Devoir à la maison n°12 : corrigé

SOLUTION 1.

- 1. a. L'application f^{n-1} n'étant pas constamment nulle, il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$ tel que

$$\sum_{i=0}^{n-1} \lambda_i f^i(x) = 0$$

On montre alors que $\lambda_i = 0$ pour tout $i \in [0, n-1]$ par récurrence.

Initialisation: En composant par f^{n-1} , on obtient

$$\sum_{i=0}^{n-1} \lambda_i f^{n-1+i}(x) = 0_E$$

Or pour $i \geqslant 1$, $n-1+i \geqslant n$ donc $f^{n-1+i}(x)=0$. On en déduit que $\lambda_0 f^{n-1}(x)=0$. Comme $f^{n-1}(x)\neq 0$, $\lambda_0=0$.

Hérédité : Supposons qu'il existe $k \in [0, n-2]$ tel que $\lambda_i = 0$ pour tout $i \in [0, k]$. On a alors

$$\sum_{i=k+1}^{n-1} \lambda_i f^i(x) = 0$$

En composant par f^{n-k-2} , on obtient ensuite

$$\sum_{i=k+1}^{n-1} \lambda_i f^{n-k-2+i}(x) = 0$$

Or pour $i\geqslant k+2$, $n-k-2+i\geqslant n$ donc $\lambda_i=0$. Il reste finalement $\lambda_{k+1}f^{n-1}(x)=0$ puis $\lambda_{k+1}=0$ puisque $f^{n-1}(x)\neq 0$.

Conclusion : Par récurrence, $\lambda_i = 0$ pour tout $i \in [0, n-1]$.

Par conséquent, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est libre. Puisqu'elle comporte n éléments et que $n = \dim E$, c'est une base de E.

- 2. a. La famille $(f^{n-1}(x), f^{n-2}(x), \ldots, f^{n-k}(x))$ est une sous-famille de la famille libre $(f^{n-1}(x), f^{n-2}(x), \ldots, f(x), x)$. Elle est donc également libre. On en déduit dim $F_k = k$.
 - $\begin{array}{l} \textbf{b.} \ \ Pour \ 1\leqslant i\leqslant k, \ f^k(f^{n-i}(x))=f^{n+k-i}(x)=0 \ car \ n+k-i\geqslant n \ et \ donc \ f^{n-i}(x)\in Ker \ f^k. \ Comme \\ (f^{n-i}(x))_{1\leqslant i\leqslant k} \ engendre \ F_k, \ F_k\subset Ker \ f^k. \ Donc \ dim \ Ker \ f^k\geqslant dim \ F_k=k. \end{array}$

Pour $1 \leqslant i \leqslant n-k$, $f^{n-i}(x) \in \operatorname{Im} f^k$ car $n-i \geqslant k$. Comme $(f^{n-i}(x))_{1 \leqslant i \leqslant n-k}$ engendre F_{n-k} , $F_{n-k} \subset \operatorname{Im} f^k$. D'où dim $\operatorname{Im} f^k \geqslant \dim F_{n-k} = n-k$. Par le théorème du rang, on a donc dim $\operatorname{Ker} f^k = n-\dim \operatorname{Im} f^k \leqslant k$. On en déduit que dim $\operatorname{Ker} f^k = k = \dim F_k$ et, comme $F_k \subset \operatorname{Ker} f^k$, $F_k = \operatorname{Ker} f^k$.

Quitte à remplacer k par n-k, on a également $F_k \subset \operatorname{Im} f^{n-k}$. Et comme $f^k \circ f^{n-k} = \mathbf{0}$, on a aussi $\operatorname{Im} f^{n-k} \subset \operatorname{Ker} f^k$. On en déduit que $F_k = \operatorname{Ker} f^k = \operatorname{Im} f^{n-k}$.

