

과목명	멀티미디어신호처리
담당교수	박규식 교수님
학과	소프트웨어학과
학번	32153180
이름	이상민
제출일자	2019.11.26

Chapter 3

3.1 Determine whether the signal is periodic or not. If the signal is periodic, determine the fundamental period.

(a)
$$x[n] = \cos(\frac{\pi n}{8})$$

$$= \cos(\frac{\pi (n+N)}{8})$$

$$= \cos(\frac{\pi (n+N)}{8})$$

$$= \cos(\frac{\pi (n+N)}{8})$$

$$\frac{\pi (N)}{8} = 2\pi k. \qquad \therefore N = 16.$$
the Gignal is poriodic with $N = 16$.

(c)
$$x[n] = \sin(\frac{2\pi n}{3}) + \cos(\frac{\pi n}{3})$$

$$= \dim(\frac{2\pi n}{3}) + \cos(\frac{\pi n}{3}) + \cos(\frac{\pi n}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= \dim(\frac{2\pi n}{3} + \frac{2\pi n}{3}) + \cos(\frac{\pi (n+n)}{3})$$

$$= 2\pi \ln (n+n)$$

3.2 Determine whether it is energy signal or power signal. Calculate the corresponding energy or average power.

(a)
$$x[n] = (-0.5)^n u[n]$$
 $d[n] = (-0.5)^n u[n]$ Energy Genal.

$$E = \sum_{n=-\infty}^{\infty} |(-0.5)^n u[n]|^2 = \sum_{n=0}^{\infty} (-0.5)^{2n}$$

$$= \sum_{n=0}^{\infty} (0.25)^n = \frac{1}{1-0.25} = \frac{4}{3}$$

(c)
$$x[n] = u[n-1] - u[n-7]$$

$$=\sum_{n=1}^{6}(1)^{2}=6.$$

3.3 Draw the following signals.

(a)
$$x[n] = \delta[-n]$$

(c)
$$x[n] = 2u[n-1]$$

->

$$\Delta[n] = \delta[-n]$$

A[n] = 24[n-1]

3.4 Express the following pulse signals in terms of unit step function either in summing form or in product form.

(a)
$$x[n] = \begin{cases} 1 & \text{for } 3 \le n \le 7 \\ 0 & otherwise \end{cases}$$

->

- 3.5 For given a discrete sequence $x[n] = \{-1,2,0,3\}$, sketch the following discrete signals.
 - (a) x[n]
 - (b) $x_1[n] = x[n-2]$
 - (c) $x_2[n] = x[n+1]$
 - (d) $x_3[n] = x[-n]$
 - (e) $x_4[n] = x[-n+2]$
 - (f) $x_5[n] = x[-n-3]$

->

1[n] = }-1,2,0,35

- 3.6 For given a discrete sequence $x[n] = \{-1,2,0,3\}$, sketch the following discrete signals.
 - (a) x[n] down-sampled by 2 signal $yd[n] = x[2n] \label{eq:yd}$
 - (b) x[n] up-sampled by 2signal $yu[n] = x[\frac{n}{2}]$

->

- 3.7 An analog sinusoid signal $x(t) = \cos(2\pi(2000)t)$ is sampled to get the discrete signal by Nyquist-Shannon sampling theory.
 - (a) What is the bandwidth of the analog signal?
- $\rightarrow f_{\text{max}} = Bandwidth = 2000$
 - (b) What is the Nyquist sampling rate?
- -> Nyquist sampling rate $f_s = 2*Bandwidth = 4000$
- 3.8 An analog sinusoid signal $x(t) = \cos(2\pi(2000)t) + \cos(2\pi(3000)t)$ is sampled to get the discrete signal by Nyquist-Shannon sampling theory.
 - (a) What is the bandwidth of the analog signal?
- $\rightarrow f_{\text{max}} = Bandwidth = 3000$
 - (b) What is the Nyquist sampling rate?
- -> Nyquist sampling rate $f_s = 2*Bandwidth = 6000$
- 3.9 In general, an analog speech is quantized to 8bits/sample. How much is the quantizer SNR in dB for this condition?
- -> SNR(dB) = 6.02N + 1.76dB= 6.02*8 + 1.76 = 49.92dB