Electronic supporting material

Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists

Susanne Kortsch, Raul Primicerio, Maria Fossheim, Andrey V. Dolgov, and Michaela Aschan

Appendix S1. Detailed description of the study regions and subsampling of the marine food webs

(a) Barents Sea

The Barents Sea is an open arcto-boreal shelf sea and is the largest marginal shelf sea in the Arctic Ocean (figure S1). The Barents Sea ecosystem is profoundly influenced by the inflow of relatively warm and saline atlantic water (T>3°C, S>35 %) in the south-west, and arctic water masses (T<0°C, 34.3 % \leq S \leq 34.8 %) in the North. The mixing of atlantic and arctic water masses at the polar front, as well as the presence of the marginal ice zone, strongly influence biological production. The Barents Sea is one of the most productive marine ecosystems in the world [1]. In the Arctic, the Barents Sea accounts for 49 % of total panarctic shelf primary production and supports some of the largest fish stocks of the world including north-east arctic cod (*Gadus morhua*), polar cod (*Boreogadus saida*), capelin (*Mallotus villosus*) and herring (*Clupea harengus*) [2, 3]. Due to easy access, high productivity and its importance for fisheries, the Barents Sea is one of the best studied marine ecosystems in the Arctic [4]. Since 2004, Norwegian and Russian research institutions have sampled taxa from the entire food web in a joint effort to map the whole ecosystem [5].

(b) Boreal and arctic study regions of the Barents Sea

We have defined the boreal (186 400 km²) and arctic (304 067 km²) study regions based on hydrology and species distributions (figure S2a). To capture a good snapshot representation of a boreal and an arctic food webs of the Barents Sea, we chose areas south-west and north-east of the polar front, which is the main hydrological demarcation separating boreal and arctic regions of the Barents Sea (figure S2b). The exact position of the polar front varies from year to year and is most variable in the east depending on the strength of the atlantic water inflow [6]. The past decade (2000-2010) has been the warmest on record and warmer and more salty atlantic water masses have extended further north and north-east into the Barents Sea resulting in a contraction of the area covered by arctic water masses [7, 8]. In addition to hydrological data, we used fish abundance data to define the position of the two regions [9].

(c) Occurrence of fish and epibenthos

In this study, presence and absence of fish was integrated over the early sampling period 2004-2007 to specify occurrence of species within study areas. The early years of the sampling were chosen in order to capture a snapshot of the arctic food web prior to the pronounced distributional shifts of large fish driven by rapid warming [2, 10]. After 2007, the surveys reveal how boreal fish are moving even further north-east into the arctic regions of the Barents Sea [2,11]. Data on the occurrence of epibenthos are from 2011. To overcome the problem of including rare and only occasionally sampled fish and epibenthos, we used distribution maps and additional abundance information for sub-sampling among these groups (figure S2b). In the boreal study region, fish were sampled at 308 stations (2004-2007) and epibenthos at 38 stations (2011). In the arctic study region, fish were sampled at 327 stations and epibenthos at 50 (figure S1b). Three selection criteria were formulated for each

trophospecies: 1) mean abundance of a taxon within study areas; 2) max abundance of a taxon within study areas; and 3) proportion of stations in which a taxon was found. A trophospecies was included in the food web of a given area if it was selected based on at least one of the three selection criteria. In some cases, the quantitative selection criteria had to be complemented with knowledge of species spatial distribution prior to 2004. For example, we chose not to include cod and haddock in the arctic food web because these two taxa where hardly present in the arctic study region prior to warming. Likewise, we excluded polar cod from the boreal food webs, although a few individuals can sometimes be caught in the boreal region of the Barents Sea.

(d) Food web data: shortcomings and strengths

Trophospecies included in the food web database (meta-web) were selected according to at least one of the following criteria: 1) abundance, 2) spatial distribution and 3) existing knowledge of trophic relationships. Rare species were not included. In our food webs, individual trophospecies usually correspond to taxonomic species, but can sometimes refer to higher taxonomic groups, e.g. genus, family, and class. Other large aggregations include the basal taxa such as phytoplankton, diatoms, heterotroph flagellates or bryozoans. While compiling the database, we made considerable efforts to obtain a balanced representation of the different functional groups and their feeding links. Yet, we are aware that, for some of the arctic taxa, research and literature is sparser and this may have led to an underestimation of their feeding links.

To date, most marine food webs are systematically biased towards higher trophic levels because of incomplete diet information and poor sampling of basal species. We acknowledge that a better resolution at the basal level would increase the percentage of low trophic level

species and decrease the relative proportion of intermediate species. Expansion of the basal compartment (particularly phytoplankton and benthos) should be prioritized to reduce this bias and to improve the representation of the complexity in future marine food webs.

Although historically food webs have under-represented the number of species and their links [12], recent compilations of food webs are becoming increasingly comprehensive, with higher resolution, level of detail and scale [13]. Our Barents Sea food webs are examples of highly resolved ecological networks, and unlike most comparative food web studies, the level of trophospecies aggregation between the study regions is identical. This implies that dissimilarities observed between Boreal and Arctic food webs here cannot be attributed to differences in the classification and aggregation of trophospecies, but must be attributed to differences in species composition and link configuration of the regional food webs.

The dataset file of the meta-web for the whole Barents Sea can be downloaded from the *Ecological archives* website [5], while the boreal and the arctic Barents Sea food web files of the present study can be downloaded from the Dryad repository (doi:10.5061/dryad.73r6j).

