

Experimental Exam - October 28, 2017

Foaie de Răspunsuri

Student	
Code	

4.1 Caracterizarea fotodiodei

4.1.1 Măsurarea tensiunii de circuit deschis si a curentului de scurtcircuit

4.1.1.a. Măsoară valoarea tensiunii de circuit deschis U_{CD} și pe cea a intensității curentului electric de scurtcircuit I_{SC} și scrie aceste valori în caseta de mai jos (0,50p)

$$U_{CD} = 667 \, mV$$
 $I_{SC} = 16,3 \, mA$

4.1.2 Măsurarea caracteristicii I – U în cadranul trigonometric patru în regim de fotoelement

4.1.2.a. Completează în *Table 1* perechile de date curent – tensiune măsurate

(2,00p)

Table 1

Nr	$U_{dioda}(mV)$	$U_{rez.sarc}(mV)$	$I_{rez.sarc}(mV)$	$P_{dioda}(mW)$	$R_{dioda}(\Omega)$	
1	661	0	0	0.00	8	
2	655	59	0.59	0.39	1110	
3	654	61	0.61	0.40	1072	
4	653	65	0.65	0.42	1005	
5	651	70	0.7	0.46	930	
6	650	73	0.73	0.47	890	
7	649	79	0.79	0.51	822	
8	647	85	0.85	0.55	761	
9	645	96	0.96	0.62	672	
10	642	109	1.09	0.70	589	
11	639	123	1.23	0.79	520	
12	634	147	1.47	0.93	431	
13	625	184	1.84	1.15	340	
14	622	197	1.97	1.23	316	
15	614	228	2.28	1.40	269	
16	602	277	2.77	1.67	217	
17	587	333	3.33	1.95	176	
18	551	454	4.54	2.50	121	
19	528	524	5.24	2.77	101	
20	511	570	5.7	2.91	90	
21	0	1455	14.55	0.00	0	

Observații:

- 1. Se acordă tot punctajul dacă în Table 1 sunt înregistrate cel putin 10 seturi de date experimentale.
- 2. Se acordă jumătate din punctaj dacă în Table 1 sunt înregistrate 5 9 seturi de date experimentale.
- 3. Nu se acordă punctaj, dacă în Table 1 sunt înregistrate mai cel puțin 5 seturi de date experimentale.

Experimental Exam - October 28, 2017

4.1.2.b. Trasează graficul I-U al datelor prelevate, inclusiv a celor obținute în cadrul sarcinii de lucru 4.1.1.a.- *Graph 1* (1,00p)

4.1.2.c. Trasează graficul puterii debitate de generatorul electric reprezentat de diodă, ca funcție de intensitatea curentului prin fotodiodă. - *Graph 2* (1,00p)

4.1.2.d. Determină valoarea FFF pentru fotodioda utilizată

(0,50p)

$$FFF = \frac{P_{\text{max}}}{U_{CD} \cdot I_{SC}}$$

Între valorile măsurate, puterea maximă debitată apare pentru punctul experimental 20 din *Table 1* și are valoarea $P_{\text{max}} = 2,91 \text{mW}$.

Ţinând seama că $U_{CD}=667\,mV$; $I_{SC}=16,3mA$, rezultă că valoarea factorului de umplere *FFF* pentru fotodioda utilizată în experiment este

$$FFF = 0.27$$

Experimental Exam - October 28, 2017

4.1.3. Măsurarea caracteristicii I – U în cadranul unu

4.1.3.a. Cu laserul oprit, măsoară perechi de valori I-U pentru curenți $I \le 20mA$. Completează *Table 2* perechile de date curent – tensiune măsurate. (2,00p)

