# CSC 252: Computer Organization Spring 2018: Lecture 2

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

#### **Action Items:**

- Programming Assignment 1 is out
- Trivia 1 is due on Friday, midnight

Slide Credits: Randal E. Bryant, David R. O'Hallaron

#### **Announcement**

- Programming Assignment 1 is out
  - Details: <a href="http://cs.rochester.edu/courses/252/spring2018/">http://cs.rochester.edu/courses/252/spring2018/</a>
     labs/assignment1.html
  - Due on Feb 2, 11:59 PM
  - Trivia due Friday, 1/26, 11:59 PM
  - You have 3 slip days (not for trivia)
- Ask the TAs if you have any questions regarding programming assignments

- How is a humanreadable program translated to a representation that computers can understand?
- How does a modern computer execute that program?



Scope of Computer Systems (CSC 252)

#### C Program

```
void add() {
  int a = 1;
  int b = 2;
  int c = a + b;
}
```

## Pre-processor Compiler



movl \$1, -4(%rbp) movl \$2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax

#### Assembly program

movl \$1, -4(%rbp)

movl \$2, -8(%rbp)

movl -4(%rbp), %eax

addl -8(%rbp), %eax

#### Assembler Linker



#### Executable Binary

00011001 ... 01101010 ...

11010101 ...

01110001 ...

#### Assembly program

#### movl \$1, -4(%rbp) movl \$2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax

#### Executable Binary

```
00011001 ...
01101010 ...
11010101 ...
01110001 ...
```

- Is ISA referring to assembly or binary?
  - They are the same thing; different representations.
- Instruction = Operator + Operand(s)

#### Assembly program

#### movl \$1, -4(%rbp) movl \$2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax

#### Executable Binary

```
00011001 ...
01101010 ...
11010101 ...
01110001 ...
```

- Is ISA referring to assembly or binary?
  - They are the same thing; different representations.
- Instruction = Operator + Operand(s)

#### Assembly program

movl

movl

mov

addl

#### \$1, -4(%rbp) \$2, -8(%rbp) -4(%rbp), %eax -8(%rbp), %eax

#### Executable Binary

```
00011001 ...
01101010 ...
11010101 ...
01110001 ...
```

- Is ISA referring to assembly or binary?
  - They are the same thing; different representations.
- Instruction = Operator + Operand(s)

#### Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
  - Representation: unsigned and signed
  - Conversion, casting
  - Expanding, truncating
  - Addition, negation, multiplication, shifting
  - Summary
- Representations in memory, pointers, strings

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation



- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation



- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation
  - Transistor has two states: presence of a high voltage ("1"); presence of a low voltage ("0")



- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation



- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
  - Computers determine what to do (instructions)
- Why bits? Electronic Implementation







• Voltage is continuous. We can interpret it however we want.

- Voltage is continuous. We can interpret it however we want.
- Classic Example: Camera Sensor
  - Photoelectric Effect





- Voltage is continuous. We can interpret it however we want.
- Classic Example: Camera Sensor
  - Photoelectric Effect



- Voltage is continuous. We can interpret it however we want.
- Classic Example: Camera Sensor
  - Photoelectric Effect



(Epperson, P.M. et al. Electro-optical characterization of the Tektronix TK5 ..., Opt Eng., 25, 1987)



- Voltage is continuous. We can interpret it however we want.
- Classic Example: Camera Sensor
  - Photoelectric Effect







- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position

• 
$$b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$$

• 
$$1011_2 = 1^20 + 1^21 + 0^22 + 1^23 = 11_{10}$$

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- $1011_2 = 1^20 + 1^21 + 0^22 + 1^23 = 11_{10}$

| Decimal | Binary |
|---------|--------|
| 0       | 0000   |
| 1       | 0001   |
| 2       | 0010   |
| 3       | 0011   |
| 4       | 0100   |
| 5       | 0101   |
| 6       | 0110   |
| 7       | 0111   |
| 8       | 1000   |
| 9       | 1001   |
| 10      | 1010   |
| 11      | 1011   |
| 12      | 1100   |
| 13      | 1101   |
| 14      | 1110   |
| 15      | 1111   |

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- $1011_2 = 1^20 + 1^21 + 0^22 + 1^23 = 11_{10}$
- Binary Arithmetic

