Generalized Measures of Fault Tolerance in Exchanged Hypercubes *

Xiang-Jun Li^{a,b} Jun-Ming Xu^a †

^aSchool of Mathematical Sciences

University of Science and Technology of China

Wentsun Wu Key Laboratory of CAS, Hefei, 230026, China

^bSchool of Information and Mathematics

Yangtze University, Jingzhou, Hubei, 434023, China

Abstract

The exchanged hypercube EH(s,t), proposed by Loh et al. [The exchanged hypercube, IEEE Transactions on Parallel and Distributed Systems 16 (9) (2005) 866-874], is obtained by removing edges from a hypercube Q_{s+t+1} . This paper considers a kind of generalized measures $\kappa^{(h)}$ and $\lambda^{(h)}$ of fault tolerance in EH(s,t) with $1 \leq s \leq t$ and determines $\kappa^{(h)}(EH(s,t)) = \lambda^{(h)}(EH(s,t)) = 2^h(s+1-h)$ for any h with $0 \leq h \leq s$. The results show that at least $2^h(s+1-h)$ vertices (resp. $2^h(s+1-h)$ edges) of EH(s,t) have to be removed to get a disconnected graph that contains no vertices of degree less than h, and generalizes some known results.

Keywords: Combinatorics, networks, fault-tolerant analysis, exchanged hypercube, connectivity, super connectivity

1 Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph G = (V, E), where V is the set of processors and E is the set of communication links in the network. For graph terminology and notation not defined here we follow [15].

A subset $S \subset V(G)$ (resp. $F \subset E(G)$) of a connected graph G is called a *vertex-cut* (resp. edge-cut) if G - S (resp. G - F) is disconnected. The *connectivity* $\kappa(G)$ (resp. edge-connectivity $\lambda(G)$) of G is defined as the minimum cardinality over all vertex-cuts (resp. edge-cuts) of G. The connectivity $\kappa(G)$ and edge-connectivity $\lambda(G)$ of a graph G are two important measurements for fault tolerance of the network since the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is.

Because the connectivity has some shortcomings, Esfahanian [1] proposed the concept of restricted connectivity, Latifi et al. [3] generalized it to restricted h-connectivity

^{*}The work was supported by NNSF of China (No.11071233, 61272008).

[†]Corresponding author: xujm@ustc.edu.cn (J.-M. Xu)

which can measure fault tolerance of an interconnection network more accurately than the classical connectivity. The concepts stated here are slightly different from theirs.

A subset $S \subset V(G)$ (resp. $F \subset E(G)$) of a connected graph G, if any, is called an h-vertex-cut (resp. edge-cut), if G - S (resp. G - F) is disconnected and has the minimum degree at least h. The h-connectivity (resp. edge-connectivity) of G, denoted by $\kappa^{(h)}(G)$ (resp. $\lambda^{(h)}(G)$), is defined as the minimum cardinality over all h-vertex-cuts (resp. h-edge-cut) of G. It is clear that, for $h \geq 1$, if $\kappa^{(h)}(G)$ and $\lambda^{(h)}(G)$) exists, then $\kappa^{(h-1)}(G) \leq \kappa^{(h)}(G)$ and $\lambda^{(h-1)}(G) \leq \lambda^{(h)}(G)$. For any graph G and any integer h, determining $\kappa^{(h)}(G)$ and $\lambda^{(h)}(G)$ is quite difficult. In fact, the existence of $\kappa^{(h)}(G)$ and $\lambda^{(h)}(G)$ is an open problem so far when $h \geq 1$. Only a little knowledge of results have been known on $\kappa^{(h)}$ and $\lambda^{(h)}$ for particular classes of graphs and small h's, such as [2,4,5,8,10-14,16,17,19,20].

It is widely known that the hypercube Q_n has been one of the most popular interconnection networks for parallel computer/communication system. Xu [14] determined $\lambda^{(h)}(Q_n) = 2^h(n-h)$ for $h \leq n-1$, and Oh *et al.* [11] and Wu *et al.* [13] independently determined $\kappa^{(h)}(Q_n) = 2^h(n-h)$ for $h \leq n-2$.

