LOG3430 - MÉTHODES DE TEST ET DE VALIDATION DU LOGICIEL

LABORATOIRE 1

Tests unitaires

Département de génie informatique et de génie logiciel École Polytechnique de Montréal

Amir Cherkaoui Eddeqaqi - 1980843 Mike Folepe - 1894509 Etienne Chevalier Tittley - 2021242

Groupe 2

RAPPORT DU TP1:

Partie 1:

Couverture de crud.py avec les fonctions du fichier test_crud.py :

Name	Stmts	Miss	Cover
/opt/homebrew/lib/python3.9/site-packages/_distutils_hack/initpy	 96	91	 5%
crud.py	226	72	68%
test_crud.py	240	0	100%

• Couverture de crud.py après avoir ajouté des tests supplémentaires :

Name	Stmts	Miss	Cover
/opt/homebrew/lib/python3.9/site-packages/_distutils_hack/initpy crud.py test_crud.py	96 226 300	91 43 0	 5% 81% 100%

Les tests que j'ai ajouté pour améliorer la couverture sont (par ordre d'apparition):

- -Un test qui verifie que la fonction get_new_user_id() le bon id (selon la maniere dont les ids sont attribués dans le code).
- -Même chose pour l'id de groupe.
- -Un test qui verifie si convert to unix() convertit correctement en unix timestamp.
- -Un test qui verifie que la fonction add_new_user() retourne False si l'email donné n'est pas ecrit correctement.
- -Un test qui verifie que la fonction add_new_group() retourne False si un ou plusieurs membres d'un groupe n'existent pas.
- -Un test qui verifie que la fonction update_users() retourne False si les parametres donnés ne correspondent pas.
- -Un test qui verifie que la fonction update_users() retourne False si la date de dernier message est plus recente que la date de dernier message passé.
- -Un test qui verifie que la fonction update_users() retourne False si la date de premier message est plus vieille que la date du dernier message passé.
- -Un test qui verifie que la fonction update_users() retourne False si la valeur de SpanM donnée est inferieure à 0.
- -Un test qui verifie que la fonction update_users() retourne False si la valeur de Trust donnée est superieure a 100.
- -Un test qui verifie que la fonction update users() retourne False si un groupe donné n'existe pas.
- -Un test qui verifie que la fonction update_users() retourne False si la taille de la liste des membres n'est pas correcte.

• Couverture de email analyzer.py avec les fonctions du fichier test email analyzer.py:

PS C:\Users\Étienne\Desk	ctop\L0G3	430_TP	1\L0G343	0\TP1>	coverage	report	
Name	Stmts	Miss	Cover				
email_analyzer.py	46	4	91%				
test_email_analyzer.py	49	0	100%				
text_cleaner.py	29	18	38%				
TOTAL	124	22	82%		_		

• Couverture de vocabulary_creator.py avec les fonctions de tests de base :

Name	Stmts	Miss	Cover
test_vocabulary_creator.py text_cleaner.py vocabulary_creator.py	32 29 82	1 18 21	97% 38% 74%
TOTAL	143	40	72%

• Couverture de vocabulary creator.py après avoir ajouté des tests supplémentaires :

PS C:\Users\Étienne\Desktop\	L0G3430_	TP1\L00	G3430\TP1>	coverage	report
Name	Stmts	Miss	Cover		
test_vocabulary_creator.py	53	Θ	100%		
text_cleaner.py	29	18	38%		
vocabulary_creator.py	82	6	93%		
TOTAL	164	24	85%		

Les tests ajoutés pour améliorer la couverture sont:

 Le test test_create_vocab_ham_Returns_vocabulary_with_correct_values qui permet de verifier que le bon dictionnaire avec les bonnes probabilités soit généré par la fonction create_vocab pour les courriels considérés bons Le test
 test_write_data_to_vocab_file_successfully_write_vocabulary_with_correct_valuesqui
 permet de verifier si la fonction write_data_to_vocab_file écrit le bon dictionnaire généré
 par la fonction create_vocab dans le fichier vocabulary.json

Partie 2:

```
def utilisater_trust_calcul(self, user_id):
       Description: fonction pour calculer le niveau de confiance (Trust) de l'utilisateur.
       Sortie: retourne le niveau de confiance, seulement si celui si est entre
               0 et 100. Dans le cas contraire, retourne false
   time_first_seen_message = self.crud.get_user_data(user_id, "Date_of_first_seen_message")
   time_last_seen_message = self.crud.get_user_data(user_id, "Date_of_last_seen_message")
   NHam = self.crud.get_user_data(user_id, "HamN")
   NSpam = self.crud.get_user_data(user_id, "SpamN")
   groups = self.crud.get_user_data(user_id, "Groups")
   trust2 = 0
   nb_groups = 0
   trust1 = time_last_seen_message * NHam / time_first_seen_message * (NHam + NSpam)
   for group in groups:
       trust2 += self.crud.get_groups_data(self.crud.get_group_id(group), "Trust")
       nb_groups += 1
   trust2 = trust2 / nb_groups
   if trust2 < 60:
       trust = trust2
   elif trust1 > 100:
       trust = 100
   else:
       trust = 0.6 * trust1 + 0.4 * trust2 / 2 Amir Cherkaoui, 6 days ago • Rectification
   if 0 <= trust <= 100:
       return trust
    return False
```


