

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 705 842 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
10.04.1996 Bulletin 1996/15(51) Int. Cl.⁶: C07K 14/00, C12Q 1/68

(21) Application number: 95115510.0

(22) Date of filing: 02.10.1995

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT
SE

(30) Priority: 06.10.1994 EP 94115751

(71) Applicant: HOECHST AKTIENGESELLSCHAFT
D-65929 Frankfurt am Main (DE)(72) Inventors:
• Bartnik, Eckart, Dr.
D-65205 Wiesbaden (DE)
• Margerie, Daniel, Dipl. Biol.
D-60320 Frankfurt (DE)

(54) Regulated genes by stimulation of chondrocytes with IL-1beta

(57) The present invention refers to the novel use of osteopontin, calnexin and TSG-6 gene product in the diagnosis, prophylaxis or therapy of IL-1 β mediated diseases of connective tissues and to novel genes induced or repressed by stimulation of chondrocytes with IL-1 β and their use in the diagnosis, prophylaxis or therapy of IL-1 β mediated diseases of connective tissues.

EP 0 705 842 A2

and the DNA TTU2/2 with the sequence

AACCAAGTATT TCAAAACTAT TATCTGGATT CAAGATTAGT GTGTAAAGAT TGTTTCTTA	60
TCAGTAAAAT AGGTCTTCAG ATCTGCATCT GGCCCTCTTAG CATGTTTTC TTCATAGATA	120
CCC GTTTGG GGT GGT GCG TCGGAAGATG AATGGCATT ATAGTCCTCT CCACATTTAT	180
CTG	183

are 100 % identical to human osteopontin cDNA and 97.2 identical to human calnexin, respectively. This demonstrates that the experimental approach of the present invention worked efficiently, i.e. the use of 100 different primer combinations (25 oligodecamer primers, 4T₁₂MN-primers) generated a total of approximately 10.000 PCR products for each population which represent 53 % of all expressed cellular genes. 123 PCR bands out of 10.000 appeared as differentially expressed bands. 53 of the original 123 PCR bands were reproducibly displayed by comparing the PCR band patterns from two patients; of those 68 % arose from IL-1 β stimulated chondrocytes.

It was further found that osteopontin which is a secreted highly acidic phosphoprotein of 32 kd (Denhardt and Guo (1993) FASEB J. 7, 1475-1482) is surprisingly downregulated in IL-1 β stimulated human chondrocytes. This means that osteopontin is involved in IL-1 β related diseases of connective tissues, in particular osteoarthritis.

Osteoarthritis is characterized as a slowly progressing matrix degeneration with continuing degradation of collagens and proteoglycans and subsequent release of matrix fragments into the synovial fluid. Any disturbance of the normal chondrocyte matrix interactions, for example through a loss of osteopontin, could cause an altered signaling through the integrin alpha₁beta₁ and thus changed cellular responses leading to early steps of matrix degradation.

Therefore, one embodiment of the present invention is the use of osteopontin itself or parts thereof, antibodies against it or nucleic acids such as DNA or RNA or parts thereof coding for osteopontin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1 β related diseases of connective tissues, in particular osteoarthritis. According to the present application the term "parts" means either at least 8, preferably 12, in particular 15 amino acids in case of proteins or 6-100, preferably 10-40, in particular 12-25 nucleic acids in case of DNA or RNA as hybridization probes. The methods of diagnosing such diseases will be described infra. In addition, quantification on the protein level is possible with osteopontin specific antibodies on Western blots, in immunochemistry, FACS analysis or ELISA based assay systems. The present invention refers also to a diagnosis aid or a pharmaceutical for such use. Osteopontin can be produced for example recombinantly through expression in procaryotes, in insect cells in mammalian cells or in mammalian cells using Vaccinia as detailed in Ausubel et al. 1994 [Current protocols in molecular biology, Chapter 16, John Wiley & Sons, Inc]. The cDNA of Osteopontin is e.g. disclosed in Young et al. (1990), Genomics 7, 491 - 502..

Antibodies against osteopontin can be generally produced for example by the method of Neil GA & Urnovitz HB (Trends in Biotechnology, 6, 209-213, 1988) or Köhler G & Milstein C (Nature, 256, 52-53, 1975).

Also calnexin which is an integral membrane protein of 88 kd (Bergeron et al. (1994) TIBS 19, 124-128) is surprisingly downregulated in IL-1 β stimulated human chondrocytes compared to unstimulated chondrocytes. This means also that calnexin is involved in IL-1 β related diseases of connective tissues, in particular osteoarthritis. In addition, a downregulation of the calnexin synthesis would cause a reduced amount of correctly and completely folded proteoglycans because calnexin is a new type of molecular chaperone that associates with incompletely folded proteins such as proteoglycans. Proteoglycans are highly glycosylated glycoproteins which are of central importance for the maintenance of the cartilage tissue integrity.

Hence, an additional embodiment of the present invention is the use of calnexin itself, or parts thereof antibodies against it or nucleic acids such as DNA or RNA or fragments thereof coding for calnexin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1 β related diseases of connective tissues, in particular osteoarthritis. The methods of diagnosing such diseases are already described above. The present invention refers also to a diagnosis aid or a pharmaceutical for such use.

Calnexin can be produced for example recombinantly as described above for osteopontin. The cDNA of Calnexin is e.g. disclosed in Galvin et al. (1992), Proc. Natl. Acad. Sci. USA 89, 8452 - 8456. The production of said antibodies are also generally described above.

