# Panoptic FPN Presented By:

Audun Wigum Arbo, Even Dalen, Christian Echtermeyer

#### What is panoptic segmentation?

"including everything visible in one view"





# Panoptic Segmentation Metric

"...existing metrics are specialized for either semantic or instance segmentation and cannot be used to evaluate the joint task involving both..."



p = predicted segment
g = ground truth segment



#### Contribution of Panoptic FPN

- Previous approaches used separate networks:
  - One for instance segmentation
  - One for semantic segmentation.
- Panoptic FPN uses a single network.
- Increased efficiency and memory footprint.
- Established a baseline performance for future work.

#### Inefficient approach: Semantic + instance = Panoptic



# Panoptic FPN architecture Based on Mask R-CNN head Shared FPN backbone (b) Instance Segmentation Branch (a) Feature Pyramid Network (c) Semantic Segmentation Branch

Scale and sum feature maps.



Source: http://presentations.cocodataset.org/ECCV18/COCO18-Panoptic-Caribbean.pdf

## Results: some example output



#### Results: the metric values

Loss:  $\lambda_s Loss_s + \lambda_i Loss_i$ Scaling of the individual losses:

- Semantic seg. loss with  $\lambda_s$
- Instance seg. loss with λ<sub>i</sub>

The following results use the optimal  $\lambda_s$  and  $\lambda_i$  from the set  $\{0.5, 0.75, 1.0\}$ 



#### Results: Two FPN networks VS combined

|            | backbone  | AP   | $PQ^{Th}$ | mIoU | $PQ^{St}$ | PQ   |
|------------|-----------|------|-----------|------|-----------|------|
| COCO       | R50-FPN×2 | 33.9 | 46.6      | 40.2 | 27.9      | 39.2 |
|            | R101-FPN  | 35.2 | 47.5      | 42.1 | 29.5      | 40.3 |
|            |           | +1.3 | +0.9      | +1.9 | +1.6      | +1.1 |
|            | R50-FPN×2 | 32.2 | 51.3      | 74.5 | 62.4      | 57.7 |
| Cityscapes | R101-FPN  | 33.0 | 52.0      | 75.7 | 62.5      | 58.1 |
|            |           | +0.8 | +0.7      | +1.3 | +0.1      | +0.4 |

(b) **Panoptic Segmentation: Panoptic R101-FPN vs. R50-FPN**×2. Given a roughly equal computational budget, a single FPN network for the panoptic task outperforms two independent FPN networks for instance and semantic segmentation by a healthy margin.

## Results: COCO + Cityscapes panoptic (as of 2018)\*

|              | coarse   | PQ   | $PQ^{Th}$ | $PQ^{St}$ | mIoU | AP   |
|--------------|----------|------|-----------|-----------|------|------|
| DIN [1, 34]  | <b>√</b> | 53.8 | 42.5      | 62.1      | 80.1 | 28.6 |
| Panoptic FPN |          | 58.1 | 52.0      | 62.5      | 75.7 | 33.0 |

(b) **Panoptic Segmentation on Cityscapes.** For Cityscapes, there is no public leaderboard for panoptic segmentation at this time.

see http://cocodataset.org/#panoptic-leaderboard).

<sup>\*</sup>Single-network entries only

#### Summarized: Main contributions of Panoptic FPN

- A single network:
  - A common Feature Pyramid Network (FPN)
  - Mask R-CNN (instance segmentation)
    - + branch with semantic segmentation
- State-of-the-art performance in both instance- and semantic segmentation,
   with only ~0.5x computing resources compared to multi-network
- Outperforms all single-model entries in the 2018 COCO Panoptic Segmentation Challenge
- A good baseline for the panoptic segmentation task

#### References

- Panoptic Feature Pyramid Networks
- CVPR 2019 Oral Session 2-2A: Recognition
- Feature Pyramid Networks for Object Detection
- Panoptic Segmentation