Colle 3 filière PCSI Vendredi 10 octobre 2025

Planche 1

- 1. Soit *x* un réel. Quelle est la définition de la partie entière de *x*? Caractérisation par encadrement. Énoncé et démonstration.
- 2. Soit $n \in \mathbb{N}^*$. Déterminer l'ensemble des complexes z tels que $\Re \varepsilon(z^n) = \operatorname{Im}(z^n)$.
- 3. Pour tout $\alpha \in \mathbb{R}$, on pose

$$E_{\alpha} = \{z \in \mathbb{C} | z^3 + 2z^2 - e^{i\alpha}z - 2e^{i\alpha} = 0\}$$

Montrer que $\bigcap_{\alpha \in \mathbb{R}} E_{\alpha} \neq \emptyset$. En déduire par factorisation l'ensemble E_{α} pour tout $\alpha \in \mathbb{R}$. Déterminer une condition nécessaire et suffisante sur α pour que les éléments de E_{α} forment un triangle rectangle.

Planche 2

- 1. Qu'appelle -t-on un argument d'un complexe non nul? Inégalité triangulaire dans ℂ et son cas d'égalité. Énoncé et démonstration.
- 2. Soit $\theta \in \mathbb{R}$. Déterminer l'ensemble des complexes z vérifiant

$$z^4 - 2\cos(\theta)z^2 + 1 = 0$$

3. Soit $(a, b) \in \mathbb{C}^2$. Montrer que

$$|a-b|^2 \le (1+|a|^2)(1+|b|^2)$$

et étudier les cas d'égalité.

Planche 3

- 1. Soit $n \in \mathbb{N}^*$. Description et cardinal de l'ensemble des racines n-ièmes de l'unité. Énoncé et démonstration.
- 2. Soit a, b deux complexes distincts dans \mathbb{U} et $z \in \mathbb{C}$. On pose

$$u = \frac{z + ab\overline{z} - a - b}{a - b}$$

Montrer que u^2 est un réel.

3. Soit $(z, z_1, z_2, z_3) \in \mathbb{C}^4$. On suppose que $z_1 + z_2 + z_3 = 1$ et $z_1 z_2 z_3 = 1$ et $|z_1| = |z_2| = |z_3| = 1$. En développant $(z - z_1)(z - z_2)(z - z_3)$, déterminer les valeurs possibles de (z_1, z_2, z_3) puis examiner la réciproque.

Bonus

Soit $(a, b, c, d) \in \mathbb{C}^4$. À quelle condition l'application $z \mapsto \frac{az+b}{cz+d}$ stabilise-t-elle \mathbb{U} ?