

DUAL BINARY UP COUNTER

- MEDIUM SPEED OPERATION : 6MHz (Typ.) at 10V
- POSITIVE -OR NEGATIVE- EDGE TRIGGERING
- SYNCHRONOUS INTERNAL CARRY PROPAGATION
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

HCF4520B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. HCF4520B, a Dual Binary Up Counter, consists of two identical, internal 4-stage counters. The counter stages are D-type Flip-Flops having interchangeable Clock and Enable lines for

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4520BEY	
SOP	HCF4520BM1	HCF4520M013TR

incrementing on either the positive-going or negative going transitions. For single-unit operations the Enable input is maintained High and the counter advances on each positive going transition of the Clock. The counters are cleared by high levels on their Reset lines. The counter can be cascaded in the ripple mode by connecting Q4 to the enable input of the subsequent counter while the clock input of the latter is held low.

PIN CONNECTION

October 2002 1/12

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION			
1	CLOCK A	Clock A input			
2	ENABLE A	Enable A Input			
7 RESET A		Reset A Input			
3, 4, 5, 6 Q1A to Q4A		Data Outputs			
9	CLOCK B	Clock B input			
10	ENABLE B	Enable B Input			
15	RESET B	Reset B Input			
11,12,13,14	Q1B to Q4B	Data Outputs			
8	V_{SS}	Negative Supply Voltage			
16	V_{DD}	Positive Supply Voltage			

FUNCTIONAL DIAGRAM

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
	Н	L	INCREMENT COUNTER
L	L	L	INCREMENT COUNTER
	X	L	NO CHANGE
X		L	NO CHANGE
	L	L	NO CHANGE
Н	7	L	NO CHANGE
X	X	Н	Q1 THRU Q4 = 0

X : Don't Care

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	٧
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition					Value				
Symbol	Parameter	Vı	v _o	l _o	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	μA
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		IIIA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
l _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
II	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
Cı	Input Capacitance		Any In	put		_	5	7.5	_				pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (\textbf{T}_{amb} = 25^{\circ} \textbf{C}, \ \textbf{C}_{L} = 50 \text{pF}, \ \textbf{R}_{L} = 200 \text{K}\Omega, \ \textbf{t}_{r} = \textbf{t}_{f} = 20 \text{ ns})$

Ch. a.l		Test Condition			Value (*)			
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.		
t _{PLH} t _{PHL}	Propagation Delay Time	5			280	560		
	Clock or Enable to Output	10			115	230	ns	
		15			80	160		
t _{PLH} t _{PHL}	Propagation Delay Time	5			330	650		
	Reset to Output	10			130	225	ns	
		15			90	170		
t _{TLH} t _{THL}	Transition Time	5			100	200		
		10			50	100	ns	
		15			40	80		
t _W	Clock Pulse Width	5		200	100			
		10		100	50		ns	
		15		70	35			
t _W	Reset Pulse Width	5		250	125			
		10		110	55		ns	
		15		80	40			
t _W	Enable Pulse Width	5		400	200			
		10		200	100		ns	
		15		140	70			
t _r , t _f	Clock or Enable Rise and	5				15		
17 1	Fall Time	10				15	μs	
		15				5		
f _{MAX}	Maximum Clock	5		1.5	3			
	Frequency	10		3	6		MHz	
		15		4	8			
t _r , t _f	Clock or Enable Rise and	5				15		
	Fall Time	10				5	μs	
		15]			5	1	

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200 $K\Omega$ R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: MINIMUM PULSE WIDTH AND REMOVAL TIME (f=1MHz; 50% duty cycle)

WAVEFORM 2: PROPAGATION DELAY TIME, MINIMUM PULSE WIDTH (f=1MHz; 50% duty cycle)

TYPICAL APPLICATION

RIPPLE CASCADING OF FOUR COUNTERS WITH POSITIVE-EDGE TRIGGERING

TYPICAL APPLICATION

SYNCHRONOUS CASCADING OF 4 BINARY COUNTERS WITH NEGATIVE-EDGE TRIGGERING

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm.		inch				
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
еЗ		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•			
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S		•	8° (ı	max.)	•	1		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.