Pezzi temporanei e parti eliminate dalla tesi.

Toninus

August 1, 2015

Abstract

Sono un accumulatore.

Tutti i mezzi testi, mezze intuizioni che non ho tradotto o a cui non ho trovato posto nella tesi le metto qui dentro.

Chapter 1

Prereq Mate

Quando parlo della cinematica mi piacerebbe dare indicazioni sulla struttura matematica dello spazio delle configurazioni cinematiche:

- 1. costituisce una frechet manifold (gli unici risultati che ho trovato sono quelli di Palais di "non linear global analysis"
- 2. le curve parametrizzate sono le variazioni
- 3. classi di equivalenza definiscono delle variazioni infinitesime che costituiscono lo spazio tangente allo spazio delle configurazioni cinematiche
- 4. questo spazio tangente $\tilde{A}l$ isomorfo allo spazio delle sezioni del pullback rispetto alla sezione $\phi \in C$ del verical bundle (vedere forger romero)
- 5. il problema dell'atlante e della rappresentazione delle sezioni in carta locale (da scegliere sia sul total space E che sul base space M)

Dovrei fare riferimento al teorema di Ostrowsky per giustificare il fatto che consideriamo solo il primo ordine. le langrangiana con termini cinetici esotici sono instabili (nel senzo che non ammetto come soluzioni sezioni globali ma solo locali).

Chapter 2

Lagrangian systems e Pierls

2.1 Concrete Realization

2.1.1 Fields

The field systems are a subset of the lagrangian systems:

Definition 1: Linear Fields on curved Background

It's a Lagragian system (E, \mathcal{L}) such that:

- the configuration bundle $E \xrightarrow{\pi} M$ is a <u>vector bundle</u>.
- the base manifold *M* is a Globally Hyperbolic Spacetime.
- the Euler-Lagrange operator $P = Q_{\mathcal{L}}$ is a Green Hyperbolic operator.
- For each Cauchy surface $\Sigma \subset M$ can be defined a well-posed Cauchy problem for the motion equation of P.

But the other three condition are worth a deeper insight:

- Vector Bundle Condition
- Global hyperbolicity condition.
- Green-Hyperbolicity condition.
- · Cauchy condition.

While the existence of a Cauchy surface allows to assign the data of initial value problems, the forth condition ensure the well -posedness of the prob-

 $[^]a$ Green-hyperbolic operators are not necessarily hyperbolic in any PDE-sense and that they cannot be characterized in general by well-posedness of a Cauchy problem. [?] [?]

lem for on every Cauchy surface Σ . I.e:

$$\begin{cases} Pu = 0 \\ u = u_0 \\ \nabla_{\vec{n}} u = u_1 \end{cases}$$
 (2.1)

admit a unique solution $u \in \Gamma(E)$ for all $(u_0, u_1) \in \Gamma(\Sigma) \times \Gamma(\Sigma)$.

Observation 1

Visione Globale

- Secondo bar e ginoux per parlare di campo classico non serve specificare nient'altro...
 - la condizione di $\exists 1!$ operatore di green di P insieme a quella di Essere un sistema lagrangiano \tilde{A} Í un requisito minimo per definire senza ambiguit \tilde{A} ă le parentesi di peierls.
 - La buona definizione delle parentesi di Peierls ÃÍ requistio algebrico per portare avanti la quantizzazione algebrica standard (come fa Dappiaggi):
 - la condizione di green-hyperbolicity (che garantisce di $\exists 1!\ E^{\mp}$ ma non che $\exists 1!$ soluzione del PC) corredata della scelta di un pairing permette di quantizzare secondo lo schema algebrico
 - La condizione di well-posedness del problema di cauchy da la possibilit\(\tilde{A} \) di quantizzare secondo lo schema dei dati iniziali
- in tutti questi casi la candizione di Globally -hyperbolic per lo spazio tempo sottostante ÃÍ necessaria

Example: 1

in adv AQFT ci sono 3 realizzazioni concrete. Klein-Gordon e Proca soddisfano tutte le condizioni precedenti. Anche Dirac ma non ÃÍ normally Hyperbolic, solo green

2.2 Sistemi a finiti gradi (meccanica geometrica ordinaria)

Paragrafo in cui faccio vedere come ÃÍ possibile vedere un sistema lagrangiano ordinario con un sistema lagrangiano di tipo campo quindi come un sotto-sotto-caso del sistema lagrangiano astratto.

Every system with discrete degrees of freedom can be seen as a trivial field system. The correspondence is easily done:

- Configuration bundle of the system is the trivial $E = Q \times \mathbb{R}$ with base manifold $M = \mathbb{R}$.
- The kinematic configuration are $\mathbb{C}=C^\infty(\mathbb{R},Q)$ i.e.all the possible parametrized functions on Q.
- The lagrangian density is obtained evaluating the ordinary Lagrangian on the lifted curve:

$$\mathcal{L}[\gamma] := \left(L \circ \gamma^{\text{lift}}\right) dt = \mathcal{L}(t, \gamma^i, \dot{\gamma}^i) \tag{2.2}$$

2.3 Dubbi

•

Chapter 3

Test

$$L-\mathbf{L}-\mathbf{L}-\mathbf{L}-\mathbf{L}-\mathbf{L}-\mathcal{L}-\mathcal{L}-\mathcal{L}-\mathcal{L}$$