

CÉSAR VALLEJO

TRIGONOMETRÍA

Tema: Funciones trigonométricas I

DOMINIO DE LAS FUNCIONES TRIGONOMÉTRICAS

Es el conjunto de valores que puede asumir la variable independiente

> Notación Domf o Df

Análisis del dominio

$$\frac{1}{x} \in R \to x \neq 0$$

 $\sqrt[n]{x} \in R$, $n par \rightarrow x \ge 0$

 $\tan \theta \text{ y } \sec \theta \rightarrow \theta \neq \{(2n+1)\frac{\pi}{2}, n \in Z\}$

 $\cot \theta \ y \ \csc \theta \rightarrow \theta \neq \{n\pi, n \in Z\}$

 $sen\theta \ y \ cos\theta \rightarrow \theta \in R$

Dominio de las F.T. básicas

Función	Dominio
f(x)=senx	\mathbb{R}
$f(x) = \cos x$	\mathbb{R}
f(x)=tanx	$\mathbb{R}-(2n+1)\frac{\pi}{2}$
$f(x) = \cot x$	$\mathbb{R}-n\pi$
f(x)=secx	$\mathbb{R}-(2n+1)\frac{\pi}{2}$
f(x) = cscx	$\mathbb{R}-n\pi$ n $\in \mathbb{Z}$

(Examen UNI 2003-1)

Halle los valores de x en el intervalo de <0; $\pi >$ para los cuales existe f si:

$$f(x) = \frac{1}{\sqrt{1 + \sin x - 2\cos^2 x}}$$

A)
$$\left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$$

B)
$$\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$$

A)
$$\left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$$
 B) $\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$ C) $<\frac{\pi}{3}; \frac{2\pi}{3}>$

D)
$$<\frac{\pi}{6}$$
; $\frac{5\pi}{6}$ > E) $<\frac{\pi}{3}$; $\frac{5\pi}{6}$ >

RESOLUCIÓN

f existe o está definida en R si

$$1 + \sin x - 2\cos^2 x > 0$$

$$1 + \text{senx} - 2(1 - \text{sen}^2 x) > 0$$

$$2\mathrm{sen}^2 x + \mathrm{sen} x - 1 > 0$$

$$(2\operatorname{sen} x - 1) (\operatorname{sen} x + 1) > 0$$

$$2\text{senx} - 1 > 0 \rightarrow \text{senx} > \frac{1}{2}$$

Veamos en la CT los valores de x en <0; $\pi >$

$$\therefore x \in <\frac{\pi}{6}; \frac{5\pi}{6}>$$

(Examen UNI 2003-1)

Dada la función f, definida por:

$$f(x) = \frac{senx + cosx}{1 - senx + cosx}$$

Si k es un número entero no negativo, entonces los puntos de discontinuidad de f son:

A)
$$\left\{ \frac{1}{2} (4k+1)\pi \right\} B) \left\{ (2k+1)\pi \right\} \cup \left\{ k\pi \right\}$$

C)
$$\left\{ \frac{1}{2} (4k+1)\pi \right\} \cup \left\{ (2k+1)\pi \right\}$$

D)
$$\{2k\pi\}$$
 E) $\{k\pi\}$

RESOLUCIÓN

RANGO DE LAS FUNCIONES TRIGONOMÉTRICAS

Definición

Es el conjunto de valores que puede asumir la variable dependiente

> Notación Ranf o Rf

Análisis del rango

Establecer las restricciones a criterio

Reducir la regla de correspondencia de ser posible

A partir del dominio se forma la función reducida

Si no es posible reducir, podemos aplicar relaciones de desigualdades, funciones crecientes o decrecientes, suma y producto de funciones Rango de las F.T. básicas

Función	Rango
f(x)=senx	[-1;1]
f(x) = cosx	[-1;1]
f(x)=tanx	\mathbb{R}
$f(x) = \cot x$	\mathbb{R}
f(x) = secx	<-∞; −1] ∪ [1; +∞ >
f(x) = cscx	<-∞; −1] ∪ [1; +∞ >

(Examen UNI 2016-II)

Sea f:
$$\left\langle \frac{\pi}{6}; \frac{7\pi}{6} \right\rangle \to R$$
 definida por

$$f(x) = 2\cos^2\left(\frac{\pi}{2} - x\right) + 4\cos x$$

Determine el rango de f

A)
$$[-4;\frac{\sqrt{3}}{2}> B)[-4;\frac{1+4\sqrt{3}}{2}>$$

C)[-4;
$$\frac{1+2\sqrt{3}}{2}$$
 > D)[-2; $\sqrt{3}$ >

E)[
$$-2;2\sqrt{3}>$$

RESOLUCIÓN

PERIODO DE LAS FUNCIONES TRIGONOMÉTRICAS

Definición

f es una función periódica si $\exists T \neq 0 / \forall x y x + T \in$ Dom f se cumple: f(x + T) = f(x)

