Curriculum Vitae Yuanhao Wang

YUANHAO WANG

yuanhao.wang1989@gmail.com & WashU, USA & yuanhaowang1213.github.io

SUMMARY

Postdoctoral researcher with expertise in neural rendering, generative diffusion models, and GPU-accelerated optimization. Demonstrated success in translating advanced algorithms into scalable, production-ready tools—culminating in the commercialization of neural adaptive tomography at Voxray GmbH. Passionate about bridging research and real-world impact through high-performance solutions.

RESEARCH INTERESTS

Neural Rendering, Generative Diffusion Models, 3D Reconstruction, Inverse problems, Computational Photography, Computational Imaging, High-Performance Computing, Optimization

EXPERIENCE

Washington University in St. Louis

Postdoc Collaborator: Dr. Ulugbek Kamilov

Diffusion model for inverse problems, | Python, C++, Libtorch, CUDA

 $June\ 2024$ -Now

- · Designed a diffusion unfolding network for image restoration, achieving faster inference and better quality across multiple tasks (e.g., deblurring, super-resolution, inpainting) in a single training pipeline.
- · Implemented on C++/Libtorch/CUDA, improving the performance by 15%.
- · Collaborated with radiologists to optimize model for real captured dataset.
- · Supervised 2 students working on 3D and time-sequence diffusion model research.

Visual Computing Center, KAUST

Ph.D student with Dr. Wolfgang Heidrich CUDA June 2021-Sept. 2023

Neural Representation on tomography [2, 7, 5, 1] | C++, Libtorch, CUDA

- · Formulated differentiable models and designed relevant priors using C++ and Libtorch.
- · Developed an adaptive Density /Tensorial Density Field for efficient and large cryo-ET dataset.
- · Implemented an Isotropic Fourier Prior to effectively mitigate peak patterns in the reconstruction.
- · Visualized the reconstructed volumes with Avizo.
- · Impact: This research contributed to the establishment of Voxray GmbH, demonstrating the commercialization potential of neural adaptive tomography.

Visual Computing Center, KAUST

Ph.D student with Dr. Wolfgang Heidrich

Motion compensation and reconstruction of cryo-ET [6] | C++, OpenMP

Mar. 2020-June 2021

- · Considered beam-induced motion during the reconstruction.
- · Utilized a plug-and-play prior to address noise in the electron tomography data.

Visual Computing Center, KAUST

Rethink ISP pipeline [3] | Python, Pytorch

Ph.D student with Dr. Wolfgang Heidrich June. 2020-June 2022

- · Proposed a Denoising(DN) \rightarrow Super-resolution(SR) \rightarrow Demosaicking(DM) worked best in all sequential pipelines.
- · Released PixelShift200 dataset for color channel sampling.

Visual Computing Center, KAUST

Stereo Event-Camera Particle Tracking Velocimetry [4] | Matlab

Ph.D student with Dr. Wolfgang Heidrich Oct. 2019-Mar. 2020

- · Developed the first event-camera-based stereo-PTV setup for measuring time-resolved fluid flow.
- · Proposed an optimization framework to retrieve dense fluid velocity field from the event data.

Institute of Microelectronics, Tsinghua University

True Random Number Generator [8] Verilog

Research assistant with Dr. Shuguo Li July 2014 - July 2016

· Designed a Cross Ring Oscillator based TRNG (CRTRNG). The CRTRNG gains **240Mbps** random number, while consuming only about **3000** logic elements on Altera Cyclone IV.

Curriculum Vitae Yuanhao Wang

· Developed a **1Gbps** Cross Ring Oscillator based TRNG circuits based on SMIC 65nm.

EDUCATION

King Abdullah University of Science and Technology Sept. 2016-Nov. 2023 Ph.D. in Electrical and Computer Engineering Advisor: Dr. Wolfgang Heidrich

Tsinghua University Sept. 2013-July 2016 M.Eng. in Integrated Circuits Engineering Advisor: Dr. Shuguo Li

Beijing University of Posts and Telecommunications Sept.2009-July 2013 Advisor: Dr. Yitong Liu

B.Eng. in Communication Engineering

SKILLS

C++, Libtorch, CUDA, Python, PyTorch, C, Matlab, Verilog, Paraview, Blender, Avizo

SELECTED PUBLICATIONS

- [1] Wang, Yuanhao and Idoughi, Ramzi and Heidrich, Wolfgang, "Learning adaptive tensorial density fields for clean cryo-et reconstruction," NeurIPS 2023, paper.
- [2] D. Rückert and Wang, Yuanhao and Li, Rui and Idoughi, Ramzi and Heidrich, Wolfgang, "NeAT: Neural Adaptive Tomography," ACM Trans. Graph., vol. 41, no. 4, Jul. 2022, paper.
- [3] G. Qian* and Wang, Yuanhao* and Gu, Jinjin and Dong, Chao and Heidrich, Wolfgang and Ghanem, Bernard and Ren, Jimmy S, "Rethinking learning-based demosaicing, denoising, and super-resolution pipeline," in ICCP 2022 (equal contribution), paper.
- [4] Wang, Yuanhao and Idoughi, Ramzi and Heidrich, Wolfgang, "Stereo event-based particle tracking velocimetry for 3d fluid flow reconstruction," in ECCV 2020, 2020, pp. 36–53, paper.
- [5] Wang, Yuanhao and Idoughi, Ramzi and Rückert, Darius and Li, Rui and Heidrich, Wolfgang, "Adaptive differentiable grids for cryo-electron tomography reconstruction and denoising," Bioinformatics Advances, 2023, paper.
- [6] Wang, Yuanhao and Idoughi, Ramzi and Heidrich, Wolfgang, "Joint motion-correction and reconstruction in cryo-em tomography," in *ICIP 2022 (Oral)*, 2022, pp. 1101–1105, paper.
- [7] R. Li, D. Rückert, and Wang, Yuanhao and Idoughi, Ramzi and Heidrich, Wolfgang, "Neural adaptive scene tracing (nascent)," VMV 2022, https://arxiv.org/abs/2202.13664.
- [8] Wang, Yuanhao and Li, Shuguo, "A high-speed digital true random number generator based on cross ring oscillator," IEICE Trans. on Fund. of Elec., Com. and Com. Sci., vol. 99, no. 4, pp. 806–818, 2016, paper.

ACADEMIC SERVICES

CVPR, ECCV, ICCV, NeurIPS, IEEE TVCG, IEEE TCI., PTL, IEEE OJSP.

Experiments in Fluids, Magnetic resonance in medicine