Goal Programming and Multiple Objective Optimization (MOLP)

Lecture 11

Chapter 3: Optimization

Institute of Engineering Asst. Prof. Anita Prajapati, Ph.D.

7 July 2023

Chapter 7

Goal Programming and Multiple Objective Optimization

Spreadsheet Modeling & Decision Analysis:

A Practical Introduction to Management Science, 3e by Cliff Ragsdale

Introduction

- Most of the optimization problems considered to this point have had a single objective.
- Often, more than one objective can be identified for a given problem
 - Maximize Return or Minimize Risk
 - Maximize Profit or Minimize Pollution
- These objectives often conflict with one another.
- This chapter describes how to deal with such problems.

Goal Programming (GP)

- Most LP problems have <u>hard constraints</u> that cannot be violated...
 - There are 1,566 labor hours available.
 - There is \$850,00 available for projects.
- In some cases, hard constraints are too restrictive...
 - You have a maximum price in mind when buying a car (this is your "goal" or target price).
 - If you can't buy the car for this price you'll likely find a way to spend more.
- We use <u>soft constraints</u> to represent such goals or targets we'd like to achieve.

A Goal Programming Example: Myrtle Beach Hotel Expansion

- Davis McKeown wants to expand the convention center at his hotel in Myrtle Beach, South Carolina.
- The types of conference rooms being considered are:

	Size (sq ft)	Unit Cost
Small	400	\$18,000
Medium	750	\$33,000
Large	1,050	\$45,150

- Davis would like to add 5 small, 10 medium and 15 large conference rooms.
- He would also like the total expansion to be 25,000 square feet and to limit the cost to \$1,000,000.

Defining the Decision Variables

 X_1 = number of small rooms to add

 X_2 = number of medium rooms to add

 X_3 = number of large rooms to add

Defining the Goals

- Goal 1: The expansion should include approximately 5 small conference rooms.
- Goal 2: The expansion should include approximately 10 medium conference rooms.
- Goal 3: The expansion should include *approximately* 15 large conference rooms.
- Goal 4: The expansion should consist of *approximately* 25,000 square feet.
- Goal 5: The expansion should cost approximately \$1,000,000.

Defining the Goal Constraints

Small Rooms

$$X_1 + d_1^- - d_1^+ = 5$$

Medium Rooms

Large Rooms

where

		d ⁺	d-
x_{1}	3	0	2
x_{2}	13	3	0
X ₃	15	0	0

Defining the Goal Constraints

Total Expansion

☐ Total Cost (in \$1,000s)

where

GP Objective Functions

 There are numerous objective functions we could formulate for a GP problem.

Minimize the sum of the deviations:

MIN

Problem: The deviations measure different things, so what does this objective represent?

GP Objective Functions (cont'd)

Minimize the sum of percentage deviations

where t_i represents the target value of goal i

- Problem: Suppose the first goal is underachieved by 1 small room and the fifth goal is overachieved by \$20,000.
 - We underachieve goal 1 by 1/5=20%
 - We overachieve goal 5 by 20,000/1,000,000= 2%
 - This implies being \$200,000 over budget is just as undesirable as having one too few small rooms.
 - Is this true? Only the decision maker can say for sure.

GP Objective Functions (cont'd)

- Weights can be used in the previous objectives to allow the decision maker indicate
 - desirable vs. undesirable deviations
 - the relative importance of various goals

Minimize the weighted sum of deviations

- Minimize the weighted sum of % deviationsMIN
- w_i^+ and w_i^- represents numeric values assigned to weight the various deviational variables,
- Highly undesirable deviations is assigned a large weight making it undesirable for that variable to assume a value larger than 0
- Desirable deviation is assigned weight of 0 or lower than 0

Defining the Objective

Assume

- It is undesirable to underachieve any of the first three room goals
- It is undesirable to overachieve or underachieve the 25,000 sq. ft. expansion goal
- It is undesirable to overachieve the \$1,000,000 total cost goal

MIN:
$$\frac{w_1^-}{5}d_1^- + \frac{w_2^-}{5}d_2^- + \frac{w_3^-}{5}d_3^- + \frac{w_4^-}{25,000}d_4^- + \frac{w_4^+}{25,000}d_4^+ + \frac{w_5^+}{1,000,000}d_5^+$$

Initially, we will assume all the above weights equal 1.

