PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent	Classification 6:		(11) International Publication Number: WO 99/02318
B27N 1/00		A1	(43) International Publication Date: 21 January 1999 (21.01.99)
(21) International Applic (22) International Filing (30) Priority Data:			ID, IL, JP, KP, KR, LK, MK, MX, NO, NZ, PL, RO, RU,
9714679.9 9714893.6	11 July 1997 (11.07.97) 15 July 1997 (15.07.97)		Published With international search report.
[GR/GR]; Gefyra, (72) Inventor; and (75) Inventor/Applicant [GR/GR]; 8 Lahar	ignated States except US): MARI GR-570 11 Thessaloniki (GR). (for US only): NAKOS, Fina Street, GR-546 39 Thessaloni STANTINOU, Helen, G.; 2 (4 Athens (GR).	Panagio iki (GR	tis).
(54) Title: MANUFACT	URE OF COMPOSITE BOARD	S	
(57) Abstract			

Annual plant material such as straw is treated to improve bondability with composite forming bonding resins by subjecting to a liquid medium containing sufficient of a sufficiently strong acid, alkali or surfactant to remove substantially waxy or silica layers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	$\mathbf{U}\mathbf{G}$	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

Manufacture of Composite Boards

The present invention relates to a method of manufacturing composite boards including improving the bondability of annual plant fibrous material such as straw.

Many treatments have been described in the literature to improve the bondability of lignocellulosic materials in both particle and fibre form with synthetic resins. (SIMON AND L. PAZNER): (Activated self-bonding of wood and agricultural residues - Holzforschung 48:82 - 90, 1994) investigated the influence of the hemicellulose content of the self-bonding behaviour of different raw materials including annual plants and concluded that there is a straight forward relation between the hemicellulose content in the raw materials and the bonding strength of composites prepared therefrom. According to this work hemicelluloses do have adhesive properties, however, bonds created using hemicellulose adhesives have almost no wet strength.

In a recent publication LIAN ZHENGTIAN and HAO
BINGYE: (Technology of rice-straw particleboards bonded

25 by Urea-formaldehyde resin modified by isocyanate - Paper
presented at the Symposium Pacific Rim Bio-Based
Composites, Rotorua, New Zealand 9 - 13 November 1992
Symposium Proceedings, page 295 - 301, 1992) mentioned
that slight improvement of bondability of straw can be

30 achieved by destroying the waxy layers encirculing the
stem of straw, however, the bondability was still very
poor and the boards made still could not meet the
requirements of common standards.

35 Treatments with alkaline or acidic agents of lignocellulosic materials before formation of composite materials have been proposed as in WO 93/25358, WO

2

91/12367 or DE 4211888 but this has been discussed in relation to the structure of wood structure materials. The effect of acid or alkaline on the structure of materials such as straw with its waxy/silica layers has 5 not been considered.

In Applicant's application number GB 9607566.8 it was disclosed that thermal treatment of straw or other annual plant fibres with water or steam at temperatures

10 between 40 - 120°C, preferably between 60 - 120°C, with simultaneous or subsequent defibration of the straw using high shear forces opens up the morphological structure of straw and increases the affinity towards bonding.

with mildly acidic or alkaline materials before use for various purposes. In U.K. Patent GB 709569A straw is treated with hypochlorous acid and soda solution in bleaching for paper manufacture. There is no reference to resin-bonded board manufacture. In U.K. Patent GB 2084212A there is disclosure of manufacture of low density panels from rice hulls with a two-component binder using lime chloride to effect some de-waxing but emphasising that the process must avoid the removal of silica. There is no disclosure of manufacturing medium or high density boards bonded with amino-resins.

Defibration means disruption of the morphological structure of annual plant fibres, straw leading to the creation of individual fibres. In the original morphological structure of, for example, straw, the waxy and the silica layer encircling the straw inhibit sufficient direct contact between the binder and the straw fibres. In the earlier application it was disclosed that thermal treatment combined with high shear forces disrupts the original morphological structure of straw leading to higher accessibility of individual

3

fibres to the binder and consequently, an increase in the affinity of straw towards bonding. The process of opening up the morphological structure of straw is similar to that of pulping wood for paper making.

5

In a preferred embodiment of the invention of the earlier application it is disclosed that the properties of the boards made from straw could be further improved if the straw was treated or pre-treated with a dilute solution of sodium hydroxide containing 0.01 - 2% NaOH based on the straw material.

It was further disclosed that other alkaline materials other than sodium hydroxide could be also used to achieve the same effect. It was disclosed that such chemicals could be formaldehyde catchers such as urea and other catchers well known in the art.

