Math 347: Fundamental Mathematics

Lanxiao Hermite Bai January 23, 2017

Contents

1	Numbers, sets and functions			
	1.1	Elementary Inequalities	3	
	1.2	Sets	3	
	1.3	Functions	4	
2	Logic and Proofs 5			
	_	Quantifiers and Logical Statements	5	
	2.2	Methods of proof	6	
3	Induction			
	3.1	Principle of Induction	6	
4	Bijection and Cardinality 7			
	4.1	Representing integers	7	
	4.2	Bijection		
	4.3	Cardinality		
5	The Real Numbers			
	5.1	Completeness Axiom	10	
	5.2	Limits and Continuity		
	5.3		12	
6	Series and Sequences			
	6.1	Limits	12	
	6.2	Cauchy Sequence		
	6.3	• -	13	
7	Number Theory 15			
	7.1	Divisibility in the Integers	15	
	7.2		19	

1 Numbers, sets and functions

1.1 Elementary Inequalities

Proposition 1.1.1 If 0 < a < b, then $a^2 < ab < b^2$ and $0 < \sqrt{a} < \sqrt{b}$

Definition 1.1.1 (Absolute Value)

$$|x| = \begin{cases} x & if \ x \ge 0 \\ -x & if \ x \le 0 \end{cases}$$

Proposition 1.1.2 (Triangle Inequality) If $x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$

Proposition 1.1.3 (AGM Inequality) If $x, y \in \mathbb{R}$, $2xy \le x^2 + y^2$ and $xy \le (\frac{x+y}{2})^2$.

Proof: Since $(x-y)^2 \ge 0$, $x^2 - 2xy + y^2 \ge 0$, when we add 2xy to both sides, we have $2xy \le x^2 + y^2$, when we add 4xy on both sides and calculate the square root, we have $xy \le (\frac{x+y}{2})^2$.

Corollary 1.1.1 If x, y > 0, $\frac{2xy}{x+y} \le \sqrt{xy} \le \frac{x+y}{2}$, equality holds only when x = y.

1.2 Sets

Definition 1.2.1 (Set) The objects in a **set** are its **elements** or **members**. When x is an element of A, we write $x \in A$, if not, we write $x \notin A$. If $\forall x \in A, x \in B$, then A is a **subset** of B, and B **contains** A, we write $A \subseteq B$ or $B \supseteq A$.

Definition 1.2.2 Sets A = B if they have the same elements. The **empty** $set \emptyset$, is the unique set with no elements. A **proper subset** of a set A is a subset of A that is not A. The **power set** of a set A is the set of all its subsets.

Definition 1.2.3 When $a, b \in \mathbb{Z}$ and $a \leq b$, we use a, ..., b to $i \in Z | a \leq i \leq b$. When $n \in N$, we write [n] for 1...n. The set of even numbers is $\{2k | k \in \mathbb{Z}\}$ and the set of odd numbers is $\{2k + 1 | k \in Z\}$.

¹Arithmetic Mean: $\frac{x+y}{2}$, Geometric Mean: \sqrt{xy} , Harmonic Mean: $\frac{2xy}{x+y}$

²Important sets: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, in this class $0 \notin \mathbb{N}$.

Definition 1.2.4 (Intervals) When $a, b \in \mathbb{R}$ with $a \leq b$, the **closed interval** [a, b] is $\{x \in \mathbb{R} | a \leq x \leq b\}$ and the **open interval** (a, b) is $\{x \in \mathbb{R} | a < x < b\}$.

Definition 1.2.5 A **list** with entries in A consists of elements of A in a specific order, with repetition allowed. A **k-tuple** is a list with k entries. We write A^k for the set of k-tuples with entries in A.

An ordered pair is a list with two entries. The Cartesian product of sets S and T, $S \times T = \{(x, y) | x \in S, y \in T\}$

Definition 1.2.6 (Set Operations) Let A and B be sets,

- Union $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- Difference $A B = \{x | x \in A \text{ and } x \notin B\}$
- Complement $A^c = U A$

If $A \cup B = \emptyset$, they are **disjoint**.

