

第15章 无序分类变量的统计推断

—卡方检验

学习目标

- 了解卡方检验的基本原理
- 能检验某个分类变量各类别的出现概率是否等于指定概率
- 能检验某两个分类变量是否相互独立
- 能在控制住某种或某几种分类因素的情况下,检验另两个分类变量是否相互独立
- 检验某两种方法的结果是否一致

主要内容

- 15.1 卡方检验概述
- 15.2 单样本案例
- 15.3 两样本案例
- 15.4 卡方检验的事后两两比较
- 15.5 确切概率法和蒙特卡洛法
- 15.6 两分类变量间关联程度的度量
- 15.7 一致性检验与配对卡方检验
- 15.8 分层卡方检验

15.6 两分类变量间关联程度的度量

• 在案例"检验不同收入级别家庭的轿车拥有率是否相同"中,检验结果如下:

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	71.134 ^a	1	.000		
Continuity Correction ^b	69.848	1	.000		
Likelihood Ratio	80.146	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear Association	71.062	1	.000		
N of Valid Cases	989				

a. 0 cells (0.0 %) have expected count less than 5. The minimum expected count is 87.05.

b. Computed only for a 2x2 table

似然比卡方: H₀ 行变量与列变量之间相互独立,此处应拒绝H₀

能否对涉及的两个分类变量间的关联强度进行度量呢?

相对危险度(Relative Risk, RR)

$$RR = \frac{P_t(实验组人群反应阳性概率)}{P_c(对照组人群反应阳性概率)} = \frac{a/n_t}{c/n_c}$$

分子 P_t 为实验组人群(收入 < 48000元)反映阳性(拥有汽车)的概率, 分母 P_c 为对照组人群(收入 \geq 48000元)反映阳性(拥有汽车)的概率,

 n_t 为实验组总人数,a为实验组反映阳性人数,

 n_c 为对照组总人数,c为对照组反映阳性人数,

相对危险度(Relative Risk, RR)

O1. 是否拥有家用轿车*家庭收入2级 Crosstabulation

			家庭收	入2级	
			Below 48,000	Over 48,000	Total
O1. 是否拥有家用轿车	有	Count	32	225	257
		Expected Count	87.1	169.9	257.0
		% within 家庭收入2级	9.6%	34.4%	26.0%
	没有	Count	303	429	732
		Expected Count	247.9	484.1	732.0
		% within 家庭收入2级	90.4%	65.6%	74.0%
Total		Count	335	654	989
		Expected Count	335.0	654.0	989.0
		% within 家庭收入2级	100.0%	100.0%	100.0%

$$RR = \frac{32/335}{225/654} = \frac{9.6\%}{34.4\%} = 0.278$$

相对危险度(Relative Risk, RR)

RR用于反映实验因素(收入<48000元)与反映阳性(拥有汽车)的关联程度,

 $RR \in [0, \infty)$

RR=1时,表明实验因素与反映阳性无关联,

RR < 1时, 表明实验因素导致反映阳性的发生率降低,

RR > 1时, 表明实验因素导致反映阳性的发生率增加,

$$RR = \frac{32/335}{225/654} = \frac{9.6\%}{34.4\%} = 0.278$$
, 表明收入 < 48000元导致

轿车拥有率降低,且收入<48000元的轿车拥有率是收入 ≥48000元轿车拥有率的0.278倍.

优势比(Odds Ratio, OR)

 $OR = \frac{a/b(反应阳性人群中实验因素有无的比例)}{c/d(反应阴性人群中实验因素有无的比例)} = \frac{ad}{bc}$

a为反应阳性组实验因素阳性人数, b为反应阳性组实验因素阴性人数, c为反应阴性组实验因素阳性人数, d为反应阴性组实验因素阴性人数,

优势比(Odds Ratio, OR)

O1. 是否拥有家用轿车*家庭收入2级 Crosstabulation

			家庭收入2级		
			Below 48,000	Over 48,000	Total
01. 是否拥有家用轿车	有	Count	<i>a</i> 32	<i>b</i> 225	257
		Expected Count	87.1	169.9	257.0
		% within 家庭收入2级	9.6%	34.4%	26.0%
	没有	Count	<i>C</i> 303	d 429	732
		Expected Count	247.9	484.1	732.0
		% within 家庭收入2级	90.4%	65.6%	74.0%
Total		Count	335	654	989
		Expected Count	335.0	654.0	989.0
		% within 家庭收入2级	100.0%	100.0%	100.0%

$$OR = \frac{a/b}{c/d} = \frac{32/225}{303/429} = \frac{32 \times 429}{225 \times 303} = \frac{32/303}{225/429} = \frac{9.6\%/90.4\%}{34.4\%/65.6\%} = 0.201$$

优势比(Odds Ratio, OR)

OR用于反映实验因素(收入<48000元)与反映阳性(拥有汽车)的关联程度,

 $OR \in [0, \infty)$

OR=1时,表明实验因素与反映阳性无关联,

OR < 1时, 表明实验因素导致反映阳性的发生率降低,

OR > 1时, 表明实验因素导致反映阳性的发生率增加,

$$OR = \frac{32/225}{303/429} = 0.201$$
, 表明收入 < 48000元导致

轿车拥有率降低.