	Α	В	С	D	Е	F
1		_			_	
2		Dav	is McKeow	n Hotel Ex	pansion	
3						
4	Problem Data	Small	Medium	Large		
5	Square Footage	400	750	1,050		
6	Building Cost	\$18,000	\$33,000	\$45,150		
7						
8	Goal Constraints	Small	Medium	Large	Sq. Ft.	Cost
9	Actual Amount	5	10	15	25,250	\$1,097,250
10	+ Under	0	0	0	0	\$0
11	- Over	0	0	0	250	\$97,250
12	= Goal	5	10	15	25,000	\$1,000,000
13	Target Value	5	10	15	25,000	\$1,000,000
14						
15	Percentage Devia	tion				
16	Under	0.00%	0.00%	0.00%	0.00%	0.00%
17	Over	0.00%	0.00%	0.00%	1.00%	9.73%
18						
19	Weights					
20	Under	1	1	1	1	0
21	Over	0	0	0	1	1
22						
23	Objective	11%				

Minimize: B23

By changing: B9:D9,B10:F11 Subject to: B12:F12=B13:F13

B9:D9>=0 & integer

B10:F11>=0

	Α	В	С	D	E	F			
1		_							
2		Dav	is McKeow	n Hotel Ex	pansion				
3									
4	Problem Data	Small	Medium	Large					
5	Square Footage	400	750	1,050					
6	Building Cost	\$18,000	\$33,000	\$45,150					
7									
8	Goal Constraints	Small	Medium	Large	Sq. Ft.	Cost			
9	Actual Amount	5	10	13	23,150	\$1,006,950			
10	+ Under	0	0	2	1,850	\$0			
11	- Over	0	0	0	0	\$6,950			
12	= Goal	5	10	15	25,000	\$1,000,000			
13	Target Value	5	10	15	25,000	\$1,000,000			
14									
15	Percentage Devia	tion							
16	Under	0.00%	0.00%	13.33%	7.40%	0.00%			
17	Over	0.00%	0.00%	0.00%	0.00%	0.70%			
18									
19	Weights								
20	Under	1	1	1	1	0			
21	Over	0	0	0	1	10			
22									
23	Objective	28%							

Minimize: B23

By changing: B9:D9,B10:F11
Subject to: B12:F12=B13:F13

B9:D9>=0 & integer

B10:F11>=0

	Α	В	С	D	E	F			
1		_							
2		Dav	is McKeow	n Hotel Ex	pansion				
3									
4	Problem Data	Small	Medium	Large					
5	Square Footage	400	750	1,050					
6	Building Cost	\$18,000	\$33,000	\$45,150					
7									
8	Goal Constraints	Small	Medium	Large	Sq. Ft.	Cost			
9	Actual Amount	5	7	15	23,000	\$998,250			
10	+ Under	0	3	0	2,000	\$1,750			
11	- Over	0	0	0	0	\$0			
12	= Goal	5	10	15	25,000	\$1,000,000			
13	Target Value	5	10	15	25,000	\$1,000,000			
14									
15	Percentage Devia	tion							
16	Under	0.00%	30.00%	0.00%	8.00%	0.18%			
17	Over	0.00%	0.00%	0.00%	0.00%	0.00%			
18									
19	Weights								
20	Under	1	1	10	1	0			
21	Over	0	0	0	1	10			
22									
23	Objective	38%							

Minimize: B23

By changing: B9:D9,B10:F11
Subject to: B12:F12=B13:F13

B9:D9>=0 & integer

B10:F11>=0

Comments About GP

- GP involves making trade-offs among the goals until the most satisfying solution is found
- GP objective function values should not be compared because the weights are changed in each iteration.
 Compare the solutions!
- An arbitrarily large weight will effectively change a soft constraint to a hard constraint.
- Hard constraints can be place on deviational variables.

The MiniMax Objective

Can be used to minimize the maximum deviation from any goal.

$$d_1^- \leq Q$$

$$d_2^- \leq Q$$

etc...

Summary of Goal Programming

- 1. Identify the decision variables in the problem.
- 2. Identify any hard constraints in the problem and formulate them in the usual way.
- 3. State the goals of the problem along with their target values.
- 4. Create constraints using the decision variables that would achieve the goals exactly.
- 5. Transform the above constraints into goal constraints by including deviational variables.
- 6. Determine which deviational variables represent undesirable deviations from the goals.
- 7. Formulate an objective that penalizes the undesirable deviations.
- 8. Identify appropriate weights for the objective.
- 9. Solve the problem.
- 10. Inspect the solution to the problem. If the solution is unacceptable, return to step 8 and revise the weights as needed.

