

Forward Difference

✓ Forward difference is denoted by (delta) Δ

✓ Formula of forward difference is

$$\Delta f(x) = f(x+h) - f(x)$$

$$x-h$$
 x $x+h$

Forward

Backward Difference

✓ Backward difference is denoted by (nabla) ∇

✓ Formula of Backward difference is

$$\nabla f(x) = f(x) - f(x - h)$$

Backward

Shift Operator

- ✓ Shift Operator is denoted by E
- √ Formula of Shift Operator is

$$E^n f(x) = f(x + nh)$$

 \checkmark If n=1,

then
$$E^1 f(x) = f(x+h)$$

Central Difference $[\delta]$

- ✓ Central Operator is denoted by (small delta) $[\delta]$
- ✓ Formula of Central Operator is

$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$
$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}} \left(\because E^n f(x) = f(x + nh)\right)$$

$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}} \left(:: E^n f(x) = f(x + nh) \right)$$

Average Operator

- \checkmark Average Operator is denoted by (Mu) μ
- ✓ Formula of Average Operator is

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$$

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$$

$$\mu = \frac{E^{\frac{1}{2}} + E^{-\frac{1}{2}}}{2} \left(\because E^n f(x) = f(x + nh) \right)$$

Average

Differential Operator [D]

- ✓ Differential Operator is denoted by D
- √ Formula of Differential Operator is

$$Df(x) = \frac{d}{dx}f(x) = f'(x)\left(\because D = \frac{d}{dx}\right)$$

Relation Between Operators

$$[\Delta, \nabla, E, \delta, \mu, D]$$

Prove that $E = 1 + \Delta$

$$(1 + \Delta)f(x)$$

$$= f(x) + \Delta f(x)$$

$$= f(x) + f(x+h) - f(x) \qquad (\because \Delta f(x) = f(x+h) - f(x))$$

$$= f(x+h)$$

$$= E^{1} f(x) \qquad (\because E^{1} f(x) = f(x+h))$$

$$= Ef(x)$$

$$\Rightarrow (1 + \Delta) = E$$

Prove that $E\nabla = \Delta$

$$EV(f(x)) = E[Vf(x)]$$

$$= E[f(x) - f(x - h)] \quad (\because Vf(x) = f(x) - f(x - h))$$

$$= Ef(x) - Ef(x - h)$$

$$= f(x + h) - f(x) \quad (\because E^n f(x) = f(x + nh))$$

$$= \Delta f(x) \quad (\because \Delta f(x) = f(x + h) - f(x))$$

$$\Rightarrow EV(f(x)) = \Delta f(x); \ \forall \ f(x)$$

$$\Rightarrow EV = \Delta$$

Prove that $\Delta \nabla = \Delta - \nabla$

$$\Delta \nabla (f(x)) = \Delta [\nabla f(x)]$$

$$= \Delta [f(x) - f(x - h)] \quad (\because \nabla f(x) = f(x) - f(x - h))$$

$$= \Delta f(x) - \Delta f(x - h)$$

$$= \Delta f(x) - [f(x) - f(x - h)] \quad (\because \Delta f(x) = f(x + h) - f(x))$$

$$= \Delta f(x) - \nabla f(x) \quad (\because \nabla f(x) = f(x) - f(x - h))$$

$$= (\Delta - \nabla) f(x)$$

$$\Rightarrow \Delta \nabla (f(x)) = (\Delta - \nabla) f(x); \quad \forall f(x)$$

