

Aprendizagem de Máquina Probabilística

César Lincoln Cavalcante Mattos

Agenda

- Modelos de misturas
- Algoritmo Expectation-Maximization

Algoritmo EM para Mistura de Gaussianas (GMMs) Algoritmo EM para GMMs com estimação MAP Seleção de modelos para GMM Algoritmo EM para Mistura de Especialistas Algoritmo EM como um limiar inferior Variantes do algoritmo EM Algoritmo EM para dados faltantes

- 3 Tópicos adicionais
- 4 Referências

Modelos de variáveis latentes

- Uma maneira de modelar variáveis correlacionadas é através de modelos de variáveis latentes (latent variable models, LVM).
- Considera que as observações foram geradas por "causas" ocultas comuns.
- Pode ser visto como uma maneira de obter um "gargalo" (bottleneck) que representa os dados de maneira comprimida.

Modelos de misturas

Considere um modelo generativo com variáveis latentes discretas:

$$z \sim p(z)$$
, em que $z \in \{1, \dots, K\}$, $\boldsymbol{x} \sim p(\boldsymbol{x}|z)$.

Modelos de misturas

Considere um modelo generativo com variáveis latentes discretas:

$$\begin{split} z &\sim p(z), \text{ em que } z \in \{1, \dots, K\}, \\ \boldsymbol{x} &\sim p(\boldsymbol{x}|z). \end{split}$$

- Escolhemos uma priori $p(z) = \operatorname{Cat}(\boldsymbol{\pi})$, ou seja, $p(z = k) = \pi_k$.
- A verossimilhança $p(\boldsymbol{x}|z=k)$ relaciona a variável latente z e a observação \boldsymbol{x} .

Modelos de misturas

Considere um modelo generativo com variáveis latentes discretas:

$$\begin{split} z &\sim p(z), \text{ em que } z \in \{1,\dots,K\}, \\ \boldsymbol{x} &\sim p(\boldsymbol{x}|z). \end{split}$$

- Escolhemos uma priori $p(z) = \operatorname{Cat}(\boldsymbol{\pi})$, ou seja, $p(z = k) = \pi_k$.
- A verossimilhança $p(\boldsymbol{x}|z=k)$ relaciona a variável latente z e a observação \boldsymbol{x} .
- Um modelo de mistura pode ser obtido ao marginalizar z:

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\boldsymbol{x}|z=k)p(z=k)$$
$$= \sum_{k=1}^{K} \pi_k p(\boldsymbol{x}|z=k),$$

em que $0 \le \pi_k \le 1$, $\sum_{k=1}^K \pi_k = 1$ e $\boldsymbol{\theta}$ são parâmetros do modelo.

Modelos de misturas para agrupamento

• Ao usar um modelo de misturas nas observações $x_i|_{i=1}^N$ disponíveis, podemos encontrar qual componente (ou grupo/cluster) a gerou calculando a posteriori $p(z_i = k | x_i, \theta)$.

Modelos de misturas para agrupamento

- Ao usar um modelo de misturas nas observações $\mathbf{x}_i|_{i=1}^N$ disponíveis, podemos encontrar qual componente (ou grupo/cluster) a gerou calculando a posteriori $p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta})$.
- No chamado **soft clustering**, computamos a **responsabilidade** r_{ik} do grupo k via regra de Bayes:

$$r_{ik} \triangleq p(z_i = k | \boldsymbol{x}_i, \boldsymbol{\theta}) = \frac{p(z_i = k | \boldsymbol{\theta}) p(\boldsymbol{x}_i | z_i = k, \boldsymbol{\theta})}{\sum_{k'=1}^K p(z_i = k' | \boldsymbol{\theta}) p(\boldsymbol{x}_i | z_i = k', \boldsymbol{\theta})}.$$

• Note que a diferença em relação a um classificador generativo é que z_i não é observado.

Modelos de misturas para agrupamento

- Ao usar um modelo de misturas nas observações $\mathbf{x}_i|_{i=1}^N$ disponíveis, podemos encontrar qual componente (ou grupo/cluster) a gerou calculando a posteriori $p(z_i = k|\mathbf{x}_i, \boldsymbol{\theta})$.
- No chamado **soft clustering**, computamos a **responsabilidade** r_{ik} do grupo k via regra de Bayes:

$$r_{ik} \triangleq p(z_i = k | \boldsymbol{x}_i, \boldsymbol{\theta}) = \frac{p(z_i = k | \boldsymbol{\theta}) p(\boldsymbol{x}_i | z_i = k, \boldsymbol{\theta})}{\sum_{k'=1}^K p(z_i = k' | \boldsymbol{\theta}) p(\boldsymbol{x}_i | z_i = k', \boldsymbol{\theta})}.$$

- Note que a diferença em relação a um classificador generativo é que z_i não é observado.
- No caso do chamado hard clustering, temos:

$$\hat{z}_i = \arg\max_k r_{ik} = \arg\max_k [\log p(z_i = k|\boldsymbol{\theta}) + \log p(\boldsymbol{x}_i|z_i = k, \boldsymbol{\theta})].$$

Mistura de especialistas

- Modelos de misturas também podem ser usados no contexto de modelos discriminantes para regressão ou classificação.
- Uma mistura de especialistas (mixture of experts, MoE) é obtida a partir de submodelos (especialistas) em certas regiões do espaço de entrada.
- Para K modelos de regressão linear, temos:

$$p(y_i|\boldsymbol{x}_i, z_i = k, \boldsymbol{\theta}) = \mathcal{N}(y_i|\boldsymbol{w}_k^{\top}\boldsymbol{x}_i, \sigma_k^2), \quad 1 \leq k \leq K,$$

$$p(z_i|\boldsymbol{x}_i, \boldsymbol{\theta}) = \operatorname{Cat}(z_i, \mathcal{S}(\boldsymbol{V}^{\top}\boldsymbol{x}_i)),$$

$$p(y_i|\boldsymbol{x}_i, \boldsymbol{\theta}) = \sum_{k=1}^K p(y_i|\boldsymbol{x}_i, z_i = k, \boldsymbol{\theta})p(z_i = k|\boldsymbol{x}_i, \boldsymbol{\theta}),$$

em que $p(z_i|\mathbf{x}_i, \boldsymbol{\theta})$ age como uma gating function e $\mathcal{S}(\cdot)$ é uma função softmax parametrizada por V.

