Trees

- trees
- binary trees
- data structures for trees

Trees: Definitions

- A is the root node.
- B is parent of D & E.
- A is ancestor of D & E.
- D and E are descendants of A.
- C is the sibling of B
- D and E are the children of B.
- D, E, F, G, I are leaves.

Trees: Definitions (2)

- A, B, C, H are internal nodes
- The *depth (level)* of *E* is 2
- The *height* of the tree is 3
- The *degree* of node *B* is 2

Trees

A tree represents a hierarchy, for e.g. the organization structure of a corporation

Or table of contents of a book

Another Example

Unix or DOS/Windows file system

Binary Tree

- An ordered tree is one in which the children of each node are ordered.
- Binary tree: ordered tree with all nodes having at most 2 children.

Recursive definition of binary tree

A binary tree is either a

- leaf or
- An internal node (the root) and one/two binary trees (left subtree and/or right subtree).

Examples of Binary Trees

arithmetic expressions

Examples of Binary Trees

decision trees

Complete Binary tree

- □level i has 2ⁱ nodes
- □In a tree of height h
 - □leaves are at level h
 - □No. of leaves is 2h
 - □No. of internal nodes = $1+2+2^2+...+2^{h-1}=2^h-1$
 - ■No of internal nodes = no of leaves -1
 - □ Total no. of nodes is $2^{h+1}-1 = n$
- □In a tree of n nodes
 - ■No of leaves is (n+1)/2
 - \Box Height = \log_2 (no of leaves)

Binary Tree

 A Binary tree can be obtained from an appropriate complete binary tree by pruning

Minimum height of a binary tree

- A binary tree of height h has
 - □ At most 2ⁱ nodes at level i
 - \square At most $1+2+2^2+...+2^h = 2^{h+1}-1$ nodes
- If the tree has n nodes then
 - \Box n <= $2^{h+1}-1$
 - \square Hence h >= $\log_2 (n+1)/2$

Maximum height of a binary tree

- A binary tree on n nodes has height at most n-1
- This is obtained when every node (except the leaf) has exactly one child

No of leaves in a binary tree

- no of leaves <= 1+ no of internal nodes.</p>
- Proof: by induction on no of internal nodes
 - Tree with 1 node has a leaf but no internal node.
 - Assume stmt is true for tree with k-1 internal nodes.
 - □ A tree with k internal nodes has k₁ internal nodes in left subtree and (k-k₁-1) internal nodes in right subtree.
 - □ No of leaves $<= (k_1+1)+(k-k_1) = k+1$

leaves in a binary tree (2)

For a binary tree on n nodes

- No of leaves + no of internal nodes = n
- No of leaves <= no of internal nodes + 1</p>
- Hence, no of leaves <= (n+1)/2</p>
- Minimum no of leaves is 1

ADTs for Trees

- generic container methods: size(), isEmpty(), elements()
- positional container methods: positions(), swapElements(p,q), replaceElement(p,e)
- query methods: isRoot(p), isInternal(p), isExternal(p)
- accessor methods: root(), parent(p), children(p)
- update methods: application specific

ADTs for Binary Trees

- accessor methods: leftChild(p), rightChild(p), sibling(p)
- update methods:
 - = expandExternal(p), removeAboveExternal(p)
 - other application specific methods

The Node Structure

Each node in the tree contains

- □ *key*[*x*] key
- □ *left*[x] pointer to left child
- □ *right*[x] pt. to right child
- $\square p[x]$ pt. to parent node

Representing Rooted Trees

Unbounded Branching

UnboundedTree:

