2020 Full States EV and EC of One Check

This is the example vignette for function: **snw_evuvw20_jaeemk** from the **PrjOptiSNW Package.** 2020 integrated over VU and VW

Test SNW EVUVW20 JAEEMK Defaults Dense

VFI and Distribution

Call the function with defaults.

```
clear all;
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
xi=0.5; % Proportional reduction in income due to unemployment (xi=0 refers to 0 labor income;
b=0; % Unemployment insurance replacement rate (b=0 refers to no UI benefits; b=1 refers to 100
TR=100/58056; % Value of a welfare check (can receive multiple checks). TO DO: Update with alte
mp_params('xi') = xi;
mp_params('b') = b;
mp_params('TR') = TR;
% Solve for Unemployment Values
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_ds') = false;
mp controls('bl print ds verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_precompute_verbose') = false;
mp controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp_controls('bl_print_evuvw20_jaeemk_verbose') = false;
% Solve the Model to get V working and unemployed
[V ss,ap ss,cons ss,mp valpol more ss] = snw vfi main bisec vec(mp params, mp controls);
```

Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; time=20.6119

```
inc_VFI = mp_valpol_more_ss('inc_VFI');
spouse_inc_VFI = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_VFI = inc_VFI + spouse_inc_VFI;
% Solve unemployment
[V_unemp,~,cons_unemp,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

 $\label{lem:completed_SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM = default_dense; SNW_MP_CONTROL = default_test; time = 1600 for the complete of the complete$

```
[Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_ss, mp_valpol_more_ss);
```

Completed SNW_DS_MAIN; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; time=51.8429

```
% Get Matrixes
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid'};
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, False)
Wage quintile cutoffs=0.49295    0.79302    1.3138    2.1063
Completed SNW_HH_PRECOMPUTE;SNW_MP_PARAM=default_dense;SNW_MP_CONTROL=default_test;time cost=23.0315
```

Solve for 2020 Evuvw With 0 and 2 Checks

```
% Call Function
welf_checks = 0;
[ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss, cons_ss, V_unemp, cons_unemp, mp_precompute_res);
```

Completed SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=0; TR=0.0017225; xi=0.5; b=0; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=0; TR=0.0017225; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; Completed SNW_EVUVW20_JAEEMK; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; timeEUEC=0.64818

```
% Call Function
welf_checks = 2;
[ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss, cons_ss, V_unemp, cons_unemp, mp_precompute_res);
```

Completed SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=2; TR=0.0017225; xi=0.5; b=0; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=2; TR=0.0017225; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; Completed SNW_EVUVW20_JAEEMK; SNW_MP_PARAM=default_dense; SNW_MP_CONTROL=default_test; timeEUEC=0.44581

Differences between Checks in Expected Value and Expected Consumption

```
mn_V_U_gain_check = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_MPC_U_gain_share_check = (ec20_jaeemk_check2 - ec20_jaeemk_check0)./(welf_checks*mp_params(
```

Dense Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
```

```
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN V GAIN CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN V U GAIN CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(r
tb_az_v = ff_summ_nd_array(st_title, mn_v_U_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesd
```

