פתרון מטלה -04 פונקציות מרוכבות,

2024 בנובמבר 29

 $f,g\in C^1(U)$ עבור אבאות הזהויות את ונוכיח עבור $U\subseteq\mathbb{C}$ תהי

'סעיף א

$$\frac{\partial}{\partial z}(f\cdot g) = \frac{\partial f}{\partial z}\cdot g + f\cdot \frac{\partial g}{\partial z}$$

הוכחה. נבחן ישירות מהגדרת הגבול

$$\begin{split} \frac{\partial (f \cdot g)}{\partial z} &= \lim_{h \to 0} \frac{f(z+h)g(z+h) - f(z)g(z)}{h} \\ &= \lim_{h \to 0} \frac{(f(z+h) - f(z))g(z+h) + f(z)g(z+h) - f(z)g(z)}{h} \\ &= \lim_{h \to 0} \frac{(f(z+h) - f(z))g(z+h)}{h} + \lim_{h \to 0} \frac{f(z)g(z+h) - f(z)g(z)}{h} \\ &= \lim_{h \to 0} g(z+h) \frac{f(z+h) - f(z)}{h} + \lim_{h \to 0} f(z) \frac{g(z+h) - g(z)}{h} \\ &= \frac{\partial f}{\partial z} g + f \frac{\partial g}{\partial z} \end{split}$$

'סעיף ב

$$\frac{\partial}{\partial z}(f\circ g) = \left(\frac{\partial f}{\partial z}\circ g\right)\frac{\partial g}{\partial z} + \left(\frac{\partial f}{\partial \overline{z}}\circ g\right)\frac{\partial \overline{g}}{\partial z}$$

הורחה ורצע חישורים חלהיים·

$$\frac{\partial (f\circ g)}{\partial x} = \frac{\partial f(g,\overline{g})}{\partial x} = \left(\frac{\partial f}{\partial x}\circ g\right)\cdot \left(\frac{\partial g}{\partial x} + \frac{\partial \overline{g}}{\partial x}\right)$$

וכן גם

$$\frac{\partial (f \circ g)}{\partial y} = \left(\frac{\partial f}{\partial y} \circ g\right) \cdot \left(\frac{\partial g}{\partial y} - \frac{\partial \overline{g}}{\partial y}\right)$$

ולבסוף אנו יודעים כי

$$\frac{\partial (f\circ g)}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\right)$$

ומהרכבת שלושת השוויונות האחרונים נקבל את השוויון המבוקש:

$$\frac{\partial}{\partial z}(f\circ g) = \left(\frac{\partial f}{\partial z}\circ g\right)\frac{\partial g}{\partial z} + \left(\frac{\partial f}{\partial \overline{z}}\circ g\right)\frac{\partial \overline{g}}{\partial z}$$

'סעיף ג

$$\frac{\partial \overline{f}}{\partial \overline{z}} = \overline{\left(\frac{\partial f}{\partial z}\right)}$$

 $: \overline{z}$ לפי ונגזור של Wirtinger באופרטור נשתמש הוכחה. נשתמש

$$\begin{split} \frac{\partial \overline{f}}{\partial \overline{z}} &= \frac{1}{2} (\frac{\partial \overline{f}}{\partial x} + i \frac{\partial \overline{f}}{\partial y}) \\ &= \frac{1}{2} (\frac{\partial (u - iv)}{\partial x} + i \frac{\partial (u - iv)}{\partial y}) \\ &= \frac{1}{2} (\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x} + i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}) \\ &= \frac{1}{2} (\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} - i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}) \\ &= \frac{1}{2} (\frac{\partial (u + iv)}{\partial x} - i \frac{\partial (u + iv)}{\partial y}) \\ &= \overline{\left(\frac{\partial f}{\partial z}\right)} \end{split}$$

נמצא את כל הנקודות בהן הפונקציות הנתונות גזירות.

'סעיף א

 $f(z) = \sin(\overline{z})$ נגדיר

מתקיים Wirtinger מתקיים כי כאופרטון

$$f(z,\overline{z})=\sin(\overline{z})=\frac{e^{i\overline{z}}-e^{-i\overline{z}}}{2i}=\frac{e^{i(x-iy)}-e^{-i(x-iy)}}{2i}=\frac{e^{ix+y}-e^{-ix-y}}{2i}$$

ובתרגול ראינו כי הפונקציה גזירה אם ורק אם לכן לכן נבדוק: הפונקציה גזירה אם ורק אם לכן לכן נבדוק

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}) = \frac{1}{2}(\frac{1}{2i}(ie^{ix+y} + ie^{-ix-y} + i(e^{ix+y} + e^{-ix-y}))) = \frac{1}{2}(e^{ix+y} + e^{-ix-y}) = \cos(\overline{z})$$

בדיעבד זה נובע ישירות.

