1211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

1/21E: Mathematical Logic 1/25 1/21E: Mathematical Logic

Schedule propositional logic predicate logic 4/13 syntax, semantics 5/11 syntax, semantics 4/18 normal forms 5/16 normal forms examples, properties examples, properties natural deduction I natural deduction I 5/23 4/27 natural deduction II 5/25 natural deduction II completeness advanced topics 5/2 5/30 midterm exam 6/2 summary 6/6 exam

Evaluation

midterm exam (40) + final exam (60)

Goal of This Course

2/25

Contents of This Course

Goal

- able to read and write logical formulas
- able to **transform** formulas
- able to **prove/disprove** formulas

Ultimate Goal

develop skills to read textbooks and to write definitions/proofs in thesis

1211E: Mathematical Logic 3/25 1211E: Mathematical Logic 4/25

Reading/Writing Formulas and Proofs

■ two plus three makes five:

$$2 + 3 = 5$$

• every number $x \in \mathbb{R}$ satisfies $x^2 \geqslant 0$:

$$\forall x \in \mathbb{R}. \quad x^2 \geqslant 0$$

■ mathematical induction: P(n) holds for all $n \in \mathbb{N}$ if next conditions hold: (i) P(0), (ii) for every $k \in \mathbb{N}$ if P(k) then P(k+1):

$$(P(0) \land (\forall k \in \mathbb{N}. P(k) \rightarrow P(k+1))) \rightarrow \forall n \in \mathbb{N}. P(n)$$

1211E: Mathematical Logic

5/25

Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

How to solve it automatically?

The easiest way is formalizing the problem in propositional logic!

7/25

Proposition

If p implies q and q implies r then p implies r. $((p \to q) \land (q \to r)) \to (p \to r)$

Proof.

Assume that p implies q and q implies r. Suppose that p holds. By the first assumption we have q. By the second assumption we have r. Therefore, p implies r.

I211E: Mathematical Logic

6/25

Tic-Tac-Toe

Is there a winning strategy for Tic-Tac-Toe? Actually not. How to formalize and prove it?

Propositional Logic: Syntax and Semantics

Textbook for Propositional Logic

Dirk van Dalen

Logic and Structure (5th edition)

Springer Long Heidelberg, 2012

We will study Chapters 2, 3, and 4.

I211E: Mathematical Logic

9/25

I211E: Mathematical Logic

10/25

Propositional Logic: Syntax

Definition (propositional formulas)

11/25

Example

 $p \to (q \vee r)$ means "if p holds then q or r holds"

Exercise

give formula for "if p or q then neither p nor r holds"

Parse Tree of $(p \lor q) \to (\neg(p \lor q))$

Exercise

- 1 draw parse tree of $\neg((\neg p) \lor (\neg q))$
- 2 how about $p \lor q \land r$? explain why this is **not** well-formed formula

Propositional Logic: Semantics

Definition

- valuation v is mapping from atoms to $\{T, F\}$
- valuation $[\cdot]_v$ of propositional formula is defined as follows:

$$\llbracket p \rrbracket_v = v(p) \qquad \qquad \llbracket \phi \wedge \psi \rrbracket_v = \begin{cases} \mathsf{T} & \text{if } \llbracket \phi \rrbracket_v = \mathsf{T} \text{ and } \llbracket \psi \rrbracket_v = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\llbracket \top \rrbracket_v = \mathsf{T} \qquad \qquad \llbracket \phi \vee \psi \rrbracket_v = \begin{cases} \mathsf{T} & \text{if } \llbracket \phi \rrbracket_v = \mathsf{T} \text{ or } \llbracket \psi \rrbracket_v = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\llbracket \bot \rrbracket_v = \mathsf{F} \qquad \qquad \llbracket \phi \rightarrow \psi \rrbracket_v = \begin{cases} \mathsf{T} & \text{if } \llbracket \phi \rrbracket_v = \mathsf{F} \text{ or } \llbracket \psi \rrbracket_v = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$\llbracket \neg \phi \rrbracket_v = \begin{cases} \mathsf{F} & \text{if } \llbracket \phi \rrbracket_v = \mathsf{T} \\ \mathsf{T} & \text{if } \llbracket \phi \rrbracket_v = \mathsf{F} \end{cases}$$

$$\llbracket \phi \leftrightarrow \psi \rrbracket_v = \begin{cases} \mathsf{T} & \text{if } \llbracket \phi \rrbracket_v = \llbracket \psi \rrbracket_v \\ \mathsf{F} & \text{otherwise} \end{cases}$$

I211E: Mathematical Logic 13/25

Validity and Satisfiability

Examples for Valuations

Example

for valuation v with $v(p) = \mathsf{T}$ and $v(q) = \mathsf{F}$

$$\begin{bmatrix} \neg \underline{p} \lor \underline{q} \end{bmatrix}_v = \mathbf{F}$$

$$\begin{bmatrix} (\neg(\neg\underline{p})) \to \underline{p} \\ \hline \underline{\top} \\ \hline \underline{\top} \\ \hline \top \\ \hline \end{bmatrix}_v = \mathsf{T}$$

Exercise

what if
$$v(p) = \mathsf{F}$$
 and $v(q) = \mathsf{T}$?

