電子電工學 Lecture 10

Average 79.8 Std deviation 23.6

Chapter 9

AC Circuits

交流

直流

Alternating current vs Direct current

Periodically Change direction

Constant Flow in one direction

Alternating Current

Direct Current

Alternating current

I of cos (wt)

Sinusoidal waves

Sin (
$$\omega t$$
)
$$Sin(\omega t)$$

$$Sin(\omega t) + \frac{1}{3} sin(3\omega t) + \frac{7}{5} sin(5\omega t) + \frac{1}{7} si(7\omega t)$$

$$U = 2\pi + \frac{1}{3} sin(5\omega t)$$

Figure 9.1 The addition of four sinewaves of relative amplitudes 1, 1/3, 1/5 and 1/7, and relative frequencies ω , 3ω , 5ω and 7ω (light-lines) yields an approximation (bold line) to a square waveform.

Sine waves vs square wave

Fourier series expansion

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

$$a_0 = \frac{1}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Basic Waves

Capacitor

$$i(t) = C \frac{dv(t)}{dt} \qquad (wt) = \frac{dq(t)}{dt}$$
Source $v(t) = V \cos((\omega t))$

$$\Rightarrow i(t) = C V [-\omega \sin(\omega t)]$$

$$= [-\omega CV \sin(\omega t)]$$

Figure 9.2 A capacitor with its voltage defined by a sinusoidal voltage source of radian frequency ω

Capacitor

$$-Sin(\omega t) = cos(\omega t + \frac{\pi}{2})$$

Figure 9.2 A capacitor with its voltage defined by a sinusoidal voltage source of radian frequency ω

Figure 9.3 The waveforms of sinusoidal voltage across, and sinusoidal current through, a capacitor

Review: function shift

Voltage vs Currents

$$V(t) = V \cos(\omega t)$$

$$i_{L}(t) = V \cos(\omega t + V)$$

$$I. \quad \text{Frequency}: \quad \text{Same} \quad \omega = 2\pi f$$

$$2. \quad \text{Amplitude}: \quad I = \omega CV$$

$$3. \quad \text{Phase} \quad i_{L}(t) \quad \text{leads} \quad v_{L}(t) \quad \text{by} \quad V_{L}(t)$$

$$v_{L}(t) \quad \text{lags} \quad i_{L}(t) \quad \text{(90')}$$

Figure 9.2 A capacitor with its voltage defined by a sinusoidal voltage source of radian frequency ω

Example 9.1

$$V(t) = 4 \cos (2\pi.15q.t)$$

$$= 4 \cos (1000t)$$

$$i(t) = C \cdot \frac{dv(t)}{dt}$$

$$= \omega C \cdot 4 \cos (1000t + \frac{\pi}{2})$$

$$= 4 \times 10^{-3} \cos (1000t + \frac{\pi}{2})$$

$$= 10^{-6} \cos (1000t + \frac{\pi}{2})$$

Figure 9.4 A capacitor with its voltage defined by a sinusoidal voltage source of frequency 159 Hz

Figure 9.6 Reponse of an inductor to a time-varying voltage source

Inductor

Current Src
$$i(t) = I \cos(\omega t + \theta)$$

$$\Rightarrow v(t) = L \frac{di(t)}{dx}$$

$$= -\omega L I \sin(\omega t + \theta)$$

$$= \omega L I \cos(\omega t + \theta + \frac{\pi}{2})$$

$$V = \omega L I$$

$$i(t) = I \cos(\omega t + \theta)$$

$$v(t) = L \cos(\omega t + \theta)$$

$$v(t) = L \cos(\omega t + \theta)$$

Figure 9.7 An inductor with its current defined by a sinusoidal current source of radian frequency ω

us Curvent Inductor voltage 1. Frequency: Same W= 27 f 2. Amplitude: V= wLI
3. phose: v(t) leads ilt) ill)= I cos (wt+ B) $V(t) = \omega L I \cos(\omega t + \theta + \frac{\pi}{2})$ $V_{\rm L}(t)$ π - θ $2\pi - \theta$ angle ωt (rad) time t (s) i(t)

Figure 9.8 The waveforms of sinusoidal current through, and sinusoidal voltage across, an inductor

Resistor

Figure 9.9 A resistor with its voltage defined by a sinusoidal voltage source of radian frequency ω

