PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C12N 15/52, 15/53, 15/54, 15/55, 15/81, 1/19, C12P 25/00 // (C12N 1/19, C12R

(11) Internationale Veröffentlichungsnummer: WO 95/26406

(81) Bestimmungsstaaten: CA, CN, JP, RU, US, europäisches

(43) Internationales Veröffentlichungsdatum:

LU, MC, NL, PT, SE).

5. Oktober 1995 (05.10.95)

(21) Internationales Aktenzeichen:

PCT/EP95/00958

A2

DE

(22) Internationales Anmeldedatum:

15. März 1995 (15.03.95)

(30) Prioritätsdaten:

P 44 10 382.4 P 44 20 785.9

25. März 1994 (25.03.94) 15. Juni 1994 (15.06.94)

Veröffentlicht DE

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): REVUELTA DOVAL, Jose, Luis [ES/ES]; Pza. La Parra, 4, E-37001 Salamanca (ES). BUITRAGO SERNA, Maria, Jose [ES/ES]; Avenida de los Cedros, 33, E-37004 Salamanca (ES). SANTOS GARCIA, Maria, Angeles [ES/ES]; Versalles, 7, E-37009 Santa Marta
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).
- (54) Title: RIBOFLAVIN SYNTHESIS IN FUNGI
- (54) Bezeichnung: RIBOFLAVIN-BIOSYNTHESE IN PILZEN

(57) Abstract

The invention riboflavin-biosynthesis genes in the fungus concerns Ashbya gossypii as well as a method of producing riboflavin using these genes and gene products.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in dem Pilz Ashbya gossypii sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	ĦU	Ungarn	NZ	Neuseeland
ВЈ	Benin	TE	Irland	PL	Polen
BR	Brasilien	PT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldan	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolci	VN	Vietnam

WO 95/26406 PCT/EP95/00958

Riboflavin-Biosynthese in Pilzen

Beschreibung

5

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in Pilzen, die damit codierten Proteine sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

10

Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983).

- 15 In der EP 405370 sind Riboflavin-überproduzierende Bakterienstämme beschrieben, die durch Transformation der Riboflavin-Biosynthese-Gene aus Bacillus subtilis erhalten wurden.
- Da die Genetik der Riboflavin-Biosynthese in Bakterien und 20 Eukaryonten verschieden ist, sind die oben erwähnten Gene aus Bacillus subtilis nicht für ein rekombinantes Herstellverfahren für Riboflavin mit eukaryontischen Produktionsorganismen wie Ashbya gossypii geeignet.
- 25 In einer am 19.11.1992 beim Deutschen Patentamt eingereichten Patentanmeldung wurde die Klonierung der Riboflavin-Biosynthese Gene der Hefe Saccharomyces cerevisiae beschrieben.
- Eine Klonierung der Ashbya gossypii Riboflavin-Biosynthese Gene
 30 unter Verwendung der S. cerevisiae RIB-Gene mit üblichen Hybridisierungsmethoden gelang jedoch nicht; offenbar war die Homologie
 der RIB-Gene aus S. cerevisiae und A. gossypii für eine Hybridisierung nicht groß genug.
- 35 Es bestand daher die Aufgabe, die Riboflavin-Biosynthese Gene aus einem Eukaryonten zu isolieren, um damit ein rekombinantes Herstellverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen.
- **40** Demgemäß wurden in dem Ascomyceten Ashbya gossypii sechs Gene (rib-Gene), die für Enzyme der Riboflavin-Biosynthese ausgehend von GTP codieren, gefunden und isoliert.

Die Erfindung betrifft die folgenden DNA-Sequenzen:

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Ami5 nosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges
10 oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

15 DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder 25 mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10
30 dargestellten Aminosäuresequenz codieren oder für ein Analoges
oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder
mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung
des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Ami10 nosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

Die Gene und ihre Genprodukte (Polypeptide) sind im Sequenzprotokoll mit ihrer Primärstruktur aufgeführt und haben folgende 45 Zuordnung:

SEQ ID NO: 1 : rib 1-Gen

```
SEQ ID NO: 2 : rib 1-Genprodukt (GTP-cyclohydrolase II)
SEQ ID NO: 3 : rib 2-Gen
SEQ ID NO: 4 : rib 2-Genprodukt (DRAP-Deaminase)
SEQ ID NO: 5 : rib 3-Gen

5 SEQ ID NO: 6 : rib 3-Genprodukt (DBP-Synthase)
SEQ ID NO: 7 : rib 4-Gen
SEQ ID NO: 8 : rib 4-Genprodukt (DMRL-Synthase)
SEQ ID NO: 9 : rib 5-Gen
SEQ ID NO: 10: rib 5-Genprodukt (Riboflavin-Synthase)
10 SEQ ID NO: 11: rib 7-Gen
SEQ ID NO: 12: rib 7-Genprodukt (HTP-Reductase)
```

Guanosintriphosphat (GTP) wird durch GTP-Cyclohydrolase II (rib 1-Genprodukt) zu 2,5-Diamino-6-ribosylamino-4-(3H)-pyrimidinon
5-phosphat umgewandelt. Diese Verbindung wird anschließend durch rib 7-Genprodukt zu 2,5-Diamino-ribitylamino-2,4 (1H,3H)- pyrimidin-5-phosphat reduziert und dann durch rib 2-Genprodukt zum 5-Amino-6-ribitylamino-2,4 (1H,3H)-pyrimidindion deaminiert. Anschließend wird in einer rib 4-Genprodukt katalysierten Reaktion die C4-Verbindung DBP hinzugefügt und es entsteht 6,7-Dimethyl-8-ribityllumazin (DMRL), aus dem in der rib 5-Genprodukt katalysierten Reaktion Riboflavin entsteht. Die C4-Verbindung DBP (L-3,4-Dihydroxy-2-butanon-4-phosphat) wird aus D-Ribulose-5-phosphat in einer rib 3-Genprodukt katalysierten Reaktion gebildet.

Die in SEQ ID NO: 1,3,5,7,9,11 beschriebenen DNA-Sequenzen codieren für die Polypeptide, die in SEQ ID NO: 2,4,6,8,10,12 beschrieben sind.

30

Außer den im Sequenzprotokoll genannten DNA-Sequenzen sind auch solche geeignet, die infolge der Degeneration des genetischen Codes eine andere DNA Sequenz besitzen, jedoch für das gleiche Polypeptid codieren.

35

zu verstehen.

Weiterhin sind auch solche DNA Sequenzen Gegenstand der Erfindung, die für ein Genprodukt (Polypeptid) mit anderer als der im Sequenzprotokoll aufgeführten Primärstruktur codieren, solange das Genprodukt noch im wesentlichen die gleichen biologischen Ei-40 genschaften wie das im Sequenzprotokoll genannte Genprodukt besitzt. Unter biologischen Eigenschaften sind vor allem die die Biosynthese von Riboflavin bewirkenden enzymatischen Aktivitäten

45 Solche veränderten Genprodukte mit im wesentlichen gleichen biologischen Eigenschaften sind durch Deletion oder Hinzufügen von einer oder mehreren Aminosäuren oder Peptiden oder durch Aus-

tausch von Aminosäuren durch andere Aminosäuren erhältlich oder können aus anderen Organismen als Ashbya gossypii isoliert werden.

- 5 Die DNA-Sequenzen, die für die veränderten Genprodukte codieren, sind zu den DNA-Sequenzen gemäß Sequenzprotokoll in der Regel zu 80 oder mehr Prozent homolog. Solche DNA-Sequenzen lassen sich ausgehend von den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen, beispielsweise mit üblichen Hybridisierverfahren
- 10 oder der PCR-Technik aus anderen Eukaryonten als Ashbya gossypii isolieren. Diese DNA-Sequenzen hybridisieren unter Standard-bedingungen mit den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen.
- 15 Unter Standardbedingungen sind beispielsweise Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 und 1 x SSC (1 x SSC: 0,15M NaCl, 15mM Natriumcitrat pH 7,2) zu verstehen. Die experimentellen Bedingungen für DNA-Hybridisierungen sind in Lehrbüchern der Gentechnik,
- 20 beispielsweise in Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben.

Ein weiterer Gegenstand der Erfindung sind Regulationssequenzen, insbesondere Promotorsequenzen, die in 5'-Richtung vor den für

25 die entsprechenden Polypeptid codierenden DNA-Sequenzen liegen. Die Regulationssequenzen sind im Sequenzprotokoll aufgeführt und im folgenden näher erläutert.

Regulationssequenz für rib 1-Gen:

30 SEQ ID NO: 1 Nukleotid 1-242

Regulationssequenz für rib 2-Gen: SEQ ID NO: 3 Nukleotid 1-450

35 Regulationssequenz für rib 3-Gen: SEQ ID NO: 5 Nukleotid 1-314

Regulationssequenz für rib 4-Gen: SEQ ID NO: 7 Nukleotid 1-270

40

Regulationssequenz für rib 5-Gen: SEQ ID NO: 9 Nukleotid 1-524

Regulationssequenz für rib 7-Gen:

45 SEQ ID NO: 11 Nukleotid 1-352

PCT/EP95/00958

WO 95/26406

Die Regulationssequenzen können auch noch in 5'- und/oder 3'-Richtung verkürzt werden, ohne daß ihre Funktion wesentlich nachläßt.

5

5 Essentiell für die Regulationswirkung sind in der Regel Fragmente von 30 bis 100, bevorzugt 40 bis 70 Nukleotiden aus den oben angegebenen Sequenzbereichen.

Diese Regulationssequenzen können auch durch gerichtete 10 Mutagenese im Vergleich zu den natürlichen Sequenzen in ihrer Funktion optimiert werden.

Die erfindungsgemäßen Regulationssequenzen eignen sich für die Überexpression von Genen in Ashbya, insbesondere von Genen, die 15 für die Riboflavin-Biosynthese verantwortlich sind.

Weiterhin sind Gegenstand der Erfindung Expressionsvektoren, die eine oder mehrere der erfindungsgemäßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungs-20 gemäßen DNA-Sequenzen mit geeigneten funktionellen Regulationssignalen versieht. Solche Regulationssignale sind DNA-Sequenzen, die für die Expression verantwortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt und bedient werden.

25

Gegebenenfalls können noch weitere Regulationssignale, die beispielsweise Replikation oder Rekombination der rekombinanten DNA im Wirtsorganismus steuern, Bestandteil des Expressionsvektors sein.

30

Ebenso gehören die mit den erfindungsgemäßen DNA-Sequenzen oder Expressionsvektoren transformierten Wirtsorganismen zum Gegenstand der Erfindung. Bevorzugt werden als Wirtsorganismen eukaryontische Organismen, besonders bevorzugt solche der Gattung

- 35 Saccharomyces, Candida, Pichia, Eremothecium oder Ashbya verwendet. Besonders bevorzugte Arten sind Saccharomyces cerevisiae, Candida flaveri, Candida famata, Eremothecium ashbyii und Ashbya gossypii.
- 40 Weiterhin gehört zur Erfindung ein rekombinantes Herstellverfahren für Riboflavin, in dem die erfindungsgemäßen transformierten Wirtsorganismen in an sich bekannter Weise durch Fermentation gezüchtet werden und das während der Fermentation gebildete Riboflavin aus dem Fermentationsmedium isoliert und

45 gegebenenfalls gereinigt wird.

WO 95/26406 PCT/EP95/00958

6

Die rib-Gene und -Genprodukte lassen sich wie im Beispiel und im Sequenzprotokoll beschrieben isolieren und charakterisieren.

Beispiel 1

- 5 Isolierung der Ashbya gossypii Riboflavin Biosynthese Gene (rib-Gene)
 - a. Konstruktion einer Ashbya gossypii cDNA-Bank
- 10 Gesamt RNA wurde aus dem Mycel des Riboflavin überproduzierenden Stammes Ashbya gossypii ATCC 10195 nach Züchtung auf YEPD Medium (Sherman et al., "Methods in yeast genetics", Cold Spring Harbor, New York, 1989) in der späten logarithmischen Wachstumsphase extrahiert.

