Modbus 通讯协议

1.1 通讯制式及波特率:

1位起始位,8位数据位,无奇偶校验位,1位停止位,115200bits/s

1.2 地址设置报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0x00	0x06	0x0000	0xnnnn	CRC

寄存器数据定义:

地址范围: 1~255。

设置地址时,使用地址0设置;

从机返回:

无

1.3 配置指令报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)	
0xnn	0x06	0x0002	0xnnnn	CRC	

寄存器数据定义:

0x0000: 激活驱动模块,激活后电机才能正常接收电压/速度/位置指令,该标志位会掉电保存;

0x0001: 禁止驱动模块,禁止后电机不会接收电压/速度/位置指令,该标志位会掉电保存;

0x0002: 执行电机角度校准命令,校准过程会持续 4s 左右;

0x0003: 执行电机角度校准值自动微调命令,在此过程中电机会正反转,当微调值满足要求时

电机会停止,该命令必须在执行了"0x02"命令之后才能执行;

0x0004: 设置当前位置为 0 点,掉电后不会被保存;

0x0005: 紧急刹车;

0x0006: 恢复出厂设置(缓启动时间,堵转保护参数,负载惯量比等);

0x0007: 软件复位; 0x0008: 故障复位;

0x000a: 设置为速度闭环模式; 0x000b: 设置为位置闭环模式;

0x000c: 设置为力矩闭环模式;

从机返回:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)	
0xnn	0x06	0x0002	0xnnnn	CRC	

1.4 速度闭环控制指令报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)	
0xnn	0x06	0x0006	0xnnnn	CRC	

寄存器数据定义:

速度给定值范围为: -2048~2047,单位: rpm,齿轮箱末端速度,大部分电机速度都在1000rpm以内。

从机返回:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte) (1byte)		(2byte)	(2byte)	
0xnn	0x06	0x0006	0xnnnn	CRC	

1.5 位置控制模式指令报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)	
0xnn	0x06	0x0008	0xnnnn	CRC	

寄存器数据定义:

位置给定值范围为: -18000~18000, 单位: 0.01 度, 齿轮箱末端位置。

从机返回:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x06	0x0008	0xnnnn	CRC

1.6 电流模式控制 (力矩模式) 指令报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x06	0x000a	0xnnnn	CRC

寄存器数据定义:

力矩电流给定值范围为: -2048~2047, 因为电流采样 ADC 为 12bit。给的是电机轴端的力矩,不是齿轮箱末端的。实际使用时请不要用到极限值,因为采样电路会有偏差,往往无法做到极限值采样。

力矩电流给定值=目标电流值/16*2048;例如,目标电流值 1A,电流给定值=1/16*2048=128,对应十六进制为 0X0080.

从机返回:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验	
(1byte)	(1byte) (1byte)		(2byte)	(2byte)	
0xnn	0x06	0x000a	0xnnnn	CRC	

1.7 状态反馈报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x03	0x00c0	0x0007	CRC

从机返回:

从机地址	功能码	字节数	寄存器数据 1	寄存器数据 2	寄存器数据3
(1byte)	(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x03	0x0e	0xnnnn	0xnnnn	0xnnnn
寄存器数据 4	寄存器数据 5	寄存器数据 6	寄存器数据 7	CRC 校验	
(2byte)	(2byte)	(2byte)	(2byte)	(2byte)	
0xnnnn	0xnnnn	0xnnnn	0xnnnn	CRC	

寄存器数据1定义:

圈数范围: 0~65535。

寄存器数据2定义:

位置范围: -18000~18000, 单位: 0.01 度。

寄存器数据3定义:

转速范围: -2048~2047, 单位: rpm。

寄存器数据 4 定义:

电流范围: -2048~2047, 电流采样 ADC 为 12bit。

寄存器数据5定义:

电压范围: 0~255, 单位: V。

寄存器数据6定义:

温度范围: -128~127, 单位: 摄氏度。

寄存器数据7定义:

状态标志:

bit15~bit8: 保留;

bit7: 0-驱动器未被激活,1-驱动器处于激活状态;

bit6: 0- 电机未做过校准, 1- 电机做过校准;

bit5: 0- 电机未发生堵转,1- 电机发生堵转,需要发送故障复位信号后,才可以恢复工作;

bit4~3: 0- 电机处于开环电压控制模式, 1- 电机处于闭环速度控制模式, 2- 电机处于闭环

位置模式; 3- 电机处于闭环力矩控制模式

bit2~0: 0-无故障,1-电流反馈信号故障,2-编码器反馈信号故障,3-功率器件故障,4-

1.8 过流保护设置报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数	字节数	寄存器数据1
(1byte)	(1byte)	(2byte)	(2byte)	(1byte)	(2byte)
0xnn	0x10	0x000c	0x0003	0x06	0xnnnn
寄存器数据 2	寄存器数据 3	CRC 校验			
(2byte)	(2byte)	(2byte)			
0xnnnn	0xnnnn	CRC			

寄存器数据1定义:

过流保护值范围: $0\sim2047$,电流采样 ADC 为 12bit。过流保护值=目标电流值/16*2048;例如,目标电流值 1A,过流保护值=1/16*2048=128,对应十六进制为 0X0080.

