四. 粒子

1. 粒子分裂

[**粒子在质心参考系 (C 系) 中分裂**] 选相对粒子分裂前 (同分裂后) 的质心静止的参考系研究 粒子分裂.

分裂后两粒子的质量为 m_1, m_2 . 它们动量的大小相等 $(p_1 = p_2 = p_0)$, 方向相反.

设粒子分裂前的内能为 E_{int} , 分裂后两粒子的内能为 E_{1int} , E_{2int} . 粒子分裂前的动能 $T_0=0$, 分裂后两粒子的动能 $T_1=\frac{1}{2}m_1v_1^2=\frac{p_1^2}{2m_1}=\frac{p_0^2}{2m_1}$, $T_2=\frac{p_0^2}{2m_2}$.

曲能量守恒 $E_{int} + T_0 = E_{1int} + T_1 + E_{2int} + T_2$, 即 $E_{int} = E_{1int} + \frac{p_0^2}{2m_1} + E_{2int} + \frac{p_0^2}{2m_2}$.

粒子分裂后的速度大小为 $v_{10} = \frac{p_0}{m_1}, v_{20} = \frac{p_0}{m_2}$.

[粒子的分裂能] 粒子分裂前后内能的变化量提供了粒子分裂后的动能, 这部分变化量即粒子分裂的能量 (分裂能). $\varepsilon = \frac{p_0^2}{2m}$. 其中, m 为二体系统的约化质量.

根据定义, 分裂能 $\varepsilon = E_{int} - E_{1int} - E_{2int}$.

由能量守恒 $E_{int} = E_{1int} + \frac{p_0^2}{2m_1} + E_{2int} + \frac{p_0^2}{2m_2}$, 得 $\varepsilon = \frac{p_0^2}{2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right)$.

引入约化质量 $\frac{1}{m} = \frac{1}{m_1} + \frac{1}{m_2}$, 得 $\varepsilon = \frac{p_0^2}{2m}$.

[粒子在实验室参考系 (L 系) 中分裂] 选相对粒子分裂前 (同分裂后) 的质心以速度 \vec{V} 运动的参考系研究粒子分裂.

设 \vec{v} 为分裂后其中一个粒子相对 L 系的速度, \vec{v}_0 为这个粒子相对 C 系的速度. 有 $\vec{v} = \vec{v}_0 + \vec{V}$, 即 $\vec{v}_0 = \vec{v} - \vec{V}$.

设粒子速度 \vec{v} 与质心速度 \vec{V} 的夹角为 θ , 则 $(\vec{v} - \vec{V})^2 = v_0^2 = v_2 + V^2 - 2vV\cos\theta$.

- 1. 当 $V < v_0$ 时, 粒子可以向任意角度 θ 运动.
- 2. 当 $V>v_0$ 时, 粒子只能相对 L 系向前运动. 即 \vec{V} 在 \vec{v} 上的投影 $V\cos\theta$ 满足 $V\cos\theta\geq v$.

取临界角 $\theta = \theta_{max}$, 有边界 $V\cos\theta_{max} = v$. 由边角关系 $v_0^2 = v_2 + V^2 - 2vV\cos\theta$, 得 $V^2\cos^2\theta_{max} + V^2 - 2V^2\cos^2\theta_{max} = v_0^2$. 即 $\sin\theta_{max} = \frac{v_0}{V}$.

[C 系与 L 系的关系] 设分裂后一个粒子在 L 系中与速度 \vec{v} 和相对粒子组质心的速度 \vec{V} 的夹角为 θ , 粒子在 C 系中运动的方向 (即 L 系中与 \vec{v}_0 的夹角) 为 θ_0 . 有 $\tan\theta = \frac{v_0 \sin\theta_0}{v_0 \cos\theta_0 + V}$.

由
$$\vec{v}_0 = \vec{v} - \vec{V}$$
 得 $v_0^2 = v^2 + V^2 - 2vV\cos\theta$. 即 $\cos\theta = -\frac{v_0^2 - v^2 - V^2}{2vV}$.

由矢量三角形 $\frac{v_0}{\sin\theta} = \frac{v}{\sin(\pi-\theta_0)} = \frac{v}{\sin\theta_0}$, 得 $\sin\theta = \frac{v_0\sin\theta_0}{v}$

由
$$\vec{v} = \vec{v_0} + \vec{V}$$
, 得 $v^2 = v_0^2 + V^2 + 2v_0V\cos\theta_0$. 有 $v_0^2 - v^2 = -V^2 - 2v_0V\cos\theta_0$.

1

[L 系与 C 系的关系] 即在 $\tan \theta = \frac{v_0 \sin \theta_0}{v_0 \cos \theta_0 + V}$ 中求解 θ_0 , 得 $\cos \theta_0 = -\frac{V}{v_0} \sin^2 \theta \pm \cos \theta \sqrt{1 - \frac{V^2}{v_0^2} \sin^2 \theta}$.

由
$$\sin^2 \theta_0 + \cos^2 \theta_0 = 1$$
, 得 $\sin \theta_0 = \pm \sqrt{1 - \cos^2 \theta_0}$.

对于 $v_0 > V$ 的情况, $\cos \theta_0 \theta$ 是单值的, 表达式中 ± 取正号.

对于 $v_0 < V$ 的情况, $\cos \theta_0 \theta$ 是单多值的, 将有两个可能的 $\cos \theta_0$ 取值分别对应正负号.

[多个粒子分裂时粒子密度在 C 系中的角分布] 假设原始粒子在空间中运动方向是随机的, 即在平均意义下是各向同性的. 在 C 系中, 分裂后粒子密度 $\frac{dn}{n}$ 与 θ_0 (出射方向与原始粒子速度方向的夹角) 的关系满足 $\frac{dn}{n} = \frac{1}{2}\sin\theta_0d\theta_0$.