Potential role of identified cDNA fragments in IL-1 mediated cellular processes TSG-6

A homology search in the GenBank and EMBL databases revealed a 99.5 % sequence identity of fragment TAU7/2(c) with the gene coding for human TSG-6. TSG-6 (TNF stimulated gene 6) was originally isolated by differential cDNA library screening as a TNF induced gene sequence from human fibroblasts (Lee et al., 1990). It was further characterized by Lee et al (1992) as a TNF and IL-1 inducible, secretory, 39 kDa glycoprotein with extensive sequence homology with a region implicated in hyaluronate binding, present in cartilage link protein, proteoglycan core proteins,

Therefore, another embodiment of the present invention is a DNA containing a DNA selected from the group consisting of

5 TA08/2(2)

1	CCAAGTTTTT	CCAGCAACCC	CAACGGAAATA	CAGGGAGATC	AATGCACCA
51	AAATGGGAAA	AGAAAAATAC	TTCGATGCAA	TGAAACAAAG	CCTTTTCCG
101	TTCAGTTCC	ATAATTCACT	GGTCAGTTT	AAGGCTGCCA	CTTGGG

10 TA016/1(2)

1	GACACGAACA	CCACATATTT	TTATTGGAGG	CCCCATGGCT	CCTTGGAAAGC
51	CATTTGGAA	CCAAGGGGAC	CCACCTTTT		

15 TA016/2(2)

1	CTAAATATAT	TCTCTAACAA	GTAAATCTCT	TTCAAATCTA	TAGATAAAC
51	TAAAAGGATA	AGGAACCAAG	GTAAACCGA	CCTAGCCAAT	TATGGCAATC
20	101	ATACTTGCTT	TTTAG		

25

30

35

40

45

50

55

TAU 7/2(C)

5 1 CCTTGAAGAT GACCCAGGTT NCTTGGCTGA TTATGTTGAA ATATAGACA
 51 GTTACCATGCA TGTCCATGGC TTTGTGGAA GATACTGTGG AGATGAGCTT
 101 CCAGATGACA TCATCAGTAC AGGAAATGTC ATGACCTTGA AGTTTCTAAG
 151 TGATGCTTCA GTGACAGCTG GAGGTTTCCA AATCAAATAT GTTGCAATGG
 201 AT

10

TAU10(1)

15 1 CGAGATGACA TTTGCTTTGG GCAGAGGCAG CTAGCCAGGA CACATTTCCA
 51 CTATAATTAA ACAAAAGTTAA ATTTATAAGC TAGCATTAAAG TAAAGTGAAG
 101 TTCCAGCTCC CTTGCTAAAA ATAACCTAGAG GTAATAATTG GTATTCAAGGT
 151 AACTCATTAA CATCATAATG TGTTGTGAAA A

TAU12/1(2)

20 1 TATAAAATAT AAATTATATT ATAAATCATG TATTATTTAT AAAATTATAT
 51 TATABATTAA TAAAAATATA AATTATATTAA TAGGCTTAAT GTATAAGGAA
 101 TATAAATTAT TAATAAGCAT ATCA

25

TAU 12/1(1)

25 1 TGTAATTAAC TGTNCTTGTAA GGTGTGTCTT TTATACATGT GTGAGTTTTT
 51 CTTTACAATA GATTCCCTAGC ATTGGGATTG CTAGGTCAGA TGGTATGCAC
 101 ATTTGACATT TTGATTGATA GCACCAGATT GCTTTGTAA AAAATTTNN
 151 TTTATAGTTT ACATTATCTT TGTACAATAG ATGTTCTCTT TCGAC

30

TAU 12/2(1)

35 1 GGGAAAGTGA TTGAAAATAC TTCTTTNTCA ACATAATTTT NGGGTTTTGA
 51 AATTGTGTTT GGGTTTTCAAG GAAATTGGTG GTAATCTTGT ATTAGACTGAA
 101 AAAAAGTGA TTTAAAATT CTCAGTGAAG AAGCAAATGA TTTATTTTC
 151 ATAGA

TAU12/3(2)

40 1 TCTTCTGGTA ACTGTTCTAA TTGTGTCTTT GTTACTTCCA GTGCAACCCCT
 51 TTCAGGTAAG

45

TAU12/3(1)

45 1 CTAAAGAACT TGGTATCTCT ATTAAAGCAC ACGAACCTCC AAGGAAAATA
 51 GAGCGATTAA CTCTTCTCAT ATCAGTGCAT ATTTATAAGA ACCACGGAGT
 101 CA

50

TAU13/1(1)

50 1 AGTCATCAAT TCCTTTTAT CTGTAATTAC ACATTTGTTT TTATTCAAA
 51 GTAATTATAA GGTGTTATAT TGCATATAAT CAGAAAACCA AATGGAATA
 101 AAATTTTAGT AAGCCCCGCC CCTTTGACCG ATACAGAAAA CTTGA

55

TCU2/2(1)

1	CGGGTTAATA	TTATCCTCTA	GTATAAGTGA	ATTACTAGTT	TCTCTTTATT
51	TAGACAAACA	CACACACACC	AGATATAATA	AACTTAATAA	ATTATCTGTT
101	AATGTAGATT	TTATTTAAAA	AACTATATT	CAACATTGCT	CTTCTTGGAA
151	C				

10

TCU9/1(2)

