Southampton

Overview of ECSS and Customer Supply Chain

Prof. Craig Underwood
Emeritus Professor of Spaceci

Emeritus Professor of Spacecraft Engineering Surrey Space Centre, University of Surrey

With additional material from the late Dr. Angelo Grubisic of the University of Southampton

Bibliography

Key Text:

Fortescue, P., Stark, J. and Swinerd, G. (Eds) *Spacecraft Systems Engineering* (4th Ed). John Wiley & Sons, Chichester, 2011.

Other Recommended Reading:

Ley, W., Wittmann, K. and Hallmann, W. *Handbook of Space Technology*, John Wiley & Sons, Chichester, UK, 2009.

Larson, W.J. and Wertz, J.R. (Eds) *Space Mission Analysis and Design* (3rd Ed), Space Technology Series, Kluwer Academic Publishers, 1999.

https://ecss.nl/standards/ (Accessed 23-11-2020)

Learning Outcomes

- Outline the purpose and structure of ECSS (European Cooperation for Space Standardisation).
- 2. Describe the provisions which ECSS sets out to allow the effective development and control of space systems.
- 3. Explain how a customer supply chain operates in terms of structure and responsibilities.
- 4. Describe the relative effort of requirements definition, design and manufacturing activities through a project lifecycle and therefore explain the importance of defining precise requirements engineering at the start of a project.
- 5. Relate a typical customer supply to the hierarchy of integrated architectures.

Spacecraft Systems Engineering

Spacecraft Systems Engineering involves techniques from a variety of scientific and engineering disciplines resulting in "systems thinking".

"A **system** is a set of interrelated subsystems and components which interact with one another toward a common purpose"

"Systems Engineering is an interdisciplinary approach and is the means to enable the production of robust systems, on-time and on-budget."

"The European Cooperation for Space Standardisation (ECSS) sets out the formal processes and standards by which this is achieved in a European space

TechDemoSat-1 © SSTL

Review of Systems Engineering

Systems Engineering Approach

In simple terms, the systems engineering approach consists of:

- ➤ Identification and quantification of system goals
- Creation of alternative system design concepts
- Performance of design trades
- Selection and implementation of the best design
- Verification that the design is properly built and integrated
- > Post implementation assessment of how well the system met the goals

Review of Systems Engineering

Systems Engineering Functions

Review of Systems Engineering

Systems Engineering Failure

Space Standards

The Need for Space Standards

- Competitiveness
 - Standards have an important economic and social role for enabling our industry to remain competitive on the market and to conquer new markets.
- Efficiency
 - Standards contribute to making the development, manufacturing and supply of products and services more efficient, reliable, safer and cleaner.
- Trading facilitation
 Standards allow trading between organizations to progress easier and fairer.
- Knowledge transfer
 Standards aid in transferring knowledge and enhancing engineering capabilities to smaller or developing organizations.
- Education
 Finally, Standards participate to the education of today's and future engineers when conforming to standards is secured, thus, for instance, avoiding designers "reinventing the wheel".

European Cooperation for Space Standardization - ECSS

ECSS Types of Documents

NX

Mark Jenson

	ecss types of documents
standards	for direct use in invitation to tender and business agreements
handbooks	non-normative documents providing guidelines and/or collection of data
technical memoranda	non-normative documents providing useful info or data not yet mature for a standard or handbook

for useful refrence on 7 implementation) WID version of

ECSS Standards – https://ecss.nl/standards/

Space Project Management (red); Space Product Assurance (blue); Space Engineering (green).

They express what to do, not how

Therefore, the procedural part is not <u>normally</u> covered. Handbooks are the appropriate documents for it.

They express this in term of regulatory provisions, i.e.

Requirements, recommendations or permissions NOTE: Explanatory text is only included if necessary to support these provisions

These provisions are focused on a contractual relationship

The contractual model used in ECSS is defined in ECSS-S-00

ECSS Documentation Structure

ECSS Documentation Structure

Overview of ECSS - Maning 9th Cture

ECSS Documentation Structure

ECSS documents are named as

- □ <S, M, Q, E or U> represents the branch
 - S for ECSS system, the top level document that gives a general introduction into ECSS and the use of ECSS documents
 - M for Management, Q for Product assurance, E for engineering, and U for Sustainability
- <ST, AS, HB, AH or TM> is the type of document
 - ST for standard, AS for adopted as standard, HB for handbook, AH for adopted as handbook, and TM for technical memo
- □ <Number> is one or two groups of two digits each
 - ♦ one group of two digits to identify those documents with more generic requirements
 - two groups of two digits to identify those with more specific requirements
 - the difference is not to indicate higher relevance of some standards with respect to others.
- <version> is a letter from A onwards, representing the issue. It may include also a Rev index, from 1 onwards.

Example:

S-ST-00C

ECSS system (standard)

E-ST-50C

Communications (standard)

E-ST-50-05C

Radio frequency and modulation (standard)

E-HB-5UA Communications (handbook)

The ECSS Website: www.ecss.nl

ECSS and Systems Engineering

ECSS provides baseline working practices for systems engineering in line with ESA/EU/industry requirements and recommendations

ECSS and Systems Engineering

E-10 Discipline

- Systems

Engineering

Customer-Supplier Model

Customer-Supply Chain

Importance of Precise Requirements Definition

Impact of Systems Engineering on Cost Schedule

Effort vs. Timeline to FAR (typically ~ 5-20 years for ESA)

Hierarchy of Systems Architectures

Hierarchy of Integrated Architectures

ECSS and the Customer Supply Chain

- What you should know/understand:
 - The purpose and structure of ECSS (European Cooperation for Space Standardisation).
 - The rôle of ECSS in defining procedures and standards which allow the effective development and control of space systems.
 - How a customer supply chain operates in terms of structure, relationships and responsibilities.
 - The relative effort of requirements definition, design and manufacturing activities through a project lifecycle and be able to explain the importance of defining precise requirements at the start of a project.
 - The hierarchical nature of integrated system architectures.