2. Cauchy-Schwarz Inequality

(a)
$$\|\vec{v}\| = \sqrt{y^2 (\cos^2 \alpha + 2in^2 \alpha)}$$

= $\sqrt{y^2 (1)}$
= $\sqrt{x^2}$
= $\sqrt{x_i^2 + y_i^2}$

(b)
$$\|\vec{w}\| = \sqrt{\frac{t^2(\cos^2 \phi + \sin \phi)}{t^2(1)}}$$

= $\sqrt{\frac{t^2(1)}{t^2}}$
= $\sqrt{\frac{2t^2+y^2}{t^2}}$

(c)
$$\angle \vec{v}, \vec{\omega} > = \vec{v}^{\top} \cdot \vec{\omega}$$

= this will hold for any vector in \mathbb{R}^2 since \vec{v} and \vec{v} are general vectors in \mathbb{R}^2