PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Programación

- Programando con λ-cálculo
 - Booleanos
 - Pares
 - Números enteros
 - Listas
 - Recursión
 - Bottom

- ¿Es suficiente el λ -cálculo para programar?
 - Sí. Para mostrarlo, veremos como representar tipos de datos elementales con λ-expresiones.
- *¿Qué significa representar un tipo en λ-cálculo?
 - Establecemos qué propiedades deben cumplirse (especificación)
 - ◆ Establecemos qué forma tienen:
 - las expresiones que representan elementos del tipo
 - las expresiones que representan operaciones del tipo, de tal forma que respeten la especificación

Notación

- introduciremos nombres para representar expresiones
- usaremos el símbolo ≡_{def} para ello
- sólo es una convención sintáctica para simplificar la lectura

Observaciones

- Si bien el lenguaje base no tiene tipos, asumiremos que las construcciones que hacemos sí los tienen
- No nos preocupa el significado de expresiones que no respetan estas reglas de formación 'implícitas'
 - Ej: (not $\underline{2}$) será una λ -expresión válida, pero no nos molestaremos por este tipo de expresiones
- El tratamiento de tipos es tema para otro curso

- → Booleanos: sea la siguiente especificación
 - True, False y ifthenelse deben ser λ -expresiones en forma normal, tal que para todo par de λ -expresiones P y Q
 - (ifthenelse True PQ) $\rightarrow_{\beta}^{*} P$
 - (ifthenelse False P Q) $\rightarrow_{\beta}^{*} Q$
- Observaciones
 - ❖ Lo único que los booleanos deben cumplir es servir para elegir entre dos alternativas
 - ◆ La construcción if es representable como una función

- \bullet Entonces buscamos λ -expresiones tal que
 - (ifthenelse True) \rightarrow_{β}^* ($\lambda x.\lambda y.x$)
 - (ifthenelse False) \rightarrow_{β}^* ($\lambda x.\lambda y.y$)
- Cualquier grupo de expresiones que cumplan esto sirve
- ◆ La solución más simple es:
 - True $\equiv_{def} (\lambda x. \lambda y. x)$
 - False $\equiv_{def} (\lambda x. \lambda y. y)$
 - ifthenelse $\equiv_{def} (\lambda b.b)$
- → ¡Observar que *True* y *False* son funciones! (¿podía ser de otra forma?)

- ¿Y otras operaciones sobre booleanos?
 - Se definen usando ifthenelse
- → Por ejemplo, siendo M un booleano cualquiera:
 - and True $M \to_{\beta}^* M$
 - and False $M \rightarrow_{\beta}^{*} False$

en consecuencia

- and $\equiv_{\text{def}} \lambda b_1 . \lambda b_2 . if the nelse b_1 b_2 False$
- Usando una notación infija para ifthenelse, queda
 - and $\equiv_{def} \lambda b_1 \cdot \lambda b_2 \cdot if b_1 then b_2 else False$

- Expandiendo los sinónimos, and queda
 - $\lambda b_1 \cdot \lambda b_2 \cdot (\lambda b \cdot b) b_1 b_2 (\lambda x \cdot \lambda y \cdot y)$

y llevándolo a β-forma normal,

• $\lambda b_1 . \lambda b_2 . b_1 b_2 (\lambda x . \lambda y . y)$

Así es fácil ver que cumple la especificación

◆ Ejemplo: and True (and True False) = def

and True
$$(\lambda b_1.\lambda b_2.b_1 b_2 (\lambda x.\lambda y.y)) (\lambda x.\lambda y.x)$$
$$((\lambda b_1.\lambda b_2.b_1 b_2 (\lambda x.\lambda y.y)) (\lambda x.\lambda y.x) (\lambda x.\lambda y.y))$$
and True False

- Para reducir una expresión con sinónimos
 - expandirla completamente y llevarla a β-fn
 - → and True False \equiv ($\lambda b_1 b_2 . b_1 b_2 (\lambda xy.y)$) ($\lambda xy.x$) ($\lambda xy.y$) \rightarrow_{β}^* ($\lambda xy.x$) ($\lambda xy.y$) ($\lambda xy.y$) \rightarrow_{β}^* ($\lambda xy.y$) \equiv False
 - irla expandiendo y β-reduciendo según haga falta
 - and True False \equiv ($\lambda b_1 b_2 . b_1 b_2$ False) True False \rightarrow_{β}^* True False False \equiv ($\lambda xy.x$) False False \rightarrow_{β}^* False
 - utilizar las especificaciones de los tipos (luego de haber chequeado que funcionan)
 - and True False \rightarrow_{β}^* False

- Ejercicios
 - dar una λ -expresión *iff* que para todo booleano M cumpla
 - iff True $M \to_{\beta}^* M$
 - iff False True \rightarrow_{β}^* False
 - iff False False \rightarrow_{β}^* True
 - especificar y representar las operaciones *not*, *or* y *xor*
 - reducir las expresiones mediante los tres métodos
 - (λb₁ b₂. and (or b₁ b₂) (not (and b₁ b₂))) True False
 - (λb. and (xor b (not b)) (iff b b)) False

