. 130: 63 LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

State of California
THE RESOURCES AGENCY

epartment of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

VOLUME III: CENTRAL COASTAL AREA

SEPTEMBER 1965

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN

Governor

State of California

WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY
UNIVERSITY OF CALIFORNIA

ERRATA

ELECTRICAL CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1963

ELECTRICAL CONDUCTANCE DAILY READINGS AT 1300 HOURS BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207)

1963

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

VOLUME III: CENTRAL COASTAL AREA

SEPTEMBER 1965

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

TABLE OF CONTENTS

			Page
ORGANIZATION	OF BULLETIN NO. 130 SERIES	•	ii
AREA ORIENTAT	TION MAP	•	iii
LETTER OF TRA	NSMITTAL	•	vii
ORGANIZATION.		•	ix
ACKNOWLEDGMEN	TTS	•	х
	CHAPTER I. HYDROLOGIC CONDITIONS, 1962-63		1
California -	Statewide	•	2
Central Coast	al Area	•	4
	CHAPTER II. DATA COLLECTION ACTIVITIES		10
Climate		•	10
Surface Water	Flow	•	11
Ground Water	Measurement	•	11
Surface Water	Quality	•	12
Ground Water	Quality	•	14
	FIGURES AND TABLES		
Figure 1	Water Year Precipitation in Percent of Normal, October 1, 1962 - September 30, 1963	•	3
Table 1	Ground Water Level Conditions in the Central Coastal Area, Spring 1963	•	7
Table 2	Summary of Ground Water Data Collected in the Central Coastal Area, July 1, 1962 - June 30, 1963		13

APPENDIXES

A

Climate

Page A-1

В	Surface Water Flow	B-1
С	Ground Water Measurement	C-1
D	Surface Water Quality	D-1
E	Ground Water Quality	E-1
	PLATES	
	(Plates are bound at end of report)	
Plate No.		
1	Surface Water Stations in the Central Coastal Area	
2	Ground Water Basins or Units in the Central Coastal A	rea
3	Fluctuation of Water Level in Wells North Coastal Region	
4	Fluctuation of Water Level in Wells San Francisco Bay Region	
5	Fluctuation of Water Level in Wells Central Coastal Region	
6	Status of Sea-Water Intrusion Santa Clara Valley East Bay Area	
7	Climatological Stations in the Central Coastal Area	

ARTMENT OF WATER RESOURCES

DX 388

June 24, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is suspended.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes and appendixes.

This report is Volume III, "Central Coastal Area". It includes a text which summarizes hydrologic conditions in this part of California during the 1963 water year (October 1, 1962 through September 30, 1963) and five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurement", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality".

The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the Water Code of the State of California.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, timely hydrologic data to the public.

Collection of much of the data presented has been possible only because of the generous assistance of other agencies, private organizations and individuals. Without the data supplied by these people, Bulletin No. 130-63 should have been much less the valuable tool it is today.

Sincerely yours,

· Steine

Director

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor
HUGO D. FISHER, Administrator, The Resources Agency
WILLIAM E. WARNE, Director, Department of Water Resources
ALFRED R. GOLZE', Chief Engineer
JOHN M. HALEY, Acting Assistant Chief Engineer

- - - - 0 - - - -

BAY AREA BRANCH

Dia inchi
Charles A. McCullough
Vernon Bengal Chief, Water Supply and Quality Section
Activities covered by this report were under the supervision of
Glenn R. Peterson Supervisor, Water Supply Unit
Assisted by
· ·
John C. Etchells
John S. Bartok
Larry K. Gage Assistant Civil Engineer
Jacob A. Vigil
Lloyd J. Grant

Reviewed and coordinated by Division of Resources Planning Data Coordination Section

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this bulletin.

Special mention is made of the following agencies:

Federal

United States Geological Survey
United States Bureau of Reclamation
United States Weather Bureau
United States Public Health Service

State

California Department of Public Health California Disaster Office

Local

Alameda County Flood Control and
Water Conservation District
Alameda County Water District
Campbell Water Company
Cupertino, City of
Gilroy, City of
Mendocino County
Monterey County Flood Control and
Water Conservation District
Mountain View, City of
Napa County
North Los Altos Water Company
Pacheco Pass Water District
Palo Alto, City of
San Benito County

San Jose Water Works

and Water Conservation District
Santa Clara, City of
Santa Clara County Flood Control and
Water Conservation District
Santa Clara Valley Water Conservation
District
Santa Cruz County
Solano County
Sonoma County Flood Control and Water
Conservation District
South Santa Clara Valley Water
Conservation District
Stanford University
Sunnyvale, City of
Watsonville, City of

San Luis Obispo County Flood Control

CHAPTER I

HYDROLOGIC CONDITIONS, 1962-63

California is an area that is unique in many respects. Its climate has always been exceptional and the range of land forms within the State sets it apart from neighboring areas. California has often been described as being set apart or isolated by features that prevail over wide areas adjoining the State. Perhaps, it would be more appropriate to consider the State as a link between dissimilar regions rather than isolated by them. California does, in fact, span all the dissimilarities of climate and topography from parched Death Valley to the marshy tidelands of the Pacific and the rain forests of northwestern California.

California climate is fostered by a balance between the slow forces of geology and the turbulent storms born of the Pacific Ocean. The massive walls of the Rocky Mountains and the Sierra Nevada protect the State from all but a few thrusts of the dry, cold, polar continental air masses. Maritime air masses, originating far out in the Pacific, receive some impetus and direction from wind patterns of the troposphere and move toward the California Coast. California lies in a transition zone between the prevailing westerlies that blow across the North Pacific and a calm high pressure zone, the horse latitudes, in the vicinity of 30 degrees north latitude. The horse latitudes, just south of California, buffer the State from many tropical storms which originate further to the south so that the north coast of California is crossed by more storms than the south coast. The Sierra Nevada and Cascade Mountains, along the eastern border of the great central valley, receive much of their precipitation by orographic lifting of the maritime air masses. The interior

lands of Southern California are shielded from maritime air masses by the Transverse Ranges and the northerly extension of the Peninsula Range.

California - Statewide

Average values, which sum up annual conditions for the whole State, show the 1962-63 water year to have been about normal. A closer look at this apparent normality shows a series of extreme conditions which in combination resulted in nearly normal averaged values. Figure 1, showing the water year precipitation in percent of normal, indicates that normal annual precipitation amounts were recorded in the latitude of San Luis Obispo and Bakersfield. Recorded annual precipitation south of that latitude was as low as 50 percent of normal in the vicinity of San Diego and north of the latitude rose as high as 150 percent of normal in the mountains along the northern boundary of the State.

During 1962-63, even these annual precipitation values were composed of extremes. In mid-October a series of storms drenched Northern California, Oregon, and Washington. Rivers in Northern California were near the flood level and the Feather River at Oroville reached the highest October stage of record, inundating construction work at the Oroville damsite. Southern California stayed dry. A midwinter drought followed, setting new records for lack of precipitation and for continuous days of fog in the Central Valley. Again, Southern California was dry.

The drought was broken by a three-day downpour at the end of January.

Flood conditions prevailed again in Northern California and some areas, particularly the upper Yuba River basin, suffered from serious floods. Much of Southern California received moderate amounts of rain at this time.

During April, Northern California was covered by a series of storms; precipitation was moderate, but continued for almost two weeks. The April precipitation, along with a record late season snowfall during May, largely in the Northern Sierras, built up snowpacks and assured a normal water supply during the summer. Southern California gained some precipitation but had a less than normal wet season, which extended the dry trend that has prevailed in the southern part of the State since 1944.

Understandably, other hydrologic features showed abnormal responses. Streamflows alternated between extreme highs and extreme lows, but were about normal during the summer. With the recurring threat of floods, operation of reservoirs was difficult, yet the amount of water stored in reservoirs at the end of the water year was greater than year-end storage during most preceding years. In Southern California both surface runoff and reservoir storage were below normal.

Ground water conditions followed the pattern of precipitation. In the northern part of the State, the amount of water stored in the ground water basins generally increased. Because of the time distribution of precipitation, the increase of stored ground water was less than it would have been if the distribution was more uniform. Throughout Southern California, where precipitation was well below normal, ground water levels continued to drop.

Central Coastal Area

The Central Coastal Area, as delineated on the "Area Orientation Map", (frontispiece) includes all or parts of 14 counties extending from San Luis Obispo County on the south to Mendocino County on the north. Nearly half of the State's 1,190-mile open coastline is within the report area. It embraces

the major portion of the Coast Ranges, which consists of a series of mountain ranges paralleling the coast separated by many fertile valleys. The San Francisco Bay system is a central and unique feature.

Within the area is the metropolitan complex known as the Bay area. The Bay area is the second largest metropolitan area in the western half of the United States.

Surface water in the southern and central portions of the Central Coastal Area is highly developed. Extensive use is made of the numerous complex ground water basins and surface water is imported to the area. Several local ground water basins are deliberately recharged with stored or imported surface water. The basins are highly important to local economies and to the economy of the State. Consequently, ground water is emphasized in this bulletin.

In the Central Coastal Area average annual precipitation varies from areas of abundant rainfall along the coast and in the region north of San Francisco (up to 80 inches) to areas of very little rainfall in the southern Salinas River Valley (as low as 10 inches). During the 1962-63 season, which was noteworthy for its excesses in wet and dry periods, the final average result was an above normal precipitation for the report area with some areas recording 160 percent of normal.

The quality of surface waters in the report area is mostly good with the best waters draining the mountains adjacent to the coast. During the 1962-63 season the concentrations of dissolved solids generally decreased because of above normal precipitation and the corresponding increase in runoff.

Ground water occurs under diverse conditions and in a variety of rock types. Most of the readily available water exists in subsurface reservoirs composed of unconsolidated alluvial materials which underlie intermontane

valley floor areas. In many areas, the unconsolidated alluvial deposits are underlain and bordered by relatively extensive deposits of older, more consolidated alluvial materials which are also water bearing and act as recharge areas for the ground water reservoirs. Materials of lesser importance with respect to production of ground water in the Central Coastal Area but often of local significance are: The sedimentary materials which were deposited in lakes, lagoons, or as sand dunes; shallow water marine sediments from which sea water has been flushed; and some types of volcanic rocks. The ground waters are good to excellent in mineral quality and are suitable for most beneficial uses, except in localized areas where waters contain high concentrations of one or more of the following minerals: chlorides, sulfates, nitrates, sodium, and boron. The ground waters are bicarbonate and vary from moderately hard to very hard. Depths to water in wells range from about 350 feet to "flowing".

The raw ground water level data are made more meaningful when summarized into basin averages. Table 1, "Ground Water Level Conditions in the Central Coastal Area", presents average depths to ground waters and average changes by basin and region from the spring of 1962 to the spring of 1963.

During the spring of 1963 average depths to water in the monitored basins ranged from about 4.5 feet in Alexander Valley to about 123 feet in the Santa Clara Valley. The overall average depth to water in the basins monitored was 50.6 feet which was a decrease of 2.7 feet from the 1962 average. Significant rises of 23.4 feet and 2.0 feet occurred in the South Santa Clara County and San Benito County units of Gilroy-Hollister Valley, respectively. These rises were reversals of downward trends of the previous three years during which water levels had dropped approximately 39 feet in South Santa Clara

TABLE 1 GROUND WATER LEVEL CONDITIONS IN THE CENTRAL COASTAL AREA SPRING 1963

Ground Water Basin or Unit	Basin Number	: Average Change : in Ground Water Level $\underline{1}/$: :Spring 1962 to Spring 1963 (in feet):	Average Depth to Ground Water Spring 1963 (in feet
		Region 1	
Potter Valley	1-14.00	0.0	6.6
Ukish Valley	1-15.00	-1.1	5.7
Sanel Valley	1-16.00	-0.6	5.3
Alexander Valley	1-17.00	+0.6	4.5
Santa Rosa Valley	1-18.00		
Santa Rosa Area	1-18.01 1-18.02	+2.3 -0.2	13.0 12.5
Healdsburg Area			
Lower Russisn River Valley	1-98.00	-2.4	9.4
	Region 1 Ave	rages: 2/ -0.6	9.6
		Region 2	
Petaluma Vailey	2-1.00	+1.3	23.2
Napa-Sonoma Valley	2-2.00		
Napa Valley	2-2.01	+0.9	12.0
Sonoma Valley	2-2.02	+1.1	16.5
Suisun-Fairfield Valley	2-3.00	+5.3	6.8
Ygoacio Valley	2-6.00	+1.1	15.1
Santa Clara Valley	2-9.00		
East Bay Area South Bay Area	2-9.01 2-9.02	+2.6 +12.6	59.3 123.2
·			
Livermore Valley	2-10.00	+3.3	63.5
Half Moon Bay Terrace	2-22.00	+3.4	18.7
San Gregorio Valley	2-24.00	-0.6	9.1
Pescadero Valley	2-26.00	+1.4	6.1
	Region 2 Ave	rages: 2/ +5.5	53.3
		Region 3	
Soquel Valley	3-1.00	-0.8	65.6
Pajaro Valley	3-2.00	+2.2	60.7
Gilroy-Hollister Valley	3-3.00		
South Santa Clara County	3-3.01	+23.4	47.3
San Benito County	3-3.02	+2.0	76.9
Salimas Valley	3-4.00	+0.1	55.2
Carmel Valley	3-7.00	+0.7	16.3
West Santa Cruz Terrace	3-26.00	No measurements in 1963	
	Region 3 Ave	rages: 2/ +1.5	56.9
Centra	l Constal Area Ave		50.6

^{1/ 4} indicates rise in water level.
- indicates decline in water level.

^{2/} Region Averages = ≤ (basin average x basin area) € basin areas

^{3/} Central Coastal Area Averages ≈ € (region average x region area) € region areas

County and 9 feet in San Benito County. Sea-water intrusion continued to be a problem in portions of Salinas and Pajaro Valleys and in the Niles Cone in Alameda County where ground water levels have remained below sea level.

During the period from July 1, 1962 through June 30, 1963, there were no significant changes in mineral concentrations. Some localized poor quality ground water, probably from deep-seated origin, is found in the northern portion of the Central Coastal Area. Data collected in portions of Petaluma Valley, Napa-Sonoma Valley and Suisun-Fairfield Valley, where ground water has been degraded by brackish waters from the bays, indicate no further degradation. Chloride concentrations in the Centerville aquifer in Alameda County decreased (Plate 6). This decrease was probably a direct result of above normal precipitation and deliberate recharge of the ground water basin with South Bay Aqueduct water by Alameda County Water District.

Boron concentrations in excess of that recommended for irrigation of some crops were present in water from some wells in the following areas:

- The vicinity of Newark in Alameda County and the proximity of the Mission fault.
- Southern and central portions of Petaluma Valley adjacent to Petaluma Creek.
- 3. East side of Napa Valley.
- 4. Eastern portion of Santa Clara Valley, especially in the Penitencia Creek area.
- 5. Northern and eastern portions of Livermore Valley.
- 6. Eastern portion of Hollister Valley.

A number of wells drilled into the volcanic rocks on the east side of Napa Valley produce highly mineralized water, or water having undesirable

taste or odor. High nitrate concentrations occur in localized areas in Livermore Valley. Many wells in Clayton and Ygnacio Valleys yield water which, unless softened, is undesirable for domestic and some industrial uses because of extreme hardness. Some of the wells in Ygnacio Valley also yield water having concentrations of sulfates and nitrates exceeding amounts normally recommended as limits for drinking water.

Ground water samples collected in the sea-water intruded areas of Pajaro and Salinas Valleys contained about the same chloride concentrations as the samples collected the previous year. Water with nitrate concentrations above the normally recommended limit for drinking water is present in a few wells located near Monterey Bay in Pajaro Valley. Wells in the vicinity of Hollister yield water containing high concentrations of total dissolved solids, chlorides, sulfates, nitrates, and boron.

CHAPTER II

DATA COLLECTION ACTIVITIES

The Department of Water Resources, in cooperation with federal, state, and local agencies, as well as with the generous and public-spirited assistance of many individuals, has gradually developed a continuing program of basic hydrologic data collection. This continuity enables systematic and orderly handling, filing, and publication of the data for all uses both now and in the future.

The data collection activities involve the maintenance of a network of stations adequate to provide reliable, meaningful, representative and needed information. Water samples or water measurements are taken at these stations, chemical analyses of the samples are made, and the data are compiled, analyzed, summarized, and published. These data include information on climate, surface water flows, tidal stages, ground water levels, and on the chemical quality of surface and ground waters. The climate data include precipitation, air temperature, wind movement, and evaporation.

CLIMATE

The climatology station network shown on Plate 7, "Climatological Stations in the Central Coastal Area", was established by the U. S. Weather Bureau and the Department of Water Resources. The Department supplements the Weather Bureau network of 141 stations with a network of 74 selected stations which are and have been operated by individuals, private industry, and governmental agencies. Data from these 215 stations are tabulated in Appendix A of this report.

SURFACE WATER FLOW

The four surface water stations shown on Plate 1 are operated by the Department of Water Resources. The Department also cooperates with the United States Geological Survey in the operation of 62 of the 115 stations operated by that agency in the area covered by this report. Also, the United States Coast and Geodetic Survey operates two tide stations in the area. The United States Geological Survey publishes data from the 115 stations in its water supply papers. There are a number of surface water stations operated by local agencies for local purposes from which data are not routinely obtained by the Department.

GROUND WATER MEASUREMENT

The Department cooperates with the U. S. Geological Survey and many local agencies for the systematic observation of ground water levels. Wells at which water level measurements are made in the Central Coastal Area number approximately 1,700 of which 213 are presented in Appendix C of this report. These 213 wells were selected as representative of wells in the respective ground water basins or units. The wells were selected on the basis of a number of factors such as, geographical density of one or two wells per township; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, aquifer represented; and availability of a geologic log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made

with an air line and gauge or an electric sounder. Field work was performed by local cooperators, the U. S. Geological Survey, and department personnel. The Department has full responsibility for reviewing, editing, processing, and publishing ground water level data. An electronic computer program has been developed to perform a part of the processing and tabulating.

Ground water basins or units in the Central Coastal Area are shown on Plate 2. The number of wells measured in these areas and the measuring agency are shown in Table 2.

Water level fluctuations are depicted graphically on hydrographs of 22 wells distributed among significant basins of the Area. These wells were selected insofar as possible as representative of their respective basins or units. The hydrographs are presented in Plates 3 through 5 by region, basin, and well number.

Maps showing lines of equal elevation of water in wells in Napa
Valley, Suisun-Fairfield Valley, Livermore Valley, Santa Clara Valley (East
Bay and South Bay Areas), Gilroy-Hollister Valley (South Santa Clara and
San Benito Counties), Salinas Valley and Pajaro Valley are prepared regularly.
These maps are on file with the Department.

SURFACE WATER QUALITY

Surface water was sampled and analyzed both by the Department of Water Resources and by the U. S. Geological Survey in cooperation with the Department. The data from these sampling activities are shown in Appendix D of this report. The appendix includes data from a network of basic monitoring stations, operational stations on the South Bay Aqueduct, and investigational stations. It includes all of the surface water quality data collected by this

TABLE 2 SUMMARY OF GROUND WATER DATA COLLECTED IN THE CENTRAL COASTAL AREA July 1, 1962 - June 30, 1963

Ground Weter Basin or Unit	: Beain : Number	: Measuring or Sampling : : Agency :	Number o	: Sampled
		REGION I		
Potter Valley	1-14.00	U. S. Geological Survey	2	
Jkiah Valley	1-15.00	U. S. Geological Survey Mendocino County	3	10
Sao∉l Valley	1-16.00	U. S. Geological Survey Mendocino County	3	6
lexander Valley	1-17,00	U. S. Geological Survey Department of Water Resources	6	6
Santa Roaa Valley Santa Roaa Area	1-18.00 1-18.01 1-18.02	U. S. Geological Survey Department of Water Resources U. S. Geological Survey Department of Water Resources	3 7 4	20 3
Lower Russian River Valley	1-98,00	U. S. Geological Survey REGION 2	3	
Peteluma Valley	2-1.00	U. S. Geological Survey Sonoma Couoty F. C. & W. C. D. Department of Water Resources	3	17 9
Nape-Sonoma Valley Napa Valley	2-2.00 2-2.01	U. S. Geological Survey Napa County Department of Water Resources	4 108	27
Sonoma Valley	2-2.02	U. S. Geological Survey Sonoma County F. C. & W. C. D. Department of Water Resources	2	14
Suisun-Pairfield Valley	2-3.00	U. S. Geological Survey Solano County Department of Water Resources	3 23 4	15
Pittaburg Plain	2-4.00	Department of Water Resources		3
Claytoo Valley	2-5.00	Department of Water Resources		8
Ygnacio Valley	2-6.00	Department of Water Resources	5	7
Santa Clera Valley East Bay Area	2-9.00 2-9.01	Alameda County Water District Alameda County P. C. & W. C. D. Department of Water Resources	105 88 <u>1</u> / 3	46 24
South Bay Area	2-9,02	U. S. Geological Survey Santa Clara Valley W. C. D.	3 250	20
Livermore Valley	2-10,00	Alameda County F. C. & W. C. D.	160	30
Half Mooo Bay Terrace	2-22.00	Department of Water Resources	9	
San Gregorio Valley	2-24.00	Department of Water Resources	5	
Peacedero Valley	2-26.00	Department of Water Resources REGION 3	7	
West Santa Cruz Terrace	3-26.00	Santa Cruz County	7	
Soquel Valley	3-1.00	Santa Cruz County Department of Water Resources	5 2	
Pajaro Valley	3-2.00	Monterey County P. C. & W. C. D. Sauta Cruz County City of Watsonville Department of Water Resources	25 50 6 13	14
Gilroy-Hollister Valley South Santa Clara County	3-3.00 3-3.01	South Santa Clara County W. C. D. Santa Clara Valley W. C. D. Department of Water Resources City of Cilroy	25 16 17 4	11
San Beoito County	3-3.02	Pacheco Pass Water District and Sao Benito County Department of Water Resources	90 3	14
Salinas Valley	3-4.00	Monterey County F. C. & W. C. D. San Luis Obispo County	393 51	70 6
Carmel Valley	3-7.00	Monterey County F. C. & W. C. D.	33	5

^{1/} An additional 110 wells were measured during spring 1963.

Department in the Central Coastal Area, except for data from investigational stations in the San Francisco Bay system below Antioch. The excluded data are specialized in nature and beyond the scope of this report. The stations for which data are reported in Appendix D are shown on Plate 1.

GROUND WATER QUALITY

During the year from July 1, 1962 through June 30, 1963, ground water samples were collected from 393 wells in the Central Coastal Area. These wells or stations were selected by the Department in the areas shown on Plate 2.

Table 2 indicates the number of wells sampled in each basin and the sampling agency. The data from these stations are tabulated in Appendix E.

Ground water is sampled and analyzed to provide information on the quality characteristics, to identify problem areas, to determine the quality trends, and if possible, to identify the factors that control or affect the quality. Analyses made of ground water include mineral and radiological determinations. The frequency of sampling, types of analyses, and density of the station network depend largely on conditions in the monitored area.

APPENDIX A

CLIMATE

CLIMATOLOGIC DATA

This appendix contains station index, seasonal precipitation, monthly temperatures, and monthly evaporation tables. The data compiled are provided by governmental agencies, private industry and individuals. Symbols and abbreviations used in this appendix are:

- C Data from recorder stations.
- D Data unavailable for this report.
- E Evaporation.
- e Wholly or partially estimated.
- M All or part of record missing. When used in place of an average monthly temperature value, more than 10 days of record are missing.
- NR No record.
- P Precipitation.
- RB Beginning of record.
- SS Observation at sunset.
- T Temperature.
- T Trace, an amount too small to measure.
- V Observation time varied.

Climatological Station Index

Table A-1 includes the station name, number, and the county in which each station is located. The letter and first digit of the station number represent hydrographic area and unit. The remaining digits are assigned in accordance with alphabetic sequence. It also includes the observer's name, station location, and elevation of the station. The time of observation, beginning of record, and cooperator number complete the information on this

table. The cooperator number indicates the source of the data. The cooperator numbers assigned are as follows:

- 000 Private Cooperator
- 403 Sonoma County Flood Control and Water Conservation District
- 407 San Benito County
- 411 Marin County
- 413 Marin Municipal Water District
- 414 Santa Clara Valley Water Conservation District
- 418 Vallejo Water Department
- 426 Santa Clara County Flood Control and Water Conservation District
- 801 Pomology Department, U. C., Davis
- 804 State Department of Beaches and Parks
- 806 State Department of Water Resources
- 808 State Division of Forestry
- 809 State Division of Highways
- 900 U. S. Weather Bureau
- 901 Corps of Engineers, San Francisco District
- 902 U.S. Air Force
- 907 State Climatologist (unpublished USWB)
- 909 U. S. Soil Conservation Service

Seasonal Precipitation

Table A-2 presents total monthly and annual precipitation in inches for the year from July 1, 1962 through June 30, 1963.

Monthly Temperatures

Table A-3 covers the same period and includes the maximum and minimum temperatures, the average of the daily maximum temperatures, the average of the daily minimum temperatures, and the average of the daily maximum and minimum temperatures recorded during the month. The temperatures are recorded in degrees Fahrenheit.

Monthly Evaporation

Table A-4 presents total evaporation during each month in inches, total wind movement during the month in miles, the monthly average of daily maximum and minimum water temperatures, monthly precipitation, the maximum air temperature, the minimum air temperature, the average minimum air temperature, and the average of the daily maximum and minimum air temperatures. Portions of these data are repetitions of data in Tables A-2 and A-3. These data are included herein because of their close connection with evaporation data.

TABLE A-1

CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LATITUDE	LONGITUOE	ELEV IN FEET	TOWNSHIP	RANGE	SECTION 40 ACRE TRACT	1	IME OF RVATI		ECORO EGAN	
Alamitos Perc. Pond Alamo 1N Almaden Reservoir Angwin Pec. Union Col. Arroyo Seco	86 0053 E4 0064 86 0125 E3 0212 02 0322	Sente Clara Cootre Coeta Saota Clare Napa Monterey	SCVWCD Cuzzello SCVWCD Pecific Union Col R. Billinge	37 15 18 37 52 37 10 00 38 34 18 36 14	145 52 18 122 01 121 50 00 122 26 12 121 29	200 410 640 1815 800	1S 9S 8N	5W	9 P 1 Q 11 E 5 Q 36	9A 7A 8A 8P C	9A 7A 8P		1959 1957 1936 1939 1931	426 900 426 900 900
Atascadero HMS Atlas Road Ben Lomond Berkeley Berryessa IE (Toyon Ave.)	03 0360-01 E3 0372 00 0674 E4 0693 E6 0706	San Luie Obispo Nopa Senta Crus Alameda Sante Clara	J. Ellia G. Dutrs N. Shew U. of Calif. R. Hitchell	35 27 30 38 25 37 05 37 52 37 23	120 38 24 122 15 122 06 122 15 121 50	940 1735 504 299 205	10S 1S	4W 2W 3W	26 25 9 23 P	8A C SP C SP	8A 5P 8P		1948 1940 1937 1887 1921	809 900 900 900 901
Big Sur State Park Black Mountein 2 SW Blakes Landing Boonville MMS Boooville-Ferrer	D4 0790 B6 0850 F9 0876 F8 0973 F8 0973-02	Monterey Santa Clare Mario Mandocino Mendocino	Perk Ser. M. Incerpi R. Angress Div. of Highways J. Parrer	36 15 37 18 38 11 42 39 01 39 00 45	121 47 122 10 122 55 00 123 22 123 22 10	240 2330 40 342 395		3₩ .0₩ .4₩	30 36 13 2 2	8A 9A 8A 8A 9A			1914 1943 1956 1936 1951	900 900 000 900 901
Boonville-Bell Valley Bouchers Gap Bradley Bueca Vista Burliogame	F8 0973-D4 D4 0998-27 D3 1034 D1 1170 E7 1206	Meadocino Monterey Monterey Sen Benito San Mateo	E. Mathieco B. Alexander Div. of Porestry A. Churchill Burlingame	39 01 30 36 21 35 52 36 46 37 35	123 17 30 121 51 120 48 121 11 122 21	1580 2050 540 1640 10	245	1E 18	33 24 P 8 27 R	5P 8A 8A C 4P	4 P	4P	1960 1960 1946 1932 1946	000 000 900 900 900
Burton Ranch Buzzard Lagoon Caleverae Reservoir Calero Reservoir Calistoga	E4 1216 D1 1247 E5 1281 B6 1285 E3 1312	Contra Coete Santa Cruz Alameda Santa Clare Nape	B. Stirton n. Nohrden O. McCerthy SCVWCD J. Schou	37 52 37 02 37 29 12 37 10 48 38 35	122 05 121 50 121 49 06 121 45 48 122 35	530 1275 805 500 365	1S 10S 5S 9S 9N	1E 26	9 M 26 N 24 4 E 36	8A 6P 7A 8A 7A			1955 1959 1874 1958 1873	900 000 900 414 900
Cambrien Ferk Campbell Water Co Garmel Valley Cazadero Chittenden Pass	E6 1341-10 E6 1377-01 D4 1534 F9 1602 D1 1739	Santa Clera Santa Clara Monterey Sonoma San Senito	SCVWCD Campbell Water Co A. Collins R. Borotra V. Haskin	37 15 12 37 17 36 29 38 32 36 54	121 55 24 121 57 121 44 123 07 121 36	225 192 425 1040 125	8S 7S 17S 8N 12S	1W 2E 2W	12 E 35 C 5 13	7A 5P 5P 5P 8A	5P		1962 1897 1957 1939 1945	414 000 900 900 900
Chittenden Cienaga Cloverdale 3 SSE Cloverdale 11 W Concord 3 E	01 1739-01 01 1766 P9 1838 P9 1840 E4 1962	Sents Cruz San Benito Sonoma Sonoma Contra Costa	N. Chedwell A. Smith J. Byrd F. Ornbaun H. Lee	36 54 08 36 42 54 38 46 38 46 37 58	121 36 17 121 20 48 122 59 123 13 121 59	104 900 320 1820 200	14S 11N 11N	68 LOW	11 K 18 E 29	8A 8A C C 8A	8.8		1960 1950 1950 1939 1954	900 900 900 900
Conn Coyote Ozm-Lake Mendocino Coyote Reservoir Creet Ranch Crockett	E3 1976 P9 2105 E6 2109 O0 2159 E4 2177	Nape Mendocino Sante Clara Sente Cruz Contra Costa	City of Neps C.O.E. SCVWCD N. Nielson C & R Sugar	38 28 50 39 11 37 05 06 37 05 06 38 02	122 22 30 123 11 121 32 24 122 08 00 122 13	225 784 800 2640 12	7N 16N 10S 10S 3N	4E 3W	1 N 34 9 C 1 R 32	8A 8A 9A 8A	8A 9A 8A	8A 9A	0 1960 1938 1948 1918	901 900 900 900 900
Davenport Del Monte Duttone Landiag Evergreen-Silver Ck. Rd. Fairfield	00 2290 02 2362 E3 2580 E6 2919 E3 2933	Sante Cruz Mooterey Neps Sante Clare Solano	P. Tacke USN School D. Steele R. Long Co. Surveyor	37 01 36 36 38 12 37 19 38 15	122 12 121 52 122 18 122 02 122 03	273 46 20 340 15	10S 15S 4N 7S 5N	18 4₩ 2E	32 Q 10 20 G 25	8A C 8A 7A C	8A 8A	8.8	1910 1911 1955 0 1940	900 900 900 000 900
Fairfield Police Station Port Bregg Fort Bragg Aviation Port Ross Preedom 8 NNW	E3 2934 P8 3161 P8 3164 P8 3191 01 3232	Solago Mendocino Mendocino Sonoma Sente Crur	Police Dept. Cal. West. RR WB Observer C. Call Westminster	38 15 39 27 39 24 38 21 37 03	122 03 123 48 123 49 123 15 121 49	19 80 61 116 1495	5N 18N 18N 8N 10S	17W 18W 12W	26 7 25 30 D 24	4P 8A 11P 6P C	4P 8A 11P 6P		1951 1895 1940 1874 1952	900 900 900 900 900
Fremont Pk. State Park Gerber Ranch Gilroy Gilroy 8 NE Gilroy 14 ENE	D1 3238-01 E5 3387 01 3417 D1 3419 D1 3422	Sen Benito Sante Clara Sante Clara Sente Clara Sente Clara	L. Beavenue P. Gerber Pire Dist. W. Kickham S. Auser	36 46 18 37 22 00 37 00 37 02 37 06	121 28 54 121 29 12 121 34 121 26 121 20	2500 2140 194 1050 1350	13S 6S 11S 10S 10S	42	35 36 P 6 28 5	8A 8A 9A C 8A	8A 9A		1950 1912 1957 1942 1940	901 900 900 900 900
Gonzelee 9 ENE Greton Graton 1 W Green Valley Guadalupe Reservoir	D2 3502 P9 3577 P9 3578 E3 3612-01 E6 3681	San Benito Sonoma Sonoma Solano Santa Clara	A. Bogue L. Hallberg B. Peruell E. Marchall SCVWCD	36 33 38 25 54 38 26 38 17 37 12	121 18 122 51 48 122 53 122 10 121 53	2350 200 210 414 450	16S 7N 7N 5N 8S	9W 9W 3W	15 21 22 3 29 Q	C 7A 6P 8A 8A	7A 6 P		1943 1928 1896 1893 1936	900 000 900 418 414
Guerneville Half Moon Bay 2 NNW Hamilton AFB Haywerd 6 ESE Healdsburg	F9 3683 E8 3714 E2 3734 E4 3863 F9 3875	Sonoma Sen Mateo Mario Alamede Sonoma	J. Suttner Dept. Agr. Air Porce M. Oreonao Fire Dept.	38 30 37 29 38 04 37 39 38 37	123 00 122 27 122 31 121 58 122 50	115 60 -2 925 101	8N 9S 3N 3S 9N	5W 6W 1W	25 19 28 19	8A 7A C C C	7A C 6P		1939 1939 1934 1940 1877	900 900 900 900 900
Heeldsburg 2 E Hernander 7 SE Hollister Hollister Coste Hollister No. 2	F9 3878 01 3928 01 4022 01 4022-10 01 4025	Sonoma San Benito San Benito San Benito San Benito	W. Iverson C. Akers Hollister DWR - L & WU Rollister	38 37 36 18 36 51 36 55 15 36 51	122 50 120 42 121 24 121 26 46 121 24	102 2765 285 170 284	9N 19S 12S 11S 12S	5E	6 32 P	8A C 5P V C	5 P	v	1943 1940 1874 1962 1938	900 900 900 806 900
Hollister 10 ENE Nopland Largo Station Inverses-Hery Keilogg Kentfield	01 4035 F9 4100 F9 4277 F9 4480 E2 4500	San Benito Mendocino Marin Sonoma Marin	E. Rubbell C. Crewford M. Mery R. Eubinow H. Huller	36 55 39 01 38 05 24 38 40 37 57	121 14 123 07 122 51 06 122 40 122 33	3000 550 150 1800 90	12S 13N 3N 9N 1N	9W	9 8	C 8A 12N 8A 9A	5P 9A		0 1948 1951 1936 1888	900 900 000 900 900

TABLE A-1

CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LATITUDE	LDNGITUDE	ELEV IN FEET	TOWNSHIP	SECTION	40 ACRE TRACT	TIME OF OBSERVATION P I E	RECORD 8 EGAN	
King City Lafayette 2 NNE Lagunitas Lake La Honds Lake Curry	02 4555 E4 4633 F9 4652 E8 4660 E3 4677	Monterey Contra Costa Marin San Mateo Solano	Div. of Forestry R. Saobara MMWD J. Allen J. Lynch	36 12 37 55 37 56 48 37 19 38 21 1E	121 08 122 06 122 35 42 122 16 122 07 18	320 540 785 670 396	1N 2 1N 7 7S 4			5P 5P 8A C 6P 8A	1887 1956 1881 1950 1926	900 900 413 900 418
Leroy Anderson Osm Lexiagtoa Reservoir Linn Rsach Livermore Sewage Plant Livermore 2 SSW	E6 4916 E6 4922 D3 4963 E5 4996 E5 4997	Sants Clare Sants Clara San Luis Obispo Alameda Alameda	SCVWCD SCVWCD O. Linn Livermore H. Quaterman	37 09 48 37 10 36 35 41 06 37 41 28 37 39	121 37 48 121 59 18 120 43 24 121 48 20 121 47	700 700 870 405 545	9S 1 26S 12 3S 1	E 10 W 5 E 7 E 12 E 20	K J F A	8A 8A 8A 8A 5P 5P 7A 7A 7A 7A 7A	1950 1951 1925 1961 1871	414 414 000 000 900
Lockwood 2 N Los Burros Los Gatos Los Gatos-Old Orchard Rd. Los Gatos 4 SW	03 5017 05 5120-03 E6 5123 E6 5123-04 00 5125	Monterey Honterey Saots Clare Sants Clare Santa Clare	A. Weferling O. Krenkel Los Gstos E. Roll I. Miller	35 58 35 52 42 37 14 37 14 37 11	121 05 121 23 30 121 57 121 55 122 02	1104 2673 428 285 2215	24S 5 8S 1 6S 1	E 34 E 2 W 21 W 23 W 1	P	8A 8A 5P 5P 7A 9A	1940 1957 1885 1963 1957	900 000 900 414 900
Mare Island Martinet 3 S Martiner 3 SSE Martiner Fire Station Hill Valley	E3 5333 E4 5371 E4 5372 E4 5377 E2 5647	Solaco Contra Costa Contra Costa Contra Costa Marin	W. Cavenaugh N. Plummer C. Wasver Pire Dept. County Engr.	38 06 00 37 58 37 58 38 01 37 53 48	122 16 12 122 08 122 06 122 08 122 31 36	52 225 280 26 10	2N 2 2N 2 2N 2	W W W W 31		C C C 8A 9A 9A 8A	1867 1941 1956 1891 1944	900 900 900 900 411
Monterey Horgan Hill 2 E Morgan Hill 6 WNW Morgan Hill SCS Morro Bay 3 N	D4 5795 E6 5844 E6 5846 D1 5853 D6 5869	Monterey Santa Clara Santa Clara Santa Clara San Luia Obiapo	R. Johnson T. Downer N. Rose Cons. Ser. Std. Oil Co.	36 36 37 08 37 09 37 08 35 25	121 54 121 37 121 46 121 39 120 51	335 225 660 350 670	9S 3	E E E 28 E 12		SS SS 8A C C C	1878 1943 D 1945 1959	900 900 900 900 900
Nt. Dimblo North Gste Nt. Hamilton Mount Madonna Nt. Madonna Co. Park Mt. Tamelpaia 2 SW	E4 5915 E5 5933 D1 5973 D1 5973-11 E2 5996	Contra Coata Santa Clara Santa Cruz Santa Clara Marin	Bch. & Pks. WB Observer J. Schell W. Foss Bch. & Pks.	37 52 37 20 37 01 37 01 37 54	121 56 121 39 121 43 121 43 122 36	2100 4206 1800 18E0 1480	7S 3 10S 2 11S 2	W 12 E 35 E 1	В	7A 7A 11P 11P C 8A C	1952 1881 1945 1937 1959	900 900 900 909 909
Muir Wooda Napa Napa-Havan Napa State Bospitsl Navarro 1 NW	E2 6027 E3 6065 E3 6068 E3 6074 P9 6105	Marin Napa Napa Napa Mendocino	Park Ser. E. Gipson O. Haven J. Allement Masonite Co.	37 54 38 18 38 17 30 38 17 39 10	122 34 122 17 122 17 48 122 16 123 34	170 16 30 60 220	5N 4	W 3 W 10 W 14 W 7	В	9A 7A 8A 8A 5P 5P C	1940 1945 1931 1877 1958	900 900 000 900 900
Newark Novato 8 WNW Novato Fire Hause Oakland WBAP Oakvills 1 WNW	E5 6144 E2 6290 E2 6290-02 E4 6335 E3 6351	Alameda Marin Marin Alameda Napa	Leslie Salt E. Thompson E. Luders USWB A. Calkins	37 31 38 08 3E 06 30 37 44 38 27	122 02 122 43 122 33 42 122 12 122 25	14 350 18 3 160	4N 8	2W 3W 24 5W 7 3W 5W 21		8A 8A 8A C D C C	1891 1943 1957 1939 1906	900 900 411 900 900
Oakville 4 SW Occidental Paicines Ohrwell Ranch Pala Alto City Hall Paloma	E3 6354 P9 6370 01 6110 E7 6646 D2 6650	Napa Sonoma San Benito Santa Clara Monteray	R. Plainer A. Elaney J. Ohrwell Engr. Dept. J. Bell	38 23 38 25 36 44 37 27 36 21	122 28 122 59 121 22 122 0E 121 30	1465 1000 950 23 1835	7N 10 14S	6W 6 0W 33 5E 12 3W 1 4E 23		C 7A 8A 8A 8A 8A 5P	1940 1940 1924 1953 1940	900 900 900 900 900
Parkfield Parkfield 7 NNW Penttencis Rain Gage Panngrove 2 N Petsluma P. S. No. 2	D3 6703 D3 6706 E6 6791-43 P9 6792-03 E2 6826	Monterey Monterey Santa Clars Sonoma Sonoma	H. Durham R. Morrison G. Dodaon P. Biebli Pire Dept.	35 53 36 00 37 24 00 3E 20 38 14	120 26 120 28 121 49 54 122 40 122 38	1482 3590 260 200 16	6N			7A C 7A 7A 5P 5P	1938 D 1962 1930 1871	900 900 414 403 900
Petslums-Burns Petslums 1 N Pico Blanco B. S. Camp Pinnacles Netional Mon. Pleasanton Nursery	E2 6826-01 E2 6E29 D4 6E56 D2 6926 E5 6991-05	Sonoma Sonoma Monterey San Benito Alameda	Eurnm V. Chaix P. Harlsu Park Ser. J. P. Lopez	38 13 00 38 15 36 20 18 36 29 37 40	122 42 48 122 38 121 47 42 121 11 122 53	240 30 900 1310 345	5N 18S 17S	8W 2 7W 2E 30 7E 2 1E 20		8A C 8A 4P 4P 8A 4:30P	1959 1943 1957 1937 1939	901 900 000 900 000
Point Arena Poiet Piedras Blances Port Chicego NAD Portols State Park Pottar Valley 3 NNW	F8 7009 05 7024 E4 7070 E8 7086 F9 7107	Mendocino San Luis Obispo Contra Costa San Mateo Mendocino	J. Moungovan Coast Guard Naval Mag. Park Ranger W. Despain	38 55 35 40 38 01 37 14 42 39 22	123 42 121 17 122 01 122 12 42 123 08	122 59 50 422 1060	2 N	6E 12 1W 3W 8	Q	8A 8A 11P 11P 8A 8A 8A C	1940 1938 1946 1959 1953	900 900 900 901 900
Potter Valley 3 SE Potter Valley P. H. Priest Valley Quien Saba-Hay Camp Rancho Quien Saba	P9 7108 F9 7109 02 7150 01 7190 01 7249	Mendocino Mendocino Monterey San Benito San Benito	R. Near P. G. & E. N. Palmer J. P. Berts R. Somavia	39 18 39 22 36 11 36 51 30 36 50 12	123 04 123 08 120 42 121 11 48 121 12 48	1100 1014 2300 1630 1800		1W 6	H O	C 3P 3P SS SS 7A 7A 0	1952 1911 1898 1949 1931	900 900 900 000 000
Raucho Rico Bedwond City Elchmond Rongevelt Ranch Saiut Helena	D4 7249-21 E7 7339 E4 7414 D4 7539-01 E3 7643	Monterey Sun Mateo Contrs Costs Monterey Nape	B. Stiller Fire Dept. Richmond N. Roosevelt E. Faulson	36 14 24 37 29 37 56 36 10 48 38 30	121 47 24 122 14 122 21 121 41 48 122 28	900 31 55 1100 255	5S 1N 20S	2E 31 3W 4W 2E 24 5W 31	N	EA 5P 5P 8A 8A 8A 8A 6P 6P	1941 1899 1950 1946 1907	900 900 900 000 900
Saint Helena 4 WSW Saint Mary's College Salinae 2 8 Salinae PAA Airport Salinas Dams	E3 7646 E4 7661 02 7668 02 7669 03 7672	Neps Contrs Costs Monterey Monterey See Luis Obispo	E. Learned Pr. Benedict Pire Dept. Fed. Av. Agency Dam Operator	38 30 37 50 36 40 36 40 35 20	122 32 122 06 121 37 121 36 120 30	1792 625 80 80 1386	1S 14S 14S	6W 4 2W 17 3R 34 3E 4E 8		C 5P 5P 5P 5P C C	1939 1942 1958 1873 1942	900 900 900 900 900

TABLE A-1

CLIMATOLOGICAL STATION INDEX

STATION NAME	STA	COUNTY	OBSERVER	LATITUOE	LONGITUDE	ELEV IN FEET	TOWNSHIP	RANGE	SECTION	40 ACRE		IME OF RVATI	- 11	RECORO	
San Anselmo San Antonio Mission San Ardo San Benito San Clemente Omm	82 7707-01 03 7714 D2 7716 01 7719 D4 7731	Marin Monterey Monterey San Benito Monterey	Marin Co. Engr. San Antonic Man. W. Rosenberg J. Shields Wtr & Tel Co	37 58 36 36 01 36 00 48 36 30 30 36 26 12	122 33 42 121 15 120 54 06 121 04 54 121 42 30	100 1060 440 1355 600	22S 22S 16S	6W 7E 10E 8E 2E	7 18 16 27 23	R B	0 SP 8A C 7A	5P		1957 1959 1894 1936 1940	411 900 900 900 900
San Pelipe Highway Sta. San Pran. Richmond Sunset San Francieco WhAP San Pran. Ped. Off. Bldg. San Gregorio 3 SE	D1 7755 E8 7767 E7 7769 E7 7772 E6 7807	Santa Clara San Francisco San Mateo San Francisco San Mateo	Oiv. of Highways San Prancisco USWB USWB Pomponio Rch	37 01 37 46 37 37 37 47 37 18	121 20 122 30 122 23 122 25 122 20	365 300 8 52 355	10S 2S 3S 2S 7S	6E 6W 5W 6W 4W	30		C C C SP	SP C C SP		1943 1948 1928 1931 1954	900 900 900 900 900
San Jose San Jose Decid. F.F.S. San Juan Bautiste Miss. San Lucas Guidici San Maten	E6 7821 B6 7824 01 7835 D2 7845-10 E7 7864	Santa Clara Santa Clara San Benito Monterey San Mateo	E. Billwiller A. Amstutz B. A. Farber DWR - L & WU Pire Oept.	37 21 37 19 36 50 42 36 07 25 37 34	121 54 121 57 121 32 00 121 01 09 122 19	70 90 200 380 30	78 78 128 218 48	1E 1W 4E 9E 4W	15 8 29	J B	C 8A 8A V SP	C C	v	1874 1935 1900 1962 1874	900 801 804 806 900
San Rafael Nat. Bank San Rafael Nat. Bank Santa Clara University Santa Cruz Santa Rita Muther	E2 7880 E2 7880-08 E6 7912 00 7916 02 7959-10	Marin Marin Santa Clara Santa Cruz Monterey	City Engr. Crocker-Cit. Bank Santa Clera Univ. R. Burton DWR - L & WU	37 SE 37 S8 24 37 21 36 59 36 45 00	122 32 122 31 30 121 56 122 01 121 41 24	31 25 88 125 80	2N 2N 7S 11S 14S	6W 6W 1W 1W 3E	12	В	SP 8A SP SP V	SP SP SP C	v	1948 1876 1881 1866 1962	900 413 900 900 806
Santa Ross Sewage Plant Santa Rosa Santa Rosa Pedranzini Saratoga-Clark Baratoga-Kriega	P9 7964 P9 7965 P9 7965-03 E6 7998-01 E6 7998-03	Sonoma Sonoma Sonoma Sants Clara Santa Clara	M. McKiunie C. Newberry DWR - L & WU J. Clerke D. Kriege	38 26 24 38 27 38 21 38 37 16 48 37 15	122 45 12 122 42 122 44 31 121 59 42 122 02	20 167 90 272 240	7N 7N 6N 7S 8S	8W 8W 8W 1W 2W	21 16 31 1	P	8A 7A V 7A 7A	7.A	8A V	1956 1888 1962 1956 1960	000 900 806 414 414
Searsville Lake Sebastopol 4 SSE Skagga Spg. Las Lomas Rch. Slack Canyon Soledad CTF	86 8068 P9 8072 P9 8272 02 8276 02 8338-01	San Mateo Sonoma Sonoma Monterey Monterey	A. Clapp G. Nahmena J. Leithold Oiv. of Porestry P.F. Bontadelli	37 24 38 21 38 41 36 05 36 28 26	122 14 122 49 123 08 120 40 121 22 34	350 150 1930 1730 230	6N 10N 21S		12 6 36 22 12	В	8A C 8A C 9A	9.٨	9≜	1949 1935 1939 1955 1961	900 900 900 900 000
Soledad Sonoma Spreckela Buy, b Spreckela Spreckela Spreckela Hill - Laguna Seca	02 8338 E2 8351 02 8446 02 8446-01 E6 8447	Monteray Sonoma Monterey Monterey Senta Clara	J. Prencioni L. Dickey B. Hennea Spreckels Sugar Co SCVWCD	36 26 38 17 36 36 36 37 37 12	121 19 122 27 121 41 121 39 121 44		178 SN 158 158 -98	6E SW 3B 3E 3E	7		SP SA SA SA	SP 8A		1874 1952 1905 1905 0	900 900 900 000 414
Stevens Creek Reservoir Suey Ranch Sunset Beach St. Park Talmage Tamalpais Valley	E6 8519 D6 8627 D1 8680 F9 8776-01 E2 8779	Santa Clera Sen Luis Obispo Santa Cruz Mendocino Marin	SCVWCD Suey Ranca Bch. & Pka. L.G. Von Schriltz Glessner	37 18 34 59 40 36 54 39 08 37 52 42	122 05 120 22 35 121 50 123 11 122 32 36		9N 11B 15N	1E	28	E	8A SP C 8A 8A			1937 1909 1956 1953 1959	414 900 900 000 901
Templeton The Geyaera Tiburon-Topham Travia Air Force Base Ukiah	D3 8849 P9 8885 B2 8920-21 E3 9006 P9 9122	San Luis Obispo Sonoma Marin Solann Mendocino	A. Willhoit F. Dewey B. Topbam U.S.A.F. Pire Dept.	35 32 36 38 48 37 52 24 38 16 39 09	120 42 21 122 49 122 27 12 121 56 123 12	773 1600 400 50 623	18	9W 5W 1W	29 23 4 24 17	E	8A C 9A 8A SP	8A SP		1886 1939 1960 1943 1877	000 900 000 902 900
Ukiah 4 WSW Upper Morro Craek Opper San Leandto Pilters Upper Trea Pioca Valleton	P9 9124 D6 9179 E4 9185 01 9189 03 9221	Mendocino San Luia Obiapo Contra Coata San Benito Monterey	M. Dory E. Purser B. Bay MUD E. Prancher A. Curtis	39 08 35 27 18 37 46 36 38 35 53	123 17 120 45 12 122 10 121 02 120 42	1900 1050 390 2050 950		11E 3W 9E	27 35 11 7 32	B G	8A 7A 7A C C	7▲		1951 1951 1944 1940 1940	900 000 900 900 900
Vasona Reservoir Venado Veterans Home Walmar School Walmut Creek 2 ESE	E6 9270 P9 9273 E3 9305 E4 9420 E4 9423	Santa Clara Sonoma Napa Contra Costa Contra Costa	SCVWCD J. Harper B. Berboza M. Deunis B. Whittemore	37 14 36 38 37 38 23 37 57 37 53	121 58 00 123 01 122 22 122 05 122 02	300 1260 170 128 245	8S 9N 6N 1N 1N	1W 10W SW 2W 2W	15 19 1		EA C 8A 5P 8A	RA 8A		1962 1939 1912 1954 1887	414 900 000 900 900
Walput Creek 2 ENE Walnut Creek 4 E Wataonwille Water Works Wilder Ranch Wild Horae Valley	E4 9426 E4 9427 01 9473 D0 9675 E3 9675-41	Contra Costa Contra Costa Santa Cruz Santa Cruz Solano	T. Vanasek E. Irving L. Bechis D. &. Wilder G. Stiltz	37 54 37 54 36 56 36 57 36 38 17 53	122 01 121 59 121 46 122 05 24 122 11 13	220 400 95 50 1240	1N 1N 11S 11S 5N	2W 1W 28 2W 3W	30 32 22 10	Đ	C 9A 8A 5P 8A	8A 2P		1944 1954 1880 1924	900 900 900 000 418
Woodacre Wrights Yorkville Yountville Gamble	P9 9770 B6 9814 F8 9851 E3 9861	Marin Santa Clara Mendocino Napa	Div. of Forestry M. Ware L. Hulbert DMR - L & WU	38 00 24 37 08 38 55 38 26 05	122 38 30 121 57 123 16 122 22 05	430 1600 1100 120	2N 9S 12N 7N	7W 1W 13W 5W	23 2 24	P	2P SP C V	2P C	٧	1950 1918 1939 1962	808 900 900 806

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	001	NON	DEC	JAN	FEB	MAR	APR	MAY	N O O
E6 0053	Alamitos Perc. Pond	23.92	0	0	EH	7.37	.13	2.11	4,45	2.91	3.27	3.26	, h2	E
E4 0064	Alamo 1N	35.19	0	.07	E	12.67	84.	2.19	3,56	6.08	4.52	4,80	.71	H
E6 0125	Almaden Reservoir	53.10	0	.03	0	17,14	04°	3,15	9.75	8.18	7.14	6.71	9.	0
E3 0212	Angwin FUC	55.21	0	60.	.33	.33 14.47	1.76	- 1	6.55 10.54	4.61	7.12	8.62	1,12	0
D2 0322	Arroyo Seco	13.88	0	0	0	.59	E	H	.81	6.55	2.50	2.51	.05	.87
E3 0372	Atlas Road	53.62	0	• 02	.37	11.52	1.83	- (4.80 13.40	3.66	7.90	8.92	1.08	.12
D3 0360-01	Atascadero H.M.S.	20.12	0	0	0	.71	0	1.46	2.33	6.57	4.47	4.08	•36	.14
DO 0674	Ben Lomond	67.81	0	.13	.12	12 14.97	.87	5.46	5.46 16.97	9.30	9.24	9.74	1.01	0
Е4 0693	Berkeley	30,05	0	.12	.41	7.05	\$	3.50	48.4	3.10	3.51	5.97	.53	8
E6 9706	Berryessa lE	25.16	0	0	0	3.95	.76	2.60	2.90	3.71	4.72	5.42	1.10	0
D4 0790	Big Sur State Park	60.16	0	0	EH	8.15	,35	6.61	6.61 13.89 11.67	11,67		7.80 11.08	.53	89
E6 0850	Black Mountain 2SW	42.84	EH	.15	.16	.16 11.44	.83	3.55	6.07	7.85	48.4	6.34	1.09	.02
F9 0876	Blakes Landing	31,32	0	.10	.25	8.72	8.	70.7	5.05	2.21	4.06	5.64	.27	0
F8 0973	Boonville HMS	47.22	0	.37	.73	8.41	3.03	424	4.93	7.32	7.70	9.05	7 14	d
F8 0973-02	Boonville - Farrer	65.08	0	.25	.87	10.97	3.76	5.98	8.13	9.38	12.32	11.46	1.96	0
F8 0973-04	Boonville - Bell Valley	Ж	0	.30	.71	8.41	3.67	4.30	6.63	4.22	D	D	Д	0
D4 0998-27	Bouchers Gap	Σ	NA	N.	NR	NR	RB	4.22		9.79 10.33	9.20	9.58	.81	₽.
D3 1034	Bradley	15.78	0	0	.02	8.	0	2.29	2.71	4.85	2.68	1.83	.41	ЕН
0711 10	Buena Vista	13.08	0	0	0	-89	e.27	e _{1.93}	2.34	1.69	2.60	2.64	.54	.18
E7 1206	Burlingame	24.96	0	₽.	0	6.68	.37	2.81	3.63	3.15	4.17	3.66	.45	0
E4 1216	Burton Ranch	36.00	0	.05	.05	13.33	9.	2,69	3.83	5.68	4.38	4,68	99.	.05
D1 1247	Buzzard Lagoon	55.77	0	.25	0	10.75	1.98	4.80	4.80 11.78	7.32	6.82	11.24	.83	0
E5 1281	Calaveras Reservoir	22.81	0	ਰੋ	0	3.79	99.	2.26	1.65	4.08	4.10	5.24	.99	9
E6 1285	Calero Reservoir	33.72	0	0	0	9.10	.23	2.30	9.31	3.93	64.4	7,00	.36	9
C121 54			,	7	`	,								

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	100	NON	DEC	JAN	FEB	MAR	APR	MAY	SUN
E6 1341-10	Cambrian Park	×	R	MR	M	RB RB	.15	2.27	4.08	3.86	3.78	3.74	.55	а
E6 1377-01	Campbell Water Company	23.03	e _o	60	0 ₉	4.72	.13	2.49	5.24	2.55	3.65	3.69	.55	.01
D4 1534	Carmel Valley	19.72	0	0	0	1.09	7	2.22	5.28	3.21	3.70	3.86	.22	.03
F9 1602	Cazadero	82.63	0	.65	.63	15.18	3.88	11.64 13.48	13.48	7.70	10.22 17.69	17.69	1.53	.03
D1 1739	Chittenden Pass	25.68	0	.50	.03	2.77	04.	2.86	5.08	4.48	3.92	5.35	42.	.05
D1 1739-01	Chittenden	24.95	0	0	0	2.64	.36	2.78	4.74	5.05	3.80	5.39	61.	E
D1 1766	Cienaga	20.73	0	0	0	.70	.35	3.25	4.24	4.05	3.52	3,88	.57	.17
F9 1838	Cloverdale 3SSE	49.74	₽	.26	14.	12.24	1.42	5.81	6.43	6.58	7.80	7.28	1.51	٥
F9 1840	Cloverdale 11W	e73.52	0	.53	1.09	1.09 15.37	4.45	8.65	8.65 13.38	e5.42	10.02 12.00	12.00	2.61	0
E4 1962	Concord 3E	23.30	0	.01	0	8.12	.37	1.60	2.03	4.18	3.16	3.18	.58	.07
E3 1976	Conn	38.42	0	0	.10	9.90	₽9.	5.03	5.12	5.59	4.91	5.44	1.69	0
F9 2105	Coyote Dam - Lake Mendocino	40.60	0	.16	.51	8.60	2.72	5.15	4.20	5.04	5.87	7.37	.80	.18
E6 2109	Coyote Reservoir	27,79	0	0	E	2,42	•43	2,60	6.22	6.39	3,79	5.48	.45	10.
DO 2159	Crest Rench	74.50	0	.50	.35	21.70	1.35	7.90	7.90 11.70 12.80	12.80	8.40	8.60	1,20	0
E4 2177	Crockett	28.88	0	.65	<u>e</u>	8.88	₽8.	2.18	3.78	3.72	4.58	4.20	. 59	.05
DO 2290	Davenport	29.15	8	.15	ήΤ.	4.18	.41	3.03	3.48	5.79	90.9	5.16	.71	20.
D2 2362	Del Monte	13.10	0	0	.03	.73	.13	1.91	2,64	1.87	3.0	2.58	.17	0
E3 2580	Duttons Landing	28.67	0	.07	%	7.95	.78	2.61	4.12	3.36	5.07	4.46	.19	EH
E6 2919	Evergreen - Silver Creek Rd.	M	MR	M.	MR	Æ	MR	82	2.61	2.96	3.15	3.72	.57	EH
E3 2933	Fairfield	25.63	0	.02	0	7.27	.70	2.17	5.02	2.30	3.41	4.21	94.	.07
E3 2934	Fairfield Police Station	28.20	0	0	E	7,85	,16	2,58	5,32	2,67	3.59	5.49	.45	8
F8 3161	Fort Bragg	36.73	0	1.59	.83	5.82	e3.21	3.63	3.24	2.70	6.50	8.29	48.	8
F8 3164	Fort Bragg Avn	40.17	0	1.97	.79	6.23	3,32	4.35	3.87	2.51	6.67	9.50	96.	0
F8 3191	Fort Ross	38.58	90.	42.	1.36	7.23	1.93	5.78	4.79	3.89	5.33	6.43	1.05	.03
D1 3232	Freedom 8NNW	e56.54	0	.19	0	11.61	1.51		4.78 215.84	e5.23	7.17	9.54	.67	0

T T 2.13 .48 2.36 6.15 5.85 3.97 T T 2.13 .48 2.36 6.15 5.85 3.97 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.80 3.69 O O .55 .15 2.30 9.07 3.65 6.89 D D D D D D D 5.56 5.96 D OO 0 15.79 .35 2.48 9.25 6.92 6.02 OO 0 15.79 .60 3.57 3.44 3.65 4.33 T T 8.07 .80 3.77 8.46 3.98 2.91 2.11 O O 0 .97 0 2.70 4.46 3.98 2.91 T T 7.2 2.3 9.92 1.93 5.98 6.65 6.33 7.04 O O .97 0 2.70 4.46 3.98 2.91 T T 7.2 2.5 1.73 4.45 2.03 2.12 O O 2.45 .31 2.15 6.02 3.21 4.23 1.3 5.7 8.42 2.57 4.75 4.86 4.36 7.85 1.3 5.7 8.42 2.57 4.75 4.86 4.36 7.81 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.3 6.5 6.20 4.10 8.50 6.50 6.50 6.50 6.50 2.4 7.3 8.9 6.50 7.31 8.10	TOTAL		JUL	AUG	SEP	OCT	NOV	DEC		FEB	1-1		MAY	SUN
0 T T 2.13 .48 2.36 6.15 5.85 3.97 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.4 10.47 1.17 6.03 6.63 6.19 6.26 0 D D D D D D D D D 5.56 5.96 D D D O O C 2.4 3.57 3.44 3.65 6.89 0 O C 33 .63 9.59 1.74 6.47 5.89 6.62 7.36 0 O C 33 0.69 1.05 2.44 5.22 2.65 4.73 0 O C 0 O C 3.7 3.6 6.40 10.75 3.99 7.74 0 O C 0 O C 3.7 3.6 6.40 10.75 3.99 7.74 0 O C 0 C 3.7 3.6 6.40 10.75 3.99 7.74 0 O C 0 C 3.7 3.8 2.8 6.65 6.33 7.04 0 O C 0 C 3.7 3.8 2.8 2.8 2.9 2.1 2.11 0 O C 0 C 2.45 3.1 2.13 4.45 2.03 2.12 0 O C 0 C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.07 7.19 8.67 7.31 8.16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fremont Peak State Park	23.41	0	.03	•03	2,30	.50	2,30		3.99	3.38	5.25	98	.05
0 T T 2.13 .48 2.36 6.15 5.85 3.97 0 0 0 2.48 .32 2.27 8.74 8.20 3.67 0 0 0 2.48 .32 2.27 8.74 8.20 3.69 0 0 0 0 5.5 .26 1.85 4.80 5.93 3.69 0 0 0 0 5.5 .15 2.30 2.07 1.69 3.04 0 0 0 0 5.75 .15 2.30 2.07 1.69 3.04 0 0 0 0 15.79 .17 6.03 6.63 6.19 6.26 0 0 0 0 15.79 .50 2.48 9.25 6.92 6.02 0 0 0 0 10.90 1.05 2.44 5.22 2.65 4.73 0 0 0 0 0 0.70 1.05 2.44 5.22 2.65 4.73 0 0 0 0 0 0 0.70 1.05 2.44 5.20 2.46 5.55 0 0 0 0 0 0 0.70 1.05 2.44 5.20 2.05 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		23.96	0	0	H	3.87	.22	1.78		5.47		4.10	.71	0
0 0 0 2.48 .32 2.27 8.74 8.32 3.67 3.67 0 0 0 0 2.48 .32 2.27 8.74 8.320 3.67 3.67 0 0 0 0 0 2.55 .26 1.85 4.80 5.93 3.69 0 0 0 0 0 0 5.55 .15 2.30 2.07 1.69 3.04 0 0 0 0 0 0 5.5 10.47 1.17 6.03 6.63 6.19 6.26 0.20 0 0 0 0 0 15.79 3.57 2.48 9.25 6.92 6.02 0 0 0 0 0 15.79 3.57 3.44 3.65 5.96 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		26.52	0	H	E	2.13	84.	2.36		5.85	_ !	5.19	•39	I
0 T T 2.55 .26 1.85 4.80 5.93 3.69 3.69 0 0 0 0 .55 .15 2.30 2.07 1.69 3.04 0 0 0 0 .26 .51 10.47 1.17 6.03 6.63 6.19 6.26 T .30 0 0 0 0 0.5 0 15.79 3.5 2.48 9.25 6.92 6.02 0 0 0 0.5 0 15.79 3.5 2.48 9.25 6.92 6.02 0 0 0 0 0.3 0 10.90 1.04 5.89 6.62 7.36 0 0 0 0 0 0 0.97 0 0.77 3.44 3.65 6.33 7.04 0 0 0 0 0 0 0.97 0 0.77 3.99 2.91 2.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		e26.28	0	0	0	2.48	.32	2.27	e8.74	e3.20	- 1	5.11	,31	.18
0 0 0 05515 2.30 2.07 1.69 3.04 T1844 10.90 134 6.30 9.07 3.65 6.89 D D D D D D D D 5.56 5.96 D O05 0 15.7935 2.48 9.25 6.92 6.02 O2363 9.59 174 6.47 5.89 6.62 736 O03 0 10.9760 357 344 365 133 T3026 1083 266 6.40 1075 399 7744 O03 0 0 097 0 244 522 265 473 O0 0 0 0 097 0 240 389 291 212 O0 0 0 0 245 193 596 620 314. 22 O0 0 0 0 245 13 445 23 22 T2029 130 25 13 445 23 22 O0 0 0 0 245 34 45 62 31 423 O0 0 0 0 245 34 45 62 45 60 T T20 245 34 25 46 45 23 22 O0 0 0 0 245 34 45 23 22 O0 0 0 0 245 34 45 46 45 22 T20 245 37 445 23 22 T21 327 425 13 445 23 22 T21 228 123 25 45 45 63 45 60 T21 228 123 25 43 85 83 86 15 63 43 86 15 63 43 86 15 63 43 83 85 63 43 83 85 63 43 85 63 43 85 63 43 85 6.		24.99	0	T	₽	2.55	.26	1.85		1	1	5.36	.41	.14
D D D D D D D D 5.56 5.99 6.89 6.89 6.89 6.89 D O O O O O O O O O O O O O O O O O O		13.14	0	0	0	.55	.15	2.30		1.69	- 1	2.56	99.	.12
T18 .14 10.90 1.34 6.30 9.07 3.65 6.89 D. D. D. D. D. D. D. 5.56 5.96 D. D. O.		46.61	0	.26		10.47	1.17	6.03		6.19		8.27	.82	0
D D D D D D D 5.56 5.96 D D C C C C C C C C C C C C C C C C C		47.60	Т	.18	44.	10.90	1.34	6.30		3.65		8.06	.77	Ŧ
0 .05 0 15.79 .35 2.48 9.25 6.92 6.02 6.02 0 .33 .63 9.59 1.74 6.47 5.89 6.62 7.36 0 .29 .51 10.97 .60 3.57 3.44 3.65 4.33 0 .20 10.90 1.05 2.44 5.22 2.65 4.73 1.0		M	А	Q	Д	Q	D	Д	5.56			D	D	D
0 .33 .63 9.59 1.74 6.47 5.89 6.62 7.36 6.02 2.33		146.97	0	.05		15.79	.35	2.48		6.92		5.37	.74	0
0 .29 .51 10.97 .60 3.57 3.44 3.65 4.33 0 .0 10.90 1.05 2.44 5.22 2.65 4.73 0 .03 0 10.90 1.05 2.44 5.22 2.65 4.73 0 .29 .25 10.83 2.06 6.40 10.75 3.99 7.74 0 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 0 0 .97 0 2.70 4.46 3.98 2.87 0 0 0 0 6.49 .22 1.73 4.45 2.03 2.12 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.07 7.19 8.67 7.31 8.16 10 6.10		48.81	0	•33	.63	9.59	1.74	6.47		6.62		9.25	.93	0
0 T T 8.07 .80 3.70 8.24 2.46 5.55 4.73 0 .03 0 10.90 1.05 2.44 5.22 2.65 4.73 T .30 .26 10.83 2.06 6.40 10.75 3.99 7.74 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 T T .72 .25 1.73 4.45 2.91 2.11 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 T .27 8.42 2.57 4.75 4.86 4.36 7.85 T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1		33.08	0	.29	_	10,97	9.	3.57			1	5.08	79•	0
0 .03 0 10.90 1.05 2.44 5.22 2.65 44.73 T .30 .26 10.83 2.06 6.40 10.75 3.99 7.74 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 0 0 0.97 0 2.70 4.46 3.98 2.91 2.11 0 0 0 0 0.69 .22 1.73 4.45 2.03 2.12 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.5 50 12.90 1.30 5.35 6.20 4.10 6.10 T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1	- 1	33.43	0	L	H	8.07	.80	3.70				4.25	.36	0
T	Ì	e33.54	0	.03	0	10.90	1.05	2.44			1	5.58	e.92	•05
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		50.32	H	•30	.26	10.83	2.06	6.40	10.75	3.99	- 1	6.85	1.14	0
0 0 0 0 .97 0 2.70 4.46 3.98 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.8		46.35	0	.29	.23	9.92	1.93	5.98				6.80	1.18	0
0 T T .72 .25 1.78 3.89 2.91 2.11 0 0 0 .69 .22 1.73 4.45 2.03 2.12 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 .13 .57 8.42 2.57 4.75 4.86 4.36 7.85 0 .25 .50 12.90 1.30 5.35 6.20 4.10 6.10 T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1	j	19.09	0	0	0	.97	0	2.70	- 1	- 1	Į.	3.30	.52	.29
0 0 0 6.69 .22 1.73 4.45 2.03 2.12 2.15 6.00 0 0 2.45 3.1 4.45 2.03 2.12 4.23 0.0 0 0 0 2.45 3.1 2.15 6.02 3.21 4.23 0.0 0 0 0 2.45 3.1 2.15 6.02 3.21 4.23 0.0 0 0 2.5 6.012 0.0 0.0 0.25 6.00 1.30 5.35 6.20 4.10 6.10 0 0 2.21 8.29 15.79 3.07 7.19 8.67 7.31 8.16 10 0 2.1 2.28 12.97 1.70 7.34 8.95 8.31 8.19		14.87	0	T	L	.72	.25	1.78	1	2.91		2.72	•39	.10
0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 4.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		14.39	0	0	0	69.	.22	1.73	- 1	1		2,61	.39	.15
0 .25 .50 12.90 1.30 5.35 6.20 4.10 6.10 T .27 .89 12.97 1.70 1.30 5.35 6.20 4.10 6.10 0.10 0.10 0.10 1.30 5.35 6.20 4.10 6.10 0.10 0.10 0.10 0.10 0.10 0.10 0		24.96	0	0	0	2.45	.31	2.15			- 1	5.79	.58	.22
T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		41.85	0	.13	.57	8.42	2.57	4.75		- 1		7.54	8.	0
T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1 0 .21 .28 12.97 1.70 7.34 8.95 8.31 8.19		45.70	0	.25	.50	12.90	1.30	5.35		- 1	- 1	8.05	.95	0
0.8 12.97 1.70 7.34 8.95 8.31 8.95		64.78	E	.27	.89	15.79	3.07	7.19				11.19	2.24	0
		57.65	0	.21	.28	12.97	1.70					8.97	.73	T
60:5 po:1 66:6 po:5 0 66: 0 0 0		15.61	0	0	0	.59	0	2.00	5.99	1.68	2.89	1.67	.42	.37

TABLE A-2 SEASONAL PRECIPITATION

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	S
E4 4633	Lafavette 2NNE	35.68	0	%	8	13.02	.70	2.58	4.72	5.04	3.65	4.97	8	95
F9 4652	Lagunitas Lake	. 64.86	0	.29	.38	15.15	1.45	8.64	11.44	7.78	9.25	9.46	1.05	0
E8 4660	La Honda	40.05	8.	.29	.42	79.6	.83	3.87	6,69	5.01	5.38	6.33	1.38	.10
E3 4677	Lake Curry	e39.10	e ₀	e ^o	-14	9.99	7.L.	2.67	6.02	5.75	6.36	6.51	-89	0
E6 4916	Leroy Anderson Dam	M	0	ਰੋ.	0	Ω	.21	2.18	7.08	4.78	4.20	4.28	.21	0
E6 4922	Lexington Reservoir	54.92	0	8.	.01	.01 14.69	148	4.19	- 1	9.71 10.02	7.00	8.8	8.	0
D3 4963	Linn Ranch	Σ	0	0	0	.99	0	3.00	4.63	Q	Ω	3.29	.20	ठं
E5 4996	Livermore Sewage Plant	22,12	0	0	0	5.33	.30	1.93	2.03	5.60	3.10	3.35	74.	70.
E5 4997	Livermore 2SSW	18.14	0	H	0	3.64	.28	1.55	1.40	4.50	2.60	3.47	.70	EH
D3 5017	Lockwood 2N	17.31	0	0	0	74.	0	2.92	4.80	2.65	3,13	2.98	•30	8.
D5 5120-03	Los Burros	M	NR	NR	NR	10.15	01.		16.05	5.70 16.05 15.65	18.70	D	1.56	.25
E6 5123	Los Gatos	40.65	0	0	0	11.26	.28	3.09	5.02	10.00	ец. 42	6.02	.56	0
E6 5123-04	Los Gatos - Old Orchard Road	×	NR	MR	NR	M.	MR	MR	MR	æ	4.69	4.39	9.	10.
DO 5125	Los Gatos 4SW	74.86	0	.03	8	18.37	.72	5.91	8.99	8.99 15.77	10.85	12.91	1.25	EH
E3 5333	Mare Island	27.71	0	.05	.02	8.61	.83	2.34	4.87	2.27	4.15	4.20	.37	0
E4 5371	Martinez 3S	32.59	0	8	0	11.91	.54	2,11	5.68	2.73	5.12	3.96	.36	.10
E4 5372	Martinez 3SSE	31.15	0	8	0	11.20	.59	2,13	3.84	4.51	4.59	3.79	.34	8
Е4 5377	Martinez Fire Station	27.63	0	G	0	9.25	.62	1.89	3,15	4.39	4.1	3.73	.42	99
E2 5647	Mill Valley	35.37	0	.05	.78	8.61	1.00	4.75	5.32	3.99	5.09	5.27	.51	0
D4 5795	Monterey	M	0	.25	.15	1.33	.37	2.21	3.05	2.70	4.14	NR	N.	NR.
E6 5844	Morgan Hill 2E	28.18	0	0	0	4.54	.31	2.28	6.77	5.18	4.47	4.38	.25	0
E6 5844	Morgan Hill 6WNW	40.56	0	0	0	10.64	.22	- 1	2,58 14,37	2.45	5.07	4.93	.30	0
D1 5853	Morgan Hill SCS	e28.28	0	0	0	4.47	.22	2.27	10.16	2.20	4,49	4.33	.20	0
D6 5869	Morro Bay 3N	21.23	0	0	0	.92	0	₽.7	2.87	4.10	2.01	4.03	•62	-14
Е4 5915	Mt. Diablo North Gate	34.20	0	0	0	10.67	.65	2,16	3.62	7.09	3.64	5.38	.99	0

