Теория множеств

Задача 1.1. Выучите греческий алфавит¹.

Греческий алфавит					
Α, α	альфа	Ι, ι	йота	Ρ, ρ	po
Β, β	бета	Κ, κ	каппа	Σ, σ	сигма
Γ, γ	гамма	Λ, λ	лямбда	Τ, τ	тау
Δ, δ	дельта	M, μ	МЮ	Υ, υ	ипсилон
Ε, ε	эпсилон	Ν, ν	ню	Φ, φ, φ	фи
Ζ, ζ	дзета	Ξ, ξ	кси	Χ, χ	ХИ
Η, η	эта	О, о	омикрон	Ψ, ψ	пси
Θ, θ	тета	Π , π	пи	Ω, ω	омега

Математические утверждения можно записывать формальным языком, какие-то из этих утверждений верны, какие-то нет. Какие-то выражают "глобальные" утверждения, какие-то говорят о конкретных объектах.

Задача 1.2. Записать (как можно более) формальным языком следующие утверждения, указать, какие из них верны:

- а) Любое число больше двух.
- b) Существует неограниченно большое число.
- с) р простое число
- d) Существует самое большое простое число.
- е) Объединение непустых множеств непусто.
- f) Пересечение непустых множеств непусто.

Определение 1. Функция $f: A \to B$ называется интективной или интекцией, если она переводит различные элементы в различные:

$$x \neq y \implies f(x) \neq f(y).$$

¹Инструкции по написанию греческих букв от руки можно найти, например, здесь: https://www.foundalis.com/lan/hw/grkhandw.htm

Функция $f: A \to B$ называется сторъективной или сторъекцией или отображением на, если она переводит множество A "на всё" множество B, более формально: для любого b из B есть элемент a из A который посредством f переводится в b (также это можно записать как $\operatorname{Im} f = B$:

$$\forall b \in B \ \exists a \in A \ f(a) = b.$$

Функция $f: A \to B$ называется биективной или биекцией или взаимно-однозначным соответствием, если она является и инъекцией, и сюръекцией.

Задача 1.3. Являются ли следующие композиции функций инъективными или сюръективными:

- а) двух инъективных
- b) двух сюръективных
- с) инъективной и сюръективной
- d) сюръективной и инъективной?

Сделайте вывод о композиции биекций.

Задача 1.4. Пусть $A_i = \{i, i+1\}$ (например, $A_{23} = \{23, 24\}$), найдите количество элементов следующих множеств:

- a) $\bigcup_{i=1}^{\infty} A_i$
- b) $\bigcap_{i=1}^{\infty} A_i$

Задача 1.5 (Законы де Моргана). Докажите, что для любых множеств A_i, B, C верно

$$C \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (C \setminus A_i)$$

Задача 1.6. Докажите, что разбиение множества $A = \sqcup_i B_i$ на непересекающиеся множества

$$\forall i \forall j \ i \neq j \ B_i \cap B_j = \emptyset$$

задает отношение эквивалентности на множестве A. Что является фактормножеством по этому отношению эквивалентности A/\sim ?

Задача 1.7. Пусть множество A содержит 2023 элемента, каких подмножеств у него больше: 1011-элементных или же 1012-элементных?

Указание. 1011 + 1012 = 2023.

Определение 2. Множество A называется счётным, если оно равномощно множеству натуральных чисел $\mathbb{N} = \{1, 2, 3, \dots\}$.

Задача 1.8. Счетно ли множество рациональных чисел \mathbb{Q} ? Счетно ли множество $\mathbb{N} \times \mathbb{N}$?

Определение 3. Замкнутым отрезком (интервалом) называется множество $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$. Интервалом (иногда говорят *открытым* интервалом) называется множество $(a,b) = \{x \in \mathbb{R} | a < x < b\}$, то есть это отрезок без его крайних точек.

Задача 1.9. * Докажите, что замкнутый отрезок и открытый интервал равномощны.

Указание. Рассмотрите отображение $f: \frac{1}{2^n} \mapsto \frac{1}{2^{n+1}}$.

Задача 1.10. Почему в определении множества не учитывается кратность вхождения элементов?

Задача 1.11. Сколько существует подмножеств у множества из n элементов?

Указание. Если $A \subset B$, то характеристической функцией подмножества A называется функция $\chi_A : B \longrightarrow \{$ да, нет $\}$ в двухэлементное множество, которая на элементах множества A равна "да", на всех остальных элементах равна "нет". Рассмотрите такие функции.

Задача 1.12. * Пусть $f:A\to B$ инъекция, а $g:B\to A$ сюръекция. Докажите, что между A и B существует биекция.

Задача 1.13. Как имея формулу ϕ , записанную формальным языком, получить формулу, выражающую отрицание формулы ϕ ?