1211E: Mathematical Logic

14/25

Validity and Satisfiability

Definition

- lacktriangledown ϕ is valid if $[\![\phi]\!]_v = \mathsf{T}$ for all valuations v
- $lackrel{\phi}$ is satisfiable if $\llbracket \phi \rrbracket_v = \mathsf{T}$ for some valuations v

Example

 $\phi = (p \lor q) \to (\neg (p \lor r))$ is satisfiable but not valid because:

- $\blacksquare \llbracket \phi \rrbracket_v = \mathsf{T} \quad \text{ for } v = \{ p \mapsto \mathsf{F}, \ q \mapsto \mathsf{T}, \ r \mapsto \mathsf{F} \}$
- $\blacksquare \ \llbracket \phi \rrbracket_v = \mathsf{F} \quad \text{ for } v = \{p \mapsto \mathsf{T}, \ q \mapsto \mathsf{T}, \ r \mapsto \mathsf{T}\}$

Exercise

is $\neg(\neg p)$) $\rightarrow p$ valid? is it satisfiable?

Truth Tables for Base Cases

17/25

Т

I211E: Mathematical Logic

Truth Tables for Complex Formulas

p	q	r	$p \lor q$	$p \lor r$	$ \neg(p\vee r) $	$\mid (p \vee q)$	\rightarrow	$(\neg(p\vee r))$
Т	Т	Т	Т	Т	F		F	
Т	Τ	F	Т	Т	F		F	
Т	F	Τ	Т	Т	F		F	
Т	F	F	Т	Т	F		F	
F	Τ	Τ	Т	Т	F		F	
F	Τ	F	F	F	Т		Т	
F	F	Τ	F	Т	F		Т	
F	F	F	F	F	Т		Т	

- is $(p \lor q) \to (\neg(p \lor r))$ satisfiable? why?
- is it valid? why?

I211E: Mathematical Logic 18/25

Truth Tables for Complex Formulas (Compact Form)

\overline{p}	q	r	$ (p \lor q) $	\rightarrow	(¬ ($p \vee r))$
T	Т	Т	T	F	Т	F
Τ	Τ	F	Т	F	Τ	F
Т	F	Τ	Т	F	Τ	F
Т	F	F	Т	F	Τ	F
F	Τ	Τ	Т	F	Τ	F
F	Τ	F	F	Т	F	Т
F	F	Τ	F	Т	Τ	F
F	F	F	F	Т	F	Т

Exercise

compute truth table for $\phi = \neg(p \lor q) \to ((\neg p) \land (\neg q))$; satisfiable? valid?

19/25

Duality and Decidability Results

Theorem

 ϕ is valid $\iff \neg \phi$ is unsatisfiable (not satisfiable)

Theorem

validity and satisfiability problems are decidable:

propositional formula ϕ *instance:* propositional formula ϕ instance: *question:* is ϕ valid? question: is ϕ satisfiable?

Proof.

compute truth table for ϕ

I211E: Mathematical Logic

I211E: Mathematical Logic

20/25

Logical Equivalence

I211E: Mathematical Logic 21/25

How To Prove Logical Equivalence

Theorem (de Morgan's law)

$$\neg (p \land q) \approx (\neg p) \lor (\neg q)$$

Proof.

The claim is shown by the truth table method:

Definition (logical equivalence)

 $\phi \approx \psi$ if $\phi \leftrightarrow \psi$ is valid

Example

$$\begin{array}{ll} p \approx \neg \neg p & p \wedge q \not\approx p \vee q \\ p \rightarrow q \approx (\neg p) \vee q & p \rightarrow q \not\approx q \rightarrow p \\ \neg (p \wedge q) \approx (\neg p) \vee (\neg q) & (p \rightarrow q) \rightarrow r \not\approx p \rightarrow (q \rightarrow r) \end{array}$$

I211E: Mathematical Logic

22/25

How To Disprove Logical Equivalence

Proposition

$$p \to q \not\approx q \to p$$

Hint

before writing proof, compute truth table for $(p \to q) \leftrightarrow (q \to p)$

Proof.

Consider the valuation $v = \{p \mapsto \mathsf{F}, q \mapsto \mathsf{T}\}$. We have:

$$[(p \to q) \leftrightarrow (q \to p)]_v = \mathsf{F}$$

So $(p \to q) \leftrightarrow (q \to p)$ is invalid. Hence the claim holds.

Supplementary Comments

- T and F are written as 1 and 0 in textbook
- set of all propositional formulas is referred to as PROP in textbook
- valid formula ϕ is called **tautology** and denoted by $\models \phi$
- $\bullet \phi \approx \psi \iff \models \phi \leftrightarrow \psi$

I211E: Mathematical Logic

25/25