This paper is concerned about the exchanged hypercubes EH(s,t), proposed by Loh et al. [7]. As a variant of the hypercube, EH(s,t) is a graph obtained by removing edges from a hypercube Q_{s+t+1} . It not only keeps numerous desirable properties of the hypercube, but also reduced the interconnection complexity. Very recently, Ma et al. [10] have determined $\kappa^{(1)}(EH(s,t)) = \lambda^{(1)}(EH(s,t)) = 2s$. We, in this paper, will generalize this result by proving that $\kappa^{(h)}(EH(s,t)) = \lambda^{(h)}(EH(s,t)) = 2^h(s+1-h)$ for any h with $0 \le h \le s$.

The proof of this result is in Section 3. In Section 2, we recall the structure of EH(s,t) and some lemmas used in our proofs.

2 Definitions and lemmas

For a given position integer n, let $I_n = \{1, 2, ..., n\}$. The sequence $x_n x_{n-1} \cdots x_1$ is said a binary string of length n if $x_r \in \{0, 1\}$ for each $r \in I_n$. Let $x = x_n x_{n-1} \cdots x_1$ and $y = y_n y_{n-1} \cdots y_1$ be two distinct binary string of length n. Hamming distance between x and y, denoted by H(x, y), is the number of r's for which $|x_r - y_r| = 1$ for $r \in I_n$.

For a binary string $u = u_n u_{n-1} \cdots u_1 u_0$ of length n+1, we call u_r the r-th bit of u for $r \in I_n$, and u_0 the last bit of u, denote sub-sequence $u_j u_{j-1} \cdots u_{i+1} u_i$ of u by u[j:i], i.e., $u[j,i] = u_j u_{j-1} \cdots u_{i+1} u_i$. Let

$$V(s,t) = \{u_{s+t} \cdots u_{t+1} u_t \cdots u_1 u_0 | u_0, u_i \in \{0,1\}, i \in I_{s+t}\}.$$

Definition 2.1 The exchanged hypercube is an undirected graph EH(s,t) = (V, E), where $s \ge 1$ and $t \ge 1$ are integers. The set of vertices V is V(s,t), and the set of edges E is composed of three disjoint types E_1, E_2 and E_3 .

$$E_{1} = \{uv \in V \times V | u[s+t:1] = v[s+t:1], u_{0} \neq v_{0}\},$$

$$E_{2} = \{uv \in V \times V | u[s+t:t+1] = v[s+t:t+1],$$

$$H(u[t:1], v[t:1]) = 1, u_{0} = v_{0} = 1\},$$

$$E_{3} = \{uv \in V \times V | u[t:1] = v[t:1],$$

$$H(u[s+t:t+1], v[s+t:t+1]) = 1, u_{0} = v_{0} = 0\}.$$

Now we give an alternative definition of EH(s,t).

Definition 2.2 An exchanged hypercube EH(s,t) consists of the vertex-set V(s,t) and the edge-set E, two vertex $u = u_{s+t} \cdots u_{t+1} u_t \cdots u_1 u_0$ and $v = v_{s+t} \cdots v_{t+1} v_t \cdots v_1 v_0$ linked by an edge, called r-dimensional edge, if and only if the following conditions are satisfied: a). u and v differ exactly in one bit on the r-th bit or on the last bit.

- b). if $r \in I_t$, then $u_0 = v_0 = 1$,
- c). if $r \in I_{s+t} I_t$, then $u_0 = v_0 = 0$.

The exchanged hypercubes EH(1,1) and EH(1,2) are shown in Figure 1.

Figure 1: Two exchanged hypercubes EH(1,1) and EH(1,2)

From Definition 2.2, it is easy to see that EH(s,t) can be obtained from a hypercube Q_{s+t+1} with vertex-set V(s,t) by removing all r-dimensional edges that link two vertices with the last bit 0 if $r \in I_t$ and two vertices with the last bit 1 if $r \in I_{s+t} - I_t$. Thus, EH(s,t) is a bipartite graph with minimum degree $\min\{s,t\}+1$ and maximum degree $\max\{s,t\}+1$. The following three lemmas obtained by Loh $et\ al.$ [7] and Ma [8] are very useful for our proofs.

Lemma 2.3 (Loh et al. [7]) EH(s,t) is isomorphic to EH(t,s).