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 0000          |
| 1       | 0001          |
| 2       | 0010          |
| 3       | 0011          |
| 4       | 0100          |
| 5       | 0101          |
| 6       | 0110          |
| 7       | 0111          |
| 8       | 1000          |
| 9       | 1001          |
| 10      | 1010          |
| 11      | 1011          |
| 12      | 1100          |
| 13      | 1101          |
| 14      | 1110          |
| 15      | 1111          |

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position

• 
$$b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$$

• 
$$1011_2 = 1^20 + 1^21 + 0^22 + 1^23 = 11_{10}$$

Binary Arithmetic

| Decimal | Binary |
|---------|--------|
| 0       | 0000   |
| 1       | 0001   |
| 2       | 0010   |
| 3       | 0011   |
| 4       | 0100   |
| 5       | 0101   |
| 6       | 0110   |
| 7       | 0111   |
| 8       | 1000   |
| 9       | 1001   |
| 10      | 1010   |
| 11      | 1011   |
| 12      | 1100   |
| 13      | 1101   |
| 14      | 1110   |
| 15      | 1111   |

- Base 2 Number Representation
  - e.g.,  $1011_2 = 11_{10}$
- Weighted Positional Notation
  - Each bit has a weight depending on its position

• 
$$b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$$

• 
$$1011_2 = 1^20 + 1^21 + 0^22 + 1^23 = 11_{10}$$

Binary Arithmetic

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 0000          |
| 1       | 0001          |
| 2       | 0010          |
| 3       | 0011          |
| 4       | 0100          |
| 5       | 0101          |
| 6       | 0110          |
| 7       | 0111          |
| 8       | 1000          |
| 9       | 1001          |
| 10      | 1010          |
| 11      | 1011          |
| 12      | 1100          |
| 13      | 1101          |
| 14      | 1110          |
| 15      | 1111          |

#### Hexdecimal (Hex) Notation

- Base 16 Number Representation
  - Use characters '0' to '9' and 'A' to 'F'
  - Four bits per Hex digit
  - $111111110_2 = FE_{16}$
- Write FA1D37B<sub>16</sub> in C as
  - 0xFA1D37B
  - 0xfa1d37b

| Hex | Decimal | Binary |
|-----|---------|--------|
| 0   | 0       | 0000   |
| 1   | 1       | 0001   |
| 2   | 2       | 0010   |
| 3   | 3       | 0011   |
| 4   | 4       | 0100   |
| 5   | 5       | 0101   |
| 6   | 6       | 0110   |
| 7   | 7       | 0111   |
| 8   | 8       | 1000   |
| 9   | 9       | 1001   |
| Α   | 10      | 1010   |
| В   | 11      | 1011   |
| С   | 12      | 1100   |
| D   | 13      | 1101   |
| Ε   | 14      | 1110   |
| F   | 15      | 1111   |

## Bit, Byte, Word

- Byte = 8 bits
  - Binary 0000000<sub>2</sub> to 11111111<sub>2</sub>; Decimal: 0<sub>10</sub> to 255<sub>10</sub>; Hex: 00<sub>16</sub> to FF<sub>16</sub>
  - Least Significant Bit (LSb) vs. Most Significant Bit (MSb)



## Bit, Byte, Word

- Byte = 8 bits
  - Binary 000000002 to 111111111<sub>2</sub>; Decimal: 0<sub>10</sub> to 255<sub>10</sub>; Hex: 00<sub>16</sub> to FF<sub>16</sub>
  - Least Significant Bit (LSb) vs. Most Significant Bit (MSb)



- Word = 4 Bytes (32-bit machine) / 8 Bytes (64-bit machine)
  - Least Significant Byte (LSB) vs. Most Significant Byte (MSB)

#### Bit, Byte, Word

- Byte = 8 bits
  - Binary 0000000<sub>2</sub> to 11111111<sub>2</sub>; Decimal: 0<sub>10</sub> to 255<sub>10</sub>; Hex: 00<sub>16</sub> to FF<sub>16</sub>
  - Least Significant Bit (LSb) vs. Most Significant Bit (MSb)



- Word = 4 Bytes (32-bit machine) / 8 Bytes (64-bit machine)
  - Least Significant Byte (LSB) vs. Most Significant Byte (MSB)

## Questions?

#### Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
  - Representation: unsigned and signed
  - Conversion, casting
  - Expanding, truncating
  - Addition, negation, multiplication, shifting
  - Summary
- Representations in memory, pointers, strings

