Scilab Textbook Companion for Basic Electronics And Linear Circuits by N. N. Bhargava, D. C. Kulshreshtha And S. C. Gupta¹

Created by
Mohammad Faisal Siddiqi
B.Tech (pursuing)
Electronics Engineering
Jamia Millia Islamia, New Delhi
College Teacher
Dr. Sajad A. Loan
Cross-Checked by
TechPassion

May 19, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electronics And Linear Circuits

Author: N. N. Bhargava, D. C. Kulshreshtha And S. C. Gupta

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 1

Year: 2008

ISBN: 0074519654

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	INTRODUCTION TO ELECTRONICS	6
2	CURRENT AND VOLTAGE SOURCES	8
4	SEMICONDUCTOR DIODE	12
5	TRANSISTORS	18
6	VACUUM TUBES	25
7	TRANSISTOR BIASING AND STABILIZATION OF OPERATING POINT	30
8	SMALL SIGNAL AMPLIFIERS	44
9	MULTI STAGE AMPLIFIERS	51
10	POWER AMPLIFIERS	59
11	TUNED VOLTAGE AMPLIFIERS	62
12	FEEDBACK IN AMPLIFIERS	67
13	OSCILLATORS	71
14	ELECTRONIC INSTRUMENTS	73

List of Scilab Codes

Exa 1.1	Resistor Range Calculation using Colour Band Sequence	6
Exa 1.2	Resistor Range Calculation using Colour Band Sequence	7
Exa 2.1	Equivalent Current Source Representation	8
Exa 2.2	Equivalent Voltage Source Representation	9
Exa 2.3	Current Determination using Voltage Source and Cur-	
	rent Source Representations	9
Exa 2.4	Output Voltage Determination	10
Exa 4.1	DC Voltage and PIV Calculation	12
Exa 4.2	DC Voltage and PIV Calculation	13
Exa 4.3.a	Peak Value of Current Calculation	13
Exa 4.3.b	DC or Average Value of Current Calculation	14
Exa 4.3.c	RMS Value of Current Calculation	14
Exa 4.3.d	Ripple Factor Determination	15
Exa 4.3.e	Rectification Efficiency Calculation	15
Exa 4.4	Maximum Permissible Current Determination	16
Exa 4.5	Capacitance Determination on changing Bias Voltage .	17
Exa 5.1	Collector and Base Currents Calculation	18
Exa 5.2	Dynamic Input Resistance Determination	18
Exa 5.3	Short Circuit Current Gain Determination	19
Exa 5.4.a	Common Base Short Circuit Current Gain Calculation	20
Exa 5.4.b	Common Emitter Short Circuit Current Gain Calcula-	
	tion	20
Exa 5.5	DC Current Gain in Common Base Configuration	21
Exa 5.6	Determination of Dynamic Output Resistance and AC	
	and DC Current Gains	21
Exa 5.7	Q Point Determination	22
Exa 5.8	Calculation of Dynamic Drain Resistance of JFET	23
Exa 6.1	Dynamic Plate Resistance of the Diode Determination	25

Exa 6.2	Plotting of Static Plate Characteristics
Exa 7.1	Calculate Ic and Vce for given Circuit
Exa 7.2	Calculate coordinates of Operating Point
Exa 7.3	Quiescent Operating Point Determination
Exa 7.4.a	Calculate value of Resistance Rb
Exa 7.4.b	Calculation of Collector Current Ic
Exa 7.5	Calculation of Ie and Vc in the Circuit
Exa 7.6	Calculate Minimum and Maximum Collector Currents 35
Exa 7.7	Calculate Values of the three Currents
Exa 7.8	Calculate Minimum and Maximum Ie and correspond-
	ing Vce
Exa 7.9	Determine the new Q Points
Exa 7.10	Calculate the value of Rb
Exa 7.11	Calculate DC bias Voltages and Currents 40
Exa 7.12	Calculate Re and Vce in the Circuit
Exa 7.13	Calculate Ic and Vce for given Circuit 41
Exa 7.14	Calculate Ic and Vce for given Circuit
Exa 8.1	Determination of Hybrid Parameters
Exa 8.2.a	Calculation of Input Impedance of Amplifier
Exa 8.2.b	Calculation of Voltage Gain of Amplifier
Exa 8.2.c	Calculation of Current Gain of Amplifier
Exa 8.3.a	Calculation of Voltage Gain of Amplifier
Exa 8.3.b	Calculation of Input Impedance of Amplifier
Exa 8.3.c	Calculation of Q Point Parameters of Amplifier 47
Exa 8.4	Calculation of Voltage Gain of Amplifier
Exa 8.5	Calculation of Gain of Single Stage Amplifier 49
Exa 8.6	Calculation of Output Signal Voltage of FET Amplifier 49
Exa 9.1	Calculate overall Voltage Gain in dB 51
Exa 9.2	Calculate Voltage at the Output Terminal 51
Exa 9.3	To Plot the Frequency Response Curve
Exa 9.4.a	Calculate Input Impedance of Two Stage RC Coupled
	Amplifier
Exa 9.4.b	Calculate Ouput Impedance of Two Stage RC Coupled
	Amplifier
Exa 9.4.c	Calculate Voltage Gain of Two Stage RC Coupled Am-
	plifier
Exa 9.5	Calculate Maximum Voltage Gain and Bandwidth of
	Triode Amplifier

Exa	10.1	Calculation of Transformer Turns Ratio	59
Exa	10.2	Calculation of Effective Resistance seen at Primary	59
Exa	10.3.a	Calculation of 2nd 3rd and 4th Harmonic Distortions .	60
Exa	10.3.b	Percentage Increase in Power because of Distortion	61
Exa	11.1.a	Calculation of Resonant Frequency	62
Exa	11.1.b	Calculation of Impedance at Resonance	62
Exa	11.1.c	Calculation of Current at Resonance	63
Exa	11.1.d	Calculation of Voltage across each Component	64
Exa	11.2	Calculation of Parameters of the Resonant Circuit at	
		Resonance	64
Exa	11.3	Calculation of Impedance Q and Bandwidth of Reso-	
		nant Circuit	65
Exa	12.1	Calculation of Gain of Negative Feedback Amplifier	67
Exa	12.2	Calculation of Internal Gain and Feedback Gain	67
Exa	12.3	Calculation of change in overall Gain of Feedback Am-	
		plifier	68
Exa	12.4	Calculation of Input Impedance of the Feedback Ampli-	
		fier	69
Exa	12.5	Calculation of Feedback Factor and Percent change in	
		overall Gain	69
Exa	13.1	Calculate Frequency of Oscillation of Tuned Collector	
		Oscillator	71
Exa	13.2	Calculate Frequency of Oscillation of Phase Shift Oscil-	
		lator	71
Exa	13.3	Calculate Frequency of Oscillation of Wein Bridge Os-	
		cillator	72
	14.1	Caculation of Series Resistance for coversion to Voltmeter	73
	14.2	Calculation of Shunt Resistance	74
Exa	14.3	Designing of a Universal Shunt for making a Multi Range	
_		Milliammeter	74
	14.4	Determination of Peak and RMS AC Voltage	76
Exa	14.5	Determination of Magnitude and Frequency of Voltage	5 0
		Fed to Y Input	76

List of Figures

6.1	Dynamic Plate Resistance of the Diode Determination	26
6.2	Plotting of Static Plate Characteristics	27
9.1	To Plot the Frequency Response Curve	53
14.1	Determination of Magnitude and Frequency of Voltage Fed to Y Input	77

INTRODUCTION TO ELECTRONICS

Scilab code Exa 1.1 Resistor Range Calculation using Colour Band Sequence

```
1 //Example 1.1
2 //Program to find Range of a Resistor so as to
      satisfy manufacturer's Tolerances
3 // Colour Band Sequence: YELLOW, VIOLET, ORANGE, GOLD
4 clear;
5 clc;
6 close;
7 A=4; //NUMERICAL CODE FOR BAND YELLOW
8 B=7; //NUMERICAL CODE FOR BAND VIOLET
9 C=3; //NUMERICAL CODE FOR BAND ORANGE
10 D=5; //TOLERANCE VALUE FOR BAND GOLD i.e. 5%
11 // Resistor Value Calculation
12 R = (A * 10 + B) * 10^C;
13 //Tolerance Value Calulation
14 T=D*R/100;
15 R1=R-T;
16 R2 = R + T;
17 // Displaying The Results in Command Window
```

```
18 printf("\n\n\t Resistor Value is %f kOhms + %f
        percent.",R/1000,D);
19 printf("\n\n\t Resistor Value is %f kOhms + %f
        kOhms.",R/1000,T/1000);
20 printf("\n\n\t Range of Values of the Resistor is %f
        kOhms & %f kOhms.",R1/1000,R2/1000);
```

