# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-042152

(43)Date of publication of application: 13.02.1998

(51)Int.CI.

HO4N 1/60 GO6T 5/00 GO6T 5/20 HO4N 1/46

(21)Application number: 08-192577

(71)Applicant: CANON INC

(22)Date of filing:

22.07.1996

(72)Inventor: KAWAI TAKASHI

#### (54) PICTURE PROCESSOR AND PICTURE PROCESSING METHOD

#### (57)Abstract:

PROBLEM TO BE SOLVED: To inexpensively correct the space frequency characteristic of edge emphasis or the like while the deterioration of picture quality is suppressed by distributing the emphasis quantity of an edge part to a luminance signal and a chroma signal in accordance with a saturation component.

SOLUTION: The three color component signals R1, G1 and B1 are inputted to a first color space conversion means 102 and are converted into a luminance signal L1 showing brightness and chroma signals (Ca1 and Cb1) showing a color tone. A delay means 103 delays signals for N lines for the luminance signal L1 and signals for N/2 lines for the chroma signals (Ca1 and Cb1). The luminance signal L1 is inputted to an edge emphasis quantity extraction means 113 and edge emphasis quantity ε is extracted. The chroma signals (Ca1 and Cb1) are inputted to a color saturation quantity extraction means 114 and a color saturation signal S showing the brightness of the colors is generated. Edge



emphasis quantity ε is inputted to an edge emphasis quantity distribution means 116 and it is distributed to the edge emphasis correction quantity ε of the luminance signal L1 and the edge emphasis correction quantity ε of the chroma signals (Ca1 and Cb1) in accordance wit the size of the color saturation signal S.

#### **LEGAL STATUS**

[Date of request for examination]

26.06.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

未請求中 (2001/12/19)



(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出顧公開番号

# 特開平10-42152

(43)公開日 平成10年(1998) 2月13日

| (51) Int.Cl. 6 |            | 識別記号                | 庁内整理番号  | FΙ                            |        |              | 技術表示箇所      |
|----------------|------------|---------------------|---------|-------------------------------|--------|--------------|-------------|
| H04N           | 1/60       |                     |         | H04N                          | 1/40   | ]            | D           |
| GO6T           | 5/00       | •                   |         | G06F                          | 15/68  | 310          | A.          |
|                | 5/20       |                     |         | 400A                          |        |              |             |
| H 0 4 N        | 0 4 N 1/46 |                     | H 0 4 N | 1/46                          | Z      |              |             |
|                |            |                     |         | 審查請求                          | 大 未 請求 | 請求項の数36      | OL (全 18 頁) |
| (21)出願番号       |            | 特顧平8-192577         |         | (71)出願人 000001007<br>キヤノン株式会社 |        |              |             |
| (22)出顧日        |            | 平成8年(1996)7月22日     |         |                               |        | 大田区下丸子37     | 「日30張り早     |
|                |            | , May 1 (2000) 1 // |         | (72)発明者                       | 川井 階   | E<br>大田区下丸子3 | 「目30番2号 キヤ  |
|                |            |                     |         | (74)代理人                       | . 弁理士  | 大塚 康徳        | (外1名)       |

### (54) 【発明の名称】 画像処理装置及び方法

#### (57)【要約】

【課題】 エッジ強調補正における必要回路構成を簡略 化した画像処理装置を提供する。

【解決手段】 入力された画像信号を明度信号および色度信号に色分解する第1の色空間変換手段102と、分化した明度信号に対してNラインの遅延を行なうとともに色度信号に対してN/2ラインの遅延をおこなう遅延手段103と、明度信号に対して画像エッジ部を抽出する画像エッジ量抽出手段113と、色度信号に対して彩度成分を抽出する彩度量抽出手段114と、彩度抽出手段114で抽出される彩度成分が大きい場合には色度補正に対する分配比率が明度補正に対するそれより高く、また該彩度成分が小さい場合には明度補正に対する分配比率が色度補正に対するそれより高くなるよう抽出画像エッジ部にエッジ部の強調量を分配する画像エッジ強調量分配手段116とを備える。



#### 【特許請求の範囲】

【請求項1】 入力された画像信号に尖鋭度補正を行う 画像処理装置であって、

前記入力された画像信号を明度信号から色度信号を抽出 する抽出手段と、

前記明度信号に基づきエッジ量を抽出するエッジ量抽出 手段と、

前記色度信号に基づき彩度成分を抽出する彩度抽出手段 と

前記彩度抽出手段で抽出される彩度成分に応じて前記エ 10 ッジ量抽出手段で抽出されたエッジ量に基づくエッジ部 の強調量を前記明度信号と前記色度信号とに分配する分配手段と、

前記分配手段で分配されたエッジ部の強調量で前記明度 信号および色度信号を補正するエッジ強調手段とを備え ることを特徴とする画像処理装置。

【請求項2】 前記入力される画像信号はRGB信号であり、更に前記エッジ強調手段での強調明度信号および色度信号をRGB信号に変換する変換手段を備えることを特徴とする請求項1記載の画像処理装置。

【請求項3】 前記分配手段は、前記彩度成分が大きい場合には色度補正に対する分配比率が明度補正に対するそれより高く、また該彩度成分が小さい場合には明度補正に対する分配比率が色度補正に対するそれより高くなるよう分配することを特徴とする請求項1または請求項2のいずれかに記載の画像処理装置。

【請求項4】 前記抽出手段は、入力画像信号を明度信号および、2成分からなる色度信号に変換することを特徴とする請求項1乃至請求項3のいずれかに記載の画像処理装置。

【請求項5】 更に、前記彩度抽出手段での抽出彩度成分によって前記入力画像信号が有彩色か無彩色を判定する無彩色有彩色判定手段を備えることを特徴とする請求項1乃至請求項4のいずれかに記載の画像処理装置。

【請求項6】 更に、前記明度信号に対してNラインの 遅延を行なうとともに前記色度信号に対してN/2ラインの遅延をおこなう遅延手段を有することを特徴とする 請求項1乃至請求項5のいずれかに記載の画像処理装 價。

【請求項7】 前記彩度抽出手段は、前記遅延手段によ 40 ってN/2ライン遅延された色度信号に対しN/2+1 ラインの空間フィルタリング処理を行なうことを特徴とする請求項6記載の画像処理装置。

【請求項8】 前記無彩色有彩色判定手段は、前記遅延手段によってN/2ライン遅延された色度信号に対しN/2+1ラインの空間フィルタリング処理を行なうことを特徴とする請求項6記載の画像処理装置。

【請求項9】 前記分配手段は、前記彩度抽出手段での 彩度成分および前記無彩色有彩色判定手段によって判定 された判定結果に応じて画像エッジ量の分配比率を変え 50 2

ることを特徴とする請求項5乃至請求項8のいずれかに 記載の画像処理装置。

【請求項10】 前記エッジ強調手段は、前記無彩色有彩色判定手段によって画像が無彩色と判定された場合、色度信号に対し色度成分を除去する補正を行なうことを特徴とする請求項5乃至請求項9のいずれかに記載の画像処理装置。

【請求項11】 入力された画像信号に尖鋭度補正を行う画像処理方法であって、

) 前記入力された画像信号を明度信号から色度信号を抽出 する抽出工程と、

前記明度信号に基づきエッジ量を抽出するエッジ量抽出 工程と、

前記色度信号に基づき彩度成分を抽出する彩度抽出工程 と、

前記彩度抽出工程で抽出される彩度成分に応じて前記エッジ量抽出工程で抽出されたエッジ量に基づくエッジ部の強調量を前記明度信号と前記色度信号とに分配する分配工程と、

20 前記分配工程で分配されたエッジ部の強調量で前記明度 信号および色度信号を補正するエッジ強調工程とを備え ることを特徴とする画像処理方法。

【請求項12】 前記入力される画像信号はRGB信号であり、更に前記エッジ強調工程での強調明度信号および色度信号をRGB信号に変換する変換工程を備えることを特徴とする請求項11記載の画像処理方法。

