - Coalescent approaches
  - Hands-on selection exercise
- Friday afternoon: Applications of the Coalescent
  - Study design
  - Limits of applicability
  - Validation
  - Hands-on study fine-tuning exercise

# Outline

- 1. What types of questions can the coalescent answer?
- 2. What approaches are used?
- 3. Case studies





### What is the coalescent good for?

- We are interested in questions like
  - How big is this population?
  - When did these populations diverge?
  - Are they isolated? How common is migration?
  - How fast have they been growing or shrinking?
  - What is the recombination rate across this region?
  - Is this locus under selection? What kind?

### Coalescent versus traditional population genetics

- Traditional pop gen:
  - Trace the evolutionary process forward in time
  - Predict range of outcomes for a giving starting position
- Coalescent analysis:
  - Trace the evolutionary process backward in time
  - Predict range of scenarios leading to given final position
- Since we know final position more often than starting position, the coalescent is useful for many questions where traditional population genetics struggles

### Coalescent versus traditional population genetics

- Traditional pop gen: A neutral allele is now at 5% frequency
  - How likely is it to fix?
  - How long will that take?
  - What if it were under selection?
- Coalescent: Ten out of thirty haplotypes surveyed carry a particular variant
  - How old is the variant?
  - Is it under selection?
  - Has it been transferred among populations?

## Range of applicability

The coalescent is appropriate for:

- Single populations
- Interrelated populations
- Recently diverged species

Beyond this level, other processes come into play

### **Key concepts in the coalescent**

- In an idealized coalescent everything depends on population size
- Deviations from idealized population give us information on other parameters:
  - Difference between census size and effective size
  - Changes in size over time
  - Population subdivision
  - Population splitting (divergence)
  - Recombination
  - Natural selection

### **Basics: Wright-Fisher population model**



All individuals release many gametes and new individuals for the next generation are formed randomly from these.

## Wright-Fisher population model

- $lue{}$  Population size N is constant through time.
- Each individual gets replaced every generation.
- Next generation is drawn randomly from a large gamete pool.
- Only genetic drift is changing the allele frequencies.

#### Other population models

- Other population models can often be equated to Wright-Fisher
- $lue{}$  The N parameter becomes the effective population size  $N_e$
- $lue{}$  For example, cyclic populations have an  $N_e$  that is the harmonic mean of the various sizes
- lacksquare Social insects have the  $N_e$  of their breeding population, not their headcount

#### The $\Theta$ parameter

- lacksquare The n-coalescent is defined in terms of  $N_e$  and time.
- We cannot measure time just by looking at genes, though we can measure divergence.
- We rescale the equations in terms of  $N_e$ , time, and the mutation rate  $\mu$ .
- We can no longer estimate N but only the composite parameter  $\Theta$ .
- $\Theta = 4N_e\mu$  in diploids and  $2N_e\mu$  in haploids.
- $lue{}$  External information can allow us to separate  $\Theta$  and  $\mu$ .

## How to separate $N_e$ and $\mu$ ?

Given an estimator of  $\Theta = 4N_e\mu$ :

- If one is known, the other naturally follows
- $lue{N}_e$  is hard to estimate
- $\circ$   $\mu$  can be estimated from dated fossils
- ${\color{blue} igoldsymbol{\bigcirc}}$  Multiple observations with significant evolution between them allow separation of  $N_e$  and  $\mu$
- These could come from ancient DNA
- In fast-evolving species like viruses they can be directly observed

## Utopian coalescent population size estimator

- 1. We get the correct genealogy from an infallible oracle
- 2. We know that we can calculate  $p(\mathsf{Genealogy}|N_e)$



### **Utopian population size estimator**

- 1. We get the correct genealogy from an infallible oracle
- 2. We remember the probability calculation



$$p(\text{Genealogy}|N_e) = \prod_{j}^T e^{-u_j \frac{k_j(k_j-1)}{4N_e}} \frac{1}{2N_e}$$

# **Utopian population size estimator**



# **Utopian population size estimator**



#### Lack of infallible oracles

- We assume we know the true genealogy including branch lengths
- We don't really know that
- We probably can't even infer it:
  - Tree inference is hard in general
  - Population data usually doesn't have enough information for good tree inference

### Ways to use the coalescent

- Summary statistics
  - Watterson's estimator of  $\theta$
  - FST (estimates  $\theta$  and/or migration rate)
  - Hudson's and Wakeley's estimators of recombination rate
- Known-tree methods
  - UPBLUE (Fu)
  - Skyline plots
- Few-tree methods
  - Nested clade analysis (Templeton)

These methods are conceptually easy, but not always powerful, and they can be difficult to extend to complex cases.

