

本章重点

- 一次重叠方式中,各种相关的处理;
- 流水线的时空图和性能分析;
- | 流水的局部性相关的处理,全局相关的处理和中断的处理;
- | 单功能非线性流水线的调度;
- | 向量流水方式;
- 向量流水机上,向量指令之间并行和 链接执行的特点。

本章的难点

- | 给出指令间微操作的时间重叠关系 要求,算出全部指令完成所需要的 时间:
- | 给出数学计算公式,在二功能静态流水线上,为获得尽可能高的性能,如何调整其操作的流入顺序,画出时空图,计算吞吐率,效率及加速比;
- | 消除流水线速度性能瓶颈采取的措施及相应的时空图画法,吞吐率和效率的计算;

本章的难点

- | 优化单功能非线性流水线的调度方案,相应的时空图画法,吞吐率和效率的计算;
- CRAY-1向量指令序列中,向量指令之间并行、链接、串行的判断, 计算完成全部指令所需要的拍数;
- 一在超长指令字、超标量处理机、超流水线处理机,给出指令数和并行的度数,画出相应的时空图,计算相对于度为1的常规标量流水处理机处理的加速比。

本章内容要点

- | 重叠方式
- 流水方式
- 向量的流水处理和向量流水处理机
- 指令级高度并行的超级处理机

本章的 内容要点

重叠方式

- z 指令的顺序方式和重叠方式解释
- z 重叠方法对计算机组成的要求
- z "一次重叠"方式的相关控制

流水方式

- z流水是重叠的引申
- z 流水线的分类
- z 流水线处理机的性能
- z 流水机器的相关
- z 流水机器局部性相关的处理
- z流水机器全局性相关的处理
- z流水机器的中断处理
- z流水线的任务调度

本章的内容要点 2

- 向量的流水处理与向量流水处理机
 - z向量的流水处理
 - z 向量流水处理机
- 指令级高度并行的超级处理机
 - z 超标量处理机: m条指令流水线同时 并行;
 - z 超长指令字处理机是将水平型微码和 超标量处理相结合;
 - Z 超流水线处理机是采用多相的高频时钟。

- 假设一条指令的解释分为取指、分析与执行3步,每步的相应时间为t_{取指},t_分,t_{执行}。
- (1) 分别计算下列几种情况下,执行100 条指令所需时间的一般关系式
 - (i)顺序方式;
 - (ii)仅"执行_k"与"取指_{k+1}"重叠
 - (iii)仅"执行_k"、"分析_{k+1}"、"取指_{k+2}"重
- (2) 分别在 $t_{\text{取指}} = t_{\text{分析}} = 2$, $t_{\text{执行}} = 1$;及 $t_{\text{取指}} = t_{\text{执行}} = 5$, $t_{\text{分析}} = 2$ 两种情况下,计算出上述各结果

第一题解答

三种情况下的时间关系

取指_k分析_k 执行_k 取指_{k+1}分析_{k+1} 执行_{k+1} 顺序方式工作的时间关系图

取指_k 分析_k 执行_k

取指_{k+1} 分析_{k+1} 执行_{k+1}

取指 $_{k+2}$ 分析 $_{k+2}$ 执行 $_{k+2}$

仅"执行_k"与"取指_{k+1}"重叠

取指k 分析k 执行k

取指_{k+1} 分析_{k+1} 执行_{k+1}

取指_{k+2} 分析_{k+2} 执行_{k+2}

仅"执行_k"、"分析_{k+1}"、"取指_{k+2}"重叠

(1)顺序方式工作时

(2)仅"执行_k"与"取指_{k+1}"重叠

$$t_{\text{取指}}$$
+100 $t_{\text{分析}}$ + $t_{\text{执行}}$ +99* $\max\{t_{\text{取指}},t_{\text{执行}}\}$

(3)仅"执行_k"、"分析_{k+1}"、"取指_{k+2}"重叠

 $t_{\text{取指}}$ + max $\{t_{分析}, t_{\text{取指}}\}$ +98* max $\{t_{\text{取指}}, t_{分析}, t_{执}\}$

$$f$$
}+ max{ t 执行, t 分析}+ t 执行

流水线 4 个功能部件,每个部件的延迟时间是 Δ t,输入10个数据,间歇5 Δ t,又输入10个数据,周期工作,求吞吐率,并画出时-空图

第五题解答

$$T_p = \frac{10}{10\Delta t + 5\Delta t} = \frac{10}{15\Delta t} = \frac{2}{3\Delta t}$$