IABLE A-2

E5 5933 Mt. Hemilton D1 5973 Mt. Madonna D1 5973-11 Mt. Madonna Co. Pk. E2 5996 Mt. Temalpais 2SW E2 6027 Muir Woods E3 6065 Napa - Haven E3 6074 Napa - Haven E3 6074 Navarro INW E5 6144 Newark E5 6290-02 Novato Fire House E4 6335 Oakland WBAP E3 6551 Oakville lwww E3 6554 Oakville lwww E9 6370 Occidental D1 6610 Paicines Ohrwall Ranch E7 6646 Paloma E7 6646 Paloma	17					5		ט ב ג	1	2		MLN	MAI	200
		17.93	0	0	EH	1.71	₹9.	1.68	1.68	2.79	4.33	4.16	46.	0
	e ₅₁	e _{51.10}	0	.10	.07	e9.90	1.71		4.20 94.20	4.35	5.76	10.56	.35	0
		49.14	.01	.20	.05	9.45	1.75	3.91	8.66	7.93		5.79 10.55	.68	.16
	Lt1	47.07	.03	.41	2.15 11.50	11.50	2.02	±0°9	7.53	3.48	4.74	8.09	.97	7
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	P13	43.80	.03	.22	1.75	1.75 10.10	1.65	5.72	5.28	4.88	5.30	7.98	.85	ਰੋ
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33	33.76	0	0	91.	16 10.05	.80	3.33	3.93	5.02	4.18	5.63	99°	E
20 20 20 20 20 20 20 20 20 20 20 20 20 2	33	33,57	0	.02	.21	9.82	.79	3.22	4.11	4.74	4.45	5.84	.37	EH
8 8		35.09	0	.11	.20	20 10.37	.97	3.93	4.71	3.79	4.91	5.66	44.	0
	047	40.97	0	4Z.	29°	.67 e7.19 e3.21 e3.95	e3.21	e3.95	5.18	2.23	7.15	9.68	.97	0
	91	19.39	0	0	0	4.53	4€.	2.20	1.51	2,88	3.09	4.19	.57	80.
200	37	37.79	0	%	.43	43 10.61	1.0t	4.39	6.61	2.76	5.01	6.39	64.	0
	31	31.68	0	0	છં.	8.12	04.	3.32	6.19	4.45	4.89		.39	0
	25	25.65	ы	.05	.19	8.56	.61	2.47	2.68	2.64	3.31	4.60	.51	.03
			0	.03	.27	11.08	.79	4.24					.59	EH
	5	51.42	0	.07	.25	94.85	1.29	5.60	5.60 10.40	3.93	7.37	6.91	.75	0
	57	57.35	0	Lη*	1.40	1.40 11.44	1.93	44.6	7.85	6.12	84°℃	06*6	1.24	80.
		17.24	0	0	0	69:	.26	2.18	2.84	h.22	2,86	3.52	.55	.12
		21.71	0	EH	터	2.92	.41	2.30	1,88	3.66	2.37	3.05	.51	.02
	25	25.72	0	0	EH	2.09	.o7	2.54	8.83	2.53	86°4	7,42	.18	80.
o/03 FarkileId	16	16.44	0	0	0	19.	0	1.60	2,19	5.91	3.09	2.51	74°	H
D3 6706 Parkfield 7NNW	16	19.91	0	0	0	-82	0	2.77	4.25	3.48	2.14	2.50	.63	.02
E6 6791-43 Penitencia Rain Gage		17.80	0	0	0	2.58	99.	1.91	1.35	3.15	3.20	4.13	.82	o _o
F9 6792-03 Penngrove 2N	170	40.73	0	.07	•35	9.37	.88	3.80	5.50	9.6	5.07	5.53	.52	0
E2 6826 Petaluma Fire Station		28.96	0	.03	80.	7.29	.61	3.32	4.97	3.04	4.58	4.58	94.	0
E2 6826-01 Petaluma - Burns	3,	37.50	0	0	.20	20 10.40	.85	3.60	5.30	5.35	5.25	6.05	.50	0

STATION NAME															
Prior Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Prior Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Prinnacles National Monument 16.15 0 0 0 0 .86 0 2.13 2.91 Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Priedras Blancas 29.26 T 0 0 1.17 .23 5.86 6.12 Point Olicago NAD 23.13 0 T 0 0 1.17 .23 5.86 6.12 Potter Valley Sate Park 43.84 T T 0.29 T 1.4 1.5 1.5 Potter Valley Sate Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley David Sate Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley David Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quiten Sabe - Hay Camp 17.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quiten Sabe - Hay Camp 17.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 1.23 .38 2.97 1.89 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 0 1.23 .38 2.95 4.46 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 0 0 0 0 0 0	NUMBER	- 1	TOTAL	JUL JUL	AUG	SEP	00	Š	DEC	JAN	FEB	MAR	APR	MAY	JUN
Pico Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Pinnacles National Monument 16.15 0 0 0 .86 0 2.13 2.91 Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Potter Valley State Park 43.84 T T 0.29 T 4.38 4.31 Potter Valley State Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley State Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley State Park 44.25 0 0 1.02 3.98 6.19 6.71 Rancho Quien Sabe - Hay Camp 17.55 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 18.55 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 0 3.08 3.88	E2 6829	Petaluma 1N	27.22	0	.05	1.	7.21	.45	2,96	48.4	2.74	4.43	00°†	.43	0
Pinnacles National Monument 16.15 0 0 0 0 0 0 0 2.13 2.91 Point Arena	D4 6856	Pico Blanco Boy Scout Camp	M	0	0		01.11	•31	4.45	14.29	79.11	9.84	9.84 10.22	盟	MR
Point Arena 10.83 0 0.4 0 6.83 1.6 1.64 2.28 Point Arena 140.83 0 1.20 36 7.31 3.51 5.18 3.72 Point Friedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T T 10.29 T 1.64 1.93 Porter Valles Park 143.84 T T T 0.22 T 1.64 1.93 Potter Valley 3NNW 644.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley 3NNW 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 147.89 0 .57 .90 9.56 3.98 1.96 1.47 Potter Valley P.H. 147.89 0 .77 .90 9.56 3.98 1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.23 .33 1.96 1.47 Rancho Rico 29.54 0 .01 0.95 .34 1.28 1.96 1.47 Richmond 29.54 0 .01 .03 .35 8.50 6.90 Saint Helena 144.58 0 .01 .03 .38 1.78 1.96 3.91 Saint Halena 148.8W 53.82 0 .04 .23 1.77 1.07 5.38 8.58 Saint Maxy's College 10.56 0 0 0 1.03 0.9 1.73 2.81 Salinas FAA Airport 13.70 T .03 .01 .05 .40 1.73 2.81 Salinas Dam Anselmo 25.08 0 0 0 1.03 .02 1.05 1.05 1.00 Salinas Dam Anselmo 19.50 0 0 1.03 .04 5.91 1.80 Salinas Dam Anselmo 25.08 0 0 0 1.03 0.91 1.73 0.91 1.80 Salinas Dam Anselmo 19.50 0 0 1.03 0.91 1.13 0.91 1.18 Salinas Dam Anselmo 25.08 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.9	D2 6926	Pinnacles National Monument	16,15	0	0	0	.86	0	2,13	2,91	2,33	4.25	3.07	.15	.45
Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Porter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.36 Potter Valley State State Park 44.85 0 0 0 1.02 T 4.38 4.46 Rachood City 24.32 0 0 0 0 2.39 3.48 4.46 Richmond City 24.32 0 0 0 0 2.39 3.48 4.46 Richmond City 29.82 0 0 0 0 2.30 3.48 4.46 Saint Helena 44.58 0 0 0 0 2.30 3.5 8.50 Saint Mary's College 40.56 0 0 0 0 3.07 5.38 Sailnas PAA Airport 13.70 T 0.3 0.0 1.03 0.0 1.03 2.72 Salinas Dam 19.50 0 0 1.03 0.0 1.03 2.72 San Anselmo 22.08 0 0 1.03 0.0 1.03 0.0 1.03 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.	E5 6991-05	Pleasanton Nursery	26.35	0	₹.	0	6.83	.45	1.64	2.28	6.71	4.25	3.67	.51	T
Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Portola State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley 3RWW 644.11 0 .52 .87 63.92 3.73 5.63 6.88 Potter Valley 3RWW 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 17.55 0 0 1.02 3.8 1.96 1.47 Rancho Quien Sabe	F8 7009	Point Arena	40,83	0	1.20	.86	7,31	3.51	5,18	3.72	3,59	6.83	7,65	.92	90,
Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Portola State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley SNRW e44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley SSE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 4.42 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 4.42 Potter Valley P.H. 47.89 0 .00 0 1.23 3.98 1.96 1.47 Rancho Quien Sabe - Hay Camp 17.55 0 0 0 1.23 3.88 1.96 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 .01 0.05 7.38 1.90 Redwood City 24.32 0 .10 .03 7.38 9.90 3.48 4.20 Redwood City 24.32 0 .01 .03 7.38 8.58 8.58 Saint Helena LWSW 59.82 0 .01 .03 7.3 1.48 9.50 6.90 Saint Mary's College 40.56 0 .02 1.3 1.71 6.65 8.81 Saint Mary's College 40.56 0 .02 1.3 1.71 6.65 8.81 Sailinas ZE 14.53 0 .02 1.3 .01 1.73 2.81 Sailinas Dam 19.50 0 0 1.03 .02 1.09 2.72 Sailinas Dam 19.50 0 0 1.03 .02 1.09 2.72 Sailinas Dam 19.50 0 0 1.03 .02 1.09 .94 5.91 1.80 Sailinas Dam 19.50 0 0 1.03 .04 5.91 1.18	D5 7024	Point Piedras Blancas	29.26	-1	0	0	1.17	.23	5.80	6.12	5.32	4.32	5.85	14.	₽.
Portola State Park	E4 7070	Port Chicago NAD	23.13	0	€	0	8.05	14.	1.64	1.93	4.18	2.83	3.44	.59	%
Potter Valley 3NNW ell.11 0 .52 .87 el.92 3.73 5.63 6.88 Potter Valley 3SE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 17.55 0 0 0 1.02 .38 1.96 1.47 1.89 Priest Valley P.H. 22.09 0 0 0 1.02 .38 1.96 1.47 1.89 1.90 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Pancho Rico P.H. 22.14 0 0.08 .01 9.05 .44 7.38 19.08 Priest P.H. 22.09 0 0 0 0 0 1.23 .33 2.82 4.46 Priest P.H. 23 Priest P.H. 24 Priest P.H. 25 Pries	E8 7086	Portola State Park	43.84	E	E		10.29	E	4.38	4.31	7,68	6.97	8,98	1.23	E
Potter Valley 3SE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Priest Valley P.H. 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 18.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 22.54 0 0 0 0 1.23 .88 2.07 1.89 Richmond 29.54 0 .01 .01 6.39 .35 2.82 4.46 Richmond 29.54 0 .01 .06 7.38 .99 3.48 4.20 Richmond 29.54 0 .00 0 9.30 .35 8.56 6.90 2 Saint Helena 4WSW 53.82 0 .04 .23 11.77 1.07 5.38 8.58 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Saint Mary's College 140.56 0 .08 .02 13.84 .99 3.07 5.82 Saint Mary's College 140.56 0 .08 .02 13.84 .99 3.07 5.82 Sailnas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Sailnas Dam 19.50 0 0 10 1.03 .02 1.09 2.72 Sallnas Dam 19.50 0 0 10 1.03 .01 1.03 .02 1.09 2.72	F9 7107	Potter Valley 3NNW	el44.11	0	.52		26.8	3.73	5,63	6.88	2.56	6.61	7.61	99.	e,12
Potter Valley P.H. \(\pi\) 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Quien Sabe - Hay Camp 17.55 0 0 T 1.43 .05 2.99 \(\pi\) 2.1 Quien Sabe - Hay Camp 17.55 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.02 .38 2.07 1.89 2.1 Rancho Quien Sabe 18.55 0 .00 0 1.02 .38 2.07 1.47 Redwood City 24.32 0 .01 .03 .01 6.39 .34 4.46 Richmond 29.34 0 .10 .03 .03 .35 8.56 6.90 2.86 Richmond 29.38 0 .01 .02 7.38 .95 3.48 4.26 Raint Helena WSW 59.82 0 .04 .23 1.77 1.07 5.38	F9 7108	Potter Valley 3SE	33.53	0	.19	96°-		2.93	3.91	4.27	1,33	5.63	6.38	.81	.10
Quien Sabe - Hay Camp 22.09 0 T 1.43 .05 2.99 4.42 Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 Redwood City 24.32 0 .01 .03 .01 5.05 .44 7.38 19.08 Richmond 29.54 0 .10 .06 7.38 .99 3.48 4.26 Saint Helena 44.58 0 .0 9.30 .35 8.56 6.90 Saint Helena 4WSW 53.82 0 .0 .0 .0 .0 .0 .0 .0 .0 9.30 8.85 8.85 Saint Helena 4WSW 53.82 0 .0 .0 .0 .0 .0	F9 7109	Potter Valley P.H.	47.89	0	.57	.90	9.56	3.98	6.19	6.51	3.47	7.63	8.28	.67	e,13
Quien Sabe - Hay Camp 17.55 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 1.23 .38 2.07 1.89 21 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 21 Rancho Rico 63.14 0 .08 .01 9.05 .44 7.38 19.08 Redwood City 24.32 0 .01 .01 6.39 .33 2.82 4.46 Ol Rockworlt Ranch 29.54 0 .0 0 9.30 .35 8.50 6.90 Saint Helena 44.58 0 .0 0 9.30 .35 8.50 6.90 8.81 Saint Helena 4wSW 53.82 0 .0 .0 .0 .0 9.30 .35 8.51 8.81 Saint Helena 4wSW 53.82 0 .0 .0 .0 .0 .0	D2 7150	Priest Valley	22.09	0	0	€⊣	1.43	.9	2.99	4.42	4.54	4.36	3.59	.56	.15
Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89	D1 7190	Quien Sabe - Hay Camp	17,55	0	0	0	1,02	.38	1.96	1.47	4.50	2,72	4,44	23	28
Redwood City 24,32 0 .03 6.39 .44 7.38 19.08 Redwood City 24,32 0 .01 6.39 .33 2.82 4.46 1.20 Richmond 29,54 0 .10 .08 7.38 .99 3.48 4.20 1.20	D1 7249	Rancho Quien Sabe	18.55	0	0	0	1.23	•38	2.07	1.89	4.62	2.96	4.43	.79	.18
Redwood City 24,32 0 .01 6,39 .33 2.82 4.46 Richmond	D4 7249-21	Rancho Rico	63.14	0	æ.	10.	9.05	7.	7.38	19.08	6.32		8.49 11.38	.72	.19
Richmond 29.54 0 .10 .08 7.38 .99 3.48 4.20 Roosevelt Ranch 59.82 0 0 0 9.30 .35 8.50 6.90 Saint Helena 4wSw 53.82 0 .12 .73 14.80 1.71 6.65 8.81 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Salinas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 1.03 .02 1.09 2.72 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80	E7 7339	Redwood City	24.32	0	.01	.01	6.39	.33	2.82		3.20	3.63	2,92	.55	EH
Ol Roosevelt Ranch 59.82	医4 7414	Richmond	29.54	0	.10	8.	7.38	.99	3.48	4.20	3.47	4.20	5.14	.50	0
Saint Helena 44,58 0 .04 .23 11.77 1.07 5.38 8.58 Saint Helena 4wSw 53.82 0 .12 .73 14.80 1.71 6.65 8.81 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Salinas 2E 14.53 0 .02 T .61 .38 1.78 2.95 Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72	D4 7539-01	Roosevelt Ranch	59.82	0	0	0	9.30	.35	8.50	6.90	20.05	5.49	8.61	.53	8
Saint Helena 4WSW 53.82 0 .12 .73 14.80 1.71 6.65 8.81 solution and saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 salinas 2E 14.53 0 .02 T .61 .38 1.78 2.95 salinas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72 salinas Dam 52.08 0 .01 T 12.99 .84 5.91 11.80	E3 7643	Saint Helena	44.58	0	ਰੋ.	.23	77.11	1.07	5.38	8.58	4.63	6.07	6.54	.57	0
Salinas PAA Airport 13.70 T .03 .01 T .03 .02 1.03 .02 1.03 2.72 5.82 Salinas Dam 19.50 0 0 0 1.03 .01 T .03 .01 T .03 .02 1.03 0.01 T .03 .03 1.03 0.01 T .03 0.03 0.01 T .03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	E3 7646	Saint Helena 4WSW	53.82	0	.12		14.80	1.71	6.65	8.81	3.51	7.87	8.42 1.20	1.20	0
Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.95 .01 Salinas Dam 19.50 0 0 0 1.03 .02 1.03 2.72 .03 .04 1.03 .05 1.09 2.72 .04 1.03 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	E4 7661	Saint Mary's College	40.56	0	8		13.84	66.	3.07	5.82	4.99	4.90	5.96	92.	.13
Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72 .01 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80	D2 7668	Salinas 2E	14.53	0	.8	€	.61	.38	1.78	2,95	9.20	3.25	3.17	.17	0
01 San Anselmo 52.08 0 0 0 0 1.03 .02 1.09 2.72	D2 7669	Salinas FAA Airport	13.70	H	• 03	요.	.65	04.	1.73	2,81	1.95	3.00	2.95	91.	.01
San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80	D3 7672	Salinas Dam	19,50	0	0	0	1.03	8.	1.09	2.72	5.89	4.43	3.69	%	.03
	E2 7701-01	San Anselmo	52.08	0	6		12.99	48.	- 1	11.80	5.69	8.12	6.17	-55	0

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	DOCT	NOV	DEC	JAN	FFB	MAR	APR	MAY	2
		-	,	,			1					-		
D3 7714	San Antonio Mission	24.35	0	0	E	1.8	8	2.83	χ ζ	3.94	3.71	90.4	.50	귀
D2 7716	San Ardo	14.44	0	0	0	•33	0	2.26	2.99	4.19	2.65	1.77	.25	0
D1 7719	San Benito	14.48	0	0	0	.56	0	2.25	3.28	1.89	3.42	2.39	.35	.34
D4 7731	San Clemente Dam	22.79	0	0	0	1.81	.10	2.29	5.37	4.53	4.27	4.14	.23	.05
D1 7755	San Felipe Highway Station	21.20	0	0	0	1.67	.28	1.68	6.16	2.89	3.29	4.75	.37	.11
E8 7767	San Francisco Richmond Sunsec	: 26.72	H	0	.15	7.94	0	3.75	4.45	2.00	4.65	3.23	.55	0
E7 7769	San Francisco WBAP	25.39	H	8	8	7.30	.36	2.97	4.47	2.03	3.94	3.70	.50	H
E7 7772	San Francisco FOB	22,15	E	.07	.22	5,51	99.	2.81	3,35	1,92	3.87	3,35	,45	H
E8 7807	San Gregorio 3SE	37.68	%	.27	4€.	8.47	₹8°	4.07	6.10	4.16	6.14	6.15 1.01	1.01	.07
E6 7821	San Jose	20.24	0	E→	EH	4.59	.28	2.00	3.99	2.23	3.53	3.08	.52	.02
E6 7824	San Jose Decid FFS	21.24	0	E	EH	4.14	.25	2.06	2.97	3.67	3.63	3.80	.72	0
D1 7835	San Juan Bautista Mission	19.22	0	0	0	1.36	.29	2.46	4.20	4.00	3.31	3.33	42°	.03
E7 7864	San Mateo	27.93	0	.05	H	9.48	.31	2.60	2.87	3.32	3.72	5.02	.56	H
E2 7880	San Rafael	47.02	0	e.10	.01	10.04	.86	95.9	11.60	4.41	6.87	6.16	.41	0
E2 7880-08	San Rafael National Bank	16.71	0	8.	.01	11.13	.91	5.09	8.69	6.77	7.41	6.12	.50	0
E6 7912	Santa Clara University	18.83	0	0	0	4.16	80.	2.01	3.30	1.90	3.56	3.31	.51	EH
DO 7916	Santa Cruz	33.86	0	કે.	.31	2.95	8.	3.70	7.15	4.91	5.81	7.41	.55	.03
F9 7964	Santa Rosa Sewage Plant	31.24	0	8,	42.	7.81	.83	4.40	4.87	2.08	4.94	5.42	.56	0
F9 7965	Santa Rosa	35.64	0	8	.36	74.6	.95	49.4	3.75	4.22	4.94	6.57	99.	0
E6 7998-01	Saratoga - Clark	27.81	0	0	0	6.87	.19	2.37	4.68	4.60	4.36	4.22	.52	H
E6 7998-03	Saratoga - Kriege	30.06	0	0	0	7.01	.26	2.73	5.85	5.36	4.30	4.02	.53	H
E6 8068	Searsville Lake	34.98	0	ਰੋ.	.05	8.65	1.02	3.43	3.99	5.58	5.66	5.88	.68	0
F9 8072	Sebastopol 4SSE	33.15	0	8.	•39	8.75	•73	3.60	96.4	2.59	5.48	5.87	69.	0
F9 8272	Skagg Spg. Las Lomas Ranch	70,81	0	.59	.56	15.42	2.75	7.95	6.00	9.71	9.72	12.58	2,42	.02
D2 8276	Slack Canyon	18.29	0	0	0	.87	•03	2,86	3.75	4.33	2,86	2.81	99.	.12
												l		

7-17

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOS.
D2 8338-01	Soledad C.T.F.	11,40	0	0	0	.25	ਰ	1.78	2.46	21.2	2.65	1.73	17	.23
D2 8338	Soledad	12,36	0	.01	٥.	.33	%	1,82	2,67	2,32	2,62	2,13	.19	20
E2 8351	Sonoma	34.40	0	EH	94.	9,12	69.	4.57	5.77	2,94	4,86	5,28	.77	0
D2 8446	Spreckels Highway Br.	14.02	0	E	0	.63	.29	1.87	1.67	2.84	3.31	3,16	,24	р.
D2 8446-01	Spreckels	12.99	0	0	0	.55	.31	1.86	2.26	1.90	3.22	2.68	.21	0
E6 8447	Spreckels Hill - Laguna Seca	27.02	0	0	0	6.81	•23	1.92	6.57	3.94	3.63	3.58	-34	e _o
E6 8519	Stevens Creek Reservoir	34.84	0	EH	EH	7.87	±8.	3.18	5.40	6.59	5.20	5.20	1.06	e _o
D6 8627	Suey Ranch	13.53	0	0	0	.54	0	.42	1.01	4.05	3.53	3.10	88.	0
D1 8680	Sunset Beach State Park	23.89	0	8	0	2.22	.27	2.93	6.24	3.17	4.30	84.4	.19	0
F9 8776-01	Talmage	37.34	0	.15	92.	7.19	2.81	4.53	4.07	14.51	6.26	6.21	.85	0
E2 8779	Temalpais Valley	40.19	0	.12	1.05	9.28	1.47	5.15	5.35	4.48	5.48	7.06	.75	0
рз 8849	Templeton	17.70	0	0	0	0	EH	2.32	2.67	5,65	3.58	3.08	.39	.01
F9 8885	The Geysers	e68.06	0	.19	74.	14.85	2.26	8.14	8.14 [4.30		4.58 10.10 10.59	10.59	2.58	0
E2 8920-21	Tiburon - Topham	148.03	0	.01	.87	11.15	.75	6.18	7.10	6.72	7.65	47.9	-87	0
E3 9006	Travis Air Force Base	24.55	0	.01	.01	42.4	84.	2,45	4.56	2.83	4.60	4.11	.72	ਰੋ
F9 9122	Ukiah	144.22	0	.20	.68	7.74	3.09	5.25	7.75	3.22	7.61	7.61	1.07	EH
F9 9124	Ukiah 4WSW	e54.93	e _o	.36	.87	9.24	3.64	5.60	4.36	99.9	9.05	9.87 1.28	1.28	E
рб 9179	Upper Morro Creek	30.47	0	0	0	2.26	01.	3.18	5.79	6.03	6.26	5.72	.81	.32
E4 9185	Upper San Leandro Filters	35.13	0	.14	•43	13.13	.95	2,97	2,62	4.47	4.09	5,64	99	0
D1 9189	Upper Tres Pinos	13.38	0	0	0	.71	.16	2.19	2.29	2.13	3,30	2.30	•30	0
D3 9221	Valleton	14.56	0	0	0	.29	0	2.47	3.37	3.49	2.64	1.89	.41	0
Еб 9270	Vasona Reservoir	×	А	89.	А	А	А	2.66	6.19	45.4	4.31	4.35	∄.	А
F9 9273	Venado	e70.54	0	64.	9.	13.52	3.20	8.78	15.97	5.62	9.75	10.71	1.90	0
E3 9305	Veterans Home	41.37	0	8	EH	11.76	1.02	5.18	7.07	2.75	6.97	5.97	.63	0
E4 9420	Walmar School	31.98	0	%	E	10.99	64.	2.19	6.27	3.34	3.82	4.10	.72	0

TABLE A-2

SCN	90.	• 05	.01	.01	0	11.	0	0	0								
MAY	.67	.62	.71	.20	.65	7.15 1.06	.85	.76	2.12								
APR	3.92	3.47	3.35	6.20	5.08	1 1	8.21	6.33 10.49	9.48 2.12								
MAR	3,42	2.96	2.97	4.39	5.19		7.44	- 1									
FEB	3.17 5.30	5.62 62.00	2.36 4.61	5.90 4.78	4.16 4.62	6.29	4.77	8.94	4.73								
JAN		5.62		5.90	4.16	2.90 6.54	5.58 9.86	6.07 15.91	6.42 \$1.74								
DEC	.41 1.84	1.74	1.59	2.92	2.77			6.07									
NOV	.41	.34	•35	•53	74.	1.34	1.44	92	3.11								
OCT	10.74	e9.71	9.13	3.81	2.50	.22 12.85	.12 12.06	18.0Z									
SEP	E	0	0	.01	8	•25	.12	a	74.								
AUG	•05	%	-00	.10	.10	-14	.10	22	,34°								
JUL	0	0	0	0	0	0	0	a	0								
TOTAL	29.58	e26.57	25.15	28.85	25.63	00.94	50.43	67.71	e57.91								
STATION NAME	Walnut Creek 2ESE	Walnut Creek ZENE	Walnut Creek 4E	Watsonville W.W.	Wilder Ranch	Wild Horse Valley	Woodacre	Wrights	Yorkville								
NUMBER	Е4 9423	E4 9426	E4 9427	D1 9473	DO 9675	ЕЗ 9675-41	F9 9770	E6 9814	F8 9851			·					

96 93 88 84 47 37 37 37 37 37 37 37 37 37 37 37 37 37	NAME	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC
Min 48 47 37 37 Avg Max 80.7 82.3 78.4 71.7 Avg Min 51.6 53.6 49.1 47.1 Avg Min 51.6 53.6 49.1 47.1 Min 49 48 47 44 Avg Min 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 50.0 50.0 50.0 50.0 Avg Min 50.0 50.0 <t< th=""><th></th><th>90</th><th>96</th><th>93</th><th>88</th><th>82</th><th>73</th><th>65</th><th>77</th><th>75</th><th>73</th><th>89</th><th>93</th></t<>		90	96	93	88	82	73	65	77	75	73	89	93
Avg Max 80.7 82.3 78.4 71.7 Avg Min 51.6 53.6 49.1 47.1 Avg Min 51.6 53.6 49.1 47.1 Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 42 40 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D Avg Min D D D D Avg Min D D D D Avg Min B 99 87 86 Avg Min 43 46 42 80 Avg Min		48	47	37	37	31	28	22	37	34	35	39	44
Avg Min 51.6 53.6 49.1 47.1 0064 Alamo IN Max 99 100 93 59.4 0064 Alamo IN Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 40 40 Min 46 45 40 40 40 40 Avg Min 53.3 51.7 49.4 50.5 50.6 Avg Min D D D D D D Avg Min D D <	Max	80.7	82.3	78.4	71.7	66.3	59.4	55.7	67.0	63.5	63.4	70.5	80.0
Mox Avg 66.2 68.0 63.8 59.4 0064 Alamo IN Min 49 100 93 90 0064 Alamo IN Min 49 48 47 44 Min Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 40 60.0 60.0 Min Avg 87.5 86.1 81.6 68.7 68.7 Avg Min 53.3 51.7 49.4 50.5 59.6 Min Avg Min 53.3 51.7 49.4 50.5 66.6 61.0 90.6 Mox Avg Min D D D D D D D D D D D D D D <	Min	51.6	53.6	49.1	47.1	43.3	39.0	34.0	45.7	40.3	44.3	49.4	50.4
Mode Alamo IN Max 99 100 93 90 Min 49 48 47 44 Min 49 48 47 44 Min 80.0 53.3 51.2 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Min 46 45 42 40 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 50.0 50.0 50.0 50.0 50.0 Avg Max D D D D D D Avg Max D D		66.2	68.0	63.8	59.4	54.8	49.2	6.44	56.0	51.9	53.9	0.09	65.2
Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 87.5 86.1 81.6 68.7 Angwin Pacific Union College Max 87.5 86.1 86.5 50.6 Ang Max 87.5 86.1 86.5 59.6 Atascadero H.M.S. Max D D D D Ang Max D D D D D D Ben Lomond Max 88 99 87 86 99 88 99 88 99 88 98 78 73 0		99	100	93	06	78	65	09	71	71	73	88	97
Avg Min 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D Avg Max D D D D Avg Max D D D D Ben Lomond Max 88 99 87 86 Avg Max 18.1 446 42 38 98		64	48	47	777	32	25	24	37	32	33	40	747
Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D D Avg Min D D D D D Ben Lomond Max 88 99 87 86 Avg Max 78.1 46 42 38 38	Avg Max	78.2	86.1	82.0	70.8	65.1	53.9	51.2	65.3	63.2	64.5	71.6	79.3
Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D D D D D D D D D D D D D D D D	Min	50.0	53,3	51.2	51,1	43.2	38.5	32.2	45.7	38.7	45.4	49.1	50,8
Angwin Pacific Union College Max 97 100 94 82 Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D		64.1	69.7			54.1	46.2	42.2	55,5	51.0	53.5	60.4	65.1
Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Atascadero H.M.S. Max D D D D Min D D D D D D Atascadero H.M.S. Min D D D D D Atascadero H.M.S. Min D D D D D D Atascadero H.M.S. Min D	nion College Max	97	100	94	82	78	99	94	71	68	69	85	98
Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Atascadero H.M.S. Max D D D D Atascadero H.M.S. Min D D D D D Atascadero H.M.S. Min D D D D D D Atascadero H.M.S. Min D		46	45	42	40	35	29	27	38	26	27	34	41
Avg Min 53.3 51.7 49.4 Akascadero H.M.S. Mox D D D Min D D D D Avg Min D D D D Ben Lomond Min 43 46 42 Avg Min 43 46 42 Avg Min 78 78 78 78 78	Max		86,1	81.6	68.7	61.5	55.7	52.8	60,5	55.5	55.7	6.79	79.5
Atascadero H.M.S. Atascadero H.M.S. Min Avg Max D D D D D Avg Min		53,3	51.7	49.4	50°2	45.3	45.6	35.7	45.8	36.7	36.9	45.9	48.4
Atascadero H.M.S. Max D	Avg	70.4	68.9	65.5	59.6	53.4	49.2	44.3	53.2	46,1	46.3	56.9	64.0
Min D	Max	D	Q	D	D	D	Ω	70	62	92	80	92	100
Avg Max D </th <th>Min</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>Q</th> <th>17</th> <th>34</th> <th>30</th> <th>32</th> <th>38</th> <th>94</th>	Min	D	D	D	D	D	Q	17	34	30	32	38	94
Avg Min D </th <th></th> <th>D</th> <th>Д</th> <th>Д</th> <th>D</th> <th>D</th> <th>Q</th> <th>9.09</th> <th>68.4</th> <th>65.4</th> <th>4.99</th> <th>74.8</th> <th>82,3</th>		D	Д	Д	D	D	Q	9.09	68.4	65.4	4.99	74.8	82,3
0674 Ben Lomond Mox 88 99 87 86 Min 43 46 42 38	Avg Min	Q	Д	Д	D	D	Q	31.8	45.9	37.7	40.3	47.8	50.0
0674 Ben Lomond Max 88 99 87 86 Min 43 46 42 38 Avg Mr 78 1 84 42 38	Avg	D	Ω	D	Ω	Ω	Д	46.2	57.2	51.6	53.4	61,3	66.2
43 46 42 38 May 78 1 84 6 78 4 73	Мах	88	66	87	86	82	89	64	75	74	73	83	85
27 4 6 78 4 73		43	94	42	38	31	25	22	32	30	33	39	42
04.0 10.40	Avg Max 78.1	78.1	84.6	78.4	73.0	68.8	58,1	56.4	62.9	60.1	61.4	69.2	75.6
Avg Min 47.3 49.3 47.7 44.8	Avg Min	47.3	49.3	47.7	44.8	40.6	38.4	32.9	43.4	37.8	40.9	45.2	46.6
Avg 62,7 67,0 63,1 58,9		62.7	0°29		58,9	54.7	48,3	44.7	54,7	49.0	51.2	57.2	61.1

TABLE A-3

NIMBER	PANN NOITATA		HH	٠ ١	GED	TOC	700	010	NAL	ann	QVN	aa v	V4.44	3
			200	202	2	5		2	2	מט	LAM		Z E	
	Berkeley	Max	72	87	78	79	77	- 29	63	70	89	72	78	77
		Min	50	48	51	48	39	34	33	45	39	39	45	64
		Avg Max	66.2	70.5	66.5	67.3	64.1	58.4	54.2	63.9	60.4	60.7	6,49	68,2
		Avg Min	52.0	54.8	53,4	52.6	48.9	44.0	39.5	50.8	6.44	9.94	51.4	52.6
		Avg	59.1	62.7	0.09	0.09	56.5	51.2	6°94	57.4	52.7	53.7	58.2	60.4
	Burlingame	Max	85	98	86	78	92	65	99	69	69	71	84	79
		Min	47	47	44	41	34	29	25	36	34	35	41	42
		Avg Max	72.6	76,3	72,3	69.2	65.3	56.6	55.1	64.5	62.7	63,3	69.2	72.6
		Avg Min	52.6	54.0	50.5	50.1	45.7	42.2	35.4	47.7	41.2	43.3	49.7	48.2
		Avg	62.6	65.2	61,4	59.7	52°2	49.4	45.3	56.1	52.0	53.5	59°5	60°4
	Carmel Valley	Max	87	104	92	92	96	83	77	81	75	73	80	83
		Min	39	42	40	36	30	27	23	38	32	36	37	39
		Avg Max 75.0	75.0	82.2	76.5	77.7	70.9	4°99	62.8	68.7	63,5	63.0	66.4	71.6
		Avg Min	0.94	48.5	47.1	47.2	42.8	39.4	35.0	45.0	38.1	41.4	46.4	46.7
		Avg	60,5	65.4	61.8	62.5	56.9	52.9	48.9	56.9	50.8	52,2	56.4	59.2
	Cloverdale 3 SSE	Max	103	104	66	92	98	69	89	78	92	М	93	98
		Min	47	45	47	94	37	26	26	38	32	М	37	94
		Avg Max	89,1	89.0	84.5	73.4	67.5	58.6	58.9	66.3	61.8	M	73.6	81.2
		Avg Min	50°2	54.3	50.8	50.2	45.7	39°6	33.5	46.8	40.9	M	47.8	50.3
		Avg	8.69	71.7	67°7	61.8	56.6	49.1	46.2	56.6	51.4	M	60.7	65.8
2105	Coyote Dam (Lake Mendocino)	Max	104	103	102	94	87	74	89	7.5	71	74	90	102
		M.	45	43	43	38	32	20	15	30	25	30	34	40
		Avg Max	95	90.7	89.9	76.7	69°4	65.9	58.0	9°49	61,3	59.4	71.9	83.8
		Avg Min	52.2	52.5	48.2	44.1	39.5	37.3	27.8	43.2	33.9	37.5	43.7	48.4
		Ava	73.6	71.6	69 1	7 09	٦/ ٢	50 1	7.2 9	53 0	7.7 6	0.7	0	1 99

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB.	MAR	APR	MAY	NOC
E6 2109	Coyote Reservoir	Max	96	100	98	95	85	72	99	74	70	72	90	94
		Min	45	45	41	37	28	23	18	35	30	32	35	40
		Avg Max	86.1	87.8	82.1	72.3	0.99	0.09	56.3	65.2	8.09	61.6	69.3	7.77
		Avg Min	48.3	50.7	48.1	45.6	40.2	35.9	29.5	9.44	37.1	41.0	46.5	47.6
		Avg	67.2	69.2	65.1	59.0	53,1	48.0	42.9	54.9	49.0	51,3	57.9	62.6
E4 2177	Crockett	Max	91	66	90	87	77	90	62	77	73	73	98	88
		M.	65	52	50	47	37	30	24	42	34	38	42	48
		Avg Max	81.9	84.4	79.3	70.9	8.99	54.5	51.5	9.49	62.7	62.4	6.69	76.8
		Avg Min	53,1	56.5	53.9	52.6	47.5	42.6	34.9	49.2	43.5	45.8	51.5	53.2
		Avg	67.5	70°5	9.99	61.8	57.2	48.6	43.2	56.9	53.1	54.1	60.7	65.0
DO 2290	Davenport	Max	62	88	70	92	72	67	73	73	62	99	65	99
		Min	97	47	45	45	41	38	34	43	39	41	43	43
		Avg Max	59,3	65.2	61.8	63.4	62.6	58.0	55.8	61.7	57.5	57.8	59.0	61.0
		Avg Min	48.9	51.6	49.3	50.7	50.0	45.7	42.6	49.8	44.3	45.7	0.65	49.4
		Avg	54.1	58.4	55.6	57.0	56,3	51.8	49.2	55.8	50.9	51.7	54.0	55.2
E3 2580	Duttons Landing	Max	83	96	92	87	79	99	61	72	70	70	88	84
		Min	48	51	47	43	36	26	24	40	33	34	39	47
		Avg Max	74.5	78.3	74.3	71.9	67.5	59.9	53,8	65.0	63.3	62.4	4.69	74.2
		Avg Min	52.5	55.6	51.7	50.8	42.8	42.1	33.2	47.2	41.1	42.2	49.0	51.0
		Avg	63.5	67.0	63.0	61.4	55.2	51.0	43.5	56.1	52,2	52,3	59.2	62.6
E3 2934	Fairfield Police Station	Max	100	102	98	94	78	65	49	9/	74	74	91	97
		Z.	50	43	49	44	31	23	24	34	33	34	39	45
		Avg Max	86.9	88.8	84.6	74.8	6.79	54.4	54.6	67.4	0.49	64.3	73.5	82.0
		Avg Min	53.8	55.5	53.0	51.5	43.7	38.5	32.5	46.3	41.7	43.7	50.1	52.5
		Avg	70.4	72.2	68.8	63.2	55.8	46.5	43.6	56.9	52.9	54.0	61.8	67.3

													Ì	
NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB.	MAR	APR	MAY	NOC
F8 3161	Fort Bragg	Mox	72	71	76	73	29	89	65	70	89	99	69	89
		Min	777	43	777	41	32	32	29	39	33	35	41	43
		Avg Max	Max 62.6	65.2	64.2	65.6	9°09	56.9	56.1	61.7	58.4	59°9	63,5	63,1
		Avg Min	47.9	50.8	6.64	48.0	44.5	42.3	37.5	48.0	41.4	43.4	47.9	47.8
		Avg	55.3	58.0	57.1	55,5	52.6	9.64	8.94	54.9	6.65	51.7	55.7	55.5
F8 3164	Fort Bragg Aviation	Max	67	69	70	69	65	99	09	70	65	79	29	67
		Min	40	40	41	38	33	28	24	37	31	33	38	39
		Avg Max	60.5	62.5	61.7	61,3	59.8	56.2	55.3	60.7	57.9	58,3	60,3	61.6
		Avg Min	45.9	0.65	47.7	6.94	43.3	41.6	36.2	46.5	40.6	42.6	46.5	45.7
		Avg	53.2	55.8	54.7	54.1	51,6	48.9	45.8	53.6	49.3	50.5	53.4	53:7
F8 3191	Fort Ross	Max	29	70	71	92	72	61	62	70	61	99	65	69
		Min	42	42	43	43	38	36	30	41	34	37	41	43
		Avg Max	61.5	64.5	64.1	62,7	61.0	55,5	54.7	8.09	57.0	58.0	61,0	62.6
		Avg Min	6.94	49.2	6.94	49.2	9.94	44.3	0°05	47.9	45.4	43.8	47.2	47.4
		Avg	54.2	56.9	55.5	56.0	53.8	49.9	47.4	54.4	49.7	50.9	54.1	55.0
D1 3238-01	Fremont Peak State Park	Max	76	96	94	92	90	80	74	77	73	72	98	92
		Min	. 44	52	97	40	30	28	20	40	30	29	34	41
		Avg Max	85.2	82.1	81,1	69.3	9.99	61.2	55.7	62.7	54.9	53.2	62.9	72.7
		Avg Min	66.5	33.9	61,7	52.0	47.2	45.3	38.1	47.6	39.7	9.04	50.0	53.9
		Avg	75.9	58.0	71.4	60.7	56.9	53,3	6.94	55.2	47.3	6.94	58,0	63,3
D1 3417	Gilroy	Max	98	102	101	96	86	75	69	78	78	92	89	94
		Z.	94	48	45	41	32	25	18	36	31	33	38	43
		Avg Max	84.8	88.2	82.5	75.9	69.3	61.7	57.6	68.0	6.49	64.5	72.7	80.3
		Avg Min	49.7	52.2	6.65	47.8	42.2	36.8	29.8	45,7	37.9	45.4	48.1	49.8
		Avg	67.3	70.2	66.2	61.9	55.8	8 67	43.7	56.9	51.4	53 5	7 09	65 1
					7							1		

3577 Graton 3578 Graton 1 W 3578 Half Moon Bay 2	NAME		=	4110	Cuo	FOC	1012	1	144	011	OVE	000	2000	10.00
Graton 1 W Graton 1 W Half Moon Bay 2			200	AUG	חחט	50	A S R	DEC	JAN	_	MAR	A K	MAY	NO S
3578 Graton 1 W 3714 Half Moon Bay 2		Max	93	98	96	06	79	99	62	72	69	71.	85	98
3578 Graton 1 W 3714 Half Moon Bay 2		M.	44	43	777	40	32	25	24	36	32	33	38	43
3578 Graton 1 W 3714 Half Moon Bay 2		Avg Max	Max 79.1	84.0	79.1	71.5	67.2	53.9	52.8	63.1	60,3	60,1	68,1	74.9
3578 Graton 1 W 3714 Half Moon Bay 2		Avg Min	49.8	52.1	50.2	50.6	45.0	41.4	34.7	46.5	39.7	42.2	48.1	48.6
3578 Graton 1 W 3714 Half Moon Bay 2		Avg	64.4	68.0	9.49	61.0	56.1	47.6	43.8	54.8	50.0	51.2	58.1	61.8
3714 Half Moon Bay 2		Max	95	86	94	85	9/	61	61	74	7.1	71	88	87
3714 Half Moon Bay 2		M.i.	40	42	07	39	29	23	21	34	30	31	36	43
3714 Half Moon Bay 2		Avg Mox	80.9	83.7	77.1	69.2	64.2	53.7	52,4	64.1	60.7	61.4	7°69	76.5
3714 Half Moon Bay 2		Avg Min	46.2	49.1	4.94	47.7	42.2	39.5	32,1	45.8	38.2	41.0	47.7	47.8
3714 Half Moon Bay 2		Avg	63.6	66.4	61.8	58,5	53.2	9.94	42.3	55.0	49.5	51.2	58.6	62.2
	NNW	Max	64	86	69	7.5	81	69	99	89	63	64	69	99
		Min	43	47	48	45	35	33	32	40	36	39	40	42
		Avg Max	61.2	64.8	63.2	8.49	62.8	57.7	56,2	61.1	57.5	58,3	59.7	61,7
		Avg Min	49.8	52.4	51.2	49.1	45.5	4.44	39°9	48.0	42.5	45.9	49.3	48.7
		Avg	55,5	58°6	57.2	57.0	54.2	51.1	48.1	54.6	50.0	52,1	54°2	55,2
12 3734 Hamilton Air Force Base		Max	90	95	88	82	74	62	61	71	89	70	82	83
		Min	45	45	45	41	36	26	23	39	31	35	40	94
		Avg Max	74.0	79.5	73.0	68.7	63.8	53.3	51.5	0°.59	61.5	59.8	67.8	73.5
		Avg Min	48.8	52.1	49.2	50.1	45.3	41.0	33.2	6.74	45.4	9.44	50°4	50,9
		Avg	61.4	65.8	61.1	59,4	54.6	47.2	45.4	56.0	52.0	52,2	59.1	62.2
F9 3875 Healdsburg		Mox	101	105	101	95	83	62	69	78	9/	9/	93	97
		Min	94	45	44	42	37	26	23	38	32	34	39	44
		Avg Max	87.6	89.9	85.0	74.5	68°8	56.9	56.9	67.8	4°49	0°49	73.7	82.6
		Avg Min	50,2	52.9	50.0	48.8	6.44	40°4	33.7	48.4	41.0	43.0	49.2	51.9
		Avg	68.9	71.4	67.5	61.7	61.7 56.9 48.7	48.7	45.3	58.1	52.7	53.5	61.5	67,3

TABLE A-3

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC
D1 4022	Hollister	Mox	89	102	95	92	89	77	69	78	78	92	87	98
		Min	42	77	70	34	26	20	16	35	30	32	37	42
		Avg Max	77.6	83,3	78.0	76,1	69.7	64.3	59,8	68,3	64.5	0.49	68.8	73.8
		Avg Min	45.9	48.1	45.6	43.2	37.6	33.8	29.3	6.94	38.4	42.1	47.9	48.1
		Avg	61,8	65.7	61.8	59.7	53.7	49,1	44°6	57.6	51.5	53,1	58.4	61.0
E2 4500	Kentfield	Max	89	98	98	89	80	99	65	72	72	72	87	88
		M.i.	45	40	45	43	38	27	25	39	33	35	70	45
	7	Avg Max	79.4	82.0	7.77	71.1	67.0	58.0	54.4	65.0	61,9	62.2	9.89	75.6
		Avg Min	48.5	50.9	0.65	9.67	45.8	40°7	34.0	47.5	41.4	44.3	40.64	49.8
		Avg	0°49	66.5	63.4	60.4	56.4	49.4	44.2	56.3	51,7	53.3	59.0	62.7
D2 4555	King City	Mox	88	102	94	96	89	79	75	78	78	79	88	92
		Min	41	45	42	38	27	23	18	34	30	32	37	39
		Avg Max	81.0	85.7	80.3	79.2	72.3	67.4	61.6	70.9	67.8	67.5	74.7	80,1
		Avg Min	6.64	51,0	49°5	46.3	38.6	36,7	30.9	45.6	37.8	41.7	47.5	48.7
		Avg	65.5	68.4	6.49	62.8	55.5	52°1	46.3	58°3	52.8	54.6	61,1	64.4
E6 4922	Lexington Reservoir	Max	95	98	91	16	80	65	65	73	72	78	88	89
		M.	43	45	42	37	32	26	22	35	31	32	38	41
	The state of the s	Avg Max	85.1	85.9	81.5	70.5	64.9	58.1	54.7	64.7	61.2	61.7	4.69	78.5
		Avg Min	48.5	50.0	6.24	45.4	43.5	39.6	33.8	45.9	38.5	41.4	47.8	48.0
		Avg	8.99	68.0	64.7	0.09	54.2	48.8	44.2	55,3	49.8	51.6	58.6	63.2
D3 4963	Linn Ranch	Max	101	103	96	98	82	71	79	D	Д	75	90	98
		M.	45	45	43	07	26	22	17	D	Д	32	37	44
		Avg Max	92.8	91,5	86.2	75.2	6.99	61,2	55.8	Q	Ω	63°4	72.5	81,6
		Avg Min	50,3	54.2	50.4	47.8	39°5	35.8	30.8	D	D	39.2	48.0	6.64
		Avg	71.6	72.8	68.3	61.5	53.2	48.5	43,3	D	D	51.3	60.2	65.8

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E5 4996	Livermore Sewage Plant	Max	66	100	97	86	78	67	65	74	72	72	88	97
		Min	44	45	41	38	30	20	19	33	29	24	35	43
		Avg Max	85.5	85.6	82.2	72.7	0.79	58,3	54.4	9.99	62.8	62.3	71.0	80.7
		Avg Min	49.4	50.7	47.9	46.5	38.8	35.8	28.3	44.1	37,1	39.1	45.8	6.94
		Avg	67.4	68.2	65.0	59.6	52.9	47.0	41.4	55.4	50.0	50.7	58.4	63.8
E5 4997	Livermore 2 SSW	Max	101	103	98	95	78	68	.65	75	71	72	91	100
		Min	45	47	45	41	30	22	21	33	30	31	37	42
		Avg Max 89	89.3	88.0	83.9	72.6	7.99	58.7	54.4	65.3	61.8	61.1	71,2	81,4
		Avg Min	50°2	52.0	50.2	9.94	39.9	33.8	28.9	44.1	36.6	40.1	8.94	47.7
		Avg	6.69	70.0	67.1	59.6	53,3	46.3	41.7	54.7	49.2	50.6	59.0	9.49
E6 5123	Los Gatos	Max	91	26	90	87	78	67	63	7.5	73	70	87.	89
		Min	48	48	45	41	33	29	25	38	34	30	41	45
		Avg Max	83.0	83.1	79.4	71.6	66.3	58.5	55.6	65.8	62.5	62.1	70.5	78.0
		Avg Min	50°6	52.3	49.7	4.24	43.6	38.7	32.4	45.7	37.7	39.2	47.8	49.2
		Avg	67.0	67.7	9° 79	59°2	55.0	48.6	44.0	55.8	50,1	50.7	59.2	63.6
E3 5333	Mare Island Naval Ship Yard	Max	85	95	89	85	71	65	69	71	70	79	92	88
		Min	54	55	54	51	40	31	33	47	39	40	94	54
		Avg Max 78.	78.2	82,3	75.9	71.7	66.5	54.1	51.9	64.8	62.7	0.99	74.3	78.8
		Avg Min	56,2	59,9	58.1	56,3	51.5	45.0	40.0	52.3	6.94	49.0	59°4	57.6
		Avg	67.2	71.1	67.0	0.49	59.0	9.64	46.0	58.6	54.8	57.5	8.99	68.2
E4 5377	Martinez Fire Station	Max	94	100	95	90	80	64	61	72	73	74	89	93
		Min	65	64	64	44	36	28	26	39	33	36	41	48
		Avg Max	84.8	85.7	80,2	71.4	0.99	53.5	50.8	64.2	62.7	62.7	71.9	80.0
		Avg Min	53.4	55.4	52.2	50.7	45.0	40°5	32.4	6.94	41.8	44.4	50.2	52.9
		Avg	69,1	70.6	66.2	61,1	55.5	47.0	41.6	55.6	52,3	53,6	61.1	66.5

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUC
D4 5795	Monterey	Max	75	95	85	87	90	80	92	72	7.0	NR	NR	NR
		Min	47	64	47	94	41	32	28	42	37	NR	NR	NR
		Avg Max	Max 64.5	71,5	0.79	71.4	6.29	63.9	9.09	66.2	62,6	NR	NR	NR
		Avg Min	9.64	51.9	50.0	50.6	47.0	43.8	40°5	48.9	42.9	NR	NR	NR
		Avg	57,1	61,7	58,5	61.0	57.5	53.9	50.6	57.6	52.8	NR	NR	NR
E4 5915	Mt. Diablo North Gate	Мах	96	100	95	90	81	72	89	72	71	70	98	96
		Min	43	42	41	41	36	29	24	41	29	30	37	43
		Avg Mox	88,7	86.2	83.6	6.69	65,3	59.7	53.8	61.9	57,8	55.7	6.99	78.5
		Avg Min	62.4	57.7	53.0	49.8	46.5	44.0	37.2	47,1	38.7	38.3	45.0	50.2
		Avg	75.6	72.0	68,3	59.9	55.9	51,9	45.5	54,5	48,3	47.0	56.0	64.4
E5 5933	Mt. Hamilton	Max	D	89	84	80	79	70	62	65	62	62	78	87
		Min	Q	44	44	35	28	24	18	35	25	24	32	37
		Avg Max	D	77.7	75.3	65.0	57,1	54.7	49.5	55.6	9*97	45.4	61,1	68.9
		Avg Min	D	60°5	58.2	51.0	43.2	43.2	36,5	45.9	33.0	33,4	45,3	50.2
		Avg	Q	69,1	8,99	58.0	50,2	49.0	43.0	49,3	39.8	39.4	53.2	59.6
E3 6068	Napa - Haven	Mox	96	104	98	90	82	49	7 9	72	72	73	89	90
		Min	94	94	41	09	30	22	20	36	30	30	36	42
		Avg Max	81	84.5	79,1	73.2	67.7	57.8	54.3	65.2	63.2	63.2	70,2	79.0
		Avg Min	49,3	51,0	49.0	48,3	45,4	37.9	30°2	44.7	37.5	40.4	6.94	48.1
		Avg	65,2	67.8	0.49	8.09	55.0	47.8	45.4	55.0	50.4	51.8	58.6	63.6
E3 6074	Napa State Hospital	Max	91	66	97	92	84	65	64	75	74	74	89	89
		Min	48	95	45	40	34	25	20	38	25	30	37	42
		Avg Max 78.5	78.5	83,1	78.5	74.1	67.8	58.4	55.2	6.99	64,2	64.1	71,4	78.4
		Avg Min	50,7	51,2	50,5	50,3	43,7	40,1	32,0	9.94	38.0	38°6	47.9	49,2
		Avg	9* 49	67,2	64,5	62,2	55,8	49,3	43.6	56.8	51,1	51,4	59.7	63.8

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E5 6144	Newark	Мох	82	95	89	98	83	69	63	74	69	69	84	85
		Min	65	52	48	44	33	28	24	40	37	37	43	94
		Avg Max	74.5	77.9	73.6	70.9	66,2	56,7	53,6	4,49	62,0	61,4	67,3	73.1
		Avg Min	52,3	54.8	53.8	52.6	46.1	41.8	35,1	49.0	42.6	46.5	51.6	52.3
		Avg	63.4	66.4	63.7	61.8	56.2	49.3	44.4	56.7	52,3	54.0	59.5	62.7
E4 6335	Oakland WB AP	Max	79	95	88	84	77	63	63	72	68	29	98	80
		M.	50	53	50	48	37	32	30	42	37	38	45	64
		Avg Max	69.5	74.1	6.69	68.2	6.49	56.0	54.3	7.49	8.09	6.09	65.7	6.69
		Avg Min	53.8	56,3	54.9	53.1	47.1	43.0	37.9	49.8	44.2	47.3	52.7	53,4
		Avg	61.7	65.2	62.4	60.7	56.0	49.5	46.1	57.1	52.5	54.1	59.2	61.7
E3 6646	Palo Alto City Hall	Max	81	96	87	83	62	99	63	74	70		87	84
		Min	47	49	94	41	30	26	21	37	32	34	40	44
		Avg Max	73.8	78.8	73.2	70.1	9°49	56.0	53.4	8.49	62.6	62.5	0.69	75.5
		Avg Min	53,8	53.5	51,3	48.5	42.5	40.7	33,4	47.4	40.7	45.6	50.5	52.1
		Avg	63.8	66.2	62,3	59.3	53.6	48.4	43.4	56.1	51.7	54.1	59.8	63.8
E2 6826	Petaluma F.S. No. 2	Max	90	100	98	95	78	99	29	72	71	74	98	89
		Min	43	41	42	42	34	24	20	35	29	32	37	45
		Avg Max	82.1	84.4	82.0	73.3	68,4	57.5	55.9	65.4	63.2	62.6	0.69	76.4
		Avg Min	49.0	51.4	49.2	49.4	43.5	39.8	31,4	9.94	38,3	41.7	47.7	49.3
		Avg	65.6	62.9	65.6	61,4	56.0	48.7	43.7	56.0	50.8	52.2	58.4	65.9
D2 6926	Pinnacles National Mon.	Max	103	105	66	96	92	81	74	79	78	78	95	101
		M.	40	43	40	35	28	19	15	33	27	28	33	34
		Avg Max	96.4	95.9	91,7	82.1	73.0	67.8	62.6	69°5	4.49	64.2	76.5	85.2
		Avg Min	47.8	50.0	46.7	43.8	39.0	35.0	28.1	41.8	34.4	37.5	44.3	44.5
		Avg	72,1	73,0	69.2	63.0	56.0	51.4	45.4	55.7	49.4	50.9	60,4	6,49

	1													
NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E5 6991-05	Pleasanton Nursery	Max	104	102	86	92	82	89	99	77	74	17.6	90	100
		Min	917	1717	43	38	28	21	19	33	28	32	36	42
		Avg Max	90°3	89,1	84.2	72,1	8.99	58,5	55,5	8.99	62.7	61,8	71.6	82,3
		Avg Min	50.7	52.0	48.6	46.5	38.7	37.4	28.7	45.6	38.1	41.8	48,3	49.0
		Avg	70.5	9.07	47°99	59,3	52.8	48.0	42.1	56.2	50.4	51.8	0.09	65,6
F8 7009	Poinc Arena	Мах	89	72	7.5	74	69	63	65	99	62	65	99	67
	Charles and the second	Min	4747	43	14	38	38	30	28	37	31	33	38	42
		Avg Mox	62.8	65.1	63.6	65.9	4.09	55.9	55.4	60,2	57.4	58,3	61.7	62.4
		Avg Min	47.8	50.4	48.5	47.1	43.4	41.8	36,3	47.3	41.0	42.5	46.8	47.0
		Avg	55,3	57.8	56,1	55.0	51.9	48.9	45.9	53.8	49.2	50,4	54.3	54.7
D5 7024	Point Piedras Blancas	Max	89	71	89	73	97		73	7.0	89	65	65	70
		Min	949	847	64	47	040		38	4.5	39	38	44	43
		AVQ MOX	63.6	66.5	62,8	65,1	62.8	60,1	0°09	63.0	8.09	60°5	61.8	64.5
		Avg Min	51,1	51.6	51.4	51.6	0.64	48,1	46.0	50.5	45,2	46.3	48.7	49.5
		Avg	57.4	59.1	57.1	58.4	55.9	54.1	53.0	56.8	53.0	53,4	55,3	57.0
E4 7070	Port Chicago NAD	Max	974	101	91	83	9/	179	62	72	74	73	89	97
		Min	44	48	40	38	30	23	21	31	30	31	37	4.5
		Avg Max	82.7	87.6	77.4	69.2	65.0	9,45	52.6	65.4	62.9	63,3	71,7	80.1
		Avg Min	50.0	53,3	47.7	46.3	40.2	38.5	29.5	43.5	36,8	40.8	47.9	50.6
		Avg	4.99	70.5	62.6	57.8	52.6	9.94	41.1	54.5	6.64	52,1	59.8	65.4
F9 7109	Potter Valley P.H.	Max	105	101	100	91	85	73	69	75	73	75	92	NR
		Min	42	42	41	36	24	18	17	28	24	29	34	NR
		Avg Max	M	93,3	91.5	75.4	66.2	M	61.6	4.99	9.19	59.2	75.8	NR
		Avg Min	Σ	49.8	46.2	42.7	37.0	34.6	25.4	42.5	34.6	39.4	44.7	NR
		Avg	M	71,6	68,89	59,1	51,6	M	43,5	54.5	48,1	49.3	60,3	NR

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOU
D2 7150	Priest Valley	Max	100	105	86	76	82	78	99	75	72	72	91	98
		Min	40	39	35	31	16	1.7	6	26	21	25	30	33
		Avg Mox	94.1	93.5	88.9	76.4	4.99	62.1	57.0	65.2	59.9	59.9	72.0	82.1
		Avg Min	47.4	47.2	43.1	38.3	29.5	29.3	21.5	37.4	30.1	34.0	41.5	42.9
		Avg	70.8	70.4	0.99	57.4	48.0	45.7	39.3	51.3	45.0	47.0	56.8	62.5
01 7190	Quien Sabe Hay Camp	Max	97	97	95	91	89	75	71	80	7.1	74	89	92
		Min	42	40	38	32	27	20	10	27	19	26	28	30
		Avg Mox	Max 88.6	86.0	81.3	74.9	65.0	62,7	57.8	62.9	59.2	0.09	67.4	73.5
		Avg Min	47.5	47.0	44.8	41.0	36.9	33.1	25.0	39.8	31.7	37.3	42.7	43.0
		Avg	68.0	66.5	63.0	58.0	51.0	48.0	44.4	52.8	45.4	48.6	55.0	58.2
E7 7339	Redwood City	Max	89	98	92	85	82	29	67	74	72	74	90	91
		Min	94	48	94	43	34	27	24	38	34	36	41	949
		Avg Max	80°7	84.5	79.2	72.2	67.8	58.9	56.1	67.1	65.2	65.6	73.2	79.6
		Avg Min	52.8	52.1	50.9	49.3	4.44	41.3	35.2	4.7.4	41.3	44.7	50,1	51.2
		Avg	8.99	68,3	65.1	60.8	56.1	50,1	45.7	57.3	53,3	55.2	61.7	65.4
04 7539-01	Roosevelt Ranch	Max	78	95	98	88	84	9/	72	75	72	70	92	81
		Min	64	50	51	50	44	44	42	47	41	41	48	64
		Avg Max	66.1	9.92	71.2	71.4	66.3	60.4	60.4	63.7	60,2	61,1	63.9	67,1
		Avg Min	52.8	60.2	56.4	54.1	54.7	50.0	47.5	51.8	47.2	48.2	53,3	53,3
		Avg	59.4	68.4	63.8	62.8	60.5	55.2	54.0	57.8	53.7	54.6	58.6	60.2
E4 7414	Richmond	Max	71	91	82	82	82	70	65	71	7.0	71	82	77
		Min	52	53	52	50	39	32	30	41	36	38	45	51
		Avg Max	65.3	8.69	67.8	69.5	66.5	59.4	55,3	65.5	62,4	61.4	66.3	68.3
		Avg Min	53.4	56.4	54.4	53,4	49.1	43.9	38.4	49.8	45.2	6.94	53.4	54.4
		Avg	59.4	63,1	61.1	61.5	57.8	51,7	6.94	57.7	53.8	54.2	59.9	61.4

TABLE A-3

												100		
NUMBER	STATION NAME		JUL	AUG	SEP	500	SON	DEC	JAN	T R	MAK	APR	MAY	NOC
E3 7646	Saint Helena	Max	101	106	101	94	98	67	70	75	75	77	92	96
		Min	94	42	42	38	31	22	21	35	28	31	35	45
		Avg Max	88.9	89.2	84.2	74.4	9.79	57,3	56.2	67.0	63,4	63,3	73.0	82,5
		Avg Min	49.2	51,1	48.4	48.5	41.4	37.9	30°7	44.8	37.1	9°04	48.7	50°4
		Avg	69.1	70.2	66.3	61.5	54.5	47.6	43.5	55.9	50,3	52.0	60.09	66.5
E4 7661	Saint Mary's College	Max	98	100	76	89	75	65	61	71	72	70	91	96
		Min	48	94	43	38	27	21	20	33	27	29	36	41
		Avg Max	82,2	83,5	78.3	70.8	4.49	54.2	52.0	0.49	60,3	60.5	9.89	76.6
		Avg Min	51.2	52,3	50.9	44.8	37.9	35.6	29.6	44.1	37.0	9.04	47.7	49.8
		Avg	66.7	6.79	9.49	57.8	51.2	44.9	40.8	54.1	48.7	50.6	58.2	63,2
D2 7668	Salinas 2 E	Max	74	95	88	89	92	81	74	81	75	72	76	75
		Min	64	95	94	41	32	29	22	36	29	36	39	43
		Avg Max	66.5	75.1	70.0	74.8	71.1	65°2	60.8	67.8	63.2	63.4	9.99	68.5
		Avg Min	51.6	52.5	51,1	49°4	42.3	40°8	35,1	46.4	39°6	0°44	49.7	51,2
		Avg	59,1	63,8	9,09	62,1	56,7	53,2	48.0	57,1	51,6	53,7	58,2	59,9
D2 7669	Salinas FAA Airport	Max	75	95	87	89	92	81	74	92	76	73	79	76
		Min	47	95	47	43	33	32	25	38	32	37	04	44
		Avg Max	67.5	74.6	69.2	73.6	68,3	63.2	60.2	67.0	63.6	64.2	68.0	70,1
		Avg Min	51.9	52,7	51.9	50.4	43.9	45.4	37.3	48.1	40.8	45,2	51,2	52,4
		Avg	59.7	63.7	9.09	62.0	56,1	52.8	48.8	57.6	52,2	54.7	59,6	61,3
D3 7714	San Antonio Mission	Max	105	107	102	97	88	79	7.0	79	77	77	92	102
		Min	40	38	38	32	20	19	12	30	27	28	30	36
		Avg Max	98.7	97.5	93.2	80.2	73.0	67.0	62.8	70°4	68.0	65.7	76.9	87.5
		Avg Min	46.0	46.1	45.4	39,5	33,1	31,2	25.0	39,3	32,5	36.7	0.44	43,4
		Avg	72,4	71,8	67.8	59.0	53,1	49,1	43.9	54.9	50,3	51,2	60,5	65,5

		INICIA ILIE	<u>.</u>				,							
NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB.	MAR	APR	MAY	NOC
E8 7767	San Francisco Richmond SunsetMox	Max	70	73	69	74	83	99	89	72	99	72	77	89
		Miñ	47	50	50	45	35	32	30	42	37	39	43	4.5
		Avg Max	60.2	65.3	61.2	64.4	63.3	59°3	57.7	61.6	58,4	61,3	61,5	61,7
		Avg Min	50.9	54.4	53.1	50,3	48.4	45.3	39.9	6.64	42.7	47.6	50.8	50.9
		Avg	55.6	59.9	57.2	57.4	55.9	52,3	48.8	55.8	50.6	54.5	56.2	56,3
E7 7769	San Francisco WB AP	Max	78	92	86	80	62	64	99	20	89	29	78	92
		Min	64	51	48	47	37	31	29	41	38	39	43	94
		Avg Max	69.1	73.2	4.69	67.2	63.8	55.7	53°2	62.8	59.7	59.4	63.6	67.5
		Avg Min	51.2	53,9	52.5	52.0	47.6	43.5	37.6	48.9	44.0	46.5	50.0	49.7
		Avg	60.2	63.6	61.0	9°65	55.7	9.64	45.6	55.9	51.9	53.0	56.8	58.6
E7 7772	San Francisco F.O.B.	Max	67	98	77	79	81	65	99	72	89	29	77	71
		Min	64.	50	50	52	94	41	41	47	41	42	64	64
		Avg Max	60,5	62.9	63.4	66.7	6.49	57.7	55.4	63.9	59.8	59.2	62.1	63.7
		Avg Min	51.4	54.0	53.2	54.8	52.7	48.0	45.4	52.8	48.4	49.5	52,3	52,4
		Avg	56.0	0.09	58,3	8.09	58.8	52.9	50.4	58.4	54.1	54.5	57.2	58,1
E8 7807	San Gregorio 3 SE	Max	72	06	85	82	86	75	70	75	65	67	73	75
		Min	38	41	41	38	28	27	23	35	30	33	38	38
	-	Avg Max	62.9	71.2	9.99	68.3	65.4	61.1	57.9	9.49	59.8	59.4	61.6	9.49
		Avg Min	46.3	0.64	48.1	45.7	41.0	39°8	34.0	46.3	38.2	42.7	48.2	47.4
		Avg	56.1	60,1	57.4	57.0	53.2	50.5	0.94	55.5	49.0	51,1	54.9	56.0
E6 7821	San Jose	Max	88	95	92	87	84	71	89	92	74	72	84	89
		Min	51	52	50	47	36	31	27	42	38	38	44	64
		Avg Max	79.0	81.7	77.6	71.6	67.2	58°8	57.1	67.3	64.2	63.4	70°6	77.6
		Avg Min	54.2	56.7	54.4	53,1	48.4	43.8	38.7	50.6	44.5	47.3	52.8	53,4
		Avg	9.99	66.6 69.2	66.0 62.4	62,4	57.8	51,3	47.9	59,0	54,4	55.4	61,7	65,5

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E6 7824	San Jose Decid. F.F.S.	Max	06	98	87	91	85	69	89	7.8	75	74	91	91
		Min	67	50	48	777	33	30	27	40	36	37	45	46
		Avg Max	82.0	83.7	78.5	72.7	68,3	58,6	57.1	68.5	65.2	65.7	71.2	79.2
		Avg Min	53.2	54.9	52.6	51.3	43.6	42.1	36.3	49.4	42.5	9.94	52.4	52.2
		Avg	9°29	69,3	65.6	62.0	56.0	50,4	46.7	59.0	53.8	56.2	61.8	65.7
E7 7864	San Matec	Мах	85	95	95	85	83	67	67	75	71	71	85	83
		Min	50	65	50	48	39	30	31.	42	39	41	94	64
		Avg Max	74.8	78.3	74.1	70.4	66.8	59.5	56.6	7.99	63,3	62.6	0.89	72.1
		Avg Min	53.1	55,2	53.7	53,5	48.7	9.44	39.2	50.3	45.5	47.1	52,2	52.3
		Avg	64.0	8,99	63.9	62.0	57.8	52,1	47.9	58.4	54.4	54.9	60.1	62.2
E2 7880	San Rafael	Max	88	NR	89	89	80	99	29	74	73	73	89	90
		Min	45	NR	48	97	39	31	29	43	36	38	42	97
		Avg Max	79.4	NR	77.3	74.0	67.6	59.4	56.4	67.1	63.6	62.7	71.0	75.6
		Avg Min	50.6	NR	52.0	52.5	48.1	42.9	37.8	6.64	43.3	46.2	50.1	51.2
		Avg	65.0	NR	64.7	63.3	57.9	51.2	47.1	58°2	53.5	54.5	9.09	63.4
E6 7912	Santa Clara University	Мах	88	95	91	88	83	70	67	92	73	73	89	90
		Min	65	52	48	42	33	30	25	40	36	35	42	97
		Avg Max	80,5	82.3	7.77	72.3	67.3	57.9	57.0	68,1	64.2	64.7	72.3	78.8
		Avg Min	52.8	54.9	52.1	50.7	45,1	40.9	35,1	48.0	41.7	9.44	50.5	51,8
		Avg	66.7	68,6	6.49	61,5	56.2	49.4	46.1	58.1	53.0	54.7	61.4	65.3
DO 7916	Santa Cruz	Max	92	103	89	84	88	77	9/	75	73	73	78	86
		Min	44	45	43	38	33	26	22	35	32	31	07	41
		Avg Max	9.69	79.1	72.7	73.2	67.2	60.7	59.3	66.2	63.7	62.8	9.79	72.5
		Avg Min	6.64	8.64	47.2	45.5	41.7	40.0	34.6	45.7	39,5	42.2	47.9	47.9
		Avg	59.8	64.5	0.09	59.4	54.5	50.4	47.0	56.0	51.6	52.5	57.8	60.2

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	NAU	FEB	MAR	APR	MAY	NOC
F9 7965	Santa Rosa	Μax	94	66	99	92	83	89	29	7.5	75	74	89	91
		Min	43	42	43	39	30	23	21	36	29	31	36	44
		Avg Max	Max 81.2	8.48	81,4	72.9	68.5	57.0	55.4	66.5	64.5	63.5	70.5	78.5
		Avg Min	48,1	50.5	47.8	6.94	39.8	37.3	30.6	44.5	36.5	39°2	47.3	48.3
		Avg	64°7	67.7	9.49	59.9	54.2	47.2	43.0	55.5	50.5	51.5	58.9	63.4
F9 7964	Santa Rosa Sewage Plant	Max	98	95	91	85	92	61	09	89	63	71	80	83
		Min	42	39	07	36	29	21	20	33	28	31	34	43
		Avg Max	73.4	78.0	73.3	67.2	62.3	53,3	50.4	8°09	55.8	55.6	61.5	72.3
		Avg Min	47.6	9.67	46.2	47.0	40.5	36.5	31.5	44.0	36,3	39°4	44.7	47.6
		Avg	60.5	63.8	59.8	57.1	51.4	44.9	41.0	52.4	46.0	47.5	53,1	0.09
F8 8162	Shelter Cove	Max	98	74	7.1	70	63	62	89	99	62	09	65	74
		Min	36	47	47	45	42	41	39	45	38	39	43	44
		Avg Max	65.1	7.49	61.5	60.5	58.2	56.7	55.6	59.0	55.8	55.6	59.7	66.3
		Avg Min	49.4	52.6	50.0	50.5	48.3	46.7	43.5	6.64	45.2	47.2	50.2	51.6
		Avg	57.3	58.5	55.8	55.5	53.3	51.7	49.6	54.5	50.5	51.4	55.0	59.0
D2 8446-01	Spreckels Sugar Company	Max	69	94	84	98	06	80	69	75	75	71	92	76
		Min	94	45	47	40	32	28	22	36	30	38	40	42
		Avg Max	65.7	73,2	68.7	72.6	9.99	64.3	60°7	66,1	63.4	62.8	66.5	67.7
		Avg Min	50.9	52,3	51.0	48.5	42.7	41.3	33.5	46.1	39.5	44.2	49.5	51.7
		Avg	58.3	62.8	59.8	9.09	54.6	52.8	47.1	56,1	51.4	53.5	58.0	59.7
D2 8338-01	Soledad C.T.F.	Max	80	95	81	89	89	80	70	9/	74	73	79	82
		Min	42	43	42	39	30	27	20	36	29	32	38	40
		Avg Max	72,7	77.5	71.9	74.7	69°5	64.5	59,1	6°99	63.6	63.6	68.1	71.8
		Avg Min	50.3	51.0	0°65	45.5	41.8	39,1	33.2	48.2	38,3	42.0	47.5	49.2
		Avg	61.5	61.5 64.2	60,4 60,1	60,1	55,6	51,8	46.2	57.6	50.0	52.8	57.8	60.5
		Avg	61.5	64.2	60°4	60.1	55,6	51,8		i	- 1		- 1	52.8 57

O U O WILL	AMAN MOLLATA		=	2116	GTO	TOC	2012	250	IAAI	0 1 1	OVV	00 4	2444	
NO.	1		100	202	7	5	3	21	CAR	מאב	MAN	Y L	TAM.	200
E2 8351	Sonoma	Max	100	102	100	93	80	99	62	9/	72	75	89	98
		Min	43	42	07	38	30	22	20	35	29	30	35	42
		Avg Max	88.5	89.2	84.0	73.5	67:1	56.3	54.4	67.6 64.2	64.2	64.3	73.2	82.3
		Avg Min	47.6	49.5	47.1	48.4	41.1	38.9	30.9	45.3	37.8	9.04	47.2	48.3
		Avg	68.1	69.4	65.6	61.0	54.1	47.6	42.7	56.5	51.0	52.5	60.2	65.3
D3 8849	Templeton	Max	103	105	100	95	87	77	72	79	76	78	92	98
		Min	45	43	40	39	22	19	17	37	29	31	38	42
		Avg Max	89.3	92.5	9.98	77.2	69.5	63.9	0.09	68,3	63.5	63.6	71.9	79.9
	1000	Avg Min	49.0	50.4	47.3	45.8	37.8	36.4	31.0	46.7	37.5	40.8	48.8	48.2
		Avg	69.2	71.4	67.0	61.5	53.7	50.2	45.5	57.5	50.5	52,2	60.4	40.5
F9 9122	Ukiah	Max	104	103	101	93	85	70	89	77	73	78	95	104
		Min	49	94	95	38	28	21	19	33	29	32	38	42
		Avg Max	95.1	90.6	89.5	74.6	65.8	6.09	59.0	66.6 61.7	61.7	62.0	75.9	84.0
		Avg Min	53.7	54.2	50.5	47.0	41.3	37.3	31.1	45.6	45.6 37.0	39.7	48.0	51,0
		Avg	74.4	72.4	70.0	8.09	53.6	49.1	45.1	56.1	49.4	50.9	62.0	67.5
E4 9185	Upper San Leandro Filters	Max	80	92	87	88	79	69	63	74	72	69	85	84
		Min	47	52	67	45	34	32	31	41	35	35	42	47
		Avg Max	71.1	74.4	71.1	4.69	65.2	58.5	54.7	64.7	61.7	4.09	0.99	70.3
		Avg Min	50.1	53.7	52.2	50.7	46.3	41.9	37.9	48.9	41.9	43.6	49.5	
	٠	Avg	9.09	64.1	61.7	60.1	55.8	50.2	46.3	56.8	51.8	52.0	57.8	60.4
E3 9305	Veterans Home	Max	100	102	96	90	76	89	09	80	72	9/	92	98
		Min	84	40	44	04	36	26	26	40	32	32	40	94
		Avg Max	87.8	88.1	81.5	72.4	66.1	58.1	54.5	64.7	61.8	65.8	76.8	85.7
		Avg Min	51.5	52.9	51.6	51.4	44.9	40.7	34.8	48.2	41.6	42.7	50.7	
		Avg	69.6	70.5	9.99	61.9	55.5	49.4	9.47	- 1	56.4 51.7 54.2	54.2	63 8	

