#### Inductive bias and PCA

COMS 4771 Fall 2019

# Overview

- ► Inductive biases and regularization
- ► Model averaging and Bayesian perspectives
- ► Principal component analysis
- ► Gradient descent

#### Inductive bias

- ▶ What if ERM solution is not unique?
- ▶ Infinitely-many solutions to normal equations.
- ► Which one should we pick?
  - Possible answer: Pick shortest solution, i.e., of minimum (squared) Euclidean norm  $\|w\|_2^2$ .
  - ► Smaller norm ⇒ slower variations (Cauchy-Schwarz):

$$|oldsymbol{w}^{\intercal}oldsymbol{x} - oldsymbol{w}^{\intercal}oldsymbol{x}'| \leq \|oldsymbol{w}\|_2 \cdot \|oldsymbol{x} - oldsymbol{x}'\|_2$$

- ightharpoonup But data does not give reason to choose shorter w over longer w.
- ightharpoonup Preference for short w is an example of an *inductive bias*.
- ▶ All learning algorithms encode some form of inductive bias.

# Example of minimum norm inductive bias I

► Trigonometric feature expansion with particular weighting

$$\varphi(x) = (1, \sin(x), \cos(x), \frac{1}{2}\sin(2x), \frac{1}{2}\cos(2x), \frac{1}{3}\sin(3x), \frac{1}{3}\cos(3x), \dots)$$



Figure 1: Arbitrary solutions to normal equations can be arbitrarily "wiggly"

### Example of minimum norm inductive bias II

► Trigonometric feature expansion with particular weighting

$$\varphi(x) = (1, \sin(x), \cos(x), \frac{1}{2}\sin(2x), \frac{1}{2}\cos(2x), \frac{1}{3}\sin(3x), \frac{1}{3}\cos(3x), \dots)$$



Figure 2: Least norm solution is a very particular interpolation

# Representation of minimum norm solution

- ▶ Claim: The minimum (Euclidean) norm solution to normal equations lives in span of the  $x_i$ 's (i.e., in  $\operatorname{range}(A^{\mathsf{T}})$ ).
  - ► I.e., can write

$$oldsymbol{w} = oldsymbol{A}^{\mathsf{T}} oldsymbol{lpha} = \sum_{i=1}^n lpha_i oldsymbol{x}_i$$

for some  $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ .

▶ In fact, the solution in  $range(A^{\mathsf{T}})$  is unique!

/ 39

# Regularized ERM

- lacktriangle Combine two concerns: making both  $\widehat{\mathcal{R}}(m{w})$  and  $\|m{w}\|_2^2$  small
  - ▶ Pick  $\lambda \geq 0$ , and minimize  $\widehat{\mathcal{R}}(w) + \lambda \|w\|_2^2$
- ▶ If  $\lambda > 0$ , solution is always unique (even if n < d).
  - ► Called *ridge regression*.
  - $\lambda = 0$  is ERM/OLS.
  - lacktriangledown  $\lambda$  controls how much to pay attention to <u>regularizer</u>  $\|w\|_2^2$  relative to data fitting term  $\widehat{\mathcal{R}}(w)$
  - $\overline{\lambda}$  is hyperparameter to tune (e.g., using cross-validation)

# Data augmentation I

- ▶ Let  $\widetilde{\pmb{A}} = egin{bmatrix} \pmb{A} \\ \sqrt{\lambda} \pmb{I} \end{bmatrix}$  and  $\widetilde{\pmb{b}} = egin{bmatrix} \pmb{b} \\ \pmb{0} \end{bmatrix} \in \mathbb{R}^{n+d}$
- ▶ Then  $\|\widetilde{\pmb{A}}\widetilde{\pmb{w}} \widetilde{\pmb{b}}\|_2^2 = \widehat{\mathcal{R}}(\pmb{w}) + \lambda \|\pmb{w}\|_2^2$  (ridge regression objective)
- ► Interpretation:
  - lacktriangleright d'fake" data points, ensures augmented data matrix  $\widetilde{m{A}}$  has rank d
  - All corresponding labels are zero.

lacktriangle So ridge regression solution is  $\hat{m{w}}=$ 

6 / 39

\_ . . .

