Reinforcement Learning: An Introduction Chapter 3 - Finite Markov Decision Processes

Reporter: Chenyu Xue

July 28, 2020

Outline

- 1. Markov Processes
- 2. Markov Reward Processes
- 3. Markov Decision Processes
- 4. Summary

Introduction - Basic Framework

- Agent and Environment interact at discrete time steps: t = 0, 1, 2,
- ► Then they together give rise to a trajectory like this: S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , R_3 , ...
- ▶ Generally, MDP can be described formally with 4 componets: S, A, P, R.
- ▶ In a finite MDP, S, A, R all have a finite number of elements.

Markov Property

▶ The history of the states: $H_t = \{S_1, S_2, ..., S_t\}$.

Definition

A State S_t is Markov if and only if:

$$\mathbb{P}(S_{t+1}|S_t) = \mathbb{P}(S_{t+1}|H_t)$$

- ► The current state already captures the information of the past states.
- ▶ "The future is independent of the past given the present."

State Transition Probability

Definition

For a Markov state s and successor state s', the state transition probability is given by:

$$\mathcal{P}_{ss'} = \mathbb{P}\left(S_{t+1} = s' | S_t = s\right)$$

► Then we can formulate the state transition probability into a state transition matrix \mathcal{P} :

$$\mathcal{P} = egin{pmatrix} \mathbb{P}\left(s_1|s_1
ight) & \mathbb{P}\left(s_2|s_1
ight) & \cdots & \mathbb{P}\left(s_N|s_1
ight) \\ \mathbb{P}\left(s_1|s_2
ight) & \mathbb{P}\left(s_2|s_2
ight) & \cdots & \mathbb{P}\left(s_N|s_2
ight) \\ dots & dots & \ddots & dots \\ \mathbb{P}\left(s_1|s_N
ight) & \mathbb{P}\left(s_2|s_N
ight) & \cdots & \mathbb{P}\left(s_N|s_N
ight) \end{pmatrix}$$

▶ Obviously, each row of the matrix sums to 1.

Markov Processes/Markov Chains

- Sample episodes starting from $S_1 = C1$:
- ► C1 C2 C3 Pass Sleep
- ► C1 FB FB C1 C2 Sleep
- ► C1 C2 C3 Pub C2 C3 Pass Sleep

Markov Reward Processes

► Markov Reward Process is a Markov Process + Reward.

Definition

A Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$:

- \triangleright S is a (finite) set of states;
- $ightharpoonup \mathcal{P}$ is a state transition probability matrix,

$$\mathcal{P}_{ss'} = \mathbb{P}\left(S_{t+1} = s' | S_t = s\right)$$

 $\triangleright \mathcal{R}$ is a reward function,

$$\mathcal{R}_s = \mathbb{E}\left[R_{t+1}|S_t = s\right]$$

- $ightharpoonup \gamma$ is a discount factor, $\gamma \in [0, 1]$.
- ▶ If there are finite number of states, \mathcal{R} can be a vector.

Example of MRP

ightharpoonup So that, we can represent $\mathcal R$ as:

$$\mathcal{R} = egin{pmatrix} \mathcal{R}_{C1} \ \mathcal{R}_{C2} \ \mathcal{R}_{C3} \ \mathcal{R}_{Pass} \ \mathcal{R}_{Pub} \ \mathcal{R}_{FB} \ \mathcal{R}_{Sleep} \end{pmatrix} = egin{pmatrix} -2 \ -2 \ -2 \ +10 \ +1 \ -1 \ 0 \end{pmatrix}$$

Horizon and Return

► Horizon

- number of the maximum time steps in each episode;
- can be infinite, otherwise called finite Markov (Reward) Process.

► Return

▶ discounted sum of rewards from time step *t* to horizon:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^T R_{t+T+1}$$

 \blacktriangleright The discount factor γ determines the present value of future rewards.