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NON
E4 9423	Walnut Creek 2 ESE	Max	100	102	96	94	81	79	65	76	76	76	91	100
		Min	94	48	777	40	27	21	20	33	30	31	38	41
		Avg Max	88.2	87.2	83.2	72.6	67.4	55,1	53,9	66.0	64.4	64.1	71.9	80.6
		Avg Min	50.9	52.7	50.4	46.5	39.5	36.9	29.1	44.6			48.4	
		Avg	9.69	70.0	66.8	59.6	53.5	46.0	41.5	55.3	51.1	52.9	60.3	64.7
01 9473	Watsonville WW	Max	87	91	84	84	90	9/	70	76	75	72	75	79
		Min	94	45	45	42	33	27	26	37	33	34	38	41
		Avg Max	67.7	72.6	9.99	71.5	67.8	63.6	58.6	65.8	62,3	62.0	65.2	67.6
		Avg Min	50.3	51.5	50.2	48.3	42.7	40.3	34.7	47.1	40.4	43.2	48.1	48.9
		Avg	59.0	62.1	58.4	59,9	55,3	52.0	46.7	56.5	51.4	52.6	56.7	58.3
9 9770	Woodacre	Max	96	100	66	92	92	99	65	73	71	72	88	95
		Min	41	43	39	37	26	21	18	31	28	31	36	40
		Avg Max	85.0	85.6	81,4	70.1	65.1	56.6	54.0	64.3	9.09 67.79	57.6	67.6	
		Avg Min	48.1	49.4	48.0	46,6	39,7	36,4	29.8	44.0	38.5	41.0	48.4	46.3
		Avg	9.99	67.5	64.7	58.4	52.4	46.5				49.3	58.0	61.1
3 9675 41	Wild Horse Valley	Max	92	96	93	98	76.	70	70	74	70	92	98	92
		Z.	45	48	48	47	40	28	30	40	32	34	41	48
		Avg Max	82.1	82.8	77.8	71.0	65.5	60,3	57.0	67.2	62.4	64.5	71.6	78.2
		Avg Min	55.5	56.5	53.4	50.5	47.5	43.5	37.5	49.0	42.9	44.5	48.3	53.1
		Avg	68.8	9.69	65.6	8.09	56.5	51.9	47.2	58.1	52.6	54.5	60.0	65,6
		Max												
		Min												
		Avg Max												
		Avg Min												
		Avg												

MONTHLY EVAPORATION

NUMBER	STATION NAME		JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E6 0053	Alamitos Perc. Pond	Evap	8.97	9.09	6,15	3,35	2.14	, 99	1.44	2.03	3.39	4.11	6,59	9.21
		Wind Movement	1486	1599	1329	1571	979	959	1470	1290	1571	1730	1663	1910
		Water Temp Avg. Max	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg Min	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Precip.	U	0	т	7.37	.13	2.11	4.45	2.91	3,27	3.26	.42	т
		Air Temp Max	90	96	93	88	82	73	65	77	75	73	89	93
		Air Temp. Min	48	47	37	37	31	28	22	37	34	35	39	44
		Air Temp. Avg Max	80.7	82.3	78.4	71.7	66.3	59,4	55.7	67.0	63,5	63.4	70.5	80.0
		Air Temp Avg Min	51,6	53.6	49,1	47.1	43.3	39.0	34.0	45.7	40.3	44.3	49.4	50.4
		Air Temp. Avg	66,2	68,0	63,8	59.4	54.8	49.2	44.9	56.0	51.9	53.9	60.0	65.2
E7 1206	Surlingeme	Evap	7.84	7.53	5.09	3.09	1.59	.89	1.32	1.46	2.98	3.70	5.58	7.29
		Wind Movement	2908	1908	1142	1138	490	309	703	560	990	1200	1310	1390
		Water Temp Avg Max	79.7	84.1	80,5	73.0	67.8	60.0	55,1	69,1	70.4	74.5	81.4	84.8
		Water Temp Avg Min	53.3	55.5	55.7	53.5	47.9	45.7	40.5	51.1	45.4	48.5	53.5	55.3
		Precip Air Tomo	0	.04	0	6,68	. 37	2.81	3.63	3.15	4.17	3,66	.45	0
		Air Temp Max	85	86	86	78	76	65	64	69	69	71	84	79
		Air Temp. Min.	47	47	44	41	34	29	25	36	34	35	41	42
		Air Temp Avg Max. Air Temp.	72.6	76,3	72.3	69.2	65,3	56.6	55.1	64.5	62,7	63,3	69.2	72.6
		Avg Min.	52.6	54,0	50.5	50,1	45.7	42.2	35.4	47.7	41.2	43.3	49.7	46.2
		Air Temp Avg	62.6	65.2	61.4	59.7	55.5	49.4	45.3	56,1	52.0	53.5	59.5	60.4
P9 2105	Coyote Dam (Lake Mendocino)	Evop	12.75	9.95	7.67	3,21	1,80	1,10	1.20	2.11	3.11	3.63	5.97	9,28
		Mavement Water Temp.	1654	1583	1154	781	347	164	310	534	1146	1404	1348	1692
		Avg Mox Water Temp	86.7	83.5	79.6	67.8	60.1	53.9	49.6	59.9	60.3	61.1	75.2	83.2
		Avg. Min. Precip.	54.0	54.6	50.8	48.5	41.0	41.0	32.1	47.5	37.3	41.5	48.2	51.6
		Air Temp	0	.16	.51	8,60	2.72	5,15	4.20	5.04	5.87	7.37	,80	.18
		Max Air Temp Min.	104	103	102	94	87	74	68	75	71	74	-90	102
		Air Temp	95.0	90.7	43	76.7	69.4	62.9	15 58.0	30 64,6	25 61.·3	59.4	71.9	83.8
		Avg. Mas. Air Temp Avg. Min.	-		89.9 48.2	44.1	39.5	37.3	27.8	43.2	33.9	37.5	43.7	48.4
		Air Temp	73.6	71.6	69.1	60.4	54.5	50.1	42.9	53.9	47.6	48.5	57.8	66.1
		Avg	73.0	71.0	07.1	00.4	34.5	30.1	1 42.5	3317	4710	40.5	37.0	
Z6 2109	Coyote Reservoir	Evap	7,34	8.09	5.09	3.11	1.75	.84	.78	1.44	2.61	2.77	4.23	6.76
		Wind Movement	471	729	505	412	279	101	257	84	172	128	169	383
		Water Temp. Avg Max	NR	NR	NR	NR	KE	NR	NR	NR	NR	NR	NR	NR
		Water Temp. Avg Min.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	HR	NR
		Precip.	0	0	T	2.42	.43	2,60	6.22	6.39	3.79	5.48	.45	.01
		Air Temp. Max.	96	100	98	95	85	72	66	74	70	72	90	94
		Air Temp. Min.	45	45	41	37	28	23	18	35	30	32	35	40
		Air Temp. Avg Max.	86.1	87.8	62.1	72.3	66.0	60.0	56.3	65.2	60.8	61.6	69.3	77.7
		Air Temp. Avg. Min.	48.3	50.7	48.1	45.6	40.2	35.9	29.5	44.6	37.1	41.0	46.5	47.6
		Air Temp. Avg.	67.2	69.2	65,1	59.0	53.1	48.0	42.9	54.9	49.0	51.3	57.9	62.6
E3 2580	Duttons Leading	Evop	8,71	6.51	5,76	3.71	1.95	1.00	1.48	1.77	3,38	3,33	5.52	8.69
		Wind Movement	3810	3916	3037	2846	1470	1151	1521	1379	1910	2071	2984	3834
		Water Temp. Avg Max	62.9	84.9	77.2	70,9	63,6	55.9	50.7	65.4	65.7	68,4	77.1	79.9
		Water Temp Avg. Min.	52.2	54.8	53.0	51.4	43.8	42.5	34,5	48.1	42.0	43.5	50.7	53.3
		Precip.	0	.07	.06	7.95	.78	2.61	4.12	3.36	5.07	4.46	.19	T
		Air Temp Mox	83	94	92	87	79	64	61	72	70	70	8.6	84
		Air Temp Min.	48	51	47	43	36	26	24	40	33	34	39	47
		Air Temp. Avg. Max.	74.5	78.3	74.3	71,9	67.5	59.9	53.8	65.0	63.3	62.4	69.4	74.2
	t e	Air Temp Avg. Min.	52.5	55.6	51.7	50.8	42.6	42.1	33,2	47.2	41.1	42.2	49,0	51.0
		Air Temp.	63,5	67,0	63.0	61.4	55.2	51.0	43.5	56,1	52.2	52.3	59.2	62.6

TABLE A-4

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JU
1 4022-10	Bollister Costs	Evap	9.04	8.14	5.12	3,57	3.15	2.26	1.73	2.47	3.34	3,01	5,14	6.58
		Wind Movement	NR	RE	NR	NR	NR	NR	NB	NR	HR	NR	NR	NR
		Water Temp Avg. Max	NR	NR	NE.	NR	NR	NR	NR	NR	NR	NR	NB	MR
		Water Temp Avg Min	NR	NR	MR	NR	WR	NR	NR	NR	NR.	NR	NR	WR
		Precip	.02	Т	T	1,26	.26	2,16	4.42	3.23	2.57	3,82	.29	.13
		Air Temp. Max	HR	NR	NR	NR	NR	NR	NR	NE.	BR	NR	NR	NR
		Air Temp. Min	NR	NR	NR	NR	NR	N'B.	NR	NR	NR	HB	HR	NR.
		Air Temp. Avg. Max	NR	NR	NR	NR	NR	ĦR	NR	MR	WR	HR	NR	NR
		Air Temp Avg Min	NR	NR	NR	NR	KR	NR	NR	NR	HR	HR	HTR	NE
		Air Temp	NTB.	NR	HR	NR	NR	NR	NR	NR	NR	MR	NR	NR
t6 4922	Lexington Reservoir	Evap	8.81	8,32	6.10	3.01	1.76	.87	1.15	1.62	2.58	3.23	4.79	7.8
		Wind Movement	878	885	835	1252	800	779	943	NR	625	1127	697	92
		Water Temp. Avg. Max	NR	NR	WR	NR	NR	NR	NR	NR	NR	HR	HR	NR
		Water Temp Avg Min	NR	MR	NR	NR	HR	KR	HR	NR	NR	HR	HR	NR
		Precip	0	.02	.01	14.69	.48	4.19	9.71	10.02	7.00	8,00	.80	
		Air Temp Mox	95	98	91	91	80	65	65	73	72	76	88	8
		Air Temp. Min.	43	45	42	37	32	26	22	35	31	32	38	4
		Air Temp. Avg. Max. Air Temp.	85.1	85.9	81.5	70.5	64.9	58.1	54.7	64.7	61.2	61.7	69.4	78.
		Air Temp. Avg. Min.	48.5	50.0	47.9	45.4	43.5	39.6	33.8	45.9	38.5	41.4	47.8	48.
		Air Temp Avg	66.8	68.0	64.7	60.0	54.2	48.8	44.2	55,3	49.8	51.6	58.6	63.
		Evap	70. 70	9,77	7.22	4.03	2.16	1.11	1.24	2.25	2.95	3.21	4.72	9.9
5 4996	Livermore Sewage Plant	Wind Movement	3230	3160	2720	2680	1340	1300	1560	1340	1480	1230	1030	266
		Water Temo		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Avg Max. Water Temp	MR	NR.	NTR.	NR.	NR.	NR	NR.	NR.	NR	NR	NR	NR
		Avg. Min. Precip.	0	0	0	5.33	.30	1,93	2.03	5,60	3,10	3.35	.47	.0
		Air Temo	99	100	97	98	76	67	65	74	72	72	88	9
		Air Temp Min.	44	45	41	38	30	20	19	33	29	24	35	4
		Air Temp	85.5	85,6	82.2	72.7	67.0	58.3	54.4	66.6	62.8	62.3	71.0	80.
		Avg. Max. Air Temp Avg. Min.	49.4	50.7	47.9	46.5	38.8	35.8	28.3	44.1	37.1	39.1	45.8	46.
		Air Temp Avg	67.4	68.2	65.0	59.6	52.9	47.0	41.4	55.4	50.0	50.7	58.4	63.
E5 6144	Hewark	Evop	8.38	6.30	6.12	4.34	1,79	8,50	1.24	1.88	3.49	4.11	5.59	8.6
		Wind Movement	1934	1562	1709	1671	748	507	865	780	1581	1651	1682	223
		Water Temp Avg. Max.	WR	NR	NR	NR	NR	FR	NR	NR	MR	MR	FR	MB
		Water Temp Avg. Min.	NR	NR	NLK	HR	NR	NR	MR	NR	MB	MR	MR	201
		Precip.	0	0	0	4.53	. 34	2.20	1.51	2.88	3.09	4,19	. 57	.0
		Air Temp. Mox.	82	95	89	86	83	69	63	74	69	69	84	8
		Air Temp Min.	49	52	48	44	33	26	24	40	37	37	43	4
		Air Temp. Avg Max.	74.5	77.9	73.6	70.9	66,2	56.7	53.6	64.4	62.0	61.4	67.3	73.
		Air Temp. Avg. Min.	52.3	54.8	53.8	52.6	45.1	41.8	35.1	49.0	42.6	46.5	51,6	52.
		Air Temp Avg	63,4	66.4	63.7	61.8	56.2	49.3	44.4	56.7	52.3	54.0	59.5	62.
D2 7845-10	San Luces Guidici	Evop	9.01	8,32	5.82	4.56	3.48	2.67	3.18	3, 67	3,78	4,33	6.78	7.2
	000 2000 0010101	Wind Movement	NR	MR	HR	MR	HR	NR	WR	WR	NR	NR	NR	ME
		Water Temp Avg. Max.		WR	HR	WR	MR	HR	HR	HR	NR	NR	NR	162
		Water Temp	HR	MR	MR	NR	HTR	MR	HR	MR	HE	WR	NR	HE
		Avg. Min. Precip.	0	0	.03	.21	T	2.24	3.34	3.41	2.86	1.75	.32	
		Air Temp. Max.	HTR	NR	NR	HR	HTR	NA	MR	HR	MR	NR	NR	M
		Air Temp Min.	HTR	NR	HTR.	HR	MR	MER	HR	MR	MR	MR	MR	503
		Air Temp	HR	HR	HR	HR	MR	HR	HR	NR	HR	NR	HR	NI
		Avg. Mox. Air Temp. Avg Min.	MR	WR	HR	MIR	WR	MR	WR	MR	HR	HR	ME	1973
		Air Temp.	1	1		1	1	1	1		1	1	-	-

TABLE A-4 MONTHLY EVAPORATION

NUMBER STATION NAME JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN Evop. 4.13 5.05 3.21 n2 7959-10 3.39 2.12 1.82 2.02 2.68 3.04 3.82 4.52 5.89 Senta Rita Muther Wind Movement NR NR HR NR NR MR NR NR NR NR HR NR Water Temp Avg. Max NE NR MR MR HR NR NR NR NR NR KR NR Woter Temp Avg. Min. MR HR NR NR HR MR NR. NR WR HR WR NR Precip. T .01 . 07 .97 . 47 2.73 2.71 3.96 3.51 3.92 .16 T Air Temp. Mox HR MR MR NR WE MR ME NR NR NR NR NR Air Temp. MR NR NR HR MB NR HR NR NR NR NR HR Air Temp. Avg. Max NR MR NR HR NR NR NR NR NR MR MR NR Air Temp Avg Min NR NR NR NR NR HR NR NR HR MR NR MR Air Temp NR NR HR NR NR NR NR NR NR NR NR NR Evan P9 7964 8.16 7.94 6.03 3.41 1.93 1,88 1.18 1.57 Santa Rosa Sewage Plant 3.16 3,32 4.53 6,10 Wind Movement 2836 2898 2076 2319 1014 723 1533 1655 2488 2890 2639 2749 Woter Tems Avg. Mox NR NR MR NR NR NR NR NR NR MR NR MR Woter Temp NR NR NR NR NR HR NR HR. NR KR NR NR Precip 0 4.40 .09 .24 7.81 .83 4.87 2.08 4 94 5.42 . 56 0 Air Temp Mox. 86 95 91 76 71 80 83 85 61 60 68 63 Air Temp. Min. 42 39 ΔN 36 29 21 20 33 28 31 34 43 Air Temp. Avg. Max. Air Temp. 73.4 78.0 73.3 67.2 62.3 53.3 50.4 60.8 55.8 55.6 61.5 72.3 47.6 49.6 46.2 47.0 40.5 36.5 31.5 44.0 36.3 39.4 44.7 47.6 Avg. Min. Air Temp Avg. 44.9 60.5 63.8 59.8 57.1 51.4 41.0 52.4 46.0 47.5 53.1 60.0 Evop F9 7965-03 Santa Rosa Pedranzini 7.08 7.03 4.88 2.73 1.77 .78 1.06 1,65 2.77 2.97 4.86 5.50 Wind Movement HR NR NR HR NR NR NR NR NR NR MR WR Water Temp Avg. Max. Water Temp Avg. Min. Hk NR NR HR NR NR NR NR NR NR HR NR NR NR MR MR NR NR WR NR NR Precip. 0 . 02 .15 8,19 .63 3,45 5.11 2.89 5.03 .46 τ 4.95 Air Temp NR MR HR Mox Air Temp Min. NR NR NR HR NR NR HR NR. NR HR NR MR Air Temp Avg. Max. NR NR NR HR MR HR NR NR NR NR MR Air Temp Avg Min. NR NR NR NR NR HR NR NR NR NR NE MB Air Temp Avg NR HR NR Evop D2 8338-01 7.95 7.79 5.56 5.16 3.24 2.67 2.65 2,85 4.17 4.79 6.40 7.75 Soledad C.T.F. Wind Movement Water Temp Avg. Max. NR HR NR HR MR NR MR NR HR NR 4218 4578 NR NR NR 52.9 64.7 58.1 54.0 66.1 65.2 67.8 72.8 77.5 Water Temp Avg. Min. 40.7 47.4 NR NR NR 43.7 35.7 46.5 40.0 43.4 47.1 NR Precio. 0 0 0 .25 . 04 1.78 2.46 2.12 2.65 1.73 .14 .23 Air Temp. Mox. яq 89 80 70 76 74 70 80 95 81 73 82 Air Temp. Min. 42 43 42 39 30 27 20 36 29 32 38 40 Air Temp. Air Temp. Avg. Max Air Temp. Avg. Min. Air Temp. Avg 72.7 77.5 71.9 74.7 69.5 64.5 59.1 66.9 63.6 63.6 68.1 71.8 41.8 50.3 51.0 49.0 45.5 39.1 33.2 48.2 38.3 42.0 47.5 49.2 61.5 64.2 60.4 60.1 55.6 51.8 46.2 57.6 50.0 52.8 57.8 60.5 Evap 7.75 E3 9861 Yountville Gambla 8,33 5.53 3.35 2.72 .97 1.32 1.41 2.72 2.87 4.92 7.43 Wind Movement NR HR NR NR NR HR MR NR NR NR NR 1682 Water Temp Avg. Max NR NR NR HR NR NR NR MR NR HR HR MR Water Temp Avg Min. NR ЖR NR ₩R NR NR NR NR Precip. n 02 02 11.36 .63 3.96 8.92 2.62 5 66 4 64 . 52 Ť Air Temp. Max. NR NR NR NR NR NR NR 69 73 64 91 NR Air Temp Min. NR HR NR NR NR NR NR NR 28 30 38 42 Air Temp. Avg Moz NR 60.9 61.2 69.5 78.0 NR NR NR NR NR HR NR NR NR NR MR MR NR HR NR 35.8 39.7 46.8 47.9 Air Temp. Avg. NR NR NR 48.4 58.2 MR NR NR NR NR 50.4 63.0

APPENDIX B

SURFACE WATER FLOW

SURFACE WATER FLOW

This appendix presents surface water measurement data collected and assembled by the Department of Water Resources. It contains information collected in the Central Coastal Area during the 1963 water year covering the period from October 1, 1962 through September 30, 1963.

Maximum and Minimum Tides

There are usually two high and two low waters in a day. Tides follow the moon more closely than they do the sun, and the lunar or tidal day is about 50 minutes longer than the solar day. This causes the tide to occur later each day, and a tide which has occurred near the end of one calendar day will be followed by a corresponding tide that may skip the next day and occur in the early morning of the third day. Also, the two high and two low tides are usually unequal. They are commonly designated as higher high, lower high, higher low, and lower low tides.

Table B-1 on pages B-6 and B-7 lists maximum and minimum tides at the Sacramento River at Collinsville and Suisun Bay at Benicia Arsenal, respectively. These data are obtained from graphical charts plotted by continuous water stage recorders. The values are in feet above -13.05 feet USC&GS mean sea level datum of 1929 at Collinsville and above -10.00 feet at Benicia Arsenal. The values in most cases represent higher high water and lower low water. During a calendar day in which three instead of four tides occurred the high value represents lower high water in the case where higher high tide did not occur and the low value represents higher low water in the case where lower low tide did not occur. The maximum and minimum values at the bottom of each monthly column represent the extremes observed during that month.

At the bottom of each table the maximum gage height of record shown is measured from the same datum as the daily high and low values.

Daily Mean Discharge

Table B-2 on pages B-8 and B-9 presents daily mean discharges in Arroy de los Coches near Milpitas and in Butano Creek near Pescadero. Each of these stream gaging stations is equipped with a continuous water stage recorder. Each has a stage discharge relationship or rating developed. The rating gives the flow or discharge in cubic feet per second (cfs) for each water stage or gage height at a station.

The rating is developed by making streamflow measurements with a current meter at various water stages ranging from near minimum to near maximum. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand and gravel or where vegetative growth builds up in the channel changing the flow regime. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the discharge.

The mean, maximum, and minimum values at the bottom of each monthly column are representative of that month and year only. The acre-feet value for each month is a total of the daily values which are converted to acre-feet for the computation. The mean discharge under "Water Year Summary" is an average of the monthly means. The maximum and minimum discharges are absolute instantaneous extremes that occurred during the year. The total acre-feet is the sum of the monthly acre-feet values.

The streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. The results are affected by inherent inaccuracies in procedures and equipment. It is, therefore, necessary to establish limits of accuracy for the reported data. The following is a listing of significant figures used in reporting streamflow data:

- 1. Daily flows cubic feet per second
 - 0.0 9.9 Tenths
 - 10 99 2 significant figures
 - 100 up 3 significant figures
- 2. Means cubic feet per second
 - 0.0 99.9 Tenths
 - 100 999 3 significant figures
 - 1000 above 4 significant figures

Water year totals are reported to a maximum of four significant figures.

TABLE B-1

DAILY MAXIMUM AND MINIMUM TIDES SACRAMENTO RIVER AT COLLINSVILLE

678F-000 NO. 671110

DATE	OCT.	NOV	DEC.	JAN.	FEO	MAR	APR	MAY	JUNE	JULY	AUG	SEPT.	DATE
-	15:32	15:31	11:91	11:22	17:89	19:83	11:38	12:35	11:12	12:23	13:23	## H	1
2	19:29	11:31	17:22	11:21	13:11	19:17	11:22	13:28	11:35a	14.99	15:38	12	2
3	13:39	11:88	17:22	15:32	12:33	11:33	11:22	12:23	15.05E 12.70E	14.42 12.25	13:33		3
4	12:33	13:89	17:27	15:22	12:33	15:82	13:57	12:22	16.41 12.50E	12:24	15:13	17,60E	4
3	16.15	17:33	11:13	13:37	13:23	17:38	11:31	15:22	16.61 12.35g	16.61	11:22		3
4	19:00	17:52	17:88	15:17	13:23	11:17	11:53	11:43	16:00 12:10s		11:23	**	
7	12:83	11:71	15:53	19:23	13:33	11:48	15:37	15:22	17.08 12.138	70E	13:33	#	7
	11:85	15:88	12:33	13:82	17:27	12:33	13:33	19:52	17.20 11.85E	#	19:33		
,	10.26	11:23	14:74	11:11	17:11	16:20	16.50	15:33	17.10 11,90g	===	11:12	盟	,
10	12:10	15:31	10.00	17:02 11:95	17:33	13:81	11:33	19:15	17.36 12.20E	## H	11:22	#	10
- 11	12:37	12:88	19:17	11:33	13:77	13:33	11:78	15:1%	16.90 12.05E	-	12:33	離	1
12	17:15	12:17	17:87	11:22	12:32	13:88	15:29	16.24 11.95E	16,72 12,138	- 12	12:18		12
13	13:22	12:00	12:32	13:83	13:33	11:38	13:13	16.21 12.20g	16,30 12,158	19:23	12:37		13
10	13:33	15:78	11:17	11:23	15:23	13:28	13:71	16.08 12.21E	12:38	11:12	11:13	## H	14
15	17.66	16.40	12:18	17:42	18:53	15:57	11:33	15.00 12.23E	12:43	11:2	13:33	## ##	15
16	17:29	11:37	19:12	17:38	15:23	11:00	13:86	13.60E 12.25E	11:13	11:21	13:83	#	16
17	13:28	13:33	19:38	13:12	15:44	13:55	13:38	15:11 _m	17:37	11:13	11:15	#	17
16	17:32	18:33	13:44	13:33	12:13	11:11	13:88	12:30a	11:43	17:87	11:33	=	10
19	13:16	17:17	12.56	13:82	16:25	18:31e	15:53	11:98 _e	13:25	11:78	H:H	- ME	19
20	12:12	11:56	12.75	17:81	12:31	17:33	11:13	13:22	17:23	11:31	19:31	MA.	20
21	15.92	11:00	19:50	11:48	12:87	11:93	15:35	12:33	17:53	17:82	11:38	#	21
22	13:30	13:28	15:27	11:33	11:47	11:37	19:28	11:11	11:31	13:13	罐	#	22
23	12:17	15:33	12:28	11:11	11:99	11:39	17:88	13:12	17:38	11:17	**		25
24	12:17	12:07	12:37	11:33	12:87	11:78	11:43	17.61 12.058	11:E	12:17	**	***	24
25	15:31	11:82	11:#	11:81	19:18	17:33	13:88	17:33.	11:33	12:83	#	=	25
26	12:01	19:35	11:33	11:22	12:93	13:78	***	17.22 12.25F	11:18	13:33	篇	-	26
27	12:26	11:38	12:09	11:88	19:98	19:38	##	16.90 12.458	19:13	12:39	#	12:23	27
20	13.45	11:33	11:33	15:18	11:11	19:29	#	15:78	H:H	11:23	=	12:31	28
29	12:13	11:22	13:32	17:22		15:23	**	14:18.	11:22	11:13		13:33	29
30	14:10	11:57	11:33	12:28		11:13	int int	15:32	12:57	19:83	17.46E	19:32	30
34	12:83		13:32	17:38.		19:33		16.41 13.70s		11:73	- 12		1 3r
MA X PARLIN	17:00	11:87	17:87	17:22	11:33	11:23°	17:28	17:53	17:13	17:33	17.46E HR	7,60E FIR	
101100,00													

on feet

In order to machine process the data in this table, it was necessar" to avoid negative gage heights. Subtract 10,00 feet to obtain recorder gage height.

	LOCATION	1		MAXIMUM		PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	0018	ZERO	REF
LATITUDE	LONGITUDE	м 0.В в.м	C.F.S.	GAGE HT.	OATE	DIS CHARGE	ONLY	FROM	TO	GAGE	DATUM
38°04'25"	121°51'18"	SW27 3N 1E		9,2	4/6/58		June 29-Date	1929		0,00	USED
1		•			'	'		1929		-3,05	uscas

Station located 0,4 mi. SW of Collinaville, 3.3 mi. NE of Pittaburg. Maximum gage height does not indicate maximum discharge.

E - Estimated NR- No Record

TABLE B-1

DAILY MAXIMUM AND MINIMUM TIDES

SUISUN BAY AT BENICIA ARSENAL

in feet

STATION NO WATER YEAR E03300 1963

													_
DA7E	DCT.	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OATE
1	12:86	19:31	12.47	14:31	14.20 9.13	12:39	12:87	12.39	12.99 8.96	13.20	13.56	13.49 7.65	
2	13.04	12.60 7.50	12.70	12.71 8.91	13.87 8.19	13.11	12.41 8.94	12.70 7.97	12.99 8.46	13.32 7.99	13.63	13.57 7.58	2
3	12.95	12.57 10.52	12.22 7.16	13.06 7.79	14.39 6.09	12.90 7.00	12.24	12.17 8.15	13:01 7:82	13.45 7.66	13:70	12.66 7.81	3
4	12.87 8.10	12.38 7.53	12.36 9.52	13.27 6.00	14.57 7.89	12.44	12.26 7.10	12.90	13.23 7.60	13.55	12.29	13:67	4
5	12.79	12.25 7.32	12.45 7.29	13.46 7.65	14.41 7.56	12.67 6.47	12.71	13.08	13.49 7.49	12.07	13.66 7.36	13.51	5
6	12.72	12.39	12.66	13.62 7.39	14.36 7.40	13.02 6.78	12.94	12.93	12.43 7.30	13.70 7.22	13.66 7.38	13.23 8.15	6
7	12.94 7.78	12.57 7.37	13.13	MR MR	14.90 7.50	13.16 6.91	13.13	19.10 7.80	13.76	13:77 7:15	13.52 7.51	13.39	7
8	12.67	12.98	13.47	NA NR	14.40	13.16 7.21	13.11	13.28 7.55	13.84 7.24	13.70 7.03	13.24 7.68	13.93	0
9	12.88 7.54	13.49 8.17	13.73 7.21E	MR MR	14.91	13.08 7.40	13.20 7.90	13.19 7.18	13.77	13.50 7.13	12.97 7.45	13.96 9.44	9
10	12.99	13.62 7.60	13.89E 7.10E	NR NB	14.30	12.87 7.45	15.27	18.01 7.13	14.05	13.29 7.23	13.20 8.19	13.44 6.06	10
0	13-68	13.72	14.00 7.198	NR NR	13.91	12.60 7.64	13.23	13:10	13:62	13:31	13.39	13.49 7.94	0
12	14.09	13.99 7.31	13.63E 7.17E	RPR NR	13.14	12.30	13.33	12.49	13.36 7.63	13.09	13.42	13.38 7.80	12
13	14.25 9.06	13.91 7.34	13.68	NR NR	12.92 9.23	12.30 7.91	13.28	12.81 7.20	12.97	13.29 4.19	13.52	13.46 7.67	13
14	14.14 7.98	13.79 7.19	13.50 7.31E	NR NR	12.79 9.55	12.50 8.26	13.44	12.55 7.38	12.99	13.62	13.65	13.60	14
15	14.07 7.77	13.29 7.22	12.95E 7.48E	MR MR	12.51 9.35	12.70	12.91 6.10	12.33 7.37	13.31	13.84	13.85 7.41	13.62 7.87	15
16	14.06 7.53	12.71	12.44E 7.61E	MR MR	12.71 9.21	13.05	12.53 8.40	12.38 7.50	13.71 8.47	13.91 8.15	14:01 7:51	13.48	16
17	14.07 7.66	12.21 9.95	12.11E	NR NR	12.70	12.79	12.59	12.80 7.75	14.02 8.37	13.98 7.96	12.50 7.56	13.00	17
16	13.89	12.10 7.22	13.02	NR NR	12.71 8.01	12.09 7.49	13.07 7.90	13:21	12.45 7.98	14.13 7.29	13.86	13.35	18
19	13.40	12.07	12.69 8.39	12.50	12.89 7.51	12.05 7.32	13:15	13.67	14:20	12:37	13.56	13.09	19
20	12.77 7.86	12.26 7.55	12.71	12.58 7.48	13.14 7.09	12.22	13.27	13.96	14:42 7:31	14.12 7.02	13.39	MR MR	20
21	12.94	12.55 7.96	12.76	12.99	13.28	12.66 7.17	13:51	12.71 7.59	14.51	14:01 7:01	13.17	NR NR	21
22	12.98	12.44 8.43	13.00 7.88	13.14	13.45	13.39	13:96	14.10	14:31 4:73	13.91 7.16	13.04 0.38	MR MR	22
23	12.74	13.09	13.32E	13.30 7.05	13.54	13.34 7.18	13.75	14.34	14.09 6.71	13.63 7.48	12.83 8.49	MR NR	23
24	12.78	12.95	13.44 7.41	13.55	13.92	12.97	14:10 7:13	14.40	13.70 6.72	13:16	12.75	MR MR	24
25	12.60	12.96	13.93 7.12	13.39	13.34	12.67	14.46 7.26	14.22	13.21	12.62 7.62	12.70 9.12	NR NR	25
26	12.86	13.35	13.62	13.93	12.99	13.05	14.45	13.48	12:90	12.05	18:78	MR MR	26
27	12.74 7.77	13:16	13.58	13:33	13.03	13.46	13.69	13.58 5.89	12:02	13:13	12:71	MR NR	27
28	12.73E 7.66	13.11	13.43	13.16 7.28	13.04 7.58	14.08 7.77	13.37	13 - 24 7 - 46	12.03	13.20	12.95 8.36	HR	28
29	12.97	12.96 6.66	13.17	12.46 8.36		13.77	12.92 7.00	12.75	12:82 8:57	13.19	13.27 0.19	NR NR	29
30	13:05	13.00	13.01	13.69		13.92 7.16	12.50	12.83	12.96	13.28 8.61	13.34	NR NR	30
31	12.96		17:63	14.29 10.60		13.25		13.00		13.41	13.44 7.80		31
MAX IMUM	14.23E	13:22	16.00	14.25	14.99	14.06	14.46	14.40	14.51	14:13	14:91	13.67 7.58	27.00
MINIMUM	7.44		0,00		0.73					1.01			

^{*} In order to machine process the data in this table, it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain recorder gage height.

	LOCATION	1		MAXIMUM		PERIOD (F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO	REF
LATITUDE	LONGITUDE	M. D. B. 8 M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
38°02'26"	122°08'44"	SW6 2N 2W		6.72	3/5/62		Jun 29-Apr 40 Apr 40-Date	1929 1940 1942	1940 1942	-2.21 -5.00 0.00	USCGS USCGS USCGS

Station located on inshore side of wharf, immediately SE of Senicia.
Maximum gage height listed does not indicate maximum discharge.
Period of record intermittent from 1929-1940.

E - Estimated NR- No Record

TABLE B-2

IN SECOND FEET

DAILY MEAN DISCHARGE ARROYO DE LOS COCHES NEAR MILPITAS

STATION NO WATER
YEAR
E64050 1963 STATION NO

OAY	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
-	0.0	0.0	0.0	0.0	0.4*	0.0	0.3	0.10	0.1	0.0	0.00	0.0	1
2	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.1	0.1	0.0	0.0	0.0	2
3	0.0*	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.1*	0.1	0.1	0.0	0.0	0.0	4
3	0.0	0.0	0.0	0.0	0.0	0+1	0.0	0.1	0+1	0.0	0.0	0.0	- 5
6	0.0	0.0	0.0	0.0	0.0*	0.1	1.1	0.1	0.1*	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.1	0.1	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0 + 1	0.1	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0 + 1	0.1	0 • 2	0.1	0.1	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0 • 2	0 • 1	0 • 1	0+2	0.1	0.0	0.0	0.0	10
11	0.0	0.0	0.0	0.0	0.1	0.14	0.1	0.1	0.1	0.0	0.0	0.0	-11
12	0.0	0.0	0.0	0.0	1.0	0.0	0.1	0.1	0+1	0.00	0.0	0.0	12
13	0.0	0.0	0.0	0.0	2.4	0.0	0.2	0.1	0.1	0.0	0.0	0.0	13
10	0.00	0.0	0.0	0.0	0.5	0.1	1.8	0.1	0.1	0.0	0.0	0+0	14
15	0.0	0.0	0.0	0.0	0.2	0.1	1.2	0.1	0 • 1	0.0	0.0	0.0	15
16	0.0	0.0	0.0	0.0	0.2	0+4	0+3	0.1	0.1	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0 • 1	0.1	0 • 2	0.1	0.1	0.0	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	18
19	0.0	0.0	0.0*	0.0	0.0*	0.0	0.9	0.1	0.0	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0*	1.6	0+1	0.0	0.0	0.0	0.0	5.0
21	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.1	0.0	0.0	0.0	0.0	2 1
22	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.1	0.0	0.0	0.00		2 2
23	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.1	0.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.1	0.3	0.2	0.1	0.0	0.0	0.0	0.0	24
2.5	0.0	0.0*	0.0*	0.0	0.0	0.2	0.3	0.1	0.0	0.0	0.0	0.0	25
2.6	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.1	0.0	0.0	0.0	0.0	5.6
27	0.0	0.0	0.0	0.0	0.0	0.6	0.2	0.1	0.0	0.0	0.0	0.0	27
2.8	0.0	0.0	0.0	0.0	0.0*	1.9	0.2	0.1	0.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	0.0*		0.6	0 • 2	0.1	0.0	0.0	0.0	0.0	
30	0.0	0.0	0.0	0.1*		0.5	0.1	0.1	0.0	0.00	0.0	0.0	31
31	0.0*		0.0	1.0		0+4		0.1		0.0	0.0		31
MEAN	0.0	0.0	0.0	0.0	0.2	0.2	0.4	0.1	0.1	0.0	0.0	0.0	MEAN
MAX.	0.0	0.0	0.0	1.0	2.4	1.9	1.8	0 • 2	0.1	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	MIN.
AC.FT.				2	11	13	24	6	3				ACF

E - Estimated
NR - No Record

@ - Orecharge measurement or observation
of no flow mode on this day.

□ - E ond ★

			,	WAI	ER I	7 6	AR	SUM	MARI					
MEAN		MAXIMU				1	$\overline{}$		MIN					1
DISCHARGE	DISCHARGE	GAGE HT	MO	OAY	TIME	1	01501	ARGE	GAGE	нТ	MO	DAY	TIME	ı
0.1	14+0	2.67	2	12	2400	J		0.0			10	1	0000	J

WATER YEAR SUMMARY

TOTAL	
ACRE-FEET	
60	

	LOCATION	٧	MAXII	NUM DISCH	IARGE	PERIOD (F RECORD		DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC T.B.R M.D.B.B.M		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIDD		ZERO	REF	
		M D B G M	CFS	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
37 36 '38"	121°51' 45"	NW4 63 1E	16.7E	2.71	2/14/62	9-16-59 Date	Sept. 59 Date	1959		0.00	Local	

Station located 200 ft. above Calaveras Road Bridge. 2.6 miles NE of Milpitas. Tributary to Coyote Creek via Penitencia Creek. Recorder installed Sep. 16, 1959. New control installed 7-27-60 with V-notch for small flows.

TABLE B-2

DAILY MEAN DISCHARGE BUTANO CREEK IM PESCABENO

STAT 100 00.	RETER
202200	1941

báv	OCT	NOA	DEC.	JAN	PEG.	MAR	APR	MAY	JUNE	JULY	AU6.	BEPL	ONY
	0.88	6.2	0.2	0.1	333 •	25.	44	40 4	14	6.9	2.7	3.9 2.0 2.5 2.6 2.9	1
	9.00	9.4	0.4	7.9	147	24	40	37	14	4.4	3.0	2.0	2
	9.0	9.0	1.0	7.6	107	32	36	24	13	3.9 3.3 3.1	3.8	2.8	1 :
	0.7	9.0	1.1	7.2	96	21	91 4	54	19	3.3	3.0	2.6	
	0.7	4.3	1.1	6.9	75	19	21	32	13	3.1	3.1	2.9	1 "
6	9.7	3.7	1.7	6.6	47	12 4	69	31 29	19	4.9	2.9 2.7	3,3 3,2 3,4 2,2 3,6	
1	0.7	3.4	2.1 2.6	0.4	54	18	104	29	11 4	4.9	2.7	3.2	1 .
	0.9	3.4	2.6	4.0	37	10	46 4	29	11	4.2	3.9	3.4	
	6.3	3.1	3.1	3.8	124	17	34	75	11	4.1	3.0	3.2	
10	2.5	2.6	3.1	3.6	209	17	32	24	11 10	4.0	3.0	3.0	10
n.	4.1	2.3	4.9	3.4	110	17 4	27	26	9.4 9.1 9.3	3.9	2.4	3.2 3.7 3.6 3.4 3.3	0
102	2.5	2.3	5.4	3.4	109	1.7	26	23	9.1	3.4	3.6	3.7	12
18	405	2.1	7.7	3.4	223	17	26	20	9.3	3.1	3.7	3.4	13
14	241 0	1.0	8.9	3.4	196	17	96	20	10	3.4	3.3	3.4	14
18	43 0	1.0	30	3.4	103	17	107	19	11	3.4 4.3	3.2	3.3	18
16					87				11	4.4	3.1		16
17	93 23	1.4		9.4		35 22	81	10 4	**	4.0	2.4	3.3	17
io l	23	1.6	134	9.4	79	10	94	10	11 10 9.7 9.3	3.9	3.4	2.8 3.2 3.4 2.0 3.6	10
19	19 16 14	5.4	90	9.4	64	17	97 99	17 17	**	3.9	3.3	2.0	19
80	16	1.2	93	9.0	54 40 •	1 17	1 2	ií	1 14	8.7	3.2	3.4	20
	14	1.1	41	3.0		1 47	-		707	***	700		1
61	25	1.1	34	9.8	43	16	79	16	9.1	3.4	2.4	2.1 3.4 3.3 9.2 3.3	51
10	13	0.9	22	4.9	39	19	46	19	0.4	2.2	3.4	3.4	22
8.5	ii	9.7	32	4.3	36	23	61	19	7.7	3.1	3.4	1.3	114
84	9.7	0.8	31	4.3	33	10	56	15	7.1	2.6	3.7	9.2	20
88	9.7	0.8	91	4.3	31	10	99	19	3,01	3.0	4.1	3.5	1 **
20	9.3		31 •	4.3	29	19	9.2	19	7.9	2.0	0.1	2.9 2.4 2.0 2.9	5.0
67	:: i	9.3 1.70	23	4.3	27	49	47	19	6.2	3.0 2.0	3.0	2.0	27
20	7.0	0.3	20	4.2	1 56	100	44	15	9.7	2.9	2.6	2.0	20
29		9.2	13	4.0	_	81	96	19	3.7 3.7	2.0	3.2	2.9	2.0
80	7.2		ii			1 30	94	150	2.6	12-0	3.0	2.2	10
31	4:8	9.2	10.2	273 +	l	39 92		13 13		12.9	2.0		81
335	40,62		29.0	44.3	97.3	29.9	94.6	22.1	9.7	3.9	3.2	3.1	MEAN
MAY	685	5.8			97.3	180	197	40.0	14.0	6.9	4.1	9.7	MAX
MANUE.	=3	6.2	134	884	26.0	10.0	21.0	19.0	2.6	2.4	2.7	2.0	0019L
ACFT	3419	8.0	0.2	4.2	26.0	1027	2266	1997	570	242	2.7 190	102	ACFE
7	2013	190	1925	2725	9917	1 1077	1 2200	1721	7/9/	676		104	1

WATER YEAR SUMMARY

MR - No Record

 Discharge measurement or observed of no flow made on this day.

MEAN		MAXIMU				Mit Popula	UN	
919CHARGE 28,28	SO RANDEIO	TH BOAD	00 B41	7100E	DISCHARGE	GAGE HT.	ME DAY	71000
29,23	1940	16,21	1 31	1350	0.0	3,12	6 30	9749

TOTAL ACRE-FEET 20000

	LOCATION		MAXI	MUM DISCH	IARGE	PERIOD 0	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERD	REF
LATTIONE	LONGITUDE	M. D. B. 8 M	C.F.S.	C.F.S. GAGE HT. DATE		O O O O O O O O O O O O O O O O O O O	ONLY	FROM	TO	GAGE	DATUM
37° 13' 49"	122° 21' 51"	SW14 8S 4W	1340	16.21	1/31/63	June 62-Date	June 62-Date	1962		0.00	Local

Station located 1.7 mi. SW intersection Peacadero Road and Old Stage Road in Pescadero. Tributary to Pescadero Creek. Recorder iostalled June 22, 1962.

APPENDIX C

GROUND WATER MEASUREMENT

GROUND WATER MEASUREMENT

This appendix includes two tables. Table C-1 "Description of Selected Wells", provides a description of 213 wells for which ground water level data are presented in Table C-2, "Ground Water Levels at Wells". A description of the items in the tables follows.

DESCRIPTION OF SELECTED WELLS

Table C-1, "Description of Selected Wells", is arranged in region, basin, and well number order. The water pollution control board regions used in this report and shown on Plate 2, "Ground Water Basins or Units in the Central Coastal Area", are geographic areas defined in Section 13040 of the Water Code. The regions, ground water basins, or units and subareas are listed by a numbering system as follows:

State Well Number

The state well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations made by the Department of Water Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number. Under the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
Е	F	G	Н
М	L	K	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/12W-17K,M would be in Township 16 North, Range 12 West, Section 17, Mount Diablo Base and Meridian and would be further designated as the first well assigned a State Well Number in Tract K.

Agency Well Number

The agency well number is the number assigned to a well by any agency other than the Department of Water Resources in accordance with the numbering system used by that agency. Agencies that use the state well numbering system normally coordinate assignment of well numbers with the Department. These numbers, when common, are not shown in the "Agency Well Number" column; when different, the last five digits are shown in the "Agency Well Number" column.

Agency Supplying Data

Each number in this column is the code number for a cooperating agency. The agency code consists of a five digit number, the first of which

is a region number. Thus, 32100 refers to Agency 2100 in Region 3. Because of the limitations of punch-card space, the agency code has been shown as a four digit number without the region number. Therefore, the four digit agency code should always be referred to the region in which the well is located.

The first digit of the four digit agency code, as listed below, designates the type of well numbering system used by the agency.

Code	Well Numbering System
1	Location numbers
2	Monterey County Flood Control and Water Conservation
	District or Santa Clara Valley Water Conservation District
3	Serial numbers
4	Local numbers
5	State or U. S. Geological Survey
6	U. S. Bureau of Reclamation
7	South San Joaquin Irrigation District

The last three digits of the agency code, as listed below, are numbers that designate, within specified limits, the type of agency from which the data were obtained.

Code	Type of Agency
000-049	Federal
050-099	State
100-199	County
200-399	Municipal
400-699	District - Water, Irrigation, Conservation, etc.
700-999	Private

The agencies and code numbers assigned to them in each of the regions are listed in the following tabulation:

Agency Code :	Agency
	North Coastal Region
5000	U. S. Geological Survey
5050	Department of Water Resources
	San Francisco Bay Region
2400	Santa Clara Valley Water Conservation District
5000	U. S. Geological Survey
5050	Department of Water Resources
5100	Alameda County Flood Control and Water Conservation District
5101	Napa County
5109	Solano County
5401	Alameda County Water District
	Central Coastal Region
2100 and 5100 <u>1</u> /	Monterey County Flood Control and Water Conservation District
2400	Santa Clara Valley Water Conservation District
5050	Department of Water Resources
5101	San Benito County
5102	Santa Cruz County
5400	South Santa Clara Valley Water Conservation District

 $[\]underline{1}/$ In the Paso Robles subbasin of Salinas Valley (3-4.06), this agency number refers to the San Luis Obispo County Flood Control and Water Conservation District.

Well Use

The well use is indicated as follows:

Code	Well Use
1	Domestic
2	Irrigation
3	Municipal
4	Industrial
5	Injection
6	Drainage
7	Domestic and Irrigation
8	Test
9	Stock
0	Unused

Well Depth in Feet

Well depths shown were reported by the owner, obtained from a driller's log, or measured at the time of the well canvass.

Data Available

Under this heading, code numbers, as listed below, indicate the type of data that are available with respect to well logs, water analyses, and production records.

<u>Data</u>	Code
Log record	
Log	1
Confidential log (Sec. 7076, Water Code)	2

Water Analyses

Mineral

Data	Code
Water Analyses	
Sanitary	2
Heavy Metals	3
Mineral and Sanitary	4
Production record	
Available	1
Pump test available	2

Record Begins and Record Ends

The last two digits of the year the record began or ended are shown.

GROUND WATER LEVELS AT WELLS

Table C-2, "Ground Water Levels at Wells", is arranged in region, basin, well number, and date order. It includes measurements of depths to water in wells made from July 1, 1962 through June 30, 1963. Table headings discussed below are only those that were not discussed under "Description of Selected Wells".

Ground Surface Elevation in Feet

The numbers in this column give the elevation in feet above mean sea level (USC&GS datum) of the ground surface from which depth to water is measured. Elevations of ground surface are usually taken from topographic maps and the accuracy is controlled by topographic standards.

Date

The date shown in the column is the date on which the depth measurement, shown in the next column, was made.

Ground Surface to Water Surface in Feet

This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk which indicates a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gauge measurement, or, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained from the Department of Water Resources.

Other symbols used are:

Measurement discontinued

#

Well destroyed

@

No measurement for other reasons

Water Surface Elevation in Feet

This is the elevation in feet above mean sea level (USC&GS datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation.

The words FLOW and DRY are shown in this column to indicate a flowing or a dry well.

Agency Supplying Data

Each number in this column is the code number for the agency from which the water level data were obtained.

TABLE C-1

				5	STEED WELLS	•			
STATE WELL NUMBER	AGENCY WELL NUMBER	ATAO ATENCE ATAO ATAO ATAO ATAO ATAO ATAO ATAO ATA	MEET OF THE STATE	PROD. F RECORD BEGINS RECORD RECORD	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING ATAO WELL JUSE	WELL DEPTH IN FEET IN PRECE AVAILABLE AVAILABL	ENDS BECORD BECORD BECORD
NORTH CD	NORTH CDASTAL REGION								
POTTER VALLEY			1-14.00		SANTA ROSA AREA			1-18.01	
17N/11W-18J01 M		5000 1	35	51	7N/09W-35D02 M		5050 1	167	20
17N/11W-32J01 M		5000 1	12	51	8N/09W-36N01 M		0 000 9	89	64
UKIAH VALLEY			1-15.00		HEALDSBURG AREA			1-18.02	
15N/12W-08L01 M		5000 1	62	51	8N/09W-03P01 M		5000 1	110	20
15N/12W-21M01 M		5000 7	97	51	8N/09W-22L01 M		5000 1	77	5 1
15N/12W-35M01 M		5000 2	190	51	9N/09W-28N01 M		5 000 5	53	53
HOPLAND VALLEY			1-16.00		10N/10W-35Q01 M		0 0005	285	54
13N/11W-18E01 M		5 000 7	52	53	LOWER RUSSIAN RIVER VALLEY	VALLEY		1-98.00	
13N/11W-19P01 M		5 000 2	77	53	7N/10W-06N01 M 7D	7001	5000 3	120	5.8
13N/11W-20G01 M		5000 1	135	53	7N/11W-14E01 M		5000 1	47	5.1
ALEXANDER VALLEY			1-17.00						
10N/09W-18B01 M		5000 2	180	90					
10N/09W-26L02 M		5000 1	40	90					
10N/09W-33C01 M	33801	5000 1	20	90					
11N/10W-08P01 M		5000 1	30	51					
11N/10W-17P02 M		5000 2	36	53					
11N/10W-19F02 M		5000 1	334	52					
SANTA ROSA VALLEY			1-18.00						
SANTA ROSA AREA	EA		1-18.01						
6N/08W-07P02 M		5 000 3	120	45					
6N/08W-13R01 M		5000 1	250	42					
7N/07W-06R01 M		5050 7	133	51					

5109 9 5109 9 5109 1 5109 2 5000 0 5109 2	2 2 3 1 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 1 2 2 1 2 2 1	1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1	1 1 5 5 6 5 1 6 6	\$109 9 \$109 9 \$109 1 \$109 2 \$109 2 \$109 2 \$109 2 \$109 2 \$100 2 \$100 2 \$100 1 \$100 1 \$100 9 \$401 4 \$100 2	\$109 9 \$109 9 \$109 1 \$109 1 \$109 2 \$5000 2 2 \$5000 2 2 \$5000 1 2 \$5000 1 2 \$5000 1 2 \$5000 1 1 \$5000 1 1 \$5000 2 1 1 \$5000 1 2 1 \$5000 1 2 1 1 \$5000 1 2 1 1
SUISUN-FAIRFIELD VALLEY 5N/OIE-36A01 M 5N/OIW-07E01 M 5N/OIW-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/OZW-29R01 M	SUISUN-FAIRFIELD VALLEY 5N/O1E-36A01 M 5N/O1W-07E01 M 5N/O2W-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M	SUISUN-FAIRFIELD VALLEY 5N/OIE-36A01 M 5N/OIW-07E01 M 5N/OIW-28P01 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M	SUISUN-FAIRFIELD VALLEY 5N/O1E-36A01 M 5N/O1W-07E01 M 5N/O2W-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M 5N/O3W-26F02 M 7GNACIO VALLEY 1N/O1W-07K01 M	SUISUN-FAIRFIELD VALLEY 5N/01W-07E01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 1N/02W-07K01 M 1N/01W-07K01 M 1N/02W-11N01 M	SUISUN-FAIRFIELD VALEY 5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-27002 M 5N/02W-29R01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 4S/01W-18601 M 4S/01W-22P05 M	SUISUN-FAIRFIELD VALLEY 5 N/01W-07E01 M 5 N/01W-07E01 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-29R01 M 5 N/02W-27R01 M 6 N/02W-27R01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-27R01 M 7 N/02W-27R01 M 7 N/02W-27R02 M 7 N/01W-18G01 M 7 S/01W-29C04 M 7 S/01W-29C04 M 7 S/02W-28C02 M
SUISUN-FAIRFIELD VA 5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-39J01 M	SUISUN-FAIRFIELD VA 5N/OIM-07E01 M 5N/OIW-28P01 M 5N/O2W-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O3W-26F02 M	SUISUN-FAIRFIELD VA 5N/01W-07601 M 5N/01W-07601 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-30J01 M 5N/03W-26F02 M	SUISUN-FAIRFIELD VA 5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 5N/03W-26F02 M 7GNCIO VALLEY	SUISUN-FAIRFIELD VA 5N/OIE-36A01 M 5N/OIW-07E01 M 5N/OZW-17D02 M 5N/OZW-17D02 M 5N/OZW-29R01 M 5N/OZW-29R01 M 5N/OZW-26F02 M 5N/OZW-26F02 M 1N/OZW-11N01 M	SUISUN-FAIRFIELD VA 5 N/01W-07E01 M 5 N/01W-07E01 M 5 N/02W-17D02 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-27J01 M 5 N/02W-27D01 M 5 N/02W-27D01 M 5 N/02W-27D01 M 5 N/02W-27R01 M 2 N/02W-27R01 M 4 S/01W-18G01 M 4 S/01W-12P05 M 4 S/01W-22P05 M 4 S/01W-22P05 M 4 S/01W-22P05 M 4 S/01W-22P06 M 4 S/01W-22P06 M 6 S/01W-22P06 M 6 S/01W-22P06 M 6 S/01W-22P06 M	SUISUN-FAIRFIELD VA 5N/OIE-36A01 M 5N/OIM-28P01 M 5N/OZW-17D02 M 5N/OZW-29R01 M 5N/OZW-29R01 M 5N/OZW-29R01 M 5N/OZW-29R01 M 5N/OZW-29R01 M 5N/OZW-36E02 M 7GNACIO VALLEY 1N/OZW-11N01 M 2N/OZW-27R01 M 2N/OZW-27R01 M 2N/OZW-27R01 M 2N/OZW-11N01 M 2N/OZW-136E01 M 2N/OZW-136E01 M 2N/OZW-136E01 M 4S/OIW-29C04 M 4S/OIW-29C04 M 4S/OIW-29C04 M 4S/OIW-29C04 M 4S/OZW-13C02 M
		5N/01E-36A01 M 5N/01W-07E01 M 5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-39D01 M 5N/03W-26F02 M YGNACIO VALLEY	5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-30J01 M 5N/03W-26F02 M 5N/03W-26F02 M 5N/03W-26F02 M	5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 5N/03W-26F02 M 1N/01W-07K01 M 1N/01W-07K01 M	5 N / O I E - 36 A O I M 5 N / O I W - C B O I M 5 N / O I W - C B P O I M 5 N / O 2 W - 17 D O C M 5 N / O 2 W - 27 J O C M 5 N / O 2 W - 26 F O C M 5 N / O 2 W - 26 F O C M 5 N / O 2 W - 26 F O C M 5 N / O 2 W - 26 F O C M 1 N / O 2 W - 36 E O I M 2 N / O 2 W - 36 E O I M 2 N / O 2 W - 36 E O I M 2 N / O 2 W - 36 E O I M 2 N / O 2 W - 36 E O I M 3 S / O 2 W - 24 O C C M 4 S / O I W - 22 P O S M 4 S / O I W - 22 P O S M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M 4 S / O I W - 29 C O C M	5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-26F02 M 5N/02W-26F02 M 5N/02W-26F02 M 5N/02W-26F02 M 5N/02W-26F02 M 5N/02W-26F02 M 2N/02W-26F02 M 2N/02W-26F03 M 2N/02W-26F01 M 2N/02W-27R01 M 2N/02W-27R01 M 4S/01W-29C04 M 4S/01W-29C04 M 4S/01W-29C04 M 4S/01W-29C04 M 4S/01W-29C02 M 4S/01W-29C02 M
		5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-17D02 M 5N/02W-29R01 M 5N/02W-39J01 M 5N/03W-26F02 M 5N/03W-26F02 M	5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-30J01 M 5N/03W-26F02 M 9N/03W-26F02 M 1N/01W-07K01 M	5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27U02 M 5N/02W-29R01 M 5N/03W-26F02 M 5N/03W-26F02 M VGNACIO VALLEY IN/01W-07K01 M IN/02W-11N01 M	5N/01W-07E01 M 5N/02W-28P01 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-27R01 M 1N/02W-11N01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 3N/02W-24002 M 4S/01W-28P05 M 4S/01W-28P05 M 4S/01W-29C04 M 4S/01W-29C04 M 4S/02W-13C02 M	5 N / O1W - O7 E01 M 5 N / O1W - 28 P 0 1 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 P 0 1 M 5 N / O2W - 11 N 0 1 M 1 N / O2W - 11 N 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M
		5N/O2W-28PO1 M 5N/O2W-27JO2 M 5N/O2W-27JO2 M 5N/O2W-39RO1 M 5N/O3W-26FO2 M YGNACIO VALLEY	5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-39C01 M 5N/03W-26F02 M 5N/03W-26F02 M 7GNACIO VALLEY	5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-30J01 M 5N/02W-30J01 M 5N/03W-26F02 M YGNACIO VALLEY 1N/01W-07K01 M	5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 7GNACIO VALLEY 1N/01W-07K01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 3N/02W-27R01 M 4S/01W-22P05 M	5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M YGNACIO VALLEY 1N/01W-07K01 M 1N/02W-11N01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 5ANTA CLARA VALLEY SOUTH ALAMEDA COUNTY UPR AOUIF 35/03W-24002 M 45/01W-29C04 M 45/01W-29C04 M 45/02W-23C02 M 45/02W-23C02 M
X X X X	ΣΣΣΣΣ	ΣΣΣΣ	* * * * * *	× × × × × × ×	A A A A A A A A A A A A A A A A A A A	M M M M M M M M M M M M M M M M M M M
ΣΣΣ	ΣΣΣΣ	Y Y Y Y Y	.	X	M M M M M M M M M M M M M M M M M M M	A M M M M M M M M M M M M M M M M M M M
M 5109	м 5109 м 5000	5109 M M 5	5 109 5 5000 5 5000	M M 5000 5000 M M M 5050 M M M S050 M M M M M M M M M M M M M M M M M M	M 5109 M 7 5000 M 8 6000 M 9 6000	M M S S S S S S S S S S S S S S S S S S
W 5000	M 5000	M 5000	M M M M 5000	M M M M M M M M M M M M M M M M M M M	M 5000 M 5000 M 5000 M 6000 M 7 6000	M 5000 M M 5000 M M 6000 M M 6000 M M 6000 M
	M 5109	5109	M 5050	× × × × × × × × × × × × × × × × × × ×	M 5109 M 7 5050 M 8 60000 M 9 6000	M 5009 M 7 5000 M 8 5000 M 9 5000 M 9 5000 M 9 5000 M 9 6000 M 9 6000 M 9 6000 M 9 6000
× × × × × × × × × × × × × × × × × × ×	5050 1 M 5050 1 M 5050 1	M 5050 1	M 5050		COUNTY UPR ADUIFER 5100 1 5100 9 5401 4 1 5401 2 1 5401 2 1	COUNTY UPR ADUIFER 5100 1 5100 9 5401 4 1 5401 0 1 5401 2 1
X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5050 1 5050 1 5050 1 5050 1	5050 1 2 5050 1 3 505	M 5050 1	M 5050 1	M 5401 0 1 5 100 1 W 5 100 5 100 1 W 7 100 1 W 7 100 2 W 7 100 1 W	MEDA COUNTY UPR ADUIFER M 5100 1 M 5401 4 1 M 5401 0 1 M 5401 2 1 M 5100 2 1
M 5050 M 5050 M 5050 M 5050	5050 1 5050 1 5050 1 5050 1	5050 1 5050 1 1 5050 1	5050 1 1 5050 1	5050 1	5100 1 5100 9 5100 9 5100 2 1 5100 2 1 5401 0 1	5100 1 5100 9 5401 0 1 5401 0 1 5401 0 1 5401 0 1
M 5050 M 5050 M 5050 LLEY EDA COUNTY UPR AQUIFER	5050 1 5050 1 5050 1 1 5050 1 COUNTY UPR ADUIFER	5050 1 5050 1 1 5050 1	5050 1 1 5050 1 COUNTY UPR ADUIFER	5050 1 COUNTY UPR ADUIFER	5100 9 5401 4 5401 0 5401 0	5100 9 5401 4 5401 6 5401 0 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9
M 5050 M 5050 M 5050 LLEY EDA COUNTY UPR ADUIFER M 5100	\$050 1 \$050 1 \$050 1 1 \$050 1 \$050 1 \$100 1	5050 1 5050 1 1 1 2050 1 1 1 2050 1 5	5050 1 1 2050 1 COUNTY UPR ADUIFER 5100 1	5050 1 COUNTY UPR ADUIFER 5100 1	M 5401 4 M 5100 2 M 5401 0 M 5401 2	5401 4 5100 2 7 5401 0 7 5401 2 8 5401 2
M 5050 M 5050 M 5050 M 5100 M 5100	5050 1 5050 1 5050 1 5050 1 5100 1	5050 1 2050 1 1 5050 1 1 5050 1 1 5050 1 1 5050 1 1 1 5100 1 5100 9	5050 1 1 200NTY UPR ADUIFER 5100 9	5050 1 COUNTY UPR ADUIFER 5100 1	M 5401 0 M 5401 0	5401 2 5401 2 5401 2
M 5050 M 5050 M 5050 M 5050 M 5050 M 5100 M 5100 M 5100	5050 1 5050 1 5050 1 5050 1 5000 1 5100 1 5401 4 1	5050 1 5050 1 1 5050 1 1 5050 1 1 5050 1 1 1 5050 1 1 1 5100 1 5100 1 5100 9 5401 4 1 1	5050 1 1 5050 1 COUNTY UPR ADUIFER 5100 1 5100 9 5401 4 1	5050 1 COUNTY UPR ADUIFER 5100 1 5401 4 1	M 5401 0	M 5401 0 5401 2 M 5400 2
M 5050 M 5050 M 5050 M 5100 M 5100 M 5100	\$050 1 \$050 1 \$050 1 \$050 1 \$100 1 \$100 9 \$401 4 1	5050 1 5050 1 1 5050 1 1 5050 1 5100 1 5100 9 5401 4 1 5100 2 1	\$050 1 1 \$050 1 5050 1 5050 1 5100 1 5100 9 5401 4 1 5100 2 1	\$050 1 COUNTY UPR ADUIFER \$100 1 \$401 4 1 \$100 2 1	M 5401 2	M 5401 2 M 5100 2
M 5050 M 5050 M 5050 LLEY EDA COUNTY UPR ADUIFER M 5100 M 5100 M 5401	\$050 1 \$050 1 \$050 1 \$050 1 \$100 1 \$100 9 \$401 4 1 \$100 2	5050 1 5050 1 1 5050 1 1 5050 1 1 5100 9 5401 4 1 5100 2 1	5050 1 1 5050 1 2 5050 1 5050	5050 1 COUNTY UPR ADUIFER 5100 9 5401 4 1 5100 2 1		M 5100

	HT930 1333 NI	
	MECE	
	METE	
	AGE NCY SUPPLYING	
2	AGENCY WELL NUMBER	
	ш.«	
SELEVIED WELLS	STATE WELL NUMBER	
ו ר		
כ		
	ENDS	
	BECOND	
5	RECORD	
=	9 0089	,
	DATA AILABLE ANAL	4
5	907	
DESCRIPTION OF	DEPTH 1333 NI	
2	MELL	
	MELL. USE	
	AGENCY SUPPLYING ATAQ	
	AGENCY WELL NUMBER	
	STATE WELL NUMBER	

RECORD BECORD BECORD BECORD BECORD BECORD			57	3.1	55	36	36	36	36	54	36	04	36	36	36	37		89	89	8 4	64	89	87			
DEPTH IN FEET AVAILAB	1	2-09.02	525	007	61	438	800	450	620	350	110			79	135	114	2-10.00		360		303	437 1	376			
AGENCY SUPPLYING ATAD ATAD WELL JUSE			2400 3	2400	2400	2400 3	2400 2	2400 2	2 400 2	2400	2400 7	2400	2400 7	2400	2400 7	2400		5100	5 100 2	9100	5 100 7	5 100 2	5100 2			
AGENCY WELL NUMBER		CLARA COUNTY	100 403	11D 304	12E 398	8H 117	4H 023A	3Н 013	41 037	9Н 166А	126 257	13G 297	13F 233	81 129	15G 238B	15G 279										
STATE WELL NUMBER		NORTH SANTA	75/02E-07P01 M	75/02E-17H01 M	75/02E-33C01 M	75/01W-35C01 M	75/02W-03001 M	75/02W-04B01 M	75/02W-22A01 M	85/01E-07H02 M	85/01E-13H01 M	85/02E-20F03 M	85/02E-22001 M	85/01W-15801 M	95/02E-01J01 M	95/02E-01M01 M	LIVERMORE VALLEY	25/02E-25N01 M	25/01W-26C01 M	35/01E-02E01 M	35/01E-11H01 M	35/02E-02R01 M	35/02E-10H01 M			
ENDS]			62						_																
MATER AND RECORD		•01	69	49 62	20	64	90	2 58	6 4	1 49	•02	36	2 51	36	30	58	58	36	30	30	36	36	36	58	36	5.0
PROD RECORD RECORD RECORD RECORD RECORD		2-09-01	601 59		218 50	511 49	475 50		241 49		2-09-02	525 36	560 2 51	295 36	250 30	410 58	425 58	36	900 30	480 30	400 36	235 36	36	896 806	36	400
PEECING PEECT HTML AND A PEECING PEECI								2		1	2-09-02		2					2400 2 36					2400 3 36		2400 2 36	
AECL WELL WELL WELL WELL WELL WELL WALL		SOUTH ALAMEDA COUNTY LWR AQUIFER 2-09.01	2 601	64	0 218	7 511	2 475	7 224 2	0 241	2 297 1	CLARA COUNTY 2-09.02	0 525	2 560 2	0 295	7 250	8 410	2 425	2	1 500	2 480	7 400	235	3	3 908	2	400

-	ENDS BECORD BECINS BECORD
	AVAILABLE WATER WA
	WELL 0EPTH IN FEET
	350 MELL
	AGENCY SUPPLYING ATAO
	AGENCY WELL NUMBER
מברטונו ווסוא סו סברטובה איברס	STATE WELL NUMBER
)	ENDS
	BECINS BECOBO
	DATA AVAILABLE LOG ATER ANALIABLE ANALIABLE ANALIABLE
ì	WELL DEPTH IN FEET
	3SO MELL
	ATA0 JJ3W

			DESCR	IPTION OF	DESCRIPTION OF SELECTED WELLS	ELLS		ı
STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING ATAO WELL USE	T334 NI	AVALLABLE ANDS PROD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEC	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING DATA WELL WELL WELL OFFTH TEST	WELL DEPTH IN FEET 100 A MATER WATER MANA 10099
HALF MOON BAY TERRACE	3.		2-22.00	c	CENT	CENTRAL COASTAL REGION		
55/05W-20L01 M		0 0505	69	53	SOQUEL VALLEY			3-01-00
55/05W-29F03 M		5050 1		53	115/01W-09L01	Σ	5050 0	
55/05W-29N01 M		5050 2	8.2	53	115/01W-15H01	Σ	0 0505	
65/05W-06B01 M		5050 2	8.5	53	PAJARO VALLEY			3-02.00
SAN GREGORIO VALLEY			2-24.00	0	125/01E-24G01	Σ	5050 2	200
75/05W-13E01 M		5050 0	4.5	58	12S/02E-16J01	Σ	5050 2	
75/05W-15C01 M		5050 2	8.5	5.8	125/02E-31K01	Σ	5050 2	219
75/05W-15E01 M		5050 7		53	135/02E-05801 M	Σ	5050 0	225
75/05W-15E02 M		5050 1		53	GILROY-HOLLISTER VALLEY	TER VALLEY		3-03.00
75/05W-15H02 M		5050 1		9	SOUTH SAM	SOUTH SANTA CLARA COUNTY		3-03.01
PESCADERO VALLEY			2-26.00	0	95/03E-27C02	95/03E-27C02 M 18G 374	2400 7	300
85/05W-09H01 M		5050 2		53	95/03E-29B01	Σ	2050 0	170
85/05W-11M01 M		5050 1	36	53	105/03E-34L01	Σ	5050 2	1
					105/04E-18G02 M	¥	5050 7	184

00 00

4 4 4 7 2 8 8 2 8 8 S

51 63

88 150 77

125/05E-33A01 M 135/05E-11001 M

125/05E-12F01 M

24

37 64

5050 2 5101 2 5050 0

736 1 125

3-03.02

SAN BENITO COUNTY

115/05E-13D01 M 125/04E-20C01 M

115/03E-01801 M

105/04E-35E01 M

4 4 4 6 0 00

8 4

5050 2

5400 2

	\$0.03 \$M.03 \$0.03		3-04.06	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100
	AGENCY WELL NUMBER																									
	STATE WELL NUMBER		PASO ROBLES	245/10E-11C01 M	245/11E-25N01 M	245/11E-33R01 M	245/11E-35J01 M	245/12E-17N01 M	245/15E-33C01 M	255/11E~35G01 M	255/12E-17J01 M	255/12E-17R01 M	255/12E-26K01 M	255/13E-11E01 M	255/16E-17L01 M	255/16E-30M01 M	265/12E-04N01 M	265/12E-26E01 M	265/12E-35M01 M	265/13E-10D01 M	265/13E-34801 M	265/14E-16L01 M	265/14E-35D01 M	265/15E-02801 M	265/15E-28Q02 M	265/15E-29N01 M
	ENDS BECOBO BECOBO BECOBO BECOBO			31	16	31	31	31	31		31	31		16		31		31	77		31	16	16	31	31	
	WELL OEPTH IN FEET LOG WATER WAT	3-04.00	3-04.01		176	196 1		279 1		3-04-01	500 1	513 1	3-04.02	599	3-04-03	238 1	3-04-04	288 1	320	3-04.05	245	372				
,	AGENCY SUPPLYING ATAO ATAO BELL JUSK			2100 2	2 100 2	2100 7	2100 2	2 100 2	2100 1		2100 2	2100 2		2 100 2		2 100 2		2100 2	2100 2		2 100 2	2100 2	2 100 2	2 100 2	2 100 2	
	AGENCY WELL NUMBER		A 180 FOOT AGUIFER	28 001	2C 025A	2D 023	30 040	4D 056	4E 030D	A 400 FOOT AQUIFER	18 011A	2C 119	V pi	5E 026		6F 017	CONE	76 029	7H 036	AREA	8н 031	91 004	100 001	11K 002	12K 003	
	STATE WELL NUMBER	SALINAS VALLEY	PRESSURE AREA	145/02E-03C01 M	145/02E-15L01 M	155/02E-01001 M	155/03E-16M01 M	155/04E-33A01 M	165/04E-11D01 M	PRESSURE AREA	13S/02E-31001 M	145/03E-18J01 M	EAST SIDE AREA	16S/05E-17R01 M	FOREBAY AREA	175/05E-11C01 M	ARROYO SECO CONE	185/06E-15M01 M	195/06E-11C01 M	UPPER VALLEY	195/07E-10P01 M	205/08E-05R01 M	215/09E-06K01 M	215/10E-32N01 M	225/10E-16K01 M	

WELLS	
SELECTED W	
OF SEL	
NO E	

ENDS BECOND BECINS BECOND	
DATA WATER ANAL ANAL PROD	
WELL DEPTH IN FEET	
SUPPLYING DATA MELL WELL	
AGENCY WELL NUMBER	
STATE WELL NUMBER	
	_
END2 BECOBD BECIN2 BECOBD	
DATA AVAILABLE WATER WATER PROD PROD PROD PROD	
WELL OEPTH IN FEET	

-	AVAILABLE ASSECTING PRODE PROD																				52		54
	WELL DEPTH IN FEET	3-04.06																		3-07.00	09	3-26.00	
-	AGENCY SUPPLYING ATAD WELL WELL		5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5 100	5100	5100	5100	5100	5100		5050 7		5050 2
	AGENCY WELL NUMBER																					TERRACE	
	STATE WELL NUMBER	PASO ROBLES	275/13E-24N01 M	275/13E-32801 M	275/15E-10R02 M	275/15E-13A01 M	275/16E-21E02 M	285/12E-10G01 M	285/12E-10R02 M	285/12E-13N01 M	285/12E-14G01 M	285/13E-04K01 M	285/13E-04KQ2 M	285/14E-07E01 M	285/16E-23M01 M	295/13E-05F03 M	295/13E-05K02 M	295/13E-06A01 M	295/13E-19H01 M	CARMEL VALLEY	165/01E-25801 M	WEST SANTA CRUZ	115/02W-22K01 M

						יייי בייביט היי אר					
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
OZ	NORTH COASTAL REGION	EG10N				NOR	NORTH COASTAL REGION	EG10N			
POTTER VALLEY			1-14.00			UKIAH VALLEY			1-15.00		
17N/11W-18J01 M	955.0	7-23-62 8-20-62 9-18-62 10-25-62 11-26-62 12-20-62 1-21-63	11 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2000	15N/12W-21M01 M CONT.	290.0	11-15-62 12-04-62 1-03-63 2-13-63 3-06-63 4-17-63	0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	588 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2000
		2-18-63 3-19-63 4-23-63 5-20-63	FLOW NO.	955.7		15N/12W-35M01 M	0.009	6-07-63 7-12-62 8-16-62	2.7	588 - 3	2000
17N/11W-32JO1 M	895*0	7-23-62 8-20-62 9-18-62 10-25-62 11-00-62 12-20-62 12-21-63		88888 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000			10-01-62 11-03-63 12-04-62 12-04-63 1-03-63 3-04-63 4-17-63 6-07-63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		3-19-63 4-23-63 5-20-63 6-18-63	1.5 2.3 3.6 3.6	893.5 894.3 892.7 891.4		HOPLAND VALLEY 13N/11W-18E01 M	0.064	7-12-62	1-16.00		5000
UKIAH VALLEY			1-15.00					9-07-62	12.1	6.774	
15N/12W-08L01 W	0.553	7-12-62 8-16-62 9-07-62 10-10-62 11-15-62 12-04-62 1-03-63	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	644000 644000 644000 644300 644300 644000	2000			11-11-15-17-17-17-17-17-17-17-17-17-17-17-17-17-	11.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	488 78 87 87 87 87 87 87 87 87 87 87 87 8	
15N/12W-21M01 M	0.065	5-10-63 5-11-63 5-11-63 7-12-62 8-16-62 10-10-62	770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	581.7 57.0 581.7 57.6 57.6 57.6	0006	13N/11W-19P01 M	4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7-12-62 8-16-62 9-07-62 10-10-62 11-15-62 12-04-62 1-03-63	18.00 18.00 18.00 19.00 10.00	4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2000

