Chapter 2 Boolean Algebra and Logic Gates

[2.1]

A = X	$B = \overline{X}$	$C = \overline{(\overline{X})} = X$
0	1	0
1	0	1

[2.2]

2	ì	b	c	F(a,b,c)
()	0	0	0
()	0	1	1
()	1	0	1
()	1	1	1
1		0	0	1
1		0	1	1
1		1	0	1
		1	1	1

[2.3]

a	b	С	F(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

[2.4]
$$f = \overline{a + \overline{b}}$$

$$[2.5] H(x,y,z) = x \bullet y + x \bullet z$$

The following simplification can reduce the number of gates required for the same function: $H(x, y, z) = x \cdot y + x \cdot z = x \cdot (y + z)$

[2.6] Same as 2.5 by replacing w(a,b,c) for H (x,y,z), b for x, and a and c for y and z respectively.

[2.7]
$$g(A,B,C) = A \bullet \overline{B} + C \bullet \overline{A}$$

[2.8]
$$f = \overline{(\overline{a} + b)} = a \bullet \overline{b}$$

[2.9]
$$g = \overline{(x \cdot y) + z} = (x \cdot y) \cdot \overline{z} = x \cdot y \cdot \overline{z}$$

[2.10]
$$f_1 = \overline{(u \cdot w)} = u + \overline{w}$$

$$f_2 = u + v$$

[2.11]

A	В	F
0	0	1
0	l	1
1	0	1
1	1	0

From the truth table above, F can be simplified as follow:

$$F = \overline{A} \bullet B + A \bullet \overline{B} + \overline{A} \bullet \overline{B}$$

$$= \overline{A} \bullet B + (A + \overline{A}) \bullet \overline{B}$$

$$= \overline{A} \bullet B + \overline{B}$$

$$= \overline{A} \bullet B + \overline{B} = \overline{(A \bullet B)}$$

T	$T(a,b,c) = a \bullet b + b \bullet (a+c)$				
	b	С	T(a,b,c)		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	_11	11		

[2.13]
$$h(x, y, z) = (x + y) \bullet (x + z) \bullet (y + z)$$

[2.14] A 4-input NAND gate is shown below:

If (any one of the inputs is 0) then

$$f=$$
 else

f = 0

[2.15] A 4-input NOR gate is shown below:

If (any one of the inputs is 1) then

$$f = 0$$
 else
$$f = 1$$

[2.16] If
$$(\phi = 1)$$
 then
$$f = a \bullet b$$
else if
$$(\phi = 0)$$

then

The output, f, only depends on the inputs when the clock signal ϕ is 1.

f = 0

[2.17]
$$Q = x \cdot y + z$$

1,1	2 - 2	-)	_	
	x	y	Z	Q
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

[2.18]
$$h = a \cdot b + a \cdot b$$

а	b	h
0	0	0
0 0	1	1
1	0	0
1	1	1

$$h = \overline{a \bullet b + a \bullet b} = (a + \overline{a}) \bullet b = 1 \bullet b = b$$

The function h can be simplified as shown above using the **complementary** property,

$$a + \overline{a} = 1$$

[2.19]
$$F = \overline{A} \cdot B + A \cdot \overline{B} \cdot C$$

4	- N · D · N · D · C					
	A	В	C	F		
	0	0	0	0		
	0	0	1	0		
	0	1	0	1		
	0	1	1	1		
	1	0	0	0		
	1	0	1	1		
	1	1	0	0		
	1	1	1	0		

The above function is at the simplest form. Thus, no simplification is possible.

$$[? \ 20] \stackrel{!}{=} = (A \cdot B + (A \cdot B) + C) = (A \cdot B + A + \overline{B} + C)$$
$$(A \cdot B + C) = \overline{A} \cdot B \cdot \overline{C}$$

[2.21] F
$$(X + \overline{Y}) \cdot (X + Y) \cdot Z = (X + (\overline{Y} \cdot Y)) \cdot Z = X \cdot Z$$

[2.22]
$$Z = \overline{((a \cdot b) \cdot d \cdot (c + c))} = \overline{(a \cdot b \cdot d)} = \overline{a} + \overline{b} + \overline{d}$$

[2.23]

Α	В	$X = \overline{A} \cdot B + A \cdot \overline{B}$	A+B
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1

A	В	$Y = A \cdot B + \overline{A} \cdot \overline{B}$	$\overline{A+B}$
0	0	1	1
0	1	0	0
1	0	0	0
_ 1	1	1	0

$$X = \text{Exclusive-OR} (XOR)$$

 $Y = \text{Exclusive-NOR} (XNOR)$
 $Y = \overline{X}$

$$f = a \cdot b + a \cdot b \cdot c + a \cdot b \cdot c = a \cdot b \cdot (1 + c + c) = a \cdot b$$

[2.25]

$$g = x + y + x \cdot y + y = x + x \cdot y + (y + y)$$
$$= x + x \cdot y = x + y$$

[2.26]

$$J = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B + A = \overline{A} \cdot B + A \cdot (\overline{B} + B + 1)$$
$$= \overline{A} \cdot B + A = A + B$$

[2.27]

$$K = X + Y \cdot Z + \overline{X} \cdot Y + \overline{X} \cdot \overline{Y} = X + Y \cdot Z + \overline{X} \cdot (Y + \overline{Y})$$
$$= X + Y \cdot Z + \overline{X} = (X + \overline{X}) + Y \cdot Z = Y \cdot Z$$

[2.28]

$$W = \overline{A \cdot B} \cdot \overline{C \cdot D} = \overline{A \cdot B + C \cdot D} = \overline{(\overline{A + B}) + (\overline{C} + \overline{D})}$$

[2.29]
$$H = \overline{(x \cdot y)} \cdot \overline{z} = \overline{x \cdot y + z} = \overline{(x + y) + z}$$

[2.30]
$$X = (\overline{a} + \overline{b}) \cdot c = \overline{(\overline{a} \cdot b)} \cdot c = \overline{(\overline{a} \cdot b)} \cdot c$$

[2.31]
$$d = (a+b) \cdot \overline{b} = a \cdot \overline{b} + b \cdot \overline{b} = a \cdot \overline{b} = a \cdot \overline{b}$$

[2.32]
$$R = (x + y) \cdot (z + w)$$

[2.33]
$$f = \overline{a \cdot (b+c)} = \overline{a + (b+c)}$$