Tableau des Def, C-Use, P-Use selon les nœuds définis dans le CFG

Noeud	Def	C-Use	P-Use
1	Time_first_seen_message,		
	Time_last_seen_message,		
	NHam, NSpam, Trust2,		
	nb_groups, Groups		
2	Trust1	Time_first_seen_message,	
		Time_last_seen_message,	
		NHam, NSpam	
3			Groups
4	Trust2, nb_groups	Trust2, nb_groups	
5	Trust2	Trust2, nb_groups	
6			Trust2
7	Trust	Trust2	
8			Trust1
9	Trust	Trust1, Trust2	
10	Trust		
11			Trust
12		Trust	
13			

All definition coverage

DC-Paths de chaque definition:

- Time_first_seen_message:nœud1-> Path1 = {1,2}
- Time last seen message: noeud 1 -> Path 2 = $\{1, 2\}$
- NHam: noeud 1 -> Path $3 = \{1, 2\}$
- NSpam: noeud 1 -> Path $4 = \{1, 2\}$
- Nb_groups: noeud 1, 5 -> Path5 = $\{1, 2, 3, 4\}$ et Path6 = $\{4, 3, 5\}$
- Trust2: nœud 1, 5, 6 -> Path7 = $\{1, 2, 3, 4\}$, Path 8 = $\{4, 3, 5\}$ et Path9 = $\{5, 6, 8, 9\}$
- Groups: noeud $3 \rightarrow Path_{10} = \{1, 2, 3\}$
- Trust1: noeud 2 -> Path11 = $\{2, 3, 4, 3, 5, 6, 8, 9\}$
- Trust: noeud 8, 10, 11 -> Path12 = $\{7, 11, 12\}$ et Path13 = $\{9, 11, 12\}$ et Path14 = $\{10, 11, 12\}$

Jeu de tests

On prendles Paths suivants:

- PathA = {1, 2, 3, 4, 3, 5, 6, 7, 11, 12} couvre Path1, Path2, Path3, Path4, Path10, Path12
- PathB = {1, 2, 3, 4, 3, 5, 6, 8, 9, 11, 12} couvre Path5, Path6, Path7, Path8, Path14
- PathC = {1, 2, 3, 4, 3, 5, 6, 8, 10, 11, 12} couvre Path9, Path 11, Path13

- D1 = <{user_id faisant partie d'un groupe = [Trust = 50]}, return = {50}>
- D2 = <{user_id = [Date_of_last_seen_message = 1896 844 800.0, Date_of_first_seen_message = 5034560, NHam = 15, NSpam = 5], faisant partie d'un groupe = [Trust = 100]}, return = {100}>

• D3 = <{user_id = [Date_of_last_seen_message = 1000.0, Date_of_first_seen_message = 1000, NHam = 20, NSpam = 40], faisant partie d'un groupe = [Trust = 100]}, return = {10.2}>

All C-Use coverage

DC-Paths partant de chaque noeud de définition des variables à chaque C-Use des variables :

- Time_first_seen_message:noeud1-> Path1 = {1, 2}
- Time last seen message: noeud 1 -> Path 2 = $\{1, 2\}$
- NHam: noeud 1 -> Path $3 = \{1, 2\}$
- NSpam: noeud 1 -> Path $4 = \{1, 2\}$
- Nb_groups: noeud 1, 5 -> Path5 = $\{1, 2, 3, 4\}$ et Path6 = $\{4, 3, 4\}$ et Path7 = $\{4, 3, 5\}$
- Trust2: nœud 1, 5 -> Path8 = $\{1, 2, 3, 4\}$ et Path9 = $\{4, 3, 4\}$ et Path10 = $\{4, 3, 5\}$ et Path11 = $\{5, 6, 8, 9\}$
- Trust1: nœud 2 -> Path12 = $\{2, 3, 4, 3, 5, 6, 8, 9\}$
- Trust: nœud 8, 10, 11 -> Path13 = $\{7, 11, 12\}$ et Path14 = $\{9, 11, 12\}$ et Path15 = $\{10, 11, 12\}$

Jeu de tests

On prendles Paths suivants:

- PathA = {1, 2, 3, 4, 3, 5, 6, 7, 11, 12} couvre Path1, Path2, Path3, Path4, Path5, Path7, Path8, Path10, Path13
- PathB = {1, 2, 3, 4, 3, 5, 6, 8, 10, 11, 12} couvre Path15
- PathC = {1, 2, 3, 4, 3, 4, 3, 5, 6, 8, 9, 11, 12} couvre Path6, Path9, Path11, Path12, Path14

