

IN THE CLAIMS:

Please amend the claims as follows:

1 1. (Original) A method of correcting resonance position or the external decay time of a
2 waveguide micro-resonator comprising physically altering by deposition, removal, or growth
3 of material in or around said waveguide.

1 2. (Original) The method of claim 1, wherein said altering of the material occurs on
2 the core of the waveguide micro-resonator.

1 3. (Original) The method of claim 1, wherein said altering of the material occurs in the
2 cladding of the waveguide micro-resonator.

1 4. (Original) The method of claim 1, wherein reaction products of a deposition or
2 growth have different chemical compositions from that of the core.

1 5. (Original) The method of claim 1, wherein said altering comprises a wet chemical
2 reaction.

1 6. (Original) The method of claim 1, wherein said altering comprises a thermal
2 reaction at temperatures above 100°C.

1 7. (Original) The method of claim 1, wherein reaction products of a growth are
2 removed after the reaction associated with said growth.

1 8. (Original) The method of claim 1, wherein reaction products of a growth are left
2 between the core and the cladding after the reaction associated with said growth.

1 9. (Original) The method of claim 1, wherein reaction products of a deposition or
2 growth have refractive indices that range from that of the core to that of the cladding.

1 10. (Original) The method of claim 1, wherein reaction products of a deposition have a
2 graded refractive index profile from that of the core to that of the cladding.

1 11. (Original) The method of claim 1, wherein said altering results in a change in
2 optical path length in said waveguide micro-resonator.

1 12. (Original) The method of claim 1, wherein said altering results in a change in
2 coupling of said waveguide micro-resonator, thus in a change in coupling efficiency and shape
3 of the waveguide micro-resonator resonance.

1 13. (Original) A method of correcting the position of or the shape of resonance of a
2 waveguide micro-resonator comprising focusing a large amount of electromagnetic energy onto
3 the resonator.

1 14. (Original) The method of claim 13, wherein said electromagnetic energy transfers
2 a large amount of thermal energy to the cavity core of said waveguide micro-resonator.

1 15. (Original) The method of claim 13, wherein one or more materials comprising the
2 waveguide micro-resonator undergoes a physical or mechanical change.

1 16. (Original) The method of claim 13, wherein one or more materials comprising the
2 waveguide micro-resonator core undergoes a physical or mechanical change, or an index
3 change.

1 17. (Original) The method of claim 16, wherein one or more materials comprising the
2 waveguide micro-resonator core undergoes an index change as a result of photosensitivity.

1 18. (Original) The method of claim 16, wherein one or more materials comprising the
2 waveguide micro-resonator core undergoes an index change as a result of a long lasting photo-
3 refractive effect.

1 19. (Original) The method of claim 13, wherein said electromagnetic energy transfers
2 a large amount of thermal energy to a region surrounding the waveguide micro-resonator
3 cavity.

1 20. (Original) The method of claim 13, wherein one or more materials surrounding the
2 waveguide micro-resonator undergoes a physical change from non-chemical origins.

1 21. (Original) The method of claim 13, wherein one or more materials surrounding the
2 waveguide micro-resonator undergoes a mechanical change.

1 22. (Original) The method of claim 13, wherein one or more materials surrounding the
2 waveguide micro-resonator undergoes an index change as a result of photosensitivity.

1 23. (Original) The method of claim 13, wherein one or materials surrounding the
2 waveguide micro-resonator undergoes an index change as a result of a long lasting photo-
3 refractive effect.

1 24. (Original) The method of claim 13, wherein said electromagnetic energy induces a
2 change in optical path length in said waveguide micro-resonator.

1 25. (Original) The method of claim 13, wherein said electromagnetic energy induces a
2 change in coupling of said micro-resonator, thus a change in coupling efficiency and shape of
3 the micro-resonator resonance.

Claims 26-39. Canceled