在 C 系中,分裂后的粒子具有相同的能量,它们飞出方向的分布是各向同性的. 对于从立体角 $d\Omega$ 飞出的粒子数 dn,满足 $\frac{dn}{n}=\frac{d\Omega}{4\pi}$. 其中 n 为分裂后粒子总数.

因为 $d\Omega = \sin \theta d\theta d\varphi$, 对 φ 积分后得到 $d\Omega_0 = d\Omega(\theta_0) = 2\pi \sin \theta_0 d\theta_0$.

粒子出射概率对 θ_0 的分布 $\frac{dn}{n} = \frac{d\Omega_0}{4\pi} = \frac{1}{2} \sin \theta_0 d\theta_0$.

[多个粒子分裂时粒子密度在 L 系中随动能的分布] 在 L 系中, $\frac{dn}{n} = \frac{dT}{2mv_0V}$. 动能的取值范围为 $[T_{min}, T_{max}] = [\frac{1}{2}m(v_0 - V)^2, \frac{1}{2}m(v_0 + V)^2]$.

由
$$\vec{v} = \vec{v_0} + \vec{V}$$
, 得: $v^2 = v_0^2 + V^2 + 2v_0V\cos\theta_0$.

由
$$\cos \theta_0 = \frac{v^2 - v_0^2 - V^2}{2v_0 V}$$
,得: $d \cos \theta_0 = \frac{d(v^2)}{2v_0 V}$.

由
$$T = \frac{1}{2}mv^2$$
, 得: $dT = \frac{1}{2}md(v^2)$.

曲
$$d\cos\theta_0 = \frac{\frac{1}{2}md(v^2)}{mv_0V}$$
,得: $d\cos\theta_0 = -\sin\theta_0 d\theta_0 = \frac{dT}{2mv_0V}$.

由
$$\frac{dn}{n} = \frac{1}{2}\sin\theta_0 d\theta_0$$
,得: $\frac{dn}{n} = \left| -\frac{dT}{2mv_0 V} \right| = \frac{dT}{2mv_0 V}$.

[C 系中分裂后的粒子动能上限] 对于由总质量 M 分裂后的粒子 m_1 , 其最大动能 $(T_{10})_{max} = \frac{M-m_1}{M}\varepsilon$. 其中 ε 为分裂能.

设其它粒子作为一个系统的内能为 E'_{int} , 粒子 m_1 的初动能 $T_{10} = \frac{1}{2m_0} p_0^2$.

曲
$$E_{int} = E'_{int} + E_{1int} + \frac{p_0^2}{2m_1} + \frac{p_0^2}{2(M-m_1)}$$
, 得: $p_0^2 = \frac{2m_1(M-m_1)}{M} (E_{int} - E'_{int} - E_{1int})$.

曲
$$T_{10} = \frac{1}{2m_1}p_0^2$$
, 得: $T_{10} = \frac{M-m_1}{M}(E_{int} - E'_{int} - E_{1int})$.

当 E'_{int} 最小时, T_{10} 取到最大值. 当其它粒子速度一致时, 它们的总内能 E'_{int} 最小. 此时 $E_{int}-E'_{int}-E_{1int}=\varepsilon$.

所以
$$(T_{10})_{max} = \frac{M-m_1}{M} \varepsilon$$
.

2. 粒子弹性碰撞

[弹性碰撞] 两个粒子碰撞而不改变它们的内部状态.

即应用能量守恒定律时可以不考虑粒子的内能.

[粒子在 C 系中的弹性碰撞] 设碰撞前粒子 m_1 和 m_2 的速度为 \vec{v}_{10} , \vec{v}_{20} , 两者速度的差 $\vec{v} = \vec{v}_{10} - \vec{v}_{20}$, 则碰撞后的速度 $\begin{cases} \vec{v}_{10}' = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 \\ \vec{v}_{20}' = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 \end{cases}$. 其中, 单位矢量 \vec{n}_0 的方向与碰撞过程有关.

在 C 系中, 由
$$\begin{cases} m_1 \vec{r}_{10} + m_2 \vec{r}_{20} = \vec{0} \\ \vec{r} = \vec{r}_{10} - \vec{r}_{20} \end{cases}$$
, 得:
$$\begin{cases} \vec{v}_{10} = \frac{m_2}{m_1 + m_2} \vec{v} \\ \vec{v}_{20} = -\frac{m_1}{m_1 + m_2} \vec{v} \end{cases}$$
.

由动量守恒和动能守恒定律 $\begin{cases} m_1\vec{v}_{10}+m_2\vec{v}_{20}=m_1\vec{v}_{10}'+m_2\vec{v}_{20}'\\ m_1v_{10}^2+m_2v_{20}^2=m_1v_{10}'^2+m_2v_{20}'^2\\ \end{cases}$,并设碰撞后 \vec{v}_{10}' 运动方向的单位矢量为 \vec{n}_0 ,

解得:
$$\begin{cases} \vec{v}'_{10} = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 \\ \vec{v}'_{20} = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 \end{cases}.$$

[粒子在 L 系中的弹性碰撞] 设碰撞前粒子 m_1 和 m_2 的速度为 $\vec{v}_1, \vec{v}_2, \vec{n}_0$ 为 C 系中 m_1 碰撞后运动方向的单位矢量,则碰撞后的速度 $\begin{cases} \vec{v}_1' = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \\ \vec{v}_2' = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \end{cases}$. 引入约化质量 $m = \frac{m_1 m_2}{m_1 + m_2}$,

动量
$$\begin{cases} \vec{p}_1' = mv\vec{n}_0 + \frac{m_1}{m_1 + m_2}(\vec{p}_1 + \vec{p}_2) \\ \vec{p}_2' = -mv\vec{n}_0 + \frac{m_2}{m_1 + m_2}(\vec{p}_1 + \vec{p}_2) \end{cases}$$

C 系相对 L 系有速度 \vec{V} ,由动量守恒 $m_1\vec{v}_{10}+m_2\vec{v}_{20}+(m_1+m_2)\vec{V}=m_1\vec{v}_1+m_2\vec{v}_2$,有 $\vec{V}=\frac{m_1\vec{v}_1+m_2\vec{v}_2}{m_1+m_2}$.

