Feuille d'exercices 11: Anneaux, $\mathbb{Z}/n\mathbb{Z}$.

Exercice 11.1 : (niveau 1)

Déterminer a et b appartenant à $\mathbb{Z}/21\mathbb{Z}$ tels que $a^2 + \overline{6}$ $b^2 = \overline{0}$.

Exercice 11.2 : (niveau 1)

Résoudre dans $\mathbb{Z}/13\mathbb{Z}$ l'équation en l'inconnue x suivante : $x^2 + 2x + \overline{10} = 0$.

Exercice 11.3: (niveau 1)

- 1°) Soient (G, .) et (G', .) deux groupes et $f: G \longrightarrow G'$ un morphisme de groupes. Soit $x \in G$. On suppose que x est d'ordre fini n. Montrer que f(x) est aussi d'ordre fini et que cet ordre divise n.
- **2°)** Déterminer tous les morphismes de groupes de $\mathbb{Z}/7\mathbb{Z}$ dans $\mathbb{Z}/13\mathbb{Z}$, et de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/12\mathbb{Z}$.

Exercice 11.4 : (niveau 1)

Soit K un corps.

- 1°) Quels sont les idéaux de K?
- 2°) Peut-on énoncer une propriété réciproque?
- **3°)** Soient A un anneau différent de $\{0\}$ et $f:K\longrightarrow A$ un morphisme d'anneaux. Montrer que f est injectif.

Exercice 11.5 : (niveau 2)

Soient A un anneau commutatif et I un idéal de A. On appelle radical de I et on note R(I) l'ensemble des $x \in A$ pour lesquels il existe $n \in \mathbb{N}^*$ tel que $x^n \in I$.

- $\mathbf{1}^{\circ}$) Montrer que R(I) est un idéal de A contenant I.
- 2°) Montrer que R(R(I)) = R(I).
- **3°)** Soit J un second idéal de A. Montrer que $R(I \cap J) = R(I) \cap R(J)$.
- **4°**) Soit $k \in \mathbb{Z}$. Avec $A = \mathbb{Z}$, déterminer $R(k\mathbb{Z})$.

Exercice 11.6: (niveau 2)

Montrer que $(p-1)! \equiv -1$ [p] si et seulement si p est premier (c'est le théorème de Wilson).

Indication : Lorsque p est premier, on pourra commencer par calculer dans $\mathbb{Z}/p\mathbb{Z}$ la quantité $\prod_{k=2}^{p-2} \overline{k}$ en regroupant \overline{k} et \overline{k}^{-1} .

Exercice 11.7 : (niveau 2)

Soit $n, m \in \mathbb{N}^*$ deux entiers premiers entre eux. Montrer que $n^{\varphi(m)} + m^{\varphi(n)} \equiv 1 \lceil nm \rceil$.

Exercice 11.8 : (niveau 2)

L'ensemble des entiers de Gauss est $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}.$

- 1°) Montrer que $\mathbb{Z}[i]$ est un anneau.
- 2°) Déterminer les éléments inversibles de $\mathbb{Z}[i]$.
- **3°)** Démontrer que, pour tout $u, v \in \mathbb{Z}[i]$ avec $v \neq 0$, il existe $q, r \in \mathbb{Z}[i]$ tels que u = vq + r avec |r| < |v|.
- **4°)** Montrer que $\mathbb{Z}[i]$ est un anneau principal.

Exercice 11.9 : (niveau 2)

Déterminer les morphismes d'anneaux de \mathbb{Z}^n dans \mathbb{Z} (où $n \in \mathbb{N}^*$).

Exercice 11.10 : (niveau 2)

Soit p un nombre premier et $k \in \mathbb{N}^*$ tel que $k \wedge (p-1) = 1$. Montrer que l'application $\mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z}$ est une bijection.

Exercice 11.11 : (niveau 2)

Soit p un nombre premier. Montrer que pour tout $k \in \mathbb{N}$, $\sum_{x \in \mathbb{Z}/p\mathbb{Z}} x^k \in \{0, -1\}$.

Exercice 11.12 : (niveau 2)

p et q sont deux entiers premiers et impairs. On suppose que q divise $2^p - 1$. Montrer que $q \equiv 1$ [2p].

