Операции, выполняемые при обработке машинной команды

- Извлечение команды,
- Интерпретация команды,
- Извлечение данных,
- Обработка данных,
- Запись данных.

Внутренняя структура процессора

64

Организация регистров

Регистры процессора представляют память самого верхнего уровня. Их разделяют по функциям на *программно доступные*, которые минимизируют число обращений к медленной оперативной памяти и обеспечивают хранение промежуточных результатов, *управления и состояния*, которые используют для управления функционированием процессора (используют в программах ОС).

Организация регистров

Универсальные. Программист использует по своему усмотрению

Программно доступные

- РОНы,
- Регистры данных,
- Регистры адреса,
- Регистры кодов условий

используют только для хранения операндов и результатов. Они не могут быть использованы при вычислении исполнительного адреса.

Используют для формирования адресов.

- Указатель сегмента, в котором хранится базовый адрес сегмента памяти.
- *Индексные регистры*, используют в режимах адресации с индексацией.
- Указатель стека содержит текущее значение указателя вершины стека в памяти

и др.

© С. Г. Мосин, 2007

Содержат однобитовые коды условий - флаги.

Организация регистров

Проблемы при проектировании программно доступных регистров:

- Функциональное назначение (универсальные ↔ специализированные)
- Количество ПДР (8, 16, 32 ...),
- Разрядность,
- Сохранение ПДР в памяти при вызове подпрограмм, и др.

Организация регистров

Управления и состояния

- Счетчик команд (СчК, PC program counter),
- Регистр команд (РгК, IR instruction register),
- Регистр адреса в памяти (РгАОП,

MAR – memory address register),

- Регистр данных памяти (РгДОП, MBR memory buffer register),
- Слово состояния программы (ССП, PSW program status word).

Организация регистров ІА-32

- 1. Основные функциональные регистры
- Регистры общего назначения,
- Указатель команд (ЕІР),
- Регистр флагов (EFLAGS),
- Регистры сегментов.
- 2. Регистры блока с ПТ
- Регистры данных R7-R0 (ST7 ST0),
- Регистр тэгов (ТW),
- Регистр состояния (FPSR),
- Регистр управления (FPCR),
- регистры-указатели команды (FIP) и операнда (FDP).

Организация регистров IA-32

- 3. Регистры обработки пакетов чисел с ПТ (SSE)
- Регистры пакетов данных (ХММ7-ХММ0),
- Регистр управления состояния (MXCSR).
- 4. Системные регистры
- Регистры управления режимом CR4-CR0,
- Регистры системных адресов (GDTR, LDTR, IDTR, TR),
- Регистры отладки.
- 5. Служебные регистры

Организация регистров IA-32

Регистры общего назначения										
31	16	15	8 7		0	16-bit	32-bit			
		АН		AL		AX	EAX			
		BH		BL		BX	EBX			
		CH		CL		CX	ECX			
		DH		DL		DX	EDX			
		BP					EBP			
		SI					ESI			
		DI					EDI			
		SP					ESP			

Организация регистров ІА-32

72

Организация регистров ІА-32

73

Организация регистров ІА-32

Организация регистров IA-32

Регистры FPU (регистр состояния)

75

Организация регистров ІА-32

Регистры FPU (регистр управления)

RC	Метод округления	PC	Точность представления
00	К ближайшему числу	00	Одинарная
01	$K - \infty$	01	Не используется
10	K +∞	10	Двойная
11	К нулю	11	Расширенная

Организация регистров ІА-32

Регистры FPU (регистр тэгов)

15 TAG(7) TAG(6) TAG(5) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

TAG Values

00 - Valid

01 — Zero

10 — Special: invalid (NaN, unsupported), infinity, or denormal

11 — Empty

Арифметико-логическое устройство (АЛУ)

Минимальный набор операций, аппаратно реализуемых в АЛУ, должен включать:

- *основные логические операции* (И, ИЛИ, НЕ, Исключающее ИЛИ);
- сдвиги (логические и арифметические);
- *сложение и вычитание* чисел в формате с фиксированной точкой (ФТ).

На их основе программно можно реализовать остальные арифметические и логические операции над числами с ФТ и плавающей точкой (ПТ).

Арифметико-логическое устройство (АЛУ)

АЛУ как комплекс специализированных блоков обработки данных (БОД):

- БОД целочисленной арифметики;
- БОД логических операций и сдвигов;
- БОД арифметики с ПТ и т.д.

