11013-8

11013-81 Uzu. 1, 2, 3+

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГАЛЬВАНОМЕТРЫ ОСЦИЛЛОГРАФИЧЕСКИЕ МАГНИТОЭЛЕКТРИЧЕСКИЕ

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 11013-81

Издание официальное

РАЗРАБОТАН Министерством приборостроения, средств автоматизации и систем управления

ИСПОЛНИТЕЛИ

С. Е. Разин, Э. Е. Верниковский (руководители темы); Т. Я. Шрайфельд

ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления

Член Коллегии Д. В. Ковальчук

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29 апреля 1981 г. № 2184

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

ГАЛЬВАНОМЕТРЫ ОСЦИЛЛОГРАФИЧЕСКИЕ МАГНИТОЭЛЕКТРИЧЕСКИЕ

Общие технические условия

FOCT 11013—81

Moving-coil oscillograph galvanometers. General technikal specifications

Взамен ГОСТ 11013—75

OKII 42 2940

Постановлением Государственного комитета СССР по стандартам от 29 апреля 1981 г. № 2184 срок действия установлен

с 01.01 1983 г. до 01.01 1988 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на осциллографические магнитоэлектрические гальванометры (далее — гальванометры), предназначенные для работы в светолучевых осциллографах общепромышленного применения по ГОСТ 9829—81, регистрирующие световым лучом изменяющиеся во времени электрические сигналы.

Пояснение терминов, используемых в настоящем стандарте, приведено в справочном приложении 1.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Гальванометры должны быть изготовлены в соответствии с требованиями настоящего стандарта и технических условий на гальванометры конкретного типа по рабочим чертежам, утвержденным в установленном порядке.

Гальванометры, предназначенные для экспорта, должны быть изготовлены в соответствии с требованиями настоящего стандарта, технических условий на гальванометры конкретного типа и заказа-наряда внешнеторговой организации по рабочим чертежам, утвержденным в установленном порядке.

- 1.2. По виду успокоения гальванометры должны быть изготовлены:
 - с магнитоиндукционным обмоточным успокоением;
 - с магнитоиндукционным каркасным успокоением;

Издание официальное

Перепечатка воспрещена

с жидкостным успокоением.

- 1.3. Требования к оптике гальванометра и размерам светового пятна должны быть установлены в технических условиях на гальванометры конкретного типа.
- 1.4. Номинальное значение собственной частоты f_0 должно быть установлено в технических условиях на гальванометры конкретного типа и выбрано из ряда: 1,25; 2,5; 5; 10; 20; 40; 80; 150; 300; 450; 600; 1200; 2500; 5000; 10000; 15000; 20000; 25000; 30000 Гц.

Отклонение значения собственной частоты от номинального не должно превышать $\pm 20\%$.

Примечание. Для гальванометров, разработанных до введения в действие настоящего стандарта, допускаются номинальные значения собственной частоты, отличные от указанных.

1.5. Рабочая полоса частот должна быть установлена в технических условиях на гальванометры конкретного типа в зависимости от собственной частоты гальванометра, вида успокоения и допускаемой нелинейности амплитудно-частотной характеристики. При этом номинальное значение рабочей полосы частот в зависимости от допускаемой нелинейности амплитудно-частотной характеристики должно соответствовать указанному в табл. 1.

Таблица 1

Нелинейность амплитудно- частотной характеристики, %	Рабочая полоса частот для гальванометров	
	с магнитоиндукционным обмоточным успокоением	с жидкостным и магнито- индукционным каркасным успокоением
±1 ±3 ±5 ±10 ±15	$\begin{array}{c} 0 - 0, 10 \ f_0 \\ 0 - 0, 30 \ f_0 \\ 0 - 0, 60 \ f_0 \\ 0 - 0, 75 \ f_0 \\ \end{array}$	$\begin{array}{c}$

- 1.6. Минимальное значение чувствительности гальванометра к току должно быть установлено в технических условиях на гальванометры конкретного типа.
- 1.7. По невозвращению светового пятна от градуировочного отклонения в нулевое положение гальванометры должны соответствовать группам, установленным в табл. 2.

