NAME .	
UCLA ID	

You have 90 minutes to complete this exam. You may state without proof any fact taught in class or assigned as homework.

- 1 Find a regular expression for each of the following languages over $\Sigma = \{0, 1\}$:
- (2 pts) a. strings that begin with 00 and do not end with 11;
- (2 pts) **b.** strings in which both the number of 0s and the number of 1s are even;
- (2 pts) c. strings containing no more than one occurrence of 00 (the string 000 has two occurrences).

Solution.

- **a.** $00 \cup 00\Sigma \cup 00\Sigma^*(00 \cup 01 \cup 10)$;
- **b.** $(00 \cup 11 \cup (01 \cup 10)(00 \cup 11)^*(01 \cup 10))^*$
- c. $1^*(01^+)^*(\varepsilon \cup 0)1^*(01^+)^*(\varepsilon \cup 0)$

In all three parts, you could solve the problem in a roundabout manner by constructing an NFA and converting it to a regular expression. But there are easier solutions, as follows. For $\mathbf{a}_{\cdot \cdot}$, it helps to subdivide into cases and handle each of them separately; think back to my snowdrift metaphor. For $\mathbf{b}_{\cdot \cdot}$, the problem gets *much* easier if you group the symbols in pairs. For $\mathbf{c}_{\cdot \cdot}$, it helps to note that the language is precisely LL, where L is the set of all strings that do not contain 00.

(1 pt) 2 Find a string of minimum length *not* in the language 0*(100*)*1*.

Solution. 110

(3 pts) 3 Let L be an infinite regular language. Prove that L can be partitioned into two disjoint infinite regular languages.

Solution. By the pumping lemma, there is $p \ge 0$ such that every string $w \in L$ of length at least p can be written as w = xyz, where y is nonempty and $xy^iz \in L$ for all $i = 0, 1, 2, 3, \ldots$

So, fix an arbitrary string $w \in L$ of length at least p (it exists because L is infinite). Let w = xyz be a decomposition guaranteed by the pumping lemma. Partition $L = A \cup (L \setminus A)$, where $A = \{xy^iz : i = 0, 2, 4, 8, \ldots\}$.

- DISJOINTNESS: A and $L \setminus A$ are disjoint by definition.
- INFINITENESS: $\{xy^iz : i = 0, 2, 4, 8, ...\} \subseteq A \text{ and } \{xy^iz : i = 1, 3, 5, 7, ...\} \subseteq L \setminus A.$
- REGULARITY: A is regular because it is given by a regular expression, $x(yy)^*z$, which makes $L \setminus A$ regular as well by the closure properties.

(3 pts) 4 Construct a DFA for $\Sigma^*1(\Sigma\Sigma)^*1\Sigma^*$ with the smallest possible number of states, where $\Sigma = \{0, 1\}$. Prove that your DFA is the smallest possible.

Solution. The following DFA with four states recognizes $L = \Sigma^* 1(\Sigma \Sigma)^* 1\Sigma^*$:

By the Myhill–Nerode theorem, no smaller DFA exists because each of the four strings ε , 1, 10, 11 is in a different equivalence class of \equiv_L . Their distinguishing suffixes are as follows:

	ε	1	10	11
ε				
1	1			
10	1 01 €	01		
11	E	$\boldsymbol{\varepsilon}$	$\boldsymbol{\varepsilon}$	

- 5 True or false? Prove your answer.
 - **a.** If $A, A \cap B$, and $A \cup B$ are regular languages, then B is regular as well.
- (2 pts) **b.** For any nonregular languages $L_1 \subseteq L_2 \subseteq L_3 \subseteq \ldots$, the union $\bigcup_{n=1}^{\infty} L_n$ is nonregular.

Solution.

(2 pts)

- **a.** True. One can obtain B from the regular languages A, $A \cap B$, and $A \cup B$ using set difference: $B = (A \cup B) \setminus (A \setminus (A \cap B))$. Since regular languages are closed under set difference, B must be regular as well.
- **b.** False. Define $L_n = (\Sigma \cup \varepsilon)^n \cup \{0^m 1^m : m \ge 0\}$. We claim that:
 - each L_n is nonregular;
 - $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$;
 - the union $\bigcup_{n=1}^{\infty} L_n$ is the regular language Σ^* .

The second and third claims are obvious. For the first claim, the nonregular language $\{0^m1^m: m \geq 0\}$ is the set difference of L_n and a finite (hence regular!) language. This means that each L_n is nonregular—otherwise, the closure properties would force the regularity of $\{0^m1^m: m \geq 0\}$.

- 6 For each of the following languages over $\Sigma = \{0, 1\}$, determine whether it is regular, and prove your answer:
- (2 pts) **a.** strings that contain exactly twice as many 1s as 0s;
- (2 pts) **b.** strings that do not contain a palindrome of length 2016 or shorter as a substring;
 - c. strings that can be made into a palindrome by removing fewer than 2016 symbols;
 - **d.** odd-length strings in which the middle symbol also occurs elsewhere in the string.

Solution.

(2 pts) (2 pts)

In each part, L stands for the language in question.

- **a.** Nonregular. For any positive integers $i \neq j$, we have $0^i \mathbf{1}^{2i} \in L$ but $0^j \mathbf{1}^{2i} \notin L$. Therefore, each of the strings $0, 00, 000, \dots, 0^n, \dots$ is in a different equivalence class of \equiv_L . Since there are infinitely many equivalence classes, L is nonregular by the Myhill–Nerode theorem.
- **b.** Regular. Let F denote the finite (hence regular) language of palindromes of length at most 2016. Then L can be built up from F using the Kleene star, concatenation, and complement operations: $L = \overline{\Sigma^* F \Sigma^*}$. Since regular languages are closed under these operations, L must be regular as well.
- c. Nonregular. For any positive integers $i \neq j$, we have $0^{2016i} \mathbf{1^{2016}0^{2016i}} \in L$ but $0^{2016j} \mathbf{1^{2016}0^{2016i}} \notin L$. Therefore, each of the strings $0^{2016}, 0^{4032}, \dots, 0^{2016n}, \dots$ is in a different equivalence class of \equiv_L . Since there are infinitely many equivalence classes, L is nonregular by the Myhill–Nerode theorem.
- **d.** Nonregular. For any positive integers $i \neq j$, we have $0^{2i} \mathbf{10^{2}} \notin L$ but $0^{2j} \mathbf{10^{2}} \in L$. Therefore, each of the strings $0^2, 0^4, \ldots, 0^{2n}, \ldots$ is in a different equivalence class of \equiv_L . Since there are infinitely many equivalence classes, L is nonregular by the Myhill–Nerode theorem.