Multiple Objective Linear Programming (MOLP)

Multiple Objective Linear Programming (MOLP)

- MOLP problem is an LP problem with more than one objective function.
- MOLP problems can be viewed as special types of GP problems where we must also determine target values for each goal or objective.
- Analyzing these problems effectively also requires that we use the MiniMax objective described earlier.

An MOLP Example: The Blackstone Mining Company

- Blackstone Mining operates two coal mines in Southwest Virginia.
- Monthly production by a shift workers at each mine is summarized as follows:

Type of Coal	Wythe Mine	Giles Mine
High-grade	12 tons	4 tons
Medium-grade	4 tons	4 tons
Low-grade	10 tons	20 tons
Cost per month	\$40,000	\$32,000
Gallons of toxic water produced	800	1,250
Life-threatening accidents	0.20	0.45

Blackstone needs to produce 48 more tons of high-grade,
 28 more tons of medium-grade, and 100 more tons of low-grade coal.

Defining the Decision Variables

 X_1 = number of months to schedule an extra shift at the Wythe county mine

 X_2 = number of months to schedule an extra shift at the Giles county mine

Defining the Objective

There are three objectives:

```
Min: 40 X_1 + 32 X_2 } Production costs
```

Min: $800 X_1 + 1250 X_2$ } Toxic water

Min: $0.20 X_1 + 0.45 X_2$ } Accidents

Defining the Constraints

- High-grade coal required $12 X_1 + 4 X_2 >= 48$
- Medium-grade coal required $4 X_1 + 4 X_2 >= 28$
- Low-grade coal required $10 X_1 + 20 X_2 >= 100$
- Non-negativity conditions $X_1, X_2 >= 0$

Handling Multiple Objectives

 If the objectives had target values we could treat them like the following goals:

Goal 1: The total cost of productions cost should be approximately t₁.

Goal 2: The amount of toxic water produce should be approximately t₂.

Goal 3: The number of life-threatening accidents should be approximately t_3 .

• We can solve 3 separate LP problems, independently optimizing each objective, to find values for t_1 , t_2 and t_3 .

See file Fig7-7.xls

	Wythe	Giles			
Months to operate	2.50	4.50			
Objectives			Totals		
Cost per month	\$40	\$32	\$244.0	Minimi	ze Co
Toxins per month	800	1,250	7,625.0		
Accidents per month	0.20	0.45	2.53		
Constraints			Available	Required	
HG coal produced	12	4	48	48	
MG coal produced	4	4	28	28	
LG coal produced	10	20	115	100	

	Wythe	Giles			
Months to operate	4.00	3.00			
Objectives			Totals		
Cost per month	\$40	\$32	\$256.0		
Toxins per month	800	1,250	6,950.0	Minimiz	e Toxins
Accidents per month	0.20	0.45	2.15		
Constraints			Available	Required	
HG coal produced	12	4	60	48	
MG coal produced	4	4	28	28	
LG coal produced	10	20	100	100	

	Wythe	Giles		
Months to operate	10.00	0.00		
Objectives			Totals	
Cost per month	\$40	\$32	\$400.0	
Toxins per month	800	1,250	8,000.0	
Accidents per month	0.20	0.45	2.00	Minimize accider
Constraints			Available	Required
HG coal produced	12	4	120	48
MG coal produced	4	4	40	28
LG coal produced	10	20	100	100

Solution	X_1	X_2	Cost	Toxic Water	Accidents
1	2.5	4.5	\$244	7,625	2.53
2	4.0	3.0	\$256	6,950	2.15
3	10.0	0.0	\$400	8,000	2.00

Defining The Goals

Goal 1: The total cost of productions cost should be approximately \$244.

Goal 2: The gallons of toxic water produce should be approximately 6,950.

Goal 3: The number of life-threatening accidents should be approximately 2.0.

