Mérték, integrál, ...

4. Előadás

1. Emlékeztető.

Adott X (alap)halmaz esetén a $\varphi \in \mathcal{P}(X) \to [0, +\infty]$ leképezés

i) additív, ha a

$$\varphi\Big(\bigcup_{k=0}^{n} A_k\Big) = \sum_{k=0}^{n} \varphi(A_k)$$

egyenlőség teljesül minden olyan $A_k \in \mathcal{D}_{\varphi}$ $(n \in \mathbb{N}, k = 0, ..., n)$ választással, amelyre az $A_0, ..., A_n$ halmazok páronként diszjunktak, és $\bigcup_{k=0}^n A_k \in \mathcal{D}_{\varphi}$;

ii) szigma-additiv (σ -additiv), ha

$$\varphi\Big(\bigcup_{k=0}^{\infty} A_k\Big) = \sum_{k=0}^{\infty} \varphi(A_k)$$

minden olyan esetben, amikor az $A_k \in \mathcal{D}_{\varphi}$ $(k \in \mathbb{N})$ halmazok páronként diszjunktak, és $\bigcup_{k=0}^{\infty} A_k \in \mathcal{D}_{\varphi}$.

2. Mértékek.

Minden készen áll ahhoz, hogy a halmazrendszerekre, ill. a halmazfüggvényekre megfogalmazott speciális tulajdonságok együttesével definiálhassuk a mérték (ill. az "enyhébb" változatainak) a fogalmát.

- **1. Definíció.** Legyen X halmaz, $\mu \in \mathcal{P}(X) \to [0, +\infty]$. Azt mondjuk, hogy a μ halmazfüggvény
 - i) előmérték, ha a \mathcal{D}_{μ} értelmezési tartomány gyűrű, $\mu(\emptyset) = 0$, és a μ additív;
 - ii) $kv\acute{a}zim\acute{e}rt\acute{e}k$, ha a \mathcal{D}_{μ} értelmezési tartomány gyűrű, $\mu(\emptyset)=0$, és a μ szigma-additív;
- iii) mérték, ha a \mathcal{D}_{μ} értelmezési tartomány szigma-algebra, $\mu(\emptyset) = 0$, és a μ szigma-additív.

Világos, hogy minden kvázimérték egyúttal előmérték is, ill. minden mérték kvázimérték is. Az alábbi példa azt mutatja, hogy nem minden előmértékről mondható el, hogy az egyúttal kvázimérték lenne. Legyen ui. valamilyen X megszámlálható halmaz esetén

$$\mathcal{G} := \{ A \in \mathcal{P}(X) : A \text{ vagy } X \setminus A \text{ véges} \}.$$

Ekkor a \mathcal{G} gyűrű, a

$$\mu(A) := \begin{cases} 0 & (A \text{ véges}) \\ +\infty & (X \setminus A \text{ véges}) \end{cases} \quad (A \in \mathcal{G})$$

leképezés pedig egy olyan előmérték, amelyik nem kvázimérték. Ha ui. az X halmaz elemeit x_k -val $(k \in \mathbb{N})$ jelöljük, akkor

$$X = \bigcup_{k=0}^{\infty} \{x_k\}$$

egy páronként diszjunkt, \mathcal{G} -beli halmazokból álló felbontása az $X \in \mathcal{G}$ halmaznak, de

$$\mu(X) = +\infty \neq 0 = \sum_{k=0}^{\infty} \mu(\{x_k\}).$$

1. Tétel. Tegyük fel, hogy a μ leképezés előmérték a \mathcal{G} gyűrűn. Ekkor minden $A, B, A_i \in \mathcal{G}$ $(i \in \mathbb{N})$ mellett

$$1^{\circ} \mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B);$$

 2^{o} a μ monoton, azaz $A \subset B$ esetén $\mu(A) \leq \mu(B)$;

$$3^{\circ}$$
 ha $A \subset B$ és $\mu(A) < +\infty$, $akkor \ \mu(B \setminus A) = \mu(B) - \mu(A)$;

$$4^{o} \ \mu(\bigcup_{i=0}^{n} A_i) \le \sum_{i=0}^{n} \mu(A_i) \ (n \in \mathbf{N});$$