References

- 1. Carmack, E., Wassmann, P., 2006 Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. *Progr. Oceanogr.* **71**, 446-477. (doi:10.1016/j.pocean.2006.10.004)
- Michalsen, K., Dalpadado, P., Eriksen, E., Gjøsæter, H., Ingvaldsen, R. B., Johannesen, E., Jørgensen, L. L., Knutsen, T., Prozorkevich, D., Skern-Mauritzen, M. 2013 Marine living resources of the Barents Sea–Ecosystem understanding and monitoring in a climate change perspective. *Mar. Biol. Res.* 9, 932-947. (doi:10.1080/17451000.2013.775459)
- 3. Sakshaug, E., Johnsen, G. H., Kovacs, K. M. 2009 *Ecosystem Barents Sea*, Tapir Academic Press. pp. 57-81.

- 4. Wassmann, P., Duarte, C. M., Agusti, S., Sejr, M. K. 2011 Footprints of climate change in the Arctic marine ecosystem. *Glob. Change Biol.* **17** (2), 1235-1249. (doi:10.1111/j.1365-2486.2010.02311.x)
- 5. Planque, B., Primicerio, R., Michalsen, K., Aschan, M., Certain, G., Dalpadado, P., Gjøsæater, H., Hansen, C., Johannesen, E., Jørgensen, L.L., Kolsum, I., Kortsch, S., Leclerc, L-M., Omli, L., Skern-Mauritzen, M., Wiedmann, M. 2014 Who eats whom in the Barents Sea: a food web topology from plankton to whales: Ecological Archives E095-124. *Ecology* **95**, 1430-1430. (doi:10.1890/13-1062.1)
- 6. Loeng, H., Drinkwater, K. 2007 An overview of the ecosystems of the Barents and Norwegian Seas and their response to climate variability. *Deep Sea Res. II.* **54**, 2478-2500. (doi:10.1016/j.dsr2.2007.08.013)
- 7. Smedsrud, L.H., Ingvaldsen, R., Nilsen, J., Skagseth, Ø. 2010 Heat in the Barents Sea: transport, storage, and surface fluxes. *Ocean Sci.* **6**, 219-234. (doi:10.5194/os-6-219-2010)
- 8. Ellingsen, I. H., Dalpadado, P., Slagstad, D., Loeng, H. 2008 Impact of climatic change on the biological production in the Barents Sea. *Clim. change* **87**, 155-175. (doi: 10.1007/s10584-007-9369-6)
- 9. Fossheim M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M., Dolgov, A. V. 2015 Recent warming leads to a rapid borealization of fish communities in the Arctic. *Nature Clim. Change* (doi:10.1038/nclimate2647)
- Wiedmann, M. A., Aschan, M., Certain, G., Dolgov, A., Greenacre, M., Johannesen,
 E., Planque, B., Primicerio, R. 2014 Functional diversity of the Barents Sea fish
 community. *Mar. Ecol. Prog. Ser.* 495, 205-218. (doi:103354/meps10558)
- 11. Hollowed, A.B., Sundby, S. 2014 Change is coming to the northern oceans. *Science* **344**, 1084-1085. (doi: DOI: 10.1126/science.1251166)
- 12. Polis, G. A. 1991 Complex trophic interactions in deserts: an empirical critique of food-web theory. *Am. Nat.* 123-155.
- Dunne, J. A., Lafferty, K. D., Dobson A. P., Hechinger, R. F., Kuris, A. M., Martinez, N. D., McLaughlin, J. P., Mouritsen, K. N., Poulin, R., Reise, K. 2013 Parasites affect food web structure primarily through increased diversity and complexity. *PLoS biol.* 11, e1001579. (doi: 10.1371/journal.pbio.1001579)

Appendix S2. Supplementary figures and tables

Figure S1. Map of the Barents Sea (to the right) and of its location (to the left) in the Arctic. The topography is indicated with the blue gradients, see legend in the top-left corner. The atlantic (red) and arctic (blue) ocean currents within the Barents Sea are indicated with arrows, see legend in the bottom-left corner.

Figure S2. (a) Location of the boreal (red) and arctic (blue) study regions within the Barents Sea. The black dotted line indicates the approximate position of the polar front, separating atlantic and arctic water masses. (b) Location of the sampling stations for fish (black dots) and epibenthos (red dots) within the boreal and the arctic study regions used to subsample the boreal and the arctic food webs. The remaining trophospecies (basal taxa, zooplankton, benthic infauna, sea birds and marine mammals) were assigned to the study regions via their presence/absence within the indicated polygons.

Figure S3. (a) Number of trophospecies in each functional group of the boreal (black bars) and arctic (white bars) food webs. (b) Number of unique (black bars) and shared (white bars) trophospecies between the boreal and arctic food web. The functional groups are: 1=detritus; 2=basal taxa; 3=zooplankton; 4=benthos; 5=fish; 6=sea birds; 7=marine mammals.

Figure S4. Barents Sea maps of the yearly mean degree centrality (number of feeding links) of fish during the time period 2004 to 2012. The dots indicate the position of sampling stations (~400) and the size of the dots is proportional to the mean fish degree at the station. The coloured surface (colour code shown in the legend) indicates the mean degree of fish spatially interpolated on a regular grid. North of the 120 day isolines (black lines) sea ice was present for more than 120 days during the year.

Figure S5. Boxplot of the trophic level of trophospecies within each module in (a) the boreal, (b) the arctic and (c) the arctic II food webs. Bar plot of the number of species within each module of (d) the boreal, (e) the arctic, (f) and the arctic II food webs. The colours in the bar plots indicate the functional group (FG) affiliation: grey=detritus (1); green=basal taxa (2); cyan=zooplankton (3); orange=benthos (4); blue=fish (5); magenta=sea birds (6); light pink=marine mammals (7). Bar plots of (g) the boreal, (h) the arctic, and (i) the arctic II food web showing the frequency of benthic=red, bentho-pelagic=dark-blue and pelagic=light-blue trophospecies within each module.

