Distributed Information Systems Class questions

Marc Bourqui

April 29, 2015

	Part I		The state of a database is independent of the lifetime
	Introduction		of a program O The same logical database can be stored in different ways on a storage medium
	An Overview		Information Management
	Information Systems (week 1) Functions in models ① Are always computable ○ Can always be represented as data ○ Can be constrained by axioms	7.	Grouping Twitter users according to their interest by analyzing the content of their tweets is A retrieval task A data mining task An evaluation task A monitoring task
2.	Interpretation relationships		
	Are always computableRelate constants to real-world entitiesAre uniquely defined	8.	Distributed Information Systems Creating a web portal for comparing product prices is (primarily) a problem of Distributed data management
	Data Management		Heterogeneous data integration
3.	What is not specified in the data definition language ?		○ Collaboration among autonomous systems
٠.	The structure of a relational table		Distributed Data Management
4	The query of userA constraint on a relational table	9.	When you open a Web page with an embedded Twitter stream, the communication model used by Twitter is Push, unicast and conditional
4.	Logical data independence means An abstract data type is implemented using different data structures		Pull, multicast and ad-hocPush, multicast and ad-hoc
	 A new view is computed without changing an existing database schema 		Pull, unicast and conditionalHeterogeneity
	 A model can be represented in different data modelling formalisms 	10.	Creating a web portal for comparing product prices requires to address
	Data Management Tasks		Syntactic heterogeneity
5.	Which is wrong? An index structure		 Semantic heterogeneity
	Is created as part of physical database design		OBoth
	○ Is selected during query optimization	11.	An ontology is a
	Accelerates search queries		○ Sdatabase
	Accelerates tuple insertion		o database schema
6	Persistence means that		O data model

O A change of a transaction on a database is never lost

after it is completed

 $\bigcirc \ \ \mathsf{data} \ \mathsf{modeling} \ \mathsf{formalism}$

 \bigcirc model

Autonomy

- 12. Trust is
 - A quality of information
 - A quality of a user
 - A quality of the relationship among user and information
 - A quality of the relationship among users

Part II

Storage

Distributed Data Management

Schema Fragmentation

Relational Databases

- 13. At which phase of the database lifecycle is fragmentation performed ?
 - O At database design time
 - Ouring distributed query processing
 - Ouring updates to a distributed database
- 14. The reconstruction property expresses that
 - In case of a node failure the data can be recovered from a fragment from another node
 - The original data can be fully recovered from the fragments
 - Every data value of the original data can be found in at least one fragment

Primary Horizontal Fragmentation (week 2)

- 15. Example: application A1 accesses
 - 1. Fragment F1: with frequency 3
 - 2. Fragment F2: with frequency 1

A1 accesses the whole relation with frequency

- \bigcirc 13/7
- \bigcirc 4/7
- \bigcirc 14/7

16. Consider the access frequencies below: How many horizontal fragments would a minimal and complete fragmentation have?

- \bigcirc 3
- \bigcirc 4
- \bigcirc 6
- 17. Which of the following sets of simple predicates is complete?

- Location = "Munich", Budget > 200000
- Location = "Munich", Location = "Bangalore"
- \bigcirc Location = "Paris", Budget ≤ 200000
- None of those
- 18. Which is true for MinFrag algorithm?
 - The output is independent of the order of the input
 - It produces a monotonically increasing set of predicates
 - It always terminates
 - All of the above statements are true
- 19. When deriving a horizontal fragmentation for relation S from a horizontally fragmented relation R
 - \bigcirc Some primary key attribute in R must be a foreign key in S
 - \bigcirc Some primary key attribute in S must be a foreign key in R
 - O Both are required

Graph Databases

Semi-structured Data (week 3)

20. Semi-structured data

- Is always schema-less
- Always embeds schema information into the data
- Must always be hierarchically structured
- O Can never be indexed