	1									
AGENCY SUPPLYING DATA			2000		2000			2000		2000
WATER SURFACE ELEVATION IN FEET			172.5 171.5 171.3 171.0	173°4 174°3 174°3 174°4 178°2 175°4	291.9 292.0 292.2 292.2 294.0	294.2	300.6 296.4 301.6 296.6	2882 2882 283. 249. 284. 284.	287.8 284.7 289.1 285.1	336°9 334°4 332°9 340°5
GRD SUR TO WATER SUR IN FEET		1-17.00	2.0 8.0 9.0 0.0	0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	13.1 13.0 12.8 12.8 11.0	10.8	4 8 6 8 4 9 4 4	9 • 4 9 • 8 8 • 7 12 • 5 *	2 · · · · · · · · · · · · · · · · · · ·	9 • 1 11 • 6 13 • 1 5 • 5
DATE	EGION		7-11-62 8-16-62 9-06-62 10-10-62	11-17-10-10-10-10-10-10-10-10-10-10-10-10-10-	7-11-62 8-16-62 9-07-62 10-10-62	12-04-62	2-13-63 3-06-63 4-17-63 5-14-63 6-07-63	7-11-62 8-16-62 9-07-62 10-10-62 11-15-62 12-04-62 1-03-63	2-13-63 3-06-63 4-17-63 5-14-63 6-07-63	7-12-62 8-16-62 9-07-62 10-10-62 11-15-62 12-04-62
GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION		180.0		305.0			292.0		346.0
STATE WELL NUMBER	NOF	ALEXANDER VALLEY	10N/09W-33C01 M		11N/10W-08P01 M			11N/10W-17P02 M		11N/10W-19F02 M
AGENCY SUPPLYING DATA			2000	0000			2000		2000	
WATER SURFACE ELEVATION IN FEET			476.7 482.0 478.9 475.9	506 502 502 502 502 503 503 6	5110.6 510.6 511.1 510.6 509.4		209-8 208-4 210-4	212.4 216.6 213.0 217.4 213.2 210.3	191•1 187•0 184•3 193•2	194.0 200.5 204.1 204.7 204.7
GRD SUR TO WATER SUR IN FEET		1-16.00	11.3 6.0 9.1 12.1	1122 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	0 4 0 4 0 - 4 0 4 0	1-17.00	20.2 21.6 19.6	13.00	13.9 18.0 20.7 11.8	11 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
DATE	EGION		3-06-63 4-17-63 5-14-63 6-07-63	7-12-62 8-16-62 9-07-62 10-10-62 11-15-62 12-04-62	2-13-63 3-06-63 4-17-63 5-14-63 6-07-63		7-11-62 8-16-62 9-06-62 10-10-62	1-103-163 1-103-163 2-153-163 3-165-163 4-17-163 5-14-163	7-11-62 8-16-62 9-06-62 10-10-62 11-15-62	12-04-62 1-03-63 2-13-63 3-06-63 4-16-63 5-16-63
GROUND SURFACE ELEVATION IN FEET	RTH COASTAL REGION		488 • 0	515.0			230•0		205*0	
STATE WELL NUMBER	NORT	HOPLAND VALLEY	13N/11W-19P01 M CONT.	13N/11₩-20G01 M		ALEXANDER VALLEY	10N/09W-18B01 M		10N/09W-26L02 M	

TABLE C-2

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ON	NORTH COASTAL REGION	REGION				NOR	NORTH COASTAL REGION	EGION			
ALEXANDER VALLEY			1-17.00			SANTA ROSA AREA	A:		1-18.01		
11N/10W-19F02 M CONT.	346.0	1-03-63 2-13-63 3-06-63 4-17-63 5-14-63	NW WW E • • • • • • • • • • • • • • • • • • •	3473.65 3473.65 3475.44 3470.7	2000	8N/09W-36N01 M CONT.	0 • 0 6	9-04-62 10-09-62 11-14-62 12-03-62 1-02-63 3-05-63	12.0 12.6 11.64 111.64 9.1 9.1	78.0 77.4 78.6 78.6 80.9 86.6	9000
SANTA ROSA VALLEY			1-18.00					4-16-63 5-13-63	2 • 5	87.5	
SANTA ROSA AREA	REA		1-18.01					6-06-63	5.6	84.4	
6N/08W-07P02 M	0.56	7-10-62	26.7	68.3	2000	HEALDSBURG AREA	E.A.		1-18.02		
		9-04-62	26.1	68.0		8N/09W-03P01 M	77.0	7-11-62	5.7	71.3	2000
		11-14-62	19.8	75.2				9-06-62	4.	73.6	
		12-03-62	20.7	74.3				10-10-62	У• С П	11.6	
		2-12-63	15.2	79.8				12-03-62	to 1		
		3-05-63	19.5	75.5				2-12-63	3 6		
		5-13-63						3-05-63	2 • 3	74.7	
		6-06-63	13•1	81.9				4-16-63 5-13-63			
6N/08W-13R01 M	115.0	7-10-62	20.1	6* 76	2000			6-06-63	5.5	71.5	
		8-14-62	22.5*	92.5		8N 709W-22101 M	67.0	7-11-62	D		5000
		10-04-62	24.0	90.0				8-15-62			
		11-14-62	23.8	91.2				9-06-62	27.6	39.4	
		12-03-62	21.4	93.6				11-14-62	26.7	40.3	
		2-12-63	15.9	900				12-03-62	26.0	41.0	
		3-05-63	16.9	98.1				1-03-63	25.3	41.7	
		4-16-63	13.8	101.2				2-12-63	21.3	45.7	
		5-13-63	12.1	102.9				3-05-63	23.5	4. 5. 4. 0. 4.	
		6-06-63	13.6	101.4				5-13-63	22.8	44.2	
7N/07W-06R01 M	275.0	4-12-63	14.1	50092	5050			6-06-63	23.9	43.1	
7N/08W-31C01 M	85.0	4-12-63	80	76.2	5050	9N/09W-28N01 M	0.06	7-11-62	18.5	71.5	9000
	0 301	6-13-62	0	103.0	4			9-06-62	21.4	68.6	
M 20066-W60/N/	0,561	5012711	0.00	0000				10-10-62	21.8	75.0	

WELLS
AT
LEVELS
WATER
ROUND

	AGENCY SUPPLYING DATA			2000					
	WATER SURFACE ELEVATION IN FEET			80 0 • •					
	GRD SUR TO WATER SUR IN FEET		1-98.00	16.6					
	DATE	EG10N		5-13-63					
WELLS	GROUND SURFACE ELEVATION IN FEET	NORTH COASTAL REGION	VER VALLEY	25.0					
ΑT	STATE WELL NUMBER	z	LOWER RUSSIAN RIVER VALLEY	7N/11W-14E01 M CONT.					
GROUND WATER LEVELS	AGENCY SUPPLYING DATA]		2000	000		0000 %	0000	
N OF	WATER SURFACE ELEVATION IN FEET			76.2 79.2 76.2 79.3 76.4	136.9 135.4 135.4 136.7 137.1 137.1 140.9 140.2		2000 2000 2000 2000 2000 1000 1000 1000	9 · · · · · · · · · · · · · · · · · · ·	
=	SUS			F F F F F F					
GROUP			1-18.02	103.88 100.88 13.00.47 113.00.41	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1-98.00	21.0 22.1 22.7 22.5 20.3 15.0 114.7 17.9	34.0.2 19.0.2 19.0.4 24.0.3 18.0.3 18.0.4 19.0.4 19.0.4 10.	
GROUP	GRD SUR					1-98.00	7-11-62 21.0 9-06-62 22.7 10-10-62 22.5 11-14-62 22.5 11-14-62 22.5 11-14-62 10.9 1-03-63 10.9 2-12-63 10.9 2-12-63 10.9 3-05-63 10.7 5-13-63 10.7 5-13-63 10.7 6-16-63 10.7 6-06-63 10.9	7-11-62 34*1* 8-15-62 19*2 9-06-62 19*2 10-10-62 18*1 11-14-62 18*1 12-03-63 18*4 2-12-63 10*4 4-16-63 10*4	
GROUP	GRD SUR TO WATER SUR IN FEET		NORTH COASTAL REGION 1-18.02	90.0 1-03-63 13.8 2-13-63 10.8 3-05-63 10.8 4-16-63 10.7 6-13-6 6-06-63 14.2		LOWER RUSSIAN RIVER VALLEY 1~98.00			

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
			,								
SA	SAN FRANCISCO BAY REGION	BAY REGION				SAN	SAN FRANCISCO BAY REGION	AY REGION			
PETALUMA VALLEY			2-01.00			NAPA-SONOMA VALLEY			2-02-00		
3N/06W-01001 M	2 • 0	4-12-63	1 . 4	9.0	5050	NAPA VALLEY			2-02-01		
54/07W-20802 M	4 1 • 0	8-14-62 9-04-62 10-09-62 11-14-62 12-03-62	92.3 80.7* 77.2 12.6 69.3		2000	4N/04W-13E01 M	41.0	7-10-62 8-16-62 9-04-62 10-09-62 11-15-62	*		5000
		1-02-63 2-12-63 3-05-63 4-16-63 5-13-63	63.66 63.26 63.20 65.60	22.4		5N/04W-11M01 M	13.0	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 W W 4 W W 	5000
5N/07W-21H01 M	65.0	7-10 8-1462 9-04-62 10-09-62 11-1462 12-03-62	4444 4444 4444 4444 4444 4444 4444 4444 4444	118.00	2000			1-02-63 2-102-63 3-05-63 4-16-63 5-13-63	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		1-02-163 2-12-163 3-05-163 4-16-163 5-13-163 6-063	4 4 1 2 2 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22°7 23°7 29°5 32°4 32°3		6N/04W-17A01 M	0 %	7-12-62 8-16-62 9-18-62 10-11-62 11-15-62	12.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5000
5N/07W-26R01 M	53.6	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62	27.9 28.2 28.9 28.1 29.1	7 7 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000			1-04-63 2-13-63 3-06-63 4-17-63 6-07-63	2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0000000000000000000000000000000000000	
		2-12-63 3-05-63 4-16-63 5-13-63 6-06-63		333186		7N/05W-09Q01 M 7N/05W-09Q02 M	155.0	7-12-62 8-16-62 9-18-62	6 ° 6 ° 6 ° 14 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 14 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 °	148.4 130.8 140.4 128.4	5101
5N/07W-35K01 M	18.8	4-12-63	7.2	11.6	5050			11-15-62 12-04-62 1-04-63 2-13-63	10.4 111.4 12.4 6.0	144.6 143.6 142.6 149.0 146.6	

C Y YING]		2000			5109	5109	5109	5109	5 1 0 9	5109	5109	2000	5000	5109	2000
AGENCY SUPPLYING DATA			ν.			2	3	2	3	3	2	2	v.	v.v.	2	w
WATER SURFACE ELEVATION IN FEET			4 4 6 6 7 6 9 6 7 6 9 6 9 6 9 6 9 9 9 9 9 9	9.6		25.9	3 • 9	33.4	14.3	101.9	9.1	96•8	0 4 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0	04400-V ••••••• •••••	36.4	38.1 40.3 40.8 38.9 41.2
GRD SUR TO WATER SUR IN FEET		2-02-02	11.4 20.5* 6.3 7.0	9.0	2-03-00	9.1	3 • 1	3.6	1.6	13.1	6 • 6	4.2	29 . 1 . 2 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3	19.67 119.55 115.55 116.45	9.6	26.9 24.7 24.2 26.1 23.8
DATE	AY REGION		12-03-62 1-02-63 2-12-63 3-05-63	5-13-63		3-30-63	3-19-63	3-19-63	3-19-63	3-18-63	3-19-63	3-18-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62 12-03-62	7-11/2 3-10/5 3-11/5 4-11/6 5-11/6 6-	3-18-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		16.0		/ALLEY	35.0	7.0	37.0	24.0	115.0	15.0	101.0	24.0		0.94	65.0
STATE WELL NUMBER	AA.S	SONOMA VALLEY	5N/05W-29N01 M CONT.		SUISUN-FAIRFIELD VALLEY	4N/02W-06A01 M	4N/02W-09A01 M	4N/03W-01D01 M	5N/01E-36A01 M	SN/01W-07E01 M	5N/01W-28P01 M	5N/02W-17D02 M	5N/02W-27J02 M		5N/02W-29R01 M	5N/02W-30J01 M
AGENCY SUPPLYING DATA			5101	5101	5101	2000							2000	5050	5050	2000
WATER SURFACE ELEVATION IN FEET			148.8 149.1 147.6 146.5	152.1	126.8	284.1	280.4	284.2	287.8	288.9	288.5		711 655.06 65.09 65.01 67.00 70.03	72.8 72.6 72.6 65.9 69.3	4 • 2	VW4/14
GRD SUR TO WATER SUR IN FEET		2-02-01	8 1 5 6 2 2 4 5 6 4 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6	2.9	• 2	8 . 9	10.2	5 . 4 . 4	2 • 5	1.1	1.5	2-02-02	13.44 19.01 19.06 17.04 17.7	12.2 12.4 12.4 19.1 15.7	6 . 8	10.5 12.5 12.0 13.6
DATE	AY REGION		4-09-63 4-17-63 5-14-63 6-07-63	4-09-63	4-10-63	7-12-62	9-18-62	11-15-62	1-04-63	3-06-63	5-14-63		7-10-62 8-14-62 9-04-62 10-09-62 11-14-62 12-03-62 1-02-63	2-12-/3 3-05-63 4-12-63 4-16-63 5-13-63 6-06-63	4-12-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		155.0	155.0	127.0	290•0						>	8 5 • 0		11.0	16.0
STATE WELL NUMBER	SAN	NAPA VALLEY	7N/05W-09002 M CONT.	M 20000-W-09003 M	7N/05W-23002 M	8N/06W-10001 M						SONOMA VALLEY	5N/05W-17C01 M		5N/05W-28N01 M	5N/05W-29N01 M

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR. IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGE NCY SUPPLYING DATA
SA	SAN FRANCISCO BAY REGION	AY REGION			-	SAN	SAN FRANCISCO BAY REGION	SAY REGION			
SUISUN-FAIRFIELD VALLEY	VALLEY		2-03.00			SANTA CLARA VALLEY			2-09-00		
5N/02W-30J01 M	0 • 5 9	12-03-62	24.0	41.0	2000	SOUTH ALAMEDA COUNTY UPR AQUIFER	A COUNTY UPR	AQUIFER	2-09-01		
•		2-12-63	21.3	4307		35/02W-08R05 M	0 • 4 9	9-00-62	37.5	26.5	5100
		3-18-63	20.4	44.6	5000			69-00-7	32.5	31.5	
		5-13-63	18.9	46.1		35/03W-24Q02 M	7.0	9-00-62	7 00	0.0	5100
		6-06-63	9.07	† • † † †				4-00-63		9	
5N/03W-26F02 M	111.0	3-19-63	3.2	107.8	5109	45/01W-18G01 M	41.0	7-20-62	104.0	- 63.0	5401
YGNACIO VALLEY			2-06-00					9-14-62	104.6		
1N/01W-07K01 M	83.0	7-19-62	11.7	71.3	5050			11-23-62	101.1		
		8-15-62	12.0	71.0				12-21-62	95.3		
		9-20-62	11.6	71.4				1-18-63	92.3	- 51.3	
		11-14-62	0.01	73.7				3-15-63	81.1		
		12-19-62	12.1	70.9				4-26-63	16.7		
		1-21-63	9.5	73.5				5-24-63	75.8	34.8	
		2-20-63	7.7	75.3				6-21-63	/8 • 1	3/•1	
		3-20-63	7 7	76.6		45/01W=22B05 M	0.08	9-00-62	0.84	32.0	5 100
		5-25-63	7.8	75.2)	4-00-63	41.5	38.5	
		6-20-63	7.6	73.3				6			
M CONTILUED ON	63.0	3-20-63	12.2	50.8	5050	45/01W-29C04 M	0 • 6 6	8-17-62	104.3	- 49.3	1040
TONTI-MEDINI			1)			9-21-62	109.3		
2N/02W-27R01 M	15.0	7-19-62	6.2	8 • 8	5050			10-19-62	108.7	- 53.7	
		8-15-62	6.9	60.				3-22-03	• • • • • • • • • • • • • • • • • • • •		
		10-19-62	t 4	100		45/02W-13C02 M	36.4	7-20-62	82.9		5401
		11-19-62	7 . 7	12.7				8-17-62	84.9	- 48.5	
		12-16-62	1.7	13.3				9-00-6	æ		
		1-21-63	2.0	13.0							
		2-20-63	1.4	13.6		45/02W-24002 M	33.4	9-00-62	87.9	1 54.5	2100
		3-21-63	0.0	14.0				4-00-63	1961	1 99 1	
		5-20-63	2.2	12.8		55/01W-04F01 M	42.0	7-20-62	74.6		5401
		6-20-63	0.9	0.6				8-24-62	15.4		
								9-21-62	75.8		
2N/02W-36E01 M	0.84	3-21-63	13.7	34 • 3	2050			10-19-62	75.9	34.0	
								12-14-62	75.9		
								1-25-63	75.4	- 33.4	

			-		0	0	0
AGENCY SUPPLYING DATA		5401	5401		5 1:00	2 4 0 0	2400
WATER SURFACE ELEVATION IN FEET		1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4		1 1 1 1 1 1 1 1 1 1	42.8	11233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 110.4 - 115.0 - 104.8 - 104.8 - 94.1
GRD SUR TO WATER SUR IN FEET	2-09-01			91.99 129.77 129.77 669.88 662.65	1111.3 57.8 2-09.02	11338.8 11338.9 11318.9 1121.0 103.0	248.4 253.0 249.3 242.8 232.1 218.4
DATE	Y REGION OUIFER	1-11-63 2-22-63 3-22-63 4-19-63 5-17-63	7-20-62 8-24-62 9-21-62 10-19-62	111-16-62 12-14-62 1-18-63 2-22-63 3-22-63 4-19-63 6-14-63	9-00-62	7-24-62 9-21-62 10-22-65 11-21-62 11-21-62 12-21-63 3-20-63 5-21-63 5-21-63 6-25-63	7-23-62 8-20-62 9-20-62 10-19-62 11-20-62 12-20-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION SOUTH ALAMEDA COUNTY LWR AQUIFER	15.0	24.0		15.0 LARA COUNTY		138
STATE WELL NUMBER	SAN SOUTH ALAMEDA	45/02W-35R02 M CONI•	45/02W-36K01 M		55/01W-09M01 M 15.0 NORTH SANTA CLARA COUNTY	65/01E-07E01 M	65/01E-21R01 M
AGENCY SUPPLYING DATA		5401	5100	5100	5100	5100 5050 5100 5100	5100
WATER SURFACE ELEVATION IN FEET			- 24.7	- 37.1 45.0 6.9	, www.v	100.5 110.5 110.5 110.5 110.5 100.6 110.5 110.6 110.6	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GRD SUR TO WATER SUR IN FEET	6	75.1 75.1 73.9 73.6 72.6	44.5 44.5 2-09.01	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	27.0 27.0 26.8 24.9 22.2	20.6 20.6 19.0 18.9 18.9 19.1 19.1 72.0 16.5	159.2 82.5 97.1 104.0 101.9 90.2 81.8
DATE	Y REGION	2-22-63 3-22-63 4-19-63 5-17-63	9-00-62 4-00-63 AQUIFER	9-00-62 4-00-63 9-00-62 7-20-62 8-15-62	9-20-62 10-00-62 10-17-62 11-19-62 12-19-62 1-21-63	2-120-63 3-120-63 4-100-	10-26-02 4-00-63 7-20-62 8-24-62 9-21-62 10-19-62 11-16-62 12-14-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	42.0	19.8 COUNTY LWR	45°0 31°0 30°0		11.0	15.0
STATE WELL NUMBER	SAN	SOUTH ALAMEDA COUNTY UPR ADUTER 55/01W-04F01 M 42.0 3-22- CONT. 419- 6-17- 6-14-	5S/01W-09001 M SOUTH ALAMEDA	25/03W-36R01 M 35/02W-07D01 M 35/02W-19A02 M		35/03W-24J01 M 45/02W-02001 M	45/02W-35R02 M

		Î	010	OND W	ו בוי	פויסטוים אישורה ררירנט או איב	WLLLS				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
Ś	SAN FRANCISCO BAY REGION	AY REGION				SA	SAN FRANCISCO BAY REGION	AY REGION			
NORTH SANTA	SANTA CLARA COUNTY		2-09-02			NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09.02		
6S/01E-21R01 M CONT.	138.0	2-19-63 3-13-63 4-22-63 5-21-63 6-24-63	217.3 213.1 213.1	- 79.3 - 75.1 - 75.1	2400	65/01W-23E01 M CONT.	21.0	1-23-63 2-21-63 3-22-63 4-00-63 5-20-63			200
		;						6-17-63	152.8*	- 131.8	
68/01E-23P02 M	240.5	9-17-62	167.6	72.9	7400	65/02W-16R01 M	0.84	7-27-62			240
		10-18-62	168.8	71.7				9-26-62		- 102.2	
		11-19-62	170.8	59.7				10-29-62	139.1	- 91.1	
		1-16-63	7 7	0 % o %				12-27-62			
		2-18-63	171.6	68.9				1-28-63			
		3-19-63	170.7	69.8				2-26-63	130.2	- 82.2	
		5-20-63	155.0	00 - 00 0.0 0 0.0 0				4-26-63			
		6-24-63	156.1	84.4				5-27-63	_	- 82.9	
M (0000 - 3100 34	0	7-36-62	171.0*	0.001	00%			6-26-63	141.8	93.8	
05/01E=50M01 M	0 • 6 †	8-22-62	* O = E	0.821 -	7 400	65/02W-25C01 M	73.0	7-26-62	158.7	- 85.7	240
		9-21-62	165.1*	- 122.1				8-24-62	154.9	- 81.9	
		10-23-62	141.1					9-25-62		1 84.3	
		11-26-62	131.9					10-24-62	149.3	10.3	
		1-24-62	120.7	777.7				12-26-62			
		2-21-63	115.8					1-25-63		- 57.4	
		3-21-63	105.2					2-26-63			
		4-23-63	102.7	- 59.7				4-25-63		1 60.0	
		6-25-63	• =					5-24-63		1.007 -	
)						6-26-63	150.3	- 77.3	
65/01W-10P02 M	0.6	7-18-62	B 101	, 001	2000	M (0) 45 - 10 0 / 34	140.1	7-27-62	271.4	- 131.3	240
		9-11-62	* • I C I	122.4				8-24-62		- 134.6	
		10-17-62	מנ					9-25-62		- 131.4	
		11-14-62						10-25-62		- 120.0	
		12-21-62	žž.					11-28-62	259.9	119.8	
65/01W-23E01 M	21.0	7-18-62	174.6*	- 153.6	5000			1-28-63		- 93.2	
		8-13-62	145.7	-				2-26-63			
		9-11-62	149.6	- 128.6				4-25-63) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	
		11-14-62						5-27-63	225	- 85.0	
		12-21-62						6-26-63	D		

ICY YING			0000	2400		2400	2400	2400
AGENCY SUPPLYING DATA								
WATER SURFACE ELEVATION IN FEET			- 112.0 - 93.2 - 77.4 - 74.8 - 107.7	47.00 500.00 500.00 677.00		0.6 5.2 8.8 16.2	22 119.66 119.66 119.66 119.88 119.88 119.78	246.3 244.5 244.5 248.3 248.3
				*******		4 00 M 00 m _		- 401-1
GRD. SUR TO WATER SUR IN FEET		2-09.02	217.0 198.2 182.4 179.8 212.7*	199°-2 199°-2 201°-7 199°-5 198°-7		159.4 154.6 151.2 143.8 148.3	10	102.7 99.4 104.5 100.7 99.1
DATE	AY REGION		1-23-63 2-21-63 3-22-63 4-00-63 5-20-63	7-31-62 8-03-62 9-05-62 10-04-62 11-06-62	1-03-163 2-04-63 3-05-63 4-02-63 5-06-63	7-04-62 8-06-62 9-06-62 10-01-62 11-06-62	7-20-62 9-16-62 9-18-62 10-18-62 11-19-62 12-18-63 12-15-63 2-15-63 3-18-63 6-13-63 6-13-63	7-19+62 8-29-62 9-18-62 10-17-62 11-16-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	105.0	151.6		160.0	130.0	349.0
STATE WELL NUMBER	SAR	NORTH SANTA CLARA COUNTY	75/01E-16C0,5 M CONT.	75/01E-31A02 M		75/01E-31R01 M	75/02E-07P01 M	75/02E-17H01 M
AGENCY SUPPLYING DATA			2400		2400		2400	0000
SUR								
WATER AC SURFACE SUR ELEVATION IN FEET				23.8 22.8 21.7 21.7 22.4 20.9	000000000000000000000000000000000000000	111111 60000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 144.0 - 148.3 - 137.5 - 127.0
		2-09.02		1 1 1 1 1 1		1 1 1 1 1 1	1999.0 205.0 205.0 210.0 185.0 185.0 185.0 172.0 172.0	249.0 253.3 242.5 232.0
WATER SURFACE ELEVATION IN FEET	YY REGION		207.1 212.4 206.9 204.2 205.1 205.1	1 1 1 1 1 1	1 1 1 1 1 1	151.1 147.2 154.6 140.9		
GRD SUR SURFACE TO WATER SUR IN FEET IN FEET	SAN FRANCISCO BAY REGION		207.1 212.4 206.9 204.2 205.1	202.8 201.8 200.7 199.3 201.4	173.8 171.7 177.5 171.4 165.8	151.1 147.2 154.6 140.9	1999.0 205.0 205.0 210.0 185.0 185.0 185.0 172.0 172.0	249.0 253.3 242.5 232.0

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD. SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD. SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SA	SAN FRANCISCO BAY REGION	3AY REGION				SAN	SAN FRANCISCO BAY REGION	Y REGION			
NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09-02			NORTH SANTA CLARA COUNTY	LARA COUNTY		2-09.02		
75/02E-17H01 M CONT.	349.0	12-18-62	95.9	253.7	2400	75/02W-03001 M CONT.	216.7	6-02-63	345.0	- 128.3	2400
		3-18-63 4-17-63 5-17-63 6-13-63	96.3 95.7 99.1 100.5	252.7 253.3 249.9 248.5		75/02W-04B01 M	218.0	7-30-62 8-28-62 9-26-62 10-29-62	248.6 254.8 248.7 232.3	30.6	2400
75/02E-33C01 M	462.0	7-19-62 8-15-62 9-17-62 10-17-62 11-16-62	223. 223. 222. 222. 203. 203. 203.	4 4 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2400			12-18-63 12-18-63 2-27-63 3-27-63 4-27-63 5-27-63	1995 - 2 1995 - 3 1995 - 3 1995 - 3 1995 - 3	22° 33° 11° 52° 52° 53° 52° 53° 53° 53° 53° 53° 53° 53° 53° 53° 53	
		2-14-63 3-15-63 4-17-63 5-17-63 6-13-63	20 • 3 20 • 3 20 • 7 18 • 8 20 • 7	4411.7 4441.3 4443.2 443.7		75/02W-22A01 M	340.0	7-30-62 8-28-62 9-26-62 10-29-62	, 0000	1 * * * * * * * * * * * * * * * * * * *	2400
75/01W-35C01 M	202.0	7-02-62 8-01-62 9-01-62 10-02-62 11-01-62 12-03-62	245.0 232.0 227.0 236.0 247.0 247.0	111111	2400			111-29-62 12-28-62 1-29-63 2-27-63 3-28-63 4-27-63 5-28-63	266.1 236.2 256.2 156.6 140.1 140.9	313.9 316.8 314.4 324.2 325.9 325.7 325.7	
		2-01-63 3-01-63 4-01-63 5-01-63 6-01-63	232.0 217.0 204.0	- 15.0 - 15.0 - 7.0		85/01E-07H02 M	207.0	7-09-62 8-06-62 9-06-62 10-16-62	980.1 920 930.1	108.9 115.0 117.9	2400
75/02W-03G01 M	216.7	7-07-62 8-28-62 9-01-62 10-06-62 11-05-62 12-03-62 12-03-62	35500 346000 34600 34600 34600 34600 34600 34600 34600 34600 346000 34600 34600 34600 34600 34600 34600 34600 34600 346000 34600 34600 34600 34600 34600 34600 34600 34600 346000 34600 34600 34600 34600 34600 34600 34600 34600 346000 3460	1128 1138 1138 1138 1138 1138 1138 1138	2400			1110 1210 1210 1100 1100 1100 1100 1100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	121°67 122°44 125°1 133°6 139°6	
		3-07-63 4-02-63 5-07-63	339°0 338°0 333°0	- 122.3 - 121.3 - 116.3		85/01E-13H01 M	184.6	7-31-62 8-08-62 9-11-62	47.8 45.1 41.8 39.1	136.8 139.5 142.8 145.5	2400

LING A LING			2400	2400					2400										5 100	5100		5100		5100	5100		5100
AGENCY SUPPLYING DATA			2	2					2										ď.	ď	•	5		2	5		20
WATER SURFACE ELEVATION IN FEET			299.7	284.4	257.5	271.5	291.7	280.0	262.5	260.7	257.7	257.3	257.4	260.2	264.6	270.5	269.6		543.3	30406	324.5			255.4	422.8		
GRD SUR TO WATER SUR IN FEET		2-09-02	31.5			34.7		34.6	25 • 1	26.9	50.6	30.3	30.2	27.4	23.0	17.1	18.0	2-10-00	12.0	112.3	92.4	#		150.5	139.4	D	p
DATE	NY REGION		5-07-63	7-17-62 8-13-62 9-13-62	10-10-62 11-13-62 12-12-62	2-08-63	4-11-63	6-11-63	7-12-62	9-12-62	10-08-62	11-09-62	1-08-63	2-07-63	3-11-63	5-10-63	6-29-63		9-01-62	9-01-62	3-00-63	9-00-62	;	3-00-63	9-01-62	3-00-63	9-01-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	331.2	314.6					287.6										555.3	6 9 7		361.0		312.9	562.2		551.0
STATE WELL NUMBER	SA	NORTH SANTA CLARA COUNTY	85/01W-15801 M CONT.	95/02E-01J01 M					95/02E-01M01 M									LIVERMORE VALLEY	25/02E-25N01 M	25/01W-26(01 M		35/01E-02E01 M		35/01E-11H01 M	35/02E-02R01 M		35/02E-10H01 M
AGENCY SUPPLYING DATA			2400			2400							2,00	2 400							2400						
WATER SURFACE ELEVATION IN FEET			145.5	143.9	153.5	164.3	160.8	159.0	157.1	166.3	173.7	185.3	227.1	220.4	215.3	213.4	214.6	213.7	225.5	228.7	297.9	297.0	297.3	297.3	299.2	300.9	3000
GRD SUR TO WATER SUR IN FEET		2-09-02	39.1	35°4 32°0	31.1	44.7	48.2 50.0	50.0	51.9	42.7	12 th the th	23.7*	13.6	19.3	24.4	26.3	25.1	26.0 12.8	14.2	11.0	3303	34.2	33.9	33.9	32.0	30.3	7 • 06
DATE	AY REGION		11-08-62	1-0/-63 2-06-63 3-07-63	5-09-63 6-06-63	7-11-62	9-11-62	11-08-62	1-08-63	3-11-63	5-10-63	6-06-63	7-11-62	8-09-62	9-11-62	10-10-62	12-07-62	1-08-63	3-11-63	6-01-63	7-06-62	8-03-62	10-29-62	11-06-62	1-03-63	3-05-63	4-02-03
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION	CLARA COUNTY	184.6			209•0							. 000	739.1							331.2						
STATE WELL NUMBER	SAR	NORTH SANTA CLARA COUNTY	85/01E-13H01 M CONT.			85/02E-20F03 M								85/02E-22001 M							85/01W-15801 M						

	4									1	
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	SURFACE SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SA	SAN FRANCISCO BAY REGION	34Y REGION				S.A.	SAN FRANCISCO BAY REGION	BAY REGION			
LIVERMORE VALLEY			2-10.00			SAN GREGORIO VALLEY	E≺		2-24.00		
35/02E-10H01 M CONT.	551.0	3-00-63	94.3	456.7	5100	75/05W-15E02 M CONT.	30.0	10-18-62		19.3 18.1 18.5	5050
HALF MOON BAY TERRACE	RACE		2-22.00					1-23-63	12.0	18.0	
55/05W-20L01 M	73.0	7-18-62 8-17-62 9-18-62	24.0 24.2 21.6 19.5	64 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5050			3-19-63 4-24-63 5-23-63 6-19-63		17.5 19.0 17.3 16.4	
		11-21-62	17.5	55.5		75/05W-15H02 M	0.04	3-19-63	15.4	24.6	4050
		1-23-63	15.2	57.8		PESCADERO VALLEY			2-26.00		
		3-18-63 4-24-63 5-23-63 6-19-63	13.2 10.9 11.5 12.5	59.8 62.1 61.5 60.5		8S/05W-09H01 M	20.0	7-18-62 8-17-62 9-18-62	400 • • •	15.1	5050
55/05W-29F03 M	50.0	3-19-63	žt		5050			10-18-62	4 4 6 9 1	15.9	
55/05W-29N01 M	0.94	3-19-63	29.8	16.2	5050			1-23-63		15.0	
65/05W-08501 M	108.0	3-19-63	59.5	48.8	5050			3-19-63	3 4 6	15.7	
SAN GREGORIO VALLEY	≻ ⊔		2-24.00					5-23-63	9.4	15.4	
75/05W-13E01 M	0.00	7-18-62 8-17-62 9-18-62 10-18-62 11-21-62 12-21-62 12-21-63 1-20-63 1-20-63 1-20-63 1-20-63 1-20-63 1-20-63 1-20-63 1-20-63	11111111111111111111111111111111111111	00000000000000000000000000000000000000	0 5 0 5 0	8 S \ O 5 ¥ − 1 1 1 ₹ 0 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 • 0	3-19-63	13 + 1	91.6	909
75/05W-15C01 M	80.0	3-19-63	11.5	68.5	5050						
75/05W-15E01 M	15.2	3-19-63	ы 6 8	71.9	5050						
75/05W-15E02 M	30.0	7-18-62	12.6	17.4	9090						

S
WELL
III
₹
A
Q
S
Ľ
Ä
LEVELS
WAIER
d
⋛
KOOND
ξ
ヿ
¥
_

AGENCY SUPPLYING DATA			5050 5100 5050	5 100	5050								2400	5050	5050
WATER SURFACE ELEVATION IN FEET				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.5			10.5	1.6	7.0			2222 2333.1 2333.1 2233.1 2346.0 235.0 4.5 55.0 255.0 255.0	389.5	241.8
GRO SUR TO WATER SUR IN FEET		3-02-00		* * * * * * * * * * * * * * * * * * *	138.5	140.5	139.3	136.2	134.4	135.6	3-03.00	3-03.01	1120 *** 1165 **9 *** 1165 **9 *** 1116 **0 **0 *** 1111 **0 **0 *** 1111 **0 *** 1101 **0 **0 *** 101 **0 **0 *** 101 **0 **0 **0 *** 101 **0 **0 **0 **0 **0 **0 **0 **0 **0	8 • 1	7.5
DATE	REGION		9-18-62 10-18-62 11-20-62 12-12-62	1-22-63 2-19-63 2-19-63 4-08-63 4-23-63 5-21-63 6-18-63	7-18-62 8-16-62	10-18-62	11-20-62	2-19-63	4-23-63	6-18-63			7-16-62 8-10-62 10-09-62 11-13-62 12-10-62 12-10-63 3-12-63 3-12-63 5-110-63 5-110-63	4-03-63	7-17-62
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION		30.0		136.0						JALLEY	CLARA COUNTY	0 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 °	397.6	249.3
STATE WELL NUMBER	CEN	PAJARO VALLEY	125/02E-31K01 M CONT.		13S/02E-05B01 M						GILROY-HOLLISTER VALLEY	SOUTH SANTA CLARA COUNTY	95/03E-27C02 M	95/03E-29B01 M	10S/03E-34L01 M
AGENCY SUPPLYING DATA			5050		5050		2050						0 20	5050	
			65.0 65.2 65.4 64.5	653.00 653.00 653.00 653.00 883.00	31.4		- 10.4	2.5.0	4 W W	6 • 4	0.0	1 7 0 0 0	10000		
WATER SURFACE ELEVATION IN FEET		3-01.00		60.9 59.4 60.2 60.5 59.0 60.7 58.4 65.8 63.7 65.8		3-02-00	-	1	6.1 2.2 5.9 3.5						D.
WATER SURFACE ELEVATION T IN FEET	REGION	3-01-00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3-02-00	19.8 - 1	14.6		2 t	, w ,	1 1	1.1	7-18-62 п	
GRD SUR SURFACE TO WATER SUR IN FEET IN FEET	CENTRAL COASTAL REGION	3-01.00	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60.3*	3-02-00	19.8 - 1	14.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 · 4	ນູ້ ກຸກຄວາມ ກຸກຄວາມ	13.8	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.		

TABLE C-2

GROUND WATER LEVELS AT WELLS

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRO SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD. SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
8	CENTRAL COASTAL REGION	REGION				CE	CENTRAL COASTAL REGION	REGION			
SQUTH SANTA	SQUTH SANTA CLARA COUNTY		3-03-01			SAN BENITO COUNTY	OUNTY		3-03.02		
105/03E-34L01 M CONT.	249.3	8-16-62	8.9	240.4	5050	115/05E-13D01 M CONT.	255.7	6-18-63	п		5050
		11-19-62	8 • 4 0 • 4	240.9		125/04E-20C01 M	152.9	3-00-63	27.2	125.7	5101
		1-23-63	10.3	239.0		125/05E-12F01 M	216.3	7-17-62	95.2* 88.3	121.1	5050
		3-20-63	5.8	243.5				9-19-62	76.9	139.4	
		4-23-63	. 0	242.9				11-19-62		127.4	
		5-20-63	0 0	241.3				1-21-63		135.7	
105/04E-18G02 M	259.5	7-17-62	101.4	158.1	2050			3-00-63	77.0	139.3	5101
		8-16-62	98.6	160.9				4-23-63	7.81	158.1	0404
		10-17-62	104.8	154.7				6-18-63	@		
		11-19-62	88•3	171.2							
		12-19-62	82.9	176.6		125/05E-33A01 M	280.0	7-17-62	90.1	189.9	2050
		1-21-63	76.5	183.0				9-19-62	87.5	192.5	
		3-20-63	71.4	188.1				10-18-62	88.5	191.5	
		4-03-63	64.5	195.0				11-19-62	*6*66	180.1	
		4-23-63	54.2	205.3				12-20-62	88.6	191.8	
		6-18-63	63.0	196.5				2-18-63	95.2	184.8	
10S/04E-35E01 M	248.0	4-03-63	81.7	166.3	5050			3-20-63	93.2	196.8	
115/03E-01801 M	227.0	4-00-63	54.7	172.3	5400			6-18-63	• 13	102.0	
SAN BENITO	COUNTY		3-03-02			135/05E-11Q01 M	325+5	3-00-63	24.0	271.5	5101
M 10051-750.211	255.7	7-17-62	25.2	230.5	5050	SALINAS VALLEY			3-04.00		
10001 70001		8-16-62	27.8	227.9							
		9-19-62		230.6		PRESSURE ARE	PRESSURE AREA 180 FOOT AQUIFER	UIFER	3-04.01		
		11-19-62		226.8		145/02E-03C01 M	10.6	12-07-62	17.6	7.0	2100
		12-20-62	31.1	224.6				3-77-63	10.1	0	
		2-18-63		231.7		145/02E-15L01 M	23.0	12-05-62	24.5	1.5	2100
		4-00-63	22.2	233.5	5101			3-14-03	0.01	0	
		4-23-63		235.7	5050	155/02E-01001 M	42.0	7-18-62	13		2100
		2-71-03	7300	69162				8-15-62	, ,	* ~ *	

GROUND WATER LEVELS AT WELLS

		0		0	0			
AGENCY SUPPLYING DATA		2100		2100	2100		2100	
WATER SURFACE ELEVATION IN FEET		1009.8 1109.6 1110.6 1112.3 1115.3 1115.7		179.7	178.0 179.8 187.0	1999 8 2050 211 5 219 8 2260 2270	228.2 230.65 230.99	230.4 233.1 233.5 233.5
GRD SUR TO WATER SUR IN FEET	3-04.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3-0	97.3	195.0 193.2 186.0			
DATE	REGION	7-17-62 8-14-62 10-18-62 11-19-62 11-14-62 1-17-63 3-25-63 4-17-63	6-13-63	12-12-62 3-21-63	7-17-62 8-13-62 9-17-62 10-18-62 11-19-62	12-17-162 1-17-163 2-18-163 3-20-163 4-17-163 5-15-163 6-13-163	7-16-62 8-16-62 9-17-62 10-18-62 11-15-62	2 - 1 - 1 - 6 - 3 - 6 - 6
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION EA	172.0	CONE	277.0	373.0	A R B A	315.0	
STATE WELL NUMBER	CE. FOREBAY AREA	175/05E-11C01 M	ARROYO SECO CONE	185/06E-15M01 M	195/06E-11C01 M	UPPER VALLEY	195/07E-10P01 M	
AGENCY SUPPLYING DATA		2100	2100	2100	2100	2100		2100
WATER SURFACE ELEVATION IN FEET		7.7. 11.7. 7.1. 1.3.3. 1.3.3.	17.0	38 20	0 4 6 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27.3 22.5 11.65 2.9 2.9	100	72.0
GRD SUR TO WATER SUR IN FEET	3-04.01		41.0 37.5 89.7	86.8	51.0 3-04.01 20.2 7.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65.1 60.6 68.0 93.0	113.3
DATE	REGION	10-19-62 12-03-62 12-03-62 1-18-63 2-19-63 3-19-63 5-14-63	3-21-63	3-19-63	3-21-63 JUIFER 12-06-62 3-21-63	7-19-62 8-15-62 9-18-62 10-22-62 11-20-62 12-10-62	3-118-63 4-118-63 5-14-63 6-14-63	12-14-62
GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION REA 180 FOOT AQUIFER	0	58.0	110.0	3-2 400 FOOT AQUIFER 11.0 12-00	0.69		18 1 0 0
STATE WELL NUMBER	CENTRAL COASTAL REGIO		155/03E-16M01 M		PRESSURE AREA 135/02E-31G01 M	145/03E-18J01 M	EAST SIDE AREA	165/05E-17R01 M

TABLE C-2

GROUND WATER LEVELS AT WELLS

			5			WAILIN LLVILLU AI WA	W L L L C				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CEP	CENTRAL COASTAL	REGION				CEI	CENTRAL COASTAL REGION	REGION			
UPPER VALLEY AREA	AREA		3-04.05			PASO ROBLES			3-04,06		
20S/08E-05R01 M	337.0	12-18-62	64.2	272.8	2100	265/12E-26E01 M	839.0	4-11-62	190.2	648.8 643.3	5100
21S/09E-06K01 M	344.0	12-03-62	12.3	331.7	2100	26S/12E-35M01 M	818.0	4-10-62	135.9	682.1	5100
215/10E-32NÓ1 M	40000	12-03-62 3-18-63	21.2	378.8	2100	265/13E-10D01 M	199.0	4-09-62	8 • 1 8 • 6	790.9	5100
225/10E-16K01 M	472.0	12-04-67	74.1	397.9	2100	265/13E-34801 M	1005.0	4-12-63	153.7	851+3	5100
PASO ROBLES			n			265/14E-16L01 M	1018.0	4-09-62	55.6	962.4 954.1	5100
245/10E-11C01 M	618.0	4-12-63	50.5	567.5	5100	265/14E-35D01 M	1134.5	4-11-62	114.9	1019-6	5100
245/11E-25N01 M	0.609	4-12-63	37.1	565.9	5 100	245714F_02801 M	0.4111	20 - 7	000	1084.	
245/11E-33R01 M	964.0	4-12-63	19.1	544.9	5 100		•	4-15-63	28.0	1086.0	
245/11E-35J01 M	616.8	4-12-63	0.69	547.8	5100	265/15E-28002 M	11111.4	4-11-62	49.1	1062.3	5100
245/12E-17N01 M	169.5	4-12-63	14.9	754.6	5100	245715F-29NO1 M	1134.4	7 -11-4	7.7.7	1057-0	5 100
245/15E-33C01 M	1225.0	4-15-63	29.6	1195.4	5100			4-15-63	76.4	1058.0	
255/11E-35G01 M	8.448	4-12-63	40.5	839.3	5100	275/12E-21N01 M	147.5	4-10-62	1.2	740.3	5100
255/12E-17J01 M	0.969	4-12-63	7.47	9.469	5100	275/13E-24N01 M	1030.0	4-10-62	17.5	1012.5	5100
255/12E-17R01 M	0.869	4-12-63	9.94	592.4	5100			4-12-63	8 • 0	1022.0	
255/12E-26K01 M	747.5	4-15-63	109.0	638.5	5100	275/13E-32801 M	1103.5	4-10-62	48.5 51.3	1055.0	5100
255/13E-11E01 M	1184.0	4-09-62	39•1 39•1	1144.9	5100	275/15E-10R02 M	1130.0	4-11-62	45.1	1084.3	5100
255/16E-17L01 M	1164.5	4-09-62	29.5	1135.0	9100	275/15E-13A01 M	1155	4-10-62	11.2	1142.3	5100
255/16E-30M01 M	1218.0	4-09-62	72.8	1145.2	5100	275/16E-21E02 M	1253.0	4-10-62	1 10 10 10 10 10 10 10 10 10 10 10 10 10	1197.2	5100
265/12E-04N01 M	674.5	4-09-62	43.5	631.0	5100	285/12E-10G01 M	825.0		- 1.2	825.2	5100

	AGENCY SUPPLYING DATA			5100		, ,												
	WATER SURFACE ELEVATION IN FEET			127.0	126.2	7.00												
	GRD SUR TO WATER SUR IN FEET		3-07-00	13.0	13.8	3-26.00	•											
	OATE	REG10N		3-00-63	5-21-63	6	11-29-02											
WELLS	GROUND SURFACE ELEVATION IN FEET	CENTRAL COASTAL REGION		140.0		TERRACE	0 • 0 6											
AT	STATE WELL NUMBER	J	CARMEL VALLEY	165/01E-25801 M		WEST SANTA CRUZ TERRACE	115/02W-22K01 M											
WATER LEVELS	AGE NCY SUPPLYING DATA			5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100		5050	5100
3																		
	WATER SURFACE ELEVATION IN FEET			816.3	795.8	844.2	817.2	1137.3	1126.0	1140.0	1399.4	903.5	921.8	881.7	9.766		124.7	124.9 123.8 123.6 124.0 127.0
GROUND V	1		3-04.06	7.7 816.3	9.2 795.8 8.9 796.1	6.1 844.2 7.9 842.4	7.4	62.2	0.69	10.0	39.6	12 • 1	6.7	38.3 881.7 39.1 880.9	8 • 1	3-07-00	15.3	15.1 16.2 16.4 16.0 13.0
	GRD SUR SURFACE TO WATER ELEVATION SUR IN FEET IN FEET	REGION	3-04.06				7 • 4 - 1 • 3									3-07-00		15.1 16.2 16.4 16.0 13.0
	GRD SUR TO WATER SUR. IN FEET	CENTRAL COASTAL REGION	3-04.06	7.7	9 • 2 8 • 9	6.1	7.4	62.2	0.69	10.0	39.6	12 • 1	6.7	38.3 39.1	8 • 1	3-07.00	15.3	15.1 16.2 16.4 16.0 13.0

APPENDIX D

SURFACE WATER QUALITY

TABLE OF CONTENTS

		Page
Table D-1	Sampling Station Data and Index	D -9
Table D-2	Analyses of Surface Water North Coastal Region (No. 1) San Francisco Bay Region (No. 2) Central Coastal Region (No. 3) South Bay Aqueduct	D-11 D-11 D-19 D-31 D-48
Table D-3	Summary of Coliform Analyses	D-52
Table D-4	Spectrographic Analyses of Surface Water	D-53
Table D-5	Radioassays of Surface Water	D-54
Table D-6	Description of Salinity Observation Stations and Maximum Observed Salinity at Bay and Delta Stations	D-57
Table D-7	Salinity Observations at Bay and Delta Stations	D-58
Figure D-	l Electrical Conductance Alameda Creek near Niles	D-61
Figure D-	2 Electrical Conductance Bethany Forebay at South Bay Pumping Plant	D-62

SURFACE WATER QUALITY

This appendix contains data pertaining to the quality of surface waters in the Central Coastal Area. The data presented are the observed physical, chemical, bacteriological, and radiological characteristics of surface waters sampled during the 1963 water year, which covers the period from October 1, 1962 through September 30, 1963.

Laboratory Methods and Procedures

Methods of mineral and bacterial analysis, in general, are those described in the American Public Health Association publication, "Standard Methods for the Examination of Water and Sewage", 11th Edition, 1960. In some cases, the methods described in U. S. Geological Survey, "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454, 1960, have been employed.

Types of analyses normally made of surface water samples collected by the Department are mineral, bacterial, radiological, and trace element.

Sampling Station Data and Index

Table D-1, "Sampling Station Data and Index", is an alphabetic listing of stations from which surface water samples were collected. The analyses of these samples are reported in subsequent tables. The station number is an arbitrary number that has been assigned to each station. The location pertains to either the township, range, and section of the Public Land Survey or to latitude and longitude. The stations are classified into monitoring, investigational, and operational types.

Analyses of Surface Water

Table D-2, "Analyses of Surface Water", includes physical characteristics of the water and the results of mineral and bacterial analyses. The data are presented by region and by stream from north to south within a region. At the time the samples were collected for laboratory examination, field determinations were made for dissolved oxygen (DO) by the modified Winkler method, water temperature, and pH. Visual inspections were made of the streams and the physical conditions were noted. Field measurements of DO and temperature are reported in Table D-2.

Samples collected for bacterial examination were mailed or delivered to the laboratory. Every effort was made to get the samples to the laboratory as quickly as possible. Results of bacterial determinations presented in this appendix should be considered as qualitative. Undue weight should not be given to the values for quantitative purposes.

Data from operational stations are shown separately at the end of the table. These data consist of analyses of South Bay Aqueduct water.

Summary of Coliform Analyses

Coliform data included in Table D-2 are made more usable by summarizing the results of the analyses of the 24 samples collected at each station during the year. Table D-3 is a summary of these analyses.

Spectrographic Analyses of Surface Water

Spectrographic analyses were made to determine the concentration of 17 different metals in surface water samples. Most of these metals are present in very small amounts and are often called trace metals. The concentrations indicated in Table D-4 are in parts per billion instead of parts per million

which is commonly used in reference to concentrations of mineral constituents.

The symbols included with the constituent quantities are:

- < Less than the amount indicated.
- \leq Equal to or slightly less than the amount indicated.

Radioassays of Surface Water

Table D-5, "Radioassays of Surface Water", presents the radioactivity of surface water samples collected at 24 monitoring stations. The samples were collected in May and September at the same time that samples were collected for standard mineral analyses shown on Table D-2. The methods and procedures of sample preparation and determination of radioactivity in surface water are described in "Standard Methods for the Examination of Water and Sewage, 11th Edition".

Results are expressed as pico curies per liter (pc/1). The term pico curies is also written micro-micro curies and is further defined as 10^{-12} curies. Four values are reported for each sample: (a) beta activity in the solids retained on the filter (suspended material), (b) beta activity in the filtrate (dissolved material), (c) alpha activity in the solids, and (d) alpha activity in the filtrate. Sample counts are corrected for background and geometric efficiency. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as $x \pm y$ pc/1. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y 90 percent of the time.

Salinity Observations at Bay and Delta Stations

Table D-6 describes the ten stations for which salinity data are listed in Table D-7 and includes maximum observed salinity at bay and delta stations.

Table D-7 presents chloride concentrations of samples collected at ten stations between Sobrante Beach and Collinsville for the period October 1, 1962 through June 30, 1963. From July 1, 1963 through September 30, 1963, samples were collected from only six of the stations.

Electrical Conductance

Data from two electrical conductivity recorders are present in Figures D-1 and D-2. These data are machine prepared graphs. Daily mean values are plotted in Figure D-1 and single daily reading at 1300 hours are plotted in Figure D-2. Each figure or graph presents the data from a station. The beginning of the continuous conductivity record occurred during 1963 and is indicated by the beginning of the graph on each figure.

TABLE D-1 SAMPLING STATION DATA AND INDEX

Station	Station Number	Location	Beginning of Record	Station ^C Type	Sampled ^d by	Analysis on page
ALAMEDA CREEK NEAR NILES	73	4S/1W-15	Dec., 1951	н	DWR	0-23
ALAMEDA CREEK NEAR NILES	73	4S/1W-15	Dec., 1959	M	USGS	D-20
ALISAL CREEK ON OLO STAGE ROAD NEAR SALINAS	200	14S/4E-30	e	M	MCFCWCD	Ð-40
ALTAMONT CREEK AT ALTAMONT TURNOUT OF SOUTH BAY AQUEDUCT	201	2S/3E-31	June, 1962	0	OWR	D-27
ARROYO DE LA LAGUNA AT VERONA	202	3S/1E-29	Dec., 1959	M	USGS	D-23
ARROYO DEL VALLE NEAR LIVERMORE	71	4S/2E-4	July, 1958	М	DWR	D-26
ARROYO SECO RIVER NEAR SOLEDAD	203	19S/6E-16	е	м	MCFCWCD	0-42
BEAN CREEK ONE MILE EAST OF FELTON	204	10S/2W-22	Aug., 1963	1	DWR	D-32
BEAR CREEK AT BOULDER CREEK	205	9S/2W-30	Aug., 1963	1	DWR	D-34
BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK	206	9S/2W-10	Aug., 1963	I	DWR	D=34
BENICIA	235	38°02' Lat ^b 122°09' Long	1944	м	DWR	p~57
BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT	207	2S/3E-10	April, 1962	0	DWR	D=48
BIG RIVER NEAR MOUTH	8c	17N/17W-24	Jan., 1959	М	DWR	D-12
BOULDER CREEK AT BOULDER CREEK	208	9S/2W-30	Aug., 1963	I	DWR	D-34
BRANCIFORTE CREEK NEAR SANTA CRUZ	209	11S/1W-7	Aug., 1963	I	DWR	D-31
CARMEL RIVER AT ROBLES DEL RIO	83	17S/2E-2	Jan., 1952	н	OWR	D-47
CLEAR CREEK AT BROOKDALE	210	9S/2W-32	Aug., 1963	I	OWR	D-34
COLLINSVILLE	236	38°04' Lat ^b 121°51' Long	1924	м	OWR	D-57
COYOTE CREEK NEAR MADRONE	82	9S/3E-9	Jan., 1952	м	DWR	D-29
CROCKETT	237	38°03' Lat ^b 122°13' Long	1946	М	DWR	D-57
FALL CREEK ONE-HALF MILE NORTH OF FELTON	211	10S/2W-16	Aug., 1963	I	OWR	D-33
GABILAN CREEK ON OLD STAGE ROAD NEAR SALINAS	212	13S/3E-35	е	М	MCFCWCD	D=39
GUALALA RIVER, SOUTH FORK, NEAR ANNAPOLIS	9a	10N/14W	Jan., 1959	м	DWR	0-14
INNISFAIL FERRY	238	38°11' Let ^b 121°58' Long	1929	N	DWR	0-57
KINGS CREEK TWO MILES NORTH OF BOULDER CREEK	213	9S/2W-18	Aug., 1963	1	DWR	D-35
LIVERMORE CANAL AT PATTERSON RESERVOIR	214	3S/3E-6	Aug., 1962	0	OWR	D-50
LOMPICO CREEK ONE MILE NORTH OF OLYMPIA	215	10S/2W-11	Aug., 1963	1	DWR	0-33
LOS GATOS CREEK NEAR LOS GATOS	74	8S/1W-29	Dec., 1951	N	DWR	D=28
LOVE CREEK AT BEN LOMOND	216	10S/2W-4	Aug., 1963	I	DWR	D-34
MARTINE2	239	38°02' Lat ^b 122°08' Long	1926	М	DWR	D-57
NACIMIENTO LAKE AT DAM NEAR SAN MIGUEL	217	25S/10E-15	e	М	NCFCWCD	D=46
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	25S/11E-4	July, 1958	M	DWR.	D=45
NAPA RIVER NEAR ST. HELENA	72	8N/5W-33	Dec., 1951	M	DWR	D-19
NATIVIDAD CREEK ON OLD STAGE ROAD NEAR SALINAS	218	14S/3E-12	е	M	MCFCWCD	D-40
NAVARRO RIVER NEAR NAVARRO	8b	15N/16W-7	Jan., 1959	м	DWR	D-13
NEWELL CREEK ONE MILE NORTHEAST OF BEN LOMOND	219	10S/2W-3	Aug., 1963	1	DWR	D-33
			l .	1		

a Locations are referenced to Mt. Diablo Base and Meridian.
b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.
c M-Monitoring, I-Investigational, O-Operational.
d OMR-Department of Water Resources, USGS-United States Geological Survey, MCFMCD-Monterey County Flood Control and Water Conservation District.

e Beginning of record prior to 1950.

TABLE D-1 SAMPLING STATION DATA AND INDEX

Station	Station Number	Location ^a	Beginning of Record	Station ^C Type	Sampled ^d by	Analysis on page
PAJARO RIVER NEAR CHITTENDEN	77	12S/3E-12	Dec., 1951	М	DWR	D-36
PANCHO RICO CREEK NEAR SAN ARDO	220	22S/10E-16	e	м	MCFCWCD	D=42
PITTSBURG	240	38°02' Lat ^b 121°53' Long	1945	н	DWR	D~57
PORT CHICAGO	241	38°04' Lat ^b 122°02' Long	1946	м	DWR	D=57
RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE	10a	17N/11W-6	May, 1951	М	DWR	D=18
RUSSIAN RIVER AT GUERNEVILLE	10	8N/10W-32	April, 1951	М	DWR	D-15
RUSSIAN RIVER NEAR HEALDSBURG	9	9N/9W-22	April, 1951	М	DWR	D-16
RUSSIAN RIVER NEAR HOPLAND	8a	14N/12W-36	April, 1951	М	DWR	D-17
SALINAS RIVER NEAR BRADLEY	43c	23S/10E-15	July, 1958	м	DWR	D=42
SALINAS RIVER AT CHUALAR BRIDGE NEAR CHUALAR	221	16S/4E-8	e	м	MCFCWCD	D=41
SALINAS RIVER AT NILLTOWN BRIDGE NEAR SPRECKELS	222	15S/3E-18	e	М	MCFCWCD	D-41
SALINAS RIVER AT PASO ROBLES	43a	26S/12E-28	April, 1951	М	DWR	D-46
SALINAS RIVER AT SAN ARDD BRIDGE NEAR SAN ARDD	223	22S/10E-17	е	М	MCFCWCD	D=42
SALINAS RIVER AT SAN LUCAS BRIDGE NEAR SAN LUCAS	224	21S/9E~8	e	м	MCFCWCD	D=42
SALINAS RIVER NEAR SPRECKELS	43	15S/3E-18	April, 1951	М	DWR	D-40
SAN ANTONIO RIVER AT PLEYTO BRIDGE NEAR PLEYTO	225	24S/9E-3	e	м	MCFCWCD	D-43
SAN ANTONIO RIVER NEAR PLEYTO	43 d	24S/9E-3	July, 1958	М	DWR	D-44
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	15S/7E-28	July, 1958	М	DWR	D-37
SAN LORENZO RIVER AT BIG TREES	226	10S/2W-27	Aug., 1963	I	DWR	D-31
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	10S/2W-27	Dec., 1951	м	DWR	D-31
SAN LORENZO RIVER AT BOULDER CREEK	227	9S/2W-3D	Aug., 1963	I	DWR	D-35
SAN LORENZO RIVER SIX MILES NORTH DF BOULDER CREEK	228	8\$/3W-25	Aug., 1963	1	DWR	D-35
SAN LORENZO RIVER AT FELTON	229	10S/2W-22	Aug., 1963	I	DWR	D-33
SAN LORENZO RIVER AT SANTA CRUZ	230	11S/2W-12	Aug., 1963	1	DHR	D-31
SOBRANTE BEACH	242	38°00' Latb 122° 20' Long	1961	М	DWR	D-57
SOQUEL CREEK AT SOQUEL	76	11S/1W-10	Dec., 1951	21	DWR	D=35
SPOONBILL CREEK	243	38°04' Lat ^b 121°54' Long	1957	М	DWR	D-57
TORD CREEK AT HIGHWAY 117 BRIDGE NEAR SALINAS	231	15S/2E-35	е	М	MCFCWCD	D-40
TWO BAR CREEK ONE MILE NORTH DF BOULDER CREEK	232	9S/2W-19	Aug., 1963	I	DWR	D-35
UVAS CREEK NEAR MORGAN HILL	96	1DS/3E-17	July, 1952	M	DWR	D-38
WEST SUISUN	244	38°05' Lat ^b 122°06' Long	1946	М	DWR	D-57
ZAYANTE CREEK AT FELTON	233	10S/2W-22	Aug., 1963	1	DWR	D-32
ZAYANTE CREEK AT ZAYANTE	234	10S/2W-2	Aug., 1963	I	DWR	D-33

Locations are referenced to Mt. Diablo Base and Meridian.

b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.

c M-Monitoring, 1-Investigational, 0-Operational.

d DMR-Department of Water Resources, USGS-United States Geological Survey, MCFWCD-Monterey County Flood Control and Water Conservation District.

e Seginning of record prior to 1950.

ANALYSES OF SURFACE WATER NORTH COASTAL RECION (NO. 1)

_	_		_													
	100	1 40		USGS												
	0.00	es CaCO ₃ 11y MPN/mi		13.	23.	62.	2.3	62.	62.	21.	230.	23.	2.3	2.3	2.3	
Γ	2	E do u		5	2	9	20	20	2	35	7	m	2	-	7	
	-	Torol N C		0	0	0	0	0	0	0	0	0	٥	0	0	
				63	09	20	52	07	53	31	47	55	9	59	61	
		5 5		29	27	27	26	30	24	27	25	27	27	27	26	
	100	Bolide Page		112 ^e	1136	89	956	77°	95°	59 ^e	798	102 ^e	107	110	1058	
		Other canatituente									PO4 =0.05				ABS = 0.0 PO4 = 0.10	
	ı	Silico (SiO ₂)	T								20				18	
1	e l	Boron S		0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
porte per million	equivalents per million	F 100-	S								0.03				0.01	
orte per	alents.	frote (NO ₃)	(STA. 10								0.01				0.01	
۵	Ainbe	Chio-	BRAGG	9.7	7.5	6.2	0.21	0.17	8.6	0.17	5.8	7.4	8.6	9.0	9.2	
			AR PORT								0.10				5.0	
		Brear - bonate (HCO ₄)	IVER NEA	87	88	1.13	$\frac{74}{1.21}$	56 0.92	$\frac{72}{1.18}$	41 0.67	1.05	1.31	$\frac{81}{1.33}$	1.31	1.36	
Moses	Mineral constituents	Carbon	NOYO R	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	
		Potos- erum (X)	T								0.03				0.0	
	Ì	Sodium (No)		12	10	8.5	8.6	0.35	7.8	5.2	0.33	9.3	0.48	0.44	0.44	
		Magne- erum (Ma)		1 26	1.20€	266.0	1.04c	0.80€	1.06	0.610	4.1	1.10	1.30	1.19	5.1	
		Coleium (Co.)									0.60				0.80	
		£ 414		7.3	7.3	7.2	7.3	7.2	7.3	7.6	7.2	7.8	7.2	7.8	8.0	
	Specific	(micromhoe of 25°C)		168	170	134	142	116	143	89	128	153	160	165	170	
		on de		06	86	103	93	66	104	95	66	96	96	901	95	
		Dissolved osygen		0	1.11	11.9	10.8	10.5	11.5	10.5	10.4	9.6	9.0	9.7	6.8	
-			1	9		65	7 87	55	52 1	52 1	26	09	99	89	99	
		Osschorge Temp			5%	125	72	280	63	1,600	122	36	20	12	5.7	
		ond time compled		10-9-62	11-14-62	12-11-62 1345	1-3-63	2-12-63	3-12-63	4-10-63 1400	5-7-63 1030	6-13-63 0815	7-10-63	8-7-63	9-13-63	

Sum of calcium and magnessum in epm. Laboratary pH.

Sum of calcium and magnessum in spin.
Iran (Fe), oluminum (A1), assemic (A2), copper (Cu), laad (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (Cr*6), reported have as 0.00 except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

ONE 002 19-9 HTTP-MAKE Amusi madion and range, respectively. Calculated from analysas of depirate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

Mirrard analyses made by United Stores, Cacifornia Stores, Quality of Meter Branch (1925), United Stores Department of Meter and Power (L.A. Department of Water ond Power (L.A. Department of Meter and Power (L.A. Department of Public Health (

D-11

TABLE D-2

7 NORTH COASTAL REGION (NO.

_																			
		Analyzed by 1					USGS												
		bid - Coliforn																	
	Ĭ,	- piq					2	4	35	10	25	-	09	25	~	2	-	7	
		Hordness t	DEGG				0	0	0	0	ر،	0	0	0	n	0	0	0	
			Total				83	88	65	7.1	55	67	70	65	106	92	98	96	
L	P 0.7	and -					25	23	25	23	25	23	23	22	26	22	23	21	
L	Totel	solved solids	in pp				138°	141e	105	116	926	111 ^e	e5e	101	186	136	138e	1278	
		9000												PO 4 =0.10				ABS = 0.01 PO4 = 0.05	
		Silica	SiO ₂)											18				16	
	ign	Boron	(8)				0.3	4.0	0.2	0.1	0.0	0.1	0.0	0.1	0.5	0.4	0.1	0.2	
millian	per million	Fług-												0.0				0.0	
parts per millian		- IN	_		1. 3c)	_								0.7				0.01	•
00	squivalents	Chlo-	ĵ		BIG RIVER NEAR MOUTH (STA.	9.6	0.20	0.03	0.28	4.8	0.20	4.8	9.8	19	8.0	9.5	9.5		
	<u>.</u>	Sul -	(80,									-		0.15				6.0	
	11100111	Carban - Bicar - S			RIVER)		2.00	2.05	1.46	96	74	1.46	53	1.43	2.00	118	119	123	
	ardi cons	- 1	Patas- Carban – suum ate (K) (CO ₅)	816	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.03	0.00		
2	Mine		(K)											0.04				0.04	
		Sodium	(NO)				13	12 0.52	9.8	9.9	8.4	9.0	5.5	0.37	0.74	0.52	0.52	11 0.48	
		Mogne- S	(6M)				1.70	1.76c	1.31c	1.436	1.10c	1.34	0.80	6.1	2.12c	1.840	1.72	8.5	
		_	(Ca)											0.80				$\frac{22}{1.10}$	
		Į.	ما				7.3	7.4	8.0	7.3	7.2	7.2	7.7	7.3	8.3	7.2	8.3	8.0	
	Specific	Conductance (micromhos	6 6 7 10				216	222	165	182	144	175	102	166	292	214	217	226	
			%Sot				76	95	93	91	97	66	104	97	107	103	119	88	
		Dissaived	ppm 9				9.3	10.5	10.6	10.7	9.01	11.2	11.2	9.8	10.0	9.5	10.6	8.2	
-		P OF					09	51	67	47	52	05	53	58	65	99	69	99	
		Dischorge Tamp in ofs in of					25 (est)	20 (est)	380 (est)	130 (est)	600 (est)	120 (eet)	400 (est)	170 (est)	50 (est)	15 (est)	10 (est)	5 (est)	
		and time	P.S.T				10-9-62 1315	11-14-62	12-11-62 1210	1-3-63	2-12-63 1110 6	3-12-63	4-10-63	5-7-63 1025	6-12-63 1530	7-10-63 1130	8-7-63 1515	9-13-63	

Laboratory pH.

Jam at caccious not vigorate in some (Cu), lead (Pb), manganese (Mn), sinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{60}{100}$ except as shown. Sum of calcium and magnessum in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual mation and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United Stores Budie; Health Service.

Mineral analyses and by United Stores Carloging of Manne Branch (USD), United Stores Department of the Information (USDR); United Stores Carloging of Manne Read Power (LADMP), City of Las Angeles, Department of Lad Angeles, Department of Lad Angeles, Department of Lad Angeles, Department

		2														
		Anolyzed by i		USGS												
		bid - Coliform ity MPN/mi		2.3	6.2	230.	2.3	23	62.	230.	23.	6.2	2.1	2.3	.62	
	100	- bid - ti modul			2		2	70	2	190	е	S	7		s,	
Г		000 000 000 000 000 000 000 000 000 00		0	0	0	0	0	0	0	0	0	0	0	0	
		Hordness to CoCO ₃ Totol N.C.		111	118	56	98	9	96	20	83	106	117	112	112	
	Per-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		21	19	20	21	23	19	23	20	20	20	20	20	
L	Total	o o i de		162 ^e	167 ^e	138 ^e	142e	100e	141e	76e	122 ^g	152 ^e	157	163 ^e	1548	
		Other constituents									PO4 = 0.10				ABS = 0.00 PO ₄ = 0.05	
	ı	Silico (SiO ₂)									17				18	
	ion	Boron (B)		0.1	5.5	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.2	0.0	0.1	
million	par million	Fluo- ride (F)	\$								0.07				0.01	
1 = 1	equivolants	trote (NO _S)	STA. 6b								0.02				0.0	
۵	odnive.	Chlo- ride (CI)	NAVARRO RIVER NEAR NAVARRO (STA. 6b)	12 0.34	9.0	0.21	10 0.28	5.0	7.3	6.6	6.0	0.21	9.4	0,28	9.5	
•		Sul - fore (SO _e)	NEAR N								0.15				0.21	
atition for		Bicor- bonote (HCO ₃)	O RIVER	152	154	121	126	1.38	2.05	1.03	111	142	139	148	2.43	
etoeutiteede		Corbon- ote (CO ₃)	NAVARR	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.00	
M		Potoe- Sium (K)									0.04				0.05	
		Sodium (No)		0.61	0.57	11 0.48	12 0.52	8.8	10 0.44	6.7	9.6	0.52	13 0.57	0.57	13 0.57	
		Mogna- eium (Mg)		2.23c	2.36€	1.88	1.96	1.30	1.92	0.990	8.0	2.12c	2.34	2.24	0.90	
		Calcium (Co)									1.00				1.35	
		E 410		7.3	8.0	7.3	7.3	7.4	7.5	8.0	7.4	8.2	7.7	8.	7.8	
	Specific	conductance (micromhos of 25°C)		266	275	227	234	164	232	125	203	250	259	268	268	
				76	92	96	91	95	86	66	96	66	118	112	66	
		Bpm Ppm		9.1	10.0	10.8	10.5	10.2	10.8	10.8	9.6	4.6	10.5	10.0	6.9	
		Temp in OF		63	53	67	67	54	52	53	09	65	17	11	70	
		Dischorge Temp in cfe in oF		22	20	165	140	1,050	205	2,830	363	06	45	18	13	
		ond time compled P.S.T.		10-9-62	11-14-62	12-11-62	1-3-63 0950	2-12-63	3-12-63 1020	4-10-63	5-7-63	6-13-63	7-10-63	8-7-63 1630	9-13-63	

Loborotory pH. Field pH

Sum of colcium and magnessum in spim.
Iron (Fe), aluminum (A1), arrectic (A2), capper (Cu), lead (Pb), manganese (Mn), sinc (Zn), and hexavolent chromium (G^{1,6}), reported here as $\frac{0.0}{0.00}$ except as shown.

Determined by oddition of analyzed constituents. Derived from conductivity vs TDS curves

g Gravimetric determination.

Description of the properties of the properties of depictor manify samples made by California Department of Public Health, Division at Laborataines, or United Stores Public Health Service Annual median and another Service (USPHS); Sam Bennodino County Flood Maneral analyses made by Linted Stores Goological Survey, Delity of West Endowment of the Interest Survey County Flood Service (USPHS); Sam Bennodino County Flood Maneral analyses made by Linted Stores Goological Survey (MSPHS); Sam Bennodino County Flood County Flood Service (USPHS); Sam Bennodino County Flood Service (USPHS); Sam Bennodino County Flood Service (USPHS); Family Educations, Service (USPHS); Sam Bennodino County Flood Public Health (LSPPH); Emmal Texture County County Bench, Department of West on Resources (DWR); as indicated the Service (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Resources (DWR); as indicated the Service (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Resources (DWR); as indicated the Services of the Services of County Flood Services (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Services (USPHS); Family Services (

TABLE D-2

NORTH COASTAL REGION (NO.

7

_	_			 	 												_
		Anolyzed by 1			uses												
		bid - Caliform			6.2	0.62	2.3	0.62	620.	23,	130. 23.	6.2	6.2	2.3	23.	2.3	
r	15	- pid			2	2	4	2	70	2	20	ы	4	~	-	-	
		00°	D B G		0	0	0	0	0	0	0	>		0	0	0	
			Ppm		118	114	96	95	99	76	59	89	104	118	110	113	
	Per	1 90g			20	19	19	18	20	18	18	17	19	18	18	18	
	Total	Bolved	E 44		172 ^e	166 ^e	139 ^e	135e	97e	136e	90 80	1258	151 ^e	156	160°	1558	
		Other constituents							PO4 = 0.15			PO4 = 0.10				8:18°	
		Slico	2									118				17	
	Ion	Boron	(a)		0.0	0.2	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
million	ar mili	Fluor	$\overline{}$	(A. 98)				_				0.0				0.01	
ports per million	squivolents per million	- iv	(NO3)	(S) SIT								0.7				0.0	
bod	squivo	Chio-	(i)	R ANNAPC	0.34	0.20	6.6	0.21	6.5	6.21	0.12	5.0	0.20	0.22	8.0	9.8	
	u.	Sul -	(\$0°	DRK NEAI								0.23				0.21	
1	constituents	Bicor- banate	(HCO3)	SOUTH FO	2.61	152	124 2.03	119	1.38	171	75	11.88	136	144 2.36	143	148	
	Minsrol cont	Corbon-		GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS (STA. 90)	00.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	
:	Mins	Potas-	3	CUALALA								0.04				0.05	
		Sodium	(0 2)	- "	14 0.61	0.52	10	9.9	7.6	0,40	0.26	8.8	0.48	0.52	0.48	0.52	
		Mogne-	(M)		2.37	2.28	1.93	1.90	1.32c	1.88	1.18c	9.5	2.08	2.36	2.20	0.91	
		Colcium	(2)									1.00				1.35	
		Į.	مار		7.2	7.6	7.4	8.2	7.2	2.8 8.1	7.8	7.1	8.0	8.2	8.	2.8 8.1	
	Specific	(micromhos of 25°C)			280	270	226	220	159	222	144	207	246	255	261	268	
-			%Sof		62	96	76	76	68	103	66	102	120	130	83	119	
		Dissolved	wdd		6.1	10.1	10.8	10.8	4.6	10.7	10.4	6.6	11.5	11.7	8.1	10.5	
		Temp in oF			62	99	6.7	67	95	57	56	63	79	70	63	72	
		Dischorge Temp			9.1	35	52	82	050,1	108	0%6*1	248	52	28	17	7.7	
		Ond time	P.S.T.		10-9-62 0915	11-13-62	12-10-62 1500	1-2-63	2-11-63 1610	3-11-63 1525	4-10-63	5-6-63 1540	6-13-63	7-10-63	8-7-63 1915	9-13-63 1330	

o Field pH.

b Loborotory pH.

e. Sum at calcium and magnessum in agm. d. Iron (Fa), oluminum (A1), arrancia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr*5), reparted hare as $\frac{0.0}{0.00}$ except as shown d. Iron (Fa), oluminum (A1), arrancia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr*5), reparted hare as $\frac{0.0}{0.00}$ except as shown e Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Grovimetric determination.

e Derived from conductivity vs TDS curves.

ONE OCE 19-9 B-0-50-CE h Annol median and roop, respectively, Calculated from analyses of duplicane monthly samples made by Californio Department of Public Health, Division of Laboratories, or United Stotes Public Health, Service.

I kinedi analyses made by United Stotes Geological Survey, Codelity of Wester Branch (1970), Land Stotes Department of Media Internation (1980), United Stotes Public Health, Service (1974S), Son Bemordine County Flood
Cornel District Red County when District Such and (1970), Land Angels Department of Waster and Power (LADPP), City of Los Angels, Department of Public Health (LABPP), Termine I State Department of Mater Resources (DWR), as indicated.

