Final Project

BioE 131/231 Fall 2019

Overview

Congratulations, all! You have made it to the final project. From now until the end of the semester, you will analyze a set of genomes using the skills you have learned thus far and explore new types of analysis. These genomes come from the Salmonella reference collection

(https://people.ucalgary.ca/~kesander/Kit 14A.html

(https://people.ucalgary.ca/~kesander/Kit 14A.html)), which were isolated from different sources many years ago, but have not been fully analyzed. We are interested in learning more about these strains and their pathogenicity.

The goal of this part of class is to let you work on a real, unpublished dataset, applying your own ideas of how best to conduct the analysis. Ideas for projects, deliverables, and due dates are listed below on a week-by-week basis.

Timeline

Week 1: Break into groups, obtain data, assemble genome, annotate genome.

Week 2: Propose your own analysis.

Week 3: No lab (Thanksgiving). Work on your own analysis.

Week 4: Group presentations during lab. Final report due.

Background

Genome sequencing and assembly are common techniques in biology. To obtain the sequence of a long genome, DNA must be chopped into small pieces that can be read by a sequencer. These short reads must then be stitched back together to form a complete genome. Often, the genome cannot be fully assembled because there are multiple equally plausible ways of stitching the reads together. Ideally, each chromosome is assembled into a single, long sequence. In practice, chromosomes are often assembled into multiple "contigs," or contiguous sequences. A genome assembly is generally considered complete only when all (or nearly all) the sequences are accounted for. Otherwise, it is considered a draft genome.

In a previous lab, you filtered human reads from a bacterial genome by alignment using Bowtie2. In this lab, you will continue your analysis, albeit with a different set of reads. First, you must take the reads and combine them into a complete genome. Next week, you will analyze the contents of your genome.

Week 1

First off, find a group of four people (max five per group). Please let your GSI know who is in your new group so they can keep track. Your GSI will assign you a set of reads for the final project. Each group will be given a different set of reads.

Next, please assemble your genome into contigs using SPAdes as we did in lab 8/9 using the -1 and -2 flags for paired end reads. Remember to run your assembly using -t 1 and -m 16 to limit your CPU and memory usage (save some for everyone else). If those limits are too low, let your GSI know. This will take a while, so be sure to run it in tmux.

When you're done, calculate assembly statistics and plot a histogram of contig lengths from your genome assembly in iPython, along with the N50. Summarize your results from SeqMatch (do we have the strain we expect?) and RAST/BASys annotations. (If annotation isn't ready in time, submit this in Week 2). Your report is due the following Wednesday at 11:59 AM.

Running SPAdes

Ran

```
ls /bigdata/FinalProject_data
ls /bigdata/FinalProject_data/190724_SARA_Genomes
```

to validate the file location and file names.

Prepare spades command and run from

```
/bigdata/FinalProject_groups/Group_5/assembly :
```

```
spades.py -o . -1 /bigdata/FinalProject_data/190724_SARA_Genomes/SA
RA_5_S28_L004_R1_001.fastq.gz -2 /bigdata/FinalProject_data/190724_
SARA_Genomes/SARA_5_S28_L004_R2_001.fastq.gz -t 1
```

- -o is destination directory (. for present directory)
- -1 is location of reads 1
- -2 is location of reads 2
- -t 1 reserves only 1 core for the process

Run assembly-stats

```
Prepare Command, run from bigdata/FinalProject groups/Group 5/assembly:
```

```
assembly-stats ./contigs.fasta ./scaffolds.fasta
```

Output:

```
stats for ./contigs.fasta
sum = 4960322, n = 153, ave = 32420.41, largest = 449208
N50 = 194186, n = 9
N60 = 130292, n = 13
N70 = 109439, n = 17
N80 = 87947, n = 22
N90 = 51460, n = 29
N100 = 56, n = 153
N count = 0
Gaps = 0
stats for ./scaffolds.fasta
sum = 4960972, n = 146, ave = 33979.26, largest = 449208
N50 = 223794, n = 8
N60 = 159283, n = 10
N70 = 143384, n = 13
N80 = 89581, n = 18
N90 = 56692, n = 24
N100 = 56, n = 146
N count = 700
Gaps = 7
```

Plot Contig Coverage Histogram

Imports

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from Bio import SeqIO
```

Extract Coverage Data

Plot Contig Length Histogram

