AIML (Machine Learning)

Course Details

About the Course:

In this course, the participants will learn everything from data cleaning, data analysis, data visualization, capturing & gathering data from various sources, working with big data to apply statistic to derive insights and building ML (Machine Learning) Predictive Models, clustering or grouping related data and building deep neural network models for NLP (natural Language processing).

About the Trainers:

A Team of Trainers with 30+ years of overall combined industry experience. Currently working on data science and related projects.

What is the prerequisite?

Basic computer knowledge, passion to work with data to solve problems.

Duration: 120 Hours / Four months (normal track) Fee: 45,000/-

Content@glance

Introduction to AIML	 Introduction History, Why? How? Real-time Examples of AIML
Programming for Al	 Getting Started with Python Python Intermediate Numpy Python Advanced RegEx OOPs Lambda Databases
Mathematics for Al	 Mathematics for Al Linear Algebra Calculus Fundamental Statistics Advanced Calculus Numerical Optimisation

Machine Learning	 Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Linear Regression Logistic Regression Polynomial Regression Multiple Regression Classification Prediction Algorithms Support Vector Machines (SVMs) Tree Models Naive Bayes Model Principal Component Analysis Clustering Boosting Time Series
Deep Learning	 Deep Learning Architecture Neural Networks Multi Level Perceptron Convolutional Neural Networks Recurrent Neural Networks
	Professional Al
Getting started With Cloud	 AWS Fundamentals and Services Azure Fundamentals and Services
Natural Language Processing	 Natural Language Processing Introduction Exploring NLP Libraries NLTK SPACY

	■ GENSIM ■ KERAS ■ RASA ○ REGEX ○ SCIKIT LEARN ○ Python text files ○ PDF and regular expressions ○ Tokenization ○ Stemming ○ Lemmatization ○ stop words Phrase Matching and Vocabulary ○ Topic Modeling ○ Latent Dirichlet Allocation Overview ○ Non-negative Matrix Factorization ○ Text Blob ○ TextBlob Introduction ○ Finding a polarity of a string with TextBlob ○ Sentiment analysis with TextBlob ○ Measuring language subjectivity with TextBlob and Python ○ Language Translation with Python Module TextBlob , ○ extBlob nGrams Spacy ○ Concepts and Parameters and Interacting with Chatbot ○ Bonus: Discovering NLP on Cloud (AWS, Azure and Google Cloud Platform
Computer Vision	 Computer Vision Introduction OpenCV Introduction to the Library Image Processing for Computer Vision Linear Image Processing Model Fitting Frequency Domain Analysis Camera Models and Calibration Camera Views

	■ Camera Models
	■ Camera Calibration
	■ Stereo Geometry
	○ Image Motion
	 Image Classification
	 Photometry
	o Optical Flow
	∘ Tracking
	 Parametric model
	○ Useful Libraries
	○ Recognition
	 Generative Models
	Discriminative models
	 Color spaces and Segmentation
	o 3D perception
	○ Binary Morphology
	o Bonus: Computer Vision On Cloud (
	AWS, Azure and Google Cloud Platform)
	, ,
Constant preject	Attendance through Face recognition
Capstone project	Attendance through Face recognitionChatbots
	Voice to text processing
	OCR on Cloud.