

SPARSE RECOVERY OVER NONLINEAR DICTIONARIES

Luiz F. O. Chamon, Yonina C. Eldar, and Alejandro Ribeiro

ICASSP 2019 May 14th, 2019

Functional nonlinear dictionaries

Dictionary has a continuum of atoms

$$\mathcal{D} = \{ \boldsymbol{F}(\cdot, \beta) : \mathbb{R} \times \mathbb{R}^p \mid \beta \in \Omega \subset \mathbb{R} \}$$

Functional nonlinear dictionaries

Dictionary has a continuum of atoms

$$\mathcal{D} = \{ \mathbf{F}(\cdot, \beta) : \mathbb{R} \times \mathbb{R}^p \mid \beta \in \Omega \subset \mathbb{R} \}$$

Atoms are (nonlinear) functions

$$\hat{\boldsymbol{y}} = \int \boldsymbol{F}(X(\beta), \beta) d\beta$$

Functional nonlinear dictionaries

▶ Dictionary has a continuum of atoms

$$\mathcal{D} = \{ \mathbf{F}(\cdot, \beta) : \mathbb{R} \times \mathbb{R}^p \mid \beta \in \Omega \subset \mathbb{R} \}$$

- Atoms are (nonlinear) functions
- Sparse representations

$$\hat{m{y}} = \sum_{i=1}^k m{F}(x_i, eta_i)$$

- WHY functional nonlinear sparse models?
- WHY NOT functional nonlinear sparse models?
- ► HOW (if even possible) do we solve problems with them?

- WHY functional nonlinear sparse models?
- WHY NOT functional nonlinear sparse models?
- ► HOW (if even positor) do we solve problems with them?

- WHY functional nonlinear sparse models?
- ▶ WHY NOT functional nonlinear sparse models?
- ► HOW (if even positor) do we solve problems with them?

Functional nonlinear models: why?

► The physical world is continuous and nonlinear

- Linearity doesn't get you there.
 - Super-resolution
 - Robustness

Discrete

Application: nonlinear spectral estimation

Problem

Given samples from a mixture of few saturated sinusoids, determine their frequencies, amplitudes, and phases.

Prototypical super-resolution problem: beamforming, radar, MRI...

Functional nonlinear models: why not?

- Nonlinear models are hard (non-convex problems)
 - linearization
 - linear-in-the-parameters models (e.g., RKHS)

- Functional models are infinite dimensional
 - discretization
 - structure

- WHY functional nonlinear sparse models?
- WHY NOT functional nonlinear sparse models?
- ► HOW (if even position) do we solve problems with them?

Sparsity: why?

- ► Epistemological reasons
- Measurement and computational costs

Interpretability

Sparsity: why not?

- Sparse models are hard (non-convex, often NP-hard)
 - convex relaxation (discrete case)
 - ▶ Minimize the ℓ_1 -norm (atomic norm)
 - If the measurements are "incoherent" (NSP, RIP/REP), the relaxation yields the sparse solution
 - convex relaxation (continuous case)
 - Minimize L₁-norm or total variation
 - RIP-like "incoherence" conditions guarantee the relaxation yields the sparse solution

- ► WHY functional nonlinear sparse models.
- ► WHY NOT functional nonlinear sparse models?
- ▶ HOW (if even possible) do we solve problems with them?

- ► WHY functional nonlinear sparse models.
- ► WHY NOT functional nonlinear sparse models?
- ▶ HOW (if even possible) do we solve problems with them?
 - Solution: duality

Roadmap

SFPs

In words...

Variational problems that seek sparsest functions, i.e., functions with minimum support measure.

In words...

Variational problems that seek sparsest functions, i.e., functions with minimum support measure.

- " L_0 -norm": $\|X\|_{L_0} = \mathfrak{m} \left[\operatorname{supp}(X) \right] = \int_{\Omega} \mathbb{I}[X(\boldsymbol{\beta}) \neq 0] \, d\boldsymbol{\beta}$
 - Continuous counterpart of the " ℓ_0 -norm" (not a norm!)

