Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Дисциплина: Функциональное и логическое программирование

Лабораторная работа №2

Выполнили: Никичкин А. С., Фокеев А. И.

Группа: ИУ7-61

1 Для указанных выражений составить диаграмму вычисления

Задание 1.1 $(equal\ 3\ (abs\ -3))$ \longrightarrow (equal 3 (abs -3)): • вычисляется $3 \rightarrow 3$; $\longrightarrow (abs-3)$: • вычисляется $-3 \rightarrow -3$; \implies применение abs к -3; ⇒ возвращается результат: 3. \implies применение equal к 3, 3; ⇒ возвращается результат: Т. **Задание 1.2** (equal (+12) 3) \longrightarrow (equal (+ 1 2) 3): \longrightarrow (+ 1 2): • вычисляется $1 \rightarrow 1$; • вычисляется $2 \rightarrow 2$; \implies применение «+» к 1, 2; ⇒ возвращается результат: 3. • $3 \rightarrow 3$; \implies применение equal к 3, 3; ⇒ возвращается результат: Т. **Задание 1.3** (equal (* 4 7) 21) \longrightarrow (equal (* 4 7) 21): \longrightarrow (* 4 7): • вычисляется $4 \rightarrow 4$; • вычисляется $7 \rightarrow 7$; \implies применение «*» к 4, 7; ⇒ возвращается результат: 28.

• вычисляется $21 \to 21$;

 \implies применение equal к 28, 21;

⇒ возвращается результат: NIL.

Задание 1.4 $(equal\ (*2\ 3)\ (+7\ 2))$

 \longrightarrow (equal (* 2 3) (+ 7 2)):

- \longrightarrow (* 2 3):
 - вычисляется $2 \rightarrow 2$;
 - вычисляется $3 \to 3$;
 - \implies применение «*» к 2, 3;
 - ⇒ возвращается результат: 6.
- \longrightarrow (+ 7 2):
 - вычисляется $7 \to 7$;
 - вычисляется $2 \rightarrow 2$;
 - \implies применение «+» к 7,2;
 - ⇒ возвращается результат: 9.
- \implies применение equal к 6,9;
- ⇒ возвращается результат: NIL.

Задание 1.5 (equal (-73) (*32))

 \longrightarrow (equal (-73) (*32)):

- $\longrightarrow (-73)$:
 - вычисляется $7 \rightarrow 7$;
 - вычисляется $3 \to 3$;
 - \implies применение «-» к 7, 3;
 - ⇒ возвращается результат: 4.
- \longrightarrow (* 3 2):
 - вычисляется $3 \rightarrow 3$;
 - вычисляется $2 \rightarrow 2$;
 - \implies применение «*» к 3, 2;
 - \implies вычисляется результат: 6.
- \implies применение equal к 4,6;
- ⇒ вычисляется результат: NIL.

Задание 1.6 $\left(equal \left(abs (-2 4)\right) 3\right)$

$$\longrightarrow$$
 (equal (abs (-24)) 3)

$$\longrightarrow (abs (-24)):$$

- \longrightarrow (-24):
 - вычисляется $2 \rightarrow 2$;
 - вычисляется $4 \to 4$;
 - \implies применение «-» к 2,4;
 - \implies вычисляется результат: -2.

```
\implies применение abs к -2; \implies вычисляется результат: 2. • 3 → 3;
```

- \implies применение equal к 2, 3;
- \implies вычисляется результат: NIL.

2 Написать функцию и составить для неё диаграмму вычисления

Задание 2.1 Функция вычисляет гипотенузу прямоугольного треугольника по заданным катетам.

$$\Big(sqrt \; \big(+ \; (* \; arg1 \; arg1) \; (* \; arg2 \; arg2) \big) \Big)$$

