## **EUROPEAN PATENT OFFICE**

## **Patent Abstracts of Japan**

**PUBLICATION NUMBER** 

2000052413

**PUBLICATION DATE** 

22-02-00

APPLICATION DATE

12-08-98

**APPLICATION NUMBER** 

10228004

APPLICANT: NAIGAI KASEI KK;

**INVENTOR** 

ICHIDA MINORU;

INT.CL.

j

B29C 49/42 B29C 49/50 B29C 49/60

B29C 57/00 // B29L 22:00

TITLE

MANUFACTURE OF STERILE

CONTAINER



ABSTRACT :

PROBLEM TO BE SOLVED: To maintain an accuracy of a shape of a mouth of a container high by shaping a mouth shape of the container from an inside of a parison, and simultaneously blow molding a shape of a container body via a blowing pin.

SOLUTION: A mouth 11 of the sterile container is shaped by a mold 2 and an inner mold 3, and a container body is blow molded via a blowing pin. Thus, an accuracy of the mouth shape of the container is improved. Accordingly, a container mouth diameter (r), a mouth thickness TV and a container mouth flange thickness TH are always not only averaged but also a mouth flange (a) can ensure its smoothness. To seal the thus molded container body, after the blow molding is completed, the mold 3 is drawn out, and a sealer is formed by using a parison attached to the mouth end. In the thus obtained container, the mouth shape of the container having a high dimensional accuracy is obtained, at the time of capping after a content liquid is charged, it is not necessary to obtain an excess molten state at a flange surface, but a manufacturing speed can be improved.

COPYRIGHT: (C)2000,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-52413 (P2000-52413A)

(43)公開日 平成12年2月22日(2000.2.22)

| (51) Int.Cl. <sup>7</sup> | 酸別記号                | F I               | デーマコート*(参考)         |  |
|---------------------------|---------------------|-------------------|---------------------|--|
| B29C 49                   | 0/42                | B 2 9 C 49/42     | 4 F 2 O 2           |  |
| 49                        | 0/50                | 49/50             | 4F208               |  |
| 49                        | 0/60                | 49/60             | 4 F 2 O 9           |  |
| 57                        | 7/00                | 57/00             |                     |  |
| # B29L 22                 | <b>≒</b> 00         |                   |                     |  |
|                           |                     | 審査請求 未請求 請求項の数6   | OL (全 6 頁)          |  |
| (21)出顧番号                  | 特顯平10-228004        | (71)出顧人 000225278 | (71)出顧人 000225278   |  |
|                           |                     | 内外化成株式会社          |                     |  |
| (22) 出顧日                  | 平成10年8月12日(1998.8.1 | 2) 大阪府大阪市東成区東     | 大阪府大阪市東成区東今里2丁目2番5号 |  |
|                           |                     | (72)発明者 市田 稔      |                     |  |
|                           |                     | 大阪府枚方市星丘2丁        | 大阪府枚方市星丘2丁目29番地20号  |  |
|                           |                     | (74)代理人 100104581 | 1.1                 |  |

最終頁に続く

## (54) 【発明の名称】 無菌容器の製造方法

## (57)【要約】

【課題】 口部の形状の精度を高く維持することができ、使用時における口部形状の均一化が可能な無菌容器の製造方法を提供する。

【解決手段】 容器の口部形状を付与する内型3を先端部に付したブローピン41をパリソン5の開口部に打ち込んで容器の口部形状11をパリソンの内側から型付けすると同時にブローピン41で容器本体部の形状をブロー成形する。



弁理士 宮崎 伊章

### 【特許請求の範囲】

【請求項1】 容器の口部形状を付与する内型を、ブローピンと共にパリソンの開口部に打ち込んで、容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形することを特徴とする無菌容器の製造方法。

【請求項2】 容器の口部形状を付与する内型を先端部に付したブローピンをパリソンの開口部に打ち込んで容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形する請求項1記載の無菌容器の製造方法。

【請求項3】 容器本体部の形状を成型する本体成形型と、この本体成形型の上を可動して開閉する上部成形型からなる成形型を用い、この上部成形型が開いた状態で、上記本体成形型内に押し出されたパリソンの開口部内に、容器の口部形状を付与する内型を先端部に付したブローピンを打ち込んで容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形し、しかる後上記ブローピンをこれらの成形型から離脱させ、続いて上部成形型を閉じることによって容器口部を封止する封口体を形成する請求項2に記載の無菌容器の製造方法。

