Ejemplos de espacios de estados

Abraham Sánchez L.
FCC/BUAP
Grupo MOVIS

Problema del granjero, I

- Otra forma de representación del problema del granjero en el espacio de estados basta con precisar la situación antes o después de cruzar el rio.
- El granjero y cada uno de los elementos del problema (cabra, col y lobo) tienen que estar en alguna de las dos orillas.
- La representación del estado debe entonces indicar en que lado se encuentra cada uno de ellos.
- Para esto se puede utilizar un término simbólico con la siguiente sintaxis:
 - estado(G, L, C, K), G, L, C y K son variables que representan la posición del granjero, el lobo, la cabra y la col.
- Las variables pueden tomar dos valores: i y d que simbolizan respectivamente el lado izquierdo y el lado derecho del rio.
- Por convención se elige partir del lado izquierdo.

Problema del granjero, II

- El estado inicial es por lo tanto: estado(i, i, i, i)
- El estado objetivo o final es: estado(d, d, d, d)
- El granjero tiene cuatro posibles acciones: cruzar solo, cruzar con el lobo, cruzar con la cabra y cruzar con la col.
- Estos operadores están condicionados a que ambos pasajeros del bote estén en la misma orilla y a que no queden solos el lobo con la cabra o la cabra con la col.
- El estado resultante de aplicar alguno de los operadores se determina intercambiando los valores i y d para los pasajeros del bote.
- La siguiente table muestra todo el espacio de estados (el número de estados está acotado por 2⁴).

Problema del granjero, III

Estado	Operadores			
	Cruza solo	Cruz con lobo	Cruza con cabra	Cruza con coles
estado(i,i,i,i)	problema	problema	estado(d,i,d,i)	problema
estado(d,i,d,i)	estado(i,i,d,i)	imposible	estado(i,i,i,i)	imposible
estado(i,i,d,i)	estado(d,i,d,i)	estado(d,d,d,i)	imposible	estado(d,i,d,d)
estado(d,d,d,i)	problema	estado(i,i,d,i)	estado(i,d,i,i)	imposible
estado(d,i,d,d)	problema	imposible	estado(i,i,i,d)	estado(i,i,d,i)
estado(i,d,i,i)	problema	imposible	estado(d,d,d,i)	estado(d,d,i,d)
estado(i,i,i,d)	problema	estado(d,d,i,d)	estado(d,i,d,d)	imposible
estado(d,d,i,d)	estado(i,d,i,d)	estado(i,i,i,d)	imposible	estado(i,d,i,i)
estado(i,d,i,d)	estado(d,d,i,d)	imposible	estado(d,d,d,d)	imposible
estado(d,d,d,d)	problema	problema	estado(i,d,i,d)	problema

Problema de las jarras

• Se tienen 2 jarras, una de 4 litros de capacidad y otra de 3 litros. Ninguna de las jarras tiene marcas de medición. Se dispone de una bomba que permite llenar las jarras de agua. Se desea conocer cómo se pueden tener exactamente 2 litros de agua en la jarra de 4 litros.

Espacio de estados, problema de las jarras

- El espacio de estados se define como:
- $\{(x,y) \mid x \text{ son los litros en la jarra de 4 con } 0 \le x \le 4 \text{ y y son los litros en la jarra de 3 con } 0 \le y \le 3\}$
- El estado inicial es (0,0)
- El estado final es (2,0). De hecho, el estado final podría ser (2, n) en caso de que no importen los litros de la segunda jarra
- Los operadores que se pueden aplicar son:
 - 1) Llenar la jarra de 4l: Si (x, y) y x < 4 ==> (4, y)
 - 2) Llenar la jarra de 31: Si (x, y) y y < 3 ==> (x, 3)
 - 3) Vaciar la jarra de 4l: Si (x, y) y x > 0 ==> (0, y)
 - 4) Vaciar la jarra de 31: Si (x, y) y y > 0 ==> (x, 0)
 - 5) Pasar agua de la jarra de 4l a la jarra de 3l hasta llenarla: Si (x, y) y x > 0 y $x + y \ge 3 ==> (x - (3 - y), 3)$
 - 6) Pasar agua de la jarra de 3l a la jarra de 4l hasta llenarla: Si (x, y) y y > 0 y x + y \geq 4 ==> (4, y - (4 - x))

