

유리수의 대소 관계 중1

- ▶ ① 양수는 0보다 크고, 음수 는 0보다 작다.
 - ② 양수는 음수보다 크다.
 - ③ 양수끼리는 절댓값이 큰 수가 크다.
 - ④ 음수끼리는 절댓값이 큰 수가 작다.

유리수와 순환소수 중 2

1 다음 수를 큰 것부터 차례로 나열하시오.

$$-2$$
, 0, $-\frac{2}{3}$, 2.1, $\frac{7}{5}$,

2 다음 □ 안에 알맞은 것을 보기에서 찾아 써넣으시오.

유한소수, 무한소수, 순환소수, 순환소수가 아닌 무한소수

- (1) 정수가 아닌 유리수는 또는 로 나타낼 수 있다.
- (2) 유한소수와 는 모두 유리수이다.

식의 계산

중 2

3 다음을 계산하시오.

(1)
$$(-2a+3b)+(5a-b)$$

(2)
$$(3x-5y)-(7x-y)$$

3

$$(3) \ 2ab^3 \times (-3a^2b)$$

(4)
$$(-6x^2y^3) \div 3xy$$

피타고라스 정리

중 2

▶ 직각삼각형에서 직각을 낀 두 변의 길이를 각각 a, b라 하고, 빗변의 길이를 c라고 하면

$$a^2 + b^2 = c^2$$

(1)

6 cm

(2)

 $\frac{4}{4}$ 다음 그림과 같은 직각삼각형 ABC에서 \overline{AB} 의 길이를 구하시오.

넓이가 2배인 용지에 확대 복사하려면?

동아리 부원 모집 포스터를 A4 용지에 작성했더니 너무 작아서 잘 안 보여.

 ${
m A4}$ 용지를 ${
m A3}$ 용지로 확대하도록 복사기 설정을 바꾸니까 ${
m 141.4}~\%$ 확대되는 것으로 나오네.

잠깐만, 넓이를 2배로 확대하는데 200 %가 아니라 왜 141.4 %지?

🔞 이 단원에서는 유리수가 아닌 새로운 수와 그 수들의 사칙계산에 대하여 알아본다.

제곱근의 뜻

제곱근의 뜻을 안다.

히파수스(Hippasus, B.C. 550?~B.C. 500?)는 한 변의 길이가 1인 정사각형의 대각선의 길이는 유리수가 아니라는 사실을 알아낸 것으로 알려져 있다.

🔐 탐구 학습

▶ 제곱근은 무엇인가요?

열기

다음은 한 눈금의 길이가 1인 모눈종이에 세 정사각형 (개), (대)를 그린 것이다. 물음에 답 하여 보자.

- (1) 세 정사각형의 넓이와 한 변의 길이를 각각 구하여 보자.
- (2) 넓이가 25인 정사각형의 한 변의 길이를 x라고 할 때, 이 정사각형의 넓이와 x 사이의 관계를 식으로 나타내 보자.

다지기

(1) 세 정사각형의 넓이와 한 변의 길이를 구하면 다음과 같다.

정사각형	(7H)	(나)	(⊏ l)
넓이	1	4	9
한 변의 길이	1		

(2) 정사각형의 한 변의 길이를 x라고 하면 그 넓이는 x^2 이므로 $x^2 = 0$ 이다.

제곱하여 a가 되는 수는 무엇이라고 할까?

제곱근의 뜻

탁구 학습에서 넓이가 25인 정사각형의 한 변의 길이를 x라고 하면 $x^2 = 25$ 가 된다. 이처럼 어떤 수 x를 제곱하여 a가 될 때, 즉

$$x^2 = a$$

일 때, x를 a의 제곱근이라고 한다. 예를 들어 $5^2 = 25$, $(-5)^2 = 25$ 이므로 제곱하여 25가 되는 수는 5와 -5이 다. 따라서 25의 제곱근은 5와 -5이다.

한편, 양수나 음수를 제곱하면 항상 양수가 되므로 음수의 제곱근은 생각하지 않는다. 또, 제곱하여 0이 되는 수는 0뿐이므로 0의 제곱근은 0이다.

문제 1 다음 수의 제곱근을 구하시오.

- (1) 16
- (2) 81
- $(3)\frac{9}{4}$
- (4) 0.36

제곱근의 표현

양수 a의 제곱근은 양수와 음수 두 개가 있고, 이 두 수의 절댓값은 같다.

양수 a의 두 제곱근 중에서 양수인 것을 양의 제곱근, 음수인 것을 음의 제곱근

이라 하고, 기호 √를 사용하여

a의 양의 제곱근을 \sqrt{a} .

a의 음의 제곱근을 $-\sqrt{a}$

와 같이 나타낸다.

이때 기호 $\sqrt{}$ 를 <mark>근호</mark>라고 하며 \sqrt{a} 를 '제곱근 a' 또는 '루트 a'라고 읽는다.

또, \sqrt{a} , $-\sqrt{a}$ 를 한꺼번에 $\pm \sqrt{a}$ 로 나타내기도 한다.

양수 Q의 제곱근 → √Q. −√Q

한편, 25의 제곱근을 근호를 사용하여 나타내면 $\sqrt{25}$ 와 $-\sqrt{25}$ 이다. 이때 25의 양의 제곱근은 5. 음의 제곱근은 -5이므로

$$\sqrt{25} = 5, -\sqrt{25} = -5$$

임을 알 수 있다.

이처럼 어떤 수의 제곱근은 근호를 사용하지 않고 나타낼 수 있다.

🕢 개념확인

문제 2 다음 수의 제곱근을 근호를 사용하여 나타내시오.

- $(1)\ 5$
- (2) 11
- $(3)\frac{3}{7}$
- (4) 0.3

문제 3 다음을 근호를 사용하여 나타내시오.

(1) 6의 양의 제곱근

 $(2)\frac{2}{5}$ 의 음의 제곱근

(3) 제곱근 17

(4) 제곱근 2.1

문제 👍 다음 수를 근호를 사용하지 않고 나타내시오.

- (1) $\sqrt{64}$ (2) $-\sqrt{121}$ (3) $\sqrt{\frac{4}{25}}$ (4) $-\sqrt{0.16}$

근호의 유래

기호 √는 1637년에 프랑스의 수학자 데카르트(Descartes, R., 1596~1650)가 처음으 로 사용하였다. 하지만 이 기호는 데카르트가 독창적으로 고안한 것이 아니라 독일의 수학 자 루돌프(Rudolff, C., 1499~1545)가 1525년에 쓴 책에 사용했던 기호 √를 변형한 것 이다. 루돌프가 사용한 기호는 뿌리를 의미하는 라틴어 radix의 첫 글자인 r를 변형하여 $\sqrt{\mathbf{z}}$ 표시한 것으로 추측된다. 그런데 $\sqrt{2x+1}$ 이 2x+1의 양의 제곱근인지 2x의 양의 제곱 근에 1을 더한 것인지 분명하지 않았다. 데카르트는 이러한 이유로 √에 가로줄을 그어 현 재와 같은 기호 √를 사용하였다. (박교식, "수학기호 다시보기")

스스로 확이하기

1

다음 수의 제곱근을 구하시오.

- $(1)\ 100$
- (2) 144
- $(3)\frac{1}{4}$
- (4) 0.81

2

다음 수의 제곱근을 근호를 사용하여 나타내시오.

- (1) 13
- (2) 19

- (3) $\frac{3}{5}$
- (4) 0.7

3

다음을 근호를 사용하여 나타내시오.

- (1) 10의 양의 제곱근
- (2) 1.4의 음의 제곱근
- (3) 제곱근 22
- (4) 제곱근 5 11

4

다음 수 중에서 근호를 사용하지 않고 나타낼 수 있는 것을 모두 찾으시오.

$$\sqrt{169}$$
, $-\sqrt{0.4}$, $\sqrt{\frac{1}{10000}}$, $\sqrt{24}$

5

다음 그림과 같은 직각삼각형에서 x의 값을 근호를 사용하여 나타내시오.

6 창의·용합

다음 그림과 같이 정사각형 모양의 색종이 A, B, C가 이 어 붙어 있다. 색종이 A, B, C가 아래의 세 조건을 만족시킬 때. 색종이 C의 한 변의 길이를 구하시오.