# Data augmentation II

▶ Domain-specific data augmentation: e.g., image transformations



Figure 3: Pixels of OCR image

#### Lasso

- ► Lasso: minimize  $\widehat{\mathcal{R}}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1$ 

  - ▶ Here,  $\|v\|_1 = \sum_{i=1}^n |v_i|$ , sum of absolute values of vector entries ▶ Prefers short w, where length is measured using different norm
  - ightharpoonup Tends to produce w that are *sparse* (i.e., have few non-zero entries), or at least are well-approximated by sparse vectors.
  - ► A different inductive bias

# Lasso vs ridge regression

- Example: coefficient profile of Lasso vs ridge
- lacktriangleq X = clinical measurements, Y = level of prostate cancer antigen
- $\blacktriangleright$  Horizontal axis: varying  $\lambda$  (large  $\lambda$  to left, small  $\lambda$  to right).
- ▶ Vertical axis: coefficient value in ridge and Lasso solutions, for eight different features



# Inductive bias from minimum $\ell_1$ norm

▶ **Theorem**: Pick any  $w \in \mathbb{R}^d$  and any  $\varepsilon \in (0,1)$ . Form  $\tilde{w} \in \mathbb{R}^d$  by including the  $\lceil 1/\varepsilon^2 \rceil$  largest (by magnitude) coefficients of w, and setting remaining entries to zero. Then

$$\|\tilde{\boldsymbol{w}} - \boldsymbol{w}\|_2 \le \varepsilon \|\boldsymbol{w}\|_1.$$

▶ If  $||w||_1$  is small (compared to  $||w||_2$ ), then theorem says w is well-approximated by sparse vector.

# Sparsity

- ► Lasso also tries to make coefficients small. What if we only care about sparsity?
- ▶ <u>Subset selection</u>: minimize empirical risk among all k-sparse solutions
- ightharpoonup Greedy algorithms: repeatedly choose new variables to "include" in support of w until k variables are included.
  - Forward stepwise regression / orthogonal matching pursuit: Each time you "include" a new variable, re-fit all coefficients for included variables.
  - Often works as well as Lasso
- ► Why do we care about sparsity?

Detour: Model averaging

- lacksquare Suppose we have M real-valued predictors,  $\hat{f}_1,\dots,\hat{f}_M$ 
  - ► E.g., nearest neighbor regression, regression trees, linear models with different feature expansions, . . .
- ▶ How to take advantage of all of them?
- ightharpoonup Model selection: pick the best one, e.g., using hold-out method or K-fold cross-validation
- ► Model averaging: form "ensemble" predictor  $\hat{f}_{avg}$ , where for any x,

$$\hat{f}_{\text{avg}}(x) := \frac{1}{M} \sum_{i=1}^{M} \hat{f}_{i}(x).$$

12 / 39

13 / 30

# Risk of model averaging

▶ **Theorem**: Risk of  $\hat{f}_{avg}$ :

$$\mathcal{R}(\hat{f}_{\text{avg}}) = \frac{1}{M} \sum_{i=1}^{M} \mathcal{R}(\hat{f}_i) - \frac{1}{M} \sum_{i=1}^{M} \mathbb{E}\left[ (\hat{f}_{\text{avg}}(X) - \hat{f}_i(X))^2 \right].$$

- ► Better than model selection when:
  - ightharpoonup all  $\hat{f}_i$  have similar risks, and
  - ightharpoonup all  $\hat{f}_i$  predict very differently from each other

# Stacking and features

- ▶ In model averaging, "weights" of 1/M for all  $\hat{f}_i$  seems arbitrary
- ► Can "learn" weights using linear regression!
  - Use feature expansion  $\varphi(x) = (\hat{f}_1(x), \dots, \hat{f}_M(x))$
  - ► Called *stacking*
  - Use additional data (independent of  $\hat{f}_1, \ldots, \hat{f}_M$ )
- ▶ Upshot: Any function (even learned functions) can be a feature
- ► Conversely: Behind every feature is a deliberate modeling choice

### Detour: Bayesian statistics

- ▶ Bayesian inference: probabilistic approach to updating beliefs
  - Posit a (parametric) statistical model for data (*likelihood*)
  - ► Start with some beliefs about the parameters of model (*prior*)
  - ► Update beliefs after seeing data (posterior)

$$\underbrace{\Pr(w \mid \mathsf{data})}_{\mathsf{posterior}(w)} \propto \underbrace{\Pr(w)}_{\mathsf{prior}(w)} \cdot \underbrace{\Pr(\mathsf{data} \mid w)}_{\mathsf{likelihood}(w)}$$

- ► (Finding proportionality constant is often the computationally challenging part of belief updating.)
- ▶ Basis for reasoning in humans (maybe?), robots, etc.

