Rajalakshmi Engineering College

Name: ANIRUDH R

Email: 240701039@rajalakshmi.edu.in

Roll no: 240701039 Phone: 9363540767

Branch: REC

Department: I CSE FA

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 2_CY

Attempt : 2 Total Mark : 40

Marks Obtained: 37.5

Section 1 : Coding

1. Problem Statement

Max is fascinated by prime numbers and the Fibonacci sequence. He wants to combine these two interests by creating a program that outputs the first n prime numbers within the Fibonacci sequence.

Your task is to help Max by writing a program that prints the first n prime numbers in the Fibonacci sequence using a while loop along with the break statement to achieve the desired functionality.

Input Format

The input consists of an integer n, representing the number of prime Fibonacci numbers to generate.

Output Format

The output displays space-separated first n prime numbers found in the Fibonacci sequence.

Refer to the sample output for the formatting specifications.

```
Sample Test Case
Input: 5
Output: 2 3 5 13 89
Answer
def is_prime(num):
o if num<=1:
    return False
  for i in range(2,int(num**0.5)+1):
    if num%i==0:
      return False
  return True
def fibonacci_primes(n):
  primes = []
  a,b=0,1
  while len(primes)<n:
    fib num = a+b
   if is_prime(fib_num):
      primes.append(fib_num)
    a,b=b,fib_num
  return primes
n = int(input())
result = fibonacci_primes(n)
print(*result)
```

Status: Correct Marks: 10/10

2. Problem Statement

Nisha is a mathematics enthusiast, eager to explore the realm of twin prime numbers. The objective is to develop a program that enables the

The program should take an integer 'n' as input and generate 'n' pairs of twin primes, displaying the pairs with a difference of 2 between 'l'

Input Format

The input consists of a single integer, n.

Output Format

The output displays the 'n' pairs of twin primes, the pairs with a difference of 2 between them.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 5
Output: 3 5
57
11 13
17 19
29 31
Answer
def is_prime(num):
  if num<=1:
    return False
  for i in range(2,int(num**0.5)+ 1):
    if num % i==0:
      return False
  return True
def find_twin_primes(n):
  twin_primes = []
  num = 2
  while len(twin_primes)<n:
  if is_prime(num) and is_prime(num + 2):
      twin_primes.append((num,num + 2))
    num+=1
```

return twin_primes

n = int(input()) result = find_twin_primes(n) for pair in result: print(pair[0],pair[1])

Marks: 10/10 **Status**: Correct

3. Problem Statement

Rohith is a data analyst who needs to categorize countries based on their population growth rates. Each country is assigned a unique code. Rohith will receive a code and corresponding data based on the code. If the data falls within specific thresholds, he needs to classify the country's priority level.

Your task is to write a program that reads a country code and its associated data, and then determines if the priority is "High" or "Low."

Thresholds: France: Priority is "High" if the percentage < 50, else "Low". Japan: Priority is "High" if life expectancy > 80, else "Low". Brazil: Priority is "High" if the urban population > 80, else "Low".

Input Format

The first line of input consists of an integer, representing the country code (1 for France, 2 for Japan, 3 for Brazil). France, 2 for Japan, 3 for Brazil).

If the country code is 1,

- The second line consists of a floating-point value N, representing the percentage of the English-speaking population.

If the country code is 2,

- The second line consists of a floating-point value A, representing the average life expectancy in years.

If the country code is 3,

- The second line consists of a floating-point value P, representing the percentage of the urban population.

Output Format

The first line of output displays "Priority: High" or "Priority: Low" based on the input data.

If the country code is invalid, print "Invalid".

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 1 30.0
```

Output: Priority: High

Answer

```
def classify_priority(country_code,data):
  if country_code == 1:
    percentage = data
    if percentage<50:
      return "High"
    else:
      return "Low"
 elif country_code == 2:
    life_expectancy = data
    if life_expectancy > 80:
      return "High"
    else:
      return "Low"
  elif country_code == 3:
    urban_population = data
    if urban_population > 80:
      return "High"
    else:
      return "Low"
    return"Invalid "
```

240707033

```
country_code = int(input())
data = float(input())
priority = classify_priority(country_code,data)
if priority == "Invalid":
    print(priority)
else:
    print("priority:",priority)
```

Status: Partially correct Marks: 7.5/10

4. Problem Statement

Alex is practicing programming and is curious about prime and non-prime digits. He wants to write a program that calculates the sum of the non-prime digits in a given integer using loops.

Help Alex to complete his task.

Example:

Input:

845

output:

240172

Explanation:

Digits: 8 (non-prime), 4 (non-prime), 5 (prime)

The sum of Non-Prime Digits: 8 + 4 = 12

Output: 12

Input Format

The input consists of a single integer X.

Output Format

The output prints an integer representing the sum of non-prime digits in X.

240101039

Sample Test Case

240707030

240101033

Refer to the sample output for formatting specifications.

```
Input: 845
Output: 12
Answer
def is_prime_digit(digit):
  if digit<=1:
  return False
if digit<=3:
    return True
  if digit== 5 or digit == 7:
    return True
  return False
def sum_non_prime_digits(number):
  number_str = str(number)
  non_prime_sum = 0
  for digit_char in number_str:
    digit = int(digit_char)
    if not is_prime_digit(digit):
                                                240701039
      non_prime_sum += digit
return non_prime_sum
number = int(input())
result = sum_non_prime_digits(number)
print(result)
```

Status: Correct Marks: 10/10

240707039

240101039

240101039

240101039