2012/07/08

Exercise 3

Consider a neural network in which a vectored node v feeds into two distinct vectored nodes h_1 and h_2 computing different functions. The functions computed at the nodes are $h_1 = ReLU(W_1v)$ and $h_2 = sigmoid(W_2v)$. We do not know anything about the values of the variables in other parts of the network, but we know that $h_1 = [2, -1, 3]^T$ and $h_2 = [0.2, 0.5, 0.3]^T$, that are connected to the node $v = [2, 3, 5, 1]^T$. Furthermore the loss gradients are $\frac{\partial L}{\partial h_1} = [-2, 1, 4]^T$ and $\frac{\partial L}{\partial h_2} = [1, 3, 2]^T$, respectively. Show that the backpropagated loss gradient $\frac{\partial L}{\partial v}$ can be computed in terms of W_1 and W_2 as follows:

$$\frac{\partial L}{\partial v} = W_1^T \begin{bmatrix} -2\\0\\4 \end{bmatrix} + W_2^T \begin{bmatrix} 0.16\\0.75\\-0.42 \end{bmatrix}$$
 (5)

What are the sizes of W_1, W_2 and $\frac{\partial L}{\partial v}$?

Remember that $ReLU(x) = \max(0, x)$ and $sigmoid(x) = \frac{\exp(x)}{(\exp(x) + 1)}$.

$$\Rightarrow \frac{3h_{2}}{3\lambda_{1}} \qquad O'(2) = O(2)(100)$$

$$\text{Hum } h_{2} = \begin{bmatrix} 62\\ 0.5\\ 0.3 \end{bmatrix} \qquad \Rightarrow 22 = W_{2}V \begin{bmatrix} 0.2\\ 0.5\\ 0.3 \end{bmatrix} \Rightarrow O'(2) = \begin{bmatrix} 0.2 & 0.5\\ 0.5 & 0.5\\ 0.3 & 0.3 \end{bmatrix} = \begin{bmatrix} 0.6\\ 0.25\\ 0.25 \end{bmatrix} = \begin{bmatrix} 0.16\\ 0.25\\ 0.21 \end{bmatrix}$$

Sizes: Velke h, hz elps W1, W2 c/k 3+4 DL e/2"