Analysis I Homework Assignment 1

Problem 1.26.

Let S be a non-empty finite set of size k and let $x_1 < x_2 < ... < x_k$ be its elements arranged in the increasing order.

- i. If m is any real number $> x_k$, then the deleted neighborhood N'(m; ϵ), with $\epsilon = (m-x_k)/2$, contains no points of S => m is not a limit point.
- ii. If m is any real number $< x_1$, then the deleted neighborhood N'(n; ε), with $\varepsilon = (x_1 n)/2$, contains no points of S => n is not a limit point.
- iii. If $m = x_j$ for some $1 \le j \le k$, then let ε be any positive real number less than the distance between x_j and its closest "neighbor" (x_{j-1}) or x_{j+1} if $1 \le j \le k$; x_2 if j = 1; x_{k-1} if j = k). Then, the deleted neighborhood N'(m; ε) does not contain any points of S.
- iv. If n is in the interval $[x_1, x_k]$, but is not an element of S, then there exists an index j such that $x_j < n < x_{j+1}$. Let $\varepsilon < \min(x_{j+1} n, n x_j)$ be any positive real number. Obviously, N'(n; ε) does not contain any elements of S. So, n is not a limit point of S.

Consequently, the set S has no limit points.

Problem 1.52

Let $\{x_k\}$ be a convergent sequence with limit x_0 . Obviously, x_0 is a cluster point of $\{x_k\}$. Suppose that there exists another cluster point of $\{x_k\}$ – let's denote it by x'.

Let $\varepsilon < |x' - x_0|/2$ be any positive real number. Since x_0 is the limit, there is k_0 such that x_k is in $N(x_0; \varepsilon)$ for all $k > k_0$. Furthermore, since x' is a cluster point, there exists $k_1 > k_0$ for which $k_1 \in N'(x'; \varepsilon) \subseteq N(x'; \varepsilon)$. So, $k_1 \in N'(x'; \varepsilon) = N(x'; \varepsilon)$ and $k_1 \in N'(x'; \varepsilon) = N(x'; \varepsilon)$

$$|x_0 - x_{k_1}| < \epsilon \text{ and } |x' - x_{k_1}| < \epsilon \implies$$

 $|x_0 - x'| \le |x_0 - x_{k_1}| + |x' - x_{k_1}| \le 2 \varepsilon \le |x' - x_0|$, contradiction.

So, there cannot exist another cluster point => a convergent sequence has exactly 1 cluster point => a sequence with at least 2 cluster points diverges.

Problem 1.53

Assume that a sequence $\{x_k\}$ converges to some value x_0 . Let $\{y_k\} = \{x_{j_k}\}$ be any subsequence of $\{x_k\}$, and let $\epsilon > 0$ be any real number. Since x_0 is the limit, there exists k_0 such that $x_k \in N(x_0; \epsilon)$ for all $k > k_0$. Let m be the greatest integer such that $j_m <= k_0$. So, $j_m + 1$ $> k_0$ and $j_k \in N(x_0; \epsilon)$ for all $j_m => \{y_k\}$ converges to $j_m => \{y_k\}$ converges to $j_m => \{y_k\}$ was arbitrarily chosen).

Conversely, suppose that every subsequence of $\{x_k\}$ converges to some value x_0 . Let $\{y_k\} = \{x_{2k-1}\}$ and $\{z_k\} = \{x_{2k}\}$, and let $\epsilon > 0$ be any real number. There exist k_0 and k_1 such that $y_k \in N(x_0; \epsilon)$ for all $k > k_1$, and $z_k \in N(x_0; \epsilon)$ for all $k > k_2$. So, $y_k \in N(x_0; \epsilon)$ and

 $z_k \in N(x_0; \epsilon)$ for all $k > max(k_1, k_2) \Longrightarrow x_k \in N(x_0; \epsilon)$ for all k > c (for some natural number c). In other words, $\{x \mid k\}$ converges to $x \mid 0$.

Problem 1.72.

