Given a joint probability p(x, y), where $x \in \{0,1\}$ and $y \in \{0,1\}$:

$$p(x = 0, y = 0) = a$$

 $p(x = 0, y = 1) = b$
 $p(x = 1, y = 0) = c$
 $p(x = 1, y = 1) = d$

$$p(x = 0, y = 1) = b$$

 $p(x = 1, y = 0) = c$
For $p(x, y)$ to be a valid probability: $a + b + c + d = 1$

p(x,y)	x=0	x=1
y=0	а	С
y=1	b	d

Find the marginal probability p(x):

$$p(x) = \sum_{y} p(x, y) = p(x, y = 0) + p(x, y = 1)$$
, i.e. $p(x = 0) = p(x = 0, y = 0) + p(x = 0, y = 1) = a + b$, $p(x = 1) = p(x = 1, y = 0) + p(x = 1, y = 1) = c + d$

Check that p(x) is a valid probability: (a + b) + (c + d) = 1

p(x)	x=0	x=1
	a + b	c + d

Find the conditional probability $p(y \mid x)$:

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

$$p(y = 0 \mid x = 0) = \frac{p(x = 0, y = 0)}{p(x = 0)} = \frac{a}{a + b}$$

$$p(y = 1 \mid x = 0) = \frac{p(x = 0, y = 1)}{p(x = 0)} = \frac{b}{a + b}$$
For $p(y \mid x = 0)$ to be a valid probability: $\frac{a}{a + b} + \frac{b}{a + b} = 1$

For
$$p(y \mid x = 0)$$
 to be a valid probability: $\frac{a}{a+b} + \frac{b}{a+b} = 1$

$$p(y = 0 \mid x = 1) = \frac{p(x = 1, y = 0)}{p(x = 1)} = \frac{c}{c + d}$$

$$p(y = 1 \mid x = 1) = \frac{p(x = 1, y = 1)}{p(x = 1)} = \frac{d}{c + d}$$
For $p(y \mid x = 1)$ to be a valid probability: $\frac{c}{c + d} + \frac{d}{c + d} = 1$

For
$$p(y \mid x = 1)$$
 to be a valid probability: $\frac{c}{c+d} + \frac{d}{c+d} = 1$

$p(y \mid x)$	x=0	x=1
y=0	$\frac{a}{a+b}$	$\frac{c}{c+d}$
y=1	$\frac{b}{a+b}$	$\frac{d}{c+d}$

Find the $p(x \mid y)$ using Bayes' rule:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{\sum_{x} p(y \mid x)p(x)}$$

$$p(x = 0 \mid y = 0) = \frac{p(y = 0 \mid x = 0)p(x = 0)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$

$$p(x = 1 \mid y = 0) = \frac{p(y = 0 \mid x = 1)p(x = 1)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$

$$p(x = 0 \mid y = 1) = \frac{p(y = 1 \mid x = 0)p(x = 0)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$

$$p(x = 1 \mid y = 1) = \frac{p(y = 1 \mid x = 1)p(x = 1)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$

$$p(x = 0 \mid y = 0) = \frac{p(y = 0 \mid x = 0)p(x = 0)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$
$$= \frac{\left(\frac{a}{a+b}\right)(a+b)}{\left(\frac{a}{a+b}\right)(a+b) + \left(\frac{c}{c+d}\right)(c+d)} = \frac{a}{a+c}$$

$$p(x = 1 \mid y = 0) = \frac{p(y = 0 \mid x = 1)p(x = 1)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$
$$= \frac{\left(\frac{c}{c + d}\right)(c + d)}{\left(\frac{a}{a + b}\right)(a + b) + \left(\frac{c}{c + d}\right)(c + d)} = \frac{c}{a + c}$$

$$p(x = 0 \mid y = 1) = \frac{p(y = 1 \mid x = 0)p(x = 0)}{p(y = 1 \mid x = 0)p(x = 0) + p(y = 1 \mid x = 1)p(x = 1)}$$
$$= \frac{\left(\frac{b}{a+b}\right)(a+b)}{\left(\frac{b}{a+b}\right)(a+b) + \left(\frac{d}{c+d}\right)(c+d)} = \frac{b}{b+d}$$

$$p(x = 1 \mid y = 1) = \frac{p(y = 1 \mid x = 1)p(x = 1)}{p(y = 0 \mid x = 0)p(x = 0) + p(y = 0 \mid x = 1)p(x = 1)}$$

$$= \frac{\left(\frac{d}{c+d}\right)(c+d)}{\left(\frac{b}{a+b}\right)(a+b) + \left(\frac{d}{c+d}\right)(c+d)} = \frac{d}{b+d}$$

We have $p(x \mid y) = \frac{p(y|x)p(x)}{\sum_{x} p(y|x)p(x)}$ in the following table:

$p(x \mid y)$	x=0	x=1
y=0	$\frac{a}{a+c}$	$\frac{c}{a+c}$
y=1	$\frac{b}{b+d}$	$\frac{d}{b+d}$

Check that $\sum_{x} p(x \mid y = 0) = 1$:

$$\sum_{x} p(x \mid y = 0) = p(x = 0 \mid y = 0) + p(x = 1 \mid y = 0)$$
$$= \frac{a}{a+c} + \frac{c}{a+c} = 1. \qquad \Box$$

Check that $\sum_{x} p(x \mid y = 1) = 1$:

$$\sum_{x} p(x \mid y = 1) = p(x = 0 \mid y = 1) + p(x = 1 \mid y = 1)$$
$$= \frac{b}{b+d} + \frac{d}{b+d} = 1. \qquad \Box$$