Comparison of Non-Linear Static & Dynamic Capacity of an existing Seven Storied RC Building

Prepared by:

Rashid Awal Chowdhury (18.01.03.021)

Minhajul Bari Prince (18.01.03.112)

Md. Nahidul Islam Mollah (18.01.03.159)

Under the supervision of

Dr. Debasish Sen Assistant Professor Department of Civil Engineering, AUST

Outlines

- Background
- Objective
- Literature Review
- Numerical Modelling
- Results & Analysis
- Conclusions

Nepal earthquake: a disaster that shows quakes don't kill people, buildings do

Background

Objective

- To collect an existing building plan & make a model on the SAP2000 program.
- * To perform non-linear static analysis (pushover analysis) of the building.
- To perform incremental dynamic analysis (IDA) of the building.
- To perform a comparative study of the capacity curve and damage state of pushover and incremental dynamic analysis.

Literature Review

Literature Review

Pushover Analysis

= Flexural Hinge

= Shear Hinge

Step 1: Assign hinges to the model

Step 2: Monotonic triangular load pattern application

Step 3: Nonlinear analysis to obtain pushover curve

Literature Review

Incremental Dynamic Analysis (IDA)

Step 1: Assign hinges to the model

Step 2 : Scale up & down to the ground motions

Step 3: Nonlinear analysis to obtain IDA curve

Numerical Modelling of an existing RC building

Information	Corresponding data
Project Name	(G+6) 07 Storied Residential
	Building
Project Location	Dhaka
f'c (Column)	3500 psi
f'c (Other Members)	3000 psi
fy	72.5 ksi
Seismic Zone	

Column Layout

Loads Value FF 20 psf PW 25 psf LL 40 psf

Elevation view of existing building

SAP2000 model of existing building Slide No: 9

Numerical Modelling of an existing RC building

Details of Pushover Analysis in SAP2000

JBDPA (2001) formula used for calculating ultimate moment of columns:

$$M_u = \left\{0.8a_t \cdot \sigma_y \cdot D + 0.12b \cdot D^2 \cdot F_c\right\} \cdot \left(\frac{N_{max} - N}{N_{max} - 0.4b \cdot D \cdot F_c}\right)$$

JBDPA (2001) formula used for calculating ultimate moment of Beams:

$$M_u = 0.9a_t \cdot \sigma_v \cdot d$$

JBDPA (2001) formula used for calculating shear capacity of Columns:

$$Q_{su} = \left\{ \frac{0.053p_t^{0.23}(18 + F_c)}{\frac{M}{Q \cdot d} + 0.12} + 0.85\sqrt{p_w \cdot \sigma_{wy}} + 0.1\sigma_0 \right\} \cdot b \cdot j$$

Hinge Assignment

Numerical Modelling of an existing RC building

Table: Yield Moment calculation of columns at Second Floor

Column Notation	No. of bars	Bar dia (mm)	Total reinforce ment area, ag (mm²)	Total area of tensile reinforcing bars, at (mm ²)	Axial Force (N)	Ultimate flexural strength, Mu (N-	Yield Moment, My (KN- mm)
C-201	16	16	3216	1407	488474.3 4	4.757E+08	432.419
C-202	12	20 16	1256 2412	1633	933469.3 9	3.117E+08	283.353

Numerical Modelling of an existing RC building

Load Cases for Pushover Analysis

EQx load

Earthquake load case (Eqx)

Pushover load case

Numerical Modelling of an existing RC building

Details of Incremental Dynamic Analysis in SAP2000

Ground motions used for the IDA

Hollister Earthquake

PGA = 361.787 cm/sec² = 0.3688 g

Newhall Earthquake

 $PGA = 575.1675 \text{ cm/sec}^2$ = 0.5863 g

Santa Monica Earthquake

 $PGA = 362.127 \text{ cm/sec}^2$ = 0.3691 g

Numerical Modelling of an existing RC building

Scale Factor

Scale	Factor	for	Hollister
	Eartho	qua	ke

	Peak Acceleration	Scale Factor $(\frac{\text{Required Peak}}{Peak \ Ground \ Acceleration})$	
Original Time History	0.3688g	1	
Scaled Time History	0.1g	0.271	
	0.2g	0.542	
	0.3g	0.813	
	0.4g	1.085	
	0.5g	1.356	
	0.6g	1.627	
	0.7g	1.898	
	0.8g	2.169	
	0.9g	2.44	
	1.0g	2.711	

Load Cases for IDA

Non-linear gravity load cases

Numerical Modelling of an existing RC building

Non-linear Time history load case for a specific scaled ground motion

Pushover Analysis

as more deformation occurs

Incremental Dynamic Analysis

Same Linear Elastic Region till 0.32% storey drift

Newhall Earthquake have 9.41% and 15.78% more lateral capacity than Hollister and Santa Monica Earthquake

Santa Monica Earthquake resist 53.72% and 39.85% more storey drift than Hollister and Newhall Earthquake before dropping it's capacity

Damage states of Hollister Earthquake

Comparison of capacity curve between Pushover and Incremental Dynamic Analysis

Initial Stiffness

The building shows almost similar elastic properties under pushover and IDA

Maximum Resistance

The building shows more resistance under static loading

Ductility

Pushover curve shows more ductile behavior

Comparison of damage states between Pushover and Incremental Dynamic Analysis

More hinge formation is observed at state 1 between pushover analysis & IDA

Comparison of damage states between Pushover and Incremental Dynamic Analysis

Hinge formation of **State 2**

More hinge formation is observed with increase of storey drift in IDA than pushover analysis

Comparison of damage states between Pushover and Incremental Dynamic Analysis

Hinge formation of State 3

More hinge formation is observed with increase of storey drift in IDA than pushover analysis

Slide No: 23

Comparison of damage states between Pushover and Incremental Dynamic Analysis

Hinge formation of **State 1**

Hinge formation of **State 2**Hinge formation of **State 3**C

D

Hinge Backbone Curve

Deformation

At near peak state, IDA shows 54.6% more damages at B-C from Pushover analysis

Conclusions

1

Numerical Model Generation in SAP2000

A numerical model of an existing building has been developed in SAP2000 to perform Pushover and Incremental Dynamic Analysis

Both Capacity curves are similar considering initial stiffness however varies in ductility and strength

2

- Strength: PoA shows 14.35% larger than IDA
- Ductility: IDA shows 56.65% less than PoA

Damages are concentrated more in case incremental dynamic analysis

At near peak state, IDA shows 54.6% more damages at B-C from Pushover analysis

3

THANK YOU

Question and Answer Session