$$\Rightarrow \Delta \nabla = \Delta - \nabla$$

Prove that $E = e^{hD}$

$$\begin{aligned} & \text{Ef}(\mathbf{x}) = \mathbf{f}(\mathbf{x} + \mathbf{h}) \\ & = \mathbf{f}(\mathbf{x}) + \mathbf{h}\mathbf{f}'(\mathbf{x}) + \frac{\mathbf{h}^2}{2!}\mathbf{f}''(\mathbf{x}) + \cdots \text{ (By Taylor's expansion)} \\ & = \mathbf{f}(\mathbf{x}) + \mathbf{h}\mathbf{D}\mathbf{f}(\mathbf{x}) + \frac{\mathbf{h}^2}{2!}\mathbf{D}^2\mathbf{f}(\mathbf{x}) + \cdots \text{ ($\because f'(\mathbf{x}) = Df(\mathbf{x})$)} \\ & = \left[1 + \mathbf{h}\mathbf{D} + \frac{\mathbf{h}^2}{2!}\mathbf{D}^2 + \cdots\right]\mathbf{f}(\mathbf{x}) \\ & \Rightarrow \mathbf{E}\mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{h}\mathbf{D}}\mathbf{f}(\mathbf{x}) \\ & \Rightarrow \mathbf{E} = \mathbf{e}^{\mathbf{h}\mathbf{D}} \end{aligned}$$

$$($\because e^{\mathbf{x}} = 1 + \mathbf{x} + \frac{\mathbf{x}^2}{2!} + \dots)$$$

Some More Relations

$$\blacksquare \nabla = 1 - E^{-1}$$

$$\blacksquare \Delta = \nabla B$$

$$\blacksquare \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} = \Delta + \nabla$$

$$\blacksquare (1 + \Delta)(1 - \nabla) = 2$$

Interpolation

✓ Interpolation is the process of computing intermediate value of a function y = f(x) from a given set of tabular values of the function.

x	x_0	x_1	x_2	 x_n
y	y_0	y_1	y_2	 y_n

The population of the town is given below. Estimate the population for the year 1895 and 1930 using suitable interpolation.

year	1891	1901	1911	1921	1931
Population in thousand	46	66	81	93	101

Interpolation

√ Linear polynomial

For a two points data:

Linear Polynomial (first order) connecting two points data

Linear interpolation

✓ We can find Interpolation for Unequally spaced data from following methods:
 1. Newton's Divided Difference Formula
 2. Lagrange's interpolation Formula
 E.g.
 Compute f (9.2) by using interpolation method from the following data.
 x
 y
 y
 y
 x
 y
 y
 x
 y
 y
 y
 x
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 <l

Now, Here, h=2, $x_0=4$ & x=x, $p=\frac{x-x_0}{h}=\frac{x-4}{2}$

Using Newton's Forward Interpolation formula,

$$y(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \cdots$$
....

$$y(x) = 1 + \frac{(x-4)(2)}{2} + \frac{(x-4)}{2} \left(\frac{x-4}{2} - 1\right) \left(\frac{3}{2}\right)$$

$$y(x) = 1 + \frac{(x-4)(2)}{2} + \frac{(x-4)}{2} \left(\frac{x-4}{2} - 1\right) \left(\frac{3}{2}\right)$$
$$y(x) = 1 + (x-4) + (x-4)(x-6) \left(\frac{3}{8}\right)$$

$$y(x) = \frac{8 + (8x - 32) + (x^2 - 10x + 24)(3)}{8}$$

$$y(x) = \frac{3x^2 - 22x + 48}{8}$$

Exe		

Using Newton's Forward Interpolation formula, find the polynomial f(x) satisfying the following data. Hence, find f(2).

x	0	5	10	15
f(x)	14	379	1444	3584

Ans:
$$f(x) = \frac{1}{2}[x^3 + 13x^2 + 56x + 28]$$
; $f(2) = 100$

2. Construct Newton's Forward interpolation polynomial for the following data. Use it to

x	4	6	8	10
f(x)	1	3	8	16

Ans:
$$f(x) = \frac{1}{8}[3x^2 - 22x + 48]$$
; $f(5) = 1.625$

Newton's Backward Difference Formula

Where,
$$p = \frac{x - x_n}{h}$$

here, h = 10 , $x = 1895 \& x_0 = 1891$

$$p = \frac{x - x_0}{h} = \frac{1895 - 1891}{10} = 0.4$$

Using Newton's Forward interpolation,

$$y(1895) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \cdots \dots$$
$$= 46 + (0.4)(20) + \frac{(0.4)(-0.6)(-5)}{2!} + \frac{(0.4)(-0.6)(-1.6)(2)}{3!}$$

