Ampliación de Señales y Sistemas

Tema 3: Muestreo

Antonio G. Marqués

Ubicándonos

- Tema 1: Señales y sistemas discretos en el dominio del tiempo
- > Tema 2: Señales y sistemas discretos en el dominio de la frecuencia
- > Tema 3: Muestreo
 - 3.1 Muestreo de señales continuas
 - 3.2 Procesamiento en tiempo discreto de señales continuas
 - 3.3 Muestreo de señales discretas: diezmado e interpolación
- Tema 4: Fundamentos de la Transformada Discreta de Fourier
- Tema 5: Transformada Z
- Tema 6: Introducción al diseño de filtros discretos

□ Comentarios:

- Tema fundamental en la asignatura
- Resumen: "Hay que muestrear al doble del ancho de banda e interpolar con sincs"
- Trabajo previo: TF de tren de deltas y TFI de filtro paso bajo

Ubicándonos

- ☐ Tema 3: Muestreo
 - > 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
 - 3.2 Procesamiento en tiempo discreto de señales continuas
 - 3.3 Muestreo de señales discretas: diezmado e interpolación

□ Comentarios:

- ➢ Bibliografía básica y complementaria: [BB2: Opp&Sch] Cap. 3, Secs. 3.0, 3.1, 3.2 y 3.4; [BB3: McC&Sch&Yod] Cap. 4, Secs. 4.1, 4.2 y 4.5; [BC3: Cha] Cap 7, Secs. 7.1, 7.2 y 7.3
- Material de apoyo: Open course MIT (parte de la presentación utiliza material de OCW-MIT); Demos: http://users.ece.gatech.edu/mcclella/SPFirst/

Muestreo: interfaz continuo-discreto

- □ Naturaleza de las señales: continua y discreta
 - C: voltajes, corrientes, voz, ...
 - > D: hora a la que se pone el sol, precio de cierre de una acción, secuencia genética
- ☐ Aparentemente, vivimos en un mundo de naturaleza continua
 - > El tiempo es una variable física continua
- □ Los ordenadores: información digital → representación discreta
 - > SD pero pueden representar info de SC
- ☐ ¿Cómo convertimos una señal continua en una discreta? → Muestreo

Muestreo omnipresente

- ☐ El muestreo está presente en nuestro día a día
 - Imágenes de alta resolución
 - Dibujos animados
 - Nuestra propia retina

Preguntas clave

- A) Dada una señal continua ¿podemos discretizarla sin perder información?
 - → ¿No perder información? → Seguir representando "lo mismo"

- Para nosotros: que a partir de las muestras se pueda recuperar la señal original
- □ B) ¿Cómo muestreamos?

> Para nosotros: muestreo regular \rightarrow Periodo de muestreo T (frecuencia $\omega_s = 2\pi/T$)

Objetivos de la primera parte

- Objetivo de esta clase: entender el proceso de muestreo
 - > INGENIERÍA: MODELAR + ANALIZAR + DISEÑAR
- Para ello, en la clase de hoy:
 - 1. Modelo del muestreo en el dominio del tiempo
 - 2. Análisis del muestreo en el dominio de la frecuencia
 - 3. Reconstrucción en el dominio de la frecuencia
 - 4. Reconstrucción en el dominio del tiempo
 - 5. Teorema de muestreo

Ubicándonos

☐ Tema 3: Muestreo

- > 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
- > 3.2 Procesamiento en tiempo discreto de señales continuas
- > 3.3 Muestreo de señales discretas: diezmado e interpolación

¿Cuál es la relación entre x[n] y x(t)?

¿Cuál es la relación entre $X(e^{j\Omega})$ y x(t)?

¿Cuál es la relación entre $X(e^{j\Omega})$ y $X(j\omega)$?

Muestreo en el dominio del tiempo

☐ Relación entre SC y SD muestreada a un periodo T

$$x[0] = x(0)$$

 $x[1] = x(0,5)$
 $x[2] = x(1)$
 $x[3] = x(1,5)$

$$x(t) \to x[n]$$

¿Expresión para x[n]?

$$x[-1]$$
 = $x(-0.25)$
 $x[0]$ = $x(0)$
 $x[1]$ = $x(0.25)$
 $x[2]$ = $x(0.50)$

Si
$$\omega$$
s=10 π rad/seg

$$x[-1] = x(-0,2)$$

 $x[0] = x(0)$
 $x[1] = x(0,2)$
 $x[2] = x(0,4)$

Si T=0,5 y
$$x(t)=(1/4)^tu(t)$$

$$x[-1]$$
 = $x(-0,5) = 0$
 $x[0]$ = $x(0)$ = 1
 $x[1]$ = $x(0,5) = 1/2$
 $x[2]$ = $x(1)$ = 1/4

Muestreo en el dominio de la frecuencia

 \square ¿Relación entre la TFC de x(t) y la TFD de x[n]?

$$x(t) \longleftrightarrow X(j\omega)$$
 $x(t) \to x[n] = x(nT)$ $x[n] \longleftrightarrow X(e^{j\Omega})$ $X(j\omega) \to X(e^{j\Omega}) = ?$

☐ Para contestar: vamos a dividir el proceso de muestreo en dos pasos*

Paso 1: de x(t) a $x_p(t)$

Paso 2: de $x_p(t)$ a x[n]

$$x[n] = x(nT)$$

^{*}Importante: los sistemas reales no implementan estos dos pasos, nosotros lo modelamos así para entender mejor lo que está pasando

Muestreo en el dominio de la frecuencia

Es decir, que vamos a modelar el muestreo como:

- ☐ Una vez que lo hemos separado en dos pasos:
 - ➤ Paso 1: relación entre x(t) y $x_p(t)$ → relación entre $X(j\omega) \to X_p(j\omega)$
 - ➤ Paso 2: relación entre $x_p(t)$ y x[n] → relación entre $X_p(j\omega) \to X(e^{j\Omega})$