- ▶ F_0 is an optional regularization, e.g., shrinkage: $\|X\|_{L_2}^2$
- $ightharpoonup g_i$ are convex losses, e.g., MSE, -LL, hinge loss
- $m{F}$ is a vector-valued nonlinear model, e.g., $m{F} \in \mathcal{D}$

Application: nonlinear spectral estimation

minimize
$$\|X\|_{L_2}^2 + \lambda \|X\|_{L_0}$$
 subject to
$$\sum_{i=1}^m (y_i - \hat{y}_i)^2 \le \epsilon$$

$$\hat{y}_i = B \int_0^{\frac{1}{2}} \rho \left[X(\varphi) \cos(2\pi \varphi t_i) \right] d\varphi$$
 (PI)

- \triangleright (y_i, t_i) are the measurements values and instants
- $\triangleright \rho$ models the saturation
- \triangleright λ and B control sparsity and approximation
- $ightharpoonup \epsilon$ is the fit slack $(pprox m\sigma_n^2)$

$$\begin{array}{ll} \underset{X \in \mathcal{X}}{\operatorname{minimize}} & \int_{\Omega} F_0\left[X(\boldsymbol{\beta}), \boldsymbol{\beta}\right] d\boldsymbol{\beta} + \lambda \left\|X\right\|_{L_0} \\ \text{subject to} & g_i(\boldsymbol{z}) \leq 0 \\ & \boldsymbol{z} = \int_{\Omega} \boldsymbol{F}\left[X(\boldsymbol{\beta}), \boldsymbol{\beta}\right] d\boldsymbol{\beta} \end{array} \tag{P-SFP}$$

- ► Roadblocks:
 - Non-convexity ⇒ convex relaxation
 - Infinite dimensionality ⇒ discretization

Roadmap

SFP: The dual problem

► The primal problem (P-SFP)

SFP: The dual problem

► The dual problem of (P-SFP)

$$\underset{\boldsymbol{\mu}, \ \nu_{i} \geq 0}{\text{maximize}} \quad d(\boldsymbol{\mu}, \nu_{i}) \triangleq \underset{\substack{\boldsymbol{z}, X \in \mathcal{X}, \\ X(\boldsymbol{\beta}) \in \mathcal{P}}}{\min} \mathcal{L}(X, \boldsymbol{z}, \boldsymbol{\mu}, \nu_{i}) \tag{D-SFP}$$

$$\mathcal{L}(X, \boldsymbol{z}, \boldsymbol{\mu}, \nu_i) = \int_{\Omega} F_0 \left[X(\boldsymbol{\beta}), \boldsymbol{\beta} \right] d\boldsymbol{\beta} + \lambda \left\| X \right\|_{L_0} + \boldsymbol{\mu}^T \left(\int_{\Omega} \boldsymbol{F} \left[X(\boldsymbol{\beta}), \boldsymbol{\beta} \right] d\boldsymbol{\beta} - \boldsymbol{z} \right) + \sum_i \nu_i g_i(\boldsymbol{z})$$

Duality

- ► Why?
 - (D-SFP) is convex and finite dimensional

Duality

- ► Why?
 - (D-SFP) is convex and finite dimensional
- ▶ Challenges
 - Non-convexity \Rightarrow solving (D-SFP) \neq solving (P-SFP)

Strong duality

Theorem

If F_0 , F, and $\mathcal X$ do not contain atoms and Slater's condition holds, then strong duality holds for (P-SFP), i.e., if P is the optimal value of (P-SFP) and D is the optimal value of (D-SFP), then P=D.

Corollary

We can obtain a solution of (P-SFP) from a solution of (D-SFP).

