PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN (Design and Analysis of Algorithms)

L/O/G/O

GV: HUYNH THỊ THANH THƯƠNG

Email: hh.thanhthuong@gmail.com

thuonghtt@uit.edu.vn

Nội dung

- Phương pháp chia để trị
- Phương pháp tham lam
- Phương pháp quay lui
- Phương pháp giảm để trị
- Phương pháp biến đối để trị
- Phương pháp quy hoạch động (Dynamic programming)

Đặt vấn đề

* Xác định phần tử thứ n của dãy số Fibonacci

Công thức truy hồi của dãy:

$$F(n) := egin{cases} 1, & hin n = 1; \\ 1, & hin n = 2; \\ F(n-1) + F(n-2) & hin n > 2. \end{cases}$$
 $F(3)$
 $F(2)$
 $F(2)$
 $F(1)$

Ví dụ: bài toán có công thức truy hồi

❖Ví dụ 1: Dãy số Fibonacci

$$F(n) = \begin{cases} 1 & n \le 2 \\ F(n-1) + F(n-2) & n > 2 \end{cases}$$

■ Thuật toán chia để trị

```
long Fibo(int n)
{
    if (n == 1 || n == 2)
        return 1;
    return Fibo(n-1)+Fibo(n-2);
}
```

■ Độ phức tạp: O(2ⁿ)

- ❖Chia để trị: Một số bài toán con nào đó có thể giải nhiều lần → chi phí cao, có thể O(cⁿ)
- ❖Quy hoạch động: Như divide and conquer (kết hợp lời giải của các bài toán con) → nâng cấp, khắc phục nhược điểm của D&C
- Thường được vận dụng để giải bài toán tối ưu, bài toán có công thức truy hồi

Khi nào dùng quy hoạch động? Dấu hiệu

Bài toán tối ưu phải có 2 đặc trưng sau thì có thể áp dụng QHĐ

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

GV: Huỳnh Thị Thanh Thương

Khi nào dùng quy hoạch động? Dấu hiệu

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

Ý tưởng quy hoạch động

Khắc phục việc giải dư thừa 1 số bài toán con: lưu trữ kết quả + tra cứu

- Tạo ra 1 bảng (hay vector) để lưu trữ kết quả của các bài toán con
- Sử dụng kết quả đã lưu trong bảng mà không cần giải lại bài toán con
- Giải các bài toán con theo hướng bottom-up (từ nhỏ đến lớn).

3-Steps of Developing Dynamic Programming Algorithm

Các bước thực hiện:

- Bước 1: Phân tích đặc trưng của cấu trúc lời giải tối ưu
 + Xác định hàm (phương trình) quy hoạch động
- Bước 2: Tạo bảng: lấp đầy bảng theo 1 quy luật nào đó
 - Gán giá trị cho 1 số ô nào đó
 - Xác định giá trị của 1 số ô khác nhờ vào giá trị các ô trước đó
- Bước 3: Tra bảng và truy xuất/xây dựng lời giải của bài toán

Nhận xét Ưu nhược điểm

❖ Ưu điểm:

- Thực hiện nhanh ← không giải lại 1 số bài toán con
- Thường được vận dụng để giải các bài toán tối ưu, bài toán có công thức truy hồi

Nhận xét Ưu nhược điểm

Nhược điểm:

- Không hiệu quả khi:
 - Không tìm được công thức truy hồi
 - Số lượng bài toán con và lưu trữ kết quả rất lớn
 - Sự kết hợp lời giải của các bài toán con chưa chắc cho lời giải của bài toán đầu

So sánh

- Greedy Method vs. Dynamic Programming
- Divide-and-Conquer vs. Dynamic Programming

Ví dụ: Bài toán có công thức truy hồi

❖Dãy số Fibonacci

 Thuật toán quy hoạch động: lưu kết quả bài toán con đã tính để dùng lại

```
// tạo mảng F[n] để lưu giá trị

F[1] = 1; F[2] = 1;

for (i = 3; i<=n; i++)

    F[i] = F[i-1] + F[i-2];

Xuất F[n];
```

Độ phức tạp: O(n)

Ví dụ: Bài toán có công thức truy hồi

❖ Ví dụ 2: Tính tổ hợp chập k của n

$$C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \\ 0 & \text{otherwise} \end{cases}$$

■ Thuật toán chia để trị: Độ phức tạp: O(2ⁿ)

```
C(n,k)
{
    if k = 0 or k = n then return 1
    if k < 0 or k > n then return 0
    return( C(n-1,k-1) + C(n-1,k) )
}
```

Top-Down Recursive

Phân hoạch và giải các bài toán con 1 cách độc lập (p artition the problem into independent subproblems)

Top-Down Recursive + Memorization

GV: Huỳnh Thị Thanh Thương

Top-Down Recursive + Memorization

C(6,3)

viết mã giả (giải trên lớp)

$$C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \\ 0 & \text{otherwise} \end{cases}$$

Dynamic Programming

Dynamic Programming

các bài toán con không độc lập nhau, dùng chung những bài toán "cháu" subproblems are not independent, share subsubproblems.

