Bipolar Junction Transistors (BJTs)

- Basically two *back-to-back diodes*
- Immensely important device
- Name originates from *Transfer of Resistor*
- Three-Layer/Terminal [Emitter (E), Base (B), Collector (C)] Two-Junction [Base-Emitter (BE), Base-Collector (BC)] device
- Current through two terminals (E and C) can be *controlled* by the current through the third terminal (B)

- *Active device* ⇒ capable of producing *voltage/current/power gain*
- Two basic usage:
 - Amplification (Analog Circuits)
 - Switching (*Digital Circuits*)
- Two types: npn and pnp
- We will be discussing only npn BJTs
- **Bipolar**: both **electrons** and **holes** contribute to **current transport** through the device
- Current controlled device

Symbol and Current/Voltage Convention:

* For an *npn* transistor, the *collector and* base currents (I_C and I_B respectively)

flow in and the emitter current (I_E)

flows out of the transistor

⇒ Applying KCL, treating the whole of the transistor as a *big node*:

$$I_E = I_C + I_B$$

- * E and C are *n-type*, while B is *p-type*
- * Note the *notational convention* of the applied voltages $(V_{BE} \text{ and } V_{BC}) p$ -side first

Modes of Operation:

- * BE and BC junctions can either be forward or reverse biased \Rightarrow 4 possible modes of operation
 - Forward Active: BE junction forward biased

 BC junction reverse biased
 - Reverse Active: BE junction reverse biased

 BC junction forward biased
 - Saturation: Both junctions forward biased
 - Cutoff: Both junctions reverse biased

Quadrants III and IV: Analog Domain Quadrants I and III: Digital Domain Quadrant II: Finds use only in TTL circuits

Operation in the Forward Active (FA) Mode:

- 1 Injection Component
- ② Recombination Component
- 3 Collection Component

- * BE junction forward biased: electrons injected from E to B, thus emitter current (I_E) flows out of the emitter terminal
- * In B, electrons diffuse towards the BC junction due to the presence of diffusion gradient

 Note: electrons are minority carriers in p-base
- * In this process, some electrons will *recombine* with the *majority carriers* (*holes*) present in B
- * The holes *lost* due to this *recombination process* will be *supplied* by the *external circuit*, thus, base current (I_R) flows into the base terminal

- * Electrons, which did not recombine, will reach the edge of the BC depletion region, and will get swept to C by the *junction electric field*
- * Thus, collector current (I_C) flows into the C terminal
- * A small change in I_B can cause a large change in I_C to I_E ratio, due to a phenomenon known as base control
- * For a good transistor, I_B should be as small as $possible \Rightarrow the base region should be as thin as <math>possible$

Current Gain:

* Note that the sum of the collection component and the recombination component must always equal the injection component (charge conservation)

$$\Rightarrow$$
 $I_E = I_C + I_B$

- * Common-Emitter Current Gain $(\beta) = I_C/I_B$
- * Common-Base Current Gain $(\alpha) = I_C/I_E$
- * Thus, $\beta = \alpha/(1-\alpha)$ and $\alpha = \beta/(\beta+1)$
- * For a good transistor, I_B should be as small as possible $\Rightarrow \alpha \rightarrow 1$, and β is quite large (~100-500)
- * Closer is the value of \alpha to 1, better is the BJT!

Current-Voltage Characteristic:

* Note that **BE** junction basically is a diode

$$\Rightarrow I_{E} = I_{ES} \left[exp(V_{BE}/V_{T}) - 1 \right] \simeq I_{ES} \exp(V_{BE}/V_{T})$$

- : BE junction is sufficiently forward biased
- \therefore The -1 term can be neglected
- I_{ES}: Reverse saturation current of the BE junction
- V_T : Thermal Voltage (= kT/q) = 26 mV at room temperature (T = 300 K)
- * Thus, $I_C = \alpha I_E = I_S \exp(V_{BE}/V_T)$
 - $I_S = \alpha I_{ES} = saturation current of the BJT$
 - $I_B = I_E I_C$

Output Characteristic:

