CAL JUSTIFICAR TOTES LES RESPOSTES.

1. (1.5 punts) Considereu la funció:

$$f(x) = 7\sin(x) e^{-\frac{x}{2}} - 1.$$

- a) Proveu que l'equació f(x) = 0 té una solució a l'interval (0, 0.4).
- b) Calculeu una aproximació d'aquesta solució utilitzant el mètode de Newton-Raphson amb valor inicial $x_0 = 0.2$, amb un error més petit que $0.5 \cdot 10^{-5}$.
- **2.** (3 punts) Considereu la funció $f(x) = \sin(x)$.
 - a) Calculeu el seu polinomi de Taylor de grau 5 centrat a l'origen i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Fent ús del polinomi i l'expressió del residu de l'apartat anterior, calculeu un valor aproximat de $\sin(0.5)$ i acoteu l'error d'aquest valor aproximat.
 - c) Esbrineu per a quins valors d'x l'error en l'aproximació $\sin(x) \simeq x \frac{x^3}{6} + \frac{x^5}{120}$ és menor que 10^{-4} .
- 3. (1.5 punts) Donada la funció:

$$F(x,y) = \int_{x-1}^{x+y+xy} e^{t^2} \, dt$$

Escriure les equacions del pla tangent i la recta normal a la superfície z=F(x,y) en el punt $\left(1,-\frac{1}{2},0\right)$.

4. (4 punts) Considereu la funció $f:\mathbb{R}^2 \to \mathbb{R}$ definida per:

$$f(x,y) = x^2 y$$

- a) Dibuixeu les corbes de nivell de f corresponents als nivells z=-2,-1,0,1,2.
- b) Trobeu i classifiqueu els punts crítics de la funció f.
- c) Dibuixeu el conjunt $D=\{(x,y)\in\mathbb{R}^2|\quad x^2+y^2\leq 4,\ y\geq -1\}$ i justifiqueu que és compacte.
- d) Justifiqueu l'existència d'extrems absoluts de f en D y trobeu-los.

1. (1.5 punts) Considereu la funció:

$$f(x) = 7\sin(x) e^{-\frac{x}{2}} - 1.$$

- a) Proveu que l'equació f(x) = 0 té una solució a l'interval (0, 0.4).
- b) Calculeu una aproximació d'aquesta solució utilitzant el mètode de Newton-Raphson amb valor inicial $x_0 = 0.2$, amb un error més petit que $0.5 \cdot 10^{-5}$.

SOLUCIÓ:

- a) La funció f és contínua en tot \mathbb{R} donat que $\sin(x)$ és contínua en tot \mathbb{R} , la funció $e^{-\frac{x}{2}}$ també ho és al ser composició de funcions contínues, i el producte i la suma de funcions contínues són contínues. Les imatges dels extrems de l'interval són: f(0) = -1 < 0 i $f(0.4) \simeq 1.2318 > 0$. En aquestes condicions, i per ser f contínua en l'interval [0,0.4], el Teorema de Bolzano ens assegura que l'equació f(x) = 0 té una solució a l'interval (0,0.4).
- b) La funció f i la seva derivada són:

$$f(x) = 7 \sin(x) e^{-\frac{x}{2}} - 1, \quad f'(x) = 7 e^{-\frac{x}{2}} \left(\cos(x) - \frac{\sin(x)}{2}\right).$$

Aleshores, utilitzant el mètode de Newton-Raphson, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, amb valor inicial $x_0 = 0.2$, obtenim:

 $x_1 = 0.1536887781, x_2 = 0.1549866730, x_3 = 0.1549876937.$

Donat que x_3 és la primera iteració que satisfà el criteri d'aturada del mètode: $|x_3 - x_2| < 0.5 \cdot 10^{-5}$ i $|f(x_3)| < 0.5 \cdot 10^{-5}$,

Una aproximació d'una solució a l'interval (0,0.4) amb error més petit que $0.5\cdot 10^{-5}$ és $x\simeq x_3=0.154988.$

- **2.** (3 punts) Considereu la funció $f(x) = \sin(x)$.
 - a) Calculeu el seu polinomi de Taylor de grau 5 centrat a l'origen i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Fent ús del polinomi i l'expressió del residu de l'apartat anterior, calculeu un valor aproximat de $\sin(0.5)$ i acoteu l'error d'aquest valor aproximat.
 - c) Esbrineu per a quins valors d'x l'error en l'aproximació $\sin(x) \simeq x \frac{x^3}{6} + \frac{x^5}{120}$ és menor que 10^{-4} .