21.	Why is XML a document model?		 Every label of an outgoing edge of a node in the
	It supports application-specific markup		schema graph is unique
	It supports domain-specific schemas		
	It has a serialized representation		Part III
	○ It uses HTML tags		
	Graph Data Model		Search
22.	In a graph database		
	○ There is a unique root node		Information Retrieval and Data
	Each node has a unique identifier		Mining
	O Data values in leaf nodes are unique		Information Retrieval
	 The labels of edges leaving a node are different 		Information Retrieval (week 4)
	There is a unique path from the root to each leaf	29.	A retrieval model attempts to model
23.	The simulation relationship is a relation		 The interface by which a user is accessing information
	 Among nodes in the data and schema graph 		 The importance a user gives to a piece of information
	 Among edges in the data and schema graph 		○ The formal correctness of a query formulation by user
	 Among sets of nodes in the data and schema graph 		○ All of the above
	 Among sets of edges in the data and schema graph 	30.	If the top 100 documents contain 50 relevant documents
24.	Which is true?		\bigcirc The precision of the system at 50 is 0.5
	\bigcirc For each labelled edge in S a corresponding edge in D		\bigcirc The precision of the system at 100 is 0.5
	can be identified		\bigcirc The recall of the system is 0.5
	\bigcirc For each root node in S a corresponding root node D can be identified		○ None of the above
	\bigcirc For each leaf node in D a corresponding typed node in	31.	If retrieval system A has a higher precision than system ${\sf B}$
	S can be identified		The top k documents of A will have higher similarity
	\bigcirc For each node in S a unique path reaching it from a		values than the top k documents of B The top k documents of A will contain more relevant
	root node can be identified		documents than the top k documents of B
25.	If there exists a uniquely defined simulation relationship among a graph database D and a schema graph S		A will recall more documents above a given similarity
	The data and schema graph are simulation equivalent		threshold than B
	Ambiguous classification cannot occur		Relevant documents in A will have higher similarity
	Multiple classification cannot occur		values than in B
26	If schema graph S_1 subsumes S_2		Text-based Information Retrieval
٥٠.	\bigcirc Every graph database corresponding to S_1 corresponds	32.	Full-text retrieval means that
	also to S_2		 The document text is grammatically deeply analyzed for indexing
	\bigcirc S_2 simulates S_1		 The complete vocabulary of a language is used to
	\bigcirc S_1 has fewer nodes than S_2		extract index terms
	Schema Extraction		 All words of a text are considered as potential index terms
27.	Which is wrong? In a dataguide		All grammatical variations of a word are indexed
	 Every path in the data graph occurs only once 	33.	The term-document matrix indicates
	Every node in the data graph occurs only in one data		O How many relevant terms a document contains
	guide node		O How relevant a term is for a given document
	Every data guide node has a unique set of nodes		O How often a relevant term occurs in a document
	A leaf node in the data graph corresponds always to a leaf node in the data guide		collection
28.	In a non-deterministic schema graph		 Which relevant terms are occurring in a document collection
	Every node of the data graph occurs exactly once	21	
	Every path of the data graph occurs at most once	54.	Let the query be represented by the following vectors: $(1, 0, -1)$ $(0, -1, 1)$; the document by the vector $(1, 0, 1)$
	- · · · · · · · · · · · · · · · · · · ·		

Helps to maintain the lexicographic order of words seen

in the documents

All of the above

 \bigcirc s components (number of singular values)

m components (size of vocabulary)

 \bigcirc n components (number of documents)

17.	. Maintaining the order of document identifiers when partitioning the document collection is important		Unstructured P2P Overlay Networks		
			In an unstructured overlay network (such as Gnutella) a		
	In the index merging approach for single node machines		peer receiving a "peer discovery" message (ping)Responds by sending a message to the originator of the message		
	In the map-reduce approach for parallel clusters				
	○ In both		Responds by replying to the last forwarder of the		
	In neither of the two		message		
	Distributed Retrieval		Responds by sending a message to all its neighbors		
18.	When applying Fagin's algorithm for a query with three different terms for finding the k top documents, the algorithm will scan	54.	If the largest city in the world has 16 Mio inhabitants, the second largest 11.3 Mio inhabitants, the third largest 9.2 Mio, the fourth largest 8.0 Mio, and so on, then this is A Powerlaw distribution		
	2 different lists		○ A Zipf distribution		
	3 different lists		None of the two		
	\bigcirc k different lists	55.	Assume that in a country the size of cities follows a		
	it depends how many rounds are taken		powerlaw distribution with exponent 2. A city of 16 Mio inhabitants has probability of $^{1}/_{256}$ to occur. Then a city		
19.	Once k documents have been identified that occur in all of		of 8 Mio inhabitants is Twice as probable		
	the lists		Four times as probable		
	\bigcirc These are the top- k documents		Eight times as probable		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	56.	Expanding ring search is particularly suitable to locate () Frequent items		
	\bigcirc The search has to continue in round-robin till the top- $\!k$		Rare items		
	documents are identified		O Does not matter		
	\bigcirc Other documents have to be searched to complete the top- $\!k$ list	57.	With the square root rule for replica allocation : given two items that are accessed with probabilities $p_1>p_2$ that are replicated r_1 and r_2 times. Which is always true ?		
	Peer-2-Peer Search		$\bigcirc r_1 < r_2$		
	Peer-2-Peer Systems		$\bigcirc r^{1}/p_{1} < r^{2}/p_{2}$		
	P2P Systems and Resource Location (week 7)		$\bigcap r_1 - p_1 < r_2 - p_2$		
			Hierarchical P2P Overlay Networks (week 8)		
50.	Which resource is in Napster not shared in a P2P	58.	The index information in a structured overlay network		
	approach ?		 Provides references to route a search request within the overlay network 		
	○ File storage		Provides for a given key the reference to the peer that		
	○ File metadata storage		stores the resource		
	Network bandwidth		Is replicated in routing tables to support redundant		
	○ Content rights	F0	search paths		
51	"Churn" refers to the fact that in a peer-to-peer system :	59.	For the given routing table, the search request for the key 0101 is routed		
,	Peers constantly join and leave the network				
	Peers constantly add and remove resources		0 /1		
			01 00 P1: 100		
	Peers constantly search for resources		011 010 P3: 00110		
52.	An "overlay network" supports :		0110 0111 P5: 01011		
	○ Efficient routing to a given IP address		P6: 0100		
	Efficient routing to the location of a resource identifier		P8: 01111		
	Efficient exchange of large files		P11: 01101 P12: 01101 P9: 01100 P10: 01100		
	Efficient messaging in centralized social network		replicas		