## More ways to use the coalescent

- Approximate Bayesian Computation (ABC)
  - Simulate random coalescent genealogies with a particular set of parameters
  - Simulate data on those genealogies
  - Adjust parameters until results are "similar" to real data
  - Summary statistics define "similar"
- Full genealogy samplers
  - Find many genealogies which fit the data well
  - Make a joint estimate of the parameters from all of these genealogies

These methods are more powerful and flexible, but challenging to design and use

#### Use of the coalescent: two case studies

#### Things to look for:

- What questions were being addressed?
- What types of data were used?
- How were coalescent methods used?
- How were non-coalescent methods used?
- How were the results validated?

Red drum,  $Sciaenops\ ocellatus$ , are large fish found in the Gulf of Mexico.



Turner, Wares, and Gold Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish Genetics 162:1329-1339 (2002)

- Census population size (N): 3,400,000
- Effective population size  $(N_e)$ : ?
- Data set:
  - 8 microsatellite loci
  - 7 populations
  - 20 individuals per population

#### Three approaches:

- 1. Allele frequency fluctuation from year to year
  - Measures current population size
  - May be sensitive to short-term fluctuations
- 2. Coalescent estimate from Migrate
  - Measures long-term harmonic mean of population size
  - May reflect past bottlenecks or other long-term effects
- 3. Demographic models
  - Attempt to infer genetic size from census size
  - Vulnerable to errors in demographic model
  - Not well established for long-lived species with high reproductive variability

Assumptions of the coalescent analysis:

- Constant population size
- $\bullet$  Mutation rate  $10^{-3}$  to  $10^{-5}$
- No selection

#### **Estimates:**

```
Census size (N): 3,400,000
```

Allele frequency method  $(N_e)$ : 3,516 (1,785-18,148)

Coalescent method  $(N_e)$ : 1,853 (317-7,226)

The demographic model can be made consistent with these only by assuming enormous variance in reproductive success among individuals.

- Allele frequency estimators measure current size
- Coalescent estimators measure long-term size
- Conclusion: population size and structure have been stable

- Effective population size at least 1000 times smaller than census
- This result was highly surprising
- Red drum has the genetic liabilities of a rare species
- "Estuary lottery" may explain results

## Where to go with this finding?

- Check it experimentally—maternity testing of young fish?
- Try to find reasons for the high reproductive variance
- Be careful of this species as it may be fragile
  - Red drum were once commercially fished
  - The population responded poorly and the fishery was closed
  - Despite large numbers the species may be vulnerable
  - Are there other species like this?



Alter, Rynes and Palumbi (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. PNAS 104: 15162-15167.

- How many gray whales pre-whaling?
- Whaling ship records not conclusive
- Recent slowing of the observed growth rate may suggest recovery
- Molecular data an alternative source of information

- 10 loci:
  - 7 autosomal
  - 2 X-linked
  - 1 mtDNA
- Complex mutational model with rate variation among loci
- Complex population model with subdivision and copy number
- O Complex demographic model relating  $N_{census}$  to  $N_e$



|       | Locus           | n  | Estimated N             |
|-------|-----------------|----|-------------------------|
| Aut   | ACTA            | 72 | 162,625                 |
|       | BTN             | 72 | 76,369                  |
|       | CP              | 76 | 77,319                  |
|       | ESO             | 72 | 272,320                 |
|       | FGG             | 72 | 180,730                 |
|       | LACTAL          | 72 | 44,410                  |
|       | WT1             | 80 | 51,972                  |
| X     | G6PD            | 30 | 2,769                   |
|       | PLP             | 52 | 92,655                  |
| mtDNA | Cytb            | 42 | 107,778                 |
|       | All data        |    | 96,400 (78,500-117,700) |
|       | Current census  |    | 18,000-29,000           |
|       | Previous models |    | 19,480-35,430           |