#### Boolean Algebra

- Developed by George Boole in 19th Century
  - Algebraic representation of logic
    - Encode "True" as 1 and "False" as 0

#### And

A&B = 1 when both A=1 and B=1

| & | 0 | 1 |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 1 |

#### Or

- A | B = 1 when either A=1 or B=1

|   | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

#### Not

- ~A = 1 when A=0

| ~ |   |
|---|---|
| 0 | 1 |
| 1 | 0 |

#### **Exclusive-Or (Xor)**

- A^B = 1 when either A=1 or B=1, but not both

| ٨ | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |

- Operate on Bit Vectors
  - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101
```

- Operate on Bit Vectors
  - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001
```

- Operate on Bit Vectors
  - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101
```

- Operate on Bit Vectors
  - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100
```

- Operate on Bit Vectors
  - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 10101010
```

#### Bit-Level Operations in C

- Operations &, I, ~, ^ Available in C
  - Apply to any "integral" data type
    - long, int, short, char, unsigned
  - View arguments as bit vectors
  - Arguments applied bit-wise
- Examples (Char data type)
  - $\sim 0 \times 41 \rightarrow 0 \times BE$ 
    - $\sim 01000001_2 \rightarrow 10111110_2$
  - $\sim 0 \times 00 \rightarrow 0 \times FF$ 
    - $\sim 0000000002 \rightarrow 11111111112$
  - $0x69 \& 0x55 \rightarrow 0x41$ 
    - $01101001_2$  &  $01010101_2 \rightarrow 01000001_2$
  - $0x69 \mid 0x55 \rightarrow 0x7D$ 
    - $01101001_2 \mid 01010101_2 \rightarrow 011111101_2$

#### Contrast: Logic Operations in C

- Contrast to Logical Operators
  - &&, II, !
    - View 0 as "False"
    - Anything nonzero as "True"
    - Always return 0 or 1
    - Early termination
- Examples (char data type)
  - $!0x41 \rightarrow 0x00$
  - $!0x00 \rightarrow 0x01$
  - $!!0x41 \rightarrow 0x01$
  - $0x69 \&\& 0x55 \rightarrow 0x01$
  - $0x69 | 1 0x55 \rightarrow 0x01$
  - p && \*p (avoids null pointer access)

#### Contrast: Logic Operations in C

- Contrast to Logical Operators
  - &&, II, !
    - View 0 as "Fals"
    - Anything ponzer
    - Always
    - Early t
- Examples
  - !0x41
  - !0x00
  - !!0x41

Watch out for && vs. & (and || vs. |)... one of the more common oopsies in C programming

- 0x69 && 0x55 → 0x01
- $0x69 | 1 0x55 \rightarrow 0x01$
- p && \*p (avoids null pointer access)

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010 |
|--------------------|----------|
| << 3               | 00010    |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          |                  |
| <b>Arith.</b> >> 2 |                  |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 011000           |
| <b>Arith.</b> >> 2 |                  |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 |                  |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 011000           |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector x right y positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               |          |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010 |
|--------------------|----------|
| << 3               | 00010    |
| Log. >> 2          |          |
| <b>Arith.</b> >> 2 |          |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| <b>&lt;&lt;</b> 3  | 00010 <i>000</i> |
| <b>Log.</b> >> 2   | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          |                  |
| <b>Arith.</b> >> 2 |                  |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 101000           |
| <b>Arith.</b> >> 2 |                  |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | <i>00</i> 101000 |
| <b>Arith.</b> >> 2 |                  |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | <i>00</i> 101000 |
| <b>Arith.</b> >> 2 | 101000           |