15

- Poly(A) * RNA wurde durch zweimalige Adsorption und Elution an oligo(dT)-Cellulose gereinigt (Aviv und Leder, Proc. Natl. Acad. Sci. USA 69,1972, 1408-1412). Die cDNA wurde nach der allgemeinen Vorschrift von Gubler und Hoffmann isoliert (Gene 25, 1983, 263)
- 20 und synthetische EcoRI-Adaptoren wurden an die Enden der bluntend cDNA-Moleküle hinzugefügt. Die EcoRI nachgeschnittenen cDNA Fragmente wurden anschließend mittels T4 Polynukleotidkinase phosphoryliert und in den dephosphorylierten EcoRI geschnittenen Vektor pYEura3 kloniert (Fig. 1). pYEura3 (Clonetech
- 25 Laboratories, Inc., Kalifornien) ist ein Hefe-Expressionsvektor, der die Galaktose-induzierbaren GAL1 und GAL10 Promotoren und URA, CEN4 und ARS1 beinhaltet. Diese Hefeelemente erlauben die Transformation und Expression klonierter DNA-Fragmente in Hefezellen.

30

Aliquots der Ligationsreaktion wurden benutzt um hochkompetente (Hanahan, DNA Cloning, ed. D.M. Glover; IRL Press, Oxford 1985, 109) E. coli XL1-Blue (Bullock et al., Biotechniques 5 (1987) 376-378) zu transformieren und Transformanden wurden auf Basis 35 ihrer Ampicillinresistenz selektioniert.

Etwa 3 x 10^5 ampicillinresistente Zellen wurden vereinigt, amplifiziert und daraus Plasmid-DNA isoliert (Birnboim und Doly, Nucleic Acids Res. 7, 1979, 1513).

40

b. Isolierung von Ashbya gossypii cDNA-Klonen, die für riboflavinbildende Enzyme codieren cDNA-Klone von Ashbya gossypii, die für riboflavinbildende Enzyme codieren, wurden durch funktionelle Komplementation von Saccharomyces cerevisiae Mutanten, die in der Riboflavin-Biosynthese betroffen sind, isoliert.

Die Stämme AJ88 (Mata leu2 his3 rib1::URA3 ura3-52), AJ115 (Matalpha leu2 inos1 rib2::URA3 ura3-52), AJ71 (Matalpha leu2 inos1

rib3::URA3 ura3-52), AJ106 (Matalpha leu2 inos1 rib4::URA3 ura3-52), AJ66 (Mata canR inos1 rib5::URA3 ura3-52) und AJ121

- 10 (Matalpha leu2 inos1 rib7::URA3 ura3-52) sind mutierte Stämme, die durch Zerstörung eines der sechs Gene (RIB1 bis RIB5 und RIB7), die in die Riboflavinbiosynthese bei Saccharomyces cerevisiae involviert sind.
- 15 Diese Stämme wurden jeweils mit 25 µg cDNA aus der Ashbya gossypii cDNA-Bank transformiert und auf festem Galaktose-haltigem Medium ohne Riboflavin ausplattiert. Nach ungefähr einer Woche Wachstum wurden Rib+ Transformanden von den Kulturschalen isoliert.
- 20 Jeweils eine Transformande von jeder transformierten Mutante (Ribl+, Rib2+, Rib3+, Rib4+, Rib5+ und Rib7+) wurde analysiert und in allen Fällen wurde gefunden, daß der Rib+ Phänotyp nur in Galaktosemedium, nicht jedoch in Glucosemedium exprimiert war.
- 25 Diese Ergebnisse belegen, daß der Rib+ Phänotyp unter der Kontrolle des plasmidständigen galaktoseinduzierbaren GAL10 Promotors exprimiert wurde.
- Plasmid-DNA wurde aus den Ribl+, Rib2+, Rib3+, Rib4+, Rib5+ und 30 Rib7+ Transformanden durch Transformation von E. coli isoliert und pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 genannt.

Partialsequenzierung der in diesen Plasmiden enthaltenen cDNA-Insertionen bestätigte, daß sie für Proteine codieren, die analog 35 zu Proteinen der Rib-Genprodukte aus Saccharomyces sind.

- c. Isolierung von Ashbya gossypii genomischen Klonen, die für riboflavinbildende Enzyme codieren
- 40 Um die genomischen Kopien der riboflavinbildenden Gene von Ashbya gossypii zu isolieren wurde eine genomische Bank von Ashbya gossypii ATCC 10195 in dem Cosmid superCosl (Stratagene Cloning Systems, Kalifornien) angelegt und mit ³²P-markierten Proben, die von den cDNA Kopien der RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7
 45 Gene von Ashbya gossypii abgeleitet waren, gescreent.

+ DTD1 DTD

Cosmid Rlone mit RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 DNA wurden isoliert durch Koloniehybridisierung (Grunstein und Hogness, Proc. Natl. Acad. Sci. USA 72, 1975, 3961-3965). Weitere Southern Analysen von enzymatisch gespaltener Cosmid DNA unter Verwendung.

5 der gleichen RIB-spezifischen cDNA Proben erlaubte die Identifizierung definierter Restriktionsfragmente, die die RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 Gene von Ashbya gossypii enthielten.

Ein 3,1 kb langes BamHI-ClaI DNA Fragment wurde gefunden, das das 10 gesamte RIB1 Gen von Ashbya gossypii, codierend für GTP-Cyclohydrolase II enthielt. Dieses Fragment wurde aus einem Agarose Gel isoliert und in den BamHI und ClaI geschnittenen pBluescript KS (+) phagemid (Stratagene Cloning Systems) kloniert und lieferte so das Plasmid pJR765 (Fig.2).

15

Eine 1329 bp lange DNA Sequenz wurde erhalten (SEQ ID NO:1), die den RIB1 offenen Leserahmen von 906 bp, 242 bp von der 5'-nicht-kodierenden Region und 181 bp von der 3'-nichtkodierenden Region enthielt.

20

Das gesamte Ashbya gossypii RIB2 Gen, das für die DRAP-Deaminase codiert, wurde auf einem 3,0 kb langen EcoRI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR758 ergab (Fig.3).

25

Eine 2627 bp lange Region der EcoRI-PstI-Insertion mit dem offenen Leserahmen von RIB2 von 1830 bp, 450 bp der 5'-untranslatierten Region und 347 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:3).

30

Das gesamte Ashbya gossypii RIB3 Gen, das für die DBP-Synthase codiert, wurde auf einem 1,5 kb langen PstI-HindIII Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR790 ergab (Fig.4).

35

Eine 1082 bp lange Region der PstI-HindIII-Insertion mit dem offenen Leserahmen von RIB3 von 639 bp, 314 bp der 5'-untranslatierten Region und 129 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:5).

40

Das Ashbya gossypii RIB4 Gen, das für die DMRL-Synthase codiert, wurde auf einem 3,2 kb langen PstI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR762 ergab (Fig.5).

Eine 996 bp lange Region der PstI-PstI-Insertion mit dem offenen Leserahmen von RIB4 von 519 bp, 270 bp der 5'-untranslatierten Region und 207 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:7).

5

Das gesamte Ashbya gossypii RIB5 Gen, das für die Riboflavin-Synthase codiert, wurde auf einem 2,5 kb langen PstI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR739 (Fig.6) ergab.

10

Eine 1511 bp lange Region der PstI-PstI-Insertion mit dem offenen Leserahmen von RIB5 von 708 bp, 524 bp der 5'-untranslatierten Region und 279 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:9).

15

Schließlich wurde das Ashbya gossypii RIB7 Gen, das für die HTP-Reduktase codiert, auf einem 4,1 kb langen EcoRI-EcoRI-Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR845 ergab (Fig.7).

20

Eine 1596 bp lange Region der EcoRI-EcoRI-Insertion mit dem offenen Leserahmen von RIB7 von 741 bp, 352 bp der 5'-untranslatierten Region und 503 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:11).

25

Beispiel 2

mRNA Analyse der Ashbya gossypii RIB-Gene

- 30 Um die RIB spezifischen Transkripte zu identifizieren wurden Northern Analysen durchgeführt. Gesamt RNA wurde aus dem Ashbya gossypii Stamm ATCC 10195 wie in Beispiel 1 beschrieben, isoliert. Die RNA Proben des Stammes (5 μg) wurden elektrophoretisch aufgetrennt auf 0,8% Agarose-Formaldehyd-Gelen zusammen mit RNA-
- 35 Größenmarkern und unter Vakuum auf Nylonmembrane geblottet (Thomas, Proc. Natl. Acad. Sci. USA, 77, 1980, 5201-5205).

Die Nylonmembranen wurden unabhängig voneinander mit ³²P-markierten RIB-spezifischen DNA-Proben bei 42°C in 5xSSC und in Gegenwart von 50 % Formamid hybridisiert. Das Ashbya gossypii RIBl Gen wird als unique Message von etwa 1150 Nukleotiden exprimiert, was in beiden Stämmen durch eine 0,7 kbp lange SmaI-SacI Probe aus dem Plasmid pJR765 (Fig. 8) nachgewiesen wurde.

45 Analog wurden unique 1900 Nukleotide lange RIB2- , 900 Nukleotide lange RIB3-, 800 Nukleotide lange RIB4-, 1050 Nukleotide lange RIB5- und 1000 Nukleotide lange RIB7-Transkripte in den Blots mit

Hilfe eines 0,5 kbp langen Smal-Smal-Fragments aus pJR758, eines 0,6 kbp langen HindIII-KpnI-Fragments aus pJR790, eines 0,5 kbp langen Scal-HindIII Fragments aus pJR739 und eines 0,3 kbp langen PstI-PstI-Fragments aus pJR845 als spezifischer Probe nachge5 wiesen.

Beispiel 3

Expression der Ashbya gossypii RIB-Gene in Saccharomyces 10 cerevisiae

Wie in Beispiel 1 beschrieben, können gut untersuchte Mutanten von Saccharomyces cerevisiae, die in einer Stufe der Riboflavin-biosynthese defekt sind, auf Kulturmedien ohne Riboflavin wach15 sen, wenn sie ein Plasmid tragen, das für die komplementierenden Enzyme von Ashbya codiert. Um die Funktion der Ashbya gossypii RIB Genprodukte zu testen wurden flavinbildende Enzymaktivitäten in zellfreien Extrakten von S. cerevisiae- Mutanten gemessen, die eines der Expressionsplasmide pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 trugen.

Diese in Beispiel 1 beschriebenen von pYEura3 abgeleiteten Plasmide enthalten Ashbya gossypii RIB-spezifische cDNA-Fragmente unter der Kontrolle des galaktoseinduzierbaren GAL10 Promotors.

Zellfreie Proteinextrakte von S. cerevisiae wurden aus Kulturen gewonnen, die in Flüssigmedium bis zu einer optischen Dichte von etwa 2 OD gewachsen waren.

30 Die Zellen wurden geerntet, mit kaltem 20 mM Tris HCl, pH 7,5 gewaschen und im gleichen Puffer, der mit 1 mM Phenylethylsulfonylfluorid supplementiert war, resuspendiert.

Zell-Lysate wurden durch Vortexen in Gegenwart von Glaskugeln und 35 Zentrifugation bei 3000 g für 20 min. bei 4°C hergestellt.

GTP-Cyclohydrolase II, DRAP-Deaminase, DBP-Synthase, DMRL-Synthase, Riboflavin-Synthase und HTP-Reduktase Enzymaktivitäten wurden bestimmt wie in der Literatur beschrieben (Shavlovsky et al., Arch. Microbiol. 124 1980, 255-259; Richter et al., J. Baceriol. 175, 1993, 4045-4051; Klein und Bacher, Z. Naturforsch. 35b, 1980, 482-484; Richter et al. J. Bacteriol. 174, 1992, 4050-4056; Nielsen et al. J. Biol. Chem. 261, 1986, 3661; Plaut und Harvey, Methods Enzymol. 18B, 1971, 515-538; Hollander und Brown, Biochem. Biophys. Res. Commun. 89, 1979, 759-763; Shavlovski et al., Biochim. Biophys. Acta, 428, 1976, 611-618).

