제1차 우주위험대비 기본계획(안)

 $(2014 \sim 2023)$

2014. 5.

관계부처 합동

목 차

│. 추진배경 및 경과 1
□. 국내·외 현황 및 시사점 ··················· 4
1. 우주위험 현황 4
2. 우주위험 대비 현황 5
3. 시사점 9
Ⅲ. 우주위험대비 기본계획의 비전 및 목표 … 10
□ ∨ . 중점과제별 세부계획 11
1. 우주위험 범부처 종합 대응체계 구축 11
2. 우주위험 감시 및 대응 기술 확보 17
3. 우주위험 대비 기반 확충 26
∨. 과제별 소관부처 30
VI. 기대효과 및 향후계획 ······· 31
붙임 1. 우주위험 주요현황 33
2. 우주위험저감을 위한 UN 권고안 ···································
4. 유럽우주청(ESA) 우주상황인식(SSA) 현황 37
5. 우주위험감시 주요장비의 기능 및 성능 38

Ⅰ. 추진배경 및 경과

1. 추진배경

- □ 우주위험 증가 및 국민의 위기의식 확산
 - 지속적인 우주개발로 인하여 우주물체의 **지구 추락**, 우주잔해물과 우주자산 간 **충돌** 등 **우주위험의 발생 가능성이 중가**
 - 독일 뢴트겐위성 추락('11.10.), 러시아 첼야빈스크 소행성 추락 ('13.02.), 진주 운석 추락('14.03.)으로 인해 우주위험에 대한 국민적 관심 증가
- □ 우주위험에 대한 국가 차원의 관리시스템 구축 필요성 증대
 - 미국, 유럽, 러시아 등의 **우주개발 선진국**에서는 우주위험 대응을 위한 **감시체계를 구축·운영** 중
 - 미국은 지상/우주기반의 **종합적 감시시설**을 바탕으로 우주감시 네트워크를 운영하며, 위험요인에 대해 **全 지구적 차원의 감시** 수행
 - 그러나, 우리나라는 우주위험에 대한 체계적 대응체계가 미비
 - 우주위험대비 통합 관리체계, 인프라, 법·제도, 핵심기술 등의 제반조건 미비에서 기인
 - 우리나라와 같이 인구밀집도가 높은 지역에서 **우주위험대비체계** 구축 없이 우주위험 발생 시, 피해규모가 막대할 것으로 예상
 - 이에 우주위험으로부터 국민의 안전과 국가 우주자산을 보호 해야할 필요성 증대
 - ◆ 우주위험에 대한 선제적·체계적 대응을 위하여 추진전략및 정책과제를 담은 국가 우주위험대비 기본계획을 수립

'우주위험'및 '우주위험 대비'개요

【 우주위험의 개념】

- 인공우주물체* 및 자연우주물체의 추락·충돌, 태양폭풍** 등에 의해 국민의 안전과 우주자산에 피해를 줄 수 있는 위험
 - 인공우주물체 : 현재 운용 중이거나 폐기된 인공위성, 인공위성 또는 발사체로부터 발생된 우주잔해물(Space Debris) 등 인간의 우주활동으로 인해 발생된 물체
 - 자연우주물체 : 지구근접 공간을 지나가는 소행성, 혜성, 유성체 등 태양계 내에서 자연적으로 생성된 물체
 - 태양폭풍 : 태양 표면에서 대규모로 에너지와 물질이 일시적으로 분출되는 현상

【 우주위험 대비의 개념 및 범위 】

- (개념) 우주위험으로부터 국민의 안전과 우주자산을 보호하기 위한 우주 감시 및 선제적 대응
- (범위) 우주공간의 환경보호와 감시, 우주위험의 예보 및 경보, 우주위험의 예방 및 대비를 위한 연구개발, 우주위험의 예방 및 대비를 위한 국제협력. 기타 우주위험대비에 필요한 사항

< 우주위험 요인 >

- * 우주개발 진흥법에서 "우주물체"로 표현되어 있으나, 동 계획에서는 '자연 우주물체'와 대비하여 '인공우주물체'로 기술
- ** 우주위험의 3가지 요인 중 태양위험 감시 및 예·경보 관련사항은 「전파법」, 「재난 및 안전관리기본법」 및 관련 법령에 따라 미래부 우주전파센터에서 수행

2. 주요경과

□ 우주위험 대응현황

- 다목적실용위성 2호/천리안위성에 대한 감시·보호 실시('07.01./'10.06.)
- 태양활동 감시 및 예·경보 전담을 위한 우주전파센터 설립('11.08.)
- 독일 뢴트겐/러시아 포보스-그룬트/유럽우주청 GOCE 위성 추락 시 위성추락상황실 운영('11.09./'12.01./'13.11.)
- 운석 관리 및 활용에 대한 TFT 구성·협의('14.03.~04.)

□ 우주위험대비 기본계획 수립 경과

○ 우주개발 진흥법 일부개정법률안 국회 상정('12.08.)

제15조(우주위험대비기본계획의 수립 등) ① 정부는 우주공간에 있는 물체의 추락·충돌 등에 따른 위험에 대비하기 위하여 10년마다 우주위험 대비에 관한 중장기 정책 목표 및 기본방향을 정하는 우주위험대비기본계획을 수립하여야 한다.

- 박근혜 정부 국정과제로 '우주기술 자립으로 우주강국 실현', '총체적인 국가재난관리 체계 강화' 선정('13.05.)
- 우주위험대비계획 수립 정책연구('13.10.) 및 기획연구('14.05.)
- 전문가 워크숍 개최('14.04.) 및 관계부처 협의(′14.05.)
- 우주개발 진흥법 일부개정법률안 국회 의결('14.05.)

3. 계획의 근거 및 의의

- **(수립근거)** 우주개발 진흥법 제15조(우주위험대비기본계획의 수립 등) 및「우주개발 중장기 계획」('13.11., 국가우주위원회)
- (의의) 우주위험으로부터 국민의 안전 및 우주자산을 보호하기 위한 범정부 차원의 계획("우주위험" 대비에 대한 단일 종합계획)
- (성격) 10개년 기본계획으로, 본 계획의 틀 내에서 연도별 시행 계획 수립을 통해 추진목표 및 과제를 보완·발전

Ⅱ. 국내·외 현황 및 시사점

1. 우주위험 현황

- □ 인공우주물체 추락・충돌 가능성 증대
 - '14년 현재 약 3천여개의 위성이 추락하였으며('57년~, 발사된 인공 위성 약 7천여개 중), 현재 궤도상의 위성은 약 4천여개
 - ※ '00년 이후 발사 인공위성의 수는 증가추세이며, '12년 대비 '13년 약 4배 증가
 - 추적이 가능한 10cm 이상의 우주잔해물은 2만 1천여개, 1cm 이상의 우주잔해물은 50만개 이상으로 추정
 - ※ 중국 기상위성 요격실험('07년), 이리듐-코스모스 충돌('09년)로 우주잔해물 급증

< 인공우주물체 증감추세 (NASA 우주잔해물 사무국, '14.01.)>

- □ 자연우주물체 추락으로 인한 인명 및 재산 피해 사건 발생
 - 우주공간에서 지구로 매일 100톤 이상의 자연우주물체가 **낙하**하고 있으며, 우리나라에서도 유성 낙하 현상 관측 및 운석 발견
 - 50m급 소행성 추락시 1천만명의 인명피해, 2조달러의 재산피해 예상*
 - * 인구밀도 12,000명/km²인 미국 뉴욕 기준 (서울 인구밀도 : 17,000명/km²),
 - ※ '13년 러시아 첼야빈스크 지역에 소행성이 지구대기에 진입ㆍ폭발하면서 7,200여건의 건물파손과 1,500여명의 중경상 피해 발생
- □ 태양폭풍으로 인한 우주자산 및 국가 기반 시설 피해 발생
 - '13년 태양활동 극대기를 정점으로 **향후 4~5년간 피해발생이** 증가할 것으로 전망
 - 통신장애, 위성 오작동, 전력시설 파손, 극항로 항공기 방사능 피해 우려 ※ 태양폭풍으로 캐나다 퀘벡주 전력망에 장애가 발생하여 9시간동안 정전 ('89년), 통신위성 장애로 통신서비스 중단 및 약 7천만불의 피해 발생('94년)