Agenda

- Modelos de misturas
- Algoritmo Expectation-Maximization

Algoritmo EM para Mistura de Gaussianas (GMMs) Algoritmo EM para GMMs com estimação MAP Seleção de modelos para GMM Algoritmo EM para Mistura de Especialistas Algoritmo EM como um limiar inferior Variantes do algoritmo EM Algoritmo EM para dados faltantes

- 3 Tópicos adicionais
- A Referências

Mistura de Gaussianas

 O modelo de mistura de Gaussianas (Gaussian mixture model, GMM) é um dos mais usados para representar dados contínuos:

$$p(\boldsymbol{x}_i|\boldsymbol{\theta}) = \sum_{k=1}^K p(z_i = k) \mathcal{N}(\boldsymbol{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

• Alternativamente, como z_i possui uma distribuição categórica, podemos representá-la por um vetor $\boldsymbol{z}_i \in \{0,1\}^K$ em que $\sum_k z_{ik} = 1$:

$$p(\boldsymbol{x}_{i}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(z_{ik} = 1) \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$
$$= \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}).$$

Mistura de Gaussianas

• Um GMM com componentes D-dimensionais suficientes pode aproximar qualquer distribuição contínua em \mathbb{R}^D .

Mistura de Gaussianas

• Um GMM com componentes D-dimensionais suficientes pode aproximar qualquer distribuição contínua em \mathbb{R}^D .

 As variáveis do modelo e suas relações podem ser representadas por um modelo gráfico probabilístico:

 ML ou MAP não é aplicável diretamente à GMM (ou qualquer outro LVM), pois as variáveis latentes não são observadas.

- ML ou MAP não é aplicável diretamente à GMM (ou qualquer outro LVM), pois as variáveis latentes não são observadas.
- Em geral, a verossimilhança dos dados observados é dada por:

$$p(\boldsymbol{x}_i|\boldsymbol{\theta}) = \sum_{z_i} p(\boldsymbol{x}_i|z_i,\boldsymbol{\theta}) p(z_i|\boldsymbol{\theta}),$$

$$p(\boldsymbol{X}|\boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{z_i} p(\boldsymbol{x}_i|z_i,\boldsymbol{\theta}) p(z_i|\boldsymbol{\theta}),$$

$$\mathcal{L}(\boldsymbol{\theta}) = \log p(\boldsymbol{X}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[\sum_{z_i} p(\boldsymbol{x}_i,z_i|\boldsymbol{\theta}) \right],$$

em que todos os parâmetros foram reunidos em θ .

- ML ou MAP não é aplicável diretamente à GMM (ou qualquer outro LVM), pois as variáveis latentes não são observadas.
- Em geral, a verossimilhança dos dados observados é dada por:

$$p(\boldsymbol{x}_i|\boldsymbol{\theta}) = \sum_{z_i} p(\boldsymbol{x}_i|z_i,\boldsymbol{\theta}) p(z_i|\boldsymbol{\theta}),$$

$$p(\boldsymbol{X}|\boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{z_i} p(\boldsymbol{x}_i|z_i,\boldsymbol{\theta}) p(z_i|\boldsymbol{\theta}),$$

$$\mathcal{L}(\boldsymbol{\theta}) = \log p(\boldsymbol{X}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left[\sum_{z_i} p(\boldsymbol{x}_i,z_i|\boldsymbol{\theta}) \right],$$

em que todos os parâmetros foram reunidos em θ .

• **Problema**: as variáveis latentes não são observadas e $\mathcal{L}(\theta)$ não pode ser calculada.

• **Ideia**: Considerar que os valores z_i são conhecidos e definir a verossimilhança dos dados completos (conjunta):

$$\mathcal{L}_c(\boldsymbol{\theta}) \triangleq \sum_{i=1}^N \log p(\boldsymbol{x}_i, z_i | \boldsymbol{\theta}).$$

• **Ideia**: Considerar que os valores z_i são conhecidos e definir a verossimilhança dos dados completos (conjunta):

$$\mathcal{L}_c(oldsymbol{ heta}) riangleq \sum_{i=1}^N \log p(oldsymbol{x}_i, z_i | oldsymbol{ heta}).$$

• Ideia: Computar $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ em relação à sua posteriori:

$$\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})] = \sum_{k=1}^K p(z_i = k | \boldsymbol{X}, \boldsymbol{\theta}) \mathcal{L}_c(\boldsymbol{\theta})$$
$$= \sum_{i=1}^N \sum_{k=1}^K p(z_i = k | \boldsymbol{X}, \boldsymbol{\theta}) \log p(\boldsymbol{x}_i, z_i | \boldsymbol{\theta}).$$

• **Ideia**: Considerar que os valores z_i são conhecidos e definir a verossimilhança dos dados completos (conjunta):

$$\mathcal{L}_c(oldsymbol{ heta}) riangleq \sum_{i=1}^N \log p(oldsymbol{x}_i, z_i | oldsymbol{ heta}).$$

• **Ideia**: Computar $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ em relação à sua posteriori:

$$\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})] = \sum_{k=1}^K p(z_i = k | \boldsymbol{X}, \boldsymbol{\theta}) \mathcal{L}_c(\boldsymbol{\theta})$$
$$= \sum_{i=1}^N \sum_{k=1}^K p(z_i = k | \boldsymbol{X}, \boldsymbol{\theta}) \log p(\boldsymbol{x}_i, z_i | \boldsymbol{\theta}).$$

• Ideia: Como buscamos uma solução de ML, otimizamos $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ em função de $\boldsymbol{\theta}$:

$$\boldsymbol{\theta}_{ML} = \arg \max \mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})].$$

• **Problema**: Temos uma relação cruzada de dependência entre $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ e $\boldsymbol{\theta}$.