Figure S6. The module affiliation of the two network hubs, cod and haddock, and their distribution of links to species within their own module and to species in other modules for the boreal and the arctic II food web. Linkage structure of (a) cod in the boreal food web, (b) cod in the arctic II food web, (c) haddock in the boreal food web, and (d) haddock in the arctic II food web. The number next to the fish name indicates which module cod and haddock belong to. The number on the edges (grey lines) indicate how many links cod and haddock have to species in these modules. Bi-directional links (mutual predation links) are only counted once. The colored pie-charts show the proportion of pelagic (light blue), benthic (red) and bentho-pelagic (blue) species within each module.

Table S1. List of taxa (in alphabetical order within each functional group) included in the boreal region of the Barents Sea, and their functional affiliation, habitat use, degree (number of trophic interactions) and topological role.

Index	Taxon	Functional group	Habitat	Degree	Topological role
1	Detritus	1 Detritus	Benthopelagic	53	Module hub
2	Autothroph_flagellat	2 Basal taxa	Pelagic	22	Peripheral
3	Bacteria_indet	2 Basal taxa	Benthopelagic	13	Peripheral
4	Diatom	2 Basal taxa	Benthopelagic	33	Peripheral
5	Heterotroph_flagellat	2 Basal taxa	Pelagic	21	Peripheral
6	Macroalgae	2 Basal taxa	Benthic	4	Peripheral
7	Mixotroph_flagellates	2 Basal taxa	Pelagic	5	Peripheral
8	Phytoplankton_indet	2 Basal taxa	Pelagic	47	Module connector
9	Protozooplankton	2 Basal taxa	Pelagic	13	Peripheral
10	Acartia_spp	3 Zooplankton	Pelagic	18	Module connector
11	Aglantha_digitale	3 Zooplankton	Pelagic	6	Peripheral
12	Aurelia_aurita	3 Zooplankton	Pelagic	12	Peripheral
13	Beroë_sp	3 Zooplankton	Pelagic	14	Peripheral
14	Bolinopsis_infundibulum	3 Zooplankton	Pelagic	14	Peripheral
15	Calanus_finmarchicus	3 Zooplankton	Pelagic	52	Module connector
16	Calanus_glacialis	3 Zooplankton	Pelagic	39	Module connector
17	Calanus_hyperboreus	3 Zooplankton	Pelagic	43	Module connector
18	Clione_limacina	3 Zooplankton	Pelagic	9	Peripheral
19	Cyanea_capillata	3 Zooplankton	Pelagic	21	Peripheral
20	Dimophyes_arctica	3 Zooplankton	Pelagic	2	Peripheral
21	Eukrohnia_hamata	3 Zooplankton	Pelagic	10	Peripheral
22	Fritillaria_borealis	3 Zooplankton	Pelagic	4	Peripheral
23	Limacina_helicina	3 Zooplankton	Pelagic	12	Peripheral
24	Limacina_retroversa	3 Zooplankton	Pelagic	12	Peripheral
25	Meganyctiphanes_norvegica	3 Zooplankton	Pelagic	42	Module connector
26	Metridia_longa	3 Zooplankton	Pelagic	26	Module connector
27	Nematoscelis_megalops	3 Zooplankton	Pelagic	3	Peripheral
28	Oikopleura_dioica	3 Zooplankton	Pelagic	5	Peripheral
29	Oikopleura_spp	3 Zooplankton	Pelagic	12	Module connector
30	Oithona_similis	3 Zooplankton	Pelagic	6	Peripheral
31	Oithona_spinirostris/atlantica	3 Zooplankton	Pelagic	26	Module connector
32	Oncaea_borealis	3 Zooplankton	Pelagic	9	Peripheral
33	Pareuchaeta_norvegica	3 Zooplankton	Pelagic	11	Peripheral
34	Pareuchaeta_spp	3 Zooplankton	Pelagic	9	Peripheral
35	Pseudocalanus_spp	3 Zooplankton	Pelagic	24	Peripheral
36	Sagitta_spp	3 Zooplankton	Pelagic	33	Module connector
37	Sarsia_spp	3 Zooplankton	Pelagic	6	Peripheral
38	Themisto_abyssorum	3 Zooplankton	Pelagic	32	Module connector
39	Thysanoessa_inermis	3 Zooplankton	Pelagic	45	Module connector
40	Thysanoessa_longicaudata	3 Zooplankton	Pelagic	33	Peripheral
41	Thysanoessa_raschii	3 Zooplankton	Pelagic	38	Peripheral
42	Actiniaria_g_sp	4 Benthos	Benthic	11	Module connector