GV: Huỳnh Thị Thanh Thương

Bottom-Up Dynamic Programming

giải từ các bài toán con nhỏ nhất đến lớn hơn (Bottom-Up)

$$C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \\ 0 & \text{otherwise} \end{cases}$$

viết mã giả (đã giải trên lớp)

Top Down - Bottom Up

Top-down + memorization

- Chỉ giải các bài toán con được yêu cầu
- Gọi đệ quy trước: phân tích đến bài toán cơ sở --> thế ngược

Bottom-up dynamic programming

- Tất cả các bài toán con phải được giải trước
- Truy cập bảng theo 1 quy tắc đơn giản, hiệu quả

Ví dụ: Bài toán tối ưu

Bài tập 7: Bài toán nhân chuỗi/dãy ma trận (Matrix Chain Multiplication)

Input: Cho 1 chuỗi ma trận $\langle A_1, A_2, ..., A_n \rangle$, với A_i có kích thước là $p_{i-1} \times p_i$

Output: Muốn tính tích của $A = A_1 \times A_2 \times ... \times A_n$. Yêu cầu: Xác định thứ tự nhân các ma trận sao cho số phép nhân được sử dụng là ít nhất.

Matrix Chain Multiplication

Mẫu 2:
$$< A_1, A_2, A_3, A_4>$$

$$A_1: 10 \times 20$$
 $A_2: 20 \times 50$ $A_3: 50 \times 1$ $A_4: 1 \times 100$

Order 1 : $A_1 \times (A_2 \times (A_3 \times A_4))$

Total Cost = 125000

cost chênh lệch nhiều

Order 2:
$$(A_1 \times (A_2 \times A_3)) \times A_4$$

$$Cost(A_2 \times A_3) = 20 \times 50 \times 1$$

 $Cost(A_1 \times (A_2 \times A_3)) = 10 \times 20 \times 1$
 $Cost((A_1 \times (A_2 \times A_3)) \times A_4) = 10 \times 1 \times 100$

Total Cost = 2200

❖Ý tưởng

- Bước 1: Phân tích đặc trưng "Optimal substructure" (cấu trúc lời giải tối ưu)
 - Lời giải : cách đặt vị trí đóng mở ngoặc (thể hiện thứ tự nhân)
 - $< A_1, A_2, A_3 > có 2 lời giải: <math>(A_1A_2)A_3, A_1(A_2A_3)$
 - Lời giải tối ưu: đóng mở ngoặc tối ưu sao cho chi phí (số phép nhân) nhỏ nhất

❖Ý tưởng

Bước 1.1: Phân tích đặc trưng "Optimal substructure"

Bài toán ban đầu: đóng mở ngoặc tối ưu cho $A_1 \times A_2 \times ... \times A_n$ để cost nhỏ nhất.

Lời giải tối ưu có lần nhân cuối cùng được biểu diễn ở dạng:
 1<k<n

$$(A_1 \times ... \times A_k) \times (A_{k+1} \times ... \times A_n)$$

bài toán con 1 bài toán con 2

Lời giải tối ưu tách chuỗi (ra làm 2 phần) ngay tại vị trí k, khi đó

để đóng mở ngoặc tối ưu cho cho
$$A_1 \times A_2 \times ... \times A_n \text{ thì phải}$$
đóng mở ngoặc tối ưu cho đóng mở ngoặc tối ưu cho
$$A_1 \times A_2 \times ... \times A_n \text{ thì phải}$$

Ví dụ: Nếu $(A_1 \times (A_2 \times A_3)) \times A_4$ là tối ưu cho $A_1 \times A_2 \times A_3 \times A_4$, Thì A₁ x (A₂ x A₃) cũng là tối ưu cho A₁ x A₂ x A₃

❖Ý tưởng

Bước 1.1: Phân tích đặc trưng "Optimal substructure"

$$(A_1 \times ... \times A_k) \times (A_{k+1} \times ... \times A_n)$$

bài toán con 1 bài toán con 2

- NX3:
$$cost (A_1 \times ... \times A_n) = cost (A_1 \times ... \times A_k)$$

+ cost
$$(A_{k+1} \times ... \times A_n)$$

+ chi phí nhân 2 bài toán con lại

(cost = số phép nhân)

- ❖Ý tưởng
- Bước 1.1: Phân tích đặc trưng "Optimal substructure"
 - Kỳ vọng:

$$cost (A_1 \times ... \times A_n) tối ưu = cost (A_1 \times ... \times A_k) tối ưu$$

