

Solides cristallins : état solides, amorphes...

Approches descriptif de l'état solide:

Maille, Différents types de mailles, Réseaux de Bravais, Plans crisyallographiques et Indices de Miller, Réseau réciproque

Exemples de quelques structures cristallines :

Cubique centrée, Cubique à faces centrées, Structure

Diamant Hexagonal compact

Notion de coordinance

Distance interréticulaire

Défauts cristallins : plans, linéaires et ponctuels

Ensemble d'atomes : ordre et désordre

Comment, dans 1 cm³ de solide, disposer 10²⁴ atomes ?

- * En désordre : solides amorphes

 - verres
 - plastiques- céramiques} en partie

- métaux
- céramiques- plastiques} en partie

Solides cristallins

Il y a deux type de solide: les solides cristallisés et amorphes

•Solides cristallisés: Fer, Nacl, Cu....

•Solides amorphes: Verre, Caoutchoux....

Solides cristallisés	Solides amorphes	
 Forme cristallines bien déterminée Isotropes: les propriétés physico chimiques dépendent de l'orientation et la direction du cristal Diffraction des RX: les atomes, anions ou molécules sont ordonnées 	 Pas de forme typique, le moulage et le laminage détermine la forme Anistropie: les propriétés physico chimiques ne dépendent pas de la direction La répartition des atomes est aléatoire dans l'espace, pas d'ordre 	

Monocristaux et Matériaux polycristallins

•Monocristaux : solide cristallin sans discontinuité—un cristal parfait.

•Polycristallin: Solide cristallin composé d'un grand nombre de cristaux.

acier austénitique (Fe, α)

Ensemble d'atomes: ordre et désordre

L'architecture atomique, c'est la disposition des atomes dans l'espace et les relations géométriques qui en découlent.

En ce sens, les gaz représentent le **désordre complet** puisque la position d'un atome par rapport à un autre est tout à fait arbitraire. En mouvement continuel.

À l'opposé, les solides cristallins démontrent un **ordre parfait** puisque la position d'un atome par rapport à un autre est bien définie.

Les gaz

- * Les atomes ne sont pas en contact et occupent tout l'espace disponible (compressible)
- * Les atomes sont toujours en mouvement (aucun ordre)

Liquide ou solide amorphe

- * Atomes sont en contact (incompressible)
- * Ordre à courte distance
- * Arrangement irrégulier (au hasard) dans l'espace
- * Conséquence \Rightarrow isotropie

Liquide

- * Les groupe d'atomes sont toujours en mouvement
- * Viscosité du liquide dépend, entre autre, de la taille et de la forme des groupe d'atomes

Solide cristallin

- * Symétrie
- * Ordre à longue distance
- * Arrangement régulier dans l'espace
- * Conséquence \Rightarrow anisotropie

Ensemble d'atomes : ordre et désordre

- * Exemple de la silice (SiO₂)
 - (a) tétraèdre de base
 - (b) état amorphe (vitreux)
 - (c) état cristallin

Approches descriptif de l'état solide

Un **cristal parfait** est un empilement *ordonné*, *infini*, d'atomes *identiques*:

- périodicité: le motif cristallin se répète dans l'espace ;
- symétries : plans, axes ou centres de symétries

Maille:

La plus petite entité correspondant à un parallélépipède, elle est défini par: a, b, c et α , β et γ . Les vecteurs et les angles sont appelés les paramètres de la maille.

Différents types de mailles

Systèmes cristallins

Système	(a, b et c) et (α , β et γ)
Triclinique	a≠b≠c; α≠β≠γ≠90°
Monoclinique	a≠b≠c; α=β=90°≠γ
Orthorhombique	a≠b≠c; α=β=γ=90°
Quadratique	a=b≠c; α=β=γ=90°
Hexagonale	a=b≠c; α=β=90°, γ=120
Rhomboédrique	a=b=c; α=β=γ≠90°
Cubique	a=b=c; α = β = γ =90°

La combinaison des 7 systèmes cristallins et les modes de réseau P, I, F et A, B ou C génèrent les 14 réseaux de Bravais