A problem with the processes of the earlier
20 application is that high and therefore costly energy
input into the process is required in order to provide
the required high shear forces. As the skilled operative
would be aware these types of forces can be applied, for
example, by twin screw extruders, disc refiners or other
25 suitable attrition mill devices like Ultra Turrax.

The present invention provides a process for the manufacture of composite boards in which annual plant and/or agri-waste material is treated to improve

30 bondability to synthetic or natural binders by subjecting the material to treatment with an aqueous medium containing an agent capable of removing waxy or silica layers from the material, which agent is a strong acid, a strong alkali or a surfactant or a combination of acid or alkali and surfactant and the treatment is continued until the waxy or silica layers are sufficiently removed so as not to interfere with the bond to the binder.

4

The preferred agent is a combination of strong acid or alkali and surfactant.

The process of the invention can be applied either to undefibrated plant material that is plant material in which the stalks are merely chopped or to defibrated plant material in which the original material has been broken down to individual fibres.

10

Modification of the process of the present invention is the addition of such an agent to a material while it is being subjected to high shear treatment providing such agent is a combination of a surfactant with an acid or alkali to reduce the energy consumption or improve properties of the boards.

According to another aspect of the invention therefore there is provided a process for the treatment of annual plant material to improve bondability to synthetic or natural binders comprising subjecting the material to treatment with a surfactant in a liquid acidic or alkaline dispersion or solution before or during at least part of an attrition treatment of the material to reduce the energy consumption or improve properties of the boards.

In a particular embodiment of the invention there is provided a process in which the plant material is treated 30 with an aqueous system containing acid or non-alkaline surfactant. In this process the treatment can precede or be simultaneous with a high shear treatment of the material to effect defibration to reduce the energy consumption or improve properties of the boards.

35

In one embodiment of the invention there is provided a combination of strong alkali (e.g. NaOH) and a

5

surfactant to treat the plant material.

In another embodiment there is provided the use of a strong acid in high strength (for example 36% by weight 5 solution in water of hydrochloric acid). By high strength is meant a solution in water of the highest strength possible with risk of damage to the straw (for example at too great a concentration sulphuric and nitric acids for example could damage the basic straw 10 structure).

Those skilled in the art will have no difficulty in selecting an appropriate strength of acid to achieve dewaxing/de-silification without fibre damage.

15

In another aspect of the invention there is used a combination of strong acid and surfactant.

In another aspect of the invention there is employed 20 a surfactant which is sufficiently strong to remove waxy layers in straw material.

The effectiveness of the de-waxing or desilification agent can be verified by achieving a water 25 absorption (% weight gain on soaking in water) of at least 200% or by forming a board and verifying that the board has a certain IB (Internal Bond) strength. The IB strength is the tensile strength perpendicular to the plane of the board, e.g. according to EN312-2 for 19mm-30 thick particleboard at least an IB strength of O.24N/mm² is considered to be necessary.

Acids which can be employed include strong inorganic acids such as sulphuric acid or hydrochloric acid and strong organic acids such as formic, acetic or sulfonic acid. Surfactants which can be employed in the invention are those surface active agents which are sufficiently

6

powerful to effect the removal of wax or silica layers In particular some from the surface of straw. surfactants are not easily dispersible or soluble in water or other solvents and should be added to water or 5 solvent along with an alkaline or acidic agent to enable adequate dispersion or solution. A typical surfactant is o,p-dodecyl sulfonic acid but this is only exemplary of the well known agents. This surfactant when used with sodium hydroxide, as alkali was very effective. Other 10 surfactants are alkyl benzene sulphonic acid for example with sodium hydroxide; cetyl trimethyl ammonium chloride for example with hydrochloric acid. This surfactant can be employed by itself for example a fatty alcohol surfactant can be selected from cationic, anionic or 15 neutral surfactants which one skilled in the art would appreciate, given the teaching of the invention would be likely to affect the waxy/silicious agents. Alkalis which can be employed include sodium hydroxide or other strong inorganic alkalis, ammonia or organic strongly 20 alkaline materials.

The active agents can be contacted with the straw in either a pre-treatment step or as a part of a defibration treatment step. If the fibrous material is to be brought into contact with active agent as a pre-treatment step then it is convenient to use a tank. A tank can be filled with the appropriate chemical and then the residence time of the fibrous material in the tank can be adjusted accordingly depending on the actual chemical used, the concentration of the chemical and the temperature of the acidic or alkaline solution or the temperature of the aqueous wetting agent solution. It will be recalled that the purpose of the treatment is to dissolve or otherwise remove the waxy layer and/or the silica layer from the surface of the plant fibres.