Scilab code Exa 1.2 Resistor Range Calculation using Colour Band Sequence

```
1 / Example 1.2
2 //Program to find Range of a Resistor so as to
      satisfy manufacturer's Tolerances
3 //Colour Band Sequence: GRAY, BLUE, GOLD, GOLD
4 clear;
5 clc;
6 close;
7 A=8; //NUMERICAL CODE FOR BAND GRAY
8 B=6; //NUMERICAL CODE FOR BAND BLUE
9 C=-1; //NUMERICAL CODE FOR BAND GOLD
10 D=5; //TOLERANCE VALUE FOR BAND GOLD i.e. 5%
11 // Resistor Value Calculation
12 R = (A*10+B)*10^C;
13 //Tolerance Value Calulation
14 T=D*R/100;
15 R1=R-T;
16 R2=R+T;
17 // Displaying The Results in Command Window
18 printf("\n\t Resistor Value is %f Ohms + %f
     percent.",R,D);
19 printf("\n\ Resistor Value is %f Ohms + %f Ohms.
     ",R,T);
20 printf("\n\n\t Range of Values of the Resistor is %f
      Ohms & %f Ohms.", R1, R2);
```

CURRENT AND VOLTAGE SOURCES

Scilab code Exa 2.1 Equivalent Current Source Representation

```
1 / \text{Example } 2.1
2 //Program to Obtain Equivalent Current Source
      Representaion from Given Voltage Source
      Representation
3 clear;
4 clc;
5 close;
6 // Voltage Source or Thevenin's Representation (Series
       Voltage Source & Resistor)
7 Vs=2; //Volts
8 Rs=1; //Ohm
9 // Current Source or Norton's Representation (Parallel
       Current Source & Resistor)
10 Is=Vs/Rs; //Amperes
11 // Displaying The Results in Command Window
12 printf("\n\n\t The Short Circuit Current Value is %f
      Amperes.", Is);
13 printf("\n\n\t The Source Impedence Value is %f Ohm.
     ", Rs);
```

14 printf("\n\n\t The Current Source & Source Impedance are connected in Parallel.");

Scilab code Exa 2.2 Equivalent Voltage Source Representation

```
1 / Example 2.2
2 //Program to Obtain Equivalent Voltage Source
     Representaion from Given Current Source
     Representation
3 clear;
4 clc:
5 close;
6 // Current Source or Norton's Representation (Parallel
       Current Source & Resistor)
7 Is=0.2; //Amperes
8 \text{ Zs} = 100; //\text{Ohms}
9 // Voltage Source or Thevenin's Representaion (Series
       Voltage Source & Resistor)
10 Vs=Is*Zs; //Volts
11 // Displaying The Results in Command Window
12 printf("\n\n\t The Open Circuit Voltage is %f Volts.
     ", Vs);
13 printf("\n\t The Source Impedence Value is %f Ohms
      .", Zs);
14 printf("\n\t Voltage Source & Source Impedance
       are connected in Series.");
```

Scilab code Exa 2.3 Current Determination using Voltage Source and Current Source Representations

```
1 //Example 2.3
2 //Program to Calculate Current in a Branch by Using
Current Source Representation
```

```
3 //Verify the Circuit's Result for its equivalence
      with Voltage Source Representation
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Is=1.5*10^(-3); //Amperes
9 Zs = 2*10^3; //Ohms
10 Z1 = 10 * 10^3; //Ohms
11 Z2=40*10^3; //Ohms
12 // Calculation for Current Source Representation
13 Z1 = Z1 * Z2 / (Z1 + Z2);
14 I2=Is*Zs/(Zs+Z1);
15 I4I=I2*Z1/(Z1+Z2);//Using Current Divider Rule
16 // Calculation for Current Source Representation
17 Vs=Is*Zs; //Open Circuit Volatge
18 I=Vs/(Zs+Z1);
19 I4V=I*Z1/(Z1+Z2);//Using Current Divider Rule
20 // Displaying The Results in Command Window
21 printf("\n\n\t The Load Current using Current Source
       Representation is I4I = \%f Amperes.", I4I);
22 printf("\n\n\t The Load Current using Voltage Source
       Representation is I4V = %f Amperes.", I4V);
23 if I4I == I4V then
24 printf("\n\t Both Results are Equivalent.");
25 else
26 printf("\n\n\t Both Results are Not Equivalent.");
27 \text{ end};
```

Scilab code Exa 2.4 Output Voltage Determination

```
4 clc;
5 close;
6 // Given Circuit Data
7 //Input Side
8 Vs=10*10^{(-3)}; //i.e. 10 mV
9 Rs=1*10^3; //i.e. 1 kOhms
10 //Output Side
11 Ro1=20*10^3; //i.e. 20 kOhms
12 Ro2=2*10^3; //i e. 2 kOhms
13 // Calculation
14 i=Vs/Rs; //Input Current
15 Io=100*i;//Output Current
16 Il=Io*Ro1/(Ro1+Ro2);//Using Current Divider Rule
17 Vo=I1*Ro2; // Output Volatge
18 // Displaying The Results in Command Window
19 printf("\nt The Output Voltage Vo = %f Volts.", Vo);
```

SEMICONDUCTOR DIODE

Scilab code Exa 4.1 DC Voltage and PIV Calculation

```
1 / Example 4.1
2 //Program to determine DC Voltage across the load
     and PIV of the Diode
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vrms = 220; //Volts
8 n2=1; //Assumption
9 n1=12*n2; //Turns Ratio
10 // Calculation
11 Vp=sqrt(2)*Vrms; //Maximum(Peak) Primary Voltage
12 Vm=n2*Vp/n1;//Maximum Secondary Voltage
13 Vdc=Vm/%pi;//DC load Voltage
14 // Displaying The Results in Command Window
15 printf("\n\t The DC load Voltage is = \%f V .", Vdc);
16 printf("\nt The Peak Inverse Voltage(PIV) is = \%f V
      .", Vm);
```

Scilab code Exa 4.2 DC Voltage and PIV Calculation

```
1 / Example 4.2
2 //Program to determine DC Voltage across the load
     and PIV of the
3 // Centre Tap Rectifier and Bridge Rectifier
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Vrms = 220; //Volts
9 n2=1; //Assumption
10 n1=12*n2; //Turns Ratio
11 // Calculation
12 Vp=sqrt(2)*Vrms; //Maximum(Peak) Primary Voltage
13 Vm=n2*Vp/n1; //Maximum Secondary Voltage
14 Vdc=2*Vm/%pi;//DC load Voltage
15 // Displaying The Results in Command Window
16 printf("\n\t The DC load Voltage is = \%f V .", Vdc);
17 printf("\n\t The Peak Inverse Voltage(PIV) of Bridge
       Rectifier is = \%f \ V \ .", Vm);
18 printf("\n\t The Peak Inverse Voltage(PIV) of Centre
     -tap Rectifier is = \%f V .",2*Vm);
```

Scilab code Exa 4.3.a Peak Value of Current Calculation

```
1 //Example 4.3(a)
2 //Program to determine the Peak Value of Current
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Rl=1*10^(3);//Ohms
8 rd=10;//Ohms
9 Vm=220; //Volts(Peak Value of Voltage)
```

Scilab code Exa 4.3.b DC or Average Value of Current Calculation

```
1 //Example 4.3(b)
2 //Program to determine the DC or Average Value of
     Current
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Rl=1*10^(3); //Ohms
8 rd=10; //Ohms
9 Vm=220; //Volts(Peak Value of Voltage)
10 // Calculation
11 Im=Vm/(rd+R1);//Peak Value of Current
12 Idc=2*Im/%pi;//DC Value of Current
13 // Displaying The Results in Command Window
14 printf("\nt The DC or Average Value of Current is =
      \% f mA .", Idc/10^(-3));
```

Scilab code Exa 4.3.c RMS Value of Current Calculation

```
1 //Example 4.3(c)
2 //Program to determine the RMS Value of Current
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
```

Scilab code Exa 4.3.d Ripple Factor Determination

```
1 //Example 4.3(d)
2 //Program to determine the Ripple Factor of Centre-
     tap Full Wave Rectifier
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Rl=1*10^(3); //Ohms
8 rd=10; //Ohms
9 Vm=220; //Volts(Peak Value of Voltage)
10 // Calculation
11 Im=Vm/(rd+R1);//Peak Value of Current
12 Idc=2*Im/%pi;//DC Value of Current
13 Irms=Im/sqrt(2);//RMS Value of Current
14 r=sqrt((Irms/Idc)^2-1)//Ripple Factor
15 // Displaying The Results in Command Window
16 printf("\n\t The Ripple Factor r = \%f.",r);
```

Scilab code Exa 4.3.e Rectification Efficiency Calculation

```
1 //Example 4.3(e)
```

```
2 //Program to determine the Rectification Efficiency
     of Centre-tap Full Wave Rectifier
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 R1=1*10^(3); //Ohms
8 rd=10; //Ohms
9 Vm=220; //Volts(Peak Value of Voltage)
10 // Calculation
11 Im=Vm/(rd+R1);//Peak Value of Current
12 Idc=2*Im/%pi;//DC Value of Current
13 Irms=Im/sqrt(2);//RMS Value of Current
14 Pdc = Idc^2 * R1;
15 Pac=Irms^2*(rd+R1);
16 n=Pdc/Pac; // Rectification Efficiency
17 // Displaying The Results in Command Window
18 printf("\n The Rectification Efficiency n(eeta) =
     %f percent.",n*100);
```

Scilab code Exa 4.4 Maximum Permissible Current Determination

```
//Example 4.4
//Program to determine Maximum Current the Given
Zener Diode can handle

clear;
clc;
close;
//Given Circuit Data
Vz=9.1; //Volts
P=364*10^(-3); //Watts
//Calculation
Iz=P/Vz;
//Displaying The Results in Command Window
printf("\n\t The Maximum permissible Current is Iz()
```

```
\max) = \% f \text{ mA } .", Iz/10^(-3);
```