Expresiones clave:

$$x[n] = x(nT)$$
 $x_p(t) = x(t) \cdot p(t)$ $p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$

Paso 1: de SC a secuencia de deltas C

 \square Sabemos que: $x_p(t) = x(t) \cdot p(t)$

Analicemos:

$$X_p(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega)$$

 $p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$

TFC de señales periódicas (DSFC)

Propiedad de modulación

$$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$
 $\omega_s = \frac{2\pi}{T}$

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j\omega) * \delta(\omega - k\omega_s) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Paso 1: de SC a secuencia de deltas C

- □ Sabemos que: $x_p(t) = x(t) \cdot p(t)$
- Analicemos:

$$X_p(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega)$$

Propiedad de modulación

$$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \qquad \omega_s = \frac{2\pi}{T}$$

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j\omega) * \delta(\omega - k\omega_s) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Paso 1: gráficamente

Multiplicar por un TD en tiempo

Convolucionar por un TD en frecuencia

Señal <u>limitada en</u>
<u>banda:</u> $X(j\omega) = 0$

$$|\omega| > W$$

Intuición: muestreo continuo genera réplicas en frecuencia

Las réplicas están centradas en la frecuencia de muestreo

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Paso 2: de sec. de deltas C a sec. de deltas D

☐ Tiempo:

$$x_p(t) = x(t) \cdot p(t) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x[n]\delta(t - nT)$$

■ Analicemos en frecuencia:

TFD WALL

$$X_p(j\omega) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)e^{-j\omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta(t - nT) e^{-j\omega t} dt$$

$$=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega nT}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

Intuición:

consistencia de unidades

$$X_p(j\omega) = X(e^{j\Omega})\Big|_{\Omega = \omega T}$$

$$X(e^{j\Omega}) = X_p(j\omega)|_{\omega = \frac{\Omega}{T}}$$

Paso 2: gráficamente

$$X(e^{j\Omega}) = X_p(j\omega)\big|_{\omega = \frac{\Omega}{T}}$$

Comentarios:

- ➤ Eje de ordenadas: no cambia
- ≻Eje de abcisas:
 - •Unidades de [rad/seg] a [rad]
 - Para pasar de la izda la dcha
 multiplicamos por T → expansión

Muestreo en frecuencia: solución

 \square ¿Relación entre la TF de x(t) y la TF de x[n]?

$$x(t) \longleftrightarrow X(j\omega)$$

$$x(t) \to x[n] = x(nT)$$

$$x[n] \longleftrightarrow X(e^{j\Omega})$$

$$X(j\omega) \to X(e^{j\Omega}) = ?$$

□ Paso 1 + Paso 2

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

$$X(e^{j\Omega}) = X_p(j\omega)|_{\omega = \frac{\Omega}{T}}$$

$$X(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$

Muestreo en frecuencia: solución (gráficamente)

Efectos:

- \triangleright Periódica con periodo 2π
- ➤ Divide su amplitud por un factor T
- ➤Se expande por un factor *T*

$$X(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$

Muestreo en tiempo y en frecuencia

☐ ¿Preguntas que nos hacíamos al empezar la sección?

¿Cuál es la relación entre x[n] y x(t)?

¿Cuál es la relación entre $X(e^{j\Omega})$ y x(t)?

¿Cuál es la relación entre $X(e^{j\Omega})$ y $X(j\omega)$?

☐ Respuestas:

¿Relación entre x[n] y x(t)? x[n] = x(nT)

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(nT) e^{-j\Omega n}$$

 $\ensuremath{ \begin{subarray}{l} \ensuremath{ \begin{subarray}{$

$$X(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$
 18

Ubicándonos

- ☐ Tema 3: Muestreo
 - 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
 - 3.2 Procesamiento en tiempo discreto de señales continuas
 - 3.3 Muestreo de señales discretas: diezmado e interpolación

¿Cuánto vale x(t) en t=0.3T o en t=23.478?

¿Cómo generamos los valores entre x(T) y x(2T) o entre x(10T)y x(11T) que habíamos perdido?

¿Cómo "unimos los puntos"?

Recuperando la señal continua

¿De SD a SC? ¿De x[n] a x(t)? → Camino contrario al de SC a SD → Interpolar

■ Bastará con que analicemos

Objetivo de diseño:

$$x_r(t) = x(t)$$

Primero lo analizaremos en el dominio de la frecuencia

Recuperando la señal continua: gráficamente

- Queremos: misma forma, eliminar las réplicas, cambiar la amplitud ->
 - Solución: Filtro paso bajo

$$X_r(j\omega) = H(j\omega)X_p(j\omega)$$

Recuperando la señal continua: tiempo

$$H(j\omega) \qquad x_r(t) = x(t)$$

$$H(j\omega) = \begin{cases} T & \text{si } |\omega| < \omega_s/2 \\ 0 & \text{si } |\omega| \ge \omega_s/2 \end{cases}$$

$$X_r(j\omega) = H(j\omega)X_p(j\omega)$$

Filtro paso bajo → Convolucionar con la respuesta al impulso

$$x(t) = x_p(t) * h(t) \quad \text{donde} \quad h(t) = \frac{T \sin(\pi t/T)}{\pi t}$$

$$= \left(\sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)\right) * h(t)$$

$$=\sum_{n=-\infty}^{\infty}x(nT)h(t-nT)=\sum_{n=-\infty}^{\infty}x[n]\ \frac{T\sin(\pi(t/T-n))}{\pi(t-nT)}$$

Recuperando la SC: tiempo gráficamente

SC original

Muestreada

Reconstruida (tras pasar por FPB)

Problemas en la reconstrucción

□ Pero... ¿podemos siempre recuperar la señal original?

