In-Context Retrieval-Augmented Language Models

Seongeun Baek

2024. 2. 05.

Korea University 1 MLV Lab

Main point

In-Context learning을 활용한 Retrieval Augmented Language Model

Korea University 2 MLV Lab

1. Document Selection

2. Document Reading

Korea University 3 MLV Lab

1. Document Selection

2. Document Reading

Korea University 4 MLV Lab

1. Document Selection

2. Document Reading

Korea University 5 MLV Lab

1. Document Selection

2. Document Reading

Korea University 6 MLV Lab

Methods (In-Context RALM)

$$p(x_1, ..., x_n) = \prod_{i=1}^n p_{\theta}(x_i | x_{< i}), \tag{1}$$

$$p(x_1, ..., x_n) = \prod_{i=1}^{n} p_{\theta}(x_i | [\mathcal{R}_{\mathcal{C}}(x_{< i}); x_{< i}]),$$
(2)

(1) Conditional probability -> (2) Retrieval augmented

Korea University 7 MLV Lab

Methods (RALM Design Choices)

$$p(x_{1},...,x_{n}) = \prod_{j=0}^{n_{s}-1} \prod_{i=1}^{s} p_{\theta} \left(x_{s\cdot j+i} | \left[\mathcal{R}_{\mathcal{C}}(x_{\leq s\cdot j}); x_{<(s\cdot j+i)} \right] \right),$$
(3)

Retrieval Stride

$$p(x_1, ..., x_n) = \prod_{j=0}^{n_s-1} \prod_{i=1}^s p_\theta \left(x_{s \cdot j+i} \middle| \left[\mathcal{R}_{\mathcal{C}}(q_j^{s,\ell}); x_{<(s \cdot j+i)} \right] \right).$$

$$(4)$$

Retrieval Query Length

Korea University 8 MLV Lab

Experiments (Datasets)

Language modeling

- WikiText-103
 - RALM을 평가하는 데에 가장 많이 사용되는 dataset
- The Pile
 - Arxiv
 - Stack Exchange
 - FreeLaw
- Real-News
 - The Pile이 news에 대한 corpus가 부족

Korea University 9 MLV Lab

Experiments (Models)

Language Models

- •GPT-2의 4개 모델
- •GPT-Neo와 GPT-J의 3개 모델
- •OPT의 8개 모델
- •LLaMa의 3개 모델
- → 모두 open source, available

Retrievers

- •sparse (word-based) retrievers
 - BM25
- dense (neural) retrievers
 - frozen BERT-base
 - Contriever and Spider

Reranking

•RoBERTa-base로 시작하여 reranker를 학습

Korea University 10 MLV Lab

Experiments (In-context RALM with Off-the-Shelf Retrievers)

Model	Retrieval	Reranking	WikiText-103	RealNews	ArXiv	Stack Exch.	FreeLaw
			word ppl	token ppl	token ppl	token ppl	token ppl
GPT-2 S		7-1	37.5	21.3	12.0	12.8	13.0
	BM25 §5	_	29.6	16.1	10.9	11.3	9.6
	BM25	Zero-shot §6.1	28.6	15.5	10.1	10.6	8.8
	BM25	Predictive §6.2	26.8	_	-	-	_
GPT-2 M	-	1.— i	26.3	15.7	9.3	8.8	9.6
	BM25 §5	1-1	21.5	12.4	8.6	8.1	7.4
	BM25	Zero-shot §6.1	20.8	12.0	8.0	7.7	6.9
	BM25	Predictive §6.2	19.7	-	-	-	-
GPT-2 L	=	_	22.0	13.6	8.4	8.5	8.7
	BM25 §5	_	18.1	10.9	7.8	7.8	6.8
	BM25	Zero-shot §6.1	17.6	10.6	7.3	7.4	6.4
	BM25	Predictive §6.2	16.6	_	-	-	-
GPT-2 XL		1-1	20.0	12.4	7.8	8.0	8.0
	BM25 §5	-	16.6	10.1	7.2	7.4	6.4
	BM25	Zero-shot §6.1	16.1	9.8	6.8	7.1	6.0
	BM25	Predictive §6.2	15.4	-	-	_	-

Table 1: Perplexity on the test set of WikiText-103, RealNews and three datasets from the Pile. For each LM, we report: (a) its performance without retrieval, (b) its performance when fed the top-scored passage by BM25 (§5), and (c) its performance when applied on the top-scored passage of each of our two suggested rerankers (§6). All models share the same vocabulary, thus token-level perplexity (token ppl) numbers are comparable. For WikiText we follow prior work and report word-level perplexity (word ppl).