由 C 系中的弹性碰撞
$$\begin{cases} \vec{v}_{10}' = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 \\ \vec{v}_{20}' = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 \end{cases} \qquad \text{和 } \vec{v} = \vec{v}_0 + \vec{V} \ \text{得} \colon \begin{cases} \vec{v}_1' = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 + \vec{V} \\ \vec{v}_2' = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 + \vec{V} \end{cases}$$
 由动量
$$\vec{p} = m\vec{v} \ \text{得} \colon \begin{cases} \vec{v}_1' = \frac{m_2 v}{m_1 + m_2} \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \\ \vec{v}_2' = -\frac{m_1 v}{m_1 + m_2} \vec{n}_0 + \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \end{cases}$$
 由约化质量
$$m = \frac{m_1 m_2 v}{m_1 + m_2} \ \text{得} \colon \begin{cases} \vec{p}_1' = \frac{m_1 m_2 v}{m_1 + m_2} \vec{n}_0 + \frac{m_1}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2) \\ \vec{p}_2' = -\frac{m_1 m_2 v}{m_1 + m_2} \vec{n}_0 + \frac{m_2}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2) \end{cases}$$
 由约化质量
$$m = \frac{m_1 m_2}{m_1 + m_2} \ \text{得} \colon \begin{cases} \vec{p}_1' = mv\vec{n}_0 + \frac{m_1}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2) \\ \vec{p}_2' = -mv\vec{n}_0 + \frac{m_2}{m_1 + m_2} (\vec{p}_1 + \vec{p}_2) \end{cases}$$

[L **系中** m_2 **静止时的非正面碰撞**] 设 θ_1, θ_2 分别为 $\vec{p_1}, \vec{p_2}$ 在 L 系中偏离碰撞方向 $\vec{p_1}$ 的角度. χ 为 m_1 在 C 系中的出射方向 $\vec{n_0}$ 与 $\vec{p_1}$ 的夹角. 则夹角满足 $\begin{cases} \tan \theta_1 = \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi} \\ \theta_2 = \frac{\pi - \chi}{2} \end{cases}$, 速度满足

$$\begin{cases} v_1' = \frac{v}{m_1 + m_2} \sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \chi} \\ v_2' = \frac{2m_1 v}{m_1 + m_2} \sin \frac{\chi}{2} \end{cases}.$$

由
$$\vec{v}_2 = \vec{0}$$
 得: $v = v_1$, 则 $\frac{m_2}{m_1 + m_2} p_1 = \frac{m_1 m_2}{m_1 + m_2} v_1 = mv$.

由三角关系
$$\frac{\frac{m_1}{m_1+m_2}p_1}{\sin(\chi-\theta_1)} = \frac{mv}{\sin\theta_1} = \frac{\frac{m_2}{m_1+m_2}p_1}{\sin\theta_1}$$
, 得: $\tan\theta_1 = \frac{m_2\sin\chi}{m_1+m_2\cos\chi}$.

由三角关系
$$\frac{mv}{\sin\theta_2} = \frac{\frac{m_2}{m_1 + m_2} p_1}{\sin(\pi - \chi - \theta_2)}$$
, 得: $\theta_2 = \frac{\pi - \chi}{2}$.

由
$$\frac{p_1'}{\sin(\pi-\chi)} = \frac{mv}{\sin\theta_1}$$
 即 $\frac{m_1v_1'}{\sin\chi} = \frac{m_1m_2}{m_1+m_2}\frac{v}{\sin\theta_1}$,得: $v_1' = \frac{m_2}{m_1+m_2}\frac{\sin\chi}{\sin\theta_1}v$.

曲
$$\sin \theta_1 = \tan \theta_1 \sqrt{\frac{1}{1+\tan^2 \theta_1}}$$
 得: $\sin \theta_1 = \frac{m_2 \sin \chi}{\sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \chi}}$.

由
$$v_1' = \frac{m_2}{m_1 + m_2} \frac{\sin \chi}{\sin \theta_1} v$$
 得: $v_1' = \frac{v}{m_1 + m_2} \sqrt{m_1^2 + m_2^2 + 2m_1 m_2 \cos \chi}$.

曲
$$\frac{p_2'}{\sin \chi} = \frac{mv}{\sin \theta_2}$$
,得: $v_2' = \frac{m_1}{m_1 + m_2} \frac{\sin \chi}{\sin \theta_2} v$.

由
$$\theta_2 = \frac{\pi - \chi}{2}$$
 得: $\sin \theta_2 = \cos \frac{\chi}{2}$.

由
$$\sin \chi = 2 \sin \frac{\chi}{2} \cos \frac{\chi}{2}$$
,得: $v_2' = \frac{2m_1 v}{m_1 + m_2} \sin \frac{\chi}{2}$.

[两粒子正碰 $(m_2$ 静止)] 当两粒子沿直线碰撞时, $\chi = \pi$, 两粒子碰撞后的速度为 $\begin{cases} \vec{v}_1' = \frac{m_1 - m_2}{m_1 + m_2} \vec{v} \\ \vec{v}_2' = \frac{2m_1}{m_1 + m_2} \vec{v} \end{cases}$,

 m_2 获得的最大动能 $E'_{2max} = \frac{4m_1m_2}{(m_1+m_2)^2}E_1$.

