Помеченные орграфы

- Ребра часто представляют взаимодействие между объектами-вершинами
- \star Когда моделируют несколько видов взаимодействия, ребра помечают, задавая функцию $\ell: E \to \Lambda$ из множества ребер в некоторое конечное множество меток
 - \star тройку $G=(V,E,\ell)$ называют помеченным (ор)графом
 - ⋆ иногда говорят о раскрашивании ребер

Примеры: слева control flow graph, справа UML class diagram

Помеченные орграфы (2)

Примеры: слева business decision tree, справа граф Кэли симметрической группы S_4

• Самая важная модель помеченного орграфа — конечный автомат

Детерминированный конечный автомат

- ullet Детерминированный конечный автомат (ДКА) это пятерка $\mathcal{A}=(Q,\!\Sigma,\!\delta,\!s,\!T)$:
 - Q непустое конечное множество состояний автомата
 - Σ алфавит автомата (непустое конечное множество)
 - ullet $\delta: Q imes \Sigma o Q$ функция переходов
 - \bullet $s \in Q$ начальное (стартовое) состояние
 - $T \subseteq Q$ множество конечных (терминальных) состояний
- $\star~Q, \Sigma, \delta$ задают помеченный орграф
 - Q множество вершин
 - δ множество помеченных ребер (метки символы из Σ)
 - каждая вершина имеет степень исхода $|\Sigma|$ и ровно одно исходящее ребро с каждой меткой

Функционирование ДКА

• ДКА — простейший пример математической машины:

- ullet входом для ДКА является произвольное слово $w \in \Sigma^*$
- ДКА работает тактами (у него «дискретное время»)
- перед первым тактом ДКА находится в начальном состоянии s
- на *i*-ом такте ДКА обрабатывает символ *w*[*i*]:
 - ullet переходит из текущего состояния q в состояние $\delta(q,w[i])$
 - \star иначе говоря, ДКА идет из вершины q по исходящему ребру с меткой w[i]
- ullet после обработки всего слова w автомат приходит в некоторое состояние t
- \star ответом ДКА является булево значение $[t \in \mathcal{T}]$
- машины, возвращающие булево значение, называются распознавателями
- Если ДКА на слове w возвращает
 - \star 1, то он читает / допускает w
 - \star 0, то он не читает / отвергает w
- ullet Слова, которые читает ДКА \mathcal{A} , образуют множество $L(\mathcal{A})\subseteq \Sigma^*$, которое называется языком, распознаваемым \mathcal{A}
 - (формальный) язык это произвольное множество слов

Примеры ДКА

- ДКА, распознающий множество чисел, кратных 3, в двоичной записи:
 - ★ ведущие нули игнорируются
 - слева диаграмма (граф) переходов, справа таблица переходов

		0	1	T
C	7 0	q_0	q_1	1
C	71	q_2	q_0	0
C]2	q_1	q ₂	0

- ! Достройте пример так, чтобы автомат не читал записи с ведущими нулями
- ДКА, распознающий множество строк, в которых есть подстрока 010:

! Перестройте пример так, чтобы распознавалось множество строк, в которых есть подпоследовательность 010

Комментарии и соглашения

- Так как ДКА орграф, можно говорить о маршрутах
 - при этом вершины и ребра часто называют состояниями и переходами
 - \star каждый маршрут в ${\mathcal A}$ помечен словом $w\in \Sigma^*,$ полученным конкатенацией меток составляющих маршрут ребер
- \bigstar Для каждого слова $w \in \Sigma^*$ существует единственный маршрут в ДКА $\mathcal{A} = (Q, \Sigma, \delta, s, T)$, помеченный w и начинающийся в s
 - \star $\mathcal A$ читает $w\Leftrightarrow$ этот маршрут заканчивается в вершине из $\mathcal T$
- ullet Функцию переходов δ доопределяют на всём множестве $Q imes \Sigma^*$:
 - \bullet $\delta(q,a)$ это конец ребра с меткой a, исходящего из q
 - \Rightarrow конец маршрута с меткой w и началом q обозначим за $\delta(q,w)$
 - ullet часто пишут q.w вместо $\delta(q,w)$, если автомат известен
 - ullet например, ${\cal A}$ читает $w \Leftrightarrow s.w \in {\cal T}$

