

Introduzione

Introduzione alle basi di dati

Introduzione alle basi di dati

- □ Gestione delle informazioni
- □ Base di dati

- □ Accesso ai dati

Gestione delle informazioni

□ Le informazioni sono registrate e scambiate in forme diverse

Gestione delle informazioni

□ Le informazioni sono registrate e scambiate in forme diverse

BNCLCU79M44A488D

Sistema informatico

- - i dati sono simboli grezzi che devono essere interpretati e correlati per fornire informazioni
 - esempio
 - dati: "Mario Rossi" e 424242
 - informazione: risultato della ricerca di un numero di telefono sulla propria agenda telefonica

Caratteristiche dei dati

- - esempio
 - i dati relativi alle applicazioni bancarie hanno una struttura invariata da decenni
 - le procedure che li gestiscono variano di anno in anno
- □ I dati sono una risorsa importante dell'organizzazione che li gestisce

Base di dati

- - una base di dati è una collezione di dati che rappresenta le informazioni di interesse per un sistema informativo
- □ (Definizione "tecnica")
 - una base di dati è una collezione di dati gestita da un DBMS

DataBase Management System - DBMS

- □ Un sistema per la gestione di basi di dati o DBMS (Data Base Management System) è un sistema software in grado di gestire collezioni di dati che siano
 - grandi
 - condivise
 - persistenti

assicurando la loro affidabilità e privatezza

Caratteristiche dei DBMS

- Dimensioni molto maggiori della memoria centrale disponibile
 - gestione dei dati in memoria secondaria
- ○ Condivisione dei dati tra applicazioni ed utenti: una base di dati è una risorsa *integrata*, condivisa da più settori aziendali
 - riduzione della ridondanza dei dati
 - riduzione delle inconsistenze tra i dati
 - meccanismo di controllo dell'accesso concorrente

Caratteristiche dei DBMS

- □ Persistenza dei dati
 - tempo di vita non limitato a quello dell'esecuzione dei programmi che li utilizzano
- □ Affidabilità dei dati in caso di malfunzionamenti hardware e software
 - funzionalità di salvataggio (backup) e ripristino (recovery)
- □ Privatezza dei dati
 - meccanismi di autorizzazione per abilitare gli utenti

Caratteristiche dei DBMS

- capacità di svolgere le operazioni utilizzando un insieme di risorse (tempo e spazio) accettabile per gli utenti
 - sistema informatico adeguatamente dimensionato

 capacità di rendere produttive le attività degli utenti

DBMS o file system?

- Approccio "semplificato" alla gestione dei dati: dati memorizzati in modo persistente nella memoria di massa all'interno di file
 - è possibile memorizzare e ricercare dati
 - semplici meccanismi di accesso (lettura sequenziale)
 - semplici meccanismi di condivisione (condivisione in lettura e blocco del file in scrittura)
- □ I DBMS estendono le funzionalità dei file system, fornendo più servizi in modo integrato

Modello dei dati

- ☐ Un modello dei dati è un insieme di concetti utilizzati per organizzare i dati di interesse e descriverne la struttura in modo da essere comprensibile ad un elaboratore
 - tipi di dato elementari (intero, carattere, ...)
 - meccanismo di strutturazione per definire strutture più complesse (costruttore di record, array, ...)

Modello relazionale

- Definisce il costruttore di relazione, che organizza i dati in insiemi di record omogenei (a struttura fissa)
 - le relazioni sono rappresentate sotto forma di tabelle

Modello relazionale

Corsi

٩.,	Codice	Nome	Docente
	M2170	Fondamenti di informatica	Verdi
	M4880	Sistemi di elaborazione	Bianchi
	F0410	Basi di dati	Neri

Docenti

Nome	Dipartimento	Telefono
Verdi	Informatica	123456
Bianchi	Elettronica	636363
Neri	Informatica	414243

Altri modelli dei dati

- Prima del modello relazionale, erano utilizzati modelli più vicini alle strutture fisiche di memorizzazione (poco astratti)
 - modello gerarchico
 - modello reticolare
- Dopo il modello relazionale
 - modello ad oggetti
 - XML

Schema e istanza

- □ In una base di dati sono definiti
 - lo schema, che descrive la struttura dei dati
 - praticamente invariante nel tempo
 - è rappresentato dall'intestazione di ogni tabella (nome tabella e nomi colonne)
- - schema della base di dati

Corsi	Codice	Nome	Docente	
Docenti	Nome	Dipartimento	Telefono	

Schema e istanza

- ∑ In una base di dati sono definiti
 - l'istanza, costituita dal contenuto di ogni tabella, cioè dai valori effettivi dei dati
 - variabile nel tempo, anche molto rapidamente
 - è rappresentata dalle righe delle tabelle
- - istanza della tabella Docenti

