Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# FCC PART 15 SUBPART C MEASURMENT AND TEST REPORT

For

KREAFUNK ApS

Industrivej 29, 7430 Ikast, Denmark

**E.U.T.: 2.0CH WOODEN SPEAKER** 

Model Name: bshelf model 1.1



FCC ID: 2ACVCLF31BT

Report Number: NTC1411640F

Test Date(s): November 27, 2014 to May 20, 2015

Report Date(s): May 27, 2015

Prepared by

Dongguan Nore Testing Center Co., Ltd.

Building D, Gaosheng Science & Technology Park, Zhouxi Longxi Road, Nancheng District, Dongguan, Guangdong, China.

Tel: +86-769-22022444

Fax: +86-769-22022799

**Prepared By** 

Approved & Authorized Signer

Sunm Lv Q.A. Director

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Dongguan Nore Testing Center Co., Ltd. The test results referenced from this report are relevant only to the sample tested.



# **Table of Contents**

| 1. | GENERAL INFORMATION                              | 4    |
|----|--------------------------------------------------|------|
|    | 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST | 4    |
|    | 1.2 RELATED SUBMITTAL(S) / GRANT (S)             |      |
|    | 1.3 TEST METHODOLOGY                             |      |
|    | 1.4 EQUIPMENT MODIFICATIONS                      |      |
|    | 1.5 TEST FACILITY AND LOCATION                   |      |
|    | 1.6 SUMMARY OF TEST RESULTS                      |      |
| 2. | SYSTEM TEST CONFIGURATION                        | 7    |
|    | 2.1 EUT CONFIGURATION                            |      |
|    | 2.2 SPECIAL ACCESSORIES                          |      |
|    | 2.3 DESCRIPTION OF TEST MODES                    |      |
|    | 2.4 EUT EXERCISE                                 |      |
| _  | 2.5 SUPPORT DEVICE                               |      |
| 3. | CONDUCTED EMISSIONS TEST                         |      |
|    | 3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |      |
|    | 3.2 TEST CONDITION                               |      |
| _  | 3.3 MEASUREMENT RESULTS                          |      |
| 4. | RADIATED EMISSION TEST                           |      |
|    | 4.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |      |
|    | 4.2 MEASUREMENT PROCEDURE                        |      |
|    | 4.3 LIMIT                                        |      |
| _  | 4.4 MEASUREMENT RESULTS                          |      |
| 5. | CHANNEL SEPARATION TEST                          |      |
|    | 5.1 MEASUREMENT PROCEDURE                        |      |
|    | 5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |      |
| _  | 5.3 MEASUREMENT RESULTS                          |      |
| 6. |                                                  | . 23 |
|    | 6.1 MEASUREMENT PROCEDURE                        |      |
|    | 6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |      |
|    | 6.3 MEASUREMENT RESULTS                          |      |
| 7. | HOPPING CHANNEL NUMBER                           | . 29 |
|    | 7.1 MEASUREMENT PROCEDURE                        | 29   |
|    | 7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |      |
|    | 7.3 MEASUREMENT RESULTS                          | 29   |



| 8. TIME OF OCCUPANCY (DWELL TIME) | 31 |
|-----------------------------------|----|
| 8.1 MEASUREMENT PROCEDURE         | 31 |
| 8.2 MEASUREMENT RESULTS           | 31 |
| 9. MAXIMUM PEAK OUTPUT POWER      | 37 |
| 9.1 MEASUREMENT PROCEDURE         | 37 |
| 9.2 MEASUREMENT RESULTS           | 37 |
| 10. BAND EDGE                     | 43 |
| 10.1 Measurement Procedure        | 43 |
| 10.2 LIMIT                        | 43 |
| 10.3 MEASUREMENT RESULTS          | 44 |
| 11. ANTENNA APPLICATION           | 45 |
| 11.1 ANTENNA REQUIREMENT          | 51 |
| 11.2 MEASUREMENT RESULTS          | 51 |
| 12. CONDUCTED SPURIOUS EMISSIONS  | 52 |
| 12.1 MEASUREMENT PROCEDURE        | 52 |
| 12.2 MEASUREMENT RESULTS          |    |
| 13. TEST EQUIPMENT LIST           | 56 |

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



### 1. GENERAL INFORMATION

### 1.1 Product Description for Equipment under Test

This device is a multifunction Bluetooth speaker. It's powered by DC 18V come from Adapter. For more details features, please refer to User's Manual.

Manufacturer : Guoguang Electric (Zhongshan) Ltd.

