Applied Multivariate Analysis Homework 5

110024516 邱繼賢

Problem 1.

Total inertia

$$\phi^2 = \sum_i \sum_j \frac{\left(p_{ij} - r_i c_j\right)^2}{r_i c_j} = tr\left(QQ'\right) = \text{sum of the eigen values} = 0.1287176$$

sum(res.ca\$eig[,1])

[1] 0.1287176

And the respective inertia for the first two coordinates are

dim 1 dim 2 ## 0.10765619 0.01386851

The asymmetric plot with principal coordinates for A3:

##		1	2	3	4	5
##	1	0.037	0.266	0.252	0.193	0.252
##	2	0.016	0.211	0.283	0.247	0.243
##	3	0.036	0.281	0.391	0.141	0.151
##	4	0.013	0.253	0.318	0.260	0.156
##	5	0.060	0.355	0.259	0.145	0.181
##	6	0.046	0.487	0.333	0.067	0.067
##	7	0.021	0.471	0.385	0.064	0.059
##	8	0.084	0.469	0.336	0.049	0.063
##	mean_profile	0.037	0.341	0.318	0.150	0.154

- (1) 高中職的學生 (A3 = 7, 8, 9) 明顯分成一群,和其他年級較低的學生相差較遠
- (2) 高中職的學生 (A3=7,8,9) 在運動時間較短 (B7=2,3) 的 levels 所占比例高於 mean profile,可藉由 觀察 A3=7,8,9 和原點相連所形成的向量跟 B7=2,3 和原點相連所形成的向量的夾角 <90 度得知。而年級較低的學生 (A3=1,2,4) 在運動時間較長 (B7=4,5) 的 levels 所占比例高於 mean profile,一樣可以藉由觀察向量夾角得知
- (3) A3=3,5 的學生在圖形上很接近原點,故可以推測他們在各種運動時間的 level 上所佔比例和 mean profile 並沒有太大差距

Problem 2.

(1) PC method with varimax rotation

##				
##	Loading	gs:		
##		RC1	RC2	RC3
##	B10_1			0.115
##	B10_2			0.147
##	B10_3			0.543
##	B10_4			0.530
##	B10_5			0.503
##	B10_6			
##	B10_7			0.133
##	B10_8			0.174
##	B10_9			
	B10_10			
	C9_1			0.725
	C9_2			0.765
##	C9_3			0.725
	C9_4			0.749
##	C9_5		-0.138	0.604
	C9_6			0.627
	C9_7		-0.120	
	C9_8			0.518
	C9_9			0.423
	C9_10		0.103	0.283
	C9_11			
	C9_12			0.367
	C9_13			0.268
	C9_14			0.280
	C9_15			0.300
	C9_16		0.138	
	C9_17		0 400	
	C9_18		0.106	
##	C9_19	0.710		
	C10_1	0.719		0 101
	C10_2	0.611		-0.101
	C10_3	0.860		
##	C10_4	0.947		
	C10_5	0.649		
	C10_6	0.946		
	C10_7 C10_8	0.933		
		0.960		
##	C10_9	0.902		

```
## C10_10 0.873
## C10_11
                  0.807
## C10_12
                  0.710
## C10_13
                  0.703
## C10_14
                  0.763
## C10_15
                  0.886
## C10_16
                  0.851
## C10_17
                  0.646
## C10_18
                  0.881
## C10_19
                  0.742
## C10_20
                  0.759
##
##
                    RC1
                          RC2
                                RC3
## SS loadings
                  7.285 6.251 5.162
## Proportion Var 0.149 0.128 0.105
## Cumulative Var 0.149 0.276 0.382
```

(2) PC method with quartimax rotation

##				
##	Loading	gs:		
##		RC1	RC2	RC3
##	B10_1			0.115
##	B10_2			0.147
##	B10_3			0.545
##	B10_4			0.532
##	B10_5			0.499
##	B10_6			
##	B10_7			0.127
##	B10_8			0.170
##	B10_9			
##	B10_10			
##	C9_1			0.726
##	C9_2			0.769
##	C9_3			0.727
	C9_4			0.750
##	C9_5		-0.101	0.611
##	C9_6			0.632
##	C9_7			0.579
	C9_8			0.522
##	C9_9			0.423
##	C9_10		0.122	0.276
##	C9_11			
##	C9_12			0.367
##	C9_13			0.263

```
## C9_14
                         0.276
## C9_15
                         0.299
## C9_16
                  0.134
## C9_17
## C9_18
                  0.102
## C9_19
## C10_1
           0.720
## C10_2
           0.613
                        -0.107
## C10_3
           0.859
## C10_4
           0.947
## C10_5
           0.650
## C10_6
           0.946
## C10_7
           0.934
## C10_8
           0.959
## C10_9
           0.903
## C10_10 0.875
## C10_11
                  0.808
## C10_12
                  0.714
## C10_13 0.103 0.699
## C10_14
                  0.766
## C10_15
                  0.890
## C10_16
                  0.850
## C10_17
                  0.639
## C10_18
                  0.884
## C10_19
                  0.741
## C10_20
                  0.758
##
                          RC2
##
                    RC1
                                RC3
## SS loadings
                  7.297 6.215 5.187
## Proportion Var 0.149 0.127 0.106
## Cumulative Var 0.149 0.276 0.382
```

