Modelos Avançados de Aprendizagem Estatística

Aprendizagem Estatística Supervisionada

Prof. Washington Santos da Silva 07/06/2021

Mestrado Profissional em Administração

Modelos Avançados de Aprendizagem Estatística

Referências

Modelos Avançados de Aprendizagem Estatística

Statistical Learning

Aprendizagem Estatística

A aprendizagem estatística refere-se a um vasto conjunto de ferramentas para a compreensão de dados. Essas ferramentas podem ser classificadas como **supervisionadas** ou **não supervisionadas**.

4

Statistical Learning

Aprendizagem Supervisionada

Em termos gerais, a aprendizagem supervisionada envolve a construção de um modelo estatístico para prever ou estimar uma **variável resposta** (*output*) com base em uma ou mais variáveis preditoras (*inputs*). O objetivo é treinar um modelo da forma y = f(x), para prever y com base em x.

Statistical Learning: Aprendizagem Supervisionada

Statistical Learning

Aprendizagem Não Supervisionada

Na aprendizagem não supervisionada, há entradas (variáveis preditoras ou inputs), mas nenhuma saída (variável resposta ou outputs). No entanto, podemos descobrir ou aprender padrões a partir de tais dados.

Statistical Learning: Métodos

Trade-off entre Viés-Variância (Bias-Variance)

Desempenho nos dados de treino

- · Modelo linear: Viés Alto/underfit
- · Modelo Não-Linear: Viés Baixo

Bias-Variance Trade-off

Desempenho nos dados de teste

- · Modelo linear: Variância baixa
- · Modelo Não-Linear: Variância alta/overfit

Árvores de Decisão (Decision Trees): Regressão

Vantagens:

- · Capacidade nativa para lidar com variáveis numéricas e categóricas
- · Tratam (poucos) dados faltantes adequadamente
- · Robustas a valores extremos
- · Preparação dos dados (um pouco) mais simples
- · Modelam não-linearidades
- · Podem ser treinadas rapidamente em grandes bancos de dados

Árvores de Decisão (Decision Trees): Regressão

Árvores de Decisão (Decision Trees): Regressão

Procedimento Geral

- 1. Dividimos o espaço das preditoras (conjunto de possíveis valores para X_1, X_2, \dots, X_p) em J regiões distintas não sobrepostas R_1, R_2, \dots, R_j .
- 2. Para cada observação que cai na região R_j , fazemos a mesma previsão, que é simplesmente a média do valores da resposta (y_i) para os dados de treinamento.
- 3. O objetivo é encontrar "retângulos" que minimizam a Soma dos Quadrados dos Resíduos (*SQR*):

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})$$

4. Selecionamos o preditor X_j e o ponto de corte s tal que dividir o espaço das preditoras nas regiões {X|X_j < s} e {X|X_j ≥ s} nos leva a maior redução possível na SQR.

Árvores de Decisão: Regressão

Procedimento Geral

- 4. Em seguida, repetimos o processo, procurando a melhor preditora X e o melhor ponto de corte s para dividir os dados ainda mais, a fim de minimizar a *SQR* em cada uma das regiões resultantes.
- No entanto, desta vez, em vez de dividir todo o espaço das preditoras, dividimos uma das duas regiões previamente identificadas. Agora temos três regiões.
- 6. Mais uma vez, procuramos dividir ainda mais uma dessas três regiões, de modo a minimizar a SQR. O processo continua até que um o critério de parada é alcançado; por exemplo, podemos continuar até que nenhuma região contenha mais de cinco observações.

Árvores de Decisão (Decision Trees)

Árvores de Decisão: Regressão

Overfit

- O processo descrito pode produzir boas previsões nos dados de treinamento, mas provavelmente apresentará overfit, com desempenho insatisfatório nos dados de teste.
- Uma árvore menor com menos divisões pode levar a uma menor variância e melhor interpretação ao custo de um pequeno viés.
- Uma estratégia melhor é construir uma árvore grande T_0 e, em seguida, podá-la para obter uma subárvore.
- · Cost complexity pruning é usado para isso.

Árvores de Decisão: Regressão

Cost complexity pruning

• consideramos uma sequência de árvores indexadas por parâmetro de ajuste não negativo α . Para cada valor de α corresponde uma subárvore $T\subset T0$ tal que:

$$\sum_{m=1}^{T} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

é a menor possível.

- |T| = n. de nós terminais da árvore. R_m é o retângulo correspondente ao m-ésimo nó terminal. \hat{y}_{R_m} é a média dos dados de treinamento em R_m .
- α = controla o trade-off entre a complexidade da subárvore e seu ajuste aos dados de treinamento. Selecionamos o valor ótimo de $\hat{\alpha}$ usando validação cruzada.
- Em seguida, retornamos ao conjunto de dados completo e obtemos a subárvore correspondendo a $\hat{\alpha}$.

Validação Cruzada (Cross-Validation)

Validação Cruzada

É uma das várias **técnicas de validação de modelos** semelhantes para avaliar como os resultados de um modelo estatísticp poderão ser generalizados para um conjunto de dados independente. É usada principalmente em situações onde o objetivo da modelagem é a previsão, e desejamos estimar a qualidade de um modelo preditivo **ou para selecionar valores ótimos para parâmetros de controle**.

k-fold Cross-Validation: k = 5

Def.

O conjunto de dados total é dividido em k conjuntos. Um por um, um conjunto é selecionado como o conjunto de teste e os outros k-1 conjuntos são combinados no conjunto de treinamento. Isso é repetido para cada um dos k conjuntos

Árvores de Regressão: Algoritmo

Algoritmo

- Use recursive binary splitting para crescer uma grande árvore para os dados de treinamento, parando apenas quando cada nó terminal tem menos do que um número mínimo de observações.
- 2. Aplique cost complexity pruning à árvore maior de forma a uma sequência das melhores subárvores como uma função de α .
- 3. Use a validação cruzada k-fold para escolhaer α . Isto é, divida os dados de treinamento em k folds. Para cada $k = 1, \dots, K$:
 - a) Repita os passos 1 e 2 para todo k exceto o k-ésimo fold.
 - b) Calcule o RMSE para os dados na k-ésima partição deixada para teste.
 - c) Tome a média dos resultados para cada valor de α para minimizar o erro médio
- 4. O Resultado é a subárvore do passo 2 que corresponde ao valor de lpha.

Árvores de Regressão

Desvantagens

- · Árvores apresentam alta variância -> baixa performance do modelo
- Overfit

Qual a razão da Popularidade

- · Bagging: Bootstrap Aggregation
- Boosting

Random Forests:

Bagging: bootstrap aggregation

Princípio

Sejam X_1, X_2, \ldots, X_n amostras independentes com variância σ^2 :

$$V(\overline{X}) = \frac{\sigma}{r}$$

Em palavras, tomar a média de um conjunto de observações reduz a variância.

Random Forests:

Gradient Boosting

Referências

Referênc<u>ias</u>

JAMES, Gareth et al. An introduction to statistical learning. New York: springer, 2013. Disponível em: https://www.statlearning.com/

HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerone. The Elements of Statistical Learning. 2nd. ed., Springer. 2009.