¡Solapamiento espectral!

$$X_r(j\omega) = H(j\omega)X_p(j\omega) \times X(j\omega)$$

Solapamiento y Teorema de muestreo

 Podremos recuperar la señal original en función del BW de la señal y de la frecuencia de muestreo

- ➤ ¿Qué pasa si W es muy grande? → No podemos

☐ Teorema de muestreo (Nyquist-Shannon):

Sea x(t) una señal limitada en banda, es decir x(t) satisface $X(j\omega)=0 \ \forall \ |\omega|>W$

Entonces, x(t) puede recuperarse a partir de sus muestras x[n]=x(nT) si se cumple que

$$\omega_s/2 > W \Rightarrow \omega_s > 2W \Rightarrow T < \pi/W$$

Ejemplos de señales mal muestreadas

☐ Con una única sinusoide:

$$W=2\pi/\tau \rightarrow \omega_s>2W \rightarrow 2\pi/T>4\pi/\tau \rightarrow T<\tau/2$$

No se cumple teorema de muestreo (por muy poco) → NO FUNCIONA

Ejemplos de señales mal muestreadas

☐ Con suma de sinusoides:

➤ Muestreamos siempre a 2000Hz → Tendremos problemas en cuanto la SC tenga un BW mayor que 1000Hz

Varias demos disponibles online.

Ejemplos de señales mal muestreadas

☐ Con imágenes:

☐ Con vídeos:

Α

http://www.youtube.com/ watch?v=UiTUiop9etk&fe ature=related

Muestreo e interpolación ideal: resumen

- Muestreo interfaz continuo-discreto: ¿cómo muestreamos? ¿cuándo podemos recuperar la SC a partir de la SD?
- Para entender el proceso de muestreo: M1) Muestreo en tiempo 2) Muestreo en frecuencia 3) Reconstrucción en frecuencia 4) Reconstrucción en tiempo
- Tres resultados fundamentales para recordar:
- Muestreo $x(t) \rightarrow x[n] = x(nT)$
- Reconsdeltas discretas $x_p(t) = \frac{1}{\sum x[n]\delta(t-nT)}$ deltas continuas $x_p(t) = \frac{\omega_s}{2}$ trucción
- Teorema de Si $X(j\omega) = 0 \ \forall \ |\omega| > \frac{\omega_s}{2}$, entonces $x_r(t) = x(t)$ muestreo

Clave:
$$X(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right)$$
 29

Resumen de la sección

- ☐ Los conversores analógicos/digitales y digitales analógicos son omnipresentes
 - Parte uno: muestreadores / interpoladores (discretizan el tiempo)
 - Parte dos: cuantificadores (discretizan la amplitud)
 - En este tema/asignatura nos hemos centrado en la discretización del tiempo
- Aspectos clave:
 - La conversión continuo a discreto y la conversión discreto a continuo está dividida en varios pasos/bloques
 - Algunos de esos bloques son más fáciles de entender en el domino del tiempo y otros son más fáciles de entender en el dominio de la frecuencia
 - Debemos entenderlos en los dos dominios
- ☐ Hemos centrado nuestro análisis en señales de <u>banda limitada</u>:
 - Existe un valor mínimo de la frecuencia de muestreo que garantiza la recuperación de la señal: el doble del ancho de banda
 - Si la señal ha sido bien muestreada, el interpolador ideal es un filtro paso bajo (lo que equivale a decir que es una sinc en el dominio del tiempo)

Ampliación de Señales y Sistemas

Tema 3: Muestreo

Antonio G. Marqués

Ubicándonos

- ☐ Tema 3: Muestreo
 - > 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
 - 3.2 Procesamiento en tiempo discreto de señales continuas
 - 3.3 Muestreo de señales discretas: diezmado e interpolación
- Comentarios:
 - Material de lectura:
 - [BB2: Opp&Sch] Secs. 3.4 y 3.7; [BB3: McC&Sch&Yod] Secs. 4.3, 4.4; [BC3: Cha] Secs. 7.4, 7.5

Problemas y aspectos prácticos

- Potenciales problemas y cuestiones prácticas que vamos a estudiar
 - A) Solapamiento espectral y filtros antisolapamiento
 - B) Interpolación subóptima
 - C) Cuantificación
- ☐ Comenzando por A), el teorema de muestreo nos decía que si:
 - La señal está limitada en banda
 - Muestreamos al doble del ancho de banda de la señal
- ☐ Podemos recuperar la señal original a partir de sus muestras
- Qué ocurre si alguna de las dos condiciones no se cumple? →
 Solapamiento (Aliasing) → La señal recuperada y original no coinciden
- ☐ ¿Hay alguna manera de mitigarlo? ¿Alguna manera de que esas señales "se parezcan" más.

Filtro antisolapamiento

☐ Idea básica: antes de muestrear filtramos paso bajo de manera que garantizamos que no haya solapamiento

→ ¿Por qué esto consigue que la señal se parezca más a la original? → Toda la distorsión (diferencia) se debe al filtro paso bajo, pero el muestreo en sí ya no produce distorsión porque ya no hay solapamiento → Véase la transparencia siguiente

Filtro antisolapamiento

☐ Sin filtro antisolapamiento

$$X_p(j\omega) = \frac{1}{2\pi} \left(X(j \cdot) * P(j \cdot) \right) (\omega)$$

$$-\frac{\omega_s}{2} \frac{\omega_s}{2}$$

$$X_r(j\omega)$$

-las frecuencias más altas de x(t) se pierden -la señal original y recuperada coinciden en los instantes de muestreo: $x(nT)=x_r(nT)$

Con filtro antisolapamiento

- -se parece más a la señal original
 -la señal original y recuperada no coinciden
 en los instantes de muestreo
 - 35

Interpolación subóptima

Habíamos llegado a la conclusión de que el interpolador ideal es:

En el tiempo, esto supone que utilizamos sincs de anchura T y cuya amplitud se modifica en función de la muestra correspondiente

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}((t - nT)/T)$$

- ☐ ¿Seguro que habíamos entendido bien lo que era interpolar con sincs?
 - Veamos un ejemplo