曲
$$v_2' = \frac{2m_1}{m_1 + m_2} \sin \frac{\chi}{2}$$
 得: $v_2' = \frac{2m_1}{m_1 + m_2} v$.

因为
$$m_1, m_2 > 0$$
,所以 $\frac{2m_1}{m_1 + m_2} > 0$. 即 $\vec{v}_2' = \frac{2m_1}{m_1 + m_2} \vec{v}$.

由
$$v_1' = \frac{\sqrt{m_1^2 + m_2^2 + m_1 m_2 \cos \chi}}{m_1 + m_2} v$$
 得: $v_1' = \frac{|m_1 - m_2|}{m_1 + m_2} v$. 无法确定方向.

曲
$$m_1\vec{v} = m_1\vec{v}_1' + m_2\vec{v}_2'$$
 得: $\vec{v}_1' = \vec{v} - \frac{m_2}{m_1}\vec{v}_2'$.

由
$$\vec{v}_2' = \frac{2m_1}{m_1 + m_2} \vec{v}$$
 得: $\vec{v}_1' = \frac{m_1 - m_2}{m_1 + m_2} \vec{v}$.

因为 $\chi = \pi$ 时, $\sin \frac{\chi}{2}$ 取到最大值. 所以此时 v_2' 取到最大值.

由
$$E' = \frac{1}{2}mv'^2$$
 得: $E'_{2max} = \frac{1}{2}m_2v'^2_{2max} = \frac{2m_1^2m_2}{(m_1+m_2)^2}v^2$.

由
$$E_1 = \frac{1}{2}m_1v_1$$
, $v = v_1 - v_2$, $v_2 = 0$, 得: $E_1 = \frac{1}{2}m_1v^2$, 即 $v = \sqrt{\frac{2E_1}{m_1}}$.

由
$$E'_{2max} = \frac{2m_1^2m_2}{(m_1+m_2)^2}v^2$$
 得: $E'_{2max} = \frac{2m_1^2m_2}{(m_1+m_2)^2}\frac{2E_1}{m_1} = \frac{4m_1m_2}{(m_1+m_2)^2}E_1$.

[**质量不同的两粒子碰撞后的夹角** $\theta_1 + \theta_2(m_2$ **静止**)] 碰撞后两粒子运动方向的夹角 $\theta_1 + \theta_2$ 与

两粒子的质量有关,
$$\theta_1 + \theta_2 \begin{cases} > \frac{\pi}{2}, 0 < m_1 < m_2 \\ < \frac{\pi}{2}, 0 < m_2 < m_1 \end{cases}$$

由
$$\tan \theta_1 = \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi}$$
, $\theta_2 = \frac{\pi - \chi}{2}$, 得: $\theta_1 + \theta_2 = \arctan \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi} + \frac{\pi}{2} - \frac{\chi}{2}$.

设
$$f(\chi) = \theta_1 + \theta_2$$
, 则 $f'(\chi) = \frac{m_1 m_2 \cos \chi + m_2^2}{m_1 + m_2 + 2m_1 m_2 \cos \chi} - \frac{1}{2}$.

求
$$f'(\chi) = 0$$
, 即: $2m_1m_2\cos\chi + 2m_2^2 = m_1^2 + m_2^2 + 2m_1m_2\cos\chi$. 得 $m_1 = m_2$.

因为
$$\chi > 0$$
, 所以 $f_{min}(\chi) = f(0) = \frac{\pi}{2}$. 即 $\theta_1 + \theta_2 > \frac{\pi}{2}$.

2. 求 $f'(\chi) < 0$, 有 $0 < m_2 < m_1$.

因为
$$\chi > 0$$
, 所以 $f_{max}(\chi) = f(0) = \frac{\pi}{2}$, 即 $\theta_1 + \theta_2 < \frac{\pi}{2}$.

[θ_1 **可能的范围** (m_2 **静止**)] 碰撞后粒子 m_1 的运动方向与其碰撞前的运动方向夹角 θ_1 的大小取决于两粒子的质量比 $k = \frac{m_1}{m_2}$. 当 k > 0 时 θ_1 有上限 $\sin \theta_{1max} = \frac{m_2}{m_1}$, 当 0 < k < 1 时 θ_1 可取到任意值.

曲
$$k = \frac{m_1}{m_2}$$
 和 $\theta_1 = \arctan \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi}$,得: $\theta_1 = \arctan \frac{\sin \chi}{k + \cos \chi}$.

由
$$\frac{d\theta_1}{d\chi} = \frac{k\cos\chi + 1}{k^2 + 2k\cos\chi + 1}$$
 求 $\frac{d\theta_1}{d\chi} = 0$,即
$$\begin{cases} k\cos\chi + 1 = 0 \\ k^2 + 2k\cos\chi + 1 \neq 0 \end{cases}$$
,解得:
$$\begin{cases} \chi = \arccos\left(-\frac{1}{k}\right) \\ k \neq 1 \end{cases}$$
.

因为
$$\frac{d^2\theta_1}{d\chi^2} = \frac{(k-k^3)\sin\chi}{(k^2+2k\cos\chi+1)^2}$$
且 $\chi \in [0,\pi]$ (即 $\sin\chi > 0$) 得: $sign\left[\frac{d^2\theta_1}{d\chi^2}\right] = sign(k-k^3)$.

1. 求 $k - k^3 < 0$ 满足 k > 0 的解得: k > 1.

