GPT-2 Fine-tuning Pipeline for Next Word Prediction:

A Comprehensive Code Analysis

Technical Documentation

July 9, 2025

Contents

1	Intr	Introduction							
	1.1	Overview							
	1.2	Prerequisites							
2	The	Theoretical Background							
	2.1	Language Modeling							
	2.2	Transformer Architecture Fundamentals							
		2.2.1 Multi-Head Attention Mechanism							
		2.2.2 Position Embeddings							
	2.3	GPT-2 Architecture and Autoregressive Attention							
		2.3.1 Key Architectural Differences							
		2.3.2 Mathematical Formulation of GPT-2 Block							
		2.3.3 Autoregressive vs Standard Multi-Head Attention							
		2.3.4 Training Objective							
		2.3.5 Attention Pattern Analysis							
	2.4	Fine-tuning Process							
3	Mat	Mathematical Implementation Details							
	3.1	Complete GPT-2 Forward Pass							
	3.2	Attention Mechanism Deep Dive							
		3.2.1 Query, Key, Value Computation							
		3.2.2 Causal Attention Computation							
		3.2.3 Multi-Head Combination							
	3.3	MLP Layer Mathematics							
	3.4	Layer Normalization							
	3.5	Training Loss and Optimization							
		3.5.1 Cross-Entropy Loss							
		3.5.2 Gradient Computation							
	3.6	Comparison: Standard vs Causal Attention							
	3.7	Implementation in PyTorch							
	3.8	Import Statements							

4	Dataset Implementation 10								
	4.1	WikiTextDataset Class							
		4.1.1 Key Features							
		4.1.2 Data Flow							
	4.2	Data Loading Functions							
5	Mod	del Setup and Configuration 12							
	5.1	Model and Tokenizer Initialization							
		5.1.1 Key Configurations							
6	Trai	ning Pipeline 12							
	6.1	Fine-tuning Function							
	6.2	Training Arguments Analysis							
	6.3	Data Collator							
7	Eva	luation Framework 13							
•	7.1	NWPEvaluator Class							
	7.2	Perplexity Calculation							
	7.3	Top-k Accuracy							
8		a Exploration Tools 15							
	8.1	Training Data Inspection							
		8.1.1 inspect_training_examples()							
		8.1.2 show_next_word_prediction_examples()							
	8.2	Statistical Analysis							
9	Main Execution Pipeline 10								
	9.1	Main Function							
	9.2	Results Summary							
10	Adv	Advanced Topics							
		Attention Visualization							
	10.2	Temperature and Sampling Strategies							
		Memory-Efficient Training							
	10.4	Distributed Training Considerations							
	10.5	Basic Usage							
	10.6	Custom Configuration							
11	Performance Considerations 19								
	11.1	Memory Management							
		Computational Requirements							
12	Best Practices and Recommendations 20								
		Training Tips							
		Evaluation Guidelines							
13	Con	clusion 20							
		Future Enhancements							
14	Refe	erences 21							

1 Introduction

This document provides a comprehensive explanation of a GPT-2 fine-tuning pipeline designed for next word prediction tasks. The code implements a complete machine learning workflow from data preprocessing to model evaluation using PyTorch and Hugging Face Transformers.

1.1 Overview

The pipeline consists of several key components:

- Custom dataset handling for WikiText-2
- GPT-2 model fine-tuning using Hugging Face Transformers
- Comprehensive evaluation metrics (perplexity, top-k accuracy)
- Data exploration and visualization tools

1.2 Prerequisites

- Python 3.7+
- PyTorch
- Hugging Face Transformers
- Standard ML libraries (numpy, pandas, matplotlib)

2 Theoretical Background

2.1 Language Modeling

Language modeling is the task of predicting the next word in a sequence given the previous words. Formally, given a sequence of words $w_1, w_2, ..., w_{t-1}$, the model predicts the probability distribution over the vocabulary for the next word w_t :

$$P(w_t|w_1, w_2, ..., w_{t-1})$$

2.2 Transformer Architecture Fundamentals

2.2.1 Multi-Head Attention Mechanism

The core of the Transformer architecture is the multi-head attention mechanism. Given input sequences, attention computes relationships between all positions simultaneously.

