CMPT 407: Computational Complexity

Summer 2017

Lecture 3: Polynomial Hierarchy (29 May - 2 June)

Lecturer: Valentine Kabanets Scribe: Lily Li

3.1 Polynomial Hierarchy

Definition 3.1 For $i \ge 1$, a language L is in \sup_{2}^{P} if there exists a polynomial-time TM M and a polynomial q such that

$$x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \cdots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,...,u_i) = 1$$

where Q_i is a \forall or a \exists depending if i is even or odd. **Polynomial hierarchy** (PH) is $PH = \bigcup_i \sum_i^P$.

The polynomial hierarchy does not collapse.

Theorem 3.2 The following hold:

- 1. For every $i \ge 1$, if $\sum_{i=1}^{P} \prod_{i=1}^{P} then \ \mathsf{PH} = \sum_{i=1}^{P} i.e.$ the hierarchy collapses to the ith level.
- 2. If P = NP then PH = P i.e. the hierarchy collapses to P.
- 3. If NP = coNP, then PH = NP e.e. the hierarchy collapses to NP.

In addition to number 3, we can show the following:

Theorem 3.3 If $PH = \sum_{i=1}^{p} for some i \geq 1$, then $\sum_{i=1}^{p} \prod_{i=1}^{p} I_{i}$.

Proof: To see this, observe that $\Pi_i^p \subset \Sigma_i^p$. Taking the complement of this inclusion, we get that $\Sigma_i^p \subset \Pi_i^p$. \blacksquare Together we have that for $i \geq 1$, $\mathsf{PH} = \Sigma_i^p$ if and only if $\Sigma_i^p = \Pi_i^p$.

An interesting result: Graph Isomorphism is not NP-complete, unless PH collapses PH = Σ_2^p . This is proved by interactive proofs.

Now we are ready to prove the Time-Space trade-off for SAT.

Theorem 3.4 (Fortnow) SAT \notin TiSp $(n^{1.1}, n^{0.1})$. This means you have $O(n^{1.1})$ time and $O(n^{0.1})$ space, then you definitely cannot solve SAT.

Proof: We will first prove the following lemma.

Lemma 3.5 NTime $(n) \not\subseteq \mathsf{TiSp}(n^{1.2}, n^{0.2}).$

Proof: This lemma is quite difficult to prove and it requires a good handle on a large number of moving parts. Pay attention! First we define Σ_2 -computation with running time t: these are the languages with formulas

$$\phi(x) = \exists y \in \{0, 1\}^{O(t(n))} \forall z \in \{0, 1\}^{O(t(n))} \psi(x, y, z)$$

where ψ is a predicate computable in deterministic time. Lets begin. Suppose for a contradiction that $\mathsf{NTime}(n) \subseteq \mathsf{TiSp}(n^{1.2}, n^{0.2})$. By padding the inputs to all languages in $\mathsf{NTime}(n)$ we have that $\mathsf{NTime}(n^{10}) \subseteq \mathsf{TiSp}(n^{12}, n^2)$. We will now show that $\mathsf{TiSp}(n^{12}, n^2) \subset \Sigma_2 \mathsf{Time}(n^8)$. That is, by introducing some alternation we can remove the space bound.

Choose any language $L \subset \mathsf{TiSp}(n^{12}, n^2)$ and let TM M decide L. Let x be an input to L of length n. x can be computed in $O(n^{12})$ and $O(n^2)$ time and space simultaneously. Equivalently, $x \in L$ if and only if $\exists c_1, \exists c_2 \cdots \exists c_{n^{12}} R(x, c_1, ..., c_{n^{12}})$. Were each c_i is a configuration on the work tape so $|c_i| \leq O(n^2)$. Divide the configurations into n^6 blocks of n^6 . We will only consider the first and last configurations as well as configurations between two blocks. These n+1 configurations are: $c_0, c_{n^6}, c_{2n^6}, ..., c_{n^{12}}$. We forms a $\Sigma_2\mathsf{Time}(n^8)$ as follows:

$$\exists (c_0, c_{n^6}, c_{2n^6}, ..., c_{n^{12}}) \forall i \in 1, ..., n^6 : c_{in^6} \text{ can be reached from } c_{(i-1)n^6} \text{ in } O(n^6) \text{ steps.}$$

here $(c_0, c_{n^6}, ..., c_{n^{12}})$ is consider one large input. Checking that c_{in^6} can be reached from $c_{(i-1)n^6}$ can be done in $O(n^8)$ time since you simply need to keep track of the n^2 bit configuration tape over n^6 time steps.