Public Health (LABPP), Termine I State Department of Waste Resources (DWR), as indicated. NORTH COASTAL REGION (NO. 1)

PARELOLD CT

3

		Anolyze by i		USGS												
		MPN/mi		6.2	23.	2.3	62.	7,000.	23.	130.	13.	6.2	2.3	6.2	2.3	
	Į.	- A-6		00	2	20	20	70	6	95	30	2	30	4	30	
		N CON		0	2	0	0	0		2	0	0	2	0	0	
				120	118	116	131	98	129	73	112	138	148	143	126	
		5 6 5		15	21	15	15	17	14	14	ដ	13	14	12	14	
	Total	solved solids in ppm		157 ^e	159 ^e	153 ^e	172	118 ^e	168	103 ^e	1468	179 ^e	184e	180e	1638	
		Other constituents									As = 0.00 As = 0.00			000	ABS PO4	
Ì	ı	Silice (SiQ ₂)		m	0.5	m	2	-1	el el	0.0	1 17	9.0	9.0	0.1	6.3	-
	par million	Boron (B)		0.3	0	0.3	0.2	0.1	0.3	0	0.1	o	ol	ol		_
		Fluo- ride (F)	- ≘ -								3 0.02				1 0.01	
Collins and advantage	olants	trote (NO _S)	(STA.								0.03				0.0	
	equivolants	Chio-	GEVILLE.	9.0	0.20	6.2	9.7	4.8	0.20	3.5	4.2	0.19	0.17	0.21	0.14	
	<u>=</u>	Sul - fors (SO ₄)	AT GUERN								13 0.27				0.23	
	constituents	Bicor- bonate (HCO ₃)	RIVER	150	141 2.31	2.36	160	108	2.56	1.41	2.25	160	178	2.85	150	
	Wineral con	Corbon- Ote (COs)	RUSSIAM RIVER AT GUERNEVILLE (STA.	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	00.0	0.00	5 0.17	
	Min	Potos- arum (X)									0.03				0.03	
		Sodium (No)		10	9.8	9.3	0.48	0.34	9.8	5.5	0.35	9.5	0.48	6.9	9.3	
		Mogne- erum (Mg)		2.410	2.36	2.31c	2.62	1.720	2.57	1.46	13	2.76c	2.96€	2.85	1.17	
		Colcium (Co)									23				27	
		¥ +1.4		7.9	8.0	8.1	7.4	7.3	7.8	8.0	7.4	7.8	8.2	7. 8.1	8.4	
		conductonce (micrombos of 25°C)		265	269	258	291	200	284	174	24.5	302	310	304	275	
-				109	110	87	06	76	115	76	102	109	122	114	92	
		Dieso		10.0	10.6	9.4	10.0	9.6	11.5	9.9	6.6	9.6	10.2	10.1	8.1	
		T. Eo F.		89	79	54	52	Ç.	09	95	63	70	77	71	72	
		Dischorge Temp in cfs in of		188	187	730	069	7,310	576	11,700	2,130	077	216	142	216	
		Oote and time compled P.S.T.		10-8-62 1700	11-13-62	12-10-62 1210	1-2-63	2-11-63 1425	3-11-63	4-9-63	5-6-63	6-13-63	7-11-63	8-7-63	9-13-63 1515	

Loborotory pH. o Field pH.

Som of colcium and magnesium in spm. I sopper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr *6), reparted here as $\frac{0.0}{0}$ except as shown. Itan (Fe), aluminum (Al), assenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr *6), reparted here as $\frac{0.0}{0}$ except as shown.

Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Grovimetric determination.

32505-D-H 6-61 200 Annual median and range, respectively. Colculosed from analyses of deplicate monthly sampless made by California Department of Public Health, Division of Laboratories, or United States Bulkic Health Service.

Mineral condystass made by United States Geological Survey, Quality of Mere Baracht States Department of Annia In Internation (USBR); United States Conditions (MND); Los Angeles, Department of Miner and Power (L.A. Angeles, Department of Miner and Power (L.A. Angeles, Department of Public Health (L.D. Public Health (L.D. Condition)). Conditions of Management of Department of Management of Man

8

D-15

NORTH COASTAL REGION (NO. 1)

_	_																\neg
		Analyzed by 1			USGS												
		bid - Coliform ity MPN/mi			62.	2.1	23.	6.2	7,000.	50.	230.	230.	2.3	1.2	23.	2.1	
	Tur-	- Page -			м	4	20	2	20	50	160	v	7	2	2	2	
		Mordness es CoCO ₃	Total N.C.		0	0	0	2	7	0	0	0	0	0	7	0	
					112	107	116	134	96	117	79	Ξ	138	137	133	114	
	Per	- Boa			15	14	14	13	13	12	13	12	12	13	13	12	_
	Totol	perios	E 00 C		144	1416	149e	170 ^e	120e	151	104	1478	170e	171 ^e	170e	138 ⁸	_
		Other constituents										PO4 = 0.10				As = 0.00 ABS = 0.0 Po ₄ = 0.05	
		Silico	(3) (C)									21				15	
	lion	Boron	(9)		0.3	0.5	0.4	0.3	0.3	0.3	0.0	0.2	0.4	0.5	0.2	0.3	
million	per million	F1u0-										0.2				0.01	_
ports per million	1 1	- N	(ND3)	(STA. 9								$\frac{2.1}{0.03}$				0.01	
00	aquivolants	Chlo-	(i)	DSBURG	0.21	0.14	0.14	8.0	3.2	0.15	0.10	3.8	3.0	5.1	7.6	5.8	
	Ē	Sul -	(80°)	AR HEAL								0.23				9.0	
	titusnts	Bicor-	(HCD ₃)	IVER NE	2.36	2.23	143	161	115	144	1.61	137	168	2.75	160	141	
	Mineral constituents	Carban-	(\$00)	RUSSIAN RIVER NEAR HEALDSBURG (STA. 9)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Mine		E(X)	. A.								0.03				0.03	
		Sodium	(%o)		9.0	8.1	0.37	9.2	0.28	0.33	5.2	6.8	8.3	9.2	9.2	0.32	
			(6W)		 2.25 ^c	2.140	2.32	2.68	1.92€	2,33€	1.590	1,12	2.760	2.74c	2.66	13	
		Colcium	(Co)									1.10				25	
		I	-1-		7.8	8.3	8.1	8.1	7.6	9.0	7.8	7.8	8.2	8.2	8.0	8.0	
	Daniel in	conductonce (micromhos	12 SS 10		242	237	252	286	202	255	175	235	287	288	287	245	
1		D us	%Sot		108	125	68	96	101	113	110	104	66	123	113	106	
		Dissolved	maa.		9.7	13.0	9.8	10.4	10.1	11.5	11.8	10.1	6.8	10.0	9.6	9.1	
1					70	57 1	52	52	09	59	75	3	70	79	73	74	
-		Dischorge Temp			189	077	388	987	2,670	891	5,580	1,520	360	220	160	220	
		Dote ond time			10-8-62	11-15-62	12-10-62	1-2-63	2-11-63	3-11-63	4-11-63	5-6-63	6-11-63	7-9-63	8-6-63	9-11-63 1530	

o Field pH

Sum of calcium and magnessum in epm. b Laboratory pH.

Sum of calcium and magnesium in 89m.

Inon (Fe), old hexavolent chromium ($G^{+}5$), response (G_{0}), lead (P_{0}), manganese (H_{0}), zinc (Z_{0}), and hexavolent chromium ($G^{+}5$), responsed here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

³²⁵⁰⁵⁻D-H 6-61 200 SPD Amual madion and range, respectively. Calculosed from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mirred condyses made by United States Geological Survey, Quality of More Banch Californio Department of Public Health Meet Details of More Resources (USPNS), Ison Bancodino County Flood

Public Meeting States Geological Survey, Quality of More Resources (DMR), cas Angeles, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department & ADPH, City of

NORTH COASTAL REGION (NO. 1)

ANALYSES OF SURFACE WATER

_																		
		Anglyzed by:				uscs												
		bid - Coliform				62.	50.	62.	2.3	62.	620.	230.	230.	62.	62.	6.2	13.	
	1	- pig - pig				7	15	25	~	20	20	20	25	01	10	7	4	
		Nordnass ac CoCO ₃	E			0	0	0	0	۰	-	۰	0	0	-	0	٥	
L			E			18	77	71	105	67	77	2	86	89	88	80	79	
	à	2003	1			19	16	18	19	17	16	15	15	14	15	15	14	
L	Total	Solved Police In police				112	104e	96	143e	92 _e	106°	87 ^e	1188	118 ^e	113 ^e	107 ^e	1048	
		Other constituents											PO4 = 0.10			9	ABS = 0.00 PO4 = 0.25	
	1	Silico (SiO ₂)	+										7				17	
	5	Boron Sil	+			0.3	9.0	0.3	0.4	0.4	0.3	0.1	0.2	0.3	0.2	0.0	0.1	
million	equivolents per million	Fluo- B	+				-!		- 1	!	!_		0.01			'	0.01	
gorts per militon	anta p	trote	-+-	_	, 8a)								0.03				0.02	
pod	equivol	Chlo- ride		_	O (SEA	6.9	0.11	3.6	7.8	3.5	5.0	3.5	3.0	4.4	6.13	5.0	3.0	
	ا د	Sul - fots	+	_	HOPLAN			<u> </u>					9.0				0.15	
	ifuents	Bicor- bonete	- 1	_	VER NEAS	103	1.67	90	130	84	93	1.31	1.74	108	1.74	1.61	96	
	Mineral constituents	Corbon - B	\neg	-	RUSBIAN KIVER NEAR HOPLAND (SIA, 8a)	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	
	Miner	Potos- Ce	+	-	RUS								0.03				0.0	
		Sodium P	+	-		8.9	6.7	0.31	0.48	6.4	6.7	5.2	0.31	0.30	0.30	0.29	5.7	
		Magne- S	6			1.62	1.546	1.420	2.10c	1.34	1.54	1.28	0.67	1.78c	1.76	1.61	7.7	
		Calcium (Ca)	+										1.05				0.95	
-	_	I 61	۵	_		7.5	7.7	7.3	7.3	7.2	7.2	7.8	7.6	8.3	7.6	7.8.0	7.7	
-	ecific	(micromhos ot 25°C)	1			190	171	164	243	157	181	148	194	200	193	182	199	
-	Sp	P used	1000			102	26	06	96	93	101	96	68	113	114	114	111	
			E DO			4.6	10.0	8.6	10.6	8.6	10.8	10.4	9.6	10.2	10.5	10.5	10.0	
-			+			99	56	52	51	25	53	52	53	68	99	66 1	68 1	
		Discharge Temp				236	345	006	124	1,300	897	3,820	527	156	185	163	244	
	_	and time sompled				10-10-62	11-15-62	12-12-62 1030	1-4-63 1215	2-13-63 1035	3-13-63 1130	4-11-63	5-8-63	6-11-63	7-9-63 1120	8-6-63	9-11-63 1410	

o Field pH.

b Loboratory pH.

Sum of colcium and magnesium in epm.

c. Sum of colcium and magnesium in epm. d. lead (Pb), manganese (Mn), z.na. (Zn), and hexavolent chromium (Cr¹⁵), reported here as 0.0 except as shown. d. Iron (Fe), aluminum (A1), areservic (A3), copper (Cu), lead (Pb), manganese (Mn), z.na. (Zn), and hexavolent chromium (Cr¹⁵), reported here as 0.00 except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

32505-D-8 6-61 200 5F0 h. Annot medion and rong, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

Named madyses made by United Stores Geological Survey, Quality of Water Bench (1925), Luned Stores Department of Reclamation (1938), United Stores Public Health Service (19549), Son Bennedine County Flood
Control District (1957CD), Managed in the Resource (1967), Les Angels Department of Water and Power (LADMP), City of Las Angels, Department of Public Health (LBDM), Testing Ledenstries, Inc. (1712) are California Opportment of Water Resources (1988), as indicated.

TABLE D-2

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO.

7

	_		_		 												_
		Analyzed by i			USGS												
		bid - Coliform			620.	6.2	13.	0.23	62.	6.2	23.	23.	2.3	2.3	2.3	6.2	
	Tork	- 40 m			20	4.5	35	20	06	20	95	4.5	35	10	4	٧.	
Γ		Hordness es CaCO ₃ Total N.C. ppm ppm			 0	0	0	0	0	0	0	0	0	-	-	0	
					70	79	79	99	849	62	51	09	62	99	63	69	
	9	sod -			16	17	16	16	13	12	12	12	13	12	12	13	
L	Total	solids In ppm			97 ^e	906	87 ^e	90e	65 ^e	84°e	₉ 69	898	84 _e	82 ^e	978	896	
		Other constituents										As = 0.00 ABS = 0.0 PO ₄ = 0.10				AS = 0.00 ABS = 0.0 PO ₄ = 0.00	
		Silico (SiOg)		10a)								12				13	
Ę	million	Boron (B)		(STA.	 0.3	0.6	0.4	0.3	0.1	0.2	0:0	0.2	0.3	0.3	0.0	6.3	
millio	psr m	Fluo- rids (F)		CHOUSE								0.2				0.0	
parts per million	equivalents	Ni- trats (NO ₃)		RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE (STA.								0.0				0.0	
	equi	Chio- ride (Ci)		TER VALI	 5.4	3.5	0.08	5.6	0.03	2.8	0.00	0.05	0.05	0.07	0.07	0.00	
- 1	<u>.</u>	Sul - fats (SO ₄)		AT POT								5.2				0.12	
	constituents	Bicar- bonats (HCO ₃)		ST FORK	 87	82	1.31	82	098	76	1.05	73	1.31	79	1.25	1.34	
	Winerdi co	Carban- ote (CO ₃)		VER, EAS	0.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.10	
:	Ž.	Potos- sium (K)		SLAN RI								0.01				0.02	
		Sodium (No)		RUS	6.2	0.20	5.5	0.26	3.3	3.9	$\frac{3.3}{0.14}$	4.0	4.3	0.18	0.18	48	
		Mogne- sium (Mg)			1.40	1.28c	1.27	1.320	0.960	1.24c	1.03	5.5	1.23	1.32c	1.27c	9.4	
		Calcium (Ca)										0.75				1.00	
L	_	Ale E			 7.5	7.6	7.2	7.3	7.3	7.3	8.1	7.4	7.9	7.6	7.8	8.3	
	Spacific	conductance (micromhos of 25°C)			161	150	145	149	108	139	114	129	140	136	140	154	
		ygan %aSat			96	97	06	92	102	96	97	102	100	100	107	101	
		pp. Pp.			4.8	10.1	10.4	10.9	11.2	10.7	10.9	10.0	9.6	9.7	90.	6.9	
		Tamp in OF			63	54	97	717	20	67	8 7	59	59	09	6.5	69	
		D.schorge Tamp in cfs in OF			338	309	302	307	299	185	384	300	267	263	284	278	
		ond time sompled P.S.T.			10-10-62 1155	11-15-62	12-12-62 0905	1-4-63	2-13-63	3-13-63	4-11-63	5-7-63	6-11-63	7-9-63 1015	8-6-63	9-11-63 1245	

o Field pH.

8

b Laborotory pH.

d Jone 10 custom and inspection of the second (Pb.), manganese (Mn.), zinc (Zn.), and hexavolent chromium (Gr.*6), reported here as 0.0 except as shawn. c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents Derived from conductivity vs TDS curves

Grovimetric determination.

³²⁵⁰⁵⁻D-H 6-61 200 Annuol median and mange, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service
Hineact analyses rade by United States Geological Servey, Quality of Mare Branch Charles from the International Charles of Servey, Quality of Mare Branch Charles of Servey Charles of Mare Branch Charles (USBM); Lass Angeles Department of Mare Angeles Department of Mare Resources (USBMP), City of Los Angeles, Department of Servey Department of Public Health (LEDBM); Lass Angeles, Department of Mare Resources (URPR), as indicated to Lass Angeles, Department of Public Health (LEDBM); City of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey Charles (URPR); City of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey (URPR).

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

_			_	_															
		Anolyzed by i				0011	200												
		bid - Coliform				000	230.	62.	230.	230.	2,400.	130.	2,400.	7,000.+	130.	ដូន	62.		
	100	- 20 c	1				45	m	7	5	170	7	30	α0	2	1	6		
Γ	·	SO U	5				10	0	0	7	0	0	0	2	0	00	7		
		Hordness to CoCOs					169	93	93	97	14	92	67	82	80	126	145		
	1	2003	T				19	41	34	29	. 28	28	27	25	23	25	22		
	Total	solved solids in opm					261 ^e	211 ^e	182 ^e	158 ^e	756	168	906	1588	134 ^e	221 ^e	234 ^e		
		Other constituents												785 = 0:00 PO4 = 0:30					
	Ì	Silica (SiO ₂)												38					
	ű	Boron (8)	T					6.0	0.5	0.2	0.0	0.2	0.1	0.3	0.2	0.5	7.0		
million	equivolents per million	Fluo- ride (F)	+		2									0.0					
ports per million	Isnts	trote (NO _K)		_	(STA. 7									0.07					
1	equivo	Chlo- ride (Cl)			HELENA		0.34	30	18	16	0.13	0.34	0.12	0.25	8.6	0.56	16		
	<u>-</u>	Sul - fots (SO ₂)		_	AR ST.									13					
	atitusnts	Bicor- bonote (HCO ₃)		_	NAPA RIVER NEAR ST, HELENA (STA. 72)		3.18	120	1.85	94	50	1.80	1.05	103	112	138	2.75		
	Mineral constituents	Carbon- ate (COs)	_	_	NAPA F		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00		
:	Min	Potos- firum (K)												0.02					
		Sodium (No)					0.78	30	0.96	0.70	0.32	0.70	8.0	0.57	0.48	0.83	0.83		
		Mogne- sum (Mg)					3.38€	1.860	1.870	1.680	0.82	1.840	0.97	8.3	1.60	2.52	2.90¢		
		Colcium (Co)												19					
L		I o					7.0	7.3	7.0	7.1	7.3	7.2	7.5	7.1	7.8	8.3	7.9		
	Specific	conductonce pH (micrombos of 25°C) a					395	319	275	240	114	255	137	220	203	335	354		
		lved 9 mg					4.5	122	78	98	86	140	16	93	113	151	112		
		Diasol, 0 ayg					4.2	12.6	9.6	9.4	10.01	13.9	10.2	9.6	5.6	12.6	4.6		
-		Eo.	+				65	57	52	52	58	09	55	57	75	76	75		
-		Discharge Temp Dissolved in cfs in of osygen	1				1.3	ı	15	38	835	36	370	57	16	5.2	2.4	Ponded	
		Ond time compled		-			10-10-62 1605	11-15-62	12-12-62	1-4-63	2-13-63 1235	3-13-63	4-11-63	5-8-63	6-11-63	7-9-63	8-6-63 1220	9-11-63	

o Freid pH.

Loboratory pH.

32505-D-8 6-61 200 SPC

Sam of colcium and magnessum in opm. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chromum (Cr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), oluminum (Al), assenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromum (Cr *6), reported here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Annual median and range trappectively. Colorioted from analyses of duplicate monthly samples made by Californio Department of Public Mobile, Division of Laboratories, or United Stores Public Health, Service.

Mineal analyses made by United Stores Carloting of Warren Banch (USS), United Stores Department in In International Process (USPHS), Son Bernardino County Flood County Flood County English Managorial Stores Carloting (Warrend Power (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Stores)

TABLE D-2

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

	Anolyzed	by 1		uscs												
	Tur- bid - Coliform															
	Twr- bid-	74. u														
	Hordness	SOUP DEGG		78	15	42	52	65	59	54	89	88	61	76	0	-
				166	110	200	203	221	264	284	311	354	210	237	140	- 62
_	- Ce 20	2 5 0 5		97	36	41	47	77	41	35	39	7 73	67	20	36	22
L	9 9 9	pie u		3678	2358	4268	4738	5168	5348	4798	5748	7438	5128	604 ⁸		
		Other constituents		Fe = 0.00 Color = 9	Fe = 0.04 Color = 70	Fe = 0.00 Color 20	Fe = 0.00 Color = 15 *	Fe = 0.01 Color = 5	Fe = 0.00 Color = 10	Fe = 0.00 Color = 40	Fe = 0.01 Color = 25	Fe = 0.0 Color = 20		Fe = 0.00 Color = 7		
	r	Silica (SiO ₂)		19	16	21	25	22	116	티	20	22	22	21	18	12
	uo III ou	Boron (B)		0.4	0.3	0.4	0.5	0.5	9.0	9.0	0.4	0.9	0.4	0.7	0.3	0.3
million		rids (F)		0.7	0.03	0.3	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.02	0.3	0.02
151		trats (NO ₃)	(STA, 73)	1.7	0.10	0.08	0.08	0.11	0.02	8.4	0.31	18	9.2	0.31	0.03	3.2
l°.	100	- 8 (C)	TIES (94	31 0.87	2.57	3.61	$\frac{131}{3.70}$	3.44	2.82	3.67	169	3.81	161	38	0.28
<u>=</u>		Sul - fote (SO ₄)	K NEAR P	41	37	1.17	1.39	1.54	1.81	83	1,81	99 2.06	1.35	1.67	30	0.40
constituents		bonate (HCO ₃)	ALAMEDA CREEK NEAR NILES	168	1.90	3.16	3.02	3.11	250	280	296	325 5.33	182	3.21	172	115
Minsrol con		(CO ₃)	ALAMB	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Min	1	Rick (K)		4.1 0.10	0.15	0.12	0.12	5.2	0.11	6.3	8.4	8.8	4.8	6.8	0.19	0.07
		Sodium (Na)		67	30	2.87	3.70	3.96	3.74	3.13	96	5.44	95	113	38	0.57
		Sium (gMg)		19	11 0.90	1.81	1.81	24	2.24	31 2.59	3.13	3.29	24	25 2.05	$\frac{14}{1.15}$	0.70
		Colcium (Ca)		35	26	2.20	45	49	3.04	3.09	3.09	3.79	4.5	2.69	33	1.20
	ī	ماه		7.8	8.2	ė.	8.0	8.2	8.2	8.1	1.8	7.5	7.9	7.4	7.0	8.0
	Specific	ot 25°C		979	363	710	829	890	903	886	1,030	1,220	868	1,000	977	251
	Diesolved	psygen bpm %Sal														
L	Temp	<u> </u>														
	Discharge Temp	Mean		24	2 323	2 21	17	2 20	3.1	6.6	2 5.8	2.9	15	11	850	2,420
		P.S.T.		10/1-12/62	10/13-15/62	10/16-31/6	11/5-15/62	11/16-30/62	12/1-10/62	12/11-20/62	12/21-31/62	1/1-12/63	1/14-18/63	1/19-30/63	1/31/63	2/1-2/63

32505-D-8 6-61 200 SPO

b Laboratory pH.

Just excellent and Any statement regime. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chromium (Cr⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnessum in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Gravimetric determination.

Annual mation and ange, respectively. Colculated from analyses of duplicate monthly samples, made by California Department of Public Health, Division of Laberatories, or United States Behale Health Service.

Mineral onalyses made by United States Geological Survey, Quality of Water Branch (USSS), United States Department of the Interior Survey of Reclamation (USSS); United States Department of Media or Survey. Quality of Water Branch College Spaciment of Media of Department of Page (LADMP), City of Los Angeles, Department of Lad Ange

Γ	_	Anolysed by 1		nses												
H	_		 													
L		Coliform MPN/ml							-							
L	Tur	- A		30		67	75	6.5	16	77	15	19	67	11		82
		Herdness es CoCO ₃ Totol M.C.	 	192 3	139	261 4	260 7	237 6	169	241 4	168 1	179 1	253 4	303 7	388 109	257 8
\vdash	-	1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	30 1	27 1	32 2	44 2	42 2	27 1	29 2	25 1	25 1	27 2	28 3	36 3	40 2
H	loto	20- 20- 20- 20- 20- 20- 20- 20- 20- 20-		3458	2408	g097	5898	520 ⁸	290g	400g	2658	2778	401g	465 ⁸	8969	
H	Ī			e e	2	4	- "	· · ·	2			74	4	4		
		canstituents		- 0.0	0.0	0.0	0.0	- 0.01 - 14	• 0.06 • 35	- 0.02 - 18	- 0.08 - 38	- 0.07	• 0.01	- 0.03	- 0.02	- 0.02
		Other		Fe	Fe	Fe Color	Fe Color	Fe	Fe	Fe	Fe Color	Fe Color	9	Fe	Fe	F)
		Silico (SiO _p)		81	2	9]	77	16	9	20	18	18	19	17	81	21
	Hion	80.0M		4.0	0.4	0.5	0.7	0.7	0.3	0.5	0.3	0.3	0.5	9.6	0.0	0.7
millio	per mi	Fluo- ride (F)	٠.	0.3	0.07	0.02	0.07	0.3	0.03	0.02	0.0	0.3	0.0	0.3	0.07	0.0
ports par million	squivolents per million	frots (NO ₃)	(STA. 73)	0.08	3.7	6.3	9.0	0.18	0.08	0.10	3.5	0.05	3.0	3.2	4.8	0.07
å	Bquinc	Chlo- ride (CI)	NILES (38	0.62	1.64	3.67	2.93	0.73	52	0.62	0.71	41	35	3.50	3.13
9		Sul - fote (SO ₄)	 X NEAR	61	35	91	2.19	1.81	47	$\frac{23}{1.52}$	0.92	40	1.58	94	138	2.02
atmentituents		Bicor- bonote (HCO ₃)	ALAMEDA CREEK NEAR NILES	3.25	160	258	3.70	3.44	3.05	3.84	181 2.97	3.20	4.08	283	340	3.49
losed M		Corbon- ote (CO ₃)	ALANG	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00	0.00
Ì	Ē	Potos- sum (K)		3.7	3.7	4.6	$\frac{4.7}{0.12}$	5.0	3.4	3.6	0.07	0.13	0.07	3.1	0.13	0.09
	Ì	(No)		39	1.04	2.52	97	3.52	30	2.00	26	28	1.91	2.39	100	3.48
		Magne- sium (Mg)		21 1.69	1.18	30	2.36	$\frac{26}{2.10}$	1.53	27.23	1.51	1.58	25 2.02	34	51 4.17	5.14
		Colcium (Co)		43	32	2.77	57	53	37	2.59	37	2.00	3.04	3.24	3.59	
	_	I 80		7.6	7.7	7.7	6:	7.8	7.7	 	8.3	8.2	7.6	7.8	8.2	9.7
	Specific	(micromhos of 25°C)		242	373	744	953	836	097	979	430	454	657	97.1	1,150	890
		Oissolved Osygen ppm %Sdt														
		Ten or														
		Dischorge Temp in cfe in OF Mean		87	431	32	77	31	367	63	336	270	7.5	33	18	21
	,	ond time sompled P.S.T.		2/4-12/63	2/13-18/63	2/19-28/63	3/1-15-63	3/16-26/63	3/28-31/63	4/1-6/63	4/7-17/63	4/18-27/63	4/28-30/63	5/1-10/63	5/11-26/63	5/27-30/63

o Field pH.

b Loboratory pH.

Jum of colcium and magnetium in spin. I see that it is a copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavenlent chramium (Cr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), aluminum (AI), preserve (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavenlent chramium (Cr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnessum in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Annual median and stongs, respectively. Calculated from analyses of duplicate rearthly samples made by California Department of Public Health, Divisson of Laboratories, or United Stones Bublic Health Service.

Hamed analyses made by United Stones Cealogical Survey, Quality of Maries Branch (St.C.), United Stones Department of Public Health in Internation (USBR); United Stones Bublic Stones (USBR); Sone Burnord in Canary Flood
Power Composition of Stones Cealogy, Los Analysis Department of Maries and Power (L.J. DWP), City of Las Anales, Department of Public Register, Department of P

32505-D-8 6-61 200 SPO

D-21

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) TABLE D-2

۲																
		Anolyzed by I	 	nsgs												
		MPN/mi														
Г	7	- piq														
		N COS		76	65	56	45	53	4.7	07	31	28	28	30	35	
				262	258	222	189	237	228	205	175	171	175	170	176	
		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	39	37	37	07	35	33	31	34	35	36	07	77	
L	Total	solids in pour		502 ⁸	470g	402 ⁸	380 ⁸	4348	3918	3438	3168	3098	337 ⁸	3458	3898	
		Other constituents		Fe = 0.04 Calor = 7	Fe = 0.02 Color = 6	Fe = 0.02 Color = 7	Fe = 0.00 Color = 10	Fe = 0.00 Color = 10	Fe = 0.03 Color = 8	Fe = 0.02 Color = 15	Fe = 0.00 Calar = 15	Fe = 0.00 Color = 15	Fe = 0.01 Color = 10	Fe = 0.01 Color = 5	Fe = 0.01 Color = 10	
		(Sing)		21	14	16	18	19	17	18	18	17	30	17	22	
	million	Boron (B)		9.0	0.8	0.6	9.0	0.5	9.0	4.0	0.3	4.0	0.2	0.2	0.3	
million	par mil	Fluo- rids (F)		0.3	0.02	0.3	0.3	0.03	0.0	0.03	0.0	0.02	0.0	0.0	0.0	
ports per	1 1	Ni- trats (NO _S)	(STA. 73)	0.08	4.3	5.2	4.7	0.00	0.08	4.1	3.0	0.05	3.1	2.8	3.0	
8	squivalents	Chio- rids (Ci)	NILES (S	100	2.60	80	2.31	2.40	1.83	1.61	36	61	1.86	2.09	92 2.60	
	<u> </u>	Sul - fots (SO ₆)	K NEAR	88	80	65	47	64	1.37	44 0.52	44 0.92	44	33	47 0.98	1.04	
	constituents	Bicar- bonate (HCO _S)	ALAMEDA CREEK NEAR NILES	3.47	3.61	3.31	176	3.67	3.39	$\frac{201}{3.29}$	176	2.85	79 2.93	2.80	2.82	
	Mineral can	Carbon- ofe (CO _S)	ALANG	0.23	7 0.23	0.00	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00	
	M	Potas- srum (K)		4.0	0.11	3.7	3.9	4.6	3.1	3.4	3.0	0.06	3.1	3.1	3.3	
		Sodium (Na)		3.39	$\frac{71}{3.09}$	2.70	60	61 2.65	2.26	1.91	4.2	44	47	2.35	2.87	
		Magne- sium (Mg)		25 2.06	29.2	25 2.08	1.78	2.24	25 2.06	23	1.60	1.57	19	1.50	20	
		Calcium (Co)	•	3.19	55	2.35	2.00	2.50	2.50	2.20	38	1.85	38	38	38	
		I a		9.4	7.0	0.8	7.6	7.7	4.0	7.8	8.0	8.0	8.1	8.1	8.2	
	Specific	conductance (micromhos at 25°C)		845	822	708	979	728	663	597	538	547	574	592	661	
		Dissolved Conygen (10 ppm % Sof														
-																
-		Dischorgs Temp in cfs in of Mean		21	16	20	19	23	17	21	28	28	25	22	35	
-	_	Dote ond tims sampled P.S.T.		6/1-9/63	6/10-22/63	6/23-30/63	7/1-10/63	7/11-20/63	7/22-31/63	8/1-10/63	8/11-20/63	8/21-31/63	9/1-10/63	9/11-20/63	9/21-30/63	

o Field pH.

Loboratory pH.

32505-D-8 6-61 200 SPO

Sum of colcium and magnesium in opm. In a compare (Co), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Inon (Fe), aluminum (Al), arsenic (As), capper (Co), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and ronge, respectively, Calculosted from enalyses of duplicate monthly samples mode by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service (USM); Juned Stores Department of the Interior, Surveu of Racifomenton (USBR), United Stores Public Health, Service (USMHS); San Bemardino County Flood County Flood Marrapoliton Went Public Standard California (MAD), Las Angeles Department of More and Power (LADMP); City of Las Angeles, Department of Public Health (LBDPH); Teamnol Testing Laboratories, Inc. (TLL), or California Department of Meric Resources (DHR), as indicated.

2)	
(NO.	
RECION	
BAX	
FRANCISCO	
SAN	

		_			Specific					Mins	Minaral cons	constituents	Ē	ports pa		million per million	u c			Totel				L	-	
ond tims sompled	Dischorge Temp	Te mp		ygen 10, ca	conductance (micromhos at 25°C) a	E o	Coterum (Ca)	Mogne- sum (Mo)	Sodium P (Na)	Potos- C	Corbon - E	Brcor- bongte	Sul -	Chio-		- only	Boron Sie	Silico (S.O ₂)	Other constituents	solids in com	1 0 0 E	Hordness es CoCOs	- Piq so	Coliform y MPN/ml		Analyzed by I
		1	E 0d	70201		۵		(Max)		2	- 1		\rightarrow	-	-		+	-			1	Edd	E do	+	+	T
											ALAMED	ALANEDA CREEK NEAR	NEAR NE	NILES (STA. 73)	1. 73)		_				_			_	_	_
10-1-62	39	69	9.8	9 108	585	8.0		3.040	3.00		00.00	2,39		2.45	_	01	5.0	_		3520	20	152	32	90 2,400.		0.568
11-7-62	4.5	28	10.7	7 104	797	8.0		4.20c	3.65		0.00	3.16		3.27		J	0.4			480°	97	210	52	25	6.2	
12-5-62 1020	2.1	20	11.2	2 99	910	8 8		5.450	3.92		00.00	253		3.22		9	7.0			548°	77	273	99	ν,	2.8	
1-10-63	77	5 7	14.3	3 118	1,180	8,3		7.37€	110		0.00	332		166		9	9.0			710°	39	368	96	15	62.	
2-5-03 1140	120	28	10.3	3 100	512	7.8		3.800	34		00.00	3,06		34		01	0.2	A8S	= 0.10	308°	28	190	37	1,300.	,300.	
3-6-63 1930	199	52	14.4	t 130	883	8.3		5.300	3,39		0.00	3.90		2.96			9.0	ABS	· 0.10	532"	39	265	70	7 7	230.	
4-8-63	366	59	10.0	96	457	8 . 1		3.690	26		0,00	3.34		19			0.3	ABS		275°	23	184		50 62	230.	
5-14-63	33	99	9.5	5 101	1,010	9° 6	4.54	32 2,00	3.83	4.2	0.87	282	131	2.71	0.00	0.02	8,0	ABS PO _{ti}	= 0.00	6218	35	357	81	2	1,3	
0-5-63	12	72	12.0	0 136	806	8.7		5.446	68 2.96		16	3.54		2.54		9	8.0	VBS	~ 0 20	4856	35	272	69	10 2:	6.2	
7-1-63	34	99	11.5	5 123	590	8.2		3,44c	2.44		0,00	2,70		69		Ų.	7.0	ABS	= 0.1	3596	41	172	37	6	21.	
8-6-63 1820	31	72	8.3	3 94	543	8,1		3.52c	44		0.00	3.02		56		91	D. 4	ABS	- 0.2	327°	35	176	25	2,400,	.2.	
9=4=63 1615	28	70	30	86	570	8.2	36	1.58	48	2.7	00.00	171	44	1,64	90.0	0,3	0,4	14 ABS FO4	- 0.02 - 0.00 - 0.05	3228	38	169	29	75	23.	
										_	ARRO	ARROYO OE LA LAGURA	LAGURA	A' VERO	A' VERONA (STA. 202)	. 202)					_					_
10/1-12/62	10 Besta				620	7.8	32	1,38	2.91	3,3	00.00	14.9	30 0.62	2.71	0.04	0.0	0.3	23 Fc Co lo	Fc = 0.00 Color = 15	3558	67	149	27		n ns	DSCS
10/13-15/62	169 mt.1m				376	7.1	1.35	0.91	28	6.8 0.17	00.00	1.97	37	28	0.13	0.03	5.0	16 Fc	Fe = 0.05 Color = 100	2438	33	113	15			
			1							1						-	-				1	1	1			

Laboratory pH Field pH

Sum of calcium and magnesium in epm.

except as shown. Jum of addition and magnessium in epin.

100 (20), Lond (Fe), Johannum (Al), Proceed (As), Loppor (Cu), Lead (Fb), manganese (Uni), 211C (Zn), and herovolent chromium (Cr¹⁵), reported here as 0.000 (200)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination

Annual median and annye, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), San Bernadino County Flood Maneral District Selections, Objective Objec

3

D - 23

TABLE D-2

SAN FRANCISCO BAY REGION (NO. 2)

	7	T															
	Analyzed by i			USGS													
	ity MPN/ml																
T OF	n ppm																
	COS			97	53	99	67	- 61	42	104	137	57	77	0	0	12	13
	Hordr as Co Tatol	Ė		190	198	212	200	325	267	324	436	216	254	136	93	134	208
P	eod -			43	67	52	50	41	97	56	45	67	87	45	24	26	31
Total	solved solved in ppm			4388	4778	5508	5028	6738	6768	8698	8066	5248	6218				3708
	Other constituents			Fe = 0.00 Color = 20	Fe = 0.00 Color = 10	Fe = 0.00 Color = 5	Fe = 0.00 Color = 15	Fe = 0.00 Color = 10	Fe = 0.00 Color = 50	Fe = 0.01 Color = 45	Fe = 0.01 Color = 30	Fc = 0.00	Fe = 0.00 Color = 1				Fe = 0.00 Color = 35
	Silica (SiO ₂)	T		23	23	22	21	23	23	33	31	23	26	61	13	16	20
million	Boron S (B) (C			9*0	0.5	0.4	1.0	0.8	8.0	8	1.3	0.5	0.7	4.0	0.2	0.3	0.5
per mil	Fluo- ride (F)	1	707	0.02	0.03	0.07	0.3	0.8	0.07	0.13	0.08	0.03	0.03	0.03	0.03	0.03	0.03
ا ا ا	rote (NO ₄)		A (SIA.	5.6	7.7	0.10	8.8	7.9	35	51	37	9.8	16	0.10	3.7	0.08	9.0
equivalents	Chiq- ride (CI)		AT VEKUNA	2.99	3.78	161	144	168	148	266	271	148	171	1.35	4.8	3.1	47
Ē	Sul - fate (SO ₄)		LAGUNA	54	51	73	67	71	$\frac{67}{1.39}$	81	95	71	$\frac{82}{1.71}$	38	0.35	34	1.35
constituents	Bicor- banate (HCO ₃)		DE LA	176	167	178	162	322	274	268	365	3.18	3.31	2.79	113	149	3.49
Mineral can	Carbon- ate (CO ₃)	Т:	ARROYO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.00	0.00	00,00	0.00
Min	Potos- sium (K)		_	5.4	4.6 0.12	5.9	5.2	8.8	18	3.1	18	4.8	0.18	0.26	3.0	3.2	0.13
	Sodium (No)			3.00	3.78	108	95	108	114	195	7.57	100	112	2.44	14 0.61	22	44
	Mogne- sium (Mg)			1.8	22	24	1.85	3.06	35	55 4.53	5.18	24	31 2.57	2.72	1.86	1.18	23
	Calcium (Ca)			2.0	40 2.00	45	43	3.44	2.50	39	3.54	2.35	2.50			30	45
	표 이 스			7.5	7.	7.5	7.9	7.9	7.5	7.2	7.9	8.2	8.3	7.0	7.6	7.8	7.7
Specific	(micramhos at 25°C)			730	810	945	978	1,130	1,090	1,580	1,630	906	1,050	522	239	362	602
	Ossolved axygen	_															
	Ten For	1															
	Dischorge Temp			9.3	12	12	13	2.5	8.4	5	2.5	15	6.7	140	8,070	119	37
	and time			10/16-31/62	11/1-12/62	11/13-22/62	11/23-30/62	12/1-10/62	12/11-19/62	12/20-31/62	1/1-12/63	1/13-18/63	1/19-30/63	1/31/63	2/1-2/63	2/3-5/63	2/6-12/63

o Freld pH

Sum of calcium and magnesium in epm. b Laboratory pH

E. Sum of colcum and magnessym in epm. Some (Ea), lead (Pb), manganese (Un), 2 inc (Zn), and hexavalent chramium (Cl, "), reparted hare as $\frac{0.0}{0.00}$ except as shown.

Derived from canductivity vs TDS curves Determined by addition of analyzed constituents

Gravimetric determination.

Annuel madion and angue, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Laboratories, or United States Debtic Health Service.

Mannual analysess made by United States Geological Servey, Quality of Water Branch Banch Department of the Instead of Reclamation (USBR); United States Debtic Health Service (USBR); Son Bernardino Canny Flood

Court District (ESCD), Mannopolism Water Datarel of Swatern Collegen Observance of Water and Power (LADWP), City of Las Angeles, Department of Public Health (LADPH); City of Lang Beech, Department of Angeles, Department of Debts (Public Court of Court

_	_															
		Anolyzed by I		USGS												
		bid - Coliform Ify MPN/mi														
	T 10	- × 6														
		PP C S		9	37	80	83	69	18	35	14	26	28	=======================================	62	09
				140	242	355	244	235	179	220	181	216	280	391	193	191
L		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		28	33	70	67	47	32	28	28	26	29	42	897	777
L	Totol	solids In ppm		2308	429 ⁸	7148	6168	565 ⁸	323 ⁸		300g	339 ⁸	4528	7978	461 ⁸	4338
		Other constituents		Fe = 0.02	Fe = 0.00 Color = 20	Fe = 0.00 Color = 17	Fe = 0.01 Color = 13	Fe = 0.02 Color = 30	Fe = 0.05 Color = 40	Fe = 0.04 Color = 22	Fe = 0.06 Color = 45	Fe = 0.02 Color = 18	Fe = 0.00 Color = 8	Fe = 0.01 Color = 14	Fe = 0.01 Color = 12	Fe = 0.06 Color = 15
	Ì	Silica (SiO ₂)		17	18	19	19	16	16	16	19	17	16	18	21	24
	le l	Boron (B)	2)	9.0	0.5	6.0	0 8	0.7	0.5	0.5	0.3	0.3	0.4	6.0	0.5	9.0
million.	ier mil	Fluo- ride (F)	STA. 20	0.07	0.3	0.07	0.01	0.4	0.07	0.0	0.2	0.0	0.3	0.3	0.0	0.0
porte per million	equivolente per million	rrote (NO _S)	RONA (S	0.00	0.11	9.2	15	0.32	0.11	4.5	0.08	3.5	4.4	0.23	9.3	0.16
l o	equivo	Chlo- ride (Cl)	KA AT VI	19	1.66	3.72	150	3.55	37	44	26	35	36	4.37	3.10	2.74
	<u> </u>	Sul - fate (SO _e)	LA LAGUNA AT VERONA (STA, 202)	33	1.67	3.06	2.10	1.81	1.04	63	1.00	55	83	3.19	1.39	1,39
	Conetituente	Bicar - bonote (HCO ₃)	ARROYO DE	164	250	335	3.21	3.33	3.21	3.70	3.34	3.80	4.44	341	160	2.62
	Winerol con	Corbon- ote (CO ₅)	ARR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	MID	Potas- eium (K)		3.3	4.3	6.6	5.4	0.19	3.5	3.0	3.4	3.0	3.0	6.8	3.7	3.8
		Sodium (Na)		25	57	4.87	1112	99	39	39	33	36	53	5.70	3.65	3.13
		Mogne- stum (Mg)		15	28	3.76	2.29	2.20	20	25 2.05	1.67	2.07	32 2.67	50	$\frac{22}{1.81}$	22
		Calcium (Ca)		31	50	3.34	2.59	2.50	39	2.35	39	2.25	2.94	3.74	41 2.05	41 2.05
		I a b		8.0	7.9	7.9	7.4	7.4	7.8	7.5	7.6	7.8	7.9	8.2	7.6	8.0
	Specific	(micromhou of at 25°C)		376	715	1,150	966	921	517	582	482	554	753	1,290	798	713
		Dissolved osygen ppm %So														
		Te an														
		Oschorge Temp		181	29	9.2	17	18	81	15	128	58	15	9.0	21	19
		Oote ond time eampled P.S.T		2/13-18/63	2/19-22/63	2/23-28/63	3/1-12/63	3/13-24/63	3/25-30/63	4/1-3/63	4/7-20/63	4/21-30/63	5/1-8/63	5/9-25/63	5/26-31/63	6/1-10/63

b Laboratary pH. a Field pH.

Sum of colcium and magnessum in spm.
Iron (Fe), alumnium (A1), argament (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C1*6), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and range trespectively. Calculated from analyses of duplicate roughly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mirrard analyses made by United States Ceological Survey, Quality of Meter Branch United States Department of the International Programment of Meter and Programment of Meter and Programment of Meter and Programment of Meter and Programment of Public City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Angeles, Department of Angeles, Department of Angeles, Department of States (LADPH); City of Las Angeles, Department of Angele

TABLE D-2

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO.

2)

		P				_			_					_		_	
		Analyzad by 1		USGS													
		Hardnsss bid - Caliform os CaCO ₃ ity MPN/ml Tatol NC ppm															
	Tor	- piq Light											۳	-	07	110	S
		OCO3 N C		69	94							65	22	17	11	14	15
L				254	180							416	189	229	167	227	222
L	Par	2 0 d -		38	40							28	19	20	15	17	22
L	Tatol	solids solids in ppm		5058	3758							979	268 ^e	325 ^e	221 ^e	3088	318e
		Other constituents		21 Fe = 0.03 Color = 12	Fe = 0.04 Color = 11										Ac = 0.01	15 A8S = 0.1 PO ₄ = 2.1	
		an Silico (SiO ₂)		0.8	9. 4 5.0							7	5:0	5.0	70	1 1	0.5
ign	par million	Baran (B)	 A. 202			_	~	_				<i>-</i> -	ol	ol	al		ol
ports per millian	psr	Fluo- ride (F)	 NA (ST.	0.03	3 0.01		IA. 71	_								0.3	
orfs p	equivalents	rrate (NO ₃)	I VERO	6.5	0.13	_	ORE (S									0.01	
	equiv	Chio- ride (CI)	AGUNA A'	3.02	2.17		LIVERM	_				76	0.39	0.48	0.17	0.37	0.34
	=	Sul - fots (504)	E IA I	74	$\frac{54}{1.12}$		E NEAR									1.06	
	371706713	Bicor- banate (HCO ₃)	ARROYO 0E LA LAGUNA AT VERONA (STA. 202)	3.70	2.67		EL VALL					397	3.34	3.90	3.11	3.97	3.93
	Minsral constituents		-4	0.00	0.00		ARROYO DEL VALLE NEAR LIVERMORE (STA. 71)					15	0.00	0.33	00.00	0.30	0.20
3	Min	Polas- Corban- sium ate (K) (CO ₃)		5.4	3.6			_								0.05	
		Sodium (No)		74	56							3.31	20	26	13 0.57	0.96	1.26
		Magne- S Sium (Mg)		30	21							8.320	3.78	4.580	3.349	21	4.440
		Calcium (Ca)		53	1.90											2.79	
-	_		 	7.0	0.8			_				7.8	8.0	8.5	8.2	8.3	80 80
	acific.	conductance pH (micromhos at 25°C)		843	626							1,050	436	528	359	967	517
-	Sp		 									70 1	87	96	701	901	9.5
		Dissolved oxygen ppm %Sat										0.8	0.6	0.01	10 4 10	9.5	8 2
-										-		8 7	95	54 10	65	89	69
		Dischorge Tamp		8.1 mean	12 mean				Dry	Ponded	Ponded	0.7	0.9	4.8	202	21	5.0
		ond fine sompled P.S.T		6/11-20/63	6/21-30/63				10-1-62	11-5-62	12-5-62	1-10-63	2-5-63	3-6-63	4-8-63	5-14-63	6-5-63

a Field pH

Derived from conductivity vs TDS curves

except as shown

b Labarotory pH

c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents.

Gravimetric determination

h Annual median and range, respectively. Calculated from analyses and displicate manthly samples made by, California Department of Public Health, Division of Laboratories, or United States Geological Survey, Chality of Weste Broads (USSS), United States California (WIND), Les Angeles as Department in the Interview, Survey of Recipionian (WIND), Les Angeles as Department of Matter and Power (LDMP), City of Los Angeles, Department of Public Health (LADPH), Entry of Los Angeles, Department of Public Health (LADPH), City of Los Angeles, Department of Public Health (LADPH), City of Los Angeles, Department of Matter Angeles, Departmen

Г		7														
		Anolyzed by i		USGS				DWR								
		bid - Coliforni ity n pom														
	T. (-	- bid - ty moon		~	2	2										
Γ		COS COS PP C		25	-4	20		30	0	0	0	31	0	0	22	0
L				258	289	336		187	270	307	139	138	292	264	83	146
		0 8 0 g		23	27	28		09	72	76	70	58	75	80	48	84
L	Total	solids in pom		378°	454e	5148	_	4838	1,2908	1,5308	585	409	1,321	1,5108	1988	1,050
		Other constituents				As = 0.00 A&S = 0.0 PO4 = 0.05		ABS = 0.0	ABS = 0.0	A8S = 0.0	ABS = 0.0	ABS = 0.02 Cu = 0.00 Zn = 0.00	$C_{U} = 0.00$ $Z_{D} = 0.00$ $F_{C} = 0.01$	A8S = 0.01 Cu = 0.00 Zn = 0.00	ABS = 0.0 Cu = 0.00 Zn = 0.00	ABS = 0.0 Cu = 0.00 Zn = 0.00
		Silico (SiO ₂)				23	201)	12	18	7.5	16	174	17	14	17	1.5
	ion	Boron (B)		9.0	8.0	1.1	(STA.	1.2	7.4	4.8	2.4	0.92	8.6	9.5	0.14	6.9
million	per million	Flua- ride (F)	(17			0.3	AQUEDUCT	0.0	2.0	0.09	0.3	0.0	0.08	0.09	0.00	0.02
ports per million		NI- trote (NO ₃)	(STA. 71)			0.5	BAY	0.00	9.6	3.0	0.02	0.03	4.5	5.1	0.02	0.0
e e	equivalents	Chlo- ride (CI)	NEAR LIVERMORE	28	0.34	56	OF SOUTH	162	349	11.90	4.23	3.04	374	442	48	9.51
	<u>.</u>	Suf - fots (SO ₄)	NEAR LI			76		1.87	2.35	2.71	0.52	73	2.27	2.54	30	2.04
	constituents	Bicor- bonots (HCO ₃)	L VALLE	4.52	348	385	ALTAMONT I	180	8.33	650 10.65	300	2.13	656	619	1.21	3.88
	Winerol con	Corbon- ote (CO ₃)	ARROYO DEL VALLE	0.13	0.00	00.00	AI	0.20	0.00	20 0.67	0.00	0.00	0.00	35	0.00	2.70
2	Min	Potas- sium (K)	- w			3.2	ONT CREEK	3.0	0.19	3.8	0.17	0.07	0.05	3.0	1.9	3.4
		Sodium (No)		36	50 2.18	62 2.70	ALTAMONT	5.83	338	462 20.10	6.83	3,83	412 17.92	492	36	351
		Mogne- sium (Mg)		5.160	5.78	3.38		22	3.59	58 4.73	20	15 1.26	3.79	3.92	8.6	2,37
		Colcium (Co)				3.34		38	36	28	23	30	41 2.04	1.35	19	0.55
		Ŧ.		8.2	7.8	7.2		8.5	8.3	8.5	7.9	7.9	8.2	8.6	7.9	9.2
	Specific	(micromhos of 25°C)		615	739	857		1,000	2,170	2,480	984	722	2,290	2,520	345	1,830
		1 = 1		98	80	94.1										
		Disso oxy ppm		8.2	7.0	6.3										
		Temp in oF		63	71	70										
		Dischargs in cfs		1.6	0.7	0.1						6.0				
		ond time sompled P.S.T.		7-1-63	8-5-63	9-3-63		3-1-63 1515	3-18-63 1615	4-1-63	4-15-63	5-27-63 1230	6-10-63	7-8-63	7-22-63	8-5-63 1355

b Laboratory pH Field pH

육

Sum of colcium and magnesium in epm.

Iran (Fe), alumnum (Al), arsanic (As), capaer (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr⁻¹), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

Anothmentic eventualistic expension and years of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

Anothmentic eventualistic expension of March Stores Control of Waste Bornerick (1984); John Bornerick Department of Health Service (1984); Son Bornerick County Flood Control books and County Eload County E

SAN FRANCISCO BAY REGION (NO. 2)

			-				_										 _	_
		by 1		OWR				USGS										
	4	os CoCO ₃ 11y MPN/mi by i						620.	50.	21.	6.2	23.	6.2	23.	0.21	62.		
	- 1	- ×-						4.5	400	200	30	240	420	95	20	55		
Г	-	og l	2 E	19				171	26	24	27	12	15	23	18	2		
	3	000	pom pom	91	95	134		489	83	117	120	87	95	110	126	120		
	Per	- E		4				14	17	51	18	17	15	18	14	14		
	Total	Bolved	urdd ui	2168	2188	3428		611 ^e	124e	1726	1798	132	142	153	1908	173		
		Other constituents		201) ABS = 0.0 Cu = 0.03 Zn = 0.00	ABS = 0.0	ABS = 0.0									19 PO4 = 0.10			
	ı	Silica	100	(STA.											19			
	5	Boron	6	D.18				0.3	0.0	0.1	0.0	0.2	0.3	0.1	0.0	0.1		
ports per million	equivalents per million	Fluor	(F)	3AY AQUEDUCT (STA. 0.10 0.18 17			. 74)								0.03			
rts per	lents	- Ni-	(NO3)	0.6 0.01			VIS) SC								$\frac{1.7}{0.03}$			
od	equiva	Chio-	ĵ	47 1.32	52	90	OS CAT	0.71	5.8	6.8	8.8	5.2	0.15	5.1	6.2	5.2		
		Sul -	(80%)	26 0.54	0.56	42	NEAR I								0.56			
	Silent	Bicor-	(HCO ₃)	1.44			S CREE	388	1.15	1.87	114	91	1.61	106	132	136	 	
	Minst di Constituellis		(co)	CREEK 0.00			LOS GATOS CREEK NEAR LOS GATOS (STA.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07		
	MINIS	<u>.</u>	(K)	ALTAMONT 1.8 0.05											0.04			
		-	(ON)	34 N				36	7.5	9.3	12	8.2	7.8	11	9.8	9.3		
		Magne- S	(6M	10	1.90°	2.68c		9.78c	1.66c	2.34c	2.40c	1.740	1.900	2.20c	0.92	2.400		
		Calcium	(0)	1.00		101		100			[6	14		104	32	164	 	
\vdash		Į		7.7				8.0	7.4	7.6	7.4	7.7	7.7	7.5	8.0	8.5		
-	scific	(micromhos	S	367	375	582	_	960	195 7	270	281 7	208	224	240	285	272		
-	Sp		Jog Og				_	76	06	92	97	E	86	66	66	100		
		Dissolved oxygen	ppm %Saf					8.7	6.9	9.6	11.0	10.4 103	10.5	10.5	10.1	10.6		
-								65	09	53	49 1	58 1	53 1	54 1	57 1	54		
-		Orschorge Temp						9.0	3.0	37	105	300	53	250	ถ	52		
-		ond time	P.S.T	8-19-63 1330	9-3-63	9-30-63		10-3-62	11-7-62	12-4-62 2000	1-9-63	2-7-63	3-6-63 1830	4-10-63 1145	5-16-63	6-4-63		

8

Laborotory pH.

Sum of colcium and magnesium in epm.

Sum of colcium and magnessum in teym. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), aluminum (Al), orsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves

Determined by oddition of analyzed constituents.

Gravimetric determination.

Avail and door and strong the Strate Section of Applicate monthly samples made by California Department of Public Health, Division of Laboratorias, or United States Public Health Service.

Manuel analyses made by United States Geological Survey, Opolity of Water Breach (USSA), United States Department of Health States (USPAS), San Bernardino County Flood Manuel analyses made by United States Public Manuel California (WMO): Las Anageles, Oponiment of Water and Power (LADWP), City of Las Anageles, Department of States Public Health (LADPP), City of Las Anageles, Department of Water Resources (UWR); as indicated the Health (LADPP); Termon Transport (LADPP), City of Las Anageles, Department of Water Resources (UWR); as indicated the Health (LADPP); Termon Transport (LADPP); Termon Transport

ANALYSES OF SURFACE WATER SAN PRANCISCO BAY REGION (NO. 2)

		Anolyzed by 1	 	USCB						uscs						
	-	bid - Coliform ity MPN/mi	 	ដូដ	1.3	2.3	-			23.	6.2	0.045-	2.3	6.2	230,	2.3
	5	- Mad		20	20	25				۰	-	-	2	140	70	50
		S O E		19	27	26				38	42	41	32	12	19	11
		Total Ppm ppm		122	144	157				283	339	348	341	84	126	118
	Per	Bod -		21	14	14				19	20	23	18	29	19	20
	Total	solids m ppd ui		176	197 ^e	2298				371	4476	484°	44.7e	122 ^e	176	1748
		Other constituents			An = 0.02	AB8 = 0.0 Po4 = 0.00		_								ABS = 0.01
		(SiO ₆)				15										12
	lion	Boron (B)		0.0	0.1	0.1				0.2	0.2	0.2	0.2	0.1	0.3	0.1
Pillion	10 L	Flug- ride (F)	(7/			0.03										0.02
parte per million	equivalents per million	trote (NO ₃)	(STA.			0.07	-	. 82)								3.2
bod	equival	Chlo- ride (Cl)	LOS CATOS CRREK NEAR LOS CATOS (STA. 74)	7.0	0.20	0.21		COYOTE CREEK NEAR MADRONE (STA. 82)		0 28	33	1.24	0,76	6.5	9.1	8.0
	=	Sul - fate (SO _e)	NEAR LC			40		AR MADB								30
	BTITUBUTE	Bonate (MCO ₃)	S CRREK	126	2.25	2.62		CRKEK NR		283	349	374	377	1.44	2.15	2.15
	Minardi constituente	Carbon- ate (CO ₃)	OS CATO	0.00	3 0.10	0.00		COYOTE		0.27	0.20	0.00	0.00	0.00	0.00	00.0
	Wil.	Polos- e:um (K)				0.02										0.06
		Sodium (Na)		9.8	0.48	0.52				31	39	47	34	0.70	0.61	0.61
		Magna- sium (Mg)		2.440	2.889	1 18				5.66	6.780	96.9	6.820	1.68	2.52	0.96
		Calcium (Ca)				39										1.40
		r olo		8.2	7.8	8.2				8.4	8.3	8.1	8.0	7.6	8.1	8.0
	Specific	conductance (micromhoe of 25°C)		277	309	350				622	748	810	749	204	295	289
r		gen ()		86	86	96				117	73	120	61	66	110	110
		Discolved oxygen ppm %Sat		10.3	9.5	9				11.3	7.9	14.3	6.2	10.2	11.0	10.8
r				55	61	89				62	53	97	58	57	59	61
		Orachorge Temp		95	99	69			Dry	16	1.2	1.1	0.5	25	12	20
		ond time compled P S.T		7-2-63	8-6-63	9-5-63			10-1-62 1510	11-5-62	12-3-62	1-7-63	2-5-63 1300	3-4-63	4-8-63	5-14-63 1530

Loborotory pH

Sum of calcium and magnesium in epm.

Sum at colcium and magnesium in Apm. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*), reported here as 0.0 except as shown. Iron (Fc), alumnium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*), reported here as 0.00 except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and ranges respectively. Calculated from analyses of duplicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United States Debits. Health Service.

Mineral analyses made by United States Caciografied Survey, Quality of Merce Branch, USCS, United States Caciografied States Caciografied

TABLE D-2

SAN FRANCISCO BAY REGION (NO. 2)

Total Continue C	
Property Constituents Property Prope	
Property part miles Property	
Property part miles Property	
Property part miles Property	
Point Continue C	
Point Continue C	
Points par million Points	
Ports Constituents in Ports Part P	
Propagation	
Property	
Munural constituents in Peros. Corbon Bicor Suj. Co. C	
Munural constituents in Peros. Corbon Bicor Suj. Co. C	
MAINTENE OF O O O O O O O O O O O O O O O O O O	
MAINTENE OF O O O O O O O O O O O O O O O O O O	
MANAMAN (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Att. 0.05 124 215 215 215 215 215 215 215 215 215 215	
1 10	
(Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (Mw)	
Corcum Mogener (Co.) 2.405 2.4	
7 - 0 - 0 - 1 - 0 - 0	
99 2 3 4 8 9 1 1 1 1 1 2 5 0 0 1 2 3 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
103 103 103 103 103 103 103 103 103 103	
01886 0889 10.5 10.5 9.5	
F E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 ond inne sompled P.S.T 1515 1700 6-5-63 1700 6-5-63 1100	

Field pH

Derived from conductivity vs TDS curves

Sum of colcum and magnessum in spm.

Iron (Fe), oluminum (Al), asseric (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavialent chromium (Gr*⁶), repared here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in epm. Laborotory pH.

Determined by addition of analyzed constituents

g Grovimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Ospatiment of Public Health, Division of Lebaratories, or United States Public Health Service.

¹ Mineral analyses made by United States Geological Survey, Quality of Water Bronch (USGS); United States Department of the Interior, Survesu of Reclamation (USBR); United States of Southern Coldonia (AMD), Las Anagles, Department of Water and Power (LADMP); City of Las Anagles, Department of Mater Brown (LADMP); City of Las Anagles, Department of Water Resources (DMR); as indicated.
Public Health (LADPH); Terminal Testing Laboratories. Inc. (TTL); or California Department of Water Resources (DMR); as indicated.

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

_			 											
	Anolyzed			25g		DAR		DAR		USGS				
	Tur- bid - Coliform									23.	6.2	23.	6.2	230.
	1 P A	n póm		15		0.3		-		4	7	7	'n	15
	Hordness os CoCO.	Toto! N.C.		22		28		21		20	30	21	30	34
L				207		144		137		136	148	135	150	121
L	Cent - bos			28		24		26		30	27	31	26	22
	Devised in the second	abilde in ppm		3908		2328		232 ⁸		242e	253	242	254°	200
		Other constituents		Golor = 8:81 Ans PO4 = 0.67		Color = 10 Fe = 0.01 ABS = 0.0 PO ₄ = 0.46		Color = 10 Fe = 0.18 ABS = 0.0 FO4 = 0.56						
	00110	(S:0g)		32		24	ŝ -	26						
		(8)	(60)	0.13	30)	0.10	TA. 7	0.09	75)	0.4	0.1	0.0	0.0	0.0
parts per million	Fluo-	(F)	(STA.	0.02		0.01	TREES NEAR PELTON (STA. 75)	0.03	(SIA.					
orts per	Z	(NO ₃)	LA CRUZ	0.01	A CRUZ	0.01	NEAR PI	0.5	FELTON					
	Chlo-	(CI)	SAK SAN	0.90	AT SANT	0.59	TREES	0.59	RS NEAR	28	24	0.71	24	15
E		(SO.)	CREEK NE	55	RIVER	0.87	t AT BIG	38	BIG TRE					
atifuent	Bicar	bonate (HCO ₅)	BRANCIFORTE CREEK NEAR SANIA CRUZ (STA. 209)	3.70	SAN LORENZO RIVER AT SANTA CRUZ (STA. 230)	141 2.31	LORENZO RIVER	2.31	VER AT	2.31	2.36	139	2.39	106
Mineral constituents	Carban	(CO ₅)	BRANC	0.00	SAN	00.00	N LOREN	0.00	SAN LORENZO RIVER AT BIG TREES NEAR FELTON (SIA.	0.00	0.00	0.00	0.00	0.00
Mine	Potos-	(K)		3.1		0.06	SAN —	0.06	SAN LO					
	Code	(0 N)		1.61		0.91		0.96		$\frac{27}{1.17}$	1.09	28	1.04	16
				0.85		0.88		5.4		2.720	2.96€	2.70¢	3.000	2.420
	Calcum	(00)		3.29		2.00		2.30						
	ž	4		8.1		8.3		8.1		8.0	8.0	7.6	7.6 8.0	7.4
:	Conductance PH (micromhae	at 25°C)		559		376		377		382	399	382	401	316
	• •	%Sot								100	109	87	102	66
	Orseolved	Edd								9.7	11.4	9.7	11.8	10.3
r				63		70		73		62	56	51	87	56
	Discharge Temp			1 (est)		10 (eet.)		15 (est.)		17	27	27	35	275
	Dote ond time	P.S.T		8/28/63 1240		8/28/63 1315		8/28/63 1420		10/3/62	11-7-62	12-4-62	1-9-63	2-7-63

I
۵
2
ē
LL.
0

b Laboratory pH

Sum of calcium and magnesium in opm.

Iron (Fe), aluminum (A1), assente (A4), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reparted here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination

Annual median and sings, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Busine Health Service.

Maneral analyses made by United States Geological Servey, Quality of Water Barock (States Department He Internation, States Control Distract (SECFC). Managarian of Souther, California (AMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Barock, Department of Department of Managarian States (LADPH); City of Los Angeles, Department of Barock, Department of Department of Managarian States (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Depar

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	_												_		-
		Anolyzed by 1		nses								OWR		DWR	
		bid - Coliform		2.3	620.	23.	23.	62.	23.	62.					
Γ	100	- pid c		00	190	е	2	1	-	4				-	
Г		SON CON		32	31	29	26	28	26	22		34		34	
		Hordn es Co Total pom		138	106	134	138	140	143	142		142		132	
		00 mg		22	21	22	22	22	24	25		26		28	
	Total	solids sod in som		226°	172 ^e	2328	223 ^e	230	231 ^e	2498		2538		249B	
		Othsr constituents				PO4 = 0.30				A8 = 0.00 A8S = 0.0 PO4 = 0.15		Color = 10 Fe = 0.26 ABS = 0.0 PO ₄ = 1.1		Color = 10 PE = 0.28 ABS = 0.0 PO ₄ = 1.2	
		Silica (SiO _E)				26				25		32		36	
	million	Boron (B)	A. 75)	0.1	0.1	0.0	0.1	0.0	0.0	0.1		0.10	204)	0,09	
million	per mit	Fluo- rids (F)	ON (ST.			0.3				0.03		0.03	(STA. 20	0.03	
parts per mittion	equivalents p	Ni- frote (NO _S)	AT BIO TREES NEAR FELTON (STA. 75)			0.01				2.8		0.02	ELTON (0.03	
Ď	equivo	Chio- rids (CI)	TREES NA	16	0.28	15	16	19	0.56	0.62	LTON (ST	0.68	SEAN CREEK ONE MILE EAST OF FELTON	0.76	
	c e	Sul - fore (SO ₄)	AT BIO			49				36	K AT FE	1.00	MILE E	0.98	
1	187170907	Bicor- banats (HCO ₃)	RIVER	129 Z.11	92	128 2.10	2.03	137	140	2.39	TE CREE	132 2.16	LEEK ONE	11.95	
	Mineral constituents	Potas- Carbon – t sum (K) (CO _S)	SAN LOMENZO RIVER	00.00	0.00	0.00	0.20	0.00	0.03	0.00	ZAYA	0.00	BEAN CR	00.00	
1	MIC	Potas- sium (K)	SAN			0.05				0.05		0.05		0.07	
		Sadium (No)		18 0.78	13	18 0.78	18 0.78	18	21 0.91	0.96	-	1.04		1.04	
		Magns- Srum (Mg)		2.76	2.120	8.3	2.760	2.79¢	2.87	7.8		7.3		0.50	
		Colcium (Ca)				2.00				44 2.20		45		43	
		F e a		2.4	7.5	7.8	8 8.6	7.8	8.3	7.7		8.0		7.9	
	Specific	conductance (micrambos pH at 25°C) a		357	272	345	352	364	365	375		394		383	
		yen (r		66	97	66	26	66	106	9.5					_
		Diss oxy ppm		11.4	10.9	9.6	9.5	9.5	9.6	0.6					
		Temp in OF		87	50	62	79	99	89	61		- 62		99	
		Dischorge Temp		154	760	145	85	52	37	32		4 (cst.)		2 (est.)	
		ond tims sampled P.S.T		3-6-63	4-10-63	5-16-63	6-4-63	7-2-63	8-6-63 1610	9-5-63		8/29/63 1545		8/30/63	

b Laboratory pH.

c Sum of calcium and magnessum in apm.

sum of colcum and magnessum is sym. I so that the symmetry of the symmetry of

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Gravimetric determination

32505-D-H 6-61 200 sPO Annual median and respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Duvision at Laboratories, or United States Public Health Service
Mineral analyses made by United States Geological Survey, Doubtry of Virtual Branch Branch (USSS), United States Department of the Interior. Survey and Rectamentan (VISSE), United States Problem States Public Health Service
Control District Chief States Geological Survey, Doubtry of Virtual States Department of Manner and Prover (LADWP), City at Los Angeles, Department of Public MadPH); City of Long Beach, Department of Public MadPH, City of Long Beach, Department of Public MadPH, City of Long Beach, Department of Public MadPH); City of Long Beach, Department of Public MadPH, City of Long Beach, Department of Long Beach, Ci

^	
~	
(NO	
z	
2	
(1)	
ŭ	
24	
S	
00	
3	
Ę	
	NTRAL COASTAL REGION (NO. 3)

	Analyzed by 1											
			DWR		DWR		DWR		DWR		DWR	
	bid - Coliform											
,	1 P C		9.0		1.0		6.0		0.7		2	
	SO N		21		99		26		٣		74	
			269		256		146		118		172	
	- E - E - E - E - E - E - E - E - E - E		18		23		22		15		17	
Total	eolide in opm		3888		4128		2368		1678		276 ⁸	
	Other constituents		Color = 15 Re = 0.10 ABB = 0.0 PO ₄ = 0.70		Fc = 0.11 ABS = 0.0 PO ₄ = 0.44		Color = 10 Pe = 0.11 ABS = 0.0 PO ₄ = 0.34		Color = 10 Fc = 0.02 A8S = 0.0 P04 = 0.09		Color = 35 Fc = 0.37 ABS = 0.0 PO4 = 0.33	
	Sitico (SiOg)	215)	32		26		- 53		[3]	219)	<u> </u>	
00	5		0.11		0.13	6	0.00	A. 211	0.03	(STA.	0.09	
illion r	Fluo-B	PIA (S	0.03	234)	0.03	(STA. 229)	0.01	NO.	0.00	LOMONO	0.03	
volents per million	rote (NO _S)	OF OLYM	0.01		0.01	TON (S'	0.01	FELT	0.04	F BEN 1	0.02	
equivolents per mill	Chio- rada (CI)	LOMPICO CREEK ONE MILE NORTH OF OLYMPIA (STA.	20 0.56 0	ZAYANTE CREEK AT ZAYANTE (STA.	0,70	SAN LORENZO RIVER AT FELTON	0.62	NORTH	0.28	EAST 0	0.34	
1.	-	MILE -		AT Z		RIVER		MILE		NORTH		
ž E	Sul - fote (SO ₄)	EK ONE	1.00	CREE	104	RENZO	0.83	E-HALF	9.7	E MILE	86	
etifuen	Bicor- bonote (HCO _S)	CO CRE	303	ZAYANTE	3.80	SAN LC	2.39	EEK ON	140	LEEK ON	120	
Mineral constituents	Corbon-	LOMP1	0.00		0.00		00.00	FALL CREEK ONE-HALF MILE NORTH OF FELTON (STA. 211)	0.00	NEWELL CREEK ONE MILE NORTHEAST OF BEN LOMONO (STA.	0.00	
¥.	Potos- enum (K)		0.05		0.07		0.00	•	0.00	- Z ·	2.6	
	Sodium (No)		1.17		36		0.87		9.8		0.74	
	Mogne. Glum (Mg)		15		15.1		0.52		3.9		0.55	
	Colcium (Ca)		6.14		3.84		48		41 2.04		2.89	
	F 0 0		8.1		8.3		7.9		8.0		7.9	
	conductance pH (micrambos pH of 25°C) o		909		628		379		259		414	
	Oiesolved oxygen ppm %So								_			
	Te of		95 (65		99		85		52	
	Oschorge Temp in cfe in of		0.5 (eat.)		(eat.)		8 (est.)		2 (est.)			
	Date and time sompled P.S.T.		8/30/63 0915 0		8/30/63 0853		8/29/63 1535 8		8/29/63 1520		1450	

b Loborotory pH

e. Sum of calcium and magnessium in apm. 0 accepter (Cu), lead (Pb), manyanese (Un), zinc (Za), and heravalent chromium (Cr. ¹⁰), raparted hara os 0 0 except as shown. d Iron (Fe), aluminum (A1), arsenic (As), assenic (As).

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric datarmination.

9 Unternstruct Communication and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratoris, or United States Public Health Service.

i. Minned analyses made by United States Geological Survey, Quality of Water Banch (1955), United States Public Health Service (1958); United States Public Health Service (1958), Son Bennedino County Flood County Flood County Electron County Flood County Public County County County County Flood County Co

3

	-			_									٦
	Anolyzed by 1		ZI-NO		DWR		DAR		NA NA		awa .		
	Mordness bur- es CoCO ₃ ity MPN/mil foto! N.C. nopm												
	- A G		0.7		0.3		9.0		9.0		0.5		
	N COS		26		0		0		58		11		
L			151		69		11		230		260		
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		23		25		26		56		22		
Total	solids n ppm		253 ⁸		1208		1328		3838		4128		
	Other constituents		Color = 10 Fe = 0.05 ABS = 0.0 PO4 = 0.73		Color = 5 Fe = 0.01 ABS = 0.0 FO ₄ = 0.04		Color = 10 Fe = 0.03 Abs = 0.0 Fo ₄ = 0.16		Color = 15 Fe = 0.06 ABS = 0.0 Po ₄ = 0.27		Color = 20 Fe = 0.03 ABS = 0.0 FO ₄ = 0.25		
	Sirco (SiO ₂)		হা		23		গ্ৰ		12	206)	20		_
	8		0.10		0.0	6	70.0		0.13	(STA.	0.15		
r million	Fluo- ride (F)	216)	0.03	210)	0.00	TA. 20	0.00	A, 205	0.07	CREEK	0.07	•	_
ports per million		LOVE CREEK AT BEN LOMOND (STA. 216)	0.0	CREEK AT BROOKDALE (STA.	0.01	BOULDER CREEK AT BOULDER CREEK (STA. 208)	0.0	BEAR CREEK AT BOULDER CREEK (STA. 205)	0.0	BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK (STA.	0.01		_
0	Chlo- rids (CI)	BEN LOPIC	23	BROOKD/	0.25	BOULDER	0.34	OULDER C	0.76	HEAST OF	0.68		
ē	Sul - fors (SO _e)	REK AT	38	REEK AT	0.10	EEK AT	0.19	EK AT B	2.04	SS NORT	110		
stituenti	Bicar- bonate (HCO ₃)	LOVE CR	2.49	CLEAR C	1.51	LDER CRU	1.56	EAR CRE	3.44	DUR MILE	3.77		
Mineral constituents	Carban- ate (CO ₃)		0.00		00.0	BOU	0.00	M	0.00	CREEK F	0.00		
<u> </u>	Potos- Rium (X)		0.05		0.06		0.05		0.06	BEAR	2.3		
	Sodium (No)		0.91		11 0.48		13		38		33		
	Mogne- Sium (Mg)		7.5		4.0		5.4		13		1.35		
	Coleium (Ca)		2.40		1.05		1.10		3.54		3.84		
	돌이스		8.0		7.4		7.9		8.2		8.0		
	conductance (micromhos of 25°C)		388		181		204		595		634		
	Dissolved o eygen (con your con your co												
	Te an		63		58		09		59		58		ĺ
	Dischorge Temp		0.25(est		1 (est.)		3 (est.)		2 (est.)		2 (eat.)		
	Dote ond time sompled P.S.T.		8/29/63 1330		8/29/63 1305		8/29/63 1240		8/29/63 0910		8/29/63 1005		

o Field pH

DE OUZ TO-O PHO-SOSZE

b Laboratory pH.

Jum of eactum and magnets with in spin.

