Variáveis aleatórias discretas

Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

15/03/2018

Sumário

- Introdução
- Variáveis aleatórias discretas
- Modelos discretos
 - Principais modelos
 - Outros modelos
- Exercícios recomendados

Variáveis aleatórias

Em probabilidade, uma função X que associa a cada evento do espaço amostral um número real $X(\omega) \in \mathbb{R}$, é denominada uma **variável aleatória** (VA).

Uma variável aleatória pode ser classificada como discreta ou contínua, dependendo do domínio dos valores de X.

Exemplo: o número de alunos em uma sala é uma variável aleatória (discreta), denotada por X (maiúsculo). Uma observação dessa variável é denotada pela respectiva letra minúscula, e.g., x=50 alunos.

Em geral, denotamos a probabilidade de uma V.A. X assumir determinado valor x como

$$P[X]$$
 ou $P[X = x]$

Variáveis aleatórias

Dada a realização de um experimento aleatório qualquer, com um certo espaço de probabilidade, desejamos estudar a **estrutura probabilística** de quantidades associadas à esse experimento.

Note que antes da realização de um experimento, **não sabemos seu resultado**, entretanto seu espaço de probabilidade pode ser previamente estabelecido.

Dessa forma, podemos atribuir probabilidades aos *eventos* desse espaço amostral, dando origem ao conceito de **variável aleatória**.

Distribuições de probabilidade

Existem diversos *modelos probabilísticos* que procuram descrever vários tipos de variáveis aleatórias: são as **distribuições de probabilidade de variáveis aleatórias** (discretas ou contínuas).

A distribuição de probabilidades de uma VA X é, portanto, uma descrição das probabilidades associadas com os possíveis valores de X. Os valores que X assume determinam o **suporte** (S) da VA.

- Variáveis discretas → suporte em um conjunto de valores enumeráveis (finitos ou infinitos)
- Variáveis contínuas → suporte em um conjunto não enumerável de valores

Distribuições de probabilidade

Denomina-se de **distribuição de probabilidade** de alguma variável aleatória, a **regra** geral que define a

- função de probabilidade (fp) (V.A.s discretas), ou a
- função densidade de probabilidade (fdp) (V.A.s contínuas)

para a variável de interesse.

Existem muitas distribuições de probabilidade, mas algumas merecem destague por sua importância prática.

Estas distribuições também são chamadas de modelos probabilísticos.

Sumário

- Introdução
- Variáveis aleatórias discretas
- Modelos discretos
 - Principais modelos
 - Outros modelos
- 4 Exercícios recomendados

Definição

A função de probabilidade (fp) da VA discreta X, que assume os valores $x_1, x_2, \ldots, x_n, \ldots$, é a função que atribui probabilidades a cada um dos possíveis valores: $\{[x_i, p(x_i)], i = 1, 2, \ldots\}$, ou seja,

$$P[X = x_i] = p(x_i) = p_i, \quad i = 1, 2, ...$$

com as seguintes propriedades:

A probabilidade de cada valor deve estar entre 0 e 1

$$0 \leq p(x_i) \leq 1, \quad \forall i = 1, 2, \dots$$

A soma de todas as probabilidades é igual a 1

$$\sum_{i} p(x_i) = 1$$

Exemplo

Experimento

Lançamento de duas moedas. X = número de resultados cara (C)

Exemplo

Podemos montar uma tabela de distribuição de frequência para a variável aleatória X= número de resultados cara (C)

X	Frequência (f_i)	Frequência relativa (fr _i)
0	1	1/4
1	2	2/4
2	1	1/4
Total	4	1

Assim podemos associar a cada valor de X sua **probabilidade** correspondente, como resultado das **frequências relativas**

$$P[X = 0] = 1/4$$

 $P[X = 1] = 2/4 = 1/2$
 $P[X = 2] = 1/4$

Exemplo

Dessa forma, a distribuição de probabilidade da variável aleatória X= número de resultados cara (C) é a tabela

X	$P[X=x_i]=p(x_i)$
0	1/4
1	1/2
2	1/4
Total	1

Repare que as propriedades da função de probabilidade estão satisfeitas:

- As probabilidades $p(x_i)$ estão entre 0 e 1
- **a** A soma de todas as probabilidades $p(x_i)$ é 1

Exemplo 3.1 (livro)

Com dados do último censo, a assistente social de um Centro de Saúde constatou que para as famílias da região, 20% não tem filhos, 30% tem um filho, 35% tem dois, e as restantes se dividem igualmente entre três, quatro ou cinco filhos.

Descreva a função de probabilidade da VA N definida como número de filhos.

Exemplo 3.2 (livro)

Na construção de um certo prédio, as fundações devem atingir 15 metros de profundidade e, para cada 5 metros de estacas colocadas, o operador anota se houve alteração no ritmo de perfuração previamente estabelecido. Essa alteração é resultado de mudanças para mais ou para menos, na resistência do subsolo.

Nos dois casos, medidas corretivas serão necessárias, encarecendo o custo da obra. Com base em avaliações geológicas, admite-se que a probabilidade de ocorrência de alterações é de 0.1 para cada 5 metros.

