PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-012288

(43)Date of publication of application: 15.01.2002

(51)Int.CI.

B65D 85/86 B65D 73/02

(21)Application number: 2000-194470

(71)Applicant: NITTO DENKO CORP

(72)Inventor: NAKANO ICHIRO

(22)Date of filing:

28.06.2000

ICHIKAWA HIROKI

IZUMITANI SEIJI

(54) COVER TAPE FOR FEEDING ELECTRONIC PART AND ELECTRONIC PART FEED BODY

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a cover tape for feeding an electronic part having both of good conductivity and proper adhesiveness and capable of reducing the irregularity of peel strength at the time of peeling.

SOLUTION: The cover tape for feeing the electronic part comprises a laminate of four or more layers formed by successively laminating at least one layer selected from an undercoating layer and an intermediate layer and an adhesive layer on a support, and by providing a conductive layer formed on at least the back surface of the support and the surface of the adhesive layer by vapor deposition. The conductive layer can be constituted of, for example, Al, Cu, Ag, Ni, Ti, Fe, Cr, Zr, Ta, Zn or an alloy containing these metals and has a thickness of about 1-200 & angst. The undercoating layer can be constituted of, for example, a urethane adhesive or an electrostatic induction preventing adhesive and the intermediate layer can be constituted of, for example, a polyolefinic resin.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-12288 (P2002-12288A)

(43)公開日 平成14年1月15日(2002.1.15)

(51) Int.Cl.7	•	識別配号	FΙ		5-	マコード(参考)
B65D	85/86		B65D	73/02	M	3 E O 6 7
	73/02		•		K	3E096
				85/38	Ė	

審査請求 未請求 請求項の数10 OL (全 7 頁)

		·
(21)出願番号	特顧2000-194470(P2000-194470)	(71)出願人 000003964
		日東電工株式会社
(22)出願日	平成12年6月28日(2000.6.28)	大阪府茨木市下穂積1丁目1番2号
		(72)発明者 中野 一郎
		大阪府茨木市下穂積一丁目1番2号 日東
		電工株式会社内
		(72)発明者 市川 浩樹
		大阪府茨木市下穂積一丁目1番2号 日東
		電工株式会社内
		(74)代理人 100101362
		弁理士 後藤 幸久
		TO ARTHUR AND A

最終頁に続く

(54) 【発明の名称】 電子部品搬送用カパーテープ及び電子部品搬送体

(57)【要約】

【課題】 良好な導電性と適度な接着性とを兼ね備え、 しかも剥離時における剥離強度のバラツキを小さくでき る電子部品搬送用カバーテープを得る。

【解決手段】 電子部品搬送用カバーテープは、支持体上に、下塗り層及び中間層から選択された少なくとも1つの層と、接着層とが順次積層され、且つ支持体背面及び接着層表面のうち少なくとも一方に蒸着により形成された導電層を有する4層以上の積層体からなる。前記導電層は、例えば、A1、Cu、Ag、Ni、Ti、Fe、Cr、Zr、Ta、Zn又はこれらの金属を含む合金で構成できる。導電層の厚みは1~200オングストローム程度である。下塗り層は、例えば、ウレタン系接着剤や静電誘導防止接着剤などで構成でき、中間層は、例えば、ポリオレフィン系樹脂などで構成できる。

【特許請求の範囲】

【請求項1】 支持体上に、下塗り層及び中間層から選 択された少なくとも1つの層と、接着層とが順次積層さ れ、且つ支持体背面及び接着層表面のうち少なくとも一 方に蒸着により形成された導電層を有する4層以上の積 層体からなる電子部品搬送用カバーテープ。

1

【請求項2】 導電層が、Al、Cu、Ag、Ni、T i、Fe、Cr、Zr、Ta、Zn又はこれらの金属を 含む合金で構成されている請求項1記載の電子部品撤送 用カバーテープ。

【請求項3】 導電層の厚みが1~200オングストロ ームである請求項1又は2記載の電子部品搬送用カバー テープ。

【請求項4】 接着層がベースポリマーと該ベースポリ マー100重量部に対して2~100重量部の粘着付与 樹脂とを含み、且つ接着層の厚みが2~90μmである 請求項1記載の電子部品搬送用カバーテープ。