group	savings 	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	
1	0	0.27912	0.11616	0.067433	0.053393	0.049158	0.047687	
2	0.00085734	0.27485	0.11517	0.066984	0.053023	0.048799	0.047329	
3	0.0068587	0.23632	0.10481	0.062008	0.048905	0.044801	0.04335	
4	0.023148	0.1863	0.08898	0.054024	0.042348	0.038458	0.037046	
5	0.05487	0.14109	0.071528	0.044733	0.034862	0.031271	0.029909	
6	0.10717	0.10829	0.056442	0.036039	0.027915	0.024677	0.023377	
7	0.18519	0.087242	0.046352	0.02987	0.023041	0.020157	0.018927	
8	0.29407	0.072208	0.039367	0.025433	0.019424	0.016782	0.015628	
9	0.43896	0.060221	0.033761	0.021874	0.016469	0.014026	0.012929	
10	0.625	0.050442	0.029129	0.018949	0.014075	0.011802	0.010759	
11	0.85734	0.042316	0.025218	0.016484	0.012083	0.0099683	0.0089837	
12	1.1411	0.035502	0.021857	0.014374	0.010409	0.0084519	0.0075155	
13	1.4815	0.029772	0.01894	0.012549	0.0089945	0.0071841	0.0063034	
14	1.8836	0.024956	0.016396	0.010963	0.0077932	0.0061208	0.0052935	
15	2.3525	0.020913	0.014175	0.0095793	0.0067677	0.0052312	0.0044577	
16	2.8935	0.01753	0.012238	0.008369	0.0058896	0.0044819	0.003759	
17	3.5117	0.014702	0.010552	0.0073101	0.0051351	0.0038505	0.0031792	
18	4.2121	0.012342	0.0090878	0.006382	0.0044849	0.0033193	0.0026984	
19	5	0.010373	0.0078203	0.0055676	0.0039231	0.0028711	0.0022965	
20	5.8805	0.0087301	0.0067252	0.0048575	0.0034361	0.002492	0.0019615	
21	6.8587	0.0073585	0.0057817	0.004238	0.0030132	0.0021701	0.0016824	
22	7.9398	0.0062131	0.0049708	0.0036966	0.0026454	0.001896	0.0014485	
23	9.1289	0.0052558	0.0042752	0.0032257	0.0023256	0.0016619	0.0012519	
24	10.431	0.0044552	0.0036794	0.0028167	0.002047	0.0014609	0.0010864	
25	11.852	0.0037847	0.0031694	0.0024609	0.0018039	0.0012875	0.00094651	
26	13.396	0.0032224	0.0027332	0.0021515	0.0015915	0.0011375	0.00082806	
27	15.069	0.0027501	0.00236	0.0018824	0.0014053	0.0010072	0.00072742	

28	16.875	0.0023527	0.0020407	0.0016483	0.001242	0.00089377	0.00064142	0.000
29	18.82	0.0020176	0.0017673	0.0014445	0.0010993	0.0007946	0.00056753	0.000
30	20.91	0.0017343	0.0015329	0.0012672	0.00097404	0.00070765	0.0005038	0.000
31	23.148	0.0014944	0.0013318	0.0011128	0.00086375	0.00063126	0.00044868	0.000
32	25.541	0.0012908	0.0011591	0.00097818	0.00076679	0.00056405	0.00040076	0.000
33	28.093	0.0011176	0.0010105	0.0008609	0.00068159	0.00050477	0.0003589	0.000
34	30.81	0.00096988	0.00088251	0.00075856	0.00060649	0.00045237	0.00032217	0.000
35	33.697	0.0008436	0.00077212	0.00066925	0.00054025	0.00040595	0.00028984	0.000
36	36.758	0.00073542	0.00067675	0.0005912	0.00048173	0.00036464	0.00026127	0.000
37	40	0.00064253	0.00059424	0.00052296	0.00043001	0.00032792	0.00023595	0.000
38	43.427	0.00056261	0.00052272	0.00046322	0.00038423	0.00029534	0.00021344	0.000
39	47.044	0.00049368	0.00046065	0.00041086	0.00034368	0.00026633	0.00019338	0.000
40	50.856	0.00043412	0.00040667	0.00036494	0.00030774	0.0002404	0.00017546	0.000
41	54.87	0.00038251	0.00035966	0.00032459	0.00027584	0.00021718	0.00015944	0.000
42	59.089	0.00033773	0.00031865	0.00028912	0.00024751	0.00019642	0.00014507	0.000
43	63.519	0.00029877	0.00028279	0.00025789	0.00022233	0.00017785	0.00013216	9.403
44	68.164	0.00026481	0.0002514	0.00023035	0.00019993	0.00016119	0.00012053	8.602
45	73.032	0.00023517	0.00022388	0.00020604	0.00017998	0.00014624	0.00011006	7.887
46	78.125	0.00020923	0.00019969	0.00018455	0.0001622	0.00013279	0.00010058	7.24
47	83.45	0.00018648	0.00017841	0.00016553	0.00014633	0.00012068	9.1999e-05	6.669
48	89.011	0.00016649	0.00015965	0.00014868	0.00013216	0.00010978	8.4257e-05	6.152
49	94.815	0.00014891	0.0001431	0.00013373	0.00011949	9.995e-05	7.7256e-05	5.688
50	100.87	0.00013342	0.00012846	0.00012044	0.00010816	9.1084e-05	7.0912e-05	5.27
51	107.17	0.00011973	0.0001155	0.00010862	9.8007e-05	8.308e-05	6.5154e-05	4.909
52	113.73	0.00010762	0.000104	9.8089e-05	8.8914e-05	7.5856e-05	5.9928e-05	4.588
53	120.55	9.6907e-05	9.3809e-05	8.873e-05	8.0788e-05	6.9365e-05	5.5235e-05	4.31
54	127.64	8.7567e-05	8.4918e-05	8.0546e-05	7.3655e-05	6.364e-05	5.1109e-05	4.094
55	135	8.7567e-05	8.4918e-05	8.0546e-05	7.3656e-05	6.3641e-05	5.1109e-05	4.094

