latex-math Macros

2021-06-07

Latex macros like $\frac{\#1}{\#2}$ with arguments are displayed as $\frac{\#1}{\#2}$.

basic-math.tex

Macro	Notation	Comment	
\N	IN	N defined by "siunitx" (which we use), for "NEWTON"	
\N	${ m I\!N}$		
\Z	\mathbb{Z}	Z, integers	
\ Q	$\mathbb Q$	Q, rationals	
\R	${\mathbb R}$	R, reals	
\C	${\Bbb C}$	C, complex	
\C	${\Bbb C}$		
\continuous	$\mathcal C$	C, space of continuous functions	
\M	\mathcal{M}	machine numbers	
\epsm	ϵ_m	maximum error	
\xt	$ ilde{x}$	x tilde	
\sign	sign	sign, signum	
\I	\mathbb{I}	I, indicator	
\Ind	1	1, indicator	
\order	0	O, order	
\fp	$\frac{\partial \#1}{\partial \#2}$	partial derivative	
\pd	$\frac{\partial \#1}{\partial \#2}$	partial derivative	
\sumin	$\sum_{i=1}^{n}$	summation from $i=1$ to n	
\sumjp	$\begin{array}{l} \frac{\partial \#1}{\partial \#2} \\ \frac{\partial \#2}{\partial \#2} \\ \frac{\partial \#1}{\partial \#2} \\ \sum_{i=1}^{n} \\ \sum_{j=1}^{k} \\ \sum_{k=1}^{g} \\ j=1 \end{array}$	summation from j=1 to p	
\sumik	$\sum_{i=1}^{k}$	summation from $i=1$ to k	
\sumkg	$\sum_{k=1}^{g}$	summation from $k=1$ to g	
\sumjg	$\sum_{j=1}^{g}$	summation from $j=1$ to g	
\meanin	$\frac{1}{n}\sum_{i=1}^{n}$	mean from $i=1$ to n	
\meankg	$ \frac{1}{g} \sum_{k=1}^{g} $	mean from $k=1$ to g	
\prodin	11	product from $i=1$ to n	
\prodkg	$\prod_{i=1}^{i=1} \prod_{k=1}^{g}$	product from $k=1$ to g	
\prodjp	$\prod_{j=1}^{p}$	product from $j=1$ to p	
\one	1	1, unitvector	

\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \#1, \#2 \rangle$	<.,.>, scalarproduct
Λ	\mathbf{A}	matrix A
/xv	\mathbf{x}	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)
/xb	\mathbf{x}	WE SHOULD NOT USE THIS
\yv	\mathbf{y}	vector y (bold)
\Deltab	Δ	error term for vectors
\ P	${ m I\!P}$	P, probability
\E	${ m I\!E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	$\mathcal N$	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	$\overset{\#1}{\sim}$	is distributed as
\ind		$\underline{} \underline{},\dots$ is independent of