# Beyond Bayesian inference

- ► Can use Bayesian inference framework for designing estimation/learning algorithms (even if you aren't a Bayesian!)
  - ightharpoonup E.g., instead of computing entire posterior distribution, find the w with highest posterior probability
  - ► Called *maximum a posteriori (MAP)* estimator
  - ightharpoonup Just find w to maximize

$$prior(w) \times likelihood(w)$$
.

► (Avoids issue with finding proportionality constant.)

16 / 39

17 / 3

# Bayesian approach to linear regression

- In linear regression model, express prior belief about  ${m w}=(w_1,\dots,w_d)$  using a probability distribution with density function  $\pi$ 
  - Simple choice:  $\operatorname{prior}(w_1,\ldots,w_d) = \prod_{j=1}^d \sqrt{\frac{\tau}{2\pi}} \exp(-\tau w_j^2/2)$
  - l.e., treat  $w_1, \ldots, w_d$  as independent  $N(0, 1/\tau)$  random variables
- ▶ Likelihood model:  $(X_1, Y_1), \dots, (X_n, Y_n)$  are conditionally independent given w, and  $Y_i \mid (X_i, w) \sim N(X_i^T w, 1)$ .
- ► What is the MAP?

# MAP for Bayesian linear regression

ightharpoonup Find w to maximize

$$\underbrace{\prod_{j=1}^{d} \sqrt{\frac{\tau}{2\pi}} \exp(-\tau w_j^2/2)}_{\text{prior}(\boldsymbol{w})} \cdot \underbrace{\prod_{i=1}^{n} p(x_i) \cdot \frac{1}{\sqrt{2\pi}} \exp(-(y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w})^2/2)}_{\text{likelihood}(\boldsymbol{w})}.$$

(Here, p is marginal density of X; unimportant.)

ightharpoonup Take logarithm and omit terms not involving w:

$$-rac{ au}{2}\sum_{i=1}^d w_j^2 - rac{1}{2}\sum_{i=1}^n (y_i - oldsymbol{x}_i^{\scriptscriptstyle\mathsf{T}}oldsymbol{w})^2.$$

For  $\tau = n\lambda$ , same as minimizing

$$rac{1}{n}\sum_{i=1}^n (oldsymbol{x}_i^{\scriptscriptstyle\mathsf{T}}oldsymbol{w} - y_i)^2 + \lambda \|oldsymbol{w}\|_2^2,$$

which is the ridge regression objective!

► What about different Gaussian prior?

-, --

### Multivariate Gaussians I: Isotropic Gaussians

- ▶ Start with  $X = (X_1, \dots, X_d) \sim N(\mathbf{0}, \mathbf{I})$ , i.e.,  $X_1, \dots, X_d$  are iid N(0, 1) random variables.
  - Probability density function is product of (univariate) Gaussian densities
  - $ightharpoonup \mathbb{E}(X_i) = 0$
  - $ightharpoonup \operatorname{var}(X_i) = \operatorname{cov}(X_i, X_i) = 1, \ \operatorname{cov}(X_i, X_j) = 0 \ \text{for} \ i \neq j$
  - lacktriangledown Arrange in mean vector  $\mathbb{E}(oldsymbol{X})=0$ , covariance matrix  $\mathrm{cov}(oldsymbol{X})=oldsymbol{I}$





#### Affine transformations of random vectors

- ightharpoonup Start with any random vector X, then apply linear transformation, followed by translation
- $lackbox{ extbf{Y}}:=m{M}m{X}+m{\mu}$ , for  $m{M}\in\mathbb{R}^{k imes d}$  and  $m{\mu}\in\mathbb{R}^{k}$
- $ightharpoonup \mathbb{E}(oldsymbol{Y}) =$
- $ightharpoonup \operatorname{cov}(\boldsymbol{Y}) =$
- ▶ Let  $u \in \mathbb{R}^d$  be a unit vector ( $||u||_2 = 1$ ), and  $Y := u^T X$  (projection of X along direction u).
- ightharpoonup  $\mathbb{E}(Y) =$
- $ightharpoonup var(\boldsymbol{Y}) =$

