# **Hash Tables**

### Objectives

- Understand the basic structure of a hash table and its associated hash function
  - Understand what makes a good (and a bad) hash function
- Understand how to deal with collisions
  - Open addressing
  - Separate chaining
- Be able to implement a hash table
- Understand how occupancy affects the efficiency of hash tables

# Introduction

### **Problem Examples**

- What can we do if we want rapid access to individual data items?
  - Looking up data for a flight in an air traffic control system
  - Looking up the address of someone making a 911 call
  - Checking the spelling of words by looking up each one in a dictionary
- In each case speed is very important
  - But the data does not need to be maintained in order

#### **Possible Solutions**

- Balanced binary search tree
  - Lookup and insertion in O(logn) time

spoilers!

- Which is relatively fast
- Binary search trees also maintain data in order, which may be not necessary for some problems
- Arrays
  - Allow insertion in constant time, but lookup requires linear time
  - But, if we know the index of a data item lookup can be performed in constant time

## Thinking About Arrays

- Can we use an array to insert and retrieve data in constant time?
  - Yes as long as we know an item's index
- Consider this (very) constrained problem domain:
  - A phone company wants to store data about its customers in Convenientville
  - The company has approximately 9,000 customers
  - Convenientville has a single area code (555)

## Living in Convenientville

- Create an array of size 10,000
  - Assign customers to array elements using their (four digit) phone number as the index
  - Only around 1,000 array elements are wasted
  - Customer data can be found in constant time using their phone numbers
- Of course this is not a general solution
  - It relies on having conveniently numbered key values

## A (Poor) General Strategy

- In the Convientville example each possible key value was assigned an array element
  - With the index being the 4 digit phone number
  - Therefore the array size is the number of possible values 10,000 in the example
    - Not the number of actual values
      9,000 in the example
- Consider two more examples that use this same general idea
  - Canadian phone numbers
  - Names

### Phone Numbers in General

- Let's consider storing information about
  Canadians given their phone numbers
  - Between ooo-ooo-ooo and 999-999-9999
- It's easy to convert phone numbers to integers
  - Just get rid of the "-"s
  - The keys range between o and 9,999,999,999
- Use Convenientville scheme to store data
  - But will this work?

## A Really Big Array!

- If we use Canadian phone numbers as the index to an array how big is the array?
  - 9,999,999,999 (ten billion)
  - That's a really big array!
- An estimate of the current population of Canada is 35,623,680 source: CIA World Fact Book
  - That means that we will use around 0.3% of the array
    - That's a lot of wasted space
    - And the array may not fit in main memory ...

#### **Names**

- What if we had to store data by name?
  - We would need to convert strings to integer indexes
- Here is one way to encode strings as integers
  - Assign a value between 1 and 26 to each letter
  - $\bullet$  a = 1, z = 26 (regardless of case)
  - Sum the letter values in the string
- Not a very good method ...



"dog" = 
$$4 + 15 + 7 = 26$$



## Finding Unique String Values

- Ideally we would like to have a unique integer for each possible string
  - The "sum the letters" encoding scheme does not achieve this
- There is a simple method to achieve this goal
  - As before, assign each letter a value between 1 and 26
  - Multiply the letter's value by 26<sup>i</sup>, where i is the position of the letter in the word:
    - "dog" =  $4*26^2 + 15*26^1 + 7*26^0 = 3,101$
    - "god" =  $7*26^2 + 15*26^1 + 4*26^0 = 5,126$

## Afhahgm Vsyu

- The proposed system generates a unique integer for each string
  - But most strings are not meaningful
  - Given a string containing ten letters there are 26<sup>10</sup> possible combinations of letters
    - Which gives 141,167,095,653,376 different possible strings
    - There are around 200,000 words in the English language
- It is not practical to create an array large enough to store all possible strings
  - Just like the general telephone number problem

### So What's The Problem?

- In an ideal world we would know which key values were going to be recorded
  - The Convenientville example was close to ideal
- Most of the time this is not the case
  - Usually, key values are not known in advance
  - And, in many cases, the universe of possible key values is very large (e.g. names)
  - So it is not practical to reserve space for all possible key values

## A Different Approach

- Don't determine the array size by the maximum possible number of keys
- Fix the array size based on the amount of data to be stored
  - Map the key value (phone number or name or some other data) to an array element
  - We will need to convert the key value to an integer index using a hash function
- This is the basic idea behind hash tables