【請求項5】 下塗り層がウレタン系接着剤又は静電誘 導防止接着剤で構成されている請求項1記載の電子部品 搬送用カバーテープ。

【請求項6】 中間層がポリオレフィン系樹脂で構成さ れている請求項1記載の電子部品搬送用カバーテープ。 【請求項7】 カバーテーブの両表面の表面抵抗率が1 0'~10''2/□の範囲にある請求項1~6の何れか の項に記載の電子部品搬送用カバーテープ。

【請求項8】 光線透過率が60%以上である請求項1 ~7の何れかの項に記載の電子部品搬送用カバーテー プ。

【請求項9】 接着層側の表面の摩擦帯電圧が3000 品搬送用カバーテープ。

【請求項10】 電子部品を収容する電子部品収容部 と、該電子部品収容部をカバーするカバーテープとを備 えた電子部品搬送体であって、前記カバーテープとし て、請求項1~9の何れかの項に記載の電子部品搬送用 カバーテープが用いられている電子部品搬送体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、基板に実装される までチップ型電子部品等を搬送するのに用いられる電子 40 部品搬送体と、該電子部品搬送体に用いられるカバーテ ープに関する。

[0002]

【従来の技術】チップ固定抵抗器、積層セラミックコン デンサ等のチップ型電子部品の一般的な搬送形態とし て、電子部品搬送用テープ(電子部品搬送体)を用いる テービングリール方式が知られている。とのテーピング リール方式では、ブラスチックや紙製のキャリアテーブ の長さ方向に一定の間隔で設けられた電子部品収納用ポ ールして電子部品を封入した後、リール状に巻取られ搬 送される。そして、搬送先の回路基板等の作製工程にお いては、前記カバーテープを剥離後、挿入された電子部 品をエアーノズルで自動的に吸着して基板上に供給する 自助組入れシステムが主流となっている。

【0003】このようなテーピングから基板へのチップ 供給までの一連の工程においては、テービング梱包され た電子部品がカバーテーブを剥離した際にテープ接着層 表面に付着、融着し、吸着ノズルによってピックアップ できないことがあるという問題点が存在する。また、近 年、IC等の電子部品の軽薄短小化、高機能化に伴い、 キャリアテープやカバーテープと接触した際に発生する 静電気や、カバーテープの剥離時に発生する静電気によ り、電子部品が劣化したり破壊されたりする危険性が高 くなっている。さらに、カバーテープの剥離強度のバラ ツキにより、定位置に収納されている電子部品が収納ポ ケットから飛び出したり、位置ずれが発生する場合があ る。そのため、とのような電子部品搬送用カバーテープ に対しては、接触帯電圧や剥離帯電圧を小さくする静電 対策が求められているとともに、剥離強度のバラッキを 小さくすることが要求されている。

【0004】上記の静電気対策としては、単に導電性を 与えるのみであれば、カバーテーブの接着層表面に導電 性塗料を塗布したり、カバーテーブに導電剤を含浸させ る手段があるが(特開平10-86993号公報参 照)、との方法ではカバーテープの接着性が低下し、電 子部品を封入するという機能が十分果たせなくなる。ま た、上記静電気対策として、カバーテープのシーラント 層(接着層)と延伸樹脂層(支持体)との間に中間層及 **V以下である請求項1~8の何れかの項に記載の電子部 30 び金属箔層又は無機物蒸着層からなる無機物質層を設け** る方法(特開平8-112880号公報参照)や、接着 層又は支持体に金属酸化物などの導電性微粒子やカーボ ンブラックを練り込んだり、塗布したりする方法も提案 されている。しかし、これらの方法では、導電性を充分 に付与しようとすると、カバーテープの透明性 (光線透 過率)が低下して視認や画像処理による部品の確認が困 難になったり、テープの剥離強度のバラツキが大きくな るという問題があった。

[0005]

