Neural Language Models

Knowledge and Language Engineering Lab

목차

■ 신경망 언어 모델 소개

LSTMs 기반 언어 모델 실습

신경망 언어모델 소개

언어 모델

- 언어 모델?
 - 문장 또는 단어열에 대한 확률 분포
 - m개의 단어열이 주어졌을 때 m개의 단어열이 나타날 확률을 계산
 - P(I am a boy) = 0.7
 - P(I a am boy) = 0.02
- 적용 예
 - 품사 태깅
 - P(I_{noun} am_{verb} a_{article} boy_{noun})=?
 - 기계 번역
 - P(high winds tonight) > P(large winds tonight)
 - 철자 교정
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - 기타 등등…

언어 모델

- 통계기반 언어 모델?
 - N-gram 언어 모델
- 신경망 기반 언어 모델?
 - Recurrent neural network 기반 언어 모델

순환신경망 (Recurrent Neural Networks; RNNs)

순환신경망 (Recurrent Neural Networks; RNNs)

- 순환신경망 (Recurrent Neural Networks; RNNs)
 - 무작위 길이의 열 → 고정된 길이의 벡터 표현
 - I am a boy
 - Sometimes to understand a word's…
 - At your dictionary we try to gib…

RNN의 입력

RNN의 입력: Embedding Layer (Word to Vector)

RNN 출력

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

Timestep마다 다른 Weight? Or weight sharing?

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

- Timestep마다 다른 weight 사용
 - 학습 파라미터의 수가 선형적으로 증가
 - 네트워크가 학습하지 못한 입력열에 대한 일반화 불가능
 - on monday it was snowing
 - it was snowing on Monday
- Weight sharing
 - 학습 파라미터 수 효율적
 - 학습 데이터 오버피팅 감소
 - 가변길이의 입력열을 가지는 모델링에 도움

$$h_t = \sigma\left(W \cdot [h_{t-1}, x_t] + b_f\right)$$

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem
 - 장기 의존성 학습 어려움 (long-term dependency)

- *< 1 *< 1 *< 1 ··· *< 1

- Long Short-Term Memory networks (LSTMs)
 - Vanishing gradient problem 완화
 - 장기 의존성 학습문제 보완

- LSTMs 핵심 아이디어
 - 셀 스테이트 (cell state) 정보 전달 목적
 - 불필요한 정보 제거
 - 유용한 정보 추가

- LSTMs Step1
 - Forget gate layer
 - 어떤 정보를 셀 스테이트에서 제거할 것인지 결정

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- LSTMs Step2
 - Input gate layer
 - 어떤 정보를 셀 스테이트에 더해 줄 것인지 결정

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- LSTMs Step3
 - Update the cell state
 - 과거의 C_{t-1} 을 새로운 C_t 로 업데이트

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- LSTMs Step4
 - Output gate layer
 - 셀 스테이트로부터 어떤 정보를 읽을 것인지 결정

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- LSTMs의 다양한 변형
 - Peep hole
 - Forget + Input gate
 - Gated Recurrent Unit (GRU)

신경망 언어 모델

P(i, am, a, boy, $\langle E \rangle$) = P(i)*P(am|i)*P(a|i,am)*P(boy|i,am,a)*P($\langle E \rangle$ |i,am,a,boy)

LSTM 기반 언어모델 실습

- Training 과정
 - 학습데이터 (수만 문장 이상)
 - i am a boy .
 - sometimes to understand a word's…
 - at your dictionary we try to gib…
 -
 - 단어 사전 구축
 - {i=1, am=2, a=3, boy=4, .=5, sometimes=6, ···}
 - 문장 속 단어들 → 숫자들로 변환
 - **12345**
 - 6789310 ···
 -

- Training 과정
 - One-hot representation 변환

12345				One-hot vector						
		〈E〉	i	am	repre	sootat	ion_	some	•••	\'pad\'
Training sentence	⟨E⟩	1	0	0	0	0	0	0	•••	0
	i	0	1	0	0	0	0	0	•••	0
	am	0	0	1	0	0	0	0	•••	0
	а	0	0	0	1	0	0	0	•••	0
	boy	0	0	0	0	1	0	0	•••	0
		0	0	0	0	0	1	0	•••	0
	⟨E⟩	0	0	0	0	0	0	0	•••	1
	(pad)	0	0	0	0	0	0	0	•••	1
	÷	:								
	〈 pad〉	0	0	0	0	0	0	0	•••	1

- Training 과정
 - Word-embedding 변환

12345 Word-embedding ? $\langle E \rangle$ 0.24 0.15 0.58 0.94 0.14 0.25 0.33 0.85 0.15 0.11 0.78 0.91 0.17 0.64 0.75 0.64 0.87 0.36 Training sentence 0.91 0.33 0.87 0.36 0.87 0.36 0.25 0.33 am 0.78 0.15 0.36 0.75 0.85 0.64 0.78 0.64 0.87 0.36 a 0.33 0.33 boy 0.33 0.85 0.64 0.75 0.64 0.75 0.25 0.91 0.33 0.64 0.58 0.94 0.25 0.33 0.15 0.58 **(E)** 0.33 0.85 0.64 0.64 0.33 0.75 0.64 0.91 0.17 ⟨pad⟩ 0 0 0 0 0 0 0 0 0 \(pad \) 0 0 0 0 0 0 0 0 0

Training 과정

Testing 과정

P(〈E〉, i, am, a, boy) =
 P(i) * P(am|i) * P(a|i,am) * P(boy|i,am,a) * P(〈E〉|i,am,a,boy) 31

CODE REVIEW

- 환경 구축
 - Pytorch 1.4.0
 - Pip3 install torch

- Data.py
 - 학습 데이터를 받아 Dictionary와 Corpus 구성
 - Corpus.dictionary.word2idx[]로 사전에 있는 단어의 인덱스 획득
 - Corpus.dictionary.idx2word[]로 인덱스에서 단어로 변환
- Model.py
 - LSTM 기반의 LM 모델
 - 실제 모델의 작동 방식 구현
 - Forward(): input과 hidde을 받아 outpu과 hidden 생성

- Main.py
 - 모델의 학습 및 저장
 - 학습 데이터를 Corpus로 변환하고 해상 Corpus를 mini-batch로 분할
 - 모델을 Loss를 계산하여 Backprop
- Seq_prob.ipynb
 - 실습 함수 : 빈 칸 채워 실제 확률 계산
 - 모델을 이용하여 문장의 확률 계산

* 문장 확률 계산하기

- $P(\langle E \rangle, i, am, a, boy) =$ $P(i)*P(am|i)*P(a|i,am)*P(boy|i,am,a)*P(\langle E \rangle|i,am,a,boy)$
- Def seq_prob(seq) 함수 완성
 - 1. Seq 속 단어들 index로 바꾸기
 - 2. 모델에 들어갈 hidden 값 초기화
 - 3. 모델로부터 input과 hidden에 대한 결과값 얻기
 - 4. 각 단어별 확률 계산
 - 5. 최종 seq 확률(아래) 계산 하여 return 하기 P(i)*P(am|i)*P(a|I,am)*P(boy|I,am,a)*P(〈E〉|I,am,a,boy)
 - 6. 결과 출력 확인 (아래 두 문장의 확률 비교)
 print('P(I am a boy) =', seq_prob(['i', 'am', 'a', 'boy']))
 print('P(i boy am a) =', seq_prob(['i', 'boy', 'am', 'a']))

Q & A