【請求項4】 容器口部がフランジ形状部を備えており、その周縁部に封口体と連結する薄膜部をブローピン 先端部に付した内型によってさらに型付けすることを特徴とする請求項1乃至3のいずれかに記載の無菌容器の 製造方法。

【請求項5】 本体成形型と上部成形型からなり且つ上 部成形型は本体成形型の上を可動して開閉することがで きる構造を有する成形型。

【請求項6】 請求項1乃至4のいずれかに記載の製造 方法により製造された無菌容器。

#### 【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は医薬品、食料品等を密封するために用いられる無菌容器の製造方法に関する。さらに詳しくは、容器の口部形状の精度を向上することができる無菌容器の製造方法に関するものである。 【0002】

【従来の技術】従来、食料品や医療用薬品等を保存、販売等のために口部が密封され、外界と完全に隔離された無菌容器が公知となっている。かかる無菌容器は主に合成樹脂などにより製造されており、その製造方法としては図7のようなブロー成形法により成形されていることが多い。すなわち、(a)原材料樹脂からなるパリソン6を成形型7に押し出し、(b)パリソン開口部にブローピン91を打ち込み、ブローピン91を通じて気体を吹き込み、(c)容器上端が開口した成形型7通りの中空容器8を製造した後、(d)ヒーター92を用いてヒートシールし容器上端の開口部を溶融、密閉する方法が

ほとんどである。なお、82は密閉部である。

【0003】また、容器内に例えば輸液を注入する際にはいわゆるボトルネック部分81をナイフカットして開封し、口部から輸液を注入後、口部にキャッピングする方法がとられている。

1

#### [0004]

【発明が解決しようとする課題】かかる容器の製法では、ブロー成形によるため空気圧でパリソンが膨らみ、成形型に押し付けられることによって成形される。したがって、容器の肉厚の寸法精度は空気圧で影響を受けるため、特に容器の口部では、そのフランジ面の平滑性が必ずしも充分なものではなく、また口部径を一定に保つことが難しいなど、現行の製法では容器の口部の形状の精度を高く維持することは困難であった。従って、薬液注入後の容器口部のフランジ面にキャッピングする際、当該口部のフランジ面の合成樹脂を過大に溶かした上でキャップを融着させる必要があり、製造工程上煩雑であり、製造スピードが落ちる原因でもあった。

【0005】また、従来の製法では、上記の通り、容器口部の寸法安定性が低下することから、当該口部のフランジ面に対するキャッピングの状態如何によっては、液漏れを生じかねない不良品を製造する場合もあり、良品の歩留まりの向上が期待されるところであった。

【0006】本発明はかかる問題を解決すべく、口部の 形状の精度を高く維持することができる無菌容器の製造 方法を提供することをその目的とするものである。

#### [0007]

【課題を解決するための手段】本発明者は、上記の問題を解決するために、鋭意検討した結果、本発明を完成させるに至った。本請求項1の発明は、容器の口部形状を付与する内型を、ブローピンと共にパリソンの開口部に打ち込んで、容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形することを特徴とする無菌容器の製造方法である。

【0008】さらに本請求項2の発明は、容器の口部形状を付与する内型を先端部に付したブローピンをパリソンの開口部に打ち込んで容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形することを特徴とする無菌容器の製造方法を要旨とするものである。

【0009】したがって、容器口部形状が内型により型付けされ、その形状が均一化及び平滑化する。因って、薬液注入後の容器口部のフランジ面にキャッピングする際、従来のように当該口部のフランジ面の合成樹脂を過大に溶かした上でキャップを融着させる必要がなく、作業性が向上し、製造スピードが大幅に向上する。また、容器の口部形状の寸法精度が良好であり、製造工程上優れた寸法安定性を容器の口部形状に与えることができることから、薬液注入後の使用時においてキャップと口部の隙間からの内容液の液漏れを防止することができる。