By Lemma 2.3, without loss of generality, we can assume $s \leq t$ in the following discussion, and so EH(s,t) has the minimum degree s+1. For fixed $r \in I_{s+t}$ and $i \in \{0,1\}$, let H_i^r denote a subgraph of EH(s,t) induced by all vertices whose the r-th bits are i.

Lemma 2.4 (Loh et al. [7]) For a fixed $r \in I_{s+t}$, EH(s,t) can be decomposed into 2 isomorphic subgraphs H_0^r and H_1^r , which are isomorphic to EH(s,t-1) if $r \in I_t$ and $t \ge 2$, and isomorphic to EH(s-1,t) if $r \in I_{s+t} - I_t$ and $s \ge 2$. Moreover, there are 2^{s+t-1} independent edges between H_0^r and H_1^r .

Lemma 2.5 (Ma [8]) $\kappa(EH(s,t)) = \lambda(EH(s,t)) = s+1$ for any s and t with $1 \le s \le t$.

3 Main results

In this section, we present our main results, that is, we determine the h-connectivity and h-edge-connectivity of the exchanged hypercube EH(s,t).

Lemma 3.1
$$\kappa^{(h)}(EH(s,t)) \leqslant 2^h(s+1-h)$$
 and $\lambda^{(h)}(EH(s,t)) \leqslant 2^h(s+1-h)$ for $h \leqslant s$.

Proof. Let X be a subset of vertices in EH(s,t) whose the rightmost s+t+1-h bits are zeros and the leftmost h bits do not care, denoted by

$$X = \{ *^h 0^{s+t+1-h} | * \in \{0, 1\} \}.$$

Then the subgraph of EH(s,t) induced by X is a hypercube Q_h . Let S be the neighborset of X in EH(s,t) - X and F the edge-sets between X and S. By Definition 2.2, S has the form

$$S = \{ *^h \underbrace{0^p 10^{s-h-p-1}}_{s-h} 0^{t+1} | 0 \leqslant p \leqslant s-h-1, * \in \{0,1\} \} \cup \{ *^h 0^{s+t-h} 1 \}.$$

On the one hand, since every vertex of X has degree s+1 in EH(s,t) and h neighbors in X, it has exactly s-h+1 neighbors in S. On the other hand, every vertex of S has exactly one neighbor in X. It follows that

$$|S| = |F| = 2^h(s+1-h).$$

We show that S is an h-vertex-cut of EH(s,t). Clearly, S is a vertex-cut of EH(s,t) since $|X \cup S| = 2^h(s+2-h) < 2^{s+t+1}$. Let $Y = EH(s,t) - (X \cup S)$ and v be any vertex in Y. We only need to show that the vertex v has degree at least h in Y. In fact, it is easy to see from the formal definition of S that if v is adjacent to some vertex in S then it has only the form

$$v = *^{h} \underbrace{0^{p} 10^{s-h-p-1}}_{s-h} 0^{t} 1 \text{ or } *^{h} 0^{s-h} \underbrace{0^{r} 10^{t-r-1}}_{t} 1 \text{ or } *^{h} \underbrace{0^{p} 10^{q} 10^{s-h-p-q-2}}_{s-h} 0^{t+1}$$

If v has the former two forms, then v has one neighbor in S, thus v has at least $(s+1-1=s \ge) h$ neighbors in Y. If v has the last form, then $s-h \ge 2$ and v has two neighbors in S. Thus, v has at least (s+1-2=s-1>) h neighbors in Y.

By the arbitrariness of $v \in Y$, S is an h-vertex-cut of EH(s,t), and so

$$\kappa^{(h)}(EH(s,t)) \leqslant |S| = 2^h(s+1-h)$$

as required.

We now show that F is an h-edge-cut of EH(s,t). Since every vertex v in EH(s,t)-X has at most one neighbor in X, then v has at least $(s+1-1=s\geqslant)h$ neighbors in EH(s,t)-X. By the arbitrariness of $v\in EH(s,t)-X$, F is an h-edge-cut of EH(s,t), and so

$$\lambda^{(h)}(EH(s,t)) \leqslant |F| = 2^h(s+1-h)$$

The lemma follows.