- **Problema**: Temos uma relação cruzada de dependência entre $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ e $\boldsymbol{\theta}$.
- Ideia: Seguimos uma estratégia iterativa, resultando no algoritmo EM (Expectation-Maximization):

- **Problema**: Temos uma relação cruzada de dependência entre $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ e $\boldsymbol{\theta}$.
- Ideia: Seguimos uma estratégia iterativa, resultando no algoritmo EM (Expectation-Maximization):
 - Passo E: O valor esperado na iteração atual t é dado por:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})|\boldsymbol{X}, \boldsymbol{\theta}^{(t-1)}],$$

em que explicitou-se a dependência dos dados de treino \boldsymbol{X} e dos parâmetros da iteração anterior $\boldsymbol{\theta}^{(t-1)}$.

- **Problema**: Temos uma relação cruzada de dependência entre $\mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})]$ e $\boldsymbol{\theta}$.
- Ideia: Seguimos uma estratégia iterativa, resultando no algoritmo EM (Expectation-Maximization):
 - Passo E: O valor esperado na iteração atual t é dado por:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta})|\boldsymbol{X}, \boldsymbol{\theta}^{(t-1)}],$$

em que explicitou-se a dependência dos dados de treino \boldsymbol{X} e dos parâmetros da iteração anterior $\boldsymbol{\theta}^{(t-1)}$.

 Passo M: O valor atualizado dos parâmetros é obtido via otimização da função auxiliar Q(·):

$$\boldsymbol{\theta}^{(t)} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}).$$

• No caso de uma GMM com K componentes, temos:

$$\mathcal{L}_c(\boldsymbol{\theta}) = \sum_{i=1}^N \log p(\boldsymbol{x}_i, z_i | \boldsymbol{\theta})$$

$$= \sum_{i=1}^N \log p(\boldsymbol{x}_i | z_i, \boldsymbol{\theta}) p(z_i | \boldsymbol{\theta})$$

$$= \sum_{i=1}^N \log \prod_{k=1}^K [\pi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{\mathbb{I}(z_i = k)}$$

$$= \sum_{i=1}^N \sum_{k=1}^K \mathbb{I}(z_i = k) [\log \pi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)],$$

em que o expoente $\mathbb{I}(z_i=k)$ foi incluído por considerarmos que x_i foi observado da k-ésima componente da mistura.

• A função auxiliar é obtida tomando a esperança com relação a z_i :

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \mathbb{E}\left[\sum_{i=1}^{N} \sum_{k=1}^{K} \mathbb{I}(z_i = k) [\log \pi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]\right]$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbb{I}(z_i = k)] [\log \pi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \underbrace{p(z_i = k | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t-1)})}_{r_{ik}} [\log \pi_k \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

em que r_{ik} é o **coeficiente de responsabilidade** da componente k pela observação i.

• Portanto, o **passo E** consiste em computar os coeficientes de responsabilidade r_{ik} :

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \mathbf{\theta}^{t-1}) = \frac{p(\mathbf{x}_i | z_i = k, \mathbf{\theta}^{t-1}) p(z_i = k)}{\sum_{k'=1}^{K} p(\mathbf{x}_i | z_i = k', \mathbf{\theta}^{t-1}) p(z_i = k')}$$
$$= \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{k'=1}^{K} \pi_{k'}^{(t-1)} \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{k'}^{(t-1)}, \boldsymbol{\Sigma}_{k'}^{(t-1)})}.$$

- No **passo M**, otimizamos $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)})$ com relação a $\boldsymbol{\theta} = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}|_{k=1}^K.$
- Para π_k , como $\sum_k \pi_k = 1$, derivamos o Lagrangiano abaixo:

$$\frac{\partial}{\partial \pi_k} \left[Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) + \lambda \left(1 - \sum_{k=1}^K \pi_k \right) \right] = 0$$

$$\frac{\partial}{\partial \pi_k} \left[\sum_{i=1}^N \sum_{k=1}^K r_{ik} \log \pi_k + \lambda \left(1 - \sum_{k=1}^K \pi_k \right) \right] = 0$$

$$\sum_{i=1}^N \left[\frac{1}{\pi_k} r_{ik} - \lambda \right] = 0$$

$$\pi_k = \frac{\sum_{i=1}^N r_{ik}}{N \lambda}.$$

• Como $\sum_k \pi_k = 1$, temos $\lambda = \frac{\sum_k \sum_i r_{ik}}{N} = 1$ e $\pi_k = \frac{\sum_{i=1}^N r_{ik}}{N}$.

• Precisamos ainda otimizar $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)})$ em relação a $\boldsymbol{\mu}_k$ e $\boldsymbol{\Sigma}_k$:

$$Q(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)}) = \sum_{i=1}^N r_{ik} \log \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\propto \sum_{i=1}^N r_{ik} \left[-\frac{1}{2} \log |\boldsymbol{\Sigma}_k| - \frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) \right].$$

• A última expressão corresponde à log-verossimilhança de uma Gaussiana em que cada termo é ponderado por r_{ik} , logo:

$$egin{aligned} oldsymbol{\mu}_k &= rac{\sum_{i=1}^N r_{ik} oldsymbol{x}_i}{\sum_{i=1}^N r_{ik}}, \ oldsymbol{\Sigma}_k &= rac{\sum_{i=1}^N r_{ik} (oldsymbol{x}_i - oldsymbol{\mu}_k) (oldsymbol{x}_i - oldsymbol{\mu}_k)^ op}{\sum_{i=1}^N r_{ik}} = rac{\sum_{i=1}^N r_{ik} oldsymbol{x}_i oldsymbol{x}_i^ op}{\sum_{i=1}^N r_{ik}} - oldsymbol{\mu}_k oldsymbol{\mu}_k^ op. \end{aligned}$$