【請求項13】 前記分配工程は、前記彩度成分が大きい場合には色度補正に対する分配比率が明度補正に対するそれより高く、また該彩度成分が小さい場合には明度30 補正に対する分配比率が色度補正に対するそれより高くなるよう分配することを特徴とする請求項11または請求項12のいずれかに記載の画像処理方法。

【請求項14】 前記抽出工程は、入力画像信号を明度信号および、2成分からなる色度信号に変換することを特徴とする請求項11乃至請求項13のいずれかに記載の画像処理方法。

【請求項15】 更に、前記彩度抽出工程での抽出彩度 成分によって前記入力画像信号が有彩色か無彩色を判定 する無彩色有彩色判定工程を備えることを特徴とする請 求項11乃至請求項14のいずれかに記載の画像処理方 法。

【請求項16】 更に、前記明度信号に対してNラインの遅延を行なうとともに前記色度信号に対してN/2ラインの遅延をおこなう遅延工程を有することを特徴とする請求項11乃至請求項15のいずれかに記載の画像処理方法。

【請求項17】 前記彩度抽出工程は、前記遅延工程によってN/2ライン遅延された色度信号に対しN/2+1ラインの空間フィルタリング処理を行なうことを特徴とする請求項16記載の画像処理方法。

:

【請求項18】 前記無彩色有彩色判定工程は、前記遅延工程によってN/2ライン遅延された色度信号に対しN/2+1ラインの空間フィルタリング処理を行なうことを特徴とする請求項16記載の画像処理方法。

【請求項19】 前記分配工程は、前記彩度抽出工程での彩度成分および前記無彩色有彩色判定工程によって判定された判定結果に応じて画像エッジ量の分配比率を変えることを特徴とする請求項16乃至請求項18のいずれかに記載の画像処理方法。

【請求項20】 前記エッジ強調工程は、前記無彩色有 10 彩色判定工程によって画像が無彩色と判定された場合、色度信号に対し色度成分を除去する補正を行なうことを特徴とする請求項16乃至請求項19のいずれかに記載の画像処理方法。

【請求項21】 明度信号と色度信号を発生する発生手段と、

前記明度信号に基づき空間周波数特性に応じた信号を抽 出する抽出手段と、

前記抽出手段により抽出された信号に基づき前記明度信号及び前記色度信号の空間周波数特性を制御する制御手 20段とを備えることを特徴とする画像処理装置。

【請求項22】 前記空間周波数特性に応じた信号は、 画像のエッジ量を表す信号であることを特徴とする請求 項21記載の画像処理装置。

【請求項23】 前記制御手段は、前記明度信号及び前 記色度信号のエッジ強調を制御することを特徴とする請 求項21記載の画像処理装置。

【請求項24】 明度信号と色度信号を発生する発生工程と、

前記明度信号に基づき空間周波数特性に応じた信号を抽 30 段と、 出する抽出工程と、 前記

前記抽出手段により抽出された信号に基づき前記明度信号及び前記色度信号の空間周波数特性を制御する制御工程とを備えることを特徴とする画像処理方法。

【請求項25】 前記空間周波数特性に応じた信号は、 画像のエッジ量を表す信号であることを特徴とする請求 項24記載の画像処理方法。

【請求項26】 前記制御工程は、前記明度信号及び前記色度信号のエッジ強調を制御することを特徴とする請求項24記載の画像処理方法。

【請求項27】 明度信号と色度信号を発生する発生手段と、

前記明度信号に基づきエッジ量を抽出する第1の抽出手 段と、

前記色度信号に基づき彩度成分を抽出する第2の抽出手 段と、

前記第1及び第2の抽出手段によりそれぞれ抽出された エッジ量及び彩度量に基づき前記明度信号又は前記色度 信号の空間周波数特性を制御する制御手段とを備えることを特徴とする画像処理装置。 4

【請求項28】 前記制御手段は前記明度信号又は前記 色度信号のエッジ強調を制御することを特徴とする請求 項27記載の画像処理装置。

【請求項29】 更に、前記第2の抽出手段により抽出 された彩度量に基づき無彩色/有彩色判定を行う判定手 段を有し、

前記判定手段の判定結果に応じて前期制御手段は空間周 波数特性の制御を行うことを特徴とする請求項27記載 の画像処理装置。

【請求項30】 明度信号と色度信号を発生する発生工程と、

前記明度信号に基づきエッジ量を抽出する第1の抽出工程と、

前記色度信号に基づき彩度成分を抽出する第2の抽出工程と.

前記第1及び第2の抽出工程によりそれぞれ抽出された エッジ量及び彩度量に基づき前記明度信号又は前記色度 信号の空間周波数特性を制御する制御工程とを備えることを特徴とする画像処理方法。

【請求項31】 前記制御工程は前記明度信号又は前記 色度信号のエッジ強調を制御することを特徴とする請求 項30記載の画像処理方法。

【請求項32】 更に、前記第2の抽出工程により抽出された彩度量に基づき無彩色/有彩色判定を行う判定工程を有し、

前記判定工程の判定結果に応じて前期制御工程は空間周 波数特性の制御を行うことを特徴とする請求項30記載 の画像処理方法。

【請求項33】 明度信号と色度信号を発生する発生手 段と、

前記明度信号をNライン分遅延可能でかつ前記色度信号をNライン分遅延可能な遅延手段と、

前記遅延手段によりNライン分遅延された明度信号を用いてエッジ量を抽出する抽出手段と、

前記抽出手段により抽出されたエッジ量に応じて前記遅延手段により (N/2) ライン分遅延された色度信号の空間周波数特性を制御する制御手段とを備えること特徴とする画像処理装置。

【請求項34】 明度信号と色度信号を発生する発生手40 段と、

前記色度信号に対して空間周波数特性の補正処理を行う 補正手段とを備え、

前記補正手段は、前記明度信号及び前記色度信号によって表される画像の色相が補正処理の前後において保存されるように補正処理を行うことを特徴とする画像処理装置

【請求項35】 明度信号と色度信号を発生する発生工程と、

前記色度信号に対して空間周波数特性の補正処理を行う 50 補正工程とを備え、

前記補正工程は、前記明度信号及び前記色度信号によっ て表される画像の色相が補正処理の前後において保存さ れるように補正処理を行うことを特徴とする画像処理方 法。

【請求項36】 原稿を走査し、該原稿を表す画像信号 を発生する読取手段と、

前記読取手段による原稿の第1の走査により得られた画 像信号に基づき、該原稿がカラー原稿であるか白黒原稿 であるかを判定する判定手段と、

前記読取手段による前記原稿の第1の走査により得られ 10 た画像信号を明度信号及び色度信号に変換し前記判定手 段による判定結果に応じて前記色度信号を所定の値に固 定する処理手段とを備えることを特徴とする画像処理装 置。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は画像処理装置及び方 法に関するものであり、特に入力された画像信号に空間 周波数特性の補正処理を行う画像処理装置及び方法に関 するものである。

[0002]

【従来の技術】従来のカラー画像処理装置の一例を、カ ラー複写機におけるカラー画像処理を具体例として図1 2を参照して以下に説明する。図12中、101はカラ 一複写機のイメージリーダ部などのカラー画像入力手段 であり、カラー画像の各画素についてRGBに色分解さ れた3色分解信号R1, G1, B1を出力する。3色分 解信号R1, G1, B1は、無彩色/有彩色判定手段1 201に入力され、その画素が、白黒画素 (無彩色) か あるいはカラー画素 (有彩色) かを判定し、判定信号K Cを出力する。