```
In [5]: for i in range(len(length_datas)):
    length_data = length_datas[i]
    plt.title(file_names[i] + " Length")
    plt.bar(range(len(length_data)), length_data)
    plt.xlabel("Number")
    plt.ylabel("Length")
    plt.show()
# plt.savefig(file_names[i] + "_length.png")
```


Identify the taxon from which your genome originated

```
We moved the HMM database to
```

```
/bigdata/FinalProject_groups/Group_5/rna_hmm3/HMM3 :
```

```
ls /bigdata/FinalProject_groups/Group_5/rna_hmm3/HMM3
```

arc_lsu.hmm arc_ssu.hmm arc_tsu.hmm bac_lsu.hmm bac_ssu.hmm ba
c_tsu.hmm

run rna_hmm.py from /bigdata/FinalProject_groups/Group_5

```
rna_hmm3.py -i /bigdata/FinalProject_groups/Group_5/assembly/contig
s.fasta -o ./rna_hmm3_o -L /bigdata/FinalProject_groups/Group_5/rna
_hmm3/HMM3
```

```
output file: rna_hmm3_o
```

Made a copy and deleted all lines other than 16S_rRNA in text editor. Filename: rna_hmm3_16

Extract nucleic acid sequences from /bigdata/FinalProject_groups/Group_5 Note: didn't have write-permission to assembly, so ran

```
cp assembly/contigs.fasta .
bedtools getfasta -fi ./contigs.fasta -bed ./rna_hmm3_16 -fo ./nucl
eic_acids
```

Output sequence in next cell.

```
Ran SeqMatch on contigs.fasta
```

```
domain Bacteria (20)
phylum "Proteobacteria" (20)
class Gammaproteobacteria (20)
order Enterobacteriales (20)
family Enterobacteriaceae (20)
genus Salmonella (20)
```

>NODE 57 length 1736 cov 1821.819155:45-1598

AAGGTAAGGAGGTGATCCAACCGCAGGTTCCCCTACGGTTACCTTGTTACGACTTCACCCCAGTCAT GGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGTGGCATTCTGATCCACGATTACT AGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTCCAATCCGGACTACGACGCACTTTATGAGGTC CGCTTGCTCTCGCGAGGTCGCTTCTCTTTGTATGCGCCATTGTAGCACGTGTGTAGCCCTGGTCGTA AGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATCACTGGCAGTCTCCTTTGAGTT CCCGACCTAATCGCTGGCAACAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATTTCA CAACACGAGCTGACGACAGCCATGCAGCACCTGTCTCACAGTTCCCGAAGGCACCAATCCATCTCTG GAAAGTTCTGTGGATGTCAAGACCAGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCC ACCGCTTGTGCGGCCCCCGTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGTC TACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGGGCACAACCTCCAAGTAGACATCGTTTACGG CGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTGAGCGTCAGTCTTTGT CCAGGGGGCCCCTTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAAT TCTACCCCCTCTACAAGACTCAAGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGAT TTCACATCCGACTTGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCAC CCTCCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGTAACGTCAATTGC TGCGGTTATTAACCACACACCTTCCTCCCCGCTGAAAGTACTTTACAACCCGAAGGCCTTCTTCAT ACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGG AGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTCATCCTCTCAGACCAGCTAGGGATCGTCGCCT TGGTGAGCCGTTACCTCACCAACAAGCTAATCCCATCTGGGCACATCTGATGGCAAGAGGCCCGAAG GTCCCCCTCTTTGGTCTTGCGACGTTATGCGGTATTAGCCACCGTTTCCAGTAGTTATCCCCCTCCA TCAGGCAGTTTCCCAGACATTACTCACCCGTCCGCCACTCGTCAGCGAAGCAGCAAGCTGCTTCCTG

