Instrukcja instalacji kontrolera PR302 v2.1 Rev. G

(€

© 2016 ROGER sp. z o.o. sp.k. All rights reserved. Niniejszy dokument podlega Warunkom Użytkowania w wersji bieżącej, opublikowanej w serwisie internetowym <u>www.roger.pl</u> firmy ROGER sp. z o.o. sp. k. (zwanej w treści dokumentu jako ROGER).

Wstęp

Niniejszy dokument zawiera minimum informacji które umożliwiają poprawne zainstalowanie urządzenia oraz jego wstępne przetestowanie.

Pełny opis funkcjonalny kontrolera jest zamieszczony w instrukcji ogólnej dla kontrolerów serii PRxx2 dostępnej na stronie www.roger.pl.

Instalacja kontrolera

Kontroler PR302 może być instalowany jedynie wewnątrz budynków lub w innych miejscach zabezpieczonych przed wpływem wilgoci oraz gwarantujących zachowanie temperatury otoczenia w granicach od +5 do +40 °C.

Wszystkie połączenia elektryczne należy wykonać przy odłączonym napięciu zasilania. Fabrycznie nowy kontroler posiada adres ID=00 oraz ma zaprogramowany kod MASTER PIN (1234) a także kartę zbliżeniową MASTER która jest dostarczana wraz z kontrolerem. Kartę/PIN MASTER można użyć do wstępnego przetestowania połączeń elektrycznych przy czym o ile kontroler posiada ustawienia fabryczne to jednokrotne użycie karty/kodu MASTER wyzwala wyjście przekaźnikowe REL1 na czas 4 sekund natomiast użycie dwukrotne tego identyfikatora przełącza wyjście IO1 do stanu przeciwnego i jednocześnie przezbraja kontroler.

Wszystkie urządzenia podłączone do magistrali komunikacyjnej systemu KD powinny mieć wspólny minus zasilania (GND), aby to zagwarantować należy połączyć ze sobą minusy wszystkich źródeł zasilania używanych w systemie lub każdy z minusów zasilania indywidualnie uziemić. To drugie rozwiązanie nie jest jednak zalecane gdyż w przypadku gdy potencjały uziemienia w różnych punktach obiektu nie są jednakowe spowoduje to przepływ prądów wyrównawczych przez linie zasilania systemu KD a to z kolei może doprowadzić do zakłóceń w działaniu systemu a nawet jego uszkodzenia.

Uwaga: Pod żadnym pozorem nie wolno zwierać ze sobą dodatnich biegunów zasilaczy. Uwaga to dotyczy również wyjść zasilania dostępnych w kontrolerach (modułach) z własnym zasilaniem (np. PR402).

Ustawianie adresu

Przed podłączeniem kontrolera do magistrali komunikacyjnej systemu RACS należy mu nadać niepowtarzalny adres (numer ID). Ustawieni nowego adresu można wykonać w trakcie procedury Resetu Pamięci albo z poziomu komputera. Aby zmienić adres z poziomu komputera należy dany kontroler podłączyć za pośrednictwem interfejsu komunikacyjnego do wolnego portu szeregowego i wyszukać go z poziomu programu PR Master a następnie ustawić właściwy adres. System RACS 4 obsługuje adresy z zakresu 00-99. Obecność dwóch lub więcej urządzeń o tym samym adresie wywołuje konflikt na magistrali i uniemożliwia poprawną komunikację z urządzeniami.

Zasilanie

Kontroler wymaga zasilania napięciem stałym z zakresu 10-15VDC. Zasilanie należy doprowadzić do zacisków +12V (biegun dodatni) oraz GND (biegun ujemny). Oprócz funkcji zasilania wejście GND pełni rolę potencjału odniesienia dla linii komunikacyjnych RS485, wejść IN1-IN3 oraz linii interfejsu CLK/DTA.