1	ACATAACAGC	TTTATACAA	TGATAAGGAC	ATATCATTTG	TTTACAAAGA
51	AAGTCTAAAA	TTTCAAGAAC	ATTCAAAGAG	CTAACACAGT	AAAGGTCATG
101	CAAGTTCTAG	AATAGTGAAT	CATGACAGAA	CTGATTCTATT	TTATCCTTTA
151	TCTCC				

15

TCU9/2(2)

1	AAAGTATGGGT	AGCTAAATT	GCATTAATT	AAAAGTACAT	ATATGCAAC	
20	51	ACCACTCTAC	ATCTGTATAC	CTACGAATGT	ATGTGTACTA	CACACCCCTA
101	AAATGTTTT	CAAAGCTTA	ATATATTAGA	ACATGTTTC	ATTTTTCAT	
151	GGGATGTTAA	TACTATTCTA	TGATTAAGAA	AATACTAG		

25

TCU10(2)

1	AATAACAGTTA	TTCTAGCTT	TCATATTCAA	TTTGAATGAT	CAGAAAAGTA
51	TATTAGTCAC	ACAGAATTAA	ATATTTAGA	TAGTAAGAAT	C

30

TCU14(2)

1	CAAATGAAAG	TCAGCCCTT	AGCTATTATT	TATTGCTTTA	TTAGAGCAGA
51	GGGAAGTGAC	ACTCATTGCC	TTCACAGAGC	TCTGCAGAAA	TATATGCACA
101	GACTGGTCAA	TGCCAACATC	TGAGTAAGTC	TTCCAAA	

35

TGO20(2)

1	CAGAACATTA	GGATTTATTC	CTTGATTAGT	TCAAATGATT	TCAACAGCTG
51	AATTCTTGA	GATGTGTAAG	GCAGGTTGGT	CCTTGGATG	GACTGTAGAC
101	TGAAACTTCC	TATAACTGTA	GTGATATGTA	CACAGCTACA	TACCAAAAGTG
151	CTTCATTATG	AAAATCAAGA	A		

40

TGO20(1)

1	CACTGTGAGA	GTCTCATTTC	TATGCACAGT	GTTCCTCAGG	AGGATGGAGC
51	TAGTTAGCTG	TCTGTTGCT	GTAGCCCAGC	TTGATAATGG	AACTATAACAG
45	101	CGAAGAGACA	ATCTCTGGCA	AGTTTTGTA	GAA

45

TGUS(C)

1	TTAGAGTAA	ATTCCARATA	AATGCTTTGC	TCCAAAATTA	CACAAACCG
51	GCTGGGTCTC	TATCATACT	CTTCAATACC	CTCAAAACCTA	GATTGTAACAG
101	TGAAAAAAAGT	GATTAGCNNT	TCCATTGTT	CATTCTGTCA	CTCACATTCT
151	TAGGCATT	AAGGATGAGC	ACCTTTGTT	TCAGAAAGGG	TAAGTAATTA
201	CCCCCCTGGA	GGTTACATAG	TTATAATTAA	GTCTTCAGAA	TCCGTTCGAA

55

201 CTAAATTCA AACACCAGG CAANAGAAA TGCTTCTAT

5 TTO20/1(C)

1	CCACCAAGCCT	ACTGATCAGC	TGGCATGCTC	CTGCTGTCAC	AGTCAGATAT
51	TACAGGATCA	CTTACGGAGA	AACAGGAGGA	AATAGCCCTG	TCCAGGAGTT
101	CACTGTGCCCT	GGGAGCAAGT	CTACAGCTAC	CATCAGCGGC	CTTAAACCTG
151	GACTTGATTA	TACCATCACT	GTGTATGCTG	TCACTGGCCG	TGGAGACAGC
201	CCCGCAAGCA	GCAAGCCAAT	TTCCATTAAT	TACCGAACAG	AAATTGACAA
251	ACCATCCCAG	ATGCAACTGA	CCGATGTTCA	AGACAACGT	TTTAATAAAA
301	GATTTACATT	CCAC			

15

TTO20/2(2)

1	TTGGTACAC	ACTCACAGAA	CTGGGGGTCA	TTTTCTAGAT	GAAACAAACG
51	GAACAAGTC	TCTTCCAACA	AAGAAATGTA	CTGTCACAAAT	TAATTTCTC
101	CATGAATTTC	ATATATTGTG	TACAAATATA	AGGTATGTAT	CTGAATACAA
151	AG				

20

TTU2/1(2)

1	CTAGAACCTTC	CAAAGGCTGC	TTGTCATAGA	AGCCATTGCA	TCTATAAAGC
51	AACGGCTCCT	GTAAATGGT	ATCTCCTTC	TGAGGCTCCT	ACTAAAAGTC
101	ATTTGTTACC	TAAACCTTAT	GTGCCCTAAC	AGGCCAATGC	TTCTCG

30

TTU 2/2(C)

1	AACCACTATT	TCAAAACTAT	TATCTGGATT	CAAGATTAGT	GTGTAAAGAT
51	TGTTTTCTTA	TCAGTAAAAT	AGGTCTTCAG	ATCTGCATCT	GGCCTCTTAG
101	CATGTTTTTC	TTCATAGATA	CCCGTTTGG	GGTTTTGCG	TCGGAAAGATG
151	AACTGCAGTT	TATAGTCCTC	TCCACATTTA	TCTG	

35

TTU3(1)