נבדוק איפוס

$$0 = \frac{\partial f}{\partial \overline{z}} = \cos(\overline{z})$$

 $z=rac{\pi}{2}+\pi k+0i$ וממטלה 2 נסיק שאלו הן הנקודות

'סעיף ב

$$g(z)=e^{|z-1|^2}$$
 נגדיר

$$e^{|z-1|^2}=e^{(z-1)\overline{(z-1)}}=e^{z\overline{z}-z-\overline{z}+1}$$
 ולכן נבחין נבחין נבחין נבחין

$$g(z, \overline{z}) = \exp(z\overline{z} - z - \overline{z} + 1)$$

ובהתאם

$$\frac{\partial g}{\partial \overline{z}} = (z - 1) \exp(z\overline{z} - z - \overline{z} + 1)$$

אז מתקיים

$$\frac{\partial g}{\partial \overline{z}} = 0 \iff (z - 1)g(z, \overline{z}) = 0 \iff z = 1, g(z, \overline{z}) = 0$$

בלבד. z=1 בלבד ב־z=1 בלבד ממשי, ולכן בלכך בלבד בלבד.

'סעיף ג

$$h(z) = \overline{\mathrm{Log}(z)} - |z|^2$$
 נגדיר

פתרון במקרה זה מתקיים

$$h(z, \overline{z}) = \log(\sqrt{z\overline{z}}) - \operatorname{Arg}(z) - z\overline{z}$$

ולכן

$$\frac{\partial h}{\partial \overline{z}} = \frac{\frac{\sqrt{z}}{2\sqrt{\overline{z}}}}{\sqrt{z\overline{z}}} - z = \frac{1}{2\overline{z}} - z$$

נשווה לאפס

$$\frac{\partial h}{\partial \overline{z}} = 0 \iff 1 = 2z\overline{z} \iff |z| = \frac{1}{\sqrt{2}}$$

 $.\partial B(0,\frac{1}{\sqrt{2}})$ אמעגל על גזירה גזירה ולכן ולכן ולכן ו

נגדיר

$$f(z) = \begin{cases} \left(\frac{z}{|z|}\right)^4 & z \neq 0\\ 1 & z = 0 \end{cases}$$

בתחום: שלה דיפרנציאבילית בתחום הנתון, די לבדוק את הנגזרות שלה בתחום: הוכחה דיפרנציאבילית שלה בתחום:

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x+iy}{\sqrt{x^2+y^2}} \right)^4 = \frac{\partial}{\partial x} \left(\frac{(x+iy)^2}{x^2+y^2} \right)^2$$

$$= 2 \left(\frac{(x+iy)^2}{x^2+y^2} \right) \cdot \frac{(2x+2iy)(x^2+y^2) - 2x(x+iy)^2}{(x^2+y^2)^2} = 4 \frac{(x+iy)^3}{(x^2+y^2)^3} \cdot (y^2-ixy)$$

וכן באופן דומה גם

$$\frac{\partial f}{\partial y} = 2\left(\frac{(x+iy)^2}{x^2+y^2}\right) \cdot \frac{(-2y+2ix)(x^2+y^2) - 2y(x+iy)^2}{(x^2+y^2)^2} = 4\frac{(x+iy)^3}{(x^2+y^2)^3} \cdot (ix^2-yx)$$

מצאנו ביטוי רציף בתחום לשתי הפונקציות ולכן נסיק כי f אכן דיפרנציאבילית.

עוד נבחין כי הפונקציה כפונקציה ממשית היא רציפה ב־0 ונחשב את הנגזרות החלקיות שם בהתאם לביטויים שמצאנו:

$$\frac{\partial f}{\partial z}\mid_0 = \lim_{x \to 0} 4 \frac{x^3}{x^6} \cdot 0 = 0$$

(עבור 0). ומשוואות קושי־רימן מתקיימות (עבור z=0 ביפרנציאבילית היפרנציאביל מתקיימות מתקיימות (עבור z=0 ובאותו אופן נקבל בי

,0-ם קח מתקיים עבור הנגזרות שמצאנו מתקבל שהפונקציה גזירה $y^2=-yx$ וכן עבור הנגזרות שמצאנו מתקבל שהפונקציה גזירה אינה לגבולות. בחירת סדרה מתאימה ושימוש באפיון היינה לגבולות.