案例: 计算家庭收入级别和轿车拥有情况的关联程度

- 数据文件: CCSS_Sample.sav
- 实现过程
 - "分析"→"描述统计"→"交叉表格"
 - "行"列表框: 选入家庭收入级别Ts9(实验因素)
 - "列"列表框: 选入是否拥有家庭轿车O1(反应阳性或阴性)
 - 点击"统计"按钮: 选中"风险"复选框

案例: 计算家庭收入级别和轿车拥有情况 的关联程度

案例: 计算家庭收入级别和轿车拥有情况 的关联程度

OR=0.201,95%的置信区间内也没有1,说明收入级别与是否拥有轿车有显著关联,且中低收入家庭拥有轿车的优势比为0.201。

RR=0.278, 此时阳性反应为 "有轿车", 95%的置信区间内 也没有1, 说明收入级别与是 否拥有轿车有显著关联, 且低收 入家庭轿车拥有率是中高收入 家庭轿车拥有率的0.278倍。

RR=1.379, 此时阳性反应为"没有轿车", 95%的置信区间内也没有1, 说明收入级别与是否拥有轿车有显著关联,且低收入家庭轿车不拥有率是中高收入家庭轿车不拥有率的1.379倍。

15.7 一致性检验与配对卡方检验

• 问题1

应用两种诊断方法对若干个对象进行疾病轻度、中度、重度的诊断,这些数据可看成是配对数据,希望检验两种诊断方法的结果是否一致

• 问题2

两个不同的裁判员对若干个事物进行差、中、好级别的评价,这些数据可看成是配对数据,希望检验两个裁判员的裁判结果是否一致

- 一致性与相关性的区别
 - 相关不一定一致
 - 例如,诊断方法1分别诊断为轻度、中度、重度疾病的患者,诊断方法2一律分别诊断为中度、重度、轻度患者。则两种方法的诊断结果不一致,但的确存在关联。

- 案例
 - 数据文件: site. sav
 - 要求: 检验两位顾问的评价结果是否一致

count	cons1	cons2
6.00	差	差
5.00	中	差
1.00	好	差
2.00	中	中
2.00	中	好
4.00	好	好

该数据是频数数据,应首先将频数设置为权重

• 实现过程

- "数据" → "加权个案"
- "分析" → "统计描述" → "交叉表格"
- "行"列表框: cons1
- "列"列表框: cons2
- 点击"统计量"按钮:选择"Kappa"复选框

顾问一的评价 * 顾问二的评价 Crosstabulation

Count

		顾问二的评价				
	差	中	好	Total		
顾问一的评价 差	6	0	0	6		
中	5	2	2	9		
好	1	0	4	5		
Total	12	2	6	20		

Symmetric Measures

	Valu	1e	Asymp. Std. Error ^a	Approx. T ^b	Appro	x. Sig.
Measure of Agreement Kappa	.4	429	.131	3.333		.001
N of Valid Cases		20				

- Not assuming the null hypothesis.
- b. Using the asymptotic standard error as suming the null hypothesis.

Kappa ≥ 0.75: 一致性较好

Kappa ∈ [0.4, 0.75): 一致性一般

Kappa < 0.4: 一致性较差

拒绝**H**₀,此处**H**₀:两位顾问的评价结果不一致

- · Kappa检验: 检验两种结果是否一致,会利用列联 表中的所有数据
- 配对卡方检验: 检验两种结果是否有差异,仅利用非主对角线上的数据

顾问一的评价 * 顾问二的评价 Crosstabulation

Count

	ji.	顾问二的评价				
	差	中	好	Total		
顾问一的评价 差	6	0	0	6		
中	5	2	2	9		
好	1	0	4	5		
Total	12	2	6	20		

案例

数据文件: site. sav

要求: 检验两位顾问的评价结果是否有差异

count	cons1	cons2
6.00	差	差
5.00	中	差
1.00	好	差
2.00	中	中
2.00	中	好
4.00	好	好

该数据是频数数据,应首先将频数设置为权重

- 实现过程
 - "数据" → "加权个案"
 - "分析" → "统计描述" → "交叉表格"
 - "行"列表框: cons1
 - "列"列表框: cons2
 - 点击"统计量"按钮:选择"麦克尼玛尔"复选框

