Encoder MILE 512–4096 CPT, 2 Channels, with Line Driver Integrated into motor

M 1:6

Direction of rotation cw (definition cw p. 64)

Stock program Standard program Special program (on request)		Part Numbe	ers			
aparam programm (arriva quarty	V1 with connector	651156	651163	651166	651168	
	V2 with cable and connector	421985	421986	421987	421988	
Туре						
Counts per turn	<u> </u>	512	1024	2048	4096	
Number of channels		2	2	2	2	
Max. operating frequency (kHz)		1000	1000	1000	1000	
Max. speed (rpm)		6000	6000	6000	6000	

maxon Modula	ır Syst	em								
- Motor		+ Gearhead	Page	+ Brake	Page	Overall length [mm] / • see Gearhead				
EC 60 flat, 100 W	267					39.0	39.0	39.0	39.0	
EC 60 flat, 100 W	267	GP 52, 4 - 30 Nm	367			•	•	•	•	
EC 60 flat, 150 W	268					39.0	39.0	39.0	39.0	
EC 60 flat, 150 W	268	GP 52, 4 - 30 Nm	367			•	•	•	•	

Technical Data	Pin Allocation	Connection example
Supply voltage V_{CC} 5 V \pm 10% Typical current draw 15 mA Output signal CMOS compatible State length s_n (1000 rpm) 90°e \pm <45°e Signal rise time (typically, at $C_L = 25$ pF, $R_L = 1$ k Ω , 25°C) 100 ns Signal fall time (typically, at $C_L = 25$ pF, $R_L = 1$ k Ω , 25°C) 100 ns Operating temperature range -40+100°C Moment of inertia of code wheel \leq 13 gcm² Output current per channel Open collector output of the Hall sensors with integrated pull-up resistor 10 k $\Omega \pm$ 20% Wiring diagram for Hall sensors see p. 47	Connection V1 Connection V2 Motor + Sensors Sensors (AWG 24) Pin 1 Hall sensor 1 Pin 2 Hall sensor 2 Pin 3 V _{Hail} 4.518 VDC Pin 5 Hall sensor 3 Pin 6 GND Pin 7 Motor winding 1 Pin 8 Motor winding 1 Pin 8 Motor winding 2 Pin 1 Motor winding 1 Pin 8 Motor winding 2 Pin 1 Motor winding 3 Pin 2 Motor winding 1 Pin 3 Motor winding 1 Pin 4 N.C. Pin 3 Motor winding 3 Pin 4 N.C. Pin 5 Channel X Pin 6 ChaC Pin 1 N.C. Pin 2 V _{CC} Pin 3	Line receiver Recommended IC's: -MC 3486 -SN 75175 -AM 26 LS 32 Channel A Channel B Channel B

maxon sensor 413 April 2019 edition / subject to change