We are given that $x_1 = 0$, $x_2 = 1$, and $x_{k+1} = (x_{k-1} + x_k)/2$ for $k \ge 2$. Applying induction:

- i. Base case: $|x \{j+1\} x | | = (1/2)^{n} \{j-1\}$ holds for j=1.
- ii. Inductive step: assume that $|x_{n+1} x_n| = (1/2)^{n-1}$ for some natural number n. Then $|x_{n+2} x_{n+1}| = |(x_n + x_{n+1})/2 x_{n+1}| = |x_n x_{n+1}|/2 = (1/2)^n$. So, $|x_{j+1} x_j| = (1/2)^{j-1}$ holds for all $j \in \mathbb{N}$.

Problem 1.75.

Let $\{x_k\}$ be the sequence whose elements are defined as $x_k = 1 + \frac{1}{2} + \dots + \frac{1}{k}$. Then $x_\{k+1\} - x_k = \frac{1}{(k+1)}$ and thus $\lim_{k \to \infty} \{x_k\} = 0$. However, $\{x_k\}$ is not Cauchy, since $\{x_k\}$ is divergent. To prove this assertion, let's consider the element $x_\{2^m\}$, where m > 3 is a natural number :

$$x_{2^m} = 1 + \frac{1}{2} + \dots + \frac{1}{(2^m)} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots + \frac{1}{(2^m)} > 1 + \frac{1}{2} + 2 * \frac{1}{4} + 4 * \frac{1}{8} + \dots + 2^{m-1} * \frac{1}{(2^m)} = 1 + \frac{m}{2}.$$
 This means that the sequence $\{x \mid k\}$ is unbounded => diverges => is not Cauchy.

Problem 1.82.

Let the sequences $\{C_k\}$ and $\{x_k\}$ be defined as $C_k = 1 - 1/(k+1)$ and $x_k = 1 + \frac{1}{2} + \ldots + \frac{1}{k}$ for all $k \ge 1$. So, $\lim_{k \to \infty} \{C_k\} = 1$, $\{C_k\}$ is strictly monotone increasing, and $\{x_k\}$ diverges (proved in the problem 1.75). However, the property $|x_{k+1}| - x_k| \le C_k |x_k - x_{k+1}|$ is satisfied, because

$$|x| \{k+1\} - x |k| = 1/(k+1) = (1-1/(k+1)) * 1/k = C |k| |x| k - x |\{k+1\}|.$$

So, a sequence $\{x_k\}$ satisfying the given properties is not necessarily convergent => is not necessarily Cauchy.

Problem 1.27.

d)
$$S = \{p/2^k : p \in Z, k \in N\}.$$

Let $x = p_1/2^{k_1}$ for some $p_1 \in Z$, $k_1 \in N$, and $\epsilon > 0$ be any real number. There exists $m \in N$ such that $1/2^m < \epsilon$. Then

$$x-\epsilon < p_1/2^{k_1} - 1/2^m = (p_1*2^m - 2^{k_1})/2^{k_1} + m \}$$
 and
$$x+\epsilon > p_1/2^{k_1} + 1/2^m = (p_1*2^m + 2^{k_1})/2^{k_1} + m \} \ .$$
 So,

$$x + \varepsilon > (p_1*2^m + 1)/2^{k_1 + m} > x - \varepsilon \Longrightarrow$$

$$(p_1*2^m + 1)/2^{k_1 + m} \in N'(x; \varepsilon).$$

So, any deleted neighborhood N'(x; ε) contains a point of S. Therefore x is a limit point of S. We conclude that any element of S is a limit of S.

Now, let $x \notin S$ be a real number, and let $\varepsilon > 0$ be a real number such that $1/2^{n} + 1 < \varepsilon$ for some natural number m. Obviously, $x \in (a, a + 1)$, where a is the integer part of x. So, $x \in (a, a + \frac{1}{2})$ or $x \in (a + \frac{1}{2}, a + 1)$ (note that $x = a + \frac{1}{2}$ is impossible, since $x \notin S$). Assume, without loss of generality that, $x \in (a, a + \frac{1}{2}) = x \in (a, a + \frac{1}{4})$ or $x \in (a + \frac{1}{4}, a + \frac{1}{2})$ (again, x cannot be equal to $a + \frac{1}{4} = x = x \in (a + \frac{1}{4})$) for some integer A > 0. So,

$$x < a + (A + 1) / 2^m$$
 and $x > a + A / 2^m$.