寄存器数据 2 定义:

堵转时间范围: 0~60000, 单位: ms。

寄存器数据3定义:

保存标志: 0- 不保存, 1- 保存, 保存时请确保电机处于静止状态。

从机返回:

从机地址	功能码	首寄存器地址	寄存器数	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x10	0x000c	0x0003	CRC

1.9 速度闭环控制指令缓启动设置报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数	字节数	寄存器数据 1
(1byte)	(1byte)	(2byte)	(2byte)	(1byte)	(2byte)
0xnn	0x10	0x0018	0x0003	0x06	0xnnnn
寄存器数据 2	寄存器数据 3	CRC 校验			
(2byte)	(2byte)	(2byte)			
0xnnnn	0xnnnn	CRC			

寄存器数据1定义:

缓起缓停高 16 位,缓起缓停时间范围: $0\sim2^32-1$,0 表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默认为 500000。

寄存器数据 2 定义:

缓起缓停低 16 位,缓起缓停时间范围: $0\sim2^32-1$,0 表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默认为 500000。

寄存器数据3定义:

保存标志: 0- 不保存, 1- 保存, 保存时请确保电机处于静止状态。

当处于速度闭环模式时,举例说明启停时间计算,假设速度指令缓启动参数 α ,当前速度指令为 0,目标速度指令(齿轮箱末端)为 n_{ref} (单位为 rpm),齿轮比为 r ,那么需要经过时间 t 之后当前的速度指令才会达到目标速度指令,时间 t 的计算公式为:

$$t = 2\sqrt{\frac{rn_{ref}}{9.55\alpha}}\tag{2}$$

下面再以实际测试为例,设置 $\alpha=5000$, $n_{ref}=133$ rpm,齿轮比 r=3.75 ,则理论规划时间 t=0.2047 s。实际测试结果如图 3 所示,其中第一通道波形代表换算到电机末端的速度指令(单位:rad/s),第二通道波形代表规划后的速度指令,第三通道波形代表实际速度,采样频率为 $1 \, \mathrm{kHz}$ 。从图中可知,指令规划时间为 0.2047 s,实际速度上升时间约为 0.207 s。

图 3 速度模式测试 lpha=5000 , $n_{aref}=133 ext{rpm}$

设置 $\alpha=10$, $n_{ref}=133$ rpm,齿轮比 r=3.75 ,则理论规划时间 t=4.5765 s。实际测试结果 如图 4 所示,其中第一通道波形代表换算到电机末端的速度指令(单位:rad/s),第二通道波形代表规划后的速度指令,第三通道波形代表实际速度,采样频率为 $1 \, \mathrm{kHz}$ 。从图中可知,指令规划时间为 $4.5765 \, \mathrm{s}$,实际速度上升时间约为 $4.617 \, \mathrm{s}$ 。

图 4 速度模式测试 $\alpha=10$, $n_{qref}=133$ rpm

从机返回:

从机地址	功能码	首寄存器地址	寄存器数	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x10	0x0018	0x0003	CRC

1.10 位置指令缓启动设置报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数	字节数	寄存器数据1
(1byte)	(1byte)	(2byte)	(2byte)	(1byte)	(2byte)
0xnn	0x10	0x001e	0x0003	0x06	0xnnnn
寄存器数据 2	寄存器数据 3	CRC 校验			
(2byte)	(2byte)	(2byte)			
0xnnnn	0xnnnn	CRC			

寄存器数据1定义:

缓起缓停高 16 位,缓起缓停时间范围: $0\sim2^32-1$,0 表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默认为 500000。

寄存器数据 2 定义:

缓起缓停低 16 位,缓起缓停时间范围: $0\sim2^32-1$,0 表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默认为 500000。

寄存器数据3定义:

保存标志: 0- 不保存, 1- 保存, 保存时请确保电机处于静止状态。

当处于位置闭环模式时,举例说明启停时间计算,假设位置指令缓启动参数 α ,当前位置指令为 0,目标位置指令(齿轮箱末端)为 θ_{ref} (单位为 $^{\circ}$),齿轮比为 r ,那么需要经过时间 t 之后当前的位置指令才会达到目标位置指令,时间 t 的计算公式为:

$$t = 2\sqrt{\frac{\pi r \,\theta_{ref}}{180\alpha}}\tag{3}$$

下面再以实际测试为例,设置 $\alpha=200$, $\theta_{ref}=180^\circ$,齿轮比 r=3.75,则理论规划时间 t=0.2507 s。实际测试结果如图 5 所示,其中第一通道波形代表换算到电机末端的位置指令(单位:rad),第二通道波形代表规划后的位置指令,第三通道波形代表实际位置,采样频率为 $1 \, \mathrm{kHz}$ 。从图中可知,指令规划时间为 0.2507 s,实际速度上升时间约为 0.275 s。

