May, 2022 Day 2 Tasks

canvas Thai (THA)

วาดฝันจินตนาการ

ในตอนที่ฉันมองขึ้นไปบนท้องฟ้า ฉันเห็นดวงดาวอันสวยงาม ในตอนที่ฉันมองกลับมา ฉันเห็นตนเองอยู่บนพื้นดิน

วันหนึ่ง ฉันได้มีโอกาสไปเที่ยวที่ชายหาด ฉันเล่นทราย ฉันก่อประสาททราย ฉันลองหยิบหินขึ้นมา โยนลงไปบนพื้น ทราย ฉันหยิบหินขึ้นมาอีกหลายก้อน ก่อกันจนเป็นฐานที่ยิ่งใหญ่ ให้กับประสาททราย ถึงแม้ฉันจะสามารถสร้าง ประสาททรายได้ แต่เมื่อคลื่นทะเลพัดมา ประสาททรายก็ค่อย ๆ สลายหายไป

้ฉันเห็นกิ่งไม้ และเชือก อยู่บนชายหาด ฉันปักกิ่งไม้ลงไปบนพื้นทราย จนเป็นหลุม ฉันเอาเชือกผูกกับกิ่งไม้ และใช้ นิ้วของฉัน ลากเส้นรอบกิ่งไม้ กลายเป็นวงกลม

ฉันเห็น จุด สองจุด ที่อยู่ห่างกัน ฉันจึงลากเส้นเชื่อมทั้งสองจุดเข้าด้วยกัน

ฉันเห็น เส้น ฉันเห็น วงกลม ฉันจึงรู้ว่าเส้นกับวงกลมนั้นตัดกันตรงไหนบ้าง

งานของคุณ

ในระบบพิกัดฉาก หรือระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) จุดแต่ละจุดจะมีพิกัด (x,y) ซึ่ง เป็น**จำนวนจริง** (อาจไม่ใช่จำนวนเต็ม) คุณรู้ว่าพิกัดของจุด p0 อยู่ที่ตำแหน่ง (0,0) และรู้ว่าพิกัดของจุด p1 อยู่ที่ ตำแหน่ง (0,1) อย่างไรก็ตาม คุณอยากสร้างจุดที่พิกัด (x_t,y_t) โดยใช้เพียงวงเวียน (compass) และสันตรง (straightedge) เท่านั้น งานของคุณคือให้หาวิธีการสร้างจุด (x_t,y_t) โดยใช้จำนวนคำสั่งไม่เกิน $5\,000\,$ คำสั่ง

หมายเหตุ หากทำการส่งไปแล้วตัวตรวจไม่สามารถตรวจสำเร็จภายใน 2 นาที กรุณาทำการแจ้งผู้คุมสอบ

รายละเอียดการเขียนโปรแกรม

ชนิดข้อมูลสำหรับจุด เส้น และ วงกลม

ในข้อนี้จะมีการให้ class นิยามดังนี้

สำหรับ จุด:

```
class point {
public:
    int index;
    long double x, y;
    point() : index(-1), x(0), y(0) {}
    point(int idx, long double x, long double y) : index(idx), x(x), y(
    y) {}
    point(const point &other) : index(other.index), x(other.x), y(other.y) {}
};
```

คุณสามารถเรียกใช้งาน index, x, y ได้ โดยจะแสดงถึง ดัชนีตำแหน่ง พิกัดตามแกน x และพิกัดตามแกน y ตาม ลำดับ โดยค่าของ x และ y จะเป็นเพียง **ค่าประมาณ** เท่านั้น

สำหรับ เส้นตรง:

```
class line {
public:
    int index;
    point p1, p2;
    line() : index(-1), p1(), p2() {}
    line(int idx, point p1, point p2) : index(idx), p1(p1), p2(p2) {}
};
```

คุณสามารถเรียกใช้งาน index, p1, p2 ได้ โดยจะแสดงถึง ดัชนีตำแหน่ง จุด p1 และจุด p2 แล้วเส้นตรงเส้นนี้จะ เป็นเส้นตรงยาวไม่จำกัด

สำหรับ วงกลม:

```
class circle {
public:
   int index;
   point p;
   long double r;
   circle() : index(-1), p(), r(0) {}
   circle(int idx, point p, long double r) : index(idx), p(p), r(r) {}
};
```

