COSC428 Computer Vision

Filters

What is image filtering?

• Modify the pixels in an image based on some function of a local neighborhood of the pixels.

10	5	3
4	5	1
1	1	7

7	

Linear functions

- Simplest: linear filtering.
 - Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

10	5	3
4	5	1
1	1	7

0	0	0
0	0.5	0
0	1	0.5

7

kernel

Convolution

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

Linear filtering (warm-up slide)

original

Linear filtering (warm-up slide)

original

Filtered (no change)

Linear filtering

original

shift

original

Pixel offset

shifted

Linear filtering

original

Blurring

original

Blurred (filter applied in both dimensions).

Blur examples

Blur examples

Smoothing reduces noise

- Generally expect pixels to "be like" their neighbours
 - surfaces turn slowly
 - relatively few reflectance changes
- Generally expect noise processes to be independent from pixel to pixel

- Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric Gaussian
 - as this parameter goes up,
 more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed

Linear filtering (warm-up slide)

original

Linear filtering (no change)

original

Filtered (no change)

Linear filtering

original

(remember blurring)

original

Blurred (filter applied in both dimensions).

Linear filtering

original

Sharpening

original

Sharpened original

Sharpening example

Sharpened
(differences are
accentuated; constant
areas are left untouched).

Sharpening

before after

Gradients and edges

- Points of sharp change in an image are interesting:
 - change in reflectance
 - change in object
 - change in illumination
 - noise
- Sometimes called edge points

- General strategy
 - linear filters to estimate image gradient
 - mark points where gradient magnitude is particularly large wrt neighbours (ideally, curves of such points).

Linear image transformations

• In analyzing images, it's often useful to make a change of basis.

Self-inverting transforms

Same basis functions are used for the inverse transform

$$\vec{f} = U^{-1}\vec{F}$$

$$= U^{+}\vec{F}$$

U transpose and complex conjugate

An example of such a transform: the Fourier transform

discrete domain

Forward transform

$$F[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k,l] e^{-\pi i \left(\frac{km}{M} + \frac{\ln}{N}\right)}$$

Inverse transform

$$f[k,l] = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[m,n] e^{+\pi i \left(\frac{km}{M} + \frac{\ln}{N}\right)}$$

Phase and Magnitude

- Fourier transform of a real function is complex
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform

• Curious fact

- all natural images have about the same magnitude transform
- hence, phase seems to matter, but magnitude largely doesn't

Demonstration

 Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

This is the magnitude transform of the cheetah pic

This is the magnitude transform of the zebra pic

Frequency filtering

Fourier Transform

Fourier Low-pass filter

Fourier High-pass filter

