SORU 2

Aşağıdaki boşluklar öğrenci tarafından doldurulacaktır. (Puan Haric)

| Soyadı: |        | Adı:                        | Grup No:    | Sıra No: | Puan |
|---------|--------|-----------------------------|-------------|----------|------|
| İmza:   | Elektı | ronik Posta(e-mail) adresi: | Öğrenci No: |          |      |

Lütfen bu soruyu bu kağıdın ön yüzünü ve gerekirse arka yüzünü kullanarak cevaplayınız.

[13puan] a) (1,1,2) noktasından geçen ve x = 5t + 2, y = 1 + t, z = 4t - 3 doğrusunu içeren düzlemin denklemini yazınız.

[12puan] b)  $\overrightarrow{r}(t) = t \cos t \overrightarrow{i} + t \sin t \overrightarrow{j} + \frac{2\sqrt{2}}{3} t^{3/2} \overrightarrow{k}$  vektörel denklemi ile verilen eğrinin  $0 \le t \le \pi$  arasındaki uzunluğunu hesaplayın.

$$|df| = \sqrt{\cos^2 t + t \sin t} - 2t\cos^2 t \sin^2 t \cos^2 t$$

## **QUESTION 2**

The blanks below will be filled by students. (Except the score)

| Surname:   |        | Name:                       | Group Number:  | List Number: | Score |
|------------|--------|-----------------------------|----------------|--------------|-------|
| Signature: | Electr | conic Post(e-mail) address: | Student Number | :            |       |

[10 pts] a) Let  $\mathbf{f}(\mathbf{x}, \mathbf{y})$  be a function given by

$$f(x,y) = \begin{cases} \frac{\mathbf{x} - \mathbf{2}}{\sqrt{(\mathbf{x} - \mathbf{2})^2 + \mathbf{y}^2}} ; & (\mathbf{x}, \mathbf{y}) \neq (\mathbf{2}, \mathbf{0}) \\ \\ \mathbf{1} & ; & (\mathbf{x}, \mathbf{y}) = (\mathbf{2}, \mathbf{0}) \end{cases}$$

Is f(x, y) continuous at the point (2, 0)? Give reasons for your answer.

[15 pts] b) Find the directional derivative of the function  $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{e}^{\mathbf{x}} \cos(\mathbf{y}\mathbf{z})$  at the point  $\mathbf{P_0}(\mathbf{2}, \mathbf{1}, \mathbf{0})$ , in the direction of the unit tangent vector of  $\overrightarrow{\mathbf{r}}(\mathbf{t}) = \mathbf{2t^2} \overrightarrow{\mathbf{i}} + \mathbf{t^3} \overrightarrow{\mathbf{j}} + (\mathbf{2} - \mathbf{2t}) \overrightarrow{\mathbf{k}}$  at  $\mathbf{t} = \mathbf{1}$ .

let 
$$x-2 = my$$
 (3)
$$\lim_{(x,y) \to (2,0)} f(x,y) = \lim_{(x,y) \to (2,0)} \frac{my}{y+0} = \lim_{(x,y) \to (2,0)} \frac{my}{y+0} = \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)}$$

$$= \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)} = \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)}$$

$$= \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)} = \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)}$$

$$= \lim_{(x,y) \to (2,0)} \frac{my}{(x-2=my)} = \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y} = \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y}$$

$$= \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y} = \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y} = \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y}$$

$$= \lim_{(x,y) \to (2,0)} \frac{my}{(x+m^2)y} = \lim_{(x,y) \to (2,0)}$$

SORU 43

Aşağıdaki boşluklar öğrenci tarafından doldurulacaktır. (Puan Hariç)

| Soyadı: |        | Adı:                       | Grup No:    | Sıra No: | Puan |
|---------|--------|----------------------------|-------------|----------|------|
| İmza:   | Elektr | onik Posta(e-mail) adresi: | Öğrenci No: |          |      |

Lütfen bu soruyu bu kağıdın ön yüzünü ve gerekirse arka yüzünü kullanarak cevaplayınız.

[15 puan] a)  $\mathbf{x}^3 + 3\mathbf{x}^2\mathbf{y}^2 + \mathbf{y}^3 + 4\mathbf{x}\mathbf{y} - \mathbf{z}^2 = \mathbf{0}$  ve  $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{11}$  yüzeylerinin arakesit eğrisine (1,1,3) noktasında teğet olan doğrunun parametrik denklemlerini yazızın.

[10 puan] b)  $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^3 + \mathbf{x}\mathbf{y}^2 - \mathbf{x}$  fonksiyonunun yerel maksimum, yerel minumum ve semer(eyer) noktalarını bulunuz.



## **QUESTION 4**

The blanks below will be filled by students. (Except the score)

| Surname:   | Name:                            | Group Number: List Number: Sco | re |
|------------|----------------------------------|--------------------------------|----|
| Signature: | Electronic Post(e-mail) address: | Student Number:                |    |

For the solution of this question please use only the front face and if necessary the back face of this page.

[10 pts] a) Evaluate the integral  $\int_0^9 \int_{\sqrt{y}}^3 \cos(x^3) \ dx \ dy$ .

[15 pts] b) Let **D** be the region bounded below by the cone  $\mathbf{z} = \sqrt{\mathbf{x^2 + y^2}}$  and above by the paraboloid  $\mathbf{z} = \mathbf{2} - \mathbf{x^2} - \mathbf{y^2}$ .

- i) Write the triple integral that calculates the volume of the region **D** in Cartesian coordinates in the order **dzdxdy** . (Do not evaluate the integral)
- ii) Write the triple integral that calculates the volume of the region  $\mathbf{D}$  in cylindirical coordinates in the order  $\mathbf{dzdrd}\theta$ . (Do not evaluate the integral)







$$x^{2}+y^{2}=z^{2}=)$$
  $z=2-z^{2}=)$   $z^{2}+z-2=0$   
 $=)$   $(z+2)(z-1)=0$   
 $=)$   $z=1$   
 $(z)$   $(z+y^{2}=1)$  i, the curve of intersection  
 $(z)$   $(z-x^{2}-y^{2})$   $(z-x^{2}-y^{2})$   
 $(z)$   $(z+y^{2}=1)$   $(z+y^{2})$   $(z-x^{2}-y^{2})$   
 $(z)$   $(z+y^{2}=1)$   $(z+z^{2}=1)$   $(z+z$