Python 部分

第一題

發現是 Gender, Age, EstimatedSalary 有遺漏值

第一副

```
: import numpy as np
  import pandas as pd
 raw_data = pd.read_csv("Churn_Modelling.csv")
df = pd.DataFrame(raw_data)
df.head()
     Customerld CredRate Geography Gender Age Tenure Balance Prod Number HasCrCard ActMem EstimatedSalary Exited
  0 15634602 619 France Female 42.0 2 0.00
                                                                                              101348.88
      15647311
                  608
                          Spain Female 41.0
                                                 1 83807.86
                                                                                              112542.58
  2 15619304 502 France Female 42.0 8 159660.80
                                                                     3
                                                                                              113931.57
  3 15701354 699 France Female 39.0
                                                                     2
                                                                                                          0
                                                        0.00
                                                                               0
                                                                                               93826.63
  4 15737888 850 Spain Female 43.0 2 125510.82
                                                                                               79084.10
: df.isnull().sum()
: CustomerId
  CredRate
  Geography
  Gender
  Age
  Balance
  HasCrCard
  EstimatedSalary
  Exited
  dtype: int64
```

第二題

以平均值填入 EstimatedSalary 的遺漏值,以眾數填入 Age 與 Gender 的遺漏值

```
mean_values = df["EstimatedSalary"].mean()
df["EstimatedSalary"].fillna(value=mean_values, inplace=True)

mode_values_gender = df["Gender"].mode()[0]
mode_values_age = df["Age"].mode()[0]
df["Gender"].fillna(value=mode_values_gender,inplace = True)
df["Age"].fillna(value=mode_values_age,inplace = True)

df.isnull().sum()
```

```
CustomerId
                   0
CredRate
Geography
Gender
                  0
Age
Tenure
Balance
Prod Number
HasCrCard
ActMem
                  Θ
EstimatedSalary
Exited
dtype: int64
```

第三題

修改欄位

第三題

df = df.rename(columns={'CredRate': 'CreditScore', 'ActMem':'IsActiveMember', 'Prod Number': 'NumOfProducts', 'Exited':'Churn'})
df

	Customerld	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Churn
0	15634602	619	France	Female	42.0	2	0.00	1	1	1	101348.88	1
1	15647311	608	Spain	Female	41.0	1	83807.86	1	0	1	112542.58	0
2	15619304	502	France	Female	42.0	8	159660.80	3	1	0	113931.57	1
3	15701354	699	France	Female	39.0	1	0.00	2	0	0	93826.63	0
4	15737888	850	Spain	Female	43.0	2	125510.82	1	1	1	79084.10	0
9995	15606229	771	France	Male	39.0	5	0.00	2	1	0	96270.64	0
9996	15569892	516	France	Male	35.0	10	57369.61	1	1	1	101699.77	0
9997	15584532	709	France	Female	36.0	7	0.00	1	0	1	42085.58	1
9998	15682355	772	Germany	Male	42.0	3	75075.31	2	1	0	92888.52	1
9999	15628319	792	France	Female	28.0	4	130142.79	1	1	0	38190.78	0

10000 rows x 12 columns

第四題

第四題

dtype: object

df.drop('CustomerId',axis=1,inplace= True) Credit Score Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estimated Salary Churn 619 France Fernale 42.0 2 0.00 101348.88 608 Spain Female 41.0 1 83807.86 112542.58 502 France Female 42.0 8 159660.80 2 699 1 0.00 4 850 Spain Female 43.0 2 125510.82 79084.10 9995 771 France Male 39.0 5 0.00 96270.64 9996 709 France Female 36.0 7 0.00 9997 42085.58 3 75075.31 9998 772 Germany Male 42.0 92888.52 9999 792 France Female 28.0 4 130142.79 38190.78 10000 rows × 11 columns df['Geography']=df['Geography'].astype('category')
df['Gender']=df['Gender'].astype('category')
df['MasCrCard']=df['MasCrCard'].astype('category')
df['Churn']=df['Churn'].astype('category')
df['IsActiveMember']=df['IsActiveMember'].astype('category') df.dtypes#欄位屬性輸出 CreditScore int64 Geography Gender Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalary float64 int64 category category

df.to_csv('Churn_Modelling_new.csv', encoding = 'utf-8-sig',index=False) #輸出新csv

去除 CustomerId,欄位,並將 Geography、Gender、HasCrCard、 Churn、 IsActiveMember 修改資料型態為 category,印出所有欄位的資 料型態,並存成新的 CSV 檔 (設定 index=False)。

