Limits and Asymptotes

Summary

- 1. Infinite limits are often described by vertical and horizontal asymptotes.
- 2. A function never crosses a vertical asymptote but its behavior is warped around it.
- 3. Horizontal asymptotes can help determine end behavior of a function.

Infinite Limts and Asymptotes

Example 1. For
$$f(x) = \frac{1}{x}$$
, estimate $\lim_{x \to 0} f(x)$

Example 2. For
$$g(x) = \frac{1}{x^2}$$
, estimate $\lim_{x \to 0} g(x)$

A vertical line is a vertical asymptote if \underline{any} are true:

• If as
$$x \to a^-$$
, $\lim_{x \to a^-} = -\infty$ or ∞

• If as
$$x \to a^+$$
, $\lim_{x \to a^+} = -\infty$ or ∞

Example 3. If
$$f(x) = \frac{x-1}{x^2-1}$$

(a) State the domain of f(x)

(b) Determine $\lim_{x\to 1} f(x)$ algebraically.

(c) Determine $\lim_{x\to -1} f(x)$.

Example 4. The cost, C(x), in thousands of dollars of removing x% of a city's pollutants discharged into a lake is given by

$$C(x) = \frac{113x}{100 - x}$$

(a) Determine the reasonable domain for C.

(b) Evaluate and interpret C(50)

(c) Determine and interpret $\lim_{x\to 100^-} C(x)$

Limits at Infinity and Horizontal Asymptotes

What happens as $x \to -\infty$ or $x \to \infty$?

Example 5. Consider the doubling function $f(x) = 2^x$.

- (a) What is $\lim_{x\to\infty}$?
- (b) What is $\lim_{x \to -\infty}$?

In the previous example, the line y = 0 is a **horizontal asymptote** of $f(x) = 2^x$.

A **horizontal asymptote** of a function f(x) is a horizontal line with equation y=L where $\lim_{x\to\pm\infty}f(x)=L$.

Horizontal asymptotes are used to determine end behavior.

Example 6. Pharmacological studies have determined that the amount of medication present in the body is a function of the amount given and how much time has elapsed since taking the medicine.

For a certain medication, the amount present in milliliters, A(t), can be approximated by the function

$$A(t) = 3e^{-0.123t}$$

where t is the number of hours since taking the medication.

(a) Determine and interpret A(0).

(b) Determine and interpret $\lim_{t \to \infty} A(t)$.

Example 7. Evaluate each of the following.

(a)
$$\lim_{x \to \infty} \frac{1}{x}$$

(b)
$$\lim_{x \to -\infty} \frac{1}{x}$$

(c)
$$\lim_{x\to\infty} \frac{1}{x^{5/3}}$$

(d)
$$\lim_{x \to -\infty} \frac{1}{x^{5/3}}$$

(e)
$$\lim_{x \to \infty} \frac{1}{x^{1/2}}$$

(f)
$$\lim_{x \to -\infty} \frac{1}{x^{1/2}}$$

Special Limits at Infinity

• For
$$n > 0$$
, $\lim_{x \to \infty} \frac{1}{x^n} = 0$

• For
$$n > 0$$
, $\lim_{x \to -\infty} \frac{1}{x^n} = 0$ **provided x^n is a real number when $x < 0$ **

Note: All limit properties from the last section are true for limits at infinity.

Example 8. For $f(x) = \frac{x^2 + 1}{2x^2 - 1}$, determine $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.

Example 9. The total cost (in dollars) to produce x units of a certain product is given by C(x) = 22,500 + 7.35x. The **average cost**, AC, is given by

$$AC(x) = \frac{C(x)}{x} = \frac{22,500 + 7.35x}{x}$$

Find and interpret $\lim_{x\to\infty} AC(x)$