FRL

Prof. Santucci Jean-François SPE – UMR 6134 UNIVERSITE DE CORSE

email: santucci@univ-corse.fr

PLAN

- 1. Introduction : Notions de Representation de la connaissance
- 2. Frames
- 3. Concepts de base d'un langage à base de frames
- Implementation d'un langage à base de Frames

PLAN

- Introduction : Notions de Representation de la connaissance
- 2. Frames
- 3. Concepts de base d'un langage à base de frames
- 4. Implementation d'un langage à base de Frames

Problématique

- **?** La représentation de la connaissance est un concept fondamental en Intelligence Artificielle.
- Chaque branche de recherche a une vision personnelle liée à son propre domaine de recherche.
- Il faut déterminer les rôles que jouent cette représentation et la place qu'elle occupe.

choix ontologiques

- ? toutes les représentations sont des approximations imparfaites de la réalité
- ? chacune tient compte de certaine choses et en ignorant d'autres,
- Choisir une représentation est un choix sur : 'comment voir' et 'que voir' du monde
- ? c'est un choix ontologique.

La Représentation des connaissances

- Provient historiquement du travail d'autres secteurs :
- **?** La **logique mathématique** : variation du calcul formel et de la logique.
- **?** La **psychologie** : raisonnement comme une caractéristique du comportement humain
- **?** La **biologie** : architecture de la machine qui accompli le raisonnement.
- Les statistiques: notion d'incertitude et d'obéissance aux axiomes de probabilités ou possibilités
- **?**L'économie : ajoute les éléments de valeurs et de préférence.

un moyen d'expression humain

- C'est le moyen à travers lequel nous exprimons les choses à propos du monde, le moyen d'expression et de communication par lequel nous disons à la machine (ou à l'autre) des choses sur le monde.
- Rôle de la représentation de connaissance est un moyen d'expression et de communication pour notre usage.

Notion d'objets

- Plans les deux cas, principes de base :
 - . Encapsulation
 - . Communication
 - . Création d'exemplaires
 - . héritage
- **?** Elément de base : l'objet

Concepts de base

? Une encapsulation est un regroupement sous un même nom de données et des procédures qui les manipulent.

- ? Communication
 - . Par envoi de messages :on active les points d'entrée des encapsulations en leur envoyant des messages.
 - . A la réception d'un message, l'encapsulation exécute la procédure correspondante.
- ATTENTION : Différence avec la Rep. Des Conn.
- **?** Création d 'exemplaires
 - . Par instanciation : classes
- Héritage : héritage de propriétés entre classes.

Encapsulation

- ? Classiquement en informatique, on distingue deux entités bien distinctes : le code et les données.
- ? On déclare les données sans se soucier de l'utilisation qui en sera faite.
- ? Chaque donnée est donc visible de toutes les procédures.

Encapsulation

- ? Grâce à la notion d'encapsulation, une procédure ne peut manipuler que les données appartenant à une encapsulation
- Plle ne peut pas modifier les données d'une autre encapsulation.

Encapsulation

- ? Vue de l'extérieur une encapsulation est :
 - . Une région mémoire
 - . Une entité unique et indépendante
 - . Une liste de points d'entrée.
- ? Vue de l 'intérieur une encapsulation est :
 - . Des données structurées locales
 - . Des procédures locales correspondant chacune à un point d'entrée et qui manipulent ces données.

Envoi des messages

- ? Une transmission de message doit spécifier :
 - . Le nom de l'encapsulation destinataire
 - . Le nom du point d'entrée à activer
 - . Des arguments éventuels si deux encapsulations
 - s 'échangent des valeurs.
- ? Le message ne sait rien de l'implémentation du destinataire. Il ne connaît que son nom.
- ? Cela permet de modifier la représentation interne sans changer les programmes appelants.

Envoi des messages

Création d'exemplaires

- ? Les objets ayant un même comportement seront représentés par un prototype qui définira leurs propriétés.
- ? Le prototype est une sorte de moule à partir duquel on fabrique autant d'éléments que l'on veut.
- Prototype est un moyen de décrire un ensemble par définition.
- ? Les exemplaires d'un prototype sont les éléments de cet ensemble.
- Plans la terminologie des langages objets on parlera de classe.

Création d'exemplaires

? Les exemplaires ainsi créés sont appelés instances de la classe à partir de laquelle ils sont fabriqués.

Hernage

- ? On peut avoir envie de définir une classe possédant toutes les propriétés d'une autre classe déjà définie, plus un certain nb d'autres.
- ? Le mécanisme d'héritage permet de ne définir que les propriétés particulières au nouvel objet.
- ? Créer un lien hiérarchique entre deux objets permet donc de faire hériter l'ensemble des données et des méthodes.

Héritage

Données de C1

Méthodes de C1

Données de C2

Méthodes de C2

•

•

•

Données de Ci

Méthodes de Ci

Données de C1

+

Données de C2

٠.

Données de Ci

Méthodes de C1

+

Méthodes de C2

.

Méthodes de Ci

Arbre d'héritage

- Proposition de la conception orientée objet, tout objet du système que l'on crée doit être rattaché à u autre objet.
- ? Il existe dans u n environnement de P.O.O. une classe prédéfinie : OBJET.
- ? Cette classe définit les fonctionnalités que doivent posséder toutes les classes.

Arbre d'héritage

- ? En fait tout environnement de P.O.O est consitué d'un arbre d'héritage comprenant un certain nombre de classes prédéfinies.
- Toutes ces classes héritent de la classe OBJET.
- ? Quand on veut fabriquer une nouvelle classe, celle-ci doit s'insérer dans cette pyramide.

Arbre d'héritage

- Toute nouvelle classe doit donc être fabriquée à partir d'une classe existante en créant un lien d'héritage.
- Une classe en P.O.O. ne peut en général avoir de lien d'héritage direct qu'avec un seul père : héritage simple.

Classe: exemple

Place données internes ne sont accessibles que par les procédures locales à une classe qui s'appelle des méthodes.

Classe: exemple

- **?** Exemple : on décrire une pile comme étant un objet ayant les fonctionnalités suivantes :
 - . Une pile doit pouvoir rendre le nb d'éléments qu'elle contient.
 - . On doit pouvoir initialiser la pile.
 - . On doit pouvoir savoir si une pile est vide ou non.
 - . On doit pouvoir empiler un nouvel élément en sommet de la pile.
 - . On doit pouvoir dépiler l'élément situé en sommet de pile.

Classe: exemple d'une pile

Classe: exemple

- **?** Exemple : on décrire une pile comme étant un objet ayant les fonctionnalités suivantes :
 - . Une pile doit pouvoir rendre le nb d'éléments qu'elle contient.
 - . On doit pouvoir initialiser la pile.
 - . On doit pouvoir savoir si une pile est vide ou non.
 - . On doit pouvoir empiler un nouvel élément en sommet de la pile.
 - . On doit pouvoir dépiler l'élément situé en sommet de pile.