注意: 不要漏了Δt

浮点乘法流水线,乘积可以直接返回到输入端或暂存于相应的缓冲寄存器中。 画出A*B*C*D

$$T_p = \frac{3}{13\Delta t}$$

$$h = \frac{(3+3+9)*\Delta t}{13*3\Delta t} = \frac{15}{39} = \frac{5}{13}$$

- 为提高流水线的吞吐率,可以采取哪两种方法克服速度瓶颈?现有3段流水线,经过各段的时间为 Δt , $3\Delta t$, Δt .
- (1)计算连续输入3条和连续输入30条 指令时的吞吐率和效率
- (2)按两种途径进行改进,画出流水线 结构示意图,计算连续输入3条和连 续输入30条指令时的吞吐率和效 率。
- (3)通过对(1)、(2)两小题的计算结果,你得出什么有用的结论?

$$T = \frac{n}{\sum_{i=1}^{m} \Delta t_i + (n-1)\Delta t_j}, \qquad \sharp \oplus, \quad t_j = \max\{\Delta t_1, \Delta t_2, ..., \Delta t_m\}$$

$$h = \frac{n \sum_{i=1}^{m} \Delta t_{m}}{m \left(\sum_{i=1}^{m} \Delta t_{i} + (n-1)\Delta t_{j}\right)}$$

第九题解答

提高吞吐率的两条途径:

功能段细分、重复设置多个功能部件

(1) a. 当连续流入3条指令时

$$T_{p} = \frac{3}{11 \Delta t} \qquad h = \frac{5}{11}$$

(1) b. 当连续流入30条指令时

$$T_p = \frac{15}{46 \ \Delta t}, \qquad h = \frac{25}{46}$$

第九题解答

(2) 将第二段划分为三段

$$n=3$$
时:

$$T_p = \frac{3}{7\Delta t},$$

$$h=\frac{3}{7}$$

$$n = 30$$
时:

$$T_p = \frac{15}{17\Delta t},$$

$$h = \frac{15}{17}$$

第九题解答

(2)重复设置功能部件时空图

n=3时:

$$T_p = \frac{3}{7 \, \Delta t},$$

$$h=\frac{3}{7}$$

$$n = 30$$
时:

$$T_p = \frac{15}{17\Lambda t}$$

$$h = \frac{15}{17}$$

$$A*(B+C*(D+E*F))+G*H$$

画出能获得尽可能高的吞吐率的流水时空图。如果对瓶颈子部件进行进一步的细分,最少须多长时间可完成运算,若3无法再细分,只能采用并联方法改进,问流水线的效率为多少?

第十题解答

解题原则:后面越早需要的运算结果,就越尽可能早的开始运算!

$$A * C(D + E * F) + A * B + G * H$$

1:计算A*C 2:计算E*F 3:计算A*B

4:计算G*H 5:计算A*C*D 6:计算A*C*E*F

7:计算A*C*E*F+A*C*D 8:计算A*B+G*H

9:计算结束

$$T_p = \frac{9}{24\Delta t} = \frac{3}{8\Delta t}$$

$$h = \frac{6*4+4*3}{24*4} = \frac{9}{24} = \frac{3}{8}$$

第十题解答

△对瓶颈部件细分的时空图如下:

4				1	2	3	4	5	6				7	8				9		
32			1	2	3	4	5	6												
31		1	2	3	4	5	6													
22												7	8				9			
21											7	8				9				
1	1	2	3	4	5	6				7	8				9					

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \ 10 \quad 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19$

1:计算A*C 2:计算E*F 3:计算A*B

4:计算G*H 5:计算A*C*D 6:计算A*C*E*F

7:计算A*C*E*F+A*C*D

9:计算结束

则对流水线瓶颈子过程细分后,最少需要18 Δ t可完成全部运算。

第十题解答

(3)若子过程3已无法再细分,采用并联方法的时空图如下:

4				1	2	3	4	5	6				7	8				9		
32			2	2	4	4	6	6												
31		1	1	3	3	5	5													
22												7	8				9			
21											7	8				9				
1	1	2	3	4	5	6				7	8				9					

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

$$h = \frac{6*4+3*4}{18*6} = \frac{36}{18*6} = \frac{1}{3}$$

重要问题

乘法顺序不同,计算结果不同 自己试着画出首先计算A*B的时空图

预约表

	育し
見足	页

时间段	t_0	$\mathbf{t_1}$	$oxed{t_2}$	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈
$\mathbf{S_1}$	→								√
$\mathbf{S_2}$		√	√						
S_3				4			4	4	
S_4				4	√				
S_5	Non-con-					√	√		

- 1.延迟禁止表{1, 3, 4, 8}
- 2.冲突向量(10001101)

状态转意图

调度方案

调度方案	平均延迟
(2,5)	3.5
(2,7)	4.5
5	5
(6,5)	5.5
(6)	6
(6,7)	6.5
(7)	7
(5,2)	3.5