- Left Shift: x << y</li>
  - Shift bit-vector **x** left **y** positions
    - Throw away extra bits on left
    - Fill with 0's on right
- Right Shift: x >> y
  - Shift bit-vector **x** right **y** positions
    - Throw away extra bits on right
  - Logical shift
    - Fill with 0's on left
  - Arithmetic shift
    - Replicate most significant bit on left
- Undefined Behavior
  - Shift amount < 0 or ≥ word size</li>

| Argument x         | 01100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | 00011000         |
| <b>Arith.</b> >> 2 | 00011000         |

| Argument x         | 10100010         |
|--------------------|------------------|
| << 3               | 00010 <i>000</i> |
| Log. >> 2          | <i>00</i> 101000 |
| <b>Arith.</b> >> 2 | <i>11</i> 101000 |

#### Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
  - Representation: unsigned and signed
  - Conversion, casting
  - Expanding, truncating
  - Addition, negation, multiplication, shifting
  - Summary
- Representations in memory, pointers, strings

### Representing Numbers in Binary

- What numbers do we need to represent in bits?
  - Integer (Negative and Non-negative)
  - Fractions
  - Irrationals



### Representing Numbers in Binary

- What numbers do we need to represent in bits?
  - Integer (Negative and Non-negative)
  - Fractions
  - Irrationals



 So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
  - First bit represents sign; 0 for positive; 1 for negative
  - The rest represents magnitude

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
  - First bit represents sign; 0 for positive; 1 for negative
  - The rest represents magnitude



- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
  - First bit represents sign; 0 for positive; 1 for negative
  - The rest represents magnitude



- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
  - First bit represents sign; 0 for positive; 1 for negative
  - The rest represents magnitude



- Bits have different semantics
  - Two zeros...
  - Normal arithmetic doesn't work
  - Make hardware design harder

| Signed<br>Value | Binary |
|-----------------|--------|
| 0               | 000    |
| 1               | 001    |
| 2               | 010    |
| 3               | 011    |
| -0              | 100    |
| -1              | 101    |
| -2              | 110    |
| -3              | 111    |

- Bits have different semantics
  - Two zeros...
  - Normal arithmetic doesn't work
  - Make hardware design harder

|    | 010 |
|----|-----|
| +) | 101 |
|    | 111 |

| Signed<br>Value | Binary |
|-----------------|--------|
| 0               | 000    |
| 1               | 001    |
| 2               | 010    |
| 3               | 011    |
| -0              | 100    |
| -1              | 101    |
| -2              | 110    |
| -3              | 111    |

- Bits have different semantics
  - Two zeros...
  - Normal arithmetic doesn't work
  - Make hardware design harder

| Binary |
|--------|
| 000    |
| 001    |
| 010    |
| 011    |
| 100    |
| 101    |
| 110    |
| 111    |
|        |

- Bits have different semantics
  - Two zeros...
  - Normal arithmetic doesn't work
  - Make hardware design harder

| Binary |
|--------|
| 000    |
| 001    |
| 010    |
| 011    |
| 100    |
| 101    |
| 110    |
| 111    |
|        |

$$101_2 = 1^*2^0 + 0^*2^1 + 1^*2^{-2} = -3_{10}$$



| Unsigned | Binary |
|----------|--------|
| 0        | 000    |
| 1        | 001    |
| 2        | 010    |
| 3        | 011    |
| 4<br>5   | 100    |
|          | 101    |
| 6        | 110    |
| 7        | 111    |

$$101_2 = 1^20 + 0^21 + 1^22 = -3_{10}$$



| Unsigned | Binary |
|----------|--------|
| 0        | 000    |
| 1        | 001    |
| 2        | 010    |
| 3        | 011    |
| 4<br>5   | 100    |
|          | 101    |
| 6        | 110    |
| 7        | 111    |

$$101_2 = 1^*2^0 + 0^*2^1 + 1^*2^{-2} = -3_{10}$$



| Signed         | Unsigned | Binary |
