

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD4

Exercice 1. Soit $f: \mathbb{R} \setminus \{1/3\} \to \mathbb{R}$ telle que $f(x) = \frac{2x+3}{3x-1}$.

Prouver, en utilisant uniquement la définition de la limite (avec ε et δ) que la fonction f est continue en 0.

Exercice 2. Calculer les limites suivantes :

1.
$$\frac{1}{1-x} - \frac{2}{1-x^2}$$
 en 1

2.
$$\frac{\sqrt{x}-1}{x-1}$$
 en 1

$$3. \ \frac{x \sin x}{1 - \cos x} \text{ en } 0$$

4.
$$\frac{\tan x - \sin x}{x^3}$$
 en 0

5.
$$\frac{\sin x - \sin(2x)}{x^2}$$
 en 0

6.
$$\frac{x^3 + x + 5}{5x^3 + 7x^2 + 8}$$
 en $+\infty$

7.
$$\sqrt{x^2 + 2x} - x \text{ en } +\infty$$

8.
$$\frac{\tan(4x)}{\sin x}$$
 en 0

9.
$$\frac{e^{3x} + 2x + 7}{e^x + e^{-x}}$$
 en $+\infty$

10.
$$\frac{\sin x - \sin(5x)}{\sin x + \sin(5x)}$$
 en 0

11.
$$\frac{\sin(x \ln x)}{x}$$
 en 0^+

12.
$$\left(1+\frac{1}{x}\right)^x$$
 en $+\infty$

Exercice 3. Calculer les limites suivantes :

1.
$$\lim_{x \to 1} (x^2 + x - 2) \tan \left(\frac{\pi x}{2} \right)$$

2.
$$\lim_{x\to 0, x>0} \frac{(\sin x)^x - 1}{x^x - 1}$$

3.
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x}{2}}$$

4.
$$\lim_{x\to 0^+} x^{\frac{1}{x^x-1}}$$

5.
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x$$
 où $a \in \mathbb{R}$

6.
$$\lim_{x \to +\infty} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}} \text{ avec } a, b > 0$$

7.
$$\lim_{x \to 0^+} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}}$$
 avec $a, b > 0$

Exercice 4. Étudier la limite à droite en 0 des fonctions suivantes :

$$1. $f(x) = E\left(\frac{1}{x}\right)$$$

$$2. \ g(x) = xE\left(\frac{1}{x}\right)$$

$$3. \ h(x) = x^2 E\left(\frac{1}{x}\right)$$

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudier la continuité de f.

Exercice 6. Dire si les fonctions suivantes sont prolongeables par continuité à \mathbb{R} tout entier :

1.
$$f(x) = (\sin x) \sin \left(\frac{1}{x}\right) \text{ si } x \neq 0$$

2.
$$g(x) = \cos x + \cos\left(\frac{1}{x}\right) \text{ si } x \neq 0$$

3.
$$h(x) = \sin(x+1) \ln|1+x| \text{ si } x \neq -1$$

Exercice 7. Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues. Montrer que $\inf(f, g)$ et que $\sup(f, g)$ sont continues.

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall x \in \mathbb{R}, f(x) = f(2x)$. Montrer que f est constante.

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 si $x \notin \mathbb{Q}$. Montrer que f est discontinue en tout point.

Exercice 10. Étant donnés une fonction $f: \mathbb{R} \to \mathbb{R}$ et un réel x_0 , on dit que f est semi-continue inférieurement (sci) en x_0 si et seulement si

$$(\forall \varepsilon > 0) \ (\exists \alpha > 0) \ (\forall x \in \mathbb{R}) \ (|x - x_0| < \alpha \Longrightarrow f(x) > f(x_0) - \varepsilon)$$

- 1. 1.1. Montrer que si f est continue en un point, elle y est aussi sci.
 - **1.2.** La fonction $x \to 1_{]0,+\infty[}(x)$ est-elle sci sur \mathbb{R} ? Et la fonction $x \to 1_{[0,+\infty[}(x)$? (On rappelle que si I est un sous-ensemble de \mathbb{R} , alors $1_I(x) = 1$ si $x \in I$ et $1_I(x) = 0$ sinon)
- **2.** Soient f et g deux fonctions sci en un point $x_0 \in \mathbb{R}$.

Montrer que $\inf(f,g)$, $\sup(f,g)$, f+g et λf (avec λ une constante positive quelconque) sont sci en x_0 .

3. Soit $(f_n)_{n\in\mathbb{N}}$ une famille de fonctions réelles sci en un même point $x_0\in\mathbb{R}$. On suppose que quel que soit $x\in\mathbb{R}$, la famille $(f_n(x), n\in\mathbb{N})$ est majorée, et on définit la fonction ϕ par

$$\phi : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sup_{n \in \mathbb{N}} \{ f_n(x) \}$$

Montrer que ϕ est sci en x_0 .