

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MAY/JUNE 2012 EXAMINATION

MTH 412 NORMED LINEAR SPACES (3 CR)

TIME: 3 HOURS

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE (5) QUESTIONS BEAR FULL MARKS

- 1(a) Let X be a linear space over a scalar field K = (R or C). When is a function $||.||: X \to R$ said to be a norm (in X)? 5marks
- 1(b) Show that the real line R becomes a normed linear space if you set ||x|| = |x| for every number x ϵ R. 9marks
- 2(a) The surface of a unit sphere centered around the origin of a linear $\{(x_1,x_2,\cdots\}$ space with the $\underline{\ell^p}$ -norm is the locus of points . Show that

$$\left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} = 1 \ .$$

- 2(b) Let $X = R^2$. For each vector $x = (x_1, x_2) \varepsilon X$. Define $||.||_2 : X \to R$ by $\sum_{k=1}^{2} \chi_k^2$)^{1/2}. Show that ||.|| is a norm on X.
- 3(a) What is a Convex set? If $x \in R^n$ and if r > 0; show that the ball $B(x^*, r) = \{ y \in R^n : ||y x^*|| < r \}$ centred at x^* of radius r is a convex set -7marks
- 3(b) Let x, and v be vectors in R^n , show that the line L through x in the direction of v given by $L = \{ x + \alpha v : \alpha \epsilon R \}$ is a convex set.

 -7marks

- 4(a) Let (X, ρ) be a metric space. Define Cauchy sequence. 5marks
- 4(b) Let (X, ρ) be a complete metric space, and let $E \subset X$. Show that (E, ρE) is complete if and only if it is closed. (Where ρE is the subspace metric induced by ρ). -9marks
- 5(a) Define the convergence of a sequence $\{x_n\}$ of elements of X to a point $x \in X$?

-5marks

5(b) Let X = [-3, 3] with show that X is not complete.
$$\|f\|_2 = \left(\int_{-3}^3 \left|f\left(t\right)\right|^2\right) \text{ show that X is not } -9\text{marks}$$

6(a) Define Linear Maps.

-5marks

6(b) Let
$$X = I_2$$
. For each $x = (x_1, x_2, x_3, \dots, x_k, \dots)$ in I_2 . Show that if $T^{x} = T(x_1, x_2, x_3, \dots, x_k, \dots) = (0, x_1, x_2/2, x_3/3, \dots, x_k/k, \dots)$, then T is a linear map on I_2 .

- 7(a) Let X = c[0,1] = Y, where c[0,1] is endowed with the supnorm. Let $D = \{f \ \epsilon \ c'[0,1] : f' \ \epsilon \ c[0,1]\}$ where the prime denotes differentiation. Let $T : c[0,1] \rightarrow c[0,1]$ be a map with domain D defined by Tf = f' (i.e. differentiation operator). Show that:
 - i) T is linear

-2½marks

- ii) T is closed. 2½marks
- 7(b) Show that an inner product space E becomes a normed linear space when equipped with the norm $\|x\| = \sqrt{\langle \chi, \chi \rangle}$ for all $x \in E$.
 -9marks