HOW TO PROVE IT: CHAPTER 3

Kyle Stratton

These are the exercises for Chapter 3 from the third edition of *How to Prove It* by Daniel J. Velleman. They are numbered (Chapter).(Section).(Exercise).

3.1.1. Consider the following theorem. (This theorem was proven in the introduction.)

Theorem 1. Suppose n is an integer larger than 1 and n is not prime. Then $2^n - 1$ is not prime.

- (1) Identify the hypotheses and the conclusion of the theorem. Are the hypotheses true when n = 6? What does the theorem tell you in this instance? Is it right?
- (2) What can you conclude from the theorem in the case n = 15? Check directly that this conclusion is correct.
- (3) What can you conclude from the theorem in the case n = 11?

Proof.

3.1.2. Consider the following theorem. (The theorem is correct, but we will not ask you to prove it here.)

Theorem 2. Suppose that $b^2 > 4ac$. Then the quadratic equation $ax^2 + bx + c = 0$ has exactly two real solutions.

- (1) Identify the hypotheses and conclusion of the theorem.
- (2) To give an instance of the theorem, you must specify values for a, b, and c, but not x. Why?
- (3) What can you conclude from the theorem in the case a=2, b=-5, c=3? Check directly that this conclusion is correct.
- (4) What can you conclude from the theorem in the case a = 2, b = 4, c = 3?

Proof. \Box

3.1.3. Consider the following incorrect theorem.

Theorem 3. Suppose n is a natural number larger than 2, and n is not a prime number. Then 2n + 13 is not a prime number.

What are the hypotheses and conclusion of this theorem? Show that the theorem is incorrect by finding a counterexample.

Proof. \Box

3.1.4. Complete the following alternative proof of the theorem in Example 3.1.2.

Theorem 4. Suppose a and b are real numbers. If 0 < a < b then $a^2 < b^2$.

Date: July 9, 2020.

Proof. Suppose $0 < a < b$. Then $b - a > 0$. [Fill in a proof of $b^2 - a^2 > 0$ here.] Since $b^2 - a^2 > 0$, it follows that $a^2 < b^2$. Therefore, if $0 < a < b$ then $a^2 < b^2$.
Proof.
3.1.5. Suppose a and b are real numbers. Prove that if $a < b < 0$ then $a^2 > b^2$.
Proof.
3.1.6. Suppose a and b are real numbers. Prove that if $0 < a < b$ then $1/b < 1/a$.
Proof.
3.1.7. Suppose a is a real number. Prove that if $a^3 > a$ then $a^5 > a$. (<i>Hint: One approach is to start by completing the following equation:</i> $a^5 - a = (a^3 - a) \cdot \underline{?}$.)
Proof.
3.1.8. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.
Proof.
3.1.9. Suppose $A \cap B \subseteq C \setminus D$. Prove that if $x \in A$, then if $x \in D$ then $x \notin B$.
Proof.
3.1.10. Suppose a and b are real numbers. Prove that if $a < b$ then $(a + b)/2 < b$.
Proof.
3.1.11. Suppose x is a real number and $x \neq 0$. Prove that if $(\sqrt[3]{x} + 5)/(x^2 + 6) = 1/x$ then $x \neq 8$.
Proof.
3.1.12. Suppose a, b, c , and d are real numbers, $0 < a < b$, and $d > 0$. Prove that if $ac \ge bd$ then $c > d$.
Proof.
3.1.13. Suppose x and y are real numbers, and that $3x + 2y \le 5$. Prove that if $x > 1$ then $y < 1$.
Proof.
3.1.14. Suppose x and y are real numbers. Prove that if $x^2 + y = -3$ and $2x - y = 2$ then $x = -1$.
Proof.
3.1.15. Prove the first theorem in Example 3.1.1.

Theorem 5. Suppose x > 3 and y < 2. Then $x^2 - 2y > 5$.

(Hint: You might find it useful to apply the theorem from Example 3.1.2, which stated that if a and b are real numbers such that 0 < a < b, then $a^2 < b^2$.)

Proof.		
3.1.16	. Consider the following theorem.	
Theor	rem 6. Suppose x is a real number and $x \neq 4$. If $(2x-5)/(x-4) = 3$ then $x = 7$.	
(1)	What is wrong with the following proof of the theorem?	
	<i>Proof.</i> Suppose $x = 7$. Then $(2x - 5)/(x - 4) = (2 \cdot 7 - 5)/(7 - 4) = 9/3 = 3$. Therefore if $(2x - 5)/(x - 4) = 3$ then $x = 7$.	}. _
(2)	Give a correct proof of the theorem.	
Proof.		
3.1.17	Consider the following incorrect theorem.	
Theor	rem 7. Suppose that x and y are real numbers and $x \neq 3$. If $x^2y = 9y$ then $y = 0$.	
(1)	What's wrong with the following proof of the theorem?	
	<i>Proof.</i> Suppose that $x^2y = 9y$. Then $(x^2-9)y = 0$. Since $x \neq 3$, $x^2 \neq 9$, so $x^2-9 \neq 0$. Therefore we can divide both sides of the equation $(x^2-9)y = 0$ by x^2-9 , which leads to the conclusion that $y = 0$. Thus, if $x^2y = 9y$ then $y = 0$.). h]
(2)	Show that the theorem is incorrect by finding a counterexample.	
Proof.		
3.2.1.		
Proof.		
3.2.2.		
Proof.		
3.2.3.		
Proof.		
3.2.4.		
Proof.		
3.2.5.		
Proof.		
3.2.6.		
Proof.		
3.2.7.		
Proof.		
3.2.8.		