1	GGGTAGAAAG	CTGAATAATT	TATGAAGGAG	AGGGCTCAGG	GTGATTCCG
51	GAGGACCTAT	TCGGTGGGGG	GCTTTGTATC	ATTATGGGG	TTGATTAGTA
101	GTAGTTACTG	GTTAACATT	GTTTGTGGT	CTATATATTG	TAATTGAGAT
151	TGCTCGGGGG	AATAGGTTAT	GTGATTAGGA	CTAGCCTAG	GATGAGTGGG
201	AAG				

40

TTU 5/1(2)

1	GACAAAAAAA	AAAAAACAGG	TTTTAAAGCT	AGAAATGAAA	AGCTACTTAA
51	GTATCTAAA	GGATAAGTTA	CTTTATTATA	CACTAGAAAC	ATACACAATA
101	GCTGAAAACT	AAAAAAATCT	CACACTGCTG	AATGTCCTG	CTGGCTG

50

TTU5/2(2)

1	GCATCCATTG	TACATTGTTT	GGTTTGAGGT	TACCATGAGG	CCTGTAATA
51	CTATCTTATA	ATTTATTATT	TCAACCTCAT	AAAACCTAAC	ACTATTTGCA
101	TAACAAACAC	AACGAAAA			

55

(b) expressing said gene in a suitable host cell such as BL21 series (Studier et al., 1990, *supra*) for prokaryotic expression or COS cells for mammalian expression (Aruffo and Seed, 1987, *supra*) or any other expression system known to one skilled in the art;

5 or a method for producing a protein containing the steps:

(a) culturing a suitable host cell, in particular the above mentioned, containing a vector, in particular an expression vector such as the vectors mentioned above which contains a DNA or a gene of the present invention; and

10 (b) isolating the expressed protein for example by ultrafiltration, precipitation with chaotropic agents such as urea or column chromatography on e.g. ion exchange chromatography columns as detailed in Ausubel et al. 1994 (*supra*).

A further embodiment is a diagnostic aid containing a DNA or parts thereof or a gene or parts thereof of the present invention. In particular, quantification of the genes can be achieved on the RNA level by Northern blotting with gene specific probes of the present invention or with gene specific primers in a PCR reaction. Such primers can be synthetically produced using the DNA sequences of the present invention or the sequences of the corresponding genes. Therefore, said nucleic acids are useful for the diagnosis of IL-1 β related diseases of connective tissues, in particular osteoarthritis or rheumatoid arthritis.

These nucleic acids can also be used to evaluate the expression of certain genes in small cartilage biopsies and 20 to use these ultimately as disease-specific markers and/or as predictive markers for disease progression of e.g. osteoarthritis. The hybridization conditions can be the same as described above.

Said nucleic acids, however, can also be used for the therapy against the diseases mentioned or for the production of a pharmaceutical.

Therefore, another embodiment of the present invention is also the use of said nucleic acids for the production of 25 a pharmaceutical. For example, as described by Uhlmann & Peyman (Chem. Rev. (1990), 90, 543), Milligan et al. (J. Med. Chem. (1993), 36, 1923) or Stein & Cheng (Science (1993), 261, 1004) such nucleic acids can be used as antisense oligonucleotides or triple helix forming oligonucleotides for the inhibition of gene expression. This is in particular useful if such a disease is caused by the overproduction of a gene product which is directly or indirectly regulated by IL-1 β in chondrocytes. The nucleic acids can additionally be modified in order to increase e.g. the stability against nucleases as 30 described e.g. in the literatures mentioned above.

Finally, also the gene product itself produced by a method of the present invention can be used as a pharmaceutical. In the following the invention is in particular described by the examples and tables:

Description of the Tables

35 Table 1 gives an overview on used primers and the complexity of the detected differences in expression. Table 2 summarizes the result of the sequencing of differentially displayed PCR products after their elution from the sequencing gel, reamplification and subcloning into the pCRII vector. The sequences of TAU1/1(1) and TAU1/1(2) are 100 % identical to human osteopontin cDNA, the sequence of TTU2/2 is 97.2 % identical to human calnexin. bp = base pairs, IL-1 = Interleukin-1 stimulation, Stat. sig. score = statistical significance score: a feature of the BLAST database 40 searching program. This score is determined using an implementation of Karlin's significance formula (Karlin, S. and Altschul, S.F. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA, 87:2264-2268), which calculates the Poisson probability that the observed sequence similarity will occur by chance based on the size and composition of the sequence database as well as on 45 the size and quality of the match. The smaller this number, the more it is likely to see sequence similarities.

Examples

Cell culture

50 Articular cartilage specimen were obtained from two patients (male 65 years old and female 73 years old) undergoing total joint replacement surgery for osteoarthritis. None of these individuals had received treatment by radiation or chemotherapy. Articular cartilage slices were aseptically dissected from both femoral condyles, tibia plateaus and patellae and subjected to sequential enzymatic digestion with pronase and collagenase as described (Häuselmann HJ et al. 1992, Matrix 12, 116-129) Since it is known that the alginate gel suspension system retains the chondrogenic phenotype [Lohmander LS et al. 1992, Trans. Orthop. Res. Soc. 17, 273.] 4 x 10⁶ chondrocytes were suspended in low viscosity alginate (4 x 10⁶ cells / ml 1,25 % w/v alginate in an isotonic buffered solution) and expressed through a 22gauche needle into 102 mM CaCl₂ solution to form cell entrapping beads which are 1,5-3 mm in diameter and spherical. Alginate beads containing a total number of 2 x 10⁷ cells were fed daily for the first three days with medium F12 / DMEM (50/50)

