DATA SCIENCE

Lab-3

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
```

In [2]: DS = pd.read_csv("Titanic_Dataset.csv")
DS.head(5)

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	ma l e	35.0	0	0	373450	8.0500	Na
4											•

In [3]: DS.shape

Out[3]: (891, 12)

```
In [4]: DS.describe()
```

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Exploratory Data Analysis

1. Identification of Missing Values

```
In [5]: Missing_values_count=print(DS.isnull().sum())
        Missing_values_count
        print("\n")
        features_with_na=[features for features in DS.columns if DS[features].isnull().su
        for feature in features with na:
            print(feature)
        PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
                          0
        Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
        Cabin
                        687
        Embarked
                          2
        dtype: int64
```

we can observe the missing values in the data set are in the columns Age, Cabin and Embarked. Also we can understand whether the data set contains missing value using .info() since it provide

Age Cabin Embarked the count of no null values.

2. Identification of All The Numerical Variables

```
In [7]:
    # list of numerical variables
    numerical_variables = [feature for feature in DS.columns if DS[feature].dtypes !=
    print('Number of Numerical Variables: ', len(numerical_variables))

# visualise the numerical variables
DS[numerical_variables].head()
```

Number of Numerical Variables: 7

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500

Hence, we have identify all the numerical variables present in the dataset and there are total 7 columns of numerical variables.

3. Distribution Of the Numerical Variables

```
In [8]: # Numerical variables are of 2 types:
# 1. Discrete Variabls

discrete_variables=[feature for feature in numerical_variables if len(DS[feature]
    print("Discrete Variables Count: {}".format(len(discrete_variables)))
```

Discrete Variables Count: 4

```
In [9]: print(discrete_variables)
DS[discrete_variables].head()
```

['Survived', 'Pclass', 'SibSp', 'Parch']

Out[9]:

	Survived	Pclass	SibSp	Parch
0	0	3	1	0
1	1	1	1	0
2	1	3	0	0
3	1	1	1	0
4	0	3	0	0

In [10]: # 2. Continous Variables

continuous_variables=[feature for feature in numerical_variables if feature not i
print("Continuous Variables Count: {}".format(len(continuous_variables)))

Continuous Variables Count: 3

['PassengerId', 'Age', 'Fare']

Out[11]:

	Passengerld	Age	Fare
0	1	22.0	7.2500
1	2	38.0	71.2833
2	3	26.0	7.9250
3	4	35.0	53.1000
4	5	35.0	8.0500

Hence, we have distributed Numerical Variables into two types i.e., Discrete variables which includes columns such as 'Survived', 'Pclass', 'SibSp', 'Parch' and Continuous Variable which include column such as 'Passengerld', 'Passengerld', 'Age', 'Fare'.

4. Identification of Categorical Variables

In [12]: # list of numerical variables categorical_variables = [feature for feature in DS.columns if DS[feature].dtypes print('Number of Categorical Variables: ', len(categorical_variables)) # visualise the numerical variables DS[categorical_variables].head()

Number of Categorical Variables: 5

Out[12]:

	Name	Sex	Ticket	Cabin	Embarked
0	Braund, Mr. Owen Harris	male	A/5 21171	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	C85	С
2	Heikkinen, Miss. Laina	female	STON/O2. 3101282	NaN	S
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	C123	S
4	Allen, Mr. William Henry	male	373450	NaN	S

Hence, we have identify the categorical variables present in the dataset and there are total 5 columns of categorical variables.

5. Cardinality of Categorical Variables

```
In [13]: Cardinality_Value=DS[categorical_variables].nunique()
         print(Cardinality_Value)
                      891
         Name
         Sex
                        2
         Ticket
                      681
         Cabin
                      147
         Embarked
                        3
         dtype: int64
In [14]: UV= {'Columns':['Name','Sex','Ticket','Cabin','Embarked'],
               'Unique Values':[891,2,681,147,3]}
         DF = pd.DataFrame(UV)
         print(DF)
         DF.plot.bar('Columns', 'Unique Values')
              Columns
                       Unique Values
         0
                 Name
                                 891
         1
                  Sex
                                    2
         2
               Ticket
                                  681
                                  147
         3
                Cabin
            Embarked
                                    3
```

Out[14]: <AxesSubplot:xlabel='Columns'>

Hence, we have a found the cardinality of a categorical variable i.e., the number of unique values present inside the particular column.

6. Identification of Outliers

```
In [16]: for feature in continuous_variables:
    data=DS.copy()
    if 0 in data[feature].unique():
        pass
    else:
        data[feature]=np.log(data[feature])
        data.boxplot(column=feature)
        plt.ylabel(feature)
        plt.title(feature)
        plt.show()
```


Hence, we have identified the outliers present in the numerical variables columns which are aslo a continuous variables.

7. Relationship between independent and dependent variables.

```
In [17]: for feature in discrete_variables:
    data=DS.copy()
    data.groupby(feature)['Age'].median().plot.bar()
    plt.xlabel(feature)
    plt.ylabel('Age')
    plt.title(feature)
    plt.show()
```


Hence, we have found the relationship between the discrete variable considering as independent variable and Age as dependent variable. We can also select continuous variable and observe the result.

8. Correlation between the variables

```
In [18]: plt.figure(figsize=(15,8))
    sns.heatmap(DS.corr(), annot=True, cmap="gist_yarg_r", linewidths=1)
```

Out[18]: <AxesSubplot:>

Hence, we plot a heatmap for showing the correlation between the variable whether the variable in a dataset is strongly, positively and negatively correlated.

In this lab, we have performed EDA on the given dataset. Also, we identify the numerical and categorical variables and its types. Along, with that we have also found the cardinality i.e., uniques values and identify the outliers present inside the numerical variables. At the end we implemted an heatmap graph which shows the correlation between the variables in the dataset.

NAME: Rishab Jha

PRN: 20190802072