

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 3

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 3

Reetinder Sidhu

Department of Computer Science and Engineering

FINITE STATE MACHINES - 3

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Finite State Machines 3
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

 Finite State Machine Design Example (Mealy)

FINITE STATE MACHINES - 3

How to Design Synchronous Sequential Logic Circuits? (Mealy FSM)

- Determine inputs and outputs
- State transition diagram
- Encoding tables
 - State
 - Output
- State transition and output table
- Logic minimization of state transition and output table yields Boolean formulas for
 - next state logic
 - output logic
- Logic circuit construction

Source: platformliftco

 Problem is to design the control logic for a lift in a building of two floors: ground and first

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

 Control logic should output signals to control the motor that takes the lift up and down

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise
- Elevator initially on ground floor

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise
- Elevator initially on ground floor

Source: platformliftco

State Transition Diagram

- A visual representation of an FSM
 - States represent by circles (called nodes/vertices)
 - Transitions between states represented by directed line segments (called arcs/edges/arrows
 - Each edge is labeled with labeled with a Boolean formula of inputs as well as outputs corresponding to the transition

- In each clock cycle, only one state is active
- Active state transitions occur at the rising edge of the clock signal
- If a state is active in the current clock cycle, and it has an outgoing transition labeled with a Boolean formula which is 1 in that clock cycle, then the destination state of the transition will be the active state in the next clock cycle

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- **State f0** Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- **State f0** Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- The switch signal switch_up is 0
 when the switch indicates the lift
 should go down and 1 when switch
 indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors
- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- State f0 Lift on ground floor or in transit to ground floor
- State f1 Lift on first floor or in transit to first floor

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table State Encoding (s) f0 0 f1 1

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding (s)
f0	0
f1	1

Elevator Output Encoding Tables

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding (s)
f0	0
f1	1

Elevator Output Encoding Tables

on_ground

Meaning	Encoding
Lift on ground floor	1
Lift anywhere else	0

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding (s)
f0	0
f1	1

Elevator Output Encoding Tables

on_ground

Meaning	Encoding
Lift on ground floor	1
Lift anywhere else	0

on_first

Meaning	Encoding
Lift on first floor	1
Lift anywhere else	0

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding (s)
f0	0
f1	1

Elevator Output Encoding Tables

on_ground on_first

Meaning Encoding
Lift on ground floor 1
Lift anywhere else 0
Lift any

ng	Meaning	Encoding
	Lift on first floor	1
	Lift anywhere else	0

lift_up

Meaning	Encoding
Lift going from ground to first floor	1
Lift anywhere else	0

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding (s)
f0	0
f1	1

Elevator Output Encoding Tables

on_ground
on_first

Meaning
Lift on ground floor
Lift anywhere else

on_first

Meaning
Lift on first floor
Lift anywhere else

Lift anywhere else

on_first

Meaning
Lift on first floor
Lift anywhere else

o

lift_up

Meaning	Encoding
Lift going from ground to first floor	1
Lift anywhere else	0

lift_down

Meaning	Encoding
Lift going from first to ground floor	1
Lift anywhere else	0

FINITE STATE MACHINES - 3 State Transition and Output Table

Elevator Example State Tansition and Output Table

Current State	· · · · · · · · · · · · · · · · · · ·		Next State
S	on_floor	switch_up	s'
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

FINITE STATE MACHINES - 3 State Transition and Output Table

Elevator Example State Tansition and Output Table

Current State	Inputs		Outputs			
5	on_floor	switch_up	on_ground	on_first	lift_up	lift_down
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

FINITE STATE MACHINES - 3 State Transition and Output Table

Elevator Example State Tansition and Output Table

Current State	Inputs		Next State	Outputs			
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Current State	Inputs		Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	Inputs		Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	Inputs		Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	Inputs		Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State		puts	Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	In	puts	Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	Inputs		Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Current State	In	puts	Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0						
1	1	1						

Current State	In	puts	Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0						
1	1	1						

Current State	Inputs		Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0						
1	1	1	1	0	1	0	0	

Current State	In	puts	Next State	Outputs				
5	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0						
1	1	1	1	0	1	0	0	

Current State		puts	Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0	0	0	0	0	1	
1	1	1	1	0	1	0	0	