【0003】また、3色分解信号のうちG1信号は文字 /画像判定手段111に入力され、その画素が、文字や 細線などの線画像か、または写真画像や印刷画像などの 連続階調画像かを判定し、文字/画像判定信号TIを出 力する。文字/画像判定信号TIは空間フィルタ係数記 憶手段112に入力され、対応画素が文字信号の時は図 13に示す文字用空間フィルタ係数1301を、画像信 号の時は図13に示す画像用空間フィルタ係数1302 を選択する。

【0004】以下、従来のエッジ強調などの空間フィル タ処理について説明する。図13に5×5画素の文字用 空間フィルタ係数1301と画像用空間フィルタ係数1 302の一例を示す。文字用空間フィルタ係数1301 は、画像用の係数1302に比べて大きなエッジ強調が かかるように係数が決められている。文字/画像判定信 号TIに従って選択された文字用または画像用の空間フ イルタ係数Kijは、エッジ強調手段103-R.10 3-G, 103-Bに設定され、3色分解信号R1, G

出力する。

【0005】図14にエッジ強調手段103-Rの一例 を示す。点線枠1401はエッジ強調手段103-Rの 中のデータ遅延回路を表しており、エッジ強調手段10 3-Rに入力されたR信号は、ラインメモリ801.8 02,803,804で4ライン分の画像データが記憶 される。記憶されていた4ラインおよび注目ラインの計 5ライン分の画像データは、次に各ライン毎に順次フリ ップフロップを介して連続する5画案のデータ (X j 1 ~X j 5) が取り出される。

6

【0006】5ライン各5画素の計25個のR信号 (X j i:1≤i≤5)は、次に点線枠1402で表わされ るエッジ強調演算回路によって、点線枠1403で表わ される各画素配列に対応する空間フィルタ係数 (aj  $i:1 \leq i \leq 5$ ,  $1 \leq j \leq 5$ ) と掛け合わされ、加算さ れる。このとき、25画素分の乗算器(1404~10 28) 25個と、各々の乗算結果の加算器 (1429~ 1452) 24個が必要になる。

【0007】以上、従来のR信号における空間フィルタ 20 処理について説明してきたが、G信号、B信号について も全く同様であり、RGB信号トータルの処理回路は、 ラインメモリ:1 2 ライン (4 ライン×3色) 、乗算 器: 75個(25個×3色)、加算器: 72個(24個 ×3色)の回路規模となる。次に、エッジ強調された図 12に示す3色分解信号R2, G2, B2は、輝度/濃 度変換手段106に入力され、3色分解信号R2, G 2, B2に対し対数変換などによって濃度信号C1, M 1, Y1に変換される。 濃度信号C1, M1, Y1は次 に色補正手段107によって、黒信号Kの生成や、下色 30 除去、色補正などの色処理がなされ、濃度信号C2.M 2, Y2, K2を出力する。

【0008】色補正手段107は前記無彩色/有彩色判 定手段1201の判定結果である判定信号KCに従っ て、対象画素が無彩色の時は濃度信号C2, M2, Y2 をC2=M2=Y2=0とし、黒単色からなる画素に変 換する。110はカラー画像出力手段であり、電子写真 方式やインクジェット方式のプリンタなど画像記録装置 から構成されている。

【0009】このカラー画像出力手段が2値のプリンタ 40 などのとき、濃度信号C2, M2, Y2, K2は2値化 手段108によって2値画案C3, M3, Y3, K3に 変換される。また、前記カラー画像入力手段101から 入力された画像の解像度とカラー画像出力手段110で 出力される画像の解像度が異なるとき、2値画像C3. M3, Y3, K3は平滑化/解像度変換手段109によ って解像度変換処理が施され、C4. M4. Y4. K4 に変換される。特にカラー画像出力手段110の解像度 がカラー画像入力手段101の解像度より高いとき、画 像の輪郭部を滑らかに補間する平滑化処理が行われ、そ 1, B1に対し各々エッジ強調し、R2, G2, B2を 50 の結果がカラー画像出力手段110によって、印刷記録

される。

#### [0010]

【発明が解決しようとする課題】しかしながら、上述のように従来の画像のエッジ強調は、同一の構成がR信号(103-R)、G信号(103-G)、B信号(103-B)を処理するためにそれぞれの信号毎に具備されており、特に画像入力手段としてCCDラインイメージセンサを用いたカラー複写機イメージリーダ部からの画像信号に対して、前述の5×5画案サイズの2次元平面空間フィルタ処理を行なうためには、前述のように多くのラインメモリ、乗算器、加算器を必要とし、コスト面での負荷が大きくかかっている。

【0011】また画質面においては、前述の色補正手段107が、前記無彩色/有彩色判定手段1201の判定結果に従って、対象画素が無彩色の時は濃度信号C2,M2,Y2をC2=M2=Y2=0とし、黒単色からなる画素に変換するため、C2,M2,Y2で得られる濃度が欠損し、濃度が薄くなるという問題があった。本発明は、上述の課題に鑑みてなされたもので、その第1の目的とするところは画質の劣化を抑制しつつエッジ強調等の空間周波数特性の補正を行うこと、また、その補正に関わるコストの負荷を軽減すること、第2の目的とするところは、画像濃度の過不足なしに無彩色信号に対し黒単色化ができるカラー画像処理装置を提供することである。

#### [0012]

【課題を解決するための手段】上記の目的を達成するため、本発明は例えば以下の構成を備える。即ち、入力された画像信号に尖鋭度補正を行う画像処理装置であって、前記入力された画像信号を明度信号から色度信号を30抽出する抽出手段と、前記明度信号に基づきエッジ量を抽出するエッジ量抽出手段と、前記を度抽出手段で抽出する彩度成分に応じて前記エッジ量抽出手段で抽出される彩度成分に応じて前記エッジ量抽出手段で抽出される彩度成分に応じて前記エッジ量抽出手段で抽出されたエッジ量に基づくエッジ部の強調量を前記明度信号と前記色度信号とに分配する分配手段と、前記分配手段で分配されたエッジ部の強調量で前記明度信号および色度信号を補正するエッジ強調手段とを備えることを特徴とする。

【0013】そして例えば、前記入力される画像信号は 40 る。 RGB信号であり、更に前記エッジ強調手段での強調明 度信号および色度信号をRGB信号に変換する変換手段 を備えることを特徴とする。あるいは、前記分配手段 は、前記彩度成分が大きい場合には色度補正に対する分配比率が明度補正に対するそれより高く、また該彩度成分が小さい場合には明度補正に対する分配比率が色度補 正に対するそれより高くなるよう分配することを特徴と する。あるいは、前記抽出手段は、入力画像信号を明度 信号および、2成分からなる色度信号に変換することを 特徴とする。 50 段と 8

【0014】また例えば、更に、前記彩度抽出手段での抽出彩度成分によって前記入力画像信号が有彩色か無彩色を判定する無彩色有彩色判定手段を備えることを特徴とする。あるいは、更に、前記明度信号に対してNラインの遅延を行なうとともに前記色度信号に対してN/2ラインの遅延をおこなう遅延手段を有することを特徴とする。

【0015】 更に例えば、前記彩度抽出手段は、前記遅延手段によってN/2ライン遅延された色度信号に対しN/2+1ラインの空間フィルタリング処理を行なうことを特徴とする。あるいは、前記無彩色有彩色判定手段は、前記遅延手段によってN/2ライン遅延された色度信号に対しN/2+1ラインの空間フィルタリング処理を行なうことを特徴とする。また、前記分配手段は、前記彩度抽出手段での彩度成分および前記無彩色有彩色判定手段によって判定された判定結果に応じて画像エッジ量の分配比率を変えることを特徴とする。

