

TAKIM ORGANİZASYONU

Takım Tanıtımı

Takım olarak, Trabzon ve İstanbul'daki yarışmalara katılarak önemli deneyim ve bilgi birikimine sahip olduk. Geçmişteki hatalarımızdan ders alarak, her geçen yıl daha da ilerleyerek, daha iyi bir konuma gelmeyi hedefliyoruz. Ayrıca, otonom teknolojilerin gelişimine katkıda bulunarak endüstrideki ihtiyaçları karşılamayı hedefliyoruz. Odak noktamız, otomatik yönlendirmeli araçlar (Automated Guided Vehicles) üzerinde olacak. Amacımız malzemenin taşıma, denetim ve tasnifinde tam otomasyon sağlayarak sektörde insan kaynaklı iş gücünün azaltılmasına ve verimliliğin artırılmasına katkıda bulunmak. Geleceğe umutla bakıyor ve birlikte daha büyük başarılara imza atacağımıza inanıyoruz. Bu hedefler doğrultusunda çalışmalarımıza devam ederek, vizyonumuzu gerçeğe dönüştürmek için azimle çalışıyoruz.

Görev Dağılımı ve Ekip Organizasyon Şeması

ARAÇ TANITIMI

Geliştirdiğimiz otonom araç, Sanayide Dijital Teknolojiler Yarışması'na katılmak için özellikle tasarlandı. Görüntü işleme ile rota belirleme, engelleri aşmak için alternatif rotalar belirleme ve QR kod tanıma gibi özelliklerle donatıldı. Ayrıca, ROS (Robot Operating System) altyapısı aracın modülerliğini artırarak donanım-yazılım iletişimini sağlar. Aracımız, diferansiyel sürüş ve lineer aktüatörler ile yük kaldırma kapasitesine sahipken, otonom sürüş algoritması ise tüm fonksiyonları kontrol ederek kullanıcı paneli üzerinden bilgi aktarımını sağlar. Bu sayede aracımız, karmaşık ortamlarda güvenli ve verimli bir şekilde hareket edebilir

ÖZELLİK	BİRİM	DEĞER
GENEL	ÖZELLİKLER	
Araç Uzunluğu	cm	79
Araç Genişliği	cm	55
Araç Yüksekliği	cm	45
Şasi	malzeme	Kutu Çelik Profil
Fren Sistemi	tipi	DC motor frenleme
Motor	adı	KKE-1024 DC motor
Motor Gücü	kW	0.24kW
Batarya	tipi	Lityum İyon Batarya
Batarya Kapasitesi	Ah	15
Batarya Maksimum Volt	V	24
Batarya Hücre Sayısı	С	7
Haberleşme Modülü/Frekans	Hz	Wi-Fi modül / 2.4 GHz
Haberleşme Menzili	m	150 m

BİLEŞENLER	ÜRETİCİ	MODEL	ÖZELLİKLERİ	FİYAT
		WEK	KANİK	-
	Keskinler	KGRA-D6-2	2000N yük kaldırma kuvveti,	envanter
Lineer Aktüatör	Elektroni	4-150-255	150mm hareket mesafesi,	
Lilleel Aktuatol	k		7.2mm/s hareket hızı,	
			24V DC Besleme voltajı	
	Keskinler	KKE-1024	24V DC Besleme voltajı,	envanter
DC motor x 2 adet	Elektroni		55 RPM dönüş hızı, 120W güç,	
	k		22Nm tork	
Kayış Kasnak x 2	-	GT2 Kapalı	200 mm kapalı kayış,	600 ₺
adet		kayış,	GT2 6mm kasnak 16 diş,	
auet		kasnak	GT2 6mm kasnak 32 diş	
Çelik Profil x 5	-	Kutu Çelik	İç kesit 36mmX36mm	1250 ₺
metre		Profil	Dış kesit 40mmX40mm	
Sac Levha x	-	Çelik Sac	0.5mm et kalınlığı	5000₺
2.5m ²		Levha	316 kalite paslanmaz çelik	
Genel Bağlantı ve	-	-	Kaplin, vida, yay, rulman,	1500₺
Hareket			sarhoş tekerlekler vb.	
Elemanları			elemanlar	
			TOPLAM FİYAT	8350 ₺

Lineer aktüatör:

Görev için kullanılacak yük kaldırma mekanizmasının maksimum 1226 N'luk yükü kaldırma kapasitesine sahip olması gerekmektedir. Bu istenene göre aracın, belirtilen maksimum yükü kolayca kaldırılabilmesi için lineer aktüatör kullanılmasına karar verilmiştir. Seçilen aktüatör 2000N yük kaldırma kapasitesine sahip olduğu ve aktüatörün hareket mesafesi ile hızı da düşünüldüğünde sanayi aracının, verilen yük kaldırma görevini kolayca yapabileceği belirlenmiştir. (maksimum yük 125 kg olarak alınmıştır.)