43	Aglaophamus_malmgreni	4 Benthos	Benthic	6	Peripheral
	Aphelochaeta_marioni	4 Benthos	Benthic	6	Peripheral
	Arrhis_phyllonyx	4 Benthos	Benthic	8	Module connector
46	Ascidiacea_g_sp	4 Benthos	Benthic	6	Peripheral
47	Asellota_indet	4 Benthos	Benthic	7	Peripheral
48	Astarte_sp	4 Benthos	Benthic	10	Peripheral
49	Asterias_rubens	4 Benthos	Benthic	13	Peripheral
50	Balanus_sp	4 Benthos	Benthic	11	Peripheral
51	Bathyarca_galacialis	4 Benthos	Benthic	3	Module connector
52	Bryozoa_indet	4 Benthos	Benthic	4	Peripheral
53	Benthos_larvae	4 Benthos	Benthopelagic	8	Module connector
54	Buccinum_sp	4 Benthos	Benthic	9	Peripheral
55	Chaetozone_sp	4 Benthos	Benthic	5	Peripheral
56	Chlamys_islandica	4 Benthos	Benthic	7	Peripheral
57	Chone_sp	4 Benthos	Benthic	4	Peripheral
58	Ciona_intestinalis	4 Benthos	Benthic	6	Peripheral
59	Cirratulidae_indet	4 Benthos	Benthic	6	Peripheral
60	Colus_sp	4 Benthos	Benthic	4	Peripheral
61	Ctenodiscus_crispatus	4 Benthos	Benthic	8	Peripheral
62	Cucumaria_frondosa	4 Benthos	Benthic	9	Peripheral
63	Erythrops_sp	4 Benthos	Benthic	12	Peripheral
64	Euclymeninae_indet	4 Benthos	Benthic	3	Peripheral
65	Foraminifera	4 Benthos	Benthic	16	Peripheral
66	Galathowenia_sp	4 Benthos	Benthic	3	Peripheral
67	Gammaridae_indet	4 Benthos	Benthic	32	Peripheral
68	Geodia_sp	4 Benthos	Benthic	3	Peripheral
69	Gonatus_fabricii	4 Benthos	Pelagic	33	Peripheral
70	Heteromastus_filiformis	4 Benthos	Benthic	4	Peripheral
71	<i>Hyas</i> _sp	4 Benthos	Benthic	12	Peripheral
72	Hydrozoa_indet	4 Benthos	Benthic	1	Peripheral
73	Lumbriclymene_minor	4 Benthos	Benthic	7	Peripheral
74	Lumbrineris_sp	4 Benthos	Benthic	18	Peripheral
75	Macoma_sp	4 Benthos	Benthic	9	Peripheral
76	Maldane_sarsi	4 Benthos	Benthic	5	Peripheral
77	Mendicula_ferruginosa	4 Benthos	Benthic	4	Module connector
78	Molpadia_borealis	4 Benthos	Benthic	11	Peripheral
79	Myriochele_herri	4 Benthos	Benthic	1	Peripheral
80	Nephtheidae_sp	4 Benthos	Benthic	3	Peripheral
81	Nyctiphanes_couchii	4 Benthos	Benthic	7	Module connector
82	Ophiopholis_aculeata	4 Benthos	Benthic	19	Peripheral
83	Ophiura_sp	4 Benthos	Benthic	30	Peripheral
84	Ostracoda_indet	4 Benthos	Benthic	22	Module connector
85	Pagurus_sp	4 Benthos	Benthic	15	Peripheral
86	Pandalus_borealis	4 Benthos	Benthic	59	Module connector
87	Paralithodes_camtschaticus	4 Benthos	Benthic	55	Module hub
88	Paramphinome_jeffreysii	4 Benthos	Benthic	3	Peripheral

89	Phascolion_strombus	4 Benthos	Benthic	3	Peripheral
90	Polychaeta	4 Benthos	Benthic	36	Peripheral
91	Polynoidae_indet	4 Benthos	Benthic	17	Peripheral
	Pontaster_tenuispinus	4 Benthos	Benthic	3	Peripheral
93	Pontophilus_norvegicus	4 Benthos	Benthic	10	Peripheral
93	Porifera_g_sp	4 Benthos 4 Benthos	Benthic	8	-
			Benthic	8 4	Peripheral
95	Prionospio_cirrifera	4 Benthos	Benthic		Peripheral Module connector
96	Rhachotropis_macropus	4 Benthos		9	
97	Rossia_sp	4 Benthos	Benthic Benthic	15	Peripheral
98	Sabinea_sp	4 Benthos		17	Peripheral
99	Scalibregma_inflatum	4 Benthos	Benthic	6	Peripheral
100	Similipecten_greenlandicus	4 Benthos	Benthic	5	Peripheral
101	Spiophanes_kroeyeri	4 Benthos	Benthic	4	Peripheral
102	Spirorbidae_indet	4 Benthos	Benthic	2	Peripheral
103	Stichopus_tremulus	4 Benthos	Benthic	8	Peripheral
104	Strongylocentrotus_sp	4 Benthos	Benthic	13	Peripheral
105	Terebellides_stroemi	4 Benthos	Benthic	10	Peripheral
106	Thyasira_gouldi	4 Benthos	Benthic	6	Peripheral
107	Yoldiella_solidula	4 Benthos	Benthic	8	Peripheral
108	Agonus_cataphractus	5 Fish	Benthic	11	Peripheral
109	Amblyraja_radiata	5 Fish	Benthic	49	Peripheral
110	Ammodytes_spp	5 Fish	Benthopelagic	38	Module connector
111	Anarhichas_denticulatus	5 Fish	Benthic	22	Peripheral
112	Anarhichas_lupus	5 Fish	Benthic	33	Module connector
113	Anarhichas_minor	5 Fish	Benthic	27	Peripheral
114	Anisarchus_medius	5 Fish	Benthic	4	Peripheral
115	Arctozenus_risso	5 Fish	Pelagic	7	Peripheral
116	Argentina_sp	5 Fish	Pelagic	11	Peripheral
117	Artediellus_atlanticus	5 Fish	Benthic	10	Peripheral
118	Bathyraja_spinicauda	5 Fish	Benthic	16	Peripheral
119	Benthosema_glaciale	5 Fish	Pelagic	6	Peripheral
120	Brosme_brosme	5 Fish	Benthic	13	Peripheral
121	Careproctus_sp	5 Fish	Benthopelagic	8	Peripheral
122	Clupea_harengus	5 Fish	Pelagic	58	Module connector
123	Cottunculus_microps	5 Fish	Benthic	6	Peripheral
124	Cyclopterus_lumpus	5 Fish	Benthopelagic	5	Peripheral
125	Enchelyopus_cimbrius	5 Fish	Benthic	4	Peripheral
126	Etimopterus_spinax	5 Fish	Benthic	5	Peripheral
127	Gadiculus_argenteus	5 Fish	Pelagic	14	Peripheral
128	Gadus_morhua	5 Fish	Benthopelagic	112	Network hub
129	Gaidropsarus_argentatus	5 Fish	Benthic	9	Peripheral
130	Gasterosteus_aculeatus	5 Fish	Pelagic	6	Peripheral
131	Glyptocephalus_cynoglossus	5 Fish	Benthic	8	Peripheral
132	Hippoglossus_hippoglossus	5 Fish	Benthic	22	Peripheral
133	Hippoglossoides_platessoides	5 Fish	Benthic	28	Peripheral
	Leptoclinus_maculatus	5 Fish	Benthic	4	Peripheral

