

Uber Service in NYC

A study on what affects Uber ridership in NYC

By: Jorge Londono, 3/2/19

The Problem

- NYC Public transit is used by millions of people to commute every day
- •Private companies such as Uber provide services that are more expensive than public transportation. Why are people paying more for these services?

The Problem (2)

 Are there any factors that we can measure to see what specifically can make Uber ridership increase or decrease

Data Set Components

- The data set used to explore this problem is a combination of 3 data sets:
 - Uber pickups by time and date from two ranges in 2014 and 2015
 - → Weather data(conditions, amount of precipitation, temperature) for specific hours and dates.
 - → Holiday dates from the 2010-2020.

Methods of analysis

- With this data set we can analyse this data through:
 - Statistical measurements (medians, averages)
 - Data visualizations
 - An algorithm that we can use to see what factors can predict Uber ridership

Data Wrangling

- The one thing all of the 3 separate sets having in common is the date. So when we unite all of these data sets all of the observations must abide by the correct date
- A binary weekend variable (was it a weekend or not) was created to help us explore the effects weekends have on Uber Ridership

Data Wrangling (2)

- Sometimes the weather conditions had multiple descriptors (both foggy and rainy)
- To fix this, we measure the mean ridership of each of the two components (mean ridership of foggy weather, and mean ridership of rainy weather).
- Then we reclassify the variable to whatever its mean ridership is closest to

Findings: Holidays

 Holidays had a dramatic effect on ridership. For example, the average daily rides for the month of April in 2014 was 784, while the daily total for Good Friday in 2014 was 18,074.

Findings: Days of the Week

 There is increased Ridership on Thurdays, Fridays, and Saturdays

Findings: Temperature

 When it was colder out, ridership was low, and as temperatures rose, so did the ridership.

Findings: Trend Over Time

 As times goes on there is an increase in ridership

Machine Learning

- •Since ridership is a continuous variable, I will be using a supervised linear regression model to predict the rides per given:
 - → Date
 - → Hour
 - → Temperature
 - → Holiday (yes or no)
 - →Weekend (yes or no)
 - → Precipitation
 - →Weather Condition

Training and Testing Sets

 The data for this algorithm will be trained on our data set which has the ranges of :

April 1st – September 30th 2014 and January 1st – March 31st 2015

 The data for this algorithm will be tested on a data set which has the range of:

April 1st – July 30th 2015

Results

- •With the training set, the linear regression model had an adjusted R-squared value of 0.7874.
- The coefficient with the largest absolute t value is the Date (65.406)
- •The hour with the largest absolute t value is 18:00 or 6PM (30.864)
- •The weather condition with the highest absolute t value is clear weather (3.503)

Results (2)

- •With the testing set, my linear regression model had an R Squared value of 0.8756. This is value shows a fairly strong relationship between the features of the model and Uber Ridership.
- •The Root Mean Square Error value while using the testing set is 0.1785.

Conclusion & Recommendations

Uber should be able to specifically increase services on:

- Holidays
- Clear Weather
- 6:00 PM

Areas of Further Study

- How do the features in the linear regression model relate to public transportation usage?
- What areas of New York City experience more Uber pickups?
- How do MTA delays and service changes affect Uber ridership?