Thus

$$x+\ \epsilon>a+A/2^m+1/2^\{m+1\}$$
 and
$$x-\ \epsilon< a+(A+1)/2^m-1/2^\{m+1\}=a+A/2^m+1/2^\{m+1\}==>$$

$$a+A/2^m+1/2^\{m+1\}\in N'(x;\ \epsilon)$$

(again x is not equal to $a + A/2^m + 1/2^m + 1$ since $x \notin S$) ==> any deleted neighborhood N'(x; ε) of x contains a point of S ==> Any real number is a limit point of S.

e)

- i. Let x be a real number equal to $1/m_0$ for some natural number m_0 , and let $\epsilon > 0$ be a real number with $1/n_0 < \epsilon$ for some natural number n_0 . Then $x < 1/m_0 + 1/n_0 < x + \epsilon => 1/m_0 + 1/n_0 \in N'(x; \epsilon) => x$ is a limit point of S. So, any number of the form 1/m for some natural number m is a limit point of S.
- ii. Let x > 2 be any real number. Then N'(x; x 2) does not contain any points of S ==> x is not a limit point of S. 2 is not a limit point either; $N'(2; \frac{1}{2})$ contains no points of S.
- iii. Let x be a number such that x = 1 + 1/m for some positive integer m > 1, and let $\epsilon > 0$ be any real number such that $\epsilon < \min(1/(m-1) 1/m, 1/m 1/(m+1))$. Then N'(x; ϵ) contains no points of S.
- iv. Let x be a number such that 1 < x < 2 and $x \ne 1 + 1/m$ for all $m \in N$. Then $x \in (1 + 1/(m_0 + 1), 1 + 1/m_0)$ for some $m_0 \in N$. Let $\varepsilon > 0$ be any number such that $\varepsilon < minimum (x (1 + 1/(m_0 + 1)), 1 + 1/m_0 x)$. The deleted neighborhood N'(x; ε) contains no points of X. So, if x > 1, then x is not a limit point of S.
- v. Finally, let x be a real number such that 0 < x < 1 and $x \ne 1/m$ for all $m \in N$. Then $x \in (1/(m_0 + 1), 1/m_0)$ for some $m_0 \in N$. Let $\varepsilon > 0$ be any real number such that $\varepsilon < \min(x 1/(m_0 + 1), 1/m_0 x)$. Then N'(x; ε) contains no points of S.

In conclusion, the limit points of S are all the numbers of the form 1/m for some natural number m.

Problem 1.48.

a) Let ϵ be any positive real number such that $\epsilon < (1-L)/2$, and let k_0 be a natural number such that $|(x_k)^{\{1/k\}} - L| < \epsilon(1-L)/2$ for all $k >= k_0$. Then for all $k >= k_0$,

$$\begin{split} |x_k-L^k| &= |(x_k)^{1/k}-L| \times |x_k^{(k-1)/k}L^0 + \ldots + x_k^{1/k} \times L^{k-2} + L^{k-1}| < \frac{\epsilon(1-L)}{2} |x_k^{(k-1)/k} \times L^0 + \ldots \\ &+ x_k^{1/k} \times L^{k-2} + L^{k-1}| < \frac{\epsilon(1-L)}{2} |(L + \frac{\epsilon(1-L)}{2})^{k-1} \times L^0 + \ldots (L + \frac{\epsilon(1-L)}{2}) \times L^{k-2} + L^{k-1}| < \\ &= \frac{\epsilon(1-L)}{2} |(L + \frac{\epsilon(1-L)}{2})^{k-1} + \ldots (L + \frac{\epsilon(1-L)}{2}) + 1| < \frac{\epsilon(1-L)}{2} \frac{1}{1 - (L + \frac{\epsilon(1-L)}{2})} = \frac{\epsilon}{2 - \epsilon} < \epsilon, \\ &\text{since } 0 < L + \frac{\epsilon(1-L)}{2} < L + \frac{(1-L)^2}{4} = \frac{1 + 2L + L^2}{4}. \end{split}$$

and $(1 + 2L + L^2)/4 < 1$ (also note that $\varepsilon < 1$ and one of the factors is a sum of the form 1 + a + ... a^m, where a < 1, so there is an upper bound for this sum, for all the values of m).

