

Strategisch beraad: Technologie

15 juni 2022

Jink Gude & Gerlof Steen

Wat is technologie

- Zuiveringstechnologie realiseert waterkwaliteitsverandering tussen bronwater en onze bedrijfsnormen (streefwaarden)
- Technologische inventarisatie productiemiddelen
- Strategie en onderzoek rondom technologie is het up-to-date houden van de gereedschapskist voor het PWN productiesysteem om in te kunnen spelen op b.v.:
 - Verandering in bronkwaliteit
 - Capaciteitsuitbreiding
 - Verduurzaming productiemiddelen

Afgelopen 10 jaar Technologie PWN

2012 - 2018

- Alle focus PWNT en groot deel capaciteit procestechnologen op Andijk 3
- Gevolg verwaarlozing algehele productiesysteemkennis PWN

2018

- Andijk 1 niet bedrijfszeker en akkoord op renovatie
- Andijk 3 functioneert niet: capaciteit, waterkwaliteit en reststroom
- → Besluit renovatie Andijk 1

2019

- Proces technische analyse PWN productiesysteem (veel systeem kansen)
- → Onderzoek coagulatie voor Ceramac

Heden

- Succesvolle renovatie Andijk 1
- (Tijdelijk) productiesysteem op 'orde'

Uitdagingen productiesysteem PWN

- Leveringszekerheid
 - Toenemende drinkwatervraag
 - Van 5% naar 10% bruto productiecapaciteit
 - Levensduur productielocaties:
 - Voorzuivering PS Andijk einde levensduur in 2035
- Waterkwaliteit
 - Chloride
 - Antropogene stoffen (o.a. PFAS, bromaat, bisfenol-A
 - Nauwkeurigere analyses
 - Strengere normen
 - Biologische stabiliteit
- Reststomen
 - Eeuwige slibvelden
 - Regenraat PSA3
 - Concentraat 400 m3/h → 800 m3/h via Tata naar zee (PFAS/verder opconcentreren)
- Gecommitteerd aan Parijsakkoord
 - 49% reductie van CO₂ uitstoot in 2030 t.o.v. 1997
 - Chemicaliënverbruik reduceren en meer circulair

LTP 2021	Noord	Midden	Zuid	NMZ totaal
2020	41,31	31,31	31,94	104,56
2025	41,09	31,13	31,41	103,63
2030	41,47	31,72	32,32	105,51
2035	41,74	32,54	33,31	107,60
2040	41,84	33,26	34,22	109,32
2050	41,50	34,29	35,78	111,58

Technologisch masterplan PWN in ontwikkeling

- Achtergrond: beheer organisatie!
- Renovatie PSA1 en Uitbreiding WPJ en UF-RO
 - Te laat beginnen → te beperkte tijd
 - Scope = technologisch niks veranderen
- We moeten technologie kennis opbouwen bij PWN als we duurzaamheidsdoelstellingen willen halen, maar ook als we aan de wet willen blijven voldoen!
- Wie doet besluitvorming technologische projecten? SAMP? En hoe?
- Hoe zit technologische verbetering verankerd in dit proces?

en

 Technologische capaciteit en kunde ontbreekt om evenwichtig tegenkracht te bieden aan technologieproviders in dit soort projecten

Technologie Organisatie PWN

Technologie onderzoeksprojecten

(waarbij technologieverandering in de scope zit)

Lopende projecten productie

• R	Renovatie I	Kool WPJ	scope herzien
-----	-------------	----------	---------------

 Masterplan Andijk 	korte termij
---------------------------------------	--------------

•	Coagulatie	voor Ceramac	korte	termijn
---	------------	--------------	-------	---------

 Uitbreiding WPJ 	middellange	termijn

• Ultbreiding Heemskerk miggellange teri	•	Uitbreiding Heemskerk	middellange	termiin
--	---	-----------------------	-------------	---------

 PS Overveen 	lange termijn
---------------------------------	---------------

•	Brakwater Haarlemmermeer	lange	termijn
---	--------------------------	-------	---------