5° ha az A_i $(i \in \mathbf{N})$ halmazok páronként diszjunktak és $\bigcup_{i=0}^{\infty} A_i \in \mathcal{G}$, akkor

$$\sum_{i=0}^{\infty} \mu(A_i) \le \mu\Big(\bigcup_{i=0}^{\infty} A_i\Big).$$

Bizonyítás. Legyen $A\subset B$. Mivel $B=A\cup (B\setminus A)$ egy diszjunkt felbontása a B-nek és $\mu\geq 0$, ezért

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

Innen $\mu(A) < +\infty$ esetén az is következik, hogy $\mu(B) - \mu(A) = \mu(B \setminus A)$. Ezzel a második és a harmadik állítást beláttuk.

Az első igazolásához legyen először $\mu(A \cap B) = +\infty$. Ekkor a 2°-ből rögtön adódik az, hogy

$$\mu(A) = \mu(B) = +\infty,$$

azaz ekkor az 1° állítás triviális. Ha viszont $\mu(A \cap B) < +\infty$, akkor

$$\mu(A \cup B) = \mu((A \setminus (A \cap B)) \cup B) =$$

$$\mu(A \setminus (A \cap B)) + \mu(B) = \mu(A) - \mu(A \cap B) + \mu(B),$$

amiből az 1° egyenlőség átrendezéssel következik.

A 4^o állítást a teljes indukcióra való hivatkozással elegendő n=1-re belátni, amikor is 1^o alapján a dolog nyilvánvaló.

Az 5° igazolásához legyen $A := \bigcup_{i=0}^{\infty} A_i$ és $n \in \mathbb{N}$. Ekkor

$$\sum_{i=0}^{n} \mu(A_i) = \mu\left(\bigcup_{i=0}^{n} A_i\right) \le \mu(A).$$

(Az utolsó becslésben $\bigcup_{i=0}^n A_i \subset A$ -ra hivatkozva a már bebizonyított 2^o egyenlőtlenséget használtuk fel.) Így

$$\sum_{i=0}^{\infty} \mu(A_i) = \lim_{n \to \infty} \sum_{i=0}^{n} \mu(A_i) \le \mu(A).$$

A továbbiakban egy előmértéket illetően adunk szükséges, ill. elégséges feltételeket arra nézve, hogy ez az előmérték kvázimérték legyen.

- **2. Tétel.** Legyen a μ előmérték a \mathcal{G} gyűrűn, és tekintsük a következő tulajdonságokat:
 - a) a μ kvázimérték;
 - b) bármilyen $A_n \in \mathcal{G}, A_n \subset A_{n+1} \quad (n \in \mathbb{N})$ halmazsorozatra az $A := \bigcup_{n=0}^{\infty} A_n \in \mathcal{G}$ feltételből $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ következik;
 - c) tetszőleges $B_n \in \mathcal{G}, B_{n+1} \subset B_n, \mu(B_n) < +\infty \quad (n \in \mathbb{N})$ halmazsorozat mellett a $B := \bigcap_{n=0}^{\infty} B_n \in \mathcal{G}$ tartalmazás esetén $\lim_{n\to\infty} \mu(B_n) = \mu(B)$;
 - d) minden $C_n \in \mathcal{G}, C_{n+1} \subset C_n, \mu(C_n) < +\infty \ (n \in \mathbb{N})$ halmazsorozatra igaz, hogy a $\bigcap_{n=0}^{\infty} C_n = \emptyset$ egyenlőségből $\lim_{n\to\infty} \mu(C_n) = 0$ következik.

Ekkor

$$1^o$$
 a) \iff b) \implies c) \iff d);

$$2^{o}$$
 ha a μ véges¹, akkor a) \iff b) \iff c) \iff d).

