전산유체해석실습 과제 (5차)

과목명 : 전산유체해석실습 담당교수 : 임동균 교수님 학과 : 항공기계공학과 학번 : 2021010530 이름 : 박진우

제출일: 25-10-23

gmsh_airfoil.geo

ymax = 4; xmax = 10; n_inlet = 60; n_vertical = 90; r_vertical = 1/0.95; n_airfoil = 50; n_wake = 100; r_wake = 1/0.95;

Point(129) = (-1, ymax, 0, 1.0);

#Point(130) = (-1, -ymax, 0, 1.0);

//*
Point(131) = (1, -ymax, 0, 1.0);

//*
Point(132) = (1, -ymax, 0, 1.0);

//*

//*
Point(132) = (1, -ymax, 0, 1.0);

//*

//*

Point(134) = (xmax, 0, 0, 0, 0);

//*

//*

Point(135) = (xmax, 0, 0, 0, 0);

//*

//*

Point(136) = (xmax, 0, 0, 0, 0);

//*

Circle(2) = {130, 64, 129}; Line(3) = {129, 131}; Line(4) = {131, 136}: Line(5) = {130, 132}: Line(6) = {132, 133}; line(7) = {135, 136}: Line(8) = {135, 133}; Line(9) = {128, 135}; Line(10) = (57, 129); Line(11) = (71, 130): Line(12) = {128, 131}: line(13) = {128, 132}:

//+ Split Curve {1} Point (57, 71); //+ Split Curve {15) Point {128}; //*
Curve Loop(1) = [2, -10, 14, 11];
//*
Plane Surface(1) = [1];
//*
Curve Loop(2) = [10, 3, -12, 17];
//*
Plane Surface(2) = [2];
//*
Curve Loop(3) = [12, 4, -7, -9];
//*
Plane Surface(3) = [3];
//*
Curve Loop(4) = [11, 5, -13, -16];
//*
Plane Surface(4) = [4];
//*
Curve Loop(5) = [13, 6, -8, -9];
//*
Plane Surface(5) = [6];

//+
Transfinite Surface {1};
//+
Transfinite Surface {2};
//+
Transfinite Surface {3};
//+
Transfinite Surface {5};
//+
Transfinite Surface {4};

//+ Recombine Surface {1, 2, 3, 5, 4};

//+ Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5}; //+ Physical Curve("airfoil", 19) = {17, 14, 16};

mesh

condition

```
.su2

NDIME= 2
NELEM= 31595
NMARK= 2
MARKER_TAG= farfield
MARKER_ELEMS= 533
MARKER_TAG= airfoil
MARKER_ELEMS= 157
```

```
airfoil.geo

//+

Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5}

//+

Physical Curve("airfoil", 19) = (17, 14, 16);
```

```
CIG

X

BOUNDARY CONDITION DEFINITION

X

X

**Navier-Stokes wall boundary marker(s) (NOME = no marker)

NAMMER_MEATPLUX= ( airfoll, 0.0 )

X

**Far-field boundary marker(s) (NOME = no marker)

NAMMER_FAME ( far-field )

X

**Symmetry boundary marker(s) (NOME = no marker)

**X

**Symmetry boundary marker(s) (NOME = no marker)

X

**X

**Symmetry boundary marker(s) (NOME = no marker)

X

**X

**Marker(s) of the surface to be plotted or designed

**MARKER_MANTIFOME ( airfoll )

X

**X

**Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated

**Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
```