Resumo do algoritmo

- **1** Escolha $K, \pi_k^{(0)}, \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\Sigma}_k^{(0)}, \forall k$.
- **2** Faça t=1 e repita até convergir:
 - Passo E:

$$r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}^{(t-1)}) = \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{k'=1}^K \pi_{k'}^{(t-1)} \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{k'}^{(t-1)}, \boldsymbol{\Sigma}_{k'}^{(t-1)})}.$$

• Passo M:

$$\begin{split} \pi_k^{(t)} &= \frac{\sum_{i=1}^N r_{ik}}{N}, \\ \boldsymbol{\mu}_k^{(t)} &= \frac{\sum_{i=1}^N r_{ik} \boldsymbol{x}_i}{\sum_{i=1}^N r_{ik}}, \quad \boldsymbol{\Sigma}_k^{(t)} &= \frac{\sum_{i=1}^N r_{ik} \boldsymbol{x}_i \boldsymbol{x}_i^\top}{\sum_{i=1}^N r_{ik}} - \boldsymbol{\mu}_k^{(t)} (\boldsymbol{\mu}_k^{(t)})^\top. \end{split}$$

Algoritmo K-médias

- Considera-se que $\pi_k = \frac{1}{K}, \Sigma_k = \sigma^2 I, \forall k$, são fixos.
- Considera-se ainda que $r_{ik} \triangleq p(z_i = k | \mathbf{x}_i, \mathbf{\theta}^{(t-1)}) \approx \mathbb{I}(k = \hat{z}_i)$, em que $\hat{z}_i = \arg\max_k p(z_i = k | \mathbf{x}_i, \mathbf{\theta}^{(t-1)})$

Resumo do algoritmo

- **1** Escolha $K, \boldsymbol{\mu}_k^{(0)}, \forall k$.
- **2** Faça t=1 e repita até convergir:
 - Atribuição dos padrões:

$$\hat{z}_i = \arg \max_k p(z_i = k | \mathbf{x}_i, \boldsymbol{\mu}_k^{(t-1)}) = \arg \min_k \|\mathbf{x}_i - \boldsymbol{\mu}_k^{(t-1)}\|^2.$$

Atualização dos centróides:

$$oldsymbol{\mu}_k^{(t)} = rac{\sum_i \mathbb{I}(\hat{z}_i = k) oldsymbol{x}_i}{\sum_i \mathbb{I}(\hat{z}_i = k)} = rac{1}{N_k} \sum_{i:\hat{z}_i = k} oldsymbol{x}_i.$$

Algoritmo K-médias

• Podemos executar o algoritmo K-médias com diferentes inicializações $\mu_k^{(0)}$ para os centróides e escolher aquela com menor **erro de reconstrução**:

$$E_{\mathsf{rec.}} = \sum_{k=1}^K \sum_{i: \hat{z}_i = k} \|oldsymbol{x}_i - oldsymbol{\mu}_k\|^2$$

- O K-médias++ é uma heurística eficiente para a inicialização:
 - 1 Escolha o primeiro centróide aleatoriamente entre os dados.
 - 2 Repita K-1 vezes: escolha o próxima centróide entre os dados com probabilidade proporcional à distância ao seu centróide mais próximo.
- Podemos usar o algoritmo K-médias para inicializar as componentes do GMM:
 - → Os vetores de média são iniciados com os centróides.
 - → As matrizes de covariância são iniciadas com as matrizes de covariância estimadas dos grupos encontrados.

K-médias e GMM

K-médias (esquerda) e GMM (direita)

K-médias (esquerda) e GMM (direita)

GMM

K-médias (esquerda) e GMM (direita)

GMM

Algoritmo EM para GMMs com solução MAP

- Podemos obter uma solução MAP com o algoritmo EM considerando prioris para os parâmetros do modelo.
- A função auxiliar seria dada por:

$$Q'(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \underbrace{\log p(\boldsymbol{\pi}) + \sum_{k=1}^{K} \log p(\boldsymbol{\theta}_k)}_{\text{termos das prioris}}.$$

- Menor chance de ocorrer singularidades na otimização, em que uma Gaussiana é colocada exatamente sobre uma observação.
- Para as probabilidades π das componentes da mistura, a distribuição de Dirichlet é conjugada:

$$p(\boldsymbol{\pi}) = \operatorname{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}).$$

Algoritmo EM para GMMs com solução MAP

• Para as médias μ_k e as covariâncias Σ_k , escolhemos a priori conjugada em que média e covariância são dependentes:

$$p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = p(\boldsymbol{\mu}_k | \boldsymbol{\Sigma}_k) p(\boldsymbol{\Sigma}_k)$$

$$= \text{NIW}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \boldsymbol{m}_0, \kappa_0, \nu_0, \boldsymbol{S}_0)$$

$$\triangleq \mathcal{N}(\boldsymbol{\mu}_k | \boldsymbol{\mu}_0, \frac{1}{\kappa_0} \boldsymbol{\Sigma}_k) \text{IW}(\boldsymbol{\Sigma}_k | \boldsymbol{S}_0, \nu_0),$$

onde definimos a distribuição Normal-inverse-Wishart (NIW).

- Escolhas usuais para os hiperparâmetros a partir dos dados são ${m S}_0 = \frac{1}{K^{2/D}} {m S}_{\bar x},
 u_0 = D+2, {m \mu}_0 = \bar{{m x}}, \kappa_0 = 0.01$ (ou $\kappa_0 \to 0$), em que $\bar{{m x}}$ e ${m S}_{\bar x}$ são a média e a covariância amostral.
- Somente o passo M do algoritmo EM será modificado!