Address : #18 Chigang Road, YongNing Estate, XiaoLan Town,

ZhoingShan, GuangDong, China

Power Supply : DC 18V Come from adapter

Adapter M/N: GFP451DA-1825B-1

Input: AC 100-240V 50-60Hz 1.2A

Output: DC 18V 2.5A

Model name : bshelf model 1.1

Product HW version : 1.1
Product SW version : N/A

Radio HW version : APB8202 V1.2

Radio SW version : 2.1+EDR

Test SW version : CSR Bluesuite\_V3.0 RF Power setting in test : For GFSK: 0, 63;

SW For  $\pi/4$ -DQPSK, 8DPSK: 0, 105

Frequency: : 2402-2480MHz

Modulation : GFSK,  $\pi/4$ -DQPSK, 8DPSK

Number of Channel : 79
Channel space : 1MHz
Antenna Type : PCB

Antenna Gain : 0 dBi (declared by manufacturer)

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



### 1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2ACVCLF31BT filing to comply with Section 15.247 of the FCC Part 15 (2014), Subpart C Rule.

### 1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013) and DA 00-705. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters.

### 1.4 Equipment Modifications

Not available for this EUT intended for grant.

### 1.5 Test Facility and Location

Listed by FCC, August 02, 2011 The Certificate Registration Number is 665078.

Listed by Industry Canada, July 01, 2011 The Certificate Registration Number is 9743A-1.

Dongguan NTC Co., Ltd.

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China



# 1.6 Summary of Test Results

| FCC Rules                      | Description Of Test               | Result    |
|--------------------------------|-----------------------------------|-----------|
| §15.247(a)(1)                  | Channel Separation test           | Compliant |
| §15.247(a)(1)                  | 20dB Bandwidth                    | Compliant |
| §15.247(a)(1)(iii)             | Hopping Channel Number            | Compliant |
| §15.247(a)(1)(iii)             | Time of Occupancy<br>(Dwell Time) | Compliant |
| §15.247(b)                     | Max Peak output Power test        | Compliant |
| §15.247(d)                     | Band edge test                    | Compliant |
| §15.207 (a)                    | AC Power Conducted Emission       | Compliant |
| §15.247(d),§15.209,<br>§15.205 | Radiated Emission                 | Compliant |
| §15.203                        | Antenna Requirement               | Compliant |
| §15.247(d)                     | Conducted Spurious Emission       | Compliant |

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



## 2. System Test Configuration

### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

### 2.2 Special Accessories

Not available for this EUT intended for grant.

### 2.3 Description of test modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and normal mode is programmed. The Lowest, middle and highest channel were chosen for testing, and all packets DH1, DH3 and DH5 mode in all modulation type GFSK,  $\pi/4$ -DQPSK, 8DPSK were tested.

### 2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

### 2.5 Support Device

None

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# 3. Conducted Emissions Test

### 3.1 Test SET-UP (Block Diagram of Configuration)



### 3.2 Test Condition

Test Requirement: FCC 15.207

Frequency Range: 150KHz ~ 30MHz

**Detector: RBW 9KHz, VBW 30KHz** 

**Operation Mode: BT Mode** 

### 3.3 Measurement Results

Please refer to following plots.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT





# Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799

Nore Web: Http://www.ntc-c.com



Report No.: bshelf model 1.1

Test Standard: FCC PART 15B\_Class B\_QP

Test item: **Conducted Emission** 

KREAFUNK 26(C) / 60 % Applicant: Temp.( )/Hum.(%): Product: 2.0CH WOODEN SPEAKER AC 120V/60Hz Power Rating: Model No.: bshelf model 1.1 Lecdon Test Engineer:

Phase:

L1

Test Mode: BT Mode

Remark:

| No. | Frequency<br>(MHz) | Factor<br>(dBuV) | Reading<br>(dBuV) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|------------------|-------------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.1500             | 10.80            | 34.40             | 45.20           | 65.99           | -20.79         | QP       | Р   |        |
| 2   | 0.1500             | 10.80            | 19.10             | 29.90           | 55.99           | -26.09         | AVG      | Р   |        |
| 3   | 0.1740             | 10.80            | 32.00             | 42.80           | 64.76           | -21.96         | QP       | Р   |        |
| 4   | 0.1740             | 10.80            | 12.30             | 23.10           | 54.76           | -31.66         | AVG      | Р   |        |
| 5   | 0.1940             | 10.80            | 31.50             | 42.30           | 63.86           | -21.56         | QP       | Р   |        |
| 6   | 0.1940             | 10.80            | 13.10             | 23.90           | 53.86           | -29.96         | AVG      | Р   |        |
| 7   | 0.2140             | 10.80            | 30.00             | 40.80           | 63.04           | -22.24         | QP       | А   |        |
| 8   | 0.2140             | 10.80            | 12.30             | 23.10           | 53.04           | -29.94         | AVG      | Р   |        |
| 9   | 0.3980             | 10.80            | 18.00             | 28.80           | 57.89           | -29.09         | QP       | Ъ   |        |
| 10  | 0.3980             | 10.80            | 14.80             | 25.60           | 47.89           | -22.29         | AVG      | Р   |        |
| 11  | 9.4900             | 10.80            | 23.10             | 33.90           | 60.00           | -26.10         | QP       | Р   |        |
| 12  | 9.4900             | 10.80            | 17.30             | 28.10           | 50.00           | -21.90         | AVG      | Р   |        |