- * *Note*: $V_C = V_{CE}$ (variable), also I_B is variable
- * When BJT is in the forward active mode, V_{BE} is assumed to get clamped at 0.7 V (about 100 mV above V_{γ}) \Rightarrow Thumb rule
- * Now, $V_{CE} = V_{BE} V_{BC}$
- * Thus, for all values of $V_{CE} > 0.7 V$, V_{BC} is negative, implying the BC junction remains reverse biased, and forward active operation is maintained

- * For $V_{CE} = 0.7 V, V_{BC} = 0$
 - ⇒ BC junction is neither forward nor reverse biased it is actually under zero bias
- * As soon as V_{CE} drops below 0.7 V, V_{BC} changes sign and becomes positive
 - ⇒ BC junction is now forward biased, and forward active mode of operation is lost
 - ⇒ BJT enters saturation mode of operation, with both junctions forward biased
 - $\Rightarrow V_{CE} = 0.7 V$ is known as onset of saturation

- * Once V_{CE} drops below 0.7 V, the BJT enters the saturation mode of operation
- st With further reduction in $V_{\it CE}$, the BJT moves deeper into saturation
 - ⇒ This is the mode of operation of BJTs for digital circuits, however, BJTs used in analog circuits should never ever enter this mode of operation
 - \Rightarrow :. A quick check is needed to ensure that V_{CE} is greater than 0.7 V in analog circuits

npn BJT Output Characteristic

Why $V_{BE} = 0.7 V$?:

- * Note: I_E (and thus I_C) varies exponentially with respect to V_{BE}
 - \Rightarrow A small change in $V_{\it BE}$ can cause a very large change in $I_{\it C}$
- * As a rule of thumb, V_{BE} under the forward active mode is assumed to get pinned at 0.7 V
 - ⇒ This is a heuristic used for quick estimate
 - ⇒ The answer may not be accurate, however, good enough!

Degree of Saturation (DoS):

- * In saturation, BC junction also becomes forward biased and collector starts injecting electrons to base
- * The base gets flooded with minority carriers (electrons), with a corresponding increase in recombination, and thus, the base current $(I_{B,sat})$
- * Note that at the same time, the collector current ($I_{C,sat}$) starts to drop due to this reverse injection process
- * The net effect is a drop in $\beta \Rightarrow in$ the saturation region, β is denoted by β_{sat} (= $I_{C,sat}/I_{B,sat}$), and has a value smaller than that in the FA region

*
$$DoS \triangleq \frac{\beta}{\beta_{sat}}$$
, and has a value ≥ 1

- * Note: At onset of saturation, DoS = 1, and as the BJT is driven deeper and deeper into saturation, the value of DoS keeps on increasing
- * The value of DoS is a tell-tale sign of judging how deeply the transistor is driven into saturation
- * Commonly used values: $V_{BE(FA)} = 0.7 \text{ V}$, $V_{CE(FA)} > 0.7 \text$

 $V_{CE(OS)} = 0.7 \text{ V}, V_{CE(HS)} = 0.1 \text{ V}, V_{BE(HS)} = 0.8 \text{ V}$

OS: Onset of Saturation, HS: Hard Saturation

Load Line Analysis:

*
$$I_B = \frac{V_B - V_{BE}}{R_B}$$
, with $V_{BE} = 0.7 \text{ V} (FA \text{ mode})$

- * Also, $I_C = \beta I_B$ (*Note*: Independent of R_C)
- * Thus, for different values of V_B , we would get different values of I_B , and correspondingly different values of I_C

- \Rightarrow A series of *output characteristics* (i.e., I_C versus V_{CE}) can be drawn
- * The *DC operating point* or the *Q-point* can lie *anywhere* on any of these curves

- * Also, by varying V_B *smoothly*, almost a *continuous* variation of I_B can be obtained, which would yield almost *continuous* values of I_C
- * Thus, the output characteristics, in effect, completely fill up quadrant I
- * Now, to fix a *unique bias point*, we need to draw the *load line*, and the *intersection point* of this load line with the particular characteristic for a given V_B and I_B would give us the information about the *Q-point*

