

Data sheet acquired from Harris Semiconductor SCHS038C – Revised October 2003

### CMOS 4-Stage Parallel In/Parallel Out Shift Register

with J-K Serial Inputs and True/Complement Outputs

High-Voltage Types (20-Volt Rating)

CD4035B is a four-stage clocked signal serial register with provision for synchronous PARALLEL inputs to each stage and SERIAL inputs to the first stage via JK logic. Register stages 2, 3, and 4 are coupled in a serial D flip-flop configuration when the register is in the serial mode (PARALLEL/SERIAL control low).

Parallel entry into each register stage is permitted when the PARALLEL/SERIAL control is high.

In the parallel or serial mode information is transferred on positive clock transitions.

When the TRUE/COMPLEMENT control is high, the true contents of the register are available at the output terminals. When the TRUE/COMPLEMENT control is low, the outputs are the complements of the data in the register. The TRUE/COMPLEMENT control functions asynchronously with respect to the CLOCK-signal.

JK input logic is provided on the first stage SERIAL input to minimize logic requirements particularly in counting and sequence-generation applications. With JK inputs connected together, the first stage becomes a D flip-flop. An asynchronous common RESET is also provided.

The CD4035B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

### Features:

- 4-Stage clocked shift operation
- Synchronous parallel entry on all 4 stages
- JK inputs on first stage
- Asynchronous True/Complement control on all outputs
- Static flip-flop operation; Master-slave configuration
- Buffered inputs and outputs
- High speed 12 MHz (typ.) at V<sub>DD</sub> = 10 V
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

#### Applications:

- Counters, Registers
   Arithmetic-unit registers
   Shift-left shift right registers
   Serial-to-parallel/parallel-to-serial conversions
- Sequence generation
- Control circuits
- Code conversion

FIRST STAGE TRUTH TABLE

|    | t <sub>n</sub> - | (INP | tn (OUTPUTS) |                  |                              |
|----|------------------|------|--------------|------------------|------------------------------|
| CL | J                | ĸ    | R            | Q <sub>n-1</sub> | Qn                           |
|    | 0                | х    | 0            | 0                | 0                            |
|    | 1                | х    | 0            | 0                | ı                            |
|    | х                | 0    | 0            | 1                | 0                            |
|    | 1                | 0    | 0            | Q <sub>n-1</sub> | Q <sub>n-1</sub> TOGGLE MODE |
|    | х                | 1    | 0            | 1                |                              |
|    | х                | x    | 0            | Q <sub>n-1</sub> | Q <sub>n-I</sub>             |
| х  | х                | х    | 1            | х                | 0                            |

## 

CD4035B Types



Fig. 1 — Typical output low (sink) current characteristics.



Fig. 2 — Minimum output low (sink)

current characteristics.

DRAIN-TO-SOURCE VOLTAGE (Vpg)--V
-B -0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5
-0 -5

Fig. 3 — Typical output high (source) current characteristics.





Fig. 4 - Logic diagram.

# RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

| CHARACTERISTIC                                                                | $V_{DD}$      | LIMITS           |                | UNITS |
|-------------------------------------------------------------------------------|---------------|------------------|----------------|-------|
|                                                                               | <br>(V)       | MIN.             | MAX.           |       |
| Supply-Voltage Range (For T <sub>A</sub> = Full<br>Package-Temperature Range) |               | 3                | 18             | V     |
| Data Setup Time, t <sub>S</sub> :<br>J/K Lines                                | 5<br>10<br>15 | 220<br>80<br>60  | -<br>-         | ns    |
| Parallel-In Lines                                                             | 5<br>10<br>15 | 140<br>50<br>40  | -              | ns    |
| Clock Pulse Width, t <sub>W</sub>                                             | 5<br>10<br>15 | 200<br>90<br>60  | _<br>          | ns    |
| Clock Input Frequency, fCL                                                    | 5<br>10<br>15 | dc               | 2<br>6<br>8    | MHz   |
| Clock Rise or Fall Time, t <sub>r</sub> CL, t <sub>f</sub> CL:                | 5<br>10<br>15 |                  | 15<br>15<br>15 | μs    |
| Reset Pulse Width, t <sub>W</sub>                                             | 5<br>10<br>15 | 250<br>110<br>80 |                | ns    |



Fig. 5 — Minimum output high (source) current characteristics.



Fig. 6 — Typical transition time as a function of load capacitance.



Fig. 7 — Typical propagation delay times as a function of load capacitance (Q output).



Fig. 8 — Typical maximum clock input frequency as a function of supply voltage.

