EXP1A - Group 24

Page

Q4)	Conclusiona: al state musto and della area sort
ratural.	We have used 10 dense with 20 um spacing for taking
2121 11	the harght and surface roughness readings.
2.	500 steps have been used for scanning. Accuracy can
	be improved with more steps, however, that would take
	longer to compute.
3.	when the left cursor is placed in the first valley and
	the night cursor brackets the first peak, the mean step
	height is found to be 46.13 um. Mean peak height is
	269.48 um while mean valley height is 223.35 um.
4.	Burr formation is observed in the transition zone
	between the valley and peak regions. he maximum
	burn helght observed is close to 582 um with reference
	to the valley depth height.
5.	For the surface excupliness calculation in the peak region,
	the Mean Average Swiface Roughness (Ra) was found to be
	5.065 um and the Mean Root Mean Square Surface Roughner
	(Rg) value was found to be 6:348 um. 3831.1

	0/3
	Sources of Error:
1.	There should be no reposition as choose disting the text.
	An auti-vibration table is preferred to minimize the
	como so due to vibrasions.
2.	The number of steps should be high enough to provide
	tor an amobaldo amoba do piña scoupina.
3.	Any kind of external particle on the surface of the
	Sample will create everes, thus, the sample must be
	tree from dust and other maticles during the test.
4.	Buens formation can lead to every if not excluded
	to the selection of peak and valley areas with the
	Curson primers and best was the size of the
	blussied with more steps, he were that could
	stugnes it minu
1015	ع. الاثبيات على الدول ويدرو لل لا عليها أن الله المورد الدوليا
(20	By definition,
7 1.	with a direct of the following with it stocker
	Ra = 2 /2 /2 /2 /2
	in the way of it don't be a set to North
	Hore N=22 (given)
1	· Ra = (2.0+2.2+2.6+3.2+2.4 Rq = /92.88) 12
	+1.3+1.7+2.2+2.4+1.9
	+1.0+1.2+ 2.2+2.8+3.0 = (4.2218) Y2
1 -	+ 2.1+1.6+1.4+1.8+1.8+1.4+1.0) = 2.0547 um
1 1	22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1333	= 1.9636 um:

Sr. No.	Y values	Y_squared values	
1	2	4	
2	2.2	4.84	
3	2.6	6.76	(
4	3.2	10.24	
5	2.4	5.76	
6	1.3	1.69	
7	1.7	2.89	
8	2.2	4.84	
9	2.4	5.76	
10	1.9	3.61	
11	1	1	
12	1.2	1.44	
13	2.2	4.84	
14	2.8	7.84	
15	3	9	
16	2.1	4.41	
17	1.6	2.56	
18	1.4	1.96	
19	1.8	3.24	
20	1.8	3.24	
21	1.4	1.96	
22	1	1	
SUM	43.2	92.88	
SUM/N	1.963636364	4.221818182	
		2.054706349	RMS Value