WAAG lange termijn

Heemskerk uitbreiding WPJ uitbreiding met 58 Puur water & natuur met 12 Mm³/j per 1-1-Mm³/j per 1-1-2027 2027 IJSSEL MEER Waterwinstation in Cornelis Riemone WPJ Andijk Voorgezuiverd water **ANDIJK** HEEMSKERK Bekkenontharding Bekkenbeluchting Ultrafiltratie (UF) Bekkenbeluchting Hyperfiltratie (HF) Actieve = Reversed koolreactoren Ruwwater Coaquiatie Ruwwater AKF uitbreiding tot 6000 trommelzeven Sedimentatie Coagulatie Duinwater Duinwater JPWN . m³/h per 1-1-2024 Snelle zandfiltratie Mic. ofiltratie Infiltratiegebieden Zandfiltratie membraanfiltratio PWN Deelstroom PWN koolfiltratie WIJK aan ZEE BERGEN U / 20 Pellet Actief kociriltratie Beluchting ontharding Voorgezuiverd water Snelle LAREN / PWN Beluchting zandfiltratie microzeven Grondwater **UV** nadesinfectie Chloordioxide nadesinfectie zandfiltratie Chloorbleekloog Menging Winningen **AMSTERDAM Drinkwater** water net **Drinkwater Drinkwater Drinkwater Drinkwater** PSA3: Kwaliteit/ reststroom: Coagulatie voor Ceramac

Start technologisch masterplan PWN

2022: Technologische inventarisatie productiemiddelen

- Grip op ons productiesysteem
- Onderlinge afhankelijkheden processen
- Van ad-hoc handelen naar gerichte acties binnen een visie
- Kosten en duurzaamheidsscan

2023: Model

- Basaal PWN model
 - Waterkwaliteit
 - Chemicaliën
- Optimale instellingen voor het complete PWN systeem
- Input
 - Chemicalien instelleningenvoor systeem aanpassingen

Economische en duurzaamheidskansen

- 1. Uitbreiding WPJ
- 2. Uitbreiding Heemskerk (UF-RO)
- 3. EC WPJ
- 4. Andijk 1 einde levensduur: Capillaire nanofiltratie?

UF-RO-II conditioneren

- 16Mm3/j → 500.000 EUR HUIDIG
 - 11Mm3/j → 343.750 EUR BERGEN
 - 5 Mm3/j → 156.250 EUR **MENSINK**
- 12 Mm3/j → 375.000 EUR
 UITBREIDING (naar Mensink)

- Dus als we alles naar bergen bij conditioneren en niet maar Mensink gaan we 525.000 'besparen'.
- 530.000 EUR /2500 ton/CO2-eq per jaar aan chemicaliën, NaOH en CO₂

Waterkwaliteit

	PH	SI	CA	MG	HH	HCO3	NA	CL
	-	-	mg/l	mg/l	mmol/L	mg/l	mg/l	mg/l
BERGEN VOOR RO*	7,81	0,47	72	12	2,23	188	73	168
MENSINK 38%RO CONDI	7,84	0,23	45	7	1,38	149	58	104
MENSINK 38%RO	7,84	0,14	45	7	1,38	117	45	104

EC WPJ bestaand

• 1% UVT = 50.000 EUR

- Verplaatsten NaOH
- UV-T +6%
- Biopolymeren -50%
- Mislukt in 2010
 - Kalkafzettingen
- Beter doseren...
- Mogelijk schotten verblijftijd

Besparing [EURO]		
NaOH (50%)	euro/jaar	€ 153.892
Stroomverbruik UV	euro/jaar	€ 315.417
UF NaOCI (12,5% w/w)	euro/jaar	€ 4.920
UF pompenergie	euro/jaar	€ 14.325
Besparing [CO2-eq]		
NaOH (50%)	ton CO2-eq/jaar	698
Stroomverbruik UV	ton CO2-eq/jaar	2.749
UF NaOCI (12,5% w/w)	ton CO2-eq/jaar	47
UF pompenergie	ton CO2-eq/jaar	125
Besparing [EURO]	euro/jaar	€ 488.554
Besparing [CO2-eq]	ton CO2-eq/jaar	3.619
Totaal inclusief CO2 beprijzing 100 euro/ton CO2-eq	Euro/jaar	€ 850.438

Cap NF

- RO = 30 M3/j
 - 500.000 EUR (elektr)
 - 5500 Ton CO2-eq/j
- Cap NF
 - 250.000 elec
 - 2700 ton-co2eq
- PS Andijk

