## STA 360/601: Bayesian and Modern Statistics

Lecture 16: Bayesian hypothesis testing & Bayes factors

Jeff Miller

Department of Statistical Science, Duke University

Friday, October 17, 2014

## Bayesian hypothesis testing

- ▶ Problem: You have two or more competing hypotheses H<sub>0</sub>, H<sub>1</sub>,..., and want to consider the evidence in favor of each, based on some data.
- Examples:
  - 1. Does drug X reduce the risk of stroke  $(H_1)$  or not  $(H_0)$ ?
  - 2. Does Patient X have disease Y  $(H_1)$  or not  $(H_0)$ ?
  - 3. Does the Higgs boson exist  $(H_1)$  or not  $(H_0)$ ?
  - 4. You are Gregor Mendel. Which of several models of trait inheritance  $H_0, H_1, \dots, H_m$  is correct?
  - 5. Data on 5000 subjects was collected over 60 years. Which variables are predictive of heart disease risk? (Each subset of variables is a competing hypothesis.)

## A simple example

- ▶ Data:  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ , where  $\sigma$  is known.
- ▶ Hypotheses:  $H_0: \mu = 0$  versus  $H_1: \mu \neq 0$
- ▶ Same setup as a classical frequentist hypothesis test.
- Let's say the data is

$$x = (x_1, ..., x_8) = (0.8, -0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).$$

What is your intuitive judgment of the plausibility of  $H_0$  and  $H_1$ ?

▶ What would be a natural Bayesian approach? Any ideas?

#### A Bayesian approach

- ▶ Put a prior on the hypotheses, say,  $p(H_0) = \pi$  and  $p(H_1) = 1 \pi$ .
- ▶ Under  $H_0: \mu = 0$ , the data is simply  $N(0, \sigma^2)$ .
- ▶ Under H<sub>1</sub>:  $\mu \neq 0$ , we don't know  $\mu$ , so let's put a prior on it:  $\mu \sim N(0, \sigma_1^2)$ . (Technically, perhaps we should exclude the point  $\mu = 0$  from the prior, but it makes no difference since this has probability zero anyways.)
- Now, we want to know the posterior probabilities  $p(H_0|x)$  and  $p(H_1|x)$  where  $x=(x_1,\ldots,x_n)$ .
- ▶ By Bayes' rule,  $p(H_k|x) \propto p(x|H_k)p(H_k)$ . So, we need  $p(x|H_0)$  and  $p(x|H_1)$  (the marginal likelihoods).

# Computing the marginal likelihoods

- ►  $H_0$  is easy:  $p(x|H_0) = \prod_{i=1}^n N(x_i \mid 0, \sigma^2)$
- ▶ ...and H₁ is not too hard:

$$\begin{split} p(x|\mathsf{H}_1) &= \int p(x|\mu,\mathsf{H}_1) p(\mu|\mathsf{H}_1) d\mu \\ &= \int \Big(\prod_{i=1}^n \mathsf{N}(x_i\mid \mu,\sigma^2)\Big) \mathsf{N}(\mu\mid 0,\sigma_1^2) d\mu \\ &= (\mathsf{typical Gaussian integral...complete the square, etc.}) \\ &= \frac{s}{\sigma_1} \exp\big(\tfrac{1}{2} m^2/s^2\big) \prod_{i=1}^n \mathsf{N}(x_i\mid 0,\sigma^2), \end{split}$$

where 
$$1/s^2 = n/\sigma^2 + 1/\sigma_1^2$$
 and  $m = (s^2/\sigma^2) \sum_i x_i$ .

## Outcome for our simple example

Our data is

$$x = (x_1, ..., x_8) = (0.8, -0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).$$

- ▶ Let's suppose  $p(H_0) = p(H_1) = 1/2$ ,  $\sigma = 1$ , and  $\sigma_1 = 1$ .
- ▶ Plugging the marginal likelihood and prior into  $p(H_k|x) \propto p(x|H_k)p(H_k)$  we get

$$p(H_0|x) = 0.506$$
 and  $p(H_1|x) = 0.494$ .

So, basically, we have no idea.