従って、液漏れ防止の容器を歩留まりの高い確率で提供することができる。

【0010】請求項3の発明は、容器本体部の形状を成型する本体成形型と、この本体成形型の上を可動して開閉する上部成形型からなる成形型を用い、この上部成形型が開いた状態で、上記本体成形型内に押し出されたパリソンの開口部内に、容器の口部形状を付与する内型を先端部に付したブローピンを打ち込んで容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形し、しかる後上記ブローピンをこれらの成形型から離脱させ、続いて上部成形型を閉じることによって容器口部を封止する封口体を形成する無菌容器の製造方法である。

【0011】従って、均一化及び平滑化され寸法安定性 に優れた口部形状を有する無菌容器を、連続的に量産す ることができる。

#### [0012]

【発明の実施の形態】図1は本発明にかかる無菌容器の製造方法の一例を示す断面概略図である。この製造方法においては、1は容器、11は容器口部、12は容器本体部、2は成形型、21は本体成形型、22は上部成形型、3は内型、4は吹き込みノズル、41はブローピン、5はパリソンを示している。図1において、無菌容器の口部11が成形型2と内型3より型付けされ、容器本体部はブローピンによってブロー成形されている。

【0013】図2は図1における要部拡大断面図である。図2より明らかなように、本発明の製造方法によれば、容器の口部形状が内型3及び成形型2によって型付けされるため、容器の口部形状の精度が向上する。したがって、容器口径r、口部厚 $T_v$ 、容器口部フランジ厚 $T_H$ が常に均一化されるだけではなく、口部フランジ面 aも平滑性が確保される。

【0014】本実施形態においては、本発明にかかる無菌容器の製造方法に使用する成形型として、図3のように上部成形型22が本体成形型21の上を可動することにより開閉し、内型3を打ち込むスペースを確保するような成形型を使用している。なお、本発明は本実施形態で示した成形型2の成形型を使用する場合にかぎられるものではない。図3における(a)は上部成形型22を閉じた状態の成形型2を示す図であり、(b)は上部成形型22を開き吹き込みノズル4に付した内型3を打ち込んだ状態の成形型を示したものである。内型3を打ち込む際には上部成形型22を開けた状態で行う。

【0015】このようにして成形された容器本体を封止するために、封口体を設ける必要があるが、上記成形型2を用いて、封口体を成形することができる。すなわち、内型により口部形状と容器本体部のブロー成形が完了した後、内型3を抜き取り、口部端に付属しているパリソンを使用して封口体とするものである。具体的には、上部成形型22を閉じることにより、口部端に付属

しているパリソンを封止することにより行う。

【0016】本発明の無菌容器の製造方法としては特に限定されるものではないが、図4に示したような工程を経ることが好ましい。図4は本発明の製造方法の一例を示す流れ図である。図4において2は成形型、3は内型、4は吹き込みノズル、5はパリソン、41はブローピンを示している。まず、(a)成形型2を一致するように合わせてできたキャビティー内にパリソン5を押し出す。この際、上部成形型22は開いておくことが必要である。

【0017】(b)次いで、ブローピン41に内型3を取り付けた吹き込みノズル4をパリソン5の開口部に差し込む。これによって、パリソン5が内型3と本体成形型22とで型押し成形され、容器の口部形状が形成される。口部11の形状はこの内型3と本体成形型21でできるキャビティーの形状を変えることによって、あるいは内型を打ち込む際の力の強弱によって調整することが可能である。特に使用時の開封の便宜を考慮して、後述のように口部の周縁部に肉厚の薄い薄膜部を設けておくことが好ましい。また、パリソン5の口に挿入された内型3の先にはブローピン41が出ているため、ブローピン41から空気などを吹き込むことによって、容器本体12がブロー成形される。このように容器口部の形状はブロー成形によらずに型付け成形されるため、内型3の径がそのまま容器の口径となる。

【0018】(c)内型3を引き抜いた後、上部成形型22を閉じる。このことにより、本体成形型21の上に存在するパリソン5が上部成形型22により成形され、封口体13として形成される。また、余分のパリソン51はこの段階で切り取られ、封口体13は接合し、容器を完全に密閉する。その後、かかる工程を経て形成された容器を成形型2から取り出す。