Duality

- ► Why?
 - (D-SFP) is convex and finite dimensional
- ► Challenges
 - Non-convexity ⇒ strong duality

Duality

- ► Why?
 - (D-SFP) is convex and finite dimensional
- Challenges
 - Non-convexity ⇒ strong duality
 - Can we even evaluate d?

SFP: The dual problem

► The dual problem of (P-SFP)

$$\underset{\boldsymbol{\mu}, \ \nu_{i} \geq 0}{\text{maximize}} \quad d(\boldsymbol{\mu}, \nu_{i}) \triangleq \underset{\substack{\boldsymbol{z}, X \in \mathcal{X}, \\ X(\boldsymbol{\beta}) \in \mathcal{P}}}{\min} \mathcal{L}(X, \boldsymbol{z}, \boldsymbol{\mu}, \nu_{i}) \tag{D-SFP}$$

$$\mathcal{L}(X, \boldsymbol{z}, \boldsymbol{\mu}, \nu_i) = \int_{\Omega} F_0 \left[X(\boldsymbol{\beta}), \boldsymbol{\beta} \right] d\boldsymbol{\beta} + \lambda \left\| X \right\|_{L_0} + \boldsymbol{\mu}^T \left(\int_{\Omega} \boldsymbol{F} \left[X(\boldsymbol{\beta}), \boldsymbol{\beta} \right] d\boldsymbol{\beta} - \boldsymbol{z} \right) + \sum_i \nu_i g_i(\boldsymbol{z})$$

Duality

- ► Why?
 - (D-SFP) is convex and finite dimensional
- Challenges
 - Non-convexity \Rightarrow solving (D-SFP) \neq solving (P-SFP)
 - Can we even evaluate d? Yes (separability)

Roadmap

Nonlinear spectral estimation: typical solution

► SNR = 10 dB

Nonlinear spectral estimation: MSE vs. SNR

What else?

- Other applications:
 - robust classification [Chamon et al., ArXiV]
 - RKHS methods [Peifer et al., Wednesday, MLSP-P7.2]
- ▶ Other non-convexities
 - neural networks Eisen et al., Friday, SPCOM-P4.1]

Conclusion

► WHY functional nonlinear sparse models?

► WHY NOT functional nonlinear sparse models?

► HOW (if even possible) do we solve problems with them?

Conclusion

- ▶ WHY functional nonlinear sparse models?
 - Functional nonlinear sparse models are versatile tools with a myriad of applications
- ► WHY NOT functional nonlinear sparse models?

► HOW (if even possible) do we solve problems with them?

Conclusion

- ▶ WHY functional nonlinear sparse models?
 - Functional nonlinear sparse models are versatile tools with a myriad of applications
- WHY NOT functional nonlinear sparse models?
 - Lead to non-convex and infinite dimensional optimization problems: SFPs
- ► HOW (if even possible) do we solve problems with them?

Conclusion

- ► WHY functional nonlinear sparse models?
 - Functional nonlinear sparse models are versatile tools with a myriad of applications
- WHY NOT functional nonlinear sparse models?
 - Lead to non-convex and infinite dimensional optimization problems: SFPs
- ► HOW (if even possible) do we solve problems with them?
 - SFPs can be solved exactly and efficiently using duality

SPARSE RECOVERY OVER NONLINEAR DICTIONARIES

Luiz F. O. Chamon, Yonina C. Eldar, and Alejandro Ribeiro

"Functional nonlinear sparse models" https://arxiv.org/abs/1811.00577

Application: nonlinear spectral estimation

Problem

Given samples from a mixture of few saturated sinusoids, determine their frequencies, amplitudes, and phases.

Application: nonlinear spectral estimation

Problem

Given samples from a mixture of few saturated sinusoids, determine their frequencies, amplitudes, and phases.

