

Learning physics by learning physics

Lyle Kenneth Geraldez

What is a neural network?

Perceptron

 $Out = \begin{cases} 1 & \text{if } \Theta \geq \text{threshold} \\ 0 & \text{if } \Theta < \text{threshold} \end{cases}$

Neuron: Generalized Perceptron

Activation of a Neuron

$$\sigma(\mathbf{W}^{\ell}\mathcal{N}^{\ell-1}(\mathbf{x}) + \mathbf{b}^{\ell}) \in \mathbb{R}^{N_{\ell}}$$

Step	Sigmoid	Tanh	ReLU	Leaky ReLU	Softmax	
45	+	-	+	+	$f(x) = \frac{e^{i^x}}{\sum q^x}$	
Linear	Non -Linear	Non-Linear	Non -Linear	Non-Linear	Non-Linear	
Non- Differentiable	Differentiable	Differentiable	Differentiable	Differentiable	Differentiable	
	Supports Backpropaga tion	Supports Backpropaga tion	Supports Backpropaga tion	Supports Backpropaga tion	Supports Backpropaga tion	
	Vanishing Gradient Problem	Vanishing Gradient Problem	Dying Neuron Problem	-		
Not used in Deep Neural Networks	Suitable in Output Layer for Binary Classification	Not much popular now	Suitable in Hidden layers	Suitable in Hidden layers	Suitable in Output layer for Multiclass Classification	

Neural Network $\mathcal{N}^{L}(x;\theta(W,b))$

$$\mathcal{N}^L(\mathbf{x}): \mathbb{R}^{d_{ ext{in}}} o \mathbb{R}^{d_{ ext{out}}} f(\vec{\mathbf{z}}) = f_{L-1}(f_{...}(f_2(f_1(\vec{\mathbf{z}}))))$$

$$\mathcal{N}^{\ell}(\mathbf{x}) = \sigma(\mathbf{W}^{\ell} \mathcal{N}^{\ell-1}(\mathbf{x}) + \mathbf{b}^{\ell}) \in \mathbb{R}^{N_{\ell}} \text{ for } 1 \leq \ell \leq L-1$$

$$\mathcal{N}^0(\mathbf{x}) = \mathbf{x} \in \mathbb{R}^{d_{ ext{in}}}$$

$$l=1$$
 $l=2$ $l=L-1$

Learning Status: Feeding...

Learning Status: Assessing...

Learning Status: Correcting...

Iteration 1: loss 4.4160 Iteration 2: loss 3.3112 Iteration 3: loss 2.8802

Learning Status: Correcting...

Gradient Descent Optimization

$$w_{jk}^l
ightarrow w_{jk}^l - rac{\eta}{n} \sum_x rac{\partial C_x}{\partial w_{jk}^l}$$

$$b_{m{j}}^l
ightarrow b_{m{j}}^l - rac{\eta}{n} \sum_{m{x}} rac{\partial C_{m{x}}}{\partial b_{m{j}}^l}$$

Backpropagation

$$\begin{array}{rcl} \delta_j^L & = & \frac{\partial C_x}{\partial a_j^L} \sigma'(z_j^L), \\ \delta_j^\ell & = & \sum_k w_{kj}^{\ell+1} \delta_k^{\ell+1} \sigma'(z_j^\ell), \\ \\ \frac{\partial C_x}{\partial b_j^\ell} & = & \delta_j^\ell, \\ \\ \frac{\partial C_x}{\partial w_{jk}^\ell} & = & \sum_k a_k^{\ell-1} \delta_j^\ell. \end{array}$$

The "Hello World" of NN

Parameters:

- 1. Weights
- 2. Biases

Hyperparameters:

- 1. Hidden layers
- 2. Neurons per layer
- 3. Learning rate
- 4. Activation function
- 5. Epochs
- 6. Optimizer
- 7. Initializer

- 8. Regularization parameters
- 9. Dropout rate

Neural Network Architectures

Deep Feed Forward (DFF)