mach=0.8395

```
------ COMPRESSIBLE FREE-STREAM DEFINITION --------
% Mach number (non-dimensional, based on the free-stream values)
% Angle of attack (degrees, only for compressible flows)
% Side-slip angle (degrees, only for compressible flows)
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD CONDITIONS)
 NTT OPTION- REVNOLDS
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE FS, DENSITY FS)
 REESTREAM OPTIONS TEMPERATURE ES
% Free-stream temperature (288.15 K by default)
  Reynolds number (non-dimensional, based on the free-stream values)
% Reynolds length (1 m by default)
```

```
X REFERENCE VALUE DEFINITION X
X Meriennee origin for moment computation
REF_CHICAL MOMENTY = 0.25
REF_CHICAL MOMENTY = 0.00
REF_CHICAL MOMENTY = 0.00
REF_CHICAL MOMENTY = 0.00
REF_CHICAL MOMENTY = 0.00
REF_CHICAL = 0.00
X Meriennee length for pitching, rolling, and yawing non-dimensional moment
REF_LENGH = 1.0
X
X Hereference area for force coefficients (0 implies automatic calculation)
REF_CHICAL = 1.0
REF_CH
```

• CL,CD

CL: 0.103281에 수렴 CD: 0.044286에 수렴

mesh

pressure

mach

gmsh_airfoil.geo

//+

ymax = 4;

xmax = 10;

n_inlet = 60;

n_vertical = 90;

r_vertical = 1/0.95;

n_wake = 1/0.95;

r_wake = 1/0.95;

//+
point(130) = (-1, -ymax, 0, 1.0);
//+
point(131) = (1, ymax, 0, 1.0);
//+
point(132) = (1, -ymax, 0, 1.0);
//+
point(132) = (1, -ymax, 0, 1.0);
//+
point(133) = (xmax, ymax, 0, 1.0);
//+
point(134) = (xmax, -ymax, 0, 1.0);
//+
point(135) = (xmax, -ymax, 0, 1.0);

Point(129) = {-1, ymax, 0, 1.0};

//*
Cicle(2) = (130, 64, 129)
//*
Inne(3) = (128, 131);
//*
Inne(4) = (131, 133);
Inne(5) = (130, 132);
Inne(5) = (130, 132);
Inne(6) = (132, 134);
//*
Inne(7) = (135, 133);
//*
Inne(8) = (135, 134);
//*
Inne(10) = (136, 134);
//*
Inne(11) = (17, 130);
//*
Inne(11) = (17, 130);
//*
Inne(12) = (128, 131);
//*

//*
Transfinite Curve (2, 14) = n, inlet Using Progression 1;
Transfinite Curve (10, 12, 7) = n, vertical Using Progression revertical
Transfinite Curve (11, 13, 8) = n, vertical Using Progression revertical
//*
Transfinite Curve (4, 9, 6) = n, valve Using Progression r, valve;
//*
Transfinite Curve (8, 5) = n, alrifoll Using Bump 2;
//*
Transfinite Curve (17, 16) = n, alrifoll Using Bump 0.2;

Corve Loop(1) = [2, -10, 14, 11];

Plane Surface(1) = [1];

Gurve Loop(2) = [10, 3, -12, 17];

Plane Surface(2) = [2];

Plane Surface(2) = [2];

Curve Loop(0) = [12, 4, -7, -9];

Plane Surface(3) = [3];

Curve Loop(4) = [13, 6, -8, -9];

Plane Surface(4) = [4];

Curve Loop(6) = [16, 5, -13, -16];

Plane Surface(6) = [5];

//+
Transfinite Surface {1);
//+
Transfinite Surface {2};
//+
Transfinite Surface {3};
//+
Transfinite Surface {4};
//+
Transfinite Surface {4};

//+ Recombine Surface {1, 2, 3, 4, 5};