DC motor:

Sanayi aracında kullanılacak olan DC motoru, sonsuz dişli redüktöre sahip olduğundan dolayı düşük hızlarda yüksek verimlilik ve tork üretir. Maksimum 55 rpm hıza, 24V besleme voltajına ve 22Nm torka sahiptir. Aracın toplam kütlesi 50 kg ve maksimum yük 125 kg olarak düşünüldüğünde DC motorların üreteceği tork, sanayi aracının hareket edebilmesi için yeterli gücü vermektedir.

Şasi ve Dış gövde:

Şasi için dayanıklılık göz önünde bulundurularak çelik kutu profiller kullanılmasına karar verilmiştir. Bu profiller kaynak yapılarak dayanıklı bir şasi oluşturacaktır. Profillere kaynak yapılmadan önce profiller birbirine geçmeli olacak şekilde delikler açılacak bu sayede kaynak esnasında oluşacak bükülme ve bozulmaların önüne geçilecektir.

Dış gövde için 0.5mm et kalınlığı olan 316 kalite paslanmaz çelik sac levha kullanılmasına karar verilmiştir. Bu sayede dayanıklı bir dış gövde oluşturulacaktır. Gövde alt, üst ve arka parçalar

olmak üzere 3 parça sac levhadan oluşturulacak bu sayede herhangi bir arıza anında dış gövde kolayca sökülüp arıza oluşan bölgeye müdahale edilebilecektir.

Sarhoş tekerlekler:

Yapılan sarhoş tekerlek tasarımı aracın yüzey bozukluklarından etkilenmemesi, yere basma ve denge performansını artırması amaçlanarak amortisör sistemi kullanılmasına karar verilmiştir.

	BİLEŞEN LER	ÜRETİCİ	MODEL	ÖZELLİKLERİ	FİYAT
				ELEKTRONİK	
E	Batarya	Go Battery	_	24V 15Ah kapasiteli lion batarya	Envanter
Bıçak Si	ak Sigorta	ABB	OFAF0 00H25	25A DIN Gg tipi bıçaklı sigorta	75₺
Kes	Akım ici Düğme	allestock	lp56	12/24v 100a	200₺
Gü	ç Dağıtım Kartı	PRM	KPRM2 00APD B	Maksimum akım direnci 200A, Ağırlık 9.7 gr, Çap 50 mm, Vida delikleri M3	275 ₺
I	Voltaj egülatör	-	XL4005	Giriş Gerilimi: 5-32V/DC. Çıkış Gerilimi: 1.25-32V/DC. Akım: 5A	91 ₺

			(Maks.) Çıkış Gücü: 75W. Çalışma	
			Frekansı: 180 KHz.	
Wi-Fi Adaptörü	TP-LINK	TL-WN 722N	150 Mbps N Kablosuz Yüksek Kazanımlı 4dBi Değiştirilebilir Antenli WPS USB Adaptör	400₺
Mikroişlemci	ST	STM32 F103R BT6	ARM 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 common interfaces	96 ₺
Motor Sürücü	MINGYUA NDINGYE	BTS796 OB	28V'a kadar voltaj uygulanabilir. Devre iç direnci 26 mili ohm'dur.	210₺
motor baraea			MCU'lara doğrudan bağlanabilir.	
Jetson	NVIDIA	Xavier	8GB Ram, 6 çekirdekli 64 bit 1.9GHz Nvidia Arm Carmel işlemcisi ve 348 NVIDIA CUDA çekirdeği, 48 Tensör çekirdeği	33000₺
Buzzer	OEM	120db Buzzer	3-24V, 120mA, 120dB	220 ₺
RGB LED	WORLDSE MI	2020	2.20 mm x 2.00 mm, -25°C~+85°C	200₺
Nextion Ekran	NEXTION	NX804 8K050	5.0" TFT 480x320 rezistif dokunmatik ekran, 32MB Flash verid depolama, 1024 byte EEPROM, 8192 byte RAM. GPIO desteğine sahiptir.	4000₺
	TOPLAM FİYAT 38567₺			

Batarya:

Aracımız için hızlı şarj edilebilir ve yüksek şarj-deşarj döngüsüne sahip lityum hücreli lion bataryalarını tercih ettik. Motorların çalışma voltajına uygun olarak, Go Battery firmasının özel olarak ürettiği 24V 15Ah kapasiteli lion batarya, aracımıza yaklaşık 1 saatlik sürüş imkanı sunacak ve şarj durumunu anlık olarak takip edebileceğimiz bir gösterge paneli de bulunacak.