Defining an Objective

- Formulate GP objective to allow decision maker to explore possible solutions
- We can minimize the sum of % deviations as follows:

$$MIN: w_1 \left(\frac{\left(40X_1 + 32X_2\right) - 244}{244} \right) + w_2 \left(\frac{\left(800X_1 + 1250X_2\right) - 6950}{6950} \right) + w_3 \left(\frac{\left(0.20X_1 + 0.45X_2\right) - 2}{2} \right)$$

- It can be shown that this is just a linear combination of the decision variables.
- This objective will only generate solutions at the corner points of the feasible region (no matter what weights are used).

Defining a Better Objective

MIN: Q

Subject to the additional constraints:

$$w_1 \left(\frac{\left(40X_1 + 32X_2 \right) - 244}{244} \right) \le Q$$

$$w_{2} \left(\frac{\left(800X_{1} + 1250X_{2}\right) - 6950}{6950} \right) \leq Q$$

$$W_3 \left(\frac{(0.20X_1 + 0.45X_2) - 2}{2} \right) \le Q$$

This objective will allow the decision maker to explore non-corner point solutions of the feasible region.

	A	В	С	D	E	F	G	Н
1	-1							
2			Black	stone Minin	g Co.			
3								
4		Wythe	Giles					
5	Months to operate							
6					Target			Weighted %
7	Goals			Total	Value	% Deviation	Weight	Deviation
8	Cost per month	\$40	\$32	\$0.0	\$244.0	-100.00%	1	-100.00%
9	Toxins per month	800	1,250	0.0	6950.0	-100.00%	1	-100.00%
10	Accidents per month	0.20	0.45	0.0000	2.00	-100.00%	5	-500.00%
11								
12	Constraints			Available	Required			
13	HG coal produced	12	4	0.00	48			
14	MG coal produced	4	4	0.00	28			
15	LG coal produced	10	20	0.00	100			
16								
17	Objective							
18	MiniMax Variable			Minim	ize: B18			
		By changing: B5:C5 & B18						

Subject to: D13:D15.>=E13:E15

B5:C5>=0

H8:H10<=B18

Implementing the Model See file Fig7-13.xls

	Α	В	С	D	Е	F	G	Н
1	0.248407643			_	_			
2			Black	stone Minin	g Co.			
3								
4		Wythe	Giles					
5	Months to operate	6.03	1.99					
6					Target			Weighted %
7	Goals			Total	Value	% Deviation	Weight	Deviation
8	Cost per month	\$40	\$32	\$304.6	\$244.0	24.84%	1	24.84%
9	Toxins per month	800	1,250	7,304.5	6950.0	5.10%	1	5.10%
10	Accidents per month	0.20	0.45	2.0994	2.00	4.97%	5	24.84%
11								
12	Constraints			Available	Required			
13	HG coal produced	12	4	80.25	48			
14	MG coal produced	4	4	32.05	28			
15	LG coal produced	10	20	100.00	100			
16								
17	Objective							
18	MiniMax Variable	0.248408		<mark>Minimi</mark>	ze: B18			
				-	-: DE.C	F 0 D40		

By changing: B5:C5 & B18

Subject to: D13:D15.>=E13:E15

B5:C5>=0

H8:H10<=B18

Comments About MOLP

- Solutions obtained using the MiniMax objective are Pareto Optimal.
- Deviational variables and the MiniMax objective are also useful in a variety of situations not involving MOLP or GP.
- For minimization objectives the percentage deviation is: (actual - target)/target
- For maximization objectives the percentage deviation is: (target - actual)/target
- If a target value is zero, use the weighted deviations rather than weighted % deviations.

Summary of MOLP

- 1. Identify the decision variables in the problem.
- 2. Identify the objectives in the problem and formulate them in the usual way.
- 3. Identify the constraints in the problem and formulate them in the usual way.
- 4. Solve the problem once for each of the objectives identified in step 2 to determine the optimal value of each objective.
- 5. Restate the objectives as goals using the optimal objective values identified in step 4 as the target values.
- 6. For each goal, create a deviation function that measures the amount by which any given solution fails to meet the goal (either as an absolute or a percentage).
- 7. For each of the deviation functions identified in step 6, assign a weight to the deviation function and create a constraint that requires the value of the weighted deviation function to be less than the MINIMAX variable Q.
- 8. Solve the resulting problem with the objective of minimizing Q.
- 9. Inspect the solution to the problem. If the solution is unacceptable, adjust the weights in step 7 and return to step 8.

Assignment 6

Question No.: 10, 11, 13, 16, 17,18,19, 23
Assignment-6 due on Wednesday 19th July 2023

End of Chapter 7