//+
Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5};
//+
Physical Curve("airfoil", 19) = {14, 17, 16};

mesh

condition

```
.su2

NDIME = 2
NELEM = 31595

NMARK = 2
MARKER_TAG = farfield
MARKER_FIBMS = 533
MARKER_TAG = airfoil
MARKER_ELEMS = 157

airfoil.geo
///
Physical Curve(1)
Physical Curve(1)
```

```
airfoil.geo
//*
Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5}
//+
Physical Curve("airfoil", 19) = {14, 17, 16};
```

```
.cfg

X

X BOUMDARY CONDITION DEFINITION

X

X Navier-Stokes wall boundary marker(s) (NOME = no marker)

DARKER_MEATHLUX ( airfoll, 0.0 )

X Far-field boundary marker(s) (NOME = no marker)

PARKER_FAR. ( farfield )

X

X Symmetry boundary marker(s) (NOME = no marker)

X

X Marker(s) of the surface to be plotted or designed

PARKER_MEATICRUSS. ( airfoll)

X

X Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated

MARKER_MEATICRUSS.
```

mach=0.3

```
% Mach number (non-dimensional, based on the free-stream values)
% Angle of attack (degrees, only for compressible flows)
% Side-slip angle (degrees, only for compressible flows)
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD CONDITIONS)
 VIT OPTION REYNOLDS
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE FS. DENSITY FS)
 REESTREAM OPTION= TEMPERATURE FS
% Free-stream temperature (288.15 K by default)
 REESTREAM TEMPERATURE- 288.15
 Reynolds number (non-dimensional, based on the free-stream values)
% Reynolds length (1 m by default)
```

```
REPRODUCE_LENGTH= 1.0

X REFERENCE VALUE DEFINITION

X Reference origin for moment computation

EEF_DRIGHT_MOMENT_Y = 0.02

REF_ORIGHT_MOMENT_Y = 0.00

REF_DRIGHT_MOMENT_Y = 0.00

X Reference length for pitching, rolling, and yawing non-dimensional moment

REF_LENGTH_1_AUGUST_Y = 0.00

X Reference area for force coefficients (0 implies automatic calculation)

REF_DRIGHT_10 = 0.00

X Compressible flow non-dimensionalization (DURNISTONAL, FRESTREAM_MOMES)

X Compressible flow non-dimensionalization (DURNISTONAL, FRESTREAM_MOMES)

X REF_DRIGHT_MOMES_TATATON—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATION—FRESTREAM_MOMES_TATATONALIZATIONALIZATION—FRESTREAM_MOMES_TATATONALIZATIONALIZATION—FRESTREAM_MOMES_TATATONALIZATIONALIZATION—FRESTREAM_MOMES_TATATONALIZATIONALIZATIONALIZATION—FRESTREAM_MOMES_TATATONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONALIZATIONA
```

• CL,CD

mesh

pressure

mach

mesh

조건을 동일하게 설정하였기 때문에, 격자의 모양이 유의미한 차이는 나타나지 않았다

condition

RAE6-9CK AIRFOIL: mach=0.8395

```
----- COMPRESSIBLE FREE-STREAM DEFINITION ------
% Mach number (non-dimensional, based on the free-stream values)
Angle of attack (degrees, only for compressible flows)
Side-slip angle (degrees, only for compressible flows)
% Init option to choose between Reynolds (default) or thermodynamics quantities
for initializing the solution (REYNOLDS, TD CONDITIONS)
NIT OPTION- REVNOLDS
Free-stream option to choose between density and temperature (default) for
initializing the solution (TEMPERATURE ES. DENSITY ES)
REESTREAM OPTION- TEMPERATURE FS
Free-stream temperature (288.15 K by default)
REESTREAM TEMPERATURE- 288.15
Reynolds number (non-dimensional, based on the free-stream values)
EYNOLDS LENGTH- 0.64607
```

RAE 2822 AIRFOIL: mach=0.3

```
% Mach number (non-dimensional, based on the free-stream values)
% Angle of attack (degrees, only for compressible flows)
 MA= 3.06
% Side-slip angle (degrees, only for compressible flows)
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD CONDITIONS)
 VIT OPTION REYNOLDS
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE FS. DENSITY FS)
FREESTREAM OPTION- TEMPERATURE FS
% Free-stream temperature (288.15 K by default)
% Reynolds number (non-dimensional, based on the free-stream values)
% Reynolds length (1 m by default)
```

RAE6-9CK AIRFOIL은 mach를 0.8395로 설정하였고, RAE 2822 AIRFOIL는 mach를 0.3으로 설정했다. 마하수를 제외한 모든 조건은 동일하다.

