Algebraic Geometry Applications in Model Selection

Luis David Garcia-Puente

lgarcia@math.vt.edu

Virginia Polytechnic Institute and State University

Mathematical Science Research Institute

Texas A&M University

Gene Regulatory Network in the fruit fly D. melanogaster

- $\square \to \square$ Protein A regulates the transcription and translation of protein B,
- $\square \to \circ$ protein A regulates the transcription of gene (mRNA) b.

Bayesian Networks

- ullet Binary Random Variables: $F = \{F_1, F_2, F_3, F_4, F_5\}$.
- Joint Probability Distribution:

$$p(F_1 = u_1, F_2 = u_2, F_3 = u_3, F_4 = u_4, F_5 = u_5) = \prod_{i=0}^{n} p(F_i = u_i | pa_i).$$

$$p(u_1, u_2, u_3, u_4, u_5) = p(u_1|u_5)p(u_2|u_5)p(u_3|u_5)p(u_4|u_5)p(u_5)$$

$$2 \times 2 \times 2 \times 2 \times 2 -$$
table

Bayesian Networks

- lacksquare Binary Random Variables: $F = \{F_1, F_2, F_3, F_4, F_5\}$.
- Joint Probability Distribution:

$$p(F_1 = u_1, F_2 = u_2, F_3 = u_3, F_4 = u_4, F_5 = u_5) = \prod_{i=0}^{n} p(F_i = u_i | pa_i).$$

$$p(u_1, u_2, u_3, u_4, u_5) = p(u_1|u_5)p(u_2|u_5)p(u_3|u_5)p(u_4|u_5)p(u_5)$$

- $lue{}$ Number of model parameters E=2+2+2+2+1=9.
- $lue{}$ Number of joint space parameters $D=2^5=32$.
- The image of $\phi: \mathbb{R}^E \longrightarrow \mathbb{R}^D$ contains the set of all joint distributions that factor according to G.

Homomorphisms and Recursive Factorization

- Let p_u be an indeterminate representing $p(u_1, u_2, u_3, u_4, u_5)$.
- Let $\mathbb{R}[D] = \mathbb{R}[p_u \mid u \in \{0,1\}^5]$.
- Let $a_i = p(F_i = 1|F_5 = 1)$, $b_i = p(F_i = 1|F_5 = 0)$, $t = p(F_5 = 1)$.
- lacksquare Let $\mathbb{R}[E] = \mathbb{R}[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, t]$.
- $igoplus \phi: \mathbb{R}^E o \mathbb{R}^D$ is specified by $\Phi: \mathbb{R}[D] o \mathbb{R}[E]$

$$p_{u_1 u_2 u_3 u_4 0} \longrightarrow (1-t) \prod_{i=1}^4 b_i^{u_i} (1-b_i)^{1-u_i},$$

$$p_{u_1 u_2 u_3 u_4 1} \longrightarrow t \prod_{i=1}^{4} a_i^{u_i} (1 - a_i)^{1 - u_i}.$$

• The variety $V(\ker(\Phi))$ contains the set of all joint probability distributions that factor according to G.

Model Selection

ullet Choose the appropriate model M that best fits a given set of observations D.

F_1	F_2	F_3	F_4	F_5
0	1	0	1	1
0	0	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0
0	1	0	1	1

Latent Models

F_1	F_2	F_3	F_4
0	1	0	1
0	0	0	1
1	0	1	0
0	1	0	0
0	0	0	0
0	1	0	1

Latent Models

$$p(u_1, u_2, u_3, u_4) = \sum_{l=1}^{2} p(u_1, u_2, u_3, u_4, l)$$

$$= \sum_{l=1}^{2} p(u_1|l)p(u_2|l)p(u_3|l)p(u_4|l)p(l).$$

$$\Phi': \mathbb{R}[p_{u_1 u_2 u_3 u_4}] \to \mathbb{R}[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, t]$$

$$p_{u_1 u_2 u_3 u_4} \longrightarrow t \prod_{i=1}^4 a_i^{u_i} (1 - a_i)^{1 - u_i} + (1 - t) \prod_{i=1}^4 b_i^{u_i} (1 - b_i)^{1 - u_i}.$$

Naive Bayesian Network

- ullet H is the hidden variable, and its levels $1, 2, \dots, r$ are called the classes.
- $lue{}$ The observed random variables F_1, \ldots, F_n are the features of the model.

$$S_{r_1,r_2,\ldots,r_n} := \mathbb{P}^{r_1-1} \times \mathbb{P}^{r_2-1} \times \cdots \times \mathbb{P}^{r_n-1} \subset \mathbb{P}^{r_1r_2\cdots r_n-1}.$$

