Music Box Project

- Churn Prediction Overall Description
- Data Preprocessing
- Feature Engineering
- Modeling Design
- Performance Evaluation
- Expected Commercial Value

Target: Build an churn prediction model based on user's behavior from using our music box product

We want to know whether user A is still active during our focused time period who once has activities before the snapshot time?

Data Preprocessing

- Raw Data Description
 - Only play log data included in my project
 - Data size: 14.1 G
 - Attributes: uid, device, song id, play time, song length, song name, singers
- Data Exploration
 - o 871702 Users, 164,667,143 play records
 - o Time series: 2018-03-01 to 2018-03-09; 2018-03-29 to 2018-05-12
- Platform: Local Computer (Macbook pro with 16G RAM)
 - Programming Language: python
 - Package: Spark(python based), pandas, scikit-learn, keras

Feature Engineering

- Useful attributes: uid, date, song id, play time, song length
- Data Cleaning
 - Remove records satisfying any of the following:
 - Any attributes Including null values
 - Uid, song id, play time, song length including characters
 - Play time is larger than song length
- Feature Design
 - A total of 11 features from 3 categories
 - frequency on play log(last 1,3,7,14,30 days)
 - Recency
 - Play time percentage per song(last 1,3,7,14,30 days)

Modeling Design - (I)

- Design the target(label)
 - Snapshot date: 2017-04-29
 - All time window: 2017-03-29 to 2017-05-12
 - Focusing time window: 2017-04-29 to 2017-05-12
 - potential churners: the users who have play activities before the snapshot date but no activity during the focusing time window(otherwise, it could be seen as the potential loyaltees)
- Balance the data
 - Original data
 - loyaltees : churners = ~200k: ~330k (38%: 62%) [churn rate: 39%]
 - Balanced data
 - loyaltees : churners = ~200k: ~200k (50%: 50%)

Modeling Design - (II)

Model Selection

Model	Logistic Regression	Random Forest	RF with Tuning	Neural Network
Hyperparameter	C = 0.1	N_estimator	N_estimator = 300,	11->8->4->1
Setting	L2 penalty	= 10	max_depth = 30	

- Hyperparameter Tuning
 - Training data sets : Testing data sets = 80% : 20%
 - 5-fold cross validation on training sets for hyperparameter tuning.

Performance Evaluation

Expected Commercial Value

- Top 3 features influencing the churn
 - last 30 days play time percentage of song length
 - last 14 days play time percentage of song length
 - recency

- Suggestions on retaining users
 - Send push notifications to users with high churn possibility, i.e. users who don't have any play activity for 14 days.
 - Recommend potential favorite songs to users, especially for those whose play time percentage per song has decreased significantly for last 14 or 30 days.

Thank you for your watching!