【0016】また、明度信号と色度信号を発生する発生 手段と、前記明度信号に基づき空間周波数特性に応じた 信号を抽出する抽出手段と、前記抽出手段により抽出さ れた信号に基づき前記明度信号及び前記色度信号の空間 周波数特性を制御する制御手段とを備えることを特徴と する。そして例えば、前記空間周波数特性に応じた信号 は、画像のエッジ量を表す信号であることを特徴とす る。あるいは、前記制御手段は、前記明度信号及び前記 色度信号のエッジ強調を制御することを特徴とする。

【0017】更に、明度信号と色度信号を発生する発生手段と、前記明度信号に基づきエッジ量を抽出する第1の抽出手段と、前記色度信号に基づき彩度成分を抽出する第2の抽出手段と、前記第1及び第2の抽出手段によりそれぞれ抽出されたエッジ量及び彩度量に基づき前記明度信号又は前記色度信号の空間周波数特性を制御する制御手段とを備えることを特徴とする。

【0018】そして例えば、前記制御手段は前記明度信号又は前記色度信号のエッジ強調を制御することを特徴とする。また例えば、更に、前記第2の抽出手段により抽出された彩度量に基づき無彩色/有彩色判定を行う判定手段を有し、前記判定手段の判定結果に応じて前期制御手段は空間周波数特性の制御を行うことを特徴とす

【0019】更に又、明度信号と色度信号を発生する発生手段と、前記明度信号をNライン分遅延可能でかつ前記色度信号をNライン分遅延可能な遅延手段と、前記遅延手段によりNライン分遅延された明度信号を用いてエッジ量を抽出する抽出手段と、前記抽出手段により抽出されたエッジ量に応じて前記遅延手段により(N/2)ライン分遅延された色度信号の空間周波数特性を制御する制御手段とを備えること特徴とする。

【0020】又、明度信号と色度信号を発生する発生手 50 段と、前記色度信号に対して空間周波数特性の補正処理 q

を行う補正手段とを備え、前記補正手段は、前記明度信号及び前記色度信号によって表される画像の色相が補正処理の前後において保存されるように補正処理を行うことを特徴とする。更に又、原稿を走査し、該原稿を表す画像信号を発生する読取手段と、前記読取手段による原稿の第1の走査により得られた画像信号に基づき、該原稿がカラー原稿であるか白黒原稿であるかを判定する判定手段と、前記読取手段による前記原稿の第1の走査により得られた画像信号を明度信号及び色度信号に変換し前記判定手段による判定結果に応じて前記色度信号を所10定の値に固定する処理手段とを備えることを特徴とする。

#### [0021]

#### 【発明の実施の形態】

(第1の実施の形態例)以下、添付図面を参照して、本発明に係る一発明の実施の形態例を詳細に説明する。図1は、本発明に係る第1の発明の実施の形態例に係るカラー画像処理装置の構成を示すブロック図である。図1において、上述した図12と同様構成には同一番号を付し詳細説明を省略する。

【0022】図において、101はイメージリーダ部などで構成されるカラー画像入力手段であり、このほか、例えばカラーイメージスキャナなど原稿画像の読み取り装置や、広義においてはコンピュータからの画像入力部などを含め、種々のカラー画像処理装置の画像入力部で構成できる。図1中の他の106,107,108,109,110,111,112は、それぞれ図12に示す従来例で説明したように作用する輝度/濃度変換手段(106)、色補正手段(107)、2値化手段(108)、平滑化/解像度変換手段(109)、カラー画像30出力手段(110)、文字/画像判定手段(111)、空間フィルタ係数記憶手段(112)である。

【0023】カラー画像入力手段101によって読み取られたカラー画像の3色分解信号R1,G1,B1の一つであるG1信号は、文字/画像判定手段111に入力され、文字/画像判定手段111でその画案が文字や細線などの線画像か、または写真画像や印刷画像などの連続階調画像かという画調が判定される。文字/画像判定手段111は判定結果を文字/画像判定信号T1として出力する。

【0024】文字/画像判定信号TIは、空間フィルタ係数記憶手段112に入力される。空間フィルタ係数記憶手段112は、文字用空間フィルタ係数と画像用空間フィルタ係数を記憶しており、対応画素が文字信号の時は文字用空間フィルタ係数を、画像信号の時は画像用空間フィルタ係数を選択し、文字用または画像用の空間フィルタ係数Kijとして出力する。

【0025】この本発明の実施の形態例における空間フ イルタ係数記憶手段112が記憶する空間フィルタ係数 Kijの例を図2に示す。図2中201が文字用空間フ 50 が抽出される。 10

イルタ係数、202が画像用空間フィルタ係数を表している。ここで、前述した従来例における文字用または画像用の空間フィルタ係数Kijと本発明の実施の形態例における文字用または画像用の空間フィルタ係数Kijとの差について説明する。上述した図13に示す従来例における文字用または画像用の空間フィルタ1301または1302は、その直流成分は1であるのに対し、本発明の実施の形態例での文字用または画像用の空間フィルタ201または202は、その直流成分を0としている点が大きく異なる点である。即ち、エッジ成分の無い画像平坦部に対し、従来例の空間フィルタ処理後の出力」「値は入力画像信号値のまま出力するのに対し、本発明の実施の形態例での空間フィルタ処理後の出力値は入力画像信号値のまま出力するのに対し、本発明の実施の形態例での空間フィルタ処理後の出力値は0となるように構成している点が大きく異なる点である。

【0026】一方、カラー画像入力手段101よりのカラー画像の3色分解信号R1,G1,B1の3信号は、色分解手段といえる第1の色空間変換手段102に入力され、明るさを表わす明度信号L1、および色味を表わす色度信号(Ca1,Cb1)に変換される。明度信号 L1および色度信号(Ca1,Cb1)は、測色的に"CIE1976(L\*a\*b\*)色空間"の3変色L\*,a\*,b\*であっても、あるいは"CIE1976(L\*,u\*,v\*)色空間"の3変色L\*,u\*,v\*であっても良く、その色空間に限定されない。さらに簡易的に決められた任意の色空間でも良い。

【0027】3色分解信号R, G, Bを明度および色度 信号L1, Ca1, Cb1に簡易的に変換する変換式の 一発明の実施の形態例を以下に式(1)で示す。

#### [0028]

#### 【数1】

L = (R+2G+B)/4C a = (R-G)/2 ... (1) C b = (R+G-2B)/4

第1の色空間変換手段102によって変換された明度信 号L1および色度信号(Ca1,Cb1)は、遅延手段 103に入力され、明度信号L1に対しNライン、色度 信号 (Ca1, Cb1) に対しN/2ライン分の信号が 遅延される。より具体的には、図2に示す様に5×5画 素のフィルタ処理をおこなうとき、明度信号L1に対し 40 4 ライン、色度信号 (Ca1, Cb1) に対しその半分 の2ライン分の信号が記憶され、この記憶された信号が 出力より出力されるまでの時間遅延されることになる。 【0029】遅延手段103によってNライン分遅延さ れた明度信号L1は、図1には図示していないが、実際 には遅延された4ラインおよび現在のライン計5ライン 分のデータとなって、エッジ強調量抽出手段113に入 力される。そしてエッジ強調量抽出手段113で、文字 /画像判定信号TIによって選択された文字用または画 像用の空間フィルタ係数Kijを用いてエッジ強調量 ε

11

【0030】なお、このデータ遅延と続く画像処理部分については、後に図3を用いて詳細を説明する。つぎにエッジ強調量をはエッジ強調量分配手段116に入力し、同時にエッジ強調量分配手段116に入力される後述する彩度信号Sに大きさによって、明度信号L1のエッジ強調補正量 $\varepsilon$ lと色度信号(Ca1,Cb1)のエッジ強調補正量 $\varepsilon$ cに分配される。一方、遅延手段103によって遅延された色度信号(Ca1,Cb1)は、図1では図示していないが、実際には遅延された2ラインおよび現在のライン計3ライン分のデータとなって、彩度量抽出手段114に入力され、色の鮮やかさを表わす彩度信号Sが生成される。