Universal Function Approximation Theorem

THEOREM 2.1. Let $\mathbf{m}^i \in \mathbb{Z}_+^d$, i = 1, ..., s, and set $m = \max_{i=1,...,s} |\mathbf{m}^i|$. Assume $\sigma \in C^m(\mathbb{R})$ and that σ is not a polynomial. Then the space of single hidden layer neural nets

$$\mathcal{M}(\sigma) \coloneqq \operatorname{span} \{ \sigma(\mathbf{w} \cdot \mathbf{x} + b) : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}$$

is dense in

$$C^{\mathbf{m}^1,\dots,\mathbf{m}^s}(\mathbb{R}^d) := \bigcap_{i=1}^s C^{\mathbf{m}^i}(\mathbb{R}^d),$$

i.e., for any $f \in C^{\mathbf{m}^1,...,\mathbf{m}^s}(\mathbb{R}^d)$, any compact $K \subset \mathbb{R}^d$, and any $\varepsilon > 0$, there exists a $g \in \mathcal{M}(\sigma)$ satisfying

$$\max_{\mathbf{x} \in K} |D^{\mathbf{k}} f(\mathbf{x}) - D^{\mathbf{k}} g(\mathbf{x})| < \varepsilon$$

for all $\mathbf{k} \in \mathbb{Z}_+^d$ for which $\mathbf{k} \leq \mathbf{m}^i$ for some i.

Given sufficient neurons, neural networks can approximate any function and its partial derivatives

$$\mathcal{E} \coloneqq \|\tilde{u}_{\mathcal{T}} - u\| \leq \underbrace{\|\tilde{u}_{\mathcal{T}} - u_{\mathcal{T}}\|}_{\mathcal{E}_{\mathrm{opt}}} + \underbrace{\|u_{\mathcal{T}} - u_{\mathcal{F}}\|}_{\mathcal{E}_{\mathrm{gen}}} + \underbrace{\|u_{\mathcal{F}} - u\|}_{\mathcal{E}_{\mathrm{app}}}.$$

Derivatives

How to differentiate? Manual

Manual differentiation

$$f'(x) = 2e^{2x} - 3x^2$$

Problem: Impractical

How to differentiate? Numerical

Finite differences

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\frac{\partial f}{\partial x_i} \approx \frac{f(x + he_i) - f(x)}{h}$$

Problem: Truncation and Round-off Errors

Requires O(n) evaluations:

$$e_1, e_2, e_3, \ldots, e_n$$

How to differentiate? Symbolic

Symbolic differentiation

Obtain $\frac{dz}{dx}$

$$\log(1 + e^{wx+b})$$

Problem: Expression Swell

Derivative wrt
$$w_1$$
 for two layers

$$\frac{e^{b_1+b_2+w_1x+w_2\log[1+e^{b_1+w_1x}]}w_2x}{\left(1+e^{b_1+w_1x}\right)\left(1+e^{b_2+w_2\log[1+e^{b_1+w_1x}]}\right)}$$

How to differentiate? Automatic (Forward)

$$f(x_1, x_2) = \left[\sin\left(\frac{x_1}{x_2}\right) + \frac{x_1}{x_2} - e^{x_2}\right] \times \left[\frac{x_1}{x_2} - e^{x_2}\right]$$