第五題

(一)

```
group_sizes_HasCrCard = df.groupby('HasCrCard').size()
print('有信用卡的人比例:', group_sizes_HasCrCard.iloc[1]/df.shape[0])
print('無信用卡的人比例:', group_sizes_HasCrCard.iloc[0]/df.shape[0])
#5-1

有信用卡的人比例: 0.7055
無信用卡的人比例: 0.2945
(二)
group_sizes_Churn = df.groupby('Churn').size()
print('流失的客戶比例:', group_sizes_Churn.iloc[1]/df.shape[0])
#5-2

流失的客戶比例: 0.2037
```

(三)

```
group_sizes_IsActiveMember = df.groupby('IsActiveMember').size()
print('仍是活躍狀態的客戶比例:', group_sizes_IsActiveMember.iloc[1]/df.shape[0])
#5-3
```

仍是活躍狀態的客戶比例: 0.5151

(四)

```
no_churn_df = (df["Churn"]==0)#5-4
has_churn_df=(df["Churn"]==1)
```

```
df.loc[no_churn_df].mean()
```

CreditScore 651.853196 37.411277 Age 5.033279 Tenure 72745.296779 Balance NumOfProducts 1.544267 HasCrCard 0.707146 IsActiveMember 0.554565 EstimatedSalary 99718.932023 0.000000 Churn

dtype: float64

```
df.loc[has_churn_df].mean()
```

CreditScore 645.351497 Age 44.837997 Tenure 4.932744 Balance 91108.539337 NumOfProducts 1.475209 HasCrCard 0.699067 IsActiveMember 0.360825 EstimatedSalary 101465.677531 1.000000 Churn

dtype: float64

	流失客戶	未流失客戶	
CreditScore	較低	較高	
Age	較高	較低	
Tenure	較低	較高	
Balance	較高	較低	
NumOfProducts	較低	較高	
HasCrCard	較低	較高	
IsActiveMember	較低	較高	
EstimatedSalary	較高	較低	

(五)

```
#5-5
df.corr()
```

	CreditScore	Age	Tenure	Balance	NumOfProducts	Estimated Salary
CreditScore	1.000000	-0.004179	0.000842	0.006268	0.012238	-0.001352
Age	-0.004179	1.000000	-0.009996	0.028141	-0.030590	-0.007215
Tenure	0.000842	-0.009996	1.000000	-0.012254	0.013444	0.007407
Balance	0.006268	0.028141	-0.012254	1.000000	-0.304180	0.013129
NumOfProducts	0.012238	-0.030590	0.013444	-0.304180	1.000000	0.014132
Estimated Salary	-0.001352	-0.007215	0.007407	0.013129	0.014132	1.000000

```
import seaborn as sns#5-5
import matplotlib.pyplot as plt
corr = df.corr()
plt.figure(figsize=(12,6))
sns.heatmap(corr,annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0xb879a18>

計算屬性間的相關係數, seaborn 繪製出熱力圖

第六題

(一) 改顏色跟改 label ,沒有流失的人在男女都比較多,其中女性客戶流失率 明顯較高。

第六題

```
fig,ax = plt.subplots(figsize = (12,3))
sns.countplot(data = df,hue = df['Churn'],y = df['Gender'],palette='Set2')
plt.legend( labels=['No Churn', 'Churn'])
plt.show()

Female

Male

Male

1000
2000
3000
4000
```

(二) Germany 客戶流失率最高,France 、Spain 差不多

(三) 可以看出未流失客戶的年齡分布相較流失客戶來的年輕

(四)

兩者(流失客戶與未流失客戶)CreditScore 分布都差不多

Weka 部分

第七題

(一) 將 HasCrCard, IsActiveMember, Churn 轉成 Nominal 屬性,選 index 8、9、 11

(二) 使用 Attribute Selection,以 CfsSubsetEval 及 BestFirst 來篩選屬性

根據結果,使用 CfsSubsetEval 和 BestFirst 算法進行屬性選擇後,選擇的屬性子集包括以下六個屬性:

- 1.CreditScore
- 2.Geography
- 3.Gender
- 4.Age
- 5.NumOfProducts
- 6.IsActiveMember

這些屬性在預測 Churn 有較高的相對重要性。

結論,這些屬性在客戶流失率的預測中扮演著重要的角色,因此在建立模型或 進行分析時,應該重點關注這些屬性。