Градуировочное отклонение должно быть установлено в технических условиях на гальванометры конкретного типа.

Допускается в технических условиях на гальванометры конкретного типа устанавливать значение градуировочного тока.

1.8. Разница отклонений светового пятна гальванометра в обе стороны от нулевого положения относительно среднего отклонения (несимметрия) не должна превышать 5%.

Группа	Невозвращение светового пятна от градуировочного отклонения, %, не более	Примечание
1 2 3 4	0,5 1,0 5,0 10,0	

1.9. Нелинейность токовой характеристики не должна превы-

шать 5%.

1.10. Допускаемое отклонение светового пятна невключенного гальванометра от нулевого положения, вызванное статической неуравновешенностью (небаланс), должно быть установлено в технических условиях на гальванометры конкретного типа.

1.11. Номинальное значение внутреннего сопротивления гальванометров должно быть установлено в технических условиях на

гальванометры конкретного типа.

Отклонение значения внутреннего сопротивления от номинального не должно превышать $\pm 30\%$.

1.12. Значение внешнего сопротивления гальванометров и предельного отклонения от него должны быть установлены в технических условиях на гальванометры конкретного типа.

1.13. Гальванометры должны выдерживать в течение 5 мин воздействие максимально допускаемого тока, установленного в технических условиях на гальванометры конкретного типа.

1.14. Требования к электрической прочности изоляции — по

ΓΟCT 22261—76.

1.15. Сопротивление изоляции между токоведущими частями гальванометра, соединенными вместе, и частями, к которым имеется доступ в процессе работы, должно быть не менее 20 МОм.

1.16. Требования к влиянию климатических и механических воздействий для рабочих условий применения и предельных условий транспортирования должны быть установлены в технических условиях на гальванометры конкретного типа в соответствии с группами по ГОСТ 9829—81.

Для гальванометров, предназначенных для работы в термостатированных магнитных блоках осциллографов, рабочие температуры должны соответствовать температурам термостатирования гальванометров по ГОСТ 9829—81.

Изменение чувствительности к току гальванометров при температурах, соответствующих предельным рабочим значениям темпе-

ратуры воздуха, не должно превышать $\pm 5\%$ значения чувствительности к току при нормальных условиях.

1.17. Средняя наработка гальванометров на отказ должна быть

не менее 2500 ч.

Срок службы гальванометров до списания должен быть не менее 6 лет.

2. КОМПЛЕКТНОСТЬ

2.1. В комплект гальванометра должен входить футляр. Допус-

кается общий на несколько гальванометров.

2.2. К гальванометрам следует прилагать паспорт, техническое описание и инструкцию по эксплуатации по ГОСТ 2.601—68, а также осциллограммы амплитудно-частотной характеристики и реакции на прямоугольный импульс (допускаются типовые кривые амплитудно-частотной характеристики и реакции на прямоугольный импульс) для гальванометров с собственной частотой свыше 10000 Гц.

Допускается по согласованию с потребителем прикладывать одно техническое описание на несколько гальванометров.

2.3. В паспорте гальванометра должны быть указаны:

а) товарный знак предприятия-изготовителя;

б) условное обозначение гальванометра;

- в) порядковый номер гальванометра по системе нумерации предприятия-изготовителя;
 - г) дата выпуска;
 - д) собственная частота;
- е) рабочая полоса частот с допускаемой нелинейностью ампли-тудно-частотной характеристики;
 - ж) чувствительность к току;
 - з) внутреннее сопротивление;
 - и) внешнее сопротивление;
 - к) группа по невозвращению;
 - л) максимально допускаемое значение тока;
 - м) градуировочное отклонение или градуировочный ток.

Примечания:

В подпунктах д-м, указывают номинальные или измеренные параметры.
 В зависимости от особенностей гальванометров допускается указывать дополнительные сведения.

3. ПРАВИЛА ПРИЕМКИ

3.1. Для проверки соответствия гальванометров требованиям настоящего стандарта предприятие-изготовитель проводит приемосдаточные, периодические и типовые испытания и испытания на надежность.

3.2. Приемо-сдаточным испытаниям следует подвергать каждый

гальванометр.