此时
$$\frac{d^2\theta_1}{d\chi^2} < 0$$
, θ_1 在 $(0, +\infty)$ 上的最大值 $\theta_{1max} = \arctan\frac{\sin\left[\arccos\left(-\frac{1}{k}\right)\right]}{k + \cos\left[\arccos\left(-\frac{1}{k}\right)\right]} = \arctan\frac{\sqrt{k^2 - 1}}{k^2 - 1}$.

由
$$k > 1$$
 得: $\theta_{1max} = arctan \frac{1}{\sqrt{k^2-1}}$.

为与书一致, 由
$$\sin \theta = 1 - \frac{1}{1 + \tan^2 \theta} = \frac{\tan^2 \theta}{1 + \tan^2 \theta}$$
, 得: $\sin^2 \theta_{1max} = \frac{m_2^2}{m_1^2}$. 即 $\sin \theta_{1max} = \frac{m_2}{m_1}$.

2. 求 $k - k^3 < 0$ 满足条件的解得: 0 < k < 1.

此时
$$\frac{d^2\theta_1}{d\chi^2} > 0$$
, θ_1 在 $(0, +\infty)$ 上的可能最小值 $\theta_{1min} = \frac{\sqrt{k^2-1}}{k^2-1}$ 不存在 (实值).

此时 θ_1 没有限制.

[**质量相等的两粒子碰撞** $(m_2$ 静止)] 质量相等的粒子 $m_1 = m_2 = m$ 碰撞后, 两粒子运动方向

垂直, 满足
$$\begin{cases} \theta_1 = \frac{\chi}{2} \\ \theta_2 = \frac{\pi - \chi}{2} \end{cases}$$
. 两粒子的速度满足
$$\begin{cases} v_1' = v \cos \frac{\chi}{2} \\ v_2' = v \sin \frac{\chi}{2} \end{cases}$$
.

曲 $\tan \theta_1 = \frac{m_2 \sin \chi}{m_1 + m_2 \cos \chi}$, $\sin \chi = 2 \sin \frac{\chi}{2} \cos \frac{\chi}{2}$ 和 $\cos \chi = 2 \cos^2 \frac{\chi}{2} - 1$, 得: $\tan \theta_1 = \tan \frac{\chi}{2}$, 即 $\theta_1 = \frac{\chi}{2}$.

曲
$$v_1' = \frac{\sqrt{m_1^2 + m_2^2 + 2m_1m_2\cos\chi}}{m_1 + m_2}v$$
 和 $\cos\chi = 2\cos^2\frac{\chi}{2} - 1$,得: $v_1' = \sqrt{\frac{1 + \cos\chi}{2}}v = v\cos\frac{\chi}{2}$.

由
$$v_2' = \frac{2m_1}{m_1 + m_2} v \sin \frac{\chi}{2}$$
, 得: $v_2' = v \sin \frac{\chi}{2}$.

3. 粒子散射

[粒子在有心力场的偏转] 质量为 m 的粒子自无穷远处平行于 x 轴的瞄准距离 ρ 向 x 轴负半轴以速度 v_{∞} 运动. 该粒子在有心力场 U(r) 的作用下发生偏转. 设粒子远离力心后的运动方向与 x 轴夹角为偏转角 χ , 粒子近心点 $(r=r_{min})$ 与力心的连线与 x 轴夹角为 φ_0 . 则该过程满足

$$\begin{cases} \chi = |\pi - 2\varphi_0| \\ \varphi_0 = \int_{r_{min}}^{\infty} \frac{\frac{\rho}{r^2} dr}{\sqrt{1 - \frac{\rho^2}{r^2} - \frac{2U}{mv_{\infty}^2}}} \end{cases}, \ \, \sharp \vdash r_{min} \, \, \sharp \, \, \sharp \, \sharp \, \sharp \, \, 1 - \frac{\rho^2}{r^2} - \frac{2U}{mv_{\infty}^2} = 0 \, \, \text{fol} \, \, \text{fol} \, \, .$$

由有心立场中粒子运动的角度 $\varphi = \int \frac{\frac{M}{r^2}dr}{\sqrt{2m(E-U)-\frac{M^2}{r^2}}}$, 得: $\varphi_0 = \int_{r_{min}}^{\infty} \frac{\frac{M}{r^2}dr}{\sqrt{2m(E-U)-\frac{M^2}{r^2}}}$.

由粒子的总能量 E=T+U 在 $r\to\infty$ 处有 U=0 和 $T=\frac{1}{2}mv_{\infty}^2$,得: $E=\frac{1}{2}mv_{\infty}^2$

由能量守恒, 得:
$$\varphi_0 = \int_{r_{min}}^{\infty} \frac{\frac{M}{r^2} dr}{\sqrt{2m(\frac{1}{2}mv_{\infty}^2 - U) - \frac{M^2}{r^2}}}$$
.

由角动量 $\vec{M} = m\vec{v} \times \vec{r}$, 得在 $r \to \infty$ 处: $M = m\rho v_{\infty}$.

由有心力场的角动量守恒, 得:
$$\varphi_0 = \int_{r_{min}}^{\infty} \frac{\frac{m\rho v_{\infty}}{r^2} dr}{\sqrt{2m(\frac{1}{2}mv_{\infty}^2 - U) - \frac{m^2 \rho^2 v_{\infty}^2}{r^2}}} = \int_{r_{min}}^{\infty} \frac{\frac{\rho}{r^2} dr}{\sqrt{1 - \frac{2U}{mv_{\infty}^2} - \frac{\rho^2}{r^2}}}.$$

几何上有 $\chi = |\pi - 2\varphi_0|$.