|----------------|----------|--------|
| 0              | 0        | 000    |
| 1              | 1        | 001    |
| 2              | 2        | 010    |
| 3              | 3        | 011    |
| -4<br>-3<br>-2 | 4        | 100    |
| -3             | 5        | 101    |
| -2             | 6        | 110    |
| -1             | 7        | 111    |

$$101_2 = 1^*2^0 + 0^*2^1 + 1^*2^{-2} = -3_{10}$$



| Signed<br>Weight | Unsigned Weight | Bit<br>Position |
|------------------|-----------------|-----------------|
| 20               | 20              | 0               |
| 21               | 21              | 1               |
| 2-2              | 2 <sup>2</sup>  | 2               |

| Signed         | Unsigned | Binary |
|----------------|----------|--------|
| 0              | 0        | 000    |
| 1              | 1        | 001    |
| 2              | 2        | 010    |
| 3              | 3        | 011    |
| -4<br>-3<br>-2 | 4        | 100    |
| -3             | 5        | 101    |
| -2             | 6        | 110    |
| -1             | 7        | 111    |

$$101_2 = 1^*2^0 + 0^*2^1 + 1^*2^{-2} = -3_{10}$$



| Signed | Unsigned | Bit             |
|--------|----------|-----------------|
| Weight | Weight   | <b>Position</b> |
| 20     | $2^{0}$  | 0               |
| 21     | 21       | 1               |
| 2-2    | $2^2$    | 2               |

| Signed         | Unsigned | Binary |
|----------------|----------|--------|
| 0              | 0        | 000    |
| 1              | 1        | 001    |
| 2              | 2        | 010    |
| 3              | 3        | 011    |
| -4             | 4        | 100    |
| -4<br>-3<br>-2 | 5        | 101    |
| -2             | 6        | 110    |
| -1             | 7        | 111    |

$$101_2 = 1^*2^0 + 0^*2^1 + 1^*2^{-2} = -3_{10}$$

## **Two-Complement Encoding Example**

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

| Weight | 152 | 13    | -152 | 213    |
|--------|-----|-------|------|--------|
| 1      | 1   | 1     | 1    | 1      |
| 2      | 0   | 0     | 1    | 2      |
| 4      | 1   | 4     | 0    | 0      |
| 8      | 1   | 8     | 0    | 0      |
| 16     | 0   | 0     | 1    | 16     |
| 32     | 1   | 32    | 0    | 0      |
| 64     | 1   | 64    | 0    | 0      |
| 128    | 0   | 0     | 1    | 128    |
| 256    | 1   | 256   | 0    | 0      |
| 512    | 1   | 512   | 0    | 0      |
| 1024   | 0   | 0     | 1    | 1024   |
| 2048   | 1   | 2048  | 0    | 0      |
| 4096   | 1   | 4096  | 0    | 0      |
| 8192   | 1   | 8192  | 0    | 0      |
| 16384  | 0   | 0     | 1    | 16384  |
| -32768 | 0   | 0     | 1    | -32768 |
| Sum    |     | 15213 |      | -15213 |

## **Two-Complement Implications**

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents sign!
- Most widely used in today's machines

| Signed   | Binary |
|----------|--------|
| 0        | 000    |
| 1        | 001    |
| 2        | 010    |
| 3        | 011    |
| -4       | 100    |
| -3<br>-2 | 101    |
| -2       | 110    |
| -1       | 111    |

## **Two-Complement Implications**

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents sign!
- Most widely used in today's machines

|    | 010 |
|----|-----|
| +) | 101 |
|    | 111 |

| Signed   | Binary |
|----------|--------|
| 0        | 000    |
| 1        | 001    |
| 2        | 010    |
| 3        | 011    |
| -4       | 100    |
| -4<br>-3 | 101    |
| -2       | 110    |
| -1       | 111    |

## **Two-Complement Implications**

- Only 1 zero
- Usual arithmetic still works
- There is a bit that represents sign!
- Most widely used in today's machines

|    | 010 |
|----|-----|
| +) | 101 |
|    | 111 |

| Signed   | Binary |
|----------|--------|
| 0        | 000    |
| 1        | 001    |
| 2        | 010    |
| 3        | 011    |
| -4       | 100    |
| -3<br>-2 | 101    |
| -2       | 110    |
| -1       | 111    |

• Unsigned Values