Korea University 11 MLV Lab

Experiments (In-context RALM with Off-the-Shelf Retrievers)

Korea University 12 MLV Lab

Experiments (Best Retriever)

Korea University 13 MLV Lab

Experiments (Frequent Retrieval)

Korea University 14 MLV Lab

Experiments (Contextualization vs Recency Trade-off)

Korea University 15 MLV Lab

Experiments (In-Context RALM with LM-Oriented Reranking)

Korea University 16 MLV Lab

Experiments (LMs as Zero-Shot Rerankers)

$$y := x_{s \cdot j+1}, \dots, x_{s \cdot j+s}$$

$$i^* = \arg \max_{i \in [k]} p_{\theta}(y | [d_i; x_{\leq s \cdot j}]). \tag{5}$$

$$y\prime := x_{s\cdot j-s\prime+1}, \ldots, x_{s\cdot j}$$

$$\hat{i} = \arg\max_{i \in [k]} p_{\phi}(y' | [d_i; x_{\leq (s \cdot j - s')}]).$$
 (6)

Korea University 17 MLV Lab

Experiments (LMs as Zero-Shot Rerankers)

$$y := x_{s \cdot j+1}, \dots, x_{s \cdot j+s}$$

$$i^* = \arg \max_{i \in [k]} p_{\theta}(y | [d_i; x_{\leq s \cdot j}]). \tag{5}$$

$$y' := x_{s \cdot j - s' + 1}, \dots, x_{s \cdot j}$$

$$\hat{i} = \arg \max_{i \in [k]} p_{\phi}(y' | [d_i; x_{\leq (s \cdot j - s')}]). \tag{6}$$

Korea University 18 MLV Lab

Experiments (LMs as Zero-Shot Rerankers)

	Reranking	WikiText-103	RealNews
Model	Model	word ppl	token ppl
CDT A SAFE (S.E.	GPT-2 110M (S)	20.8	12.1
GPT-2 345M (M)	GPT-2 345M (M)	20.8	12.0
CDT A FCALCE	GPT-2 110M (S)	17.7	10.7
GPT-2 762M (L)	GPT-2 762M (L)	17.6	10.6
CDT 2.1 FD (VI.)	GPT-2 110M (S)	16.2	9.9
GPT-2 1.5B (XL)	GPT-2 1.5B (XL)	16.1	9.8

Korea University 19 MLV Lab

Experiments (Training LM-dedicated Rerankers)

$$x_{\leq s \cdot j} + d_i \rightarrow f(x_{\leq s \cdot j}, d_i) = scalar$$

$$p_{\text{rank}}(d_i|x_{\leq s \cdot j}) = \frac{\exp(f(x_{\leq s \cdot j}, d_i))}{\sum_{i'=1}^k \exp(f(x_{\leq s \cdot j}, d_{i'}))}, (7)$$

$$\hat{i} = \arg\max_{i \in [k]} \ p_{\text{rank}}(d_i | x_{\leq s \cdot j}). \tag{8}$$

Korea University 20 MLV Lab

Experiments (Training LM-dedicated Rerankers)

$$x_{\leq s \cdot j} + d_i \rightarrow f(x_{\leq s \cdot j}, d_i) = scalar$$

$$p_{\text{rank}}(d_i|x_{\leq s \cdot j}) = \frac{\exp(f(x_{\leq s \cdot j}, d_i))}{\sum_{i'=1}^k \exp(f(x_{\leq s \cdot j}, d_{i'}))}, (7)$$

$$\hat{i} = \arg\max_{i \in [k]} \ p_{\text{rank}}(d_i | x_{\leq s \cdot j}). \tag{8}$$

Korea University 21 MLV Lab

Experiments (Training LM-dedicated Rerankers)

Collecting Training Examples + Training

predictive reranker를 훈련하기 위해 다음과 같은 training example을 모아야 한다.

- 1. $x_{\leq s\cdot j}$ 를 훈련 데이터로부터 우리가 샘플링한 prefix라고 하자. $y:=x_{s\cdot j+1},\ldots,x_{s\cdot j+s}$ 는 다음 stride에 올 generation text라고 하자.
- 2. $\underline{\mathrm{BM25}}$ 를 $x_{\leq s\cdot j}$ 로부터 query $q_j^{s,\ell}$ 를 얻고 k개의 document를 얻는다.
- 3. 각 document d_i 에 대해서 LM을 이용하여 $p_{\theta}(y|[d_i;x_{\leq s\cdot j}])$ 을 계산한다.

$$-log \sum_{i=1}^{k} p_{rank}(d_i|x_{\leq s \cdot j}) \cdot p_{\theta}(y|[d_i; x_{\leq s \cdot j}])$$

$$(9)$$

4. (9)의 식을 가지고 전체 loss function을 정의하여 training한다.

이 때, training은 RoBERTa-base로 fine-tuning하는 방식으로 진행한다.

Korea University 22 MLV Lab

Experiments (Open-Domain Question Answering)

Model	Retrieval	NQ	TriviaQA
	2 5	10.3	47.5
LLaMA-7B	DPR	28.0	56.0
	(4)	12.0	54.8
LLaMA-13B	DPR	31.0	60.1
T. T. A. M. 22D	:::	13.7	58.3
LLaMA-33B	DPR	32.3	62.7

Korea University 23 MLV Lab

Discussion

- **➢In-Context RALM**
 - > Various Model (possible 'only API access' model)
 - > In-Context Retrieval
 - > Cost efficiency
- >Limitation
 - > Only one documents
 - > Retrieval Stride & selective retrieval

Korea University 24 MLV Lab