Exercice 11.13: (niveau 2)

Soit A un anneau commutatif. On note N l'ensemble des éléments nilpotents de A et $B = \{1 + x \mid x \in N\}$. Montrer que (B, \times) est un groupe.

Exercice 11.14: (niveau 3)

Soient $r, s \in \mathbb{N}^*$, $A_1, \ldots, A_r, B_1, \ldots, B_s$ des anneaux intègres tels que $A = A_1 \times \cdots \times A_r$ et $B = B_1 \times \cdots \times B_s$ sont isomorphes. Montrer que r = s.

Exercice 11.15 : (niveau 3)

Soit E un ensemble fini. On admet que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau (où $A\Delta B = (A \setminus B) \cup (B \setminus A)$). Montrer que tous ses idéaux sont principaux. Est-ce encore vrai lorsque E est infini?

Exercice 11.16: (niveau 3)

Soit p un nombre premier.

On note $\mathbb{Z}_{(p)} = \{\frac{\vec{\alpha}}{\beta}/(\alpha, \beta) \in \mathbb{Z}^2, \alpha \wedge \beta = 1 \text{ et } \beta \notin p\mathbb{Z}\}.$

- $\mathbf{1}^{\circ}$) Montrer que $\mathbb{Z}_{(p)}$ est un anneau commutatif intègre.
- **2°)** Montrer que $I = \{\frac{\alpha}{\beta}/(\alpha, \beta) \in \mathbb{Z}^2, \alpha \wedge \beta = 1, \alpha \in p\mathbb{Z} \text{ et } \beta \notin p\mathbb{Z}\}$ est un idéal de $\mathbb{Z}_{(p)}$, différent de $\mathbb{Z}_{(p)}$.
- 3°) Montrer que tout idéal de $\mathbb{Z}_{(p)}$ différent de $\mathbb{Z}_{(p)}$ est inclus dans I.
- $\mathbf{4}^{\circ}$) Décrire les idéaux de $\mathbb{Z}_{(p)}$.

Exercice 11.17 : (niveau 3)

On s'intéresse à l'équation $5x^3 + 11y^3 + 13z^3 = 0$ où les inconnues sont dans \mathbb{Z} .

- 1°) Si $(x, y, z) \in \mathbb{Z}^3$ est solution, montrer que 13 divise x, y, z.
- 2°) Quelles sont les solutions de l'équation?

Exercice 11.18: (niveau 3)

La suite croissante des nombres premiers satisfait-elle une relation de récurrence linéaire à coefficients rationnels?

Exercices supplémentaires

Exercice 11.19: (niveau 1)

Si B est un anneau, on note Inv(B) l'ensemble des éléments inversibles de B. Soient E un ensemble et A un anneau. Montrer que $Inv(\mathcal{F}(E,A)) = \mathcal{F}(E,Inv(A))$

Exercice 11.20 : (niveau 1)

Dans un anneau commutatif (A, +, .), montrer que pour tout $n \in \mathbb{N}$ et $a_1, ..., a_n \in A$,

$$2\sum_{k=1}^{n} a_k(a_1 + \dots + a_k) = \left(\sum_{k=1}^{n} a_k\right)^2 + \sum_{k=1}^{n} a_k^2.$$

Exercice 11.21: (niveau 1)

Soient A et B deux anneaux commutatifs, $f:A\longrightarrow B$ un morphisme d'anneaux, et I un idéal de A. Montrer que f(I) est un idéal de Im(f).

Exercice 11.22: (niveau 1)

- 1°) Soit p un nombre premier. Résoudre l'équation $x^2 = x$ dans $\mathbb{Z}/p\mathbb{Z}$.
- **2°)** Résoudre l'équation $x^2 = x$ dans $\mathbb{Z}/34\mathbb{Z}$.
- **3°)** Résoudre l'équation $x^2 = x$ dans $\mathbb{Z}/30\mathbb{Z}$.

Exercice 11.23: (niveau 2)

Montrer que tout anneau intègre fini est un corps.

Exercice 11.24: (niveau 2)

- 1°) Résoudre l'équation $10x \equiv 14$ [15] en l'inconnue $x \in \mathbb{Z}$.
- **2°)** Résoudre l'équation $10x \equiv 14$ [18] en l'inconnue $x \in \mathbb{Z}$.
- **3°)** Plus généralement, si $(a,b) \in \mathbb{Z}^2$ et $m \in \mathbb{N}^*$, comment résoudre l'équation $ax \equiv b \ [m]$?