```
• UMin = 0

000...0
• UMax = 2^{w} - 1

111...1
```

- Unsigned Values
  - *UMin* = 0 000...0
  - $UMax = 2^{w} 1$

• Two's Complement Values

■ 
$$TMin = -2^{w-1}$$
  
100...0

■ 
$$TMax = 2^{w-1} - 1$$
  
011...1

#### Unsigned Values

• 
$$UMax = 2^{w} - 1$$

#### Two's Complement Values

■ 
$$TMin = -2^{w-1}$$
  
100...0

■ 
$$TMax = 2^{w-1} - 1$$
  
011...1

#### Values for W = 16

|      | Decimal | Hex   | Binary            |
|------|---------|-------|-------------------|
| UMax | 65535   | FF FF | 11111111 11111111 |
| TMax | 32767   | 7F FF | 01111111 11111111 |
| TMin | -32768  | 80 00 | 10000000 00000000 |
| -1   | -1      | FF FF | 11111111 11111111 |
| 0    | 0       | 00 00 | 00000000 00000000 |

#### Unsigned Values

• 
$$UMax = 2^w - 1$$

#### Two's Complement Values

■ 
$$TMin = -2^{w-1}$$
  
100...0

■ 
$$TMax = 2^{w-1} - 1$$
  
011...1

#### Other Values

#### Values for W = 16

|      | Decimal | Hex   | Binary             |
|------|---------|-------|--------------------|
| UMax | 65535   | FF FF | 11111111 11111111  |
| TMax | 32767   | 7F FF | 01111111 111111111 |
| TMin | -32768  | 80 00 | 10000000 000000000 |
| -1   | -1      | FF FF | 11111111 11111111  |
| 0    | 0       | 00 00 | 00000000 00000000  |

# Data Representations in C (in Bytes)

- By default variables are signed
- Unless explicitly declared as unsigned (e.g., unsigned int)
- Signed variables use two-complement encoding

| C Data Type | 32-bit | 64-bit |
|-------------|--------|--------|
| char        | 1      | 1      |
| short       | 2      | 2      |
| int         | 4      | 4      |
| long        | 4      | 8      |

# Data Representations in C (in Bytes)

|      |      |         | W              |                            |
|------|------|---------|----------------|----------------------------|
|      | 8    | 16      | 32             | 64                         |
| UMax | 255  | 65,535  | 4,294,967,295  | 18,446,744,073,709,551,615 |
| TMax | 127  | 32,767  | 2,147,483,647  | 9,223,372,036,854,775,807  |
| TMin | -128 | -32,768 | -2,147,483,648 | -9,223,372,036,854,775,808 |

| C Data Type | 32-bit | 64-bit |
|-------------|--------|--------|
| char        | 1      | 1      |
| short       | 2      | 2      |
| int         | 4      | 4      |
| long        | 4      | 8      |

# Data Representations in C (in Bytes)

|      |      |         | W              |                            |
|------|------|---------|----------------|----------------------------|
|      | 8    | 16      | 32             | 64                         |
| UMax | 255  | 65,535  | 4,294,967,295  | 18,446,744,073,709,551,615 |
| TMax | 127  | 32,767  | 2,147,483,647  | 9,223,372,036,854,775,807  |
| TMin | -128 | -32,768 | -2,147,483,648 | -9,223,372,036,854,775,808 |

| C Data Type | 32-bit | 64-bit |
|-------------|--------|--------|
| char        | 1      | 1      |
| short       | 2      | 2      |
| int         | 4      | 4      |
| long        | 4      | 8      |

#### C Language

- •#include <limits.h>
- Declares constants, e.g.,
  - $\bullet$  ULONG\_MAX
  - •LONG MAX
  - •LONG\_MIN
- Values platform specific

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal
  - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal
  - $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$

| <b>Decimal</b> | <b>Binary</b> |
|----------------|---------------|
| 0              | 00.00         |
| 0.25           | 00.01         |
| 0.5            | 00.10         |
| 0.75           | 00.11         |
| 1              | 01.00         |
| 1.25           | 01.01         |
| 1.5            | 01.10         |
| 1.75           | 01.11         |
| 2              | 10.00         |
| 2.25           | 10.01         |
| 2.5            | 10.10         |
| 2.75           | 10.11         |
| 3              | 11.00         |
| 3.25           | 11.01         |
| 3.5            | 11.10         |
| 3.75           | 11.11         |

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal

• 
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

•  $10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$ 



| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 00.00         |
| 0.25    | 00.01         |
| 0.5     | 00.10         |
| 0.75    | 00.11         |
| 1       | 01.00         |
| 1.25    | 01.01         |
| 1.5     | 01.10         |
| 1.75    | 01.11         |
| 2       | 10.00         |
| 2.25    | 10.01         |
| 2.5     | 10.10         |
| 2.75    | 10.11         |
| 3       | 11.00         |
| 3.25    | 11.01         |
| 3.5     | 11.10         |
