PROPAGAÇÃO E ONDAS

Acção de Formação de Radiocomunicações

Prof. José Sá (CT1EEB)

(Docente do programa Aveiro-Norte da Universidade de Aveiro)

Prof. Teresa Ferrinho (CT2JQI)

(Docente de Ciências Físico-Químicas)

Abril de 2011

1. Sol

- Estrela do nosso Sistema Solar.
- Formado essencialmente por gás hidrogénio na forma de plasma (gás muito aquecido e altamente ionizado).
- Não é um corpo rígido, isto é, tem uma rotação diferenciada em função da latitude:
 - na região equatorial (maior latitude) uma volta completa demora cerca de 26 dias;
 - nos pólos a rotação pode chegar aos 30 dias.

2. Manchas solares

- São conhecidas desde a antiguidade, mas a sua origem foi erradamente atribuída:
 - a nuvens;
 - a pequenos planetas próximos do Sol;
 - a montanhas na sua superfície.

• Sabe-se hoje que estão intimamente relacionadas com o campo magnético do Sol, que varia entre 1 gauss (1 Gs = 10^{-4} T) e os milhares de gauss perto das manchas.

3. Formação das manchas solares

• Dada a rotação diferenciada do Sol, em cada volta que este astro efectua as linhas de campo juntam-se cada vez mais, arrastando consigo o plasma.

• Quanto mais as linhas de campo são empurradas umas contra as outras, maior é a força exercida entre elas para se separarem de novo (à semelhança do que acontece com 2 ímanes de polaridades iguais) e ocorre, então, uma grande libertação de energia e explosão de matéria da fotosfera (camada visível do Sol) na direcção das linhas de campo.

• A temperatura média das manchas é cerca de 4300 K (\approx 4027 °C); nas regiões sem manchas a temperatura ronda os 6000 K (\approx 5727 °C).

- As manchas solares podem surgir isoladas ou em grupos.
- Quando se trata de grupos, o campo magnético é muito mais intenso.
- Os grupos de manchas solares surgem a cada 11 anos, período este chamado de ciclo solar.

• O tamanho das manchas solares varia bastante e são, em geral, maiores que o nosso planeta.

- A sua medida é feita em termos de milionésimos da área visível do Sol:
 - uma mancha é considerada grande quando mede entre 300 e 500 milionésimos do disco solar;
 - a maior já registada foi em 1947, com 6132 milionésimos, quase uma sétima parte do disco solar.
- Quanto maior for o número de manchas solares, mais intenso é o campo magnético e maior é a possibilidade de ocorrerem alterações na ionosfera terrestre, influenciando deste modo as comunicações de longa distância aqui na Terra.

4. Importância das manchas solares

- Os campos magnéticos que causam são muito intensos e suprimem as correntes de convecção.
- Tendem a aparecer em dois ciclos:
 - 27 dias (devido à rotação do Sol, as manchas são visíveis em intervalos de 27 dias, duração do movimento de rotação da nossa estrela; estas variações de ionização são mais pronunciadas na camada F2, a mais externa.);
 - 11 anos (ciclo regular da actividade solar; num período de máxima actividade, a absorção da camada D a mais interna aumenta e as frequências críticas para as restantes camadas é maior; deste modo, as frequências mais altas devem ser usadas para comunicações a longa distância).

5. Tempestades solares

- No auge da actividade de uma mancha solar ocorre uma rápida e colossal explosão de matéria coronal chamada labareda solar, ou *solar flare* em inglês.
- Estas ejecções de matéria coronal, que originam grandes quantidades de UV de frequência alta e raios-X, podem atingir a Terra: ao interagir com o campo magnético do nosso planeta podem produzir auroras, perturbar instrumentos de orientação de satélites, interromper comunicações a longa distância e, mais importante, produzir uma forte ionização da camada D da ionosfera resultando numa grande absorção para as ondas rádio.

Solar flare

Segredos do Sol: tempestades solares

6. Atmosfera terrestre

Ionização

- Processo químico segundo o qual se originam iões a partir de átomos ou moléculas que perdem ou ganham electrões.
- O principal agente da ionização na ionosfera é o Sol, cuja radiação no espectro de UV e raios-X origina uma grande quantidade de electrões livres nesta região da atmosfera.
- Os electrões livres absorvem parte da energia UV que os libertou dos átomos ou moléculas formando, deste modo, uma camada ionizada.
- Os raios UV de maior frequência e os raios-X penetram mais fundo produzindo camadas ionizadas na parte mais inferior da ionosfera (camada D).
- Por outro lado, os raios UV de menor frequência penetram menos e produzem camadas ionizadas nas regiões mais altas da ionosfera (camadas E e F).

Camadas ionosféricas

Camadas ionosféricas

- Camada D: 50 km a 90 km;
 - é a que absorve a maior quantidade de energia electromagnética;
 - é a camada com maior densidade atmosférica;
 - o seu comportamento é diurno e permanece apenas por alguns instantes no início da noite;
 - é a responsável pela absorção das ondas de rádio durante o dia devido à densidade de ionização ser mais elevada;
 - em condições normais, a partir dos 3 MHz esta camada começa a perder gradualmente características de absorção, embora estes efeitos sejam notados até aos 10 MHz;
 - sob a influência de tempestades solares esta frequência crítica de absorção pode sofrer um aumento significativo.