คุณสามารถเรียกใช้งาน index, p, r ได้ โดยจะแสดงถึง ดัชนีตำแหน่ง จุดศูนย์กลางของวงกลม และรัศมีวงกลม

สตริงนิพจน์

สำหรับการเขียนฟังก์ชันในขั้นตอนถัดไป สตริงที่ให้มาจะเป็นสตริงนิพจน์ เราจะกล่าวว่า s เป็นสตริงนิพจน์ก็ต่อ

เมื่อเงื่อนไขอย่างใดอย่างหนึ่งต่อไปนี้เป็นจริง:

- ullet s เป็นเลขโดดของจำนวนเต็มระหว่าง 0 ถึง 9
- s อยู่ในรูป SQRT (t) สำหรับบางสตริงนิพจน์ t
- s อยู่ในรูป ADD (t1, t2) สำหรับบางสตริงนิพจน์ t1 และ t2
- s อยู่ในรูป SUB (t1, t2) สำหรับบางสตริงนิพจน์ t1 และ t2
- s อยู่ในรูป MUL (t1, t2) สำหรับบางสตริงนิพจน์ t1 และ t2
- s อยู่ในรูป DIV (t1, t2) สำหรับบางสตริงนิพจน์ t1 และ t2

โดยเมื่อคำนวณตามวิธีการทางคณิตศาสตร์แล้วจะได้ผลลัพธ์ออกมาเป็นจำนวนจริง ฟังก์ชันภายในนิพจน์ นิยาม ดังนี้:

- ullet SQRT รับจำนวนจริง $x\geq 0$ แล้วคืนค่า \sqrt{x}
- ullet ADD รับจำนวนจริง x และ y แล้วคืนค่า x+y
- ullet $_{
 m SUB}$ รับจำนวนจริง x และ y แล้วคืนค่า x-y
- ullet MUL รับจำนวนจริง x และ y แล้วคืนค่า xy

การเขียนฟังก์ชัน

คุณจะต้องเขียนฟังก์ชันดังต่อไปนี้

```
point draw(string x, string y)
```

- ฟังก์ชันนี้จะถูกเรียกเพียงครั้งเดียว
- ullet สตริง $_{
 m X}$ จะเป็้นสตริงนิพจน์ ที่เมื่อคำนวณออกมาแล้วจะมีค่าเท่ากับ x_t
- ullet สตริง $_{
 m Y}$ จะเป็นสตริงนิพจน์ ที่เมื่อคำนวณออกมาแล้วจะมีค่าเท่ากับ y_t
- ullet สตริงนิพจน์ ${f x}$ และ ${f y}$ จะประกอบด้วยคำสั่งทางคณิตศาสตร์ไม่เกิน ${f 7}$ ครั้งเท่านั้น
- ฟังก์ชันนี้จะต้องคืนค่าจุดที่เกิดจากการสร้างด้วยวงเวียนและสันตรง จากจุดเริ่มต้น p0 กับ p1 โดยจุดที่คืน ออกมา เมื่อใช้วงเวียนและสันตรงที่มีความแม่นยำ (accuracy) สูงมากจะต้องได้เป็นจุด (x_t,y_t) อย่างเที่ยง ตรง (precise)
- ฟังก์ชั่นนี้จะสามารถเรียกฟังก์ชันทั้งหกดังต่อไปนี้ได้

```
circle compass(point p1, point p2)
```

• ฟังก์ชันนี้จะคืนค่าวงกลมที่เกิดจากการปักวงเวียนไปที่จุดศูนย์กลาง p1 แล้วลากจากจุด p2 ไปรอบวงจน กลับมาที่เดิม

```
line straightedge (point p1, point p2)
```

• ฟังก์ชันนี้จะคืนค่าเส้นตรงยาวไม่จำกัด ที่เกิดจากการลากเส้นเชื่อมระหว่างจุด $_{
m p1}$ กับ $_{
m p2}$

point intersection(line 11, line 12)

• ฟังก์ชันนี้จะคืนค่าจุดที่เป็นจุดตัดระหว่างเส้นตรง 11 และเส้นตรง 12

point intersection(line 1, circle c, int idx)