Primals

Tangents

$J_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \\ \end{bmatrix} $ $v_{1} = x_{1} \qquad = 1.500 \qquad \dot{v}_{0} \qquad = 0.000 \qquad \dot{v}_{1} = (v_{0}\dot{v}_{-1} - v_{-1}\dot{v}_{0})/v_{0}^{2} \qquad = 2.000 \qquad \dot{v}_{1} = (v_{0}\dot{v}_{-1} - v_{-1}\dot{v}_{0})/v_{0}^{2} \qquad = 2.000 \qquad \dot{v}_{1} = (v_{0}\dot{v}_{-1} - v_{-1}\dot{v}_{0})/v_{0}^{2} \qquad = 2.000 \qquad \dot{v}_{1} = (v_{0}\dot{v}_{-1} - v_{-1}\dot{v}_{0})/v_{0}^{2} \qquad = 2.000 \qquad \dot{v}_{2} = \cos(v_{1}) \times \dot{v}_{1} \qquad = -1.980 \qquad \dot{v}_{2} = \cos(v_{1}) \times \dot{v}_{1} \qquad = -1.980 \qquad \dot{v}_{3} = v_{3} \times \dot{v}_{0} \qquad = 0.000 \qquad \dot{v}_{3} = v_{3} \times \dot{v}_{0} \qquad = 0.000 \qquad \dot{v}_{4} = \dot{v}_{1} - \dot{v}_{3} \qquad = 2.000 \qquad \dot{v}_{4} = \dot{v}_{1} - \dot{v}_{3} \qquad = 2.000 \qquad \dot{v}_{4} = \dot{v}_{1} - \dot{v}_{3} \qquad = 2.000 \qquad \dot{v}_{5} = \dot{v}_{2} + \dot{v}_{4} \qquad = 0.020 \qquad \dot{v}_{5} = \dot{v}_{2} + \dot{v}_{4} \qquad = 0.020 \qquad \dot{v}_{5} = \dot{v}_{5} + \dot{v}_{4} + \dot{v}_{5} \qquad = 3.012 \qquad \dot{v}_{6} = \dot{v}_{5} \times v_{4} - \dot{v}_{4} v_{5} \qquad = 3.012 \qquad \dot{v}_{6} = \dot{v}_{5} \times v_{4} \qquad = 2.017 \qquad \dot{v}_{6} = \dot{v}_{5} \times v_{4} - \dot{v}_{4} v_{5} \qquad = 3.012 \qquad \dot{v}_{6} = \dot{v}_{5} \times \dot{v}_{6} = \dot{v}_{5} \times \dot{v}_{6} = \dot{v}_{5} \times \dot{v}_{6} = \dot{v}_{5} \times \dot{v}_{6} \qquad = 3.012 \qquad \dot{v}_{6} = \dot{v}_{5} \times \dot{v}_{7} + \dot{v}_{7} \times \dot{v}_{7} + \dot{v}_{7} \times \dot{v}_{7} + \dot{v}_{7} \times \dot{v}_{7} + \dot{v}_{7} \times \dot{v}_{$	$f:\mathbb{R}^n \to \mathbb{R}^m$			\dot{v}_{-1}	= 1.000
$J_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} $ $v_{0} = x_{2} = 0.500$ $v_{1} = v_{-1}/v_{0} = 3.000$ $v_{2} = \sin(v_{1}) = 0.141$ $v_{2} = \sin(v_{1}) = 0.141$ $v_{3} = v_{3} \times \dot{v}_{0} = 0.000$ $v_{3} = \exp(v_{0}) = 1.649$ $v_{4} = v_{1} - v_{3} = 1.351$ $v_{5} = v_{2} + v_{4} = 1.492$ $v_{6} = v_{5} \times v_{4} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{6}$ $\frac{\partial f}{\partial x_{2}} = \dot{v}_{6}$ $\frac{\partial f}{\partial x_{3}} = \dot{v}_{6}$ $\frac{\partial f}{\partial x_{4}} = \dot{v}_{6}$ $\frac{\partial f}{\partial x_{5}} = \dot{v}_{7}$ $\frac{\partial f}{\partial x_{5}}$	•	$v_{-1}=x_1$	= 1.500	ν̈́ο	= 0.000
$J_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} $ $v_{1} = v_{-1}/v_{0} = 3.000$ $v_{2} = \sin(v_{1}) = 0.141$ $v_{2} = \cos(v_{1}) \times \dot{v}_{1} = -1.980$ $v_{3} = \exp(v_{0}) = 1.649$ $v_{4} = v_{1} - v_{3} = 1.351$ $v_{5} = v_{2} + v_{4} = 1.492$ $v_{5} = v_{2} + v_{4} = 1.492$ $v_{6} = v_{5} \times v_{4} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{5}$ $\frac{\partial f}{\partial x_{2}} = \dot{v}_{5}$ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{5}$ $\frac{\partial f}{\partial x_{2}} = \dot{v}_{5}$ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{5}$ $\frac{\partial f}{\partial x_{2}} = \dot{v}_{5}$		$v_0 = x_2$	= 0.500		
