Relações binárias

Relações binárias.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 2

RELAÇÕES BINÁRIAS

Combinar conjuntos

- \Box C = {toyota, ford, renault, volvo}
- ightharpoonup P = {joão, ana, rui, rita}
- Operações já vistas
- \Box $C \cap P = \emptyset$
- \Box C \cup P = {toyota, ford, renault, volvo, joão, ana, rui, rita}
- \Box C \oplus P = {toyota, ford, renault, volvo, joão, ana, rui, rita}
- \Box C \ P = {toyota, ford, renault, volvo}
- \Box $C^c = \{joão, ana, rui, rita\}$ se U for o universo de discurso
- □ Como combinar informação de outra maneira, por exemplo, para saber de quem é cada carro?

Produto cartesiano

- □ O produto cartesiano de dois conjuntos A e B é o conjunto de todos os pares ordenados (a,b) com elementos respetivamente de A e de B
 - $A \times B = \{ (a,b) \mid a \in A \land b \in B \}$
 - (a,b) são pares ordenados porque a ordem é importante $(a,b) \neq (b,a)$
 - a e b designam-se coordenadas

```
□ C × P = { (toyota, joão), (toyota, ana), (toyota, rui), (toyota, rita), (ford, joão), (ford, ana), (ford, rui), (ford, rita), (renault, joão), (renault, ana), (renault, rui), (renault, rita), (volvo, joão), (volvo, ana), (volvo, rui), (volvo, rita)}
```

conjunto de sequências (ou tuplos)

$$|C \times P| = |C| \times |P| = 4 * 4 = 16$$

Notação

toyota X X \mathbf{X} X ford X X X X X X X X renault X volvo \mathbf{X} X X

□ Notação mais adequada depende da análise a realizar

Produto cartesiano generalizado

- \square O produto cartesiano é generalizável C × P × D
 - D = {2005,2008,2009}
- \Box C × P × D =

```
{(toyota, joão,2005), (toyota, ana,2005), (toyota, rui,2005), (toyota, rita,2005), (ford, joão,2005), (ford, ana,2005), (ford, rui,2005), (ford, rita,2005), (renault,joão,2005), (renault,ana,2005), (renault,rui,2005), (renault,rita,2005), (volvo, joão,2005), (volvo, ana,2005), (volvo, rui,2005), (volvo, rita,2005), (toyota, joão,2008), (toyota, ana,2008), ...}
```

- Ternos ordenados
- \square O produto cartesiano não é comutativo $A \times B \neq B \times A$
- Se o produto cartesiano for sobre o mesmo conjunto
 - $A^n = A \times A \times ... \times A = \{(a_1, a_2, ..., a_n) \mid a_i \in A, i=1,...,n\}$
 - Os elementos de Aⁿ são n-tuplos

Relações binárias

- □ Uma **relação binária** do conjunto A para o conjunto B é um subconjunto de $A \times B$. Uma relação binária em A é um subconjunto de $A^2 = A \times A$.
- $\square \ R = \{(c,p) \mid c \in C \land p \in P \land o \ dono \ de \ c \not e \ p\} \ \ _{conjunto \ de \ sequências}$ $= \{(toyota, ana), (ford, joão), (renault, joão), (volvo, rui), (volvo, ana)\}$
 - Neste exemplo, 5 pares em vez dos 16 de $C \times P$
 - R representa mais informação do que C × P ou Ø, apesar de todos serem subconjuntos de C × P
 matricial

C toyota joão P ana renault rui rita diagrama

R	joão	ana	rui	rita
toyota		X		
ford	X			
renault	X			
volvo		X	X	

Relações de ordem superior

- □ Certos problemas são naturalmente modelizáveis por relações entre mais do que dois conjuntos de valores
 - Registar as notas de cada aluno a cada disciplina.
 - R ⊆ Aluno×UC×Nota relação ternária
 - $R = \{(rui, mdis, 14), (ana, mdis, 11), ...\}$ conjunto de sequências

Representação tabular

- □ Para relações n-árias n>3 representações em diagrama e matricial ficam confusas → representação tabular
 - Tabela = conjunto de sequências ou tuplos

tabela

Aluno	UC	Nota
rui	mdis	14
ana	mdis	11
rita	mdis	17
nuno	mdis	14
rui	amat	13
rita	amat	14
rui	alge	13
nuno	amat	13

- □ Cabeçalho da tabela = esquema da relação = domínios dos atributos do produto cartesiano
- ☐ Linha da tabela = sequência da relação = facto da situação

Relações n-árias versus binárias

- Relações n-árias aumentam a potência da representação?
- □ Representar a relação ternária em 3 relações binárias
 - Operação de projeção (eliminar colunas da tabela original)
 - Desaparecem linhas: relação é conjunto logo não tem repetições

Aluno	UC
rui	mdis
ana	mdis
rita	mdis
nuno	mdis
rui	amat
rita	amat
rui	alge
nuno	amat