$$+\frac{(0.4)(-0.6)(-1.6)(-2.6)(-3)}{4!}$$

$$= 54.8528$$

 $x = 1930, x_n = 1931 \& h = 10$

$$p = \frac{x - x_n}{h} = \frac{1930 - 1931}{10} = -0.1$$

Using Newton's Backward interpolation,

$$y(1931) = y_n + p\nabla y_n + \frac{p(p+1)\nabla^2 y_n}{2!} + \cdots$$

$$= 101 + (-0.1)(8) + \frac{(-0.1)(0.9)(-4)}{2!} + \frac{(-0.1)(0.9)(1.9)(-1)}{3!}$$

$$+\frac{(-0.1)(0.9)(1.9)(2.9)(-3)}{4!}$$

$$= 100.4705$$

Exercise:

1. Using Newton's Backward Interpolation formula, find the polynomial f(x) satisfying the following data. Hence, find f(1.28).

x	0	1	2	3
f(x)	1	0	1	10

Ans:
$$f(x) = x^3 - 2x^2 + 1$$
; $f(4) = 33$

2. From the following table of half-yearly premium for policies maturing at different ages, estimate the premium at the age of 63.

Age	45	50	55	60	65
Premium (in \$)	114.84	96.16	83.32	74.48	68.48

Ans: f(63) = 70.5851

Newton's Divided Difference

$$\checkmark [x_0, x_1] = \Delta y_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad (\Delta \text{ Divided delta})$$

$$\checkmark [x_0, x_1, x_2] = \Delta^2 y_0 = \frac{[x_1, x_2] - [x_0, x_1]}{x_2 - x_0}$$

$$\checkmark [x_0, x_1, \dots, x_n] = \Delta^n y_0 = \frac{[x_1, x_2, \dots, x_n] - [x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

$$\checkmark [x_0, x_1, x_2] = \Delta^2 y_0 = \frac{[x_1, x_2] - [x_0, x_1]}{x_2 - x_0}$$

$$[x_0, x_1, ..., x_n] = A^n y_0 = \frac{[x_1, x_2, ..., x_n] - [x_0, x_1, ..., x_{n-1}]}{x_n - x_0}$$

Exercise:

1. Evaluate f(9) using Newton's Divided difference Interpolation formula from the following data.

х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Ans: f(9) = 810

2. Using Newton's Divided difference Interpolation formula, find f(3) from the following table.

x	-1	2	4	5
f(x)	-5	13	255	625

Ans: f(3) = 71

Lagrange's Interpolation Formula

✓ If data Points are $(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Where, $x_0, x_1, x_2, ..., x_n$ are unequally spaced then,

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3) \dots (x_0 - x_n)} y_0$$
$$(x - x_0)(x - x_2)(x - x_3) \dots (x - x_n)$$

$$+\frac{(x-x_0)(x-x_2)(x-x_3)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)\dots(x_1-x_n)}y_1$$

$$+ \cdots + \frac{(x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1)(x_n - x_2) \dots (x_n - x_{n-1})} y_n$$

Lagrange's Quadratic Interpolation Formula

Explain quadratic Lagrange's interpolation formula.

Explanation:

Let y_0, y_1, y_2 be the value of f(x) corresponding to the non-equally spaced arguments x_0, x_1, x_2 .

Constructing a polynomial p(x) of degree 2.

Let
$$y = p(x) = A_0(x - x_1)(x - x_2) + A_1(x - x_0)(x - x_2)$$

$$+A_2(x-x_0)(x-x_1)....(1)$$

Substituting $x = x_0 \& y = y_0$ in (1), we have

$$y_0 = p(x_0) = A_0(x_0 - x_1)(x_0 - x_2)$$

$$\therefore A_0 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)}$$

Now

Substituting $x = x_1 \& y = y_1$ in (1), we have

$$y_1 = p(x_1) = A_1(x_1 - x_0)(x_1 - x_2)$$

$$\therefore A_1 = \frac{y_1}{(x_1 - x_0)(x_1 - x_2)}$$

In similar way,

Substituting $x=x_2 \& y=y_2$ in (1), we have

$$y_2 = p(x_2) = A_2(x_2 - x_0)(x_2 - x_1)$$

$$\therefore A_2 = \frac{y_2}{(x_2 - x_0)(x_2 - x_1)}$$

Substituting all the values of A_k ; k = 0,1,2.