Table 2

Nr	$U_{dioda}(mV)$	$U_{rez.sarc}(mV)$	$I_{dioda}(mA)$	In(I _{dioda})
1	831	2030	20.3	3.01062
2	820	1860	18.6	2.92316
3	808	1600	16	2.77259
4	785	1190	11.9	2.47654
5	763	890	8.9	2.18605
6	746	730	7.3	1.98787
7	723	550	5.5	1.70475
8	705	460	4.6	1.52606
9	696	410	4.1	1.41099
10	676	340	3.4	1.22378
11	656	270	2.7	0.99325
12	637	220	2.2	0.78846
13	612	170	1.7	0.53063
14	596	140	1.4	0.33647
15	572	110	1.1	0.09531
16	548	80	0.8	-0.22314
17	513	50	0.5	-0.69315
18	477	30	0.3	-1.20397
19	343	1	0.01	-4.60517
20	207	0		
21	63	0		
22	0	0		

Observatii:

- 1. Se acordă tot punctajul dacă în Table 2 sunt înregistrate cel puțin 10 seturi de date experimentale.
- 2. Se acordă jumătate din punctaj dacă în Table 2 sunt înregistrate 5 9 seturi de date experimentale.
- 3. Nu se acordă punctaj, dacă în Table 2 sunt înregistrate mai cel puțin 5 seturi de date experimentale.

4.1.3.b. Determină o expresie liniarizată a caracteristicii
$$I = I_0 \cdot \left(e^{\frac{q \cdot U}{\eta \cdot k_B \cdot T}} - 1 \right)$$
, adecvată pentru polarizare

directă. (0,50p)

Pentru tensiuni de polarizare pozitive în expresia caracteristicii, exponențiala este mult mai mare decât unu. Prin urmare expresia caracteristicii devine

$$I = I_0 \cdot e^{\frac{q \cdot U}{\eta \cdot k_B \cdot T}}$$

sau, prin logaritmare

$$\ln I = \ln I_0 + \frac{1}{\eta} \cdot \frac{q}{k_B \cdot T} \cdot U$$

Experimental Exam - October 28, 2017

4.1.3.c. Folosind datele experimentale obținute și expresia dedusă la sarcina de lucru 4.1.3.b., determină valoarea parametrului η al fotodiodei utilizate. (1,00p)

Ţinând seama că $q/(k_BT)=38,64\,V^{-1}$ sau $q/(k_BT)=0,03864\,mV^{-1}$, se observă că dependența liniară dedusă la sarcina de lucru 4.1.3. devine

$$\ln I = \ln I_0 + \frac{1}{\eta} \cdot 0,0384 \cdot U \tag{1}$$

și că împreună cu datele din *Table 2* mai sus permit determinarea factorului de diodă η .

Graficul dependenței descrise de relația (1) pentru datele din Table 2 este prezentat în figura de mai jos

Datele dreptei de fit pentru această reprezentare grafică sunt

Equation	y = a + b*x		,
Weight	No Weightin		
Residual Sum of	0.03899		
Adj. R-Squar	0.99843		j
		Value	Standard Err
In/I/dioda))	Intercept	-6.6221	0.07629
In(I(dioda))	Slope	0.0116	1.11571E-4

Panta dreptei de fit, a cărei expresie este $\frac{1}{\eta}\cdot 0,0384$ are valoarea 0,0116 . Prin urmare valoarea

factorului de diodă este

$$\begin{cases} \eta = \frac{0,0384}{0,0116} \\ \eta = 3,3 \end{cases}$$

Observații: 1. Trasarea dependenței grafice $\ln I = \ln I_0 + \frac{1}{\eta} \cdot 0.0384 \cdot U$ este opțională.

- 2. Se punctează oricare metodă prin care factorul de diodă este determinat corect
- 3. Se acordă punctajul integral pentru orice valoare a factorului de diodă mai mare decât 2 și mai mică decât 3,5.

