DATA MINING

Pertemuan 4: Classification

= 10

= 10

5 8

llustrasi

- Kita tahu bahwa terdapat ikan salmon di sebuah sungai
- Ketika kita mengambil seekor ikan dari sungai, dapatkah kita mengetahui bahwa ini ikan salmon?
 - Asumsi: kita tidak mengetahui ciri-ciri ikan salmon
 - Bagaimana solusinya?....?
 - → BELAJAR (*LEARNING*)

IKAN SALMON

= 0

= 0

Tipe Pembelajaran

- Pembelajaran Pasif (Passive Learning)
 - Pembelajaran Aktif (Active Learning)

3 3

Pembelajaran Pasif

Cari seorang ahli salmon

= 3

= m

- la akan memberi tahu semua karakteristik dari ikan salmon
 - Kita cukup mengingat dan menerapkan apa yang sudah dipelajari

Pembelajaran Aktif

- Cari seorang ahli salmon
- la menangkap banyak ikan dari beberapa jenis
- = 0 la hanya memberitahu mana yang ikan salmon dan mana = 0 yang bukan
- = 3 Kita harus mempelajari sendiri karakteristik ikan salmon = 0 ¥ 0 dengan mengamati karakteristik ikan yang disebut **50** salmon oleh pakar 8

= 9

Klasifikasi Pada Data Mining

- Memprediksi label *class* yang bertipe kategori
- Mengklasifikasi data (membangun sebuah model) berdasarkan data latih (training set) dan label class yang diberikan untuk = 0 mengklasifikasikan data baru

Proses Klasifikasi

Klasifikasi pada Data Mining

- Di data mining, kita selalu tertarik pada pembelajaran aktif
- Di data minii pembelajaraPertanyaan:

= 0

= 0

 $\leq a$

Mengapa kita sebagai pakar tidak langsung saja memberitahu langsung pada komputer bagaimana ciri-ciri ikan salmon?

Klasifikasi pada Data Mining

Jawaban:

20

S 0

2 0

= B

= 0

= 0

= 3 = 3

= a

= a

 Bahkan seorang ahli pun terkadang kesulitan dalam mendeskripsikan/mengidentifikasi semua karakteristik dari sebuah pengamatan terhadap sesuatu

Contoh:Dalar

- Dalam inbox e-mail kita, terdapat banyak e-mail. Kita tahu mana e-mail spam dan mana yang bukan
 - Dapatkah kita menuliskan SEMUA karakteristik e-mail spam?
- Pada pembelajaran aktif, kita hanya perlu memberitahu komputer mana e-mail spam dan mana yang bukan.
- Komputer akan mengidentifikasi sendiri karakteristik dari e-mail dengan mengamati perbedaannya
 - SANGAT MENGHEMAT WAKTU!

Catatan

- Dari sudut pandang data mining:
 - Klasifikasi ≈ Prediksi ≈ Peramalan, karena tekniknya serupa
- Klasifikasi juga disebut Pembelajaran Tersupervisi (Supervised Learning)
 - Harus ada pakar (kita) yang men-supervisi komputer
 - Sebaliknya, Clustering disebut Pembelajaran Tidak Tersupervisi (Unsupervised Learning)

Proses Klasifikasi

Tahapan:

2 1

20

3 (3)

2 0

20

= 0

= 0

= 0

= 3

 $\leq a$

- Kita menangkap banyak ikan
- Kita memberitahu komputer mana yang salmon dan mana yang bukan
- Komputer mengidentifikasi sendiri karakteristik salmon

Beberapa istilah:

- Untuk ikan yang telah ditangkap, kita bagi dalam kategori "Salmon" dan "Bukan Salmon"
- Sampel positif: Ikan yang masuk kategori Salmon
- Sampel negatif: Ikan yang masuk kategori Bukan Salmon
- Model: Sesuatu yang telah dipelajari komputer. Ketepatan model bergantung pada algoritma pembelajaran

Dua Langkah dalam Klasifikasi

- Pembuatan model: mendeskripsikan sekumpulan *class* yang telah ditentukan nilainya
 - Setiap sampel diasumsikan memiliki kelas yang ditandai dengan label atribut kelas
 - Setiap sampel yang digunakan untuk pembuatan model disebut training set
 - Model direpresentasikan sebagai aturan klasifikasi, pohon keputusan, atau rumus matematika
- Penggunaan model: untuk mengklasifikasikan objek baru
 - Mengestimasi keakuratan model

