

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 15 Oct 2021 1 of 28

Sample Information

Patient Name: 孫崙孟 Gender: Male ID No.: U120034797 History No.: 37555343

Age: 62

Ordering Doctor: DOC6292K 何玉倩 Ordering REQ.: 0BMDVYN Signing in Date: 2021/10/15

Path No.: S110-99778 **MP No.:** F21082

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S110-77545A+B Percentage of tumor cells: 70%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Page
2
3
4
7
20
21

Report Highlights 3 Relevant Biomarkers 12 Therapies Available 14 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR p.(L858R) c.2573T>G, EGFR p.(T790M) c.2369C>T, EGFR amplification	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 70.62%	bevacizumab* + erlotinib² erlotinib + ramucirumab¹,² osimertinib¹,² afatinib + cetuximab atezolizumab + bevacizumab + chemotherapy bevacizumab + gefitinib gefitinib + chemotherapy osimertinib + chemotherapy	None	13
	Prognostic significance: None Diagnostic significance: None			
IA	EGFR p.(T790M) c.2369C>T epidermal growth factor receptor Allele Frequency: 5.65% Prognostic significance: None Diagnostic significance: None	osimertinib ^{1, 2} osimertinib + chemotherapy	None	7
IIC	PIK3CA p.(H1047L) c.3140A>T phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha Allele Frequency: 33.80% Prognostic significance: None Diagnostic significance: None	None	alpelisib + hormone therapy ^{1, 2}	1

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

* Includes biosimilars

Alerts informed by public data sources: ⊘ Contraindicated, U Resistance

EGFR p.(T790M) c.2369C>T

Ø gefitinib²

ofatinib, dacomitinib, erlotinib, gefitinib

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

EGFR amplification

Variant Details

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
PIK3CA	p.(H1047L)	c.3140A>T	COSM776	chr3:178952085	33.80%	NM_006218.4	missense	2000
EGFR	p.(T790M)	c.2369C>T	COSM6240	chr7:55249071	5.65%	NM_005228.5	missense	2000
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	70.62%	NM_005228.5	missense	1988
ALK	p.(L1195=)	c.3585G>T		chr2:29443632	39.64%	NM_004304.5	synonymous	1998
IDH1	p.(G105=)	c.315C>T		chr2:209113192	39.32%	NM_005896.3	synonymous	1999
PDGFRA	p.(G313=)	c.939T>G		chr4:55133726	26.58%	NM_006206.6	synonymous	1998

Variant Details (continued)

DNA Sequence Variants (continued)

Amino Acid Change	Coding	Variant ID	Locus	Allele	Transcrint	Variant Effect	Coverage
	c.407C>T		chr5:176517797	. ,	· · · · · · · · · · · · · · · · · · ·	missense	2000
,	0.525A>G	•	ohr5:176519027			missonso	1998
		•				IIIISSEIISE	
p.(Q787=)	c.2361G>A		chr7:55249063	74.80%	NM_005228.5	synonymous	2000
p.(N375S)	c.1124A>G		chr7:116340262	99.45%	NM_001127500.3	missense	2000
p.(L769=)	c.2307G>T		chr10:43613843	99.95%	NM_020975.6	synonymous	1997
	,	p.(P136L) c.407C>T p.(T179A) c.535A>G p.(Q787=) c.2361G>A p.(N375S) c.1124A>G	p.(P136L)	p.(P136L) c.407C>T . chr5:176517797 p.(T179A) c.535A>G . chr5:176518037 p.(Q787=) c.2361G>A . chr7:55249063 p.(N375S) c.1124A>G . chr7:116340262	p.(P136L) c.407C>T . chr5:176517797 99.45% p.(T179A) c.535A>G . chr5:176518037 54.20% p.(Q787=) c.2361G>A . chr7:55249063 74.80% p.(N375S) c.1124A>G . chr7:116340262 99.45%	p.(P136L) c.407C>T . chr5:176517797 99.45% NM_213647.3 p.(T179A) c.535A>G . chr5:176518037 54.20% NM_213647.3 p.(Q787=) c.2361G>A . chr7:55249063 74.80% NM_005228.5 p.(N375S) c.1124A>G . chr7:116340262 99.45% NM_001127500.3	p.(P136L) c.407C>T . chr5:176517797 99.45% NM_213647.3 missense p.(T179A) c.535A>G . chr5:176518037 54.20% NM_213647.3 missense p.(Q787=) c.2361G>A . chr7:55249063 74.80% NM_005228.5 synonymous p.(N375S) c.1124A>G . chr7:116340262 99.45% NM_001127500.3 missense

