

Campus Ciudad de México

Escuela de Ingeniería y Ciencias Departamento de Mecatrónica

Comunicación entre sistema de conducción y actuadores en el vehículo

PROYECTO ADMAS

Noviembre del 2018

IMT David Oswaldo Alonso RangelA01650270IMT Xanat Alynn Ruiz AlfaroA01332771IMT Rafael Aguilar ZamoraA01332253

Asesores

Dr. Rogelio Bustamante Ing. Javier Izquierdo Reyes

Ing. Luis Alberto Curiel

Comunicación SPI

Demo-SPI-Arduino.lvproj/NI-myRIO-1900-030c1956

Problemática

De acuerdo con la OMS, el 90% de las defunciones provocadas por accidentes de tráfico se producen en países de ingresos bajos y medios, siendo esta la principal causa de muerte en las personas que van de los 15 a los 29 año s^1 .

Objetivos

Objetivo general

Conformar un sistema de control y comunicación que sea capaz de recibir señales y controlar actuadores para generar un vehículo de manejo semi-autónomo.

Objetivo particular

Realizar una correcta comunicación entre la tarjeta myRIO y el microcontrolador Arduino y Desarrollo de un sistema de control para la movilidad de los actuadores por medio de la tarjeta MyRIO

Trabajo a Futuro

- Migración completa del protocolo de comunicación a SPI para así poder eliminar el intermediario (Arduino)
 - Posibilidad de incrementar el número de tarjetas o sensores para extender la capacidad de autonomía del vehículo

Conclusiones

Resultados

Pruebas de control físicas

El protocolo de comunicación de este proyecto debe ser lo suficientemente rápido, fiable y multidireccional, por lo que el objetivo se cumplió mediante el uso del protocolo SPI.

El sistema de control de los actuadores fue lo suficientemente robusto para volver a su referencia prestablecida ante perturbaciones, con un porcentaje de error de entre 0 y 3 grados aproximadamente y con un tiempo óptimo para un vehículo autónomo.