20

20

S 0

2 23

= 3

= 3

= 0

===

= 0

= 3

3 a

5 0

 $\leq a$

S m

- Label sesungguhnya dari test set dibandingkan dengan hasil klasifikasi model
- Tingkat akurasi: persentase sampel test set yang diklasifikasi dengan benar oleh model
- Test set <u>harus terpisah</u> dari training set
- Jika akurasi dapat diterima, gunakan model tersebut untuk mengklasifikasikan sampel data yang label kelasnya tidak diketahui -> validation set

Dua Langkah Klasifikasi

20

= 0

S

Binary Class vs Multi Class

- Klasifikasi Binary-Class
 - Hanya ada 2 kelas

3 (3)

20

= 0

= 0 = 3

= 0

50 = 4

2 10

- "Salmon" dan "Bukan Salmon"
- "Kucing" dan "Anjing"
- Klasifikasi Multi-Class
 - Terdapat lebih dari 2 kelas
 - "Salmon", "Tuna", "Hiu", "Koi"
 - Setiap permasalahan klasifikasi multi-class dapat diselesaikan dengan memformulasikan serangkaian model klasifikasi binary-class
 - Bagaimana caranya?

Algoritma

- Beberapa algoritma utama untuk pembelajaran:
 - Decision Tree (Pohon Keputusan)
 - Nearest Neighbor (Tetangga Terdekat)
 - Naïve Bayes

= 3

= 0

= 3

 Support Vector Machines

Komite Pengklasifikasian (Classifier)

- Keputusan dibuat oleh sejumlah classifier
 - Keputusan yang diambil dari sejumlah pakar biasanya lebih baik dibandingkan dari 1 orang saja
- saja
 Beberapa *classifier* digunakan untuk memprediksi label kelas dan hasilnya dikombinasikan

= 0

3 a

Dua Teknik Kombinasi

- Majority Vote (Suara Terbanyak)
 - Melakukan voting sederhana

3 3

= 7

= 0

= 3

= 0

= 0

3/5 = 60% YES

Dua Teknik Kombinasi

- Kombinasi Bobot Linier (Weighted Linear Combination)
 - Jika sebuah classifier lebih reliable (dapat diandalkan), maka kita menghargai keputusannya lebih tinggi dari yang lain

= 0

= 0

= 0

5 0

5 0

Evaluasi Model

Setelah proses training, kita perlu melakukan tes terhadap model sebelum digunakan untuk melihat apakah model tersebut sudah belajar dengan baik dan seberapa handal kinerjanya

= 10

SI

S B

5 B

3 0

3 0

= 0

= 3

23

= 0

= 3

= 0

= 3

= 0

 $\leq a$

= 0

5 0

= 3

S

Testing

Partition

- Mempersiapkan data training dan data testing
 Data training dan data
 - Data training dan data testing tidak boleh overlap

ID	Color	Size	 Label
1	Pink	20cm	 Salmon
2	Green	30cm	 Not Salmon
:	:	:	 :
:	:	:	 :
N	Pink	18cm	 Salmon

= 0

= 3

ID	Color	Size	 Label
2	Green	30cm	 Not Salmon
6	Grey	12cm	 Not Salmon
:	:	:	 :
М	Pink	18cm	 Salmon

Testing Data

Testing

Proses testing

Evaluasi Model: Metrik Pengukuran Kinerja

Confusion Matrix

3 3

= 3

50

		Prediction	
		Salmon	Not Salmon
Actual Class	Salmon	Α	В
Actual Class	Not Salmon	С	D

A: TP (true positive) B: FN (false negative)

C: FP (false positive) D: TN (true negative)

Accuracy =
$$\frac{A+D}{A+B+C+D} = \frac{TP+TN}{TP+TN+FP+FN}$$

Latihan Evaluasi Model

Buat Confusion Matrix dari table hasil klasifikasi berikut dan tentukan berapa akurasi klasifikasinya