Protein-wurde nach der Methode von Peterson quantifiziert (Anal. Biochem. 83, 1977, 346-356). Wie aus Tab. 1 ersichtlich, bewirkt das Plasmid pJR715 die Expression von GTP-Cyclohydrolase II Aktivität in der S. cerevisiae Mutante AJ88. Weiterhin ist diese Aktivität nur vorhanden in Zellen, die auf Galaktosemedium gewachsen sind, was darauf hinweist, daß die RIB1 cDNA Expression von Ashbya gossypii unter der Kontrolle des galaktoseinduzierbaren GAL10-Promotors erfolgt.

10 Daher belegen diese Ergebnisse, daß RIB1 für die GTP-Cyclohydrolase II in Ashbya gossypii codiert. Auf analoge Art wurde gezeigt daß RIB2 für DRAP-Deaminase, RIB3 für DBP-Synthase, RIB4 für DMRL-Synthase, RIB5 für Riboflavinsynthase und RIB7 für HTP-Reduktase in diesem Pilz codiert.

15

Tab. 1
GTP-Cyclohydrolase II Aktivität der S. cerevisiae RIB1 Mutante
AJ88 und ihrer Transformanden.

20	Stamm	Plasmid	GTP-Cyclohydrolase II U/mg Protein **)				
			Glucose	Galaktose			
	X 2180-1A*	-	0,48	0,34			
l	AJ 88	-	n.d.	n.d.			
25	AJ 88	pIR715	n.d.	21,60			

n.d.:not detected

- *) Wildtyp
- **) Einheiten GTP-Cyclohydrolase II Aktivitäten
 1U katalysiert die Bildung von 1 nmol HTP pro Stunde

35

30

Tab.2 DRAP-Deaminase Aktivität der S. cerevisiae RIB2 Mutante AJ115 und ihrer Transformanden.

5	Stamm	Plasmid	DRAP-Deaminase U/mg Protein *)						
			Glucose	Galaktose					
┝	X 2180-1A	_	0,45	0,38					
-	AJ 115	-	n.d.	n.d.					
10	AJ 115	pIR669	n.d.	53,22					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol ARAP pro Stunde

Tab.3

DBP-Synthase Aktivität der S. cerevisiae RIB3 Mutante AJ71 und ihrer Transformanden.

St	amm	Plasmid		DBP-Synthase U/mg Protein *)					
				Glucose	Galaktose				
	80-1A	-		0,80	0,75				
	771			n.d.	n.d.				
A		pIR788		n.d.	25,19				

25 n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DBP pro Stunde

Tab.4 GTP-Cyclohydrolase II Aktivität der S. cerevisiae RIB4 Mutante 30 AJ106 und ihrer Transformande.

Stamm	Plasmid	DMRL-Synthase U/mg Protein *)					
·		Glucose	Galaktose				
X 2180-1A	_	2,04	1,73				
AJ 106	-	n.d.	n.d.				
AJ 106	pIR733	n.d.	86,54				

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DMRL pro Stunde

Tab.5 Riboflavin-Synthase Aktivität der S. cerevisiae RIB5 Mutante AJ66 und ihrer Transformande.

5	Stamm	Plasmid	Riboflavin-Synthase U/mg Protein *)					
			Glucose	Galaktose				
	X 2180-1A	-	4,41	3,80				
	AJ 66	_	n.d.	n.d.				
o۲	AJ 66	pIR681	n.d.	164,20				

n.d.:not detected

Tab.6
HTP-Reduktase Aktivität der S. cerevisiae RIB7 Mutante AJ121 und ihrer Transformande.

Stamm	Plasmid	HTP-Reductase U/mg Protein *)					
		Glucose	Galaktose				
X 2180-1A	-	1,86	2,54				
AJ 121	-	n.d.	n.d.				
AJ 121	pIR827	n.d.	46,21				

25 n.d.:not detected

30

35

^{*) 1}U katalysiert die Bildung von 1 nmol Riboflavin pro Stunde

^{*) 1}U katalysiert die Bildung von 1 nmol DRAP pro Stunde

		14	
•	•	SEQUENZPROTOKOLL	
	(1) ALGE	MEINE INFORMATION:	
•	· (i)	ANMELDER:	
٠: .	•.	(A) NAME: BASF Aktiengesellschaft	
•		(B) STRASSE: Carl-Bosch-Strasse 38	
		(C) ORT: Ludwigshafen	
		(E) LAND: Bundesrepublik Deutschland	
		(F) POSTLEITZAHL: D-67056	
		(G) TELEPHON: 0621/6048526	
		(H) TELEFAX: 0621/6043123	
		(I) TELEX: 1762175170	
	(ii)	ANMELDETITEL: Riboflavin-Biosynthese in Pilzen	
	(iii)	ANZAHL DER SEQUENZEN: 12	
	(iv)	COMPUTER-LESBARE FORM:	
		(A) DATENTRÄGER: Floppy disk	
		(B) COMPUTER: IBM PC compatible	
		(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS	
		(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)	
•	(2) INFO	RMATION ZU SEQ ID NO: 1:	
	(i)	SEQUENZ CHARAKTERISTIKA:	
•		(A) LÄNGE: 1329 Basenpaare	
** **		(B) ART: Nukleinsäure	
		(C) STRANGFORM: Doppel	
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: cDNS zu mRNS	
	(iii)	HYPOTHETISCH: NEIN	
		ANTISENSE: NEIN	
	(vi)	URSPRÜNLICHE HERKUNFT:	
		(A) ORGANISMUS: Ashbya gossypii	
	(ix)	MERKMALE:	
		(A) NAME/SCHLÜSSEL: 5'UTR	
		(B) LAGE: 1242	
	(ix)	MERKMALE:	
		(A) NAME/SCHLÜSSEL: CDS	
		(B) LAGE: 2431148	
	(ix)	MERKMALE:	
		(A) NAME/SCHLÜSSEL: 3'UTR	
		(B) LAGE: 11491329	
		SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
		CG CATACTTCAT ATGCTCATCG CACATTGATA ATGTACATTC GAAAAATTTC	60
			120
			180
	AAAGCAGT.	AG TCGGTGTTGA TAGCTGTGTC AGACCAACTC TTTGTTAATT ACTGAAGCTG	240
	AT ATG A	CT GAA TAC ACA GTG CCA GAA GTG AGG TGT GTC GCA CGC GCG	287

Met Thr Glu Tyr Thr Val Pro Glu Val Arg Cys Val Ala Arg Ala 5 10 15 1

WO 95/26406 15

							15									
CGC	ATA	CCG	ACG	GTA	CAG	GGC	ACC	GAT	GTC	TTC	CTC	CAT	CTA	TAC	CAC	335
Arg	Ile	Pro	Thr	Val	Gln	Gly	Thr	Asp	Val	Phe	Leu	His	Leu	Tyr	His	
				20					25					30		
AAC	TCG	ATC	GAC	AGC	AAG	GAA	CAC	CTA	GCG	ATT	GTC	TTC	GĢC	GAG	AAC	383
Asn	Ser	Ile	Asp	Ser	Lys	Glu	His	Leu	Ala	Île	Val	Phe	Gly	Glu	Asn	
			35					40					45			
ATA	CGC	TCG	CGG	AGT	CTG	TTC	CGG	TAC	CGG	AAA	GAC	GAC	ACG	CAG	CAG	431
Ile	Arg	Ser	Arg	Ser	Leu	Phe	Arg	Tyr	Arg	Lys	Asp	Asp	Thr	Gln	Gln	
		50					55					60		•		
GCG	CGG	ATG	GTG	CGG	GGC	GCC	TAC	GTG	GGC	CAG	CTG	TAC	CCC	GGG	CGG	479
Ala	Arg	Met	Val	Arg	Gly	Ala	Tyr	Val	Gly	Gln	Leu	Tyr	Pro	Gly	Arg	
	65					70					75					
ACC	GAG	GCA	GAC	GCG	GAT	CGG	CGT	CAG	GGC	CTG	GAG	CTG	CGG	TTT	GAT	527
Thr	Glu	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	Leu	Arg	Phe	Asp	
80					85		`			90					95	
GAG	ACA	GGG	CAG	CTG	GTG	GTG	GAG	CGG	GCG	ACG	ACG	TGG	ACC	AGG	GAG	575
Glu	Thr	Gly	Gln	Leu	Val	Val	Glu	Arg	Ala	Thr	Thr	Trp	Thr	Arg	Glu	
		-		100				-	105			-		110		
CCG	ACA	CTG	GTG	CGG	CTG	CAC	TCG	GAG	TGT	TAC	ACG	GGC	GAG	ACG	GCG	623
Pro	Thr	Leu	Val	Arg	Leu	His	Ser	Glu	Cys	Tyr	Thr	Gly	Glu	Thr	Ala	
			115				•	120	٠.				125			•
TGG	AGC	GCG	CGG	TGC	GAC	TGC	GGG	GAG	CAG	TTC	GAC	CAG	GCG	GGT	AAG	671
Trp	Ser	Ala	Arg	Cys	Asp	Cys	Gly	Glu	Gln	Phe	Asp	Gln	Ala	Gly	Lys	•
		130					135					140				
CTG	ATG	GCT	GCG	GCG	ACA	GAG	GGC	GAG	GTG	GTT	GGC	GGT	GCG	GGG	CAC	719
Leu	Met	Ala	Ala	Ala	Thr	Glu	Gly	Glu	Val	Val	Gly	Gly	Ala	Gly	His	
	145					150					155					
GGC	GTG	ATC	GTG	TAC	CTG	CGG	CAG	GAG	GGC	CGC	GGC	ATC	GGG	CTA	GGC	767
Gly	Val	Ile	Val	Tyr	Leu	Arg	Gln	Glu	Gly	Arg	Gly	Ile	Gly	Leu	Gly	
1.60			-		165					170					175	
GAG	AAG	CTG	AAG	GCG	TAC	AAC	CTG	CAG	GAC	CTG	GGC	GCG	GAC	ACG	GTG	815
Glu	Lys	Leu	Lys	Ala	Tyr	Asn	Leu	Gln	Asp	Leu	Gly	Ala	Asp	Thr	Val	
				180					185					190		
													GAC			863
Gln	Ala	Asn		Leu	Leu	Asn	His	Pro	Ala	Asp	Ala	Arg	Asp	Phe	Ser	
			195					200					205			
TTG	GGG	CGC	GCA	ATC	CTA	CTG	GAC	CTC	GGT	ATC	GAG	GAC	ATC	CGG	TTG	911
Leu	Gly	-	Ala	Ile	Leu	Leu	_	Leu	Gly	Ile	Glu	Asp	Ile	Arg	Leu	
		210					215					220				
													CCG			959
Leu		Asn	Asn	Pro	Asp	_	Val	Gln	Gln	Val		Cys	Pro	Pro	Ala	
	225					230					235					
													TGG			1007
	Arg	Cys	Ile	Glu		Val	Pro	Met	Val		Leu	Ser	Trp	Thr		
240					245					250					255	

