

✓ Congratulations! You passed!

TO PASS 75% or higher

Keep Learning

grade 84.61%

Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation

	test submission grade 4.61%	
1.	Let $B=\{3,5,10,11,14\}.$ Is the following statement true or false: $3\not\in B$ $\label{eq:Balance}$ True $\ensuremath{\bullet}$ False	1 / 1 point
	\checkmark Correct The symbol \notin stands for "is not an element of." Since 3 is in an element of the set B , the given statement is not true.	
2.	Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$. Which of the following sets is equal to the union $A\cup B$? $ \{1,10,18\} $ $ \{3,5,10,11,14\} $ $ \{1,3,5,3,5,10,11,14\} $ $ \{1,3,5,3,5,10,11,14\} $	1 / 1 point
	✓ Correct The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here.	
3.	How many real numbers are there between the integers 1 and 4? 2 Infinitely many 4 None	1/1 point
	✓ Correct There are in fact infinitely many real numbers between any pair of distinct integers, or indeed any pair of distinct real numbers!	
4.	Suppose I tell you that x and y are two real numbers which make the statement $x \geq y$ true. Which pair of numbers \underline{cannot} be values for x and y ? $\bigcirc \ x = 2 \text{ and } y = 1$ $\bigcirc \ x = 10 \text{ and } y = 10$ $\textcircled{\bullet} \ x = -1 \text{ and } y = 0$	1/1 point
	$\bigcirc \ \ x=5$ and $y=3.3$	

Recall that the statement $x \geq y$ means that x is either equal to y or x is to the right of y on the real number line. Since -1 is actually to the left of 0, these cannot be values for x and y.

5. Suppose that z and w are two positive numbers with z < w. Which of the following inequalities is false?

1 / 1 point

- $\bigcirc -z > -w$
- $\bigcirc z + 3 < w + 3$
- $\bigcirc w-7>z-7$

✓ Correct

If we start with z< w and multiply both sides by -5, we need to flip the less-than sign, which would give -5z>-5w. For an example, try z=1 and y=2 and see what happens!

6. Find the set of all x which solve the inequality $-2x+5 \leq 7$

0 / 1 point

- x = -1
- $\bigcirc x \ge -6$
- $\bigcirc x \le -1$
- $\bigcirc x \ge -1$

X Incorrect

To be fair, x=-1 does satisfy the given inequality, but there are infinitely many other numbers which do!

7. Which of the following real numbers is not in the closed interval $\left[2,3\right]$

1 / 1 point

- 1
- O 2.1
- O 2
- \bigcirc 3

Recall that the closed interval [2,3] consists of all real numbers x which satisfy $2\leq x\leq 3$. Since $2\leq 1$ is false, $1\notin [2,3]$

8. Which of the following intervals represents the set of all solutions to:

1 / 1 point

$$-5 \le x + 2 < 10$$
?

- \bigcirc [-7,8]
- \bigcirc [-5, 10)
- \bigcirc (7,8)

✓ Correct

Subtracting 2 from all sides of the inequalities gives $-7 \le x < 8$, and the set of all real numbers x which make that true is exactly the half-open interval [-7,8).

\bigcirc 4	
O 14	
28	
\checkmark Correct	
_20	
$\Sigma_{k=1}^{0.5}$ Suppose we already know that $\Sigma_{k=1}^{20}k=210$. Which of the numbers below is equal to $\Sigma_{k=1}^{20}2k$?	0 / 1 point
O 420	
O 210	
Incorrect If you got here, you probably just computed the last term and stopped there.	
Σ^{10} 75	1 / 1 poin
· Which of the numbers below is equal to the summation $\Sigma_{i=2}^{10}$ 7?	17 I poin
○ 48	
O 7	
○ 70 ⑥ 63	
According to one of our Sigma notation simplification rules, this summation is just equal to 9 copies of the number 7 all added together, and so we get $9\cdot 7=63$.	
2 . Which of the following numbers is the variance of the set $Z=\{-2,4,7\}$?	1 / 1 poin
\bigcirc $\sqrt{14}$	
● 14	
\bigcirc 42	
O 69	
✓ Correct	
To get the variance of a set of numbers, you need to perform four steps:	
First compute the mean (which is 3)	
Then calculate all the squared differences between the numbers in the set and this mean (here you get $25,1,16$)	
Then add all these up (here you get 42)	
Then divide by the number of elements in the set (which is 3).	
Therefore, the variance of ${\cal Z}$	
$= \frac{1}{3} \left[(-2 - 3)^2 + (4 - 3)^2 + (7 - 3)^2 \right]$	

O 10

$$= \frac{1}{3} [25 + 1 + 16] = \frac{42}{3} = 14$$

- 13. Which of the following sets does *not* have zero variance? (hint: don't do any calculation here, just think!)
- 1 / 1 point

- $\bigcirc \ \{0,0,0,0,0,0,0\}$
- \bigcirc {1,1,1,1}
- $\bigcirc \{5,5,5,5,5,5,5,5,5,5,5,5,5,5\}$

✓ Correct

Intuitively, the numbers in this set are spread out.