PF method with varimax rotation

Loadings: ## PA1 PA2 PA3 ## B10_1 ## B10_2 0.119 ## B10_3 0.497 ## B10_4 0.483 ## B10_5 0.457 ## B10_6 ## B10_7 0.107 ## B10_8 0.141

```
## B10_9
## B10_10
## C9_1
                          0.710
## C9_2
                          0.761
## C9_3
                          0.711
## C9_4
                          0.741
## C9_5
                 -0.127
                          0.559
## C9_6
                          0.579
## C9_7
                 -0.110 0.523
## C9_8
                          0.463
## C9_9
                          0.368
## C9_10
                          0.237
## C9_11
## C9_12
                          0.313
## C9_13
                          0.221
## C9_14
                          0.230
## C9_15
                          0.250
## C9_16
                  0.113
## C9_17
## C9_18
## C9_19
## C10_1
           0.676
## C10_2
           0.563
## C10_3
           0.840
## C10_4
           0.952
## C10_5
           0.601
## C10_6
           0.950
## C10_7
           0.932
## C10_8
           0.969
## C10_9
           0.893
## C10_10
           0.857
## C10_11
                  0.785
## C10_12
                  0.673
## C10_13
                  0.662
## C10_14
                  0.733
## C10_15
                  0.888
## C10_16
                  0.839
## C10_17
                  0.598
## C10_18
                  0.881
## C10_19
                  0.706
## C10_20
                  0.726
##
##
                    PA1
                           PA2
                                 PA3
                  7.052 5.843 4.537
## SS loadings
## Proportion Var 0.144 0.119 0.093
```

PF method with quartimax rotation

##				
##	Loading	gs:		
##		PA1	PA2	PA3
##	B10_1			
##	B10_2			0.119
##	B10_3			0.499
##	B10_4			0.485
##	B10_5			0.454
##	B10_6			
##	B10_7			0.102
##	B10_8			0.138
##	B10_9			
##	B10_10			
##	C9_1			0.711
	C9_2			0.764
	C9_3			0.713
##	C9_4			0.742
	C9_5			0.565
	C9_6			0.584
	C9_7			0.528
	C9_8			0.467
	C9_9			0.368
	C9_10		0.101	0.231
	C9_11			
	C9_12			0.313
	C9_13			0.218
	C9_14			0.227
	C9_15			0.249
	C9_16		0.109	
	C9_17			
	C9_18			
##	C9_19	0 677		
##	C10_1	0.677		0 104
	C10_2	0.565		-0.104
##	C10_3	0.840		
##	C10_4 C10_5	0.952		
##	_	0.802		
	C10_6 C10_7			
	C10_7	0.932		
	_			
##	C10_9	0.894		

```
## C10_10 0.858
## C10_11
                 0.786
## C10_12
                 0.677
## C10_13
                 0.658
## C10_14
                 0.736
## C10_15
                 0.892
## C10_16
                 0.838
## C10_17
                 0.593
## C10_18
                 0.884
## C10_19
                 0.705
## C10_20
                 0.724
##
##
                   PA1
                         PA2 PA3
## SS loadings
                 7.060 5.811 4.560
## Proportion Var 0.144 0.119 0.093
## Cumulative Var 0.144 0.263 0.356
```

MLE method with varimax rotation

##					
##	Loadings:				
##		ML1	ML2	ML3	
##	B10_1				
##	B10_2				
##	B10_3			0.481	
##	B10_4			0.463	
##	B10_5			0.442	
##	B10_6				
##	B10_7				
##	B10_8				
##	B10_9				
##	B10_10			-0.171	
##	C9_1			0.779	
##	C9_2			0.824	
##	C9_3			0.779	
##	C9_4			0.819	
##	C9_5			0.497	
##	C9_6			0.494	
##	C9_7			0.446	
##	C9_8			0.376	
##	C9_9			0.310	
##	C9_10			0.178	
##	C9_11				
##	C9_12			0.241	
##	C9_13			0.142	

```
## C9_14
                         0.151
## C9_15
                         0.177
## C9_16
                        -0.128
## C9_17
## C9_18
                        -0.135
## C9_19
                        -0.159
## C10_1
           0.636
## C10_2
           0.512
                        -0.125
## C10_3
           0.862
## C10_4
           0.977
## C10_5
           0.557
## C10_6
           0.947
## C10_7
           0.902
## C10_8
           0.991
## C10_9
           0.897
## C10_10
           0.848
## C10_11
                  0.798
## C10_12
                  0.701
## C10_13
                  0.650
## C10_14
                  0.755
## C10_15
                  0.898
## C10_16
                  0.837
## C10_17
                  0.569 -0.114
## C10_18
                  0.887
## C10_19
                  0.690
## C10_20
                  0.712
##
##
                    ML1
                          ML2
                                ML3
## SS loadings
                  6.925 5.790 4.468
## Proportion Var 0.141 0.118 0.091
## Cumulative Var 0.141 0.259 0.351
```

