Exam 2

Brianna Baker

6/26/2020

Exam 2

Load the library and save the data frame as inequality_data.

```
library(rio)
education_data = import("~/Desktop/inequality.xlsx", which =1)
#saving data frame
inequality_data <- education_data
#removing education_data from environment
rm(education_data)</pre>
```

Question 3

This is a cross-sectional dataset because it provides a snapshot of data from the same time and not change over time. We can see this is the code below.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2015 2015 2015 2015 2015 2015
##Using the subset command to show the inequality_gini scores for Denmark and Sweden
```

```
library(dplyr)
```

```
##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
```

```
subset(inequality_data, country == "Denmark")
      iso2c country inequality_gini year
## 40
        DK Denmark
                               28.2 2015
subset(inequality_data, country == "Sweden")
##
       iso2c country inequality_gini year
## 174
         SE Sweden
                                29.2 2015
##Inequality score for Brazil.
subset(inequality_data, country == "Brazil")
      iso2c country inequality_gini year
## 13
        BR Brazil
                               51.9 2015
```

##Question 6 Since Denamrk and Sweden were described as having "optimal Gini index scores," and they have much lower scores than Brazil, it appears that it is better to have a low inequality gini score.

###Quick peak at data frame:

head(inequality_data)

```
iso2c country inequality_gini year
##
## 1
       AL Albania
                           32.9 2015
## 2
      AM Armenia
                           32.4 2015
## 3
     AT Austria
                          30.5 2015
     BY Belarús
BE Belgium
                         25.6 2015
## 4
## 5
                          27.7 2015
## 6
      BZ Belize
                            NA 2015
```

###Removing accent with new function "accent.remove."

```
#change default text encoding to UTF-8
#define a function
remove.accents <- function(s) {
    #1 character substitutions
    old1 <- "ú"
    new1 <- "u"
    s1 <- chartr(old1, new1, s)
}
#remove accents
inequality_data$country <- remove.accents(inequality_data$country)</pre>
```

##Quick peak to show accent removal

```
head(inequality_data)
```

```
iso2c country inequality_gini year
##
## 1
        AL Albania
                              32.9 2015
## 2
        AM Armenia
                              32.4 2015
                              30.5 2015
## 3
        AT Austria
## 4
        BY Belarus
                              25.6 2015
                              27.7 2015
## 5
        BE Belgium
## 6
        BZ Belize
                                NA 2015
```

###Sorting data by countries with lowest inequality_gini scores.

```
inequality_data <- inequality_data[order(inequality_data$inequality_gini),]
#top 5 countries
head(inequality_data)</pre>
```

```
##
       iso2c
                      country inequality_gini year
## 161
          SI
                     Slovenia
                                          25.4 2015
## 190
          UA
                      Ukraine
                                          25.5 2015
## 4
          BY
                                          25.6 2015
                      Belarus
## 39
          CZ
              Czech Republic
                                          25.9 2015
## 92
          XK
                                          26.5 2015
                       Kosovo
                                          26.5 2015
## 160
          SK Slovak Republic
```

###Mean of inequality gini scores

```
mean(inequality_data$inequality_gini, na.rm = TRUE)
```

```
## [1] 36.81375
```

###Using if else to recode variables and assign values based on relation to mean. for (r in 1:nrow(inequality_data)) { for(c in 1:ncol(inequality_data)) { if(inequality_datainequality_gini[r,c] > 36.81375)inequality_data[r,c] = "high_inequality"elseif(inequality_datainequality_gini[r,c] < 36.81375) { inequality_data[r,c] = "low_inequality" } else{ } } }

Question 13

```
#create vector
actors <- c('World Bank', 'African Development Bank', 'Bill and Melinda Gates Foundation')
#create for statement
for (i in actors) {
   print (i)
}</pre>
```

```
## [1] "World Bank"
## [1] "African Development Bank"
## [1] "Bill and Melinda Gates Foundation"
```

###Question 14 I chose the variable "Employment to population ratio" to demonstrate inequality because the comparison could show whether or not the majority of a country has employed inhabitants or not. The more employed, the lower the inquality- is my prediction.

