

### Bangladesh University of Engineering & Technology

Department of Electrical and Electronic Engineering

### **EEE 414**

Term: 4-2

#### **Electrical Service Design**

Prepared by

Saif Ahmed Sunny Lecturer (PT) – January 2024 Department of EEE, BUET

# **AutoCAD**

#### **AutoCAD**



- 1. Line drawing at a particular angle
- 2. Creating a square box (orthomode)
- 3. Deleting a Line (eraser or delete)
- 4. Deleting an extended portion (trim)
- 5. Drawing a door (arc)
- 6. Drawing parallel Line (offset)
- 7. Units

### **AutoCAD**



- 7. Layers
- 8. Pan, Copy, Cut
- 9. Move, Rotate, Mirror
- 10. Osnap
- 11. Hatch
- 12. Dimension
- 13. Text
- 14. Creating Block

# **Project Proposal**

# **Project Map**



# Design Steps

Floorplan -> Fittings -> Conduit -> Ckt Diagrams -> EMDB MDB Digaram -> Power Calculation -> LPS DEsign

# Layers



Layer-1: Main Floorplan

Layer-2: Room Names

Layer-3: Dimensions

Layer-4: Doors

Layer-5: Windows

Layer-6: Light Fan

Layer-7: Power Sockets

Layer-8: Switchboards

Layer-9: Lighting Load Conduit

Layer-10: Power Socket Conduit

# **Main Floorplan**





High Rise (9 Living Floor)
Min 2 units

Each unit min 1200 sq. ft. Lift

Bedroom (2-3)
Washroom (min 2)
Kitchen
Dining
Drawing
Veranda

# **Ground Floorplan**





**Parking Space** 

Electrical Room
Transformer Room

**Generator Room** 

Guard Room Guard Bedroom Washroom

# Ramp





Ground Floor Basement

# **Basement/Garage**





Parking Space
Store Room
Lift Maintenance Room

### Roof





Beams
Lift Machine Room
Stairs

Mainly used for Lightning Protection System (LPS) Design

# Fittings and Fixtures

# **Fittings and Fixtures**



<u>Fixture:</u> An electrical fixture is a product that is used for fitting various electrical devices like lights, fans etc. They can be thought of as "fixed" and not easily replaceable. <u>Example: wall brackets, switchboards, power sockets.</u>

<u>Fittings:</u> An electrical fitting is any electrical appliances that fit in various fixtures. They are usually easily replaceable by users and are more prone to changes compared to fixtures. Example: Tube lights, TV, electric fan etc.

Although fitting and fixtures do not mean the same thing, it can often be difficult to differentiate between them perfectly and there may be different definitions in the law in different countries. Thus, for all intents and purposes, we will mention them together to remove any ambiguity.

# Fittings and Fixtures (Main Floorplan)





# Fittings and Fixtures (Ground Floor)





# Fittings and Fixtures (Basement)





# **Fittings and Fixtures**



#### Some things to keep in mind:

- a) Place power sockets by thinking about the kind of appliances they might be connected to. For example, for a fridge or an oven a 3-pin 15A power socket might be necessary, while for a bed side lamp a 2-pin 5A socket at Table height might be good enough.
- b) Each room should have at least one switchboard, place them in a such a way so that they are easily accessible.
- c) There must be a Main Distribution board in your design.
- d) Place the lights keeping in mind the purpose of the room and what sort of activity will be happening there. Adjust the amount and type of lighting to fit the room's purpose.