1.3 Functions

Definition 1.3.1 (Function) A function f from a set A to a set B assigns to each $a \in A$ a single element $f(a) \in B$, called the **image** of a under f. For a function $f: A \to B$, A is the **domain**, B is the **target**. The **image** of f is $\{f(a), a \in A\}$.

Figure 1: Mapping

³A function is called **well-defined** means that rules assign to each element of A exactly one element, belongling to B.

Definition 1.3.2 For 2 functions f and g, f = g when they have same domain, same targer and $\forall x \in domain$, f(x) = g(x).

Definition 1.3.3 A function is **real-valued** if its image is a subset of \mathbb{R} . If f and g are real-valued functions on A, f+g and fg will be real-valued functions on A defined by (f+g)(x)=f(x)+g(x) and (fg)(x)=f(x)g(x).

Definition 1.3.4 (Polynomial) A real **polynomial** in one variable is a function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{i=0}^{k} c_i x^i$$

where k is a nonnegative integer and $c_0, ..., c_k$ are real numbers called the coefficients of f. The **degree** of f is the largest d such that $c_d \neq 0$.

Definition 1.3.5 A set $S \subseteq \mathbb{R}$ is **bounded** if $\exists M \in \mathbb{R}, \forall x \in S, |x| \leq M$, or the set is **unbounded**.

Definition 1.3.6 A function is **increasing** in a certain interval if $\forall x_2 > x_1, f(x_2) > f(x_1)$, **decreasing** if $f(x_2) < f(x_1)$.

2 Logic and Proofs

2.1 Quantifiers and Logical Statements

Definition 2.1.1 (Mathematical Statement) A mathematical statement is a statement that can be evaluated to be true or false.

Definition 2.1.2 (Quantifier) Suppose P(x) is a statement involving the variable x which can take values in a set S, then:

- Universally quantified: For all $x \in S, P(x)$ is true, denoted as $\forall x \in S$, such that P(x) is true.
- Existentially quantified: There exists an $x \in S$ such that P(x) is true, denoted as $\exists x \in S, P(x)$ is true.

Definition 2.1.3 (Logical Connectives) Suppose P and Q are mathematical statements,

- $Negation(not\ P): \neg P$
- $Conjunction(P \ and \ Q): P \wedge Q$
- $Disjunction(P \ or \ Q): P \lor Q$
- $Bicondition(P \ if \ \& \ only \ if \ Q): P \Leftrightarrow Q$
- Condition(P implies Q)⁴: $P \Rightarrow Q$

Rule of negation:

- $\neg [(\forall x)P(x)] \Leftrightarrow (\exists x)(\neg P(x))$
- $\neg [(\exists x)P(x)] \Leftrightarrow (\forall x)(\neg P(x))$

2.2 Methods of proof

Direct method of proof: Assume P and argue via logical decuction that Q is also true $(P \Rightarrow Q)$.

Contrapositive Assume $\neg Q$ follow deductions and conclude $\neg P$ is true $(\neg Q \Rightarrow \neg P)$.

Methods of Contradiction Assume p and $\neg Q$, follow deductions and obtain a contradiction.

3 Induction

3.1 Principle of Induction

Definition 3.1.1 The set \mathbb{N} of natural numbers is the intersection of all sets $S \subseteq \mathbb{R}$ that have the following properties:

- 1. $1 \in S$
- 2. If $x \in S$, then $x + 1 \in S$

 $^{^{-4}}$ P - **Hypothesis**, Q - **Conclusion**, $Q \Rightarrow P$ - **Converse** It is always true if the hypothesis is false.

Theorem 3.1.1 (Principle of Induction) $\forall n \in \mathbb{N}$, let P(n) be a mathematical statement. If

- P(1) is true
- $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$

Then $\forall n \in \mathbb{N}, P(n)$.

Theorem 3.1.2 (Strong Induction) $\forall n \in \mathbb{N}$, let P(n) be a mathematical statement. If

- P(1) is true
- $\forall k \geq 2 \text{ and } i < k, P(i) \Rightarrow P(k)$

Then $\forall n \in \mathbb{N}, P(n)$.