O custo básico inicial é de 100 UPC (unidade padrão de construção) e será acrescida de 50k, com k representando o número de alterações observadas. Como se comporta a va custo das obras de fundações?

Função de distribuição de probabilidade

Em muitas situações, é útil calcularmos a probabilidade **acumulada** até um certo valor.

Definimos a **função de distribuição** ou **função acumulada de probablidade** de uma VA *X* pela expressão:

$$F(x) = P(X \le x)$$

para qualquer número real x.

Exemplo 3.5 (livro)

Uma população de 1000 crianças foi analisada num estudo para determinar a efetividade de uma vacina contra um tipo de alergia.

No estudo, as crianças recebiam uma dose da vacina e, após um mês, passavam por um novo teste. Caso ainda tivessem tido alguma reação alérgica, recebiam outra dose da vacina. Ao fim de 5 doses todas as crianças foram consideradas imunizadas.

Os resultados completados estão na tabela a seguir.

	1	2	3	4	5
Freq.	245	288	256	145	66

Para uma criança sorteado ao acaso qual a probabilidade dela ter recebido 2 doses? E até 2 doses?

Exemplo 3.5 (livro)

Tabela de frequência:

	n _i	f _i	f_{ac}
1	245	0.245	0.245
2	288	0.288	0.533
3	256	0.256	0.789
4	145	0.145	0.934
5	66	0.066	1.000
Sum	1000	1.000	

Grafico de F(x):

Exemplo 3.5 (livro)

Assim,

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = 0,533$$

Note que podemos escrever

$$F(x) = P(X \le x) = 0,533$$
 para $2 \le x < 3$

E os valores completos da função de distribuição são:

$$F(x) = \begin{cases} 0 & \text{se } x < 1 \\ 0,245 & \text{se } 1 \le x < 2 \\ 0,533 & \text{se } 2 \le x < 3 \\ 0,789 & \text{se } 3 \le x < 4 \\ 0,934 & \text{se } 4 \le x < 5 \\ 1 & \text{se } x \ge 5 \end{cases}$$

Sumário

- Introdução
- Variáveis aleatórias discretas
- Modelos discretos
 - Principais modelos
 - Outros modelos
- 4 Exercícios recomendados

Modelo Uniforme Discreto

Seja X uma VA cujos possíveis valores são representados por x_1, x_2, \ldots, x_k . Dizemos que X segue o modelo Uniforme Discreto se atribui a mesma probabilidade 1/k a cada um desses k valores.

Sua função de probabilidade é dada por

$$P(X = x_j) = 1/k, \forall j = 1, 2, ..., k.$$

Exemplo 3.7 (livro)

Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25 e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem tem maior possibilidade de ser sorteado?

Modelo Bernoulli

Definição: Uma variável aleatória X segue o modelo Bernoulli se assume apenas os valores 0 (fracasso'') ou 1 (sucesso''). Sua função de probabilidade é dada por

$$P[X = x] = p^{x}(1-p)^{1-x}, \qquad x = 0, 1$$

onde o parâmetro $0 \le p \le 1$ é a probabilidade de sucesso.

Notação: $X \sim \text{Ber}(p)$

Modelo Bernoulli

Modelo Bernoulli

Dizemos que uma variável X segue o modelo Bernoulli se atribui 0 ou 1 à ocorrência de fracasso ou sucesso, respectivamente.

Sendo, p a probabilidade de sucesso, $0 \le p \le 1$, sua função de probabilidade é dada por

$$P(X = x) = p^{x}(1-p)^{1-x}, \quad x = 0, 1.$$

Exemplo 3.8 (livro): Sabe-se que a eficiência de uma vacina é de 80%. Um grupo de três indivíduos é sorteado, dentre a população vacinada, e submetido a testes para averiguar se a imunização foi efetiva, evento representado por *I*. Determine o comportamento da VA número de indivíduos imunizados neste grupo.

Modelo Binomial

Considere a repetição de n ensaios de Bernoulli independentes e todos com a mesma probabilidade de sucesso p.

A VA que conta o número total de sucessos é denominada Binomial com parâmetros n e p e sua função de probabilidade é dada por

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n,$$

onde

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Notação: $X \sim b(n, p)$.

Calculando probabilidades baseadas na Binomial.

[1] 0.141894

[1] 0.002 0.017 0.064 0.142 0.213 0.227 0.177 0.101 0.042 0.012 0.002 0.000

[13] 0.000

Exemplo 3.9 (livro)

O escore de um teste internacional de proficiência na língua inglesa varia de 0 a 700 pontos, com mais pontos indicando um melhor desempenho. Informações, coletadas durante vários anos, permite estabelecer o seguinte modelo para o desempenho no teste:

Pontos	[0, 200)	[200, 300)	[300, 400)	[400, 500)	[500, 600)	[600, 700)
pi	0.06	0.15	0.16	0.25	0.28	0.10

Várias universidades americanas, exigem um escore mínimo de 600 pontos para aceitar candidatos de países de língua não inglesa. De um grande grupo de estudantes brasileiros que prestaram o último exame, escolhemos ao acaso 20 deles. Qual é a probabilidade de no máximo 3 atenderem ao requisito mínimo?