Next we need to see that $\mathsf{NTime}(n) \subseteq \mathsf{Time}(n^{1.2})$ then $\Sigma_2 \mathsf{Time}(n^8) \subset \mathsf{NTime}(n^{9.6})$. What we are not going to do is trade alternation for non-determinism. First note that $\Sigma_2 \mathsf{Time}(n^8)$ is of the form $\exists y \in \{0,1\}^{O(|x|^8)} \forall z \in \{0,1\}^{O(|x|^8)}: \psi(x,y,z)$. Just like in the collapsing Polynomial Hierarchy proof we can rewrite this as: all inputs $(x,y), \forall z, \psi(x,y,z)$. If you squint a little this should look a coNP instance. If $\mathsf{NTime}(n) \subset \mathsf{Time}(n^{1.2})$ then $\mathsf{coNTime}(n) \subseteq \mathsf{Time}(n^{1.2})$ as well (why?). Look carefully and you will notice that $1.2 \times 8 = 9.6$. This is not a coincidence. With padding, we have that $\mathsf{coNTime}(n^8) \subseteq \mathsf{Time}(n^{9.6})$.

Since we have $\mathsf{NTime}(n) \subset \mathsf{TiSp}(n^{1.2}, n^{0.2})$ by assumption, $\mathsf{NTime}(n) \subset \mathsf{Time}(n^{1.2})$ (just ignore the space constraint), so indeed we can make the above conversion. Through this chain of inclusions we have reached $\mathsf{NTime}(n^{10}) \subset \mathsf{NTime}(n^{9.6})$, but this contradicts non-deterministic time hierarchy so our assumption $\mathsf{NTime}(n) \subset \mathsf{TiSp}(n^{1.2}, n^{0.2})$ is false.

Why is this sufficient? Well, for any language in time $\mathsf{NTime}(t(n))$ can be reduced to a SAT-instance of size $O(t \log t)$. Where the reduction itself takes $\mathsf{poly}(\log n)$ space and time (how?). Thus if $\mathsf{SAT} \in \mathsf{TiSp}(n^{1.1}, n^{0.1})$ then $\mathsf{NTime}(n) \subseteq \mathsf{TiSp}(n^{1.1}\mathsf{poly}(\log n), n^{0.1}\mathsf{poly}(\log n))$.

Using the above techniques we can improve the above time and space bounds but we cannot get to quadratic space unfortunately. There are also a lot of other weird statements in complexity of the form

unlikely statement \implies superunlikely statement

here are a sampling:

Proposition 3.6 (*Karp-Lipton*) If $NP \subseteq PolySize \implies PH = \Sigma_2^p$.

Proof: Recall from the above, that showing $\Sigma_2^p = \Pi_2^p$ is enough to prove that $\mathsf{PH} = \Sigma_2^p$. But it is actually enough to show that $\Pi_2^p \subseteq \Sigma_2^p$ to show that $\Sigma_2^p = \Pi_2^p$ (because $\exists y \forall z R(x,y,z)$ logically implies $\forall z \exists y R(x,y,z)$). By our assumption that $\mathsf{NP} \subseteq \mathsf{PolySize}$, we can find a polynomial size circuit for SAT. Further we have seen that when we have a reasonably fast decider for SAT we can also solve Search – SAT on the same complexity order. Namely, there exists a polynomial family of circuits C_n such that on an propositional formal ψ of size n, $C_n(\psi)$ finds a satisfying assignment for ψ or outputs a string of zeros if ψ is not satisfiable.

Now consider a language $L \in \Pi_2^p$. An input $x \in L$ if and only if $\forall y \exists z : R(x, y, z)$ for some polytime polybalanced relation R (by definition). For the language L' as

$$L' = \{(x, y) : \exists z R(x, y, z)\}$$

Recognize that $L' \in \mathsf{NP}$ so by assumption there exists polysize circuit family $C_m(x,y)$ with m = |x| + |y| such that $C_m(x,y)$ outputs a satisfying assignment of R(x,y,z) if one exists. View in a different manner, L accepts x if and only if $\exists C_m \forall y : R(x,y,C_m(x,y))$. Thus $L \in \Sigma_2^p$ as required.