【0031】この本発明の実施の形態例における色度信号(Ca1, Cb1)から彩度信号Sを生成する方法について以下に簡単に説明する。色度信号(Ca1, Cb1)が、前述のCIE1976( $L^*a^*b^*$ )色空間における信号( $a^*$ ,  $b^*$ )やCIE1976( $L^*$ ,  $u^*$ ,  $v^*$ )色空間における信号( $u^*$ ,  $v^*$ )であるとき、彩度信号Sは以下に示す式(2)によって決められる。

[0032]

#### 【数2】

 $S = (Ca1^2 + Cb1^2)^{0.5}$  … (2) さらに簡易的には、彩度信号Sは以下に示す式 (3) によって決められても良い。

[0033]

#### 【数3】

S=MAX (Ca1, Cb1)... (3) ここで、関数MAX(A, B)は、変数A, Bのうち大 きいほうの値を出力する。また、エッジ強調量分配手段 116には、エッジ強調量εと彩度信号Sのほかに無彩 30 色/有彩色判定手段115からの判定信号KCも入力さ れる。無彩色/有彩色判定手段115は、上述した図1 2に示すの説明で述べた無彩色/有彩色判定手段120 1と同様に、その画素が白黒 (無彩色) であるかカラー (有彩色) であるかを判定し、判定信号KCを出力する ものであるが、本発明の実施の形態例においては、入力 信号がRGB信号であった無彩色/有彩色判定手段12 01と異なり、無彩色/有彩色判定手段115への入力 信号が色の鮮やかさを表わす彩度信号Sであることであ る。ただし、前述のように、彩度信号Sは、遅延手段1 40 03によって遅延された3ライン分の色度信号 (Ca 1, Cb1) が彩度量抽出手段114に入力され、生成 されたものであるから、無彩色/有彩色判定手段115 への入力信号は彩度信号Sおよびそのもと信号である色 度信号(Ca1, Cb1)を入力してもよい(そのとき は、図1の彩度量抽出手段114へ入力されている(C a1, СЬ1) 信号を彩度信号 Sと共に無彩色/有彩色 判定手段115へも入力するように構成すれば良 w.).

【0034】次に、図3を用いて、本発明の実施の形態 50

12

例における上述した遅延手段103及びその周辺手段であるエッジ強調量抽出手段113、彩度量抽出手段114、無彩色/有彩色判定手段115について詳細に説明する。第1の色空間変換手段102から出力された明度信号L1および色度信号(Ca1,Cb1)は、遅延手段103を構成するラインメモリ801~804によって、明度信号L1に対し4ライン、ラインメモリ805,806によって、明度信号の中心画素に同期させるため、色度信号Ca1に対し2ライン、ラインメモリ805,806によって、色度信号Cb1に対し2ライン分の信号が記憶される。

【0035】今、中心ラインをjラインとすると、明度 に対してはj-2, j-1, j, j+1 ラインが記憶さ れ、現在のライン j + 2を含めた5ライン分の明度信号 がエッジ強調量抽出手段113に入力される。このよう に明度に対しては上述した図13に示す従来例と同等で ある。一方、色度信号Calに対しては、遅延手段10 3のラインメモリ805,806によってj. i+1ラ インが記憶され、現在のライン;+2を含めた3ライン 20 分の色度信号 Calが彩度量抽出手段114、無彩色/ 有彩色判定手段115に入力される。一方、色度信号C b 1 も同様にして彩度量抽出手段114、無彩色/有彩 色判定手段115に入力される。すなわち、本発明の実 施の形態例においては、色度信号 Ca1, Cb1 に対し て各々2ライン分のラインメモリ、計4ライン分のメモ リを要するものの、色度信号Ca1, Cb1に対しては 空間フィルタ処理を行わないので、色度信号Ca1.C b 1 のために要する乗算器、加算器の数は0個である。 【0036】さらに本発明の実施の形態例では、彩度信 号Sや無彩色/有彩色判定信号KCの算出に当たって、 前述の式(2)や式(3)を用いた算出方法を、j, j +1, j+2ラインの3ライン分データを用いて空間的 な処理を行うことも考えられる。例えば、彩度信号Sは 3×3サイズの隣接画素の彩度信号を平均して、平均値 を彩度信号Sと代表することもできるし、無彩色/有彩 色判定信号KCも、同様に3×3サイズの隣接画素の判 定結果を統計的に処理し、結果を無彩色/有彩色判定信 号KCと代表値KCとすることもできる。以上のいずれ の方法を採用しても良いことは勿論である。

【0037】ここでは、空間的な処理を行ない、彩度信号Sを求め、求められた彩度信号Sによって、判定信号KCを算出する方法について説明する。この方法においては、彩度信号Sが小さいとき、その画案が、白黒(無彩色)であり、彩度信号Sが大きいとき、その画案が、カラー(有彩色)であることがわかる。よって簡易的には、判定信号KCは、予め決められた関値 $\rho$ を用いて式(4)によって決められる。

... (4)

[0038]

#### 【数4】

(S<pのとき) KC=無彩色

(ρ≦Sのとき) KC=有彩色

以下、本発明の実施の形態例におけるエッジ強調量分配 手段116に入力されたエッジ強調量ε、彩度信号S、 無彩色/有彩色判定信号KCによって、エッジ強調補正 量εl,εcを生成するプロセスについて説明する。

【0039】まず明度信号L1に対するエッジ強調補正 **鼠ε** I について説明する。本例においては、基本的に、 彩度が低い(無彩色に近い)程明度信号に対するエッジ 強調量をの配分を多くし、無彩色信号画素に対しては全 エッジ強調量  $\epsilon$  を  $\epsilon$  1に割り当てる。また、予め決めら 10 れた閾値以上の彩度を有する画素に対しては明度信号に 対するエッジ補正を行わない。

【0040】本発明の実施の形態例におけるエッジ強調 量分配の明度信号に対するエッジ強調補正量生成処理を 図4のフローチャートおよび図5の模式図を用いて説明 する。図4は本発明の実施の形態例におけるエッジ強調 量分配の明度信号に対するエッジ強調補正量生成処理を 示すフローチャート、図5は本発明の実施の形態例にお けるエッジ強調量分配の明度信号に対するエッジ強調補 正量を表わす模式図である。

【0041】図4のSTEP1において、まず無彩色/

$$\varepsilon = (1 - (S - \alpha) / (\eta - \alpha)) \varepsilon$$

$$\gamma = (1 - (S - \alpha) / (\eta - \alpha)) \cdots (5)$$

図5は、上記のγの遷移を模式的に表わす図で、横軸に 彩度、縦軸にγを取ってある。彩度が0から無彩色判定 される彩度値(閾値 $\alpha$ )までは、 $\epsilon$   $l=\epsilon$  とし、 $\gamma=1$ である。彩度が閾値αからηまでは、

 $\gamma = (1 - (S - \alpha) / (\eta - \alpha))$ 

で彩度が高くなるに従い連続的に減少する。

【0044】彩度が閾値ヵより高いとき、ε1=0と し、 $\gamma = 0$ である。次に色度信号 (Ca1, Cb1) に 対するエッジ強調補正量 ε c について説明する。色度信 号に対しては、基本的に明度信号の場合とは逆に、彩度 が高い(鮮やかな色)程色度信号に対するエッジ強調量 εの配分を多くし、無彩色信号画案に対してはエッジ補 正を行わず、更には対象画素の色度信号も除去する。

【0045】これはカラー複写機などにおける画像処理 装置の場合、黒い文字などの複写画像に対して色成分が 残ることは、視覚的に非常に画像品位が悪い結果となる ためである。よってこのような画素に対しては色成分を 40 カットし、完全な無彩色信号に色補正する必要があるか らである。これを図6のフローチャートおよび図7の模 式図を用いて説明する。図6は本発明の実施の形態例に おけるエッジ強調量分配の色度信号に対するエッジ強調 補正量生成を示すフローチャート、図7は本発明の実施 の形態例におけるエッジ強調量分配の色度信号に対する エッジ強調補正量を表わす模式図である。