- (개) 색종이 A의 넓이는 4 cm²이다.
- (내) 색종이 B의 한 변의 길이는 색종이 A의 한 변의 길이의 $\frac{3}{2}$ 배이다.
- (대) 색종이 C의 넓이는 색종이 B의 넓이의 $\frac{7}{3}$ 배이다.

제곱근의 성질

제곱근의 성질을 이해한다.

a를 0이 아닌 어떤 수로 나눈 후 그 수를 다시 곱하면 a가 되듯이 제곱근과 제곱의 관계도 이와 비슷하다.

🔯 탐구 학습

▶ 제곱근은 어떤 성질이 있나요?

열기

다음 보기와 같이 그림의 빈칸에 알맞은 수를 써넣어 보자.

다지기

5의 제곱근은 이고. 이를 각각 제곱하면 이다.

또. 의 제곱근은 $\sqrt{14}$. $-\sqrt{14}$ 이고. 이를 각각 제곱하면 이다.

> 키우기

 $(\sqrt{a})^2 \cdot (-\sqrt{a})^2$ 을 근호를 사용하지 않고 나타낼 수 있을까?

제곱근의 성질

 $\sqrt{3}$ 과 $-\sqrt{3}$ 은 3의 제곱근이므로

$$(\sqrt{3})^2 = 3, (-\sqrt{3})^2 = 3$$

이다

한편, $5^2=25$, $(-5)^2=25$ 이고, 25의 양의 제곱근은 5이므로 $\sqrt{5^2} = \sqrt{25} = 5$, $\sqrt{(-5)^2} = \sqrt{25} = 5$

이다.

일반적으로 다음이 성립한다.

제곱근의 성질

a>0일 때

$$(\sqrt{a})^2 = a, (-\sqrt{a})^2 = a$$

$$\sqrt{a^2} = a, \sqrt{(-a)^2} = a$$

문제 1 다음 값을 구하시오.

(1)
$$(\sqrt{7})^2$$

(3)
$$\sqrt{0.2^2}$$

$$(2)\left(-\sqrt{\frac{2}{5}}\right)^2$$

$$(4)\sqrt{(-13)^2}$$

문제 2 다음을 계산하시오.

(1)
$$(-\sqrt{10})^2 + \sqrt{4}$$

$$(3)\sqrt{(-5)^2}\times\left(\sqrt{\frac{3}{5}}\right)^2$$

(2)
$$\sqrt{36} - \sqrt{(-7)^2}$$

$$(4)\,\sqrt{(-4)^2} \div \sqrt{\frac{16}{49}}$$

문제 해결

다음 두 학생의 대화를 읽고, $\sqrt{15-x}$ 가 자연수가 되도록 하는 가장 작은 자연수 x의 값을 구하여 보자.

▶ 제곱근의 크기는 어떻게 비교하나요?

제곱근의 대소 관계

넓이가 3인 정사각형의 한 변의 길이는 $\sqrt{3}$ 이고, 넓이가 5인 정사각형의 한 변의 길이는 $\sqrt{5}$ 이다.

이때 두 정사각형 중 넓이가 넓은 것이 그 한 변의 길이도 길다.

따라서 3 < 5이면 $\sqrt{3} < \sqrt{5}$ 이다.

또, 두 정사각형 중 한 변의 길이가 긴 것이 그 넓이도 넓다. 따라서 $\sqrt{3} < \sqrt{5}$ 이면 3 < 5이다.

일반적으로 다음이 성립한다.

제곱근의 대소 관계

a>0, *b*>0일 때

- ① a < b이면 $\sqrt{a} < \sqrt{b}$
- $2\sqrt{a} < \sqrt{b}$ 이면 a < b

▼ 개념확인

문제 3 다음 두 수의 대소를 비교하시오.

(1)
$$\sqrt{11}$$
, $\sqrt{15}$

(2)
$$\sqrt{\frac{1}{6}}$$
, $\sqrt{\frac{1}{2}}$

문제 4 다음 두 수의 대소를 비교하시오.

(1) 3,
$$\sqrt{6}$$

(2)
$$\sqrt{17}$$
, 4

(3) 0.6.
$$\sqrt{0.9}$$

$$(4)\sqrt{\frac{1}{2}},\frac{1}{3}$$

스스로 확이하기

1

다음 값을 구하시오.

- $(1) (\sqrt{12})^2$
- (2) $(-\sqrt{0.8})^2$
- $(3)\sqrt{\left(-\frac{3}{5}\right)^2}$
- $(4) \sqrt{81}$

2

다음을 계산하시오.

- (1) $\sqrt{10^2} + \sqrt{(-9)^2}$
- (2) $(\sqrt{15})^2 \sqrt{64}$
- (3) $(-\sqrt{6})^2 \times \sqrt{\frac{25}{36}}$
- (4) $\sqrt{0.04} \div \sqrt{(-2)^2}$

3

다음 두 수의 대소를 비교하시오.

- (1) $\sqrt{\frac{3}{8}}$, $\sqrt{\frac{1}{2}}$
- (2) $\sqrt{26}$, 5
- (3) 0.1, $\sqrt{0.1}$
- (4) $\sqrt{\frac{1}{3}}$, 0.4

4

다음 수가 자연수가 되도록 하는 가장 작은 자연수 x의 x의 구하시오.

- (1) $\sqrt{10+x}$
- (2) $\sqrt{26-x}$

5

 $\sqrt{5x}$ <6을 만족시키는 자연수 x의 값을 모두 구하시오.

6 창의 • 융합

진공 상태에서 물체를 가만히 놓아 낙하시킬 때, 처음 높이를 h 때라고 하면 지면에 떨어지기 직전의 속력 v m/s는

$$v = \sqrt{2 \times 9.8 \times h}$$

라고 한다. v가 자연수가 되도록 하는 두 자리 자연수 h의 값 중에서 가장 큰 수를 구하시오.

무리수와 실수

무리수의 개념을 이해한다.

고대 바빌로니아의 점토판에는 $\sqrt{2}$ 를 어림한 값이 적혀 있다.

🔯 탐구 학습

▶ 무리수와 실수는 무엇인가요?

오른쪽 그림과 같이 한 변의 길이가 1인 정사각형에 대하여 물음에 답하여 보자

- (1) 피타고라스 정리를 이용하여 대각선의 길이를 구하여 보자.
- (2) (1)에서 구한 대각선의 길이가 1과 2 사이의 값인지 확인하여 보자

- (1) 대각선의 길이를 x라고 하면 $x^2=1^2+1^2=2$ 이다. 이때 x는 2의 양의 제곱근이므로 $x = \boxed{0}$
- (2) $1^2=1$, $2^2=40$ 으로 $1^2<2<2^2$ 이다. 따라서 $\sqrt{2}<\sqrt{0}$ 이다.

 $\sqrt{2}$ 를 유한소수로 나타낼 수 있을까?

탐구 학습에서 $\sqrt{2}$ 는 1과 2 사이의 값임을 알 수 있다. 무리수 제곱근의 대소 관계를 이용하여 $\sqrt{2}$ 를 다음과 같이 소수로 나타내 보자.

- **1** 1.4²=1.96, 1.5²=2.25이므로 $1.4^2 < 2 < 1.5^2$ $1.4 < \sqrt{2} < 1.5$
- **2** 1.41²=1.9881. 1.42²=2.0164이므로 $1.41^2 < 2 < 1.42^2$ $1.41 < \sqrt{2} < 1.42$
- **③** 1.414²=1.999396. 1.415²=2.002225이므로 $1.414^2 < 2 < 1.415^2$ $1.414 < \sqrt{2} < 1.415$

이러한 방법으로 계속하면

 $\sqrt{2}$ =1.41421356237309504880168...

과 같이 되며 순화소수가 아닌 무한소수가 됨이 알려져 있다.

정수가 아닌 유리수는 유한소수나 순화소수로 나 타낼 수 있다. 또. 유한소수나 순화소수로 나타낼 수 있는 수는 유리수이다.

$$\frac{1}{2}$$
=0.5, $\frac{4}{9}$ =0.4

이때 $\sqrt{2}$. π 와 같이 유한소수나 순환소수로 나타낼 수 없는 수가 있다.

 $\sqrt{2}$ = 1.41421356237... $\pi = 3.14159265358\cdots$

따라서 $\sqrt{2}$. π 는 유리수가 아니다

이처럼 유리수가 아닌 수를 무리수라고 한다. 즉, 무리수는 순환소수가 아닌 무 한소수로 나타나는 수이다.