WO 95/26406 PCT/EP95/00958

CCC	ACA	CAG	GGC	GTG	CGC	TCG	CGC	GAG	CTG	GAC	GGC	TAC	CTG	CGC	GCC	1055
Pro	Thr	Gln	Gly	Val	Arg	Ser	Arg	Glu	Leu	Asp	Gly	Tyr	Leu	Arg	Ala	
				260					265					270		
AAG	GTC	GAG	CGC	ATG	. GGG	CAC	ATG	CTG	CAG	- CGG	CCG	CTG	GTG	CTG	CAC	1103
			Arg			•	• • •							-	•	
-1-			275		1			280		5			285			
»CC	mCm	GCG		GCC	GAG	CTC	ccc		ccc	2 2 C	מכמ	CAC		יות מיני	rctttgc	1155
			Ala											IAM.	ICTITIC	1155
TIIL	261		мта	NIG	GIU	neu	295	ALG	Ala	ASII	1111		TTE			
m a m i		290	~m~m	A 171 X X X		ը አ <i>ጥር (</i>		N CC	~~	~~~	ccica	300	~~~		IGCTCA .	1015
																1215
															GAGCAC	1275
			ATCA:						AGTO	GICG	TTG	AAGA	ا قاتاق	rGCA		1329
(2)			LION													
	İ		SEQUE	_												
		•	A) LÀ					iure	מ							
		-	3) AF													
		•) TO													
			r DES													
			QUENZ													
Met	Thr	Glu	Tyr	Thr	Val	Pro	Glu	Val	Arg	Cys	Val	Ala	Arg	Ala	Arg	
1				5					10					15		
Ile	Pro	Thr	Val:	Gln	Gly	Thr	Asp	Val	Phe	Leu	His	Leu	Tyr	His	Asn	•
		:	20					25					30.			
Ser	Ile	Asp	Ser	Lys	Glu	His	Leu	Ala	Ile	Val	Phe	Gly	Glu	Asn	Ile	•
		35					40					45				
Arg	Ser	Arg	Ser	Leu	Phe	Arg	Tyr	Arg	Lys	Asp	Asp	Thr	Gln	Gln	Ala	
	50					55					60					
Arg	Met	Val	Arg	Gly	Ala	Tyr	Val	Gly	Gln	Leu	Tyr	Pro	Gly	Arg	Thr	
65					70					75					80	
Glu	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	Leu	Arg	Phe	Asp	Glu	
				85					90					95		
Thr	Gly	Gln	Leu	Val	Val	Glu	Arg	Ala	Thr	Thr	Trp	Thr	Arg	Glu	Pro	
			100					105					110			
Thr	Leu	Val	Arg	Leu	His	Ser	Glu	Cys	Tyr	Thr	Gly	Glu	Thr	Ala	Trp	
		115					120					125				
Ser	Ala	Arg	Cys	Asp	Cys	Gly	Glu	Gln	Phe	Asp	Gln	Ala	Gly	Lys	Leu	
	130					135					140					
Met	Ala	Ala	Ala	Thr	Glu	Gly	Glu	Val	Val	Gly	Gly	Ala	Gly	His	Gly	
145					150					155					160	
Val	Ile	Val	Tyr	Leu	Arg	Gln	Glu	Gly	Arg	Gly	Ile	Gly	Leu	Glv	G1u	
			_	165	•			-	170	-		-		175		
Lvs	Leu	Lvs	Ala		Asn	Leu	Gln	asp	Leu	Glv	Ala	asa	Thr		Gln	
.			180					185		3			190		J 	
Ala	Asn	Glu	Leu	Leu	Asn	His	Pro		Asp	Ala	Ara	Asn		Sar	Len	
		195					200		ىر		9	205		J-11	~~ u	
Glv	Ara		Ile	Len	Leu	Asp		Glv	Ile	G1 11	Aan		Ara	T,en	Len	
1	210					215		,			220		9	204	204	

WO 95/26406	PCT/EP95/00958

٠.

		•					17											
Thr A 225					230					235					240			
Arg (Cys	Ile			Val	Pro	Met	Val		Leu	Ser					.•		
Thr C	21 n	Glv		245	Ser	Ara	Glu	T.a.ı	250	Glu	ጥረም		Δ r α		Tue			•
1111	3111	Gry	260	111.9	501	1119	GIU	265	rab	GIY	1 Y L	Deu	270	N.C	БуЗ			
Val (Glu	Arg	Met	Gly	His	Met	Leu	Gln	Arg	Pro	Leu	Val	Leu	His	Thr			
		275					280					285						
Ser A		Ala	Ala	Glu	Leu		Arg	Ala	Asn	Thr		Ile				•		
(2)	290 INFO	RMAT	PTON	ZII 9	EO 1	295 D NO) · 3				300							
(-/ -				Z CHA														
	(-,			inge :					9									
				RT: N														
				TRANG				L										
				POLO														
	(ii)	AR	C DES	S MOI	EKÜI	նs։ d	DNS	zu I	nRNS									
(:	iii)	HYI	OTH!	ETISC	CH: 1	JEIN.												
•				NSE:														
!	(vi)			NLICE						•								
				RGAN	SMUS	6: As	shbya	a go:	ssyp	Li								
1	(1X)		RKMA:		· CUT Ì	icen	. E	/ 17MD										
				AME/S AGE:			L: 3	UTR						• .				
	/iv)		RKMA:		1	100												
	(+ 11			AME/S	CHL	İSSEI	L: CI	25										
				AGE:														
	(ix)	-	RKMA				_											
	•			AME/S	CHL	jsse1	ն։ 3	UTR										
		(1	3) L	AGE:	2283	L26	527											
	(xi)	SE	QUEN	ZBES	CHRE	EBUN	G: SI	EQ I	D NO	: 3:								
CTGC	AGGI	ACA Z	ATTT.	AAAT:	ra c	GATT	ACAC	G CG	GCAG	CCTT	CTT	GGTG	CGA	CAGG.	ATTTTG		60	
		_				_									CGTTCC		L20	
															CATACA		180	
															TATGTG		240	
															ACCATA		300	
														_	CGTTTG		360	
															ATCCTT C CTT		420	
ININ	AAC:	IGC	IACI	TANC	21 1,	CGIM	HUHU								y Leu	•	474	
									1	u шy	5 GI	_	5	O GI	у пец			
CTT	TTT	AAG	GAG	ACG	CAA	CGT	CAT		_	CCC	AGG		•	AGG	ATT		522	
Leu :															_		-	
	10	•		•		15			-		20			,	-			
ATG	GAA	AAC	ACA	TCG	CAG	GAT	GAG	AGT	CGC	AAA	AGA	CAG	GTC	GCT	TCG		570	
Met	Glu	Asn	Thr	Ser	Gln	Asp	Glu	Ser	Arg	Lys	Arg	Gln	Val	Ala	Ser			
25					30					35					40			

WO 95/204006 FC1/EF95/009

			_													
					GCC											618
Asn	Leu	Ser	Ser	Asp	Ala	Asp	Glu	Gly	Ser	Pro	Ala	Val	Thr	Arg	Pro	
		•		45					50					55		•
GTT	AAA	ATC	ACC	AAA	CGC	CTC	AGG	AAG	AAG	AAC	CTC	.GGG	ĄCA	GGC	GAG	666
Val	Lys	Ile	Thr	Lys	Arg	Leu	Arg	Lys	Lys	Asn	Leu	Gly	Thr	Gly	Glu	
			60					65				•	70	•		
CTA	CGG	GAC	AAA	GCA	GGA	TTC	AAG	TTG	AAG	GTG	CAA	GAC	GTG	AGC	AAA	714
					Gly											,11
		75			-		80		-			85			-10	
AAC	CGT	CAC	AGA	CAG	GTC	GAT	CCG	GAA	TAC	GAA	GTC	GTG	GTA	GAT	GGC	762
					Val											702
	90		_			95			•		100				0-1	
CCG	ATG	CGC	AAG	ATC	AAA	CCG	TAT	TTC	TTC	ACA	-	AAG	ACT	ጥጥር	TCC	810
					Lys											810
105			•		110		-3-			115	-]	2,0			120	
	GAG	CGC	TGG	AGA	GAT	CGG	AAG	TTG	СТТ		GTG	ጥጥጥ	GTG	CAT		0.50
					Asp											858
•			1	125		5	-1-		130			1110	V CL L	135	GIU	
ттт	CGG	GAC	CGC		AGG	ССТ	ጥልሮ	ጥልሮ		ΔΔΔ	CTC	አጥሮ	CCT		CCM	006
					Arg											906
		cp	140	···op	••••		+ Y +	145	GIU	пуэ	AGI	TTE	150	ser	сту	•
GGT	GTG	CTC		AAC	GGT	AAG	тса	_	ACG	מיזייזי	CAT	7.CC		mmc	CCM	054
					Gly											954
3		155			O-1	2,5	160	501	1111	ъęи	voħ	165	Val	neu	Arg	
AAT	GGA		СТС	ידידע	TCG	CAC		СТС	CAC	CCT	ሮአጥ		CCB	000	CMC	1000
					Ser											1002
	170				001	175	Oru	nea	1113	AL G	180	GIU	PLO	PIO	val	
TCC		AGG	CCG	АТТ	AGG		GTG	TAC	CAA	СЪТ		GAC.	እጥር	CMC	CMC	1050
					Arg											1050
185		9			190		• • • • • • • • • • • • • • • • • • • •	-1-	014	195	nsp	nsp	776	реп		
	GAC	AAG	ccc	AGC	GGG	ATT	CCA	GCC	CAT		»CC	ccc	CCM	ma c	200	1000
					Gly											1098
		-,,		205	01			nia.	210	FIU	1111	ату	Arg	-	Arg	
ттс	AAC	ሞርር	א יייי		AAA	ΔΤΔ		CAA		CAC	Cutur	CCB	ma.c	215		
					Lys											1146
			220	****	2,5	110	200	225	цуs	GIII	neu	GTÀ	-	THE	vaı	
САТ	CCA	тст		CCA	CTG	CAC	200		N.C.C	እ ርጥ	ccc	CMX	230	mm-a	mm-a	
					Leu											1194
		235	11511	9	Deu	vab	240	₽6 a	111L	Ser	GTĀ		Met	rne	Leu	
GC A	מממ		CCA	7 T T	GGA	ccc		CAC	አመድ	CCm	C3 m	245	3 m.c			
																1242
uta		THE	FIO	тÃ2	Gly		ASP	GiU	met	стА		GTU	Met	гĀЗ	Ala	
CCC	250	cm-c			~ -	255	^==	000			260					
					GAA											1290
	GIU	val	тÀ2	гла	Glu	Tyr	Val	Ala	Arg		Val	Gly	Glu	Phe	Pro	
265					270					275					280	

WO 95/26406 19

							19									
ATA	GGT	GAG	ATA	GTT	GTG	GAT	ATG	CCA	CTG	AAG	ACT	ATA	GAG	CCG	AAG	1338
Ile	Gly	Glu	Ile	Val	Val	Asp	Met	Pro	Leu	Lys	Thr	Ile	Glu	Pro	Lys	
• •				285					290					295		
CTT	GCC	CTA	AAC	ATG	GTT	TGC	GAC	CCG	GAA	GAC	GAA	GCG	ĢGC	AAG	GGC	 1386
Leü	Ala	Leu	Asn	Met	Val	Cys	Asp	Pro	Glu	Asp	Glu	Ala	Gly	Lys	Gly	
			300					305					310			
		ACG														1434
Ala	Lys	Thr	Gln	Phe	Lys	Arg		Ser	Tyr	Asp	Gly		Thr	Ser	Ile	
		315					320					325				-
		TGC							•							1482
Val	_	Cys	Gln	Pro	Tyr		Gly	Arg	Thr	His		Ile	Arg	Val	His	
	330					335					340					
		TAC														1530
	Gln	Tyr	Leu	Gly		Pro	Ile	Ala	Asn		Pro	Ile	Tyr	Ser		
345					350					355					360	
CCG	CAC	ATA	TGG	GGC	CCA	AGT	CTG	GGC	AAG	GAA	TGC	AAA	GCA	GAC	TAC	1578
Pro	His	Ile	Trp	Gly	Pro	Ser	Leu	Gly-	Lys	Glu	Cys	Lys	Ala	Asp	Tyr	
				365					370					375		
		GTC														1626
Lys	Glu	Val		Gln	Lys	Leu	Asn		Ile	Gly	Lys	Thr		Ser	Ala	
			380					385					390			
		TGG														1674
Glu	Ser	Trp	Туг	His	Ser	Asp		GIn	GTÅ	GLu	Val		ràs.	GTA	GLu	•
	500	395	~~~	m c m	000	100	400	080	ma.c	3 OM	03.0	405	000	200		1700
		GAT														1722
GIN	-	Asp	GTA	cys	GTÅ		GIU	rea	TĂT	THE	420	PIO	GTÅ	PIO	ASII	
CAD	410	C1 C	מ וחמו	mcc.	mm c	415	CCN	መለመ	000	መልመ		mcc	a cm	C2 2	CITIC	1770
		GAC														1770
425	ьeu	Asp	ьеи	ırp	430	urs	NIG	ıyı	ALG	435	GIU	261	TIII	GIU	440	
	GAG	AAC	CCT	CCT		AAG	CGG	AGT	ጥልሮ		ልሮሞ	GCG	արդու	ССТ		1818
		Asn														1010
nop	014	11311	_		2,0	_	_					,,,,,,		455	024	
TGG	GCT	CTT									CTT	GCC	ATC	GAA	CAG	1866
		Leu														
			460					465					470			
GCT	AAG	AAA		CCA	CCC	GCG	AAG	ACA	TCA	TTT	AGC	GTT	GGT	GCC	GTG	1914
		Lys														
	-	475	_				480					485				
TTA	GTT	AAT	GGG	ACC	GAG	ATT	TTG	GCC	ACT	GGT	TAC	TCA	CGG	GAG	CTG	1962
Leu	Val	Asn	Gly	Thr	Glu	Ile	Leu	Ala	Thr	Gly	Tyr	Ser	Arg	Glu	Leu	
	490		_			495				_	500					
GAA	GGC	AAC	ACG	CAC	GCT	GAA	CAA	TGT	GCA	CTT	CAA	AAA	TAT	TTT	GAA	2010
Glu	Gly	Asn	Thr	His	Ala	Glu	Gln	Cys	Ala	Leu	Gln	Lys	Tyr	Phe	Glu	
505					510					515					520	