```
SeqMatch :: Result
                                                                                                                             [ new match | help ]
            Segmatch:
                           version 3
            RDP Data:
                           release11_5
             Data Set:
                           both type and non-type strains, both environmental (uncultured) sequences and isolates, near-full-
                           length sequences (≥1200 bases), good quality sequences
           Comments: 1558793 sequences were included in the search
                           The screening was based on 7-base oligomers
 Query Submit Date: Sat Nov 16 18:19:48 EST 2019
   Match hit format: short ID, orientation, similarity score, S_ab score, unique common oligomers and sequence full name. More help is available.
   Lineage:
   Results for Query Sequence: seqmatch_seq, 1458 unique oligos
   rootrank Root (20) (match sequences)
        domain Bacteria (20)
          phylum "Proteobacteria" (20)
            class Gammaproteobacteria (20)
             order "Enterobacteriales" (20)
               family Enterobacteriaceae (20)
                 genus Salmonella (20)
                     S000569963 - not_calculated 1.000 1449 Salmonella enterica subsp. null LT2; LT2; SGSC 1412; ATCC 700720; AE008857
                     S000927381 - not_calculated 1.000 1451 Salmonella enterica subsp. enterica serovar Paratyphi B; B6; EU118087
                     5001743285 - not_calculated 1.000 1449 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S; CP001363
                     S002236385 - not_calculated 1.000 1362 Salmonella enterica subsp. enterica; JCM 1652; AB594754
                     S002236390 - not_calculated 1.000 1356 Salmonella enterica subsp. enterica; JCM 6977; AB594759
                     S002236394 - not_calculated 1.000 1356 Salmonella enterica subsp. enterica; JCM 6978; AB594763
                     S002288432 - not_calculated 1.000 1449 Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7; SGSC4150; SPB7;
   CP000886
                     S002289412 - not_calculated 1.000 1449 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476; CP001120
                     S003262180 - not_calculated 1.000 1355 Salmonella enterica subsp. enterica; NBRC 12529; AB680289
                     S003262271 - not_calculated 1.000 1366 Salmonella enterica (T); NBRC 13245; AB680380
                     S003262473 - not_calculated 1.000 1366 Salmonella enterica subsp. enterica; NBRC 14193; AB680582
                     S003262474 - not_calculated 1.000 1366 Salmonella enterica subsp. enterica; NBRC 14194; AB680583
                     S003262479 - not_calculated 1.000 1359 Salmonella enterica subsp. enterica; NBRC 14209; AB680588
                     S003262480 - not_calculated 1.000 1366 Salmonella enterica subsp. enterica; NBRC 14210; AB680589
                     S003262481 - not_calculated 1.000 1359 Salmonella enterica subsp. enterica; NBRC 14211; AB680590
                     S003264181 - not_calculated 1.000 1365 Salmonella enterica subsp. enterica; NBRC 105726; AB682290
                      S003612765 - not_calculated <mark>1.000</mark> 1318 Salmonella enterica subsp. enterica serovar Anatum; 241; JQ694220
                     S003612767 - not_calculated <mark>1.000</mark> 1329 Salmonella enterica subsp. enterica serovar Bareilly; 170; JQ694241
                     S003612769 - not_calculated 1.000 1321 Salmonella enterica subsp. enterica serovar Bovismorbificans; 322; JQ694253
                     S003612771 - not_calculated <mark>1.000</mark> 1343 Salmonella enterica subsp. enterica serovar Braenderup; 324; JQ694258
```

Genome annotation

RAST

Login: Qube5

Password: w5mAvPg4

Ran RAST annotation with contigs.fasta

Job Status: http://rast.theseed.org/FIG/rast.cgi?page=JobDetails&job=797079)

By now, you should have an assembly and annotation of your genome. While you are waiting for your annotations, you can start brainstorming ideas for your own analysis. Before you leave today, make sure your GSI approves of your project. You will have two weeks (including Thanksgiving) to work on it before your final presentation.

A list of project ideas will be uploaded to bCourses shortly if it hasn't been already.

Upload a report summarizing the findings of your annotations and a description of the project you intend to work on by the following Wednesday at 11:59 AM.

Imports

```
In [6]: import pandas as pd
from collections import Counter
```

Extract Data

```
# Extract genbank data and put into dictionary for recovery later
In [7]:
        directory = "/bigdata/FinalProject_groups/Group_5/Groups/"
        groups = [
            1, 3, 4, 5, 6, 7,
            8, 9, 10, 11, 12,
            14, 15
        genbank = \{\}
        for group in groups:
            file name = directory + "Group" + str(group) + "/Group" + str(group) +
            for seq record in SeqIO.parse(file name, "genbank"):
                organism = seq record.annotations["organism"]
                if len(seq record.features) > 1:
                    for feature in seq record.features[1:]:
                        name = feature.qualifiers["db xref"][0][5:]
                         if feature.type != 'CDS':
                             continue
                        protein sequence = feature.qualifiers["translation"][0]
                        protein name = feature.qualifiers["product"][0]
                         genbank[name] = [protein sequence, protein name, organism]
```

