Package 'RTFA'

April 10, 2023

Type Package
Title Robust Factor Analysis for Tensor Time Series
Version 0.1.0
Author Matteo Barigozzi [aut], Yong He [aut], Lorenzo Trapani [aut], Lingxiao Li [aut, cre]
Maintainer Lingxiao Li Lilingxiao@mail.sdu.edu.cn>
Description Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order tensor time series, and have wide applications in economics, finance and medical imaging. We propose an one-step projection estimator by minimizing the least-square loss function, and further propose a robust estimator with an iterative weighted projection technique by utilizing the Huber loss function. The methods are discussed in Barigozzi et al. (2022) <arxiv:2206.09800>, and Barigozzi et al. (2023) <arxiv:2303.18163:< td=""></arxiv:2303.18163:<></arxiv:2206.09800>
License GPL (>= 2)
Depends R (>= $3.5.0$)
Imports rTensor, tensor
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2023-04-10 14:00:05 UTC
R topics documented:
TFM_est 2 TFM_FN 3
Index 6

2 TFM_est

TFM_est

Estimation of Factor Model for High-Dimensional Tensor Time Series

Description

This function is to estimate the tensor factor model via four different methods, namely the initial estimation without initial (IE), one-step projection estimation (PE), iterative projection estimation (iPE) and iterative weighted projection estimation by Huber loss (HUBER).

Usage

```
TFM_{est}(x, r, method = "PE", tol = 1e-04, maxiter = 100)
```

Arguments

 $T \times p_1 \times \cdots \times p_K$ tensor-valued time series.

r input rank of the factor tensor.

method character string, specifying the type of the estimation method to be used.

"IE", Initial estimation, without projection.
"PE", One-step projection estimation.

"iPE", Iterative projection estimation.

"HUBER", Iterative weighted projection estimation based on huber loss func-

tion.

tol tolerance in terms of the Frobenius norm.

maxiter maximum number of iterations if error stays above tol.

Details

See Barigozzi et al. (2022) and Barigozzi et al. (2023) for details.

Value

return a list containing the following:

Ft estimated factor processes of dimension $T \times r_1 \times r_2 \times \cdots \times r_K$.

Ft.all Summation of factor processes over time, of dimension r_1, r_2, \cdots, r_K .

Q a list of estimated factor loading matrices Q_1, Q_2, \cdots, Q_K .

x.hat fitted signal tensor, of dimension $T \times p_1 \times p_2 \times \cdots \times p_K$.

niter number of iterations.

fnorm.resid Frobenius norm of residuals, divide the Frobenius norm of the original tensor.

Author(s)

Matteo Barigozzi, Yong He, Lingxiao Li, Lorenzo Trapani.

TFM_FN 3

References

Barigozzi M, He Y, Li L, Trapani L. Robust Estimation of Large Factor Models for Tensor-valued Time Series. <arXiv:2206.09800>

Barigozzi M, He Y, Li L, Trapani L. Statistical Inference for Large-dimensional Tensor Factor Model by Iterative Projection. <arXiv:2303.18163>

Examples

```
library(rTensor)
set.seed(1234)
p \leftarrow c(12,16,20) # dimensions of tensor time series
r <- c(3,4,5) # dimensions of factor series
A<-list()
Q<-list()
for(i in 1:3){
  A[[i]]<-matrix(rnorm(p[i]*r[i],0,1),p[i],r[i])
  Q[[i]] < -eigen(A[[i]]) * * t(A[[i]])) *vectors
}
T<-100
F<-array(NA,c(T,r))
E<-array(NA,c(T,p))</pre>
S<-array(NA,c(T,p))</pre>
X<-array(NA,c(T,p))</pre>
for(t in 1:T){
  F[t,,,] < -array(rnorm(prod(r),0,1),r)
  E[t,,,] < -array(rnorm(prod(p),0,1),p)
  S[t,,,] < -ttl(as.tensor(F[t,,,]),A,c(1,2,3))@data
  X[t,,,]<-S[t,,,]+E[t,,,]
result <- TFM_est(X,r,method='PE')</pre>
Q.hat<-result$Q
Ft.hat <- result$Ft
```

TFM_FN

Estimation Factor Numbers via Eigenvalue-Ratio Criterion

Description

This function is to estimate factor numbers via eigenvalue-ratio criterion corresponding to initial estimation without projection, one-step projection estimation, iterative projection estimation and iterative weighted projection estimation by Huber loss.

Usage

```
TFM_FN(x, r = NULL, method = "PE", tol = 1e-04, maxiter = 100)
```

4 TFM_FN

Arguments

 $T \times p_1 \times \cdots \times p_K \text{ tensor-valued time series.}$ r input rank of the factor tensor. $\text{method} \qquad \text{character string, specifying the type of the factor estimation method to be used.}$ "IE", Initial estimation, without projection. "PE", One-step projection estimation. "iPE", Iterative projection estimation. "HUBER", Iterative weighted projection estimation based on huber loss function. tolerance in terms of the Frobenius norm.} maximum number of iterations if error stays above tol.

Details

See Barigozzi et al. (2022) and Barigozzi et al. (2023) for details.

Value

return a list containing the following:

path a $K \times (\text{niter} + 1)$ matrix of the estimated Tucker rank of the factor process as a path of the maximum number of iteration (niter) used. The i-th column is the estimated rank $\hat{r}_1, \hat{r}_2, \cdots, \hat{r}_K$ at (i-1)-th iteration.

factor.num final solution of the estimated Tucker rank of the factor process $\hat{r}_1, \hat{r}_2, \cdots, \hat{r}_K$.

Author(s)

Matteo Barigozzi, Yong He, Lingxiao Li, Lorenzo Trapani.

References

Barigozzi M, He Y, Li L, Trapani L. Robust Estimation of Large Factor Models for Tensor-valued Time Series. <arXiv:2206.09800>

Barigozzi M, He Y, Li L, Trapani L. Statistical Inference for Large-dimensional Tensor Factor Model by Iterative Projection. <arXiv:2303.18163>

Examples

```
library(rTensor)
set.seed(1234)
p <- c(12,16,20) # dimensions of tensor time series
r <- c(3,4,5) # dimensions of factor series
A<-list()
Q<-list()
for(i in 1:3){
    A[[i]]<-matrix(rnorm(p[i]*r[i],0,1),p[i],r[i])
    Q[[i]]=eigen(A[[i]]%*%t(A[[i]]))$vectors
}</pre>
```

TFM_FN 5

```
T<-100
F<-array(NA,c(T,r))
E<-array(NA,c(T,p))
S<-array(NA,c(T,p))
X<-array(NA,c(T,p))
for(t in 1:T){
    F[t,,,]<-array(rnorm(prod(r),0,1),r)
    E[t,,,]<-array(rnorm(prod(p),0,1),p)
    S[t,,,]<-ttl(as.tensor(F[t,,,]),A,c(1,2,3))@data
    X[t,,,]<-S[t,,,]+E[t,,,]
}
rank<-TFM_FN(X,r=NULL,method='PE')</pre>
```

Index

TFM_est, 2 TFM_FN, 3