An important aspect of the invention is that in case

7

of acid curing binders the plant material after treatment is adjusted (if necessary) to a pH of 3-8. This can be achieved by addition of either alkali or acid as appropriate or by extensive washing.

5

It is also important that the plant material particularly straw is chopped or cut to a length of less than 10cm preferably between 0.5cm and 5cm. It is also possible to split the straw stalks in the middle (lengthwise) to make the interior of the fibre accessible to subsequent treatment.

Material that is used in the process of the invention is annual plant material and/or agri-waste such 15 as rice, straw, rice husks, wheat straw, rice straw, barley straw, corn residues, miscanthus, sorghum, sunflower etc. However, most preferably, straws are utilized in the processes of the invention.

20 High shear devices which can be used when required include high shear attrition systems discussed in the earlier application UK 9607566.8. However, it is also possible to use attrition mills which employ less energy than high shear systems. Such attrition mills are well 25 known in the art.

As mentioned if an attrition method is to be used in the process of the invention then the fibres pre-treated by acid or alkali and/or wetting agent can be subjected to processing through the attrition mill or alternatively the acid/alkali/wetting agent treatment chemicals can be contacted with the fibres as they enter the attrition mill.

35 After the acid or alkaline wetting agent treatment and/or defibration, optionally by attrition the fibres can be dried using conventional dryers used in

8

particleboard factories, e.g. drum dryer, or a tube dryer like that used in medium density fibreboard mills. From then onwards, the dried fibres follow the conventional procedure as for the production of particleboard, medium or high density fibreboard.

Materials particularly straw treated in accordance with this invention have improved bondability to synthetic and natural bonding agents and isocyanate 10 binders.

Binders which can be used to bond treated straw are formaldehyde-based resins such as urea-formaldehyde resins (UF-resins), melamine-urea-formaldehyde resins (MUF-resins), melamine-formaldehyde resins (MF-resins), phenol-formaldehyde resins (PF-resins), melamine-urea-phenol-formaldehyde resins (MUPF-resins), tannin-formaldehyde resins (TF-resins) and isocyanate binders. The binders can be added in the amount of 5 - 25% based on dry straw material. The invention is particularly applicable to amino resins.

The straw can be mixed with the binder when the straw is in the high shear machine when that is employed or in a separate blender.

Addition of a sizing agent is not obligatory but can be added if necessary either in the defibration treatment or separately.

30

Test for Water Absorption

As mentioned earlier a method of assessing the effectiveness of a treating agent is to measure the water absorption of the treated material.

9

TEST

Samples of treated straw are dried at 65°C for 48hours. This will usually achieve a moisture content of 5 % (dry basis).

Small representative samples of approx. 3.0g of material are introduced in a distilled water bath (of 23°C), and soaked for 30 min. The material is then removed from the bath. The excess water is removed with a vacuum system, and the fibre samples were weighed to estimate the degree of water absorption (as % wt. gain). The higher the degree of dewaxing the higher the degree of water absorption.

15

As already stated the achievement of a minimum IB-strength (see the Example for measurement of this value) of 0.24 N/mm² for 19mm particleboard is also a measure of the effectiveness of removal of wax and/or silica.

20

35

The invention will now be illustrated by the following Example which, however, is merely illustrative and not limiting of the invention.

25 EXAMPLE

Wheat straw was chopped in a hammermill to have a homogenous size where no fibre had a size longer than 10 cm, (preferably between 0.5 and 5cm). The material was 30 dried in an oven at 65°C for 48 hrs. The moisture content of the material was around 5%. Batches of 2 kg each of the dried material were mixed with 40 kg of water in a drum and each was then treated with one of the following chemical (combinations) (Table 1).

TABLE 1: Conditions for the chemical treatment

No	Chemical treatment	Details
1.	Lime hydrate, Ca (OH) ₂	5g/liter or 200g total
2.	Lime chloride, Ca Cl ₂	5g/liter or 200g total
3.	Sodium carbonate, Na ₂ CO ₃	5g/liter or 200g total
4.	Sulfonic acid + NaOH	5g/liter or 200g total of each of the two chemicals
5.	Hydrochloric acid pure (36%)	5g/liter or 200g total
6.	Hydrochloric acid with a surfactant (mainly cetyl-trimethyl-ammonium chloride)	5g/liter or 200g total of each of the two chemicals
7.	Non ionic surfactant (mainly a fatty alcohol)	5g/liter or 200g total

5 Treatments 1, 2 and 3 were for comparison with the teaching of GB 709569A and GB 2084212A

The treatments were carried out for 24 hours. After the treatments the materials were washed with water. Then,

- 10 to each batch 40kg of water was added and the pH of the mixture was adjusted around 5 with the addition of either alkali or acid. The resulting mixture was strained and dried in an oven. The degree of dewaxing was checked with the method described above. The moisture content
- 15 level of all samples tested after drying was 5% by weight (on dry basis).