So, for all $\epsilon < (1-L)/2$ there exists k_0 such that $|x_k-L^{\wedge}k| < \epsilon$ for all $k >= k_0$. Thus, for all $\epsilon_0 >= (1-L)/2$ there exists k_1 such that $|x_k-L^{\wedge}k| < \epsilon_0$ for all $k >= k_1$. In conclusion, given any $\epsilon > 0$, there exists k_0 such that $|x_k-L^{\wedge}k| < \epsilon$ for all $k >= k_0 ==> \lim_{n \to \infty} \{k \text{ goes to infinity}\} x_n = L^{\wedge}k$.

b) Let $\varepsilon > 0$ be any number such that $L - \varepsilon > 1$. So, there exists k = 0 such that $|(x_k)^{\{1/k\}} - L| < \varepsilon$ for all $k >= k = 0 ==> (x_k)^{\{1/k\}} > L - \varepsilon$ for all $k >= k = 0 ==> x_k > (L - \varepsilon)^k$ for all k >= k = 0. Let M > 0 be any number, and $L - \varepsilon = 1 + x$, where x > 0. By the Archimedes' principle, there exists k = 1 for which 1 + x * k = 1 > M. On the other hand, appealing to Bernoulli's inequality one has $(1 + x)^k = 1 + x * k = 1 ==> (L - \varepsilon)^k = 1 = (1 + x)^k = 1 + x * k = 1 > M$. So, $(L - \varepsilon)^k > M$ for all $k >= k = 1 ==> x + k > (L - \varepsilon)^k > M$ for all $k >= max(k + 0, k + 1) ==> \{x + k \}$ diverges to positive infinity.

c) L = 1 => for any
$$\varepsilon > 0$$
, there exists k_0 such that $|(x_k)^{\{1/k\}} - 1| < \varepsilon$ for all $k >= k_0 => (x_k)^{\{1/k\}} < 1 + \varepsilon => x_k < (1 + \varepsilon)^k$ for all $k >= k_0 => 0$.

Since the limit is order-preserving on convergent sequences and since $\lim_{k \to \infty} \{k \text{ goes to infinity}\}\ (1 + \epsilon)^k = \text{positive infinity (because by Bernoulli's inequality one has } (1 + \epsilon)^k >= 1 + \epsilon k, \text{ and } 1 + \epsilon k \text{ can be greater than any real number, for all sufficiently large values of k), the above inequality just implies that$

which was already known to us and does not even suffice to determine whether {x_k} converges or not.

Also $(x_k)^{1/k} > 1 - \varepsilon$, however this inequality also does not provide any useful information about the convergence of $\{x_k\}$. Because if $\varepsilon < 1$, then $x_k > (1 - \varepsilon)^k$ and the only result that can be drawn from the last inequality is

$$\lim \{k \text{ goes to infinity}\} (x \ k) >= 0,$$

as $\lim_{k \to \infty} \{k \text{ goes to infinity}\} (1 - \varepsilon)^k = 0$ and limit is order-preserving on convergent sequences. But this result already follows from the fact that all the elements of the sequence are positive.

If $\varepsilon \ge 1$, then $(1 - \varepsilon)^k$ alternates between positive and negative numbers (as k increases) and comparing x_k with $(1 - \varepsilon)^k$ does not provide any useful information about the convergence of $\{x_k\}$. Consequently, if L = 1, no conclusion can be drawn about the convergence of the sequence $\{x_k\}$.

Let's provide some concrete examples:

- 1) The sequence $\{x_k\}$ such that $x_k = 1$ for all k satisfies the property. Obviously, $\lim_{k \to \infty} \{k \text{ goes to infinity }\}$ $\{x_k\} = 1$.
- 2) The sequence $\{x_k\}$ such that $x_k = k$ for all k can be proved to satisfy the equation. However, it is obvious that the sequence $\{x_k\}$ diverges to positive infinity.
- 3) The sequence $\{x_k\}$ such that $x_k = (1+1/k)^k$ satisfies the given property. But it is a known fact that $\lim_{k \to \infty} \{k \text{ goes to infinity}\} (x_k) = e$.

Problem 1.76.

Note that the sum

$$1 + 2/3 + (2/3)^2 + \dots + (2/3)^k$$

approaches

1/(1-2/3) = 3

as k goes to infinity.

Let $\varepsilon > 0$ be any real number.

There exists k_0 for which $(2/3)^{k_0} \le \epsilon/6$.

