UNIT Extra notes

1 Introduction

- Up until now we've tracked populations with a single state variable (population size or population density)
- Poll: What assumption are we making?
 - **Answer:** All individuals are similar enough to be counted as if they are the same
 - * Answer: Always (continuous time)
 - * Answer: At census time (discrete time)
- What are some organisms for which this seems like a good approximation?
 - Answer: Dandelions, bacteria, insects
- What are some organisms that don't work so well?
 - **Answer:** Trees, people, codfish

Structured populations

- If we think age or size is important to understanding a population, we might model it as an **structured** population
- Instead of just keeping track of the total number of individuals in our population ...
 - Keeping track of how many individuals of each age
 - * or size
 - * or developmental stage

1.1 Example: biennial dandelions

- Imagine a population of dandelions
 - Adults produce 80 seeds each year
 - -1% of seeds survive to become adults
 - 50\% of first-year adults survive to reproduce again
 - Second-year adults never survive
- Will this population increase or decrease through time?

How to study this population

- Choose a census time
 - Before reproduction or after
 - Since we have complete cycle information, either one should work
- Figure out how to predict the population at the next census

Census choices

- Before reproduction
 - All individuals are adults
 - We want to know how many adults we will see next year
- After reproduction
 - Seeds, one-year-olds and two-year-olds
 - Two-year-olds have already produced their seeds; once these seeds are counted, the two-year-olds can be ignored, since they will not reproduce or survive again

What determines λ ?

- If we have 20 adults before reproduction, how many do we expect to see next time?
- $\lambda = p + f$ is the total number of individuals per individual after one time step
- Poll: What is f in this example?
 - **Answer:** 0.8
- Poll: What is p in this example?
 - Answer: 0.5 for 1-year-olds and 0 for 2-year-olds.
 - Answer: We can't take an average, because we don't know the population structure

What determines \mathcal{R} ?

- R is the average total number of offspring produced by an individual over their lifespan
- Can start at any stage, but need to close the loop
- Poll: What is the reproductive number?
- Answer: If you become an adult you produce (on average)
 - Comment: Blackboard!
 - **Answer:** 0.8 adults your first year
 - **Answer:** 0.4 adults your second year
- Answer: $\mathcal{R} = 1.2$

What does \mathcal{R} tell us about λ ?

- Answer: Population increases when $\mathcal{R} > 1$, so $\lambda > 1$ exactly when $\mathcal{R} > 1$
- If $\mathcal{R} = 1.2$, then λ
 - Answer: > 1 the population is increasing
 - <u>Answer</u>: < 1.2 the life cycle takes more than 1 year, so it should take more than one year for the population to increase 1.2 times

1.2 Modeling approach

- In this unit, we will construct *simple* models of structured populations
 - To explore how structure might affect population dynamics
 - To investigate how to interpret structured data

Regulation

- Simple population models with regulation can have extremely complicated dynamics
- Structured population models with regulation can have insanely complicated dynamics
- Here we will focus on understanding structured population models without regulation:
 - **Answer:** Individuals behave independently, meaning...
 - Answer: Average per capita rates do not depend on population size

Age-structured models

- The most common approach is to structure by age
- In age-structured models we model how many individuals there are in each "age class"
 - Typically, we use age classes of one year
 - Example: salmon live in the ocean for roughly a fixed number of years; if we know how old a salmon is, that strongly affects how likely it is to reproduce

Stage-structured models

- In stage-structured models, we model how many individuals there are in different stages
 - Ie., newborns, juveniles, adults
 - More flexible than an age-structured model
 - Example: forest trees may survive on very little light for a long time before they have the opportunity to recruit to the sapling stage

Discrete vs. continuous time in unstructured models

- continuous-time models are structurally simpler (and smoother)
- discrete-time models only need to assume everyone's the same sometimes

- **Answer:** At the census time

- **Answer:** More realistic

...in structured models

- We no longer assume everyone is the same (we keep track of age or size)
- Poll: So it should be mostly about reproduction
 - Answer: Populations with continuous reproduction (e.g. bacteria), may be better suited to continuous-time models
 - <u>Answer</u>: Populations with **synchronous** reproduction (e.g., moths) may be better suited to discrete-time models
- Continuous time with structure gives people headaches
 - So we won't do it here, even though it may be better for many applications

2 Constructing a model

- This section will focus on linear, discrete-time, age-structured models
- State variables: how many individuals of each age at any given time
- Parameters: p and f for each age that we are modeling

When to count

- We will choose a census time that is appropriate for our study
 - Before reproduction, to have the fewest number of individuals
 - After reproduction, to have the most information about the population processes
 - Some other time, for convenience in counting
 - * **Answer:** A time when individuals gather together
 - * **Answer:** A time when they are easy to find (insect pupae)

