Л. Йовков

НПМГ "Акад. Л. Чакалов"

31.03.2020

Нека  $\alpha$  е дадена равнина в пространството и  $\boldsymbol{n}$  е права, пробождаща равнината в точка  $\boldsymbol{A}_1$  (вж. фигура 1). Нека  $\boldsymbol{A}$  е произволна точка от  $\boldsymbol{n}$ ,  $\boldsymbol{A} \neq \boldsymbol{A}_1$ . През т.  $\boldsymbol{A}$  минава единствена права  $\boldsymbol{p} \perp \alpha$ . Да означим прободната точка на  $\boldsymbol{p}$  и  $\alpha$  с  $\boldsymbol{O}$ :  $\boldsymbol{p} \cap \alpha = \boldsymbol{O}$ . Отсечката  $\boldsymbol{A}\boldsymbol{A}_1$  с краища върху правата  $\boldsymbol{n}$  и върху равнината  $\alpha$  се нарича наклонена към равнината.



Точката O представлява ортогоналната (правоъгълната) проекция на точката A върху равнината  $\alpha$ . Въвеждаме следните дефиниции.

### Дефиниция 1

Изображението, при което на всяка точка и́ се съпоставя нейната ортогонална проекция върху равнина, се нарича ортогонално проектиране.

Ще използваме означението  $\delta_{\perp}$  за означаване на ортогонална проекция. Така например  $\delta_{\perp}(A) = O$ .

## Дефиниция 2

Всяка равнина, върху която се извършва ортогонално проектиране, се нарича проекционна равнина.

На фигура 1 проекционната равнина е  $\alpha$ 

Ясно е, че всяка точка от проекционната равнина съвпада с ортогоналната си проекция:

$$O \in \alpha \Rightarrow \delta_{\perp}(O) = O$$
.

По означенията на фигура 1:

$$\delta_{\perp}(A) = O, \ \delta_{\perp}(A_1) = A_1 \Rightarrow \delta_{\perp}(AA_1) = OA_1.$$

Отсечката  $OA_1$  е ортогоналната проекция на наклонената  $AA_1$  върху равнината.

### Дефиниция 3

Разстояние от точка до равнина се нарича дължината на перпендикуляра, спуснат от точката към равнината.

На фигура 1 разстоянието  $\rho$  от точката  $\boldsymbol{A}$  до равнината  $\alpha$  е отсечката  $\boldsymbol{AO}$ :  $\rho(\boldsymbol{A}; \alpha) = \boldsymbol{AO}$ .

### Дефиниция 4

Ортогонална проекция на фигура върху равнина се нарича множеството от ортогоналните проекции на всички точки от тази фигура върху равнината.

На фигура 2 са показани петоъгълникът *ABCDE* и ортогоналната му проекция  $A_1B_1C_1D_1E_1$  върху равнината  $\alpha$ .



Фигура 2: Ортогонална проекция на многоъгълник

### Теорема 1

Равни наклонени имат равни проекции и обратно, на равни проекции им съответстват равни наклонени.

#### Доказателство 1

- 1. Нека MA = MB (вж. фигура 3). Отсечката MO е обща за  $\triangle AOM$  и  $\triangle BOM$ . Тогава  $\triangle AOM \simeq \triangle BOM$  откъдето OA = OB.
- 2. Обратно, нека сега OA = OB. Аналогично: MO е обща страна  $\Rightarrow \triangle AOM \simeq \triangle BOM \Rightarrow AM = BM$ .  $\square$



Фигура 3: Наклонени и проекции

### Следствие 1

Равните наклонени сключват равни ъгли с общия си перпендикуляр.

#### Забележка 1

Ортогоналното проектиране невинаги запазва разстоянията между точките. Това ще е така само ако отсечката, която проектираме, е успоредна на проекционната равнина.

### Забележка 2

Дължината на всяка наклонена, която не е успоредна на проекционната равнина, винаги е по-голяма от дължината на проекцията и́ в тази равнина.

### Дефиниция 5

Ъгъл между права и равнина, които не са перпендикулярни, се нарича ъгълът между правата и ортогоналната и́ проекция в равнината.