- Pares: buscamos λ -expresiones que cumplan
 - pair, fst y snd, λ -expresiones en forma normal
 - $fst(pair P Q) \rightarrow_{\beta}^{*} P$
 - snd (pair PQ) $\rightarrow_{\beta}^{*}Q$
- Observaciones
 - las ecuaciones son similares a las de booleanos (¡pero no iguales!)
 - → la expresión (pair P Q) representa a un par de expresiones

- ¿Cómo podemos usar la similitud de esta especificación con la de los booleanos?
 - pair puede ser un ifthenelse con un parámetro
 - ◆ fst y snd instanciarían el parámetro adecuadamente
 - Ello nos lleva a la siguiente definición:
 - $pair \equiv_{def} (\lambda xy.\lambda b.if b then x else y)$
 - $fst \equiv_{def} (\lambda p.(p True))$
 - $snd \equiv_{def} (\lambda p.(p False))$
 - → ¡Observar que el par (pair P Q) es una función!

- ◆ Ejemplo:
 - el par (True, and) se representaría
 - pair True and \equiv_{def} $(\lambda xy.\lambda b.bxy) (\lambda xy.x) (\lambda b_1 b_2.b_1 b_2 (\lambda xy.y))$ pair True and
 - al β -reducir queda (λ b. if b then True else and)
- Ejercicio:
 - construir funciones para tuplas de 3 y 4 elemenos

- Notación
 - $F^{(0)}M \equiv_{\text{def}} M$
 - $F^{(n+1)}M \equiv_{\text{def}} F^{(n)}(FM)$
- ◆ Ejemplo:
 - $(\lambda x.x)^{(2)}y$ $\equiv (\lambda x.x)^{(1)}((\lambda x.x)y)$ $\equiv (\lambda x.x)^{(0)}((\lambda x.x)((\lambda x.x)y))$ $\equiv (\lambda x.x)((\lambda x.x)y)$
- Observar:
 - el n en la expresión $F^{(n)}M$ es una constante fuera de Λ

- Números naturales: sea la especificación
 - para cada natural n, \underline{n} una λ -expresión en β -fn
 - $\bullet \underline{n} F M \to_{\beta}^* F^{(n)} M$
- O sea: $\underline{O}FM \to_{\beta}^* F^{(0)}M \to_{\beta}^* M$ $\underline{1}FM \to_{\beta}^* F^{(1)}M \to_{\beta}^* FM$ $\underline{2}FM \to_{\beta}^* F^{(2)}M \to_{\beta}^* F(FM)$ \vdots $\underline{7}FM \to_{\beta}^* F^{(7)}M \to_{\beta}^* F(F(F(F(F(FM))))))$

- Observaciones
 - ¡¡los números son funciones!!
 - ightharpoonup la cantidad que un 'número' representa se usa para aplicar una función F esa cantidad de veces
 - ightharpoonup hay que escribir una λ -expresión por cada número
 - el n utilizado en \underline{n} es una constante fuera de Λ
 - → la representación del <u>O</u> y la de False coinciden
 - (pero no hay problemas, pues no consideramos expresiones en las que no coincidan los 'tipos')

- ¿Cómo usamos esto para definir cada <u>n</u>?
 - <u>n</u> tiene que tomar a F y a M, entonces tendrá la forma (λf . $\lambda x.E$) para alguna λ -expresión E
 - $\underline{n} F M$ tiene que reducir a la expresión $F^{(n)}M$, y eligiendo E como $f^{(n)}x$, se consigue

→ Ello nos lleva a
$$\underline{n} \equiv_{\text{def}} (\lambda f.\lambda x.f^{(n)}x)$$

→ O sea:

$$\underline{O} \equiv_{\text{def}} (\lambda f.\lambda x.f^{(0)}x) \equiv_{\text{def}} (\lambda f.\lambda x.x)
\underline{1} \equiv_{\text{def}} (\lambda f.\lambda x.f^{(1)}x) \equiv_{\text{def}} (\lambda f.\lambda x.fx)
\underline{2} \equiv_{\text{def}} (\lambda f.\lambda x.f^{(2)}x) \equiv_{\text{def}} (\lambda f.\lambda x.f(fx))$$

- ¿Cómo definimos funciones sobre naturales?
 - Utilizamos la propiedad especificada
- ◆ Ejemplo:
 - definir un término succ para la función sucesor
 - debe cumplir succ $\underline{n} \rightarrow_{\beta}^* \underline{n+1}$
 - O sea succ $\underline{n} F M \rightarrow_{\beta}^{*} F^{(n+1)} M \equiv_{\text{def}} F^{(n)} (F M)$
 - Entonces $succ \equiv_{def} (\lambda n. \lambda f. \lambda x. n f (f x))$

