Hallgató neve:	NEPTUN kódja:	
Gyakorlatvezető neve:	Gyak. Csop. Száma:	
	Gyak. Kezdési időpontja:	

1. FELADAT

<u>Kirchoff hurok törvényének</u> alkalmazásával határozza meg a hálózati elemek paramétereit (feszültség, áram, teljesítmény)!

(1.1) Írja fel az egyes hurkokra vonatkozó egyenleteket! (20 pont)

$$I_1: \qquad 6I_1 + 2I_1 + 4\left(I_1 - I_2\right) + V_s = \emptyset$$

I2:
$$8I_2 + 4I_2 - 3V_x - V_s + 4(I_2 - I_1) = \phi$$

(1.2) Határozza meg az áramköri elemek feszültségét, áramát és teljesítményét, ha $V_S = 12 \text{ V}!$ (70 pont)

$R_{6\Omega}$	5,68V (R.I)	0,954 (I1)	5,396W
$R_{2\Omega}$	1,5V (RI)	0,95A (In)	1, 805 W
$R_{4\Omega}$ baloldali	4,44V (Q-I)	1,11A (I1-I2)	4,9284W
$R_{8\Omega}$	1,264 (Q I)	0,158A (IZ)	0, 199W
$R_{4\Omega}$ jobboldali	0,632~ (1)	0,1581 (Jz)	0,035W
Vs	12 V	1,11A (Iz)	13,32 W
3V _X	5,7v (3.Rza.I1)	0,1584 (Iz)	0,9 W

Hallgató neve:	NEPTUN kódja:
Gyakorlatvezető neve:	Gyak. Csop. Száma:
	Gyak. Kezdési időpontja:

(1.3) Hogyan változik I_2 hurokáram értéke, ha $V_S = 24$ V-ra változtatjuk? (10 pont)

$$I_2 \dots v$$
áltozik: $I_2 = \frac{V_s}{76}$ miatt ha V_s duplazódik, akkor I_2 is duplaja lerz.

Mo:
$$I_2$$
 humblegrenlet
$$-4I_1 + 16I_2 - 3V_x - V_s = 0$$
Anol $V_x = 2I_1$

$$5 - 10I_1 + 16I_2 - V_s = 0$$

$$+ 12I_1 - 4I_2 + V_s = 0$$

$$= I_1 = -6I_2 \quad (-Vissal helyettesitem I_1 EGY.-BE$$

$$-76I_2 + V_s = 0$$

$$= I_2 = \frac{V_s}{7C}$$

Hallgató neve:	NEPTUN kódja:
Gyakorlatvezető neve:	Gyak. Csop. Száma:
	Gyak. Kezdési időpontja:

2. FELADAT

Csomóponti potenciálok módszerének alkalmazásával válaszoljon a kérdésekre!

- (2.1) Egyértelműen definiálja (RAJZOLJA BE az ábrán) a csomópontokat (földpontok és csomópontok optimális kiválasztása) és az ágáramok irányát! (10 pont)
- (2.2) Írja fel a csomóponti potenciálok módszeréhez használt szükséges és elégséges darabszámú egyenleteket! (30 pont)

$$V_{1}: \frac{V_{1}-0}{2} + I + \frac{V_{1}-V_{2}}{10} - 2 = 0$$

$$V_{2}: \frac{V_{2}-0}{4} + 7 - \frac{V_{1}-V_{2}}{10} - I = 0$$

$$V_{1} + 2 = V_{2}$$

A kérdések folytatódnak a következő oldalon!

Hallgató neve:	NEPTUN kódja:
Gyakorlatvezető neve:	Gyak. Csop. Száma:
	Gyak. Kezdési időpontja:

(2.3) Határozza meg az áramköri elemeken eső feszültségeket és áramokat a 2.1 pontban meghatározott referenciairányoknak megfelelően! (50 pont)

	V	A _
$R_{2\Omega}$	J -7,333V (V1)	- 3,666 A ()
$ m R_{4\Omega}$	↓ -5,333V (V2)	-1,333 A (V)
$R_{10\Omega}$	\Rightarrow -2 \vee $(\vee_1 - \vee_2)$	- 0,2A (\frac{\firec{\frac{\fin}}}{\frac{\fin}}}{\frac{\fin}}}}{\fint}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}{\frac{\frac{\fin}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\fir}}}{\fi}}}}}}}{\frac{\frac{\firint{\frac{\fir}{\firac{\fir}{\firighta}}}
feszültségforrás	2 V	5,86A (IR2+IR10)
2A áramforrás	V -7,333V (V4)	2 A
7A áramforrás	↓ -5,333V (V2)	7 A

