

6 IPv4 și IPv6

10-11 noiembrie 2015

Obiective

- DHCP
- ICMP
- IPv6
- PPP și PPPoE

Cursul 6

DHCP

- Rol
- Funcționare
- DHCP Relay

- Dynamic Host Configuration Protocol
- Folosit de o stație pentru a-și determina automat adresa IP
- Este necesar un server DHCP
 - Acesta poate fi un ruter sau un calculator dedicat din rețea
- De ce este util DHCP?

DHCP – 1. Discovery

1. Discovery

2. Offer

3. Request

- Clientul trimite un broadcast UDP pe rețeaua locală
- Serverele DHCP din rețea au configurate
 DHCP pools care reprezintă de fapt seturi de adrese ce pot fi asignate clienților
- La primirea unui DHCP discover, fiecare server rezervă pentru clientul respectiv o adresă IP
- Pe un server pot fi configurate mai multe DHCP pools; rețeaua din care va fi alocată adresa este aleasă în funcție de IP-ul interfeței pe care s-a primit cererea

1. Discovery

2. Offer

3. Request

- După rezervarea IP-ului, serverul trimite un răspuns unicast clientului
- Răspunsul trebuie să conțină următoarele câmpuri:
 - Adresa MAC a clientului
 - Adresa oferită de server
 - Masca de rețea a adresei
 - Durata lease-ului
 - Adresa serverului de DHCP
- Lease-ul reprezintă durata de timp pentru care adresa IP este rezervată clientului

1. Discovery

2. Offer

3. Request

- Clientul trimite un broadcast pentru a spune dacă oferta este acceptată
- Clientul știe adresa IP a serverului. De ce este necesar un mesaj de broadcast?
 - R: Pot exista multiple servere DHCP în rețea. Toate trebuie informate de alegerea clientului pentru a putea elibera adresele rezervate în primele două faze.

DHCP – 4. Acknowledgment

1. Discovery

2. Offer

3. Request

- Serverul îi transmite clientului că procesul s-a încheiat și adresa i-a fost atribuită pe durata lease-ului
- Dacă lease-ul se apropie de expirare, clientul poate cere o prelungire
- Există posibilitatea ca la expirare clientul să ceară adresa pe care a avut-o înainte
 - De ce este utilă păstrarea adresei?
- În Ack pot fi trimise şi alte informaţii cerute de client:
 - Default gateway
 - Servere DNS

DHCP relay

- Există situații în care serverul DHCP nu este în rețeaua locală
- Deoarece mesajul este un broadcast către 255.255.255.255 acesta nu poate fi transmis în alte rețele
- Redirectarea unei cereri DHCP se poate face prin configurarea
 DHCP Relay pe ruterul din rețeaua locală
- Cererea DHCP va fi redirectată către IP-ul serverului de DHCP din altă rețea

Cursul 6

ICMP

- Ce este ICMP
- Utilitarul ping
- Utilitarul traceroute

Ce este ICMP

- Rețelele sunt structuri complexe ce sunt predispuse la defecte
- Comportamentul rețelelor poate să nu fie întocmai cel dorit de administratori/utilizatori (de exemplu binecunoscutul "nu merge netul")
- Protocolul ICMP (Internet Control Message Protocol) este utilizat în identificarea erorilor apărute în rețele
- ICMP
 - Este un protocol de nivelul 3
 - Considerat un protocol auxiliar IP-ului
 - Semnalează părților implicate în comunicații IP eventuale erori ce apar la acest nivel
 - Mai este folosit și pentru a transmite anumite informații specifice IP-ului (Terms of Service, Flow Control, etc.)

