

 $a \mid c$ אם $a \mid c$ אם $a,b \in \mathbb{Z}$ הוא מכפלה משותפת של $c \in \mathbb{Z}^+$ אם הגדרה:

lcm(a,b) ע"י (מכפלה משותפת המינמלית) של שני מספרים שלמים (מכפלה משותפת המינמלית) ומקיימת:

- $b \mid lcm(a,b) \mid a \mid lcm(a,b)$.1
- $c \geq lcm(a,b)$ כך ש $b \mid c \mid a \mid c$ כך ש $\forall c \in \mathbb{Z}$.2

 $lcm(a,b)\cdot(a,b)=a\cdot b$ מתקיים כי $a,b\in\mathbb{Z}$ עבור כל

מחלק משותף **מקסמלי** מכפלה משותפת **מינמלית** $lcm(8,6) = \frac{8\cdot 6}{(8,6)} = \frac{48}{2} = 24$ אכן 1.0 1.

קבוצת **המכפלות** של 8

 $n=a^2$ כך ש מספר ריבועי אם קיים $a\in\mathbb{Z}$ כך ש מספר n הוא מספר n אזי $n\in\mathbb{Z}$ כר ש

כך $1 < a \in \mathbb{Z}$ יהא $n \in \mathbb{Z}$ אזי $n \in \mathbb{Z}$ אזי $n \in \mathbb{Z}$ אזי $n \in \mathbb{Z}$ אזי $n \in \mathbb{Z}$ ש $a^2 \mid n$

<u>תרגיל 1:</u>

- .1 אזי q_i אזי $\forall i \in [t]$ כאשר מספר ראשוני. מספר ראשוני. $a = q_1 \cdot q_2 \cdot ... \cdot q_t$ הוכח או הפרך האם a הוא חופשי מריבועים
 - : השלימו את הטענה הבאה את הטענה הבאה .2 $k \in \mathbb{Z}$ עבור 5k,
- 3. הוכח או הפרך: כל שלם b יכול להכתב בצורה $a \cdot b$ כאשר $a \cdot b$ חופשי מריבועים ו b הינו מספר $n \geq 1$

פתרון:

b>1 כך שa-b נשים לב כי b>1 נפיח אינו חופשי מריבועים, ולכן קיים לa-b כך שa-b נשים לב כי 1. נניח בשלילה שa-b אינו חופשי מריבועים, ולכן לפי המשפט היסודי של האריתמטיקה נוכל לכתוב את לבין לפי המשפט היסודי של האריתמטיקה נוכל לכתוב את

$$b=p_1^{a_1}\cdot\ldots\cdot p_k^{a_k}\ :\ \forall i\in[k]\colon\, p_i\,is\,prime,a_i>0$$

$$b^2 = p_1^{2a_1} \cdot ... \cdot p_k^{2a_k}$$
 ולכן

לפי ההנחה, $b^2 \mid a$ ולכן a מכיל את כל הגורמים הראשוניים של $b^2 \mid a$, אבל כל הגורמים הראשוניים של a הם ממעלה 1 בדיוק, ולכן הגענו לסתירה.

 $a \in \mathbb{Z}$ עבור $n = a^2$ אבר הגדרה ולכן ולכן מספר ריבועי, ולכן 2

לפי משפט החלוקה, a יכול להיות באחת מהצורות $\{5k, 5k+1, 5k+2, 5k+3, 5k+4\}$ ולכן נחלק לפי משפט החלוקה. למקרים:

- 5k אזי $a^2 = (5k)^2 = 25k^2 = 5 \cdot (5k^2)$ ולכן a = 5k
- n ולכן $a^2=(5k+1)^2=25k^2+10k+1=5\cdot(5k^2+2k)+1$ אזי a=5k+1 סהצורה a=5k+1

- n ולכן $a^2 = (5k+2)^2 = 25k^2 + 20k + 4 = 5 \cdot (5k^2 + 4k) + 4$ אזי a = 5k + 2 מהצורה b + 4
- ולכן $a^2 = (5k+3)^2 = 25k^2 + 30k + 9 = 5 \cdot (5k^2 + 6k + 1) + 4$ אזי a = 5k + 3 מהצורה b + 4
- ולכן $a^2=(5k+4)^2=25k^2+40k+16=5\cdot(5k^2+8k+3)+1$ אזי a=5k+4 פולכן מהצורה a=5k+4

 $\{5k, 5k + 1, 5k + 4\}$ קבלנו כי סה"כ n יכול להיות באחת מהצורות

: הטענה נכונה, יהא פירוק ראשוני של n מהצורה 3

$$n = (p_1^{a_1} \cdot \dots \cdot p_k^{a_k}) \cdot (q_1^{b_1} \cdot \dots \cdot q_t^{b_t})$$

