Chapitre 9 Les galaxies et l'Univers

100 000 000 000 kilomètres cent milliards

Vue du dessus

Nous sommes ici

Révolution 250 millions d'années

Vitesse 230 km/s

Nous sommes ici

Vue par la tranche

La Voie Lactée

La Voie Lactée

La Voie Lactée - Le Sagittaire

Nous sommes ici

La Voie Lactée

La Voie Lactée

Voie Lactée

Gouttes de lait tombées du sein de Junon allaitant Hercule

La Voie Lactée

Pôle galactique

Vue sur l'Univers

Coma Berenices

💌 Impossible d'afficher l'image liée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la liaison pointe vers le fichier et l'emplacement corrects.

Spirales

Impossible d'afficher l'image lée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la liaison pointe vers le fichier et l'emplacement corrects.

Spirales barrées

X Impossible d'afficher l'image lée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la liaison pointe vers le fichier et l'emplacement corrects.

Spirales barrées

Impossible d'afficher l'image lée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la liaison pointe vers le fichier et l'emplacement corrects.

Spirales barrées

Impossible d'afficher l'image liée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la faison pointe vers le fichier et l'emplacement corrects.

Spirales vues par la tranche

x Impossible d'afficher l'image liée. Le fichier a peut-être été déplacé, renommé ou supprimé. Vérifiez que la liaison pointe vers le fichier et l'emplacement corrects.

Lenticulaires

Elliptiques

Elliptiques

Irrégulières

Irrégulières

Grand et petit nuage de Magellan

Grand nuage de Magellan

Petit nuage de Magellan

M31 Andromède

M33 Triangle

Leo A - Galaxie irrégulière du Lion

Ceti WLM Galaxie irrégulière de la Baleine

Au delà du Groupe local

Super amas de la Vierge

Super amas de la Vierge

Dans l'Univers

Des milliards de galaxies

Qu'est-ce que l'Univers

Cosmologie

du Grec Kosmos (Monde)

Etude de la structure, de l'origine et l'évolution de l'Univers et de la place qu'on y occupe

La Cosmologie

A partir:

- De la théorie de la relativité générale
- > Des observations

construit des modèles de représentation de l'Univers

La Cosmologie

Aujourd'hui tous ces modèles conduisent à une évolution de l'Univers de type

Big Bang

La Cosmologie

Quelques différences entre les différents modèles

Mais tous ces modèles sont de type Big Bang

La Cosmologie Objectifs actuels

- > Affiner la théorie
- > Améliorer et accroître les observations

Pour savoir auquel de ces modèles correspond notre Univers

Kosmos de Platon et Aristote

- > Monde centré sur la Terre
- > Hiérarchisé
- Incluant le système solaire (jusqu'à Saturne)
- > Limité par la sphère des fixes

Kosmos de Platon et Aristote

Harmonieux

Sphère et cercle

Aristote

Sphère et cercle

1ère révolution cosmologique

Les théoriciens

Copernic 1543

Képler 1600

Newton 1687

1^{ère} révolution cosmologique L'observateur Tycho Brahé 1546 - 1601

1ère révolution cosmologique

Les instruments

1^{ère} révolution cosmologique La Terre n'est pas au centre de l'Univers

Les planètes ne décrivent pas des cercles mais des ellipses

1ère révolution cosmologique

1ère révolution cosmologique

1^{ère} révolution cosmologique Newton

Il n'y a pas de centre Univers homogène

Il n'y a pas de direction privilégiée Univers isotrope

> Aujourd'hui ou demain Univers permanent

1ère révolution cosmologique

Newton

La physique est universelle et éternelle Elle s'applique partout et tout le temps

1ère révolution cosmologique

Au XIXème siècle l'Univers est plus vaste que prévu Mesure de la distance des étoiles

1^{ère} révolution cosmologique Jusqu'au début du XXème siècle Univers = notre galaxie

