State-of-the-art

performance

ACTIVEMATCH: END-TO-END SEMI-SUPERVISED ACTIVE REPRESENTATION LEARNING

Xinkai Yuan*, Zilinghan Li*, Gaoang Wang+

Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, China

Introduction

Semi-supervised learning (SSL) is an efficient framework that can train models with both labeled and unlabeled data, but may generate ambiguous and non-distinguishable representations when lacking adequate labeled samples.

In this paper, following the SSL setting, we propose a novel representation learning method, namely ActiveMatch, which combines contrastive learning and active learning into an endto-end learning framework.

The contributions of our paper are summarized as follows:

- Proposed ActiveMatch is a novel representation learning approach that combines SSL, contrastive learning, and active learning to address the issue of training with a small amount of labeled data.
- Unlike several other methods which use contrastive learning as pre-training and then fine-tune the network based on SSL, ActiveMatch uses an end-to-end training scheme, which simplifies the training process and helps to improve the accuracy.
- ActiveMatch outperforms previous SSL methods on standard benchmarks such as CIFAR-10, CIFAR-100, and SVHN with only a few labeled samples.

Results

t-SNE plots of representations learned by two SSL methods on the first 10 classes of CIFAR-100.

- a) ActiveMatch trained with 2000 labels.
- b) FixMatch trained with 2000 labels.

Results

CIFAR-10

Method	50 labels	100 labels	200 labels
Fully Supervised [1]	96.23	96.23	96.23
MixMatch [2]	57.36	71.82	86.76
FixMatch [3]	75.16	88.99	91.39
ActiveMatch (ours)	78.25	89.24	92.20

CIFAR-100

Method	500 labels	1000 labels	2000 labels
Fully Supervised	80.27	80.27	80.27
MixMatch	18.67	32.64	48.08
FixMatch	36.62	47.64	56.12
ActiveMatch (ours)	40.26	52.20	60.33

SVHN

Method	100 labels	200 labels
Fully Supervised	98.41	98.41
MixMatch	80.33	95.62
FixMatch	97.00	97.55
ActiveMatch (ours)	96.97	97.47

Ablation Study

Method	100 labels	200 labels
ActiveMatch	89.24	92.20
ActiveMatch (without AL)	87.76	89.91
ActiveMatch (without $\mathcal{L}_{\mathcal{S}}^{cl}$)	87.34	88.89

[1] K. Zhang, et al, Residual networks, IEEE TCSVT, 2018.

[2] D. Berthelot, et al, Mixmatch, NeurIPS, 2019. [3] K. Sohn, et al, Fixmatch, NeurIPS, 2020.

Conclusion

- ActiveMatch leverages a relatively small labeled dataset and a large unlabeled dataset to achieve state-of-the-art performance on the image classification task.
- ActiveMatch shows how active learning can help to improve the performance of SSL.
- We believe that it is worth further investigations on how advanced active learning algorithms can provide more benefits to semi-supervised learning.

^{*} These two authors have equal contributions to this work.

⁺ Corresponding author.