Scilab code Exa 4.5 Capacitance Determination on changing Bias Voltage

```
1 / \text{Example } 4.5
2 //Program to determine Capacitance of Varactor Diode
       if the
_3 //Reverse-Bias Voltage is increased from 4V to 8V
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Ci = 18*10^{(-12)}; // i.e. 18 pF
9 Vi=4; //Volts
10 Vf = 8; //Volts
11 // Calculation
12 K=Ci*sqrt(Vi);
13 Cf=K/sqrt(Vf);
14 // Displaying The Results in Command Window
15 printf("\nt The Final Value of Capacitance is C =
     %f pF .", Cf/10^(-12));
```

TRANSISTORS

Scilab code Exa 5.1 Collector and Base Currents Calculation

```
1 //Example 5.1
2 //Program to Calculate Collector and Base Currents
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 alpha=0.98; //alpha(dc)
8 Ico=1*10^(-6); //Ampere
9 Ie=1*10^(-3); //Ampere
10 // Calculation
11 Ic=alpha*Ie+Ico; // Collector Current
12 Ib=Ie-Ic; //Base Current
13 // Displaying The Results in Command Window
14 printf("\nt The Collector Current is Ic= %f mA .",
     Ic/10^(-3));
15 printf("\nt The Base Current is Ib= %f uA .", Ib
     /10^(-6));
```

Scilab code Exa 5.2 Dynamic Input Resistance Determination

Scilab code Exa 5.3 Short Circuit Current Gain Determination

```
//Example 5.3
//Program to Determine Short Circuit Current Gain of
the Transistor
clear;
clc;
close;
//Given Data
dle=1*10^(-3); //A
dlc=0.99*10^(-3); //A
//Calculation
hfb=dlc/dle; //Short Circuit Current Gain
//Displaying The Results in Command Window
printf("\n\t The Short Circuit Current Gain is alpha or hfb= %f .",hfb);
```

Scilab code Exa 5.4.a Common Base Short Circuit Current Gain Calculation

```
1 //Example 5.4(a)
2 //Program to Determine Common Base Short Circuit
      Current Gain (alpha)
3 //of the Transistor
4 clear;
5 clc;
6 close;
7 // Given Data
8 dIe=1*10^{(-3)}; //A
9 dIc=0.995*10^{(-3)}; //A
10 // Calculation
11 alpha=dIc/dIe; //Common Base Short Circuit Current
      Gain
12 // Displaying The Results in Command Window
13 printf("\n\t The Common Base Short Circuit Current
     Gain is alpha = \%f .", alpha);
```

Scilab code Exa 5.4.b Common Emitter Short Circuit Current Gain Calculation

Scilab code Exa 5.5 DC Current Gain in Common Base Configuration

```
//Example 5.5
//Program to Determine DC Current Gain in Common
Base Configuration

clear;
clc;
close;
//Given Data
Beeta=100;
//Calculation
Alpha=Beeta/(Beeta+1); //DC Current Gain in Common
Base Configuration

//Displaying The Results in Command Window
printf("\n\t The DC Current Gain in Common Base
Configuration is Alpha= %f .", Alpha);
```

Scilab code Exa 5.6 Determination of Dynamic Output Resistance and AC and DC Current Gains

```
1 //Example 5.6
2 //Refer Figure 5.20 in the Textbook
```

```
3 //Program to Determine the Dynamic Output Resistance
4 //DC Current Gain & AC Current Gain from given
     output characteristics
5 clear;
6 clc;
7 close;
8 //Given Data
9 Vce=10; //V
10 Ib=30*10^{(-6)}; //A
11 // Calculation from Given Output Characteristics at
     Ib = 30uA
12 dVce=(12.5-7.5); //V
13 dic=(3.7-3.5)*10^{(-3)}; //A
14 Ic=3.6*10^(-3); //A
15 ro=dVce/dic; // Dynamic Output Resistance
16 Beeta_dc=Ic/Ib; // DC Current Gain
17 Beeta_ac=((4.7-3.6)*10^{(-3)})/((40-30)*10^{(-6)});/AC
      Current Gain, From Graph, Bac=delta(ic)/delta(ib)
       for given Vce
18 // Displaying The Results in Command Window
19 printf("\n\t Dynamic Output Resistance ,ro = \%f
     kOhms", ro/10<sup>(3)</sup>;
20 printf("\nt DC Current Gain ,Bdc = %f ",Beeta_dc);
21 printf("\n \in AC Current Gain , Bac = \%f ", Beeta_ac);
```

Scilab code Exa 5.7 Q Point Determination

```
1 //Example 5.7
2 //Refer Figure 5.27 in the Textbook
3 //Program to Determine the Q point from given collector characteristics
4 clear;
5 clc;
6 close;
```

```
7 // Given Data
8 Vcc=12; //V
9 Rc=1*10^(3); //Ohms
10 Vbb=10.7; //V
11 Rb = 200 * 10^{(3)}; //Ohms
12 Vbe=0.7; //V
13 // Calculation
14 \text{ Ib=(Vbb-Vbe)/Rb};
15 //Value of Ib comes out to be 50uA. A dotted Curve
      is drawn for
16 / Ib = 40uA and Ib = 60uA. At the Point of Intersection:
17 Vce=6; //V
18 Ic=6*10^{(-3)}; //A
19 // Displaying The Results in Command Window
20 printf("\n\t Q point: \n\n\t Ib = \%f uA", Ib/10^(-6))
21 printf("\n\t Vce = \%f V", Vce);
22 printf("\n t Ic = \%f mA", Ic/10^(-3));
```

Scilab code Exa 5.8 Calculation of Dynamic Drain Resistance of JFET

```
//Example 5.8
//Program to Calculate Dynamic Drain Resistance of
JFET

clear;
close;
//Given Data
u=80; // Amplification Factor
gm=200*10^(-6); // S, Transconductance
//Calculation
rd=u/gm; //Dynamic Drain Resistance
//Displaying The Results in Command Window
printf("\n\t The Dynamic Drain Resistance of JFET is
rd= %f kOhms.",rd/10^(3));
```

VACUUM TUBES

Scilab code Exa 6.1 Dynamic Plate Resistance of the Diode Determination

```
1 //Example 6.1
2 //Program to Plot the Characteristics and
3 //Determine Dynamic Plate Resistance
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 V = [0 \ 0.5 \ 1 \ 1.5 \ 2]; //V
9 I=[0 1.6 4 6.7 9.8]; //mA
10 // Plotting
11 plot(V,I);
12 a= gca ();
13 xlabel ('Plate Voltage (in V)');
14 ylabel ('Plate Current (in mA)');
15 title ('STATIC CHARACTERISTIC CURVE OF THE DIODE');
16 // Calculation
17 // Values from Characteristic Plot
18 dVp=0.5; //V
```


Figure 6.1: Dynamic Plate Resistance of the Diode Determination

Figure 6.2: Plotting of Static Plate Characteristics

Scilab code Exa 6.2 Plotting of Static Plate Characteristics

```
1 //Example 6.2
2 //Program to Plot the Static Plate Characteristics
    and Determine //Plate AC Resistance, Mutual
```

```
Conductance & Amplification Factor
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 // All Values Extrapolated to Touch x-axis
8 V0 = [20 50 100 150]; //V
9 V1 = [70 \ 100 \ 150 \ 200]; //V
10 V2 = [112 \ 150 \ 200]; //V
11 V3 = [177 \ 200 \ 250]; //V
12 V4 = [235 \ 250 \ 300]; //V
13 I0 = [0 \ 3.5 \ 11.2 \ 20]; //mA
14 I1=[0 4 12.4 21.5]; //mA
15 I2=[0 5.4 14.1]; //mA
16 I3=[0 3.4 12.4]; //mA
17 I4=[0 2.5 11.3]; //mA
18 // Plotting
19 plot(V0, I0);
20 plot(V1, I1);
21 plot(V2, I2);
22 plot(V3,I3);
23 plot(V4, I4);
24 a = gca ();
25 xlabel ('Plate Voltage (in V)');
26 ylabel ('Plate Current (in mA)');
27 title ('STATIC PLATE CHARACTERISTIC CURVE OF THE
      TRIODE');
28 // Calculation
29 // Values from Characteristic Plot
30 dip=(14.0-10.7)*10^{(-3)}; //A
31 dvp = 20; //V
32 rp=dvp/dip;
33 diP=(12.4-5.3)*10^{(-3)};/A
34 \, dvG=1; //V
35 \text{ gm}=diP/dvG;
36 \quad u = gm * rp;
37 \text{ ut} = (192-150)/1;
38 // Displaying The Results in Command Window
```

- 39 printf(" \n t The Plate AC Resistance is rp= %f kOhms .",rp/10 $^{(3)}$);
- 40 printf("\n\t The Mutual Conductance is gm= %f mS .", gm/10^(-3));
- 41 printf("\n\t The Graphical Amplification Factor is u = %f.",u);
- 42 printf("\n\t The Theoretical Amplification Factor is ut = %f .",ut);