The conceptual model

- Once we choose a census time, we imagine we know the population for each age x after time step T.
 - We call these values $N_x(T)$
- Now we want to calculate the expected number of individuals in each age class at the next time step
 - We call these values $N_x(T+1)$
- What are the parameters? What do we need to know to calculate population for next time?
 - Answer: The survival probability of each age group: p_x
 - Answer: The average fecundity of each age group: f_x

Closing the loop

- f_x and p_x must close the loop back to the census time, so we can use them to simulate our model:
 - $-f_x$ has units [new indiv (at census time)]/[age x indiv (at census time)]
 - $-p_x$ has units [age x+1 indiv (at census time)]/[age x indiv (at census time)]

The structured model

2.1 Model dynamics

Short-term dynamics

- This model's short-term dynamics will depend on parameters ...
 - It is more likely to go up if fecundities and survival probabilities are high
- ... and starting conditions
 - If we start with mostly very old or very young individuals, it might go down; with lots of reproductive adults it might go up

Long-term dynamics

- If a population follows a model like this, it will tend to reach
 - a stable age distribution:
 - * the proportion of individuals in each age class is constant
 - a stable value of λ
 - * if the proportions are constant, then we can average over f_x and p_x , and the system will behave like our simple model
- Poll: What are the long-term dynamics of such a system?
 - Answer: Exponential growth or exponential decline
- Skipping calculations, but you can poke if curious
- Spreadsheet link

3 Life tables

- People often study structured models using life tables
- A life table is made from the perspective of a particular census time
- It contains the information necessary to project to the next census:
 - How many survivors do we expect at the next census for each individual we see at this census? $(p_x \text{ in our model})$
 - How many offspring do we expect at the next census for each individual we see at this census? (f_x in our model)

Cumulative survivorship

- The first key to understanding how much each organism will contribute to the population is **survivorship**
- In the field, we estimate the probability of survival from age x to age x + 1: p_x
 - This is the probability you will be *counted* at age x + 1, given that you were counted at age x.
- To understand how individuals contribute to the population, we are also interested in the overall probability that individuals survive to age x: ℓ_x .
 - Answer: $\ell_x = p_1 \times \dots p_{x-1}$
 - <u>Answer</u>: ℓ_x measures the probability that an individual survives to be counted at age x, given that it is ever counted at all (ie., it survives to its first census)

Calculating \mathcal{R}

- We calculate \mathcal{R} by figuring out the estimated contribution at each age group, per individual who was ever counted
 - We figure out expected contribution given you were ever counted by multiplying:
 - Answer: $f_x \times \ell_x$

3.1 Examples

Dandelion example

Answer slide: Dandelion life table

\boldsymbol{x}	f_x	p_x	$\mid \ell_x \mid$	$\ell_x f_x$
1	0.8	0.5	1.000	0.800
2	0.8	0	0.500	0.400
\overline{R}				1.200

Dandelion dynamics

Dandelion dynamics

Squirrel example Squirrel observations

- Poll: Do you notice anything strange?
 - <u>Answer</u>: Older age groups seem to be grouped for fecundity.
 - <u>Answer</u>: Strange pattern in survivorship; do we really believe nobody survives past the last year?

- **Answer:** Might be better to use a model where they keep track of 1 year, 2 year, and "adult" not much harder.
 - * **Answer:** This is what we call stage structure

Answer slide: Gray squirrel population example

\boldsymbol{x}	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0	0.25	1.000	0.000
2	1.28	0.46	0.250	0.320
3	2.28	0.77	0.115	0.262
4	2.28	0.65	0.089	0.202
5	2.28	0.67	0.058	0.131
6	2.28	0.64	0.039	0.088
7	2.28	0.88	0.025	0.056
8	2.28	0.0	0.022	0.050
R				1.109

Gray squirrel dynamics

Gray squirrel dynamics

3.2 Calculation details

 f_x vs. m_x

- Here we focus on f_x the number of offspring seen at the next census (next year) per organism of age x seen at this census
- An alternative perspective is m_x : the total number of offspring per reproducing individual of age x
- Poll: How would I calculate one from the other?
 - <u>Answer</u>: To get f_x we multiply m_x by one or more survival terms, depending on when the census is
 - Answer: f_x needs to close the loop from one census to the next

When do we start counting?

- Is the first age class called 0, or 1?
 - In this course, we will start from age class 1
 - If we count right after reproduction, this means we are calling newborns age class
 1. Don't get confused.

Answer slide: Dandelion life table

\boldsymbol{x}	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0.8	0.5	1.000	0.800
2	0.8	0	0.500	0.400
\overline{R}				1.200

Answer slide: Counting after reproduction

\boldsymbol{x}	f_x	p_x	$\mid \ell_x \mid$	$\ell_x f_x$
1	0.8	0.01	1.000	0.800
2	40	0	0.010	0.400
\overline{R}				1.200

<u>Comment</u>: There are two different approaches to the third age class: if we assume that we count the two-year old adults (x = 3), we can write $p_2 = 0.5$; $f_3 = 0$, and get the same answer (with one extra row that has zero contribution).