DESPEC Online/Nearline Histograms

Andrew Mistry

December 2020

Note: Information on individual histograms can also be found in the browser under the 'info' tab

1 FRS

1.1 Scalers

FRS Scalers given per 1s, 0.1s and per spill

1.2 SCI

1.2.1 SCI(2,4)

FRS Scintillators VME (SCI 21, 22 41, 42) e.g.

SCI(2:1)_L : Scintillator 21 Left VME

SCI(2:1)_R: Scintillator 21 Right VME

 $\mathbf{SCI(2:1)}_\mathbf{E}: Scintillator\ 21\ Energy\ VME$

 $SCI(2:1)_{-}Tx: Scintillator 21 \ dT(Left - Right) \ VME$ $SCI(2:1_{-}X: Scintillator 21 \ X \ position \ (mm) \ VME$

1.2.2 TOF

SCI ToF 21, 41, 42 e.g.

SCI_21_41_TofLL/RR: SCI21 \rightarrow SCI41 ToF LeftLeft and RightRight (ps)

1.3 ID

 $\mathbf{ID}_{-}\mathbf{AoQ}: A/Q$

 $ID_AoQ_corr: A/Q$ corrected for angle at S2

ID_Z1 : Z from Music 1
ID_Z2 : Z from Music 2

 $\mathbf{ID}_\mathbf{Z1}_\mathbf{dE2}:\ Z\ from\ Music\ 1\ vs\ dE\ Music\ 2$

 $\mathbf{ID_Z1_Sc21E}: \textit{Z from Music 1 vs SCI 21 Energy}$

 $ID_Z1_x2Z1/ID_Z_x4Z1: S2/S4 position vs Z Music 1$ $ID_dE_x2/ID_dE_x4: S2/S4 position vs dE Music 1$

 ID_x2_a2/ID_x2_b2 : S2 X position vs angle at S2 X(a) Y(b) (same for Y as ID_y2_a2 etc)

 $ID_x4_a4/ID_x4_b4 : S_4 X position vs angle at S_4 X(a) Y(b)$

 $ID_x2_x4 : S2 \ X \ position \ vs \ S4 \ X \ position$ $ID_sC41dE_AoQ : dE \ SCI41 \ vs \ A/Q$

 $\mathbf{ID_beta}: \ beta \ value \ v/c$

 $\begin{array}{lll} \textbf{TOF_4121_MHTDC} : \textit{MHTDC ToF SCI41} \rightarrow \textit{21} \\ \textbf{TOF_4221_MHTDC} : \textit{MHTDC ToF SCI42} \rightarrow \textit{21} \end{array}$

 $\mathbf{ID}_{-}\mathbf{dEToF}: \mathit{Music}\ 1\ \mathit{dE}\ \mathit{vs}\ \mathit{ToF}\ \mathit{SCI21} \to \mathit{41}$

ID_BRho0/1 : Brho 1st/2nd stage (Tm)

 $ID_x2AoQ : S2 \ X \ position \ vs \ A/Q$ $ID_x2AoQ : S4 \ X \ position \ vs \ A/Q$

 $ID_Z1_AoQ : Z Music 1 vs A/Q$

 $ID_Z1_AoQ_zsame: Z Music 1 vs A/Q (abs(Z1-Z2)j0.4)$

 $ID_Z1_AoQ_S2_S4corr: Z Music 1 vs A/Q angle at S2 corrected$

 $\textbf{ID_dEdegoQ_Z1}: \ Z \ \textit{Music 1 vs dE (S2 \ degrader)/Q (for \ high \ charge \ states)}$

ID_dEdeg_Z1 : Z Music 1 vs dE (S2 degrader) (for high charge states)

 $\mathbf{ID}_{-}\mathbf{Z1}_{-}\mathbf{Z2}$: Music 1 Z vs Music 2 Z

1.4 TPC

1.4.1 TPC21 (22,23,24...)

TPC21_X or Y : TPC21 X or Y position (mm)

 $\mathbf{TPC21}_\mathbf{XY}:\ \mathit{TPC21}\ \mathit{XvsY}\ \mathit{position}$

TPC21_LTRT: TPC21 Left T vs Right T (channels)