 $|\Delta Z| \sqrt{3}$, $\sqrt{5}$ 에서 3, 5와 같이 근호 안의 수가 유리수를 제곱한 수가 아니면 그 수는 무리수 임이 알려져 있다.

✓ 개념확인

문제 1 다음 수 중에서 무리수를 모두 찾으시오.

$$(1)\sqrt{10}$$

(2)
$$-\sqrt{49}$$

(1)
$$\sqrt{10}$$
 (2) $-\sqrt{49}$ (3) $3+\sqrt{7}$

$$(4)\sqrt{\frac{1}{9}}-2$$

실수 유리수와 무리수를 통틀어 실수라고 한다. 앞으로 수라고 하면 실수로 생각하기 로 한다.

실수를 분류하면 다음과 같다.

개념확인

문제 2 다음 수를 보고, 물음에 답하시오.

$$-\sqrt{13}$$
, $\sqrt{0.64}$, $\sqrt{\frac{3}{4}}$, $1-\sqrt{4}$, $5+\sqrt{2}$, 0.07

- (1) 유리수를 모두 찾으시오.
- (2) 무리수를 모두 찾으시오.
- (3) 실수를 모두 찾으시오.

복사용지로 많이 사용하는 A4 용지의 규격은 짧은 변 의 길이가 210 mm, 긴 변의 길이가 297 mm이다. 이때 (긴 변의 길이) \div (짧은 변의 길이), 즉 $297 \div 210$ 의 값은 $\sqrt{2}$ 에 가깝다. 이처럼 우리 생활 주변에서 무 리수가 나타나는 예를 모둠별로 찾아 발표해 보자.

의사소통

♪ 제곱근의 값은 어떻게 구하나요?

제곱근표

제곱근표에 있는 제곱근의 값은 대부분 어림한 값이지 만 이 값을 나타낼 때에는 '='를 사용한다. 제곱근을 어림한 값은 제곱근표를 이용하여 구할 수 있다. 제곱근표는 1.00부터 99.9까지의 수에 대한 양의 제곱근의 값을 반올림하여 소수점 아래 셋째 자리까지 나타낸 것이다.

다음은 제곱근표의 일부이다.

수	0	1	2	3	4	5	6	7	8	9
1.0	1.000	1.005	1.010	1.015	1.020	1.025	1.030	1.034	1.039	1.044
÷	:	:	:	:	:	:	:	:	:	:
2.1	1.449	1.453	1.456	1.459	1.463	1.466	1.470	1.473	1.476	1.480
2.2	1.483	1.487	1.490	1.493	1.497	1.500	1,503	1.507	1.510	1.513
2.3	1,517	1,520	1,523	1,526	1,530	1,533	1.536	1.539	1.543	1.546
2.4	1.549	1.552	1.556	1.559	1.562	1.565	1.568	1.572	1.575	1.578
$\sim\sim$	-	-	$\sim\sim$	$\sim\sim$	-	-	-	$\sim\sim$	$\sim\sim$	-

위의 제곱근표에서 $\sqrt{2.36}$ 을 어림한 값은 왼쪽의 수 2.3의 가로줄과 위쪽의 수 6의 세로줄이 만나는 곳의 수 1.536이다.

문제 3 제곱근표를 이용하여 다음 제곱근을 어림한 값을 구하시오.

- $(1)\sqrt{1.25}$
- (2) $\sqrt{6.8}$
- (3) $\sqrt{46.2}$
- $(4) \sqrt{90}$

문제 4

제곱근을 어림한 값은 계산기를 이용하여 구할 수도 있다. 다음은 계산기를 이용하여 $\sqrt{12.4}$ 를 어림한 값을 구하는 과정이다.

- 1 1 2 교, 교, 4 를 차례로 누른다.
- 2 ___를 누른다.

위와 같이 계산기를 이용하여 다음 제곱근의 값을 반올림하여 소수점 아 래 셋째 자리까지 구하시오.

- (2) $\sqrt{46.25}$
- (3) $\sqrt{125}$
- $(4) \sqrt{2240}$

다음 수가 유리수인지 무리수인지 말하시오.

- (1) $\sqrt{8}$
- (3) $\sqrt{121}$
- (4) $2+\sqrt{2.5}$

2

다음 수에 해당하는 것에는 ○표, 해당하지 않는 것에는 ×표를 하시오.

	정수	유리수	무리수	실수
$\sqrt{16}$				
$\sqrt{30}$				
$\sqrt{\frac{4}{49}}$				
$5 - \sqrt{3}$				

3

다음을 구하고, 그 수가 유리수인지 무리수인지 말하시오.

- (1) 넓이가 9인 정사각형의 한 변의 길이
- (2) 한 변의 길이가 6인 정삼각형의 높이
- (3) 지름의 길이가 2인 바퀴가 한 바퀴 굴러간 거리

4

다음 보기 중에서 옳은 것을 모두 찾으시오.

- ㄱ. 무한소수는 무리수이다.
- 나, 근호가 있는 수는 무리수이다.
- ㄷ. 순환소수가 아닌 무한소수는 무리수이다.
- 리. 실수에서 무리수가 아닌 수는 모두 유리수이다.

5

제곱근표를 이용하여 다음 제곱근을 어림한 값을 구하시오.

- $(1) \sqrt{5.6}$
- (2) $\sqrt{79.3}$

6 발전 문제

a가 1 이상 20 이하의 자연수일 때, $\sqrt{3a}$ 가 무리수가 되 도록 하는 자연수 a의 값의 개수를 구하시오.

무리수로 영문자 찾기

다음 표에서 무리수가 적혀 있는 칸을 모두 찾아 색칠하고, 어떤 영문자가 나타나는지 알아보자.

수행 과제

문제 해결

위와 같이 무리수가 적혀 있는 칸을 모두 색칠하면 영문자가 나타나는 표를 만들고, 친구들과 바꾸어 풀어 보자.

실수의 대소 관계

실수의 대소 관계를 판단할 수 있다.

수학자 데데킨트(Dedekind, J. W. R., 1831~1916)의 설명에 따르면 실수를 수직선 위에 빈틈없이 나타낼 수 있다.

🐼 탐구 학습

▶ 실수를 수직선 위에 어떻게 나타내나요?

열기

다음 그림은 수직선 위에 $\angle A=90^\circ$, $\overline{OA}=1$ 인 직각이등변삼각형을 그린 것이다. 원점 O를 중심으로 하고 빗변 OB를 반지름으로 하는 원을 그려 수직선과 만나는 점을 각각 P. Q라고 할 때, 물음에 답하여 보자.

- (1) 피타고라스 정리를 이용하여 빗변 OB의 길이를 구하여 보자.
- (2) 두 점 P, Q에 대응하는 수를 각각 말하여 보자.

다지기

- (1) 피타고라스 정리에 따라 $\overline{OB}^2 = 1^2 + 1^2 = 2$ 그런데 $\overline{\mathrm{OB}}{>}0$ 이므로 $\overline{\mathrm{OB}}{=}$
- (2) 점 O는 원점이고 $\overline{OP} = \overline{OQ} = \overline{OB} = \sqrt{2}$ 이므로 점 P에 대응하는 수는 $\sqrt{2}$, 점 Q에 대응 하는 수는 이다.

키우기

무리수를 수직선 위에 나타낼 수 있을까?

실수를 수직선 위에 나타내기

탐구 학습에서 $\sqrt{2}$, $-\sqrt{2}$ 를 각각 수직선 위의 한 점에 대응시킬 수 있음을 알 수 있 다.

이처럼 수직선 위에는 유리수에 대응하는 점뿐만 아니라 무리수에 대응하는 점 도 있다.

일반적으로 수직선은 유리수와 무리수, 즉 실수에 대응하는 점들로 완전히 메울수 있음이 알려져 있다. 따라서 한 실수는 수직선 위의 한 점에 대응하고, 수직선 위의 한 점은 한 실수에 대응한다.

● 간단히 양의 실수를 양수,음의 실수를 음수라고 한다.

이때 수직선 위에서 원점의 오른쪽에는 양의 실수가 대응하고 왼쪽에는 음의 실수가 대응한다.

문제 1 오른쪽 그림은 한 눈금의 길이가 1인 모눈종이 위에 직각삼각형 ABC와 수직선을 그린 것이다. 점 A를 중심으로 하고 \overline{AC} 를 반지름으로 하는 원을 그려 수 직선과 만나는 점을 P, Q라고 할 때, 두 점 P, Q에 대응하는 수를 각각 구하시오.

