POKHARA UNIVERSITY

Level: Bachelor Programme:BE Semester:Fall

Year : 2020

Course: Numerical Methods

Full Marks: 100 Pass Marks: 45 Time: 3hrs.

8

7

8

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- 1. a) Find the positive real root of the equation $\cos x + e^x + x^2 = 3$ using False position method, correct to 3 decimal places.
 - b) Discuss the drawbacks of Newton Raphson method. Find the real root of the equation $x \sin x \cos x = 0$ using Newton Raphson method, correct to 3 decimal places.
- 2. a) From following experimental data, it is known that the relation connects v and t as $v = at^b$. Find the possible values of a and b.

V 350 400 500 600 T 61 26 7 2.6

b) The following table gives the viscosity of oil as the function of temperature. Use Lagrange's interpolation formula to find the viscosity of oil at a temperature of 140 degree Celsius.

T(degCelsius)	110	130	160	190
Viscosity	10.8	8.1	5.5	4.8

3. a) Integrate the given integral using Romberg integration.

$$\int_{1}^{2} \frac{1}{1+x^3} dx$$

b) Compute the integral using Gaussian 3 - point formula.

$$\int_2^5 \frac{e^x + \sin x}{1 + x^2} dx$$

4. a) Solve the equation by Relaxation method:

$$9x - y + 2z = 9$$
, $x + 2y - 2z = 15$, $2x - 2y - 13z = -17$

b) Determine the largest eigenvalue and the corresponding eigenvector of

the matrix:
$$A = \begin{bmatrix} 1 & 4 & 4 \\ 4 & 1 & 8 \\ 4 & 8 & 1 \end{bmatrix}$$
 using the power method

- 5. a) Apply Runge Kutta fourth order method to find an approximate value of y when x = 0.3 give that: $y' = 2.5y + e^{0.3x}$; with an initial y(0) = 1, taking h = 0.3
 - b) Solve the Boundary Value Problem (BVP) using Shooting method by dividing into four sub-interval employing Euler's method.

$$y'' + 2y' - y = x$$

subject to boundary condition y(1) = 2 and y(2) = 4

6. a) Solve the Poisson equation $\nabla^2 f = 4x^2y + 3xy^2$, over the square domain $x \le 3$, $1 \le y \le 3$, with fon the boundary is given in figure below. Take h = k = 1

b) Solve the following set of equations by using LU decomposition 7 method.

2×5

$$3x + 2y + 7z = 32,2x + 3y + z = 40,3x + 4y + z = 56$$

- 7. Write short notes on: (Any two)
 - a) Finite differences
 - b) Picard's iterative formula.
 - c) Algorithm for second order Runge Kutta (RK-2) method