Chemicalien	Prijs	CO2
	eur	ton
NaOH	€ 712.336	1615
CO2	€ 18.199	182
CO2	€ 4.961	50
FeCISO4	€ 545.455	783
PE synthofloc5007	€ 52.650	2140
NaOH	€ 465.678	1056
totaal	€ 1.799.279	5825

Actuele hoofdbrekers Technologie

MET ALLE toekomstscenarios in ogenschouw: toekomstplannen en ambities

klimaatbuffer, chloride, chemicalienprijs/CO2-eq varatie,elektrificeren

- Uitbreiding WPJ
 - Waterkwaliteit garanties: UV-T eis
 - Wel/niet CO2 doseren/beluchting/
 - Dimensies installaties niet optimaal door veilheid en geen winter periode in pilot
- Uitbreiding UF-RO
 - Kool WPJ bescherming UF? Zeer slechte staat
 - WPJ kwaliteit buiten scope
 - Conditionering buiten scope 530.000 EUR/J en 250
- Coagulatie voor ceramac
 - Kan PSA3 nog een goeie toevoeging voor ons zuiveringssyst
 - · Mangaan spelbreker?

Wanneer scope technologie verandering

- Capaciteitsuitbreiding (+10 marge) welke documenten
 - WPJ 4400 m3/h 2027
 - Heemskerk 16Mm3/jaar 2030
- Kwaliteitsuitdagingen bron en streefwaarden
 - Chloride overschrijdingen Andijk Bron + zuivering
 - Biologische stabiliteit (aeromonas)
 - OMV/PFAS
 - Hardheid Bergen en Mensink
- Levensduur/beschikbaarheid/juridisch basis productiemiddelen
 - Actuele staat van onze assets? Is er iets afgeschreven. VB PSA1
 - Membranen uit productie, verbod kwiklampen
- Secundair
 - Reststromen
 - Duurzaamheidsdoelstellingen

Aanleiding project

Chloridetoevoeging in de SIX

- Toevoeging 45 en 55 mg/L chloride
- IJsselmeer +/-110 mg/L maar laatste jaren >125 mg/L
- Wettelijk 150 mg/L

Reststroom

- Regeneraatstroom uit de SIX zeer hoog chloride
- Organische en anorganische vervuiling
- Tijdelijk vergunde infiltratie
- Putverstopping dus voorbehandelen

Capaciteit PSA3

- Ontwerp 5000 m³ in 2014
- Constructieproblemen van C192 naar C90
- Huidige productie winter 1100 m³/h en in de zomer 1550 m³/h

Voorgestelde alternatieve oplossing

Het vervangen van het ionenwisselingproces door een **coagulatieproces** zoveel mogelijk ingepast in de bestaande PSA3 installatie.

- Beperken chloride toevoeging bij zuivering (FeClSO₄ ipv NaCl)
- Eenzelfde waterkwaliteit (DOC en UVT₂₅₄) maar geen sulfaat en nitraatverwijdering
- Mogelijk fluxverhoging en stabiele bedrijfsvoering keramische membraanfiltratie zoals gezien bij ILCA demo 2019
- Terug naar bekende reststroom met bekende chemicaliën

Resultaten waterkwaliteit CVC en SIX

	Unit	Ruw	Six-PSA	CM PSA	Six-pi	Coa- eff	C1-eff
		n=4			n=4	n=8	n=8
Chloride	mg/L	121	167	167	202	134	134
Sulfaat	mg/L	57	12	12	2	100	100
DOC	mg C/L	5,2	3,2	2,3	2,55	2,1	2,4
UV-t	%	77	92	93	92	93	90
Natrium	mg/L	84	88	89		83	102
HCO ₃	mg/L	129	114	112	74		
рН	-	7,8		8,0	7,6	6,4	7,9
Mangaan	ug/L	30	57	34	28	57	30
NO_3	mg/L	1,1			0,6		

Uitgelicht

- Chloride: 134 mg/L i.p.v. 167 mg/L
- Sulfaat: 100 mg/L ipv 12 mg/L
- DOC: 2,4 mg/L ipv 2,3 mg/L
- UVT:
 - Bij volledige sedementatie conform SIX-CMPSA
 - Bij gedeeltelijke sedimentatie 90%-92% ipv 93%
 - Oorzaak UVT variatie: desorptie
 - pH verhoging met vlokken resulteert in daling UV-t en stijging DOC

Waterkwaliteit (2)

Organische stof karakterisering influent CM

 Vergelijkbaar verwijderingsrendement DOC tussen SIX en Coagulatie met twee verschillen:

Biopolymeren worden:

- niet verwijderd in SIX
- wel ingevangen door coagulatie
- relatie biopolymeren en membraanfouling / TMP!
- Building blocks beter verwijderd door SIX. Relatie tot biologische stabiliteit?