CAA	CAT	AAA	ACC	GAC	AAG	GTT	CCT	ATT	GGT	ACA	GTA	ATA	TAC	ACG	ACT	2058
Gln	His	Lys	Thr	Asp	Lys	Val	Pro	Ile	Gly	Thr	Val	Ile	Tyr	Thr	Thr	
				525					530					535		
AŤG	GAG	CCT	TGT	TCT	CTC	CGT	CTC	AGT	GGT	AAT.	AAA	CCG	TGT	GTT	.GAG	2106
. •.												Pro				
			540			•		545	-		•		550		-	
ССТ	מידמ	ΔͲC		CAG	CAG	GGT	аат		АСТ	GCT	GTT	TTT		GGC	GTA	2154
												Phe				
nry	110	555	Cys	0.2	01		560				,	565	• • • •	01,	· · · ·	
CERT	CNC		CAC	א א כי	ጥጥር	CTC		N N C	ייימת	a C a	ልርጥ	CGT	GCG	СТА	ጥጥር	2202
												Arg				2202
ьeu		PIO	wsp	ASII	FIIE	575	туу	nsn	ASII	1111	580	m y	ma	Dea	Tea	
	570	~~ =	~ ~ m		C3.C		3 000	~mm	cmc	CCM		mmm	C 3 3	C 3 3	C3.3	2250
												TTT				2250
	Gln	His	Gly	Ile		Tyr	TTe	Leu	Val		GTĀ	Phe	GIN	GLu		
585					590					595					600	
TGT	ACT	GAA	GCC	GCA	TTG	AAG	GGT	CAT	TGA:	TTTT(GCT (GCGA/	ATTG:	ΓA		2297
Cys	Thr	Glu	Ala	Ala	Leu	Lys	Gly	His								
				605					610							
GAT	SACT	CAA A	LATA	CGA	GG CC	STAT	TTA	GT(CGCA.	TTTT	ATA:	ragt:	rat (CTAT	STTTAC	2357
ATG	ACTG	TTT A	AAGCT	rTGA:	rc T	TAT?	TCT	CAAC	STGA	ATTG	CCA	CATA:	IGI :	rggti	ACGGTA	2417
ATA	AATT	AAT (AGG	GAGT.	TT TO	GAAA?	rtcg	CAAC	CAA!	CTT	ATA:	racg:	TTT (GATG	AATATA	2477
ACG	SATTO	GAG A	ATTC	ATTA	AG C	CACC	rgat:	r TT	CGCT	GAAC	TGT	TTGT:	TAT A	AGGT'	TTTTAC	2537
AGT	AAGA?	rag 1	TCC	LAAG!	rt te	STTT	ATTG:	r cc	CCAG!	rcgg	CCA	ATTG:	TTC (CGGA	CTTATT	2597
ATT	ATTA	CCA 1	TAG:	rggt	GT T	AGTA	GTAT'	r								2627
(2)	INFO	ORMAT	NOI	ZU S	SEQ :	ID NO): 4	:								
		(i) S	EQUE	ENZ (CHAR	AKTE	RIST	IKA:								
		(2	A) LŻ	NGE:	: 609	Am:	inos	iure	n							
		(I	3) AI	RT: A	Amino	säu	re									
		•	•		GIE											-
	(ii)				LEKÜ			ein								
					CHRE				ONO:	: 4:						
Met											Glu	Thr	Gln	Ara	His	
1		_,_	1	5		_			_	_				15		
-		Pro	Δτα	_		Ara	Tla	Mot	Glu	Δen	Thr	Ser	Gln	Aen	Glu	
meu	пуз	110	20	Бец	V 44 1	1119	116	25	GIU	non	1111	561	30	nsp	GIU	
Co	7	T		C1 =	17-3	חות	S0=		T 011	S0=	car	7.00		7 00	Clas	
ser	Arg	-	Arg	GTII	vaı	VIG		ASII	ъец	Ser	Ser	Asp	nta	asp	GIU	
	_	35	• · • ·	••- 3	m 1	3	40		•	- 1.	m>	45	3		•	
GTĀ		PIO	Ala	vaı	Thr		PIO	vai	тАг	тте		ГÀЗ	Arg	Leu	Arg	
	50					55					60					
Lys	Lys	Asn	Leu	Gly		Gly	Glu	Leu	Arg	_	Lys	Ala	Gly	Phe	=	
65					70					75					80	
Leu	Lys	Val	Gln	Asp	Val	Ser	Lys	Asn	Arg	His	Arg	Gln	Val	Asp	Pro	
				85					90					95		
C1														,,,		
GIU	Tyr	Glu	Val		Val	Asp	Gly	Pro	Met	Arg	Lys	Ile	Lys		Tyr	
GIU	Tyr	Glu	Val		Val	Asp	Gly	Pro 105	Met	Arg	Lys	Ile	Lys 110		Tyr	

PCT/EP95/00958 WO 95/26406 21

Leu	Leu 130	Asp	Val	Phe	Val	Asp 135	Glu	Phe	Arg	Asp	Arg 140	Asp	Arg	Pro	Tyr
Φ.,,-		Tuc	17-1	Tlo	Clu		G1 v	Clu	Val	T ou		Äsn	C1	7	C
14.5		гдэ		 TTE	150		Grà			15.5			GTÀ	гуз	5er 160
Ser	Thr	Leu	Asp	Ser	Val					Asp	Leu	Ile	Ser	His	Glu
				165					170					175	
Leu	His	Ara	His	Glu	Pro	Pro	Val	Ser	Ser	Ara	Pro	Ile	Arα		Val
		5	180					185		9			190	•	741
m	C1	7.00		7 00	T10	T 011	1723		7 00	T	D	Ser		+ 1 -	D
ığı	GIU		ASP	Asp	TTE.	теп		116	кър	ъÃ2	PIO		GTĀ	тте	PIO
	1	195			_	_	200		_	_		205			
Ala		Pro	Thr	Gly	Arg		Arg	Phe	Asn	Ser		Thr	Lys	Ile	Leu
	210					215					220				
Glu	Lys	Gln	Leu	Gly	Tyr	Thr	Val	His	Pro	Cys	Asn	Arg	Leu	Asp	Arg
225					230					235					240
Leu	Thr	Ser	Gly	Leu	Met	Phe	Leu	Ala	Lvs	Thr	Pro	Lys	Glv	Ala	Asp
			•	245					250				2	255	
C111	Mot	C1	7 00		Mot	T •••	- וא	N		17-1	T	Lys	C1		**- 1
GLu	Mec	GLY		GTII	Mec	пуз	пта		GIU	Val	туу	гλя		туг	vaı
	_		260				_	265					270		
ALA	Arg		Val	Gly	Glu	Phe		Ile	Gly	Glu	Ile	Val	Val	Ąsp	Met
		275					280					285			
Pro	Leu	Lys	Thr	Ile	Glu	Pro	Lys	Leu	Ala	Leu	Asn	Met	Val	Cys	Asp
	290					295					300				
Pro	Glu	Asp	Glu	Ala	Gly	Lys	Gly	Ála	Lys	Thr	Gln	Phe	Lys.	Arg	Ile
305					310					315					320
Ser	Tyr	Asp	Gly	Gln	Thr	Ser	Ile	Val	Lvs	Cvs	Gln	Pro	Tvr	Thr	
	_	_	-	325					330	•			-	335	1
Arσ	Thr	His	G1n	He	Arσ	Val	His	Leu		ጥ ህ ኮ	T.e.11	Gly	Pho		Tla
9		0	340		•••	, 44		345	0111	-3-	neu.	GLY	350	FIO	176
λl =	Acn	700		Tla	m	50-	300		n; o	T1.	m	Gly		0	T
VTG	A911	355	FIU	TTE	TAT	Ser		PLO	птэ	TIE	irp		PIO	ser	ren
Q1	T		0	•		•	360	-	~ 3			365	_	_	
GTÅ		GIU	Cys	ьys	Ата		Tyr	гаг	GIU	vaı		Gln	Lys	Leu	Asn
	370					375	_	_			380				
	Ile	Gly	Lys	Thr		Ser	Ala	Glu	Ser		Tyr	His	Ser	Asp	
385					390					395					400
Gln	Gly	Glu	Val	Phe	Lys	Gly	Glu	Gln	Суз	Asp	Glu	Cys	Gly	Thr	Glu
				405					410					415	
Leu	Tyr	Thr	Asp	Pro	Gly	Pro	Asn	Asp	Leu	Asp	Leu	Trp	Leu	His	Ala
			420		_			425		-		_	430		
Tvr	Arσ	Tvr	Glu	Ser	Thr	Glu	Leu	Asp	Glu	Asn	Glv	Ala		T.ve	Ara
-1-	••••	435	014				440				O _T y	445	בעם	цуз	ALG
S	m		mb	77.	nh e	D=0		m	71-	T	~ 1		** 3 -		
Sel		DEL	THE	uTg	rne		GIU	TTD	urg	neg		Gln	nlS	стÃ	Asp
	450			_		455			_		460				
	Met	Arg	Leu	Ala		Glu	Gln	Ala	Lys		Cys	Pro	Pro	Ala	Lys
465					470					475					480
Thr	Ser	Phe	Ser	Val	Gly	Ala	Val	Leu	Val	Asn	Gly	Thr	Glu	Ile	Leu
				485					490					495	

WO 95/26406 PCT/EP95/00958

Ala	Thr	Gly	Tyr	Ser	Arg	Glu	Leu	Glu	Gly	Asn	Thr	His	Ala	Glu	Gln
		•	500					505					510		
Ċvs	Ala	Leu	Gln	Lys	Tyr	Phe	Glu	Gln	His	Lys	Thr	qzA	Lys	Val	Pro

22

515 520 525

Ile Gly Thr Val Ile Tyr Thr Thr Met Glu Pro Cys Ser Leu Arg Leu 530 535 540

Ser Gly Asn Lys Pro Cys Val Glu Arg Ile Ile Cys Gln Gln Gly Asn 545 550 555 560

Ile Thr Ala Val Phe Val Gly Val Leu Glu Pro Asp Asn Phe Val Lys

565 570 575

Asn Asn Thr Ser Arg Ala Leu Leu Glu Gln His Gly Ile Asp Tyr Ile
580 585 590

Leu Val Pro Gly Phe Gln Glu Glu Cys Thr Glu Ala Ala Leu Lys Gly
595 600 605

His

- (2) INFORMATION ZU SEQ ID NO: 5:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1082 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..314
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 315..953
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 3'UTR
 - (B) LAGE: 954..1082
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

