

Quant Dev #2 - Winter 2017

(\) 01h : 58m : 56s to test end

☆ Market Equilibrium

If the advertising campaigns run forever, what will be the final distribution of market share?

The probability that a customer switches is independent of other customers and days.

N is an integer less than 25

Total market share is 1.0

Input:

An array of floats of size N, representing the initial distribution of market share.

An matrix of floats with dimensions NxN, representing the probability of switching from one chain to another.

Output:

An array of floats of size N, representing the final distribution of market share.

Note: floats in the output should be rounded to 4 decimal places.

Example:

2 coffee chains: Starbucks and Tully's

Starbucks market share is .4

Tully's market share is .6

Each day, there there is a .2 probability that a customer switches from Starbucks to Tully's Each day, there is a .1 probability that a customer switches from Tully's to Starbucks.

Input: market_share=[.4, .6], switch_prob=[[.8 .2][.1, .9]]

Output: [0.3333 0.6667]

YOUR ANSWER

We recommend you take a quick tour of our editor before you proceed. The timer will pause up to 90 seconds for the tour. Start tour


```
(\) 01h : 58m : 56s
                       Quant Dev #2 - Winter 2017
akuna capita
                                                                 to test end
            2
 這
            3
               import sys
            4
               import os
            5
            6
            7
               # Complete the function below.
            8
            9
                     market equilibrium(initial market share, switch probability):
          10
          11
          12
4
```

```
13 ▶ f = open(os.environ['OUTPUT PATH'], 'w')↔
15
   initial market share cnt = 0
16
    initial market share cnt = int(raw input())
17
    initial market share i=0
18
    _initial_market_share = []
20 ▼ while initial market share i < initial market share cnt:
        initial market share item = float(raw input());
21
        _initial_market_share.append(_initial_market_share_item)
22
        _initial_market_share_i+=1
23
24
25
26
    _switch_probability_rows = 0
27
    _switch_probability_cols = 0
28
    switch probability rows = int(raw input())
29
    _switch_probability_cols = int(raw_input())
30
31
    switch probability = []
33 ▼ for switch probability i in xrange( switch probability rows):
34
        switch probability temp =
    map(float,raw input().strip().split(' '))
        switch probability.append( switch probability temp)
35
36
```

