# Современные нейросетевые подходы в области обработки естественного языка

Мирас Амир

МГУ имени М.В. Ломоносова

15 октября 2018 г.

## Содержание

- Введение
- 2 История
- 3 AWD-LSTM
- **4** ULMFiT
- 5 TCN
- **6** Transformer
- 🕜 Ссылки

### Что такое NLP?

■ NLP — это способ построения вычислительных алгоритмов для анализа, понимания и извлечения смысла с человеческого языка.



### Почему это сложно?

- Для понимания естественного языка нужно не просто правильным образом «распарсить» текст как последовательность букв или слов.
- Например, задача разрешение анафоры:
  - «Мама вымыла раму, и теперь она блестит».
  - «Мама вымыла раму, и теперь она устала».
  - К чему относится местоимение «она» в каждой из этих фраз?
- Нужно иметь «здравый смысл», представление об окружающем мире.

### Примеры задач

#### Задачи:

- классификация текстов;
- тематическое моделирование;
- машинный перевод;
- автоматическое реферирование;
- диалоговые модели;
- ответы на вопросы;
- . . .
- Сосредоточимся не на конкретных задачах, а на революции нейросетевых методов их решения.

### 2001 – Нейросетевое языковое моделирование

- Языковое моделирование: предсказывание следующего слова по предыдущим словам.
- Классический подход: n-граммы слов со сглаживанием.



### 2013 - Word2vec

- Word2vec эффективное обучение векторных представлений слов.
- Word2vec предложен в двух вариантах: skip-gram и CBOW.



[Mikolov et al., ICLR '13; Mikolov et al., NIPS '13]

### 2013 – Нейронные сети

- Основная проблема для нейронных сетей работа с динамическими входными последовательностями.
- Основные типы:
  - Рекуррентные нейронные сети.
  - Сверточные нейронные сети.

### 2013 – Рекуррентные нейронные сети

- Обычный RNN не используются, поскольку градиенты исчезают или взрываются для длинных входов.
- Решение: LSTM.



[Olah, '15]

### 2014 – Сверточные нейронные сети

- Одномерная свертка, которая ходит только по ширине.
- Max-over-time pooling: max-pooling, примененный ко всей последовательности сразу.
- Легко распараллеливается по сравнению с RNN.
- Проблема: CNN могут работать только со входом фиксированного размера.



### 2014 – seq2seq

- Кодировщик обрабатывает вход слово за словом и сжимает его в векторное представление; затем декодировщик предсказывает выход слово за словом на основе состояния кодировщика.
- Основное приложение: машинный перевод.



[Sutskever et al., NIPS '14]

### 2014 - seq2seq

- Для сохранения контекста слова как слева, так и справа используется двунаправленный LSTM.
- Проблема: всё предложение целиком сворачивается в вектор фиксированной размерности.



### 2015 - Механизм внимания

 Вместо того, чтобы создавать один вектор контекста из последнего скрытого состояния кодировщика, будем использовать взвешенную комбинацию всех входных состояний.



[Bahdanau et al., ICLR '15]

### 2015 - Механизм внимания

- Пусть входная последовательность  $x = [x_1, x_2, \cdots, x_T]$ , а выходная  $y = [y_1, y_2, \cdots, y_M]$ .
- $\blacksquare h_i = \left[\overrightarrow{h_i}, \overleftarrow{h_i}\right].$
- Вектор контекста для выхода  $y_t$ :  $c_t = \sum_{i=1}^{T} \alpha_{ti} h_i$ .
- Насколько хорошо выровнены  $y_t$  и  $x_i$ :  $\alpha_{ti} = \frac{score(s_{t-1},h_i)}{\sum_{j=1}^{T} score(s_{t-1},h_j)}.$
- $score(s_{t-1}, h_i) = v_a^T tanh(W_a[s_t, h_i]).$



[Bahdanau et al., ICLR '15]

- Стратегии регуляризации, такие как dropout и batch normalization, не работают в случае рекуррентных нейронных сетей:
  - dropout нарушает способность RNN сохранять долгосрочные зависимости:
  - batch normalization усложняет модель.
- В статье предлагается набор эффективных стратегий регуляризации, которые могут быть использованы без изменения существующих реализаций LSTM.

[Merity et al., 2017]

- Обычный dropout использует разные маски выбрасывания на разных временных шагах, без выбрасывания на повторяющихся слоях.
- Вариационный dropout использует одну и ту же маску выбрасывания на каждом временном шаге, включая повторяющиеся слои.