```
library(devtools)
## Loading required package: usethis
library(remote)
## Loading required package: Rcpp
## Loading required package: raster
## Loading required package: sp
##
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
##
       select
#add some data from the World Development Indicators (WDI)
library(WDI)
employment_ratio = WDI(country = "all",
                     indicator = "SL.EMP.TOTL.SP.ZS",
                     start = 2015, end = 2015, extra = FALSE, cache = NULL)
#quick peak
summary(employment_ratio)
##
       iso2c
                         country
                                          SL.EMP.TOTL.SP.ZS
                                                                 year
##
  Length:264
                      Length: 264
                                          Min. :32.22
                                                            Min.
                                                                   :2015
## Class :character Class :character
                                          1st Qu.:51.14
                                                            1st Qu.:2015
## Mode :character Mode :character
                                          Median :58.09
                                                            Median:2015
##
                                          Mean
                                                :57.59
                                                            Mean
                                                                   :2015
                                                            3rd Qu.:2015
##
                                          3rd Qu.:63.70
                                                 :87.75
##
                                                            Max.
                                                                   :2015
                                          Max.
                                          NA's
                                                 :31
#changing name of variable
library(data.table)
##
## Attaching package: 'data.table'
## The following object is masked from 'package:raster':
##
##
       shift
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
```

```
#changing name of column to something easier to interpret
setnames(employment_ratio, "SL.EMP.TOTL.SP.ZS", "employment_ratio")
```

###Merge new variable into other dataset

 $\#drop\ country.y\ and\ rename\ country.x\ as\ country\ library(tidyverse)\ merged_df <-\ merged_df\ \%>\%\ select(-c("country.x"))\ \%>\%\ rename("country")$

###Removing NAs

```
na.omit(merged_df, select =c("employment_ratio", "inequality_gini"))
```

##		iso2c	country.x	inequality_gini	year	country.y
##	1	SI	Slovenia	25.4	2015	Slovenia
##	2	UA	Ukraine	25.5	2015	Ukraine
##	3	BY	Belarus	25.6	2015	Belarus
##	4	CZ	Czech Republic	25.9	2015	Czech Republic
##	6	SK	Slovak Republic	26.5	2015	Slovak Republic
##	7	IS	Iceland	26.8	2015	Iceland
##	8	KZ	Kazakhstan	26.8	2015	Kazakhstan
##	9	MD	Moldova	27.0	2015	Moldova
##	10	FI	Finland	27.1	2015	Finland
##	11	NO	Norway	27.5	2015	Norway
##	12	BE	Belgium	27.7	2015	Belgium
##	13	DK	Denmark	28.2	2015	Denmark
##	14	NL	Netherlands	28.2	2015	Netherlands
##	15	KG	Kyrgyz Republic	29.0	2015	Kyrgyz Republic
##	16	SE	Sweden	29.2	2015	Sweden
##	17	MT	Malta	29.4	2015	Malta
##	18	HU	Hungary	30.4	2015	Hungary
##	19	AT	Austria	30.5	2015	Austria
##	20	HR	Croatia	31.1	2015	Croatia
##	21	DE	Germany	31.7	2015	Germany
##	22	EG	Egypt, Arab Rep.	31.8	2015	Egypt, Arab Rep.
##	23	ΙE	Ireland	31.8	2015	Ireland
##	24	PL	Poland	31.8	2015	Poland
##	25	CH	Switzerland	32.3	2015	Switzerland
##	26	AM	Armenia	32.4	2015	Armenia
##	27	EE	Estonia	32.7	2015	Estonia
##	28	FR	France	32.7	2015	France
##	29	TN	Tunisia	32.8	2015	Tunisia
##	30	AL	Albania	32.9	2015	Albania
##	31	GB	United Kingdom	33.2		United Kingdom
##	32	PK	Pakistan	33.5		Pakistan
##	33	LU	Luxembourg	33.8	2015	Luxembourg
##	34	CY	Cyprus	34.0		Cyprus
##	35	TJ	Tajikistan	34.0		Tajikistan
##	36	LV	Latvia	34.2		Latvia
##	37	ET	Ethiopia	35.0	2015	Ethiopia

