CS446: Machine Learning

Spring 2017

Problem Set 2

Hsiang-Wei Hwang

Handed In: February 15, 2017

1. (a) If choose Holiday as the splitting attribute:

$$Gain(H) = Entropy(S) - \sum \frac{|S_v|}{|S|} Entropy(S_v) =$$

$$Entropy(S) - \{\frac{21}{50} [-\frac{20}{21} \log_{10}(\frac{20}{21}) - \frac{1}{21} \log_{10}(\frac{1}{21})] + \frac{29}{50} [-\frac{15}{29} \log_{10}(\frac{15}{29}) - \frac{14}{29} \log_{10}(\frac{14}{29})]\}$$

$$= Entropy(S) - 0.209$$

If choose Exam Tomorrow as the splitting attribute:

$$Gain(H) = Entropy(S) - \sum \frac{|S_v|}{|S|} Entropy(S_v) =$$

$$Entropy(S) - \{\frac{15}{50} [-\frac{10}{15} \log_{10}(\frac{10}{15}) - \frac{5}{15} \log_{10}(\frac{5}{15})] + \frac{35}{50} [-\frac{25}{35} \log_{10}(\frac{25}{35}) - \frac{10}{35} \log_{10}(\frac{10}{35})]\}$$

$$= Entropy(S) - 0.265$$

Thus, I will choose Holiday to get the highest information gain.

(b) Replace *Entropy* with *MajorityError*. For the first layer : Choosing Color:

$$Gain = MajorityError(S) - \sum \frac{|S_v|}{|S|} MajorityError(S_v) = \frac{7}{16} - (\frac{8}{16} \times \frac{3}{8} + \frac{8}{16} \times \frac{2}{8}) = \frac{7}{16} - \frac{5}{16}$$

Choosing Size:

$$Gain = \frac{7}{16} - (\frac{8}{16} \times \frac{3}{8} + \frac{8}{16} \times \frac{2}{8}) = \frac{7}{16} - \frac{5}{16}$$

Choosing Act:

$$Gain = \frac{7}{16} - (\frac{8}{16} \times \frac{2}{8} + \frac{8}{16} \times \frac{3}{8}) = \frac{7}{16} - \frac{5}{16}$$

Choosing Age:

$$Gain = \frac{7}{16} - (\frac{8}{16} \times \frac{2}{8} + \frac{8}{16} \times \frac{3}{8}) = \frac{7}{16} - \frac{5}{16}$$

All the gains are the same. Choose Color as the splitting attribute.

For the second layer at Color = Blue:

Choosing Size:

$$Gain = \frac{3}{8} - \frac{1}{8}$$

Choosing Act:

$$Gain = \frac{3}{8} - \frac{3}{8}$$

Choosing Age:

$$Gain = \frac{3}{8} - \frac{3}{8}$$

Choose Size as the splitting attribute.

For the second layer at Color = Red:

Choosing Size:

$$Gain = \frac{2}{8} - \frac{2}{8}$$

Choosing Act:

$$Gain = \frac{2}{8} - \frac{2}{8}$$

Choosing Age:

$$Gain = \frac{2}{8} - \frac{2}{8}$$

All the gains are the same. Choose Size as the splitting attribute.

For the third layer at Color = Blue, Size = Large:

Choosing Act:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

Choosing Age:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

All the gains are the same. Choose Act as the splitting attribute.

For the third layer at Color = Blue, Size = small, there is no need to split. The label of the node is F.

For the third layer at $\mathtt{Color} = \mathtt{Red}, \, \mathtt{Size} = \mathtt{Large} :$

Choosing Act:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

Choosing Age:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

All the gains are the same. Choose Act as the splitting attribute.