2. 우주위험 대비 현황

2-1 해외 현황

- ◇ 우주개발 선진국에서는 Space Surveillance Network(미국), Space Situational Awareness Program(유럽) 등의 종합적 우주위험 대응 시스템 구축 중
 - 미국은 우주위험 요인에 대해 全 지구적 감시를 수행하면서 우주환경감시를 주도하고 있으며, 유럽은 유럽우주청을 중심 으로 우주위험감시프로그램을 통합하여 운영 중
- ◇ 국제협력을 통한 공동대응체제 구축 노력이 강화되는 추세이나, 타국에서 제공받는 정보가 제한적이므로 각국에서는 독자적 감시 및 대응체계를 병행하여 구축 중
- □ (미국) 우주개발 역사가 오래된 미국은 군사적 방위체계를 주 목적으로 세계에서 유일하게 우주위험 요인에 대한 全 지구적인 감시를 수행하며, 관측한 자료를 통합 관리
- □ 우주위험대응 관련 기관의 전략적인 공동 대응 체계 구축
 - 전략사령부 합동우주작전본부(JSpOC)는 인공우주물체감시, 항공우주청 (NASA)은 자연우주물체 및 소속 위성 감시, 해양대기청(NOAA)은 태양활동 감시 및 피해위험 경보를 각각 수행
 - ※ 우주잔해물에 대한 실행안('95년), 자연우주물체의 충돌위험성에 대한 보고와 감시('08년) 등의 법·제도적 근거 마련
- □ 지상기반 우주감시네트워크(Space Surveillance Network, SSN)와 우주기반 우주감시네트워크의 종합적 감시시설을 운영
 - 전 세계 29개소에 다양한 종류의 광학 및 레이더 감시시설을 운영 하고 있으며, 감시능력 확대를 위해 지속적인 성능 개선 작업 수행
 - 3cm급 우주잔해물 상시 감시를 위하여 SSN 핵심센서 중 하나인 Space Fence 레이더 성능개량 사업 추진 중 (~'20년)
 - ※ AMOS 광학감시 관측소, AN/FPS-80 위상배열레이더 등 감시 장비 운용

- (EU) 국가별 軍 주도 우주감시에 따른 폐쇄성의 한계를 인식하고, 유럽우주청(ESA)을 중심으로 우주위험감시 종합프로그램을 진행 □ ESA를 중심으로 우주상황인식(Space Situational Awareness, SSA)* 프로그램을 통합 운영('08년~) * 우주물체 감시 및 추적, 우주기상, 근 지구물체 감시 · 분석으로 구성 O UN 권고안과 European Code of Conduct for Outer Space Activities를 수용하도록 프랑스, 독일 등은 자국 법률을 제·개정 □ '11년 이후 독일 및 프랑스는 독자적인 우주감시 프로그램을 구축 ○ EU 구성원으로서의 명분과 각 국가별 실리를 동시추구 **(러시아)** '13년 2월 소행성 충돌 이후, 우주위험감시의 중요성을 새롭게 인식하고 국가적 우주감시체계 설계 작업 추진 중 □ 러시아우주청(Federal Space Agency, FSA)은 정보획득 및 공유를 수행하고, 러시아 과학아카데미가 국제협력을 담당 □ 냉전시기 미국에 대응하기 위해 대규모 광학감시시스템 및 레이더 감시시스템을 구축하였으며, 최근 관련시설 및 계획을 재정비하고 UN 권고안을 수용하기 위해 노력 ※ '08년 대통령이 승인한 러시아 우주정책(The Keystones of Russian Federation Space Policy up to 2020)에 "우주위험 저감"을 높은 우선순위로 지정 ● (일본) 아시아에서의 우주감시 주도권 강화를 위해 Japan Space Forum(JSF)을 활용하여 국제사회 지위 확보 노력 □ 교육문화체육과학기술부에 의해 설립된 JSF가 광학관측시설과 위상 배열 레이더를 운영 중이며 모든 경비는 일본우주청(JAXA)에서 지원 ○ JSF 주도로 비세이 광학 감시센터와 카미사이바라 레이더 감시 센터를 포함한 다수의 관측 시설 운영 □ '70년대부터 레이저를 이용한 위성 추적, '98년 北 대포동발사 이후 레이더 및 광학관측을 통한 '우주감시체계 구축사업 6개년 계획' 추진 ※ "우주상황인식(SSA)"을 미국과의 군사우주협력 분야로 선정('11년)하고 협력 강화 중 🌌 (중국) 독자적인 Chinese Space Surveillance System(**CSSS**)을 운영하며
 - 6 -

다수의 위상배열레이더와 광학감시, 레이저추적 시스템 보유

- ◇ 우주감시 관련 기초기술 수준의 연구개발은 진행되었으나,본격적인 우주위험 감시를 위한 인프라 및 국가차원의종합적인 대응체계 미비
- □ **우주물체 추락・충돌** 위험에 대한 기초적 수준의 대응역량을 갖고 있으며, 통합적 대응체계는 미비
 - 한국천문연구원이 **우주물체 감시·관측***, 한국항공우주연구원은 **운영 중인 위성과 우주물체 간 충돌위험 대응****을 수행
 - 궤도 정보가 확보된 일부 인공우주물체에 대한 추적감시는 가능하지만, 추락물체 궤도변화 정보 및 충돌 가능성이 있는 인공우주물체에 대한 정밀추적감시 능력은 미비
 - * 이동형 위성레이저추적시스템 및 50cm급 광학감시시스템 개발('13년)
 - ** 우주파편충돌위험 종합관리시스템 개발('13년)
 - 위성추락상황실 및 위험대응 매뉴얼 제작
 - 지상낙하 시 피해가 예상되는 인공위성이 추락할 경우, 추락 상황실을 운영하여 추락위험 분석·전파
 - ※ 독일 뢴트겐위성('11년), 러시아 화성탐사선('12년), 유럽우주청 GOCE위성 ('13년) 등 추락 당시 교과부·천문연·항우연·공군 공동으로 상황실 운영
 - "우주파편 충돌대응 매뉴얼"('10.12.), "우주물체추락 위기관리 표준 매뉴얼"('13.11.) 수립
- □ 우주위험요인 감시를 위한 일부 국제협력 수행
 - UN 외기권의 평화적 이용을 위한 위원회(UN Committee on the Peaceful Uses of Outer Space, UN COPOUS) 참여, 매년 UN에 우주위험 대응활동 보고
 - ※ (국제협의체 참여) UN 지구근접천체 실행팀, 국제우주잔해물조정위원회 (Inter-Agency Space Debris Coordination Committee, IADC) 등에 참석
 - ※ (국가 간 협력) 우주잔해물 및 궤도조정(독일우주운영기관, '05년), 태양관측 위성(SDO, RBSP)의 관측자료 공동 활용(NASA, '10년)을 위한 MOU 체결
 - 그러나 국내의 독자적 감시 자료가 부족하여 UN권고안 이행을 위한 적극적인 참여 및 국제사회와의 정보공유가 어려움

〈참고〉 해외주요국-우리나라 우주위험 대응상황 비교

국가/위험종류		추락	충돌	
미국	감시장비	추적레이더(대형), 위성 광시야 광학감시망원경 4m급 광학감시망원경 우주기반 시스템		
	대응범위	전체위성 전체 소행성 유성체(미국지역)	전체위성 우주잔해물(10cm이상)	
유럽	감시장비	영상레이더(독일), 위상배열레이더(영국,프랑스) 광학망원경(스페인, 스위스)		
	대응범위	미국자료에 의존	유럽 보유 위성에 피해를 줄 수 있는 우주잔해물	
71.41.61	감시장비	위상배열레이더, 광학감시시스템		
러시아	대응범위	미국자료에 의존	러시아 보유 위성에 피해 를 줄 수 있는 우주잔해물	
O. H	감시장비	위상배열레이더, 광학감시시스템		
일본	대응범위	미국자료에 의존	일본 보유 위성에 피해를 줄 수 있는 우주잔해물	
한국 	감시장비	_	0.5m급 광학망원경	
	대응범위	미국자료에 의존	제도정보가 알려진 일부 저궤도 및 정지궤도 위성 추적감시	

3. 시사점

□ SWOT 분석

강점(Strength)	약점(Weakness)	
 ○ 국정과제로 "우주강국 실현"과 "국가 재난관리 체계 강화" 선정 ○ 우주위험 감시에 대한 기초적 연구개발 수행을 통하여 대응 역량 일부 보유 	○ 우주위험 대처를 위한 통합적・효율적 국가대응체계 및 매뉴얼 정립 미흡 ○ 우주개발 후발주자로서 우주위험 대응을 위한 감시장비, 법・제도, 우주위험 감시·분석 역량이 부족	
기회(Opportunity)	위 협 (Threat)	
 최근 발생한 위성/유성체 추락으로 인해 우주위험에 대한 국민적 관심 제고 국제협력 중요성이 커짐에 따라 국제 협의체 참여 요청이 증대 	 ○ 우주위험 정보의 국제교류를 위해 필요한 국내 독자적 획득 정보가 부족하여, 국제협력에 제약 존재 ○ 우주물체에 관한 정보의 제한적 공개에 따른 국제협력 한계 	