# **Hash Tables**

### Hash Tables

- A hash table consists of an array to store data
  - Data often consists of complex types
    - Or pointers to such objects
  - An attribute of the object is designated as the table's key
- A hash function maps the key to an index
  - The key must first be converted to an integer
  - And mapped to an array index using a function
    - Often the modulo function

#### Collisions

- A hash function may map two different keys to the same index why?
  - Referred to as a collision
  - Consider mapping phone numbers to an array of size 1,000 where h = phone mod 1,000 this is not a good hash function ...
    - Both 604-555-1987 and 512-555-7987 map to the same index (6,045,551,987 mod 1,000 = 987)
- A good hash function can significantly reduce the number of collisions
- It is still necessary to have a policy to deal with any collisions that may occur

# **Hash Functions**

#### **Hash Functions**

- A hash function is a function that maps key values to array indexes
- Hash functions are performed in two steps
  - Map the key value to an integer
  - Map the integer to a legal array index
- Hash functions should have the following properties
  - Fast
  - Deterministic
  - Uniformity

### Hash Function Speed

- Hash functions should be fast and easy to calculate
  - Access to a hash table should be nearly instantaneous and in constant time
  - Most common hash functions require a single division on the representation of the key
  - Converting the key to a number should also be able to be performed quickly

### **Deterministic Hash Functions**

- A hash function must be deterministic
  - For a given input it must always return the same value
    - Otherwise it will not generate the same array index
    - And the item will not be found in the hash table
- Hash functions should therefore not be determined by
  - System time
  - Memory location
  - Pseudo-random numbers

## **Scattering Data**

- A typical hash function usually results in some collisions
  - Where two different search keys map to the same index
  - A perfect hash function avoids collisions entirely
    - Each search key value maps to a different index
- The goal is to reduce the number and effect of collisions
- To achieve this the data should be distributed evenly over the table

#### Possible Values

- Any set of values stored in a hash table is an instance of the universe of possible values
- The universe of possible values may be much larger than the instance we wish to store
  - There are many possible combinations of 10 letters 2610
  - But we might want a hash table to store just 1,000 names

### Uniformity

- A good hash function generates each value in the output range with the same probability
  - That is, each legal hash table index has the same chance of being generated
- This property should hold for the universe of possible values and for the expected inputs
  - The expected inputs should also be scattered evenly over the hash table

#### A Bad Hash Function

- A hash table is to store 1,000 numeric estimates that can range from 1 to 1,000,000
  - Hash function is estimate % n
    - Where *n* = array size = 1,000
- Is the distribution of values from the universe of all possible values uniform?
- And what about the distribution of expected values?

### **Another Bad Hash Function**

- A hash table is to store 676 names
  - The hash function considers just the first two letters of a name
    - Each letter is given a value where a = 1, b = 2, ...
    - Function = (1<sup>st</sup> letter \* 26 + value of 2<sup>nd</sup> letter) % 676
- Is the distribution of values from the universe of all possible values uniform?
- And what about the distribution of expected values?

### **General Principles**

- Use the entire search key in the hash function
- If the hash function uses modulo arithmetic make the table size a prime number
- A simple and effective hash function is
  - Convert the key value to an integer, x
  - $h(x) = x \mod tableSize$ 
    - Where tableSize is the first prime number larger than twice the size of the number of expected values

#### Caveat

- Consider mapping n values from a universe of possible values U into a hash table of size m
  - If  $U \ge n \times m$
  - Then for any hash function there is a set of values of size n where all the keys map to the same location!
- Determining a good hash function is a complex subject
  - That is only introduced in this course

# **Converting Strings to Integers**

## **Converting Strings to Integers**

- A simple method of converting a string to an integer is to:
  - Assign the values 1 to 26 to each letter
  - Concatenate the binary values for each letter
    - Similar to the method previously discussed
- Using the string  $c\alpha t$  as an example:
  - c = 3 = 00011, a = 00001, t = 20 = 10100
  - So cat = 000110000110100 (or 3,124)
  - Note that  $32^2 * 3 + 32^1 * 1 + 20 = 3,124$

