Московский Государственный Университет

им. М.В. Ломоносова

Факультет Вычислительной Математики и Кибернетики. Кафедра Суперкомпьютеров и Квантовой Информатики.

Практикум на ЭВМ.
Отчет №1: Basic Image Convolution on NVIDIA GPUs using CUDA.

Постановка задачи

Для выполнения первого задания необходимо реализовать программу на C++ и CUDA, которая:

- 1. Получает входные параметры командной сроки (типы используемого фильтра и входных данных про них далее);
- 2. Загружает с диска необходимые изображения;
- 3. Преобразует изображения в линейные массивы (развертка матрицы в линейный массив)
- 4. Копирует эти массивы в память GPU;
- 5. Запускает CUDA-ядра, которые применяют к изображениям необходимый фильтр;
- 6. Выгружает результат в память СРU;
- 7. Выводит 2 времени работы: только CUDA-ядер, а также CUDA-ядер + копирований данных;
- 8. Сохраняет полученные после фильтрации изображения на диск (также в виде изображений, которые можно потом посмотреть).

Описание структуры программы

Программа считывает параметры командной строки: тип фильтра (1, 2 или 3) и тип входных изображений (1 или 2), где фильтры — это Gaussian Blur 5x5 и 2 фильтра Edge detection, а входные изображения 300x300 и 2000x2000, соответственно. Далее, нужные изображения считываются с помощью библиотеки lodepng, копируются в память GPU с помощью сиdаМетсру, затем запускается нужное ядро. После работы ядра результаты копируются обратно на CPU тем же сиdаМетсру и, аналогично, записываются в файлы с помощью lodepng. Ядра используемых фильров:

Gaussian blur 5 × 5 (approximation)	$\frac{1}{256}$	$\begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{bmatrix}$	4 16 24 16 4	6 24 36 24 6	4 16 24 16 4	1 4 6 4 1	
			$1 \\ 0 \\ -1$	0 0 0	$-1\\0\\1$		
Edge detection			$egin{array}{c} 0 \ -1 \ 0 \end{array}$	$-1 \\ 4 \\ -1$	$0\\-1\\0$		

Примеры работы программы

Тип	300x300	2000x2000
фильтра Оригинал		
Gaussian blur		
Edge detection v1		
Edge detection v2		

Время выполнения программы

Изображения 300х300:

Размер фильтра	Время работы, мс
3х3 ядро	0,17
3х3 ядро + копирование	0,302
5х5 ядро	0,375
5x5 ядро + копирование	0,547

Изображения 2000х2000:

Размер фильтра	Время работы, мс
3х3 ядро	6,788
3х3 ядро + копирование	9,763
5х5 ядро	16,4
5х5 ядро + копирование	19,436