

PSPEC

- Can be used during analysis phase and during design phase.
- During the system analysis the PSPEC can be used to describe the internals of each process.
 - inner workings of a process represented in a data flow diagram.
 - the input to a process and the algorithm
 - restrictions and limitations imposed on the process (function) performance
 - For complex processes you may add a state machine or even a flowchart to help.
- Process specs are normally provided for the low level processes (2nd or 3rd level)
- Process specifications are not needed for:
 - Simple input and/or output processes.
 - simple data validation.
 - Processes for which prewritten code already exists.

Process Specs Format During Analysis

- Process < Number> Process Label
 - Preconditions:
 - What is required to invoke the process
 - Post condition:
 - What it does...

Process 2.1: Get Customer Order **Description**:

 This process provides a client side process to deliver the customer order to the web and database server.

Preconditions:

 Needs valid customer information and valid order items

Post conditions:

store the order

SPEC's Format During Design

- For low-level processes
- Format:
 - Process < Number> Process Label
 - Preconditions:
 - What is required to invoke the process
 - Postposition:
 - What it does... (more implementation details)
 - Possibly reference to a state transition diagram
 - Possibly reference to a flowchart

Design PSPEC

Process 1: Get Customer Order Preconditions:

- Needs valid customer information
- Needs valid order items

Post conditions:

- If valid order
 - If valid customer info
 - Save into order database table
- Else
 - Display the message, and ...
- Promises to store the order
- STD reference #
- Flowchart reference #

M. Moussavi, 2019

ENSF 613

Supporting Artifact

C-specs document can be supported by :

Decision Tables.

Decision trees.

State Transition Diagrams (STDs)

Structured English

- Use a combination of tools based on:
 - Client / analyst preference.
 - Nature of the process.

Decision Trees

- A graphical representation of a decision situation using:
 - Decision points represented by circles, actions by ovals, and connections between decision points and actions by lines with values for conditions.

Decision Tables

- Decision tables might be used for complex processes
- A matrix representing the logic of a complex decision.
- Inputs as columns, actions (outputs) as rows.

Domestic?	У	У	У	У	Ν	Ν	Ν	Ν
≥half full?	У	У	Z	Z	У	У	Z	Z
≥\$350/seat	У	2	У	Z	У	Z	У	2
Serve cocktails?	1	1	√	?	1	?	?	?
Free cocktails?					/			

M. Moussavi, 2019

Structured English

- Modified form of the English language used to specify the logic of information systems processes.
- A subset of English which includes:
 - Verbs such as READ, WRITE, ADD, SUBTRACT, etc.
 - Noun phrases to represent data and data structures (defined in the data dictionary).
- Does not include adverbs and adjectives.
- Usually 40 to 50 verbs.
- No standard version

Structured English Example

Process 2.3: Borrow a Book

Remarks: This process allows patrons to borrow a book by a in a library system.

IF user is a **PATRON**

IF PATRON has no outstanding fines

-- Loan a **Book**

ELSE IF pays his fines

Issue Receipt

Loan a Book

ELSE

Suspend the Card

Reject loan

Else If has a valid Credit Card

Take Deposit

Loan Book

Else

Reject Loan

Structured Analysis & Structured Design

A Single Tower Elevator System

Simplified Context Diagram for Elevator System

12

Simplified Level-1 for Elevator System

13

Level-2 for Control Manage Request

ENSF 613

M. Moussavi, 2019

STD for Schedule Process

15

Process Spec for Schedule Process

- BEGIN
- with summon/destination request received
- DO WHILE request exists
- IF elevator in-direction
- Move elevator to destination
- Clear request
- ELSE
- Pending the request
- ENDIF
- END DO
- END

16

Example of Data Dictionary for Elevator System

- Destination request = Floor number
- Direction = [up | down]
- Floor number = 1{legal digits}4
- Floor reached = signal
- Motor control = [on | off] + direction
- Requests = summon request + destination requests.
- · Summon request = Floor number

M. Moussavi, 2019 ENSF 613

Structured Analysis & Structured Design AcmePress Case Study

The Statement of Purpose

- The purpose of AcmePress system is to maintain information needed to sell books to customers, such as:
 - Customers book orders.
 - Inventory control
 - Producing invoices
 - Producing reports

Event List

- · Customer orders book.
- Customer sends payment.
- · Customer receives invoice
- · Management authorizes a print order.
- Printing Department receives print orders.
- Printing Department sends the printed jobs to the Warehouse

Event List (continued)

- Warehouse receives order
- · Warehouse makes shipment of book.
- Author submits new document to be published.
- Author receives payment
- · Warehouse conducts monthly inventory
- Management request quarterly report

Context Diagram

M. Moussavi, 2019

DFD Level-1

M. Moussavi, 2019

ENSF 613

DFD Level 2 for Order Book

M. Moussavi, 2019 ENSF 613

24

Process Spec for Receive Payment

- DO While there are more payments
 - -READ the payment amount
 - -SELECT the invoice
 - -READ the invoice
 - -DISPLAY the invoice
 - -UPDATE customers account in PAYMENTS
- · END DO

STD for Receive Payments

Decision Tree for Receive Payments

M. Moussavi, 2019

Partial ERD

M. Moussavi, 2019

ENSF 613

Data Dictionary

- Customer name = courtesy-title + first name + last name.
- First name 1 {legal characters} 20
- Order * a book order received from a customer*
 - = @ order number + Customer name +
 Customer ID + Customer address + {item} +
 order date + shipping charges + total
 amount.
- Orders * a collection of book orders*
 - = {book order}