Item (Fa), aluminum (Al), assence (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported have as 0.00 except as shown. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

Annual madion and range, respectively. Calculated from analyses of depircate manthly samples, made by California Department of Poblic Health, Division of Laboratories, or United Stores Pablic Health, Service
Minand tonityses made by United Stores Capital Service, Department of the Interior. Survice (1958): United Stores Department of Memory and Power (LADMP), City of Los Angeles, Department of Memory of Sources, Organization (AMD), Los Angeles Department of Memory Power (LADMP), City of Los Angeles, Department of Ladment (LADMP), City of Los Angeles, Department of Ladment (LADMP), City of

	Analyzed by i		DWR	UAR.	S. S	DWR		us, s		
	Hordness bid - Coliform as CoCO ₃ ity MPN/ml							230.	62.	62.
T o'	- piq - hiq u bom		-	7	-	6.1			2	~
	Hordness as CoCO ₃ Total N C ppm		65	64	69	07		89	120	109
	Total ppm		245	178	248	252		305	327	324
å	- pos		27	36	25	10		27	28	29
Totol	solved sod-		4048	3687	401%	357K		476	5376	244°E
	Other constituents		Color = .7 Fe = A8S = PO _Q =3(Color = 15 Fe = 0.24 ABS = 0.0 PO ₄ = 0.19	Color = 10 $F_{e} = 0.1$ $F_{e} = 0.1$ $F_{e} = 0.1$	Color = 10 Fe = 0.03 AARS = 0 0 PO ₄ = 0.54				
	Silico (SiO ₂)		17	232)	[2]	24				
lon	Boron (8)	2	0.32	(STA.		A. 228)		0.2	0.1	0.1
per million	F1u0- ride (F)	A. 22	0.02	CREEK 0.04 0.02	CAREA 0 5 0.03	SK (STA				
40	rose (NO ₃)	EN (ST	0.01	0.01 0	0.02	FR CREEP 0.02 0				
equivolents		ER CRE		10 P	0F 801.	OULDER	- SIA. 7			-12
6.0	Chio-	ROUL	51	30RTB1 OF	31 0 87	H OF 80UI	JOET (65	61	1.81
č	Sul- fore (SO ₄)	JER AL	18 1 09	MILE 2.16	101 2.10	S NORTH	AT SO			
constituents	Bicor- bonote (HCO ₃)	NZO RIV	220 3 60	157 2 57	218 3.57	X MILE 258 423	CREEK	263	3.93	258 4 23
Mineral cons	Corbon- Ote (CO ₃)	SAN LORENZO RIVER AI BOULDER CREEA (STA. 227)	00 0	THO BAR CREEK ONE MILE WORTH OF BOULDER CREEK (STA.) $\frac{U}{0.00} = \frac{157}{2.57} = \frac{156^4}{2.18} = \frac{3.5}{0.99} = \frac{0.7}{0.01} = \frac{0.46}{0.02} = \frac{0.18}{0.02}$	KINGS CREEK TWO FILLES WHYTH OF BULLLER CAEER (STA) $\frac{6}{0.00} = \frac{2.18}{3.57} = \frac{101}{2.10} = \frac{31}{0.87} = \frac{1.6}{0.02} = \frac{0.2}{0.03} = \frac{0.22}{0.03}$	SAN LORENZO RIVER SIX MILES BORTH OF BOULDER (REEK (STA. 228)) $\frac{1.7}{10.04} = \frac{0}{0.04} = \frac{238}{4.23} = \frac{66}{11.33} = \frac{14}{0.39} = \frac{1.4}{0.02} = \frac{0.4}{0.02}$	SOCLEL GREEK AT SOQUEL (STA. 76)	000	0.20	0.07
Mine	Potos- Sium (K)		2.4	TWC	700	ORENZO 1.7				
	Sodium (Na)		1.8	48 7 09	38	SAN L		53 2 31	58	2.76
	Magne- S sium (Mg)		1 13	12 0.97	127	9.0		6.104	0.54	7 .7 D
	Colcium A		3.79	\$2 2 59	3.09	86				
	I of-		7.8	7.9	0 7	- D			00 30	20 20
Soscific	conductonce pH (micromhos a of 25°C)		\$50	579	577	552		746	841	853
	fved co							114	7	9.6
	Oisso							11.3	1 01	
	Tamp in of		65	55	20	55		0.1	57	5
	Oischorge Temp		3 (est)	0.25 (est.)	l (est)	3 (cst)		4	20	-4
	ond time sompled		8/29/	8/29/65 820	8/29/63 755	8/29/03 1725		10-3-62	11-7-62	12-4-02

a Freid pH

b Laboratory pH

e. Sum of calcum and magnessium in spm. 00 overeit (Cu), lead (Pb), manginese (Mn), zinc (Zn), and hexavalent chramium (Gr. 1, reported here as 100 overeit as shawn at Iran (Fe), altuminum (Al), arrented here as 100 overeit as shawn

Determined by addition of analyzed constituents

e Derived from conductivity vs TDS curves

h Annual median and rong, respectively, Calculated from analyses of duplicane monthly samples made by California Department of Public Health, Division of Laboritaries, or United States Pablic Health Service

I Maneal markyses made by United States Geological Sarvey, Doubly of Merice Branch (1920), United States Branch (1920), United States Branch (1920), United States California or Order of States California California (1920), Les Angeles Department of Water and Power (L.D.PP), City at Los Angeles, Department of Public Health (L.D.PP), City of Los Angeles, Departme

ĸ,

D-35

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

		Anolyzad by i		uses										nsgs		
		bid - Coliform		6.2	62.	0.62	2,400.	13.	620.	23.	62.	6.2		130.	62.	62.
-	L L	- Pag c		-	20	10	009	21	p=4	-	-	е		15	2	-
		Hordness os CoCO ₃ Totol N C pom ppm		106	88	89	26	80	76	06	100	88		0	0	0
		Hordness os CoCO ₃ Totol N C pom ppm		309	222	260	148	246	266	284	301	295		617	416	475
	Per	Poor - Poor		27	20	20	19	22	23	24	27	27		57	57	57
	Total	solids mdo n		502 ⁶	341 ^e	402e	216	396g	417 ^e	442e	477	5098		1,288 ^e	1,144	1,288 ^e
		Other constituents						Pu4 = 0.20			As & 0.00	A8S = 0.0 PO4 = 0.10				
		Silico (5:02)						25				33				
	lon	Boron (B)		0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	(77)	0.1	1.6	1.8
million	per million	Fluo- rida (F)	A. 76)					0.02				0.07	(STA.			
ports per million	equivolents p	rote (NO ₃)	AT SOQUEL (STA.					0.0				0.04	NEAR CHITTENDEN (STA.			
-	equivo	Chlo- ride (CI)	K AT SOC	53 1.50	19	25 0.71	0.28	23	31 0.87	1.18	55	1.75	NEAR CHI	375	8.15	9.37
	ē	Sui - fots (SO ₄)	Soquel CREEK					$\frac{111}{2.31}$				2.06				
	constituents	Bicor- bonote (HCO ₃)	sodue	3.57	2.69	3.28	112	3.13	3.36	3.34	3.74	3.80	PAJARO RIVER	584 9.57	520 8.52	578
	Minsral con	Corbon- ote (CO ₃)		15	0.00	0.13	0.00	0.20	13	16	0.30	0.33		00.00	0.40	0.40
	Min	Potos- sium (K)						3.0				5.2				
		Sodium (No)		52 2.26	26	1.30	16	32	$\frac{37}{1.61}$	42	2.18	52 2.26		288	258	284
		Mogne- sium (Mg)		6.18c	4.440	5.210	2.96€	1,33	5.320	5.68c	6.026	23		9.580	8.32c	9.50c
		Colcium (Co)						3.59				3.99				
		a a E		8.5	8.1	8.7	7.7	8.0	8 8.5	8.8	8.2	8.4		8.0	8.3	8.4
	Specific	(micromhos pH of 25°C)		787	535	630	338	586	653	693	748	818		2,060	1,830	2,060
		gen (f		105	104	101	86	::	101	128	96	90		86	75	86
		Dissolved oxygen ppm %Sat		12.1	10.7	11.2	11.11	10.0	9.1	11.3	8.2	7.8		8.0	7.6	9.1
1		Te and		67	85	52	20	70	70	72	75	73		67	59	55
		Dischorge Tamp in cfs in of		13	115	47	250	42	24	15	7.8	5.6		0.5	1.0	0.7
		Dote and time sompled P.S.T.		1-9-63	2-7-63	3-6-63	4-10-63	5-16-63	6-4-63	7-2-63	8-6-63 1520	9-5-63		10-1-62	11-5-62	12-3-62 1245

o Field pH.

Loborotory pH

Sum of colcium and magnesium in opm.

Iron (Fa), aluminum (AI), arsenic (AS), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci +6), reparted here as 0.00 col Sum of colcium and magnesium in epm.

except as shown.

Darived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and annual seasestively. Calculated from anoitises of displicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service.

Mineral anoityses made by United States Geological Survey, Oxidity of Heatte Branch (1925), Luted States Department of the Internal States and Reformation (1928); Linked States Charles Continued (1928); Las Angeles Department of Maries and Power (IL ADMP), City of Las Angeles, Department of Public Health (1924); Las Angeles Department of Marie Resources (1948); as indicated.

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	Anolyzed by i		nses										uses		
	ec CoCO ₃ 1ty MPN/mi ppm ppm ppm		23.	620.	130.	620.	6.2	230.	6.2	62.	62.		620.	6.2	23.
	- × 6		2	240	25	200	09	20	6	۵.	6		5	2	
	Hordness os CoCO ₃ Total N.C. ppm ppm		=======================================	15	9	26	115	192	172	98	28		193	190	146
			780	102	232	142	341	500	520	512	617		647	682	9009
	200		55	24	24	22	25	30	34	38	40		78	94	45
Total	eolids in ppm		1,269	1,638	3696	209	5198	800	938	944°	8948		1,361	1,413	1,205
	Other constituente						As = 0.00 ABS = 0.1 PO _L = 1.4	,			$As = 0.02$ $ABS = 0.0$ $PO_4 = 0.00$				
	Silico (\$:0\$)						19				21	'a)			
60	5		1.9	0.0	0.3	0.2	0.3	0.7	0.8	0.8	0.9	TA. 77	1.7	2.0	1.6
volents per million	Fluo- ride (F)	(77					0.3				0.03	ION (S'			
		STA.					0.10				2.5	LE STAT			
equivolents	Chio- ride (C!)	ITTENDER	338	0.34	33	13	48	94	3.16	3.53	3,67	LLEY FIF	260	186	143
5	Sut - fota (SO ₄)	NEAR CH					2.87				3.44	BEAR VA			
tytuents	Bicor- bonote (HCD ₃)	PAJARO RIVER NEAR CHITTENDEN (STA. 77)	8.98	106	3.34	142	4.08	352	69.9	8.28	8.90	ZR NEAR	9.08	9.24	482
Mineral constituents	Corbon - E	PAJARO	12	0.00	0.00	0.0	13	0.40	0.27	0.23	0.13	SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION (STA. 77a)	0.00	18	35
Mine	Potos-C (X)						2.2				5.6	SAN BEN			
	Sodium (No)		268	15	34	0.78	2.35	100	5.31	142	151		274	270	9.74
	Mogne- sium (Mg)		209.6	2.04c	4.64°	2.830	3.48	9.990	10.40c	10.25c	5.94		12.946	13.64c	12.00c
	Colcium (Co.)						3.34				3.64				
	T a		8.3	7.4	8.2	7.5	8.4	8 8.7	8.0	8.1	8.1		8.2	8.2	8.2
Sancilia	(micrombos of of 25°C) a		2,030	262	591	334	847	1,280	1,500	1,510	1,440		2,120	2,180	1,860
	yen (r		92	82	9.5	98	8	93	85	100	66		86	107	131
	Dissolved oxygen ppm %Sot		0.6	8.2	9.6	9.8	80.00	5.5	7.6	9.1	9.1		9.5	10.9	12.0
			47	09	59	09	62	89	70	69	89		63	26	65
	Dischorge Temp		1.5	1,200	97	1,100	57	29	14	0.8	3.0		0.2	0.1	1.0
	ond time compled P.S.T		1-7-63 1710	2-5-63	3-4-63	4-8-63	5-15-63 0900	6-5-63	7-1-63	8-5-63 1350	9-5-63 1315		10-2-62	11-6-62	12-3-62

b Loborotory pH

Sum of colcium and magnesium in epm.

Symptococcum and magnessian in spin.

Iron (Fe), oluminum (Al), practic (As), copper (Ca), lead (Pb), manganese (Un), zinc (Zn), and hexoralent chramium (Cr*5), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves

Grovimetric determination.

Determined by addition of analyzed constituents.

Annual medion and annual, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Poblic health, Division of Laboratories, or United States Bublic Health, Service.

Mineral analyses made by United States Geological Survey, Quality of Water Barach (USCS); United States Department of The Interior Survey (USCB); United States Department of Water Common Order (USCB); United States Geological Survey, Quality of Water Barach (USCS); United States (USCB); United S

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

		Anolyzed by i		USGS										nses		
		bid - Coliform		23.	620	0.23	130.	62.	14.	130.	2.3	6.2		620.	62.	2.3
	Tur.	- pid -		2	07	2	10	20	07	-	г	-		-	20	30
Г		Hardness es CoCO ₃ Total N C ppm		147	80	119	126	14	=======================================	1117	156	153		10	14	6
				618	526	596	602	358	408	995	965	598		174	97	131
	Per-	- E 04 -		41	35	38	36	19	18	77	84	47		13	13	13
	Totol	solids in ppm		1,199 ^e	927 ^e	1,076	9866	44,28	527 ^e	1,128 ^e	1,290	1,3108		216 ^e	126 ^e	173 ^e
		Other constituents						PO4 = 0.10			÷	ABS = 0.00				
	ļ	(SiOg)	77a)					12				15				
	Hion	Boron (B)	(STA. 77	1.6	1.4	1.5	1.5	0.4	9.0	1.7	2.2	2.1		0.0	0.1	0.0
E	per million	Flug- ride (F)	S) NOI					0.03				0.4	_ 96			
ports per millian	equivalents	Ni- trate (NO ₃)	NEAR BEAR VALLEY FIRE STATION					0.03				0.03	(STA.			
1	vinbe	Chlo- rids (Cl)	ALLEY FI	149	2.40	104 2.93	94	18 0.51	0.62	3.33	162 4.57	163	HILL	8.8	5.2	6.5
	5	Sul - fate (50 ₄)	BEAR V					72				9.62	NORGAN			
	constituents	Bicar- banate (HCO ₃)	SR NEAR]	530 8 69	498	8.21	502 8.23	396	392	475	488	513	EEK NEAR	3.15	101	149
- 1	Wineral can	Corbon- ote (CO ₃)	BENITO RIVER	0.73	23	1.33	38	0.40	1.50	35	0.80	15	TAS CREEK	0.13	0.00	0.00
	Min.	Potas- sium (X)	SAN BEN					0.07				0.10				
		Sodium (Na)		8.70	5.74	7.22	153	39	1.78	186	248	248 10.79		12 0.52	7.0	0.38
	Ì	Magne- sium (Mg)		12.364	10.52	11.92	12.044	5.61	8.16	11.32	11 92	9.86		3.48c	1.94c	2.62€
		Calcium (Ca)						31				2.10				
		를 하스		4.8	8.5	8.7	8.8	7.8	8.9	8.4	8.5	8.3		8.3	7.3	7.6
	Spacific	conductance (micrambos at 25°C)		1.850	1,430	1,660	1,540	758	813	1,740	1,990	2,110		354	207	283
		gen (112	66	117	105	98	105	102	157	138		140	92	106
		Disso		12 4	9.5	11.6	10.8	80	8.9	αο 	12.7	12.1		11.2	9.5	11 2
		Temp in of		64	79	58	55	67	72	71	77	69		80	65	55
		Discharge Temp		9.0	5.0	4.0	6.0	3.2	107	4.0	0.2	0.1		3 (est.)	125 (est	15 (est.)
		sompled sompled P.S.T.		1-8-63 1030	2-5-63 1610	3-5-63	4-9-63	5-15-63	6-5-63 1220	7-1-63	8-6-63	9-4-63		10-1-62 1540	11-5-62	12-3-62

o Field pH

Labaratary pH

Sum straction and magnession in equ. (Cu), lead (Pb), mangonese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown Derived from canductivity vs TDS curves Sum of calcium and magnesium in epm

Determined by addition of analyzed constituents.

Gravimetric determination

Annual median and range, respectively. Calculated from analyses of displicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United States Basine Health Service.

Mineral analyses made by United States Goological Survey, Quality of Merie Branch (1975), Lines States Department Services and Reclamation (1978); United States Goological Survey, Quality of Merie Branch (1974), Las Angeles Department of Mener on Product (LADMP), City of Las Angeles, Department of Poblic Health Edd DPH), City of Las Angeles, Department of Poblic Health Edd DPH), City of Las Angeles, Department of Mener Resources (1978), as indicated its single Relative Meneral Persons (1974).

	Anolyzed by 1		USGS										USGS	
	bid - Coliform A		2.3	230	1.3	6.2	0.62	2.3	2.3	230.	.62			
الْ ا	- Pid		2	8	09	15	2	5	7	٠,	15		06	
Ť	SON NE		10	2	-3	9	5	90	20	•	11		29	
	Toto! Ppm		163	76	92	103	128	146	148	152	162		136	
-/-0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		13	15	12	12	12	12	11	13	13		23	
Totel	eolved in pom		207 ^e	107 ^e	124 ^e	137 ^e	1668	187 ^e	178 ^e	203	2148		2358	
	Other constituents						PO4 = 0.05			0 0 0	A8S = 0.0 PO4 = 0.00			
	Silica (SiO ₂)						13				23	212)	12	
lon	Boron (B)		0.1	0.0	0.0	0.0	0.0	0	0.0	0.2	0.2	(STA,	0.0	
ports per million equivolents per million	Fluo- ride (F)	· • -					0.0				0.3	ALINAS	0.0	
orts per olents	frote (NO ₃)	(STA. 9					0.03				0.04	NEAR S	0.12	
equivo	Chio-	THE	0.20	3.8	0.11	0.16	5.5	0.17	0.00	5.2	6.0	K ROAD	26	
C.	Sul - fote (SO ₄)	MORCAN					0.37	-			25 0.52	L STAC	30 0 62	
fifuents.	Bicor- bonate (HCO ₃)	SEK NEAF	158 2.59	90	107	118	138	2.49	2.38	2.92	3.02	EEK AT	130	
Mineral constituents	Corbon- ote (CO ₃)	UVAS CREEK NEAR MORCAN HILL (STA. 96)	14 0.47	00.00	0.00	0.00	0.20	0.27	0.20	00.00	0.00	CABILAN CREEK AT OLD STAGE ROAD NEAR SALINAS (STA	0.00	
Mine	Potos- C sium (K)	_					0.03				0.03	— § ·	3.5	
	Sodium (NO)		0.48	6.0	5.9	6.2	0.37	9.0	0.37	0.44	0.48		0.83	
	Magne- eium (Mg)		3.26€	1.52c	1.840	2.06€	1.11	2.93c	2.976	3.04c	1.40		8.8	
	Colcium (Ca)						29				37		40 2.00	
	I e		8.5	7.5	9.8	7.7	8.3	8.6	8.5	8.0	8.2		7.8	
Socific	conductonce pH (micromhos of 25°C) e		339	176	204	224	275	307	291	332	350		359	
	yen (r		154	101	106	97	125	119	115	113	102			
	Disso		16.9	10.3	10.8	0	11 1	10.3	11.0	9.6	60			
	T of		54	58	58	59	70	7.0	63	7.7	74		61	
	Orechorge Temp		1 (est.)	300(est)	10(est	500(est.)	8 (est	5 (est	10 (est.	30 (est	25 (eat.			
	Dote compled P.S.T		1-7-63	2-5-63	3-4-63	4-8-63 1520	5-14-63	6-5-63	7-1-63	8-5-63	9-5-63		2-1-63 1430	

o Field pH

b Labaratory pH

Sum of calcum and magnessum in epm.

Sum of calcum and magnessum in epm.

Ion (Fe), oluminum (A1), arsenic (A2), capper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C1 *6), reported here as 0.0 except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

h Annol median and range, respectively Calculosed from analyses of duplicate monthly samples made by Calcinana Department of Public Health, Division of Lobardories, or United States Public Health Service (USPHS), San Bennardino County Flood Logardories (USPHS), Los Angeles Department of the Interior, Survey Office Health, Service (USPHS), San Bennardino County Flood Carrell Obstact (SBGFCD), Ministration of Sanifern Calcinano (MRD), Los Angeles Department of Moter and Power (LADMP), City of Los Angeles Public Health, City of Lord Beach, Department of Public Health, City of Lord Beach, Department of Public Health, City of Lord Department of Mater Resources (DMR), as indicated

32505-HHI 0-61 200 LPO

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

		-												
	Anolyzed by i		nscs		USGS		USGS		USGS					
	es CoCO ₃ 11y MPN/ml os CoCO ₃ 11y MPN/ml fotol N.C.								7,000.+	230.	230.	130.	210.	2.3
	- Pid 600		2		m		2		20	2	2	2	09	20
	000 N		0		69		13.7		0	0	0	0	37	69
	1.		320		304		339		232	508	967	570	153	258
	1 0 0 E		14		29		47		57	37	35	31	22	24
Total	solved solids in ppm		4328		506 ⁸		8318		673	927 ^e	a606	970 ^e	236°	394°
	Other constituents					^								
	Silico (SiO ₂)	218)	24		28	A. 237)	72		_	_				
lo lo	Boron (B)	(STA.	0.5	A. 200)	0.0	 S (ST.	1.0	43)	6.0	0.2	0.3	0.1	0.0	0.2
volents per million	Fluo- rids (F)	ALINAS	0.07	AS (STA	0.0	SALINA	0.07	(STA. 4						
ants par	rote (NO ₃)	NEAR S	0.03	SALIN.	8.4	E NEAR	2.1	CKELS						
equivolents per million	Chio- rids (CI)	STACE ROAD NEAR SALINAS (STA.	6.0	AD NEAR	2.51	7 BRIDG	220 6.21	AR SPRE	4.23	35	143	146	15	33
Ē	Sul - C fots (SO ₄)	LD STAG	0.56	LAGE RO	56 2	WAY 11	2.35	VER NE.	417	10	4 17	-14	10	
	Bicor - S bonote f (HCO ₃) (9	NATIVIDAD CREEK AT OLD	6.72	ALISAL CREEK AT OLD STAGE ROAD NEAR SALINAS (STA.	262 4.29	TORO CREEK AT HIGHWAY 117 BRIDGE NEAR SALINAS (STA.	3.70 1	SALINAS RIVER NEAR SPRECKELS (STA.	302	11.47	675	770	2.33	204
Mineral constituents	Corbon – Bu	DAD CRE		REEK A	0.40	CREEK	0.33	_ SA!	0.00	0.00	0.00	0.00	0.00	13 2
Mineral	500	NATIVI	0.00	TISAL		TORC			0	0	0	0	0	-1 o
	Potos- srum (X)		9.9	4	2.2		0.11		Io	1	19	21	1/	lin
	Sodium (No)		1.09		58 2.52		138		140	135	5.26	120 5.22	0.87	38
	Mogne- Sium (Mg)		36 2.96		2.14		2.39		4.630	10.16	9.926	11.40c	3.06€	5.160
	Coleium (Co)		3.44		3.94		4.39							
			7.7		8.5		8.5		7.3	9.0	7.4	7.5	8.1	8.1
Coactin	conductance (m.eromhos pH ot 25°C) s		663		821		1,330		1,110	1,530	1,500	1,600	389	650
	psu (r				-				108	09	20	36	101	100
	Dissolved oxygen ppm %Sot								10.8	6.3	2.0	0.4	6.6	11.2
			64.5		09		62		60 1	57	19	52	62	51 1
	Dischorge Temp								9.0	3.0	0.5	5.0	1,280	210
	Ond time sempled P.S.T		2-11-63		2-4-63		2-4-63 1600		10-3-62	11-7-62	12-4-62	1-9-63	2-6-63	3-6-63

b Laboratory pH.

Determined by addition of analyzed constituents.

Sum of colcium and magnesium in epm.

Jun of colcium and magnetis um in spin.
Iron (Fe), oluminum (A1), arcinic (A3), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexavolent chramium (Cr*⁶), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves

Grovimetric determination

Annual mation and range, respectively. Colculated from analyses of dupticate monthly samples made by California Department of Public Health, Duvision of Loboratores, or United Stones Public Health Service

Minaral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Constitution (USBR); United States Department of Water and Power (LADMP); City of Los Angeles, Department of Nature (SECFCD); Marrapoliton Water District of Southern Californio (UMD); Los Angeles, Department of Water Resources (DMR); City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Lebaratories, Inc. (TIL); or Californio Department of Water Resources (DMR); as indicated.

_	_														
L		Anolyzed by f			USGS						Sosi			usgs	
		bid - Coliform			62.	: 55	230.	2400°. 620°.	2,400.	620.					
	Tur	- pid -			20	97	IJ	15	9	70		100		110	
Γ		Nordness es CaCO ₃	100		19	88	54	114	0	0		27		28	
		Totol	E .		205	288	296	296	356	462		116		119	
	- 10-4	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			22	25	94	56	95	36		19		21	
	Total	in poly			297 ^e	460 ⁸	661 ^e	806 ^e	818	8948		1888		2008	
		Other constituents			8 0 0	ABS = 0.0 PO ₄ = 0.00			000	ABS = 1.5 PO4 = 13					
	1	Silico (SiO ₂)	1			23				07		:	221)	29	
	ē	Boron S (8)			1.0	0.1	7.0	9.6	0.4	0.3	(STA.	3	(STA, 2	0,1	
million	equivolents per million	Fluo- ride (F)				0.02				0.03	Z	0.01	TUALAR (C	0.1	
ports per million	lents	trote (NOL)	,	(STA.		3,1				2.0	NEAR SE	0.05	NEAR CHUALAR	3.5	
٥	equivo	Chio		RECKEILS	21 0.59	38	3.55	3.61	144	147	BRIDGE	0.28	BRIDGE	0.28	
	ç	Sul - fote (SO.)		SALINAS RIVER NEAR SPRECKEIS (STA. 43)		129				45	NACTTI	0.83	CHUALAR	46	
	etituent	Bicor- bonote	,	RIVER	165	3.54	308	3.64	450	9.80	ER AT H	1.79	VER AT	105	
	Mineral constituents	Corbon-	,	SALINAS	0.20	14 0.47	0.40	0.00	0.00	00.00	INAS RIV	00.00	SALINAS RIVER AT	0.10	_
	Min	Potos- sium (K)				3,0		•		35	SAL	0.07	- 83 -	2.9	
		Sodium (NO)			26	1.91	114	144	139	130	5	0.57		0.65	
		Mogne-			4.10	23	5.916	5.92	7.12c	3.90		0.72		0.78	
		Colcium (Co)				3,84				5,34		1.60		32	
		E of			8.3	8.6	8.5	8 · 1 8 · 0	8.0	8.0		7.5		8.4	
	Specific	(micrombos at at 25°C)			067	217	1,090	1,330	1,350	1,440		296		304	
		gen o			86	139	210	218	161	110					
		Disac			6.6	12.1	18.9	18.1	16.0	5.6					
		Ten P			63	73	70	78	77	74		09		61.5	
		Oschorge Temp			240	120	3.5	2.0	1.4	3.3					
		ond time compled			4-9-63	5-16-63	6-4-63	7-2-63	8-6-63 1315	9-5-63		2-4-63		2-4-63	

Loborotory pH

c. Sum of calcium and magnessum in spm. d level (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr*6), reported here as $\frac{0.0}{0.00}$ except as shown. d Iran (Fe), aluminum (A1), arsence (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (A1), arsence (As). Sum of calcium and magnessum in apm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

³²⁵⁰⁵⁻D-8 6-61 200 SPO h. Annual median and range, respectively. Celeculated from analyses of duplicate monthly samples mode by California Debatic Health, Division of Lobarianises, or United Stores Public Health Service and the Debatic Health Service and the Debatic Health Service of Reclamation (USBR), United Stores California Chieful Debatic Health Service (USPHS), San Bernadine Caunty Flood Cannot (Carlo Service) and Carlo Service (USPHS), Los Angeles, Depatrment of Marte and Power (LDMP), City of Los Angeles, Depatrment of Public Health & Lab Phil. City of Los Angeles, Depatrment of Public Health & Lab Phil. City of Los Angeles, Depatrment of Marte Resources (DMR) as indicated.

_	_														
		Anolyzed by i		0.8CS		oscs		0565		USGS		0SGS			
		es CoCO _S 11y MPN/mi Totol N C nppm										ដូ ដ	6.2	2.3	
		- × 4 - × 6		20		30		07		120		15	n	7	
T		S COS		57		777		39		1,130		18	13	14	
		Mordness as CoCO _S Totol N C		105		164		164		40 1,300		116	130	133	
	-	- pos		16		21		21				17	17	18	
	Totol	solved solids in pon		1688		2708		2668		3,160 ⁸		173 ^e	192 ^e	201 ^e	
		Other constituents			- 0 -										
		(SiOg)			A. 224)	- 2 6	\. 223)	25		28		-1			
40	par million	Boron (B)	(603)	0.0	— cas (st —	70		11 0.1	- 500	150		0.5	0,1	0.1	
il m	par	Flua- rida (F)	SIA, 2	0.01	- SAN LUI	0.01	— SAN -	0.01	(STA	0.05	_ 3° _				
parts per millian	squivalents	rrate (NO ₃)	LEDAD	0.02	NEAR	0.05	NEAR	2.2	ARDO	0.16	STA, 4				
	Ainba	Chio- ride (Ci)	ARROYO SECO RIVER NEAR SOLEDAD (STA. 203)	0.16	BRIDGE NEAR SAN LUCAS (STA.	0.45	SALINAS RIVER AT SAN ARDO BRIDGE NEAR SAN ARDO (STA.	0.45	PANCHO RICO CREEK NEAR SAN ARDO (STA. 220)	144	SALINAS RIVER NEAR BRADLEY (STA. 43c)	0.37	0.23	9.1	
	ë	Sul - fats (SO ₄)	RIVER	37	N LUCAS	1.31	AN ARD	58	CREEK 1	34.35	NEAR BR				
	afitent	Bicar- banate (HCO ₃)	YO SECO	1.62	R AT SA	2,33	TER AT S	2.36	O RICO	3,25	RIVER	11.95	2,34	2.38	
	Minaral constituents	Carbon- ate (CO ₃)	ARR0.	0.0	SALINAS RIVER AI SAN LUCAS	0.17	INAS RIV	0.13	PANCH	0.13	SALINAS	00.0	0.0	0.00	
:	N.	Potas- Carbon- sum (K) (CO ₃)		2.5 0.07	SALIN	2.9	- SAL	2.8		0.31		-			
		Sodium (Na)		9.7		21 0.91		20 0.87		400		11 0.48	0.52	0.57	
		Magna- sium (Mg)		0.00		1.18		1,18		14.2		2,32c	2,60€	2,670	
		Calcium (Ca)		30		42 2,10		2,10		285			-		
				8.2		00 00		4.8		8.3 E.		8.1	7.9	7.8	
	Spacific	conductance pH (micramhas at 25°C) 3		253		907		403		3,550		270	300	314	
		oso%										104	101	100	
		Disso osy ppm										4.6	9.7	0,	
		Temp In of		39		-1 9		19				89	6.2	9	
		Discharge Temp in cite in of										470	244	260	
		Dots and time sampled P S T		2-4-03		2-4-03		2-4-63		2-18-53 1430		10-2-02	11-6-62 ,200	:2-3-62 1600	

a Field pH

ONTO 002 TO-5 ATM-5052E

Laboratary pH.

Sum of calcium and magnessum in sem.

Sum of calcium and magnessum in sem.

Iron (Fe), oluminum (A1), assence (A3), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and heavailent chromium (C1 - 5), reparted here as 0 0 except as shawn. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents Derived from canductivity vs TDS curves

h Amual median and rang, respectively Calculated from analyses of displicate monthly samples made by Calculation Department of Public Health, Division of Lobardonies, or United States Public Health Service (USPHS), San Benardino County Flood County Disputs Block by United States Geological Survey, Quality of Wester Banch (USC), United States District Block B

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

			E E/N				2.3	
	L	_	E Co		_		 0 7	62.
	L	-	Hordness bid - Coliform				 . ~	20
			dnes.	D €			 69	67
			5 5	Totol			 28 2:9	21 184
ĺ	L		900				 28	
		Total	pevios polios	E dd c			431e	289 ^e
			440					
			Silico	(2:0)				
		lion	Boron	<u>=</u>			0.1	0.1
	million	ser mi	Fluo- Boron Silice	(F)		ਹ		
	ports per million	eguivolents per million	- IN			SIA. 43		
	۵	# gurvi	Cnio-	(i)		MOLEY	36	16
		=	Sui -	(804)		NEAR BE		
			Bicar -	(HCO3)		SALINAS RIVER NEAR BRADLEY (SIA, 43c)	3.47	2.82
		#101 CON	Corbon-	(co ₃)		SALINA	0.33	0.0
	1		Potos.	(X)				
			Sodium	(o z			2.04	23
			Mogne-	(Mg)			5,190	3,680
			Colcium	(°2)				
	L		I o	م			8.3	8.0
		Specific	Conductance PH Mogne- Sodium Potos- Corbon- Bicar- S				673	451
			D C	%Sot			132	66
			Dissolved	mad	_		14.3	10.0
			Temp in OF				52	58
			Dischorge Temp				174	097
	H	-		-	-			

Analyzed by 1

USGS

0.23 5. 23.

25 27 18 16

401%

PO. = 0.30

28 -

0.02

0.0

96

212 234

0.33 2.2

21 62 0.00

4.88c 2.54c

8.2

73 58 99 59

6-4-63 7-2-63

17

5-15-63

4-9-63

131 134

3.15

0.23

30 37 42 13 11 10

0.1 0.0 0.1

S 9 9 10

52 16

403 195° 180

2,400. 2.3

> 9 35

20 43 20

234 212 240 244

3836 326°

0.2 0.1

26 19 24 25 8.7 0.18 6.0 28

3,31

36

4.68c 4.24c

8.2 8.1 8.5

> 11.4 9.8 7.0 6.8

09 61

3-5-63

451 599 509 587 629 304 281

66 116 101 83 80 84

2-6-63

17 097 150 331 200 70

Date ond time sompled P S T

289^e 21 25 23 230. 2.3 6.2

12

122 119

15

1778

As = 0.04 ABS = 0.0 PO₄ = 0.10

77

0.0

0.01

0.00

129

0.04

13

27

7.8

3

9.6

0.00

2.440

8.2

10.4

534 500

8.3

8.5

077

Sa		
30		
28		
137		
15		
2188		
34		
0.00		
0.03		
61.0		
44 0.92		
00.0		
9 70		
11 2		
00 78:		
8 6		
12		
30		
61		
7		Holde
2-4-6.		LL.
	$\frac{38}{6.2} \frac{10}{1.90} \frac{11}{0.44} \frac{2.6}{0.48} \frac{0}{0.05} \frac{113}{0.00} \frac{4.6}{2.18} \frac{6.8}{0.32} \frac{1.2}{0.19} \frac{0.0}{0.00} \frac{0.0}{0.00} \frac{3.6}{0.00} \frac{13}{0.00} \frac{11}{0.00} \frac{11}{0.$	61 305 6.2 1.99 0.84 0.48 0.07 0.00 2.18 0.09 0.09 0.09 0.09 0.00 0.09 0.09 0.0

Ses

Sum of colcium and magnesium in epm

Loborotory pH

Sum of colcum and magnessum in spin from [Fe], aluminum (A1), asseme (A3), capper (Cu), lead (Pb), manginess (Mn), sinc (Zn), and hexavolent chramium (Cr.*), reparred here as 0 0 except as shown 100 fres.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Annual median and singes Paleulated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service
Minned analyses made by United States Geological Survey, Dupling Methods Exposed Brooks (USS), United States Department of the Institut (SECTIO), Memoryation (MDD), Las Analete Department of Marker and Power (USMP), City of Los Angeles, Department of Public Health States (USMP), City of Los Angeles, Department of Public Health States (USMP), City of Los Angeles, Department of Dublic Health, City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Dublic Health States (USMP), City of Grovimetric determination

32505-B-H 6-61 200 JPO Ammal median and stages treasstrively. Calculated from analyses of displacene monthly samples made by Caldianna Department of Public Health, Division of Lobbosonaries, and the both Service Manual analyses, made by United States Geological Survey, Quality of Mene Branch (1935). Juned States Department of the Interiors, Bureas of Reclamation (1938). United States Geology States Ge

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) TABLE D-2

	pez																
	Anolyzed by 1			-	280												
	bid - Coliform						6.2	0.62	62.	0.62	6.2	6.2	2.3	62.			
Total	- Pid -						7	η.	~	4	10	9	'n	-			
	Hordness es CoCO _S	Total N C					34	6,3	30	31	35	32	38	42			
							201	202	148	169	156	170	186	190			
	1 00 m						24	81	:1	14	13	16	15	16	-		
Total	solids solids	F 00 r					316	302	215	249	220 ^e	261 ⁸	261	276			
	Other constituents	- 1										PO ₄ = 0.20					
	Silico	(3)(C)										28					
llion	Boron	9					0.0	0:1	0.1	0.0	0.1	0,0	0.0	0.0			
millio per m	Fluo-	(F)	34)									0.0					
squivolents per million	N:-	(NO ₃)	SIA. 43									0.02					
oving &	Chio-	(0)	OTYTE	_			19	16	7.5	7.8	6.0	7.5	8.8	10			
Ē	Sul -	(\$05)	NEAR 1									55					
strates	Bicor-	(HCO ₃)	IO RIVER				3.34	3.18	2.36	158	148	160	160	2.75			
Mineral constituents	Corbon	(500)	SAN ANTONIO RIVER NEAR PLEYTO (STA. 434)				00.0	0.00	0.00	0.17	0.00	0.13	0.33	0.20			
Min	Polos-	(K)	3	_								0.05					
	Sodium	(NO)					30	20 0.87	12	13	0.48	15	15	17 0 . 74			
	Mogne-						4.02	4.040	2.960	3,380	3,130	1.05	3.726	3.80€			
	_	(00)										2.35					
	Ĩ,	م					8.2	8.2	2.7	9.0	7.9	0.8	. 8	8.4			
	conductonce (micrombos)	0					887	997	332	385	340	379	707	427			
	7 8 E	'o Sot					66	100	66	66	98	86	93	88			
	Dissolvad	ppm %Sat					9.6	10.5	6.6	9.6	9.6	0.8	7.8	8.2			
	Ten or						61	55	65	61	62	7.8	7.5	69			
	Dischorge Temp				Dry	Ponded	0.3	6.0	300	122	200	105	90	16	Ponded	Pry	
	Dote ond time	P.S.T			10-2-62	11-6-62 1250	12-3-62	1-8-63	2-6-63 1200	3-5-63	4-9-63 1250	5-15-63	0-4-63	7-2-63	8-6-63	9-4-63	

o Freld pH

b Laborotory pH

Sum of calcium and magnesium in sem.

Sum of calcium and magnessum in sem.

Iran (Fe), aluminum (A), orsenic (As), capper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (A'), reparted here as 0 0 except as shown. c. Sum of calcium and magnesium in epm.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

_	_	- T															
		Anolyzed by 1			USGS												
		bid - Coliform			62.	23.	23.	13.	62.	0.21				23.	62.	2.1	
	- 30	- piq -			15	е.	2	5	7	•				2	5	4	
		Ae CoCOs Total N C			6	00	13	9	15	17				18	15	16	
					110	116	120	157	158	166				116	116	116	
		- 900			14	71	15	14	13	ถ				51	13	ដ	
L	Total	police police in pom			138	158	164	211 ^e	209 ^e	220 ^e				156	157 ^e	1578	
		Other constituents													8	ABS = 0.0 PO, = 0.10	
		(5.0 ₀)														্ৰা	
	LO1	Boron (B)			0.2	0.0	0.0	0.0	0.1	0.1				0.0	0.1	0.0	
ports per million	equivalents per million	Fluo- rids (F)	1767													0.01	
ris per	erre	Ni- trate (NO _S)	4 1.0)	-												0.02	
00	equivo	Chio- ride (Ci)	- 1		0.18	0.16	6.9	0.31	8.2	0.25	-			6.0	6.0	5.8	
	Ē	Sul - fate (SO ₄)	0	- W												0.44	
	1.tuents	Bicar - bonate (HCO _S)	931	TANEN W	2.02	132	130	2.90	174	182				1.97	2.02	2.00	
	Mineral constituents	ote CCO ₃)	NACTURE MAD SIVED SIVE COMMUNICATION (OTT. 12)		0.00	0.00	0.00	0.10	0.00	0.00				000	00.0	0.00	
	Miner	Potos- Corbon- sum (K) (CO ₃)	- 5	- Tagai												0.05	
		Sodium (No)			8.1	8.6	9.4	0.52	11 0.48	11 0.48				7.9	7.8	7.8	
		Mogne- 5 srum (Mg)			2.21c	2,320	2.40€	3.15c	3.160	3.32¢				2.320	2.325	1.02	
		Calcium (Ca)														26	
		I e			8.2	7.9	8.0	7.4	7.8	8.1				8.2	8.0	7.9	
	2191200	(m.crombos e			228	261	272	349	346	364				258	260	259	
F	U	No Sof			147	112	100	82	103	115				110	106	92.\$	
		Dissolved oxygen ppm %Sot		_	13.4	10.4	8.6	8.7	6.6	10.8				11.11	11.11	8.6	
-	-				67	65	09	54	62	759				80.0	55	54	
		Dischorge Temp			500(est.)	255	200(est.)	4(est.)	5(est.)	2(est.)	No flow	Ponded	Ponded	500 (est.)	000 (est.)	500(set.)	
		Dote ond time eampled P S.T.			10-2-62	11-6-62	12-3-62	1-8-63	2-6-63	3-5-63	4-9-63	5-15-63	6-4-63	7-2-63	8-6-63	9-4-63	

Loborotory pH.

Sum of colcium and magnessum in spim. Iron (Fe), oluminum (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (Cr ⁵), reparted here as $\frac{0}{0}$ 0 except as shown. c Sum of calcium and magnessum in epm.

Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calidonia Department of Public Health, Division of Labaratories, or United Stores Public Health, Service (USCHS), Lanted Stores Department of the Interior, Gueero of Rectamation (USGR), United Stores Department of the Interior, Gueero of Rectamation (USGR), United Stores Calculated (USCHS), Marripolitan Marris (MEGECD), Marrisophitan Marrisophitan (MAD), Los Angeles Department of Marris (MEGECD), Marrisophitan (MAD), Los Angeles Department of Marrisophitan (MAD), City of Los Angeles, Department of Public Health (LBDPH), Terminal Testing Laboratories, Inc. (TLL), or California Department of West, or and careful

OF ON THE PASSESSE

ANALYSES OF SURFACE WATER TABLE D-2

CLEMAN COASIAL COLORS 3)

		nyzed y i		USGS														1
-		Hordnass bid - Coliform Analyzed as CoCD ₃ Ity MPN/ml by i Totol N C. pom com		ns n														-
		MPN/m								620 _*	23.	23.	190.	620.				
	-	- ty n again		35						4	1	25	2	3				
		Hordness as CoCD ₃ Total N.C. pam pam		=						85	107	72	92	117				
-		Toto Pen	-	62						279	338	274	320	370				
-		solved sod		15						18	e 21	e 17	8 18	P 23				
	Tote	evios ni oo ni		1018						412°	514 ^e	400e	4548	571 ^e				
		Other constituents											Po ₄ = 0.25					
		Sifica (SiO ₂)		=							-		20					-
	Ilian	Baran (B)		0.0						0.2	0.2	0,1	0.0	0,1				
millia	per mi	Fluo- ride (F)	LA. 24	0.0	438)								0.0					
parts per millian	equivalents per millian	rate (ND ₃)	NET (S	4.1	(STA.								0,02					-
å	equivo	Chia- ride (C.)	SAN NIG	3.8	ROBLES					26	36	23	29	49				-
	e.	Sul - tota (SO ₄)	AM NEAR	0,31	AT PASC								116					
	stifuents	Bicar- banate (HCD ₃)	KE AT D	62	SALINAS RIVER AT PASO ROBLES (STA, 43a)				-	3,87	258	246	258	287				
	Mineral constituents	Patos- Carbon- sum ate (K) (CO ₃)	NACINIENTO LAKE AT DAM NEAR SAN MIGUEL (STA. 247)	00*00	SALINA					00.00	12	0,00	10	12 0,40				
:	Mine	Patas- Sium (K)	NACEMI	0.03									1.7					
		Sadium (No)		5.2						28	41	26	32	52,26				
		Magne- sium (Mg)		6.6						5,58c	6.760	5,490	28 2.31	7,400				
		Calcium (Ca)		14									82 4.09					
		nle I		8.0						8.1	8.1	8.0	8,5	8.8				
	Spacific	(micramhas at 25°C)		148						628	783	610	169	870				
		lvad %So								9.6	109	97	110	109				1
										9.2	63 10,4	6.8	8.6	8.7				
		Tenp in of		99						62	63	99	82	80				-
		Dischorge Temp				, ry	Dry	lry	Dry	33	38	130	9	15	iiry	Dry	hry	
		and time sompled P.S.T.		2-4-63		10-2-62	11-6-62	12-4-62 0900	1-8-63 1500	2-6-63	3-5-63	4-9-63	5-15-63 1615	6-4-63	7-2-63	8-6-63	9-4-63	

b Laboratory pH a Field pH.

January Carlow and Angeles and Carlow (Ca), lead (Pb), rangenese (Mn), zinc (Zn), and hoxavalent chramium (Ci *9), reported here as 0 0 except as shawn. c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents

Derived from conductivity vs TDS curves

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calrbania Department of Public Hoolin, Division of Labbranianes, or United States Public Health Service.

Marenal analyses made by United States Geological Survey, Quality of Water Broach (USSS); United States Department of the Internation of Prover (USRPS); United States Department of Service (USRPS). San Bennadon County Flood
Control District (USRPS): Department of Service (USRPS). San Bennadon County Flood
Count District (USRPS): Department of Service (USRPS): San Bennadon County Flood
Public Health (Labbra): Farming Telephonories, Inc. (TILL), or California Observment of Water Resources (USRS): an infection of County Service.

Comparison	3		ports per million	lion		_		
Try Try	Min	Mineral constituents in	equivolents par	par million	Total			
2.8 57 10.8 105 424 8.7 4.8 57 10.8 113 540 7.4 5.0 50 11.1 99 444 8.2 5.0 50 10.4 99 185 7.4 5.0 50 10.5 10.2 239 8.7 5.0 60 8.8 89 225 8.2 5.0 60 7 74 10.6 103 242 8.2 5.0 60 7 7 10.6 10.5 119 249 8.2	Colcium Mogne: Sodium Polos- Corbon—(Co) (Mg) (No) (K)	Corbon Bicor Sul ote bonota fois (CO ₃) (HCO ₃) (SO ₄)	Chio- Ni- Fluo- ride trote ride (NO ₃) (F)	Boron Silico (B) (SiO ₂)	Other constituents in opm	Hordness os CoCO ₃ Toto! N C	bid - Coliform An	Anolyzad by i
2.8 57 10.8 105 424 7.4 4.8 56 11.8 113 550 8.2 2.0 50 11.1 99 444 8.2 2.0 52 10.4 99 185 7.6 95 52 11.2 102 239 8.7 240 54 10.4 97 215 8.7 132 62 10.0 103 222 8.7 100 60 8.8 89 225 8.7 23 70 10.5 119 295 8.7 0.7 74 10.6 125 338 8.4								
2.8 57 10.8 105 424 8.1 4.8 57 11.8 113 550 7.4 2.0 50 11.1 99 444 8.2 2.0 55 10.4 99 1185 7.4 95 32 11.2 102 239 8.1 240 54 10.4 97 215 8.1 100 60 8.8 89 225 8.2 23 70 10.5 119 295 8.2 23 70 10.5 119 295 8.2 0.7 74 10.6 125 338 8.1		ARMEL RIVER AT ROSLE	CARMEL RIVER AT ROBLES OEL RIO (STA. 83)					
2.8 57 10.8 105 45h 61.1 4.8 56 11.1 99 4th 61.2 2.50 55 10.4 99 1185 7.4 2.50 56 11.1 99 4th 61.0 2.50 57 10.4 99 1185 7.4 2.60 56 10.4 97 215 6.7 132 62 10.0 103 242 8.7 110 60 8.8 89 225 8.0 2.3 70 10.5 119 295 8.2 2.3 70 10.5 119 295 8.2 2.3 70 10.5 119 295 8.2 2.0 77								
4,8 56 11.8 113 540 $\frac{7.6}{6.2}$ 7,0 50 11.1 99 414 $\frac{7.4}{8.70}$ 250 55 10.4 99 1185 $\frac{7.6}{7.0}$ 95 32 11.2 102 239 $\frac{8.1}{8.1}$ 260 54 10.4 97 213 $\frac{8.1}{8.1}$ 113 62 10.0 103 242 $\frac{8.0}{8.0}$ 110 60 8.8 89 225 $\frac{8.2}{8.0}$ 23 70 10.5 119 295 $\frac{8.2}{8.7}$ 077 74 10.6 125 338 $\frac{8.1}{8.4}$	3,26c 1,44	0 160 2.62	0,68	0.0	28116 3	31 163 37 1	21.	
1,0 50 11,1 99 444 61,0 250 55 10,4 99 1185 7,6 95 32 11,2 102 239 7,6 240 34 10,4 97 215 8,1 132 82 10,0 103 242 8,1 110 60 8,8 89 225 8,0 23 70 10,5 119 295 8,2 24 0,7 74 10,6 125 338 8,1 977	3.81 c 1.78	0,00 2,84	36	0 0 0	333° 3.	32 190 48 1	21.	
250 55 10.4 99 185 7.76 95 52 11.2 102 239 6.1.5 240 54 10.4 97 215 8.1.5 132 62 10.0 103 242 8.0 140 60 8.8 89 225 8.0 23 70 10.5 119 295 8.2 0.7 74 10.6 125 358 8.4	2,900 1,22	0 146	20 0.73	0.0	255° 29	29 148 28 1	2.3	
240 54 11.2 102 239 4.6.1.1 240 54 10.4 97 21> 8.1.1 132 62 10.0 103 242 2.2.8 110 60 8.8 89 225 8.0 23 70 10.5 119 295 8.2 0.7 74 10.6 125 358 8.4	1,32c 0,4	0 /8	8.0	0	114° 24	24 68 4 2	13.	
240 54 10,4 97 213 31,4 31,1 31,2 31,1 31,2 31,1 31,2	1.84c 0.52	0 102 0.00 1.67	10	0.0	1476 22	92 8	1.3	
132 62 10.0 103 242 3.8 8.0 8.0 11.0 8.0 11.0 11.0 11.0 11.0	1,70c 0,44	0,00	8.5	0.0	1336 21	5 5 2	23.	
100 60 8,8 89 225 23 70 10,5 119 295 0,7 74 10,6 125 358	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,00 1,74 0,50	9.8 0.78 0.02	$\frac{0.3}{0.02}$ $\frac{0.0}{0.02}$ $\frac{26}{0.49}$ 0.19	0,19 158 ^K 23	3 93 6 2	0,62	
23 70 10.5 119 295 0.7 74 10.6 125 388	1,940 0,48	4 0.13 1.67	8.4	0.0	139 20	20 97 7 5	23.	
0.7 74 10.6 125 358	2,28c 0,70	0 126 0.00	12 (1,34	0*0	182 ^e 2'	23 114 11 1	6.2	
	2,684 1,00	\$\frac{5}{0.17} \frac{127}{2.08}	18 0,51	0.0	221 ^e 27	7 134 27 1	2 1, 23,	

b Loborotory pH

e. Sun of colcium and magnesium in open. (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr¹⁹), reported here as 0.0 except as shown d Iron (Fa), aluminum (A1), arsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (A1), orsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (A1), orsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr¹⁹), reported here as a construction of the construction o

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

9 General determination

Annual mediane, categoriesty. Calculated from analyses of diplicate monthly samples made by California Department of Public Health, Division of Laboritories, or United Stores Public Health Service

Manual medianes smaller by Interd Stores Geological Survey, Duality of Waler Drawel, (USSS), United Stores Department of the Interior of Reciamation (USBR), United Stores Public Health Service (USPHS), San Bernoidino Cawary Flood

Cawari District (USBP), Remoderance and Carlo Stores Carlo Car

2

TABLE D-2

ANALYSES OF SURFACE WATER

SOUTH BAY AQUEDUCT

_	_																
		Analyzed by §		DWR													
	4	bid - Californ'i 11y MPN/mi In opm															
	Tu'-	- piq - 11 y In ppm															
		SOS COS		35	52	09	59		57	63	69	70	63	28	72	89	69
				129	154	170	168	170	169	175	181	182	161	153	163	160	164
	Par-	eod -		51	53	54	53		54	54	54	55	57	53	53	51	52
	Total	solved solids in ppm		349	727	687	443	471	480	887	187	509	396	374	417	477	877
		Othsr constituents						A1=0.78 Mn=0.00 As=0.00 Zn=0.01 Cu=0.00 Se=0.000 Pb=0.00 Fe=1.4				ABS=0.00	ABS=0.0	ABS=0.0	A8S=0.0	ABS=0.0	ABS=0.03 Cu =0.00 Zn =0.01
		Silica (SiO ₂)		16	19		20		19	18	18	18	17	15	17	16	15
	million	Boron (B)	207)	0.23	0.30	0.38	0.37	0.41	0.40	0.46	0.48	0.49	0.48	0.46	0.44	0.44	0.52
Pillion	per mi	Fluo- ride (F)	(STA.	0.01	0.0		0.03	0.01	0.03	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.01
ports per million		Ni- trate (NO ₃)	PLANT	2.0	0.03		3.5		2.6	2.2	3.3	4.2	0.01	0.0	2.7	2.1	3.4
8	equivolents	Chlo- ride (CI)	PUMPING	95	3.36	3.78	3.67	3.75	3.72	3.92	3.84	3.95	3.75	3.10	3,36	3.21	3.27
	- 1	Sul - fate (SO ₄)	AT SOUTH BAY	41	1.19		67	68	1.42	1.71	1.85	1.85	1.85	. 1.73	1.83	1.83	92
apant tenne	Silingilis	Bicar- bonate (HCO ₃)		115	125	134	133		137	136	137	137	120	11.90	1111	112	11.90
dog losson		Carban- ota (CO ₃)	FOREBAY	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
M		Potos- (X)	BETHANY	3.1	3.5	3.6	3.6	3.6	5.0	3.5	3.3	3.5	3.2	3.0	3.0	3.4	3.0
	Ì	Sodium (No)		64	3.52	96	3.87	92	96	98	98	104	99	3.57	3.83	3.48	3.65
		Magne- sium (Mg)		1.18	17	20	18	18	20	17	20	20	20	1.46	20	1.45	1.53
		Calcium (Co)		1.40	33	35	38	38	35	2.10	2.00	39	32	32	33	35	35
		Į.		7.9	7.9	8.0	7.8		8.1	7.8	7.9	8.1	7.8	7.7	7.8	8.0	8.0
	Specific	(micramhos of 25°C)		588	710	797	788	787	789	835	852	678	805	720	773	755	763
		lved gan %Sot															
		0 x y															
		Te ai					m	2		0	10	2	-	.7			
		Water Temp D Elevation of (feet)			237.5	237.7	239.13	237.42	237.31	230.30	238.66	238.12	238.51	238.84			235.9
		ond tims sompled P.S.T.		10-8-62	11-1-62 1550	11-19-62	12-9-62 1915	12-24-62	1-7-63	1-21-63	2-4-63	2-18-63 1350	3-1-63	3-18-63	4-1-63	4-15-63 1515	4-29-63 1835
													_				

a Field pH

b Laboratory pH.

c. Sun of coleum and magnesium in apm.
d. Iran (Fe), aluminum (A1), assenic (A2), capper (Cu), Iead (Pb), manganese (Mn), 21nc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

Annual median and range, respectively. Calculated from amalyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health & reite.

³²⁵⁰⁵⁻D-H 6-61 200 sPO Mineral analyses made by United States Geological Survey, Quality of Water Broach (USCS); United States Department of the Interior, Burcara of Racformation (USCR), United States Geological Survey, Quality of Water Broach States (USCR), Angels Superment of Manager of Power (LADMP), City of Los Angels, Department of Public Result (MSCP), Clin Manager of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States C

	Anolyzed	by i														
	Coliformh	OR COCOS ITY MPN/MI by I														
Ι,	Pid - bid	n ppm														
	8880	300g	Tatai N.C.		70	47	23	19	23	23	18	21	0	31		
	Hord	0 80	Tatal ppm mgd		168	126	71	99	75	83	84	91	149	136		
	Cent	95			51	52	47	777	775	87	577	717	37	67		
1000		Bolios Bolios	E dd u		400	340	157	156	170	200	182	214	339	332		
		Other constituents	- 1		ABS=0.01 Cu =0.00 Zn =0.00	A8S=0.01 Cu =0.00 Zn =0.00	ABS=0.01 Cu =0.00 Zn =0.00	ABS=0.00 Cu =0.00 Zn =0.00	ABS=0.00 Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.06	Cu =0.02		
	L	Silica	2000		14	15	15	13	14	14	2.4	17	13	19		
c iii		Borge			0.49	0.39	0.19	0.17	0.14	0.14	0.14	0.14	0.1	0,23		
millio m		Fluo-	(F)	A. 207)	0.03	0.01	0.00	0.00	0.01	0.0	0.0	0.00	0.00	0.02		
ports per million		- Ni-	(NO 8)	BAY PUMPING PLANT (STA.	0.00	0.0	0.00	0.01	0.6	0.02	0.00	1.1	0.01	0.02		
		Chla-	(c)	PING PL	3,36	2.45	1.18	1.04	1.16	1.35	43	1.30	62	2.54		
ē		Sul -		 BAY PUM	90	1.42	0.60	25	0.56	30	0.56	26	17	42		
stituent		Bicar		SOUTH	120	96	0.95	57	1.03	73	39	1.41	303	2.10		
Mineral constituents		Carbon-	(co ₃)	BETHANY FOREBAY AT	0.00	0.00	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00		
2			(K)	LANY FOR	3.0	0.06	0.04	0.05	0.05	0.05	2.0	0.04	17	3.2		
		Sadium	(0 4)	BET	3.57	2.78	30	1.09	1,13	36	32	34	47	63		
		Mogne-	(Mg)		1.46	1.17	6.9	6.9	0.60	8.6	9.5	0.87	20	1.17		
		Calcium	(69)		38	1.35	0.85	0.75	0.90	0.95	0.90	0.95	1.35	31		
	:	Ŧ			7.9	8.0	7.4	7.7	7.4	7.9	9.4	7.1	6.3	7.7		
	Spacific	(micromhos			787	593	314	280	307	344	334	364	812	593		
	987	5	%Sat												 	
		osygen	ppm %Sat													
	Te mo	ii or														
	Makes		(feet)		233,53	237.95	237.5	238.12	237.3	235.1	236.1	234.7	236.3	236,4		
	Dote	sond time	P.S.T.		5-13-63	5-27-63 1230	6-10-63	6-24-63	7-8-63	7-23-63	8-5-63	8-19-63 1230	9-3-63 1715	9-30-63 1300		

o Field pH.

b Laboratory pH.

d Iron (Fe), aluminum (Ai), arsonic (As), capper (Cu), lead (Pb), manganese (Idn), zinc (Zn), and hexavalent chramium (Cr⁺⁶), reparted here as 0.00 except as shawn.

Description

Gravimetric determination.

Determined by addition of analyzed constituents.

³²⁵⁰⁵⁻D-H 6-61 200 SPD h Amuol median and range, respectively, Calculated from analyses of duplicate monthly samples grade by California Department of Public Health, Division of Lobaronaries, or United Stores Public Health Service.

I Mannel analysess made by United Stores Geological Stravey, Opality of West Beand Department of Recommission (USBR), United Stores Cabine Stores Capine Stores (USPHS), San Bernadian Cannel Flood
Cannel District (SECTCD), Manapolitien West District (USPHS), Los Angels Department of West (LADPP), City of Los Angels, Department of Public Health (LADPP), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), Cannel Capinel Stores (USPHS), Cap

TABLE D-2

ANALYSES OF SURFACE WATER

SOUTH BAY AQUEDUCT

_																		_
		Analyzed by 1			OWR													
		bid - Coliform ify MPN/mi																
		- pid -																
		N C O S			24	30	36	41		47	67	51	575	20	79	09	65	
			Egg		109	121	128	141	147	149	156	144	145	150	156	147	168	
	å	Fod -	1		8 7	20	51	52	53	52	54	26	55	52	53	54	52	
	Total	Solids Solids in pom			288	308	346	387	607	423	438	403	337	358	442	429	458	
		Other constituents					Turb. = 2.0		A1=0,10 Pb=0.00 As=0.01 Mn=0.00 Cu=0.00 Zn=0.00 Se=0.001			A8S=0.00	ABS=0.0	ABS=0.0	ABS=0,0	A8S=0.0	A85=0.02 Cu =0.00 Zn =0.02	
		Silica (SiO ₂)	+		16	14		디	4 4 0	9]	16	16	17	18	15	8,8	18	_
	ig	Boron (B)			0.18	0,23	0.27	0.27	0.30	0.27	0.30	0.29	0.28	0.32	0.39	0.34	0.52	
Toj II	per millian	Flua- ride (F)		A. 214)	0.2	0.2	Ī	0.2	0.01	0.0	0.2	0.3	0.1	0.00	0.2	0.1	0.0	
oorts oer million	equivalents	trate (NO.)	-+-	RESERVOIR (SIA.	0.00	0.0		0.9		0.9	0.00	0.03	0.00	0.02	0.02	0.4	0.0	
ē	equivo	Chio- ride (CI)			1.92	80	2.57	101	3.21	3.21	3.47	3.38	3.41	3,30	3.07	104	3.30	
	Ē	Sul - fore (SO _a)	- 1	PATTERSON	31	38	1	1,00	1.16	56	61	58	59	1.25	1.71	1.73	1.87	
	constituents	Bicar - bonate (HCO ₃)		AT	104	1111	112	122		1.75	114	113	123	11.90	112	94	126	
	Mineral can	Carban- ate (CO,)	,	LIVERMORE CANAL	00.00	0.00	0.00	00.00		9	8	0.00	0.00	0.10	0.00	0,20	0.00	
	M	Potas- stuff (K)		LIVER	2.6	0.07	0.07	3.2	3.4	3.4	3.7	3.6	3.5	3.5	3.0	3.2	9.7	
		Sodium (No)			47	57	2.78	3.18	3,39	3.35	3.70	3.74	3,61	3.35	3,61	3.57	3.70	
		Magne- Sium (Mg)			11 0.88	1.07	1.26	1.17	15,124	1.28	15	17	1,30	17	17	1.34	17	
		Calcium (Ca)			26	27	26	33	34	34	38	29	32	32	34	32	39	
		H H			7.9	8.2	8.0	8.2		8.8	9.0	8.2	8.2	8,4	7.9	8.5	7.9	
	Specific	(micramhos at 25°C)			406	523	567	642	069	674	744	688	709	709	716	708	772	
	Specific	Location of Collection			Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Canal	Canel	Canal	
		Temp n in oF																
		Elevation in of (feet)			707.4	708.3	706.95	703,4	707.9		702.7	693.85	692.1	0.689			705.4	
		ond time sampled			10-9-62	11-1-62	11-20-62 1059	12-9-62 1800	12-24-62 1520	1-7-63	1-21-63 1420	2-18-63 1525	3-1-63	3-18-63	4-1-63 1245	4-15-63 1620	4-29-63 1545	

a Field pH

Derived from canductivity vs TDS curves

32505-2-H 6-61 200 JPD

b Loborotory pH.

c. Dum of colcum and magnessium in agm.
d Iran (Fe), aluminum (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chromium (C1 ¹⁶), reparted here as 0 0 except as shown. c Sum of colesium and magnessum in epm.

Detamined by addition of onalyzed constituents. Gravimetric determination.

_													
	Anolyzed by i		DWR										
	bid - Coliform ity In ppm MPN/mi												
Į.	- piq - th uppm uppm												
	N C O S		99	69	28	23	54	22	18	21			
			166	167	87	75	77	- 85	97	6	100	138	
	- Bog - P		53	54	45	43	42	7.7	777	777			
Toto	Bolved Bolved in ppm		434	697	193	173	175	201	188	212	220	348	
	Other constituents		A8S=0.01 Cu =0.00 Zn =0.00	ABS=0.02 Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00 A83=0.00	ABS=0.00 Cu =0.00 Zn =0.00	ABS=0.01 Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu =0.01 Zn =0.00			
	Sinca (SiO ₂)		15 A	18 C Z	15 Z	13 C Z	11 Z Z	17	9.0	15			
lon	Boron (B)	214)	0.46	0.54	0.22	0.17	0.19	0,13	0.15	0.18			
million per million	Flug- ride (F)	(STA. 2	0.3	0.2	0.00	0.2	0.0	0.00	0.00	0.0			
parts per million equivalents per mill	rrate (NO ₃)	ERVOIR	0.00	0.03	0.0	0.0	0.01	0.0	0.00	0.01			
painte	Chia- ride (CI)	SON RES	3.36	3.44	1.35	1.13	1.16	1,35	43	50	53	2.65	
=	Sul - fats (SO ₄)	PATTER	1.83	1.87	0.71	0.58	26	30	27	27	28	6.08	
stituents	Bicar- bonots (HCO ₃)	ANAL AT	2.00	1.97	1.18	1.05	1.06	1.26	1.31	1.44			
Mineral constituents	Potas- Corbon- sium ate (K) (CO ₃)	LIVERMORE CANAL AT PATTERSON RESERVOIR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
ž	Potas- sium (K)	LIV	3 4	3.2	0.05	0.05	0.05	1.9	2.0	0.05			
	Sodium (No)		3.83	93	34	1.17	26	36	31	35			
	Magne- Sium (Mg)		1.42	1.54	7.8	0.60	0.59	0.70	0.73	9.8	2.00c	2.760	
	Calcium (Ca)		38	36	1.10	0.90	19	20	0.95	21 1.05			
_	Hd 33		8.0	7.8	7.4	7.5	7.9	8.3	9.4	7.7			
2000	onductan micrombos at 25° (830	795	359	310	318	350	337	368	389	290	
0	0		Cenal	Canal	Canal	Canal	Canal	Canel	Canal	Canal	Canol	Canal	
	Temp n of												
	Elevation in of (feet)		707.8	7.07.7	707.4	708.6	708.1	702.5	709.1	709.2		706.0	
	and time sampled		5-13-63	5-27-63 1350	6-10-63	6-24-63	7-8-63	7-22-63	8-5-63 1530	8-19-63 1345	9-3-63	9-30-63	

Laboratory pH Field pH

Determined by addition of analyzed constituents

Gravimetric determination.

OUT 002 TO-9 H-9-5/528 Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division at Laboratories, or United States Debits Health Service.

Mineral analyses made by United States Geological Servey, Doubly of Wages Branch, United States Despite Median (MDS), United States Department of Median County, Eland County, Los Angeles Department of Males and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Median County, Los Angeles, Department of Public Median County, County County, Los Angeles, Department of Public Median County, C

TABLE D-3
SUMMARY OF COLIFORM ANALYSES

Station	Station	Colif	orm MPN/	m1
	Number	Maximum	Median	Minimum
North Coastal Region (No. 1)				
Gualala River, South Fork, near Annapolis	9a	620	18.5	0.62
Navarro River near Navarro	8ъ	230	4.3	0.23
Noyo River near Fort Bragg	10c	230	13	0.23
Russian River, East Fork, at Potter Valley Powerhouse	10a	620	6.2	0.23
Russian River at Guerneville	10	7,000+	10.6	2.1
Russian River near Healdsburg	9	7,000+	14.6	0.23
Russian River near Hopland	8a	2,400	57.5	2.3
San Francisco Bay Region (No. 2)		2 4 2 2		
Alameda Creek near Niles	73	2,400	62	1.3
Coyote Creek near Madrone	82	620	6.2	0.045
Los Gatos Creek near Los Gatos	74	620	6.2	0.21
Napa River near St. Helena	72	7,000+	230	6.2
Central Coastal Region (No. 3)				
Carmel River at Robles del Rio	83	62	12.1	0.62
Nacimiento River near San Miguel	43ъ	230	23	0.21
Pajaro River near Chittenden	77	7,000+	62	2.3
Salinas River near Bradley	43c	2,400	6.2	0.23
Salinas River at Paso Robles	43a	2,400	126	5
Salinas River near Spreckels	43	7,000+	230	2.3
San Antonio River near Pleyto	43d	62	6.2	0.62
San Benito River near Bear Valley Fire Station	77a	620	13.8	0.23
San Lorenzo River at Big Trees near Felton	75	2,400	23	2.3
Soquel Creek at Soquel	76	2,400	39	0.62
Uvas Creek near Morgan Hill	96	620	6.2	0.62

TABLE D-4
SPECTROGRAPHIC ANALYSES OF SURFACE WATER

									Cans	lituents	in ports	Canstituents in ports per billion	2						Г	
Stotion	Sto	000	Alumi-	Beryl.	Bismuth C	Codmium	Cobolt	Chro. C	Copper	lron Go	Gollium Ge	1	<u> </u>	Molyb.	Nickel	Lead	molugi	Titanium Vanadium	Zinc	
	o Z		(Ai)	(Be)	(18)	(P))	(00)	(Cr)	(00)	(Fe) ((09)	(Ge)	nese (Mn)	(Ma)	(N:)	(Pb)	(13)	(^)	(zu)	
NORTH COASTAL REGION (NO. 1)										-										
RUSSIAN RIVER, RAST FORK AT POTTER VALLEY POWERHOUSE	10a	5-7-63	247	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	2	< 6.7	< 1.3	3.3	< 1.3	2.6	< 3.3	< 1.3	< 1.3	< 6.7	
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY FOWERHOUSE	10a	9-11-63	6.3	< 1.3	< 0.67	> 3.3	< 3.3	× 3.3	< 3.3	6.9	× 13	< 0.67	< 3.3	≥ 0.67	≥ 0.67	< 3.3	< 1.3	< 0.67	c 13	
RUSSIAN RIVER AT GUERNEVILLE	10	5-6-63	73	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	01	< 6.7	< 1.3	3.3	< 1.3	3.0	< 3.3	< 1.3	< 1.3	< 6.7	
EUSSIAN RIVER AT GUERNEVILLE	10	9-13-63	8.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	4.1	× 13	< 0.67	V*	\$ 0.67	≥ 0.67	< 3.3	< 1.3	5.3	< 13	
SAN FRANCISCO BAY REGION (NO. 2)																				
ALAMEDA CREEK NEAR NILES	73	5-14-63	41	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	5.2	< 6.7	< 1.3	× 3.3	≤ 1.3	3.5	< 3.3	< 1.3	8.7	< 6.7	
ALAMEDA CREEK NEAR NILES	73	9-4-63	26	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3,3	26	< 13	< 0.67	× 3.3	\$ 0.67	≥ 0.67	< 3.3	< 1.3	21	د د د	
ARROYO DEL VALLE NEAR LIVERMORE	7.1	5-14-63	23	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	4.3	< 6.7	< 1.3	< 3.3	\$ 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 6.7	
ARROYO DEL VALLE NEAR LIVERHORE	11	9-3-63	9.3	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	9.3	< 13	< 0.67	< 3.3	< 0.67	≥ 0.67	< 3.3	< 1.3	< 0.67	< 13	
COYOTE CREEK NEAR MADRONE	82	5-14-63	193	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	31	< 6.7	< 1.3	< 3.3	< 1.3	4.1	< 3.3	< 8.0	< 1.3	< 6.7	
COYOTE CREEK NEAR MADRONE	82	9-2-63	7.3	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	17	< 13	< 0.67	< 3.3	≥ 0.67	2.9	< 3.3	0.9	< 0.67	< 13	
NAPA RIVER NEAR ST. HELENA	72	5-8-63	80	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	17	< 6.7	< 1.3	17	< 1.3	3.3	< 3.3	< 1.3	5.9	< 6.7	
CENTRAL COASTAL REGION (NO. 3)																				
PAJARO RIVER AT CHITTENDEN	77	5-15-63	25	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	< 3.3	< 6.7	< 1.3	< 3.3	< 1.3	7.9	< 3.3	< 1.3	6.7	< 6.7	
PAJARO RIVER AT CHITTENDEN	77	9-2-63	8.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	9.3	× 13	< 0.67	< 3.3	≥ 0.67	4.5	< 3.3	< 1 3	::	< 13	
SALINAS RIVER NEAR SPRECKELS	43	5-16-63	45	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	5.7	< 6.7	<, 1.3 ←	< 3.3	\$ 1.3	< 1.3	< 1.3	< 1.3	=	< 6.7	
SALINAS RIVER NEAR BRADLEY	430	9-4-63	8.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3		٠ تا ^	< 0.67	8.0	19	7.3	< 3.3	< 1.3	6.3	ر ا	
						Ī														

TABLE D-5
RADICASSAYS OF SURFACE WATER

((1:	a	1	Pico curies per liter	es pe	er liter	2003
REGION (NO. 1)							
BIG RIVER NEAR MOUTH	8 c	:5/1/63	0 + 0.2	0 +1	0.2	4.2 ± 4.7	0.8 ± 4.7
BIG RIVER NEAR MOUTH	8c	9/13/63	0.1 ± 0.4	0 +1	0.3	2.2 ± 6.2	0 ± 6.1
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	2/6/63	0 + 0.2	0 +1	0.2	2.2 ± 4.2	0 + 4.2
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	9/13/63	4.0 + 4.0	0 +1	0.3	0 ± 6.1	0 + 6.1
NAVARRO RIVER NEAR NAVARRO	8 _b	5/1/63	0 + 0.2	0 +1	0.2	7.9 ± 4.4	2.2 ± 4.3
NAVARRO RIVER NEAR NAVARRO	8 _b	9/13/63	0.3 ± 0.4	0.5 + 0.	4.0	4.0 ± 6.2	5.0 ± 6.2
NOYO RIVER NEAR FORT BRAGG	10c	5/1/63	0 + 0.1	0 +1	0.1	6.4 + 4.3	2.6 ± 4.3
NOYO RIVER NEAR FORT BRAGG	10c	9/13/63	0.2 ± 0.3	0.1 + 0.	0.2	2.9 ± 6.2	0.4 ± 6.1
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	.5/7/63	0.2 ± 0.2	0.3 + 0.	0.2	10.4 + 4.4	19.8 ± 4.6
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	9/11/63	4.0+ 0	0 +1	7.0	5.1 + 6.2	5.1 ± 6.2
RUSSIAN RIVER AT GUERNEVILLE	10	2/6/63	0.1 ± 0.2	0.1 + 0	0.2	1.1 ± 4.3	4.4 + 4.9
RUSSIAN RIVER AT GUERNEVILLE	10	9/13/63	0.1 ± 0.3	0.3 ± 0.	7.	0.8 ± 6.2	0 + 6.1
RUSSIAN RIVER NEAR HEALDSBURG	6	5/6/63	0 + 0.2	0 +1	0.2	6.6 + 4.2	7.8 ± 4.3
RUSSIAN RIVER NEAR HEALDSBURG	6	9/11/63	0.1 ± 0.3	0 +1 0	0.3	4.1 + 6.2	0 ± 6.1
RUSSIAN RIVER NEAR HOPLAND	& ¤	5/8/63	0.1 ± 0.2	0 + 0.2	2.	8.4 + 4.8	5.8 + 4.8

v0 · · ·	j	a 1	5	हम्बद्धाः स्थापाः स्थापाः	Pico cunies per liter	er liter D ssolved Betu	Solid Beru
REGION (NO. 1)							
RUSSIAN RIVER NEAR HOPLAND	88 a	9/11/63	0	+ 0.3	0.3 ± 0.4	0 + 6.2	3.3 ± 6.2
REGION (NO. 2)							
ALAMEDA CREEK NEAR NILES	73	5/14/63	0	+ 0.3	0 + 0.3	6.4 + 6.2	4.3 + 6.2
ALAMEDA CREEK NEAR NILES	73	6/4/63	0.1	+ 0.4	0.5 ± 0.5	7.0 ± 6.1	8.0 + 6.1
ARROYO DEL VALLE NEAR LIVERMORE	71	5/14/63	0.2	+ 0.2	0.5 ± 0.3	1.0 + 6.2	13.4 ± 6.4
ARROYO DEL VALLE NEAR LIVERMORE	71	9/3/63	0	+ 0.3	0 + 0.3	11.2 ± 6.2	4.7 ± 6.1
COYOTE CREEK NEAR MADRONE	82	5/14/63	0.2	+ 0.3	0.4 ± 0.3	4.7 ± 6.4	8.8 + 6.5
COYOTE CREEK NEAR MADRONE	82	6/2/63	0.1	+ 0.4	7.0 + 0	0 + 6.3	0 ± 6.2
LOS GATOS CREEK NEAR LOS GATOS	74	5/16/63	0	+ 0.4	5.0 + 0.4	0.9 + 6.4	4.9 + 0
LOS GATOS CREEK NEAR LOS GATOS	74	6)/2/63	0.1	+ 0.4	0 + 0.3	0 + 6.3	0 + 6.2
NAPA RIVER NEAR ST. HELENA	72	5/8/63	0	+ 0.1	0 + 0.1	7.3 ± 4.5	4.8 ± 4.2
REGION (NO. 3)							
CARMEL RIVER AT ROBLES DEL RIO	83	2/16/63	0.3	+ 0.4	0 + 0.3	6.9 + 6.3	1.9 ± 6.2
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	69/4/63	0.4	+ 0.4	0.1 ± 0.4	0 + 6.1	0 ± 6.1
PAJARO RIVER NEAR CHITTENDEN	77	5/15/63	0.3	+ 0.2	0.1 ± 0.2	4.0 + 6.3	0.4 ± 6.2
PAJARO RIVER NEAR CHITTENDEN	77	9/5/63	0	+ 0.4	0 ± 0.3	8.4 ± 6.2	0.6 ± 6.5

TABLE D-5
RADIOASSAYS OF SURFACE WATER

	0			Pico curies per liter	er liter	
Station	20	Date	Dissolved Alpha	Sond Alpho	D sscived Beta	Solid Betu
REGION (NO. 3)						
SALINAS RIVER NEAR BRADLEY	43c	5/15/63	0 + 0.2	0.7 ± 0.4	6.8 ± 6.2	16.3 ± 6.3
SALINAS RIVER NEAR BRADLEY	43c	6/4/63	9.0 + 0	0 + 0.5	0 ± 6.2	1.9 ± 6.2
SALINAS RIVER AT PASO ROBLES	43a	5/15/63	0.3 ± 0.5	0 + 0.3	1.5 ± 6.3	0 + 6.3
SALINAS RIVER NEAR SPRECKELS	43	5/16/63	4.0 + 9.0	0.2 ± 0.3	13.1 ± 6.3	7.8 ± 6.2
SALINAS RIVER NEAR SPRECKELS	43	9/5/63	4·0 - 0	4.0.4	29.7 ± 6.5	0.5 ± 6.0
SAN ANTONIO RIVER NEAR PLEYTO	43d	5/15/63	0.5 + 0.5	4.0.4	0 + 6.1	0.1 ± 6.1
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	5/15/63	0.1 ± 0.3	0.1 ± 0.3	4.8 + 6.2	3.6 ± 6.2
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	9/4/63	0.5 + 0.6	0.4	4.8 + 6.2	0 + 6.1
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	5/16/63	0 + 0.4	0 + 0.4	0 + 6.3	0 + 6.3
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	9/5/63	0.3 + 0.4	0 + 0.4	5.8 + 6.2	2.4 + 6.1
SOQUEL CREEK AT SOQUEL	92	5/16/63	0.1 ± 0.3	0 + 0.3	0 + 6.2	0 ± 6.1
SOQUEL CREEK AT SOQUEL	92	9/5/63	4.0 ± 0	4.0.4	5.9 ± 6.2	6.9 ± 6.2
UVAS CREEK NEAR MORGAN HILL	96	5/14/63	7.0 + 0	4.0.4	8.5 ± 6.2	0.2 ± 6.1
UVAS CREEK NEAR MORGAN HILL	96	9/5/63	0 + 0.3	0 + 0.3	0 + 6.1	0.9 + 0

TABLE D-6

DESCRIPTION OF SALINITY OBSERVATION STATIONS 1963

STATION	Miles from Galder. Gate	Tir Inte (t	rval	LOCATION
	(0)	Hours	Min	
Sobraute Beach - San Pablo Bay	20.5	2	50	South shore of San Pablo Bay from wherf approximately 1.5 miles upstream from Point Pinole.
Crockett - San Pablo Bsy	27.7	3	30	West end of Carquinez Strait, south shore, 0.2 mile east of Carquinez Bridge on wharf of C and H Sugar Refinery Corporation.
Benicia - Csrquinez Strait	32.5	3	50	East end of Carquinez Strait, north shore, 1.1 miles west of Southern Pscific Company railroad bridge at Benicia Araenal.
Martinez - Carquinez Strait	33.1	3	50	Sampled from Shell 011 Company dock, about 0.6 mile downstream from Southern Pacific Company railroad bridge.
West Suisua - Suisun Bay	37.0	4	10	West end of Suisun Bay, north shore, 2.5 miles northeast of Southern Pacific railroad bridge at service pier of U. S. Maritime Commission, Reserve Fleet mooring area.
Innisfail Perry - Suiaun Bay	47.3	4	50	Montezuma Slough, sbout one mile east of junction with Cutoff Slough near north end of Grizzly leland.
Port Chicago - Suisun Bay	41.0	4	20	South Shore of Suisun Bay st U. S. Naval ammunition loading wharf below Fort Chicago.
Spoonbill Creek + Suisun Bay	48.9	5	05	At Sacramento Northern Railroad crossing.
Pitteburg - Suisun Bay	48.0	5	00	East end of Suisun Bay, south shore, at Pittsburg Yscht Harbor.
Collinaville - Sacramento River	50.8	5	25	Sacramento River, north bank at junction with San Joaquin River.

