Lecture 3: Value of Environmental Amenities with Migration ECO 567A

Geoffrey Barrows¹

¹CREST, CNRS, Ecole polytechnique

Jan 24, 2025

Syllabus

- Part I: Demand for Local Environmental Quality
 - Intro (Jan 10)
 - Demand I Estimation (Jan 17)
 - Demand II Sorting and Environmental Justice (Jan 24)
 - Amenities and Quant. Spatial Economic Models (Jan 31)
- Part II: Supply of Local Environmental Quality Energy
 - Energy Production (Feb 7)
 - Energy Demand (Feb 14)
 - Energy Efficiency Innovation (Feb 21)
 - Trade and Pollution (March 7)
- Part III: Global Externalities
 - Climate Change (March 14)

Research Project

- Pick a question that interests you in Sustainable Development/Environment/Energy/Geography
- Brief literature review on what has been done, what are outstanding questions
- Develop empirical strategy to address the question (real world)
- Identify dataset
- Obtain dataset and describe

Today

- ▶ How to estimate MWTP with endogenous sorting?
- ▶ Do people sort based on income/ethnicity?

Air Quality in the US (average 2001 - 2006)

Median Income in the US by Census District

Questions

- Can we explain with an economic model variation in wages, housing prices, and air pollution across space?
- What is the relationship between housing prices, wages, and pollution in spatial equilibrium?
- Can we still derive MWTP for amenities from housing prices?

Spatial Equilibrium

- ► Key idea:
 - ► Workers/consumers equalize utility across space
 - Firms equalize costs across space

Roback (JPE, 82)

- ► Worker-consumers (*N*)
 - Choose x traded good with price normalized to 1
 - ightharpoonup Choose L_c Land with price r
 - earn wage w from a firm
 - affected by pollution z
- Firms
 - ightharpoonup Choose N_p number of workers with wage w
 - ightharpoonup Choose L_p Land with price r
 - ▶ Produce traded goods $x = F(N_p, L_p; z)$
- ► Land Constraint $N * L_c + L_p(1) * x_p = L$

ç

Solving Consumer and Firm Problems

The consumer's problem is

$$\begin{array}{ll} \underset{x,L_c}{\text{Max}} & U(x,L_c;z) \\ \text{subject to} & x+rL_c \leq w \\ \\ \Longrightarrow \text{Indirect utility function } V(w,r;z) \quad , \quad \frac{\partial V(w,r;z)}{\partial z} \equiv V_z < 0 \end{array}$$

A firm's problem is

$$\begin{array}{ll} \underset{N_p,L_p}{\mathsf{Min}} & w*N_p+r*L_p\\ \text{subject to} & x=F(N_p,L_p;z) \end{array}$$

⇒ Yields unit cost function

$$w*N(1)_p^*+r*L(1)_p^*=c^1(w,r;z)$$
 , $\frac{\partial c^1(w,r;z)}{\partial z}\equiv c_z^1\geqslant 0$

Assumptions

- ▶ Spatial equilibrium equates indirect utility in all regions $V(w, r; z) \equiv k$
- Spatial equilibrium equates unit cost functions everywhere $c^1(w,r;z) \equiv 1$

Equilibrium, $z_1 < z_2$

If pollution is "productive" (lax pollution regulation)

Equilibrium

If pollution is "productive" (lax pollution regulation)

Equilibrium

If pollution is "productive" (lax pollution regulation)

Comparative Statics

- ▶ What are $\frac{dw}{dz}$ and $\frac{dr}{dz}$?
- ► Totally differentiate equilibrium conditions $V(w, r; z) \equiv k$, $c^1(w, r; z) \equiv 1$:

$$V_w \frac{dw}{dz} + V_r \frac{dr}{dz} = -V_z \tag{1}$$

$$C_w^1 \frac{dw}{dz} + C_r^1 \frac{dr}{dz} = -C_z^1$$
 (2)

In matrix notation

$$\begin{bmatrix} V_w & V_r \\ C_w^1 & C_r^1 \end{bmatrix} \begin{bmatrix} \frac{dw}{dz} \\ \frac{dr}{dz} \end{bmatrix} = \begin{bmatrix} -V_z \\ -C_z^1 \end{bmatrix}$$

