אלגברה לינארית 2

תוכן העניינים

3	מרחבי מכפלת פנימית	1
3	${\mathbb R}$ הגדרה של מכפלה פנימית מעל פער תעל ארוברה של מכפלה פנימית מעל	
4	\mathbb{R} דוגמאות של מכפלה פנימית מעל	
5	${\mathbb R}$ המכפלות הפנימיות העיקריות מעל	
7	oxdotsמרחב מכפלה פנימית מעל $oxdots$	
7	דוגמאות של מרחבים אוניטריים	
9		
9	דוגמאות של הנורמה	
11	משפט פיתגורס, משפט קושי שוורץ, אי-שוויון משולש	
13	אורתוגונליות	
17	* העשרה: סכום ריבועי האלכסונים של במקבילית שווה לסכום ריבועי הצלעות של	
19	בסיסים אורתוגונליים	1 2
19	בסיסים אורתוגונליים	
26	אופרטור הטלה האורתוגונלי	
29	תהליך גרם שמידט	
34	*העשרה: משמעות גיאומטרית של ההיטל	
34	* העשרה: משפט קיום בסיס אורתוגונלי	
36	ערכים עצמיים ווקטוירם עצמיים	, 3
36		
43	לכסון של מטריצה	
45	ערכים עצמיים של טרנספורמציות לינאריות	
57	שימושים של לכסון מטריצה	
61	משפטים נוספים הקשורים ללכסון של מטריצה	
64) 4
64	•	
67	1 -	
73	איפוס פולינום על ידי מטריצה	
75	איפוס פולינום על ידי העתקה לינארית	
76		
80		
83	· · · · · · · · · · · · · · · · · · ·	
87	\dots משפטים: חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה \dots	

90	וש מטריצה	5 שילו
90	מטריצה משולשית עילית	
93	העתקות לינאריות ניתנות לשילוש	
93	תת מרחבים שמורים (אינווריאנטיים)	
94	*העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים	
96	*אלגוריתם לשילוש מטריצה: פירוק שור	
102	ת ז'ורדן	6 צורו
122	נקות צמודות לעצמן	7 העח
122	הגדרה של אופרטור הצמוד	
128		
134	\ldots העתקות אוניטריות	
138	מטריצות מייצגות של העתקות אוניטירות	
145	<i>נ</i> קות נורמליות	8 העח
145	ערכים עצמיים של העתקות במרחבי מכפלות פנימיות	
147	העתקות ומטריצות נורמליות	
147	דוגמאות של העתקות נורמליות	
151	העתקה לכסינה אוניטרית ומטריצה לכסינה אוניטרית	
154	משפט לכסון אוניטרי	
155	שיטה המעשית ללכסון אוניטרי	
160	שימושים של משפט הלכסון האוניטרי	
	*הוכחת המשפט:	
162	A לכסינה אוניטרית אם"ם קבוצת ו"ע שלה בסיס א"נ	
164		
	הוכחת המשפט:	
166	נורמליות נשמרת תחת דמיון אוניטרי	
	הוכחת המשפט:	
167	מטריצה נורמלית ומשולשית היא אלכסונית	
167	הוכחת משפט לכסון אוניטרי	
170	פט הפירוק הספקטרלי	9 משפ
174	שימושים של הפירוק הספקטרלי	
4		4-
176		10 שונו
176	לכסון אורתוגונית	
179	שילוש לכיסון של מטריצה לפי פולינום מינימלי	

שיעור 1 מרחבי מכפלת פנימית

${\mathbb R}$ הגדרה של מכפלה פנימית מעל 1.1

${\mathbb R}$ הגדרה 1.1 מכפלה פנימית מעל

יהי על אוג וקטורי מעל V המתאימה לכל זוג וקטורים על היא פונקציה V היא מכפלה פנימית על אוג וקטורי מעל מרחב וקטורי מעל אוג וקטורי מעל אוג וקטורי מעל בעל המסומן ב- (u,v) כך שמתקיימות התכונות הבאות. לכל על סקלר $u,v,w\in V$ סקלר ממשי המסומן ב-

:סימטריות (1

$$\langle u, \mathbf{v} \rangle = \langle \mathbf{v}, u \rangle$$
.

2) לינאריות ברכיב הראשון:

(N

$$\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$
.

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

:חיוביות (3

$$\langle u, u \rangle \ge 0$$

.u=0 אם ורק אם $\langle u,u \rangle = 0$ וגם

הגדרה 1.2 מרחב אווקלידי

. מרחב אוקלידי מסויימת נקרא מרחב אוקלידי עם מכפלה פנימית מסויימת על על על על על מרחב אוקלידי. מרחב אוקלידי

משפט 1.1 לינאריות ברכיב השני

יהי V מרחב וקטורי מעל $\mathbb R$ ו $\langle ,
angle$ מכפלה פנימית. אז

 $u, \mathbf{v}, w \in V$ לכל (1

$$\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$$

 $\lambda \in \mathbb{R}$ לכל $u, \mathrm{v} \in V$ ולכל סקלר (2

$$\langle u, \lambda \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

הוכחה:

(2

$$\langle u, \lambda \mathbf{v} \rangle = \langle \lambda \mathbf{v}, u \rangle = \lambda \langle \mathbf{v}, u \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

${\mathbb R}$ דוגמאות של מכפלה פנימית מעל 1.2

דוגמה 1.1

ע נגדיר, v =
$$egin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ נגדיר , $V = \mathbb{R}^n$

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} x_i y_i .$$

 \mathbb{R}^n אז זה מכפלה פנימית מעל

דוגמה 1.2

ענגדיר ,v =
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, \mathbb{R}^n -ב יהיו לכל שני וקטורים לכל שני אוביים. לכל שני וקטורים ל

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i$$
.

הוכיחו כי המכפלה הזאת היא מכפלה פנימית.

פתרון:

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i = \sum_{i=1}^{n} \lambda_i y_i x_i = \langle \mathbf{v}, u \rangle$$

נגדיר
$$w=egin{pmatrix} z_1 \ dots \ z_n \end{pmatrix}$$
 נגדיר (2

$$\langle u + \mathbf{v}, w \rangle = \sum_{i=1}^{n} \lambda_i (x_i + y_i) \cdot z_i = \sum_{i=1}^{n} \lambda_i (x_i \cdot z_i + y_i \cdot z_i) = \sum_{i=1}^{n} \lambda_i x_i \cdot z_i + \sum_{i=1}^{n} \lambda_i y_i \cdot z_i = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$

(3

$$\langle ku, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i(kx_i)y_i = \sum_{i=1}^{n} k \cdot \lambda_i x_i y_i = k \sum_{i=1}^{n} \lambda_i x_i y_i = k \langle u, \mathbf{v} \rangle$$

(4

$$\langle u, u \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0$$

 $0.1 \leq i \leq n$ כי $\lambda_i > 0$ כי

$$\langle u,u
angle = \sum\limits_{i=1}^n \lambda_i x_i^2 = 0$$
 אם"ם $x_i = 0$, $\forall i$

${\mathbb R}$ המכפלות הפנימיות העיקריות מעל 1.3

הגדרה 1.3 מכפלה פנימית לפי בסיס

 $:\!V$ מרחב וקטורי נוצר סופית מעל $\mathbb R$. נבחר בסיס של

$$B = \{b_1, \dots, b_n\} .$$

 $u, \mathbf{v} \in V$ לכל

$$u = \sum_{i=1}^{n} x_i b_i$$
, $v = \sum_{i=1}^{n} y_i b_i$.

מכפלה פנימית לפי בסיס B מסומנת לפי מכפלה מכפלה

$$(u, \mathbf{v})_B = \sum_{i=1}^n x_i y_i \ .$$

קל להוכיח שזה מכפלה פנימית.

\mathbb{R}^n הגדרה 1.4 מכפלה פנימית הסטנדרטית של

לכל $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ לכל עניח כי בבסיס הסטנדרטי,

$$u = \sum_{i=1}^{n} x_i e_i$$
, $v = \sum_{i=1}^{n} y_i e_i$.

המכפלה פנימית הסטנדרטית מסומנת (,) ומוגדרת

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i .$$

הגדרה 1.5 העקבה של מטריצה ריבועית

מסומנת A העקבה איברי האלכסון של A העקבה מסומנת איברי העקבה לכל העקבה איברי העקבה אלכל העקבה איברי העקבה איברי העקבה איברי העקבה מסומנת

 $\operatorname{tr} A$.

משפט 1.2 תכונות של העקבה

 $:A,B\in\mathbb{F}^{n imes n}$ לכל

$$tr(A+B) = tr(A) + tr(B)$$
 (1

$$\lambda \in \mathbb{F}$$
 לכל $\mathrm{tr}(\lambda A) = \lambda \mathrm{tr}(A)$ (2

$$\operatorname{tr}(A^t) = \operatorname{tr}(A)$$
 (3

הגדרה 1.6 המכפלה הפנימית הסטנדרטית של מטריצות

תהיינה מטריצות היא פונקציה הפנימית המכפלה המכפלה . $A,B\in\mathbb{R}^{n\times m}$ תהיינה $A,B\in\mathbb{R}^{m\times m}$ שמוגדרת ע"י שמוגדרת ע"י

$$\langle A, B \rangle = \operatorname{tr} \left(B^t \cdot A \right) .$$

.המכפלה הזאת נקראת המכפלה הפנימית הסטנדרטית נקראת המכפלה המכפלה

דוגמה 1.3

הוכיחו כי המכפלה הפנימית הסטנדרטית של מטריצות בהגדרה הקודמת מקיינת את התכונות של מכפלה פנימית.

פתרון:

$$\langle A,B\rangle = \operatorname{tr}(B^t \cdot A) = \operatorname{tr}\left((A^t \cdot B)^t\right) = \operatorname{tr}\left(A^t \cdot B\right) = \langle B,A\rangle \ .$$

(N (2

$$\langle A+B,C\rangle = \operatorname{tr}(C^t \cdot (A+B)) = \operatorname{tr}\left(C^t \cdot A + C^t \cdot B\right) = \operatorname{tr}\left(C^t \cdot A\right) + \operatorname{tr}\left(C^t \cdot B\right) = \langle A,C\rangle + \langle B,C\rangle \ .$$

(2

$$\langle \lambda A, C \rangle = \operatorname{tr}(B^t \lambda A) = \operatorname{tr}(\lambda(B^t A)) = \lambda \operatorname{tr}(B^t A) = \lambda \langle A, B \rangle$$
.

(3

$$\langle A, A \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ji}^2 \ge 0$$

$$A=0$$
 אם"ם אם"ם, א i,j $a_{ji}=0$ אם"ם $\langle A,A \rangle=0$

הגדרה 1.7 המכפלה הפנימית הסטנדרטית של פונקציות

תהיינה הפטנדרטית המכפלה הפנימית פונקציות שמוגדרות שמוגדרות $g:\mathbb{R} \to \mathbb{R}$ ו המכפלה הפנימית הסטנדרטית פונקציות מוגדרת של פונקציות מוגדרת

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
.

${\Bbb C}$ מרחב מכפלה פנימית מעל 1.4

הגדרה 1.8 מכפלה פנימית מעל

: הרמיטיות (1

- $\langle u, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, u \rangle}$.
-) לינאריות ברכיב הראשון:

(N

$$\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$

u=0 אם ורק אם $\langle u,u \rangle = 0$ אם אי-שללי. (3 הוא מספר ממשי אי-שללי. הוא מספר ממשי אי-שללי.

הגדרה 1.9 מרחב אוניטרי

. מרחב אוניטרי עם מעל $\mathbb C$ מעל אוניטרי מסויימת מסויימת עם יחד עם מכפלה מרחב אוניטרי

${\mathbb C}$ משפט 1.3 לינאריות חלקית של מ ${}^{f n}$

יהי V מרחב מכפלה פנימית. אזי

$$u,\mathbf{v},w\in V$$
 לכל

$$\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$$
.

 $:\lambda$ ולכל סקלר $u,\mathbf{v}\in V$ לכל

$$\langle u, \mathbf{v} \rangle = \bar{\lambda} \langle u, \mathbf{v} \rangle$$
.

הוכחה:

$$\langle u, \mathbf{v} + w \rangle = \overline{\langle \mathbf{v} + w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \langle u, \mathbf{v} \rangle + \langle u, w \rangle .$$

(2

$$\langle u, \lambda \mathbf{v} \rangle = \overline{\lambda \langle \mathbf{v}, u \rangle} = \overline{\lambda} \overline{\langle \mathbf{v}, u \rangle} = \overline{\lambda} \langle u, \mathbf{v} \rangle$$
.

1.5 דוגמאות של מרחבים אוניטריים

דוגמה 1.4

$$.u=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix},\mathbf{v}=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}\in\mathbb{C}^n$$
לכל
$$(u,\mathbf{v})=\sum_{i=1}^nx_i\bar{y}_i\;.$$

הוכיחו שזאת מרחב מכפלה פנימית.

פתרון:

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i \overline{y}_i = \sum_{i=1}^{n} \overline{\overline{x}_i} \overline{y}_i = \sum_{i=1}^{n} \overline{\overline{x}_i} \overline{y}_i = \sum_{i=1}^{n} \overline{y_i} \overline{x}_i = \overline{\sum_{i=1}^{n} y_i} \overline{x}_i = \overline{(\mathbf{v}, u)} .$$

$$(u + v, w) = \sum_{i=1}^{n} (x_i + y_i) \cdot \bar{z}_i = \sum_{i=1}^{n} x_i \cdot \bar{z}_i + \sum_{i=1}^{n} y_i \cdot \bar{z}_i = (u, w) + (v, w).$$
 (2)

$$(u,u) = \sum_{i=1}^{n} x_i \bar{x}_i = \sum_{i=1}^{n} |x_i|^2 \ge 0$$

$$.(u,u) = 0 \iff u = 0$$

 \mathbb{C}^n -ב מכפלה הסטנדרטית המכפלה המכפלה זו נקראת מכפלה מכפלה או נקראת מכפלה בי

דוגמה 1.5

נתון

$$u = \begin{pmatrix} 1-i\\ 2+i \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3+i\\ -i \end{pmatrix}$.

את חשבו $u, \mathbf{v} \in \mathbb{C}^2$

$$(u, v)$$
 (x

$$(\mathbf{v},u)$$
 (2

$$(u,u)$$
 (x

$$(u, (1+i)v)$$
 (7

פתרון:

$$(u, \mathbf{v}) = (1 - i)(3 - i) + (2 + i) \cdot i = 3 - 4i - 1 + 2i - 1 = 1 - 2i$$

$$(\mathbf{v}, u) = (3+i)(1+i) - i(2-i) = 3+4i-1-2i-1 = 1+2i$$

$$(u, u) = (1 - i)(1 + i) + (2 + i)(2 - i) = 2 + 5 = 7$$

$$(u, (1+i)v) = \overline{(1+i)}(u, v) = (1-i)(1-2i) = 1-3i-2 = -1-3i$$
.

1.6 הנורמה והמרחק

הגדרה 1.10 הנורמה

$$||u|| = \sqrt{\langle u, u \rangle}$$

. הנורמה של בעצם האורך של וקטור \mathbb{R}^3 ו- \mathbb{R}^2 במרחבים

דוגמה 1.6

יהי $\lambda \in \mathbb{F}$, $u \in V$, \mathbb{F} מרחב מכפלה פנימית מעל שדה $\lambda \in \mathbb{F}$, מרחב מכפלה מעל

(X

$$\|\lambda u\| = |\lambda| \|u\|$$

(a

$$\left\| \frac{1}{\|u\|} u \right\| = 1$$

פתרון:

(N

$$\|\lambda u\| = \sqrt{(\lambda u, \lambda u)} = \sqrt{\lambda(u, \lambda u)} = \sqrt{\lambda \cdot \bar{\lambda}(u, u)} = \sqrt{|\lambda|^2(u, u)} = \lambda \|u\|$$
.

ב) לכן לפי סעיף א' $\frac{1}{\|u\|}>0$

$$\left\| \frac{1}{\|u\|} u \right\| = \frac{1}{\|u\|} \cdot \|u\| = 1$$

.uוקטור של נרמול קוראים $u \rightarrow \frac{u}{\|u\|}$, לפעולה,

לוקטור היחידה $\frac{u}{\|u\|}$ קוראים הוקטור המנורמל.

1.7 דוגמאות של הנורמה

דוגמה 1.7

במרחב $u=inom{i}{1+i}$ עם המכפלה הפנימית הסטנדרטית חשבו את הנורמה של הוקטור \mathbb{C}^2 וחשבו את הוקטור המנורמל.

פתרון:

$$||u|| = \sqrt{(u,u)} = \sqrt{i\overline{i} + (1+i)\overline{(1+i)}} = \sqrt{1+2} = \sqrt{3}.$$

ננרמל את הוקטור:

$$\frac{u}{\|u\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} i \\ 1+i \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}}i \\ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}i \end{pmatrix}$$

דוגמה 1.8

[0,1] במרחב של הפונקציות הממשיות בקטע

$$\|f(x)\|=\sqrt{\int_0^1 f^2(x)\,dx}$$
 לדוגמה, עבור $\|f(x)\|=\sqrt{\int_0^1 1^2\,dx}=1$, $f(x)=x^3$ עבור $f(x)=x^3$

$$||f(x)|| = \sqrt{\int_0^1 x^6 dx} = \frac{1}{\sqrt{7}}.$$

ננרמל את הוקטור הזה:

$$\frac{f(x)}{\|f(x)\|} = \sqrt{7} \cdot x^3 .$$

77

$$\|\sqrt{7}x^3\| = \sqrt{7} \cdot \frac{1}{\sqrt{7}} = 1 \ .$$

דוגמה 1.9

 $A = egin{pmatrix} 1 & 2 \ 3 & 0 \end{pmatrix}$ עם המכפלה הפנימית הסטנדרטית נקח $\mathbb{R}^{2 imes 2}$

$$||A|| = \sqrt{(A,A)} = \sqrt{\operatorname{tr}(A^t \cdot A)} = \sqrt{14}$$
.

$$A^t \cdot A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 2 & 4 \end{pmatrix}$$
$$\operatorname{tr}(A^t \cdot A) = 10 + 4 = 14 \ .$$

ננרמל את הוקטור:

$$\frac{1}{\sqrt{14}} \cdot A = \begin{pmatrix} \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} & 0 \end{pmatrix}$$

1.8 משפט פיתגורס, משפט קושי שוורץ, אי-שוויון משולש

משפט 1.4 משפט פיתגורס המוכלל של ווקטורים במרחב מכפלה פנימית

לכל שני וקטורים u, \mathbf{v} במרחב מכפלה פנימית מתקיים:

(1

$$||u \pm \mathbf{v}||^2 = ||u||^2 \pm 2\text{Re}\langle u, \mathbf{v} \rangle + ||v||^2$$

(2

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

הוכחה:

(1

$$\|u+\mathbf{v}\|^2 = \langle u+\mathbf{v}, u+\mathbf{v} \rangle$$
 (הגדרה של המכפלה פנימית)
$$= \langle u, u+\mathbf{v} \rangle + \langle \mathbf{v}, u+\mathbf{v} \rangle$$
 (לינאריות)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \langle \mathbf{v}, u \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (לינאריות חלקית)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (הרמיטיות)
$$= \|u\|^2 + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2$$
 (הגדרה של הנורמה)
$$= \|u\|^2 + 2\operatorname{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2$$
 (ראו הסבר למטה) .

z=a+bi מספר לכל האחרון: לכל שלב האחרון

$$z + \bar{z} = (a + bi) + (a - bi) = 2a = 2$$
Re z .

(2

$$\begin{split} \|u+\mathbf{v}\|^2 + \|u-\mathbf{v}\|^2 &= \|u\|^2 + 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 + \|u\|^2 - 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 \\ &= 2\left(\|u\|^2 + \|\mathbf{v}\|^2\right) \end{split}$$

השוויון האחרון במרחב \mathbb{R}^2 מבטא את משפט גאומרטי: במקבילית, סכום ריבועי האלכסונים שווה לסכום ריבועי הארכסונים שווה לסכום ריבועי הצלעות.

משפט 1.5 אי-שוויון קושי-שוורץ

לכל וקטורים u ו- v במרחב מכפלה פנימית מתקיים

$$|\langle u, \mathbf{v} \rangle| \le ||u|| \cdot ||\mathbf{v}||$$
.

 $0 \leq 0$ אז מקבלים $0 \leq 0$ הוכחה: אם

נניח ש- $\bar{0} \neq \bar{0}$ לכל סקלר .
 $u \neq \bar{0}$ מתקיים

$$\langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle \ge 0$$
, (#)

לפי משפט הקיטוב האגף השמאל הוא

$$\begin{split} \langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle &= & \|\lambda u\|^2 + 2 \mathrm{Re} \, \langle \lambda u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \\ &= & \|\lambda u\|^2 + \langle \lambda u, \mathbf{v} \rangle + \overline{\langle \lambda u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \\ &= & \lambda \overline{\lambda} \|u\|^2 + \lambda \, \langle u, \mathbf{v} \rangle + \overline{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \end{split}$$

נציב זה באגף השמאל של (#) ונקבל

$$\lambda \bar{\lambda} \|u\|^2 + \lambda \langle u, \mathbf{v} \rangle + \bar{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \ge 0$$

נציב
$$ar{\lambda}=rac{-\langle u, {
m v}
angle}{\|u\|^2}$$
 , $\lambda=rac{-\overline{\langle u, {
m v}
angle}}{\|u\|^2}$ ונקבל

$$\frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} + \|\mathbf{v}\|^2 \ge 0$$

 $||u||^2$ -נכפיל ב

$$-\left\langle u,\mathbf{v}\right\rangle \overline{\left\langle u,\mathbf{v}\right\rangle }+\|u\|^{2}\|\mathbf{v}\|^{2}\geq0$$

נציב
$$\langle u, {
m v}
angle \overline{\langle u, {
m v}
angle} = |\langle u, {
m v}
angle\,|^2$$
 נציב

$$|\langle u, \mathbf{v} \rangle|^2 \le ||u||^2 ||\mathbf{v}||^2$$

מש"ל.

.v -טו u- המתאימה המישור שתי בין שתי המרחק הוא ווע שו הביטוי ווע הביטוי ווע הביטוי ווע אפשר אפשר אפשר ווע המרחב וווע הביטוי ווע

ישנה הכללה של מושג המרחק בכל מרחב מכפלה פנימית.

הגדרה 1.11 המרחק

יהיו ע"י מספר ממשי אי-שלילי המוגדר ע"י יהיו ע ו- יחוא מספר ממשי אי-שלילי המוגדר ע"י יהיו u ו- יהיו

$$d(u, \mathbf{v}) = \|u - \mathbf{v}\|$$

משפט 1.6 תכונות של המרחק ואי-שוויון המשולש

נראה כי מושג המרחק החדש מקיים תכונת בסיסית של המרחק המוכר במישור.

(1

$$d(u, \mathbf{v}) = d(\mathbf{v}, u)$$

הוכחה:

$$d(u, \mathbf{v}) = \|u - \mathbf{v}\| = \|(-1)(\mathbf{v} - u)\| = 1 \cdot \|\mathbf{v} - u\| = d(\mathbf{v}, u)$$

$$.u={
m v}$$
 אם ורק אם $d(u,{
m v})=0$. $d(u,{
m v})\geq 0$ (2

(3

$$d(u, \mathbf{v}) \le d(u, w) + d(w, \mathbf{v})$$

זאת תכונה הנקראת **אי-שוויון המשולש**.

,u,v לפי משפט הקיטוב, לכל שני וקטורים ,u,v

$$\|u + \mathbf{v}\|^2 = \|u\|^2 + 2\text{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \le \|u\|^2 + 2|\langle u, \mathbf{v} \rangle| + \|\mathbf{v}\|^2$$
 (#1)

:הסבר

גסמן
$$z=\langle u, {
m v}
angle = a+ib$$
 נסמן

$$.\bar{z} = a - ib$$

$$z-u-i b$$
 גרשום, $|\langle u, {
m v} \rangle|^2=zar z=a^2+b^2$ נרשום. $|\langle u, {
m v} \rangle|=\sqrt{a^2+b^2}$ לכן

.
$$|\left< u, \mathsf{v} \right>| = \sqrt{a^2 + b^2}$$
 לכן $2\mathsf{Re}\left< u, \mathsf{v} \right> = 2\mathsf{Re}z = 2a$ מצד שני

$$2 \operatorname{Re}(u, \mathbf{v}) = 2 a < 2 \sqrt{a^2 + b^2} = 2 |\langle u, \mathbf{v} \rangle|$$
 לכן נקבל

$$||u + v||^2 \le ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

v במקום – ציב את

$$||u - v||^2 \le (||u|| + ||v||)^2$$
.

לכן

$$||u - v|| \le ||u|| + ||v||$$
.

 \mathbf{v} במקום יי $\mathbf{v}-w$ במקום עu-w את נציב כעת נציב נעים

$$||(u-w)-(v-w)|| \le ||u-w|| + ||v-w||$$
.

ז"א

$$||u - v|| \le ||u - w|| + ||v - w||$$
.

קיבלנו את אי-שוויון המשולש:

$$d(u, \mathbf{v}) \le d(u, w) + d(\mathbf{v}, w)$$

1.9 אורתוגונליות

הגדרה 1.12 ווקטורים אורתוגונליים

וקטורים או מאונכים מכפלה פנימית נקראים אורתוגונליים u, v במרחב מכפלה פנימית נקראים אורתוגונליים וו

$$\langle u, \mathbf{v} \rangle = 0$$
 .

:סימון

$$u \perp v$$
.

אט
$$\langle u, {
m v}
angle = 0$$
 אס (1

$$\langle \mathbf{v}, u \rangle = \overline{\langle u, \mathbf{v} \rangle} = \overline{0} = 0$$
,

כלומר יחס האורתוגונליות הוא סימטרי.

- .v וקטור האפס אורתוגונל לכל וקטור (2
- במרחב \mathbb{R}^n עם המכפלה פנימית הסטנדרטית, מושג האורתוגונליות מתלכד עם מושג האורתוגונליות (3 המוגדר על סמך המכפלה סלקרית.

דוגמה 1.10

, [0,1] במרחב הפונקציות הרציפות בקטע

$$f(x) = 2x - 1 , \quad g(x) = 2x^2 - 2x + \frac{1}{3}$$

$$(f,g) = \int_0^1 (2x - 1) \left(2x^2 - 2x - \frac{1}{3}\right) dx$$

$$= \int_0^1 \left(4x^3 - 6x^2 + \frac{8}{3}x - \frac{1}{3}\right) dx$$

$$= \left[x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x\right]_0^1$$

$$= 0 .$$

 $.f(x)\perp g(x)$ לכן

דוגמה 1.11

במרחב \mathbb{C}^4 עם המכפלה הפנימית הסטנדרטית:

$$u = \begin{pmatrix} 1 \\ i \\ 1 \\ i \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} i \\ 1 \\ i \\ 1 \end{pmatrix}$$
$$(u, \mathbf{v}) = 1 \cdot \overline{i} + i \cdot \overline{1} + 1 \cdot \overline{i} + i \cdot \overline{1}$$
$$= -i + i - i + i$$
$$= 0$$

 $.u \perp v$ לכן

דוגמה 1.12

הוכיחו שאם ע \perp ע אז

$$||u + v||^2 = ||u||^2 + ||v||^2$$
 (x

$$\|u + \mathbf{v}\| = \|u - \mathbf{v}\|$$
 (2

פתרון:

(N

$$\|u + \mathbf{v}\|^2 = \|u\|^2 + 2\text{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 = \|u\|^2 + \|\mathbf{v}\|^2$$

.המשמעות הגאומטרית ב- \mathbb{R}^2 - משפט פיתגורס

(1

$$\|u-\mathbf{v}\|^2=\|u\|^2-2\mathrm{Re}\,\langle u,\mathbf{v}
angle+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2+2\mathrm{Re}\,\langle u,\mathbf{v}
angle$$
בגלל ש $\langle u,\mathbf{v}
angle=0$. לכך

$$||u - \mathbf{v}||^2 = ||u + \mathbf{v}||^2$$

ולכן

$$||u - \mathbf{v}|| = ||u + \mathbf{v}||$$

. האלכסונים של מלבן שווים אה לזה. \mathbb{R}^2 - האלכסונים של הגאומטרית ב-

הגדרה 1.13 ווקטור האורתוגונלי לתת-מרחב

נניח ש V מרחב מכפלה פנימית ו- ע $U \subset V$ תת-מרחב של V. נניח ש V אורתוגונלי $U \subset V$ אורתוגונלי לכל וקטור $u \in U$ אם אורתוגונלי לכל וקטור ו

$$\langle \mathbf{v}|u\rangle = 0$$

.U בתחב אז לתת-מרחב אורתוגונלי הווקטור אז הווקטור, $u\in U$ לכל סימון:

$$\mathbf{v} \perp U$$
.

הגדרה 1.14 המשלים האורתוגונלי

נניח ש V מרחב מכפלה פנימית ו- U ע U ע תת-מרחב של U. נניח ש V מרחב מכפלה פנימית ו- U ע תת-מרחב של U אורתגונלי לכל ווקטור ב- U ומוגדר לפי התנאי שכל ווקטור ב- U^\perp אורתגונלי לכל ווקטור ב U^\perp כלומר:

$$\langle a|b\rangle = 0$$

 $.b \in U^{\perp}$ ולכל $a \in U$

דוגמה 1.13

נניח ש- U^{\perp} , כאשר המכפלה הפנימית בסיס מצאו בסיס מצאו בסיס אורתוגונלי על המכפלה הפנימית . $U=\mathrm{span}\{x\}$ ו- $V=\mathbb{R}_2[x]$ היא המכפלה הפנימית הסטנדרטית בקטע ו[0,1]

פתרון:

$$p(x)=a+bx+cx^2\in U^\perp$$
 וקטור וקטור

$$\langle x, p(x) \rangle = \langle x, a + bx + cx^2 \rangle = \int_0^1 dx \, x \cdot (a + bx + cx^2) = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4} \right]_0^1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0.$$

לכן

$$U^{\perp} = \left\{ a + bx + cx^{2} \middle| 6a + 4b + 3c = 0 \right\}.$$

 $:\!\!U^\perp$ נמצא בסיס של

$$a = -\frac{2}{3}b - \frac{1}{2}c , \quad b, c \in \mathbb{R} .$$

לכן

$$a + bx + cx^2 = -\frac{2}{3}b - \frac{1}{2}c + bx + cx^2 = b\left(-\frac{2}{3} + x\right) + c\left(-\frac{1}{2} + x^2\right), \quad b, c \in \mathbb{R}.$$

לכן U^{\perp} נשים לב כי $\{1-2x^2,2-3x\}$ לכן

$$3=\dim(V)=\overbrace{\dim(U)}^{=1}+\overbrace{\dim(U^\perp)}^{=2}$$

$$V=U\oplus U^\perp$$
 לכן

דוגמה 1.14

באים: בסיס ל- U^\perp בכל אחד מהמקרים בטיס מצאו

. ביחס ביחס למכפלה פנימית הסטנדרטית
$$U=\operatorname{span}\left\{inom{1+i}{i}\right\}$$
 , $V=\mathbb{C}^2$ (1

$$U=\mathrm{span}\left\{(x,x^2
ight\}$$
 , אינטגרלית בקטע ע ביחס למכפלה ביחס ל $U=\mathrm{span}\left\{(x,x^2
ight\}$

$$\mathbb{R}^{2 imes2}$$
 -ב הסטנדרטית ביחס למכפלה ביחס ביחס $U=\mathrm{span}\left\{egin{pmatrix}1&0\\0&0\end{pmatrix},egin{pmatrix}1&1\\0&0\end{pmatrix}
ight\}$, $V=\mathbb{R}^{2 imes2}$

פתרון:

$$. \binom{z_1}{z_2} \perp \binom{1+i}{i} \Leftrightarrow \binom{z_1}{z_2} \in U^{\perp} \text{ (1)}$$

$$\left(\binom{z_1}{z_2}, \binom{1+i}{i} \right) = z_1\overline{(1+i)} + z_2\overline{i} = 0 \quad \Rightarrow \quad z_2 = \frac{i}{1-i}z_1 = \left(-\frac{1}{2} + \frac{1}{2}i \right)z_1$$

לכן

$$U^{\perp} = \left\{ \begin{pmatrix} 1 \\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} z \middle| z \in \mathbb{C} \right\} .$$

 $:\!\!U^\perp$ בסיס של

$$\left\{ \begin{pmatrix} 1\\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} \right\}$$

$$p(x), x^2 = 0$$
 וגם $p(x), x = 0 \Leftrightarrow p(x) = a + bx + cx^2$ (2)

$$(p(x), x) = \int_0^1 (a + bx + cx^2)x \, dx = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4}\right]_0^1 1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0$$

$$(p(x), x^2) = \int_0^1 (a + bx + cx^2)x^2 dx = \left[\frac{ax^3}{3} + \frac{bx^4}{4} + \frac{cx^5}{5}\right]_0^1 1 = \frac{a}{3} + \frac{b}{4} + \frac{c}{5} = 0$$

לכן

$$U^{\perp} = \left\{ a + bx + cx^2 \middle| \begin{array}{c} 6a + 4b + 3c & = 0 \\ 20a + 15b + 12c & = 0 \end{array} \right\}$$

$$\left(\begin{array}{ccc} 6 & 4 & 3 \\ 20 & 15 & 12 \end{array} \right) \xrightarrow{R_2 \to 3R_2 - 10R_1} \left(\begin{array}{ccc} 6 & 4 & 3 \\ 0 & 5 & 6 \end{array} \right) \xrightarrow{R_1 \to 5R_1 - 4R_2} \left(\begin{array}{ccc} 30 & 0 & -9 \\ 0 & 5 & 6 \end{array} \right) \to \left(\begin{array}{ccc} 1 & 0 & -\frac{3}{10} \\ 0 & 1 & \frac{6}{5} \end{array} \right)$$

 $.c \in \mathbb{R} \ b = -1.2c \ a = 0.3c$

$$a + bx + cx^2 = \frac{3}{10}c - \frac{12}{10}cx + cx^2 = c\left(\frac{3}{10} - \frac{12}{10}x + x^2\right), \quad c \in \mathbb{R}.$$

 $:\!\!U^\perp$ לכן נקבל בסיס של

$$B_{U^{\perp}} = \left\{ 3 - 12x + 10x^2 \right\}$$

$$.U = \mathrm{span}(A_1,A_2) \ \Leftarrow \ .A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ \text{ (3)}$$

$$U^\perp = \left\{B \in \mathbb{R}^{2 \times 2} \middle| (B,A_1) = 0 \ , (B,A_2) = 0\right\}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow$$

$$(B,A_1) = \mathrm{tr}(A_1^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = a = 0$$

$$(B,A_2) = \mathrm{tr}(A_2^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ a & b \end{pmatrix} = a + b = 0$$

$$\text{Constant}$$

$$U^\perp = \left\{\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \middle| c, d \in \mathbb{R}\right\}$$

$$\text{Example 1}$$

$$\{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\} \ .$$

1.10 * העשרה: סכום ריבועי האלכסונים של במקבילית שווה לסכום ריבועי הצלעות של

הוכחה:

(פיתגורס).
$$AC^2 = AE^2 + CE^2$$
 לכן
$$AC^2 = (AB + BE)^2 + CE^2$$

$$AC^2 = AB^2 + BE^2 + 2 \cdot AB \cdot BE + CE^2$$
 (*1)

בגלל ש CDFE מלבן. CD=EF . AB=CD=EF לכן לכן CD=AB

גם CE=DF (מרחק בין שנ ישרים מקבילים). לכן $\Delta AFD\cong \Delta BEC$ (משולשים חופפים). AF=BE לכן

נסתכל אל המשולש ישר זוית ΔDFB . נסתכל אל המשולש ישר אוית $BD^2=BF^2+DF^2$. $BD^2=CE$ בגלל ש $BD^2=(EF-BE)^2+CE^2$ לכן $BD^2=(AB-BE)^2+CE^2$ בגלל ש לכן

$$BD^{2} = AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$
 (*2)

נחבר את הביטוים (1*)+(2*) ונקבל

$$AC^{2} + BD^{2} = AB^{2} + BE^{2} + 2 \cdot AB \cdot BE + CE^{2} + AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BE^{2} + 2 \cdot CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot (BE^{2} + CE^{2})$$
 (*3)

 ΔBEC במשולש ישר זוית

(*3) פיתגורס). לכו נקבל ממשוואה א $BC^2 = BE^2 + CE^2$

$$AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + AB^{2} + BC^{2} + BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + BC^{2} + CD^{2} + AD^{2}$$

לכן סכום ריבועי האלכסונים שווה לסכום ריבועי הצלעות.

שיעור 2 בסיסים אורתוגונליים

2.1 בסיסים אורתוגונליים

הגדרה 2.1 קבוצת ווקטורים אורתוגונלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1, u_2, \ldots, u_k .\}$$
.

הקבוצה נקראת אורתוגונלית אם כל שני ווקטורים שלה אורתוגונליים. כלומר:

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j .$$

הגדרה 2.2 קבוצת ווקטורים ואורתונורמלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1, u_2, \dots, u_k\}$$
.

הקבוצה נקראת אורתונורמלית אם:

א) כל שני ווקטורים שלה אורתוגונליים, כלומר

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j ,$$

ב) כל ווקטור הוא ווקטור יחידה, כלומר

$$||u_i||=1.$$

דוגמה 2.1

. עם המכפלה אורתונורמלית. של \mathbb{R}^n עם אורתונורמלית של $\{e_1,\dots,e_n\}$ עם הסטנדרטי

פתרון:

, אין המכפלה הסקלרית מוגדרת ,
$$u=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}$$
 , $\mathbf{v}=\begin{pmatrix}y_1\\ \vdots\\ y_n\end{pmatrix}\in\mathbb{R}^n$ מזכורת: נתונים שני ווקטורים \mathbf{R}^n

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \ldots + x_n y_n$$
.

 $:\mathbb{R}^n$ נרשום את הבסיס הסטנדרטי של

$$\left\{e_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, e_2 = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}\right\}$$

(N

(1

$$(e_i, e_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases},$$

כלומר כל שני ווקטורים אורתוגונליים.

$$||e_i|| = \sqrt{(e_i, e_i)} = 1$$
,

כלומר כל ווקטור בקבוצה הוא ווקטור יחידה.

. אורתונורמלי אורתונורמלי של הסטנדרטי של הבסיס הסטנדרטי של חוא לכן הבסיס הסטנדרטי של

דוגמה 2.2

נתונה הקבוצה

$$\left\{ u_1 = \begin{pmatrix} 1+i \\ -1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} i \\ 1 \\ -i \end{pmatrix}, u_3 = \begin{pmatrix} 3+i \\ 4+3i \\ 5i \end{pmatrix} \right\}$$

. עם המ"פ הסטנדרטית עם המ"פ הסטנדרטית על ווקטורים ב-

- א) הוכיחו שהקבוצה אורתוגונלית.
- ב) מצאו את הקבוצה האורתנורומלית המתאימה לקבוצה זו.

פתרון:

(N

$$\langle u_1, u_2 \rangle = (1+i)\overline{i} - 1 \cdot 1 + 1(-\overline{i}) = (1+i)(-i) - 1 + 1(i) = -i + 1 - 1 + i = 0 \implies u_1 \perp u_2$$
.
 $\langle u_1, u_3 \rangle = (1+i)(3-i) - 1(4-3i) + 1(-5i) = 4 + 2i - 4 + 3i - 5i = 0 \implies u_1 \perp u_3$.

$$\langle u_2, u_3 \rangle = i(3-i) + 1(4-3i) - i(-5i)$$
 = 1 + 3i + 4 - 3i - 5 = 0 $\Rightarrow u_2 \perp u_3$.

לכן הקבוצה אורתוגונלית.

(1

$$||u_1||^2 = \langle u_1, u_1 \rangle = (1+i)(1-i) + (-1)(-1) + 1 \cdot 1$$
 = 4

$$||u_2||^2 = \langle u_2, u_2 \rangle = i(-i) + 1 \cdot 1 + (-i) \cdot i$$
 = 3.

$$||u_3||^2 = \langle u_3, u_3 \rangle = (3+i)(3-i) + (4+3i)(4-3i) + 5i(-5i) = 10 + 25 + 25 = 60$$
.

לכן קבוצת הווקטורים

$$\left\{ \frac{1}{2}u_1, \frac{1}{\sqrt{3}}u_2, \frac{1}{\sqrt{60}}u_3 \right\}$$

היא קבוצה אורתונורמלית.

משפט 2.1 קבוצת אורתוגונלית בת"ל

קבוצת אורתוגונלית במרחב מכפלה פנימית שלא מכילה את ווקטור האפס היא בלתי תלויה לינארית.

הוכחה: תהי $\{u_1,\ldots,u_k\}$ קבוצה אורתוגונלית. נניח ש

$$\alpha_1 u_1 + \ldots + \alpha_k u_k = 0 .$$

 $1 \leq j \leq k$ אז לכל

$$\left\langle \sum_{i=1}^k \alpha_i u_i \,,\, u_j \right\rangle = \langle 0 \,,\, u_j \rangle = 0 \,.$$

מצד שני

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i , u_j \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle u_i , u_j \right\rangle .$$

הקבוצה אורתוגונלית, אז $(u_i,u_j)=0$ אם אם לכן בהסכום לעיל כל האיברים מתאפסים חוץ מהאיבר של הקבוצה אורתוגונלית, אז $(u_i,u_j)=0$ אם לכן נקבל הקבל

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i, u_j \right\rangle = \alpha_j \left\langle u_j, u_j \right\rangle .$$

לכן

$$\alpha_j \langle u_j, u_j \rangle = 0$$
.

 $.\langle u_j\,,\,u_j
angle
eq 0$ (נתוך), אז $u_j
eq 0$

לכן בהכרח

$$\alpha_j = 0$$

 $1 \le j \le k$ לכל

משפט 2.2 קבוצת אורתוגונלית היא בסיס

. $\dim(V)=n$ ש כך מרחב מכפלה פנימית ער מרחב מרחב עניח

V מהווה בסיס של על קבוצה אורתוגונלית של חוקטורים ב-

 $\dim(V)=n$ נניח ש V מרחב מכפלה פנימית, הוכחה: נניח ש $U=\{u_1,\ldots,u_n\}\in V$ קבוצה אורתוגונלית. כל קבוצה אורתוגונלית היא בת"ל, לכן הקבוצה בת"ל. בקבוצה יש $\dim(U)=\dim(V)$ לכן הקבוצה מהווה בססי של V

הגדרה 2.3 בסיס אורתוגונלי ובסיס אורתונורמלי

- בסיס של V המורכב מווקטורים אורתוגונליים נקרא בסיס אורתוגונלי. \bullet
- בסיס של V המורכב מווקטורים אורתונורמליים נקרא בסיס אורתונורמלי. \bullet

דוגמה 2.3

עבור כל אחד של הקבוצות ווקטורים הבאות של \mathbb{R}^3 עם מ"פ סטנדרטית. בדקו אם הקבוצה היא בסיס אורתוגונלי. ובסיס אורתנורמלי.

$$\left\{u_1=egin{pmatrix}1\\0\\0\end{pmatrix},u_2=egin{pmatrix}1\\1\\0\end{pmatrix},u_3=egin{pmatrix}1\\1\\1\end{pmatrix}
ight\}$$
 (N

$$\left\{u_1=\begin{pmatrix}1\\2\\2\end{pmatrix},u_2=\begin{pmatrix}0\\1\\-1\end{pmatrix},u_3=\begin{pmatrix}4\\-1\\-1\end{pmatrix}\right\} \text{ (a)}$$

פתרון:

$$\langle u_1,u_2 \rangle = 1 \neq 0$$
 (x

לכן הקבוצה לא אורתוגונלית.