Corollary 3.2 $\kappa^{(1)}(EH(1,t)) = \lambda^{(1)}(EH(1,t)) = 2 \text{ for } t \ge 1.$

Proof. On the one hand, $\kappa^{(h)}(EH(1,t)) \leq 2$ and $\lambda^{(h)}(EH(1,t)) \leq 2$ by Lemma 3.1 when s=1. On the other hand, by Lemma 2.5, $\kappa(EH(1,t)) = \lambda(EH(1,t)) = 2$, thus $\kappa^{(h)}(EH(1,t)) \geq \kappa(EH(1,t)) = 2$ and $\lambda^{(h)}(EH(1,t)) \geq \lambda(EH(1,t)) = 2$. The results hold.

Theorem 3.3 For $1 \le s \le t$ and any h with $0 \le h \le s$,

$$\kappa^{(h)}(EH(s,t)) = \lambda^{(h)}(EH(s,t)) = 2^h(s+1-h).$$

Proof. By Lemma 3.1, we only need to prove that,

$$\kappa^{(h)}(EH(s,t)) = \lambda^{(h)}(EH(s,t)) \geqslant 2^h(s+1-h).$$

We proceed by induction on $h \ge 0$. The theorem holds for h = 0 by Lemma 2.5. Assume the induction hypothesis for h - 1 with $h \ge 1$, that is,

$$\kappa^{(h-1)}(EH(s,t)) = \lambda^{(h-1)}(EH(s,t)) \geqslant 2^{h-1}(s+2-h). \tag{3.1}$$

Note h = 1 if s = 1. By Corollary 3.2, $\kappa^{(1)}(EH(1,t)) = \lambda^{(1)}(EH(1,t)) = 2$ for any $t \ge 1$, the theorem is true for s = 1. Thus, we assume $s \ge 2$ below.

Let S be a minimum h-vertex-cut (or h-edge-cut) of EH(s,t) and X be the vertex-set of a minimum connected component of EH(s,t) - S. Then

$$|S| = \begin{cases} \kappa^{(h)}(EH(s,t)) & \text{if } S \text{ is a vertex} - cut; \\ \lambda^{(h)}(EH(s,t)) & \text{if } S \text{ is an edge} - cut. \end{cases}$$

Thus, we only need to prove that

$$|S| \geqslant 2^h(s+1-h). \tag{3.2}$$

To the end, let Y be the set of vertices in EH(s,t) - S not in X, and for a fixed $r \in I_{s+t}$ and each i = 0, 1, let

$$X_i = X \cap H_i^r,$$

 $Y_i = Y \cap H_i^r$ and
 $S_i = S \cap H_i^r,$

Let $J = \{i \in \{0, 1\} | X_i \neq \emptyset\}$ and $J' = \{i \in J | Y_i \neq \emptyset\}$. Clearly, $0 \leqslant |J'| \leqslant |J| \leqslant 2$ and |J'| = 0 only when |J| = 1. We choose $r \in I_{s+t}$ such that |J| is as large as possible. For each $i \in \{0, 1\}$, we write H_i for H_i^r for short. We first prove the following inequality.

$$|S_i| \ge 2^{h-1}(s+1-h) \text{ if } X_i \ne \emptyset \text{ and } Y_i \ne \emptyset \text{ for } i \in \{0,1\}.$$
 (3.3)

In fact, for some $i \in \{0,1\}$, if $X_i \neq \emptyset$ and $Y_i \neq \emptyset$, then S_i is a vertex-cut (or an edge-cut) of H_i . Let u be any vertex in $X_i \cup Y_i$. Since S is an h-vertex-cut (or h-edge-cut) of EH(s,t), u has degree at least h in EH(s,t) - S. By Lemma 2.4, u has at most one neighbor in H_j , where $j \neq i$. Thus, u has degree at least h-1 in H_i , which implies that S_i is an (h-1)-vertex-cut (or edge-cut) of H_i , that is,

$$|S_i| \geqslant \kappa^{(h-1)}(H_i) \text{ (or } |S_i| \geqslant \lambda^{(h-1)}(H_i)).$$
 (3.4)

If $r \in I_{s+t} - I_t$, then $H_i \cong EH(s-1,t)$ by Lemma 2.4. By the induction hypothesis (3.1), $\kappa^{(h-1)}(H_i) = \lambda^{(h-1)}(H_i) \geqslant 2^{h-1}(s+1-h)$, from which and (3.4), we have that $|S_i| \geqslant 2^{h-1}(s+1-h)$.