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_dat

group	savings 	mean_eta_1	mean_eta_2 	mean_eta_3	mean_eta_4 	mean_eta_5 	mean_eta_6
1	0	0.9469	0.94276	0.8717	0.79605	0.7222	0.6457
2	0.00085734	0.93411	0.9349	0.86947	0.79402	0.72155	0.64512
3	0.0068587	0.81862	0.82623	0.78945	0.74561	0.6858	0.6149
4	0.023148	0.71821	0.72464	0.70291	0.65987	0.61284	0.55283
5	0.05487	0.65702	0.66511	0.64788	0.60732	0.55769	0.51161
6	0.10717	0.54356	0.56685	0.56196	0.52654	0.48344	0.43245
7	0.18519	0.34762	0.37134	0.3935	0.38764	0.35935	0.3156
8	0.29407	0.27014	0.27012	0.26968	0.2781	0.27577	0.25618
9	0.43896	0.22635	0.22379	0.21808	0.21552	0.21153	0.20821
10	0.625	0.18643	0.18323	0.18257	0.18047	0.17918	0.17475
11	0.85734	0.16247	0.15989	0.15903	0.15917	0.1587	0.16115
12	1.1411	0.14602	0.14447	0.14433	0.1439	0.14242	0.14773
13	1.4815	0.13936	0.13684	0.13479	0.13517	0.13698	0.13519
14	1.8836	0.13686	0.13554	0.13207	0.13035	0.13296	0.13246
15	2.3525	0.13507	0.13247	0.12893	0.12723	0.12724	0.1284
16	2.8935	0.12673	0.12656	0.12382	0.12237	0.12168	0.12377
17	3.5117	0.12256	0.12043	0.11953	0.11889	0.11806	0.11895
18	4.2121	0.11793	0.11791	0.11793	0.11601	0.11689	0.11664
19	5	0.11739	0.11678	0.11684	0.11637	0.11577	0.11666
20	5.8805	0.11528	0.11487	0.11456	0.11528	0.11413	0.11533
21	6.8587	0.11285	0.11244	0.11208	0.11157	0.11191	0.11282
22	7.9398	0.11153	0.11118	0.11088	0.1103	0.11091	0.11118
23	9.1289	0.1122	0.11192	0.11174	0.11112	0.11192	0.11192
24	10.431	0.11098	0.11077	0.11058	0.11009	0.11068	0.11081
25	11.852	0.10854	0.10833	0.10817	0.10779	0.10805	0.10841
26	13.396	0.10801	0.10783	0.10765	0.10745	0.10738	0.108
27	15.069	0.11027	0.11014	0.10997	0.10974	0.1096	0.1103

