Fundamentos de Deep Learning

¿Qué es Deep Learning?

Aprendizaje Profundo

Rama del Machine Learning basada en redes neuronales con múltiples capas.

Capacidades

Aborda tareas complejas como reconocimiento de imágenes y procesamiento del lenguaje natural.

Eficacia

Aprende características relevantes sin intervención humana, superando métodos tradicionales.

IA vs Machine Learning vs Deep Learning

Inteligencia Artificial (IA)

Crea máquinas con inteligencia humana para tareas como entender el lenguaje.

Machine Learning (ML)

Desarrolla algoritmos que permiten a las máquinas aprender de los datos.

Deep Learning (DL)

Usa redes neuronales profundas para modelar datos complejos y no estructurados.

Redes Neuronales Convolucionales (CNN)

- Características
 Capas convolucionales y de pooling para extraer y reducir características.
- Casos Reconocimiento de objetos, diagnóstico médico y vehículos autónomos.

Redes Neuronales Recurrentes

Características

Conexiones recurrentes para procesar secuencias de datos.

Casos

Procesamiento del lenguaje natural, reconocimiento de voz y predicción de series temporales.

Redes Generativas Antagonistas

Características

Dos redes en competencia: generador y discriminador.

1

2 Casos

Generación y mejora de imágenes, modelado de datos.

Redes Neuronales de Transformadores y de Autoencoders

RN Tranformadores

En lugar de procesar datos secuenciales de manera lineal como las RNN, los transformers utilizan un mecanismo de **atención**, que permite al modelo centrarse en diferentes partes de la entrada al procesar cada elemento de la secuencia.

RN Autoencoders

Un autoencoder consta de dos partes: un **codificador** que reduce la dimensionalidad de la entrada y un **decodificador** que reconstruye los datos a partir de esta representación comprimida.

Frameworkd para Deep Learning

TensorFlow

Escalable, compatible con varios lenguajes y con un ecosistema completo.

Keras

API de alto nivel, fácil de usar y modular.

PyTorch

Flexible, con grafo computacional dinámico y fácil de depurar.

TensorFlow: Características

Compatibilidad

Soporta Python y otros lenguajes.

Ecosistema

Incluye TensorBoard y TensorFlow Serving.

Keras: Características

2

Facilidad de Uso

Modularidad

3 Compatibilidad

PyTorch: Características

1 Flexibilidad
2 Depuración
Integración

Preguntas

Sección de preguntas

Fundamentos de

Deep Learning

Continúe con las actividades