Inverting the matrix and multiplying

$$\begin{bmatrix} \frac{dw}{dz} \\ \frac{dr}{dz} \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} -V_z C_r^1 + C_z^1 V_r \\ -V_w C_z^1 + V_z C_w^1 \end{bmatrix}$$

with

$$\Delta = V_w C_r^1 - V_r C_w^1 = V_w \left(L_p^*(1) + L_c^* N_p^*(1) \right) = LV_w/x > 0$$
 (By Shephard's lemma and Roy's Identity)

Comparative Statics

▶ Suppose pollution is "productive", so $C_z^1 < 0$

$$\frac{dw}{dz} = \underbrace{\frac{1}{\Delta}}_{+} \left[\underbrace{-V_z C_r^1}_{+} + \underbrace{C_z^1 V_r}_{+} \right] > 0$$
 (3)

$$\frac{dr}{dz} = \underbrace{\frac{1}{\Delta}}_{+} \left[\underbrace{-V_w C_z^1}_{+} + \underbrace{V_z C_w^1}_{-} \right] \leq 0 \tag{4}$$

Comparative Statics

▶ Suppose pollution is "neutral", so $C_z^1 = 0$

$$\frac{dw}{dz} = \underbrace{\frac{1}{\Delta}}_{+} \left[\underbrace{-V_z C_r^1}_{+} + \underbrace{C_z^1 V_r}_{=0} \right] > 0$$
 (5)

$$\frac{dr}{dz} = \underbrace{\frac{1}{\Delta}}_{+} \left[\underbrace{-V_w C_z^1}_{=0} + \underbrace{V_z C_w^1}_{-} \right] < 0 \tag{6}$$

What is *z* worth in dollars to worker/consumers?

▶ Totally differentiate equilibrium conditions $V(w, r; z) \equiv k$:

$$\underbrace{V_w \frac{dw}{dz} + V_r \frac{dr}{dz}}_{\text{indirect/observable}} = \underbrace{-V_z}_{\text{direct/unobservable}}$$

ightharpoonup Divide by V_w and apply Roy's Identity:

$$\frac{dw}{dz} - L_c^* \frac{dr}{dz} = -V_z/V_w \equiv MWTP$$

- this is the dollar equivalent of utility change from a small change in z.
- i.e. the amount of money someone would pay to avoid a small increase in pollution.

What is *z* worth in dollars to Firms?

▶ Totally differentiate equilibrium conditions $c^1(w, r; z) \equiv 1$

$$\underbrace{C_w^1 \frac{dw}{dz} + C_r^1 \frac{dr}{dz}}_{\text{indirect/observable}} = \underbrace{-C_z^1}_{\text{direct/unobservable}}$$

Apply Shephard's Lemma:

$$-\left[\frac{N_p^*}{x}\frac{dw}{dz} + \frac{L_p^*}{x}\frac{dr}{dz}\right] = C_z^1$$

- ▶ this is the change in the unit cost function of a firm from a small change in z.
- ▶ i.e. the amount of money a firm would pay to avoid a small increase in pollution.

What is z worth in dollars to workers+Firms?

Add dollar valuations to firms and workers yields "Total Value of Amenity" (Ω)

$$\Omega \equiv \underbrace{\left[\frac{dw}{dz} - L_c^* \frac{dr}{dz}\right] * N^*}_{\textit{workers}} - \underbrace{\left[\frac{N^*}{x} \frac{dw}{dz} + \frac{L_p^*}{x} \frac{dr}{dz}\right] * x}_{\textit{Firms}} = -L^* \frac{dr}{dz}$$

▶ I.e., the value to a region (workers + firms) of a small increase in z is just the change in the value of land

