BART Webinar #3 Subspace-constrained reconstruction

Michael Lustig¹, Martin Uecker^{2,3}, <u>Jon Tamir</u>⁴ and

Christian Holme², Max Lister¹, Gopal Nataraj¹, Volkert Roeloffs², Nick Scholand^{2,3}, Efrat Shimron¹, Xiaoqing Wang^{2,3}, Viraj Wadhwa⁴

- I. University of California, Berkeley
- 2. University Medical Center Göttingen
- 3. German Center for Cardiovascular Research (DZHK)
 - 4. The University of Texas at Austin

Schedule

- BART updates
- Interactive demos
 - I. Frequency-modulated SSFP (Volkert Roeloffs)
 - 2. Analytical multi-contrast phantom simulation (Nick Scholand)
 - 3. Inversion recovery FLASH (Xiaoqing Wang)
- Hands-on exercise [Breakout rooms]

https://github.com/mrirecon/bart-webinars

BART updates

- Version 0.7.00 released (doi: 10.5281/zenodo.4570601)
 - Linear and non-linear model-based reconstruction
 - Improvements to MR signal simulation (phantom and signal tools)
 - Improvements to backend, reproducibility, continuous integration

- ISMRM 2021 Educational session: software demo
 - Non-linear operators and deep learning with BART
- Join our mailing list! mrirecon@lists.eecs.berkeley.edu

Subspace-constrained reconstructions

Early development: partial separability for dynamic imaging

- Z. Liang, Spatiotemporal imaging with partially separable functions. IEEE ISBI 2007.
- Pedersen et al., MRM 62:706–716 (2009).

Early development: partial separability for dynamic imaging

- Z. Liang, Spatiotemporal imaging with partially separable functions. IEEE ISBI 2007.
- Pedersen et al., MRM 62:706–716 (2009).

Initial application to parameter mapping

- Petzchner et al., MRM 66:706–716 (2011).
- Huang et al., MRM 67:1355–1366 (2012).

Early development: partial separability for dynamic imaging

- Z. Liang, Spatiotemporal imaging with partially separable functions. IEEE ISBI 2007.
- Pedersen et al., MRM 62:706–716 (2009).

Initial application to parameter mapping

- Petzchner et al., MRM 66:706–716 (2011).
- Huang et al., MRM 67:1355–1366 (2012).

Additional applications

- FSE deblurring: Tamir et al., MRM 2017
- MR Fingerprinting: Zhao et al., MRM 2018.

MR Fingerprinting

Gridding

Subspace

Early development: partial separability for dynamic imaging

- Z. Liang, Spatiotemporal imaging with partially separable functions. IEEE ISBI 2007.
- Pedersen et al., MRM 62:706–716 (2009).

Initial application to parameter mapping

- Petzchner et al., MRM 66:706–716 (2011).
- Huang et al., MRM 67:1355–1366 (2012).

Additional applications

- FSE deblurring: Tamir et al., MRM 2017
- MR Fingerprinting: Zhao et al., MRM 2018.

Review papers:

- Wang, et al. "Physics-based Reconstruction Methods for Magnetic Resonance Imaging." arXiv:2010.01403 (2020).
- Tamir et al. "Computational MRI with physics-based constraints: Application to multicontrast and quantitative imaging." IEEE Signal Processing Magazine 37.1 (2020): 94-104.

Multi-contrast MRI reconstruction

- Measure k-space at multiple time points along the signal evolution
- Reconstruction: Parallel Imaging and Compressed Sensing (PICS)

$$\min_{\mathbf{x}} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \sum_k f_k(\mathbf{x})$$

 Solving for many images → highly under-sampled!

Model-based MRI reconstruction

- Solve directly for parameter maps
- Significant dimensionality reduction

Non-linear model
 → cannot use PICS

$$\mathbf{y} = \mathbf{A}\mathcal{M}(\mathbf{x})$$

Subspace-constrained MRI reconstruction

Goal: reduce dimensionality and maintain a linear model

Approach:

- Represent signal evolutions in a linear subspace
- Reconstruct with PICS
- Back-project to get time series of images

Subspace-constrained MRI reconstruction

• Signal evolutions are (often) highly correlated

Subspace-constrained MRI reconstruction

• Signal evolutions are (often) highly correlated

- We can represent time series by a small basis (linear subspace)
 - Fourier basis
 - Polynomial basis
 - Principal component analysis (PCA)

Signal modeling

Subspace modeling

Subspace modeling

Subspace modeling

Principal component images

Principal components

$$\mathbf{x} = \mathbf{\Phi}_K \alpha$$

Multi-contrast reconstruction

BART: PICS with basis

- Same interface as other PICS recons
 - Only difference: specify the data array containing the basis

bart pics -B basis [...] ksp sens subspace_reco

Principal component images

• Back-project:

Word of caution

Not all signal models are low-dimensional

Multi-echo gradient-echo simulation

Subspace constrained reconstruction recipe

- 1. Evaluate signal model over range of parameters of interest
- 2. Check and fit to a low-dimensional subspace (basis)

3. Reconstruct with PICS and known basis

- 4. Back-project to get time-series
- 5. [Optional] Fit signal to physical model

Today's examples

- Interactive demos
 - I. Frequency-modulated SSFP¹ (Volkert Roeloffs)
 - 2. Analytical multi-contrast phantom simulation (Nick Scholand)
 - 3. Inversion recovery FLASH² (Xiaoqing Wang)
- Hands-on exercise [Breakout rooms]