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT





Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799

Web: Http://www.ntc-c.com



Report No.: bshelf model 1.1

Test Standard: FCC PART 15B\_Class B\_QP

Test item: Conducted Emission

KREAFUNK Applicant: Temp.( )/Hum.(%): 26(C) / 60 % Product: 2.0CH WOODEN SPEAKER AC 120V/60Hz Power Rating: Model No.: bshelf model 1.1 Test Engineer: Lecdon

Phase:

Test Mode: BT Mode

Remark:

| No. | Frequency<br>(MHz) | Factor<br>(dBuV) | Reading<br>(dBuV) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|------------------|-------------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.1500             | 10.80            | 33.90             | 44.70           | 65.99           | -21.29         | QP       | Р   |        |
| 2   | 0.1500             | 10.80            | 14.60             | 25.40           | 55.99           | -30.59         | AVG      | Р   |        |
| 3   | 0.1700             | 10.80            | 30.00             | 40.80           | 64.96           | -24.16         | QP       | Р   |        |
| 4   | 0.1700             | 10.80            | 14.50             | 25.30           | 54.96           | -29.66         | AVG      | Р   |        |
| 5   | 0.1900             | 10.80            | 27.60             | 38.40           | 64.03           | -25.63         | QP       | Р   |        |
| 6   | 0.1900             | 10.80            | 11.30             | 22.10           | 54.03           | -31.93         | AVG      | Р   |        |
| 7   | 0.3980             | 10.80            | 16.70             | 27.50           | 57.89           | -30.39         | QP       | Р   |        |
| 8   | 0.3980             | 10.80            | 15.10             | 25.90           | 47.89           | -21.99         | AVG      | Р   |        |
| 9   | 8.3059             | 10.80            | 21.30             | 32.10           | 60.00           | -27.90         | QP       | Р   |        |
| 10  | 8.3059             | 10.80            | 16.20             | 27.00           | 50.00           | -23.00         | AVG      | Р   |        |
| 11  | 9.8817             | 10.80            | 21.40             | 32.20           | 60.00           | -27.80         | QP       | Р   |        |
| 12  | 9.8817             | 10.80            | 17.40             | 28.20           | 50.00           | -21.80         | AVG      | Р   |        |



### 4. Radiated Emission Test

### 4.1 Test SET-UP (Block Diagram of Configuration)

Radiated Emission Test Set-Up, Frequency Below 30MHz



# Radiated Emission Test Set-Up, Frequency Below 1GHz



Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



### Radiated Emission Test Set-Up, Frequency above 1GHz



### **4.2 Measurement Procedure**

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. Above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi- anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- e. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

For 30MHz to 1GHz:

Sept the spectrum analyzer as: RBW=120kHz, VBW=300kHz, Detector=Quasi-Peak

For Above 1GHz:

Set the spectrum analyzer as: RBW=1MHz, VBW=3MHz, Detector=Peak. Set the spectrum analyzer as: RBW=1MHz, VBW=10Hz, Detector=Peak.

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



During the radiated emission test, the spectrum analyzer was set with the following

configurations:

| Frequency Band (MHz) | Level   | Resolution Bandwidth | Video Bandwidth |
|----------------------|---------|----------------------|-----------------|
| 30 to 1000           | QP      | 120 kHz              | 300 kHz         |
| Above 1000           | Peak    | 1 MHz                | 3 MHz           |
| Above 1000           | Average | 1 MHz                | 10 Hz           |

### 4.3 Limit

| Frequency range | Distance Meters | Field Strengths Limit |
|-----------------|-----------------|-----------------------|
| MHz             |                 | μV/m                  |
| 0.009 ~ 0.490   | 300             | 2400/F(kHz)           |
| 0.490 ~ 1.705   | 30              | 24000/F(kHz)          |
| 1.705 ~ 30      | 30              | 30                    |
| 30 ~ 88         | 3               | 100                   |
| 88 ~ 216        | 3               | 150                   |
| 216 ~ 960       | 3               | 200                   |
| Above 960       | 3               | 500                   |

Remark : (1) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

### 4.4 Measurement Results

#### PASS

Please refer to the following pages.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT





# Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799

Web: Http://www.ntc-c.com



Test Distance:

Report No.: bshelf model 1.1

Test Standard: FCC Part 15\_Class B\_3M

Test item: Radiation Emission Ant. Polarization: Horizontal Applicant: KREAFUNK Temp.(C)/Hum.(%): 21(C) / 55 % AC 120V/60Hz Product: 2.0CH WOODEN SPEAKER Power Rating: Model No.: bshelf model 1.1 Test Engineer: Jason

TX(BT 2.1) Test Mode:

Remark:

| No. | Frequency<br>(MHz) | Factor<br>(dB/m) | Reading<br>(dBuV) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|------------------|-------------------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 87.2300            | -14.61           | 34.42             | 19.81             | 40.00             | -20.19         | QP       |                |                | Р   |        |
| 2   | 115.3600           | -13.04           | 36.46             | 23.42             | 43.50             | -20.08         | QP       |                |                | Р   |        |
| 3   | 129.9100           | -15.15           | 39.74             | 24.59             | 43.50             | -18.91         | QP       |                |                | Р   |        |
| 4   | 167.7400           | -14.89           | 34.39             | 19.50             | 43.50             | -24.00         | QP       |                |                | Р   |        |
| 5   | 191.9900           | -13.51           | 35.35             | 21.84             | 43.50             | -21.66         | QP       |                |                | Р   |        |
| 6   | 239.5200           | -12.06           | 35.61             | 23.55             | 46.00             | -22.45         | QP       |                |                | Р   |        |

Note: Level=Reading+Factor.