图 5 位置模式测试 $\,lpha=200\,$, $\, heta_{\it ref}=180^\circ$

设置 $\alpha=10$, $\theta_{ref}=180^\circ$, 齿轮比 r=3.75, 则理论规划时间 t=1.121 s。 实际测试结果如图 6 所示,其中第一通道波形代表换算到电机末端的位置指令(单位:rad),第二通道波形代表规划后的位置指令,第三通道波形代表实际位置,采样频率为 1 kHz。从图中可知,指令规划时间为 1.121 s,实际速度上升时间约为 1.125 s。

图 6 位置模式测试 lpha=10 , $heta_{r\!e\!f}=180^{\circ}$

从机返回:

从机地址	功能码	首寄存器地址	寄存器数	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x10	0x001e	0x0003	CRC

1.11 负载惯量设置报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数	字节数	寄存器数据1
(1byte)	(1byte)	(2byte)	(2byte)	(1byte)	(2byte)
0xnn	0x10	0x0024	0x0002	0x04	0xnnnn
寄存器数据 2	CRC 校验				
(2byte)	(2byte)				
0xnnnn	CRC				

寄存器数据1定义:

1~65535,表示负载惯量是电机本体惯量的多少倍,该参数会影响速度闭环和位置闭环控制效果。

寄存器数据2定义:

0-不保存, 1-保存,保存时请确保电机处于静止状态。

从机返回:

从机地址	功能码	首寄存器地址	寄存器数	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x10	0x0024	0x0002	CRC

1.12 启动 485 控制电机报文

主机写入:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x06	0x00be	0xnnnn	CRC

寄存器数据定义:

位置给定值范围为: 0-不使用 485 控制电机,此时默认 can 控制,1-使用 485 控制电机,此时 can 无效。

从机返回:

从机地址	功能码	首寄存器地址	寄存器数据	CRC 校验
(1byte)	(1byte)	(2byte)	(2byte)	(2byte)
0xnn	0x06	0x00be	0xnnnn	CRC

附录 寄存器表

寄存器	寄存器名	中文注释	寄存器属性
地址	H) 11 7HP 7L		11.11.11111111111111111111111111111111
0x0000	SLAVE_ADDR	从机地址设置寄存器	UINT16_T, W
0x0002	CONFIG	配置寄存器	UINT16_T, W
0x0006	SPEED_REF	速度闭环控制寄存器	INT16_T, RW
0x0008	POSITION_REF	位置控制寄存器	INT16_T, RW
0x000a	IQ_REF	力矩电流控制寄存器	INT16_T, RW
0x000c	STALLED_CURR	过流保护设置寄存器	UINT16_T, RW
0x000e	STALLED_DURATION_MS	过流保护时间设置寄 存器	UINT16_T,RW
0x0010	STALLED_CURR_SAVE_FLAG	过流设置保存标志寄 存器	UINT16_T, W
0x0018	SPEED_TD_R_HIGH	速度缓启缓停设置高 16 位寄存器	UINT16_T, RW
0x001a	SPEED_TD_R_LOW	速度缓启缓停设置低 16 位寄存器	UINT16_T,RW
0x001c	SPEED_TD_R_SAVE_FLAG	速度缓启缓停设置保 存标志寄存器	UINT16_T, W
0x001e	POSITION_TD_R_HIGH	位置缓启缓停设置高 16 位寄存器	UINT16_T, RW
0x0020	POSITION_TD_R_LOW	位置缓启缓停设置低 16 位寄存器	UINT16_T, RW
0x0022	POSITION_TD_R_SAVE_FLAG	位置缓启缓停设置保 存标志寄存器	UINT16_T, W
0x0024	INERTIA_RATIO	负载惯量比设置寄存 器	UINT16_T, RW
0x0026	INERTIA_RATIO_SAVE_FLAG	负载惯量比设置保存 标志寄存器	UINT16_T, W
0x00be	USE_485_CONTROL	485 使能与失能控制 寄存器	UINT16_T, RW
0x00c0	CYCLE_NUM	圈数读取寄存器	UINT16_T, R
0x00c2	ANGLE	位置读取寄存器	INT16_T, R
0x00c4	SPEED	速度读取寄存器	INT16_T, R
0x00c6	IQ	力矩电流读取寄存器	INT16_T, R
0x00c8	VOLT	电压读取寄存器	UINT16_T, R
0x00ca	ТЕМР	温度读取寄存器	INT16_T, R
0x00cc	STATUS	状态读取寄存器	UINT16_T, R