Scaled Dot-Product Attention: Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 where:

- $Q \in \mathbb{R}^{n \times d_k}$ is the query matrix
- $K \in \mathbb{R}^{n \times d_k}$ is the key matrix

- $V \in \mathbb{R}^{n \times d_v}$ is the value matrix
- d_k is the dimension of keys/queries
- \bullet *n* is the sequence length

Multi-Head Attention: MultiHead $(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$ where each head is computed as: $\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$ The projection matrices are:

$$W_i^Q \in \mathbb{R}^{d_{model} \times d_k} \tag{1}$$

$$W_i^K \in \mathbb{R}^{d_{model} \times d_k} \tag{2}$$

$$W_i^V \in \mathbb{R}^{d_{model} \times d_v} \tag{3}$$

$$W^O \in \mathbb{R}^{hd_v \times d_{model}} \tag{4}$$

2.2.2 Position Embeddings

Since attention has no inherent notion of order, position embeddings are added: $PE(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos, 2i + 1) = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$

2.3 GPT-2 Architecture and Autoregressive Attention

2.3.1 Key Architectural Differences

GPT-2 modifies the standard Transformer architecture for autoregressive generation:

1. Causal (Masked) Self-Attention: Unlike bidirectional attention in BERT, GPT-2 uses causal attention where each position can only attend to previous positions:

Attention_{causal}
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T + M}{\sqrt{d_k}}\right)V$$

where M is a lower triangular mask matrix: $M_{ij} = \begin{cases} 0 & \text{if } i \geq j \\ -\infty & \text{if } i < j \end{cases}$

- 2. Architectural Components:
- Decoder-only structure: Unlike encoder-decoder models
- Masked multi-head self-attention: Prevents information leakage
- Position embeddings: Learned position embeddings (not sinusoidal)
- Layer normalization: Applied before attention and feedforward
- Residual connections: Skip connections around each sub-layer

2.3.2 Mathematical Formulation of GPT-2 Block

A single GPT-2 transformer block performs:

Attention Output: a = LayerNorm(x) + CausalMultiHead(LayerNorm(x)) Block Output: y = a + MLP(LayerNorm(a))

where the MLP is: $MLP(x) = GELU(xW_1 + b_1)W_2 + b_2$

2.3.3 Autoregressive vs Standard Multi-Head Attention

Standard Multi-Head Attention (Bidirectional):

- Each position attends to ALL positions in the sequence
- Attention matrix is full: A_{ij} can be non-zero for all i, j
- Used in BERT-style models for understanding tasks
- Attention weights: $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{n} \exp(e_{ik})}$

Autoregressive (Causal) Attention:

- Each position only attends to previous positions (including itself)
- Attention matrix is lower triangular: $A_{ij} = 0$ if i < j
- Used in GPT-style models for generation tasks
- Attention weights: $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{i} \exp(e_{ik})}$ for $j \leq i$

Implementation Comparison:

```
# Standard Multi-Head Attention
def standard_attention(Q, K, V):
      scores = torch.matmul(Q, K.transpose(-2, -1)) / sqrt(d_k)
      attn_weights = torch.softmax(scores, dim=-1)
      output = torch.matmul(attn_weights, V)
6
      return output
8 # Causal (GPT-2) Attention
 def causal_attention(Q, K, V):
      scores = torch.matmul(Q, K.transpose(-2, -1)) / sqrt(d_k)
11
      # Apply causal mask
      seq_len = scores.size(-1)
      mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1)
14
      mask = mask.masked_fill(mask == 1, float('-inf'))
16
17
      scores = scores + mask
      attn_weights = torch.softmax(scores, dim=-1)
18
      output = torch.matmul(attn_weights, V)
     return output
```

2.3.4 Training Objective

The model is trained to maximize the likelihood of the training data using teacher forcing: $\mathcal{L} = -\sum_{i=1}^{N} \log P(w_i|w_{< i};\theta)$

where θ represents the model parameters and $w_{< i}$ denotes all tokens before position i.