${\bf basic\text{-}ml.tex}$

Macro	Notation	Comment
\Xspace	χ	X, input space
\Yspace	\mathcal{Y}	Y, output space
\allDatasets	\mathbb{D}	The set of all datasets
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\defAllDatasetsn	$(\mathcal{X} \times \mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$	Def. of the set of all datasets
\nset	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$ $\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
\xy	(\mathbf{x}, y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\ D	${\cal D}$	D, data
\ydat	\mathbf{y}	y (bold), vector of outcomes
\yvec	$\left(y^{(1)},\ldots,y^{(n)}\right)^T$	(y1,, yn), vector of outcomes
\xi	x (#1)	x^i, i-th observed value of x
\yi	$y^{(\#1)}$	y^i, i-th observed value of y
\xyi	$(\mathbf{x}^{(\#1)}, y^{(\#1)})$	(x^i, y^i), i-th observation
-	$\begin{pmatrix} x^{(i)}, \dots, x_p^{(i)} \end{pmatrix}^T$	
\xivec	\	(x1 ⁻ i,, xp ⁻ i), i-th observation vector
\xj	$x_j \\ x_i^{(i)}$	x_j, j-th feature
\xij	$x_j^{(i)}$	x^i_j, j-th feature value of i-th observation
\xjvec	$\left(x_j^{(1)},\ldots,x_j^{(n)}\right)^T$	$(x^1_j,, x^n_j)$, j-th feature vector
\Dtrain	$\mathcal{D}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\phiv	ϕ	Basis transformation function phi
\phixi	$\phi^{(i)}$	Basis transformation of xi: $phi^i := phi(xi)$
\preimageInducer	$\left(\bigcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n ight) imesoldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\preimageInducerShort	$\mathbb{D} imes oldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\inducer	${\mathcal I}$	Inducer, inducing algorithm, learning algorithm
\ftrue	$f_{ m true}$	True underlying function (if a statistical model is assumed)
\ftruex	$f_{ m true}({f x})$	True underlying function (if a statistical model is assumed)
\fx	$f(\mathbf{x})$	f(x), continuous prediction function
\Hspace	\mathcal{H}	hypothesis space where f is from
\fix	$f_i(\mathbf{x})$	f_i(x), discriminant component function
\fjx	$f_j(\mathbf{x})$	$f_{j}(x)$, discriminant component function
\fkx	$f_k(\mathbf{x})$	$f_k(x)$, discriminant component function
\fgx	$f_g(\mathbf{x}) \ \hat{f}$	$f_g(x)$, discriminant component function
\fh	" .	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid theta)$
\fxi	$f\left(\mathbf{x}^{(i)}\right)$	$f(x^{-}(i))$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{(i)})$
\fxit	$f\left(\mathbf{x}^{(i)}' \;oldsymbol{ heta} ight)$	$f(x^{(i)} \mid theta)$
\fhD	$\hat{f}_{\mathcal{D}}$	fhat_D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}$	fhat_Dtrain, estimate of f based on D
\fbayes	f^*	The Bayes optimal model
(J	J	2110 20, 00 opinion model

```
f^*(\mathbf{x})
                                                                               The Bayes optimal model
\fxbayes
\hx
                                          h(\mathbf{x})
                                                                               h(x), discrete prediction function
                                          h(\mathbf{x})
                                                                               h(x), discrete prediction function with x (vector) as input
\hxv
                                          \hat{h}
\hh
                                          \hat{h}(\mathbf{x})
\hxh
                                                                               hhat(x)
\hxt
                                          h(\mathbf{x}|\boldsymbol{\theta})
                                                                               h(x \mid theta)
                                          h\left(\mathbf{x}^{(i)}\right)
\hxi
                                                                               h(x^(i))
                                          h(\mathbf{x}^{(i)'}|\boldsymbol{\theta})
\hxit
                                                                               h(x^{(i)} \mid theta)
                                          h^*
\hbayes
                                                                               The Bayes optimal model
                                          h^*(\mathbf{x})
                                                                               The Bayes optimal model
\hxbayes
\yh
                                          \hat{y}
                                                                               yhat for prediction of target
                                          \hat{y}^{(i)}
                                                                               yhat (i) for prediction of ith targiet
\yih
                                          \hat{	heta}
\thetah
                                          θ
\thetab
                                                                                theta vector
                                          \hat{\theta}
\thetabh
                                                                                theta vector
                                          \boldsymbol{\theta}^{[t]}
                                                                                theta<sup>[t]</sup> in optimization
\thetat
                                          \boldsymbol{\theta}^{[t+1]}
\thetatn
                                                                                theta[t+1] in optimization
\pdf
\pdfx
                                          p(\mathbf{x})
                                                                               p(x)
                                          \pi(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                pi(x|theta), pdf of x given theta
\pixt
                                          \pi\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)
                                                                               pi(x^i|theta), pdf of x given theta
\pixit
                                          \pi\left(\mathbf{x}^{(i)}\right)
\pixii
                                                                               pi(x^i), pdf of i-th x
\pdfxy
                                          p(\mathbf{x}, y)
                                                                               p(x, y)
                                          p(\mathbf{x}, y \mid \boldsymbol{\theta})
                                                                               p(x, y \mid theta)
\pdfxyt
                                          p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)
                                                                               p(x^(i), y^(i) \mid theta)
\pdfxyit
\pdfxyk
                                          p(\mathbf{x}|y=k)
                                                                               p(x \mid y = k)
\pdfxyj