SOLUCIÓ:

a) El polinomi de Taylor de grau 5 centrat a l'origen de la funció f(x) és:

$$P_5(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5$$
. Calculem derivades de $f(x)$: $f'(x) = f^{(5)}(x) = \cos(x)$, $f''(x) = f^{(6)}(x) = -\sin(x)$, $f'''(x) = -\cos(x)$, $f^{(4)}(x) = \sin(x)$.

Aleshores: $f'(0) = f^{(5)}(0) = 1$, $f''(0) = f^{(4)}(0) = 0$, f'''(0) = -1, i el polinomi demanat és:

$$P_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$

L'expressió del residu corresponent en la forma de Lagrange és: $R_5(x) = \frac{f^{(6)}(c)}{6!}x^6$, per a cert c entre 0 i x, és a dir:

$$R_5(x) = \frac{-\sin(c)}{6!}x^6,$$

per a cert c entre 0 i x.(*)

b) Fent ús del polinomi i l'expressió del residu de l'apartat anterior, obtenim el valor aproximat de $\sin(0.5)$:

$$\sin(0.5) \simeq P_5(0.5) = 0.5 - \frac{(0.5)^3}{6} + \frac{(0.5)^5}{120} = 0.47942708344$$

La cota de l'error d'aquest valor aproximat (utilitzant que $|\sin(c)| \le 1$ per a tot

c) és:
$$|R_5(0.5)| = \frac{|\sin(c)|}{6!} (0.5)^6 \le \frac{(0.5)^6}{6!} \simeq 0.00002170138889 \le 0.00003.^{(*)}$$

Per tant $\sin(0.5) = 0.47943 \pm 0.00003.^{(*)}$

c) Donat que $|\sin(c)| \le 1$ per a tot c, l'error en l'aproximació és: $|R_5(x)| = \frac{|\sin(c)|}{6!}|x|^6 \le \frac{|x|^6}{6!}$.(*)

Els valors d'x per als que l'error en l'aproximació $\sin(x) \simeq x - \frac{x^3}{6} + \frac{x^5}{120}$ és menor que 10^{-4} són els valors tals que: $\frac{|x|^6}{6!} < 10^{-4} \iff |x|^6 < 6! \cdot 10^{-4} \iff |x| < \sqrt[6]{6! \cdot 10^{-4}} \simeq 0.64450$.

(*) Donat que per a aquesta funció $P_5(x) = P_6(x)$, també s'acceptaran com a correctes l'expressió i els càlculs fets amb el residu $R_6(x)$.

3. (1.5 punts) Donada la funció:

$$F(x,y) = \int_{x-1}^{x+y+xy} e^{t^2} \, dt$$

Escriure les equacions del pla tangent i la recta normal a la superfície z=F(x,y) en el punt $\left(1,-\frac{1}{2},0\right)$.

SOLUCIÓ:

La funció e^{t^2} és composició d'una funció polinòmica i una exponencial i per tant és contínua per a tot $t \in \mathbb{R}$; les fucions x + y + xy i x - 1 són polinòmiques i per tant derivables per a tot $(x, y) \in \mathbb{R}^2$. Per tant, pel Teorema fonamental del càlcul i la regla de la cadena, la funció F(x, y) és derivable en tot \mathbb{R}^2 i les seves derivades parcials són:

$$\frac{\partial F}{\partial x} = (1+y)e^{(x+y+xy)^2} - e^{(x-1)^2},$$

$$\frac{\partial F}{\partial y} = (1+x)e^{(x+y+xy)^2}.$$

que són contínues en tot \mathbb{R}^2 per ser-ho les funcions polinòmiques i les exponencials.