$J_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} $ $v_{2} = \sin(v_{1}) = 0.141 $ $v_{2} = \cos(v_{1}) \times \dot{v}_{1} = -1.980 $ $v_{3} = \exp(v_{0}) = 1.649 $ $v_{4} = \dot{v}_{1} - \dot{v}_{3} = 2.000 $ $v_{4} = \dot{v}_{1} - \dot{v}_{3} = 1.351 $ $v_{5} = \dot{v}_{2} + \dot{v}_{4} = 0.020 $ $v_{6} = \dot{v}_{5} \times v_{4} = 1.492 $ $v_{6} = \dot{v}_{5} \times v_{4} = 2.017 $ $v_{6} = \dot{v}_{5} + \dot{v}_{4} = 0.020 $ $v_{7} = \dot{v}_{7} + \dot{v}_{7} + \dot{v}_{7} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} + \dot{v}_{8} = 0.012 $ $v_{8} = \dot{v}_{8} + $	F	$v_1 = v_{-1}/v_0$	= 3.000	$v_1 = (v_0 v_{-1} - v_{-1} v_0) / v_0^2$	= 2.000
$J_{f} = \begin{bmatrix} \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \dots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \dots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} $ $v_{3} = \exp(v_{0}) = 1.649 $ $v_{4} = v_{1} - v_{3} = 1.351 $ $v_{5} = v_{2} + v_{4} = 1.492 $ $v_{5} = v_{2} + v_{4} = 1.492 $ $v_{6} = v_{5} \times v_{4} = 2.017 $ $v_{6} = v_{5} \times v_{4} = 2.017 $ $f(x_{1}, x_{2}) = v_{6} = 2.017 $ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{6} = \dot{v}_{5} \times v_{4} = 3.012 $ 0.000 $v_{1} = 0.000$ $v_{2} = 0.000$ $v_{3} = v_{3} \times v_{0} = 0.000$ $v_{4} = \dot{v}_{1} - \dot{v}_{3} = 0.020$ $v_{5} = \dot{v}_{2} + \dot{v}_{4} = 0.020$ $v_{6} = \dot{v}_{5} \times v_{4} = 2.017 $ $v_{7} = \dot{v}_{1} + \dot{v}_{2} = 0.020$ $v_{8} = \dot{v}_{1} + \dot{v}_{2} = 0.020$ $v_{9} = \dot{v}_{1} + \dot{v}_{2} = 0.020$ $v_{1} = \dot{v}_{2} + \dot{v}_{3} = 0.020$ $v_{2} = \dot{v}_{3} + \dot{v}_{4} = 0.020$ $v_{3} = \dot{v}_{2} + \dot{v}_{3} = 0.020$ $v_{1} = \dot{v}_{2} + \dot{v}_{3} = 0.020$ $v_{2} = \dot{v}_{3} + \dot{v}_{4} = 0.020$ $v_{3} = \dot{v}_{3} + \dot{v}_{4} = 0.020$ $v_{1} = \dot{v}_{2} + \dot{v}_{3} = 0.020$	$\left \frac{\partial f_1}{\partial f_1} - \frac{\partial f_1}{\partial f_1} - \dots - \frac{\partial f_1}{\partial f_1} \right $		= 0.141	$\dot{v}_2 = \cos(v_1) \times \dot{v}_1$	= -1.980
$J_{f} = \begin{bmatrix} \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \dots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \dots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} $ $v_{3} = \exp(v_{0}) = 1.649$ $v_{4} = v_{1} - v_{3} = 1.351$ $v_{5} = v_{2} + v_{4} = 1.492$ $v_{6} = v_{5} \times v_{4} = 2.017$ $v_{6} = v_{5} \times v_{4} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $f(x_{1}, x_{2}) = v_{6} = 2.017$ $\frac{\partial f}{\partial x_{1}} = \dot{v}_{6}$ $= 3.012$				$\dot{v}_2 = v_2 \times \dot{v}_0$	= 0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\delta_{f_2}^{f_2}$ δ_{f_2} δ_{f_2}	$v_3 = \exp(v_0)$	= 1.649		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$J_f = \begin{bmatrix} \overline{\partial} x_1 & \overline{\partial} x_2 & \cdots & \overline{\partial} x_n \end{bmatrix}$	$v_4 = v_1 - v_3$	= 1.351		
$ \frac{\partial f_m}{\partial x_1} \frac{\partial f_m}{\partial x_2} \cdots \frac{\partial f_m}{\partial x_n} = 3.012 $ $ v_6 = v_5 \times v_4 = 2.017 \qquad \dot{v}_6 = \dot{v}_5 v_4 - \dot{v}_4 v_5 = 3.012 $ $ f(x_1, x_2) = v_6 = 2.017 \qquad \frac{\partial f}{\partial x_1} = \dot{v}_6 = 3.012 $,		= 1.492	$\dot{v}_5 = \dot{v}_2 + \dot{v}_4$	= 0.020
$\begin{bmatrix} \frac{1}{dx_1} & \frac{3m}{dx_2} & \cdots & \frac{3m}{dx_n} \end{bmatrix} \qquad \begin{array}{c} r_6 = r_3 \wedge r_4 & = 2.017 \\ f(x_1, x_2) = v_6 & = 2.017 & \frac{\partial f}{\partial x_1} = \dot{v}_c \\ \end{array} = 3.012$				$\dot{v}_6 = \dot{v}_5 v_4 - \dot{v}_4 v_5$	= 3.012
, v	$\begin{bmatrix} ox_1 & ox_2 & ox_n \end{bmatrix}$	$f(x_1, x_2) = v_6$	= 2.017	$\frac{\partial y}{\partial x_1} = \dot{v}_6$	= 3.012

