PROJECT

PROBLEM STATEMENT : Predictive study using the breast cancer diagnostic data set

Importing the libraries ¶

```
In [38]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Reading the data

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_		
0	842302	М	17.99	10.38	122.80	1001.0	0.		
1	842517	М	20.57	17.77	132.90	1326.0	0.0		
2	84300903	М	19.69	21.25	130.00	1203.0	0.		
3	84348301	М	11.42	20.38	77.58	386.1	0.		
4	84358402	М	20.29	14.34	135.10	1297.0	0.		
564	926424	М	21.56	22.39	142.00	1479.0	0.		
565	926682	М	20.13	28.25	131.20	1261.0	0.0		
566	926954	М	16.60	28.08	108.30	858.1	0.0		
567	927241	М	20.60	29.33	140.10	1265.0	0.		
568	92751	В	7.76	24.54	47.92	181.0	0.0		
569 rows × 33 columns									

Data cleaning and preprocessing

```
In [4]: df.columns
 Out[4]: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
                   area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
                  'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
                  'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
                  'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                  'fractal_dimension_se', 'radius_worst', 'texture_worst',
                  'perimeter_worst', 'area_worst', 'smoothness_worst',
                  'compactness_worst', 'concavity_worst', 'concave points_worst',
                  'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
                 dtype='object')
In [32]: df.shape
Out[32]: (569, 35)
In [33]: | df.head()
Out[33]:
                    id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_me
           0
                842302
                              Μ
                                        17.99
                                                     10.38
                                                                   122.80
                                                                              1001.0
                                                                                               0.118
                842517
                                                                                               0.084
           1
                              Μ
                                        20.57
                                                     17.77
                                                                   132.90
                                                                              1326.0
              84300903
                              М
                                        19.69
                                                     21.25
                                                                   130.00
                                                                              1203.0
                                                                                               0.109
              84348301
                              Μ
                                        11.42
                                                     20.38
                                                                    77.58
                                                                               386.1
                                                                                               0.142
              84358402
                                        20.29
                                                     14.34
                                                                   135.10
                                                                              1297.0
                                                                                               0.100
          5 rows × 35 columns
In [34]:
          df.tail()
Out[34]:
                    id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_m∉
           564 926424
                              Μ
                                        21.56
                                                     22.39
                                                                   142.00
                                                                              1479.0
                                                                                               0.11
           565 926682
                              Μ
                                        20.13
                                                     28.25
                                                                   131.20
                                                                              1261.0
                                                                                               0.097
           566 926954
                              Μ
                                        16.60
                                                     28.08
                                                                   108.30
                                                                               858.1
                                                                                               0.084
           567
                927241
                              Μ
                                        20.60
                                                     29.33
                                                                   140.10
                                                                              1265.0
                                                                                               0.117
           568
                 92751
                              В
                                         7.76
                                                     24.54
                                                                    47.92
                                                                               181.0
                                                                                               0.052
          5 rows × 35 columns
```

```
In [35]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 35 columns):

		-, .	
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
4 4	3 L	FC0 11	C1 +C4

In [36]: df.describe()

Out[36]:

	Id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.00000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.09636
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.01406
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.05263
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.08637
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.09587
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.10530
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.16340

8 rows × 34 columns

```
In [5]: df.isnull().sum()
Out[5]: id
                                      0
        diagnosis
                                      0
        radius_mean
                                      0
        texture_mean
                                      0
        perimeter_mean
        area_mean
        smoothness mean
                                      0
        compactness_mean
                                      0
        concavity_mean
                                      0
        concave points_mean
        symmetry_mean
        fractal_dimension_mean
        radius se
        texture_se
                                      0
        perimeter_se
                                      0
        area_se
                                      0
        smoothness_se
        compactness_se
        concavity_se
        concave points_se
        symmetry_se
        fractal dimension se
                                      0
        radius_worst
        texture worst
        perimeter_worst
        area worst
        smoothness_worst
                                      0
        compactness_worst
                                      0
        concavity_worst
        concave points_worst
        symmetry_worst
        fractal dimension worst
                                      0
        Unnamed: 32
                                    569
        dtype: int64
In [9]: | df.fillna(method="ffill",inplace=True)
```

In [9]: df.fillna(method="ffill",inplace=True)

Data Visualization

```
In [39]: sns.lmplot(x="concavity_mean",y="concavity_worst",data=df,order=2,ci=None)
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x2bab5cba850>

Applying Linear Regression

```
In [40]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression

In [43]: x=np.array(df['concavity_mean']).reshape(-1,1)
    y=x=np.array(df['concavity_worst']).reshape(-1,1)

In [44]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)

In [45]: regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_train,y_train))

1.0
```

```
In [46]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='blue')
plt.plot(x_test,y_pred,color='black')
plt.show()
```


Here we got 100% accuracy so it is not a good model because no model is 100% accurate. Now we are going to implement KMeans.