Experimental Exam - October 28, 2017

4.1.4 Măsurarea caracteristicii I – U în cadranul trei

4.1.4.a. Cu laserul pornit și cu fotodioda iluminată, măsoară perechi de valori I-U pentru tensiuni de polarizare $U \le 3V$. Completează *Table 3* cu perechile de date curent – tensiune, măsurate în cadrul acestei sarcini de lucru. (2,00p)

Table 3

Nr	$U_{dioda}(mV)$	$U_{rez.sarc}(mV)$	$I_{dioda}(mA)$
1	-5	-832	-8.32
2	-160	-830	-8.30
3	-300	-833	-8.33
4	-350	-833	-8.33
5	-470	-836	-8.36
6	-640	-837	-8.37
7	-1000	-845	-8.45
8	-1340	-853	-8.53
9	-1610	-854	-8.54
10	-2000	-856	-8.56
11	-2260	-857	-8.57

Observații:

- 1. Se acordă tot punctajul dacă în Table 3 sunt înregistrate cel puțin 10 seturi de date experimentale.
- 2. Se acordă jumătate din punctaj dacă în Table 3 sunt înregistrate 5 9 seturi de date experimentale.
- 3. Nu se acordă punctaj, dacă în Table 3 sunt înregistrate mai cel puțin 5 seturi de date experimentale.
- **4.1.4.b.** Trasează graficul caracteristicii I U din cadranul trei pentru fotodioda iluminată și polarizată *Graph 3* (1,00p)

Experimental Exam - October 28, 2017

4.2 Etalonarea sistemului electric pentru măsurări asupra intensitătii luminii

4.2.1 Măsurarea semnalului electric al fotodiodei

4.2.1.a. Rotește analizorul din 5° în 5° în tot domeniul de valori posibile $(0^{\circ} \div 180^{\circ})$. Pentru fiecare poziție a analizorului, notează în *Table 4* indicația U(mV) a voltmetrului cuplat pe rezistența R, corespunzătoare valorii intensității curentului invers I(mA) al fotodiodei. (1,00p)

Table 4

Nr	Unghi $\theta(\circ)$	$U_{rez.sarc}(mV)$	$\cos^2 \theta$	$I_{dioda}(mA)$
1	90	0.09	6.34136E-7	9E-4
2	95	1.9	0.00745	0.019
3	100	4.8	0.02985	0.048
4	105	8.4	0.06652	0.084
5	110	12.4	0.11635	0.124
6	115	17.6	0.17783	0.176
7	120	22.9	0.24908	0.229
8	125	28.4	0.32795	0.284
9	130	36.8	0.41204	0.368
10	135	43.4	0.49881	0.434
11	140	50.6	0.5856	0.506
12	145	58.8	0.6698	0.588
13	150	65.9	0.74885	0.659
14	155	70.7	0.82034	0.707
15	160	78.6	0.88211	0.786
16	165	83.7	0.93228	0.837
17	170	87.8	0.96933	0.878
18	175	90.3	0.99213	0.903
19	180	92.1	1	0.921

Observatii:

- 1. Se acordă tot punctajul dacă în Table 4 sunt înregistrate cel puțin 10 seturi de date experimentale.
- 2. Se acordă jumătate din punctaj dacă în Table 4 sunt înregistrate 5 9 seturi de date experimentale.
- 3. Nu se acordă punctaj, dacă în Table 4 sunt înregistrate mai cel puțin 5 seturi de date experimentale.

4.2.2 Etalonarea sistemului electric pentru măsurări ale intensitătii luminii

4.2.2.a. Identifică poziția corectă a filtrelor încrucișate. Corectează - dacă este cazul - în mod corespunzător valorile unghiului dintre direcțiile de transmisie ale polarizorului și analizorului. Completează valorile acestui unghi $\theta(^{\circ})$ în *Table 4,* folosit în cadrul sarcinii de lucru 4.2.1.a. De asemenea, completează în același tabel și valorile $\cos^2\theta$, pentru toate valorile unghiurilor măsurate și corectate. (0,50p)

Experimental Exam - October 28, 2017

4.2.2.b. Trasează graficul dependenței $I(mA) = a \cdot \cos^2 \theta + b$ - Graph 4

(1,00p)

4.2.2.c. Determină valorile parametrilor a și b și precizează semnificația lor fizică.

(1,00p)

Caracteristicile dreptei de fit pentru dependența $I(mA) = a \cdot \cos^2 \theta + b$ sunt

Equation	y = a + b̄		
Weight	No Weig		
Residual Sum of	0.00397		
Adj. R-Sq	0.99785		
		Value	Standard
1/ 4)	Intercept	0.009	0.00596
I(mA)	Slope	0.883	0.00966

Prin urmare,

a = 0.883

şi

 $b \cong 0$

Deoarece intercepția dreptei de fit este practic nulă, se observă respectarea remarcabil de bună a legii Malus.