- $\,\longrightarrow\, (hypotenuse-rect-triangle\; q\; w)$
 - вычисляется $q \to q$;
 - вычисляется $w \to w$;
- \implies запускается функция hypotenuse-rect-triangle;
 - создаётся переменная leg1 со значением q;
 - ullet создаётся переменная leg2 со значением w;

$$\longrightarrow \Big(sqrt \; \big(+ \; (*\; leg1\; leg1) \; (*\; leg2\; leg2) \big) \Big):$$

$$\longrightarrow (+ (* leg1 leg1) (* leg2 leg2)):$$

- \longrightarrow (* $leg1\ leg1$):
 - вычисляется $leg1 \rightarrow q$;
 - вычисляется $leg1 \rightarrow q$;
 - \implies применение «*» к q, q;
 - \implies возвращается результат: q^2 .
- \longrightarrow (* leg2 leg2):
 - $leq2 \rightarrow w$;
 - $leg2 \rightarrow w$;
 - \implies применение «*» к w, w;
 - \implies возвращается результат: w^2 .
- \implies применение «+» к q^2, w^2 ;

```
\Longrightarrow возвращается результат: q^2 + w^2. \Longrightarrow применение sqrt к q^2 + w^2; \Longrightarrow возвращается результат: \sqrt{q^2 + w^2}.
```

Задание 2.2 Функция вычисляет объём прямоугольного параллелепипеда по 3-м его сторонам.

```
1 (defun volume-rect-parallepiped (arg1 arg2 arg3)
2 "Volume of rectangle parallepiped by 3 sides"
3 (* arg1 arg2 arg3))
```

- $\longrightarrow (volume-rect-parallepiped \ q \ w \ e);$
 - $q \rightarrow q$;
 - $w \to w$;
 - \bullet $e \rightarrow e$;
- $\implies volume-rect-parallepiped \ \ \ q,w,e:$
 - создаётся переменная leg1 со значением q;
 - ullet создаётся переменная leg2 со значением w;
 - ullet создаётся переменная leg3 со значением e;
 - \longrightarrow (* leg1 leg2 leg3):
 - вычисляется $leg1 \rightarrow q$;
 - вычисляется $leg2 \rightarrow w$;
 - вычисляется $leq3 \rightarrow e$;
 - \implies применение «*» к q, w, e;
 - \implies возвращается результат: $q \cdot w \cdot e$.
- \implies результат: $q \cdot w \cdot e$.

Задание 2.3 Функция по заданной гипотенузе и катету, вычисляет другой катет прямоугольного треугольника.

- $\bullet q \rightarrow q$;
- $w \to w$;
- $\longrightarrow (problem 2 3 q w)$:

```
• leq \rightarrow q;
   • hypotenuse \rightarrow w;
\longrightarrow (sqrt (-(*hypotenuse hypotenuse) (*leg leg))):
     \longrightarrow (-(*hypotenuse hypotenuse) (*leg leg)):
          \longrightarrow (* hypotenuse hypotenuse):
               • hypotenuse \rightarrow hypotenuse;
               • hypotenuse \rightarrow hypotenuse;
            \implies применение «*» к hypotenuse, hypotenuse;
            \implies результат: (hypotenuse)^2.
          \longrightarrow (* leq leq):
               • leg \rightarrow leg;
               • leg \rightarrow leg;
            \implies применение «*» к leg, leg;
            \implies результат: (leg)^2.
          \implies применение «-» к (hypotenuse)^2, (leg)^2;
          \implies результат: (hypotenuse)^2 - (leg)^2.
     \implies применение sqrt к (hypotenuse)^2 - (leg)^2;
     \implies результат: \sqrt{(hypotenuse)^2 - (leg)^2}.
\implies применение problem-2-3 к q, w;
\implies результат: \sqrt{q^2 - w^2}.
```

Задание 2.4 Функция вычисляет площадь трапеции по её основаниям и высоте

"Area of trapezoid by 2 parallel sides and height"

(defun trapezoid-area (parallel-side1 parallel-side2 height)

1 2

3

4

5

6

(*

0.5

```
\begin{array}{c} \text{height} \\ (+ \ \text{parallel-side1} \ \text{parallel-side2}))) \\ \\ \bullet \ a \rightarrow a; \\ \bullet \ b \rightarrow b; \\ \bullet \ h \rightarrow h; \\ \\ \longrightarrow \ (trapezoid-area\ a\ b\ h): \\ \bullet \ parallel-side1 \rightarrow a; \\ \bullet \ parallel-side2 \rightarrow b; \\ \bullet \ height \rightarrow h; \\ \\ \longrightarrow \ (*\ 0.5\ height\ (+\ parallel-side1\ parallel-side2)): \\ \bullet \ 0.5 \rightarrow 0.5; \\ \bullet \ height \rightarrow height; \\ \\ \longrightarrow \ (+\ parallel-side1\ parallel-side2): \\ \end{array}
```