* Load line equation:
$$I_C = \frac{V_{CC} - V_{CE}}{R_C}$$

- * 2 boundary points:
 - $I_C = 0$, $V_{CE} = V_{CC}$
 - $V_{CE} = 0$, $I_{C} = V_{CC} / R_{C}$
- * Joining these two points by a *straight line* gives the *load line*
- * This line will *intersect* with the output characteristics at *infinite* number of points
- * Each of these points is a possible operating point
- * The best choice for the operating point (or Q-point) is right at the center of the load line:

$$\Rightarrow$$
 $V_{CEQ(best)} = V_{CC}/2$ and $I_{CQ(best)} = V_{CC}/(2R_C)$

* Justification:

- When this circuit is to be used as an *amplifier*, then an *ac small-signal* v_i will be *superimposed* on the *DC bias voltage* V_B
- This would cause the *dynamic operating point* to *move along the load line in either direction*
- As it shifts towards the V_{CE} axis, Q moves towards cutoff (since I_{C} decreases), and as it moves towards the I_{C} axis, Q moves towards saturation (since V_{CE} decreases)

- If Q enters either cutoff or saturation region, then it would produce clipping (or distortion) in the output voltage \mathbf{v}_0
- \Rightarrow If the Q-point is located exactly at the center of the load line, then the maximum possible undistorted peak-to-peak swing of the output voltage v_0 will be achieved
- ⇒ Golden Rule of Thumb for BJT biasing

What is the Role of $R_{\rm C}$?:

- * For fixed V_B (and thus, I_B):
 - \bullet As R_{C} decreases, $I_{C.max}$ will increase
 - \Rightarrow Q moves towards *cutoff*
 - \Rightarrow v₀ will get *clipped* during *positive half cycle*
 - As R_C increases, I_{C,max} will decrease
 - \Rightarrow Q moves towards *saturation*
 - \Rightarrow v₀ will get *clipped* during *negative half cycle*
 - In either of these two cases, the range of the maximum undistorted peak-to-peak output voltage swing will be correspondingly reduced

Observations:

- * If R_C is *very high*, then the load line may not have any intersection point at all with the output characteristics under the FA region, and the Q-point will move to the *saturation region*
 - ⇒ Disastrous way to bias a transistor for analog circuit applications
- * A transistor biased in the *FA region* behaves like an *ideal current source* with *infinite output resistance*
- * However, if a transistor is biased in the saturation region, it ceases to behave like a constant current source

- * In the saturation region, I_C becomes a strong function of V_{CE} , showing *very small output resistance*
- * Transistors used in analog circuit applications like *amplifiers*, should always be biased in the *FA region*, where I_C does not show any dependence on V_{CE}
 - \Rightarrow $I_{\it CQ}$ would not change with any variation of $V_{\it CE}$
- * This is important to maintain *constant* values of all the *ac small-signal model parameters* (to be discussed)
- * If I_{CQ} varied with V_{CE} , then the behavior of the circuit would become *erratic*

AC Small-Signal Model:

- * Representation of the transistor as a *linear network*
- * Actual model is quite tedious and complicated
- * Here, we will present the *simplest one*, known as the **low-frequency T-model**
- * It consists of *only 2 parameters*:
 - β (or α): Common-Emitter (or Common-Base)

 Current Gain
 - r_E: Incremental Emitter Resistance

$$\triangleq dV_{BE}/dI_{E} = V_{T}/I_{EQ} \simeq V_{T}/I_{CQ} \ (\because \alpha \rightarrow 1)$$

- * *Note*: r_E is expressed in terms of I_{CQ} (or I_{EQ})
 - ⇒ The linearization is done around the DC bias point (Q-point)
 - \Rightarrow : DC analysis must precede ac analysis in order to obtain the bias point information, and thus, the value of r_E
- * Also, note the $v_{be} = i_e r_E$, which can also be written

as:
$$v_{be} = (\beta+1)i_b r_E \simeq \beta i_b r_E = i_b r_\pi$$
, with $r_\pi = \beta r_E$

- \Rightarrow r_{π} is another *small-signal parameter*, defined as *incremental base-emitter resistance*
- ⇒ Note that this resistance appears in the base lead

Analysis of Amplifiers Using Transistors:

- * The analysis proceeds as follows:
 - First, *DC biasing analysis* is done, which yields the *DC bias point* (**Q-point**)
 - \Rightarrow Gives I_{CQ} and V_{CEQ}
 - I_{CQ} is needed to obain the values of the small-signal parameters
 - V_{CEQ} is needed to ensure that the transistor is biased in the *FA region* ($V_{CEQ} > 0.7$ V, and ideally $V_{CC}/2$, known as the **best bias point**)

- * Then, the transistor is replaced by its *ac small-signal model*
- * Subsequently, *usual network analysis* is done to obtain:
 - Voltage Gain (A_v)
 - Current Gain (A_i)
 - Power Gain $(A_p = |A_v \times A_i|)$
 - Input Resistance (R_i)
 - Output Resistance (R_0)

Biasing:

- * Fixing the *DC operating point* (known as the *Q-point* or *Quiescent Operating Point*)
- * Defined by two parameters: I_{CQ} and V_{CEQ} , with the subscript Q denoting the **Q-point values**
- * If the transistor is to be used as an *amplifier* (analog application), then it must be biased in the *FA region*
- * On the other hand, if the transistor is to be used as a switch (digital application), then it must toggle between cutoff and saturation modes of operation

Example: Fixed Resistor Bias:

To start the DC bias analysis, assume that Q is in the FA region, with $V_{BE} = 0.7 \text{ V}$, and $V_{CE} > 0.7 \text{ V}$

$$\Rightarrow I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{5 - 0.7}{100 \text{ k}} = 43 \text{ } \mu\text{A}$$

Now, to find I_{CO} , we need the value of β

Let's assume
$$\beta = 100 \implies I_{CQ} = \beta I_{BQ} = 4.3 \text{ mA}$$

Note that to find I_{CQ} , we did not need the value of R_{C}

This is true only if Q is in the FA region, where I_C is independent of $R_C \Rightarrow \text{Extremely important observation}$

Now,
$$V_{CEQ} = V_{CC} - I_{CQ}R_{C}$$

Thus, R_C controls the value of V_{CE}

Recall that
$$V_{CEQ(best)} = V_{CC}/2 = 2.5 \text{ V}$$

$$\Rightarrow$$
 Best value of R_C = $(2.5 \text{ V})/(4.3 \text{ mA}) = 581.4 \Omega$

Note: For $R_C < 581.4 \Omega$, V_{CEO} would *increase* and

Q would move towards cutoff

On the other hand, if $R_C > 581.4 \Omega$, V_{CEO} would

decrease and Q would move towards saturation

The value of R_C to operate Q at *onset of saturation*

$$= (5-0.7)/(4.3 \text{ mA})=1 \text{ k}\Omega$$

If the value of R_C is more than 1 k Ω , then Q will be driven into *saturation*

As R_C increases, Q will go into *deep* (or *hard*) *saturation* with $V_{CE(HS)} = 0.1 \text{ V}$ and $V_{BE(HS)} = 0.8 \text{ V}$

The value of β will change to β_{sat} , with DoS > 1

Example: Let's visit the scene for $R_C = 10 \text{ k}\Omega$

Obviously, Q will be under hard saturation

$$\Rightarrow I_{B,sat} = \left(V_{CC} - V_{BE(HS)}\right) / R_B = (5 - 0.8) / (100 \text{ k}) = 42 \text{ } \mu\text{A}$$

$$I_{C,sat} = \left(V_{CC} - V_{CE(HS)}\right) / R_C = (5 - 0.1) / (10 \text{ k}) = 490 \text{ } \mu\text{A}$$

$$\Rightarrow \beta_{sat} = I_{C,sat} / I_{B,sat} = 11.7 \text{ and } \textbf{\textit{DoS}} = \beta / \beta_{sat} = 8.6$$

How to Check the Mode of Operation?:

- * Let's consider the same circuit with $R_C = 10 \text{ k}\Omega$, but now we assume that Q is in the FA region $\Rightarrow I_B$ and I_C remain at 43 μA and 4.3 mA respectively
- * But, $V_{CEQ} = V_{CC} I_{CQ}R_C = 5 (4.3 \text{ mA}) \times (10 \text{ k}\Omega)$ = -38 V!
- * Now, in a circuit with bias voltages ranging from ground (0 V) to V_{CC} (5 V), it is impossible to have a *negative voltage* at any node of the circuit
- * Thus, the analysis is *wrong*, and Q is *NOT* in the FA region, it's actually in *hard saturation*!