□ 시사점

- 우주위험에 관한 **범정부 종합 대응체계 구축** 필요
 - 범부처 협력체계 정립을 위한 대책본부 수립, 우주위험에 관한 전문적 감시기관 지정·육성 등을 통해 신속·정확한 대응능력 확보
- 우주위험에 대한 **독자적 감시·분석 및 예·경보 능력** 보유 필요
 - 정책의 우선순위를 고려하여 우주위험 감시 대상을 위험수준에 따라 차별화하는 전략적 발전 추진
 - 독자적 감시 및 정보획득능력을 통해 **국제협력의 한계**(정보의 상호 등가교환, 군사·정보위성 궤도 등의 비공개 정보)를 **극복**
- 장기적·지속적인 우주위험대비 역량 강화를 위한 기반마련 필요
 - 적극적 국제협력을 통해 독자감시능력을 보완하고, 우주위험관련 국제규범 형성에 선제적으로 참여하여 우리나라의 이익을 확보
 - 법·제도의 정비와 연구개발 및 인력양성에 대한 지원 확대를 통한 우주위험 대비역량의 저변 확대
- ◆ 우주위험의 시급성・중대성을 고려한 독자적 감시・대응 역량 강화와 적극적 국제협력을 동시에 추진

Ⅲ. 우주위험대비 기본계획의 비전 및 목표

비전

우주위험으로부터 국민의 안전과 우주자산 보호

목표

- ◆ 우주위험에 대한 신속한 대응 및 예·경보
- ◈ 우주위험 감시·분석 능력 확보
- ◈ 우주위험 대비 역량 강화와 저변 확대

중점과제

세부 추진과제

우주위험 범부처 종합 대용체계 구축 (system)

- 1-1. 우주위험 대책본부 수립 및 운영
- 1-2. 우주환경 감시기관 지정 및 운영
- 1-3. 우주위험대응 상시 협력체계 강화
- 1-4. 운석 관리체계 수립

우주위험 감시·대용 기술 확보 (technology)

- 2-1. 우주위험 식별 및 통합 분석
- 2-2. 1톤급 추락물체 독자감시 및 조기경보
- 2-3. 10cm급 인공우주물체 감시 및 충돌 정밀 예측
- 2-4. 태양위험 감시 및 대응시스템 고도화

우주위험대비 기반 확충

(infrastructure)

- 3-1. 우주위험 대비 국제협력 강화
- 3-2. 우주위험 대비 연구개발(R&D)
- 3-3. 우주위험 대비 역량강화를 위한 환경조성

Ⅳ. 중점과제별 세부계획

1. 우주위험 범부처 종합 대응체계 구축

1-1. 우주위험 대책본부 수립 및 운영

- ◇ 우주물체 추락·충돌위험에 대한 **국가 차원의 총괄 조정**을 위하여 우주위험 대책본부 수립
- □ (우주위험분야 범부처 대응체계) 우주물체 관련 위험 발생 예측 시 범부처 우주위험대책본부 운영
 - 우주개발 진흥법 시행령 개정을 통한 수립근거 구체화 (~'14년)
 - 본부장(미래부) 및 소관 실・국장(관계부처), 산・학・연 전문가로 구성
 - 재난 및 안전관리기본법 시행령 개정을 통하여 우주물체 충돌· 추락 등의 우주위험 관련 재난관리주관기관 지정(~'15년)
- □ (비상 시 합동대응체제 지원) 위험상황 정보를 신속히 종합하여 보고·전파하고 필요한 대응력을 지원
 - 국가위기관리실 및 중앙안전관리위원회(국무총리실)에 상황을 보고 하고 유관기관에 정보를 전달함으로써 정확한 위험상황을 전파
 - ※ 안전행정부 산하 중앙재난안전대책본부와 비상 시 업무의 체계적 분담을 통한 협력체제 구축
 - 유관기관의 대응상황을 신속히 파악 후, 위험대응을 위해 필요한 역량을 적절히 배치하여 국가 가용 자원 활용을 극대화함으로써 국가적 대비책이 효율적으로 수립되도록 지원

1-2 우주환경 감시기관 지정 및 운영

- ◇ 우주물체 추락・충돌 위험에 대한 전문적인 상시 감시와 정확한 분석, 예・경보를 수행할 우주위험 전담기관으로 우주환경 감시 기관을 지정
- □ (우주위험 감시 전문기관) 미래부 및 유관부처 공무원을 중심으로 상시적인 우주위험대응을 수행하는 전담조직 설치 추진 (~ '15년)
 - 우주개발 진흥법 시행령 개정을 통해 수립근거 구체화 (~'14년)

<우주환경감시기관의 구조 및 관련기관과의 관계 (안)>

- □ (우주위험대응 실무 총괄) 감시기관 내 사무국에서 우주위험 예· 경보, 위험대응 매뉴얼 작성 등 실무 총괄
 - 유관기관과의 협조를 통하여 개발이 필요한 위험대응기술 도출 및 연구개발 기획
 - 우주위험 감시·대응, 핵심기술 개발 및 기술교류에 필요한 **국제협력** ※ 우주물체 추락·충돌위험 발생 예측 시, 미래부 장관에게 우주위험대책본부 운영 필요성에 대한 의견을 보고하며 대책본부의 사무국 역할을 수행
- □ (비상상황실 운영) 비상 시 민관군 합동 비상상황실을 운영하고,비상 연락망을 구축하여 즉시 상황보고 체계가 가동될 수 있도록지원
 - ※ 산·학·연 전문가로 구성된 전문위원회를 소집하여 공동 대응체계 구축

- □ (우주위험감시센터) 자체보유장비를 통해 상시적으로 우주환경을 관측하고, 국내・외 기관의 관측결과를 종합적으로 활용하여 우주물체 식별
 및 위험수준 분석을 수행함으로써 감시기관의 기술적 전문성을 보완
 - 국내에서 우주물체 추락 관련 업무*를 수행하고 있는 천문(연)을 우주위험감시센터로 지정·육성 추진
 - * 우주물체 추적·감시용 광학감시시스템 개발, 위성추락상황실 운영(독일 뢴트겐 위성, 러시아 화성탐사선, 러시아 코스모스 1484위성, 유럽우주청 GOCE위성 등), 인공위성 추락궤도 분석 및 상황 전파, 진주 운석 낙하궤적 분석 등

< 우주위험대비 업무수행 체계도 (안) >

- 평시 : 상시적인 우주위험 감시·분석, 우주위험 정보관리 및 우주위험 대응훈련
- 우주위험 탐지~위험 상황 발생 : 우주위험 식별·분석 후 유관기관에 예·경보 발령, 지속적 감시를 통해 실시간 정보 제공, 필요시 민관군 정보공유를 위한 합동비상상황실 운영
- ■위험 상황 발생~사고 수습 : 초기대응 및 사고수습 관련 기관에 정보 제공

〈참고〉 우주위험대비 관리체계 역할 및 구성(안) ○ 우주물체 추락·충돌 위험 발생 예측 시. 미래창조과학부 장관의 결정에 따라 우주위험대책본부 운영 ○ 우주물체 추락·충돌 위험 및 관련 상황 **총괄·조정** ○ 운영 필요 결정 시. **즉시 대응체제 돌입** 우주위험 - 국가위기관리실 및 중앙안전관리위원회에 **우주물체 추락·충돌 위험** 대책본부 상황 및 피해 규모 보고 - 관계부처 대응 상황 파악 및 필요한 대응분야 지원 - 위험 상황, 피해 규모 등 관련 정보를 유관기관에 전파 - 대국민 언론 활동 수행 - 필요 시, 중앙재난안전대책본부 운영 검토 요청(본부장→안전행정부 장관) ○ 우주위험대책본부의 사무국으로서 **우주위험대책본부** 지원 - 우주물체 추락·충돌 위험 발생 예측 시. 미래창조과학부 장관에게 우주위험대책본부 설치에 대한 의견 보고 - 우주물체 추락·충돌 위험 관측 분석 및 예·경보 등 실무 총괄 * 우주물체 추락·충돌 위험 대응을 위한 매뉴얼 작성 및 배포 등 - 우주물체 추락·충돌 위험 관련 **정책 및 사업 제안** - 우주물체 추락·충돌 위험 통합 분석, 예·경보 관련 연구개발 기획 - 우주물체 추락·충돌 위험의 예방 및 대비를 위한 **국제협력** 우주환경 ○ 우주위험감시센터 운영을 통한 상시적 우주위험감시활동 감시기관 - 위기종합상황실 운영 - 우주환경 감시를 통한 우주위험 정보 획득 및 분석 - 관련기관 관측 정보 수집, DB구축, 정보 배포 ○ 비상대응체계 강화 - 비상연락망을 통한 즉시 상황보고 체계 가동 - 관계기관 합동 비상상황실 운영 등 협조체계 가동 - 우주물체 추락·충돌 위험 예·경보 발령체계의 구축·운영

