

Unit 3

UNIT III

ASYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler's totient function, Fermat's and Euler's Theorem – Chinese Remainder Theorem – Exponentiation and logarithm

ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange — Elliptic curve arithmetic – Elliptic curve cryptography.

Fermat's Theorem

If p is prime and a is a positive integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

$$a^p \equiv a \pmod{p}$$

$$P \rightarrow 3$$
 $4^{3-1} \mod 3 \Rightarrow 1$
 $a \rightarrow 4$

$$= 4^{2} \mod 3$$

$$= 16 \mod 3 \Rightarrow 1$$

$$= 4^{3} \mod p$$

$$= 64 \mod 3$$

$$= 21 \implies 1//$$

$$= 64$$

$$= 64$$

$$= 3$$

$$= 3$$

$$= 3$$

$$= 3$$

Proof of Fermat's Theorem: To Prove

$$a^{p-1} \equiv 1 \pmod{p}$$

(1)	Consider positive integers less than p	P: {1,2,3,P-13
2	Multiply each element by a mod p	X: ¿ amodp, damodp,, (p-1) a modp?
• • •	=> None of the elements is zero as 'a' is not divisible by p	
	=> None of the two elements are equal .	Assume ja = kamodp = j <k (or)="" =="" a="" is="" j="fr" jmodp="kmodp</td" modp="" p="" p-1="" prime="" relatively="" to=""></k>
	Multiplying all elements and taking mod p	$\begin{cases} a \times 2a \times 3a \times \dots \times (p-1)a^{2} \\ a^{p-1} \times (p-1)! = > (1 \mod p = a^{p-1}) \end{cases}$

Euler's Totient Function

 $\frac{4}{9cd(x_1,4)=1}$

the number of positive integers less than n and relatively prime to n.

Gr (4,8) = 4

Determine $\phi(37)$ and $\phi(35)$.

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thus $\phi(37) = 36$.

To determine $\phi(35)$, we list all of the positive integers less than 35 that are relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so $\phi(35) = 24$.

More Examples

Table 2.6 Some Values of Euler's Totient Function $\phi(n)$

n	$\phi(n)$	
1	1	
2	1	
3	2	
4	2	
5	4	
6	2	
7	6	
8	4	
9	6	
10	4	

n	$\phi(n)$	
11	10	
12	4	
13	12	
14	6	
15	8	
16	8	
17	16	
18	6	
19	18	
20	8	

-	1(-)
n	$\phi(n)$
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

Theorem: If 'p' and 'q' are two prime numbers, n =pq then,

$$\phi(n) = \phi(pq) = \phi(p) \times \phi(q) = (p-1) \times (q-1)$$

Consider the set of positive integers less than n.	{1,2,3, p9-13
Integers in this set that are not relatively prime to n. Reason=> any integer that divides n must divide either of the prime numbers p or q. Therefore, any integer that does not contain either p or q as a factor is relatively prime to n.	$\{p, 2p, 3p, \dots, (q-1)p\} \Rightarrow q-1$ $\{q, 2q, 3q, \dots, (p-1)q, 3 \Rightarrow p-1\}$
The above two sets are non-overlapping. Hence total number of unique integers in the two sets which are not co-prime to n	q-1+p-1 =>9+p-2
Total number of numbers co-prime to n are	g(n) = n - (9+p-2) = pq - q - p + 2 = (p-1) (q - 1)//

Eulers Theorem

Euler's theorem states that for every a and n that are relatively prime:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

(a) mod
$$n = 1 \mod n$$

(a) $a = 3 \quad n = 5$
(2) $a = 2 \quad n = 3$
 $= 3 \mod 5$
 $= 3 \mod 3$
 $= 3 \mod 3 = 1/1$

Proof:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

When n is prime	=> Fermal's	agcp) = 1 mod p	⇒ a E	Imodp
Consider the set of such integers that are relatively prime to n		R = {x,, x2, - · · ·	Scaw 3	
Multiply each elemen	nt by a modulo n	S = Sax, modn, ax, mod	dm,,	ax _{p(m)} modny

The above set is permutation of R because:

Multiply each element by a, modulo n

- 1. Because a is relatively prime to n and x_i is relatively prime to n, ax_i must also be relatively prime to n. Thus, all the members of S are integers that are less than n and that are relatively prime to n.
- 2. There are no duplicates in S.

$$\frac{\phi(n)}{\prod_{i=1}^{n} (ax_i \bmod n)} = \prod_{i=1}^{\phi(n)} x_i$$

$$\prod_{i=1}^{\phi(n)} ax_i \equiv \prod_{i=1}^{\phi(n)} x_i \pmod n$$

$$a^{\phi(n)} \times \left[\prod_{i=1}^{\phi(n)} x_i\right] \equiv \prod_{i=1}^{\phi(n)} x_i \pmod n$$

$$a^{\phi(n)} \equiv 1 \pmod n$$

ax, modn x ax2mod n X

are modn

0-1

What is Prime Number?

- 1. Prime numbers are numbers greater than 1 that only have two factors, 1 and the number itself.
- 2. This means that a prime number is only divisible by 1 and itself.
- 3. If you divide a prime number by a number other than 1 and itself, you will get a non-zero remainder.
- 4. Any integer greater than 1 can be expressed as a product of prime factors:

$$a = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_t^{a_t}$$

$$91 = 7 \times 13$$
$$3600 = 2^4 \times 3^2 \times 5^2$$
$$11011 = 7 \times 11^2 \times 13$$

Primality Testing