【発明が解決しようとする課題】従って、本発明の目的 は、電子部品の輸送時の振動等による摩擦帯電やカバー テープ接着層表面との接触による電子部品の静電破壊、 カバーテープ剥離時の剥離帯電などを防止できる良好な 導電性と適度な接着性とを兼ね備え、しかも剥離時にお ける剥離強度のバラツキを小さくでき、電子部品搬送体 からの電子部品の飛び出し等を防止できる電子部品搬送 用カバーテープを提供することにある。

【0006】本発明の他の目的は、上記のような特性に 加え、透明性が高く電子部品の視認性が良好な電子部品 ケットに電子部品を挿入し、上面をカバーテープで熱シ 50 搬送用カバーテーブを提供することにある。本発明のさ

らに他の目的は、上記のような優れた性能を有するカバーテープを備えた電子部品搬送体を提供することにある。

[0007]

【課題を解決するための手段】本発明者らは上記目的を達成するため鋭意検討した結果、支持体と接着層との間に特定の層を設けるとともに、支持体背面及び接着層表面のうち少なくとも一方に蒸着により導電層を形成すると、静電気に起因する電子部品の不具合を防止できるとともに、剥離時における剥離強度のバラツキを小さくで 10き、しかも透明性が保持可能であることを見出し、本発明を完成した。

【0008】すなわち、本発明は、支持体上に、下塗り 層及び中間層から選択された少なくとも1つの層と、接 着層とが順次積層され、且つ支持体背面及び接着層表面 のうち少なくとも一方に蒸着により形成された導電層を 有する4層以上の積層体からなる電子部品搬送用カバー テープを提供する。

【0009】本発明は、また、電子部品を収容する電子部品収容部と、該電子部品収容部をカバーするカバーテ 20 ープとを備えた電子部品搬送体であって、前記カバーテープとして、上記の電子部品搬送用カバーテーブが用いられている電子部品搬送体を提供する。

[0010]

【発明の実施の形態】以下、必要に応じて図面を参照しつつ、本発明を詳細に説明する。図1は本発明の電子部品搬送用カバーテーブの一例を示す概略断面図である。この電子部品搬送用カバーテーブは、支持体1上に下塗り層2、中間層3及び接着層4がこの順に積層されており、且つ支持体1の背面及び接着層4の表面には導電層5が設けられている。

【0011】支持体1としては、自己支持性を有するものであればよく、例えば、紙:ポリエチレン、ポリプロピレン(例えば、高分子量ポリプロピレン)などのポリオレフィン系樹脂:ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル:ナイロン(ポリアミド):ポリスチレンなどのスチレン系樹脂等のプラスチックフィルム又はシートなどが挙げられる。

【0012】支持体1には、必要に応じて、慣用の添加 40 剤、例えば、酸化防止剤、紫外線吸収剤、軟化剤、防錆剤、無機粒子、帯電防止剤(例えば、第4級アンモニウム塩系等)、導電性金属粉末、有機導電性高分子剤、チタン系やシラン系などのカップリング剤等を添加してもよい。

【0013】支持体1の融点は90℃以上であるのが好ましい。支持体1の融点が90℃未満の場合には、電子部品のテーピング時に、支持体1が収縮したり溶融して、テーピングの状態が不安定となり、電子部品がとぼれたり、飛び出したりする恐れがある。

【0014】支持体1は単層又は複層の何れであってもよい。支持体1の厚みは一般には $2\sim250\mu$ m程度であり、好ましくは $20\sim200\mu$ m程度である。支持体1のうち下塗り層2が形成される面には、必要に応じて慣用の表面処理、例えば、コロナ処理などが施されていてもよい。

【0015】下塗り層2は、支持体1と中間層3(中間層を設けない場合には、支持体1と接着層4)との層間強度を確保するための層であり、公知乃至慣用の接着剤で構成できる。下塗り層2を構成する好ましい接着剤として、ウレタン系接着剤、有機系静電誘導防止接着剤などが挙げられる。下塗り層2を有機系静電誘導防止接着剤で構成すると、静電気防止効果をさらに向上させることができ、例えば接着層側表面の摩擦帯電圧を大きく低減できる。なお、この有機静電誘導防止接着剤からなる下塗り層は、中間層3と接着層4との間に形成することもできる。例えば、支持体1と中間層3との間にウレタン系接着剤等からなる下塗り層を設けるとともに、中間層3と接着層4との間に有機系静電誘導防止接着剤からなる下塗り層を設けてもよい。

