Trans Health in Cancer Genetic Counseling

Xuechun Liu, Liwen Zhang, Kailun Huang PhD mentor: David Reynolds

2/10/2018

Introduction and Summary Findings

The client, Tala Berro, is a second-year genetic counseling MA student at Boston University. This project is her MA thesis and concerns cancer genetic counselors' anticipated behaviors when counseling transgender patients. Study participation involves a brief web-based survey and the participants are generated from genetic counselors in the Cancer Special Interest Group. Surveys were sent by email to all genetic counselors in this group and 257 responses were received. The client's interest lies primarily in the responses received on four case study questions that pertain to clinical situations involving transgender cancer patients. Each of these cases has a set of objectively correct answers. The client is interested in understanding how the performance of the respondents may depend on factors related to their experience or demographic profile. We measure performance by the Jaccard Index, described below. We fit linear regression models for each case study and in aggregate (performance across all case studies) and find that the factors measured do not exert significant effects on performance. That is, the performance of the cancer genetic counselors on the four cases provided in the survey do not appear to depend on their experience or demographics.

Exploratory Data Analysis

We begin our exploratory analysis below by visualizing heat maps of the response frequencies associated with comfort levels pertaining to transgender terminology. We see that the majority of respondents feel comfortable using terminology related to transgender individuals.

Comfort Level of Accurately Using Selected Words

Comfort Level of Asking a Trans/Nonbinary Patient Selected Words

Next, we explore the distributions of responses pertaining broadly to the experience of respondents. In particular, in the plots below, we visualize the number of respondents who have education related to transgender patients and also the number of years of experience working in a cancer setting. Note that these responses do not include empty replies.

Note that on the left hand figure, response 1 corresponds to a genetic counseling program; response 2 corresponds to a conference; response 3 corresponds to workshops; response 4 corresponds with education specific to trans health in cancer; response 5 is other. This plot shows that most participants only go to a Genetic Counseling Graduate Program or workshops. Seldom do the respondents have multiple training experiences. Additionally, the plot on the years spent in a cancer setting indicate that the most frequent experience level among the respondents is 1-2 years.

Next, we visualize the desire of the respondents for more information and training related to transgender patients. Question 43 indicates whether the counselors would find an inventory of each patients organs to be beneficial. We see that a majority of respondents to indeed desire more training related to transgender patients.

Finally, we explore the broad demographic profiles of the respondents with respect to their age and region.

Note that the responses for region are:

CT,MA,ME,NH,RI,VT,CN Maritime Provinces (1)

DC,DE,MD,NJ,NY,PA,VA,WV,PR,VI,Quebec (2)

AL,FL,GA,KY,LA,MS,NC,SC,TN (3)

AR,IA,IL,IN,KS,MI,MN,MO,ND,NE,OH,OK,SD,WI,Ontario (4)

AZ,CO,MT,NM,TX,UT,WY,Alberta, Manitoba, Sask. (5)

AK,CA,HI,ID,NV,OR,WA,British Columbia (6)

We see that the most frequent region is the midwest and the most frequent age range is 25-34.

Case Study Analysis

In the analysis of the case studies, we use the Jaccard index, which measures similarity between finite sample sets, as our dependent variable. We calculate the Jaccard index using the size of the intersection of participants' responses and correct answers, divided by the cardinality of their union. Other variables, such as age, gender, number of years spent working in a cancer setting, serve as covariates to fit models.

First, we see mean performance by case study for all respondents, with and without blank responses.

Case	Avg. JI (excl. blank)	Avg. JI (incl. blanks)
Case 3	0.78	0.6
Case 4	0.73	0.56
Case 5	0.85	0.66
Case 6a	0.83	0.63
Case 6b	0.78	0.59

Overall, it appears that performance on the four cases is strong. Note that 6a refers to Case 6 when we do not include response 5 (which is subjectively correct) and 6b refers to Case 6 when we do include response 5.

Below, we visualize performance for each of the case studies broken out by a select group of experience and demographic covariates. We also examine the distribution of the missed answers.

