PERTEMUAN 12 NILAI EIGEN DAN NILAI VEKTOR

A. Tujuan Pembelajaran

Setelah menyelesaikan pertemuan ini Mahasiswa mampu menyelesaikan dan memahami matriks penyajian transformasi linier.

B. Uraian Materi

1. Definisi Nilai Eigen dan Nilai Vektor

Apabila A merupakan suatu matriks yang memiliki ordo n x n, sehingga dikatakan vektor taknol yang berada pada R^n disebut sebagai sebuah vektor eigen dari matriks A apabila Ax merupakan suatu kelipatan dari skalar x, maka:

$$A x = \lambda x$$

Dimana skalar λ merupakan suatu sebagai nilai eigen sedangkan A dan x disebut sebagai sebuah vektor eigen yang saling berhubungan dengan λ .

Syarat:

- a. \(\lambda\) merupakan suatu elemin nilai eigen dari matriks A
- b. Pada sistem persamaan yaitu ($\lambda I A$) x = 0 memiliki pemecahan taktrivial.
- c. Memiliki vektor taknol x di dalam R^n maka A x = λ x
- d. λ merupakan suatu pemecahan riil dari sebuah persamaan yang karakteristik, dimana $\det(\lambda I A) = 0$.

Contoh:

Diberikan vektor
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 dan matriks $\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ Dimana $\mathbf{A}\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$ = $3\begin{bmatrix} 1 \\ 2 \end{bmatrix} = 3\mathbf{x}$

Sehingga vektor $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ dapat disebut sebagai vektor eigen sebuah matriks $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ yang saling berhubungan dengan nilai elemen eigen $\lambda = 3$.

Sehingga untuk memperoleh hasil nilai elemen eigen dari sebuah matriks A yang memiliki ordo $n \times n$, maka A $x = \lambda \times n$ adalah sebagai berikut:

$$A x = \lambda I x$$

$$A x - \lambda I x = 0$$

$$(A - \lambda I) x = 0$$

Dimana λ dapat memiliki nilai elemeneigen, maka nilai tersebut harus memiliki satu solusi taknol dari suatu persamaan yang memenuhi yaitu det (A – λ I) = 0. Dimana persamaan ini merupakan persamaan karakteristik matriks A. Dan skalar – skalar yang dapat memenuhi persamaan ini merupakan nilai – nilai eigen dari sebuah matriks A. sehingga suatu persamaan dari karakteristik ini dapat dituliskan sebagai berikut:

Det
$$(\lambda I - A) = 0$$
.

Misal:

1) Tentukanlah nilai eigen dari A = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$

Jawab:

Langkah pertama adalah cari terlebih dahulu matriks A – λI yaitu:

$$A - \lambda I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 4 & -17 & 8 - \lambda \end{bmatrix}$$

Langkah selanjutnya adalah hitung nilai det ($A - \lambda I$) dimana:

$$\det (A - \lambda I) = \begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 4 & -17 & 8 - \lambda \end{bmatrix} \begin{bmatrix} -\lambda & 1 \\ 0 & -\lambda \\ 4 & -17 \end{bmatrix}$$

$$= ((-\lambda) (-\lambda) (8 - \lambda)) + ((1) (1) (4)) + ((0) (0) (-17)) - ((4) (-\lambda) (0))$$

$$- ((-17) (1) (-\lambda)) - ((8 - \lambda) (0) (1))$$

$$= 8\lambda^2 - \lambda^3 + 4 + 0 - 0 - 17 \lambda - 0$$

$$= 8\lambda^2 - \lambda^3 + 4 - 17 \lambda$$

$$= -\lambda^3 + 8\lambda^2 - 17 \lambda + 4$$

Langkah selanjutnya adalah dengan menggunakan persamaan karakteristik, sehingga diperoleh:

Det
$$(A - \lambda I) = 0$$
 yaitu:
 $-\lambda^3 + 8\lambda^2 - 17 \lambda + 4$ (dikali negatif)
 $\lambda^3 - 8\lambda^2 + 17 \lambda - 4$ (lalu difaktorkan)
 $(\lambda - 4) (\lambda^2 - 4 \lambda + 1) = 0$
 $\lambda - 4 = 0$

$$\lambda = 4$$

lalu $\lambda^2 - 4\lambda + 1 = 0$ (menggunakan rumus abc)

$$X_{12} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$X_{12} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4.1.1}}{2.1}$$

$$X_{12} = \frac{4 \pm \sqrt{16 - 4}}{2}$$

$$X_{12} = \frac{4 \pm \sqrt{12}}{2}$$

$$X_{12} = 2 \pm \sqrt{3}$$

Maka dari matriks A diperoleh nilai – nilai eigen yaitu $\lambda=4$, $\lambda=2+\sqrt{3}$ dan $\lambda=2-\sqrt{3}$

2) Tentukan nilai – nilai eigen dari matriks A =
$$\begin{bmatrix} 3/4 & 2 & 7 & 9 \\ 0 & 2/3 & 10 & 4 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Jawab:

Apabila A merupakan sebuah matriks segitiga bawah maupun merupakan sebuah matriks segitiga atas atau sebuah matriks diagonal, maka nilai – nilai atau elemen eigen dari matriks A merupakan nilai – nilai yang terletak pada sebuah matriks diagonal utama dari sebuah matriks A.