2.3.5 Attention Pattern Analysis

The attention patterns differ significantly:

Bidirectional Attention Matrix:
$$A_{\text{bidirectional}} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \cdots & \alpha_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \cdots & \alpha_{nn} \end{pmatrix}$$

Causal Attention Matrix: $A_{\text{causal}} = \begin{pmatrix} \alpha_{11} & 0 & 0 & \cdots & 0 \\ \alpha_{21} & \alpha_{22} & 0 & \cdots & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \cdots & \alpha_{nn} \end{pmatrix}$

2.4 Fine-tuning Process

Fine-tuning involves taking a pre-trained model and adapting it to a specific task or domain by continuing training on task-specific data with a smaller learning rate.

3 Mathematical Implementation Details

3.1 Complete GPT-2 Forward Pass

The complete mathematical formulation of a GPT-2 forward pass:

Input Processing:

Input tokens:
$$\mathbf{x} = [x_1, x_2, ..., x_n]$$
 (5)

Token embeddings:
$$\mathbf{E}_{tok} = \text{Embedding}(\mathbf{x})$$
 (6)

Position embeddings:
$$\mathbf{E}_{pos} = PositionEmbedding([1, 2, ..., n])$$
 (7)

Initial hidden state:
$$\mathbf{h}_0 = \mathbf{E}_{\text{tok}} + \mathbf{E}_{\text{pos}}$$
 (8)

Transformer Block Operations: For each layer l = 1, 2, ..., L:

Pre-attention norm:
$$\mathbf{h}_{l}^{(1)} = \text{LayerNorm}(\mathbf{h}_{l-1})$$
 (9)

Multi-head attention:
$$\mathbf{a}_l = \text{CausalMultiHead}(\mathbf{h}_l^{(1)})$$
 (10)

Post-attention residual:
$$\mathbf{h}_{l}^{(2)} = \mathbf{h}_{l-1} + \mathbf{a}_{l}$$
 (11)

Pre-MLP norm:
$$\mathbf{h}_l^{(3)} = \text{LayerNorm}(\mathbf{h}_l^{(2)})$$
 (12)

MLP computation:
$$\mathbf{m}_l = \text{MLP}(\mathbf{h}_l^{(3)})$$
 (13)

Post-MLP residual:
$$\mathbf{h}_l = \mathbf{h}_l^{(2)} + \mathbf{m}_l$$
 (14)

Output Generation:

Final normalization:
$$\mathbf{h}_{\text{final}} = \text{LayerNorm}(\mathbf{h}_L)$$
 (15)

Logits:
$$logits = h_{final} W_{lm_head}$$
 (16)

Probabilities:
$$\mathbf{p} = \operatorname{softmax}(\mathbf{logits})$$
 (17)

3.2 Attention Mechanism Deep Dive

3.2.1 Query, Key, Value Computation

For each attention head i in layer l:

$$\mathbf{Q}_i = \mathbf{h}_l^{(1)} \mathbf{W}_i^Q + \mathbf{b}_i^Q \tag{18}$$

$$\mathbf{K}_i = \mathbf{h}_i^{(1)} \mathbf{W}_i^K + \mathbf{b}_i^K \tag{19}$$

$$\mathbf{V}_i = \mathbf{h}_l^{(1)} \mathbf{W}_i^V + \mathbf{b}_i^V \tag{20}$$

where $\mathbf{W}_{i}^{Q}, \mathbf{W}_{i}^{K}, \mathbf{W}_{i}^{V} \in \mathbb{R}^{d_{model} \times d_{k}}$ and $d_{k} = d_{model}/h$.