· CL,CD

RAE 2822 AIRFOIL CL: 0.375218에 수렴 CD: 0.015181에 수렴

mesh

조건을 동일하게 설정하였기 때문에 격자의 형태에서 유의미한 차이가 나타나지 않았으나, RAE 2822 AIRFOIL의 격자가 상대적으로 더 세밀한 것으로 확인되었다.

pressure

RAE6-9CK AIRFOIL (M=0.8395): 에어포일 중간 영역에 충격파가 형성되어, 충격파 직후 정압이 급증하고 동시에 비가역 손실로 인해 전체압이 감소한다. RAE6-9CK AIRFOIL (M=0.8395)

RAE 2822 AIRFOIL (M=0.30): 아음속 조건에서는 충격파가 형성되지 않아 압력 분포가 전반적으로 완만하며, RAE6-9CK AIRFOIL(M=0.8395)보다 상대적으로 높은 정압이 유 지되는 경향을 보인다.

mach

RAE6-9CK AIRFOIL (M=0.8395): 에어포일 중간 영역에서 충격파가 형성된 모습을 확인할 수 있다.

RAE 2822 AIRFOIL (M=0.30): 아음속 조건에서는 충격파가 형성되지 않아 압력 분포가 전반적으로 완만하게 나타난다.

- 선정이유
- 벨루가 항공기의 에어포일 형상을 조사하던 중, 해당 항공기에 적용된 정확한 에어포일 정보를 찾기 어려웠다. 이에 따라 벨루가 항공기의 기반이 되는 Airbus A300-600의 에어포일을 조사하였고, 그 결과 NACA 64-215 Airfoil이 사용된다는 자료를 확인하였다. 따라서 NACA 64-215 Airfoil을 선택하였다.

The Figure 3 shows the NACA64-215 Airfoil generation. For wing Skelton structure we use NACA64-215 co-ordinates. Import the co-ordinates to catia v5 R20 through Microsoft excel then the airfoil shape is generated in catia v5 R20.

Naca64-215 Airfoil

에어버스 벨루가

에어버스 벨루가

종류 화물기 첫 비행 1994년 9월 13일

현황 생산 중단 주요 사용자 에어버스

생산 대수 5대

개발 원형 에어버스 A300-600 비고 에진: 제너럴 일렉트릭 CF6

https://www.ijmerr.com/uploadfile/2015/0421/20150421100859233.pdf?utm_source=chatgpt.com

gmsh_airfoil.geo

```
ymax = 4;
xmax = 10;
n_inlet = 60;
n_vertical = 90;
r_vertical = 1/0.95;
n_airfoil = 50;
n_wake = 100;
r_wake = 1/0.95;
```

```
Point(51) - {-1, ymax, 0, 1.0};
//+
Point(52) - {-1, -ymax, 0, 1.0};
//+
Point(53) - {1, ymax, 0, 1.0};
//+
Point(54) - {1, -ymax, 0, 1.0};
//+
Point(55) - {xmax, ymax, 0, 1.0};
//+
Point(56) - {xmax, -ymax, 0, 1.0};
//+
Point(57) - {xmax, 0, 0, 1.0};
```

```
//s (circle(2) = (52, 25, 51)
//s (Line(3) = (51, 53);
//s (Line(4) = (52, 55);
//s (Line(4) = (52, 55);
//s (Line(5) = (52, 54);
//s (Line(6) = (54, 56);
//s (Line(7) = (7, 55);
//s (Line(6) = (57, 56);
//s (Line(6) = (28, 52);
//s (Line(11) = (28, 52);
//s (Line(11) = (38, 52);
//s (Line(12) = (58, 53);
//s (Line(12) = (58, 53);
//s (Line(13) = (58, 54);
//s (Line(13) = (58, 54
```

```
Curve toop(s) = (2, -18, 14, 11);

// Dane Surface(1) = (1);

// Curve toop(s) = (18, 3, -12, 12);

// (apre toop(s) = (12, 4, -7, -9);

// (apre toop(s) = (12, 4, -7, -9);

// (apre toop(s) = (13, 6, -8, -9);

// (apre toop(s) = (13, 6, -8, -9);

// (apre toop(s) = (13, 5, -11, 16);

// (apre toop(s) = (13, -5, -11, 16);

// (apre toop(s) = (13, -5, -11, 16);

// (apre toop(s) = (13, -5, -11, 16);

// (apre toop(s) = (5);
```

```
//+
Transfinite Surface (1);
//+
Transfinite Surface (2);
//+
Transfinite Surface (3);
//+
Transfinite Surface (4);
//+
Transfinite Surface (5);
```

```
//+
Recombine Surface {1, 2, 3, 4, 5};
```

```
//*
Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5};
//+
Physical Curve("airfoil", 19) = {17, 16, 14};
```

