In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

DATA COLLECTION

In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\Fitness (2).csv")
a
```

Out[2]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [3]:

```
b=a.head(5)
b
```

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179

DATA CLEANING AND PRE-PROCESSING

In [4]:

```
b.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 5 columns):
     Column
                         Non-Null Count Dtype
     Row Labels
                         5 non-null
                                         object
 0
 1
     Sum of Jan
                         5 non-null
                                         object
     Sum of Feb
                         5 non-null
                                         object
     Sum of Mar
                        5 non-null
                                         object
     Sum of Total Sales 5 non-null
                                         int64
dtypes: int64(1), object(4)
memory usage: 328.0+ bytes
In [5]:
b.describe()
```

Out[5]:

Sum of Total Sales

count	5.000000
mean	128.400000
std	42.317845
min	75.000000
25%	101.000000
50%	127.000000
75%	160.000000
max	179.000000

In [6]:

```
b.columns
```

Out[6]:

EDA AND VISUALIZATION

In [7]:

sns.pairplot(b)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1b156dd5fd0>

In [8]:

sns.distplot(b['Sum of Total Sales'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>

In [9]:

```
In [10]:
```

```
sns.heatmap(f.corr())
```

Out[10]:

<AxesSubplot:>

In [11]:

```
x=f[['Sum of Total Sales']]
y=f['Sum of Total Sales']
```

In [12]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [13]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]:

LinearRegression()

In [14]:

```
print(lr.intercept_)
```

-2.842170943040401e-14

In [15]:

```
r=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
r
```

Out[15]:

Co-efficient

Sum of Total Sales

1.0

```
In [16]:
```

```
u=lr.predict(x_test)
plt.scatter(y_test,u)
```

Out[16]:

<matplotlib.collections.PathCollection at 0x1b158f679d0>

In [17]:

```
print(lr.score(x_test,y_test))
```

1.0

In [18]:

```
lr.score(x_train,y_train)
```

Out[18]:

1.0

RIDGE REGRESSION

```
In [19]:
```

```
from sklearn.linear_model import Ridge,Lasso
```

In [20]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[20]:

Ridge(alpha=10)

```
In [21]:
rr.score(x_test,y_test)
Out[21]:
0.9995692851273953
```

LASSO REGRESSION

```
In [22]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[22]:
Lasso(alpha=10)
In [23]:
la.score(x_test,y_test)
Out[23]:
0.9982132771466768
In [24]:
from sklearn.linear_model import ElasticNet
p=ElasticNet()
p.fit(x_train,y_train)
Out[24]:
ElasticNet()
In [25]:
print(p.coef_)
[0.99633364]
In [26]:
print(p.intercept_)
0.5261228230980635
In [27]:
print(p.predict(x_test))
[ 75.25114574 178.86984418 101.15582035]
```

```
In [28]:
prediction=p.predict(x_test)
print(p.score(x_test,y_test))
0.9999821982191354
In [29]:
from sklearn import metrics
In [30]:
print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
Mean Absolytre Error: 0.17904063550259272
In [31]:
print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
Mean Squared Error: 0.034764900053010646
In [32]:
print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error: 0.18645347959480577
In [ ]:
```