| 3.75    | 11.11         |

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal

• 
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

• 
$$10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$$



0 1 2 3

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 00.00         |
| 0.25    | 00.01         |
| 0.5     | 00.10         |
| 0.75    | 00.11         |
| 1       | 01.00         |
| 1.25    | 01.01         |
| 1.5     | 01.10         |
| 1.75    | 01.11         |
| 2       | 10.00         |
| 2.25    | 10.01         |
| 2.5     | 10.10         |
| 2.75    | 10.11         |
| 3       | 11.00         |
| 3.25    | 11.01         |
| 3.5     | 11.10         |
| 3.75    | 11.11         |

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal

• 
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

• 
$$10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$$



0 1 2 3

|   | 01.10 |  |
|---|-------|--|
| + | 01.01 |  |
|   | 10.11 |  |

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 00.00         |
| 0.25    | 00.01         |
| 0.5     | 00.10         |
| 0.75    | 00.11         |
| 1       | 01.00         |
| 1.25    | 01.01         |
| 1.5     | 01.10         |
| 1.75    | 01.11         |
| 2       | 10.00         |
| 2.25    | 10.01         |
| 2.5     | 10.10         |
| 2.75    | 10.11         |
| 3       | 11.00         |
| 3.25    | 11.01         |
| 3.5     | 11.10         |
| 3.75    | 11.11         |

- What does 10.01<sub>2</sub> mean?
- C.f., Decimal

• 
$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

• 
$$10.01_2 = 1^21 + 0^20 + 0^21 + 1^22 = 2.25_{10}$$

#### <del>▐▐</del>┼┼╂╃╃╃╃╃

0 1 2 3

Integer Arithmetic Still Works!

$$\begin{array}{r}
01.10 \\
+ 01.01 \\
\hline
10.11
\end{array}$$

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 00.00         |
| 0.25    | 00.01         |
| 0.5     | 00.10         |
| 0.75    | 00.11         |
| 1       | 01.00         |
| 1.25    | 01.01         |
| 1.5     | 01.10         |
| 1.75    | 01.11         |
| 2       | 10.00         |
| 2.25    | 10.01         |
| 2.5     | 10.10         |
| 2.75    | 10.11         |
| 3       | 11.00         |
| 3.25    | 11.01         |
| 3.5     | 11.10         |
| 3.75    | 11.11         |

## **Fixed-Point Representation**

- Fixed interval between two representable numbers as long as the binary point stays fixed
  - Each bit represents 0.25<sub>10</sub>
- Fixed-point representation of numbers
  - Integer is one special case of fixed-point



0 1 2 3

|   | 01.10 |  |
|---|-------|--|
| + | 01.01 |  |
|   | 10.11 |  |

| Decimal | <b>Binary</b> |
|---------|---------------|
| 0       | 00.00         |
| 0.25    | 00.01         |
| 0.5     | 00.10         |
| 0.75    | 00.11         |
| 1       | 01.00         |
| 1.25    | 01.01         |
| 1.5     | 01.10         |
| 1.75    | 01.11         |
| 2       | 10.00         |
| 2.25    | 10.01         |
| 2.5     | 10.10         |
| 2.75    | 10.11         |
| 3       | 11.00         |
| 3.25    | 11.01         |
| 3.5     | 11.10         |
| 3.75    | 11.11         |





• Representing all integers precisely requires 4 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits



- Representing all integers precisely requires 4 bits
- What if we can tolerate some imprecisions
  - 1, 2, 3 are approximated by 0
  - 5, 6, 7 are approximated by 4...
  - We would only need 2 bits
- That is, 1 bit represents 4<sub>10</sub>
  - $10_2$  becomes  $4 * (1 * 2^1) = 8$
  - Every time we increment a bit, the value is incremented by 4
  - 1, 2, 3 are represented approximately by 10<sub>2</sub>



- Representing all integers precisely requires 4 bits
- What if
  - 1, 2
  - 5, 6
  - We

Note that this is different from "base 4"

- $10_4 = 1 * 4^1 + 0 * 4^0 = 4$
- Every increment still only increments 1
- That is, 1 bit represents 4<sub>10</sub>
  - $10_2$  becomes  $4 * (1 * 2^1) = 8$
  - Every time we increment a bit, the value is incremented by 4
  - 1, 2, 3 are represented approximately by 10<sub>2</sub>





- Saves storage space and improves computation speed
  - 50% space saving
  - 4-bit arithmetic becomes 2-bit arithmetic



- Saves storage space and improves computation speed
  - 50% space saving
  - 4-bit arithmetic becomes 2-bit arithmetic
- Many real-world applications can tolerate imprecisions
  - Image processing
  - Computer vision
  - Real-time graphics
  - Machine learning (Neural networks)



- Saves storage space and improves computation speed
  - 50% space saving



# Questions?



- Saves storage space and improves computation speed
  - 50% space saving