 $S2_X$ or Y : S2 X or Y position (mm) $S2_angA$ or B : S2 angle X(A) or Y(B)

Note: similar for S4 X, Y and angles

1.5 MUSIC

1.5.1 MUSIC(1)/(2)

Energy: Music 1 or 2 energy for each anode 0-7 **Time**: Music 1 or 2 time for each anode 0-7

1.6 VFTXSCI

Scintillator signals in the VFTX module

PosRaw21: Sci21 position uncalibrated

 $\textbf{ToFraw2141}: \textit{ToF SCI21}{\rightarrow} \textit{41 uncalibrated}$

Similar for SCI 21,22,42

1.7 ID_Gated

Number of PID gates can be specified. These histograms show the result of gating on various parameters in the FRS. Note: There are as many Z1 vs Z2 gates as needed and defined for the single 2D gate, but for the Z1 vs. Z2 AND $\rm X2/X4AoQ$ gates only one Z1 vs. Z2 gate can be selected for simplicity (gate number selected in /Configuration_Files/DESPEC_General_Setup/Correlations_config.dat)

1.7.1 Z1AoQ

Z1AoQGated : $Z vs A/Q gate \rightarrow Z vs A/Q$

 $\mathbf{Z1AoQ}_{-}\mathbf{Z1Z2Gated}: \mathit{Z1\ vs\ Z2\ gate}
ightarrow \mathit{Z\ vs\ A/Q}$

 ${\bf Z1AoQ_Z1Z2_X2AoQGated}: \it Z1 \ vs \ \it Z2 \ gate \ (only \ one \ defined) \ and \ \it S2 \ \it X$

position vs $A/Q \rightarrow Z$ vs A/Q

 $Z1AoQ_Z1Z2_X4AoQGated$: Z1 vs Z2 gate (only one defined) and S4 X

position vs $A/Q \rightarrow Z1$ vs A/Q

 ${\bf Z1AoQ_Z1Z2_X4AoQGated}: \it Z1 vs \it Z2 gate (only one defined) and \it S4 \it X$

position vs $A/Q \rightarrow Z1$ vs A/Q

Z1AoQ_X2AoQGated : $S2\ X\ position\ vs\ A/Q\ gate \rightarrow Z\ vs\ A/Q$ **Z1AoQ_X4AoQGated** : $S4\ X\ position\ vs\ A/Q\ gate \rightarrow Z\ vs\ A/Q$

ZA1oQ_dEdegZGated: Energy loss in S2 degrader vs Z1 gate \rightarrow Z vs A/Q

(also for corrected angle A/Q and Z1 and Z2 similar value)

1.7.2 Z1Z2

Only shows the Z1 vs Z2 gates applied for checking

$1.7.3 \quad x2AoQ$

 $\mathbf{x2AoQ_Z1Z2Gated}: \mathit{Z1}\ \mathit{vs}\ \mathit{Z2}\ \mathit{gate}{\rightarrow} \mathit{S2}\ \mathit{X}\ \mathit{position}\ \mathit{vs}\ \mathit{A/Q}$

 $x2AoQ_x2AoQGated$: S2 X position vs $A/Q \rightarrow S2$ X position vs A/Q $x2AoQ_x4AoQGated$: S4 X position vs $A/Q \rightarrow S2$ X position vs A/Q

Same for x4AoQ but with S4 X positions

2 AIDA

2.1 Unpacker

FEEX/FeeX_L/H_ChannelY: Raw FEE card X channel Y data (L: Low energy) and (H: High Energy)

2.2 Scaler

Pulser: AIDA Scaler 1 (Pulser)

Pulser Copy: AIDA Scaler 2 (Pulser Copy)

Time Machine Original: AIDA Scaler 3 (Time Machine signal 1)
Time Machine Delayed: AIDA Scaler 4 (Time Machine signal 2)

 ${\bf Time\ Machine}: {\it AIDA\ Time\ Machine}\ dT$

2.3 Implants

 $\mathbf{DSSDX_implants_strip_XY}: DSSD\ X\ Implant\ hit\ pattern\ (strip\ number)$

 $\mathbf{DSSDX_implants_energy}: \mathit{DSSD}\ \mathit{X}\ \mathit{Implant}\ \mathit{energy}$