3.2.2 Causal Attention Computation

The causal attention for head i is computed as:

$$\mathbf{S}_i = \frac{\mathbf{Q}_i \mathbf{K}_i^T}{\sqrt{d_k}} \tag{21}$$

$$\mathbf{M}_{jk} = \begin{cases} 0 & \text{if } j \ge k \\ -\infty & \text{if } j < k \end{cases}$$
 (22)

$$\mathbf{A}_i = \operatorname{softmax}(\mathbf{S}_i + \mathbf{M}) \tag{23}$$

$$\mathbf{O}_i = \mathbf{A}_i \mathbf{V}_i \tag{24}$$

3.2.3 Multi-Head Combination

The outputs from all heads are concatenated and projected:

$$\mathbf{O}_{\text{concat}} = \text{Concat}(\mathbf{O}_1, \mathbf{O}_2, ..., \mathbf{O}_h) \tag{25}$$

$$\mathbf{O}_{\text{final}} = \mathbf{O}_{\text{concat}} \mathbf{W}^O + \mathbf{b}^O \tag{26}$$

3.3 MLP Layer Mathematics

The MLP in each transformer block:

$$\mathbf{h}_{\text{intermediate}} = \text{GELU}(\mathbf{h}_l^{(3)} \mathbf{W}_1 + \mathbf{b}_1)$$
 (27)

$$\mathbf{h}_{\text{output}} = \mathbf{h}_{\text{intermediate}} \mathbf{W}_2 + \mathbf{b}_2 \tag{28}$$

where $\mathbf{W}_1 \in \mathbb{R}^{d_{model} \times 4d_{model}}$ and $\mathbf{W}_2 \in \mathbb{R}^{4d_{model} \times d_{model}}$.

GELU Activation: GELU
$$(x) = x \cdot \Phi(x) = x \cdot \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$$

3.4 Layer Normalization

GPT-2 uses layer normalization before each sub-layer:

$$\mu = \frac{1}{d_{model}} \sum_{i=1}^{d_{model}} x_i \tag{29}$$

$$\sigma^2 = \frac{1}{d_{model}} \sum_{i=1}^{d_{model}} (x_i - \mu)^2$$
 (30)

$$LayerNorm(x) = \gamma \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta$$
 (31)

where γ and β are learnable parameters.

3.5 Training Loss and Optimization

3.5.1 Cross-Entropy Loss

For next token prediction, the loss at each position is:

$$\mathcal{L}_{i} = -\log P(w_{i}|w_{< i}) = -\log \frac{\exp(\mathbf{logits}_{i,w_{i}})}{\sum_{v \in V} \exp(\mathbf{logits}_{i,v})}$$
The total loss is: $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}$

3.5.2 Gradient Computation

The gradient of the loss with respect to logits:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{logits}_{i,v}} = P(v|w_{< i}) - \mathbf{1}_{v=w_i}$$

where $\mathbf{1}_{v=w_i}$ is 1 if v is the true token and 0 otherwise.

3.6 Comparison: Standard vs Causal Attention

Aspect	Standard (BERT)	Causal (GPT-2)
Attention Matrix	Full matrix	Lower triangular
Information Flow	Bidirectional	Unidirectional
Masking	Random tokens	Future tokens
Training Objective	MLM + NSP	Next token prediction
Use Case	Understanding	Generation
Computational Cost	$O(n^2)$	$O(n^2)$
Memory Pattern	Full attention	Causal attention