Margin=Limit-Level.

Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT





## Dongguan NTC Co., Ltd.

Tel:+86-769-22022444 Fax:+86-769-22022799

Web: Http://www.ntc-c.com

Test Time: 2014-11-27 16:11:13

Test Distance: Ant. Polarization:

Power Rating:

Test Engineer:

Temp.(C)/Hum.(%):

Vertical

AC 120V/60Hz

Jason

21(C) / 55 %



Report No.: bshelf model 1.1

Test Standard: FCC Part 15\_Class B\_3M

Test item: Radiation Emission

Applicant: KREAFUNK

Product: 2.0CH WOODEN SPEAKER

Model No.: bshelf model 1.1

Test Mode: TX(BT 2.1)

Remark:

| No. | Frequency<br>(MHz) | Factor<br>(dB/m) | Reading<br>(dBuV) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|------------------|-------------------|-------------------|-------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 51.3400            | -13.46           | 28.80             | 15.34             | 40.00 | -24.66         | QP       |                |                | Р   |        |
| 2   | 86.2600            | -17.87           | 32.54             | 14.67             | 40.00 | -25.33         | QP       |                |                | Р   |        |
| 3   | 115.3600           | -16.04           | 34.23             | 18.19             | 43.50 | -25.31         | QP       |                |                | Р   |        |
| 4   | 172.5900           | -17.65           | 29.47             | 11.82             | 43.50 | -31.68         | QP       |                |                | Р   |        |
| 5   | 191.9900           | -16.51           | 33.10             | 16.59             | 43.50 | -26.91         | QP       |                |                | Р   |        |
| 6   | 232.7300           | -15.33           | 29.38             | 14.05             | 46.00 | -31.95         | QP       |                |                | Р   |        |

Note: Level=Reading+Factor.

Margin=Limit-Level.

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



Modulation: 8DPSK (the worst case)

Frequency Range: 1-25GHz Test Date: December 05, 2014

Test Result: PASS Temperature : 24  $^{\circ}$ C Measured Distance: 3m Humidity : 53  $^{\circ}$ 

Test By: Sance

| Freq. (MHz) | Ant.Pol.<br>(H/V)             | Rea<br>Level( | •     | Factor    | Emissio<br>(dBı |          | Limit 3m<br>(dBuV/m) |       | Margin<br>(dB) |        |
|-------------|-------------------------------|---------------|-------|-----------|-----------------|----------|----------------------|-------|----------------|--------|
| (IVII IZ)   | (11/7)                        | PK            | AV    | (dB/m)    | PK              | AV       | PK                   | AV    | PK             | AV     |
|             | Operation Mode: TX Mode (Low) |               |       |           |                 |          |                      |       |                |        |
| 4804        | V                             | 47.74         | 28.24 | 14.63     | 62.37           | 42.87    | 74.00                | 54.00 | -11.63         | -11.13 |
| 7206        | V                             | 39.52         | 20.93 | 20.68     | 60.20           | 41.61    | 74.00                | 54.00 | -13.80         | -12.39 |
|             |                               |               |       |           |                 |          |                      |       |                |        |
| 4804        | Н                             | 49.47         | 30.83 | 14.63     | 64.10           | 45.46    | 74.00                | 54.00 | -9.90          | -8.54  |
| 7206        | Н                             | 39.37         | 25.13 | 20.68     | 60.05           | 45.81    | 74.00                | 54.00 | -13.95         | -8.19  |
|             |                               |               |       |           |                 |          |                      |       |                |        |
|             |                               |               | Ope   | ration Mo | ode: TX N       | lode (Mi | d)                   |       |                |        |
| 4882        | V                             | 48.95         | 30.24 | 14.97     | 63.92           | 45.21    | 74.00                | 54.00 | -10.08         | -8.79  |
| 7323        | V                             | 39.52         | 21.59 | 20.91     | 60.43           | 42.50    | 74.00                | 54.00 | -13.57         | -11.50 |
|             |                               |               |       |           |                 |          |                      |       |                |        |
| 4882        | Н                             | 47.69         | 27.27 | 14.97     | 62.66           | 42.24    | 74.00                | 54.00 | -11.34         | -11.76 |
| 7323        | Н                             | 37.90         | 19.63 | 20.91     | 58.81           | 40.54    | 74.00                | 54.00 | -15.19         | -13.46 |
|             |                               |               |       |           |                 |          |                      |       |                |        |
|             |                               |               | Oper  | ation Mo  | de: TX M        | ode (Hig | gh)                  |       |                |        |
| 4960        | V                             | 47.20         | 34.77 | 15.30     | 62.50           | 50.07    | 74.00                | 54.00 | -11.50         | -3.93  |
| 7440        | V                             | 39.53         | 25.58 | 21.16     | 60.69           | 46.74    | 74.00                | 54.00 | -13.31         | -7.26  |
|             |                               |               |       |           |                 |          |                      |       |                |        |
| 4960        | Н                             | 49.27         | 34.04 | 15.30     | 64.57           | 49.34    | 74.00                | 54.00 | -9.43          | -4.66  |
| 7440        | Н                             | 39.94         | 25.43 | 21.16     | 61.10           | 46.59    | 74.00                | 54.00 | -12.90         | -7.41  |
|             |                               |               |       |           |                 |          |                      |       |                |        |