Algoritmo EM para GMMs com solução MAP

Resumo do algoritmo

- **1** Escolha $K, \alpha_k, \mu_0, \kappa_0, \nu_0, S_0, \pi_k^{(0)}, \mu_k^{(0)}, \Sigma_k^{(0)}, \forall k$.
- 2 Faça t=1 e repita até convergir:
 - Passo E:

$$r_{ik} \triangleq p(z_i = k | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t-1)}) = \frac{\pi_k^{(t-1)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{k'=1}^K \pi_{k'}^{(t-1)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_{k'}^{(t-1)}, \boldsymbol{\Sigma}_{k'}^{(t-1)})}.$$

• Passo M:

$$\pi_k^{(t)} = \frac{\alpha_k - 1 + \sum_i r_{ik}}{N - K + \sum_k \alpha_k},$$

$$\bar{\boldsymbol{x}}_k \triangleq \frac{\sum_i r_{ik} \boldsymbol{x}_i}{\sum_i r_{ik}}, \quad \boldsymbol{\mu}_k^{(t)} = \frac{\kappa_0 \boldsymbol{m}_0 + \bar{\boldsymbol{x}}_k \sum_i r_{ik}}{\kappa_0 + \sum_i r_{ik}},$$

 $\Sigma_k^{(t)} = \frac{S_0 + \sum_i r_{ik} (x_i - \bar{x}_k) (x_i - \bar{x}_k)^\top + \frac{\kappa_0 \sum_i r_{ik}}{\kappa_0 + \sum_i r_{ik}} (\bar{x}_k - m_0) (\bar{x}_k - m_0)^\top}{\nu_0 + D + 2 + \sum_i r_{ik}}.$

Seleção de modelos para GMM

- Além dos parâmetros do GMM ou outro modelo de mistura, precisamos escolher o número K de componentes.
- Duas abordagens práticas:
 - → Calcular o BIC (Bayesian Information Criterion) ou o AIC (Akaike Information Criterion) para diferentes valores de K:

$$\begin{split} & \operatorname{BIC}(\mathcal{D}|K) \triangleq \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}) - \frac{1}{2}M \log N, \\ & \operatorname{AIC}(\mathcal{D}|K) \triangleq \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}) - M, \end{split}$$

em que M é o número de parâmetros e N é o total de observações.

ightarrow Calcular a log-verossimilhança $\log p(\mathcal{D}|\hat{\boldsymbol{\theta}})$ em dados não usados no treinamento para diferentes valores de K.

Seleção de modelos via AIC/BIC

 No caso de uma mistura de especialistas representados por modelos lineares, temos a seguinte log-verossimilhança para os dados completos:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log[\pi_{ik} \mathcal{N}(y_i | \boldsymbol{w}_k^{\top} \boldsymbol{x}_i, \sigma_k^2)],$$

$$\pi_{ik} \triangleq \mathcal{S}(\boldsymbol{V}^{\top} \boldsymbol{x}_i)_k,$$

$$r_{ik} \propto \pi_{ik}^{(t-1)} \mathcal{N}(y_i | \boldsymbol{x}_i^{\top} \boldsymbol{w}_k^{(t-1)}, (\sigma_k^{(t-1)})^2).$$

• O passo E (cálculo dos r_{ik}) continua o mesmo, apenas trocando π_k por π_{ik} .

• O passo M com relação aos parâmetros w_k e σ_k^2 é dado por:

$$egin{aligned} Q(oldsymbol{ heta}_k, oldsymbol{ heta}^{(t-1)}) &= \sum_{i=1}^N r_{ik} \log \mathcal{N}(y_i | oldsymbol{w}_k^ op oldsymbol{x}_i, \sigma_k^2) \ &= \sum_{i=1}^N r_{ik} \left\{ -rac{1}{\sigma_k^2} (y_i - oldsymbol{w}_k^ op oldsymbol{x}_i)^2
ight\} \end{aligned}$$

 A expressão acima corresponde a um problema de mínimos quadrados ponderado, como no IRLS, tendo solução na forma:

$$egin{aligned} oldsymbol{w}_k &= (oldsymbol{X}^ op oldsymbol{R}_k oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{R}_k oldsymbol{y}, \ oldsymbol{R}_k &= \mathrm{diag}(r_{1k}, r_{2k}, \ldots, r_{Nk}). \end{aligned}$$

Para a variância, temos:

$$\sigma_k^2 = rac{\sum_{i=1}^{N} r_{ik} (y_i - \boldsymbol{w}_k^{ op} \boldsymbol{x}_i)^2}{\sum_{i=1}^{N} r_{ik}}$$

• No caso do parâmetro $oldsymbol{V}$ da função softmax, temos a seguinte componente:

$$Q(\mathbf{V}, \mathbf{\theta}^{(t-1)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \pi_{ik}.$$

- Como $\pi_{ik} = \mathcal{S}(\mathbf{V}^{\top} \mathbf{x}_i)_k$, a expressão acima corresponde à função custo de um modelo de regressão logística multiclasse.
- A única diferença de uma regressão softmax é o uso de "soft-labels" r_{ik} em vez de saídas 1-hot-encoding.

Resumo do algoritmo

- **1** Escolha $K, V^{(0)}, w_k^{(0)}, (\sigma_k^2)^{(0)}, \forall k.$
- **2** Faça t=1 e repita até convergir:
 - Passo E:

$$\begin{split} \pi_{ik}^{(t-1)} &= \mathcal{S}((\boldsymbol{V}^{(t-1)})^{\top} \boldsymbol{x}_i)_k, \\ r_{ik} &= \frac{\pi_{ik}^{(t-1)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{k'=1}^K \pi_{ik'}^{(t-1)} \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_{k'}^{(t-1)}, \boldsymbol{\Sigma}_{k'}^{(t-1)})}. \end{split}$$

Passo M:

$$egin{aligned} oldsymbol{w}_k^{(t)} &= (oldsymbol{X}^{ op} oldsymbol{R}_k oldsymbol{X})^{-1} oldsymbol{X}^{ op} oldsymbol{R}_k oldsymbol{y}, & oldsymbol{R}_k &= \operatorname{diag}(r_{1k}, \dots, r_{Nk}), \\ (\sigma_k^2)^{(t)} &= rac{\sum_i r_{ik} (y_i - (oldsymbol{w}_k^{(t)})^{ op} oldsymbol{x}_i)^2}{\sum_i r_{ik}}, & oldsymbol{V}^{(t)} \leftarrow \text{"soft" softmax}. \end{aligned}$$