¹Tehát $\mu(A) < +\infty \ (A \in \mathcal{G}).$

Bizonyítás. Az 1° állításban az a) \Longrightarrow b) következtetéshez legyen

$$A_{-1} := \emptyset, \ D_n := A_n \setminus A_{n-1} \qquad (n \in \mathbf{N}).$$

Az így definiált D_n halmazok \mathcal{G} -ben vannak, páronként diszjunktak, továbbá $A_n = \bigcup_{k=0}^n D_k \quad (n \in \mathbb{N})$ és $A = \bigcup_{k=0}^\infty D_k$. Ezért (most a μ feltételezett kvázimérték volta miatt)

$$\mu(A) = \sum_{k=0}^{\infty} \mu(D_k) = \lim_{n \to \infty} \left(\sum_{k=0}^{n} \mu(D_k) \right) = \lim_{n \to \infty} \mu\left(\bigcup_{k=0}^{n} D_k \right) = \lim_{n \to \infty} \mu(A_n).$$

A b) \Longrightarrow a) bizonyításához csak a μ szigma-additivitását kell igazolni. Legyen ehhez az $Y_n \in \mathcal{G}$ $(n \in \mathbf{N})$ egy páronként diszjunkt halmazokból álló sorozat, és tegyük fel, hogy

$$A := \bigcup_{n=0}^{\infty} Y_n \in \mathcal{G}.$$

Mivel az $A_n := \bigcup_{k=0}^n Y_k \quad (n \in \mathbb{N})$ halmazsorozat monoton nőve tart az A halmazhoz,² ezért a b)-beli feltételt alkalmazva

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \left(\sum_{k=0}^n \mu(Y_k) \right) = \sum_{k=0}^\infty \mu(Y_k).$$

A b) ⇒ c) irányban a következőt mondhatjuk: az

$$A_n := B_0 \setminus B_n \in \mathcal{G} \qquad (n \in \mathbf{N})$$

halmazsorozat monoton nőve tart a $B_0 \setminus B \in \mathcal{G}$ halmazhoz, ezért a b) és az 1. Tétel szerint

$$\mu(B_0 \setminus B) = \lim_{n \to \infty} \mu(B_0 \setminus B_n) =$$

$$\lim_{n \to \infty} \left(\mu(B_0) - \mu(B_n) \right) = \mu(B_0) - \lim_{n \to \infty} \mu(B_n).$$

Mivel $B \subset B_0$ és $\mu(B_0) < +\infty$ miatt (ld. 1. Tétel) $\mu(B) < +\infty$, így (az előző egyenlőséget is figyelembe véve)

$$\mu(B_0 \setminus B) = \mu(B_0) - \mu(B) = \mu(B_0) - \lim_{n \to \infty} \mu(B_n).$$

Tehát $(\mu(B_0)$ -val egyszerűsítve) valóban igaz, hogy

$$\lim_{n\to\infty}\mu(B_n)=\mu(B).$$

 $[\]lim_{n \to \infty} \mu(B_n)$ $2A_n \subset A_{n+1} \quad (n \in \mathbf{N}) \text{ és } A = \bigcup_{n=0}^{\infty} A_n.$

 $A c) \Longrightarrow d)$ állítás triviális, a fordított irányú $d) \Longrightarrow c)$ következtetéshez pedig vegyük észre, hogy a

$$C_n := B_n \setminus B \in \mathcal{G} \qquad (n \in \mathbf{N})$$

halmazsorozat monoton fogyva tart az üres halmazhoz.³ Innen viszont a d) feltételezés miatt

$$0 = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \mu(B_n \setminus B) = \lim_{n \to \infty} \mu(B_n) - \mu(B),$$

azaz

$$\lim_{n\to\infty}\mu(B_n)=\mu(B).$$

A 2^o igazolásához nyilván elegendő belátni azt, hogy d) \Longrightarrow b). Ez az előzőekhez hasonló gondolatmenettel adódik abból, hogy a \mathcal{G} -beli

$$C_n := A \setminus A_n \qquad (n \in \mathbf{N})$$

sorozat monoton fogyólag tart az Ø-hoz, tehát a d) és az 1. Tétel szerint

$$0 = \lim_{n \to \infty} \mu(C_n) =$$

$$\lim_{n \to \infty} \mu(A \setminus A_n) = \lim_{n \to \infty} \left(\mu(A) - \mu(A_n) \right) = \mu(A) - \lim_{n \to \infty} \mu(A_n).$$

A c) tulajdonságot másképp úgy mondjuk, hogy a μ felülről félig folytonos, a b)-t pedig úgy, hogy a μ alulról félig folytonos.

