Ordini di calcolo

Luca Tagliavini February 24-25, 2021

Contents

0.1 Modello di calcolo

Immaginiamo di avere una macchina a registri con le seguenti caratteristiche:

- $\bullet\,$ La macchina ha n locazioni di memoria, indicizzate da 1 a n
- L'accesso in lettura/scrittura richiede sempre tempo costante
- La macchina ha accesso a operazioni base come somma/moltiplicazione che vengono eseguite in tempo constante

0.2 Costo computazionale

Indichiamo con f(n) la quantita' di risorse (tempo, memoria) necessaria al fine dell'esecuzione di un algoritmo con un input n, operante sulla macchina a registri sopra descritta.

Siamo interessati a studiare l'ordine di grandezza di f(n), ignorando le costanti numeriche o i termini di ordine inferiore.

Oltretutto non andremo a quantitifcare un tempo in secondi, ma bensi' il numero di operazioni elementari svolte dall'algoritmo.

0.2.1 Esempio

Consideriamo due algoritmi: $A \in B$. Assumiamo le seguenti tempistiche:

- $f_A(n) = 10^3 n$
- $f_B(n) = 10^{-3}n^2$

0.3 Notazione asintitoca O (Omicron)

Data una funzione f(n) che quantifica il costo di un algoritmo con input n, usiamo O(f(n)) per indicare l'insieme di funzioni g(n) che al limite stanno sempre sotto f(n), ovvero.

$$g(n) \in O(f(n))$$
 quando $\exists c > 0, n_0 \ge 0. \forall n \ge n_0.$ $g(n) \le c \cdot f(n)$

Esiste un n_0 dopo il quale la funzione g rimane inferiore rispetto a f. c e' una costante che eventualmente devo applicare a f per renderla sempre maggiore di g. Abuso di notazione: g = O(f(n)) come $g \in O(f(n))$.

Esempio dove si ha $g(n) \in O(f(n))$, scegliendo $n_0 = 2.15, c = \frac{1}{4}$

0.4 Operazione asintotica Ω (Omega)

Data una funzione f(n) che quantifica il costo di un algoritmo con input n, usiamo $\Omega(f(n))$ per indicare l'insieme di funzioni g(n) che al limite si stanno sempre sopra f(n), ovvero.

$$g(n) \in \Omega(f(n))$$
 quando $\exists c > 0, n_0 \ge 0. \forall n \ge n_0.$ $g(n) \ge c \cdot f(n)$

Esempio dove si ha $g(n) \in \Omega(f(n))$, scegliendo $n_0 = 8.61, c = \frac{1}{4}$

0.5 Operazione asintotica Θ (Theta)

Data una funzione f(n) che quantifica il costo di un algoritmo con input n, usiamo $\Theta(f(n))$ per indicare l'insieme di funzioni g(n) che al limite si comportano come f(n), ovvero.

$$g(n) \in \Theta(f(n))$$
 quando $\exists c_1 > 0, c_2 > 0, n_0 \ge 0. \forall n \ge n_0.$
$$c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n)$$

Le funzioni g e f crescono esattamente con lo stesso ordine di grandezza. Ossia due funzioni espresse in polinomi saranno in relazione Θ sse il polinomio di grado maggiore e' lo stesso.

Esempio dove si ha $g(n) \in \Theta(f(n))$, scegliendo $n_0 = 1, c_1 = 6, c_2 = \frac{3}{2}$

0.6 Teoremi

- simmetria: $g(n) = \Theta(f(n))$ sse $f(n) = \Theta(g(n))$
- simmetria trasposta: g(n) = O(f(n)) sse $f(n) = \Omega(g(n))$
- transitivita': $g(n) = O(f(n)) \wedge f(n) = O(h(n))$ allora g(n) = O(h(n)). Lo stesso vale per Θ e Ω .

0.7 Tabella degli ordini di grandezza

O(f(n))	Ordine	Esempio
O(1)	costante	numero pari, somma, moltiplicazione
$O(\log n)$	logaritmico	ricerca binaria (array ordinato)
O(n)	lineare	ricerca in un array disordinato
$O(n \log n)$	pseudo-lineare	ordinamento di un array (merge sort)
$O(n^2)$	quadratico	ordinamento di un array (bubble sort)
$O(n^3)$	cubico	prodotto di due matrici $n \times n$
$O(c^n)$	esponenziale, $c > 1$	subset-sum problem con forza bruta
O(n!)	fattoriale	commesso viaggiatore con forza bruta
$O(n^n)$	esponenziale, base n	n-queens tramite forza bruta

- subset-sum: abbiamo un insieme di numeri, dobbiamo trovare un sottoinsieme al quale, applicando una sommatoria si ottiene un valore desiderato. L'approccio forza bruta considera ogni sottoinsieme possibile.
- commesso viaggiatore: abbiamo una mappa e delle strade (rappresentate con grafi) e vogliamo trovare il modo migliore per il commesso di viaggiare da A a B. L'approccio forza bruta consiste nel valutare ogni strada possibile.
- n-queens: problema che ci chiede di porre le regine in una scacchiera $n \times n$ in modo che esse non si mangino a vicenda. L'approccio forza bruta prova ogni possibile combinazione di piazzamento in $n \times n$.

0.8 Spiegazione di alcuni ordini di grandezza

• binary serach: Andiamo ad analizzare gli elementi dell'array considerando meta' array alla volta, partendo da n elementi, guardando poi $\frac{n}{2}$, poi $\frac{n}{4}$ e cosi' via. Facendo questa procedura si svolgono log n (dove log e' sempre log₂ in algoritmi). Eccone una spiegazione:

$$\frac{n}{2} \longrightarrow \frac{n}{4} \longrightarrow \frac{n}{8}$$

fino ad arrivare ad avere una frazione che vale 1

$$1 = \frac{n}{2^{\#}}$$
$$2^{\#} = n$$
$$\# = \log_2 n$$

• merge sort: Analizziamo gli array a meta' come nelle binary search, e ogni operazione di ordinamento sulle sottoparti richiede $O(\frac{n}{2})$ tempo per svolgere i confronti; Visto che dovremo ordinare entrambe le meta' dell'array, svolgeremo $O(\frac{n}{2}) \cdot 2$ volte l'operazione di ordinamento, ovvero O(n).

Il che ci da un costo di $O(n) \cdot O(\log n) = O(n \log n)$

0.9 Confronto con limite

Per confrontare l'ordine di grandezza asintotica di due funzioni g(n) e f(n), si puo' svolgere il:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} =$$

- ∞ : $g(n) = \Omega(f(n))$ poiche' g(n) ha una crescita superiore
- $k \in \mathbb{R}$: $g(n) = \Theta(f(n))$ poiche' g(n) cresce come f(n) + k
- 0: g(n) = O(f(n)) poiche' g(n) ha una crescita inferiore