Visualizations for Case Study 4

Response Prop. by Age Band

Education or Training related to Transgender F

Response Prop. by Experience

1.00 -

7accard Index 0.75 - 0.50 - 0.25 -0.00 6–10 Blank 1–2 >10 3-5 Years of Experience

Response by Gender Identity

Distribution of Missing Answers for Case 4

Visualizations for Case Study 5

Response Prop. by Age Band

Education or Training related to Transgender F

Response Prop. by Experience

ce

Response by Gender Identity

Distribution of Missing Answers for Case 5

Case 6 Visualizations (without Q5)

Response Prop. by Age Band

Response by Gender Identity

Case 6 Visualizations (with Q5)

Case 7 Visualization

Finally, we visualize the distribution of responses for Case 7.

3. Modeling

The potential covariates broadly fall into two main categories:

Clinician Experience

- 1. Number of patients seen each month ($<40, \sim40, >40$)
- 2. Number of years spent working in a cancer setting

- 3. Seen any transgender patients?
- 4. Any transgender specific education/ training?

Clinician Demographics

- 1. Age
- 2. Gender identity
- 3. Sexual orientation
- 4. Race
- 5. Region of practice

Based on these, we fit a multiple linear regression model for each cases. In the model, jaccard Index was used as response variables and all the potential covariates mentioned above were used as predictors. In addition, since the survey was designed to stop when an answer is missing, we exclude all blank responses before we fit the model.

Here is our model:

 $Jaccard\ Index \sim \beta_0 + \beta_1 specific_training + \beta_2 Age_Band + \beta_3 years_experience + \beta_4 gender + \beta_5 n_patients + \beta_6 seen_trans-patients + \beta_6 s$

Case Sutdy 3 Linear Model

Table 2: Fitting linear model: Q7_p[complete] \sim training + factor(Age_Band) + years + gender + n_patients + seen_trans + race + region

	Estimate	Std. Error	t value	$\Pr(> t)$
training2	-0.072	0.0494	-1.457	0.1474
$factor(Age_Band)25 - 34$	-0.132	0.08762	-1.506	0.1344
factor(Age_Band)35 - 44	-0.1582	0.1099	-1.44	0.1524
$factor(Age_Band)45 - 54$	0.001312	0.1473	0.008907	0.9929
$factor(Age_Band)55 - 64$	0.04957	0.1477	0.3356	0.7377
years1	0.1906	0.3038	0.6275	0.5315
years2	0.2278	0.3085	0.7385	0.4615
years3	0.2216	0.315	0.7033	0.4832
years4	0.1732	0.3286	0.5272	0.5989
${f gender 2}$	0.1499	0.08012	1.87	0.06369
${f gender 5}$	0.02986	0.2698	0.1107	0.912
${f gender 6}$	-0.0751	0.2689	-0.2793	0.7805
${f gender 7}$	0.1876	0.2072	0.9057	0.3668
$n_patients2$	-0.02744	0.04732	-0.5798	0.563
${f n}$ _patients ${f 3}$	-0.02832	0.06002	-0.4719	0.6378
$seen_trans2$	-0.02857	0.04557	-0.6269	0.5318
$seen_trans3$	0.132	0.1821	0.7247	0.4699
race1	0.4591	0.2726	1.684	0.09456
race 2	0.4666	0.3012	1.549	0.1238
race5	0.4574	0.3215	1.422	0.1573
region1	-0.06101	0.2064	-0.2956	0.768
${f region 2}$	0.1003	0.1973	0.5082	0.6122
region3	0.1132	0.2001	0.5659	0.5724
region4	0.1142	0.1978	0.5772	0.5648
region5	0.1509	0.2063	0.7314	0.4659
region6	0.1251	0.2066	0.6057	0.5458
(Intercept)	0.0872	0.4508	0.1934	0.8469

Case Sutdy 4 Linear Model

Table 3: Fitting linear model: Q9_p[complete] ~ training + factor(Age_Band) + years + gender + n_patients + seen_trans + race + region