Podłączenie elementu wykonawczego

W większości przypadków elementy wykonawcze sterujące dostępem do pomieszczenia mają charakter urządzeń indukcyjnych, oznacza to że w trakcie zatrzymania przepływu prądu przez ten element generowane jest przepięcie elektryczne które może skutecznie zakłócić pracę kontrolera a w skrajnym przypadku doprowadzić do jego zawieszenia. Z tego to powodu konieczne jest zastosowanie diody półprzewodnikowej ogólnego przeznaczenia np. 1N4007 (jedna dioda tego typu jest dostarczana wraz z kontrolerem) którą należy dołączyć możliwie blisko odkłócanego elementu. Element wykonawczy można zasilać z tego samego źródła zasilania co kontroler lecz należy do tego celu użyć osobnej pary przewodów podłączonych bezpośrednio do zacisków zasilacza.

Linie wejściowe

Wszystkie wejścia kontrolera (IN1, IN2 i IN3) mają identyczną strukturę elektryczną i mogą być skonfigurowane jako linie typu NO lub NC. Wejście typu NO jest wyzwalane przez podanie minusa, wejście typu NC musi być normalnie zwarte z minusem, wyzwolenie linii NC następuje przez odjęcie minusa zasilania. Wewnętrznie, każda linia wejściowa jest połączona z plusem zasilania (+12V) za pośrednictwem rezystora $15 \mathrm{k}\Omega$.

Wyjścia przekaźnikowe

Wyjścia przekaźnikowe REL1 udostępnia jeden przełączalny styku o obciążalności 24V/1.5A. Styki przekaźnika są wewnętrznie zabezpieczona przed przepięciami elementami półprzewodnikowymi co nie zwalnia jednak instalatora z odkłócania elementów o charakterze indukcyjnym takich jak zwora elektromagnetyczna czy elektrozaczep. Zabronione jest wykorzystanie przekaźników do przełączania napięć o wartości powyżej 30V. W stanie normalnym (wyłączenia) wyjścia przekaźnikowego zwarte są styki NC-COM, gdy wyjście jest wyzwolone (załączone) zwarte są styki NO-COM. W przypadku braku zasilania wyjście REL1 pozostaje w stanie wyłączenia.

Wyjścia tranzystorowe

Kontroler posiada dwa wyjścia tranzystorowe: IO1 i IO2. Linie te są liniami typu otwarty kolektor tzn. w stanie normalnym (wyłączenia) reprezentują stan wysokiej impedancji natomiast w stanie wyzwolenia (załączenia) podają minus zasilania. Linie IN1/ IO2 mogą przełączać prąd o wartości do 1A DC przy czym napięcie dołączone do wyjścia nie może przekraczać poziomu 15VDC. W przypadku przeciążenia prądowego linie IO1/IO2 ulegają automatycznie wyłączeniu i samoczynnie powracają do pracy po jego ustąpieniu.

Magistrala komunikacyjna RS485

Magistrala RS485 składa się dwóch linii sygnałowych A i B oraz zacisku do podłączenia ekranu kabla (SHLD). W systemie RACS 4 można stosować dowolne topologie magistrali komunikacyjnej (gwiazda, drzewo lub dowolną ich kombinacje), nie jest również wymagane stosowanie rezystorów dopasowujących (terminatory) na końcach linii transmisyjnych. W większości przypadków komunikacja działa bezproblemowo dla wszystkich rodzajów kabla (zwykły kabel telefoniczny, skrętka ekranowana lub nieekranowana) niemniej preferowana jest nieekranowana skrętka komputerowa. Zastosowanie kabli w ekranie należy ograniczyć do instalacji narażonych na silne zakłócenia elektromagnetyczne. Standard transmisji RS485 stosowany w systemie RACS 4 gwarantuje poprawna komunikację na odległości do 1200 metrów i charakteryzuje się wysoką odpornością na zakłócenia. Do komunikacji na większe odległości należy zastosować interfejsy UT-4. Zastosowanie interfejsu UT-4 umożliwia komunikację z kontrolerem (lub systemem) przez sieć komputerową (LAN lub WAN).