WHY discount factor γ

- Avoids infinity as a reward;
- ► If the reward is financial, immediate rewards may earn more interest than delayed rewards;
- Animal/human behavior shows preference for immediate reward;
- $ightharpoonup \gamma
 ightarrow 0$ leads to "myopic" evaluation;
- $ightharpoonup \gamma
 ightarrow 1$ leads to "farsighted" evaluation.

Value Function in MRP

Definition

The state value function v(s) of an MRP is the expected return starting from state s:

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^T R_{t+T+1} | S_t = s]$

Example of MRP

▶ The reward of Student MRP can be represented like that:

$$\mathcal{R}^{\top} = \begin{pmatrix} \mathcal{R}_{C1} & \mathcal{R}_{C2} & \mathcal{R}_{C3} & \mathcal{R}_{Pass} & \mathcal{R}_{Pub} & \mathcal{R}_{FB} & \mathcal{R}_{Sleep} \end{pmatrix}$$

= $\begin{pmatrix} -2 & -2 & +10 & +1 & -1 & 0 \end{pmatrix}$

- ▶ Sample returns starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$
 - ► C1 C2 C3 Pass Sleep . . .

$$\nu(C1) = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 10 \times \frac{1}{8} + 0 = -2.25$$

► C1 FB FB C1 C2 Sleep ...

$$\nu(C1) = -2 - 1 \times \frac{1}{2} - 1 \times \frac{1}{4} - 2 \times \frac{1}{8} - 2 \times \frac{1}{16} + 0 = -3.125$$

► C1 C2 C3 Pub C2 C3 Pass Sleep ...

$$\nu(C1) = -2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} + 1 \times \frac{1}{8} - 2 \times \frac{1}{16} \dots = -3.41$$

▶ How to compute the value function? For example, the value function of state C1 as v(C1).

Bellman Equation for MRP(1)

► For any state *s*, the following equation holds between the value functions of *s* and its possible successor states:

$$v(s) = \mathcal{R}_s + \gamma \sum_{s'} \mathcal{P}_{ss'} v(s')$$

► The above equation is the Bellman Equation for MRP.

Bellman Equation for MRP(2)

Now we try to derive the Bellman equation for v(s).

$$v(s) = \mathbb{E}\left[G_t|S_t = s\right]$$

$$= \mathbb{E}\left[R_{t+1} + \gamma G_{t+1}|S_t = s\right]$$

$$= \mathbb{E}\left[R_{t+1}|S_t = s\right] + \gamma \mathbb{E}\left[G_{t+1}|S_t = s\right]$$

$$= \mathcal{R}_s + \gamma \mathbb{E}\left[G_{t+1}|S_t = s\right]$$

Bellman Equation for MRP(3)

▶ Then we focus on the term $\gamma \mathbb{E}\left[G_{t+1}|S_t=s\right]$

$$\begin{split} \gamma \mathbb{E}\left[G_{t+1}|S_{t} = s\right] &= \gamma \sum_{g_{t+1}} g_{t+1} \cdot p(G_{t+1} = g_{t+1}|S_{t} = s) \\ &= \gamma \sum_{g_{t+1}} g_{t+1} \cdot \left(\sum_{s'} p\left(G_{t+1} = g_{t+1}, S_{t+1} = s'|S_{t} = s\right)\right) \\ &= \gamma \sum_{g_{t+1}} g_{t+1} \cdot \left(\sum_{s'} p\left(G_{t+1} = g_{t+1}|S_{t+1} = s', S_{t} = s\right)p\left(S_{t+1} = s'|S_{t} = s\right)\right) \\ &= \gamma \sum_{g'} \left(\sum_{g_{t+1}} g_{t+1} \cdot \left(G_{t+1} = g_{t+1}|S_{t+1} = s', S_{t} = s\right)\right) \mathcal{P}_{ss'} \\ &= \gamma \sum_{g'} \mathcal{P}_{ss'} v(s') \end{split}$$

▶ Therefore, we have $v(s) = \mathcal{R}_s + \gamma \sum_{s'} \mathcal{P}_{ss'} v(s')$.