135	Limanda_limanda	5 Fish	Benthic	18	Peripheral
	Liparis_montagui	5 Fish	Benthic	10	Module connector
137	Lumpenus_lampretaeformis	5 Fish	Benthic	17	Module connector
138	Lycodes_esmarkii	5 Fish	Benthic	9	Peripheral
139	Lycodes_ gracicilis	5 Fish	Benthic	4	Peripheral
140	Lycodes_pallidus	5 Fish	Benthic	15	Peripheral
141	Macrourus_berglax	5 Fish	Benthic	20	Peripheral
	Mallotus_villosus	5 Fish	Pelagic	46	Peripheral
	_ Maurolicus_muelleri	5 Fish	Pelagic	12	Peripheral
	_ Melanogrammus_aeglefinus	5 Fish	Benthopelagic	88	Network hub
145	Merlangius_merlangus	5 Fish	Benthopelagic	34	Module connector
146	Micromesistius_poutassou	5 Fish	Pelagic	55	Module connector
147	Microstomus_kitt	5 Fish	Benthic	4	Module connector
	Molva_molva	5 Fish	Benthic	11	Peripheral
149	Fish_larvae	5 Fish	Benthopelagic	30	Module connector
150	_ Pleuronectes_platessa	5 Fish	Benthic	34	Peripheral
151	-	5 Fish	Pelagic	18	Peripheral
	Pollachius_virens	5 Fish	Pelagic	47	Peripheral
153	Rajella_fyllae	5 Fish	Benthic	8	Peripheral
154	Reinhardtius_hippoglossoides	5 Fish	Benthopelagic	36	Peripheral
155	Scomber_scombrus	5 Fish	Pelagic	25	Peripheral
156		5 Fish	Benthopelagic	23	Peripheral
157	Sebastes_mentella	5 Fish	Benthopelagic	62	Module connector
158	Sebastes_spp	5 Fish	Benthopelagic	29	Peripheral
159	Sebastes_viviparus	5 Fish	Benthic	8	Module connector
160	Somniosus_microcephalus	5 Fish	Benthopelagic	39	Peripheral
161	Squalus_acanthias	5 Fish	Benthopelagic	14	Peripheral
162	Triglops_murrayi	5 Fish	Benthic	10	Peripheral
163	Trisopterus_esmarkii	5 Fish	Pelagic	35	Module connector
164	Fratercula_arctica	6 Birds	Pelagic	10	Peripheral
165	Fulmarus_glacialis	6 Birds	Pelagic	27	Peripheral
	Larus_argentatus	6 Birds	Pelagic	5	Peripheral
167	Larus_hyperboreus	6 Birds	Pelagic	6	Peripheral
168	Larus_marinus	6 Birds	Pelagic	5	Peripheral
169	Rissa_tridactyla	6 Birds	Pelagic	10	Peripheral
170	Uria_aalge	6 Birds	Pelagic	7	Peripheral
171	Uria_lomvia	6 Birds	Pelagic	3	Peripheral
172	Balaenoptera_acutorostrata	7 Mammals	Pelagic	21	Peripheral
173	Balaenoptera_physalus	7 Mammals	Pelagic	22	Peripheral
174	Erignathus_barbatus	7 Mammals	Benthic	24	Peripheral
175	Lagenorhynchus_albirostris	7 Mammals	Pelagic	8	Peripheral
176	Megaptera_novaeangliae	7 Mammals	Pelagic	22	Peripheral
177	Orcinus_orca	7 Mammals	Pelagic	9	Peripheral
178	Pagophilus_groenlandicus	7 Mammals	Benthopelagic	17	Peripheral
179	Phocoena_phocoena	7 Mammals	Pelagic	32	Peripheral
180	Physeter_macrocephalus	7 Mammals	Pelagic	2	Peripheral

Table S2. List of taxa (in alphabetical order within each functional group) included in the Arctic region of the Barents Sea, and their functional affiliation, habitat use, degree (number of trophic interactions) and topological role.