TRANSISTOR BIASING AND STABILIZATION OF OPERATING POINT

Scilab code Exa 7.1 Calculate Ic and Vce for given Circuit

```
1 / \text{Example } 7.1
2 //Program to Calculate
3 //(a) Collector Current
4 //(b) Collector-to-Emitter Voltage
5 clear;
6 clc;
7 close;
8 // Given Circuit Data
9 Vcc=9; //V
10 Rb=300*10^3; //Ohms
11 Rc=2*10^3; //Ohms
12 Beeta=50;
13 // Calculation
14 Ib = (Vcc)/Rb;
15 Ic=Beeta*Ib;
16 Icsat=Vcc/Rc;
17 Vce=Vcc-Ic*Rc;
```

```
18 // Displaying The Results in Command Window
19 printf ("The different Parameters are \n t = \%f uA
       .", Ib/10^(-6));
20 if Ic < Icsat then
     disp("Transistor is not in Saturation");
21
     printf("\nt Ic = %f mA .", Ic/10^(-3));
22
     printf("\n\t Vce = %f V .", Vce);
23
24 else
25
     disp("Transistor is in Saturation");
      printf("\n \ Ic = \% f \ mA \ .", Icsat/10^(-3));
26
      printf("\n\t Vce = \%f V .",0);
27
28 end
```

Scilab code Exa 7.2 Calculate coordinates of Operating Point

```
1 / \text{Example } 7.2
2 //Program to Calculate Operating Point Coordinates
      of the Circuit
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vcc=10; //V
8 Rb=100*10^3; //Ohms
9 Rc=1*10^3; //Ohms
10 Beeta=60;
11 // Calculation
12 Ib = (Vcc)/Rb;
13 Ic=Beeta*Ib;
14 Icsat=Vcc/Rc;
15 Vce=Vcc-Ic*Rc;
16 // Displaying The Results in Command Window
17 printf("The Operating Point Coordinates of the
      Circuit are :\n\t Ib = \%f uA .", Ib/10^(-6));
18 if Ic < Icsat then
```

```
disp("Transistor is not in Saturation");
printf("\n\t Ic = %f mA .", Ic/10^(-3));
printf("\n\t Vce = %f V .", Vce);
else
disp("Transistor is in Saturation");
printf("\n\t Ic = %f mA .", Icsat/10^(-3));
printf("\n\t Vce = %f V .",0);
end
```

Scilab code Exa 7.3 Quiescent Operating Point Determination

```
1 / Example 7.3
2 //Program to Calculate Operating Point Coordinates
      of the Circuit
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Vcc=10; //V
8 Rb=100*10^3; //Ohms
9 Rc=1*10^3; //Ohms
10 Beeta=150;
11 // Calculation
12 Ib = (Vcc)/Rb;
13 Ic=Beeta*Ib;
14 Icsat=Vcc/Rc;
15 Vce=Vcc-Ic*Rc;
16 // Displaying The Results in Command Window
17 printf("The Operating Point Coordinates of the
      Circuit are :\n\t Ib = \%f uA .", Ib/10^(-6));
18 if Ic < Icsat then
19
     disp("Transistor is not in Saturation");
     printf("\n\t Ic = \%f mA .", Ic/10^(-3));
20
21
     printf("\n\t Vce = \%f V .", Vce);
22 else
```

```
23 disp("Transistor is in Saturation");

24 printf("\n\t Ic = %f mA .", Icsat/10^(-3));

25 printf("\n\t Vce = %f V .",0);

26 end
```

Scilab code Exa 7.4.a Calculate value of Resistance Rb

```
1 //Example 7.4 (a)
2 //Program to Calculate Value of Rb in the Biasing
      Circuit
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vcc=6; //V
8 Vbe=0.3; //V
9 Icbo=2*10^(-6); //A
10 Ic=1*10^{(-3)}; //A
11 Beeta=20;
12 // Calculation
13 // Case 1: Considering Icbo and Vbe in the
      calculations
14 Ib=(Ic-(Beeta+1)*Icbo)/Beeta;
15 Rb1 = (Vcc - Vbe) / Ib;
16 //Case 2: Neglecting Icbo and Vbe in the
      calculations
17 Ib=Ic/Beeta;
18 Rb2=Vcc/Ib;
19 // Percentage Error
20 E=(Rb2-Rb1)/Rb1*100;
21 // Displaying The Results in Command Window
22 printf("\n\t The Base Resistance is, Rb = \%f kOhms.
     ", Rb1/10<sup>3</sup>);
23 printf("\n\t The Base Resistance (Neglecting Icbo
      and Vbe) is, Rb = \%f \text{ kOhms} .", Rb2/10^3;
```

```
24 printf("\nt Percentage Error is = %f percent .",E);
```

Scilab code Exa 7.4.b Calculation of Collector Current Ic

```
//Example 7.4 (b)
//Program to Calculate Rb in the Biasing Circuit
clear;
clc;
close;
//Given Circuit Data
Licbo=10*10^(-6); //A
Bib=47.9*10^(-6); //A
Beeta=25;
//Calculation
Lic=Beeta*Ib+(Beeta+1)*Icbo;
//Displaying The Results in Command Window
printf("The Collector Current is:");
printf("\n\t Ic = %f mA .",Ic/10^(-3));
```

Scilab code Exa 7.5 Calculation of Ie and Vc in the Circuit

```
1 //Example 7.5
2 //Program to Calculate
3 //(a) Ie
4 //(b) Vc
5 clear;
6 clc;
7 close;
8 //Given Circuit Data
9 Vcc=10; //V
10 Rc=500; //Ohms
11 Rb=500*10^3; //Ohms
12 Beeta=100;
```

```
// Calculation
// Calculation
Ib=Vcc/(Rb+Beeta*Rc);
Ic=Beeta*Ib;
Ie=Ic;
Vce=Vcc-Ic*Rc;
Vc=Vce;
// Displaying The Results in Command Window
printf("The Different Parameters are :");
printf("\n\t Ie = %f mA .", Ie/10^(-3));
printf("\n\t Vc = %f V .", Vc);
```

Scilab code Exa 7.6 Calculate Minimum and Maximum Collector Currents

```
1 / \text{Example } 7.6
2 //Program to Calculate
3 //(a) Minimum Collector Current
4 //(b) Maximum Collector Current
5 clear;
6 clc;
7 close;
8 // Given Circuit Data
9 Vcc=20; /V
10 Rc=2*10^3; //Ohms
11 Rb=200*10^3; //Ohms
12 Beeta1=50;
13 Beeta2=200;
14 // Calculation CASE-1: Minimum Collector Current
15 Ibmin=Vcc/(Rb+Beeta1*Rc);
16 Icmin=Beeta1*Ibmin;
17 // Calculation CASE-2: Maximum Collector Current
18 Ibmax=Vcc/(Rb+Beeta2*Rc);
19 Icmax=Beeta2*Ibmax;
20 // Displaying The Results in Command Window
21 printf("\nt The Minimum Collector Current Ic(min) =
```

```
%f mA .", Icmin/10^(-3));  
22 printf("\n\t The Maximum Collector Current Ic(max) = %f mA .", Icmax/10^(-3));
```

Scilab code Exa 7.7 Calculate Values of the three Currents

```
1 / \text{Example } 7.7
2 //Program to Calculate
3 //(a) Ib
4 //(b) Ic
5 //(c) Ie
6 clear;
7 clc;
8 close;
9 // Given Circuit Data
10 Vcc=10; //V
11 Rc=2*10^3; //Ohms
12 Rb=1*10^6; //Ohms
13 Re=1*10^3; //Ohms
14 Beeta=100;
15 // Calculation
16 Ib=Vcc/(Rb+(Beeta+1)*Re);
17 Ic=Beeta*Ib;
18 Ie=Ic+Ib;
19 // Displaying The Results in Command Window
20 printf("\nt The Collector Current Ic = \%f mA .", Ic
      /10^(-3));
21 printf("\n\t The Base Current Ib = \%f uA .", Ib
      /10^(-6));
22 printf("\nt The Emitter Current Ie = \%f mA .", Ie
      /10^(-3));
```

Scilab code Exa 7.8 Calculate Minimum and Maximum Ie and corresponding Vce

```
1 / \text{Example } 7.8
2 //Program to Calculate
3 //(a) Minimum Emitter Current & corresponding Vce
4 //(b) Maximum Emitter Current & corresponding Vce
5 clear;
6 clc;
7 close;
8 // Given Circuit Data
9 Vcc=6; //V
10 Vbe=0.3; //V
11 Rc=50; //Ohms
12 Rb=10*10^3; //Ohms
13 Re=100; //Ohms
14 Beeta1=50;
15 Beeta2=200;
16 // Calculation CASE-1: Minimum Emitter Current &
      corresponding Vce
17 Iemin=(Vcc-Vbe)*(Beeta1+1)/(Rb+(Beeta1+1)*Re);
18 Vcemin=Vcc-(Rc+Re) * Iemin;
19 // Calculatioen CASE-2: Maximum Emitter Current &
     corresponding Vce
Iemax=(Vcc-Vbe)*(Beeta2+1)/(Rb+(Beeta2+1)*Re);
21 Vcemax=Vcc-(Rc+Re)*Iemax;
22 // Displaying The Results in Command Window
23 printf("\nt The Minimum Emitter Current Ie(min) =
     \%f mA .", Iemin/10^(-3));
24 printf("\nt The Corresponding Vce = \%f V .", Vcemin)
25 printf("\nt The Maximum Emitter Current Ie(max) =
     \%f mA .", Iemax/10^(-3));
26 printf("\nt The Corresponding Vce = \%f V .", Vcemax)
```