(2.4) Hogyan módosítja a feszültségértékeket, ha a 10 Ω -os ellenállást 3,33 Ω -ra változtatjuk? (10 pont)

Mo.:
$$V_1$$
 es V_2 - re vonation eggen leteket ossue active
$$\frac{V_1}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_1}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_2}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_2}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_3}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} + 7 - 2 = 0$$

$$\frac{V_4}{2} + \frac{V_2}{4} +$$

Hallgató neve:	NEPTUN kódja:
Gyakorlatvezető neve:	Gyak. csop. száma:
	Gyak. kezdési időpontja:

4. FELADAT

Az alábbi áramkörben a már nagyon régóta az (1) állásban lévő K kapcsolót a t=0 s időpillanatban átkapcsoljuk a (2) állásba. A megadott mérőirány mellett határozza meg a C kondenzátoron mért $v_C(t)$ feszültséget az impedancia módszer segítségével. A feladatot az impedancia módszer alkalmazásával kell megoldani, más megoldás nem kerül elfogadásra.

(4.1) Rajzolja fel az analizálandó, t > 0 s tartományra érvényes kapcsolási rajzot, és azon "a" és " \mathbf{b} " betűkkel azonosítva jelölje be azt a kapocspárt, amelyre az impedanciamódszert alkalmazni kell. (10 pont)

(4.2) Mértékegységével egyetemben írja fel a választott a-b kapocspárra vonatkozó impedancia értékét. (20 pont)

$$Z_{a-b} = (P_2 + P_3) || \frac{1}{sC} = \frac{P_2 + P_3}{1 + s(P_2 + P_3)C} \qquad J2$$

$$\frac{P_1}{r} = \frac{1}{sC} = \frac{1}{sC} || \frac{1}{sC} = \frac{P_2 + P_3}{1 + s(P_2 + P_3)C} || \frac{1}{sC} = \frac{1}{sC} = \frac{1}{sC} || \frac{1}{sC} = \frac{1}{sC} = \frac{1}{sC} || \frac{1}{sC} = \frac{1}{sC} = \frac{1}{sC} = \frac{1}{sC} || \frac{1}{sC} = \frac{1}$$

(4.3) Az impedanciamódszer alkalmazásával és a megadott mérőirányok mellett írja fel a tranziens megoldást. (10 pont)

$$v_C^{TR}(t) = A \exp \left(-\frac{t}{(R_2 + R_3)c}\right) V$$

(4.4) Az impedanciamódszer alkalmazásával és a megadott mérőirányok mellett írja fel az állandósult állapotra vonatkozó megoldást. (10 pont)

$$v_C^{\acute{A}\acute{A}}(t) = 0 \text{ V}$$

(4.5) Határozza meg a kezdeti feltétel értékét, és a megadott mérőirányok mellett írja fel a $v_C(t)$ -re vonatkozó teljes megoldást, valamint annak értelmezési tartományát. (20 pont)

$$v_{C}(t) = 5e^{-\frac{t}{2}} - \frac{t}{2}$$
 $v_{C}(t) = 5e^{-\frac{t}{2}} + 0 = 5e^{-\frac{t}{2}}$
 $t > 0$

(4.6) A kapott megoldás és a fizikai kép alapján rajzolja fel $v_C(t)$ alakját a $-5~\mathrm{ms} \le t \le 5~\mathrm{ms}$ időtartományban. (20 pont)

(4.7) Adja meg az áramkör t>0 s időtartományban érvényes időállandóját és annak mértékegységét. (10 pont)

$$\tau = (R_2 + R_3)C = -\frac{1}{s_1} = 1 \text{ ms}$$

ALLANDS SULT: DC GERT => S=0 ES 1=0 => UC = Zab(0)·1 = (R2+R3)·0 = oV

HA tCO AKFOR K (1) ALLLANBAN VAN EV UC(0-)=V=5V

OC(F) FOLYTOMOSI de Abol:

FOLYTOMOSS
$$d \in AbbL$$
:
$$U_{c}(0+) = A \exp\left(-\frac{t}{2}\right)\Big|_{t=0+} = A = C_{c}(0-) = V = 5V$$

$$A = \sigma_c(0+) = \sigma_c(0-) = 5V$$