Навчальна дисципліна: **Дискретна математика**

Лектор:

професор Кучук Георгій Анатолійович

E-mail: <u>kuchuk56@ukr.net</u>

3 семестр навчання на бакалавраті Наприкінці семестру - іспит

Тема 5. Графи Лекція 5.1.

Питання лекції

- 1. Визначення графа.
- 2. Типи скінченних графів.
- 3. Способи задання графів.
- 4. Маршрути та підграфи.

Рекомендована література

- 1. Конспект лекцій.URL: https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy https://drive.google.com/drive/folders/12QYRD4L8kQr0g48DJVN386FrISDuy
- 2. Олійник Л.О. Дискретна математика: Навч. посібник. 2015. 256 с. URL:: https://www.dstu.dp.ua/Portal/Data/3/17/3-17-b2.pdf
- 3. Балога С.І. Дискретна математика. Навчальний посібник. Ужгород: ПП «АУТДОР-. ШАРК», 2021. 124 с. https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/3415/1/%D0%BD%D0%BE-%D0%BC%D0%B5%D1%82%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B5%D1%82%D0%B8%D0%B8%D0%B8%D0%B8%D0%BF%D0%BE%D1%81%D1%96%D0%B1%D0%BD%D0%B8%D0%B8%D0%BA.pdf

1. Визначення графа

Def. Множина вершин V, зв'язки між якими зв'язки визначені множиною ребер E називають **графом** та позначають G = (V, E).

Рис. 1. Неорієнтований граф

Рис. 2. Орієнтований граф

2. Типи скінченних графів

Def. Для орієнтованого ребра (дуги) розрізняють *початкову вершину*, з якої виходить дуга, і *кінцеву вершину*, в яку дуга заходить (граничні вершини).

Def. Ребро, граничні вершини якого співпадають, тобто є однією і тією ж вершиною, називається **петлею**.

Def. Ребра з однаковими граничними вершинами є паралельними і частіше називаються **кратними**.

У загальному випадку граф може містити і *ізольовані вершини*, які не є кінцями ребер і не пов'язані ні між собою, ні з іншими вершинами.

Def. Число ребер, пов'язаних з вершиною V_i (петля враховується двічі), називають *степенем вершини* і позначають через $\delta(V_i)$.

Def. Степінь ізольованої вершини дорівнює нулю. Вершина ступеня одиниці називається *кінцевою* або *висячою вершиною*.

Теорема. У будь-якому графі сума степенів всіх вершин дорівнює по двоєній кількості ребер, а кількість вершин непарного степеня завжди парна.

Для вершини d орграфа маємо: додатню ($\delta^+(d) = 2$) та від'ємну ($\delta^-(d) = 3$) степені.

Def. **Простий** або звичайний граф - це граф без петель та кратних ребер. **Def**. **Повний** граф – це простий граф, у якому будь-які дві вершини

з'єднані ребром.

Def. **Мультиграф** – це граф, що не містить петель, але має кратні ребра. **Def**. **Псевдограф** – це граф, що допускає петлі і кратні ребра (найбільш загальний випадок графа) (рис. 5.3, а).

Def. **Пустий** або нуль-граф – це граф, що не має ребер (E = ∅, всі його вершини ізольовані).

Def. Якщо множина вершин V простого графа допускає таке розбиття на два підмножини, що не перетинаються, V_1 і V_2 ($V_1 \cap V_2 = \emptyset$), тобто немає ребер, що з'єднують вершини однієї й тієї ж підмножини, він називається дводольним чи біграфом

3. Способи задання графів

- 3.1. Геометричні подання рисунок.
- 3.2. Матриця суміжності графа (орграфа).

V ₁	V ₂	V 3	V ₄	V 5	
0	1	0	0	0	V ₁
1	0	2	0	1	V 2
0	2	0	0	1	V 3
0	0	0	0	0	V 4
0	1	1	0	1	V ₅

a	b	C	d	e	
0	1	0	1	0	a
0	0	1	1	0	b
0	1	0	1	0	C
0	0	1	0	1	d
2	0	0	0	0	e

3.3. Матриця інцидентності графа (орграфа).

e 1	e_2	e 3	e ₄	e 5	e 6	
1	0	0	0	0	0	V ₁
1	1	1	1	0	0	V 2
0	1	1	0	1	0	V ₃
0	0	0	0	0	0	V ₄
0	0	0	1	1	2	V 5

e ₁	e ₂	e ₃	e ₄	e 5	e 6	
1	0	0	-1	-1	0	V ₁
-1	1	0	0	0	1	V ₂
0	-1	1	0	1	0	V 3
0	0	-1	1	0	-1	V 4

- 3.4. Список ребер (дуг).
- 3.5. Матриця досяжності орграфа.

	V1	V2	V3	V4	V5	V6	V7
V1	1	1	1	1	1	0	1
V2	1	1	1	1	1	0	1
V3	1	1	1	1	1	0	1
V4	0	0	0	0	0	0	0
V5	0	0	0	0	0	0	0
V6	0	0	0	0	0	0	0
V7	1	1	1	0	1	0	1

L1	V1	V2
L2	V1	V7
L3	V3	V1
L4	V3	V4
L5	V2	V3
L6	V2	V2
L7	V7	V2
L8	V2	V5
L9	V3	V5

4. Маршрути та підграфи

 $(e_1, e_3, e_2, e_3, e_5)$ - маршрут, що проходить через послідовність вершин $(v_1, v_2, v_3, v_2, v_3, v_5)$ і з'єднує вершини v_1 і v_5 ;

 (e_5, e_6, e_4, e_4) - маршрут, що проходить *через послідовність вершин* $(v_3, v_5, v_5, v_2, v_5)$, з'єднуючи v_3 и v_5 ;

 $(e_1, e_3, e_5, e_4, e_1)$ - замкнутий маршрут;

 (e_2, e_5, e_6) - ланцюг; (e_1, e_2, e_5) - простий ланцюг;

 (e_2, e_3, e_4, e_5) – цикл; (e_2, e_4, e_5) - простий цикл

Частини графа G