1-3. 우주위험대응 상시 협력체계 강화

- ◇ 민·관·군 협력 네트워크 / 대국민 정보 네트워크 강화를 통한 상시적 공조체제를 구축함으로써 신속한 위험대응, 사회적 불안 해소 및 대국민 신뢰도 향상 도모
- □ (민·관·군 합동훈련) 정기 합동훈련 계획 수립·실행을 통해 역할 분담 및 협력 네트워크를 강화하여 신속한 상황 대처능력 배양
 - 위험대응 매뉴얼 교육 및 비상연락망 체계에 따른 실시간 상황 전파훈련, 추락·충돌 상황에 따른 대처 시나리오 훈련, 언론 및 SNS 전파 훈련 등을 주기적으로 실시
- □ (중앙-지방 간 합동대응체계 구축) 관계 중앙부처와 우주위험 재난 해당 지방자치단체 일선 공무원 간의 위험 시나리오에 따른 대응 협력체계를 구축・상시 점검
- □ (맞춤형 정보 서비스 제공) 우주위험 대응 매뉴얼 및 우주환경 관측 결과를 상시적으로 우주환경감시기관 홈페이지 · SNS를 통하여 유관 기관 및 국민에게 전파하고, 위험발생 시 주기적 예·경보 제공

< 추적상황 모니터링을 통한 정보 제공 (예)>

- '13.11. 유럽우주청 소속 GOCE위성 추락당시 추적상황 모니터링 및 홈페이지를 통한 실시간 예·경보 실시 (천문연 위성추락상황실)

- 운영배경 : 2009년 3월
 17일 발사된 위성 고체
 (GOCE)의 임무수명이
 다하여 지구표면에 추락
 할 가능성이 예측되면서
 비상사태 발생에 대비하여
 대응체계 구축
- '13.11.05.(화) 09:00 11.11.(월) 11:20
- ○참여 : 2개 기관, 18명 - 천문연, 공군 등
- ○임무:美 JSpOC으로부터 취득한 정보를 바탕으로 추락상황 분석 및 모니터링, 상황 전파

1-4. 운석 관리체계 수립

- ◇ '진주운석' 발견을 계기로, 국가적 차원의 체계적 운석 관리・활용 시스템을 구축함으로써 희소성 있는 우주연구 자산인 운석의 가치 보존 및 학술적 활용 극대화
- □ (운석 관리) 우주개발 진흥법 개정을 통해 "운석 등록제" 실시 및 "국내발견운석에 대한 국외 반출 금지" 조항 신설 추진(14년~)
 - ※ 현재 일반적 소유권을 규정하는 민법을 근거로 발견자 개인의 소유권 인정 (민법 제252조)

<운석 등록제 도입>

시기	단기적 : 이력 관리	
내용	이력관리(자율적 등록)	
체계	소유자・연구자가 미래부(연구기관)에 등록	
국외 반출	관계기관에 국외 반출 금지 협조 조치	

장기적 : 법제화						
우주개발 진흥법 개정을 통해 자율적 등록 조항 신설						
소유자가 미래부에 등록						
국내발견 운석은 국외 반출 금지						

 □ (운석 국가확보 및 연구·전시 활용) 연구·전시기관들이 필요시 공동 건소시엄을 구성하여 소유자로부터 운석을 구매하고, 성분 분석・ 구조 파악을 통해 우주탄생환경을 연구하며 희망기관에서 전시

<운석관리 체계도>

※ (운석신고센터) 국내운석 분석기관인 지자(연)이 운석 신고접수 및 외관학인, 운석 검증반에 분석 의뢰 후 우주환경감시기관에 보고
 (운석 검증반) 천문(연)·지자(연)·극지(연)·학계 등으로 구성하여 발견된 운석에 대한 성분분석 및 유성 궤도분석을 통해 운석 확인

2. 우주위험 감시 및 대응 기술 확보

2-1. 우주위험 식별 및 통합 분석

◇ 우주환경 감시·관측시스템으로부터 취득한 정보를 통합 분석함으로써 정확한 우주위험도 평가 수행

- □ (감시·관측 시스템 관리) 국내 우주환경 감시·관측 시스템의 일상적 운영상태 모니터링
- □ (관측정보 통합관리) 관측 시스템 및 국제협력기관의 우주환경 정보를 획득・분류・저장하는 우주감시 통합 데이터베이스 설계・구축(~'18년)

- □ (위험 식별 및 분석) 우주위험 통합 분석·평가 시스템 개발(*18년 ~'23년)을 통해 각 시스템의 정보를 종합하여 분석함으로써 보다 정확한 우주위험 식별 및 위험도 평가* 수행
 - * 인공우주물체 충돌 확률, 우주물체 추락 피해가능성 및 추락예상지점·시각 평가 등

< 우주위험 통합분석 시스템 (예) >

2-2. 1톤급 추락물체 독자감시 및 조기경보

◇ 자연우주물체 및 1톤 이상 인공위성의 지상 추락가능성과 추락지점· 시각을 독자적으로 예측하는 시스템을 구축함으로써 위험대응의 신속・정확・적시성 제고

 □ (인공우주물체 추락 감시) 1톤급 이상* 대형 인공우주물체 모니터링
 및 궤도이탈 조기발견(광학 장비) 후, 관심대상의 정밀궤도를 추적・ 감시(레이더)

- 美 합동우주작전본부(JSpOC)에 의해 궤도정보가 공개되는 비율은
 약 40%에 불과하며, 비공개율이 높은 대형 저궤도위성 궤도이탈
 및 추락가능성 정보에 대하여 자체적 파악 필요
 - * 매년 20~30개의 인공위성이 추락하며, 이 중 지상피해는 원자로 탑재위성 및 대기권에서 전소되지 않는 중량 1톤 이상의 인공위성에 의해 발생

< 인공우주물체 추락감시 시스템 (예) >

관측범위	사용장비	설치장소	관측결과	산출물	
광역감시	전천감시용 복합카메라	극지 또는 고위도 5개	우주물체궤적	예비 궤도정보 (오차 ~30km)	
추적감시	OWL-Net	해외 5개 지역	우주물체궤적	중간 궤도정보 (오차 [~] 5km)	
정밀감시	어레이레이더	국내	11 ight Catalus Georges, UK 10 0 10 0 10 0 11 54:00 11 54:00 11 55:00 11 55:00 20 0 11 54:00 11 54:00 11 55:00 11 55:00 전 파 영상	위성형태, 정밀 궤도정보 (오차 <0.5km)	

- 대형 인공위성 및 우주잔해물의 **궤도변화를 조기 발견**하기 위한 **전천감시용 복합카메라** 5기 광역배치(~' 23년) 및 운영
- 5x5 어레이레이더를 단계적으로 설치하여 운영함으로써 특정 관심 우주물체에 대한 정밀추적 구현(~'23년)
- **추락물체의 특성파악**을 위한 **레이더 영상기**술의 확보(~' 23년) 및 상시 운영(~' 23년)
- □ (자연우주물체 추락 감시) 우리나라 상공에 진입하는 자연우주물체의 24시간 감시 및 50m급 소행성 추락에 대한 조기경보 역량 확보
 - 소행성에 대한 학술 연구는 일부 진행되고 있으나 **추락 감시 인프라가** 전무하여 **사전경보를 위한 감시/경보체계 구축이 필요**

< 자연우주물체(유성체) 추락감시 시스템(예)>

사용장비	설치장소	관측결과	산출물
			1cm 이상 크기 유성체의 추락위치
유성체감시네트워크	국내 25개 지역	유성체 궤적	

< 자연우주물체(소행성) 추락감시 시스템(예)>

관측범위	사용장비	설치장소	관측결과	산출물
광역 감시	초광시야 광학망원경	국내외 5개 지역	영상	예비궤도정보
정 밀 감시	어레이레이더 2m급 광학감시망원경	국내 국외	Tel Spit Caffelo Gasgow, UK 100 100 100 1154500 1154400 1155500 1155500 전 파영상	정밀 궤도정보, 크기, 성분