丹居 臺灣

문제 2 모둠별로 다음 수에 대응하는 점을 수직선 위에 나타내고, 그 방법을 설명하시오.

(1)
$$2-\sqrt{10}$$
 (2) $-3+\sqrt{10}$

실수의 대소 관계(1)

유리수를 수직선 위에 나타내면 오른쪽에 있는 수가 왼쪽에 있는 수보다 크다. 마찬가지로 실수를 수직선 위에 나타내면 오른쪽에 있는 수가 왼쪽에 있는 수보 다 크다.

일반적으로 다음이 성립한다.

실수의 대소 관계 (1)

- 양수는 0보다 크고, 음수는 0보다 작다.
- 양수는 음수보다 크다.
- ❸ 양수끼리는 절댓값이 큰 수가 크다.
- 4 음수끼리는 절댓값이 큰 수가 작다.

두 양수와 두 음수끼리의 대소 비교

문제 3 다음 두 실수의 대소를 비교하시오.

(1)
$$-\sqrt{2}$$
, 0

(2)
$$\sqrt{7}$$
, $-\sqrt{5}$

$$(3)\frac{5}{2},\sqrt{8}$$

(4)
$$-\sqrt{\frac{1}{3}}$$
, -1

문제 4 다음 중에서 $-\sqrt{5}$ 와 2 사이의 수를 모두 말하시오.

$$-\frac{1}{2}$$
, $\sqrt{5}$, -2.5 , $\sqrt{\frac{7}{2}}$, -2

실수의 대소 관계 (2) 실수에서도 유리수에서와 같이 부등식의 성질이 성립한다. 따라서 두 실수 a, b의 대소 관계는 a-b의 값의 부호에 따라 다음과 같이 정할 수 있다.

실수의 대소 관계 (2) a, b가 실수일 때 ① a-b>0이면 a>b ② a-b=0이면 a=b ③ a-b<0이면 a< b

<u></u> 명	제	1
-----------	---	---

두 실수 $\sqrt{10}$ -2와 1의 대소를 비교하시오.

풀이 $(\sqrt{10}-2)-1=\sqrt{10}-3=\sqrt{10}-\sqrt{9}$ $\sqrt{10}>\sqrt{9}$ 이므로 $\sqrt{10}-\sqrt{9}>0$ 따라서 $\sqrt{10}-2>1$

따라 하기

두 실수 3과 $\sqrt{5}$ + 1의 대소를 비교하시오.

풀이 $3-(\sqrt{5}+1)=$ =

____이므로 ___ 따라서

답

| 실수의 대소 관계 판단하기

문제 5 다음 두 실수의 대소를 비교하시오.

- (1) 5, $\sqrt{5}+3$
- (3) $6 \sqrt{2}$, $6 \sqrt{3}$

- (2) $2+\sqrt{3}$, 3
- (4) $3+\sqrt{7}$. $3+\sqrt{8}$

추론·의사소통

다음 두 실수의 대소를 비교하는 방법을 다양하게 설명하여 보자.

다음 그림은 한 눈금의 길이가 1인 모눈종이 위에 두 직 각삼각형 ABC, DEF와 수직선을 그린 것이다. 점 A를 중심으로 하고 \overline{AC} 를 반지름으로 하는 원과 점 \overline{D} 를 중심 으로 하고 $\overline{\mathrm{DF}}$ 를 반지름으로 하는 원을 그려 수직선과 만 나는 점을 P. Q. R. S라고 할 때, 네 점 P. Q. R. S에 대 응하는 수를 각각 구하시오

2

다음 두 실수의 대소를 비교하시오.

(1)
$$-\sqrt{5}$$
, $-\sqrt{12}$ (2) $\sqrt{7}$, $\frac{8}{3}$

(2)
$$\sqrt{7}$$
, $\frac{8}{3}$

(3)
$$-4$$
, $-\sqrt{18}$

(3)
$$-4$$
, $-\sqrt{18}$ (4) $-\sqrt{10}$, $1+\sqrt{2}$

3

다음 두 실수의 대소를 비교하시오.

- (1) $6 \sqrt{8}$, 4
- (2) $-3+\sqrt{3}$, $-3+\sqrt{5}$
- (3) $\sqrt{6}+1$, 3

4

다음 수를 큰 것부터 차례로 나열하시오.

$$\frac{1}{3}$$
, 0, $-\sqrt{3}$, $-\sqrt{\frac{1}{2}}$, $\sqrt{6}$, 0.4

5

다음 그림은 한 눈금의 길이가 1인 모눈종이 위에 정사각 형 ABCD와 수직선을 그린 것이다. 점 A를 중심으로 하 고. AB를 반지름으로 하는 원을 그려 수직선과 만나는 점을 P. Q라고 할 때, 물음에 답하시오.

- (1) 두 점 P, Q에 대응하는 수를 각각 구하시오.
- (2) 두 점 P, Q 사이에 있는 무리수 3개를 말하시오.

6 .창의·용합,

다음 그림과 같이 반지름의 길이가 3인 원이 수직선 위에 서 원점에 접하고 있다. 이 접점을 A라 하고. 원을 수직 선을 따라 시계 방향으로 두 바퀴 굴려 점 A가 다시 수직 선에 접하는 점을 A'이라고 하자. 이때 점 A'에 대응하 는 수를 구하시오.

근호를 포함한 식의 곱셈

근호를 포함한 식의 곱셈을 할 수 있다.

석굴암 내부에 있는 불상의 높이는 천장을 둘러싼 반구의 반지름의 길이에 √2를 곱한 값에 가깝다.

등 탐구 학습	· 근호를 포함한 식의 곱셈은 어떻게 하나요? 		
· 열기	다음과 같은 두 식을 간단히 하여 그 크기를 비교하여 보자.		
	$\sqrt{4} \times \sqrt{9}$ $\sqrt{4 \times 9}$		
> 다지기	$\sqrt{4} \times \sqrt{9} = \sqrt{2^2} \times \sqrt{3^2} = $ $\times 3 = $ $, \sqrt{4 \times 9} = \sqrt{36} = $ $^2 = $ 이므로 $\sqrt{4} \times \sqrt{9}$ 와 $\sqrt{4 \times 9}$ 의 값은 서로 .		
> 키우기	$\sqrt{a} imes\sqrt{b}$ 와 같은 근호를 포함한 식의 곱셈은 어떻게 계산할까?		

제곱근의 곱셈(1)

실수의 곱셈에서도 유리수의 곱셈과 마찬가지로 교환법칙과 결합법칙이 성립한 다. 이 사실을 이용하여 $\sqrt{3} \times \sqrt{5}$ 를 계산하여 보자.

 $\sqrt{3} \times \sqrt{5}$ 는 양수이고. 이를 제곱하면

$$(\sqrt{3} \times \sqrt{5})^2 = (\sqrt{3} \times \sqrt{5}) \times (\sqrt{3} \times \sqrt{5})$$
$$= (\sqrt{3} \times \sqrt{3}) \times (\sqrt{5} \times \sqrt{5})$$
$$= (\sqrt{3})^2 \times (\sqrt{5})^2 = 3 \times 5$$

이므로 $\sqrt{3} \times \sqrt{5}$ 는 3×5 의 양의 제곱근이다.

그런데 3×5 의 양의 제곱근은 $\sqrt{3 \times 5}$ 이므로 $\sqrt{3} \times \sqrt{5} = \sqrt{3 \times 5}$ 이다.

일반적으로 다음이 성립한다.

략하여 $\sqrt{a}\sqrt{b}$ 로 나타내기 도 한다.

제곱근의 곱셈 (1) a>0, b>0일 때, $\sqrt{a}\sqrt{b}=\sqrt{ab}$

│ 제곱근의 곱셈하기

□ 예제 1

다음 식을 \sqrt{a} 의 꼴로 나타내시오.

 $(1) \sqrt{2}\sqrt{3}$

$$(2)\sqrt{\frac{4}{3}}\sqrt{\frac{3}{2}}$$

풀이 (1) $\sqrt{2}\sqrt{3} = \sqrt{2} \times 3 = \sqrt{6}$

$$(2) \sqrt{\frac{4}{3}} \sqrt{\frac{3}{2}} = \sqrt{\frac{4}{3}} \times \frac{3}{2}$$
$$= \sqrt{2}$$

 \blacksquare (1) $\sqrt{6}$ (2) $\sqrt{2}$

따라 하기

다음 식을 \sqrt{a} 의 꼴로 나타내시오.