### CD4035B Types

| CHARAC-<br>TERISTIC                                     | CONDITIONS     |      |          | LIMITS AT INDICATED TEMPERATURES (°C) |       |       |            |       |       |      |    |
|---------------------------------------------------------|----------------|------|----------|---------------------------------------|-------|-------|------------|-------|-------|------|----|
|                                                         | v <sub>o</sub> | VIN  | $v_{DD}$ |                                       |       |       |            |       |       | s    |    |
|                                                         | (V)            | (V)  | (V)      | -55                                   | -40   | +85   | +125       | Min.  | Тур.  | Max. |    |
| Quiescent<br>Device<br>Current,<br>I <sub>DD</sub> Max. | _              | 0,5  | 5        | 5                                     | 5     | 150   | 150        | _     | 0.04  | 5    | μA |
|                                                         |                | 0,10 | 10       | 10                                    | 10    | 300   | 300        | _     | 0.04  | 10   |    |
|                                                         | '              | 0,15 | 15       | 20                                    | 20    | 600   | 600        | _     | 0.04  | 20   | [  |
|                                                         |                | 0,20 | 20       | 100                                   | 100   | 3000  | 3000       | -     | 0.08  | 100  |    |
| Output Low                                              | 0.4            | 0,5  | 5        | 0.64                                  | 0.61  | 0.42  | 0.36       | 0.51  | 1     | -    |    |
| (Sink) Current                                          | 0.5            | 0,10 | 10       | 1.6                                   | 1.5   | 1.1   | 0.9        | 1.3   | 2.6   | -    |    |
| IOL Min.                                                | 1.5            | 0,15 | 15       | 4.2                                   | 4     | 2.8   | 2.4        | 3.4   | 6.8   | -    |    |
| Output High<br>(Source)<br>Current,<br>IOH Min.         | 4.6            | 0,5  | 5        | -0.64                                 | -0.61 | -0.42 | -0.36      | -0.51 | -1    | _    | m/ |
|                                                         | 2.5            | 0,5  | 5        | -2                                    | 1.8°  | -1.3  | -1.15      | -1.6  | - 3.2 | -    |    |
|                                                         | 9.5            | 0,10 | 10       | 1.6                                   | -1.5  | -1.1  | -0.9       | -1.3  | -2.6  | -    |    |
| TOH WITH                                                | 13.5           | 0,15 | 15       | -4.2                                  | -4    | -2.8  | - 2.4      | -3.4  | -6.8  | _    |    |
| Output Voltage:                                         | -              | 0,5  | 5        |                                       | 0.    | .05   | _          | 0     | 0.05  |      |    |
| Low-Level,                                              | 3.1            | 0,10 | 10       |                                       | 0     | .05   | <b>-</b> . | 0     | 0.05  |      |    |
| VOL Max.                                                |                | 0,15 | 15       |                                       | 0.    | 05    |            | 0     | 0.05  | V    |    |
| Output                                                  |                | 0,5  | - 5      | 4.95 4.95 5                           |       |       |            |       |       |      |    |
| Voltage:<br>High-Level,                                 |                | 0,10 | 10       |                                       | 9     | 95    |            | 9.95  | 10    | .,-  |    |
| VOH Min.                                                |                | 0,15 | 15       |                                       | 14.   | 14.95 | 15         |       |       |      |    |
| leavet Law                                              | 0.5,4.5        |      | 5        |                                       |       | 1.5   |            |       | -     | 1.5  |    |
| Input Low<br>Voltage                                    | 1,9            |      | 10       |                                       |       | 3     |            | -     | -     | 3    |    |
| V <sub>IL</sub> Max.                                    | 1.5,13.5       |      | 15       |                                       |       |       |            | -     | 4     | v    |    |
| Input High                                              | 0.5,4.5        |      | 5        |                                       |       | 3.5   |            | 3.5   | -     | _    |    |
| Voltage,                                                | 1,9            | -    | 10       |                                       |       | 7     |            | 7     | -     | _    |    |
| V <sub>IH</sub> Min.                                    | 1,5,13.5       | - "  | 15       |                                       | ,     | 11    |            | 11    |       |      | L  |
| Input Current<br>I <sub>IN</sub> Max.                   |                | 0,18 | 18       | ±0.1                                  | ±0.1  | ±1    | ±1         | -     | ±10-5 | ±0.1 | μΔ |



Fig. 9 — Typical dynamic power dissipation as a function of clock input frequency.



Fig. 10 - Dynamic power dissipation test circuit.



Fig. 11 - Quiescent-device current test circuit.



Fig. 12 - Input-voltage test circuit.



Fig. 13 - Input-current test circuit.