При приемо-сдаточных испытаниях гальванометры с магнитоиндукционным обмоточным успокоением следует проверять на соответствие требованиям пп. 1.3; 1.4; 1.6; 1.8; 1.10; 1.11; 1.14; 1.15 (гальванометры, испытываемые на электрическую прочность изоляции); 2.1; 2.2; 5.1 и 5.2, а гальванометры с жидкостным и магнитоиндукционным каркасным успокоением — на соответствие требованиям пп. 1.3; 1.5; 1.6; 1.8; 1.10; 1.11; 1.14; 1.15 (гальванометры, испытываемые на электрическую прочность изоляции); 2.1; 2.2; 5.1 и 5.2.

3.3. Периодическим испытаниям, проводимым не реже раза в год, следует подвергать не менее трех гальванометров из числа прошедших приемо-сдаточные испытания на соответствие всем требованиям настоящего стандарта, кроме п. 1.17 и разд. 6.

3.4. Типовые испытания необходимо проводить во всех случаях, когда вносят изменения в конструкцию, материалы или технологию изготовления, влияющие на технические характеристики или работоспособность гальванометра.

Типовым испытаниям следует подвергать не менее трех гальванометров на соответствие всем требованиям настоящего стандар-

та, кроме требований п. 1.17 и разд. 6.

- 3.5. При получении неудовлетворительных результатов периодических и типовых испытаний гальванометров хотя бы по одному из установленных требований необходимо проводить повторные испытания удвоенного числа гальванометров. Результаты повторных испытаний являются окончательными.
- 3.6. Испытания гальванометров на надежность по ГОСТ 13216—74 и ГОСТ 20699—75.

Контрольные испытания гальванометров на безотказность сле-

дует проводить не реже раза в три года.

Приемочные и браковочные значения показателей безотказности, объем выборки, продолжительность и условия испытаний, условия приемки и комплектования выборки должны быть указаны в технических условиях на гальванометры конкретного типа.

4. МЕТОДЫ ИСПЫТАНИЯ

4.1. При испытаниях гальванометров необходимо соблюдать нормальные условия:

температура окружающего воздуха (25±5)°С (гальванометры, предназначенные для работы в термостатированном магнитном блоке, испытывают при температурах, отличающихся от номинальной температуры термостатирования не более чем на ±5%):

относительная влажность воздуха (65±15) %;

атмосферное давление (100 \pm 4) кПа ((750 \pm 30) мм рт. ст.);

магнитная индукция не должна отличаться от номинальной, установленной в технических условиях на гальванометры конкретного типа более чем на $\pm 5\%$;

отсутствие внешних магнитных полей, вибрации, тряски и ударов, влияющих на работу гальванометра, токов утечки и паразитных э. д. с. в токоведущих цепях гальванометров.

4.2. Методы испытаний оптики гальванометра и свойств светового пятна (п. 1.3) устанавливают в технических условиях на гальванометры конкретного типа.

R1, R2 — магазины сопротивлений переменного тока класса точности 0,5: В — гальванометр; Р — миллиамперметр переменного тока класса точности 1,5: S — выключатель; С — генератор переменного напряжения с коэффициентом нелинейных искажений 2%

Черт.

4.3. Собственную частоту гальванометра (п. 1.4) следует определять при плавном изменении частоты генератора переменного тока с синусоидальной формой кривой от половины до удвоенного значения номинальной собственной частоты гальванометра по схеме черт. 1.

Для гальванометров с магнитоиндукционным обмоточным успокоением собственную частоту следует определять резонансным методом при отключении магазина сопротивлений R1 и установлении на магазине сопротивлений R2 сопротивле-

ния, не менее чем в 100 раз превышающего внешнее сопротивление гальванометра, при этом двойная амплитуда колебаний светового пятна при резонансе должна находиться в пределах 50—100 мм.

Для гальванометров с жидкостным и магнитойндукционным каркасным успокоением собственную частоту следует определять по максимальному значению функции φ (t)

$$\varphi(t) = Af, \tag{1}$$

где A — амплитуда колебаний светового пятна при текущей частоте \hat{f} , мм.

