LOGARITHME - BAC ES/L MÉTROPOLE RÉUNION 2016

PARTIE A Etude graphique

1)
$$f'(1,5) = 0$$
.

2)
$$y = x + 2$$
.

- 3) Soit S l'aire considérée. On a 3 < S < 4.
- 4) f est concave sur [0,5; 6]. En effet, elle est située en dessous de toutes ses tangentes dans cet intervalle.

PARTIE B Etude analytique

On admet que $f(x) = -2x + 5 + 3\ln(x)$.

1)
$$f'(x) = -2 + \frac{3}{x} = \frac{-2x+3}{x}$$
.

2)

X	0,5	1,5		6
-2x + 3	+	0	_	
\overline{x}	+		+	
f'(x)	+	0	_	
f(x)		f(1,5)		→

3) On observe que f(0,5) > 0, f(1,5) > 0 et f(6) < 0. La fonction f étant monotone décroissante sur l'intervalle [1,5; 6], on peut affirmer que sa courbe représentative coupe l'axe des abscisses une seule fois sur cet intervalle, et donc que l'équation $-2x + 5 + 3\ln(x) = 0$ admet une seule solution α sur [0,5; 6].

La calculatrice donne $\alpha \approx 4.88$.

4)

\boldsymbol{x}	0,5		α		6
f(x)		+	0	_	

5) $F(x) = -x^2 + 2x + 3x \ln(x)$

5.a) $F'(x) = -2x + 2 + 3\ln(x) + \frac{3x}{x}$. Et puisque $x \in [0,5; 6]$, donc $x \ne 0$, on peut écrire :

$$F'(x) = -2x + 2 + 3\ln(x) + 3 = -2x + 5 + 3\ln(x) = f(x).$$

Cela démontre que F est une primitive de f.

5.b)
$$S = F(2) - F(1) = -4 + 4 + 6\ln(2) + 1 - 2 - 3\ln(1) = -1 + 6\ln(2) \approx 3.2$$
.