 $a_i=2a_i'$ ולכן $\forall i\in[t]:\ q_i\ is\ prime, b_i\ is\ odd$ ו $\forall i\in[k]:\ p_i\ is\ prime, a_i\ is\ even$ כך עבור $b_i'\in\mathbb{Z}$ עבור $b_i'=2b_i'+1$ ו $i\in[k]$ ולכן נוכל לשכתב $a_i'\in\mathbb{Z}$ את $a_i'\in\mathbb{Z}$ באופו הבא:

$$\begin{split} n &= \left(p_1^{a_1} \cdot ... \cdot p_k^{a_k}\right) \cdot \left(q_1^{b_1} \cdot ... \cdot q_t^{b_t}\right) = \left(p_1^{2a_1'} \cdot ... \cdot p_k^{2a_k'}\right) \cdot \left(q_1^{2b_1'+1} \cdot ... \cdot q_t^{2b_t'+1}\right) \\ &= \left(p_1^{2a_1'} \cdot ... \cdot p_k^{2a_k'} \cdot q_1^{2b_1'} \cdot ... \cdot q_t^{2b_t'}\right) \cdot \left(q_1 \cdot ... \cdot q_t\right) \\ &= \left(p_1^{a_1'} \cdot ... \cdot p_k^{a_k'} \cdot q_1^{b_1'} \cdot ... \cdot q_t^{b_t'}\right)^2 \cdot \left(q_1 \cdot ... \cdot q_t\right) \\ &= \left(p_1^{a_1'} \cdot ... \cdot p_k^{a_k'} \cdot q_1^{b_1'} \cdot ... \cdot q_t^{b_t'}\right)^2 \cdot \left(q_1 \cdot ... \cdot q_t\right) \\ &= \left(p_1^{a_1'} \cdot ... \cdot p_k^{a_k'} \cdot q_1^{b_1'} \cdot ... \cdot q_t^{b_t'}\right)^2 \cdot \left(q_1 \cdot ... \cdot q_t\right) \end{split}$$

תרגיל 2:

הוכח או הפרך

קיים פריקים של שני מספרים פריקים יכול להכתב כסכום של שני מספרים פריקים $n \geq n_0$

פתרון:

נסתכל על שני מקרים, מקרה ראשון כאשר n הינו מספר זוגי ומקרה שני הינו המקרה המשלים, כלומר המקרה שבו n הינו מספר אי זוגי.

: אם n זוגי אזי $k \in \mathbb{Z}$ עבור n=2k ולכן

$$n = 2k$$

= $2(k-1) + 2$
= $2(k-2) + 4$

נשים לב כי במקרה זה, עבור $k \geq 4$ נקבל כי n הוא סכום של שני מספרים פריקים ושים לב כי במקרה זה, עבור $n_0 = 8 - 1$

: אם n אי זוגי אזי n=2k+1 עבור n=2k+1 ולכן

$$n = 2k + 1$$

$$= 2(k - 1) + 3$$

$$= 2(k - 2) + 5$$

$$= 2(k - 3) + 7$$

$$= 2(k - 4) + 9$$

נשים לב כי במקרה זה, עבור $k \geq 6$ נקבל כי n הוא סכום של שני מספרים פריקים ו $n_0 = 13 - 1$

ולכן שבי מספרים של שני פריקים יכול להכתב אזי לכל $n \geq n_0$ אזי לכל $n_0 = \max(13.8) = 13$ ולכן עבור

:3 תרגיל

יהי $k \in [1,n]$ המספרים הראשוניים ויהי n p_1,p_2,\dots,p_n יהי $Q \coloneqq p_1 \cdot p_2 \cdot \dots \cdot p_k$

$$R \coloneqq p_{k+1} \cdot p_{k+2} \cdot \dots \cdot p_n$$

- $p_i \nmid Q+R$ מתקיים כי לכל $i \in [n]$ מתקיים כי 1.
- 2. העזרו בסעיף א' על מנת לתת הוכחה לכך שיש אינסוף ראשוניים.

פתרון:

 $p_i \in [p_{k+1}, p_n]$ יבה"כ כי , נניח בה"כ כך ש $i \in [1, n]$ ר ראשוני כלשהו כך ש

$$p_i \nmid Q \mid p_i \mid R$$

נניח בשלילה כי $p_i \mid Q+R-R=Q$ ולכן לפי תכונות חלוקה מתקיים כי $p_i \mid Q+R-R=Q$ בסתירה לכך ש

12. נניח בשלילה ש p_1, \dots, p_n הינם כל הראשוניים בעולם, מכוון ש p_1, \dots, p_n הינם כל מניח בשלילה בעולם. בעולם הינם כל הראשוניים לו הינם כל הראשוניים בעולם. בשלילה ש $k \in [1,n]$

$$Q := p_1 \cdot p_2 \cdot \dots \cdot p_k$$
$$R := p_{k+1} \cdot p_{k+2} \cdot \dots \cdot p_n$$

היות א דוגמא נגדית עצמאית מספר פריק, כי אם אחרת, הוא דוגמא נגדית עצמאית Q+R היות להמצאות ראשוני נוסף.