3. Kiterjesztések.

Most megmutatjuk, hogy egy gyűrűn értelmezett előmértéket hogyan lehet kiterjeszteni kvázimértékké. Legyen ehhez a \mathcal{H} halmazrendszer egy X-beli félgyűrű. Tegyük fel továbbá, hogy adott az

$$m:\mathcal{H}\to[0,+\infty]$$

additív leképezés. Emlékeztetünk arra, hogy $\emptyset \in \mathcal{H}$. Feltesszük még, hogy $m(\emptyset) = 0$. Az m halmazfüggvény monoton is, azaz $A, B \in \mathcal{H}$, $B \subset A$ esetén igaz az $m(B) \leq m(A)$ egyenlőtlenség. Ugyanis

$$A = (A \setminus B) \cup B = \left(\bigcup_{k=0}^{n} Q_{n}\right) \bigcup B,$$

 $[\]overline{{}^3C_{n+1} \subset C_n} \quad (n \in \mathbb{N}) \text{ és } \bigcap_{n=0}^{\infty} C_n = \emptyset.$

ahol $\bigcup_{k=0}^n Q_n$ a (félgyűrű) definíció(ja) szerinti felbontása az $A \setminus B$ -nek. Az m additivitásából tehát

$$m(A) = m(B) + \sum_{k=0}^{n} m(Q_k) \ge m(B)$$

valóban következik.

1. Lemma. Ha $H_0, ..., H_n \in \mathcal{H}$, valamint $Q_0, ..., Q_p \in \mathcal{H}$ $(ahol n, p \in \mathbf{N})$, a $H_0, ..., H_n$ halmazok is és a $Q_0, ..., Q_p$ halmazok is p'aron-k'ent diszjunktak,

$$\bigcup_{k=0}^{n} H_k = \bigcup_{j=0}^{p} Q_j,$$

akkor

$$\sum_{k=0}^{n} m(H_k) = \sum_{j=0}^{p} m(Q_j).$$

Bizonyítás. Mindegyik H_k (k=0,...,n), valamint Q_i (i=0,...,p) halmazra

$$H_k = H_k \cap \left(\bigcup_{j=0}^p Q_j\right) = \bigcup_{j=0}^p \left(H_k \cap Q_j\right),$$

$$Q_i = Q_i \cap \left(\bigcup_{s=0}^n H_s\right) = \bigcup_{s=0}^n \left(H_s \cap Q_i\right)$$

páronként diszjunkt, \mathcal{H} -beli halmazokból álló felbontások, ezért

$$\sum_{k=0}^{n} m(H_k) = \sum_{k=0}^{n} \sum_{j=0}^{p} m(H_k \cap Q_j) = \sum_{j=0}^{p} \sum_{k=0}^{n} m(H_k \cap Q_j) = \sum_{j=0}^{p} m(Q_j).$$

Az előbbi lemma szerint értelmezhetünk egy

$$\mu: \mathcal{G}(\mathcal{H}) \to [0, +\infty]$$

leképezést az alábbi utasítással: legyen $Y \in \mathcal{G}(\mathcal{H})$, ekkor alkalmas $H_0, ..., H_n \in \mathcal{H}$ $(n \in \mathbb{N})$ páronként diszjunkt halmazokkal $Y = \bigcup_{k=0}^n H_k$. Definiáljuk ezek után a $\mu(Y)$ -t a következőképpen:

(*)
$$\mu(Y) := \sum_{k=0}^{n} m(H_k).$$

3. Tétel. A fentiekben definiált μ olyan előmérték, amelynek a \mathcal{H} -ra vett leszűkítése egyenlő az m-mel. Ha a

$$\lambda: \mathcal{G}(\mathcal{H}) \to [0, +\infty]$$

előmértéknek a \mathcal{H} -ra való leszűkítése megegyezik az m-mel, akkor $\lambda = \mu$. Amennyiben az m szigma-additív, akkor a μ leképezés kvá-zimérték.

Bizonyítás. A μ definíciója és az 1. Lemma alapján a tételünk első két állítása nyilvánvaló.