# **Fittings and Fixtures**



Lights- 3" radius

Tube light – 3' length

Ceiling fan – diameter 48" or 56" outer and 6" inner

| Symbol Description                       | Fittings and Fixture |
|------------------------------------------|----------------------|
| Wall Bracket Light at Lintel Level       |                      |
| 2-Pin 5A Socket at SB Level              | 52                   |
| 3-Pin 5A/15A Socket                      | s =                  |
| 2-Pin 5A Socket at Table Height          | 12                   |
| 2-Pin 5A Socket at Skirting Level for TV | 51                   |
| 2-pin TV Antenna Socket                  | $\Theta$             |

| Switch Board                   |           |
|--------------------------------|-----------|
| Fluorescent Wall Light Fitting |           |
| Ceiling Light Fitting Type k   | (         |
| Meter Board                    |           |
| Main Distribution Board        |           |
| Exhaust Fan                    | $\otimes$ |
| Ceiling Fan                    |           |

# **Light Calculation**



$$E = \frac{n * N * F * LLF * UF}{A}$$

$$N = \frac{E*A}{n*F*LLF*UF}$$

N = Number of Lights

E = Illumination (lux = lm/m2) - Table

A = Area of the Room (sq. meter)

n = lights per illuminaire

F = Lumen of Light

UF = Utilization Factor

LLF = Light Loss Factor

#### Lux vs Lumen



Lumen – Amount of Light a Bulb emits in all directionsLux - Light per unit surface (Lumen/m2)



## **E – Illumination Table**



22

Table 8.1.5: Recommended Values of Illumination for Residential Buildings

| Area or Activity         | Illuminance<br>(lux) | Area or Activity                 | Illuminanc<br>e (lux) |
|--------------------------|----------------------|----------------------------------|-----------------------|
| Dwelling Houses          |                      | Hotels                           |                       |
| Bedrooms                 |                      | Entrance halls                   | 150                   |
| General                  | 70                   | Reception and accounts           | 300                   |
| Bed-head, Dressing table | 250                  | Dining rooms (tables)            | 150                   |
| Kitchens                 | 200                  | Lounges                          | 150                   |
| Dining rooms (tables)    | 150                  | Bedrooms                         |                       |
| Bathrooms                |                      | General                          | 100                   |
| General                  | 100                  | Dressing tables, bed heads, etc. | 250                   |
| Shaving, make-up         | 300                  | Writing rooms (tables)           | 300                   |
| Stairs                   | 100                  | Corridors                        | 70                    |
| Lounges                  | 100                  | Stairs                           | 100                   |
| Garages & Porches        | 100                  | Laundries                        | 200                   |

# F- Lumen of Light (Watt vs Lumen Chart)



### **Incandescent Bulb**



| TABLE 10 Incandescent Flood Light Lamps ( Luminous Flux Im) |                      |                    |  |  |  |  |  |  |  |
|-------------------------------------------------------------|----------------------|--------------------|--|--|--|--|--|--|--|
| Туре                                                        | Wattage ( 220-230 V) | Luminous Flux (lm) |  |  |  |  |  |  |  |
| 120 E                                                       | 100 W                | 1050               |  |  |  |  |  |  |  |
| 123 E                                                       | 250 W                | 3250               |  |  |  |  |  |  |  |
| 126 G                                                       | 500 W                | 8000               |  |  |  |  |  |  |  |
| 6036 G                                                      | 1000 W               | 19000              |  |  |  |  |  |  |  |
| 7083 U                                                      | 100 W                | 2250               |  |  |  |  |  |  |  |
| 162 G                                                       | 500 W                | 12600              |  |  |  |  |  |  |  |

#### **Fluorescent Bulb**



|             | Flourscent lamps(220 V), Standar | d (Construction)   |
|-------------|----------------------------------|--------------------|
| Wattage (W) | Lenth of lamps (mm)              | Lumimous flux (lm) |
|             | 288                              | 350                |
| 16          | 720                              | 950                |
| 20          | 590                              | 1250               |
| 40          | 1200                             | 3200               |

# F- Lumen of Light (Watt vs Lumen Chart)



#### **LED Bulb**



Philips Essential 15W LED Bulb 1450 lumen

#### to 300 to 250

Power: 15W

• Bulb Shape: B50

Lumens: 1450 lm

Color Temperature: Cool Daylight (6500K)

· Lifetime: 15,000 hours

Base: B22 / E27

• Input voltage: 100-260VAC

CRI: 80 Ra

Dimmable: No

Warranty: 1 Year.

