BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION

SECOND SEMESTER 2020-2021

Course Handout Part II

Date: 16/01/2021

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : CS F320

Course Title : Foundations of Data Science
Instructor-in-charge : NAVNEET GOYAL (goel@)
Course TA : Ayushi Gaur (p20190023@)

Catalog Description

Data Science is the study of the generalizable extraction of knowledge from data. Unprecedented advances in digital technology during the second half of the 20th century and the data explosion that ensued in the 21st century is transforming the way we do science, social science, and engineering. Application of data science cut across all verticals. A data scientist requires an integrated skill set spanning mathematics, probability and statistics, optimization, and branches of computer science like databases, machine learning etc. The course aims at providing the mathematical and computer science foundations required for data science.

Text & Reference Books:

- T1. Foundations of Data Science Avrim Blum, John Hopcroft, Ravi Kannan, January, 2018.
- R1. Machine Learning: An Algorithmic Perspective Stephen Marsland, CRC Press, 2e, 2015.
- R2. Pattern Recognition & Machine Learning Christopher M Bishop, Springer, 2006.
- R3. An Introduction to Data Science Jeffrey Saltz and Jeffrey Stanton, Sage Publications, September 2017.

LECTURE PLAN (42)

Topic	Topic Details	No. of	Chapter
_		Lectures	Reference
Course Overview &	1. Motivation/course objectives	2	T1 – Ch. 1
Introduction to Data	2. Some motivating applications		Class Notes +
Science	3. Data Dimensionality		web resources
	4. Types of Data		
High-dimensional data	1. Characteristics of High-dimensional data	4	T1 - Chs. 2, 3
& Curse of	a. Law of large numbers		
Dimensionality	b. Geometry of HD		
	c. Vectors in HD		
	d. Gaussians in HD		
	2. Curse of Dimensionality (CoD)		
	a. Sparsity		
	b. Nearest Neighbor search		
	c. Concentration of Lp-norm		
	3. Dimensionality Reduction Techniques –		
	PCA & SVD		

Frequentist vs. Bayesian	Frequentist Approach	2	Class Notes +
approach to Probability 2. Bayesian Approach		<i>_</i>	https://sites.go
approach to 1105a5mty	3. Prior to Posterior – Bayes' Theorem		ogle.com/site/
	4. MLE vs. MAP		bayestutorial/
Probability	Exponential family of distributions	2	R2 – Ch.2,
Distributions and	(Bernoulli, Beta, Binomial, Dirichlet,	2	Appendix B
Mixture Models	Gamma, & Gaussian)		Appendix b
Whature wiodels	2. Mixture Models – Mixture of Gaussians		
Ontimization	Unconstrained/Constrained optimization	3	Class Notes
Optimization Techniques	 Convex Optimization & Lagrange 	3	Class Notes
Techniques	Multipliers Multipliers		
	3. Quadratic Programming		
	4. Primal/dual		
	5. Kernels		
	6. Gradient Descent & its variants		
Function		2	D1. Chg. 5.7
Approximation		\ \frac{\zert}{2}	R1: Chs. 5,7
Techniques	2. Splines3. Mixture Models		
rechniques	5. Wilxture Wodels		
Tensors	1. Introduction to Tensors	3	http://web.iitd.
	2. Tensor Algebra		ac.in/~pmvs/c
	3. Tensor Calculus		ourses/mcl702
	4. Modeling multidimensional data using		/tensors.pdf
	Tensors		_
Machine Learning	1. Supervised Learning	8	T1 - Chs. 5,7
Basics	a. Regression (polynomial, linear basis		R1 – Chs. 2-
	function models)		4,8,12,14
	b. Classification (Naive Bayes, Decision		R2 - Chs.
	Tree, SVM, NN)		1,3,9
	2. Unsupervised Learning		R3 – Ch. 18
	a. K-means Clustering		
	b. Expectation Maximization Clustering		
	c. Self-Organizing Maps (SOMs)		
	3. Anomaly Detection		
	4. Machine Learning, Function Estimation,		
	& Optimization		
	5. Model Underfitting & Overfitting		
	6. Model Selection & Complexity		
	a. Occam's Razor		
	b. VC dimension		
	c. Structural Risk Minimization		
	d. Bias Variance Decomposition		
Markov Chain Monte	1. Gibbs Sampling	2	T1: Ch. 4
Carlo (MCMC)	2. Metropolis Hastings Algorithm		R1: Ch. 15
Methods			R2: Ch. 11
Probabilistic Graphical	1. Markov Models	3	T1: Ch. 9
Models	2. Hidden Markov Models (HMM)		R1: Ch. 16
	3. Bayesian Belief Networks (BBN)		R2: Ch. 8
	4. Markov Random Field (MRF)		

Time-series Data &	1. Importance & Characteristics of time	5	Class Notes +
	series data		web resources
Analytics			web resources
	2. Sources of time series data		
	3. Similarity Metrics & Dynamic Time		
	Warping		
	4. Multi-variate Time Series Data – IoT		
	Data		
	5. Time Series analytics:		
	a. Regression		
	b. Classification		
	c. Clustering		
	d. Anomaly Detection		
Big Data & Big Data	1. Introduction to Big Data Analytics	1	T2 – Ch. 20
Analytics	2. Big Data - sources & applications		
	3. Social Media Data		
Distributed Computing	1. MapReduce and its variants	2	Class Notes +
Frameworks	2. Spark		web resources
Data Visualization	1. Visualization Foundations	3	T2 - Chs.
	2. Visualization Pipeline		12,13
	3. Scalar, Vector, & Tensor Visualization		
	4. Visualization Techniques for Spatial,		
	Geospatial, & Time-series Data		
	5. Role of SOMs in Data Visualization		

Evaluation Scheme:

Component	Duration	Weightage	Date (Time)
Midsem Test (Closed Book)	90 Mins.	30%	TBA
Assignment(s)/Lab. Test/Quiz	TBA	30%	TBA
Comprehensive Exam (partly open)	120 Mins.	40%	13/05 (FN)

Labs. on R: No structured lab. sessions, but students will be provided with Lab. sheets on important topics.

Notices: All notices will be uploaded on NALANDA only.

Chamber Consultation Session: Online session once a week (M-10). Interested student(s) need to inform apriori if a session is required.

Makeup Policy: To be granted only in case of serious illness or emergency.

Email Policy: Communication through email is highly discouraged. If you want to discuss anything, attend the chamber consultation session. Academic queries/doubts can be posted on NALANDA (a discussion forum will be created)

Plagiarism Policy: If any student is found involved in any kind of plagiarism in any of the evaluation components, the matter will be directly reported to the Examination Committee.

NC Policy: Students securing 10% or less marks will get an NC grade. Students in the [10-15%] bracket are also likely to get NC.

Instructor-in-charge CS F320