Question number	Scheme	Marks
6	$\left[\frac{\mathrm{d}V}{\mathrm{d}t} = 3\left(\mathrm{cm}^3/\mathrm{s}\right)\right]$	
	$V = \frac{4}{3}\pi r^3 \frac{dV}{dr} = 4\pi r^2, A = 4\pi r^2 \frac{dA}{dr} = 8\pi r$	M1A1,A1 (M1 for
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt} \text{ oe}$ $\frac{dA}{dt} = \left[8\pi \times 10\right] \times \left[\frac{1}{4\pi \times 10^2}\right] \times 3 = 0.6 \text{ (cm}^2/\text{s)}$	any one) M1
	$dt = L4\pi \times 10^2J$	dM1A1 [6]
Total 6 marks		

Mark	Notes
M1	For using the correct formula for volume of a sphere or for surface area of a sphere and
	attempt to differentiate their expression.
	[See General Guidance for definition of attempt to differentiate]
A1	For one correct $\frac{dV}{dr} = 4\pi r^2$ or $\frac{dA}{dr} = 8\pi r$
A1	For one correct $\frac{dV}{dr} = 4\pi r^2$ or $\frac{dA}{dr} = 8\pi r$ For both correct $\frac{dV}{dr} = 4\pi r^2$ and $\frac{dA}{dr} = 8\pi r$
M1	For applying a correct Chain rule using their $\frac{dV}{dr}$, their $\frac{dA}{dr}$ and $\frac{dV}{dt} = 3$ to obtain
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}v} \times \frac{\mathrm{d}V}{\mathrm{d}t} = 8\pi r' \times \frac{1}{4\pi r^2} \times 3$
	May be seen in two stages.
dM1	For substitution of $r = 10$ into their expression for $\frac{dA}{dt}$ to obtain
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8\pi \times 10' \times \frac{1}{4\pi \times 10^2} \times 3$
A1	$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.6 \; (\mathrm{cm}^2 \; / \; \mathrm{s})$