【0016】前記有機系静電誘導防止接着剤としては、例えば、アルテック社製、商品名「BONDEIP」(塩化コリンメタクリレートとメチルメタクリレート、2ーメチルイミダゾール等よりなる化合物)などが使用できる。

【0017】下塗り層2の厚みは $0.05\sim30\mu$ m程度である。下塗り層2をウレタン系接着剤等で構成する場合には、好ましくは $0.05\sim10\mu$ m程度である。下塗り層2を有機系静電誘導防止接着剤で構成する場合には、厚みが小さすぎるとテープ表面の摩擦帯電圧をさほど低減できず、接着層5へ電子部品が付着するのを防止する効果が得られ難くなるため、 0.1μ m以上の厚みが好ましい。下塗り層2の厚みが大きすぎるとテープとしての巻直径が増大しテープマシンに取り付けられない等の不具合が出やすくなり、コスト的にも不利である。下塗り層2は慣用のコーティング法等により形成できる。

【0018】なお、支持体1と中間層3とを高い接着強度で積層できる場合などには、必ずしも下塗り層2を設けなくてもよい。

【0019】中間層3は、支持体1と接着層4との密着性を高めるための層であり、例えば、ポリオレフィン系樹脂等の熱可塑性樹脂や熱可塑性エラストマー、ゴム等で構成できる。なかでも、ポリオレフィン系樹脂で構成するのが特に好ましい。中間層3を構成するポリマーは単独で又は2種以上を組み合わせて使用できる。

【0020】前記ポリオレフィン系樹脂としては、例えば、ポリエチレン(低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、内密度ポ 50 リエチレン、高密度ポリエチレンなど)、エチレン-α ーオレフィン共重合体:エチレン共重合体[例えば、エチレンーアクリル酸共重合体(EAA)、エチレンーメタクリル酸共重合体(EMAA)などのエチレンー不飽和カルボン酸共重合体:アイオノマー(前記エチレンー不飽和カルボン酸共重合体の一部のカルボキシル基を金属で架橋した樹脂):エチレンーアクリル酸メチル共重合体、エチレンーアクリル酸エチル共重合体(EEA)、エチレンーメタクリル酸エチル共重合体などのエチレンー(メタ)アクリル酸エステル共重合体:エチレンー酢酸ビニル共重合体(EVA):エチレンービニル 10アルコール共重合体など]等が例示される。

【0021】中間層3の表面には、必要に応じて、コロナ処理、ブラズマ処理、バーナー処理などの慣用の表面処理を施して、活性度を向上させることもできる。中間層の厚みは、カバーテープとしたときの取扱性等を損なわない範囲で適宜選択できるが、一般には $5\sim30\,\mu\mathrm{m}$ 程度である。

【0022】中間層3は、例えば、押出しラミネート法、Tダイタンデム押出しラミネーター等を用いた共押出し法、ドライラミネート法などの慣用のラミネート法 20 により形成できる。なお、下塗り層2により支持体1と接着層4とを高い接着強度で積層できる場合などには、必ずしも中間層3を設けなくてもよい。

【0023】接着層4を構成するベースポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、スチレン系樹脂などの熱可塑性樹脂や、熱可塑性エラストマー等のエラストマーを使用できる。これらのポリマーは単独で又は2種以上を組み合わせて使用できる。

【0024】前記ポリオレフィン系樹脂としては、例え ば、ポリエチレン(低密度ポリエチレン、線状低密度ポ リエチレン、メタロセン触媒法ポリエチレン、中密度ポ リエチレン、高密度ポリエチレンなど)、ポリプロピレ ン、α-オレフィン共重合体(エチレン-プロピレン共 重合体、エチレン-ブテン-1共重合体、プロピレン-ブテン-1 共重合体など) などのポリオレフィン; エチ レン系共重合体[例えば、エチレン-アクリル酸共重合 体(EAA)、エチレン-メタクリル酸共重合体(EM AA)などのエチレン-不飽和カルボン酸共重合体:ア イオノマー:エチレンーアクリル酸メチル共重合体、エ 40 チレン-アクリル酸エチル共重合体(EEA)、エチレ ンーメタクリル酸メチル共重合体などのエチレンー(メ タ)アクリル酸エステル共重合体:エチレン-酢酸ビニ ル共重合体(EVA);エチレン-ビニルアルコール共 重合体など]などが挙げられる。