בכל סעיף נגדיר פונקציה ונוכיח שהיא הרמונית, ולאחר מכן נחשב את הצמוד ההרמוני שלה.

'סעיף א

$$.u_1(x,y) = e^x(y\cos y + x\sin y)$$
 נגדיר

הוכחה. נחשב

$$\nabla u_1 = (e^x(y\cos y + x\sin y + \sin y), e^x(\cos y - y\sin y + x\cos y))$$

ולכן

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = e^x (y\cos y + x\sin y + 2\sin y) + e^x (-\sin y - \sin y - y\cos y - x\sin y) = e^x (0) = 0$$

נגדיר שלה. הרמוני שלה הצמוד לחישוב ונעבור הרמונית, ונעבור שלה שלה אכן היא אכן u_1

$$v_1(x,y) = C - \int_0^x \frac{\partial u_1}{\partial y}(t,0) dt + \int_0^y \frac{\partial u_1}{\partial x}(0,t) dt$$
$$= C - \int_0^x e^t (1-0+t) dt + \int_0^y e^0 (t\cos t + 0 + \sin t) dt$$
$$= C - xe^x + y\sin y$$

 u_1 של ההרמוני ההרמוני עו $v_1(x,y)=y\sin y-xe^x$ ולכן

'סעיף ב

$$u_2(x,y) = x^3 - 3xy^2 + 6xy - 3x$$
נגדיר

הוכחה. נגזור

$$\nabla u_2 = (3x^2 - 3y^2 + 6y - 3, -6xy + 6x)$$

ולכן

$$\triangle u_2 = 6x - 6x = 0$$

ואכן הפונקציה הרמונית, נעבור לחישוב המשלים

$$v_2(x,y)=C-\int_0^x rac{\partial u_2}{\partial y}(t,0)\;dt+\int_0^y rac{\partial u_2}{\partial x}(0,t)\;dt=C-3x^2-y^3+3y^2-3y$$
ילכן הצמוד ההרמוני הוא $v_2(x,y)=-3x^2-y^3+3y^2-3y$ ילכן הצמוד ההרמוני הוא

'סעיף ג

$$.u_3(x,y)=rac{x}{x^2+y^2}$$
 נגדיר

הוכחה. הפעם

$$\nabla u_3 = \left(\frac{y^2 - x^2}{(x^2 + y^2)^2}, \frac{-2xy}{(x^2 + y^2)^2}\right)$$

ולכן

$$\Delta u_3 = \frac{-2x(x^2+y^2)^2 - 2(x^2+y^2)2x(y^2-x^2) + -2x(x^2+y^2)^2 - 2(x^2+y^2)2y(-2xy)}{(x^2+y^2)^4} = 0$$

ולכן הפונקציה הרמונית ונשאר לחשב את המשלים ההרמוני שלה.

$$\begin{split} v_3(x,y) &= C - \int_1^x \frac{\partial u_3}{\partial y}(t,0) \; dt + \int_0^y \frac{\partial u_3}{\partial x}(1,t) \; dt \\ &= C - \int_1^x \frac{0}{\left(t^2 + 0^2\right)^2} \; dt + \int_0^y \frac{t^2 - 1^2}{\left(1^2 + t^2\right)^2} \; dt \\ &= C + \arctan y - 2 \int_0^y \frac{1}{\left(1 + t^2\right)^2} \; dt \\ &= C - \frac{y}{y^2 + 1} \end{split}$$

 $.v_3(x,y) = -rac{y}{y^2+1}$ ולכן

u,u של צמודה הרמונית כך שיv צמודה הרמונית פונקציות פונקציות על ווי $u,v:G o\mathbb{R}$ הרמונית של

'סעיף א

. בהכרח קבועה ער אז v-w אז הרמונית נוספת הרמונית צמודה אז ער בהכרח קבועה.