2^{ème} révolution cosmologique

2^{ème} révolution cosmologique Le théoricien Albert Einstein

1915 Relativité Générale

2^{ème} révolution cosmologique Les autres théoriciens

Friedmann

Lemaître

Robertson

Walker

2^{ème} révolution cosmologique

Métrique FLRW \rightarrow une formulation de la géométrie de l'espace-temps

La métrique dite Friedman-Lemaître-Robertson-Walker (FLRW) qui régit l'évolution de l'univers dans ce modèle s'exprime sous la forme :

$$ds^{2} = -\mathbf{R^{2}(t)} \left[\frac{d\mathbf{r^{2}}}{1 - k\mathbf{r^{2}}} + \mathbf{r^{2}}d\theta^{2} + \mathbf{r^{2}}\sin^{2}\theta \ d\varphi^{2} \right] + \mathbf{c^{2}}dt^{2}$$

où η θ, φ sont les coordonnées polaires, R(t) le facteur d'échelle (positif), et k vaut +1, 0 ou -1 selon la géométrie de l'univers.

 $ds^2 \rightarrow$ chemin dans un espace à 4 dimensions 3 dimensions de l'espace $r \rightarrow x,y,z$ 1 dimension de temps t

Structure de l'Univers

52 = r2 - c2t2Distance au sens où le long du parcours d'un rayon lumineux s = 0

Topologie de l'espace

k = 0 Modèle euclidien

$$\mathbf{ds^2} = -\mathbf{R^2(t)} \left[\frac{\mathbf{dr^2}}{1-\mathbf{kr^2}} + \mathbf{r^2} \mathbf{d\theta^2} + \mathbf{r^2} \sin^2 \theta \ \mathbf{d\varphi^2} \right] + \mathbf{c^2} \mathbf{dt^2}$$

et si $R = 1 \rightarrow Espace de Minkowski de la relativité restreinte$

- 2 parallèles ne se rejoignent jamais
- Surface d'une sphère $4\pi r^2$
- Volume d'une sphère 4/3 πr^3
- 10 variantes infinies
- 8 variantes finies (dont cylindre et tore)

Modèle euclidien

k = 1 Modèle sphérique

- 2 parallèles se croisent à une distance dépendant du rayon de courbure
- Surface d'une sphère $< 4\pi r^2$
- Volume d'une sphère < 4/3 πr^3
- Une infinité de forme finies mais sans limites

Modèle sphérique

k = -1 Modèle hyperbolique

- 2 parallèles se croisent à une distance dépendant du rayon de courbure (< 0)
- Surface d'une sphère > $4\pi r^2$
- Volume d'une sphère > 4/3 πr^3
- Une infinité de forme infinies

Modèle hyperbolique

$$\frac{(dR/dt)^{2}}{R^{2}} + \frac{k}{R^{2}} = \frac{8}{3} \pi G \rho$$

Einstein pose cette métrique dans le cadre de la Relativité Générale

$$\frac{(dR/dt)^2}{R^2} + \frac{k}{R^2} = \frac{8}{3}$$

$$\pi G \rho$$

Courbure du temps

Courbure de l'espace

$$\frac{(dR/dt)^{2}}{R^{2}} + \frac{k}{R^{2}} = \frac{8}{3} \pi G \rho$$

Cette équation est dynamique en R (facteur d'échelle)

L'Univers (espace-temps) doit se dilater ou se contracter

L'Univers n'est pas statique

$$\frac{(dR/dt)^{2}}{R^{2}} + \frac{k}{R^{2}} = \frac{8}{3} \pi G \rho + \frac{\Lambda}{3}$$

Einstein ajoute une constante A
dite constante cosmologique telle
que dR/dt = 0
pour que l'Univers
soit statique

2^{ème} révolution cosmologique

Mais les observateurs débarquent

Vesto Slipher 1875-1969

Edwin Hubble 1889-1953

2^{ème} révolution cosmologique Les instruments

En 1917
Télescope de 2,50 m
du Mont Wilson
et son spectromètre

2ème révolution cosmologique

En 1924

Edwin Hubble montre que la nébuleuse d'Andromède est une galaxie, en dehors de notre galaxie