【0025】前記熱可塑性エラストマーとしては、例えば、SIS (スチレンーイソプレンースチレンブロック 共重合体)、SBS (スチレンーブタジエンースチレン ブロック共重合体)、SEBS (スチレンーエチレンー ブチレンースチレンブロック共重合体:SBSの水添 物)、SEPS(スチレンーエチレンープロビレンースチレンブロック共重合体:SISの水添物)、SEP(スチレンーエチレンープロビレンブロック共重合体)などのスチレン系熱可塑性エラストマー(スチレン系ブロックコポリマー);ポリウレタン系熱可塑性エラストマー;ポリエステル系熱可塑性エラストマー;ポリプロビレンとEPT(三元系エチレンープロビレンゴム)とのポリマーブレンドなどのブレンド系熱可塑性エラストマー;水添されたポリイソプレン系ポリマー、水添されたポリイソブチレン系ポリマー、水添されたポリイソブチレン系ポリマー、水添されたポリイソブチレン系ポリマー、水添されたポリイソブチレン系ポリマー、水添されたポリイソブチレン系ポリマー、水添されたポリイソブチレン系ポリマーなどが挙げられる。

【0026】接着層4には、通常、粘着付与樹脂を添加する。粘着付与樹脂としては、例えば、石油樹脂 [脂肪族石油樹脂 (C。系)、芳香族石油樹脂 (C。系)、前記芳香族石油樹脂を水添した脂環族石油樹脂など]、ロジン系樹脂、アルキルフェノール樹脂、スチレン系樹脂などが挙げられる。これらの粘着付与樹脂は単独で又は2種以上組み合わせて使用できる。接着層4に粘着付与樹脂を含有させることにより、テービング作業性が向上するとともに、キャリアテーブなどの包装基材に対して安定かつ良好な接着力が得られる。

【0027】接着付与樹脂の軟化温度は50℃以上であるのが好ましい。軟化温度が50℃未満の場合には、輸送や保管時に接着層が軟化しやすく、接着層4に電子部品が付着、融着して、回路基板等への組み込み時に不具合が生じやすい。

【0028】粘着付与樹脂の配合量は、ベースポリマー100重量部に対して、2~100重量部程度、好ましくは5~50重量部程度である。粘着付与樹脂の配合量が2重量部未満の場合には、接着力が低く、テービング後、テーブが浮いて部品が飛び出す恐れがある。また、粘着付与樹脂の配合量が100重量部を超える場合には、接着力が高すぎて、接着層4に電子部品が付着、融着して、回路基板等への組み込み時にエアーノズルで電子部品を吸着するのが難しくなる。

【0029】接着層4には、さらに、リン系やフェノール系等の酸化防止剤、紫外線吸収剤、防錆剤、軟化剤、界面活性剤、帯電防止剤、充填剤、カップリング剤、架橋剤などの添加剤を配合してもよい。各添加剤の配合量は、ベースポリマー100重量部に対して、一般に0~10重量部(例えば0.01~10重量部)程度である。添加剤の配合量が10重量部を超えると、接着性が低下しやすくなる。

【0030】接着層4の厚みは、接着性やハンドリング性などが損なわれない範囲で適宜選択できるが、一般には2~90μm程度である。接着層4の厚みが2μm未満では接着力が弱く、90μmを超えるとテープの絵厚みの増大やテービング時の糊はみ出しによるテービングの不良が発生しやすくなる。

【0031】接着層4は、例えば、押出しラミネート法、 Tダイタンデム押出しラミネーター等を用いた共押出し法、 ドライラミネート法などの慣用のラミネート法 により形成できる。

【0032】導電層5は蒸着により形成される。導電層5は、図1の例のように支持体1の背面と接着層4の表面の両方の面に設けてもよいが、支持体1の背面と接着層4の表面のうち何れか一方にのみ設けることもできる。