**TYPES** 

# **Light Calculation**



$$E = \frac{n * N * F * LLF * UF}{A}$$

$$N = \frac{E*A}{n*F*LLF*UF}$$



N = Number of Lights

E = Illumination (lux = lm/m2) - Table

A = Area of the Room (sq. meter)

n = lights per illuminaire

F = Lumen of Light

UF = Utilization Factor

LLF = Light Loss Factor

## **Fan Calculation**



$$N = \frac{A}{100}$$

A = Area of the Room (sq. feet)



# **Sample Calculation**



# **Example:**

A Bedroom

Dimension  $A = L \times W = 15 \times 13 \text{ ft2} = 18.118 \text{ m2}$ 

Illuminance E = 100

Light Loss Factor and Utilization Factor LLF x UF = 0.75

Flux F = 1450 Lumen

Lights per illuminaire n = 1

Light N = 1.66 So, 2 LED Bulbs

**Fan N = 1.95 So, 2 Fans** 



**Mounting height MH** = Luminaire Height – Working Plane Height = 9ft - 3ft = 6ft = 1.828mMaintenance Factor MF = 0.8

### **Example:**

A Dining Room

Dimension L x W: 21'6" x 21"6" or 6.55m x 6.55m

#### (1) Room Index

RI = 
$$\frac{L * W}{(L+W)*MH}$$
 Here, L W MH in meter.  
RI =  $\frac{6.55 * 6.55}{(6.55+6.55)*1.828} = 1.79$ 



#### (2) Utilization Factor

By linear interpolation

$$\frac{x-x1}{x2-x1}=\frac{y-y1}{y2-y1}$$

$$\frac{1.79 - 1.5}{2 - 1.5} = \frac{UF - 0.6}{0.66 - 0.6}$$

$$UF = 0.6348$$

| Room Reflectance |      |       | Room | Room Index |      |     |      |      |      |     |      |  |  |
|------------------|------|-------|------|------------|------|-----|------|------|------|-----|------|--|--|
| Ceiling          | Wall | Floor | 0.75 | 1          | 1.25 | 1.5 | 2    | 2.5  | 3    | 4   | 5    |  |  |
| 0.7              | 0.5  | 0.2   | 0.43 | 0.49       | 0.55 | 0.6 | 0.66 | 0.71 | 0.75 | 0.8 | 0.83 |  |  |



#### (3) Light Calculation

Same Lumen Rating

$$N = \frac{E*L*W}{F*UF*MF}$$

$$N \; = \; \frac{150*6.55*6.55}{3200*0.6348*0.8}$$

$$N = 3.95$$

So, 4 light bulbs.

N = Number of Lights

E = Lux of the Room = 150 lux

L = Length in meter = 6.55m

W = Width in meter = 6.55m

F = Lumen of Light = 3200 lm

UF = Utilization Factor = 0.6348

MF = Maintenance Factor = 0.8



| Room Reflectance |      |       | Room Index |      |      |      |      |      |      |      |      |  |  |
|------------------|------|-------|------------|------|------|------|------|------|------|------|------|--|--|
| Ceiling          | Wall | Floor | 0.75       | 1    | 1.25 | 1.5  | 2    | 2.5  | 3    | 4    | 5    |  |  |
| 0.7              | 0.5  | 0.2   | 0.43       | 0.49 | 0.55 | 0.6  | 0.66 | 0.71 | 0.75 | 8.0  | 0.83 |  |  |
| 0.7              | 0.3  | 0.2   | 0.35       | 0.41 | 0.47 | 0.52 | 0.59 | 0.65 | 0.69 | 0.75 | 0.78 |  |  |
| 0.7              | 0.1  | 0.2   | 0.29       | 0.35 | 0.41 | 0.46 | 0.53 | 0.59 | 0.63 | 0.7  | 0.74 |  |  |
| 0.5              | 0.5  | 0.2   | 0.38       | 0.44 | 0.49 | 0.53 | 0.59 | 0.63 | 0.66 | 0.7  | 0.73 |  |  |
| 0.5              | 0.3  | 0.2   | 0.31       | 0.37 | 0.42 | 0.46 | 0.53 | 0.58 | 0.61 | 0.66 | 0.7  |  |  |
| 0.5              | 0.1  | 0.2   | 0.27       | 0.32 | 0.37 | 0.41 | 0.48 | 0.53 | 0.57 | 0.62 | 0.66 |  |  |
| 0.3              | 0.5  | 0.2   | 0.3        | 0.37 | 0.41 | 0.45 | 0.52 | 0.57 | 0.6  | 0.65 | 0.69 |  |  |
| 0.3              | 0.3  | 0.2   | 0.28       | 0.33 | 0.38 | 0.41 | 0.47 | 0.51 | 0.54 | 0.59 | 0.62 |  |  |
| 0.3              | 0.1  | 0.2   | 0.24       | 0.29 | 0.34 | 0.37 | 0.43 | 0.48 | 0.51 | 0.56 | 0.59 |  |  |