Advies: studie naar effecten biologische stabiliteit meenemen

Resultaten operatie Andijk 3 en CVC Puur water & natuur

Trans Membrane Pressure (TMP)

 Testen in groen zeer stabiele en lage TMP op hogere flux in vergelijking tot PSA3, andere testen instabiele en lijken niet haalbaar

Voortgang

- Fase 1: proof of concept in proevenloods (succes)
- Fase 2: duurproef met C12 in proevenloods (succes)
- Fase 3: Demo gestart begin 2022 straat 6 en MF10 (voorlopig succes)
- Eind dit jaar beslissen over investering in o.a. CVC of reststromen project en daarmee de toekomst van PSA3

Pilot WPJ uitbreiding

Bestaand WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.400 m³/h, reele capaciteit max. 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 0,9 m³/ m²/h reeel)
 - Opwaartse zandfiltratie 20 m/h
 - Slibverwerking in bezinkvijvers en slibdroogbedden

		WPJ	WPJ	WPJ
productie		14000	9000	6000
aantal straten		6	6	6
totaal productie	[m3/h]	2333,333	1500	1000
Surfaceload	[m/h]	1,62	1,04	0,70
Verblijftijd flocculatie	[min]	14,91	23,20	34,80
Filtratiesnelheid	m/h	20	12	9

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie:
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2-AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)
- 2. <u>Industrie water:</u>
 - Bestaande WRK contractanten (Tata, CvG)
 - Nieuwe klanten?

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (average) 2000 – 2020	
Total suspended solids	mg/l	< 0.1	0.01	
Turbidity	FTE	< 0.15	0.03	
DOC	mg/l C	<3	3.2	
UV-Transmissie 254	%	> 89%	85%	
Iron	μg/l Fe	<30	15	
Manganese	μg/l Mn	<1	0.2	
Ammonium	mg/l N	< 0.1	0.015	
Bicarbonate	mg/l HCO3	> 90	140	
Chloride	mg/l Cl	Minimum addition	160	
Sodium	mg/l Na	Minimum addition	90	
Sulphate	mg/l SO4	Minimum addition	62	
SI	рН	0.1 – 0.4	0.15	
Hydrobiologie		Zo goed als PSA1		

Identified Process Improvements WPJ

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Flowrate estimates from 7 to 20 m/h
 - Improvement in water quality (TSS?, hydrobiology?)
 - Lower losses during backwashing? Relevant?
- Use of a smaller screen size (35 µm instead of 200 µm
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimal design

Chemicaliënverbruik optimalisatie

28-4-2021 en 29-4-2021 UVT Usselmeer 68%

		FeCl ₃ (40%)	CO ₂	NaOH (50%)
Prijs	Eur/ton	110	78	300
Co2-eq	kg/kg/CO2-eq	0,66	0,78	1,36

Chemicaliënverbruik optimalisatie

10

10

29

+cascade

+cascade en CO₂

128

156

Scenario		Eenh	aid	FeCl ₃ (40%)		CO (100%)	N-OH (500/)	TOTAAL
Scenario	,	Eeiiii	eiu	reci ₃	(40%)	CO ₂ (100%)	NaOH (50%)	TOTALL
WPJ besta	and	ton/j		8394		0	4116	
+cascade		ton/j		8394		0	1989	
+cascade	en CO ₂	ton/j		62	.96	1272	1989	
WPJ besta	and	ton CO	O ₂ -eq	55	40	0	5598	11.138
+cascade	de t		n CO ₂ -eq		40	0	2705	8.245
+cascade	en CO ₂	ton Co	D ₂ -eq	41	.55	992	2705	7.852
WPJ besta	and	Euro/	jaar	€ 92	3.340	€0	€ 1.234.800	€ 2.158.140
+cascade		Euro/	jaar	€ 92	3.340	€0	€ 596.700	€ 1.520.040
+cascade	en CO ₂	Euro/	jaar	€ 692	2.505	€ 99.216	€ 596.700	€ 1.388.421
	_							
	НСО3	Cl	Na	SI	UVT		WPJ bestaand	€ 3.272.000
	mg/L	mg/L	mg/L		-	Totaal kosten	+cascade	€ 2.344.000
estaand	156	38	20	0,3	80	incl. CO ₂	+cascade en CO ₂	€ 2.173.000
								VVIV

85,8

86,1

Goedemorgen Jink,

Onderstaande wellicht te gebruiken in de presentatie die je aan het DT gaat geven over de organisatie. Ik en jij zoeken nu een weg om het project voortgang te laten boeken zoals wij bespraken.