CCCTTCTTGC ACGGTCGTTT CTGAAACTCT ACGATTATTG GAACAATGAG TAAGTCCTCA 60

AATGTACCAC CTATCTGTAG TTTACTATCG GATTTACTGG CTAAGAGCTG ACCTGTTAGG 120

CAAGTGAAAC ATATCACATC GCCAGCAGGT TGGGCTACCA AGGATAGTTG ATGACTTCCA 180

TCACCTATAA AAGCGGCTTG AGTGCTTTTG CAATGATTCT GTTCACATGA TGGACAAGAA 240

ATACGTACAA AAATTTCAAC GTTTTACAAG TTCCCAAGCT TAGTCAACTC ATCACCAACG 300

ACAAACCAAG CAAC ATG ACA AGC CCA TGC ACT GAT ATC GGT ACC GCT ATA 350

5

Met Thr Ser Pro Cys Thr Asp Ile Gly Thr Ala Ile

GAG	CAG	TTC	AAG	CAA	AAT	AAG	ATG	ATC	ATC	GTC	ATG	GAC	CAC	ATC	TCG	398
Glu	Gln	Phe	Lys	Gln	Asn	Lys	Met	Ile	Ile	Val	Met	Asp	His	Ile	Ser	
		15					20					25				
AGA	GAA	AAC	GAG	GCC	GAT	CTA	ATA	TGT	GCA	.GCA	GCG	CAÇ	ATG	ĄCT	GCC	446
Àrg	Glu	Asn	Glu	Ala	Asp	Leu	Ïle	Cys	Ala	Ala	Ala	His	Met	Thr	Ala	
	30					35					40					
GAG	CAA	ATG	GCA	TTT	ATG	ATT	CGG	TAT	TCC	TCG	GGC	TAC	GTT	TGC	GCT	494
Glu	Gln	Met	Ala	Phe	Met	Ile	Arg	Tyr	Ser	Ser	Gly	Tyr	Val	Cys	Ala	
45					50					55					60	
CCA	ATG	ACC	AAT	GCG	ATT	GCC	GAT	AAG	CTA	GAC	CTA	CCG	CTC	ATG	AAC	542
Pro	Met	Thr	Asn	Ala	Ile	Ala	Asp	Lys	Leu	Asp	Leu	Pro	Leu	Met	Asn	
				65					70					75		-
ACA	TTG	AAA	TGC	AAG	GCT	TTC	TCC	GAT	GAC	AGA	CAC	AGC	ACT	GCG	TAT	590
Thr	Leu	Lys	Cys	Lys	Ala	Phe	Ser	Asp	Asp	Arg	His	Ser	Thr	Ala	Tyr	
			80					85					90			
ACA	ATC	ACC	TGT	GAC	TAT	GCG	CAC	GGG	ACG	ACG	ACA	GGT	ATC	TCC	GCA	638
			Cys													
		95	- 2 -	•	•		100	•			•	105				
CGT	GAC		GCG	TTG	ACC	GTG	AAT	CAG	TTG	GCG	AAC	CCG	GAG	TCC	AAG	686
			Ala													
	110	٠.				115		•			120				_	
GCT	ACC	GAC	TTC	ACG	AAG	CCA	GGC	CAC	ATT	GTG	CCA	TTG	CGT	GCC	CGT	734
Ala	Thr	Asp	Phe	Thr	Lys	Pro	Gly	His	Ile	Val	Pro	Leu	Arg	Ala	Arg	
125					130					135					140	
GAC	GGC	GGC	GTG	CTC	GAG	CGT	GAC	GGG	CAC	ACC	GAA	GCG	GCG	CTC	GAC	782
Asp	Gly	Gly	Val	Leu	Glu	Arg	Asp	Gly	His	Thr	Glu	Ala	Ala	Leu	Asp	
				145					150					155		
TTG	TGC	AGA	CTA	GCG	GGT	GTG	CCA	GAG	GTC	GCT	GCT	ATT	TGT	GAA	TTA	830
Leu	Cys	Arg	Leu	Ala	Gly	Val	Pro	Glu	Val	Ala	Ala	Ile	Cys	Glu	Leu	
			160					165					170			
GTA	AGC	GAA	AGG	GAC	GTC	GGG	CTG	ATG	ATG	ACT	TTG	GAT	GAG	TGT	ATA	878
Val	Ser	Glu	Arg	Asp	Val	Gly	Leu	Met	Met	Thr	Leu	Asp	Glu	Cys	Ile	
		175					180					185				
GAA	TTC	AGC	AAG	AAG	CAC	GGT	CIT	GCC	CTC	ATC	ACC	GTG	CAT	GAC	CTG	926
Glu	Phe	Ser	Lys	Lys	His	Gly	Leu	Ala	Leu	Ile	Thr	Val	His	Asp	Leu	
	190					195					200					
AAG	GCT	GCA	GTT	GCC	GCC	AAG	CAG	TAG	ACGG	CAA (CGAG'	TTCT'	IT A	AGTC	GGTGT	980
Lys	Ala	Ala	Val	Ala	Ala	Lys	Gln									
205					210											
TCA:	TTTA:	IGT I	AATA:	TACC	T TA	CAT	CGAA	A AA	GTCA	AATG	GTA'	TGAA	CTA (gatt'	TATCAA	1040
TAG:	ratc:	TAA (GAGT'	TATG	GT A	TTCG	CAAA	A GC	TTAT	CGAT	AC					1082

(2) INFORMATION ZU SEQ ID NO: 6:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 212 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: Met Thr Ser Pro Cys Thr Asp Ile Gly Thr Ala Ile Glu Gln Phe Lys - 10 .Glm Asn Lys Met Ile Ile Val Met Asp His Ile Ser Arg Glu Asn Glu 20 25 Ala Asp Leu Ile Cys Ala Ala Ala His Met Thr Ala Glu Gln Met Ala 40 Phe Met Ile Arg Tyr Ser Ser Gly Tyr Val Cys Ala Pro Met Thr Asn 55 Ala Ile Ala Asp Lys Leu Asp Leu Pro Leu Met Asn Thr Leu Lys Cys 70 Lys Ala Phe Ser Asp Asp Arg His Ser Thr Ala Tyr Thr Ile Thr Cys 85 90 Asp Tyr Ala His Gly Thr Thr Thr Gly Ile Ser Ala Arg Asp Arg Ala 100 105 Leu Thr Val Asn Gln Leu Ala Asn Pro Glu Ser Lys Ala Thr Asp Phe 120 Thr Lys Pro Gly His Ile Val Pro Leu Arg Ala Arg Asp Gly Gly Val 130 135 Leu Glu Arg Asp Gly His Thr Glu Ala Ala Leu Asp Leu Cys Arg Leu 150 155 Ala Gly Val Pro Glu Val Ala Ala Ile Cys Glu Leu Val Ser Glu Arg 165 170 Asp Val Gly Leu Met Met Thr Leu Asp Glu Cys Ile Glu Phe Ser Lys • 185 Lys His Gly Leu Ala Leu Ile Thr Val His Asp Leu Lys Ala Ala Val 200 Ala Ala Lys Gln 210 (2) INFORMATION ZU SEQ ID NO: 7: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 996 Basenpaare

- - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..270
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 271..789

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 790..996

(B) LAGE: 790996	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	•
TGGTATAATG ATACAGGAAG TGAAAATCCG AAAGGTTCAG ACGATGAAAA GAGTTTGAGA 60	
CGCATCAATG ATCAGCTTTG AGCTATATGT AAGTCTATTA ATTGATTACT AATAGCAATT 120	
TATGGTATCC TCTGTTCTGC ATATCGACGG TTCTCACGTG ATGATCAGCT TGAGGCTTCG 180 CGGATAAAGT TCCATCGATT ACTATAAAAC CATCACATTA AACGTTCACT ATAGGCATAC 240	
ACACAGACTA AGTTCAAGTT AGCAGTGACA ATG ATT AAG GGA TTA GGC GAA GTT 294	
Met Ile Lys Gly Leu Gly Glu Val	
1 5	
GAT CAA ACC TAC GAT GCG AGC TCT GTC GAG GTT GGC ATT GTC CAC GCG 342	
Asp Gln Thr Tyr Asp Ala Ser Ser Val Glu Val Gly Ile Val His Ala	
10 15 20	
AGA TGG AAC AAG ACT GTC ATT GAC GCT CTC GAC CAA GGT GCA ATT GAG 390	
Arg Trp Asn Lys Thr Val Ile Asp Ala Leu Asp Gln Gly Ala Ile Glu	
25 30 35 40	
AAA CTG CTT GCT ATG GGA GTG AAG GAG AAG AAT ATC ACT GTA AGC ACC 438	
Lys Leu Leu Ala Met Gly Val Lys Glu Lys Asn Ile Thr Val Ser Thr	
45 50 55	
GTT CCA GGT GCG TTT GAA CTA CCA TTT GGC ACT CAG CGG TTT GCC GAG Val Pro Gly Ala Phe Glu Leu Pro Phe Gly Thr Gln Arg Phe Ala Glu	
60 65 70	
CTG ACC AAG GCA AGT GGC AAG CAT TTG GAC GTG GTC ATC CCA ATT GGA 534	
Leu Thr Lys Ala Ser Gly Lys His Leu Asp Val Val Ile Pro Ile Gly	
75 80 85	
GTC CTG ATC AAA GGC GAC TCA ATG CAC TTT GAA TAT ATA TCA GAC TCT 582	
Val Leu Ile Lys Gly Asp Ser Met His Phe Glu Tyr Ile Ser Asp Ser	
90 95 100	
GTG ACT CAT GCC TTA ATG AAC CTA CAG AAG AAG ATT CGT CTT CCT GTC 630	
Val Thr His Ala Leu Met Asn Leu Gln Lys Lys Ile Arg Leu Pro Val	
105 110 115 120	
ATT TIT GGT TTG CTA ACG TGT CTA ACA GAG GAA CAA GCG TTG ACA CGT 678	
Ile Phe Gly Leu Leu Thr Cys Leu Thr Glu Glu Gln Ala Leu Thr Arg 125 130 135	
GCA GGC CTC GGT GAA TCT GAA GGC AAG CAC AAC CAC GGT GAA GAC TGG 726	
Ala Gly Leu Gly Glu Ser Glu Gly Lys His Asn His Gly Glu Asp Trp	
140 145 150	
GGT GCT GCC GTG GAG ATG GCT GTA AAG TTT GGC CCA CGC GCC GAA 774	
Gly Ala Ala Ala Val Glu Met Ala Val Lys Phe Gly Pro Arg Ala Glu	
155 160 165	
CAA ATG AAG AAG TGAATATTAA AAAATCACTA CTTAAAATTA ACGTTTTTAT 826	
Gln Met Lys Lys	
170	
TATGTCTATA TCAAATTCTT ACGTGATAAC TTTTGATTTC GCTTCCTGGA TTGGCGCAAG 886	
GCCTCCCTGT GTCGCAGTTT TTGTTCACGG GTCCACACAG CTCTGTTTTC CCAGAACATA 946	
TCCTCCCAGC CGGCGAACCG GTTAGACGCT TCTGCTGGCG TTCTTATTTT 996	

(2) INFORMATION ZU SEQ ID NO: 8:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 172 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Met Ile Lys Gly Leu Gly Glu Val Asp Gln Thr Tyr Asp Ala Ser Ser

1 5 10 15

Val Glu Val Gly Ile Val His Ala Arg Trp Asn Lys Thr Val Ile Asp
20 25 30

Ala Leu Asp Gln Gly Ala Ile Glu Lys Leu Leu Ala Met Gly Val Lys
35 40 45

Glu Lys Asn Ile Thr Val Ser Thr Val Pro Gly Ala Phe Glu Leu Pro
50 55 60

Phe Gly Thr Gln Arg Phe Ala Glu Leu Thr Lys Ala Ser Gly Lys His
65 70 75 80

Leu Asp Val Val Ile Pro Ile Gly Val Leu Ile Lys Gly Asp Ser Met
85 90 95

His Phe Glu Tyr Ile Ser Asp Ser Val Thr His Ala Leu Met Asn Leu
100 105 110

Gln Lys Lys Ile Arg Leu Pro Val Ile Phe Gly Leu Leu Thr Cys Leu
115 120 125

Thr Glu Glu Gln Ala Leu Thr Arg Ala Gly Leu Gly Glu Ser Glu Gly
130 135 140

Lys His Asn His Gly Glu Asp Trp Gly Ala Ala Ala Val Glu Met Ala
145 150 155 160
Val Lys Phe Gly Pre Arm Ala Ala Ala Val Glu Met Ala

Val Lys Phe Gly Pro Arg Ala Glu Gln Met Lys Lys

- (2) INFORMATION ZU SEQ ID NO: 9:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1511 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..524
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 525..1232