Ток, проходящий через гальванометр, должен быть неизменным во всем диапазоне частот. Интервал между устанавливаемыми на генераторе последовательными значениями частоты f не должен превышать 5% номинальной собственной частоты. Собственная частота соответствует частоте, при которой функция $\phi(t)$ максимальна

$$f_0 = f \operatorname{при} \varphi(t) = (Af)_{\max}. \tag{2}$$

Если вычисленная функция имеет несколько максимумов, собственная частота соответствует частоте наибольшего из них.

Для гальванометров с магнитоиндукционным каркасным успо-коением допускается определять собственную частоту резонансным

методом при магнитной индукции, уменьшенной по сравнению номинальной не менее чем в 10 раз.

Для гальванометров с жидкостным успокоением допускается определять собственную частоту по методике, установленной в

технических условиях на гальванометры конкретного типа.

4.4. Рабочую полосу частот (п. 1.5) и внешнее сопротивление (п. 1.12) следует определять по схеме черт. 1 при замкнутом выключателе S измерением амплитуды колебаний светового пятна при изменени частоты подаваемого от генератора сигнала с интервалами, устанавливаемыми в технических условиях на гальванометры конкретного типа в зависимости от собственной частоты гальванометра и допускаемой нелинейности амплитудно-частотной характеристики.

Ток, проходящий через гальванометр, должен быть неизменным во всем диапазоне частот. Допускается контролировать ток, проходящий по гальванометру, по входному напряжению генератора. На магазине сопротивлений R1 устанавливают сопротивление r_1 , не превышающее 5% суммарного выходного сопротивления генератора и миллиамперметра, на магазине сопротивлений R2 устанавливают сопротивление r_2 , значение которого должно быть

$$r - \Delta r - r_1 \leqslant r_2 \leqslant r + \Delta r - r_1, \tag{3}$$

где r — номинальное внешнее сопротивление;

 Δr — допускаемое отклонение внешнего сопротивления, указанное в п. 1.12.

Первое измерение амплитуды A следует выполнять на частоте, не превышающей 5% номинальной собственной частоты.

Нелинейность амплитудно-частотной характеристики Δ определяют как выраженное в процентах отношение разности амплитуд A_0 и A при текущей частоте генератора f к амплитуде A_0 .

$$\Delta = \frac{A - A_0}{A_0} 100. \tag{4}$$

Верхняя граница рабочей полосы частот равна частоте, при которой амплитуда A отличается от амплитуды A_0 на значение допускаемой нелинейности амплитудно-частотной характеристики (см. рекомендуемое приложение 2).

Гальванометры считают выдержавшими испытания, если нелинейность амплитудно-частотной характеристики не превышает допускаемых значений, рабочая полоса частот больше или равна значению, установленному в технических условиях на гальванометры конкретного типа в соответствии с табл. 1, и внешнее сопротивление для гальванометров с магнитоиндукционным каркасным и обмоточным успокоением находится в пределах

$$r - \Delta r \leqslant r_1 + r_2 \leqslant r + \Delta r. \tag{5}$$

Допускается определять внешнее сопротивление по реакции

гальванометра на воздействие прямоугольного импульса.

4.5. Чувствительность к току (п. 1.6), разницу отклонений светового пятна (п. 1.8) и нелинейность токовой характеристики (п. 1.9) следует определять на постоянном токе по схеме черт. 2 или на переменном токе по схеме черт. 1.

RI-R3 — магазины сопротивлений класса точности 0,5: B — гальванометр: SI, S3 — выключатели: S2 — переключатель направления тока: P — микроамперметр или миллиамперметр постояного тока класса точности 0,5 Черт. 2

С помощью магазинов сопротивлений R1—R3 устанавливают ток, отклоняющий световое пятно от нулевого положения, до положения, соответствующего 0,75 значения градуировочного отклонения или 0,75 значения градуировочного тока, и производят отсчет полученного отклонения a_1 в миллиметрах. Переключателем S2 меняют направление тока, не изменяя его значения, и определяют значение отклонения a_2 в миллиметрах.

Чувствительность гальванометра к току S_t в мм/мA м следу-

ет определять по формуле

$$S_l = \frac{a_1 + a_2}{2ll} , \qquad (6)$$

где І — ток, проходящий через гальванометр, мА;

l — длина светового луча, м.

