4) Algoritmy řazení

- Optimální sekvenční:
 - \circ p(n) = 1
 - $\circ t(n) = O(n * log(n))$
 - $\circ \quad c(n) = O(n * log(n))$

Enumeration sort (mřížka)

- Správná pozice každého prvku ve výstupní seřazené posloupnosti je dána počtem prvků, které jsou menší než tento prvek.
- Ideální algoritmus pro paralelní zpracování.

Topologie

- Na mřízce
- $p(n) = n^2$
- Extrémní případ, dosáhneme nejlepší časové složitosti
- Mřížka, kde procesory jsou vodorovně propojeny do stromu a svisle taky

Vlastnosti procesoru

- Může uložit dva prvky do svých registrů A, B
- Může porovnat A a B a uložit výsledek do registru RANK
- Pomocí stromového propojení může předat obsah kteréhokoliv registru jinému procesoru
- Může přičítat k registru RANK

Algoritmus

- 1. Každý prvek je porovnán se všemi ostatními pomocí jedné řady procesorů
- 2. Správná pozice prvku je RANK(x i) = 1 + počet menších prvků
- 3. Každý prvek je zadán na správné místo

Příklad

Př. $x = \{9, 8, 10, 7, 6\}$, u prvního sloupce pro všechny registry, u ostatních jen RANK

Analýza

- t(n) = O(log(n))
- $c(n) = O(n^2 * log(n))$
- $p(n) = n^2$
- Není optimální

Diskuze

- Extrémně rychlý algoritmus O(log(n)), což znamená zrychlení O(n) oproti optimálnímu sekvenčnímu algoritmu.
 - Nic není rychlejší
- Spotřebovává příliš mnoho procesorů, na hranici přijatelnosti

Odd-even transposition sort

- Paralelní bubble sort
- Lineární pole n procesorů p(n) = n

Algoritmus

- Na počátku každý procesor p_i obsahuje jednu z řazených hodnot y_i
- V prvním kroku se každý lichý procesor p_i spojí se svým sousedem p_i+1 a porovnají své hodnoty je-li y i >y i+1, procesory vymění své hodnoty
- V druhém kroku každý sudý procesor udělá totéž
- Po n krocích (maximálně) jsou hodnoty seřazeny

- Každý z kroků (1) a (2) provádí jedno porovnání a dva přenosy konstantní čas
- Složitost: t(n) = O(n)
- Cena: $c(n) = t(n) * p(n) = O(n) * n = O(n^2)$
 - o což není optimální
- Algoritmus má lineární časovou složitost, což je to nejlepší, čeho lze při lineární topologii dosáhnout

Odd even merge sort

- Řadí se speciální sítí procesorů
- Každý procesor má dva vstupní a dva výstupní kanály
- Každý procesor umí porovnat hodnoty na svých vstupech, menší dá na výstup L (low), a větší dá výstup H (high).

Topologie

Analýza

- Řadíme posloupnost o délce n = 2^m
- 1.fáze potřebuje 2^{m-1} CE
- 2.fáze potřebuje 2^m-2 sítí 2x2 po 3 procesorech
- 3.fáze 2^{m-3} sítí 4x4 po 9 procesorech
- 4.fáze 2^m-4 sítí po 25 procesorech
- atd.

Časová složitost

• $t(n) = O(m^2) = O(\log^2(n))$

Cena

- $c(n) = O(n * log^4(n))$
- Což není optimální

Merge-splitting sort

- Lineární pole procesorů p(n) < n
- Je variantou algoritmů lichý-sudý, kde každý procesor obsahuje několik čísel
- Porovnání a výměna je nahrazena operacemi merge-split
- Každý CPU se stará o více prvků
- Pomocí nastavení počtu procesorů jsme schopni nastavovat vlastnosti algoritmu

Analýza

- Předzpracování optimálním alg.
 - O((n/p) * log (n/p))
- Přenos S_i+1 do P_i
 - o O(n/p)
- Spojení S_i a S_i+1 do S'_i optimálním alg.
 - o 2*n/p
- Přenos S_i+1 do P_i+1
 - O(n/p)
- Krok 1 nebo 2
 - O(n/p)

$$t(n) = O[(n/p) * log (n/p)] + O(n) = O((n * log(n))/p) + O(n)$$

 $c(n) = t(n) * p = O(n * log n) + O(n * p)$
 $což je optimální pro p <= log n$

Pipeline Merge sort

• Lineární pole procesorů p(n) = log n + 1

- Data nejsou uložena v procesorech, ale postupně do nich vstupují
- Každý procesor spojuje dvě seřazené posloupnosti délky 2i-2

Topologie

Označení front:

15328746	P1 P2	P3	P4
. 1532874	P1	P3	P4
1 5 3 2 8 7	P1	P3	P4
1 5 3 2 8	P1	P3	P4
	P1	P3	P4
	P1 2 7 P2 . 4 6 8	P3	P4
	P1	P3 8	P4
	P1 5 2 P2 3 4 6	P3 7 8	P4
	P1	P3	P4
	P1 P2	P3 4 6 7 8	P4

Analýza

• c(n) = t(n) * p(n) = O(n) * (log n + 1) = O(n * log n)

• což je optimální

Enumeration sort (lineární pole)

• Lineární pole n procesorů, doplněných společnou sběrnicí, schopnou přenést v každém kroku jednu hodnotu.