Interpolando con sincs: un ejemplo

Supongamos que T=1 y que queremos saber el valor de la señal interpolada en t=0.3:

$$x_r(0.3) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}(0.3 - n) =$$

$$= \sum_{n=-\infty}^{-3} x[n] \operatorname{sinc}(0.3 - n) + x[-2] \operatorname{sinc}(0.3 + 2) + x[-1] \operatorname{sinc}(0.3 + 1) + x[0] \operatorname{sinc}(0.3 + 0) + x[1] \operatorname{sinc}(0.3 - 2) + x[2] \operatorname{sinc}(0.3 - n) + \sum_{n=3}^{\infty} x[n] \operatorname{sinc}(0.3 - n)$$

$$x_r(0.3) \approx x[-2] \mathrm{sinc}(2.3) + x[-1] \mathrm{sinc}(1.3) + x[0] \mathrm{sinc}(0.3) + x[1] \mathrm{sinc}(-0.7) + x[2] \mathrm{sinc}(-1.7) \approx 0.11 \cdot x[-2] - 0.19 \cdot x[-1] + 0.85 \cdot x[0] + 0.36 \cdot x[1] - 0.15 \cdot x[2]$$

 $x_r(0.3) = \sum_{n=-\infty}^{-3} x[n] \mathrm{sinc}(0.3-n) + x[-2] \mathrm{sinc}(2.3) + x[-1] \mathrm{sinc}(1.3) + x[0] \mathrm{sinc}(0.3) + x[1] \mathrm{sinc}(-0.7) + x[2] \mathrm{sinc}(-1.7) + \sum_{n=3}^{\infty} x[n] \mathrm{sinc}(0.3-n) + x[-1] \mathrm{sinc}(0.3) + x[-1] \mathrm{sin$

Interpolación subóptima

☐ El interpolador ideal nos dice que:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}((t-nT)/T)$$

Suma infinita de sincs a "izquierda" y "derecha"

Problemas:

- La sinc tiene longitud infinita
- La sinc es anticausal

Posibles soluciones:

- Utilizar sincs de longitud finita y "retrasar" la interpolación de la señal
- Utilizar otros interpoladores
- "Precio a pagar" la señal recuperada no coincidirá con la original

Interpolación subóptima

- ¿Cómo vamos a analizar el efecto de esos nuevos interpoladores?
 - > Hay que entender lo que pasa tanto en tiempo como en frecuencia
 - Mantendremos la estructura básica de interpolación como

- □ Objetivos:
 - Que la señal recuperada (interpolada) se parezca a la original
 - Que el filtro interpolador sea sencillo de construir
- Como ocurría en el caso ideal, bastará con que analicemos:

Caso 1: interpolador de orden cero

☐ ¿Cuál es la estructura de un interpolador de orden cero?

Dominio del tiempo

Dominio de la frecuencia

TF de un pulso de anchura T es una sinc de anchura $4\pi/T$

Caso 1: interpolador de orden cero

- Dos efectos principales:
 - Se nos "cuelan" frecuencias altas (lógico porque la señal en el tiempo tiene variaciones bruscas)
 - ➤ La réplica principal se distorsiona ligeramente (menor distorsión cuanto más hayamos sobremuestreado la señal original) → Si usamos interpolador de orden cero es mejor muestrear más rápido
- En lugar de ir de 0 a T, el filtro interpolador puede ir de –T/2 a T/2 (a este interpolador se le llama "vecino más cercano")

Caso 2: interpolador de orden uno

- ☐ Interpolador de orden uno = Interpolador lineal

 - Es la interpolación más "intuitiva en el dominio del tiempo"
 - > Es la que utiliza Matlab cuando hacemos un plot

Dominio del tiempo

☐ Preguntas:

- > ¿Cuál es la estructura (modelo) del interpolador lineal?
- ¿Cuál es el efecto en frecuencia?

Caso 2: interpolador de orden uno

☐ ¿Cuál es la estructura de un interpolador de orden uno?

☐ ¿TF de un triángulo de anchura 2T? → Cuadrado de la TF de un pulso rectangular de anchura T → Sinc de anchura $4\pi/T$ al cuadrado

- -Se vuelven a "colar" frecuencias altas (pero menos)
- -Distorsión de la primera réplica algo mayor
- -Si se sobremuestrea (doble/triple del mínimo) → Calidad OK

Interpolación subóptima: resumen

☐ En tiempo

☐ En frecuencia:

Interpolación subóptima: ejemplo

☐ Imagen (señal en 2D)

Hay muchas otras alternativas: splines, pulsos gaussianos → Véase Sec. 4.4 de [BB3 – "Signal Processing First"]

Imagen original

Imagen muestreada

Imagen reconstruida con un interpolador de orden cero

Imagen reconstruida con un interpolador lineal

Discretizando la amplitud: cuantificación

☐ Para almacenar y procesar digitalmente señales: no sólo hay que discretizar el tiempo, sino también cuantificar (cuantizar) su amplitud

Cuantificación

☐ Ejemplo: CD de audio (todavía se usan??)

$$2\,\text{channels} \times 16\,\frac{\text{bits}}{\text{sample}} \times 44,100\,\frac{\text{samples}}{\text{sec}} \times 60\,\frac{\text{sec}}{\text{min}} \times 74\,\text{min} \approx 6.3\,\text{G}\,\,\text{bits} \approx 0.78\,\text{G}\,\,\text{bytes}$$

- En la práctica hay muchas maneras de cuantificar, la mayoría más sofisticada que la ilustrada en las gráficas anteriores
 - Cuantificación uniforme vs. no uniforme
 - Cuantificación diferencial

Importante: análisis y caracterización del error de cuantificación

- Desde un punto de vista más general, codificación de fuente:
 - > BMP vs. JPG
 - Se verá en más detalle en Comunicaciones Digitales (Transmisión Digital)