Bıçak Sigorta ve Akım Kesici:

Elektronik bileşenlerin korunması için araç bataryasına 25A bıçak sigortası ve akım kesici düğme bağlanacak. Sigorta, 17,5 A'nın üzerindeki akımları korurken, düğme acil durumlarda gücü manuel olarak kesmek için kullanılacak.

Güç Dağıtım Kartı:

200 A'ye kadar akımı taşıyabilen güç dağıtım kartı, bataryadan gelen güç hattını bıçak sigorta ve akım kesici düğme aracılığıyla alır. Bu kart, tüm elektronik sistemlere gücü dağıtır ve en fazla 6 hatta gücü paralelleyebilir.

5V DC-DC Regulator:

24V'luk ana batarya gerilimine 5V'a dönüştürerek Jetson Xaiver ve LIDAR için gerekli gerilimi sağlayacaktır. 8A'e kadar akım sağlayabilmektedir ve bu değer Jetson ile LIDAR'ı fazlası ile besleyebilmektedir.

JETSON XAVIER:

Aracımızda Jetson Xavier bilgisayarı kullanılarak yüksek işlem gücü gerektiren ROS, QR kodu okuma, çizgi takibi gibi algoritmaları yöneteceğiz. Bu mini bilgisayar, 8GB RAM, 6 çekirdekli 64 bit 1.9GHz Nvidia Arm Carmel işlemcisi, 348 Nvidia CUDA çekirdeği ve 48 Tensor çekirdeği ile diğer mini bilgisayarlardan önemli ölçüde daha yüksek performans sunmaktadır.

Mikroişlemci:

72Mhz Cortex-M3 çekirdekli 64KB hafıza ve 20KB Ram'e sahip bir mikrodenetleyicidir. Ayrıca 2x SPI, 3x USART, 2x I2C, 1xCan haberleşme birimlerine sahiptir. CubeIDE aracılığı ile HAL kütüphanelerini kullanarak C ile programlanmaktadır. Devre kartının beynini oluşturmaktadır. Araç için gereken haberleşme protokollerini içermesi ve AVR, PIC gibi mikrodenetleyicilere göre çok hızlı olmasından dolayı tercih edilmiştir.

Motor Sürücü:

Araçta 24V'da ve 5A'de çalışacak motorlar için BTS7960B motor sürücüsü kullanılacaktır. Bu motor sürücü 28V ve 20A'e kadar akım çekebilen motorları kontrol edebilmektedir.

NEXTION Ekran:

NX8048K050 Nextion modeli 5.0 inç TFT ekran, araç motorlarının durumunu görsel olarak izlemek ve kullanıcıya bilgi sunmak için özel olarak tasarlanmıştır. Yüksek veri depolama kapasitesi ve işlem gücü sayesinde, motor verilerini etkin bir şekilde işleyerek kullanıcıya anlık bilgi sağlar.

Buzzer:

Hata durumlarında sesli bir şekilde uyarmak için kullanılacak buzzer, 3-24V aralığında çalışmakta ve çektiği 120mA akım ile 120dB gibi çok yüksek bir ses çıkarmaktadır.

RGB Led:

WS2812B Şerit Led, görsel olarak uyarı için kullanılacaktır. 5V'da çalışan bu şerit led adreslenebilir. Bu özellik sayesinde her bir ledi tek bir dijital çıkış kullanarak STM32 üzerinden kontrol edebileceğiz.

Wi-Fi Adaptörü:

Jetson Xavier bilgisayarına kablosuz haberleşme kazandıracak olan wireless alıcısıdır. 2.4 GHz bandında 150 metreye kadar haberleşme menziline sahiptir.