7 Crystal Classes

Repérage des directions et des plans

* Indexation des directions

- [*u*,*v*,*w*] : entiers sans dénominateur commun

- vecteur r=**u**a+**v**b+**w**c

 famille de direction : même densité de noeuds par unité de longueur notation : <u,v,w>

- * Les familles de direction
- * système cubique (3 axes de même longueur, 3 angles droit)

$$[110] = 6$$
 $[110] [101] [011] [\overline{1}10] [\overline{1}01] [01\overline{1}]$

* système quadratique (2 axes de même longueur, 3 angles droit)

$$[110] = 2$$
 $[110]$ $[\overline{1}10]$

Plans crisyallographiques et Indices de Miller

Une autre desciption: plans réticulaires notés (h,k,l).

d(hkl): distance interréticulaires.

Un plan (h,k,l) coupe les axes a, b et c respectivement en a/h, b/k et c/l.

h, k et I: indices de Miller.

Le plan en triangle coupe les trois axes en 1/2a, 1/2b et 1c, ce plan est noté (221).

- •2- prendre les inverses
- •3- réduire les 3 fractions au plus petit commun dénominateur
- •4- prendre les numérateurs

Détreminez les indices de Miller des plans suivants:

Famille de plans équivalents

Exemple

les indices de Miller pour le plan montré ci-dessous

Cas des structures cubiques

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Famille de plans {hkl}.

Symétries cubiques : les plans (100), (010) et (001) sont équivalents.

La famille {110} comprend les plans:

$$(110)$$
, $(\overline{1}\ 10)$, (101) , $(\overline{1}\ 01)$, (011) et $(0\ \overline{1}\ 1)$

Densité linéaire

La densité linéaire est donnée par le rapport entre la longueur des atomes par la longueur totale selon la direction considérée

$$DL_{[100]} = \frac{L_{atomes}}{L_{[100]}} = \frac{2R}{a} = \frac{2R}{4R/\sqrt{3}} = 0,866$$

Densité planaire

La densité planaire est donnée par le rapport entre la surface atomique par la surface totale selon le plan considérée

$$DS_{(110)} = \frac{S_{atomes}}{S_{plan}} = \frac{2 \times \pi R^2}{a \times \sqrt{2}a} = \frac{2 \times \pi R^2}{\sqrt{2} \left(4R/\sqrt{3}\right)^2} = 0,833$$

Isotropie et anisotropie

- •Les différences de DS et DL provoquent généralement des différences dans les propriétés mécaniques
- •Caractère directionnel des propriétés est appelé anisotropie. S'observe dans les monocristaux.

Métal	Module élastique [GPa]			
Metal	[100]	[110]	[111]	
Aluminium (CFC)	63,7	72,6	76,1	

Structures cristallines

Cubique centré

Hexagonal compacte

Cubique à faces centrées

Diamant

Cubique centré

- 8 ats aux sommets X 1/8
- 1 ats au centre

2 atomes/maille

Compacité (densité volumique):

[100]

$$c = \frac{\text{Volume occupé}}{\text{Volume total}} = \frac{2 \times V_{atome}}{a^3} = \frac{2 \times (\frac{4}{3} \cdot \pi R^3)}{(\frac{4}{\sqrt{3}} \cdot R)^3} = \frac{\pi \cdot \sqrt{3}}{8} \simeq 0,68$$

Structure de type chlorure de césium CsCl

Structure CS (2 atomes différents)

Cubique à faces centrées

- 8 ats aux sommets: 1/8
- 6 ats au centredes faces : 1/2

4 ats/maille

Compacité (densité volumique):

$$c = \frac{\text{Volume occup\'e}}{\text{Volume total}} = \frac{4 \times V_{atome}}{a^3} = \frac{4 \times (\frac{4}{3} \cdot \pi R^3)}{\left(\frac{4R}{\sqrt{2}}\right)^3} = \frac{\pi}{3\sqrt{2}} \simeq 0,74$$

Structure Type NaCl

changement du volume de la maille, de la compacité

$$C \neq 0.74$$

Structure hexagonale compacte

Structure Pérovskite

 $BaTiO_3$

Exemples de structures métalliques

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

BCC= Cubique centré

FCC= Cubique à faces centrées

HCP= Hexagonal compact

Exercice 1
Déterminez les indices pour la direction montrée sur la figure.

