

KUBERNETES - one, to rule them all

infoShare Academy

Piotr Ignatowski

infoShareAcademy.com

o procesach, kontenerach...

Małe przypomnienie i dyskusja wstępna

Metody izolacji procesów

te same blachy, oddzielne kernele (np. KVM w AWS Lambda https://firecracker-microv m.github.io/)

ten sam kernel,
izolacja na poziomie
kernela (BSD jails
https://docs.freebsd.or
g/en/books/handboo
k/jails/, Linux
containers https://linuxcontainers
.ora/)

Jak to było z kontenerami?

- Linux kernel izoluje procesy w przestrzeniach nazw:
- Cgroup
- IPC
- Network
- Mount
- PID
- Time
- User
- UTS https://man7.org/linux/man-pages/man7/namespaces.7.html
- Cgroups pozwalają na hierarchiczne zarządzanie utylizacją zasobów https://man7.org/linux/man-pages/man7/cgroups.7.html

Zabawa z przestrzeniami nazw

Isns - narzędzie do listowania przestrzeni nazw
 https://man7.org/linux/man-pages/man8/Isns.8.html

 nsenter - narzędzie do uruchamiania procesu w wybranej/wybranych przestrzeniach nazw

https://man7.org/linux/man-pages/man1/nsenter.1.html

Co uruchamia kontenery (API vs Platforma)?

- Docker https://www.docker.com/
- Podman https://podman.io/
- RunC https://github.com/opencontainers/runc
- LXC/LXD https://linuxcontainers.org/
- CRI-O https://cri-o.io/
- ContainerD https://cri-o.io/

Czyli jak zrobić, żeby się nie narobić

Orkiestratory - zarządzanie procesami na dużą skalę

- Docker Swarm https://docs.docker.com/engine/swarm/
- Hashicorp Nomad https://www.nomadproject.io/
- Apache Mesos https://mesos.apache.org/
- Google Borg https://research.google/pubs/pub43438/
- Kubernetes https://kubernetes.io/

Co one potrafią?

- Zarządzają uruchamianiem procesów na dużej ilości maszyn

- Tworzą "darmowe" abstrakcje, które pozwalają:
 zapominać o infrastrukturze pod spodem
 granularnie kontrolować środowisko uruchomieniowe
- łączyć procesy w grupy logiczne
 zarządzać sieciami w zupełnie nowy sposób
- Dają użytkownikom API umożliwiające dynamiczne zarządzanie konfiguracją
- Zarządzają cyklem życia procesów

Kubernetes - jest w nim coś wyjątkowego?

- Rozproszone kontrolery (polecam lekturę świetnej analizy zagadnienia: https://static.googleuser.content.com/media/research.google.com/en//pubs/archive/41684.pdf) gwarantujące wysokie HA
- Wysoka zgodność środowisk on-prem ze środowiskami chmurowymi (z pewnymi wyjątkami)
- Przenaszalność środowisk
- Świetnie zaprojektowane API
- Gigantyczne wsparcie społeczności OpenSource
- ... i nie mniej gigantyczne wsparcie finansowe ze strony graczy pokroju Google :)

Herbatka na pokładzie

Kubernetes to przede wszystkim bardzo popularny projekt OpenSource

Znaleźć go można tutaj: https://github.com/kubernetes/kubernetes.git

Każdy może zrobić git clone, skompilować projekt i rozpocząć zabawę.

U mnie kompilacja całego projektu zajmuje nieco ponad 10 minut.

Naprawdę polecam taki zabieg - pozwala pozbyć się tej "magicznej" otoczki.

A tak wygląda jego architektura:

Jak się tym pobawić lokalnie?

Polecam Minikube - pozwala na uruchamianie Kubernetesa używając Dockera, KVM, VirtualBoxa i wielu innych.

https://github.com/kubernetes/minikube

'minikube start' i jesteście w domu :)

Na każdym węźle klastra uruchomiony jest kubelet

czyli program będący agentem wykonawczym - rejestruje węzeł w klastrze, monitoruje i raportuje jego stan, monitoruje API szukając zadań związanych z uruchamianiem i zabijaniem procesów, pełni rolę lokalnego kontrolera monitorującego stan procesów.

A propos procesów - w Kubernetesie nie traktujemy każdego kontenera jako zupełnie oddzielny byt. Łączymy je w logiczne twory, nazywane podami (kapsułki).