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 1233..1511

(xi) SEQUENZBES	CHREIBUNG: SE	O ID NO: 9:	•, • •	
		•	GCGATACCAA CCCACAGGAG	60
CCAGATATAA GACCAATO	CC GGCGGGTGTG	CCAGCCGCCA 1	TCAGAGACAG CGGGCCAGCA	120
AGGCATGTGA AGTCAAAA	GG CGCCAGCTCC	TTATCCGCTC (CCGCACAAGC AGGACCGGCA	180
TATCCCGATG AGCGCGCC	AG CACCCAGACG	CTACACCACC A	ATTCGAAGTA GACTTTAAAA	240
GAGCGCTTTC CAGCTTCT	CA GGCAGTTAGC	TCTACGACAA A	AGGAACCAAG TGATTTTCCC	300
GATAGACGCG ACTTGCTC	AA CGATGTTTCT	GTGACCAGCG (CAAGGAGAGA TAGTCCTAAA	360
GTATAATCAG ATAGTTAG	TC GTATCTTCTA	GTTTTATTAG	TCAGCTACAT GGCGAACCGC	420
CATTTCCTTA TGCATGT	TT ACGAGTTTAA	AAAGCTCGCG (GTAGCAGAAA AGAAGATGCA	480
TAGATGGCAT ACCGAAGG	CT ATATCGCCCA	TAGAAGTTGA 1	PAGG ATG TTT ACC GGT	536
			Met Phe Thr Gly	
			1	
ATA GTG GAA CAC ATT	GGC ACT GTT	GCT GAG TAC T	ITG GAG AAC GAT GCC	584
Ile Val Glu His Ile	Gly Thr Val	Ala Glu Tyr I	Leu Glu Asn Asp Ala	
5	10	15	20	
AGC GAG GCA GGC GGC	AAC GGT GTG	TCA GTC CTT A	ATC AAG GAT GCG GCT	. 632
Ser Glu Ala Gly Gly	Asn Gly Val	Ser Val Leu 1	Ile Lys Asp Ala Ala	
.25	,	30	35	•
CCG ATA CTG GCG GAT				680
Pro Ile Leu Ala Asp	Cys His Ile	Gly Asp Ser I	Ile Ala Cys Asn Gly	
40		45	50	
			AGC TTC AAG GTC GGG	728
•		Thr Ala Asp S	Ser Phe Lys Val Gly	
55	60		65	
			AGC AGC TGG AAA GCT	776
		Thr Glu val S	Ser Ser Trp Lys Ala	
70	75	ሮሮሮ አ ሞሮ ሞሮሮ (80 GAC GAC AGG CGC TAC	824
			Asp Asp Arg Arg Tyr	024
85	90	95	100	
			GTG GCC TCT ATT GTA	872
			Val Ala Ser Ile Val	0,2
105	•	110	115	
			AAG TTT AAA CTG CGC	920
			Lys Phe Lys Leu Arg	
120	•	125	130	
GAT CAA GAG TAC GAG	AAG TAC GTA	GTA GAA AAG	GGT TTT GTG GCG ATC	968
Asp Gln Glu Tyr Gli	Lys Tyr Val	Val Glu Lys (Gly Phe Val Ala Ile	
135	140		145	
GAC GGT GTG TCG CTC	ACT GTA AGC	AAG ATG GAT	CCA GAT GGC TGT TTC	1016
Asp Gly Val Ser Let	Thr Val Ser	Lys Met Asp I	Pro Asp Gly Cys Phe	
150	155	:	160	

														D(*I	r/ F/P95	/00958	
1	WO 95	/2640	5					28						rei	()EI JO	,,,,,,,,	
	ጥ አ <i>C</i>	አጥ ሮ	TCG	ልጥር	Δ ጥጥ	GCA	CAC			ACC	ССТ	СТА	GCC.	دشش	CCA	CTG	1064
															Pro		1001
	165		-	-,		170					175					180	
		ece	GAC	GGT	GCC		GTG	AAC	АТА			GAT	GTT	AAC	GGC		1112
				•											Gly		
	2,0			U-1	185					190					195	-,-	
	CTA	GTA	GAG	AAG		GTT	GCA	CAG	TAC	CTG	AAT	GCG	CAG	CTG	GAA	GGT	1160
															Glu		
				200			-		205					210		2	•
	GAG	AGC	TCG		TTG	CAG	CGC	GTG	CTC	GAA	AGG	ATT	ATT	GAA	TCC	AAG	1208
															Ser		
			215				_	220			_		225			-	
	CTT	GCT	AGC	ATC	TCA	AAT	AAG	TGA:	TAT	ATT .	ATCT'	rggg:	rg C	rgta:	TATC:	r	1259
	Leu	Ala	Ser	Ile	Ser	Asn	Lys										
		230					235										
	TATO	TAT(STC :	TAC	SACT	GT G	AATC	AGAG	G GG:	rggc.	AGCT	GGA	ACAC	CAG (CGAC	ACACCI	1319
	TĊGI	CTC	CG (CGGT	SATC	AG CO	CTTC:	rgtt:	r TC	CTCA	AGTA	GTA	CAAA	GTC :	raggi	ACACCO	1379
	TGT	rgtgo	SCC Z	AACG	CAAA	CA TO	GGAG	CTGC	r GC	CCGT'	TACG	CAC	GTCG	AAC :	rcgt/	AGACCT	1439
	TGC	CGTC	AAT (GCAC	GAGG	CG AZ	ACAG	GTGG	A AA	CCGG'	TGGT	CTT	STCA	AAC (CGCC	AGCTTC	1499
	GTG	ACCG2	AGT (CC													1511
	(2)	INFO	RMA	rion	ZU S	SEQ :	ID NO): 10):								
		((i) S	SEQUE	enz (CHAR	AKTEI	RIST	IKA:							·	
	•		(2	A) Li	NGE	: 23	5 Ami	inos	iurer	n.				٠			
			(1	3) AI	RT: 1	Amino	osäui	re									
			•) T(
				DES													
		•	-	QUENZ													
		Phe	Thr	Gly		Val	Glu	His	Ile	-	Thr	Val	Ala	Glu	Tyr	Leu	
	1			_	5					10			_		15	_	
	Glu	Asn	Asp		Ser	Glu	Ala	Gly		Asn	Gly	Val	Ser		Leu	Ile	
				20			_		25	_	4			30	_		•
	Lys	Asp		Ala	Pro	Ile	Leu		Asp	Cys	His	Ile	_	Asp	Ser	Ile	
		_	35			_	_	40					45		_	_	
	Ala	_	Asn	Gly	Ile	Cys		Thr	Val	Thr	Glu		Thr	Ala	Asp	Ser	
		50					55				_	60			•	_	
		Lys	Val	Gly	Ile		Pro	Giu	Thr	val		Arg	Thr	GLu	Val		
	65	_	_			70	_	٠,			75	_			_	80	
	Ser	Trp	Lys	Ala	_	Ser	Lys	lie	Asn		Glu	Arg	Ala	He	Ser	Asp	
				_	85					90			 -	_	95		
	Asp	Arg	Arg	_	Gly	Gly	His	Tyr		Gln	Gly	His	Val	_	Ser	Val	
		_		100	_	_			105		_	_		110		_	
	Ala	Ser	Ile	Val	Ser	Arg		His		Gly	Asn	Ser	Ile	Asn	Phe	Lys	
			775					1 7/1					1 7 5				

Phe Lys Leu Arg Asp Gln Glu Tyr Glu Lys Tyr Val Val Glu Lys Gly

Phe Val Ala Ile Asp Gly Val Ser Leu Thr Val Ser Lys Met Asp Pro

Asp Gly Cys Phe Tyr Ile Ser Met Ile Ala His Thr Gln Thr Ala Val 165 170 175	
Ala Leu Pro Leu Lys Pro Asp Gly Ala Leu Val Asn Ile Glu Thr Asp 180 185 190	٠.
Val Asn Gly Lys Leu Val Glu Lys Gln Val Ala Gln Tyr Leu Asn Ala 195 200 205	
Gln Leu Glu Gly Glu Ser Ser Pro Leu Gln Arg Val Leu Glu Arg Ile 210 215 220	
Ile Glu Ser Lys Leu Ala Ser Ile Ser Asn Lys	
225 230 235	
(2) INFORMATION ZU SEQ ID NO: 11:	
(i) SEQUENZ CHARAKTERISTIKA:	
(A) LÄNGE: 1596 Basenpaare	
(B) ART: Nukleinsäure	
(C) STRANGFORM: Doppel	
(D) TOPOLOGIE: linear	
(ii) ART DES MOLEKÜLS: cDNS zu mRNS	
(iii) HYPOTHETISCH: NEIN	
(iii) ANTISENSE: NEIN	
(vi) URSPRÜNLICHE HERKUNFT:	
(A) ORGANISMUS: Ashbya gossypii	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 5'UTR	
(B) LAGE: 1352	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: CDS	
(B) LAGE: 3531093	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 3'UTR	
(B) LAGE: 10941596	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
	0
GCGCGCTGCC CATGGACGAT GCGGGTATAC AGACGGCGGG TATACAGACG GCGGGTGGTG 12	
CCGAGAGAGG CACCAGGCCG GCTTCCTCCA GCGATGCAAG GAAGAGAAGG GGACCAGAGG 18	
CGAAGTTCAA GCCATCTAAG GTACAGAAGC CCCAATTGAA GCGAACTGCA TCGTCCCGGG 24	
CGGATGAGAA CGAGTTCTCG ATATTATAGA GGCCCCCGTT TCGAGTGATT GGCGTCAAAA 30	
ACGGCTATCT GCCTTCGTCC GCCCCCACCA CCCTCGGGAA CACTGGCAAA CC ATG 35	
Met	-
1	
GCG CTA ATA CCA CTT TCT CAA GAT CTG GCT GAT ATA CTA GCA CCG TAC 40	2
Ala Leu Ile Pro Leu Ser Gln Asp Leu Ala Asp Ile Leu Ala Pro Tyr	3
5 10 15	
	. 1
Leu Pro Thr Pro Pro Asp Ser Ser Ala Arg Leu Pro Phe Val Thr Leu	1
20 25 30	