## Strings to Integers

- If each letter of a string is represented as a 32 bit number then for a length n string
  - value =  $ch_0*32^{n-1} + ... + ch_{n-2}*32^1 + ch_{n-1}*32^0 c$
  - For large strings, this value will be very large
    - And may result in overflow
- This expression can be factored
  - $(...(ch_0*32 + ch_1)*32 + ch_2)*...)*32 + ch_{n-1}$
  - This technique is called Horner's Method
  - This minimizes the number of arithmetic operations
- Overflow can then be prevented by applying the mod operator after each expression in parentheses

### Horner's Method Example

- Consider the integer representation of some string
  - $\bullet 6*32^3 + 18*32^2 + 15*32^1 + 8*32^0$
  - = 196,608 + 18,432 + 480 + 8 = 215,528
- Factoring this expression results in
  - (((6\*32+18)\*32+15)\*32+8)=215,528
- Assume that this key is to be hashed to an index using the hash function key % 19
  - 215,528 % 19 = 11
  - (((6\*32+18)%19\*32+15)%19\*32+8)%19=11
    - 210 % 19 = 1, and 47 % 19 = 9, and 296 % 19 = 11

# Collisions

### **Dealing with Collisions**

- A collision occurs when two different keys are mapped to the same index
  - Collisions may occur even when the hash function is good
- There are two main ways of dealing with collisions
  - Open addressing
  - Separate chaining

## Open Addressing

- Idea when an insertion results in a collision look for an empty array element
  - Start at the index to which the hash function mapped the inserted item
  - Look for a free space in the array following a particular search pattern, known as probing
- There are three open addressing schemes
  - Linear probing
  - Quadratic probing
  - Double hashing

#### **Linear Probing**

- The hash table is searched sequentially
  - Starting with the original hash location
  - For each time the table is probed (for a free location) add one to the index
    - Search h(search key) + 1, then h(search key) + 2, and so on until an available location is found
    - If the sequence of probes reaches the last element of the array, wrap around to array[o]
- Linear probing leads to primary clustering
  - The table contains groups of consecutively occupied locations
  - These clusters tend to get larger as time goes on
    - Reducing the efficiency of the hash table

- Hash table is size 23
- The hash function, h = x mod 23, where x is the search key value
- The search key values are shown in the table

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use linear probing to find a free space
- First look at 12 + 1, which is free so insert the item at index 13

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    |    |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58 so use linear probing to find a free space
- First look at 12 + 1, which is occupied so look at
  12 + 2 and insert the item at index 14

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 35 |    |    |    |    |    |    | 21 |    |

- Insert 60,  $h = 60 \mod 23 = 14$
- Note that even though the key doesn't hash to 12 it still collides with an item that did
- First look at 14 + 1, which is free

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 35 | 60 |    |    |    |    |    | 21 |    |

- Insert 12,  $h = 12 \mod 23 = 12$
- The item will be inserted at index 16
- Notice that primary clustering is beginning to develop, making insertions less efficient

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | <b>1</b> 6 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 35 | 60 | 12         |    |    |    |    | 21 |    |

#### Searching

- Searching for an item is similar to insertion
- Find 59, h = 59 mod 23 = 13, index 13 does not contain 59, but is occupied
- Use linear probing to find 59 or an empty space
- Conclude that 59 is not in the table



## Quadratic Probing

- Quadratic probing is a refinement of linear probing that prevents primary clustering
  - For each probe, p, add  $p^2$  to the original location index
    - 1<sup>st</sup> probe:  $h(x)+1^2$ , 2<sup>nd</sup>:  $h(x)+2^2$ , 3<sup>rd</sup>:  $h(x)+3^2$ , etc.
- Results in secondary clustering
  - The same sequence of probes is used when two different values hash to the same location
  - This delays the collision resolution for those values
- Analysis suggests that secondary clustering is not a significant problem

- Hash table is size 23
- The hash function, h = x mod 23, where x is the search key value
- The search key values are shown in the table

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use quadratic probing to find a free space
- First look at 12 + 1², which is free so insert the item at index 13

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | <b>16</b> | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|-----------|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    |           |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58
- First look at 12 + 1², which is occupied, then look at 12 + 2² = 16 and insert the item there

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    | 35 |    |    |    |    | 21 |    |

- Insert 60,  $h = 60 \mod 23 = 14$
- The location is free, so insert the item

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 60 |    | 35 |    |    |    |    | 21 |    |

