Last name		
First name		

LARSON—MATH 550—HOMEWORK WORKSHEET h14 Test 2 Review

- 1. Define Pascal's Triangle and draw several levels.
- 2. Define $\binom{n}{m}$ (for non-negative integers n, m).
- 3. State and prove the formula we found for $\binom{n}{m}$.
- 4. Find $\binom{3}{1}$, $\binom{3}{2}$, $\binom{n}{1}$, and $\binom{n}{n-1}$.
- 5. Draw several levels of the Binomial Coefficients Triangle.
- 6. What needs to be shown to prove that Pascal's Triangle is the same as the Binomial Coefficients Triangle?
- 7. Give a combinatorial (non-algebraic) explanation of why the *symmetry identity* is true:

$$\binom{n}{k} = \binom{n}{n-k}.$$

8. Give a combinatorial (non-algebraic) explanation of why the addition formula is true:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

- 9. State the Binomial Theorem for $(x+y)^n$ $(n \in \mathbf{Z}^{\geq 0})$, check it for n=0,1,2 and then explain why it is true for any n.
- 10. Explain the main ideas of the Polynomial Argument we used to prove:

$$(r-k)\binom{r}{k} = r\binom{r-1}{k} \ (r \in \mathbb{R}, k \in \mathbb{Z}).$$

- 11. What is a derangement?
- 12. Let jn be the number of derangements of n objects. Find j3, j4. Explain.
- 13. Let h(n, k) be the number of permutations of n objects where exactly k are fixed. Explain why:

$$n! = \sum_{k} h(n, k)?$$

14. If jn is the number of ways to arrange n hats so that the hat of the i^{th} person to check their hat doesn't match the i^{th} hat. What is the probability that none of the n people who come in get their hat back? What is this probability when n = 4?

15. (Vandermonde Convolution) Give a combinatorial proof that :

$$\sum_{k>0} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n} \ (r,s,n \in \mathbb{Z}^{\geq 0}).$$

16. Let $f(n) = n^2 \ (n \in \mathbb{Z}^{\geq 0})$, let:

$$g(n) = \sum_{k} \binom{n}{k} (-1)^k f(k).$$

Check that the following formula holds for n = 2:

$$f(n) = \sum_{k} \binom{n}{k} (-1)^k g(k).$$

17. (**Inversion**) If f(n) is a function defined on $\mathbb{Z}^{\geq 0}$, and we define:

$$g(n) = \sum_{k} \binom{n}{k} (-1)^k f(k).$$

Prove:

$$f(n) = \sum_{k} \binom{n}{k} (-1)^k g(k).$$

- 18. What is the power series definition of e^x ? What is $\frac{1}{e}$?
- 19. What is a generating function?
- 20. Express $\frac{1}{1-z}$ as a power series. Explain.
- 21. $\frac{1}{1-z}$ is the generating function for the sequence $\langle b_n \rangle$. What is $\langle b_n \rangle$?
- 22. What sequence does e^z generate?
- 23. What sequence does $\frac{1}{e}$ generate?
- 24. What is the *convolution* of sequences $\langle a_n \rangle$ and $\langle b_n \rangle$?
- 25. Let $\langle a_n \rangle = \langle a_0, a_1, a_2, \ldots \rangle$ be any sequence. Find the convolution of $\langle b_n \rangle = \langle 1, 1, 1, \ldots \rangle$ and $\langle a_n \rangle$.
- 26. Define the Fibonacci numbers F_n and find the first few terms of the sequence $\langle F_n \rangle$.
- 27. Let F(z) be the generating function for the Fibonacci numbers $\langle F_n \rangle$. Find a relationship between F(z), zF(z) and $z^2F(z)$, and solve to get a formula for F(z).
- 28. (Bee Trees). A male bee has a single female parent. A female bee has one male parent and one female parent. Draw a tree representing the "ancestors" of a male bee. Let $M_1 = 1$, representing a male bee. Then that bee has one (female) ancestor one generation back, and zero male ancestors; represent this by $M_2 = 0$. This bee has two parents, so our original bee has 2 ancestors two generations ago; one is male so represent this by $M_3 = 1$. How many male ancestors M_n does our original bee have after n-1 generations? Explain.