- D1 = <{user id faisant partie d'un groupe [Trust = 50]}, return = {50}>
- D2 = <{user_id = [Date_of_last_seen_message = 1896 844 800.0, Date_of_first_seen_message = 5034560, NHam = 15, NSpam = 5], faisant partie d'un groupe = [Trust = 100]}, return = {100}>
- D3 = <{user_id = [Date_of_last_seen_message = 1000.0, Date_of_first_seen_message = 1000, NHam = 20, NSpam = 40], faisant partie de 2 groupes = [Trust = 100] et [Trust = 50]}, return = {15.2}>

All P-Use coverage

DC-Paths partant de chaque noeud de définition des variables à chaque P-Use des variables :

- Trust2: $noeud 6 -> Path1 = \{5, 6\}$
- Trust1: $nœud 2 -> Path2 = \{2, 3, 4, 3, 5, 6, 8\}$
- Trust: nœud 8, 10, 11 -> Path3 = $\{7, 11\}$ et Path4 = $\{9, 11\}$ et Path5 = $\{10, 11\}$
- Groups: $nœud 1 -> Path6 = \{1, 2, 3\}$

Jeu de tests

On prendles Paths suivants:

- PathA = {1, 2, 3, 4, 3, 5, 6, 7, 11, 12} couvre Path1, Path3, Path6
- PathB = {1, 2, 3, 4, 3, 5, 6, 8, 10, 11, 12} couvre Path2, Path5
- PathC = {1, 2, 3, 4, 3, 4, 3, 5, 6, 8, 9, 11, 12} couvre Path4

- D1 = <{user_id faisant partie d'un groupe [Trust = 50]}, return = {50}>
- D2 = <{user_id = [Date_of_last_seen_message = 1896844800.0, Date_of_first_seen_message = 5034560, NHam = 15, NSpam = 5], faisant partie d'un groupe = [Trust = 100]}, return = {100}>
- D3 = <{user_id = [Date_of_last_seen_message = 1000.0, Date_of_first_seen_message = 1000, NHam = 20, NSpam = 40], faisant partie de 2 groupes = [Trust = 100] et [Trust = 50]}, return = {15.2}>

All-Use coverage

DC-Paths partant de chaque noeud de définition des variables à chaque C-Use et P-Use des variables :

- Time_first_seen_message:noeud1-> Path1 = C-Use{1,2}
- Time_last_seen_message: noeud1 -> Path2 = C-Use{1, 2}
- NHam: noeud1-> Path3 = C-Use $\{1, 2\}$
- NSpam: noeud 1 -> Path4 = C-Use $\{1, 2\}$
- Nb_groups: noeud 1, 5 -> Path5 = C-Use{1, 2, 3, 4} et Path6 = C-Use{4, 3, 4} et Path7 = C-Use{4, 3, 5}
- Trust2: nœud 1, 5, 6 -> Path8 = C-Use $\{1, 2, 3, 4\}$ et Path9 = C-Use $\{4, 3, 4\}$ et Path10 = C-Use $\{4, 3, 5\}$ et Path11 = C-Use $\{5, 6, 8, 9\}$ et Path12 = P-Use $\{5, 6\}$
- Trust1: $nœud 2 \rightarrow Path13 = C-Use\{2, 3, 4, 3, 5, 6, 8, 9\}$ et $Path14 = P-Use\{2, 3, 4, 3, 5, 6, 8\}$
- Trust: nœud 8, 10, 11 -> Path15 = C-Use{7, 11, 12} et Path16 = C-Use{9, 11, 12} et Path17 = C-Use{10, 11, 12} et Path18 = P-Use{7, 11} et Path19 = P-Use{9, 11} et Path20 = P-Use{10, 11}
- Groups: nœud 1 -> Path21 = $\{1, 2, 3\}$

Jeu de tests

On prendles Paths suivants:

- PathA = {1, 2, 3, 4, 3, 5, 6, 7, 11, 12} couvre Path1, Path2, Path3, Path4, Path5, Path7, Path8, Path10, Path12, Path15, Path18, Path21
- PathB = {1, 2, 3, 4, 3, 5, 6, 8, 10, 11, 12} couvre Path14, Path17, Path20
- PathC = {1, 2, 3, 4, 3, 4, 3, 5, 6, 8, 9, 11, 12} couvre Path6, Path9, Path11, Path13, Path16, Path19

- D1 = <{user_id faisant partie d'un groupe [Trust = 50]}, return = {50}>
- D2 = <{user_id = [Date_of_last_seen_message = 1896 844 800.0, Date_of_first_seen_message = 5034560, NHam = 15, NSpam = 5], faisant partie d'un groupe = [Trust = 100]}, return = {100}>
- D3 = <{user_id = [Date_of_last_seen_message = 1000.0, Date_of_first_seen_message = 1000, NHam = 20, NSpam = 40], faisant partie de 2 groupes = [Trust = 100] et [Trust = 50]}, return = {15.2}>