Task 3:

Simple loop Size 50

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	22.4822	759	2617	2612	45	2567
LRU	25.2073	851	2525	2475	0	2475
Clock	25.1481	849	2527	2477	0	2477
Random	22.4822	759	2617	2612	45	2567

Simple loop Size 100

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	23.7855	803	2573	2,496	23	2473
LRU	25.2073	851	2525	2425	0	2425
Clock	25.0889	847	2529	2430	1	2429
Random	23.8744	806	2570	2,486	16	2470

Matmul Size 50

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	62.9391	1913768	1126896	2,231,301	1104455	1126846
LRU	65.7665	1999739	1040925	2,080,789	1039914	1040875
Clock	65.7663	1999733	1040931	2,080,798	1039917	1040881
Random	67.2663	2045343	995321	1,970,006	974735	995271

Matmul Size 100

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	64.3709	1957302	1083362	2,154,972	1071710	1083262
LRU	66.9061	2034389	1006275	2,011,390	1005215	1006175
Clock	65.7699	1999841	1040823	2,080,485	1039762	1040723
Random	89.3805	2717762	322902	641,416	318614	322802

Blocked Size 50

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	99.8245	3507538	6166	10,237	4121	6116
LRU	99.8618	3508848	4856	7,410	2604	4806
Clock	99.8616	3508841	4863	7,470	2657	4813
Random	99.7716	3505680	8024	13,736	5762	7974

Blocked Size 100

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	99.8817	3509549	4155	6,793	2738	4055
LRU	99.8971	3510089	3615	6,083	2568	3515
Clock	99.8908	3509868	3836	6,300	2564	3736
Random	99.8563	3508654	5050	8,330	3380	4950

Analysis of results from the tables

Simple loop:

The program Simple loop has this property that it accesses the elements of an array of structs one by one (in which case we have a spatial locality) but then in each iteration it accesses the first element of the array field of the current struct (in which case we do not have temporal and spatial locality at all over all iterations - since we have to bring in a different page corresponding to the current field array each time). Because this program has such property, we see that overall the hit rate is low for all algorithms since the lack of locality for accessing the field array of each struct in each iteration causes the soon-to-be-needed pages to be evicted. Among all of the algorithms, LRU does the best as it is the algorithm that makes use of temporal locality of accessing the elements of the array of structs as much as possible. FIFO is not so good, as close as random, since lack of locality in accessing the elements of the field array of structs causes it to evict the soon-to-be-needed pages much earlier.

Also the change of size of the memory from 50 to 100 does not have a special effect on LRU and clock as they use the localities possible regardless of the size of the memory. However, increase in size does improve FIFO as this increase delays eviction of those soon-to-be-needed pages.

Matmul:

The program Matmul has this property that it does matrix multiplication in a naive (not memory aware) way. In such approach for matrix multiplication, when we do A * B = C, access to A has temporal and spatial locality(since each row of that will end up to be in almost one page or more pages close together), while access to B does not have any locality(since we get each column of that for each entry computation and this means the columns are in different pages each time). Overall the lack of locality for B causes all algos to not have very high hit rates. Because this program has such property, LRU uses that small locality that exists for A and does a better job here, and so LRU is the best with clock after that, but FIFO has a bit worse hit rate. Increase in size to 100, made FIFO to be impacted more and get a higher hit rate since it delays evicting soon-to-be-needed pages. RLU increased a little too but the clock remained the same. RLU does noticeably better in every size.

Blocked:

The program Blocked has this property that we do matrix multiplication in a more memory aware way. In this approach we try to make use of spatial and temporal locality of the matrices A and B both plus we do computations in blocks. That means the algorithms can make use of such localities to do a much better job specifically LRU should outperform among all. However, We see FIFO, LRU and clock all have a high hit

rate in this program. This is because computations are done in blocks, the number of unique pages needed at a time are small and all needed pages happen to exist in memory when needed most of the time. This leads all algorithms to converge to a hit rate of 100%. Increase in size of memory does not have any noticeable effect and the reason is we have this locality and the nature of the code.

From the data we gathered in the tables, we can see that LRU and clock perform almost exactly the same, as clock attempts to simulate what LRU does without the massive overhead. They perform almost the same with only tiny differences in the hit rate and eviction count. LRU and clock will do best if the program has locality. In all cases, FIFO performed worse than LRU and Clock. However, if the program has the property such that the num of pages it needs during the time of a computation will fit in memory(like in the block program), or the program has no locality at all, then all the algorithms will perform nearly the same.

Trace 1

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	43.3333	13	17	9	0	9
LRU	33.3333	10	20	13	1	12
Clock	46.6667	14	16	9	1	8
Random	56.6667	17	13	5	0	5

Trace 2 - FIFO and Clock are the same as OPT.

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	62.5000	20	12	4	0	4
LRU	62.5000	16	15	7	0	7
Clock	54.8387	20	12	4	0	4
Random	59.3750	19	13	5	0	5

Trace 3

Algorithm	Hit Rate	Hit Count	Miss count	Overall Eviction Count	Clean eviction count	Dirty eviction count
FIFO	0	0	31	32	9	23
LRU	0	0	31	32	9	23
Clock	0	0	31	32	9	23
Random	51.6129	16	15	7	0	7