mesh

condition

```
.SU2
NDIME= 2
NELEM= 31595
NMARK= 2
MARKER_TAG= farfield
MARKER_ELEMS= 533
MARKER_TAG= airfoil
MARKER_ELEMS= 157
```

```
airfoil.geo
//+
physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, 5};
```

Physical Curve("farfield", 18) = {2, 3, 4, 7, 8, 6, //+ Physical Curve("airfoil", 19) = {17, 16, 14};

```
.cfg

x

X

Navier-Stokes wall boundary marker(s) (NOME = no marker)

NAMERE_HEATFLUXE ( airfoil, 0.0)

X

Far-field boundary marker(s) (NOME = no marker)

NAMERER_HEATFLUXE

X

Symmetry boundary marker(s) (NOME = no marker)

X

Symmetry boundary marker(s) (NOME = no marker)

X

Marker(s) of the surface to be plotted or designed

MANKER_POTTUNG ( airfoil )

X

Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated

MARKER MONITORING ( airfoil )
```

mach=0.3

```
----- COMPRESSIBLE FREE-STREAM DEFINITION -----
% Mach number (non-dimensional, based on the free-stream values)
% Angle of attack (degrees, only for compressible flows)
% Side-slip angle (degrees, only for compressible flows)
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, ID CONDITIONS)
INIT OPTION= REYNOLDS
% Free-stream option to choose between density and temperature (default) for
initializing the solution (TEMPERATURE FS, DENSITY FS)
REESTREAM OPTIONS TEMPERATURE ES
% Free-stream temperature (288.15 K by default)
REESTREAM TEMPERATURE - 288.15
Reynolds number (non-dimensional, based on the free-stream values)
% Reynolds length (1 m by default)
        REFERENCE VALUE DEFINITION
& Reference origin for moment computation
& Reference length for pitching, rolling, and vawing non-dimensional moment
K Reference area for force coefficients (0 implies automatic calculation)
 Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM PRESS EO ONE
                            FREESTREAM VEL EQ MACH, FREESTREAM VEL EQ ONE)
 F DIMENSIONALIZATION- FREESTREAM VEL EO ONE
```

• CL,CD

CL: 0.359738에 수렴 CD: 0.018593에 수렴

비슷하게 나오는 것을 확인할 수 있다.