                                          p(\mathbf{x}|y=j)
                                                                               p(x \mid y = j)
                                                                               \log p(x \mid y = k)
                                          \log p(\mathbf{x}|y=k)
\lpdfxyk
                                          p\left(\mathbf{x}^{(i)}|y=k\right)
\pdfxiyk
                                                                                p(x^i \mid y = k)
                                                                               pi_k, prior
\pik
                                          \pi_k
                                                                               log pi_k, log of the prior
\lpik
                                          \log \pi_k
                                                                               Prior probability of parameter theta
                                          \pi(\boldsymbol{\theta})
\pit
                                          \mathbb{P}(y=1\mid \mathbf{x})
\post
                                                                               P(y = 1 \mid x), post. prob for y=1
\pix
                                          \pi(\mathbf{x})
                                                                               The Bayes optimal model
\pibayes
                                          \pi^*
\pixbayes
                                          \pi^*(\mathbf{x})
                                                                               The Bayes optimal model
\postk
                                          \mathbb{P}(y = k \mid \mathbf{x})
                                                                               P(y = k \mid y), post. prob for y=k
\pikx
                                          \pi_k(\mathbf{x})
                                                                               pi k(x), P(y = k \mid x)
\pikxt
                                          \pi_k(\mathbf{x} \mid \boldsymbol{\theta})
                                                                               pi_k(x \mid theta), P(y = k \mid x, theta)
\pijx
                                          \pi_j(\mathbf{x})
                                                                               pi_j(x), P(y = j \mid x)
                                          \pi_q(\mathbf{x})
                                                                               pi_g(x), P(y = g \mid x)
\pigx
                                          p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                               p(y \mid x, theta)
\pdfygxt
                                          p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
                                                                               p(y^i | x^i, theta)
\pdfyigxit
                                                                                \log p(y \mid x, \text{ theta})
\lpdfygxt
                                          \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                          \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
\lpdfyigxit
                                                                                \log p(y^i | x^i, theta)
                                          \hat{\pi}
                                                                               pi hat, estimated
\pih
                                                                               pi(x) hat, P(y = 1 | x) hat
\pixh
                                          \hat{\pi}(\mathbf{x})
                                          \hat{\pi}_k(\mathbf{x})
                                                                                pi k(x) hat, P(y = k \mid x) hat
\pikxh
                                          \hat{\pi}(\mathbf{x}^{(i)})
\pixih
                                                                               pi(x^{(i)}) with hat
                                          \hat{\pi}_k(\mathbf{x}^{(i)})
                                                                               pi_k(x^(i)) with hat
\pikxih
                                                                               residual, stochastic
\eps
                                          \epsilon^{(i)}
                                                                               epsilon<sup>i</sup>, residual, stochastic
\epsi
\res
                                                                               residual, empirical
```

```
r^{(i)}
                                                                                  epsilon<sup>i</sup>, residual, empirical
\resi
                                            \hat{\epsilon}
\epsh
                                                                                  residual, estimated
                                           yf(\mathbf{x})
                                                                                  y f(x), margin
\yf
                                            y^{(i)}f\left(\mathbf{x}^{(i)}\right)
                                                                                  y^i f(x^i), margin
\yfi
                                            \hat{\Sigma}
                                                                                  estimated covariance matrix
\Sigmah
                                                                                  estimated covariance matrix for the j-th class
\Sigmahj
\Lyf
                                           L(y, f)
                                                                                  L(y, f), loss function
                                                                                  L(y, f(x)), loss function
\Lxy
                                            L(y, f(\mathbf{x}))
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
\Lxyi
                                                                                  L(y^i, f(x^i))
                                            L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                  L(y, f(x \mid theta))
\Lxyt
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lxyit
                                                                                  L(y^i, f(x^i | theta)
                                            L(y^{(i)}, f(\mathbf{x} \mid \boldsymbol{\theta}^{[t]}))
                                                                                  L(y^i, f(x^i \mid theta^[t])
\Lxyitt
                                            L(y^{(i)}, f(\tilde{\boldsymbol{x}}^{(i)} \mid \boldsymbol{\theta}))
                                                                                  L(y^i, f(tilde(x)^i | theta),
\Lxvm