**Note:** (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# 5. Channel Separation test

#### **5.1 Measurement Procedure**

Minimum Hopping Channel Carrier Frequency Separation, FCC Rule 15.247(a)(1):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable, and using the MARKER and Max-Hold function to record the separation of two adjacent channels.

### **5.2 Test SET-UP (Block Diagram of Configuration)**



### **5.3 Measurement Results**

Modulation: GFSK,  $\pi/4$ -DQPSK, 8DPSK

RBW: 100KHz VBW: 300KHz Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 05, 2014

Temperature : 21  $^{\circ}$  Humidity : 55  $^{\circ}$ 

Test Result: PASS

| Charanal accorda | Chara al        | Compandian Dood | Cananatian Lineit |
|------------------|-----------------|-----------------|-------------------|
| Channel number   | Channel         | Separation Read | Separation Limit  |
|                  | frequency (MHz) | Value (KHz)     | (KHz)             |
|                  |                 | GFSK            |                   |
| Lowest           | 2402            | 1000            | >659              |
| Middle           | 2441            | 1000            | >659              |
| Highest          | 2480            | 1000            | >659              |
|                  | π/              | 4-DQPSK         |                   |
| Lowest           | 2402            | 1000            | >842.7            |
| Middle           | 2441            | 1005            | >833.3            |
| Highest          | 2480            | 1005            | >833.3            |
|                  |                 | 8DPSK           |                   |
| Lowest           | 2402            | 1005            | >830.1            |
| Middle           | 2441            | 1005            | >846.0            |
| Highest          | 2480            | 1000            | >842.7            |



### **GFSK Lowest Channel**



Date: 5.DEC.2014 14:07:23

### **GFSK Middle Channel**



Date: 5.DEC.2014 14:08:46



# **GFSK Highest Channel**



Date: 5.DEC.2014 14:09:55

# π/4-DQPSK Lowest Channel



Date: 5.DEC.2014 18:42:06



# π/4-DQPSK Middle Channel



Date: 5.DEC.2014 18:44:05

# $\pi/4\text{-DQPSK}$ Highest Channel



Date: 5.DEC.2014 18:45:15



# **8DPSK Lowest Channel**



Date: 5.DEC.2014 18:53:36

# **8DPSK Middle Channel**



Date: 5.DEC.2014 18:55:35

FCC ID: 2ACVCLF31BT



# 8DPSK Highest Channel



Date: 5.DEC.2014 18:57:02

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



### 6. 20dB Bandwidth

### **6.1 Measurement Procedure**

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a)(1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

### **6.2 Test SET-UP (Block Diagram of Configuration)**



#### **6.3 Measurement Results**

Refer to attached data chart.

Modulation: GFSK,  $\pi/4$ -DQPSK, 8DPSK

RBW: 30KHz VBW: 100KHz Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 05, 2014

Temperature : 21  $^{\circ}$ C Humidity : 52  $^{\circ}$ 

Test Result: PASS

| Channel frequency (MHz) | 20dB Down BW(kHz) |  |  |  |
|-------------------------|-------------------|--|--|--|
| GF                      | SK                |  |  |  |
| 2402                    | 659               |  |  |  |
| 2441                    | 659               |  |  |  |
| 2480                    | 659               |  |  |  |
| π/4-D                   | QPSK              |  |  |  |
| 2402                    | 1264              |  |  |  |
| 2441                    | 1250              |  |  |  |
| 2480                    | 1250              |  |  |  |
| 8D                      | PSK               |  |  |  |
| 2402                    | 1245              |  |  |  |
| 2441                    | 1269              |  |  |  |
| 2480                    | 1264              |  |  |  |