Copy Number Variations

Gene	Locus	Copy Number
EGFR	chr7:55198956	12.61

Biomarker Descriptions

EGFR (epidermal growth factor receptor)

<u>Background:</u> The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{2,3}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{4,5,6,7}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 218. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 209,10,11,12. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{8,14}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{5,6,7,14,15}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{16,17,18}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib19 (2004) and gefitinib20 (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib²¹ (2013) and dacomitinib²² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{23,24,25,26}. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance²⁷. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases8. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib²⁸ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation, and occurs in 22-44% of cases²⁷. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa²⁹. T790M and C797S can occur in either cis or trans allelic orientation²⁹. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to

Biomarker Descriptions (continued)

first-generation TKIs²⁹. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{29,30}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs²⁹. Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, JNJ-61186372³¹, targeting EGFR and MET, and the TKI mobocertinib³², each received a breakthrough designation from the FDA (2020) for NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy CNVN-202³³ in combination with osimertinib received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-189³⁴ was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme³⁵. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{36,37}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD, and PIK3CG, respectively³⁶. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{38,39}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{38,39,40,41}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{42,43,44}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{6,7}. Activating mutations in PIK3CA commonly cluster in two regions corresponding to the exon 9 helical (codons E542/E545) and exon 20 kinase (codon H1047) domains, each having distinct mechanisms of activation^{45,46,47}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{6,7}.

Potential relevance: The PI3K inhibitor, alpelisib⁴⁸, is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors⁴⁹. Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations⁴⁹. However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations⁵⁰. Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers^{51,52}.

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer	type and other car	ncer types	X No eviden	ce
EGFR p.(L858R)) c.2573T>G					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib						(III)
erlotinib + ramucirum	nab	•	•	•	•	×
bevacizumab + erlotii	nib	×			•	×
afatinib + cetuximab		×	•	×	×	×
osimertinib + chemot	herapy	×	•	×	×	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

• In this cancer type and other cancer types

X No evidence

EGFR p.(L858R) c.2573T>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib + chemotherapy + surgical intervention	×	•	×	×	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
bevacizumab + gefitinib	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
amivantamab, lazertinib, osimertinib	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
datopotamab deruxtecan	×	×	×	×	(II)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
osimertinib, savolitinib	×	×	×	×	(II)
patritumab deruxtecan	×	×	×	×	(II)
DZD-9008	×	×	×	×	(I/II)
amivantamab, lazertinib	×	×	×	×	(I)
lazertinib, amivantamab	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)
TNO-155, nazartinib	×	×	×	×	(I)

EGFR p.(T790M) c.2369C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib					×
osimertinib + chemotherapy	×	•	×	×	×
osimertinib + chemotherapy + surgical intervention	×	•	×	×	×
osimertinib, chemotherapy	×	×	×	×	(III)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)

 $[\]star$ Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

EGFR p.(T790M) c.2369C>T (continued)

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
DZD-9008	×	×	×	×	(1/11)
amivantamab	×	×	×	×	(I)
lazertinib, amivantamab, chemotherapy	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(l)

PIK3CA p.(H1047L) c.3140A>T					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	0	0	0	0	×
inavolisib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 15 Oct 2021 7 of 28

Relevant Therapy Details

Current FDA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

FDA information is current as of 2021-08-18. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-06-15 Variant class: EGFR L858R mutation

Indications and usage:

CYRAMZA® is a human vascular endothelial growth factor receptor 2 (VEGFR2) antagonist indicated:

- as a single agent or in combination with paclitaxel, for treatment of advanced or metastatic gastric or gastro-esophageal
 junction adenocarcinoma with disease progression on or after prior fluoropyrimidine- or platinum-containing chemotherapy.
- in combination with erlotinib, for first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) mutations.
- in combination with docetaxel, for treatment of metastatic non-small cell lung cancer with disease progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving CYRAMZA®.
- in combination with FOLFIRI, for the treatment of metastatic colorectal cancer with disease progression on or after prior therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine.
- as a single agent, for the treatment of hepatocellular carcinoma in patients who have an alpha fetoprotein of ≥400 ng/mL and have been treated with sorafenib.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125477s039lbl.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-07-26 Variant class: EGFR L858R mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208065s022lbl.pdf

