Lecture 12 - FO: Normal forms

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

Recap: Towards a normal form

- Push all quantifiers out into one "block" at the head of the expression
- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- $\theta(t) = t$ for a term t in the language, if $vars(t) \cap dom(\theta) = \emptyset$
- Often write $t\theta$ to mean $\theta(t)$; $t\theta$ is a "substitution instance" of t
- We often write $\theta = \{t/x \mid x\theta = t \text{ and } x \in \text{dom}(\theta)\}$
- Read $\theta = \{t/x\}$ as "x is replaced by t under θ "
- **Substitution Lemma**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, a formula $\varphi \in FO_{\Sigma}$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, the following hold:
 - $(t\{u/x\})^{\mathcal{F}} = t^{\mathcal{F}[x \mapsto m]}$
 - $\mathcal{F} \models \varphi\{u/x\} \text{ iff } \mathcal{F}[x \mapsto m] \models \varphi.$

Recap: Moving quantifiers out

- Want to move quantifiers into one block at the head of the expression
- **Theorem**: Let $z \notin fv(\phi) \cup fv(\psi) \cup \{x_1, ..., x_n\}$, where $n \ge 0$. For $Q_i \in \{\forall, \exists\}$ for every $1 \le i \le n$, the following equivalences hold.

$$\begin{aligned} Q_1x_1 &\dots Q_nx_n. \ [\neg Qy. \ [\phi]] \Leftrightarrow Q_1x_1 \dots Q_nx_n. \ \overline{Q}y. \ [\neg \phi] \\ Q_1x_1 &\dots Q_nx_n. \ [\psi \circ Qy. \ [\phi]] \Leftrightarrow Q_1x_1 \dots Q_nx_n. \ Qz. \ [\psi \circ \phi\{z/y\}] \\ Q_1x_1 &\dots Q_nx_n. \ [Qy. \ [\phi] * \psi] \Leftrightarrow Q_1x_1 \dots Q_nx_n. \ Qz. \ [\phi\{z/y\} * \psi] \\ Q_1x_1 &\dots Q_nx_n. \ [Qy. \ [\phi] \supset \psi] \Leftrightarrow Q_1x_1 \dots Q_nx_n. \ \overline{Q}z. \ [\phi\{z/y\} \supset \psi] \end{aligned}$$

where
$$\circ \in \{ \land, \lor, \supset \}$$
, and $* \in \{ \land, \lor \}$, and $\overline{Q} = \begin{cases} \exists & \text{if } Q = \forall \\ \forall & \text{if } Q = \exists \end{cases}$

Prenex Normal Form (PNF)

- PNF: FO expression where all quantifiers "appear at the front"
- $Q_1x_1 \dots Q_nx_n$. $[\varphi]$ is in PNF if φ is **quantifier-free (qf)**.
- Quantifier-free expressions $\subseteq FO_{\Sigma}$ generated by the below grammar.

$$\varphi, \psi \coloneqq t_1 \equiv t_2 \mid P(t_1, \dots, t_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi$$

$$P(x_1, \dots, x_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi$$

$$P(x_1, \dots, x_n) \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \supset \psi$$

where *P* is an *n*-ary predicate symbol in Σ , and $t_i \in T(\Sigma)$ for all $1 \le i \le n$.

- $Q_1x_1 \dots Q_nx_n$ is the **prenex**; qf **body** φ contains only equality, predicates, and propositional connectives.
- Theorem: For any FO expression ϕ , there exists a logically equivalent ψ such that ψ is in Prenex Normal Form.

Skolem Normal Form (SNF)

- How does one check for satisfiability of a PNF expression?
- Choice of witness for ∃ might depend on value chosen for ∀ if ∃
 appears "deeper" than ∀
- Can we reduce (eliminate?!) this sequence of dependencies?
- Recall: For our ∃y example last time, value of m was a function of the value assigned to x. Use this!
- Move to Skolem Normal Form

Skolem Normal Form (SNF)

- PNF expression $Q_1x_1 \dots Q_nx_n$. $[\varphi]$ is in SNF if $Q_i = \forall$ for every $1 \le i \le n$.
- For $\forall x_1 x_n$. $[\varphi]$ in SNF, we say that $(qf) \varphi$ is the **body**
- What are we doing about the existential quantifiers?
- Intuition: Replace every ∃y by a "Skolem function" which computes y using all the (other) variables y depends on.
- Turn $\forall x_1 x_2 \dots x_n . \exists y. [\varphi] \text{ into } \forall x_1 x_2 \dots x_n. [\varphi \{sk(x_1, \dots, x_n)/y\}]$

"For every \bar{x} there exists y such that $\varphi(x,y)$ "

"There is a function sk which maps any \overline{x} into y_s such that for every \overline{x} , $\varphi(x, sk(x))$ "

Skolem's Theorem

Recall that a model of $\varphi \in \mathsf{FO}_\Sigma$ is an interpretation $\mathcal F$ based on a Σ -structure $\mathcal M$ such that $\mathcal F \models \varphi$. We will refer to such a model as being "over Σ ".

