Analysis I Mean Value Theorem

Daniel Yu

November 4, 2024

Contents

1	Local Max/Min	3
2	Mean Value Theorem	4

CONTENTS 2

1 Local Max/Min

Definition 1. An open neighborhood of $x_0 \in X$ in a metric space (X, ρ) is an open set $U(x_0)$ of X such that $x_0 \in U(x_0)$.

Lemma 1. $f:(a,b)\to\mathbb{R}$ such that $f\in D(x_0)$ where $x_0\in(a,b)$. Then,

- 1. Let $(a,b) \subseteq \mathbb{R}, a < b$. If $f'(x_0) > 0$ then \exists an open neighborhood $U(x_0) \subseteq (a,b)$ of x_0 such that
 - (a) $f(x) > f(x_0)$ for $x > x_0 \in U(x_0)$
 - (b) $f(x) < f(x_0)$ for $x < x_0, x \in U(x_0)$

Proof. Assume that $f \in D(x_0), f'(x_0) > 0$. Then,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x)(x - x_0).$$

where $r \in C(x)$ and $r(x_0) = 0$ which implies that $r(x) \to 0 (x \to x_0)$. Then, we have the following

$$f(x) - f(x_0) = [f'(x_0) + r(x)](x - x_0).$$

Since $f'(x_0) > 0$ is positive and fixed, and since r(x) is continuous and $r(x_0) = 0$, then we can find some open neighborhood around x_0 with $x \in U(x_0)$, such that $|r(x)| < \frac{f'(x_0)}{2}$. Then, $f'(x_0) + r(x) > \frac{f'(x_0)}{2} > 0 \forall x \in U(x_0)$. Then we can say the following:

• If $x > x_0$ for $x \in U(x_0)$, then $x - x_0 > 0$, so

$$f(x) - f(x_0) > 0 \Rightarrow f(x) > f(x_0).$$

• If $x < x_0$ for $x \in U(x_0)$, then $x - x_0 < 0$, so

$$f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0).$$

A similar proof follows for (2) except $f'(x_0) < 0$ and the signs are flipped.

- 2. If $f'(x_0) < 0$ then \exists an open neighborhood $U(x_0) \subseteq (a,b)$ of x_0 such that
 - (a) $f(x) < f(x_0)$ for $x > x_0 \in U(x_0)$
 - (b) $f(x) > f(x_0)$ for $x < x_0, x \in U(x_0)$.

Note. The above only shows this in one variable!

Definition 2. Assume that (X, ρ) metric space and we have $f: X \to \mathbb{R}$. Then we say that f has a local maximum or minimum at x_0 if $\exists U(x_0)$ open neighborhood in X such that:

- 1. maximum: $f(x) \le f(x_0)$ for $x \in U(x_0)$
- 2. minimum: $f(x) \ge f(x_0)$ for $x \in U(x_0)$

Corollary 1. If $f:(a,b)\to\mathbb{R}$ that has a local maximum or minimum at $x_0\in(a,b)$ and $f\in D(X_0)$. Then $f'(x_0)=0$.

Proof. This is an immediate consequence of the lemma. Assume that there is a local max/min at x_0 and $f \in D(x_0)$.

Assume that $f'(x_0) > 0$, then we know that $\exists x_1 > x_0$ such that $f(x_1) > f(x_0)$ and there exists another $x_2 < x_0$, such that $f(x_2) < f(x_0)$ and x_0 can't be a local minimum or maximum. Similarly, if $f'(x_0) < 0$ then x_0 can't be a local minimum or maximum because $\exists x_1, x_2 \in U(x_0)$ such that $f(x_1) < f(x_0)$ and $f(x_2) > f(x_0)$.