Tegyük most fel, hogy az m halmazfüggvény σ -additív. Azt kell megmutatni, hogy a μ is σ -additív. Ha viszont az $A_n \in \mathcal{G}(\mathcal{H})$ $(n \in \mathbb{N})$ halmazok páronként diszjunktak és

$$Y := \bigcup_{n=0}^{\infty} A_n \in \mathcal{G}(\mathcal{H}),$$

akkor alkalmasan választott, páronként diszjunkt $H_0, ..., H_p \in \mathcal{H}$ halmazokkal (ahol $p \in \mathbf{N}$)

$$Y = \bigcup_{k=0}^{p} H_k.$$

Ugyanez igaz minden $n \in \mathbb{N}$ mellett az Y helyett az A_n halmazra:

$$A_n = \bigcup_{j=0}^{p_n} H_{nj},$$

ahol $p_n \in \mathbb{N}$, és a $H_{n0}, ..., H_{np_n} \in \mathcal{H}$ halmazok páronként diszjunktak. Mindezt egybevetve adódik az

$$Y = \bigcup_{n=0}^{\infty} \bigcup_{j=0}^{p_n} H_{nj}$$

előállítás. Nyilván minden H_k (k = 0, ..., p) halmazra a

$$H_k = H_k \cap Y = \bigcup_{n=0}^{\infty} \bigcup_{j=0}^{p_n} (H_{nj} \cap H_k)$$

egy páronként diszjunkt, \mathcal{H} -beli halmazokból álló felbontása a H_k -nak. Az m függvény σ -additivitása alapján tehát

$$m(H_k) = \sum_{n=0}^{\infty} \sum_{i=0}^{p_n} m(H_{nj} \cap H_k),$$

$$\mu(Y) = \sum_{k=0}^{p} m(H_k) = \sum_{k=0}^{p} \sum_{n=0}^{\infty} \sum_{j=0}^{p_n} m(H_{nj} \cap H_k) =$$

$$\sum_{n=0}^{\infty} \sum_{j=0}^{p_n} \sum_{k=0}^{p} m(H_{nj} \cap H_k) =$$

$$\sum_{n=0}^{\infty} \sum_{j=0}^{p_n} m(H_{nj}) = \sum_{n=0}^{\infty} m(A_n) = \sum_{n=0}^{\infty} \mu(A_n).$$

4. Megjegyzések

i) Tegyük fel, hogy valamilyen $X \neq \emptyset$ halmaz esetén az $\mathcal{A} \subset \mathcal{P}(X)$ halmazrendszer gyűrű (szigma-algebra), és egy adott $a \in X$ pont segítségével tekintsük a következő

$$\mu: \mathcal{A} \to \mathbf{R}$$

függvényt:

$$\mu_a(A) := \begin{cases} 1 & (a \in A) \\ 0 & (a \notin A) \end{cases} \quad (A \in \mathcal{A}).$$

Ekkor a μ (az a pontban "koncentrált") kvázimérték (mérték⁴). Ui. a σ -additivitástól eltekintve a kvázimérték (mérték) minden axiómája nyilván teljesül a μ -re. Ha az $A_n \in \mathcal{A}$ $(n \in \mathbf{N})$ halmazok páronként diszjunktak és

$$A = \bigcup_{n=0}^{\infty} A_n \in \mathcal{A},$$

akkor két eset lehetséges:

$$a \notin A_n \text{ és } \mu(A_n) = 0 \qquad (n \in \mathbf{N}),$$

így

$$\mu(A) = 0 = \sum_{n=0}^{\infty} \mu(A_n).$$

Ha viszont $a \in A$, akkor pontosan egy $N \in \mathbf{N}$ esetén $a \in A_N$, ezért $\mu(A) = \mu(A_N) = 1$ és

$$\mu(A_n) = 0 \qquad (N \neq n \in \mathbf{N}).$$

⁴Dirac-mérték. (Paul Adrien Maurice Dirac (1902 – 1984).)