POD - zupełnie jak rodzina w społeczeństwie :)

Pod jest co najmniej jednym kontenerem uruchomionym we współdzielonych przestrzeniach nazw IPC oraz Network (istnieje też możliwość współdzielenia PID: https://kubernetes.io/docs/tasks/configure-pod-container/share-process

-namespace/)

Czyli kontenery w ramach jednego poda zawsze uruchomione są na tej samej maszynie, widzą się po localhost i mogą korzystać ze wspieranych przez OS IPC (Inter Process Communication).

Lokalny proces zajmujący się implementacją routingu pomiędzy podami, węzłami i abstrakacjami używanymi do opisywania komunikacji sieciowej - czyli endpointami i serwisami.

Ekipa rządząca – czyli control plane

 API serwer stanowi fasadę w komunikacji z warstwą persystencji – czyli bazą ETCD. Każdy kontroler w klastrze (w tym kubelet) używa uniwersalnej i dobrze przez każdego rozumianej reprezentacji obiektów. API serwer zapewnia operacje CRUD na obiektach reprezentujących zasoby.

kube-controller-manager jest demonem, w ramach którego uruchomione są control loops (naprawdę brakuje mi polskiego odpowiednika) podstawowych kontrolerów
ETCD - wspomniana wcześniej baza danych, warstwa persystencji
kube-scheduler - kontroler odpowiedzialny za podejmowanie decyzji o tym, gdzie uruchamiać pody
cloud-controller-manager (jak nazwa wskazuje, tylko w chmurach) - kontroler zajmujący się zasobami od dostawcy chmury

klienci – kubectl oraz dashboard

- API serwer przyjmuje zapytania protokołem HTTP
- Można z niego korzystać ręcznie (na przykład via cURL albo jeszcze mocniej - netcat :))
- Można też użyć klienta CLI kubectl
- Albo portalu webowego, kubernetes-dashboard

Ważna dygresja: control loop, czyli wyjątkowość Kubernetesa

 Kubernetes nie jest systemem deklaratywnym - to grupa rozproszonych kontrolerów, które małymi krokami osiągają opisany stan

kubectl api-resources

kubectl api-resources				
NAME	SHORTNAMES	APIVERSION	NAMESPACED	KIND
bindings		V1	true	Binding
componentstatuses	cs	v1	false	ComponentStatus
configmaps	cm	v1	true	ConfigMap
endpoints	ер	v1	true	Endpoints
events	ev	v1	true	Event
limitranges	limits	v1	true	LimitRange
namespaces	ns	v1	false	Namespace
nodes	no	v1	false	Node
persistentvolumeclaims	pvc	v1	true	PersistentVolumeClaim
persistentvolumes	pν	v1	false	PersistentVolume
pods	po	v1	true	Pod
podtemplates		v1	true	PodTemplate
replicationcontrollers	rc	v1	true	ReplicationController
resourcequotas	quota	v1	true	ResourceQuota
secrets		v1	true	Secret
serviceaccounts	sa	v1	true	ServiceAccount
services	svc	v1	true	Service
mutatingwebhookconfigurations		admissionregistration.k8s.io/v1	false	MutatingWebhookConfiguration
validatingwebhookconfigurations		admissionregistration.k8s.io/v1	false	ValidatingWebhookConfiguration
customresourcedefinitions	crd,crds	apiextensions.k8s.io/v1	false	CustomResourceDefinition
apiservices		apiregistration.k8s.io/v1	false	APIService
controllerrevisions		apps/v1	true	ControllerRevision
daemonsets	ds	apps/v1	true	DaemonSet
deployments	deploy	apps/v1	true	Deployment
replicasets	rs	apps/v1	true	ReplicaSet
statefulsets	sts	apps/v1	true	StatefulSet
tokenreviews		authentication.k8s.io/v1	false	TokenReview
localsubjectaccessreviews		authorization.k8s.io/v1	true	LocalSubjectAccessReview
selfsubjectaccessreviews		authorization.k8s.io/v1	false	SelfSubjectAccessReview
selfsubjectrulesreviews		authorization.k8s.io/v1	false	SelfSubjectRulesReview
subjectaccessreviews		authorization.k8s.io/v1	false	SubjectAccessReview
horizontalpodautoscalers	hpa	autoscaling/v1	true	HorizontalPodAutoscaler
cronjobs	cj	batch/v1beta1	true	CronJob
jobs		batch/v1	true	Job
certificatesigningrequests	csr	certificates.k8s.io/v1	false	CertificateSigningRequest
leases		coordination.k8s.io/v1	true	Lease
endpointslices		discovery.k8s.io/v1beta1	true	EndpointSlice
events	ev	events.k8s.io/v1	true	Event
ingresses	ing	extensions/v1beta1	true	Ingress
/ /// / //				

