第二章 二元关系

定理 **2.1** $\langle a,b\rangle = \langle c,d\rangle$ 的充要条件是 a=c 且 b=d.

定理 **2.2** $\langle a_1, a_2, \dots, a_n \rangle = \langle b_1, b_2, \dots, b_n \rangle$ 当且仅当 $a_i = b_i, i = 1, 2, \dots, n$.

定理 2.3 设 F,G 为二集合,则

- (1) $dom(F \cup G) = dom F \cup dom G$;
- (2) $\operatorname{ran}(F \cup G) = \operatorname{ran} F \cup \operatorname{ran} G;$
- (3) $\operatorname{dom}(F \cap G) \subseteq \operatorname{dom} F \cap \operatorname{dom} G$;
- (4) $\operatorname{ran}(F \cap G) \subseteq \operatorname{ran} F \cap \operatorname{ran} G$;
- (5) $\operatorname{dom} F \operatorname{dom} G \subseteq \operatorname{dom}(F G);$
- (6) $\operatorname{ran} F \operatorname{ran} G \subseteq \operatorname{ran}(F G)$.

定理 2.4 设 F 为任一集合,则

- (1) $dom F^{-1} = ran F$;
- (2) $\operatorname{ran} F^{-1} = \operatorname{dom} F;$
- (3) $(F^{-1})^{-1} \subseteq \text{dom } F$, 当 F 为关系时, 等号成立.

定理 2.5 设 R_1, R_2, R_3 为三个集合,则

$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3).$$

定理 **2.6** 设 R_1, R_2, R_3 为三个集合,则

- (1) $R_1 \circ (R_2 \cup R_3) = R_1 \circ R_2 \cup R_1 \circ R_3$;
- (2) $(R_1 \circ R_2) \cup R_3 = R_1 \circ R_3 \cup R_2 \circ R_3$;
- (3) $R_1 \circ (R_2 \cap R_3) = R_1 \circ R_2 \cap R_1 \circ R_3$;
- (4) $(R_1 \circ R_2) \cap R_3 = R_1 \circ R_3 \cap R_2 \circ R_3$.

定理 2.7 设 F,G 为二集合,则

$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}.$$

定理 2.8 设 R, S, A, B, \mathscr{A} 为集合, $\mathscr{A} \neq \varnothing$, 则

- $(1) \quad R \upharpoonright (A \cup B) = (R \upharpoonright A) \cup (R \upharpoonright B);$
- $(2) R \upharpoonright \cup \mathscr{A} = \cup \{R \upharpoonright A \mid A \in \mathscr{A}\};$
- (3) $R \upharpoonright (A \cap B) = (R \upharpoonright A) \cap (R \upharpoonright B);$
- $(4) R \upharpoonright \cap \mathscr{A} = \cap \{R \upharpoonright A \mid A \in \mathscr{A}\};$
- (5) $(R \circ S) \upharpoonright A = R \circ (S \upharpoonright A)$.

定理 2.9 设 R, S, A, B, \mathscr{A} 为集合, $\mathscr{A} \neq \varnothing$, 则

- (1) $R[A \cup B] = R[A] \cup R[B];$
- (2) $R[\cup \mathscr{A}] = \cup \{R[A] \mid A \in \mathscr{A}\};$
- $(3) R[A \cap B] = R[A] \cap R[B];$
- $(4) \quad R[\cap \mathscr{A}] = \cap \{R[A] \mid A \in \mathscr{A}\};$
- (5) $R[A] R[B] \subseteq R[A B];$
- (6) $(R \circ S)[A] = R[S[A]].$

定理 2.10 设 $R \subset A \times A$, 则下面的命题是等价的:

(1) R 是自反的;

(2) $I_A \subseteq R$;

(3) R^{-1} 是自反的;

(4) M(R) 主对角线上的元素全为 1;