【0019】図5は本発明の製造方法により製造された 無菌容器の構造の一例を示す断面概略図である。本発明 の無菌容器の製造方法は、図5のように口部11がフラ ンジ形状をしているものに限定されるものではなく、上 述のように内型3等の形状によって任意に決定すること ができる。図5において、13は封口体、14は薄膜 部、aはフランジ面を示している。この無菌容器は開封 時に薄膜部14から切断することによって封口体13を 取り除き容器を開封させる。開封した状態における容器 の口部11は、寸法精度の高い平滑なフランジ面aとな る。したがって、内型3により成形された口部形状がそ のまま寸法精度の高い容器口部となり、内容液充填後キ ャッピング時において、上記フランジ面に過大な溶融状 態を確保する必要がなく、またキャッピング後、このフ ランジ面とキャップ面との接合面から内容液が液漏れす ることを防止することができる。

【0020】上記の例によって製造された本発明の無菌容器は充填過程において次の図6に説明する手順をとる

ことにより内容液を充填することができる。図6におい て、81はナイフ、82は充填物を注ぐためのノズル、 15は無菌容器に付すキャップである。まず、(a)開 封するためにナイフ81で容器口部の薄膜部14を切断 する。開封にはナイフを用いることは必ずしも必要な く、薄膜部の形状いかんによっては例えば封口体13を クランプで挟み込むなどによっても容易に開封すること ができる。(b)封口体13を容器口部11から引き剥 がす。(c)次いで、容器口部11から充填物を注ぐた めのノズル82を差し込んで、充填物を充填し、(d) 所望の分量の充填物を注いだ後、キャップ15を容器口 部11にかぶせ、密閉する。このように、本実施形態の 無菌容器は、容器口部11がフランジ形状であり、ナイ フカットによって容器の口が切断面となることがない。 また、内型3によって、容器口部の形状が均一化されて いるため、フランジ面aの平滑性は維持されている。し たがって、キャップした場合に内容液がもれることが少 なく使用の便宜性が高い。

#### [0021]

【発明の効果】本発明は、容器の口部形状を付与する内型を先端部に付したブローピンをパリソンの開口部に打ち込んで容器の口部形状をパリソンの内側から型付けすると同時にブローピンで容器本体部の形状をブロー成形することを特徴とする無菌容器の製造方法であるので、その製造方法により得られた無菌容器の口部形状は均一化し、その精度を高く維持することができる。

【0022】したがって、寸法精度の高い容器の口部形状となり、内容液充填後キャッピング時において、上記フランジ面に過大な溶融状態を確保する必要がなく、製造スピードが向上する。またこの無菌容器では、キャッピング後、このフランジ面とキャップ面との接合面から

内容液が液漏れすることを防止することができる。

【0023】因って、本発明は、輸液などの医薬品や食料品をはじめとして各種の無菌容器に適用できる製造方法である。

#### 【図面の簡単な説明】

【図1】 本発明にかかる無菌容器の製造方法の一例を示す断面概略図である。

【図2】 図1における要部拡大概略図である。

【図3】 本発明の無菌容器の製造に使用する型を示す 概略図である。

【図4】 本発明にかかる無菌容器の製造工程の一例を示す流れ図である。

【図5】 本発明の製造方法により製造された無菌容器 の構造の一例を示す断面概略図である。

【図6】 実施形態に示した無菌容器の使用工程のフローを示す概略図である。

【図7】 従来の無菌容器の製造工程を示す概略図である。

#### 【符号の説明】

- 1 無菌容器
- 11 容器口部
- 12 容器本体部
- 13 封口体
- 2 成形型
- 21 本体成形型
- 22 上部成形型
- 3 内型
- 4 吹き込みノズル
- 41 ブローピン
- 5 パリソン
- 51 パリソン

【図1】



【図2】









## 【図5】



## 【図6】



## フロントページの続き

Fターム(参考) 4F202 AG07 AG24 AH55 CA15 CB01

CK11 CK41 CK54 CL01

4F208 AG07 AG24 AH55 LA01 LA05

LA07 LB01 LG16 LG19 LG22

LH18 LJ05 LJ09 LN06 LN28

LW01 LW26 LW40

4F209 AG07 AG24 AH55 NA22 NA24

NBO1 NJ09 NM01 NM06 NM08

NM10 NN02