```
In [10]: plt.scatter(df["concavity_mean"],df["concavity_worst"])
    plt.xlabel("concavity_mean")
    plt.ylabel("concavity_worst")
```

Out[10]: Text(0, 0.5, 'concavity_worst')

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wil
l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
ppress the warning
 warnings.warn(

```
Out[14]: array([0, 1, 6, 0, 3, 6, 3, 1, 6, 5, 2, 3, 3, 1, 0, 0, 1, 6, 6, 1, 2, 4,
                0, 1, 6, 3, 6, 3, 0, 1, 0, 0, 6, 0, 6, 6, 6, 4, 4, 6, 2, 3, 0, 3,
                3, 0, 4, 6, 1, 1, 4, 2, 4, 1, 1, 4, 3, 3, 4, 2, 4, 4, 0, 2, 3, 1,
                4, 2, 5, 2, 1, 2, 0, 1, 2, 1, 4, 3, 7, 2, 2, 6, 0, 1, 1, 3, 3, 6,
                1, 1, 4, 1, 2, 2, 6, 3, 4, 4, 2, 1, 1, 4, 2, 1, 4, 0, 1, 2,
                2, 1, 0, 2, 1, 2, 2, 6, 0, 1, 2, 3, 0, 1, 1, 4, 3, 1, 1, 6, 4, 3,
                         1, 2, 2, 3, 4, 4, 1, 4, 2, 4, 4, 6, 1, 1, 2, 4, 6,
                1, 2, 3, 2, 4, 4, 2, 1, 0, 2, 3, 4, 2, 1, 6, 4, 2, 1, 6, 4,
                3, 6, 4, 4, 6, 0, 1, 2, 3, 4, 3, 2, 4, 2, 7, 4, 4, 3, 6, 2, 3, 1,
                3, 6, 2, 3,
                            7, 6, 1, 1, 4, 2, 1, 1, 3, 2, 3, 1, 3, 3, 1, 2,
                2, 1, 4, 3, 2, 2, 4, 1, 3, 0, 6, 2, 4, 3, 4, 4, 6, 1, 1, 3, 2, 4,
                            1, 0, 2, 2, 0, 4, 7, 3, 3, 1, 3, 6, 0, 6,
                3, 3, 2, 2, 2, 1, 4, 2, 6, 4, 2, 4, 4, 1, 2, 2, 6, 4, 3, 6, 3, 4,
                            1, 2, 1, 2, 4, 4, 4, 4, 2, 4, 0, 2, 6, 4, 2, 4, 4, 4,
                      2, 4,
                            2, 4, 4, 4, 4, 3, 6, 4,
                                                    2, 1, 2, 6, 2, 2, 4, 4,
                6, 3, 4, 4, 4, 3, 2, 3, 2, 6, 3, 3, 1, 6, 2, 4, 4, 2, 4, 4,
                            1, 4, 4, 2, 4, 2, 2, 2, 2, 1, 3, 1, 1,
                2, 1, 0, 4, 1, 7, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 4, 4, 6, 0, 2, 4,
                         2, 7, 2, 2, 2, 4, 2, 1,
                                                 2, 3, 2, 2, 2, 2, 1,
                                                                       2,
                4, 4, 1, 3, 1, 3, 4, 4, 1, 2, 4, 4, 7, 1, 6, 3, 2, 3, 4, 2,
                6, 6, 4, 4, 3, 2, 0, 2, 3, 3, 1, 3, 2, 2, 2, 4, 1, 2, 4, 4, 1, 0,
                            3, 4, 6, 1, 2, 4, 1, 4, 1, 3, 1, 2, 1, 0, 2, 2,
                3, 6, 1, 0, 2, 1, 2, 2, 1, 4, 4, 2, 3, 2, 3, 6, 2, 3, 2, 3, 1, 1,
                3, 2, 2, 6, 1, 2, 6, 1, 1, 2, 3, 3, 2, 2, 4, 6, 4, 2, 4, 2, 1, 2,
                2, 2, 2, 1, 2, 3, 2, 6, 3, 2, 4, 3, 2, 3, 2, 2, 2, 2, 4, 2, 4, 4,
                4, 2, 4, 4, 1, 2, 4, 4, 3, 3, 2, 4, 5, 0, 3, 3, 3, 7, 4])
```

