Syllabus

Aprendizaje de Máquina aplicado

Marco Teran EAFIT

Contenido

- 1 Presentación
- 2 Información del curso
 - Objetivos
 - Horarios
 - Calificación y expectativas del curso
 - Proyecto aplicado
 - Presentación de tópicos avanzados
- Bibliografía
- 4 Contactos

 Marco Teran
 2025
 Syllabus
 2 /

Presentación

Información del curso

Información del curso

Aprendizaje de Máquina aplicado

Este curso de **Aprendizaje de Máquina aplicado** combina fundamentos teóricos con implementación práctica y toma de decisiones basada en evidencia. Aborda el ciclo completo de un proyecto de *Machine Learning* (definición del problema, datos, modelado, validación, despliegue ligero) con énfasis en buenas prácticas, interpretabilidad y comunicación de resultados.

Marco Teran 2025 Syllabus 8 / 29

Enfoque del curso

- Teoría + práctica: principios estadísticos y de generalización → implementación reproducible en notebooks y repositorios.
- Cobertura equilibrada: modelos lineales, SVM, ensambles, no supervisado, *intro* a *deep learning* y series de tiempo.
- Herramientas estándar: Python, scikit-learn, pandas, matplotlib; vista corta a TensorFlow/Keras cuando sea pertinente.
- **Énfasis aplicado:** tratamiento de clases desbalanceadas, selección de características, *regularización*, *cross-validation*, *hyper-parameter tuning*.
- Comunicación: reportes claros, tableros de métricas y argumentos sólidos para decisiones técnicas.

Marco Teran 2025 Syllabus

Objetivo general del curso

Aplicar técnicas y algoritmos de *Machine Learning* para resolver problemas de clasificación y regresión con datos reales, garantizando validación honesta, interpretabilidad y comunicación efectiva de resultados.

 Marco Teran
 2025
 Syllabus
 10 / 29

Objetivos específicos

Al finalizar, el estudiante será capaz de:

- Diseñar el flujo de trabajo completo de un proyecto ML (CRISP-DM) con control de calidad de datos.
- Preprocesar, explorar y visualizar datos; definir métricas apropiadas al problema y al *stakeholder*.
- Entrenar y comparar modelos base: regresión/CLF lineales, SVM, árboles y ensembles (RF, Gradient Boosting, XGBoost).
- Implementar estrategias para *clases desbalanceadas* (re-muestreo, costes, umbrales).
- Reducir dimensionalidad (PCA) y seleccionar características con criterio estadístico.
- Introducir arquitecturas de *deep learning* cuando aporten valor (MLP, CNN/RNN para casos acotados).
- Modelar series de tiempo con enfoques clásicos y baselines robustos.
- Evaluar, interpretar y comunicar con rigor (curvas ROC/PR, *calibration*, SHAP/permutation).

Marco Teran 2025 Syllabus 11 / 29

Contenido

- Introducción y CRISP-DM: problema, métricas, baselines, división honesta de datos.
- Preprocesamiento y EDA: limpieza, pipelines, feature engineering.
- Clases desbalanceadas: re-muestreo, costes, umbral, métricas adecuadas.
- Modelos lineales y regularización: Ridge/Lasso/Elastic Net; regresión logística.
- 5 SVM: núcleos, márgenes y tuning.
- **Ensamble**: Árboles, Random Forest, Gradient Boosting, XGBoost.
- **Reducción de dimensionalidad**: PCA & proyección; selección de variables.
- **No supervisado**: *k*-means, clustering jerárquico, validación.
- **Intro Deep Learning**: MLP; CNN/RNN breves para casos acotados.

Marco Teran 2025 Syllabus 12 / 29

Horario fijo

Día	Hora inicio	Hora fin	Salón
Jueves	18:00	21:00	B 14 201

Cuadro 1: Sesiones semanales.

textbfNota: Los jueves comprendidos para este curso son las fechas listadas en el cronograma.

