

Robot Architecture

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Contents:

- General capabilities of a robotic system
- Main architectures
- Hierarchical delibrative architecture
- Modules
 - Communication between Modules
- H-Module
 - Sensor processing, planning and task division
- G-Module
- M-Module
- Distributed deliberative Architectures
- Hierarchical reactive architectures
- Distributed reactive architecture
 - CoMRos: Muliti-agent-robot-architecture

Motivation

- General capabilities of a robotic system
- Schematic visualization of the 4 main architectures:
 - Hierarchical deliberative/function based architectures
 - Distributed deliberative/function based architectures
 - Hierarchical reactive/behavior based architectures
 - Distributed reactive/behavior based architectures

rrlab.cs.uni-kl.de

General Capabilities of a Robotic System

Main Architectures: Classification

rrlab.cs.uni-kl.de

Main Architectures: Schematic Visualization

Modeling Sensors

Communication mechanism

Planning Execution

Hierarchical deliberative

Distributed deliberative

Robot Architectures 6 rrlab.cs.uni-kl.de

Main Architectures: Schematic Visualization

Map your environment

Explore your environment

Move randomly

Avoid collisions

Hierarchical reactive

Distributed reactive

Hierarchical Deliberative Architectures

- RCS: Real-time Control System
- Reference-Arch. for development of intelligent control system
- Combination of planning and reactive control structures
- Hierarchical ordered set of nodes
- Example: NASREM-Model (Albus, J. S.; McCain, H. G.; Lumini, R; "NASA / NBS Standard Reference Model for Telerobot Control System Architecture" NBS Technical Note 1235, 1987)

Hierarchical Deliberative Architectures

- Divide in 4 to 6 levels
- 3 Modules per level
 - Sensor processing module G_i
 - World model and reference data module M_i
 - Task division, planning and execution module H_i
- Modules are ordered hierarchical by levels

Modules

- Planning module
 - Plans and supervises the execution of actions
 - Considers data from world model and reference data module
- Sensor processing module
 - Processes and filters sensor data
 - Compares observations with internal world model
 - Determines deviations
 - Detects events, objects and situations

Modules

- World model module
 - Refreshes reference data with sensor data
 - Predicts sensor results
 - Simulation of results in hypothetical plans
 - Information on the world (variables, objects, rules, maps)
- User interface
 - Interaction with processes or knowledge base

Modules: Communication between Modules

- H-Modules: Commands to H-modules of lower levels
- G-Modules: Status/Sensor information to higher levels
- In between levels: Between G- and M- as well as M- and Hmodules
- No special communication mechanisms
- Example
 - Point-to-point-connection
 - Network connection
 - Shared memory

Nodes in RCS

- Implementation of functions inside of nodes (e.g. as extended finite automaton)
- Defined initial state
- Input from at least one input buffer
- State change based on read information
- State change initiates action
- Storing of output in output buffer
- Communication system distributes information from output buffer in corresponding input buffer
- A-/synchronous control of finite automaton
- Execution frequency depends on level

Hierarchical Structured Sub-Functions

Hierarchical Structured Sub-Functions

rrlab.cs.uni-kl.de

15

Modules of a Robot Architecture

Sensor Processing, Planning and Division of Tasks

Robot Architectures 17 rrlab.cs.uni-kl.de

H-Module

- Contains tasks from upper levels
- Divides tasks in subtasks with data from M-module
- Updates M-module
- Subtasks are forwarded to lower levels

rrlab.cs.uni-kl.de

H-Module: Sensor Processing, Planning and Task Division

Complex task

Task level

C₅: Connect part A with part B

C₄: Grip part B

Elementary operations

C₃ Move end-effector to engagement position of part B

Geom. trajectory, adaptation, force control

C₂: Frame part B, determine position of engagement

Joint-trajectory, servo control

C₁: Joint vector for robot (TCP in frame B), ...

Series of moments

H-Module: Task Division

- Output vector $P_i \sim C_{i-1}$
- Assignment vector $C_i \rightarrow \text{Series of } P_{i+1}$
- Sensor vector F_i
- Input vector $S_i = C_i + F_i$
- Operator H_i
 - $P_i^k = H_i(s_i^{k-1})$
 - $P_i(t) = H_i(S_i(t \Delta t))$

H-Module: Task Division

rrlab.cs.uni-kl.de

H-Module: Operations Task description Interpreter Sub-task 2 Sub-task 1 Sub-task 3 Rating Rating Rating Planer 2 Planer 3 Planer 1 Subtask-Subtask-Subtasksequence 1 sequence 2 sequence 3 Sensor-Sensor-. Executing Executing Executing component 3 component 2 data data component 1 Status Status Execution Status Execution Execution information information information series 3 series 2 series 1