Theorem: Let $\varphi \in \mathsf{FO}_{\Sigma}$ be of the form $\forall x_1$. $[\forall x_2. \ [... \forall x_n. \ [\exists y. \ [\psi] \ ...]]]$, such that $x_i \neq x_j$ for any $i \neq j$ and $x_i \neq y$ for any $1 \leqslant i \leqslant n$. Let $\Sigma' = (\mathscr{C}, \mathscr{F} \cup \{sk\}, \mathscr{P})$ where $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$, and let $\varphi' = \forall x_1. \ [\forall x_2. \ [... \forall x_n. \ [\psi\{sk(x_1, ..., x_n)/y\}] \ ...]] \in \mathsf{FO}_{\Sigma'}$. Then,

- 1. Every model of φ' over Σ' is a model of φ over Σ' .
- **2.** Every model of φ over Σ can be expanded to a model of φ' over Σ' .

Note that we place no structural restrictions on ϕ (need not be in any normal form) or on ψ (need not be qf).

Note also that $FO_{\Sigma} \subseteq FO_{\Sigma'}$.

Skolem's Theorem

Proof:

- (1) Any interpretation \mathcal{F} over Σ' which satisfies φ' must provide meaning to all of Σ as well (and the extra symbol sk in Σ'). So $\mathcal{F} \models \varphi$ also.
- (2) Consider any model $\mathcal{F} = ((M, \iota), \sigma)$ of φ .

$$\varphi = \forall x_1. \ [\forall x_2. \ [... \forall x_n. \ [\exists y. \ [\psi] \ ...]]], so \{x_1, ..., x_n, y\} \subseteq fv(\psi).$$

Since $\mathcal{F} \models \varphi$, for every n-tuple $(m_1, ..., m_n) \in M^n$, there exists at least one $m_y \in M$ such that $\mathcal{F}[x_1 \mapsto m_1, ..., x_n \mapsto m_n, y \mapsto m_y] \models \psi$. Define a function $f: M^n \to M$ such that f maps every $(m_1, ..., m_n)$ to the corresponding m_y . Define $\iota' = \iota \cup \{sk \mapsto f\}$. $((M, \iota'), \sigma) \models \varphi'$.

Important: φ is satisfiable iff φ' is satisfiable (φ and φ' are **equisatisfiable**)

Skolemization

Theorem: For every sentence $\varphi \in FO_{\Sigma}$, there is an algorithm \mathscr{A} to construct an SNF sentence $\varphi_{snf} \in FO_{\Sigma'}$ such that Σ' contains all the symbols mentioned in Σ , and φ has a model over Σ iff φ_{snf} has a model over Σ' .

Proof:

- Construct a PNF equivalent ψ_i. If ψ_i does not contain an ∃ quantifier, ψ_i is already in SNF. Output ψ_i as φ_{snf}.
- 2. Otherwise, there is a leftmost existential quantifier such that

$$\psi_i = \forall x_1.... \forall x_n. \exists y. [\xi]. \text{ Skolemize } \psi_i \text{ to get }$$

$$\psi_{i+1} = \forall x_1.... \forall x_n. [\xi \{sk_i(x_1, ..., x_n)/y\}].$$

3. ψ_{i+1} has one fewer \exists than ψ_i . Repeat steps 1–3 with ψ_{i+1} .

Example:

$$\forall x. \ [\exists y. \ [\forall z. \ [\exists w. \ [P(x,y,z,w)]]]] \rightsquigarrow \forall x. \ [\forall z. \ [P(x,sk_1(x),z,sk_2(x,z))]]$$

Use of normal forms

- We wish to establish logical consequence (Given Γ and φ , does $\Gamma \stackrel{f}{\models} \varphi$?)
- For PL, we did this via CNF and resolution
- Is there an analogue for FO?
- There is a Skolem Normal Form for all FO expressions
- Can cast every FO expression into Skolem CNF (SCNF)
- Easy to do; SNF body has a CNF equivalent
- Can we perform resolution on an SCNF expression?
- Need to handle quantifiers and free variables.

Imagine there's no variables...

- Consider the set $T^g(\Sigma)$ of all **ground** terms (i.e. without variables) over $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$.
- Expressions of the following forms are called ground literals
 - $P(t_1, ..., t_n)$ and $\neg P(t_1, ..., t_n)$, where $P \in \mathcal{P}$ and $t_1, ..., t_n \in T^g(\Sigma)$
- $T^g(\Sigma)$ generated by the grammar $t_1, ..., t_n := c \in \mathcal{C} \mid f(t_1, ..., t_n)$
- $T^g(\Sigma)$ is called the **Herbrand universe** of FO_{Σ}
- A **Herbrand structure** is $(T^g(\Sigma), \iota_H)$ where ι_H gives meaning to the constant and function symbols in Σ as follows.
 - $\iota_H(c) = c$, for every $c \in \mathscr{C}$
 - $\iota_H(f) = f$, for every $f \in \mathcal{F}$
- Can add similar meaning to symbols in \mathcal{P} , and get a **Herbrand base**.
- Ignore \equiv for the moment; we will handle it later.