#### Decisions, decisions, . . .

- Suppose we have to choose one of the hypotheses.
- Suppose that when we choose d and the truth is h, we incur a loss L(h, d).
- Since we have put a prior on h, we may as well consider it as a random variable, H.
- ► The posterior expected loss associated with choosing d given data x is

$$E(L(H,d) \mid x) = \sum_{h} L(h,d)p(H=h \mid x)$$

where the sum is over all hypotheses  $h = H_0, H_1, \ldots$ 

#### Example: 0 - 1 loss

- ▶ 0 1 loss is the loss function  $L(h, d) = \mathbb{1}(h \neq d)$ , i.e., you lose 1 if wrong, 0 if right.
- The posterior expected loss in this case is

$$E(L(H,d) \mid x) = \sum_{h} L(h,d)p(H = h \mid x)$$
$$= \sum_{h} \mathbb{1}(h \neq d)p(H = h \mid x)$$
$$= 1 - p(H = d \mid x).$$

- So, to minimize our posterior expected loss, the optimal decision  $d^*$  (under 0 1 loss) is the hypothesis with highest posterior probability p(H = d|x).
- In the case of two hypotheses,  $H_0$  and  $H_1$ ,

$$d^* = \left\{ \begin{array}{ll} \mathsf{H}_0 & \text{if } p(\mathsf{H}_0|x) > 1/2 \\ \mathsf{H}_1 & \text{if } p(\mathsf{H}_1|x) > 1/2 \\ \text{either } & \text{otherwise.} \end{array} \right.$$

#### A few remarks

- If L(h, d) is not 0 1 loss, the optimal decision will not necessarily be the hypothesis with highest posterior probability.
- ► The Bayesian hypothesis testing approach described above is very different than frequentist hypothesis testing.
- ▶ For frequentist hypothesis testing of  $H_0$  versus  $H_1$ :
  - ► The usual approach is to minimize Type II errors (choosing H<sub>0</sub> when H<sub>1</sub> is true) subject to an upper bound on the probability of Type I error (choosing H<sub>1</sub> when H<sub>0</sub> is true).
  - ► There is an asymmetry in the frequentist approach: H<sub>0</sub> is a *null hypothesis*, i.e., a default position (the reigning champion), and H<sub>1</sub> is an *alternative hypothesis* (the challenger).
  - Metaphor: It is like a criminal trial, in which the defendant is presumed innocent (H₀) unless proven guilty beyond all reasonable doubt (H₁).
- ► The Bayesian approach does not have this asymmetry, allowing for a more balanced approach to minimize overall loss. However, as always, the outcome depends on the prior.

#### Bayes factors

- Bayes factors provide a way to be a little less dependent on the prior.
- ► The *Bayes factor* in favor of  $H_1$  over  $H_0$ , for data  $x = (x_1, ..., x_n)$ , is

$$B_{10} = \frac{p(x|H_1)}{p(x|H_0)}.$$

- Note that this doesn't depend on  $p(H_0)$  or  $p(H_1)$  ...
- ▶ ... but it does still depend on the priors we choose for parameters required to define the distribution of x given H<sub>0</sub> or H<sub>1</sub> (e.g., µ in our simple example).
- ▶ When  $B_{10} > 1$ , this is evidence in favor of  $H_1$ , when  $B_{10} < 1$ , it is evidence in favor of  $H_0$ .
- ➤ Some have suggested scales for interpreting Bayes factors, e.g., 10 – 30 is "strong evidence", but this is purely heuristic and not universally accepted.

## Some properties of Bayes factors

▶ In the case of two competing hypotheses, the Bayes factor is related to the posterior probability as follows:

$$\begin{split} \rho(\mathsf{H}_0|x) &= \frac{p(x|\mathsf{H}_0)p(\mathsf{H}_0)}{p(x|\mathsf{H}_0)p(\mathsf{H}_0) + p(x|\mathsf{H}_1)p(\mathsf{H}_1)} \\ &= \frac{1}{1 + \frac{p(x|\mathsf{H}_1)p(\mathsf{H}_1)}{p(x|\mathsf{H}_0)p(\mathsf{H}_0)}} \\ &= \frac{1}{1 + \mathsf{Bayes factor} \times \mathsf{Prior odds}} \end{split}$$

▶ Also, "Posterior odds = Bayes factor × Prior odds", i.e.,

$$\frac{p(H_1|x)}{p(H_0|x)} = B_{10} \frac{p(H_1)}{p(H_0)}.$$

# Back to our example

- ▶ Data: x = (0.8, -0.4, 0.1, 0.0, 1.2, 0.8, 1.0, 0.9).
- $p(H_0) = p(H_1) = 1/2$ ,  $\sigma = 1$ , and  $\sigma_1 = 1$ .
- Posterior probabilities:

$$p(H_0|x) = 0.506$$
 and  $p(H_1|x) = 0.494$ .