Dołączenie czytników i ekspanderów

Zarówno czytniki jak i ekspandery (np. MCX-2-BRD, MCX-8-BRD) dołącza się do kontrolera za pośrednictwem linii CLK/DTA. Kontroler może współpracować zarówno z czytnikami serii PRT (Roger) jak taż innymi czytnikami wyposażonymi w popularne interfejsy Wiegand i Magstripe. Linie CLK i DTA mogą być prowadzone dowolnym typem przewodów przy czym gwarantowana odległość komunikacji wynosi 150m. Każde urządzenie dołączane do linii CLK/DTA musi posiadać swój indywidualny adres z zakresu 0-15. Adres ten należy ustawić przed podłączeniem danego urządzenia do kontrolera. Zasada ta nie obowiązuje gdy do kontrolera są dołączane czytniki typu Wiegand lub Magstripe.

Uwaga: Urządzenia komunikujące się w standardzie RACS Clock & Data (np. czytniki PRT) mogą być dołączane do kontrolera za pośrednictwem kabli znacznie dłuższych niż 150m (nawet do 500m) aczkolwiek komunikacja w tych warunkach nie jest objęta gwarancją producenta.

Czytniki można instalować na podłożu metalowym lecz należy się wtedy spodziewać redukcji zasięgu odczytu o około 50%. Efekt redukcji zasięgu można nieco zmniejszyć montując czytniki na niemetalicznej podkładce o grubości min. 10mm (np. płyta PCV). Minimalna odległość pomiędzy czytnikami powinna wynosić 0.5m. W przypadku instalacji dwóch czytników po dwóch stronach tej samej ściany zaleca się rozmieszczenie ich w ten sposób aby nie tworzyły one jednej osi geometrycznej a jeśli jest to niemożliwe należy zainstalować pomiędzy nimi płytkę metalową oraz dodatkowo czytniki zamontować na niemetalicznych podkładkach.

Dołączanie czytników Wiegand i Magstripe

Kontroler może współpracować zarówno z czytnikami serii PRT jak też innymi czytnikami wyposażonymi w interfejs Wiegand lub Magstripe (Clock & Data). Sposób dołączania czytników tego typu został przedstawiony poniżej.

Uwaga: Niektóre typy czytników Wiegand/Magstripe dołączanych do kontrolera wymagają zastosowania interfejsu PR-GP-BRD (Roger). Interfejs ten pełni rolę translatora poziomów

elektrycznych pomiędzy czytnikiem a kontrolerem. W celu ustalenia czy w konkretnej sytuacji zastosowanie tego typu interfejsu jest konieczne sugerujemy kontakt z działem technicznym Roger.

Reset Pamieci

Reset Pamięci zeruje aktualne ustawienia kontrolera i przywraca ustawienia fabryczne. Pełen reset umożliwia dodatkowo zaprogramowanie nowej Karty i/lub PIN-u MASTER oraz nowego adresu kontrolera. Po wykonaniu Resetu Pamięci kontroler automatycznie przechodzi do normalnego trybu pracy.

Uproszczona procedura Resetu Pamięci (firmware 2.18.6 lub nowszy)

Metoda ta umożliwia zresetowanie kontrolera do ustawień domyślnych z adresem ID=00 bez definiowania karty MASTER oraz PIN-u MASTER.

- Usuń wszystkie zewnętrzne podłączenia z linii CLK i DTA
- Wykonaj mostek pomiędzy zaciskami CLK i DTA
- Naciśnij przycisk MEMORY RESET i odczekaj aż zacznie pulsować LED OPEN 2 (zielony)
- Zwolnij przycisk MEMORY RESET
- Usuń mostek pomiędzy zaciskami CLK i DTA
- Po tym kroku kontroler samoczynnie się zrestartuje i przejdzie do normalnego trybu pracy

Uproszczona procedura Resetu Pamięci (firmware starszy niż 2.18.6)

Metoda ta umożliwia zresetowanie kontrolera do ustawień domyślnych z adresem ID=00 oraz kartą MASTER.