Exemple de erori

- Pachetul ajunge la un ruter care nu găsește destinația în tabela sa de rutare; pachetul este aruncat
 - Emiţătorul este informat printr-un mesaj ICMP Destination Unreachable
- Pachetul a fost prins într-o buclă de rutare și TTL-ul ajunge la 0;
 pachetul este aruncat
 - Emiţătorul este informat printr-un mesaj ICMP Time Exceeded

Utilitarul ping

- Scop: Testarea funcționării comunicației de nivel 3 cu o destinație
- Funcționare: Este trimis un mesaj ICMP Echo către destinație și se așteaptă primirea unui mesaj ICMP Echo Reply
- Exemplu:

```
vm-debian:~# ping 141.85.241.139
PING 141.85.241.139 (141.85.241.139) 56(84) bytes of data.
64 bytes from 141.85.241.139: icmp_seq=1 ttl=128 time=5.16 ms
64 bytes from 141.85.241.139: icmp_seq=2 ttl=128 time=4.79 ms
64 bytes from 141.85.241.139: icmp_seq=3 ttl=128 time=4.22 ms
64 bytes from 141.85.241.139: icmp_seq=4 ttl=128 time=2.91 ms
64 bytes from 141.85.241.139: icmp_seq=5 ttl=128 time=3.45 ms
^C
--- 141.85.241.139 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4019ms
rtt min/avg/max/mdev = 2.911/4.109/5.165/0.834 ms
```


- Scop: Verificarea căii pe care o iau pachetele către o destinație
- Funcţionare: Se trimit, pe rând, mesaje ICMP Echo către
 destinaţie începând cu un TTL de 1; după ce se primeşte mesajul
 de ICMP Time Exceeded se notează sursa acestuia şi se trimite un
 nou mesaj cu un TTL incrementat (Obs: unele utilitare folosesc
 UDP pentru a determina calea)

Exemplu:

```
$ traceroute google.com
traceroute to google.com (74.125.43.99), 30 hops max, 60 byte packets
1   csr.cs.pub.ro (141.85.37.1)
2   r-bb5-e0.Bucharest.roedu.net (141.85.254.16)
3   r-bb1-g2-0-0.Bucharest.roedu.net (217.73.164.1)
4   ten-3-1.core1.buc.roedu.net (89.37.0.129)
5   te-2-3.core2.nat.roedu.net (89.37.13.17)
6   te-4-3.br1.nat.roedu.net (89.37.13.5)
7   buca-b1-link.telia.net (213.248.92.125)
8   bpt-b4-link.telia.net (80.91.248.15)
9   ffm-bb1-link.telia.net (80.91.246.14)
```


Cursul 6

IPv6

- Avantajele IPv6
- Format antet
- Adresa IPv6

Din cursul anterior... dezavantaje IPv4

Adrese insuficiente pentru a face față creșterii numărului de dispozitive cu acces la Internet

Antet complicat

Nu suportă pachete de dimensiuni foarte mari

Suport redus pentru Multicast și IPsec

NAT introduce multe probleme

Avantajele IPv6

 IPv6 a fost dezvoltat cu scopul de a rezolva problemele protocolului IPv4

Formatul antetului

Version	Traffic Class	Flow Label				
Payload Length		Next Header	Hop Limit			
Tiop Limit						
Source IP Address (128 bits)						
Destination IP Address (128 bits)						
Data						

Numere hexazecimale

- Numere în baza 16
- Cifrele sunt reprezentate de simbolurile 0-9 și A-F
- 8 biţi (un octet) pot fi reprezentaţi ca două cifre hexa
- 4 biţi pot fi reprezentaţi ca o singură cifră hexa astfel:

Biţi	Baza 16	Biţi	Baza 16
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Transformați în hexazecimal următorul octet:

Transformați în hexazecimal următoarea adresă IP:

- 128 biţi
- Reprezentată în cifre hexazecimale:

2001:0db8:1f70:0000:0000:0de8:7648:06e8

 Zerourile din fața fiecărui grup pot fi omise pentru a scurta adresa:

2001:db8:1f70:0000:0000:de8:7648:6e8

Un singur șir continuu de zerouri din față poate fi prescurtat ca :: :