4 Bijection and Cardinality

4.1 Representing integers

Usual way Decimal representation: E.x.

$$1735 = 10^3 + 7 \cdot 10^2 + 3 \cdot 10 + 5$$

Definition 4.1.1 Let $q \geq 2$ be a natural number. A **q-ary expansion** or **base-q expansion** of n is a list a_m, \dots, a_0 of integers that $a_i \in \{0, 1, 2, \dots, q-1\}$ such that

$$n = \sum_{j=0}^{m} a_j q^j$$

We write $(a_m, \dots, a_0)_q$ for base-q expansion.⁵

Theorem 4.1.1 $\forall q \in \mathbb{N} \forall n \in \mathbb{N}$, n has a unique q-ary expansion.

⁵When q = 2, binary, n = 3, ternary.

Proof: The base case, n = 1 is true since 1 is represented by $a_0 = 1$. Suppose, n = k is true, then when n = k+1. If $a_0 = a_1 = \dots = a_m = q-1$,

$$k+1 = \sum_{j=0}^{m} (q-1)q^{j} + 1$$

$$= (q-1)\sum_{j=0}^{m} q^{j} + 1$$

$$= (q-1)\frac{q^{m+!} - 1}{q-1} + 1$$

$$= q^{m+1} - 1 + 1 = q^{m+1}$$

So k+1 is represented by $a_{m+1}=1$, $a_i=0$ for $i \leq m$ If a_i is the first a that $a \neq q-1$, then

$$k+1 = \sum_{j=0}^{i-1} a_j q^j + a_i q^i + \sum_{j=i+1}^m a_j q^j = \sum_{j=0}^{i-1} a_j q^j + (a_j+1)q^i$$

So we can conclude that $\forall q \in \mathbb{N}, \forall n \in \mathbb{N}$, n has a q-ary expansion. Suppose an integer n has 2 distinct q-ary expansions

$$n = \sum_{j=0}^{r} a_j q^j$$
$$= \sum_{j=0}^{s} b_j q^j$$

According to the definition of polynomial, we have $a_j = b_j$ for all $j \leq m$ which is controversial to the hypothesis. Thus such expansion is unique.

If r = s = m, Then

$$\sum_{j=0}^{m} a_j q^j - \sum_{j=0}^{m} b_j q^j = \sum_{j=0}^{m} (a_j - b_j) q^j = 0$$

If $r \neq s$, without losing generality, we can suppose that r > s, then

$$\sum_{j=0}^{r} a_j q^j - \sum_{j=0}^{s} b_j q^j = \sum_{j=0}^{s} (a_j - b_j) q^j + \sum_{j=s+1}^{r} b_j q^j = 0$$

According to the definition of polynomial, we have $s \leq a_j = b_j$ for all $j \leq s$ and $b_j = 0$ for all $s \leq j \leq r$, which is controversial to the hypothesis. Thus such expansion is unique.

So we can conclude that $\forall q \in \mathbb{N}, \forall n \in \mathbb{N}$, n has a unique q-ary expansion.

4.2 Bijection

Definition 4.2.1 A function $f: A \to B$ is a **bijection** if $\forall b \in B, \exists$ exactly one $x \in A$ such that f(x) = b.⁶

Definition 4.2.2 Power set of a set S is the set that is formed by all S's subsets.

Definition 4.2.3 If $f: a \to b$ is a bijection that f(a) = b. The inverse of $f, f^{-1}: B \to A$ is f(b) = a. The inverse of a bijection is a bijection.

4.3 Cardinality

Definition 4.3.1 The cardinality of a set A is the number of elements of the set. Denote as |A|.

Definition 4.3.2 A set A is finite if there is a bijection $f: A \to [n]$ for some $n \in \mathbb{N}$

Proposition 4.3.1 If two set A and B are disjoint, $|A| \cup |B| = |A + B|$.

Corollary 4.3.1

$$|A\cup|B|=|A|+|B|-|A\cap B|$$

Definition 4.3.3 If a set infinite if it is not finite. If there is a bijection $f: A \to \mathbb{N}$, then A is **countably infinite** or it is **uncountably infinite**.

Definition 4.3.4 |A| = |B| if there is a bijection $f : A \to B$.

⁶Alternative terminology: one-to-one correspondence

 $^{^{7}}f$ is a bijection if and only if f is both injective and surjective.