 $f \cdot \mathbb{R}^n \longrightarrow \mathbb{R}^m$

How to differentiate? Automatic (Reverse)

$$f(x_1, x_2) = \left[\sin\left(\frac{x_1}{x_2}\right) + \frac{x_1}{x_2} - e^{x_2}\right] \times \left[\frac{x_1}{x_2} - e^{x_2}\right]$$

Primals

Adjoints

	., ,	Π / Z		17		1 500	$\nu_6 - J$	- 1.000
					$v_{-1} = x_1$	= 1.500	$\bar{v}_5 = v_4 \times \bar{v}_6$	= 1.351
					$v_0 = x_2$	= 0.500	$\bar{v}_4 = v_5 \times \bar{v}_6 + \bar{v}_5$	= 2.844
	Гағ	af		af -	$v_1 = v_{-1}/v_0$	= 3.000	$\bar{v}_3 = -\bar{v}_4$	= -2.844
_	∂f_1	∂f_1		∂f_1	$v_2 = \sin(v_1)$	= 0.141	$\bar{v}_2 = \bar{v}_5$	= 1.351
	∂x_1	∂x_2		∂x_n			$v_2 - v_5$	- 1.551
	∂f_2	∂f_2		∂f_2	$v_3 = \exp(v_0)$	= 1.649	$\bar{v}_1 = \bar{v}_2 \cos\left(v_1\right) + \bar{v}_4$	= 1.506
$J_f =$	∂x_1	∂x_2	•••	∂x_n	$\nu_4 = \nu_1 - \nu_3$	= 1.351	$\bar{v}_0 = \bar{v}_3 v_3 - \bar{v}_1 v_{-1} / v_0^2$	= -13.724
-	:	:	٠.	:	$v_5 = v_2 + v_4$	= 1.492	$\bar{v}_{-1} = \bar{v}_1/v_0$	= 3.012
	∂f_m	∂f_m		∂f_m	$v_6 = v_5 \times v_4$	= 2.017	$\bar{x}_2 = \bar{v}_0$	= -13.724
	∂x_1	∂x_2	•••	∂x_n	$f(x_1, x_2) = v_6$	= 2.017	$\bar{r}_* = \bar{v}_*$	= 3.012

Teaching it some physics

NN PDE Solution: Data-driven

Loss function is the absolute difference (squared) of the deviation between known numerical or analytical solution

For mesh-based numerical solution, we coincide the collocation points with the grid points

Backpropagation is Automatic Differentiation

Gradient Descent Optimization

$$egin{align} w_{jk}^l &
ightarrow w_{jk}^l - rac{\eta}{n} \sum_x rac{\partial C_x}{\partial w_{jk}^l} \ & \ b_j^l
ightarrow b_j^l - rac{\eta}{n} \sum_x rac{\partial C_x}{\partial b_j^l} \ & \ \end{array}$$

$$b_{oldsymbol{j}}^{oldsymbol{l}}
ightarrow b_{oldsymbol{j}}^{oldsymbol{l}} - rac{\eta}{n} \sum_{oldsymbol{x}} rac{\partial C_{oldsymbol{x}}}{\partial b_{oldsymbol{j}}^{oldsymbol{l}}}$$

Backpropagation

$$\begin{split} \delta_j^L &= \frac{\partial C_x}{\partial a_j^L} \sigma'(z_j^L), \\ \delta_j^\ell &= \sum_k w_{kj}^{\ell+1} \delta_k^{\ell+1} \sigma'(z_j^\ell), \\ \frac{\partial C_x}{\partial b_j^\ell} &= \delta_j^\ell, \\ \frac{\partial C_x}{\partial w_{jk}^\ell} &= \sum_k a_k^{\ell-1} \delta_j^\ell. \end{split}$$

NN PDE Solution: Physics-informed

Training set consists of initial conditions and boundary conditions

The physics...

