Versuch 41 - Temperaturmessung

PAP 1

17.9.2025

Teilnehmender Student: Paul Saß

Gruppe: 9

Kurs: Vormittags

Tutor/in : Samuel Remmers

Inhaltsverzeichnis

1	1 Einleitung		
2	Dur	chführung	1
3	Aus	wertung	2
	3.1	Aufgabe I	2
	3.2	Aufgabe II	2
		3.2.1 Vergleiche	3
	3.3	Aufgabe III	3
4	Zusa	amenfassung und Diskussion	4

1. Einleitung

$$W = \frac{c_w (T - T_1) (m_w - m_k)}{T_2 - T}$$
(1.1)

$$T = 100$$
°C + 0,0276 $\frac{^{\circ}\text{C}}{\text{hPa}}(p - 1014\text{hPa})$ (1.2)

$$c_x = \frac{Q_V m_V}{m_x (T_1 - T_2)} \tag{1.3}$$

2. Durchführung

3. Auswertung

3.1 Aufgabe I

In Diagramm 1 wurden die gemessenen Temperaturen im Kalorimeter gegen die vergangene Zeit aufgetragen. Die Werte stammen aus Tabelle 2. Durch verlängerung des linearen Anteils zum Anfangszeitpunkt t=0s konnte die Gleichgewichtstemperatur \overline{T} abgelesen werden. Der Fehler wird mithilfe einer Fehlergeraden bestimmt. Durch die Differenz der Werte bei t=0 ergibt sich der Fehler:

$$\overline{T} = (48, 6 \pm 0, 4)^{\circ} C$$

$$\Delta \overline{T} = \overline{T} - \overline{T}_{Fehler} \tag{3.1}$$

Aus der Gleichgewichtstemperatur \overline{T} lässt sich die Wärmekapazität des Kalorimeter also der Wasserwert mit Gleichung 1.1 berechnen:

$$W = (95 \pm 17) \frac{J}{K}$$

Der Fehler folgt nach dem Fehlerrechner aus dem Skript:

$$\frac{\Delta W}{W} = \sqrt{\frac{\Delta T^2 (T_2 - T_1)^2}{(T - T_1)^2 (T - T_2)^2} + \frac{\Delta T_1^2}{(T - T_1)^2} + \frac{\Delta T_2^2}{(T - T_2)^2} + \frac{\Delta m_k^2}{(m_k - m_w)^2} + \frac{\Delta m_w^2}{(m_k - m_w)^2} + \frac{\Delta c_w^2}{c_w^2}}$$
(3.2)

Vergleicht man den erhaltenen Wert mit dem Literaturwert von 70 $\frac{J}{K}$ so ergibt sich eine Abweichung des Messwerts von 1,5 σ

3.2 Aufgabe II

Für die Berechnung der spezifischen Wärme muss zuerst die Siedetemperatur des Wassers bei gemessenem Luftdruck berechnet werden. Dabei gilt nach Gleichung 1.2 für die Seiedetemperatur T_1 mit einem gemessen Luftdruck von 1012, 3hPa:

$$T_1 = (99,9806 \pm 0,0028)^{\circ}$$
C

Daraus ergibt sich für die speziefische Wärmekapazität c_m und die Molwärme $c_{mol} = c_m \cdot M$ mit M als molarer Masse:

Material	$m_{kw}[g]$	$T_{vor}[^{\circ}C]$	$T_{nach}[^{\circ}C]$	$c_m[\mathrm{J/gK}]$	$c_{mol}[\mathrm{J}/mol\mathrm{K}]$
Graphit	$592,47 \pm 0,01$	$24,30 \pm 0,07$	$28,70 \pm 0,09$	$0,77\pm0,02$	$9,25 \pm 0,24$
Alu.	$622, 29 \pm 0, 01$	$30,6 \pm 0,1$	$35,7 \pm 0,1$	$0,84 \pm 0,03$	$22,7 \pm 0,8$
Blei	$623, 28 \pm 0, 01$	$28,00 \pm 0,08$	$31,20 \pm 0,09$	$0,13 \pm 0,01$	27 ± 2

Dadurch, dass beim Thermometer ein systematsicher Fehler vorhanden ist, wird zuerst die Differenz $A = \overline{T} - T_2$ berechnet, da sich dort dieser Fehler aufhebt. Bei der restlichen Fehlerrechnung

wurde der systematische Fehler berücksichtigt.