Date: 15 Oct 2021 8 of 28

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-07-26 Variant class: EGFR T790M mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208065s022lbl.pdf

PIK3CA p.(H1047L) c.3140A>T

alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2021-07-20 Variant class: PIK3CA H1047L mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Indications and usage:

PIQRAY® is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)- positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/2125260rig1s004lbl.pdf

Date: 15 Oct 2021 9 of 28

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2021-08-02. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

afatinib + cetuximab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Progression (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Date: 15 Oct 2021 10 of 28

EGFR p.(L858R) c.2573T>G (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases, Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib + chemotherapy

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Stage IIB, Stage IIIA, Stage IIIB (Adjuvant therapy)

■ Stage IIIA; Resectable (Adjuvant therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib + chemotherapy + surgical intervention

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Stage IIB (Adjuvant therapy)
- Stage IIIA; Resectable (Adjuvant therapy)

Date: 15 Oct 2021 11 of 28

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Progression, Asymptomatic, Symptomatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Brain Metastases, Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

osimertinib + chemotherapy

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Stage IIB, Stage IIIA, Stage IIIB (Adjuvant therapy)

■ Stage IIIA; Resectable (Adjuvant therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib + chemotherapy + surgical intervention

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Stage IIB (Adjuvant therapy)

Stage IIIA; Resectable (Adjuvant therapy)

Date: 15 Oct 2021 12 of 28

PIK3CA p.(H1047L) c.3140A>T

O alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA activating mutation

Other criteria: ERBB2 negative, Hormone receptor positive

NCCN Recommendation category: 1

Population segment (Line of therapy):

■ Stage IV; Recurrent, Invasive, Unresectable, Local (Second-line therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Breast Cancer [Version 5.2021]

Date: 15 Oct 2021 13 of 28

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2021-08-18. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(L858R) c.2573T>G

bevacizumab (Allergan) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-05-21

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/mvasi-epar-product-information_en.pdf

bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-06-23

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/equidacent-epar-product-information_en.pdf

bevacizumab (Mabxience) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-08-11

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/alymsys-epar-product-information_en.pdf

bevacizumab (Pfizer) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-07-07

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/zirabev-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-05-18

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/onbevzi-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-06-21

Variant class: EGFR L858R mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/aybintio-epar-product-information_en.pdf\\$

Date: 15 Oct 2021 14 of 28

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-01-28 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-07-02 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/cyramza-epar-product-information_en.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-07-01 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-07-01 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

PIK3CA p.(H1047L) c.3140A>T

O alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2021-05-26 Variant class: PIK3CA H1047L mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Reference:

https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_en.pdf

Date: 15 Oct 2021 15 of 28

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2021-08-02. For the most up-to-date information, search www.esmo.org.

EGFR p.(L858R) c.2573T>G

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

- Non-squamous Cell; Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 3
- Metastatic (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

■ Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 15 Oct 2021 18 of 28

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (Second-line therapy); ESMO-MCBS v1.1 score: 4

Date: 15 Oct 2021 19 of 28

PIK3CA p.(H1047L) c.3140A>T

O alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA exon 20 mutation

Other criteria: ERBB2 negative, ER positive

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

■ Luminal A, Luminal B; Advanced (Line of therapy not specified); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-ESO-ESMO Advanced Breast Cancer [Annals of Oncology (2020), doi: https://doi.org/10.1016/j.annonc.2020.09.010 (ABC 5)]

Clinical Trials in Taiwan region:

Clinical Trials Summary

EGFR p.(L858R) c.2573T>G + EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT04035486	A Phase III, Open-label, Randomized Study of Osimertinib With or Without Platinum Plus Pemetrexed Chemo, as First-line Treatment in Patients With Epidermal Growth Factor Receptor (EGFR) Mutation Positive, Locally Advanced or Metastatic Non-small Cell Lung Cancer (FLAURA2)	III
NCT04351555	A Phase III, Randomised, Controlled, Multi-center, 3-Arm Study of Neoadjuvant Osimertinib as Monotherapy or in Combination With Chemotherapy Versus Standard of Care Chemotherapy Alone for the Treatment of Patients With Epidermal Growth Factor Receptor Mutation Positive, Resectable Nonsmall Cell Lung Cancer	III
NCT03994393	A Phase II Trial of Durvalumab (MEDI4736) and Tremelimumab With Chemotherapy in Metastatic EGFR Mutant Non-squamous Non-small Cell Lung Cancer (NSCLC) Following Progression on EGFR Tyrosine Kinase Inhibitors (TKIs)	II
NCT02099058	A Multicenter, Phase I/Ib, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Tumors	1

