Predicting House Prices

November 2018

Kent Burgess, Esther Chang

Agenda

- Research Overview
- Background & Data Description
- Data Engineering
- Exploratory Data Analysis
- Models
- Results
- Conclusion & Future Studies

Research Overview

Objective: To predict the sale price given number of house features

Tools: Machine Learning algorithms in R

Data: Two sets of data - train data (with sale price) and test data (without) - provided by Kaggle

Research Questions:

- Which model scored the best in predicting sale price for the test data?
- How similar or different was the test scores compared to the training/test error in cross validation?
- Was there any recurring predictors in fitted models?

Background & Data Description

- Ames, Iowa dataset contains 2930 residential property observations between 2006 and 2010
- 80 variables that focus on the quality and quantity of the physical features of the house
- Added 9 additional variables:
 - OverallGrade, GarageGrade, ExterGrade, KitchenScore, FireplaceScore, GarageScore,
 PoolScore, TotalBath, TotalSF
- 15 variables were "ordinal"

Data Engineering: Sale Price

Mean	180,921	
SD	79,442.5	
Min	34,900	
1Q	129,975	
Median	163,000	
3Q	214,000	
Мах	755,000	
No. Outliers	61	
No. Extr Outliers	12	

Data Engineering: Ordinal vs. Categorical

Treatment of 15 ordinal variables by comparing AIC

```
Example: PoolQC: Pool quality

Ex Excellent - 4

Gd Good - 3

TA Average/Typical - 2

Fa Fair - 1

NA No Pool - 0?

ExterQual: Evaluates the quality of the material on the exterior (no missing)

Ex Excellent - 5

Gd Good - 4

TA Average/Typical - 3

Fa Fair - 2

Po Poor - 1
```

BsmtQ u	ual: Evaluates the height of the
baseme	ent
Ex	Excellent (100+ inches) - 5
Gd	Good (90-99 inches) - 4
TA	Typical (80-89 inches) - 3
Fa	Fair (70-79 inches) - 2
Po	Poor (<70 inches - 1
NA	No Basement - 0

Factor Model AIC	Numerical Model AIC	
504.13	570.25	

Factor Model AIC	Numerical Model AIC		
595.76	598.58		

More Data Description: Missing & Outliers

After some initial and intuitive recoding, we had:

	Tr	ain			Te	est	
Variable	No. NAs	Variable	No. Extreme Outliers	Variable	No. NAs	Variable	No. Extreme Outliers
GarageYrBlt	81	EnclosedPorch	208	FireplaceScore	730	EnclosedPorch	251
Electrical	1	GarageGrade	169	GarageGrade	78	ScreenPorch	140
		BsmtFinSF2	167	GarageScore	78	KitchenAbvGr	66
		ScreenPorch	116	GarageYrBlt	78	MiscVal	51
		BsmtHalfBath	82	MSZoning	4	MasVnrArea	29
		KitchenAbvGr	68	BsmtFullBath	2	LotArea	19
		MiscVal	52	BsmtHalfBath	2	LowQualFinSF	14
		LotArea	34	Functional	2	OpenPorchSF	14
		MasVnrArea	28	TotalBath	2	X3SsnPorch	13

Exploratory Data Analysis: Correlation

	Variables against log rice wo outliers	AIC	R Squared (adjusted)
1	OverallQual	-182.18	0.65
2	Neighborhood	185.34	0.56
3	GrLivArea	456.35	0.46
4	GarageCars	474.86	0.45
5	ExterQual	504.13	0.44
6	BsmtQual	518.41	0.44
7	KitchenQual	542.87	0.43
8	GarageArea	581.58	0.41
9	GarageFinish	647.55	0.38
10	GarageYrBlt	652.27	0.29

Modeling Process: Variable Selection

- I. Full Model Kitchen Sink
- II. Selection based on Stepwise Model backward from Kitchen Sink
- III. Selection based on Stepwise Model backward from non-missing variables:

 "Street" "LotConfig" "LandSlope" "Neighborhood" "Condition1" "Condition2"

 "BldgType" "RoofMatl" "ExterQual" "Foundation" "Heating" "HeatingQC"

 "CentralAir" "PoolQC" "SaleType"
- IV. Selection based on Correlation and VIF:
 "OverallQual" "GrLivArea" "ExterQual" "TotalBath" "GarageScore"
 "X1stFIrSF" "FullBath"

Modeling Process: Modeling Method

- I. Ridge & Lasso & Elastic Net Regression (with varying hyperparameter)
- II. Regression Trees
- III. Random Forest
- IV. Gradient Boosting

Lasso and Ridge Models

Regression Tree Model

11.55

11 76

Results - Aggregation

Model	Kaggle Score	Model RMSE
Gradient Boosting (alpha=0.001)	0.13536	0.1646208
Regularized Regression (alpha = 0.1)	0.14698	0.1587
Regression Tree Model	0.22540	0.2190
Ridge Ordinal Model	0.23260	0.2013
Lasso Ordinal Model	0.26168	0.2189

Conclusion & Future Studies

- Random Forest Model performs the best in prediction
- RSME was the lowest for regression models but yielded worst Kaggle score
- Despite the concern of multicolinearity, most of top correlated variables were in the best models
- Improve scores using stacking and other machine learning optimization methods
- "Smart" imputation on missing values would improve the fit
- More automation of the model fitting process with ranges of hyperparameters and variable selection iterations to come up with the best model would be ideal

Questions? Thank you!