Table 1: Comparison of Attention Mechanisms

3.7 Implementation in PyTorch

Here's how the core attention mechanisms are implemented:

```
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import math
6 class CausalMultiHeadAttention(nn.Module):
      def __init__(self, d_model, n_heads):
          super().__init__()
          self.d_model = d_model
9
          self.n_heads = n_heads
          self.d_k = d_model // n_heads
12
          self.W_q = nn.Linear(d_model, d_model)
          self.W_k = nn.Linear(d_model, d_model)
14
          self.W_v = nn.Linear(d_model, d_model)
          self.W_o = nn.Linear(d_model, d_model)
17
          # Create causal mask
18
          self.register_buffer('mask', torch.triu(torch.ones(512, 512),
     diagonal=1))
20
      def forward(self, x):
21
          batch_size, seq_len, d_model = x.size()
23
          # Compute Q, K, V
24
          Q = self.W_q(x).view(batch_size, seq_len, self.n_heads, self.
25
     d_k).transpose(1, 2)
          K = self.W_k(x).view(batch_size, seq_len, self.n_heads, self.
26
     d_k).transpose(1, 2)
          V = self.W_v(x).view(batch_size, seq_len, self.n_heads, self.
27
     d_k).transpose(1, 2)
28
          # Compute attention scores
29
          scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.
30
     d_k)
31
          # Apply causal mask
32
          mask = self.mask[:seq_len, :seq_len]
          scores = scores.masked_fill(mask == 1, float('-inf'))
          # Apply softmax
36
          attn_weights = F.softmax(scores, dim=-1)
          # Apply attention to values
          out = torch.matmul(attn_weights, V)
40
          # Concatenate heads
42
          out = out.transpose(1, 2).contiguous().view(batch_size, seq_len
43
     , d_model)
          # Final linear transformation
45
          out = self.W_o(out)
46
47
          return out
49
50 class GPT2Block(nn.Module):
      def __init__(self, d_model, n_heads, d_ff):
          super().__init__()
```

```
self.ln_1 = nn.LayerNorm(d_model)
53
          self.attn = CausalMultiHeadAttention(d_model, n_heads)
54
          self.ln_2 = nn.LayerNorm(d_model)
           self.mlp = nn.Sequential(
               nn.Linear(d_model, d_ff),
57
               nn.GELU(),
58
               nn.Linear(d_ff, d_model)
59
          )
61
      def forward(self, x):
62
          # Pre-norm architecture
64
          x = x + self.attn(self.ln_1(x))
          x = x + self.mlp(self.ln_2(x))
65
          return x
```

3.8 Import Statements

The code begins with comprehensive imports:

```
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import (
    GPT2LMHeadModel, GPT2Tokenizer,
    TrainingArguments, Trainer,
    DataCollatorForLanguageModeling
)
from datasets import load_dataset
    # ... additional imports
```

These imports provide:

- torch: Core PyTorch functionality
- transformers: Hugging Face's transformer models
- datasets: Dataset loading utilities
- Standard libraries: For data processing and visualization

4 Dataset Implementation

4.1 WikiTextDataset Class

The WikiTextDataset class handles data preprocessing for the WikiText-2 dataset:

4.1.1 Key Features

- 1. **Tokenization**: Converts text to token IDs using GPT-2 tokenizer
- 2. Sliding Window: Creates overlapping sequences with 50% overlap
- 3. Length Filtering: Ensures sequences have minimum length for training

4.1.2 Data Flow

```
Algorithm 1 Dataset Creation Process

for each text in input texts do

if text is not empty then

tokenize text to get token IDs

for i = 0 to length(tokens) - 1 step max_length/2 do

chunk = tokens[i:i + max_length]

if length(chunk) ¿ 1 then

add chunk to examples

end if

end for

end if

end for
```

4.2 Data Loading Functions

The load_and_prepare_data() function handles dataset loading:

This function:

- Loads WikiText-2 dataset from Hugging Face
- Filters empty texts
- Returns train/validation/test splits

5 Model Setup and Configuration

5.1 Model and Tokenizer Initialization

The setup_model_and_tokenizer() function configures the GPT-2 components:

```
def setup_model_and_tokenizer():
    model_name = "gpt2"

tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# Add padding token
tokenizer.pad_token = tokenizer.eos_token

return model, tokenizer
```

5.1.1 Key Configurations

- Model: GPT2LMHeadModel with language modeling head
- Tokenizer: GPT2Tokenizer for text-to-token conversion
- Padding: Uses EOS token as padding token

6 Training Pipeline

6.1 Fine-tuning Function

The fine_tune_model() function implements the training loop:

```
def fine_tune_model(model, tokenizer, train_dataset, eval_dataset,
                      output_dir="./gpt2-wikitext2"):
3
      data_collator = DataCollatorForLanguageModeling(
          tokenizer=tokenizer,
          mlm=False, # GPT-2 is autoregressive
6
          pad_to_multiple_of =8,
          return_tensors="pt"
      )
      training_args = TrainingArguments(
          output_dir=output_dir,
12
          num_train_epochs=3,
          per_device_train_batch_size=4,
14
          per_device_eval_batch_size=4,
          warmup_steps=500,
          learning_rate=5e-5,
          weight_decay=0.01,
18
          fp16=True,
19
          # ... additional arguments
      )
21
22
      trainer = Trainer(
23
          model=model,
```

```
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,

trainer.train()
return trainer
```