【0046】図6のSTEP1において、まず無彩色/ 有彩色判定信号KCを判定し、対象画案の無彩色/有彩

有彩色判定信号KCを判定し、対象画素の無彩色/有彩 色判定信号KCが無彩色か(黒か)有彩色かに従い分岐 する。判定信号KCが無彩色を示すとき(図中STEP 1-YES方向)、全エッジ強調量εをεlに割り当 て、γ=1となる。一方、判定信号ΚCが有彩色を示す とき(図中STEP1-NO方向)にはSTEP2に進 み、STEP2において彩度信号Sを用いて対象画素の 鮮やかさを見る。もし対象画素が予め決められた閾値ヵ より彩度が高いとき(図中STEP2YES方向)には ε 1 = 0 とし、明度信号のエッジ補正を行わない (γ = 0)。これは、彩度の高い画案に対しては、明るさを保 持し彩度の強弱をつけることによるエッジ効果が高い経 験則に基づく。

【0042】一方STEP2において、対象画素が予め 決められた閾値ηより彩度が低く、かつ無彩色と判定さ れない程度に彩度を有するとき(図中STEP2-NO 方向)、予め決められた第2の閾値 $\alpha$ を用い $\epsilon$ 1=0と ε 1 = ε の間を以下に示す式 (5) に従い連続的に繋い でいく。

[0043] 20

【数5】

する。判定信号KCが無彩色を示すとき(図中STEP 1-YES方向)、前述した様にエッジ強調量 ¿を0と する(γ=0)。一方判定信号KCが有彩色を示すとき (図中STEP1-NO方向) にはSTEP2に進み、 彩度信号Sを用いて対象画案の鮮やかさを見る。もし対 象画素が予め決められた閾値 λ より彩度が高いとき (図 30 中STEP2-YES方向)、全エッジ強調量εをεc に割り当て、 $\epsilon c = \epsilon とする (\gamma = 1)$ 。

【0047】一方、対象画素が予め決められた閾値22 より彩度が低くかつ無彩色と判定されない程度に彩度を 有するとき(図中STEP2-NO方向)には、予め決 められた第2の閾値21を用いy=0とy=1の間を以 下に示す式(6)に従い連続的に繋いでいく。

[0048]

【数6】

$$\gamma = (S - \lambda 1) / (\lambda 2 - \lambda 1) \qquad \cdots (6)$$

さらに、色度信号に対するエッジ強調補正量 ε c は、以 下に示す式(7)に従って求められる。

[0049]

【数7】

$$\varepsilon c = \gamma \left( 1 - \varepsilon / k \right) \qquad \cdots \qquad (7)$$

図7は、上記のγの遷移状態を表わす図であり、横軸に 彩度、縦軸にγを取ってある。彩度が0から無彩色判定 される彩度値(閾値 $\lambda$ 1)までは、 $\epsilon$ 1=0都市、 $\gamma$ = 0である。彩度が閾値λ1からλ2までは、γ=(S- $\lambda$ 1) / ( $\lambda$ 2 - $\lambda$ 1) で彩度が高くなるに従い連続的 色判定信号KCが無彩色か(黒か)有彩色かに従い分岐 50 に増加する。彩度が閾値 $\lambda$  2 より高いとき、  $\epsilon$   $1 = \epsilon$  と

ly = 1  $var{var}$   $var{var}$ 

【0050】以上の様にして生成されたエッジ強調補正量  $\epsilon$  1,  $\epsilon$  c は、L, Ca, Cb信号と共にエッジ強調 手段104に入力される。そして以下に示す式(8)に 従ってエッジ強調手段104で明度信号しに対してはエッジ強調補正量  $\epsilon$  l が加算され、色度信号Ca, Cbに 対してはエッジ強調補正量  $\epsilon$  c が乗算される。

[0051]

#### 【数8】

 $L2 = \epsilon l + L1$ 

 $C a 2 = \varepsilon c C a 1 \qquad \cdots (8)$ 

 $Cb2 = \epsilon c \cdot Cb1$ 

式(8)から分かるように、信号Lに対してはエッジ補正量  $\epsilon$  1を加算することにより、彩度が高く明度にエッジ強調したくない画素 ( $\epsilon$  1=0)において明度を保存することができる。

【0052】一方、信号Ca, Cbに対してはエッジ補 正量εcを乗算し、特に彩度が低く無彩色と判断できる 画素に対しては  $\epsilon c = 0$ を乗算することで、対象画素そ のものの色度成分を除去することができる。次に、色度 20 信号のエッジ強調に対する色味(色相)の保存性につい て図8を参照して説明する。図8は本発明の実施の形態 例における色度信号のエッジ強調に対する色味 (色相) の保存性について説明する模式図であり、色度信号 (C a1、Cb1)方向を座標軸とする色度座標を表わす。 【0053】以下においては、説明を簡単にするため、 CaおよびCb軸はCIE1976 (L\*a\*b\*) 色空 間におけるa\*, b\*軸とする。a\*, b\*軸の交点Oは無 彩色を表わし、交点Oより離れるほど彩度が高く、 a\* 軸とのなす角が色味(色相)を表わす。いま、対象画案 30 が色度信号Ca1 (702), Cb1 (703) のと き、この色は色度座標上でベクトル701で表わされ る。

【0054】式(8)に従い色度信号(Ca1, Cb1)にエッジ補正量 ε cを乗算し生成されるエッジ強調後の信号(Ca2, Cb2) = (ε c Ca1, ε c Cb1)は、色度座標上でベクトル704で表わされるが、図8に示すように a \*軸とのなす角は変わらず、色味(色相)がエッジ強調前後で保存される。即ち、本例においては、エッジ強調により鮮やかさは強調されるが、色味の変化はないことを表している。

【0055】以上のようにしてエッジ強調手段104でエッジ強調された信号L2, Ca2, Cb2は、エッジ強調手段104より第2の色空間変換手段105に入力され、再度RGB信号に逆変換される。式(9)は、第2の色空間変換手段105における明度および色度信号L2, Ca2, Cb2を3色分解信号R2, G2, B2に変換する変換式の一例を示す式であり、式(1)の逆変換係数である。

[0056]

16

【数9】

R = (4L + 4Ca + 2Cb) / 4

G = (4L - 3Ca + 2Cb) / 4 ... (9)

B = (4 L + C a - 6 C b) / 4

このようにしてRGB信号に逆変換された3色分解信号は、続いて輝度/濃度変換手段106に入力され、濃度信号C1,M1,Y1に変換される。濃度信号C1,M1,Y1は次に色補正手段107に送られ、ここで黒信号Kの生成や、下色除去、色補正などの色処理がなされ、濃度信号C2,M2,Y2,K2として出力される。

【0057】また、本発明の実施の形態例においては、無彩色/有彩色判定手段115の判定結果である判定信号KCおよび文字/画像判定手段111の判定結果である判定信号TIが黒文字/色文字/画像判定手段117に入力され、ここで黒文字か、色文字か、あるいは画像かが判定される。黒文字/色文字/画像判定手段117での判定結果が黒文字/色文字/画像の判定信号TCとして出力され、色補正手段107に入力される。このため、色補正手段107においては、この黒文字/色文字/画像判定信号TCに従って、色補正を変える。

【0058】例えば、画像信号に対してはハイライトの色再現性を重視した色補正を行い、色文字や黒文字信号に対しては下地色を飛ばしたハイライト再現を除去した色補正を行なう。同様に、2値化手段108、平滑化/解像度変換手段109においても、文字/画像判定手段111の判定結果である判定信号TIを参照させながら、それぞれの処理を実施し、最終的な平滑化/解像度変換手段109よりの出力画像信号C4, M4, Y4, K4がカラー画像出力手段110に送られ、カラー画像出力手段110に対ちれる。