- 추락유성체 감시 및 실시간 궤도 산출을 위해 유성체감시네트 워크를 우리나라 전역에 걸쳐 25개소에 설치(~' 20년)
- 50m급 소행성에 대한 1주일 내 조기경보 역량 확보를 위하여 초광시야 광학망원경 5기를 순차적 배치 · 운영(~' 23년)
- □ (지상피해 위험도 분석) 추락가능성이 인지된 특정대상에 대한 정밀궤도추적을 통해 추락지점·시각 예측 및 피해가능성 분석
 - 해외이전이 제한되는 추락우주물체 감시·정밀관측 기술 및 위험도 평가 기술에 대한 독자적 역량 구축이 필요
 - 정밀 추적결과를 바탕으로 추락물체의 지상낙하 위치와 시점을 조기에 예측하는 분석시스템 구축(~'23년)

2-3. 10cm급 인공우주물체 감시 및 충돌 정밀 예측

 ◇ 우리나라 위성 주변에 접근하는 인공우주물체를 감시・식별하는 지상시스템을 설치・운용하여 충돌 위험에 대한 독자적 감시・ 분석 능력을 확보함으로써 우리나라 위성 보호체계 구축

- □ (충돌예상 인공우주물체 위치추적) 우리나라 위성에 접근하는 인공 우주물체에 대한 美 합동우주작전본부(JSpOC) 경보를 바탕으로, 광학 감시시스템, 감시레이더 및 영상레이더로 정밀 위치 추적
 - 우리나라 위성에 접근하는 10cm 이상 우주물체에 대한 탐지 및 충돌위험이 있는 우주물체에 대한 정밀추적
 - 중·고궤도의 경우 광학망원경을 사용하여 추적·감시 수행
 - ※ 우주물체 탐지용 감시레이더('20년), 우주물체 식별·정밀추적용 영상레이더 ('21년), 2m급 광학감시망원경('23년)
 - 우리나라 위성에 충돌이 예측되면 회피 명령을 전송하여 **충돌 회피**
- □ (자국 위성 충돌위험 24시간 감시) 우리 상공을 통과하는 해외 위성 감시 자료와 타국 상공의 우리 위성 자료를 상호 교환하여 우리나라 위성의 24시간 보호 체계 구축
 - 국제우주잔해물조정위원회(Inter-Agency Space Debris Coordination Committee, IADC) 활동 및 유럽우주청의 위성감시시스템 등과 연계
 - ※ '25년까지 미국의 위험도평가 능력 대비 80% 수준 확보(현재: 미국대비 30%, '17년: 50%, '35년: 90% 수준) 및 독자적 회피기동 프로세스 확립 추진

<충돌위험 탐지 및 추적 시스템(예)>

감시범위	사용장비	설치장소	관측결과	산출물
광역 감시 (저궤도)	감시레이더	국내	250 m 1000 m 10	10cm 크기 이상의 우주물체 궤도정보
정 밀 감시 (저 궤 도)	영상 레이더	국내	# 10 대 영상	우주물체의 식별영상 및 정밀궤도정보
정밀 감시 (중고궤도)	2m급 광학감시망원경	국외	우주물체 영상	10cm 크기 이상의 우주물체 정밀궤도정보

2-4. 태양위험 감시 및 대응시스템 고도화

○ 태양흑점 폭발 등 급격한 태양활동 변화에 대한 감시 및 분석・ 예측시스템을 고도화하여 세계적인 수준의 태양위험 대응역량 확보

□ (감시 인프라 확대) 전력, 단파통신, GPS, 위성 등 국내 독자적 피해 감시가 필요한 분야에 대하여 인프라 투자를 강화

- 단기적으로 미국의 **태양감시위성 데이터 수신 국제공조**에 적극 참여 하여 **태양위험 위성관측 자료를 안정적으로 확보**
 - 중장기적으로 국내 위성발사계획과 연계하여 **국내 자체적인 태양** 위험 위성감시 시스템 확보 추진
 - ※ 정지궤도 복합위성(GEO-KOMPSAT 2A)에 우주기상(태양우주환경) 관측 센서 탑재 등

<국내 피해감시 인프라>

- □ (분석·예측 기술력 강화) 선진국의 모델을 도입하고, 국내 IT기술력을 접목하여 보다 성능이 우수한 독자기술 개발 병행 추진
- □ (수요기관 맞춤형 예·경보서비스) 항공, 위성, GPS 등 주요 피해 분야 수요기관에 대해 SNS 등을 통한 24시간 태양위험 예보서비스 제공
 - 태양위험 경보 실시간 제공, 3단계 이상의 강한 경보상황은 24시간 비상대응 및 영향분석 실시

〈참고〉 우리나라 우주위험 대응능력 구축목표(~23년, 미국대비)

					감	시범위	
위험 위험요인		╷ 보호 대응	우리나라				
종류 기미기	11840	대상	방법	현재	목표 (3년)	목표 (10년)	미국(현재)
추락	저궤도위성	인명	추락	자료가 공개된 일부 추락위성	자료가 공개된 일부 추락위성	대형위성 (1톤 이상)	전체위성
T=1	소행성/ 유성체	재산	예보	-	자료가 공개된 일부 소행성	지구근접 소행성 유성체(한국지역)	지구근접 소행성/ 유성체(미국지역)
충돌	저궤도위성 / 우주잔해물	위성	충돌 회피	우리나라 위성	우리나라 위성	우리나라 위성/ 우주잔해물 (10cm 이상 자국 피해 위험)	전체위성/ 우주잔해물 (10cm 이상)
8	정지궤도 위성	위성/ 정지궤도 영역	충돌 회피/ 영역 감시	우리나라 정지궤도 영역	우리나라 정지궤도 영역	우리나라 위성/ 할당영역	전체위성/ 전체영역
	전파두절	21114	태양 폭풍	국제협력 (NOAA/GOES) 국내영향분석 (전리층 2기)	. 상시 예·경보	위성관측 기술개발	
태양 폭풍	고에너지 입자	위성/ 전력망/ 통신망	, 영보/ 지자기	국제협력 (NOAA/GOES)	- 성시 에 성도 +국제협력 +우주재난대응	지상·우주 기반 태양활동 24시간 감시	
	지구자기장 변화	320		국제협력 (NOAA/Kp) +국내관측 (지자기 3기)		국제협력확대 (글로벌 모델)	B-1

	위험요인	보호	대응방	감시방법			
위험				우리나라			
종류	11842	대상	법	현재	목표 (3년)	목표 (10년)	미국(현재)
추락	저궤도 위성	인명 재산	추락 예보	공개자료 (SpaceTrack)	국제협력 (JSpOC)	독자관측(어레이 레이더/초광시야 전자광학)	추적레이더(대형) 위상배열 레이더 우주기반 시스템
	소행성/ 유성체			공개자료 (NASA/언론)	국제협력 (MPC)		추적레이더(대형) 광시야 전자광학 4m급 전자광학 유성체 네트워크
충돌	저궤도위성 / 우주잔해물	위성	충돌 회피	국제협력 (JSpOC)	국제협력 (JSpOC)	독자관측(정밀추적 감시 및 영상레이더/2m급 전자광학)	추적레이더(대형) 4m급 전자광학
	정지궤도 위성	위성/ 정지궤도 영역	충돌 회피/ 영역 감시	독자관측 (광학망원경) +국제협력	독자관측 (광학네트워크) +국제협력	독자관측 (전자광학감시 네트워크/2m급 전자광학)	4m급 전자광학
태양 폭풍	전파두절	위성/ 전력망/ 통신망	태양 폭풍 예보/ 지자기 폭풍 예보	24시간 감시/분석 관측2	관측위성 +국제협력 관측/예·경보 체계		광학/전파 관측네트워크 우주기반 관측시스템
	고에너지 입자					관측/예·경보 체계	
	지구자기장 변화				관측기반확충 +국제협력		

〈참고〉 우주위험 요인별 감시방법

□ 1톤급 인공우주물체 추락

- (1단계) 전천감시용 복합카메라를 이용하여 대형 우주물체에 대한 궤도변화 상시 감시를 수행하고, 궤도변화가 있는 경우 예비 궤도정보 산출
- (2단계) 궤도변화가 있는 우주물체 대해 예비 궤도정보, OWL-Net (0.5m 광학 감시망원경 5기)을 이용한 중간 궤도정보 산출
- (3단계) 2단계에서 산출한 중간 궤도정보와 어레이레이더를 이용하여 정밀 궤도정보 및 우주물체의 형태정보를 추출

