Freshman Seminar Assignment Problem

Keenan Gao Hanwen Zhang

Binghui Ouyang Yiming Zong

Problem Overview

- Real Problem for Dietrich College
- Assigning freshmen to seminars based on their rankings.
- Data Size: Around 350 students, 22 seminars.
 - Seminar capacity: 16 students

Mathematical Model

- n: # students (n > 0); m: #seminars (m > 0);
- p: Max number of students allowed in one seminar;
- k: Max number of selections that a student can rank (1 ≤ k
 ≤ m);
- s_{ij} : The j-th selection of i-th student, where $1 \le i \le n$ and $1 \le j \le k s_{ij} = 0$ when the Student i makes no corresponding choice for Rank j;
- q_k : The quota for k-th seminar, where $1 \le k \le m$.

Mathematical Model (Cont'd)

Decision Variables:

• Y_{ij} : Indicator variables for whether Student i is assigned to Seminar j, where $1 \le i \le n$ and $1 \le j \le k$;

Data Pre-Processing

- Student Preferences: 1 top choice and 3 second choices
- Raw Data Format:

Student ID	Rankings	Final Assignment
student1	2;3,4,5	3

Pre-processed Data Format:

$$X_{i,j} = \begin{cases} l & \text{If Student } i \text{ ranked } j \text{ as } l^{\text{th}} \text{ option, or } s_{i,l} = j \text{ for some } l \in \{1, \cdots, k\} \\ M & \text{If Seminar } k \text{ is not on Student } i \text{'s list, or } s_{i,l} \neq j \text{ for all } l \in \{1, \cdots, k\} \end{cases},$$

Note: ℓ is not unique, and \mathfrak{M} is an arbitrary large value.

Initial Objective Function & Constraints

Minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{m} X_{ij} Y_{ij}$$
Subject to
$$\sum_{j=1}^{m} Y_j = 1$$

$$X_{i,j} > 0 \text{ for } \forall i,j \in \{1..n\}$$

Problem:

- The variance of the rank distributions in the final assignment might be big.
- i.e. seminar 1 gets all students who rank it as their 1st choices while seminar 2 gets all students who have no interest.

Modified Objective Function

Goal: Minimize the variance

 All seminars are full and students are assigned in the classes that they have interest in.

Approach:

- For each seminar first assign q_k first choice students. Then fill in the rest $p q_k$ spots with second choice/no-interest students.
- ullet Need to optimize q_k

Optimization Algorithms

- Minimize Total Rank:
 - Given student-seminar cost matrix
 - Create dummy seminars based on quota
 - Create dummy students to make square cost matrix
 - Run Hungarian Algorithm
 - Interpret Hungarian output

Optimization Algorithms (Cont'd)

- Minimize ranking variance
 - For each seminar, assign up to Q students that list it as top choice
 - Match as many second-tier as possible
 - Fill in remaining students
 - Repeat process above for best result

Algorithm Implementation

- Implemented with Python
- Efficient matrix manipulation with Numpy
- Input File Format:
 - Each line contains a student's preference
 - Encoded as "1:2,3,4"
- Output Files:
 - One output for minimizing total rank;
 - Three best outputs for result with artificial quota
- Code available at https://github.com/ymzong/OpResearchF14

Outcome

- Minimize Total Rank with Hungarian
 - Total Students: 308
 - Assigned to Top Choice: 207 (67.2%)
 - Assigned to Second Choice: 82 (26.6%)
 - Default Random Assignment: 19 (6.2%)
 - All seminars except for one are filled entirely

Outcome (Cont'd)

- Minimize Variance with Hungarian
 - 4 minutes per run
 - Need to re-run for each value of q to determine optimal q
 - Too slow for general purpose
- Minimize Variance with Randomization
 - Work in progress
 - Flexible per number of iterations

Notes and Further Work

- Degree of "cost minimization" will vary
 - Easier to achieve cost minimizations if student preferences are initially diverse
 - Will vary from year to year
- Optimizing for speed
 - Hungarian Algorithm vs. Randomized Assignment

Summary

- Problem Statement
- Mathematical Model & Data Pre-Processing
- Optimization Algorithms
 - Minimize total rank with Hungarian
 - Minimize ranking variance with Randomization
- Algorithm Implementation
- Outcome

Acknowledgments

- Professor Alan Frieze
 - regular meetings and guidance
- Brian Junker, Joseph Devine, Gloria Hill
 - provided us with real assignment data from 2013
- Brian Clapper
 - Python implementation of the Hungarian algorithm

Questions?