Fig. 14 — Shift left/shift right register.

### CD4035B Types



Using Couleur's Technique (BIDEC)<sup>A</sup>, a binary number (most significant bit, MSB) first is shifted and processed, such that the BCD equivalent is obtained when the last binary bit is clocked into the register. The CD4035B, with the correct conversion logic, can also be used as a BCD-to-binary converter.

Fig. 15 - BIDEC logic.



Fig. 16(a) — Double sequence generator.

#### **DYNAMIC ELECTRICAL CHARACTERISTICS**

At  $T_A = 25^{\circ}C$ , Input  $t_f$ ,  $t_f = 20$  ns,  $C_L = 50$  pF,  $R_L = 200$  k $\Omega$ 

| CHARACTERISTICS                                                |     | TEST<br>DITIONS        | LIMITS   |      |            |       |  |
|----------------------------------------------------------------|-----|------------------------|----------|------|------------|-------|--|
| CHARACTERISTICS                                                |     | V <sub>DD</sub><br>(V) | Min.     | Тур. | Max.       | UNITS |  |
| CLOCKED OPERATION                                              |     |                        |          |      |            |       |  |
| Propagation Delay Time:                                        |     | 5                      |          | 250  | 500        |       |  |
| tPHL, tPLH                                                     |     | 10                     | -        | 100  | 200        | ns    |  |
|                                                                |     | 15                     | -        | 75   | 150        | Į     |  |
| Tonnisian Times                                                |     | 5                      |          | 100  | 200        |       |  |
| Transition Time:  tTHL, tTLH                                   |     | 10                     | _        | 50   | 100        | ns    |  |
| THE TEN                                                        |     | 15                     | <u> </u> | 40   | 80         |       |  |
|                                                                |     | 5                      |          | 100  | 200        |       |  |
| Minimum Clock Pulse Width, t <sub>W</sub>                      |     | 10                     |          | 45   | 90         | ns    |  |
|                                                                |     | 15                     | -        | 30   | 60         |       |  |
| Clock Rise or Fall Time, t <sub>f</sub> CL, t <sub>f</sub> CL* |     | 5,10,<br>15            | _        | _    | 15         | μs    |  |
| <b></b>                                                        |     | 5                      | _        | 110  | 220        |       |  |
| Minimum Setup Time:  J/K Lines                                 |     | 10                     | [        | 40   | 80         | ns    |  |
| J/K Lines                                                      |     | 15                     | _        | 30   | 60         |       |  |
|                                                                |     | 5                      | _        | 70   | 140        |       |  |
| Parallel-In-Lines                                              |     | 10                     | _        | 25   | 50         | រាន   |  |
|                                                                |     | 15                     |          | 20   | 40         |       |  |
|                                                                |     | - 5                    | 2        | 4    | _, 2, 2, 3 |       |  |
| Maximum Clock Frequency, fCL                                   |     | 10                     | 6        | 12   | - * -      | MHz   |  |
|                                                                |     | 15                     | 8        | 16   |            |       |  |
| Input Capacitance, CIN                                         | Any | Input                  | _        | 5    | 7.5        | ρF    |  |
| RESET OPERATION                                                |     |                        |          |      | J. S. S.   |       |  |
| Propagation Delay Time:                                        |     | 5                      | _        | 230  | 460        |       |  |
| tphL, tpLH                                                     |     | 10                     | _        | 100  | 200        | ns    |  |
|                                                                |     | 15                     | _        | 80   | 160        |       |  |
|                                                                | 1   | 5                      | _        | 125  | 250        |       |  |
| Minimum Reset Pulse Width, tw                                  |     | 10                     | , – ·    | 55   | 110        | ns    |  |
| <u> </u>                                                       |     | 15                     |          | 40   | 40         |       |  |

<sup>\*</sup>If more than one unit is cascaded t.CL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

