

Al based crop monitoring system 2024 - 2025

Nurture smart, harvest better.

Student Team

Faculty

Harini T.A

Al based crop monitoring system

IV-B.E, Electrical &
Electronics Engineering
SNSCT
Team Lead, Developer

Harshini K.S

IV-B.E, Electrical &
Electronics Engineering
SNSCT
Research

Kathiravan B

IV-B.E, Electrical &
Electronics Engineering
SNSCT
Developer

Karan S

IV-B.E, Electrical &
Electronics Engineering
SNSCT
Research

Ms. Kavitha D

DT Mentor

Mr. Bharath S

Technology Mentor

Dr. Ramakrishnan C

Project Guide

Requirement / Problem statement

Crop diseases often go undetected until significant damage occurs, leading to reduced yields. Traditional methods of monitoring are slow and labor-intensive. There is a need for an automated, real-time solution to detect crop diseases early and provide farmers with timely recommendations to protect their crops and improve yields.

Description

This AI-based Crop Monitoring System uses camera modules, microcontrollers, and machine learning to detect crop diseases early and provide actionable treatment recommendations. It helps farmers reduce crop loss, improve yield, and save time by automating disease detection and analysis. The system benefits individuals, communities, and industries by enhancing food security, promoting sustainable agriculture, and optimizing farming practices.

Scope

The Al-based Crop Monitoring System uses camera modules and machine learning to detect crop diseases early, providing real-time alerts and treatment recommendations. It helps farmers improve yield, reduce loss, and promote sustainable farming practices. The system is scalable, Al-integrated, and adaptable to various crops and farming environments.

GenAl | Al

Al detects diseases through image analysis, provides real-time recommendations, learns from user data, and predicts future crop health trends.

Key factors & features

Al disease detection, real-time alerts, cloud storage, scalable, mobile access, continuous learning, and sustainable farming support.

Target Audience

Farmers, Agricultural experts & consultants, Agritech companies, Government Agencies & NGOs

Domain

Agricultural Technology Artificial Intelligence Machine Learning

Project Features

Comprehensive Data Integration

- Combines environmental (rainfall, temperature, soil nutrients) and economic (yield, production) data.
- Data sourced from Government websites and Kaggle.

Multiple Machine Learning Algorithms

- Uses Decision Trees, SVM, Logistic Regression, and Random Forest.
- Random Forest model gives highest accuracy (99%).

Tailored Crop and Fertilizer Recommendations

- Suggests optimal crop types based on location, soil, and climate data.
- Provides fertilizer recommendations based on soil nutrient deficiencies.

User-Friendly Interface

Simple input interface for farmers to enter their data.

Data-Driven Insights

Helps farmers make informed decisions to optimize yield and reduce resource waste.

Sustainability Focus

Reduces chemical fertilizer usage and promotes eco-friendly practices.

Journey

User Journey (Crop Recommendation)

Enter location, soil type, and nutrient data → System processes data → Random Forest model predicts suitable crops → Provides crop recommendations and actionable insights.

GenAI-2024-2025-B2-316

User Journey (Fertilizer Recommendation)

Enter soil nutrients and crop type → System compares with ideal requirements → Identifies nutrient gaps → Suggests fertilizer types and quantities for optimal growth.

Presentation Layer

- HTML
- CSS
- FLASK

Application Layer

- Python
- Flask

Data Layer

- CSV Files
- External Data Sources (Government and Kaggle datasets)

Source Code

Project code repository is available at Link

Methodology

- Data collection (government, Kaggle)
- Machine learning models (Random Forest)
- System testing and evaluation

Products, Tools & Utilities

- Python
- Kaggle
- Random Forest

Infrastructure

- Python
- AWS
- GitHub
- Flask and Kaggle

API

- https://www.kaggle.com/docs/api
- https://data.gov.in/
- https://openweathermap.org/api
- https://www.soilgrids.org/api

Wireframe | UI

INTELLIGENT IRRIGATION AND CROP MONITORING SYSTEM				
Dashboard Crop	rop Fertilizer Disease Logout			
Welcome to the Intelligent Irrigation and Crop Monitoring System Optimize your irrigation, monitor crop health, and increase your yield with advanced analytics and Al-driven insights. Get Started				

	Sign Up
Username	
Password	
	Sign Up
Δ	lready have an account? Log in

	Login
Usernan	ie
Passwor	d
	Login
	Don't have an account? Sign up

INTELLIGENT IRRIGATION AND CROP MONITORING SYSTEM			
Dashboard Crop Ferliker Disease Logout			
NITROGEN			
Enter the value			
PHOSPHOROUS			
Enter the value			
POTTASIUM			
Enter the value			
CROP WANT TO GROW			
Select			
Predict			