2001:db8:1f70::de8:7648:6e8

- Identic cu IPv4 la nivel de bit
- Numărului mare de adrese permite următoarea convenţie:

2001:0000:0000:0000:02D0:58FF:FEA9:1901

Partea de rețea

Partea de host

- Procesul de subnetare se limitează la partea de rețea
- Ce mască de rețea are adresa de mai sus?
 - **R:** /64

Subnetați rețeaua următoare în 32 de subrețele de dimensiuni egale

2001:0000:0000:0000:02D0:58FF:FEA9:1901/16

- R:
 - 32 de subrețele pot fi codificate cu 5 biți

```
2001:0000:0000:0000:02D0:58FF:FEA9:1901/16
0000 0000 (binar)
```

– Soluţia este:

2001:0000:0000:0000:02D0:58FF:FEA9:1901/21 2001:0800:0000:0000:02D0:58FF:FEA9:1901/21 2001:1000:0000:0000:02D0:58FF:FEA9:1901/21 2001:1800:0000:0000:02D0:58FF:FEA9:1901/21 2001:F800:0000:0000:02D0:58FF:FEA9:1901/21

	Adresă	Rol
Loopback	::1	Testarea stivei TCP/IP
Global unicast	2000::/3	Transmisii unicast
Link-local	FE80::/10	Comunicații în același segment de rețea
Multicast	FF00::/8	Transmisii către un grup
Broadcast	Not Supported	
Rută default	::/0	Folosită în rutare (detalii în cursul 6)

- Este o adresă ce începe cu FEB7 o adresă link-local?
 - R: Da. Doar primii 10 biţi trebuie să fie aceiaşi.

- Permite crearea de adrese unice într-un LAN pornind doar de la adresa de rețea
- Creează o adresă IPv6 de host de la adresa de rețea și adresa
 MAC a interfeței fizice:

Topologie exemplu IPv6

- Pot exista mai multe adrese IPv6 pe aceeași interfață
- Fiecare interfață are și o adresă link-local generată automat pe baza MAC-ului

- Neighbor Discovery Protocol
- Include următoarele funcționalități:
 - Autoconfigurarea adreselor
 - Descoperirea echipamentelor din reţea
 - Determinarea adreselor de nivel 2
 - Descoperirea gateway-ului
 - Descoperirea adresei de rețea (prefixului)
 - Descoperirea adreselor duplicat
- Folosește mesaje ICMP pentru a îndeplini funcționalitățile

- Protocol ce îndeplinește rolul ICMP pentru protocolul IPv6
- 5 mesaje ICMPv6 sunt folosite de NDP pentru a oferi servicii automate în rețeaua locală

Router Solicitation (133)

 Folosit de stații pentru a cere informații tuturor ruterelor din rețeaua locală

Router Advertisement (134)

- Trimise periodic de rutere sau ca răspuns la cererea unui RS
- Pe baza acestor mesaje o stație își construiește dinamic lista de rutere default (default gateway)
- Folosit în stateless autoconfig pentru descoperirea prefixului reţelei

Neighbor Solicitation (135)

- Folosit pentru a descoperi adresele link-local ale vecinilor când se cunoaște adresa IPv6 (similar ARP)
- Folosit pentru a determina dacă există conectivitate cu un vecin
- Detectează adresele duplicate în timpul procesului de autoconfigurare

Neighbor Advertisement (136)

- Trimise ca răspuns la un NS
- Trimise automat atunci când are loc o schimbare a adresei de nivel 2
- La primirea unui NA fiecare nod își actualizează lista de vecini

Redirect (137)

 Folosite de rutere pentru a indica host-urilor că pentru destinația dorită este recomandată folosirea unui alt ruter din rețea