Scilab code Exa 7.9 Determine the new Q Points

```
1 / \text{Example } 7.9
2 //Program to Calculate new Q points for
3 //Minimum and Maximum value of Beeta
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Vcc=6; //V
9 Vbe=0.3; //V
10 Rc=1*10^3; //Ohms
11 Rb=10*10^3; //Ohms
12 Re=100; //Ohms
13 Beeta1=50;
14 Beeta2=200;
15 // Calculation CASE-1: Minimum Emitter Current &
     corresponding Vce
17 Icmin=Iemin;
18 Vcemin=Vcc-(Rc+Re) * Iemin;
19 // Calculatioen CASE-2: Maximum Emitter Current &
     corresponding Vce
20 Iemax = (Vcc - Vbe) * (Beeta2+1) / (Rb+(Beeta2+1) * Re);
21 Icmax=Iemax;
22 Vcemax=Vcc-(Rc+Re)*Iemax;
23 // Displaying The Results in Command Window
24 Icsat=Vcc/(Rc+Re);
25 // Displaying The Results in Command Window
26 printf("For Beeta=50 : \n\t");
27 if Icmin < Icsat then
    disp("Transistor is not in Saturation");
28
    printf("\n \ Ic = \% f \ mA \ .", Icmin/10^(-3));
29
    printf("\n\t Vc = \%f V .", Vce);
30
```

```
31 else
     disp("Transistor is in Saturation");
32
      printf("\n\t Ic(sat) = %f mA .", Icsat/10^(-3));
33
      printf("\n\t Vc(sat) = \%f V .",0);
34
35 end
36 printf("\nFor Beeta=200 :\n\t");
37 if Icmax < Icsat then
38
     disp("Transistor is not in Saturation");
     printf("\n \ Ic = \%f \ mA \ .", Icmax/10^(-3));
39
     printf("\n\t Vc = \%f V .", Vce);
40
41 else
     disp("Transistor is in Saturation");
42
      printf("\n\t Ic(sat) = %f mA .", Icsat/10^(-3));
43
      printf("\n\t Vc(sat) = \%f V .",0);
44
45 end
```

Scilab code Exa 7.10 Calculate the value of Rb

```
1 //Example 7.10
2 //Program to Calculate Rb in the Biasing Circuit
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vcc=9; //V
8 Vce=3; //V
9 Re=500; //Ohms
10 Ic=8*10^(-3); //A
11 Beeta=80;
12 // Calculation
13 Ib=Ic/Beeta;
14 Rb = (Vcc - (Beeta+1)*Ib*Re)/Ib;
15 // Displaying The Results in Command Window
16 printf("The Base Resistance is:");
17 printf("\n\t Rb = \%f \ kOhms .", Rb/10^3);
```

Scilab code Exa 7.11 Calculate DC bias Voltages and Currents

```
1 //Example 7.11
2 //Program to Calculate DC Bias Voltages and Currents
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Vcc=12; //V
8 Vbe=0.3; //V
9 R1 = 40 * 10^3; //Ohms
10 R2=5*10^3; //Ohms
11 Re=1*10^3; //Ohms
12 Rc=5*10^3; //Ohms
13 Beeta=60;
14 // Calculation
15 Vb = (R2/(R1+R2)) * Vcc;
16 \text{ Ve=Vb-Vbe};
17 Ie=Ve/Re;
18 Ic=Ie;
19 Vc = Vcc - Ic * Rc;
20 \text{ Vce=Vc-Ve};
21 // Displaying The Results in Command Window
22 printf("The Different Parameters are :");
23 printf("\n\t Vb = %f V .", Vb);
24 printf("\n \ Ve = \%f \ V.", Ve);
25 printf("\n\t Ie = \%f mA .", Ie/10^(-3));
26 printf("\n\t Ic = \%f mA .", Ic/10^(-3));
27 printf("\n\t Vc = \%f V .", Vc);
28 printf("\n\t Vce = %f V .", Vce);
```

Scilab code Exa 7.12 Calculate Re and Vce in the Circuit

```
1 //Example 7.12
2 //Program to Calculate Re and Vce of the given
      Circuit Specifications
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vcc=15; //V
8 R1 = 200; /Ohms
9 R2=100; //Ohms
10 Rc=20; //Ohms
11 Ic=100*10^{(-3)}; /A
12 // Calculation
13 Ie=Ic;
14 Vb = (R2/(R1+R2))*Vcc;
15 Ve=Vb; // Neglecting Vbe
16 Re=Ve/Ie;
17 Vce=Vcc-(Rc+Re)*Ic;
18 // Displaying The Results in Command Window
19 printf("\nt The Emitter Resistance is Re = \%f Ohms
     .",Re);
20 printf("\n\t The Collector to Emitter Voltage is Vce
      = \% f \ V.", Vce);
```

Scilab code Exa 7.13 Calculate Ic and Vce for given Circuit

```
9 R1=40*10^3; //Ohms
10 R2=5*10^3; //Ohms
11 Re=1*10^3; //Ohms
12 Rc=5*10^3; //Ohms
13 Beeta=60;
14 //Calculation
15 Vth=(R2/(R1+R2))*Vcc;
16 Rth=R1*R2/(R1+R2);
17 Ib=(Vth-Vbe)/(Rth+Beeta*Re);
18 Ic=Beeta*Ib;
19 Vce=Vcc-Ic*(Rc+Re);
20 //Displaying The Results in Command Window
21 printf("The Different Parameters are :");
22 printf("\n\t Ic = %f mA .",Ic/10^(-3));
23 printf("\n\t Vce = %f V .",Vce);
```

Scilab code Exa 7.14 Calculate Ic and Vce for given Circuit

```
1 //Example 7.14
2 //Program to Calculate
3 //(a) Ic
4 //(b) Vce
5 clear;
6 clc;
7 close;
8 //Given Circuit Data
9 Vcc=12; //V
10 Vee=15; //V
11 Rc=5*10^3; //Ohms
12 Re=10*10^3; //Ohms
13 Rb=10*10^3; //Ohms
14 Beeta=100;
15 // Calculation
16 Ie=Vee/Re;
17 Ic=Ie;
```

```
18 Vce=Vcc-Ic*Rc;
19 // Displaying The Results in Command Window
20 printf("The Parameters are :");
21 printf("\n\t Ic = %f mA .", Ic/10^(-3));
22 printf("\n\t Vce = %f V .", Vce);
```

SMALL SIGNAL AMPLIFIERS

Scilab code Exa 8.1 Determination of Hybrid Parameters

```
1 / \text{Example } 8.1
2 //Refer Figure 8.15 and 8.16 in the Textbook
3 //Program to find the Hybrid Parameters from the
      given Transistor Characteristics
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Ic=2*10^{(-3)}; //A
9 Vce=8.5; //V
10 // Calculation
11 //hfe=delta(ic)/delta(ib), Vce=constant
12 hfe=(2.7-1.7)*10^{(-3)}/((20-10)*10^{(-6)});
13 //hoe=delta(ic)/delta(Vce),ib=constant
14 hoe=(2.2-2.1)*10^{(-3)}/(10-7);
15 //hie=delta(Vbe)/delta(ib), Vce=constant
16 hie=(0.73-0.715)/((20-10)*10^{(-6)});
17 //hre=delta(Vbe)/delta(Vce), ib=constant
18 hre=(0.73-0.72)/(20-0);
```

```
// Displaying The Results in Command Window
printf("\n\t The Hybrid Parameters are:");
printf("\n\t hfe = %f ",hfe);
printf("\n\t hoe = %f uS",hoe/10^(-6));
printf("\n\t hie = %f kOhms",hie/10^3);
printf("\n\t hre = %f ",hre);
```

Scilab code Exa 8.2.a Calculation of Input Impedance of Amplifier

```
//Example 8.2 (a)
//Program to find the Input Impedance of the
    Amplifier

clear;
clc;
close;
//Given Circuit Data
ri=2*10^3; //Ohms
Rb=150*10^3; //Ohms
//Calculation

Zin=Rb*ri/(Rb+ri);
//Displaying The Results in Command Window
printf("\n\t The Input Impedance of the Amplifier is
    Zin = %f kOhms .", Zin/10^3);
```

Scilab code Exa 8.2.b Calculation of Voltage Gain of Amplifier

```
1 //Example 8.2 (b)
2 //Program to find the Voltage Gain of the Amplifier
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Beeta=100;
```

```
8 ri=2*10^3; //Ohms
9 Rac=5*10^3; //Ohms
10 //Calculation
11 Av=Beeta*Rac/ri;
12 //Displaying The Results in Command Window
13 printf("\n\t The Voltage Gain of the Amplifier is Av
= %f with phase of 180 degrees .",Av);
```

Scilab code Exa 8.2.c Calculation of Current Gain of Amplifier

```
//Example 8.2 (c)
//Program to find the Current Gain of the Amplifier
clear;
clc;
close;
//Given Circuit Data
//Let input Current ib=2A
ib=2; //A, Assumption
io=100*ib;
//Calculation
Ai=io/ib; // Current Gain
//Displaying The Results in Command Window
printf("\n\t The Current Gain of the Amplifier is Ai = %f .", Ai);
```