Useful Information for Transistor Circuit Analysis:

- * All *pure* ac voltages (i.e., without any DC offset) are *DC short*, since their average value is zero
- * All *pure* DC voltages are *ac short*, since they don't have any time variation
- * In DC analysis, open up all capacitors
- * In ac analysis, short all capacitors
- * In ac analysis, null all independent sources, but don't touch dependent sources

Amplifier Topologies:

- * 4 basic topologies:
 - CE (Common-Emitter)
 - CB (Common-Base)
 - CC (Common-Collector)
 - CE(D) [Common-Emitter (Degeneration)]
- * **CE**:
 - Input at B, output from C, E grounded
 - A_i large $(=\beta)$, $|A_v|$ moderate to large, A_p huge
 - 180° phase shift between input and output

* **CB**:

- Input at E, output from C, B grounded with or without a resistor
- $A_i \leq 1 \ (= \alpha), \ |A_v| \ moderate, A_p \ moderate$
- Input and output in phase

* **CC**:

- Input at B, output from E, C connected either to ground (for negative supply circuits) or to the positive power supply with or without a resistor
- A_i large $(=\beta+1)$, $|A_v| \leq 1$, A_p moderate
- Input and output in phase

* **CE(D)**:

- Input at B, output from C, E grounded through a resistor
- A_i large $(=\beta)$, $|A_v|$ small, A_p moderate
- 180° phase shift between input and output
- This topology has an advantage in that it provides for an *excellent frequency response*
- * As an example, we will discuss a very important circuit block, known as *RC-Coupled Amplifer*, which provides both current as well as voltage gain, and thus, *large power gain*

RC-Coupled Amplifier:

- * Extremely powerful analog circuit amplifier module
- * Core circuit for audio amplifiers

 C_B : Base Blocking Capacitor C_E : Emitter Bypass Capacitor C_C : Collector Coupling Capacitor All are high-value capacitors (> μ F) For DC Analysis: Treated as Open For ac Analysis: Treated as Short

Purpose of the Capacitors:

* C_B: Base Blocking Capacitor

- Isolates the ac signal source from the circuit core
- The DC level of the ac signal (i.e., the *offset*) cannot affect the DC bias point of the circuit

* C_E: *Emitter Bypass Capacitor*

- Plays no role in DC analysis, since it opens up
- For ac analysis, it shorts out R_E, putting the emitter of Q to ac ground

* C_C: Collector Coupling Capacitor

• Isolates the load resistance R_L from the circuit core such that it cannot alter the DC bias point

DC Analysis:

- * All capacitors open up
- * Note that typical value of β is ≥ 100 , thus, I_B is a miniscule fraction of I_C $\Rightarrow I_E \simeq I_C$
- * Also, $I_2 = I_1 I_{BQ}$
- * R_1 and R_2 are chosen in such a way that $I_1 \gg I_{BO} \implies I_2 \simeq I_1$
- * Thus, $V_B = R_2 V_{CC} / (R_1 + R_2) = 1.2 \text{ V}$ $\Rightarrow V_E = V_B - V_{BE} = 0.5 \text{ V} \text{ and } I_{EQ} \simeq I_{CQ} = V_E / R_E = 1 \text{ mA}$ and $V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E) = 6.5 \text{ V} \text{ (close to } V_{CC} / 2)$

ac Analysis:

* All capacitors shorted

- \Rightarrow R_E gets bypassed
- * V_{CC} nulled \Rightarrow R₁ comes in parallel to R₂ (R'), and R_C comes in parallel with R_L (R")

* Replace Q by its low-frequency T-model

• *Note*: $i_0 = i_c \approx i_e$, : base current neglected

* Voltage gain:
$$A_v = \frac{v_0}{v_i} = \frac{-i_0 R''}{i_e r_E} = -\frac{2.5 \text{ k}\Omega}{26 \Omega} = -96.2$$