5 List of all degenerate 3' oligo dT-primers [T₁₂VN] used for DDRT-PCR:

Primer	Sequence 5' to 3'
T ₁₂ VA	5'-TTTTTTTTTTTV A-3'
T ₁₂ VA	5'-TTTTTTTTTTTTVT-3'
T ₁₂ VA	5'-TATTTTTTTTTVG-3'
T ₁₂ VA	5'-TTTTTTTTTTTV C-3'
V = dA, dG, dC; N = dA, dT, dG, dC	

10 List of all arbitrary 5' oligodecamer primers used for DDRT-PCR:

Primer	Sequence 5' to 3'
OPA 6	GGTCCCTGAC
OPA 7	GAAACGGGTG
OPA 8	GTGACGGGTG
OPA 9	GCGTAACGCC
OPA 10	GTGATCGCAG
OPA 16	AGCCAGCGAA
OPA 17	GACCGCTTGT
OPA 18	AGGTGACCGT
OPA 19	CAAACGTCGG
OPA 20	GTTGCGATCC
U1	TACAACGAGG
U2	TGGATTGGTC
U3	CTTCTACCC
U4	TTTGGCTCC
U5	GGAACCAATC
U6	AAACTCCGTC
U7	TCGATACAGG
U8	TGGTAAAGGG
U9	TCGGTCATAG
U10	GGTACTAAGG
U11	TACCTAACCG
U12	CTGCTTGATG
U13	GTTTCGCAG
U14	GATCAAGTCC
U15	GATCCAGTAC

Northern blot analysis

Cell culture and isolation of RNA was performed exactly as described above. 10 µg of total RNA from both IL-1 β stimulated or not stimulated chondrocytes were denatured by heating at 65°C for 10 min in a solution of 50 % formamide, 5 20 mM MOPS and 2.2 M formaldehyde, separated through a 1 % agarose gel containing 2.2 M formaldehyde in 1 X MOPS and transferred to positively charged nylon membrane (Amersham) by standard blotting procedures [Maniatis et. al 1992]. After UV crosslinking, the blots were prehybridized for 1 h in rapid-hyb-buffer (Amersham) at 65°C. A 330 bp cDNA corresponding to nts 61 to 390 of human osteopontin cDNA (GenBank J04765) and a 340 bp cDNA corresponding to nts 881 to 1220 from human calnexin (GenBank M94859) were radiolabeled for hybridization with α -[32P]dCTP (3000 10 Ci/mmol, 10 mCi/ml) using random nonamer primers (Amersham) up to a specific activity of ~ 1.5 x 10⁹ dpm / µg DNA. Hybridization was performed for 2.5 h at 65°C in prehybridization solution with 2 ng / ml of labeled probe added. The blot was subsequently washed in 2 X SSC, 0.1 % SDS at 37°C for 15 min (1 X SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0), followed by two successive washes with 1 X SSC, 0.1 % SDS at 65°C for 10 min respectively. If necessary, a final high stringency wash was performed with 0.1 X SSC, 0.1 % SDS at 65°C for 15 min. The blots were then analysed 15 by autoradiography using Kodak X-Omat films at -80°C with intensifying screens for 2-7 days and intensity of bands was quantified with a phosphorimager (Biorad, model GS-250). All blots were stripped with boiling 0.5 % SDS solution and reprobed with labeled β -actin to demonstrate equal loading of RNA in each lane.

Northern hybridisations (Results)

20 Fragment TAU7/2(c), identical to TSG-6, was differentially upregulated in IL-1 stimulated cells. This is in concordance with Lee et al. (1992) which reported for TSG-6 a TNF- α and IL-1 mediated upregulation. Fragment TAU1/1, identical to human osteopontin and fragment TTU2/2, identical to human calnexin, both were weaker expressed in IL-1 stimulated chondrocytes compared with the unstimulated cells. To validate our differential display data, we performed Northern 25 analyses of Osteopontin and calnexin expression in IL-1 stimulated and unstimulated chondrocytes originating from a third patient. Both messages were again downregulated. A phosphorimager quantification revealed an osteopontin downregulation by 79% and a calnexin downregulation by 40% in the RNA population from chondrocytes of the third

30

35

40

45

50

55

Table 2 IL-1 mediated differentially displayed cDNA fragments of human articular chondrocytes