【0059】以上説明したように本発明の実施の形態例によれば、明度に対するエッジ量を抽出し、彩度成分に応じて該エッジ量を明度信号および色度信号に分配し、エッジ強調補正を行ない、エッジ強調手段は、無彩色有彩色判定手段によって画像が無彩色と判定された場合、色度信号に対し色度成分を除去する補正を行ない、画像の黒単色化を実現することにより、エッジ強調補正における必要ラインメモリを従来に比し大幅に減少させることができ、例えば従来12ライン分必要であったものが8ラインで構成することができ、従来の2/3に減少させることが可能となる。

【0060】更に、他といえば上述した例においては、必要乗算器も従来の75個に対し25個にすることができ、1/3に減少させることができ、必要加算器も従来72個に対し24個にすることができ、やはり1/3に減少させることができ、大幅な回路規模の縮小が実現できる。また、遅延手段による遅延色差信号を用いることにより、新たに遅延回路を持たなくても色度信号に対し50 空間的な画像処理が実現でき、注目画案が無彩色と判定

された場合、色度信号に対し色度成分を除去する補正を 行うことで、画質を劣化させることなくエッジ強調に関 わるコストの負荷を軽減することができるとともに、画 像濃度の過不足なしに無彩色信号に対する黒単色化がで きるなど画像品質の向上が実現される。

【0061】(第2の発明の実施の形態例)以下、図9を参照して、本発明に係る第2の発明の実施の形態例を詳細に説明する。図9において上述した図1に示す第1の発明の実施も形態例と同様構成には同一番号を付し詳細説明を省略する。第2の発明に実施の形態例において 10図1に示す第1の発明の実施の形態例と異なる点は、図1の構成に更に原稿画像色判定手段901を設けている点である。

【0062】図9に示す構成を備える第2の発明の実施 の形態例では、カラー画像処理がカラー複写機において 実施される時を想定したものであり、複写原稿がカラー 原稿か白黒原稿かを予め判定する原稿色判定を行なう。 原稿画像色判定手段901により複写原稿がカラー原稿 か白黒原稿かを予め判定するとき、実際の複写動作のた めの原稿読み取りの前に原稿画像全面を予め読み取る動 20 作(プリスキャン)が行われる。プリスキャンが始まり カラー画像入力手段101によって原稿画像が読み取ら れると、読み込まれた原稿画像各画素の3色分解信号R 1, G1, B1は第1の色空間変換手段102に入力さ れ、明度信号L1、および色度信号(Ca1, Cb1) に変換される。色度信号 (Ca1, Cb1) は遅延手段 113を介して彩度量抽出手段114に送られ、彩度量 抽出手段114によって彩度量が抽出され、彩度信号S が出力される。

【0063】各画素の彩度信号Sは、原稿画像色判定手 30 段901に入力され、彩度信号Sを原稿画像全面につい て統計処理を行ない、複写原稿がカラーか白黒かを予め 判定する。原稿画像色判定手段901による彩度信号S の統計処理の一例としては、原稿画像全面について彩度 信号Sのヒストグラムをとり、関値によって判定するな どの方法が考えられる。

【0064】図10に白黒画像原稿とカラー画像原稿の彩度信号Sのヒストグラムの例を模式的に示す。図10中、上側に示す白黒原稿画像において、累積画素1001は白黒画像原稿の下地色(白)および画像部分を表わ40し、どちらも彩度0に画素が分布し、彩度Sの高い領域(カラー画像領域)には累積画素がない。一方、下側に示す累積画素1002は、カラー画像原稿の下地色

(白) および無彩色画像部分を表わし、この他にカラー 画像部分の累積画案1003が、分布している。

【0065】これらの違いを判定する方法の一例として、ヒストグラム中のカラー画像領域(S≧Sth)において、累積画案Nが一定の閾値以上(N≧Th)に存在するか否かで判定する方法が考えられる。第2の発明の実施の形態例においては、カラー画像領域(S≧St

18

h) に一定閾値≥ (N≥Th) の累積画素が存在する場合 (1003) にその画像原稿はカラー画像原稿と判定し、カラー画像領域 (S≥Sth) に一定閾値≥ (N≥Th) の累積画素が存在しない場合を白黒画像原稿と判定する。

【0066】原稿画像色判定手段90によって判定された判定結果は、第1の色空間変換手段102に入力される。第1の色空間変換手段102は、原稿画像色判定手段90による判定結果が白黒画像原稿の場合には、強制的にCa=Cb=0を出力して3色分解信号R1、G1、NB1を完全な無彩色信号に変換する。その後は、上述した第1の実施の形態例で説明したように、無彩色画像に対しエッジ強調は明度信号Lのみに実施される。ただし、第2の発明の実施の形態例においては色差信号はエッジ強調後もCa=Cb=0である。さらに輝度濃度変換、色補正処理、2値化、平滑/解像度変換などがされ、電子写真プリンタなどから構成されるカラー画像出力手段109から黒単色の出力がされ白黒複写が完了する。

【0067】一方、原稿画像色判定手段90による判定結果がカラー画像原稿の場合には上述した第1の発明の実施の形態例と同様の処理を行なう。以上説明したように第2の発明の実施の形態例によれば、上述した第1の発明の実施の形態例と同様の作用効果を達成できるとともに、更に、原稿画像色判定手段901により複写原稿がカラー原稿か白黒原稿かを予め判定するため、白黒画像に対してエッジ強調後も色差信号をCa=Cb=0とでき、確実に色度成分を除去することができ、画質を劣化させることなくエッジ強調に関わるコストの負荷を軽減することができるとともに、画像濃度の過不足なしに無彩色信号に対する黒単色化ができるなど画像品質の向上が実現される。

【0068】なお、判定結果が白黒画像原稿の場合には、色補正手段107の出力のうち、 $C_2=M_2=Y_2=0$ としてもよい。

【0069】(第3の発明の実施の形態例)以下、図11を参照して本発明に係る第3の発明の実施の形態例を詳細に説明する。図11において上述した図1に示す第1の発明の実施も形態例と同様構成には同一番号を付し詳細説明を省略する。第3の発明に実施の形態例において図1に示す第1の発明の実施の形態例と異なる点は、図1の構成に更にカラーモード指定手段1101を設けている点である。カラーモード指定手段110は操作者による操作入力が可能なキー入力部を備えており、該キースイッチ部よりカラー画像出力手段110による画像出力をフルカラーモードで出力するか、白黒(モノカラー)モードで出力するかを指定入力可能に構成されている。

在するか否かで判定する方法が考えられる。第2の発明 【0070】以下の説明は、第3の発明の実施の形態例 の実施の形態例においては、カラー画像領域(S≧St 50 におけるカラー複写機においてカラー画像処理を実施す

る際における、複写画像をフルカラー出力するかまたは (白黒を含め) モノカラー出力するかの指定と、それに 係わる画像処理の一例について説明する。第3の発明の 実施の形態例においては、複写原稿画像をモノカラー出 力するときには、複写動作の前に先立ってカラーモード 指定手段1101によって出力色の指定が行われる。具 体的には、カラーモード指定手段1101のキー入力部 を用いて、フルカラー/モノカラーの指定切り替えおよ びモノカラー色相指定が行われる。

【0071】カラーモード指定手段1101によってモ 10 カード, ROMなどを用いることができる。 ノカラーおよび色相の指定が行われると、モノカラー指 定信号が出力され、第1の色空間変換手段102に入力 される。また、色相指定信号もカラーモード指定手段1 101から出力され、色補正手段107に入力される。 モノカラー指定信号が第1の色空間変換手段102に入 力されると、第1の色空間変換手段102は入力される 原稿画像の3色分解信号の色度信号をCa=Cb=0と する無彩色信号に変換する。これによって、カラー原稿 画像をまず明るさの階調性のみを有する白黒原稿画像 (無彩色画像) に変換する。

