Programación Distribuida y Tiempo Real Bases de Datos Distribuidas

Clase Introductoria 2

- 1. Diapositivas Tanenbaum-Van Steen
 - https://www.distributed-systems.net/index.php/books/distributed-systems/
 (en ese mismo sitio pueden pedir una versión electrónica personal de la 3ra ed.)
 Búsquedas, consultas, comentarios, etc.
- 2. Características de los sistemas distribuidos (lo que *hay* en todos ellos)
 - 2.1. Concurrencia y recursos compartidos (*Desafío* para Coulouris, cap. 1)
 - 2.2. Memoria distribuida
 - 2.3. No hay idea de *estado global a priori* (tiempo, por ejemplo)
 - 2.4. Escalabilidad (*Objetivo* para Tanenbaum, cap. 1)
 - 2.5. ¿? Seguridad (Desafío para Coulouris)
 - 2.6. Apertura-Extensibilidad (Objetivo para Tanenbaum, Desafío para Coulouris) relación con otra característica:
 - 2.7. Heterogeneidad (Desafío para Coulouris)
 - 2.8. Transparencia (Cou-Chapter 1 slides.ppt, p. 8 y Tan-chap-01.ppt, p.4)
- 3. Ideas generales del modelo de procesamiento cliente/servidor
 - 3.1. ¿De dónde "sale" c/s?
 - 3.2. ¿Por qué hay variaciones de c/s?
 - 3.3. ¿Por qué no alcanzaría con c/s?

3.4. Esquema temporal de procesamiento para el cliente

Proceso que Pide un Servicio

3.5. Esquema temporal de procesamiento para el servidor

Proceso que Proporciona un Servicio

3.6. Pero no es todo, están las comunicaciones...

Procesamiento Cliente/Servidor de un Requerimiento

- 4. Caracterización del modelo de procesamiento cliente/servidor
 - 4.1. Es un modelo más allá de la cantidad de máquinas, establece dos tipos de procesos que interactúan: cliente/s y servidor/es
 - 4.2. Los clientes son activos en la interacción, *inician* con la petición
 - 4.3. Los servidores son pasivos en la interacción, no conocen cuándo llegará una petición
 - 4.4. Los clientes son los que usan o necesitan recursos que requieren al servidor
 - 4.5. Los servidores tienen o administran los recursos, generalmente no los usan
 - 4.6. Los clientes solamente tienen la visión de los recursos que necesitan
 - 4.7. Los servidores tienen una visión más amplia del estado de todos los recursos
 - 4.8. Ni los clientes ni los servidores deben necesariamente encargarse de la transferencia de la información entre ellos (y normalmente no lo hacen)
 - 4.9. Tanto clientes como servidores tienen bien definida la *interfase*:
 - 4.9.1. Cómo se pide un servicio y qué datos son necesarios desde el cliente hacia el servidor
 - 4.9.2. Cómo se retorna la respuesta a un cliente, básicamente qué datos son devueltos al cliente en respuesta al servicio requerido

En este sentido, el modelo c/s es casi la forma *lógica* de procesamiento al menos en el inicio de los sistemas distribuidos, no se hace más (ni menos) que seguir el modelo de interacción de procesos de usuario con los sistemas operativos y las ideas más conceptuales de los protocolos de comunicación

- 5. Ventajas y desventajas de los sistemas distribuidos con respecto a sistemas centralizados y a sistemas independientes
 - 5.1. Ventajas:
 - 5.1.1. Costo/rendimiento
 - 5.1.2. Distribución inherente del *problema*
 - 5.1.3. Crecimiento incremental (o granularidad del crecimiento) del hardware
 - 5.1.4. Recursos compartidos (frente a *sistemas independientes*)
 - 5.2. Desventajas:
 - 5.2.1. Software (desde el existente hasta la ingeniería de software)
 - 5.2.2. ¿? Seguridad (quizás por el software)
 - 5.2.3. ¿? Características de las redes actuales (fallas, diferencias de rend.)
 - 5.2.4. Administración

- 6. Tipos de sistemas distribuidos: slides.01.pdf, pp. 12-21
 - 6.1. Distributed Computing Systems
 - 6.1.1. Cluster computing
 - 6.1.2. Grid computing ===> Cloud computing

6.2. Distributed Information Systems

- 6.2.1. Procesamiento de transacciones (p. 17)
- 6.2.2. Comunicación entre aplicaciones (quizás preexistentes)
- 6.3. Distributed Pervasive Systems