На фигура 4 правата n пресича равнината  $\alpha$ . Ортогоналната проекция на n върху  $\alpha$  е правата m. Тогава  $\varphi = \measuredangle(n; \alpha) = \measuredangle(n; m) = \measuredangle AA_1O$ .



Фигура 4: Ъгъл между права и равина

### Пример 1

Нека A'B' = a' е ортогоналната проекция на отсечка AB = a върху равнина  $\alpha$  и  $\measuredangle(AB; \alpha) = \varphi$ . Да се докаже, че  $a' = a\cos\varphi$ .

#### <u>Ре</u>шение 1

Нека  $A'B_1 \parallel AB$ ,  $B_1 \in BB'$ . От успоредника  $A'B_1BA$  имаме  $A'B_1 = a$ , а от  $\Delta A'B'B_1 - \cos \varphi = \frac{a'}{a}$ . Следователно  $a' = a\cos \varphi$ .  $\square$ 



### Пример 2

Дължината на отсечката AB е 13. Разстоянията от точките A и B до равнина  $\alpha$  са 3 и 8. Намерете дължината на ортогоналната проекция на AB в  $\alpha$ .

#### Решение 2

Решението извършете самостоятелно.

### Пример 3

Разстоянията от точки A и B до дадена равнина са 5 и 8. Намерете ъгъла, който правата AB сключва с равнината, ако AB = 6.

#### Решение 3

Решението извършете самостоятелно.

### Пример 4

Дадена е отсечка  $AB = 5\sqrt{3}$ . Разстоянието от точка A до равнина  $\alpha$  е 7,5, а  $\angle(AB; \alpha) = 60^{\circ}$ . Намерете разстоянието от точка B до  $\alpha$ .

#### Решение 4

Решението извършете самостоятелно.

Ще докажем следната важна и често използвана теорема за трите перпендикуляра.

### Теорема 2

Права a, наклонена към равнина  $\pi$ , е перпендикулярна на права b от тази равнина тогава и само тогава, когато ортогоналната проекция a' на a в  $\pi$  е перпендикулярна на b.



Фигура 5: Теорема за трите перпендикудяра

### Доказателство 2

### І. НЕОБХОДИМОСТ

Нека  $a \perp b$ . Ще докажем, че  $a' \perp b$  (вж. фигура 5). Имаме:

### ІІ. ДОСТАТЪЧНОСТ

Нека сега  $a' \perp b$ . Ще докажем, че  $a \perp b$ . Последователно получаваме:

- $\bullet b \bot AA', b \bot a' \Rightarrow b \bot \alpha;$
- $a \in \alpha \Rightarrow b \perp a$ .  $\square$

### Пример 5

Дадени са точки A и B от равнината  $\alpha$  и точка C, нележаща в нея. Правата CA сключва с равнината ъгъл  $30^{\circ}$  и CA = 10,  $CB = 5\sqrt{2}$ . Намерете ъгъла, който правата CB сключва с равнината.



#### Решение 5

Нека точка  $C_1$  е ортогоналната проекция на С в равнината  $\alpha$ . Тогава  $∠AC_1C = 90^{\circ}$ . Означаваме  $\measuredangle \textit{CBC}_1 = \psi$ . Ясно е, че  $0^{\circ} < \psi < 90^{\circ}$ . От  $\triangle ACC_1$  намираме  $CC_1 = 0,5AC = 5.$  Сега от  $\Delta BCC_1$  веднага получаваме ограничението за  $\psi$  намираме  $\psi = 45^{\circ}$ .  $\square$ 



## Пример 6

Дадена е четириъгълна пирамида *ABCDM* с основа квадрата *ABCD* със страна 2. Околният ръб *MD* е перпендикулярен на равнината на основата, а околният ръб *MB* сключва с основата ъгъл 45°. Намерете дължините на околните ръбове на пирамидата.



#### Решение 6

- 1. Имаме, че  $\delta_{\perp}(MB) = DB$   $\Rightarrow \measuredangle[(ABCD); MB] = \measuredangle MBD = 45^{\circ}$ . Но по усл.  $\measuredangle BDM = 90^{\circ}$ , значи  $\measuredangle BMD = 45^{\circ}$ . 2. От  $\triangle ABD$  с Питагорова
- теорема пресмятаме  $BD = 2\sqrt{2}$ . Но BD = DM, откъдето намираме дължината на околния ръб  $DM = 2\sqrt{2}$ .
- 3. От  $\triangle ADM \simeq \triangle CDM$  получаваме AM = CM. С Питагорова теорема за  $\triangle ADM$  пресмятаме  $AM = CM = 2\sqrt{3}$ .