• Reescrevemos a log-verossimilhança dos dados observados de um LVM com variáveis latentes z_i discretas (como uma mistura):

$$\mathcal{L}(oldsymbol{ heta}) riangleq \sum_{i=1}^N \log p(oldsymbol{x}_i|oldsymbol{ heta}) = \sum_{i=1}^N \log \left[\sum_{oldsymbol{z}_i} p(oldsymbol{x}_i, oldsymbol{z}_i|oldsymbol{ heta})
ight].$$

• Considere uma distribuição arbitrária $q(z_i)$:

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{i=1}^N \log \left[\sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) rac{p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})}{q(oldsymbol{z}_i)}
ight].$$

• Reescrevemos a log-verossimilhança dos dados observados de um LVM com variáveis latentes z_i discretas (como uma mistura):

$$\mathcal{L}(oldsymbol{ heta}) riangleq \sum_{i=1}^N \log p(oldsymbol{x}_i|oldsymbol{ heta}) = \sum_{i=1}^N \log \left[\sum_{oldsymbol{z}_i} p(oldsymbol{x}_i, oldsymbol{z}_i|oldsymbol{ heta})
ight].$$

• Considere uma distribuição arbitrária $q(z_i)$:

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{i=1}^N \log \left[\sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) rac{p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})}{q(oldsymbol{z}_i)}
ight].$$

• **Problema**: A expressão acima é difícil de trabalhar por causa do log fora do somatório.

• Ideia: Usamos a desigualdade de Jensen, definida por:

$$f\left(\sum_{i=1}^{N} \lambda_i \boldsymbol{x}_i\right) \leq \sum_{i=1}^{N} \lambda_i f(\boldsymbol{x}_i),$$

para uma função $f(\cdot)$ convexa qualquer.

• A função $\log(\cdot)$ é côncava, então podemos usar o inverso da desigualdade de Jensen em $\mathcal{L}(\boldsymbol{\theta})$:

$$egin{aligned} \mathcal{L}(oldsymbol{ heta}) &= \sum_{i=1}^N \log \left[\sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) rac{p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})}{q(oldsymbol{z}_i)}
ight] \ &\geq \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log rac{p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})}{q(oldsymbol{z}_i)} \ &\geq \sum_i \mathbb{E}_{q(oldsymbol{z}_i)} [\log p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})] + \mathbb{H}[q(oldsymbol{z}_i)] riangleq \mathcal{L}(oldsymbol{ heta}, q), \end{aligned}$$

em que $\mathbb{H}[q(\mathbf{z}_i)] = -\mathbb{E}_{q(\mathbf{z}_i)}[\log q(\mathbf{z}_i)]$ é um termo de entropia.

A escolha da distribuição q (agora um "parâmetro") deve maximizar o limiar inferior (lower bound) obtido:

$$\mathcal{L}(oldsymbol{ heta},q) = \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log rac{p(oldsymbol{x}_i,oldsymbol{z}_i|oldsymbol{ heta})}{q(oldsymbol{z}_i)}$$

$$q(oldsymbol{z}_i) = \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log rac{p(oldsymbol{z}_i|oldsymbol{x}_i,oldsymbol{ heta}}{q(oldsymbol{z}_i)}$$

$$egin{aligned} &= \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log rac{p(oldsymbol{z}_i | oldsymbol{x}_i, oldsymbol{ heta}) p(oldsymbol{x}_i | oldsymbol{ heta})}{q(oldsymbol{z}_i)} \ &= \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log rac{p(oldsymbol{z}_i | oldsymbol{x}_i, oldsymbol{ heta})}{q(oldsymbol{z}_i)} + \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) \log p(oldsymbol{x}_i | oldsymbol{ heta}) \end{aligned}$$

$$q(oldsymbol{z}_i) + \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) + \sum_i \sum_{oldsymbol{z}_i} q(oldsymbol{z}_i) + \sum_i \log p(oldsymbol{x}_i | oldsymbol{ heta}),$$

em que usamos a definição da divergência de Kullback-Leibler:

$$\mathrm{KL}(q(m{z}) \| p(m{z})) = \sum_{m{z}} q(m{z}) \log rac{q(m{z})}{p(m{z})}.$$

- A divergência de KL é sempre não-negativa e somente igual a zero para distribuições idênticas.
- Teremos $\mathcal{L}(\boldsymbol{\theta},q) = \mathcal{L}(\boldsymbol{\theta})$ para $q(\boldsymbol{z}_i) = p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}).$
- Como os parâmetros θ são desconhecidos, usamos sua estimativa $\theta^{(t-1)}$ até a iteração anterior.
- Assim, fazemos $q^{(t)}(\boldsymbol{z}_i) = p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)})$, que é o resultado do **passo E** do algoritmo EM:

$$\mathcal{L}(oldsymbol{ heta}, q^{(t)}) = \sum_i \mathbb{E}_{q^{(t)}(oldsymbol{z}_i)}[\log p(oldsymbol{x}_i, oldsymbol{z}_i | oldsymbol{ heta})] + \mathbb{H}[q^{(t)}(oldsymbol{z}_i)].$$

- O primeiro termo de $\mathcal{L}(\theta, q^{(t)})$ é a log-verossimilhança esperada dos dados completos.
- O segundo termo independe de θ , logo o **passo M** torna-se:

$$\boldsymbol{\theta}^{(t)} = \arg\max_{\boldsymbol{\theta}} \sum_{i} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_i)}[\log p(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})].$$