BİLEŞE NLER	ÜRETİCİ	MODEL	ÖZELLİKLERİ	FİYAT
SENSÖRLER			SENSÖRLER	•
IMU	InvenSens e	MPU9250	9 eksenli bir atalet ölçüm birimidir. Bunlar 3 eksenli ivme ölçer, 3 eksenli jiroskop ve 3 eksenli manyetometre dir.	400₺
PT100 Sıcaklık Sensörü	Aideepen	DIN EN 60751	5V giriş gerilimi ile çalışır ve 0 ile 100 ohm arası direnç değerine sahip50°C ile 250°C arasındaki sıcaklık değişimlerini algılar ve analog sinyal üretir.	3 x 35 ₺
ACS712 Akım Sensörü	Allegro MicroSyste ms	ACS712ELC TR-20A-T	5V giriş gerilimi ile çalışıp 20 A'ya kadar akım ölçümü ve hassas analog çıkışa sahip	3 x 60 ₺
Encoder	Omron	E6B2-CWZ 6C 600 Pulse	5-24V DC çalışma gerilimi, 600 darbe/devir çözünürlüğüne sahip ve A/B faz çıkışı veren modeldir.	2 x 900₺
RPLIDAR	Slamtec	A2M8	360 derece 2D lazer tarayıcı,haritalama, konum işaretleme ve nesne/çevre modelleme gibi alanlarda hassas sonuçlar sağlar	13500 ₺
Kamera	Logitech	C270 HD	720p video kalitesi, otomatik ışık düzeltme, tak çalıştır özelliği ve jetson xavier ile uyumludur.	1100₺
Ağırlık Sensörü	Zemic	L6E3 200 Kg	5V-10V besleme gerilimi ile çalışır ve 0-200 Kg'lık ölçüm aralığında orantılı bir analog çıkış üretir.	1300 ₺
			TOPLAM FİYAT	18385 TL

IMU:

MPU9250 sensörü, 3 eksenli jiroskop, ivmeölçer ve manyetometre kullanarak aracın hareketini algılar. Sensörden gelen veriler konum, hız, yön ve açısal değişim gibi verileri dijital formata dönüştürür, bu veriler Jetson Xavier ile ROS yazılımında kullanılarak aracın otonom yazılımında önemli rol alır.

Sıcaklık Sensörü:

PT100 sıcaklık sensörü araç üzerindeki iki DC motor ve lineer aktüatörün sıcaklığını izleyerek olası aşırı ısınma durumlarını önceden tespit edip gerekli önlemleri almamızı sağlar. Sensör direnci sıcaklığa göre değişir ve analog sinyal olarak okunur.Bu sinyal, ADC (Analog Dijital Dönüştürücü) ile dijital hale dönüştürülerek sıcaklık değeri olarak değerlendirilir.

Akım Sensörü:

ACS712 akım sensörü, aracın motorları ve aktüatörlerinin akım akışını 20 ampere kadar ölçüm aralığı, %1'lik yüksek doğruluk ve hızlı tepki süresi ile hassas bir ölçüm sağlar. Sensör, akım bilgilerini

analog değer olarak üretir ve bu değer ADC ile dijital hale dönüştürülerek gözlemlenir. Bu sayede olası aşırı akım durumları tespit edilir

RPLIDAR:

RPLIDAR A2M8 sensörü lazer ışınlarını kullanarak nesnelerin mesafesini ölçer ve bu bilgileri dijital formata sunar. geniş ölçüm aralığı, yüksek hassasiyet, hızlı tarama, kompakt tasarımı ve düşük güç tüketimi gibi özellikleri ile araç üzerinde otonom navigasyon, çevre algılama ve haritalama, nesne tanıma ve takibi gibi bir çok önemli görevde kullanılır.

Kamera:

C270 HD kamera, CSI bağlantısı ile Jetson Xavier'a kolayca bağlanarak araca görsel algılama yeteneği kazandırır. 720p HD video çözünürlüğü ve 30 fps kare hızı ile net ve akıcı görüntüler yakalayabilir. Nesne tanıma ve takibi, görüntü işleme ve analizi gibi görevlerde kullanılır.

Encoder:

E6B2-CWZ6C 600 Pulse Encoder, motor kontrol sistemlerinde kullanılan ve motorun dönüşünü ve yönünü takip eden bir cihazdır. Cihaz, motor miline bağlı diskteki işaretleri algılayarak 600 darbe/devir çözünürlüğünde sinyaller üretir. Bu sinyaller, motorun ne kadar döndüğünü ve hangi yönde döndüğünü takip etmek için araç kontrol sistemine gönderilir.