Verdi Informatica 123456 Bianchi Elettronica 636363 Neri Informatica 414243

Tipi di modello

- permette di rappresentare i dati in modo indipendente dal modello logico
 - descrive concetti del mondo reale
 - utilizzato nella fase di progettazione
- esempio: modello Entità-Relazione

- descrive la struttura dei dati nel DBMS
 - utilizzato dai programmi che accedono ai dati
 - indipendente dalle strutture fisiche
- esempio: modello relazionale

Livelli di astrazione in un DBMS

Architettura standard ANSI/SPARC a tre livelli per DBMS

- □ Schema logico
 - descrizione della base di dati mediante il modello logico del DBMS
- □ Schema interno
 - rappresentazione dello schema logico mediante strutture fisiche di memorizzazione
- □ Schema esterno
 - descrizione di parti della base di dati, denominate "viste", che riflettono il punto di vista di particolari utenti
 - è definito sul modello logico

Indipendenza dei dati

- L'indipendenza dei dati garantisce che gli utenti e i programmi applicativi che utilizzano una base di dati possano ignorare i dettagli realizzativi utilizzati nella costruzione della base di dati
- È una conseguenza della suddivisione in livelli di astrazione

Indipendenza dei dati

- consente di interagire con il DBMS in modo indipendente dalla struttura fisica dei dati
- l'accesso a una relazione (livello logico o esterno) avviene sempre nello stesso modo, indipendentemente dalla modalità di memorizzazione
- è possibile modificare il modo in cui i dati sono memorizzati fisicamente senza influire sui programmi che utilizzano i dati

Indipendenza dei dati

- consente di interagire con il livello esterno in modo indipendente dal livello logico
- è possibile modificare il livello logico mantenendo inalterate le strutture esterne (purché le corrispondenze siano inalterate)
- è possibile aggiungere nuove viste o modificare viste esistenti senza modificare lo schema logico

Linguaggi di accesso ai dati

- □ Interfacce amichevoli che permettono di specificare interrogazioni senza utilizzare un linguaggio testuale
- ∑ Linguaggi testuali interattivi (SQL)
- Comandi simili a quelli interattivi introdotti in linguaggi di programmazione tradizionale (C, C++, COBOL, Java, ...), detti linguaggi ospite
- Comandi simili a quelli interattivi introdotti in linguaggi di sviluppo ad hoc, spesso con funzionalità specifiche (generazione di grafici, stampe complesse, videate)

Linguaggi di accesso ai dati

∑ Sono divisi in due categorie

- linguaggi di definizione dei dati (Data Definition Language o DDL) utilizzati per definire gli schemi logici, esterni e fisici e le autorizzazioni per l'accesso
- linguaggi di manipolazione dei dati (Data Manipulation Language o DML) utilizzati per l'interrogazione e l'aggiornamento delle istanze della base di dati

Utenti

- Database administrator: responsabile del controllo (centralizzato) e della gestione della base di dati
 - garantisce prestazioni sufficienti
 - assicura l'affidabilità del sistema
 - gestisce le autorizzazioni di accesso ai dati

Utenti

- Progettisti e programmatori: definiscono e realizzano
 - la struttura della base di dati
 - i programmi che accedono alla base di dati
- □ Utenti: utilizzano la base di dati per le proprie attività
 - utenti finali: utilizzano transazioni, cioè programmi che realizzano attività predefinite
 - utenti casuali: formulano interrogazioni (o aggiornamenti) non predefinite mediante i linguaggi interattivi di accesso alla base di dati

Transazioni

- Programmi che realizzano attività frequenti e predefinite
- - prenotazione di volo aereo
 - bonifico bancario
- □ Generalmente realizzate con l'introduzione di SQL all'interno di un linguaggio ospite

Vantaggi dei DBMS

- Dati come risorsa comune di tutta l'organizzazione
 - riduzione di ridondanze e inconsistenze
- Modello dei dati unificato e preciso della realtà di interesse per l'organizzazione
- > Possibile il controllo centralizzato dei dati
 - standardizzazione, economie di scala

Svantaggi dei DBMS

- ∑ Sono prodotti costosi, complessi, che richiedono
 - investimenti diretti
 - acquisto del prodotto
 - investimenti indiretti
 - acquisizione delle risorse hardware e software necessarie
 - conversione delle applicazioni
 - formazione del personale
- - non è possibile scorporare servizi inutilizzati che possono causare riduzioni di prestazioni

