The Good Boy!

Sprint 2 Review 11/23/2021

SUMMARY

Previous sprint

Manual control

It is possible to make the robot move forward, backward and turn using manual commands

Ultrasounds detection

The ultrasounds detection is functional: the robot can **detect an obstacle** but it doesn't react to it

Camera detection

The robot is able to detect a person **dressed in white** on the camera, but it sometimes mistakes white elements as people

Sprint 2

Sprint objectives

Organisation

Sprint objectives

Obstacle detection

Placed in a open area (no objects nearby), **the robot stops** when an **obstacle** is detected at a distance of **50 cm or less**.

One direction follow-up

Placed in an open area, the robot **follows a person in front of it** at a distance of **two meters**, in a **straight line**.

Detection of people dressed in white

The robot is able to detect a person **dressed in white** on the camera, and to **differentiate it** from another <u>white object.</u>

Organisation

• **Group organization** (each dot represents a team member)

Receive data from the **Discovery & send data** to the Nucleo

3 - NUCLEO

Receive interruptions from Raspberry Pi

1 - DISCOVERY

Send distance to Raspberry Pi

Message frame sent by the Raspberry Pi:

cansend car	า0	ID#			Direction speed	Position
-------------	----	-----	--	--	-----------------	----------

enable	1	0	1	1	1	0	0
--------	---	---	---	---	---	---	---

If distance > $50 \rightarrow Move forward$

If distance $< 50 \rightarrow Stop!$

Demonstration

The robot will stop when an obstacle is placed in front of it at less than 50cm

Minimum distance

Start LIDAR;

Get LIDAR's measures;

Check desired LIDAR's angles;

Choose the minimum distance associated;

Send it to the Raspberry Pi via ethernet;

Server

Ethernet link: Distance data from Jetson (Lidar)

CAN bus : Control motor commands

Raspberry Pi

2

Nucleo

Jetson

Demonstration

The robot will follow the closest target in front of it at 2 meters

Next Sprint

User-oriented objectives

Postponed from this sprint

Obstacle detection

Combine the **obstacle detection** using ultrasounds with the **follow-up functionality**

New in next sprint

Identification and follow-up of a rescuer

Placed in an open area, **identifies and follows** a rescuer using both **camera and LIDAR**, both in a **straight line** and **turns**

Trajectory control

Establishment of a **control law** using a **PID** for the speed and trajectory of the robot

Conclusion

- Better anticipation from the previous script
- Most expectations reached, delay from previous script caught up
- Functionalities still not centralized

- Optimization of the functionalities, with a command law approach
- "Follow Me" feature functional
- Client feedback?

Sources

- Flaticon.com:
 - o p.20: https://www.flaticon.com/authors/berkahicon
 - o p.1, 4, 7, 19, 21: https://www.flaticon.com/authors/freepik
 - o p.21: https://www.flaticon.com/authors/surang