PDE + Boundaries

$$f\left(\mathbf{x}; \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_d}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 u}{\partial x_1 \partial x_d}; \dots; \boldsymbol{\lambda}\right) = 0, \quad \mathbf{x} \in \Omega$$

$$\mathcal{B}(u, \mathbf{x}) = 0 \quad \text{on} \quad \partial \Omega$$

...is incorporated into the loss function

 $\mathcal{T} \in \mathbb{R}^{d_{ ext{in}}} imes \mathbb{R}^{d_{ ext{out}}}$

$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}; \mathcal{T}_b)$$

$$\mathcal{L}_f(\boldsymbol{\theta}; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{\mathbf{x} \in \mathcal{T}_f} \left\| f\left(\mathbf{x}; \frac{\partial \hat{u}}{\partial x_1}, \dots, \frac{\partial \hat{u}}{\partial x_d}; \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_d}; \dots; \boldsymbol{\lambda} \right) \right\|_2^2$$

$$\mathcal{N}^{L}(\boldsymbol{x} = \mathbb{R}^{d_{\mathbf{x}}}; \boldsymbol{\theta}(\boldsymbol{W}, \boldsymbol{b})) \qquad \mathcal{L}_{b}(\boldsymbol{\theta}; \mathcal{T}_{b}) = \frac{1}{|\mathcal{T}_{b}|} \sum_{\mathbf{x} \in \mathcal{T}_{b}} \|\mathcal{B}(\hat{u}, \mathbf{x})\|_{2}^{2},$$

recasting solving the PDE into an optimization problem

$$ec{u} pprox \hat{ec{u}}(heta^*), \qquad heta = \{ec{w}^l, B^l\}_{1 \leq l \leq L} \qquad heta^* = \mathrm{argmin}_{ heta} \mathcal{L}(heta; \mathcal{T})$$

While updating the collocation points via adaptive residual refinement

$$\mathcal{E}_r \approx \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \left\| f\left(\mathbf{x}; \frac{\partial \hat{u}}{\partial x_1}, \dots, \frac{\partial \hat{u}}{\partial x_d}; \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_d}; \dots; \boldsymbol{\lambda} \right) \right\|$$

PINN with DeepXDE: Heat Equation PDE

$$rac{\partial u}{\partial t} = lpha rac{\partial^2 u}{\partial x^2}$$

$$\Omega = [0,1]^2$$

$$u(0,t) = u(1,t) = 0$$

$$u(x,0) = \sin(rac{n\pi x}{L}), \qquad 0 < x < L, \quad n = 1,2,\ldots .$$

```
def pde(x, y):
    """Expresses the PDE residual of the heat equation."""
    dy_t = dde.grad.jacobian(y, x, i=0, j=1)
    dy xx = dde.grad.hessian(y, x, i=0, j=0)
    return dy t - a * dy xx
# Computational geometry:
geom = dde.geometry.Interval(0, L)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
 # Initial and boundary conditions:
 bc = dde.icbc.DirichletBC(
 geomtime,
 lambda x: 0,
 lambda ,
 on boundary: on boundary)
 ic = dde.icbc.IC(
     geomtime.
     lambda x: np.sin(n * np.pi * x[:, 0:1] / L),
     lambda _, on_initial: on_initial,
```


PINN with DeepXDE: Heat Equation PDE

```
# Define the PDE problem and configurations of the network:
data = dde.data.TimePDE(
    geomtime,
    pde,
    [bc, ic],
   num_domain=2540,
   num_boundary=80,
   num_initial=160,
   num test=2540.
net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal")
model = dde.Model(data, net)
# Build and train the model:
model.compile("adam", lr=1e-3)
model.train(iterations=20000)
model.compile("L-BFGS")
losshistory, train_state = model.train()
```


PINN with DeepXDE: Heat Equation PDE

```
# Plot/print the results
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
X, y_true = gen_testdata()
y_pred = model.predict(X)
f = model.predict(X, operator=pde)
```


PINN with DeepXDE: Allen-Cahn Equation PDE

$$rac{\partial u}{\partial t}=drac{\partial^2 u}{\partial x^2}+5(u-u^3),\quad x\in[-1,1],\quad t\in[0,1]$$

$$u(x,0) = x^2 \cos(\pi x)$$

$$u(-1,t)=u(1,t)=-1$$

PINN with DeepXDE: Klein-Gordon Equation PDE

$$\frac{\partial^2 y}{\partial t^2} + \alpha \frac{\partial^2 y}{\partial x^2} + \beta y + \gamma y^k = -x \cos(t) + x^2 \cos^2(t), \qquad x \in [-1, 1], \quad t \in [0, 10]$$

$$y(x,0)=x,\quad rac{\partial y}{\partial t}(x,0)=0 \qquad \qquad y(-1,t)=-\cos(t),\quad y(1,t)=\cos(t)$$

$$y(-1,t)=-\cos(t),\quad y(1,t)=\cos(t)$$

$$lpha=-1, eta=0, \gamma=1, k=2.$$

Source: https://arxiv.org/abs/1907.04502 (DeepXDE: A deep learning library for solving differential equations)