	Deabhard Over Follows Disease Level
	Dashboard Crop Fertilizer Disease Logout
	Crop: Tomato
	Disease: Yellow Leaf Curl Virus
	Cause of disease:
1	TYLCV is transmitted by the insect vector Bemisia tabaci in a persistent-circulative nonpropagative manner. The virus
	can be efficiently transmitted during the adult stages.
	2. This virus transmission has a short acquisition access period of 15–20 minutes, and latent period of 8–24 hours.
	How to prevent/cure the disease
	1. Currently, the most effective treatments used to control the spread of TYLCV are insecticides and resistant crop
	varieties.
	. The effectiveness of insecticides is not optimal in tropical areas due to whitefly resistance against the insecticides;
	erefore, insecticides should be alternated or mixed to provide the most effective treatment against virus transmission.
	Other methods to control the spread of TYLCV include planting resistant/tolerant lines, crop rotation, and breeding for
	resistance of TYLCV. As with many other plant viruses, one of the most promising methods to control TYLCV is the production of transgenic tomato plants resistant to TYLCV.

Application Screenshots

INTELLIGENT IRRIGATION AND CROP MONITORING SYSTEM			
Dashboard Crop Fertilizer Disease Logout			
Welcome to the Intelligent Irrigation and Crop Monitoring System			
Optimize your irrigation, monitor crop health, and increase your yield with advanced analytics and Al-driven insights.			
Get Started			

	Login
Username	
Password	
	Login
	Don't have an account? Sign up

TELLIG	SENT IRRIGATION AND CROP MONITORING SYSTEM
	Dashboard Crop Fertilizer Daslasse Logout
	NITROGEN
	Enter the value
	PHOSPHOROUS
	Enter the value
	POTTASIUM
	Enter the value
	CROP WANT TO GROW
	Select
	Predict

ITELLIGENT IRRIGATION AND CROP	PMONITORING SYSTEM
	Dashboard Crop Ferlilizer Disease Logout
NITROGEN	
Enter the value	
PHOSPHOROUS	
Enter the value	
POTTASIUM	
Enter the value	
PH	
Enter the value	
RAINFALL	
Enter the value	
STATE	
Select State	
CITY	
	Predict

INTELLIGENT IRRIGATION AND GROP MONITORING S	oronem .	
Dashbo	occard Crop Fertilizer Disease Logout	
Plea	ase upload the image Choose file No filhosen	
	Predict	

TELLI	ELLIGENT IRRIGATION AND CROP MONITORING SYSTEM		
	Dashboard Crop Fertilizer Disease Logout		
	Crop: Tomato		
	Disease: Yellow Leaf Curl Virus		
	Cause of disease:		
	TYLCV is transmitted by the insect vector Bemisia tabaci in a persistent-circulative nonpropagative manner. The virus can be efficiently transmitted during the adult stages.		
	2. This virus transmission has a short acquisition access period of 15–20 minutes, and latent period of 8–24 hours.		
	How to prevent/cure the disease		
	Currently, the most effective treatments used to control the spread of TYLCV are insecticides and resistant crop varieties.		
	2. The effectiveness of insecticides is not optimal in tropical areas due to whitefly resistance against the insecticides;		
	therefore, insecticides should be alternated or mixed to provide the most effective treatment against virus transmission.		
	3. Other methods to control the spread of TYLCV include planting resistant/tolerant lines, crop rotation, and breeding for		
	resistance of TYLCV. As with many other plant viruses, one of the most promising methods to control TYLCV is the		
	production of transgenic tomato plants resistant to TYLCV.		

Project / Product Roadmap | Milestones | Features

Short Term	Mid Term	Long Term
 Crop recommendation based on soil and weather data. Fertilizer suggestions based on nutrient levels. User-friendly interface for data input. Data collection from publicly available datasets (e.g., Kaggle, government sites). 	 Real-time weather and soil data integration. Personalized crop management advice. Automated crop growth monitoring. Improved recommendation accuracy with more data. 	 Al-driven prediction of future crop yields. Sustainability and resource optimization suggestions. Integration with IoT devices for live data collection. Global expansion with multi-region crop recommendations

Project Portal

Project Portal / website is available at Link

Presentation

Project presentation (this document) is available at Link

Requirement Document / Specification

Project requirement document / specification is available at Link

Technical Document / Specification

Project technical document / specification are available at Link

Source Code

Project code repository is available at Link

Wireframe | UI

Project wireframe / UI designs are available at Link

Application

Application is available at Link

DT Playbook

Project DT Playbook is available at Link

Overview Video

Project overview video is available at Link

Video provides project overview, presentations, journey wise Wireframe, UI, application demo as required and as applicable.

Thanks