DSSDX_implants_time_delta: DSSD X Implant front -back time
DSSDX_implants_strip_1d: DSSD X Implant hit pattern 1D
DSSDX_implants_per_event: DSSD X Implants per event

DSSDX_implants_x_ex: DSSD X Implant Energy X vs X position
DSSDX_implants_y_ey: DSSD X Implant Energy Y vs Y position

2.4 Decays

DSSDX_decays_strip_XY : DSSD X Decay hit pattern (strip number)

 $DSSDX_{decays_energy}: DSSD X Decays energy$

DSSDX_decays_time_delta: DSSD X Decays front -back time DSSDX_decays_strip_1d: DSSD X Decays hit pattern 1D DSSDX_decays_per_event: DSSD X Decays per event

DSSDX_implants_channels: DSSD X Implant multiplicity
DSSDX_decays_channels: DSSD X Decay multiplicity

3 FATIMA VME

3.0.1 Unpacker

 $\mathbf{Energy/Raw/E_Raw_LaBrCh.X}: \textit{Non gain-matched FATIMA QDC chan-nel X}$

Timing/Raw/TRaw_LaBrCh.X: Raw FATIMA TDC channel X

3.1 Energy

EnergyCalib/LaBr_ECalib_Ch.X: Gainmatched FATIMA QDC Ch.X
Fat_VME_EnergySum: Sum Fatima gainmatched QDC all channels

3.2 Timing

 $\mathbf{TDC_REF\text{-}TDC_DT/TDCdT_Cha_LaBr01_LaBrX}: \mathit{TDC\ reference\ chandrate}$

nel - TDC Channel X

 $SC41_TDC_dT/TDCdT_SCI41_LaBrX: SCI41 - TDC Channel X$

SC41_L_R dT Fatima VME SCI41 signals left-right

3.3 Stats

QDC_FAThits: Fatima QDC hits/channel TDC_FAThits: Fatima TDC hits/channel

Fatima_VME_Multiplicity: Fatima VME Multiplicity

4 FATIMA TAMEX

Lead_Fine/Lead-FineCh.X: Lead Fine time

Lead_Coarse/Lead-CoarseCh.X: Lead Coarse time

LeadT/Lead_/Lead Time Ch. X: Lead Time TrailT/Trail_/Trail Time Ch. X: Trail Time

 $\mathbf{LeadRef\text{-}Lead}/\mathbf{Lead\text{-}Lead}\ \mathbf{Time}\ \mathbf{Red}\ \mathbf{Ch1}\ \textbf{-}\ \mathbf{Ch.X}: \mathit{Lead}\ \mathit{reference}\ \mathit{channel}$

- Lead Channel X

ToT/ToT Ch. X: Time/Threshold (energy) Channel X

ToTSum: Sum of ToT all detectors (only FATIMA, SCI and Time machine

signals removed)

Fatima_Hitpattern: Hit pattern/Channel
Fatima_Multiplicity: Multiplicity all

5 bPlastic

LeadTime/Lead T Plas Det. 1/2 Ch.X: Lead Time bPlast 1 or 2 channel X

 $\mathbf{ToT/ToT}$ Plas Det. $\mathbf{1/2}$ Ch.X: Time over threshold (energy) bPlast 1 or 2 channel X

Lead-Lead_Ref/Lead-Lead Plas Det. 1/2 RefCh. - Ch.X : dT(Lead Time for bPlast 1 or 2 channel X - bPlast 1 or 2 reference channel)

SC41L_Ana_Lead_bPlas_Ref/SC41L_Ana_Lead bPlas Det 1/2 Ch.X: $dT(Lead\ Time\ for\ bPlast\ 1\ or\ 2\ channel\ X$ - $SCI41\ Left\ analogue\ signal)$ in $bPlast\ TAMEX$

SC41R_Ana_Lead_BPlas_Ref/SC41R_Ana_Lead bPlas Det 1/2 Ch.X : $dT(Lead\ Time\ for\ bPlast\ 1\ or\ 2\ channel\ X$ - $SCI41\ Right\ analogue\ signal)\ in\ bPlast\ TAMEX$