- c. On a $F_k = \operatorname{Im} f^{n-k}$ d'après la question précédente. Donc $f(F_k) = \operatorname{Im} f^{n-k+1} \subset \operatorname{Im} f^{n-k} = F_k$. F_k est donc stable par f.
- **a.** On considère $A = \{k \in \mathbb{N}^* \mid \tilde{f}^k = \tilde{\mathbf{0}}\}$. A est une partie non vide de \mathbb{N}^* puisque $n \in A$. Elle admet donc un plus petit élément $p \geqslant 1$. Si p = 1, alors p 1 = 0 mais $\tilde{f}^{p-1} = \mathrm{Id}_F \neq \tilde{\mathbf{0}}$ car $F \neq \{0_E\}$. Si $p \geqslant 2$, alors $p 1 \in \mathbb{N}^*$ et on ne peut avoir $\tilde{f}^{p-1} = \tilde{\mathbf{0}}$ sinon $p 1 \in A$, ce qui contredit la minimalité de p. On a donc dans tous les cas $\tilde{f}^{p-1} \neq \tilde{\mathbf{0}}$ et $\tilde{f}^p = \tilde{\mathbf{0}}$.
 - **b.** On prouve comme à la question **1.b** que la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$ est libre. Comme $k = \dim F$ et que la famille précédente est de cardinal p, on en déduit $p \leqslant k$. Ainsi $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** La question précédente prouve que $F \subset \operatorname{Ker} f^k$. Or on a vu à la question **2.b** que dim $\operatorname{Ker} f^k = k$. Comme $\dim F = k$, on a donc $F = \operatorname{Ker} f^k$.

d. On vient de voir que tous les sous-espaces stables de dimension k avec $1 \le k \le n-1$ était de la forme Ker f^k . Réciproquement, on a vu à la question 2 que les sous-espaces Ker f^k avec $1 \le k \le n-1$ étaient stables par f. Il reste à remarquer que le seul sous-espace de dimension 0 i.e. le sous-espace nul et que le seul sous-espace de dimension n i.e. E tout entier sont évidemment stables par f. Enfin, comme $f^0 = \text{Id}_E$ et $f^n = \mathbf{0}$, on a $\{0\} = \text{Ker } f^0$ et $E = \text{Ker } f^n$.

Les sous-espaces stables par f sont donc exactement les sous-espaces Ker f^k avec $0\leqslant k\leqslant n$.

4. a. La famille $(x, f(x), \ldots, f^{n-2}(x), f^{n-1}(x))$ étant une base de E, il existe un unique n-uplet $(\alpha_0, \ldots, \alpha_{n-1})$ de réels tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

Ce sont les coordonnées de q(x) dans la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$.

b. Si g commute avec f, g commute avec f^i pour $0 \le i \le n-1$. Par conséquent,

$$g\left(f^i(x)\right) = f^i(g(x)) = \sum_{k=0}^{n-1} \alpha_k f^{k+i}(x) = \left(\sum_{k=0}^{n-1} \alpha_k f^k\right) \left(f^i(x)\right)$$

On en déduit que les endomorphismes g et $\sum_{k=0}^{n-1} \alpha_k f^k$ coïncident sur la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$.

Ceci prouve que

$$g = \sum_{k=0}^{n-1} \alpha_k f^k = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

c. Notons $\mathcal C$ le sous-espace vectoriel de $\mathcal L(E)$ engendré par la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ et $\mathcal C'$ l'ensemble des endomorphismes commutant avec f. La question précédente montre que $\mathcal C'\subset \mathcal C$. Mais comme toute puissance de f commute avec f, il est clair que $\mathcal C\subset \mathcal C'$. Ainsi $\mathcal C=\mathcal C'$. Comme la famille $(x,f(x),\ldots,f^{n-2}(x),f^{n-1}(x))$ est une famille libre de E, a fortiori la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ est une famille libre de $\mathcal L(E)$. On en déduit que $\dim \mathcal C=n$.

SOLUTION 2.