Resumen de la clase

- □ Idealmente las señales son de banda limitada y las podemos reconstruir con un filtro paso bajo perfecto
- Aspectos prácticos en el muestreo:
 - > Para evitar potenciales solapes, antes de muestrear se filtra paso bajo
- Aspectos prácticos en la reconstrucción (interpolación):
 - > El interpolador ideal no se puede construir, en la práctica se pueden utilizar:
 - sincs truncadas,
 - vecinos más próximos,
 - interpolación lineal
 - ➤ En algunos casos se diseñan en el dominio de la frecuencia, muchos en el dominio del tiempo, hay que entenderlos en ambos dominios (muy muy importante en tiempo)
 - Conviene muestrear más rápido de lo que dicta el teorema de muestreo
- ☐ El muestreo es uno de los dos pasos para digitilizar una señal continua, también es necesario cuantificar la amplitud

Ampliación de Señales y Sistemas

Tema 3: Muestreo

Antonio G. Marqués

Ubicándonos

- ☐ Tema 3: Muestreo
 - 3.1 Muestreo de señales continuas
 - > 3.2 Procesamiento en tiempo discreto de señales continuas
 - > 3.3 Muestreo de señales discretas: diezmado e interpolación
- □ Comentarios:
 - ➤ Bibliografía básica: [BB2: Opp&Sch] Cap. 3, Secs. 3.4 (la 3.5 está relacionada, aunque nosotros no la tratamos)
 - Notación/significado de bloques para muestrear e interpolar:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}((t-nT)/T)$$

Procesamiento discreto de señales continuas

- ¿Cómo se procesa habitualmente una señal continua?
 - Se muestrea y se le "mete" a un ordenador/DSP
 - > Se procesa en discreto
 - Se vuelve a transformar en una señal continua

- □ ¿Por qué? → Más barato, más sencillo, más flexible, mayor control,...
- ☐ Entenderlo en el sistema del tiempo parece fácil, pero
 - > ¿Es un problema que haya "segmentos/bloques" en continuo y otros en discreto?
 - ¿Qué ocurre en el dominio de la frecuencia?

Procesamiento discreto de señales continuas

Vamos a encontrar primero la relación en el dominio de la frecuencia y luego la "traduciremos" al dominio del tiempo

- Dividiremos el análisis en tres pasos (uno por bloque):
 - \rightarrow (1) Expresar la TF de $x_d[n]$ en función de la TF de $x_c(t)$
 - \triangleright (2) Expresar la TF de $y_d[n]$ en función de la TF de $x_d[n]$
 - \triangleright (3) Expresar la TF de $y_c(t)$ en función de la TF de $y_d[n]$
- Los pasos (1) y (3) ya los hemos analizado en el apartado anterior, "lo novedoso" es el paso (2) que es muy sencillo

Procesamiento discreto SC: Paso (1)

 \Box (1) Expresar la TF de $x_d[n]$ en función de la TF de $x_c(t)$

➤ Si revisamos las transparencias de la sección 3.1.1

Procesamiento discreto SC: Paso (2)

 \square (2) Expresar la TF de $y_d[n]$ en función de la TF de $x_d[n]$

➤ Facilísimo: La TF de la salida el la TF de la entrada por la RF del filtro

$$Y_d(e^{j\Omega}) = H_d(e^{j\Omega})X_d(e^{j\Omega})$$

Procesamiento discreto SC: Paso (3)

 \Box (3) Expresar la TF de $y_c(t)$ en función de la TF de $y_d[n]$

➤ Si revisamos las transparencias de la secciones 3.1.1 y 3.1.2

$$Y_p(j\omega) = Y_d(e^{j\omega T})$$

$$Y_c(j\omega) = \begin{cases} T Y_p(j\omega), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{resto} \end{cases}$$

$$Y_c(j\omega) = \begin{cases} TY_d(e^{j\omega T}), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{resto} \end{cases}$$

Procesamiento discreto de SC: Pasos (1,2,3)

☐ Esquema básico

(1) Expresar la TF de x_d[n] en función de la TF de x_c(t)

$$X_{i}(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{i} \left(j \left(\frac{\Omega}{T} - k \frac{2\pi}{T} \right) \right)$$

- (2) Expresar la TF de y_d[n] en función de la TF de x_d[n]
- (3) Expresar la TF de y_c(t) en función de la TF de y_d[n]

$$Y_d(e^{j\Omega}) = H_d(e^{j\Omega})X_d(e^{j\Omega})$$

$$Y_c(j\omega) = \begin{cases} TY_d(e^{j\omega T}), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{resto} \end{cases}$$

Procesamiento discreto de SC: Pasos (1,2,3)

☐ Si no hay solapamiento, al juntar (1) (2) y (3) tenemos que:

$$X_{\!\!d}(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{\!\!c}\!\!\left(j\left(\frac{\Omega}{T} - k\frac{2\pi}{T}\right)\right) \qquad Y_{\!\!d}(e^{j\Omega}) = H_{\!\!d}(e^{j\Omega}) \\ X_{\!\!d}(e^{j\Omega}) = H_{\!\!d}(e^{j\Omega}) \\ X_{\!\!d}(e^{j\Omega}) \qquad Y_{\!\!c}(j\omega) = \begin{cases} TY_{\!\!d}(e^{j\omega T}), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{resto} \end{cases}$$

lacksquare Supongamos que nos centramos en: $|\omega| < \omega_s/2 \Rightarrow |\omega| < \pi/T \Rightarrow |\Omega| < \pi/T$

$$Y_c(j\omega) = TY_d(e^{j\omega T}) = TH_d(e^{j\omega T})X_d(e^{j\omega T}) = TH_d(e^{j\omega T})\frac{1}{T}X_c\left(j\left(\frac{\omega T}{T}\right)\right) = H_d(e^{j\omega T})X_c\left(j\omega\right)$$

