Logique — TD 1 —

STI 3A

Éléments de Correction

P. Clemente

19 avril 2016

1 Syntaxe

1.1 Formules bien formées

Dans la suite du cours et des TD, on se permettra de supprimer certaines parenthèses dans les formules. Ce raccourci d'écriture se fera selon les règles suivantes.

- priorité décroissante des opérateurs : \neg puis \land , puis $\{\lor, XOR\}$ puis $\{\Rightarrow, \Leftrightarrow\}$
- associativité : à gauche et à droite pour \land et \lor , à gauche pour $\Rightarrow a \Rightarrow b \Rightarrow c$ sera interprété comme $(a \Rightarrow b) \Rightarrow c$.
- les parenthèses extérieures sont implicites.

Question 1. Pour chaque formule, vérifiez qu'il s'agit d'une formule bien formée (fbf), et dans le cas contraire, précisez la règle enfreinte.

1.
$$((a \Rightarrow b) \lor c)$$

2.
$$(a \Rightarrow b) \lor c$$

3.
$$(a \Rightarrow b \lor c)$$

4.
$$((a \Rightarrow b) \lor c) \Leftrightarrow \neg c$$

5.
$$\neg((a \Rightarrow b) \lor c) \Rightarrow a \lor b)$$

6.
$$\neg((a \Rightarrow b) \lor c) \Leftrightarrow (a \lor b)$$

7.
$$\neg(\neg((a \Rightarrow b) \lor c) \Leftrightarrow \neg(a \lor b))$$

8.
$$\neg \neg ((a \Rightarrow b) \lor c) \Leftrightarrow (\neg a \lor b)$$

9.
$$\neg \neg \neg ((a \Rightarrow b) \lor c) \Leftrightarrow (\neg a \lor b)$$

10.
$$c \Rightarrow (\neg(a \Leftrightarrow b) \lor (d \land e)) \land \neg(a \lor \neg c)$$

Correction 1.

Si l'on s'en tient à la stricte définition des règles de formation vue en cours, les formules suivantes sont mal formées :

5. Pb de parenthèses.

Les autres formules sont des fbf.

1.2 Simplification de formules

Question 2. Déduire des simplifications d'écriture pour les formules suivantes à partir des règles de priorité donnée en début de sujet :

- 1. $((p \land q) \Leftrightarrow \neg(p \land q))$
- 2. $(((p \lor q) \lor r) \Rightarrow ((\neg p \land q) \Rightarrow (p \land r)))$
- 3. $(p \lor ((p \Leftrightarrow q) \land (\neg q \Rightarrow r)))$

Correction 2.

- 1. $p \land q \Leftrightarrow \neg(p \land q)$
- 2. $p \lor q \lor r \Rightarrow (\neg p \land q \Rightarrow p \land r)$
- 3. $p \lor ((p \Leftrightarrow q) \land (\neg q \Rightarrow r))$

1.3 Sous-formules

Représentation en arbres

Question 3. Pour chacune des formules suivantes, donner une représentation sous forme d'arbre et donner sa hauteur, en indiquant également son connecteur principal et le nombre de sous-formules.

- 1. $(\neg((\neg p \lor q) \Leftrightarrow (q \land r)) \Rightarrow \neg q)$
- 2. $(((p \land (\neg q \Rightarrow \neg p)) \land (\neg q \lor \neg r)) \Rightarrow (r \Rightarrow \neg p))$

Correction 3. On pose h = la hauteur de l'arbre, et n le nombre de sous-formules :

- 1. h = 5, n = 9
- 2. h = 6, n = 11

Nombre de connecteurs de sous-formules

Question 4. Soit F une formule propositionnelle à n connecteurs. Quel le nombre maximum de sous-formules de F? Le démontrer par récurrence sur n.

Correction 4. Conjecture: nombre maximum de sous-formules pour une formule à n connecteurs: nb = 2n.

Pour n = 0, c'est vérifié.

On suppose la formule vraie au rang n.

On cherche à savoir si elle au rang n+1.

$$nb_{n+1} = nb_n + 2*$$

= $(2n) + 2$
= $2n + 2$
= $2(n+1)$

*car un connecteur remplace une feuille par une sous-formule, c'est-à-dire un connecteur et deux feuilles (donc +3-1=+2).

