13-08-2024

Data pre-processing

- Mean centering
- Standardization
 - Mean zero and variance one
- Normalization: (0, 1)
- Whitening: axis rotation (decorrelate)
 - Principal component analysis
 - Issue with covariance matrix for large data
 - Estimate correlation matrix

Weights/Parameters initialization

- Random values: Gaussian distribution with 0 mean and small (10^{-2}) / large (10^2) standard deviation
 - Problem: Vanishing and exploding gradient
 - $E[o^{l-1}] = E[o^l] \text{ and } Var[o^{l-1}] = Var[o^l]$
 - what about the number of inputs to a neuron?
 - 2 vs 100 inputs to a neuron?
 - Solution: sample from a normal Gaussian distribution with 0 mean and $\sqrt{1/n_{in}}$ standard deviation
 - $ightharpoonup n_{in}$ number of inputs to a neuron
 - can you see any problem further?
 - what about the number of outputs at a particular layer?
 - * Xavier initialization: sample from a normal Gaussian distribution with 0 mean and $\sqrt{2/(n_{in}+n_{out})}$ standard deviation
 - $rac{1}{2}$ number of outputs to a neuron

Gradient descent strategies

$$\bullet \ W = W - \eta \frac{\partial L}{\partial W}$$

$${
m W}=W+V;\,V=-\eta {\partial L\over \partial W}$$
, velocity

- Problems ?
- Stuck at local optima
- Moment based update
 - Record past velocity and used that in current update

$$V = \beta V - \eta \frac{\partial L}{\partial W}, W = W + V, \beta \in (0,1)$$

$$- \text{ If } \beta = 0 ?$$

▶ Nesterov Momentum:
$$V = \beta V - \eta \frac{\partial L(W + \beta V)}{\partial W}$$
, $W = W + V$