- Naciśnij przycisk MEMORY RESET i odczekaj aż zacznie pulsować LED OTWARTE **2** (zielony)
- Zwolnij przycisk MEMORY RESET
- Odczytaj dowolną kartę, będzie to nowa karta MASTER
- Po tym kroku kontroler samoczynnie się zrestartuje i przejdzie do normalnego trybu pracy

Procedura pełnego Resetu Pamieci

Metoda ta umożliwia zresetowanie kontrolera do ustawień domyślnych, zaprogramowanie karty i PIN-u MASTER oraz ustawienie nowego adresu ID.

- Załóż zworkę na styki Mem. Rst. w środku obudowy kontrolera załączony zostanie ciągły sygnał akustyczny
- Odczekaj kilka sekund do momentu aż LED OPEN **2** (zielony) zacznie migać
- Zdejmij zworkę ze styków Mem. Rst. sygnał akustyczny zostanie wyłączony
- Wprowadź nowy kod MASTER PIN (3-6 cyfr) i zakończ go klawiszem [#] lub pomiń ten krok naciskając tylko klawisz [#]

- Odczytaj dowolną kartę będzie to nowa karta MASTER lub pomiń ten krok naciskając klawisz [#]
- Wprowadź dwie cyfry (zakres od 00 do 99), cyfry te programują nowy adres ID kontrolera lub naciśnij tylko [#] a kontroler przyjmie adres ID=00
- Po tym kroku kontroler samoczynnie się zrestartuje i przejdzie do normalnego trybu pracy

Po zakończeniu procedury Resetu Pamięci kontroler wznawia pracę z ustawieniami domyślnymi konfiguracji oraz nowo zaprogramowanym adresem. Można wtedy wstępnie przetestować jego działanie przy pomocy karty/PIN-u MASTER (o ile zostały zaprogramowane) przy czym jednokrotne użycie identyfikatora MASTER wyzwala wyjście przekaźnikowe REL1 na czas 4 sek. (LED OPEN **2**), natomiast dwukrotne jego użycie przełącza wyjście IO1 do stanu przeciwnego oraz zmienia aktualny tryb uzbrojenia kontrolera (LED STATUS **2** zmienia kolor świecenia).

Uwaga: Jeżeli kontroler pracuje z adresem sprzętowym (FixedID) to ustawienie adresu ID w trakcie Resetu Pamięci jest pomijane.

Aktualizacja oprogramowania firmowego

W procesie produkcji kontroler jest programowany najnowszą, aktualnie dostępną wersją oprogramowania firmowego (firmware). Oprogramowanie to można później uaktualniać do nowszych wersji przy czym szczegółowy opis procedury aktualizacji oprogramowania można znaleźć w instrukcji Firmware upgrade.pdf dostępnej na www.roger.pl. Przesyłanie nowszego oprogramowania do kontrolera odbywa się za pośrednictwem magistrali RS485 i nie wymaga demontażu urządzenia z miejsca jego zainstalowania. Do przesyłania oprogramowania firmowego należy użyć dedykowanego do tego celu programu RogerISP (do pobrania z www.roger.pl). Każdorazowo po aktualizacji oprogramowania kontrolera należy przeprowadzić Reset Pamięci i nadać kontrolerowi właściwy adres ID. Jeśli aktualizowany kontroler pracował już w systemie RACS to przed ponownym podłączeniem należy zaprogramować mu taki sam adres jaki miał przed aktualizacja oprogramowania oraz z poziomu programu PR Master należy wykonać polecenie

/Podsystemy/Kontrolery/Komendy/Restartuj, spraw typ oraz wersję – operacja ta uaktualni dane dotyczące wersji oprogramowania firmowego kontrolera w bazie danych systemu KD.

Uwaga: Równolegle z aktualizacją oprogramowania kontrolera należy dokonać aktualizacji programu zarządzającego PR Master.