【0033】蒸着に供する材料としては、蒸着可能なものであればよく、例えば、A1、Cu、Ag、Ni、Ti、Fe、Cr、Zr、Ta、Znなどの金属、SUSなどの前記金属を含む合金、及び無機酸化物などが挙げられる。これらの中でも、金属又は該金属を含む合金が好ましい。

【0034】蒸着による導電層5の膜厚は、透明性及び接着性等を損なわない範囲で適宜選択できるが、一般には1~200オングストローム程度である。1オングストローム未満では、静電防止効果が低下し、200オングストロームを超えると、静電防止効果は高いものの、透明性を悪化させたり、キャリアテーブに対する接着性が低下するため好ましくない。蒸着は真空蒸着装置を用いた慣用の方法により行うことができる。

【0035】本発明の電子部品搬送用カバーテーブにおいては、両表面の表面抵抗率が $10^{2}\Omega/\Box\sim10^{3}\Omega/\Box$ 、特に $10^{4}\Omega/\Box\sim5\times10^{2}\Omega/\Box$ の範囲にあるのが好ましい。この表面抵抗率は、導電層5を構成する材料の種類、導電層5の厚みなどを適宜選択することにより調整できる。

【0036】また、接着層側の表面の摩擦帯電圧は3000V以下、特に1000V以下、就中30V以下であるのが好ましい。摩擦帯電圧は、導電層5を構成する材料の種類、導電層5の厚み、静電誘導防止剤で構成された下塗り層の厚み等を適宜選択することにより調整できる。

【0037】さらに、本発明の電子部品撤送用カバーテープでは、光線透過率が60%以上、特に70%以上であるのが好ましい。テープの光線透過率は、支持体、下塗り層、中間層、接着層及び導電層の各層を構成する材料や各層の厚みを適宜選択するととにより調整できる。特に、本発明では、導電層を蒸着により形成するので、極めて薄い膜厚で導電性を付与できるため、高い透明性を保持可能である。

【0038】本発明の電子部品搬送体は、電子部品を収容する電子部品収容部と、該電子部品収容部をカバーするためのカバーテープとを備えており、該カバーテープとして上記本発明の電子部品搬送用カバーテープが用いられている。

【 0 0 3 9 】 このような電子部品搬送体の代表的な例と して、電子部品を収容するための電子部品収容凹部が幅 50 方向の略中央部において長さ方向に所定間隔で形成されているエンボスキャリアテープと、前記電子部品収容凹部の上面をカバーするための電子部品搬送用カバーテープとで構成されている搬送体が挙げられる。

【0040】前記エンボスキャリアテープの材質としては、自己支持性を有するものであればよく、例えば、和紙、クレープ紙、合成紙、混抄紙、複合紙などの紙;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ塩化ビニル、セロハンなどのプラスチックフィルム又はシート;金属箔などを使用できる。

【0041】また、本発明の電子部品搬送体の他の例として、例えば、部品を入れる角形のパンチ穴をあけた角穴パンチキャリアテープと、該角穴パンチキャリアテープの角穴の下面をカバーするためのボトムカバーテープと、角穴パンチキャリアテープの角穴の上面をカバーするためのトップカバーテープとからなる搬送体が挙げられる。このような搬送体においては、本発明の電子部品搬送用カバーテープは、例えば上記トップカバーテープとして使用できる。

【0042】本発明の電子部品搬送用カバーテープ及び電子部品搬送体は、チップ固定抵抗器などの抵抗器、積層セラミックコンデンサなどのコンデンサ等の広範なチップ型電子部品などの搬送に好適に使用できる。

[0043]