- ฟังก์ชันนี้จะคืนค่าจุดที่เป็นจุดตัดระหว่างเส้นตรง 1 และวงกลม c
- เนื่องจากจุดตัดอาจมีหลายค่า จึงคืนค่าเฉพาะจุดตัดที่ idx มา (สามารถใส่ค่า idx เป็น 0 หรือ 1 ก็ได้ แต่ หากตัดจุดเดียวจะไม่สามารถกำหนดค่าเป็น 1 ได้)

point intersection(circle c, line l, int idx)

- ฟังก์ชันนี้จะคืนค่าจุดที่เป็นจุดตัดระหว่างเส้นตรง 1 และวงกลม c
- เนื่องจากจุดตัดอาจมีหลายค่า จึงคืนค่าเฉพาะจุดตัดที่ idx มา (สามารถใส่ค่า idx เป็น 0 หรือ 1 ก็ได้ แต่ หากตัดจุดเดียวจะไม่สามารถกำหนดค่าเป็น 1 ได้)

point intersection(circle c1, circle c2, int idx)

- ฟังก์ชันนี้จะคืนค่าจุดที่เป็นจุดตัดระหว่างวงกลม c1 และวงกลม c2
- เนื่องจากจุดตัดอาจมีหลายค่า จึงคืนค่าเฉพาะจุดตัดที่ idx มา (สามารถใส่ค่า idx เป็น 0 หรือ 1 ก็ได้ แต่ หากตัดจุดเดียวจะไม่สามารถกำหนดค่าเป็น 1 ได้)

หมายเหตุ

- การเรียกใช้ฟังก์ชันทั้งหกนี้ สามารถเรียกใช้งานรวมกันได้ไม่เกิน 5 000 ครั้งเท่านั้น
- นอกจากนี้ สำหรับการเรียกใช้ฟังก์ชันเหล่านี้ ข้อมูลทั้งประเภท point, line และ circle จะต้องเป็น ข้อมูลที่ตรงตามที่ได้รับจากครั้งก่อน (กล่าวคือ ไม่สามารถแก้ index เป็นค่าอื่น หรือแก้ค่าพิกัดให้ไม่ตรงตามเดิมได้)

การช่วยเหลือด้านการอ่านนิพจน์

นอกจากฟังก์ชันทั้งหกที่สามารถเรียกใช้งานได้แล้ว จะสามารถเรียกใช้งานฟังก์ชันช่วยเหลือเพิ่มเติมได้อีกหนึ่ง ฟังก์ชัน (หรือไม่เรียกก็ได้) นั่นคือ

```
pair<vector<node>, int> parse(string expression)
```

โดยฟังก์ชันนี้จะทำการอ่านสตริงนิพจน์ แล้วคืนค่าเป็นต้นไม้ทวิภาค (binary tree) ที่แต่ละปมจะมีโครงสร้างดังนี้

```
struct node {
  string ops;
  int value = -999;
  int left = -1;
  int right = -1;
};
```

หากเรียกผลลัพธ์ของฟังก์ชันว่า result แล้ว result.first จะเก็บปมทั้งหมดของต้นไม้ไว้ ส่วน result.second จะเก็บดัชนีของปมรากของต้นไม้ใน result.first

สำหรับแต่ละปมในต้นไม้ หากเรียกปมนั้นว่า current_node แล้ว จะมีสมบัติดังต่อไปนี้:

- หาก current_node.value มีค่าเท่ากับ -999 ปมปัจจุบันจะเป็นปมการดำเนินการทางคณิตศาสตร์ โดยค่าของปมจะขึ้นอยู่กับสตริง current_node.ops
- หาก current_node.value มีค่าไม่เท่ากับ -999 แล้วปมปัจจุบันจะเป็นปมตัวเลข และจะไม่มีลูกทาง ซ้ายหรือลูกทางขวาเลย นอกจากนี้ current_node.ops จะเป็นสตริงว่าง
- หาก current_node.left มีค่าเท่ากับ -1 จะกล่าวว่าปมปัจจุบันไม่มีลูกทางซ้าย แต่หากไม่เท่ากับ -1 จะกล่าวว่าลูกปัจจุบันจะเป็นปมที่มีดัชนีcurrent_node.left (กล่าวคือ result.first[current_node.left] เป็นปมลูกทางซ้ายของปมปัจจุบัน) ในทำนองเดียวกัน เงื่อนไขนี้ก็เป็นจริงสำหรับ current_node.right
- ห า ก current_node.ops มีค่า SQRT จะมีเพียงลูกทางซ้ายอย่างเดียวเท่านั้น แต่หาก current_node.ops มีค่าอื่น และไม่เป็นสตริงว่าง ปมปัจจุบันจะมีทั้งลูกทางซ้ายและลูกทางขวาอยู่