Tehát újfent csak

$$\mu(A) = \sum_{n=0}^{\infty} \mu(A_n).$$

ii) Legyen most az X halmaz legalább kontinuum számosságú, és jelöljük Ω -val az X azon A részhalmazai által alkotott halmazrendszert, amelyekre vagy az A, vagy pedig az $X \setminus A$ halmaz legfeljebb megszámlálható. Ekkor az Ω egy X-beli σ -algebra, a

$$\mu(A) := \begin{cases} 0 & (A \text{ legfeljebb megszámlálható}) \\ +\infty & (X \setminus A \text{ legfeljebb megszámlálható}) \end{cases} \quad (A \in \Omega)$$

módon definiált $\mu: \Omega \to \mathbf{R}$ függvény pedig mérték. Valóban, a mérték axiómái közül nyilván csak a μ szigma-additivitása "kérdéses". Ehhez legyenek az $A_n \in \Omega$ $(n \in \mathbf{N})$ halmazok páronként diszjunktak, és

$$A := \bigcup_{n=0}^{\infty} A_n.$$

Ha itt minden A_n $(n \in \mathbb{N})$ legfeljebb megszámlálható, akkor az A halmaz is legfeljebb megszámlálható, így $\mu(A_n) = 0$ $(n \in \mathbb{N})$ miatt

$$\mu(A) = 0 = \sum_{n=0}^{\infty} \mu(A_n).$$

Ha viszont valamilyen $N \in \mathbf{N}$ esetén az $X \setminus A_N$ halmaz legfeljebb megszámlálható, akkor

$$X \setminus A \subset X \setminus A_N$$

miatt ugyanez igaz az A halmazra is, tehát az $X \setminus A$ is legfeljebb megszámlálható. Ezért $\mu(A) = +\infty$. Ugyanakkor a

$$\sum_{n=0}^{\infty} \mu(A_n) \ge \mu(A_N) = +\infty$$

becslést figyelembe véve $\sum_{n=0}^{\infty} \mu(A_n) = +\infty$, és így megint csak

$$\mu(A) = \sum_{n=0}^{\infty} \mu(A_n).$$

iii) Ha $\Omega := \mathcal{P}(\mathbf{N})$, és az $\alpha_k \geq 0 \quad (k \in \mathbf{N})$ számokkal

$$\mu(A) := \sum_{k \in A} \alpha_k \qquad (A \in \Omega),$$

akkor világos, hogy a μ mérték. Az $\alpha_k := 1 \quad (k \in \mathbb{N})$ esetben a $\mu(A)$ nem más, mint az $A \subset \mathbb{N}$ halmaz számossága. Az i) megjegyzésben szereplő μ_a mértékekkel most nyilván igaz a

$$\mu = \sum_{n=0}^{\infty} \alpha_n \cdot \mu_n$$

előállítás.

iv) Tetszőleges $X \neq \emptyset$ halmaz és X-beli Ω szigma-algebra mellett legyen

$$\mu(A) := \begin{cases} +\infty & (A \text{ nem véges}) \\ [A] & (A \text{ véges}) \end{cases}$$
 $(A \in \Omega).$

- ([A] jelöli az A halmaz számosságát.) Könnyű belátni, hogy a μ mérték (számosságmérték).
- v) Legyen az X egy halmaz, az $\Omega \subset \mathcal{P}(X)$ pedig szigma-algebra. Az (X,Ω) rendezett párt *mérhető térnek* nevezzük. Az $A \subset X$ halmaz *mérhető*, ha $A \in \Omega$. Tegyük fel, hogy a

$$\mu:\Omega\to[0,+\infty]$$

leképezés mérték. Ekkor az (X, Ω, μ) rendezett hármas egy mértéktér, $\mu(A)$ $(A \in \Omega)$ az A halmaz mértéke.