28	16.875	0.11158	0.11146	0.11134	0.11129	0.11095	0.11166	0.
29	18.82	0.11001	0.1099	0.1098	0.10996	0.1093	0.11003	0.
30	20.91	0.1067	0.10661	0.10651	0.10645	0.10603	0.10679	0
31	23.148	0.10684	0.10677	0.10669	0.10658	0.10631	0.10702	0.
32	25.541	0.10847	0.10842	0.10835	0.1084	0.108	0.10868	0.
33	28.093	0.1086	0.10855	0.10851	0.10857	0.10826	0.10885	0.
34	30.81	0.10826	0.10822	0.10817	0.10821	0.10802	0.10841	0.
35	33.697	0.10867	0.10864	0.1086	0.10861	0.10855	0.10875	0
36	36.758	0.10953	0.10951	0.10947	0.10947	0.10941	0.10949	0.
37	40	0.10783	0.1078	0.10777	0.10776	0.10793	0.10764	0.
38	43.427	0.10628	0.10627	0.10624	0.10623	0.1065	0.10593	0.
39	47.044	0.10618	0.10618	0.10615	0.10614	0.1063	0.10584	0.
40	50.856	0.10875	0.10873	0.10871	0.1087	0.10863	0.10854	0.
41	54.87	0.1092	0.10918	0.10917	0.10916	0.10914	0.10898	0.
42	59.089	0.10782	0.1078	0.10779	0.10778	0.10797	0.10758	0.
43	63.519	0.10676	0.10675	0.10673	0.10673	0.10684	0.10646	0.
44	68.164	0.10765	0.10764	0.10763	0.10762	0.1077	0.10743	0.
45	73.032	0.10869	0.10868	0.10867	0.10866	0.10871	0.10864	0.
46	78.125	0.10779	0.10778	0.10777	0.10776	0.1078	0.10768	0.
47	83.45	0.10629	0.10629	0.10628	0.10627	0.1063	0.10635	0.
48	89.011	0.10682	0.10682	0.10681	0.1068	0.10681	0.10702	0
49	94.815	0.10832	0.10832	0.10831	0.1083	0.1083	0.10837	0.
50	100.87	0.10817	0.10817	0.10816	0.10815	0.10814	0.10815	0.
51	107.17	0.10742	0.10742	0.10741	0.10739	0.10736	0.10704	0.
52	113.73	0.10763	0.10763	0.10761	0.10757	0.1075	0.10702	0.0
53	120.55	0.10824	0.10821	0.10815	0.10805	0.10784	0.1071	0.0
54	127.64	0.10659	0.10646	0.10629	0.10605	0.10564	0.10453	0.
55	135	0.10659	0.10646	0.10629	0.10605	0.10564	0.10453	0.

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end}))', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


LOG(X+min(X))

Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 38, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(20,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_C_W_gain_check_use = ec20_jaeemk_check2 - ec20_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it_age = 21; % +18
it_marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it_educ = 1; % 1 = lower education
% Select: NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
mn_C_W_gain_check_jemk = mn_C_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,mn_V_W_gain_check_jemk = mn_V_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk,[3,2,1]);
mt_C_W_gain_check_jemk = permute(mn_C_W_gain_check_jemk,[3,2,1]);
mt_C_W_gain_check_jemk(mt_C_W_gain_check_jemk<=1e-10) = 1e-10;
mt_V_W_gain_check_jemk = permute(mn_V_W_gain_check_jemk,[3,2,1]);
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
```