【発明の効果】本発明によれば、カバーテープの支持体 と接着層との間に特定の層を設けるとともに、支持体背 面及び接着層表面のうち少なくとも一方に蒸着による導 電層が設けられているので、電子部品の輸送時の振動等 による摩擦帯電、カパーテープ接着層表面との接触によ る電子部品の静電破壊、カバーテープ剝離時の剝離帯電 などの静電気不具合を防止できる。また、導電層を極め て薄い薄膜層とすることができるので、高い透明性が保 持可能であり、電子部品の視認性に優れる。また、支持 体背面に導電層を設けることができるとともに、接着層 表面に導電層を設けたとしても薄膜に形成可能であるた め、接着層の接着性が損なわれず、剥離時における剥離 強度のバラツキを小さくできる。従って、電子部品の搬 送から回路基板への組み込み工程に至る一連の工程にお ける種々の工程トラブルを防ぐことができ、部品の信頼 40 性及び実装の信頼性が大きく向上する。

[0044]

【実施例】以下、本発明を実施例に基づいてより詳細に 説明するが、本発明はこれらの実施例により何ら限定さ れるものではない。

【0045】実施例1

エチレン/ビニルアセテート (EVA) 樹脂 (三菱樹脂 (株) 製、商品名「LV360」) 100重量部、脂環 族飽和炭化水素系樹脂 (ヤスハラケミカル (株) 製、商品名「クリアロンP115」) 15重量部、酸化防止剤 (チバスペシャルケミカルズ (株) 製、商品名「IRG

#1010」)0.5重量部、ノニオン系界面活性剤(日本油脂(株)製、商品名「ノニオンHS-210」)1.0重量部を二軸混練り機にて溶融混合し、ボリエチレン(PE)との共押し出しを行った後、これを、ドライラミネーション法にてウレタン系接着剤を介してボリエステルフィルムに貼り合わせ、接着層(EVA:厚み15μm)/中間層(PE:厚み10μm)/下塗り層(ウレタン系接着剤:厚み0.5μm)/支持体(ボリエステル:厚み25μm)の層構成を有するテープ(総厚み50μm)を作製した。このテープの支持10体表面及び接着層表面に、金属SUSを用いて蒸着を施し、それぞれ厚み70オングストローム及び厚み50オングストロームの導電層を形成してカバーテープを得た。

【0046】実施例2

中密度ポリエチレン(中密度 PE:三井化学(株)製、 商品名「ネオゼックス40150C」)80重量部とカ リウムアイオノマー(三井デュポンポリケミカル(株) 製、商品名「SD100」)20重量部(ポリマー合計 100重量部)、石油系樹脂(商品名「アルコンP-9 0」)20重量部、フェノール系酸化防止剤(チバガイ ギー社製、商品名「イルガノックス1010」) 0.5 重量部を二軸混練り機にて溶融混合して得られた樹脂組 成物と、ポリエチレン(PE)と、髙分子量ポリプロピ レン(高分子量PP)100重量部に帯電防止剤(第4 級アンモニウム塩他)10重量部を添加した混和物とを 三層共押出しに付し、接着層(中密度PE+カリウムア イオノマー:厚み15μm)/中間層(PE:厚み15 μm)/支持体(高分子量PP;厚み25μm)の層構 成を有するテープ(総厚み55μm)を作製した。この 30 テープの支持体表面に、金属Alを用いて蒸着を施し、 厚み40オングストロームの導電層を形成してカバーテ ープを得た。

【0047】比較例1

スチレンーブタジエンースチレンブロック共重合体(S BS:スチレン含有量20重量%) 70重量部とエチレ ン-α-オレフィン共重合樹脂30重量部をドライブレ ンドし、導電剤として酸化スズ30重量部を加えて混練 りし、ペレット化した。得られたペレットとPE樹脂と をインフレーション押し出し機による二層共押出しに付 して成膜を行った。得られたフィルムのPE層の表面に コロナ処理を施し、ウレタン系接着剤を用いてドライラ ミネート法によりポリエチレンテレフタレート (PE T)フィルムを積層し、50℃で24時間エージング処 理を行い、導電剤含有接着層 (SBS+エチレン-α-オレフィン共重合樹脂+導電剤:厚み15μm)/中間 層(PE:厚み15 μm)/下塗り層(ウレタン系接着 剤:厚み0.5μm)/支持体(PET;厚み16μ m) の層構成を有するテープ (総厚み46 μm) を作製 した。