5 The Real Numbers

Assumption

- $\mathbb{Q} \subseteq \mathbb{R}$
- \mathbb{R} is a **field**, which means it's legal to:
 - add / subtract
 - multiply
 - divide by nonzero real number
 - associativity
 - commutativity
 - distributivity
- \mathbb{R} has an ordering
- R satisfies the completeness axiom

5.1 Completeness Axiom

Definition 5.1.1 Let $S \subseteq \mathbb{R}$. A number $\alpha \in \mathbb{R}$ is an **least upper bound** or **supremum** of S if S has no upper bound less than α . $\beta \in \mathbb{R}$ is an **greatest lower bound** or **infimum** of S if S has no lower bound larger than β .

Axiom 5.1.1 (Completeness Axiom) Every nonempty subset of \mathbb{R} that has an upper bound has a least upper bound.

Theorem 5.1.1 (Archimedean Property) Given any positive real numbers a, b there exists $n \in \mathbb{N}$ such that na > b.

Equivalently, $\mathbb{N} \subseteq \mathbb{R}$ is not upper bounded.

⁸Notation: Sup(S) = supremum of S, inf(S) = infimum of S

5.2 Limits and Continuity

Definition 5.2.1 (Limit) Let (a_n) be a sequence of real numbers, we say that (a_n) converges to $L \in \mathbb{R}$ provided that given an $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$|a_n - L| < \varepsilon$$

for every $n \geq N$.

e.g.1

Proof: The sequence $a_n = \frac{1}{n}$ converges to 0. Let $\varepsilon > 0$ be given. There is $N \in \mathbb{N}$ so that

$$\frac{1}{\varepsilon} < N$$

so $\varepsilon > \frac{1}{N}$. Then $\forall n \geq N$ we have

$$|a_N - 0| = \left|\frac{1}{n}\right| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

Definition 5.2.2 If $(a_n), (b_n)$ are sequences. Assume that $a_n \to 0$. If

$$|b_n - L| \le |a_n|$$

Then

$$b_n \to L$$

Terminology: Say (a_n) is convergent if it converges to some $L \in \mathbb{R}$.

Proposition 5.2.1 A convergent sequence has a unique limit.

Proposition 5.2.2 Let $S \subseteq \mathbb{R}$ be a subset, then $(S) = \alpha \Leftrightarrow \exists (a_n)$ with $a_n \in S$ and $a_n \to \alpha$.

Definition 5.2.3 A sequence is **monotone** if it is either nondecreasing $(n \ge m \Rightarrow a_n \ge a_m)$ or nonincreasing $(n \le m \Rightarrow a_n \le a_m)$

⁹Notation: (a_n) converges to $L \equiv \lim_{n \to \infty} a_n = L \equiv \lim_{n \to \infty} a_n = L \equiv a_n \to L$.

Theorem 5.2.1 (Monotone Convergence Theorem) If (a_n) is a bounded monotone sequence, then it converges. If (a_n) is bounded nondecreasing, then $\lim_{x\to\infty} a_n = \operatorname{Sup}(a_n)$. If (a_n) is bounded nonincreasing, then $\lim_{x\to\infty} = \operatorname{Inf}(a_n)$

Lemma 5.2.1 If $a_n \leq M \forall a \in \mathbb{N}$, then if $a_n \to L$ then $L \leq M$.

Proposition 5.2.3 If (a_n) is nonincreasing, (b_n) is nondecreasing and if

$$a_n - b_n \to 0$$

then both a_n and b_n converge and have the same limit.

Lemma 5.2.2 If $a_n \to L$, then $a_n^2 \to L^2$.

Theorem 5.2.2 $\sqrt{x} \in \mathbb{R}$ if $x \geq 0$.

5.3 K-ary expansion and discountability

Definition 5.3.1 The canonical k-ary expansion of α is the sequence (l_n) defined by $l_n = largest$ multiple of $\frac{1}{k^n}$ such that $l_n \leq \alpha$.

Theorem 5.3.1 Let $k \in \mathbb{N}, k \geq 2$, then

- $\forall \alpha \in [0,1)$ has a canonical k-ary expansion
- ullet Every k-ary expansion represent a real number in [0,1).