• Como usamos $q^{(t)}(\boldsymbol{z}_i) = p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)})$, o termo KL some:

$$\mathcal{L}(\boldsymbol{\theta}^{(t-1)}, q^{(t)}) = -\sum_{i} \underbrace{\mathrm{KL}(q^{(t)}(\boldsymbol{z}_{i}) || p(\boldsymbol{z}_{i} | \boldsymbol{x}_{i}, \boldsymbol{\theta}^{(t-1)}))}_{0} + \mathcal{L}(\boldsymbol{\theta}^{(t-1)}),$$

$$\mathcal{L}(\boldsymbol{\theta}^{(t-1)}, q^{(t)}) = \mathcal{L}(\boldsymbol{\theta}^{(t-1)}).$$

- A cada passo E do algoritmo EM o limiar inferior "toca" $\mathcal{L}(\boldsymbol{\theta}^{(t-1)})$, então maximizá-lo equivale a maximizar $\mathcal{L}(\boldsymbol{\theta}^{(t-1)})$.
- Cada atualização do algoritmo EM monotonicamente incrementa a log-verossimilhança dos dados observados:

$$\mathcal{L}(\boldsymbol{\theta}^{(t)}) \ge \mathcal{L}(\boldsymbol{\theta}^{(t)}, q^{(t)}) \ge \mathcal{L}(\boldsymbol{\theta}^{(t-1)}, q^{(t)}) = \mathcal{L}(\boldsymbol{\theta}^{(t-1)}).$$

Os passos E e M do algoritmo EM são dados por:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) = \mathbb{E}[\mathcal{L}_c(\boldsymbol{\theta}) | \mathcal{D}, \boldsymbol{\theta}^{(t-1)}] = \sum_i \mathbb{E}_{q^{(t)}(\boldsymbol{z}_i)}[\log p(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})],$$
$$\boldsymbol{\theta}^{(t)} = \arg \max_{\boldsymbol{\theta}} \left[Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}) + \mathbb{H}[q^{(t)}(\boldsymbol{z}_i)] \right],$$

em que o termo $\mathbb{H}[q^{(t)}(z_i)]$ pode ser ignorado no algoritmo original por não depender de $\boldsymbol{\theta}$.

- Note que para obter o melhor limiar inferior, tivemos que fazer $q^{(t)}(\boldsymbol{z}_i) = p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)}).$
- No entanto, a distribuição $p(z_i|x_i, \theta^{(t-1)})$ pode não ser tratável/analítica e requerer inferência aproximada no passo E.
- Além disso, o passo M pode não admitir solução analítica.

• EM variacional: Escolhemos uma distribuição $q^{(t)}(\boldsymbol{z}_i)$ parametrizada e a otimizamos em conjunto com os outros parâmetros do modelo.

- EM variacional: Escolhemos uma distribuição $q^{(t)}(\boldsymbol{z}_i)$ parametrizada e a otimizamos em conjunto com os outros parâmetros do modelo.
- Monte Carlo EM (MCEM): Geramos amostras via aproximação de Monte Carlo (como Markov Chain Monte Carlo, MCMC) para computar a esperança em relação a $p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)})$.

- EM variacional: Escolhemos uma distribuição $q^{(t)}(\boldsymbol{z}_i)$ parametrizada e a otimizamos em conjunto com os outros parâmetros do modelo.
- Monte Carlo EM (MCEM): Geramos amostras via aproximação de Monte Carlo (como Markov Chain Monte Carlo, MCMC) para computar a esperança em relação a $p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)})$.
- EM estocástico: Semelhante ao MCEM, mas admitindo amostragens estocásticas de $p(z_i|x_i, \theta^{(t-1)})$.

- EM variacional: Escolhemos uma distribuição $q^{(t)}(\boldsymbol{z}_i)$ parametrizada e a otimizamos em conjunto com os outros parâmetros do modelo.
- Monte Carlo EM (MCEM): Geramos amostras via aproximação de Monte Carlo (como Markov Chain Monte Carlo, MCMC) para computar a esperança em relação a $p(\boldsymbol{z}_i|\boldsymbol{x}_i,\boldsymbol{\theta}^{(t-1)})$.
- **EM** estocástico: Semelhante ao MCEM, mas admitindo amostragens estocásticas de $p(z_i|x_i,\theta^{(t-1)})$.
- EM generalizado: Quando o passo M não é analítico, podemos fazer atualizações parciais nos parâmetros, por exemplo via gradiente ascendente.

- Considere a situação em que os dados disponíveis \boldsymbol{X} possuem uma parte visível, $\boldsymbol{X}_v = \{x_{id}: O_{id} = 1\}$), e uma parte faltante, $\boldsymbol{X}_h = \{x_{id}: O_{id} = 0\}$, em que $O_{id} = 1$ indica que a dimensão d do padrão i é observada.
- Considerando a hipótese "missing at random" (o dado faltante independe do seu valor, mas depende dos observados), temos:

$$egin{aligned} \mathcal{L}(oldsymbol{ heta}) &= \sum_{i=1}^N \log p(oldsymbol{x}_{iv}, |oldsymbol{ heta}) \ &= \sum_{i=1}^N \log \left[\sum_{oldsymbol{x}_{iv}} p(oldsymbol{x}_{iv}, oldsymbol{x}_{ih} |oldsymbol{ heta})
ight]. \end{aligned}$$

• Como $\mathcal{L}(\theta)$ é difícil de otimizar diretamente, podemos usar o algoritmo EM.