Longueur de sous-formules

Soit A une formule propositionnelle bien formée complètement parenthésée (sans appliquer les règles de suppression données à l'exercice intitulé "Arbres syntaxiques"). On note u(A) le nombre d'occurrences du connecteur "¬" $(u(A) \ge 0)$ et b(A) le nombre d'occurrences de connecteurs binaires (b(A) > 0).

Soit L(A) la longueur de la formule A définie comme le nombre de (tous) ses symboles. Ainsi par exemple, pour $A = ((\neg p) \lor q)$, on a L(A) = 8.

Question 5. Démontrer par récurrence sur le nombre total de connecteurs de A, que $L(A) = 4 \times b(A) + 3 \times u(A) + 1$.

Correction 5. Conjecture: longueur d'une formule logique à n connecteurs $L(A) = 4 \times b(A) + 3 \times u(A) + 1$.

On notera $A_{(B,U)}$ une formule avec b(A) connecteurs binaires et u(A) connecteur unaires.

- Au rang nb = 0: la formule ne contient qu'une variable propositionnelle (ex. : q), donc $L(A_{(0,0)}) = 1$; ce qui vérifie la conjecture : $4 \times 0 + 3 \times 0 + 1 = 1$.

- On suppose la propriété vraie au rang n, avec n = B + U (hypothèse de récurrence).
- Au rang nb = n + 1: on ajoute donc un nouveau connecteur. Deux cas sont possibles:
 - 1. On ajoute un connecteur binaire : on cherche alors à vérifier la propriété au rang B+1.

$$A_{(B+1,U)} = (A_{(B,U)} \square q)$$

 $où \square$ est un connecteur binaire quelconque.

D'où

$$\begin{array}{lll} L(A_{(B+1,U)}) & = & L(A_{(B,U)}) + 4 \\ & = & 4 \times b(A_{(B,U)}) + 3 \times u(A_{(B,U)}) + 1 + 4 \\ & = & 4 \times (b(A_{(B,U)}) + 1) + 3 \times u(A_{(B,U)}) + 1 \\ & = & 4 \times b(A_{(B+1,U)}) + 3 \times u(A_{(B,U)}) + 1 \end{array}$$

Et comme $u(A_{(B,U)}) = u(A_{(B+1,U)})$, on a :

$$L(A_{(B+1,U)}) = 4 \times b(A_{(B+1,U)}) + 3 \times u(A_{(B+1,U)}) + 1$$

La propriété est donc bien vérifiée quand on ajoute un connecteur binaire.

2. On ajoute un connecteur unaire : on cherche alors à vérifier la propriété au rang U+1. La seule possibilité pour ajouter un connecteur unaire est de remplacer une variable par la négation d'un autre.

Exemple avec p qui deviendrait $(\neg q)$.

Soit

$$A_{(B,U)} = (A_{(B-1,U)} \square p)$$

et donc

$$A_{(B,U+1)} = (A_{(B-1,U)} \square (\neg q))$$

On retire donc 1 symbole (p) et on en ajoute 3 $((\neg q))$.

On a donc:

$$L(A_{(B,U+1)}) = L("(A_{(B-1,U)} \square p)") - 1 + L("(\neg q)")$$

$$= L(A_{(B,U)}) - 1 + 4$$

$$= L(A_{(B,U)}) + 3$$

$$= 4 \times b(A_{(B,U)}) + 3 \times u(A_{(B,U)}) + 1 + 3$$

$$= 4 \times b(A_{(B,U)}) + 3 \times (u(A_{(B,U)}) + 1) + 1$$

$$= 4 \times b(A_{(B,U)}) + 3 \times u(A_{(B,U+1)}) + 1$$

Et comme $b(A_{(B,U)}) = b(A_{(B,U+1)})$, on a :

$$L(A_{(B,U+1)}) = 4 \times b(A_{(B,U+1)}) + 3 \times u(A_{(B,U+1)}) + 1$$

La propriété est donc bien vérifiée quand on ajoute un connecteur unaire.

La propriété est donc vérifiée quel que soit le connecteur que l'on ajoute pour le rang n+1. Elle est donc toujours vérifiée, l'hypothèse de récurrence était donc valide.