Ağırlık Sensörü:

Zemic L6E3 200 kg sensörü, 5V-10V besleme gerilimi ile çalışan ve 0-200 kg'lık ölçüm aralığında orantılı bir analog çıkış üreten bir yük hücresidir. Bu sensör, STM32 mikrodenetleyicisi tarafından ADC (Analog-Dijital Dönüştürücü) ile dijitale çevrilen analog çıkışı kullanarak aracın 125 kg'dan fazla yük kaldırmasının önüne geçilmesini sağlar.

ALGORİTMA TİPİ	ÖZELLİKLERİ		
	ALGORİTMA		
Otonom sürüş	Aracın otonom olarak çalıştığı süre zarfında diğer algoritmalar		
algoritması	arasında ROS tabanlı gerekli iletişimi sağlayan algoritmadır.		
Yol takip	Aracın parkurda bulunan şeridi görüntü işleme ile takip etmesini		
algoritması	sağlayan algoritmadır.		
QR kod	Parkurun belirli bölgelerindeki QR kodları tespit etmesini		
algoritması	sağlayan algoritmadır.		
Alternatif yol	Aracın önündeki engeli çizgiden çıkarak aşması ve tekrardan		
algoritması	tması çizgiye kilitlenmesini sağlayan algoritmadır.		
Diferansiyel sürüş	sürüş Diferansiyel olarak hareket eden aracın manevra ve yönlendirme		
algoritması	kabiliyetini sağlayan algoritmadır.		
Navigasyon	Aracın dönüş açılarıyla rotasını oluşturmasını sağlayan		
algoritması	nası algoritmadır.		
Haberleşme	perleşme Araç ile kullanıcı paneli arasındaki ve STM mikroişlemci ile Jetson		
algoritması	sı arasındaki veri akışını sağlayan algoritmadır.		

Haritalama algoritması	Aracın bulunduğu ortamı haritalandırmasında, bilmesinde ve konumunu tespit etmesinde görevli, otonom sürüş algoritmasına yardımcı algoritmadır.	
	Kullanıcı panelinde bulunan bu algoritma otonom sürüşün aktif	
Uzaktan kontrol algoritması	olmadığı zamanlarda devreye girerek aracın uzaktan kontrol edilmesini sağlayan bir algoritmadır.	

Otonom sürüş algoritması: ROS tabanlı algoritma, aracın otonom sürüş anında yönetimi üstlenerek diğer algoritmalar arasında veri akışını sağlayacak ve görev sürecinde aracı yönetecek olan algoritmadır.

Yol takip algoritması: Otonom sürüş yapacak olan aracın görüntü işleme tekniklerini kullanarak, şeridi ortalamasını ve bu sıra üzerinde doğru hareket etmesini sağlamaya yönelik bir algoritmadır. Bu algoritma, otonom araca konumlandırılmış olan kameradan alınan görüntüleri ve LİDAR sensörden gelen verileri işleyerek şerit üzerinde aracın ilerlemesi için gerekli hesaplamaları yapmaktadır.

QR kod algoritması: Yarışma parkurundaki QR kare kodları ,OpenCV kütüphanesi ile çözümleyen algoritma görev hakkındaki bilgileri otonom sürüş algoritmasına iletecek yardımcı algoritmadır.

Alternatif yol algoritması: Seyir esnasında karşılaşılan engelleri mesafe ve LİDAR sensörleri ile tespit edip rotadan çıkarak engeli aşıp tekrar aracın rotasına girmesini sağlayan algoritmadır.

Diferansiyel sürüş algoritması: Aracımız temel diferansiyel sürüş sistemi ile çalışmaktadır. Yol takip algoritmasından alınan açı değerleri aracın çizgisel ve açısal hızlarının belirlenmesinde etkin bir rol oynamaktadır. Diferansiyel sürüş algoritması çizgisel ve açısal hızlar ile aracın yönlendirilmesini ,hesaplayan algoritmadır.

Navigasyon algoritması: Navigasyon algoritmasının temel amacı aracın dönüş açılarıyla rotasını oluşturmaktır. Aracın konumu önceden tanımlı noktalarla ilişkilendirerek güncel konumu ve hedef noktanın belirlenmesinde kullanılacaktır, Navigasyon algoritması bu veriler ile aracı yönlendirecektir.

Haberleşme algoritması: ROS# protokolü ile ROS-C# dilleri arasında veri akışı sağlayacak algoritma, C# tabanlı kullanıcı paneli ile ROS tabanlı aracın Wi-Fi üzerinden haberleşmesini sağlar. STM mikroişlemciler ile JETSON ana bilgisayarı arası UART haberleşme protokolüne göre veri akış ağı oluşturmaktadır.