```
In [15]: df["Cluster"]=y_predicted
    df.head()
```

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.10(

5 rows × 34 columns

```
In [16]: df1=df[df.Cluster==0]
    df2=df[df.Cluster==1]
    df3=df[df.Cluster==2]

plt.scatter(df1["concavity_mean"],df1["concavity_worst"],color="red")
    plt.scatter(df2["concavity_mean"],df2["concavity_worst"],color="green")
    plt.scatter(df3["concavity_mean"],df3["concavity_worst"],color="blue")
```

Out[16]: <matplotlib.collections.PathCollection at 0x2bac32672d0>


```
In [17]: plt.xlabel("concavity_mean")
    plt.ylabel("conavity_worst")
```

```
Out[17]: Text(0, 0.5, 'conavity_worst')
```



```
In [18]: from sklearn.preprocessing import MinMaxScaler
    scaler=MinMaxScaler()
```

```
In [19]: scaler.fit(df[["concavity_worst"]])
    df["concavity_worst"]=scaler.transform(df[["concavity_worst"]])
    df.head()
```

Out[19]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 34 columns

```
In [20]: scaler.fit(df[["concavity_mean"]])
    df["concavity_mean"]=scaler.transform(df[["concavity_mean"]])
    df.head()
```

Out[20]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.10
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 34 columns

```
In [21]: km=KMeans()
```

C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wil
l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
ppress the warning
 warnings.warn(

```
Out[23]: array([2, 4, 5, 5, 5, 0, 0, 4, 5, 6, 3, 4, 5, 4, 7, 7, 4, 0, 0, 4, 3, 1,
                7, 4, 0, 5, 0, 0, 7, 4, 5, 7, 5, 7, 0, 0, 0, 1, 1, 0, 3, 0, 7, 4,
                4, 7, 1, 0, 4, 3, 1, 1, 1, 0, 4, 1, 0, 0, 1, 1, 1, 1, 7, 3, 0, 0,
                1, 3, 6, 3, 4, 3, 7, 4, 3, 4, 3, 0, 2, 3, 3, 0, 2, 0, 3, 0, 0, 7,
                3, 4, 1, 4, 3, 3, 0, 0, 1, 1, 3, 4, 4, 1, 1, 4, 1, 7, 4, 3, 2, 4,
                3, 4, 2, 3, 3, 3, 3, 0, 7, 4, 3, 0, 2, 4, 4, 1, 4, 4, 5,
                4, 3, 0, 3, 3, 3, 0, 3, 1, 4, 1, 3, 1, 1, 0, 4, 4, 3, 1, 0, 2, 1,
                4, 3, 0, 3, 1, 1, 3, 4, 5, 3, 0, 1, 1, 4, 5, 1, 3, 4, 5, 1, 1, 1,
                0, 7, 1, 1, 5, 5, 4, 3, 4, 1, 4, 3, 1, 3, 7, 1, 1, 0, 0, 3,
                0, 0, 3, 4, 2, 0, 4, 4, 1, 3, 4, 4, 0, 3, 5, 0, 0, 0, 4, 3, 0, 0,
                3, 4, 1, 0, 3, 3, 1, 4, 4, 7, 5, 1, 1, 0, 1, 1, 5, 4, 4, 0,
                7, 3, 5, 3, 3, 7, 1, 3, 2, 1, 6, 0, 0, 4, 0, 5, 2, 7, 0, 3, 4, 3,
                4, 0, 3, 3, 3, 4, 1, 3, 5, 1, 3, 3, 1, 4, 1, 3, 5, 1, 0, 5, 4, 1,
                4, 1, 3, 1, 4, 3, 3, 3, 1, 1, 1, 1, 3, 1, 5, 3, 5, 1, 3, 1, 1, 1,
                1, 1, 1, 1, 3, 1, 1, 1, 1, 0, 5, 1, 3, 4, 3, 5, 1, 1, 1, 1, 0, 0,
                0, 4, 1, 1, 1, 0, 3, 0, 1, 5, 4, 4, 3, 5, 3, 1, 1, 3, 1, 1, 1, 2,
                2, 0, 3, 4, 4, 1, 3, 1, 1, 3, 3, 3, 3, 4, 0, 3, 4, 5, 7, 3, 5, 0,
                3, 3, 5, 1, 3, 7, 4, 3, 4, 4, 4, 4, 4, 1, 4, 0, 1, 1, 5, 2, 3, 1,
                4, 3, 3, 3, 2, 3, 3, 3, 1, 3, 3, 0, 3, 3, 1, 3, 4, 3, 1, 1, 0,
                1, 1, 3, 0, 4, 4, 1, 1, 4, 3, 1, 1, 6, 4, 5, 0, 3, 0, 1, 3, 1, 1,
                0, 0, 1, 1, 0, 3, 7, 3, 4, 0, 4, 0, 3, 3, 3, 1, 4, 3, 1, 1, 4, 2,
                3, 3, 3, 7, 0, 1, 5, 4, 3, 1, 4, 1, 4, 4, 3, 3, 3, 5, 3, 3, 3, 3,
                0, 0, 3, 5, 3, 3, 1, 3, 4, 1, 1, 3, 4, 3, 0, 5, 3, 0, 3, 0, 4, 4,
                4, 3, 3, 5, 4, 3, 0, 4, 4, 3, 0, 0, 3, 3, 1, 5, 1, 3, 1, 3, 3, 3,
                4, 3, 3, 3, 1, 0, 3, 5, 0, 3, 1, 4, 3, 0, 3, 1, 3, 1, 1, 3, 1, 1,
                1, 3, 1, 1, 4, 3, 1, 1, 4, 0, 3, 1, 6, 2, 5, 0, 4, 2, 1])
```