 $(1) \sqrt{5}\sqrt{7}$

(2)
$$\sqrt{\frac{10}{3}}\sqrt{\frac{9}{5}}$$

풀이 (1) $\sqrt{5}\sqrt{7}$ =____=

(2)
$$\sqrt{\frac{10}{3}}\sqrt{\frac{9}{5}} =$$

(1) (2)

문제 1 다음 식을 \sqrt{a} 의 꼴로 나타내시오.

- (1) $\sqrt{3}\sqrt{10}$
- (3) $\sqrt{\frac{1}{2}}\sqrt{14}$

- (2) $\sqrt{6}\sqrt{7}$
- $(4) \sqrt{\frac{2}{5}} \sqrt{\frac{15}{2}}$

양수 a. b에 대하여 근호 안의 수가 a^2b 의 꼴일 때. 다음과 같이 a^2 을 근호 밖으 제곱근의 곱셈(2) 로 꺼낼 수 있다.

$$\sqrt{20} = \sqrt{2^2 \times 5}$$

$$= \sqrt{2^2} \sqrt{5} = 2\sqrt{5}$$

또, 근호 밖의 양수를 제곱하여 다음과 같이 근호 안으로 넣을 수 있다.

$$2\sqrt{5} = \sqrt{2^2}\sqrt{5}$$
$$= \sqrt{2^2 \times 5} = \sqrt{20}$$

일반적으로 다음이 성립한다.

 \mathbf{e} $a\sqrt{b}$ 의 꼴로 나타낼 때에는 일반적으로 b가 가장 작은 자연수가 되도록 한다.

제곱근의 곱셈(2)

a>0, b>0일 때, $\sqrt{a^2b}=a\sqrt{b}$

🖹 예제 🙎 다음 물음에 답하시오.

- $(1)\sqrt{12}$ 를 $a\sqrt{b}$ 의 꼴로 나타내시오.
- (2) $3\sqrt{3}$ 을 \sqrt{a} 의 꼴로 나타내시오.

물이 (1) $\sqrt{12} = \sqrt{2^2 \times 3} = 2\sqrt{3}$ (2) $3\sqrt{3} = \sqrt{3^2 \times 3} = \sqrt{27}$

 \blacksquare (1) $2\sqrt{3}$ (2) $\sqrt{27}$

문제 2 다음 수를 $a\sqrt{b}$ 의 꼴로 나타내시오.

 $(1)\sqrt{45}$

(2) $-\sqrt{8}$

(3) $\sqrt{24}$

 $(4) \sqrt{1000}$

문제 3 다음 수를 \sqrt{a} 또는 $-\sqrt{a}$ 의 꼴로 나타내시오.

(1) $3\sqrt{2}$

(2) $-3\sqrt{6}$

(3) $5\sqrt{2}$

 $(4) \frac{3}{2} \sqrt{28}$

오른쪽 그림에서 정사각형 ABCD의 넓이는 500이다.

- □ABCD의 각 변의 중점을 연결하여 □EFGH를 만들고,
- □EFGH의 각 변의 중점을 연결하여 □IJKL을 만들었을 때.
- \square IJKL의 한 변의 길이를 $a\sqrt{b}$ 의 꼴로 나타내시오.

다음 식을 \sqrt{a} 의 꼴로 나타내시오.

- (1) $\sqrt{2}\sqrt{5}$
- (2) $\sqrt{3}\sqrt{13}$
- (3) $\sqrt{\frac{5}{2}}\sqrt{\frac{10}{5}}$ (4) $\sqrt{\frac{6}{5}}\sqrt{2.5}$

2

다음 수를 $a\sqrt{b}$ 의 꼴로 나타내시오.

- $(1)\sqrt{18}$
- (2) $-\sqrt{27}$
- (3) $\sqrt{32}$
- $(4) \sqrt{300}$

3

다음 수를 \sqrt{a} 또는 $-\sqrt{a}$ 의 꼴로 나타내시오.

- (1) $2\sqrt{7}$
- (2) $-2\sqrt{5}$
- (3) $3\sqrt{11}$
- $(4) -5\sqrt{10}$

4

 $\sqrt{2} \times \sqrt{5} \times \sqrt{a} \times \sqrt{10} = \sqrt{300}$ 일 때, a의 값을 구하시오.

5

 $\sqrt{75}$ = $5\sqrt{a}$, $\sqrt{180}$ = $b\sqrt{5}$ 를 만족시키는 두 수 a, b에 대하 여 a+b의 값을 구하시오.

6 발전 문제

 $2\sqrt{25+a}=4\sqrt{5}$, $\sqrt{30-b}=2\sqrt{3}$ 을 만족시키는 두 수 a, b에 대하여 a+b의 값을 구하시오.

근호를 포함한 식의 나눗셈

근호를 포함한 식의 나눗셈을 할 수 있다.

A4 용지의 긴 변의 길이를 짧은 변의 길이로 나누면 √2에 가까운 값이 된다.

🔯 탐구 학습

▶ 근호를 포함한 식의 나눗셈은 어떻게 하나요?

다음과 같은 두 식을 간단히 하여 그 크기를 비교하여 보자.

$$\frac{\sqrt{4}}{\sqrt{9}}$$

$$\frac{\sqrt{4}}{\sqrt{9}} = \frac{\sqrt{\square^2}}{\sqrt{3^2}} = \boxed{ , \sqrt{\frac{4}{9}} = \sqrt{\left(\frac{2}{3}\right)^2} = \boxed{ } \text{이므로} \frac{\sqrt{4}}{\sqrt{9}} \text{와} \sqrt{\frac{4}{9}} \text{의 값은 서로} \boxed{ } .$$

$$\frac{\sqrt{a}}{\sqrt{h}}$$
와 같은 근호를 포함한 식의 나눗셈은 어떻게 계산할까?

제곱근의 나눗셈

$$\frac{\sqrt{5}}{\sqrt{3}}$$
를 계산하여 보자.

$$\frac{\sqrt{5}}{\sqrt{3}}$$
는 양수이고, 이를 제곱하면

$$\left(\frac{\sqrt{5}}{\sqrt{3}}\right)^2 = \frac{\sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{5} \times \sqrt{5}}{\sqrt{3} \times \sqrt{3}} = \frac{(\sqrt{5})^2}{(\sqrt{3})^2} = \frac{5}{3}$$

이므로
$$\frac{\sqrt{5}}{\sqrt{3}}$$
는 $\frac{5}{3}$ 의 양의 제곱근이다.

그런데
$$\frac{5}{3}$$
의 양의 제곱근은 $\sqrt{\frac{5}{3}}$ 이므로 $\frac{\sqrt{5}}{\sqrt{3}} = \sqrt{\frac{5}{3}}$ 이다.

일반적으로 다음이 성립한다.

제곱근의 나눗셈

$$a>0$$
, $b>0일 때, \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$

■ 예제 1

다음 식을 간단히 하시오.

$$(1) \frac{\sqrt{24}}{\sqrt{3}}$$

(2)
$$\sqrt{8} \div \sqrt{2}$$

置이 (1)
$$\frac{\sqrt{24}}{\sqrt{3}} = \sqrt{\frac{24}{3}} = \sqrt{8} = \sqrt{2^2 \times 2} = 2\sqrt{2}$$

(2)
$$\sqrt{8} \div \sqrt{2} = \frac{\sqrt{8}}{\sqrt{2}} = \sqrt{\frac{8}{2}} = \sqrt{4} = 2$$

 \blacksquare (1) $2\sqrt{2}$ (2) 2

문제 1 다음 식을 간단히 하시오.

$$(1)\,\frac{\sqrt{12}}{\sqrt{6}}$$

$$(2) \frac{\sqrt{60}}{\sqrt{5}}$$

(3)
$$\sqrt{30} \div \sqrt{5}$$

(4)
$$\sqrt{96} \div \sqrt{6}$$

1보다 작거나 100보다 큰 양수의 제곱근을 어림한 값은 제곱근표에 나타나 있 제곱근을 어림한 값 지 않지만, 제곱근의 성질과 제곱근표를 이용하여 구할 수 있다.

개념확인

문제 2 제곱근표를 이용하여 다음 제곱근을 어림한 값을 구하시오.