Scilab code Exa 8.3.a Calculation of Voltage Gain of Amplifier

```
1 //Example 8.3 (a)
2 //Program to find the Voltage Gain of the Amplifier
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
```

```
7 Bac=150;
8 rin=2*10^3; //Ohms
9 R1=4.7*10^3; //Ohms
10 R2=12*10^3; //Ohms
11 //Calculation
12 Rac=R1*R2/(R1+R2);
13 Av=Bac*Rac/rin;
14 //Displaying The Results in Command Window
15 printf("\n\t The Voltage Gain of the Amplifier is Av
= %f with phase of 180 degrees .",Av);
```

Scilab code Exa 8.3.b Calculation of Input Impedance of Amplifier

```
1 //Example 8.3 (b)
2 //Program to find the Input Impedance of the
        Amplifier
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 rin=2*10^3; //Ohms
8 R3=75*10^3; //Ohms
9 R4=7.5*10^3; //Ohms
10 //Calculation
11 Zin=R3*R4*rin/(R3*R4+R4*rin+rin*R3);
12 //Displaying The Results in Command Window
13 printf("\n\t The Input Impedance of the Amplifier is Zin = %f kOhms .", Zin/10^3);
```

Scilab code Exa 8.3.c Calculation of Q Point Parameters of Amplifier

```
1 //Example 8.3 (c)
2 //Program to find the Q Point of the Amplifier
```

```
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Vcc=15; //V
8 R1=75*10^3; //Ohms
9 R2=7.5*10^3; //Ohms
10 Rc=4.7*10^3; //Ohms
11 Re=1.2*10^3; //Ohms
12 // Calculation
13 Vb = Vcc * R2/(R1 + R2);
14 Ve=Vb;
15 Ie=Ve/Re;
16 Vce=Vcc-(Rc+Re)*Ie;
17 // Displaying The Results in Command Window
18 printf("\n\t The Different Parameters of the
      Amplifier are Ie = \%f mA and Vce = \%f V .", Ie
      /10^{(-3)}, Vce);
```

Scilab code Exa 8.4 Calculation of Voltage Gain of Amplifier

Scilab code Exa 8.5 Calculation of Gain of Single Stage Amplifier

```
//Example 8.5
//Program to find the Gain of the Amplifier
clear;
close;
close;
//Given Circuit Data
gm=3000*10^(-6); //S
Rl=22*10^3; //Ohms
pr=300*10^3; //Ohms
//Calculation
//A=-(gm*Rl/(1+(Rl/rp))), For rp>>Rl we get
A=gm*Rl; //with Phase of 180 degrees
//Displaying The Results in Command Window
printf("\n\t The Gain of the Amplifier is A = %f with phase of 180 degrees .",A);
```

Scilab code Exa 8.6 Calculation of Output Signal Voltage of FET Amplifier

```
1 //Example 8.6
2 //Program to find the Output Signal Voltage of the Amplifier
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Rl=12*10^3; //Ohms
8 Rg=1*10^6; //Ohms
9 Rs=1*10^3; //Ohms
```

MULTI STAGE AMPLIFIERS

Scilab code Exa 9.1 Calculate overall Voltage Gain in dB

```
1 / Example 9.1
2 //Program to Calculate overall Voltage Gain of a
      Multistage
3 //Amplifier in dB
4 clear;
5 clc;
6 close;
7 // Given Data
8 \quad A1 = 30;
9 \quad A2 = 50;
10 \quad A3 = 80;
11 // Calculation
12 A=A1*A2*A3; // Voltage Gain
13 Adb=20*log10(A); //Voltage Gain in dB
14 // Displaying The Results in Command Window
15 printf("\n\t The overall Voltage Gain of the
      Multistage Amplifier Adb = %f dB", Adb);
```

Scilab code Exa 9.2 Calculate Voltage at the Output Terminal

```
1 / \text{Example } 9.2
2 //Program to Calculate Voltage at the Output
      Terminal of
3 //Two Stage Direct Coupled Amplifier
4 clear;
5 clc;
6 close;
7 // Given Data
8 \ \text{Vcc} = 30; \ //V
9 Vi=1.4; /V
10 Vbe=0.7; //V
11 B=300; //Beeta
12 R1=27*10^3; //Ohms
13 R2=680; //Ohms
14 R3=24*10^3; //Ohms
15 R4=2.4*10^3; //Ohms
16 // Calculation
17 \text{ Ve=Vi-Vbe};
18 Ie1=Vbe/R2;
19 Ic1=Ie1;
20 Vc1=Vcc-Ic1*R1;
21 \text{ Vb2=Vc1};
22 \text{ Ve2=Vb2-Vbe};
23 Ie2=Ve2/R4;
24 Ic2=Ie2;
25 \text{ Vc2=Vcc-Ic2*R3};
26 \text{ Vo=Vc2};
27 // Displaying The Results in Command Window
28 printf("\nt The Voltage at the Output Terminal of
      Two Stage Direct Coupled Amplifier, Vo = %f V", Vo
      );
```

Scilab code Exa 9.3 To Plot the Frequency Response Curve

Figure 9.1: To Plot the Frequency Response Curve

```
1 / Example 9.3
2 //Program to Calculate Gain in dB at Cutoff
      Frequencies and
3 //Plot Frequency Response Curve
4 clear;
5 clc;
6 close;
7 // Given Data
8 \quad A = 100;
9 f1=400;
10 f2=25*10^3;
11 f3=80;
12 f4=40*10^3;
13 // Calculation
14 Adb=20*log10(A);
15 Adbc=Adb-3; //Lower by 3dB
16 // Displaying The Results in Command Window
17 printf("\n\t Gain at Cutoff Frequencies is, Adb
      (at Cutoff Frequencies) = %f dB", Adbc);
18 // Plotting the Frequency Response Curve
19 x = [f3 f1 f2 f4];
20 	 x1 = [1 	 1 	 1 	 1];
21 y = [Adbc Adb Adb Adbc];
22 gainplot(y,x1);
23 \ a = gca();
24 a.y_location = 'left';
25 a.x_location = 'bottom';
                                             f3
26 \text{ a.x\_label.text} = 
                                 f 1
                                                  f2
                                                          f4'
      Frequency (Hz)
27 \text{ a.y\_label.text} = 
                                                       AdB
                                                   37;
28 a.title.text = 'FREQUENCY RESPONSE CURVE';
29 \text{ plot2d}(x,y);
30 \text{ r} = [37 \ 37];
31 q = [10 100000];
```

```
32 plot2d2(q,r,6);

33 r2= [37 40 40 37];

34 q2 = [f3 f1 f2 f4];

35 plot2d3(q2,r2,6);
```

Scilab code Exa 9.4.a Calculate Input Impedance of Two Stage RC Coupled Amplifier

```
//Example 9.4 (a)
//Program to Calculate Input Impedance of the given
//Two Stage RC Coupled Amplifier
clear;
clc;
close;
//Given Data
R1=5.6*10^3; //Ohms
R2=56*10^3; //Ohms
R3=1.1*10^3; //Ohms
//Calculation
Zi=R1*R2*R3/(R1*R2+R2*R3+R3*R1);
//Displaying The Results in Command Window
printf("\n\t The Input Impedance, Zi = %f kOhms", Zi /10^3);
```

Scilab code Exa 9.4.b Calculate Ouput Impedance of Two Stage RC Coupled Amplifier

```
1 //Example 9.4 (b)
2 //Program to Calculate Output Impedance of the given
3 //Two Stage RC Coupled Amplifier
4 clear;
5 clc;
6 close;
```

Scilab code Exa 9.4.c Calculate Voltage Gain of Two Stage RC Coupled Amplifier

```
1 //Example 9.4 (c)
2 //Program to Voltage Gain of the given Two Stage RC
      Coupled Amplifier
3 clear;
4 clc ;
5 close;
6 // Given Data
7 Ro1=3.3*10^3; //Ohms
8 Ro2=2.2*10^3; //Ohms
9 \text{ hfe} = 120;
10 hie=1.1*10^3; //Ohms
11 R1=6.8*10^3; //Ohms
12 R2=56*10^3; //Ohms
13 R3=5.6*10^3; //Ohms
14 R4=1.1*10^3; //Ohms
15 // Calculation
16 Rac2=Ro1*Ro2/(Ro1+Ro2);
17 A2 = -hfe * Rac2/hie;
18 Rac1=R1*R2*R3*R4/(R1*R2*R3+R2*R3*R4+R1*R3*R4+R1*R2*
     R4);
19 A1=-hfe*Rac1/hie;
20 A=A1*A2; // Overall Gain
21 // Displaying The Results in Command Window
```