Fragment	bp	IL-1	Features	Stat.sig.score
TAO 8/2(2)	275 bp	+	146 bp sequenced, no homology found	0.999
TAO 16/1(2)	450 bp	+	80 bp sequenced, no homology found	0.69
TAO 16/2(2)	200 bp	+	115 bp sequenced, no homology found	0.04
TAO 17(c)	412 bp	+	412 bp sequenced, no homology found	0.016
TAO 19(c)	209 bp	-	209 bp sequenced, no homology found	0.99
TAU 1/1(1,2)	450 bp	-	100 % sequence identity to human osteopontin cDNA in 303 bp overlap (303 bp seq.)	1.2×10^{-11}
TAU 1/2(2)	430 bp	+	188 bp sequenced, no homology found	0.82
TAU 7/1(1,2)	500 bp	+	87 % sequence identity to human cDNA clone c-1sd02 in 125 bp overlap (235 bp seq.)	8.1×10^{-33}
TAU 7/2(c)	202 bp	+	99.5 % sequence id to human TNF stimulated gene-6 in 202 bp overlap	4.8×10^{-76}
TAU 10(1)	400 bp	+	181 bp sequenced, no homology found	0.9997
TAU 12/1(1,2)	470 bp	-	319 bp sequenced, no homology found	3.3×10^{-14}
TAU 12/2(1)	390 bp	-	155 bp sequenced, no homology found	0.0078
TAU 12/3(1,2)	250 bp	-	95 % sequence identity to human cDNA clone HRB8A21 similar to S10 in 158 bp overlap (162 bp seq.)	1.0×10^{-28}
TAU 13/1(1)	600 bp	+	145 bp sequenced, no homology found	0.12
TAU 13/3(1,2)	500 bp	-	439 bp sequenced, no homology found	0.33
TCO 16/1(c)	241 bp	+	241 bp sequenced, no homology found	2.4×10^{-7}
TCO 16/2(c)	230 bp	+	230 bp sequenced, no homology found	4.3×10^{-9}
TCO 17(c)	169 bp	+	169 bp sequenced, no homology found	0.49
TCO 18(c)	168 bp	+	168 bp sequenced, no homology found	1.3×10^{-6}
TCU 2/1(1)	400 bp	+	178 bp sequenced, no homology found	0.66
TCU 2/2(1)	210 bp	+	151 bp sequenced, no homology found	0.0074
TCU 9/1(2)	430 bp	+	99 % sequence identity to human cDNA clone 131036 3' in 155 bp overlap (155 bp seq.)	7.2×10^{-58}
TCU 9/2(2)	320 bp	-	188 bp sequenced, no homology found	0.22
TCU 10(2)	320 bp	-	100 % sequence identity to human cDNA clone 26518 3' in 85 bp overlap (91 bp seq.)	2.9×10^{-28}

50

55

Fragment	bp	IL-1	Features	Stat.sig.score
TTU 9/1(1)	350 bp	+	94 % sequence identity to human cDNA clone 83764 3' in 159 bp overlap (159 bp seq.)	5,9 x 10 ⁻²³
TTU 9/2(2)	320 bp	--	149 bp sequenced, no homology found	0,22
TTU 13(1,2)	350 bp	+	194 bp sequenced, no homology found	0,57

Thus, the 44 identified fragments can be subdivided as follows:

1) 2 fragments with sequence homologies to known human genes with known roles in IL-1 mediated processes:

TAU 7/2 identical with human TNF-stimulated gene-6
TTO 20/1 identical with human fibronectin

2) 6 fragments with sequence homologies to known human genes, whose function in IL-1 mediated processes can be speculated:

TAU 1/1 identical with human osteopontin
TGU 8 identical with human 28S ribosomal RNA gene
TGU 13/2 identical with human F1 ATPase β-subunit
TTO 16/2 identical with human ERCC5
TTU 2/2 identical with human calnexin
TTU 3 identical with human NADH-DH mtDNA subunit

3) 9 fragments with sequence homologies to human genes, identified in human genome sequencing projects:

TAU 7/1 identical with human cDNA clone c-1sd02
TAU 12/3 identical with human cDNA clone HRBBA21
TCU 9/1 identical with human cDNA clone 131036 3'
TCU 10 identical with human cDNA clone 26518 3'
TCU 14 identical with human cDNA clone HL60 3' directed MboI
TGU 9/2 identical with human cDNA clone 12A10B
TGU 12 identical with human cDNA clone 113442 3'
TTU 2/1 identical with human cDNA clone 118470 5'
TTU 9/1 identical with human cDNA clone 83764 3'

4) 27 fragments without sequence homologies to known human genes. The detection of TSG-6 and fibronectin, both genes known to be upregulated by IL-1, points to the importance of those other cDNA fragments in the light of IL-1 mediated processes. Those genes very likely play roles in degenerative joint diseases, including rheumatoid and osteoarthritis and with this are interesting candidates as markers for clinical studies or as drug targets for pharmaceutical intervention.

Claims

1. Use of osteopontin itself or parts thereof, or antibodies against osteopontin or parts thereof or nucleic acids or parts thereof coding for osteopontin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis.
2. Diagnostic aid for the diagnosis of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing osteopontin itself or parts thereof, or antibodies against osteopontin or parts thereof or nucleic acids or parts thereof coding for osteopontin or parts thereof.

10. DNA containing a DNA selected from the group consisting of

TAO8/2(2)

5 1 CCAAGTTTT CCAGCAACCC CAAGGGARTA CAGGGAGATC AATGCACCCA
 51 AAATGGGAAA AGAAAAATAC TTCGATGCAA TGAAACAAAG CCTTTTTCCG
 101 TTCAGTTCC ATAATTCACT GGTCAAGTTT AAGGCTGCCA CTTGGG

TAO16/1(2)

10 1 GACACGAACA CCACATATTT TTATTGGAGG CCCCATGGCT CCTTGGAAAGC
 51 CATTTGGAA CCAAGGGAC CCACCTTTT

TAO16/2(2)

15 1 CTAAATATAT TCTCTAACAA GTTAATCTCT TTCAAATCTA TAGATAAAAC
 51 TAAAAGGATA AGGAACCAAG GTTTAACCGA CCTAGCCAAT TATGGCAATC
 101 ATACTTGCTT TTTAG

TAO17(C)