Sehingga diperoleh nilai atau elemen eigen dari suatu matriks A yaitu:

$$\lambda = \frac{3}{4}$$
, $\lambda = \frac{2}{3}$, $\lambda = -1$ dan $\lambda = 5$

3) Tentukanlah nilai eigen dari matriks A = $\begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$

Jawab:

$$A - \lambda I = \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} -2 - \lambda & -7 \\ 1 & 2 - \lambda \end{bmatrix}$$

Dimana polynomial karakterisitik dari A adalah:

Det $(A - \lambda I) = \det \begin{bmatrix} -2 - \lambda & -7 \\ 1 & 2 - \lambda \end{bmatrix}$ (Mencari determinan ordo 2 x 2 dengan sarrus yaitu ad – bc)

Maka: det
$$\begin{bmatrix} -2 - \lambda & -7 \\ 1 & 2 - \lambda \end{bmatrix}$$

= $(-2 - \lambda) (2 - \lambda) - (-7) (1)$
= $\lambda^2 - 4 + 7$
= $\lambda^2 + 3$

Maka nilai eigen adalah $\lambda^2 = -3$ maka $\lambda = -3$

2. Menentukan Basis Untuk Ruang Eigen

Setelah kita mempelajari untuk mengetahui cara mencari nilai eigen, maka setelahnya kita akan mempelajari tentang bagaimana cara mencari vektor eigen . Dimana vektor – vektor eigen dari sebuah matriks A yang saling terhubung dengan suatu elemen atau nilai eigen λ merupakan sebuah vektor taknol x yang akan memenuhi suatu persamaan, yaitu:

$$A x = \lambda x$$

Vektor eigen yang terjadi saling terhubung dengan λ merupakan vektor yang berada dalam sebuah ruang solusi (A - λ I) x = 0. Dimana ruang solusi merupakan suatu ruang eigen dari sebuah matriks A yang terhubung dengan suatu λ .

Contoh:

1) Tentukanlah basis – basis untuk ruang eigen dari matriks:

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Jawab:

Langkah pertama adalah tentukan persamaan karakteristik dari matriks A, yaitu:

$$A - \lambda I = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} -\lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{bmatrix}$$

Langkah selanjutnya adalah hitung nilai det (A – λI) dimana:

143

$$\det (A - \lambda I) = \begin{bmatrix} -\lambda & 0 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} -\lambda & 0 \\ 1 & 2 - \lambda \\ 1 & 0 \end{bmatrix}$$

$$= ((-\lambda) (2 - \lambda) (3 - \lambda)) + ((0) (1) (1)) + ((-2) (1) (0)) - ((1) (2 - \lambda) (-2)) - ((0) (1) (-\lambda)) - ((3 - \lambda) (1) (0))$$

$$= -6 \lambda + 2\lambda^2 + 3\lambda^2 - \lambda^3 + 0 + 0 + 4 - 2\lambda + 0 + 0$$

$$= -\lambda^3 + 5\lambda^2 - 8\lambda + 4 \text{ (dikali dengan negatif)}$$

$$= \lambda^3 - 5\lambda^2 + 8\lambda - 4 \text{ (lalu digaktorkan)}$$

Sehingga diperoleh $(\lambda - 1) ((\lambda - 2)^2 = 0)$

$$\lambda - 1 = 0 \text{ dan } \lambda - 2 = 0$$

$$\lambda = 1$$
 $\lambda = 2$

Maka: $x = \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix}$ merupakan vektor eigen dari sebuah matriks A yang

terhubung dengan λ jika A $x = \lambda x$. Hal ini merupakan x dapat disebut sebagai vektor eigen dari sebuah matriks A jika dan hanya jika x merupakan sebuah solusi nontrivial dari suatu persamaan yaitu:

$$(A - \lambda I) x = 0$$

Maka
$$\begin{bmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Apabila $\lambda = 2$ maka diperoleh

$$\begin{bmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Maka dengan menggunakan operasi baris elementer, maka diperoleh: $X_1 + X_3 = 0$ dan $X_1 = -X_3$