# **GFSK Lowest Channel**



Date: 5.DEC.2014 13:20:37

### **GFSK Middle Channel**



Date: 5.DEC.2014 13:21:31



# **GFSK Highest Channel**



Date: 5.DEC.2014 13:22:22

# π/4-DQPSK Lowest Channel





# π/4-DQPSK Middle Channel



Date: 5.DEC.2014 18:36:42

# $\pi/4$ -DQPSK Highest Channel





# **8DPSK Lowest Channel**



Date: 5.DEC.2014 18:50:17

### **8DPSK Middle Channel**



FCC ID: 2ACVCLF31BT



# 8DPSK Highest Channel



Date: 5.DEC.2014 18:52:11

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# 7. Hopping Channel Number

#### 7.1 Measurement Procedure

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a)(1)(iii):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, and the spectrum analyzer set to MAX HOLD readings were taken for 3-5 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

### 7.2 Test SET-UP (Block Diagram of Configuration)

| FIIT | Spectrum Analyzer |  |
|------|-------------------|--|
|      | opectium Analyzer |  |

#### 7.3 Measurement Results

Modulation GFSK,  $\pi/4$ -DQPSK, 8DPSK

RBW: 100KHz VBW: 300KHz Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 05, 2014

Temperature : 21  $^{\circ}$ C Humidity : 52  $^{\circ}$ 

Test Result: PASS

| Hopping Channel Frequency Range | Number of Hopping<br>Channels | Limit |
|---------------------------------|-------------------------------|-------|
| 2402-2480                       | 79                            | ≥15   |

The worst case: 8DPSK

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT





Date: 5.DEC.2014 19:19:29

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# 8. Time of Occupancy (Dwell Time)

### 8.1 Measurement Procedure

Average Channel Occupancy Time, FCC Ref:15.247(a)(1)(iii):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. The spectrum analyzer center frequency was set to one of the known hopping channels. The Sweep was set to 10 ms, the SPAN was set to Zero SPAN. The time duration of the transmissions so captured was measured with the Marker Delta function

### 8.2 Measurement Results

The maximum number of hopping channels in 31.6s (0.4s/Channel x 79 Channel)

Refer to attached data chart.

Modulation : GFSK,  $\pi/4$ -DQPSK, 8DPSK

RBW: 1MHz VBW: 3MHz Spectrum Detector: PK Test By: Sance Test Date: Dec. 05, 2014 Temperature:  $21^{\circ}$ C Test Result: PASS Humidity:  $52^{\circ}$ 

| Packet    | Frequency | Result                              | Limit  |  |
|-----------|-----------|-------------------------------------|--------|--|
|           | (MHz)     | (msec)                              | (msec) |  |
| GFSK      |           |                                     |        |  |
| DH1       | 2441      | 0.497 (ms)*(1600/(2*79))*31.6=159.0 | 400    |  |
| DH3       | 2441      | 1.751 (ms)*(1600/(4*79))*31.6=280.2 | 400    |  |
| DH5       | 2441      | 2.933 (ms)*(1600/(6*79))*31.6=312.9 | 400    |  |
| π/4-DQPSK |           |                                     |        |  |
| 2-DH1     | 2441      | 0.509 (ms)*(1600/(2*79))*31.6=162.9 | 400    |  |
| 2-DH3     | 2441      | 1.759 (ms)*(1600/(4*79))*31.6=281.4 | 400    |  |
| 2-DH5     | 2441      | 2.997 (ms)*(1600/(6*79))*31.6=319.7 | 400    |  |
| 8DPSK     |           |                                     |        |  |
| 3-DH1     | 2441      | 0.509 (ms)*(1600/(2*79))*31.6=162.9 | 400    |  |
| 3-DH3     | 2441      | 1.751 (ms)*(1600/(4*79))*31.6=280.2 | 400    |  |
| 3-DH5     | 2441      | 3.013 (ms)*(1600/(6*79))*31.6=321.4 | 400    |  |







Date: 5.DEC.2014 14:46:19

## **GFSK DH3**



Date: 5.DEC.2014 14:46:44



# **GFSK DH5**



Date: 5.DEC.2014 18:43:49

# π/4-DQPSK 2-DH1



Date: 5.DEC.2014 14:47:41

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



# π/4-DQPSK 2-DH3



Date: 5.DEC.2014 14:48:05

### π/4-DQPSK 2-DH5



Date: 5.DEC.2014 14:48:26



# **8DPSK 3-DH1**



Date: 5.DEC.2014 14:48:54

### **8DPSK 3-DH3**



Date: 5.DEC.2014 14:49:18

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT



# **8DPSK 3-DH5**



Date: 5.DEC.2014 14:49:43

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



#### 9. MAXIMUM PEAK OUTPUT POWER

#### 9.1 Measurement Procedure

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm. Cable loss was considered during this measurement.

#### 9.2 Measurement Results

Refer to attached data chart.