```
In [8]: # Parse mp3 output data
        columns = ["Group", "Sr._No.", "Sequence_Name", "Type_of_Pfam_domains",
                    "HMM_Prediction", "SVM_Score",
"SVM_prediction", "Hybrid_Prediction", "Assignment",
                    "Sequence", "Product", "Organism"]
         data = []
         for group in groups:
             file_name = directory + "Group" + str(group) + "/Group" + str(group) +
             with open(file_name, "r") as handle:
                 lines = handle.readlines()[1:]
                 for line in lines:
                     if len(line) == 1:
                          continue
                     l = line.split('\t')
                     if len(1) == 8:
                          for i in range(len(l)):
                              l[i] = l[i].strip()
                          1[4] = float(1[4])
                          l[0] = int(float(l[0]))
                          # add in genbank data
                          l.extend(genbank[1[1]])
                          # add group number field
                          l.insert(0, group)
                          data.append(1)
```

Create Dataframe

We chose to use pandas dataframe for our database because it is easy to implement. In the future we could implement a SQL relational database which would help link our entries.

```
In [9]: df = pd.DataFrame(data=data, columns=columns)
```

Save to pickle for faster loading without input files

```
In [10]: df.to_pickle("./salmonella_database.pkl")
```

Load from Pickle

```
In [11]: df = pd.read_pickle("./salmonella_database.pkl")
```

In [12]: display(df)

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
0	1	1	fig 6666666.498498.peg.1337	Uncalssified protein		-0.0908
1	1	2	fig 6666666.498498.peg.1338	Excl. Non-pathogenic	Non-Pathogenic	0.4953
2	1	3	fig 6666666.498498.peg.1339	Excl. Non-pathogenic	Non-Pathogenic	0.0295
3	1	4	fig 6666666.498498.peg.1340	Uncalssified protein		-0.6233
4	1	5	fig 6666666.498498.peg.1341	Uncalssified protein		1.3877

Query Examples

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
5	1	6	fig 6666666.498498.peg.1342	Excl. Non-pathogenic	Non-Pathogenic	-1.1394
6	1	7	fig 6666666.498498.peg.1343	Excl. Non-pathogenic	Non-Pathogenic	-1.1550
8	1	9	fig 6666666.498498.peg.1345	Excl. Non-pathogenic	Non-Pathogenic	-0.5731
11	1	12	fig 6666666.498498.peg.1348	Exclusive Pathogenic	Pathogenic	1.6284
12	1	13	fig 6666666.498498.peg.1349	Exclusive Pathogenic	Pathogenic	2.0774

In [14]: qMult = df.query('HMM_Prediction == "Pathogenic" and SVM_prediction == "Pat
display(qMult)

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
11	1	12	fig 6666666.498498.peg.1348	Exclusive Pathogenic	Pathogenic	1.6284
12	1	13	fig 6666666.498498.peg.1349	Exclusive Pathogenic	Pathogenic	2.0774
13	1	14	fig 6666666.498498.peg.1350	Exclusive Pathogenic	Pathogenic	1.6114
14	1	15	fig 66666666.498498.peg.1351	Exclusive Pathogenic	Pathogenic	1.2288
15	1	16	fig 6666666.498498.peg.1352	Exclusive Pathogenic	Pathogenic	3.9809

In [15]: qComp = df.query('HMM_Prediction == "Pathogenic" and SVM_Score >= 2.5 and G
display(qComp)

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
50502	12	237	fig 6666666.498491.peg.1440	Exclusive Pathogenic	Pathogenic	3.8700
50506	12	241	fig 6666666.498491.peg.1444	Exclusive Pathogenic	Pathogenic	2.5515
50663	12	398	fig 6666666.498491.peg.1601	Exclusive Pathogenic	Pathogenic	3.1479
50825	12	560	fig 6666666.498491.peg.1763	Exclusive Pathogenic	Pathogenic	3.9148
51045	12	780	fig 6666666.498491.peg.2600	Exclusive Pathogenic	Pathogenic	2.7878
a .	1.6		g	10000000 405470	4440111	

Grou	o SrN	. Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_S
20105	E 504	fig 66666666.495479.peg.4413	Excl. Non-pathogenic	Non-Pathogenic	-0.396

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
5026	6 12	1	fig 6666666.498491.peg.1204	Uncalssified protein		-0.1132
5026	7 12	2	fig 66666666.498491.peg.1205	Uncalssified protein		2.6635
5026	3 12	3	fig 6666666.498491.peg.1206	Uncalssified protein		0.2336
5026	9 12	4	fig 6666666.498491.peg.1207	Excl. Non-pathogenic	Non-Pathogenic	-1.2236
5027	0 12	5	fig 6666666.498491.peg.1208	Excl. Non-pathogenic	Non-Pathogenic	0.1807

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_Sco
244	1	245	fig 66666666.498498.peg.1581	Excl. Non-pathogenic	Non-Pathogenic	-0.8654
2671	1	2672	fig 66666666.498498.peg.241	Excl. Non-pathogenic	Non-Pathogenic	-0.4135
5265	3	197	fig 6666666.498495.peg.1459	Excl. Non-pathogenic	Non-Pathogenic	-0.8654
7773	3	2705	fig 6666666.498495.peg.417	Excl. Non-pathogenic	Non-Pathogenic	-0.4135
9890	3	4822	fig 6666666.498495.peg.4286	Excl. Non-pathogenic	Non-Pathogenic	-0.3968

Graph Percent of Pathogenic genes in each Group