	Inner_Iter	Time(sec)	rms[Rho]	rms[nu]		CD
t	392	6.8884e-92	-9.8657981	-9.828296	0.359923	0.018590
i	393	6.8851e-02	-9.874719	-9.830768	0.359917	0.018590
i	394	6.8823e-02	-9.083644	-9.841231	0.359912	0.018590
i	395	6.8791e-02	-9.892576	-9.851687	0.359906	0.018590
i	396	6.8779e-02	-9.101517	-9.862135	0.359901	0.018590
i	397	6.8746e-92	-9.118468	-9.872576	0.359896	0.018590
i	398	6.8716e-02	-9.119433	-9.883011	0.359891	0.018590
i.	399	6.8681e-02	-9.128413	-9.893439	0.359885	0.018590
i	480	6.8648e-02	-9.137410	-9.983868	0.359880	0.018591
i	491	6.8633e-02	-9.146424	-9.914275	0.359876	0.018591
L	492	6.8599e-02	-9.155459	-9.924684	0.359871	0.018591
i	493	6.8568e-02	-9.164515	-9.935887	0.359866	0.018591
i	484	6.8537e-02	-9.173592	-9.945483	0.359861	0.018591
L	495	6.8586e-82	-9.182691	-9.955873	0.359857	0.018591
i	486	6.8474e-02	-9.191813	-9.966255	0.359852	0.018591
п	487	6.8442e-92	-9.208958	-9.976631	0.359848	0.018591
L	498	6.8416e-02	-9.210125	-9.986999	0.359844	0.018591
i	489	6.8387e-02	-9.219313	-9.997359	0.359840	0.018591
п	410	6.8357e-92	-9.228522	-10.007710	0.359835	0.018591
П	411	6.8327e-02	-9.237750	-10.018052	0.359831	0.018591
i	412	6.8296e-02	-9.246997	-10.028384	0.359827	0.018591
i	413	6.8277e-02	-9.256268	-10.038705	0.359824	0.018591
п	414	6.8248e-02	-9.265537	-10.049015	0.359820	0.018591
ı	415	6.8224e-02	-9.274826	-10.059314	0.359816	0.018592
i	416	6.8194e-02	-9.284125	-10.069680	0.359812	0.018592
п	417	6.8166e-02	-9.293432	-10.079872	0.359889	0.018592
ı	418	6.8139e-02	-9.382744	-10.090131	0.359805	0.018592
П	419	6.8189e-82	-9.312059	-10.100376	0.359802	0.018592
п		6.8159e-02	-9.321373	-10.110603	0.359798	0.018592
		6.8148e-02	-9.338685	-10.120815	0.359795	0.018592
П		6.8109e-02	-9.339992	-10.131011	0.359792	0.018592
		6.8081e-02	-9.349292	-10.141190	0.359788	0.018592
	424	6.8052e-02	-9.358579	-10.151352	0.359785	0.018592
П		6.8024e-02	-9.367844	-10.161498	0.359782	0.018592
ı		6.7997e-02	-9.377075	-10.171625	0.359779	0.018592
	427	6.7968e-02	-9.386281	-10.181735	0.359776	0.018592
П		6.7942e-02	-9.395481	-10.191827	0.359773	0.018592
ı	429	6.7916e-02	-9.484671	-10.201901	0.359770	0.018592
	430	6.7889e-02	-9.413846	-10.211958	0.359768	0.018592
		6.7877e-02	-9.422998	-10.221997	0.359765	0.018592
		6.7858e-02	-9.432127	-10.232018	0.359762	0.018592
		6.7824e-02	-9.441235	-10.242022	0.359760	0.018592
	434	6.7796e-02	-9.450324	-10.252010	0.359757	0.018592
	435	6.7767e-02	-9.459395	-10.261981	0.359754	0.018592
ı	436	6.7743e-02	-9.468451	-10.271937	0.359752	0.018592
ı	437	6.7713e-02	-9.477495	-10.281878	0.359750	0.018592
п		6.7686e-02	-9.486529	-10.291884	0.359747	0.018593
	439	6.7668e-02	-9.495554	-10.301717	0.359745	0.018593
	448	6.7633e-02	-9.584574	-10.311616	0.359742	0.018593
П		6.7693e-92	-9.513589	-10.321504	0.359740	0.018593
н	442	6.7574e-02	-9.522603	-10.331382	0.359738	0.018593

Mesh

pressure

mach