Modulation : GFSK,  $\pi/4$ -DQPSK, 8DPSK

RBW: 3MHz VBW: 3MHz

Spectrum Detector: PK Test Date: Dec. 05, 2014

Test By: Sance Temperature : 21  $^{\circ}$ C Test Result: PASS Humidity : 52  $^{\circ}$ 

| Channel<br>Frequency<br>(MHz) | Cable<br>Loss<br>dB | Peak Power output(mW) | Peak Power output(dBm) | Peak Power<br>Limit(dBm) | Pass/Fail |  |  |  |  |
|-------------------------------|---------------------|-----------------------|------------------------|--------------------------|-----------|--|--|--|--|
|                               | GFSK                |                       |                        |                          |           |  |  |  |  |
| 2402.00                       | 1.5                 | 0.27                  | -5.71                  | 30                       | PASS      |  |  |  |  |
| 2441.00                       | 1.5                 | 0.19                  | -7.20                  | 30                       | PASS      |  |  |  |  |
| 2480.00                       | 1.5                 | 0.13                  | -8.82                  | 30                       | PASS      |  |  |  |  |
| π/4-DQPSK                     |                     |                       |                        |                          |           |  |  |  |  |
| 2402.00                       | 1.5                 | 0.44                  | -3.56                  | 21                       | PASS      |  |  |  |  |
| 2441.00                       | 1.5                 | 0.36                  | -4.46                  | 21                       | PASS      |  |  |  |  |
| 2480.00                       | 1.5                 | 0.25                  | -6.03                  | 21                       | PASS      |  |  |  |  |
| 8DPSK                         |                     |                       |                        |                          |           |  |  |  |  |
| 2402.00                       | 1.5                 | 0.50                  | -3.05                  | 21                       | PASS      |  |  |  |  |
| 2441.00                       | 1.5                 | 0.38                  | -4.24                  | 21                       | PASS      |  |  |  |  |
| 2480.00                       | 1.5                 | 0.27                  | -5.76                  | 21                       | PASS      |  |  |  |  |



## **GFSK Lowest Channel**



Date: 5.DEC.2014 15:38:11

# **GFSK Middle Channel**



Date: 5.DEC.2014 15:38:24



# **GFSK Highest Channel**



Date: 5.DEC.2014 15:38:38

## π/4-DQPSK Lowest Channel



Date: 5.DEC.2014 18:35:48

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



## π/4-DQPSK Middle Channel



Date: 5.DEC.2014 18:36:00

# $\pi/4\text{-DQPSK}$ Highest Channel



Date: 5.DEC.2014 18:36:12



# **8DPSK Lowest Channel**



Date: 5.DEC.2014 18:36:37

### **8DPSK Middle Channel**



Date: 5.DEC.2014 18:36:52

FCC ID: 2ACVCLF31BT



# **8DPSK Highest Channel**



Date: 5.DEC.2014 18:37:04

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



### 10. Band Edge

#### 10.1 Measurement Procedure

Out of Band Conducted Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. The resolution bandwidth is set to 100KHz, and the video bandwidth set to 300KHz.

A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

For 30MHz to 1GHz:

Sept the spectrum analyzer as: RBW=120kHz, VBW=300kHz, Detector=Quasi-Peak

For Above 1GHz:

Set the spectrum analyzer as: RBW=1MHz, VBW=3MHz, Detector=Peak. Set the spectrum analyzer as: RBW=1MHz, VBW=10Hz, Detector=Peak.

During the radiated emission test, the spectrum analyzer was set with the following

configurations:

| Frequency Band (MHz) | Level   | Resolution Bandwidth | Video Bandwidth |
|----------------------|---------|----------------------|-----------------|
| 30 to 1000           | QP      | 120 kHz              | 300 kHz         |
| Above 1000           | Peak    | 1 MHz                | 3 MHz           |
|                      | Average | 1 MHz                | 10 Hz           |

#### **10.2 Limit**

In any 100KHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



#### 10.3 Measurement Results

Please see below test table and plots. For Radiated Emission

The worst case: GFSK

| Freq.<br>(MHz) | Ant.Pol.<br>(H/V) | Reading<br>Level(dBuV) |       | Factor (dB/m) | Emission Level (dBuV) |       | Limit 3m<br>(dBuV/m) |       | Margin<br>(dB) |        |
|----------------|-------------------|------------------------|-------|---------------|-----------------------|-------|----------------------|-------|----------------|--------|
|                |                   | PK                     | AV    | (UD/III)      | PK                    | AV    | PK                   | AV    | PK             | AV     |
| 2398.423       | Н                 | 42.04                  | 32.36 | 8.09          | 50.13                 | 40.45 | 74.00                | 54.00 | -23.87         | -13.55 |
| 2398.423       | V                 | 42.46                  | 33.27 | 8.09          | 50.55                 | 41.36 | 74.00                | 54.00 | -23.45         | -12.64 |
| 2485.220       | Н                 | 50.26                  | 35.42 | 8.38          | 58.64                 | 43.80 | 74.00                | 54.00 | -15.36         | -10.20 |
| 2485.272       | V                 | 48.95                  | 34.17 | 8.38          | 57.33                 | 42.55 | 74.00                | 54.00 | -16.67         | -11.45 |

**Note:** (1) Emission Level= Reading Level + Factor

(2) Factor= Antenna Gain + Cable Loss – Amplifier Gain

(3) Horn antenna used for the emission over 1000MHz.