Theorem 5.3.2 (Cantor) \mathbb{R} is uncountable.

Lemma 5.3.1 If a set S contains an uncountable subset, then S is uncountable.

6 Series and Sequences

6.1 Limits

Theorem 6.1.1 Let $(S_n), (T_n)$ be sequences, $\lambda \in \mathbb{R}$, then

 $\lambda \lim S_n = \lim \lambda S_n$

•

$$\lim S_n \pm \lim T_n = \lim (S_n \pm T_n)$$

•

$$\lim S_n \cdot \lim T_n = \lim (S_n \cdot T_n)$$

•

$$\lim \frac{1}{S_n} = \frac{1}{\lim S_n}$$

Lemma 6.1.1 If (a_n) is convergent, then it is bounded.

Proposition 6.1.1 Suppose (a_n) is a sequence such that $\frac{a_{n+1}}{a_n}$ converges to a number $0 \le x < 1$. Then $\lim a_n = 0$.

Theorem 6.1.2 (Squeeze Theorem) Suppose $a_n \leq b_n \leq c_n$ for all n. Then if $\lim a_n = L$, $\lim c_n = L$, then $\lim b_n = L$.

6.2 Cauchy Sequence

Definition 6.2.1 A sequence is said to be Cauchy provided given any $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n, m > N \in \mathbb{N}$

$$|a_n - a_m| < \varepsilon$$

Proposition 6.2.1 Any convergent sequence is a Cauchy sequence.

Lemma 6.2.1 Every Cauchy sequences is bounded.

6.3 Infinite Series

Definition 6.3.1 An *infinite series* is an infinite summation $\sum_{k=1}^{\infty} a_k$. The sequence is **partial sums** is $S_n = \sum_{k=1}^n a_k$. Say that $\sum_{k=1}^{\infty} a_k$ converges if $\lim_{n\to\infty} S_n$ exists.

Theorem 6.3.1 The geometric theories

$$\sum_{k=0}^{\infty} x^k$$

converges to

$$\frac{1}{1-x}$$

if |x| < 1 and diverges otherwise.

Remark: If $(a_k) \to L \neq 0$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Proposition 6.3.1 (Harmonic Series)

$$\sum_{k=1}^{\infty} 1/k$$

diverges.

Lemma 6.3.1 If $\sum_{k=1}^{\infty} a_k$ converges, then $a_k \to 0$.

Proposition 6.3.2 (Comparison Test) Suppose that $c_n \geq 0$ for all n. If

$$\sum_{n=1}^{\infty} c_n$$

converges and

$$|a_n| \le c_n$$

for all n, then

$$\sum_{n=1}^{\infty} a_n$$

converges.

If

$$\sum_{n=1}^{\infty} c_n$$

diverges to ∞ , then if $a_n \geq c_n$ for all n,

$$\sum_{n=1}^{\infty} a_n$$

diverges.

Corollary 6.3.1 If $\sum |a_n|$ converges then $\sum a_n$ converges as well.

Proposition 6.3.3 The sequence $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Theorem 6.3.2 (Ratio Test) Let (a_n) be a sequence such that $|a_{k+1}/a_k|$ converges to a number p. If p < 1, then $\sum a_k$ converges, if p > 1, then $\sum a_k$ diverges.

Theorem 6.3.3 Consider a series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

where $a_n \geq 0$ such that

1.

$$\lim_{n \to \infty} a_n = 0$$

2. (a_n) is nonincreasing

then

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

Lemma 6.3.2 If (x_n) is a sequence, $\lim_{n\to\infty} x_{2n} = L = \lim_{n\to\infty} x_{2n+1}$, then $\lim_{n\to\infty} x_n = L$ as well.

7 Number Theory

7.1 Divisibility in the Integers

Definition 7.1.1 (Integer) We denote the set of *integers* $\{0, \pm 1, \pm 2, \ldots\}$ by \mathbb{Z} .

Definition 7.1.2 (Natural Number) We denote the set of natural numbers $\{1, 2, 3, ...\}$ by \mathbb{N} .

