2018~2019 学年第 2 学期期末考试试卷

《算法分析》(A卷 共 3 页)

(考试时间: 2019年6月14日)

题号	1	1 1	111	四	五	六	七	八	成绩	核分人签字
得分										

- 一、算法分析(30分)
- 1、应用 Master 方法求解以下递归方程
- (1) $T(n) = 27T(n/3) + 11n^3$ (5分)

(2) $T(n) = 64T(n/4) + 10n^3 \log_2^n$ (5 %)

2、展开递归式 T(n)=T(n-1)+cn, 并对 T(n)做渐进分析。(5分)

3、以下伪代码算法将 x 插入到前 n 个元素已排好序的数组 a[0:n]中,分析算法在

最好、最坏和平均情形所用的关键字比较次数。(10分)

For $(i \leftarrow n-1; i \ge 0 \perp x < a[i]; i--)$ $a[i+1] \leftarrow a[i];$

 $a[i+1] \leftarrow x;$

4、以下伪代码算法计算数组 a[0: n-1]中元素的 rank 值,请用步计数法分析其渐进时间复杂度(5 分)

 $for(i \leftarrow 0; i < n; i++)$

r[i]**←**0;

for($i \leftarrow 1$; i < n; i++)

for($j \leftarrow 0$; j < i; j++)

 $if(a[j] \leq a[i]) r[i] ++;$

else r[j]++;

天津大学试卷专用纸

学院<u>软件学院</u>专业 软件工程 _____ 共 3 页 第 2 页(A)

- 二、分治法(15分)
- 1. 叙述分治法算法的思想并用归并排序算法说明;(5分)
- 2. 叙述快速排序算法的过程(最好用伪代码),并分析其最好最坏和平均时间复杂度; 装入此物品的一部分。 (5分)
- 3. 对于快速排序算法,试设计一种能够在 O(n)时间内选择第 k 小元素元素作为支点的 算法 $(5\,\%)$

三、贪心法(20分)

考虑 $0 \le x_i \le 1$ 而不是 $x_i \in \{0,1\}$ 的连续背包问题。一种可行的贪婪策略是:按价值密度非递减的顺序检查物品,若剩余容量能容下正在考察的物品,将其装入;否则,往背包中装入此物品的一部分。

- 1. 对于 n=3, w=[100,10,10], p=[20,15,15]及 c=105, 上述装入方法获得的结果是什么? (5 分)
- 2. 写出伪代码 (5分)
- 3. 证明这种贪心算法总能获得最优解。(10分)

天津大学试卷专用纸

学院	<u>软件学院</u>	专业	软件工程	班	年级	学号		共 3 页 第 3 页(A)
设 g (1)记 (2)就	式写出 g(i,x)满足的	,i,背包名 的动态规划 .c=20,w=(1	容量 x 的 0/1 背包问题 递归关系式 (10 分) 0,15,6,9),p=(2,5,8,1) 的物品装法。			法求解以下最小罚款 (8,2,1),(4,2 1.写出所使用	_{i,ti})表示一个作业的罚款额、	