Estimating MWTP

Re-write MWTP

$$L_{c}^{*} \frac{dr}{dz} - \frac{dw}{dz} = w \left[\frac{L_{c} * r}{w} \frac{dr}{dz} \frac{1}{r} - \frac{dw}{dz} \frac{1}{w} \right]$$
$$= w \left[s_{L} \frac{d \log r}{dz} - \frac{d \log w}{dz} \right]$$
$$= w \left[s_{L} \gamma_{r} - \gamma_{w} \right]$$

ightharpoonup estimate γ 's from regressions

$$\log w_{ic} = x_i \beta + \gamma_w * z_c + \epsilon_{ic}$$
$$\log r_c = \gamma_r * z_c + \epsilon_c$$

Quality of Life Index

▶ What if people care about more than 1 amenity

$$QOL_c = \sum_k MWTP_k * Z_{k,c}$$

Endogeneity

- ► So evaluating $\frac{dr}{dz}$ and $\frac{dw}{dz}$ are very important and tell us a lot.
- ▶ But can we just regress r or w on z?

Other problems

- ► Agglomeration effects
- Trade costs
- Migration costs
- Individual preferences/heterogeneity

Albouy (Restat 2016)

- ► Model non-tradable goods
 - Differentiates between housing values and land rents
- Model productivity differences across cities
 - Back these out from observables
- Explicitly model taxation

Introduce Q and A (productivity)

Roback (1982)

$$V_w \frac{dw}{dz} + V_r \frac{dr}{dz} = -V_z \tag{7}$$

$$C_w \frac{dw}{dz} + C_r \frac{dr}{dz} = -C_z \tag{8}$$

► Albouy (2016)

$$\theta_{vw}\hat{w} + \theta_{vr}\hat{r} = \hat{Q}$$

$$\theta_{cw}\hat{w} + \theta_{cr}\hat{r} = \hat{A}_{x}$$

$$(10)$$

$$\theta_{cw}\hat{w} + \theta_{cr}\hat{r} = \hat{A}_x \tag{10}$$

Extend to non-traded goods

► Full model with non-traded goods

$$\hat{Q} = \theta_{\nu\nu}\hat{w} + \theta_{\nu\rho}\hat{p} \tag{11}$$

$$\hat{A}_{x} = \theta_{cw}\hat{w} + \theta_{cr}\hat{r} \tag{12}$$

$$\hat{A}_{y} + \hat{p} = \theta_{gw}\hat{w} + \theta_{gr}\hat{r}$$
 (13)

modified model accounting for missing r

$$\hat{Q} = \theta_{\nu\nu}\hat{w} + \theta_{\nu\rho}\hat{p} \tag{14}$$

$$\hat{A}_{x} = \theta_{cw}\hat{w} + \frac{\theta_{cr}}{\theta_{gr}} \left[\hat{A}_{y} + \hat{p} - \theta_{gw}\hat{w} \right]$$
 (15)

Assuming $\hat{A}_y = 0$

$$\hat{Q} = \theta_{vw}\hat{w} + \theta_{vp}\hat{p} \tag{16}$$

$$\hat{A}_{x} = \theta_{cw}\hat{w} + \frac{\theta_{cr}}{\theta_{gr}}[\hat{p} - \theta_{gw}\hat{w}]$$
 (17)

Total Value of Amenities

► Roback (1982)

$$\Omega \equiv \underbrace{\left[\frac{dw}{dz} - L_c^* \frac{dr}{dz}\right] * N^*}_{workers} - \underbrace{\left[\frac{N^*}{x} \frac{dw}{dz} + \frac{L_p^*}{x} \frac{dr}{dz}\right] * x}_{Firms} = -L^* \frac{dr}{dz}$$

► Albouy (2016)

$$\widehat{\Omega^{j}} \equiv \widehat{Q^{j}} + s_{x}\widehat{A_{x}^{j}} + \underbrace{s_{y}\widehat{A_{y}^{j}}}_{=0}$$