Proof.	
3.2.9.	
Proof.	
3.2.10.	
Proof.	
3.2.11.	
Proof.	
3.2.12.	
Proof.	
3.2.13.	
Proof.	
3.2.14.	
Proof.	
3.2.15.	
Proof.	
3.2.16.	
Proof.	
3.2.17.	
Proof.	
3.2.18.	
Proof.	
3.3.1.	
Proof.	
3.3.2.	
Proof.	
3.3.3.	
Proof.	
3.3.4.	
Proof.	
3.3.5.	

Proof.	
3.3.6.	
Proof.	
3.3.7.	
Proof.	
3.3.8.	
Proof.	
3.3.9.	
Proof.	
3.3.10.	
Proof.	
3.3.11.	
Proof.	
3.3.12.	
Proof.	
3.3.13.	
Proof.	
3.3.14.	
Proof.	
3.3.15.	
Proof.	
3.3.16.	
Proof.	
3.3.17.	
Proof.	
3.3.18.	
Proof.	
3.3.19.	
Proof.	
3.3.20.	

Proof.	
3.3.21.	
Proof.	
3.3.22.	
Proof.	
3.3.23.	
Proof.	
3.3.24.	
Proof.	
3.3.25.	
Proof.	
3.3.26.	
Proof.	
3.4.1.	
Proof.	
3.4.2.	
Proof.	
3.4.3.	
Proof.	
3.4.4.	
Proof.	
3.4.5. <i>Proof.</i>	
3.4.6. <i>Proof.</i>	
3.4.7.	
Proof.	
3.4.8. <i>Proof.</i>	
3.4.9.	
J.4.J.	

Proof.	
3.4.10.	
Proof.	
3.4.11.	
Proof.	
3.4.12.	
Proof.	
3.4.13.	
Proof.	
3.4.14.	
Proof.	
3.4.15.	
Proof.	
3.4.16.	
Proof.	
3.4.17.	
Proof.	
3.4.18.	
Proof.	
3.4.19.	
Proof.	
3.4.20.	
Proof.	
3.4.21.	
Proof.	
3.4.22.	
Proof.	
3.4.23.	
Proof.	
3.4.24.	

Proof.	
3.4.25.	
Proof.	
3.4.26.	
Proof.	
3.4.27.	
Proof.	
3.5.1.	
Proof.	
3.5.2.	
Proof.	
3.5.3.	
Proof.	
3.5.4.	
Proof.	
3.5.5.	
Proof.	
3.5.6.	
Proof.	
3.5.7.	
Proof.	
3.5.8.	
Proof.	
3.5.9.	
Proof.	
3.5.10.	
Proof.	
3.5.11.	
Proof.	
3.5.12.	

Proof.	
3.5.13.	
Proof.	
3.5.14.	
Proof.	
3.5.15.	
Proof.	
3.5.16.	
Proof.	
3.5.17.	
Proof.	
3.5.18.	
Proof.	
3.5.19.	
Proof.	
3.5.20.	
Proof.	
3.5.21.	
Proof.	
3.5.22.	
Proof.	
3.5.23.	
Proof.	
3.5.24.	
Proof.	
3.5.25.	
Proof.	
3.5.26.	
Proof.	
3.5.27.	

Proof.	
3.5.28.	
Proof.	
3.5.29.	
Proof.	
3.5.30.	
Proof.	
3.5.31.	
Proof.	
3.5.32.	
Proof.	
3.5.33.	
Proof.	
3.6.1.	
Proof.	
3.6.2.	
Proof.	
3.6.3.	
Proof.	
3.6.4.	
Proof.	
3.6.5.	
Proof.	
3.6.6.	
Proof.	
3.6.7.	
Proof.	
3.6.8.	
Proof.	
3.6.9.	

Proof.	
3.6.10.	
Proof.	
3.6.11.	
Proof.	
3.6.12.	
Proof.	
3.6.13.	
Proof.	
3.7.1.	
Proof.	
3.7.2.	
Proof.	
3.7.3.	
Proof.	
3.7.4.	
Proof.	
3.7.5.	
Proof.	
3.7.6.	
Proof.	
3.7.7.	
Proof.	
3.7.8.	
Proof.	
3.7.9.	
Proof.	
3.7.10.	
Proof.	