H-Module: Task Division into sub-tasks

H-Module: Input Series as Linear Graph

- C_i : Command i
- $F_{i,j}$: Transition from i to j

rrlab.cs.uni-kl.de

24

H-Module: Input Series as Tree

Robot Architectures 25 rrlab.cs.uni-kl.de

H-Module: Example Assembly Sequence

rrlab.cs.uni-kl.de

26

G-Module

- Contains status/sensor information from lower levels
- Process Data in M-Module
- Update M-module
- Send information to next higher level

Robot Architectures 27 rrlab.cs.uni-kl.de

G-Module: Compare Model With Measurement

Compare predicted model states with measured ones

rrlab.cs.uni-kl.de

G-Module: Signal Processing

G-Module: Application

M-Module

- Contains data with corresponding abstraction level
- G- and H-Modules extract this data
- Error Detection by comparing predicted (M-module) and actual data (G-module)

Robot Architectures

31 rrlab.cs.uni-kl.de

M-Module: Operations on the World Model

Robot Architectures 32 rrlab.cs.uni-kl.de

Example: T3 – Intelligent Control Architecture

- Developed by NASA and Metrica Inc. Robotics and Automation Group
- Three integrating levels
 - Dynamic reprogrammable set of reactive skills
 - Coordination via skill-manager
 - Sequential control for activation and deactivation of skills to solve specific tasks
 - Reactive action packages (RAPs)
 - Planning components to determine goals, resources and timings (adversarial Planner (AP))

Example: T3 - Sequential Control

- Task division (series of actions or RAPs)
- Further division and execution of RAPs on the sequential level by the RAP-interpreter
- Activation of even monitors to notify the sequential control of certain events
- Activated skills effect the events and the environment
- Sequential level terminates actions, if ...
 - ... monitored events occur
 - ... certain time limit is exhausted
 - ... changes in the plan are send by the deliberation level

Distributed Deliberative Architectures

- Set of specialized subsystems
- Communication of central component
- Example: Nav-Lab-System

rrlab.cs.uni-kl.de

35

Hierarchical reactive Architectures

- Control via behaviors/reflexes
- Pattern: System reacts non sensor stimulus
- Arrangement in behavior levels
- Hierarchical structure on competence level
- Example: Subsumption architecture,
 behavior Scheme as finite state machine

rrlab.cs.uni-kl.de

HV-Arch.: Requirements on Control System

- Multiple Goals: Robot can pursue multiple, potentially contradicting, goals
- Multiple Sensors: Fusion of multiple sensors (problem: Inconsistency)
- Robustness: Robust with respect to noise and sensor failure
- Additivity: Possibility to add new sensors or computing power

rrlab.cs.uni-kl.de

Subsumption Architecture

- Dividing architecture in different levels of competence
- On each level the behavior system models a complete control system
- Behaviors of higher level can overwrite output of lower levels

Subsumption Architecture: Mobot-System

Hierarchical structure of competence level of the robot Mobot

- 1. Collision avoidance
- Random movement in environment
- 3. Exploration of environment
- Mapping and path planning
- 5. Capture changes in local environment
- Detect known objects and deduct effects on object oriented tasks
- Create plan and execute it
- Deduct effects on environments and resulting modifications in plans

Subsumption Architecture: Mobot-System

Distributed Reactive Architectures

- Independent subsystems with identical/competing behavioral patterns
- Coordination via a behavior
- Prioritizing by arbitration process (e.g. decaying activation)
- Example: Multi-agent-system

Attributes of Multi-Agent-Systems

- Self organizing
- Negotiations
- Associative memorization of information
- Pattern recognition

- CoMRoS: COoperative Mobile RObots Stuttgart
- Goals
 - Universal architecture for autonomous mobile robots
 - Predictable/Computable distributed negotiations
 - Reusability
 - Dynamic configuration
 - Robustness
 - Safety
- Scenarios
 - Driving in formation
 - Cooperative transport
 - RoboCup

- Division in three levels
 - Strategic Level: Complete planning of actors
 - Tactic Level: Context aware planning, control of execution, contains assignments from strategical level
 - Reflex Level: Process with mainly reactive behaviors, partially directly connected to Hardware
- Each level contains multiple software components (elementary-agents or autonomous cycles)

- Elementary-agents (EA)
 - Autonomous
 - Dividable into brain (decisionunit) and body (sensor-actor-cycle)
- Function and structure of a EA
 - Sensor-actor-cycle
 - Connection of sensors and actors define autonomous areas of EA
- Decision unit
 - Controls abstract control-cycle
 - Leads negotiation between agents
- Interaction between decision units is based on dynamically configurable networks

- Nodes of sensor-actor-cycle
 - World model
 - Plans
 - Actions
 - States
- Node connection by four cycles
 - Reactions: Feedback between sensors and actors
 - Behaviors: Defines the typical behavior of agents
 - Adaption: Updates the structure of the model
 - Planer: Creates new plans for agents

Coming up next ...

Programming

rrlab.cs.uni-kl.de