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
McNemar-Bowker Test	8.000	3	.046
N of Valid Cases	20		

拒绝H₀,此处H₀:两位顾问的评价结果无差异

- 说明:
 - 在应用中,对于一致性较好,即绝大多数数据都在主对角线上的列联表,麦克尼玛尔检验可能会失去实用价值

15.8 分层卡方检验

- 之前已经检验发现家庭收入级别的确会影响家庭 轿车的拥有情况(从总体上),但可能还有别的 分类变量对轿车拥有情况产生影响,例如"城市 "(构成一个混杂因素)
 - 不同城市的轿车拥有情况存在差异,那么收入级别对 轿车拥有的影响在不同城市间是否也存在差异?
 - 如果收入级别对轿车拥有的影响在不同城市间存在差异,此时不应当考虑将不同城市的数据结合起来得到一个总的分析结果
 - 如果收入级别对轿车拥有的影响在不同城市间没有差异,此时可以考虑将不同城市的数据结合起来得到一个总的分析结果,但应在控制城市的混杂作用后计算校正后的RR或OR

- 数据文件: CCSS_Sample.sav
- 要求:在控制城市影响的前提下得到更准确的家 庭收入级别和轿车拥有情况的关联程度测量指标
- 实现过程
 - "分析"→"统计描述"→"交叉表格"
 - "行"列表框:家庭收入级别Ts9
 - "列"列表框:是否拥有轿车O1
 - "层"列表框: 城市S0
 - 点击"统计量"按钮:选择"风险"复选框、"柯克 兰和曼特尔-亨塞尔统计"复选框

Risk Estimate

			95% Confide	ence Interval
S0. 城市		Value	Lower	Upper
100北京	Odds Ratio for 家庭收入2级 (Below 48,000 / Over 48,000)	.156	.075	.326
	For cohort O1. 是否拥有家用轿车 = 有	.231	.121	.440
	For cohort O1. 是否拥有家用轿车 = 没有	1.477	1.308	1.666
	N of Valid Cases	319		
200上海	Odds Ratio for 家庭收入2级 (Below 48,000 / Over 48,000)	.089	.031	.251
	For cohort O1. 是否拥有家用轿车 = 有	.123	.046	.328
	For cohort O1. 是否拥有家用轿车 = 没有	1.384	1.261	1.519
	N of Valid Cases	337		
300广州	Odds Ratio for 家庭收入2级 (Below 48,000 / Over 48,000)	.333	.189	.586
	For cohort O1. 是否拥有家用轿车 = 有	.434	.275	.683
	For cohort O1. 是否拥有家用轿车 = 没有	1.302	1.151	1.474
	N of Valid Cases	333		
Total	Odds Ratio for 家庭收入2级 (Below 48,000 / Over 48,000)	.201	.135	.300
	For cohort O1. 是否拥有家用轿车 = 有	.278	.196	.392
	For cohort O1. 是否拥有家用轿车 = 没有	1.379	1.291	1.472
	N of Valid Cases	989		

层间OR值差异性的检验

Tests of Homogeneity of the Odds Ratio

	Chi-Squared	df	Asymp. Sig. (2-sided)
Breslow-Day	6.165	2	.046
Tarone's	6.161	2	.046

拒绝H₀,此处H₀: 行列间的 联系强度在3个城市间相同。 既然拒绝了H₀,因此不再考虑 将不同城市的数据结合起来得到 一个总的分析结果

假如上页ppt上的P值>0.5, OR值齐性,可继续观察下面的分层卡方检验结果(控制了分层因素)

Tests of Conditional Independence

	Chi-Squared	df	Asymp. Sig. (2-sided)	
Cochran's	72.397	1		.000
Mantel-Haenszel	70.879	1	,	.000

Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haenszel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haenszel statistic when the sum of the differences between the observed and the expected is 0.

拒绝H₀, 此处H₀: 行列变量 相互独立, 说明行列变量间有关联

Mantel-Haenszel Common Odds Ratio Estimate

Estimate				.195
In(Estimate)			·	-1.636
Std. Error of In(Estimate)				.206
Asymp. Sig. (2-sided)				.000
Asymp. 95% Confidence Interval	Common Odds Ratio	Lower Bound		.130
		Upper Bound		.292
	In(Common Odds Ratio)	Lower Bound		-2.040
		Upper Bound		-1.232

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1.000 assumption. So is the natural log of the estimate.

THE END