- RFC 2462
- Nu necesită nicio configurare suplimentară în rețeaua locală
- Oferă doar adresă IP globală și default gateway
 - Pentru DNS și alte informații este necesară instalarea unui server DHCPv6
- Paşi:
 - Se generează adresa link-local prin concatenarea FE80::/64 cu eui-64 (sau cu un alt token generat pe 64 de biţi)
 - Se testează dacă adresa link-local este unică
 - 3. Dacă e unică, se asignează adresa link-local interfeței fizice
 - Se încearcă descoperirea unui ruter local prin ascultarea RA-urilor sau forțarea unui RA prin trimiterea unui RS
 - Ruterul răspunde în RA cu tipul autoconfigurării din rețeaua locală (Câmpul M din câmpul Autoconfig Flags din mesajul RA)
 - 6. Dacă e folosită autoconfigurare stateless, se generează adresa unică prin concatenarea prefixului primit în RA cu ultimii 64 de biți din adresa de la pasul 1

0. Stare iniţială reţea

Informații IPv6 pe A:

Stare Fa0/0: Shutdown

Listă rutere default:

Listă prefixe:
FE80::/10

1. Generare adresă link-local la ridicarea interfeței Fa0/0

2. Testarea unicității adresei link-local (DAD – Duplicate Address Detection)

3. Adresa link-local unică este asignată interfeței Fa0/0

4. Stația A cere un RA pentru a nu aștepta update-ul periodic

Informații IPv6 pe A:

Stare Fa0/0: Up

Listă rutere default:

Listă prefixe:
FE80::/10

• 5. Ruterul răspunde cu un RA în care îi comunică stației prefixele din rețea, adresa sa link-local și faptul că poate folosi stateless autoconfiguration

Informații IPv6 pe A:

Stare Fa0/0: Up

Listă rutere default:
FE80::2D0:D3FF:FE25:C02/64

Listă prefixe:
FE80::/10
2001:0:0:1234::/64

 6. A generează adrese globale folosind prefixele obținute în pasul anterior și ultima porțiune din adresa sa link-local

Informații IPv6 pe A:

Stare Fa0/0: Up

Listă rutere default:
FE80::2D0:D3FF:FE25:C02/64

Listă prefixe:
FE80::/10
2001:0:0:1234::/64

- Necesită configurarea unui server de DHCPv6
- DHCPv6 este util doar în asigurarea unor servicii suplimentare în rețea (adresarea IP este rezolvată mult mai ușor de stateless autoconfig):
 - Servere DNS
 - Servere WINS
 - Domeniul DNS
 - Servere NTP

- Din cursul anterior:
 - Ce este ARP? La ce nivel din stiva OSI operează?
 - De ce este necesar ARP?
 - Cum funcționează?
- Într-o rețea IPv6, avem aceeași problemă: cum putem afla adresa MAC dacă știm adresa IPv6?
- ARP nu este o soluție
 - De ce? Ce defecte avea ARP?
- Un nou protocol a luat rolul ARP-ului pentru IPv6: NDP

Determinarea adresei de nivel 2

- Operare similară cu ARP
- Folosește NS și NA pentru a descoperi adresa de nivel 2:
 - Neighbor Solicitation pachet multicast care conține cererea adresei de nivel 2
 - Neighbor Advertisement răspunsul ce conține adresa

Cursul 6

PPP

- Funcționare
- PPPoE

- Point to Point Protocol
- Funcționează la nivelul legătură de date
- Oferă funcționalități ce nu sunt specificate de Ethernet:
 - Autentificare
 - Criptare
 - Compresie
- Este folosit peste numeroase medii fizice:
 - Linii seriale
 - Linii telefonice
 - Fibră optică
- Funcționează atât peste circuite sincrone cât și asincrone

- Folosit de ISP-uri pentru a combina funcționalitățile suplimentare ale PPP cu infrastructura Ethernet
- Cadrele PPP sunt încapsulate în cadre Ethernet
- Rolul PPP este de a stabili conexiuni cu dispozitivele ce intră în rețea, oferind astfel securitate sporită

Cuvinte cheie