Конечные автоматы с выходом

- ullet Несложно сделать так, чтобы ДКА выдавал k вариантов ответа вместо 2:
 - \star множество T задает разбиение Q на два класса T и $Q\setminus T$, которым соответствуют ответы 1 и 0
 - ullet вместо этого можно задать разбиение Q на k классов, которым соответствуют k возможных ответов
 - в предельном случае k = |Q| ответ это состояние (или его номер)
- Полученная такой модификацией ДКА машина это конечный автомат с выходом
 - \star если автомат, проверяющий делимость на 3, будет возвращать номер текущего состояния, он будет вычислять функцию $x \mod 3$
- Последовательность $\{a_i\}_1^\infty$ называется k-автоматной, если существует автомат с выходом, который по k-ичной записи числа n возвращает a_n (для любого n)
 - \star k-автоматные последовательности интересны тем, что о них можно доказывать теоремы автоматическим построением автоматов
 - → https://github.com/hamousavi/Walnut
 - вариант автомата с выходом, возвращающий свое состояние на каждом такте, называют машиной Мура
 - например, каждый элемент дисплея электронных часов управляется машиной Мура, совершающей один такт в секунду

Конечные преобразователи

- Детерминированный конечный преобразователь
 - он же детерминированный конечный трансдьюсер, машина Мили получается из ДКА добавлением выходного алфавита Γ и переопределением функции переходов (δ становится функцией из $Q \times \Sigma$ в $Q \times \Gamma$)
 - \star каждое ребро графа помечено парой букв (a,b), где $a\in \Sigma$, $b\in \Gamma$
 - \star по слову $w \in \Sigma^*$ преобразователь возвращает слово u длины |w| в реальном времени
 - $ullet \ \ u[i]$ это буква, написанная на ребре, по которому автомат идет, читая w[i]
 - ullet часто (но не обязательно) $\Gamma = \Sigma$

Пример: преобразователь изменяет входное слово в алфавите $\{a,b\}$, заменяя в каждой последовательности букв a все буквы, кроме первой, на c

- аарарааа заменяется на асрарасс
- .. Об автоматах есть отдельный курс теории автоматов, а здесь мы обсудим только пару базовых для этой теории теорем

Недетерминированный конечный автомат

- ★ Что если отказаться от ограничения
 - из каждой вершины исходит ровно одно ребро с данной меткой?
- Если мы возьмем произвольный орграф, в котором выделены множество начальных вершин S и множество терминальных вершин T, а каждое ребро помечено буквой из алфавита Σ , то получится машина, называемая недетерминированным конечным автоматом (НКА)
 - ullet НКА это пятерка $\mathcal{A}=(Q,\Sigma,\delta,S,T)$, где $\delta\subseteq Q imes \Sigma imes Q$ множество переходов
 - \star иногда δ удобно записывать как функцию $\delta : Q imes \Sigma o 2^Q$
 - $\delta(q,a)$ множество вершин, в которые из q ведет ребро с меткой a \star $\delta(q,a)$ может быть пустым
 - ullet доопределим функцию δ :
 - \star $\delta(q,w)$ множество вершин, в которые из q ведет маршрут, помеченный w
 - \star $\delta(P,w)$, где $P\subseteq Q$, множество вершин, в которые ведет маршрут, помеченный w и начинающийся в вершине из P

- НКА $\mathcal{A}=(Q,\Sigma,\delta,S,T)$ читает/допускает слово $w\in\Sigma^*$, если существует (s,t)-маршрут с меткой w для некоторых $s\in S$, $t\in T$, то есть $\delta(S,w)\cap T\neq\varnothing$
- (s,t)-маршрут с меткой w для некоторых $s \in S$, $t \in I$, то есть $\delta(S,w) \cap I \neq \emptyset$ Язык L(A) состоит из всех слов, читаемых A

Пример НКА и комментарии

Данный НКА читает в точности те слова, которые можно разбить на блоки 01 и 010:

- \star Недетерминированный выбор связан с состоянием q_1
 - ullet Слово начинается с 1 или содержит 11 автомат его не читает $(\delta(S,w)=\varnothing)$
 - $\delta(S,010100) = \{q_1\}$ автомат не читает 010100
 - $\delta(S,010101) = \{q_0,q_2\}$ автомат читает 010101
- ★ Термин «недетерминированный» применительно к алгоритму/машине означает, что вычисление может пойти различными путями
 - если очередной переход можно выбрать несколькими способами, НКА делает недетерминированный выбор
 - определение прочтения слова w означает, что НКА при выборе всегда «угадывает» так, чтобы в конце оказаться в терминальном состоянии
- ★ Определение чтения слова/распознавания языка при помощи НКА включает фундаментальную асимметрию между кванторами \exists и \forall
- * Похоже, что НКА обладают бо́льшими вычислительными возможностями, чем ДКА; тем не менее, это не так (см. следующий фрагмент)

Теорема Рабина-Скотта

Теорема Рабина-Скотта

Для любого НКА существует ДКА, распознающий тот же самый язык.

- Доказательство:
 - ullet возьмем произвольный НКА $\mathcal{B} = (Q, \Sigma, \delta, S, T)$
 - ullet построим ДКА ${\cal A}$ такой, что $L({\cal A})=L({\cal B})$
 - ullet пусть $\mathcal{A}=(2^Q,\Sigma,\delta',S,T')$, где $\delta'(P,a)=\delta(P,a),\ T'=\{P\in 2^Q\mid P\cap T\neq\varnothing\}$

напомним

- ullet докажем, что $\delta'(P,w)=\delta(P,w)$ для любого слова w индукцией по |w|:
- ullet база индукции: для |w|=0 имеем $\delta'(P,\lambda)=\delta(P,\lambda)=P$
- шаг индукции: пусть w=uа, $a\in \Sigma$ $\delta'(P,w)=\delta'(\delta'(P,u),a)=\delta'(\delta(P,u),a)=\bigcup_{r\in \delta(P,u)}\delta(r,a)=\bigcup_{q\in P}\delta(q,ua)=\delta(P,ua)$
- осталось заметить, что $L(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta'(S, w) \in T' \} = \{ w \in \Sigma^* \mid \delta'(S, w) \cap T \neq \emptyset \} = \{ w \in \Sigma^* \mid \delta(S, w) \cap T \neq \emptyset \} = L(\mathcal{B})$

Достижимые состояния. Детерминирование НКА

- ullet Пусть $\mathcal{A} = (Q, \Sigma, \delta, s, T) ДКА$
 - ullet состояние $q \in Q$ достижимо, если существует $w \in \Sigma^*$ такое, что q = s.w
 - \star т.е. если вершина q достижима из начальной вершины s
 - недостижимые состояния можно удалить это балласт, который занимает лишнее место и не влияет на функционирование автомата
 - * достижимые состояния находятся поиском из начальной вершины
- При построении ДКА \mathcal{A} , распознающего тот же язык, что и данный НКА \mathcal{B} , поиск совмещают с построением, получая \mathcal{A} без недостижимых состояний:

```
1. для каждого P\subseteq Q \ label(P) \leftarrow 0
2. Q'\leftarrow \{S\}
3. пока (\exists P\in Q': label(P)=0), повторять
4. для каждого a\in \Sigma
5. \delta'(P,a)\leftarrow \bigcup_{q\in P}\delta(q,a)
6. Q'\leftarrow Q'\cup \{\delta'(P,a)\}
7. label(P)\leftarrow 1
8. T'\leftarrow \{P\in Q'\mid P\cap T\neq\varnothing\}
```

- \star Обычно при использовании этого алгоритма Q' получается намного меньше, чем 2^Q ; тем не менее, существуют НКА, для которых $Q'=2^Q$
 - ! Изучив доказательство теоремы Рабина-Скотта, придумайте, как вычислить ответ НКА \mathcal{B} на слове w за время $O(|w|\cdot |Q|^2)$
 - это бывает выгоднее, чем построение и хранение большого ДКА

Пример

	0	1	Τ
q 0	q_1	Ø	1
<i>q</i> 1	Ø	q_0, q_2	0
Ø	Ø	Ø	0
q_0, q_2	q_0, q_1	Ø	1
q_0, q_1	q_1	q_0, q_2	1