Productivity Estimates

Total Value of Amenities

Individual Amenities

			Obser	rvables	Amenity Type		
		Standard	Housing		Quality	Trade	
	Mean	Deviation	Cost	Wage	of Life	Productivity	
			(1)	(2)	(3)	(4)	
Logarithm of Metro Population	14.63	1.32	0.056***	0.038***	-0.001	0.036***	
			(0.007)	(0.004)	(0.002)	(0.004)	
Percent of Population	0.26	0.07	1.718***	0.714***	0.213***	0.748***	
College Graduates			(0.169)	(0.069)	(0.042)	(0.067)	
Whartron Residential Land-Use	0.05	0.93	0.008	0.004	0.001	0.004	
Regulatory Index (WRLURI)			(0.012)	(0.007)	(0.004)	(0.006)	
Minus Heating-Degree Days	-4.38	2.15	0.039***	0.014**	0.006	0.015***	
(1000s)			(0.010)	(0.006)	(0.004)	(0.005)	
Minus Cooling-Degree Days	-1.28	0.89	0.105***	0.017	0.025***	0.025**	
(1000s)			(0.018)	(0.012)	(0.007)	(0.010)	
Sunshine	0.60	0.08	1.248***	0.290***	0.260***	0.363***	
(percent possible)			(0.129)	(0.089)	(0.044)	(0.078)	
Inverse Distance to Coast	0.04	0.04	0.078***	0.024***	0.013***	0.027***	
(Ocean or Great Lake)			(0.008)	(0.005)	(0.002)	(0.004)	
Average Slope of Land	1.68	1.59	0.023***	-0.006*	0.010***	-0.002	
(percent)			(0.005)	(0.003)	(0.002)	(0.003)	

Variance Decomposition

$$\textit{var}\left(\widehat{\textit{V}^{\textit{j}}}\right) \equiv \textit{wt}_{\textit{vQ}} * \textit{var}\left(\widehat{\textit{Q}^{\textit{j}}}\right) + \textit{wt}_{\textit{vA}_{\textit{x}}} * \textit{var}\left(\widehat{\textit{A}^{\textit{j}}_{\textit{x}}}\right) + \textit{wt}_{\textit{vQA}_{\textit{x}}} * \textit{cov}\left(\widehat{\textit{Q}^{\textit{j}}}, \widehat{\textit{A}^{\textit{j}}_{\textit{x}}}\right)$$

		Variance Decomposition Fraction of variance explained by						
	Variance	Quality of Life	Productivity	Covarianc (4)				
	(1)	(2)	(3)					
Panel A: With Federal Taxes								
Land Rents	1.002	0.370	0.287	0.342				
Wages	0.019	0.018	1.132	-0.150				
Housing Costs	0.093	0.184	0.498	0.318				
Tax Differential	0.001	0.113	1.276	-0.398				
Total Value	0.015	0.181	0.503	0.317				

But what about endogenous sorting by preferences?

What is the relationship between income, race, and pollution? ⇒ Environmental Justice

Correlation of Hispanic Share and Cancer Risk

What explains the correlation?

- ► Toxic sites are placed near poor/minority populations?
- ► Poor/minority migrate towards toxic sites because of cheap housing?

OLS Estimates:

Table 4. Traditional Model: NATA Cancer

	$\Delta\%Asian$		Δ%Black		$\Delta\%Hispanic$		Δ %White	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Cancer)	-4.41E-05	-1.27	-8.45E-06	-0.28	-4.64E-05	-0.88	9.38E-05	2.00

Table 5. Traditional Model: NATA Respiratory

	Δ%Asian		Δ%Black		$\Delta\%$ Hispanic		Δ%White	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Respiratory)	-2.43E-04	-1.70	1.53E-05	0.12	-7.88E-04	-3.67	9.57E-04	4.98

Table 6. Traditional Model: NATA Neurological

	Δ%Asian		∆%Black		$\Delta\%Hispanic$		Δ%White	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Neurological)	-8.38E-03	-0.76	-5.80E-03	-0.61	-3.67E-02	-2.20	4.88E-02	3.26

Depro et al (2015)

- ▶ Model individual neighborhood choice ⇒ predictions for neighborhood population size
- Back out common utility levels from aggregate population dynamics
- Regress common utility levels on neighborhood characteristics