Zaciski Podłączeniowe		
Nazwa	Funkcja	
+12V	Dodani biegun zasilania, 10-15VDC	
-12V (GND)	Ujemny biegun zasilania oraz potencjał odniesienia dla magistrali komunikacyjnej RS485 i interfejsu CLK/DTA	
IN1	Linia wejściowa IN1, wewnętrznie podłączona do plusa zasilnia przez rezystor $15 \mathrm{k}\Omega$	
IN2	Linia wejściowa IN2, wewnętrznie podłączona do plusa zasilnia przez rezystor $15 \mathrm{k}\Omega$	
IN3	Linia wejściowa IN3, wewnętrznie podłączona do plusa zasilnia przez rezystor $15 \mathrm{k}\Omega$	
SHLD	Ekran kabla magistrali komunikacyjnej RS485	
RS485 B	Magistrala komunikacyjna RS485, linia B	
RS485 A	Magistrala komunikacyjna RS485, linia A	
CLK	Interfejs komunikacyjny RACS Clock & Data, linia CLOCK	
DTA	Interfejs komunikacyjny RACS Clock & Data, linia DATA	
TAMPER	Łącznik antysabotażowy, zacisk pierwszy, obciążalność 24V/50mA	
TAMPER	Łącznik antysabotażowy, zacisk drugi, obciążalność 24V/50mA	
IO2	Wyjście tranzystorowe IO2 typu otwarty kolektor, obciążalność 15VDC/1.0A	
IO1	Wyjście tranzystorowe IO1 typu otwarty kolektor, obciążalność 15VDC/1.0A	

REL1-NC	Wyjście przekaźnikowe REL1, styk normalnie zamknięty, obciążalność 24V/1.5A
REL1-COM	Wyjście przekaźnikowe REL1, styk wspólny, obciążalność 24V/1.5A
REL1-NO	Wyjście przekaźnikowe REL1, styk normalnie otwarty, obciążalność 24V/1.5A

Dane Techniczne	
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15VDC
Pobór prądu	Śr. 80 mA
Kontakt Tamper	Bezpotencjałowy styk typu NC, 50mA/24V
Zasięg odczytu	Do 12 cm dla kart typu ISO (zależy od typu i jakości karty)
Karty zbliżeniowe	EM 125 KHz (kompatybilne z EM4100/4102)
Odległości	Pomiędzy dodatkowym czytnikiem i kontrolerem: maks. 150 m
	Pomiędzy czytnikiem i modułami rozszerzeń XM-2/XM-8: maks. 150 m
Klasa Środowiskowa	Klasa I, warunki wewnętrzne, zakres temperatur od +5°C do +40°C, wilgotność względna od 0 do 95% (bez kondensacji)
(wg EN 50131-1)	
Wymiary	105 X 105 X 31 mm
Waga	~ 140g
Certyfikaty	CE

Uwaga: Urządzenie można okresowo czyścić za pomocą lekko zwilżonej tkaniny i łagodnych detergentów niezawierających środków ściernych. W szczególności nie wolno do czyszczenia stosować alkoholi, rozpuszczalników, benzyn, środków dezynfekujących, kwasów, odrdzewiaczy, itp. Uszkodzenia wynikłe z nieprawidłowo przeprowadzonej konserwacji lub niewłaściwej eksploatacji nie podlegają gwarancji.

Oznaczenia Handlowe		
PR302	Wewnętrzny kontroler dostępu zintegrowany z czytnikiem EM 125 kHz i klawiaturą	
XM-2DR	Ekspander we/wy w obudowie na szynę DIN	
UT-2	Interfejs komunikacyjny RS232-RS485	
UT-2USB	Interfejs komunikacyjny USB-RS485	
UT-4DR	Interfejs komunikacyjny Ethernet-RS485	

Kontroler PR302 - wymiary i widoki

Instrukcja instalacji PR302

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger sp. z o.o. sp.k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132

Faks: +48 55 272 0133
Pomoc tech.: +48 55 267 0126
Pomoc tech. (GSM): +48 664 294 087
E-mail: pomoc.techniczna@roger.pl

Web: www.roger.pl