For the third layer at Color = Red, Size = Small:

Choosing Act:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

Choosing Age:

$$Gain = \frac{1}{4} - \frac{1}{4}$$

All the gains are the same. Choose Act as the splitting attribute. For the forth layer at Color = Blue, Size = Large, Act = Dip, all the labels are Ts. Thus, the label of this node is set as T. For the forth layer at Color = Blue, Size = Large, Act = Stretch. Choose the only attribute, Age, as the splitting attribute. The label of the node Age = Adult is F and the other is T. For the forth layer at Color = Red, Size = Large, Act = Dip, all the labels are Ts. Thus, the label of this node is set as T. For the forth layer at Color = Red, Size = Large, Act = Stretch. Choose the only attribute, Age, as the splitting attribute. The label of the node Age = Adult is F and the other is T. For the forth layer at Color = Red, Size = Small, Act = Dip, all the labels are Ts. Thus, the label of this node is set as T. For the forth layer at Color = Red, Size = Small, Act = Stretch. Choose the only attribute, Age, as the splitting attribute. The label of the node Age = Adult is F and the other is T. Thus, The decision tree:

```
if Color = Blue :
  if Size = Large :
    if Act = Dip :
      class = T
    if Act != Dip :
      if Age = Adult :
        class = F
      if Age != Adult :
        class = T
  if Size != Large :
    class = F
if Color != Blue :
  if Size = Large :
    if Act = Dip :
      class = T
    if Act != Dip :
      if Age = Adult :
        class = F
      if Age != Adult :
        class = T
  if Size != Large :
    if Act = Dip :
      class = T
    if Act != Dip :
      if Age = Adult :
        class = F
      if Age != Adult :
        class = T
```

- (c) No. Take 1.(b) as an example. when growing the tree, the algorithm sometimes will need to deal with a tie in information gains and generate some redundant nodes without knowing like the node with the splitting attribute Size in the subtree of Color = Red.
- 2. (a) I modified the source code, FeatureGenerator. java.
 - 1. Modify the feature list.

```
features = new String[] { "firstName0", "firstName1", "firstName2", "firstName3", "firstName4", "lastName0", "lastName1", "lastName2", "lastName4" }; // add features

2. Add theta as a feature.

3. ff.add("theta=1"); // add theta features

feature = ff.add("theta=1"); // add theta features

feature = ff.add("theta=1"); // add theta features
```

3. Change the capacity of the attributes

(b) i. Stochastic gradient descent:

We get features from the first 5 alphabets of first name and last name. As mentioned, '1' is added for each feature to represent θ . To fit line, $\vec{w}\vec{x_i} + \theta = y_i$, to the dataset, we use gradient descent method. Assuming the error function Q(w), we could derive the learning method.

$$Q(w) = \frac{1}{2} \sum_{i} (\vec{w}\vec{x}_i + \theta - y_i)^2$$

According to the function, Q(w), we modify the weight vector to minimize error function.

$$\vec{w'} = \vec{w} - \eta \times \vec{x_i} (\vec{w}\vec{x_i} + \theta - y_i)$$

Keep adjusting the weight vector until error rate of all training set achieving the threshold we set. Then, we sweep different values for threshold and learning rate. The result:

		Learning Rate					
		0.05	0.01	0.001	0.0001		
shold	0.1	0.617	0.671	0.666	0.662		
Threshold	0.01	0.619	0.645	0.640	0.639		
Error	0.001	0.604	0.651	0.656	0.642		

Coarse sweep of parameters and average accuracy

		Learning Rate				
		0.025	0.01	0.005		
Threshold	0.25	0.624	0.613	0.617		
-	0.1	0.676	0.671	0.675		
Error	0.05	0.680	0.672	0.683		

Fine sweep of parameters and average accuracy

According to the table above, we choose learning rate = 0.005 and threshold = 0.05.

	Test set							
	fold1	fold1 fold2 fold3 fold4 fold5						
Correct	45	39	32	50	35			
Wrong	20	18	14	16	25			
Accuracy	0.692	0.684	0.696	0.758	0.583			

Result of cross validation on SGD

We obtain information from the table $\Rightarrow \bar{x} = 0.683, std = 0.0627$. Two tails with 99% confidence interval and degree of freedom = 4, T value should be 4.604.

$$-4.604 \le \frac{\bar{x} - \mu}{\frac{std}{\sqrt{n}}} \le 4.604$$

$$\Rightarrow -4.604 \le \frac{0.683 - \mu}{\frac{0.0627}{\sqrt{5}}} \le 4.604$$

$$\Rightarrow 0.8118 \ge \mu \ge 0.5534$$

ii. Decision tree:

	Test set							
	fold1	fold1 fold2 fold3 fold4 fold5						
Correct	47	40	35	49	41			
Wrong	18	17	11	17	19			
Accuracy	0.723	0.702	0.761	0.742	0.683			