(1

$$\langle u_1, u_2 \rangle = 0$$

 $\langle u_1, u_3 \rangle = 0$
 $\langle u_2, u_3 \rangle = 0$

 \mathbb{R}^3 של בסיס הקבוצה בת"ל ולכן הקבוצה בסיס של לכן הקבוצה אורתוגונלית, ולכן הקבוצה בסיס של הקבוצה בחים של הקבוצה בסיס של הקבוצה בחים הקבוצה בחים של הקבוצה בחים של הקבוצה בחים החים הקבוצה בחים הקבוצה בחים החים הקבוצה בחים החים הקבוצה בחים הקבוצה בחים החים המוצה בחים החי

$$||u_1|| = \sqrt{1+4+4} = 3$$
, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{18}$.

לכן הקבוצה לא בסיס אורתונורמלי.

נבנה בסיס אורתונורמלי:

$$\left\{\frac{1}{3}u_1, \frac{1}{\sqrt{2}}u_2, \frac{1}{\sqrt{18}}u_3\right\}$$

דוגמה 2.4

במרחב עם מ"פ סטנדרטית, נתונה קבוצת ווקטורים הבאה: \mathbb{C}^4

$$\left\{ u_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2}i \\ \frac{1}{2} - \frac{1}{2}i \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ \frac{i}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{-1}{2}i \\ \frac{-1}{2} + \frac{1}{2}i \end{pmatrix}, \right\}$$

בדקו אם הקבוצה אורתוגונלית ואורתונורמלית.

פתרון:

$$\langle u_1, u_2 \rangle = 0 + \frac{1}{2} \left(\frac{-i}{\sqrt{2}} \right) + \frac{1}{2} i \left(\frac{-1}{\sqrt{2}} \right) + \left(\frac{1}{2} - \frac{1}{2} i \right) \cdot 0 = \frac{-i}{\sqrt{2}} \neq 0$$

לכן הקבוצה אינה אורתוגונלית.

דוגמה 2.5

 $\mathbb{R}_3[x]$ קבעו אם הקבוצות הבאות אורתוגונליות ואורתונורמליות במרחב עם מ"פ האינטגרלית בקטע [0,1]:

$$\{1, x, x^2\}$$
 (x

$$\left\{1, x - \frac{1}{2}, x^2 - x + \frac{1}{6}\right\}$$
 (2

פתרון:

(N

$$u_1 - 1$$
, $u_2 = x$, $u_3 = x^2$.
 $\langle u_1, u_2 \rangle = \int_0^1 1 \cdot x \, dx = \left[\frac{x^2}{2} \right]_0^1 = \frac{1}{2} \neq 0$

לכן B_1 קבוצה לא אורתוגונלית.

(1

$$u_1 - 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

$$\langle u_1, u_2 \rangle = \int_0^1 1 \cdot \left(x - \frac{1}{2} \right) dx = \left[\frac{x^2}{2} - \frac{x}{2} \right]_0^1 = 0$$

$$\langle u_1, u_3 \rangle = \int_0^1 1 \cdot \left(x^2 - x + \frac{1}{6} \right) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{6} \right]_0^1 = 0$$

$$\langle u_2, u_3 \rangle = \int_0^1 \left(x - \frac{1}{2} \right) \cdot \left(x^2 - x + \frac{1}{6} \right) dx = \int_0^1 \left(x^3 - x^2 + \frac{x}{6} - \frac{x^2}{2} + \frac{x}{2} - \frac{1}{12} \right) dx$$

$$= \int_0^1 \left(x^3 - \frac{3x^2}{2} + \frac{2x}{3} - \frac{1}{12} \right) dx = \left[\frac{x^4}{4} - \frac{x^3}{2} + \frac{x^2}{3} - \frac{x}{12} \right]_0^1 = \frac{1}{4} - \frac{1}{2} + \frac{1}{3} - \frac{1}{12} = 0$$

לכן הקבוצה אורתוגונלית.

$$||u_1||^2 = \langle u_1, u_1 \rangle = \int_0^1 1 \cdot 1 \, dx = [x]_0^1 = 1$$

$$||u_2||^2 = \langle u_2, u_2 \rangle = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4} \right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4} \right]_0^1 = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12}.$$

$$||u_3||^2 = \langle u_3, u_3 \rangle$$

$$= \int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{x^2}{3} + x^2 - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4x^2}{3} - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4x^3}{9} - \frac{x^2}{6} + \frac{x}{36} \right]_0^1$$

$$= \frac{1}{5} - \frac{1}{2} + \frac{4}{9} - \frac{1}{6} + \frac{1}{36}$$

$$= \frac{36}{180} - \frac{90}{180} + \frac{80}{180} - \frac{30}{180} + \frac{5}{180}$$

$$= \frac{1}{180} .$$

לסיכום:

$$||u_1|| = 1, \quad ||u_2|| = \frac{1}{12}, \quad ||u_3|| = \frac{1}{180}.$$

לכן הקבוצה אינה אורתונורמלית.

נבנה קבוצה אורתונורמלית:

$$\{u_1, \sqrt{12} \cdot u_2, \sqrt{180} \cdot u_3\}$$
.

דוגמה 2.6

נתונה הקבוצה

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} , \quad A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad A_3 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} .$$

. במרחב $\mathbb{R}^{3 imes 3}$ עם מ"פ הסטנדרטית. בדקו אם הקבוצה אורתוגונלית ואורתונורמלית

פתרון:

$$\langle A_1,A_2\rangle = \operatorname{tr}\left(A_2^t\cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 2 & 2 & -2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 2 - 2 = 0 \ .$$

$$\langle A_1,A_3\rangle = \operatorname{tr}\left(A_3^t\cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -3 & -4 \end{pmatrix} = 1 + 3 - 4 = 0 \ .$$

$$\langle A_2, A_3 \rangle = \operatorname{tr} \left(A_3^t \cdot A_2 \right) = \operatorname{tr} \left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 2 & 0 & 0 \\ 2 & -2 & 0 \\ -2 & 2 & 0 \end{pmatrix} = 2 - 2 = 0 \ .$$

לכן הקבוצה אורתוגונלית.

$$||A_1||^2 = \langle A_1, A_1 \rangle = \operatorname{tr} \left(A_1^t \cdot A_1 \right) = \operatorname{tr} \left(\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix} = 20.$$

$$\|A_2\|^2 = \langle A_2, A_2 \rangle = \operatorname{tr} \left(A_2^t \cdot A_2 \right) = \operatorname{tr} \left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & -0 & 0 \end{pmatrix} = 4 + 4 = 8 \ .$$

$$||A_3||^2 = \langle A_3, A_3 \rangle = \operatorname{tr}\left(A_3^t \cdot A_3\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ -1 & -2 & 3 \end{pmatrix} = 6.$$

לכן הקבוצה לא אורתונורמלית. אבל הקבוצה הבאה

$$\left\{ \frac{1}{\|A_1\|} A_1, \frac{1}{\|A_2\|} A_2, \frac{1}{\|A_3\|} A_3 \right\} = \left\{ \frac{1}{\sqrt{20}} A_1, \frac{1}{\sqrt{8}} A_2, \frac{1}{\sqrt{6}} A_3 \right\}$$

כן קבוצה אורתונומלית

קודם הגדרנו מושג של היטל אורתוגונלי של ווקטור על תת מרחב. ניסחנו משפט שטוען את הדבר הבא:

 $u_0 \in V$ אם על פנימית, איז פנימית, על תת מרחב נוצר סופית, איז לכל ווקטור יחיד ע $V \subseteq V$ תת מרחב מכפלה פנימית, איז לכל ווקטור יחיד על תת מרחב נוצר סופית, איז לכל ווקטור יחיד על על פריים ווקטור יחיד על פריים ווקטור ווקטור יחיד על פריים ווקטו

$$(\mathbf{v}-u_0)\perp U$$
.

. על על א הוכחנו את קיומו על על על על ההיטל ההיטל u_0 קוראים ההיטל על על על

נוכיח בהתחלה את קיומו של היטל בתנאי שלתת מרחב U קיים בסיס אורתונורמלי.

הגדרה 2.4 הגדרת ההיטל האורתוגונלי

נניח ש V מרחב מכפלה פנימית ונניח ש $U\subseteq V$ תת מרחב ווצר סופית של

$$\{u_1,\ldots,u_k\}$$

ומוגדר $P_U(\mathbf{v})$ -ם מסומן של אורתוגונלי האורתוגונלי ווקטור אז לכל ווקטור אז לכל האיטל האורתוגונלי של י

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i .$$

. U נקרא אופרטור ההטלה האורתוגונלי על פרטור אופרטור אופרטור אופרטור פרטור אופרטור נקרא

משפט 2.3 משפט ההיטל האורתוגונלי

נניח ש V מרחב מכפלה פנימית, ו- $U\subseteq V$ תת מרחב נוצר סופית של V. נסמן את ההיטל האורתוגונלי עניח של כל ווקטור V בV על V בV ווקטור על V

$$\mathbf{v} - P_U(\mathbf{v})$$

U -אורתוגונלי לכל ווקטור ב

כלומר

$$\langle \mathbf{v} - P_U(\mathbf{v}), u \rangle = 0$$

 $u \in U$ ולכל $\mathbf{v} \in V$ לכל

נסמן את האורתוגונליות של הווקטור $\mathbf{v}-P_U(\mathbf{v})$ ביחס לתת מרחב כך:

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

הוכחה: לפי הגדרת היטל אורתוגונלי, צריך להוכיח שווקטור

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

 $1, 1 \leq j \leq k$ נניח ש $\{u_1, \dots, u_k\}$ בסיס אורתוגונלי של

$$\begin{split} \langle \mathbf{v} - P_U(\mathbf{v}), u_j \rangle &= \left\langle \mathbf{v} - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle \\ &= \langle \mathbf{v}, u_j \rangle - \left\langle \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle \\ &= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \cdot \langle u_i, u_j \rangle \\ &= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \langle u_i, u_j \rangle \, \delta_{ij} \\ &= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \, \langle u_j, u_j \rangle \\ &= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \cdot \|u_j\|^2 \\ &= \langle \mathbf{v}, u_j \rangle - \langle \mathbf{v}, u_j \rangle \\ &= 0 \; . \end{split}$$

 $L(\mathbf{v}-P_U(\mathbf{v}))\perp U$ הוכחנו

2.2 אופרטור הטלה האורתוגונלי

משפט 2.4 תכונות של אופרטור הטלה האורתוגונלי

.V מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של עניח ש- נניח את המשלים האורתוגונלי של ב- U^\perp ב-

אופרטור ההטלה האורתוגונלי P_U מקיים את התכונות הבאות:

- . העתקה לינארית P_U (1
- $P_U(w)=0$ מתקיים $w\in U^\perp$, ולכל ולכל א $P_U(u)=u$ מתקיים מתקיים (2

.
$$\operatorname{Ker}(P_U) = U^\perp$$
 וגם $\operatorname{Im}(P_U) = U$ (3

$$V=U\oplus U^{\perp}$$
 (4

$$P_U \circ P_U = P_U$$
 (5

לכל $\mathbf{v} \in V$ מתקיים כי

$$(\mathbf{v} - P_U(\mathbf{v})) \in U^{\perp}$$

הוכחה:

. העתקה לינארית P_U (1

 $\mathbf{v}_1,\mathbf{v}_2\in V$ לכל

$$P_{U}(\mathbf{v}_{1} + \mathbf{v}_{2}) = \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1} + \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1}, u_{i} \rangle + \langle \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i} + \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= P_{U}(\mathbf{v}_{1}) + P_{U}(\mathbf{v}_{2})$$

$$P_{U}(\alpha \mathbf{v}) = \sum_{i=1}^{k} \frac{\langle \alpha \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\alpha \langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha \sum_{i=1}^{k} \frac{\langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha P_{U}(\mathbf{v})$$

לכן P_U אופרטור לינארי.

כך ש $lpha_1,\dots,lpha_k$ בסיס של $u\in U$ אז לכל של בסיס של $\{u_1,\dots,u_k\}$ כך ש

אז .
$$u=lpha_1u_1+\ldots+lpha_ku_k$$

$$P_U(u) = \sum_{i=1}^k \alpha_i P_U(u_i)$$

 $1 \le j \le k$ לכל

$$P_U(u_j) = \sum_{i=1}^k \frac{\langle u_j, u_i \rangle}{\|u_i\|^2} u_i$$
$$= \frac{\langle u_j, u_j \rangle}{\|u_j\|^2} u_j$$
$$= u_j.$$

$$P_U(u) = \sum_{i=1}^k \alpha_i u_i = u .$$

לכל $1 \leq i \leq k$ לכל מתקיים $w \in U^{\perp}$ לכל $w,u_i = 0$

$$P_U(w) = \sum_{i=1}^k \frac{\langle w, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $.U\subseteq \mathrm{Im}\,(P_U)$ לכך , $a=P_U(a)\in \mathrm{Im}\,(P_U)$ לפי תנאי, $a\in U$ לכל (3

, $a\in V$ בסיס אלכל של של אורתוגונלי בסיס אורתוגונלי אם אם לכל ווקטור אם לפי ההגדרה אל

$$P_U(a) = \sum_{i=1}^k \frac{\langle a, u_i \rangle}{\|u_i\|^2} u_i$$

.Im $(P_U) = U$ לכן

 $.U^{\perp}\subseteq\ker(P_U)$ בסעיף 2 הוכחנו כי

. $\ker(P_U)\subseteq U^\perp$ נוכיח כי

נניח ש $v \in \ker(P_U)$ נניח ש

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $1 \leq i \leq k$ לכל $\langle {f v}, u_i
angle = 0$ בת"ל אז בהכרח בת"ל בת"ל בת"ל . ${f v} \in U^\perp$ לכן

לכן $\dim(V) = \dim(\ker P_U) + \dim(\operatorname{Im} P_U)$ (4

$$\dim(V) = \dim\left(U^{\perp}\right) + \dim\left(U\right)$$

מכאן נובע כי

$$U\cap U^{\perp}=\{0\}\ .$$

 $\mathbf{v} \in V$ לכל (5

$$P_U(\mathbf{v}) = u \in U$$
.

לכן

$$(P_U \circ P_U)(v) = P_U(P_U(v)) = P_U(u) = u$$
,

כלומר

$$P_U \circ P_U = P_U \ .$$

6) הוכחנו במשפט 2.3 כי

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$

לכן

$$\mathbf{v} - P_U(\mathbf{v}) \in U^{\perp}$$
.

משפט 2.5 משפט הפיכות האורתוגונלי

נניח ש $V \subset V$ תת מרחב של על. אז $U \subset V$ מרחב של פנימית נוצר סופית ו

$$V=U\oplus U^{\perp}$$
 (x

$$\left(U^{\perp}
ight)^{\perp}=U$$
 (2

הוכחה:

.2.4 הוכחנו במשפט
$$V=U\oplus U^\perp$$
 (א

(a

$$.U\subseteq \left(U^\perp
ight)^\perp$$
 נוכיח כי (1

$$u\in U$$
 נקח נקח $u\in \left(U^\perp\right)^\perp$ צ"ל

$$.u \in \left(U^\perp\right)^\perp \Leftarrow \langle u, \mathbf{v}
angle = 0$$
 , $\mathbf{v} \in U^\perp$ לכל

 $.ig(U^\perpig)^\perp\subseteq U$ צ"ל (2

נקח $w \in U^{\perp}$, $u \in U$ כך א' קיימים. $v \in \left(U^{\perp}\right)^{\perp}$ נקח

$$v = u + w$$
.

 $\langle u,w \rangle = 0$ נשים לב כי

$$\langle \mathbf{v}, w \rangle = \langle u + w, w \rangle$$
$$= \langle u, w \rangle + \langle w, w \rangle$$
$$= \langle w, w \rangle$$

$$w=0$$
 מכיוון ש $(w,w)=0$ ולכן $(v,w)=0$, אז נקבל כי $w\in U^\perp$. לכן $v\in (U^\perp)^\perp$ ולכן $v=u\in U$ לכן אז $v=u\in U$. הוכחנו כי $v=u\in U$.

2.3 תהליך גרם שמידט

משפט 2.6 תהליך גרם שמידט

נניח שV מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של

$$\{v_1, v_2, \ldots, v_k .\}$$

כך: U כל של אורתוגונלי כסמן בסיס U כל.

$$\{u_1,u_2,\ldots,u_k\}.$$

ניתן למצוא את כל הווקטורים בבסיס האורתוגונלי, באמצעות התהליך גרם שמידט:

$$u_{1} = \mathbf{v}_{1}$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$\vdots$$

$$u_{k} = \mathbf{v}_{k} - \sum_{i=1}^{k-1} \frac{\langle \mathbf{v}_{k}, u_{i} \rangle}{\|u_{i}\|^{2}} \cdot u_{i}$$

$$\vdots$$

דוגמה 2.7

עם מכפלה פנימית סטנדרטית. $V=\mathbb{R}^4$

$$U = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \right\}$$

U -מצאו בסיס אורתוגונלי ל

פתרון:

$$.V_1 = \operatorname{span}(u_1) \ .u_1 = \operatorname{v}_1$$
נגדיר

$$\mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} \cdot u_1 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \ .$$

$$.u_2=egin{pmatrix}1\\-2\\0\\1\end{pmatrix}$$
 אפשר לבחור

$$V_2 = \operatorname{span} \left\{ u_1, u_2 \right\} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\} .$$

$$\mathbf{v}_{3} - P_{V_{2}}(\mathbf{v}_{3}) = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$= \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ -3 \\ 1 \end{pmatrix}$$

ינגדיר
$$u_3=egin{pmatrix}1\\1\\-3\\1\end{pmatrix}$$
 בסיס אורתוגונלי:

$$\left\{ \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\1\\-3\\1 \end{pmatrix} \right\}$$

נבנה בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} u_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \frac{1}{\sqrt{6}} u_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \\ 0 \\ \frac{1}{\sqrt{6}} \end{pmatrix}, \quad \frac{1}{\sqrt{12}} u_3 = \begin{pmatrix} \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \\ \frac{-3}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \end{pmatrix} \right\}$$

דוגמה 2.8

במרחב עם הבסיס מכפלה בקטע [0,1]. נתון הבסיס סטנדרטית מכפלה אינטגרלית אינטגרלית מכפלה מכפלה במרחב

$$\{e_1 = 1, e_2 = x, e_3 = x^2\}$$
.

מצאו בסיס אורתוגונלי.

פתרון:

$$u_1 = e_1 = 1 \text{ ,} V_1 = \operatorname{span}(1)$$

$$u_2 = e_2 - \frac{\langle e_2, u_1 \rangle}{\|u_1\|^2} u_1 = x - \frac{1}{2}$$

$$\langle e_2, u_1 \rangle = \int_0^1 x \, dx = \frac{1}{2} \text{ ,} \qquad \|u_1\|^2 = \int_0^1 1^2 dx = 1 \text{ .}$$

$$V_2 = \operatorname{span}\left(1, x - \frac{1}{2}\right) \text{ .}$$

$$u_3 = e_3 - \frac{\langle e_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle e_3, u_2 \rangle}{\|u_2\|^2} u_2$$

$$\langle e_3, u_1 \rangle = \int_0^1 x^2 dx = \frac{1}{3} , \qquad \langle e_3, u_2 \rangle = \int_0^1 x^2 \left(x - \frac{1}{2} \right) dx = \left[\frac{x^4}{4} - \frac{x^3}{6} \right]_0^1 = \frac{1}{12} .$$

$$||u_2||^2 = \int_0^1 \left(x - \frac{1}{2}\right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4}\right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4}\right]_0^1 = \frac{1}{12}.$$

$$u_3 = x^2 - \frac{1}{3} - u_2 = x^2 - x + \frac{1}{6}$$
.

בסיס אורתוגונלי:

$$u_1 = 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

נמצא בסיס אורתונורמלי:

$$||u_1||^2 = 1$$
, $||u_2||^2 = \frac{1}{12}$,

$$||u_3||^2 = \int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x + \frac{1}{36} \right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4}{9}x^3 - \frac{1}{6}x^2 + \frac{1}{36}x \right]_0^1$$

$$= \frac{1}{180}.$$

בסיס אורתונורמלי:

$$\left\{u_1, \sqrt{12}u_2, \sqrt{180}u_3\right\}$$
.

דוגמה

L[-1,1] ביחס למכפלה פנימית אינטגרלית בקטע ביחס $U=\mathrm{span}(1,x,x^2)$ ביחס למרחב בסיס אורתונורמלי

פתרון:
$$. \mathbf{v}_1 = 1, \mathbf{v}_2 = x, \mathbf{v}_3 = x^2$$
נסמן

$$u_1 = 1$$
, $u_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} u_1$

$$\langle \mathbf{v}_2, u_1 \rangle = \int_{-1}^1 x \, dx = \left[\frac{x^2}{2} \right]_{-1}^1 = 0 \ .$$

לכן

$$u_2=x$$
.

$$u_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_3, u_2 \rangle}{\|u_2\|^2} u_2$$
.

$$||u_1||^2 = \int_{-1}^{1} 1 \, dx = [x]_{-1}^1 = 2$$
.

$$\langle \mathbf{v}_3, u_1 \rangle = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3} \right]_{-1}^1 = \frac{2}{3} .$$

$$\langle \mathbf{v}_3, u_2 \rangle = 0 .$$

$$||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3}.$$

$$u_3 = x^2 - \frac{1}{2}.$$

בסיס אורתוגונלי:

$$u_1 = 1$$
, $u_2 = x$, $u_3 = x^2 - \frac{1}{3}$.

נחפש בסיס אורתונורמלי:

$$||u_1||^2 = 2 , ||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3} .$$

$$||u_3||^2 = \int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 dx$$

$$= \int_{-1}^1 \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9}\right) dx$$

$$= \left[\frac{x^5}{5} - \frac{2}{9}x^3 + \frac{1}{9}x\right]_{-1}^1 .$$

 $=\frac{8}{45}.$

בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} , \sqrt{\frac{3}{2}} x , \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right) \right\} .$$

דוגמה 2.10

מצאו בסיס אורתונורמלי למרחב
$$U=\mathrm{span}\left\{\mathbf{v}_1=\begin{pmatrix}2\\2i\\2\end{pmatrix},\mathbf{v}_2=\begin{pmatrix}2+2i\\0\\4\end{pmatrix}\right\}$$
 ביחס למכפלה הפנימית . \mathbb{C}^3 -ב

פתרון:

$$u_{1} = \mathbf{v}_{1} = \begin{pmatrix} 2 \\ 2i \\ 2 \end{pmatrix} .$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$\langle \mathbf{v}_{2}, u_{1} \rangle = (2 + 2i) \cdot 2 + 0 + 8 = 12 + 4i$$

$$||u_1||^2 = 12$$
.

$$||u_2||^2 = \frac{16}{9} + \frac{4}{9} + 4 + 4 + \frac{4}{9} = \frac{32}{3}.$$

$$u_{2} = \begin{pmatrix} 2+2i \\ 0 \\ 4 \end{pmatrix} - \left(1+\frac{1}{3}i\right) \begin{pmatrix} 2 \\ 2i \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{4i}{3} \\ \frac{2}{3} - 2i \\ 2 - \frac{2}{3}i \end{pmatrix}$$

בסיס אורתונורמלי:

$$\frac{1}{\sqrt{12}}u_1$$
, $\sqrt{\frac{3}{32}}u_2$.

2.4 *העשרה: משמעות גיאומטרית של ההיטל

 ${
m v}$ יהי U ישר במישור, ותהי ${
m v}$ נקודה כלשהי במישור שאינה על U. בגיאומטריה מוכיחים כי אפשר להוריד אנך מ- על U, ואורך אנך זה הוא המרחק הקצר ביותר בין הנקודה ${
m v}$ לנקודה כלשהי בישר. מרחק זה נקרא גם המרחק על U, ואורך אנך זה הוא המרחק הקצר ביותר בין הנקודה ${
m v}$ לכים טענה דומה גם במרחב מכפלה פנימית.

 $u_0 \in U$ המקיים ער אנך למצוא וקטור עריך למצוא עריך לתת-מרחב ער לתת-מרחב ער אנך מוקטור יער. עריק לתת-מרחב עריק אנדיר כעת אנ

יהי ע אינו שייך ל- ע אינו שייך ל- ע יהי ע סופית של יהי ע תת-מרחב ווהי ע תת-מרחב ווהי ע יהי ע מרחב מכפלה פנימית ויהי ע תת-מרחב ווצר סופית של יהי ע מרחב מכפלה פנימית ויהי ע $U \subset V$

יא התנאי התנאי ע"י התנאי על ע"י התנאי אורתוגונלי אל נגדיר את ההיטל אורתוגונלי של וקטור ע"י התנאי הבא:

$$(\mathbf{v}-u_0)\perp U$$
.

 ${\bf U}$ על ע א יע להיטל פין המרחק המרחק , $d({\bf v},u_0)$ מוגדר להיות ${\bf U}$ ע א יע המרחק בין א המרחק בין

2.5 * העשרה: משפט קיום בסיס אורתוגונלי

משפט 2.7 קיום בסיס אורתוגונלי

לכל מרחב מכפלה פנימית V ממימד סופי קיים בסיס אורתוגונלי.

הוכחה: נניח

$$\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$$

בסיס של V. נגדיר סדרת מרחבים ווקטורים

$$V_1 = \operatorname{span}\left(\mathbf{v}_1\right) \subset V_2 = \operatorname{span}\left(\mathbf{v}_1,\mathbf{v}_2\right) \subset \ldots \subset V_n = \operatorname{span}\left(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\right) = V$$

 $.1 \leq i \leq n$ לכל

נגדיר

$$u_i = \mathbf{v}_i - P_{V_{i-1}}(\mathbf{v}_i) .$$

נוכיח באינדוקציה כי u_1,u_2,\dots,u_n בסיס אורתוגונלי. V_1 שבור i=1 הקבוצה $\{u_1\}$ בסיס אורתוגונלי של i=1 נניח שעבור i, קבוצת הווקטורים $\{u_1,\dots,u_i\}$ אורתוגונלית. נוכיח כי i, קבוצת לכל i לכל i לכל i לכל i כאשר i כאשר i לכל i לכל i לכל i בוכיח במשפט 2.3 כי

 $(\mathbf{v}_{i+1} - P_{V_i}(\mathbf{v}_{i+1})) \perp V_i$.

שיעור 3 ערכים עצמיים ווקטוירם עצמיים

3.1 ערכיים עצמיים, ווקטורים עצמיים של מטריצות

הגדרה 3.1 ערך עצמי ווקטור עצמי של מטריצה

יקרא (v $eq ar{0}$) מטריצה לוקטור האפס על אדה $\mathbf{v}\in F^n$ וקטור האפט . \mathbb{F} מטריצה ריבועית מעל אם היים אם $A\in \mathbb{F}^{n imes n}$ כך של $\lambda\in\mathbb{F}$ אם קיים סקלר $\lambda\in\mathbb{F}$ כך ש

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

A נקרא ערך עצמי של A ששייך לוקטור עצמי י. המשוואה הזאת נקראת ששייך לוקטור עצמי של λ

דוגמה 3.1

נתונה מטריצה

$$A = \left(\begin{array}{cc} 2 & 4 \\ 3 & 6 \end{array}\right) ,$$

המתאים: אחד מהוקטורים הבאים, הוא וקטור עצמי של A ומצאו את הערך עצמי המתאים:

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 (א)

$$u_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 (ב)

$$u_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (3)

פתרון:

(א)

$$A \cdot \mathbf{v}_1 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 16 \\ 24 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 8u_1.$$

ולכן u_1 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_1 = 8$$
.

$$A \cdot \mathbf{v}_2 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 0u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_2=0$$
.

$$A \cdot u_3 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

A ולכן u_3 אינו וקטור עצמי של

דוגמה 3.2

()

נתונה מטריצה

$$A = \left(\begin{array}{cc} 4 & 8 \\ 1 & 6 \end{array}\right) ,$$

ים: את הערך עצמי את ומצאו את וקטור עצמי הוא וקטור הבאים, הוא המתאים: מהוקטורים הבאים, הוא וקטור עצמי של אחד מהוקטורים הבאים, הוא וקטורים הבאים ה

$$u_1=egin{pmatrix} 4 \ 1 \end{pmatrix}$$
 (X)

$$u_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (3)

פתרון:

(メ)

(ロ)

$$A \cdot u_1 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 24 \\ 10 \end{pmatrix} \neq \lambda u_1.$$

A אינו וקטור עצמי של ולכן ולכן

$$A \cdot u_2 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -4 \\ 1 \end{pmatrix} = 2u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda = 2$$
.

$$A \cdot u_3 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (3)

 $\lambda=8$ ולכן עצמי לערך עצמי של A השייך עצמי ולכן ולכן ולכן

דוגמה 3.3

הינם המטריצה של וקטורי עצמיים של הינם ו
$$u_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 , $u_1=\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ הראו

$$A = \left(\begin{array}{cc} 5 & 0 \\ 2 & 0 \end{array}\right)$$

$$A \cdot u_1 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$A \cdot u_2 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\lambda_2=0$ ו אוא וקטור עצמי השייך לערך עצמי ו $\lambda_1=2$ ו אוא וקטור עצמי השייך לערך עצמי וכן $\lambda_1=2$

משפט 3.1

ערך עצמי של מטריצה יכול להיות 0.

וקטור האפס לא יכול להיות וקטור עצמי של מטריצה.

משפט 3.2 המשוואה האופייני של מטריצה

,3.1 אז לפי הגדרה אז לערך עמצי λ ששייך לערך עצמי של יויהי א וקטור ויהי א $A \in \mathbb{F}^{n \times n}$

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
,

נעביר אגפים:

$$\bar{0} = \lambda \mathbf{v} - A \mathbf{v} \qquad \Rightarrow \qquad \bar{0} = (\lambda I - A) \mathbf{v}$$

כאשר I המטריצה היחידה של $\mathbb{F}^{n imes n}$. קיבלנו את המשוואה

$$(\lambda I - A) \mathbf{v} = \bar{\mathbf{0}} .$$

.0 -שווה ($\lambda I-A$) אווה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה עצמי אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה ($\lambda I-A$) שווה ל- $\lambda I-A$

$$|\lambda I - A| = 0 .$$

A המשוואה הזאת נקראת משוואת האופייני של

הצד שמאל נקרא **הפולינום האופייני של** A ומסומן $p_A(\lambda)$ כלומר

$$p_A(\lambda) = |\lambda I - A| .$$

משפט 3.3 סדר של פולינום האופייני

A מסדר A של $p_A(x)$ אם הפולינום האופייני $A \in \mathbb{F}^{n imes n}$

משפט 3.4 מרחב עצמי

תהי $A\in\mathbb{F}^{n imes n}$ ויהי λ ערך עצמי של A. נסמן ב- V_λ הקבוצה של כל הוקטורים עצמיים ששייכים לערך עצמי λ , בתוספת הוקטור האפס. $\mathbb{F}^{n imes n}$ תת-מרחב של $\mathbb{F}^{n imes n}$.

הוכחה: תרגיל בית.

$A-\lambda I$ מרחב עצמי של ערך עצמי λ שווה למרחב האפס של 3.5

תהי $A \in \mathbb{F}^{n imes n}$ מרחב העצמי של A ערך עצמי של A ויהי א

$$V_{\lambda} = \text{Nul}\left(A - \lambda I\right)$$
.

 $.V_{\lambda}\subseteq \mathrm{Nul}\,(A-\lambda I)$ נוכיח כי נוכיח הוכחה:

יהי את משוואת הערך עצמי A אשייך לערך עצמי איז וקטור עצמי של א וקטור עצמי איז א וקטור עצמי של א

$$A \cdot u = \lambda u \qquad \Rightarrow \qquad (A - \lambda I) \cdot u = \bar{0}$$

לכן $u\in V_\lambda$ לכן לכל וקטור אפס. אנכן $u\in \mathrm{Nul}(A-\lambda I)$ לכן $ar 0\in \mathbb F^n$ כאשר $V_\lambda\subseteq \mathrm{Nul}\,(A-\lambda I)$.

 $\operatorname{Nul}\left(A-\lambda I\right)\subseteq V_{\lambda}$ נוכיח כי

יהי $u \in \operatorname{Nul}(A - \lambda I)$ יהי

$$(A - \lambda I) u = \bar{0} \qquad \Rightarrow \qquad A \cdot u = \lambda u \ .$$

לכן $u\in {\rm Nul}\,(A-\lambda I)$ לכל לכך $u\in V_\lambda$ לכן לערך עצמי u ששייך לערך ששייך לערך עצמי u לכן אווא וקטור עצמי של שווא אווא ו

הגדרה 3.2 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של מטריצה

 λ_i ערך עצמי ארך ויהי $A\in\mathbb{F}^{n imes n}$

הריבוי אלגברי של λ_i הוא הריבוי של λ_i הוא הריבוי אלגברי של האופייני האוח הריבוי אלגברי הריבוי הריבוי של

$$|\lambda I - A| = (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \quad \cdots \quad (\lambda - \lambda_i)^{m_i} \quad \cdots \quad (\lambda - \lambda_l)^{m_l} ,$$

 m_i אז הריבוי אלגברי של

הריבוי גיאומטרי שלו. כלומר המימד אם המימד הוא λ_i שלו. כלומר אם הריבוי גיאומטרי

$$V_{\lambda_i} = \{u_1, \dots, u_k\}$$

k הוא λ_i יש אוקטורים כי הריבוי ואומרים עצמיים אז ל- אז ל- או וקטורים עצמיים או

דוגמה 3.4

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2) - 6 = 0 \quad \Rightarrow \quad \lambda^2 - 3\lambda - 4 = 0$$

או שקול

$$(\lambda - 4)(\lambda + 1) = 0$$

ולכן לפולינום אופייני יש שני פתרונות:

$$\lambda = 4$$

$$.\lambda = -1$$

. $\mathrm{Nul}\left(A-\lambda I\right)$ את הוקטורים עצמיים של כל אחד של הערכים של מצא את הוקטורים עצמיים אחד אחד אחד אחד או

 $\lambda = 4$

$$(A-\lambda I\mid ar{0})\stackrel{\lambda=4}{=}(A-4I\mid ar{0})=\left(egin{array}{cc|c} -3 & 2 & 0 \ 3 & -2 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} -3 & 2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$
 פתרון: $\begin{pmatrix} x \ y \end{pmatrix}=y\begin{pmatrix} 2 \ 3 \end{pmatrix}$: נסמן

$$V_4 = \operatorname{span}\left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$$
.

נסמן . $\lambda=4$ נסמן אייך לערך עצמי החב מרחב עצמי ו

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
.

 $\lambda=4$ הוא הוקטור עצמי ששייך לערך עצמי ווא הוקטור עז הוא ווא הוקטור לכן היכוי גיאומטרי של $\dim(V_4)=1$

 $\lambda = -1$

$$(A-\lambda I\mid ar{0}) \stackrel{\lambda=-1}{=} (A+I\mid ar{0}) = \left(egin{array}{cc|c} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight)$$
 הפתרון הוא: $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ נסמן

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$
 .

נסמן . $\lambda=-1$ נסמן להערך עצמי השייך עצמי אמרחב ע

$$u_2 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

 $\lambda=-1$ הוא הוקטור עצמי ששייך לערך עצמי הוקטור עצמי הוא ווא הוקטור לכן הוא $\dim(V_{-1})=1$

דוגמה 3.5

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 2 & 0 & 0 & -1 \\ 0 & \lambda - 2 & 1 & 1 \\ 1 & 1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2)\left((\lambda - 2)^2 - 1\right) = 0 .$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 4 - 1\right) = 0$$

$$(\lambda - 1)(\lambda - 2) (\lambda^2 - 4\lambda + 4 - 1) = 0$$

$$(\lambda - 1)(\lambda - 2) (\lambda^2 - 4\lambda + 3) = 0$$

$$(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 1) = 0$$

$$(\lambda - 1)^2(\lambda - 2)(\lambda - 3) = 0$$

:קיימים 3 ערכים עצמיים

 $\lambda=1$ מריבוי אלגברי

 $\lambda=2$ מריבוי אלגברי

 $\lambda=3$ מריבוי אלגברי

 $\lambda = 1$

$$(A - \lambda I \mid \bar{0}) \stackrel{\lambda=1}{=} (A - I \mid \bar{0}) = \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & -1 & 1 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

הפתרון הוא
$$\lambda=1$$
 עצמי עצמי ששייך לערך עצמי המרחב .
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}=z\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}+w\begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \ z,w\in\mathbb{R}$$
 הוא הפתרון הוא $\lambda=1$

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

בבסיס של V_1 ישנם שני וקטורים. נסמן

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

 $\lambda=1$ ו- u_2 הם הוקטורים עצמיים ששייכים לערך עצמי ו- u_1 נון ש $\dim(V_1)=2$, הוא אומרים כי הריבוי גאומטרי של הערך עצמי

$$(A-2I\mid \bar{0}) = \left(\begin{array}{ccc|ccc|c} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{array} \right) \ \rightarrow \ \left(\begin{array}{ccc|ccc|c} -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \ \rightarrow \ \left(\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

$$\rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

הוא
$$\lambda=2$$
 עצמי ששייך לערך עצמי המרחב
$$\begin{pmatrix} x\\y\\z\\w \end{pmatrix}=y\begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix},\ y\in\mathbb{R}.$$
 פתרון:

$$V_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

נסמן . נסמן על V_2 יש וקטור אחד. נסמן

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} .$$

עד הערך אומטרי פי הריבוי אומרים אומרים לוון ש $\mathrm{dim}(V_2)=1$ כיוון אוון אומטרי עצמי ששייך לערך עצמי לערך אוון הוא . $\lambda=2$ עצמי לערך עצמי הוא . $\lambda=2$

 $\lambda = 3$

$$(A - 3I \mid \bar{0}) = \begin{pmatrix} -1 & 0 & 0 & 1 \mid 0 \\ 0 & -1 & -1 & -1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix} \xrightarrow{\begin{array}{c} R_1 \to -R_1 \\ R_2 \to -R_2 \end{array}} \begin{pmatrix} 1 & 0 & 0 & -1 \mid 0 \\ 0 & 1 & 1 & 1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \left(\begin{array}{cccc|ccc} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

המרחב עצמי ששייך לערך עצמי
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = z \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \ z \in \mathbb{R}.$$
 פתרון: $z \in \mathbb{R}$

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

:בסיס של V_3 יש וקטור אחד

$$u_4 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} .$$

אז אומרים כי הריבוי גאומטרי של הערך עצמי הוא $\dim(V_3)=1$ - כיוון ש- $\lambda=3$ כיוון עצמי ששייך לערך עצמי ששייך לערך אז הוא $\lambda=3$. הוא $\lambda=3$

3.2 לכסון של מטריצה

הגדרה 3.3 לכסינות של מרטיצות

תהי מטריצה אם קיימת מטריצה אלכסונית. כלומר אם היא דומה לכסינה אם תקרא לכסינה אם תקרא לכסינה אם חיימת אלכסונית. כלומר אם חיימת מטריצה אלכסונית בד $D\in\mathbb{F}^{n\times n}$ מכריצה אלכסונית ומטריצה אלכסונית בדי אלכסונית היא מטריצה אלכסונית בדי אלכסונית בדי מטריצה בדי מטריצה אלכסונית בדי מטריצה בדי מטריצה אלכסונית בדי מטריצה בדי

$$D = P^{-1}AP .$$

משפט 3.6 לכסינות של מרטיצות

. לכסינה A אז \mathbb{F}^n אז א בסיס של מהווה בסיס עצמיים עצמיים אז $A\in\mathbb{F}^{n\times n}$

נסמן הוקטורים עצמיים ב- $\{u_1,\dots,u_n\}$ ששייכים לערכים עצמיים $\lambda_1,\dots,\lambda_n$ בהתאמה (הערכים עצמיים לא בהכרח שונים זה מזה). מכאן נובע ש-

$$D = P^{-1}AP \qquad \Leftrightarrow \qquad A = PDP^{-1}$$

. מטריצה
$$P=\begin{pmatrix} |&|&&|\\u_1&u_2&\dots&u_n\\|&|&&|\end{pmatrix}$$
 מטריצה אלכסונית ו
$$D=\begin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\\vdots&\vdots&\ddots&0\\0&0&\dots&\lambda_n \end{pmatrix}$$
 כאשר

הוכחה: $\lambda_i = \lambda_i u_i$ לכל $1 \leq i \leq n$ לכל

$$A \cdot P = \begin{pmatrix} | & | & | \\ A \cdot u_1 & A \cdot u_2 & \dots & A \cdot u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= PD.$$

 P^{-1} לכן הפיכה. לכן אז $\{u_1,\dots,u_n\}$ אז מהווים עצמיים עצמיים מהון כי הוקטורים. אז הפיכה. לכן הפיכה. לכן .AP=PD הפיכה. לכן היימת ומותר להכפיל מצד שמאל ב- $.P^{-1}$. נקבל

$$A = P^{-1}PD .$$

משפט 3.7 קריטירון 1 ללכסינות של מטריצה

. אם ל- A יש n ערכים עצמיים שונים ב- \mathbb{F} , אז $A\in\mathbb{F}^{n\times n}$ תהי

הוכחה: תרגיל בית.

משפט 3.8 קריטירון 2 ללכסינות של מטריצה: סכום המימדים של מרחבים העצמיים

A . $A \in \mathbb{F}^{n imes n}$ תהי A לכסינה אם"ם סכום המימדים של המרחבים העצמיים השונים שווה ל

הוכחה: תרגיל בית.

משפט 3.9 קריטירון 3 ללכסינות של מטריצה

תהי $A\in\mathbb{F}^{n imes n}$. אם

- ו- בהכרח שונים, ו $\mathbb F$, לא בהכרח שונים, ו- מפולינום האופייני שלה מתפרק למכפלה של גורמים לינאריים מעל
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,
 - $.\mathbb{F}$ אז A לכסינה מעל

הוכחה: תרגיל בית.