1.4 Transformation syntaxiques simples

Équivalence de formules

Question 6. Pour chaque formule ci-dessous, donner une formule logiquement équivalente telle :

- $\overline{\hspace{1cm}}$ Les seules variables propositionnelles utilisées sont p et q.
- Les seuls connecteurs utilisés sont ¬ et ∨.

1. $p \wedge q$

3. $p \Leftrightarrow q$

2. $p \Rightarrow q$

4. $\neg(p \Leftrightarrow q) \land (p \Rightarrow (q \Rightarrow p))$

Correction 6.

1.
$$p \land q \Leftrightarrow \neg(\neg p \Rightarrow \neg q)$$

 $\Leftrightarrow \neg(\neg p \lor \neg q)$

2.
$$p \Rightarrow q \Leftrightarrow \neg p \lor q$$

3.
$$p \Leftrightarrow q \Leftrightarrow (\neg p \lor q) \land (\neg q \lor q)$$

 $\Leftrightarrow \neg [\neg (\neg p \lor q) \lor \neg (\neg q \lor p)]$

4.
$$\neg (p \Leftrightarrow q) \land (p \Rightarrow (q \Rightarrow p)) \Leftrightarrow \neg [(p \Leftrightarrow q) \lor \neg (p \Rightarrow (q \Rightarrow p))] \\ \Leftrightarrow \neg [\neg \neg (3) \lor \neg (\neg p \lor (\neg q \lor p))]$$

Système complet de connecteurs

Question 7. L'exercice précédent était possible car $\{\neg, \lor\}$ est ce qu'on appelle un *système complet de connecteurs*.

Propriété: Pour montrer qu'un système de connecteurs est complet, il faut et il suffit de prouver que les fonctions logiques $\neg a$, $(a \land b)$ et $(a \lor b)$ peuvent s'exprimer en n'utilisant que les connecteurs du système. Il est dit fonctionnellement complet : il suffit pour exprimer toute fonction de vérité

Par exemple, l'ensemble $\{\neg, \Leftrightarrow\}$ n'est pas un système complet de connecteur. Par contre, $\{\land, \lor, \neg\}$ en est un.

Remarque : On peut bien sur utiliser les constantes ${\bf V}$ et ${\bf F}$ dans les propositions logiques.

Montrer que les ensembles suivants définissent chacun un système complet de connecteurs :

- 1. $\{\Rightarrow, \neg\}$;
- $2. \{Nand\};$
- 3. {Nor}.

Rappels: Tables de vérité du Nand et du Nor

a	b	a Nand b
V	V	F
\mathbf{V}	\mathbf{F}	\mathbf{V}
\mathbf{F}	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{F}	\mathbf{V}

a	b	$a \operatorname{Nor} b$
V	V	\mathbf{F}
$\ \mathbf{V}\ $	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{V}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{V}

Correction 7.

L'idée est ici de démontrer que chacun de ces systèmes est équivalent à celui donné en exemple.

1. Pour le système $\{\Rightarrow, \neg\}$:

- $\neg a \equiv \neg a$;
- $a \lor b \equiv \neg a \Rightarrow b$;
- $-a \wedge b \equiv \neg(a \Rightarrow \neg b).$

2. Pour le système {Nand};

- $\neg a \equiv a \text{ Nand } \mathbf{V};$
- $-a \wedge b \equiv \neg(a \text{ Nand } b) \equiv (a \text{ Nand } b) \text{ Nand } \mathbf{V};$
- $-a \lor b \equiv \neg(\neg a \land \neg b) \equiv \neg((a \text{ Nand } \mathbf{V}) \land (b \text{ Nand } \mathbf{V})) \equiv \neg(((a \text{ Nand } \mathbf{V}) \text{ Nand } (b \text{ Nand } \mathbf{V})) \text{ Nand } \mathbf{V}) \equiv (((a \text{ Nand } \mathbf{V}) \text{ Nand } (b \text{ Nand } \mathbf{V})) \text{ Nand } \mathbf{V}) \text{ Nand } \mathbf{V})$
- 3. Pour le système {Nor} : sur le même principe...