

SÍLABO SOFTWARE APLICADO A LA INGENIERÍA CIVIL

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: ELECTIVO SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 090600E4040

II. CRÉDITOS : 04

III.REQUÍSITOS : 170 créditos

IV.CONDICIÓN DEL CURSO : Electivo

V. SUMILLA

La asignatura de carácter teórico práctico, consta de clases altamente productivas, donde se experimentará el potencial de la tecnología al servicio de la ingeniería civil más actual y moderna. El objetivo de las jornadas de clases es de capacitar a estudiantes de Ingeniería civil en la introducción y aplicación del software avanzado con **CYPECAD**, **ETABS y SAP**, para diseño estructural, generación documental técnica y planos, así como otros módulos de gestión de proyectos, presupuestos, y compatibilización de planos de diferentes especialidades, como de Eléctricas, Sanitarias, Estructuras y Arquitectura. Las jornadas de clase permitirán de manera práctica y sencilla conocer los fundamentos introductorios y básicos para el manejo del software y sus aplicaciones principales. La asignatura comprende las siguientes unidades de aprendizaje: I. Introducción a la gestión de proyectos. II. Conocimiento de herramientas y tecnologías actuales CYPE, ETABS Y SAP. III. Prácticas y aplicaciones.

FUENTES DE CONSULTA:

Bibliografías

- López, A. *Manual de Autocad 2010* Bidimensional. Autodesk
- Quiroz, L. (2015). Análisis y Diseño de Edificaciones con ETABS. Editorial Macro. Lima.
- Reyes Rodríguez, A. **Cype CAD 2010** Cálculo de Estructuras de hormigón con CYPECAD. Ediciones Anava Multimedia.
- Sandoval, J. y Santos Ojeda, J. (2010). Análisis y Diseño de Edificaciones con ETABS-CSI. 3ar Edición.
- Saravia, L. (2013). Tesis: Análisis y Diseño con ETABS, su aplicación adecuada y comprobación de resultados, aplicado a edificios de concreto armado. Guatemala.
- Toledo, V. (2015). Edificios de Concreto Armado con Etabs. Editorial Limusa-Colombia.

Electrónicas

- CYPE Ingenieros Software para Arquitectura, Ingeniería y Construcción http://www.cype.es/
- ETABS CSI Computers & Structures Inc. Structural and Earthquake Engineering Software. http://www.csiberkeley.com/etabs
- SAP 2000 Análisis y Diseño de Estructuras. http://www.csiberkeley.com/sap2000
- Urban Pascual Brotons. Construcción de Estructuras. Hormigón Armado. Detalles constructivos y perspectivas (3ª Edición). Barcelona Manual PDF. http://www.editorial-club-universitario.es/pdf/4100.pdf

VI. UNIDADES DE APRENDIZAJE UNIDAD I: INTRODUCCION A LA GESTION DE PROYECTOS

OBJETIVOS DE APRENDIZAJE:

 Introducir los fundamentos básicos de la gestión de proyectos, su operativa y puesta en práctica, presentando los principales problemas y soluciones en el día a día de la operativa entre arquitectos, ingenieros y constructores, consiguiendo implementar una buena gestión y ejecución de proyectos entre todos los actores que intervienen.

PRIMERA SEMANA

Primera sesión:

Interacción entre el Ingeniero y el Arquitecto.

Introducción y presentación de software de sistemas de Gestión, Interacción e Integración.

Segunda sesión

Software como solución a la interacción entre ingenieros y arquitectos, y a la implementación de sistemas de gestión, interacción e integración.

UNIDAD II: CONOCIMIENTO DE HERRAMIENTAS Y TECNOLOGIAS ACTUALES CYPE, ETABS Y SAP

OBJETIVOS DE APRENDIZAJE:

 Conocer las capacidades computacionales de las diferentes herramientas existentes en el mercado, sus aplicaciones y mayores ventajas que presentan frente a las tradicionales. El fomento de su uso, y la promoción de beneficios. Introducción a CYPECAD, ETABS Y SAP, como herramientas principales y más completas hoy por hoy en el campo de la Ingeniería Civil, Arguitectura y Construcción.

SEGUNDA SEMANA

Primera sesión:

Introducción a Herramientas y Tecnologías Avanzadas. Presentación de Trabajo 1.

Segunda sesión:

Introducción a CYPECAD

UNIDAD III: PRÁCTICAS Y APLICACIONES

OBJETIVOS DE APRENDIZAJE:

 Diseñar y gestionar proyectos de Ingeniería Civil, Arquitectura y Construcción con CYPECAD desde el punto de vista integral, técnico, presupuestario, económico, de planificación y control de obra, a través de prácticas, ejercicios y proyectos desarrollados en clase. Aprender el manejo fundamental y básico de SAP y ETABS, con ejercicios prácticos y de aplicación real de estructuras para la edificación.

TERCERA SEMANA

Primera sesión:

Estudio de Objetivos y Estudios del Proyecto. Proceso de Cálculo. Datos necesarios. Estudio del edificio. Introducción a la estructura del programa. Comprobación de resultados. Edición. Salida de Resultados. Gestión de la documentación. Primer contacto con <u>CYPECAD</u>. Creación de una sesión de trabajo. Datos generales de la obra. Materiales. Acciones. Coeficientes de pandeo. Hipótesis adicionales. Estados Límites. Entorno de CypeCAD.

