FRACTIONAL VALUES

Recall that **integers** are whole numbers which occur at specific points along a number line. However, there are numbers located between integers.

⟨ How can we describe and write numbers like the ones below? ⟩

There is another type of number to describe quantities which occur in parts. They are called **fractions**.

SPLITTING THE NUMBER LINE

Consider the space between the integers 0 and 1.

If that distance is divided into two equal parts, the line looks like this:

PARTS OF A WHOLE

Consider the number shown below with the **blue point** below.

The number is 1 out of 2 parts away from 0.

This number is written as

$$\frac{\text{Number of parts}}{\text{Total number of parts}} = \frac{1}{2}$$

NOTATION

The total number of portions is the **numerator**. It is the <u>upper number</u> in the fraction.

numerator denominator

The number of equal parts is the **denominator**. It is the <u>bottom number</u>.

DIVIDING INTO 2 PARTS

When the segment is divided into two equal parts, each part is known as a half.

One Half

The point shown below is a distance of **one half** from 0.

Two Halves

The point shown below is a distance of **two halves** from 0.

 \langle What other number does the fraction $rac{2}{2}$ represent? \rangle

DIVIDING INTO 3 PARTS

Similarly, if the segment between 0 and 1 is divided into **three equal sections**, then we can describe the points below. Each part is known as a **third**.

One Third

Two Thirds

Three Thirds

DIVIDING INTO 4 PARTS

If the segment is divided into **four equal sections**, we get the following fractions. Each part is known as a **fourth**.

One Fourth

Two Fourths

Three Fourths

Four Fourths

 \langle What do you observe about the fraction coinciding with 1? \rangle

EQUIVALENCE

When a fraction represents the same quantity as another number, they are considered equivalent.

Consider the following equilvalent fractions: $1 = \frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \frac{4}{4}$

$$1 = \frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \frac{4}{4}$$

1 as a fraction

If the **numerator** and **denominator** of a fraction are equal, then that fraction is equivalent to 1.

$$\frac{\mathbf{a}}{\mathbf{a}} = 1$$

Negative Fractions

Recall that there are corresponding negative numbers to the **left of 0**. This holds true for fractional numbers as well.

Halves

Thirds

Fourths

Fifths

₱ PRACTICE EXERCISES

Directions: Using the number line shown below, write the fraction represented by the given point.

EXERCISE 1: The segment between 0 and 1 is divided into **7 equal parts**.

EXERCISE 2: The segment between -1 and 0 is divided into **6 equal parts**.

Directions: Plot and label a point for each fraction. Each number line is divided into an appropriate number of segments.

EXERCISE 4:
$$-\frac{3}{8}$$
 $-\frac{4}{8}$ $-\frac{6}{8}$ $-\frac{9}{8}$ $-\frac{8}{8}$