                                            L(y, \pi(\mathbf{x}))
                                                                                  L(y, pi(x)), loss function
\Lpixy
\Lpixyi
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)
                                                                                  L(y^i, pi(x^i))
                                            L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                  L(y, pi(x | theta))
\Lpixyt
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lpixyit
                                                                                  L(y^i, pi(x^i | theta)
                                            L(y, h(\mathbf{x}))
                                                                                  L(v, h(x)), loss function on discrete classes
\Lhxy
\Lr
                                            L(r)
                                                                                  L(r), loss function defined on the residual (regression) / margin (class
\risk
                                            \mathcal{R}
                                                                                  R. risk
                                            \mathcal{R}(f)
                                                                                  R(f), risk
\riskf
                                            \mathcal{R}(\boldsymbol{\theta})
                                                                                  R(theta), risk
\riskt
                                                                                  R emp, empirical risk (without factor 1 / n
\riske
                                            \mathcal{R}_{\mathrm{emp}}
\riskeb
                                                                                  R emp, empirical risk with factor 1 / n
                                            \mathcal{R}_{\mathrm{emp}}
                                            \mathcal{R}_{\mathrm{emp}}(f)
                                                                                  R = emp(f)
\riskef
                                                                                  R_emp(theta)
\risket
                                            \mathcal{R}_{\mathrm{emp}}(\boldsymbol{\theta})
                                                                                  R reg, regularized risk
\riskr
                                            \mathcal{R}_{	ext{reg}}
                                            \mathcal{R}_{\mathrm{reg}}(oldsymbol{	heta})
\riskrt
                                                                                  R_reg(theta)
\riskrf
                                            \mathcal{R}_{\text{reg}}(f)
                                                                                  R \operatorname{reg}(f)
                                            \hat{\mathcal{R}}_{\mathrm{reg}}(\boldsymbol{\theta})
                                                                                  hat R_reg(theta)
\riskrth
                                            \hat{\mathcal{R}}_{\mathrm{emp}}(\boldsymbol{\theta})
                                                                                  hat R_emp(theta)
\risketh
\riskbayes
                                            \mathcal{R}^*
                                            \mathcal{L}
                                                                                  L. likelihood
\LL
                                            \mathcal{L}(\boldsymbol{\theta})
                                                                                  L(theta), likelihood
\LLt
\11
                                                                                  l, log-likelihood
\11t
                                            \ell(\boldsymbol{\theta})
                                                                                  l(theta), log-likelihood
                                            \mathfrak{L}
                                                                                   ???????????
\LS
                                            \mathfrak{T}
\TS
                                                                                   ??????????????
                                           \operatorname{err}_{\operatorname{train}}
\errtrain
                                                                                   training error
\errtest
                                                                                   training error
                                            err_{test}
                                           \overline{\mathrm{err}_{\mathrm{test}}}
\errexp
                                                                                   training error
                                            GE(\hat{f})
                                                                                   Generalization error of a fitted model
\GEf
                                            GE_n(\mathcal{I}_{L,O})
\GEind
                                                                                   Generalization error of a fitted model
                                            GE_n\left(\hat{f}_{\#1}\right)
\GE
                                                                                   Generalization error GE
\GEh
                                            \widehat{G}\widehat{E}_{\#1}
                                                                                  Estimated train error
                                            GE_n\left(f_{\mathcal{D}}\right)
                                                                                   Generalization error GE
\GED
\EGEn
                                            EGE_n
                                                                                   Generalization error GE
\EDn
                                           \mathbb{E}_{|D|=n}
                                                                                   Generalization error GE
                                            \mathcal{C}
                                                                                  costs
\costs
                                            \theta^*
                                                                                  elite configurations
\Celite
                                            \mathcal{I}
\instances
                                                                                  sequence of instances
\budget
                                            \mathcal{B}
                                                                                  computational budget
```

