Using Lean for teaching

Patrick Massot

Université Paris-Saclay at Orsay

January 7, 2021

Context

- Title: Computer assisted logic and proofs
- 50 students enrolled in first year of double-major Math and Computer Science, better than average French student but not elite
- Second semester, after one semester of calculus (with ε and δ by teacher but not in exam)
- 12 times 2 hours of computer lab, 2 groups of 25 (other teacher not using Lean outside of this course)

Goal

Goal: Improve understanding and production of *traditional* proofs on paper.

Non goals: Lean expertise, type theory, first order logic...

Technology

- Lean + mathlib
- Using VScode or CoCalc or javascript version
- One custom tactic gathering refl, norm_num, ring, abel
- Liberal use of linarith

Lecture notes

Exemple

```
Si une suite u tend vers x_0 et si une fonction f est continue en x_0 alors la suite f \circ u (de terme général f(u_n)) tend vers f(x_0).
```

```
example (f u x<sub>0</sub>) (hu : limite suite u x<sub>0</sub>)
 (hf : continue en f x_0) : limite suite (f \circ u) (f x_0) :=
```

Démonstration

Montrons que N convient à notre objectif.

```
Notre but est de montrer que, pour tout \varepsilon strictement positif, il existe un entier N 2 goals
                                                                                                     f : R → R.
tel que, pour tout entier n supérieur à N, |f(u_n) - f(x_0)| est inférieur à \varepsilon.
                                                                                                     u : \mathbb{N} \to \mathbb{R}
         unfold limite suite,
                                                                                                     Xe : R,
Soit \varepsilon un réel strictement positif.
                                                                                                    hu : limite suite u xo,
         intros ε hε.
                                                                                                    hf : continue en f xo,
Par hypothèse de limite sur f, appliquée à cet \varepsilon strictement positif, il existe un
                                                                                                     ε: R,
                                                                                                    h\epsilon:\epsilon>0
réel \delta strictement positif tel que :
                                                                                                    \vdash \exists (\delta : \mathbb{R}) (H : \delta > 0), \forall (x : \mathbb{R}), |x - x_0| \leq \delta \rightarrow |f x - f x_0|
Pour tout x réel, si |x - x_0| \le \delta alors |f(x) - y_0| \le \varepsilon (1).
On fixe un tel \delta.
       obtain (\delta, \delta \text{ pos, Hf}) : \exists \delta > 0, \forall x, |x - x_0| \le \delta \rightarrow
                                                                                                     f: \mathbb{R} \to \mathbb{R}
     |f x - f x_{\theta}| \le \varepsilon,
                                                                                                    u : N → R.
                                                                                                     X0 : R.
             exact hf ε hε.
                                                                                                    hu : limite suite u xo,
Par l'hypothèse de limite sur u, appliquée au réel \delta strictement positif que nous
                                                                                                     hf : continue en f xo,
venons de fixer, il existe un entier N tel que :
                                                                                                     ε : R.
Pour tout entier n, si n \ge N alors |u_n - x_0| \le \delta (2).
                                                                                                    h\epsilon: \epsilon > 0,
                                                                                                     δ : R,
On fixe un tel N.
                                                                                                    \delta pos : \delta > 0,
        obtain (N, Hu) : \exists (N : N), \forall (n : N), n \ge N \rightarrow |u n
                                                                                                    H\bar{f}: \forall (x : \mathbb{R}), |x - x_0| \le \delta \rightarrow |f x - f x_0| \le \epsilon
     - Xe | ≤ δ,
                                                                                                    \exists (N : N), \forall (n : N), n \ge N \rightarrow |(f \circ u) \ n - f \times e| \le \varepsilon
             exact hu δ δ pos,
```

Mathematical content

- More formal introduction to quantifiers and logic operators but almost only with familiar concrete examples
- Divisibility in \mathbb{Z} , functions (injective, surjective, monotone)
- Limits of sequences of real numbers and functions
- sup, inf, subsequences, Bolzano-Weirstrass, Heine

All content became the tutorials project.

Main trick

Carefully select exercises to hide all issues, especially coercions and dependent types (beyond Prop)

Effect

First iteration was too hard (students were less prepared than I thought).

Second iteration was much better but Covid interfered and going from Lean to paper is difficult.

Some mistakes in first iteration

- Teaching goal focussing brackets {/} during first iteration.
- Any discussion of differences between set theory and type theory beyond the notation for implication and $x:\mathbb{R}$ instead of $x\in\mathbb{R}$. For instance $A:\operatorname{set}\mathbb{R}$ is no problem.

Future

Next iteration starts at end of month. Will probably try verbose custom tactic.

```
-- If f is continuous at x_0 and the sequence u tends to x_0 then the sequence f \circ u, sending n to
-- f (u n) tends to f x<sub>0</sub>
example (f u x_0) (hu : limite suite u x_0) (hf : continue en f x_0) :
  limite suite (f \circ u) (f x_{\circ}) :=
begin
  Let's prove that \forall \ \epsilon > 0, \exists \ (N : \mathbb{N}), \ \forall \ n \ge N, \ |(f \circ u) \ n - f \ x_0| \le \epsilon,
  Let (\epsilon > 0),
  By hf applied to [\epsilon, h] we obtain
     (\delta : \mathbb{R}) (\delta \text{ pos } : \delta > 0) (\text{Hf } : \forall (x : \mathbb{R}), |x - x_0| \le \delta \rightarrow |f x - f x_0| \le \epsilon),
  By hu applied to [\delta, \delta pos] we obtain
     (N: \mathbb{N}) (Hu: \exists (N: \mathbb{N}). \forall (n: \mathbb{N}). n \geq N \rightarrow |u \mid n - x_0| \leq \delta).
  Let's prove that N works.
  Let (n \ge N),
  We apply Hf,
  Let's prove that |u n - x_0| \le \delta,
  This is Hu n h 1,
end
```