Scilab code Exa 9.5 Calculate Maximum Voltage Gain and Bandwidth of Triode Amplifier

```
1 / Example 9.5
2 //Program to Calculate Maximum Voltage Gain &
     Bandwidth
3 clear;
4 clc;
5 close;
6 //Given Data
7 R1=10*10^3; //Ohms
8 Rg = 470 * 10^3; /Ohms
9 Cs = 100 * 10^{(-12)}; //F
10 u = 25;
11 rp=8*10^3; //Ohms
12 Cc=0.01*10^{(-6)}; //F
13 // Calculation
14 gm=u/rp;
15 Req=rp*Rl*Rg/(rp*Rl+Rl*Rg+Rg*rp);
16 Avm=gm*Req;
17 Avmd=Avm^2; // Voltage Gain of Two Stages
18 Rd=(rp*Rl/(rp+Rl))+Rg;
19 f1=1/(2*%pi*Cc*Rd); //Lower Cutoff Frequency
20 fld=fl/sqrt(sqrt(2)-1); //Lower Cutoff Frequency of
     Two Stages
21 f2=1/(2*%pi*Cs*Req); //Upper Cutoff Frequency
22 f2d=f2*sqrt(sqrt(2)-1); //Upper Cutoff Frequency of
     Two Stages
23 BW=f2d-f1d; //Bandwidth
24 // Displaying The Results in Command Window
25 printf("\nt The Voltage Gain of Two Stages, Avmd =
     %f ", Avmd);
26 printf("\n\t The Bandwidth, BW = \%f kHz", BW/10^3);
```

POWER AMPLIFIERS

Scilab code Exa 10.1 Calculation of Transformer Turns Ratio

```
//Example 10.1
//Program to Determine the Transformer Turns Ratio
clear;
clc;
close;
//Given Circuit Data
RL=16;// Ohms
RLd=10*10^3;// Ohms
RLd=10*10^3;// Ohms
//Calculation
N12=sqrt(RLd/RL);//N12=N1/N2
//Displaying The Results in Command Window
printf("\n\t The Transformer Turns Ratio is N1/N2 = %d:%d .",N12,1);
```

Scilab code Exa 10.2 Calculation of Effective Resistance seen at Primary

```
1 //Example 10.2
2 //Program to Determine the Effective Resistance seen
    looking into
```

```
//the Primary
clear;
clc;
clc;
close;
//Given Circuit Data
R1=8; //Ohms
N12=15; //N12=N1/N2
//Calculation
Rld=(N12)^2*R1;
//Displaying The Results in Command Window
printf("\n\t The Effective Resistance seen looking into the Primary, Rld = %f kOhms.",Rld/10^3);
```

Scilab code Exa 10.3.a Calculation of 2nd 3rd and 4th Harmonic Distortions

```
1 //Example 10.3(a)
2 //Program to Determine the Second, Third & Fourth
      Harmonic Distortions
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
  //io = 15*sin(600*t) + 1.5*sin(1200*t) + 1.2*sin(1800*t)
      +0.5*\sin(2400*t)
8 I1=15;
9 I2=1.5;
10 \quad I3=1.2;
11 \quad I4 = 0.5;
12 // Calculation
13 D2=(I2/I1)*100;
14 D3 = (I3/I1) *100;
15 D4 = (I4/I1) *100;
16 // Displaying The Results in Command Window
17 printf("\nt The Second Harmonic Distortion is, D2 =
```

Scilab code Exa 10.3.b Percentage Increase in Power because of Distortion

```
1 //Example 10.3(b)
2 //Program to Determine the Percentage Increase in
      Power because of Distortion
3 clear;
4 clc;
5 close;
6 P1=poly(0,"P1");
7 // Given Circuit Data
8 //io = 15*sin(600*t) + 1.5*sin(1200*t) + 1.2*sin(1800*t)
      +0.5*\sin(2400*t)
9 I1=15;
10 \quad I2=1.5;
11 I3=1.2;
12 I4=0.5;
13 // Calculation
14 D2=(I2/I1)*100;
15 D3=(I3/I1)*100;
16 D4 = (I4/I1) * 100;
17 D=sqrt(D2^2+D3^2+D4^2); // Distortion Factor
18 P=(1+(D/100)^2)*P1;
19 Pi = ((P-P1)/P1)*100;
20 // Displaying The Results in Command Window
21 disp(Pi, "The Percentage Increase in Power because of
       Distortion is, Pi (in percent)=");
```

TUNED VOLTAGE AMPLIFIERS

Scilab code Exa 11.1.a Calculation of Resonant Frequency

```
//Example 11.1 (a)
//Program to Calculate Resonant Frequency of the
given Circuit

clear;
clc;
close;
//Given Circuit Data
C=300*10^(-12); //F

L=220*10^(-6); //H

R=20; //Ohms
//Calculation
fr=1/(2*%pi*sqrt(L*C));
//Displaying The Results in Command Window
printf("\n\t The Resonant Frequency, fr = %f kHz .",
fr/10^3);
```

Scilab code Exa 11.1.b Calculation of Impedance at Resonance

```
//Example 11.1 (b)
//Program to Calculate Impedance at Resonance of the
    given Circuit

clear;
close;
//Given Circuit Data
C=300*10^(-12); //F

L=220*10^(-6); //H
R=20; //Ohms
//Calculation
Rr=R;
//Displaying The Results in Command Window
printf("\n\t The Impedance at Resonance, Rr = %f
Ohms .",Rr);
```

Scilab code Exa 11.1.c Calculation of Current at Resonance

);

Scilab code Exa 11.1.d Calculation of Voltage across each Component

```
1 //Example 11.1 (d)
2 //Program to Calculate the Voltage across each
     Component of the given Circuit
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 V = 10; /V
8 C=300*10^{(-12)}; //F
9 L=220*10^{(-6)}; //H
10 R=20; //Ohms
11 // Calculation
12 fr=1/(2*%pi*sqrt(L*C));
13 I=V/R;
14 X1=2*%pi*fr*L;
15 V1=I*X1;
16 \text{ Xc}=1/(2*\%pi*fr*C);
17 Vc=I*Xc;
18 Vr=I*R;
19 // Displaying The Results in Command Window
20 printf("\nt Voltage across the Inductance, VI = \%f
     V .", V1);
21 printf("\nt Voltage across the Capacitance, \nc = \nf
      V ", Vc);
22 printf("\n\t Voltage across the Resistance, Vr = \%f
     V .", Vr);
```

Scilab code Exa 11.2 Calculation of Parameters of the Resonant Circuit at Resonance

```
1 //Example 11.2
2 //Program to Calculate fr, II, Ic, Line Current &
     Impedance of
3 //the Resonant Circuit at Resonance
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 C=100*10^{(-12)}; //F
9 L=100*10^(-6); //H
10 R=10; //Ohms
11 V = 100; //V
12 // Calculation
13 fr=1/(2*%pi*sqrt(L*C));
14 X1=2*%pi*fr*L;
15 I1=V/X1;
16 Xc=1/(2*\%pi*fr*C);
17 Ic=V/Xc;
18 Zp=L/(R*C);
19 I=V/Zp;
20 // Displaying The Results in Command Window
21 printf("\nt The Calculated Values are :");
22 printf("\n\t fr= \%f kHz.",fr/10^3);
23 printf("\n\t Il= %f A.",Il);
24 printf("\n \ Ic = \%f A.", Ic);
25 printf("\n\t Zp= %f Ohms .",Zp);
26 printf("\n t I = \% f mA.", I/10^(-3));
```

Scilab code Exa 11.3 Calculation of Impedance Q and Bandwidth of Resonant Circuit

```
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 C=100*10^{(-12)}; //F
9 L=150*10^{(-6)}; //H
10 R=15; //Ohms
11 // Calculation
12 fr=1/(2*%pi*sqrt(L*C));
13 Zp=L/(R*C);
14 \ Q=2*\%pi*fr*L/R;
15 df = fr/Q; //Bandwidth
16 // Displaying The Results in Command Window
17 printf("\n\t The Calculated Values are :");
18 printf("\nt Impedance, Zp= %f kOhms.", Zp/10^3);
19 printf("\nt Quality Factor, Q= %f .",Q);
20 printf("\nt Bandwidth, df= %f kHz .", df/10^3);
```

FEEDBACK IN AMPLIFIERS

Scilab code Exa 12.1 Calculation of Gain of Negative Feedback Amplifier

```
//Example 12.1
//Program to Calculate the Gain of a Negative
Feedback Amplifier with
//Given Specifications
clear;
clc;
close;
//Given Circuit Data
A=100; //Internal Gain
B=1/10; //Feedback Factor
//Calculation
Af=A/(1+A*B);
//Displaying The Results in Command Window
printf("\n\t The Value of the Gain of Feedback
Amplifier is, Af = %f.", Af);
```

Scilab code Exa 12.2 Calculation of Internal Gain and Feedback Gain

```
1 //Example 12.2
2 //Program to Calculate the A(Internal Gain) and
     Beeta (Feedback Gain) of //a Negative Feedback
      Amplifier with given Specifications
3 clear;
4 clc;
5 close;
6 // Given Circuit Data
7 Af=100; //Voltage Gain
8 Vin=50*10^(-3); //V , Input Signal without Feedaback
       Gain
9 Vi=0.6; //V, Input Signal with Feedaback Gain
10 // Calculation
11 Vo = Af * Vi;
12 A = Vo/Vin;
13 B = ((A/Af) - 1)/A;
14 // Displaying The Results in Command Window
15 printf("\n\t The Value of the Internal Gain A is, A
     = \%f ..., A);
16 printf("\n\t The Value of the Feedback Gain B is, B
     = \% f percent .", B*100);
```

