

DEEP LEARNING FOR PUMP SCHEDULING

Sophie Demassey, Valentina Sessa, <u>Amirhossein Tavakoli</u> March 5, 2024

Centre de Mathématiques Appliquées, Mines Paris PSL

the pump scheduling problem

plan the operation of a drinking water distribution network to minimize the electricity bill of pumping

the pump scheduling problem

plan the operation of a drinking water distribution network to minimize the electricity bill of pumping

energy efficiency

- **growing** demand in water: up to 50% in the world by 2050
- energy-intensive: 4% in the US electricity consumption
- response to a dynamic incentive electricity tariff with $\boldsymbol{\text{load shifting}}$

the pump scheduling problem

plan the operation of a drinking water distribution network to minimize the electricity bill of pumping

energy efficiency

- growing demand in water: up to 50% in the world by 2050
- energy-intensive: 4% in the US electricity consumption
- response to a dynamic incentive electricity tariff with load shifting

hard optimization

- discrete control (on/off) over a discretized time horizon
- nonlinear behavior (pressure/flow relation)
- time-coupling constraints: storage state (elevated water tanks)

A DRINKING WATER DISTRIBUTION NETWORK

a directed graph G arcs A: pipes, pumps, valves nodes J: users, tanks, sources

PUMP SCHEDULING PROBLEM

solved on a daily basis: plan the operation of the pumps over time $t \in \{1,...,T-1\}$, to satisfy the water demand D_t , at minimum cost given tariff C_t

pump control/operation on/off switch $x_{ta} \in \{0,1\}$ flow $q_{ta} \in \mathbb{R}$

electricity tariff $C_t \in \mathbb{R}_+$

 $\begin{aligned} & \text{tank state/level} \\ & H_{tj} \in [\underline{H}_j, \overline{H}_j] \end{aligned}$

BAU OPTIMIZATION WITH MACHINE LEARNING

Train a ML model offline on the network historical data to predict the optimal discrete control profile

· pros: available history, high seasonality but little variation across years

BAU OPTIMIZATION WITH MACHINE LEARNING

Train a ML model offline on the network historical data to predict the optimal discrete control profile

- pros: available history, high seasonality but little variation across years
- cons: feasible decisions x are sparse and scarce in $\{0,1\}^{T\times A}$

- hard to repair an approximate x to meet the storage capacities
- SOA heuristics: tackle storage capacities as soft constraints

PROP: LEARN CONTINUOUS STATE VS. DISCRETE CONTROL

Train a ML model statically on the network historical data to predict the optimal continuous state profiles

Prop: Learn Continuous State Vs. Discrete Control

Train a ML model statically on the network historical data to predict the optimal continuous state profiles

- · regression rather than classification
- local search around a predicted *H* to restore a feasible *X*:
 - · allows for smoother moves
 - exploits problem structure: time/space decomposition

MATHEMATICAL

DECOMPOSITION

MINLP MODEL

$$(\mathcal{P}): \min_{x,q,H} \ \sum_{t \in \mathcal{T}} c_t(x_t,q_t) = \sum_{t \in \mathcal{T}} \sum_{a \in \mathcal{A}} (c^0_{ta} x_{ta} + c^1_{ta} q_{ta}) \quad s.t.:$$

$$\begin{split} q_t &\in \mathcal{E}(H_t, D_t, x_t) & \forall \text{ time } t & \text{flow/head equilibrium} \\ q_{tj} &= \sigma_j (H_{(t+1)j} - H_{tj}) & \forall \text{ time } t, \text{ tank } j & \text{flow conservation at tanks} \\ \underline{H}_{tj} &\leq H_{tj} \leq \overline{H}_{tj} & \forall \text{ time } t, \text{ tank } j & \text{tank capacities} \\ x_{ta} &\in \{0,1\} & \forall \text{ time } t, \text{ arc } a & \text{pump status} \end{split}$$

