20.

Binary Number System

() Base value 2

() of uses 2 digits (O and ()

Seg:-0,1,10,11,100,101,110,111,

(o to 9 in Binary)

Octal Number Systi (3) Base value is 8. (3) It was 8 digits from 0-7. () eg: - (135), o is (207) 8 (215)10 is (327)x Hesa decimal Number System Base value is 16. La Rigits from 0-9 anetaken and for 10-15 is supresented ∫ Eg:-(255)10 can be voulter as (FF)16 and (1096)10 as (48)11 -Convocsion of Number System Binary to Deamal Base - 2 to Base - 10 $(10101010)_{2} \longrightarrow (?)_{10}$ 25+25+23+21+2 32+0+8+2+0=42 (Method-I)

Power of 2's											
20	21	2 ²	2 ³	24	2 ⁵	2 ⁶	27	28	2 9	2 ¹⁰	
1	2	4	8	16	32	64	128	256	512	1024	

Converting Base-10 to 2 $(1010)_{1}$ Method - II (42),0 -) (an be split into Sum of 2ⁿ 42 = 32 + 8+ ? 7 3 2 1

Recimal Range for n-bitbinary number

How many n-bit binary members

are possible? -> 2ⁿ numbers

2³ = 4, 2³ = 8 numbers

possible.

0	0	(1651)
_		
0	1	Joss 2 = 4 nombs possible
1	0	
1	1	for 3 bit 6 binary, are possi

2 nd	1 st	0 th
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

5mallest n-bit binary number

((0)(0)

pos.	(n-1) th	(n-2) th		i ¹	th	.2nd	1st	0 th
bit	0	0	•	(0	0	0	0
wgt.	2n-1	2n-2			<u>2</u> i	· <u>2</u> 2	2 ¹	2 ⁰
					١١			
			•		11/			

largest n-bit binary

largest n-bit binary

number: $2^{\circ}+2^{\circ}+2^{\circ}+\cdots+2^{n-1}$ This forms a gp.

Here, a=1, n=2, #=n $a(n^{\#}-1)=1(2^{n}-1)$ $a(n^{\#}-1)=(2^{n}-1)^{\circ}$ largest n bit binary

 $\int_{0}^{\infty} (gi - \alpha = 12)$ $\Lambda \ge \log_{2}(12+1)$ $\Lambda \ge \log_{2}(13)$ $\Lambda \ge 3 \dots$ (ail = 4 (least 5.ts)

Complementary Number System