PINN with DeepXDE: Kovasznay Equation PDE

$$egin{aligned} urac{\partial u}{\partial x}+vrac{\partial u}{\partial y}&=-rac{\partial p}{\partial x}+rac{1}{Re}(rac{\partial^2 u}{\partial x^2}+rac{\partial^2 u}{\partial y^2}), & \Omega&=igl[0,1igr]^2 \ & urac{\partial v}{\partial x}+vrac{\partial v}{\partial y}&=-rac{\partial p}{\partial y}+rac{1}{Re}(rac{\partial^2 v}{\partial x^2}+rac{\partial^2 v}{\partial y^2}), & u(x,y)&=0, & (x,y)&\in\partial\Omega \end{aligned}$$

$$\Omega = [0,1]^2$$

$$u(x,y)=0, \qquad (x,y)\in\partial\Omega$$

PINN for Inverse Problems

Add a loss function term with known points on the domain and optimize it together with the parameters

$$\mathcal{I}(u, \mathbf{x}) = 0$$
 for $\mathbf{x} \in \mathcal{T}_i$

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}) = w_f \mathcal{L}_f(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_f) + w_b \mathcal{L}_b(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_b) + w_i \mathcal{L}_i(\boldsymbol{\theta}, \boldsymbol{\lambda}; \mathcal{T}_i)$$

$$\mathcal{L}_i(oldsymbol{ heta},oldsymbol{\lambda};\mathcal{T}_i) = rac{1}{|\mathcal{T}_i|} \sum_{\mathbf{x} \in \mathcal{T}_i} \|\mathcal{I}(\hat{u},\mathbf{x})\|_2^2.$$

$$oldsymbol{ heta}^*, oldsymbol{\lambda}^* = rg \min_{oldsymbol{ heta}, oldsymbol{\lambda}} \mathcal{L}(oldsymbol{ heta}, oldsymbol{\lambda}; \mathcal{T})$$

$$\frac{dx}{dt} = \rho(y-x), \quad \frac{dy}{dt} = x(\sigma-z) - y, \quad \frac{dz}{dt} = xy - \beta z$$

Future applications (???)

Canonical 3+1 Decomposition (ADM)

$$R+K^2-K_{ij}K^{ij}=16\pi
ho$$

(Hamiltonian Constraint)

$$D_j(K^{ij}-\gamma^{ij}K)=8\pi j^i \qquad ext{(Momentum Constraint)}$$

$$\partial_t \gamma_{ij} = -2 lpha K_{ij} + \mathcal{L}_eta \gamma_{ij}$$

$$\partial_t K_{ij} = lpha(R_{ij} - 2K_{ij}K_i^k + KK_{ij}) - D_iD_jlpha + 4\pilpha M_{ij} + \mathcal{L}_eta K_{ij}$$

12 evolution equations + 4 constraint equations

Constraint-violating modes

$$\frac{1}{a}\frac{da}{dr} + \frac{a^2 - 1}{2r} - 2\pi r(\Pi^2 + \Phi^2) = 0$$
$$\frac{1}{\alpha}\frac{d\alpha}{dr} - \frac{1}{a}\frac{da}{dr} - \frac{a^2 - 1}{r} = 0$$
$$\partial_t \Phi = \partial_r \left(\frac{\alpha}{a}\Pi\right)$$
$$\partial_t \Pi = \frac{1}{r^2}\partial_r \left(r^2\frac{\alpha}{a}\Phi\right)$$

Binary Mergers: Singularity Avoidance

Binary Mergers: Puncture Initial Data

Hamiltonian + Momentum Constraint

$$\bar{D}^2 \psi + \frac{1}{8} \psi^{-7} \bar{A}_{ij}^{\mathrm{L}} \bar{A}_{\mathrm{L}}^{ij} = 0,$$

Bowen-York Solutions

$$ar{A}_{
m L}^{ij} = rac{6}{s^3} l^{(i} \, ar{\epsilon}^{\,j)kl} J_k l_l, \qquad ar{A}_{
m L}^{ij} = rac{3}{2s^2} \left(P^i l^j + P^j l^i - (\eta^{ij} - l^i l^j) l_k P^k
ight).$$

