

1 Cosinus, sinus et cercle trigonométrique

Soit B le point du cercle trigonométrique associé à l'angle orienté \widehat{DAB} :

- \implies Le cosinus de x est l'abscisse de B et se note $\cos(x)$.
- \implies Le sinus de x est l'ordonnée de B et se note $\sin(x)$.

On rappelle les propriétés et les valeurs particulières suivantes :

1.
$$\cos(x)^2 + \sin(x)^2 = 1$$
.

2.
$$-1 \le \cos(x) \le 1$$
.

3.
$$-1 \le \sin(x) \le 1$$
.

4.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Exemple 1 1. Comparer $\sin(x+\pi)$, $\sin(x+2\pi)$, $\sin(x+\frac{\pi}{2})$, $\cos(x+\pi)$, $\cos(x+2\pi)$ et $\cos(x+\frac{\pi}{2})$ à $\cos(x)$ et $\sin(x)$.

- **2.** Résoudre dans \mathbb{R} l'équation $\cos(x)^2 = \frac{3}{4}$.
- **3.** Résoudre dans $[-\pi;\pi]$, l'inéquation $\sin(x) \le \frac{1}{2}$.

TG 2022-2023

2 Propriétés fonctionnelles

TG 2022-2023

où k est un entier relatif.

Définitions

Une fonction définie sur un intervalle I, symétrique par rapport à l'origine, dont la courbe est symétrique par rapport à l'axe des ordonnées est une fonction paire. Elle vérifie la relation suivante :

$$\forall x \in I, \ f(-x) = f(x)$$

Une fonction définie sur un intervalle I, symétrique par rapport à l'origine, dont la courbe est symétrique par rapport au point O(0;0) est une fonction impaire. Elle vérifie la relation suivante :

$$\forall x \in I, \ f(-x) = -f(x)$$

Propriétés

La fonction cosinus est paire et on a cos(-x) = cos(x). La fonction sinus est impaire et on a sin(-x) = -sin(x).

Exemple 2 1. Démontrer que la fonction f définie sur \mathbb{R} par :

$$f(x) = \sin(2x) - \sin(4x)$$

est impaire.

- **2.** Démontrer que f est périodique de période π .
- **3.** Compléter le graphique de la fonction f sur $[-\frac{3\pi}{2}; \frac{3\pi}{2}]$:

TG 2022-2023

3 Études de fonctions

Propriétés

Les fonctions cosinus et sinus sont dérivables sur R et on a :

$$(\cos(x))' = -\sin(x)$$
$$(\sin(x))' = \cos(x)$$

Exemple 3 Établir le tableau de variations de cos(x) et celui de sin(x) sur $[0; \pi]$.

Exemple 4 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \cos(4x) - \frac{1}{2}$$

- 1. Quelle est la parité de f ?
- **2.** Montrer que f est périodique de période $\frac{\pi}{2}$.
- **3.** Étudier les variations de f sur $[0; \frac{\pi}{4}]$.
- **4.** En déduire l'allure de la courbe représentant f sur $[0; \frac{\pi}{4}]$ puis sur $[-\pi; \pi]$.