• *Note*:
$$r_E = V_T/I_{CQ} = (26 \text{ mV})/(1 \text{ mA}) = 26 \Omega$$

- * The *negative* sign for A_v implies that v_0 is *exactly* out-of-phase with v_i (i.e., they are 180° apart)
- * Note that the input v_i appears at the *base*, while the output v_0 is taken from *collector*, with emitter grounded
 - ⇒ Common-Emitter (CE) Amplifier
- * For a *CE amplifier*, there is a *phase shift of 180*° between the input and output
- * To increase A_v , either decrease r_E , increase R'', or both
- * r_E can be decreased by increasing I_C (by a change in bias)
- * R'' can be increased by making $R_L \gg R_C$ (max. $R'' = R_C$)
- * *Note*: **Power gain** = $|A_v \times A_i| > 9620 \text{ (for } \beta > 100)$

What Happens if $C_{\rm E}$ is not there?:

- * DC bias point unchanged
- * Due to the absence of C_E , R_E unbypassed
- * Input is still at *base*, and output is still from the *collector*, but

now emitter is grounded through a resistor

 \Rightarrow Common-Emitter (Degeneration) [CE(D)]

* Voltage gain:
$$A_v = \frac{v_0}{v_i} = \frac{-i_0 R''}{i_e (r_E + R_E)} = -\frac{2.5 \text{ k}\Omega}{526 \Omega} = -4.75$$

* Note the drastic reduction in A_v (gain degeneration!)

Simple BJT Inverter:

- * Basic digital building block
- * Known as *Inverter* (or *NOT Gate*)
- * Digital circuits have *two levels*:
 - High (or Hi) close or equal to V_{CC}
 - Low (or Lo) close or equal to 0

•
$$V_i = 0$$
 (*Lo*), Q is *off*, $V_0 = V_{CC}$ (*Hi*)

• $V_i = V_{CC}$ (*Hi*), Q is driven to *hard saturation*,

$$V_0 = V_{CE(HS)} = 0.1 \text{ V } (\boldsymbol{Lo})$$

⇒ Inverter

Voltage Transfer Characteristic (VTC)

 V_{OH} : Output Hi V_{OL} : Output Lo V_{IL} : Input Lo V_{IH} : Input Hi

 NM_H : Noise Margin (High) = $V_{OH} - V_{IH}$ NM_L : Noise Margin (Low) = $V_{IL} - V_{OL}$

TW: Transistion Width = $V_{IH} - V_{IL}$ LS: Logic Swing = $V_{OH} - V_{OL}$

Design Example:

Choose
$$V_{CC} = 5 \text{ V}$$
, $R_{C} = 2 \text{ k}\Omega$, and $R_{B} = 20 \text{ k}\Omega$

$$V_i = \theta V, Q off \implies V_{OH} = V_{CC} = 5 V$$

$$V_i = 5 V$$
, Q in hard saturation \Rightarrow $V_{OL} = V_{CE(HS)} = 0.1 V$

 V_{IL} : Maximum value of the input that would still ensure that V_0 remains at V_{OH}

Taken to be equal to $V_{BE} = V_{\gamma} = 0.6 V$

Note that Q just starts to conduct at this point

 $V_{\rm IH}$: Minimum value of the input that would still ensure that $V_{\it 0}$ remains at $V_{\it 0L}$

Actual computation is quite tedious

Analysis of V_{IH} :

It is assumed that when $V_i = V_{IH}$, Q is at the onset of saturation with $V_{BE} = 0.7 V$, but with $V_{CE} = 0.1 V$. This is a **clear contradiction**, however, it gives a sufficiently close estimate of V_{IH} .

$$\Rightarrow I_{C} = \frac{V_{CC} - V_{CE}}{R_{C}} = \frac{5 - 0.1}{2 \text{ k}} = 2.45 \text{ mA}$$

BJTs used in inverters typically have $\beta \sim 50-100$ Also, β is assumed to have its *nominal value* (i.e., *the value in the FA region*) at this point