14
11
17
14
13
14
13

UC	Nota
mdis	14
mdis	11
mdis	17
amat	13
amat	14
alge	13

Aluno	UC	Nota
rui	mdis	14
ana	mdis	11
rita	mdis	17
nuno	mdis	14
rui	amat	14
rita	amat	14
rui	alge	13
nuno	amat	13

Tabela ternária com as mesmas projeções – representação binária perde informação

1 relação n-ária = n relações binárias

- □ Se a tabela tiver uma coluna que identifique cada linha
 - Se não tiver acrescenta-se uma chave que numere as linhas

Nr	Aluno	UC	Nota
1	rui	mdis	14
2	ana	mdis	11
3	rita	mdis	17
4	nuno	mdis	14
5	rui	amat	13
6	rita	amat	14
7	rui	alge	13
8	nuno	amat	13

Nr	Aluno	Nr	UC	Nr	Nota
1	rui	1	mdis	1	14
2	ana	2	mdis	2	11
3	rita	3	mdis	3	17
4	nuno	4	mdis	4	14
5	rui	5	amat	5	13
6	rita	6	amat	6	14
7	rui	7	alge	7	13
8	nuno	8	amat	8	13

☐ É sempre possível representar uma relação n-ária à custa de até n relações binárias, usando uma chave comum

Propriedades das relações binárias

- \square Relação binária definida num só conjunto A ($R \subseteq A^2$) é:
- □ Reflexiva se e só se

$$\forall a \in A, (a,a) \in R$$

Simétrica se e só se

$$\forall a, b \in A, (a,b) \in R \rightarrow (b,a) \in R$$

□ Antissimétrica se e só se

$$\forall a, b \in A, (a,b) \in R \land (b,a) \in R \rightarrow a=b$$

☐ Transitiva se e só se

$$\forall a, b, c \in A, (a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$$

□ Nota: antissimétrica não é a mesma coisa que não simétrica

Exemplos

R	1	2	3	4	5
1	X	X	X	X	X
2		X	X	X	X
3			X	X	X
4				X	X
5					X

- R: reflexiva
 - Lacetes em todos os elementos; diagonal principal completa
- antissimétrica
 - Sem qualquer arco de retorno; sem elemento simétrico relativamente à diagonal principal
- transitiva
 - Ligações diretas para todos os elementos com caminho até lá Conjuntos-13

Exemplos

■ S: reflexiva simétrica

Todos os arcos de retorno;
elementos simétricos à diagonal
transitiva

S	a	b	c	d	e
a	X	X	X		
b	X	X	X		
c	X	X	X		
d				X	X
e				X	X

Outra notação:

aRb significa $(a,b) \in R$

Reflexiva: ∀a aRa

Simétrica: $aRb \rightarrow bRa$

Antissimétrica: $(aRb \land bRa) \rightarrow a=b$

Transitiva: $(aRb \land bRc) \rightarrow aRc$

Relações de equivalência

- □ Uma **relação de equivalência** num conjunto A é uma relação binária R em A que é reflexiva, simétrica e transitiva
 - Estas são as propriedades da igualdade
- **Exemplo**: suponha que A é o conjunto de todas as pessoas e $R = \{(a,b) \in A^2 \mid a \text{ e b têm os mesmos pais}\}$
 - Esta relação define grupos de pessoas (de irmãos)
- □ Se ~ representar uma relação de equivalência num conjunto A, a classe de equivalência de $a \in A$ é o conjunto $\overline{a} = \{x \in A \mid x \sim a\}$
- □ O conjunto de todas as classes de equivalência designa-se conjunto quociente A mod ~ e é denotado por A/~

Conjunto quociente

- □ Exemplo: a ~ b se e só se a e b forem estudantes de Informática da FEUP (conjunto A) com os mesmos primeiros 4 algarismos no número de aluno. O conjunto quociente A/~ é o conjunto das classes dos vários anos
 - $A/\sim = \{\{x \mid x \in INF1994\}, \{x \mid x \in INF1995\}, \{x \mid x \in INF1996\}, \dots, \{x \mid x \in INF2011\}, \{x \mid x \in INF2012\}\}$
 - Estes conjuntos são todos disjuntos dois a dois e cobrem todo o conjunto dos estudantes de Informática da FEUP

Partição

- □ Uma partição de um conjunto A é uma coleção de subconjuntos não vazios de A, disjuntos dois a dois, cuja reunião é A. Estes conjuntos designam-se por células ou blocos e particionam A.
- **Teorema**: as classes de equivalência associadas a uma relação de equivalência num conjunto A formam uma partição de A.

Relação inversa

 □ A relação inversa de uma relação R designa-se R⁻¹ e contém os pares de R mas pela ordem inversa

$$R^{-1} = \forall a, b ((a,b) \in R \to (b,a) \in R^{-1})$$

□ Corresponde a inverter os arcos num diagrama de R