6.2 Training Arguments Analysis

Parameter	Description	
num_train_epochs	Number of training epochs (3)	
$per_device_train_batch_size$	Training batch size per device (4)	
$warmup_steps$	Learning rate warmup steps (500)	
learning_rate	Initial learning rate (5e-5)	
$weight_decay$	L2 regularization coefficient (0.01)	
fp16	Mixed precision training (True)	
$gradient_accumulation_steps$	Gradient accumulation (2)	

Table 2: Key Training Parameters

6.3 Data Collator

The DataCollatorForLanguageModeling handles:

- Padding sequences to equal length
- Creating attention masks
- Preparing labels for next token prediction

7 Evaluation Framework

7.1 NWPEvaluator Class

The NWPEvaluator class provides comprehensive evaluation metrics:

```
class NWPEvaluator:
    def __init__(self, model, tokenizer, device):
        self.model = model
        self.tokenizer = tokenizer
        self.device = device
        self.model.eval()

def calculate_perplexity(self, dataloader) -> float:
        # Implementation for perplexity calculation

def calculate_top_k_accuracy(self, dataloader,
```

7.2 Perplexity Calculation

Perplexity measures how well the model predicts the next word:

Perplexity = exp
$$\left(-\frac{1}{N}\sum_{i=1}^{N} \log P(w_i|w_{< i})\right)$$

Implementation:

```
def calculate_perplexity(self, dataloader) -> float:
2
      total_loss = 0
3
      total\_tokens = 0
      with torch.no_grad():
          for batch in dataloader:
              input_ids = batch['input_ids'].to(self.device)
              attention_mask = batch['attention_mask'].to(self.device)
9
              # Shift labels for next token prediction
              labels = input_ids.clone()
              labels[:, :-1] = input_ids[:, 1:]
12
              labels[:, -1] = -100 # Ignore last token
13
              outputs = self.model(input_ids=input_ids,
                                  attention_mask=attention_mask,
16
                                  labels=labels)
18
              loss = outputs.loss
19
              valid_tokens = (labels != -100).sum().item()
20
              total_loss += loss.item() * valid_tokens
              total_tokens += valid_tokens
23
24
      avg_loss = total_loss / total_tokens
      perplexity = math.exp(avg_loss)
26
      return perplexity
```

7.3 Top-k Accuracy

Top-k accuracy measures if the correct next word appears in the top-k predictions:

```
def calculate_top_k_accuracy(self, dataloader, k_values: List[int] =
    [1, 5, 10]):
    correct_predictions = {k: 0 for k in k_values}
    total_predictions = 0

with torch.no_grad():
    for batch in dataloader:
```

```
# Process each sequence
              for seq_idx in range(input_ids.size(0)):
                   sequence = input_ids[seq_idx]
9
                   # Predict each position
                   for pos in range(1, valid_length):
                       context = sequence[:pos].unsqueeze(0)
13
                       target = sequence[pos].item()
                       outputs = self.model(context)
16
                       logits = outputs.logits[0, -1, :]
18
                       # Get top-k predictions
19
                       top_k_tokens = torch.topk(logits, max(k_values)).
20
     indices
                       # Check accuracy for different k values
22
                       for k in k_values:
23
                           if target in top_k_tokens[:k]:
                               correct_predictions[k] += 1
26
                       total_predictions += 1
27
      accuracies = {k: correct_predictions[k] / total_predictions for k
29
     in k_values}
      return accuracies
```

8 Data Exploration Tools

8.1 Training Data Inspection

The code includes comprehensive data exploration functions:

8.1.1 inspect_training_examples()

This function provides detailed analysis of training examples:

- Sequence length statistics
- Token-level breakdown
- Text representation with special tokens
- Attention mask visualization

8.1.2 show_next_word_prediction_examples()