Conduit: Conduit means channel. An electrical conduit is a tube used to protect and route electrical wiring in a building. They can be made of metal, wood or plastic (PVC). They can be primarily classified into two classes: 1) Surface/exposed conduits, 2) Concealed conduits







| Symbol | Wire Rating (single core)-mm <sup>2</sup> | Current Rating (ampere) | GI Pipe<br>Diameter (inch) |
|--------|-------------------------------------------|-------------------------|----------------------------|
| C1     | 2x1.5                                     | 5A                      | 3/4                        |
| C2     | 4x1.5                                     | 5A                      | 3/4                        |
| C3     | 6x1.5                                     | 5A                      | 3/4                        |
| C4     | 8x1.5                                     | 5A                      | 3/4                        |
| C5     | 10x1.5                                    | 5A                      | 1                          |
| C6     | 12x1.5                                    | 5A                      | 1                          |
| C7     | 14x1.5                                    | 5A                      | 1                          |
| C8     | 2x4+4 ECC                                 | 15A                     | 1                          |
| С9     | 2x6+6 ECC                                 | 20A                     | 1                          |



#### **ECC- Earth Continuity Conductor**

ECC is not needed for the conduits from SB to Light, Fan and 2pin Sockets (C1-C7) ECC is needed for power sockets (C8, C9) and all the wires after SB



#### BANGLADESH UNIVERSITY OF ENGINEERING &TECHNOLOGY Course No. EEE-230

Table for Cables, Conduits, ECC, EL, Voltage drop and Current ratings of different specifications as per Manual of Eastern Cables, BICC cables and Tables , Electrical Conductors (International Standard Sizes) etc. :

