Claims

1. A thiazolylbiphenylamide of the formula (I)

$$F_2HC$$
 O
 R^6
 N
 S
 R^1
 R^5
 CH_3
 R^2
 R^4
 R^4

in which

5

10

25

R¹, R², R³, R⁴ and R⁵ independently of one another represent hydrogen, halogen, cyano, nitro, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfonyl, C₃-C₆-cycloalkyl, or represent C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or C₁-C₄-haloalkylsulfonyl having in each case 1 to 5 halogen atoms,

 R^1 and R^2 or R^2 and R^3 furthermore together represent optionally halogen- or C_1 - C_6 -alkyl-substituted alkenylene,

15 R⁶ represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹,

R⁷ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

5

R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹².

10

R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

15

R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹².

20

R¹² represents hydrogen or C₁-C₆-alkyl.

25

2. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which

30

R¹, R², R³, R⁴ and R⁵ independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, methoxy, ethoxy, methylthio, ethylthio, n- or isopropylthio, cyclopropyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethoxy, trifluoromethoxy, difluoromethylthio, difluoro-

chloromethylthio or trifluoromethylthio,

R¹ and R² or R² and R³ furthermore together represent optionally fluorine-, chlorine-, bromine- or methyl-substituted butadienediyl,

5

represents C₁-C₆-alkyl, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹.

10

R⁷ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

15

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms.

25

20

R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally monoto tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹²,

30

R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached <u>preferably</u> form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹²,

R¹² represents hydrogen or C₁-C₄-alkyl.

10

20

25

30

5

- 3. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which
- R¹, R², R³, R⁴ and R⁵ independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano, methyl, methoxy, methylthio, trifluoromethyl, difluoromethoxy, trifluoromethoxy, difluoromethylthio,

R⁶ represents methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, pentyl or hexyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec- or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec- or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfinyl, trifluoromethylsulfonyl, trifluoromethyl

R⁷ represents hydrogen, methyl, ethyl, n- or isopropyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl; trifluoromethyl, trifluoromethoxy or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, nor isopropyl, n-, iso-, sec- or tert-butyl, methoxymethyl, methoxymethyl,

ethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trifluoromethyl, trifluoromethoxymethyl,

5 I

R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle from the group consisting of morpholine, thiomorpholine and piperazine, which heterocycle is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine and methyl, where the piperazine may be substituted on the second nitrogen atom by R¹²,

15

R¹⁰ and R¹¹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, methoxymethyl, methoxymethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, trifluoromethyl,

20

R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle from the group consisting of morpholine, thiomorpholine and piperazine, which heterocycle is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine and methyl, where the piperazine may be substituted on the second nitrogen atom by R¹².

25

R¹² represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl.

30 4.

- The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which in each case four of the radicals R¹, R², R³, R⁴ and R⁵ represent hydrogen.
- 5. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which

15

 R^1 , R^2 , R^4 and R^5 each represent hydrogen and R^3 is as defined in any of claims 1 to 3.

- The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which
 R², R⁴ and R⁵ each represent hydrogen and
 R¹ and R³ independently of one another are as defined in any of claims 1 to 3.
- 7. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which R¹, R⁴ and R⁵ each represent hydrogen and
 R² and R³ independently of one another are as defined in any of claims 1 to 3.
 - 8. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which R^1 , R^3 and R^5 each represent hydrogen and R^2 and R^4 independently of one another are as defined in any of claims 1 to 3.

9. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which R⁶ represents -COR⁷ and R⁷ represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl.

- The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which R⁶ represents -COR⁷ and R⁷ represents methyl, ethyl, cyclopropyl or trifluoromethyl, in particular methyl.
- The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which
 R⁶ represents -CHO.
- 12. The thiazolylbiphenylamide of the formula (I) as claimed in claim 1 in which R⁶ represents methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, methylsulfinyl, methylsulfonyl, methoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoromethylsulfonyl, trifluoromethylsulfonyl, trifluoromethylsulfonyl, in particular methyl, isopropyl or cyclopropyl.

5

15

25

- 13. A process for preparing thiazolylbiphenylamides of the formula (I) as claimed in claim 1, characterized in that
 - (A) thiazolylbiphenylamides of the formula (II)

$$F_2HC$$
 O
 N
 S
 R^1
 R^5
 CH_3
 R^2
 R^4
 R^4

in which

R¹, R², R³, R⁴ and R⁵ are as defined in claim 1

are reacted with a halide of the formula (III)

$$R^6$$
 (III)

in which

R⁶ is as defined in claim 1 and

X represents chlorine, bromine or iodine

in the presence of a base and in the presence of a diluent.

- 14. A composition for controlling unwanted microorganisms, characterized in that it comprises at least one thiazolylbiphenylamide of the formula (I) as claimed in claim 1, in addition to extenders and/or surfactants.
 - 15. The use of thiazolylbiphenylamides of the formula (I) as claimed in claim 1 for controlling unwanted microorganisms.
 - 16. A method of controlling unwanted microorganisms, characterized in that thiazolylbiphenylamides of the formula (I) according to claim 1 are applied to

5

the microorganisms and/or their habitat.

17. A process for preparing compositions for controlling unwanted microorganisms, characterized in that thiazolylbiphenylamide of the formula (I) as claimed in claim 1 is mixed with extenders and/or surfactants.