Proof Homework 1

Conjecture 1:

$$\gcd(a,b)*lcm(a,b) = a*b$$

Proof 1:

Let
$$d = \gcd(a, b)$$
 (eq. 1)

$$a = p_1 * d$$
, $b = p_2 * d$ (eq.2) where $p_1, p_2 \in \mathbb{Z}^+$ and $gcd(p_1, p_2) = 1$

There exists a number $\alpha = p_1 * p_2 * d = p_2 * (p_1 * d)$. (eq. 3)

Suppose there exists a $\beta < \alpha$ such that β is a multiple of both a and b. This means $a|\beta$ and $b|\beta$. So, for some $t_1, t_2 \in \mathbb{Z}^+$,

 $\beta = a * t_1 \text{ (eq. 4)}$ and $\beta = b * t_2 \text{ (eq. 5)}$, so substituting the values for a and b from eq. 2, we get

$$\beta = (d * p_1) * t_1 \text{ (eq. 6)} \text{ and } \beta = (d * p_2) * t_2 \text{ (eq. 7)}.$$

By eq. 6 and eq. 7, $\beta = d * p_1 * t_1 = d * p_2 * t_2$ and thus

$$p_1 * t_1 = p_2 * t_2$$
, $gcd(p_1, p_2) = 1$ (eq. 8).

Since $gcd(p_1, p_2) = 1$, then all factors of p_2 must be found within t_1 , which means that $p_2|t_1$, so

$$t_1 = p_2 * s_1$$
 (eq. 9), for some $s_1 \in \mathbb{Z}^+$.

Similarly, since $gcd(p_1, p_2) = 1$, all factors of p_1 must be found within t_2 , which means that $p_1|t_2$, so

$$t_2 = p_1 * s_2$$
 (eq. 10).

We can then substitute eq. 9 into eq. 6 to get a modification of eq. 3,

$$\beta = d * p_1 * t_1 = d * p_1 * p_2 * s_1 = \alpha * s_1 \text{ (eq. 10)}.$$

This contradicts $\beta < \alpha$ and so, α must be the least common multiple of a and b.