> Podemos concluir por tanto que:

$$H_c(j\omega) = \begin{cases} H_d(e^{j\omega T}), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{otherwise} \end{cases}$$

- "Truco": consistencia de unidades
 - RF continua rad/seg, RF discreta
 - Si queremos expresar el SC en función del SD, las unidades serán rad/seg
 - Si queremos expresar el SD en función del SC, las unidades serán rad

(c)

Procesamiento discreto de SC: gráficamente

(f)

Procesamiento discreto de SC: gráficamente

Resumiendo:

- ☐ Si queremos expresar la RF inferior en función de la superior:
 - > Hay que quedarse sólo con la primera réplica
 - La amplitud no cambia
 - El eje de frecuencias sí cambia (dividir por T)

Procesamiento discreto de SC: ejemplo

 Queremos implementar un sistema continuo cuya salida sea la derivada de la entrada → La RF de este sistema sería

$$H_c(j\omega) = \begin{cases} j\omega, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

¿Cuál es la RF del sistema discreto?

ightharpoonup Utilizando las transparencias anteriores: $H_d(e^{j\Omega}) =$

$$H_d(e^{j\Omega}) = \begin{cases} H_c(j\Omega/T), & |\Omega| < \pi \\ \text{periodic}, & |\Omega| \ge \pi \end{cases}$$

$$= j\left(\frac{\Omega}{T}\right) = j\omega_c\left(\frac{\Omega}{\pi}\right) \quad |\Omega| < \pi$$

¿Y cómo es esto en el dominio del tiempo? ¿Cuál es $h_d[n]$? \rightarrow Comprobad que no es $h[n] = \delta[n] - \delta[n-1]$

Procesamiento discreto de SC: ejemplo

Gráficamente

Sistema en TC deseado

Sistema en TD a implementar

Procesamiento discreto de SC: ejemplo

□ ¿Para qué se usa un diferenciador? → En procesamiento de imágenes, para detectar bordes

Procesamiento discreto de SC: recapitulando

□ Las señales continuas limitadas en banda se pueden procesar de forma fácil y barata pasándolas a discreto y luego convirtiéndolas de nuevo en continuas:

- Sistema completo que se usa para procesar una SeñC con un SistD
- ➤ Cuando la entrada $x_c(t)$ es de banda limitada $(X(jω) = 0 \text{ para } |ω| > ω_M)$ y se cumple el teorema de muestreo, $(ω_s > 2 ω_M)$ → El sistema completo es equivalente a un sistema LTI continuo, y por lo tanto queda descrito por su RF y/o por su RI:

$$Y_c(j\omega) = H_c(j\omega)X_c(j\omega) \longleftrightarrow y_c(t) = h_c(t) * x_c(t)$$
 LTI

La RF del SistC se relaciona con la RF del SistD

$$H_c(j\omega) = \begin{cases} H_d(e^{j\omega T}), & |\omega| < \frac{\omega_s}{2} \\ 0, & \text{otherwise} \end{cases}$$

Si queremos encontrar la relación de las RI → Utilizamos la de la RF y tomamos TF inversas

Ampliación de Señales y Sistemas

Tema 3: Muestreo

Antonio G. Marqués

Ubicándonos

- ☐ Tema 3: Muestreo
 - > 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
 - > 3.2 Procesamiento en tiempo discreto de señales continuas
 - > 3.3 Muestreo de señales discretas: diezmado e interpolación

- □ Comentarios:
 - Bibliografía básica: [BB2: Opp&Sch] Cap. 3, Sec. 3.6

Muestreo de señales discretas

- ☐ ¿Para qué?
 - Compresión: Muestrear señales discretas es una forma de "comprimir la información"

Para poder procesar en discreto señales continuas que han sido muestreadas a distintas tasas
x₄(t)
x₄[n], Ts = 0.1 seg

 Desde un punto de vista de análisis, los pasos son muy parecidos a los seguidos con el muestreo e interpolación de señales continuas

Muestreo de señales discretas: diezmado

□ Al igual que en el caso continuo, describir el muestreo en el tiempo es muy sencillo

$$x_b[n] = x[nN]$$

$$x_{b}[-1] = x[-3]$$

 $x_{b}[0] = x[0]$
 $x_{b}[1] = x[3]$
 $x_{b}[2] = x[6]$

- Las preguntas claves son:
 - ¿Qué pasa en frecuencia?
 - ¿Cuándo puedo recuperar a partir de las señal muestreada la señal original?

Otras observaciones:

- ➤ Al muestreo discreto en ocasiones se le llama diezmado (sobre todo si tenemos SD de longitud finita) → Diezmamos la señal, la hacemos más corta
- Del mismo modo, cuando no podemos recuperar la señal original, se dice que el proceso de diezmado ha provocado una pérdida de información

Diezmado en tiempo

□ Al igual que en el caso continuo, entendemos el diezmado como la aplicación sucesiva de dos bloques

☐ En el dominio del tiempo, la señal es la misma → Gráficamente

Diezmado en frecuencia

Queremos relacionar la TF de x[n] con la de $x_h[n] \rightarrow$ Dos pasos

- ightharpoonup (1) Expresar la TF de x_p[n] a partir de la TF de x[n] $X(e^{j\Omega}) o X_p(e^{j\Omega})$
- \triangleright (2) Expresar la TF de $x_b[n]$ a partir de la TF de $x_b[n]$

$$X_p(e^{j\Omega}) \to X_b(e^{j\Omega})$$

Paso (1):

$$X_{b}[n] = x[n] \cdot p[n]$$

$$X_{p}(e^{j\Omega}) = \frac{1}{2\pi} \int_{0}^{2\pi} X(e^{j\theta}) P(e^{j(\Omega-\theta)}) d\theta$$

$$X_{p}(e^{j\Omega}) = \frac{1}{N} \sum_{k=-N/2}^{N/2-1} X(e^{j(\Omega-\frac{2\pi}{N}k)})$$

