MID TERM EXAMINATION

SECOND SEMESTER [B.TECH.], FEBRUARY 2019

Paper Code: ETMA 102

Subject: Applied Mathematics-II

Time: $1\frac{1}{2}$ Hours

Maximum Marks: 30

Note: Attempt any three questions including Q.No. 1 which is compulsory.

- 1. (a) If z = f(x, y), what is the geometrical interpretation of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$?
 - (b) If $u = \log(V)$, where V is a homogeneous function of degree n in x and y, evaluate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
 - (c) If $u^2 + xv^2 uxy = 0$, $v^2 xy^2 + 2uv + u^2 = 0$. Find $\frac{\partial u}{\partial x}$ using Jacobians.
 - (d) Find Laplace transform of $f(t) = |t 1| + |t + 1|, t \ge 0$:
 - 2. (a) If $u = tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = sin2u$ and $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = sin4u sin2u.$
 - (b) Find the point upon the plane ax + by + cz = p at which the function $f(x, y, z) = x^2 + y^2 + z^2$ has a minimum value. Also find minimum value of the Function.
 - 3. (a) Using partial differentiation, evaluate $[(3.82)^2 + 2(2.1)^3]^{\frac{1}{5}}$.
 - Using convolution theorem, $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$.
 - 4. (a) Evaluate (i) $L^{-1} \left[log \left(\frac{s^2 + a^2}{s^2 + b^2} \right) \right]$ (ii) $\int_0^\infty te^{-3t} sint dt$.
 - (b) Using Laplace transform, find the solution of $\frac{d^2y}{dx^2} + 9y = \cos 2x$,

if
$$y(0) = 1, y'(\frac{\pi}{2}) = -1$$
.
