WHAT IS CLAIMED IS:

, , , ,

3

6

7

8

9

1

2

1

2

3

4 5

1	1.	A method for trimming nails comprising:
2	applyi	ng an abrasive surface coupled to a moving member against both an

extended nail portion and a surrounding epidermal tissue portion to cause a grinding action on the extended nail portion, the abrasive surface coupled to the moving member being driven by an

4 5

electric drive device coupled to the moving member; and

whereupon the abrasive surface as applied to both the extended nail portion and the surrounding epidermal tissue portion is characterized by a predetermined speed, a predetermined action, and a selected texture to remove the nail portion by the grinding action while maintaining the surrounding epidermal tissue substantially free from any physical damage.

- 2. The method of claim 1 wherein the predetermined action is selected from an oscillating movement, a rotating movement, a lateral movement, a vibrating movement, an orbital movement, or a combination of these movements.
- The method of claim 1 wherein abrasive surface is applied to both the 3. portion of the nail and the surrounding epidermal tissue at a predetermined force, the force ranging from an upper end to a lower end, the upper end being hundreds of times that of the lower end, the predetermined force being selected by a user.
- 4. The method of claim 1 wherein the predetermined force at the upper end stops the moving member.
- The method of claim 1 wherein the predetermined speed is a variable 5. parameter or a fixed parameter.
- 6. The method of claim 1 wherein the moving member and the abrasive surface being coupled with a shock resistant material, the shock resistant material being coupled to a backside surface of the abrasive surface, the shock resistant allowing the abrasive surface to conform to a contour of the nail portion or the epidermal tissue portion to cause the grinding action.

The method of claim 1 wherein the abrasive material and related elements 7. 1 2 are removable and replaceable from the moving member. The method of claim 1 wherein the moving member is coupled to a 8. 1 housing, the housing being an elongated member capable of being held by a hand along a first 2 portion and being coupled to the moving member along a second portion. 3 9. The method of claim 1 wherein the predetermined speed is a constant or a 1 variable or a variable dependent upon a force of applying. 2 The method of claim 1 wherein a switch operatively connected to the 10. 1 electric drive device provides momentary and continuous operation of the moving member. 2 The method of claim 1 wherein the abrasive material is selected from a 11. material ranging from the equivalent of about 50 grit to 15,000 grit. The method of claim 1 wherein the abrasive material surface having a 12. graphical design to provide a pattern during movement of the movable member. 1 2 2 The method of claim 12 wherein the pattern indicates a velocity of the 13. abrasive material. 14. A method for trimming nails comprising: applying an abrasive surface coupled to a moving member against an extended nail portion to initiate a grinding action on the extended nail portion, the abrasive surface 3 coupled to the moving member being driven by an electric drive device coupled to the moving 4 member; and 5 protecting the surrounding epidermal tissue using a protective device, the 6 protective device exposing at least the extended nail portion; 7 whereupon the abrasive surface as applied to the extended nail portion is 8 characterized by a predetermined speed, a predetermined action, and a selected texture to remove 9

i .*.r

10

11

the nail portion by the grinding action while the protective device keeps the surrounding

epidermal tissue substantially free from any physical damage.

1 15. The method of claim 14 wherein the predetermined action is selected from 2 an oscillating movement, a rotating movement, a lateral movement, a vibrating movement, an 3 orbital movement, or a combination of these movements.

i. .*r

1

2

1

1

2

- 1 16. The method of claim 14 wherein abrasive surface is applied to both the
 2 portion of the nail and the surrounding epidermal tissue at a predetermined force, the force
 3 ranging from an upper end to a lower end, the upper end being hundreds of times that of the
 4 lower end, the predetermined force being selected by a user.
 - 17. The method of claim 14 wherein the predetermined force at the upper end stops the moving member.
 - 18. The method of claim 14 wherein the predetermined speed is a variable parameter or a fixed parameter.
 - 19. The method of claim 14 wherein the moving member and the abrasive surface being coupled with a shock resistant material, the shock resistant material being coupled to a backside surface of the abrasive surface, the shock resistant allowing the abrasive surface to conform to a contour of the nail portion or the epidermal tissue portion to cause the grinding action.
 - 20. The method of claim 14 wherein the abrasive material and related elements are removable and replaceable from the moving member.
- 1 21. The method of claim 14 wherein the moving member is coupled to a
 2 housing, the housing being an elongated member capable of being held by a hand along a first
 3 portion and being coupled to the moving member along a second portion.
 - 22. The method of claim 14 wherein the predetermined speed is a constant or a variable or a variable dependent upon a force of applying.
- 1 23. The method of claim 14 wherein a switch operatively connected to the 2 electric drive device provides momentary and continuous operation of the moving member.

1	24.	The method of claim 14 wherein the abrasive material is selected from a	
2	material ranging fro	m the equivalent of about 50 grit to 15,000 grit.	
4	25	The method of claim 14 wherein the abrasive material surface having a	
1	25.		
2	graphical design to provide a pattern during movement of the movable member.		
1	26.	The method of claim 25 wherein the pattern indicates a velocity of the	
2	abrasive material.		
1	27.	An apparatus for trimming nails, the apparatus comprising:	
2	a mobile housing comprising an elongated body member;		
3	an el	ectric drive device within and coupled to the housing, the electric drive	
4	device having a transfer member;		
1 1 1 1 1 1 1 1 1 1	a mo	vable head coupled to the transfer member of the electric drive device, the	
5 6 7 8		g adapted to receive mechanical energy from the electric drive device through	
1 7	the transfer member	;	
8	an al	orasive surface coupled to the movable head, the abrasive surface being	
9	capable of a grinding action; and		
10	a shock absorbing member coupled between the movable head and abrasive		
111	surface, the shock absorbing member being capable of allowing the abrasive member to conform		
10 1 2 2	onto a non-conformal surface.		
1	28.	The apparatus of claim 27 wherein the shock absorbing member is a	
2	resilient, conformin	g mechanism that is selected from a compliant mechanical means, foam, or	
3	elastomer.		
1	29	The apparatus of claim 27 further comprising a protective device coupled	

to the housing, the protective device allowing a portion of the abrasive surface to be exposed.