Demonstrates the input-output format for next word prediction:

```
# Show first 10 positions as input -> target pairs
for pos in range(1, min(11, len(input_ids))):
context_ids = input_ids[:pos]

target_id = input_ids[pos]

context_text = tokenizer.decode(context_ids,
skip_special_tokens=True)

target_text = tokenizer.decode([target_id],
skip_special_tokens=True)

print(f"'{context_text}' -> '{target_text}'")
```

8.2 Statistical Analysis

The analyze_dataset_statistics() function provides:

- Sequence length distribution
- Token frequency analysis
- Vocabulary statistics
- Data quality metrics

9 Main Execution Pipeline

9.1 Main Function

The main() function orchestrates the entire pipeline:

Algorithm 2 Main Execution Flow

Set device (GPU/CPU)

Load and prepare data

Setup model and tokenizer

Create datasets

Fine-tune model

Evaluate model

Generate sample predictions

Create results summary

9.2 Results Summary

The pipeline generates comprehensive results including:

- Perplexity scores
- Top-k accuracy metrics
- Sample predictions
- Performance visualizations

10 Advanced Topics

10.1 Attention Visualization

Understanding attention patterns is crucial for interpreting model behavior:

```
def visualize_attention_patterns(model, tokenizer, text):
2
      """Visualize attention patterns for a given text"""
      inputs = tokenizer(text, return_tensors="pt")
3
      with torch.no_grad():
          outputs = model(**inputs, output_attentions=True)
          attentions = outputs.attentions # List of attention tensors
      # attentions[i] has shape: [batch_size, num_heads, seq_len, seq_len
9
      # For layer i, head j: attentions[i][0, j, :, :]
      import matplotlib.pyplot as plt
12
13
      # Visualize attention for first layer, first head
      attn_matrix = attentions[0][0, 0, :, :].numpy()
      plt.figure(figsize=(10, 8))
      plt.imshow(attn_matrix, cmap='Blues')
18
      plt.colorbar()
      plt.title("Causal Attention Pattern (Layer 0, Head 0)")
20
      plt.xlabel("Key Position")
      plt.ylabel("Query Position")
      plt.show()
```

10.2 Temperature and Sampling Strategies

The code can be extended with different sampling strategies:

```
def sample_with_temperature(logits, temperature=1.0):
      """Sample from logits with temperature scaling"""
      if temperature == 0:
          return torch.argmax(logits, dim=-1)
6
      # Apply temperature scaling
      scaled_logits = logits / temperature
      probs = F.softmax(scaled_logits, dim=-1)
      # Sample from the distribution
      return torch.multinomial(probs, 1)
 def top_k_top_p_sampling(logits, top_k=50, top_p=0.9, temperature=1.0):
13
      """Combined top-k and top-p (nucleus) sampling"""
14
      # Apply temperature
16
      logits = logits / temperature
17
      # Top-k filtering
18
      if top_k > 0:
19
          top_k_logits, top_k_indices = torch.topk(logits, top_k)
20
          logits_filtered = torch.full_like(logits, float('-inf'))
          logits_filtered.scatter_(1, top_k_indices, top_k_logits)
22
```

```
logits = logits_filtered
24
      # Top-p filtering
25
      if top_p < 1.0:</pre>
          sorted_logits, sorted_indices = torch.sort(logits, descending=
     True)
          cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim
28
     =-1), dim=-1)
29
          # Remove tokens with cumulative probability above threshold
30
          sorted_indices_to_remove = cumulative_probs > top_p
          sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove
     [..., :-1].clone()
          sorted_indices_to_remove[..., 0] = 0
33
34
          indices_to_remove = sorted_indices_to_remove.scatter(1,
     sorted_indices, sorted_indices_to_remove)
          logits = logits.masked_fill(indices_to_remove, float('-inf'))
36
      # Sample from filtered distribution
38
      probs = F.softmax(logits, dim=-1)
39
      return torch.multinomial(probs, 1)
```