```
## 38
         IT
                           Italy
                                              35.4 2015
                                                                       Italy
## 39
         PT
                       Portugal
                                              35.5 2015
                                                                    Portugal
## 40
                                                            North Macedonia
         MK
                North Macedonia
                                              35.6 2015
## 41
         GM
                    Gambia, The
                                              35.9 2015
                                                                Gambia, The
## 42
         RO
                         Romania
                                              35.9 2015
                                                                     Romania
## 43
         GR
                          Greece
                                              36.0 2015
                                                                      Greece
## 44
         TH
                        Thailand
                                              36.0 2015
                                                                    Thailand
## 45
         F.S
                           Spain
                                              36.2 2015
                                                                       Spain
## 46
         GE
                         Georgia
                                              36.5 2015
                                                                     Georgia
## 47
         LT
                                                                  Lithuania
                      Lithuania
                                              37.4 2015
## 48
         T0
                           Tonga
                                              37.6 2015
                                                                       Tonga
## 49
                                              37.7 2015 Russian Federation
         RU
             Russian Federation
## 50
                         Myanmar
                                              38.1 2015
                                                                     Myanmar
## 51
         BG
                                              38.6 2015
                        Bulgaria
                                                                    Bulgaria
## 52
         CN
                           China
                                              38.6 2015
                                                                       China
## 53
                     Montenegro
                                              39.0 2015
                                                                  Montenegro
## 54
         IR
             Iran, Islamic Rep.
                                              39.5 2015 Iran, Islamic Rep.
## 55
         UY
                         Uruguay
                                              40.1 2015
                                                                     Uruguay
## 56
         RS
                          Serbia
                                              40.5 2015
                                                                      Serbia
                                              40.6 2015
## 57
         SV
                    El Salvador
                                                                El Salvador
## 58
         KF.
                           Kenya
                                              40.8 2015
                                                                       Kenya
## 59
         ID
                       Indonesia
                                              41.0 2015
                                                                   Indonesia
## 60
         MY
                       Malaysia
                                              41.0 2015
                                                                    Malaysia
## 61
                  Cote d'Ivoire
                                              41.5 2015
                                                              Cote d'Ivoire
## 62
                                             42.4 2015
                                                                  Cabo Verde
         CV
                     Cabo Verde
## 63
         TR
                          Turkey
                                              42.9 2015
                                                                      Turkey
## 64
         TG
                            Togo
                                              43.1 2015
                                                                        Togo
## 65
         PΕ
                            Peru
                                              43.4 2015
                                                                        Peru
## 66
         CL
                           Chile
                                              44.4 2015
                                                                       Chile
## 67
                    Philippines
                                              44.4 2015
                                                                Philippines
## 68
         DO
             Dominican Republic
                                              45.2 2015 Dominican Republic
## 69
         EC
                         Ecuador
                                              46.0 2015
                                                                     Ecuador
## 70
         во
                         Bolivia
                                              46.7 2015
                                                                     Bolivia
## 71
         PΥ
                                              47.6 2015
                       Paraguay
                                                                    Paraguay
## 72
         BJ
                           Benin
                                              47.8 2015
                                                                       Benin
## 73
         CR
                     Costa Rica
                                              48.4 2015
                                                                 Costa Rica
## 74
         HN
                       Honduras
                                              49.6 2015
                                                                   Honduras
## 75
         РΔ
                          Panama
                                             50.8 2015
                                                                      Panama
## 76
         CO
                        Colombia
                                             51.1 2015
                                                                    Colombia
## 77
         BR
                          Brazil
                                             51.9 2015
                                                                      Brazil
## 78
         BW
                       Botswana
                                              53.3 2015
                                                                    Botswana
## 79
         7.M
                          Zambia
                                              57.1 2015
                                                                      Zambia
##
   80
                         Namibia
                                              59.1 2015
                                                                     Namibia
##
      employment_ratio
## 1
                 52.266
## 2
                 49.738
## 3
                 60.461
## 4
                 56.613
## 6
                 52.768
## 7
                 73.954
## 8
                 67.399
## 9
                 42.477
## 10
                 53.325
## 11
                 62.102
```

##	12	48.912
##	13	58.197
##	14	59.667
##	15	57.668
##	16	59.235
##	17	51.615
##	18	51.094
##	19	56.661
##	20	44.044
##	21	57.304
##	22	41.666
##	23	55.996
##	24	52.374
##	25	64.938
##	26	46.663
##	27	58.349
##	28	49.721
##	29	39.737
##	30	45.640
##	31	59.061
##	32	51.142
##	33	55.404
##	34	53.296
##	35	37.298
##	36	54.129
##		78.365
##	38	42.945
##		51.323
##	40	41.047
##	41	53.516
##		50.742
##		39.199
##		68.634
##		45.587
##		57.827
	47	53.859
	48	59.270
		59.270
##	49	
##	50	65.047
##	51	49.224
##	52	66.593
##	53	43.588
##	54	37.750
##	55	60.100
##	56	42.866
##	57	56.485
##	58	72.312
##	59	63.494
##	60	62.441
##	61	55.906
##	62	52.798
##	63	45.753
##	64	76.523
##	65	73.405

