作业10nd

6.7

给出一个算法,在有Euler迹的图中求出一条Euler迹

- 若图G存在Euler迹,则其中奇度顶点的个数只能为0或2
- ullet 若奇度顶点个数为2,则连接该两点得到图G',显然图G'有Euler回路。
- ullet 使用Fleury算法或逐步插入回路法即可得到G'的Euler回路P,删除额外添加的边即为G的一条Euler迹
- 若奇度顶点个数为0,则直接求Euler回路即可

6.8

求下图的一条最优投递线路

- 使用Edmonds Johnson算法
 - 1. 图G的奇度顶点集 $V=\{v_1,v_2,v_3,v_4\}$
 - 2. 由Floyd算法或Dijkstra算法得 K_4 :

- 3. K_4 的最优完备匹配 $M=\{v_1v_2,v_3v_4\}$
- 4. 在G中增加 v_1,v_2 间最短轨迹 $P(v_1,v_2)=v_1v_7v_2$ 和 v_3,v_4 间最短轨迹 $P(v_3,v_4)=v_3v_4$ 的平行边,得到 G^*

5. 其中一条Euler回路为 $v_1v_6v_2v_7v_1v_5v_4v_3v_4v_7v_3v_2v_7v_1$,即为一条最优投递路线

6.9

设G是二分图,证明:若G是Hamilton图,则G必有偶数个顶点。

- 若G有奇数个顶点,则G上的Hamilton圈即为奇圈,这与G为二分图矛盾
- 故G必有偶数个顶点

Herschel图是否为Hamilton图

• 该图为二分图,且有奇数个顶点,故不为Hamilton图

6.12

求 K_n 中无公共边的Hamilton圈的个数

- 假设无公共边的Hamilton圈的个数为m,则 $nm \leq rac{1}{2}n(n-1)$,即 $m \leq rac{n-1}{2}$
- 若n为奇数,不妨令n=2k+1 ($k\in\mathbb{N}$)
- 将顶点 $1,2,3,\cdots,2k$ 逆时针排成一圈,2k+1置于中央,下图即为一种Hamilton圈

•

- ullet 每次旋转外围的2k个点,改变2k+1相邻的两点,即可得到类似的一共k个无公共边的Hamilton圈
- 若n为偶数,不妨令n=2k+2 ($k\in\mathbb{N}$)
- 则在n=2k+1的基础上增加一个点2k+2,令其每次在Hamilton圈上挑选一对不同的点并插入其之间,可得到一共k个无公共边的Hamilton圈
- 则 K_n 中无公共边的Hamilton圈的个数为 $\left\lfloor rac{n-1}{2}
 ight
 floor$

6.17

设G是u阶无向简单图,边数 $arepsilon=rac{1}{2}(
u-1)(
u-2)+2$

- 1. 证明: G是Hamilton图
 - \circ 若 $\nu = 1$,则G显然是Hamilton图
 - 。 对于G中度数最小的两点 v_1 、 v_2 ,有 $deg(v_1)+deg(v_2)=2arepsilon-\sum_{u\in V(G), u
 eq v_1lackbox{1}}deg(u)\geq 2arepsilon-(
 u-2)(
 u-3)-(deg(v_1)+deg(v_2))$
 - \circ 即 $deg(v_1)+deg(v_2)\geq
 u$,故G中任意两点度数之和不小于u,则G为Hamilton图
- 2. 举例说明,当 $arepsilon=rac{1}{2}(
 u-1)(
 u-2)+1$ 时,G不一定是Hamilton图
 - \circ 当 $G=K_{1,
 u-1}$ 时,显然不是Hamilton图

6.19

若围一张圆桌坐着至少六个人,那么一定可以调整他们的位置,使得每个人两侧都挨着新邻居

- 同6.12,当人数 $n\geq 5$ 时, K_n 中无公共边的Hamilton圈的个数为 $\lfloor rac{n-1}{2}
 floor\geq 2$
- 即存在多种坐法保证任何两人之间为新邻居

6.20

今有 ν 个人,已知他们中的任何两人合起来认识其余的 ν — 2人。

证明:当 $u \geq 3$ 时,这u个人能排成一列,使得中间任何人都认识两边的人,而两头的人认识左边(或右边)的人。

当 $\nu > 4$ 时,这 ν 个人能排成一个圆圈,使得每个人都认识两边的人

- ullet 将人抽象为顶点,将认识关系抽象为边,则原题可简化为关系网G中是否存在Hamilton轨道或Hamilton圈
- 当u=3时,显然存在Hamilton轨道,且若arepsilon=3则有Hamilton图
- 当 $u \geq 4$ 时,若G不存在Hamiton圈,则 $\exists v_1,v_2 \in V(G)$ 满足 $deg(v_1) + deg(v_2) <
 u$
- 而其余的u-2个点均与该两点中的至少一点相邻,故 $u>deg(v_1)+deg(v_2)\geq
 u-2$,且易知 v_1 与 v_2 不相邻
- 不妨拆分 $V(G)-\{v_1,v_2\}=X\cup Y$, $X=\{u|uv_1\in E(G)\}$, $Y=\{u|uv_2\in E(G)\}$
- $|X \cap Y| = deg(v_1) deg(v_2) (\nu 2) \le 1$
- 由于 $u \geq 4$,故 $|X \cup Y X \cap Y| \geq 4 2 1 = 1$
- 若任取 $X-X\cap Y$ (假设其不为空)中的一点 v_3 ,考虑 v_1,v_3 ,则其均不与 v_2 相邻,不成立
- 故对于G中任意两点 v_1,v_2 ,都有 $deg(v_1)+deg(v_2)\geq
 u$,G为Hamilton图

6.22

5阶完全加全图如下

1. 用最近邻法求以a为起点的旅行商问题的近似解

 \circ H = adebca, W = 26

2. 用最小生成树法求以a,b为起点的旅行商问题的近似解

 \circ 最小生成树T如下,并为各边增加平行边得到 G^*

0

- 。 从a出发, G^* 的一条Euler回路 $C_a=adecedaba$,则 $H_a=adecba$, $W_a=21$
- 。 从b出发, G^* 的一条Euler回路 $C_b=badecedab$,则 $H_b=badecb$, $W_b=21$

3. 用最小权匹配法求旅行商问题的近似解

。 最小生成树T中奇度顶点集为 $V=\{b,c\}$,其导出子图中最优完备匹配 $M=\{bc\}$,将M中各边加入T后得到 G^*

0

 \circ 从任意一点出发,绕一圈即为Euler回路和Hamilton圈,W=21