【0072】以下、前述の第1の発明の実施の形態例と 同様にエッジ強調が明度信号しのみに実施され、輝度濃 度変換106によって濃度信号C1, M1, Y1が生成 される (C1=M1=Y1)。 つぎに、色相指定信号が 色補正手段107に入力されると、色補正手段107は 指定色を再現する色補正を行う。例えば、色相をシアン に指定すると、色補正手段107はシアンC2のみの信 号を出力し (M2=Y2=K2=0)、また、色相をレ ッド(マゼンタとイエローの混色)に指定すると色補正 手段107はマゼンタM2およびイエローY2のみの信 30 号を出力する(C2=K2=0)。

【0073】以上のように生成されたモノカラー信号 は、第1及び第2の発明の実施の形態例と同様に2値 化、平滑/解像度変換などがされ、電子写真プリンタな どから構成されるカラー画像出力手段110からモノカ ラー画像が印刷記録される。以上説明したように第3の 発明の実施の形態例においても、第2の発明の実施の形 態例と同様の作用効果が達成できるとともに、更にモノ カラー色相指定が可能となり、正確に所望の色相での画 像出力が可能となる。

【0074】(他の発明の実施の形態例)なお、本発明 は、複数の機器(例えばホストコンピュータ、インタフ ェイス機器、リーダ、プリンタなど)から構成されるシ ステムに適用しても、一つの機器からなる装置(例え ば、複写機、ファクシミリ装置など)に適用してもよ い。また、本発明の目的は、前述した実施形態の機能を 実現するソフトウェアのプログラムコードを記録した記 **億媒体を、システムあるいは装置に供給し、そのシステ** ムあるいは装置のコンピュータ(またはCPUやMP

20

実行することによっても、達成されることは言うまでも ない。

【0075】この場合、記憶媒体から読出されたプログ ラムコード自体が前述した実施形態の機能を実現するこ とになり、そのプログラムコードを記憶した記憶媒体は 本発明を構成することになる。プログラムコードを供給 するための記憶媒体としては、例えば、フロッピディス ク,ハードディスク,光ディスク,光磁気ディスク,C D-ROM, CD-R, 磁気テープ, 不揮発性のメモリ

【0076】また、コンピュータが読出したプログラム コードを実行することにより、前述した実施形態の機能 が実現されるだけでなく、そのプログラムコードの指示 に基づき、コンピュータ上で稼働しているOS(オペレ ーティングシステム)などが実際の処理の一部または全 部を行い、その処理によって前述した実施形態の機能が 実現される場合も含まれることは言うまでもない。

【0077】さらに、記憶媒体から読出されたプログラ ムコードが、コンピュータに挿入された機能拡張ボード 20 やコンピュータに接続された機能拡張ユニットに備わる メモリに書込まれた後、そのプログラムコードの指示に 基づき、その機能拡張ボードや機能拡張ユニットに備わ るCPUなどが実際の処理の一部または全部を行い、そ の処理によって前述した実施形態の機能が実現される場 合も含まれることは言うまでもない。

【0078】また、上述の例では、空間周波数特性の補 正の例として、エッジ強調を用いて説明をしたが、平滑 化についても同様の考え方を適用できる。また、上述の 例では、文字/画像の判定結果に応じて空間フィルタ係 数を制御したが、例えば、文字/画像/網点の判定結果 に応じて制御してもよい。

【0079】以上説明したように本に係る発明の実施の 形態によれば、エッジ強調補正における必要ラインメモ リあるいは乗算器、加算器等の必要な回路構成を従来に 比し大幅に減少させることができる。また、遅延手段に よる遅延色差信号を用いて画像処理を行なうことによ り、新たに遅延回路を持たなくても色度信号に対し空間 的な画像処理が実現でき、注目画素が無彩色と判定され た場合、色度信号に対し色度成分を除去する補正を行う 40 ことで、画質を劣化させることなくエッジ強調に関わる コストの負荷を軽減することができるとともに、画像濃 度の過不足なしに無彩色信号に対する黒単色化ができる など画像品質の向上が実現される。

[0080]

【発明の効果】以上説明したように本発明によれば、画 質の劣化を抑制しつつエッジ強調等の空間周波数特性の 補正を行うことができ、また、その補正に関わるコスト の負荷を軽減することができる画像処理装置及び方法を 提供することができる。また、画像濃度の過不足なしに U) が記憶媒体に格納されたプログラムコードを読出し 50 無彩色信号に対し黒単色化ができるカラー画像処理装置

及び方法を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る発明の実施の形態の一例の画像処理装置の構成を示すブロック図である。

【図2】本発明の実施の形態例で用いる空間フィルタ係 数の例を示す図である。

【図3】本発明の実施の形態例における信号遅延手段の 例を説明する図である。

【図4】本発明の実施の形態例におけるエッジ強調量分配の明度信号に対するエッジ強調補正量生成処理を示す 10フローチャートである。

【図5】本発明の実施の形態例におけるエッジ強調量分配の明度信号に対するエッジ強調補正量を表わす模式図である。

【図6】本発明の実施の形態例におけるエッジ強調量分配の色度信号に対するエッジ強調補正量生成を示すフローチャートである。

【図7】本発明の実施の形態例におけるエッジ強調量分配の色度信号に対するエッジ強調補正量を表わす模式図である。

【図8】本発明の実施の形態例における色度信号のエッジ強調に対する色味(色相)の保存性について説明する 模式図である。

【図9】本発明に係る第2の発明の実施の形態例における画像処理装置の構成を示すブロック図である。

【図10】第2の発明の実施の形態例における原稿画像 色判定処理を説明するための彩度信号のヒストグラムの 模式図である。

【図11】本発明の係る第3の発明の実施の形態例における画像処理装置の構成を示すブロック図である。

【図12】従来における画像処理装置の構成を示すプロック図である。

【図13】従来における画像処理装置の空間フィルタ係数を示す図である。

【図14】従来における画像処理装置の空間フィルタ処理回路を示す図である。

#### 【符号の説明】

101 カラー画像入力手段

102 第1色空間変換手段

103 遅延手段

104 エッジ強調手段

105 第2色空間変換手段

106 輝度/濃度変換手段

107 色補正手段

108 2値化手段

109 平滑化/解像度変換手段

110 カラー画像出力手段

111 文字/画像判定手段

112 空間フィルタ係数記憶手段

113 エッジ強調量抽出手段

114 彩度量抽出手段

115 無彩色/有彩色判定手段

116 エッジ強調量分配手段

117 黒文字/色文字/画像判定手段

201 文字用空間フィルタ係数

202 画像用空間フィルタ係数

701 対象画案色度ベクトル

20 702 対象画素色度信号Ca1

703 対象画素色度信号Cb1

704 エッジ強調後対象画素色度ベクトル

705 エッジ強調後対象画素色度信号

706 エッジ強調後対象画素色度信号Cb2

801~806 ラインメモリ

901 原稿画像色判定手段

1001 白黒画像原稿累積画素

1002 カラー画像原稿無彩色累積画素

1003 カラー画像原稿カラー累積画素

30 1101 カラーモード指定手段

1201 無彩色/有彩色判定手段

1301 文字用空間フィルタ係数

1302 画像用空間フィルタ係数

1401 エッジ強調手段データ遅延部

1402 エッジ強調手段空間フィルタリング演算部

1404~1428 乗算器

1429~1452 加算器

【図2】



【図5】



【図1】



【図3】







【図12】



【図13】



【図6】



【図14】



## 【図9】



【図11】