| Я         | B   | C   | D   | Œ   |    | F  | G   | $\mathcal{H}$ |     | 1    | 1   | ,   |
|-----------|-----|-----|-----|-----|----|----|-----|---------------|-----|------|-----|-----|
|           |     |     |     |     | a' | 6' |     |               | a"  | 6"   | a"' | B"  |
| 3/0.029   | 1.5 | 5   | 16  | 10  | 6  | 10 |     | 27            | 27  | 22   | 16  | 20  |
| 7/0.029   | 2.5 | 10  | 16  | 10  | 4  | 7  |     | 16            | 36  | 30   | 22  | 28  |
| 7/0.036   | 4   | 15  | 14  | 10  | 3  | 5  | 1   | 10            | 47  | 39   | 30  | 37  |
| 7/0.044   | 6   | 20  | 14  | 10  | 2  | 4  | 1   | 6.8           | 59  | 50   | 38  | 47  |
| 7/0.052   | 10  | 30  | 10  | 10  | 1  | 2  | 1.5 | 4             | 78  | 68   | 52  | 63  |
| 7/0.064   | 16  | 40  | 10  | 10  |    | 1  | 1.5 | 2.6           | 100 | 94   | 70  | 85  |
| 19/0.052  | 25  | 50  | 6   | 6   |    | 1  | 2   | 1.6           | 130 | 125  | 91  | 110 |
| 19/0.064  | 35  | 60  | 6   | 6   |    |    | 2   | 1.2           | 155 | 160  | 112 | 136 |
| 19/0.072  | 50  | 70  | 6   | 6   |    |    | 2   | 0.93          | 185 | 195  | 136 | 164 |
| 19/0.083  | 70  | 100 | 1/0 | 1/0 |    |    | 2   | 0.65          | 225 | 245  | 173 | 207 |
| 37/0.072  | 95  | 120 | 1/0 | 1/0 |    |    | 2.5 | 0.48          | 270 | 300  | 216 | 253 |
| 37/0.083  | 120 | 150 | 1/0 | 1/0 |    |    | 2.5 | 0.4           | 310 | 350  | 244 | _   |
| 37/0.093  | 150 | 200 | 1/0 | 1/0 |    |    | 3   | 0.34          | 350 | 405  | 244 | 291 |
| 37/0.130  | 185 | 250 | 3/0 | 3/0 |    | _  | 3.5 | 0.29          |     |      |     | 333 |
| 61/0.093  | 240 | 300 | 3/0 | 3/0 | -  | -  | _   | -             | 390 | 460  |     | 381 |
| 61/0.103  | 300 | 425 | 3/0 | 3/0 | -  | -  | 4   | 0.24          | 450 | 555  |     | 452 |
| 91/0.093  | 400 | 585 | 3/0 | -   | -  | -  | 4   | 0.22          | 515 | 640  |     | 526 |
| 91/0.103  | 500 | 685 | 3/0 | 3/0 | -  |    | 6   | 0.2           | 586 | 770  |     | 639 |
| 127/0.103 | 630 | 800 | -   | -   | -  | -  | 6   | 0.18          | 680 | 900  |     | 752 |
| , 0.103   | 050 | 000 | 3/0 | 3/0 |    |    | 6   | 0.17          | 800 | 1030 |     | 855 |

- Single core cable construction diameter, inch ... as per Imperial Standard Size : B.S.S.
- Single core cable construction area, mm² ... as per Metric Standard Size: VDE.
- CB designed current rating amps
- ECC (Earth Continuity Conductor), SWG.
- EL (Earthing Lead), SWG
- No . of cables in
  - a') 3/4" diameter conduit 6') 1' diameter conduit
- GI pipe diameter (for 4 core cable), inch.
- Volt drop /amp/meter, Vd in mV (For PVC insulated, non-armoured single core cable 600/1000 volts as per BICC Metric Supplement , page 20-22 , September 1969).
- Maximum Current rating (For Type : NYY to VDE 0271/3, 69)
  - a") 30° C ambient temperature, underground, amps

| Я        | B   | B  | С  | D  | Œ  |    | F   | G   | $\mathcal{H}$ |     |     | 1   | , |
|----------|-----|----|----|----|----|----|-----|-----|---------------|-----|-----|-----|---|
|          |     |    |    |    | a' | 6' |     |     | a"            | 6"  | a"' | B"' |   |
| 3/0.029  | 1.5 | 5  | 16 | 10 | 6  | 10 |     | 27  | 27            | 22  | 16  | 20  |   |
| 7/0.029  | 2.5 | 10 | 16 | 10 | 4  | 7  |     | 16  | 36            | 30  | 22  | 28  |   |
| 7/0.036  | 4   | 15 | 14 | 10 | 3  | 5  | 1   | 10  | 47            | 39  | 30  | 37  |   |
| 7/0.044  | 6   | 20 | 14 | 10 | 2  | 4  | 1   | 6.8 | 59            | 50  | 38  | 47  |   |
| 7/0.052  | 10  | 30 | 10 | 10 | 1  | 2  | 1.5 | 4   | 78            | 68  | 52  | 63  |   |
| 7/0.064  | 16  | 40 | 10 | 10 |    | 1  | 1.5 | 2.6 | 100           | 94  | 70  | 85  |   |
| 19/0.052 | 25  | 50 | 6  | 6  |    | 1  | 2   | 1.6 | 130           | 125 | 91  | 110 |   |
| 19/0.064 | 35  | 60 | 6  | 6  |    |    | 2   | 1.2 | 155           | 160 | 112 | 120 |   |