Segunda sesión:

Práctica calificada 1. Creación de Plantas. Creación de Grupos. Plantillas de dibujo. Criterios para la elaboración de plantillas de dibujo

CUARTA SEMANA

Primera sesión:

Introducción de columnas. Características de las columnas. Inserción de columnas. Agrupación de columnas.

Segunda sesión:

Introducción de vigas. Edición de vigas Otras herramientas para la introducción de vigas.

QUINTA SEMANA

Primera sesión:

Elementos tipo área. Losas de entrepiso. Tipos de losas de entrepiso.

Segunda sesión:

Muros estructurales. Tipos de muros estructurales. Creación del modelo.

SEXTA SEMANA

Primera sesión:

Estados de carga: cargas de gravedad. Metrado manual. Verificación del metrado automático...

Segunda sesión:

Análisis 3D de cargas de gravedad.

Práctica calificada 2: Presentación de Modelo Creado

SÉPTIMA SEMANA

Primera sesión:

Evaluación de resultados. Revisión de cargas.

Segunda sesión:

Esfuerzos máximos. Flechas máximas.

OCTAVA SEMANA

Examen Parcial (Entrega y exposición de proyecto parcial de clase)

NOVENA SEMANA

Primera sesión:

Configuración estructural. Norma E-030/2014.

Segunda sesión:

Parámetros Sísmicos. Definición de los sistemas estructurales

DÉCIMA SEMANA

Primera sesión:

Análisis Dinámico. Tipos de análisis dinámico

Segunda Sesión:

Análisis sísmico método estático. Calculo automático de carga P. Calculo de distorsión Límite

UNDÉCIMA SEMANA

Primera sesión:

Análisis Dinámico Modal espectral

Segunda sesión:

Práctica calificada 3. Análisis sísmico estático del modelo

DUODÉCIMA SEMANA

Primera sesión:

Creación de Espectro de diseño. Creación de diafragma rígido. Evaluación automática de masa sísmica.

Segunda sesión:

Estados de carga sísmica modal espectral. Análisis Dinámico Modal espectral.

DECIMOTERCERA SEMANA

Primera sesión

Evaluación de resultados de análisis dinámico. Calculo de cortante Basal Dinámico. Comparación con cortante basal estático. Escalamiento.

Segunda sesión:

Práctica calificada 4: Análisis sísmico dinámico del modelo

DECIMOCUARTA SEMANA

Primera sesión:

Criterios de Diseño estructural de viga. Envolvente de Momentos. Diseño de vigas. Evaluación de resultados

Segunda sesión:

Criterios de Diseño estructural de columnas. Curvas de Interacción. Diseño de columnas. Evaluación de resultados.

DECIMOQUINTA SEMANA

Primera sesión:

Criterios de Diseño de cimentaciones.- Exportación de resultados del ETABS al SAFE. Introducción al entorno del SAFE

Segunda sesión:

Análisis de cimentaciones.- tipos de cimentación. Evaluación de resultados

DECIMOSEXTA SEMANA

Examen Final. (Entrega y exposición del proyecto final de clase).

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso..

VIII CONTRIBUCION DEL CURSO AL COMPONENTE PROFESIONAL

a) Matemática y Ciencias Básicas
b) Tópicos de Ingeniería
c) Educación General
0

IX PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

Se estimulará la participación de los estudiantes a partir de la generación de debates de discusión e intercambio de impresiones a partir de los ejercicios de clase. Se incentivará a la investigación continua mediante la presentación de trabajos domiciliarios y el control de lecturas de acuerdo al tema a desarrollar.

X. MEDIOS Y MATERIALES

Equipos: Computadora personal para el profesor y los alumnos, proyector multimedia, utilización de diapositivas y recursos multimedia para la explicación de la teoría del curso. Licencias CYPECAD, ETABS, SAP, AutoCAD, y CIVIL 3D.

XI. EVALUACIÓN

PF = (2*PE + EP +EF)/4 PE = ((P1+P2+P3+P4-MN)/3 + W1)/2

EP: Examen Parcial EF: Examen Final

PE: Promedio de evaluaciones

PF: Promedio Final

P1...P4: Prácticas calificadas de avance de proyecto de clase

MN : Menor Nota de Prácticas Calificadas

W! : Trabajo 1

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (outcomes), para el programa de Ingeniería Civil, se establece en la tabla siguiente:

K= Clave R= Relacionado Recuadro vacío= no aplic		o aplica	
(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería		K
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obter	nidos	K
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades re restricciones económicas, ambientales, sociales, políticas, éticas, de sa seguridad.		R
(d)	Trabajar adecuadamente en un equipo multidisciplinario.		R
(e)	Identificar, formular y resolver problemas de ingeniería		K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		K
(g)	Comunicarse, con su entorno, en forma efectiva.		R
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de u global, económico, ambiental y social.	ın contexto	R
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.		R
(j)	Tener conocimiento de los principales problemas contemporáneos de la	carrera de	К

Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y

Κ

XIII. HORAS, SESIONES, DURACIÓN

ingeniería civil

ramas afines

Teoría Práctica Laboratorio a) Horas de clase: 3 2 0

b) Sesiones por semana: Dos sesiones.

c) Duración: 5 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Carlos Luis Absalón Rojas Torres

XV. FECHA:

(k)

La Molina, julio de 2018.