⇒ 추락 우주물체에 대한 추락시각 및 지역 예측

□ 자연우주물체(소행성) 추락

- (1단계) 초광시야 광학망원경을 이용하여 지구주변에 접근하는 소행성을 발견 하고 예비궤도를 추정
- (2단계) 어레이레이더와 2m급 광학감시망원경을 동시에 사용하여 지구에 근접하는 소행성에 대한 상세 관측을 통한 소행성 특성 파악 및 정밀궤도정보 산출

⇒ 소행성 지구 추락위험 분석 및 예보

□ 자연우주물체(유성체) 추락

전국 20개소에 유성체감시네트워크 설치, 유성체 낙하궤적 관측

⇒ 1cm 이상 크기의 유성체의 추락위치 추정

□ 10cm급 우주물체 충돌

- (1단계) 감시레이더를 이용하여 우리나라 위성 주변의 10cm 크기 이상의 우주 물체에 대한 추적감시
- (2단계) 우리나라 위성과 충돌가능성이 있는 우주물체에 대한 식별 및 정밀 추적감시

⇒ 우주물체 충돌확률 정밀계산 및 회피기동 여부 판단

3. 우주위험 대비 기반 확충

3-1. 우주위험 대비 국제협력 강화

◇ 독자적 위험대비역량 확보의 한계 보완을 통한 감시체제의 신뢰성 향상을 위하여 적극적 국제협력 추진

- □ (국가 간 협력 확대) 국가 간 정보공유 및 기술협력・공동연구
 - 우주위험 감시정보의 독자적 획득이 갖는 **기술적・범위적 한계를** 극복하기 위한 **국가 간 감시자료 공유 등**
 - 지구근접 소행성 및 추락물체에 대한 정보공유 MOU 추진 등을 통하여 신속한 정보수집 및 위험수준 비교분석
 - 美 합동우주작전본부(JSpOC), 유럽우주청(ESA)과의 우주환경감시 프로그램 협력강화를 우선적으로 추진
 - ※ 유럽우주청 산하 국제유성체경보네트워크(IAWN)와 우주탐사계획자문 그룹(SPMAG) 참여 등
 - 우주물체 정밀관측기술*, 위험요인 우주물체 제거기술, 태양위험 영향을 수치적 모델로 분석하여 선제적으로 대응하기 위한 고정밀 예측기술 등에 대하여 공동연구 및 관련 시설 공동 활용 추진
 - * 몽골, 카자흐스탄 등에 광학감시네트워크(OWL-Net) 설치('16년)

- □ (국제기구 및 협의체 적극 참여) 우주위험 국제 공동 대응 방안 수립과정에 능동적으로 참여하여 국가위상 강화 및 국익 보호
 - UN COPUOS 참여 확대, 국제우주잔해물조정위원회(IADC) 회원 가입 추진*('14년)
 - 우주물체 관련 국제 지침·규정에 관한 제안, 공동연구 및 회원국 간의 국제 공동연구 협력
 - * IADC 정회원 가입을 통해 우주물체 관련 위험에 대한 대책과 우주잔해물 생성 억제를 위한 국제 규범논의 및 공동 연구활동에의 적극적 참여 추진

3-2. 우주위험 대비 연구개발 (R&D)

- ◇ 우주위험분야 R&D 확대를 통하여 위험대비 기반기술 도출 및 핵심 기술의 자체 개발을 추진함으로써 지속적・안정적인 우주위험 감시 역량 확보
- □ (핵심요소기술) 산·학·연 공동으로 우주위험 기반기술을 도출하고 추적・영상레이더, 전자광학 등의 우주환경감시 시스템을 효율적 으로 구축・운영하기 위한 핵심요소기술*을 연구개발
 - * 광시야 광학계 및 레이더 송신부 설계·제작 기술, 레이더 신호 합성기술 등
 - ※ 유성체감시네트워크 시제품을 조기 개발하여 유성궤적검출 시험을 수행하고 제도분석역량을 확보
 - ※ 어레이레이더, 추적·영상레이더 시제품을 개발하여 위성 및 우주잔해물에 대한 시험관측을 수행하고 이를 기반으로 5x5 어레이레이더 개발에 적용
- □ (위험도 분석 및 평가기술) 기존에 개발된 궤도계산 기술을 기반 으로 하여 추락, 충돌 위험 분석·평가 소프트웨어 및 태양활동 지상관측・위성관측 자료 분석 소프트웨어 개발
 - ※ 미확인 대형위성에 대한 궤도 산출기술과 추락시각·위치 정밀계산 기술 확보
- □ (미래우주기술) 우주환경보호를 위한 우주잔해물 능동 제거 기술
- 소형위성을 이용한 우주잔해물 포획 및 조기추락유도, 레이저를 이용한 우주잔해물 정밀궤도추적

< 미래우주기술(예) >

□ (핵심기술 Spin-off) 국가 연구개발 사업을 통해 개발된 기술을 정보통신·국방·의료 등의 他 분야로 이전

3-3. 우주위험 대비 역량강화를 위한 환경조성

- ◇ 우주위험 대응체계 구축 기반 확립을 위한 법・제도적 환경을조성하고 우주위험대응 저변확대를 위한 인적 역량을 강화
- □ (관련 법령 정비) 우주위험 관련 법적근거 구체화, 유관 기관과의 역할 분담 및 공동 대응에 필요한 사항 등을 정비
 - 우주개발 진흥법 시행령에 우주위험대책본부, 우주환경감시기관
 및 운석 관리 방안 구체화
 - 국가재난을 총괄하는 '재난 및 안전관리 기본법'을 고려하여 **부처 간** 기능 정립 및 협력체계 구축
- □ (인력 양성) 전문 인력 양성을 위한 장기계획 수립 및 관련 학문 분야 확대
 - **대상별 맞춤형 교육프로그램** 운영, 우주감시분야 교육과목 신설· 강의 지원을 통해 우주위험 대응 분야 **정책·기술 전문가 양성**
 - "(가칭)우주전문교육센터"에 우주위험대응 실무형 인재양성 프로 그램을 정착하여 우수인력 pool 확보

<우주위험 관련 교육 방안 (예)>

대 상	목 적	세부 방안
일 반인	-우주위험 관심 제고	-다양한 매체를 이용한 기초지식 및 관련 정보 배포
대학(원)생 (일반대학, UST, 공군사관학교 등)	-우주위험 관련 기초 연구	-우주위험감시센터·관련 기업 견학 프로 그램 운영 -인턴십·썸머스쿨·글로벌 펠로우십 사업 참여
신진연구자 (연구소·산업체)	-실무연구경험 강화	-출연연 보유자산을 활용한 우주위험 관련 교육 및 해외 교육프로그램 참여
중견연구자 (연구소·산업체)	-전문역량 강화	-해외 직무교육 프로그램 참여, 해외 우주위험 관련 기관 파견 및 산·연 인력 교류

- □ (안전 문화 확산) 대국민 홍보 및 관계기관 전문 교육을 통해 국가 전반에 우주위험 대응을 위한 안전 문화를 확산
 - 지자체·학교 및 웹·SNS 등을 통해 국민 대상의 **알기 쉬운 위험** 대응매뉴얼 및 교육·홍보자료를 작성·배포, 우주위험감시센터 등 우주위험대응 관련기관 현장학습 프로그램 제공
 - **관계기관 실무담당자**를 대상으로 **정기적 설명회 및 직무 연수**를 시행하여 위험대응역량을 강화

Ⅴ. 과제별 소관부처

추진과제

소관부처

① 우주위험 범부처 종합 대응체계 구축

1-1 우주위험 대책본부 수립 및 운영

1-2 우주환경 감시기관 지정 및 운영

1-3 우주위험대응 상시 협력체계 강화

1-4 운석 관리체계 수립

미래부, 안행부, 국토부, 국방부, 소방방재청 등

미래부 등

미래부, 안행부, 국토부, 국방부, 소방방재청 등

미래부, 해수부, 문화재청 등

② 우주위험 감시·대응 기술 확보

2-1 우주위험 식별 및 통합분석

2-2 1톤급 추락물체 독자 감시 및 조기경보

2-3 10cm급 인공우주물체 감시 및 충돌 정밀 예측

2-4 태양위험 감시 및 대응시스템 고도화

미래부 등

③ 우주위험대비 기반 확충

3-1 우주위험 대비 국제협력 강화

3-2 우주위험 대비 연구개발(R&D)