לפי ההנחה Q+R פריק ולכן קיים מחלק ראשוני q כך ש q+R כך מתקיים כי Q+R מתקיים כי Q+R ולכן קיים מחלק א' מתקיים כל ולכן $i\in [1,n]$ היא קבוצת כל $q\neq p_1,\dots,p_n$ ולכן $i\in [1,n]$ היא קבוצת כל הראשוניים בעולם.

:4 תרגיל

$$(a^n, b^n) = (a, b)^n$$
 עבור $a, b, n \in \mathbb{Z}^+$ 1.

$$lcm(a^n,b^n)=lcm(a,b)^n$$
 נעבור $a,b,n\in\mathbb{Z}^+$.2

פתרון:

$$(k_1,k_2)=1$$
 ולכן $a=dk_1$ ו- $b=dk_2$ ו $a=dk_1$ יהי $d=(a,b)$ יהי $d=(a,b)$ יהי

(לפי טענת עזר 1)

כלומר, k_1 ו- k_2 לא חולקים גורמים ראשוניים משותפים (לפי פירוק לגורמים לראשוניים), ולכן גם כלומר, k_1 ושים לב:

$$(a^n, b^n) = (d^n k_1^n, d^n k_2^n)$$
 $= d^n (k_1^n, k_2^n) \quad (\mathbf{2}$ לפי טענת עזר \mathbf{d}^n
 $= d^n$
 $= (a, b)^n$

ולכן

$$lcm(a^n, b^n) = \frac{a^n b^n}{(a^n, b^n)}$$

לפי הסעיף הקודם מתקיים

$$\frac{a^n b^n}{(a^n, b^n)} = \frac{a^n b^n}{(a, b)^n}$$

ובנוסף מתקיים

$$\frac{a^n b^n}{(a,b)^n} = \left(\frac{ab}{(a,b)}\right)^n$$
$$= lcm(a,b)^n$$

שזה מה שצריך להוכיח.

טענת עזר 1:

$$\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$
 אם $d = (a, b)$ אם

<u>הוכחה:</u>

<u>דרך ראשונה – לפי משפט בז'ו</u>

d=ma+nb ידוע כי $m,n\in\mathbb{Z}$ ולכן קיימים וd=(a,b) ידוע כי

d-היות ו-d מחלק משותף מקסימלי של a,b מתקיים בפרט כי d ו-d ו-לכן ניתן לחלק ב-a ולרישאר עם מספרים שלמים:

$$d = ma + nb$$

$$1 = m\left(\frac{a}{d}\right) + n\left(\frac{b}{d}\right)$$

 \mathbb{Z}^+ ולכן קיבלנו כי 1 הוא איבר מינימלי ב- של $\left(\frac{a}{d}\right), \left(\frac{b}{d}\right)$. בנוסף מתקיים כי 1 הוא איבר מינימלי ב- gcd. ולכן 1 הוא ה- gcd. המבוקש.

<u>דרך שנייה – תכונות חלוקה</u>

יהי e>0 מחלק משותף של $\frac{a}{d}$ ולכן מתקיים כי $\frac{a}{d}$ וגם eq וגם e>0 עבור a עבור a לכן ed וגם ed ולכן מתקיים כי ed וולכן מת יולכן מתקיים כי ed וולכן מתקיים כי ed וולכן

טענת עזר 2:

$$(ca, cb) = c(a, b)$$

<u>הוכחה:</u>

d=ce ולכן $d\mid ce\mid d$ וכי e=(a,b)ו ולכן e=(ca,cb) יהי

קורס תורת המספרים נכתב ע"י צבי מינץ

נכי d ולכן $ce\mid cb$ וכי $ce\mid ca$ ובי פון $e\mid b$ הוא המחלק $e\mid b$ הוא המחלק פיוון ראשון: משום ש- $e\mid b$ ו- $e\mid a$).

וכי $d\mid ca$ ידוע כי ce=cam+cbn, ולכן $m,n\in\mathbb{Z}$ עבור e=am+bn ידוע כי e=am+bn וכי $d\mid cam+cbn=ce$, ולכן $d\mid cam+cbn=ce$

.(ca,cb)=c(a,b) כלומר ,d=ce ולכן $d\mid ce\mid d$ וכי $ce\mid d$