- Insert 12,  $h = 12 \mod 23 = 12$
- First check index 12 + 1²,
- Then  $12 + 2^2 = 16$ ,
- Then  $12 + 3^2 = 21$  (which is also occupied),
- Then  $12 + 4^2 = 28$ , wraps to index 5 which is free



#### **Quadratic Probe Chains**

- Note that after some time a sequence of probes repeats itself
  - In the preceding example h(key) = key % 23 = 12, resulting in this sequence of probes (table size of 23)
    - 12, 13, 16, 21, 28(5), 37(14), 48(2), 61(15), 76(7), 93(1), 112(20), 133(18), 156(18), 181(20), 208(1), 237(7), ...
- This generally does not cause problems if
  - The data is not significantly skewed,
  - The hash table is large enough (around 2 \* the number of items), and
  - The hash function scatters the data evenly across the table

#### Double Hashing

- In both linear and quadratic probing the probe sequence is independent of the key
- Double hashing produces key dependent probe sequences
  - In this scheme a second hash function,  $h_2$ , determines the probe sequence
- The second hash function must follow these guidelines
  - h₂(key)≠ o
  - $\bullet h_2 \neq h_1$
  - A typical  $h_2$  is  $p (key \mod p)$  where p is a prime number

- Hash table is size 23
- The hash function, h = x mod 23, where x is the search key value
- The second hash function,  $h_2 = 5 (key \ mod \ 5)$

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use  $h_2$  to find the probe sequence value
- $h_2 = 5 (81 \mod 5) = 4$ , so insert at 12 + 4 = 16

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    | 81 |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58 so use  $h_2$  to find a free space
- $h_2 = 5 (35 \mod 5) = 5$ , so insert at 12 + 5 = 17

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    | 81 | 35 |    |    |    | 21 |    |

Insert 60,  $h = 60 \mod 23 = 14$ 

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    | 60 |    | 81 | 35 |    |    |    | 21 |    |

- Insert 83,  $h = 83 \mod 23 = 14$
- $h_2 = 5 (83 \mod 5) = 2$ , so insert at 14 + 2 = 16, which is occupied
- The second probe increments the insertion point by 2 again, so insert at 16 + 2 = 18

| O | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | <b>1</b> 3 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|------------|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |            | 60 |    | 81 | 35 | 83 |    |    | 21 |    |

# **Deletions and Open Addressing**

- Deletions add complexity to hash tables
  - It is easy to find and delete a particular item
  - But what happens when you want to search for some other item?
  - The recently empty space may make a probe sequence terminate prematurely
- One solution is to mark a table location as either empty, occupied or deleted
  - Locations in the deleted state can be re-used as items are inserted

## **Separate Chaining**

- Separate chaining takes a different approach to collisions
- Each entry in the hash table is a pointer to a linked list
  - If a collision occurs the new item is added to the end of the list at the appropriate location
- Performance degrades less rapidly using separate chaining
  - But each search or insert requires an additional operation to access the list

# Efficiency

#### Hash Table Efficiency

- When analyzing the efficiency of hashing it is necessary to consider load factor,  $\alpha$ 
  - $\alpha$  = number of items | table size
  - As the table fills,  $\alpha$  increases, and the chance of a collision occurring also increases
    - Performance decreases as  $\alpha$  increases
  - Unsuccessful searches make more comparisons
    - An unsuccessful search only ends when a free element is found
- It is important to base the table size on the largest possible number of items
  - The table size should be selected so that  $\alpha$  does not exceed 2/3

#### **Average Comparisons**

- Linear probing
  - When  $\alpha$  = 2/3 unsuccessful searches require 5 comparisons, and
  - Successful searches require 2 comparisons
- Quadratic probing and double hashing
  - When  $\alpha$  = 2/3 unsuccessful searches require 3 comparisons
  - Successful searches require 2 comparisons
- Separate chaining
  - The lists have to be traversed until the target is found
  - ullet lpha comparisons for an unsuccessful search
    - Where  $\alpha$  is the average size of the linked lists
  - 1 +  $\alpha$  / 2 comparisons for a successful search

#### **Hash Table Discussion**

- If  $\alpha$  is less than ½, open addressing and separate chaining give similar performance
  - $\blacksquare$  As  $\alpha$  increases, separate chaining performs better than open addressing
  - However, separate chaining increases storage overhead for the linked list pointers
- It is important to note that in the worst case hash table performance can be poor
  - That is, if the hash function does not evenly distribute data across the table