 $(1)\sqrt{240}$

(2) $\sqrt{3400}$

(3) $\sqrt{0.24}$

 $(4) \sqrt{0.034}$

분모의 유리화

다음과 같이 $\frac{\sqrt{3}}{\sqrt{2}}$ 의 분모와 분자에 각각 $\sqrt{2}$ 를 곱하면 분모는 유리수가 된다.

$$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$$

이처럼 분수의 분모가 근호가 있는 무리수일 때, 분모와 분자에 각각 0이 아닌 같은 수를 곱하여 분모를 유리수로 고치는 것을 **분모의 유리화**라고 한다.

일반적으로 다음이 성립한다.

__ 분모의 유리화

a>0, b>0일 때, $\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a\sqrt{b}}}{\sqrt{b}\sqrt{b}}=\frac{\sqrt{ab}}{b}$

예제2

다음 수의 분모를 유리화하시오.

$$(1) \frac{\sqrt{3}}{\sqrt{5}}$$

$$(2) \frac{\sqrt{5}}{3\sqrt{2}}$$

풀이 (1) 분모와 분자에 각각 √5를 곱하면

$$\frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{5}$$

(2) 분모와 분자에 각각 $\sqrt{2}$ 를 곱하면

$$\frac{\sqrt{5}}{3\sqrt{2}} = \frac{\sqrt{5} \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} \\ = \frac{\sqrt{10}}{3 \times 2} = \frac{\sqrt{10}}{6}$$

$$(1) \frac{\sqrt{15}}{5} (2) \frac{\sqrt{10}}{6}$$

따라 하기

다음 수의 분모를 유리화하시오.

$$(1) \frac{\sqrt{5}}{\sqrt{2}}$$

$$(2) \frac{\sqrt{3}}{2\sqrt{5}}$$

| 분모를 유리화하기

풀이 (1) 분모와 분자에 각각 _____을/를 곱하면

$$\frac{\sqrt{5}}{\sqrt{2}} =$$

(2) 분모와 분자에 각각 을/를 곱하면

1 (1) ____ (2) ___

문제 3 다음 수의 분모를 유리화하시오.

$$(1) \frac{\sqrt{2}}{\sqrt{5}}$$

$$(3) \; \frac{4\sqrt{5}}{7\sqrt{3}}$$

$$(2) \frac{2\sqrt{3}}{\sqrt{2}}$$

$$(4) \ \frac{\sqrt{3}}{\sqrt{40}}$$

근호를 포함한 식의 곱셈과 나눗셈

근호를 포함한 식의 계산에서 곱셈과 나눗셈이 섞여 있을 때에는 앞에서부터 차례로 계산한다. 이때 나눗셈은 나누는 수의 역수를 곱하여 계산하면 편리하다.

| 근호를 포함한 식의 곱셈과 나눗셈하기

예제3

다음 식을 간단히 하시오.

$$(1) \ 3\sqrt{2} \times \frac{7}{\sqrt{6}}$$

$$(2) \ 5\sqrt{2} \div \frac{\sqrt{5}}{\sqrt{2}} \times \sqrt{7}$$

● 근호를 포함한 식의 계산에 서 계산 결과의 분모가 근 호가 있는 무리수이면 일반 적으로 분모를 유리화한다.

置の (1)
$$3\sqrt{2} \times \frac{7}{\sqrt{6}} = \frac{21\sqrt{2}}{\sqrt{6}} = 21\sqrt{\frac{2}{6}} = 21\sqrt{\frac{1}{3}}$$

$$= \frac{21}{\sqrt{3}} = \frac{21 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{21\sqrt{3}}{3} = 7\sqrt{3}$$
(2) $5\sqrt{2} \div \frac{\sqrt{5}}{\sqrt{2}} \times \sqrt{7} = 5\sqrt{2} \times \frac{\sqrt{2}}{\sqrt{5}} \times \sqrt{7} = \frac{5 \times 2 \times \sqrt{7}}{\sqrt{5}}$

$$= \frac{10\sqrt{7} \times \sqrt{5}}{\sqrt{5}} = \frac{10\sqrt{35}}{5} = 2\sqrt{35}$$

 $(1) 7\sqrt{3} (2) 2\sqrt{35}$

문제 4 다음 식을 간단히 하시오.

$$(1) \ 3\sqrt{2} \times \sqrt{5} \div 2\sqrt{10}$$

$$(2) \frac{1}{\sqrt{3}} \div \frac{\sqrt{5}}{\sqrt{2}} \times \sqrt{10}$$

의사소통

다음은 세로의 길이가 $\sqrt{2}$ m, 넓이가 3 m²인 직사각형 모양의 게시판을 만들려고 할 때, 게시판의 가로의 길이를 소수점이래 셋째 자리까지 구하는 과정이다. 제곱근표에서 $\sqrt{2}$ 를 어림한 값을 찾아 두 학생의 풀이 방법에 대입하여 값을 구해 보고, 어떤 방법이 편리한지 이야기하여 보자.

3 ...

$$\frac{3}{\sqrt{2}} = 3 \div \sqrt{2}$$

 $\frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} = 3\sqrt{2} \div 2$

가로의 길이를 분수로 나타내고, 분모를 유리화한 후 분자를 분모로 나누면….

스스로 확인하기

다음 식을 간단히 하시오.

- (1) $\sqrt{30} \div (-\sqrt{6})$ (2) $-\frac{\sqrt{42}}{\sqrt{6}}$
- (3) $\frac{5\sqrt{21}}{6\sqrt{3}}$ (4) $\frac{15\sqrt{60}}{5\sqrt{10}}$

2

제곱근표를 이용하여 다음 제곱근을 어림한 값을 구하 시오.

- $(1)\sqrt{300}$
- (2) $\sqrt{3000}$
- (3) $\sqrt{0.3}$
- (4) $\sqrt{0.03}$

다음 수의 분모를 유리화하시오.

- $(1) \ \frac{\sqrt{7}}{\sqrt{3}}$
- $(2) \ \frac{\sqrt{3}}{2\sqrt{2}}$
- (3) $\frac{5\sqrt{2}}{\sqrt{7}}$
- (4) $\frac{2\sqrt{6}}{3\sqrt{5}}$

4

다음 식을 간단히 하시오.

- (1) $\sqrt{108} \div 2\sqrt{3} \times \sqrt{54}$
- $(2) \ \frac{1}{\sqrt{2}} \times \sqrt{\frac{2}{3}} \div \frac{\sqrt{10}}{2}$

5

오른쪽 그림과 같이 부피가 $2\sqrt{30} \text{ cm}^3$ 인 직육면체의 밑 면의 가로의 길이와 세로의 길이가 각각 $\sqrt{6}$ cm, $2\sqrt{2}$ cm 일 때, 이 직육면체의 높이를 구하시오.

6 _[창의 • 융합]

태풍의 반지름의 길이를 R km라고 할 때, 태풍으로 인 한 폭풍우의 지속 시간은 $\frac{\sqrt{R^3}}{\sqrt{54}}$ 시간이라고 한다. 어떤 태 풍의 반지름의 길이가 96 km일 때, 이 태풍으로 인한 폭 풍우의 지속 시간을 구하시오.

근호를 포함한 식의 덧셈과 뺄셈

근호를 포함한 식의 덧셈과 뺄셈을 할 수 있다.

😡 탐구 학습

▶ 근호를 포함한 식의 덧셈과 뺄셈은 어떻게 하나요?

🤰 열기

오른쪽은 분배법칙을 이용하여 식을 정리한 것이다. 문자 a에 $\sqrt{2}$ 를 대입하여 계산하여 보자.

5a+3a=(5+3)a=8a 50-30=(5-3)0=20

> 다지기

문자 a에 $\sqrt{2}$ 를 대입하면

$$5\sqrt{2} + 3\sqrt{2} = (5+3)\sqrt{\boxed{}} = 8\sqrt{\boxed{}}$$
$$5\sqrt{2} - 3\sqrt{2} = (5-\boxed{)}\sqrt{2} = \boxed{\sqrt{2}}$$

> 키우기

 $5\sqrt{2} + 3\sqrt{2}$, $5\sqrt{2} - 3\sqrt{2}$ 와 같이 근호를 포함한 식의 덧셈과 뺄셈은 어떻게 계산할까?

