

ESCORT

TRAJECTORY ANALYSIS FOR TRAFFIC PATTERNS

By: Ahmed Wael Samy

Amr Ali Farrag

Loai Hamdy Amin

Mina Kamal youssef

Supervised by: Eng. Youssef Mubarak, Dr. Mustafa Abdo and

Dr. Mai El-Shehaly

WE AIM TO ACHIEVE SOLUTIONS FOR PLACING

BILLBOARD ADVERTISEMENT IN RECOMMENDED

LOCATIONS FROM OUR SYSTEM.

DATASET

lat	Ing	date	time
39.9748	116.313	2007-04-12	14:30:45
39.9747	116.312	2007-04-12	14:31:09

Fig.(1): GPS Finger Print

SYSTEM OVERVIEW

TOOLS AND ALGORITHM USED

ADDITIONAL TESTING DATA

- We tried developing GPS trajectories of our own by recording our GPS track while cruising in new Cairo, but it wasn't enough to develop clusters.

EVALUATION: EXPERIMENT 2/2 DOMAIN EXPERTS TRYING THE SYSTEM

Goals

In this experiment we want to know whether the system is suitable for the market, also whether it will be a useful asset for the market and whether it is a user friendly or not, so we picked two domain experts to test the system and give us their feedback.

Domain experts are:

- Mr. Tamer Adel Osman (Advertisement agency CEO)
- Mr. George M. Hanna (Managing Director of Squares Smart Solutions)

COMPETITIONS

Advances in Data Analysis and Classification Journal

Evaluation: Experiment 2/2 Domain experts trying the system

Result

- Develop Mobile Application.
- Don't forget Government Restriction.

SYSTEM PRICE

CloudDigitalSales@us.ibm.com Toll Free: +1 (866) 403-7638

Local: +1 (214) 442-0603 Fax: +1(214) 442-0601 Estimate generated on IBM Cloud Calculator tool:

http://ibm.biz/pricing-calculator

Estimate Summary

Description Quantity Price (USD)

Virtual Server 1 \$380.25

Estimated Total: \$380.25

DEMO

ANY QUESTIONS ??

APPENDIX

EVALUATION: EXPERIMENT 1/3

Setup

- The dataset used in this experiment is an open source data taken from Microsoft Asia recording GPS data in a time span (2007-2011) from 128 users, dataset contains 17,621 trajectories with a total distance of 1,251,654 kilometers and a total duration of 48,203 hours.
- We used four main algorithms in this experiment, all in machine learning
 - DB-scan.
 - KNN.
 - SVM.
 - CNN.

Evaluation: Experiment 1/3

RESULTS:

DB-scan algorithm have the best results in case of (Accuracy-Time complexity), because It is a density-based clustering algorithm: it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). so it best suits geographic dataset.

DBSCAN ALGORITHM


```
DBSCAN(D, epsilon, min_points):
      C = 0
2:
      for each unvisited point P in dataset
3:
          mark P as visited
4:
          sphere_points = regionQuery(P, epsilon)
5:
6:
          if sizeof(sphere_points) < min_points
7:
              ignore P
8:
          else
9:
              C = next cluster
10:
              expandCluster(P, sphere_points, C
                , epsilon, min_points)
11: expandCluster(P, sphere_points, C
          , epsilon, min_points):
      add P to cluster C
12:
      for each point P' in sphere_points
13:
```

```
if P' is not visited
14:
              mark P' as visited
15:
16:
              sphere_points' = regionQuery(P', epsilon)
17:
              if sizeof(sphere_points') >= min_points
                  sphere_points = sphere_points joined
                     with sphere_points'
18:
              if P' is not yet member of any cluster
                  add P' to cluster C
19:
20: regionQuery(P, epsilon):
       return all points within the n-dimensional
21:
               sphere centered at P with radius
               epsilon (including P)
```


MODEL

VIEW

CONTROLLER

DRAW TRAJECTORY SEQUANCE

VIEW ALL DATA

TIME PLAN

Project stages	Resources	Status		< 2017										
				Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	
Choosing Topic	Name	Done	×											
Information Gathering	Team	OK												
Collecting Data	Team	Ok												
Proposal	Name	Done	v											
Proposal	Team	Almost Done												
Presentation	Team	Almost Done												
Trajectorty	Name	Done	v										-	
Algorithms	Team	Now												
Clustering	Team	Now												
Trajectories	Team	Now												
ProtoTypes	Team	Ok												
Design	Name	Starting	¥					Design						
Gui	Team	Not yet												
implementation Design	Team	Not yet												
Data Clasification	Team	Started												
Final design	Team	Not yet												
Technical implementation	Name		~		Technical implementation									
implementation	Team	Not yet												
Testing	Team	Not yet												
Final Presentation	Team	Not yet											7	

E CASE 2/2

THANK YOU