Proposition 7.1.1: Addition and Multiplication

- 1. Addition on \mathbb{Z} is commutative and associative.
- 2. 0 is an identity element for addition; $\forall a \in \mathbb{Z}, 0+a=a$.

- 3. Every element a of \mathbb{Z} has an additive inverse -a that a + (-a) = 0.
- 4. Multiplication on \mathbb{Z} is commutative and associative.
- 5. 1 is is an identity element for multiplication; $\forall a \in \mathbb{Z}, 1a = a$.
- 6. The distribute law holds; a(b+c) = ab + ac.
- 7. \mathbb{N} is closed under addition and multiplication.
- 8. The product of non-zero integers is non-zero.

Definition 7.1.3 (Divisibility) We say that an interger a divides b, (or that b is divisible by a), if there is an interger q such that aq = b; we write a|b for "a divides b"

Proposition 7.1.2 Properties of Divisibility:

Let a, b, c, u, and v denote integers.

- 1. If uv = 1, then u = v = 1 or u = v = -1.
- 2. If a|b and b|a, then $a = \pm b$.
- 3. Divisibility is transitive; if a|b, b|c, then a|c.
- 4. If a|b and a|c, then a|(sb+tc), where s and t are integers.

Definition 7.1.4 (Prime) A natural number is **prime** if it is greater than 1 and not divisible by any natural number other than 1 and itself.

Proposition 7.1.3 Any natural number other than 1 can be written as a product of prime numbers.

Theorem 7.1.1 There are infinitely many prime numbers.

Proposition 7.1.4 Given integers a and b, with $d \ge 1$, there exist unique integers q and r^{10} such a = qd + r and $0 \le r < d$.

¹⁰The q is called **quotient** and the r is called **remainder**.

Definition 7.1.5 (Greatest Common Divisor) A natural number d is the greatest common divisor of nonzero integers m and n if

- 1. d|m and d|n;
- 2. whenever $x \in \mathbb{N}$ divides m and n, then x also divides d.

Proposition 7.1.5 For integers m and n, let

$$I(m,n) = \{am + bn : a, b \in \mathbb{Z}\}. \tag{1}$$

- 1. For $x, y \in I(m, n)$, $x + y \in I(m, n)$ and $-x \in I(m, n)$.
- 2. $\forall x \in \mathbb{Z}, xI(m,n) \subseteq I(m,n)$
- 3. If $b \in \mathbb{Z}$ divides m and n, then b divides all elements of I(m, n).

Lemma 7.1.1 Let m and n be nonzero integers. If a natural number d is a common divisor of m and n and an element of I(m,n), then d is the greatest common divisor of m and n.

Proposition 7.1.6 *Let* $m, n, n_1, ..., n_k, ..., q_1, q_2, ..., q_k \in \mathbb{Z}$

$$m = q_1 n + n_1 \tag{2}$$

$$n = q_2 n_1 + n_2 (3)$$

...

$$n_{k-2} = q_k n_{k-1} + n_k (4)$$

...

$$n_{r-1} = q_{r+1}n_r (5)$$

The natural number n_r is the greatest common divisor of m and n, and furthermore $n_r \in I(m,n)$.

Corollary 7.1.1 Let m and n be nonzero integers, and write d = g.c.d.(m, n)

1. d is the least element of $\mathbb{N} \cap I(m, n)$.

2. $I(m,n) = \mathbb{Z}d$, the set of all integer multiples of d.

Definition 7.1.6 (Relatively Prime) Nonzero integers m and n are relatively prime if g.c.d.(m, n).

Corollary 7.1.2 Two nonzero integers m and n are relatively prime if and only if there exist integers s and t such that 1 = sm + tn.

Corollary 7.1.3 Suppose that a and b are relatively prime natural numbers, that x is an integer, and that both a and b divide x. Then ab divides x.

Proposition 7.1.7 If p is a prime number and a is any nonzero integer, then either p divides a or p and a are relatively prime.

Proposition 7.1.8 Let p be a prime number, and a and b nonzero integers. If p|ab, then p|a or p|b.

Corollary 7.1.4 Suppose that a prime number $p|a_1a_2...a_r$, which for $r \in [1, r], a_n \neq 0$, then p divides one of the factors.