1. On a:

$$(u - r_1 \operatorname{Id}_E) \circ (u - r_2 \operatorname{Id}_E) = u^2 - (r_1 + r_2)u + r_1 r_2 \operatorname{Id}_E$$

Comme r_1 et r_2 sont les racines de $X^2 + aX + b$, on a $r_1 + r_2 = -a$ et $r_1r_2 = b$. D'où

$$(u - r_1 Id_F) \circ (u - r_2 Id_F) = u^2 + au + b Id_F$$

On prouve de même que

$$(u - r_2 \operatorname{Id}_F) \circ (u - r_1 \operatorname{Id}_F) = u^2 + au + b \operatorname{Id}_F$$

- $\textbf{2. Comme } (u-r_1\operatorname{Id}_E)\circ(u-r_2\operatorname{Id}_E)=u^2+au+b\operatorname{Id}_E, \text{ on a Ker}(u-r_2\operatorname{Id}_E)\subset\operatorname{Ker}(u^2+au+b\operatorname{Id}_E) \text{ i.e. } F_2\subset F.$ On prouve de même que $F_1\subset F$.
- 3. Soient $x \in F_1 \cap F_2$. On a alors $\mathfrak{u}(x) = r_1 x = r_2 x$. Mais, comme $r_1 \neq r_2$, $x = \mathfrak{0}_E$. D'où $F_1 \cap F_2 = \{\mathfrak{0}_E\}$. Comme $F_1 \subset F$ et $F_2 \subset F$, on a $F_1 + F_2 \subset F$. Prouvons l'inclusion réciproque. Soit $x \in F$.

Analyse : On suppose qu'il existe $(y, z) \in F_1 \times F_2$ tel que x = y + z. Remarquons que $u(y) = r_1 y$ et $u(z) = r_2 z$. On a alors

$$(u - r_1 \operatorname{Id}_{\mathsf{F}})(x) = (u - r_1 \operatorname{Id}_{\mathsf{F}})(z) = (r_2 - r_1)z$$

et

$$(u - r_2 \operatorname{Id}_E)(x) = (u - r_2 \operatorname{Id}_E)(y) = (r_1 - r_2)y$$

Synthèse: Posons $z = \frac{1}{r_2 - r_1}(u(x) - r_1x)$ et $y = \frac{1}{r_2 - r_1}(r_2x - u(x))$. On voit facilement que y + z = x. De plus,

$$(u - r_1 \operatorname{Id}_E)(y) = (u - r_1 \operatorname{Id}_E) \circ (u - r_2 \operatorname{Id}_E)(x) = (u^2 + au + b \operatorname{Id}_E)(x) = 0_E \operatorname{car} x \in F$$

 $(u - r_2 \operatorname{Id}_F)(z) = (u - r_2 \operatorname{Id}_F) \circ (u - r_1 \operatorname{Id}_F)(x) = (u^2 + au + b \operatorname{Id}_F)(x) = 0_F \operatorname{car} x \in F$

donc $y \in F_1$ et $z \in F_2$.

En conclusion, on a bien $F = F_1 \oplus F_2$.

- **a.** Soit f une solution de (\mathcal{E}) . f est deux fois dérivable. Supposons avoir montré que f est n fois dérivable pour un entier $n \ge 2$ et montrons que f est n+1 fois dérivable. On a f'' = -af' - bf. f est n fois dérivable donc, a fortiori, n - 1 fois dérivable. f' est également n-1 fois dérivable. Par conséquent f'' est n-1 fois dérivable. Donc f est n+1 fois dérivable. Par récurrence, f est n fois dérivable pour tout $n \in \mathbb{N}$, donc de classe C^{∞} .
 - **b.** On a prouvé à la question précédente que toutes les solutions de (\mathcal{E}) sont des éléments de E. De plus, pour tout $f \in E$:

$$f \text{ solution de } (\mathcal{E}) \iff (\mathfrak{u}^2 + \mathfrak{a}\mathfrak{u} + b\operatorname{Id}_E)(f) = 0 \iff f \in \operatorname{Ker}(\mathfrak{u}^2 + \mathfrak{a}\mathfrak{u} + b\operatorname{Id}_E)$$

Ainsi F est bien l'ensemble des solutions de (\mathcal{E}) .

- $\textbf{c. Notons } f_1: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_1t} \end{array} \right. \text{ et } f_2: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ t & \longmapsto & e^{r_2t} \end{array} \right. \text{ On a, d'après le cours } F_1 = \text{vect}(f_1) \text{ et } F_2 = \text{vect}(f_2).$
- **d.** D'après la question 3, $F = \text{vect}(f_1, f_2)$ et on retrouve bien le résultat du cours souhaité.