### Multivariate Gaussians II: General Gaussians

- ▶ If  $X \sim \mathrm{N}(\mathbf{0}, I)$  and  $Y = MX + \mu$ , we have  $\mathbb{E}(Y) = \mu$  and  $\mathrm{cov}(Y) = MM^{\mathsf{T}}$ 
  - Assume  $M \in \mathbb{R}^{d \times d}$  is invertible (else we get a degenerate Gaussian distribution).
  - lacktriangle We say  $Y \sim \mathrm{N}(oldsymbol{\mu}, oldsymbol{M} oldsymbol{M}^{\mathsf{T}})$
  - ► Density function given by

$$\frac{1}{(2\pi)^{d/2}|\boldsymbol{M}\boldsymbol{M}^{\mathsf{T}}|^{1/2}}\exp\left(-\frac{1}{2}\|\boldsymbol{M}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\|_{2}^{2}\right).$$



Figure 4: Contour lines of a bivariate Gaussian density

# MAP with general Gaussian priors

- lacktriangle Prior: multivariate Gaussian, written  $m{w} \sim \mathrm{N}(m{\mu}, m{\Sigma})$ 
  - Probability density is  $\operatorname{prior}(w) \propto \exp\left(-\frac{1}{2}(w-\mu)^{\mathsf{T}}\boldsymbol{\varSigma}^{-1}(w-\mu)\right)$
- lacktriangle Find  $oldsymbol{w}$  to maximize

$$\underbrace{\exp\left(-\frac{1}{2}(\boldsymbol{w}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{w}-\boldsymbol{\mu})\right)}_{\mathrm{prior}(\boldsymbol{w})} \cdot \underbrace{\prod_{i=1}^{n} p(\boldsymbol{x}_{i}) \cdot \frac{1}{\sqrt{2\pi}} \exp(-(y_{i}-\boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{w})^{2}/2)}_{\mathrm{likelihood}(\boldsymbol{w})}.$$

ightharpoonup Take logarithm and omit terms not involving w:

$$-rac{1}{2}(oldsymbol{w}-oldsymbol{\mu})^{\scriptscriptstyle\mathsf{T}}oldsymbol{\Sigma}^{-1}(oldsymbol{w}-oldsymbol{\mu}) -rac{1}{2}\sum_{i=1}^n(y_i-oldsymbol{x}_i^{\scriptscriptstyle\mathsf{T}}oldsymbol{w})^2.$$

For  $C := \Sigma^{-1}/n$ , same as minimizing

$$\frac{1}{n}\sum_{i=1}^n(\boldsymbol{x}_i^{\scriptscriptstyle\mathsf{T}}\boldsymbol{w}-y_i)^2+(\boldsymbol{w}-\boldsymbol{\mu})^{\scriptscriptstyle\mathsf{T}}\boldsymbol{C}(\boldsymbol{w}-\boldsymbol{\mu}),$$

a different regularizer!

21 / 39

# Eigendecomposition

- lacktriangle Every symmetric matrix  $M \in \mathbb{R}^{d \times d}$  has d real eigenvalues, which we arrange as  $\lambda_1 \geq \cdots \geq \lambda_d$ 
  - lacktriangle Can choose corresponding *eigenvectors*  $v_1,\ldots,v_d\in\mathbb{R}^d$  to be orthonormal
  - lackbox This means  $M oldsymbol{v}_i = \lambda_i oldsymbol{v}_i$  for each  $i=1,\ldots,d$ , and  $oldsymbol{v}_i^{\mathsf{T}} oldsymbol{v}_i = \mathbb{1}_{\{i=i\}}$
- lacktriangledown Often arrange  $oldsymbol{v}_1,\ldots,oldsymbol{v}_d$  in an orthogonal matrix  $oldsymbol{V}\coloneqq [oldsymbol{v}_1]\cdots |oldsymbol{v}_d|$ 
  - $lackbox{ }V^{ extsf{ iny }}V=I$  and  $VV^{ extsf{ iny }}=\sum_{i=1}^{d}v_{i}v_{i}^{ extsf{ iny }}=I$
- ► Eigendecomposition (spectral decomposition):

Diagonalization:

#### Covariance matrix

- $lackbox{A} \in \mathbb{R}^{n \times d}$  is data matrix
- lacktriangle For any unit vector  $oldsymbol{u} \in \mathbb{R}^d$ ,

$$oldsymbol{u}^{\scriptscriptstyle\mathsf{T}} oldsymbol{\Sigma} oldsymbol{u} = rac{1}{n} \sum_{i=1}^n (oldsymbol{u}^{\scriptscriptstyle\mathsf{T}} oldsymbol{x}_i)^2$$

is variance of data along direction u

▶ Note: some pixels in OCR data have very little (or zero!) variation



Figure 5: Pixels of OCR image

#### Top eigenvector

 $ightharpoonup \Sigma$  is symmetric, so can write eigendecomposition

$$oldsymbol{arSigma} = \sum_{i=1}^n \lambda_i oldsymbol{v}_i oldsymbol{v}_i^{\scriptscriptstyle\mathsf{T}}$$

- In which direction is variance maximized?
- lacktriangle Answer:  $oldsymbol{v}_1$ , corresponding to largest eigenvalue  $\lambda_1$ 
  - ► Called the *top eigenvector*
  - ightharpoonup This follows from the following characterization of  $v_1$ :

$$oldsymbol{v}_1^{\intercal} oldsymbol{\Sigma} oldsymbol{v}_1 = \max_{oldsymbol{u} \in \mathbb{R}^d: \|oldsymbol{u}\|_2 = 1} oldsymbol{u}^{\intercal} oldsymbol{\Sigma} oldsymbol{u} = \lambda_1.$$



# Top k eigenvectors

- $\blacktriangleright$  What about among directions orthogonal to  $v_1$ ?
  - lacktriangle Answer:  $v_2$ , corresponding to second largest eigenvalue  $\lambda_2$
- lackbox For any k,  $oldsymbol{V}_k := [oldsymbol{v}_1|\cdots|oldsymbol{v}_k]$  satisfies

$$\sum_{i=1}^k \boldsymbol{v}_i^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\varSigma} \boldsymbol{v}_i = \operatorname{tr}(\boldsymbol{V}_k^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\varSigma} \boldsymbol{V}_k) = \max_{\boldsymbol{U} \in \mathbb{R}^{d \times k}: \boldsymbol{U}^{\scriptscriptstyle\mathsf{T}} \boldsymbol{U} = \boldsymbol{I}} \operatorname{tr}(\boldsymbol{U}^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\varSigma} \boldsymbol{U}) = \sum_{i=1}^k \lambda_i$$

(the top k eigenvectors)

### Principal component analysis

► k-dimensional principal components analysis (PCA) mapping:

$$oldsymbol{arphi}(oldsymbol{x}) = (oldsymbol{x}^{\scriptscriptstyle\mathsf{T}}oldsymbol{v}_1, \ldots, oldsymbol{x}^{\scriptscriptstyle\mathsf{T}}oldsymbol{v}_k) = oldsymbol{V}_k^{\scriptscriptstyle\mathsf{T}}oldsymbol{x} \in \mathbb{R}^k$$

where  $oldsymbol{V}_k = [oldsymbol{v}_1|\cdots|oldsymbol{v}_k] \in \mathbb{R}^{d imes k}$ 

- (Only really makes sense when  $\lambda_k > 0$ .)
- ▶ This is a form of *dimensionality reduction* when k < d.



Figure 7: Fraction of residual variance with PCA and coordinate projections

28 / 39

# PCA and linear regression

- lacktriangle Use k-dimensional PCA mapping  $oldsymbol{arphi}(x) = oldsymbol{V}_k^{\intercal} x$  with OLS
- (Assume rank of A is at least k, so  $A^{\mathsf{T}}A$  has  $\lambda_k > 0$ )
- Data matrix is

$$egin{array}{cccc} rac{1}{\sqrt{n}} egin{bmatrix} \leftarrow & oldsymbol{arphi}(oldsymbol{x}_1)^{\intercal} & 
ightarrow \ dots & dots \ \leftarrow & oldsymbol{arphi}(oldsymbol{x}_n)^{\intercal} & 
ightarrow \end{bmatrix} = rac{1}{\sqrt{n}} egin{bmatrix} \leftarrow & oldsymbol{x}_1^{\intercal} oldsymbol{V}_k & 
ightarrow \ & dots \ \leftarrow & oldsymbol{x}_n^{\intercal} oldsymbol{V}_k & 
ightarrow \end{bmatrix} = oldsymbol{A} oldsymbol{V}_k \in \mathbb{R}^{n imes k} \end{array}$$