If $r \in I_t$, then $H_i \cong EH(s, t-1)$ by Lemma 2.4.

If $t \ge s + 1$, by the induction hypothesis (3.1),

$$\kappa^{(h-1)}(H_i) = \lambda^{(h-1)}(H_i) \geqslant 2^{h-1}(s+2-h) > 2^{h-1}(s+1-h),$$

from which and (3.4), we have that $|S_i| > 2^{h-1}(s+1-h)$.

If t = s, then $EH(s, t-1) \cong EH(s-1, t)$ by Lemma 2.3. By the induction hypothesis (3.1),

$$\kappa^{(h-1)}(H_i) = \lambda^{(h-1)}(H_i) \geqslant 2^{h-1}(s+1-h),$$

from which and (3.4), we have that $|S_i| \ge 2^{h-1}(s+1-h)$. The inequality (3.3) follows.

We now prove the inequality in (3.2).

If |J| = 1 then, by the choice of J, no matter what $r \in I_{s+t}$ is chosen, the r-th bits of all vertices in X are the same. In other words, the r-th bits of all vertices in X are the same for any $r \in I_{s+t}$, and possible different in the last bit. Thus $|X| \leq 2$ and $h \leq 1$. By the hypothesis of $h \geq 1$, we have h = 1 and |X| = 2. The subgraph of EH(s,t) induced by X is an edge in E_1 , thus

$$|S| = s + t \ge 2s = 2^h(s + 1 - h),$$

as required. Assume |J|=2 below, that is, $X_i\neq\emptyset$ for each i=0,1. In this case, $|J'|\geqslant 1$. If |J'|=2 then, for each i=0,1, since $X_i\neq\emptyset$ and $Y_i\neq\emptyset$, we have that $|S_i|\geqslant 2^{h-1}(s+1-h)$ by (3.3). Note that $|S|=|S_0|+|S_1|$ if S is an h-vertex-cut and $|S|\geqslant |S_0|+|S_1|$ if S is an h-edge-cut. It follows that

$$|S| \geqslant |S_0| + |S_1|$$

 $\geqslant 2 \times 2^{h-1}(s+1-h)$
 $= 2^h(s+1-h).$

as required.

If |J'| = 1, then one of Y_0 and Y_1 must be empty. Without loss of generality, assume $Y_1 = \emptyset$ and $Y_0 \neq \emptyset$.

Clearly, S is not an h-edge-cut, otherwise, $|Y| < |H_0| < |X|$, a contradiction with the minimality of X. Thus, S is an h-vertex-cut. By (3.3), $|S_0| \ge 2^{h-1}(s+1-h)$. Since $Y_1 = \emptyset$, we have

$$|X_1| = |H_1| - |S_1|$$
 and $|Y| = |H_0| - |X_0| - |S_0|$. (3.5)

If $|S_1| < |S_0|$ then, by (3.5), we obtain that $|Y| < |X_1| < |X|$, which contradicts to the minimality of X. Thus, $|S_1| \ge |S_0|$, from which and (3.3) we have that

$$|S| = |S_0| + |S_1| \ge 2|S_0|$$

 $\ge 2 \times 2^{h-1}(s+1-h)$
 $= 2^h(s+1-h),$

as required. Thus, the inequality in (3.2) holds, and so the theorem follows.

Corollary 3.4 (Ma and Zhu [10]) If $1 \le s \le t$, then $\kappa^{(1)}(EH(s,t)) = \lambda^{(1)}(EH(s,t)) = 2s$.

A dual-cube DC(n), proposed by Li and Peng [6] constructed from hypercubes, preserves the main desired properties of the hypercube. Very recently, Yang and Zhou [18] have determined that $\kappa^{(h)}(DC(n)) = 2^n(n+1-h)$ for each h=0,1,2. Since EH(n,n) is isomorphic to DC(n), the following result is obtained immediately.

Corollary 3.5 For dual-cube DC(n), $\kappa^{(h)}(DC(n)) = \lambda^{(h)}(DC(n)) = 2^n(n+1-h)$ for any h with $0 \le h \le n$.