Projections sur x, y, z: (a/2, b, 0), c-à-d (1/2, 1, 0) en fonction des parameters (a, b, c).

Reduction: [1,2,0]

Question: direction [1,-1,0]?

Exercice 2

- •Calculez le volume de la maille d'un CFC en fonction du rayon atomique R.
- •En déduire la compacité c du CFC

$$a^2 + a^2 = (4R)^2$$
$$a = 2R\sqrt{2}$$

$$V_C = a^3 = (2R\sqrt{2})^3 = 16R^3\sqrt{2}$$

Exercice 3

Les coordonnées relatives de tous les atomes dans un CC?

Point Number	Fractional Lengths			Point
	x axis	y axis	z axis	Coordinates
1	0	0	0	0 0 0
2	1	0	0	100
3	1	1	0	110
4	0	1	0	010
5	$\frac{1}{2}$	$\frac{1}{2}$	1/2	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$
6	ō	õ	ī	001
7	1	0	1	101
8	1	1	1	111
9	0	1	1	011

Même question pour un CFC?

Exercice 4

Densité Théorique du cuivre :

Le cuivre possède un rayon atomique de 0.128 nm, une structure CFC, et une masse atomique de 63.5 g/mol. Calculer sa Densité Théorique et compare votre réponse à la valeur expérimentale (8.94 g/cm³).

$$\rho = \frac{nA_{\rm Cu}}{V_{\rm C}N_{\rm A}}$$

n: Nombre d'at/maille

A_{Cu}: masse/atome de Cu

V_C: Volume/maille

N_A: Nombre d'Avogadro

$$V_{\rm C} = 16R^3 \sqrt{2}$$

$$\rho = \frac{nA_{\rm Cu}}{V_{\rm C}N_{\rm A}}$$

$$= \frac{nA_{\text{Cu}}}{(16R^3\sqrt{2})N_{\text{A}}} = 8.89 \text{ g/cm}^3$$

$$= 8.89 \text{ g/cm}^3$$

Défauts cristallins défauts ponctuels

- * 1 Lacune
- * 2 Atome autointerstitiel
- * 3 Atome étranger en substitution
- * 4 Atome étranger en insertion

Défauts cristallins défauts à une dimension

- * Les dislocations
 - (a) cristal parfait
 - (b) dislocation-coin
 - (c) dislocation-vis

- * Dislocations: visualisation selon les plans cristallins
 - (a) cristal parfait
 - (b) dislocation-coin
 - (c) dislocation-vis

Défauts cristallins défauts à deux et trois dimensions

- * Deux dimensions
 - Macle
 - Joints de grains
- * Trois dimensions
 - Précipités

grain = monocristal

Différentes structures = Différentes propriétés

Graphite (carbone) Empilement hexagonal

Structure diamant (carbone)

différentes Structures = différentes Propriétés

Allotropie-Un matériau peut présenter plus d'un structure cristalline

- •Le diamant est le matériau le plus dur, le graphite est un matériau très mou.
- •Le diamant est un excellent isolant électrique, le graphite est conducteur d'électricité.
- •Le diamant est un matériau abrasif, le graphite est un excellent lubrifiant.
- •Le diamant est habituellement transparent, le graphite est opaque.

Réseau réciproque

Si on appelle $(\vec{e_1}, \vec{e_2}, \vec{e_3})$

les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace. On peut définir une base réciproque par

$$(ec{e_1^*},ec{e_2^*},ec{e_3^*})$$
 vérifiant $ec{e_i^*}.ec{e_j^*}=\delta_{ij}=egin{cases} 1, & ext{si } i=j \ 0 & ext{si } i
eq j \end{cases}$

ce qui donne
$$\begin{aligned} \vec{e_1^*} &= \frac{1}{V} \cdot \vec{e}_2 \wedge \vec{e}_3 \\ \vec{e_2^*} &= \frac{1}{V} \cdot \vec{e}_3 \wedge \vec{e}_1 \\ \vec{e_3^*} &= \frac{1}{V} \cdot \vec{e}_1 \wedge \vec{e}_2 \end{aligned}$$

où V est le volume de la maille