TECTONIC STRAIN DISTRIBUTION OVER EUROPE FROM EPN DATA

Dimitris Anastasiou ^{1,2}, Athanassios Ganas ², Julliet Legrand ³, Carine Bruyninx ³, Xanthos Papanikolaou ^{1,2}, Varvara Tsironi ², Vasilis Kapetanidis ⁴

National Technical University of Athens, Dionysos Satellite Observatory, Greece (danast@mail.ntua.gr) – ² National Observatory of Athens, Institute of Geodynamics, Greece

Royal Observatory of Belgium, Brussels, Belgium – ⁴ National ana Kapodistrian University of Athens, Department of Geology, Greece.

EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2019 VIENNA | AUSTRIA | 7 - 12 APRIL 2015

StrainTool is a software package that enables the estimation and visualization of Strain Tensor parameters, given list of data points on the earth's crust along with their respective tectonic velocities. It consists of three basic components:

- a python package (library) pystrain,
- a (main) program StrainTensor.py and
- a list of (shell) scripts to visualize results

StrainTool was developed in the framework of *HEL-POS*; it is a free and open-source software project, distributed under the *MIT License*.

A detailed introduction to StrainTool, a how-to guide, usage examples and discussion on the implemented methodologies is available on the web, at https://dsolab.github.io/StrainTool/.

StrainTool is a heighly customizable software package; users can configure the estimation process using a list of input options. The basic input is a data file containing station coordinates along with their respective volocity components.

Users can select the estimation of a single Strain Tensor (at the region's barycentre) or estimation of multiple Strain Tensors placed on a (regular) grid within the region limits. Grid formation details are fully customizable by the user.

Estimation of the Strain Tensor parameters follows a Least Squares approach, based either on **Veis st al** or **Shen et al**. In the latter case, a sophisticated weighting scheme is used, controlled by the user via a list of command-line-options.

The estimated Strain Tensor parameters along with their corresponding sigma values can be visualized with the distributed shell scripts gmtstrainplot.sh and gmtstatsplot.sh. Both programs use GMT Ref here to plot results, drived by a user-defined configuration file.

Given a set of stations (aka point on earth's surface) with their corresponding east and north velocities, we can estimate (or compute) strain tensor parameters, by solving for the system

$$\begin{bmatrix} V_{x,S_1} \\ V_{y,S_1} \\ \cdots \\ V_{x,S_n} \\ V_{y,S_n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta_{y_1} & \Delta_{x_1} & \Delta_{y_1} & 0 \\ 0 & 1 & -\Delta_{x_1} & 0 & \Delta_{x_1} & \Delta_{y_1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & \Delta_{y_n} & \Delta_{x_n} & \Delta_{y_n} & 0 \\ 0 & 1 & -\Delta_{x_n} & 0 & \Delta_{x_n} & \Delta_{y_n} \end{bmatrix} \begin{bmatrix} U_x \\ U_y \\ \omega \\ \tau_x \\ \tau_{xy} \\ \tau_y \end{bmatrix}$$

at any given location R; Δ_{x_i} and Δ_{y_i} are the displacement components between station i and the point R. A minimum of 3 stations is required to compute the parameters; if more than 3 stations are used, then the parameters are estimated using a least squares approach.

1 Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247

2 Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in greece from geodetic measurements, C.R.Acad.Sci.Athens, 67:129–166

We acknowledge support of this research by the project "HEL-POS - Hellenic Plate Observing System" (MIS 5002697) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union.