Aufgaben der Zertifikatsklausuren

Folgen, Grenzwerte

A2020

Gegeben seien reelle Folgen (a_n) , (b_n) und reelle Zahlen a, b.

- a. Geben Sie die Definition dafür an, dass (a_n) gegen a konvergiert.
- b. Gegeben ist der Satz: Konvergieren die Folgen (a_n) und (b_n) , so konvergiert auch die Summenfolge $(a_n + b_n)$
- b1. Wie lautet der Grenzwert der Folge $(a_n + b_n)$ wenn (a_n) gegen a und (b_n) gegen bkonvergiert?
- b2. Beweisen Sie den Satz.
- b3. Formulieren Sie die Umkehrung des Satzes und zeigen Sie, dass diese falsch ist.
- c. Bestimmen Sie den Grenzwert der Folge (a_n) mit

$$a_n = \frac{n^2 \cdot 2^n + 4^n + (-1)^n}{3^n - 4^n}$$

A2019

- a. Gegeben sind eine reelle Folge (a_n) und eine Zahl $a \in \mathbb{R}$
- a1. Geben Sie die Definition der Konvergenz $a = \lim_{n \to \infty} a_n$.
- a2. Beweisen Sie den folgenden Satz: Ist die Folge (a_n) konvergent, so ist sie beschränkt.
- a3. Bilden Sie die Umkehrung des Satzes aus a2 und zeigen Sie, dass die Aussage falsch ist.
- b. Bestimmen Sie den Grenzwert der Folge: (b_n) mit $b_n = \sqrt{n^2 + 2n} \sqrt{n^2 n}$ für alle $n \in \mathbb{N}$

A2018

- a. Gegeben Sie in jeder Teilaufgabe ein Beispiel an für Folgen, die die angegebenen Aussagen erfüllen:
- a1. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist divergent
- a2. (a_n) ist konvergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- a3. (a_n) ist divergent und (b_n) ist divergent und $(a_n * b_n)$ ist divergent
- a4. (a_n) ist divergent und (b_n) ist divergent und $(a_n * b_n)$ ist konvergent
- b. Es seinen $(a_n),(b_n)$ konvergente reelle Folgen mit $a=\lim_{n\to\infty}a_n$ und $b=\lim_{n\to\infty}b_n$. Was kann man über die Folge $(a_n * b_n)$ aussagen? (Ohne Beweis!)
- c. Es seinen (a_n) eine gegen a konvergente Folge. Beweisen Sie durch Induktion bezüglich m, dass für alle $m \in \mathbb{N}$ gilt: Die Folgen (a_n^m) konvergiert gegen a^m . Hinweis: Verwenden Sie die Aussage aus Teil b.

A2017

Mit (a_n) wird eine Folge bezeichnet, die die Folgenglieder $a_n, (n \in \mathbb{N})$ besitzt.

a. Es sei (a_n) eine reelle Folge und a eine reelle Zahl. Geben Sie die Definition der Konvergenz von (a_n) geben a an.

- b. Beweisen Sie, dass $\lim_{n\to\infty}\frac{1}{2^n}=0$. Weisen Sie dazu nach, dass die Definition der Konvergenz erfüllt ist.
- c. Sei (b_n) eine Folge mit $|b_n| \leq \frac{1}{2^n}$ für $n \in \mathbb{N}$. Zeigen Sie, dass (b_n) geben 0 konvergiert. Weisen Sie dazu nach, dass die Konvergenzdefinition erfüllt ist.
- d. Sei (c_n) eine Folge mit $|c_n| \leq \frac{1}{2}$ für $n \in \mathbb{N}$. Sie weiter die Folge (d_n) definiert durch $d_1 = \frac{1}{2}, d_{n+1} = c_n \cdot d_n$ für $n \in \mathbb{N}$. Beweisen Sie, dass die Folgen (d_n) gegen Null konvergiert.

Hinweis: Sie dürfen in jedem Aufgabenteil die Resultate der davorliegenden Aufgabenteile verwenden, auch wenn Sie diese nicht bewiesen haben.

A2016

Gegeben sei eine reelle Folge (a_n) und eine reelle Zahl a.

- a. Geben Sie die Definition dafür an, dass die Folge (a_n) gegen a konvergiert, also $\lim_{n \to \infty} a_n = a$
- b. Weise Sie nach, dass $\lim_{n\to\infty}\frac{1}{n}=0$ gilt. c. Es seien $(a_n),(b_n)$ Folgen und es gelte $a_n\leq b_n\leq a_n+\frac{1}{n}$ für $n\in\mathbb{N}$. Beweisen Sie: Ist (a_n) konvergent gegen a, dann konvergiert auch (b_n) gegen a.
- d. Bestimmen Sie durch Anwendung der Sätze über konvergente Folgen unter Zuhilfenahme von Teil c) den Grenzwert der Folge (b_n) mit

$$b_n := \frac{n^4 - n^2 + 5}{(n+3)^2 \cdot (2n-1)^2} + \frac{1 + (-1)^n}{2n} \cdot \sin^2(n)$$