20 1 CATGAAATAT TTCTTGAGGT AATAAGCTT TACCAAGCTT ATATTTTG
 51 GCAATTCACT TACAATGAGA AAAAAACACA CAAAAGACC AAAAATTTA
 25 101 AAAACTCACT TTTCTTGCAA TCATAGACAT TTGCATTATT ATAGAACATT
 151 CAAACAGTT AGGTGGATAA TTATTGTCTA TAGATAAAATA CGATGCAATT
 201 201 TTAATAAGAA TTTGAAGAAT GACATTAAT GCTGTCTGAA GCCTTTGTAT
 251 251 TTTTTAATGT ATGACCGATA CTCCGTATAT ACTTAGATAA CTTATCCAGA
 30 301 AACCTCAACT GTATTGAACA TTGCTGAGAG AAATCAACAA TAATTTAAC

35

40

45

50

55

TAU10(1)

1 GGAGATGACA TTTGCTTGG GCAAGAGCCAG CTAGCCAGGA CACATTTCCA
 5 51 CTATAATTAA ACAAAAGTTAA ATTTATAAGC TAGCATTAAAG TAAAGTGAAG
 101 101 TTCCAGCTCC CTTGCTAAAATAACTAGAG GTAATAATTG GTATTCAGGT
 151 151 AACTCATTTA CATCATAATG TGTTGTGAAA A

TAU12/1(2)

10 1 TATAAAATAT AAATTATATT ATAATCATG TATTATTTAT AAAATTATAT
 15 51 TATAAATTAA TAAAAATATA AATTATATT TAGGCTTAAT GTATAAGGAA
 101 101 TATAAATTAT TAATAAGCAT ATGA

TAU 12/1(1)

20 1 TGTAATTAAC TGTNCTTGTAA GGTCTGTCTT TTATACATGT GTGAGTTTTT
 51 51 CTTTACAATA GATTCCTAGC ATTGGGATTG CTAGGTCAAG TGGTATGCAC
 101 101 ATTTGACATT TTGATTGATA GCACCAAGATT CCTTTGTAA AAAATTTNN
 151 151 TTTATAGTTT ACATTATCTT TGTACAATAG ATGTTCTCTT TCGAC

TAU 12/2(1)

25 1 GGGAAAGTGAA TTGAAAATAC TTCTTTNTCA ACATAATTAA NGGGTTTTGA
 51 51 AATTGTGTTT GGGTTTCAG GAAATTGGTG GTAATCTTGT ATTAGCTGAA
 101 101 AAAAAGTGAA TTTAAAAATT CTCAGTGAAG AAGCAAATGA TTATTTTC
 151 151 ATAGA

TAU12/3(2)

30 1 TGTTCTGGTA ACTGTTCTAA TTGTGTCTTT GTTACTTCCA GTGCAACCCT
 51 51 TTCAGGTAAG

TAU12/3(1)

35 1 CTTAAAGAACT TGGTATCTCT ATTAAAGCAC ACCAACCTCC AAGGAAAATA
 51 51 GAGCGATTTA CTCTTCTCAT ATCAAGTGCAT ATTTATAAGA AGCACGGAGT
 101 101 CA

TAU13/1(1)

40 1 AGTCATCAAT TCCTTTTAT CTGTAATTAC ACATTGTTT TTATTCAAA
 51 51 GTAATTATAA GGTGTTATAT TCCATATAAT CAGAAAACAA AATGGAAATA
 101 101 AAATTTAGT AAGCCCGGCC CCTTTGACCG ATACAGAAAA CTTGA

TAU 13/3(2)

45 1 TATATGGCAG TCTAAAGCAT CAAAGATTG CATCAACATC TTTCATTTA
 51 51 GACATCTCT TGCAATGTA AATATCATGT ATCAACAACA TCTGGTGCAC
 101 101 ATCCATGAGT CTAACTCGAC ATTCACTTTA GCTCGATTAT TATTCCTTCG
 151 151 TACAGTCGAT GTAAACAATA CAGAAAGAGG ATTATTAAGA ACAGTTT

TCU9/1(2)

5 1 ACATAACAGC TTTTATACAA TGATAAGGAC ATATCATTTG TTTACAAAGA
 51 AAGTCTAAAA TTTCAAGAAC ATTCAAAGAG CTAACACAGT AAAGGTCTG
 101 CAAGTCTAG AATAGTGAAT CATGACAGAA CTCATTCTT TTATCCTTTA
 151 TCTCC

10

TCU9/2(2)

1 AAGTATGGGT AGCTAAATT GCATTAATT AAAAGTACAT ATAATGCAAC
 51 ACCACTCTAC ATCTGTATAC CTACGAATGT ATGTGTACTA CACACCCCTTA
 101 AAATGTTTT CAAAGTCTTA ATATATTAGA ACATGTTTC ATTTTTTCAT
 151 GGGATGTTAA TACTATTCTA TGATTAAGAA AATACTAG

15

TCU10(2)

1 AATACAGTTA TTCTAGCTTT TCATATTCAA TTTGAATGAT CAGAAAAGTA
 51 TATTAGTCAC ACAGAATTAA ATATTTAGA TAGTAAGAAT C

20

TCU14(1)

1 ATCCTTAGTA AGTGGATTT GGGGAAAAAA GCACCTGGGC TTCTGGTTCT
 51 TTTTGATAAT ATATAAAATT ATTCAATTATG AGGTTGCAGT TGTGCGAAA

25

TCU14(2)

1 GAAGTGAAAG TCAGCCCTTT AGCTATTATT TATTGTTTA TTAGAGCAGA
 51 GGCAAGTGAC ACTCATTGCC TTCACAGAGC TCTGCAGAAA TATATGCACA
 101 GAGTGGTCAA TCCCAACATC TGAGTAAGTC TTCCAAA