## Пример 7

Катетът AC на равнобедрен правоъгълен  $\triangle ABC$  лежи в равнината  $\alpha$ , а катетът BC сключва с  $\alpha$  ъгъл 45°. Намерете ъгъла, който хипотенузата на триъгълника сключва с равнината  $\alpha$ .

#### Решение 7

Решението извършете самостоятелно.

#### Задача 1

В куба  $ABCDA_1B_1C_1D_1$  намерете тангенса на ъгъла, който правата  $DB_1$  сключва с равнината  $(ADD_1)$ .

### Задача 2

Основата на четириъгълна пирамида е правоъгълник ABCD със страни AB=4 и BC=3. Околният ръб  $DV\bot AD$ ,  $DV\bot CD$  и DV=5. Намерете ъгъла между ръба BV и равнината (ABC).

#### Задача 3

Проекцията на  $\triangle ABC$  в равнината  $\alpha$  е правоъгълният  $\triangle ABD$  ( $\angle ADB = 90^\circ$ ), като AC и BC сключват с  $\alpha$  ъгли съответно 45° и 30°, а разстоянието от C до  $\alpha$  е 5. Намерете дължината на AB.

### Задача 4

Основният ръб на правилна триъгълна призма  $ABCA_1B_1C_1$  има дължина 1. Правата  $AB_1$  сключва с равнината  $(BCC_1)$  ъгъл  $30^\circ$ . Намерете дължината на ръба  $AA_1$ .

### Задача 5

В правилна четириъгълна пирамида ъгълът между околен ръб и основата е **45°**. Намерете тангенса на ъгъла между апотемата на околна стена и основата.

### Задача 6

Дадена е правилна четириъгълна пирамида ABCDV с основен ръб AB=4 и височина VO=2. Намерете ъгъла между правата AC и равнината (BCV).

### Задача 7

В куба  $ABCDA_1B_1C_1D_1$  намерете ъгъла между правата  $D_1C$  и равнината  $(ABC_1D_1)$ .

### Задача 8

Точката O е център на стената  $BCC_1B_1$  на куба  $ABCDA_1B_1C_1D_1$ . Намерете косинуса на ъгъла между правата AO и равнината  $(BDA_1)$ .

#### Задача 9

Основата на триъгълната пирамида ABCD е равнобедрен  $\triangle ABC$  с основа AB=16 и височина към нея с дължина 16. Околните ръбове AD, BD и CD сключват с основата ъгли  $45^\circ$ . Намерете дължините на околните ръбове на пирамидата.

#### Задача 10

В куба  $ABCDA_1B_1C_1D_1$  намерете синуса на ъгъла между правата  $DC_1$  и равнината  $(MCC_1)$ , където M е средата на AB.

#### Задача 11

В правилна четириъгълна пирамида ABCDV точките M и N са среди съответно на ръбовете BV и DV. Отношението на височината на пирамидата към основен ръб е  $\sqrt{2}$ . Намерете ъгъла между правата AB и равнината (AMN).

#### Задача 12

Да се намери разстоянието от точката M до равнината на равнобедрения  $\Delta ABC$ , ако е известно, че AB=BC=13, AC=10, а M е на разстояние  $\frac{26}{3}$  от страните на  $\Delta ABC$ .

#### Задача 13

Основата на четириъгълна пирамида ABCDS е правоъгълникът ABCD, за който AB:AD=1:3. Околните ръбове на пирамидата образуват ъгли  $60^{\circ}$  с основата. Намерете ъгъла между правата DP и равнината (SCD), ако P е средата на SB.

#### Задача 14

Основата на четириъгълна пирамида ABCDS е квадратът ABCD, а околният ръб AS е перпендикулярен на основата. Лицето на  $\Delta SBC$  е два пъти по-голямо от лицето на  $\Delta SAB$ . Намерете ъгъла между височината AF на  $\Delta SAB$  и диагоналната равнина (SAC).