► Therefore, OLS solution is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{V}_k^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{V}_k)^{-1} (\boldsymbol{A} \boldsymbol{V}_k)^{\mathsf{T}} \boldsymbol{b}$$
$$= \boldsymbol{\Lambda}_k^{-1} \boldsymbol{V}_k^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{b}$$

(Note: here  $\hat{oldsymbol{eta}} \in \mathbb{R}^k$ .)

# Covariance of data upon PCA mapping

► Covariance of data upon PCA mapping:

$$egin{aligned} rac{1}{n} \sum_{i=1}^n oldsymbol{arphi}(oldsymbol{x}_i) oldsymbol{arphi}(oldsymbol{x}_i)^{\mathsf{T}} &= rac{1}{n} \sum_{i=1}^n oldsymbol{V}_k^{\mathsf{T}} oldsymbol{x}_i oldsymbol{x}_i^{\mathsf{T}} oldsymbol{V}_k \ &= oldsymbol{\Lambda}_k \end{aligned}$$

where  $\Lambda_k$  is diagonal matrix with  $\lambda_1, \ldots, \lambda_k$  along diagonal.

In particular, coordinates in  $\varphi(x)$ -representation are uncorrelated.





29 / 3

# Principal component regression

 $lackbox{ Use } \hat{eta} = m{\Lambda}_k^{-1} m{V}_k^{\scriptscriptstyle\mathsf{T}} m{A}^{\scriptscriptstyle\mathsf{T}} m{b}$  to predict on new  $m{x} \in \mathbb{R}^d$ :

$$egin{aligned} oldsymbol{arphi}(oldsymbol{x})^{\intercal}\hat{oldsymbol{eta}} &= (oldsymbol{V}_k^{\intercal}oldsymbol{x})^{\intercal}oldsymbol{\Lambda}_k^{-1}oldsymbol{V}_k^{\intercal}oldsymbol{A}^{\intercal}oldsymbol{b} \ &= oldsymbol{x}^{\intercal}(oldsymbol{V}_koldsymbol{\Lambda}_k^{-1}oldsymbol{V}_k^{\intercal})(oldsymbol{A}^{\intercal}oldsymbol{b}) \end{aligned}$$

So "effective" weight vector (that acts directly on x rather than  $\varphi(x)$ ) is given by

$$\hat{oldsymbol{w}} := (oldsymbol{V}_k oldsymbol{\Lambda}_k^{-1} oldsymbol{V}_k^{\intercal}) (oldsymbol{A}^{\intercal} oldsymbol{b}) = \left( \sum_{i=1}^k rac{1}{\lambda_i} oldsymbol{v}_i oldsymbol{v}_i^{\intercal} 
ight) (oldsymbol{A}^{\intercal} oldsymbol{b}).$$

- ▶ This is called <u>principal component regression (PCR)</u> (here, k is hyperparameter)
- ▶ Alternative hyper-parameterization:  $\lambda > 0$ ; same as before but using the largest k such that  $\lambda_k \geq \lambda$ .

-- /--

-. . -

# Spectral regularization

- ▶ PCR and ridge regression are examples of *spectral regularization*.
- ▶ For a function  $g: \mathbb{R} \to \mathbb{R}$ , write g(M) to mean

$$g(\boldsymbol{M}) = \sum_{i=1}^d g(\lambda_i) \boldsymbol{v}_i \boldsymbol{v}_i^{\scriptscriptstyle\mathsf{T}}$$

where  $m{M}$  has eigendecomposition  $m{M} = \sum_{i=1}^d \lambda_i m{v}_i m{v}_i^{\scriptscriptstyle\mathsf{T}}.$ 

▶ Claim: Can write each of PCR and ridge regression as

$$\hat{\boldsymbol{w}} = g(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A})\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

for appropriate function g (depending on  $\lambda$ ).