Index	Taxon	Functional group	Habitat	Degree	Topological role
1	Detritus	1 Detritus	Benthopelagic	54	Module hub
2	Autothroph_flagellat	2 Basal taxa	Pelagic	15	Module connector
3	Bacteria_indet	2 Basal taxa	Benthopelagic	14	Peripheral
4	Diatom	2 Basal taxa	Benthopelagic	23	Peripheral
5	Heterotroph_flagellat	2 Basal taxa	Pelagic	13	Module connector
6	Ice_algae	2 Basal taxa	Pelagic	4	Peripheral
7	Macroalgae	2 Basal taxa	Benthic	3	Peripheral
8	Mixotroph_flagellates	2 Basal taxa	Pelagic	3	Peripheral
9	Phytoplankton_indet	2 Basal taxa	Pelagic	44	Network hub
10	Protozooplankton	2 Basal taxa	Pelagic	13	Peripheral
11	Aglantha_digitale	3 Zooplankton	Pelagic	2	Peripheral
12	Apherusa_glacialis	3 Zooplankton	Pelagic	8	Module connector
13	Bolinopsis_infundibulum	3 Zooplankton	Pelagic	7	Peripheral
14	Calanus_finmarchicus	3 Zooplankton	Pelagic	37	Module connector
15	Calanus_glacialis	3 Zooplankton	Pelagic	32	Module connector
16	Calanus_hyperboreus	3 Zooplankton	Pelagic	37	Module connector
17	Clione_limacina	3 Zooplankton	Pelagic	6	Peripheral
18	Cyanea_capillata	3 Zooplankton	Pelagic	16	Peripheral
19	Dimophyes_arctica	3 Zooplankton	Pelagic	2	Peripheral
20	Eukrohnia_hamata	3 Zooplankton	Pelagic	8	Peripheral
21	Euphysa_flammea	3 Zooplankton	Pelagic	6	Peripheral
22	Fritillaria_borealis	3 Zooplankton	Pelagic	4	Peripheral
23	Gammarus_wilkitzkii	3 Zooplankton	Pelagic	21	Module connector
24	Limacina_helicina	3 Zooplankton	Pelagic	15	Peripheral
25	Mertensia_ovum	3 Zooplankton	Pelagic	6	Peripheral
26	Metridia_longa	3 Zooplankton	Pelagic	21	Peripheral
27	Metridia_lucens	3 Zooplankton	Pelagic	4	Peripheral
28	Microcalanus_spp	3 Zooplankton	Pelagic	12	Peripheral
29	Oikopleura_spp	3 Zooplankton	Pelagic	7	Module connector
30	Oikopleura_vanhoeffeni	3 Zooplankton	Pelagic	5	Module connector
31	Oithona_similis	3 Zooplankton	Pelagic	7	Peripheral
32	Onisimus_glacialis	3 Zooplankton	Pelagic	9	Module connector
33	Onisimus_nanseni	3 Zooplankton	Pelagic	8	Module connector
34	Pareuchaeta_glacialis	3 Zooplankton	Pelagic	6	Peripheral
35	Pareuchaeta_spp	3 Zooplankton	Pelagic	10	Peripheral
36	Pseudocalanus_spp	3 Zooplankton	Pelagic	21	Peripheral
37	Sagitta_spp	3 Zooplankton	Pelagic	21	Peripheral
38	Sarsia_spp	3 Zooplankton	Pelagic	4	Peripheral
39	Themisto_abyssorum	3 Zooplankton	Pelagic	29	Peripheral
40	Themisto_libellula	3 Zooplankton	Pelagic	36	Peripheral
41	Thysanoessa_inermis	3 Zooplankton	Pelagic	33	Peripheral
42	Thysanoessa_longicaudata	3 Zooplankton	Pelagic	24	Peripheral

43	Actiniaria_g_sp	4 Benthos	Benthic	7	Peripheral
	Aglaophamus_malmgreni	4 Benthos	Benthic	3	Peripheral
	Aphelochaeta_marioni	4 Benthos	Benthic	4	Peripheral
	Arrhis_phyllonyx	4 Benthos	Benthic	3	Peripheral
47	Ascidiacea_g_sp	4 Benthos	Benthic	6	Module connector
48	Astarte_sp	4 Benthos	Benthic	7	Peripheral
49	Balanus_sp	4 Benthos	Benthic	5	Peripheral
50	Bathyarca_glacialis	4 Benthos	Benthic	1	Peripheral
51	Bryozoa_indet	4 Benthos	Benthic	5	Peripheral
52	Benthos_larvae	4 Benthos	Benthopelagic	8	Module connector
53	Buccinum_sp	4 Benthos	Benthic	4	Peripheral
54	Chaetozone_sp	4 Benthos	Benthic	2	Peripheral
55	Chionoecetes_opilio	4 Benthos	Benthic	29	Peripheral
56	Chlamys_islandica	4 Benthos	Benthic	5	Peripheral
57	Chone_sp	4 Benthos	Benthic	4	Peripheral
58	Ciona_intestinalis	4 Benthos	Benthic	3	Peripheral
59	Colus_sp	4 Benthos	Benthic	2	Peripheral
60	Crossaster_papposus	4 Benthos	Benthic	5	Peripheral
61	Ctenodiscus_crispatus	4 Benthos	Benthic	3	Peripheral
62	Electra_arctica	4 Benthos	Benthic	4	Peripheral
63	Foraminifera	4 Benthos	Benthic	14	Module connector
64	Galathowenia_sp	4 Benthos	Benthic	3	Peripheral
65	Gammaridae_indet	4 Benthos	Benthic	19	Module connector
66	Gonatus_fabricii	4 Benthos	Pelagic	24	Peripheral
67	Gorgonocephalus_sp	4 Benthos	Benthic	2	Peripheral
68	Heliometra_glacialis	4 Benthos	Benthic	2	Peripheral
69	Heteromastus_filiformis	4 Benthos	Benthic	1	Peripheral
70	Hyas_sp	4 Benthos	Benthic	6	Peripheral
71	Hydrozoa_indet	4 Benthos	Benthic	2	Peripheral
72	Maldane_sarsi	4 Benthos	Benthic	3	Peripheral
73	Mendicula_ferruginosa	4 Benthos	Benthic	1	Peripheral
74	Molpadia_borealis	4 Benthos	Benthic	8	Peripheral
75	Myriochele_herri	4 Benthos	Benthic	2	Peripheral
76	Nephtheidae_sp	4 Benthos	Benthic	1	Peripheral
77	Ophiacantha bidentata	4 Benthos	Benthic	8	Peripheral
78	Ophiocten sericeum	4 Benthos	Benthic	4	Peripheral
79	Ophiopholis aculeata	4 Benthos	Benthic	9	Peripheral
80	Ophiopleura borealis	4 Benthos	Benthic	4	Peripheral
81	Ophioscolex glacialis	4 Benthos	Benthic	2	Peripheral
82	Ophiura_sp	4 Benthos	Benthic	19	Peripheral
83	Ostracoda_indet	4 Benthos	Benthic	15	Module connector
84	Pagurus_sp	4 Benthos	Benthic	7	Peripheral
85	Pandalus_borealis	4 Benthos	Benthic	41	Module connector
86	Paramphinome_jeffreysii	4 Benthos	Benthic	2	Peripheral
87	Phascolion_strombus	4 Benthos	Benthic	3	Peripheral
88	Polychaeta	4 Benthos	Benthic	34	Module connector