ยกตัวอย่างการอ่านนิพจน์ SQRT (ADD (DIV (2, 3), SQRT (5))) จะได้ผลลัพธ์เป็นต้นไม้ดังนี้

ซึ่งเมื่อคำนวณออกมาแล้วจะมีค่าเท่ากับ $\sqrt{rac{2}{3}+\sqrt{5}}$

ปัญหาย่อย

- 1. (3 คะแนน) x เป็นสตริง 1 และ y เป็นสตริง 0
- 2. (6 คะแนน) x เป็นสตริง 0 และ y ประกอบด้วยจำนวนเต็มบวกตัวเดียว
- 3. (7 คะแนน) ทั้ง x และ y ประกอบด้วยจำนวนเต็มบวกตัวเดียว หรืออยู่ในรูป SUB(0,t) เมื่อ t เป็นสตริง ของจำนวนเต็มบวก
- 4. (10 คะแนน) x เป็นสตริง 0 และ y จะเป็นสตริงหารสมบูรณ์ โดยเราจะกล่าวว่าสตริง t เป็นสตริงหาร สมบูรณ์ก็ต่อเมื่อ t เป็น 1 หรือ t อยู่ในรูป DIV (u, 2) สำหรับบางสตริง u ที่เป็นสตริงหารสมบูรณ์เช่นกัน
- 5. (6 คะแนน) ทั้ง ${\bf x}$ และ ${\bf y}$ จะเป็นสตริงหารสมบูรณ์
- 6. (9 คะแนน) x เป็นสตริง 0 และไม่มี SQRT ใน y เลย
- 7. (6 คะแนน) ไม่มี SQRT ทั้งใน x และใน y เลย
- 8. (7 คะแนน) ${f x}$ เป็นสตริง ${f 0}$ และ ${f y}$ อยู่ในรูปแบบ ${f SQRT}$ (t) สำหรับบางจำนวนเต็ม $0 \leq t \leq 9$
- 9. (13 คะแนน) เมื่อคำนวณค่าของ $\mathbf x$ และ $\mathbf y$ เป็นจำนวนจริงแล้ว (เขียนแทนด้วย $\mathbf x$ และ $\mathbf y$ ตามลำดับ) จะได้ว่า ทั้ง $\mathbf x$ และ $\mathbf y$ เป็นจำนวนเต็ม (เช่น MUL (SQRT (2) , SQRT (2)) เป็นต้น)
- 10. (10 คะแนน) ไม่มีการซ้อนกันของ SQRT กล่าวคือ ภายในสตริง x และ y หากมีสัญลักษณ์ SQRT (t) สำหรับบางสตริง t แล้วจะรับประกันว่า t ไม่มี SORT เป็นสตริงย่อย
- 11. (23 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

```
draw("0", "SUB(MUL(3,SQRT(2)),1)")
```

เมื่อมีการเรียกฟังก์ชัน draw แล้ว ต่อมาฟังก์ชัน draw เรียกใช้ฟังก์ชัน ดังนี้

```
circle c1 = compass(p0, p1);
line 10 = straightedge(p0, p1);
point p2 = intersection(10, c1, 0);
circle c2 = compass(p1, p2);
circle c3 = compass(p2, p1);
point p3 = intersection(c2, c3, 0);
point p4 = intersection(c2, c3, 1);
line 11 = straightedge(p3, p4);
point p5 = intersection(l1, c1, 0);
line 12 = straightedge(p2, p5);
circle c4 = compass(p1, p0);
point p6 = intersection(10, c4, 1);
circle c5 = compass(p6, p2);
point p7 = intersection(12, c5, 0);
circle c6 = compass(p2, p7);
point p8 = intersection(10, c6, 1);
```