```
58.043
## 66
                 60.302
## 67
                 58.878
## 68
## 69
                 64.074
## 70
                 64.988
## 71
                 66.469
## 72
                 68.964
                 56.375
## 73
## 74
                 62.474
## 75
                 62.942
## 76
                 64.063
                 58.652
## 77
## 78
                 58.311
## 79
                 67.572
## 80
                 47.981
##Filtering out data with inequality gini scores greater than 30
data_greater_30 <-</pre>
  merged_df %>%
  dplyr::filter(inequality_gini > 30)
###Count how many countries contain "ai"
grep("ai", data_greater_30)
## [1] 2 5
\#\#\#\mathrm{Using} lapply to take sum of inequality gini
lapply(data_greater_30$inequality_gini, sum)
## [[1]]
## [1] 30.4
##
## [[2]]
## [1] 30.5
##
## [[3]]
## [1] 31.1
##
## [[4]]
## [1] 31.7
##
## [[5]]
## [1] 31.8
##
## [[6]]
## [1] 31.8
##
## [[7]]
## [1] 31.8
```

```
##
## [[8]]
## [1] 32.3
##
## [[9]]
## [1] 32.4
##
## [[10]]
## [1] 32.7
##
## [[11]]
## [1] 32.7
## [[12]]
## [1] 32.8
##
## [[13]]
## [1] 32.9
##
## [[14]]
## [1] 33.2
##
## [[15]]
## [1] 33.5
##
## [[16]]
## [1] 33.8
##
## [[17]]
## [1] 34
##
## [[18]]
## [1] 34
##
## [[19]]
## [1] 34.2
##
## [[20]]
## [1] 35
##
## [[21]]
## [1] 35.4
## [[22]]
## [1] 35.5
##
## [[23]]
## [1] 35.6
##
## [[24]]
## [1] 35.9
##
## [[25]]
```

[1] 35.9

```
##
## [[26]]
## [1] 36
##
## [[27]]
## [1] 36
##
## [[28]]
## [1] 36.2
##
## [[29]]
## [1] 36.5
## [[30]]
## [1] 37.4
##
## [[31]]
## [1] 37.6
##
## [[32]]
## [1] 37.7
##
## [[33]]
## [1] 38.1
##
## [[34]]
## [1] 38.6
##
## [[35]]
## [1] 38.6
##
## [[36]]
## [1] 39
##
## [[37]]
## [1] 39.5
##
## [[38]]
## [1] 40.1
##
## [[39]]
## [1] 40.5
## [[40]]
## [1] 40.6
##
## [[41]]
## [1] 40.8
##
## [[42]]
## [1] 41
##
## [[43]]
## [1] 41
```

```
##
## [[44]]
## [1] 41.5
##
## [[45]]
## [1] 42.4
##
## [[46]]
## [1] 42.9
##
## [[47]]
## [1] 43.1
## [[48]]
## [1] 43.4
##
## [[49]]
## [1] 44.4
##
## [[50]]
## [1] 44.4
##
## [[51]]
## [1] 45.2
##
## [[52]]
## [1] 46
##
## [[53]]
## [1] 46.7
##
## [[54]]
## [1] 47.6
##
## [[55]]
## [1] 47.8
##
## [[56]]
## [1] 48.4
##
## [[57]]
## [1] 49.6
## [[58]]
## [1] 50.8
##
## [[59]]
## [1] 51.1
##
## [[60]]
## [1] 51.9
##
## [[61]]
## [1] 53.3
```

```
## [[62]]
## [1] 57.1
##
## [[63]]
## [1] 59.1
```

###Labeling variables and save as Stata library(labelled) #use 'for variable names and "" for labels
var_label(merged_df) <- list(country= "country"year= "year",inequality_gini= "inequality
gini score",population= "population (inhabitants)",iso2c= "ISO-2 country code",employment_ratio'
= "ratio of employment to population")</pre>

```
#save the data frame as a Stata dataset
library(rio)
#export(merged_df, "final_data.dta")
```