### For RF Conducted

## **GFSK Lowest Channel**







Date: 5.DEC.2014 14:52:45



# **GFSK Highest Channel**



Date: 5.DEC.2014 14:54:33



Date: 5.DEC.2014 14:55:03



## π/4-DQPSK Lowest Channel



Date: 5.DEC.2014 18:46:05



Date: 5.DEC.2014 18:47:23



# $\pi/4\text{-DQPSK}$ Highest Channel



Date: 5.DEC.2014 18:48:04



Date: 5.DEC.2014 18:48:49



## **8DPSK Lowest Channel**



Date: 5.DEC.2014 18:57:47



Date: 5.DEC.2014 19:08:05



# **8DPSK Highest Channel**



Date: 5.DEC.2014 19:08:58



Date: 5.DEC.2014 19:09:37

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



## 11. Antenna Application

#### 11.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

#### 11.2 Measurement Results

The antenna is integrated on the main PCB and no consideration of replacement, and the best case gain of the antenna is 0dBi. So, the antenna is considered meet the requirement.

Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



## 12. Conducted Spurious Emissions

#### **12.1 Measurement Procedure**

Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband.

#### 12.2 Measurement Results

Please refer to following plots, the worst case (8DPSK) was shown.



## **Lowest Channel**



Date: 5.DEC.2014 15:42:12

### Note: Sweep points=30001pts

## **Middle Channel**



Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F FCC ID: 2ACVCLF31BT



Note: Sweep points=30001pts

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1411640F

FCC ID: 2ACVCLF31BT



# **Highest Channel**



Date: 5.DEC.2014 15:43:17

Note: Sweep points=30001pts



# 13. Test Equipment List

| Description                          | Manufacturer    | Model<br>Number | Serial<br>Number | Characteristics | Calibration<br>Date | Calibration<br>Due Date |
|--------------------------------------|-----------------|-----------------|------------------|-----------------|---------------------|-------------------------|
| Test Receiver                        | Rohde & Schwarz | ESCI7           | 100837           | 9KHz~7GHz       | Nov. 24, 2014       | Nov. 23, 2015           |
| Antenna                              | Schwarzbeck     | VULB9162        | 9162-010         | 30MHz~7GHz      | Nov. 27, 2014       | Nov. 26, 2015           |
| Positioning<br>Controller            | UC              | UC 3000         | N/A              | 0~360°, 1-4m    | N/A                 | N/A                     |
| Color Monitor                        | SUNSPO          | SP-140A         | N/A              | N/A             | N/A                 | N/A                     |
| Single Phase<br>Power Line<br>Filter | SAEMC           | PF201A-32       | 110210           | 32A             | N/A                 | N/A                     |
| 3 Phase Power<br>Line Filter         | SAEMC           | PF401A-200      | 110318           | 200A            | N/A                 | N/A                     |
| DC Power Filter                      | SAEMC           | PF301A-200      | 110245           | 200A            | N/A                 | N/A                     |
| Cable                                | Huber+Suhner    | CBL2-NN-1M      | 22390001         | 9KHz~7GHz       | Nov. 08, 2014       | Nov. 07, 2015           |
| Cable                                | Huber+Suhner    | CIL02           | N/A              | 9KHz~7GHz       | Nov. 08, 2014       | Nov. 07, 2015           |
| RF Cable                             | Huber+Suhner    | SF-104          | MY16559/4        | 9KHz~25GHz      | Mar. 07, 2015       | Mar. 06, 2016           |
| Power Amplifier                      | HP              | HP 8447D        | 1145A00203       | 100KHz~1.3GHz   | Nov. 08, 2014       | Nov. 07, 2015           |
| Horn Antenna                         | Schwarzbeck     | BBHA9170        | 9170-372         | 15GHz~26.5GHz   | Oct.24, 2014        | Oct.23, 2015            |
| Horn Antenna                         | Com-Power       | AH-118          | 071078           | 1GHz~18GHz      | Nov. 06, 2014       | Nov. 05, 2015           |
| Loop antenna                         | Daze            | ZA30900A        | 0708             | 9KHz~30MHz      | Oct.11, 2014        | Oct.10, 2015            |
| Spectrum<br>Analyzer                 | Rohde & Schwarz | FSU26           | 200409/026       | 20Hz~26.5GHz    | Sep. 02, 2014       | Sep. 01, 2015           |
| Pre-Amplifier                        | Agilent         | 8449B           | 3008A02964       | 1GHz~26.5GHz    | Nov. 04, 2014       | Nov. 03, 2015           |
| L.I.S.N.                             | Rohde & Schwarz | ENV 216         | 101317           | 9KHz~30MHz      | Nov. 08, 2014       | Nov. 07, 2015           |
| Temporary antenna connector          | TESCOM          | SS402           | N/A              | 1G-18GHz        | N/A                 | N/A                     |