3-3 우주위험 대비 역량강화를 위한 환경조성

미래부, 외교부 등

미래부 등

미래부, 법제처 등

Ⅵ. 기대효과 및 향후계획

1. 기대효과

구분

체계

AS-IS

TO-BE

● 우주위험 발생 시 신속한 대응을

- 수행할 범부처 종합적 대용체계 부재
- 우주위험에 대해 전문적인 감시를 수행할 전담기관 부재
- 관련기관 간 협조체계 및 대국민 정보제공시스템 미흡으로 인해 우주위험으로부터의 불안 상존
- 운석 관리·활용체계 부재

- 우주위험대책본부 운영을 통해 보고 체계 일원화. 관계기관 역할정립 등 국가차원의 효율적 대용체계 구축
- 우주환경감시기관 지정 및 운영을 통 하여 우주위험 상시 감시 및 정확한 분석과 예·경보 수행
- 민관군대국민 협력네트워크 구축을 통해 상시적 공조체제를 확립함으로써 사회적 불안 방지 및 대국민 신뢰도 향상
- 체계적인 운석 관리시스템 확립을 통한 운석 가치보존 및 학술적 활용 극대화

기술

- 우주환경 감시 시스템 운영 및 정 보의 통합적 관리를 수행하는 체계 부재
- 추락위험에 대한 자체 감시능력이 없어. 추락위험 관련 정보를 전적 으로 외국에 의존
- 인공위성 등의 우주자산과 우주 잔해물의 충돌 위험에 대한 독자적 감시늉력 부재
- 지역적, 시간적으로 제한된 태양활동 감시

- 우주환경 감시 시스템을 관리하고, 이로 부터 취득한 정보를 통합 분석함으로써 정확한 우주위험도 평가 수행
- 추락물체에 대한 우리나라 독자적 감시 능력을 확보함으로써 위험대용의 신속 정확적시성 제고
- 충돌 위험에 대한 독자적 감사분석 능력을 확보함으로써 보다 정확한 충돌 회피 기둥 수행 등의 적시 대응 실시
- 태양위험 24시간 감시정보 획득 및 우주기반 관측 장비 개발을 통한 예측 정밀도 향상

기반

- 우주위험 감시역량 미흡으로, 국제 사회 참여 제한
- 우주위험대비 관련 기반기술 및 인프라 운영을 위한 핵심기술 미비
- 우주위험대비를 위한 제도적 기반 및 전문 인력 미비
- 자체적 우주위험 감시정보 획득·보유를 통해 국제교류 및 규범 형성에 적극 참여하여 자국이익 확보, 국제위상 강화
- 우주위험분야 R&D 확대를 통해 위험대비 기반기술 도출 및 핵심기술 자체 보유
- 관련법령에 우주위험대비 규정을 구체화 하고, 인력육성 계획을 수립하여 전문 인력을 확보함으로써 위험대비 역량강화

2. 향후계획

중점과제	세부 추진과제	추진 계획
	1-1. 우주위험 대책본부 수립 및 운영	조직 수립 근거 마련 및 역할 정의, 운영 방안 마련 (~'15년) 우주위험 유형별 대응방안 수립 및 대응매뉴얼 배포 (~'15년) 운영상 애로사항 파악 및 개선·보완('15년~) 우주위험 대응매뉴얼 개정 추진 (3년 단위)
1. 우주위험 범부처 종합 대응체계	1-2. 우주환경 감시기관 지정 및 육성	· 우주위험대응 전담조직 설치(~'15년) · 우주환경감시기관 운영 및 전문성 강화('15년~)
구축	1-3. 우주위험 대응 상시 협력체계 강화	· 범부처 비상합동대응체계 구축('15년~) · 유관기관 간 정보협력 네트워크 구축('15년~) · 우주위험통합분석 시스템 개발 및 연계('18년~'23년) · 유관기관별 맞춤형 정보 서비스 제공('15년~)
	1-4. 운석 관리체계수립	· 국가적 차원의 체계적인 운석·관리 활용시스템 구축 ('15년~)
	2-1. 우주위험 식별 및 통합분석	· 기개발된 우주환경 관측 인프라 운영('15년~) · 통합 데이터베이스 설계(~'18년) · 우주위험통합분석시스템 개발('18년~'25년) · 식별·분석 및 위험도 평가 기술 개발('18년~'23년)
	2-2. 1톤급 추락물체 독자감시	전천감시용 복합카메라 시제품 개발 및 광역배치(5 기)('18년 ~ '23년) 어레이레이더 시제품 개발 및 구축('16년 ~ '23년) 유성체 궤적검출 시험운영 및 통합 네트워크 구축(25 개소)(~ '20년) 추락물체 위험도 산출분석 역량 확보(~ '23년)
2. 우주위험 감시·대응 장비 및 기술 확보	2-3. 10cm급 인공우주물체 감시 및 충돌 정밀 예측	· 자국위성 추적·감시 기술 개발('15년~) · 우주물체 제거시스템 지상시험모델 개발('15년~) · 0.5m 광시야 전자광학감시 네트워크 구축(~'16년) · 충돌회피기동을 위한 10cm급 정밀추적 감시 및 영상 레이더 개발('18년~'20년) · 2m급 전자광학감시망원경 구축('18년~'23년)
	2-4. 태양위험 감시시스템 고도화	 ・ 태양감시위성 국제 수신네트워크 구축(~'17년) ・ 외국 지상관측시스템 활용체계 구축(~'20년) (국내 지상관측 한계 보완) ・ 고정밀 태양위험 예측모델 개발(~'20년) ・ 우주기반 관측장비 및 위성체 개발(~'24년) ・ 태양위험 독자예보 정밀도 향상('20년~) ・ 태양위험 예・경보 서비스 운영(계속)
	3-1. 우주위험 대비 국제협력 강화	· IADC 회원국 지위 확보(~'14년) · 국제소행성센터 분소 유치('15년~) · 미국 합동우주본부(JSpOC)/ NASA, 유럽우주청과 우주 감시 자료 공조체계 구축('15년~)
3. 우주위험대 비 기반 확충	3-2. 우주위험 대비 연구개발(R&D)	 우주물체 제거시스템 시험 모델 개발 및 우주실험 ('18년~) 우주위험감시 기반 기술 도출 및 산학연 공동연구 확대('15년~) 추락 및 충돌 분석·평가 소프트웨어 개발('16년~) 태양활동 분석 소프트웨어 및 예보 기술개발('16년~)
	3-3. 우주위험 대비 역량강화를 위한 환경조성	· 기존 관계법 검토 및 관계 법령 보완('14년~) · 인재 육성 로드맵 및 우수 인재 확보 전략 수립('15년 ~) · 관련 교육 프로그램 및 과목 신설 추진('16년~)

우주위험 주요현황

구분		개요	내용	대응
우 주 물 체	코스모스 954호 추락	1977.09 캐나다 서부 지역	핵전지 탑재 위성 추락으로 인해 추락 지역 방사능 유출	구소련 정부는 300만 불을 복구비용으로 캐나다에 지불
	러시아 유성우	2013.02 러시아 첼야빈스크 외 5개 지역과 카자흐스탄 2개 지역	건물 3,000여 개와 유리창 파손으로 1,200여 명 시민들의 중경상 피해 발생	-
추 락	진주 운석	2014.03 대한민국 진주 지역	총 중량 35kg 유성체가 대기권 진입 후 폭발하면서 지상으로 낙하	운석 관리 대응 체계 수립 추진
우 주 물 체 충 돌	천리안위성과 라두가위성 간 충돌 위험	2011.02 36,000 km 궤도 상공	천리안위성추진제 소모/정상운영장애, 러시아 군사위성 라두가 1-7가 천리안위성으로 충돌범위까지 접근	위성 간의 충돌을 피하기 위하여 충돌회피기동 실시
	이리듐위성과 코스모스위성 간 충돌 발생	2009.02 790 km 궤도 상공	두 위성 완전 파괴, 1,500개의 우주잔해물 생성	국제법에 의한 손해배상소송을 계획하였으나 실효성이 없어 중단함
태 양 폭 풍	지자기폭풍으로 인한 전자기기 장애	2003.10 태양활동 영역 내	역대 관측 사상 3번째로 강력한 플레어 발생하여 탐사선 작동 오류, 기기 노이즈 증가, 위성 활동 장애 등 초래	-
	다목적실용위성 2호 센서기능장애	2013.09 북극상공 고도 685 km	저정밀태양센서 1기/태양전지판온도 센서1기 고장, 태양폭발로 인한 고에너지 충격으로 고장	여유부품 및 다른 센서로 대체 운영

