BIAS CORRECTED CLIMATE FORCING DATASETS FOR LAND SURFACE MODELLING OVER NORTH AMERICA

Presenter: Mohamed Elshamy

Collaborators: Elvis Asong, Dan Princz, Alex Cannon, Al Pietroniro, Howard

Wheater & John Pomeroy

Collaborators: Zhenhua Li, Dan Princz, Yanping Li, Alex Cannon

STORY

- Assess Impacts of Climate and Land Use/Cover Change on the Hydrology of MRB & SRB & Uncertainty to Forcing Data ... CCRN objectives
- MESH was selected to do the hydrological modelling ... MESH requires 7 met variables at sub-daily time steps
- MRB is affected by permafrost

 requires continuous simulations, early start, a lot of spinning to properly initialize a deep soil profile
- Looked around for available datasets, pros/cons, hydrological performance, etc.
- Decided to calibrate using GEM-CaPA
- ... Bias Correction ...

DATASETS

- What Datasets are available with all 7 variables:
 - Princeton 1901-2012 3hrourly 0.5° Global
 - WFD 1901-2001 3hourly 0.5° Global
 - WFDEI 1979-2016 3hourly 0.5° Global
 - GEM-CaPA 2002-Now hourly (6hourly) 10-15km NA
 - CanRCM4 1951-2100 hourly 0.5° NA (an Ensemble of 15 members: RCP8.5 CanESM2)
 - WRF 2000-2015 hourly 4km (CTL + PGW corresponding to 2080s) Western Canada
 - NARCAPP daily
 - CORDEX-NA daily

COMPARISON OF DATASETS - PR

15 Ensemble Members – MRB Average Increasing Precipitation Trend starting 2010

COMPARISON OF DATASETS - TA

15 Ensemble Members – MRB Average Increasing Temperature Trend accelerating starting 2000

COMPARISON OF DATASETS - WIND

BIAS CORRECTION

- Adjusting model-simulated quantities to remove systematic errors relative to reference data
- Often criticized to destroy physical relations, underestimates variability, etc.
- To overcome this, to some extent, we used Alex Cannon Multi-variate quantile mapping – to preserve some physical realism. Fitting is done separately for each month
- Objective: Bias correct CanRCM4 & WRF: what is the reference dataset?
 - GEM-CaPA too short for CanRCM4 but worked for WRF
 - WFDEI biased vs GEM-CaPA, especially Windspeed
 - Princeton more biased: hotter and drier in general
 - 2 stages: correct WFDEI vs GEM-CaPA: the result is long enough, similar to GEM-CaPA
 - Then used WFDEI-GEM-CaPA to correct CanRCM4 ensemble
 - We had CanRCM4-GEM-CaPA and CanRCM4-WFDEI

Cannon et al. (2015)

QUANTILE MAPPING

- The simplest bias correction would correct the mean of the two distributions to be equal (equivalent to Delta Change Factor methods)
- Quantile mapping divides the distribution into bins to correct the higher moments as well as the mean
- Assumes stationarity

 biases remain similar in the future

WFDEI-GEM-CAPA

WFDEI-GEM-CAPA: BIAS CORRECTION PERFORMANCE

OBTAINING WFDEI-GEM-CAPA

- Dataset has been already published at:
 Federated Research Data Repository (http://dx.doi.org/10.20383/101.0111)
- Paper about the dataset was submitted to ESSD and is available online at: https://www.earth-syst-sci-data-discuss.net/essd-2018-128/
- The dataset is being used to bias correct CanRCM4 ensemble correction is done, currently in evaluation phase – a similar publication will be prepared: CanRCM4-WFDEI-GEM-CaPA

WRF-GEM-CAPA

- Same procedure applied (multi-variate quantile mapping) to correct WRF_CTL and WRF_PGW over the Western Canada Domain
- Main Biases with WRF: cold in spring, more precipitation especially summer
- Main disadvantage: WRF 4km had to be aggregated to 10km (0.125°)
- Not yet published but can be made available it is on Graham as well as the uncorrected one (which was partly made available on CaSPAr

WRF-GEM-CAPA – PR

- The annual series show that the bias is corrected (WRF-CTL-Cor matches CaPA) and inter-annual variability is preserved for WRF-CTL and WRF-PGW
- Average Annual Oct 2004 Sep 2015
 - CaPA: 486 mm
 - WRF-CTL (Before, After Correction): 550, 467 mm
 - WRF-PGW (Before, After Correction: 702, 571 mm
- The climate change signal is not preserved (PGW CTL) after correction but better than the SV case except for summer months ... may be patterns are shifting in space

WRF-GEM-CAPA — TA

- Average Annual Oct 2004 Sep 2015
 - GEM: 271.02 K
 - WRF-CTL (Before, After Correction): 267.17, 271.00 K
 - WRF-PGW (Before, After Correction: 273.18, 276.97 K
- The monthly distributions show that bias was corrected giving identical seasonal distribution to GEM over the correction period
- The climate change signal is preserved (PGW CTL) after correction

SOME NOTES

- LEAP YEARS
 - CanRCM4 uses 365-day Calendar
 - We removed Feb 29 from WFDEl and GEM-CaPA prior to Bias Correction
 - WFEDEI-GEM-CaPA has 365-day Calendar
 - Quick Fix: repeat Feb 28 data for Feb 29 on Leap years
 - Suggestions?
 - WRF-GEM-CaPA has Leap years

- Observation Height
 - MESH requires height for humidity& temperature and windspeed
 - GEM-CaPA is at 40m
 - WFDEI is surface (2 and 10m)
 - WFDEI-GEM-CaPA is at 40m
 - CanRCM4 is available at Surface and LML (about 38m but varies)
 - CanRCM4-WFDEI-GEM-CaPA is at 40m
 - WRF is surface
 - WRF-GEM-CaPA is at 40m

SUMMARY

- New composite datasets have been created:
 - WFDEI-GEM-CaPA (1979-2016) 3h 0.125 NA
 - WRF-GEM-CaPA (2000-2015) 1h 0.125 WC
 - CanRCM4-WFDEI-GEM-CaPA 3h 0.125 NA
- Original ones remain for comparison
- Hydrological modelling is used for further evaluation
- Is GEM-CaPA good enough to base all the correction on?