 $\begin{array}{l} \textbf{SC41R_Ana_Lead_BPlas_Ref/SC41L_Digi_Lead\ bPlas\ Det\ 1/2\ Ch.X:} \\ dT(\textit{Lead\ Time\ for\ bPlast\ 1\ or\ 2\ channel\ X-\ SCI41\ Left\ digital\ signal)\ in\ bPlast} \\ TAMEX \end{array}$

SC41R_Ana_Lead_bPlas_Ref/SC41R_Digi_Lead bPlas Det 1/2 Ch.X : $dT(Lead\ Time\ for\ bPlast\ 1\ or\ 2\ channel\ X$ - SCI41 Right digital signal) in $bPlast\ TAMEX$

SC41/Analogue L-R: SCI41 Left- Right analogue signal in bPlast TAMEX
SC41/Digital L-R: SCI41 Left- Right digital signal in bPlast TAMEX
ToT_Sum_Det.1/2: Sum ToT for bPlast 1 or 2

5.1 Stats

HitPattern_Det. 1/2: Hit pattern for bPlast 1 or 2 Multiplicity_Det. 1/2: Multiplicity for bPlast 1 or 2

To be implemented: PQDC/PQDC Plas Det. 1/2 Ch.X: QDC (energy) for bPlast 1 or 2 channel X

6 Germanium

6.1 Sum

 ${\bf Germanium_ESum_1keV}: Germanium\ gain matched\ energy\ sum\ binned\ to\ 1keV\ (no\ addback)$

 ${\bf Germanium_ESum_0_5keV}: \textit{Germanium gainmatched energy sum binned to}$

0.5keV (no addback)

 ${\bf Germanium_Addback_1keV}: \textit{Germanium gainmatched addback energy sumbinned to 1keV}$

 $\label{lem:continuous} \textbf{Germanium_Addback_0_5keV} \ : \ \textit{Germanium gainmatched addback energy} \\ \textit{sum binned to 0.5keV}$

 $Germanium_Addback_dT : Addback \ dT$

 ${\bf Germanium_Gamma_dT}: {\it Germanium\ gamma_gamma\ dT}$

Germanium_E_Mat : Germanium Gamma-Gamma Matrix Germanium_E_CrystalID : Energy vs. Crystal number

6.2 Stats

Germanium_Multiplicity: Germanium Multiplicity
Germanium_Hit_Pat: Germanium channel hit pattern

 ${\bf Germanium_Mult_vsGamGamdT}: \textit{Germanium Multiplicity vs.} \quad \textit{Gamma-nium}$

 $Gamma\ dT$

 $\label{lem:continuous} \textbf{Energy_Ch_1keV/Germanium_E_Det_X_Y} : \textit{Germanium energy detector} \\ \textit{X channel Y binned to 1keV}$

Energy_Ch_0_5keV/Germanium_E_Det_X_Y:Germanium energy detector X channel Y binned to 0.5keV

6.3 SCI41

Germanium_ESum_SC41L_ana FEBEX SC41 left Analogue Signal
Germanium_ESum_SC41R_ana: FEBEX SC41 right Analogue Signal
Germanium_ESum_SC41L_digi: FEBEX SC41 left Digital Signal
Germanium_ESum_SC41R_digi: FEBEX SC41 right Digital Signal

7 WR

7.1 AIDA

 ${\bf Aida_Implant\text{-}FRS_WR_dT}: Aida\ Implant \text{-} \ FRS\ White\ Rabbit\ dT$ ${\bf Aida_Implant\text{-}bPlast_WR_dT}: Aida\ Implant\text{-} \ bPlast\ VME\ White\ Rabbit\ dT$

 $\label{eq:Aida_Decay-bPlast_WR_dT} \textbf{A} ida \ Decay - bPlast \ White \ Rabbit \ dT \\ \textbf{A} ida \ Decay-Germanium_WR_dT : Aida \ Decay - Ge \ FEBEX \ White \ Rabbit \ dT \\ dT$

 $\textbf{Aida_Decay-FatimaVME_WR_dT} : \textit{Aida Decay - Fatima VME White Rabbit dT}$

7.2 Others

bPlast_FatimaVME_dT: bPlast - Fatima VME White Rabbit dT bPlast_Germanium_dT: bPlast - Ge FEBEX White Rabbit dT