- Camada E: 90 km a 140 km;
 - forma-se durante o dia e, à semelhança da camada D, dissipa-se durante a noite;
 - pode surgir e desaparecer de forma rápida durante o dia ou noite, sob a forma de manchas irregulares com ionização invulgarmente alta (Esporádica E);
 - em algumas ocasiões, dependendo das condições do vento solar e da energia absorvida durante o dia, esta camada pode permanecer esporadicamente à noite; o alcance proporcionado através da Esporádica E excede, por vezes, os 1600 km, mas não é tão grande quanto o que ocorre na camada F;
 - é tanto mais activa quanto mais perpendicularmente os raios solares sobre ela incidirem.

- Camada F: 140 km a 500 km;
 - durante o dia separa-se em duas camadas, F1 e F2;
 - os átomos desta camada permanecem ionizados por um longo período após o pôr-do-sol, e durante um pico de actividade solar podem permanecer ionizados durante toda a noite;
 - sendo a mais alta da ionosfera, permite grandes alcances: para ondas horizontais, o alcance obtido num único salto (HOP) pode ser de 5000 km; para sinais que se propaguem a distâncias maiores, são necessários vários saltos;
 - responsável pela maior parte das comunicações HF de longa distância;
 - num pico do ciclo solar pode reflectir sinais até 100 MHz; durante o restante ciclo, a frequência máxima utilizável pode descer até aos 10 MHz.

- Camada F1: 140 km a 200 km;
 - forma-se durante o dia, à semelhança da camada E, podendo esporadicamente manter-se em períodos nocturnos;
 - reflecte essencialmente determinadas frequências, conforme a espessura que adquire ao receber energia solar;
 - o seu maior efeito é a absorção de algumas ondas HF, embora outras passem para a camada F2 sofrendo, deste modo, uma refracção;
- Camada F2: 200 km a 500 km;
 - a altitude e a densidade variam com a hora do dia, a estação do ano e a actividade solar;
 - permite comunicações HF a longa distância: a refracção nesta camada pode gerar o aparecimento do fenómeno raro da ductificação, proporcionando contactos a dezenas de milhares de quilómetros e ecos ionosféricos.

7. Reflexão ionosférica

- A onda embate numa superfície plana e é reenviada para o mesmo meio.
- Na ionosfera a reflexão ocorre quando uma onda de rádio atinge uma fina e altamente ionizada camada da ionosfera.
- Na realidade, as ondas são refractadas: algumas retornam à Terra de forma tão rápida que parece tratar-se do fenómeno da reflexão.
- Para que a reflexão ocorra, a espessura da camada ionizada não pode ser maior que um comprimento de onda; dado que as camadas têm uma grande espessura, a reflexão acontece apenas com ondas de maior comprimento de onda.

8. Refracção ionosférica

- A onda passa de um meio para outro cujas velocidades de propagação são diferentes e sofre, portanto, um desvio na direcção da sua propagação.
- As ondas rádio transmitidas através de camadas ionizadas são sempre refractadas, ou dobradas.
- Uma vez que a velocidade de propagação nas camadas mais externas aumenta abruptamente, a onda é desviada novamente em direcção à Terra; este desvio é sempre em direcção ao meio de propagação onde a velocidade de propagação é mais baixa.
- O valor da refracção que uma onda de rádio sofre depende:
 - da densidade de ionização da camada;
 - da frequência da onda de rádio;
 - do ângulo de incidência na camada.

9. Variações sazonais da ionosfera

- Resultam do movimento de translação da Terra em torno do Sol (inclinação dos raios solares varia).
- Nas camadas D, E e F1 as variações sazonais estão directamente relacionadas com a inclinação dos raios solares: a ionização é máxima durante o Verão.
- Na camada F2 a ionização é máxima no Inverno; como consequência as frequências propagadas por esta camada são mais elevadas no Inverno que no Verão.

10. Inversão de temperatura na Troposfera

• Camadas de ar quente formam-se por cima de camadas de ar frio, originando canais ou condutas de ar frio entre a Terra e uma camada de ar quente, ou entre duas camadas de ar quente.

- Se uma antena emissora estiver dentro deste canal ou se uma onda de rádio entrar com um ângulo de incidência muito baixo, as emissões de VHF e UHF podem ser propagadas para além da linha do horizonte.
- Estas distâncias são possíveis devido às diferentes densidades e propriedades refractivas do ar quente e do ar frio.
- A mudança brusca de densidade quando a onda entra no ar quente acima da conduta faz com que a onda seja refractada de volta à Terra.
- Quando a onda atinge a Terra ou uma camada de ar quente abaixo da conduta sucede o oposto e a onda prossegue ao longo da mesma.
- Esta conduta é conhecida como ducto troposférico.

Tabelas de previsão de propagação

Sol	K	A
Inactivo	0	0
Muito Calmo	1	1 a 7
Calmo	2	
Incerto	3	8 a 15
Activo	4	16 a 29
Tempestade fraca	5	30 a 49
Tempestade	6	30 a 49
Tempestade forte	7	50 a 99
Tempestade muito forte	8	100 a 400
Tempestade extremamente forte	9	

Nota: O índice **K** representa a variação do campo medida a cada 3 horas, enquanto o índice **A** é a média de 8 índices **K** consecutivos.

Propagação	SFI (F)
Má	60 a 120
Razoável	120 a 180
Boa	180 a 240
Muito boa	> 240

Nota: Índice SFI (Solar Flux Index) é também chamado índice F. Este índice tem como base a medição da radiação solar com comprimento de onda de 10,7 cm (2,8 GHz) que atinge a Terra e dá uma indicação da ionização da camada F, estando directamente relacionado com o MUF.

Links

http://sunspotwatch.com/

http://dx.qsl.net/propagation/