```
In [19]: percent_pathogenic = {}
    sequence_name = {}
    for group in df.Group.unique():
        group_proteins = df.query(f'Group == {group}')
        sequence_name = group_proteins.Sequence_Name
        pathogenic_proteins = group_proteins.query('Hybrid_Prediction == "Pathogenic_proteins] = len(pathogenic_proteins) / len(group_proteins)
```

```
In [20]: fig, ax = plt.subplots()
    ax.bar(np.arange(1, len(percent_pathogenic) + 1), np.fromiter(percent_patho
    ax.set_xlabel('Sequence Name')
    ax.set_ylabel('Percent Pathogenic')
```

```
Out[20]: Text(0, 0.5, 'Percent Pathogenic')
```

Average 0.3246301530546951

Analyze percentage of pathogenic genes across all groups

```
In [21]: vals = np.array(list(percent_pathogenic.values()))
    print("Minimum", np.min(vals), "Group:", np.argmin(vals))
    print("Maximum", np.max(vals), "Group:", np.argmax(vals))
    print("Average", np.average(vals))

Minimum 0.3165156507413509 Group: 1
    Maximum 0.3301568393885249 Group: 7
```

Analyze number of occurrences of each sequence across all groups

```
In [22]: df.Sequence.count()
Out[22]: 65173
```

```
In [23]: num_strains = list(df.groupby('Sequence').count().Organism)
         num_strains.sort()
         counts = dict(Counter(num_strains))
         counts
Out[23]: {1: 3607,
          2: 1288,
          3: 171,
          4: 122,
          5: 202,
          6: 82,
          7: 95,
          8: 141,
          9: 157,
          10: 377,
          11: 676,
          12: 735,
          13: 2551,
          14: 1,
          18: 1,
          19: 2,
          22: 1}
In [24]: # The most common sequence
         df.groupby('Sequence').count()[['Organism']].query('Organism == 22', engine
Out[24]:
                                   Organism
```

Sequence

MSKEKFERTKPHVNVGTIGHVDH

Out[25]:

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_S
4700	1	4701	fig 6666666.498498.peg.3059	Uncalssified protein		-2.488
4949	1	4950	fig 6666666.498498.peg.3584	Uncalssified protein		-2.488
9571	3	4503	fig 6666666.498495.peg.2987	Uncalssified protein		-2.488
9840	3	4772	fig 6666666.498495.peg.3557	Uncalssified protein		-2.488
14639	4	4715	fig 6666666.498497.peg.2975	Uncalssified protein		-2.488
14959	4	5035	fig 6666666.498497.peg.3826	Uncalssified protein		-2.488
19774	5	4718	fig 6666666.495479.peg.3073	Uncalssified protein		-2.488
20052	5	4996	fig 6666666.495479.peg.3651	Uncalssified protein		-2.488
24836	6	4701	fig 6666666.498498.peg.3059	Uncalssified protein		-2.488
25085	6	4950	fig 6666666.498498.peg.3584	Uncalssified protein		-2.488
29653	7	4449	fig 6666666.498492.peg.2844	Uncalssified protein		-2.488
30092	7	4888	fig 6666666.498492.peg.3860	Uncalssified protein		-2.488
34757	8	4586	fig 6666666.498494.peg.2349	Uncalssified protein		-2.488
34939	8	4768	fig 6666666.498494.peg.2945	Uncalssified protein		-2.488
39509	9	4534	fig 6666666.498496.peg.3103	Uncalssified protein		-2.488
39928	9	4953	fig 6666666.498496.peg.4037	Uncalssified protein		-2.488

	Group	SrNo.	Sequence_Name	Type_of_Pfam_domains	HMM_Prediction	SVM_S
44860	10	4848	fig 6666666.498501.peg.3250	Uncalssified protein		-2.488
45116	10	5104	fig 6666666.498501.peg.4061	Uncalssified protein		-2.488
49846	11	4670	fig 6666666.498502.peg.3265	Uncalssified protein		-2.488
50131	11	4955	fig 6666666.498502.peg.4105	Uncalssified protein		-2.488
64827	15	4596	fig 6666666.498500.peg.3001	Uncalssified protein		-2.488
65087	15	4856	fig 6666666.498500.peg.3535	Uncalssified protein		-2.488