□ 주요 경과

- 제3차 우주탐사 및 우주의 평화적 활용을 위한 회의(UNISPACE Ⅲ, '99)에서 우주잔해물에 대한 보고서(a/ac.105/720)를 공식 채택하여 배포
- 이후 매년 분과위원회를 통해 논의를 진행하였으며 '05년 우주 잔해물 저감을 위한 권고안 초안 작성 합의(a/ac.105/848m annex II, paras. 5-6)
- '07년 우주잔해물 저감을 위한 권고안(A/AC.105/890, para.99)을 채택하고, 결의안 62/217을 통해 UN 산하국가에서는 이 안을 각 국가별로 구현하도록 권고함
- 이후에도 우주잔해물 저감에 대한 다양한 보고서 채택

□ 주요 내용

- 위성의 정상운영 중에 발생하는 우주잔해물의 수를 최소화하고 사고 시에도 파편의 개수를 최소화할 수 있도록 설계
- 충돌예방 및 고의적인 파괴 금지
- 임무수명이 다한 위성의 폐기 방법
- 추가적인 보고서를 통해 우주잔해물의 관측 및 분석, 국제협력, 정책제안, 나라별 권고안 채택 현황 등을 보고
- '11년 보고서(A/AC.105/C.1/2011/CRP.14)에서는 캐나다, 중국, 프랑스, 독일, 인도, 러시아, 미국 등 국가의 권고안 이행 실적을 포함하고 있음

미국 우주감시네트워크(SSN) 현황

□ 추진 경과

- '57년~'61년 Space Track 프로젝트에서 우주물체 목록화 작업 시작
- '05년 SSN 시스템의 자료를 JSpOC에서 취합, 배포
- 현재 주요레이더의 '30년까지의 수명연장과 성능개선을 위한 보수 사업 시행 중

□ 주요 내용

- 우주물체 감시 및 추적(Tracking of Space Objects) : 레이더와 광학관측 장비를 사용해 우주물체 감지 및 추적
- 우주물체 식별(Space Object Identification, SOI) : 감지된 우주 물체의 정보 분석 및 식별
- 우주감시망원경(Space Surveillance Telescope, SST) : 지상기반의 광학관측 망원경, '09년 이후 SSN에 포함되어 운영

<미국 우주감시네트워크 현황 >

□ 예산 규모

- 전략사령부 우주물체 감시시스템 '12년 기준 약 3천2백만불
- 합동우주작전본부(JSpOC) '12년 기준 약 8천만불
- NASA 지구근접천체 탐색 및 추락 위험도 평가 '12년 기준 약 2천만불

<美 우주감시시스템 현황>

시스템	관측 방식	관측장비	감시영역 및 성능	위치
AMOS(Air Force Maui Optical and Supercomputing Observatory	광학	구경 3.67m AEOS(Advanced Electro-Optical System), 1.6m/1.2m 광학망원경	저궤도 위성 및 심우주 우주물체 감시, 가시광 및 적외선 영상촬영, 적응광학으로 영상 식별 가능	미국 하와이 마우이
GEODSS (Ground-based Electro-Optical Deep Space Surveillance)	광학	구경 1m 광시야 반사망원경	중고궤도 및 정지궤도 우주물체, 심 우주물체의 65%를 추적, 감시, 10,000여개의 인공물체들의 움직 임을 지속적으로 기록, 저장	하와이
AN/FPS-85 레이더	레이더	AN/FPS-85 Spacetrack Radar	최대전력 30MW, 탐지거리 3000km, 감시거리 최대 4만km(지 름 30cm정도), 200개의 우주물체 동시 추적 가능.	미국
Space Fence	레이더	VHF 대역에서 769kW 출력을 가지는 다중상태레이더	최대 30,000km 범위 내의 10cm 크기 우주물체 검출 가능. 3cm급 우주물체 감시를 위해 S밴드 대역 의 레이더 추가 설치 예정.	미국 텍사스 외 8곳
GLOBUS II	레이더	X-밴드 대역에서 최대 200kW의 출력을 가지는 대형 레이더	최대 200kW 출력, 매일 100개 정 도의 우주물체를 추적, 3개정도의 우주물체 영상관측 및 식별 가능	노르웨이 스발바드
Space Based Space Surveillance(SBSS) Satellite	광학	구경 30cm SBV(Space Based Visible)	지구근접 파편, 우주비행체 또는 심우주 우주물체를 탐지, 위치 및 기동탐지 탐지	우주

붙임 4

유럽우주청(ESA) 우주상황인식(SSA) 현황

□ 추진 경과

- '08년 11월 ESA's Space Situational Awareness(SSA) 프로그램 시작
- '09년 1월 각료위원회(Ministerial Council) 개회
- '12년 각료위원회에서 '16년까지 지원 및 '19년까지 지속 확정

□ 주요 내용

- 궤도 및 지상의 우주자산에 대한 위험에 대비하기 위한 우주환경의 시간별 정보를 독자적으로 생성하고 활용할 수 있도록 지원
 - 우주물체 감시 및 추적(Space Surveillance and Tracking, SST) : 레이더와 광학관측 장비를 사용해 우주물체 탐지, 추적, 식별 등
 - 우주기상(Space Weather, SWE) : 태양과 태양풍, 이온층, 열권, 자기권 등 궤도상 혹은 지상의 우주자산에 영향을 줄 수 있는 우주환경에 대한 감시
 - 근지구물체(Near-Earth Objects, NEO) : 지구에 충돌하거나 영향을 끼칠 수 있는 근지구물체에 대한 감지 및 분석

□ 단계별 수행 프로세스

기간	목표	세부 사항
'09 - '12 (1단계)	SSA 예비 단계	- 정책 수립 - 자료 활용 방안 수립 - 임무 및 시스템 요구사항 수립 - 기존 기반 시설 정리 - 예비 수행 검증 - 파일럿 데이터 센터 운영
'13 - '16 (2단계)	SSA 개발 및 검증 단계 (4,650만 유로 투자 예정)	- 필요 기반 시설 개발 - 시설 간 네트워크 확립 - SST, SWE, NEO 실험 및 검증

□ 참여 국가

- 1단계 ('09 ~ '12) : 벨기에, 핀란드, 프랑스, 영국 등 총 13개 국가
- 2단계 ('13 ~ '16) : 벨기에, 핀란드, 독일, 이탈리아 등 총 14개 국가

□ 예산 규모

- '12년 각료위원회에서 4,650만 유로 조달 확정
- 수행 기간('09 ~ '16) 동안 전체 투자비용 1억 유로, 산업계 영향력 약 3,000만 유로 (1단계) 예상

붙임 5 우주위험감시 주요장비의 기능 및 성능

사용장비	기능	규격/성능
전천감시용 복합카메라	추락 가능성이 있는 대형 인공위성 탐지와 초기 궤도정보 획득	카메라 개수: 20개 시야각: 전천(180도) 성능: 1초 단위 관측, 1톤 이상 인공위성 탐지
OWL-Net	광학망원경을 이용한 독자적인 인공위성 궤도 정보 획득	망원경 구경: 0.5m x 5기 추적 정밀도: 3"/10min 성능: 5km 정밀도로 인공위성 궤도정보 획득
어레이레이더	먼거리(2천만km)에 있는 소행성 관측, 근거리에 있는 소행성과 인공위성의 정밀 관측, 다수의 우주물체에 대한 동시 관측 등 다목적으로 활용	단일 레이더 구경: 12m 개수: 25개(5x5 어레이) 주파수/파워: Ka/100kW 공간/거리분해능: 1.5m/3cm 도달 최대거리: ~2천만km
초광시야 광학망원경	넓은 지역에 분포하는 지구근접 소행성 탐색	시야각: 50~100평방도 한계등급: ~20등급 탐사효율: 20,000평방도/일
2m급 광학감시망원경	정지궤도를 포함한 중고궤도우주물체 정밀 관측, 먼거리에 있는 소행성 정밀 관측	망원경 구경 : 2m 추적 정밀도 : 3"/10min 성능 : 고도 36,000km에서 10cm 크기 우주물체 관측
감시 레이더	우리나라 인공위성 주변의 우주물체 탐색(한번에 다수의 우주물체 관측 가능)	방식: Bi-static phased array 탐지범위: ~2,000km 탐지크기: 3cm~(최고성능기준) 동시추적 가능 개수: 10개
영상 레이더	우리나라 인공위성에 충돌 가능성이 있는 개별 우주물체에 대한 식별 및 정밀 감시	방식: 35m 단일경 레이더 주파수: L/Ku band 탐지크기: 2cm~(1천km 거리기준) 영상분해능: 25cm~