def a boolean variable is a variable which only takes a value of O ("false") or I ("true").

het p,q,r be boolean variables.

Define the following:

(1) Negation, 7p

ρ	70
0	i
(0

(2) Conjunction "and", p^q

P	9	P 3
0	Ó	'0
0	1	0
l	0	0
1	(1

(3) Disjunction "or", prq

ex. Evaluate
$$\neg (p^{(qv)r})$$
 if $p=1$, $q=0$, $r=0$.
 $\neg (1^{(0v)0}) = \neg (1^{(0v)})$
 $= \neg (1^{(1)})$
 $= \neg (1^{(1)})$

Note: Precedence of operators; use brackets to clanfy.

def. a formula is an expression involving boolean variables and operators that is syntactically correct.

def a truth table for a formula f gives the value of for all possible variable truth value assignments

ex unte a truth table for "((¬(p v q)) v q)

Р	G	PVG	(p v q.)	17((7(p vg)) vg)
0	Ŏ	' 0 '	1	
0	1		0	
ı	0	L	0	0
1	1	1		1

def Two formulas f_1 , f_2 are logically equivalent if they have the same truth table. Denote as $f_1 = f_2$

def. If f = 1 (f evaluates to 1 for any values assigned to its variables), f is called a tautology.

ex. (7p) vp is a tautology.

def. If f = 0, f is called a contradiction.

ex (7p) p is a contradiction.

def. If f is neither, f is called a contingency

Simplifying Boolean Formulas

TABLE 6 Logical Equivalences.			
Equivalence	Name		
$p \wedge \mathbf{T} \equiv p$	Identity laws		
$p \vee \mathbf{F} \equiv p$			
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws		
$p \wedge \mathbf{F} \equiv \mathbf{F}$			
$p \vee p \equiv p$	Idempotent laws		
$p \wedge p \equiv p$			
$\neg(\neg p) \equiv p$	Double negation law		
$p \vee q \equiv q \vee p$	Commutative laws		
$p \wedge q \equiv q \wedge p$			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws		
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws		
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws		
$\neg (p \lor q) \equiv \neg p \land \neg q$			
$p \lor (p \land q) \equiv p$	Absorption laws		
$p \wedge (p \vee q) \equiv p$			
$p \vee \neg p \equiv \mathbf{T}$	Negation laws		
$p \land \neg p \equiv \mathbf{F}$			

ex. Simplify
$$(7(p \vee q)) \vee Q$$
.
 $(7(p \vee q)) \vee Q = (7p^{7}q) \vee Q$
 $= Q \vee (7p^{7}q)$
 $= (Q \vee 7p)^{(Q \vee 7q)}$
 $= (Q \vee 7p)^{1}$
 $= Q \vee 7p$

De morgan Commutative Distributive Negation Identity

Boolean Sabsfiability

Given a formula f, can you assign truth values to make f evaluate to 1? If so, f is called satisfiable.

ex. Show that f = (pvq) ^ (7qv 7r) ^ (pvr) is satisfiable.

Ρ	I G	r	PVQ	rgvor	pvr	L£	
0	Ŏ	0	0	1	,	0	
0	0	1	0	L		0	
0	1	0	l	ı	0	0	
0	1	1	l	0	l	0	
✓ I	0	0	1	ı	1	1	7
V	0	1		l	(ı	}
V	1	0	ı	1	1	1)
1	l ı	l	1	0		0	

If f has n variables, there are 2" rows in the truth table.