OBSERVED SALINITY AT BAY AND **DELTA STATIONS** MAXIMUM

In parts of chloride per million ports of water*

STATION					١	WATER	YEAR	?				
STATION	1931	1938	1939	1944 с	1952	1955	1956 d	1958	1959	1961	1962	1963
Socramento — San Jooquin System Unimpoired Runoff in Percent of Average (e)	34	188	49	62	168	63	175	166	66	61		
Sobrante Beach*t					14200	19000	16200	13800	17200	15000	15600	13300
Crockett					13200	16600	15300	11900	15000	19900	13900	13100
Senicis**				13900	10400	15100	12300	12100	19200	14000	12300	9780
Martinez	16900	11600	16400		8900	11900	11900	7150	10200	11600	12700	11500
West Suisun**					7900	12600	11200	7520	13200	13200	11100	8280
Innisfeil Ferry**	14000	3300	13600	7900	4200	5780	5200	3040	9640	13900	5690	2890
Port Chicago					6900	12500	9750	5830	15640	11900	9370	9200
Spoonbill Creek	13900	2560	11800	7300	2800	6400	4040	930	6270	5900	3540	2940
Pittsburg					1200	7800	3440	1200	5110	3920	3980	1350
Collinsville	12600	860	10400	4700	783	3880	2280	550	5430	4300	2430	1980

^{*} Ocean water contains approximately 18,200 parts per million. * Station discontinued July 1963.

^{*} Station discontinued July 1993.

A Milesge measured to station along main channel. For stations off the main channel, the milesge shown is the same distance slong the main channel to s point whereon the time of the occurrence of the tidal phase is the same as that of the observation station.

The interval between high tides at Golden Gate and time for teking samples at station.

Releases of stored water from Shasta Lake commenced in 1944.

Releases of atored water from Folsom Reservoir commenced in 1956.

Average taken as mean annual unimpaired flow at foothill stations of major cributaries for 50-year period October 1907 through September 1957.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million parts of water

STATION				DAT	TE			
37471014	10-2-62	10-6-62	10-10-62	10-14-62	10-18-62	10-22-62	10-26-62	10-30-62
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoombill Creek Pittsburg Collinsville	13300 11400 7820 a9000 7820 2740 6460 1010 492 a426	a12700 10700 9180 a8470 bd8280 a2890 6130 a1490 ad447	a14200 e11500 e9780 e9970 7080 d7830 a1250 a642 a382	11900 9910 7920 a8870 2080 1560	a4530 2640 944 1320 755 a1510 566 a212 a142 a68	4490 4530 3580 ae944 755 85 61	7520 4760 3970 2910 781 969 71 19 40	8680 6230 5190 a3970 2470 55 29 31
STATION				DAT	TE.			
STATION	11-2-62	11-6-62	11-10-62	11-14-62	11-18-62	11-22-62	11-26-62	11-30-62
Sobrante Beach Crockett Benicia Martinea West Suisun Innisfail Ferry Port Chicago Spoonbill Creek Pittsburg Collinsville	8600 4200 7500 1730 843 1470 a56	9020 a7190 4630 5820 2120 935 65 27 21	11000 9770 5960 a6980 135 bd61 27	10400 8540 7340 7900 4400 d3170 260 136 a26	a9500 7130 4050 5710 1390 1080 138 53 26	13000 9220 8100 8960 5180 1040 4360 145 de63	11700 10000 4920 9250 6090 357 314 48	10200 7670 5200 8290 4000 1240 2640 280 81 a41
STATION				DA.	TE.			
STATION	12-2-62	12-6-62	12-10-62	12-14-62	12-18-62	12-22-62	12-26-62	12-30-62
Sobrante Beach Crockett Benicia Martinez West Sussun Innisfail Ferry Port Chicago Spoombill Creek Pittsburg Collinsville	9440 7330 4510 6860 2320 171	9890 7040 5070 7830 71 34 20	10200 8580 5130 7710 d2630 2580 38	10200 7000 5460 5980 d3080 728 72 29 a10	8140 7130 4740 5070 2410 1010 1450 46 d27	8790 5900 6520 1130 2760 23	7360 5670 3280 6360 1390 30 24	8350 5590 3080 810 713
STATION				DA*	TE.			
STATION	1-2-63	1-6-63	1-10-63	1-14-63	1-18-63	1-22-63	1-26-63	1-30-63
Sobrante Beach Crockett Bricia Bricia Bricia Bricia West Sussun Innisfall Ferry Port Chicago Sponobill Creek Pitsburg Collinsville	8230 5780 2810 5130 1160 30 27	9060 d7480 5400 4470 2530 2530 32 2330 32 bd27 22	9120 7340 4470 7110 2060 62	8680 5340 2540 25670 2140 641 443 42 434 24	8250 7290 6070 7360 ae1840 4340 4340 47 20	10600 7580 9180 856 4240 376 d96 142	11000 6380 8020 4030 4070 431 52	11100 9250 566090 a8310 3790 1200 4070 444 146 106

^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide.
a Taken after low high tide.
b Taken on following day.
c Taken two days later,
e Taken on preceding day.
d Taken over one hour off scheduled time.
f Taken two days earlier.

Taken two days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million parts of water

STATION				DA*	TE			
5)411014	2+2-63	2-6-63	2-10-63	2-14-63	2-18-63	2-22-63	2-26-63	
Sobrante Beach Crockett Benicia Martinez West Swisun Innisfail Ferry Port Chicago Sponobill Creek Pitcsburg Collinsville	4700 3550 1910 2850 496 1050 bd37 173 d16	1440 763 54 38 142 8 14	4690 2400 514 935 76 226 35 14	2200 1670 1060 59 19 19	3470 1970 250 386 255 20 bd25	4490 3970 2800 492 337 e371 31 32 18	a6170 3370 810 a1870 178 a450 33 a29 ab32 a48	
STATION				DA.	TE			
	3-2-63	3-6-63	3-10-63	3-14-63	3-18-63	3-22-63	3-26-63	3-30-63
Sobrante Beach Crockett Benicia Martinz Martin	6360 43860 3030 1530 479 466 29	8060 6700 6890 1616 31 24	9090 5420 1690 32 30 27	a11200 7280 3750 5630 2800 a476 2620 a34 abd32 25	7860 5730 3650 6540 ae1070 524 ae1140 46 40 23	12300 11200 6700 9610 510 529 284	ad11400 10100 7090 a5730 2600 a752 2820 a246 a95 a30	5340 5920 3400 3980 849 8752 680 49 73 23
STATION				DA:	TE			
	4-2-63	4-6-63	4-10-63	4-14-63	4-18-63	4+22-63	4-26-63	4-30-63
Sobrante Besch Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoobbll Creek Pittsburg Colliosville	5150 1460 291 583 78 607 24 bd21	ad f8450 4180 2620 2720 121 de308 a19	a3790 2230 158 a3570 46 a170 d20 a12 a16	a2010 874 85 801 48 ad121	a2670 1070 b655 a22 de29 b17 a7 a7 a6	a2960 1140 316 36 a86 a12 abd23	a2770 1260 de866 30 a109 d56 a10 a21	3610 807 277 221 ae70 ae61 8 16
STATION				DA	TE			
STATION	5-2-63	5-6-63	5-10-63	5-14-63	5-18-63	5-22-63	5-26-63	5-30-63
Sobrante Beach Crockett Semicia Martinez West Sulsun Imnlsfail Ferry Port Chicago Spoonbill Creek Pitchurg Collinsville	3270 2670 1090 1460 129 bd33 a15 a18 a8	a6040 2820 a1390 317 a134 d24 a12	a7330 3790 2180 a2030 163 40 a14 a15 a11	a5150 2380 792 1140 287 148 16 15	a8910 5540 3910 5150 2250 a121 bd1110 a14 a13 a17	a7920 5150 4060 4460 624 a12 a13 a16	a7520 3860 2570 3960 198 44 12 a15	a8510 e3960 e2670 e2970 e366 a12

^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide.
a Taken after low high tide.
c Taken tow days later.
b Taken tow days later.
c Taken on preceding day.
c Taken tow located above tidal action.
d Taken tow days earlier.
f Taken tow days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million ports of water

STATION				DAC	re			
	6-2-63	6-6-63	6-10-63	6-14-63	6-18-63	6-22-63	6-26-63	6-30-63
Sobrance Beach Crockett Beolcia Martines West Suisun Innisfail Terry Fort Chicago Spoombill Creek Fitteburg Collinsville	a5440 4750 3370 1980 1240 bd495 a13	a9110 5640 4750 5350 2480	*10500 6730 5540 5940 4010 2600 d19 13	e12100 e6830 e4750 e4950 e2970 e990 a30 a22 a15	al1500 9600 7330 6140 abd109 3910 ad109 a58 a41	e10300 8510 6930 6530 5440 a188 a64 a14	9920 7720 3370 6930 3860 96 ebd62 a25	e11700 e5540 e7030 e3860 a166
STATION				DA	TE			
	7-2-63	7-6-63	7-10-63	7-14-63	7-18-63	7-22-63	7-26-63	7-30-63
Crockett Hartinez Port Chicago Spombill Creek Pittsburg Collinaville	9180 8700 a84 a56	8920 ad6450 5900 e409 cd426 a40	8820 88370 4470 a586 368	e10400 aed6250 aed4490 e1100 abd353 a311	11700 9510 7330 d882 a445	12200 9530 7720 abd1720 d817 1090	10300 a8750 1270 a728	e11300 e9780 e4850 e1920 aed1170 a794
STATION				DA	TE			
	8-2-63	8-6-63	8-10-63	8-14-63	8-18-63	8-22-63	8-26-63	8-30-63
Crockett Hartleer Port Chicago Spoombill Creek Pitteburg Collinsville	12900 10600 a5640 a2450 a1260	13100 a8000 7830 a2640	12600 11500 6670 a2350	e12400 a8180 e8120 a2500 ad906	13200 11400 8780 abd1130 e1720	12400 9880 8530 2520 1980	10900 9710 7190 2250 a1350 a1030	e12100 e11400 9200 a2940 a1370
STATION				DA	TE			
	9-2-63	9-6-63	9-10-63	9-14-63	9-18-63	9-22-63	9-26-63	9-30-63
Crockett Martinez Port Chicego Sponobill Creek Pitteburg Collinsville	12600 a2350 a1030	12400 10900 5490 2300 a1400	11800 a8240 6860 1690 a515	11000 10800 6280 a578	10800 9310 5290 882 a333 a98	9800 a8820 3330 417	10700 3820 a368 e137 a44	d9900 5490 a735 ebd167 a220

^{*} Samples taken at four-day intervals approximately one and one-half houre after high high tide.

a Taken after low high tide.

c Taken two days later.

b Taken oo following day.

d Taken over one hour off acheduled time.

c Taken on preceding day.

f Taken two days earlier.

FIGURE D-1

ELECTRICAL CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1963

ELECTRICAL CONDUCTANCE
DAILY READINGS AT 1300 HOURS
BETHANY FOREBAY AT
SOUTH BAY PUMPING PLANT (STA 207)

1963

APPENDIX E

GROUND WATER QUALITY

GROUND WATER QUALITY

Data presented in this appendix are measured values of selected quality characteristics of ground water samples collected in the Central Coastal Area during the period from July 1, 1962 through June 30, 1963. This appendix consists of a table showing results of analyses of ground water and a table showing results of radioassay of ground water. Wells and ground water basins are numbered in accordance with the system described in Appendix C. The data are presented in water pollution control board region, ground water basin, and well number order.

Analyses of Ground Water

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and water temperature is reported in degrees Fahrenheit. Values for temperature are those measured in the field at the time of sampling. Laboratory analyses of ground water were performed by the Department of Water Resources, the United States Geological Survey, and Lein Laboratory, all in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or in accordance with U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable results. Heavy metal concentrations were determined by "wet" analyses.

Table E-1 presents analyses of ground water. Definitions of abbreviations used in this table are as follows:

1. TDS---Total dissolved solids by gravimetric determination at 180° . The superscript "a" indicates a value determined by

summation of constituents.

- 2. T.O.--Odor.
- 3. ABS---Alkyl benzene sulfonate.
- 4. DWR---Department of Water Resources.
- 5. USGS--United States Geological Survey.
- 6. LL----Lein Laboratories.

Radioassay of Ground Water

Radioassay of ground water is presented in Table E-2. Determinations were made by the California Disaster Office of suspended and dissolved alpha and beta activities in some samples and for gross activity in other samples. The term pico curie used in this report is also written micro-micro curies and is further defined as 10^{-12} curies. The most probable error is reported along with the measured value. Results should be considered qualitative and undue emphasis should not be given to quantitative values.

	Analyzed by c			USGS	uses	USGS	0.505	uscs	OWR	USGS	USGS	USGS	USGS	USGS		DWR	USGS	uscs
Hardness	N.C.			9	34	0	0	0	0	0	0	0	0	112		6	0	0
		2		259	127	157	125	112	136	134	117	139	116	81		198	153	141
ď	Sod I	1		24	13	10	17	16	32	28	36	07	986	23		77	=	21
Total	solved solids in ppm			376	184	199	170	141	240	202	200	250	1270	149		239	179	190
	Silico (SiO ₂) Other constituents ^d																	
		_		25	18	28	91	9]	135	28	26	59	21	[3]		21	24	61
Lign	Baran (B)			6.0	0,3	1.0	0.2	0.5	0,15	0,1	0,1	0.2	[8]	0.3		0,34	0,3	1.5
Ser mi	Flug- ride			0.0	0.7	0.4	0.6	0.2	0.0	0.9	0.05	0.02	0.06	0.04		0.2	0.03	0.02
equivalents per millian	Ni- trate (NO ₁)			0.9	36	4.1	0.02	0.02	0.5	0.02	0.9	0.02	2.1	0,27		0.03	0.02	9.7
d	Chia-			0.03	7.8	14 0.39	7.8	0.11	20	24	16	0,20	505	6.8		7.6	5.0	7.4
č	Sul - fate (SO.)			50	0.35	14	14 0.29	8.0	6.4	0.0	0.00	0.12	0.02	0.31		200	0.23	12 0,25
Mineral constituents	Bicar- banate	1203/	(1-15)	356	113	181	158	147	3.26	3,03	3.28	246	3.82	1.38	(1-16)	3.79	3.08	3.02
•ral co	ate	150		0000	0.00	0.20	0.00	0.10	00.00	0.00	00.00	0.23	0.00	0.00		00.00	0.00	0.00
2	Patas-Carbon- sium ate		OKEAH VALLEY	0.04	0.7	0.2	0.05	0.03	1.0	0.0	0.3	0.9	0.7	0.3	SANEL VALLEY	0.03	0.5	0.9
	Sadium (Na)		NA NA	37	8.9	14	12 0.52	9.8	30	24	30	42	338	0.48	SAN	13	8.4	0.74
	Magne -			22	20	24	13	12 0.99	1,02	19	1,44	17	5.1	9.4		21	24 2.01	200
	Calcium (Ca)			3.34	18	23	28	25	34	23	18	28	38	17		44	21	23
	Ĭ.	1		8.0	7.6	4.8	7.9	8.4	8.3	8.1	7.2	e. 30	7.7	7.2			8,1	8.2
Specific	ance (micro- mhas	at 25° C)		620	294	348	287	257	386	353	348	408	1930	212		408	314	330
	Temp in °F					65	99			63	62	61	63	62			62	62
	Date			9-29-62	79-01	10-2-62	10-62	10-2-62	10-62	10-62	10-62	10-2-62	10-62	10-2-62		10-62	10-62	10-62
State	number and ather number		MDBGM	14N/12W-5K1	14N/12W-11N1	14N/12W-26K1	15N/12W-16El	15N/12W-21H1	15N/12W-35Dl	16N/12W-5Dl	16N/12W-502	16N/12W+9Q1	17N/12W-18A1	17N/12W-28M1		12N/11W-2F1	13N/11W-701	13N/11W-1881
	Owner and			6. C. Gilley	domestas	M. Mebtonen donestre	outy of Ukiah unicipal	Regina Water Co. municipal	D. Broggi Ranch domestic and irrigation	Trank Brown domestac	Frank Brown irrigation	F. C. & I. industrial and domestic	J. E. Nelson	Harry Mathews domesta		A. DeMarcantonino	L. F. Hawn irrigation	A. Damiano irrigation

TABLE E-1

		Analyzed by c		uses	USGS	0808
1	88			0	0	-
	Hardne	as CaCO 3 Tatal N.C. ppm ppm		9.7	86	133
	-	Popular		15	27	e .
	Total	solved solved solids		115	172	177
		Salica (SiO ₂) Other constituente ^d				
		Silica (SiO ₂)		116	07	গ্
	Tian	Boron (B)		0.4	0.0	<u>[</u>
	per m	Flua- ride (F)		0.7	0.04	0.00 0.00
	equivalents per millian	NI- trate (NO ₃)		0.03	0.11	0.00
	odnivo	Chia- ride (Ci)		4.2	0,39	0,25
	ě	Sul - fate (SO ₄)	7	9.0	0.02	0.29
	Mineral canstituents in	Potas - Carbon - Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	(Cont,)	106	2.21	2 - 15
	neral c	Carbon- ate (CO ₃)	(1-16	00.00	0,00	0.00
	ž	Potas- sium (K)	ALLEY	0.9	0.4	0.00
		Sodium (Na)	SANEL VALLEY (1-16)	$\frac{7.1}{0.31}$	17 0.74	010
		Calcium Magne -		10	15	1,36
		Calcium (Ca)		17	14 0,70	24 1.20
		표		8.1	8.0	
	Specific	once (micra- mhos at 25° C)		194	261	303
		Te Tin of F		63		
		Date sampled		10-62	10-62	1062
	State well	number and ather number	NDB62N	13N/11W-1801	13N/11W-19N1	13N/114-30H1
		Owner and use		J. H. Pomroy & Co. irrigation	Hopland Public Utility Olstrict municipal	Grace Runh domestics and irrigation

FABLE E-1

ANALYSES OF GROUND WATER

Analyzed by c DWR OWR DWR OWR DWR DWR OWR OWR 1 Ľ 3 님 님 Ⅎ Н Н Hardness as CaCO₃ Total N.C. 0 0 0 730 38 991 1118 439 185 128 304 197 Total Per-dis-cent solved sod-solids ium 73 27 17 44 33 00 2480 2880 0801 382 792 394 canstituentsd Silica Other (SiO₂) 16 24 8 [3 82 133 0.3 0.4 0,4 Boron (B) equivalents per millian 0,1 0.0 0.0 0.2 0.1 0.4 0.2 - Piug - 186 (F) trate (NO₃) 7.4 9.6 11 0.00 7.6 130 음흥(3 145 1080 28 50 76 60 1260 165 2270 369 346 18 50 Sul-fate (SO₄) 34 308 0000 0.00 00.00 35 43 34 2) Mineral constituents Bicar-banate (HCO₃) (NO. 580 500 448 9.10 116 168 433 (2-1) 246 REGION Carbon-ate (CO₃) PETALUMA VALLEY 42 12 6.0 00.00 00.00 0.00 15 SAN FRANCISCO BAY Patas-Sium (X) 6.0 21 7.0 0.02 0.6 Sodium (Na) 225 325 22 29 3.10 94 930 365 Magne -s (mg) 7.9 30 201 2,21 5.9 51 30 5.53 Calcium (Ca) 65 175 28 5,85 60 2.98 39 42 30 8.9 7,2 7.8 8.2 표 8.4 8,4 8.2 Spacific conduct-ance (micro-mhos 1270 3700 006 365 200 029 1120 7480 1300 7430 1920 193 610 658 984 Temp In °F 67 99 Date sampled 10-25-62 10-26-62 9-25-62 9-26-62 State well number and ather number 3N/7W-14Fl 3N/6W-1181 3N/6W-15M1 3N/6W-18M1 MDB6M 4N/6W-7H2 3N/6W-1Q1 3N/6W-3C1 4N/6W-7H1 stock H. Cloakie domestic and stock S. K. Herzog Co. domestic and stock Rupprecht domestic, stock, and irrigation opes irrigation and Owner and . White domestic and irrigation Karl Johnson domestic . Strozzi stock Lapes domestic 0. ్ర

TABLE E-1

		D																		
		Analyzed by c			DWR	11	DWR	11	DWR	77	DWR	11	DWR	TT	DWR	크	DIVIR	11	DWR	13
	Hardness		P.C.			0		0		1522		9158		0		87		0		453
			Tatal			32		189		1755		9238		192		295		126		615
	ď	sod-	Ē			93		15		36		35		09		35		53		27
	Tatal	solved				524		278		3440		18100		580		260		334		1100
			(SiO ₂) Other constituents																	
		Salica	(SiO ₂)			34		17		25		25		14		21		25		21
	ion		(8)			0.8		0.1		0.4		0.7		0.5		0.1		0.1		0.1
m. Ition	3	Fluo-	şe.			0.1		0.0		0.1		0.1		0.2		0,1		0,1		0.01
million and million	ants per	ž	(NO ₃)			0,00		3.9		8.3		0.00		0,00		0,00		0.00		110
	equivalents per million		(i)		152 4,29	97	19.0	12 0.33	1720	1773	9700	9620	105	3.20	161	153	45	43	441	390
	ıls ın		fore (SO ₄)	~1		10		16		0.03	·	1020		0.23		29		29		34
	Mineral constituents	Bicor	banate (HCO ₃)	(Cont.)		345		3.77		284		98		342		3.75		3.55		3.05
	eral co		(CO ₃)	(1-2)		15		4.5		00.00		00.00		15		12 0,40		3.0		6.0
	ž	Potos -	Sium (X)	VALLE		0.03		2.4		19		45		1.8		3.9		2.6		2.3
			(Na)	PETALUMA VALLEY		195		16		463		2800 102.17		135		75		67		107
		Magne-	(Mg)			5.9		24 2,00		307		2085		24		33		9.1		2.29
			(Ca)			3.0		36		197		266		37		3,22		36		200
		¥				8.6		4.8		1.8		7.6				8,5		-7 30		7.8
	Specific	ance	mhos at 25° C)		1060	890	372	077	5560	5500	23800	23000	932	850	935	0006	549	240	1910	1700
		Temp	- E																	
		Date	Dandung		10-29-62	4-4-63	10-25-62	4-17-63	10-29-62	4-17-63	10-26-62	4-4-63	10-26-62	+-4-63	10-26-62	4-4-63	11-29-62	4-4-63	10-29-62	4-4-63
	State well	number and	equip le la	MOBSM	4N/6w-21Q1		4N/6W-27R1		4N/6W-33R1		4N/7W-201		5N/6W-30D1		5N/7W-8D3		5N/7W-19A1		SN/7W-20L3	
		Dwn and	use		L. A. Bourke	dome alle attende	S. K. Herzog Co.		U. White		Union Oil Co.		F, Riebli domestic and stock		N. J. Matzen domestic		Oberg Lumber Co.		Al's Barber Shop	

	70	-																		
	Analyzed	-		OWR	DWR	11	DWR	TT		DWR	USGS	DWR	DWR	DWR	nscs	DWR	uscs	DWR	DWR	nscs
	os CoCO 3	N.C PDM		0		0	22	22			38				127		0			0
		Totol		174		29	214	269			347				260		52			97
	- to 5	Ē		77		93	2.7	24			35				33		62			62
10,01	pevios	prios		353		534	391	726			563				537		219			330
		(SrO ₂) Other constituents ^d																		
	College	(SrO ₂)		24		21	79	52			27				35		12]			675
Ę		(8)		0.0		0.3	0.0	0.1		0.24	0.1	0.19		0.20	0	0.14	01		0.12	01
million	F 1.10	. (F)		0.03		0.2	0.4	0.1			0.4				0.2		0.1			0.00
ports per million	į	(NO ₃)		1.3		0.00	17	0.35		28	5.0	169	3.13		0.0		20			0.00
ports per million	2	\$ £ £		46	69	68	46	45		3.89	3.55	177	174	98	97	32	29	90	97	105
E	11.0	(SO ₄)	~1	21		19	0.35	20			37 0.77				107		12 0.25			0.21
Mineral constituents	9	sium ote bonote (K) (CO ₃) (HCO ₃)	(Cont.	282		351	3.67	284	(2-2)		347				162		87			126
erol c	The state of the s	(CO 3)	(2-1)	0.00		24	5 0.17	9.0	NOMA VALLEY		15				00.00		00.00			0.00
ž		Sium Sium (K)	VALLEY	2.0		0.04	2.7	3.6			1.5				0.03		1.3			0.03
		(No)	PETALUMA	2.78		197	36	39	NAPA-S	96	3.74	5.13		59	58 2 52	42	41		3.04	3.22
		(M)		17		4.4	24	30			3,00				18		6.8			1,14
		(CO)		41 2.05		4.2	46	57			3.94				3.69		9.6			0.80
	Ŧ			0.8		0.6	e. 3	7.8			8.6				8.0		8.0			8.0
Specific	once	mhos of 25°C)		585	848	880	580	700		1160	1000	1500	1680	782	776	290	303	760	512	585
	Temp	č																		
	Dote	sompled		10-26-62	10-26-62	4-4-63	10-26-62	4-4-63		9-19-62	5-7-63	9-19-63	5-7-63	9-19-62	5-7-63	9-19-62	5-8-63	5-8-63	9-19-62	5-8-63
	Store well	other number	MDB&M	SN/7W-26E1	5N/7W-34E2		N//W-35K1			3N/3W-18GI		3N/3W-18G2		4N/4W-2L1		+N/4W-5C1		4N/4W-5D2	4N/4W-7A1	
	200	957		tkinson to irrigation and stock	r H. f Clark domette, stock,	and irrivation	H Sarteri			. P. Nunn		1 Prekens domestri		apa Ca Airport		donest c		Ray B. dopnest B.	Price Barrelless done at technical	

TABLE E-1
ANALYSES OF GROUND WATER
1963

		Analyzed by c		DWR	1.56%		06/R	550	DWR	OWR	151	OWR	11	OWR	DWR	uses	OWR	USGS	
					50			180	30		9		0			0		0	
	Hordness	Tatal Ppm			308			452	172		80		303			130		7.0	
	ě	Sod mu			36			77	27		50		76			~~		7.1	
	Total	solved solids in ppm			619			1010	259		617		1510			311		336	
		Sitica (SiO ₂) Other canstituents ^d																	
		Silica (SiO ₂)	_		17	r-1	oul	36	27		82		77		01	37		545	
_	Ilian	Boran (B)		0,12	ΦI	0.27	0.22	01		0.19	01	2.4	2.3	2.2	0.19	10	2.2	1.3	
O: E	Der mi	Fluo- ride (F)			0.4			0.0	0.00		0.2		0.1			0.5		0.4	
parts per million	aquivalents per millian	trate (NO ₃)			24			3.8	0.19		2.3	23	9.6	0.9		1.0		0.13	
٥	Bquive	A (10)		101	3.47	362	322 9.08	311	29	3.47	3.33	930	621 17.50	671	45	44	92 2.59	1,86	
	ë.	Sut - fate (SO ₄)	3		5.5			37 0.77	18 0.37		41		00.00			$\frac{9.2}{0.19}$		18	
	Mineral constituents	Carbon- Bicar- ate banate (CO ₃) (HCO ₃)	Cont.		260			332	3.08	_	278		509			3.85		164	
	oral co	arbon- CO 3)	(2)		0.13			0.00	0.20		13		15			0,00		00.00	
	Min	Potas-Carbon- E srum ate b (K) (CO ₃) (t	A VALE		0.8			1.6	0.04		3.2		14 0.37			0.8		3.1	
		Sadium (Na)	APA-SONUMA VALLEY (2-2) (Cort.)	3.35	81 3.52	8.96	143	146	29		182		470		59	62 2.70	113	3.61	
					17			3.90	30		9.8		50 4.06			1,25		7.8	
		Calcium sium (Co) (Mg)			96			5.14	20		11 0.55		40			27		15 0.75	
t		۔			-7 -00			7.9	-7		9.0		8.5			8.2		8.1	
	Specific conduct-	ance (micra- mhas of 25° C)		875	953	2040	1560	1580	5 7 7	176	876	3630	2600	2900	788	205	680	545	
	0, 0	Temp in °F						-							59				
		Sampled		9-19-62	5-7-63	-9-19-62	9-19-62	5-7-63	3-7-63	10-25-62	4-2-63	10-25-62	4-17-63	10-25-62	9-18-62	5-7-63	9-18-62	5-7-63	
	State well	number ond other number	MDBGM	4N/4W-12M1		4N/4W-13E1	4N/4W-14C2		4N/4w-25KI	4N/5W-1402		4N/5W-3281		4N/5W-34DI	SN/4W-9Q2		5N/4W-11F3		
		Owner and use		P. Rogers domestic and stock		Jacobs stock	V. Bassham domestic		H. Mina domestic and stock	U. S. Navy municipal		Sonoma Ranch stock		Sonoma Ranch stock	M. L. George domestic		W. Gellenger domestic		

	1	Andlyzed by c		pc	nscs	00	SS	DK.	E	USGS	pr.	×	*	≃	æ	505	DAR	y a
\vdash		_		DWR	0 08	DWR	0 0565	DWR	DWR	0 0.8	OWR	2 DWR	OWR	OWR	U DWR	0	70	0
	Hordness 00.00	Total			8 8		103			119		001			92	501		106
	Ę.	Pod in			32		51			20 20		17			58	20		25
	Total	solved solves			195		277			1280		158			307	057		272
	T	Silico Other constituentsd																
	ŀ	Silico (SiO ₂)			62		77			28		11			74	20		92
	100	Boron (B)		0.13	0	0.16	0.1		0.49	0.5	0,72	0.0		0,15	0.7	3.8	0,53	0.4
million	E	Fluo- ride (F)			0.2		0.3			0.1		0.01			0.5	0,00		0.00
ports per million	equivolents per million	trote (NO ₃)			3.5		3.1			2.7		0.00		51	0.11	0.0		0.02
8	oviupe	- of c (C)		17	21	49	35	32.31	476	420	58	0.22	26	35	23	2.88	28	24
	ç	Sul - fote (SO ₄)	7		5.2		0.6			141		9,1			0.00	22 0.46		7.6
	Mineral constituents	Bicor- bonote (HCO.)	(Cont		11.84		3.28			342		120			3.28	455		3.21
	rol co	ote CO.,)	.y (2-2		00.00		00.00			8		00.00			8	0.73		0.20
	M.	Potos - Corbon- sium ote (K) (CO s)	A VALLE		2.5		0.07			7.4		0.04			0.04	0.05		0.00
		Sodium (No)	APA-SONUMA VALLEY (2-2) (CORt.)	17	19	51 2.22	50 2.18		67.61	432	96	10			61 2.65	218		50 2.18
	ľ	Mogne - s um (Mg)	2		12 0.96		13			110		16			17	01.86		1.22
		Colcium (Co)			15 0.75		20 1.00			30		15			0.70	24		00,00
t	1	Ŧ			7.9		8.1	-		4.8		8.2			4.8	9.8		S. 5
	Specific conduct-	(micro- mhos		230	257	451	017	809	2340	2210	674	245	374	516	422	1080	450	398
		Temp F en									72							
		sompled		9-18-62	5-7-63	9-18-62	5-7-63	5-8-63	9-19-62	5-8-63	9-19-62	9-19-62	5-8-63	10-24-62	4-2-63	4-2-63	10-24-62	4-3-63
	Stote well	other number	MDB6M			SN/4W-15E1		5N/4W-20K2	SN/4W-21P2		5N/4W-22M1	5N/4W-23C2	SN/4W-29H1	5N/5W-1802		5N/5W-20R1	N/6W-12F1	
		Owner and use		P. A. Gasser		John Healy domestic		F 0, Looney domestic	A. L. Pov dopiestic		Stewart's Dairy stock	Napa State Hospital irrigation	J. Planagan domestic	J. Firmingnar domestic		L Miglioretti domestic and irrigation	domestic and stock	

TABLE E-1

	Analyzed by c		DWR	USGS	DWR	USCS	DWR	USGS	DWR	11	DWR	TI	DWR	uscs	DWR	USCS	DWR	DWR
8 8 8	as CaCO ₃ Tatal N.C			19		4		0		0		0		4		47	٥	66
	1			130		146		65		68		Ξ		26		213	6.8	261
	sod mu			23		38		20		99		89		24		71	9.6	2
Tatol	solive solive spilos			271		350		200		350		292		72		311	347	783
	Silica (SiO ₂) Other constituents ^d																	
	Silica (SiO ₂)			71		83		25		79		52		26		24	001	43
igh	Boran (B)		0,18	01	0,12	01	0.21	0.1	1.4	1.3	0.56	1,9	0,09	01	0.41	0.3	0, 64	0.41
millian sr mill	Fluo- ride (F)			0,00		0,00		0.2		0.02	0.2	0.00		0.0		0.1	0.4	0.3
parts per millian equivalents per millian	NI- trate (NO ₃)		-	0,18		2.8		0.18		00.00		0,00		0.03		16 0.31	2.5	30
Palinbe	Chlo- cci)		8.4	31	2,00	72 2.03	9.8	8,0	63	76	27	55	6.6	6.8	17	18 0.51	13	1.83
ē	Sul - fate (SO _q)	3		0.08		8.0		14		00.00		6.2		60.0		41	00.00	1.27
Mineral constituents	Bicar- banate (HCO ₃)	2) (Con		135		161		11.88		166		140		27		3,26	248	3.24
eral co	arbon- ate (CO ₃)	EY (2-		0.00		00.00		00.00		4.2		2.4		0,00		0.07	0,00	00.00
2	Potas - Carbon- sium ate (K) (CO ₃) (YA VAL		0.04		2.4		4.5		0.31		9.2		0.03		5.2	7.0	0.18
	Sodium (Na)	RAPA-SONOMA VALLEY (2+2) (COFt.)		18		43	32	30		3.20		3.55	7.0	0.18	20	0,74	57	33
	Magne - sium (Mg)			15		17		5.8		0,81		2.1		3.3		28	13	3.21
	Calcium (Ca)			28		31		14		0.55		0.00		5.3		39	14 0.70	2.00
	£			8.2		7.4				7.		8.3		7.7		. 3	7.8	8.2
Specific			205	339	505	512	264	259	677	200	442	007	104	11	522	475	422	189
	Te and																	
	Date		10-24-62	4-2-63	10-26-62	4-2-63	9-18-62	5-8-63	10-24-62	4-3-63	10-24-62	4-3-63	9-18-62	5-8-63	9-18-62	5-8-63	3-8-63	3-8-63
State well	number and ather number	MDBGM	5N/6W-24K1		5N/6W-25P1		6N/4W-15Q1		6N/6W-23M2		6N/6W-26E1		7N/4W-30L1		7N/ -W- 5A6		8: / >W-32C	3N/ W-3201
	Owner and use		M Kiser irrigation		Countly		A. R. Johnson domestic and stock		N. Tarvid domestic		U Stamos domestic		A Fagrani domestre		W. Wheeler dorestic and stock		V. Studebaker domestic	Connolly domestic

	Analyzed by c		œ	uscs	ps.	uscs		OE.	uscs	R	es.		æ	ec.		45	nses
	_		DWR	1 US	DWR	0 US		DWR		DWR	DWR	0	DWR	DWR	0 17	DWK	334 US
Hardness	T COCO 3			35		51			9 135								
				31		84			35 399			171 67			81 345		50 530
&	solved sod- solids lum in ppm			112 3		522 8			730			1070			2200 8		1570
₽.															22		
	Silica (SiO ₂) Other constituents ^d																
	Silica (SiO ₂)			36		9]			28			7]			119		69
Ligh	Boron (B)		0.14	0	12	9.6			0.6			3,4			41		0.9
er mil	Flug-			0.1		5.3			0.8			0.4			0.2		0.03
parts per million equivalents per millian	rate (NO ₃)			4.7		2.8			44			33			00.00		0.21
po	Chio-		8.6	4.2	186	159		7.25	5,56	183	280	232	247	825	860	160	555
ri si	Sul - fate (SO ₄)	[]		8.8		0.2	el el		0.35			63			142		1,83
Mineral canstituents	Bicar- banate (HCO ₃)	EY (2-2) (Copt.)		0.67		3.00	EEY (2-3)		292			476			543		3.92
eral c	ate (CO ₃)			0,00		0.07	1.0 VAI.		15			15			24		0.00
ž	Patas-Carbon- sium ate (K) (CO ₃) (MA VAL		0.8		8,8	AIRFIE		1.4			0.04			2.3		7.5
	Sodium (Na)	APA-SONOMA VALI	13	7.5	165	152	SUISUN-FAIRFIELO VALL	114	100	412	307	305	300	334	30.43	5.35	248
	Magne- sium (Mg)			3.3		5.0			65			27			51.4.15		6.30
	Calcium (Ca)			8.7		12			53			24			55 2.75		86
	Ŧ.			6.7		4.8			8,5			8.			8.6		8.0
Specific	ance (micro- mhas at 25°C)		152	109	927	860		1400	1210	1800	1770	1650	1710	3630	3600	662	2250
	Temp in • F																
	Date sampled		9-18-62	5-8-63	9-18-62	5-8-63		9-25-62	5-9-63	5-9-63	9-25-62	5-9-63	9-25-62	9-25-62	5-9-63	9-25-62	5-9-63
State well	number and ather number	MD86M	9N/6W-31Q1		9N/7W-25N1			3N/1E-4Bl		3N/1E-21D1	3N/1E-22F2		3N/1E-22F3	4N/1W-33A1		4N/1E-8F1	
	Owner and		J. Alcouffe domestic and stock		R. H. Archerd domestic			Mrs. Taylor domestic		McDougal Livestock Co. stock	McDougal Livestock Co. domestic		McDougal Livestock Co. irrigation and stock	Fish & Came Commission.		Guy Stewart domestic	

TABLE E-1

		Anolyzed by c			R		E		K	,	E.		gc		K			E	Æ	IR.
	92			77 0	DWR	0	DWR	82 LL	DWR	0	DWR	0 [[[DWR	0 17	DWR	0 [[[706 DWR	DWR	122 DWR
	iordnes	os CoCO ₃ Total N.C	-			7.5				е			-							
		sad- nm To		42 450		57 7		33 412		40 283		32 336		51 451		53 430	_	50 888	177 77	50 372
	loto	solved solids mqqni		952		260		708		818		546		1080		0901		2160		168
	1-	Silico Other constituents ^d SiO ₂)												10		-		2		
		Silico (SiO ₂)		13		09		22		14		22		13		16		44		44
	Lion	Boron (B)		1.0		0.4		0.7		0.6		=		1.9		1.6		0.7		9.6
	millio ser mi	Fluo- ride (F)		2.0		0.1		0.2		0.2		0.0		0.6		0.4		0.2		0.01
	parts per million equivalents per million	trote (NO ₃)		28		0.00		010		0.02		30		21 0.34		91		0.00		0.44
	d	Chio- ride (Ct)		67	42	39	3,21	98	2.23	62 1.75	50	45	184	3.05	58	1.85		658	3.02	236
	r s	Sul- fote (SO ₄)		145		00.00		2.58		1,80		38		5,18		3.00		13.43		140
	Mineral constituents	Bicor- banate (HCO ₃)	1	625		2.55		6.60		349		423		575 9.43		720	-4)	3.65	330	4.80
,	neral c	Carbon- ote (CO 3)		000		0.00		00.00		00.00		4.8		00.00		00.00	AIN C	00.00		0.20
-	×	Potas-Carbon- sium ote (K) (CO ₃)		0.05		2.4		0.1		0.03		0.2		0.2		0.2	PITTSBURG PLAIN (2-4)	0,31		0.12
		Sodium (No)		150	43	50 2.17	3.87	93	103	3.80	3.09	3.17	236	213 9.25	202 8.79	223 9.70	PITE	415	182	7.60
		Mogne- sium (Mg)		34		8.5		44		42 3.46		3,19		57		3.78		9,76		54 4.41
		Calcium (Ca)		125		16		93		44		3.54		86		97		160		3.02
		Į.		8.0		7.5		8.2		8.2		8.3		7.8		8.1		8.0	0.0	8.3
	Specific			1340	378	380	1120	1100	1070	840	772	870	1860	1640	1500	1540		3200	1480	0671
		Temp in °F																	69	99
		Dote		5-8-63	9-25-62	5-8-63	9-25-62	5-8-63	9-25-62	5-8-63	9-25-62	5-8-63	9-25-62	5-8-63	9-25-62	5-8-63		6-6-63	6-6-63	6-6-63
	Stpte well	number and other number		4N/2W=4D1	4N/2W-5Q2		4N/2W-18M1		4N/3W-13G2		5N/2W-27J4		5N/2W-34Nl		5N/2W-34P4			2N/1E-7R2	2N/1E-22C1	2N/2E-20A1
		Owner and		W. F. Heally	Southern Pacific R.R. domestic		F. P. Smith domestic and stock		D. R. Mangels irrigation		H. J. Beck domestic		domestic		Morris Tract domestic			Continental Can Co. domestic	Dow Chemical Co. irrigation	Fibreboard Products domestic

Dom ppm ppm ppm ppm ppm ppm ppm ppm ppm p
5 17 294
386
0.1 0.37 29
$\begin{array}{ccc} 27 & 12 & 0.1 \\ \hline 0.76 & 0.19 & 0.00 \end{array}$
0.00 4.70 1.33 0.
1.22 0.02 0.00
2 2 0011
67 11 6
and domestic

	Analyzed by c		OWR	OWR		USGS	uses	usgs	USGS	USGS	uscs	USGS	USGS	uses	USGS	USGS
ne 3 s	as CoCO ₃ Tatal N.C.		759	178		224	0	1350	0	228	1460	0	76	0	0	0
			1230	681		967	206	2400	210	430	1550	158	332	184	161	187
à	read sod		31	25		30	57	23	97	ž	26	8	22	41	57	55
Total	solved solids		2170	926		868	558	3770	757	836	2560	375	501	343	7,68	627
	Silica (SiO ₂) Other constituents ^d															
ļ	Silica (SiO ₂)		36	25		24	42	36	37	36	36	35	30	23	53	28
Tion	Baron (B)		1.9	0,50		0.1	0.1	0,3	0.3	0.3	0,3	0.4	0.3	0.3	0.2	0.2
er mi	Fluo- ride (F)		0.03	0.2		0.2	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.1	0.1
equivalents per million	ni- trate (NO ₃)		136	0.03		0.39	8.9	18 0.29	0.5	0.9	0.9	4.6	58	2.1	2.1	0.03
Annbe	Chia- ride (CI)		534	241		217	160	2020	90 2,54	292	1290	28	43	0.76	86	3.86
its in	Sul - fore (SO ₄)		414 8.62	36	N (2-9)	2.10	18 0.37	3,29	96*0	35	130	25 0.52	55	0.46	0.67	0.42
constituents	Bicar- banate (HCO ₃)	(Cont.)	9.41	614	DF SANFA CLARA VALLEY	332	256	1.05	260	3.87	108	288	284	284	266	3.72
Minerol	ate (CO ₃)	(2-6)	0.00	00.00	A CLA	00.00	8	00.00	0.07	0,07	00.00	14 0.47	14 0.47	12 0,40	12 0,40	0.33
ž	Poros-Carbon- sium ate (K) (CO ₃) (VALLEY	0.9	1.4	OF SAN	0.03	6.8	16	4.3	0.20	16	5.2	2.7	3,6	1.4	0.04
	Sodium (Na)	YGNACIO	250	106	BAY AREA	100	129	328	3.74	103	254	3.26	44	2.65	100	105
	Magne- sium (Mg)		156	93	EAST	5,48	28 2,32	20.68	19 1.56	35 2.86	149	17	3.15	20 1.63	1.47	22
	Calcium (Ca)		236	5.94		89	36	549	53	5.74	376	35	3.49	41 2.05	35	38
	F		7.9	7.9		8.1	8.6	7.8	e. 60	8,3	7.9	8,6	8.5	8.6	8.7	8.6
Specific conduct-	ance (micra- mhos at 25° C)		3220	1650		1400	766	6240	777	1380	4330	609	795	575	765	857
	Temp in °F					67	89	68	99				65		69	69
	Sampled		7-10-62	7-10-62		6-17-63	6-17-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63
State wall	other number	NOBGM	2N/2W-36E1	2N/2W-36E2		. 1S/4W-4A1	1S/4W-34F2	2S/3W-21J1	2S/3W-28G1	2S/3W-30A	2S/3W-3002	2s/3w-33H3	2S/3W-34A2	28/3W-3403	2S/4W-3E1	2S/4W-3F1
	Owner and use		A. Buscaglía domestic	domestic		Manass Block Tanning Co. 15/4W-4Al industrial	Red Star Yeast Co. industrial	General Metals industrial	A, Ratto irrigation	Alameda Municipal Golf Course irrigation	Soares	Hohener Packing Co. domestic and industrial	R. A. Zobel irrigation	J. A. Jacklich domestic	Alameda Naval Air Station municipal	Todd Ship Yards Industrial

	- 77																	
	Anolyzed	by c		USCS	0.868	OSCS	OSCS	77	77	0.50%	DWR	±	77	DAK	DAR	DWR	DWR	DWK
	Hardness as CaCO ₃	N.C ppm		0	0	96	00 00	601	0	0	01	80	40.				707	
		Tatai		103	168	37.7	707	521	102	176	214	909	774				470	
	Cent	g E		43	09	0.5	E .	28	7.	99	63	-1	35				77	
	dis-	- 1		218	470	496	704	764	977	585	626	1200	1390				671	
		(SiO ₂) Other canstituents ^d																
	L	(Si0 ₂)	 	28	26	39	티	23	22	37	2	26	24				50	
-	5	(B)		0,1	0,3	0.4	0,3	0.5	0.5	0,7	0,54	1.9	9.6				0,46	
oillie.	E .	(F)		0,1	0,1	0.0	0.0	0.2	0,01	0.1	0.0	0.04	0.2				0,0	
parts per million	S L	trate (NO ₃)		0.02	0.03	51	39	0,87	0.00	0,6	0,4	1.37	141		43		23	
ă	0	CE)	nt.)	38	91 2.57	83	150	3,52	91 2.55	3,27	245	5.28	404	58	2.23	54	150	225
ot ste		fore (SO ₄)	ANTA CLARA VALLEY (2-9) (COME.)	0.27	96*0	95	98	91	59	54	37	210	122				2,23	
Mineral constituents	4	banote (HCO ₃)	VILEY (148	265	142	288	10.8	248	336	249	638	454				328 5,38	
o lored		ate (CO ₃)	ARA V	0,07	19	0,20	0.00	7.2	0,00	0,07	0.00	00.00	0.00				00.00	
2		Sium ate (K) (CO ₃) (ANTA C	0,10	2,2	4.2	6.6	0.8	2.5	7.2	3.0	1.1	0,03				2.3	
		(Na)	REA OF S	38	5.05	3,04	3,70	95	5.87	148	7,48	216	195				64	
		Magne - s.um (Mg)	EAST BAY	0.91	15.	36 2.98	3,04	41 3.40	8.0	20	2.3	23	94				3,65	
		Calcium (Ca)	3	23	43	30	101	7,01	1,38	38	82 4,09	204	155				5.74	
	7	Š		2.5	80.80	4.8	00.1	8,3	8.2	8.3	8.2	00	7.8				8.2	
Specific	conduct- ance	(micro- mhas at 25° C)		379	816	787	1180	1360	735	1000	1200	1900	2050	858	978	827	1140	1420
	Temp	<u>C</u>		67		9	79		74		99							
	000	sampled		6-18-63	6-18-63	6-20-63	6-20-63	6-20-63	6-20-63	6-20-63	6-20-63	6-20-63	6-20-63	5-14-63	5-17-63	5-7-63	6-62	5-10-63
	State well number and	ather number	NOBGN	2S/4W-12R1	2s/4w-25A1 6	3S/2W-7J1	3S/2W-19R4	3s/2w-30R14	35/2W-3203	3S/3W-1G3	38/3W-11Q1	3S/3W-13B2	38/3W-24Q2	48/18-712	45/18-781	4S/IW=7R5	48/1W-1714	
		957		Alameda High School domestic and irrigation	Ratto	Bayside Nursery irrigation	Kruger & Sons industrial	Al Mateas irrigation	Mount Eden Nursery Co. domestic and irrigation	Avansino Mortensen Co.	Irujan Powder industrial	Gamelli irrigation	J. Harat domestic and stock	(wissig Bros. irrigation	Fudena	Decote Masonie Rome domestic and irrigation	M. Freitas Arrigation	

TABLE E-1 ANALYSES OF GROUND WATER

	Analyzed			· ·			~	S	~	~	~	~	~	20
_		_		USGS	DWR	DWR	OWR	USGS	DWR	DWR	DWR	OWR	63 DWR	56 DWR
rdness	os CaCO3	D E C		97				1650		322				
		Total		1 254				12 1690		15 544			27 252	30 222
-	solved sod-	ž .		434 31				2500 1		1 695 1			431 2	371
Taf				77				25(9				
		(SiO ₂) Other constituents								ABS 0.0			13 cr ⁺⁶ 0.00 A1 0.08 As 0.00 Nu 0.00 Ps 0.00 T.0. 70 Se 0.00 Cr.0.00 (total) Fe 0.01 (Total)	Cr ⁺⁶ 0,00 A1 0,27 % 0,01 Nn 0,00 kn 0,00 Nn 0,00 kn 0,00 Cr 0,00 (Total) Phyenols 0,000
	Silico	(Si O		21				17		17			69.00	15
llion		<u>@</u>		0.2				0,3		0,44				0.63
Per m	Flug	(F)		0.1		-		0.3		0.00			0.02	0.02
parts per millian	ż	(NO ₃)		27				9.3		12 0.19		4.4	0.04	0.04
parts per millian equivalents per millian		(CC)	nt.)	76	96	245 6.91	635	1280 36,11	1460	246	3.58	84	62 1,75.	72 2.03
5	- InS	(SO ₄)	00) (6-	1,42				23		1.37			1.39	1.02
Mineral canstituents	Bicar-	(CO ₃) (HCO ₃)	LEY (4	3.13				51		255			3,77	3,31
rol cal	ar bon-	ote CO 3)	RA VAI	00.00				00.00		8			00.00	00.00
M	otas-C	(K) (CO ₃) (t	ITA CLA	0.04				01.0		2.4			0.05	0,00
	4		EAST BAY AREA OF SANTA CLARA VALLEY (4-9) (CORt.)	53				108		46			43	1,91
	Magne -	(Mg)	T BAY &	40				184		50			27 2.19	1.85
	2000	(Ca)	***	35				374		135			57 2.84	52 2.59
	玉			8.2				7.5		5.0			7.7	7.9
Spacific	ance	mhas at 25° C)		709	1060	1550	2430	3980	4830	1290	804	720	888	979
0,	Temp													63
	Oate			9-62	5-7-63	5-7-63	5-7-63	9-62	5-7-63	9-62	5-9-63	5-17-63	9-6-62	12-5-62
State well	number and		MOBGM	45/14-1801		48/18-1861	4S/IW-18H3	4S/1W-18N7		4S/1W-2002		4S/1W-20E1	45/IM-21F2	
	Owner and	85.7		J. M. Enos domestic and	irrigation	Pacific States Steel Company industrial	American Forge Co.	M. Rose domestic and	irrigation	Santa Cruz-Portland Cement Co.	irrigation	Niles Sand & Gravel industrial	Citizens Utilities Co. of California municipal	

٢		Pez o	Т							
		Analyzed by c			DWR	DWR	OHR	DWR	DWR	OWR
	Hordness	0 N			\$		29	19	28	19
			Edd		265		265	269	276	243
-	à	S S S			30		28	25	26	28
	Total	solved solids			503		412	731	421	391
		Silico Other constituents ^d			Cr ⁺⁶ 0.00 A1 0.00 As 0.00 Cu 0.01 Pb 0.00 TO 1.1 Se 0.00 Cr 0.00 (Total) Fe 0.00 (Total) ABS 0.00		Cr ⁺⁶ 0.00 ABS 0.00 Cs 0.00 ABS 0.00 Cs 0.00	Cr ⁺⁶ 0.00 M 0.10 As 0.00 M 0.00 Eb 0.00 M 0.00 E 0.00 Cr 0.00 (Total) Fe 0.02 (Total) Phenols 0.000	Cr ⁺⁶ 0.00 A1 0.00 A8 0.00 Pb 0.00 Nh 0.00 To 0.09 Se 0.00 Cr 0.00 (Total) Fe 0.02 (Total) Phenols 0.000	Cr ⁺⁶ 0.00 Al 0.00 As 0.00 Cu 0.00 Ps 0.00 T.O. 2 Se 0.00 Cr 0.01 (Total) ABS 0.00
		Silico (SiO ₂			71		21	16	18	16
1	ion	Boron (B)			0.59		0,58	09.0	0.62	0.58
11.6	er mi	Flua- ride			0.03		0.03	0.2	0.03	0.00
colling and stone	ents p	- in the state of	1803		8.4	0.08	6.2	0.03	0.03	0.03
1	equivalents per million	Chio-	(CI)	nt.)	2,48	80	1.92	1.35	1.38	54
	us in	Sul - fore	- 1	SANTA CLARA VALLEY (2-9) (Cont.)	67		1.60	85	1.77	82
	Mineral constituents	Potas - Carbon - Bicar- sium ate banate	(HCO ₃)) KET	3.60		3.72	254 4.16	266	3.64
	eral co	Carbon-	(60)	ARA VA	00.00		00.00	0.00	0.00	0.00
	ž	Pofas-	Š.	ANTA C	0.06		0.09	0.05	2.1	0.05
		Sadium (No)		REA OF S	53 2,30		48 2.09	42	44.	1,96
		Magne -	(BW)	EAST BAY	2.30		1.45	2.33	28 2.32	29
		Colcium Magne -		ă	2.99		3.84	3.04	3.19	2,44
		¥			φ κ		8.1	7.8	8.1	8.2
	Specific		at 25° C		757	790	720	702	711	779
		Temp in °F			65				62	99
		Date			3-7-63	5-17-63	6-6-63	9-6-62	12-5-62	3-7-63
	Stote well	number and other number		MDBGM	65/IW-21F2			4S/IW-2IMI		
		Owner and use			Citizens Utilities Co. of California municipal			H. J. Kaiser Co. industrial		

		pez/																
		Anolyzed by c	\rightarrow		DWR	DAR	DWR	uscs	DWR	DWR	DWR	USGS	1907	USGS	DAIR	DWR	DWR	USGS
	Hardness	000	N.C.			8		0		0		0		14		362	_	34
			Total			293		158		103		208		173		573		182
-	, a	Sod	E 2	,		24		7.7		80		43		35		61 0		33
	Total	solved				753		349		1020		397		309		769		325
		00	(SiO ₂) Other constituents			17 cr +6 0.00 A1 0.00 A8 0.00 RM 0.00 PR 0.00 TO -4 Se 0.00 Cr 0.00 (Trotal) Fe 0.00 (Trotal) Phenols 0.00 A8S 0.0		20 ABS 0.0		33 ABS 0.0		19 ABS 0.0		22 ABS 0,00		14 ABS 0.0		17
	-	ran Sil	(B) (S			0,63		8 0	0.93	3.8	0.4	8.0		0.3		0.63		0.6
llion	millia		(F)			0,03		0.02		0.4		0,4		0.0		0,100	-	0.03
oorte oer million	nts per	ž	trote (NO ₃)		2.0	0.04	4.8 0.0B	5.7		6.3		8.4		3.5		0.07		3.7
100	equivalents per million			7	54	62	63	38	45	88	72 2.03	44	43	36	35	309	270	46
	ē	Sul -	fote (SO ₄)	NTA CLARA VALLEY (2-9) (Cent.)		81		69		45		72		51.1		63		73
	Minaral canstituents	Bicar-	(HCO ₃)	TEX (3-		258		3,38		832		260		3,18		257		180
	ral car	-uoqu	00°3) (IRA VAI		00.00		4 0.13		40		3		0.00		00.00		0.00
	Mina	Patas-C	(K) (CO ₃)	NNTA CLA		0.05		0.04		8.8		0.05		2.0		2.5		1.6
		Coding	(Na)	EA OF SM		42 1.83		66		375		3.22		43		61 2.65		46
		Magne -	(Mg)	I SAY A		27 2.21		20		12 0.96		22		20		52		28 2.34
		-	(Ca)	ISVE		73		30		22		47		36		143		26
		£				C *0		.3		8.7		e. %		8.1		8.3		8.2
	Spacific canduct-	ance (mlcro-	mhas at 25° C)		728	739	734	491	729	1630	1310	929	826	515	625	1380	1370	562
		Temp in °F																
		Sampled			5-17-63	6-6-63	5-17-63	9-62	5-9-63	9-62	5-9-63	9-62	5-8-63	9-62	5-7-63	9-62	5-9-63	10-1-62
	State well	other number		NDBGM	45/IW-2INI		4S/IW-21P6	4S/1W-21R2		4S/1W-22M2		4S/1W-28B2		4S/1W-28C14		4S/1W-28D4		4S/1W-28D7
		Owner and	987		H. J. Kaiser Co.		A.C.W.D. municipal	M. Desalles irrigation	and domestic	A. J. Rezendes irrigation		J. S. Dutra domestic and	irrigation	A.C.W.D. municipal		J. & M. Braga domestic and	irrigation	Vm. E. Edwards domestic

Numbrol constituents Numbrol Corbon Bucar Pudas - Corbon Bucar Pudas - Corbon Bucar Pudas - Corbon Pudas - Pudas - Corbon Pudas - Pudas												ā	arts per	parts per million							
Ni		Specific conduct-						2	eral co	nstituent	S In	odnive	lents p	ber mi	ug:			Total dis-	Per	Hardne as CaC	
25 3.6	number and Udie Tamp ance PH Calcium Magner Sad alber number sompled in °F (micro- pH (Calcium Magner Sad alber) (Ca) (Mg) (Mg)	minas (Co) (Mg)	Calcium Magna-	Magna- sium (Mg)	Magne - Sad sium (Mg)	Sod	E G		ate (CO ₃)	Bicar- banote HCO ₃)	Sul - fore (SO ₄)	Chia-	rrate (NO ₃)	ride (F)	Baran (B)	Silica (SiO ₂)	Other constituents ^d		Pos	otai	
1.8 4 1.82 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0	EAST EAV AREA O	EAST BAY AREA O	EAST BAY AREA OI	EAST BAY AREA OI	BAY AREA OF	5	SS 60	NTA CLP	RA VALI	LEY (2-	9) (Cor	<u>:</u>]									
1.6	5-17-63	770										62	3.6								
1.5 1.5	9-62 436 8.3 28 14 14 1.16	8.3 28 14 1.40 1.16	28 14 1.40 1.16	14			44			182	38	26	2.4			22	ABS 0.0	260		128	
1.6 0.00 0.04 0.04 0.05 0.01 0.04 0	5-63 562	562										23									
1.8 2.08 1.99 1.10 1	5-17-63 718	718										47	50								
1.0 1.0	9-62 2630 7.7 156 108 8.92	7.7 156	156		108		180			304	95	619	31				ABS 0,00	1580			
1.0 1.0	5-8-63 3250	3250										738									
1.8 0.05 8 0.27 2.08 3.41 54 1.12 9.0 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.02 0.2 0.02 2.1 0.03 0.2 0.06 2.1 0.03 0.2 0.06 2.0 0.02 0.2 0.02 2.0 0.03 0.2 0.03 0.2 0.03 2.1 0.03 0.2 0.03 0.2 0.03 0.2 0.03 2.1 0.03 0.2 0.03 0.2 0.03 2.1 0.03 0.2 0.03 <	9-62 835 8.1 63 314 2.54	8.1 63	63		31		45	2.0		149	50	155	5.7			25	ABS 0,00	537			
1.8 8 2.08 2.4 90 1.2 0.3 0.4 21 ABS 0.0 425 78 79 79 79 0.05 0.05 0.37 0.02 0.02 0.04 21 ABS 0.0 425 78 79 79 79 1.6 0.05 0.32 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.05 0.12 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.06 2.16 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.06 2.16 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.2 0.06 0.07 0.06 0.09 0.03 0.06 0.09 0.04 28 ABS 0.0 0.04 44 179 71 1.2 1.2 0.0	5-7-63	1160										218	_								
1.6	9-62 735 8.4 19 7.7 0.63	8,4 19	19		7.7		131	1.8	8	3,41	54	90 2,54	0.02				ABS 0.0	425	78	79	
1.6 0.0 132 49 116 2.06 0.02 0.04 28 ABS 0.0 04 44 179 71 0.06 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05	5-7-63 778	778										86 2.43	_								
1.6 0 0 1.22 4.4 1.79 7.1 1.6 0 0 0 0 0 0 0 0 0	5-8-63 1490	1490										334									
2.1 0.03	9-62 677 8,1 42 18	42	42		18		65	0.04		132	49	3.27	3.7				ABS 0.0	777		179	
2.1	5-7-63	811										102									
2.1	5-8-63	2220										426									
	5-17-63	1100										5.33	2.1								

TABLE E-1
. ANALYSES OF GROUND WATER 1963

		Anafyzad by c		nscs	USGS	DWR	uses	DWR	USGS	DWR	nscs	OWR	uses	DWR	USGS	DWR	usgs	OWR	
	1ne 5s	as CaCO ₃ Total N.C		1620	45		0		88		0		0		0		0		
				15 1690	280		237		352		110		129		144		130		
+	- 6	ds sod			660 52		583 56		612 35		310 60		370 62		359 55		333 53		
-	٩	salved solids on ppm		2470	99		Š				<u></u>		.e		ří .		Н		
		Sitico Other constituented		ABS 0.00	ABS 0.0		ABS 0.0				ABS 0.0		A8S 0,0		ABS 0.0		ABS 0.0		
		(SiO ₂)		26	25		26		27		133		24		25		23		
8	IIIian	Boran (B)		9.6	0.8		0.9		0.2		0.2		0.3		0.2		0.2		
oction as action	aquivalents par millian	Flua- ride (F)		7 0.01	4 0.01		0.2		0.3	m 60	9 0,02	-18	3 0.01		0.00		4.1 0.07 0.01		
00000	valents	rate (NO ₃)		29	27		50		52	69*0	0.19	0.00	8.1		2.0				
	700	Ci)	<u></u>	35,26	173	3.95	2.79	103	3.95	143	37	37	40	42	18 0,51	20	98.1	54	
	nts tn	Sul - fate (SO ₄)	o) (6	75	83		84		29		19		21 0.44		41		35 0.73		
	Mineral canstituents	Carbon- Bicor- ate bonote (CO ₃) (HCO ₃)	LEY (2	92	286		286		294		244		326		289		172		
	naral c	Potas-Carbon- sium ate b (K) (CO ₃) (t	ARA VA	0.00	0,00		15		14 0.47		5 0.17		5 0.17		0,33		0.00		
	N	Potas- sium (K)	NTA CI	4.2	3.4		3.4		0.05		0.04		0.04		0.04		2.3		
		Sadium (Na)	BAY AREA OF SANTA CLARA VALLEY (2+9) (Corft.)	5.96	139		139		3.74		3.44		99		3.52		68 2.96		
		Magne- sium (Mg)		119	24		52 2.84		3.51		17		18		80.1		13		
		Calcium (Ca)	EAST	483	1.20		9.6		3,54		16		22		1.80		30		
		Ŧ		7.5	8.1		8.5		8.5		. 3 . 3		8. 3		200		8.2		
	Spacific conduct-	ance (micra- mhos at 25°C)		4120	1170	1450	1000	1430	1070	1250	521	089	079	709	579	575	265	661	
		Tem in °F																	
		Date sampled		9-62	9-62	5-13-63	9-62	5-8-63	9-62	5-8-63	9-62	5-7-63	9-62	5-7-63	9-62	5-7-63	9-62	5-9-63	
	State well	number and other number	NDBGN	4S/1W-33E1	4S/1W-33G3		4S/1W-33K1		45/1W-34Q4		4S/1W-34R2		4S/1W-35P3		4s/2w-3Rl		4 S/2W-10C1		
		Owner and use		J. Pianetta irrigation	Enrico and Sodini irrigation		R. Clarkes domestic and	irrigation	B. Rose domestic and	irrigation	A.C.W.D. municipal		A.C.W.D. municipal		Andrada domestic and	irrigation	Holly Sugar Refinery industrial		

		Anolyzed by c			0.505	DWR	uscs	DWR	DWR	OWR	DWR	DWR	uscs	DWR	DWR	OWR	DWR	DWR	uscs
-	-	-	O E dd		293 01	0	881 U	0	۵	-	ω		213 U		-				1750 U
	Hordness	20 20	Total		382		000						470						1820
	à	sod-	Ē		53		23						30						24
	Totol	solved cent			1170		1870						884						3170
		Silico			ABS 0.0		ABS 0.0						A8S 0.0						
		Silico	(SiO ₂		22		21						22						23
	ign	Baran	<u>@</u>		0.2		0,6						0.4						0.4
m.lilior	E B	Fluo-	(£)		0,2		0.2						0.02						0.2
parts per million	equivalents per million	ź	(NO ₃)		2.4		15			0.18	16	0.08	184	97	44	0.03	53	39	8.8
	equivo	Chlo-	(CG)	3	495	451	562	501	308	39	45	45	3.16	3.19	184	45	98	68	36,39
	e .	Sul-	(80,	9) (Cont	53		364						102						9.24
	Mineral constituents	Bicar-	(K) (CO ₃) (HCO ₃)	LEY (2-	108		145						314						1.44
	eral co	orbon-	(00)	KA VA	00.00		00.00						0,00						0.00
	2	Potos - C	(X)	VIA CLA	3.6		3.3						0,04						4.4
		Sodium	(NO)	BAY ARLA OF SAVTA CLARA VALLEY (2-9) (Gott.)	204		137						60*5						268
		Magne -	(Ca) \$10m	E BAY AR	34		138						54						211
		Colcium	(Co)	EAST	4.84		8.73						96*7						380
		표			7.8		7.9						7.9						7.7
	Specific conduct-	(micro-	at 25°C)		1810	1820	2480	2680	2280	755	823	775	1290	1430	1450	617	1130	893	7250
		Temp In °F																	
		sompled			9-62	5-7-63	9-62	5-7-63	5-7-63	5-7-63	5-7-63	5-10-63	9-62	5-7-63	5-7-63	5-17-63	5-10-63	5-14-63	10-2-62
	State well	other number		NDBGN	4S/2W-10N6		45/2W-10Q2		45/2N-10Q3	45/2W-11A2	48/2W-11G1	4s/2v-11J1	4s/2w-11qs		4S/2W-11R12	4S/2W-12C1	4S/2W-12N4	4S/2W-12P2	4S/2W-14E1
		Owner and	0.50		A.c.W.D. municipal		Scutto Bros. irrigation	and domestic	H. Andrade domestic and irrigation	J. C. Whipple abandoned	Kitayama	M. Faria domestic	H. Dutra domestic and	irrigation	J. Coularte domestic	A.C.W.O. municipal	H. Faria domestic and irrigation	M. S. Santos irrigation	T. E. Harvey irrigation

	2000	by c		OWR	USGS	OWR	uses	DWR	DWR	OWR	OWR	OWR	OWR	DWR	usgs	OWR	USGS	nses	DWR
	Hordness os CoCO	N.C.			65		7		42		0		51		31		66	36	
					189		148		162		76		224		161		191	250	
	Per	og 5			31		37		31		67		25		31		2.9	22	
	Total dis-	solved solids mdd ui			326		276		297		366		356		272		344	361	
		(SiO ₂) Other constituents ^d			25		24 ABS 0.0		29 ABS 0.0		35		23 A8S 0.0		23		20	22	
١,	-	on Silic			0.4		0.2		0,34		0.37		0.37		0.2		0.3	0.2	
lion	e lo	le (B)			0.3		0.2		0.1		0.03		0.2		0.2		0.07	0.02	
ports per million	equivolents per million	rrote ride (NO ₃) (F)			0.10		0.18 0.		9.2 0.		0.02		5.8 0.09		0.16		6.0	6.3	
pod	equivol	Chlo- ride (Ci)	(;	967	50	52	28	28	40	40	26 0.73	23	48	55	32	31	74	32	35
!		Sul - fote (SO ₄)	SANTA CLARA VALLEY (2-9) (Cont.)		57		44 0.92		52 1,08		40		55		47		53	20 1.04	
	Minerol Constituents	Sign of bonate (K) (CO ₃) (HCO ₃)	TIEN (C		145		178		147		251		3.46		159		118	3.72	
	10.10	orte (CO ₃)	ARA V		0.23		0.00		0000		5		0.00		0000		0.10	17 0.57	
	2	Stum (K)	NTA G		2.1		2.1		2.8		0.04		0.02		0.04		2.2	0.04	
		Sodium (Na)	REA OF S		39		41		35		91		34		34		36	32	
		Mogna- sium (Mg)	EAST BAY		25 2.08		1.41		18		5.8		13		21		27	20	
		Colcium (Co)	5		34		31		35		28		3,39		30		32	3.34	
		H			8.3		80		0.1		8.5		1.8				8°.3	8.6	
Spacufic	conduct-	(micro- mhos ot 25°C)		4100	544	772	7.58	280	E67	089	998	544	595	704	957	621	155	58()	626
	į	G e																	
	Date	sompled		5-13-63	9-62	5-7-63	9-62	5-7-63	9-62	5-10-63	9-62	5-13-63	9-62	5-13-63	9-62	5-7-63	9-62	9-62	5-8-63
	State well	other number	MOBGM	4S/2N-14E1	48/2W-14J1		4S/2W-15C1		4S/2W-15L4		4S/2W-22P2		4S/2W-23F2		4S/2W-2404		4S/2W-24J1	4S/2W-24L6	
		Owner and		T. F. Harvey	A. Caeton irrigation	and domestic	T. P. Harvey dymestic and	irrigation	King irrigation		W. D. Patterson irrigation		Patterson Ranch irrigation		L. Croce irrigation		J. A., Jr. and L. A. Macado irrigation	N. Kitani domestic and	irrigation

	Analyzed	by c		DWR	DWR	DWR	DWR	uses	DWR	DWR	DWR	nses	DWR	DWR	nscs	DWR	USGS	DWR
	Hardness as CaCO ₃	N.C Edd		193				0		417		0		106	7		182	
	Hard os Co	Tatal		371				59		637		119		477	278		380	
	e de	S S		27				81		32		61		33	37		37	
	dis-			592				364		1030		360		792	482		194	
		Silica (SiO ₂) Other canstituents ^d		ABS 0.0				7 ABS 0.0		01		ABS 0.0		el.	26		25 ABS 0.0	
١,	- 1			0,40				3 27		1 20		0,2		0,46 23	0,3		0.2	
uo	E -	Boran (B)						0,3		1 2.1								
parts per million	equivalents per millian	- PEC (9 0.01				0.2		0.2		0.3		0.02	0.2		9 0.01	
arts p	alents	trate (NO ₃)		5.8				20 0.32		0.02		0,18		0.2	23		5.3	
	vinbe	Q 000	nt.)	193	201	30	3.72	20	20	422	451	28	980	226	2.23	78	265	8.32
.5		Sul - fate (SO ₄)	o) (6-	54				39		116		29		37 0.77	49		28	
1000	n suc	Bicar- bonate (HCO ₃)	TIPEX (3	217 3.56				269		269		253		453	312		3.97	
	D.	ate (CO ₃)	ARA V	00.00				10		0.00		19		0,00	9		00.00	
1		Patas-Carbon- sium ate (K) (CO ₃) (ANTA C	2.4				1.8		3.0		0.05		2.4	3.2		6.9	
		Sodium (Na)	REA OF SANTA CLARA VALLEY (2-9) (Cont.)	64 2.78				117		139		3.92		108	3.31		106	
		Calcium Magne- (Ca) (Mg)	EAST BAY A	27				0.38		60 4.95		9.4		3.94	33		3.31	
		Caleium (Ca)	3	104				15 0.75		156		32		112	57		86	
	7	2		8.0				7.8		8.0		80		7.9	8.5		8.2	
Spacific	conduct	(micra- mhas at 25° C)		1020	1120	586	916	571	589	1850	1930	557	3400	1410	840	910	1260	1360
	Temp	in ° F																
	Date	sampled		9-62	5-13-63	5-8-63	5-9-63	9-62	5-7-63	9-62	5-9-63	9-62	5-8-63	5-9-63	9-62	5-8-63	9-62	5-8-63
	State well number and	other number	MDBGM	4S/2W-26A1		4S/2W-27L1	4S/2W-35L2	5S/1W-4D1		5S/1W-601		5S/1W-6G1		58/1W-9J1	5s/lw-9Kl		58/1W-9M1	
		esn nave		H. H. and W. D. Patterson	irrigation	H. H. and W. D. Patterson domestic and irrigation	E. Milani industrial	A.C.W.D. municipal		J. F. Trindade irrigation	and domestic	L. Milani irrigation	and domestic	Alameda County East Bay Title Insurance Co.	A. F. Brosius irrigation	and domestic	W. B. Brinker irrigation	

