

CLAIMS

1. A compound of formula (I):

5

wherein

R¹ is a phenyl group which may be optionally substituted;

R² is C₁₋₆alkyl substituted by one to three groups independently selected from OH, oxo, cyano, -S(O)_pR⁴, halogen, C₁₋₆alkoxy, -NR⁵R⁶, -CONR⁵R⁶, -NCOR⁵, -COOR⁵, -SO₂NR⁵R⁶, -NHSO₂R⁵ and -NHCONHR⁵;

R³ is the group -CO-NH-(CH₂)_q-R⁷ or -NH-CO-R⁸;

R⁴ is selected from hydrogen, C₁₋₆alkyl, heterocyclyl optionally substituted by C₁₋₄alkyl, and phenyl wherein the phenyl is optionally substituted by up to two groups independently selected from C₁₋₆alkoxy, C₁₋₆alkyl and halogen;

R⁵ and R⁶ are each independently selected from hydrogen and C₁₋₆alkyl;

when q is 0 to 2, R⁷ is selected from hydrogen, C₁₋₆alkyl, -C₃₋₇cycloalkyl, -CONHR⁹, phenyl optionally substituted by R¹¹ and/or R¹², heteroaryl optionally substituted by R¹¹ and/or R¹² and heterocyclyl optionally substituted by R¹¹ and/or R¹², and

when q is 2, R⁷ is additionally selected from C₁₋₆alkoxy, NHCOR⁹, NHCONHR⁹, NR⁹R¹⁰ and OH;

R⁸ is selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, -(CH₂)_r-C₃₋₇cycloalkyl, trifluoromethyl, -(CH₂)_sphenyl optionally substituted by R¹³ and/or R¹⁴, -(CH₂)_theteroaryl optionally substituted by R¹³ and/or R¹⁴, -(CH₂)_uheterocyclyl optionally substituted by R¹³ and/or R¹⁴ and -(CH₂)_vfused bicyclyl optionally substituted by R¹³ and/or R¹⁴;

R⁹ is selected from hydrogen, C₁₋₆alkyl and phenyl wherein the phenyl group is optionally substituted by up to two substituents selected from C₁₋₆alkyl and halogen,

R¹⁰ is selected from hydrogen and C₁₋₆alkyl, or

R⁹ and R¹⁰, together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic or heteroaryl ring optionally containing one additional

heteroatom selected from oxygen, sulfur and nitrogen, wherein the ring may be substituted by up to two C₁-6alkyl groups;

R¹¹ is selected from C₁-6alkyl, C₁-6alkoxy, -CONR¹⁰R¹⁵, -NHCOR¹⁵, -SO₂NHR¹⁵, -NHSO₂R¹⁵, halogen, trifluoromethyl, -Z-(CH₂)_t-phenyl optionally

5 substituted by one or more halogen atoms, -Z-(CH₂)_t-heterocycl^yl or -Z-(CH₂)_t-heteroaryl wherein the heterocycl^yl or heteroaryl group is optionally substituted by one or more substituents selected from C₁-6alkyl,

R¹² is selected from C₁-6alkyl and halogen, or

when R¹¹ and R¹² are adjacent to each other they may, together with the 10 carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed R¹¹ and R¹² optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

R¹³ is selected from C₁-6alkyl, C₁-6alkoxy, -(CH₂)_rC₃-7cycloalkyl, -CONR¹⁶R¹⁷, -NHCOR¹⁷, -SO₂NHR¹⁶, -NHSO₂R¹⁷, halogen, -(CH₂)_kNR¹⁸R¹⁹, oxy, trifluoromethyl, phenyl optionally substituted by one or more R¹⁴ groups and heteroaryl wherein the heteroaryl is optionally substituted by one or more R¹⁴ groups,

R¹⁴ is selected from C₁-6alkyl, C₁-6alkoxy, halogen, trifluoromethyl and -NR¹⁸R¹⁹, or

20 R¹³ and R¹⁴, together with the carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed by R¹³ and R¹⁴ optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

R¹⁵ is selected from hydrogen and C₁-6alkyl;

25 R¹⁶ is selected from hydrogen, C₁-6alkyl and phenyl wherein the phenyl group is optionally substituted by one or more R¹⁴ groups,

R¹⁷ is selected from hydrogen and C₁-6alkyl, or

30 R¹⁶ and R¹⁷, together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R²⁰, wherein the ring is optionally substituted by up to two C₁-6alkyl groups;

R¹⁸ is selected from hydrogen, C₁-6alkyl and -(CH₂)_rC₃-7cycloalkyl optionally substituted by C₁-6alkyl,

R¹⁹ is selected from hydrogen and C₁-6alkyl, or

35 R¹⁸ and R¹⁹, together with the nitrogen atom to which they are bound, form a three- to seven-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R²⁰, wherein the ring may contain up to one double bond and the ring is optionally substituted by one or more R²¹ groups;

R²⁰ is selected from hydrogen and methyl;

40 R²¹ is selected from C₁-6alkyl, oxy, -CH₂OC₁-6alkyl, trichloromethyl and -N(C₁-6alkyl)₂;

U is selected from methyl and halogen;

W is selected from methyl and chlorine;

X and Y are each selected independently from hydrogen, methyl and halogen;
 Z is selected from -O- and a bond;

m is selected from 0, 1, 2, 3 and 4, and may be optionally substituted with up to two groups selected independently from C₁₋₆alkyl;

- 5 n, p, q, r and t are independently selected from 0, 1 and 2;
 s is selected from 0 and 1; and
 k is selected from 0, 1, 2 and 3;
 or a pharmaceutically acceptable derivative thereof.

- 10 2. A compound according to claim 1 wherein R¹ is phenyl.
 3. A compound according to claim 1 or claim 2 wherein R² is C₁₋₄alkyl substituted by one or two OH groups.
 15 4. A compound according to any one of the preceding claims wherein m is 0 or 1.
 5. A compound according to any one of the preceding claims wherein R⁴ is -C₃₋₇cycloalkyl.
 20 6. A compound according to claim 1 as defined in any one of Examples 1 to 3, or a pharmaceutically acceptable derivative thereof.
 7. A process for preparing a compound according to any one of claims 1 to 6 which comprises:
 25 (a) reacting a compound of formula (XXII)

(XXII)

- 30 wherein R¹, R², U, W, X, Y, m and n are as defined in claim 1,

with a compound of formula (XXIII)

- 5 wherein R^7 and q are as defined in claim 1,
under amide forming conditions, optionally converting the acid compound (XXII) to an activated form of the acid before reaction with the amine compound (XXIII);

(b) reacting a compound of formula (XXIV)

10

(XXIV)

- wherein R^3 , U, W, X, Y and n are as defined in claim 1,
15 with a compound of formula (XXV)

- wherein R^1 , R^2 and m are as defined in claim 1,
20 under amide forming conditions;

(c) reacting a compound of formula (XXVI)

wherein R^3 , U, W, X, Y and n are as defined in claim 1,
5 with a compound of formula (XXV) as defined above;

(d) functional group conversion of a compound of formula (XXVII)

wherein R^3 , U, W, X, Y and n are as defined in claim 1 and R^{1A} and R^{2A} are R^1 and R^2 as defined in claim 1 or groups convertible to R^1 and R^2 ,
10 to give a compound of formula (I); or

(e) reacting a compound of formula (XXVIII)

wherein R¹, R², U, W, X, Y, m and n are as defined in claim 1,

5 with a compound of formula (XXIX)

(XXIX)

10 wherein R⁸ is as defined in claim 1,
under amide forming conditions, optionally converting the acid compound (XXIX) to an activated form of the acid before reaction with the amine compound (XXVIII).

15 8. A pharmaceutical composition comprising at least one compound according to
any one of claims 1 to 6 or a pharmaceutically derivative thereof, in association with one
or more pharmaceutically acceptable excipients, diluents and/or carriers

20 9. A method for treating a condition or disease state mediated by p38 kinase
activity or mediated by cytokines produced by the activity of p38 kinase comprising
administering to a patient in need thereof a compound according to any one of claims 1 to
6 or a pharmaceutically acceptable derivative thereof.

25 10. A compound according to any one of claims 1 to 6 or a pharmaceutically
acceptable derivative thereof for use in therapy.

11. Use of a compound according to any one of claims 1 to 6 or a pharmaceutically
acceptable derivative thereof in the manufacture of a medicament for
use in the treatment of a condition or disease state mediated by p38 kinase activity or
mediated by cytokines produced by the activity of p38 kinase.