Thus, $f'(x_0) = 0$ when there is a local min/max at x_0

2 Mean Value Theorem

Theorem 1. Rolle's Theorem

Assume that $f:[a,b]\to\mathbb{R}$ such that $f\in C([a,b])$, $f\in D((a,b))$ and f(a)=f(b). Then, $\exists x_*\in (a,b)$ such that

$$f'(x_*) = 0.$$

Proof. Since the interval [a,b] is compact in \mathbb{R} and $f \in C([a,b])$, then $\exists x_m, x_M \in [a,b]$ s.t. $f(x_m) = inf_{[a,b]}f$ and $f(x_M) = sup_{[a,b]}f$. Consider the case when $x_m, x_M \in \{a,b\}$ the min/max are equivalent and $f(x_m) = f(x_M)$ (as f(a) = f(b) by assumption). Then it's clear that the function f must be a map from $[a,b] \to c$, a constant. The derivative of f along any point along (a,b) is 0. Otherwise, one of the points $x_m \in (a,b)$ or $x_M \in (a,b)$. Without loss of generality, assume that $x_m \in (a,b)$ so take $f'(x_m)$, by the corollary we can say that $f'(x_m) = 0$ since $f(x_m)$ is a global minima and thus must have a derivative equal to 0. Then, $x_* = x_m$. The same logic follows if $x_M \in (a,b)$.

Theorem 2. Mean Value Theorem

Assume that $f:[a,b]\to\mathbb{R}$ such that $f\in C([a,b])\cap D((a,b))$ then $\exists x_*\in(a,b)$ such that

$$f(b) - f(a) = f'(x_*)(b - a).$$

also written as

$$f'(x_*) = \frac{f(b) - f(a)}{b - a}.$$

Proof. If $f(b) \neq f(a)$ then

$$F(x) = \frac{f(x) - f(a)}{f(b) - f(a)} - \frac{x - a}{b - a}.$$

Then, F(a)=0, F(b)=0. Note that F is an affine function so differentiable and continuous by construction (continuous functions are additive). Also $F\in C([a,b])\cap D((a,b))/$ By **Rolle's Theorem**, $\exists x_*\in (a,b)$ such that $F'(x_*)=0$ and the derivative is $F'(x)=\frac{f'(x)}{f(b)-f(a)}\Rightarrow F'(x_0)=\frac{f'(x_*)}{f(b)-f(a)}-\frac{1}{b-a}=F(x_*)=0$, and

$$\frac{f'(x_*)}{f(b) - f(a)} = \frac{1}{b - a}$$
$$f'(x_*) = \frac{f(b) - f(a)}{b - a}.$$

When f(b) = f(a), then the mean value theorem follows from Rolles Theorem.

$$f(b) - f(a) = f'(x_*)(b - a) \Rightarrow 0 = f'(x^*)(b - a) \Rightarrow 0 = 0.$$

Proposition 1. Assume that $f:(a,b)\to\mathbb{R}, f\in D((a,b))$. Then,

- 1. If $f'(x) \ge 0 \ \forall x \in (a,b)$ then we have that $f(x) \ge f(y)$ for $x \ge y, x, y \in (a,b)$. This is knon as monotonically increasing.
- 2. If $f'(x) > 0 \ \forall x \in (a,b)$ then f(x) > f(y) for $x > y, x, y \in (a,b)$. This is known as **strictly** monotonically increasing
- 3. If $f'(x) \le 0 \ \forall x \in (a,b)$ then we have that $f(x) \le f(y)$ for $x \le y, x, y \in (a,b)$. This is knon as monotonically decreasing.
- 4. If $f'(x) < 0 \ \forall x \in (a,b)$ then f(x) < f(y) for $x < y, x, y \in (a,b)$. This is known as **strictly** monotonically decreasing

Proof. The proof follows from the mean value theorem. Consider $x_1, x_2 \in (a, b)$ where $x_1 < x_2$, then by the mean value theorem,

$$f(x_2) - f(x_1) = f'(x_*)(x_2 - x_1).$$

and we know that if $f'(x) \ge 0$ then, we can see that $f(x_2) \ge f(x_1)$. If f'(x) > 0, then $f(x_2) > f(x_1)$. The same follows for $f'(X) \le 0$, f'(x) < 0.

Remark. It is not the case that if a function is strictly monotonically increasing (or descreasing) then it is not the case that f'(x) > 0 (or f'(x) < 0). Consider $f(x) = x^3$, it is strictly increasing but f'(0) = 0.