TABLE E-1

Γ		P																	
		Analyzed			DWR	DWR	DWR	DWR	DWR	DWR			DWR	DWR	DWR	DWR	DWR	DWR	DVR
	dness	as CaCO 3	P.C.				-	0		0			0	0	0	0	20	. 85	0
			Tatai					20		69			142	146	170	221	245	599	70
	à	cent Cent	Ê					96		83			54	88	39	33	33	0.7	70
	Totol	pevips pevips						276		510			355	097	336	380	442	1375	278
l ,			(SiO ₂) Other constituents					ABS 0.0											
		Silico	(SiO ₂)					28		18			16	25	22	22	22	17	14
	ion	Boron	(8)					0.24		0.38			0,2	0.4	0,2	0.2	0.2	0.4	0.2
11111	er mil	Fluo-	şe.					0.2		0.1			0.1	0,1	0.1	0.1	0.01	0.1	0,1
1	valents per million		(NO ₃)					0.00		0.2			0.0	26	0.00	0.0	0.00	0.0	0.0
	equivalents per million	96	ride (CI)	্র	72 2.03	0.76	0.51	15	2.17	3,86		.1	21 0.57	48	23	1.37	52	631	16
	fs in		fote (SO ₄)	9) (Cont			·	24		24	OF SANTA CLARA VALLEY (2-9)		51	65	35	34 0.70	63	134	0,35
	Mineral constituents	Bicor-	banote (HCO ₃)	LEY (2-				3.41		276	RA VAL		253	3.63	3.80	266	3.90	101	3.54
	erol co	-uarbon-	ate (CO ₃)	RA VA				0.13		0.00	TA CL		9.0	12 0.40	9.0	0.14	0.60	00.00	9.0
	Min	Patos-C	sium ate (K) (CO ₃)	NTA CIA				0.9		6.3	OF SAN		0.7	0.03	0,03	0.03	0.03	2.5	0.02
		Codium	(Na)	BAY AREA OF SANTA CLARA VALLEY (2-9) (Cont.)				92		172	RAV ARFA		3.40	95	50 2.17	51 2.20	55	210	3.25
		Magne -	(Mg)	BAY AR				0.00		12 1.02	HUIDS		15	24 2.04	19	2,30	30	85	5.7
		- Land	(Co)	EAST				8.0		7.3			32	18	1,85	42 2.11	48	126	19
		F						8.5		8.1			8.4	8.6	8.5	°°	8.6	7.9	8.6
	Specific conduct-	ance	mhas ot 25°C)		976	668	570	433	738	606			260	099	200	009	079	2100	077
		Temp In °F											99	99	71	67	67	86	
		Dote			5-9-63	5-9-63	5-13-63	9-62	5-8-63	11-30-62			8-20-62	8-30-62	8-22-62	8-20-62	8-20-62	7-26-62	8-62
	State well	other number		MDBGM	5S/1W-15C1	5S/1W-17A1	5S/2W-1Bl	5S/2W-1N1		5s/2w-21L1			6S/1E-7C1	6S/1E-21G1	65/1E-30M1	65/14-1181	6S/IW-14E1	6S/1W-16A1	65/14-1741
		Owner and	950		Roland, Jr.	. G. & E.	2. Encisco domestic and livestock	Vest Vaco Chemical Co.					Jinsor Bros. domestic	Wrigley	M. Muchado irrigation and domestic	J. S. Garcia irrigation and domestic	A. French irrigation and domestic	R. T. Collier Corp.	C. W. Dunton irrigation

	Anolyzed	by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR.	DWR	DWR		
	Hordness os CoCO ₃	· · · · ·		0	17	0	0	0	100	0	0	24	ω	73	11		
	Hord os C	Totol		119	170	211	135	185	265	226	146	289	235	250	166		
	Cent	ğ E		47	26	29	87	38	21	36	41	27	18	23	28		
		solids solids in ppm		274	290	316	342	340	398	700	310	977	314	707	290		
		(SiO ₂) Other constituents ^d															
		(Si0 ₂)		21	31	50	22	22	28	24	25	28	24	24	22		
	Lion	Boron (B)		0.2	0.2	0.2	0.3	0.2	0.1	24	0.2	0.1	0.1	0.2	0.2		
noillion Poillion	e Big	Fluo- ride (F)		0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.01		
parts per million	equivolents per million	frote (NO ₃)		2.9	5.0	3.9	0.00	0.00	14	37	0.0	45	0.24	0.30	0.19		
	ednivo	Chia- ride (CI)	ont.)	11	16	22 0.63	21	23	43	43	21 0.57	45	23	52	0,57		
	ri S	Sul - fore (SO ₄)	2-9) (Ont.)	21 0.45	46.0	22 0.46	19	31 0.65	1.89	0.31	28	23	0.28	52	33		
	Mineral constituents	Bicor- bonote (HCO ₃)	VALLEY	3.35	3.06	262	255	281	3,30	296	3.57	324	253	3.55	3.10		
	eroi c	ofe (CO ₃)	CLARA	6.0	0.00	12	16	00.00	00.00	00.00	3.6	00.00	0,40	00.00	0.00		
	ž –	Potas-Corbon- sium ate (K) (CO ₃)	SANTA	0.02	0.03	0.9	0,31	0.03	0.03	0.03	0.8	0.03	0.7	1.5	0.03		
		Sodium (No)	SOUTH BAY AREA OF SANTA	49	28	40	2.80	2,25	33	58 2,52	2.05	49	24	35	30		
		Mogne- sium (Mg)	TH BAY	7.7	13	21	12 1,00	1,35	30	27 2.22	171	2.36	2,10	24	17		
		Calcium Magne- (Ca) (Mg)	8	35	46	51 2 53	34	47	37	46	30	3,42	32 2.61	61 3.03	38		
	-	F.		8,5	8.2	9.6	8,6	8.2	8.2	8.1	4.8	8.2	8.6	8.0	8.2		
	Specific conduct- once	(micro- mhas at 25°C)		400	430	550	530	520	009	630	095	720	200	580	077		
	Temp	Ē			67	99	70	7.2	69	7.0	11	99	70	89	11		
	Dofe	peldwos		8-62	7-25-62	7-26-62	8-27-62	7-27-62	7-27-62	8-27-62	8-24-62	8-27-62	8-28-62	7-26-62	7-26-62	4	
	State well number and	other number	MDBGM	6S/1W-26D1	6S/1W-28R1	6S/1W-29C1	6S/2W-9H1	6S/2W-9K2	6S/2W-16R1	65/2W-20N1	6S/2W-24M3	6S/2W-2902	6S/2W-34M1	6S/2W-36H2	7S/1W-5P1		
		Owner and		T. A. Wilcox irrigation	Sam Weston	G. H. Fukumoto domestic and irrigation	Rezentes domestic	J. Josquin	F. Ormonde	California Water Service Company municipal	Homm 8ros.	Slonaker irrigation and domestic	H. Mantelli irrigation and domestic	0. P. Gluhaich irrigatíon	W. S. Bennet domestic and irrigation		

TABLE E-1

		Analyzed by c		NAR.	OWR	uscs	DWR	uses	DWR	DWR	DWR	DWR	OWR	DWR	uses	DWR	DWR	DWR
	s s			m	078	0	31	65	163	0	0	0	0	0	79	0	0	1249
	Hardness	as CaC Total ppm		145	020	232	270	304	471	39	180	961	327	319	269	383	389	1210 1
ľ	à	E SO		63	70 1	89	79	36	20	80	38	7.4	52	777	22	53	51	37 1
	Total	eolved solids on ppm		728	0407	2680	1450	249	619	429	337	849	767	650	376	943	861	2830
		Silica Other constituented		ABS 0.0	ABS 0.4		ABS 0.0	ABS 0.0	ABS 0.0 PC4 0.20 (Totsl	ABS 0.0 PO ₄ 0.08 (Total)		ANS 0.0 PO4 0.08 (Total)	ABS 0.0	ABS 0.0 PO ₄ 0.39 (Total)	ABS 0.0			ABS 0.0
		Silica (SiO ₂)		29	27	8.7	22	14	27	128	21	27	26	27	21	29	2.5	30
	Lion	Baron (B)		0,3	36	36	6.5	0.2	0.20	0,47	0,34	1.6	1.6	0,39	0.3	2.7	2.8	3.4
	equivalents per million	Ni- frate ride (NO ₃) (F)		0.02	3.5 1.0	11 1.5 0.18 0.08	22 0,35 0,06	3.1 0.6	8.1 0.13 0.02	4.8 0.3 0.08 0.02	0.0 0.0	12 0.5 0.19 0.03	28 0.5 0.45 0.03	0.02 0.01	0.18 0.03	30 0.3	31 0.4	26 0,42 0,00
	par	Chlo- ride (CI)		168	2250	1140	640	92	93	55	20	181	160	102	68	178 5.02	172	31.03
	o i	Sul - fate (SO ₄)		12 0.25	34	105	78	111 2.31	3,10	29	39	68	72	50	56 1.17	85	88	503
	nstifuent	Bicar- banate (HCO ₃)	(2-10)	173	3.60	8.10	289	286	375	277	280	524 8.59	442	7.44	3.34	9.18	473	318
	Minarol constituents	Patas-Carbon- sium ate (K) (CO ₃)	DRE VALLEY	0.06 0.00	0.07 0.00	0.07 3.20	0.04 1	0.04 3	0.5 0	0.02 0.00	2.3 0.06 0.00	0.04 0.00	0.04 5	0,05 0,00	1.8 0.05 0.47	0.05 0.00	2.1 0.05 0.57	0.08 0.00
		Sodium Sodium (No.)	LIVERMORE	118 5.13	1100 47.85 0	920 2	480 20.88 0	3.44	54 2.35 0	137 1	51 2.22 0	258 1	163 1 7.09 0	114 1	36 1	202 8,79 0	186 8.09	412 3
		Mogne - S.		17 1	3.12 47	3,44 4(48 3,94 20	40	4.07	0.23	1,56	26 1	42	26 2.18	54	63	5.03	248 1
		Calcium (Ca)		30	346	1,20	1,45	56	5.34 7	0,55	41 2.04	35	3.09	84	18 0,90 7	50 2.50	55 2.74	9.73
Ì		F			8.1	6.8	4.8	8.3	6.3	8.3	7.9	8.3	4.	8.1	8.7	8,3	5.8	0.8
	Specific conduct-	ance (mlcra- mhas at 25° C)		856	9029	4500	2640	920	1040	674	561	1440	1270	1070	999	1550	1440	7220
		Temp In • F		99				62	59		89	89			63			
		Date sampled		6-21-63	6-24-63	6-24-63	6-24-63	6-21-63	3-6-63	2-28-63	2-28-63	2-28-63	6-21-63	2-26-63	6-21-63	7-3-62	6-24-63	6-24-63
	State well	nymber and other number	MDBGM	2S/IW-22Al	2S/2E-27Kl	2S/2E-35C1	2S/2E-35G2	3S/1W-1G1	38/1W-12G2	3S/1E-1F1	3S/1E-1K1	3S/1E-1M1	3S/1E-3Q1	3S/1E-7E2	3S/1E-8H3	3S/1E-9A1		3S/1E-9D1
		Owner and		T. P. Bishop Co.	City of Livermore industrial and stock	Henry Garaventa stock	F, Gustanich domestic	E. B. and J. Nevin domestic	R. M. Wing abandoned	Mrs. Berwick	L. Lupton	Inman School	Alsmeda County domestic	Volk-McLain	U. S. Air Force domestic and irrigation	Silva Bros,		Rose Brothers

																			-		-	
	State wall		, ·	Spacific					Minsrol	Minsral canstituents	lushts in	1	parts per million squivalents per million	parts per millian valents per mill	III ion			Tatal		Hardne	90	
Owner and	number and ather number	Sampled	Tange of F	ance (mlcra- mhos at 25° C)	Ŧ.	Calcium Magne (Ca) (Mg)		Sadium Pot (Na)	Potas-Carbon- sium ate (K) (CO ₃) (on-Bicar- bonate	or- Sul- fore 53) (SO ₄)	Obio (CI)	d- frate (NO ₃)	fe rids 3) (F)	Boran (8)	Silica (SiO ₂)	Silica (SiO ₂) Other canstituents ^d	solved solved solved in ppm	E G G	as CaCO ₃ Tatal N.C. ppm ppm		Analyzed by c
	MDB62M						LIV	LIVERMORE V	VALIEY (2-10)	(2-10)	(Cont.)											
Neilson	3S/1E-9L1	6-24-63		1410	8.1	81 81 4.04 7.1	87 7.19 3.	89 2.	2.5 0.06 0.00	00 7.00	7 00 1.89	9 5,56	21 56 0.34	34 0.01	1.6	23		831	26	562 2	212 D	DWR
R. Kause domestic	3S/1E-10E2	2-27-63		1160	0.8	99 66	65 5.37 2.	2,39 0.	0.08 0.00	496	66 1.37	100 2.82		27 0.44 0.01		20	ABS 0.0 PO ₄ 0.03 (Tatal)	800	19	516 1	109 D	DWR
Jamiesan irrigatian	35/1E-11E1	6-24-63		966	8,3	20 8	85 5.99	50 2.18 0.	0.06 0.0	0.00 279	9 51 57 1.06	148 4,18		19 0.2 0.31 0.01	0.7	26	ABS 0.0	551	21	1 000	171 17	DWR
Ed Hageman domestic and	38/1Е-11Н1	2-27-63	62	687	8.3	2,10 3,4	3,83	29 1.26 0.	0.04 0.0	0.00	297 39 4.87 0.81	1.32		0.31 0.00	0,42	2 24	ABS 0.0 PO4 0.07 (Total)	195	17	297	53 D	DWR
irrigation		6-21-63		777	8.2	2.50 4.	54 3	30 1.30 0.	0.04 0.0	0.00 305	5 42 00 0.87	74 2.09		0.31 0.02	0.29	24	ABS 0.0	797	16	348	86	DWR
Ed Hageman abandoned	3S/1E-11Н3	3-6-63	59	1680	8.0	81 9	93 13	139 2.	0.07 0.0	0 527	8.64 0.42	312 8.80		0.3 0.2	1:0	28	ABS 1.0 PO ₄ 0.10 (Total)	985	34	1 286	154 0	DWR
A. H. Hageman drainage	3S/1E-1281	3-7-63	67	1610	8.3	60 2.99 6.88		166 2.7	2.6 0.07 0.00	00 7.82	7 25 82 0.52	319 9.00	0.01	0.01	0,1	130	ABS 1.3 PO ₄ 0.09 (Total)	806	7 77	494 1	103 D	DWR
A. H. Hageman	3S/1E-12C2	2-27-63	52	1440	8.2	24 56		220 9.57 2.	0.06 0.00	544 8.92	4 92 31 0.64	204 5.75	1.3	0.00	3.0	3.4	A8S 0.0 PO4 0.01 (Total)	978	62	289	0	DWR
City of Livermore domestic	3S/1E-12H1	2-28-63		751	8,3	2,34 4,	53 3	30 1.30	0,04 0,00	334	4 38 0.79	9 55	15 0.24	5 24 0.00	0,43	3 26	ABS 0.0 PO ₄ 0.11 (Total)	534	91	337	63 D	DWR
H. Johnsan	3S/1E-12M1	3-7-63	99	1550	8,3	4,44	113 9.29 2.	60 2.61 0.	0.54 0.0	0.00 498	8 16 16 1,16	6 7.39		12 0.2 0.19 0.01	0.70	25	A8S 0.1	921	15	687 2	279 D	DWR
H. Jahnsan	3S/1E-12P1	2-28-63	69	280	8.2	35 47	3.48 0.	22 0,96 0.	0.04 0.0	0.00 282	2 62 31 0.64	23		17 0.1 0.27 0.00	0.32	2 24		373	15	262	31	DWR
California Rock & Gravel Co.	3S/1E-13P2	6-21-63		2967	8,1	3.09	0.77 2.	2.26 0.	0.04	0.00 3.46	1 21 21 1.06	47 1.32		0.03 0.30	0,32	20	A8S 0.0	358	37	193	20 D	DWR
H. J. Kaiser Ind.	3S/1E-15L1	6-21-63	99	516	7.8	3.59	11 2	24 1.04	0.03	0.00 3.6	220 3.60 0.81	34 0.96		8.4 0.14 0.01	0.26	21	ABS 0,0°	284	19	224	0 77	DWR
H. C. Bush	3S/1E-16Al	3-6-63	61	683	8.0	62 3,09 3,1	3,06	29 2. 1,26 0.	0.06 0.0	0 316	316 5.18 1.04	36 1.02		0,12 0.0	1 0,31	118	ABS 0.0 PO4 0.0 (Total)	007	17	308	67	DVR
M. Kruse irrigation	38/1E-17H2	6-21-63		860	7.9	5.84	17 1.41	39 2,	0.03	0.00 28%	282 4.62 67	103		0.19 0.00	0.46	9 52	ABS 0.0	424	61	363	132	DWR
Pleasanton Twp. W. D. irrigation	3S/1E-17Rl	6-25-63		426	8.5	23 2.	2,01	1.22 0.	0.04 0.	0.20 2.4	150 43 2.46 0.90		26 6.	0.11 0.05	5 0,1	21	A8S 0.0	247	28	158	25	uses

		pez a															_	
		Anolyzed by c		DWR	DWR	OWR	DWR	DWR	OWR	DWR	DWR	DWR	nscs	USGS	DWR	DWR	uses	USGS
	Hardness	N.C.		77	98	78	0	0	68	0	35	134	28	210	134	97	69	30
		1 1		305	522	572	999	563	401	394	572	553	260	522	777	867	344	265
-	à	sod-		22	32	34	35	34	47	9 7 6	37	31	28	51	18	30	14	27
	Tata	solved solids in ppm		809	813	076	897	856	1010	768	958	1030	392	1300	557	896	416	907
		Silica (SiO ₂) Other constituents ^d		ABS 0.0 PO ₄ 0.04 (Total)	A8S 0.0 PO ₄ 0.15 (Total)	ABS 0.0	ABS 0.00 PO ₄ 0.00 (Total	ABS 0.4 PO ₄ 0.02 (Total)	ABS 0.0 PO ₄ 0.26 (Total)	ABS 0.00 PO ₄ 0.01 (Total)	ABS 0.1 PO ₄ 0.01 (Total)	ABS 0.0 PO ₄ 0.03 (Total)	ABS 0.0	ABS 0.0	ABS 0.00		ABS 0.0	ABS 0.0
		Silica (SiO ₂)		23	25	22	118	16	21	8.9	27	26	21	32	26	27	22	18
	lian	Baren (B)		0.19	0,64	0.84	0.9	0.89	0.64	0.8	0,72	3.8	0.4	5.0	0.60	0.95	0.2	0.5
parts per millian	equivalents per millian	Flug- ride (F)		0.2	0.2	0.2	0.3	0.6	0.4	0.2	0,3	0.2	0.2	0.03	0.00	0.1	0.2	0.0
orts pe	lents	rate (NO ₃)		41	76	88	0.4	0,16	102	0,27	64	0.03	28	0.03	28	0,19	27	28
	equive	Chio- ride (Ci)		34 0.96	151 4.26	5.05	3.86	3.47	203	158	188	193	52	250	2.96	201	40	52 1.47
	Mineral constituents in	Sul- fate (SO ₄)	1.)	76	70	75	55	59	71 1.48	14 0.29	70	108	34 0.71	907	56 1.16	42 0.87	41 0.85	33
		Bicar- banate (HCO ₃)	(2-10) (Cont.)	285	<u>532</u> <u>8,72</u>	603 9.88	760	724	381	605 9.92	655	\$111 8.38	247	356	354	489	300	4.05
		Carbon- ate (CO ₃)	EY (2-	0.00	0,00	0.00	0,00	00.00	00.00	0.00	0.00	00.00	18	0,20	00.00	0,00	20 0.67	0.67
	W	Potas- sium (K)	E VALLEY	0.0	0.06	0.05	0.6	0.6	0.03	7.5	0.04	3.4	0.04	0.05	0.06	2.9	0.05	0.04
		Sadium (Na)	LIVERMORE	40 1.74	116	137	139	133	166	158	158 6.87	1114	46	250	43	1114	26	45
		Magne- s.um (Mg)		31	5.99	86	85	82 6.71	51	6.47	7.14	65	43	104	64	95	56.4.63	3.60
		Calcium (Ca)		71	89	88	67	91	3.79	28	86	114	34	37	3,19	43	45	34
		Ħ		7.4	7.9	7.8	7.6	7.7	7.6	8.2	7.9	8.0		8,5	7.9	7.7	8 8	80
	Specific conduct-	ance (micra- mhas at 25°C)		750	1400	1610	1530	1480	1490	1360	1650	1500	129	2000	951	1520	702	681
		Temp in °F		55	19	65			62		19	62			29			
		sampled		2-26-63	3-5-63	3-5-63	9-5-62	3-4-63	2-26-63	9-5-62	3-5-63	2-26-63	6-24-63	6-24-63	3-7-63	3-15-63	6-24-63	6-24-63
	State well	other number	MDB6M	3S/1E-18M3	3S/1E-20J1	3S/1E-20Q1	3S/1E-20Q2		3S/1E-29A2	3S/1E-29B1		3S/1E-32K2	3S/2E-4H1	3S/2E-4M1	3S/2E-6P1	3S/2E-7CI	3S/2E-7K1	38/2Е-ВН1
		Owner and use		R. H. Dana	City of Pleasanton	City of Pleasanton	City of Pleasanton abandoned		Albert Vomini domestic	City of Pleasanton abandoned		Mrs. Cohen	California Mater Service municipal	J. Schenone domestic and irrigation	Gandolfo domestic	H. R. Johnson	H. L. Hageman irrigation	California Water Service Co. municipal

TABLE E-1
ANALYSES OF GROUND WATER

	Analyzed by c	Τ				
				OWR	DWR	DARR
guess	as CoCO ₃	2		35	69	0
ğ	Totol	a l		248	298	9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	dis- cent solved sod- colids tum	+-		431 35	9 26	© 0
Tot		1		643	697	656
	tifuents					
	Silico Other constituents ^d			A8S 0.0	A8S 0.0	0.0
	Silico (SiO ₂)			81	22	<u>8</u>
lion	Boran (B)			<u> </u>	0.4	
million ser mil	Fluo- ride (F)			0.4	0.2	0.00
volents per million	rote (NO.)			29	22	0, 02
ports per million equivolents per million	- old - old - old			74	98.1	0 1.19
č.	Sul - fate		3	96.0	63	2) 0.09 06
Mineral constituents in	Potas-Carbon- Bicar- sium ote banate	16031	(O)	260	279	6.23 6.23
o lorer	Carbon	15 22	-Z (2-	0.00	0,00	0.63
ž	Potas - sium		E VALL	0.05	0.05	0.00 0.06
	Sadium (No)		LIVERMORE VALLEY (2-10) (Cont.)	62 2,70	49	11.72
	Magne - s:um (Mo)			12	36	3) (6)
	Colcium Magne-			3,94	60.	1.70
0.2	표			8.3	8.3	9.
Specific	ance (micra- mhos	0123		773	784	0191
	Te or					
	Dote sompled			6-25-63	6-24-63	6-25-63
Stote wall	number and other number		ND86M	3S/2E-10H1	3S/2E-29D1	38/38-1901
	Owner and			Amling-DeVare Nursery irrigation	B. G. Wood irrigation	irrigation

TABLE E-1
ANALYSES OF GROUND WATER
1963

		Analyzed by c				DWR	TT	DWR	77	DWR	11	DWR	11	DWR	77	DWR	LL	DWR	11	DWR
	Hardness	E 03					67		0		11		82		0		11		0	
			Edd				282		175		165		131		188		216		167	
F	å	Sod-	1				24		22		22		31		36		21		32	
	Tofol	solved solids in ppm					787		258		282		250		322		314		286	
		(SiO ₂) Other constituents ^d																		
							21		32		33		29		19		29		22	
	lion	Boran (B)					0,1		1:0		0,1		0.1		0.1		0.1		0,1	
	er mil	Fluo- ride (F)					0,4		0.2		0.2		0.1		0.1		0.2		$\frac{0,1}{0,01}$	
	valents per millon	trofe	2				0000		3.0		5.0		67		0.00		31		00.00	
	equivalents per million	- old - old	(5)			54	55	20	16	24 0,68	20	52	39	25	30	0.62	21	0.48	14	0.48
	in s	Sul - fote	- 1	3			49		24		19		26		32 0,66		24		42	
	Mineral constituents	Bicor- bonote	(HCO 3)	REGION (No.	(3-2)		275		3,38		3.08		96.0		259		3,90		3.67	
	eral co	ote	2,5	RECIO	TTEX		4.2		3.0		00.00		00.00		6.0		6.0		00.00	
	M	Potas-Carbon- sium ote	à	COASTAL	PAJARO VALLEY		1.5		2.4		0.04		0.5		13		3.6		5.5	
		Sodium (No)		CENTRAL	PA	1.74	40	22 0,96	23	21 0.91	22 0,95	33	$\frac{27}{1.17}$	44	50	$\frac{27}{1.17}$	1.20	34	37	0.96
		Calcium Magne -	À				24		20		19.1		1.57		30		30 2,50		21 1,70	
		Calcium (Ca)					3.68		37		$\frac{34}{1,70}$		21 1.06		$\frac{22}{1.11}$		36		33	
		Ŧ					8,3		8,3		7.6		7.9		8.4		8.4		8.2	
	Spacific conduct-	(mlcra- mhas	of 25 C			169	680	420	450	423	410	357	380	582	260	202	511	997	067	765
		Tamp in °F																		63
		sampled				9-6-62	5-21-63	9-5-62	5-21-63	9-5-62	5-21-63	n_5-62	5-22-63	9-5-62	5-22-63	9-5-62	5-21-63	9-5-62	5-22-63	9-5-62
	State well	ather number			MDBGM	11S/2E-27A1		12S/1E-11L1		12S/1E-11N1		12S/1E-14J1		12S/1E-23R1		12S/1E-24G1		12S/1E-24Q		12S/2E-7K1
		Owner and				S. H. Gandrup domestic and	irrigation	Frank T. Blake irrigation		Sunset Beach Park domestic		J. Roacha, Jr. irrigation		E. L. Padden domestic		H, Trafton irrigation		domestic		A. L. Waugaman irrigation

	CO ₃ Analyzed N.C. by c		DWR	DWR	4 LL	2 DWR	129 DWR	7728 DWR	93 DWR	DWR	64 DWR	204 DWR		60 DWR			
Horde	os CaCO ₃ Tatal N.C.				183	227	281	7800 7	226		128	382		227	227	227	227
	E Sod				23	25	22	5.97	31		777	27		2.5			
Totol	salved solids in ppm				290	374	430	10020	707		308	588	788		8	286	786
	(SiO ₂) Other constituents ^d																
	Silica (SiO ₂)				27	36	28	16	27		38	27	33			23	
Tian	Baron (B)				0.1	0.2	0.2	0.1	0.1		0.1	0.2	0.1			0.1	0.1
er millo	Flug-				0.2	0.1	0.2	0.01	0.1		0.1	0.1	0.1			0.01	
parts per million equivolents per millian	rote (NO ₃)				00.00	0.0	0.00	0.0	0.88		99.00	0,18	3.2			46	46 0.74
a Ninge	음: - 일: - (고)		72 2.03	0.39	12 0.32	25	101	5452 153.75	09	44	72 2.03	184 5.20	55 1,55		1.92	68 1.92 74 2.08	68 1.92 74 2.08 85 2.40
ē	Sul - fate (SO ₄)	~			38	38	58	506	67		0,36	69	54			3.8	3.8
Mineral constituents	Bicar- bonate (HCO ₃)	(Cont.)			3.43	275	3.03	88	156		1.27	3.56	181 2.97			69	
neral c	Carbon- ote (CO 3)	ү (3-2)			4.5	0,00	00.00	0.00	0.10		0.00	00*0	10.8			0,00	
2	Potas-Carbon- stum ote (K) (CO ₃)	VALLEY			0.05	0.06	2.6	0.19	2.1		0.05	3.0	2.3			0.03	0.03
	Sodium (Na)	PAJARO	66	24	26	35	37	9.80	47	41	47	65 2.83	35	87	2.09	2.09	2.09 56 2.43 84 3.65
	Magne sum (Mg)				1.20	30	3,32	1161	33 2.68		1.25	4.00	31 2.55			0.91	0.91
	Calcium (Ca)				49	42 2.10	46 2.30	1212	37		26	73	1.99			17	
0 .	¥ . 0				7.8	8 2	8.2	7.4	8,3		8.0	7.5	8.4		_	7.5	
Specific	once (micro- mhas		1260	777	430	530	700	13500	650	692	567	1020	610	481	_	450	
	Te and		62			67	67		19		19	68	09				09
	Oate		9-5-62	9-5-62	5-22-63	9-5-62	9-5-62	7-23-62	7-23-62	9-5-62	7-23-62	7-24-62	7-24-62	9-5-62		5-22-63	5-22-63
etoto.	nymber and ather number	MDB68M	12S/2E-12E1	12S/2E-18K2		12S/2E-1981	12S/2E-19M1	12S/2E-30E1	12S/2E-30N1	12S/2E-31A1	12S/2E-31C1	12S/2E-31K1	12S/2E-32C1	12S/2E-32K1			128/36-781
	bra rena esu		Sheehy irrigation	City of Watsonville industrial	and domestic	T. E. Trafton irrigation	M. Williamson domestic and irrigation	E. Yappert irrigation and domestic	J. Fenaglio domestic and irrigation	Ranger	Jensen irrigation	F. Tornavaca irrigation	S. H. Cowell irrigation	Johnson	Ittabatton	11 + KG C + CO	irrigation L. Sanovac

TABLE E-1

	pez	\Box																
	Analyzed				DWR	DWR	DWR	DWR	DWR	DWR	DWR	77	DAR		DWR	DWR	DWR	DWR
dness	os CaCO 3	P.C.			11	58	312	0	190	00		0	71		16	28	22	97
		Total			93	125	492	72	438	370		62	278		165	190	178	184
à	Sod -	ē Ē			8 7	63	27	4.5	31	57		88	28		, 26	77	87	10
Total	solved	- 1			233	288	832	194	810	792		999	597		265	258	252	260
		(SiO ₂) Other constituents																
	Salico	(2015)			77	36	27	31	31	97		24	35		24	52	138	38
lion	Boron	(e)			0.0	0.0	0.2	0:0	0.1	0.2		0.1	0.3		0.21	0,26	0.15	0.03
millar er mil	Fluo-	(F)			0.2	0.1	0.1	0.1	0.1	0.1		0.2	0.1		0.2	0.2	0.2	0.3
parts per millian equivalents per million		frate (NO ₃)			0.14	36	8.2	0,29	59	20		0,00	0.00		20 0.32	13	28	0.42
pointe	-916	(C)			58	2.03	8,15	28	3,00	262	148	202	86		23	14	20	0,68
25 E		(SO ₄)		4	3.8	16	1.61	0.04	3.90	112		88	54	୍ଷା	23	24	0.25	21 0.44
Mineral constituents	Bicor-	bonate (HCO ₃)	(Cont.)		100	81	3,26	1.43	285	3.23		196	3.85	CILROY-HOLLISTER BASIN (3-3)	182	198	3,11	169
eral c	arbon	ote (CO ₃)	(3-2)		00.00	00.00	10.2	00.00	9.0	0.00		7.2	0.30	TER BA	0.00	00.00	00.00	0.00
M.	Potos -	(K) (CO ₃)	PATARO VALLEY		0.8	0.05	3.2	0.9	3.9	3.0		4.5	3.9	HOLL13	0.05	0.02	0.0	0.3
	1	(Na)	PA 1ARO		39	1.90	3,70	28	91 3.95	138	192	225 9,80	51 2,20	CILROY	27	14 0.61	18	0.70
	Magne-	Sium (Mg)			0.90	12 0.98	63 5,15	10	56	3.87		5.2	3,03		23	26 2.10	16	16
	1	(Ca)			19	30	69.7	0.59	83	3,53		16	51 2.53		28	34	44	47
	¥				8.1	8.0	7.7	0.8	7.8	8.2		8,5	0.0		8,2	7.9	 	8.0
Specific	ance	mhas at 25°C)			350	597	1320	260	1100	1300	166	1150	740		555	675	907	426
	Temp				65	99	63	79	63	79			67					
	Dote				7-30-62	7-30-62	7-23-62	7-31-62	8-15-62	7-24-62	9-5-62	5-22-63	8-15-62		6-27-63	6-27-63	6-27-63	6-27-63
State well	number and		N. Garage	10000	128/3E-19M1	125/3E-30A1	135/16-141	135/26-111	13S/2E-5M1	135/2E-6E2	13S/2E-6P1		13S/2E-6R1		9S/3E-25N3	105/3E-1E2	108/38-23J1	108/3Ľ-26J1
	Owner and	980			C. McGinnis domestic and irrigation	H. Fukuba irrigation	Hurley irrigation and domestic	M. Vaughn domestic and irrigation	irrigation	G. H. Hurley irrigation	F. Capurro & Sons domestic and	irrigation	Giberson irrigation		T. Andrade irrigation	P. L. Hudson irrigation	J. Orlando irrigation and domestic	E. H. Henderson domestic and arragation

	N.C. by c			O DWR												
Hardness	Tota!			294							294 194 205 284 361 304 792	294 194 194 361 361 253 282 253	294 194 195 195 195 197 197 197 197 197 197 197 197 197 197	294 194 194 208 284 304 253 377 777 777	294 194 194 195 208 285 253 304 777 777 777 776	294 194 194 195 196 197 197 197 197 197 197 197 197 197 197
ď	P S E			7 28												
2 :	perios psic			427	427	427	427	427 2 88 2 300 738 7486	427 427 438 4466 466 466	427 268 300 438 412 412 335	427 2 68 4 438 4 466 4 466 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	427 268 300 438 412 412 412 11370	427 2 68 4 438 4 438 4 412 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	427 268 200 438 438 466 412 11370 11370	427 268 200 300 446 412 412 1130 1130 1150	427 268 200 300 466 466 412 1130 1130 1150
	Silica Other constituents ^d			28	3 E8	31 gg [58]	13 13 158 10 13 158	82 81 F) O) 83	55 [30]31 [38 [58	83 83 11 03 83 83 11 12 05 83 81	7	52 53 30 31 38 53 58 30 31 38	11 18 18 18 18 18 18 18 18 18 18 18 18 1	23 28 30 11 38 83 83 83 83 83 83 83 83 83 83 83 83	23 28 29 20 21 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	29 20 11 18 25 28 30 07 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
	Boron Silis (B) (Sid			0,23 28												
Ni- Fluo- B frate ride			_	3.6 0.3						0.03 0.02 0.01 0.03 0.03 0.03 0.01 0.01 0.01	0.03 0.02 0.02 0.01 0.03 0.03 0.02 0.01 0.01 0.01 0.01	0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0.3 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0	0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00	0.0.2 2.0.0	0.0.2
Chio- ride (CI)			45 3.0	_												
or- Sul- 1016 fate 103) (SO ₄)		(3-3) (Cont.)	19	_												
Corbon- Bicar- ate banate (CO ₃) (HCO ₃)		BASIN (3-3)			0 210 0.00 3.44									-		
Potos-(K)		STER	15		0.02											
(No)		GIL ROY-HOLLE	53	0,74		31 1.35		·	*P	·			-			1-
Colcium sium (Ca) (Mg)			43 46	41 22 2.04 1.84	_	1.35 2.81		·								
¥			8.3 4.	8.1 4.	_	8.3										
in °F (micra- mhos	C2 10		735	442	513											
peldmos			6-27-63	6-27-63	6-27-63		6-27-63	6-27-63	6-27-63	6-27-63 6-27-63 6-27-63 6-27-63 6-28-63	6-27-63 6-27-63 6-27-63 6-28-63 6-28-63	6-27-63 6-27-63 6-27-63 6-28-63 6-27-63	6-27-63 6-27-63 6-27-63 6-28-63 6-27-63 6-27-63	6-27-63 6-27-63 6-28-63 6-27-63 6-27-63 6-27-63	6-27-63 6-27-63 6-27-63 6-27-63 6-27-63 6-28-63 6-27-63	6-27-63 6-27-63 6-28-63 6-28-63 6-28-63 6-28-63
other number		MDRAM	10S/4E-17F1	10S/4E-18G2	10S/4E-28D2		108/4E-34L5	10s/4E-34L5	108/4E-34L5 118/4E-4Q3 115/4E-2182	105/4E-34L5 115/4E-4q3 115/4E-2182 115/5E-2781	108/4E-34L5 118/4E-4Q3 118/4E-2182 118/5E-27M1	105/4E-34L5 115/4E-443 115/4E-2182 115/5E-27M1 125/4E-34P2	105/4E-3415 115/4E-4q3 115/4E-2182 115/4E-37N1 125/4E-35C1 125/4E-35C1	105/4E-34L5 115/4E-443 115/4E-2182 115/4E-3781 125/4E-35C1 125/4E-36C1 125/5E-982	115/4E-2443 115/4E-443 115/4E-2182 115/4E-3781 125/4E-35G1 125/5E-9NZ 125/5E-9NZ	115/4E-2443 115/4E-2182 115/4E-3781 125/4E-3641 125/5E-982 125/5E-982 125/5E-3641
	Owner and		Vowinkel damestic	E. Nichols domestic and irrigation	D. Wolfe	and damestic	integration and domestic S. Armendariz irrigation and domestic	irrigation and domestic firrigation and domestic firrigation and irrigation firrigation	and domestic S. Armendaria Intigation and domestic G. Hotang Mrs. J. D. Fair	intigation and demestic firigation and demestic G. Mosang irrigation Mrs. J. D. Pair domestic Mrs. C. R. Lamit i Admestic	attigation attigation attigation and dumestic irrigation Mrs. J. D. Fair domestic Mrs. J. D. Pair formstic Arrigation Irrigation Irrigation Irrigation Mrs. C. R. Lanit i domestic Forty Warse Seed Go.	intigation intigation intigation and domestic firtigation Mrs. J. D. Fair domestic Mrs. C. R. Laniti domestic Ferry Mrse Seed Co. irrigation irrigation	artidgation artidgation artidgation artidgation artidgation Mrs. J. D. Fair domestic Mrs. C. R. Lantit domestic ferry Mrse Seed Co. frigation artidgation domestic frigation domestic frigation domestic domestic domestic domestic Mr Diaz domestic	ail damestic S. Armendariz S. Armendariz C. Hosang His. J. D. Fair domestic Mrs. C. R. Lamin i domestic Ferry Morse Seed Co. Irrigation Olympia School demestic Amestic Mr Diaz domestic domestic Holaz domestic Holaz domestic Holaz domestic Holaz domestic Holaz Holaz domestic	aid demostic S. Armendaliz Trigation and demostic C. Hosang His. J. D. Fair domestic His. C. R. Lamini domestic Ferry Morse Seed Co. Irilgation Olympia School demostic demostic M. Diaz demostic demostic Jirilgation S. Freitas & Puttado domestic domestic H. Diaz domestic H. Diaz domestic domestic Irilgation Irilgation Irilgation H. Tigation Irilgation	all demonstic S. Armendaris Trigation and demonstic C. Hossang Trigation Hrs. J. D. Fair domestic Hrs. C. R. Lamini domestic Ferry Morse Seed Co. Irilgation Olympia School demonstic Admestic H. Diaz Comestic H. Diaz Comestic H. Diaz Comestic H. Diaz Comestic H. Diaz H. Diaz Comestic H. Diaz

TABLE E-1
ANALYSES OF GROUND WATER

-																	
		Anolyzed by c		£	ń	-	DER	DICK		DWR	DWR	DWR	DWR	OWR	MAR	DWR	DWR
-							170	129		11	58	D D	С	0	112	169	76
	Hordness	Total		9	6117	342	475	987		63	125	62	611	25	291	306	241
	ě	Sod in		ŝ	7	73	38	41		90 7	43	8 5	67	55		ž,	97
	Total	solved sod-			068	1390	606	855		228	296	588	296	178	610	798	564
		Silica Other constituents ^d															
		Silica (SiO ₂)			07	10	21	24		777	36	77	42	977	36	88	37
	lon	Boron (B)			61	3.4]	1,00		0,0	0.0	0.2	0,1	0.1	0.2	0.2	0.1
million	e. Bi	Fluo- ride (F)			0.00	0.00	0.4	0.4		0.2	0.1	0.0	0.01	0.2	0.1	0.1	0.01
parte per million	equivolents per million	trote (NO ₃)			0.0	0.00	0.14	0.24		8.5	36	0.9	0.0	0.03	3.1	0.03	0.9
1	odninbe	Chio- ride (CI)			324	13.82	3.61	3.10		58 1.63	72 2.03	2.70	60	38	223 6.30	362	5.20
	ts in	Sul - fote (SO _a)	ont.)		0.0	2.33	5.54	-5.22		3.8	0.35	1.81	5.3	2.9	31	37	26
	Mineral constituents	Bicor- bonote (HCO.)	3-3) (Cont.)		366	8.29	372	374	(3-4)	100	1,33	3.70	163	67	3.58	162	3.16
	nerol cc	Polos-Carbon-	BASIN		0.00	14 0.47	00.00	00.00	SALINAS VALLEY (3-4)	0,00	00.00	9.0	0.20	0.00	0.00	3.0	4.2
	N	Potos- sium (K)	TSTUE		2.3	0.06	2.8	3.0	LINAS V	0.8	1.8	3,5	0.04	0.0	5.7	8.3	2.8
		Sodium (No)	HOLLI STUR		266	425	135	141 6.13	SA	39	44	170	54 2.33	30	110	7.55	96 4.17
		Mogne -		1	0.54	19	4.05	45		0,90	12 0.98	4.6	1.15	6.8	34	36	25 2.06
		Calcium (Co)			3.64	105 5.24	109	100		19	30	0,85	25	9.4	3.06	3.12	2.76
		Ŧ			7.9	8.5	7.8	7.9			8.0	8.5	7,00	7.9	7.7	8.3	8.4
	Specific conduct-	once (micro- mhos			1540	2410	1430	1380		350	465	820	7460	237	1090	1350	885
-	3, 0	Temp n of									89	72	72	71	89	99	99
		Dote			6-28-63	6-28-63	6-27-63	6-28-63		7-30-62	7-30-62	7-16-62	7-31-62	7-31-62	8-6-62	7-16-62	7-16-62
	Store well	other number		ADDRESS OF THE PROPERTY OF THE	125/6E-1912	128/65-3181	138/56-351	138/5E-11G1		12S/3E-19M1	12S/3E-30A1	13S/2E-7R1	13S/2E-10J1	13S/2E-13N1	13S/2E-16E1	13S/2E-17H1	13S/2E-19R1
		Owner ond			E. F. Broadfoot & Jon domestic	C. T. Pillsbury domestic and irrigation	First Presbyterian Church domestic	V. Lompo irrigation				Monterey Bay Salt Co. domestic and industrial	R. Bowen irrigation	R. M. Cheek domestic and irrigation	M. Minhoto irrigation	Delfino & Calcagno irri;ation and domestic	T. Leonardini domestic and irrigation

	Analyzed	o do		DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	OWR	OWR	DWR	DWR	OWR
	_	D E da			0	0	26 DV	222	0	0 00	63 04	82	7	0	96	262 D	0 66
	as CoCO ₃	Tata! N		315 222	136	114	176 2	315 22	115	154	901	280	73	99	201	300	129
	Cent	1 .		42 31	58 13	58 11	55 17	39 31	53 11	41 15	57 10	29 28	25	52	288	47 3	45
1	dis-	spilos spilos		869	422	348	518	642	288	332	334	767	230	186	336	720	290
		(SiO ₂) Other constituented															
	3	(SiO ₂)		673	37	29	31	33	33	31	33	34	777	37	77	29	23
إ	1 9	Boron (B)		0.1	0.2	0,1	0.2	0.2	0.1	0,1	0.1	0.1	0.2	0.0	0.0	0.1	0.1
million	-01	şê.		0.01	0.1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1
parts per million	Ž	trate (NO ₃)		0.0	0.02	0.02	0.0	0.02	0.9	0.4	0.9	8.5	9.8	3.2	0.04	3.35	77
ports per million		- 8 (i)		264	3,45	60	162	229	73	53	60	2,30	1,30	43	3.50	145	84
5	1.0	fote (SO ₄)	7	68	21 0.45	11 0.22	19 0.41	51	14 0,29	12 0.24	22 0.47	74	3.4	0.10	0.28	73	20
Mineral constituents	Bross	ate banote (CO ₃) (HCO ₃)	VALLEY (3-4) (Cont.)	113	170 2,80	3.52	3,00	114	149	3.25	167	3,65	87	86	82	46	37
eral co	Too Hoo	ofe (CO ₃)	У (3-6	0.00	3.0	9.0	00.00	00.00	3.0	6.0	3.6	9.0	00.00	00.00	0.00	00.00	0 00
ž		Sicm (K)	VALLE	0.06	2.8	2.4	2.7	3.2	2.7	2,3	2.4	0.07	0.03	0.7	0.03	0.0	1.9
		Sodium (No)	SALINAS	105	3,87	3.30	103	95	62 2.70	51 2.20	67	53	37	34	3,00	103	67
	No.	S'UM)		3,05	16	1.15	19	3.31	16	0.22	11 0.88	22 1.82	9.5	0.50	15	35	1 28
		Calcium (Ca)		65 3.24	30	22	38	60 2.99	19 0.97	58	24	3.79	0,72	0.82	19 0.94	3,20	26
	품			8.1	6.3	5.0	8.2	8.2	7, 0	8.5	7.8	8.4	8.0	7.9	7.9	7.0	7.0
Specific	conduct	(micro- mhas at 25°C)		1130	685	545	800	980	200	495	067	735	320	285	570	1060	200
	Temp			89	70	29	70	72	72	99	70	99	69	79	79	62	09
	Date	sampled		7-16-62	7-16-62	7-17-62	7-17-62	7-17-62	7-16-62	7-16-62	7-17-62	7-19-62	8-1-62	7-26-62	7-26-62	7-12-62	7-12-62
	State well	ather number	MDB6M	T.	13S/2E-3102	13S/2E-31K2	13S/2E-31M2	13S/2E-31N2	13S/2E-32A2	13S/2E-32Cl	13S/2E-32N1	13S/2E-33R1	13S/3E-4L1	13S/3E-2082	13S/3E-29A1	14S/1E-24Q2	14S/1E-25K1
	200	950		J. Tate Jomestic and irrigation	J. J. King irrigation	Molera Estate domestic	E. Ballone irrigation	E. Ballone irrigation	irrigation	O. P. Overhouse irrigation	Molera Estate Arrigation	C. Rissotti irrigation and domestic	R. Hollenbeck domestic and irrigation	F. B. Taganas domestic and irrigation	C. Lightfood domestic and irrigation	V. Coto domestic	Marina Del Mar School

TABLE E-1
ANALYSES OF GROUND WATER
1963

Г		2																
		Analyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DAR
	Hordness	N.C. PP			0	0	0	'n	е	25	52	252	130	27	186	269	69	777
					127	133	142	152	202	195	188	345	238	197	434	429	110	137
	à	sod mu lum			54	20	777	35	26	37	37	35.	07	36	32	33	20	30
	Tatol	solved solved in ppm			366	348	304	298	334	384	408	738	512	388	806	828	308	284
		Silica (SiO ₂) Other constituents ^d																
		Silica (SiO ₂)			35	35	34	136	22	32	티	34	33	29	26	21	28	8
	lian	Boran (B)			0.1	0,1	0.1	0.1	0.0	0.1	0,2	0.2	0.2	0.1	0,3	0.0	0.1	0,1
	Ē	Flua- ride (F)			0.1	0.1	0.2	0.01	0.01	0.1	0.1	0.01	0.1	0.1	0,1	0.01	0.1	0.01
	equivolents per million	rrote (NO ₃)	-		0.02	0.02	1.3	0.03	3.6	0.00	0.4	0.00	0.00	2.2	5.3	0.00	73	0.0
	equivo	음. - 10년 -			1,60	51	50	48	41	62	43	190	99	63	162	195 5,50	69	0.48
	is in	Sul - fate (SO ₄)		٧	30	23	0.33	0,25	0.24	48	102	3,85	138	417	3.25	194	17 0,36	18 1.68
	Mineral constituents	Bicor- banate (HCO ₃)	(Cant	. 1	3.17	3,23	3,38	180	3.98	3,30	148	113	$\frac{132}{2.17}$	3.20	302	3.20	55	107
	erol c	Potas-Carbon- sium ate (K) (CO ₃)	7-67		0.30	6.0	00.00	0.00	0.00	3.0	6.0	0.00	0000	6.0	00.00	0,00	00.00	3.0
	Min	sium (K)	1000	VALLE	3.2	2.3	23	2.3	1.8	3.7	3.0	0.10	0,11	2,7	3.8	4.6	0.05	0.07
		Sadium (Na)	CALTMAC	CHATTAG	3.05	63	53	40	33	55	53 2,30	98	3,20	52 2.25	94	98	53	28
		Magne -			10	11	13	22	0.56	13	18	35	2,18	15	3,17	43	13	0.59
		Colcium (Ca)			34	34	34	28	3.48	56 2.78	44	3.96	52 2.58	54	5.51	5.11	23	43
Ī		¥			8.4	8.4	7.8	8.2	8.2	8.3	4.8	8.0	8.1	8.4	7.5	8.2	7.3	8.2
	Specific conduct-	once (micro- mhas of 25° C)			535	510	200	455	200	585	565	1055	750	580	1200	1180	510	450
		Temp in °F			72	72	72	99	79	99	99	99	70	89	64	99	63	70
		Sampled			7-17-62	7-17-62	8-7-62	7-19-62	7-19-62	7-18-62	7-18-62	7-18-62	8-7-62	7-19-62	7-12-62	7-18-62	7-12-62	8-7-62
	Stote well	number and other number	RABAN	MUBoan	14S/2E-6Q1	14S/2E-6R2	14S/2E-8M2	14S/2E-11Dl	14S/2E-12Q1	14S/2E-14N1	14S/2E-15L1	14S/2E-18D1	145/2E-23J1	145/2E-24E1	14S/2E-25B1	145/2E-26A1	14S/2E-30P2	14S/2E-35Q1
		Owner and use			Mrs. L. Martin irrigation and domestic	E. Struve irrigation	J. Jefferson irrigation	J. P. Rogers domestic and irrigation	E. C. Eaton irrigation	L. A. Wilder domestic	Nonterey County Bank irrigation and domestic	J. G. Armstrong Co. irrigation	A. H. Bordges irrigation	M. T. DeSerpa irrigation	M. T. DeSerpa irrigation	M. Bordgers irrigation and domestic	A. Coodall domestic	D. P. McFadden irrigation

		Analyzed																	
-		_			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	O DWR	DWR	DWR
1	rdness	os CoCO s	D E	 	362	205	9	67	0	87	37	165	69	428	332	202		0 12	97
-			Toto!	 	32 742	617 77	35 212	44 202	64 38	59 92	163	27 417	40 169	50 557	27 450	23 357	43 262	53 130	36 271
ŀ	-6	tolved cent	\$ E		1314 33	926	426 3	7 78 7	132 6	300	296	744 2	378 4	1508 5	650 2	610 2	7 767	366	474 3
-			- 1	 	13	6	- 4	7	1	е	- 2	7	en .	15	9			en .	7
			(SiO ₂) Other constituents																
				 	24	27	38	135	81	티	128	91	28	RI	- El	2 26	133	9	0
	Hion		(e)		0.4	0.3		1,0	0.0	0,1	1.0	0.2	0,2	0.6	0.3	0.2	0,2	0,1	100
	Der m	Fluo	şe.		0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.0	0.2	0.02	0.2	0,0	0.01	0.4	0.2
	equivolents per million	ż	(NO ₃)		8.5	0.35	3.6	8.5	0.0	33	0.9	0.00	0.9	0.00	0.00	0.02	0.0	3.6	0.00
	o in be	3	1 1 1 1 1 1 1 1 1 1		312 8.80	257	78	3.20	40	103	0.37	74	38	243	3.65	1,85	3.25	3.10	3.50
	nts in		(SO ₄)	 4	233	3.16	58 1,20	54	3.4	14 0.28	74	208	133	624	302 6.28	209	30	16	0,85
	Mineral constituents	Bicor	theory)	(Cont.)	7.60	261	174	165	53	59	150	307	122	157	2.35	3.10	301	144	244
	nerol 4	Corpor	(CO 3)	VALLEY (3-4)	0,00	0.00	6.0	0.00	00.00	00.00	0.05	00.00	00.00	0.00	0.00	00.00	12 0.40	00.00	0,50
	ž	90100	(K) (CO ₃)	VALLE	4.3	3.8	0.07	2.8	0.03	0.06	3.0	3,3	3.7	6.5	4.3	3.9	5.2	2.2	0.07
			(No)	SALINAS	157	157	53	3,25	32	63	28	3.20	54 2.35	255	3.33	2.20	92	3.05	3,40
		Modes	(Mg)		3.60	55	21/11/1	1.58	0.24	10	0,83	4.03	1,56	5.79	56	51 4.24	54 4.43	13	1.34
			(CO)		323	3.92	50 2.53	49	0,53	20	49	4.31	36	5.35	4.37	2.90	160	29	81 7.08
		품			7.4	7.9	4.8	8.2	7.2	7.5	8.3	7.9		8.0	8.0	8.1	8.5	8.2	8,5
	Specific	once.	mhos ot 25° C)		1850	1420	625	705	226	200	450	1100	570	2000	1100	870	830	009	830
		Temp	=		99	62	7.0	63	72	67	99	99	70	79	89	79	99	67	89
		Dote	sompled		7-12-62	7-12-62	7-20-62	7-11-62	7-11-62	7-11-62	7-10-62	7-9-62	8-7-62	8-7-62	7-20-62	8-10-62	8-10-62	7-25-62	7-25-62
	Stote well	puo segundo	other number	MDBGM	145/3E-30E1	14S/3E-30F1	148/3E-3301	155/1E-2201	155/1E-2361	15S/1E-26N2	15S/2E-1A3	15S/2E-2Q1	15S/3E-4K3	158/3E-5Q4	155/3E-701	15S/3E+16M1	15S/3E-17Pl	16S/2E-1L1	16S/2E-3J1
		Owner and	987		A. Lanini irrigation	and domestic irrigation	P. C. & E. municipal	P. Calabrese domestic	O. Veach domestic	J. Siino domestic	irrigation and domestic	L. Jacks irrigation	irrigation	irrigation	P. Giottínini domestic and lrrigation	Spreckles Sugar Co. irrigation	J. Violini irrigation	J. Hugo domestic	Corral delterra Country Club domestic and irrigation

TABLE E-1

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
91			100	355 D	225 D	11	75 D	243 D	25 D	383 D	g 95	g 866	157 D	184	750 I	1 689	253	
Hardness	as CaC		225 1	477 3	420 2	303	185	365 2	225	481 3	173	1128 9	277 1	328 1	7 286	878	430	-
	sod rum T		57 2:	35 4	34 4:	18	40	38	53 2	24 4	22 1	22 11	28 2	707	52	80	7 77	_
Total	solved solved mdd m		624	1044	810	450	432	816	632	812	300	2032	504	732	2980	2210	1096	
	Silica Other constituents ^d																	
	Silica (SiO ₂)		777	36	32	27	36	30	26	21	28	28	25	27	23	24	131	
lon	Baran (B)		0.1	0.4	0,3	0.1	0.2	0.4	0.5	0,1	0.1	0.4	0,3	0.6	2.0	1.8	1.1	
million er mil	Fluo- ride (F)		0.1	0.2	0.1	0,1	0.1	0,1	0.1	0.1	0.0	0,1	0.2	0.2	0.4	0.4	0.0	
parts per million equivalents per million	rrate (NO ₃)		6.1	57	0.00	0.0	6.4	5.8	33	57	3.4	37	0,18	0,60	0,38	25	0,28	
DAINDB	Cride (CI)		254	3.30	74	28	62	94	50	87	13	287	3.05	1,81	316	7.85	144	
ē	Sul - fate (SO ₄)	٦	34	403	331	125	103	337	222 4.62	365	69	870	99 2.06	5.89	1335	1057	363	
Mineral canstituents	Bicar- bonate (HCO ₅)	(Cont.	152	148	3,90	3.61	134	149	3,40	119	180	159	146	176	260	3.08	3.55	
arai ca	Corbon- ate (CO ₃)	(3-4)	0.00	00.00	00.00	0.24	0.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	13	3.0	00.00	
Mine	Potas-C sium (K)	VALLEY	3.3	3.5	3.9	2.2	2.9	3.1	4.2	5.6	0.00	4.4	2.0	2.7	8.5	6.7	4.5	
	Sodium (No)	SALINAS VALLEY	140	122 5,30	103	30	58	107	120 5,20	3.05	23	149	50 2.17	102 4.43	500	360	160	
	Mogne - sium (Mg)		22	62 5.08	56 4.55	2.30	21	51 4.22	30	45	13	115	35	57 4.72	5.70	130	5.25	
	Calcium (Ca)		54	89	3,84	3,76	40 2.02	3,08	40 2.02	5,97	48	263	53	37	281	125	3,34	
	Ŧ.		7.8	8.2	8.2	8.4	8,2	8.1	7.6	7.9	8.2	8.0	8.2	8 2	4.8	8.3	7.9	
Spacific conduct-	ance (micra- mhas at 25° C)		1060	1350	1120	610	620	1100	930	1170	077	2400	760	1020	3500	2900	1360	
	Temp in °F		73	99	64	79	99	89	99	67	89	99	19	65	99	65	99	
	Sampled		7-25-62	7-26-62	7-27-62	7-31-62	7-13-62	7-31-62	8-3-62	8-3-62	8-3-62	8-3-62	8-9-62	8-8-62	8-8-62	8-8-62	8-8-62	
State well	number and other number	MDBGM	16S/2E-12G1	16S/4E-24A1	16S/4E-25Kl	17S/5E-9Q1	175/6E-7Q1	17S/6E-27Kl	18S/6E-1El	18S/6E-2N1	18S/6E-28J1	18S/7E-29G1	19S/7E-10P1	198/7E-1302	19S/8E-32A1	19S/8E-33R1	20S/8E-5R1	
	Owner and use		C. Phillips domestic	K. R. Nutting irrigation	J. C. Twisselman irrigation	C. Doud irrigation	irrigation	N. Baker irrigation	L. M. & V. Jacks irrigation	L. Jacks irrigation	F. W. Smith irrigation	E. Pincini irrigation	Salinaa Land Co. irrigation	D. M. Singaman domestic and irrigation	irrigation	G. Ross irrigation	A. Duarte irrigation	

ANALYSES OF GROUND WATER 1963

ſ		P																			
		Analyzed by c	\rightarrow			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR		DWR
	dness		N.C.			571	527	726	39	61	104	6	99								82
			Total			671	674	106	176	198	157	86	248	511	541	257	144	172	332		265
		cent sad.	5			28	30	32	30	43	50	34	21								20
	Total	eolved	- 1			2300	1328	2030	336	458	282	206	408	1075	1020	780	300	1060	520		097
		9	(SiO ₂)																		
						29	32	29	25	34	35	30	36	20	07	47	07	32	9]		26
	Lion		<u>@</u>			2.8	0.4	0,8	0.2	0.4	0.1	0.1	0.1	0.46	1.35	0.35	0,06	2.00	0.06		0.1
	r milla	Fluo	(F)			0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	9.0	0.5	0.7	0.5	1.2	0.5		0.02
	parts per millian equivalents per millian	- iz	(NO ₃)			0.04	36	33	2.3	4.1	0.25	0.12	0,16	5.5	0.0	15	0.16	52 0.84	0,31		1.8
	edning		(CE)			754	158	170	0.70	1.75	36	0,62	38	47	145	68	43	107 3.02	1.95		61 1.72
	nts in		(SO ₄)	-	-1	492	530	812	73	123	1.64	14 0,31	55	469 9.76	294 6,12	76	24	354	1.00		98 2.04
	Mineral constituents	Bicar	(HCO ₃)		(Cont.)	122 2.00	180	3.50	160	161 2.63	1.07	116	3.85	320	8.60	303	176	339	312 5.11		3.35
200	Ineral	Carbon	(CO ₃)		(3-4)	00.00	0,00	0,00	4.2	3.0	00.00	0.00	0.00	0,00	00.00	0.00	00.00	00.00	00.00	(3-7)	0.30
-	Σ	dium Patas-Carbon- sium ate	e (x		VALLEY	0.29	5.7	63	0.04	3.4	2.6	1.4	2.4	5 0,13	4 0.10	3 0.08	4 0.10	0.05	0.08	ALLEY	3.6
			(Na)		SALINAS VALLEY (3-4)	445	132 5.73	195	35	3,05	18	24	30	140	180	3.48	42	310	40	CARMEL VALLEY (3-7)	47 2.05
		Magne	(6M)			63 5.20	80	61 4.97	$\frac{21}{1.70}$	2.36	14 1.15	7.2	$\frac{21}{1.72}$	5,18	100	40	10 0,82	$\frac{21}{1,73}$	17		23
		Salcinia	(Ca)			164	137	262 13,04	36	32 1.60	40 7.00	1.37	65 3.24	101	52 2.59	37	41 2.05	34	105		3,42
		돐				8.2	0.8	4.8	8.4	8.0	8 2	7.9	7.3	7.8	7.6	7.6	7.9	7.4		8 .5	
	Specific	ance				3200	1700	2230	520	700	410	300	009	1462	1664	814	478	1634		700	
		Temp cor				70	77			67				74	99	99	72	74			63
		Date				8-8-62	8-7-62	8-7-62	8-7-62	8-7-62	8-6-62	8-6-62	8-6-62	9-23-63	9-24-63	9-23-63	9-26-63	9-26-63	9-27-63		8-14-62
	Stote well	number and			MDBGM	20S/8E-24J2	21S/9E-7Jl	21S/9E-24Ll	22S/10E-17N1	22S/10E-34G1	23S/8E-2E1	23S/8E-8K1	23S/9E-29Cl	248/126-1712	24S/15E-17F1	25S/12E-16N1	26S/14E-35D1	26S/16E-31B1	27S/13E-36R1		168/14-13L1
		Owner and	@ \$3.0			irrigation	irrigation	K. & H. Eade irrigation	W. C. Glau irrigation	L. Rosenberg irrigation	E. Weferling irrigation	J. Martinus irrigation	M. Martin, Jr.								R, Odello irigation

TABLE E-1

ANALYSES OF GROUND WATER 1963

		Analyzed by c		DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR
-	50	N.C ppm		80	123 04	32 04	96 D		10 69		05
	ardne	as CaCO ₃ Total N.C						191		187	
-		sod- num To		33 270	30 306	24 125	32 233	31 451	27 236	40 287	33 162
-	otal	solved s solids in ppm		208	099	220 2	9446	838	414 2	029	324
-	-					- 2					
		Sitico (SiO ₂) Other constituents ^d									
		Sifico (SiO ₂		26	29	23	33	119	27	131	18
	II lon	Boron (B)		0.1	0.1	0.0	0.1	0.2	0.1	0.2	0.1
	per mi	Flua- ride (F)		0.4	0.2	0.2	0.4	0.1	0,1	0.6	0.02
	valents per million	Ni- trote (NO ₃)		2.3	0.33	0.0	0.9	0.0	0.4	0.00	0.00
	equivalents per million	Chla- ride (CI)		85	78	0,39	58	3.75	48	2.35	30 0.85
	c s	Sul - fate (SO ₄)		85 1,76	2.65	45	118	3,33	85	5.15	1.66
	Mineral constituents	Bicar- bonate (HCO ₃)	(Cont.)	3.70	208	114	165	354	3.21	122 2.00	2.25
	neral	Carbon- ate (CO ₃)	(3-7)	3.0	7.2	0.00	0,00	00.00	4.2	00.00	0.00
	ž	Patas-Carbon- sium ate (K) (CO ₃) (/ALLEY	0.07	4.1 0.11	2.1	2.3	3.7	3.4	3.5	0.07
		Sodium (Na)	CARMEL VALLEY (3-7) (Cont.	2.80	60	08.0	51 2,20	94	41	3,83	1,60
		Mogne - Sium (Mg)		23	23	8.6	25 2,06	1,53	19	32 2.59	1.18
		Colcium (Ca)		3.49	83	36	52 2.61	150	62 3.12	63	$\frac{42}{2.07}$
		H _d		7.8	4.8	8.2	8.1	7.7	8.4	0.8	
	Specific conduct-	ance (micro- mhos at 25° C)		735	830	300	099	1180	610	880	460
		Temp in °F		62	62	73	71	99	62	99	5 9
		Sampled		7-11-62	8-14-62	7-10-62	7-10-62	7-10-62	7-11-62	7-10-62	7-9-62
	State well	number and other number	MDBGM	16S/1W-13L2	16S/1W-13Q2	16S/1E-16L1	16S/1E-16N1	16S/1E-17G1	16S/1E-18K1	16S/1E-23F1	165/1E-2581
		Owner and USe		Carmel Sewage Treatment Plant industrial	8. Odello irrigation		E, Haber Irrigation	Harbert trrigation and domestic	irrigation	R, Martin irrigation	irrigation

RADIOASSAY OF GROUND WATER 1963

	Gross	Activity			0 + 3.8	0 0 1 -	0 + 3.9	5.5 ± 3.4	0 + 3.8	0 + 3.8	2.4 + 3.9	2.9 + 3.9	1.0 + 3.4		0 + 3.9	0 + 3.8	4.0 + 3.9	1.9 ± 4.0	
in Pica Curies . Per Liter	Activity	Beta																	
-	Dissolved Activity	Alpha	<u>_</u> ন														.=		
Radioossoy	Activity	Beta		ALLEY 2-5										YGNACIO VALLEY 2-6					
	Suspended Activity	Alpha	SAN FRANCISCO BAY REGION (No.	CLAYTON VALLEY 2-5										YGNACIO V					
	2000		SA		8-0-62	2010	8-9-62	9-12-62	8-9-62	8-9-62	8-9-62	8-9-62	9-11-62		8-9-62	8-9-62	8-9-62	8-9-62	
	Capiled	2			7 11 69	70-11-7	7-11-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-11-62		7-11-62	7-11-62	7-11-62	7-11-62	
	Ness				147 111/111	TW-MT/NT	1N/1W-4R1	2N/1W-30J1	2N/1W-30K1	2N/1W-31D1	2N/2W-13P1	2N/2W-26B1	2N/2W-36J1		1N/1W-7K1	1N/1W-29G1	1N/2W-11N1	1N/2W-13P1	

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

				Rodioossoy	y in Pico Curies Per Liter	es Per Liter	
Well Number	Somoted	Anoivzed	Suspended Activity	Activity	Dissolved Activity	Activity	Gross
		,	Alpho	Beto	Alpho	Beto	Activity
			YGNACIO VALLEY 2-6 (Cont.)	2-6 (Cont.)			
2N/2W-27R1	7-10-62	8-9-62					0 + 3.9
2N/2W-36E1	7-10-62	8-9-62					0.4 + 4.0
		SAI	SANTA CLARA VALLEY 2-9 (East Bay	Y 2-9 (East Bay	7		
4S/IW-21F2	9-6-62	9-24-62	0 + 0.14	0 + 4.6	0.06 ± 0.16	0 + 4.6	
4S/1W-21F2	12-5-62	12-21-62	0 + 0.17	2.5 + 4.5	0 + 0,16	0.4 ± 4.5	
4S/1W-21F2	3-7-63	3-17-63	0.1 ± 0.2	8.6 + 4.9	0.0 + 0.1	16.8 + 5.0	
4S/1W-21F2	6-6-63	7-28-63	0 + 0.1	0 + 4.5	0 + 0.2	9.6 + 4.6	
4S/1W-21M1	9-6-62	9-24-62	0 + 0.19	0 + 4.5	0 + 0.18	0 + 4.6	
48/1W-21M1	12-5-62	12-21-62	0 + 0.18		0 + 0.20	, , , , 6	

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

				Rodioossoy	y in Pico Curies Per Liter	es Per Liter	
Well Number	Samoled	Anglyzed	Suspended Activity	Activity		Activity	Gross
			Aipha	Beto	Alpho	Beto	Activity
	-	SANTA	SANTA CLARA VALLEY 2-9 (East Bay)		(Cont.)		
4S/IW-21M1	3-7-63	3-17-63	0.0 + 0.1	11.7 ± 4.9	0.0 + 0.1	32.2 + 5.2	
4S/lw-2lml	6-6-63	7-28-63	0 + 0.1	0.6 + 4.6	0.2 + 0.2	1.0 + 4.6	
6S/1E-7C1	8-62	10-8-62					1.8 + 3.3
6S/1E-21G1	8-62	10-8-62					0 + 3.3
6S/1W-11B1	8-62	10-8-62					0 + 3.3
6S/1W-14E1	8-62	10-8-62					0 + 3.3
6S/1W-16A1	8-62	10-8-62					0 + 3.4
6S/1W-17N2	8-62	10-8-62					0 + 3.4
6S/1W-26D2	9-13-62	10-8-62					2.0 + 3.3
6S/1W-28R1	8-62	10-8-62					0 + 3.3
6S/1W-29C1	8-62	10-8-62					0 + 3.2
6S/1W-30M1	8-62	10-8-62					0 + 3.4
6S/2W-9H1	8-62	10-8-62					0 + 3.3

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

	Date	Date		Rodioosso	Radioassay in Pico Curies Per Lifer	es Per Lifer	
Well Number	Sampled	Analyzed	Suspended Activity	Activity	Dissolved Activity	Activity	Gross
			Alpha	Beta	Alpho	Beto	Activity
		SANTA	CLARA VALLEY 2-	CLARA VALLEY 2-9 (East Bay) (Cont.)	Cont.)		
6S/2W-9K2	8-62	10-8-62					0 + 3.2
6S/2W-20N1	8-62	10-8-62					0 + 3.1
6S/2W-21A	8-62	10-8-62					0 + 3.2
6S/2W-24M3	8-62	10-8-62					0 + 3.4
6S/2W-29D2	8-62	10-8-62					0 + 3.2
6S/2W-34M1	8-62	10-8-62					0 + 3.2
6S/2W-36H2	8-62	10-8-62					0 + 3.3
7S/1W-5L	8-62	10-8-62					0 + 3.1
			LIVERMORE VALLEY 2-10	ALLEY 2-10			
2S/2W-27K1	4-11-62	5-11-62					0 + 4.0
2S/2W-35G2	4-11-62	5-11-62					0 + 3.84
3S/2E-8H1	4-11-62	5-11-62					0 + 3.8
4S/1E-3K1	4-4-62	5-11-62					0 + 3.9
4S/1E-10G1	4-10-62	5-11-62					1.28 ± 4.2
4S/1E-10H1	4-10-62	5-11-62					36.31 ± 4.6

RADIOASSAY OF GROUND WATER 1963

				Rodioossoy	in Pico Curies Per Liter	es Per Liter	
Well Number	Sampled	Analyzed	Suspended A	Activity	Dissolved Activity	Activity	Gross
			Alpho	Beto	Alpha	Beta	Activity
		51	CENTRAL COASTAL REGION (No. 3)	EGION (No. 3)			
			PAJARO VALLEY 3-2	LEY 3-2			
12S/2E-30E1	7-23-62	10-22-62					0 + 3.4
12S/2E-30N1	7-23-62	10-8-62		-			0 + 3.4
12S/2E-31C1	7-23-62	10-8-62					0 + 3.3
12S/2E-31Kl	7-24-62	10-8-62					0 + 3.4
12S/2E-32C1	7-24-62	9-26-62					5.1 + 3.5
13S/1E-1A1	7-23-62	10-8-62					0 + 3.4
13S/2E-6E2	7-24-62	9-26-62					4.2 + 3.5
13S/2E-1K1	7-31-62	9-26-62					1.6 ± 3.5
13S/2E-10J1	7-31-62	9-26-62	SALINAS VALLEY 3-4	LEY 3-4			0 + 3.4
			CARMEL VALLEY 3-7	LEY 3-7			
15S/1E-22Cl	7-11-62	9-26-62					0 + 3.4
15S/1E-23G1	7-11-62	9-26-62					0 + 3.4

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

	Gross	Activity		3.3 + 3.9	1.6 + 3.4	0 + 3.5	0 + 3.4	3.2 + 3.4	2.1 + 3.4	0.1 + 3.4	0 + 3.3	
es Per Liter	Activity	Beto										
Radioassay in Pica Curies Per Liter	Dissolved Activity	Alpho										
Rodioosso		Beta	3-7 (Cont.)									
	Suspended Activity	Alpha	CARMEL VALLEY 3-7 (Cont.)									
	Analyzed			9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	
0	Sampled			7-11-62	7-10-62	7-10-62	7-10-62	7-11-62	7-10-62	7-9-62	7-11-62	
	Well Number			15S/1E-26N2	16S/1E-16L1	16S/1E-16N1	16S/1E-17G1	16S/1E-18K1	16S/1E-23F1	16S/1E-25B1	16S/IW-13L2	

SACRAMENTO RIVER AT COLLINSVILLE SUISUN BAY AT BENICIA ARSENAL

88 RUSSIAN RIVER NEAR HOPLAND
89 NAVARRO RIVER NEAR HOPLAND
80 NAVARRO RIVER NEAR NAVARRO
99 GUALATA RIVER NEAR HOUTH
99 GUSLAN RIVER NEAR HOUTH
90 GUALATA RIVER, SOUTH FORK, NEAR
ANNAROLIS
10 RUSSIAN RIVER AEAT GUERNEVILLE
10 RUSSIAN RIVER, BAST FORK, AT POT
VALLEY FOWENHOUSE
100 RUSSIAN RIVER, BAST FORK, AT POT
VALLEY FOWENHOUSE
101 SALINAS RIVER NEAR SPECKELS
103 SALINAS RIVER NEAR SPECKELS
104 SALINAS RIVER NEAR SPECKELS
105 RAIDEN RIVER NEAR SERVECKELS
105 RAIDEN RIVER NEAR HADENOR
105 REITON
105 REITON
105 REITON RIVER NEAR BEAR VALLE
105 CARDEL RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE
105 RAIDEN RIVER RIV

Foldout too large for digitization

May be added at a later date

GROUND WAT

CENTRA

NORTH COASTAL REGION

1-14.00	Potter Valley
1-15.00	Ukiah Valley
1-16.00	Sanel Valley
1-17.00	Alexander Valley
1-18.00	Santa Rosa Valley
1-18.01	Santa Rosa Area
1-18.02	Healdsburg Area
1-98.00	Lower Russian Riv

SAN	FRANCISCO BAY REGION
2-1.00	Petaluma Valley
2-2.00	Napa-Sonoma Valle
2-2.01	Napa Valley
2-2.02	Sonoma Valley
2-3.00	Suisun-Fairfield
2-5.00	Clayton Valley
2-6.00	Ygnacio Valley
2-9.00	Santa Clara Valle
2-9.01	East Bay Area
2-9.02	South Bay Area
2-10.00	Livermore Valley
2-22.00	Half Moon Bay Ter
2-24.00	San Gregorio Vall
2-26.00	Pescadero Valley

Foldout too large for digitization

May be added at a later date

SANEL VALLEY (1-16.00) MENDOCINO COUNTY

WELL I3 N/IIW - 18 EI, M.D.B. & M. enound surface Elevation 490'

SONOMA COUNTY (1-18.00) , SONOMA COUN ISA AREA (I-18.01) 8W-13R1, M.D.8. 8 M. SURFACE ELEVATION 116'

EASUREMENTS MADE AT INTERVALS R MORE.

> STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES BAY AREA BRANCH HYDROLOGIC DATA CENTRAL COASTAL AREA

FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION

1963

UKIAH VALLEY (1-15.00) MENDOCINO COUNTY

WELL ISN/12W-8LI, M.D.B. & M

Þ

4 ۵

S

O ď

>

0

SANEL VALLEY (1-16.00) MENDOCINO COUNTY

WELLISN/IIW - IBEI, M.D.B. & M.

SANTA ROSA VALLEY, SONOMA COUNTY (1-18.00) SANTA ROSA AREA (1-18.01) WELL 6N/8W-13R1, M.D.B. & M.

GROUNG SURFACE ELEVATION 116

CONNECTS MEASUREMENTS MADE AT INTERVALS OF A YEAR OR MORE

> STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES BAY AREA BRANCH HYDROLOGIC DATA CENTRAL COASTAL AREA

FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION

1963

Foldout too large for digitization

for digitization

May be added at a

later date

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

JUN 6 1969

101 1 1983

RECHARGED

JUN 6

JUN 11 REC'D

SEP 25 1972 JUN 21 REC'D

VAP 1 4 1974

MAY 21 REC'D AGT 26 1977

NOV + REC'D

MAR 19 1983

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66(G3855s4)458

Nº 482505

California. Dept. of Water Resources. Bulletin.

PHYSICAL SCIENCES LIBRARY TC82]₄ C2 A2 no.130:63

v.3

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS 3 1175 00670 0168

Call Number:

TC824

C2

A2

no.130:63

water Resources.
Bulletin.

Call Number:

TC824

C2

A2

no.20:63