■ Dropout



■ DropConnect



- LSTM:
  - $i_t = \sigma \left( W^i x_t + U^i h_{t-1} \right)$
  - $f_t = \sigma \left( W^f x_t + U^f h_{t-1} \right)$
  - $o_t = \sigma (W^o x_t + U^o h_{t-1})$
  - $\overline{c}_t = \tanh (W^c x_t + U^c h_{t-1})$
  - $c_t = i_t \circ \overline{c}_t + f_t \circ c_{t-1}$
  - $h_t = o_t \circ \tanh(c_t)$
- Вариационный DropConnect (WeightDrop) для весов:  $[U^i, U^f, U^o, U^c]$ .
- lacktriangle Вариационный DropOut для весов:  $\left[W^i,W^f,W^o,W^c\right]$  .
- Embedding DropOut: эквивалентно удалению слов из словаря.
- Последовательности переменной длины.
- Weight tying: общие веса для embedding и softmax слоев.
- Activation Regularization (AR):  $\alpha L_2(m \circ h_t)$ .
- Temporal Activation Regularization (TAR):  $\beta L_2(h_t h_{t-1})$ .

### ■ Результаты (perplexity) на данных Penn Treebank:

| Model                                                         | Parameters      | Validation     | Test           |
|---------------------------------------------------------------|-----------------|----------------|----------------|
| Mikolov & Zweig (2012) - KN-5                                 | 2M <sup>‡</sup> | _              | 141.2          |
| Mikolov & Zweig (2012) - KN5 + cache                          | 2M <sup>‡</sup> | _              | 125.7          |
| Mikolov & Zweig (2012) - RNN                                  | 6M <sup>‡</sup> | _              | 124.7          |
| Mikolov & Zweig (2012) - RNN-LDA                              | 7M <sup>‡</sup> | _              | 113.7          |
| Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache               | 9M <sup>‡</sup> | _              | 92.0           |
| Zaremba et al. (2014) - LSTM (medium)                         | 20M             | 86.2           | 82.7           |
| Zaremba et al. (2014) - LSTM (large)                          | 66M             | 82.2           | 78.4           |
| Gal & Ghahramani (2016) - Variational LSTM (medium)           | 20M             | $81.9 \pm 0.2$ | $79.7 \pm 0.1$ |
| Gal & Ghahramani (2016) - Variational LSTM (medium, MC)       | 20M             | _              | $78.6 \pm 0.1$ |
| Gal & Ghahramani (2016) - Variational LSTM (large)            | 66M             | $77.9 \pm 0.3$ | $75.2 \pm 0.2$ |
| Gal & Ghahramani (2016) - Variational LSTM (large, MC)        | 66M             | _              | $73.4 \pm 0.0$ |
| Kim et al. (2016) - CharCNN                                   | 19M             | _              | 78.9           |
| Merity et al. (2016) - Pointer Sentinel-LSTM                  | 21M             | 72.4           | 70.9           |
| Grave et al. (2016) - LSTM                                    | _               | _              | 82.3           |
| Grave et al. (2016) - LSTM + continuous cache pointer         | _               | _              | 72.1           |
| Inan et al. (2016) - Variational LSTM (tied) + augmented loss | 24M             | 75.7           | 73.2           |
| Inan et al. (2016) - Variational LSTM (tied) + augmented loss | 51M             | 71.1           | 68.5           |
| Zilly et al. (2016) - Variational RHN (tied)                  | 23M             | 67.9           | 65.4           |
| Zoph & Le (2016) - NAS Cell (tied)                            | 25M             | _              | 64.0           |
| Zoph & Le (2016) - NAS Cell (tied)                            | 54M             | _              | 62.4           |
| Melis et al. (2017) - 4-layer skip connection LSTM (tied)     | 24M             | 60.9           | 58.3           |
| AWD-LSTM - 3-layer LSTM (tied)                                | 24M             | 60.0           | 57.3           |
| AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer     | 24M             | 53.9           | 52.8           |

