Using Snomed to recognize and index chemical and drug mentions

QR

Pilar López-Úbeda, Manuel Carlos Díaz-Galiano, M.Teresa Martín-Valdivia, L. Alfonso Ureña-López Department of Computer Science, CEATIC, Universidad de Jaén, {plubeda, mcdiaz, maite, laurena}@ujaen.es

Introduction

- Efficient access to mentions of drugs, medications and chemical entities is a pressing need shared by biomedical researchers, clinicians and pharma industry.
- The recognition of pharmaceutical drugs and chemical entities is a critical step required for the subsequent detection of relations of chemicals with other biomedically relevant entities.

Track 1: NER offset and entity classification

 In the first task, the main objective is to find the chemicals and drugs within the text.

	Machine Learning with CRF
•	CRF + bf (basic features) Add features to each word: is lower, is upper, is title, is digit, is alpha, is begin of sentence and is end of sentence.
•	CRF + bf (basic features) + sf (Snomed features) This new feature indicates whether the word is contained in Snomed.
	Deep Learning with BiLSTM + CNN
	The word embedding used for this task is Spanish Billion Word Corpus.
•	BiLSTM + CNN + bf (basic features)
•	BiLSTM + CNN + bf (basic features) + sf (Snomed features)

Results for Track 1:

Run 1	Precision	Recall	F1
CRF + bf	0.926	0.618	0.741
CRF + bf + sf	0.885	0.698	0.780
BiLSTM-CNN + bf	0.844	0.649	0.733
BiLSTM-CNN + bf + sf	0.859	0.696	0.769

Track 2: Concept indexing

- The objective of the second task was to assign a Snomed unique identifier to each concept detected in the previous task.
- System architecture:

 Examples of how the resources and tools applied in the architecture can contribute to the achievement of Snomed concept mapping:

Resource	Input text	Snomed Term	Code
Wikidata	adriamicina	doxorrubicina	372817009
Chemical symbols	Na	sodio	39972003
AbreMES-DB	Hb	hemoglobina	38082009
Hunspell Library	6-Metil-Prednisolona	metilprednisolona	116593003

Results for Track 2:

Run 1	Precision	Recall	F1
CRF + bf	0.878	0.558	0.682
CRF + bf + sf	0.852	0.633	0.736
BiLSTM-CNN + bf	0.833	0.678	0.683
BiLSTM-CNN + bf + sf	0.828	0.618	0.708

Conclusion

- Adding extra information from Snomed terminology helps classifiers to detect relevant entities within medical texts.
- Apply NLP techniques and tools and the creation of a medical dictionary has contributed to find synonyms for later assigning a single Snomed code.

This work has been partially supported by Fondo Europeo de Desarrollo Regional (FEDER), LIVING-LANG project (RTI2018-094653-B-C21) and REDES project (TIN2015-65136-C2-1-R) from the Spanish Government.