

Short presentation

ESD protection devices

Renesas Design Vietnam Co., Ltd. Circuit Design Group Vuong Hoang April 18th, 2014

Outline

1. Overview of ESD

2. ESD protection devices

- 2.1 Diode
- 2.2 MOSFET
- 2.3 Thick Field Oxide device TFO
- 2.4 Silicon Controlled Rectifier SCR

3. Conclusion

Outline

1. Overview of ESD

2. ESD protection devices

- 2.1 Diode
- 2.2 MOSFET
- 2.3 Thick Field Oxide device TFO
- 2.4 Silicon Controlled Rectifier SCR

1. Overview of ESD

ESD – Electrostatic Discharge

- A sudden flow of electricity between 2 electrically charged objects caused by contact.
- Occur only when the *voltage differential between* 2 objects is sufficiently high.
- ---> *High voltage* and *large current* due to ESD can destroy gate oxide, metal line and junction.

ESD can occur in one of following ways:

- a charged body touches an IC
- a charged IC touches a grounded surface.
- a charged machine touches an IC.
- an electrostatic field induces a voltage across a dielectric sufficient to break it down.
- → Some additional devices are used to protect internal circuit from ESD event.

 To understand how these devices can protect circuit under ESD event, this material introduce 4 kinds of ESD protection device and their operation.

Outline

1. Overview of ESD

2. ESD protection devices

- 2.1 Diode
- 2.2 MOSFET
- 2.3 Thick Field Oxide device TFO
- 2.4 Silicon Controlled Rectifier SCR
- 3. Conclusion

2. ESD protection device

Purpose:

- Providing a *low-impedance path* from input to supply *during ESD event* → absorb current.
- Providing a *very high impedance* (*) during *normal operating condition* \rightarrow don't affect circuit performance.
- Clamping input voltage at a safe level below the dielectric breakdown voltage of gate-oxide.

(*) - ESD device connect to: + the thin gate of input buffer trans → require high impedance input. + the drain of output buffer trans → require low impedance output.

2. ESD protection device

Characterizing ESD device: extract I-V (current vs. voltage) curve of ESD device.

I-V curve of NMOS trans under a positive ESD pulse

There 4 main models to do that:

- Human Body Model HBM
- Machine Model MM
- Charged Device Model CDM
- Transmission Line Pulsing TLP ← widely accepted model

(See more detail at Appendix)

Outline

1. Overview of ESD

2. ESD protection devices

- 2.1 Diode
- 2.2 MOSFET
- 2.3 Thick Field Oxide device TFO
- 2.4 Silicon Controlled Rectifier SCR
- 3. Conclusion

2.1 - ESD protection device - Diode (1/2)

- The most simple ESD protection device.
- Formed by N+ diffusion on P-sub **or** P+ diffusion on N-well.
- Must be in **reverse bias**.

I-V curve (TLP) of a diode

Forward bias:

Clamp voltage: ~ 1V

Reverse bias:

Snapback voltage: ~ 10V

Example of using diode as ESD protection device

2.1 - ESD protection device - Diode (2/2)

Positive pulse

Input voltage is clamped at breakdown voltage of D1

Input voltage is clamped at -0.6V

Advantage:

- Simple to implement.

Disadvantage:

- High breakdown voltage
- Cannot breakdown quickly enough to protect a circuit from a fast-rising pulse.

2.2 - ESD protection device - MOSFET (1/3)

NMOS:

- Drain is connected to input/output terminal.
- Gate & Source are connect to GND → NMOS is *OFF* at normal operation.
- When ESD occurs, conduction of parasitic npn bipolar trans will protect internal circuit.

Input pin V_{SS} I_{ESD} Parasitic trans R_{sub} Parasitic resistance

I-V curve of NMOS under positive ESD pulse

of P-sub

2.2 - ESD protection device - MOSFET (2/3)

- High positive pulse of ESD occurs \rightarrow drain-substrate junction is broken down due to impact-ionization $^{(*)}$
- New free holes is attracted to GND though Source and P+ terminal → current flow occurs.
- When $V_{BF} > 0.6V$, npn transistor turns on
 - → allow large current from collector to emitter of bipolar trans.
 - \rightarrow drain voltage of MOS is clamped at V_{CE} of bipolar trans.

2.2 - ESD protection device - MOSFET (3/3)

Advantage:

- Can be turn-on more quickly (comparing with diode) at a lower voltage by using a gate-bouncing technique (See detail at Appendix).
 - Using standard chip process without additional implant or masking steps.

Disadvantage:

Become unsuitable with recent technology

- Because of LDD structure, current drive capability of parasitic lateral BJT is reduced. This causes breakdown voltage higher

LDD: Lightly Drop Drain

2.3 - ESD protection device - TFO

Thick Field Oxide device – TFO:

- This is very old device structure to prevent ESD (about 1980s).
- Nowadays performance of this device was found to decrease significantly due to new process or techniques (STI, Lightly Doped Drain...).
- In modern process, particularly on high voltage pins, this device is still being used.

Cross section of Thick Field Oxide device

Operation under ESD event is similar to NMOS device.

2.3 - ESD protection device - SCR (1/2)

Silicon Controlled Rectifier - SCR:

I-V curve of SRC under positive and negative voltage bias

LSCR: Lateral SCR

Advantage:

- Low snapback voltage → low power dissipation.
- Can sustain higher level of ESD level within small layout area.

Disadvantage:

Easy to cause latch-up problem ← can be eliminated (See Appendix).

2.3 - ESD protection device - SCR (2/2)

- High voltage applies to junction of Nwell Pwell.
- → impact-ionization creates more free electron – hole pairs.
- Electrons are attracted to Anode
 Holes are attracted to Cathode

- When voltage drops through R_{P-well} (or R_{N-well}) larger than $0.6V \rightarrow parasitic$ pnp (or npn) bipolar transistor is ON.
- ==> Conduct large current
 Clamp voltage between Anode –
 Cathode at V_{CE} of bipolar transistors.

3 - Conclusion

ESD device	Advantage	Disadvantage
Diode	- Simple to implement.	- High breakdown voltage. - Cannot breakdown quickly.
	- Can be turn-on quickly. - Simple to implement.	- Hot carrier relaxation (LDD) makes trade-off with ESD.
TFO	- Apply on high voltage pin.	- Performance decreases significantly with current process.
SCR	Low snapback voltage (low power dissipation)Sustain higher level of ESD.	- Latch-up problem.

- The protection method explained here are general ones.
- Depending on process technology/device structure, practical measure differs.
- → So we have to take care of the latest information.

Thank you for your listening

Appendix (1/3)

Models used to obtain I-V curve of ESD device

Human Body Model - HBM

Charged Device Model - CDM

Machine Model - MM

Transmission Line Pulsing - TLP

Appendix (2/3)

Gate-bouncing technique

Gate-bouncing techniques: (a) employment of a gate-bounce resistor and equivalent circuit; (b) dynamic gate coupling method.

Appendix (3/3)

Methods to eliminate latch-up problem for SCR ESD device

There are 2 solutions to avoid the SCR with low switching voltage being accidentally triggered on by noise pulse when CMOS ICs are in normal circuit operating condition.

Method 1:

Increasing the triggering current of SCR

Method 2:

Increase holding voltage of SCR to be greater than VDD

