

Algorithms for Data Science

Unsupervised Learning: Anomaly Detection

Anomaly Detection via Clustering

Anomaly Detection

- Identifies data points significantly deviating from normal patterns.
- Relies on detecting areas of sparse density or outliers in clusters.

Clustering Approach

- Clustering algorithms group similar data points, enabling identification of outliers.
- Anomalies are often located outside defined clusters or in sparse regions.

Applications

Fraud Detection

Equipment Failure

Network Intrusion

K-Means for Anomaly Detection

Approach:

- Perform clustering with K-means.
- Calculate distance of points to their assigned centroids.
- Define anomalies as points with distance exceeding a threshold.

Density-Based Anomaly Detection

DBSCAN algorithm is used to identify clusters and noise points, where the noise points are candidate anomalies.

Steps:

- 1. Define ϵ (neighborhood radius) and MinPts (minimum points in a cluster).
- 2. Identify core points, border points, and noise points.
- 3. Label noise points as anomalies.

Handles irregular cluster shapes.

Automatic detection of noise without predefined thresholds.

DBSCAN: Mathematical Formulation

Neighborhood Definition:

$$N_{\varepsilon}(p) = \{ q \in D \mid \text{ distance } (p,q) \le \varepsilon \}$$

- Where:
 - \circ ϵ : Maximum radius of the neighborhood.
 - D: Dataset
- Point Classes:
 - Core Point: A point is a core point if $|N_{\epsilon}(p)| \ge MinPts$.
 - o Border Point: A point within ϵ of a core point but with fewer than MinPts neighbors.
 - Noise Point: A point that is neither a core nor a border point.

DBSCAN Algorithm Analysis

- 1. Neighborhood Computation
 - i. For each point p, find all points within ϵ .

Naïve Approach: $O(N^2)$

With spatial indexing: O(Nlog(N))

- Cluster Expansion:
 - i. Traverse N points, processing \longrightarrow Traversal: O(N) each neighbor.

Total Complexity: $O(N^2)$

Optimized Complexity: O(Nlog(N))

One-Class SVM for Anomaly Detection

A specialized Support Vector Machine (SVM) used to identify outliers by learning a decision boundary around normal data.

- Purpose: Distinguish normal data points from anomalies in high-dimensional, complex datasets.
- Applications: Fraud Detection, Equipment Monitoring, Rare Event Detection.
- Key Features:
 - Nonlinear boundaries via kernel functions.
 - Unsupervised approach.

One-Class SVM: Mathematical Formulation

Objective Function:

$$\min_{w,\rho} \frac{1}{2} \|w\|^2 + \frac{1}{vN} \sum_{i=1}^{N} \max(0, 1 - (w \cdot x_i + b)) - \rho$$

- Where:
 - *w*: Hyperplane normal vector.
 - ρ: Decision threshold.
 - \circ ν : Trade-off parameter (controls fraction of outliers and support vectors).
 - *N*: Number of data points.

One-Class SVM: Mathematical Formulation

Constraints:

$$w \cdot x_i + b \ge \rho - \xi_i, \quad \xi_i \ge 0, \quad \forall i$$

- Where ξ_i are the slack variables for a soft margin.
- Kernel Function:

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

DBSCAN Algorithm Analysis

- 1. Training Complexity:
 - i. Quadratic in the number of \longrightarrow Training Complexity: $O(N^2)$ samples, required by the kernel computation.

- 2. Prediction Complexity:
 - i. Linear in the number of support \longrightarrow Prediction Complexity: $O(N_s \cdot d)$ vectors.

One-Class SVM: Correctness

Theorem: The One-Class SVM algorithm correctly identifies anomalies by finding a decision boundary that encloses the majority of the data points.

Proof:

1. Optimization Problem:

i. The algorithm solves an optimization problem to minimize the complexity of the decision boundary while enclosing most of the data.

2. Decision Boundary:

- i. Decision function, $s_i = (w \cdot \phi(x_i)) \rho$, ensures that:
 - Normal data points within the boundary have $s_i > 0$.
 - Anomalies outside the boundary have $s_i < 0$.

3. Guaranteed Support:

i. The parameter v ensures that a proportion v of the data points will be classified as anomalies.

Advantages and Limitations

Advantages

- Applicability: Effective for highdimensional data.
- Kernel Function: Captures nonlinear boundaries.
- Requirements: Requires only data for training, no labels.

Limitations

- Runtime Complexity: Expensive for large datasets.
- Sensitivity: Highly sensitive to parameter tuning.
- Overfitting: Can overfit when anomalies are similar to train data.