### What does this imply?

- Important conservation implications
- Effect on ecosystem significant:
  - Resuspension of up to 700 million cubic meters sediment
  - (12 Yukon Rivers worth)
  - Food for 1 million sea birds
- If accepted, result suggests halving gray whale kill rate
- Broadly similar results for minke, humpback, and fin whales

#### Should we believe this result?

#### Strengths:

- Multiple loci improve power and avoid distortions
- Population structure taken into account
- Does not rely on whalers' records, which may be falsified

#### Weaknesses:

- Interpretation relies on external estimate of mutation rate
- Selection on coding loci could distort results
- Relies on model of relationship between N and  $N_e$

## Where to go with this finding?

- Non-coding sequences
- Whale lice as corroboration? (Jon Seger's work)
- Ancient DNA?
- More sophisticated demographic models?
- Not time to de-list gray whales yet

#### Information content of the coalescent

What can best give us more information?

- More individuals?
- More base pairs?
- More loci?

## Variability of the coalescent



10 coalescent trees generated with the same population size,  $N=10,000\,$ 

## Variability of mutations



# Does adding more individuals help?



#### The bottom line

- The information content of a single locus is limited
- Additional sequence length or individuals are only mildly helpful
- Multiple loci allow the best estimates
- If recombination is present, long sequences can partially substitute for multiple loci
- Multiple time points can also help, if significant evolution happens between them

#### Focus: genealogy samplers

- My practicals will focus on genealogy samplers
- Most statistically powerful way to extract information from coalescent genealogies
- Challenging to design and use
- Brief overview now, practical details later

- Mutation model: Steal a likelihood model from phylogeny inference
- Population genetics model: the Coalescent

$$L(\Theta) = P(Data|\Theta)$$

$$L(\Theta) = P(Data|\Theta) = \sum_{G} P(Data|G)P(G|\Theta)$$

$$L(\Theta) = P(Data|\Theta) = \sum_{G} P(Data|G)P(G|\Theta)$$

P(Data|G) comes from a mutational model



$$L(\Theta) = P(Data|\Theta) = \sum_{G} P(Data|G)P(G|\Theta)$$

 $P(G|\Theta)$  comes from the coalescent



$$L(\Theta) = P(Data|\Theta) = \sum_{G} P(Data|G)P(G|\Theta)$$

 $\sum_G$  is a problem

# Can we calculate this sum over all genealogies?

```
Tips Topolog
 5 180
 6 2700
 7 56700
 8 1587600
 9 57153600
   2571912000
15 6958057668962400000
20 564480989588730591336960000000
30 4368466613103069512464680198620763891440640000000000000
50 \ \ 3.28632 \times 10^{112}
100 1.37416 \times 10^{284}
```

#### A solution: Markov chain Monte Carlo

- If we can't sample all genealogies, could we try a random sample?
  - Not really.
- How about a sample which focuses on good ones?
  - What is a good genealogy?
  - How can we find them in such a big search space?

# A solution: Markov chain Monte Carlo



#### A solution: Markov chain Monte Carlo



Metropolis recipe

0. first state



- 2. test if new state is better than old state: accept if ratio of new and old is larger than a random number between 0 and 1.
- 3. move to new state if accepted otherwise stay at old state
- 4. go to 1









# MCMC walk result



# MCMC walk result



### Improving our MCMC walker: MCMCMC or MC<sup>3</sup>

#### Metropolis Coupled Markov chain Monte Carlo

- The "hot" searches see a flattened landscape
- Only the "cold" search is used to make the estimate
- Good solutions found by a "hot" search can be imported into the "cold" search





# Improving our MCMC walker: MCMCMC or MC<sup>3</sup>



# better MCMC walk result



#### Paul Lewis' McRobot

This program can be found at

http://lewis.eeb.uconn.edu/lewishhome/software.html

It carries out a Markov Chain Monte Carlo search on a simple surface.

## **McRobot Experiment**

- How well does the robot search:
  - A single hill?
  - Two hills close together?
  - Two hills far apart?
- Does heating help with the far-apart case?
- Try 2, 3 and 4 chains: which seems best?

### **Preparation for Thursday sessions**

- Data files for demonstration are not on Zip disk
- They can be downloaded from:
  - http://evolution.gs.washington.edu/lamarc/sisg-2011/demo/
- Please download these before the demonstration Thursday
- This will save time and pain during the demo. Thank you!