Run-Length Coding

(Chapter 4)

Chapter Overview

This chapter is the first that deals with Markov sources. After this chapter you should:

- be able to compute the stationary probability of a given two-state Markov source.
- have understood several algorithms, to the point that:
 - you are able to execute by hand a (compression or decompression) algorithm on a given input.
 - you are able to describe the (compression or decompression) algorithm in your own words, in a reasonably precise manner.
 - you are able to understand and explain, why these algorithms perform well. Your explanation and understanding should convey the intuition in a reasonably precise manner.
 - you should know examples of the use of these algorithms in software products, including an explanation of why they are effective in these application areas.
- The algorithm you should have understood is:
 - Run-Length Encoding, particularly the specialised versions of the ITU-T T.4 fax compression standard.

Run-length Encoding (RLE)

- Model: runs of symbols are frequent.
 - a "run" of a symbol means the input contains *successive* repetitions of the same symbol.
- RLE Basic idea: replace "aaaaabbbbbbb" by "5a7b."
- Memoryless model not suitable. Need a kind of Markov model, called Capon model¹.

Capon Model

Invented for compressing weather map data (black/white pictures).

- Pixels are actually only black or white 1 bit per pixel. Not grayscale pictures.
- Two-state Markov model, alphabet $\{b, w\}$ (black/white pixels).
- States called q_b, q_w .

Capon Model: Notation

- $Pr(q_w)$, $Pr(q_b)$ stationary probability of being in q_w or q_b .
 - Abbreviate $p_w = \Pr(q_w)$, $p_b = \Pr(q_b)$.
 - Recall: $H(S) = p_w \times H(q_w) + p_b \times H(q_b)$.
- $p_{ww} = \Pr(q_w \to q_w), p_{bb} = \Pr(q_b \to q_b).$ In this example $p_{ww} = 7/8, p_{bb} = 2/3.$

Calculating Stationary Probabilities in Capon Models

Calculating p_b and p_w :

$$p_b + p_w = 1$$

 $(2/3)p_b + (1/8)p_w = p_b$

⊳ Solve $p_b = 3/11$, $p_w = 8/11$.

Capon Model: Parameters

Measured parameters²:

	Weather Map	Printed Text
p_w	0.887	0.935
p_b	0.113	0.065
$\Pr[w \to b]$	0.027	0.024
$Pr[b \rightarrow w]$	0.214	0.347

²Murat Kunt, "Comparaison de techniques d'encodage pour la réduction de redondance d'images facsimile à deux niveaux", PhD Thesis EPFE, 1974.

Coding Capon Models

- Two-symbol alphabet runs alternate.
- How do we code the integers?
 - w and b runs have different distributions.
 - Pr[w run of length i] = ?
 - Pr[b run of length i] = ?

Coding Capon Models

$$Pr[black run of length i] = p_{bb}^{i-1}(1 - p_{bb})$$

 $Pr[white run of length i] = p_{ww}^{i-1}(1-p_{ww})$

$$w$$
 $(1-p_{ww})$ b

Golomb coding is close to optimal.

- Runs of w: $M = \left\lceil \frac{1}{1 p_{war}} \right\rceil$.
- Runs of *b*: $M = \lceil \frac{1}{1 p_{bb}} \rceil$.

Example

 $Pr[black run of length i] = (2/3)^{i-1} \cdot 1/3$ $Pr[white run of length i] = (7/8)^{i-1} \cdot 1/8$

▶ Most probable run length?

Golomb parameters:

- Runs of *w*: $M = \lceil \frac{1}{1-7/8} \rceil = 8$.
- Runs of *b*: $M = \lceil \frac{1}{1-2/3} \rceil = 3$.

RLE case study: Fax Compression

A fax image: 1700×2200 black/white pixels.

- ▶ Long runs of white pixels, short runs of black;
- Successive rows of pixels are often quite similar.

ITU-T T.4 standard

Symbols for:

- black and white runs of length 0, 1, ..., 63;
 - B0, B1, ..., B63, W0, W1, ..., W63.
- black and white runs of length 64, 128, 192, ..., 1728.
 - B64, B128, ..., B1728, W64, W128, ..., W1728.
- Otherwise too many symbols.
 - Black runs are shorter, and most commonly 2-3 pixels. Thus B2 and B3 are common symbols.
 - Capon model not really suitable, hence Golomb coding is not the best choice.
- Some others, e.g. EOL (end-of-line).

$$539W = 512W + 27W$$

"Remainder" codes

	ъ	a 1	D		a 1
White	Run	Code	Black	Run	Code
0		00110101	0		0000110111
1		000111	1		010
2		0111	2		11
3		1000	3		10
4		1011	4		011
5		1100	5		0011
45		000001000	45		0000101010101

▶ Black codes and white codes are independent: they can be prefixes of each other why?

"Remainder" codes

White Run	Code	Black Run	Code
0	00110101	0	0000110111
1	000111	1	010
2	0111	2	11
3	1000	3	10
4	1011	4	011
5	1100	5	0011
45	000001000	45	0000101010101

- ▶ Black codes and white codes are independent: they can be prefixes of each other why?
- Because black and white runs alternate, it is "safe". This keeps codes shorter.

A Run of Length 0?

Runs of length 0 don't exist, so why code for them?

- Codes for black and white runs alternate.
- Sometimes, "alternation" is broken e.g. 539W = 512W + 27W
- Decoder is aware of this: if it sees a code for a run that is for a multiple of 64, then it knows that the next code is for a run of the same colour. (*)
- What if a run in the raw image was (by chance) a multiple of 64? E.g.

```
128W, 6B, 10W 10010 0010 00111
128W + 12W, 2B, ... 10010 001000 11 1...
```

• This will confuse the decoder. So we write:

$$512W = 512W + 0W$$

This allows rule (*) to remain valid.