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted c to be c and f to be f itself, under ι_H
- So what should our assignment function be a map (from 𝒯) to?

Herbrand interpretation

- An assignment with a Herbrand base will yield an interpretation
- We interpreted c to be c and f to be f itself, under ι_H
- So what should our assignment function be a map (from V) to?
- A Herbrand interpretation over Σ is of the form $((T^g(\Sigma), \iota_H), \sigma_H)$, where $\sigma_H : \mathcal{V} \to T^g(\Sigma)$.
- A Herbrand model for φ ∈ FO_Σ is a Herbrand base (which assigns meaning to symbols in 𝒫) along with σ_H such that φ is made true.
- Can lift this to sets of expressions as usual.

Pourquoi, Herbrand?

To talk about the satisfiability and validity of sets of ground qf formulae.

Theorem: Let $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ where $\mathcal{C} \neq \emptyset$, and let $L = \{\ell_1, ..., \ell_n\}$ be a non-empty finite set of ground literals. Then,

- 1. $\bigwedge_{1 \le i \le n} \ell_i$ is satisfiable iff *L* does not contain both a literal and its negation.
- 2. $\bigwedge_{1 \le i \le n} \ell_i$ is never valid.
- 3. $\bigvee_{1 \le i \le n} \ell_i$ is always satisfiable.
- 4. $\bigvee_{1 \le i \le n} \ell_i$ is valid iff *L* contains both a literal and its negation.

Models for ground qf formulae

Proof sketch: We only show one case here. The others are easy and left as an **exercise**. Note that the literals in *L* are **ground**.

(1, \Leftarrow): Suppose *L* does not contain { ℓ , $\neg \ell$ } for any literal ℓ . We define a Herbrand model H for *L* as follows.

Start with $(T^g(\Sigma), \iota_H)$, and construct a Herbrand base by assigning meaning to symbols in \mathcal{P} . Let $P \in \mathcal{P}$ be an m-ary predicate symbol. Define

$$P_{H} = \{(t_{1}, ..., t_{m}) \in (T^{g}(\Sigma))^{m} \mid P(t_{1}, ..., t_{m}) \in L\}$$

If $P(t_1, ..., t_m) \in L$, then $(t_1, ..., t_m) \in P_H$ and $H \models P(t_1, ..., t_m)$. However, if $\neg P(t_1, ..., t_m) \in L$, then $P(t_1, ..., t_m) \notin L$ (since L does not contain a literal and its negation), and so $(t_1, ..., t_m) \notin P_H$ and $H \not\models P(t_1, ..., t_m)$. So $H \models \bigwedge_{1 \le i \le n} \ell_i$.

Herbrand's Theorem

Theorem: Let $\Sigma = (\mathscr{C}, \mathscr{F}, \mathscr{P})$ where $\mathscr{C} \neq \emptyset$. Let $\varphi = \forall x_1 ... x_n$. $[\psi] \in \mathsf{FO}_\Sigma$ be a sentence in SNF. Then, the following are equivalent.

1. φ has a model

3. Γ^g has a model

2. φ has a Herbrand model

4. Γ^g has a Herbrand model

where
$$\Gamma^g = \{ \psi\{t_1/x_1, ..., t_n/x_n\} \mid \{t_1, ..., t_n\} \subseteq \Gamma^g(\Sigma) \}.$$

Proof strategy: (2) implies (1) and (4) implies (3).

If φ has a Herbrand model, ψ is made true under all possible assignments of x_i to some term $u_i \in T^g(\Sigma)$. In particular, ψ is made true under the assignment which maps x_i to t_i for each i, so ψ has a Herbrand model, and so does any expression in Γ^g , by the Substitution Lemma. So (2) implies (4). Similarly, (1) implies (3).

So to prove the equivalence of (1)–(4), it is enough to show that (3) implies (2).

Herbrand's Theorem

Proof of Herbrand's Theorem: We want to show that if Γ^g has a model, then φ has a Herbrand model.

Let $\mathcal{F} \models \Gamma^g$. We start with $(T^g(\Sigma), \iota_H)$ and construct a Herbrand base by assigning meaning to symbols in \mathscr{P} . Let $P \in \mathscr{P}$ be an m-ary predicate symbol. Define $P_H = \{(t_1, ..., t_m) \in (T^g(\Sigma))^m \mid \mathcal{F} \models P(t_1, ..., t_m)\}$.

There are no free variables in φ , so this Herbrand base (along with any assignment σ_H) satisfies all the **atomic sentences** satisfied by \mathcal{F} .

Exercise: Lift by induction to **arbitrary** sentences in SNF.

Thus, φ has a Herbrand model.

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in F
- How do we check for satisfiability of Γ^g?

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in F
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?

Using Herbrand's Theorem

- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g is satisfied by a Herbrand model.
- Γ^g is an infinite set of ground qf expressions, if there is even one function symbol in F
- How do we check for satisfiability of Γ^g?
- What do we know about the satisfiability of an infinite set of ground qf expressions?
- Use Compactness Theorem, in the contrapositive.
- Check all finite subsets to see if any unsatisfiable.
- Use resolution!