StockbotStock Price Prediction with Historical and Sentiment data

Eric Chan Kai-Wei Chang Andrew Wei

yee96@cs

kwchang2@cs

nowei@cs

Motivation

Sentiment

- Reflects perceptions and captures reactions in text
 - Public perceptions may reflect general trust/belief
- General positivity or negativity of text
- Can we capture sentiment associated with companies?

Data Collection

Financial Data

Obtained from Polygon

- Start date: January 1st, 2010
- End date: December 31st, 2019
- 15 companies
- Data
 - Open price
 - Closing price
 - High
 - Low
 - Volume

Sentiment Data

Sentiment 140 dataset on Kaggle

- 1,600,000 tweets
- Labels
 - Negative: $0 \rightarrow 0$
 - Neutral: $2 \rightarrow 0.5$
 - Positive: 4 → 1

kaggle

Scraping Tweets

- Scraped hashtag(#) and cashtag(\$) tweets associated with companies by stock ticker*
 - E.g. for Apple, #AAPL and \$AAPL
 - ~2.5 million # tweets
 - ~1.7 million \$ tweets
- Built with python
 - Using Selenium and BeautifulSoup4

^{* -} avoiding usage collisions, e.g. KO is the stock ticker for CocaCola, but also the term for knocked out, so we looked up #CocaCola

Companies Tracked

Bank of America.

WELLS FARGO

Methods

Architecture

Price Prediction Model

- Leverages financial data
- LSTMs
 - input dim = 5
 - open, high, low, closing price, volume
 - hidden dim = 32
 - number of layers = 2
 - output dim = 1
 - Price estimate for next date
- One model per company
- Uses previous 30 days to make a prediction

Iterative Training

Once a prediction is made, include the actual test data point and retrain, then predict again

30 days

Sentiment Model

- Trained and tested on Sentiment140 dataset
- Used scraped Tweets
- GRU
 - embedding dim = 350
 - hidden dim = 350
 - number of layers = 2
 - output dim = 1
 - dropout = 0.025
 - batch size = 200

Data Processing

- Removes:
 - Strips whitespace
 - Emojis
 - Links
- Performs UNK-ing
 - UNK probability = 0.6

Price Change Labeling

- Labeling tweets using price changes
 - Labels need to be validated somehow
- Is there a correlation between tweet sentiment on a day and the price of the next day?

Results

Baseline

Simple Moving Average

- Smooths volatility
- Relatively effective in general
- Averages over 10 days, so n = 10

$$\frac{1}{n} \sum_{i=k}^{k+n} A_i$$

Trend Prediction

When the price goes up or down, how often does our model predict an increase or decrease respectively?

 Roughly correct 50% of the time, but the error isn't too bad

Subset of graphs generated

Apple Inc. (AAPL)

Microsoft Corporation (MSFT)

Bank of America Corp (BAC)

RMSE table

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{\left(\operatorname{prediction}(i) - \operatorname{actual}(i)\right)^{2}}{n}}$$

Ticker	AAPL	ВАС	СМС	DAL	FB	GOOG	JPM	ко	LUV	MCD	MSFT	PEP	UAL	V	WFC
No Iter (Test)	11.36	0.52	13.43	0.96	3.49	18.64	2.07	0.96	1.02	7.45	16.46	2.31	1.99	13.80	0.70
SMA	3.80	0.63	17.70	1.34	4.20	24.41	1.88	0.69	1.29	2.22	1.52	1.54	2.24	1.78	1.14
lter (Test)	4.60	0.47	11.76	0.87	3.45	18.29	1.68	0.52	0.91	2.37	2.28	1.36	1.41	2.73	0.69

= Lower RMSE

= Higher RMSE

Sentiment results

- Trained on Sentiment140
 - Train accuracy: 89%
 - Test accuracy: 88%
- We predicted the sentiment of scraped tweets
 - Give neutral rating if no tweets on the day
 - Otherwise give average sentiment score for that day

Sanity check

- We found that the predictions performed worse when we included them
- To sanity-check our model, we checked regions of increase and decrease for sentiment for BAC and found that they were all generally ~0.54, i.e. slightly positive

Discussion

Iterative Training

- Does it make sense?
 - Data is limited
 - Can't generate new data for the past
- Not aiming for generalization

Sentiment Generalization

- Didn't generalize very well
- Trained setting differs from applied setting
- Will likely perform better if we have more relevant training data

Labeling the collected tweets

Training new sentiment model on labeled tweets

Future Work

Predicting up-to-date stock prices

Test out the predictions with our own money

Conclusion

Contributions

- Price Prediction model
 - Iterative training
- Sentiment model
- Scraped tweets for 15 companies stock tickers
 - January 1st, 2010 →
 December 31st, 2019