Bellman Equation for MRP(4)

Moreover, we can express the Bellman Equation using the matrices:

$$V = \mathcal{R} + \gamma \mathcal{P} V$$

$$\begin{bmatrix} v(s_1) \\ v(s_2) \\ \vdots \\ v(s_N) \end{bmatrix} = \begin{bmatrix} R(s_1) \\ R(s_2) \\ \vdots \\ R(s_N) \end{bmatrix} + \gamma \begin{bmatrix} \mathbb{P}(s_1|s_1) & \mathbb{P}(s_2|s_1) & \cdots & \mathbb{P}(s_N|s_1) \\ \mathbb{P}(s_1|s_2) & \mathbb{P}(s_2|s_2) & \cdots & \mathbb{P}(s_N|s_2) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}(s_1|s_N) & \mathbb{P}(s_2|s_N) & \cdots & \mathbb{P}(s_N|s_N) \end{bmatrix} \begin{bmatrix} v(s_1) \\ v(s_2) \\ \vdots \\ v(s_N) \end{bmatrix}$$

- ▶ It can be solved directly: $V = (I \gamma P)^{-1}R$;
- ► Only possible for small MRPs.

Markov Decision Processes

 Markov Decision Process is a Markov Reward Process + Decisions.

Definition

A Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$:

- \triangleright S is a (finite) set of states;
- \blacktriangleright \mathcal{A} is a (finite) set of actions;
- $ightharpoonup \mathcal{P}$ is a state transition probability matrix:

$$\mathcal{P}_{ss'}^{\mathsf{a}} = \mathbb{P}\left(S_{t+1} = s' | S_t = s, A_t = a\right)$$

 \triangleright \mathcal{R} is a reward function:

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a\right]$$

$$\mathcal{R}_{ss'}^a = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s'\right]$$

 $ightharpoonup \gamma$ is a discount factor, $\gamma \in [0, 1]$.

Example of MDP

Policy in MDP(1)

Definition

A policy π is a distribution over actions given states:

$$\pi(a|s) = \mathbb{P}\left[A_t = a|S_t = s\right]$$

- ► A Policy fully defines the behavior of an agent, can be deterministic or stochastic;
- ▶ Policies are stationary, i.e., $A_t \sim \pi(a|s), \forall t > 0$.

Policy in MDP(2)

▶ Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π , we have:

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \mathcal{R}_{s}^{a}$$

- ▶ The state sequence $S_1, S_2, ...$ is a Markov Process $\langle \mathcal{S}, \mathcal{P}^{\pi} \rangle$;
- ▶ The state and reward sequence $S_1, R_2, S_2, R_3 \dots$ is a Markov Reward Process $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$.

Value Function in MDP - State Value Function

Definition

The state value function $v_{\pi}(s)$, is the expected return starting from state s and following policy π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t|S_t = s\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right]$$

▶ The state value function specifies the goodness of a state;

State	Value	
State1	0.3	
State2	0.9	

Value Function in MDP - Action Value Function

Definition

The action value function $q_{\pi}(s, a)$, is the expected return starting from state s, taking action a, and then following policy π :

$$q_{\pi}(s,a) = \mathbb{E}\left[G_t|S_t = s, A_t = a\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s, A_t = a\right]$$

► The action value function specifies the goodness of an action in a state;

State	Action	Value
State1	Action1	0.03
State1	Action2	0.02
State2	Action1	0.5
State2	Action2	0.9

Relationships between $v_{\pi}(s)$ and $q_{\pi}(s,a)(1)$

$$v_{\pi}(s) = \sum_{\mathsf{a} \in \mathcal{A}(s)} \pi(\mathsf{a}|s) q_{\pi}(s,\mathsf{a})$$

Relationships between $v_{\pi}(s)$ and $q_{\pi}(s,a)(2)$

$$\begin{split} q_{\pi}(s, a) &= \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma v_{\pi}(s') \right) \\ &= \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \end{split}$$

Bellman Equation for $v_{\pi}(s)$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')\right)$$

Bellman Equation for $q_{\pi}(s, a)$

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}(s')} \pi(a'|s') q_{\pi}(s', a')$$