11

TABLE 2: Water absorption (% wet. gain) of straw treated with different dewaxing agents for determining the degree of dewaxing:

No	Chemical treatment	% Weight gain
1.	Lime hydrate, Ca (OH) ₂	110
2.	Lime chloride, Ca Cl ₂	100
3.	Sodium carbonate, Na ₂ CO ₃	130
4.	Sulfonic acid + NaOH	360
5.	Hydrochloric acid pure (36% by weight) in $\mathrm{H}_2\mathrm{O}$	270
6.	Hydrochloric acid with one surfactant (mainly cetyl-trimethyl-ammonium chloride)	340
7.	Non ionic surfactant (mainly a fatty alcohol)	280
8.	Untreated (control)	90

5

These results proved clearly that the treatments of the invention removed most of the wax while the chemicals mentioned in the two U.K. patents do not remove

10 significant amounts of wax. As dewaxing agent, the combination of sulfonic acid with sodium hydroxide shows the highest dewaxing.

With the straw treated by each of the above 15 treatments lab boards were prepared with a thickness of 16mm as follows:

After the straw has been dried to a moisture content of approximately 4% it was placed in a Loedige blender 20 and a urea formaldehyde resin was applied with a spraying

12

system. The resin was catalyzed with an ammonium salt to accelerate the curing. The glued material was then formed to boards and the boards were pressed in a hot press. The initial temperature of the press was 200°C.

5

After the pressing, the boards were left to cool and then representative samples 50 by 50 mm were cut and the strength was tested with a Zwick instrument. The results are summarized in the table below (Table 3)

10

TABLE 3: RESULTS OF BOARDS PREPARED OF STRAW TREATED WITH THE VARIOUS METHODS

No	Chemical treatment	IB strength N/mm ²
1.	Lime hydrate, Ca (OH) ₂	0.12
2.	Lime chloride, Ca Cl ₂	0.11
3.	Sodium carbonate, Na ₂ CO ₃	0.13
4.	Sulfonic acid + NaOH	0.45
5.	Hydrochloric acid pure (36%)	0.33
6.	Hydrochloric acid with one surfactant (mainly cetyl-trimethyl-ammonium chloride)	0.40
7.	Non ionic surfactant (mainly a fatty alcohol)	0.36
8.	Untreated (control)	0.10

15

Only those boards prepared using straw treated in accordance with the invention achieved the necessary strength.

WHAT IS CLAIMED:

20

- 1. A process for the manufacture of composite boards in which annual plant and/or agri-waste material is treated to improve bondability to synthetic or natural binders by subjecting the material to treatment with an aqueous medium containing an agent capable of removing waxy or silica layers from the material, which agent is a strong acid, a strong alkali or a surfactant or a combination of acid or alkali and surfactant and the treatment is continued until the waxy or silica layers are sufficiently removed so as not to interfere with the bond to the binder.
- 15 2. A process according to claim 1 in which the agent is a combination of strong acid or alkali and surfactant.
 - 3. A process according to claims 1 and 2 in which the agent is applied in an aqueous medium.
- 4. A process according to claim 1 in which the agent is an alkali and the process is carried out in the absence of simultaneous treatment with a high shear attrition system, or the agent is an alkali with surfactant and the 25 process is carried out in the presence of a simultaneous treatment with a high shear attrition system.
- A process according to claim 1 in which the agent is an acid or non-alkaline surface active agent that is
 carried out in the presence or the absence of a high shear attrition system.
- A process for the treatment of annual plant material to improve the bondability to synthetic or natural
 binders comprising subjecting the material to treatment with a surfactant agent in a liquid acidic or alkaline dispersion before or during at least part of an attrition

14

treatment of the fibres.

7. A process according to claim 5 wherein the attrition treatment is a high shear treatment.

5

8. A method according to any one of claims 1 to 7 in which the waxy and silica layers are removed to provide a water absorption of at least 200% weight gain.