Scilab code Exa 12.3 Calculation of change in overall Gain of Feedback Amplifier

```
9 dAbyA=-0.12; //dA/A = 12 %
10 //Calculation
11 dAfbyAf=1/(1+A*B)*dAbyA; //dAf/Af=1/(1+A*B)*dA/A
12 //Displaying The Results in Command Window
13 printf("\n\t The change in overall Gain of the
        Feedback Amplifier is, dAf/Af = %f which is
        equivalent to %f percent.",dAfbyAf,dAfbyAf*-100);
```

Scilab code Exa 12.4 Calculation of Input Impedance of the Feedback Amplifier

```
1 //Example 12.4
2 //Program to Calculate the Input Impedance of the
     Feedback Amplifier //with given Specifications
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 Zi = 1*10^3; //Ohms
8 A=1000; //Voltage Gain
9 B=0.01; //Negative Feedback
10 // Calculation
11 Zid=(1+A*B)*Zi;
12 // Displaying The Results in Command Window
13 printf("\n\t The Value of the Input Impedance of the
      Feedback Amplifier is, Zid = %f kOhms.", Zid
     /10^3);
```

Scilab code Exa 12.5 Calculation of Feedback Factor and Percent change in overall Gain

```
1 //Example 12.5
```

```
2 //Program to Calculate the value of Feedback Factor
     and Percentage //change in overall Gain of the
     Internal Amplifier
3 clear;
4 clc;
5 close;
6 //Given Circuit Data
7 A=1000; //60dB, Voltage Gain
8 Zo = 12000; //Ohms
9 Zod=600; //Ohms
10 dAbyA=0.1; //dA/A = 10 \%
11 // Calculation
12 B=((Zo/Zod)-1)/A; //Zod=Zo/(1+A*B)
13 dAfbyAf = 1/(1+A*B)*dAbyA; //dAf/Af = 1/(1+A*B)*dA/A
14 // Displaying The Results in Command Window
15 printf("\n\t The Feedback Factor of the Feedback
      Amplifier is, B = \%f percent .", B*100);
16 printf("\n\t The change in overall Gain of the
     Feedback Amplifier is, dAf/Af = %f percent.",
     dAfbyAf *100);
```

OSCILLATORS

Scilab code Exa 13.1 Calculate Frequency of Oscillation of Tuned Collector Oscillator

```
//Example 13.1
//Program to Calculate Frequency of Oscillation of
//Tuned Collector Oscillator
clear;
clc;
close;
//Given Circuit Data
L=58.6*10^(-6);// H
C=300*10^(-12);// F
//Calculation
fo=1/(2*%pi*sqrt(L*C));
//Displaying The Results in Command Window
printf("\n\t The Frequency of Oscillation of Tuned Collector Oscillator is fo = %f kHz .",fo/10^3);
```

Scilab code Exa 13.2 Calculate Frequency of Oscillation of Phase Shift Oscillator

```
//Example 13.2
//Program to Calculate Frequency of Oscillation of
//Vacuum Tube Phase Shift Oscillator
clear;
clc;
close;
//Given Circuit Data
R=100*10^3;// Ohms
C=0.01*10^(-6);//F
//Calculation
fo=1/(2*%pi*R*C*sqrt(6));
//Displaying The Results in Command Window
printf("\n\t The Frequency of Oscillation of Vacuum
Tube Phase Shift Oscillator is fo = %f Hz .",fo);
```

Scilab code Exa 13.3 Calculate Frequency of Oscillation of Wein Bridge Oscillator

```
1 //Example 13.3
2 //Program to Calculate Frequency of Oscillation of
3 //Wein Bridge Oscillator
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 R1=220*10^3; // Ohms
9 R2=220*10^3;// Ohms
10 C1 = 250 * 10^{(-12)}; //F
11 C2=250*10^{(-12)};/F
12 // Calculation
13 fo=1/(2*%pi*sqrt(R1*C1*R2*C2));
14 // Displaying The Results in Command Window
15 printf("\n\t The Frequency of Oscillation of Wein
      Bridge Oscillator is fo = \%f kHz .",fo/10^3);
```

ELECTRONIC INSTRUMENTS

Scilab code Exa 14.1 Caculation of Series Resistance for coversion to Voltmeter

```
1 //Example 14.1
2 //Program to Determine the Series Resistance to
     Convert given
3 //d' Arsonval movement into a Voltmeter with the
     specified Range
4 clear;
5 clc;
6 close;
7 // Given Circuit Data
8 Rm=100; //Ohms
9 Is=100*10^{(-6)}; //A
10 Vr=100; //V
11 // Calculation
12 Rtotal=Vr/Is;
13 Rs=Rtotal-Rm;
14 // Displaying The Results in Command Window
15 printf("\n\t The Series Resistance to Convert given
     dArsonval movement into a Voltmeter is, Rs = %f
```

Scilab code Exa 14.2 Calculation of Shunt Resistance

```
//Example 14.2
//Program to Determine the Shunt Resistance required
clear;
close;
//Given Circuit Data
Rm=100; //Ohms
CS=100*10^(-6); //A
Imax=10*10^(-3); //A
//Calculation
Ish=Imax-CS;
Rsh=Rm*CS/Ish;
//Displaying The Results in Command Window
Printf("\n\t The Value of Shunt Resistance is, Rsh = %f Ohms .",Rsh);
```

Scilab code Exa 14.3 Designing of a Universal Shunt for making a Multi Range Milliammeter

```
9 Rm = 900; //Ohms
10 //(a) Calculation
11 Imax1=1*10^(-3); //A
12 Rsh=CS*R/(Imax1-CS);
13 Rm1 = Rm;
14 Ish1=Imax1-CS;
15 Rsh1=Rm1*CS/Ish1;
16 //(b) Calculation
17 Imax2=10*10^{(-3)}; //A
18 Ish2=Imax2-CS;
19 R1 = (R*Ish2 - Rm*CS) / (Ish2 - CS);
20 //(c) Calculation
21 Imax3=100*10^{(-3)}; //A
22 \quad Ish3 = Imax3 - CS;
23 R2 = ((R-R1)*Ish3-Rm*CS)/(Ish3-CS);
24 //(d) Calculation
25 Imax4=500*10^{(-3)}; //A
26 \quad Ish4 = Imax4 - CS;
27 R3 = ((R-R1-R2)*Ish4-Rm*CS)/(Ish4-CS);
28 //(e) Calculation
29 Imax5=1; //A
30 \quad Ish5 = Imax5 - CS;
31 R4 = ((R-R1-R2-R3)*Ish5-Rm*CS)/(Ish5-CS);
32 R5 = R - R1 - R2 - R3 - R4;
33 // Displaying The Results in Command Window
34 printf("\n\t Shunt Resistance
                                               , Rsh = \%f
      Ohms .", Rsh);
35 printf("\n\t For Range switch at 1 mA, Rsh1 = \%f
      Ohms .", Rsh1);
36 printf("\n\t For Range switch at 10 mA , R1 = \%f
      Ohms . ", R1);
  printf("\n\t For Range switch at 100 mA, R2 = \%f
      Ohms .", R2);
38 printf("\n\t For Range switch at 500 mA, R3 = \%f
      Ohms .", R3);
39 printf ("\n\t For Range switch at 1 A , R4 = \%f
      Ohms .", R4);
40 printf("\n \t \t \t
                                 R5 = \%f \text{ Ohms } .", R5);
```

Scilab code Exa 14.4 Determination of Peak and RMS AC Voltage

```
//Example 14.4
//Program to Determine the AC Voltage
clear;
clc;
close;
//Given Circuit Data
DS=5; //V/cm, Deflection Sensitivity
l=10; //cm, Trace Length
//Calculation
Vp=DS*1;
Vm=Vp/2;
V=Vm/sqrt(2);
//Displaying The Results in Command Window
printf("\n\t The Peak AC Voltage, Vm = %f V .", Vm);
printf("\n\t The RMS AC Voltage, V = %f V .", V);
```

Scilab code Exa 14.5 Determination of Magnitude and Frequency of Voltage Fed to Y Input

```
1 //Example 14.5
2 //Program to Determine the Magnitude and the
    Frequency of the
3 //wave Voltage fed to the Y-input
4 clear;
5 clc;
6 close;
7 //Given Circuit Data
```


Figure 14.1: Determination of Magnitude and Frequency of Voltage Fed to Y Input

```
8 Am=3.5; //V, Amplitude
9 tb=0.1*10^(-3); //seconds
10 TP=4; //Time Period
11 // Calculation
12 Vm = 2 * Am;
13 V=Vm/sqrt(2);
14 T=TP*tb;
15 f = 1/T;
16 // Displaying The Results in Command Window
17 printf("\nt The Magnitude of Wave Voltage, \n = \nf V
       .",V);
18 printf("\n\t The Frequency of Wave Voltage, f = \%f
      {
m kHz} .",f/10^3);
19 // Plot of the given Wave
20 figure
21 \quad x = -6:0.01:6;
22 y=Am*cos(1.6*x); //Given Waveform
23 plot (x,y);
24 a = gca ();
25 a.x_location="origin";
26 a.y_location="origin";
27 xlabel ('X Axis');
```

```
28 ylabel ('Y Axis');
29 title ('CRO OUTPUT');
30 xgrid (6);
```