Interpretable Machine Learning

Feature Importances 1 Permutation IMPortance (PIMP)

Learning goals

- Understand PIMP and its motivation
- Address multiple testing in feature importance

TESTING IMPORTANCE (PIMP) • ALTMANN_2010

• PIMP was originally introduced for random forest's built-in PFI scores

TESTING IMPORTANCE (PIMP) ALTMANN_2010

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed $\widehat{PFI}_i^{\text{obs}}$ score is *significantly* greater than expected under the null hypothesis of X_i being not important Accounts for spurious importance due to randomness

TESTING IMPORTANCE (PIMP) • ALTMANN_2010

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed PFI_j^{obs} score is *significantly* greater than expected under the null hypothesis of X_j being not important
 → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_i is conditionally indep. of y (unimportant)

TESTING IMPORTANCE (PIMP) ALTMANN_2010

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed \widehat{PFI}_i^{obs} score is *significantly* greater than expected under the null hypothesis of X_i being not important → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_i is conditionally indep. of y (unimportant)
- Approximate null distrib. of PFI scores under H_0 by repeated permuts: Permute $y \to \text{retrain} \to \text{recompute } \widehat{PFI}_i \text{ scores for all } j \to \text{repeat } B \text{ times}$ ⇒ Permuting y breaks relationship to all features (PFI scores reflect noise only)

TESTING IMPORTANCE (PIMP) • ALTMANN_2010

- PIMP was originally introduced for random forest's built-in PFI scores
- PIMP idea: Test if an observed PFI_j^{obs} score is *significantly* greater than expected under the null hypothesis of X_j being not important
 → Accounts for spurious importance due to randomness
- Null hypothesis H_0 : Feature X_j is conditionally indep. of y (unimportant)
- Approximate null distrib. of PFI scores under H₀ by repeated permuts:
 Permute y → retrain → recompute PFI_j scores for all j → repeat B times
 ⇒ Permuting y breaks relationship to all features (PFI scores reflect noise only)
- Assess the significance of PFI scores via tail probability under H₀
 ⇒ Use this as a new feat. importance score, adjusting for random chance

PIMP ALGORITHM

- For $b \in \{1, ..., B\}$:
 - Permute response vector \mathbf{y} , denote permuted target as $\mathbf{y}^{(b)}$
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - Compute feature importance $\widehat{PFI}_{j}^{(b)}$ for each feature j (under H_0)

PIMP ALGORITHM

- For $b \in \{1, ..., B\}$:
 - Permute response vector \mathbf{y} , denote permuted target as $\mathbf{y}^{(b)}$
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - Compute feature importance $\widehat{\mathsf{PFI}}_j^{(b)}$ for each feature j (under H_0)
- Train model on original data (X, y) with unpermuted target

PIMP ALGORITHM

- **1** For $b \in \{1, ..., B\}$:
 - Permute response vector \mathbf{y} , denote permuted target as $\mathbf{y}^{(b)}$
 - Retrain model on data $(\mathbf{X}, \mathbf{y}^{(b)})$ with permuted target
 - Compute feature importance $\widehat{PFI}_{j}^{(b)}$ for each feature j (under H_0)
- $oldsymbol{2}$ Train model on original data (\mathbf{X},\mathbf{y}) with unpermuted target
- **3** For each feature $j \in \{1, \dots, p\}$:
 - Compute $\widehat{\mathsf{PFI}}_j^{\mathsf{obs}}$ for the model without permutation of y (under H_1)
 - Fit probability distribution to all PFI scores $\{\widehat{\mathsf{PFI}}_{j}^{(b)}\}_{b=1}^{B}$ (under H_0) e.g., by assuming Gaussian/lognormal/gamma distrib (parametric)
 - Compute p-value: Prob. that null importance exceeds observed:
 - parametric by taking tail probability of assumed distribution

$$\mathbb{P}(\widehat{\mathsf{PFI}}_j^{(m)} \geq \widehat{\mathsf{PFI}}_j^{\mathsf{obs}})$$

• non-parametric by computing empirical tail probability:

$$p_j := \frac{1}{B} \sum_{b=1}^{B} \mathbb{I}[\widehat{\mathsf{PFI}}_j^{(b)} \geq \widehat{\mathsf{PFI}}_j^{\mathsf{obs}}]$$

PIMP FOR EXTRAPOLATION EXAMPLE

Recall: Let $y = x_3 + \epsilon_y$, with $\epsilon_y \sim \mathcal{N}(0, 0.1)$.

- $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$; highly correlated $(\epsilon_1 \sim \mathcal{N}(0, 1), \epsilon_2 \sim \mathcal{N}(0, 0.01))$
- $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim \mathcal{N}(0, 1)$; all noise terms ϵ_j are indep.
- Fitting a linear model yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 0.3x_2 + x_3$

- Red: Observed PFI score (under H_1) \rightsquigarrow compare against H_0 distribution
- Recall: PFI for x_1 , x_2 , x_3 is non-0 suggesting they are important (red lines)
- PIMP considers x_1 , x_2 not significantly relevant (p-value > 0.05)

DIGRESSION: MULTIPLE TESTING PROMANO_2010

- When should we reject H_0 for a given feature?
- PIMP conducts one hypothesis test per feature
 multiple testing problem
- With many tests, rejections of true H₀ just by chance (type-I errors) accumulate
- To account for this, control a suitable error rate, e.g., the family-wise error rate
 - FWE: probability of making at least one type-I error across all tests
- A classical method is the **Bonferroni correction**: reject H_0 if p-value $< \alpha/m$ where m is the number of tests