Сложение и вычитание с ФТ, сдвиги, логические операции	Умножение и деление с ФТ	Арифметические операции с ПТ	Элементарные функции и матричные операции	
Аппаратура	_	Программа	A.	
Аппаратур	a	Про	ограмма	
Aı	паратура		Программа	

Арифметико-логическое устройство (АЛУ)

Арифметико-логическое устройство (АЛУ)

Структура АЛУ

Жесткая

Магистральная

Комбинационные схемы жестко распределены между всеми регистрами

БОД и регистры взаимодействуют между собой с помощью магистралей (шин)

АЛУ с жесткой структурой

РгА через
логическую схему
Л_А соединен со
входом А.
Л_В обеспечивает
коммутацию
выходного регистра
РгС с регистром РгВ.

© С. Г. Мосин, 2007

АЛУ с магистральной структурой

Мультиплексоры А и В обеспечивают выбор любого регистра Ргі в качестве операнда. Демультиплексор С обеспечивает запись результата в любой регистр.

© С. Г. Мосин, 2007

Арифметико-логическое устройство (АЛУ)

Затраты времени на выполнение операции

Жесткая структура

Магистральная структура

$$T = t_{\rm B} + t_{\rm on} + t_{\rm c}$$

$$T = t_{\rm B} + t_{\rm ou} + t_{\rm c} + t_{\rm MUX} + t_{\rm DMX}$$

 $t_{\rm B}$ — длительность выборки операнда из регистра, $t_{\rm on}$ — длительность операции, $t_{\rm c}$ — длительность сохранения результата в регистре, $t_{\rm MUX}$ — задержка мультиплексора, $t_{\rm DMX}$ — задержка демультиплексора.

Структура процессора Intel P6

85

Структура процессора Intel P6

Блок внешнего интерфейса (BIU): реализует протокол обмена процессора с системной шиной.

Внутренняя кэш-память команд и данных: 16 кбайт каждая служит для размещения наиболее часто используемых команд и данных.

Блок выборки декодирования выбирает из кэш-памяти команд 32 байта командного кода, производит выделение и декодирование команды. Простые команды (выполняются за 1 микрооперацию) декодируют DC1 и DC2. Сложные команды (требуют несколько микроопераций) декодирует DC3.

Структура процессора Intel P6

Блок предсказания ветвления формирует адрес следующей выбираемой команды при ветвлении программы (условные переходы).

Блок распределения регистров (RAT) производит выделение регистров, необходимых для выполнения декодированных команд. Для логических регистров с ФТ или ПТ выделяет один из 40 физических регистров из блока регистров замещения. Блок изменения последовательности команд (ROB) обеспечивает эффективное выполнение потока декодированных команд.

Структура процессора Intel P6

Блок распределения (RS) направляет микрокоманды в

соответствующие исполнительные устройства (БОД).

Обеспечивает выполнение трех команд одновременно.

Исполнительные блоки IU1 и IU2 производят обработку целых чисел (БФТ – блоки с фиксированной точкой).

Блок FPU выполняет операции над числами с плавающей точкой (БПТ – блок с плавающей точкой).

Блок ММХ реализует одновременную обработку нескольких упакованных символов.

Структура процессора Intel P6

Блок SSE выполняет операции над потоком чисел с ПТ.

Блок интерфейса с памятью (МІU) вычисляет адреса операндов, выбираемых из памяти, и реализует интерфейс с кэш-памятью данных или внешней памятью.

Буферный блок обращения к памяти (МОВ) обеспечивает спекулятивную выборку операнда из кэш-памяти второго уровня или внешней памяти при чтении и промежуточное хранение 32 байтов при записи.

Структура микропроцессора MPC604 (Motorola)

Структура микропроцессора MPC604 (Motorola)

BPU – блок обработки ветвлений.

SIU1, SIU2 – устройства выполнения простых одноцикловых целочисленных операций.

MIU – устройство выполнения сложных многоцикловых целочисленных операций.

FIU – устройство обработки чисел в формате с плавающей точкой.

LSU – блок выборки данных из памяти и загрузки в регистры данных GPR и FPR.

Цикл обработки машинной команды

Процесс обработки отдельной команды принято называть циклом обработки. Основные операции:

- Вычисление адреса команды (СчК = СчК + const);
- Извлечение команды ($PrK = O\Pi[CvK]$);
- Расшифровка кода операции;
- Вычисление адреса операнда;
- Извлечение операнда;
- Обработка данных;
- Сохранение результата;
- Обработка прерываний.

Цикл обработки машинной команды

Цикл обработки машинной команды

Поток данных на фазе извлечения машинной команды

© С. Г. Мосин, 2007

Цикл обработки машинной команды

Поток данных на фазе прерывания

© С. Г. Мосин, 2007