הוכחה. נבחין כי הן אנליטיות פונקציות פונקציות ולכן u+iwוהן עu+ivה כי הוכחה. הוכחה.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

אבל גם

$$\frac{\partial u}{\partial x} = \frac{\partial w}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial w}{\partial x}$$

ולכן נובע ישירות

$$\frac{\partial v}{\partial x} = \frac{\partial w}{\partial x}, \frac{\partial v}{\partial y} = \frac{\partial w}{\partial y}$$

. הבועה עד פונקציה פונקע אוינו v-w פונקציה קבועה. ולכן עד דהות עד ולכן ו

'סעיף ב

. בועות, בהכרח בהכרח או על א או הרמונית צמודה במודה עם א
 u או נוכיח נוכיח במודה או גם או נוכיח נוכיח או או נוכיח או או או נוכיח במודה או הרמונית הרמונית או הרמונית הרמונית או הרמונית ה

התקיים, לכן אנליטית, וכן v+iuוכן אנליטית אנליטית, לכן הוכו u+ivים נתון הוכחה.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

אבל גם

$$\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$$

ולכן נובע

$$\frac{\partial u}{\partial x} = -\frac{\partial u}{\partial x}$$

ונובע u,v פונקציות, ולכן שאר הנגזרות שאר איפוס כל את אופן נקבל ובאותו ולכן ונובע ונובע ונובע

'סעיף ג

. נוכיח כי אם u,v אז אז $u^2+v^2=1$ בהכרח קבועות.

הוכחה. מהנתון נובע

$$\frac{\partial}{\partial x}(u^2 + v^2) = 0 \iff \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$$

ובאופן דומה

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y}$$

. תועות, u,v כי נובע קושי־רימן משוואות עם הקודם לסעיף לסעיף ובשילוב ובשילום עם הקודם לסעיף הקודם ו

'סעיף ד

. נוכיח כי v^2-v^2 ו־ u^2-v^2 הרמוניות

הוכחה. נחשב את הלפלסיאן של הפונקציות החדשות:

$$\begin{split} \triangle(u^2 - v^2) &= \frac{\partial^2}{\partial x^2} (u^2 - v^2) + \frac{\partial^2}{\partial y^2} (u^2 - v^2) \\ &= \frac{\partial}{\partial x} (2u \frac{\partial u}{\partial x} - 2v \frac{\partial v}{\partial x}) + \frac{\partial}{\partial y} (2u \frac{\partial u}{\partial y} - 2v \frac{\partial v}{\partial y}) \\ &= 2 \frac{\partial^2 u}{\partial x^2} + 2 \left(\frac{\partial u}{\partial x} \right)^2 - 2 \frac{\partial^2 v}{\partial x^2} - 2 \left(\frac{\partial v}{\partial x} \right)^2 + 2 \frac{\partial^2 u}{\partial y^2} + 2 \left(\frac{\partial u}{\partial y} \right)^2 - 2 \frac{\partial^2 v}{\partial y^2} - 2 \left(\frac{\partial v}{\partial y} \right)^2 \\ &= 0 \end{split}$$

u,v של בלפלסיאנים שימוש היה האחרון המעבר כאשר כאשר

 $:\!\!uv$ של דומה הלפלסיאן את נבחן באופן באופן

h=u+iv אם ורק אם $f,g:G o\mathbb{C}$ כדור פתוח אנליטיות עבור פונקציות נוכיח כי נוכיח נוכיח נוכיח נוכיח ליהי הרמוניות. $h\in C^2(G)$ עבור $h(z)=f(z)+\overline{g(z)}$ נוכיח נוכיח נוכיח עבור $u,v:G o\mathbb{R}$

. בתחום שיf,g אבור $h=f+\overline{g}$ שביות בתחום.

 $u,v \in Harm(G)$ עבור $g=v+i\tilde{v}$ ו ר $f=u+i\tilde{u}$ אבור מטענה מהכיתה לכן מטענה

. וקיבלנו את וקיבלנו $u+v, ilde{u}- ilde{v} \in Harm(G)$ גם אבל אם $h=(u+v)+i(ilde{u}- ilde{v})$ בהתאם נובע

 $u,v \in Harm(G)$ עבור h=u+ivנניה ש

כך שמתקיים $f=u_f+iv_f, g=u_g+iv_g$ נגדיר

$$h = u + iv = f + \overline{g} = (u_f + u_g) + i(v_f - v_g)$$

ולכן

$$u = u_f + u_g, \qquad v = v_f - v_g$$

נגזור את הביטויים ונשתמש בקושי־רימן:

 u_f לכן נוכל להסיק שי $\frac{\partial u_f}{\partial x}=\frac{1}{2}(rac{\partial u}{\partial x}+rac{\partial v}{\partial y})$ של-ידי אינטגרציה נמצא ביטוי ל-לכן נוכל להסיק דה ונקבל לחליך זה ונקבל לחליך ונקבל לחלים ונק