10.3 Memory-Efficient Training

For large-scale training, memory optimization is crucial:

```
1 from torch.utils.checkpoint import checkpoint
  class MemoryEfficientGPT2Block(nn.Module):
      def __init__(self, d_model, n_heads, d_ff):
4
          super().__init__()
          self.ln_1 = nn.LayerNorm(d_model)
          self.attn = CausalMultiHeadAttention(d_model, n_heads)
          self.ln_2 = nn.LayerNorm(d_model)
          self.mlp = nn.Sequential(
              nn.Linear(d_model, d_ff),
              nn.GELU(),
              nn.Linear(d_ff, d_model)
12
          )
13
14
      def forward(self, x):
          # Use gradient checkpointing to save memory
16
          def attention_forward(x):
              return self.attn(self.ln_1(x))
18
19
          def mlp_forward(x):
20
              return self.mlp(self.ln_2(x))
21
          # Apply gradient checkpointing
          x = x + checkpoint(attention_forward, x)
          x = x + checkpoint(mlp_forward, x)
          return x
```

10.4 Distributed Training Considerations

For multi-GPU training, the code can be extended:

```
import torch.distributed as dist
2 from torch.nn.parallel import DistributedDataParallel as DDP
4 def setup_distributed_training():
      """Setup for distributed training across multiple GPUs"""
5
      if torch.cuda.is_available() and torch.cuda.device_count() > 1:
          dist.init_process_group(backend='nccl')
          local_rank = int(os.environ['LOCAL_RANK'])
          torch.cuda.set_device(local_rank)
          # Wrap model with DDP
12
          model = DDP(model, device_ids=[local_rank])
13
          # Use DistributedSampler for data loading
14
          sampler = torch.utils.data.distributed.DistributedSampler(
     dataset)
          dataloader = DataLoader(dataset, sampler=sampler, batch_size=
     batch_size)
          return model, dataloader
18
19
      return model, dataloader
```

10.5 Basic Usage

To run the complete pipeline:

```
# Run full pipeline
model, tokenizer, results = main()

# Explore data first
sample_train, sample_valid, tokenizer = explore_training_data()
```

10.6 Custom Configuration

For custom training configurations:

```
# Custom dataset size
train_dataset = WikiTextDataset(train_texts[:5000], tokenizer)
eval_dataset = WikiTextDataset(valid_texts[:1000], tokenizer)

# Custom training arguments
training_args = TrainingArguments(
    output_dir="./custom-gpt2",
    num_train_epochs=5,
    per_device_train_batch_size=8,
    learning_rate=3e-5,
    # ... other parameters
)
```

11 Performance Considerations

11.1 Memory Management

The code includes several memory optimization strategies:

- Mixed precision training (fp16)
- Gradient accumulation
- Efficient data loading
- Batch size optimization

11.2 Computational Requirements

Component	Requirement	
GPU Memory	8GB+ recommended	
Training Time	2-4 hours (depends on data size)	
Disk Space	2GB+ for model and data	
RAM	16GB+ recommended	

Table 3: Computational Requirements

12 Best Practices and Recommendations

12.1 Training Tips

- 1. Start with small dataset subsets for testing
- 2. Monitor training loss and validation metrics
- 3. Use appropriate learning rates (typically 1e-5 to 5e-5)
- 4. Implement early stopping for overfitting prevention

12.2 Evaluation Guidelines

- 1. Use multiple evaluation metrics
- 2. Test on held-out data
- 3. Compare with baseline models
- 4. Analyze failure cases

13 Conclusion

This GPT-2 fine-tuning pipeline provides a comprehensive framework for next word prediction tasks. The code implements best practices for:

- Data preprocessing and tokenization
- Model training and optimization

- Comprehensive evaluation
- Result analysis and visualization

The modular design allows for easy customization and extension for specific use cases while maintaining robust performance and reliability.

13.1 Future Enhancements

Potential improvements include:

- Distributed training support
- Advanced regularization techniques
- Real-time inference optimization
- Integration with larger language models

14 References

- 1. Radford, A., et al. (2019). Language models are unsupervised multitask learners.
- 2. Vaswani, A., et al. (2017). Attention is all you need. NIPS.
- 3. Wolf, T., et al. (2020). Transformers: State-of-the-art natural language processing.
- 4. Merity, S., et al. (2016). Pointer sentinel mixture models.