```
In [27]: print("Unique:", 3607 / sum(counts.values()))
print("Shared:", 1 - 3607 / sum(counts.values()))
```

Unique: 0.3533157018317171 Shared: 0.6466842981682829

Analyze number of occurrences of each pathongenic sequence across all groups

```
In [28]: pathogenic = df.query("Hybrid Prediction == 'Pathogenic'", engine='python')
         pathogenic.Sequence.count()
Out[28]: 21161
In [29]: num_strains = list(pathogenic.groupby('Sequence').count().Organism)
         num_strains.sort()
         counts = dict(Counter(num_strains))
         counts
Out[29]: {1: 1466,
          2: 484,
          3: 74,
          4: 48,
          5: 78,
          6: 36,
          7: 38,
          8: 65,
          9: 84,
          10: 158,
          11: 224,
          12: 242,
          13: 709}
In [30]: fig, ax = plt.subplots(figsize=(20, 10))
         plt.pie([float(v) for v in counts.values()], labels=[float(k) for k in coun
                    autopct=None)
         ax.axis('equal')
         plt.title("Number of Occurrences of Pathogenic Protein Sequences Across Gen
         plt.show()
                              Number of Occurrences of Pathogenic Protein Sequences Across Genomes
```



```
In [31]: print("Unique:", 1466 / sum(counts.values()))
   print("Shared:", 1 - 1466 / sum(counts.values()))
   print("13 Occurrences:", 709 / sum(counts.values()))
```

Unique: 0.39557474365893147 Shared: 0.6044252563410686

13 Occurrences: 0.19131138694009714

Presentations

Prepare a ten minute PowerPoint presentation describing all of the results of your genome assembly and analysis. Everyone in your group should speak during the presentation. You will have 5 minutes for questions at the end. Summarize the results of your assembly (e.g., N50, contig length histogram).

Summarize the results of your annotations.

Which analysis project did you choose?

What were some of the issues you ran into?

What were your results?

If you had more time, what additional experiments and analyses would you perform?

https://docs.google.com/presentation/d/1RbJZauYtNAMGt-8NderWXZFYrPkHX5TcpzVry1Rf-8M/edit#slide=id.g78e2f7005c 0 139 (https://docs.google.com/presentation/d/1RbJZauYtNAMGt-8NderWXZFYrPkHX5TcpzVry1Rf-8M/edit#slide=id.g78e2f7005c 0 139)

Written report

Submit a report (up to 5 pages, not included figures) along with your final presentation. This report should summarize your assembly results, your annotations, the methods that you used for your original analysis, and the findings of your analysis. Please be clear about the question you are trying to answer, how your chosen method will help you answer it, and any potential limitations of your results

https://docs.google.com/document/d/14i9ybUDlcupi-CD59QiB8MZmO2S0zLC6iamq70-43xA/edit?usp=sharing_(https://docs.google.com/document/d/14i9ybUDlcupi-CD59QiB8MZmO2S0zLC6iamq70-43xA/edit?usp=sharing)