근호를 포함한 식의 덧셈과 뺄셈

실수의 덧셈에서도 유리수의 덧셈과 마찬가지로 교환법칙과 결합법칙이 성립한 다. 근호를 포함한 식의 덧셈과 뺄셈은 다항식의 덧셈과 뺄셈에서 동류항끼리 모 아서 계산하듯이 근호 안의 수가 같은 것끼리 모아서 계산한다.

문제 1 다음 식을 간단히 하시오.

(1) $3\sqrt{5} + 2\sqrt{5}$ (2) $\sqrt{3} - 5\sqrt{3}$

(3) $5\sqrt{7} + 3\sqrt{7} - 6\sqrt{7}$

다음 식을 간단히 하시오.

(1)
$$3\sqrt{18} - 4\sqrt{2} + \sqrt{8}$$

(2)
$$3\sqrt{3} - \frac{3}{\sqrt{3}}$$

근호를 포함한 식의 계산은 $\sqrt{a^2b}=a\sqrt{b}$ (단, a>0, b>0)를 이용하거나 분모를 유리화하여 계산하면 돼.

풀이 (1) $3\sqrt{18}-4\sqrt{2}+\sqrt{8}=3\sqrt{3^2\times 2}-4\sqrt{2}+\sqrt{2^2\times 2}$ $=9\sqrt{2}-4\sqrt{2}+2\sqrt{2}$ $=(9-4+2)\sqrt{2}=7\sqrt{2}$ (2) $3\sqrt{3} - \frac{3}{\sqrt{3}} = 3\sqrt{3} - \frac{3 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$ $=3\sqrt{3}-\frac{3\sqrt{3}}{3}$ $=3\sqrt{3}-\sqrt{3}$ $=(3-1)\sqrt{3}=2\sqrt{3}$

 \blacksquare (1) $7\sqrt{2}$ (2) $2\sqrt{3}$

문제 2 다음 식을 간단히 하시오.

(1)
$$\sqrt{32} + \sqrt{8}$$

(3)
$$3\sqrt{24} + \sqrt{6} - 3\sqrt{54}$$

(2)
$$\sqrt{8} - 2\sqrt{18} - \sqrt{50}$$

$$(4) \ 5\sqrt{5} - 2\sqrt{125} + \frac{15}{\sqrt{5}}$$

다음은 네 학생이 근호를 포함한 식의 사칙계산을 한 것이다. 풀이 과정을 보고, 틀린 학생을 모두 찾은 후 틀린 부분을 바르게 고쳐 보자.

▶ 근호를 포함한 식의 혼합 계산은 어떻게 하나요?

근호를 포함한 식의 호합 계산

근호를 포함한 식에서 괄호가 있는 경우에는 분배법칙을 이용하여 괄호를 푼 다 음 계산한다. 또. 덧셈. 뺄셈. 곱셈. 나눗셈이 섞여 있을 때에는 유리수의 경우와 마찬가지로 곱셈과 나눗셈을 먼저 계산한다.

| 근호를 포함한 식의 혼합 계산하기

□ 예제 2 다음 식을 간단히 하시오.

$$(1)\sqrt{2}(\sqrt{6}+\sqrt{3})$$

(2)
$$\sqrt{8} - 6 \div \sqrt{2} + 4\sqrt{32}$$

置の (1)
$$\sqrt{2}(\sqrt{6}+\sqrt{3}) = \sqrt{2} \times \sqrt{6} + \sqrt{2} \times \sqrt{3} = \sqrt{12} + \sqrt{6}$$

 $= \sqrt{2^2 \times 3} + \sqrt{6} = 2\sqrt{3} + \sqrt{6}$
(2) $\sqrt{8} - 6 \div \sqrt{2} + 4\sqrt{32} = \sqrt{2^2 \times 2} - \frac{6}{\sqrt{2}} + 4\sqrt{4^2 \times 2}$
 $= 2\sqrt{2} - \frac{6 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} + 16\sqrt{2}$
 $= 2\sqrt{2} - \frac{6\sqrt{2}}{2} + 16\sqrt{2}$
 $= 2\sqrt{2} - 3\sqrt{2} + 16\sqrt{2}$
 $= 15\sqrt{2}$

 $(1) 2\sqrt{3} + \sqrt{6} (2) 15\sqrt{2}$

문제 3 다음 식을 간단히 하시오.

$$(1)\,\sqrt{3}\big(\,2-3\sqrt{5}\,\big)$$

(2)
$$(\sqrt{15} + 2\sqrt{6}) \div \sqrt{3}$$

(3)
$$\sqrt{72} \div 2\sqrt{3} - 2\sqrt{2} \times \sqrt{27}$$

(4)
$$\sqrt{27} \times \frac{3}{\sqrt{6}} - \sqrt{40} \div \frac{\sqrt{5}}{2}$$

오른쪽 그림과 같이 튤립, 개나리, 진달래를 심은 정사 각형 모양의 세 화단이 이어 붙어 있다. 세 화단의 넓 이가 각각 108 m², 48 m², 3 m²일 때, 전체 화단의 둘 레의 길이를 구하시오.

다음 식을 간단히 하시오.

- (1) $2\sqrt{5} + 7\sqrt{5}$
- (2) $3\sqrt{6} 7\sqrt{6}$
- (3) $5\sqrt{2} 6\sqrt{2} + 8\sqrt{2}$
- (4) $-3\sqrt{10}+2\sqrt{7}+6\sqrt{7}-5\sqrt{10}$

다음 식을 간단히 하시오.

- $(1)\sqrt{3}-\sqrt{27}$
- (2) $3\sqrt{20} + \sqrt{5}$
- (3) $\sqrt{24} + \sqrt{6} + \sqrt{54}$
- (4) $7\sqrt{2} \sqrt{12} \sqrt{2} + \sqrt{3}$

다음 식을 간단히 하시오.

- $(1)\sqrt{8}-\sqrt{3}(3\sqrt{6}-\sqrt{24})$
- (2) $\frac{1}{\sqrt{2}} \sqrt{6} \div \frac{2\sqrt{3}}{3} \frac{\sqrt{8}}{4}$
- (3) $(\sqrt{27} 3\sqrt{2}) \div \sqrt{3} + \frac{4}{\sqrt{2}} (\sqrt{2} \sqrt{3})$

4

 $2\sqrt{75}+\sqrt{108}-\frac{\sqrt{8}}{2}+\frac{6}{\sqrt{12}}=a\sqrt{2}+b\sqrt{3}$ 일 때, a+b의 값을 구하시오. (단. a. b는 유리수)

5

다음 그림은 한 눈금의 길이가 1인 모눈종이 위에 정사각 형 ABCD와 수직선을 그린 것이다. 점 A를 중심으로 하 고 AB를 반지름으로 하는 원을 그려 수직선과 만나는 점 을 P. Q라고 하자. 두 점 P. Q에 대응하는 수를 각각 a. b라고 할 때, a+b의 값을 구하시오.

6 발전 문제

다음 그림과 같이 직사각형 모양의 땅에 과수원, 당근밭, 무밭이 있다. 과수원과 무밭은 모두 정사각형 모양이고 그 넓이가 각각 720 m^2 , 80 m^2 일 때, 당근밭의 넓이를 구 하시오.

수동 카메라의 렌즈 바깥쪽 둘레에는 다음과 같은 수가 쓰여 있는 것을 볼 수 있는데, 이 수들은 무 엇을 뜻할까?

수동 카메라에는 렌즈로 들어오는 빛의 양을 원형 구멍의 크기로 조절하는 조리개가 있다. 렌즈로 들어오는 빛의 양을 $\frac{1}{2}$ 배로 줄이려면 조리개 구멍의 넓이를 $\frac{1}{2}$ 배로 줄여야 하는데, 이때 조리개 구멍 의 지름의 길이는 $\frac{1}{\sqrt{2}}$ 배로 줄여야 한다. 즉, 조리개 구멍의 넓이가 $\frac{1}{2}$ 배가 되도록 조리개 구멍의 지 름의 길이를 계속 줄여 나갈 때, 지름의 길이는 다음과 같은 비율로 줄어든다.

$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{2}$, $\frac{1}{2\sqrt{2}}$, $\frac{1}{4}$, $\frac{1}{4\sqrt{2}}$, $\frac{1}{8}$, $\frac{1}{8\sqrt{2}}$

이 수들은 분자가 모두 1이므로 간단하게 분모만 택하여 그 어림한 값을 렌즈 바깥쪽 둘레에 적어 빛이 렌즈로 들어오는 양을 조절하는 데 활용한다.