Разницу отклонений светового пятна ⁸ в процентах следует определять по формуле

$$\delta = \frac{|a_1 - a_2|}{a_1 + a_2} 100. \tag{7}$$

При определении чувствительности на переменном токе на генераторе (черт. 1) следует установить частоту, не превышающую 5% номинальной собственной частоты гальванометра, но не более 60 Гц. Изменяя выходное напряжение генератора устанавливают амплитуду колебаний светового пятна, составляющую 0,75 значения градуировочного отклонения на переменном токе, или уста-

$$S_i = \frac{A_1 + A_2}{2.8II} \,, \tag{8}$$

где A_1 и A_2 — амплитуды колебаний светового пятна гальванометра вправо и влево от нулевого положения, мм;

I — действующее значение тока, проходящего через гальвано-

метр. мА.

Разницу отклонений светового пятна **в** процентах следует определять по формуле

$$\delta = \frac{|A_1 - A_2|}{A_1 + A_2} 100. \tag{9}$$

Нелинейность токовой характеристики гальванометра и в процентах следует определять по формуле

$$x = \frac{|S_i - S_{ii}|}{S_i} 100, \tag{10}$$

где S_i — чувствительность гальванометра к току, вычисленная по формуле (6) или (8);

 S_{t_*} — чувствительность к току, вычисленная по формуле (6) или (8) при отклонении светового пятна, равном градуировочному.

4.6. Для определения невозвращения светового пятна гальванометра в нулевое положение (п. 1.7) световое пятно отклоняют поочередно градуировочным током в обе стороны от нулевого положения и выдерживают в каждом из этих положений в течение 2 мин.

Для гальванометров с собственной частотой свыше 10000 Гц невозвращение светового пятна допускается определять при токовых нагрузках и длительности воздействия, указанных в п. 1.13.

За значение невозвращения светового пятна в нулевое положение следует принимать наибольшее из двух отсчетов невозвращения при включении тока для каждого отклонения, отнесенное к традуировочному отклонению.

4.7. Отклонение светового пятна, вызванное статической неуравновешенностью (п. 1.10), следует определять наклоном гальванометра на 90° от вертикального положения влево, вправо и зеркалом вверх.

4.8. Внутреннее сопротивление гальванометра (п. 1.11) следует измерять с погрешностью не более 5%.

Значение тока, проходящего через гальванометр, при измерении сопротивления должно быть установлено в технических условиях на гальванометры конкретного типа.

4.9. При испытании на воздействие максимально допускаемого значения тока (п. 1.13) время воздействия должно соответствовать указанному в п. 1.13. После испытаний гальванометры должны быть выдержаны при нормальных условиях в течение 4 ч и проверены на соответствие требованиям пп. 1.5 (для гальванометров с жидкостным и магнитоиндукционным каркасным успокоением); 1.6—1.8; и 1.10.

4.10. Электрическую прочность изоляции (п. 1.14) проверяют по ГОСТ 22261—76. Мощность испытательной установки— по

FOCT 21657—76.

4.11. Электрическое сопротивление изоляции (п. 1.15) следует измерять по ГОСТ 22261—76 при напряжении мегомметра не более испытательного напряжения электрической прочности изоля-

ции, но не менее 100 В.

4.12. При испытаниях на влияние климатических воздействий в рабочих условиях применения (п. 1.16) гальванометры проверяют на теплоустойчивость (холодоустойчивость) по ГОСТ 22261—76. Гальванометры в осциллографе помещают в камеру тепла (холода) и выдерживают не менее 2 ч при температурах рабочих условий применения с допускаемым отклонением 3°С. Не вынимая гальванометра из камеры, определяют чувствительность к току. Допускается проверять чувствительность к току вне камеры, но не позднее 5 мин после изъятия гальванометров из камеры.

4.13. При испытаниях на влияние климатических воздействий при предельных условиях транспортирования (п. 1.16) гальванометры проверяют на тепло-, холодо- и влагопрочность по ГОСТ

22261—76.

