S431 Assignment 2

Due September 10, 2017

$\mathbf{Q}\mathbf{1}$

Assume Y_1 and Y_2 are random variables, and a_1, a_2 are constants. Represent the following expressions in terms of E(X), E(Y), var(X), and/or var(Y).

1a

$$E(a_1Y_1 + a_2Y_2)$$

1b

$$var(a_1Y_1 + a_2Y_2)$$

1c

 $var(a_1Y_1 + a_2Y_2)$ if Y_1 and Y_2 are independent.

$\mathbf{Q2}$

Assume that Y_1, Y_2, \ldots, Y_n are independent random variables and $a_1, a_2, \ldots, a_n, c_1, c_2, \ldots, c_n$ are constants. Represent the following expressions in terms of $E(Y_i)$, $var(Y_i)$, and/or $cov(Y_i, Y_j)$ for $i \neq j$ and $i, j = 1, \ldots, n$.

2a

$$var(\sum_{i=1}^{n} a_i Y_i)$$

2a

$$cov(\sum_{i=1}^{n} a_i Y_i, \sum_{i=1}^{n} c_i Y_i)$$

Hint: If Y_1, Y_2, \ldots, Y_n are random variables, then

- $E(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{n} a_i E(Y_i)$ $var(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j cov(Y_i, Y_j)$