El periodo (si existe) es el menor valor positivo de T que cumple f(x+T)=f(x)

Periodo de las F.T. básicas

Función	Periodo
f(x)=senx	2π
$f(x) = \cos x$	2π
f(x)=tanx	π
$f(x) = \cot x$	π
f(x) = secx	2π
f(x) = cscx	2π

Análisis del Periodo

Función	Periodo
$y = sen^n(Bx)$	* n par $\rightarrow T = \frac{\pi}{ B }$
$y = cos^n(Bx)$	D
$y = sec^n(Bx)$	* n impar $\rightarrow T = \frac{2\pi}{ B }$
$y = csc^n(Bx)$,-,

Función	Periodo
$y = tan^n(Bx)$	* $T = \frac{\pi}{ B }$
$y = cot^n(Bx)$	<i>U</i>

(Examen UNI 2012-I)

Determine el periodo de la función:

$$f(x) = |\cos^4 x - \sin^4 x|$$

A) $\frac{\pi}{16}$

 $B)\frac{\pi}{8}$

 $C)\frac{\pi}{4}$

 $D)\frac{\pi}{2}$

 $E)\frac{3\pi}{8}$

RESOLUCIÓN:

(Examen UNI 2000-1)

Sea la función trigonométrica:

$$f(x) = \left| sen \frac{x}{2} \right| + \left| cos \frac{x}{2} \right|$$

Su periodo y rango serán respectivamente

A)
$$\frac{\pi}{2} y [0; 1] B) \frac{\pi}{2} y [0; \sqrt{2}]$$

C)
$$\frac{\pi}{4}$$
 y [1; $\sqrt{2}$] D) $\frac{\pi}{2}$ y [1; $\sqrt{2}$]

E)
$$\pi y \ [1; \sqrt{2}]$$

RESOLUCIÓN:

GRÁFICA DE LA FUNCIÓN SENO

F. T(seno) = $\{(x; y) \in \mathbb{R}^2 / y = \text{senx}; x \in \text{Dom(seno)}\}$

CARACTERÍSTICAS

$$\mathsf{Domf} = \mathbb{R}$$

Ranf =
$$[-1; 1]$$

Creciente :
$$\left\langle 2k\pi - \frac{\pi}{2}; 2k\pi + \frac{\pi}{2} \right\rangle$$

Decreciente:
$$\left(2k\pi + \frac{\pi}{2}; 2k\pi + \frac{3\pi}{2}\right); k \in \mathbb{Z}$$

Es una función continua

Es una función impar:

$$sen(-x) = -senx$$

Es una función periódica

$$T=2\pi$$

$$sen(x + 2\pi) = senx$$

Analicemos la función $f_{(x)} = Asen(Bx); A > 0$

Donde:

$$A = Amplitud$$
 $f_{(X)}$ máx = A
 $f_{(X)}$ mín = $-A$

Ejemplo 1

Grafique las siguientes funciones

$$y_1 = 2sen3x$$

$$y_2 = 3sen3x$$

$$y_3 = 4sen3x$$

Resolución $y_3 = 4sen3x$

Observación

Cuando la regla de correspondencia de una función es multiplicada por -1 La gráfica de la función se invierte respecto al eje X

GRÁFICA DE LA FUNCIÓN COSENO

F. T(coseno) = $\{(x; y) \in \mathbb{R}^2 / y = \cos x; x \in Dom(coseno)\}$

CARACTERÍSTICAS

 $Domf = \mathbb{R}$

Ranf = [-1; 1]

Creciente : $\langle 2k\pi + \pi ; 2k\pi + 2\pi \rangle$

Decreciente: $\langle 2k\pi; 2k\pi + \pi \rangle$; $k \in \mathbb{Z}$

Es una función continua

Es una función par:

$$\cos(-\mathbf{x}) = -\cos\mathbf{x}$$

Es una función periódica

$$T=2\pi$$

$$\cos(x + 2\pi) = \cos x$$

Ejemplo 1

Grafique : y= 4cos3x

Resolución

la función tiene la forma:

y=AcosBx

Donde: A=4 y B=3

Ejemplo 2

Grafique

$$y = |5\cos 5x|$$

(EX - UNI 2012-I)

Cuál de los gráficos mostrados representa a la función $y = \cos(2x - \pi)$?, en un intervalo de longitud un período.

RESOLUCIÓN:

Piden la gráfica de $y = cos(2x - \pi)$

$$y = \cos(-(\pi - 2x))$$

$$y = \cos(\pi - 2x)$$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe