GATE ASSIGNMENT 3

Dhatri Nanda - AI20BTECH11002

Download all python codes from

https://github.com/Dhatri-nanda/EE3900/blob/main /Gate 3/code.py

Download latex-tikz codes from

https://github.com/Dhatri-nanda/EE3900/blob/main /Gate 3/Gate 3.tex

OUESTION

The impulse response functions of four linear systems S_1, S_2, S_3, S_4 are given respectively by

$$h_1(t) = 1 (0.0.1)$$

$$h_2(t) = U(t)$$
 (0.0.2)

$$h_3(t) = \frac{U(t)}{t+1} \tag{0.0.3}$$

$$h_4(t) = e^{-3t}U(t) (0.0.4)$$

where U(t) is the unit step function, which of these systems is time invariant, casual and stable?

- a) S_1 b) S_2 c) S_3 d) S_4

SOLUTION

Definitions:-

- 1) A continuous time signal x(t) is said to be **casual** if x(t) = 0 for every t < 0.
- 2) A time dependant system that is not a direct function of time is called time-invariant system.
- 3) A continuous time system is **stable** if and only if all the poles of it's transfer function occur in the left half of the complex plane. Whereas marginal stability correlates with zero real part.

4) A continuous time system h(t) is said to be BIBO stable if and only if it is absolutely integrable

$$\int_{-\infty}^{\infty} h(t)dt < \infty \tag{0.0.5}$$

The transfer function of an impulse response function by using laplace transform is

$$H(s) = \mathcal{L}\{h(t)\}(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$
 (0.0.6)

U(t) is given as the unit step function,

$$U(t) = \begin{cases} 0, t < 0 \\ 1, t \ge 0 \end{cases}$$
 (0.0.7)

Given, $h_1(t) = 1$

It is a non casual system as $h_1(t) \neq 0$ for any t < 0And, since it is not a time dependant function, it is not time-invariant.

Next, the transfer function of $h_1(t)$ is

$$H_1(s) = \int_{-\infty}^{\infty} e^{-st} dt \qquad (0.0.8)$$

$$= \left[\frac{e^{-st}}{s}\right]_{-\infty}^{\infty} = \infty \tag{0.0.9}$$

The transfer function is not defined, so we cannot decide the stability.

... We check the BIBO stability.

$$= \int_{-\infty}^{\infty} U(t)dt \qquad (0.0.10)$$

$$=\int_0^\infty 1dt \tag{0.0.11}$$

$$= [t]_0^\infty = \infty \tag{0.0.12}$$

 \therefore The system S_1 is not stable.

Given, $h_2(t) = U(t)$ From (0.0.7)

$$h_2(t) = \begin{cases} 0, t < 0 \\ 1, t \ge 0 \end{cases}$$
 (0.0.13)

is casual.

It is also time-invariant by the above given definition.

The transfer function of $h_2(t)$ is

$$H_2(t) = \int_{-\infty}^{\infty} U(t)e^{-st}dt \qquad (0.0.14)$$

$$= \int_0^\infty e^{-st} dt \tag{0.0.15}$$

$$=\frac{1}{s} \tag{0.0.16}$$

Pole is s = 0 and ROC is $\Re e\{s\} > 0$ \therefore The system S_2 is marginally stable.

Fig. 1: plot for $H_2(t)$

Given, $h_3(t) = U(t)/(t+1)$ From, (0.0.7)

$$h_3(t) = \begin{cases} 0, t < 0, t \neq -1 \\ \text{not defined, } t = -1 \\ \frac{1}{t+1}, t > 0 \end{cases}$$
 (0.0.17)

The system is not casual because

$$h_3(t) \neq 0, t = -1$$
 (0.0.18)

The denominator of $h_3(t)$ is a direct function of time, so it is not time-invariant.

The transfer function of $h_3(t)$ is

$$H_3(t) = \int_{-\infty}^{\infty} \frac{U(t)}{t+1} e^{-st} dt$$
 (0.0.19)
= $\int_{0}^{\infty} \frac{e^{-st}}{t+1} dt$ (0.0.20)

It satisfies the condition for casuality. So, system S_2 Substituting $x = st + s \implies \frac{dx}{dt} = s \implies dt = \frac{1}{s}dx$

$$= \int_{s}^{\infty} \frac{e^{x}}{x} dx \qquad (0.0.21)$$

The above integral is not a definite integral. So,

$$H_3(t) = \infty \tag{0.0.22}$$

As the transfer function is not defined, we check the BIBO stability.

$$= \int_{-\infty}^{\infty} \frac{U(t)}{t+1} dt \tag{0.0.23}$$

$$= \int_0^\infty \frac{1}{t+1} dt$$
 (0.0.24)

$$= [log(t+1)]_0^{\infty} = \infty \qquad (0.0.25)$$

 \therefore The system S_3 is not stable.

Given, $h_4(t) = e^{-3t}U(t)$ From (0.0.7)

$$h_4(t) = \begin{cases} 0, t < 0 \\ e^{-3t}, t \ge 0 \end{cases}$$
 (0.0.26)

It satisfies the condition for casuality. So the system is casual.

As e^{-3t} is a direct function of time, the system is not time-invariant.

The transfer function of $h_4(t)$ is

$$H_4(t) = \int_{-\infty}^{\infty} e^{-3t} U(t) e^{-st} dt$$
 (0.0.27)

$$= \int_0^\infty e^{-(3+s)t} dt$$
 (0.0.28)

$$=\frac{1}{3+s}\tag{0.0.29}$$

Pole is s = -3 and ROC is $\Re \{s\} > -3$ \therefore S_4 is a stable system.

Our Results:

System	casual	stable	time-
			invariant
1	no	no	no
U(t)	yes	yes	yes
U(t)/(t+1)	no	no	no
$e^{-3t}U(t)$	yes	yes	no

(0.0.20) : option B is correct.

Fig. 2: plot for $H_4(t)$