[**有效散射截面**] 当面密度为 n 的粒子束入射有心力场时, 不同瞄准距离的粒子将向不同的偏转角度散射. 若 dN 为单位时间内自偏转角 χ 到 $\chi+d\chi$ 之间出射的粒子数, 则可定义有限散射截面为 $d\sigma=\frac{dN}{n}$, 该物理量具有面积量纲.

有效散射截面描述在偏转角度 $d\chi$ 内出射的粒子数在入射粒子束中对应的截面面积.

[有效散射截面与散射角的关系] 若散射角是瞄准距离的单调函数, 则有效散射截面 $d\sigma$ 对平面散射角微元 $d\chi$ 的依赖关系为 $d\sigma = 2\pi\rho(\chi)\left|\frac{d\rho(\chi)}{d\chi}\right|d\chi$, 有效散射截面 $d\sigma$ 对立体散射角微元 do 的依赖关系为 $d\sigma = \frac{\rho(\chi)}{\sin\chi}\left|\frac{d\rho}{d\chi}\right|do$.

因为散射角是瞄准距离的单调函数, 设 χ 到 $\chi+d\chi$ 的粒子来自瞄准距离 $\rho(\chi)$ 到 $\rho(\chi)+d\rho(\chi)$.

出射粒子数 dN 来自入射圆环面 ρ 到 $\rho + d\rho$, 即 $dN = 2\pi n\rho d\rho$.

由有效散射截面 $d\sigma = \frac{dN}{n}$, 得: $d\sigma = 2\pi \rho d\rho$.

由 $d\rho = \frac{d\rho(\chi)}{d\chi}d\chi$ 并考虑物理意义 (面积非负), 得: $d\sigma = 2\pi\rho(\chi)\left|\frac{d\rho(\chi)}{d\chi}\right|d\chi$.

在 χ 与 $\chi + d\chi$ 组成的两个同轴半圆锥中, 面积增量 $dS = \pi r \sin \chi \cdot r d\chi = \pi r^2 \sin \chi d\chi$.

以母线 r 补全上述圆锥, 得到立体角 do 对应的面积 $2dS=2\pi r^2\sin\chi d\chi$.

由立体角 $do = \frac{2dS}{r^2}$, 得: $do = 2\pi \sin \chi d\chi$, 即 $d\chi = \frac{do}{2\pi \sin \chi}$.

由
$$d\sigma = 2\pi\rho(\chi) \left| \frac{d\rho(\chi)}{d\chi} \right| d\chi$$
, 得: $d\sigma = \frac{\rho(\chi)}{\sin\chi} \left| \frac{d\rho}{d\chi} \right| do$.

[卢瑟福公式] 对于力场 $U = \frac{\alpha}{r}$, 入射粒子散射后的偏转角 $\varphi_0 = \arccos\frac{\alpha}{\sqrt{\alpha^2 + \rho^2 m^2 v_{\infty}^4}}$, 瞄准距离 $\rho^2 = \frac{\alpha^2}{m^2 v_{\infty}^4} \tan^2 \varphi_0 = \frac{\alpha^2}{m^2 v_{\infty}^4} \cot^2 \frac{\chi}{2}$, 有效散射截面 $d\sigma = \frac{\pi \alpha^2}{m^2 v_{\infty}^4} \frac{\cos \frac{\chi}{2}}{\sin^3 \frac{\chi}{2}} d\chi = \frac{\alpha^2}{m^2 v_{\infty}^4} \frac{do}{\sin^4 \frac{\chi}{2}}$ (有效截面不依赖 α 的符号).

设
$$a = \frac{2\alpha}{mv_{\infty}^2}, b = \rho^2$$
, 由 CAS 系统 Maxima 计算得: $\varphi_0 = -\frac{\rho}{\sqrt{b}} arcsin\left(\frac{ar}{\sqrt{a^2+4b}|r|} + \frac{2b}{\sqrt{a^2+4b}|r|}\right)\Big|_{r_{min}}^{\infty}$.

因为
$$r > 0$$
,所以 $\varphi_0 = -\frac{\rho}{\sqrt{b}} \arcsin\left(\frac{a}{\sqrt{a^2+4b}} + \frac{2b}{\sqrt{a^2+4br}}\right)\Big|_{r_{min}}^{\infty}$.

代入
$$a = \frac{2\alpha}{mv_{\infty}^2}, b = \rho^2$$
,得: $\varphi_0 = \arcsin\left[\frac{1}{\sqrt{\rho^2 + \frac{\alpha^2}{m^2v_{\infty}^4}}} \left(\frac{\rho^2}{r} + \frac{\alpha}{mv_{\infty}^2}\right)\right]_{\infty}^{r_{min}}$.

曲
$$\left(r^2 - \frac{2\alpha}{mv_{\infty}^2}r - \rho^2\right)\Big|_{r=r_{min}} = 0$$
, 得: $r_{min} = \frac{\alpha}{mv_{\infty}^2} \pm \sqrt{\frac{\alpha^2}{m^2v_{\infty}^4} + \rho^2}$.

考虑物理意义
$$r > 0$$
, 有 $r_{min} = \frac{\alpha}{mv_{\infty}^2} + \sqrt{\frac{\alpha^2}{m^2v_{\infty}^4} + \rho^2}$.

