VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

PROJECT REPORT

Subject: Calculus 2

Lecturer: Mr. Lê Thái Thanh Class: CC14 – GROUP B

NO.	Student name	ID
1	Dư Đặng Mỹ Anh	2252015
2	Bao Hoàng Gia	2252170
3	Nguyễn Tiến Hưng	2252280
4	Nguyễn Phương Khanh	2252319
5	Trần Nguyễn Thế Nhật	2252556
6	Nguyễn Quang Phú	2252621

School year 2022 - 2023

ASSIGNMENT FOR CALCULUS II Group: B

Question 1. Show that the function $u(x,t)=\frac{1}{2a\sqrt{\pi t}}\,\mathrm{e}^{-\frac{(x-b)^2}{4a^2t}}$ (a and b are constants) satisfies the differential equation $\frac{\partial u}{\partial t}=a^2\frac{\partial^2 u}{\partial x^2}$.

Question 2. Find y' and y'' of the function y = y(x) given implicitly by $y = 2x \arctan \frac{y}{x}$.

Question 3. Find the local maximum and minimum values and saddle point(s) of the function $z=(x^2+y^2)\,\mathrm{e}^{-(x^2+y^2)}$

Question 4. Evaluate $I = \iint_{D} \left| \frac{x+y}{\sqrt{2}} - x^2 - y^2 \right| dx dy$ where $D = \{x^2 + y^2 \le 1\}$.

Question 5. Find the volume of the solid bounded by the surfaces: $z = x^2 + y^2$, $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, z = 0

Question 6. Evaluate $I = \iiint_V \frac{dV}{(1+x+y+z)^3}$ where $V = \{x+y+z=1, \ x=0, \ y=0, \ z=0\}.$

Question 7. Evaluate the line integral

$$\int_{AmO} (e^x \sin y - my) \, dx + (e^x \cos y - m) \, dy$$

where AmO is the upper half of the semicircle $x^2 + y^2 = ax$ from the point A(a,0) to the point O(0,0), (m is a constant and a > 0).

Question 8. Evaluate the surface integral

$$I = \iint_{S} (y-z)dydz + (z-x)dxdz + (x-y)dxdy$$

where S is the part of the cone $x^2 + y^2 = z^2$, $0 \le z \le h$ with the positive outward orientation.

Question 9. Find the area of the region bounded by the curves $xy = a^2$, $xy = 2a^2$, y = x, y = 2x (x > 0, y > 0).

Question 10. Find the area of the part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies inside the cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(0 < b \le a)$.

Find y' an Consider y			_ And													
Consider	: y	= 2x	Orc.	tan ·	30		3									
	(=)	4 = 2	are	tan.	4											
	(=) (-	y)'=	(20	ırcta	n y)										
								4 ,								
	(=)	,,2	= 2	1+	14	12	. (-	$\frac{c}{\infty}$								
		y 5c - L	1		4:	/ x - !	1									
	(=) -	, x ²	= =	ઢ .		×	2						386			
					7 +	20	2									
	(=)	yx-y	- 2	4:	sc - 1	1 2	= 0							A		
	,	,	\ /	7	+ 9	2	\									
	(=) (·	y x - y)(2	- 20	2 + y	2)	= 0								
	(=) (u'x -	u)	, -			۹) =	0							
							-									
	(=) A	y (=	-	72+	<u>, 2</u>) =	74	-	23	, 2						
			ن	- 2	J			3	~2	1						
	(=)	y.	1	2	2)	=	9	, ,	•	_			-			
	(=) (=)		x (:		2)		2	(x	+ 42)						
	(=)	y'=	4	9 - 3	,	. x	. (×	+ 9	و	- =	7 ×					
				(y	- × *				+ y2)	×					
Also : 4	"= (-	$\frac{y}{x}$):	<u>y</u>	x - y	=	₹ ·	x -	y =	0							
		כנ /		x			20	1								-

(e^x siny - my) dx + (e^x cosy - m) dy where Ama is the upper half af the semicircle
$$x^4 + y^4 = ax$$
 from point $A(a,a)$ to $O(a,a)$ (mis const and $a > 0$)

(C1): $x^2 + y^3 = ax$ so $(x - a)^3 + y^4 = a^4$
 $y = + \sqrt{a^4 + (x - a)^3}$ dy = $-(x - a)$
 $A = \int_0^a (e^x \sin \sqrt{a^4 - (x - a)^3}) dx$
 $A = \int_0^a (e^x \sin \sqrt{a^4 - (x - a)^3}) dx$
 $A = \int_0^a (e^x \sin \sqrt{a^4 - (x - a)^3}) dx$
 $A = \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e^x \sin (\sqrt{a^4 - (x - a)^3}) dx$
 $A = -e$

(a) Find the area of the region bounded by the curves $xy = a^2$, $xy = x^2$, y = x, y =