10

15

20

25

Inte onal Application No

		PCT/GI	R 98/00021
A. CLASSI	FICATION OF SUBJECT MATTER B27N1/00	, , , , , , , , , , , , , , , , , , ,	
1,00	52,111,00		
According to	International Patent Classification(IPC) or to both national classifica	ation and IPC	
	SEARCHED		
Minimum do	cumentation searched (classification system followed by classification B27N	on symbols)	
1100	<i>527</i> 11		
Documental	tion searched other than minimumdocumentation to the extent that s	uch documents are included in the fi	elds searched
Electronic a	ata base consulted during the international search (name of data ba	se and, where practical, search term	is used)
	ENTS CONSIDERED TO BE RELEVANT		Delawart to the No.
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
Х	GB 709 569 A (LOUIS GRAND) 26 May	y 195 <u>4</u>	1-4
	cited in the application	•	
	see page 1, right-hand column, l page 2, right-hand column, line 9	ine 52 - 91:	
	claims; example 2	,	
х	GB 2 084 212 A (23 SZ ALLAMI EPI	TOIPARI	1,3,4
	VALLAL) 7 April 1982		
	cited in the application see page 1, line 23 - line 30; c	laims	
A	WO 93 25358 A (SUNDS DEFIBRATOR	TND AR	
	; SAEFSTROEM CHRISTER (SE); MIKAE		
	ARON) 23 December 1993 cited in the application		
		-/	
X Furt	ther documents are listed in the continuation of box C.	X Patent family members ar	re listed in annex.
° Special ca	ategories of cited documents :	"T" later document published after	the international filing date
	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in con cited to understand the princi invention	
	document but published on or after the international	"X" document of particular relevan cannot be considered novel of	
"L" docum	ent which may throw doubts on priority claim(s) or i is cited to establish the publicationdate of another	involve an inventive step whe	en the document is taken alone nce; the claimed invention
"O" docum	on or other special reason (as specified) entry referring to an oral disclosure, use, exhibition or	cannot be considered to invo document is combined with o	lve an inventive step when the one or more other such docu-
"P" docum	means ent published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the sam	ng obvious to a person skilled e patent family
	actual completion of theinternational search	Date of mailing of the internati	
	UE Octobon 1000	21/10/1000	
	l5 October 1998	21/10/1998	
Name and	mailing address of the ISA European Patient Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Soederberg, d	J
I	(,	1	

1

Inte onal Application No PCT/GR 98/00021

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	 1
Category ³	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 91 12367 A (SCA RESEARCH AB) 22 August 1991 cited in the application	
A	DE 42 11 888 A (BONIN WULF V DR) 14 October 1993 cited in the application	
	·	

1

Information on patent family members

Inte fonal Application No
PCT/GR 98/00021

Patent documer cited in search rep		Publication date		atent family member(s)	Publication date
GB 709569	Α		NONE		
GB 2084212	А	07-04-1982	AT AT CH DE FR IN	381925 B 394181 A 653078 A 3136521 A 2490142 A 154800 A	10-12-1986 15-05-1986 13-12-1985 09-06-1982 19-03-1982 15-12-1984
WO 9325358	A	23-12-1993	SE AU AU CA CN CZ DE DK EP ES FI HR U JP NO NZ PLU SE SK ZA	470330 B 143625 T 662432 B 4363393 A 2136537 A 1079687 A,B 9403088 A 69305165 D 69305165 T 647174 T 0647174 A 2095060 T 945790 A,B, 930967 A 69072 A,B 105811 A 7507735 T 944779 A 253367 A 170405 B 2083359 C 9201800 A 9300293 A 153094 A 9304108 A	24-01-1994 15-10-1996 31-08-1995 04-01-1994 23-12-1993 22-12-1993 14-06-1995 07-11-1996 06-03-1997 13-01-1997 12-04-1995 01-02-1997 09-12-1994 30-04-1995 28-08-1995 31-12-1995 31-12-1995 31-12-1995 31-12-1994 27-11-1995 31-12-1994 10-07-1997 12-12-1993 31-03-1994 10-05-1995 13-01-1994
WO 9112367	Α	22-08-1991	SE AT AU AU CA	466060 B 122420 T 647780 B 7327191 A 2073763 A	09-12-1991 15-05-1995 31-03-1994 03-09-1991 14-08-1991

Information on patent family members

Intended Application No PCT/GR 98/00021

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9112367	Α	'	DE	69109696 D	14-06-1995
			DE	69109696 T	14-09-1995
			DK	572388 T	28-08-1995
			EP	0572388 A	08-12-1993
			ES	2072603 T	16-07-1995
			FI	923605 A,B,	12-08-1992
			JP	5503966 T	24-06-1993
			NO	302624 B	30-03-1998
			SE	9000515 A	14-08-1991
			US	5607546 A	04-03-1997
DE 4211888	Α	14-10-1993	NONE		