При испытании на теплопрочность (холодопрочность) гальванометры в упаковке должны быть выдержаны в камере тепла (холода) не менее 6 ч при температуре 50°C (минус 50°C) с допускаемым отклонением ±3°C.

При испытании на влагопрочность гальванометры в упаковке должны быть выдержаны в камере влажности при относительной влажности воздуха $(95\pm3)\,\%$ и температуре $(25\pm3)\,^\circ$ С в течение 48 ч.

После испытаний на тепло-, холодо- и влагопрочность гальванометры должны быть выдержаны в нормальных условиях в течение 12 ч и проверены на соответствие требованиям пп. 1.4 (для гальванометров с магнитоиндукционным обмоточным успокоением); 1.5 (для гальванометров с жидкостным и магнитоиндукционным каркасным успокоением); 1.6; 1.8; 1.10 и 1.15.

4.14. Испытания гальванометров на вибро- и ударопрочность, вибро- и удароустойчивость, прочность при транспортировании

(п. 1.16) проводят по ГОСТ 22261—76.

После испытаний на вибро- и ударопрочность и выдержки в нормальных условиях применения не менее 6 ч, а также при ис-

пытаниях на вибро- и удароустойчивость гальванометры проверя-

ют на соответствие требованиям п. 1.6.

При испытаниях на прочность при транспортировании ящик с упакованными гальванометрами должен быть укреплен на стенде, создающем удары в вертикальном направлении, без наружной амортизации в положении, определяемом надписью «Верх».

После испытаний на прочность при транспортировании гальванометры не должны иметь механических повреждений и должны быть проверены на соответствие требованиям пп. 1.4 (для гальванометров с магнитоиндукционным обмоточным успокоением); 1.5 (для гальванометров с жидкостным и магнитоиндукционным каркасным успокоением); 1.6; 1.8; 1.10 и 1.15.

4.15. Испытания гальванометров на безотказность следует проводить одним из методов, установленных в ГОСТ 20699—75, указанному в технических условиях на гальванометры конкретного

типа.

Продолжительность и последовательность воздействия влияющих величин, при необходимости, должны быть указаны в тех-

нических условиях на гальванометры конкретного типа.

Параметрами, по которым определяют отказы, являются внутреннее сопротивление, чувствительность к току, собственная частота (для гальванометров с магнитоиндукционным обмоточным успокоением), рабочая полоса частот с допускаемой нелинейностью амплитудно-частотной характеристики (для гальванометров с жидкостным и магнитоиндукционным каркасным успокоением).

4.16. Срок службы гальванометров (п. 1.17) следует определять сбором и обработкой эксплуатационной информации о надежности по ГОСТ 16468—79, ГОСТ 27.503—81, ГОСТ 17510—79

и ГОСТ 17526-72.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. На каждом гальванометре должны быть нанесены: условное обозначение;

номинальное значение собственной частоты;

порядковый номер гальванометра по системе нумерации предприятия-изготовителя:

Допускается наносить дополнительную маркировку, а также заменять условное обозначение гальванометра и собственную частоту условной маркировкой, которая должна быть указана в паспорте гальванометра.

5.2. Требования к упаковке гальванометров должны соответствовать ГОСТ 9181—74 и ГОС 23659—79.

При отгрузке гальванометров мелкими партиями для упаковывания гальванометров следует применять потребительскую и тран-

спортную тару.

В качестве потребительской тары для гальванометров следует применять футляры из пенополистирола, полиэтилена и других аналогичных материалов, обеспечивающих сохранность гальванометров при механических воздействиях.

В качестве транспортной тары для гальванометров следует применять фанерные ящики по ГОСТ 5959—80 или ящики из гофрированного картона, изготовляемые по нормативно-технической

документации.

В качестве амортизационных материалов при упаковывании гальванометров в транспортную тару следует применять гофрированный картон по ГОСТ 7376—77, одежную вату по ГОСТ 5679—74 и другие аналогичные материалы. Ящик изнутри должен быть выстлан водонепроницаемым материалом, например битумной бумагой по ГОСТ 8828—75 и др.

5.3. Маркировка транспортной тары — по ГОСТ 14192—77. Транспортная маркировка должна содержать манипуляционные знаки, основные, дополнительные надписи и должна быть нанесена на ярлыки из бумаги или непосредственно на тару краской.