Donat que $F\left(1,-\frac{1}{2}\right)=0$, l'equació del pla tangent a la superfície z=F(x,y) en el punt $\left(1,-\frac{1}{2},0\right)$ és:

$$z = F\left(1, -\frac{1}{2}\right) + \frac{\partial F}{\partial x}\left(1, -\frac{1}{2}\right) \cdot (x - 1) + \frac{\partial F}{\partial y}\left(1, -\frac{1}{2}\right) \cdot (y + \frac{1}{2}).$$

Substituint: $\frac{\partial F}{\partial x}\left(1,-\frac{1}{2}\right)=-\frac{1}{2}$ i $\frac{\partial F}{\partial y}\left(1,-\frac{1}{2}\right)=2$, tenim l'equació del pla tangent:

$$z = -\frac{1}{2}x + 2y + \frac{3}{2},$$

o, equivalentment, x - 4y + 2z - 3 = 0.

L'equació contínua de la recta normal a la superfície z=F(x,y) en el punt $\left(1,-\frac{1}{2},0\right)$ és:

$$\frac{x-1}{\frac{\partial F}{\partial x}\left(1,-\frac{1}{2}\right)} = \frac{y+\frac{1}{2}}{\frac{\partial F}{\partial y}\left(1,-\frac{1}{2}\right)} = \frac{z}{-1}, \text{ que \'es: } \frac{x-1}{-\frac{1}{2}} = \frac{y+\frac{1}{2}}{2} = \frac{z}{-1}, \text{ o, equivalent-ment:}$$

$$\frac{x-1}{-1} = \frac{y+\frac{1}{2}}{4} = \frac{z}{-2}$$

4. (4 punts) Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ definida per:

$$f(x,y) = x^2 y$$

- a) Dibuixeu les corbes de nivell de f corresponents als nivells z = -2, -1, 0, 1, 2.
- b) Trobeu i classifiqueu els punts crítics de la funció f.
- c) Dibuixeu el conjunt $D=\{(x,y)\in\mathbb{R}^2|\quad x^2+y^2\leq 4,\ y\geq -1\}$ i justifiqueu que és compacte.
- d) Justifiqueu l'existència d'extrems absoluts de f en D y trobeu-los.

SOLUCIÓ:

a) Les corbes de nivell de f corresponents als nivells z=-2,-1,0,1,2 són:

Corba de nivell
$$z = -2$$
: $x^2y = -2$, que és: $y = -\frac{2}{x^2}$,

Corba de nivell
$$z = -1$$
: $y = -\frac{1}{x^2}$,

Corba de nivell z=0: $x^2y=0$, que és el parell de rectes format per x=0 i y=0,

Corba de nivell
$$z = 1$$
: $y = \frac{1}{x^2}$,

Corba de nivell
$$z = 2$$
: $y = \frac{2}{x^2}$.

El dibuix:

b) La funció f és una funció polinòmica, per tant f és de classe C^2 en tot \mathbb{R}^2 , per tant els punts crítics de f són les solucions del sistema:

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 2xy = 0 \\ x^2 = 0 \end{cases}$$

De la segona equació s'obté x=0, que satisfà també la primera equació. Per tant els <u>punts crítics de f</u> són els punts de la forma (0,y) per a tot $y \in \mathbb{R}$. La matriu Hessiana de f en un punt qualsevol $(x,y) \in \mathbb{R}^2$ és:

$$Hf(x,y) = \left(\begin{array}{cc} 2y & 2x \\ 2x & 0 \end{array}\right)$$

Per tant, la matriu Hessiana de f en els punts crítics (0, y) és:

$$Hf(0,y) = \left(\begin{array}{cc} 2y & 0\\ 0 & 0 \end{array}\right)$$

que no decideix, per classificar els punts crítics (0, y) per a tot $y \in \mathbb{R}$, que satisfan f(0, y) = 0, fem un estudi del signe de f(x, y) entorn als punts crítics:

$$f(x,y) = x^2 y = \begin{cases} > 0, & \text{si } x \neq 0 \ \land \ y > 0, \\ < 0, & \text{si } x \neq 0 \ \land \ y < 0. \end{cases}$$

