SECTION 1.4

1.4.1 m=1 implies interest convertible annually (m=1 time per year), which implies the effective annual interest rate $i^{(1)}=i=.12$. We use Equation (1.5) to solve for i for the other values of m, as shown below.

m (Effective Period)	$\frac{1}{m}$ -year effective	$i = \left[1 + \frac{i^{(m)}}{m}\right]^m - 1$
	interest rate $\frac{i^{(m)}}{m}$	
1 (1 year)	$\frac{i^{(1)}}{1} = \frac{.12}{1} = .12$	$(1.12)^1 - 1 = .12$
2 (6 months)	$\frac{i^{(2)}}{2} = \frac{.12}{2} = .06$	$(1.06)^2 - 1 = .1236$
3 (4 months)	$\frac{i^{(3)}}{3} = \frac{.12}{3} = .04$	$(1.04)^3 - 1 = .124864$
4 (3 months)	$\frac{i^{(4)}}{4} = \frac{.12}{4} = .03$	$(1.03)^4 - 1 = .125509$
6 (2 months)	$\frac{i^{(6)}}{6} = \frac{.12}{6} = .02$	$(1.02)^6 - 1 = .126162$
8 (1.5 months)	$\frac{i^{(8)}}{8} = \frac{.12}{8} = .015$	$(1.015)^8 - 1 = .126593$
12 (1 months)	$\frac{i^{(12)}}{12} = \frac{.12}{12} = .01$	$(1.01)^{12} - 1 = .126825$
52 (1 week)	$\frac{i^{(52)}}{52} = \frac{.12}{52} = .0023$	$\left(1 + \frac{.12}{52}\right)^{52} - 1 = .12689$
365 (1 day)	$\frac{i^{(365)}}{365} = \frac{.12}{365} = .00033$	$\left(1 + \frac{.12}{365}\right)^{365} - 1 = .127475$
∞	$\lim_{y \to \infty} \left(1 + \frac{.12}{y} \right)^y - 1 = e^{.12} - 1 = .127497$	

1.4.2 (a)
$$1000v_{045}^{20} = 414.64$$

(b)
$$1000v_{.015}^{60} = 409.30$$

(c)
$$1000v_{.0075}^{120} = 407.94$$

1.4.3 Equivalent effective annual rates are Mountain Bank: $(1.075)^2 - 1 = .155625$ River Bank:

$$\left(1 + \frac{i^{(365)}}{365}\right)^{365} - 1 \ge .155625$$

$$\rightarrow \left(1 + \frac{i^{(365)}}{365}\right) \ge (1.155625)^{1/365} = 1.000396356$$

$$\rightarrow i^{(365)} \ge .144670$$

1.4.4 The last 6 months of the 8^{th} year is the time from the end of the 15^{th} to the end of the 16^{th} half-year.

0
$$1H$$
 $2H=1Y$ $3H$ $4H=2Y$... $14H=7Y$ $15H$ $16H=8Y$

The amount of interest earned in Eric's account in the 16^{th} half-year is the change in balance from time 15H to time 16H.

The balances at those points are $X\left(1+\frac{i}{2}\right)^{15}$ and $X\left(1+\frac{i}{2}\right)^{16}$. The amount of interest earned by Eric in the period is

$$X\left(1+\frac{i}{2}\right)^{16}-X\left(1+\frac{i}{2}\right)^{15} = X\left(1+\frac{i}{2}\right)^{15}\left(\frac{i}{2}\right).$$

The balance in Mike's account at the end of the 15^{th} half-year (7.5 years) is 2X(1+7.5i), and the balance at the end of the 16^{th} half-year (8 years) is 2X(1+8i).

The interest earned by Mike in that period is

$$2X(1+8i) - 2X(1+7.5i) = 2X(.5i) = 2X(\frac{i}{2}).$$

We are told that Eric and Mike earn the same amount of interest. Therefore, $X\left(1+\frac{i}{2}\right)^{15}\left(\frac{i}{2}\right)=2X\left(\frac{i}{2}\right)$, so that $\left(1+\frac{i}{2}\right)^{15}=2$. Then $i=2[2^{1/15}-1]=.0946$.