### ■ Результаты (perplexity) на данных WikiText-2:

| Model                                                                       | Parameters | Validation | Test |
|-----------------------------------------------------------------------------|------------|------------|------|
| Inan et al. (2016) - Variational LSTM (tied) ( $h = 650$ )                  | 28M        | 92.3       | 87.7 |
| Inan et al. (2016) - Variational LSTM (tied) ( $h = 650$ ) + augmented loss | 28M        | 91.5       | 87.0 |
| Grave et al. (2016) - LSTM                                                  | _          | _          | 99.3 |
| Grave et al. (2016) - LSTM + continuous cache pointer                       | _          | _          | 68.9 |
| Melis et al. (2017) - 1-layer LSTM (tied)                                   | 24M        | 69.3       | 65.9 |
| Melis et al. (2017) - 2-layer skip connection LSTM (tied)                   | 24M        | 69.1       | 65.9 |
| AWD-LSTM - 3-layer LSTM (tied)                                              | 33M        | 68.6       | 65.8 |
| AWD-LSTM - 3-layer LSTM (tied) + continuous cache pointer                   | 33M        | 53.8       | 52.0 |

■ Результаты при удалении каждой формы регуляризации:

|                                          | PTB        |      | WT2        |      |
|------------------------------------------|------------|------|------------|------|
| Model                                    | Validation | Test | Validation | Test |
| AWD-LSTM (tied)                          | 60.0       | 57.3 | 68.6       | 65.8 |
| – fine-tuning                            | 60.7       | 58.8 | 69.1       | 66.0 |
| - NT-ASGD                                | 66.3       | 63.7 | 73.3       | 69.7 |
| – variable sequence lengths              | 61.3       | 58.9 | 69.3       | 66.2 |
| <ul> <li>embedding dropout</li> </ul>    | 65.1       | 62.7 | 71.1       | 68.1 |
| <ul><li>weight decay</li></ul>           | 63.7       | 61.0 | 71.9       | 68.7 |
| – AR/TAR                                 | 62.7       | 60.3 | 73.2       | 70.1 |
| <ul> <li>full sized embedding</li> </ul> | 68.0       | 65.6 | 73.7       | 70.7 |
| - weight-dropping                        | 71.1       | 68.9 | 78.4       | 74.9 |

- Transfer learning сильно повлияло на компьютерное зрение, но плохо изучено в NLP.
- В статье предлагается предобученная модель ULMFiT, которая может быть применена к любой задаче в NLP.
- Метод превосходит state-of-the-art результаты на шести задачах классификации текстов.

[Howard et al., 2018]



- AWD-LSTM с алгоритмом оптимизации SGD.
- Модель предобучается на задаче языковой модели на датасете Wikitext-103 из 103 млн. слов.
- Модель дообучается на данных целевой задачи.
- Полученная модель дообучается уже на целевой задаче классификации.

■ Slanted triangular learning rates (1cycle):



- Discriminative fine-tuning: различные параметры learning rate для различных слоев сети (чем глубже слой, тем больше learning rate).
- Concat pooling: для классификации используется не только последнее скрытое состояние  $h_T$ , а среднее и максимум по всем скрытым состояниям  $H = \{h_1, ..., h_T\}$ :
  - $h_c = [h_T, maxpool(H), meanpool(H)];$
- Gradual unfreezing: постепенно размораживаются слои начиная с последнего слоя, поскольку она содержит наименее общие знания и информация.

#### ■ Результаты:

| Model                             | Test | Model                        | Test |
|-----------------------------------|------|------------------------------|------|
| CoVe (McCann et al., 2017)        | 8.2  | CoVe (McCann et al., 2017)   | 4.2  |
| oh-LSTM (Johnson and Zhang, 2016) | 5.9  |                              | 4.0  |
| ≥ Virtual (Miyato et al., 2016)   | 5.9  | LSTM-CNN (Zhou et al., 2016) | 3.9  |
| ULMFiT (ours)                     | 4.6  | ULMFiT (ours)                | 3.6  |

Table 2: Test error rates (%) on two text classification datasets used by McCann et al. (2017).

|                                     | AG   | DBpedia | Yelp-bi | Yelp-full |
|-------------------------------------|------|---------|---------|-----------|
| Char-level CNN (Zhang et al., 2015) | 9.51 | 1.55    | 4.88    | 37.95     |
| CNN (Johnson and Zhang, 2016)       | 6.57 | 0.84    | 2.90    | 32.39     |
| DPCNN (Johnson and Zhang, 2017)     | 6.87 | 0.88    | 2.64    | 30.58     |
| ULMFiT (ours)                       | 5.01 | 0.80    | 2.16    | 29.98     |

Table 3: Test error rates (%) on text classification datasets used by Johnson and Zhang (2017).