Panta graficului reprezintă coeficientul de proporționalitate dintre intensitatea curentului electric invers al diodei și intensitatea luminii.

Notă: În aprecierea rezultatelor concurenților este importantă liniaritatea dependenței $I(\cos^2 \theta)$; valorile absolute ale intensității curentului electric pot fi diferite.

Experimental Exam - October 28, 2017

4.3 Măsurări polarimetrice

4.3.a. Având cuva goală, rotește analizorul până la realizarea situației de filtre încrucișate și notează unghiul indicat de acul indicator, la care s-a realizat această situație.

Pentru fiecare dintre lungimile d ale coloanei de lichid, notează valoarea unghiului indicat și determină valoarea unghiului β de rotire a planului de polarizare, la care se realizează minimul semnalului electric – ceea ce corespunde situației polarizor-analizor încrucișați. Notează în *Table 5* valorile lungimilor d ale coloanei de lichid, ale unghiurilor indicate de acul indicator și ale unghiurilor β corespunzătoare.

(1,00p)

Table 5

Nr	Unghi indicat de acul indicator pe raportor (°)	Lungime (cm)	Unghi β
1	90	0	0
2	86	2	4
3	78	4.2	12
4	74	6	16
5	58	14.7	32
6	54	18	36
7	45	22	45

Observații:

- 1. Se acordă tot punctajul dacă în Table 5 sunt înregistrate cel putin 6 seturi de date experimentale.
- 2. Se acordă jumătate din punctaj dacă în Table 5 sunt înregistrate 4 5 seturi de date experimentale.
- 3. Nu se acordă punctaj, dacă în Table 1 sunt înregistrate mai cel puțin 4 seturi de date experimentale.

4.3.b. Trasează graficul dependenței
$$\beta = f(d)$$
 - *Graph 5*,

(1,00p)

Observații: 1. Dependența $\beta = f(d)$ este liniară și trece prin origine – ceea ce confirmă teoria referitoare la tipul dependenței dintre lungimea drumului luminii prin mediul activ optic și rotirea direcției de polarizare a luminii.

- 2. Caracteristicile dreptei de fit a punctelor experimentale ale dependenței $\beta = f(d)$
- 3. Coeficientul de corelație al dependenței este remarcabil de aproape de 1.

Experimental Exam - October 28, 2017

Equation	y = a + 5		
Weight	No Weig		
Residual Sum of	18.6659 7		
Adj. R-Sq	0.98725		
		Value	Standard
b	Intercept	1.766	1.14199
D	Slope	1.982	0.09187

4.3.c. Măsoară valorile unghiului β pentru coloane de lungimi egale d=25cm din soluțiile cu concentrațiile c_1 , c_2 , c_3 . Tabelează rezultatele în *Table 6*. (1,00p)

Table 6

Nr	Unghi indicat de acul indicator pe raportor (°)	Concentrație c(g/ml)	Unghi β (°)
1	54	50	36
2	73	25	17
3	83	12.5	7

4.3.d. Trasează graficul $\beta = f(c)$ și denumește-l *Graph 6.*

(1,00p)

4.3.e. Măsoară valoarea unghiului β pentru o coloană de lungime d=25cm din soluția de concentrație necunoscută c_x și notează valoarea obținută. Folosind reprezentarea grafică pe care ai trasat-o în cadrul sarcinii de lucru 4.3.d., determină valoarea concentrației necunoscute c_x și notează valoarea obținută în caseta caseta de mai jos. (1,00p)

Se măsoară valoarea unghiului β pentru o coloană de lungime d=25cm din soluția de concentrație necunoscută c_x și se obține:

$$\beta = 23^{\circ}$$

Folosind reprezentarea grafică trasată în cadrul sarcinii de lucru 4.3.d.(*Graph 6*) se determină valoarea concentrației necunoscute

$$c_x = 35g/cm^3$$