2^{ème} révolution cosmologique

2,4 millions d'années-lumières

2ème révolution cosmologique 1929 Slipher et Hubble montrent que toutes les galaxies sont en mouvement et s'éloignent

2ème révolution cosmologique

Loi de Hubble

$$\frac{(dR/dt)^{2}}{R^{2}} + \frac{k}{R^{2}} = \frac{8}{3} \pi G \rho + \frac{\Lambda}{3}$$
Oui
mais pas telle
que dR/dt = 0

Einstein se reproche d'avoir introduit la constante cosmologique

Expansion de l'Univers

Raisins dans le Kougelhopf

Fred Hoyle George Gamow

Deux modèles compatibles avec la fuite

des galaxies

Fred HOYLE: Théorie de l'état quasi-stationnaire Création de matière continue qui explique la fuite des galaxie

George GAMOW: Les particules et les éléments sont nés grâce à la haute température d'une explosion originale

HOYLE donne le nom de Big Bang au modèle de **GAMOW**

En 1964, 2 ingénieurs de Bell Phone font des essais d'une antenne satellite

Robert Wilson

Arno Penzias

Il découvre un rayonnement isotrope venant de toutes les direction de l'Univers

Fond diffus cosmologique

Prévu par la théorie du Big Bang Résidu de rayonnement du moment où l'Univers était très chaud et très petit

Fond diffus cosmologique

2,73K 1/30.000^{ème} de K d'écart entre les zones les plus chaudes et les plus froides = homogène

Fond diffus cosmologique

Les premiers éléments

Proportion isotopique suivant la valeur de la constante de Hubble

Expansion de l'Univers

Constante de Hubble

Permet de déterminer R et de calculer dR/dt

Expansion de l'Univers

$$H = 71 \pm 4$$
 km/s parMpc $R \sim 0$ il y a 13,7 ± 0 ,2 milliards d'années

Age de l'Univers

~ 14 milliards d'années

On n'observe pas d'objets plus anciens que 14 milliards d'années

Le modèle du Big Bang

Explique:

- · La nucléosynthèse primordiale
- · Le fond diffus cosmologique
- · La fuite des galaxies

Barrière conceptuelle

Barrière de Planck

Barrière conceptuelle

Trois conceptions de la gravitation

Physique de Newton

La gravitation est une **force** qui agit entre les corps.

Physique relativiste

La gravitation est une

Physique quantique

La gravitation est une interaction déformation de l'espace-temps, fondamentale de gravitons virtuels

Réunir Relativité Générale et Mécanique Quantique

Modèles actuels

$$\frac{(dR/dt)^{2}}{R^{2}} + \frac{k}{R^{2}} = \frac{8}{3} \pi G \rho + \frac{\Lambda}{3}$$

Dérivée première - Expansion

Modèle actuels

$$\frac{dR^{2}/dt^{2}}{R} = \frac{-4\pi}{3} G(\rho + \frac{3p}{c^{2}}) + \frac{\Lambda}{3}$$

dR²/dt² dérivée seconde Accélération ou ralentissement ?

Modèles actuels

L'expansion de l'Univers devrait ralentir sous l'effet de la gravitation

Il semble qu'au contraire elle accélère

Energie sombre (non observable)

Modifier la constante cosmologique Interprétation physique difficile

~ fluide de densité d'énergie constante mais d'énergie négative donc répulsive

Energie du vide (MQ) densité d'énergie ρ_{vide} Mais valeur calculée dépasse la valeur observée d'un facteur 10^{120}

Pression négative $p = -\rho_{vide}$

Quintessence

Champ scalaire couvrant tout l'espace

$$p = - \rho c^2$$

Avec la densité ρ qui ne \searrow quand R \nearrow

3ème révolution cosmologique

Nouvelles solutions issues de la théorie des supercordes (tentative d'unification de la RG et la MQ)

?

La 3ème révolution cosmologique est à venir

Notre Univers

Fermé De taille finie

Mais sans limites! Comme notre imagination