\fan	$\#\mathrm{FN}$	
\tn	$\#\mathrm{TN}$	
\fap	$\#\mathrm{FP}$	fp taken for partial derivs
\tp	#TP	
\rp	π_+	proportion negative instances
\rn	π	proportion negative instances
\nn	n_{-}	no. of negative instances
\np	n_+	no. of positive instances

ml-automl.tex

Macro	Notation	Comment
\lambdav	λ	lambda vector

ml-bagging.tex

Macro	Notation	Comment
\bl	$b^{[\#1]}(\mathbf{x})$	baselearner with argument for m
\blm	$b^{[m]}(\mathbf{x})$	baselearner without argument for m
\blmh	$\hat{b}^{[m]}(\mathbf{x})$	estimated base learner
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x})\right)$	ambiguity/instability of ensemble

ml-bayesopt.tex

Macro	Notation	Comment
\minit	$m_{ m init}$	Size of the initial design
\lambdai	$\lambda^{[i]}$	input for black box optimization
$\label{lambdaopt}$	λ^*	Minimum of the black box function Psi
\metadata	$\left\{\left(\lambda^{[i]},\Psi^{[i]} ight) ight\}$	Metadata for the Gaussian process
\lambdavec	$(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]})$	Vector of different inputs
\lambdab	$\dot{\lambda}$	input configuration
\gp	$\mathcal{GP}\left(m(x), k\left(x, x'\right)\right)$	Gaussian Process

ml-boosting.tex

Macro	Notation	Comment
\fm	$f^{[m]}$	prediction in iteration m
\fmh	$\hat{f}^{[m]}$	prediction in iteration m
\fmd	$f^{[m-1]}$	prediction m-1
\fmdh	$f^{[m-1]} \ \hat{f}^{[m-1]}$	prediction m-1
\bmm	$b^{[m]}$	basemodel m
\bmmxth	$b(\mathbf{x}, \boldsymbol{\theta}^{[m]})$	basemodel of x and theta m
\bmmh	$\hat{b}^{[m]}$	basemodel m with hat
\betam	$eta^{[m]}$	weight of basemodel m
\betamh	$\hat{eta}^{[m]}$	weight of basemodel m with hat
\betai	$\beta^{[\#1]}$	weight of basemodel with argument for m
\errm	$\operatorname{err}^{[m]}$	weighted in-sample misclassification rate
\wm	$w^{[m]}$	weight vector of basemodel m
\wmi	$w^{[m](i)}$	weight of obs i of basemodel m
\thetam	$oldsymbol{ heta}^{[m]}$	parameters of basemodel m
\thetamh	$\hat{m{ heta}}^{[m]}$	parameters of basemodel m with hat
\rmm	$\widetilde{r}^{[m]}$	pseudo residuals
\rmi	$\widetilde{r}^{[m](i)}$	pseudo residuals
\Rtm	$R_t^{[m]}$	terminal-region
\Tm	$T^{[m]}$	
\ctm	$egin{array}{l} c_t^{[m]} \ \hat{c}_t^{[m]} \ ilde{c}_t^{[m]} \end{array}$	mean, terminal-regions
\ctmh	$\hat{c}_t^{[m]}$	mean, terminal-regions with hat
\ctmt	$ ilde{c}_t^{[m]}$	mean, terminal-regions
\fxk	$f_k(x)$	$f_k(x)$
\Lp	L'	
\Ldp	L''	
\L pleft	$L'_{ m left}$	
\Lxyim	$L\left(y^{(i)}, f^{[m-1]}(\mathbf{x}^{(i)})\right)$	

ml-feature-sel.tex

Macro	Notation	Comment
\xjNull	x_{j_0}	
\xjEins	x_{j_1}	
\xl	\mathbf{x}_l	
\pushcode		IGNORE_NOTATION

ml-gp.tex

Macro	Notation	Comment
\gp	$\mathcal{GP}\left(m(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}'\right)\right)$	Gaussian Process Definition
\mvec	m	Gaussian process mean vector
\K mat	K	estimated base learner
\ls	ℓ	length-scale

ml-interpretable.tex

Macro	Notation	Comment
\fj	f_j	marginal function f_j, depending on feature j
\fS	$\widetilde{f_S}$	marginal function f_S depending on feature set S
\fC	f_C	marginal function f_C depending on feature set C
\fhj	$\hat{f}_j \ \hat{f}_S$	marginal function fh_j, depending on feature j
\fhS	\hat{f}_S	marginal function fh_S depending on feature set S
\fhC	$\hat{\hat{f}}_C$	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
\SsubPnojk	$S \subseteq P \setminus \{j, k\}$	coalition S subset of P without player k
\phiij	$\hat{\phi}_{j}^{(i)}$	Shapley value for feature j and observation i
\Gspace	$\mathcal{G}^{"}$	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	${f z}$	Sampled datapoints for surrogate
\Zspace	${\mathcal Z}$	Space of sampled datapoints
\Gower	d_G	Gower distance

