Stochastic Gradient Techniques for Optimization and Learning Felisa J. Vázquez-Abad and Bernd Heidergott

University of Melbourne 2019

[Version: March 6, 2019]

Contents

I	The	eory of Stochastic Optimization and Learning	9		
1	Det	erministic Optimization	11		
	1.1	Unconstrained Optimization	11		
	1.2	Constrained Optimization	24		
	1.3	Practical Considerations	34		
	1.4	Exercises	36		
2	The Iterative Method as an ODE				
	2.1	Motivation	39		
	2.2	Stability of ODE's	41		
	2.3	ODE limit of recursive algorithms	46		
	2.4	ODE method for Optimization and Learning	53		
	2.5	Exercises	57		
3	Stochastic Approximation, Exogenous Noise Model				
	3.1	Motivation	59		
	3.2	The Robbins Monro Procedure	61		
	3.3	Exogenous noise model, decreasing stepsize	63		
	3.4	Summary for the Exogenous Noise Case	72		
	3.5	Exercises	73		
4	Stochastic Approximation, Endogenous Noise Model				
	4.1	The Endogenous Noise Model	77		
	4.2	Constant Step Size, Weak Convergence	81		
	4.3	Exercises	88		
5	Asymptotic Efficiency 9				
	5.1	Motivation	91		
	5.2	Functional CLT	91		
	5.3	Estimating Confidence Intervals	101		
	5.4	Asymptotic Efficiency	102		
	5.5	Exercises	104		

II	Gr	adient Estimation	107		
6	A Primer for Gradient Estimation				
	6.1	Motivation	109		
	6.2	One Dimensional Distributions	110		
		6.2.1 Infinitesimal Perturbation Analysis	110		
		6.2.2 Score Function	114		
		6.2.3 Measured Valued Differentiation	116		
	6.3	A Taxonomy of Gradient Estimation	118		
		6.3.1 The Static Problem	119		
		6.3.2 The Random Horizon Problem	121		
		6.3.3 The Steady-State Problem	122		
		6.3.4 Markov Processes: The Stationary Problem	123		
	6.4	Exercises	124		
7	Grad	dient Estimation for the Static Problem	127		
	7.1	Perturbation Analysis: IPA and SPA	127		
		7.1.1 Basic Results and Techniques	127		
		7.1.2 Smoothed Perturbation Analysis	136		
	4	*7.1.3 An Indirect Approach To Establishing Unbiasedness	138		
	7.2	The Score-Function Method (SF)	139		
	7	7.2.1 Basic Results and Techniques	139		
		7.2.2 Products of Measures	145		
	7.3	Measure-Valued Differentiation (MVD)	148		
	7.5	7.3.1 Differentiability of Products of Measures	153		
		7.3.2 Differentiability of Markov Chains	156		
			164		
	7.4	11			
	7.4	Exercises	165		
8		vanced Gradient Estimation	171		
	8.1	IPA Sample Path Analysis	171		
		8.1.1 The Steady-State Problem			
		8.1.2 The Randomized Problem and the Stationary Problem			
		8.1.3 IPA for Discrete State Space Models			
	8.2	The Score Function for the Randomized Problem	177		
	8.3	Taboo Sets	179		
		8.3.1 The Operator Approach (MVD)	181		
	8.4	The Stationary Problem: The Operator Approach	185		
III	St	tochastic Optimization at Work	189		
9	An l	Inventory Problem	191		
		G/1 Queue Study	197		
11	An A	Asset Management Problem	201		

4

CONTENTS

12	A Neural Network Application	205
13	The Newsvendor Problem	207
A	Tools from analysis	209
	A.1 Geometric Interpretation of the Gradient	209
	A.2 A Short Intermezzo on Normed Spaces and Equicontinuity	212
	A.3 Differentiation	213
	A.4 Cesàro limits	213
	A.5 Lipschitz and Uniform Continuity	213
	A.6 Interchanging Limit and Differentiation	214
В	Probability Theory	217
	B.1 Measurability and Measures	217
	B.1.1 Information Structure	217
	B.1.2 Measures	218
	B.2 Expectations and Conditioning	221
	B.3 Polish Spaces	222
	B.4 Convergence of random sequences	222
	B.4.1 Types of Convergence	222
	B.5 Weak Convergence and Norm Convergence	226
	B.6 Martingale processes	227
	B.7 Regenerative Processes	230
C	Markov Chains	231
	Bibliography	233

Preface

Throughout this monograph we assume that random variables are defined on a common underlying probability space (Ω, \mathcal{F}, P) . Furthermore, we assume that \mathcal{F} contains all Null stets with respect to P.

By convention, we equip discrete spaces with the discrete topology and the real numbers with the usually topology. Product spaces are equipped with the product topology and, unless stated otherwise, measurable spaces are equipped with the corresponding Borel fields. If not stated otherwise, random variables are real-valued and, in line with the aforementioned conventions, measurable mappings from (Ω, \mathcal{F}, P) onto (\mathbb{R}, \mathbb{B}) , with \mathbb{B} denoting the Borel field on \mathbb{R} . Expectation of a random variable X with respect to \mathbb{P} is denoted by \mathbb{E} , i.e., we write $\mathbb{E}[X] = \int_{\Omega} X(\omega) \mathbb{P}(d\omega)$. To simplify notation we suppress denoting ω when this causes no confusion. We use the symbol " \sim " to relate random variables and their corresponding distribution, i.e., we write $X \sim F$ if X has cumulative distribution function F. We use this notation in a similar way for measures. Equality in distribution of two random variables, say, X and Y is denoted by $X \stackrel{\mathcal{L}}{=} Y$.

We use the following abbreviations through:

- cdf for "cumulative distribution function"
- pdf for "probability density function"
- iid for "independently identically distributed"

8