B – Single core cable construction area (mm2)

C – Current Rating (A)

F – number of cables

(a) 3/4" diameter conduit

(b) 1" diameter conduit

Light, Fan, 2pin Socket – 5A rating Power (3 pin) Socket – 15A or 20A rating



Light, Fan, 2pin – Connected to SB – Connected to SDB – Connected to MDB Power Socket – Connected to SDB – Connected to MDB (ECC Needed)













Bulb









$$C10 = 2C8 = 4x4mm2 BYM + 2x4 BYA ECC$$



$$C8,9 = C8 + C9$$





**SDB** 







| Symbol | Wire Rating                   | <b>Current Rating</b> | GI Pipe         |  |  |
|--------|-------------------------------|-----------------------|-----------------|--|--|
|        | (single core)-mm <sup>2</sup> | (ampere)              | Diameter (inch) |  |  |
| C1     | 2x1.5                         | 5A                    | 3/4             |  |  |
| C2     | 4x1.5                         | 5A                    | 3/4             |  |  |
| C3     | 6x1.5                         | 5A                    | 3/4             |  |  |
| C4     | 8x1.5                         | 5A                    | 3/4             |  |  |
| C5     | 10x1.5                        | 5A                    | 1               |  |  |
| C6     | 12x1.5                        | 5A                    | 1               |  |  |
| C7     | 14x1.5                        | 5A                    | 1               |  |  |
| C8     | 2x4+4 ECC                     | 15A                   | 1               |  |  |
| C9     | 2x6+6 ECC                     | 20A                   | 1               |  |  |

$$C8,9 = C8 + C9$$
  
 $C10 = 2C8 = 4x4 + 2x4 ECC$ 



#### Some things to keep in mind:

- a) Conduits should be straight lines. In a room, they will always terminate at the Switch board of that room unless needed for other purposes.
- b) Avoid crossing conduits as much as possible. If it is unavoidable use the below symbol:



c) Wire should be drawn from distribution board to each switchboard. It is not necessary to draw wires to every switchboard from distribution board, if there are several interconnected switchboards then only one needs to be connected to the distribution board. In this way several groups of switchboards are made, and each group is connected to the distribution board.



- d) Prime target of conduit layout is to use least length of conduit not least number of them. Try to take several wire pairs through each conduit as wires are cheaper than conduits.
- e) When a conduit has to be connected to something not on the ceiling level, indicate it by using the 'conduit going down' mark.



## **Conduit (Lighting Loads)**





**Normal Conduit Emergency Conduit** 

SB ESB

SDB ESDB





# Power Sockets are directly connected to SDB





## **Conduit (AutoCAD)**



Create a New Layer

**Line type – HIDDEN in AutoCAD** 

**Specify LTS value** 

# SB Diagram ESB Diagram

## **Switch Board Diagram**



## Switch Board (SB) diagram

- 1. One SB for each room
- 2. Shows the connections from normal Light, Fan, 2pin sockets to SB
- 3. One SB can be connected to SDB via another SB
- 4. One Ckt for one SB

## Emergecny Switch Board (ESB) diagram

- 1. One ESB for each room
- 2. Shows the connections from emergency Light, Fan, 2pin sockets to ESB
- 3. One ESB can be connected to ESDB via another ESB
- 4. One Ckt for one ESB