На транспортную тару должны быть нанесены манипуляционные знаки, соответствующие надписям: «Осторожно, хрупкое!», «Боится сырости», «Верх, не кантовать».

5.4. Транспортирование гальванометров — по ГОСТ 22261—76.

5.5. Условия хранения гальванометров на складах изготовителя и потребителя должны соответствовать условиям хранения 1 по ГОСТ 15150—69.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Изготовитель должен гарантировать соответствие гальванометров требованиям настоящего стандарта при соблюдении условий эксплуатации, транспортирования и хранения.

Гарантийный срок эксплуатации гальванометров — 18 мес со

дня их ввода в эксплуатацию.

Гарантийный срок хранения гальванометров — 12 мес со дня их изготовления.

6.2. Гарантийный срок эксплуатации гальванометров, предназначенных для экспорта—12 мес с момента проследования их через Государственную границу СССР.

ПРИЛОЖЕНИЕ 1 Справочное

ПОЯСНЕНИЕ ТЕРМИНОВ, ИСПОЛЬЗУЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

Гальванометр с магнитоиндукционным обмоточным успокоением — гальванометр, в котором основную долю успокоения собственных колебаний вносит взаимодействие с магнитным полем токов, индуцированных в рамке, замкнутой на внешнюю цепь.

Гальванометр с магнитоиндукционным каркасным успокоением — гальванометр, в котором основную долю успокоения собственных колебаний вносит взаимодействие с магнитным полем токов, индуцированных в каркасе или других элементах, предусмотренных на подвижной части гальванометра.

Гальванометр с жидкостным успокоением — гальванометр, в котором основную долю успокоения собственных колебаний вносит трение, возникающее в результате взаимодействия подвижной части или отдельных ее элементов с жидкостью, в которую они погружены.

Рабочая полоса частот — интервал частот, в котором чувствительность к току отличается от чувствительности на нулевой частоте в пределах заданного допуска.

Чувствительность к току — значение отклонения светового пятна гальванометра при прохождении по рамке 1 мА тока при длине светового луча 1 м.

Длина светового луча — расстояние от зеркала гальванометра до носителя

записи или экрана осциллографа.

Внешнее сопротивление — сопротивление внешней цепи, обеспечивающее рабочую полосу частот с заданной нелинейностью амплитудно-частотной характеристики.

Градуировочное отклонение — максимальное рабочее отклонение светового пятна, которое обеспечивает заданную нелинейность токовой характеристики.

Градуировочный ток — рабочий ток.

Максимально допускаемый ток — максимальное значение тока, который может протекать по гальванометру, не вызывая его разрушения.

ПРИМЕР ОПРЕДЕЛЕНИЯ ВЕРХНЕЙ ГРАНИЦЫ РАБОЧЕЙ ПОЛОСЫ ЧАСТОТ

A — амплитуда колебаний светового пятна при частоте f; A_0 — амплитуда колебаний светового пятна при частоте, не превышающей 5% номинального значения собственной частоты; Δ — допуск на нелинейность амплитудно-частотной характеристики, выраженный в процентах; $f_{\mathbf{p},\mathbf{n}}$ — верхняя граница рабочей полосы частот

Редактор И. М. Уварова Технический редактор Л. Б. Семенова Корректор В. В. Лобачева

Изменение № 1 ГОСТ 11013—81 Гальванометры осциллографические магнитоэлектрические. Общие технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 25.06.87 № 2488

Дата введения 01.01.88

Пункт 1.4, Последний абзац изложить в новой редакции: «Отклонение значения собственной частоты от номинального в сторону уменьшения не должно превышать 20 %, для гальванометров с жидкостным успокоением — не нормируется в сторону увеличения».

Пункт 1.5. Заменить слова: «номинальное значение» на «верхняя граница», «должно соответствовать указанному в табл. 1» на «должна быть не менее зна-

чений, указанных в табл. 1»;

таблица 1. Графа «с жидкостным и магнитоиндукционным каркасным успо-

коением». Заменить значение: $0-0.6f_0$ на $0-0.8f_0$.