89	Polynoidae_indet	4 Benthos	Benthic	17	Peripheral
90	Pontaster_tenuispinus	4 Benthos	Benthic	1	Peripheral
91	Porifera_g_sp	4 Benthos	Benthic	7	Peripheral
92	Prionospio_cirrifera	4 Benthos	Benthic	2	Peripheral
93	Pycnogonida_g_sp	4 Benthos	Benthic	7	Peripheral
94	Rhachotropis_macropus	4 Benthos	Benthic	5	Module connector
95	Rossia_sp	4 Benthos	Benthic	9	Module connector
96	Sabinea_sp	4 Benthos	Benthic	15	Module connector
97	Scalibregma_inflatum	4 Benthos	Benthic	5	Peripheral
98	Sclerocrangon_ferox	4 Benthos	Benthic	16	Peripheral
99	Similipecten_greenlandicus	4 Benthos	Benthic	4	Peripheral
100	Spiochaetopterus_typicus	4 Benthos	Benthic	7	Peripheral
101	Spiophanes_kroeyeri	4 Benthos	Benthic	2	Peripheral
102	Spirorbidae_indet	4 Benthos	Benthic	2	Peripheral
103	Strongylocentrotus_sp	4 Benthos	Benthic	7	Peripheral
104	Terebellides_stroemi	4 Benthos	Benthic	7	Module connector
105	Thyasira_gouldi	4 Benthos	Benthic	1	Peripheral
106	Urasterias_linckii	4 Benthos	Benthic	1	Peripheral
107	Amblyraja_hyperborea	5 Fish	Benthic	19	Peripheral
108	Anarhichas_lupus	5 Fish	Benthic	22	Module connector
109	Anisarchus_medius	5 Fish	Benthic	3	Peripheral
110	Arctogadus_glacialis	5 Fish	Pelagic	7	Peripheral
111	Artediellus_atlanticus	5 Fish	Benthic	6	Peripheral
112	Boreogadus_saida	5 Fish	Benthic	42	Module connector
113	Careproctus_sp	5 Fish	Benthopelagic	8	Peripheral
114	Cottunculus_microps	5 Fish	Benthic	6	Peripheral
115	Eumicrotremus_spinosus	5 Fish	Benthic	8	Peripheral
116	Gaidropsarus_argentatus	5 Fish	Benthic	7	Peripheral
117	Gymnelus_spp	5 Fish	Benthic	7	Peripheral
118	Gymnocanthus_tricuspis	5 Fish	Benthic	8	Peripheral
119	Hippoglossoides_platessoides	5 Fish	Benthic	24	Module connector
120	<i>Icelus</i> _spp	5 Fish	Benthic	8	Module connector
121	Leptagonus_decagonus	5 Fish	Benthic	11	Module connector
122	Leptoclinus_maculatus	5 Fish	Benthic	2	Peripheral
123	Liparis_fabricii	5 Fish	Benthopelagic	7	Peripheral
124	Liparis_gibbus	5 Fish	Benthic	8	Peripheral
125	Lumpenus_fabricii	5 Fish	Benthic	4	Peripheral
126	Lumpenus_lampretaeformis	5 Fish	Benthic	10	Module connector
127	Lycenchelys_kolthoffi	5 Fish	Benthic	2	Peripheral
128	Lycodes_eudipleurostictus	5 Fish	Benthic	7	Peripheral
129	Lycodes_pallidus	5 Fish	Benthic	17	Peripheral
130	Lycodes_reticulatus	5 Fish	Benthic	10	Peripheral
131	Lycodes_rossi	5 Fish	Benthic	4	Peripheral
132	Lycodes_seminudus	5 Fish	Benthic	9	Peripheral
133	Mallotus_villosus	5 Fish	Pelagic	36	Module hub
134	Myoxocephalus_scorpius	5 Fish	Benthic	5	Peripheral