## Switch Board Diagram (Non-Emergency)





**Normal Conduit Emergency Conduit** 

SB ESB

SDB ESDB

## Switch Board Diagram (Non-Emergency)





## **Normal Condition**

**Bedroom-1** 

1 Fan

2 Light

1 Two pin socket

**Toilet-1** 

1 Light

#### **Veranda**

1 Light

1 Two pin socket

## Switch Board Diagram (Non-Emergency)





## Switch Board Diagram (Emergency)





# **Emergency Condition Bedroom-1**

- 1 Fan
- 2 Light
- 1 Two pin socket

## **Switch Board Diagram (Emergency)**





## **SB ESB Diagram**



## Total SB diagram

- 1. Unit-1
- 2. Unit-2
- 3. Ground Floor
- 4. Basement
- 5. Roof

## Total ESB diagram

- 1. Unit-1
- 2. Unit-2
- 3. Ground Floor
- 4. Basement
- 5. Roof

Some Example Diagrams are presented in the next few slides

## SB Diagram (Unit-1 and Unit-2)





## **SB** Diagram (Ground Floor)



#### Switch Board Connection Diagram for Ground SDB (SDB0)



## SB Diagram (Basement)



#### Switch Board Connection Diagram for Basement SDB (B\_SDB)



## ESB Diagram (Unit-1 and Unit-2)



#### Emergency Switch Board Connection Diagram for SDB1



## ESB Diagram (Basement)



#### Emergency Switch Board Connection Diagram for Basement (B\_ESDB)



# SDB Diagram ESDB Diagram

## **SDB** and **ESDB** Diagram



## Sub-Distribution Board (SDB) diagram

- 1. One SDB for each Unit, Ground, Basement and Roof
- 2. Shows the connections from SB to SDB
- 3. Power Sockets are Directly Connected to SDB

## Emergency Sub-Distribution Board (ESDB) diagram

- 1. One ESDB for each Unit, Ground, Basement and Roof
- 2. Shows the connections from **ESB** to **ESDB**
- 3. Emergency Power Sockets are Directly Connected to ESDB

## SDB and ESDB of Unit-1 and Unit-2





## SDB and ESDB of Ground Floor





## SDB and ESDB of Basement





## **SDB Diagram**





## **SDB Diagram**





## **ESDB Diagram**



#### EMERGENCY SUB DISTRIBUTION BOARD DIAGRAM



## **Connection Flow**





## **ECC Connection**





## **Connection Flow**





## **SDB ESDB Diagram**



## Total SDB diagram

- 1. Unit-1
- 2. Unit-2
- 3. Ground Floor
- 4. Basement
- 5. Roof

## Total ESDB diagram

- 1. Unit-1
- 2. Unit-2
- 3. Ground Floor
- 4. Basement
- 5. Roof

# MDB EMDB Diagram

## **MDB** and **EMDB** Diagram



## Main-Distribution Board (MDB) diagram

- 1. One MDB for the building
- 2. Shows the connections from SDB to MDB
- 3. Pump, PFI plant, EMDB connection

## Emergency Main-Distribution Board (EMDB) diagram

- 1. One EMDB for the building
- 2. Shows the connections from **ESDB** to **EMDB**
- 3. EMDB is connected to MDB via ATS and Generator

## **MDB Diagram**



#### MAIN DISTRIBUTION BOARD DIAGRAM



## **MDB Diagram**



# Sample Calculation Total Number of SDB Connected to MDB = 21

9 Apartments \* 2 units Each = 18

Ground Floor = 1

Basement = 1

Roof = 1

7 SDB connected to each phase (21/3 = 7)

## **MDB Diagram**



#### MAIN DISTRIBUTION BOARD DIAGRAM



## **Power Calculations**

## **Calculation For SB Diagram**





## **Calculation For SB Diagram**



| Room    | Circuit | Switch | Fixture | Power | Current | Total   |         | Wire   | Breaker |
|---------|---------|--------|---------|-------|---------|---------|---------|--------|---------|
| Name    | No.     | Board  |         |       | Rating  |         |         | Rating | To SDB  |
| Master  | CKT1    | SB1    | LL2     | 20    | .101    |         |         |        |         |
| Bedroom |         |        | LL3     | 20    | .101    |         |         |        |         |
| 1       |         |        | SS1     | -     | 5       |         |         | C9     | 15A     |
|         |         |        | SS2     | -     | 5       | 10.6818 | 10.6818 |        |         |
|         |         |        | CF2     | 75    | .3788   |         |         |        |         |
|         |         |        | TL1     | 20    | .101    |         |         |        |         |

$$P = V*I*pf$$

$$V = 230V \text{ rms}$$

$$pf = 0.7 to 0.8$$

## **SDB Diagram**



#### SUB DISTRIBUTION BOARD DIAGRAM