Així el signe de la funció entorn als punts crítics és:

y per tant els punts crítics són:

$$(0,y) \text{ \'es } \left\{ \begin{array}{ll} \text{un m\'inim,} & \text{si } y > 0, \\ \text{un punt de sella,} & \text{si } y = 0, \\ \text{un m\`axim,} & \text{si } y < 0. \end{array} \right.$$

c) El dibuix del conjunt D és:

D és un conjunt compacte per ser tancat (donat que conté tots els seus punts frontera, que són els punts dels segment $\{(x,y)|\ y=-1,-\sqrt{3}\le x\le \sqrt{3}\}$ i del segment circular $\{(x,y)|\ x^2+y^2=4,y\ge -1\}$) i acotat (donat que $D\subset B((0,0);3)$.

d) Atès que f és contínua en D i el conjunt D és un compacte, pel teorema de Weierstrass, f té extrems absoluts en D.

Els punts crítics de f a l'interior del compacte D són els punts (0, y) per a tot $y \in (-1, 2)$.

Buscarem els punts crítics de f condicionats a ser en la frontera del compacte D:

(i) Punts crítics de f condicionats a ser sobre el segment $\{(x,y)|\ y=-1, -\sqrt{3} \le x \le \sqrt{3}\}$: fent y=-1 tenim $f(x,-1)=-x^2$, que és una funció d'una variable $\varphi_1(x)=-x^2$. Per trobar els punts crítics igualem la seva derivada a 0 i resolem: $\varphi'_1(x)=-2x=0 \Rightarrow x=0$. Així s'obté el punt crític (0,-1).

(ii) Punts crítics de f condicionats a ser sobre el segment circular $\{(x,y)|\ x^2+y^2-4=0,y\geq -1\}$, es fa pel mètode de Lagrange: La funció de Lagrange és:

$$L(x, y, \lambda) = x^2y - \lambda(x^2 + y^2 - 4).$$

Igualant les seves derivades a 0 s'obté:

$$\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases} \Leftrightarrow \begin{cases} 2xy - 2\lambda x = 0 \\ x^2 - 2\lambda y = 0 \\ x^2 + y^2 - 4 = 0 \end{cases}$$

De la primera equació s'obté $2x(y-\lambda)=0$. Per tant x=0 o $\lambda=y$.

Si x = 0, de la tercera equació obtenim $y^2 - 4 = 0$, d'on $y = \pm 2$, i al imposar que $y \ge -1$, tenim el punt crític (0, 2).

Si $\lambda = y$, de la segona equació obtenim $x^2 = 2y^2$, i aleshores de la tercera equació: $3y^2 = 4$. D'on, al imposar que $y \ge -1$, tenim el punts crítics $\left(-\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right)$ i $\left(\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right)$.

(iii) Els vèrtexs del compacte D són els punts: $\left(-\sqrt{3},-1\right)$ i $\left(\sqrt{3},-1\right)$.

Les imatges per f dels punts trobats són:

$$f(0,y) = 0, f\left(-\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right) = \frac{16\sqrt{3}}{9}, f\left(\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right) = \frac{16\sqrt{3}}{9},$$

$$f\left(-\sqrt{3}, -1\right) = -3, f\left(\sqrt{3}, -1\right) = -3.$$

Per tant, el valor màxim absolut de f en D és $\frac{16\sqrt{3}}{9}$ i l'assoleix als punts $\left(-\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right)$ i $\left(\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right)$, el valor mínim absolut de f en D és -3 i l'assoleix als punts $(-\sqrt{3}, -1)$ i $(\sqrt{3}, -1)$.