Exercice 11.25 : (niveau 2)

Montrer que l'ensemble des nombres décimaux est un anneau principal.

Exercice 11.26: (niveau 2)

Soit \mathbb{K} un corps. Montrer que $(\mathbb{K}, +)$ et (\mathbb{K}^*, \times) ne sont pas des groupes isomorphes.

Exercice 11.27 : (niveau 2)

Soit A un anneau commutatif non réduit à $\{0\}$.

- 1°) On suppose que les seuls idéaux de A sont les idéaux triviaux ($\{0\}$ et A). Démontrer que A est un corps.
- **2°**) Un idéal I de A est dit premier lorsque $\forall x, y \in A$, $(xy \in I) \Longrightarrow (x \in I \lor y \in I)$. On suppose que tous les idéaux de A sont premiers. Démontrer que A est intègre, puis que $x \in x^2A$ pour tout $x \in A$ et enfin que A est un corps.

Exercice 11.28: (niveau 2)

1°) Soit A un anneau. On dira qu'un élément de A est nilpotent si et seulement s'il existe $k \in \mathbb{N}^*$ tel que $a^k = 0_A$.

Soient x et y deux éléments nilpotents de A tels que xy = yx.

Montrer que xy et x + y sont nilpotents.

- **2**°) Soit n un entier naturel supérieur ou égal à 2 que l'on décompose en produit de facteurs premiers : $n = \prod_{i=1}^k p_i^{\alpha_i}$, où, pour tout $i \in \{1, \dots, k\}$, $p_i \in \mathbb{P}$ et $\alpha_i \in \mathbb{N}^*$.
- a) Quels sont les éléments nilpotents de $\mathbb{Z}/n\mathbb{Z}$?
- b) Donner une condition nécessaire et suffisante pour que tout diviseur de 0 de $\mathbb{Z}/n\mathbb{Z}$ soit nilpotent.

Exercice 11.29 : (niveau 3)

Soit $n, k \in \mathbb{N}^*$. Donner une condition nécessaire et suffisante pour que l'application identiquement nulle soit l'unique morphisme de groupes de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/k\mathbb{Z}$.

Exercice 11.30 : (niveau 3)

- 1°) Montrer que, pour tout $r \in \mathbb{C}$ avec |r| < 1, $\sum_{n=0}^{+\infty} r^n = \frac{1}{1-r}$.
- **2°)** Dans un anneau A quelconque, si $a, b \in A$ sont tels que 1 ab est inversible, montrer que 1 ba est aussi inversible.

Exercice 11.31 : (niveau 3)

Soit G un groupe d'élément neutre e.

- 1°) Soit H et K deux sous-groupes de G d'ordres p et q respectivement, avec p et q premiers. Montrer que H = K ou $H \cap K = \{e\}$.
- **2°)** Montrer que tout groupe de cardinal 35 admet un sous-groupe d'ordre 5 et un sous-groupe d'ordre 7.

Exercice 11.32 : (niveau 3)

On note $\mathbb{Z}[j] = \{x + jy/x \in \mathbb{Z}, y \in \mathbb{Z}\}$ où $j = e^{\frac{2i\pi}{3}}$.

- $\mathbf{1}^{\circ}$) Vérifier que $\mathbb{Z}[j]$ est un sous-anneau de \mathbb{C} .
- **2°)** Soit $u \in \mathbb{Z}[j]$. Montrer que u est inversible (dans $\mathbb{Z}[j]$) si et seulement si |u|=1.
- **3°)** Montrer que l'ensemble U des éléments inversibles de $\mathbb{Z}[j]$ est un groupe multiplicatif, dont on déterminera les éléments.

Exercice 11.33: (niveau 3)

Soit $(p,q) \in \mathbb{N}^{*2}$, avec p < q. On suppose que p et q sont premiers entre eux et que q est premier avec 10.

Montrer que le développement décimal de $\frac{p}{q}$ est périodique et qu'une période est $\varphi(q)$, où φ désigne l'indicatrice d'Euler.