曲
$$\varphi_0 = \arcsin \left[\frac{1}{\sqrt{\rho^2 + \frac{\alpha^2}{m^2 v_\infty^4}}} \left(\frac{\rho^2}{r} + \frac{\alpha}{m v_\infty^2} \right) \right]_{\infty}^{r_{min}}$$
, 得:

$$\varphi_0 = \arcsin\left[\frac{1}{\sqrt{\rho^2 + \frac{\alpha^2}{m^2 v_\infty^4}}} \left(\frac{\rho^2}{\frac{\alpha}{m v_\infty^2} + \sqrt{\frac{\alpha^2}{m^2 v_\infty^4} + \rho^2}} + \frac{\alpha}{m v_\infty^2}\right)\right] - \arcsin\left(\frac{\frac{\alpha}{m v_\infty^2}}{\sqrt{\rho^2 + \frac{\alpha^2}{m^2 v_\infty^4}}}\right).$$

重新设
$$a = \frac{\alpha}{mv_{\infty}^2}, b = \rho^2$$
, 上式化简为: $\varphi_0 = \arcsin\left(\frac{b}{a\sqrt{a^2+b}+a^2+b} + \frac{a}{\sqrt{a^2+b}}\right) - \arcsin\frac{a}{\sqrt{a^2+b}}$.

$$\exists \mathbb{P}: \ \varphi_0 + \arcsin\frac{a}{\sqrt{a^2 + b}} = \arcsin\left(\frac{b}{a\sqrt{a^2 + b} + a^2 + b} + \frac{a}{\sqrt{a^2 + b}}\right).$$

$$\Rightarrow \sqrt{b}\sin\varphi_0 + a\cos\varphi_0 = \frac{b + a^2 + a\sqrt{a^2 + b}}{a + \sqrt{a^2 + b}} = \sqrt{a^2 + b}.$$

由
$$\sin \varphi = \sqrt{1 - \cos^2 \varphi_0}$$
, 得: $(a^2 + b)\cos^2 \varphi_0 - 2a\sqrt{a^2 + b}\cos \varphi_0 + a^2 = 0$.

解得:
$$\cos \varphi_0 = \frac{a}{\sqrt{a^2+b}}$$
.

代入
$$a = \frac{\alpha}{mv_{\infty}^2}, b = \rho^2$$
,得: $\cos \varphi_0 = \frac{\alpha}{\sqrt{\alpha^2 + \rho^2 m^2 v_{\infty}^4}}$

由
$$\frac{1}{\cos^2 \varphi_0} = 1 + \tan^2 \varphi_0$$
,得: $\tan^2 \varphi_0 = \frac{\rho^2 m^2 v_\infty^4}{\alpha^2}$,即 $\rho^2 = \frac{\alpha^2}{m^2 v_\infty^4} \tan^2 \varphi_0$.

由
$$\varphi_0 = \frac{\pi - \chi}{2}$$
, 得: $\rho^2 = \frac{\alpha^2}{m^2 v_2^4} \cot^2 \frac{\chi}{2}$.

曲
$$d\sigma = |2\pi\rho d\rho|$$
, 원: $d\sigma = \frac{\pi\alpha^2}{m^2v_{\infty}^4} \frac{\cos\frac{\chi}{2}}{\sin^3\frac{\chi}{2}} d\chi$.

由
$$do = 2\pi \sin \chi d\chi$$
, 得: $d\chi = \frac{do}{4\pi \sin \frac{\chi}{2}} \cos \frac{\chi}{2}$.

曲
$$d\sigma = \frac{\pi\alpha^2}{m^2v_{\infty}^4} \frac{\cos\frac{\chi}{2}}{\sin^3\frac{\chi}{2}} d\chi$$
,得: $d\sigma = \frac{\alpha^2}{m^2v_{\infty}^4} \frac{do}{\sin^4\frac{\chi}{2}}$.

[散射出射粒子的有效散射截面] $d\sigma_2 = 2\pi \left(\frac{\alpha}{mv_\infty^2}\right)^2 \frac{\sin\theta_2}{\cos^3\theta_2} d\theta_2 = \left(\frac{\alpha}{mv_\infty^2}\right)^2 \frac{do_2}{\cos^3\theta_2} d\theta_2$

由 C 系到 L 系的弹性碰撞出射粒子速度方向与入射粒子偏转角的关系 $\theta_2 = \frac{\pi - \chi}{2}$, 得: $\chi = \pi - 2\theta_2$.

曲 $do = 2\pi \sin \chi d\chi$, 得: $do_2 = 2\pi \sin \theta_2 d\theta_2$, 即 $d\theta_2 = \frac{do_2}{2\pi \sin \theta_2}$.

[入射粒子的有效散射截面] 入射粒子的有效散射截面非常复杂, 但在两种特殊质量情况下有

$$d\sigma_1 = \begin{cases} \left(\frac{\alpha}{4E_1}\right)^2 \frac{do_1}{\sin^4\left(\frac{\theta_1}{2}\right)}, m_1 << m_2 \\ \left(\frac{\alpha}{E_1}\right)^2 \frac{\cos\theta_1}{\sin^4\theta_1} do_1, m_1 = m_2 \end{cases}$$
 . 其中, m_2 是散射粒子 (力心), m_1 是被散射粒子 (运动粒子).

当 $m_2 >> m_1$ 时, 有 $\chi \approx \theta_1, m \approx m_1$.

当 $m_1 = m_2$, 约化质量 $m = \frac{m_1 m_2}{m_1 + m_2} = \frac{m_1}{2}$.

曲
$$\theta_1 = \frac{\chi}{2}$$
 得: $\chi = 2\theta_1$. 由 $d\sigma = \pi \left(\frac{\alpha}{mv_\infty^2}\right)^2 \frac{\cos\frac{\chi}{2}}{\sin^3\frac{\chi}{2}} d\chi$, 得: $d\sigma_1 = 2\pi \left(\frac{\alpha}{E_1}\right)^2 \frac{\cos\theta_1}{\sin^3\theta_1} d\theta_1$.

由 $do = 2\pi \sin \chi d\chi$, 得: $do_1 = \pi \sin \theta_1 d\theta_1$, 即 $d\theta_1 = \frac{do_1}{2\pi \sin \theta_1}$.