- + cost (A_{k+1} x ...x A_n) tối ưu
- + chi phí nhân 2 bài toán con lại

❖Ý tưởng:

- Bước 1.2: Xác định phương trình quy hoạch động
 - Xét bài toán con tổng quát: xác định vị trí ngoặc trên dãy A_iA_{i+1}...A_i sao cho cost nhỏ nhất
 - Gọi m[i,j] = số phép nhân tối thiểu (chi phí nhỏ nhất)
 cho bài toán (A, x A, x ... x A,
 - Vậy m[1,n] = chi phí nhỏ nhất cho bài toán gốc cần tìm

Quy ước

$$p_1 \times p_2$$

$$p_{i-1} \times p_i$$

•
$$A_i \times ... \times A_j$$
:

$$p_{i-1} \times p_j$$

minimum cost
$$(A_i ... A_j)$$

Ví dụ

có nhiều cách đặt ngoặc, vị trí ngoặc tương ứng giá trị k, vậy k nào sẽ cho lời giải tối ưu?

GV: Huỳnh Thị Thanh Thương

Top-Down Recursive

Ví dụ

sự tối ưu còn phụ thuộc vào vị trí tách chuỗi (tức giá trị của k)
--> thử hết các giá trị có thể có của k, chọn giá trị cho cost nhỏ nhất

Ví dụ

chi phí nhỏ nhất ứng với trường hợp đặt ngoặc này = $m[1,3] + m[4,6] + p_0p_3p_6$

Ví dụ

$$(A_1 A_2 A_3 A_4 A_5 A_6)$$
 m[1,6] = ?

$$((A_{1}) (A_{2} A_{3} A_{4} A_{5} A_{6}))$$

$$((A_{1} A_{2}) (A_{3} A_{4} A_{5} A_{6}))$$

$$((A_{1} A_{2} A_{3}) (A_{4} A_{5} A_{6}))$$

$$((A_{1} A_{2} A_{3}) (A_{4} A_{5} A_{6}))$$

$$((A_{1} A_{2} A_{3} A_{4}) (A_{5} A_{6}))$$

$$((A_{1} A_{2} A_{3} A_{4} A_{5}) (A_{6}))$$

$$m[1,1] + m[2,6] + p_0 p_1 p_6$$

 $m[1,2] + m[3,6] + p_0 p_2 p_6$
 $m[1,3] + m[4,6] + p_0 p_3 p_6$
 $m[1,4] + m[5,6] + p_0 p_4 p_6$
 $m[1,5] + m[6,6] + p_0 p_5 p_6$

m[1,6] = min of

A recursive formulation

$$m[i,j] = \begin{cases} 0 & (n\tilde{e}u i = j) \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}.p_k.p_j\} & (n\tilde{e}u i < j) \end{cases}$$

\disp \d

- Bước 2: Tạo bảng và lưu giá trị
- Lấp đầy bảng theo thứ tự tăng dần của (j – i)
 - Đầu tiên, gán các ô trên đường chéo chính = 0 (vì i=j)
 - Xét trường hợp j i = 1
 (gác các ô dọc theo đường chéo kế trên đường chéo chính)
 - Tiếp tục xét j i = 2, j i = 3, ...

\disp \d

- Bước 3: Xây dựng lời giải của bài toán ban đầu
- Dùng 1 bảng khác lưu lại giá trị k mà tại đó thực hiện tách chuỗi
- s[i,j] = k, vị trí tối ưu để tách chuỗi (A_i x ... x A_i)

58

❖Bài tập:

- Viết mã giả giải bài toán bằng QHĐ
- Sau khi nắm được quy tắc tạo bảng, việc viết mã giả cho bài toán chỉ đơn giản là viết lại cách tạo bảng và return kết quả, cần 2 hàm:
 - Hàm tạo bảng (2 bảng lưu m[i,j] và s[i,j]): matrix (n) → hàm return về m[1,n] là cost tối ưu
 - Hàm truy tìm lời giải của bài toán, tức là trả về cách đặt các dấu ngoặc thể hiện thứ tự nhân các ma trận

Bài tập trên lớp

- ❖Ví dụ: ABCD
 - A: 4 × 5
 - ■B:5×3
 - C:3 × 5
 - D:5×4

Đánh giá độ phức tạp

Chia để trị: Top Down Recursive

$$\begin{split} m[i,j] &= \min_{i \leq k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \\ T(n) &= \sum_{k=1}^{n-1} (T(k) + T(n-k) + O(1)) \\ &= \Omega(2^n) \end{split}$$
 Không chấp nhận được

Do "Overlapping subproblems"

Đánh giá độ phức tạp

Quy hoạch động: Bottom up

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \}$$

$$T(n) = ???$$

SV tự chứng minh, nếu có thi GV sẽ hỏi á