Result of cross validation on decision tree

We obtain information from the table $\Rightarrow \bar{x} = 0.7222, std = 0.031$. Two tails with 99% confidence interval and degree of freedom = 4, T value should be 4.604.

$$-4.604 \le \frac{\bar{x} - \mu}{\frac{std}{\sqrt{n}}} \le 4.604$$

$$\Rightarrow -4.604 \le \frac{0.7222 - \mu}{\frac{0.031}{\sqrt{5}}} \le 4.604$$

$$\Rightarrow -0.064 \le 0.7222 - \mu \le 0.064$$

$$\Rightarrow 0.7862 \ge \mu \ge 0.6582$$

iii. Decision tree of depth 4:

	Test set								
	fold1	fold1 fold2 fold3 fold4 fold5							
Correct	39	39	27	48	41				
Wrong	26	18	19	18	19				
Accuracy	0.600	0.684	0.587	0.727	0.683				

Result of cross validation on decision tree of depth 4

We obtain information from the table $\Rightarrow \bar{x} = 0.6564$, std = 0.0601. Two tails with 99% confidence interval and degree of freedom = 4, T value should be 4.604.

$$-4.604 \le \frac{\bar{x} - \mu}{\frac{std}{\sqrt{n}}} \le 4.604$$

$$\Rightarrow -4.604 \le \frac{0.6564 - \mu}{\frac{0.0601}{\sqrt{5}}} \le 4.604$$

$$\Rightarrow -0.124 \le 0.6564 - \mu \le 0.124$$

$$\Rightarrow 0.7801 \ge \mu \ge 0.5318$$

iv. Decision tree of depth 8:

	Test set							
	fold1	fold1 fold2 fold3 fold4 fold5 Sum & Avg						
Correct	48	41	29	47	41	206		
Wrong	17	16	17	19	19	88		
Accuracy	0.738	0.719	0.630	0.712	0.683	0.701		

Result of cross validation on decision tree of depth 8

We obtain information from the table $\Rightarrow \bar{x} = 0.6967$, std = 0.0421. Two tails with 99% confidence interval and degree of freedom = 4, T value should be 4.604.

$$-4.604 \le \frac{\bar{x} - \mu}{\frac{std}{\sqrt{n}}} \le 4.604$$

$$\Rightarrow -4.604 \le \frac{0.6967 - \mu}{\frac{0.0421}{\sqrt{5}}} \le 4.604$$

$$\Rightarrow -0.0867 \le 0.6967 - \mu \le 0.0867$$

$$\Rightarrow 0.7834 \ge \mu \ge 0.6100$$

v. Decision stumps as features & Stochastic gradient descent:

		Test set					
		fold1	fold2	fold3	fold4	fold5	
= 4	Wrong	25	20	19	16	16	
	Correct	40	37	27	50	44	
TD	Accuracy	0.615	0.649	0.587	0.758	0.733	
∞	Wrong	22	16	17	15	19	
	Correct	43	41	29	51	41	
TD	Accuracy	0.662	0.719	0.630	0.773	0.683	
-1	Wrong	21	17	21	19	20	
	Correct	44	40	25	47	40	
	Accuracy	0.677	0.702	0.543	0.712	0.667	

Result of cross validation on 100 Decision stumps + SGD with different tree depth

When max tree depth = 4, $\Rightarrow \bar{x} = 0.668$, std = 0.074. We get:

$$0.821 \ge \mu \ge 0.516$$

When max tree depth = 8, $\Rightarrow \bar{x} = 0.693$, std = 0.055. We get:

$$0.806 > \mu > 0.580$$

When no limitation for max tree depth, $\Rightarrow \bar{x} = 0.660, std = 0.068$. We get:

$$0.800 \ge \mu \ge 0.521$$

After tuning all possible combination parameters, I found that increasing samples when creating decision stumps will largely increase the accuracy. Here, depth of tree = 8, number of trees = 100, we sweep the ratio of removing train data set.