Topologie

Příklad

- Krok 1) je v konstantním čase, krok 2) trvá 2n cyklů, krok 3) trvá n cyklů
- t(n) = O(n)
- c(n) = t(n) * p(n) = O(n) * n = O(n2)
- což není optimální

Minimum Extraction Sort

- Stromová architektura
- Každý procesor se stará o jeden prvek

Algoritmus

• Každý list obsahuje jeden prvek

- Každý nelistový procesor porovná hodnoty svých dvou synů a menší z nich pošle svému otci po (log n) + 1 krocích se minimální prvek dostane do kořenového procesoru
- Každým dalším krokem se získá další nejmenší prvek

- Jelikož strom má (log n)+1 úrovní, první prvek se získá po (log n)+1 krocích. Kořenový procesor potřebuje jeden krok na porovnání a jeden na uložení výsledku do paměti. Každý ze zbylých n-1 prvků spotřebuje 2 kroky.
- t(n) = 2n + (log n) 1 = O(n)

- p(n) = 2n 1
- $c(n) = t(n)*p(n) = O(n^2)$
- což není optimální

Bucket Sort

- Stromová architektura
- Jeden procesor se stará o více než jeden prvek
- Fáze předpřípravy, seřazení optimálním sekvenčním algoritmem
 - viz merge sort

Příklad

Analýza

- t(n) = O(n)
- $p(n) = O(\log n)$
- c(n) = O(n*log n)
- optimální

Median Finding and Splitting

- Stromová architektura
- Jeden procesor se stará o více než jeden prvek

• Jdeme opačným směrem, od kořene k listům

Algoritmus

- Uzel najde medián a všechny menší prvky pošle levému synovi a všechny větší pravému.
- Pokračuju do nějakého počtu, poté všichni seřadí zbytek optimálním sekvenčním algoritmem

Algoritmus nalezení mediánu není úplně triviální.

- t(n) = O(n)
- $p(n) = O(\log n)$
- c(n) = O(n.log n)
- což je optimální

Shrnutí

Řazení na SIMD bez společné paměti

	t(n)	cena optimální?
Speciální topologie		
Enumeration Sort	O(log n)	N
Odd-even Marge Sort	log ² n	N
Lineární pole procesorů		
Odd-Even Trasposition	n	N
Merge-splitting Sort (agregovaná verze předchozího)		А
Pipeline Merge Sort	n	Α
Enumeration Sort	n	N
Mřížka (mesh)		
Mesh Sort	n ^{1/2}	N
Agregable Mesh Sort		Α
Strom		
Minimum Extraction	n	N
Bucket Sort		Α
agregovaná verze předchozího		
Median Finding and Splitting	n	Α
<u>Hyperkostka</u>		
Cube Sort		

Cube Sor

 $t(n) = O(\log n) .. O(\log^2 n)$

 $p(n) = n^2 ... 2n$

4) Algoritmy mediánu (select)

Sequential select

- Hledá k-tý nejmenší prvek v posloupnosti S
- Je-li k = |S| / 2, jde o medián

```
Algoritmus
procedure SEQUENTIAL SELECT(S, k)
(1) if |S| \le Q then seřaď S a odpočítej
       else rozděl S na |S|/Q posloupností S; o délce Q prvků
(2) // Seřaď každou posloupnost S; a nalezni její medián M[i]
     for i=1 to |S|/Q do
       M[i] = SEQUENTIAL SELECT(S_i, |S_i|/2)
     end for
(3) // Nalezni "medián mediánů" m
   m = SEQUENTIAL SELECT(M, |M|/2)
(4) L = \{s_i \in S: s_i < m\}
   E = \{s_i \in S: s_i = m\}
   G = \{ s_i \in S: s_i > m \}
(5) if |L| > k then SEQUENTIAL SELECT(L,k) // prvek musí být v L
    else if |L| + |E| > k then return m // prvek musí být v E
    else SEQUENTIAL SELECT(G, k-|L|-|E|) // prvek musí být v G
```

• Pro Q>=5 t(n) = O(n)