- $\bullet \ parallel-side1 \rightarrow parallel-side1;$
- $parallel-side2 \rightarrow parallel-side2$;
- \implies применение «+» к parallel-side1, parallel-side2;
- \implies результат: parallel-side1+parallel-side2.
- \implies применение «*» к 0.5, height, parallel-side1+parallel-side2;
- \implies результат: $0.5 \cdot height \cdot (parallel side1 + parallel side2).$
- \implies применение trapezoid-area к a, b, h;
- \implies результат: $0.5 \cdot h \cdot (a+b)$.

3 Вычислить результаты выражений

Задание 3.1

(list 'a 'b c) => Unbound variable C

Задание 3.2

(cons 'a (b c)) => Unbound variable C

Задание 3.3

 $(\mathbf{cons} \ 'a \ '(b \ c)) \Rightarrow (A \ B \ C)$

Задание 3.4

 $(caddr '(1 2 3 4 5)) \Rightarrow 3$

Задание 3.5

(cons 'a 'b 'c) => Too many arguments

Задание 3.6

 $(list 'a (b c)) \Rightarrow Unbound variable C$

Задание 3.7

 $(list a '(b c)) \Rightarrow Unbound variable A$

Задание 3.8

 $(list (+ 1 (length '(1 2 3)))) \Rightarrow (4)$

Задание 3.9

 $(\mathbf{cons} \ 3 \ (\mathbf{list} \ 5 \ 6)) \implies (3 \ 5 \ 6)$

Задание 3.10

 $(list 3 'from 9 'gives (- 9 3)) \Rightarrow (3 FROM 9 GIVES 6)$

Задание 3.11

 $(+ (length '(1 foo 2 too)) (car '(21 22 23))) \Rightarrow 25$

Задание 3.12

(cdr '(cons is short for ans)) => (IS SHORT FOR ANS)

Задание 3.13

(car (list one two)) => Unbound variable ONE

Задание 3.14

 $(\cos 3 \ (list 5 6)) \implies (3 LIST 5 6)$

Задание 3.15

 $(car (list 'one 'tow)) \Rightarrow ONE$

Задание 3.16

 $(list 'cons t NIL) \Rightarrow (CONST T NIL)$

Задание 3.17

(eval (eval (list 'cons t NIL))) => Undefined function T

Задание 3.18

 $(apply \#'cons '(t NIL)) \Rightarrow (T)$

Задание 3.19

 $(list 'eval NIL) \Rightarrow (EVAL NIL)$

Задание 3.20

 $(eval (list 'cons t nil)) \Rightarrow (T)$

Задание 3.21

 $(eval NIL) \Rightarrow NIL$

```
(\mathbf{eval}\ (\mathbf{list}\ '\mathbf{eval}\ \mathrm{NIL})) \implies \mathrm{NIL}
```

4 Написать функцию

Задание 4.1 Функция от двух списков-аргументов, которая возвращает T, если первый аргумент имеет большую длину.

```
1 (defun longer-then (arg1 arg2)
2 (>
3 (length arg1)
4 (length arg2)))
```

Задание 4.2 Функция переводит температуру из системы Фаренгейта в температуру по Цельсию.

```
1 (defun f-to-c (temp)
2 (*
3 (/ 5 9)
4 (- temp 32.0)))
```

5 Исследование функции

Имеется следующая функция

```
1 (defun mystery (x)
2 (list
3 (second x)
4 (first x)))
```

Необходимо вычислить результаты выражений.

Задание 5.1

```
(mystery '(one two)) => (TWO ONE)
```

Задание 5.2

```
(mystery 'free) => value FREE is not LIST
```

Задание 5.3

```
(mystery (last 'one 'two)) => no list for LAST
```

Задание 5.4

```
(mystery 'one 'two) => too many arguments
```

6 Заключение

В данной лабораторной работе было рассмотрено составление ∂ иаграммы вычисления, а так же изучены функции EQUAL, ABS, SQRT, LENGTH, EVAL, APPLY, FIRST, SECOND.