# Comparing ridge regression and PCR

$$\text{Ridge:}\quad g(z) = \frac{1}{z+\lambda}; \quad \text{PCR:} \quad g(z) = \mathbb{1}_{\{z \geq \lambda\}} \cdot \frac{1}{z}$$



Figure 8: Spectral regularization function g for ridge and PCR ( $\lambda=0.1$ )

- ► Interpretation:
  - ▶ PCR only uses directions with sufficient variability; ignores the rest
  - ► Ridge artificially inflates the variance in all directions

32 / 39

# Optimization for linear regression

- ► Back to considering ordinary least squares.
- ▶ Gaussian elimination to solve normal equations can be slow when d is large (time is  $O(nd^2)$ ).
- ► Alternative: find approximate solution using *gradient descent*



Figure 9: Gradient descent

# Gradient descent for linear regression

- ▶ Algorithm: start with some  $w^{(0)} \in \mathbb{R}^d$  and  $\eta > 0$ .
  - ▶ For t = 1, 2, ...:

$$\mathbf{w}^{(t)} := \mathbf{w}^{(t-1)} - 2\eta \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{w}^{(t-1)} - \mathbf{b})$$
$$= \mathbf{w}^{(t-1)} - 2\eta \cdot \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w}^{(t-1)} - y_{i}) \mathbf{x}_{i}$$

- ▶ Time to multiply matrix by vector is linear in matrix size.
- ▶ So each iteration takes time O(nd).
- $ightharpoonup \eta$  is called *step size* (somewhat of a misnomer)

33 / 39

# Motivation for gradient descent

- ► Why move in direction of (negative) gradient?
- Affine approximation of  $\widehat{\mathcal{R}}(w+\pmb{\delta})$  around w:

▶ Use  $\delta := -\eta \nabla \widehat{\mathcal{R}}(\boldsymbol{w})$  for some  $\eta > 0$ :

# Interpretation of gradient descent for linear regression

▶ Interpretation (specific to least squares objective):

$$\nabla (\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} - y_i)^2 = 2(\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} - y_i) \boldsymbol{x}_i.$$

- If  $x_i^{\mathsf{T}} w > y_i$ , subtract a little bit of  $x_i$  from w
- ightharpoonup If  $oldsymbol{x}_i^{\mathsf{T}}oldsymbol{w} < y_i$ , add a little bit of  $oldsymbol{x}_i$  from  $oldsymbol{w}$
- If  $x_i^{\mathsf{T}} w = y_i$ , *i*-th term has no contribution

6 / 39

27 / 20

# Behavior of gradient descent for linear regression

▶ **Theorem**: Let  $\hat{\boldsymbol{w}}$  be the minimum Euclidean norm solution to normal equations. Assume  $\boldsymbol{w}^{(0)} = \boldsymbol{0}$ . Write eigendecomposition  $\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} = \sum_{i=1}^r \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}}$  with  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$ . Then  $\boldsymbol{w}^{(t)} \in \mathrm{range}(\boldsymbol{A}^{\mathsf{T}})$  and

$$oldsymbol{v}_i^{\scriptscriptstyle\mathsf{T}} oldsymbol{w}^{(t)} = \left( 2 \eta \lambda_i \sum_{k=0}^{t-1} (1 - 2 \eta \lambda_i)^k 
ight) oldsymbol{v}_i^{\scriptscriptstyle\mathsf{T}} \hat{oldsymbol{w}}, \quad i = 1, \dots, r.$$

- ► Implications:
  - ▶ If we choose  $\eta$  such that  $2\eta\lambda_i < 1$ , then

$$2\eta \lambda_i \sum_{k=0}^{t-1} (1 - 2\eta \lambda_i)^k = 1 - (1 - 2\eta \lambda_i)^t,$$

which converges to 1 as  $t \to \infty$ .

- ▶ So, when  $2\eta \lambda_1 < 1$ , we have  $w^{(t)} \to \hat{w}$  as  $t \to \infty$ .
- Rate of convergence is geometric, i.e., "exponentially fast convergence".

# Inductive bias of gradient descent

- ► Gradient descent for linear regression has an inductive bias—converges to the minimum norm solution.
- ► Also a form of spectral regularization, with function

$$g(z) = \mathbb{1}_{\{z>0\}} \cdot \frac{1 - (1 - 2\eta z)^t}{z}.$$

Minimum norm solution uses

$$g(z) = \mathbb{1}_{\{z>0\}} \cdot \frac{1}{z}.$$