The naive Bayesian network with r classes and n features corresponds to the r-th secant variety of a Segre product of n projective spaces

$$V(\ker(\Phi')) = S_{r_1, r_2, \dots, r_n}^r.$$

Bayesian Approach to Model Selection

Choose *M* that maximizes the marginal likelihood:

$$p(D|M) = \int_{\Omega} e^{N\mathcal{L}(Y_D|\omega)} \mu(\omega) d\omega.$$

- $oldsymbol{\square}$ Ω denotes the domain of the model parameters ω .
- ullet $\mu(\omega)$ is the prior parameter density, N=|D|.
- $lue{}$ Y_D is the averaged sufficient statistics.
- \mathcal{L} is the log-likelihood function of M.

$$\theta_u = t \prod_{i=1}^n a_i^{u_i} (1 - a_i)^{1 - u_i} + (1 - t) \prod_{i=1}^n b_i^{u_i} (1 - b_i)^{1 - u_i}.$$

$$p(D|M) = \int_{(0,1)^{2n+1}} e^{N\sum_{u} Y_{u} \ln \theta_{u}(\omega)} \mu(\omega) d\omega.$$

Asymptotic Approximation for the Marginal Likelihood

Theorem (Watanabe 2001, Geiger and Rusakov 2002)

Let $I(N)=\int_{W_{\epsilon}}e^{-Nf(w)}\mu(w)dw$ where W_{ϵ} is some closed ϵ -box around w_0 , which is a minimum point of f in W_{ϵ} , and $f(w_0)=0$. Assume that f and μ are analytic functions, $\mu(w_0)\neq 0$. Then,

$$\ln I(N) = \lambda_1 \ln N + (m_1 - 1) \ln \ln N + O(1)$$

where the rational number $\lambda_1 < 0$ and m_1 are the largest pole and its multiplicity of the analytic continuation of

$$J(\lambda) = \int_{f(w) < \epsilon} f(w)^{\lambda} \mu(w) dw \qquad Re(\lambda) > 0$$

Resolution of Singularities

Resolution Theorem [Atiyah 1970]

Let f(w) be a real analytic function defined in a neiborhood of $0 \in \mathbb{R}^d$. Then there exists an open set W that contains 0, a real analytic manifold U, and a proper analytic map $g: U \longrightarrow W$ such that:

- 1. $g: U \setminus U_0 \longrightarrow W \setminus W_0$ is an isomorphism, where $W_0 = f^{-1}(0)$ and $U_0 = g^{-1}(W_0)$.
- 2. For each point $p \in U$ there are local analytic coordinates (u_1, \ldots, u_d) centered at p so that, locally near p,

$$f(g(u_1, \dots, u_d)) = a(u_1, \dots, u_d)u_1^{k_1} \cdots u_d^{k_d},$$

where $k_i \ge 0$ and a(u) is an analytic function with analytic inverse 1/a(u).

Theorem [Geiger and Rusakov 2002]

$$I[N, Y_D] = \int_{(0,1)^{2n+1}} e^{N \sum_u Y_u \ln \theta_u(\omega)} \mu(\omega) d\omega.$$

Assume the following conditions

- 1. The density $\mu(\omega)$ is bounded and bounded away from zero on Ω .
- 2. The statistics $Y_D = (Y_1, \dots, Y_{2^n})$ satisfy $Y_i > 0$.
- 3. There exists N_0 such that Y_D equals the limiting statistics Y for all $N \ge N_0$.

Theorem [Geiger and Rusakov 2002]

$$I[N, Y_D] = \int_{(0,1)^{2n+1}} e^{N \sum_u Y_u \ln \theta_u(\omega)} \mu(\omega) d\omega.$$

Then for $n \geq 3$ as $N \longrightarrow \infty$:

• If $Y \in S^2 \setminus S'$ (regular point)

$$\ln I[N, Y_D] = N \ln P(Y|\omega_{ML}) - \frac{2n+1}{2} \ln N + O(1),$$

• If $Y \in S' \setminus S''$ (type 1 singularity)

$$\ln I[N, Y_D] = N \ln P(Y|\omega_{ML}) - \frac{2n-1}{2} \ln N + O(1),$$

• If $Y \in S''$ (type 2 singularity)

$$\ln I[N, Y_D] = N \ln P(Y|\omega_{ML}) - \frac{n+1}{2} \ln N + O(1),$$

Polynomial Constraints

The naive Bayesian network with r classes and n features corresponds to the r-th secant variety of a Segre product of n projective spaces

$$V(\ker(\Phi')) = S_{r_1, r_2, ..., r_n}^r.$$

The prime ideal $\ker(\Phi')$ of any naive Bayes model M with 2 classes and n features is generated by the 3×3 -subdeterminants of any two-dimensional table obtained by flattening the n-dimensional table $(p_{u_1u_2\cdots u_n})$.

- Since the independence and non-independence constraints on the distribution over the observable variables vary from one model to another, they can be used to distinguished between models.
- Since these constraints are over the observable variables, their fit to data can be measured directly with some specially designed statistical tests.