FINITE STATE MACHINES - 3 Logic Minimization

State transition table:

Current State	In	puts	Next State	Outputs				
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down	
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	1	0	0	1	0	
1	0	1	1	0	0	1	0	
1	1	0	0	0	0	0	1	
1	1	1	1	0	1	0	0	

Minimized Boolean Formula

Logic Minimization

PES UNIVERSITY

State transition table:

State transition table.										
Current State	In	puts	Next State	Outputs						
s	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down			
0	0	0	0	0	0	0	1			
0	0	1	0	0	0	0	1			
0	1	0	0	1	0	0	0			
0	1	1	1	0	0	1	0			
1	0	0	1	0	0	1	0			
1	0	1	1	0	0	1	0			
1	1	0	0	0	0	0	1			
1	1	1	1	0	1	0	0			

Minimized Boolean Formula

• K-map for s':

Minimized formula for s':
 s' = s on_floor + on_floor switch_up

Logic Minimization

State transition table:

State transition table.									
Current State	In	puts	Next State	Outputs					
S	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down		
0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	1		
0	1	0	0	1	0	0	0		
0	1	1	1	0	0	1	0		
1	0	0	1	0	0	1	0		
1	0	1	1	0	0	1	0		
1	1	0	0	0	0	0	1		
1	1	1	1	0	1	0	0		

Minimized Boolean Formula

Minimized formula on ground: on_ground = \overline{s} on_floor $\overline{switch_up}$

Logic Minimization

PES UNIVERSITY ONLINE

State transition table:

State transition table.									
Current State	In	puts	Next State	Outputs					
s	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down		
0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	1		
0	1	0	0	1	0	0	0		
0	1	1	1	0	0	1	0		
1	0	0	1	0	0	1	0		
1	0	1	1	0	0	1	0		
1	1	0	0	0	0	0	1		
1	1	1	1	0	1	0	0		

Minimized Boolean Formula

Minimized formula on_first: on_first = s on_floor switch_up

Logic Minimization

PES UNIVERSITY

State transition table:

State transition table.									
Current State	In	puts	Next State	Outputs					
s	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down		
0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	1		
0	1	0	0	1	0	0	0		
0	1	1	1	0	0	1	0		
1	0	0	1	0	0	1	0		
1	0	1	1	0	0	1	0		
1	1	0	0	0	0	0	1		
1	1	1	1	0	1	0	0		

Minimized Boolean Formula

 Minimized formula for lift_up: lift_up = s on_floor + s̄ on_floor switch_up

Logic Minimization

PES UNIVERSITY

State transition table:

State transition table.										
Current State	In	puts	Next State	Outputs						
s	on_floor	switch_up	s'	on_ground	on_first	lift_up	lift_down			
0	0	0	0	0	0	0	1			
0	0	1	0	0	0	0	1			
0	1	0	0	1	0	0	0			
0	1	1	1	0	0	1	0			
1	0	0	1	0	0	1	0			
1	0	1	1	0	0	1	0			
1	1	0	0	0	0	0	1			
1	1	1	1	0	1	0	0			

Minimized Boolean Formula

FINITE STATE MACHINES - 3 Logic Diagram

- Next state formulas:
 - $ightharpoonup s' = s \overline{on_floor} + on_floor switch_up$

- Output formulas:
 - on_ground = \bar{s} on_floor $\bar{switch_up}$
 - on_first = s on_floor switch_up
 - ▶ $lift_up = s \overline{on_floor} + \overline{s} on_floor switch_up$
 - ▶ $lift_down = \overline{s} on_floor + s on_floor \overline{switch_up}$

FINITE STATE MACHINES - 3 Logic Diagram

- Next state formulas:
 - $ightharpoonup s' = s \overline{on_floor} + on_floor switch_up$

- Output formulas:
 - ightharpoonup on_ground = \overline{s} on_floor switch_up
 - on_first = s on_floor switch_up
 - ▶ $lift_up = s \overline{on_floor} + \overline{s} on_floor switch_up$
 - ▶ $lift_down = \overline{s} on_floor + s on_floor \overline{switch_up}$

Elevator Example Logic Diagram

Think About It

Design of a Moore and a Mealy FSM for the same problem (example 3.7 of your textbook)