- 1 조리개 구멍의 넓이를 $\frac{1}{2}$ 배로 줄이려면 조리개 구멍의 지름의 길이를 $\frac{1}{\sqrt{2}}$ 배로 줄여야 하는 이유를 친 구들에게 설명하여 보자.
- 2 렌즈 바깥쪽 둘레에 쓰여 있는 수를 2.8에서 5.6으로 조절하면 렌즈로 들어오는 빛의 양은 몇 배가 되는 지 구하여 보자.

정답 및 풀이 241쪽

개념 콕콕 🛚

1 제곱근의 뜻과 성질

- (1) a의 제곱근: 제곱하여 a가 되는 수 (단, $a \ge 0$)
- (2) 제곱근의 성질 (단, a > 0)

$$(\sqrt{a})^2 = a, (-\sqrt{a})^2 = a$$

2 무리수와 실수

3 실수의 대소 관계

- a.b가 실수일 때
- $\bigcirc a-b>0$ 이면 a>b
- ② a-b=0이면 a=b
- ③ a-b < 0이면 a < b

4 근호를 포함한 식의 사칙계산

(1) 제곱근의 곱셈

a>0, b>0일때, $\sqrt{a}\sqrt{b}=\sqrt{ab}$

(2) 제곱근의 나눗셈

 $a>0, b>0일 때, \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$

(3) 분모의 유리화

a>0, b>0일 때, $\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a\sqrt{b}}}{\sqrt{b}\sqrt{b}}=\frac{\sqrt{ab}}{b}$

(4) 근호를 포함한 식의 덧셈과 뺄셈

근호 안의 수가 같은 것끼리 모아서 계산한다.

1 다음 보기 중에서 옳은 것을 모두 찾으시오.

- ㄱ. 64의 제곱근은 8이다.
- ㄷ. 6의 양의 제곱근은 √6이다.
- 리 4의 음의 제곱근은 -2이다.

- ①2 다음 중에서 나머지 넷과 값이 다른 하나는?
 - (1) $-\sqrt{3^2}$
- $(2) (\sqrt{3})^2$
- $(3)(-\sqrt{3})^2$ $(4)-(-\sqrt{3})^2$
- $(5) \sqrt{(-3)^2}$
- 03 다음 수가 유리수인지 무리수인지 말하시오.
 - $(1) \ 0.3\dot{2}\dot{6}$
- (2) $\sqrt{3}+2$
- (3) $\sqrt{1.69}$
- $(4) \sqrt{\frac{3}{7}}$
- 04 다음 식을 간단히 하시오.
 - $(1) \sqrt{2}\sqrt{7}$
 - (2) $\sqrt{\frac{6}{11}} \sqrt{\frac{11}{2}}$
 - (3) $4\sqrt{7} + 5\sqrt{2} + 6\sqrt{7} 3\sqrt{2}$

- **05** 부등식 $2 < \frac{\sqrt{n}}{2} < 3$ 을 만족시키는 자연수 n은 모 두 몇 개인가?
 - ① 16개
- ② 17개
- ③ 18개

- ④ 19개
- ⑤ 20개

- 06 다음 중에서 옳지 않은 것은?
 - (1) $\sqrt{9} + \sqrt{144} = 15$
 - ② $\sqrt{0.81} \times \sqrt{4} = 1.8$
 - $\sqrt{(-15)^2} \div \sqrt{5^2} = 3$
 - $4\sqrt{(-2)^2}-\sqrt{5^2}=-7$
 - (5) $(-\sqrt{3})^2 \times (\sqrt{7})^2 = 21$

- **미7** $\sqrt{(-12)^2} + (-\sqrt{7})^2 \sqrt{121} \sqrt{3^2}$ 을 간단히 하 면?
 - $\bigcirc -33$
- (2) 19
- (3) 9

- (4) 0
- (5) 5

- **08** 2.8²=7.84일 때, √0.000784의 값은?
 - ① 0.0028 ② 0.028
- ③ 0.28

- (4) 2.8
- (5) 28

- **19** 다음 중에서 두 실수의 대소 관계가 옳은 것은?
 - ① $\sqrt{3} + \sqrt{7} < \sqrt{5} + \sqrt{3}$
 - ② $4 < 3 \sqrt{2}$
 - $(3)\sqrt{7}-3<-3+\sqrt{3}$
 - $4) 1 \sqrt{2} < -\sqrt{5} + 1$
 - $(5)\sqrt{2}+3<5$

- **10** $\sqrt{2}=a$, $\sqrt{3}=b$ 라고 할 때, $\sqrt{150}$ 을 a, b를 사용하 여 옳게 나타낸 것은?
 - ① $5a^2b$
- ② 5*ab*
- $3\sqrt{5}ab^2$

- \bigcirc $\sqrt{5}ab$
 - $\bigcirc ab^2$

- **11** $5+\sqrt{3}$ 의 정수 부분을 a, 소수 부분을 b라고 할 때, a+2b의 값은?

 - ① $4-2\sqrt{3}$ ② $4+2\sqrt{3}$ ③ $2+4\sqrt{3}$
 - (4) $3+2\sqrt{3}$ (5) $3+\sqrt{3}$

서술형

12 다음 그림은 수직선 위에 정사각형 ABCD와 두 대각선을 그린 것이다. 점 A를 중심으로 하고 \overline{AC} 를 반지름으로 하는 원과 점 B를 중심으로 하고 BD를 반지름으로 하는 원을 그려 수직선과 만나 는 점을 P, Q라고 할 때, \overline{PQ} 의 길이를 구하시오.

13 맑은 날 어느 지역의 높이가 h m인 곳에서 최대로 멀리 볼 수 있는 거리는 $\sqrt{12.6h}$ km라고 한다. 이 지역의 높이가 30 m인 건물에서 최대로 멀리 볼 수 있는 거리는 몇 km인지 제곱근표를 이용하여 구하시오.

사고력 높이기

 $14\sqrt{x}$ 이하의 자연수의 개수를 N(x)라고 하자. 예 를 들어 $1 < \sqrt{3} < 20$ | 므로 N(3) = 10 | 다. $N(1)+N(2)+N(3)+\cdots+N(10)$ 의 값을 구하시오.

15 다음 그림과 같이 한 변의 길이가 $4\sqrt{30}$ cm인 정 사각형 모양의 종이를 각 변의 중점을 꼭짓점으로 하는 정사각형 모양으로 접어 나갈 때. [4단계]에 서 생기는 정사각형의 한 변의 길이를 구하시오.

학습 내용 점검			나의 학습 일기
1. 제곱근의 뜻	▶01번	© © &	이 단원을 배우고 나서 새롭게 알게
2. 제곱근의 성질	▶02, 05, 06, 07번	© © &	된 점이나 부족한 점을 적어 보세요.
3. 무리수와 실수	▶03번		
4. 실수의 대소 관계	▶09, 14번	© © &	
5. 근호를 포함한 식의 곱셈	▶10, 15번	© © &	
6. 근호를 포함한 식의 나눗셈	▶08, 13번	© © &	
7. 근호를 포함한 식의 덧셈과 뺄셈	▶04, 11, 12번	© © &	
	집중도 참 상 상 상 상 상	합동심 ☆ ☆ ☆ ☆	

칠교판으로 여러 가지 모양 만들기

칠교판은 〈그림 1〉과 같이 7개의 조각으로 이루어진 퍼즐이다. 7개의 조각을 모두 이용하여 〈그림 2〉 와 같은 도형을 만들 수도 있고. 7개의 조각 중 일부를 이용하여 〈그림 3〉과 같이 정사각형 모양을 만 들 수도 있다. ⟨그림 1⟩에서 모눈 한 눈금의 길이를 1이라고 할 때, 다음 탐구 과제를 해결하여 보자.

1 칠교판 조각 중 일부를 이용하여 정사각형 모양을 만들고, 정사각형의 한 변의 길이를 구하여 보자.

	2조각	3조각	4조각	5조각
정사각형 모양			⑥ ④ ⑦ ① (또는 ②)	
정사각형의 한 변의 길이				

- 2 〈그림 2〉로 주어진 도형의 둘레의 길이를 구하여 보자.
- 3 칠교판 조각을 모두 이용하여 오른쪽 그림과 같은 모 양을 만들고, 그 둘레의 길이를 구하여 보자.