30

TG020(2)

1 CAGAACATTA GGATTTATTC CTTGATTAGT TCAARTGATT TCAACAGCTG
 51 AATTCCCTGA GATGTGTAAG GCAGGTTGGT CCTTTGGATG GACTGTAGAC
 101 TGAAAATTC TATAACTGTA GTGATATGTA CACAGCTACA TAGCAAAGTG
 151 CTTCATTATG AAAATGAAAGA A

35

TG020(1)

1 CACTGTGACA CTCTCATTTC TATGCACAGT GTTTCAGG AGCATGGAGC
 51 TAGTTAGCTG TCTGTTGTCT GTAGCCCAGC TTGATAATGG AACTATACAG
 101 CGAAGAGACA ATCTCTGGCA AGTTTTGTA GAA

40

TGU5(C)

1 TTAGACTAAA ATTCCAATAA AATGCTTGC TCCAAAATTA CACTAACAG
 51 GCTGGTCTC TATCATACAT CTTCAATACC CTCAACCTA GATTGTAAAG
 101 TCAAAAAAGT GATTAGCNNT TCCATTTGTT CATTCTGTCA CTCACATTCT
 151 TAGGCATTTT AAGGATGAGC AACCTTTGTT TCAGAAAGGG TAAGTAATTA
 201 GCCCCCTGGA GCTTACATAG TTATAATTAA GTCTTCAGAA TCCGTTCGAA
 251 GGGNNNNNGTT ACTATTTTA AGATAATTAG AACCCACCTT GTAGCAATAA
 301 AAGTTTCTT GTCTTTG

45

50

TTO20/1(C)

5 1 CCACCAGCCT ACTGATCAGC TGGGATGCTC CTGCTGTCAC AGTGAGATAT
 51 TACAGGATCA CTTACGGAGA AACAGGAGGA AATAGCCCTG TCCAGGAGTT
 101 CACTGTGCCT GGGAGCAAGT CTACAGCTAC CATCAGCGGC CTAAACCTG
 151 GAGTTGATTA TACCATCACT GTGTATGCTG TCACTGGCCG TGGAGACAGC
 201 CCCGCAAGCA GCAAGCCAAT TTCCATTAAAT TACCGAACAG AAATTGACAA
 251 ACCATCCCAG ATGCAACTGA CCGATGTTCA AGACAACGT TTTAATAAAA
 301 GATTTACATT CCAC

TTO20/2(2)

15 1 TTGGTACAC AGTCACAGAA CTGGGGTCA TTTCTAGAT GAAACAAACG
 51 GAAACAAGTTC TCTTCCAACA AAGAAATGTA CTGTAGAAAT TAATTCCTC
 101 CATGAATTT ATATATTGTC TACAAATATA AGCTATGTAT CTGAATACAA
 151 AG

20

TTU2/1(2)

25 1 CTAGAACTTC CAAAGGCTGC TTGTCATAGA AGCCATTGCA TCTATAAAGC
 51 AACGGCTCCT GTAAATGGT ATCTCCTTC TGAGGCTCCT ACTAAAAGTC
 101 ATTTGTTACC TAAACCTTAT GTGCCCTTAAC AGGCCAATGC TTCTCG

TTU 2/2(C)

30 1 AACCAGTATT TCAAAACTAT TATCTGGATT CAAGATTAGT GTGTAAGAT
 51 TGTTTTCTTA TCAGTAAAAT AGGTCTTCAG ATCTGCATCT GGCCCTCTTAG
 101 CATGTTTTTC TTCATAGATA CCCGTTTGG CGTTTTGCG TCGGAAGATG
 151 AAGTGCAGTT TATAGTCCTC TCCACATTAA TCTG

35

TTU3(1)

1 1 GGGTAGAAAG CTGAATAATT TATGAAGGAG AGGGGTCAGG GTGATTCCG
 51 GAGGACCTAT TGGTGCGGGG CCTTTGTATG ATTATGGCG TTGATTAGTA
 101 GTACTTACTG GTTGAACATT GTTGTGCGT GTATATATTG TAATTGAGAT
 151 TGCTCGGGGG AATAGGTTAT GTGATTAGGA GTAGGGTTAG GATGAGTGGG
 201 AAG

TTU 5/1(2)

45 1 GACAAAAAAA AAAAACAGC TTTAAAGCT AGAAATGAAA AGCTACTTAA
 51 GTATCTAAA GGATAAGTTA CTTTATTATA CACTAGAAAC ATACACAATA
 101 GCTGAAAACT TAAAAATCT CACACTGCTG AATGCTCTG CTGGCTG

50

TTUS/2(2)

1 1 GCATCCATTG TACATTGTTT GGTTGAGGT TACCATGAGG CCTGTAATA
 51 CTATCTTATA ATTTATTATT TCAACCTGAT AAAACTTAAC ACTATTGCA
 101 TAAACAAACAA AACGAAAA

55

18. Use of a DNA according to claim 10 or parts thereof or a gene isolated according to claim 13 or 14 or parts thereof for the diagnosis, prophylaxis or therapy of IL-1 β mediated diseases of connective tissues, in particular osteoarthritis or rheumatoid arthritis.

5 19. Use of a gene isolated according to claim 13 to 14 for the production of a pharmaceutical.

10

15

20

25

30

35

40

45

50

55