135	Paraliparis_bathybius	5 Fish	Benthic	2	Peripheral
136	Fish_larvae	5 Fish	Benthopelagic	21	Module connector
137	Reinhardtius_hippoglossoides	5 Fish	Benthopelagic	23	Peripheral
138	Triglops_murrayi	5 Fish	Benthic	7	Peripheral
139	Triglops_nybelini	5 Fish	Benthic	4	Module connector
140	Triglops_pingelii	5 Fish	Benthic	10	Module connector
141	Ulcina_olrikii	5 Fish	Benthic	2	Peripheral
142	Alle_alle	6 Birds	Pelagic	26	Peripheral
143	Fulmarus_glacialis	6 Birds	Pelagic	20	Module connector
144	Larus_hyperboreus	6 Birds	Pelagic	3	Peripheral
145	Rissa_tridactyla	6 Birds	Pelagic	6	Peripheral
146	Uria_lomvia	6 Birds	Pelagic	2	Peripheral
147	Balaenoptera_acutorostrata	7 Mammals	Pelagic	13	Peripheral
148	Balaenoptera_physalus	7 Mammals	Pelagic	13	Peripheral
149	Cystophora_cristata	7 Mammals	Pelagic	13	Peripheral
150	Delphinapterus_leucas	7 Mammals	Pelagic	9	Peripheral
151	Erignathus_barbatus	7 Mammals	Benthic	30	Module connector
152	Lagenorhynchus_albirostris	7 Mammals	Pelagic	3	Peripheral
153	Megaptera_novaeangliae	7 Mammals	Pelagic	11	Peripheral
154	Monodon_monoceros	7 Mammals	Pelagic	7	Peripheral
155	Odobenus_rosmarus	7 Mammals	Benthic	15	Peripheral
156	Orcinus_orca	7 Mammals	Pelagic	6	Peripheral
157	Pagophilus_groenlandicus	7 Mammals	Benthopelagic	16	Peripheral
158	Phoca_hispida	7 Mammals	Benthopelagic	22	Module connector
159	Ursus_maritimus	7 Mammals	Benthopelagic	5	Peripheral

Table S3. Abbreviations, names and short definitions of food web metrics calculated in this paper.

Abbreviation	Full name	Definition	Reference
S	Species richness	Number of taxa (nodes) in a food web	Dunne (2009)
L	Trophic links	Number of trophic (feeding) interactions (links)	Dunne (2009)
LD	Link density	Mean number of links per species	Dunne (2009)
С	Connectance	Proportion of all possible links realized (C= L/S^2)	Dunne (2009)
% - Omni	Omnivores	Fraction of taxa that feed on resources on more than one trophic level	Petchey (2008)
% - Can	Cannibals	Fraction of taxa that feed on themselves	
% in loops	Species in loops	Fraction of taxa that occur in loops. A loop describes a pathway of interactions from a certain species without visiting the species more than once	Williams (2010)
MeanPath	Mean shortest path length	Mean shortest path of feeding links connecting each pair of taxa in a food web	Dunne (2009)
MeanOmni	Mean level of omnivory	Level of omnivory of each species is the standard deviation of the SWTL of its resources.	Petchey (2008)
MeanSWTL	Mean short-weighted Trophic level	Mean of all short weighted paths + 1 from base to each species of interest	Williams & Martinez (2004)
MeanClust	Mean clustering	The probability that two neighbours of a species are neighbours themselves	Girvan & Newman (2002)
Mod	Modularity	Modularity refers to subgroups of species interacting more with each other than with species from other subgroups	Newman & Girvan (2004)

References: Dunne, J. A. 2009 Food webs. In Complex Networks and Graph Theory section of the Encyclopedia of Complexity and Systems Science, pp. 3661–3682. Ed. by R. A. Meyers. Springer, New York.; Petchey, O. L., Beckerman, A.P., Riede, J.O, Warren, P.H. 2008 Size, foraging and food web structure. PNAS. **100**, 614-622; Williams, R. 2010 Network 3D software. *Microsoft Research, Cambridge, UK*; Williams R. J., Martinez, N. D. 2004 Limits to trophic levels and omnivory in complex food webs: theory and data. *Am Nat.* 163, 458-468; Girvan, M., Newman, M. E. J. 2002 Community structure in social and biological networks *Proc. Natl. Acad. Sci.* **90**, 7821-7826; Newman, M. E., Girvan, M. 2004 Finding and evaluating community structure in networks. *Phys. Rev. E.* **69**, 026113.

Table S4. List of 51 fish taxa (in alphabetical order) used to calculate the degree centrality maps. For some fish the occurrence data at station level had a lower taxonomic resolution (e.g *Zoarcidae* family rather than genus and species level) than in the food web matrix meta-web. For these taxa, we calculated the mean degree centrality of the taxonomic level of interest (e.g. family) based on the degree centrality of the member species.

Amblyraja hyperborea, Amblyraja radiata, Anarhichas denticulatus, Anarhichas lupus, Anarhichas minor, Anisarchus medius, Argentina sp, Artediellus atlanticus, Bathyraja spinicauda, Brosme brosme, Careproctus sp., Cottunculus microps, Cyclopterus lumpus, Enchelyopus cimbrius, Eumicrotremus spinosus, Gadiculus argenteus, Gadus morhua, Gaidropsarus argentatus, Glyptocephalus cynoglossus, Gymnocanthus tricuspis, Hippoglossus hippoglossus, Hippoglossoides platessoides, Icelus spp., Leptagonus decagonus, Leptoclinus maculatus, Limanda limanda, Liparis montagui, Lumpenus fabricii, Lumpenus lampretaeformis, Lycodes esmarkii, Lycodes gracilis, Macrourus berglax, Melanogrammus aeglefinus, Merlangius merlangus, Microstomus kitt, Micromesistius poutassou, Molva molva, Myoxocephalus Scorpius, Pleuronectes platessa, Pollachius virens, Rajella fyllae, Reinhardtius hippoglossoides, Sebastes mentella, Sebastes spp., Sebastes viviparous, Triglops murrayi, Triglops nybelini, Triglops pingelii, Trisopterus esmarkii, Ulcina olrikii, Zoarcidae (include these taxa: Gymnelus spp., Lycodes eudipleurostictus, Lycodes pallidus, Lycodes reticulatus, Lycodes rossi, Lycodes seminudus)