ml-lm.tex

Macro	Notation	Comment
\thx	$\boldsymbol{ heta}^T\mathbf{x}$	linear score: theta^T x

ml-mbo.tex

Macro	Notation	Comment
\sxh	$\hat{s}(x)$	uncertainty shat(x)
\vxh	$\hat{s}^2(x)$	squared uncertanty
$\mbox{\tt matK}$	K	??
\kstarx	$\mathbf{k}_*(x)$??
\xpi	$x^{*(\#1)}$??
\vhx	$\hat{s}^2(\mathbf{x})$	local estimated variance at point x
\shx	$\hat{s}(\mathbf{x})$	local estimated uncertainty at point x
\sh	\hat{s}	local estimated uncertainty
\px	$oldsymbol{x}^*$??
\equote	"#1"	??
\vecx	$oldsymbol{x}$	DO NOT USE THIS
\yx	$y({m x})$??
\X	\mathcal{X}	domain / search space
\yv	\boldsymbol{y}	
\fhx	$\hat{f}(\mathbf{x})$	surrogate (x), better use \mhx for predicted value
\minit	$m_{ m init}$	Size of the initial design
\lambdai	$oldsymbol{\lambda}^{[i]}$	input for black box optimization
\lambdanew	$oldsymbol{\lambda}^{ ext{new}}$	new proposed configuration
\metadata	$\left\{\left(\lambda^{[i]},\Psi^{[i]} ight) ight\}$	Metadata for the Gaussian process
\lambdavec	`r' 1	Vector of different inputs
\lambdab	λ	input
\lambdaopt	λ^*	Minimum of the black box function Psi

ml-nn.tex

Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	\mathbf{u}	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(\theta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta, \mu X, y)$	dropout objective function
\Loss	$L(y, f(\mathbf{x}, \boldsymbol{\theta}))$	
\Lmomentumnest	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$	momentum risk
\Lmomentumtilde	$L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$	Nesterov momentum risk
\Lmomentum	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))$	
\Hess	H	
\nub	u	
\uauto	L(x, g(f(x)))	undercomplete autoencoder objective function
\dauto	$L(x, g(f(\tilde{x})))$	denoising autoencoder objective function
\deltab	δ	
\Lossdeltai	$L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$	
\Lossdelta	$L(y, f(\mathbf{x} + \boldsymbol{\delta} \boldsymbol{\theta}))$	

ml-rf.tex

Macro	Notation	Comment
\betam	$\beta^{[m]}$	baselearner with argument for m
\betai	$eta^{[1]}$	baselearner with argument for 1
\betaM	$\beta^{[M]}$	baselearner with argument for M

ml-survival.tex

Macro	Notation	Comment
\Ti	$T^{(\#1)}$??
\Ci	$C^{(\#1)}$??
\oi	$o^{(\#1)}$??
\ti	$t^{(\#1)}$??
\lambdai	$\lambda^{(\#1)}$	already defined differently in ml-bayesopt
\deltai	$\delta^{(\#1)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

ml-svm.tex

Macro	Notation	Comment
\sv	SV	supportvectors
\HS	Φ	H, hilbertspace
\sl	ζ	
\slvec	$(\zeta^{(1)},\zeta^{(n)})$	slack variables (SVM)
\sli	$\dot{\zeta}^{(i)}$	slack variable (SVM)
\alphah	\hat{lpha}	alpha-hat
\alphav	lpha	vector alpha (bold)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat
\phix	$\phi(\mathbf{x})$	$\phi(x)$
\phixt	$\phi(\tilde{\mathbf{x}})$	$\phi(x-tilde)$

ml-trees.tex

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	node N_k
\Nl	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_k^{(\mathcal{N})}$	class probability node N
\pikNh	$\hat{\pi}_{\#1}^{(\mathcal{N})}$	estimated class probability node N
\pikNlh	$\hat{\pi}_{\#1}^{(\mathcal{N}_1)}$	
\pikNrh	$\hat{\pi}_{\#1}^{(\mathcal{N}_2)}$	

probmodel.tex

Macro	Notation	Comment
\muk	$\mu_{m{k}}$	