Example of Bellman Equation in MDP

- Assume that $\gamma=1$, and the agent selects actions with equal probability in each state;
- ▶ We have the Bellman Equation for $v_{\pi}(s)$:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')\right)$$

Bellman Equation in Matrix Form

► Similarly, we can express the Bellman Equation using the matrices:

$$V_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V_{\pi}$$

$$\begin{bmatrix} v_{\pi}(s_{1}) \\ v_{\pi}(s_{2}) \\ \vdots \\ v_{\pi}(s_{N}) \end{bmatrix} = \begin{bmatrix} R_{s_{1}}^{\pi} \\ R_{s_{2}}^{\pi} \\ \vdots \\ R_{s_{N}}^{\pi} \end{bmatrix} + \gamma \begin{bmatrix} \mathbb{P}^{\pi}(s_{1}|s_{1}) & \mathbb{P}^{\pi}(s_{2}|s_{1}) & \cdots & \mathbb{P}^{\pi}(s_{N}|s_{1}) \\ \mathbb{P}^{\pi}(s_{1}|s_{2}) & \mathbb{P}^{\pi}(s_{2}|s_{2}) & \cdots & \mathbb{P}^{\pi}(s_{N}|s_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^{\pi}(s_{1}|s_{N}) & \mathbb{P}^{\pi}(s_{2}|s_{N}) & \cdots & \mathbb{P}^{\pi}(s_{N}|s_{N}) \end{bmatrix} \begin{bmatrix} v_{\pi}(s_{1}) \\ v_{\pi}(s_{2}) \\ \vdots \\ v_{\pi}(s_{N}) \end{bmatrix}$$

▶ It can be solved directly: $V_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$.

Optimal Policy

► Value functions define a partial ordering over policies:

$$\pi \geq \pi'$$
 if and only if $\forall s \in \mathcal{S}, v_{\pi}(s) \geq v_{\pi'}(s)$

Theorem

For any finite Markov Decision Process:

There are always one or more policies that are better than or equal to all other policies. These are the Optimal Policies, denoted as π^* :

$$\pi^* \geq \pi, \forall \pi$$

Optimal Policies share the same Optimal State-Value Function:

$$v_{\pi^*}(s) = v_*(s) = \max_{\pi} v_{\pi}(s), \forall s \in \mathcal{S}$$

Optimal Policies also share the same Optimal Action-Value Function:

$$q_{\pi^*}(s, a) = q_*(s, a) = \max_{\pi} q_{\pi}(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

Finding an optimal policy

An optimal policy can be found by maximizing over $q_*(s, a)$:

$$\pi_*(a|s) = egin{cases} 1 & ext{if } a = rgmax \, q_*(s,a) \ & \quad a \in \mathcal{A}(s) \ 0 & ext{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any MDP;
- ▶ If we know $q_*(s, a)$, we immediately have the optimal policy.

Relationships between $v_*(s)$ and $q_*(s,a)(1)$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a)$$

Relationships between $v_*(s)$ and $q_*(s,a)(2)$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

Bellman Optimality Equation for $v_*(s)$

Bellman Optimality Equation for $q_*(s,a)$

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}(s')} q_*(s', a')$$

Solving the Bellman Optimality Equation

- ► Finding an optimal policy by solving the Bellman Optimality Equation relies on at least three assumptions:
 - accurate knowledge of environment dynamics or state transition probability matrix;
 - enough computational resources;
 - the Markov Property.
- We usually have to settle for approximations.

Summary

- Markov Property & Markov Process;
- Markov Reward Process;
 - Horizon & Reward & Return;
 - Value Function;
 - Bellman Equation for MRPs;
- Markov Decision Process;
 - Policy;
 - State Value Function & Action Value Function;
 - Bellman Equation for MDPs;
 - Optimal Policy & Optimal State Value Function & Optimal Action Value Function;
 - Bellman Optimality Equation.

More...

- Reinforcement Learning in OR/OM;
 - Assortment Optimization;
 - Combinatorial Optimization, e.g. TSP;
 - Policy Gradient in Non-Convex Optimization;
 - **.**..