Berdasarkan hasil yang diperoleh tidak ada X_2 , maka X_2 disebut sebagai parameter. Misalkan X_2 = t dan X_3 = s maka:

$$X_1 = -s, X_2 = t, X_3 = s$$

Sehingga vektor A yang terhubung dengan $\lambda = 2$ merupakan vektor – vektor taknol yang terbentuk oleh:

$$X = \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Dimana:

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \operatorname{dan} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \operatorname{merupakan bebas linier, karena vektor ini membentuk suatu}$$

basis untuk suatu ruang eigen yang terhubung dengan $\lambda = 2$. Apabila $\lambda = 1$ maka akan diperoleh:

$$\begin{bmatrix}1&0&2\\-1&-1&-1\\-1&0&-2\end{bmatrix}\begin{bmatrix}x1\\x2\\x3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} \text{ dengan menggunakan sebuah operasi baris}$$

elementer, maka diperoleh suatu persamaan, yaitu:

$$X_1 + 2X_3 = 0 \qquad \qquad \text{dan } X_2 - X_3 = 0$$

$$X_1 = -2X_3 \qquad \qquad X_2 = X_3$$

$$X_2 = X_3$$
 Apabila $X_3 = s$, maka
$$X_1 = -2s$$

$$X_2 = s$$

Maka vektor eigen yang terhubung dengan $\lambda = 1$ merupakan vektor – vektor taknol yang berbentuk seperti:

$$X = \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = \begin{bmatrix} -2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

 $X_3 = s$

Dimana $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$ merupakan bebas linier, karena vektor tersebut dapat membentuk suatu basis dengan $\lambda=1$.

Apabila kita ingin menentukan vektor eigen yang bersesuaian dengan nilai eigen (λ) maka kita harus menentukan terlebih dahulu basis – basis untuk suatu ruang eigennya.

Untuk vektor eigen dari matriks A yang berhubungan dengan $\lambda=2$ merupakan vektor – vektor taknol yang berbentuk:

$$X = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Apabila s = 1 dan t = 1 maka diperoleh vektor eigen yang terhubung dengan λ = 2 adalah:

$$X = 1. \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + 1. \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Dan untuk vektor eigen yang terhubung dengan $\lambda = 1$ merupakan vektor – vektor taknol yang berbentuk:

$$X = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
 apabila $s = -2$ maka diperoleh $x = \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix}$

2) Tentukanlah nilai eigen dan vektor eigen dari matriks

$$A = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$$

Jawab:

Langkah pertama adalah kita harus menentukan persaman karakteristik, yaitu:

$$\det (\lambda I - A) = 0$$

$$\lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix} = 0$$

Maka:

Det
$$\begin{bmatrix} \lambda + 3 & -1 & 1 \\ 7 & \lambda - 5 & 1 \\ 6 & -6 & \lambda + 2 \end{bmatrix} = 0$$

$$= \begin{bmatrix} \lambda + 3 & -1 & 1 \\ 7 & \lambda - 5 & 1 \\ 6 & -6 & \lambda + 2 \end{bmatrix} \begin{bmatrix} \lambda + 3 & -1 \\ 7 & \lambda - 5 \\ 6 & -6 \end{bmatrix}$$

$$= (\lambda + 3) (\lambda - 5) (\lambda + 2) + (-1)(1)(6) + (1)(7)(-6) - (6) (\lambda - 5) (1) - (-6) (1)$$

$$(\lambda + 3) - (\lambda + 2) (7) (-1)$$

$$= (\lambda + 3) (\lambda - 5) (\lambda + 2) - 6 - 42 - 6 ((\lambda - 5) + 6 (\lambda + 3) + 7 (\lambda + 2))$$

$$= \lambda^3 - 12\lambda - 46 = 0$$

$$= (\lambda + 2)^2 (\lambda - 4) = 0$$

$$= \lambda = -2 \operatorname{dan} \lambda = 4$$

Dan untuk mencari vektor eigen, maka misalkan vektor eigen tersebut x = (a, b, c). sehingga menentukan x yang memenuhi persyaratan $(\lambda I - A)x = 0$ Maka:

$$\lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$
$$= \begin{bmatrix} \lambda + 3 & -1 & 1 \\ 7 & \lambda - 5 & 1 \\ 6 & -6 & \lambda + 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Dimana untuk
$$\lambda = -2$$
 maka
$$\begin{bmatrix} 1 & -1 & 1 \\ 7 & -7 & 1 \\ 6 & -6 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Maka matriks yang berhubungan adalah:

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 7 & -7 & 1 & 0 \\ 6 & -6 & 0 & 0 \end{bmatrix}$$
 dengan menggunakan baris elementer, maka

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & -1 & 1/7 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1/7 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \text{ sehingga diperoleh}$$

c = 0 dan a = b. Misalkan a = t, maka b = t dan c = 0

jadi vektor eigen yang bersesuaian λ - 2 adalah t $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Dimana untuk
$$\lambda = 4$$
 maka
$$\begin{bmatrix} 7 & -1 & 1 \\ 7 & -1 & 1 \\ 6 & -6 & 6 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Maka matriks yang bersesuaian adalah

$$\begin{bmatrix} 7 & -1 & 1 & 0 \\ 7 & -1 & 1 & 0 \\ 6 & -6 & 6 & 0 \end{bmatrix} b2 - b1 \begin{bmatrix} 7 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 6 & -6 & 6 & 0 \end{bmatrix} 1/6b3 \begin{bmatrix} 7 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 \end{bmatrix}$$
$$b1 - b3 \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 \end{bmatrix}$$

Maka diperoleh a = 0 dan b = c misal a = t maka b = t dan c = 0

Sehingga vektor eigen dengan
$$\lambda = 4$$
 adalah t $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

3. Diagonalisasi

Sebuah matriks A dapat didiagonalisasikan apabila terdapat matriks P yang dapat dibalik sehingga berlaku $P^{-1}AP$ merupakan matriks diagonal, dimana matriks P dapat dikatakan mendiagonalisasi matriks A.

Apabila matriks A merupakan sebuah matriks yang berukuran n x n, maka pernyataan berikut bersifat ekuivalen antara yang satu dengan yang lain. Dimana:

- a. A dapat didiagonalisasi
- b. A mempunyai sebanyak n vektor eigen yang dikatakan bebas linier.

Adapun syarat yang dilakukan untuk mendiagonalisasi sebuah matriks adalah sebagai berikut:

a. Carilah sebanyak n vektor eigen yang dikatakan bebas secara linier dari matriks A misalkan p1, p2, p3,pn

- b. Bentuklah sebuah matriks p yang memiliki p1, p2, p3,pn sebagai vektor kolom matriksnya.
- c. Bentuklah sebuah matriks yaitu $P^{-1}AP$ yang akan menjadi sebuah matriks diagonal dengan $\lambda 1$, $\lambda 2$, $\lambda 3$ secara berturut turut yang merupakan anggota diagonalnya, dimana λ i merupakan nilai eigen yang saling berhubungan dengan pi. Dimana untuk I adalah 1, 2, 3 dan seterusnya

4. Menghitung Pangkat Suatu Matriks

Apabila diketahui sebuah matriks persegi *A* yang dapat didiagonalisasi oleh sebuah matriks *P* sedemikian rupa sehingga dapat diartikan:

$$P^{-1}AP = D$$
, maka: $A^k = PD^kP^{-1}$

Contoh:

a) Tentukanlah
$$A^{13}$$
 jika $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$

Jawab:

Matriks A dapat didiagnolisasi oleh:

$$A = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
Dimana $P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$

Maka:

$$A^{13} = PD^{13}P^{-1} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{13} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2^{13} & 0 & 0 \\ 0 & 2^{13} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -8190 & 0 & -16382 \\ 8191 & 8192 & 8191 \\ 8191 & 0 & 16382 \end{bmatrix}$$

C. Soal Latihan/Tugas

1. Carilah nilai eigen dari matriks berikut:

a.
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

b.
$$R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

2. Carilah persamaan karakteristik dari matriks – matriks berikut:

a.
$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

b.
$$T = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

- 3. Carilah basis basis untuk ruang eigen dari matriks A = $\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$
- 4. Carilah persamaan karakteristik dan basis untuk ruang eigen pada matriks

$$A = \begin{bmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

5. Berdasarkan matriks A = $\begin{bmatrix} 3 & 1 & 0 \\ 0 & 6 & 1 \\ 1 & 3 & 0 \end{bmatrix}$ Tentukan nilai – nilai eigen A^5 dari matriks tersebut.

D. Daftar Pustaka

Anton, Howard. (2010). *Elementary Linear Algebra: Applications Version (10th ed)*. John Wiley & Sons. Inc, New Your, NY.

- Atmadja, J., Bandung, I. T., & Bandung, J. G. (2016). Penerapan Aljabar Lanjar pada Grafis Komputer, 1–9.
- Kusumawati, Ririen (2006). *Diktat Aljabar Liniear dan Matriks*. Malang: Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN Malang.
- Lay, David C. (2000). *Linear Algebra and Its Aplication (2nd ed)*. Addison-Wesley Publ. Co., Reading, Mass.