MINLP MODEL

$$(\mathcal{P}): \min_{x,q,H} \ \sum_{t \in \mathcal{T}} c_t(x_t,q_t) = \sum_{t \in \mathcal{T}} \sum_{a \in \mathcal{A}} (c^0_{ta} x_{ta} + c^1_{ta} q_{ta}) \quad s.t.:$$

$$\begin{split} q_t &\in \mathcal{E}(H_t, D_t, x_t) & \forall \text{ time } t & \text{flow/head equilibrium} \\ q_{tj} &= \sigma_j (H_{(t+1)j} - H_{tj}) & \forall \text{ time } t, \text{ tank } j & \text{flow conservation at tanks} \\ \underline{H}_{tj} &\leq H_{tj} \leq \overline{H}_{tj} & \forall \text{ time } t, \text{ tank } j & \text{tank capacities} \\ x_{ta} &\in \{0,1\} & \forall \text{ time } t, \text{ arc } a & \text{pump status} \end{split}$$

time decomposition: relax/penalize/dualize the flow conservation constraints

Static Equilibrium Problem $\mathcal{E}(H_t, D_t, x_t)$

At each time t, flow/head equilibrium $(q_t,h_t) \in \mathcal{E}(H_t,D_t,x_t)$ iff

$$\begin{array}{lll} h_{tj} = H_{tj} & \forall \ \text{tank} \ j & \text{tank head} \\ q_{tj} = D_{tj} & \forall \ \text{user} \ j & \text{flow conservation} \\ x_{ta} = 0 \implies q_{ta} = 0 & \forall \ \text{arc} \ a & \text{inactive arc} \\ x_{ta} = 1 \implies h_{ta} = \phi_a(q_{ta}) & \forall \ \text{arc} \ a & \text{flow/head loss} \end{array}$$

where ϕ_a is a quadratic antisymmetric fit

Static Equilibrium Problem $\mathcal{E}(H_t, D_t, x_t)$

At each time t, flow/head equilibrium $(q_t,h_t) \in \mathcal{E}(H_t,D_t,x_t)$ iff

$$\begin{array}{lll} h_{tj} = H_{tj} & \forall \ \text{tank} \ j & \text{tank head} \\ q_{tj} = D_{tj} & \forall \ \text{user} \ j & \text{flow conservation} \\ x_{ta} = 0 \implies q_{ta} = 0 & \forall \ \text{arc} \ a & \text{inactive arc} \\ x_{ta} = 1 \implies h_{ta} = \phi_a(q_{ta}) & \forall \ \text{arc} \ a & \text{flow/head loss} \end{array}$$

where ϕ_a is a quadratic antisymmetric fit

- nonconvex system; unique solution easy to compute for $\mbox{\bf given}$ state H_t and control x_t

STATIC EQUILIBRIUM PROBLEM $\mathcal{E}(H_t, D_t, x_t)$

At each time t, flow/head equilibrium $(q_t,h_t) \in \mathcal{E}(H_t,D_t,x_t)$ iff

$$\begin{array}{lll} h_{tj} = H_{tj} & \forall \ \text{tank} \ j & \text{tank head} \\ q_{tj} = D_{tj} & \forall \ \text{user} \ j & \text{flow conservation} \\ x_{ta} = 0 \implies q_{ta} = 0 & \forall \ \text{arc} \ a & \text{inactive arc} \\ x_{ta} = 1 \implies h_{ta} = \phi_a(q_{ta}) & \forall \ \text{arc} \ a & \text{flow/head loss} \end{array}$$

where ϕ_a is a quadratic antisymmetric fit

- nonconvex system; unique solution easy to compute for $\ensuremath{\mathbf{given}}$ state H_t and control x_t
- space decomposition along the tanks; few pumps in each component:

Recover feasibility: from Learned H to a feasible X

Tank levels *H* are coupling elements of the model:

Fixing the tank levels:

1. **Temporal decomposition**: separates the model in independent static equilibrium subproblems:

$$q_t \in \mathcal{E}(H_t, D_t, x_t) \quad \forall \text{ time } t$$

Recover feasibility: from Learned H to a feasible X

Tank levels *H* are coupling elements of the model:

Fixing the tank levels:

1. **Temporal decomposition**: separates the model in independent static equilibrium subproblems:

$$q_t \in \mathcal{E}(H_t, D_t, x_t) \quad \forall \text{ time } t$$

2. **Graph decomposition**: separates the static equilibrium subproblems along the tanks

RECOVER FEASIBILITY 1: EXTENDED IP (APPROXIMATE)

Original model $\min_{x,q,H} \sum_t c_t(x_t,q_t)$ $q_t \in \mathcal{E}(H_t,D_t,x_t) \qquad \forall t$ $q_{ti} = \sigma_i(H_{(t+1)i}-H_{ti}) \qquad \forall t,j$

given learned \tilde{H} :

Extended IP [INOC 2019]

$$\begin{split} & \min_{y,H} \ \sum_t \sum_s C_{ts} y_{ts} \\ & \sum_s y_{ts} = 1 & \forall t \\ & \sum_s Q_{tsj} y_{ts} = \sigma_j (H_{(t+1)j} - H_{tj}) & \forall t,j \\ & \underline{H}_{tj} \leq H_{tj} \leq \overline{H}_{tj} & \forall t,j \\ & y_{ts} \in \{0,1\} & \forall s \in \mathcal{S}_t \end{split}$$

• solve $\mathcal{E}(\tilde{H}_t, D_t, x_t)$ for each configuration $s := x_t \in \{0, 1\}^A$

 $\forall t, a$

- compute cost C_{ts} and tank inflows Q_{ts}
- keep $s \in \mathcal{S}_t$ if $Q_{ts} \approx \sigma(\tilde{H}_{(t+1)} \tilde{H}_t)$
- $|S_t|$ is limited: symmetry breaking, space decomposition

RECOVER FEASIBILITY 2: VARIABLE-SPLITTING (HEURISTIC)

Original model

$$\begin{split} \min_{x,q,H} \sum_t c_t(x_t,q_t) \\ q_t &\in \mathcal{E}(H_t,D_t,x_t) & \forall t \\ d_{tj} &= 0 & \forall t,j \\ \underline{H}_{tj} &\leq H_{tj} \leq \overline{H}_{tj} & \forall t,j \\ x_{ta} &\in \{0,1\} & \forall t,a \end{split}$$

with
$$d_{tj} = q_{tj} - \sigma_j (H_{(t+1)j} - H_{tj})$$

Alternating Direction Method: start with $H=\tilde{H}$

- 1. solve $\mathcal{P}(H)$ get (x,q)
- 2. solve $\mathcal{P}(x,q)$ get H
- 3. stop if $||d_t|| < \epsilon$ or goto 1 and possibly update ρ

Variable-splitting [ISCO 2024]

$$\begin{split} \mathcal{P}(H) : & \min_{x,q} \sum_{t} c_{t}(x_{t}, q_{t}) + \rho_{t} d_{t} \\ & q_{t} \in \mathcal{E}(H_{t}, D_{t}, x_{t}) \qquad \forall t \\ & x_{ta} \in \{0, 1\} \qquad \forall t, a \\ & \downarrow \qquad \uparrow \\ & \mathcal{P}(x, q) : & \min_{H} \rho_{t} d_{t} \\ & q_{t} \in \mathcal{E}(H_{t}, D_{t}, x_{t}) \qquad \forall t \\ & \underline{H}_{tj} \leq H_{tj} \leq \overline{H}_{tj} \qquad \forall t, j \end{split}$$