Exemplo 3.9 (livro)

Um veterinário está estudando o índice de natalidade em porcos à inseminação artificial. Para tal, coletou informações sobre a variável número de filhotes nascidos vivos em cada uma das 100 inseminações realizadas com o mesmo reprodutor. A tabela a seguir apresenta os resultados.

Número & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \ Freq. Obs. & 1 & 6 & 7 & 23 & 26& 21 & 12 & 3 & 1 \

O veterinário informa que 11 ou mais filhotes nascidos vivos é uma ocorrência muito rara e pode ser desprezada em termos do modelo. Ele sugeriu que a variável N: número de filhotes nascidos vivos, poderia ser ajustada pelo modelo Binomial com parâmetros n=10 e p=0.5. O que você acha da sugestão do veterinário?

Exemplo 3.9 (livro)

Usando o R temos.

```
#
       Obs Esp
  [1,]
         0 0.1
  [2,]
       1 1.0
  [3,]
         6 4.4
  [4,]
        7 11.7
  [5,]
        23 20.5
  [6,]
        26 24.6
  [7,]
        21 20.5
  [8,]
        12 11.7
  [9,]
       3 4.4
# [10,]
       1 1.0
# [11,]
         0 0.1
```

Modelo Geométrico

- Número de ensaios Bernoulli até o primeiro sucesso.
- X tem distribuição Geométrica de parâmetro p, se sua função de probabilidade tem a forma

$$P(X = k) = p(1 - p)^k$$
, $0 \le p \le 1$, e $k = 0, 1, ...$

• Exemplo 3.11: Uma linha de produção está sendo analisada para efeito de controle da qualidade das peças produzidas. Tendo em vista o alto padrão requerido, a produção é interrompida para regulagem toda vez que uma peça defeituosa é observada. Se 0.01 é a probabilidade da peça ser defeituosa, estude o comportamento da variável Q, quantidade de peças boas produzidas antes da primeira defeituosa.

- $P(Q = k) = 0.01*0.99^k$
- Usando o R temos

[1] 0.0099

Modelo Poisson

• X tem distribuição Poisson com parâmetro $\lambda > 0$, se sua função de probabilidade é dada por

$$P(X = k) = \frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k = 0, 1, 2,$$

• Notação: $X \sim Po(\lambda)$.

A emissão de partículas radioativas têm sido modelada através de uma distribuição de Poisson, com o valor do parâmetro dependendo da fonte utilizada.

Suponha que o número de partículas alfa, emitidas por minuto, seja uma variável aleatória seguindo o modelo Poisson com parâmetro 5, isto é, a taxa média de ocorrência é de 5 emissões a cada minuto.

Calcule a probabilidade de haver mais de 2 emissões em um minuto.

$$P(A > 2) = \sum_{a=3}^{\infty} P(A = a) = 1 - \sum_{a=0}^{2} P(A = a)$$
$$= 1 - \sum_{a=0}^{2} \frac{e^{-5}5^{a}}{a!} = 0.875$$

Em R temos

[1] 0.875348

Engenheiros da companhia telefônica estudam se o modelo de Poisson com taxa de ocorrência de 4.5 chamadas por hora pode ser ajustado ao número N de chamadas interestaduais que chegam por hora, a uma central telefônica, durante o período noturno. Os dados coletados referentes a 650 períodos de uma hora, estão apresentados abaixo. Analise se esta suposição é razoável.

```
0bs
                Esp
Γ1. ]
           7.220848
[2,]
      38
          32.493815
          73.111083
Γ4.7 115 109.666625
[5,] 125 123.374953
Γ6. 7 106 111.037458
      79 83.278094
      50 53.535917
Γ9.7
          56.281207
      57
```

Modelo hipergeométrico

Considere um conjunto de n objetos dos quais m são do tipo I e n-m são do tipo II. Para um sorteio de r objetos r < n, feito ao acaso e sem reposição, defina X como o número de objetos de tipo I selecionados. Diremos que a va X segue o modelo Hipergeométrico e sua função de probabilidade é dada por

$$P(X = k) = \frac{\binom{m}{k} \binom{n-m}{r-k}}{\binom{n}{r}}, \quad k = \max(0, r - (n-m)), ..., \min(r, m).$$

• Uma fábrica produz peças que são embaladas em caixas com 25 unidades. Para aceitar o lote enviado por essa fábrica, o controle de qualidade de uma empresa procede da seguinte forma: Sorteia uma caixa do lote e, em seguida sorteia cinco peças, sem reposição, dessa mesma caixa. Se constatar no máximo duas defeituosas, aceita o lote fornecido pela fábrica. Se a caixa sorteada tivesse 4 peças defeituosas, qual seria a probabilidade de rejeitar o lote?

Sumário

- Introdução
- Variáveis aleatórias discretas
- Modelos discretos
 - Principais modelos
 - Outros modelos
- Exercícios recomendados

Exercícios recomendados

- Seção 3.1 3,5 e 6.
- Seção 3.2 2,3,5 e 6.
- Seção 3.3 1, 2, 3, 4, 5 e 6.