Marco Teran 2025 Syllabus 13 / 29

Cronograma tentativo

Sesión	Fecha			
		Tema	Evaluación	
1	11/09/2025	Intro + CRISP-DM; métricas + baselines	_	
2	18/09/2025	EDA, preprocesamiento + pipelines	Se asigna Entrega 1	
3	25/09/2025	Modelos lineales + regularización	Entrega 1 (semanal)	
4	02/10/2025	SVM: núcleos, márgenes, CV	_ ` ` ` ,	
5	09/10/2025	Ensambles: RF, GBM, XGBoost	Entrega 2 (mitad del curso)	
6	16/10/2025	PCA + selección de features		
7	23/10/2025	No supervisado: k-means, jerárquico	_	
8	30/10/2025	Intro DL (MLP) $+$ nociones de series de tiempo	_	
9	05/11/2025	Cierre: interpretabilidad, calibración, comunicación	Examen final $+$ Entrega $3+$ Presentaciones	

Cuadro 2: Sesiones (jueves 18:00-21:00; cierre el 05/11).

Métodos de evaluación

(Sujeto a ajustes)

Componente	Porcentaje	
Proyecto aplicado (3 entregas: semanal, mitad, final)	35 %	
Entrega 1 (2 semana)	5 %	
Entrega 2 (mitad del curso)	10 %	
Entrega 3 (día final)	20 %	
Examen final (teórico-práctico)	20%	
Presentación de tópicos avanzados	20%	
Talleres, tareas cortas y <i>quices</i>	25%	
Las actividades de taller se asignarán de forma continua para reforzar contenidos.		

Cuadro 3: Esquema de evaluación.

Proyecto aplicado

Proyecto aplicado: objetivo

Ejecutar un proyecto de *Machine Learning* de principio a fin con **CRISP-DM**, garantizando: datos de calidad, validación honesta, selección de modelos apropiados, interpretación de resultados y comunicación clara orientada a decisiones.

Marco Teran 2025 Syllabus 17 / 29

Entregas del proyecto

Entrega 1 (semanal)

- Problema y métrica; EDA y data card; baseline reproducible.
- **ZIP** con *notebook*, reporte breve y repo Git actualizado.

Entrega 2 (mitad del curso)

- Comparación de 2–3 familias (lineales/SVM/árboles/ensambles); tuning y validación.
- Análisis de umbral/desbalance y PCA/selección de features.

Entrega 3 (día final)

- Modelo final + *interpretabilidad* (SHAP/permutation), *calibration* y recomendaciones.
- **ZIP** con *notebook*, reporte ejecutivo y póster.

Marco Teran 2025 Syllabus 18 / 29

Conjuntos de datos sugeridos

Conjuntos de datos

- Google Play Store Apps
- Trip Advisor Hotel Reviews
- Netflix Movies and TV Shows
- Avocado Prices
- Fashion MNIST
- Students Performance in Exams
- Credit Card Fraud Detection
- Melbourne Housing Market
- IBM HR Analytics Employee Attrition & Performance
- UJIIndoorLoc
- COVID19 Global Forecasting (Week 5)

Marco Teran 2025 Syllabus 20 / 29

Presentación de tópicos avanzados

Presentación de tópicos avanzados

Selecciona uno (individual o en parejas) para una charla corta y un demo:

- Optimización y tuning avanzados: Bayesian/Optuna, early stopping.
- Interpretabilidad moderna: SHAP de interacciones, counterfactuals.
- **Desbalance extremo**: focal loss, *cost-sensitive* pipelines.
- AutoML responsable: límites, fugas, gobernanza.
- **Graph ML** (nociones): node/edge tasks, message passing.
- Fairness en ML: métricas y trade-offs.
- MLOps ligero: pipelines, model cards, versiones y drift.

Marco Teran 2025 Syllabus 22 / 29

Bibliografía

Bibliografía esencial

- Hastie, Tibshirani, Friedman (2009). The Elements of Statistical Learning. Springer.
- Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Goodfellow, Bengio, Courville (2016). Deep Learning. MIT Press.
- scikit-learn documentation: https://scikit-learn.org/

Marco Teran 2025 Syllabus 25 / 29

Contactos

Repositorio de GitHub

Repositorio Aprendizaje de Máquina aplicado **url:** github.com/marcoteran/machinelearning

Marco Teran 2025 Syllabus 28 / 29

¡Muchas gracias por su atención!

¿Preguntas?

Contacto: Marco Teran
webpage: marcoteran.github.io/
e-mail: mtteranl@eafit.edu.co

Marco Teran 2025 Syllabus 29 / 29