Contents

1	27NodeBrick cantilever beams	2
2	4NodeANDES cantilever beams under the force perpendicular to plane	3
3	4NodeANDES cantilever beams under the inplane force	4
4	4NodeANDES square plate with four edges clamped	5
5	The presentation example with beam elastic element	7

1 27NodeBrick cantilever beams

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, $\nu = 0.0$.

Figure 1: Problem description for cantilever beams

Numerical model:

The 27NodeBrick elements were shown in Figure (2).

Figure 2: 27NodeBrick elements for cantilever beams

2 4NodeANDES cantilever beams under the force perpendicular to plane

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, $\nu = 0.0$.

Figure 3: Problem description for cantilever beams

Numerical model:

When the force direction is perpendicular to the plane, only the bending deformation is calculated in 4NodeANDES elements.

The 4NodeANDES elements were shown in Figure (4).

Figure 4: 4NodeANDES elements for cantilever beams under force perpendicular to plane

3 4NodeANDES cantilever beams under the inplane force

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, $\nu = 0.0$.

Figure 5: Problem description for cantilever beams

Numerical model:

When the force direction is inplane, both the bending and shear deformation are calculated in 4Node-ANDES elements.

The 4NodeANDES elements under inplane force were shown in Figure (6).

Figure 6: 4NodeANDES elements for cantilever beams under inplane force

4 4NodeANDES square plate with four edges clamped

Problem description:

 $\label{eq:length} \mbox{Length} = 20\mbox{m}, \mbox{Width} = 20\mbox{m}, \mbox{Height} = 1\mbox{m}, \mbox{Force} = 100\mbox{N}, \mbox{E} = 1\mbox{E8Pa}, \mbox{$\nu = 0.3$.}$

The four edges are **clamped**.

The load is the uniform normal pressure on the whole plate.

Figure 7: Square plate with four edges clamped

$Numerical\ model:$

The element side length is 1 meter.

Figure 8: 4NodeANDES edge clamped square plate with element side length 1m

5 The presentation example with $beam_elastic$ element

Problem description:

- Structure size
 Structure Width=6m, Height=6m, Force=100N
- Element size Element length=6m, width=1m, height=1m, $\rho=0.0$, E=1E8Pa, $\nu=0.0$.

Figure 9: Problem description for the presentation example with beam elastic element

$Numerical\ model:$

Figure 10: The presentation example with $beam_elastic$ element