

Komşu Çiftler

 b_1,b_2,\ldots,b_m dizisine eğer bu dizi şu şartı sağlıyor ise **iyi** dizi denir: $1\leq i\leq m-1$ olacak şekilde herhangi bir i için $b_i\neq b_{i+1}$.

Size n pozitif tamsayıdan oluşan $a_1, a_2, a_3, \ldots, a_n$ bir **iyi** dizi veriliyor.

Bu dizi üzerinde aşağıdaki işlemleri yapabilirsiniz:

• Herhangi bir i $(1 \le i \le n)$ indisi ve bir x $(1 \le x \le 10^9)$ sayısı seçin. Ardından, a_i elemanını x olarak ayarlayın (yani a_i , x olacak). Bu işlemden sonra dizinin **iyi** kalması gerekir.

Ortaya çıkan dizinin tam olarak iki farklı değer içermesi için işlem yapmak istiyorsunuz. Bu hedefe ulaşmak için gereken en küçük işlem sayısını belirleyin.

Girdi

Girdinin ilk satırı, test senaryolarının sayısı olan t $(1 \le t \le 10^5)$ tamsayısını içerir. Test durumlarının açıklaması aşağıdadır.

Her bir test senaryosunun ilk satırı tek bir $n \ (2 \le n \le 2 \cdot 10^5)$ tamsayısını içerir - bu dizinin uzunluğunu verir.

Her test durumunun ikinci satırı n tane tamsayıdır a_1,a_2,\ldots,a_n $(1\leq a_i\leq n)$ - bunlar dizinin elemanlarıdır. $1\leq i\leq n-1$ için $a_i\neq a_{i+1}$ garanti edilir (yani, dizi **iyidir**).

Tüm test senaryolarında n toplamının $2 \cdot 10^5$ 'i geçmemesi garanti edilir.

Çıktı

Her test durumu için, tek bir tamsayı çıktısı alın. Bu, tam olarak iki farklı değerin bulunduğu bir diziyi elde etmek için gereken en küçük işlem sayısını gösterir.

Örnek

Girdi:

```
2
5
4 5 2 4 5
2
1 2
```

Çıktı:

```
3
0
```

Not

İlk test durumunda, en uygun işlem sırasından biri şöyledir:

$$(4,5,2,4,5) o (2,5,2,4,5) o (2,5,2,4,2) o (2,5,2,5,2).$$

İkinci test durumunda, dizi zaten iki tane farklı değer içermektedir. Yani cevap 0'dır.

Puanlama

- 1. (20 puan): Tüm test senaryolarında n toplamı 100'ü geçmez
- 2. (10 puan): Tüm test senaryolarında n toplamı 500'ü geçmez
- 3. (25 puan): Tüm test senaryolarında n toplamı 4000'ü geçmez
- 4. (45 puan): Ek sınır yoktur