Problema 3. Considerem

```
\operatorname{GL}(n,\mathbb{Z}) := \{M \in \operatorname{M}_{n \times n}(\mathbb{Z}) : \det(M) \in \mathbb{Z}^*\}, \text{ grup lineal,}

\operatorname{SL}(n,\mathbb{Z}) := \{M \in \operatorname{GL}(n,\mathbb{Z}) : \det(M) = 1\}, \text{ grup especial lineal,}

\operatorname{O}(n,\mathbb{Z}) := \{M \in \operatorname{GL}(n,\mathbb{Z}) : M^t M = Id\}, \text{ grup ortogonal,}

\operatorname{SO}(n,\mathbb{Z}) := \{M \in \operatorname{O}(n,\mathbb{Z}) : \det(M) = 1\}, \text{ grup especial ortogonal.}
```

- (a) Demostreu que $GL(n, \mathbb{Z})$ és un grup amb la multiplicació de matrius.
- (b) Demostreu que $SL(n, \mathbb{Z})$ i $O(n, \mathbb{Z})$ són subgrups del grup $GL(n, \mathbb{Z})$.
- (c) Demostreu que $SO(n, \mathbb{Z})$ és un subgrup de $O(n, \mathbb{Z})$.

Solució. (a) Per demostrar que $GL(n, \mathbb{Z})$ és un grup amb la multiplicació de matrius, hem de veure que:

- 1. La multiplicació de matrius està ben definida i és interna:
 - (a) El producte de matrius quadrades $n \times n$ té sentit fer-lo per a tots els elements del conjunt; per tant, està ben definit.
 - (b) Si agafem dues matrius $A, B \in GL(n, \mathbb{Z})$, per a realitzar el producte AB només cal utilitzar sumes i productes, i si $det(A), det(B) \in \{-1, 1\}$ tindrem que $det(AB) = det(A)det(B) \in \{-1, 1\}$. Per tant, $AB \in GL(n, \mathbb{Z})$.
- 2. És clar que es compleix la **propietat associativa**, ja que el producte de matrius és associatiu.
- 3. Existeix **element neutre**. Veiem clarament que la matriu identitat és l'element neutre del producte de matrius, ja que els seus components són enters i $det(Id_n) = 1 \in \mathbb{Z}^*$; per tant, $Id_n \in GL(n, \mathbb{Z})$.
- 4. Tot element del grup té **invers**. Sabem clarament que per a tota matriu del conjunt, existeix la seva matriu inversa. Si $A \in GL(n,\mathbb{Z}) \Rightarrow \det(A) \neq 0$ volem veure que existirà $B \in GL(n,\mathbb{Z}) \Rightarrow \det(B) \neq 0$ tal que $AB = Id_n$ i $BA = Id_n$. Tenim que el $\det(A)\det(B) = \det(Id_n) \Rightarrow \det(B) = \frac{\det(Id_n)}{\det(A)}$, com $\det(A) \neq 0$, aleshores existira el determinan de B que també serà diferent de 0, ja que $\det(Id_n) \neq 0$, per tan $B \in GL(n,\mathbb{Z})$.
 - (b) Perquè $SL(n,\mathbb{Z})$ sigui subgrup de $GL(n,\mathbb{Z})$, per definició $SL(n,\mathbb{Z}) \subset GL(n,\mathbb{Z})$ i $SL(n,\mathbb{Z}) \neq \emptyset$. Tambè cal comprovar que $SL(n,\mathbb{Z})$ és tancat per l'operació de $GL(n,\mathbb{Z})$, així $SL(n,\mathbb{Z})$ amb l'operació restringida de $GL(n,\mathbb{Z})$ és un grup.

 $\forall A, B \in \mathrm{SL}(n, \mathbb{Z}), AB \in \mathrm{SL}(n, \mathbb{Z});$ per l'apartat anterior, és té que $A, B \in \mathrm{GL}(n, \mathbb{Z}),$ $AB \in \mathrm{GL}(n, \mathbb{Z})$ i, per les propietats dels determinants, $det(AB) = det(A)det(B) = 1 \cdot 1 = 1.$

Per demostrar que $O(n, \mathbb{Z})$ és subgrup de $GL(n, \mathbb{Z})$, s'actua de manera similar. Per definició $O(n, \mathbb{Z}) \subset GL(n, \mathbb{Z})$, i $O(n, \mathbb{Z}) \neq \emptyset$. Ara cal comprovar que $\forall A, B \in O(n, \mathbb{Z})$, $AB^{-1} \in O(n, \mathbb{Z})$:

Hem de veure si $(AB^{-1})^tAB^{-1}=Id$, $(AB^{-1})^tAB^{-1}=(B^{-1})^tA^tAB^{-1}=(B^{-1})^tIdB^{-1}=(B^{-1})^tB^{-1}=Id$.

(c) Veiem clarament que $SO(n,\mathbb{Z}) \subset O(n,\mathbb{Z})$ i $SO(n,\mathbb{Z}) \neq \emptyset$. $\forall A,B \in SO(n,\mathbb{Z})$, aleshores hem de veure si $AB^{-1} \in SO(n,\mathbb{Z})$:

 $\det(AB^{-1}) = \det(A)\det(B^{-1}) = \det(A)\det(B)^{-1} = \det(A)\frac{1}{\det(B)} = 1, \text{ ja que } \det(A) = \det(B) = 1.$ Per tan $AB^{-1} \in SO(n, \mathbb{Z})$.

Si $A, B \in SO(n, \mathbb{Z}) \Rightarrow A, B \in O(n, \mathbb{Z}) \Rightarrow AB^{-1} \in O(n, \mathbb{Z}) \Rightarrow AB^{-1}$ és ortogonal i $(AB^{-1})^t AB^{-1} = Id_n$. $SO(n, \mathbb{Z})$ és un subgrup de $O(n, \mathbb{Z})$.