Dictionaries

Dictionary ADT

- Models a searchable collection of key-element items called entries
- Main operations: find, insert, remove
 - findElement(k), insertItem(k, o), removeElement(k)
 - size(), isEmpty()
 - keys(), elements()
- Applications:
 - address book
 - word-definition pairs
 - mapping host names to internet addresses (e.g., www.cs16.net to 128.148.34.101)

Log File

- A log file is a dictionary implemented by means of storing items in an unsorted sequence
 - insertItem takes O(1) time since we can insert the new item at the beginning or at the end of the sequence
 - findElement and removeElement take O(n) time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key
- Effective only for dictionaries of
 - small size or
 - when insertions are the most common operations, while searches and removals are rarely performed (e.g., historical record of logins to a workstation)

Hash Table -based Dictionaries

Hash Functions and Hash Tables

- A hash table for a given key type consists of
 - Array (called table) of size N
 - Hash function h
- A hash function h maps keys of a given type to integers in a fixed interval [0, N 1]
 - Ex: $h(x) = x \mod N$ is a hash function for integer keys
 - The integer h(x) is called the hash value of key x
- When implementing a dictionary with a hash table, the goal is to store item (k, o) at index i = h(k)

Example

- We design a hash table for a dictionary storing items (social security number, name)
- Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x

Hash Functions

• A hash function is usually specified as the composition of two functions:

Hash code map

 h_1 : keys \rightarrow integers

Compression map

 h_2 : integers $\rightarrow [0, N-1]$

The hash code map is applied first, and the compression map is applied next on the result

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{h}_2(\boldsymbol{h}_1(\boldsymbol{x}))$$

• The goal of the hash function is to "disperse" the keys in an apparently random way

Hash Code Maps: keys → integers

Memory address

- reinterpret the memory address of the key object as an integer
- default hash code of Java objects
- disadvantage: two key objects with equal value have different hash codes

Integer cast

- reinterpret bits of the key as an integer
- suitable for smaller keys (when number of bits in the key is at most the number of bits in an integer)

Hash Code Maps: keys → integers

Component sum

- suitable for larger keys
- partition bits of the key into components of fixed length and sum the components
- disadvantage: many strings will have the same sum

$$h_1(k) = a_0 + a_1 + a_2 + \dots + a_{n-1}$$

Polynomial accumulation

- good for strings
- partition bits of the key into components of fixed length and evaluate the polynomial

$$h_1(k) = a_0 + a_1 z + a_2 z^2 + ... + a_{n-1} z^{n-1}$$

Compression Maps: integers $\rightarrow [0, N-1]$

- A good hash function guarantees the probability that two different keys have the same hash is 1/N.
- The size N of the hash table is usually chosen to be a prime.
 - The reason involves number theory and is beyond the scope of this course

Division

- $h_2(y) = y \mod N$
- disadvantage: repeated keys of the form iN + j cause collisions

Multiply, Add and Divide (MAD)

- $h_2(y) = ((ay + b) \mod p) \mod N$
- This is a "good" hash function (continued next slide...)

Universal Hashing

- Recall that a good hash function guarantees the probability that two different keys have the same hash is 1/N.
- A family of hash functions is universal if for any $0 \le j,k \le M-1$, $Pr(h(j)=h(k)) \le 1/N$

Theorem: The set of all functions, h, as defined below, is universal.

- Choose *p* as a prime between *M* and 2*M*
- Randomly select 0 < a < p and $0 \le b < p$
- a and b are nonnegative integers such that $a \mod N \neq 0$ (otherwise, every integer would map to the same value b)
- Define $h(k)=((ak+b) \mod p) \mod N$

Collision Handling

Collisions occur when different elements are mapped to the same cell

Chaining

- each cell in the table points to a linked list of elements that map there
- simple, but requires additional memory outside the table

Open Addressing

- the colliding item is placed in a different cell of the table
- no additional memory, but complicates searching/removing
- common types: linear probing, quadratic probing, double hashing

Open Addressing: Linear Probing

- Placing the colliding item in the next (circularly) available table cell try $A[(h(k) + i) \mod N]$ for i = 0,1,2,...
- Colliding items cluster together, causing future collisions to cause a longer sequence of probes (searches for next available cell)
- Example:
 - $h(x) = x \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

$$h(18) = 18 \mod 13 = 5$$
 $41 \mod 13 = 2$
 $22 \mod 13 = 9$
 $44 \mod 13 = 5$
 $59 \mod 13 = 7$
 $32 \mod 13 = 6$

 $31 \mod 13 = 5$

 $73 \mod 13 = 8$

Search with Linear Probing

Consider a hash table *A* that uses linear probing

findElement(*k*)

- Start at cell h(k)
- Check consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

```
Algorithm findElement(k)
   i \leftarrow h(k)
   p \leftarrow 0
   repeat
      c \leftarrow A[i]
      if c = \emptyset
          return NO SUCH KEY
       else if c.kev() = k
          return c.element()
       else
          i \leftarrow (i+1) \mod N
          p \leftarrow p + 1
   until p = N
   return NO_SUCH_KEY
```

Updates with Linear Probing

A special object, called AVAILABLE, replaces deleted elements

- removeElement(k)
 - Search for an item with key k
 - If it is found, replace it with item **AVAILABLE** and return element
 - Else, return NO_SUCH_KEY
- insertItem(k, o)
 - Throw an exception if the table is full
 - Start at cell h(k)
 - Search consecutive cells until a cell *i* is found that is either empty or stores *AVAILABLE*
 - Store item (k, o) in cell i

Open Addressing: Double Hashing

- Use a secondary hash function d(k) to place items in first available cell try $A[(h(k) + id(k)) \mod N]$ for i = 0,1,2,...
- d(k) cannot have zero values
- The table size N must be a prime to allow probing of all the cells

Example of Double Hashing

Consider a hash table storing integer keys that handles collision with double hashing

$$-N = 13$$

$$- h(k) = k \mod 13$$

$$- d(k) = 1 + (k \bmod 7)$$

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

k	h(k)	d(k)	Prob	es	
18	5	5	5		
41	2	7	2		
22	9	2	9		
44	5	3	5	8	
59	7	4	7		
32	6	5	6		
31	5	4	5	9	0
73	8	4	8	12	

Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take O(n) time
 - occurs when all inserted keys collide
- The **load factor** $\alpha = n/N$ affects the performance of a hash table
 - Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $1/(1-\alpha)$
 - The expected number of probes for an insertion with chaining is $O(1 + \alpha)$
- The expected running time of all the dictionary ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%

Chaining vs. Open Addressing

Chaining

- Less sensitive to hash functions and load factor
- Supports $\alpha > 100\%$

Open Addressing

- Requires careful selection of hash function to avoid clustering
- Degrades past $\alpha > 70\%$
- Can't support $\alpha > 100\%$
- Better memory usage

$$h(a) = 1$$
 $h(b) = 4$ $h(c) = 4$

0	
1	a
2	c
3	
4	b

Other

• You are given an array A of integers. Determine the integer that occurs most frequently in A.