6

	○ Always to peer P5
	○ Either to peer P5 or P6
	○ Either to peer P3, P4, P5 or P6
60.	When routing in Chord
	○ The next hop is always uniquely determined
	\bigcirc The next hop can be chosen among a constant number of possible candidates

	candidates				
61.	When adding q to the Chord	l ring :	in the	routing	table o
				n n+1	

The next hop can be chosen among log n possible

		\leq
\overline{i}	s_i	7
1	p_2	n4
2	p_2	γ ,
3	p_2	
4	p_3	
5	p_4	
	P4	

	\bigcirc Entries for $i=1,2,3,4$ change
	\bigcirc The entry for $i=4$ changes
	\bigcirc The entry for $i=5$ changes
	○ No entry changes
62.	When adding n peers to CAN the number of new zones $$
	○ Is exactly n
	\bigcirc It depends what the keys of the peers were
	\bigcirc It depends on the dimensionality of the key space
63.	In CAN, for a fixed dimensionality $d>2,$ when moving from 1 to 2 realities

The number of entries in the routing table increases by

The number of entries in the routing table increases by

The number of entries in the routing table doubles
 In FreeNet the routing table is updated
 When a search request message arrives
 When a query answer message arrives
 When an insert file message arrives

65. For which of the following structured overlay networks the length of a search path is always guaranteed to be shorter than the length of the longest key
P-Grid
CAN

66. The local clustering coefficient is the probability that two of my friends are also friends. If I have 10 friends and among them 15 friendships exist, my local clustering coefficient is

FreeNet

	○ 1/3
	○ 2/3
	○ 3/2
7.	A random graph has
	○ High clustering and low diameter
	○ High clustering and high diameter
	 Low clustering and low diameter
	O Low clustering and high diameter
3.	In a three-dimensional Kleinberg small world network with log n long range links the search cost is
	$\bigcap \log n$
	$\bigcap \log^2 n$
	$\bigcap \log^3 n$
	Week 9
9.	Latency is
	Δ The time a client is connected to a broadcast

 C. The time a client waits for receiving a data item on a broadcast channel

70. Data Broadcast is beneficial when

channel

A. Clients have a high upstream bandwidth

B. The time a client listens actively on a broadcast

B. Many clients are interested in the same information

C. Clients have many different requests

71. Assume the broadcast channel has one item accessed with frequency 9 and three others accessed with frequency 1. The expected delay for accessing the first item in an optimal broadcast organization will be

A. 1B. 2

C. 3

72. Assume the broadcast channel has one item accessed with frequency 9 and three others accessed with frequency 1.

The expected delay for accessing the second type of items will be

A. 1

B. 3

C. 6

73. When organizing a broadcast disk a "chunk"

A. Contains always all elements of the broadcast disk

B. Contains sometimes all elements of the broadcast disk

C. Contains never all elements of the broadcast disk

74. When organizing a broadcast disk which is true?

A. The number of copies of different chunks in a broadcast disk is constant

- B. The number of copies of different data items in a broadcast disk is constant
- C. The number of data items in the chunks of one disk is constant
- D. The data items in the chunks of one disk are always the same
- 75. Which is true?
 - A. LRU (least recently used) is not optimal because it does not consider the frequency of data items in a data broadcast
 - B. MPA (most probable accessed) is not optimal because it does not consider the frequency of data items in a data broadcast
 - C. Only PIX considers the frequency of data items in a data broadcast
- 76. Assume the broadcast and access pattern below. Assuming that c=1/2 what is the access frequency estimate for B at time 6 ?

- A. 1/3
- B. 1/4
- C. 1/6
- D. ½12
- 77. The minimal latency of a broadcast channel can be achieved
 - A. By not indexing the broadcast
 - B. By indexing the broadcast only once
 - C. By indexing the broadcast according to the (1,m) rule
- 78. The term "probe wait" refers to
 - A. The time for waiting for a data page
 - B. The time for waiting for an index segment
 - C. The time for waiting for a data segment

Credits

Quiz questions were taken from the lecture notes of Prof. K. Aberer. Answers are provided with no guarantee.