

Lab	
HW	
Until	

การบ้านปฏิบัติการ 3 Functions (20 คะแนน)

2	0		
ขอ	กา	าห	นด

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__': เพื่อความ สะดวกในการ import จาก Script อื่น ๆ โดยระบบ grader จะไม่ตรวจให้คะแนนฟังก์ชัน main() และจะ พิจารณาทดสอบเฉพาะฟังก์ชันที่ระบุชื่อในแต่ละโจทย์แต่ละข้อโดยตรงถ้าเป็นข้อที่โจทย์ระบุให้เขียนฟังก์ชัน
- แ. ไม่อนุญาตให้ใช้ Control Flow ต่าง ๆ เช่น if (Conditionals) หรือ and, or (Logical operations) หรือ for,
 while (Iterations), Recursions, หรือ Data Type อื่น ๆ ที่ยังไม่สอนในบทเรียน เช่น range, list หรือ map
 ในการแก้ปัญหา
- iii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ในข้อที่ระบุว่ามี **[Attachments]** ให้ Download ไฟล์ Template จาก Grader ลงมา implement (ปุ่ม Attachment บน Grader)
- v. <u>ตัวอักษรเอียงสีน้ำเงิน</u>ในตัวอย่างการ Run คือ User Input จาก keyboard (กรณีโจทย์กำหนดให้เขียนโปรแกรม)

Hint: ควรใช้ Statement assert เพื่อทำการทดสอบฟังก์ชันที่เขียนกับข้อมูลทดสอบหลายๆ ชุดโดยอัตโนมัติ (มี ตัวอย่างใน Attachment ของ HW03 1)

1) **4 คะแนน** (Lab03_1_6XXXXXXX.py) [Attachments] ให้เขียนโปรแกรมภาษา python เพื่อรับค่าพื้นที่ผิวของ ทรงกลมจาก User แล้วคำนวณปริมาตรของทรงกลมนั้น โดยต้องเขียน code ในฟังก์ชัน find_r_from_surface_area() และ sphere_volume() ทั้งนี้โปรแกรมที่ได้จะมีผลการ Run ดังแสดงด้านล่าง (ดูคำอธิบายทั้งหมดจาก Slide เรื่อง Functions Part I หน้า 15 - 20)

ตัวอย่างการ Run

input surface area:	50		
volume = 33.25	30		

การวิเคร	าะห์ปัญหา
	การวิเครา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมล	ชนิดข้อมล	

<u>Hint</u>

- สามเหลี่ยมในรูปด้านล่างทุกสามเหลี่ยมเป็นสามเหลี่ยมคล้ายทั้งหมด
- 2. พิจา

3) **4 คะแนน (HW03_1_6XXXXXXX.py) <mark>[Attachments]</mark> ให้เขียนฟังก์ชัน nearest_odd(x: float) -> int** เพื่อ<u>คืนค่า</u>จำนวนคี่ที่ใกล้กับจำนวนจริง x ที่สุดโดยหาก x เป็นจำนวนคู่ ให้คืนค่าจำนวนคี่ที่<u>น้อยกว่า</u> x นอกจากนี้ ไฟล์ที่ส่งจะต้องมีฟังก์ชัน test_nearest_odd() ที่ทำหน้าที่ทดสอบการทำงานของฟังก์ชัน nearest_odd() โดย ใช้คำสั่ง assert ด้วย

 $oxed{ ext{Hint:}}$ จำนวนคีคือจำนวนที่สามารถเขียนในรูป 2n+1 หรือ 2m n,m เป็นจำนวนเต็ม

<u>Input</u>	Output
3	3
3.5	3
4 Chiang Mai	3niversity
4.5	5

•	การวิเคร	าะห์ำ	ไถเหา
	11 19 9 9 11 9	IOFIL	וואוקטו

การวิเคราะห์ปัญหา

• Input:

• Output:

• Output:

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	· · · · · · · · · · · · · · · · · · ·
• Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	· · · · · · · · · · · · · · · · · · ·

4) 4 คะแนน (HW03_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน $kth_digit(number: int, k: int) -> int$ เพื่อ<u>คืนค่า</u>ของหลักที่ระบุโดยตัวแปร k ($k \geq 0$) ของจำนวนเต็ม number โดยกำหนดให้หลักที่อยู่ตำแหน่งขวาสุด (หลักหน่วย) คือหลักที่ 0 ทั้งนี้ ให้ถือว่า User จะไม่ใส่ตัวแปรในช่วงค่าที่ไม่ถูกต้อง (ไม่จำเป็นต้องตรวจสอบความ ถูกต้องของ Input)

<u>Input</u>	<u>Output</u>
789 0	9
789 2	7
789 3	0
0 0	0

การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

5) 4 คะแนน (Hw03_3_6xxxxxxxx.py) ให้เขียนฟังก์ชัน set_kth_digit(number: int, k: int, value: int) -> int เพื่อ<u>คืนค่า</u>ผลลัพธ์ของการเปลี่ยนค่าของหลักที่ระบุโดยตัวแปร k ของ<u>จำนวนเต็มบวก</u> number ให้ มีค่าเป็นตามที่กำหนดในตัวแปร value $(0 \le value \le 9)$ โดยกำหนดให้หลักที่อยู่ตำแหน่งขวาสุดคือหลักที่ 0เช่น set_kth_digit(2343, 2, 7) จะเปลี่ยนหลักที่ 2 ของตัวเลข 2<u>3</u>43 ให้เป็นเลข 7 และคืนค่า 2743 ทั้งนี้ จะ<u>ต้อง</u>มีการ<u>เรียกใช้</u>ฟังก์ชัน kth_digit() โดยให้นำฟังก์ชันดังกล่าวที่เขียนใน HW03_2 มาใส่ในไฟล์เดียวกัน และให้ถือว่า User จะไม่ใส่ตัวแปรในช่วงค่าที่ไม่ถูกต้อง (ไม่จำเป็นต้องตรวจสอบความถูกต้องของ Input)

<u>Input</u>	<u>Output</u>
2 <u>3</u> 43 2	2 <u>7</u> 43
7	IOOILNOL
51 Chiang Ma	5 <u>2</u> niversity
0 2	
1	<u>5</u> 01
2	
5	

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมล	 ชนิดข้อมล	

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ https://cmu.to/gdr111

COMPUTER SCIENCE

Chiang Mai University