```
Given an array of numbers, find the index of the smallest array element (the pivot), for which the sums of all elemen to the left and to the right are equal. The array may not be
  Example
  arr-[1,23,4,6]
 the sum of the first three elements, 1+2+3=6. The value of the last element is 6.

Using zero based indexing, an[3]=4 is the pivot between the two subwrays.
      The index of the pivot is 3.
  Function Description
  Complete the function balancedSum in the editor below.
  balancedSum has the following parameter(s):
  int arr[n]: an array of integers
  Returns:
  int: an integer representing the index of the pivot
       3 s n s 10 5
      1 \le arr[i] \le 2 = 10^4, where 0 \le i < n
        It is guaranteed that a solution always exists.
  Input Format for Custom Testing
 input from stdin will be processed as follows and passed to the function.
 The first line contains an integer n, the size of the array arr. Each of the next n lines contains an integer, an \hat{y}_i, where 0 \le i \le n.
 Sample Case 0
 Sample Input 0
 STDIN Function Parameters
 4 → arr[] size n = 4
  1 → arr = [1, 2, 3, 3]
 Sample Output 0
 Explanation 0
 The sum of the first two elements, 1+2=3. The value of the last element is 3.
 Using zero based indexing, art[2]=3 is the pivot between the two subarrays.

The index of the pivot is 2.
 Sample Case 1
 Sample Input 1
 STDIN Function Parameters
 3 → arr[] size n = 3
Sample Output 1
 1
The first and last elements are equal to 1.

Using zero based indexing, art[1]=2 is the pivot between the two subarrays.
     The index of the pivot is 1.
 Recet answer
```

```
Test Expected

✓ Int arr[1 = (1,2,3,3);
printf("Ma", halancedSum(4, arr))

Passed all tental ✓
```

```
Calculate the sum of an array of integers.
  numbers = [3, 13, 4, 11, 9]
  The sum is 3 + 13 + 4 + 11 + 9 = 40.
  Function Description
  Complete the function arraySum in the editor below
  arraySum has the following parameter(s):
  int; integer sum of the numbers array
  Constraints
  1=0=104
  1 \le \text{numbers}[i] \le 10^4
  Input Format for Custom Testing
  input from stdin will be processed as follows and passed to
  The first line contains an integer n, the size of the array
  Each of the next n lines contains an integer numbers[i] where 0 \pm i < n.
  Sample Case 0
  Sample Input 0
  STDIN Function
  5 → numbers@size n = 5
  1 → numbers = [1, 2, 3, 4, 5]
  5
  Sample Output 0
  15
  Explanation 0
  1+2+3+4+5=15.
  Sample Case 1
  Sample Input 1
  STOIN Function
  2 → numbers[] size n = 2
  12 - numbers = [12, 12]
  12
  Sample Output 1
  Explanation 1
  12+12+24
   Answer: (penalty regime 0 %)
   Reset answer
```


Question 3
Correct

(* Flag question

Given an array of n integers, rearrange them so that the sum of the absolute differences of all adjacent elements is minimized. Then, compute the sum of those absolute differences. Example n = 5 arr = [1, 3, 3, 2, 4] If the list is rearranged as arr' = [1, 2, 3, 3, 4], the absolute differences are |1 - 2| = 1, |2 - 3| = 1, |3 - 3| = 0, |3 - 4| = 1. The sum of those differences is 1 + 1 + 0 + 1 = 3. Function Description Complete the function minDiff in the editor below. minDiff has the following parameter: arr: an integer array Returns: int: the sum of the absolute differences of adjacent elements Constraints 2 s n s105 0 s arr[i] s 109, where 0 s i < n Input Format For Custom Testing The first line of input contains an integer, rt, the size of arr. Each of the following n lines contains an integer that describes arr[i] (where 0 ≤ i < n) . Sample Case 0 Sample Input For Custom Testing STDIN Function — 5 \rightarrow arr[] size n = 5 5 \rightarrow arr[] = [5, 1, 3, 7, 3] 1 3 7 3 Sample Output 6 Explanation n = 5 arr = [5, 1, 3, 7, 3] If arr is rearranged as arr' = [1, 3, 3, 5, 7], the differences are minimized. The final answer is |1 - 3| + |3 - 3| + |3 - 5| + |5 - 7| = 6. Sample Case 1 Sample Input For Custom Testing STDIN Function — $2 \rightarrow arr[]$ size $n = 2.3 \rightarrow arr[] = [3, 2].2$ Sample Output 1 Explanation n = 2 arr = [3, 2] There is no need to rearrange because there are only two elements. The final answer is |3-2|=1.

Answer: (penalty regime: 0 %)

Reset answer

17 +

19 20

21

```
* Complete the 'minDiff' function below.
 2
 3
4
    * The function is expected to return an
5
    * The function accepts INTEGER_ARRAY arr
 6
7
8 int compare(const void* a,const void* b)
9 . {
10
        return(*(int*)a-*(int*)b);
11
12
    int minDiff(int arr_count, int* arr)
13 + {
14
        qsort(arr,arr_count,sizeof(int),compa
15
        int sum=0;
16
        for(int i=1;i<arr_count;++i)
```

sum+=abs(arr[i]-arr[i-1]);

	Test	Expected	Got
4	int arr[] = (5, 1, 3, 7, 3); printf("%d", minDiff(5, arr))	6	6

return sum;