Equation (1) becomes

$$y = f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0$$

$$+ \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

which is known as quadratic Lagrange's interpolation formula.

Example 1:

Determine the **interpolating polynomial** of degree three and compute f(2) by using Lagrange's interpolation for the following table.

х	-1	0		3
у	2	1	0	-1

Solution:

By Lagrange's interpolation formula,

$$y = P(x)$$

$$=\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\,y_0+\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1$$

$$+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3$$

Here,
$$\begin{array}{c|ccccc}
x & x_0 = -1 & x_1 = 0 & x_2 = 1 & x_3 = 3 \\
y & y_0 = 2 & y_1 = 1 & y_2 = 0 & y_3 = -1
\end{array}$$

$$= \frac{(x-0)(x-1)(x-3)}{(-1-0)(-1-1)(-1-3)}(2) + \frac{(x+1)(x-1)(x-3)}{(0+1)(0-1)(0-3)}(1) \\
+ \frac{(x+1)(x-0)(x-3)}{(1+1)(1-0)(1-3)}(0) + \frac{(x+1)(x-0)(x-1)}{(3+1)(3-0)(3-1)}(-1)$$

$$= \frac{x(x^2 - 4x + 3)}{(-1)(-2)(-4)}(2) + \frac{(x^2 - 1)(x-3)}{(1)(-1)(-3)}(1)$$

$$+ \frac{x(x^2 - 2x - 3)}{(2)(1)(-2)}(0) + \frac{x(x^2 - 1)}{(4)(3)(2)}(-1)$$

$$y = \frac{(x^3 - 4x^2 + 3x)}{-8} (2) + \frac{(x^3 - 3x^2 - x + 3)}{3} (1)$$

$$+0 + \frac{x^3 - x}{24} (-1)$$

$$= \frac{(x^3 - 4x^2 + 3x)}{24} (-6) + \frac{(x^3 - 3x^2 - x + 3)}{24} (8) + \frac{x^3 - x}{24} (-1)$$

$$= \frac{-6x^3 + 24x^2 - 18x + 8x^3 - 24x^2 - 8x + 24 - x^3 + x}{24}$$

$$y = f(x) = \frac{1}{24} (x^3 - 25x + 24)$$

$$y = f(2) = -0.75$$

Example 2:

Compute f(9.2) by using Lagrange's interpolation method from the following data.

x	9	9.5	11
y = f(x)	2.1972	2.2513	2.3979

Solution:

By Lagrange's interpolation formula,

$$y = f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0$$

$$+ \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

x	$x_0 = 9$	$x_1 = 9.5$	$x_2 = 11$	
y = f(x)	$y_0 = 2.1972$	$y_1 = 2.2513$	$y_2 = 2.3979$	
	$\frac{9.2 - 11)}{9 - 11)} (2.197)$ $\frac{9.2 - 9.5)}{11 - 9.5)} (2.39)$	(***	9)(9.2 – 11) 9)(9.5 – 11) ⁽	2.2513)
= 1.1865 + 1.0	0806 - 0.0480			

Exercise

(1) Using Lagrange's formula of fit a polynomial to the data. And hence find y(2).

х	-1	0	2	3
у	8	3	1	12

Ans:
$$y(x) = \frac{1}{3} [2x^3 + 2x^2 - 15x + 9], y(2) = 1$$

(2) Find the value of $\tan 33^0$ by Lagrange's formula If, $\tan 30^0 = 0.5774$, $\tan 32^0 = 0.6249$, $\tan 35^0 = 0.7002$, $\tan 38^0 = 0.7813$.

Ans : [0.6494]