Puur water & natuur

Met vriendelijke groet,

Marcel Wink Senior Projectmanager

06 127 117 75 www.pwn.nl

Puur water & natuur

Van: Aleven, P.M. (Paul) paul.aleven@pwn.nl>
Verzonden: maandag 13 juni 2022 11:13

Aan: Wink, MG (Marcel) < Marcel.Wink@PWN.NL>; Smit, HJP (Herman) < Herman.Smit@PWN.nl>;

Gude, JCJ (Jink) <<u>jink.gude@pwn.nl</u>>; Boesveld, A.M. (Arian) <<u>arian.boesveld@pwn.nl</u>>

CC: Vrijbloed, J. (John) < <u>john.vrijbloed@pwn.nl</u>> **Onderwerp:** RE: conditioneren RO permeaat

Hoi Marcel

Arian en ik zijn Tactisch Assetmanager van de afdeling Installatiebeheer. Dus wij beheren de installaties en stellen samen met de opdrachtnemers en de Asset engineers zeker dat de projecten worden uitgevoerd binnen de projectscope. Deze vraag, wat op zich een mooi en belangrijk initiatief is, hoort mijn inziens thuis bij **Beleidsadvies en Planvorming DW**

Waar ik wel bang voor ben is dat als we zo laat in een projectstadium de randvoorwaarden voor een project aanpassen de voortgang en de kosten van een project extreem onder druk zetten. Dat is geen optie.

Het nadeel van veel projecten in generieke zin is dat het zorgt voor nieuwe creatieve ideeën echter op een bepaald moment is een project bevroren. Het aanpassen van de scope betekend in veel gevallen "Back tot the drawing board". Dus afschrijven van de gedane investering en opnieuw beginnen. Als de randvoorwaarden voor een project verkeerd zijn vastgesteld heeft dat eigenlijk dezelfde consequenties.

Met vriendelijke groeten

PFAS

- Found everywhere globally
- Upcomming strict EFSA target at 4,4 ng/L PFOA-eq 4 PFAS

Drinking water PS Andijk

Activated carbon filtration

Reverse osmosis

Interactie Projecten

Alles op garanties en boetes op iuitloop

Kan dat wel in deze markt??

- Wij garanties en bonus op tijdig opleveren
 - Vertrouwen en bouwen op eigen expertise
 - Waterkwaliteit is onze kennis en zou geen garantie op verkregen moeten worden, want contractors worden daar onzeker van en gaan daardoor beslissingen nemen in het belang van het conteract en halen garantie en de beste oplossing voor PWN nu en in de toekomst

Boodschap:

PWN is beheer organisatie!

Verandering/innovatie zit niet in het DNA van organisatie maar is nu sinds de flater psa3 nergens meer belegd en zit ook niet in het assetmanagement plan.

Voor onze uitdagingen zullen we uit een ander vaatje moeten tappen:

Bron... macro chloride, organische,

Micro/nano Pfas, bisfenol Abromaat

Reststromwn PFAS, zout

50% CO2 reductie meer circulair

Duin niet de oplossing voor alles. Komen allemaal stofjes uit nu die er niet ingaan?

Laatste grote projecten:

Technologische uitgangspunten: copieer wat hebben!

Kool Andijk, PSA1, wpj, UFRO, UV mensink, en we kunnen niet loslaten wat hebben hebben Kool WPJ. (onvoldoende vertrouwen en kennis)

CO2 WPJ... PSA1 UFRO

Uit de installaties halen wat er in zit.. Beter doseren!!! UV vermogen paar maanden te laag, wispro uit geen verschil, als Piet Bakker even weg is veranderd ijzer niét.

We moeten technologie kennis opbouwen bij PWN als we duurzaamheidsdoelstellignem willen halen, maar ook als we aan de wet willen blijven voldoen!