Haritalama algoritması: Aracın LİDAR ve mesafe sensörleri ile 2 boyutlu bir SLAM haritalandırma algoritması oluşturmasını sağlayan algoritmadır.

Uzaktan kontrol algoritması: Aracın kullanıcı paneli üzerinden kontrol edilmesini sağlayan ROS tabanlı algoritmadır. Aracın manuel olarak kontrol edilmesi gereken

durumlarda algoritma devreye girerek aracın kontrolünü kullanıcı paneli üzerinden sağlayacaktır.

BİLEŞEN	ÖZELLİKLERİ		
ÖZGÜN BİLEŞENLER			
Kullanıcı paneli	Araç ile iletişim kurabilen, aracın uzaktan kontrolünü sağlayan bir uygulamadır.		
Nextion Ekran Arayüzü	Sensörler aracılığıyla aracın durumu hakkında bilgilendirme yapar.		

Kullanıcı Paneli:

C# masaüstü programcılığı ile geliştirilen kullanıcı paneli, araç ile Wi-Fi bağlantısı üzerinden haberleşerek aracın durumu hakkındaki bilgileri, aracın uzaktan kontrolünü sağlayan bir uygulamadır. Aracın otonom sürüş modu ve uzaktan kontrol modu, aracın konumu, anlık araç kamerası görüntüsü, motorların çalışma verileri(sıcaklık, motor devri, çalışma gerilimi ve akımı), arıza paneli gibi önemli işlemler ve bilgiler kullanıcı panelinden kontrol edilecektir.

Nextion Ekran Arayüzü:

Araç üzerinde bulunacak ekranın arayüzü, kullanıcıya anlık olarak çeşitli sensör verilerini gösterecek şekilde tasarlanmıştır. Bu veriler arasında pil durumu, motorların çektiği akım, motorların sıcaklığı ve konum bilgisi bulunmaktadır. Bu bilgiler, sürüş esnasında kullanıcının aracın performansı ve durumu hakkında detaylı bilgi sahibi olmasını sağlayacaktır.

GÖREV	NASIL GERÇEKLEŞTİRİLECEK?		
	GÖREV BİLEŞENLERİ		
Yol Takibi ve Haritalama	Diferansiyel sürüş algoritması ile yol takip algoritması; SLAM haritalandırma ve görüntü işleme.		
Engel Tespiti	Haritalama algoritması ve alternatif yol algoritması ile gerçekleşecek.		
Yük Alma ve Bırakma Yol takip algoritması ve QR kod algoritması ile kaldırma mekanizması kontrol edilerek.			
Fazla Yük Tespiti	Fazla Yük Tespiti STM mikroişlemciler ve yük kaldırma mekanizması.		

Yol Takibi ve Haritalama: Yol takip algoritması araç üzerinde konumlandırılmış kamera üzerinden görüntü işleme teknikleriyle aracın parkurdaki rotasında ilerlemesini sağlayacaktır. Navigasyon algoritması ve diferansiyel sürüş algoritmaları aracın şeridi ortalayarak yolu takip etmesinde yardımcı algoritmalardır. Haritalama algoritması LİDAR ve mesafe sensörlerini kullanarak bulunduğu parkurun SLAM haritasını çıkarmada görev alacaktır. SLAM haritası aracın parkurda yol takibi için önemli bir veridir.

Engel Tespiti: Haritalama algoritması LİDAR ve mesafe sensörleri ile haritalandırma yaptığı esnada aracın rotasını takip etmesine engel olacak bir durumla karşılaştığında Alternatif yol algoritması devreye girecek ve aracı şeritten çıkartıp engeli aştıktan sonra aracın tekrar şerit takibine devam etmesini sağlayacaktır.

Yük Alma ve Bırakma: Yol takip algoritması haritalandırma algoritmasının da yardımı ile aracı görev noktasına ulaştıracaktır. Görev noktasındaki QR kodu, QR kod algoritması çözümleyerek yükün alınmasına veya bırakılmasına dair komutları mikroişlemcilere iletecek ve mikroişlemciler yük kaldırma mekanizmasını kontrol ederek görevi yerine getirecek.

Fazla Yük Tespiti: Aracın yük kaldırma mekanizmasına bağlı kuvvet sensörlerini STM mikroişlemcisi denetler, yükün fazla olduğu tespit edildiğinde STM mikroişlemcisi, haberleşme algoritması üzerinden kullanıcı paneline bildirim gönderir.