3.3 ערכים עצמיים של טרנספורמציות לינאריות

הגדרה 3.4 אופרטור לינארי

יהי V מרחב וקטורי. טרנספורציה לינארי T:V o V נקראת אופרטור לינארי.

הגדרה 3.5 אופרטור לכסין

אלכסונית. $[T]_B$ -ש כך ער בסיס אס קיים לכסין נקראת נקראת לכסונית אופרטור לינארי יו $T:V \to V$

-טל V כך של $B=\{b_1,\ldots,b_n\}$ של מיים בסיס

$$T(b_1) = \lambda_1 b_1$$
, $T(b_2) = \lambda_2 b_2$, ..., $T(b_n) = \lambda_n b_n$.

X

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה)

הגדרה 3.6 ערך עצמי ווקטור עצמי של אופרטור לינארי

-תהי $V o u \neq 0$ אופרטור לינארי ו- λ סקלר. λ נקרא ערך עצמי של T: V o V תהי T: V o V

$$T(u) = \lambda u$$
.

נקרא u

 λ וקטור עצמי ששייך לערך עצמי

משפט 3.10

אופרטור לינארי אם"ם מוקטורים אם"ם קיים אם"ם לכסינה אם"ם לכסינה $T:V \to V$ אופרטור לינארי

הוכחה: ⇒

-ע כך $U = \{u_1, \dots, u_n\}$ כך ש- מיים לכסינה. ז"א קיים בסיס T

$$T(u_1) = \lambda_1 u_1$$
, $T(u_2) = \lambda_2 u_2$, ..., $T(u_n) = \lambda_n u_n$.

X

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה).

 \leq

-ע כך א $\lambda_1,\dots,\lambda_n$ פלרים סקלרים שמורכב מוקטורים עצמיים. א"א קיימים שמורכב $U=\{u_1,\dots,u_n\}$ כך ש

$$T(u_1) = \lambda_1 u_1$$
, ... $T(u_n) = \lambda_n u_n$.

לכן

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

אלכסונית.

הגדרה 3.7 פולינום האופייני של אופרטור לינארי

תהי T:V o V המטריצה הלינוח לינארי. נניח שA המטריצה לינארי. אופרטור לינארי. נניח ש

$$p_T(\lambda) = |\lambda I - A|$$

T נקרא הפולינום האופייני של

הגדרה 3.8 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של אופרטור לינארי

ערך עצמי. ו- λ ערך עצמי. T:V o V נניח

- . הריבוי האלגברי של λ הוא הריבוי של λ בפולינום האופייני.
- λ הריבוי הגאומרטי של ל λ הוא הוא λ ללומר, מספר הוקטורים העצמיים הבת"ל השייכים ל- ל λ

דוגמה 3.6

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

 $T(u) = \lambda u$ -פשו את הוקטורים עצמיים של T כך ש- חפשו את חפשו האח T לכסינה?

פתרון:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

. כאשר $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ כאשר אופרטור.

פולינום האופייני:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0.$$

ערכים עצמיים:

$$\lambda = -1$$

$$\lambda = 4$$

 $\lambda = 4$

$$(A-4I)=inom{-3}{3}\quad 2 \ 3 \quad -2 \end{pmatrix} o inom{-3}{0}\quad 0$$
 פתרון: $V_4=\mathrm{span}\left\{inom{2}{3}
ight\}$ הוא $\lambda=4$ הוא $\lambda=4$ לכן המרחב עצמי שלו x ב- x y ברון: x ברון:

$$(A+I)=egin{pmatrix}2&2\\3&3\end{pmatrix} o egin{pmatrix}1&1\\0&0\end{pmatrix}$$
 נסמן הוקטור $.V_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\-1\end{pmatrix}\right\}$ הוא $\lambda=-1$ הוא לכן המרחב עצמי של $.U_{-1}=\mathrm{span}\left\{egin{pmatrix}1\\y\end{pmatrix}=egin{pmatrix}-1\\1\end{pmatrix}y,y\in\mathbb{R}\\y\end{pmatrix}=egin{pmatrix}-1\\1\\1\end{pmatrix}$ עצמי שלו ב- $u_{1}=egin{pmatrix}1\\-1\\1\end{pmatrix}$ בת"ל:

$$\begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \to \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$$

לכן הם מהווים בסיס של \mathbb{R}^2 לכסינה.

$$T(u_1) = 4 \cdot u_1$$
, $T(u_2) = -1 \cdot u_2$.

משפט 3.11

יהי לינארי לינארי אופרטור $T:V \to V$ ויהי וקטורי מעל V אופרטור לינארי לכסיו.

B נניח ש- T לפי בסיס וניח שה המייצגת וניח המטריצה וניח ש

יהיו $\lambda_1,\dots,\lambda_n$ הוקטורים עצמיים של T לפי בסיס B, ששייכים לערכים עצמיים u_1,\dots,u_n והם לא בהכרח שונים זה מזה).

אז

$$[T]_B = PDP^{-1}$$

או באופן שקול

$$P^{-1}[T]_B P = D$$

$$D = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
 -1 $P = egin{pmatrix} \mid & \mid & & \mid \\ u_1 & u_2 & \dots & u_n \\ \mid & \mid & & \mid \end{pmatrix}$ באשר

הוכחה:

$$[T]_{B}P = [T]_{B} \begin{pmatrix} | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [T]_{B}u_{1} & [T]_{B}u_{2} & \dots & [T]_{B}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

$$= PD,$$

כלומר, P^{-1} קיימת. לכן מותר להכפיל u_1,\dots,u_n בת"ל, אז P^{-1} הפיכה לכן מותר להכפיל מותר להכפיל מצד ימין ב- P^{-1} . נקבל: ולכן

$$[T]_B = PDP^{-1}$$

ומכאן נובע כי

$$P^{-1}[T]_B P = D$$

משפט 3.12

תהי אומטרי ו- kהריבוי האלגברי אם ערך עצמי. אם או λ_0 לינארית לינארית $T:V\to V$ הריבוי אומטרי אל אומטרי איז א λ_0

$$k \leq m$$
.

במילים: הריבוי הגיאומטרי קטן או שווה לריבוי האלגברי.

k ערך עצמי מריבוי אלגברי m וריבוי גיאומטרי λ_0 ערך עצמי מריבוי אלגברי m וקטורים בת"ל בת"ל u_1,\dots,u_k ששייכים לערך עצמי k נשלים אותו לבסיס של k:

$$B = \{u_1, \dots, u_k, u_{k+1}, \dots, u_n\}$$
.

 $:\!B$ נחשב את המטריצה המייצגת של נחשב את המטריצה המייצגת נחשב את

$$T(u_1) = \lambda_0 u_1$$
, ..., $T(u_k) = \lambda_0 u_k$

לכן

$$[T]_{B} = \begin{pmatrix} \lambda_{0} & 0 & \cdots & 0 \\ 0 & \lambda_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda_{0} \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

הוא A הופייני של

$$p_A(\lambda) = |\lambda I - A| = \begin{pmatrix} \lambda - \lambda_0 & 0 & \cdots & 0 \\ 0 & \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

נחשב את הדטרמיננטה דרך העמודה הראשונה:

$$p_A(\lambda) = (\lambda - \lambda_0) \cdot \left| \begin{pmatrix} \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & * \\ 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & \cdots & 0 \end{pmatrix} \right|$$

עד שנקבל

$$p_A(\lambda) = (\lambda - \lambda_0)^k |\lambda I - A'| = (\lambda - \lambda_0)^k p_{A'}(\lambda)$$

k -לכן הריבוי האלגברי גדול או שווה ל

דוגמה 3.7

$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 3\\ -1 & 3 & 1 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם A לכסינה? אם כן, רשמו מטריצה אלכסונית D ומטריצה הפיכה P כך ש

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -1 \\ 0 & \lambda + 1 & -3 \\ 1 & -3 & \lambda - 1 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} \lambda + 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} - \begin{vmatrix} 0 & 1 + \lambda \\ 1 & -3 \end{vmatrix}$$
$$= (\lambda + 1) ((\lambda + 1)(\lambda - 1) - 9) - (0 - (1 + \lambda))$$
$$= (\lambda + 1)(\lambda^2 - 1 - 9 + 1)$$
$$= (\lambda + 1)(\lambda^2 - 9)$$
$$= (\lambda + 1)(\lambda + 3)(\lambda - 3)$$

:ערכים עצמיים

.1 מריבוי אלגברי $\lambda=-1$

.1 מריבוי אלגברי $\lambda=3$

 $\lambda = -3$ מריבוי אלגברי

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \\ 1 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא $\lambda=-1$ עצמי השייך להערך אמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} y, \quad y \in \mathbb{R} \,:$ פתרון:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 3\\1\\0 \end{pmatrix} \right\}$$

 $.u_1 = egin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ הווקטור עצמי של $\lambda = -1$ הווקטור עצמי

 $\lambda=-1$ לכן הריבוי הגיאומטרי של הערך עצמי לוו $\lambda=-1$ לכן הריבוי הגיאומטרי

 $\lambda = 3$

$$(A-3I) = \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ -1 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & -12 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=3$$
 עצמי $\lambda=3$ המרחב עצמי השייך להערך עצמי z הוא המרחב .
$$\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} \frac{z}{4}\\\frac{3}{4}z\\z \end{pmatrix} = z \begin{pmatrix} 1\\3\\4 \end{pmatrix} :$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\3\\4 \end{pmatrix} \right\}$$

הוא $\lambda=3$ הוא הערך עצמי של הוא

$$u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} .$$

.1 הוא לכן איבוי של הערך איז גיאומטרי לכן הריבוי $\dim(V_3)=1$

 $\lambda = -3$

$$(A+3I) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 6 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא
$$\lambda=-3$$
 אוא אפייך להערך עצמי השייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -\frac{1}{2}z\\-\frac{3}{2}z\\z \end{pmatrix}=z\begin{pmatrix} -\frac{1}{2}\\-\frac{3}{2}\\1 \end{pmatrix}$ פתרון:

$$V_{-3} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} \right\}$$

הוא $\lambda = -3$ הוא הערך עצמי של הוקטור עצמי

$$u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} .$$

 $\lambda = -3$ לכן הריבוי גיאומטרי של הערך עצמי dim $V_{-3} = 1$

 $:\mathbb{R}^3$ לכן קיים בסיס של dim V_1+ dim V_3+ dim $V_{-3}=3$

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix} , \qquad P = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ 0 & 4 & 2 \end{pmatrix} .$$

דוגמה 3.8

$$A = \begin{pmatrix} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{pmatrix}$$

A את הערכים העצמיים ומרחבים עצמיים של

כך ש כך P ומטריצה הפיכה מטריצה אלכסונית לכסינה? אם כן, רשמו ב האם ב

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda - 5 & -2 & 2 \\ -2 & \lambda - 5 & 2 \\ 2 & 2 & \lambda - 5 \end{vmatrix}$$

$$= (\lambda - 5) \begin{vmatrix} \lambda - 5 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & \lambda - 5 \\ 2 & 2 \end{vmatrix}$$

$$= (\lambda - 5) ((\lambda - 5)^2 - 4) + 2 (-2(\lambda - 5) - 4) + 2 (-4 - 2(\lambda - 5))$$

$$= (\lambda - 5) (\lambda^2 - 10\lambda + 21) + 2 (-2\lambda + 6) + 2 (-2\lambda + 6)$$

$$= (\lambda - 5) (\lambda - 7) (\lambda - 3) - 4 (\lambda - 3) - 4 (\lambda - 3)$$

$$= (\lambda - 3) ((\lambda - 5) (\lambda - 7) - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 35 - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 27)$$

$$= (\lambda - 3) (\lambda - 9)(\lambda - 3)$$

 $\lambda=3$ ערך עצמי מריבוי אלגברי $\lambda=3$

 $\lambda=0$ ערד עצמי מריבוי אלגברי $\lambda=0$

 $\lambda = 3$

$$(A-3I)=\left(egin{array}{ccc}2&2&-2\\2&2&-2\\-2&-2&2\end{array}
ight)
ightarrow \left(egin{array}{ccc}1&1&-1\\0&0&0\\0&0&0\end{array}
ight)$$
 אוא $\lambda=3$ אוא $\lambda=3$ המרחב עצמי השייך להערך עצמי $\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=y\left(-1\\1\\0\end{pmatrix}+z\left(1\\0\\1\end{pmatrix}$ המרחב $V_3=\mathrm{span}\left\{\left(-1\\1\\0\end{pmatrix},\left(1\\0\\1\right)\right\}$

 $\lambda=3$ אז הריבוי הגיאומטרי של הערך עצמי של הריבוי הגיאומטרי אז הריבוי הגיאומטרי

 $\lambda = 9$

$$(A-9I) = \begin{pmatrix} -4 & 2 & -2 \\ 2 & 4 & -2 \\ -2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא $\lambda=9$ אפתרון: $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -z\\-z\\z \end{pmatrix}=z\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$: הוא

$$V_9 = \operatorname{span}\left\{ \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \right\}$$

.1 אז הריבוי הגיאומטרי של הערך עצמי הוא , $\dim(V_9)=1$

.dim $V_9 = 1$,dim $V_3 = 2$

 $\mathrm{dim}V_3+\mathrm{dim}V_9=3\ .$

:לכן קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים

$$u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 9 \end{pmatrix} , \qquad P = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} .$$

$$D = P^{-1}AP$$

דוגמה 3.9

$$A = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -12 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)\lambda(\lambda - 1) = 0$$

 $\lambda=0$ ערך עצמי מריבוי אלגברי $\lambda=0$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=1$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} 0 & 0 & 12 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=1$ עצמי $\lambda=1$ המרחב עצמי השייך להערך עצמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} :$

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=1$ אז הריבוי הגיאומטרי של הערך עצמי dim $(V_1)=1$

 $\lambda = 0$

$$(A - 0 \cdot I) = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=0$ עצמי אפייך להערך אייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} 0\\y\\0 \end{pmatrix}=y\begin{pmatrix} 0\\1\\0 \end{pmatrix}$:פתרון:

$$V_0 = \operatorname{span}\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$

.1 הוא $\lambda=0$ עצמי של הערך הגיאומטרי הגיאומטרי אז $\dim(V_0)=1$.dim $V_0=1$,dim $V_1=1$

 $\dim V_1 + \dim V_0 = 2 < \dim(\mathbb{R}^3) .$

. לכסינה אל A לכן לא קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים. לכן לא לכסינה

משפט 3.13 קריטירון 1 ללכסינות של אופרטור

n יש ל- 0 אם ל- . $\dim(V)=n$ שר לנגארי. נניח ש- T:V o V אופרטור לינארי. אופרטור לינארי. אז T לכסינה. T לכסינה.

הוכחה: תרגיל בית.

משפט 3.14 קריטירון 2 ללכסינות של אופרטור: סכום המימדים של מרחבים העצמיים

יהי T . $\dim(V)=n$ -ש נניח ש- T:V o V אופרטור לכסין אם מעל T:V o V היהי לכסין אם מרחב עצמי מעל המרחבים העצמיים שווה ל- ח.

הוכחה: תרגיל בית.

משפט 3.15 קריטירון 3 ללכסינות של אופרטור

יהי עצמי עצמי אופרטור T:V o V, ויהי " $\mathbb F$ אופרטור לינארי. אם

- ו- שונים, או בהכרח שונים, ו- \mathbb{F} מתפרק למכפלה של גורמים לינאריים מעל \mathbb{F} , לא בהכרח שונים, ו-
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,

 $.\mathbb{F}$ אז לכסין מעל

הוכחה: תרגיל בית.

דוגמה 3.10

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- \mathbb{R} לכסינה מעל A.
- ${\Bbb C}$ לכסינה מעל A לכסינה A

פתרון:

$$p_A(\lambda) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

 $\mathbb R$ לא לכסינה אל A לכן מעל $\mathbb R$, לכן לינאריים לינאריים לגורמים לגורמים לא מתפרק לגורמים לינאריים מעל

.2

$$\lambda^2 + 1 = (\lambda - i)(\lambda + i) = 0$$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=i$

 $\lambda=-i$ ערך עצמי מריבוי אלגברי $\lambda=-i$

$$(A-iI)=\left(egin{array}{cc} -i&1\\-1&-i\end{array}
ight) \; o \; \left(egin{array}{cc} -i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=i$ עצמי $\lambda=i$ עצמי השייך להערך עצמי $\lambda=i$ המרחב אמיין להערך אמיי $\lambda=i$ הוא

$$V_i = \operatorname{span}\left\{ \begin{pmatrix} -i\\1 \end{pmatrix} \right\}$$

1 אז הריבוי הגיאומטרי של הערך עצמי הוא $\dim(V_i)=1$

 $\lambda = -i$

$$(A+iI)=\left(egin{array}{cc} i&1\\-1&i\end{array}
ight) \;
ightarrow\; \left(egin{array}{cc} i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=-i$ עצמי השייך להערך עצמי $. \left(egin{array}{cc} x\\y\end{array}
ight)=\left(egin{array}{cc} iy\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$ המרחב עצמי השייך להערך עצמי $. \left(egin{array}{cc} y\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$

1 אז הריבוי של הערך איז הגיאומטרי אז $\dim(V_{-i})=1$

$$P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$
 , $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $D = P^{-1}AP$.

משפט 3.16 וקטורים עצמיים ששייכים לערכים עצמיים שונים בת"ל

. נתון שונים עצמיים עצמיים לערכים עצמיים של ד
 שטריים עצמיים שונים הם אופרטור לינארי. וקטורים עצמיים של
 $T:V\to V$

הוכחה: נתון:

אופרטוא לינארי, אופרטו
א $T:V\to V$

T של u_1, \ldots, u_n ערכים עצמיים שונים ששייכים שונים שונים עצמיים אונים ערכים אונים $\lambda_1, \ldots, \lambda_n$

צריך להוכיח:

בת"ל. u_1, \ldots, u_n

הוכחה:

n נוכיח את הטענה ע"י אינדוקציה על

שלב הבסיס:

עבור n=1 לכן הוא בת"ל. $u_1 \neq \bar{0} : n=1$

שלב האינדוקציה:

נניח שעבור n , וקטורים עצמיים ששייכים ל n ערכים עצמיים שונים בת"ל. נניח n וקטורים עצמיים ששייכים ל $\lambda_1,\dots,\lambda_{n+1}$ וקטורים עצמיים השייכים לערכים עצמיים לערכים עצמיים השייכים לערכים עצמיים השייכים לערכים עצמיים ו

$$\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n + \alpha_{n+1} u_{n+1} = \bar{0}$$
(*)

אז

$$\alpha_1 T(u_1) + \alpha_2 T(u_2) + \ldots + \alpha_n T(u_n) + \alpha_{n+1} T(u_{n+1}) = \bar{0}$$

$$\alpha_1 \lambda_1 u_1 + \alpha_2 \lambda_2 u_2 + \ldots + \alpha_n \lambda_n u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
(*1)

 $:\lambda_{n+1}$ ב (*) נכפיל

$$\alpha_1 \lambda_{n+1} u_1 + \alpha_2 \lambda_{n+1} u_2 + \ldots + \alpha_n \lambda_{n+1} u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
 (*2)

(*1) מ (1*):

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n + \alpha_{n+1}(\lambda_{n+1} - \lambda_{n+1})u_n = \bar{0}$$

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n = \bar{0}$$
(*3)

לכן בת"ל. בת"ל. בת"ל. לכן בת"ל. ההנחת האינדוקציה הוקטורים

$$\alpha_1(\lambda_1 - \lambda_{n+1}) = 0$$
 , ... , $\alpha_n(\lambda_n - \lambda_{n+1}) = 0$. (*4)

כל הערכים העצמיים שונים זה מזה, כלומר $\lambda_i - \lambda_{n+1} \neq 0$ לכל זה שונים שונים זה מזה, כלומר

$$\alpha_1 = 0 , \ldots , \alpha_n = 0 . \tag{*5}$$

נציב (5*) ב- (*) ונקבל

$$\alpha_1 u_1 = \bar{0}$$

לכן $\alpha_1, \ldots, \alpha_{n+1}=0$ כי הוא וקטור עצמי לכן (*) לכן (מצקיים לכן $\alpha_1=0$ לכן עצמיים לכן $\alpha_1=0$ לכן $\alpha_1=0$ לכן $\alpha_1=0$ בת"ל. בת"ל.

3.4 שימושים של לכסון מטריצה

משפט 3.17 חזקה של מטריצה הדומה למטריצה אלכסונית

אם A לכסינה, אז קיימת מטריצה אלכסונית D ומטריצה הפיכה P כך ש $D=P^{-1}A$ לכ

$$A^n = PD^nP^{-1} .$$

הוכחה:

נוכיח את הטענה ע"י אינדוקציה.

שלב הבסיס:

$$A = PDP^{-1} \Leftarrow D = P^{-1}AP$$
 , $n = 1$ עבור

שלב האינדוקציה:

נניש שעבור $A^n = PD^nP^{-1}$ מתקיים מתקיים

$$A^{n+1} = (PD^nP^{-1}) \cdot PDP^{-1} = PD^{n+1}P^{-1}$$

דוגמה 3.11

נתונה המטריצה

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

- A מצאו את הערכים עצמיים והמרחבים עצמיים של $oldsymbol{1}$
- $A = P^{-1}A$ ע כך שP כך ומטריצה הפיכה P לכסינה? אם כן רשמו מטריצה אלכסונית D
 - A^{1001} את חשבו 3

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 - 1) = (\lambda - 1)^2(\lambda + 1) = 0$$

 $\lambda=1$ מריבוי אלגברי

 $\lambda=-1$ מריבוי אלגברי

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

 ${\rm dim} V_1 + {\rm dim} V_{-1} = 2 + 1 = 3 = {\rm dim} \ \mathbb{R}^3$

לכן A לכסינה.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^{1001} = PD^{1001}P^{-1}$$

 $:P^{-1}$ נמצא את

$$\left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 לכן
$$D^{1001} = \begin{pmatrix} 1^{1001} & 0 & 0 \\ 0 & 1^{1001} & 0 \\ 0 & 0 & (-1)^{1001} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$A^{1001} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

משפט 3.18

אז $A \cdot u = \lambda u$ אז אוקטור עצמי של A השייך לערך עצמי א

$$A^n u = \lambda^n u$$
.

<u>שלב הבסיס:</u>

 $A\cdot u=\lambda u$ קטור עצמי של $A\cdot u=\lambda u$ קטור עצמי של A

שלב האינדוקציה:

נניח שעבור 1>1, אז $A^nu=\lambda^nu$

$$A^{n+1}u = A(A^nu) = A\lambda^n u = \lambda^n Au = \lambda^n \cdot \lambda u = \lambda^{n+1}u.$$

דוגמה 3.12

$$A = \begin{pmatrix} 0 & -4 & 0 \\ 1 & -4 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

- A מצאו את הערך עצמי ווקטור עצמי של
- $A = P^{-1}A$ ע כך שP כך אם לכסינה? אם לכסינה מטריצה אלכסונית אלכסונית D ומטריצה הפיכה A

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 את חשבו את

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & 4 & 0 \\ -1 & \lambda + 4 & 0 \\ -1 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 4 \\ -1 & \lambda + 4 \end{vmatrix} = (\lambda - 1)(\lambda^2 + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^2 = 0$$

 $\lambda=1$ מריבוי אלגברי $\lambda=1$

 $\lambda=-2$ מריבוי אלגברי

$$\lambda = -2$$

$$(A+2I) = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-2} = \operatorname{span}\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & -4 & 0 \\ 1 & -5 & 0 \\ 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -4 & 0 \\ 0 & -9 & 0 \\ 0 & -6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\dim V_1 + \dim V_{-2} = 1 + 1 = 2 < \dim \mathbb{R}^3$

לכן A לא לכסינה.

וקטור עצמי השייך ל
$$\lambda=-2$$
, לכן $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = (-2)^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-2)^{2024} \\ -2^{2023} \\ 0 \end{pmatrix}$$

3.5 משפטים נוספים הקשורים ללכסון של מטריצה

משפט 3.19 דטרמיננטה של מטריצה משולשית שווה למכפלה של איברי האלכסון הראשי

תהי מטריצה של שווה למכפלה או משולשית תחתונה. הדטרמיננטה של שווה למכפלה של תהי $A\in\mathbb{F}^{n\times n}$ האיברים על האלכסון הראשי. כלומר

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}, \qquad |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn}.$$

n אידוקציה על

שלב הבסיס:

עבור n=1 הטענה נכונה באופן טריוויאלי.

Aבמטריצה במטריבה aכאשר (aנסמן נסמן . $A\in\mathbb{F}^{1\times 1}$ נחמר כלומר כלומר מחוץ .

$$|A|=a$$
.

מטריצה משולשית, והאיבר היחיד על האלכסון הראשי הוא a. לכן המכפלה של האיברים על האלכסון ראשי A פשוט שווה ל-a. לכן A שווה למכפלה של האיברים על האלכסון הראשי של

שלב האינקודציה:

n=N+1 נניח שהטענה נכונה עבור n=N (הנחת האינדוקציה). נוכיח אותה עבור

יונה: עליונה מטריצה $A \in \mathbb{F}^{N imes N}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} & a_{1,N+1} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} & a_{2,N+1} \\ 0 & 0 & a_{33} & \dots & a_{3,N} & a_{3,N+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} & a_{N,N+1} \\ 0 & 0 & 0 & \dots & 0 & a_{N+1,N+1} \end{pmatrix}$$

נחשב הדטרמיננטה על השורה האחרונה:

$$|A| = a_{N+1,N+1} \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix}$$

לפי ההנחת האינדוקציה הדטרמיננטה של מטריצה N imes N משולשית עליחונה שווה למכפלה של האיברים על האלכסון הראשי, לכן

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix} = a_{11} \cdot a_{22} \dots a_{N,N} .$$

לכן

$$|A| = a_{11} \cdot a_{22} \dots a_{N,N} \cdot a_{N+1,N+1}$$

משפט 3.20 ערכים העצמיים של מטריצה משולשית

הערכים העצמיים של מטריצה משולשית עליונה (או משולשית תחתונה) הם האיברים הנמצאים על האלכסון הראשי.

האיב. אז האלכסון הראשי. אז $\{lpha_1,lpha_2,\ldots,lpha_n\}$ היהיו משולשית, משולשית $A\in\mathbb{F}^{n imes n}$

$$\lambda I - A$$

גם מטריצה והאיברים על האלכסון הראשי הם $\{\lambda-\alpha_1,\lambda-\alpha_2,\dots,\lambda-\alpha_n\}$ הדטרמיננטה על האלכסון הראשי, לכן לכן מטריצה משולשית היא המכפלה של האיברים על האלכסון הראשי, לכן לכן

$$|\lambda I - A| = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n)$$

לכן הפולינום האופייני הוא

$$p_A(\lambda) = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n) = 0$$
.

השורשים הם

$$\lambda = \alpha_1, \quad \lambda = \alpha_2, \quad \dots \quad \lambda = \alpha_n$$
.

ז"א הערכים עצמיים שווים לאיברים על האלכסון הראשי.

הגדרה 3.9 הגדרת דמיון בין מטריצות

-ע כך $P\in\mathbb{F}^{n\times n}$ כך הפיכה מטריצה מטריצה אם דומות B ו- A ו- A נאמר ש- $A,B\in\mathbb{F}^{n\times n}$

$$B = P^{-1}AP .$$

משפט 3.21 פולינום האופייני של מטריצות דומות

אם A ו- B דומות אז יש להן אותו פולינום אופייני, ולכן אותם ערכים עצמיים.

הוכחה:

$$f_B(x) = |xI - B|$$

$$= |xI - P^{-1}AP|$$

$$= |P^{-1}xIP - P^{-1}AP|$$

$$= |P^{-1}(xI - A)P|$$

$$= |P^{-1}||xI - A||P|$$

$$= |P|^{-1}|xI - A||P|$$

$$= |xI - A||P|^{-1}|P|$$

$$= |xI - A|$$

$$= f_A(x)$$

משפט 3.22 קיום ווקטור עצמי של אופרטור לינארית

יהי תעקה וקטורי נוצר חופית מעל שדה $\mathbb F$ ותהי ותהי לינארית. היים לפחות וקטור עצמי אחד של $T:V \to V$ יהיים לפחות וקטור עצמי אחד של

הקבוצה . $u_1
eq ar{0} \in V$ יהי . $\dim(V) = n$ הקבוצה .

$$\{u_1, T(u_1), T^2(u_1), \dots, T^n(u_1)\}$$

 a_0,\dots,a_n וקטורים. לכן הצירוף לינארי הבא מתקיים רק אם אחד המקדמים לכן הצירוף לכן הצירוף לינארי וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר המקדמים וחדרים.

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = \bar{0}$$
 (*1)

נרשום את זה בצורה

$$(a_0 + a_1T + a_2T^2 + \ldots + a_nT^n) u_1 = \bar{0} .$$

בצד שמאל יש הצבת העתקה בפולינום מסדר n. לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = c(z - \lambda_1) \ldots (z - \lambda_n)$$

כ: (*1) את לפרק לכן לכן לכן $1 \leq i \leq n$, $\lambda_i \in \mathbb{C}$, $c \neq 0 \in \mathbb{C}$

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = c(T - \lambda_1I)\ldots(T - \lambda_nI)u_1 = \bar{0}$$
 (*2)

אז בהכרח הדטרמיננטה של המטריצה שמכפילה (*2) אז בהכרח הדטרמיננטה של המטריצה שמכפילה עוואה הומוגונית ב- (*2) אז בהכרח אם קיים פתרון $u_1 \neq 0$ למשוואה הומוגונית שווה לאפס. לפיכך שווה לאפס.

$$|c(T - \lambda_1 I) \dots (T - \lambda_n I)| = c|T - \lambda_1 I| \dots |T - \lambda_n I| = 0.$$
 (*3)

. עבורו ערך עצמי אחד לכן ל- לכן ל- $|T-\lambda_i I|=0$ עבורו (1 $\leq i \leq n$) לכן קיים לכן לכן עבורו

שיעור 4 משפט קיילי-המילטון ופולינום מינימלי

4.1 הצבה של מטריצה ריבועית בפולינם

הגדרה 4.1 הצבה של מטריצה ריבועית בפולינם

יהי . $\mathbb F$ מטריצה ריבועית מעל שדה $A\in\mathbb F^{n imes n}$

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_k x^k$$

פולינים p מוגדרת של הצבה של סקלרים. הצבה מסקלרים מוגדרת מוגדרת פוליניום כאשר

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_k A^k$$

 $.\mathbb{F}^{n imes n}$ של המטריצה היחידה ל

דוגמה 4.1

$$.p(A)$$
 השבו את $.p(x)=2x^2-2x-4$ ו- $A=egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ יהיו

פתרון:

$$p(x) = 2x^{2} - 2x - 4 = 2(x - 2)(x + 1) .$$

$$p(A) = 2(A - I_{2})(A + I_{2}) = 2\begin{pmatrix} -2 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 16 \\ 24 & 32 \end{pmatrix} .$$

דוגמה 4.2

תהי
$$p(x)$$
 פרקו $p(x)=x^3-2x^2-x+2\in\mathbb{R}_3[x]$ ו $A=\begin{pmatrix}1&-1&2\\3&-1&2\\1&-1&4\end{pmatrix}\in\mathbb{R}^{3 imes3}$ תהי והשתמשו בפירוק זה כדי לחשב שוב את ההצבה של A ב- והשתמשו בפירוק ה

פתרון:

$$p(x) = (x-1)(x-2)(x+1) .$$

$$p(A) = (A-I_3)(A-2I_3)(A+I_3) = \begin{pmatrix} 0 & -1 & 2 \\ 3 & -2 & 2 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \\ 3 & -3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 10 \\ -5 & 1 & 18 \\ 1 & -5 & 26 \end{pmatrix}$$

משפט 4.1

תהי
$$p(x)\in\mathbb{F}[x]$$
 מטריצה אלכסונית ויהי $D=egin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\0&0&\dots&\lambda_n \end{pmatrix}$ פולינום. אז

$$p(D) = \begin{pmatrix} p(\lambda_1) & 0 & \dots & 0 \\ 0 & p(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & p(\lambda_n) \end{pmatrix}$$

הוכחה: תרגיל בית

4.2 משפט

. מעקיים: מתקיים: $B\in\mathbb{F}^{n\times n}$ נניח ש $B\in\mathbb{F}^{n\times n}$ ו- $A\in\mathbb{F}^{n\times n}$ הפיכה. מתקיים:

$$(BAB^{-1})^k = BA^kB^{-1}$$
.

הוכחה: נוכיח ע"י אינדוקציה.

k=1 בסיס: עבור

$$(BAB^{-1})^1 = BA^1B^{-1} .$$

:מעבר

 $(BAB^{-1})^{k+1}=BA^{k+1}B^{-1}$ - נניח ש- ($BAB^{-1})^k=BA^kB^{-1}$ (ההנחת האינדוקציה). נוכיח ש-

$$(BAB^{-1})^{k+1} = (BAB^{-1})^k \cdot BAB^{-1}$$
 $= BA^k B^{-1} \cdot BAB^{-1}$ (ההנחת האינדוקציה)
 $= BA^k \cdot \underbrace{(B^{-1}B)}_{=I} \cdot AB^{-1}$
 $= BA^k \cdot I \cdot AB^{-1}$
 $= BA^k \cdot AB^{-1}$
 $= BA^{k+1}B^{-1}$.

משפט 4.3

-תהיינה $B=PAP^{-1}$ שטריצות דומות. כלומר קיימת P הפיכה כך ש- $A,B\in\mathbb{F}^{n\times n}$ מטריצות דומות. כלומר קיימת $Q(x)\in\mathbb{F}[x]$

$$Q(A) = PQ(B)P^{-1} .$$

$$Q(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_k x^k$$
 הוכחה: נסמן

$$Q(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_k A^k$$

= \alpha_0 I + \alpha_1 (PBP^{-1}) + \dots + \alpha_k (PBP^{-1})^k
= \alpha_0 PP^{-1} + \alpha_1 (PBP^{-1}) + \dots + \alpha_k (PBP^{-1})^k

לכן נקבל (4.2 לפי משפט (PBP^{-1}) $^k = PB^kP^{-1}$

$$Q(A) = \alpha_0 P P^{-1} + \alpha_1 P B P^{-1} + \dots + \alpha_k P B^k P^{-1}$$

= $P(\alpha_0 I + \alpha_1 B + \dots + \alpha_k B^k) P^{-1}$
= $PQ(B) P^{-1}$.

4.4 משפט

 $A=PDP^{-1}$ -ש אלכסונית כך אלכסונית פיימת P הפיכה קיימת לכסינה, כלומר לכסינה, כלומר אז לכל $A\in\mathbb{F}^{n\times n}$ מתקיים נניח ש- $q(x)\in\mathbb{F}[x]$ אז אז לכל $D=\mathrm{diag}\,(\lambda_1,\dots,\lambda_n)$

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}$$

,4.3 לפי משפט $D=P^{-1}AP$ הוכחה: נסמן

$$P^{-1}q(A)P = q(P^{-1}AP) = q(D)$$
.

לפי משפט 4.1,

$$q(D) = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix}$$

לכן נקבל

$$P^{-1}q(A)P = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} ,$$

מכאן נובע כי

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}.$$

דוגמה 4.3

$$A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)\in\mathbb{R}^{2 imes2}$$
 שבו את ההצבה של $A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)$

פתרון:

הם עמציים עמציים הם . $\lambda=1$ ו- $\lambda=-1$ הם A הם עמציים הם

$$V_{-1}=\operatorname{span}\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} \right\} \;, V_1=\operatorname{span}\left\{ \begin{pmatrix} 3\\5 \end{pmatrix} \right\} \;.$$

$$D=\begin{pmatrix} -1 & 0\\0 & 1 \end{pmatrix} \; \text{-1} \; P=\begin{pmatrix} 1 & 3\\2 & 5 \end{pmatrix} \; \text{ and } \; A=PDP^{-1} \; \text{ and } \; A=$$

דוגמה 4.4

ינים. הוכיחו: $p(x) \in \mathbb{F}[x]$ ש סקלר. נניח ש א סקלר. מטריצות דומות מטריצות א מטריצות א סקלר. מטריצות א מטריצות אומיצות א מטריצות א מטרי

$$p(B) = \lambda I_n$$
 אס"ם $p(A) = \lambda I_n$

הוכחה: ⇒

,4.3 לכן לפי . $B=C^{-1}AC$ א הפיכה כך הפיכה מו $C\in\mathbb{F}^{n\times n}$ לכן קיימת אדומות לכן דומות א

$$p(B) = p(C^{-1}AC) = C^{-1}p(A)C$$

אס
$$p(A) = \lambda I_n$$
 אס

$$p(B) = C^{-1}\lambda I_n C = \lambda I_n .$$

 \triangleq

,4.3 לכן לפי
$$A=CBC^{-1}$$

$$p(A) = p(CBC^{-1}) = Cp(B)C^{-1}$$
.

לכן אם
$$p(B) = \lambda I_n$$
 לכן

$$p(A) = C\lambda I_n C^{-1} = \lambda I_n .$$

4.2 הצבת של העתקה לינארית בפולינום

הגדרה 4.2 הצבה של העתקה לינארית בפולינום

 $p(x)=lpha_0+lpha_1x+\dotslpha_kx^k$ - אופרטור לינארי אופרטור עניח שT:V o V אופרטור מעל " $\mathbb F$ מרחב וקטורי מעל פולינום. נגדיר את האופרטור הלינארי עp(T):V o V י"י

$$p(T) = \alpha_0 I_V + \alpha_1 T + \dots \alpha_k T^k$$

($u \in V$ לכל $I_V(u) = u$) כאשר הזהות האופרטור הזהות I_V לכל p נקראת ההצבה של p(T)

דוגמה 4.5

יהי $T:\mathbb{R}^2 o\mathbb{R}^2$ אופרטור המוגדר ע"י

$$T\binom{x}{y} = \binom{x - 3y}{2x + y} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי $p(x)=3x^2-4x-1$ עבור p(T)

פתרון:

שיטה 1

המטנדרטית הסטנדרטית המטנדרטית המטנדרטית וואר . $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}
ight\}$ הוא \mathbb{R}^2 המטנדרטי של

נקבל .
$$[T]_E=egin{pmatrix} |T|_E=(T(e_1)]_E&[T(e_1)]_E\\ |T(e_1)]_E=(T(e_1)]_E&\end{bmatrix}$$
 נקבל $[T(e_1)]_E=(T(e_1)]_E=(T(e_1)]_E$

לכן בנוסחה .
$$[T]_E = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$$
 לכן

$$[p(T)]_E = p([T]_E) .$$

 $:p\left([T]_E
ight)$ נחשב

$$p([T]_E) = 3([T]_E)^2 - 4[T]_E - I_3 = 3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}^2 - 4\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$ לכן לכל וקטור

$$\begin{split} \left[p(T)u\right]_E &= \left[p(T)\right]_E \cdot \left[u\right]_E \\ &= p\left([T]_E\right) \left[u\right]_E \\ &= \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix} \end{split}$$

שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3T^{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3T \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3 \begin{pmatrix} -5 \\ 4 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -15 \\ 12 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -20 \\ 4 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3T^{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 4T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3T \begin{pmatrix} -3 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3T \begin{pmatrix} -6 \\ -5 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -18 \\ -15 \end{pmatrix} - \begin{pmatrix} -12 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ -20 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix}$$

דוגמה 4.6

יהי $T:\mathbb{R}^2 o\mathbb{R}^2$ אופרטור שמוגדר ע"י

$$Tinom{x}{y}=inom{x-3y}{2x+y}$$
 .
$$p(x)=3x^2-4x+1$$
 עבור $p(T)$

פתרון:

$$[T]_E=egin{pmatrix} |& & | & | & | & | & | & | & | & | & & | &$$

$$[T]_E = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$$
 לכן

$$p(x) = 3x^{2} - 4x + 1 = (3x - 1)(x - 1)$$

$$p([T]_{E}) = (3[T]_{E} - I)([T]_{E} - I)$$

$$= \left(3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 2 & -9 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 0 & -3 \\ 2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix}$$

$$p(T)\begin{pmatrix} x \\ y \end{pmatrix} = p([T]_{E}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18x - 6y \\ 4x - 18y \end{pmatrix} .$$

דוגמה 4.7

עמע $T:\mathbb{R}^2 o\mathbb{R}^2$ יהי $p(x)=2x^2+3x-4\in\mathbb{R}[x]$ נסמן

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + 2y \end{pmatrix} .$$

p(T) חשבו את

פתרון:

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2T \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2 \begin{pmatrix} 0 \\ 3 \end{pmatrix} + 32 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 9 \end{pmatrix}$$
$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= x \begin{pmatrix} -1 \\ 9 \end{pmatrix} + y \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$= \begin{pmatrix} -x - 9y \\ 9x + 8y \end{pmatrix}$$

דוגמה 4.8

יהי $T:\mathbb{R}^2 o\mathbb{R}^2$ אופרטור שמוגדר ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 2y \\ 3x + 7y \end{pmatrix} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי שימוש $p(x)=5x^2-6x+1$ חשבו את

פתרון:

שיטה 1

הבסיס הסטנדרטי של \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 ההגדרה של המטריצה המייצגת הסטנדרטית הבסיס הסטנדרטי $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right\}$ הוא \mathbb{R}^2 ה \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא

$$[T(e_1)]_E = {2 \choose 3}$$
, $[T(e_2)]_E = {-2 \choose 7}$,

לנו נקבל לינאריים: ניתן לפרק ניתן ניתן (p(x)את לפרק (ניתן $[T]_E = \begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix}$ לכו לכו נקבל לכו ניתן לינאריים:

$$p(x) = 5x^2 - 6x + 1 = (5x - 1)(x - 1) .$$

 $:p\left([T]_{E}
ight)$ את בפירוק הזה בפירוק

$$p([T]_E) = (5([T]_E) - I_2)([T]_E - I_2)$$

$$= \left(5\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 9 & -10 \\ 15 & 34 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$ לכן עבור וקטור

$$\begin{aligned} [p(T)u]_E &= [p(T)]_E \cdot [u]_E \\ &= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix} \end{aligned}$$

שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 5T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 6T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5T \begin{pmatrix} 2 \\ 3 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5 \begin{pmatrix} -2 \\ 27 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -21 \\ 117 \end{pmatrix}$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5T^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 6T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5T \begin{pmatrix} -2 \\ 7 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5 \begin{pmatrix} -18 \\ 43 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -90 \\ 215 \end{pmatrix} + \begin{pmatrix} 12 \\ -42 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -78 \\ 174 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix}$$

בדיוק כמו הפתרון המתקבל ע"י שיטה 1.

דוגמה 4.9

נגדיר $T:\mathbb{R}^3 o\mathbb{R}^3$ ע"י

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3y + z \\ 2x - y + z \\ x + y + z \end{pmatrix} .$$

 \mathbb{R}^3 נסמן E יהי $p(x)=x^2+x-2\in\mathbb{R}[x]$ נסמן

 $[p(T)]_E$ א חשבו את

p(T) את למצוא כדי למצוא בסעיף א' כדי בחישוב היעזרו בחישוב

פתרון:

סעיף א
$$p(x)=(x-1)(x+2)$$
 כ- $p(x)$ את לפרק את ($T]_E=\begin{pmatrix} 0&3&1\\2&-1&1\\1&1&1 \end{pmatrix}$ לכן לכן ייר א

$$[p(T)]_E = ([T]_E - I_3)([T]_E + 2I_3) = \begin{pmatrix} -1 & 3 & 1 \\ 2 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix}$$

סעיף ב לכן

$$\begin{split} p(T) \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= [p(T)]_E \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ &= x \left[p(T) \right]_E \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \left[p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \left[p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} + y \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + z \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} 5x + y + 5z \\ x + 5y + 3z \\ 4x + 4y + 2z \end{pmatrix} \end{split}$$

4.5 משפט

$$T(u) = \lambda u$$

111

$$p(T)(u) = p(\lambda)u$$
.

הוכחה: ראו משפט 3.18 למעלה:

$$p(T)(u) = (\alpha_0 + \alpha_1 T + \dots + \alpha_k T^k) (u)$$

$$= (\alpha_0 + \alpha_1 T(u) + \dots + \alpha_k T^k(u))$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k u)$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k) u$$

$$= p(\lambda)u.$$

4.3 איפוס פולינום על ידי מטריצה

הגדרה 4.3 איפוס פולינום ע"י מטריצה

תהי p(x) את מאפסת כי $A\in\mathbb{F}^{[x]}$ אם $A\in\mathbb{F}^{n imes n}$

$$p(A) = 0_{n \times n}$$

 $.\mathbb{F}^{n imes n}$ מטריצה האפס של $0_{n imes n}$

משפט 4.6 מטריצות דומות מאפסות אותו פולינום

B י"י אם"ם הוא מתאפס ע"י אם מחאפס ע"י הפולינום או מעריצות דומות, אז הפולינום או הפולינום B

f(B) = 0 נוכיח שf(A) = 0 נוכיח ש

נסמן

$$f(x) = \alpha_k x^k + \ldots + \alpha_1 x + \alpha_0 ,$$

X

$$f(A) = \alpha_k A^k + \ldots + \alpha_1 A + \alpha_0 I = 0.$$

ו C מטריצות דומות לכן קיימת מטריצה הפיכה B ו A

$$A = C^{-1}BC .$$

לכן

$$\alpha_k(C^{-1}BC)^k + \ldots + \alpha_1(C^{-1}BC) + \alpha_0I = 0$$
.

לכן נקבל (4.2 לפי משפט ($C^{-1}BC)^k=C^{-1}B^kC$

$$C^{-1} \left(\alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I \right) C = 0.$$

ונקבל C^{-1} -ומצד ימין ב- C^{-1} ומצד מצד מצד מצד הפיכה אז נכפיל מצד שמאל ב- C

$$\alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I = 0 .$$

קיבלנו ש

$$f(B) = 0.$$

4.7 משפט

 $A \in \mathbb{F}^{n imes n}$ תהי

לכל $p(x)\in\mathbb{F}[x]$ מסדר מאפס פולינום שונה אם"ם קיים מסדר אם"ל אם"ל אם מסדר אם לכל אם"ל אם אם הקבוצה ווער כך ש- p(A)=0

הוכחה:

-סעיף א. קיימים סקלרים כך א $A^n \in \mathrm{sp}\{I_n,A,A^2,\dots,A^{n-1}\}$ אז קיימים סקלרים כך ש

$$A^{n} = \alpha_{0}I_{n} + \alpha_{1}A + \alpha_{2}A^{2} + \ldots + \alpha_{n-1}A^{n-1}$$

ז"א

$$A^{n} - \alpha_{n-1}A^{n-1} - \alpha_{n-2}A^{n-2} - \dots - \alpha_{1}A - \alpha_{0}I_{n} = 0$$

לכן A מאפסת את

$$p(x) = x^n - \alpha_{n-1}x^{n-1} - \ldots - \alpha_1x - \alpha_0 \in \mathbb{F}[x] .$$

נניח ש-A מאפסת את הפוליניום

$$Q(x) = \beta_n x^n + \beta_{n-1} x^{n-1} + \ldots + \beta_1 x + \beta_0 \in \mathbb{F}[x]$$

מסדר n, כלומר Q(A)=0. נניח ש n

$$\beta_n A^n = -(\beta_{n-1} A^{n-1} + \dots + \beta_1 A + \beta_0 I_n)$$

 $:\beta_n$ נחלק שני האגפים ב

$$A^{n} = -\left(\frac{\beta_{n-1}}{\beta_n}A^{n-1} + \ldots + \frac{\beta_1}{\beta_n}A + \frac{\beta_0}{\beta_n}I_n\right)$$

 $A^n \in \operatorname{sp}\{I_n,A,A^2,\ldots,A^{n-1}\}$ קיבלנו כי

-שינם כולם אפסים כך ת"ל. אז קיימים אז קיימים עניח אפסים כך אפסים כך עניח $\{I_n,A,A^2,\ldots,A^n\}$ נניח ש

$$\alpha_0 I_n + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_{n-1} A^{n-1} + \alpha_n A^n = 0$$

מכאן A מאפסת שהוא פולינום שונה מאפס $\sum\limits_{i=0}^{n} \alpha_i x^i$ מכאן מכאן מכאן

להיפך, נניח ש- $p(x) = \sum_{i=0}^n \alpha_i x^i$ אינו פולינום האפס כך ש $p(x) = \sum_{i=0}^n \alpha_i x^i$ אז

$$\alpha_0 I_n + \alpha_1 A + \ldots + \alpha_n A^n = 0$$

הוא צירוף לנארי לא טריוויאלי.

4.4 איפוס פולינום על ידי העתקה לינארית

הגדרה 4.4 איפוס פולינום על ידי העתקה לינארית

יהי p(T)=0 אם p(x) אם מאפס את $p(x)\in\mathbb{F}[x]$ כאשר $p(x)\in\mathbb{F}[x]$ כאשר $p(x)\in\mathbb{F}[x]$ את העתקת האפס.

דוגמה 4.10

נתון
$$T:\mathbb{R}^2 o \mathbb{R}^2$$
 נתון

$$T(x,y) = (-y,x)$$

חשבו את f(x) כאשר f(T) הפולינום

$$f(x) = x^3 - x^2 + x - 1 .$$

פתרון:

$$T^{2}(x,y) = T(T(x,y)) = T(-y,x) = (-x,-y)$$
$$T^{3}(x,y) = T(T^{2}(x,y)) = T(-x,-y) = (y,-x)$$

לכן

$$f(T) = (y, -x) - (-x, -y) + (-y, x) - (x, y) = (0, 0) .$$

(Cayley-Hamilton) משפט קיילי-המילטון 4.5

משפט 4.8 משפט קיילי-המילטון

תהי $A \in \mathbb{F}^{n imes n}$ הוא הפולינום האופייני של $A \in \mathbb{F}^{n imes n}$

$$p_A(A) = 0_{n \times n}$$

 $\mathbb{F}^{n imes n}$ מטריצה האפס של $0_{n imes n}$

דוגמה 4.11

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 נתונה

$$.p_A(A) = 0$$
 -בדקו ש-

. תשבו את A^2 ללא חישוב ישיר

פתרון:

(N

$$p_A(\lambda) = |\lambda - A| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda$$

$$p_A(A) = A^2 - 2A = A(A - 2I)$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

לכן $p_A(A)=0$ לכן לפילי-המילטון

$$A^2 - 2A = 0 \qquad \Rightarrow \qquad A^2 = 2A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

דוגמה 4.12

. מצאו את משפט קיילי משפט בעזרת את את $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ מטריצה מטריצה נתונה מטריצה המילטון.

פתרון:

הפולינום האופייני של A הוא:

$$p_A(\lambda) = \begin{vmatrix} \lambda - 1 & -2 \\ -1 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 3) - 2 = \lambda^2 - 4\lambda + 1$$

לכן

$$p_A(A) = A^2 - 4A + I = 0 \implies 4A - A^2 = I \implies A(4I - A) = I$$
 . (*)

ולכן $AI-A=A^{-1}$ ונקבל A^{-1} ב- ונקבל (*) לכן $AI-A=A^{-1}$ ולכן |A|=1

$$A^{-1} = 4I - A = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$
.

דוגמה 4.13

נתונה מטריצה

$$A = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix}$$

 A^{-1} -ו A^3 את ושבו המילטון המילי קיילי במשפט היילי

פתרון:

הפולינום האופייני של A הוא

$$p_{A}(\lambda) = \begin{vmatrix} \lambda + 3 & -1 & 1 \\ 5 & \lambda - 3 & 1 \\ 6 & -6 & \lambda + 4 \end{vmatrix}$$

$$= (\lambda + 3) \begin{vmatrix} \lambda - 3 & 1 \\ -6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & 1 \\ 6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & \lambda - 3 \\ 6 & -6 \end{vmatrix}$$

$$= (\lambda + 3) ((\lambda - 3)(\lambda + 4) + 6) + (5(\lambda + 4) - 6) + (-30 - 6(\lambda - 3))$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) + 5\lambda + 14 - 6\lambda - 12$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - \lambda + 2$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - (\lambda - 2)$$

$$= (\lambda - 2) ((\lambda + 3)(\lambda + 3) - 1)$$

$$= (\lambda - 2) (\lambda^{2} + 6\lambda + 8)$$

$$= (\lambda - 2)(\lambda + 2)(\lambda + 4)$$

$$= \lambda^{3} + 4\lambda^{2} - 4\lambda - 16$$

:ערכים עצמיים

 $\lambda=2$ מריבוי אלגברי

 $\lambda = -2$ מריבוי אלגברי λ

 $\lambda = -4$ מריבוי אלגברי

נבדוק אם A הפיכה דרך הדטרמיננטה:

$$|A| = p_A(0) = -16 \neq 0$$

A לכן

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies A^3 = -4A^2 + 4A + 16I_3$$

$$A^{2} = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} = \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix}$$

לכן

$$A^{3} = -4 \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + 4 \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} + \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{pmatrix} = \begin{pmatrix} -36 & 28 & -28 \\ -44 & 36 & -28 \\ -72 & 72 & -64 \end{pmatrix}$$

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies I_3 = \frac{1}{16}A^3 + \frac{1}{4}A^2 - \frac{1}{4}A = \left(\frac{1}{16}A^2 + \frac{1}{4}A - \frac{1}{4}I_3\right)A$$

7"%

$$A^{-1} = \frac{1}{16}A^{2} + \frac{1}{4}A - \frac{1}{4}I_{3}$$

$$= \frac{1}{16} \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} & \frac{1}{8} \\ -\frac{3}{4} & \frac{3}{4} & -\frac{1}{4} \end{pmatrix}$$

דוגמה 4.14

תהי הבאות: הוכיחו את הוכיחו $A \in \mathbb{F}^{n \times n}$

N.

$$A^n \in \operatorname{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

ב. אם A הפיכה אז

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

ג. עבור

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

 A^{-2} ואת את מצאו הופכיות, מטריצות מטריצות ישירות מבלי לחשב מבלי

פתרון:

סעיף א. לפי משפט ק"ה A מאפסת את $p_A(x)$ כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
.

לכן

$$A^{n} = -\alpha_{n-1}A^{n-1} - \ldots - \alpha_{1}A - \alpha_{0}I_{n} \in \operatorname{sp}\left\{I_{n}, A, A^{2}, \ldots, A^{n-1}\right\}.$$

סעיף ב. לפי משפט ק"ה A מאפסת את $p_A(x)$, כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
,

לכן

$$-\alpha_0 I_n = A^n + \alpha_{n-1} A^{n-1} + \ldots + \alpha_1 A . \tag{*}$$

(*) מכיוון ש- A הפיכה אז α_0^{-1} ו $\alpha_0 \neq 0$ ו הפיכה אז A הפיכוון ש- $|A| = p_A(0)$ ב $\frac{-1}{\alpha_0}A^{-1}$ ב

$$A^{-1} = -\frac{1}{\alpha_0} A^{n-1} - \frac{\alpha_{n-1}}{\alpha_0} A^{n-2} - \dots - \frac{\alpha_1}{\alpha_0} I_n . \tag{#}$$

לכן קיבלנו כי

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$
.

סעיף ג.

$$p_{A}(\lambda) = |\lambda I_{3} - A|$$

$$= \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} + 2 \begin{vmatrix} -2 & -2 \\ -2 & \lambda - 1 \end{vmatrix} - 2 \begin{vmatrix} -2 & \lambda - 1 \\ -2 & -2 \end{vmatrix}$$

$$= (\lambda - 5)(\lambda + 1)^{2}$$

$$= \lambda^{3} - 3\lambda^{2} - 9\lambda - 5$$

$$p_A(A) = A^3 - 3A^2 - 9A - 5I_n = 0 \quad \Rightarrow \quad I_n = \frac{1}{5}A^3 - \frac{3}{5}A^2 - \frac{9}{5}A = A\left(\frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3\right)$$

אזי

$$A^{-1} = \frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3 . \tag{*1}$$

לכן
$$A^2 = \left(\begin{array}{ccc} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{array}\right)$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \frac{3}{5} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{9}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix}$$

(נקבל: A^{-1} ב (*1) בי את שני אגפי (1*) למצוא את ל-2 נכפיל את נכפיל את אני למצוא את

$$A^{-2} = \frac{1}{5}A - \frac{3}{5}I_3 - \frac{9}{5}A^{-1} = \frac{1}{5}\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{3}{5}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{9}{5}\begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} = \frac{1}{25}\begin{pmatrix} 17 & -8 & -8 \\ -8 & 17 & -8 \\ -8 & -8 & 17 \end{pmatrix}.$$

משפט 4.9 משפט קיילי-המילטון עבור העתקות

יהי V מרחב וקטורי מעל שדה $\mathbb F$ ויהי V o V אופרטור. T: V o V מאפס את הפולינום האופייני שלה.

דוגמה 4.15

יע"י שמוגדר $T:\mathbb{R}^3 o \mathbb{R}^3$ נתון אופרטור לינארי

$$T egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} -6x+y+12z \ -8x+2y+15z \ -2x+5z \end{pmatrix}$$

$$T^{-1} egin{pmatrix} 3 \ 0 \ -4 \end{pmatrix}$$
 הוכיחו ש- T הפיך באמצעות משפט ק"ה וחשבו

פתרון:

הממ"ס היא

$$A = [T]_E = \begin{pmatrix} -6 & 1 & 12 \\ -8 & 2 & 15 \\ -2 & 0 & 5 \end{pmatrix} .$$

אז הפולינום האופייני

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x+6 & -1 & -12 \\ 8 & x-2 & -15 \\ 2 & 0 & x-5 \end{vmatrix}$$

$$= 2 \begin{vmatrix} -1 & -12 \\ x-2 & -15 \end{vmatrix} + (x-5) \begin{vmatrix} x+6 & -1 \\ 8 & x-2 \end{vmatrix}$$

$$= 2 (15+12x-24) + (x-5) ((x+6)(x-2)+8)$$

$$= -18+24x + (x-5) (x^{2}+4x-4)$$

$$= x^{3}-x^{2}+2.$$

האיבר החופשי שונה מאפס לכן T הפיך. לפי משפט ק"ה:

$$T^3 - T^2 + 2I = 0$$

:כאשר האגף הימין הוא אופרטור האפס. נפעיל T^{-1} על המשוואה ונקבל

$$T^2 - T + 2T^{-1} = 0$$

לכן

$$T^{-1} = -\frac{1}{2}T^2 + \frac{1}{2}T$$

4.6 הפולינום המינימלי של מטריצה

הגדרה 4.5 פולינום המינימלי

תהי פולינום מתוקן מצורה. הפולינום המינימלי מטריצה אוא מטריצה ריבועית. מטריצה אוא מטריצה $A \in \mathbb{F}^{n \times n}$

$$m(x) = \alpha_0 + \alpha_1 x_1 + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
, (#)

:כאשר k > 1 כך ש

- m(A) = 0 (1
- A י"י שמתאפסים (#) היא הסדר הנמוכה ביותר מבין הפולינומים מצורה k

 $.m_A(x)$ ב- A ב- מינימלי של הפולינום המינימלי

משפט 4.10 ל- $m_A(x)$ ול- $p_A(x)$ יש בדיוק אותם גורמים אי-פריקים.

ל- $p_A(x)$ ול- $p_A(x)$ יש בדיוק אותם גורמים אי-פריקים. כלומר

$$m_A(\lambda) = 0 \quad \Leftrightarrow \quad p_A(\lambda) = 0 .$$

הוכחה:

 $.m_A(\lambda)=0$ נניח ש

(נוסחת איוקליד לחיוק פולינומים). אז לפן $m_A(x)=q(x)$ כאשר איוקליד לחיוק פולינומים). אז $m_A(x)=q(x)$ הוא הפולינים המינימלי של A לכן A לכן A לכן הוא הפולינים

 $\mathbf{w} = q(A)\mathbf{v} \neq \bar{\mathbf{0}}$ -ע כך ש $\mathbf{w} + \mathbf{v}$ נגדיר וקטורים

$$\bar{0} = m_A(A)\mathbf{v} = (A - \lambda I)q(A)\mathbf{v} = (A - \lambda I)\mathbf{w}$$
,

לכן

 $A\mathbf{w} = \lambda \mathbf{w}$.

A של λ אשייך לערך עצמי א א וקטור עצמי של א וקטור עצמי של א ויא שייר עצמי של א ו

 $.p_A(\lambda)=0$ לכן

 $p_A(\lambda) = 0$ נניח ש

A ערך עצמי של λ אז λ

נניח ש- ${
m w}$ הוקטור עצמי ששייך לערך עצמי ${
m w}$. אז

 $A\mathbf{w} = \lambda \mathbf{w}$.

לכן

 $m_A(A)\mathbf{w} = m_A(\lambda)\mathbf{w}$.

 $m(\lambda)$ w = 0 לכן $m_A(A)=0$

 $m_A(\lambda)=0$ לכן ,w $eq ar{0}$ אין וקטור עצמי אז w

משפט 4.11 מטריצה מאפסת הפולינום המינימלי של מטריצה שאליה היא דומה

תהיינה $m_B(x)$ ויהי ויהי $A,B\in\mathbb{F}^{n\times n}$ הפולינום המינימלי של $A,B\in\mathbb{F}^{n\times n}$ הפולינום המינימלי של A,B מטריצות דומות אז

$$m_A(B) = 0$$

-1

$$m_B(A)=0$$
.

-או- B ו- B דומות לכן קיימת P הפיכה כך ש- $A=PBP^{-1}$. לפי משפט 4.3:

$$m_A(A) = P \cdot m_A(B) \cdot P^{-1}$$

 $:P^{-1}$ -ם ומצד שמאל ב- P הפיכה אז נכפיל מצד ימין ב- P

$$P^{-1} \cdot m_A(A) \cdot P = m_A(B) .$$

 $m_A(B) = 0$ לכן $m_A(A) = 0$

משפט 4.12 למטריצות דומות יש אותו פולינום מינימלי

. תהיינה $A,B\in\mathbb{F}^{n\times n}$ שאותו פולינום מינימלי. מטריצות דומות. ל- $A,B\in\mathbb{F}^{n\times n}$

A ו- B דומות A ל- A ו- B יש אותם ערכים עצמיים (לפי משפט 3.21).

B הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של

כיוון של- A ו- $m_A(x)$ ו- $m_A(x)$ ו- עצמיים לאותם גורמים לינאריים:

$$m_A(x) = (x - \lambda_1)^{d_1} \dots (x - \lambda_k)^{d_k}, \qquad m_B(x) = (x - \lambda_1)^{e_1} \dots (x - \lambda_k)^{e_k}.$$

ו- B לפני משפט 4.11 (לפי משפט $m_A(A)=0$ ו- $m_A(B)=0$ למעלה).

. כעת נוכיח דרך השלילה כי m_B ולכן הפולינומים לכל לכל לכל $d_i=e_i$ יה השלילה דרך כעת נוכיח לכל לכל לכל לכל לכל הש

 $d_i
eq e_i$ נניח כי עבור אחד הגורמים,

אס בסתירה $m_B(x)$ -ש. מתקיים ש- B מאפסת פולינום מדרגה נמוכה יותר מ- $m_A(B)=0$ -שם אם $d_i < e_i$ אם לכך כי $m_B(x)$ הוא הפולינום המינימלי של

הם יותר מ- $m_A(x)$ ש- יותר מ- $m_B(A)=0$, אז מתקיים ש- $m_A(x)$ אם אם אם און ש- $m_A(x)$, אז מתקיים ש- $m_A(x)$ אם או הפולינום המינימלי של א.

משפט 4.13 לכסינה אא"ם לפולינום מינימלי יש גורמים לינאריים שונים A

תהי $A\in \mathbb{F}^{n imes n}$ אם"ם כל הגורמים האי-פריקים תהי $A\in \mathbb{F}^{n imes n}$ אם"ם כל הגורמים האי-פריקים אל תהי $M_A(x)$ הם לינאריים ושונים.

-כלומר A לכסינה אם"ם $m_A(x)$ מתפרק ל

$$m_A(x) = (x - \lambda_1) \dots (x - \lambda_i) \dots (x - \lambda_k)$$
.

הוכחה: נניח ש- A לכסינה.

A הערכים עצמיים השונים של $\lambda_1,\ldots,\lambda_k$ יהיו

-קיימת P הפיכה ו- D אלכסונית כך ש

$$A = PDP^{-1} ,$$

כאשר

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \cdots & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_k & 0 & 0 \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & \lambda_k \end{pmatrix}$$

 $m_A(x) = m_D(x) .$

 $m_A(x) = (x - \lambda_1) \dots (x - \lambda_k)$ נוכיח כי

$$\begin{split} m_A(A) = & m_A(PDP^{-1}) \\ = & Pm_A(D)P^{-1} \\ &= \begin{pmatrix} m_A(\lambda_1) & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \cdots & 0 & 0 & 0 \\ 0 & 0 & m_A(\lambda_1) & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & m_A(\lambda_k) & 0 & 0 \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & m_A(\lambda_k) \end{pmatrix} P^{-1} \quad \text{(4.1 observed)} \end{split}$$

 $m_A(x) = (x - \lambda_1) \dots (x - \lambda_k)$ לכך

4.7 תרגילים על הפולינום המינימלי

דוגמה 4.16

אם הפולינום המינימלי של מטריצה A הוא m(x)=(x-1)(x-2) אם הפינימלי של מטריצה A

דוגמה 4.17

נניח A מטריצה מעל $\mathbb R$ כך שהפולינום המינימלי שלה הוא

$$m_A(x) = (x-1)(x-2)^2$$

.אז A לא לכסינה

דוגמה 4.18

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

111

$$m_A(x) \neq (x-1)(x-2)(x-3)$$

 $.m_A(x) \nmid p_A(x)$ כי

דוגמה 4.19

נניח ש

$$p_A(x) = (x-1)(x-2)x$$

אז

$$m_A(x) = (x-1)(x-2)x$$
.

דוגמה 4.20

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

 $?m_A$ מהן האפשרויות עבור

פתרון:

ישנן 4 אפשרויות:

$$(x-1)(x-2)$$
, $(x-1)^2(x-2)$, $(x-1)(x-2)^2$, $(x-1)^2(x-2)^2$.

(אם A נתונה אפשר לבדוק איזה מהם מתאפס ע"י A. יש להציב את בכל אחד מהפולינומים)

דוגמה 4.21

$$A=egin{pmatrix} 2&1&0&0\\0&2&0&0\\0&0&2&0\\0&0&0&5 \end{pmatrix}$$
 של של הפולינום המינימלי של

פתרון:

$$p_A(x) = (x-2)^3(x-5)$$
.

האפשרויות ל- $m_A(x)$ הם

$$f_1(x) = (x-2)(x-5)$$
, $f_2(x) = (x-2)^2(x-5)$, $f_3(x) = (x-2)^3(x-5)$.

:A נציב את

$$m_A(x) = f_2(x) = (x-2)^2(x-5)$$
 לכן

דוגמה 4.22

תהיינה

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} , \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

?האם A ו- B דומות

פתרון:

$$p_A(x) = (x-2)^2 = p_B(x)$$

אלכסונית. B אבל הריבוי אווה עצמי $\lambda=2$ עצמי עבור הערך אבל הריבוי אלכסונית. אלכסונית. B .1

$$A - 2I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 \Rightarrow $\dim V_2 = 1$.
 $m_A(x) = x - 2$, $m_B(x) = (x - 2)^2$.

לכן A ו- B לכן

דוגמה 4.23

. תהי שכל של הפולינום המינימלי. אורש של הפולינום המינימלי. הוכיחו שכל ערך עצמי של $A \in \mathbb{F}^{n \times n}$

A ערך עצמי של A. אז λ_0 ערך עצמי של

$$p_A(x) = (x - \lambda_0)^k \cdot q(x) ,$$

ז"א $m_A(x)$ -ט גם ב- 4.10, הוא מופיע הם הייק $(x-\lambda_0)$. לכן, לפי משפט איירם שי וורם אי פריק $p_A(x)$ ז"א $k\geq 1$

$$m_A(x) = (x - \lambda_0)^l \cdot t(x) .$$

ז"א

$$m_A(\lambda_0)=0$$
.

דוגמה 4.24

 $f(x)=x^2+4x+3$ יהי $m_A(x)=(x-1)^2$ הוא שלה המינימלי שהפולינום המינימלי שהפולינום המינימלי שלה הוא הוכיחו כי המטריצה f(A) הפיכה.

פתרון:
$$.(A-I)^2 = 0 \Leftarrow m_A(A) = 0$$

$$f(A) = A^2 + 4A + 3I = (A^2 - 2A + I) + 6A + 2I = (A - I)^2 + 6A + 2I = 6A + 2I.$$

נוכיח כי $|6A+2I|\neq 0$ בדרך השלילה.

נניח ש
$$|6A+2I|=0$$
 אז

$$|6A + 2A| = \left|6(A + \frac{2}{6}I)\right| = 6^n \left|A + \frac{1}{3}I\right| = 0$$

מתירה. סתירה אורש של הפולינום המינימלי. לכן הוא אייב להיות עבמי אל $\lambda=-\frac{1}{3}$ א"ג $\lambda=\lambda$

דוגמה 4.25

$$A = egin{pmatrix} 0 & 1 & 0 \ -4 & 4 & 0 \ -2 & 1 & 2 \end{pmatrix}$$
 מצאו את הפולינום המינימלי של

פתרון:

הפולינום האופייני של A הוא

$$p_A(\lambda) = (\lambda - 2)^3 = \lambda^3 - 6\lambda^2 + 12\lambda - 8$$
.

לכו האפשרויות בשביל הפולינום מינימלי הן

$$f_1(x) = x_2$$
, $f_2(x) = (x-2)^2$, $f_3(x) = (x-2)^3$.

$$f_1(A) = A - 2I = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \neq 0$$

$$f_2(A) = (A - 2I)^2 = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

לכן הפולינום המינימלי הוא

$$m_A(x) = (x-2)^2$$
.

דוגמה 4.26

מצאו את הפולינום המינימלי והפולינום האופייני של המטריצה

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I \ .$$

פתרון:

הוא A הוא הפולינום האופייני

$$p_A(x) = (x-4)^3$$
.

מטריצה סקלרית (מטריצה סקלירת היא מצורה αI כאשר היא מצורה סקלירת (מטריצה סקלירת היא מצורה A סלרית הוא M לכן הפולינם המינימלי של M הפולינם המינימלי המינימלי של הוא

$$m_A(x) = x - 4 .$$

4.8 *משפטים: חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה

משפט 4.14

הפולינום המינימלי הוא יחיד.

הוכחה: נניח שיש שני פולינומים $f_1(x) \neq f_2(x)$ ו- $f_2(x)$ ו- $f_1(x)$ מאותו סדר, כלומר

$$f_1(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
,

$$f_2(x) = \beta_0 + \beta_1 x + \ldots + \beta_{k-1} x^{k-1} + x^k$$
.

כך ש
$$f_2(A) = 0$$
 -ו $f_1(A) = 0$, אז

$$(f_1 - f_2)(A) = 0$$
.

... מסדר קטן מ- פולינום מסדר פולינום $(f_1 - f_2)(x)$

משפט 4.15 משפט חילוק של פולינומים

יחידים כך ש r(x), q(x) פולינמים פולינמים כך ש- $\deg g \leq \deg f$ יחידים כך ש

$$f(x) = q(x) \cdot g(x) + r(x)$$

כאשר

$$\deg r(x) < \deg g(x), \qquad \deg g(x) \le \deg f(x)$$
 .

משפט 4.16 פולינום שמתאפס ע"י A מחלק את הפולינום המינימלי

תהי f(A)=0 מטריצה ריבועית ויהי f(x) פולינום. אם $A\in \mathbb{F}^{n\times n}$ תהי $m_A(x)\mid f(x)$.

הוכחה: נחלק את f(x) ב- $m_A(x)$. לפי משפט חילוק פולינומים,

$$f(x) = m_A(x) \cdot q(x) + r(x)$$

אז .deg $r(x) < \deg m_A(x)$ כאשר

$$f(A) = q(A)m_A(A) + r(A) .$$

.r(A)=0 לכן $m_A(A)=0$ ו f(A)=0

r(x) מתאפס ע"י מתאפס או הוא א פולינום האפס או הוא א פולינום האפס או הוא הפולינום האפס או הוא לא פולינום האפס או הוא הפולינום מדרגה הכי נמוכה $m_A(x)$ הוא הפולינום מדרגה הכי נמוכה $m_A(x)$ המתאפס ע"י א.

לכן r(x) פולינום האפס, r(x)=0 אם"ם אם"ם אם לכן לכן

 $m_A(x) \mid f(x) \mid f(x) = q(x) \cdot m_A(x)$ כלומר קיבלנו ש-

מסקנה 4.1 פולינום המינימלי מחלק את הפולינום האופייני

תהי $m_A(x)$ הפולינום המינימלי של $p_A(x)$ הפולינום המינימלי של $A\in\mathbb{F}^{n imes n}$

 $m_A(x) \mid p_A(x)$.

הוכחה: לפי משפט קיילי המילטון , $p_A(A)=0$, הפולינום המינימלי מחלק כל פולינום המתאפס ע"י A, לכן המילטון . $m_A(x)|p_A(x)$

A משפט $p_A(x)$ בחזקת הסדר של פולינום המתאפס ע"י $p_A(x)$ 4.17 משפט

 $p_A(x)$ תהי $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. יהי עהי הפולינום האופייני של $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. יהי לומר אם f(A)=0 האופייני של

$$p_A(x) \mid f^n(x)$$
.

.deg $p_A(x) = n$ הוכחה:

.deg $p_A(x) \leq \deg \, f^n(x)$ ולכן ,deg $f(x) \geq 1$ אינו פולינום קבוע, ז"א ולכן ,f(x) אינו פולינום קבוע, אינו פולינום

נחלק $f^n(x)$ ב- $p_A(x)$ ב- $f^n(x)$ נחלק

$$f^{n}(x) = q(x)p_{A}(x) + r(x)$$
, (*1)

 $\deg r(x) < \deg p_A(x) \le \deg f^n(x)$

ונקבל (1*) נציב אה ב- $p_A(x)=q_1(x)m_A(x)$ אא $m_A(x)|p_A(x)$

$$f^{n}(x) = q_{1}(x)q(x)m_{A}(x) + r(x)$$
 (*2)

 $.m_A(x)\mid f^n(x)$ לכן $f^n(A)=0$ לכן f(A)=0 נניח ש-f(A)=0 בניח ש-f(A)=0 לכן f(A)=0 לכן f(A)=0

A משפט 4.18 גורם אי-פריק של הפולינום הואפייני מחלק כל פולינום המתאפס ע"י

תהי $(x-\lambda_0)$ אם $(x-\lambda_0)$ אם הפולינום האופייני של $p_A(x)$ היי מטריצה ריבועית. מטריצה ריבועית. יהי $p_A(x)$ הפולינום האופייני של f(x) ו- $p_A(x)$ פולינום האתאפס ע"י $p_A(x)$

$$(x-\lambda_0)\mid f(x)$$
.

הוכחה:

A אם $(p_A(x)$ אז $(p_A(x)$ אז פריק של אי-פריק של אי גורם אי-פריק של איז איז אם אם $(x-\lambda_0)$ אם אם $(x-\lambda_0)$ בריק בי נחלק בי משפט חילוק פולינומים איימים פולינומים יחידים ($(x-\lambda_0)$ כך ש-גוחלק ($(x-\lambda_0)$). כלומר לפי משפט חילוק פולינומים קיימים פולינומים יחידים

$$f(x) = q(x)(x - \lambda_0) + r(x)$$

.deg $r(x)<\deg{(x-\lambda_0)}\leq\deg{f(x)}$ כאשר .deg r(x)=0 אז .deg $(x-\lambda_0)=1$ ז"א $r(x)=c\in\mathbb{F}$ כאשר r(x)=c פולינום קבוע: r(x) אז יהי r(x) וקטור עצמי השייך ל- r(x). אז

$$0 = f(A)\mathbf{v} = q(A)(A - \lambda_0 I)\mathbf{v} + c\mathbf{v}$$

 \mathbf{v} הוא הוקטור עצמי השייך ל- $(A-\lambda_0)\mathbf{v}=A\mathbf{v}-\lambda_0\mathbf{v}=\lambda_0\mathbf{v}-\lambda_0\mathbf{v}=0$ לכן $(A-\lambda_0)\mathbf{v}=A\mathbf{v}-\lambda_0\mathbf{v}=0$ ואז נקבל

$$f(x) = q(x)(x - \lambda_0) ,$$

 $(x-\lambda_0)\mid f(x)$ א"ז.

שיעור 5 שילוש מטריצה

5.1 מטריצה משולשית עילית

משפט 5.1 ערכים עצמיים ופולינום אופייני של מטאיצה משולשית

תהי A מטריצה משולשית מעל שדה \mathbb{F} . כלומר

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix} .$$

XI

(1

$$p_A(x) = (x - a_{11})(x - a_{22}) \dots (x - a_{nn})$$
,

 \mathbb{F} מעל שונים) מעל בהכרח לינאריים (לא בהכרח שונים) מעל

2) איברי האלכסון של מטריצה משולשית עליונה הם הערכים עצמיים.

המספר הפעמים שכל ערך עצמי מופיע באלכסון הוא הריבוי האלגברי של הערך עצמי.

הוכחה:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

$$p_{A}(\lambda) = |A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} - \lambda & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} - \lambda & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} - \lambda & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} - \lambda \end{vmatrix}$$

$$= (a_{11} - \lambda)(a_{22} - \lambda)\dots(a_{nn} - \lambda)$$
(*)

. לפי (*), $a_{11}, a_{22}, \ldots a_{nn}$ הם הערכים עצמיים של A. כל איבר על האלכסון הראשי מופיע בפולינום האופייני. לכן המספר הפעמים שאיבר מסוים מופיע על האלכסון הראשי שווה למספר הפעמים שהוא מופיע בפולינום לכן המספר הפעמים שאיבר מסוים מופיע על האלכסון הראשי שווה למספר הפעמים שהוא מופיע בפולינום

האופייני. מאותה מידה המספר הפעמים שאיבר מסוים מופיע על האלכסון הראשי שווה לריבוי אלגברי של הערך עצמי.

הגדרה 5.1 מטריצה ניתנת לשילוש

תהי $A\in\mathbb{F}^{n\times n}$ אם אומרים שA אומרים של מטריצה משולשית. אומרים למטריצה מטריצה $A\in\mathbb{F}^{n\times n}$ עליונה, כלומר אם קיימת מטריצה P הפיכה כך ש

$$M = P^{-1}AP$$

מטריצה משולשית. P נקראת מטריצה משלשת.

דוגמה 5.1

 $M=egin{pmatrix}1&-1\0&1\end{pmatrix}$ - הפיכה ו- $P=egin{pmatrix}1&1\1&0\end{pmatrix}$ כי קיימת $\mathbb R$ כי קיימת $A=egin{pmatrix}0&1\-1&2\end{pmatrix}$ הפיכה ו- P=AP=M מטריצה כך ש- P=AP=M

$$P^{-1}AP = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

-בנוסף קיימת $M=\begin{pmatrix}1&rac{1}{2}\\0&1\end{pmatrix}$ -הפיכה ו- $P=\begin{pmatrix}2&0\\2&1\end{pmatrix}$ משולשית כך ש $:P^{-1}AP=M$

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

משפט 5.2 תנאי לשילוש

 $A \in \mathbb{F}^{n \times n}$ תהי

אם A ניתנת לשילוש מעל $\mathbb F$ אז הפולינום האופייני של A מתפרק לגורמים לינאריים (לא בהכרח שונים) מעל A.

הומות דומות $M=P^{-1}AP$ ניתנת לשילוש. אז קיימת P הפיכה ו-M משולשית כך ש- $M=P^{-1}AP$ למטריצות דומות יש אותו פוליניום האופייני, לכן

$$p_A(x) = p_M(x) .$$

הגורמים של $p_A(x)$ לינאריים לא מטריצה משולשית, מטריצה שונים) כי $p_A(x)$ לינאריים לא הגורמים של הגורמים של בהכרח שונים).

דוגמה 5.2

. ניתנת שA כי הוכיחו הוכיחו לינאריים על גורמים ממפרק מתפרק מתפרק מתפרק מתפרק . גורמים לינאריים מעל $A\in\mathbb{F}^{2 imes 2}$

פתרון:

. λ מתפרק לגורמים לינאריים, לכן קיים לפחות ערך עצמי אחד א יהי ווקטור עצמי השייך לערך עצמי יהי p(A) ז"א

$$A \cdot u_1 = \lambda u_1$$
.

נשלים את $B=\{u_1,u_2\}$ נקבל בסיס . \mathbb{F}^2 של לבסיס עו את נשלים את

$$A \cdot u_1 = \lambda u_1 + 0 \cdot \mathbf{v_1}$$

$$A \cdot u_2 = \alpha_1 u_1 + \alpha_2 \cdot v_2$$

מייצגת את הטרנספורמציה המייצגת ביחס לבסיס ביחס $T_A:\mathbb{F}^2 o\mathbb{F}^2$ המטריצה המייצגת את מייצגת את מייצגת את ביחס $T_A:\mathbb{F}^2 o\mathbb{F}^2$ המייצגת של $T:\mathbb{F}^2 o\mathbb{F}^2$

$$[T_A]_B = \begin{pmatrix} | & | \\ T(b_1) & T(b_2) \\ | & | \end{pmatrix} = \begin{pmatrix} \lambda & \alpha_1 \\ 0 & \alpha_2 \end{pmatrix} .$$

נסמן ב- E לבסיס המעבר המטריצה המטריצה $P_{E \to B}$ -ב

$$[T_A]_B = P_{E \to B}[T_A]_E P_{E \to B}^{-1}$$

כלומר

$$\begin{pmatrix} \lambda & \alpha_1 \\ 0 & \alpha_2 \end{pmatrix} = P_{E \to B} A P_{E \to B}^{-1}$$

. דומה שולשית משולשית A -שולשית

דוגמה 5.3

ומטריצה עבור A ומטריצה משולשית עבור R ניתנת לשילוש מעל אינת אילוש $A=\begin{pmatrix} 5 & -\frac{3}{2} \\ 6 & -1 \end{pmatrix}$ מצאו מטריצה משולשית אוכיחו כי המטריצה A

פתרון:

A נמצא את הערכים עמציים של

$$\begin{vmatrix} \lambda - 5 & \frac{3}{2} \\ -6 & \lambda + 1 \end{vmatrix} = (\lambda - 5)(\lambda + 1) + 9 = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$$

.2 יש ערך עצמי אחד $\lambda=2$ מריבוי אלגברי

 $\lambda = 2$ נמצא את הוקטור עצמי השייך לערך עצמי

$$\begin{pmatrix} 5 - \lambda & -\frac{3}{2} \\ 6 & -1 - \lambda \end{pmatrix} \stackrel{\lambda=2}{=} \begin{pmatrix} 3 & -\frac{3}{2} \\ 6 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -\frac{3}{2} \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

 $:\mathbb{R}^2$ פתרון u_1 את נשלים את נשלים $u_1=inom{1}{2}$ נשלים עצמי הוא לכן הוקטור אכן $y\in\mathbb{R}$, $x=rac{1}{2}y$

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$A \cdot u_1 = 2u_1$$

$$A \cdot u_2 = \begin{pmatrix} 5 & -\frac{3}{2} \\ 6 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} \\ -1 \end{pmatrix} = -\frac{3}{2}u_1 + 2u_2$$

לכן A דומה למטריצה

$$M = \begin{pmatrix} 2 & -\frac{3}{2} \\ 0 & 2 \end{pmatrix} .$$

המטריצה המשלשת היא

$$P = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} .$$

5.2 העתקות לינאריות ניתנות לשילוש

הגדרה 5.2 העתקה לינארית ניתנת לשילוש

יהי לשילוש ניתן נוצר (עקרא ניתן לשילוש היהי אופרטור. אופרטור. $T:V\to V$ ויהי שדה שדה ניתן לשילוש מעריצה לעקרא בסיס משלש של של שעבורו המטריצה המייצגת לעקרא מטריצה משולשית של שעבורו המטריצה המייצגת לעקרא מטריצה משולשית עליונה. הבסיס נקרא בסיס עבור Bעבור B

משפט 5.3 תנאי לקיום שילוש מטריצה

יהי V מרחב וקטורי נוצר סופית מעל שדה $\mathbb F$ ויהי V o V אופרטור. אם T ניתנת לשילוש אז הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרח שונים) מעל T.

משפט 5.4 קיום שילוש

. ניתנת לשילוש T , $T\in \mathrm{Hom}(V)$ ולכל מעל V מעל לשילוש.

 \mathbb{C} הוכחה: כל פולינום מתפרק לגורמים לינאריים מעל

(אינווריאנטיים) ד.3 תת מרחבים שמורים

הגדרה 5.3 העתקה לינארית ניתנת לשילוש

T מרחב על של V נקרא תת מרחב V אופרטור. תת מרחב וקטורי מעל אדה ביהי ויהי אופרטור ויהי אופרטור ויהי אופרטורי מעל אדה ביהי ויהי אופרטורי מרחב $T:V \to V$ נקרא תת מרחב שמור אם על ביא מרחב ויהי אופרטורי מרחב וויהי אופרטורי מרחב ווירי מרחב וויהי אופרטורי אופרטורי מרחב וויהי אופרטורי אייי אופ

דוגמה 5.4

$$W = \{\bar{0}\} \subseteq V$$

 $T:V \to V$ תת מרחב שמור לכל

דוגמה 5.5

, $u\in V_\lambda$ אז לכל אז לאופרטור ביחס א ביחס של אופרטו $W=V_\lambda$ אם א

$$T(u) = \lambda u \in V_{\lambda}$$

 V_{λ} לכן

T:V o V הוא תת מרחב שמור לכל

דוגמה 5.6

T:V o V הוכיחו כי לכל אופרטור

- אט T שמור. $\ker T$ שמור.
- בור. T במרחב T שמור.

פתרון:

א) אביך להוכיח שT ker שמור.

$$u \in \ker T$$
 לכל

$$T(u) = \bar{0} \in \ker(T)$$

לכן תת מרחב T שמור.

בור. T שמור. Im שמור וT שמור.

$$u \in \operatorname{Im} (T)$$
 לכל

$$T(u) \in \operatorname{Im}(T)$$

לכן T הוא תת מרחב T שמור.

דוגמה 5.7

תת מרחב $V_1=\mathrm{span}(u)$ נסמן λ . נסמן שייך לערך ששייך ששייך לערך עצמי אופרטור T שמור.

פתרון:

$$T(u_1) \subseteq V_1$$
 צריך להוכיח ש

$$u \in V_1$$
 נקח

קיים u=lpha u כך ש $lpha\in\mathbb{F}$ קיים

$$T(u) = \alpha T(u) = \alpha \cdot \lambda u \in \operatorname{sp}(u) = V_1$$

5.4 *העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים

משפט $\, T$ העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים $\, T$ שמורים

יהי V מרחב וקטורי n -ממדי מעל שדה $\mathbb F$, ויהי V o V אופרטור. T ניתנת לשילוש אם"ם קיימת סדרה של תת מרחבים $V_1 \subset V_2 \subset \ldots \subset V_{n-1} \subset V_n = V$ שמור וגם dim $(V_i) = i$

הוכחה: נוכיח אם

נניח ש $[T]_U$ שעבורו שניים בסיס בסיס אז קיים בסיס לשילוש. אז ניתנת לשילוש. $U=\{u_1,\ldots,u_n\}$

$$[T]_U = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

לכן

$$T(u_1) = a_{11}u_1$$
,

$$T(u_2) = a_{12}u_1 + a_{22}u_2 ,$$

:

$$T(u_n) = a_{1n}u_1 + a_{2n}u_2 + \ldots + a_{nn}u_n$$
.

$$\operatorname{dim}(V_i)=i$$
 אז $V_i=\operatorname{span}(u_1,\ldots,u_i)$ נסמן

$$V_1\subset V_2\subset\ldots\subset V_n=V$$
 לכן, $T(u_1),\ldots,T(u_i)\in V_i$ בנוסף

$$u \in V_i$$
 לכן לכל . $u = \alpha_1 u_1 + \ldots + \alpha_i u_i$ יהי . $u \in V_i$ יהי

$$T(u) = \alpha_1 T(u_1) + \ldots + \alpha_i T(u_i) \in V_i$$

. אמור T שמור תת מרחב V_i א"ג

נוכיח רק אם

נניח שקיימת סדרת תת מרחבים T שמורים ער כך ער כך ער כך ער כדרת ער מרחבים על כדי עליימת סדרת אפיימת סדרת אורים ער שמורים איימת סדרת אורים ער כדי ער כדי ער איימת סדרת אורים ער כדי שמורים ער כדי ער ער כדי ער ער כדי ער ער כדי ע

 $.\dim(V_i) = i \ \forall i$

נבנה בסיס של V את הבסיס ל של $U=\{u_1,\dots,u_n\}$ הוא בסיס ל של על ל ע ובנה על $U=\{u_1,\dots,u_n\}$ הוא ע"י אינדוקציה על ת אינדוקציה על אינדוקציה על ת

:n=1 עבור

 v_1 אם מהווה בסיס של $\{u_1\}$ הוקטור $v_1\in V_1$ מהווה בסיס של $\dim(V_1)=1$

הנחת אינדוקציה:

$$V_i$$
 של $\{u_1, \dots, u_i\}$ על בטיס בנינו בטיס ווווא $1 < i < n$

$$.\dim(V_{i+1}) = \dim(V_i) + 1$$

 $.V_{i+1}$ בסיס של $\{u_1,\ldots,u_i,u_{i+1}\}$ בח"ל. לכן, קיים $u_1,\ldots,u_i,u_{i+1}\in V_{i+1}$ אז $u_{i+1}\in V_{i+1}/V_i$ בחיס של הוכחנו דרך אינדוקציה כי קיים בסיס $\{u_1,\ldots,u_n\}$ של $U=\{u_1,\ldots,u_n\}$ בסיס של $.V_i$

כעת, כיוון ש- V_i תת מרחבים שמורים, מקבלים

$$T(u_1) = a_{11}u_1 ,$$

$$T(u_2) = a_{12}u_1 + a_{22}u_2 ,$$

$$T(u_3) = a_{13}u_1 + a_{23}u_2 + a_{33}u_3 ,$$

$$\vdots$$

$$T(u_n) = a_{1n}u_1 + a_{2n}u_2 + a_{3n}u_3 + \ldots + a_{nn}u_n .$$

לכן

$$[T]_U = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

מטריצה משולשית.

5.5 *אלגוריתם לשילוש מטריצה: פירוק שור

דוגמה 5.8

נתונה
$$T$$
מטריצה משולשית מטריצה הפיכה $A=\left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right)$ נתונה

$$T = P^{-1}AP$$

פתרון:

:A שלב 1: נמצא ערכים עמצים של

$$|A-\lambda I|=-\lambda^3+2\lambda^2+\lambda-2=-(\lambda-2)(\lambda-1)(\lambda+1)=0\ .$$

$$\lambda=2\ ,\lambda=-1\ ,\lambda=1\ \text{ in Exercise }$$
 הערכים עמציים הם $\lambda=1$

 $\lambda = 1$ שלב 2: נמצא הוקטור עצמי השייך חערך עצמי

$$\left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

$$u_1=egin{pmatrix} 3 \ -2 \ 1 \end{pmatrix}$$
 הוא $\lambda=1$ עצמי השייך לערך עצמי הוקטור לכן לכן ג $z\in\mathbb{R}$ $(x,y,z)=(3,-2,1)z$ פתרון:

 $:\mathbb{R}^3$ שלב u_1 לבסיס של נשלים את שלב ::

$$\left\{ \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$U_1 = \left(\begin{array}{rrr} 3 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

שלב 4: נגדיר

$$U_1^{-1}AU_1 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ -\frac{1}{3} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{5}{3} & \frac{4}{3} \\ 0 & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

שלב 5:

$$\begin{pmatrix} 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{5}{3} & \frac{4}{3} \\ 0 & \frac{2}{3} & -\frac{2}{3} \end{pmatrix} , \qquad A_1 = \begin{pmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

עכשיו נחזור על שלבים 1-5 עבור המטריצה עכשיו עכשיו

 $:A_1$ שלב ב': נמצא ערכים עמצים של

$$|A_1 - \lambda I| = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$$
.

 $.\lambda=2$, $\lambda=-1$ הערכים עמציים הם

 $\lambda = -1$ שלב 2': נמצא הוקטור עצמי השייך חערך עצמי

$$\begin{pmatrix} \frac{8}{3} & \frac{4}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 8 & 4 \\ 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$

 $\mathbf{u}_1=\begin{pmatrix} -\frac{1}{2}\\1 \end{pmatrix}$ הוא $\lambda=-1$ עצמי לערך עצמי השייך לכן הוקטור לכן . $y\in\mathbb{R}$ $(x,y)=(-\frac{1}{2},1)y$:פתרון

 $:\mathbb{R}^2$ שלב 2': נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_2 = \begin{pmatrix} -\frac{1}{2} & 0\\ 1 & 1 \end{pmatrix}$$

ואת המטריצה

$$U_2 = \begin{pmatrix} 1 & 0 \\ 0 & M_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

שלב 4': נגדיר

$$M_2^{-1}A_1M_2 = \begin{pmatrix} -2 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -\frac{8}{3} \\ 0 & 2 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

$$(U_1U_2)^{-1}A(U_1U_2) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ 0 & -1 & -\frac{8}{3} \\ 0 & 0 & 2 \end{pmatrix} = T$$

-לכן מצאנו P הפיכה ו T משולשית כך ש

$$P^{-1}AP = T$$

דוגמה 5.9

נתונה
$$T$$
 מצאו מטריצה הפיכה $A=\begin{pmatrix}3&1&2&0\\0&7&4&0\\0&0&1&0\\0&0&1&2\end{pmatrix}$ נתונה $A=\begin{pmatrix}3&1&2&0\\0&7&4&0\\0&0&1&2\end{pmatrix}$

$$T = P^{-1}AP$$

פתרון:

:A שלב 1: נמצא ערכים עמצים של

$$|A-\lambda I|=\lambda^4-13\lambda^3+53\lambda^2-83\lambda+42=(\lambda-7)(\lambda-3)(\lambda-2)(\lambda-1)=0$$
 .
$$\lambda=7 \ , \lambda=3 \ , \lambda=2 \ , \lambda=1 \$$
הערכים עמציים הם $\lambda=1$

 $\lambda = 1$ שלב 2: נמצא הוקטור עצמי השייך חערך עצמי

$$\begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $u_1=\lambda$ הוא אביי לערך עצמי השייך לכן הוקטור אכן . $w\in\mathbb{R}$ (x,y,z,w)=(2,2,-3,3)

$$\begin{pmatrix} 2\\2\\-3\\3 \end{pmatrix}$$

 $:\mathbb{R}^4$ שלב 3: נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} 2\\2\\-3\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$U_1 = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{array}\right)$$

שלב 4: נגדיר

$$U_1^{-1}AU_1 = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ \frac{3}{2} & 0 & 1 & 0 \\ -\frac{3}{2} & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & 7 & 4 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 6 & 2 & 0 \\ 0 & \frac{3}{2} & 4 & 0 \\ 0 & -\frac{3}{2} & -2 & 2 \end{pmatrix}$$

שלב 5:

$$\begin{pmatrix} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 6 & 2 & 0 \\ 0 & \frac{3}{2} & 4 & 0 \\ 0 & -\frac{3}{2} & -2 & 2 \end{pmatrix} , \qquad A_1 = \begin{pmatrix} 6 & 2 & 0 \\ \frac{3}{2} & 4 & 0 \\ -\frac{3}{2} & -2 & 2 \end{pmatrix}$$

עכשיו נחזור על שלבים 3-5 עבור המטריצה A_1 המתקבל.

 $:A_1$ שלב 1': נמצא ערכים עמצים של

$$|A_1-\lambda I|=-\lambda^3+12\lambda^2-41\lambda+42=-(\lambda-7)(\lambda-3)(\lambda-2)=0$$
 .
$$.\lambda=7 \ ,\lambda=3 \ ,\lambda=2$$
 הערכים עמציים הם

 $\lambda = 2$ שלב 2': נמצא הוקטור עצמי השייך חערך עצמי

$$\mathbf{u}_1 = egin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 הוא $\lambda = 2$ עצמי לערך עצמי השייך לערך עצמי

 $:\mathbb{R}^3$ שלב 3': נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_2 = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{array}\right)$$

ואת המטריצה

$$U_2 = \left(\begin{array}{ccc} 1 & 0 \\ 0 & M_2 \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

שלב 4': נגדיר

$$M_2^{-1}A_1M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 6 & 2 & 0 \\ \frac{3}{2} & 4 & 0 \\ -\frac{3}{2} & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -\frac{3}{2} \\ 0 & 4 & \frac{3}{2} \\ 0 & 2 & 6 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

שלב 2':

$$\begin{pmatrix} 2 & -2 & -\frac{3}{2} \\ 0 & 4 & \frac{3}{2} \\ 0 & 2 & 6 \end{pmatrix} , \qquad A_2 = \begin{pmatrix} 4 & \frac{3}{2} \\ 2 & 6 \end{pmatrix} .$$

עכשיו נחזור על שלבים A_2 עבור המטריצה 1'-5' עבור אלבים עכשיו נחזור על

 $:A_2$ שלב ב": נמצא ערכים עמצים של

$$|A_2 - \lambda I| = \lambda^2 - 10\lambda + 21 = -(\lambda - 7)(\lambda - 3) = 0$$
.

 $\lambda = 7$, $\lambda = 3$ הערכים עמציים הם

 $\lambda = 3$ נמצא הוקטור עצמי השייך חערך עצמי: נמצא נמצא אוקטור נמצא בייב

$$\mathbf{w}_1 = inom{-rac{3}{2}}{1}$$
 הוא $\lambda = 3$ הוא לערך עצמי השייך לערך איז הוקטור איי

 $:\mathbb{R}^2$ שלב ": נשלים את w_1 לבסיס של :

$$\left\{ \begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_3 = \left(\begin{array}{cc} -\frac{3}{2} & 0\\ 1 & 1 \end{array}\right)$$

ואת המטריצה

$$U_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & M_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{3}{2} & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

שלב 4": נגדיר

$$M_3^{-1} A_2 M_3 = \begin{pmatrix} -\frac{2}{3} & 0\\ \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 4 & \frac{3}{2}\\ 2 & 6 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} & 0\\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1\\ 0 & 7 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

$$(U_1 U_2 U_3)^{-1} A(U_1 U_2 U_3) = \begin{pmatrix} 1 & 0 & -1 & \frac{1}{2} \\ 0 & 2 & \frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 7 \end{pmatrix} = T$$

-לכן מצאנו P הפיכה וT הפיכה Pלכן מצאנו לכן $P^{-1}AP=T$

$$P^{-1}AP = T$$

שיעור 6 צורת ז'ורדן

n מטריצת ז'ורדן נילפוטנטית יסודית מסדר הגדרה 6.1 מטריצת ז'ורדן

$$E=\{e_1,\ldots,e_n\}=\left\{egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$$
יהי $E=\{e_1,\ldots,e_n\}=\left\{egin{matrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$ יהי תודבת $E=\{e_1,\ldots,e_n\}=\{e_1,\ldots,e_n\}$

$$J_n(0) = \begin{pmatrix} | & | & | & | \\ \bar{0} & e_1 & e_2 & \dots & e_{n-1} \\ | & | & | & | \end{pmatrix}$$

שהעמודה הראשונה שלה היא וקטור האפס ושלכל $i \leq i \leq n$ העמודה היא i שלה היא i נקראת מטריצת ז'ורדן נילפוטנטית יסודית מסדר i. כלומר:

$$J_n(0) = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & 1 & \\ & & & & 0 & \end{pmatrix}$$

הגדרה 6.2 בלוק ז'ורדן

מצורה k imes k מטריצה מטרי $\lambda \in \mathbb{F}$, $k \in \mathbb{N}$, $J_k(\lambda)$ בלוק ז'ורדן

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

דוגמה 6.1

$$J_4(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

דוגמה 6.2

 $J_4(2)$ מצאו את הפולינום האופייני של

פתרון:

משולשית עליונה, לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_4(2)$ הראשי. לכן נקבל

$$P_{J_4(2)} = (\lambda - 2)(\lambda - 2)(\lambda - 2)(\lambda - 2) = (\lambda - 2)^4$$
.

יש ערך עצמי יחיד $\lambda=2$ מריבוי אלגברי λ . נמצא את הריבוי הגאומטרי:

$$(A - 2I_{4\times 4}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

. אנחנו המטריצה אלגברי, ולכן מהריבוי אלגברי, ולכו ז"א הריבוי אומרטי אות מהריבוי אלגברי, ולכן מייד כי לש לכסינה. אנחנו הייבוי אומרטי מייד כי לש

משפט 6.1 בלוק ז'ורדן לא לכסין

.לא לכסין לא $J_k(\lambda)$

הוכחה:

$$J_k(\lambda_1) = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda_1 \end{pmatrix}$$

משולשית עליונה. לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_k(\lambda_1)$ הראשי (משפט 3.20).

$$p_{J_k(\lambda_1)}(\lambda) = \underbrace{(\lambda - \lambda_1) \dots (\lambda - \lambda_1)}_{k} = (\lambda - \lambda_1)^k$$

 $:\!\!V_{\lambda_1}$ אמר את המרחב הא מריבוי אלגברי מריבוי $\lambda=\lambda_1$ יחיד: עצמי יש ערך עצמי אלגברי $\lambda=\lambda_1$

$$(A - \lambda_1 I_{k \times k}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

. נקבל אל המטריצה ולכן אלגברי, ולכן מהריבוי אומרטי אומרטי אומרטי ז"א הייבוי משריצה לא מייש. לש $V_{\lambda_1}=k-1$ כיקבל כי

הגדרה 6.3 צרות ז'ורדן

צורת ז'ורדן היא מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ שעל האלכסון הראשי שלה יש בלוקים ז'ורדן ו- 0 בכל מקום אחר.

$$A = \operatorname{diag}\left(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)\right) = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & J_{k_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{k_l}(\lambda_l) \end{pmatrix}$$

דוגמה 6.3

$$\operatorname{diag}\left(J_{2}(1),J_{3}(0)\right) = \begin{pmatrix}J_{1}(1) & 0 \\ 0 & J_{3}(0)\end{pmatrix} = \begin{pmatrix} \begin{bmatrix}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- בורת ז'ורדן היא משולשית.
- מטריצה אלכסונית היא בצורת ז'ורדן.
- 3) צורת ז'ורדן היא הצורה הקרובה ביותר למטירצה אלכסונית.

תהי A מטריצה ריבועית מסדר 2×2 עם ערך עצמיי אחד, λ מריבוי אלגברי 2. יהי אז מטריצה ריבועית מסדר ישנן שתי אפשרויות:

- $\dim(V_{\lambda})=2$ (1) (הריבוי גאומרטי)
- (בוי גאומרטי 1). $\dim(V_{\lambda})=1$ (2)
 - $\dim(V_{\lambda}) = 2$:(1) מקרה

השייכים u_2 , u_1 עצמיים עצמיים יהיו שני אלגברי שווה לריובי אומטרי. יהיו שני וקטורים עצמיים A לכסינה כי לכל ערך עצמי ביו אלגברי אלגברי ווה לריובי אומטרי. $A\cdot u_2=\lambda u_1$ ו- $A\cdot u_1=\lambda u_1$ לערך עצמי λ

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

נסמן
$$D=egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix}$$
 -ו $P=egin{pmatrix} | & | \ u_1 & u_2 \ | & | \end{pmatrix}$ נסמן

$$A \cdot P = PD$$
 \Rightarrow $A = PDP^{-1}$

לכסינה. אלכסונית ולכן A לכסינה. A

 $\dim(V_{\lambda})=1$:(2) מקרה

לא לכסינה אז A לא לכסינה אבל שווה לריובי אלגברי אז לא לכסינה אבל היא איז א לכסינה אבל היא לא לכסינה אבל היא לא לכסינה אבל היא לא לכסינה אבל היא לורדן לורדן לורדן לא ליכחינה למטריצה בלוק א'ורדן לא ליכחינה אבל היא

יש וקטור עצמי אחד, השייך השיי עצמי אחד, כלומר יש וקטור עצמי אחד,

$$A \cdot u_1 = \lambda u_1 \qquad \Rightarrow \qquad (A - \lambda I) \cdot u_1 = 0 \ .$$

-נגדיר וקטור u_2 כך ש

$$(A - \lambda I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad A \cdot u_2 = \lambda u_2 + u_1 .$$

מכאן

$$(A - \lambda I)^2 u_2 = (A - \lambda I) \cdot u_1 = 0.$$

לכן נקבל

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 + u_1 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \cdot \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} .$$

נשים לב שהמטריצה בסוף היא $P=egin{pmatrix} |&&&\\u_1&u_2\\&&&|\end{pmatrix}$ נסמן גוסמן וחיא $-(\lambda &1)=J_2(\lambda)$ אז קיבלנו נשים לב שהמטריצה בסוף היא

$$A \cdot P = P \cdot J_2(\lambda)$$
 \Rightarrow $A = PJ_2(\lambda)P^{-1}$.

A של א'ורדן בסיס א'ורדן $\{u_1, u_2\}$ הקבוצת וקטורים

דוגמה 6.4

$$A=PJP^{-1}$$
 -פך כך פר מצאו איורדן J ומטריצה מצאו איורדן . $A=\left(egin{array}{cc} 2 & 3 \\ 0 & 2 \end{array}
ight)$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 2 \end{vmatrix} = (2 - \lambda)^2 = 0$$

עצמי: את המרחב עצמי, $\lambda=2$, מירבוי אלגברי 2. נמצא את המרחב עצמי:

$$(A-2I) = \left(\begin{array}{cc|c} 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

הפתרון הוא
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 לכן

$$V_2 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$
 .

נסמן ב- $\dim(V_\lambda)=1<2$. $\lambda=2$ עצמי של ערך עצמי של ערך עצמי של ערך לא לכסינה. נסמו הוקטור . $u_1=\begin{pmatrix}1\\0\end{pmatrix}$ עצמי $u_1=\begin{pmatrix}1\\0\end{pmatrix}$

$$(A - \lambda I) \cdot u_2 = u_1 .$$

$$.u_2 = \begin{pmatrix} x \\ y \end{pmatrix}$$
 נסמן

$$(A-2I)\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix}$$

$$.u_2 = \begin{pmatrix} 1 \\ \frac{1}{3} \end{pmatrix}$$
 $x = 1$ ונקבל $x \in \mathbb{R}$ $u_2 = \begin{pmatrix} x \\ \frac{1}{3} \end{pmatrix}$
$$.J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ u_1 & u_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & \frac{1}{3} \end{pmatrix}$$

דוגמה 6.5

$$A=PJP^{-1}$$
 -פיכה P כך ומטריצה זיורדן איורדן פורת מצאו או אורת $A=\begin{pmatrix}4&0&1\\0&4&0\\0&0&4\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

 $A = PJP^{-1} .$

עצמי: את המרחב עצמי . $\lambda=4$, מירבוי אלגברי מצא לכן יש ערך עצמי אחד,

$$(A-4I)=\left(egin{array}{cc|c} 0&0&1&0\\0&0&0&0\\0&0&0&0 \end{array}
ight)$$
 אכן
$$\left(\begin{matrix}x\\y\\z\end{matrix}
ight)=\left(\begin{matrix}x\\y\\0\end{matrix}
ight)=x\left(\begin{matrix}1\\0\\0\end{matrix}
ight)+y\left(\begin{matrix}0\\1\\0\end{matrix}
ight)$$
 הפתרון הוא $V_4=\mathrm{span}\left\{\left(\begin{matrix}1\\0\\0\end{matrix}
ight),\left(\begin{matrix}0\\1\\0\end{matrix}
ight)
ight\}$.

נרשום . $u_2=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=\begin{pmatrix}0\\1\\0\end{pmatrix}$ ב- V_4 ב- בבסיס של A לכסינה. לכסינה. נסמן הוקטורים בבסיס של A ב- . $\lambda=4$ פצירוף לינארי של הבסיס הזה:

$$w_1 = \alpha_1 u_1 + \alpha_2 u_2 .$$

 w_2 לפי:

$$(A-4I) \cdot w_2 = w_1 = \alpha_1 u_1 + \alpha_2 u_2$$
.

נסמן $w_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן נסמן

$$(A-4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \alpha_1 \\ 0 \end{pmatrix}$$

נרכיב את המטריצה המורחבת של המשוואה:

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & \alpha_2 \\
0 & 0 & 0 & \alpha_1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

יש פתרון כאשר x,y נבחור x,y נבחור x,y ונקבל את הפתרון הפתרון $\alpha_2=1$ ונקבל $\alpha_2=1$ יש פתרון כאשר $\alpha_1=0$

$$.w_2=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 ונקבל $x=1,y=1$ כל ערך. נציב

 $u_3=egin{pmatrix}1\\1\\1\end{pmatrix}$ אורדן מהוקטורים עצמיים עצמיים $u_2=egin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=egin{pmatrix}0\\1\\0\end{pmatrix}$ נבנה בסיס ז'ורדן מהוקטורים עצמיים

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = \operatorname{diag}(J_1(\lambda), J_2(\lambda)) = \operatorname{diag}(J_1(4), J_2(4))$$
.

דוגמה 6.6

$$A=PJP^{-1}$$
 -כך ש- $A=\begin{pmatrix} 4&1&1\\0&4&1\\0&0&4 \end{pmatrix}$ תהי תהי $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$ מצאו צורת זיורדן $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 \\ 0 & \lambda - 4 & -1 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

לכן יש ערך עצמי אחד, $\lambda=4$, מירבוי אלגברי 3. נמצא את המרחב עצמי:

$$(A-4I)=\left(egin{array}{cc|c}0&1&1&0\\0&0&1&0\\0&0&0&0\end{array}
ight)$$
 אכן
$$\left(\begin{matrix}x\\y\\z\end{matrix}
ight)=\left(\begin{matrix}x\\0\\0\end{matrix}
ight)=x\left(\begin{matrix}1\\0\\0\end{matrix}
ight)$$
 הפתרון הוא
$$V_4=\mathrm{span}\left\{\left(\begin{matrix}1\\0\\0\end{matrix}
ight)\right\}\ .$$

 $.u_1=egin{pmatrix}1\0\0\end{pmatrix}$ -ב V_4 של בסינה. נסמן הוקטור בבסיס אל A לכן A לכסינה. לכסינה. נסמן הוקטור בבסיס אל

$$(A-4I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$lpha \in \mathbb{R}$$
 , $u_2 = egin{pmatrix} lpha \ 1 \ 0 \end{pmatrix}$ הפתרון הוא

$$(A-4I)\cdot u_3=u_2.$$

$$u_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 0 & 1 & 0 & \alpha - 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

:נציב הבסיס א'ורדן:
$$eta=1$$
 , $lpha=1$ נציב הבסיס א'ורדן: $eta\in\mathbb{R}$ $u_3=egin{pmatrix} eta\\ lpha-1\\ 1 \end{pmatrix}$ ונקבל הבסיס א'ורדן:

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$,P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
 .J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = J_3(\lambda) = J_3(4) .$$

משפט 6.2 משפט ז'ורדן

יים לינאריים מתפרק לגורמים אופריני מעל שדה $\mathbb F$. נניח שהפולינום אופריטור לינארי מעל אופרטור לינאריים T:V o V

$$p(x) = (\lambda - \lambda_1)^{n_1} (x - \lambda_2)^{n_2} \dots (x - \lambda_l)^{n_l}$$

כאשר אפולינום המינימלי לכל i
eq j לכל גניח שפולינום המינימלי הוא $\lambda_i
eq \lambda_j$

$$m(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_l)^{m_l}$$

כאשר ז'ורדן מצורת מטריצה מצורת יש ל- T יש ל- i לכל $1 \leq m_i \leq n_i$ כאשר

$$\begin{pmatrix}
\beta_1 & 0 & \\
& \beta_2 & \\
& & \ddots & \\
0 & & \beta_l
\end{pmatrix}$$

 λ_i כאשר β_i מתאים לערך עצמי

$$\beta_i = \operatorname{diag} \left(J_{a_1}(\lambda_i), J_{a_2}(\lambda_i), \dots, J_{a_s}(\lambda_i) \right) = \begin{pmatrix} J_{a_1}(\lambda_i) & 0 & \dots & 0 \\ 0 & J_{a_2}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{a_s}(\lambda_i) \end{pmatrix}$$

כאשר

- $a_1 = m_i$ (1
- $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_s$ (2
- $a_1 + a_2 + \ldots + a_s = n_i$ (3
- λ_i הוא הריבוי הגאומרטי של s (4

לכן, שתי מטריצות דומות אם ורק אם יש להן אותה צורת ז'ורדן עד כדי סדר הבלוקים.

דוגמה 6.7

היא

$$\begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$$

 $\lambda = 2$ נמצא β_1 נמצא

 $.eta_1$ יש שתי אפשרויות עבור

$$eta_1=egin{pmatrix} J_2(2) & 0 & 0 \ 0 & J_1(2) & 0 \ 0 & 0 & J_1(2) \end{pmatrix}$$
 in $eta_1=egin{pmatrix} J_2(2) & 0 \ 0 & J_2(2) \end{pmatrix}$

 $: \lambda = 3$ עבור β_2

$$\beta_2 = \begin{pmatrix} J_2(3) & 0\\ 0 & J_1(3) \end{pmatrix}$$

 $\lambda=2$ יש למצוא את הירבוי הגאומטרי לקבוע eta_1 יש למצוא את

 $\lambda=2$ של הגאומרי לריבוי שווה β_1 ב- מספר מספר מספר

דוגמה 8.8

. נתון הפולינום האופייני $p(x)=(x-2)^3(x-5)^2$ מצאו את הצורות ז'ורדן האפשריות

פתרון:

האפשרויות של הפולינום המינימלי הן

$$(x-2)(x-5)\;,\quad (x-2)(x-5)^2\;,\quad (x-2)^2(x-5)\;,\quad (x-2)^2(x-5)^2\;,\quad (x-2)^3(x-5)\;,\quad (x-2)^3(x-5)^2\;.$$

לכן האפשרויות לצורת ז'ורדן הן:

$$m(x) = (x-2)(x-5)$$

$$\begin{pmatrix} J_1(2) & & & & & \\ & J_1(2) & & & & \\ & & J_1(2) & & & \\ & & & J_1(5) & & \\ & & & & & J_1(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

$$m(x) = (x-2)^2(x-5)$$

$$\begin{pmatrix} J_2(2) & & & & \\ & J_1(2) & & & \\ & & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

$$m(x) = (x-2)^3(x-5)$$

$$\begin{pmatrix} J_3(2) & & & \\ & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

 $m(x) = (x-2)(x-5)^2$

$$\begin{pmatrix} J_1(2) & & & & \\ & J_1(2) & & & \\ & & J_1(2) & & \\ & & & J_2(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

 $m(x) = (x-2)^2(x-5)^2$

$$\begin{pmatrix} J_2(2) & & & \\ & J_1(2) & & \\ & & J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

 $m(x) = (x-2)^3(x-5)^2$

$$\begin{pmatrix} J_3(2) \\ J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

דוגמה 6.9

למטריצות A ו- B יש אותו פולינום מינימלי ופולינום אופייני:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} , \qquad p_A(x) = x^4 , \qquad m_A(x) = x^2 .$$

מטריצות A ו- B לא דומות אבל

- ,יש אותם ערכים עצמיים B ו- A יש אותם ערכים עצמיים
 - אבל |A| = |B|
 - $.rank(A) \neq rank(B) \bullet$

בדוגמה היו שתי מטריצות לא דומות עם אותם p(x) ו- p(x) ו- p(x) אותם ערכים עצמיים וגם אותה דרגה.

3 imes3 משפט 6.3 צורת ז'ורדן של מטריצה

עבור מטריצות 3×3 צורות פולינום אופייני הן:

$$p(x) = (x - a)(x - b)(x - c)$$
, $p(x) = (x - a)^{2}(x - b)$, $p(x) = (x - a)^{3}$.

מקרה 1:

$$p(x) = (x-a)(x-b)(x-c)$$
, $m(x) = (x-a)(x-b)(x-c)$.

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}$$

מטריצה אלכסונית. הצ'ורת ז'ורדן היא

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(b) & 0 \\ 0 & 0 & J_1(c) \end{pmatrix}$$

מקרה 2:

$$p(x) = (x - a)^2(x - b)$$

ישנן שתי אפשרויות לפולינום המינימלי:

$$m(x) = (x - a)(x - b)$$
 \forall $m(x) = (x - a)^{2}(x - b)$

$$m(x) = (x - a)(x - b)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

$$\underline{m(x) = (x-a)^2(x-b)}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

מקרה 3:

$$p(x) = (x - a)^3$$

m(x) -אז ישנן 3 אפשרויות ל

$$(x-a)$$
, $(x-a)^2$, $(x-a)^3$.

$$m(x) = (x - a)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^2$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^3$$

קיימת צורת ז'ורדן אחת:

$$(J_3(a)) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$

ז"א לכל פולינום מינימלי כאן יש צורת ז'ורדן אחת. לכן כל שתי מטריצות מסדר 3×3 עם אותו פולינום אופייני ואותו פולינום מינימלי הן דומות אחת לשניה.

דוגמה 6.10

מצאו את צורת ז'ורדן ובסיס מז'רדן אל מטריצה

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$$

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 1 & 3 & -4 \\ -4 & x + 7 & -8 \\ -6 & 7 & x + 7 \end{vmatrix}$$

$$= (x - 1) \begin{vmatrix} x + 7 & -8 \\ 7 & x + 7 \end{vmatrix} - 3 \begin{vmatrix} -4 & -8 \\ -6 & x + 7 \end{vmatrix} - 4 \begin{vmatrix} -4 & x + 7 \\ -6 & 7 \end{vmatrix}$$

$$= (x - 1) ((x + 7)^{2} + 56) - 3(-28 - 4x + 48) - 4(-28 - 6(7 + x))$$

$$= -(x + 1)^{2}(x - 3)$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x+1)(x-3)$$
 או $m(x) = (x+1)^2(x-3)$.

A נבדוק איזה מהם מתאפס ע"י

$$(A+I)(A-3) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \neq 0$$

לכן $m(x) = (x+1)^2(x-3)$ הצורת ז'ורדן היא

$$\begin{pmatrix} J_2(-1) & 0 \\ 0 & J_1(3) \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

 $\lambda=-1$ ערך עצמי. נמצא וקטור עצמי השייך ל $\lambda=-1$ נמצא את הבסיס המז'רדן: $\lambda=-1$

$$(A+I) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

 $z \in \mathbb{R} \ (x,y,z) = (z,2z,z)$:פתרון

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$

 $.u_1 = egin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ -ב V_{-1} של

$$(A+I)u_2 = u_1$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A+I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
4 & -6 & 8 & | & 2 \\
6 & -7 & 8 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
6 & -7 & 8 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & -2 & | & -2 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & | & -1 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

z=1 נציב . $z\in\mathbb{R}$ (x,y,z) = (-1+z,-1+2z,z) (נציב

$$u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $:\lambda=3$ נחפש הוקטור עצמי ששייך לערך עצמי

$$(A-3I) = \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & -16 & 16 \\ 0 & -16 & 16 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $.z \in \mathbb{R}$ $(x,y,z) = (\frac{1}{2}z,z,z)$

$$u_3=\begin{pmatrix}1\\2\\2\end{pmatrix}$$

$$P=\begin{pmatrix}|&|&|\\u_1&u_2&u_3\\|&|&|\end{pmatrix}=\begin{pmatrix}1&0&1\\2&1&2\\1&1&2\end{pmatrix}$$
 איז הבסיס ג'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&-1&1&0\\0&0&3\end{pmatrix}$$
 לכן המרוצה ז'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&0&1&0\\0&0&3\end{pmatrix}$$

 $A = PJP^{-1}$

דוגמה 6.11

מצאו את צורת ז'ורדן אל מטריצה

$$A = \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$

 $P^{-1}AP=J$ מעל ריצה P מעל ריצה ריצה מעל

$$p_{A}(x) = |x - IA|$$

$$= \begin{vmatrix} x + 4 & -2 & -10 \\ 4 & x - 3 & -7 \\ 3 & -1 & x - 7 \end{vmatrix}$$

$$= (x + 4) \begin{vmatrix} x - 3 & -7 \\ -1 & x - 7 \end{vmatrix} + 2 \begin{vmatrix} 4 & -7 \\ 3 & x - 7 \end{vmatrix} - 10 \begin{vmatrix} 4 & x - 3 \\ 3 & -1 \end{vmatrix}$$

$$= (x + 4) (x^{2} - 10x + 21 - 7) + 2 (4x - 28 + 21) - 10 (-4 - 3x + 9)$$

$$= (x + 4)(x^{2} - 10x + 14) + 2 (4x - 7) - 10 (-3x + 5)$$

$$= x^{3} - 10x^{2} + 14x + 4x^{2} - 40x + 56 + 8x - 14 + 30x - 50$$

$$= x^{3} - 6x^{2} + 12x - 8$$

$$= (x - 2)^{3}.$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x-2)$$
 או $m(x) = (x-2)^2$ או $m(x) = (x-2)^3$.

A נבדוק איזה מהם מתאפס ע"י

$$(A-2I) \neq 0$$
, $(A-2I)^2 = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \neq 0$

לכן $m(x) = (x-2)^3$ לכן

$$J = (J_3(2)) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\lambda=2$ ערך עצמי. נמצא את המרחב עצמי ששייך ל $\lambda=2$ ערך עצמי. נמצא את הבסיס המז'רדן:

$$(A-2I) = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -3 & 0 & 6 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 V_2 של בבסיס את נסמן הוקטור . $V_2=\left\{egin{pmatrix}2\\1\\1\end{pmatrix}
ight\}$ המרחב עצמי הוא לכן המרחב עצמי הוא . $z\in\mathbb{R}$ (x,y,z)=(2z,z,z) :ב-

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

 $:u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן

$$(A-2I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
-6 & 2 & 10 & 2 \\
-4 & 1 & 7 & 1 \\
-3 & 1 & 5 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & 1 \\
-4 & 1 & 7 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & 1 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
-3 & 0 & 6 & 0 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

נסמן . $z\in\mathbb{R}$,(x,y,z)=(2z,z+1,z) :פתרון

$$u_2 = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} , \qquad \alpha \in \mathbb{R} .$$

$$(A-2I)u_3=u_2 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 & 2 \\ -4 & 1 & 7 & 2 \\ -3 & 1 & 5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} \ .$$

$$\begin{pmatrix} -6 & 2 & 10 & 2\alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2} \cdot R_1} \begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$\begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$\xrightarrow{R_1 \to -\frac{1}{3} \cdot R_1} \quad \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & -1 & 1 & 3 - \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

לכן המטריצה של הבסיס ז'ורדן היא

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

והצורת ז'ורדן היא

$$J = J_3(2) = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right) .$$

דוגמה 6.12

$$A=PJP^{-1}$$
- פדע כך של ומטריצה הפיכה J ומטריצה מצאו צורת איורדן ומטריצה $A=\begin{pmatrix}4&1&1&0&0\\0&4&1&0&0\\0&0&4&0&0\\0&0&0&2&3\\0&0&0&0&2\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 & 0 & 0 \\ 0 & \lambda - 4 & -1 & 0 & 0 \\ 0 & 0 & \lambda - 4 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 2 & -3 \\ 0 & 0 & 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 4)^3 (\lambda - 2)^2 = 0$$

:הערכים עצמיים הם

 $\lambda=2$ מירבוי אלגברי $\lambda=2$

 $\lambda=4$ מירבוי אלגברי

 $:V_2$ נמצא את המרחב עצמי

$$(A-2I) = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

אכן
$$s\in\mathbb{R}$$
 , $egin{pmatrix} x\\y\\z\\s\\t \end{pmatrix}=egin{pmatrix}0\\0\\s\\0 \end{pmatrix}=segin{pmatrix}0\\0\\0\\1\\0 \end{pmatrix}$ אכן $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$

$$V_2 = \operatorname{span} \left\{ egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
ight\} \; .$$

$$.u_1 = egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_2) = 1 < 2$

$$(A-2I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 2I) \cdot \begin{pmatrix} x \\ y \\ z \\ w \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

$$.u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$$
 ונקל $lpha=0$ ונקל $lpha=0$ לכן $lpha=0$ לכל $lpha=0$ לוב $lpha=0$ לכל $lpha=0$ ל

$$\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן הפתרון הוא

$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \right\} .$$

$$.u_3 = egin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_4) = 1 < 3$

$$(A-4I)\cdot u_4=u_3.$$

$$.u_4 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

$$eta \in \mathbb{R}$$
 , $u_4 = egin{pmatrix} eta \ 1 \ 0 \ 0 \ 0 \end{pmatrix}$ לכנן

$$(A-4I)\cdot u_5=u_4.$$

$$.u_5 = egin{pmatrix} x \ y \ z \ s \ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} \beta \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{ccccc|cccc}
0 & 1 & 1 & 0 & 0 & \beta \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכל β קיים פתרון. נציב $\beta=0$ ונקבל

$$.u_5=egin{pmatrix}0\-1\1\0\0\end{pmatrix}$$
 ונקבל $\gamma=0$ נציב $\gamma\in\mathbb{R}$, $u_5=egin{pmatrix}\gamma\-1\1\0\0\end{pmatrix}$

$$P = \begin{pmatrix} | & | & | & | & | \\ u_1 & u_2 & u_3 & u_4 & u_5 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} ,$$

$$J = \begin{pmatrix} J_2(2) & 0 \\ 0 & J_3(4) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} .$$

$$A = PJP^{-1} .$$

שיעור *7* העתקות צמודות לעצמן

7.1 הגדרה של אופרטור הצמוד

משפט 7.1 וקטור בבסיס אורתונורמי

 $u\in V$ וקטור של $u\in V$ ויהי ויהי מנימית מכפלה פנימית מרחב מכפלה בסיס אורתנורמלי אז אחר $\{b_1,\ \dots,b_n\}$

$$u = \sum_{i=1}^{n} \langle u, b_i \rangle b_i \tag{*1}$$

הוכחה: u כל וקטור u ניתן לרשום כצרוף ליניארי של וקטורים של בסיס. לכן נרשום u כצרוף ליניארי של הוקטורים של הבסיס האורתונורמלי הנתון:

$$u = \alpha_1 b_1 + \ldots + \alpha_n b_n = \sum_{i=1}^n \alpha_i b_i \tag{#}$$

 $:\!b_j$ חוקטור עם של הפנימית המכפלה נקח כעת נקח סקלרים. כעת סקלרים. כעת מכפלה $\alpha_i\in\mathbb{C}$

$$\langle u, b_j \rangle = \langle \alpha_1 b_1 + \dots + \alpha_n b_n , b_j \rangle = \langle \sum_{i=1}^n \alpha_i b_i , b_j \rangle$$

ולכל $\langle u+{
m v},w\rangle=\langle u,w\rangle+\langle {
m v},w\rangle$ המכפלה הפנימית ליניארית (כלומר למכפלה פנימית יש תכונות הליניאריות ($\langle \alpha u,w\rangle=\alpha$ לכן ניתן לרשום הביטוי הזה בצורה ($\langle \alpha u,w\rangle=\alpha$ לכן ניתן לרשום הביטוי הזה בצורה

$$\langle u, b_j \rangle = \alpha_1 \langle b_1, b_j \rangle + \dots + \alpha_n \langle b_n, b_j \rangle = \sum_{i=1}^n \alpha_i \langle b_i, b_j \rangle$$

מכיוון שהבסיס אורתונורמלי, אז מתקיים $\begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ לכן כל האיברים בהסכום הזה שווים ל-0 פרט . $(b_i,b_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ לאיבר i=j לכן

$$\langle u, b_j \rangle = \alpha_j$$
.

נציב (#) נציב $lpha_j = \langle u, b_j
angle$ נציב

$$u = \sum_{i=1}^{n} \langle u, b_i \rangle b_i .$$

מסקנה 7.1

היא: $\{b_1, \cdots, b_n\}$ אורתונורמלי אורתונורמלי (*1) עבור וקטור עבור שקולה לרשום משוואה

$$[u]_{B} = \begin{pmatrix} \langle u, b_{1} \rangle \\ \langle u, b_{2} \rangle \\ \vdots \\ \langle u, b_{i} \rangle \\ \vdots \\ \langle u, b_{n} \rangle \end{pmatrix}_{B} \tag{*2}$$

משפט 7.2 מטריצה המייצגת של אופרטור על פי בסיס אורתונורמלי

יהי $V \to V$ אופרטור במרחב מכפלה פנימית V. אם $\{b_1, \cdots, b_n\}$ בסיס אורתונורמלי אז $T:V \to V$ יהי המטריצה המייצגת של T על פי בסיס B, מסומן וון, היא

$$[T] = \begin{pmatrix} \langle T\left(b_{1}\right), b_{1} \rangle & \langle T\left(b_{2}\right), b_{1} \rangle & \cdots & \langle T\left(b_{j}\right), b_{1} \rangle & \cdots & \langle T\left(b_{n}\right), b_{1} \rangle \\ \langle T\left(b_{1}\right), b_{2} \rangle & \langle T\left(b_{2}\right), b_{2} \rangle & \cdots & \langle T\left(b_{j}\right), b_{2} \rangle & \cdots & \langle T\left(b_{n}\right), b_{2} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T\left(b_{1}\right), b_{i} \rangle & \langle T\left(b_{2}\right), b_{i} \rangle & \cdots & \langle T\left(b_{j}\right), b_{i} \rangle & \cdots & \langle T\left(b_{n}\right), b_{i} \rangle \\ \vdots & & \vdots & & \vdots & & \vdots \\ \langle T\left(b_{1}\right), b_{n} \rangle & \langle T\left(b_{2}\right), b_{n} \rangle & \cdots & \langle T\left(b_{j}\right), b_{n} \rangle & \cdots & \langle T\left(b_{n}\right), b_{n} \rangle \end{pmatrix},$$

כלומר האיבר ה-ij של

$$[T]_{ij} = \langle T(b_j), b_i \rangle . \tag{3*}$$

הנוסחה על ידי נתונה והמטריצה והמטריצה אופרטור על פי הבסיס והבסיס והמטריצה המייצגת של האופרטור על פי הבסיס והמטריצה המייצגת אופרטור והמטריצה והמטריבה והמטריצה ומטריצה ומט

כל עמודה של המטריצה היא וקטור ($1 \leq j \leq n$) על פי הבסיס האורתונורמלי B. אפשר לרשום כל עמודה כל עמודה $T(b_j)$ אך עם הוקטור $T(b_j)$ במקום הוקטור (*2) אך עם הוקטור

$$[T(b_{j})]_{B} = \begin{pmatrix} \langle T(b_{j}), b_{1} \rangle \\ \langle T(b_{j}), b_{2} \rangle \\ \vdots \\ \langle T(b_{j}), b_{i} \rangle \\ \vdots \\ \langle T(b_{j}), b_{n} \rangle \end{pmatrix}, \quad 1 \leq j \leq n.$$

אחרי הצבה של הביטוי הזה בכל עמודה של [T], לכל $j \leq n$ בהתאמה, נקבל

$$[T] = \begin{pmatrix} \langle T\left(b_{1}\right), b_{1} \rangle & \langle T\left(b_{2}\right), b_{1} \rangle & \cdots & \langle T\left(b_{j}\right), b_{1} \rangle & \cdots & \langle T\left(b_{n}\right), b_{1} \rangle \\ \langle T\left(b_{1}\right), b_{2} \rangle & \langle T\left(b_{2}\right), b_{2} \rangle & \cdots & \langle T\left(b_{j}\right), b_{2} \rangle & \cdots & \langle T\left(b_{n}\right), b_{2} \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle T\left(b_{1}\right), b_{i} \rangle & \langle T\left(b_{2}\right), b_{i} \rangle & \cdots & \langle T\left(b_{j}\right), b_{i} \rangle & \cdots & \langle T\left(b_{n}\right), b_{i} \rangle \\ \vdots & & \vdots & & \vdots & & \vdots \\ \langle T\left(b_{1}\right), b_{n} \rangle & \langle T\left(b_{2}\right), b_{n} \rangle & \cdots & \langle T\left(b_{j}\right), b_{n} \rangle & \cdots & \langle T\left(b_{n}\right), b_{n} \rangle \end{pmatrix},$$

מכאן הרכיב הכללי בשורה ה-i בעמודה מכאן

$$[T]_{ij} = \langle T(b_j), b_i \rangle$$
.

הגדרה 7.1 אופרטור הצמוד

 $u,w\in V$ אופרטור במרחב מכפלה פנימית V. האופרטור הצמוד מוגדר כך שלכל וקטורים T:V o Vיהי מתקיים

$$\langle T(u), w \rangle = \langle u, \bar{T}(w) \rangle$$
 (*4)

משפט 7.3

 $u,w\in V$ אז לכל וקטורים של T אם הצמוד של אז לכל וקטורים יהי T:V o Vיהי מתקיים

$$\langle \bar{T}(u), w \rangle = \langle u, T(w) \rangle$$
 (*5)

הוכחה:

$$\langle \bar{T}(u),w \rangle$$
 $\stackrel{\text{посис Беган Definition}}{=}$ $\overline{\langle w,\bar{T}(u) \rangle}$ $\stackrel{\text{Factor Finity}}{=}$ $\overline{\langle T(w),u \rangle}$ $\stackrel{\text{посис Беган Definition}}{=}$ $\langle u,T(w) \rangle$

משפט 7.4 נוסחה של אופרטור ואופטור הצמוד על פי בסיס אורתונורמלי

אם אורתונומרלי $\{b_1,\cdots,b_n\}$ ו- עו וקטור של הפנימית מכפלה מכפלה במרחב אופרטור די אופרטור אופרטור מכפלה אורתונומרלי של V. אז

$$T(u) = \sum_{i=1}^{n} \langle T(u), b_i \rangle b_i ,$$

$$\bar{T}(u) = \sum_{i=1}^{n} \langle u, T(b_i) \rangle b_i .$$
(6*)

$$\bar{T}(u) = \sum_{i=1}^{n} \langle u, T(b_i) \rangle b_i . \tag{7*}$$

הוכחה:

הוחכה של (*6):

(*6). במקום u במשוואה במשוואה (u) מציבים מציבים u

הוחכה של (*7):

:(*5) מציבים האופרטור (*6) מאיבים האופרטור מציבים משוואה (*6) במקום האופרטור מציבים מציבים מציבים האופרטור (*5) מציבים האופרטור מציבים האופרטור (*5) מציבים האופרטור מציבים האופרטור (*5) מציבים האו

$$\bar{T}(u) \stackrel{\text{(6*)}}{=} \sum_{i=1}^{n} \langle \bar{T}(u), b_i \rangle b_i \stackrel{\text{(*5)}}{=} \sum_{i=1}^{n} \langle u, T(b_i) \rangle b_i$$
.

דוגמה 7.1

יהי המוגדר $T:\mathbb{R}^2 o \mathbb{R}^2$ יהי

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x - y \end{pmatrix} .$$

 $.ar{T}$ מצאו את

פתרון:

$$\langle \mathbf{v}, T(e_1) \rangle = x + y , \qquad \langle \mathbf{v}, T(e_2) \rangle = -x - y ,$$

לכן

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{2} \langle \mathbf{v}, T(e_i) \rangle e_i = \langle \mathbf{v}, T(e_1) \rangle e_1 + \langle \mathbf{v}, T(e_2) \rangle e_2$$
$$= (x+y) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (-x-y) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} x+y \\ -x-y \end{pmatrix}.$$

דוגמה 7.2

יהי המוגדר $T:\mathbb{C}^2 o \mathbb{C}^2$ יהי

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} i & 1 \\ 3 & 2+3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ix+y \\ 3x+(2+3i)y \end{pmatrix} .$$

 $ar{T}$ מצאו את

פתרון:

$$T(e_1) = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} i \\ 3 \end{pmatrix}$$
, $T(e_2) = T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2+3i \end{pmatrix}$

 \mathbb{C}^2 נסמן וקטור כללי של

: כלשהו. לפי הנוסחה של המכפלה הפנימית הסטנדרטית ער $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$

$$\langle \mathbf{v}, T(e_1) \rangle = \left\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} i \\ 3 \end{pmatrix} \right\rangle = -ix + 3y , \qquad \langle \mathbf{v}, T(e_2) \rangle = \left\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} 1 \\ 2+3i \end{pmatrix} \right\rangle = x + (2-3i)y ,$$

לכן

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{2} \langle \mathbf{v}, T(e_i) \rangle e_i$$

$$= \langle \mathbf{v}, T(e_1) \rangle e_1 + \langle \mathbf{v}, T(e_2) \rangle e_2$$

$$= (-ix + 3y) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (x + (2 - 3i)y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -ix + 3y \\ x + (2 - 3i)y \end{pmatrix}$$

דוגמה 7.3

תהי V המרחב המכפלה פנימית $\mathbb{R}_2[x]$ עם המכפלה הפנימית

$$\langle f, g \rangle = \int_0^1 f(x) g(x) dx$$

 $f(x),g(x)\in\mathbb{R}_2[x]$ לכל

יהי $T:\mathbb{R}_2[x] o\mathbb{R}_2[x]$ אופרטור המוגדר

$$T(a + bx + cx^{2}) = 3b + (a+c)x + (a+b+2c)x^{2}.$$

 $.ar{T}$ מצאו את

פתרון:

לכן $E=\{e_1=1,\;e_2=x,\;e_3=x^2\}$ לכן הסטנדרטי של $\mathbb{R}_2[x]$ הינו

$$T(e_1) = T(1) = x + x^2$$
, $T(e_2) = T(x) = 3 + x^2$, $T(e_3) = T(x^2) = x + 2x^2$.

$$\langle \mathbf{v}, (T(e_1)) \rangle = \langle a + bx + cx^2, x + x^2 \rangle$$

$$= \int_0^1 (x + x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (ax + ax^2 + bx^2 + bx^3 + cx^3 + cx^4) dx$$

$$= \frac{a}{2} + \frac{a}{3} + \frac{b}{3} + \frac{b}{4} + \frac{c}{4} + \frac{c}{5}$$

$$= \frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20} .$$

$$\langle \mathbf{v}, (T(e_2)) \rangle = \langle a + bx + cx^2, 3 + x^2 \rangle$$

$$= \int_0^1 (3 + x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (3a + ax^2 + 3b + bx^3 + 3c + cx^4) dx$$

$$= 3a + \frac{a}{3} + 3b + \frac{b}{4} + 3c + \frac{c}{5}$$

$$= \frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5}.$$

$$\langle \mathbf{v}, (T(e_3)) \rangle = \langle a + bx + cx^2, x + 2x^2 \rangle$$

$$= \int_0^1 (x + 2x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (ax + 2ax^2 + bx^2 + 2bx^3 + cx^3 + 2cx^4) dx$$

$$= \frac{a}{2} + \frac{2a}{3} + \frac{b}{3} + \frac{b}{2} + \frac{c}{4} + \frac{2c}{5}$$

$$= \frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20}.$$

לכן

כלומר:

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{3} \langle \mathbf{v}, T(e_i) \rangle e_i
= \langle \mathbf{v}, T(e_1) \rangle e_1 + \langle \mathbf{v}, T(e_2) \rangle e_2 + \langle \mathbf{v}, T(e_3) \rangle e_3
= \left(\frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20} \right) e_1 + \left(\frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5} \right) e_2 + \left(\frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20} \right)
= \left(\frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20} \right) + \left(\frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5} \right) x + \left(\frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20} \right) x^2$$

משפט 7.5 מטריצה המייצגת של אופרטור הצמוד

V אופרטור במרחב מכפלה פנימית $T:V\to V$ יהי יהי $T:V\to V$ יהי אופרטור המייצגת של המטריצה המייצגת של המטריצה המייצגת של המטריצה המייצגת של [T

$$[\bar{T}] = \overline{[T]} . \tag{8*}$$

 $ar{T}$ נציב T נציב (3*) האיבר ה- ij של המטריצה המייצגת של T הוא T הוא של המטריצה האיבר היבר ונקבל

$$\left[\bar{T}\right]_{ij} \quad \overset{\text{(3*)}}{=} \quad \left\langle \bar{T}(b_j), b_i \right\rangle \quad \overset{\text{(*5)}}{=} \quad \left\langle b_j, T(b_i) \right\rangle \quad \overset{\text{nedict}}{=} \quad \overline{\left\langle T(b_i), b_j \right\rangle} = \overline{\left[T\right]_{ji}}$$

. (שימו של האינדקסים) $\left[ar{T}
ight]_{ij} = \overline{ \ [T]_{ji} }$ - קיבלנו ש

[T] של ji האיבר ה- ij של ij שווה לצמוד של האיבר במילים:

לכן $[ar{T}]$ שווה להמשוחלפת של המטריצה של הצמודים של האיברים של $[ar{T}]$. כלומר:

$$[\bar{T}] = \overline{[T]}$$
.

7.2 אופרטור צמוד לעצמו

הגדרה 7.2 העתקה צמודה לעצמה

העתקה לינארית

$$T:V \to V$$

במרחב מכפלה פנמית נקראת העתקה צמודה לעצמה אם

$$\bar{T} = T$$
,

u, v כלומר לכל

$$\langle T(u), \mathbf{v} \rangle = \langle u, T(\mathbf{v}) \rangle$$
.

- . מסטרית, גם העתקה אוקלידי ($\mathbb{F}=\mathbb{R}$) נקראת במרחב במרחב ullet
 - . היא נקראת החתקה העתקה ($\mathbb{F}=\mathbb{C}$) במרחב אוניטרי,

הגדרה 7.3 מטריצה צמודה לעצמה

מטריצה צמודה לעצמה או ($\mathbb{F}=\mathbb{C}$ או $\mathbb{F}=\mathbb{R}$) $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית

$$A = \bar{A}$$
.

- . מטריצה כזו נקראת סימטרית $\mathbb{F}=\mathbb{R}$ כאשר
- . מטריצה כזו נקראת הרמיטית $\mathbb{F}=\mathbb{C}$ מטריצה סאר

משפט 7.6 העתקה צמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה

יהי לבסיס המטריצה המייצגת של $T:V \to V$ בבסיס היהי במכפלה פנימית. העתקה לורת צמודה לעצמה אם"ם המטריצה המייצגת של בבסיס אורתונורמלי כלשהו של V היא צמודה לעצמה.

דוגמה 7.4

נניח ש- דעת שמוגדרת שמוגדרת ע"י עם מכפלה פנימית נעתקב במרחב $T:\mathbb{R}^n o \mathbb{R}^n$ נניח ש- נניח

$$T(u) = A \cdot u .$$

הוכיחו כי T צמודה לעצמה אם"ם A סימטרית.

פתרון:

המטריצה המייצגת של ההעתקה היא T . $[T]_E=A$ צמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה, $A=A^t$ בלוםר אם T .לכן $A=A^t$ ממשית, אז $A=A^t$ לעצמה לעצמה אם"ם $A=A^t$ כלוםר אם לעצמה אם"ם

דוגמה 7.5

נניח ש- די נעתקב במרחב \mathbb{C}^n עם מכפלה פנימית הסטנדרטית שמוגדרת ע"י $T:\mathbb{C}^n o \mathbb{C}^n$

$$T(u) = A \cdot u$$
.

.הוכיחו כי T צמודה לעצמה אם"ם T הרמיטית

פתרון:

המטריצה המייצגת של ההעתקה היא T . $[T]_E=A$ צמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה, כלוםר אם A הרמיטית. לכן T צמודה לעצמה אם"ם A הרמיטית.

דוגמה 7.6

. אמודה לעצמה צמודה לעצמה ווכיחו כי ההעתקה הזהות לעצמה ווכיחו כי ההעתקה הזהות

פתרון:

המטריצה המייצגת של ההעתקה הזהות היא המטריצה היחידה I. צמודה לעצמה בגלל ש- $ar{I}=I$ לכן ההתקה המטריצה המייצגת של ההעתקה הזהות I_V צמודה לעצמה.

דוגמה 7.7

הוכיחו כי ההעתקה האפס V:V o V צמודה לעצמה.

פתרון:

 $ar{0}_{n imes n} = 0_{n imes n}$ במודה לעצמה בגלל ש- המטריצה האפס המטריצה המייצגת של ההעתקה הזהות היא המטריצה האפס $0_{n imes n}$ צמודה לעצמה.

דוגמה 7.8

 $.\overline{\alpha I}=\alpha I$ שמ"ם אם"ם צמודה לעצמה מיי $S_{\alpha}(\mathbf{v})=\alpha\cdot\mathbf{v}$ שמוגדרת אם"ם אם"ם אם הוכיחו כי ההעתקה סקלרית אם"ם א

פתרון:

המטריצה המייצגת של

$$[S_{\alpha}] = \alpha I .$$

המטירצה המייצגת צמודה לעצמה אם"ם

$$\bar{\alpha}\bar{I} = \alpha I$$

 $ar{lpha}=lpha$ כלומר אם

דוגמה 7.9

בסיס גתון עם המכפלה הפנימית הסטנדרטית, נתון בסיס במרחב \mathbb{R}^2

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} .$$

נתון ההעתקה לינארית $T:\mathbb{R}^2 o \mathbb{R}^2$ עם הטריצה המייצגת ל $T:\mathbb{R}^2 o \mathbb{R}^2$. האם לינארית?

פתרון:

נבחר בסיס אורתונורמלי:

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

 $.e_2 = b_1 + b_2$, $e_1 = -b_2$ אז

$$[T(b_1)]_B = 0 \cdot b_1 - b_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $[T(b_2)]_B = 0 \cdot b_1 + b_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

לכן

$$T(e_1) = -T(b_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 + 0 \cdot e_2$$
.

$$T(e_2) = T(b_1) + T(b_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \cdot e_1 + 0 \cdot e_2.$$

לכן

$$[T]_E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

מטריעה סימטרית, לכן T העתקה סימטרית.

שיטה 2

$$[T]_B = P_{E \to B}[T]_E P_{E \to B}^{-1}$$

$$(B \mid E) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$:P_{E \to B}^{-1} \text{ (area } P_{E \to B} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\left(\begin{array}{cc|c} 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{array}\right) \to \left(\begin{array}{cc|c} -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

$$.P_{E o B}^{-1}=\left(egin{array}{cc} 1 & -1 \ 1 & 0 \end{array}
ight)$$
 לכן

$$\begin{split} [T]_B &= P_{E \to B}[T]_E P_{E \to B}^{-1} \qquad \Leftrightarrow \qquad [T]_E = P_{E \to B}^{-1}[T]_B P_{E \to B} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

דוגמה 7.10

הוכיחו או הפריכו ע"י דוגמה נגדית:

- אט אודה לעצמה או במודות לעצמן אז T+S אם אם T אם או לעצמה.
- . צמודה לעצמה אז α אם α אז אם מפור ממשי. צמודה לעצמה ו- αT

- . אמודה לעצמה מודה אז αT אז $\alpha = \bar{\alpha} \neq 0$ אמודה לעצמה $T \neq 0$ אם גם אם
 - . אם לעצמה אמודות לעצמן אז $T_1 \cdot T_2$ אם לעצמה אם דו
ם לעצמה לעצמה אם T_1
- . אמודה לעצמה $T_1 \cdot T_2$ אז $T_1 \cdot T_2$ אז או וועמה. $T_1 \cdot T_2 = T_2$ מתחלפות (ז"א $T_1 \cdot T_2 = T_2$), אז $T_1 \cdot T_2$ צמודה לעצמה.
- .($T_1T_2=T_2T_1$ אים T_1 ו- T_2 מתחלפות (ז"א $T_1\cdot T_2=T_2$ צמודות לעצמן ו- T_1 אם אם T_2 ו- T_1 אם אם וויש איז וויש
 - . אם T צמודה לעצמה, אז T^2 צמודה לעצמה T

פתרון:

א) טענה נכונה. הוכחה:

$$\overline{T+S} = \overline{T} + \overline{S} = T + S$$
.

לכן (נתון) צמודה לעצמה lpha T (ב

$$\overline{\alpha T} = \bar{\alpha} \bar{T} = \alpha T$$
.

צמודה לעצמה (נתון) לכן $ar{T}=T$. נציב ונקבל T

$$\bar{\alpha}T = \alpha T$$
 \Rightarrow $(\bar{\alpha} - \alpha)T = 0$.

 $ar{lpha}=lpha$ (נתון) לכן $ar{lpha}-lpha=0$ לכן T
eq 0

ג) טענה נכונה. הוכחה:

צמודה לעצמה (נתון) לכן T

$$\overline{\alpha T} = \bar{\alpha} \bar{T} = \bar{\alpha} T$$
 .

(נתון). נציב ונקבל $ar{lpha}=lpha$

$$\overline{\alpha T} = \alpha T \ .$$

ד) טענה לא נכונה. דוגמה נגדית:

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2 , \qquad [T_1]_E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T_2: \mathbb{R}^2 \to \mathbb{R}^2 , \qquad [T_2]_E = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

ו- אבל העתקות הימטריות אבל ד T_{2} ו- ו- ו- T_{1}

$$[T_1 \cdot T_2]_E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

. לעצמה אינה אינה לכן לכן לא סימטרית, לכן לכן לא ל

:הוכחה: טענה נכונה. הוכחה

נניח כי אמודה מודה צמודה לעצמה ונניח כי $T_1 \cdot T_2$ העתקה אמודה לעצמה ונניח כי , $T_2 : V o V$, $T_1 : V o V$

$$T_1 \cdot T_2 = T_2 \cdot T_1$$
.

111

$$\overline{T_1 \cdot T_2} = \overline{T}_2 \cdot \overline{T}_1 = T_2 \cdot T_1 = T_1 \cdot T_2 .$$

. לכן $T_1 \cdot T_2$ אמודה לעצמה

ו) טענה נכונה. הוכחה:

נניח אז העתקה צמודה לעצמה. אז העתקה אמודות לעצמן העתקה אמודה לעצמה. אז העתקה אמודה לעצמה. אז העתקה אז העתקה אמודה לעצמה. אז

$$\overline{T_1 \cdot T_2} = T_1 \cdot T_2 \ .$$

מצד שני,

$$\overline{T_1\cdot T_2}=\bar{T}_2\cdot \bar{T}_1=T_2\cdot T_1\ .$$

לכן

$$T_1 \cdot T_2 = T_2 \cdot T_1 \ .$$

ל) טענה נכונה. הוכחה:

$$\overline{(TT)} = \overline{T} \cdot \overline{T} = T \cdot T .$$

דוגמה 7.11

 $T\cdot ar{T}$ ו- $ar{T}\cdot T$ ו- העתקה לינארית. הוכיחו כי T:V o V ו- היי לינארית. הוכיחו כי $T\cdot T$ ו- העתקה עמודה לעצמה.

פתרון:

$$\overline{T \cdot \bar{T}} = \overline{\bar{T}} \cdot \bar{T} = T \cdot \bar{T} \ .$$

לכן $T\cdot \bar{T}$ לכן העתקה העתקה $T\cdot \bar{T}$

מאותה מידה:

$$\overline{\bar{T}\cdot T} = \bar{T}\cdot \overline{\bar{T}} = \bar{T}\cdot T \ .$$

לכן $ar{T} \cdot T$ העתקה צמודה לעצמה.

הגדרה 7.4 העתקה אנטי-סימטרית

תהי העתקה לינארית

$$T:V\to V$$

במרחב אוקלידי V. במצב

$$\bar{T} = -T$$

אז T נקראת אנטי-סימטרית.

הגדרה 7.5 העתקה אנטי-הרמיטית

תהי העתקה לינארית

$$T:V\to V$$

במרחב אוניטרי V במצב

$$\bar{T} = -T$$

אז T נקראת אנטי-הרמיטית.

כל מספר מרוכב iy הדומה iy המספר מספר מספר מספר ביומה לכך, כל העתקה כל מספר מרוכב z=x+iy ביומה לכך, כל העתקה לינארית t היא סכום של שתי העתקות, שאחת מהן צמודה לעצמה והשני אנטי-סימטרית או אנטי-הרמיטית. נוכיח את הטענה הזאת במשפט הבא.

7.7 משפט

תהי T:V o V העתקה לינארית כלשהי.

. היא סכום של שתי העתקות, שאחת מהן צמודה לעצמה והשני אנטי-סימטרית או אנטי-הרמיטית T

הוכחה: נניח $T:V \to V$ העתקה לינארית. נתבונן בהעתקות

$$T_1 = \frac{1}{2} (T + \bar{T}) , \qquad T_2 = \frac{1}{2} (T - \bar{T}) .$$

111

$$T = T_1 + T_2 .$$

$$\bar{T}_1 = \frac{1}{2} \left(\overline{T + \bar{T}} \right) = \frac{1}{2} \left(\bar{T} + \overline{\bar{T}} \right) = \frac{1}{2} \left(\bar{T} + T \right) = T_1.$$

. אמודה לעצמה T_1 צמודה לעצמה

$$\bar{T}_2 = \frac{1}{2} \left(\overline{T - \bar{T}} \right) = \frac{1}{2} \left(\bar{T} - \overline{\bar{T}} \right) = \frac{1}{2} \left(\bar{T} - T \right) = -\frac{1}{2} \left(T - \bar{T} \right) = -T_2.$$

. אנטי-הרמיטית T_2 אנטי

משפט 7.8

תהי T:V o V העתקה לינארית כלשהי המקיימת (1

$$\langle T(u), \mathbf{v} \rangle = 0$$

$$.T=0$$
 אז $.u,\mathbf{v}\in V$ לכל

אם T:V o V אם (2

$$\langle T(u), u \rangle = 0$$

$$.T=0$$
 אז $.u\in V$ לכל

(1

$$\langle T(u), \mathbf{v} \rangle = 0$$

לכל $\mathbf{v} = T(u)$ נבחר $u, \mathbf{v} \in V$ לכל

$$\langle T(u), T(u) \rangle = 0 \qquad \Rightarrow \qquad T(u) = 0$$

.T=0 לכל $.u\in V$ לכל

 $u, v \in V$ לפי הנתון לכל (2

$$\langle T(u+\mathbf{v}), u+\mathbf{v} \rangle = 0$$
, $\langle T(\mathbf{v}), \mathbf{v} \rangle = 0$, $\langle T(u), u \rangle = 0$.

מצד שני,

$$\begin{split} \langle T(u+\mathbf{v}), u+\mathbf{v} \rangle &= \langle T(u), u \rangle + \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle + \langle T(\mathbf{v}), \mathbf{v} \rangle \\ 0 &= 0 + \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle + 0 \\ 0 &= \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle \end{split}$$

 $u, v \in V$ לכן לכל

$$\langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle = 0$$

נקבל ($\mathbb{F}=\mathbb{R}$ גי"א מרחב מרחב אוקלידי (ז"א \mathbf{r}

$$\langle T(u),{
m v}
angle=\langle u,T({
m v})
angle$$
 (כי T צמודה לעצמה) (לפי הסימטריות של מכפלה פנימית במרחב אוקלידי)

לכן

$$\langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle = 2 \langle T(u), \mathbf{v} \rangle = 0$$

T=0 ,(1) לכן לפי סעיף $u,\mathbf{v}\in V$ לכל $\langle T(u),\mathbf{v}
angle =0$

:u במקום אוניטרי וויין שקיבלנו ($\mathbb{F}=\mathbb{C}$ אוניטרי ווייטרי אוניטרי במקרה במקרה במקרה במקרה אוניטרי בי

$$\langle T(iu), \mathbf{v} \rangle + \langle T(\mathbf{v}), iu \rangle = 0$$

לכן

$$i \langle T(u), \mathbf{v} \rangle - i \langle T(\mathbf{v}), u \rangle = 0 \qquad \Rightarrow \qquad \langle T(u), \mathbf{v} \rangle - \langle T(\mathbf{v}), u \rangle = 0$$

וגם

$$\langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle = 0$$

נחבר את שני השוויונים ונקבל:

$$2\langle T(u), \mathbf{v} \rangle = 0 \qquad \Rightarrow \qquad T = 0$$

7.3 העתקות אוניטריות

z נשים לב שעבור מספר מרוכב

$$|z| = 1 \quad \Leftrightarrow \quad z \cdot \bar{z} = 1 \ .$$

נגדיר מושג דומה עבור העתקות לינאירות.

הגדרה 7.6 העתקה אוניטרית

נוצר העתקה העתקה העתקה נקראת נוצר פנימית עניטרית מכפלה מכפלה מכפלה במרחב $T:V\to V$

$$T \cdot \bar{T} = \bar{T} \cdot T = I$$

.הותה הזהות I כאשר

. העתקה אוניטרית במרחב אוקלידי (כלומר כאשר $\mathbb{F}=\mathbb{R}$) נקראת גם העתקה אורתוגונלית.

- $T^{-1}=ar{T}$ ו- התנאי $T\cdot T=T\cdot ar{T}=I$ פירושו ש $T\cdot T=T\cdot ar{T}=I$ התנאי
- גורר את $S\cdot T=I$ אם V ל- S אז השוויון S,T העתקות לינאריות מ- V ל- בור את אם אם S,T או אוניטרית סופית ז"א כדי לוודא ש- $T\cdot \bar T=I$ אוניטרית מספיק לבדוק רק אחד השוויונות $T\cdot \bar T=I$ או $T\cdot T=I$

דוגמה 7.12

נניח כי V מרחב מכפלה פנימית של \mathbb{C}^1 עם המכפלה הפנימית מרחב עניח כי

$$\langle z, w \rangle = z \cdot \bar{w}$$
.

. הוכיחו: $lpha\in\mathbb{C}$ כאשר $T(z)=lpha\cdot z$ הוכיחה שמוגדרת העתקה $T:\mathbb{C}^1 o\mathbb{C}^1$

- $.lphaar{lpha}=1$ אוניטרית אז T
- $z\in\mathbb{C}^1$ לכל $\|T(z)\|=\|z\|$ לכל אוניטרית אז
- $z,w\in\mathbb{C}^1$ לכל $\langle T(z),T(w)
 angle=\langle z,w
 angle$ אם אוניטרית אז

פתרון:

אז
$$T(z)=\alpha z$$
 א

$$\bar{T}(z) = \bar{\alpha}z \ .$$

מכאן

$$(\bar{T}T)(z) = \bar{T}(T(z)) = \bar{T}(\alpha z) = \bar{\alpha} \cdot \alpha z$$
.

 $ar{lpha}\cdotlpha=1$ לכך $ar{T}\cdot T=I$ אם"ם

.1 -שווה ל- מוחלט של הערך המוחלט של ז"א הערך

 $\|T(z)\|$ ג נחשב את

$$||T(z)||^2 = \langle T(z), T(z) \rangle = \langle \alpha z, \alpha z \rangle = \alpha \cdot \bar{\alpha} \langle z, z \rangle = \langle z, z \rangle = ||z||^2.$$

. $\|T(z)\|=\|z\|$ כלומר

 $z,w\in\mathbb{C}^1$ לכל

$$\langle T(z), T(w) \rangle = \langle \alpha z, \alpha w \rangle = \alpha \cdot \bar{\alpha} \, \langle z, w \rangle = \langle z, w \rangle \ ,$$

 $.\langle T(z),T(w)
angle = \langle z,w
angle$ כלומר

בדוגמה הקודמת מצאנו כי העתקה שומרת על הנורמה ועל המכפלה הפנימית של וקטורים.

התכונות האלה (שמירה על נורמה ועל מכפלה פנימית) מתקיימות לכל העתקה אוניטרית.

כל אחת מהתכונות האלה שקולה לכך שהעתקה תהיה אוניטרית.

משפט 7.9

עבור העתקה לינארית T:V o V במרחב מכפלה פנימית נוצר סופית, התנאים הבאים שקולים:

- העתקה אוניטרית. T (1)
 - u, v לכל (2)

$$\langle T(u), T(v) \rangle = \langle u, v \rangle$$
.

 $u \in V$ לכל (3)

$$||T(u)|| = ||u||$$

$(1)\Rightarrow(2)$:הוכחה

נניח ש-T אוניטרית. נבחר T אז

$$\langle T(u), T(\mathbf{v}) \rangle = \langle u, \bar{T} \cdot T(\mathbf{v}) \rangle = \langle u, I(\mathbf{v}) \rangle = \langle u, \mathbf{v} \rangle \ .$$

$$\underline{(2) \Rightarrow (3)}$$

נתון שלכל $\langle T(u), T({
m v})
angle = \langle u, {
m v}
angle$, תון שלכל שלכל , $u, {
m v}$

$$||T(u)||^2 = \langle T(u), T(u) \rangle = \langle u, u \rangle = ||u||^2$$
.

 $(3) \Rightarrow (1)$

$$0 = ||T(u)||^2 - ||u||^2$$
$$= \langle T(u), T(u) \rangle - \langle u, u \rangle$$
$$= \langle \bar{T} \cdot T(u), u \rangle - \langle u, u \rangle$$

לכן

$$\langle \bar{T} \cdot T(u), u \rangle = \langle u, u \rangle$$

 $ar{T} \cdot T = I$ לכן

משפט 7.10

 $u \in V$ עבור העתקה לינארית T התנאי שלכל

$$||T(u)|| = ||u||$$

 $u, v \in V$ שקול לתנאי שלכל

$$||T(u) - T(v)|| = ||u - v||$$
.

הוכחה:

ננית $\|u\|=\|u\|$ לכל $u,v\in V$ נקח $u,v\in V$ ננית $\|T(u)\|=\|u\|$

$$||T(u - v)|| = ||u - v|| \Rightarrow ||T(u) - T(v)|| = ||u - v||.$$

נגיח $\|u-v\|$ נגדיר $\|T(u)-T(v)\|=\|u-v\|$ נניח (2

$$||T(u) - T(0)|| = ||T(u)|| = ||u - 0|| = ||u||$$
.

הפירוש הגאומטרי של השוויון $\|T(u)-T(\mathbf{v})\|=\|u-\mathbf{v}\|$ הוא שהמרחק בין וקטורים שווה למרחק בין תמונותיהם. מהמשפט נובע כי העתקה אוניטרית שומרת על מרחקים.

נראה במשפט הבא אפיון נוסף של העתקות אוניטריות.

משפט 7.11

יהי T:V o V העתקה לינארית. מכפלה פנימית נוצר סופית, ותהי

- V אם T העתקה אוניטרית, ואם $B=\{b_1,\dots,b_n\}$ בסיס אורתונורמלי של אם אז גם $\{T(b_1),\dots,T(b_n)\}$ בסיס אורתונורמלי.
- ב) אם קיים בסיס אורתונורמלי של V שהעתקה T מעתיקה לבסיס אורתונורמלי, אז T אוניטרית.

הוכחה:

(N

$$\langle T(b_i), T(b_j) \rangle = \langle b_i, b_j \rangle = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

לכן $\{T(b_1), \dots, T(b_n)\}$ לכן

, $u, {
m v} \in V$ בסיסים אורתונורמליים. לכל $B' = \{T(b_1), \dots, T(b_n)\}$ ו- ו- $B = \{b_1, \dots, b_n\}$ נניח ש-

$$u = \sum_{i=1}^{n} \alpha_i b_i$$
, $\mathbf{v} = \sum_{i=1}^{n} \beta_i b_i$.

X

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i .$$

$$\langle T(u), T(v) \rangle = \left\langle \sum_{i=1}^{n} \alpha_i T(b_i), \sum_{i=1}^{n} \beta_i T(b_i) \right\rangle = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i$$

. לכן T העתקה אוניטרית. $\langle T(u), T(\mathbf{v}) \rangle = \langle u, \mathbf{v} \rangle$ ז"א

7.4 מטריצות מייצגות של העתקות אוניטירות

לכן . $[ar T]_B=ar A$ אז . $[T]_B=A$ אז העתקה אוניטרית, B בסיס אורתונורמלי. נסמן T:V o V נניח נניח וניח העתקה אוניטרית, אוניטרית, ו $[Tar T]_B=[T]_B\cdot [ar T]_B=A\cdot ar A=I$

וגם

$$[\bar{T}T]_B = [\bar{T}]_B \cdot [T]_B = \bar{A} \cdot A = I$$

הגדרה 7.7

תהי אוניטרית מטריצה ל-א קוראים שדה A. ל- $\mathbb F$ מטריצה חיבועית מעל מטריצה ל-

$$A \cdot \bar{A} = \bar{A} \cdot A = I$$

 $A^{-1}=ar{A}$ (תנאי שקול)

אם אורתוגונלית, אוניטרית שטריצה מטריצה אוניטרית אוניטרית אוניטרית $\mathbb{F}=\mathbb{R}$

$$A \cdot A^t = A^t \cdot A = I$$
,

או, באופן שקול:

$$A^{-1} = A^t .$$

דוגמה 7.13

$$T:\mathbb{R}^2 o\mathbb{R}^2$$
 , $T({
m v})=A\cdot{
m v}$ כאשר $A\cdot A^t=I$ אם A אורתוגונלית, אז $A:A=[T]_E$ כאשר $|A|\cdot|A^t|=|A|^2=1$

לכן

 $|A| = \pm 1 .$

בנוסף, אם A אורתוגונלית, אז

 $A^{-1} = A^t .$

נסמן

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \Rightarrow \quad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

.|A|=1 המקרה

$$A^{-1}=egin{pmatrix} d&-b\\-c&a\end{pmatrix}=A^t=egin{pmatrix} a&c\\b&d\end{pmatrix}$$
 .
$$a=d\ ,c=-b$$
 לכן $A=A_1=egin{pmatrix} a&-b\\b&a\end{pmatrix}$

 $.a^2+b^2=1$ כאשר

|A|=-1 המקרה

במקרה של |A|=-1 נקבל

$$A^{-1} = -\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix} ,$$

לכן d=-a ,b=c לכן

$$A = A_2 = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

 $a^2 + b^2 = 1$ כאשר

כך ש: ($0 \le \phi < 2\pi$) כישויון הזה, $a^2 + b^2 = 1$, נובע שקיימת אווית יחידה

$$b = \sin \phi$$
, $a = \cos \phi$.

לכן ניתן לרשום:

$$A_1 = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

$$A_2 = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

 $\mathbb{R}^{2 imes 2}$ מצאנו צורה של כל המטריצות האורתוגונליות ב

המשמעות הגאומטרית של העתקה $u o A_i u$ היא הסיבוב של המישור בזווית לנגד הכיוון השעון. נשים לב כי

$$A_2 = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

כלומר

$$A_2 = A_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

היא המטריצה הסטנדרטית של העתקה השיקוף של המישור ביחס לציר ה- x. לכן פירושה היא $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ היא המטריצה שיקוף המישור ביחס לציר ה- x, ולאחר מכן סיבוב בזווית ϕ נגד כיוון השעון.

. בעזרת קואורדינטות של מטריצה A בעזרת האוניטריות נרשום את צנאי

משפט 7.12

- אם A מטריצה אוניטרית מסדר n מעל שדה \mathbb{F} , אז גם שורותיה וגם עמודותיה מהוות בסיס אורתונורמלי של \mathbb{F}^n ביחס למכפלה הפנימית הסטנדרטית ב- \mathbb{F}^n .
- \mathbb{F}^n אם שורות (או עמודות) של מטריצה ריבועית מסדר n מעל מטריצה אורתונורמלי של (2) ביחס מכפלה הפנימית הסטנדרטית אז המטריצה אוניטרית.

הוכחה: נסמן

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} , \qquad \bar{A} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ \bar{a}_{12} & \bar{a}_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & \bar{a}_{nn} \end{pmatrix} .$$

נניח ש $A\cdot ar{A}$ אוניטרית. אז $A\cdot ar{A}=I$ וגם $A\cdot ar{A}=I$ וגם אוניטרית. אז אוניטרית.

$$(A\bar{A})_{ij} = (a_{i1} \cdots a_{in}) \cdot \begin{pmatrix} \bar{a}_{j1} \\ \vdots \\ \bar{a}_{jn} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} \bar{a}_{jk}$$

לכן מטריצה A אוניטרית כאשר

$$\sum_{k=1}^{n} a_{ik} \bar{a}_{jk} = \begin{cases} 1 & i=j\\ 0 & i \neq j \end{cases}$$

הביטוי j -הביטוי ה- j של מטריצה \mathbb{F}^n של הפנימית ב- \mathbb{F}^n של השורה ה- j של מטריצה $\sum_{k=1}^n a_{ik} \bar{a}_{jk}$ אוניטרית, אז שורות A הן בסיס אורתונורמלי של \mathbb{F}^n

 $:\!\!ar{A}A$ באופן דומה, האיבר ה- (i,j) של המטריצה

$$(\bar{A}A)_{ij} = (\bar{a}_{1i} \quad \cdots \quad \bar{a}_{ni}) \cdot \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} = \sum_{k=1}^{n} \bar{a}_{ki} a_{kj}$$

A אאת המכפלה הפנימית הסטנדרטית של עמודות מטריצה

.i
eq j עבור 0 -שווה ל- 1 עבור עבור i=j עבור ל- 0 עבור

A מהוות בסיס אורתונורמלי של

 $:A\cdot ar{A}$ של (i,j) אז האיבר \mathbb{F}^n נניח ששורות מטריצה A מהוות בסיס אורתונורמלי של

$$(A\bar{A})_{ij} = (a_{i1} \cdots a_{in}) \cdot \begin{pmatrix} \bar{a}_{j1} \\ \vdots \\ \bar{a}_{jn} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} \bar{a}_{jk} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases} .$$

. אוניטרית $A \Leftarrow A ar{A} = I$ ז"א

נניח כעת, שעמודות A מהוות בסיס אורתונורמלי. אז

$$(\bar{A}A)_{ij} = \sum_{k=1}^{n} \bar{a}_{ki} a_{kj} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}.$$

אוניטרית. $A \Leftarrow \bar{A} \cdot A = I$ א"ג

משפט 7.13

עבור העתקה לינארית T:V o V (כאשר V מרחב מכפלה פנימית נוצר סופית) התנאים הבאים שקולים זה לזה:

אוניטרית, ז"א T (א

$$\bar{T} \cdot T = T \cdot \bar{T} = 1$$

 $:u,v\in V$ לכל

$$\langle T(u), T(v) \rangle = \langle u, v \rangle$$
.

$$u \in V$$
 לכל (ג

$$||T(u)|| = ||u||.$$

$$:u,\mathbf{v}\in V$$
 לכל (ד

$$||T(u) - T(v)|| = ||u - v||$$
.

- . מעבירה בסיס אורתונורמלי כלשהו של V לבסיס אורתונורמלי מעבירה T
- וניטרית. אוניטרית של V המטריצה המייצגת אוT לפי בסיס אורתונורמלי מסוים של וא המייצגת המייצגת המייצגת המייצגת אוניטרית.

דוגמה 7.14

עבור אילו ערכים של lpha המטריצה הנתונה היא אורתוגונלית? אוניטרית?

$$A=egin{pmatrix} lpha & rac{1}{2} \ -rac{1}{2} & lpha \end{pmatrix}$$
 (N

$$A = \begin{pmatrix} lpha & 0 \\ 1 & 1 \end{pmatrix}$$
 (2

פתרון:

(N

$$A = \begin{pmatrix} \alpha & \frac{1}{2} \\ -\frac{1}{2} & \alpha \end{pmatrix} , \qquad \bar{A} = A = \begin{pmatrix} \bar{\alpha} & \frac{1}{2} \\ -\frac{1}{2} & \bar{\alpha} \end{pmatrix}$$
$$A \cdot \bar{A} = \begin{pmatrix} \alpha \bar{\alpha} + \frac{1}{4} & \frac{1}{2}(\bar{\alpha} - \alpha) \\ \frac{1}{2}(\alpha - \bar{\alpha}) & \alpha \bar{\alpha} + \frac{1}{4} \end{pmatrix} = \begin{pmatrix} |\alpha|^2 + \frac{1}{4} & \frac{1}{2}(\bar{\alpha} - \alpha) \\ \frac{1}{2}(\alpha - \bar{\alpha}) & |\alpha|^2 + \frac{1}{4} \end{pmatrix}$$

 $lpha=\pmrac{\sqrt{3}}{2}$ לכן $lpha=\pmrac{\sqrt{3}}{2}$, איי המטריצה אורתוגונלית עבור ' $lpha=\pmrac{\sqrt{3}}{2}$

ב) המכפלה הפנימית של העמודות שווה ל- 1 לכן העמודות לא מהוות בסיס אורתונורמלי. לכן A לא אורתוגונלית ולא אוניטרית.

דוגמה 7.15

- אסטנדרטית). הוכיחו כי קיימת היא סטנדרטית). הוכיחו כי קיימת (המכפלה הפנימית היא הוכיחו כי קיימת (המכפלה המכפלה החיא סטנדרטית). הוכיחו כי קיימת (המכפלה הפנימית היא סטנדרטית). הוכיחו כי קיימת
 - $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ איז שלה הראשונה שלה היא מטריצה אוניטרית שהעמודה הראשונה שלה היא
 - $\begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$ מצאו מטריצה אוניטרית מסדר 3, שהעמודה הראשונה שלה היא

פתרון:

א) נשלים את הוקטור הנתון לבסיס אורתונורמלי של \mathbb{F}^n ונשים אותם בעמודות המטריצה. המטריצה המתקבלת אוניטרית.

יסיור יחידה כי
$$\mathbf{v}_1=egin{pmatrix} rac{1}{2}+rac{1}{2}i\\ -rac{1}{2}\\ -rac{1}{2} \end{pmatrix}$$
 (ב

$$\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$$
.

 \mathbb{C}^3 נשלים את לבסיס לבסיס v_1 את

$$\mathbf{v}_{1} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} , \quad \mathbf{v}_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \quad \mathbf{v}_{3} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} .$$

נבנה בסיס אורתונורמלי (נשתמש בתהליך גרם-שמידט):

$$\begin{aligned} u_1 &= \mathbf{v}_1 \;. \\ \langle \mathbf{v}_2, u_1 \rangle &= \frac{1}{2} - \frac{1}{2}i \;. \end{aligned}$$

$$\begin{aligned} u_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \left(\frac{1}{2} - \frac{1}{2}i \right) \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} - \frac{1}{4}i \\ \frac{1}{4} - \frac{1}{4}i \end{pmatrix} \end{aligned}$$

$$\begin{aligned} u_3 &= \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_3, u_2 \rangle}{\|u_2\|^2} u_2 \\ \langle \mathbf{v}_3, u_1 \rangle &= -\frac{1}{2} \;. \\ \langle \mathbf{v}_3, u_2 \rangle &= \frac{1}{4} + \frac{1}{4}i \;. \end{aligned}$$

$$\begin{aligned} \|u_2\|^2 &= \frac{1}{4} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{2} \;. \end{aligned}$$

$$\begin{aligned} u_3 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} - \left(\frac{1}{2} + \frac{1}{2}i \right) \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} - \frac{1}{4}i \\ \frac{1}{4} - \frac{1}{4}i \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

$$\begin{aligned} \|u_3\|^2 &= \frac{1}{16} + \frac{1}{16} = \frac{1}{8} \;. \end{aligned}$$

בסיס אורתנורמלי:

$$\hat{u}_1 = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} , \qquad \hat{u}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i \\ \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i \end{pmatrix} , \qquad \hat{u}_3 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} ,$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 לכן מטריצה

דוגמה 7.16

T:V o V בשלושת התנאים הבאים על העתקה

- אוניטרית. T
- במודה לעצמה. T
 - $.T^{2} = I$ (x

הוכיחו כי קיום כל שני תנאים מאלה שרשומים גורר קייום התנאי השלישי.

פתרון:

 $(k) \Leftarrow (k)$ ו- $(k) \Rightarrow (k)$

נתון: T אוניטרית וצמודה לעצמה. אז

$$T^2 = T \cdot T$$
 $= \bar{T} \cdot T$ (צמודה לעצמה T) $= I$ (כי T אוניטרית)

(ביח: (ב) ו- (ג $) \Rightarrow ($ א)

 $T^2=I$ - צמודה לעצמה T צמודה לעצמה T

צריך להוכיח: T אוניטרית.

$$ar{T} \cdot T = T \cdot T$$
 (צמודה לעצמה T) אודה לעצמה (לפי הנתון)

לכן T אוניטרית.

 $(a) \Leftarrow (b) = (c)$ (ב)

 $T^2=I$ -נניח: T אוניטרית ד

. צריך להוכיח: T צמודה לעצמה

$$\bar{T} \cdot T = I \quad \Rightarrow \quad \bar{T} \cdot T^2 = T$$

לכן נקבל $T^2=I$

דוגמה 7.17

- א) הוכיחו כי מכפלת העתקות אוניטריות היא העתקה אוניטרית.
 - נארית? העתקה אוניטרית. מתי αT היא העתקה לינארית?
 - אוניטרית? האם סכום העתקות אוניטריות היא העתקה אוניטרית?
 - . אוניטריות T^{-1} -ו ו- \bar{T} אוניטריות העתקה אוניטריות. הוכיחו כי

פתרון:

. נניח כי T_1,T_2 העתקות אוניטריות

X

$$(T_1T_2)\cdot \overline{(T_1T_2)} = T_1(T_2\bar{T}_2)\bar{T}_1 = T_1\bar{T}_1 = I$$
.

(2

$$(\alpha T)\left(\overline{\alpha T}\right) = \alpha T \cdot \bar{\alpha}\bar{T} = \alpha \bar{\alpha}T \cdot \bar{T} = \alpha \bar{\alpha} = 1$$

 $|\alpha|^2=1$ אס"ם

- לא T+(-T)=0 אבל העתקה אוניטרית. אז לפי סעיף (ב), גם T אוניטרית. אבל העתקה אוניטרית. אז לפי אוניטרית.
 - אוניטרית (נתון) לכן T

$$T \cdot \bar{T} = \bar{T} \cdot T = I$$

 $: ar{T} \cdot T = I$ נקח את הצמודה של

$$\overline{\overline{T} \cdot T} = \overline{I} \qquad \Rightarrow \qquad \overline{T} \cdot \overline{\overline{T}} = \overline{T} \cdot T = I \ .$$

.לכן $ar{T}$ אוניטרית

אוניטרית, לכן T

$$\bar{T} \cdot T = I \qquad \Rightarrow \qquad T^{-1} = \bar{T} \ .$$

שיעור 8 העתקות נורמליות

8.1 ערכים עצמיים של העתקות במרחבי מכפלות פנימיות

משפט 8.1 ערכים עצמיים של העתקה צמודה לעצמה ממשיים

כל הערכים עצמיים של העתקה (מטריצה) צמודה לעצמה הם ממשיים.

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v} \rangle = \langle \mathbf{v}, \bar{T}(\mathbf{v}) \rangle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, T(\mathbf{v}) \rangle$$
 צמודה לעצמה) T $= \langle \mathbf{v}, \lambda \mathbf{v} \rangle$ (T ווקטור עצמי של \mathbf{v}) $= \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle$ (לינאריות חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = \bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda - \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$\lambda = \bar{\lambda} \Leftarrow (\lambda - \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{$$

משפט 8.2 ערכים עצמיים של העתקה אנטי-הרמיטית מדומים

. אם מספרים מספרים של הערכים העצמיים אז כל הערכים מספרים מדומים. T

הוכחה:

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v}
angle = \langle \mathbf{v}, \bar{T}(\mathbf{v})
angle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, -T(\mathbf{v})
angle$$
 (ד) אנטי-הרמיטית)
$$= - \langle \mathbf{v}, T(\mathbf{v})
angle$$

$$= - \langle \mathbf{v}, \lambda \mathbf{v}
angle$$
 (ד) אוקטור עצמי של T (ד) ווקטור עצמי של T (ד) ווקטור עצמי של T (ד) ווקטור עצמי של T (ד) אוקטית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = -\bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda + \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = -\bar{\lambda} \Leftarrow (\lambda + \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{v} \neq 0 \Leftrightarrow$$

משפט 8.3 פולינום אופייני של העתקה צמודה לעצמה מתפרק לגורמים לינארים ממשיים

תהי T העתקה (מטריצה) צמודה לעצמה.

- .הפולינום האופייני של T מתפרק לגורמים לינאריים.
 - ממשיים. T ממשיים של הפולינום האופייני של

אם מקדמים מסדר אם מסדר מסדר פולינום האופייני של ו $[T]_B$ הוא הפולינום האופייני האופייני של

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $.1 \leq i \leq n$, $a_i \in \mathbb{C}$ כאשר

לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$m_T(x) = a_0 + a_1 x + a_2 x^2 + \ldots + x^n = (x - \lambda_1) \ldots (x - \lambda_n)$$
,

 $.1 \leq i \leq n \ \lambda_i \in \mathbb{C}$

השורשים של הערכים הערכים העצמיים לT אם אם פון משפט 3.1, לפי הערכים הערכים הערכים הערכים ממשיים של הם מספרים ממשיים. T

 $1 \leq i \leq n$, $\lambda_i \in \mathbb{R}$ כלומר,

אם מקדמים מסדר עם מסדר פולינום ווא פולינום או הפולינום האופייני של $\mathbb{F}=\mathbb{R}$ אם

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $\mathbb{F}=\mathbb{C}$ כאשר $a_i\in\mathbb{R}$ מכאן ההוכחה היא אותה דבר של מכאן. מכאן $1\leq i\leq n$

1 משפט 8.4 ערך מוחלט של כל ערך עצמי של העתקה אוניטרית שווה

יהי V מרחב מכפלה פנימית מעל שדה $\mathbb C$, ויהי T העתקה V o V אוניטרית. אז הערך מוחלט של כל ערך עצמי של T שווה ל T.

הוכחה:

X

 $T({f v})=\lambda {f v}$ א"א י"א אוניטרית, ונניח ש- λ ערך עצמי של ד השייך לוקטור עצמי T:V o V נניח

$$\langle T({
m v}), T({
m v})
angle = \langle \lambda {
m v}, \lambda {
m v}
angle \qquad (T$$
 ווקטור עצמי עצמי על יוקטור עצמי של מכפלה פנימית) ולינאריות חלקית של מכפלה פנימית) ולינאריות חלקית של מכפלה פנימית)

מצד שני

$$\langle T({
m v}), T({
m v})
angle = \langle {
m v}, ar T T({
m v})
angle$$
 (הגדרה של העתקה צמודה) $= \langle {
m v}, I({
m v})
angle$ אוניטרית) $= \langle {
m v}, {
m v}
angle$

נשווה ביניהם:

$$\lambda \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle \quad \Rightarrow \quad (\lambda \cdot \bar{\lambda} - 1) \langle \mathbf{v}, \mathbf{v} \rangle = 0 .$$

$$|\lambda|^2=1 \Leftarrow \lambda \bar{\lambda}=1 \Leftarrow (\lambda \cdot \bar{\lambda}-1)=0 \Leftarrow \langle {
m v}, {
m v}
angle \neq 0 \Leftarrow {
m v} \neq 0 \Leftarrow {
m v}$$
 ווקטור עצמי

8.2 העתקות ומטריצות נורמליות

הגדרה 8.1 העתקה נורמלית

העתקה נורמלית מכפלה פנימית במרחב במרחב $T:V \to V$ העתקה נורמלית אם

$$T \cdot \bar{T} = \bar{T} \cdot T \ .$$

מטריצה נורמלית לקראת גקראת ל $A \in \mathbb{F}^{n \times n}$ מטריצה (2

$$A \cdot \bar{A} = \bar{A} \cdot A$$
.

8.3 דוגמאות של העתקות נורמליות

דוגמה 8.1

הוכיחו: העתקה (מטריצה) צמודה לעצמה היא נורמלית.

פתרון:

אם
$$ar{T}=T$$
 צמודה לעצמה אז $ar{T}=T$, לכן

$$T\cdot \bar{T}=T^2=\bar{T}\cdot T$$
 .

דוגמה 8.2

העתקה (מטריצה) אנטי-הרמיטית היא נורמלית.

פתרון:

אם
$$ar{T}=-T$$
 אנטי-הרמיטית, אז $ar{T}=T$, לכן

$$T \cdot \bar{T} = T \cdot (-T) = (-T) \cdot T = \bar{T} \cdot T .$$

דוגמה 8.3

העתקה (מטריצה) אוניטרית היא נורמלית.

פתרון:

אם T אוניטרית, אז

$$T \cdot \bar{T} = I$$
 . (#1)

:T -מצד ימין ב- נכפיל (ניש) מצד

$$T \cdot \bar{T} \cdot T = I \cdot T \qquad \Rightarrow \qquad T \cdot (\bar{T} \cdot T) = T \; .$$
 (#2)

מכאן

$$\bar{T} \cdot T = I$$
 . (#3)

:(#3) -ו (#1) לכן מ-

$$T \cdot \bar{T} = I = \bar{T} \cdot T$$
.

דוגמה 8.4

$$A = egin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$
 קבעו אם המטריצה

- א) אורתוגונלית,
 - ב) סימטרית,
- ,אנטי-סימטרית
 - נורמלית.

פתרון:

$$A = \begin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$

- אינה אורתוגונלית. A
 - ב) אינה סימטרית. A
- אינה אנטי-סימטרית. A

(†

$$A \cdot A^t = A^t \cdot A = \begin{pmatrix} 12 & -4 & 0 \\ -4 & 12 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

A נורמלית.

דוגמה 8.5

מטריצה $A = \begin{pmatrix} 2 & 2i \\ 2 & 4+2i \end{pmatrix}$ אינה אוניטרית, אינה הרמיטית, ואינה אנטי-הרמיטית, אבל היא נורמלית כי

ולכן
$$ar{A}=egin{pmatrix}2&2\\-2i&4-2i\end{pmatrix}$$

$$A \cdot \bar{A} = \bar{A} \cdot A = \begin{pmatrix} 8 & 8 + 8i \\ 8 - 8i & 24 \end{pmatrix}$$

דוגמה 8.6

מטריצה
$$ar{A}=\begin{pmatrix}1&0\\-i&3\end{pmatrix}$$
 אינה נורמלית כי $A=\begin{pmatrix}1&i\\0&3\end{pmatrix}$ ולכן
$$A\cdot \bar{A}=\begin{pmatrix}1&i\\0&3\end{pmatrix}\cdot\begin{pmatrix}1&0\\-i&3\end{pmatrix}=\begin{pmatrix}2&3i\\-3i&9\end{pmatrix}$$

$$\bar{A}\cdot A=\begin{pmatrix}1&0\\-i&3\end{pmatrix}\cdot\begin{pmatrix}1&i\\0&3\end{pmatrix}=\begin{pmatrix}1&i\\-i&10\end{pmatrix}$$

ראינו קודם (במשפט 8.5) כי הנומרליות היא תנאי הכרחי ללכסינות אונטריות. האם זה תנאי מספיק?

.במקרה של $\mathbb{F}=\mathbb{R}$ זה לא נכון

דוגמה נגדית: A אבל A אינה לכסינה כי מטריצה מטריצה מטריצה אינה $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ אבל כי

$$p_A(\lambda) = \lambda^2 - 2\lambda + 2$$

. אינו מתפרק לגורמים לינאריים מעל $\mathbb R$. לכן A גם לא לכסינה אורתוגונלית.

אותה המטריצה מעל $Q=egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \\ rac{-i}{\sqrt{2}} & rac{i}{\sqrt{2}} \end{pmatrix}$ אנחנו נוכיח המטריצה מעל $Q=egin{pmatrix} rac{1}{\sqrt{2}} & rac{i}{\sqrt{2}} \\ rac{-i}{\sqrt{2}} & i \end{pmatrix}$ בהמשך שנומרליות היא תנאי הכרחי ומספיק ללכסון אוניטרי מעל $\mathbb C$.

דוגמה 8.7

הוכיחו או הפריחו: כל מטריצה סימטרית (לאו דווקא ממשית) היא נורמלית.

פתרון:

דוגמה נגדית:

$$A = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix}$$

סימטרית (לא הרמיטית).

$$\bar{A} = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix}$$

$$A \cdot \bar{A} = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} = \begin{pmatrix} 1 & i \\ -i & 5 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} = \begin{pmatrix} 2 & -i \\ i & 5 \end{pmatrix}$$

, לכן $A\cdot \bar{A} \neq \bar{A}\cdot A$ נורמלית. לכן א $A\cdot \bar{A} \neq \bar{A}\cdot A$

דוגמה 8.8

. מטריצה וורמלית פי תיא מטריצה כי הוכיחו מטריצה אוניטרית. מטריצה ער מטריצה וורמלית פי מטריצה מטריצה מטריצה וורמלית אוניטרית. הוכיחו מ

פתרון:

נסמן $B=ar{Q}AQ$ נסמן

$$B \cdot \bar{B} = (\bar{Q}AQ) \cdot \overline{(\bar{Q}AQ)}$$

$$= (\bar{Q}AQ) \cdot (\bar{Q}\bar{A}Q)$$

$$= \bar{Q}A \underbrace{Q\bar{Q}}_{=I} \bar{A}Q$$

$$= \bar{Q}A\bar{A}Q$$

$$= \bar{Q}\bar{A}AQ$$

$$= \bar{Q}\bar{A}AQ \qquad (מי A \ \text{tiradein}) ...$$

$$\begin{split} \bar{B} \cdot B = \overline{\left(\bar{Q}AQ\right)} \cdot \left(\bar{Q}AQ\right) \\ &= \left(\bar{Q}\bar{A}Q\right) \cdot \left(\bar{Q}AQ\right) \\ &= \bar{Q}\bar{A}\underbrace{Q\bar{Q}}_{=I}AQ \\ &= \bar{Q}\bar{A}AQ \ . \end{split}$$

. ולכן $B \cdot ar{B} = ar{B} \cdot B$ ז"א

דוגמה 8.9

 $.\lambda$ סקלית לכל העתקה נורמלית היא $T-\lambda I$ אז אי סקלית לכל העתקה T

פתרון:

$$\begin{split} (T-\lambda I)\cdot\overline{(T-\lambda I)} &= (T-\lambda I)\cdot\left(\bar{T}-\bar{\lambda}I\right) \\ &= T\bar{T}-\bar{\lambda}T-\lambda\bar{T}+(\lambda\bar{\lambda})I \\ \hline (T-\lambda I)\cdot(T-\lambda I) &= \left(\bar{T}-\bar{\lambda}I\right)\cdot(T-\lambda I) \\ &= \bar{T}T-\lambda\bar{T}-\bar{\lambda}T+(\lambda\bar{\lambda})I \end{split}$$

מכאן . $T\cdot ar{T}=ar{T}\cdot T$ מכאן נרומלית, לכן

$$(T - \lambda I) \cdot \overline{(T - \lambda I)} = \overline{(T - \lambda I)} \cdot (T - \lambda I)$$

לכן $T - \lambda I$ העתקה נורמלית.

ראינו קודם (במשפט 8.5) שנורמליות היא תנאי הכרחי ללכסינות אוניטריות. ז"א אם מטריצה לכסינה אוניטרית, אז היא נורמלית. נוכיח בהמשך שבמקרה של מרוכבים, שנורמליות היא גם תנאי מספיק ללכסינות אוניטריות. כלומר אם מטריצה נורמלית אז היא לכסינה אוניטרית מעל $\mathbb C$.

במקרה של $\mathbb R$, התנאי הזה לא מספיק. ראינו קודם דוגמה (דוגמה 8.7) נגדית. דרוש תנאי נוסף.

8.4 העתקה לכסינה אוניטרית ומטריצה לכסינה אוניטרית

הגדרה 8.2 העתקה לכסינה אוניטרית

-ט כך ער אוניטרית אוניטרית אם קיימת אוניטרית לכסינה אוניטרית לכסינה אוניטרית A . $A \in \mathbb{F}^{n \times n}$

$$D = Q^{-1}AQ$$

.כאשר D מטריצה אלכסונית

תהי העתקה לינארית $T:V\to V$, כאשר $T:V\to V$ ממדי מעל שדה $T:V\to V$ תהי העתקה לינארית על תהי העתקה ליים בסיס אורתונורמלי אוניטרית אם קיים בסיס אורתונורמלי ווורמלי $B=\{u_1,\dots,u_n\}$ שבו T מיוצגת ע"י מטריצה אלכסונית.

. במקרה של $\mathbb{F}=\mathbb{R}$ למטריצה (העתקה) לכסינה אוניטרית קוראים $\mathbb{F}=\mathbb{R}$

משפט 8.5 העתקה לכסינה אוניטרית היא נורמלית

תהי T:V o V העתקה נורמלית, כלומר לכסינה אוניטרית. אז T העתקה נורמלית, כלומר

$$T \cdot \bar{T} = \bar{T} \cdot T$$
.

הוכחה: היים בסיס אורתונורמלי B היא העתקה לכסינה אוניטרית. לכן (משפט 7.12) קיים בסיס אורתונורמלי $T:V \to V$ כל של כך ש- $[T]_B$ אלכסונית. נרשום

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אזי

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

, לכן העריצות אלכסונית. מטריצות אלכסוניות מתחלפות, (ראו דוגמה 10.10), לכן אלכסונית. מטריצות אלכסוניות מתחלפות, אלכסוניות מתחלפות, ליאו מתחלפות מתחלפות אלכסוניות מחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלם מתחלפות מתחלפות מתחלפות מתחל מתחלפות מתחלפות מתחלפות מתחלפות מ

$$\left[T\cdot\bar{T}\right]_B = \left[\bar{T}\cdot T\right]_B \quad \Rightarrow \quad T\cdot\bar{T} = \bar{T}\cdot T \ .$$

יזה תנאי הכרחי לכך ש- T לכסינה אוניטרית. תוצאה מקבילה מתקיימת גם עבור מטריצות:

אם מטריצה ריבועית A לכסינה אוניטרית. אז

$$A \cdot \bar{A} = \bar{A} \cdot A$$

משפט 8.6 העתקה לכסינה אורתוגונלית היא נורמלית וסימטרית

 \mathbb{R} יהי V מרחב וקטורי מעל \mathbb{R} ותהי ותהי T:V o V ותהי מעל שדה על מרחב וקטורי מעל מעל אורתוגונלית

- העתקה נורמלית. T
- . העתקה סימטרית T (2

 \mathbb{R} מטריצה לכסינה אורתוגונלית מעל שדה $A \in \mathbb{R}^{n imes n}$

- .העתקה נורמלית A
- .העתקה סימטרית A (4

הוכחה:

כבר הוכחנו זאת למעלה במשפט 8.5. T לכסין אורתוגונלי אז קיים בסיס אורתוגונלי U של V כך שהמטריצה (בר הוכחנו זאת למעלה במשפט 8.5. אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

אלכסונית. מטריצות אלכסוניות מתחלפות לכן

$$[\bar{T}]_B \cdot [T]_B = [T]_B \cdot [\bar{T}]_B$$

ולכן T נורמלי.

B לפי בסיס אורתוגונלי אז המייצגת על דע אורתוגונלי B שורתוגונלי אז קיים בסיס אורתוגונלי לכסין לכסין אורתוגונלי אז קיים בסיס אורתוגונלי אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ לכן $\mathbb R^{n imes n}$, כלומר האיברים של המטריצה T אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ אופרטור ממשיים, כלומר $[T]_B=\overline{[T]_B}=\overline{[T]_B}=[T]_B$ לכן $[T]_B=\overline{[T]_B}$ לכן $[T]_B=\overline{[T]_B}$ לכן $[T]_B=\overline{[T]_B}$ לכן $[T]_B=\overline{[T]_B}$

-ט אלכסונית פך אורתוגונלית ו- D אלכסונית כך שלכסונית אז קיימת אורתוגונלית ו- $A \in \mathbb{R}^{n \times n}$

$$A = Q \cdot D \cdot Q^t .$$

לכן
$$ar{A} = A^t$$
 לכן $A \in \mathbb{R}^{n imes n}$

$$A\cdot ar{A}=A\cdot A^t=\left(QDQ^t
ight)\left(QDQ^t
ight)^t$$

$$=QD\underbrace{Q^tQ}_{=I}D^tQ^t \qquad (q^tQ=I)^t \qquad (Q^tQ=I)$$

מצד שני

$$ar{A}\cdot A=A^t\cdot A=\left(QDQ^t
ight)^t\cdot \left(QDQ^t
ight)$$
 $=QD^t\underbrace{Q^tQ}_{=I}DQ^t$ (הגדרה של השיחלוף)
 $=QD^tIDQ^t$ ($Q^tQ=I$ א"ג אז Q)
 $=QD^tDQ^t$
 $=QDDQ^t$ ($D^t=D$ אלכו D) .
 $A\cdot ar{A}=ar{A}\cdot A$

-ט כך שלכסונית ו- D אלכסונית אז קיימת אורתוגונלית. אז לכסינה אורתוגונלית אלכסונית כך ש $A = Q \cdot D \cdot Q^t .$

לכן $ar{A} = A^t$ לכן $A \in \mathbb{R}^{n imes n}$

$$ar{A}=A^t=ig(QDQ^tig)^t$$
 $=QD^tQ^t$ (הגדרה של השיחלוף) $=QDQ^t$ ($D^t=D$ אלכסונית אז D) $=A$.

דוגמה 8.10

תהי \bar{T} לכסינה אוניטרית. הוכיחו כי לכסינה אוניטרית.

פתרון:

-טכך אורתונורמלי פרים בסיס לפי משפט 1.12, לכסינה אוניטרית לכן לפי משפט 7.12 לכסינה אוניטרית לכן לפי

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix} .$$

קיבלנו כי בבסיס אורתונורמלי B, המטריצה המייצגת של $ar{T}$ אלכסונית. ז"א קיים בסיס אורתונורמלי שבו המטריצה המייצגת של $ar{T}$ אלכסונית, לכן $ar{T}$ לכסינה אוניטרית (לפי הגדרה 8.2).

8.5 משפט לכסון אוניטרי

משפט 8.7 משפט לכסון אוניטרי

- תהי $V \to V$ העתקה לינארית במרחב מכפלה פנימית אוניטרי נוצר סופית. $T:V \to V$ לכסינה אוניטרית אם"ם היא נורמלית.
- תהי $T:V \to V$ העתקה לינארית במרחב מכפלה פנימית אוקלידי נוצר סופית. $T:V \to V$ לכסינה אורתונורמלית מעל $\mathbb R$ אם"ם היא סימטרית.
 - מטריצה ריבועית (ממשית או מרוכבת). $A \in \mathbb{F}^{n \times n}$ (3 תהי A לכסינה אוניטרית אם"ם היא נורמלית.
- . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית $A \in \mathbb{R}^{n \times n}$ תהי

למה 8.1 ווקטור עצמי וערך עצמי של העתקה וצמודתה

אם v וקטור עצמי של העתקה נורמלית T, השייך לערך עצמי ל. $\bar{\lambda}$ -א אוקטור עצמי של \bar{T} השייך ל- $\bar{\lambda}$ אז $\bar{\lambda}$ הוא ערך עצמי של

 $\|T(\mathbf{v})\| = \|ar{T}(\mathbf{v})\|$ מתקיים עלכל $\mathbf{v} \in V$ מוכיח קודם שלכל

$$\begin{split} \|T(\mathbf{v})\| &= \langle T(\mathbf{v}), T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, \bar{T}T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, T\bar{T}(\mathbf{v}) \rangle \\ &= \langle \bar{T}(\mathbf{v}), \bar{T}(\mathbf{v}) \rangle \\ &= \|\bar{T}(\mathbf{v})\|^2 \; . \end{split}$$

נניח כעת ש- v וקטור עצמי:

$$T(\mathbf{v}) = \lambda \mathbf{v}$$
.

X

$$(T - \lambda I)(\mathbf{v}) = 0.$$

לכן

$$||(T - \lambda I)(\mathbf{v})|| = 0.$$

לכן (או דוגמה פ. 1. העתקה הוכחנו אין העתקה לי העתקה לי העתקה כי $T-\lambda I$ הוכחנו קודם כי

$$\|(T - \lambda I)(\mathbf{v})\| = \|\overline{(T - \lambda I)}(\mathbf{v})\|,$$

$$\|\overline{(T - \lambda I)}(\mathbf{v})\| = \|\overline{T}(\mathbf{v}) - \overline{\lambda}I\mathbf{v}\| = 0.$$

לכן

$$\bar{T}(\mathbf{v}) - \bar{\lambda}\mathbf{v} = 0 \qquad \Rightarrow \qquad \bar{T}(\mathbf{v}) = \bar{\lambda}\mathbf{v} \ .$$

 $.ar{\lambda}$ אייך לערך עצמי השייך לערך עצמי ז"א י

משפט 8.8 וקטורים עצמיים של העתקה נורמלית של ערכים עצמיים שונים אורתוגונליים

תהי T העתקה נורמלית במרחב מכפלה פנימית V מעל V. וקטורים עצמיים של השייכים לערכים עצמיים שונים, אורתוגונליים זה מזה.

 $\lambda_1
eq \lambda_2$, λ_1, λ_2 וקטורים עצמיים של T השייכים עצמיים עצמיים יהיו $\mathbf{v}_1, \mathbf{v}_2$ וקטורים עצמיים של

$$T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 , \qquad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2 .$$

X

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \lambda_1 \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_1 \, \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

וגם

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \bar{T}(\mathbf{v}_2) \rangle = \langle \mathbf{v}_1, \bar{\lambda}_2 \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

ז"א

$$\lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \qquad \Rightarrow \qquad (\lambda_1 - \lambda_2) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0 .$$

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$$
 לכך $\lambda_1
eq \lambda_2$

8.6 שיטה המעשית ללכסון אוניטרי

תהי $A\in\mathbb{F}^{n\times n}$ מטריצה נורמלית. במקרה ש $\mathbb{F}=\mathbb{R}$ נניח גם ש- A סימטרית. אז $A\in\mathbb{F}^{n\times n}$ מחלינום האופייני מתפרק לגורמים לינאריים וריבוי אלגברי של כל ערך עצמי שווה לריבוי היא לכסינה. לכן הפולינום האופייני מתפרק לגורמים לינאריים וריבוי הלגברי של כל ערך עצמי שווה לריבוי הגאומטרי. כלומר אם

$$|A - \lambda I| = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_k)^{n_k}$$

נא, האופייני, אז הפולינום האופייני, אז השורשים האופייני, אז $\lambda_1, \cdots \lambda_k$

$$\dim(V_{\lambda_i}) = n_i$$

$$.V_i = \{ \mathbf{v} \in \mathbb{F}^n | A \cdot \mathbf{v} = \lambda_i \mathbf{v} \}$$
 כאשר

בעזרת תהליך גרם-שמידט, נבנה ב- V_{λ_i} בסיס אורתונורמלי בסיס וקטורים אורתונורמליים זה עזרת תהליך גרם-שמידט, נבנה ב-ל λ_i בסיס אורתונורמליים אורתונורמליים זה לזה.

נתבונן בקבוצת וקטורין

$$B = B_1 \cup B_2 \cup \cdots \cup B_k$$
.

. האיברים של B הם וקטורים עצמיים. \mathbb{F}^n האיברים אורתונורמלי אורתונורמלי

דוגמה 8.11

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot A^t = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^t \cdot A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

 $AA^t = A^t A \kappa^n$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1 = \lambda^2 - 2\lambda + 2 = 0$$

 $:V_{\lambda_1}$ ערכים עצמיים: $\lambda_1=1+i, \lambda_2=1-i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} -i & -1 & 0 \\ 1 & -i & 0 \end{array}\right) \xrightarrow{iR_2 + R_1} \left(\begin{array}{cc|c} -i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

x=iy לכן -ix=y פתרון:

$$V_{\lambda_1} = \operatorname{span}\left\{ \begin{pmatrix} i \\ 1 \end{pmatrix} \right\}$$

 $:\!V_{\lambda_1}$ בסיס אורתונורמלי

$$B_{\lambda_1} = \operatorname{span}\left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

 $:V_{\lambda_2}$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} i & -1 & 0 \\ 1 & i & 0 \end{array}\right) \xrightarrow{iR_2 - R_1} \left(\begin{array}{cc|c} i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

.x = -iy לכן ix = y

$$V_{\lambda_2} = \operatorname{span}\left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$$

 $:\!\!V_{\lambda_2}$ בסיס אורתונורמלי

$$B_{\lambda_2} = \operatorname{span} \left\{ \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

לכן

$$B = \operatorname{span} \left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$D = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}$$
$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 8.12

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot \bar{A} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

. לכן A נורמלית. א"ז א"א $A\bar{A}=\bar{A}A$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \left((1 - \lambda)^2 + 1 \right) = (\lambda - 1) \left(\lambda^2 - 2\lambda + 2 \right) = (1 - \lambda)(\lambda - 1 - i)(\lambda - 1 + i)$$

 $\lambda=1$ ערכים עצמיים: $\lambda_1=1, \lambda_2=1+i, \lambda_3=1-i$ נמצא את המרחב עצמיים:

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - 1)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_1} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

לכן $.x=0,y=0,z\in\mathbb{C}$ לכן

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\lambda = 1 + i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 & 0 \\ -1 & -i & 0 \\ 0 & 0 & -i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} -i & 1 & 0 & 0 \\ -1 & -i & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 - R_1} \begin{pmatrix} -i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_1 \to iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

x = -iy, z = 0 :פתרון

$$V_{1+i} = \operatorname{span}\left\{ \begin{pmatrix} -i\\1\\0 \end{pmatrix} \right\}$$

 $\lambda = 1 - i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_3 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 & 0 \\ -1 & i & 0 \\ 0 & 0 & i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} i & 1 & 0 & 0 \\ -1 & i & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 + R_1} \begin{pmatrix} i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_1 \to -iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

x = iy, z = 0 :פתרון

$$V_{1-i} = \operatorname{span}\left\{ egin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}
ight\}$$

הבסיס אורתונורמלי:

$$B = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} 0 & \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1-i \end{pmatrix}$$
$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 8.13

$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

פתרון:

. מטריצה אורתוגונלית, לכן מטריצה אורתוגונלית
$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ -1 & 5 - \lambda & -1 \\ -1 & -1 & 5 - \lambda \end{vmatrix}$$
$$= -(\lambda - 6)^{2}(\lambda - 3) = 0$$

:ערכים עצמיים

 $\lambda=6$ מריבוי אלגברי

 $\lambda=3$ מריבוי אלגברי

 $\lambda=6$ נמצא את המרחב עצמי

$$\left(\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

לכן $y,z\in\mathbb{R}$,x=-y-z לכן

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} .$$

$$V_6 = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $:\lambda=3$ נמצא את המרחב עצמי

$$A\mathbf{v} - 3\mathbf{v} = 0 \quad \Rightarrow \quad (A - 3I)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

 $x=z,y=z,z\in\mathbb{R}$:פתרון

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

בסיס של וקטורים עצמיים:

$$\mathbf{v}_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

 $:V_6$ נבנה בסיס אורתוגונלי של

 $w_1 = v_1$.

$$w_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, w_1 \rangle}{\|w_1\|^2} w_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \\ 1 \end{pmatrix}.$$

 $:V_3$ נבנה בסיס אורתוגונלי של

 $:\mathbb{R}^3$ לכן בסיס אורתונורמלי של

$$u_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix} , \quad u_{2} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{-1}{2}\\-\frac{1}{2}\\1 \end{pmatrix} , \quad u_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$D = \begin{pmatrix} 6 & 0 & 0\\0 & 6 & 0\\0 & 0 & 3 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\0 & \frac{1}{2\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$D = \bar{Q} \cdot A \cdot Q$$

8.7 שימושים של משפט הלכסון האוניטרי

הוכחנו כי אם T העתקה צמודה לעצמה, אז כל השורשים של הפולינום האופייני הם ממשיים (משפט 8.1), וגם אם הוכחנו כי אם T אוניטרית אז הערך המוחלט של כל ערך עצמי שווה ל- 1 (משפט 8.4).

ניתן גם להוכיח את המשפט ההפוך.

משפט 8.9 אם שורשי פוליניום אופייני ממשיים אז ההעתרה צמודה לעצמה

תהי T העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

אם כל שורשי הפולינום האופייני של T ממשיים, אז T העתקה צמודה לעצמה.

Q הייסת לפי כל בסיס B, קיימת המייצגת המייצגת לפי כל בסיס אוניטרית. אוניטרית. הוכחה: T בורמלית לכן היא לכסינה אוניטרית ו- D אלכסונית כך ש-

$$[T]_B = QDQ^{-1} \quad \Rightarrow \quad [T]_BQ = QD$$
.

$$[T]_B$$
 באשר ביים של Q הם הווקטורים עצמיים של $D=\begin{pmatrix}\lambda_1&&&\\&\ddots&&\\&&\lambda_n\end{pmatrix}$ -ו $Q=\begin{pmatrix}|&&|\\u_1&\cdots&u_n\\|&&|\end{pmatrix}$ באשר ברים של D הם הערכים עצמיים.

$$[\bar{T}]_B = \overline{[T]_B} = \overline{QD\bar{Q}} = Q\bar{D}\bar{Q}$$
.

אם הערכים עצמיים של $ar{D}=D$ ממשיים אז דיס עצמיים אם הערכים עצמיים אם הערכים אם הערכים עצמיים או

$$[\bar{T}]_B = QD\bar{Q} = [T]_B$$
,

. כלומר $ar{T}=T$ ולכן לעצמה לעצמה

משפט 1 אם ערך מוחלט של שורשי פולינום אופייני שווה אם ערך מוחלט של משפט 8.10

תהי V העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

.אם כל שורשי הפולינום האופייני של T שווים בערכם ל- 1, אז T העתקה אוניטרית

המטריצה $[T]_B$ המלכסונית. היא אלכסונית ו- D אוניטרית לכן היא לכסינה אוניטרית לכן אוניטרית ו- D אוניטרית לכן B אוניטרית לפי כל בסיס אוניטרית לפי בסיס B אוניטרית לכן שלכסונית לפי כל בסיס אוניטרית ו- D

$$[T]_B = QD\bar{Q}$$
.

$$[T]_B$$
 באשר Q הם הווקטורים העצמיים של $D=\begin{pmatrix}\lambda_1&&&\\&\ddots&&\\&&\lambda_n\end{pmatrix}$ -ו $Q=\begin{pmatrix}|&&|\\u_1&\cdots&u_n\\&&|\end{pmatrix}$ כאשר הם הערכים עצמיים. נניח ש

$$D \cdot \bar{D} = \begin{pmatrix} |\lambda_1|^2 & & \\ & \ddots & \\ & & |\lambda_n|^2 \end{pmatrix} = I .$$

לכן

$$[T]_B[\bar{T}]_B = (QD\bar{Q}) \cdot (\overline{QD\bar{Q}}) = QD\underbrace{\bar{Q}Q}_{-I} \bar{D}\bar{Q} = Q\underbrace{D\bar{D}}_{=I} \bar{Q} = Q\bar{Q} = I.$$

. לכן T אוניטרית

דוגמה 8.14

תהי U ו- ו- ו- והכיחו כי אם U ו- העתקה הרמיטית מכפלה פנימית. הוכיחו לי העתקה העתקה אוניטרית העתקה אוניטרית וו- U העתקה הרמיטית וו- וו- לי מתחלפות איז $T=H\cdot U$ מרחלפות.

הוכחה: נתון:

.
$$ar{H}=H$$
 הרמיטית לכן H .
 $ar{U}\cdot U=U\cdot ar{U}=I$ אוניטרית, לכן U

צריך להוכיח:

. נורמלית
$$T = H \cdot U = U \cdot H$$

הוכחה:

$$T\cdot ar{T}=(H\cdot U)\cdot (ar{U}\cdot ar{H})$$
 (הגדרה של הצמודה)
$$=H\cdot U\cdot ar{U}\cdot ar{H}$$
 (ת ו H מתחלפות)
$$=H\cdot ar{H}$$
 (ת אוניטרית)
$$=H^2$$
 אוניטרית H) .

$$ar{T} \cdot T = \overline{(H \cdot U)} \cdot (U \cdot H)$$
 $= ar{U} \cdot ar{H} \cdot U \cdot H$ (הגדרה של הצמודה) $= ar{U} \cdot ar{H} \cdot H \cdot U$ (שודה לעצמה $= ar{U} \cdot H \cdot H \cdot U$ (שובת בתחלפות) $= ar{U} \cdot U \cdot H \cdot H$ (שוניטרית) $= H \cdot H$ (שוניטרית) $= H^2$.

לכן $T\cdot ar{T}=ar{T}\cdot T$ נורמלית.

8.8 *הוכחת המשפט:

לכסינה אוניטרית אם"ם קבוצת ו"ע שלה בסיס א"נ A

משפט A 8.11 לכסינה אוניטרית אם"ם קבוצת ווקטורים עצמיים שלה בסיס אורתונורמלי

מטריצה $A\in\mathbb{F}^{n\times n}$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של $A\in\mathbb{F}^{n\times n}$ (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של A.

A את אוניטרית הבסיס הזה, הרשומים כעמודות, יוצרים מטריצה המלכסנת אוניטרית את

-הוכחה: נניח ש- A לכסינה אוניטרית. אז קיימת Q אוניטרית וA אלכסונית כך ש

$$A=QDQ^{-1}$$
 \Leftrightarrow $AQ=QD$
$$.D=\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 -ו $Q=\begin{pmatrix} \mid & & \mid \\ u_1 & \cdots & u_n \\ \mid & & \mid \end{pmatrix}$ נרשום

מכאו

$$(A \cdot u_1 \quad \cdots \quad A \cdot u_n) = (\lambda_1 u_1 \quad \lambda_2 u_2 \quad \cdots \quad \lambda_n u_n)$$

לכן נקבל כי

$$A \cdot u_1 = \lambda_1 u_1, \quad \cdots, A \cdot u_n = \lambda_n u_n$$
.

A בנוסף אוניטירת לכן הקבוצה של העמודות של $\{u_1,\cdots,u_n\}$ היא בסיס אורתונורמלי של עוניסף $\{u_1,\cdots,u_n\}$ שמורכב מווקטורים עצמיים של אורתונורמלי לכן מצאנו בסיס אורתונורמלי

A של עצמיים עצמיים מווקטורים של על $U=\{u_1,\cdots,u_n\}$ נניח שקיים בסיס אורתונורמלי

$$A \cdot u_1 = \lambda_1 u_1, \qquad \cdots \qquad , A \cdot u_n = \lambda_n u_n .$$

 $\dim U = \dim V$ בסיס של U

לכן A לכסינה.

:כרשום Q אוניטרית. Q אוניטרית. ברפט: . $Q=\begin{pmatrix} |&&&|\\u_1&\cdots&u_n\\|&&&|\end{pmatrix}$ נרשום נרשום על העמודות של העמודות הקבוצה על העמודות אוניטרית.

$$AQ = \begin{pmatrix} | & & | \\ Au_1 & \cdots & Au_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 קיבלנו כי

$$AQ = QD \quad \Rightarrow \quad A = QDQ^{-1}$$
.

לכן A לכסינה אוניטרית.

משפט T 8.12 לכסין אוניטרי אם"ם קבוצת ווקטורים עצמיים שלו בסיס אורתונורמלי

תהי העתקה לינארית $T:V \to V$, כאשר V מרחב מכפלה פנימית n ממדי מעל $T:V \to V$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של \mathbb{F}^n (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של T.

.זהו בסיס שבו T מיוצגת ע"י מטריצה אלכסונית

המטריצה המייצגת ש- $B=\{u_1,\cdots,u_n\}$ כך אורתונורמלי קיימת המייצגת אוניטרית. אז קיימת קיימת בסיס אורתונורמלי לכסינה אוניטרית. נסמן לפי בסיס $[T]_B$ אלכסונית. נסמן

$$[T]_B = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} .$$

 $:\mathbb{F}^n$ של E יפטנדרטי הבסיס לפי הבסיס של $[T]_E$,T של המייצגת המייצגת נרשום המטריצה המייצגת א

$$[T]_E = Q[T]_B Q^{-1}$$
,

$$[T]_{E}Q = Q[T]_{B} \Rightarrow \begin{pmatrix} | & | & | \\ [T]_{E}[u_{1}]_{E} & \cdots & [T]_{E}[u_{n}]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} | & | & | \\ [T(u_{1})]_{E} & \cdots & [T(u_{n})]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}.$$

מצאנו כי

$$T(u_1) = \lambda_1 u_1$$
, \cdots $T(u_n) = \lambda_n u_n$.

T מורכב מווקטורים עצמיים של $B=\{u_1,\cdots,u_n\}$ לכן הבסיס האורתונורמלי

T של עצמיים עצמיים מווקטורים של אורתונורמלי וניח שקיים של אורתונורמלי ווורמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי

$$T(u_1) = \lambda_1 u_1, \quad \cdots, T(u_n) = \lambda_n u_n,$$

לכן

$$[T]_E \cdot [u_1]_E = \lambda_1[u_1]_E, \qquad \cdots \qquad , [T]_E \cdot [u_n]_E = \lambda_1[u_n]_E.$$

. $\dim U = \dim V$ בסיס של B

לכן T לכסינה.

$$[T]_E Q = \begin{pmatrix} | & & | \\ [T]_E [u_1]_E & \cdots & [T]_E [u_n]_E \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ dots&dots&\ddots&dots\\0&0&\cdots&\lambda_n \end{pmatrix}$$
 מצאנו כי

$$[T]_E Q = QD \quad \Rightarrow \quad [T]_E = QDQ^{-1} \ .$$

המטריצה המעבר מבסיס Bלבסיס הסנדרטיTלפי המטריצה המטריצה בסיס Bלבסיס הסנדרטי Qלבסיס בסיס המעבר בסיס ול בסיס בסיס ול בסיס בסיס ול בסיס

8.9 הוכחת משפט שור

משפט 8.13 תזכורת: מטריצה ניתנת לשילוש

תהי A של אופייני של A מתפרק לגורמים הפולינום האופייני של A מתפרק לגורמים תהי A אם"ם הפולינום האופייני של המטריצה משולשית מעל \mathbb{F} לינאריים בשדה \mathbb{F} .

הוכחה: ההוכחה נתונה במשפט 10.10.

משפט 8.14 משפט שור

. (לא בהכרח שונים המה) א ערכים עצמיים אל ערכים ויהיו ויהיו אונים ההכרח אונים אל $A\in\mathbb{F}^{n\times n}$

-ש מטריצה Q אוניטרית כך ש

$$A = QB\bar{Q}$$

כאשר

$$B = \begin{pmatrix} \lambda_1 & b_{12} & \cdots & b_{1n} \\ 0 & \lambda_2 & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

ובפרט B משולשית עליונה.

במילים פשוטות, כל מטריצה ריבועית A דומה אוניטרית למטריצה משולשית עליונה שבו איברי האלכסון הראשי הם הערכים עצמיים של A.

 $A=QBar{Q}\Leftrightarrow B=ar{Q}AQ$. נשים לב כי

A אם עצמיים עצמיים אל הערכים אוקטור עצמי אוקטור ויהיו אויסטור ששייך אשייך אשייך אשייך איז פורמה ווקטור עצמי או q_1

נגדיר q_1 כל ווקטורים אורתונורמליים אשר אורתונורים ל- q_2,\ldots,q_n יהיו

$$Q_1 = \begin{pmatrix} | & & | \\ q_1 & \cdots & q_n \\ | & & | \end{pmatrix} .$$

מכאו Q_1 ז"א $\bar{Q}_1Q_1=I$ מכאו

$$AQ_{1} = \begin{pmatrix} | & | & | \\ Aq_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}q_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & | & | \end{pmatrix} = Q_{1} \begin{pmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{pmatrix}$$

לכן

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \tag{*}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים כי הערכים נוכיח כי

$$|\lambda I - A| = |\bar{Q}_1(\lambda I - A)Q_1| = |\lambda \bar{Q}_1 Q_1 - \bar{Q}_1 A Q_1| = \begin{vmatrix} \lambda - \lambda_1 & * \\ 0 & \lambda I - A_2 \end{vmatrix}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים ומכאן ומכאן

שאר ההוכחה היא באינדוקציה.

בסיס: עבור n=1 הטענה מתקיימת.

.k+1 מעבר: נניח כי הטענה מתקיים עבור .k נוכיח אותה עבור

תהי $A\in\mathbb{F}^{k imes k}$ לפי (*),

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix}$$

באשר $B_2=egin{pmatrix} \lambda_2&*&\cdots&*\\0&\lambda_2&\cdots&*\\ \vdots&&&\\0&0&\cdots&\lambda_n \end{pmatrix}$ -אוניטרית ו- Q_2 אוניטרית אינדוקציה Q_2 אוניטרית ליונה אינדוקציה בין $A_2\in\mathbb{F}^{k imes k}$ -אוניטרית כך ש-

$$A_2 = Q_2 B_2 \bar{Q}_2 .$$

נגדיר

$$Q = Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} .$$

$$AQ = AQ_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & Q_2 B_2 \end{pmatrix}$$

$$= Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ 0 & B_2 \end{pmatrix} = QB$$

 $A=QBar{Q}$ לפיכך

8.10 הוכחת המשפט: נורמליות נשמרת תחת דמיון אוניטרי

למה 8.2 נורמליות נשמרת תחת דמיון אוניטרי

 $\mathbb F$ מעל מעל עדה עוצר-סופית נוצר-סופית במרחב הינארית העתקה $T:V\to V$ תהי תהי העתקה אוניטרית.

. נורמלית אם"ם $QTar{Q}$ נורמלית T

$$T=ar{Q}SQ$$
 אוניטרית אז Q $.S=QTar{Q}$ הוכחה:

$$T\bar{T} = \bar{T}T$$

$$\Rightarrow \ (\bar{Q}SQ) \cdot \overline{(\bar{Q}SQ)} = \overline{(\bar{Q}SQ)} \cdot (\bar{Q}SQ)$$

$$\Rightarrow \qquad \bar{Q}S \underbrace{Q\bar{Q}}_{I} \bar{S}Q = \bar{Q}\bar{S} \underbrace{Q\bar{Q}}_{I} SQ$$

$$\Rightarrow \qquad \bar{Q}S\bar{S}Q = \bar{Q}\bar{S}SQ$$

$$\Rightarrow$$
 $S\bar{S} = \bar{S}S$.

8.11 הוכחת המשפט: מטריצה נורמלית ומשולשית היא אלכסונית

למה 8.3 מטריצה נורמלית ומשולשית היא אלכסונית

תהי ריבועית. $A \in \mathbb{F}^{n \times n}$ תהי

אלכסונית. אם A מטריצה משולשית וגם נורמלית אז A

הוכחה: נוכיח ע"י אינדוקציה.

בסיס: עבור n=1 הטענה נכונה באופן טריוויאלי.

הנחת האינדוקציה:

נניח שהטענה נכונה עבור $n \geq 2$, נוכיח אותה עבור $n \geq 2$, נוכיח אותה עבור מניח שהטענה נכונה עבור $n \geq 2$, ווכיח אותה עבור אז

$$A = \begin{pmatrix} a_{11} & \bar{\mathbf{x}} \\ 0 & A' \end{pmatrix} , \qquad \bar{A} = \begin{pmatrix} a_{11} & 0 \\ \bar{\mathbf{x}} & \bar{A}' \end{pmatrix}$$

.כאשר $A' \in \mathbb{F}^{n-1 \times n-1}$ משולשית עליונה

$$A \cdot \bar{A} = \begin{pmatrix} |a_{11}|^2 + ||\mathbf{x}||^2 & \mathbf{y} \\ & \mathbf{y} & A' \cdot \bar{A}' \end{pmatrix} , \qquad \bar{A} \cdot A = \begin{pmatrix} |a_{11}|^2 & \mathbf{y} \\ & \mathbf{y} & \mathbf{x}\bar{\mathbf{x}} + \bar{A}' \cdot A' \end{pmatrix}$$

אם A' גם, A' משולישת עליונה, לכן לפי . $ar{A}'\cdot A=A'\cdot ar{A}'$ ו- ג0 אז בי א בי או אם אם $A\cdot ar{A}=ar{A}\cdot A$ אלכסונית. לכן A אלכסונית. לכן A אלכסונית.

8.12 הוכחת משפט לכסון אוניטרי

משפט 8.15 משפט לכסון אוניטרי

- תהי $T:V \to V$ העתקה לינארית במרחב מכפלה פנימית אוניטרי נוצר סופית. $T:V \to V$ לכסינה אוניטרית אם"ם היא נורמלית.
- . מטריצה אם"ם אם לכסינה אוניטרית ממשית או מרוכבת). או מטריצה ריבועית מטריצה אוניטרית או מרוכבת) תהי או מטריצה אוניטרית אם אוניטרית משית או תהי
 - . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית $A \in \mathbb{R}^{n \times n}$

הוכחה:

רק אם:

. לכל הטענות 4-1, את הכיוון "רק אם" הוכחנו כבר לעיל. נשאר להוכיח את הכיוון השני "אם".

רק אם:

:כעת נוכיח כי אם T נורמלית אז היא לכסינה אוניטרית:

נורמלית למה 1.8: כל מטריצה דומה אוניטרית למטריצה משולשית אוניטרית למטריצה משולשית אוניטרית למה 2.8: נורמליות נשמרת אוייון אוניטרי אוייון אוניטרי אוייון אוניטרי אוייון אוניטרי אוייון אוניטרי אוייון אוניטרי אויין אולסחנית אוייון אולסחנית אויין אולסחנית אויין אולסחנית אוניטרי למטריצה אלכסונית אוניטרי למטריצה אלכסונית.
$$T$$

נניח ש $V \to V$ כאשר T מרחב ווקטורי מעל $\mathbb R$. נניח כי T נורמלית, כלומר $T:V \to V$ בסעיף רבסעיף $T:V \to V$ מעיף הקודם) הוכחנו שאם T נורמלית אז היא לכסינה אוניטרית. ז"א $Q \in \mathbb R$ אוניטרית ו- $Q \in \mathbb R$ ש- $Q \in \mathbb R$ ו- $Q \in \mathbb R$ במקרה פרטי ש $Q \in \mathbb R$ אופרטור במרחב אוקלידי, אז $Q \in \mathbb R$ ו- $Q \in \mathbb R$ כך ש- $Q \in \mathbb R$ בפרט, $Q \in \mathbb R$ תהיה לכסינה אורתוגונלית:

$$[T]=QDar{Q}=QDQ^t$$
 ,
$$QQ^t=I\ .$$
 לכן
$$[T]^t=\left(QDQ^t\right)^t=QD^tQ^t=QDQ^t=[T]\ .$$
 לכן T סימטרית.

. נורמלית. $A\in\mathbb{C}^{n\times n}$, $T(u)=A\cdot u$ כאשר (1) מקרה פרטי של

. סימטרית של (2) איז א $A \in \mathbb{R}^{n \times n}$, $T(u) = A \cdot u$ כאשר (2) מקרה פרטי של (4

שיעור 9 משפט הפירוק הספקטרלי

ניתן לסכם את כל המושגים הנלמדים על העתקות נורמליות במשפט הבא:

משפט 9.1 סכום ישר של מרחבים עצמיים של העתקה נורמלית

T העתקה נורמלית במרחב מכפלה אוניטרי V ויהיו ויהיו מכפלה במרחב במרחב העצמיים העתקה ויהיו אוניטרי ל- $\lambda_1,\dots,\lambda_k$ הם התת-מרחבים העצמיים השייכים ל- $\lambda_1,\dots,\lambda_k$ הם התת-מרחבים העצמיים השייכים ל-

$$V=V_1\oplus V_2\oplus \cdots \oplus V_k$$
 (1

$$.i
eq j$$
 לכל $V_i \perp V_j$ (2

הוכחה:

נורמלית ולכן לכסינה אוניטרי (משפט לכסון אוניטרי 8.15). לכן סכום המימדים של כל התת-מרחביים T (1 העצמיים שווה למימד של V, כלומר

$$\dim{(V)}=\dim{(V_1)}+\ldots+\dim{(V_k)}$$
 .
$$\{\mathrm{v}_{i1},\ldots,\mathrm{v}_{in_i}\}$$
 בסיס של V_i . אז הקבוצה
$$\bigcup_{k=1}^k \{\mathrm{v}_{i1},\ldots,\mathrm{v}_{in_i}\}$$

 $,\!u\in V$ לכל לכל העצמיים. העצמיים לינארי לינארי אירוף אירוף של לכל לכל ז"א אירוף לכל ז"א בסיס אי

$$u \in V_1 + V_2 + \ldots + V_k$$
.

 λ_i אפשר להראות כי $V_i\cap V_j=\{ar 0\in V_i\cap V_j\ \exists$ עניח נניח שלילה. אפשר להראות כי $V_i\cap V_j=\{ar 0\}$ דרך השלילה. אז $T(u)=\lambda_i\cdot u$ וגם און $T(u)=\lambda_i\cdot u$, ומכאן ומכאן $V_i\cap V_j=\{a_i\}$

$$\lambda_i u = \lambda_j u \quad \Rightarrow \quad (\lambda_i - \lambda_j) u = 0$$

. סתירה, א $\lambda_i=\lambda_j$ כי הוא וקטור עצמי לכן $u
eq ar{0}$

לכו

$$V = V_1 \oplus \cdots \oplus V_k$$
.

עבור T נורמלית, וקטורים עצמיים השייכים לערכים עצמיים שונים הם אורתוגונלים (משפט 8.8), לכן לווא עבור T גורמלית, וקטורים עצמיים השייכים לערכים עצמיים אורתוגונלים (משפט 8.8), לכן לווא עבור לווא עבור אורתוגונלים וואס אורתוגונלים לערכים עצמיים השייכים לערכים עצמיים אורתוגונלים (משפט 8.8), לכן לערכים עצמיים השייכים לערכים לערכים עצמיים השייכים לערכים לערכי

המטרה שלנו היא לנסח משפט שקול הידוע בשם "משפט הפירוק הספקטרלי". אנחנונראה כי כל עתקה נורמלית במרחב מכפלה פנימית נוצר סופית היא צירוף לינארי של הטלת אורתוגונלית על המרחבים העצמיים שלה. המקדמים של הצירוף הלינארי הם הערכים העצמיים של ההעתקה. נראה את זה קודםם בדוגמה.

דוגמה 9.1

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(\mathbf{v}) = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \cdot \mathbf{v}$$

. העתקה סימטרית במרחב אוקלידי, לכן היא נורמלית T

$$T - \lambda I = \begin{vmatrix} 3 - \lambda & 2 \\ 2 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$$

 $\lambda_2 = -1$, $\lambda_1 = 4$ ערכים עצמיים:

 $\lambda = 4$

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_1 \to -R_1} \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$
$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ y \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = 2y$$
$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$.V_4$$
 בסיס של $\mathrm{v}_1=egin{pmatrix}2\\1\end{pmatrix}$

 $\lambda = -1$

$$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{4} \cdot R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$$

$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \cdot y \\ y \end{pmatrix} = y \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = -\frac{1}{2}y$$

$$V_{-1} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$$

 $.V_{-1}$ בסיס של ${
m v}_2=inom{-1}{2}$, ${
m v}\in\mathbb{R}^2$ לכן לכל $.\mathbb{R}^2$ לכן לכל ${
m v}_1,{
m v}_2$

 $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \ .$

מכאן

$$\mathbf{v} = \alpha_1 \lambda_1 \mathbf{v}_1 + \alpha_2 \lambda_2 \mathbf{v}_2 = 4\alpha_1 \mathbf{v}_1 - \alpha_2 \mathbf{v}_2 .$$

נשים לב ש- $-\alpha_2 {
m v}_2$ -ו V_1 של י על (2.4 הגדרה 1.4) ההיטל האורתוגונלי האורתוגונלי האורתוגונלי האורתוגונלי ו- $\alpha_1 {
m v}_1$ ההיטל האורתוגונלי של י על על V_2

אם נוכל לרשום את על תת המרחב אורתוגונלית ההטלה העתקת את (i=1,2) את נסמן ב-

$$P_1(\mathbf{v}) = \alpha_1 \mathbf{v}_1 , \qquad P_2(\mathbf{v}) = \alpha_2 \mathbf{v}_2 .$$

מכאן

$$T(\mathbf{v}) = 4P_1(\mathbf{v}) + (-1)P_2(\mathbf{v}) = (4P_1 - P_2)(\mathbf{v})$$
.

 $.T = 4P_1 - P_2$ כלומר

ומקדמי T ומקדמי ו- P_2 על המרחבים העצמיים של T ומקדמי ומקדמי ווא ההעתקה היא צירוף לינארי של הטלות אורתוגונליות ווא היא אירוף הם העצמיים המתאימים.

במילים אחרות, כדי להפעיל את T על וקטור v, צריך להטיל אותו על המרחבים V_1 ו- V_2 , לכפול את במילים אחרות, כדי להפעיל את הוקטורים המתקבלים.

נשים לב: ההטלות P_1 ו- P_2 מקיימות שתי תכונות נוספות:

$$P_1 + P_2 = I$$
 (1

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (2

<u>הוכחה:</u>

$$\mathbf{v} \in V$$
 לכל (1

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = P_1(\mathbf{v}) + P_2(\mathbf{v}) = (P_1 + P_2)(\mathbf{v})$$

$$.P_1 + P_2 = I$$
 לכן

(2

$$(P_1 \cdot P_2)(\mathbf{v}) = P_2(P_1(\mathbf{v})) = P_2(\alpha_1 \mathbf{v}_1) = 0$$

.
$$lpha_1$$
יי בי V_2 כי

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (3

המשפט הבא הנקרא "המשפט הפירוק הספקטרלי" מכליל את הדוגמה האחרונה.

משפט 9.2 משפט הפירוק הספקטרלי

תהי להערכים העצמיים השונים ל $\lambda_1,\dots,\lambda_k$ יהיו עוצר פופית נורמלית במרחב אוניטרי עוצר לוצר פופית האימים לכל הערכים העצמיים המתאימים. לכל ויהיו לכל המרחבים העצמיים העצמיים המתאימים. לכל ויהיו אזי עונילית על אזי

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
 (1

$$I = P_1 + \ldots + P_k$$
 (2)

$$P_i \cdot P_j = 0$$
 , $i \neq j$ לכל (3

$$P_i^2=P_i$$
 , i לכל (4

$$ar{P}_i = P_i$$
 , i לכל (5

הוכחה:

כאשר (
$$1 \leq i \leq k$$
) ע $i \in V_i$ כאשר

$$T(\mathbf{v}) = T(\mathbf{v}_1) + \ldots + T(\mathbf{v}_k) = \lambda_1 \mathbf{v}_1 + \ldots + \lambda_k \mathbf{v}_k = \lambda_1 P_1(\mathbf{v}) + \ldots + \lambda_k P_k(\mathbf{v}) = (\lambda_1 P_1 + \ldots + \lambda_k P_k) (\mathbf{v}) .$$

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
.

$$\mathbf{v} \in V$$
 לכל (2

$$(P_1 + \dots + P_k)(\mathbf{v}) = P_1(\mathbf{v}) + \dots + P_k(\mathbf{v}) = \mathbf{v}_1 + \dots + \mathbf{v}_k = \mathbf{v}$$

$$.P_1+\ldots+P_k=I$$
 לכן

$$\mathbf{v} \in V$$
 ולכל ו $i \neq j$ לכל (3

$$(P_i P_j)(v) = P_i(P_j(v)) = P_i(v_j) = 0$$

$$.i
eq j$$
 לכל לכל אכן לכל לכן לכל $V_i \perp V_j$ כי

$$\mathbf{v} \in V$$
 לכל (4

$$P_i^2(\mathbf{v}) = P_i(P_i(\mathbf{v})) = P_i(\mathbf{v}_i) = \mathbf{v}_i = P_i(\mathbf{v})$$

$$P_i^2=P_i$$
 לכן

$$u,\mathbf{v}\in V$$
 לכל (5

$$u = u_1 + \ldots + u_k$$
, $v = v_1 + \ldots + v_k$

כאשר (
$$1 \leq i \leq k$$
) $u_i, v_i \in V_i$ כאשר

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}_i, u_1 + \ldots + u_k \rangle = \langle \mathbf{v}_i, u_i \rangle$$

מצד שני:

$$\langle \mathbf{v}, P_i(u) \rangle = \langle \mathbf{v}_1 + \ldots = + \mathbf{v}_k, u_i \rangle = \langle \mathbf{v}_i, u_i \rangle$$

ז"א

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}, P_i(u) \rangle$$

$$ar{P_i} = P_i$$
 לכל $u, v \in V$ לכל

9.1 שימושים של הפירוק הספקטרלי

דוגמה 9.2

נתונה העתקה
$$T = \sum\limits_{i=1}^k \lambda_i P_i$$
 אזי

$$T^{2} = \left(\sum_{i=1}^{k} \lambda_{i} P_{i}\right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j} P_{i} P_{j}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}^{2}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}$$

קל להוכיח באינדוקציה:

$$T^n = \sum_{i=1}^k \lambda_i^n P_i$$

דוגמה 9.3

$$: \mathbb{F} = \mathbb{C}$$
 במקרה של

$$\bar{T} = \overline{\left(\sum_{i=1}^{k} \lambda_i P_i\right)}$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i \bar{P}_i$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i P_i$$

לכן, אם כל העריכם עצמיים הם ממשיים, אז

$$\bar{T} = \sum_{i=1}^{k} \bar{\lambda}_i P_i$$
$$= \sum_{i=1}^{k} \lambda_i P_i = T$$

כלומר T צמודה לעצמה.

דוגמה 9.4

אם לא ו $|\lambda_i|=1$ מקיימים העצמיים הערכים אם כל א

$$T \cdot \bar{T} = \left(\sum_{i=1}^{k} \lambda_i P_i\right) \cdot \left(\sum_{i=1}^{k} \bar{\lambda}_i P_i\right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_i \bar{\lambda}_j P_i P_j$$

$$= \sum_{i=1}^{k} |\lambda_i|^2 P_i^2$$

$$= \sum_{i=1}^{k} |P_i|$$

$$= I$$

. אוניטרית T

שיעור 10 שונות

10.1 לכסון אורתוגונית

הגדרה 10.1 מטריצה לכסינה אורתוגונלית

-טריצה אלכסונית ען ומטריצה אורתוגונלית אן קיימת אורתוגונלית אלכסונית לכסינה אורתוגונלית אורתוגונלית

$$A = UDU^{-1} = UDU^t .$$

הגדרה 10.2 מטריצה סימטרית

מטריע סימטרית נקראת נקראת אם $A \in \mathbb{F}^{n \times n}$ מטריצה

$$A = A^t$$
.

משפט 10.1 מטריצה לכסינה אורתוגונלית היא סימטירת

מטריעה מטירצה מטריצה אורתוגונלית היא שלכסינה שלכסינה אורתוגונלית שלכחינה $A \in \mathbb{F}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

לפיכד

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

משפט 10.2 תנאי מספיק למטירצה סימטרית

מטריצה אם ורק אם היא מטירצה איא $A \in \mathbb{R}^{n imes n}$

$$(Ax, y) = (x, Ay)$$

 \mathbb{R}^n לכל , $x,y\in\mathbb{R}^n$ לכל , $x,y\in\mathbb{R}^n$ לכל

הוכחה: נניח כי A סימטרית. אזי

$$(Ax, y) = (Ax)^t y = x^t A^t y = (x, A^t y) = (x, Ay)$$

נניח כי (Ax,y)=(x,Ay). נרשום

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{pmatrix}$$

A באשר של המטריצה $a_i \in \mathbb{R}^n$ כאשר

$$(Ae_i,e_j)=(a_i,e_j)=A_{ji}=\ A$$
 של (j,i) -רכיב ה-

$$(e_i,Ae_j)=(e_i,a_j)=A_{ij}=\ A$$
 של (i,j) -מיב ה-

לכן

$$(Ae_i, e_j) = (e_i, Ae_j) \quad \Rightarrow \quad A_{ji} = A_{ij} \quad \Rightarrow \quad A^t = A .$$

A סימטרית.

כלל 10.1 תכונות של מספרים מרוכבים

- z=a+i כאשר בצורה ניתן לרשום בצורה $z\in\mathbb{C}$ כאשר ססםר כל
 - $.i^2 = -1 \bullet$
- $ar{z}=a-ib$ נתון מסםר מרוכב $z\in\mathbb{C}$ מצורה z=a+ib מצורה $z\in\mathbb{C}$
 - $ar{z}=z$ אם ורק אם $z\in\mathbb{R}$
 - $\mathbb{R} \subseteq \mathbb{C}$ •
 - $|z|=\sqrt{a^2+b^2}$ ומוגדר ומון מסומן של של הערך מוחלט . $z\in\mathbb{C}$ נתון
 - $.z\bar{z} = a^2 + b^2 = |z|^2 \bullet$
 - $\overline{zw}=ar{z}ar{w}$ מתקיים $z,w\in\mathbb{C}$ לכל

משפט 10.3 הערכים עצמיים של מטריצה סימטרית ממשיים

. ממשיים A סימטרית אז כל הערכים עצמיים של $A \in \mathbb{R}^{n \times n}$

. (לא בהכרח שונים) $\lambda_1,\dots,\lambda_n$ לפי עצמיים איים ל-4 יש ערכים הפירוק הפרימרי, לפי משפט הפירוק הפרימרי, ל-4 יש

: ממשי:
$$a=ar{u}Au$$
 הסקלר הסקלר , $u=egin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ לכל

$$a = (u^*)^t A u = (u^*)^t A^t u$$
 (סימטרית) אינטרית) (משפט A) $= (Au^*)^t u = u^t (Au^*)$ (10.2 משפט A) $= u^t A^* u^*$ (משפי) $= a^*$.

נניח כי
$$\lambda_i$$
 ווקטור עצמי של A ששייך לערך עצמי $u=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ נניח כי

$$\bar{u}Az = \bar{u}\lambda_i u = \lambda_i \bar{u}u = \lambda_i (\bar{u}, u) = \lambda_i (|z_1|^2 + \dots + |z_n|^2)$$

 $.(|z_1|^2+\cdots+|z_n|^2)
eq 0 \Leftarrow z_k
eq 0 \exists \Leftarrow u
eq 0 \Leftarrow u$ ווקטור עצמי עצמי u ווקטור ממשי, ו- $\bar{u}Az$ ממשי, ו- $(|z_1|^2+\cdots+|z_n|^2)$ ממשי.

משפט 10.4 מטריצה ממשית לכסינה אורתוגונלית אם"ם היא סימטרית

. נתונה מטריתה מטריתה אם ורק אם ורק אורתוגונלית לכסינה לכסינה מטריתה מטריתה מטריתה לתונה $A \in \mathbb{R}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

אזי

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

נניח כי n כי היא אורתוגונלית. נוכיח באמצעות סימטרית. נוכיח באמצעות סימטרית. נוכיח אורתוגונלית $A \in \mathbb{R}^{n \times n}$

שלב הבסיס

עבור $a \in \mathbb{R}$ כאשר A = a סקלר, כלומר $A \in \mathbb{R}^{1 imes 1}$

$$A = a = UDU^t$$

. אלכסונית $D=(a)\in\mathbb{R}^{1 imes 1}$ - אורתוגונלית עור אור עור עור עור אורתוגונלית עור אורתוגונלית עור אורתוגונלית אורתוגונלית

שלב האינדוקציה

נניח כי כל מטריצה סימטרית מסדר (n-1) imes (n-1) imes (n-1) לכסינה אורתוגונלית (ההנחת האינדוקציה).

לכל מטריצה קיימת לפחות ווקטור עצמי אחד.

 $\|\mathbf{v}_1\|=1$ לכן נניח כי λ_1 ווקטור עצמי של A ששייך לערך עצמי λ_1 ונניח כי $\lambda_1\in\mathbb{R}$ סימטרית לכן $\lambda_1\in\mathbb{R}$ (משפט 10.3).

 $: \mathbb{R}^n$ נשלים $\{ \mathrm{v}_1 \}$ לבסיס של

$$\{\mathbf v_1,\mathbf v_2,\ldots,\mathbf v_n\}$$
 .

 $:\mathbb{R}^n$ נבצע התהליך של גרם שמידט כדי להמיר בסיס זו לבסיס שמידט מידט על נבצע התהליך

$$B = \{u_1, u_2, \dots, u_n\} ,$$

. וכן הלאה
$$u_2=\mathrm{v}_2-rac{(\mathrm{v}_2,u_1)}{\|u_1\|^2}u_1$$
 , $u_1=\mathrm{v}_1$ כאשר

$$P = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{pmatrix} .$$

.B נשים לב כי P היא המטריצה המעבר המעבר המטריצה לבסיס נשים לב $P^{-1}=P^t$ לכו אורתוגונלי לכו P

נתבונן על המטריצה $P^{-1}AP=P^tAP$ נשים לכ כי היא סימטרית.

$$(P^t A P)^t = P^t A^t (P^t)^t = P^t A^t P = P^t A P.$$

והעמודה הראשונה הינה

$$P^{-1}APe_{1} = P^{-1}Au_{1} = P^{-1}\lambda_{1}u_{1} = \lambda_{1}P^{-1}u_{1} = \lambda_{1}[u_{1}]_{B} = \lambda_{1}\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix} = \begin{pmatrix}\lambda_{1}\\0\\\vdots\\0\end{pmatrix}.$$

לפי ההנחת האינדוקציה B לכסינה אורתוגונלית.

 $B=U'D'U'^{-1}=U'D'U'^t$ שלכסונית כך ש- $D'\in\mathbb{R}^{(n-1) imes(n-1)}$ אורתוגונלית ו- אורתוגונלית ו- $U'\in\mathbb{R}^{(n-1) imes(n-1)}$

לכן

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & U'D'U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1}$$

 $:P^{-1}$ -ב ומצד ימין בP ומצד ימין ב

$$A = P \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1} P^{-1}$$

נגדיר
$$D=egin{pmatrix} \lambda_1 & \mathbb{0} \\ \mathbb{0} & D' \end{pmatrix}$$
 -ו $U=Pegin{pmatrix} 1 & \mathbb{0} \\ \mathbb{0} & U' \end{pmatrix}$ ז"א

$$A = UDU^{-1} .$$

. נשים לכ בי A לכסינה אלכסונית. לפיכך אלכסינה אורתוגונלית שורתוגונלית. לפיכך אורתוגונלית

10.2 שילוש לכיסון של מטריצה לפי פולינום מינימלי

הגדרה 10.3 צמצום של העתקה

.V שמור של תת-מרחב תת-מרחב מניח כי $T:V\to V$ ונתונה אופרטור ווקטורי עניח מרחב מניח נניח כי $V:V\to V$ ווקטור של עניח ניי $\mathbf{v}\in V$ ווקטור של גניח ניי

נגדיר קבוצת פולינומים $g\in S_{T}\left(\mathbf{v},W\right)$ פולינום אכל כך כך את מקיים את פולינומים פולינומים אכל פולינומים את מ

$$g(T)\mathbf{v} \in W$$
.

T המנחה תקרא תקרא $S_T(\mathbf{v},W)$ הקבוצה

הגדרה 10.4

. מינימלי. T-מינימם ביותר ב- $S_T\left(\mathbf{v},W\right)$ נקרא מנחה-T מינימלי. הפולינום המתוקן של דרגה הקטנה ביותר ב-

משפט 10.5

נניח כי g המנחה-T מינימלי. על ד conductor $S_T\left(\mathbf{v},W\right)$ נניח כי

$$f \in S_T(\mathbf{v}, W) \Leftrightarrow g \mid f$$
.

, אוקליד, $g \nmid f$ נוכיח כי $g \nmid f$ נוכיח כי $g \mid f$ נוכיח כי $f \in S_T (\mathbf{v}, W)$ נניח כי נניח כי

$$f(x) = g(x)q(x) + r(x)$$
 \Rightarrow $f(x) - q(x)g(x) = r(x)$.

 $\deg(r) < \deg(g) \leq \deg(f)$ כאשר

תת-מרחב T שמור. g(T)ע פון לכן גם g(T)ע פון לכן גם $f,g\in S_T$ עת-מרחב אור. f(T)ע פותר המקיים אור. אור המקיים המקיים אור. אור המקיים אור. אור המקיים המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים

נניח כי $g\mid f$ נניח כי f(T)v = q(T)g(T)v $\Leftarrow f(x)=q(x)g(x)$ \Leftarrow f(T)v $\in W$ לכן g(T)v $\in W$ תת-מרחב g(T)v $\in W$ לכן g(T)v $\in W$

משפט 10.6

 $g\mid m_T$ נניח כי T-conductor G נניח כי G המנחה-G מינימלי של .T-conductor G נניח כי

הוכחה: נוכיח כי $g\mid m_T$ דרך השלילה.

(נניח כי $g \nmid m_T$ לפי כלל אוקליד:

$$m_T(x) = q(x)g(x) + r(x) ,$$

 $\deg(r) < \deg(g) \le \deg(m_T)$

$$0 = m_T(T) = g(T)q(T) + r(T) = 0 + r(T) \implies r(T) = 0$$

בסתירה לכך כי $m_T(T)$ הפולינום המינימלי.

משפט 10.7

 $.m_T \in S_T(\mathbf{v}, W)$

 $g\mid m_T$,10.6 מינימלי . לפי משפט ,10.6 המנחה g(x) המנחה: נניח כי $m_T\in S_T(\mathbf{v},W)$,10.5 לכן לפי משפט

משפט 10.8

 $lpha \in V
otin W$ נניח כי $M \subset V$ מרחב ווקטורי $T:V \to V$ אופרטור. נניח כי $W \subset V$ תת מרחב $T:V \to V$ שמור. קיים כך ש-

$$(T - \lambda)\alpha \in W$$

T ערך עצמי של λ

הוכחה:

Uנוכיח כי המנחה-T המינימלי של Ω ל- U הוא פולינום לינארי

 $\beta \in V \notin W$ כלומר W, כלומר עב- V אבל אבר כל ווקטור פב- β כל ווקטור שב- B המנחה- המינימלי של β ל- W

. פולינום h(x) -ו T ערך עצמי של λ_i כאשר כאשר $g(x) = (x - \lambda_i)h(x) \Leftarrow g \mid m_T \Leftarrow$ 10.6 משפט

 $.\alpha = h(T)\beta \notin W$ לכן לכן 'פר ע- ש- ביותר כך הפולינום של דרגה קטנה ביותר כך g

לכן

$$(T - \lambda_i I)\alpha = (T - \lambda_i)h(T)\beta = g(T)\beta \in W$$

etaבגלל ש- g(T) המנחה-T המינימלי

משפט 10.9

יים שונים: m_T מתפרק לגורמים לינאריים שונים: T

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
.

 $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$ נניח כי

 $W\neq V$ -ו עצמיים על הווקטורים עניח כי $W=\mathrm{span}\{u_1,\ldots,u_k\}$ כאשר אווקטורים עצמיים של $M=\mathrm{span}\{u_1,\ldots,u_k\}$ נניח כי $\beta=(T-\lambda_i I)\alpha\in W$ וערך עצמי עצמי λ_i של λ_i וערך עצמי עצמי 10.8 לפי משפט 10.8

 $1 \leq i \leq k$ לכל לכל ד $u_i = \lambda_i u_i$ כאשר הא $\beta = u_1 + \ldots + u_k$ אז א $\beta \in W$ מכיוון ש-

לכן

$$h(T)\beta = h(\lambda_1)u_1 + \ldots + h(\lambda_k)u_k \in W . \tag{*}$$

h לכל פולינום

$$m_T(x)\beta = (x - \lambda_i)q(x)$$
 (**)

. כאשר q(x) פולינום

לפי מפשט השארית,

$$q(x) = (x - \lambda_i)h(x) + q(\lambda_i) \tag{***}$$

כאשר q(x) פולינום. לכן

$$q(T)\alpha - q(\lambda_i)\alpha = h(T)(T - \lambda_i I)\alpha = h(T)\beta$$
(****)

 $.h(T)eta\in W$,(*), לפי

-מכיוון ש

$$0 = m_T(T)\alpha = (T - \lambda_i)q(T)\alpha,$$

 $q(T)\alpha\in W$ ווקטור עצמי של T ששייך לערך עצמי λ_i אז ווקטור עצמי של כלומר

 $.q(\lambda_i) \alpha \in W$,(****) לכן לפי

$$q(\lambda_i)=0$$
 אבל אבל א $q(\lambda_i)=0$ לכן

אז לפי (**), לא כל השורשים של m_T שונים. סתירה!

משפט 10.10

(לא בהכרח שונים): מתפרק לגורמים לינאריים שם ורק אם m_T מתפרק לינאריים (לא בהכרח שונים):

$$m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$$
.

 $m_T(x)=(x-\lambda_1)^{r_1}\cdots(x-\lambda_k)^{r_k}$ נניח כי נניח כי אנחנו רוצים למצוא בסיס $\beta_1,\ldots\beta_n$ כך ש

$$[T]_{\beta}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

נדרוש כי

$$T(\beta_i) = a_{1i}\beta_1 + \ldots + a_{ii}\beta_i .$$

 $.T(eta_i) \in \{eta_1, \dots, eta_i\}$ አ"ን

 $.W=\{0\}\subset V$ יהי

 $.(T-\lambda_1)\alpha\in\{0\}$ -כך ש
- פך משפט $\exists\alpha\in V\notin\{0\}$ סלפי משפט לפי

ז"א

$$(T - \lambda_1 I)\alpha = 0 \quad \Rightarrow \quad T\alpha = \lambda_1 \alpha ,$$

T ווקטור עצמי של lpha

$$[T(eta_1)]_eta=egin{pmatrix} \lambda_1 \ 0 \ dots \ 0 \end{pmatrix}$$
 אז $eta_1=lpha$ נבחור $eta_1=lpha$

. יהי $W_1 = \{\beta_1\} \subset V$ שמור. $W_1 = \{\beta_1\} \subset V$ יהי

 $(T-\lambda_2)\alpha\in W_1$ -כך ש- $\exists \alpha\in V\notin W_1$ בי משפט 10.8 לפי

ז"א

$$(T - \lambda_2 I)\alpha = k\beta_1 \quad \Rightarrow \quad T(\alpha) = k\beta_1 + \lambda_2 \alpha$$

 $T(eta_2)=keta_1+\lambda_2eta_2$ גבחור $eta_2=lpha$ אז $eta_2=lpha$

. שימו לב, $\beta_1 \notin W$ ו- $\beta_2 \notin W_1$ בלתי תלויים לינארית שימו לב, $\beta_1 \in W$ ו- $\beta_2 \notin W_1$

$$.[T(\beta_2)]_{\beta} = \begin{pmatrix} k \\ \lambda_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נמשיך עם התהליך הזה:

יהי T שמור. נשים לב כי $W_i = \{\beta_1, \dots, \beta_i\} \subset V$ יהי

 $.(T-\lambda_j)\alpha\in W_i$ -כך ש
- $\exists \alpha\in V\notin W_i$ בס. לפי לפי לפי

ז"א

$$(T - \lambda_j I)\alpha = c_1 \beta_1 + \ldots + c_i \beta_i \quad \Rightarrow \quad T(\alpha) = c_1 \beta_1 + \ldots + c_i \beta_i + \lambda_j \alpha \alpha.$$

 $.\{\beta_1,\ldots,\beta_i\}$ -ם לינאריית תלוי בלתי הלכן $\alpha\notin W_i$ לב, שימו שימו שימו

 $.\beta_{i+1}=\alpha$ נבחור

$$.[T(\beta_{i+1})]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_i \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נניח כי T ניתנת לשילוש.

לכסין. [T] איים בסיס עבורו המטריצה המייצגת \Leftarrow

. מתפרק שונים). הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרלח שונים).

מתפרק לגורמים ליניאריים (לא בהכרח שונים). $m \Leftarrow m \mid p$