FatimaVME_Germanium_dT: Fatima VME - Ge FEBEX White Rabbit dT

 $FRS_Germanium_dT: FRS$ - Ge FEBEX White Rabbit dT

 $FRS_bPlast_dT : FRS - bPlast White Rabbit dT$

 $FRS_FatimaVME_dT: FRS$ - Fatima VME White Rabbit dT

 \mathbf{FRS} _ $\mathbf{FatimaTAMEX}$ _ $\mathbf{dT}: \mathit{FRS}$ - Fatima TAMEX White Rabbit dT

 $\textbf{FatimaVME_FatimaTAMEX_dT} : \textit{Fatima VME - Fatima TAMEX White}$

Rabbit dT

 $\mathbf{bPlast_FatimaTAMEX_dT}: \mathit{bPlast_Fatima\ TAMEX\ White\ Rabbit\ dT}$

8 TimeMachine

8.1 Systems_dT

Contains single time machine dT(Ch.1 - Ch.2) for each subsystem

8.2 Correlations_matrices

Contains subsystem 1 vs. subsystem 2 matrices for correlations monitoring

9 Correlations

Note: There are as many Z1 vs Z2 gates as needed and defined for the single 2D gate, but for the Z1 vs. Z2 AND X2/X4AoQ gates only one Z1 vs. Z2 gate can be selected for simplicity (gate number selected in /Configuration_Files/DESPEC_General_Setup/Correlations_config.dat)

9.1 AIDA-FRS

- Implantation profile for ions

All /: All implant registered hits

Stopped/: Stopped implant registered hits (further downstream DSSD does not fire)

 $\mathbf{Z1vsAoQ}$: FRS Z1 vs A/Q gated:

Z1vsAoQ_GateG/DSSD_XY: FRS Z vs A/Q PID gate number G: Implants in DSSDs for strips X vs. Y

Z1vsAoQ_GateG/DSSD_Position: FRS Z1 vs A/Q PID gate number G: Implants in DSSDs for Position in mm

Z1vsAoQ_GateG/DSSD_XY: FRS Z1 vs A/Q PID gate number G: Implants in DSSDs Energy

Same histograms as above but for gates:

Z1 vs Z2: FRS Z1 vs Z2 gated

 $\mathbf{Z1Z2_x2AoQ}: FRS\ Z1\ vs.\ Z2\ AND\ X2\ position\ vs.\ A/Q\ gated$ $\mathbf{Z1Z2_x4AoQ}: FRS\ Z1\ vs.\ Z2\ AND\ X4\ position\ vs.\ A/Q\ gated$

9.2 FRS-Prompt Ge

- Prompt Isomers in Germanium

 $Z1vsAoQ_Ge : FRS Z1 \ vs \ A/Q \ gated:$

 ${\bf SinglesEnergy/Ge_EnergySum_Z1vsAoQ_GateG}: \textit{Germanium singles for PID gate number } G$

 $\label{lem:Gamma-Gamma$

 $\label{eq:GeE_vs_FRSGe_dT_Z1vsAoQ_GateG} Getermanium Geter Energy vs \ dT(SCI41[FEBEX signal]-Geterment matrices for PID gate number G$

Note: The above matrix may be changed from dT (SCI41-Ge Time) to dT(FRS White rabbit - Ge White Rabbit)

Same histograms as above but for gates:

Z1Z2_x2AoQ: FRS Z1 vs. Z2 AND X2 position vs. A/Q gated **Z1Z2_x4AoQ**: FRS Z1 vs. Z2 AND X4 position vs. A/Q gated

9.3 FRS_LongCorrelation_Ge

- For longer isomers >20mus. The time windows can be defined in /Configuration_Files/DESPEC_General_Setup/Correlations_config.dat

Z1vsAoQ_Gated/Ge_SinglesEnergy_LongCorrelationTime : $FRS\ Z1\ vs$ $A/Q\ gated:Ge\ Energy\ singles\ for\ longer\ correlation\ times$

Z1vsAoQ_Gated/dT_vs_GeE_LongCorrelationTime : $FRS\ Z1\ vs\ A/Q$ gated: Ge Energy singles vs dT(Ge - $FRS\ White\ Rabbit)$ for longer correlation times