EGFR p.(L858R) c.2573T>G

NCT ID	Title	Phase
NCT04487080	A Phase III, Randomized Study of Amivantamab and Lazertinib Combination Therapy Versus Osimertinib Versus Lazertinib as First-Line Treatment in Patients With EGFR-Mutated Locally Advanced or Metastatic Non-Small Cell Lung Cancer.	III
NCT03521154	A Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study of Osimertinib as Maintenance Therapy in Patients With Locally Advanced, Unresectable EGFR Mutation-positive Non-Small Cell Lung Cancer (Stage III) Whose Disease Has Not Progressed Following Definitive Platinum-based Chemoradiation Therapy (LAURA)	III
NCT03778229	A Phase II, Single Arm Study Assessing Efficacy of Osimertinib With Savolitinib in Patients With EGFRm + MET+, Locally Advanced or Metastatic Non Small Cell Lung Cancer Who Have Progressed Following Osimertinib Treatment (SAVANNAH Study)	II
NCT04619004	HERTHENA-Lung01: A Phase II Randomized Open-Label Study of Patritumab Deruxtecan (U3-1402) in Subjects With Previously Treated Metastatic or Locally Advanced EGFR-mutated Non-Small Cell Lung Cancer (NSCLC)	II
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer.	I
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT04484142	Phase II, Single-arm, Open-label Study of DS-1062a in Advanced or Metastatic Non-small Cell Lung Cancer With Actionable Genomic Alterations and Progressed on or After Kinase Inhibitor Therapy and Platinum Based Chemotherapy (TROPION-Lung05)	II
NCT03114319	An Open-label, Multi-center, Phase I, Dose Finding Study of Oral TNO155 in Adult Patients With Advanced Solid Tumors.	I
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) With EGFR or HER2 Mutation	I/II

21 of 28

Date: 15 Oct 2021

Clinical Trials Summary (continued)

EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer.	I
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) With EGFR or HER2 Mutation	1/11
NCT04077463	An Open-label Phase I/lb Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I

PIK3CA p.(H1047L) c.3140A>T

NCT ID	Title	Phase
NCT04589845	Tumor-Agnostic Precision Immunooncology and Somatic Targeting Rational for You (TAPISTRY) Phase II Platform Trial	II

Alerts Informed By Public Data Sources

Current FDA Information

Variant class: EGFR mutation

FDA information is current as of 2021-08-18. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Date: 15 Oct 2021 22 of 28

EGFR p.(T790M) c.2369C>T

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Current NCCN Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

NCCN information is current as of 2021-08-02. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Date: 15 Oct 2021 23 of 28

EGFR p.(L858R) c.2573T>G (continued)

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Date: 15 Oct 2021 24 of 28

EGFR p.(T790M) c.2369C>T

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary

NCCN Guidelines® include the following supporting statement(s):

"The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Date: 15 Oct 2021 25 of 28

EGFR p.(T790M) c.2369C>T (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

Current EMA Information

Ocontraindicated Not recommended Resistance Reakthrough A Fast Track

EMA information is current as of 2021-08-18. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(T790M) c.2369C>T

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-03-05 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf

Date: 15 Oct 2021 26 of 28

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6.
 PMID: 2992089
- Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 3. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 4. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 9. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 11. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 12. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 13. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 14. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 16. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 17. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 18. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 23. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 5.2021]
- 24. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 25. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 26. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 27. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 28. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208065s022lbl.pdf
- 29. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297

References (continued)

- 30. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 31. https://www.jnj.com/janssen-announces-u-s-fda-breakthrough-therapy-designation-granted-for-jnj-6372-for-the-treatment-of-non-small-cell-lung-cancer
- 32. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/
- 33. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 34. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 35. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 36. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 37. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 38. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 39. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 40. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 41. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 42. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 43. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 44. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 45. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 46. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 47. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 48. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/2125260rig1s004lbl.pdf
- 49. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 50. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 51. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 52. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929