$$\left(\frac{\Delta W}{W}\right)^{2} = \frac{c_{w}^{2} \Delta m_{k}^{2}}{\left(W - c_{w} m_{k} + c_{w} m_{w}\right)^{2}} + \frac{c_{w}^{2} \Delta m_{w}^{2}}{\left(W - c_{w} m_{k} + c_{w} m_{w}\right)^{2}} + \frac{\Delta T^{2}}{\left(T - T_{2}\right)^{2}} + \frac{\Delta T_{2}^{2}}{\left(T - T_{2}\right)^{2}} + \frac{\Delta W^{2}}{\left(W - c_{w} m_{k} + c_{w} m_{w}\right)^{2}} + \frac{\Delta c_{w}^{2} \left(m_{k} - m_{w}\right)^{2}}{\left(W - c_{w} m_{k} + c_{w} m_{w}\right)^{2}} + \frac{\Delta m_{x}^{2}}{m_{x}^{2}} + \frac{\Delta A^{2}}{A^{2}}$$

$$(3.3)$$

3.2.1 Vergleiche

Die Werte werden nun mit den Literaturwerten Verglichen. Zusätzlich wird die speziefische Wärmekapazität mithilfe Dulong-Petit berechnet:

$$c_{DP} = 3\frac{R}{M} \tag{3.4}$$

Mit $R=8,314\frac{\mathrm{J}}{mol\mathrm{K}}$ als universelle Gaskonstante und M als molare Masse. Daraus lässt sich folgende Tabelle erstellen.

Material	$c_m[\mathrm{J/gK}]$ gemessen	$c_m[\mathrm{J/gK}]$ Literatur	σ_{Lit}	c_{DP}	σ_{DP}
Graphit	$0,77 \pm 0,02$	0,709	3	2,077	70
Alu.	$0,84 \pm 0,03$	0,90	2	0,925	2, 8
Blei	$0,13 \pm 0,01$	0,129	0, 1	0,120	1

3.3 Aufgabe III

Achließend werden die Molwärmen und spezifischen Wärmekapazitäten mithilfe Gleichung 1.3 bei der Temperatur von Siedendem Stickstoff berechnet.

Material	$c_m[\mathrm{J/gK}]$	$c_{mol}[\mathrm{J}/mol\mathrm{K}]$
Graphit	$0,5098 \pm 0,0023$	$6,123 \pm 0,027$
Alu.	$0,759 \pm 0,003$	$20,48 \pm 0,08$
Blei	$0,1298 \pm 0,0006$	$26,89 \pm 0,12$

Dabei gilt der folgende Fehler.

$$\frac{\Delta c_m}{c_m} = \sqrt{\frac{\Delta T_1^2}{(T_1 - T_2)^2} + \frac{\Delta m_x^2}{m_x^2}}$$
 (3.5)

Abschließend wird des Verhältnis der Molwärmen bei beiden Temperaturen bestimmt woraus die Debye-Wärme bestimmt werden kann. Für den Fehler des Verhältnisses gilt:

$$\frac{\Delta\left(\frac{c_{molN_2}}{c_{molH_2O}}\right)}{\left(\frac{c_{molN_2}}{c_{molH_2O}}\right)} = \sqrt{\left(\frac{\Delta c_{molN_2}}{c_{molN_2}}\right)^2 + \left(\frac{\Delta c_{molH_2O}}{c_{molH_2O}}\right)^2}$$
(3.6)

Abschlie0end lassen sich die Ergebnisse in folgender Tabelle zusammenfassen.

Eigenschft	Graphit	Aluminium	Blei
Kaloriemeter			
spez. Wärme. $c_m[J/gK]$	$0,77 \pm 0,02$	$0,84 \pm 0,03$	$0,12\pm0,03$
Molwärme $c_{mol}[J/molK]$	$9,25 \pm 0,24$	$22,7 \pm 0,8$	27 ± 2
In Stickstoff			
spez. Wärme. $c_m[J/gK]$	$0,5098 \pm 0,0023$	$0,759 \pm 0,003$	$0,1298 \pm 0,0006$
Molwärme $c_{mol}[J/molK]$	$6,123 \pm 0,027$	$20,48 \pm 0,08$	$26,89\pm0,12$
$\frac{c_{molN_2}}{c_{molH_2O}}$	$0,66 \pm 0,17$	$0,93 \pm 0,03$	$1,00 \pm 0,07$
Debye-Temp. $\Theta[K]$	80 ± 18	210 ± 10	630 ± 30
Abweichung σ von Θ	0,8	22	50

4. Zusamenfassung und Diskussion