Пункты 1.14, 4.10-4.14, 5.4. Заменить ссылку: ГОСТ 22261-76 на ГОСТ 22261-82.

Пункт 1.16. Первый абзац. Исключить слова: «группами по»;

второй абзац. Заменить слова: «температурам термостатирования гальванометров» на «температурам термостатирования».

Пункт 1.17 изложить в новой редакции: «1.17. Гальванометры относятся к

невосстанавливаемым изделиям.

Средняя наработка до отказа ($T_{\rm cp}$) должна быть не менее 4000 ч.

Установленная безотказная наработка (T_{y}) должна быть не менее 400 ч». Пункт 3.4. Второй абзац изложить в новой редакции: «Типовым испытаниям следует подвергать не менее трех гальванометров; объем типовых испытаний должен определяться характером изменений, вносимых в конструкцию или технологию изготовления гальванометров».

Пункт 3.6. Первый, второй абзацы изложить в новой редакции: «Контрольные испытания на безотказность проводят один раз на установочной серии (при серийном производстве — в первый год выпуска) и после модернизации, влияю-

щей на безотказность.

Контрольные испытания на установленную безотказную наработку проводят раз в год одноступенчатым методом при приемочном числе отказов, равном нулю».

Пункт 4.1. Первый абзац дополнить словами: «(если иные не указаны в ме--тодике испытаний)»:

(Продолжение см. с. 384)

второй абзац изложить в новой редакции: «температура окружающего воздуха (25±5) °C».

Пункт 4.4. Первый абзац. Исключить слова: «при замкнутом выключателе

второй абзац. Заменить слова: «входному напряжению» на «выходному напряжению»:

третий абзац. Заменить слова: «Первое измерение амплитуды А» на «Изме-

рение амплитуды A_0 ».

Пункт 4.5. Последний абзац дополнить словами: «или при градуировочном

Пункт 4.6. Третий абзац, Заменить слова: «при включении» на «при выключении».

Пункт 4.10. Заменить ссылку: ГОСТ 21657-76 на ГОСТ 21657-83.

Пункт 4.14. Второй абзац. Заменить ссылку: п. 1.6 на «установленным в

технических условиях на гальванометры конкретного типа».

Пункт 4.15. Первый абзац изложить в новой редакции: «Методика испытаний приборов на безотказность и режимы, при которых проводят испытания, должны быть установлены в технических условиях на гальванометры конкретного типа»;

дополнить абзацем: «Число гальванометров, используемых для контроля

установленной безотказной наработки, должно быть не менее пяти».

Пункт 4.16. Заменить ссылки: ГОСТ 16468—79 и ГОСТ 17510—79 на ГОСТ 27.502—83; ГОСТ 17509—72 на ГОСТ 27.503—81.

Пункт 5.2. Заменить ссылки: ГОСТ 5679-74 на ГОСТ 5679-85. ГОСТ 7376—77 на ГОСТ 7376—84; исключить ссылку: ГОСТ 23659—79.

Пункт 5.3 дополнить абзацем: «Маркировка потребительской тары — по ΓΟCT 9181—74».

Приложение 1. Предпоследний абзац. Заменить слова: «рабочий ток» на «наибольший рабочий ток».

(ИУС № 10 1987 г.)

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 30.12.87 № 5109

Дата введения 01.07.88

Пункт 1.4. Последний абзац изложить в новой редакции: «Отклонение собственной частоты от номинального значения не должно превышать $\pm 20~\%$; для (Продолжение~см.~c.~288)

(Продолжение изменения к ГОСТ 11013-81)

гальванометров с жидкостным успокоением отклонение не нормируют в сторону увеличения».

Раздел 1 дополнить пунктом — 1.18: «1.18. Масса гальванометров должна быть установлена в технических условиях на гальванометры конкретного типа». Пункт 4.16 исключить.

(ИУС № 4 1988 г.)

Изменение № 3 ГОСТ 11013—81 Гальванометры осциллографические магнитоэлектрические, Общие технические условия

Утверждено и введено в действие Постановлением СССР по стандартам от 22.12.88 № 4432

Дата введения 01.07.89

Пункт 2.3 исключить.

(ИУС № 4 1989 г.)