■ Сравнение предобученной модели с моделью без предобучения:

| Pretraining                          | IMDb        | TREC-6      | AG          |
|--------------------------------------|-------------|-------------|-------------|
| Without pretraining With pretraining | 5.63        | 10.67       | 5.52        |
|                                      | <b>5.00</b> | <b>5.69</b> | <b>5.38</b> |

■ Зависимость ошибки на данных IMDb, TREC-6 и AG (слева направо) от количества данных в обучении:







- Утверждается, что сверточные нейронные сети подходят для задач NLP лучше RNN.
- Предлагаются методы обучения глубоких временных сверточных сетей (TCN).

[Bai et al., 2018]



- Causal convolutions: выход в момент времени t зависит только от элементов из времени t и ранее в предыдущем слое.
- Dilated Convolutions: экспоненциальный receptive field по глубине сети.
- Residual Connections: способ проброса градиентов в глубину, не проходя через нелинейные функции активации.

#### В итоге:

- Параллелизм.
- Гибкий размер receptive field.
- Стабильные градиенты.
- Входы переменной длины.

■ Результаты на задаче языкового моделирования:

| Sequence Modeling Task                    | Model Size ( $\approx$ ) | Models |        |        |        |
|-------------------------------------------|--------------------------|--------|--------|--------|--------|
| Sequence Wodering Task                    |                          | LSTM   | GRU    | RNN    | TCN    |
| Seq. MNIST (accuracy <sup>h</sup> )       | 70K                      | 87.2   | 96.2   | 21.5   | 99.0   |
| Permuted MNIST (accuracy)                 | 70K                      | 85.7   | 87.3   | 25.3   | 97.2   |
| Adding problem $T$ =600 (loss $^{\ell}$ ) | 70K                      | 0.164  | 5.3e-5 | 0.177  | 5.8e-5 |
| Copy memory $T=1000 \text{ (loss)}$       | 16K                      | 0.0204 | 0.0197 | 0.0202 | 3.5e-5 |
| Music JSB Chorales (loss)                 | 300K                     | 8.45   | 8.43   | 8.91   | 8.10   |
| Music Nottingham (loss)                   | 1 <b>M</b>               | 3.29   | 3.46   | 4.05   | 3.07   |
| Word-level PTB (perplexity $^{\ell}$ )    | 13M                      | 78.93  | 92.48  | 114.50 | 88.68  |
| Word-level Wiki-103 (perplexity)          | -                        | 48.4   | -      | -      | 45.19  |
| Word-level LAMBADA (perplexity)           | -                        | 4186   | -      | 14725  | 1279   |
| Char-level PTB (bpc $^{\ell}$ )           | 3M                       | 1.36   | 1.37   | 1.48   | 1.31   |
| Char-level text8 (bpc)                    | 5M                       | 1.50   | 1.53   | 1.69   | 1.45   |

■ Предлагается новая архитектура для решения задачи машинного перевода, которая не является ни RNN, ни CNN.



[Vaswani et al., 2017]

- Каждое слово параллельно проходит через слои кодировщика:
  - Каждый слой состоит из multi-head attention и полносвязной сети.
  - Каждый подслой использует residual connections и layer normalization.
  - Стекаем N = 6 таких слоев.



- Scaled dot-product attention: Attention(Q, K, V) =  $softmax(\frac{QK^T}{\sqrt{n}})V$ .
- K и V это всегда один и тот же вектор.



- Multi-head attention: специальный новый слой, который дает возможность каждому входному вектору взаимодействовать с другими словами через attention mechanism.
- ullet MultiHead $(Q,K,V)=[head_1,\cdots,head_h]W^O,$  где  $head_i=Attention(QW_i^Q,KW_i^K,VW_i^V)$



- Декодировщик запускается по слову за раз: получает на вход прошлое слово и должен выдать следующее.
- Два типа использования Multi-head attention:
  - Возможность обратиться к векторам прошлых декодированных слов.
  - Возможность обратиться к выходу кодировщика.



#### В итоге:



#### Результаты:

## English German Translation quality



#### ■ Результаты:



#### Ссылки

- Прогресс в NLP.
- Блог компании AYI IEN.
- Блог Sebastian Ruder.
- Статья про Transformer.
- Книга «Глубокое обучение. Погружение в мир нейронных сетей».