Operadores

- 7) Pasar toda el agua de la jarra de 4l a la jarra de 3l: Si (x, y) y x > 0 y x + y < 3 ==> (0, x + y)
- 8) Pasar toda el agua de la jarra de 3l a la jarra de 4l: Si (x, y) y y > 0 y x + y < 4 ==> (x + y, 0)

El programa debería encontrar un camino de estados para ir del estado (0, 0) al estado (2,0). Obviamente puede existir más de un camino hacia la solución.

Ejemplo:

$$(0, 0) ==> (0, 3) ==> (3, 0) ==> (3, 3) ==> (4, 2) ==> (0, 2) ==> (2, 0)$$

A partir del estado inicial se aplicaron los operadores 2, 8, 2, 6, 3 y 8 para llegar al estado final.

Comentarios

Otro camino hacia la solución es el siguiente: (0, 0) ==> (4, 0) ==> (1, 3) ==> (1, 0) ==> (4, 1) ==> (2, 3) ==> (2, 0)

Se aplicaron los operadores 1, 5, 4, 7, 1, 5 y 4.

Con respecto a los operadores se concluir que:

Las condiciones que se establecen en la parte izquierda a veces no son altamente necesarias pero restringen la aplicación del operador a estados más adecuados.

Esto incrementa la eficiencia del programa que utiliza los operadores.

Misioneros y caníbales (propuesta I)

- Revisar en el código en LISP, un planteamiento de solución.
- Se consideran los siguientes operadores:

misionero-caníbal-este misionero-caníbal-oeste

misionero-misionero-este misionero-misionero-oeste

caníbal-caníbal-este caníbal-caníbal-oeste

misionero-este misionero-oeste

caníbal-este caníbal-oeste

Misioneros y caníbales (propuesta II), I

- El estado lo definirán 5 valores (Mi, Ci, B, MD, Cd)
- Es decir:
 - Mi: misioneros en el lado izquierdo
 - Ci: caníbales en el lazo izquierdo
 - B: la localización del bote, si esta en el lado izquierdo es 0, sino es 1 (a la derecha)
 - Md: misioneros en el lado derecho
 - Cd: caníbales en el lado derecho
- En la que, B ∈ [i,d] indica la posición de la barca (por lo que toma el valor i, si está en el extremo izquierdo, o d si está en el derecho).
- Mi, Ci, Md, Cd ∈ [0,...,3] indican el número de misioneros y caníbales que quedan en el extremo izquierdo y derecho del rio, respectivamente.

Misioneros y caníbales (propuesta II), II

- Estado inicial: 3 caníbales y 3 misioneros están en el lado izquierdo del rio, es decir: (3,3,i,0,0)
- Estado final: los 3 caníbales y los 3 misioneros se encuentran en el lado derecho del rio, es decir: (0,0,d,3,3)
- Limitaciones: No pueden haber más caníbales que misioneros en cualquiera de las dos orillas del rio.
- Operadores: hay 5 posibles operaciones que se pueden realizar siempre y cuando cumplan con las limitaciones antes descritas:
 - Mover1M1C: cruzan 1 caníbal y 1 misionero
 - Mover2C: cruzan 2 caníbales y 0 misioneros
 - Mover2M: cruzan 0 caníbales y 2 misioneros
 - Mover1M: cruzan 0 caníbales y 1 misionero
 - Mover1C: cruzan 1 caníbal y 0 misioneros

Misioneros y caníbales (propuesta II), III

- La heurística a utilizar es:
 - $h_2(n) = 2 \times (Ci + Mi) orilla(n)$
 - Donde orilla(n) = 1 si en el estado n el barco está en la orilla inicial (B = i), y orilla(n) = 0 si el barco está en la orilla derecha (B = d).