	Estimate	Std. Error	t value	Pr(> t)
training2	-0.1032	0.05384	-1.916	0.05759
$factor(Age_Band)25 - 34$	0.2114	0.09549	2.214	0.02859
$factor(Age_Band)35 - 44$	0.1905	0.1198	1.59	0.1143
$factor(Age_Band)45 - 54$	0.3054	0.1606	1.902	0.05937
$factor(Age_Band)55 - 64$	0.3342	0.161	2.076	0.03987
years1	-0.2387	0.3311	-0.7209	0.4722
years 2	-0.26	0.3362	-0.7735	0.4406
years3	-0.2903	0.3433	-0.8456	0.3994
years4	-0.3112	0.3581	-0.8692	0.3863
${f gender 2}$	0.09138	0.08731	1.047	0.2973
${f gender 5}$	-0.4031	0.2941	-1.371	0.1728
${f gender 6}$	0.3083	0.293	1.052	0.2947
${f gender 7}$	0.00663	0.2258	0.02936	0.9766
${f n}$ _patients ${f 2}$	-0.01881	0.05157	-0.3648	0.7159
${ m n_patients 3}$	0.1299	0.06541	1.985	0.04921
${ m seen_trans2}$	0.01767	0.04967	0.3557	0.7226
${ m seen_trans3}$	0.3778	0.1984	1.904	0.05916
race1	0.8038	0.2971	2.706	0.007734
race 2	0.9851	0.3283	3.001	0.003231
race 5	1.067	0.3504	3.044	0.002834
region1	0.4791	0.225	2.129	0.03511
${f region 2}$	0.4255	0.215	1.979	0.04995
${f region 3}$	0.4161	0.218	1.908	0.05856
${f region 4}$	0.4611	0.2156	2.139	0.03432
${f region 5}$	0.2966	0.2249	1.319	0.1895
region6	0.4325	0.2251	1.921	0.05691
(Intercept)	-0.4791	0.4913	-0.9753	0.3313

Case Sutdy 5 Linear Model

Table 4: Fitting linear model: Q10_p[complete] ~ training + factor(Age_Band) + years + gender + n_patients + seen_trans + race + region

	Estimate	Std. Error	t value	$\Pr(> t)$
training2	-0.03683	0.03269	-1.127	0.262
$factor(Age_Band)25 - 34$	0.03551	0.05798	0.6125	0.5413
$factor(Age_Band)35 - 44$	-0.07424	0.07274	-1.021	0.3093
$factor(Age_Band)45 - 54$	0.01302	0.09749	0.1335	0.894
$factor(Age_Band)55 - 64$	-0.05156	0.09774	-0.5275	0.5988
years1	0.2908	0.201	1.447	0.1504
years 2	0.2882	0.2041	1.412	0.1604
years3	0.3423	0.2085	1.642	0.1031
years4	0.3824	0.2174	1.759	0.08095
${\bf gender 2}$	-0.01433	0.05302	-0.2703	0.7874

	Estimate	Std. Error	t value	Pr(> t)
gender5	0.04083	0.1786	0.2286	0.8195
gender6	0.1453	0.1779	0.8166	0.4157
gender7	0.1564	0.1371	1.141	0.2561
${f n_patients 2}$	-0.04529	0.03132	-1.446	0.1505
${f n_patients 3}$	0.01227	0.03972	0.3088	0.758
${ m seen_trans2}$	0.01681	0.03016	0.5574	0.5783
${\bf seen_trans3}$	0.08481	0.1205	0.7039	0.4828
race1	0.1188	0.1804	0.6589	0.5112
race 2	-0.073	0.1993	-0.3662	0.7148
race5	0.2238	0.2128	1.052	0.2948
region1	-0.1765	0.1366	-1.292	0.1986
${f region 2}$	-0.09294	0.1306	-0.7118	0.4779
${f region 3}$	-0.1899	0.1324	-1.434	0.1539
${f region 4}$	-0.1632	0.1309	-1.247	0.2148
region5	-0.1708	0.1366	-1.251	0.2132
region6	-0.1941	0.1367	-1.42	0.1581
(Intercept)	0.6154	0.2983	2.063	0.04112

Case Sutdy 6 Linear Model

Table 5: Fitting linear model: Q35_p1[complete] \sim training + factor(Age_Band) + years + gender + n_patients + seen_trans + race + region