Summary: passive components

$$\lambda(t) = I \cos(\omega t)$$

$$V(t) = V \cos(\omega t + \frac{\pi}{2})$$

$$I(t) = V \cos(\omega t)$$

$$I(t) = I \cos(\omega t + \frac{t}{\lambda})$$

$$I = \omega C V$$

$$V = (\frac{1}{\omega c}) I$$

Example 9.2

KCL:
$$i_{R}(t) = i_{L}(t) = i_{S}(t) = 2 \cos(1000t + 20^{\circ})$$

KCL: $i_{R}(t) = V_{R}(t) + v_{L}(t)$

$$= R \cdot i_{S}(t) + L \cdot \frac{d \cdot i_{S}(t)}{dt}$$

$$= R \cdot i_{S}(t) + L \cdot \frac{d \cdot i_{S}(t)}{dt}$$

$$= 0.1 \text{ H}$$

$$i_{S}(t) = 2 \cos(1000t + 20^{\circ}) \text{ mA}$$

Figure 9.10 The circuit discussed in Example 9.2

Example 9.2

Tample 9.2

$$V_{R}(t) = R \cdot i_{S}(t) = 200 \text{ Cos}(1600t + 20)$$
 $V_{L}(t) = L \frac{d \cdot i_{S}(t)}{dt} = 200 \text{ Cos}(1000t + 20) + 40)$
 $V_{S}(t) = V_{R}(t) + V_{L}(t)$
 $V_{S}(t) = V_{R}(t) + V_{L}(t)$
 $V_{S}(t) = V_{R}(t) - V_{L}(t)$
 $V_{L}(t) = V_{R}(t) - V_{L}(t)$
 $V_{L}(t) = V_{L}(t)$

Figure 9.10 The circuit discussed in Example 9.2

Trigonometric Identities

$$Cos(1000 t + 26) + cos(1000 t + 110)$$
= 2 cos(1000 t + 65°) cos(45°)
= $\sqrt{2}$ cos(1000 t + 65°)

Sum to Product Formula

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

Product to Sum Formula

2
$$\cos x \cos y = \cos (x + y) + \cos (x - y)$$

-2 $\sin x \sin y = \cos (x + y) - \cos (x - y)$
2 $\sin x \cos y = \sin (x + y) + \sin (x - y)$
2 $\cos x \sin y = \sin (x + y) - \sin (x - y)$.

Example 9.2

$$V_{slt}$$
) = 200 x V_{2} cos (1000t + 65')
 \sim 282.8 cos (1000t + 65')

Figure 9.10 The circuit discussed in Example 9.2

R-L circuit

Given
$$V(t) = V \cos(\omega t)$$

Find $\lambda(t) = ?$ unknown

$$V(t) = V_R(t) + V_L(t)$$

$$= R \cdot \lambda(t) + L \frac{\lambda(t)}{dt}$$

$$V \cos(\omega t) = R \lambda(t) + L \lambda'(t)$$

$$ODE \text{ for } \lambda(t) \Rightarrow \lambda'(t) + \frac{R}{L} \lambda(t) = \frac{V}{L} \cos(\omega t)$$

$$V(t) \qquad \qquad V_{R}(t) \qquad \qquad V_{L}(t) \qquad V_{L}(t) \qquad V_{L}(t) \qquad V$$

Quiz

Suppose the initial current is i(0)=0 for the circuit shown in the figure below.

- 1. Write a differential equation for the current i(t).
- 2. Apply the knowledge you learned from Engineering Math to solve *i*(*t*) for *t*>0.

Quiz Review

(1) KVL:
$$V_s(t) = R_i \lambda lt + L_2 \frac{di(t)}{dt}$$
 $V_s(t) = S_0 \lambda (t) + L_2 \frac{di(t)}{dt}$
 $V_s(t) + S_0 \lambda (t) = 200 \cos(500t)$
 $V_s(t) + V_s(t) = 200 \cos(500t)$

Quiz Review

$$Let \quad \lambda(t) = \lambda_{h}(k) + \lambda_{p}(k)$$

$$\{\lambda_{h}(t) + 500 \lambda_{h}(t) = 0\}$$

$$\{\lambda_{p}(t) + 500 \lambda_{p}(t) = 200 \cos(500 k) \iff 0.2 \sin(500 k)\}$$

$$Let \quad \lambda_{p}(k) = A \cos(500 k) + B \sin(500 k)$$

$$\downarrow h = B = 0.2$$

$$\Rightarrow \lambda(t) = Ke^{-500t} + 0.2 \cos(500 k) + 0.2 \sin(500 k)$$

$$\Rightarrow \lambda(t) = Ke^{-500t} + 0.2 \cos(500 k) + 0.2 \sin(500 k)$$

$$T_{nit} \quad \lambda(0) = 0 \Rightarrow K + 0.2 = 0 \Rightarrow K = -0.2$$

$$T_{nit} \quad \lambda(0) = 0 \Rightarrow K + 0.2 = 0 \Rightarrow K = -0.2$$

$$\downarrow h \quad \downarrow h \quad \downarrow$$

(40 V peak-to peak amplitude, 500 rad/s)

Summary

- 1. AC vs DC 2. cos (wt)
 - 3. Component

 V=WLI

 V=RI

 V=LI

 V=RI

 V=LI
 - 4. KCL, KVL

 Sum-to-product

 Differential Equation

 Cimplify!