【0048】比較例2

エチレン/ビニルアセテート(EVA)樹脂(酢酸ビニ ル含有量15重量%)75重量部とエチレン-α-オレ フィン共重合樹脂25重量部をドライブレンドし、帯電 防止剤として第4級アンモニウム塩0.5重量部を加え て混練りし、ペレット化した。得られたペレットとPE 樹脂とをTダイス押し出し機による二層共押出しに付し て成膜を行った。得られたフィルムのPE層の表面にコ ロナ処理を施し、ウレタン系接着剤を用いてドライラミ ネート法により帯電防止ポリエチレンテレフタレート (PET)フィルムを積層し、50℃で24時間エージ ング処理を行い、帯電防止剤含有接着層(EVA+エチ レンーαーオレフィン共重合樹脂+帯電防止剤;厚み1 5μm) /中間層 (ΡΕ;厚み10μm) /下塗り層 (ウレタン系接着剤:厚み0.5 µm)/支持体(帯電 防止PET:厚み25µm)の層構成を有するテープ (総厚み50µm)を作製した。

10

【0049】評価試験

実施例及び比較例で得られた各テープについて以下の試験を行った。その結果を表1に示す。

(総厚み)1/1000mmダイヤルゲージにてテープ の総厚さ(μ m)を測定した。

(引張り強度及び伸度)テンシロンにより、引張り速度300mm/分の条件で測定した。

(対エンボス接着力) テープの接着層面を、エンボスが 形成されたボリスチレン製のシート表面に重ね、ヒート シール機を用い、温度140℃、圧力2.5 kgf/c m³(250kPa)の条件で0.5秒間圧着後、常温 にて、剥離速度300mm/分、剥離角度約180°の 条件で剥離力を測定した(3回の平均値)。また、3回 行った測定値の最大値と最小値の差(接着力min-max)

【0050】(表面抵抗率)接着層側表面及び支持体側表面の表面抵抗率を微少電流電位計で測定した。

(半減値) JIS L 1094に準拠して、スタチックオネストメーターにて半減期を測定した。なお、半減値とは、テープの支持体側表面を帯電させ、その電圧が初期電圧の半分の値に達するまでの時間を意味する。

【0051】(摩擦帯電圧) JIS L 1094に進拠して、テープの接着層側表面を布で擦り、帯電圧を測定した。また、20℃、25%RHの条件で摩擦帯電圧を測定し、低湿下摩擦帯電圧とした。

(部品付着性)テープの接着層とチップ (50個)とを接触させ、50℃で10分加温後、チップの付着した割合を求めた

(光線透過率)テープの光線透過率をヘイズメーターにより測定した。

[0052]

【表1】

11

表 1

	実施例1	実施例 2	比較例1	比較例2	
総厚み (μα)	50	55	46	50	
引張り強度(N/5.25mm)	25	15	23	25	
伸度(%)	120	270	120	124	
対エンポス接着力(N/2㎜)	0. 20	0. 30	0.40	0. 15	
接着力min-max (N/2mm)	0.03	0.06	0.18	0. 10	
表面抵抗率(Q/D) 接着層側の面 支持体側の面	1.5×10 ⁷ 5.0×10 ⁶	2. 7×10 ¹¹ 1. 5×10 ⁸	2, 0×10'°	3. 6×10'' 2. 0×10'°	
半波值(sec)	- 0	0	15	30	
摩擦带電圧(V)	6	4. 5	35	105	
低湿下摩擦带電圧(V)	5	16	260	235	
部品付着性(%)	0	0	15	Б	
光線透過率(%)	87	75	35	80	

【図面の簡単な説明】

【図1】本発明の電子部品搬送用カバーテープの一例を

*2 下塗り層 3 中間層

示す概略断面図である。

20 4 接着層

5 導電層(蒸着層)

【符号の説明】 1 支持体

*

[図1]

フロントページの続き

(72)発明者 泉谷 誠治

大阪府茨木市下穂積一丁目1番2号 日東 電工株式会社内

Fターム(参考) 3E067 AA11 AB41 AC04 AC18 BA26A

BB25A BC04A CA11 CA21

FA01 GD08 GD10

3E096 AA06 BA08 BB03 CA15 CB02

DA17 DB06 DC02 EA11Y

FA07 FA12 FA27 GA07