		Test set					
		fold1	fold2	fold3	fold4	fold5	
ಇ	Wrong	26	21	20	21	21	
50% data	Correct	39	36	26	45	39	
Use 5	Accuracy	0.6	0.632	0.565	0.682	0.65	
а	Wrong	20	11	20	14	22	
Use 60% data	Correct	45	46	26	52	38	
Jse	Accuracy	0.692	0.807	0.565	0.788	0.633	
ta	Wrong	23	18	16	10	16	
Use 70% data	Correct	42	39	30	56	44	
Use 7	Accuracy	0.646	0.684	0.652	0.848	0.733	
a	Wrong	15	15	17	14	18	
Use 80% data	Correct	50	42	29	52	42	
Use 8	Accuracy	0.769	0.737	0.660	0.788	0.7	
а	Wrong	20	18	17	18	16	
Use 90% data	Correct	45	39	29	48	44	
Use (Accuracy	0.692	0.684	0.630	0.727	0.733	

Result of cross validation on 100 Decision stumps of depth 4 + SGD with different sampling ratio

The best case is $\bar{x}=0.731, std=0.052$ when randomly sampling 80% data. 99% confidence interval $\Rightarrow 0.837 \ge \mu \ge 0.624$

Comparison:

According to the 99% confidence interval we get from t-distribution, the performance of each method is not significantly different from the others. Moreover, the ranking of the first 4 methods is ii.>iv.>i.>iii. However, v. is really hard to compare with others because of the randomization process in it. We could find an average accuracy = 0.731 after adjusting the sampling ratio of training data set to 80% which is the best of all methods introduced. Thus, roughly speaking, the ranking might be v.>ii.>iv.>i.>iii.

```
Trees display for ii. iii. iv.:
ii. decision tree:
if lastNameO=m = 1:
  if firstName2=e = 1:
    class = +
  if firstName2=e = 0:
    if lastName1=o = 1:
      class = +
    if lastName1=o = 0:
      if firstNameO=p = 1:
        class = -
      if firstNameO=p = 0:
        if firstNameO=r = 1:
          class = -
        if firstNameO=r = 0:
          if firstNameO=y = 1:
            class = -
          if firstNameO=y = 0:
            if firstName1=u = 1:
              class = -
            if firstName1=u = 0:
              if lastName3=a = 1:
                if firstName3=r = 1:
                  class = +
                if firstName3=r = 0:
                   class = -
              if lastName3=a = 0:
                class = +
if lastName0=m = 0:
  if lastName1=l = 1:
    if firstNameO=d = 1:
      class = -
    if firstNameO=d = 0:
      class = +
  if lastName1=l = 0:
    if lastName2=1 = 1:
      if firstName2=r = 1:
        class = -
      if firstName2=r = 0:
        if lastName4=n = 1:
          class = -
        if lastName4=n = 0:
          if firstName2=h = 1:
            class = -
```

```
if firstName2=h = 0:
        class = +
if lastName2=1 = 0:
  if lastName2=o = 1:
    if firstNameO=b = 1:
      class = -
    if firstNameO=b = 0:
      class = +
  if lastName2=o = 0:
    if firstName3=f = 1:
      class = +
    if firstName3=f = 0:
      if lastName4=l = 1:
        if firstName2=h = 1:
          class = -
        if firstName2=h = 0:
          if lastName0=1 = 1:
            class = -
          if lastNameO=1 = 0:
            if lastName0=q = 1:
              class = -
            if lastName0=q = 0:
              class = +
      if lastName4=1 = 0:
        if firstName1=o = 1:
          if lastNameO=f = 1:
            class = -
          if lastName0=f = 0:
            if firstName2=e = 1:
              class = -
            if firstName2=e = 0:
              if firstName3=a = 1:
                if lastNameO=h = 1:
                  class = +
                if lastNameO=h = 0:
                  class = -
              if firstName3=a = 0:
                if firstName2=n = 1:
                  class = +
                if firstName2=n = 0:
                  if lastName2=n = 1:
                    class = +
                  if lastName2=n = 0:
                    if lastName1=a = 1:
                      class = -
```

```
if lastName1=a = 0:
              if firstName3=g = 1:
                class = -
              if firstName3=g = 0:
                class = +
if firstName1=o = 0:
  if lastNameO=l = 1:
    if firstName1=a = 1:
      if firstNameO=d = 1:
        class = +
      if firstNameO=d = 0:
        class = -
    if firstName1=a = 0:
      class = +
  if lastName0=1 = 0:
    if lastName3=m = 1:
      if firstName2=r = 1:
        class = -
      if firstName2=r = 0:
        class = +
    if lastName3=m = 0:
      if firstName1=e = 1:
        if firstName2=n = 1:
          class = +
        if firstName2=n = 0:
          if firstName2=o = 1:
            if lastNameO=b = 1:
              class = -
            if lastNameO=b = 0:
              class = +
          if firstName2=o = 0:
            if lastName2=r = 1:
              if firstNameO=m = 1:
                class = -
              if firstNameO=m = 0:
                class = +
            if lastName2=r = 0:
              class = -
      if firstName1=e = 0:
        if firstNameO=t = 1:
          if lastName4=e = 1:
            class = -
          if lastName4=e = 0:
            if lastName0=s = 1:
              class = -
```

```
if lastNameO=s = 0:
      class = +
if firstNameO=t = 0:
  if firstName3=o = 1:
    if firstNameO=a = 1:
      class = +
    if firstNameO=a = 0:
      if firstNameO=m = 1:
        class = +
      if firstName0=m = 0:
        class = -
  if firstName3=o = 0:
    if firstName4=o = 1:
      if firstNameO=s = 1:
        class = -
      if firstNameO=s = 0:
        class = +
    if firstName4=o = 0:
      if lastNameO=s = 1:
        if firstNameO=d = 1:
          class = +
        if firstNameO=d = 0:
          if lastName4=h = 1:
            if firstName0=s = 1:
              class = -
            if firstNameO=s = 0:
              class = +
          if lastName4=h = 0:
            class = -
      if lastName0=s = 0:
        if lastName3=l = 1:
          if firstNameO=d = 1:
            class = -
          if firstNameO=d = 0:
            class = +
        if lastName3=1 = 0:
          class = -
```

```
iii. decision tree of depth 4:
if lastName2=1 = 1:
  if firstName2=r = 1:
    class = -
  if firstName2=r = 0:
    if firstName2=m = 1:
      class = -
    if firstName2=m = 0:
      class = +
if lastName2=1 = 0:
  if lastName2=o = 1:
    if firstNameO=d = 1:
      class = -
    if firstNameO=d = 0:
      if firstName2=l = 1:
        class = -
      if firstName2=1 = 0:
        class = +
  if lastName2=o = 0:
    if firstName3=f = 1:
      class = +
    if firstName3=f = 0:
      if lastName0=m = 1:
        if firstName0=n = 1:
          class = -
        if firstNameO=n = 0:
          class = +
      if lastName0=m = 0:
        if lastName1=l = 1:
          class = +
        if lastName1=l = 0:
          class = -
iv. decision tree of depth 8:
if firstName3=f = 1:
  class = +
if firstName3=f = 0:
  if lastName0=c = 1:
    class = -
  if lastNameO=c = 0:
    if lastName4=1 = 1:
      if lastNameO=q = 1:
        class = -
      if lastName0=q = 0:
```

```
class = +
if lastName4=1 = 0:
  if firstNameO=r = 1:
    if firstName1=o = 1:
      class = +
    if firstName1=o = 0:
      if firstName1=a = 1:
        class = +
      if firstName1=a = 0:
        if firstName1=e = 1:
          class = +
        if firstName1=e = 0:
          class = -
  if firstNameO=r = 0:
    if lastName0=m = 1:
      if firstName2=n = 1:
        class = -
      if firstName2=n = 0:
        if firstName0=p = 1:
          class = -
        if firstNameO=p = 0:
          if lastName2=t = 1:
            if firstNameO=t = 1:
              class = +
            if firstNameO=t = 0:
              class = -
          if lastName2=t = 0:
            class = +
    if lastName0=m = 0:
      if lastNameO=1 = 1:
        if firstName1=a = 1:
          if firstNameO=d = 1:
            class = +
          if firstNameO=d = 0:
            class = -
        if firstName1=a = 0:
          class = +
      if lastName0=1 = 0:
        if lastName3=m = 1:
          if firstName2=r = 1:
            class = -
          if firstName2=r = 0:
            class = +
        if lastName3=m = 0:
          if lastName2=1 = 1:
```

```
if firstName2=r = 1:
    class = -
if firstName2=r = 0:
    class = +
if lastName2=l = 0:
    if lastName3=l = 1:
      class = +
    if lastName3=l = 0:
      class = -
```