Tekintsük az

$$\Omega_0 := \{ A \in \Omega : \mu(A) = 0 \}$$

halmazrendszert (a μ -nulla-mértékű halmazok rendszerét). A μ mérték (az (X, Ω, μ) mértéktér) teljes, ha

$$\mathcal{P}(A) \subset \Omega_0.$$
 $(A \in \Omega_0).$

Más szóval a szóban forgó μ mérték akkor és csak akkor teljes, ha bármilyen $A \in \Omega$, $\mu(A) = 0$ halmaz tetszőleges $B \subset A$ részhalmazára egyúttal a B is mérhető, azaz $B \in \Omega$. Ekkor (a μ monotonitása miatt) persze

$$0 \le \mu(B) \le \mu(A) \implies \mu(B) = 0.$$

vi) Adott $X \neq \emptyset$ halmaz és $\omega \in X$ mellett legyen az Ω olyan X-beli σ -algebra, hogy $\{\omega\} \in \Omega$, valamint $A \in \Omega$ esetén legyen

$$\mu(A) := \begin{cases} 0 & (\omega \notin A) \\ 1 & (\omega \in A). \end{cases}$$

Ekkor a μ (Dirac-)mérték pontosan akkor teljes, ha $\Omega = \mathcal{P}(X)$.

Valóban, ha a mérhető halmazok rendszere megegyezik $\mathcal{P}(X)$ -szel, akkor a rajta értelmezett bármilyen mérték nyilván teljes. Fordítva, a mondott példában

$$X \setminus \{\omega\} \in \Omega \text{ és } \mu(X \setminus \{\omega\}) = 0,$$

ezért a μ teljessége esetén tetszőleges $A \subset X \setminus \{\omega\}$ halmazra $A \in \Omega$. Mivel $\{\omega\} \in \Omega$, így az előbbi A halmazra $A \cup \{\omega\} \in \Omega$ is igaz. Nyilván bármilyen $\omega \in B \subset X$ halmaz előállítható ilyen alakban. Tehát tényleg minden $A \in \mathcal{P}(X)$ halmaz Ω -ban van.

vii) Ha a μ halmazfüggvény kvázimérték a $\mathcal G$ gyűrűn, és az $A,A_n\in\mathcal G$ $(n\in\mathbf N)$ halmazokkal

$$A \subset \bigcup_{n=0}^{\infty} A_n,$$

akkor

$$\mu(A) \le \sum_{n=0}^{\infty} \mu(A_n).$$

Ui. a μ monotonitása és $A = \bigcup_{n=0}^{\infty} (A \cap A_n)$ miatt az általánosság megszorítása nélkül feltehető, hogy

$$A = \bigcup_{n=0}^{\infty} A_n.$$

Legyen továbbá

$$B_0 := A_0, \ B_n := A_n \setminus \bigcup_{i=0}^{n-1} A_i \quad (1 \le n \in \mathbf{N}),$$

ekkor a B_n -ek páronként diszjunkt \mathcal{G} -beli halmazok, és

$$A = \bigcup_{n=0}^{\infty} A_n = \bigcup_{n=0}^{\infty} B_n \in \mathcal{G}.$$

Így

$$\mu(A) = \mu\left(\bigcup_{n=0}^{\infty} A_n\right) = \mu\left(\bigcup_{n=0}^{\infty} B_n\right) = \sum_{n=0}^{\infty} \mu(B_n) \le \sum_{n=0}^{\infty} \mu(A_n),$$

azaz a μ szigma-szubadditív.

viii) Nem nehéz belátni, hogy a szigma-szubadditivitási tulajdonság jellemzi is a kvázimértékeket a következő értelemben: ha a $\mathcal G$ gyűrűn értelmezett μ előmérték szigma-szubadditív, akkor σ -additív is, azaz kvázimérték.

Legyenek ui. ekkor az $A_n \in \mathcal{G}$ $(n \in \mathbb{N})$ páronként diszjunkt halmazok olyanok, hogy $\bigcup_{n=0}^{\infty} A_n \in \mathcal{G}$. A szigma-szubadditivitás miatt

$$\mu\Big(\bigcup_{n=0}^{\infty} A_n\Big) \le \sum_{n=0}^{\infty} \mu(A_n),$$

az 1. Tétel 5^{o} állítása alapján pedig

$$\sum_{n=0}^{\infty} \mu(A_n) \le \mu\Big(\bigcup_{n=0}^{\infty} A_n\Big).$$

Tehát

$$\mu\Big(\bigcup_{n=0}^{\infty} A_n\Big) = \sum_{n=0}^{\infty} \mu(A_n).$$