ซึ่งจะสอดคล้องกับไฟล์ตัวอย่าง canvas.cpp และจะสอดคล้องกับรูปภาพอธิบายตัวอย่างที่ออกมาจาก โปรแกรมตัวช่วย (อ่านต่อได้ในส่วนถัดไปจากนี้) เพื่อเป็นการตรวจสอบความเรียบร้อย และเป็นการให้รูปภาพ อธิบายตัวอย่าง จะมีการแจกไฟล์รูปภาพอธิบายตัวอย่างเป็น zip ให้ด้วย ชื่อว่า canvas_figures.zip

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างอ่านข้อมูลนำเข้าดังต่อไปนี้:

- ullet บรรทัดที่ $1{:}~x_t$ ในรูปสตริงนิพจน์ ${ imes}$
- ullet บรรทัดที่ 2: y_t ในรูปสตริงนิพจน์ ${f y}$

หมายเหตุ: ข้อมูลส่งออกนี้อาจไม่ใช่สิ่งจำเป็นที่จะต้องสนใจ ผู้เข้าแข่งขันทำการคัดลอกข้อมูลส่งออกนี้ไปแปะลงใน ไฟล์ แล้วเรียกใช้งานโปรแกรมตัวช่วยเพื่อตรวจสอบความถูกต้องได้ จะเห็นผลลัพธ์ชัดเจนกว่า อย่างไรก็ตาม การ อ่านข้อมูลส่งออกนี้อาจเป็นการช่วยให้เข้าใจว่าฟังก์ชัน draw ทำงานอย่างไรบ้าง

เกรดเดอร์ตัวอย่างจะส่งออกข้อมูลส่งออกในลักษณะเป็นชุดคำสั่งหลายบรรทัดโดยจะสอดคล้องกับวิธีการดังนี้ สำหรับแต่ละบรรทัด:

- หากบรรทัดขึ้นต้นด้วย # จะถือว่าบรรทัดนั้นเป็นเพียงคอมเมนต์ (comment) ไม่มีความเกี่ยวข้องกับการ ทำงานอื่นใด
- หากบรรทัดเป็นบรรทัดว่าง จะถือว่าบรรทัดนั้นไม่มีความเกี่ยวข้องใด
- หากบรรทัดขึ้นต้นด้วยสัญลักษณ์ P, L, C ติดกับตัวเลข x ตามด้วยชุดคำสั่ง y จะแปลว่า กำหนดให้ค่าของ "จุด", "เส้น", "วงกลม" ดัชนี x มีค่าเท่ากับผลของชุดคำสั่ง y
 - o หาก y ขึ้นต้นด้วย COM จะสอดคล้องกับการเรียกใช้ฟังก์ชัน compass
 - o หาก y ขึ้นต้นด้วย LIN จะสอดคล้องกับการเรียกใช้ฟังก์ชัน straightedge
 - o หาก y ขึ้นต้นด้วย INT จะสอดคล้องกับการเรียกใช้ฟังก์ชัน intersection
- หากบรรทัดขึ้นต้นด้วยสัญลักษณ์ !! จะถือว่าทำการส่งออกจุดนั้นเป็นคำตอบ
- หากบรรทัดขึ้นต้นด้วยสัญลักษณ์ !x แสดงว่าเกรดเดอร์พบเจอปัญหาบางอย่าง โดยจะมีข้อความบอกปัญหาตามหลังมา

โปรแกรมตัวช่วย

สำหรับข้อนี้จะมีการแจกโปรแกรมตัวช่วย vis.py โดยจะต้องทำการเรียกใช้โปรแกรมด้วย Python 3.6+ ที่มี Matplotlib อยู่ด้วย วิธีการใช้งานคือเรียก python3 vis.py example.txt เพื่อแสดงผลการทำงาน เมื่อ example.txt เป็นข้อมูลที่ส่งออกมาจากเกรดเดอร์ตัวอย่าง (สามารถเปลี่ยนชื่อไฟล์นี้ได้)

ขอบเขต

Time limit: 1.0 secondMemory limit: 512 MB