MLE method with quartimax rotation

```
##
## Loadings:
##
          ML1
                 ML2
                         ML3
## B10_1
## B10_2
## B10_3
                          0.480
## B10_4
                          0.463
## B10_5
                          0.443
## B10_6
## B10_7
## B10_8
```

```
## B10_9
## B10_10
                        -0.171
## C9_1
                         0.779
## C9_2
                         0.824
## C9_3
                         0.779
## C9_4
                         0.819
## C9_5
                         0.495
## C9_6
                          0.493
## C9_7
                         0.445
## C9_8
                         0.375
## C9_9
                         0.310
## C9_10
                         0.179
## C9_11
## C9_12
                         0.241
## C9_13
                         0.143
## C9_14
                         0.152
## C9_15
                         0.177
## C9_16
                        -0.126
## C9_17
## C9_18
                        -0.134
## C9_19
                        -0.158
## C10_1
           0.636
## C10_2
           0.512
                        -0.124
## C10_3
           0.862
## C10_4
           0.977
## C10_5
           0.556
## C10_6
           0.947
## C10_7
           0.902
## C10_8
           0.991
## C10_9
           0.897
## C10_10
           0.848
## C10_11
                  0.798
## C10_12
                  0.700
## C10_13
                  0.652
## C10_14
                  0.755
## C10_15
                  0.898
## C10_16
                  0.838
## C10_17
                  0.572 -0.103
                  0.886
## C10_18
## C10_19
                  0.691
## C10_20
                  0.713
##
##
                    ML1
                          ML2
                                 ML3
                  6.924 5.802 4.457
## SS loadings
## Proportion Var 0.141 0.118 0.091
```

Cumulative Var 0.141 0.260 0.351

我們可以看到各種方式所做出的結果差異不大,基本上每個變數都只有三個 factors 中的一個的 loading 比較大,這是因為我們有進行 rotation 所造成的結果,接下來選取 MLE method with varimax rotation 來進一步觀察。

可以看出大部份的變數都落在三個 factors 各自的軸上,符合前面對於 loading 數值的描述,以下列出三個 Factors 對應到 loading 較大的變數各為哪些,並試著解釋出三個 Factor 各自可能代表的意義

- (i) Factor $1: C10_1 \sim C10_10$,這些變數都是一些不良且可能成癮的嗜好,Factor 1 可能代表著「不良嗜好傾向」
- (ii) Factor $2:C10_11\sim C10_20$,這些變數都是一些跟家庭或同儕有關所造成的反社會行為,Factor 2 可能代表著「社會環境造成的不良影響」
- (iii) Factor $3: B10_3 \sim B10_5 \& C9$,這些變數都是一些家庭或同儕所給予的正面回饋,Factor 3 可能代表著「社會環境所給予的正面影響」

$$\therefore \operatorname{diag}\left(S - \widetilde{L}\widetilde{L}' - \widetilde{\Psi}\right) = \widetilde{O}$$

: SS of entries
$$(S-\widetilde{L}\widetilde{L}'-\widetilde{\Psi}) \leq SS$$
 of entries $(S-\widetilde{L}\widetilde{L}')$

and
$$S - \widetilde{L}\widetilde{L}' = \widehat{P} \widehat{\Lambda} \widehat{P}'$$

where
$$\hat{p} = [\hat{e}_{n+1}; \hat{e}_{n+2}; \dots; \hat{e}_{p}], \hat{\Lambda} = [\hat{\Lambda}_{n+1}; \hat{\Lambda}_{g}]$$

$$= tr[\hat{p}\hat{\Lambda}\hat{p}'\hat{p}\hat{\Lambda}\hat{p}'] = tr[\hat{p}\hat{\Lambda}^2\hat{p}'] = tr[\hat{\Lambda}^2]$$

$$SS$$
 of entries $(S-\widetilde{L}\widetilde{L}'-\widetilde{\Psi}) \leq \widehat{\Lambda}_{\text{ret}}^2$, $+ \cdots + \widehat{\Lambda}_{p}^2$