	Estimate	Std. Error	t value	$\Pr(> t)$
training2	-0.01991	0.0382	-0.5211	0.6032
$factor(Age_Band)25 - 34$	0.006398	0.06776	0.09443	0.9249
$factor(Age_Band)35 - 44$	0.043	0.085	0.5058	0.6139
$factor(Age_Band)45 - 54$	0.05571	0.1139	0.489	0.6257
$factor(Age_Band)55 - 64$	-0.1115	0.1142	-0.9761	0.3308
years1	0.4106	0.2349	1.748	0.08287
years 2	0.3827	0.2385	1.604	0.1111
years3	0.4336	0.2436	1.78	0.07749
years4	0.473	0.2541	1.862	0.06493
${\bf gender 2}$	-0.03916	0.06196	-0.632	0.5285
${f gender 5}$	0.05499	0.2087	0.2635	0.7926
gender6	-0.4858	0.2079	-2.336	0.02101
${f gender 7}$	-0.1373	0.1602	-0.8569	0.3931
${f n_patients2}$	0.01712	0.0366	0.4678	0.6407
$n_patients3$	0.01863	0.04641	0.4014	0.6888
${f seen_trans2}$	0.003184	0.03524	0.09035	0.9281
${ m seen_trans3}$	-0.2359	0.1408	-1.675	0.09629
race1	-0.09244	0.2108	-0.4385	0.6617
${f race 2}$	-0.0801	0.2329	-0.3439	0.7315
race5	0.0439	0.2487	0.1766	0.8601
region1	-0.1604	0.1596	-1.005	0.3168
${f region 2}$	-0.1927	0.1526	-1.263	0.2088
${f region 3}$	-0.1513	0.1547	-0.9777	0.33
${f region 4}$	-0.124	0.153	-0.8109	0.4189
region 5	-0.04344	0.1596	-0.2722	0.7859
region6	-0.2026	0.1597	-1.268	0.207

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.6876	0.3486	1.972	0.05071

Aggregate Linear Model

Table 6: Fitting linear model: $y \sim training + factor(Age_Band) + years + gender + n_patients + seen_trans + race + region$

	Estimate	Std. Error	t value	$\Pr(> t)$
training2	-0.08385	0.08901	-0.942	0.3475
$factor(Age_Band) >= 65$	-0.08082	0.5403	-0.1496	0.8813
$factor(Age_Band)25 - 34$	0.1466	0.1484	0.9881	0.3246
$factor(Age_Band)35 - 44$	0.1579	0.1871	0.8436	0.4001
$factor(Age_Band)45 - 54$	0.06743	0.2459	0.2742	0.7842
$factor(Age_Band)55 - 64$	-0.05189	0.2404	-0.2159	0.8293
years1	0.1992	0.5946	0.335	0.7381
years 2	0.2436	0.6017	0.4049	0.6861
years3	0.2417	0.6111	0.3956	0.6929
years4	0.08155	0.6337	0.1287	0.8978
${f gender 1}$	-0.27	0.9802	-0.2755	0.7833
${f gender 2}$	-0.09476	0.9717	-0.09752	0.9224
${f gender 5}$	0.1861	1.099	0.1694	0.8657
gender6	-2.459	1.105	-2.225	0.02742
${f gender 7}$	-0.7216	1.054	-0.685	0.4943
$n_patients2$	-0.09115	0.08311	-1.097	0.2743
$n_patients3$	0.02341	0.1036	0.2259	0.8215
$seen_trans2$	0.03514	0.08109	0.4333	0.6653
$seen_trans3$	0.1535	0.2625	0.5847	0.5596
race1	-0.1341	0.527	-0.2545	0.7994
$\mathbf{race2}$	-0.05804	0.5871	-0.09886	0.9214
race3	-0.7603	0.7253	-1.048	0.296
race5	-0.1896	0.6222	-0.3047	0.761
region1	0.2924	0.3352	0.8723	0.3843
region 2	0.1054	0.3244	0.3249	0.7457
region3	0.1515	0.3273	0.4629	0.6441
region4	0.1115	0.3249	0.3433	0.7318
region5	0.157	0.3411	0.4601	0.646
region6	0.2909	0.3413	0.8523	0.3953
(Intercept)	3.035	0.5208	5.829	2.862e-08

As we can see from the tables above, none of the potential covariates in any of the models are significant at the level of 0.05, which means we fail to reject all the null hypotheses. Thus, we can conclude that neither clinician experience (including number of patients seen each month, number of years spent working in a cancer setting, seen any transgender patients, got any transgender specific education/training), nor clinician demographics (age, gender, sexual orientation, race, region of practice) is significant in predicting clinicians' scores in each case.