Diezmado en frecuencia

☐ El paso (1) gráficamente

 $X(e^{j\Omega})$ -2π 0 W_{M} $P(e^{j\Omega})$ -2π -2π $\frac{-4\pi}{3}$ $X(e^{j\Omega})$ $\frac{1}{2\pi}$ $\frac{2\pi}{3}$ $X_{p}(e^{j\Omega})$ $\frac{2\pi}{3}$ $\frac{4\pi}{3}$ 2π Ω

Nos aparecen réplicas en los múltiplos de $2\pi/N \rightarrow$ Ojo porque se pueden solapar

$$X_p(e^{j\Omega}) = \frac{1}{N} \sum_{k=-N/2}^{N/2-1} X(e^{j(\Omega - \frac{2\pi}{N}k)})$$

Si W_M es el BW de la señal x[n] habrá solape si: $W_M > 2\pi/N - W_M \rightarrow 2W_M > 2\pi/N \rightarrow N > 2\pi/W_M$

Diezmado en frecuencia

☐ Paso (2):

- Opción 1: a través de propiedades (expansión/compresión)
- > Opción 2: a través de la fórmula de análisis

$$X_b(e^{j\Omega}) = \sum_{\forall n} x_b[n] e^{-j\Omega n} = \sum_{\forall n} x_p[3n] e^{-j\Omega n} = \sum_{\forall m = \dot{3}} x_p[m] e^{-j\Omega m/3} = \sum_{\forall m} x_p[m] e^{-j\Omega m/3} = X_p(e^{j\Omega/3})$$

Para el caso general

$$X_b(e^{j\Omega}) = X_p(e^{j\Omega/\!N})$$

¡Comprimir en el tiempo equivale a expandir en frecuencia!

Diezmado en frecuencia

☐ Pasos (1) + (2):

$$X_p(e^{j\Omega}) = \frac{1}{N} \sum_{k=-N/2}^{N/2-1} X(e^{j(\Omega - \frac{2\pi}{N}k)})$$

$$X_b(e^{j\Omega}) = \, X_p(e^{j\Omega/\!N})$$

Réplicas y expansión:

$$X_b(e^{j\Omega}) = X_p(e^{j\Omega/N}) = \frac{1}{N} \sum_{k=-N/2}^{N/2-1} X\left(e^{j(\frac{\Omega}{N} - \frac{2\pi}{N}k)}\right) = \frac{1}{N} \sum_{k=-N/2}^{N/2-1} X\left(e^{j(\frac{\Omega-2\pi k}{N})}\right)$$

Recuérdese que el orden del desplazamiento compresión es importante \rightarrow Las fórmulas nos están diciendo que las réplicas están en los múltiplos de 2π

Diezmado en frecuencia: gráficamente

☐ Pasos (1) + (2):

Paso (1):

Cambio de amplitud (1/N)

Paso (2):

Ensanchamiento (por un factor N)

- ➤ Si no hay solape, es muy sencillo, si hay solape a veces nos liamos → Método "universal"
 - a) Nos quedamos con la señal original entre $-\pi$ y π
 - b) Dividimos la amplitud por N y ensanchamos por un factor N
 - c) Replicamos la señal obtenida en los múltiplos de 2π

Diezmado: gráficas tiempo y frecuencia

➤ Recordemos que la señal intermedia no existe, simplemente la dibujamos para entender mejor lo que está pasando → "Dibujamos un bloque, para entenderlo lo dividimos en dos"

Diezmado: cuestiones prácticas

- \square Si el ancho de banda es menor que π/N no hay solapamiento
- Al igual que en el caso continuo, conviene poner un filtro paso bajo antisolapamiento \rightarrow frecuencia del filtro π/N
- ☐ Ejemplo:

Interpolación de señales discretas

- ☐ Interpolación de señales discretas: ¿para qué?
 - Para recuperar una señal previamente diezmada
 - Para "expandir" una señal discreta
 - > Para conseguir una señal equivalente a haber muestreado más rápido

- ☐ Lo ejecutamos en dos pasos y, además, "utilizamos" dos bloques
 - Paso/Bloque (1): "inserta ceros"
 Paso/Bloque (2): "rellena ceros"

Interpolación de señales discretas

□ ¿Cómo diseñamos esos bloques? → Idea: recuperar señal diezmada

- Observaciones:
 - El objetivo de diseño es conseguir que x_i[n]=x[n]
 - Las señales x_p[n] y x_e[n] son iguales → Para conseguir nuestro objetivo basta con analizar y diseñar

 Asumiremos que el bloque a diseñar es LTI y por lo tanto nos bastará con especificar su RI o su RF → Lo haremos en frecuencia porque es más fácil

Interpolación de SD: dominio de la frecuencia

□ Lo analizamos y diseñamos en el dominio de la frecuencia

$$H_i(e^{j\Omega}) \Rightarrow h_i[n]$$

$$X_i(e^{j\Omega}) = H_i(e^{j\Omega})X_p(e^{j\Omega}) = X(e^{j\Omega})$$

Interpolador ideal de SD

En frecuencia el interpolador ideal es un filtro paso bajo de ganancia N

"Rellenar" N-1 ceros
$$H_i(e^{j\Omega}) = \begin{cases} N, & |\Omega| \leq \pi/N \\ 0, & \pi/N \leq |\Omega| \leq \pi \end{cases}$$

$$P_i(e^{j\Omega}) = \begin{cases} N, & |\Omega| \leq \pi/N \\ 0, & \pi/N \leq |\Omega| \leq \pi \end{cases}$$

$$P_i(e^{j\Omega}) = \begin{cases} N, & |\Omega| \leq \pi/N \\ 0, & \pi/N \leq |\Omega| \leq \pi \end{cases}$$

 \Box ¿En tiempo? \rightarrow $h_i[n] = TF^{-1} \Big\{ H_i(e^{j\Omega}) \Big\}$

$$h_i[n] = \frac{1}{2\pi} \int_{-\pi/N}^{\pi/N} N \cdot e^{j\Omega n} d\Omega = \frac{N}{2\pi} \frac{2j \sin(\pi n/N)}{jn} = \frac{\sin(\pi n/N)}{\pi n/N} = \sin(n/N)$$

¡¡Vuelve a ser una sinc!!