4 Conclusions

In this paper, we consider the generalized measures of of fault tolerance for a network, called the h-connectivity κ^h and the h-edge-connectivity λ^h . For the exchanged hypercube EH(s,t), which has about half edges of the hypercube Q_{s+t+1} , we prove that $\kappa^{(h)} = \lambda^{(h)} = 2^h(s+1-h)$ for any h with $0 \le h \le s$ and $s \le t$. The results show that at least $2^h(s+1-h)$ vertices (resp. $2^h(s+1-h)$ edges) of EH(s,t) have to be removed to get a disconnected graph that contains no vertices of degree less than h. Thus, when the exchanged hypercube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for fault tolerance of the system.

Otherwise, Ma and Liu [9] investigated bipancyclicity of EH(s,t). However, there are many interesting combinatorial and topological problems, e.g., wide-diameter, fault-diameter, panconnectivity, spanning-connectivity, which are still open for the exchanged hypercube network.

References

- [1] A. H. Esfahanian, Generalized measures of fault tolerance with application to *n*-cube networks. IEEE Transactions on Computers, 38 (11) (1989), 1586-1591.
- [2] A. H. Esfahanian, S.L. Hakimi, On computing a conditional edge connectivity of a graph. Information Processing Letters, 27 (1988),195-199.
- [3] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems. IEEE Transactions on Computers, 43 (1994) 218-222.
- [4] X.-J. Li and J.-M. Xu, Generalized measures of fault tolerance in (n, k)-star graphs. http://arxiv.org/abs/1204.1440, 2012.
- [5] X.-J. Li and J.-M. Xu, Generalized measures of edge fault tolerance in (n, k)-star graphs. Mathematical Science Letters, 1 (2) (2012), 133-138.
- [6] Y. Li, S. Peng, Dual-cubes: a new interconnection network for high-performance computer clusters. In: Proceedings of the 2000 International Computer Architecture, (2000), pp. 51-57.

- [7] P. K. K. Loh, W. J. Hsu, Y. Pan, The exchanged hypercube. IEEE Transactions on Parallel and Distributed Systems, 16 (9) (2005), 866-874.
- [8] M. Ma, The connectivity of exchanged hypercubes. Discrete Mathematics Algorithms and Applications, 2 (2) (2010), 213-220.
- [9] M. Ma, B. Liu, Cycles embedding in exchanged hypercubes. Information Processing Letters, 110 (2) (2009), 71-76.
- [10] M. Ma and L. Zhu, The super connectivity of exchanged hypercubes. Information Processing letters, 111 (2011), 360-364.
- [11] A. D. Oh, H. Choi, Generalized measures of fault tolerance in *n*-cube networks. IEEE Transactions on Parallel and Distributed Systems, 4 (1993), 702-703.
- [12] M. Wan, Z. Zhang, A kind of conditional vertex connectivity of star graphs. Applied Mathematics Letters, 22 (2009), 264-267.
- [13] J. Wu, G. Guo, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets. IEEE Transactions on Computers, 47 (1998), 888-893.
- [14] J.-M. Xu, On conditional edge-connectivity of graphs. Acta Mathematae Applicatae Sinica, 16 (4) (2000), 414-419.
- [15] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
- [16] J.-M. Xu, M. Xu, Q. Zhu, The super connectivity of shuffle-cubes. Information Processing Letters, 96 (2005), 123-127.
- [17] W.-H. Yang, H.-Z. Li, X.-F, Guo, A kind of conditional fault tolerance of (n, k)-star graphs. Information Processing Letters, 110 (2010), 1007-1011.
- [18] X. Yang, S. Zhou, On conditional fault tolerant of dual-cubes. International Journal of Parallel, Emergent and Distributed Systems. DOI:10.1080/17445760.2012.704631, 2012
- [19] Q. Zhu, J.-M. Xu, X.-M. Hou, X. Xu, On reliability of the folded hypercubes, Information Sciences, 177 (8) (2007), 1782-1788.
- [20] Q. Zhu, J.-M. Xu, M. Lü, Edge fault tolerance analysis of a class of interconnection networks. Applied Mathematics and Computation, 172 (1) (2006), 111-121.