- Classical solutions:
 - MUSIC (eigen-method)
 - AST (atomic norm relaxation)

Nonlinear spectral estimation: typical solution

Nonlinear spectral estimation: MSE vs. SNR

SFPs and L_1 -norm minimization

Proposition

Consider the problem

$$P_q = \min_{X \in L_{\infty}} ||X||_{L_q}$$
 subject to $g_i(\boldsymbol{z}) \leq 0$
$$\boldsymbol{z} = \int_{\Omega} \boldsymbol{F}[X(\boldsymbol{\beta}), \boldsymbol{\beta}] d\boldsymbol{\beta}$$

$$|X| \leq \Gamma \text{ a.e.}$$

Under mild conditions on ${m F}$, $P_0={P_1\over \Gamma}$.

SFPs $\neq L_1$ -norm minimization

$$\min_{|X| \leq \Gamma} \quad \|X\|_{L_q}$$
 subject to
$$\left\| \left[\begin{array}{c} \Gamma/8 \\ \Gamma/8 \end{array} \right] - z \right\|_2^2 \leq 0 \text{ and } z = \int_0^1 \left[\begin{array}{c} h_1(\beta) \\ h_2(\beta) \end{array} \right] X(\beta) d\beta$$

$$h_1(\beta)$$

SFPs $\neq L_1$ -norm minimization

$$\begin{split} & \min_{|X| \leq \Gamma} & \|X\|_{L_q} \\ & \text{subject to} & \left\| \left[\begin{array}{c} \Gamma/8 \\ \Gamma/8 \end{array} \right] - z \right\|_2^2 \leq 0 \text{ and } z = \int_0^1 \left[\begin{array}{c} h_1(\beta) \\ h_2(\beta) \end{array} \right] X(\beta) d\beta \end{split}$$

$$\|\boldsymbol{X_0}\|_{L_1} = \frac{\Gamma}{4}$$

$$\|X_1\|_{L_1} = \frac{\Gamma}{4}$$

 $h_1(\beta)$

SFPs $\neq L_1$ -norm minimization

$$\min_{|X| \leq \Gamma} \quad \|X\|_{L_q}$$

subject to
$$\left\| \begin{bmatrix} \Gamma/8 \\ \Gamma/8 \end{bmatrix} - \mathbf{z} \right\|_2^2 \le 0 \text{ and } \mathbf{z} = \int_0^1 \begin{bmatrix} h_1(\beta) \\ h_2(\beta) \end{bmatrix} X(\beta) d\beta$$

$$\|X_0\|_{L_1} = \frac{\Gamma}{4} \qquad \|X_0\|_{L_0} = \frac{1}{4}$$

$$\|X_0\|_{L_0} = \frac{1}{4}$$

$$||X_1||_{L_1} = \frac{\Gamma}{4} \qquad ||X_1||_{L_0} = \frac{5}{4}$$

$$||X_1||_{L_0} = \frac{5}{4}$$

Strong duality

Theorem

Under Slater's condition holds, strong duality holds for (P-SFP), i.e., if P is the optimal value of (P-SFP) and D is the optimal value of (D-SFP), then P = D.

Proof recipe

(i) Show cost-constraint set $\mathcal C$ is convex

$$\mathcal{C} = \left\{ (c, \boldsymbol{z}) \;\middle|\; \exists X \in \mathcal{X} \text{ with } X(\boldsymbol{\beta}) \in \mathcal{P} \right.$$
 s.t. $c = f_0(X)$ and $\boldsymbol{z} = \int_{\Omega} \boldsymbol{F}\left[X(\boldsymbol{\beta}), \boldsymbol{\beta}\right] d\boldsymbol{\beta} \right\}$

- (ii) C convex \Rightarrow perturbation function is convex
- (iii) Convex perturbation function ⇒ strong duality

Application: nonlinear spectral estimation

Proposition

For fixed a, t, and f,

$$B\int_0^{rac{1}{2}}
ho\left[X'(arphi)\cos(2\piarphi t)
ight]darphi
ightarrow
ho\left[a\cos(2\pi ft)
ight]$$
 as $B
ightarrow\infty.$