Theorem 7.1.2 The prime factorization of a natural number is unique.

Definition 7.1.7 Greatest common Divisor of Several Numbers A natural nnumber d is the greatest common divisor of nonzero integers $a_1, a_2, ..., a_n$, if

- 1. d divides each a_i and
- 2. whenever $x \in \mathbb{N}$ divides each a_i , then x also divides d.

Lemma 7.1.2 Given nonzero integers $a_1, a_2, ..., a_n (n \le 2)$, there is a natural number d and an n-by-n integer matrix Q such that Q is invertible, Q^-1 also has integer entries, and

$$(d, 0, ..., 0) = (a_1, a_2, ..., a_n)Q$$
(6)

Proposition 7.1.9 The greatest common divisor of nonzero integers $a_1, a_2, ..., a_n$ exists, and is an integer linear combination of $a_1, a_2, ..., a_n$.

Definition 7.1.8 (Relatively Prime) We say that nonzero integers $a_1, ..., a_n$ are **relatively prime** if their greatest common divisor is 1. We say that they are **pairwise relatively prime** if a_i and a_j are relatively prime whenever $i \neq j$.

7.2 Modular Arithmetic

Definition 7.2.1 (Congruence) Given integers a and b, and a natural number n, we say that "a is congruent to b modulo n" and we write $a \equiv b \mod n$ if $n \mid (a - b)$.

Lemma 7.2.1 Properties of Mod

- 1. $\forall a \in \mathbb{Z}, a \equiv a \mod n(Reflexive)$
- 2. $\forall a, b \in \mathbb{Z}$, if $a \equiv b \mod n$ if and only if $b \equiv a \mod n$. (Symmetric)
- 3. $\forall a, b, c \in \mathbb{Z}$, if $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv v \mod n$. (Transitive)

Lemma 7.2.2 For $a, b \in \mathbb{Z}$, the following are equivalent:

- $a \equiv b \mod n$.
- $[a] = [b].^{11}$
- $rem_n(a) = rem_n(b).^{12}$
- $[a] \cap [b] \neq \emptyset$

Corollary 7.2.1 There exist exactly n distinct residue classes modulo n, namely [0], [1], ... [n-1]. These classes are mutually disjoint.

Lemma 7.2.3 Let a, a', b, b' be integers with $a \equiv a' \mod n$ and $b \equiv b \mod n$. Then $a + b \equiv a' + b' \mod n$ and $ab \equiv a'b' \mod n$.

Proposition 7.2.1 Properties of Modulo Congruence:

1. Addition on \mathbb{Z}_n is commutative and associative, $\forall [a], [b], [c] \in \mathbb{Z}_n$

$$[a] + [b] = [b] + [a] \tag{7}$$

and,

$$[a] + [b] + [c] = [a] + ([b] + [c])$$
(8)

¹¹The set a is called the residue class or congruence class of a modulo n.

¹²Denote by $rem_n(a)$ the unique number r such that $0 \le r < n$ and a - r is divisible by n.

0 is an identity element for addition, $\forall [a] \in \mathbb{Z}_n$,

$$[0] + [a] = [a] \tag{9}$$

2. Every element [a] of \mathbb{Z}_n has an additive inverse [-a], that

$$[a] + [-a] = [0] \tag{10}$$

3. Multiplication on \mathbb{Z}_n is commutative and associative; $\forall [a], [b], [c] \in \mathbb{Z}_n$,

$$[a][b] = [b][a] \tag{11}$$

, and

$$[a][b][c] = [a]([b][c])$$
 (12)

4. [1] is an identity for multiplication; $\forall [a] \in \mathbb{Z}_n$,

$$[1][a] = [a][1] \tag{13}$$

5. The distributive law hold; $\forall [a], [b], [z] \in \mathbb{Z}_n$,

$$[a]([b] + [c]) = [a][b] + [a][c]$$
(14)

Proposition 7.2.2 (Chinese Reminder Theorem) Suppose a and b are relatively prime natural numbers, and α and beta are integers. There exists an integer x such that $x \equiv \alpha \mod a$ and $x \equiv \beta \mod b$. Moreover, x is unique up to congruence modulo ab.