9311 Assignment3

WENBO ZHU z5172509

Question 1

1) When minFreq = 3, then pattern 'c', 'c-c', 'c-c-c' and 'c-c-c-c' are *frequent*.

Question 2

1) Ranking function:

	Rank(u₀)	Rank(u ₁)	Rank(u2)	Rank(u₃)	Rank(u4)	Rank(u₅)	Rank(u ₆)	Rank(u ₇)	Rank(u ₈)
ĺ	1/3	2/4	1/4	2/2	2/2	1/2	2/1	3/1	3/1

The rank of u_2 is 1/4 which is the smallest rank and makes u'_2 become the root of NEC tree. The u_3 and u_4 , u_7 and u_8 have the same rank respectively, so maybe they can be merged. However, after performing BFS from the root node, no matter merge u_3 and u_4 , or u_7 and u_8 , we cannot get an equivalence of merging graph. So here is the NEC tree of query q:

2) According to query q, the minimal connected subgraph containing all non-tree edges of q are u_0 , u_1 , u_2 , u_4 , u_5 . Counting the leaf vertices, we can conclude that u_6 , u_7 , u_8 belongs to V_1 . Finally, only u_3 is not in $V_0 \cup V_1$. So, we can decompose the vertex set of q into:

The core set: u_0 , u_1 , u_2 , u_4 , u_5 .

The forest set: u_3 . The leaf set: u_6 , u_7 , u_8 .

Question 3

1) Calculate all the possible methods and here are the results:

We can draw the conclusion from the screenshot above that if v_3 is the activated seed (i.e. $s=v_3$) and let $w(v_3) = 1$, then we can get the largest influence spreads which is 2.834.