Choosing
$$\beta = 80 \implies I_B = I_C/\beta = 30.6 \mu A$$

$$\Rightarrow V_{IH} = V_{BE} + I_{B}R_{B} = 0.7 + (30.6 \,\mu\text{A}) \times (20 \,k\Omega)$$

$$= 1.3 \,\text{V}$$
Thus, $LS = V_{OH} - V_{OL} = 4.9 \,\text{V}$

$$TW = V_{IH} - V_{IL} = 0.7 \,\text{V}$$

$$NM_{H} = V_{OH} - V_{IH} = 3.7 \,\text{V}$$

$$NM_{L} = V_{IL} - V_{OL} = 0.5 \,\text{V}$$
Transition Region Gain
$$\triangleq \frac{dV_{0}}{dV_{i}} = \frac{V_{OH} - V_{OL}}{V_{IL} - V_{IH}}$$

$$= -\frac{LS}{TW} = -7$$

- * *Note*: Higher the magnitude of the gain, sharper is the response
- * The inverter is the heart of digital circuits, and can be configured in various topologies to produce a variety of digital gates, e.g., *AND*, *OR*, *NAND*, *NOR*, etc.
- * One of the simplest digital blocks to design, and works very well ⇒ pretty robust circuit
- * *Note*: Q acts as a **switch** \Rightarrow either *cutoff* (with output in the *Hi* state) or in *hard saturation* (with output in the *Lo* state) \Rightarrow that's why it's a **Gate**!

Simple BJT Series Voltage Regulator:

- * Extremely simple and powerful circuit
- * Operates under the principle of *negative feedback*

$$* V_0 = V_Z - V_{BE} = I_E R_L$$

* Recall: I_E depends on V_{BE} exponentially

 \Rightarrow Large change in I_E can be accommodated by a very small change in V_{BE} , which can be assumed to be clamped at $\sim 0.7 \text{ V}$

- * If for any reason, V_0 tends to *increase*, then V_{BE} drops, which reduces I_E , and thus, V_0 reduces
- * Similarly, if for any reason, V_0 tends to *decrease*, then V_{BE} *increases*, which *increases* I_E , and thus, V_0 *increases*
- * Note that the cause and effect are opposite

 ⇒ Negative Feedback
- * Extremely robust circuit, with the output having almost *no ripple*
- * Note that Q should never saturate \Rightarrow $V_{CE,min} = 0.7 \text{ V}$

Design Issues & Constraints:

- * :: V_Z has a constant value, let's say 5 V
 - \therefore V₀ will have a fixed and constant value of 4.3 V

Note: This is independent of the value of R_L

- * Minimum value of V_i should be $\geq V_0 + V_{CE(min)}$
- * Q is known as *series pass transistor*, since it passes V_i to output with a drop of V_{CE}
- * Current Relations: $I_1 = I_C + I_2$, $I_2 = I_Z + I_B$, $I_C = \beta I_B$, and $I_E = (\beta + 1)I_B$
- * The role of R is very critical: it should be chosen extremely carefully

- * The output should never be *short-circuited*, i.e., R_L should never be made *zero*, since in that case, *huge current* will flow at the output, which will completely *destroy* the regulator due to *over-heating*
 - ⇒ Actual regulators have *short-circuit protection*
- * If the minimum allowed value of R_L is $R_{L,min}$, which leads to the maximum value of I_E ($I_{E,max} = V_0/R_{L,min}$) and V_i is at its minimum value $V_{i,min}$, then the current supplied by V_i should not only supply $I_{B,max}$ $\left[= I_{E,max}/(\beta+1) \right]$, but also the minimum required

Zener current $I_{Z,min}$ to sustain breakdown

$$\Rightarrow \text{This gives } R_{max} = \frac{V_{i,min} - V_{Z}}{I_{B,max} + I_{Z,min}}$$

* With load removed, i.e., R_L open-circuited,

$$I_E = I_C = I_B = 0$$

* Under this situation, with V_i at its maximum value $V_{i,max}$, the Zener current should not exceed its maximum limit of $I_{Z,max}$

$$\Rightarrow \text{ This gives } \mathbf{R}_{min} = \frac{\mathbf{V}_{i,max} - \mathbf{V}_{Z}}{\mathbf{I}_{Z,max}}$$

* *Exercise*: Verify that any value of R falling outside this range will be detrimental for the circuit