- → Definir un término suma para la función suma
 - debe cumplir suma $\underline{m} \ \underline{n} \rightarrow_{\beta}^{*} \underline{m+n}$
 - → Podemos usar *succ* de la siguiente manera
 - m+n es igual a sumar m veces 1 a n (o sea, $succ^{(m)}n$)
 - *▶ succ* (*succ* (*succ* ... (*succ n*) ...))

m veces

- ◆ O sea $\underline{m+n} \equiv_{\text{def}} \text{succ}^{(m)}\underline{n} \equiv_{\text{def}} \underline{m} \text{ succ }\underline{n}$
- → Entonces $suma \equiv_{def} (\lambda m.\lambda n.m succ n)$

- Ejercicios
 - definir un término para representar la multiplicación
 - → definir un término isNotZero, que cumpla
 - $isNotZero \underline{0} \rightarrow_{\beta}^* False$
 - isNotZero $\underline{n+1} \to_{\beta}^* True$
 - definir términos
 - isZero, para la función que dice si un número es 0
 - exp, para representar la exponenciación
 - *pred*, para representar la función que resta uno (difícil)
 - *resta*, para representar la resta de dos naturales

- → ¿Cómo representar listas?
 - puede ser mediante pares
 - la primer componente dice si la lista es vacía o no
 - → la segunda componente es un par (primer elemento, resto), donde resto es una lista
 - las funciones sobre listas se definen por recursión
 - puede ser mediante funciones que implementen el patrón de recursión asociado
 - cada `lista' toma dos argumentos, correspondientes al foldr
 - las funciones se definen aplicando la `lista'

- Listas: sea la especificación
 - *nil* y *cons*, λ-términos en forma normal, cumpliendo
 - $nil F M \rightarrow_{\beta}^{*} M$
 - $(cons XL) FM \rightarrow_{\beta} FX(LFM)$
- Observaciones
 - las listas son funciones
 - representan el patrón de recursión 'diferido'
 - podría definirse *foldr* \equiv_{def} ($\lambda f. \lambda a. \lambda l. I f a$)

- ◆ La solución más sencilla es
 - nil ≡_{def} λf.λa.a
 - cons $\equiv_{def} \lambda x.\lambda I.(\lambda f.\lambda a.f x (I f a))$
- Ejemplos:
 - [2,3] se representa como (cons 2 (cons 3 nil)), que luego de β -reducir queda ($\lambda f.\lambda a.f 2$ (f 3a))
 - [v,w,x,y,z] se representa como (cons v (cons w (cons x (cons y (cons z nil))))), que luego de β-reducir queda λf.λa.f v (f w (f x (f y (f z a))))

- ¿Cómo definir funciones sobre listas?
 - Utilizando el patrón de recursión
- ◆ Ejemplos
 - dar un λ-término para representar length
 - $length \equiv_{def} \lambda l. \ l \ (\lambda x. succ) \ \underline{O}$
 - dar un λ-término para representar sum
 - sum $\equiv_{def} \lambda I. I (\lambda x y. suma x y) \underline{0}$
 - dar un λ-término para representar map
 - $map \equiv_{def} \lambda I. \lambda f. I (\lambda x y. cons (f x) y) nil$

- → Recursión: se utiliza el siguiente 'truco'
 - dada una ecuación recursiva f = ... f ..., definir

•
$$f \equiv_{\text{def}} fix (\lambda f...f...)$$

siendo *fix* cualaquier λ-término que cumpla

- $fix F \rightarrow_{\beta}^{*} F (fix F)$
- ◆ Ejemplo de un término para representar fix
 - $fix \equiv_{def} (\lambda y.yy)(\lambda x.\lambda f.f(xxf))$
- ◆ Por qué funciona es tema para un curso entero

- ◆ Ejemplo: sea fact un término que cumple que
 - fact es equivalente a
 λn. if (isZero n) then 1
 else mult n (fact (pred n))
 - Entonces
 - fact =_{def} fix (λf.λn.if (isZero n)
 then 1/else mult n (f (pred n)))
 - y luego de β-reducir
 - $fix (\lambda f.\lambda n.(isZero n) \underline{1} (mult n (f (pred n))))$

- → Bottom: ¿Cómo definir un término para ⊥?
 - Mediante alguna expresión cuya computación no termine
- Solución
 - bottom $\equiv_{def} (\lambda x.xx)(\lambda x.xx)$
 - → Es fácil ver que la computación de *bottom* no termina (*bottom* \rightarrow_{β} **bottom* \rightarrow_{β} *...)
 - Sirve para hacer explícita la indefinición
 - Ej: $hd \equiv_{def} (\lambda I.I(\lambda xy.x)bottom)$

Resumen

- Se mostró cómo representar tipos de datos básicos en el λ-cálculo puro
 - booleanos
 - tuplas
 - números naturales
 - listas
 - recursión
 - bottom