18|35|21|24|29|13|33|17|31|27|15|28|11|22|19|25|34|32|16|12|23|30|26|14|20|

Parallel select

- Hledá k-tý nejmenší prvek v posloupnosti S
- EREW PRAM s N procesory P₁...P_N
- Používá sdílené pole M o N prvcích

```
Algoritmus
procedure PARALLEL_SELECT(S, k)

(1) if |S| ≤ 4 then přímo nalezni k-tý prvek
else rozděl S na N posloupností S<sub>i</sub> o délce n/N a každou přiřaď
jednomu procesoru P<sub>i</sub>

(2) for i=1 to N do in parallel
M[i] = SEQUENTIAL_SELECT(S<sub>i</sub>, |S<sub>i</sub>|/2)
end for

(3) m = PARALLEL_SELECT(M, |M|/2) ← s menším počtem procesorů

(4) L = {s<sub>i</sub> ∈ S: s<sub>i</sub> < m}
E = {s<sub>i</sub> ∈ S: s<sub>i</sub> < m}
G = { s<sub>i</sub> ∈ S: s<sub>i</sub> > m}

(5) if |L| > k then PARALLEL_SELECT(L, k)
else if |L| + |E| > k then return m
else PARALLEL_SELECT(G, k-|L|-|E|)
```

- $t(n) = O(n/N) \text{ pro } n > 4, N < n/\log n$
- p(n) = N
- c(n) = t(n) * p(n) = O(n)
- což je optimální

Parallel splitting

- Krok 4 algoritmu Parallel select
- Úloha: Je dána posloupnost S a číslo m Mají se vytvořit tři posloupnosti:

$$L = \{s_i \in S: s_i < m\}$$

$$E = \{s_i \in S: s_i = m\}$$

$$G = \{s_i \in S: s_i > m\}$$

- Složitost sekvenčního algoritmu je O(n)
- Paralelní řešení máme N procesorů, které si sekvenci S rozdělí na podposloupnosti S_i o délce n/N

Příklad

- t(n) = O(log N + n/N) = O(n/N) pro dostatečně malé N
- Cena: c(n) = O(n/N) * N = O(n)
- což je optimální

5) Algoritmy vyhledávání

- Zjišťujeme zda prvek je v posloupnosti, případně na jakém indexu.
- Varianty
 - Posloupnost je seřazená
 - o Posloupnost není seřazená

N-ární search

Vyhledává se seřazené posloupnosti

Princip

- Při binárním vyhledávání zjistíme, ve které polovině se prvek nachází
- Při n-árním vyhledávání zjistíme, ve které z N+1 částí, se prvek nachází, kde N
 je počet procesorů

- Každý procesor se podívá na svoji "vlaječku" a na "vlaječku" svého pravého souseda
- Ten který detekuje změnu, zapíše svoji pozici a pozici svého pravého souseda
 získáme blok je kterém je prvek
- Celý proces opakuju, dokud vyhledávací část není "akorát" malá, pak sekvenčně najdu

Analýza

- $t(n) = O(log(n+1) / log(N+1)) = O(log_N+1 (n+1))$
- $c(n) = O(N * log_N+1 (n+1))$
- což není optimální

Unsorted search

• Vyžaduje architekturu se sdílenou pamětí (PRAM)

• Vyhledává prvek v neseřazené posloupnosti

Princip

- Mám N procesorů, n prvků a hledaný prvek x
- Každý procesor si přečte hledaný prvek
- n prvků je rozděleno mezi N procesorů a provede se sekvenční search
- Do sdílené proměnné pak ten kdo našel zapíše index prvku, případně nedefinovaná hodnota

Analýza

Architektura EREW – Exclusive read exclusive write

- 1. krok = O(log n)
- 2. krok = O(n/N)
- 3.krok = O(log N)
- $t(n) = O(\log N + n/N)$
- c(n) = O(N * log N + n)

Architektura CREW - Concurrent read exclusive write

- 1. krok = O(1)
- 2. krok = O(n/N)
- 3.krok = O(log N)
- $t(n) = O(\log N + n/N)$
- c(n) = O(N * log N + n)

Architektura CRCW - Concurrent read concurrent write

- 1. krok = O(1)
- 2. krok = O(n/N)
- 3.krok = O(1)
- t(n) = O(n/N)
- c(n) = O(n) což je optimální

Tree search

- Vyhledává v neseřazené posloupnosti
- Stromová architektura s 2n-1 procesorů

Algoritmus

- 1. Kořen načte hledanou hodnotu x a předá ji synům ... až se dostane ke všem listům
- 2. Listy obsahují seznam prvků, ve kterých se vyhledává (každý list jeden). Všechny listy paralelně porovnávají x a x i , výsledek je 0 nebo 1.
- 3. Hodnoty všech listů se předají kořenu každý ne list spočte logické or svých synů a výsledek zašle otci. Kořen dostane 0 nenalezeno, 1- nalezeno

- Krok (1) má složitost O(log n), krok (2) má konstantní složitost, krok (3) má O(log n).
- $t(n) = O(\log n)$
- p(n) = 2.n-1
- c(n) = t(n).p(n) = O(n.log n)
 - o což není optimální