```
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

```
figure();
it_a = 1;
scatter((mt_total_inc_jemk(:,it_a)), (mt_V_W_gain_check_jemk(:,it_a)), 100);
title({'MN\_V\_W\_GAIN\_CHECK(Y(A, eta)), Lowest A, J38M0E0K0', ...
    'Each Circle is A Different Shock Level'});
xlabel('Y(a,eta) = Spouse + Household head Income Joint');
ylabel('MN\_V\_W\_GAIN\_CHECK(A, eta)');
grid on;
grid minor;
```

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level 0.3 (g) 0.25 V) 0.1 0.05

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
```

```
'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_C\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
```

```
'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
    'o', 'd', 's', 'x', '*', ...
    'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
1	1	0	0.018089	0.017252	0.016367	0.015089	0.014021	0.01312
2	2	0	0.024167	0.023077	0.021867	0.020077	0.018573	0.017296
3	3	0	0.027732	0.026669	0.025441	0.023362	0.021616	0.020134
4	4	0	0.031193	0.03009	0.028767	0.026421	0.024452	0.022781
5	5	0	0.033947	0.032875	0.031534	0.02899	0.026856	0.025048
6	1	1	0.0061943	0.0059191	0.0056503	0.0051336	0.0047002	0.0043309
7	2	1	0.0081386	0.0077695	0.007405	0.0067275	0.0061552	0.0056679
8	3	1	0.0095966	0.0091734	0.0087634	0.0079591	0.0072803	0.006712
9	4	1	0.011304	0.010815	0.010337	0.0093981	0.0086038	0.0079341
10	5	1	0.013294	0.012771	0.012229	0.011142	0.010228	0.009448

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_	GAIN_CHEC	K(KM,J)), welf_	checks=2, TR=0.	0017225 xxxxxx	xxxxxxxxxxxxx	XXXXXX	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.064794	0.073581	0.10118	0.097925	0.093502	0.08852
2	2	0	0.072702	0.085068	0.11591	0.11391	0.11124	0.10979
3	3	0	0.087366	0.10442	0.13386	0.13266	0.1309	0.12783
4	4	0	0.088926	0.10344	0.13895	0.138	0.13683	0.13527
5	5	0	0.10276	0.11528	0.14404	0.14305	0.14187	0.14028
6	1	1	0.098235	0.10626	0.11555	0.11505	0.11337	0.11228
7	2	1	0.10346	0.10657	0.11743	0.11639	0.11571	0.1135
8	3	1	0.10975	0.11642	0.12686	0.12437	0.12447	0.12303
9	4	1	0.11043	0.11635	0.12843	0.12825	0.13154	0.1285
10	5	1	0.12035	0.12608	0.13427	0.136	0.13418	0.13489

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_u_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdeso
group
         edu
               marry
                      mean_age_18
                                 mean_age_19
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                                                                                mean_age_23
                         0.0284
                                   0.027529
                                               0.026552
                                                          0.025115
                                                                      0.023836
                                                                                 0.022692
    1
          0
                0
    2
          1
                0
                       0.025651
                                   0.024457
                                               0.023039
                                                          0.020461
                                                                      0.018371
                                                                                 0.016659
    3
          0
                1
                        0.01032
                                  0.0099016
                                              0.0094945
                                                         0.0088461
                                                                     0.0082733
                                                                                 0.0077704
    4
          1
                1
                       0.0090905
                                  0.0086775
                                              0.0082596
                                                         0.0072981
                                                                     0.0065136
                                                                                 0.0058668
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
edu
               marry
                      mean_age_18
                                 mean_age_19
   group
                                             mean_age_20
                                                         mean_age_21
                                                                    mean_age_22
                                                                                mean_age_23
```

Graph Mean Values:

1

2

3

4

0

1

0

0

1

1

0.073692

0.092928

0.10086

0.11603

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```

0.1068

0.14677

0.11448

0.13453

0.10496

0.14526

0.11496

0.13306

0.10269

0.14305

0.11372

0.13399

0.10155

0.13912

0.13168

0.1132

0.083211

0.10951

0.1066

0.12207

Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