Podemos volver a utilizar interpoladores subóptimos (orden cero, lineal, sincs) truncadas) → Todo igual que en el caso continuo

Interpolación SD: gráficamente

Ejemplo de interpolación en imágenes

↑ 2 ⇒

↑ 2 →

¿Qué estamos viendo en esta imagen? ¿Dónde está este edificio?

Muestreo/Interpolación: otros aspectos

- ☐ Cuando se utilizan diagramas de bloques:
 - > El diezmador suele aparecer como un único bloque:

> El interpolador suele aparecer como dos (aunque no siempre):

En la opción B), el bloque " \uparrow L" equivale al primer bloque de la opción A)

En la opción C), el bloque " \uparrow L" equivale a los dos bloques de la opción A)

Hay que leer con cuidado lo que nos diga el enunciado/libro/página web

Muestreo/Interpolación: otros aspectos

Comprimir/expandir por un factor no entero (p.e. 0.75) → Combinar ↓N y ↑L→ Remuestreo

- Si x[n] proviene de muestrear una SC x(t) con un periodo T y no hay solape:
 - La señal a la salida de las dos alternativas es la misma: x_{id} [n]=x_{di} [n]
 - x_{id} [n] puede interpretarse como haber muestreado x(t) con un periodo T_{eq}=T-N/L
- ➤ Recordemos que el diezmado puede producir pérdida de información (solapamiento) pero la interpolación no → ¿Cuándo podemos perder información?
 - Si N>L → SÍ ★
 - Si L≥N y hacemos primero la interpolación → NO√
 - Si L≥N y hacemos primero el diezmado → SÍ
- Conclusión: si podemos elegir, haremos siempre antes la interpolación (Alt. 2)

MUESTREO DE SECUENCIAS

Muestreo/Interpolación de SD: Recapitulando

- Muy similar al caso continuo
 - Diezmado: fácil de describir en el tiempo, difícil en frecuencia
 - Existe una tasa máxima de diezmado (si se supera, hay solapamiento)
 - La interpolación consiste en dos pasos: "insertar ceros" y "rellenar ceros"
 - Hay distintas alternativas para "rellenar los ceros": orden cero, lineal, cuadrático, ...
 - La forma óptima de "rellenar ceros" es con sincs. Esto es difícil de ver en el dominio del tiempo pero fácil de ver en el dominio de la frecuencia
- □ En el diezmado se puede perder información, en la interpolación no. El diezmado puede entenderse como una forma muy rudimentaria de "comprimir" información
- □ Tanto el diezmado como la interpolación se pueden utilizar para re-ajustar el periodo de muestreo de una señal
 - Si diezmamos: es como si hubiéramos hecho el periodo de muestreo más grande
 - Si interpolamos: es como si hubiéramos hecho el periodo de muestreo más pequeño

Resumen del tema (1/3)

- ☐ Tema 3: Muestreo
 - 3.1 Muestreo de señales continuas
 - 3.1.0 Introducción
 - 3.1.1 Muestreo en el dominio del tiempo y de la frecuencia
 - 3.1.2 Recuperando la señal continua: interpolación
 - 3.1.3 Problemas y aspectos prácticos
 - Filtro antisolapamiento
 - Interpoladores subóptimos
 - Cuantificación de la amplitud
 - > 3.2 Procesamiento en tiempo discreto de señales continuas
 - 3.3 Muestreo de señales discretas: diezmado e interpolación
 - 3.3.1 Diezmado
 - 3.3.2 Interpolación
 - 3.3.3 Remuestreo

Resumen del tema (2/3)

- ☐ Los conversores analógicos/digitales y digitales analógicos son omnipresentes
 - Parte uno: muestreadores / interpoladores (discretizan el tiempo)
 - Parte dos: cuantificadores (discretizan la amplitud)
 - En este tema/asignatura nos hemos centrado en la discretización del tiempo
- Aspectos clave:
 - La conversión continuo a discreto y la conversión discreto a continuo está dividida en varios pasos/bloques
 - Algunos de esos bloques son más fáciles de entender en el domino del tiempo y otros son más fáciles de entender en el dominio de la frecuencia
 - Debemos entenderlos en los dos dominios
- ☐ Hemos centrado nuestro análisis en señales de <u>banda limitada</u>:
 - Existe un valor mínimo de la frecuencia de muestreo que garantiza la recuperación de la señal: el doble del ancho de banda
 - Si la señal ha sido bien muestreada, el interpolador ideal es un filtro paso bajo (lo que equivale a decir que es una sinc en el dominio del tiempo)

Resumen del tema (3/3)

- Aspectos prácticos:
 - > Para evitar potenciales solapes, antes de muestrear se filtra paso bajo
 - ➤ El interpolador ideal no se puede construir, en la práctica se pueden utilizar sincs truncadas, vecinos más próximos, interpolación lineal → En estos casos conviene haber muestreado más rápido de lo que dicta el teorema de muestreo
- ☐ Las señales continuas limitadas en banda se pueden procesar de forma fácil y barata pasándolas a discreto y luego convirtiéndolas de nuevo en continuas:
 - Existe una equivalencia entre lo que hace el sistema discreto en el dominio de la frecuencia y lo que hace el sistema continuo en el dominio de la frecuencia, la equivalencia en el dominio del tiempo es más complicada
- Muestreo e interpolación de señales discretas:
 - Parecido al muestreo/interpolación de señales continuas
 - ➤ El diezmado puede provocar pérdida de información (tasa máxima para señales limitadas en banda), la interpolación no
 - Se pueden utilizar para cambiar el periodo de muestreo de una señal