Structural Model

transition dynamics

$$pop_j^B = \sum_k s_{j,k} * pop_k^A$$

individual utility

$$u_{ij} = \delta_j + \eta_{ij}$$

mean utility

$$\delta_j = f(x_j, \xi_j; \beta)$$

individual mobility decision

$$u_{ij} - u_{ik} = (\delta_j - \delta_k) - \mu M C_{jk} + (\eta_{ij} - \eta_{ik})$$

Analytic expression for transition shares

$$prob_{j,k} = s_{j,k} = rac{e^{\delta_j - \delta_k - \mu M C_{jk}}}{\sum_l e^{\delta_l - \delta_k - \mu M C_{lk}}}$$

Structural Model

predicted movements

$$\sigma_j^{2007} = \sum_k \frac{e^{\delta_j - \delta_k - \mu M C_{jk}}}{\sum_l e^{\delta_l - \delta_k - \mu M C_{lk}}} \sigma_k^{2000}$$

- Estimation algorithm
 - \triangleright guess μ

 - guess δ_j^0 compute $\sigma_i^{2007,0}$
 - compute $\delta_i^1 = \delta_i^0 + (\ln \sigma_i^{2007} \ln \sigma_i^{2007,0})$
 - iterate until convergence $(\delta_i^{n+1} \delta_i^n < \epsilon)$
 - find μ to fit "stayer" population.
 - regress δ_i on cancer risk and covariates

Structural Estimates:

Table 9. Sorting Model: NATA Cancer

	$\delta_{_{Asian}}$		$\delta_{_{Black}}$		$\delta_{_{Hispanic}}$		$\delta_{_{White}}$	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Cancer)	-0.2302	-2.53	-0.0702	-0.97	-0.0300	-1.20	-0.3210	-5.09

Table 10. Sorting Model: NATA Respiratory

	$\delta_{_{Asian}}$		$\delta_{_{Black}}$		$\delta_{_{Hispanic}}$		$\delta_{_{White}}$	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Respiratory)	-1.7258	-4.43	-0.4322	-1.42	-0.2046	-1.64	-1.8496	-6.26

Table 11. Sorting Model: NATA Neurological

	$\delta_{_{Asian}}$		$\delta_{_{Black}}$		$\delta_{_{Hispanic}}$		$\delta_{_{White}}$	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
NATA (Neurological)	-26.4143	-0.90	-6.0258	-0.26	-16.5163	-1.83	-119.2423	-6.08

Depro et al (2015) conclusions

- Race correlates with cancer risk
- Structural model yields MWTP to avoid extra risk of 1 case per million
 - ▶ 32 cents for whites ⇒ need to pay \$320,000 to a group for them to accept an increase risk of 1 per 1 million people
 - 3 cents for Hispanics
- Consistent with residential sorting model
 - Nobody likes cancer risk
 - But Whites dislike it more than Hispanics, so they sort away in equilibrium

Summary

- In general equilibrium, both wages and housing prices may be related to amenities
- ► Firm costs/productivity may also be related to amenities
- ▶ In the standard economic geography framework (Roback 82), MWTP of worker/consumers is a linear combination of $\frac{dr}{dz}$ and $\frac{dw}{dz}$.
- ▶ But to the aggregate of workers+ firms, MWTP is just $\frac{dr}{dz}$
- Extended model with productivity differences concludes that productivity is more important than QOL for explaining wage/rent differentials
- Data suggest that minorities sort towards nuisance in equilibrium

References

- Roback, Jennifer. "Wages, rents, and the quality of life." Journal of political Economy 90.6 (1982): 1257-1278.
- ▶ Albouy, David. "What are cities worth? Land rents, local productivity, and the total value of amenities." Review of Economics and Statistics 98.3 (2016): 477-487.
- ▶ Depro, Brooks, Christopher Timmins, and Maggie O'Neil. "White flight and coming to the nuisance: can residential mobility explain environmental injustice?." Journal of the Association of Environmental and resource Economists 2.3 (2015): 439-468.
- ➤ Tiebout, Charles M. "A pure theory of local expenditures." Journal of political economy 64.5 (1956): 416-424.
- Kolstad (Chapter 8)