EI M5

2010-11

MATHEMATIK

1.* Klausur - Pflichtteil

In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um den Wahlteil zu erhalten, gib bitte diesen Pflichtteil bearbeitet ab.

1. Aufgabe - light up!

(7 Punkte)

Leite die folgenden Funktionsterme nach der Variablen ab und vereinfache sie!

$$a(x) = sin(x) cos(x)$$
 $b(x) = (2x + 1)^3$ $c(x) = \frac{4}{3x^3} - \frac{5x^2}{4}$

$$b(x) = (2x+1)^3$$

$$c(x) = \frac{4}{3x^3} - \frac{5x^2}{4}$$

$$d(x) = \sqrt{\sin(x) + 1}$$

$$e_x(u) = \sin(x) + ux$$

$$d(x) = \sqrt{\sin(x) + 1} \qquad e_x(u) = \sin(x) + ux \qquad f(x) = \frac{x}{x+1} \quad \text{(für } x \neq -1\text{)}$$

2. Aufgabe - Potenz und Logarithmus

(2 Punkte)

Vereinfache die folgenden Ausdrücke!

a)
$$\frac{x^{-3} \cdot y^4 \cdot x^{1/2}}{x^2 \cdot y^{-1}}$$

b)
$$log(10) + log(1)$$

3. Aufgabe - Kurvendiskussion old style

(7 Punkte)

Gegeben ist die Funktion f mit $f(x) = x^4 - 2x^2 + 1$ für reelle x-Werte.

- a) Liegt eine Symmetrie vor? Begründe kurz.
- b) Bestimme die Nullstellen dieser Funktion.
- c) Wie verhält sich die Funktion für sehr große positive bzw. negative x-Werte? Begründe kurz.
- d) Bestimme alle Extremstellen und gib die Extrempunkte an.
- e) Skizziere die Funktion für x-Werte zwischen -5 und 5 (L.E. 1cm).

EI M5

2010-11

MATHEMATIK

1.* Klausur – Wahlteil

In diesem Teil sind GTR und Formelsammlung erlaubt. Vergiss nicht, deinen Gedankengang zu dokumentieren (damit ich weiß, was du dir so überlegt hast).

4. Aufgabe – GTR on!

(2 Punkte)

Berechne folgende Werte:

a)
$$f(0)$$
 und $f(-17)$ für $f(x) = \sqrt{x^2 + x - 3}$

b)
$$g'(1)$$
 und $g''(2)$ für $g(x) = (2x - \sqrt{3x})^3$

5. Aufgabe - kleine Kurvenschar

(2 Punkte)

Gegeben ist die Kurvenschar f_a über $f_a(x) = x^3 + tx - 4$ (a > 0) für reelle Zahlen x. Fertige für alle x-Werte zwischen -3 und 3 eine Skizze der drei Wendeparabeln f_1 , f_2 bzw. f_3 an (L.E. 1cm).

6. Aufgabe – große Kurvenschar

(10 Punkte)

Gegeben ist die Kurvenschar f_t über $f_t(x) = -tx^3 + x + t$ (t > 0) für reellen Zahlen x.

- a) Liegt eine Symmetrie vor? Begründe kurz.
- b) Bestimme $f_3(0)$ und $f_6(0)$.
- c) Stelle für die Funktion f_3 die Tangentengleichung für den Punkt P(1|1) auf.
- d) Bestimme alle Wendepunkte der Kurvenschar.
- e) Bestimme die Ortskurve für den Wendepunkt bei x=0.