带入
$$d\sigma_1 = 2\pi \left(\frac{\alpha}{E_1}\right)^2 \frac{\cos\theta_1}{\sin^3\theta_1} d\theta_1$$
, 得: $d\sigma_1 = \left(\frac{\alpha}{E_1}\right)^2 \frac{\cos\theta_1}{\sin^4\theta_1} do_1$.

[两个全同粒子的有效散射截面] $d\sigma = \left(\frac{\alpha}{E_1}\right)^2 \left(\frac{1}{\cos^4 \theta} + \frac{1}{\sin^4 \theta}\right) \cos \theta do$.

对于两个全同粒子, 散射粒子与被散射粒子等效, 所以 $d\sigma = d\sigma_1 + d\sigma_2$.

[散射粒子依赖碰撞中能量损失的分布] 散射质点所获得的速度在 C 系中的散射角为 $v_2' = \frac{2m_1}{m_1+m_2}v_\infty\sin\frac{\chi}{2}$, 粒子所获得的能量为 $\varepsilon = \frac{m_2v_2'^2}{2} = \frac{2m^2}{m_2}v_\infty^2\sin^2\frac{\chi}{2}$, 有效截面对损失能量的关系 $d\sigma = 2\pi\frac{\alpha^2}{m_2v_\infty^2}\frac{d\varepsilon}{\varepsilon^2}$, 损失能量的范围 $\varepsilon \in [0,\varepsilon_{max}] = \left[0,\frac{2m^2v_\infty^2}{m_2}\right]$.

曲
$$v_2' = \frac{2m_1}{m_1 + m_2} v_\infty \sin \frac{\chi}{2}$$
 和 $\varepsilon = \frac{1}{2} m_2 v_2'^2$,得: $\varepsilon = \frac{2m_1^2 m_2}{(m_1 + m_2)^2} v_\infty^2 \sin^2 \frac{\chi}{2}$.

曲
$$m = \frac{m_1 m_2}{m_1 + m_2}$$
,得: $\varepsilon = \frac{2m^2}{m_2} v_\infty^2 \sin^2 \frac{\chi}{2}$,即 $\sin^2 \frac{\chi}{2} = \frac{m_2 \varepsilon}{2m^2 v_\infty^2}$

曲
$$d\sigma = \pi \left(\frac{\alpha}{mv_{\infty}^2}\right)^2 \frac{\cos\frac{\chi}{2}}{\sin^3\frac{\chi}{2}} d\chi$$
, 得: $d\sigma = 2\pi \frac{\alpha^2}{m_2 v_{\infty}^2} \frac{d\varepsilon}{\varepsilon^2}$.

[**小角度散射**] 当瞄准距离很大时, 力场 U 很弱, 因而偏转角很小, 偏转角 $\theta_1 \approx \sin \theta_1$. 此时, 散射角 $\theta_1 \approx -\frac{2\rho}{m_1 v_\infty^2} \int_{\rho}^{\infty} \frac{dU}{dr} \frac{dr}{\sqrt{r^2 - \rho^2}}$, 有效散射截面 $d\sigma = \left| \frac{d\rho}{d\theta_1} \right| \frac{\rho(\theta_1)}{\theta_1} do_1$.

设粒子初始速度 \vec{v}_{∞} 沿 x 轴. 粒子散射前后偏转角足够小 $\theta_1 \approx \sin \theta_1$, 速度改变量足够小 $dt \approx \frac{dx}{v_{\infty}}$, 粒子运动轨迹近似为直线 $\rho \approx y$.

粒子偏转角满足 $\sin \theta_1 = \frac{\vec{p}_{1y}'}{\vec{p}_1'} \approx \theta_1$, 得: $p'_{1y} = m_1 v_\infty \theta_1$.

由
$$\vec{p}_y = \vec{F}_y$$
, 得: $\vec{p}'_{1y} = \int_{-\infty}^{+\infty} \vec{F}_y dt$.

曲
$$dt \approx \frac{dx}{v_{\infty}}$$
, 得: $p'_{1y} \approx \int_{-\infty}^{+\infty} -\frac{\rho}{r} \frac{\partial U}{\partial r} \frac{dx}{v_{\infty}} = -\frac{\rho}{v_{\infty}} \int_{-\infty}^{+\infty} \frac{1}{r} \frac{\partial U}{\partial r} dx$

曲
$$r^2 = x^2 + y^2 \approx x^2 + \rho^2$$
, 得: $dx \approx \frac{r}{\sqrt{r^2 - \rho^2}} dr$, 则 $p'_{1y} \approx -\frac{2\rho}{v_{\infty}} \int_{\rho}^{\infty} \frac{1}{\sqrt{r^2 - \rho^2}} \frac{\partial U}{\partial r} dr$.

由
$$\theta \approx \frac{p'_{1y}}{m_1 v_{\infty}}$$
,得: $\theta_1 \approx -\frac{2\rho}{m_1 v_{\infty}^2} \int_{\rho}^{\infty} \frac{1}{\sqrt{r^2 - \rho^2}} \frac{\partial U}{\partial r} dr$.

由
$$d\sigma = |2\pi\rho d\rho| = 2\pi\rho \left| \frac{d\rho}{d\chi} \right| d\chi$$
 和 $\theta_1 = \frac{\chi}{2}$, 得: $d\sigma = 2\pi\rho \left| \frac{d\rho}{d\theta_1} \right| d\theta_1$.

由
$$do_1 = 2\pi \sin \theta_1 d\theta_1$$
, 得: $d\sigma = \rho \left| \frac{d\rho}{d\theta_1} \frac{do_1}{\sin \theta_1} \right| \approx \frac{\rho}{\theta_1} \left| \frac{d\rho}{d\theta_1} \right| do_1$.