Bennett Meacham

Emma Owens

Ben Lannom

Benjamin Belisle

Group Work 2

February 8, 2023

1.3.34

Suppose $n \in \mathbb{Z}$ and n > 2.

Suppose also that N is the set $\mathbb{Z} \cap [2, n]$.

n! is the product of all integers within N, so $\forall z \in N \mid z \mid n!$.

To prove that $a \nmid 1 \land a \mid b \Rightarrow a \nmid b - 1$

Suppose that $a \mid b$ and $a \mid b - 1$.

This means that there are integers c and d such that ac = b and ad = b - 1.

$$ac = b$$

$$ad = b - 1$$

$$a(c - d) = 1$$

This means that $a \mid 1$.

Thus,

$$\begin{array}{c|c} a \mid b \wedge a \mid b-1 \Rightarrow a \mid 1 \\ \neg (a \mid b \wedge a \mid b-1) \vee a \mid 1 \\ a \nmid b \vee a \nmid b-1 \vee a \mid 1 \\ a \mid 1 \vee a \nmid b \vee a \nmid b-1 \\ a \nmid 1 \wedge a \mid b \Rightarrow a \nmid b-1 \end{array}$$

For every $z \in N$, z > 1, so $z \nmid 1$.

 $z \nmid 1$ and $z \mid n!$, so $z \nmid n! - 1$.

Thus, n! - 1 has no factors e such that $1 < e \le n$.

$$1 < e \le n \Rightarrow e \nmid n! - 1$$
$$e \mid n! - 1 \Rightarrow (e \le 1 \lor e > n)$$

Since n > 2, and factorial is increasing, n! > 2, and n! - 1 > 1.

Since n! - 1 > 1, n! - 1 has a prime factor p.

Since $p \mid n! - 1$, $p \le 1 \lor p > n$.

Since p is prime, it cannot be that $p \leq 1$, so p > n.

Since p | n! - 1 and n! - 1 > 0, $p \le n! - 1$.

Thus, n .

There exists a prime p such that n .

QED

To prove that, for any primes $p \ge 5, q \ge 5, 3 \mid p^2 - q^2$.

To prove that, for any prime p, p^2 can be written as 3m+1 for some integer m.

Suppose prime number $p \geq 5$.

According to the Division Algorithm, p can be written as either 3n, 3n + 1, or 3n + 2 for some integer n.

If p = 3n, this forms a contradiction since $3 \mid p$ and (since $p \ge 5$) $p \ne 3$.

If p = 3n + 1, then $p^2 = 3(3n^2) + 3(2n) + 1 = 3(3n^2 + 2n) + 1$. Thus, $p^2 = 3m + 1$ for some integer m.

If p = 3n + 2, then $p^2 = 3(3n^2) + 3(2n) + 4 = 3(3n^2 + 2n + 1) + 1$. Thus, $p^2 = 3m + 1$ for some integer m.

Suppose primes $p \geq 5, q \geq 5$.

There exist integers a and b for which $p^2 = 3a + 1$ and $q^2 = 3b + 1$.

$$p^{2} = 3a + 1$$

$$q^{2} = 3b + 1$$

$$p^{2} - q^{2} = 3a - 3b$$

$$p^{2} - q^{2} = 3(a - b)$$

Since a - b is an integer, $3 \mid p^2 - q^2$.

To prove that, for any primes $p \ge 5, q \ge 5, 8 \mid p^2 - q^2$.

According to the Division Algorithm, p can be written either as 4n, 4n + 1, 4n + 2, or 4n + 3. Since p is prime and greater than 2, p = 4n and p = 4n + 2 = 2(2n + 1) both lead to contradictions. Thus p = 4n + 1 or p = 4n + 3.

Similarly, for some integer m, q = 4m + 1 or q = 4m + 3.

If p = 4n + 1 and q = 4m + 1, then

$$p^{2} = 16n^{2} + 8n + 1$$

$$q^{2} = 16m^{2} + 8m + 1$$

$$p^{2} - q^{2} = 16(n^{2} - m^{2}) + 8(n - m)$$

$$= 8(2(n^{2} - m^{2})) + 8(n - m)$$

$$= 8(2(n^{2} - m^{2}) + n - m)$$

$$8 \mid p^{2} - q^{2}$$

If p = 4n + 3 and q = 4m + 3, then

$$p^{2} = 16n^{2} + 24n + 9$$

$$q^{2} = 16m^{2} + 24m + 9$$

$$p^{2} - q^{2} = 16(n^{2} - m^{2}) + 24(n - m)$$

$$= 8(2(n^{2} - m^{2})) + 8(3(n - m))$$

$$= 8(2(n^{2} - m^{2}) + 3(n - m))$$

$$8 \mid p^{2} - q^{2}$$

Without loss of generality, swap p and q if p = 4n + 1 and q = 4n + 3.

$$p = 4n + 3$$

$$q = 4n + 1$$

$$p^{2} = 16n^{2} + 24n + 9$$

$$= 8(2n^{2} + 3n + 1) + 1$$

$$q^{2} = 16m^{2} + 8m + 1$$

$$= 8(2m^{2} + m) + 1$$

$$p^{2} - q^{2} = 8(2n^{2} + 3n + 1 - 2m^{2} - m)$$

$$| p^{2} - q^{2}|$$

In all 3 cases, $8 \mid p^2 - q^2$.

Suppose primes $p \geq 5, q \geq 5$.

By earlier conclusions, $3 \mid p^2 - q^2$ and $8 \mid p^2 - q^2$.

Since 24 = [3, 8], by problem 1.2.32, $24 \mid p^2 - q^2$.

QED

2.1.19

Suppose [a] = [b] in \mathbb{Z}_n .

Due to the division algorithm, a can be written as $nq_a + r_a$, and b can be written as $nq_b + r_b$, such that $0 \le r_a < n$ and $0 \le r_b < n$.

$$b \in [b] \land [a] = [b]$$

$$b \in [a]$$

$$a \equiv b$$

$$n \mid a - b$$

$$n \mid nq_a + r_a - nq_b - r_b$$

$$nz = nq_a + r_a - nq_b - r_b$$

$$n(z - q_a + q_b) = r_a - r_b$$

$$n \mid r_a - r_b$$

Since $r_a < n$ and $0 \le r_b$, $r_a - r_b$ can be at most n-1. Since $0 \le r_a$ and $r_b < n$, $r_a - r_b$ must be at least -(n-1). Since $|r_a - r_b| < n$ and $n \mid r_a - r_b$, $r_a - r_b$ must be 0, and $r_a = r_b$.

Let an integer r be equal to r_a .

$$a = nq_a + r$$
$$b = nq_b + r$$

With application of Euclid's algorithm,

$$(a, n) = (r, n)$$

 $(b, n) = (r, n)$
 $(a, n) = (r, n) = (b, n)$
 $(a, n) = (b, n)$