Introducción a Electrotecnia UNCuyo 2019 Unidad 7

Profesor Adjunto: Ing Marcos Saromé

Temas

Unidad Temática 7: Máquina Sincrónica

Principio de Funcionamiento Descripción, aplicaciones. Alternador. Características constructivas. Funcionamiento como generador independiente. Puesta en paralelo. Control de potencia activa y reactiva. **Funcionamiento como motor.**

Voltaje Inducido en una máquina de c.a.

Voltaje inducido en un grupo de bobinas trifásicos

$$e_{aa'}(t) = N_C \phi \omega \operatorname{sen} \omega t$$
 V
 $e_{bb'}(t) = N_C \phi \omega \operatorname{sen} (\omega t - 120^\circ)$ V
 $e_{cc'}(t) = N_C \phi \omega \operatorname{sen} (\omega t - 240^\circ)$ V

$$E_{\text{máx}} = N_C \phi \omega$$

$$E_{\text{máx}} = 2\pi N_C \phi f$$

$$E_A = \frac{2\pi}{\sqrt{2}} N_C \phi f$$

$$E_A = \sqrt{2}\pi N_C \phi f$$

FIGURA 3-16 Producción de voltajes trifásicos con tres bobinas separadas por 120°.

Aspectos Constructivos

- Polos Salientes
- Polos Lisos

Vista frontal

 \mathbf{B}_{R}

Vista lateral

Aspecto Constructivos

- Existen dos formas de suministrar potencia en cd
 - Por medio de anillos rozantes y escobillas.
 - Por medio de una fuente de potencia cd montada directamente en el eje del generador.

Circuito excitador sin escobillas

Circuito excitador sin escobillas con excitador

Velocidad de Rotación en un Generador Síncrono

$$f_e = \frac{n_m P}{120}$$

Voltaje Interno Generado en un Generador Síncrono

Circuito Equivalente de un Generador Síncrono

- Factores que ocasionan diferencia que hay entre Ea y Vf
 - La distorsión del campo magnético del entrehierro debida a la corriente que fluye en el estator llamada reacción del inducido
 - La autoinductancia de las bobinas del inducido
 - El efecto de la forma del rotor (rotor de polos salientes)

Circuito Equivalente de un Generador Síncrono

Circuito Equivalente de un Generador Síncrono

Circuito Equivalente por Fase

Diagrama Fasorial

FIGURA 4-13 Diagrama fasorial de un generador síncrono con un factor de potencia unitario.

Generador Síncrono, que opera sólo

- Un decremmento en la resistencia de campo del generador incrementa su corriente de campo
- Un incremento en la corriente de campo causa un aumento del flujo de la máquina.
- Un incremento en el flujo causa un aumento del voltaje interno generado EA = K Fi w
- Un incremento en EA causa un incremento en Vfase y en el voltaje en las terminales en el generador

- Las potencias real y reactiva que suministra el generador serán la cantidad que demanda la carga conectada.
- Los puntos de ajuste del mecanismo regulador controlarán la frecuencia de operación del sistema de potencia.
- La corriente de campo (o los puntos de ajuste del regulador de campo) controlará el voltaje en las terminales del sistema de potencia.

FIGURA 4-29 a) Curva de velocidad contra potencia de un motor primario típico. b) Curva de frecuencia contra potencia resultante del generador.

Potencia y Par en un Generador Síncrono

Bibliografía

- Máquinas Eléctricas 5Ed- Stephen Chapman, capítulo 5
- Máquinas Eléctricas 5Ed Stephen Chapman (Fragmentos del capitulo 4)