- Considere a tarefa de estimar os parâmetros de uma Gaussiana multivariada com dados faltantes.
- A log-verossimilhança esperada dos dados completos será:

$$O(\mathbf{A}, \mathbf{A}^{(t-1)}) = \mathbb{E}\left[\sum_{t=0}^{N} \log N(\mathbf{a}_t \mathbf{a}_t \mathbf{x}_t)\right]$$

$$Q(oldsymbol{ heta}, oldsymbol{ heta}^{(t-1)}) = \mathbb{E}\left[\sum_{i=1}^N \log \mathcal{N}(oldsymbol{x}_i | oldsymbol{\mu}, oldsymbol{\Sigma})
ight]$$

 $\propto -rac{N}{2}\log|oldsymbol{\Sigma}| -rac{1}{2}\sum_i \mathbb{E}[(oldsymbol{x}_i - oldsymbol{\mu})^ op oldsymbol{\Sigma}^{-1}(oldsymbol{x}_i - oldsymbol{\mu})]$

$$\propto -\frac{N}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}\mathrm{Tr}(\boldsymbol{\Sigma}^{-1}\sum_{i}\mathbb{E}[(\boldsymbol{x}_{i}-\boldsymbol{\mu})(\boldsymbol{x}_{i}-\boldsymbol{\mu})^{\top}])$$

$$egin{aligned} & \propto -rac{N}{2}\log|oldsymbol{\Sigma}| - rac{1}{2}\mathrm{Tr}(oldsymbol{\Sigma}^{-1}oldsymbol{A}), \ & oldsymbol{A} riangleq \sum_i \left(\mathbb{E}[oldsymbol{x}_i oldsymbol{x}_i^ op] - 2oldsymbol{\mu}_i \mathbb{E}[oldsymbol{x}_i]^ op + oldsymbol{\mu}_i oldsymbol{\mu}_i^ op
ight). \end{aligned}$$

• Para concluir o passo E, precisamos computar $\mathbb{E}[x_i]$ e $\mathbb{E}[x_i x_i^{\top}]$.

• Pela propriedade de condicionamento da Gaussiana, temos:

$$egin{aligned} oldsymbol{x}_{ih} | oldsymbol{x}_{iv}, oldsymbol{ heta} & \sim \mathcal{N}(oldsymbol{m}_i, oldsymbol{S}_i), \ oldsymbol{m}_i &= oldsymbol{\mu}_h + oldsymbol{\Sigma}_{hv} oldsymbol{\Sigma}_v^{-1} (oldsymbol{x}_{iv} - oldsymbol{\mu}_v), \ oldsymbol{S}_i &= oldsymbol{\Sigma}_h - oldsymbol{\Sigma}_{hv} oldsymbol{\Sigma}_v^{-1} oldsymbol{\Sigma}_{vh}, \end{aligned}$$

em que
$$\pmb{\mu}^{(t-1)} = [\pmb{\mu}_v, \pmb{\mu}_h]^{ op}$$
 e $\pmb{\Sigma}^{(t-1)} = \left[egin{array}{cc} \pmb{\Sigma}_v & \pmb{\Sigma}_{vh} \\ \pmb{\Sigma}_{hv} & \pmb{\Sigma}_h \end{array}
ight].$

• Assim:

$$egin{aligned} \mathbb{E}[oldsymbol{x}_i] &= [oldsymbol{\mathbb{E}}[oldsymbol{x}_{ih}]; oldsymbol{x}_{iv}] = [oldsymbol{m}_i; oldsymbol{x}_{iv}], \ \mathbb{E}[oldsymbol{x}_i oldsymbol{x}_i^ op] &= \mathbb{E}\left[egin{aligned} oldsymbol{x}_{ih} & oldsymbol{x}_{ih}^ op, oldsymbol{x}_{iv}^ op\end{bmatrix} \\ &= \left[egin{aligned} \mathbb{E}[oldsymbol{x}_{ih} oldsymbol{x}_{ih}^ op] & \mathbb{E}[oldsymbol{x}_{ih}] oldsymbol{x}_{iv}^ op\end{bmatrix} \\ oldsymbol{x}_{iv} \mathbb{E}[oldsymbol{x}_{ih}]^ op & oldsymbol{x}_{iv} oldsymbol{x}_{iv}^ op\end{bmatrix} = \left[egin{aligned} oldsymbol{S}_i + oldsymbol{m}_i oldsymbol{m}_i^ op & oldsymbol{m}_i oldsymbol{x}_{iv}^ op\end{bmatrix}, \end{aligned}$$

em que usamos $\mathbb{E}[\boldsymbol{x}\boldsymbol{x}^{\top}] = \operatorname{cov}[\boldsymbol{x}] + \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^{\top}$.

- No passo M precisamos resolver a equação $abla Q(m{ heta}, m{ heta}^{(t-1)}) = m{0}.$
- Seguimos as regras de atualização usuais para a Gaussiana:

$$oldsymbol{\mu}^{(t)} = rac{1}{N} \sum_{i}^{N} \mathbb{E}[oldsymbol{x}_{i}], \ oldsymbol{\Sigma}^{(t)} = \left(rac{1}{N-1} \sum_{i}^{N} \mathbb{E}[oldsymbol{x}_{i} oldsymbol{x}_{i}^{ op}]
ight) - oldsymbol{\mu}^{(t)}(oldsymbol{\mu}^{(t)})^{ op}.$$

 Note que poderíamos incluir prioris para os parâmetros e obter uma solução MAP.

Agenda

- Modelos de misturas
- Algoritmo Expectation-Maximization Algoritmo EM para Mistura de Gaussianas (GMMs)

Algoritmo EM para GMMs com estimação MAP Seleção de modelos para GMM

Algoritmo EM para Mistura de Especialistas

Algoritmo EM como um limiar inferior

Variantes do algoritmo EM

Algoritmo EM para dados faltantes

- 3 Tópicos adicionais
- 4 Referências

Tópicos adicionais

- Mistura de Bernoullis.
- Mistura de distribuições t de Student.
- Algoritmo EM incremental.
- Mistura hierárquica de especialistas.

Agenda

- Modelos de misturas
- Algoritmo Expectation-Maximization

Algoritmo EM para Mistura de Gaussianas (GMMs) Algoritmo EM para GMMs com estimação MAP Seleção de modelos para GMM Algoritmo EM para Mistura de Especialistas Algoritmo EM como um limiar inferior Variantes do algoritmo EM Algoritmo EM para dados faltantes

- 3 Tópicos adicionais
- 4 Referências

Referências bibliográficas

- Cap. 11 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Cap. 9 BISHOP, Christopher M. Pattern recognition and machine learning, 2006.