|        |     |     |     |     |     |     | aa-  |        |     |
|--------|-----|-----|-----|-----|-----|-----|------|--------|-----|
| ontrol | E = | 0   |     |     | 1   |     | 1    |        |     |
|        | 01  | 0.2 | Q3. | 04  |     | 0,  | 02   | 03     | 04  |
|        | Ä   | 8   | C   | . D |     | , A | В    | С      | D   |
|        | 0   | 0   | 0   | 0   | 15  | 1   | - 11 | . 1911 | 1   |
| 1      | 1 1 | 0   | 0   | 0   | 114 | Õ   | 1    | 1.1    | 1   |
| 2      | 2 0 | 1   | 0   | 0   | 13  | 1   | 0    | 1      | 1   |
| Ę      | 5 1 | 0   | 1   | 0   | 10  | 0   | 1    | 0      | 1 . |
| 10     | 0 ( | 1   | 0   | 1   | 5   | 1   | 0    | 1      | 0   |
| . 4    | 0   | 0   | 1   | 0   | 11  | 1   | 1    | Ó      | 1   |
| ٤      | ) 1 | 0   | 0   | 1   | 6   | 0   | 1    | 1      | Ó   |
| 3      | 3 1 | 1   | 0   | 0   | 12  | O   | 0    | 1      | 1   |
| 6      | . 0 | 1   | 1   | 0   | 9   | 1   | 0    | 0      | 1   |
| 13     | 3 1 | 0   | 1   | 1   | 2   | 0   | 1    | ō      | Ó   |
| 11     | 1   | 1   | 0   | 1   | 4   | ō   | Ó    | ī      | ŏ   |
| 7      | 1   | 1   | 1   | 0   | 8   | 0   | o    | Ó      | 1   |
| 14     | 0   | 1   | 1   | 1   | 1   | 1   | ō    | ă      | ò   |
| 12     | 2 0 | 0   | 1   | 1   | 3   | 1   | 1    | ō      | ō   |
| 8      | 0   | 0   | 0   | 1   | 1 7 | 1   | 1    | 1      | ŏ   |

Using a control line (E) two different state sequences can be generated. For example, suppose the following two sequences are desired on command (control line E)

Fig. 16(b) — State sequences.

<sup>&</sup>lt;sup>♠</sup> The basic rule is: If a 4 or less is in a decade, shift with the next clock pulse; if a 5 or greater is in a decade, add 3 and then shift at the next clock pulse. For more information refer to "IRE TRANSACTIONS ON ELECTRONIC COMPUTERS", Dec. 1958, Pages 313—316.

### CD4035B Types



Fig. 17 - Binary-to-BCD converter.



Dimensions and pad layout for CD4035BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils  $(10^{-3})$  inch).





ti.com 28-Feb-2005

#### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan (2)      | Lead/Ball Finish | MSL Peak Temp (3)                          |
|------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------|------------------|--------------------------------------------|
| 8101701EA        | ACTIVE                | CDIP            | J                  | 16   | 1              | None              | Call TI          | Level-NC-NC-NC                             |
| CD4035BE         | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-NC-NC-NC                             |
| CD4035BF         | ACTIVE                | CDIP            | J                  | 16   | 1              | None              | Call TI          | Level-NC-NC-NC                             |
| CD4035BF3A       | ACTIVE                | CDIP            | J                  | 16   | 1              | None              | Call TI          | Level-NC-NC-NC                             |
| CD4035BM         | ACTIVE                | SOIC            | D                  | 16   | 40             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| CD4035BM96       | ACTIVE                | SOIC            | D                  | 16   | 2500           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| CD4035BMT        | ACTIVE                | SOIC            | D                  | 16   | 250            | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| CD4035BNSR       | ACTIVE                | SO              | NS                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-2-260C-1 YEAR/<br>Level-1-235C-UNLIM |
| CD4035BPW        | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-1-250C-UNLIM                         |
| CD4035BPWR       | ACTIVE                | TSSOP           | PW                 | 16   | 2000           | Pb-Free<br>(RoHS) | CU NIPDAU        | Level-1-250C-UNLIM                         |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

### 14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

### N (R-PDIP-T\*\*)

### PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



### D (R-PDSO-G16)

### PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.



### **MECHANICAL DATA**

### NS (R-PDSO-G\*\*)

### 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



### PW (R-PDSO-G\*\*)

### 14 PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

### **Texas Instruments**

http://www.ti.com

This file is the datasheet for the following electronic components:

CD4035BF3A - http://www.ti.com/product/cd4035bf3a?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BNSR - http://www.ti.com/product/cd4035bnsr?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BPW - http://www.ti.com/product/cd4035bpw?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BPWR - http://www.ti.com/product/cd4035bpwr?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035B - http://www.ti.com/product/cd4035b?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BE - http://www.ti.com/product/cd4035be?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BF - http://www.ti.com/product/cd4035bf?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BMT - http://www.ti.com/product/cd4035bmt?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BM96 - http://www.ti.com/product/cd4035bm96?HQS=TI-null-null-dscatalog-df-pf-null-wwe CD4035BM - http://www.ti.com/product/cd4035bm?HQS=TI-null-null-dscatalog-df-pf-null-wwe R101701EA - http://www.ti.com/product/8101701ea?HQS=TI-null-null-dscatalog-df-pf-null-wwe