► Bayes factors:

$$B_{10} = \frac{p(x|H_1)}{p(x|H_0)} = 0.98$$

$$B_{01} = \frac{p(x|H_0)}{p(x|H_1)} = 1.02$$

#### Sensitivity to the prior

- ▶ Bayes factors can depend strongly on the prior on parameters (e.g.,  $\mu$  in our example).
- ▶ In our example, the prior standard deviation  $\sigma_1$  of  $\mu$  given  $H_1$  has a significant effect on the Bayes factor:



- ▶ In particular,  $B_{10} \rightarrow 0$  as  $\sigma_1 \rightarrow \infty$ .
- ▶ Improper priors CANNOT be used here.

## Lindley's "paradox"

- ► This sensitivity is the issue underlying Lindley's "paradox" (which is, as usual, not actually a paradox).
- ► The original "paradox" is that it is possible for very reasonable frequentist and Bayesian approaches to give contradictory answers about which hypothesis is favored by the evidence.
- e.g., frequentist rejects  $H_0$  while Bayesian finds strong evidence for  $H_0$ .
- ► This underlying issue also shows up in Bayesian models over variable-dimension parameter spaces, e.g., mixture models.

#### Non-monotonicity wrt sample size

- ▶ Another thing to be careful of is that Bayes factors can be non-monotone in the sample size *n*.
- ▶ Example: Same as before, but with  $\sigma_1 = 5$  and  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0.1, 1)$ . Plot is averaged over many samples:



▶  $H_1$  is true, but if we only had 100 samples, we would only see  $B_{10}$  decreasing down to  $\approx 0.05$ , seeming to suggest that it is converging to 0, and we might mistakenly be convinced of  $H_0$ .

#### Remarks

- ► The Bayesian approach allows for principled (but subjective) decision-theoretic hypothesis testing.
- Also, the Bayesian approach extends naturally to more complicated models.
- ► The prior really matters here only trust the results to the extent that you trust the prior.
- It's a good idea to do a sensitivity analysis: vary the prior and see how the result changes.
- ► Careful: Bayes factors can be non-monotone in *n*.

#### Homework exercise

- You have data from an experiment collecting cell counts for a control group and treatment group.
- Control group:

$$x_{1:n} = (204, 215, 182, 225, 207, 188, 205, 227, 190, 211, 196, 203)$$

Treatment group:

$$y_{1:m} = (211, 233, 244, 241, 195, 252, 238, 249, 220, 213)$$

- ▶ The counts are assumed to be Poisson distributed.
- ► There are two hypotheses, H<sub>0</sub>: Poisson with same mean, vs. H<sub>1</sub>: Poisson with different means.

# Homework exercise (continued)

- Model this as follows.
- $p(H_0) = 3/4, p(H_1) = 1/4.$
- ▶ Under H<sub>0</sub>:  $X_1, ..., X_n, Y_1, ..., Y_m \sim \text{Poisson}(\lambda)$  i.i.d. given  $\lambda$ , and  $\lambda \sim \text{Gamma}(a, b)$  where a = 4 = shape and  $b = 0.02 = \text{rate (i.e., } \lambda \text{ has pdf } b^a \lambda^{a-1} \exp(-b\lambda)/\Gamma(a))$ .
- ▶ Under H<sub>1</sub>:  $X_1, \ldots, X_n \sim \text{Poisson}(\lambda_c)$  i.i.d. given  $\lambda_c$ , and  $Y_1, \ldots, Y_m \sim \text{Poisson}(\lambda_t)$  i.i.d. given  $\lambda_t$ , and  $\lambda_c, \lambda_t \sim \text{Gamma}(a, b)$  independently, with the same a, b as above.
- ▶ Compute  $p(H_k|x,y)$  for k = 0,1. Compute  $B_{10}$ .
- Compute the prior odds and posterior odds. Interpret your results.
- ▶ Does the prior on the  $\lambda$ 's appear to be reasonable (judging by the data)? Why or why not? Try different values of a and b and interpret what you see.

# Further reading

► Kass & Raftery, *Bayes factors*, JASA, 1995.