Puncture Initial Data

$$\psi = 1 + \frac{1}{\alpha} + u,$$
 $\frac{1}{\alpha} = \sum_{n} \frac{\mathcal{M}_n}{2s_n}$

$$\bar{D}^2 u = -\beta (\alpha + \alpha u + 1)^{-7} \quad \beta \equiv \frac{1}{8} \alpha^7 \bar{A}_{ij}^{L} \bar{A}_{L}^{ij}.$$


```
bh_loc = ( loc_x, loc_y, loc_z )
# linear momentum
```

lin_mom = (p_x, p_y, p_z)

set up Puncture solver

black_hole = Puncture(bh_loc, lin_mom, n_grid, x_out)

and construct solution

black_hole.construct_solution(tol, it_max)

and write results to file

black hole.write to file()

Binary Mergers: Moving Punctures

BSSN = conformal + trace-tracefree + transverse-longitudinal decompositions {ADM}

$$\phi = \frac{1}{12} \ln(\gamma/\overline{\gamma}),$$

$$K = \gamma^{ij} K_{ij},$$

$$\tilde{\gamma}_{ij} = e^{-4\phi} \gamma_{ij},$$

$$\tilde{A}_{ij} = e^{-4\phi} (K_{ij} - \frac{1}{3} \gamma_{ij} K),$$

20 evolution equations + 6 constraint equations

$$\begin{split} \partial_{\perp}\phi &= \frac{1}{6}\overline{D}_{i}\beta^{i} - \frac{1}{6}\alpha K, \\ \partial_{\perp}\tilde{\gamma}_{ij} &= -\frac{2}{3}\tilde{\gamma}_{ij}\overline{D}_{k}\beta^{k} - 2\alpha\tilde{A}_{ij}, \\ \partial_{\perp}K &= \alpha(\tilde{A}_{ij}\tilde{A}^{ij} + \frac{1}{3}K^{2}) - \gamma^{ij}D_{i}D_{j}\alpha, \\ \partial_{\perp}\tilde{A}_{ij} &= -\frac{2}{3}\tilde{A}_{ij}\overline{D}_{k}\beta^{k} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^{k}_{j}) \\ &+ e^{-4\phi}[\alpha R_{ij} - D_{i}D_{j}\alpha]^{TF}, \\ \partial_{\perp}\tilde{\Lambda}^{i} &= \tilde{\gamma}^{k\ell}\overline{D}_{k}\overline{D}_{\ell}\beta^{i} + \frac{2}{3}\tilde{\gamma}^{jk}\Delta\tilde{\Gamma}^{i}_{jk}\overline{D}_{\ell}\beta^{\ell} \\ &+ \frac{1}{3}\tilde{D}^{i}(\overline{D}_{k}\beta^{k}) - 2\tilde{A}^{ik}\overline{D}_{k}\alpha + 2\alpha\tilde{A}^{k\ell}\Delta\tilde{\Gamma}^{i}_{k\ell} \\ &+ 12\alpha\tilde{A}^{ik}\overline{D}_{k}\phi - \frac{4}{3}\alpha\tilde{D}^{i}K, \end{split}$$

$$\begin{split} \mathcal{H} &= e^{-4\phi} (\tilde{R} - 8\tilde{D}^i \tilde{D}_i \phi - 8\tilde{D}^i \phi \tilde{D}_i \phi) + \frac{2}{3}K^2 \\ &- \tilde{A}_{ij} \tilde{A}^{ij} = 0, \\ \tilde{\mathcal{M}}^i &= \tilde{D}_j \tilde{A}^{ij} + 6\tilde{A}^{ij} \partial_j \phi - \frac{2}{3} \tilde{D}^i K = 0, \\ \mathcal{G}^i &= \tilde{\Lambda}^i - \tilde{\gamma}^{jk} \Delta \tilde{\Gamma}^i_{ik} = 0, \end{split}$$

Moving puncture gauge: $1 + log slicing + \Gamma driver condition$

$$\partial_t \alpha = \beta^a \partial_a \alpha - 2\alpha K$$

$$\partial_t \beta^a = \frac{3}{4} B^a + \beta^c \partial_c \beta^a ,$$

$$\partial_t B^a = \partial_t \Gamma^a + \beta^c \partial_c B^a - \beta^c \partial_c \Gamma^a - \eta B^a$$