							70									
ACG	TAT	GCG	CAG	TCC	CTA	GAT	GCT	CGT	ATC	GCG	AAG	CAA	AAG	GGT	GAA	499
Thr	Tyr	Ala	Gln	Ser	Leu	Asp	Ala	Arg	Ile	Ala	Lys	Gln	Lys	Gly	Glu	
	35					40					45					
AGG	ACG	GTT	ATT	TCG	CAT	GAG	GAG	ACC	AAG	ACA	ATG	ACG	CAT	TAT	CTA	547
								•		•		Thr		•		0
50					55				-10	60				-1-	65	
	ሞልሮ	ሮልጥ	ሮልሞ	AGC		ΔΨC	CTG	Δηνην	ccc		ccc	ACA	ccc	Cutur		505
												Thr				595
ALG	TYL	птэ	UTS	70	сту	116	TER	116		Ser	GIY	TIIL	мта		ATA	
C3.C	~~~		~3 m		3 3 M	mcc	000	maa	75	000	~~	000	~~~	80		
												GCG				643
Asp	Asp	Pro		ren	Asn	Cys	Arg		Thr	Pro	Ala	Ala		GLY	Ala	
			85					90					95			
												TTG				691
Asp	Суѕ	Thr	Glu	Gln	Ser	Ser	Pro	Arg	Pro	Ile	Ile	Leu	Asp	Val	Arg	
		100					105					110				
GGC	AGA	TGG	AGA	TAC	CGC	GGG	TCC	AAA	ATA	GAG	TAT	CTG	CAT	AAC	CTT	739
Gly	Arg	Trp	Arg	Tyr	Arg	Gly	Ser	Lys	Ile	Glu	Tyr	Leu	His	Asn	Leu	
	115					120					125					
GGC	AAG	GGG	AAG	GCG	CCC	ATA	GTG	GTC	ACG	GGG	GGT	GAG	CCG	GAG	GTC	. 787
Gly	Lys	Gly	Lys	Ala	Pro	Ile	Val	Val	Thr	Gly	Gly	Glu	Pro	Glu	Val	
130	•	-	•		135					140	•				145	
	GAA	CTA	GGC	GTC	AGT	TAC	CTG	CAG	CTG	GGT	GTC	GAC	GAG	GGT	GGC	835
										•		Asp				
5			1	150		- ,			155	1				160	- -1	
CGC	ттс	AAT	TGG		GAG	ተተ G	ירילינר	GAG		CTC	ጥልጥ	TCT	CAG		CAC	883
												Ser				
9	204		165	ردن		200		170	****	MC u	-1-		175	44.20	1125	
ሮሞር	CAA	ልርጥ		አ ጥር	CTC	CAA	GGC		ccc	GAG	CTC	CTC		CAG	CTC	931
	_							_				Leu				931
neu	.G.Lu	180	Val	Mec	Val	GIU	185	Gry	ALG	GIU	Val		Noil	GIII	neu	
Cm/C	CITIC		CCI	Cam	y cocu	CTIC		a Cm	CMC	CMC	3.00.0	190	2012	CC3	maa	070
												ACG				979
ren		Arg	Pro	Asp	TTE		Asp	Ser	ren	var		Thr	TTE	GTÅ	Ser	
	195					200					205					
												GCT				1027
-	Phe	Leu	Gly	Ser		Gly	Val	Ala	Val		Pro	Ala	Glu	Glu	Val	
210					215					220					225	
AAC	CTA	GAG	CAT	GTG	AAC	TGG	TGG	CAC	GGA	ACA	AGT	GAC	AGT	GTT	TTG	1075
Asn	Leu	Glu	His	Val	Asn	Trp	Trp	His	Gly	Thr	Ser	Asp	Ser	Val	Leu	
				230					235					240		
TGC	GGC	CGG	CTC	GCA	TAGO	GGT	TAT	SACT	GTC	ra ci	(AGT	LAAA 1	CT	ATTT?	ACTC	1130
· Cys	Gly	Arg	Leu	Ala												
_	_	_	245													
CTA	racar	r TAT		CAC	AT AC	CGT	TAT	000	CTC	CCA	ACCC	CCTC	GT (GCCG	TGGAA	1190
															CAGATT	
															CACCT	
															TGAGA	
TTC	JITII	MC (. IGT?	TCT(T TC	AACI	TWC.I.(CT	CTT	TCT	TCG	CGCI	GA (TTTC	SATATG	1430

TTT	rggc <i>i</i>	ACA 1	AGCT	CATGO	GT GC	CGTG	ATAT?	TAC	CCAC	CAAA	GCT	GTTT(CGT	TGAA	AGTCTC	1490
AAT	GTAC	GCA (GAG	CGAC	GG AC	GGA	AGCA	TT:	CAA	CGCG	CTG	GGCG'	rta '	TGCC(GTTCTG	1550
ATA	'ATG	AAA A	ATAC	CCGT	CT GO	GAAG!	TCT:	CTC	CGCC	AATG	TGG	ATC				1596 ·
(2)		(i) S	SEQUE A) LÀ	ZU S ENZ C ANGE :	HARA 246	KTEI Ami	RISTI Lnosä	KA:	ı				:		• •	
		-	-	RT: A												
	(ii)			OPOLO S MOI				ein						•		
	(xi)	SEC	QUENZ	ZBESC	HRE	BUN	G: SE	EQ II	NO:	12:	:					
Met 1	Ala	Leu	Ile	Pro 5	Leu	Ser	Gln	Asp	Leu 10	Ala	Asp	Ile	Leu	Ala 15	Pro	
Tyr	Leu	Pro	Thr 20	Pro	Pro	Asp	Ser	Ser 25	Ala	Arg	Leu	Pro	Phe 30	Val	Thr	
Leu	Thr	Tyr 35		Gln	Ser	Leu	Asp 40		Arg	Ile	Ala	Lys 45		Lys	Gly	
Glu	Arg 50		Val	Ile	Ser	His 55		Glu	Thr	Lys	Thr 60	Met	Thr	His	Tyr	
65	•	•		His	70	_				75		_			80	
Ala	Asp	Asp	Pro	Asp 85	Leu	Asn	Cys	Arg	Trp 90	Thr	Pro	Ala	Ala	Asp 95	Gly	
Ala	Asp	Cys	Thr 100	Glu	Gln	Ser	Ser	Pro 105	Arg	Pro	Ile	Ile	Leu 110	Asp	Val	
Arg	Gly	Arg 115	Trp	Arg	Tyr	Arg	Gly 120	Ser	Lys	Ile	Glu	Tyr 125	Leu	His	Asn	
Leu	Gly 130	Lys	Gly	Lys	Ala	Pro 135	Ile	Val	Val	Thr	Gly 140	Gly	Glu	Pro	Glu	
	Arg	Glu	Leu	Gly		Ser	Tyr	Leu	Gln		Gly	Val	Asp	Glu	-	
145	•			m	150	C1	T	Db -	C3	155	T	M	0	01	160	
	•			Trp 165					170					175		
His	Leu	Glu	Ser 180	Val	Met	Val	Glu	Gly 185	Gly	Ala	Glu	Val	Leu 190	Asn	Gln	
Leu	Leu	Leu 195	Arg	Pro	Asp	Ile	Val 200	Asp	Ser	Leu	Val	Ile 205	Thr	Ile	Gly	
Ser	Lys 210	Phe	Leu	Gly	Ser	Leu 215	Gly	Val	Ala	Val	Ser 220	Pro	Ala ·	Glu	Glu	
Val 225	Asn	Leu	-Glu	His	Val 230	Asn	Trp	Trp	His	Gly 235	Thr	Ser	Asp	Ser	Val 240	
Leu	Cys	Gly	Arg	Leu 245	Ala											

Patentansprüche

- DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2
 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
 - 2. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 20 3. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 4. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

35

15

5. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

- 6. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:
 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin
 eine oder mehrere Aminosäuren deletiert, hinzugefügt oder
 durch andere Aminosäuren substituiert worden sind, ohne die
 enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- Expressionsvektor, enthaltend eine oder mehrere DNA-Sequenzen
 gemäß Anspruch 1 bis 6.
 - 8. Wirtsorganismus der mit einem Expressionssystem gemäß Anspruch 7 transformiert worden ist.
- 15 9. Rekombinantes Herstellverfahren für Riboflavin, dadurch gekennzeichnet, daß ein Wirtsorganismus gemäß Anspruch 8 verwendet wird.

25

30

35

40

Fig. 1

Fig. 2

Fig. 3

4/7

Fig. 4

Fig. 5

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT plication No Internation: PCT/EP 95/00958 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/52 C12N15/53 C12N15/54 C12N15/55 C12N15/81 C12N1/19 C12P25/00 //(C12N1/19,C12R1:865) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12P ·. ... Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X YEAST, 1,6-9vol. 9, no. 10, October 1993 JOHN WILEY & SONS LTD., CHICHESTER, UK, pages 1099-1102, M.-J. BUITRAGO ÉT AL. 'Mapping of the RIB1 and RIB7 genes involved in the biosynthesis of riboflavin in Saccharomyces cerevisiae' see the whole document X YEAST (1993), 9(2), 189-99 CODEN: 5,7-9 YESTE3; ISSN: 0749-503X, 1993 DOIGNON, FRANCOIS ET AL 'The complete sequence of a 19,482 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae! see the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means

- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 June 1995

29.08.95

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Riswijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

document published prior to the international filing date but later than the priority date claimed

Authorized officer

Hillenbrand, G

Form PCT/ISA/210 (second sheet) (July 1992)

3

INTERNATIONAL SEARCH REPORT

Internation. plication No PCT/EP 95/00958

0.40		PCT/EP 95	7,00338
C.(Continua Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	, p		State No.
Χ •.	EP,A,O 405 370 (F. HOFFMANN-LA ROCHE AG) 2 January 1991 cited in the application see the whole document		1-9
(EP,A,O 569 806 (BASF) 18 November 1993 see the whole document		5,7-9
Ρ, χ	WO,A,94 11515 (BASF) 26 May 1994 see the whole document	-	1-9
	. ·		ş
			:
		·	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation pplication No
PCT/EP 95/00958

Patent document cited in search report	Publication date	Patent mem		Publication date
EP-A-0405370	02-01-91	CN-A- JP-A-	1049185 3117489	13-02-91 20-05-91
EP-A-0569806	18-11-93	JP-A-	6022765	01-02-94
WO-A-9411515	26-05-94	DE-A-	4238904	26-05-94

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internation: \ktenzeichen
PCT/EP 95/00958

IPK 6	C12N15/52 C12N15/53 C12N15/5 C12N1/19 C12P25/00 //(C12N1		2N15/81
Nach der in	sternationalen Patentklassifikation (IPK) oder nach der nationalen K	Jassifikation und der IPK	
	RCHIERTE GEBIETE		
IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb C12N C12P	ore)	·
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, se	oweit diese unter die recherchierten Ge ;	biete fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	dame der Datenbank und evtl. verwend	dete Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN	······································	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	ne der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	YEAST, Bd. 9, Nr. 10, Oktober 1993 JOHN SONS LTD., CHICHESTER, UK, Seiten 1099-1102, MJ. BUITRAGO ET AL. 'Mapping of RIB1 and RIB7 genes involved in to biosynthesis of riboflavin in Saccharomyces cerevisiae' insgesamt	of the	1,6-9
X.	YEAST (1993), 9(2), 189-99 CODEN: YESTE3; ISSN: 0749-503X, 1993 DOIGNON, FRANCOIS ET AL 'The consequence of a 19,482 bp segment the right arm of chromosome II for Saccharomyces cerevisiae' insgesamt	mplete located on	5,7-9
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentiamilie	·
Besondere Kategorien von angegebenen Veröffentlichungen : 'A' Veröffentlichung, die den allgemeinen Staland der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Besondere Kategorien von angegebenen Veröffentlichungen : 'B' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erschienz zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichungsdatum einer soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht dem beanspruchten Prioritätsdatum veröffentlicht worden ist 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlichung meint kollidiert, sondern mur zum Verständnis des derinderen angegenden Prinzips oder der ihr zugrundelie Erfindung zugrundeliegenden Prinzips oder der ihr zugrundelie Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeutung, die beanspruchte kam nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung meiner stellen in den dem veröffentlichung von besonderer Bedeutung, die beanspruchte kam nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung micht als neu ode erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung micht als neu ode erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung micht als neu ode erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung micht als neu ode erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung meinen veröffentlichung der erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung meinen veröffentlichung der erfinderischer Tätigkeit beruhend betrachtet werden veröffe			dlicht worden ist und mit der m nur zum Verständnis des der zips oder der ihr zugrundeliegenden ledeutung; die beanspruchte Erfindung entlichung nicht als neu oder auf betrachtet werden ledeutung; die beanspruchte Erfindung ätigkeit beruhend betrachtet g mit einer oder mehreren anderen ie in Verbindung gebracht wird und aann naheliegend ist
Datum des Abschlusses der internationalen Recherche Abschdedatum des internati			
	29. Juni 1995	2 9. 08.	
Name und	Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Hillenbrand, G	

INTERNATIONALER RECHERCHENBERICHT

Internation: \ktenzeichen
PCT/EP 95/00958

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategone* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruci				
X	EP,A,O 405 370 (F. HOFFMANN-LA ROCHE AG) 2.Januar 1991 in der Anmeldung erwähnt insgesamt		1-9	
(EP,A,O 569 806 (BASF) 18.November 1993		5,7-9	
, x	WO,A,94 11515 (BASF) 26.Mai 1994 insgesamt		1-9	
		ı		
·				
:				

3

INTERNATIONALER RECHERCHENDERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internation Aktenzeichen
PCT/EP 95/00958

				101721 33700338	
Im Recherchenbericht angeführtes Patentdokument				Datum der Veröffentlichung	
EP-A-0405370	02-01-91	CN-A- JP-A-	1049185 3117489	13-02-91 20-05-91	
EP-A-0569806	18-11-93	JP-A-	6022765	01-02-94	
WO-A-9411515	26-05-94	DE-A-	4238904	26-05-94	

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)