```
In [24]: df["New Cluster"]=y_predicted
    df.head()
```

Out[24]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 35 columns

```
In [25]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]

plt.scatter(df1["concavity_mean"],df1["concavity_worst"],color="red")
    plt.scatter(df2["concavity_mean"],df2["concavity_worst"],color="green")
    plt.scatter(df3["concavity_mean"],df3["concavity_worst"],color="blue")

plt.xlabel("concavity_mean")
    plt.ylabel("concavity_worst")
```

Out[25]: Text(0, 0.5, 'concavity_worst')


```
In [26]:
         km.cluster_centers_
Out[26]: array([[0.32745965, 0.32597977],
                [0.03679972, 0.04489006],
                [0.7959645, 0.58719696],
                [0.10542301, 0.13518171],
                [0.19993316, 0.23477417],
                [0.52024139, 0.41168862],
                [0.61401125, 0.84309904],
                [0.41086345, 0.54577025]])
In [27]: |df1=df[df["New Cluster"]==0]
         df2=df[df["New Cluster"]==1]
         df3=df[df["New Cluster"]==2]
         plt.scatter(df1["concavity_mean"],df1["concavity_worst"],color="red")
         plt.scatter(df2["concavity_mean"],df2["concavity_worst"],color="green")
         plt.scatter(df3["concavity_mean"],df3["concavity_worst"],color="blue")
         plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",ma
         plt.xlabel("concavity_mean")
         plt.ylabel("concavity worst")
```

Out[27]: Text(0, 0.5, 'concavity_worst')

In [28]: k_rng=range(1,10)
sse=[]

```
Project(BreastCancerPrediction) - Jupyter Notebook
In [30]: for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["concavity_mean","concavity_worst"]])
             sse.append(km.inertia )
         sse
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
         l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su
         ppress the warning
           warnings.warn(
         C:\Users\Lenovo\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wil
```

l change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to su

localhost:8888/notebooks/Project(BreastCancerPrediction).ipynb

ppress the warning warnings.warn(

Here we got the correct curve(Elbow curve) for the given dataset by using KMeans

CONCLUSION: We can conclude that clustering algorithm "KMeans" is the best model for the given dataset.