Introduction to Cognitive Neuroscience

Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4

Presented by:

Arefe Farahmandi

Farzaneh Taleb

Attention

- Top down attention
 - ✓ Spatial attention
- Buttom- up attention

Attention improves our ability to **detect** and **discriminate** the features of sensory stimuli.

Task

(500 ms)

Stimuli Cued by Flash on Random Trajectories

SHUFFLE

(950 ms)

PAUSE in RF

Stimuli Pause (1000 ms)

SHUFFLE

Stimuli Shuffle Locations on Random Trajectories (950 ms)

SACCADE

Saccade to Each Target.

- Attend in
- Attend out

Cue

Shuffle

CUE

1

SHUFFLE

Firing Rate

 $\mbox{Fano factor} = \frac{\mbox{ratio of spike count variance}}{\mbox{mean spike count}}$

Averaged Fano Factor

Analysis

response variability reflected:

1- independent fluctuations in responses of

individual neurons?

2- represents a source of correlated noise across network?

Spike – spike Coherence analysis Multi-tapers coherence

Correlation analysis

Pearson correlation

2. Pearson correlation

3. Spike-to-spike Coherence

$$x_{t} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \tilde{x}(f) \exp(2\pi i f t) df$$

$$S_{x}(f)\delta(f-f') = E[\tilde{x}^{*}(f)\tilde{x}(f')]$$

$$S_{xy}(f)\delta(f-f') = E[\tilde{x}^*(f)\tilde{y}(f')]$$

$$C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_x(f)S_y(f)}}$$

MultiTaper coherence

$$S_{MT}(f) = \frac{1}{K} \sum_{k=1}^{K} |\tilde{x}_k(f)|^2$$

$$\tilde{x}_k(f) = \sum_{t=1}^{N} w_t(k) x_t \exp(-2\pi i f t)$$

$$C_{xy}(f) = \frac{\frac{1}{K} \sum_{k} \tilde{x}_{k}^{*}(f) \tilde{y}_{k}(f)}{\sqrt{S_{x}(f) S_{y}(f)}}$$

Plot coherence

SNR

$$S/N = \left\langle \frac{\sum_{i=1}^{M} X_{i}}{\sigma_{\Sigma}} \right\rangle$$

$$= \frac{M\langle X \rangle}{\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{M} \text{Cov} [X_{i}, X_{j}]}}$$

$$= \frac{M\langle X \rangle}{\sqrt{M\sigma^{2} + M(M-1)\overline{r}\sigma^{2}}}$$

Conclusion

Thanks:)