= 12

Car Dataset						
				Stolen?		
Example No.	Color	Туре	Origin	Label	Model's Decision	
1	Red	Sports	Domestic	Yes	Yes	
2	Red	Sports	Domestic	No	Yes	
3	Red	Sports	Domestic	Yes	No	
4	Yellow	Sports	Domestic	No	No	
5	Yellow	Sports	Imported	Yes	Yes	
6	Yellow	SUV	Imported	No	No	
7	Yellow	SUV	Imported	Yes	No	
8	Yellow	SUV	Domestic	No	Yes	
9	Red	SUV	Imported	No	No	
10	Red	Sports	Imported	Yes	Yes	

Keterbatasan Akurasi

- Misalkan..
 - Jumlah total ikan di sampel testing = 10.000
 - Jumlah ikan bukan salmon = 9990
 - Jumlah ikan salmon = 10
- Jika model memprediksi semuanya sebagai ikan bukan salmon, maka akurasinya = 9990/10000 = 99,9%
 - Akurasi dapat menyesatkan karena model tidak dapat mendeteksi salmon sama sekali

Precision, Recall, dan F-Measure

Mengukur efektivitas model:

Precision,
$$p = \frac{A}{A+C}$$

Recall,
$$r = \frac{A}{A+B}$$

= 3

S 0

F - measure =
$$\frac{2rp}{r+p}$$

Precision, $p = \frac{A}{A+C}$ p = banyaknya result terambil yang relevan r = banyak result relevan yang terambil r = banyak result relevan yang terambil F-measure = rata-rata harmonis dari precision dan recall

	Prediction	
	Salmon	Not Salmon
Salmon	А	В
Not Salmon	С	D
		Salmon A

Precision dan Recall

= 3

2 3

= 0

= 0

= 3

S B

50

S m

Sumber:

https://upload.wikimedia.org/wikipedia/common s/thumb/2/26/Precisionrecall.svg/525px-Precisionrecall.svg.png

Perbedaan antara Precision dan Recall

Contoh result dari sebuah search engine terhadap sebuah query

= 0

= 0

= 3

= 3

= 0

= 0

= 0

= 3

=

= a

5 0

5 0

S m

- Jika search engine mengembalikan 30 result dan hanya 20 result yang relevan dengan query, maka precision-nya: 20/30 = 2/3 = 66,66%
- Jika sebenarnya ada 40 result lain yang relevan dengan query tapi tidak terambil, maka recall-nya: 20/60 = 1/3 = 33,33%

Evaluasi Model: Bagaimana memperoleh estimasi yang handal?

- Bagaimana cara untuk mempartisi data antara training set dan test set agar diperoleh hasil estimasi yang handal?
 - Tiga metode:
 - Holdout
 - Cross validation
 - Estimasi Leave-one-out

1. Holdout

- Cocok untuk data berukuran besar
- Secara acak, ambil 70% data sebagai training set dan 30% sebagai test set
- Ulangi prosedur di atas beberapa kali (misal: 10 kali)

= 0

2. k-fold Cross Validation

- Partisi/bagi data dalam k sub-himpunan terpisah
- Lakukan training pada (k-1) partisi, lakukan tes pada partisi terakhir
- Proses diulangi sebanyak *k* kali, dimana tiap subsampel k digunakan tepat satu kali sebagai test data/validation data
 - Sebanyak k hasil yang didapat lalu dirata-rata untuk menghasilkan satu estimasi final
 - Cocok untuk data berukuran medium

3. Validasi Leave-one-out

- Versi sederhana dari cross validation
- Misal kita memiliki N data
- Ambil (N-1) data sebagai training, dan 1 data terakhir sebagai testing
- Ulangi eksperimen sebanyak N kali
- Cocok untuk data berukuran kecil

Summary

- Prosedur umum untuk membangun sebuah model klasifikasi:
 - Membagi data menjadi training dan testing
 - Melatih classifier

20

20

= 2

= 0

= 0

= 3

= 0

= 0

- Melakukan test pada classifier:
 - Akurasi tidak terlalu baik untuk dijadikan acuan
 - · Precision, recall, f-measure
- Mengkombinasikan keputusan dari beberapa classifier
 - Majority vote
 - Weighted Linear Combination
- Binary-Class vs Multi-Class

Summary

- Klasifikasi adalah permasalahan yang banyak dipelajari dalam bidang statistik, machine learning, dan neural network
- Klasifikasi mungkin merupakan salah satu dari teknik data mining yang banyak digunakan dengan berbagai macam pengembangan
 - Arah penelitian: klasifikasi pada data nonrelational. Misal: text, spasial, multimedia