Z1vsAoQ_Gated/GeE1_vs_GeE2_LongCorrelationTime: FRS Z1 vs A/Q gated: Gamma-Gamma matrix for longer correlation times

9.4 FRS-Fatima

- Prompt Isomers in Germanium **Z1vsAoQ**_Ge: FRS Z1 vs A/Q gated: SinglesEnergy/Fat_EnergySum_Z1vsAoQ_GateG: Fatima singles for PID gate number 'G'

 $\label{lem:Gamma-Gamma$

FatE_vs_FRSFat_dT/GeE_vs_FRSFat_dT_ZvsAoQ_GateG: Fatima Energy vs dT(SCI41[FEBEX signal]-Ge Time) matrices for PID gate number 'G' Note: The above matrix may be changed from dT (SCI41-Fatima Time) to dT(FRS White rabbit - Fatima White Rabbit)

-Lifetime energy gates and PID gate selection defined in:

 $/Configuration_Files/DESPEC_General_Setup/Correlations_config.dat$

 $\label{lifetime/Start-Stop} \textbf{Lifetime/Start-Stop} : \textit{Fatima dT(start level - stop level) (in ps) for Lifetime gate 'G'}$

 $\textbf{Lifetime/Stop-Start/FRS_Fat_LTG_stop_start} \ : \ \textit{Fatima} \ \textit{dT(stop} \ \textit{level} \ -$

start level) (in ps) for Lifetime gate 'G'

Lifetime/Start-Stop/FRS_Fat_LTG_start_stop_ns: Fatima dT(start level - stop level) (in ns) for Lifetime gate 'G'

 ${\bf Lifetime/Stop\text{-}Start/FRS\text{-}Fat\text{-}LTG\text{-}stop\text{-}start\text{-}ns}: \textit{Fatima dT(stop level le$

- start level) (in ns) for Lifetime gate 'G'

Same histograms as above but for gates

 $\mathbf{Z1Z2_x2AoQ}:FRS\ Z1\ vs.\ Z2\ AND\ X2\ position\ vs.\ A/Q\ gated$

 ${\bf Z1Z2_x4AoQ}: FRS~Z1~vs.~Z2~AND~X4~position~vs.~A/Q~gated$

9.5 Beta_Delayed_Gammas

Aida Implant-Decay gated (with/without bPlastic detectors). Gates defined in /Configuration_Files/DESPEC_General_Setup/Correlations_config.dat

9.6 Germanium

dT(Implant-Decay)/Implant-DecaydT_PIDGateX : Implant-Decay dT PID gate 'G' if germanium fires

Ge_Energy_ImplantDecay_All: Germanium Energy Implant-Decay all

dT(Implant-Decay)_All: Implant-Decay all, germanium fires

Energy/Ge_BetaGam_Energy_PIDGatedG: Germanium Energy Implant-Decay PID gate 'G'

Energy/Gamma-Gamma/Ge1Ge2_BetaGam_PIDGate: Germanium Gamma-Gamma Implant-Decay PID gate 'G'

Energy/EnergyvsdT(Implant-Decay)/Ge_BetaGam_EnergyvsdT_GateG: Germanium Energy vs dT(Implant-Decay) PID gate 'G'

9.7 Fatima

Note: FATIMA can be disabled for this part in the config file if not required/
Energy/Fat_BetaGam_Energy_PIDGatedG: Fatima Energy Implant-Decay
PID gate 'G'

Energy/Gamma-Gamma/FatE1FatE2_BetaGam_PIDGate: Fatima Gamma-Gamma Implant-Decay PID gate 'G'

-Lifetime energy gates and PID gate selection defined in: /Configuration_Files/DESPEC_General_Setup/Correlations_config.dat

Lifetime/Stop-Start/Fat_LTG_BetaGam_stop_start: Fatima dT(stop level - start level) for Beta delayed gammas with Lifetime gate 'G' (ps)

 $\label{lifetime/Start-Stop/Fat_LTG_BetaGam_start_stop_ns} \ : \ Fatima\ dT(start\ level\ -\ stop\ level)\ for\ Lifetime\ gate\ `G'\ (ns)$

Lifetime/Stop-Start/Fat_LTG_BetaGam_stop_start_ns: Fatima dT(stop level - start level) for Beta delayed gammas with Lifetime gate 'G' (ns)