Calculus III (Math 241)

W10 Prove in a direct way the following:

- a) The solution of any solvable system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ ($\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$) has the form $\mathbf{x}_0 + S = \{\mathbf{x}_0 + \mathbf{s}; \mathbf{s} \in S\}$, where S denotes the solution of the associated homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ and \mathbf{x}_0 is any particular ("special") solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$;
- b) S is a linear subspace of \mathbb{R}^n (and hence the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ an affine subspace of \mathbb{R}^n).

W11 Solve

W12 Repeat W11 with the same coefficient matrix **A** but with right-hand side $\mathbf{b} = (0, 4, 1, -4, 0)^{\mathsf{T}}$ in place of $(0, 0, 0, 0, 0)^{\mathsf{T}}$.

Hint: There is a shortcut using W10.

- **W13** Find the (unique) polynomial function of degree at most 3 whose graph passes through the points (1,0), (2,1), (3,2), and (4,1).
- **W14** Compute $\mathbf{F}\mathbf{F}^{\mathsf{T}}$ and $\mathbf{F}^{\mathsf{T}}\mathbf{F}$ for the 7×7 matrix

$$\mathbf{F} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Which combinatorial property of {013, 124, 235, 346, 450, 561, 602} ("translates of 013 modulo 7") does the result reflect?

Hint: The entries of $\mathbf{F}\mathbf{F}^{\mathsf{T}}$ are the pairwise dot products of the rows of \mathbf{F} , and similarly for $\mathbf{F}^{\mathsf{T}}\mathbf{F}$. The "circulant" structure of \mathbf{F} simplifies the computation.