DEEP LEARNING

$$\mathcal{H}:(D,C)\to H$$

ullet Both input (D,C) and output H resemble temporal sequential data

$$\mathcal{H}:(D,C)\to H$$

- Both input (D,C) and output H resemble temporal sequential data
- Naive inception architecture: several parallel convolutional with various kernel sizes to capture local trends in the input data

$$\mathcal{H}:(D,C)\to H$$

- Both input (D,C) and output H resemble temporal sequential data
- Naive inception architecture: several parallel convolutional with various kernel sizes to capture local trends in the input data
- + an LSTM unit after concatenation to capture temporal dependencies

$$\mathcal{H}:(D,C)\to H^1,H^2,H^3,\dots,H^{50}$$

- Both input (D, C) and output H resemble temporal sequential data
- Naive inception architecture: several parallel convolutional with various kernel sizes to capture local trends in the input data
- + an LSTM unit after concatenation to capture temporal dependencies
- ${f \cdot}$ + Monte Carlo dropout to generate multiple outputs H^k to implement diversification in local search with multi-start

SCALING: IF NO TRAINING DATA ARE AVAILABLE

- Training set: daily data (D,C) with associated optimal H
- Computing an optimal H for each input data (D,C) is not viable for fine time-discretization, e.g., T=24 or T=48

SCALING: IF NO TRAINING DATA ARE AVAILABLE

- Training set: daily data (D, C) with associated optimal H
- Computing an optimal H for each input data (D,C) is not viable for fine time-discretization, e.g., T=24 or T=48
- Scaling: train the DL model using coarse-grained resolution data (D,C,H), e.g. T=12
- resize/resample input and output by linear interpolation

EXPERIMENTS

EXPERIMENTAL SET

- data generation: 6 years of daily instances (D,C) drawn from realistic highly seasonal data adapted to the $\mbox{\it Van Zyl}$ network

- data collection: solve with coarse-time (T=12) by a specialized branch-and-check algorithm **BC** [Opt&Eng 2021] with advanced preprocessing **BC+Pre** [ICAE 2022]
- test set: 50 instances with T = 12, 24, 48
- compare the first feasible solutions computed with DL+ADM for a fixed penalty value $\rho=50$ or $\rho=2$ (HA50, HA2) with BC and BC+Pre

GAP TO THE BEST LB [BCPRE] AND AVG TIME

		#solved	Mean%	Min%	Max%	time (s)
VZ12	HA50	49	6.6	0.0	21.2	254
1800s	HA2	44	4.6	0.0	11.3	305
	BC	48	5.4	1.6	12.5	121
	BC+Pre	50	4.3	0.4	12.4	124
WZ24	HA50	50	9.5	3.3	23.4	285
3600s	HA2	50	8.4	3.4	16.3	279
	BC	5	11.1	7.2	12.6	1097
	BC+Pre	50	7.5	2.4	39.6	809
VZ48	HA50	50	9.8	3.8	21.0	776
7200s	HA2	49	10.3	4.4	19.7	1014
	BC	1	-	-	-	-
	BC+Pre	32	6.4	3.4	8.9	2517

NUMBER OF SOLUTIONS WRT TIME

CONCLUSION AND PERSPECTIVE

- a combination of complementary data and mathematical models to reach feasible high-quality solutions in a short time
- models are independent, other combinations exist
- local search in the state H-space vs control x-space: exploiting time and space decomposition
- a natural mapping $H \mapsto x$ exists in many control application
- future work: convergence to optimality

REFERENCES

- [ISCO 2024] Demassey S., Sessa V., Tavakoli A. Deep learning and alternating direction method for discrete control with storage. In International Symposium on Combinatorial Optimization 2024.
- [ICAE 2022] Tavakoli A., Sessa V., Demassey S. Strengthening mathematical models for pump scheduling in water distribution. In 14th International Conference on Applied Energy 2022.
- [Opt&Eng 2021] Bonvin G., Demassey S., Lodi A. Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound. Optimization and Engineering 2021.
- [INOC 2019] Bonvin G., Demassey S. Extended linear formulation of the pump scheduling problem in water distribution networks. In International Network Optimization Conference 2019.
- papers available at https://sofdem.github.io/
- code available at https://github.com/sofdem/gopslpnlpbb