Then for all $m > k > k_0$:

$$\begin{aligned} |\mathbf{x}_{k} - \mathbf{x}_{k} | &< |\mathbf{x}_{k} - \mathbf{x}_{k} | + \dots |\mathbf{x}_{k} | + \dots |\mathbf{x}$$

$$|x_m - x_k| \le |x_m - x_{k_0}| + |x_k - x_{k_0}| \le 2 * \epsilon/2 = \epsilon.$$

So, $|x_k - x_{k_0}| < \epsilon/2$ for all $k \ge k_0$ and $|x_m - x_k| < \epsilon$ for all $m \ge k \ge k_0 = k$ is Cauchy.

Problem 1.110.

Let S be any uncountable set of real numbers.

Consider the sets $S_j = [j, j+1)$ for all integers j. The number of these sets is countably infinite. It follows that there exists an integer k for which S_k contains infinitely many elements of S. To prove this assertion, let's proceed by the method of contradiction. Suppose that this is not true; that is, for each integer j, the set S_j contains only finitely many elements of S. Let M be a natural number such that each S_j contains at most M elements of S.

However, in such a situation the set S can written as a sequence of distinct points in the following way:

This means that S is a countable set, which contradicts the given information. So, there is at least one integer k for which the set S_k contains infinitely many of the elements of $S \Longrightarrow S$ has infinitely many elements in [k, k+1). Let S' denote the subset of S which contains all the elements of S in the interval [k, k+1). Then S' is a bounded, infinite set \Longrightarrow has a limit point \Longrightarrow S has a limit point.

Problem 1.77

Observe that $|x_{k+1} - x_k| = 1/\{2k+2\}!$ and $|x_{k} - x_{k-1}| = 1/\{2k\}!$ for all $k \ge 2$. So,

$$|\mathbf{x}_{k}| = 1/\{2k+2\}! = 1/\{(2k+1)(2k+2)\} * |\mathbf{x}_{k}| - \mathbf{x}_{k}| < 1/\{(2k+1)(2k+2)\} * |\mathbf{x}_{k}| - \mathbf{x}_{k}| < 1/\{(2k+1)(2k+2)\} * |\mathbf{x}_{k}| < 1/\{(2k+2)(2k+2)\} * |\mathbf{x}_{k}| < 1/\{(2k+2)(2k+2)(2k+2)\} * |\mathbf{x}_{k}| < 1/\{(2k+2)(2k+2)(2k+2)(2k+2)\} * |\mathbf{x}_{k}| < 1/\{(2k+2)(2k+2)(2k+2)(2k+2)(2k+2)(2k+2)\} * |\mathbf{x}_{k}| < 1/\{(2k+2)(2$$

for all $k \ge 2$. Therefore $\{x_k\}$ is a contractive sequence => is Cauchy.

The above inequality also implies that

$$|x \{k+1\} - x k| \le (1/30)^{k-1} * |x 2-x 1|$$

for all $k \ge 1$.

Let m > k >= 2 be natural numbers. Then

$$|x_{m}-x_{k}| <= |x_{m}-x_{m-1}| + ... + |x_{k+1}-x_{k}| <= (1/30)^{m-2} * |x_2-x_1| + ... + (1/30)^{k-1} * |x_2-x_1| < (1/30)^{k-1} * |x_2-x_1| * (30/29) = (1/30)^{k-1} * 1/24 * 30/29,$$
 taking into account the facts
$$(***)$$

1)
$$1 + (1/30) + ... + (1/30)^n$$
 approaches $1/(1 - 1/30) = 30/29$ as n goes to infinity;
2) $x + 2 - x + 1 = 1/(4!) = 1/24$.

Note that $\{x_k\}$ is convergent since it is Cauchy. Let x_0 be its limit. Then one has

$$|x_0 - x_k| \le (1/30)^{k-1} * 1/24 * 30/29,$$

letting m go to infinity in the expression (***). (we can do this since $\lim \{m \text{ goes to infinity}\} |x m - x_k| = |x_0 - x_k|$, for a fixed k).

For k = 4,
$$|x_0 - x_4| \le (1/30)^3 * 1/24 * 30/29 \le (0.1)^6$$
 and $x_4 = 1 - 1/(2!) + 1/(4!) - 1/(6!) + 1/(8!) = 0.5403025...$ On the other hand, $\cos(1 \text{ rad}) = 0.5403023...$