> Separable Differential Equation

1. The solution to the differential equation $\frac{dy}{dx} = \frac{3x^2}{2y}$, where y(3) = 4, is

2. If $\frac{dy}{dx} = \frac{x + \sec^2 x}{y}$ and y(0) = 2, then y =

3. What is the value of m+b, if y=mx+b is a solution to the differential equation $\frac{dy}{dx}=\frac{1}{4}x-y+1$?

Exponential Growth or Decay

- 1. Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles every four hours, in how many hours will the number of bacteria triple?
- (A) $\ln(\frac{27}{2})$ (B) $\ln(\frac{81}{2})$ (C) $\frac{4\ln 2}{\ln 3}$ (D) $\frac{4\ln 3}{\ln 2}$
- 2. Population y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the population doubles every 15 years what is the value of k?
 - (A) 0.035
- (B) 0.046
- (C) 0.069
- (D) 0.078
- 3. A baby weighs 6 pounds at birth and 9 pounds three months later. If the weight of baby increasing at a rate proportional to its weight, then how much will the baby weigh when she is 6 months old?
 - (A) 11.9
- (B) 12.8
- (C) 13.5
- (D) 14.6
- 4. Temperature F changes according to the differential equation $\frac{dF}{dt} = kF$, where k is a constant and t is measured in minutes. If at time t = 0, F = 180 and at time t = 16, F = 120, what is the value of k?
 - (A) -0.025
- (B) -0.032
- (C) -0.045 (D) -0.058

Logistic

- 1. The population P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = 3P 0.0006P^2$, where the initial population is P(0) = 1000 and t is the time in years. What is $\lim P(t)$?
 - (A) 1000
- (B) 2000
- (C) 3000
- (D) 5000
- 2. A healthy population P(t) of animals satisfies the logistic differential equation $\frac{dP}{dt} = 5P(1 \frac{P}{240})$, where the initial population is P(0) = 150 and t is the time in years. For what value of P is the population growing the fastest?
 - (A) 48
- (B) 60
- (C) 120
- (D) 240
- 3. A population is modeled by a function P that satisfies the logistic differential equation $\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{150} \right)$, where the initial population is P(0) = 800 and t is the time in years. What is the slope of the graph of P at the point of inflection?
 - (A) 5
- (B) 7.5
- (C) 10
- (D) 12.5
- 4. A certain rumor spreads in a small town at the rate $\frac{dy}{dt} = y(1-3y)$, where y is the fraction of the population that has heard the rumor at any time t. What fraction of the population has heard the rumor when it is spreading the fastest?

 - (A) $\frac{1}{6}$ (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ (D) $\frac{1}{3}$

Slope Field

- 1. Shown above is a slope field for which of the following differential equations?

- (A) $\frac{dy}{dx} = \frac{x}{y}$ (B) $\frac{dy}{dx} = -\frac{x}{y}$ (C) $\frac{dy}{dx} = \frac{x^2}{y}$ (D) $\frac{dy}{dx} = -\frac{x^2}{y}$

- 2. Shown above is a slope field for which of the following differential equations?

- (A) $\frac{dy}{dx} = x + y$ (B) $\frac{dy}{dx} = x y$ (C) $\frac{dy}{dx} = -x + y$ (D) $\frac{dy}{dx} = x^2 y$
- 3. On the axis provided, sketch a slope field for the differential equation $\frac{dy}{dx} = y x^2$.

4. On the axis provided, sketch a slope field for the differential equation $\frac{dy}{dx} = x^2 + y^2$.

5. On the axis provided, sketch a slope field for the differential equation $\frac{dy}{dx} = (x+1)(y-2)$.

Euler's Method

- 1. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = 1 + 2x y$ with the initial condition f(1) = 2. What is the approximation for f(2) if Euler's method is used, starting at x = 1 with a step size of 0.5?
 - (A) 2.5
- (B) 2.75
- (C) 3.25
- (D) 3.75
- 2. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x xy$ with the initial condition f(0.5) = 0. What is the approximation for f(2) if Euler's method is used, starting at x = 0.5 with a step size of 0.5?
 - (A) 0.825
- (B) 0.906
- (C) 1.064
- (D) 1.178
- 3. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = \arctan(xy)$ with the initial condition f(0) = 1. What is the approximation for f(2) if Euler's method is used, starting at x = 0 with a step size of 1?
 - (A) $\frac{\pi}{2}$
- (B) $1 + \frac{\pi}{4}$ (C) $1 + \frac{\pi}{2}$
- (D) π

x	-1	-0.6	-0.2	0.2	0.6
f'(x)	1	2	-0.5	-1.5	1.2

4. The table above gives selected values for the derivative of a function f on the interval $-1 \le x \le 0.6$. If f(-1) = 1.5 and Euler's method is used to approximate f(0.6) with step size of 0.8, what is the resulting approximation?

(A) 1.9

(B) 2.1

(C) 2.3

(D) 2.5

$x_0 = 0$	$f(x_0) = 1$		
$x_1 = 0.5$	$f(x_1) \approx 1.5$		
$x_2 = 1$	$f(x_2) \approx 3$		

5. Consider the differential equation $\frac{dy}{dx} = kx + y - 2x^2$, where k is a constant. Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = 1. Euler's method, starting at x = 0 with step size of 0.5, is used to approximate f(1). Steps from this approximation are shown in the table above. What is the value of k?

(A) 2.5

- (B) 3
- (C) 3.5
- (D) 4
- 6. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x y \frac{1}{2}$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
 - (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point $(0, -\frac{1}{2})$. Does the graph of f have relative minimum, a relative maximum, or neither at the point $(0, -\frac{1}{2})$? Justify your answer.
 - (c) Let y = g(x) be another solution to the given differential equation with the initial condition g(0) = k, where k is a constant. Euler's method, starting at x = 0 with a step size of 0.5, gives the approximation $g(1) \approx 1$. Find the value of k.