1 Integration \$493,507

1.1 Tricks \$495

Linearität \$495

$$\int k(u+v) = k\left(\int u + \int v\right)$$

Partialbruchzerlegung \$15,498

$$\int \frac{f(x)}{P_n(x)} dx = \sum_{k=1}^n \int \frac{A_k}{x - r_k} dx$$

Elementartransformation \$496

$$\int f(\lambda x + \ell) \, dx = \frac{1}{\lambda} F(\lambda x + \ell) + C$$

Partielle Integration \$497

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Potenzenregel \$496

$$\int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1$$

Logaritmusregel \$496

$$\int \frac{u'}{u} = \ln|u| + C$$

Allgemeine Substitution S497 x = g(u), und dx = g'(u) du

$$\int f(x) dx = \int (f \circ g) g' du = \int \frac{f \circ g}{(g^{-1})' \circ g} du$$

Universal substitution \$504

$$t = \tan(x/2)$$
 $\sin(x) = \frac{2t}{1+t^2}$
 $dx = \frac{2 dt}{1+t^2}$ $\cos(t) = \frac{1-t^2}{1+t^2}$

Womit

$$\int f(\sin(x), \cos(x), \tan(x)) dx = \int g(t) dt$$

1.2 Uneigentliches Integral \$520

$$\int_{a}^{\infty} f \, dx = \lim_{B \to \infty} \int_{a}^{B} f \, dx$$

$$\int_{-\infty}^{b} f \, dx = \lim_{A \to -\infty} \int_{A}^{b} f \, dx$$

$$\int_{-\infty}^{\infty} f \, dx = \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int_{A}^{B} f \, dx$$

Wenn f im Punkt $u \in (a, b)$ nicht definiert ist.

$$\int_{a}^{b} f \, dx = \lim_{\epsilon \to +0} \int_{a}^{u-\epsilon} f \, dx + \lim_{\delta \to +0} \int_{u+\delta}^{b} f \, dx \quad (1.2.1)$$

1.3 Cauchy Hauptwert \$523

Der C.H. (oder PV für *Principal Value* auf Englisch) eines uneigentlichen Integrals ist der Wert, wenn in einem Integral wie (1.2.1) beide Grenzwerte mit der gleiche Geschwindigkeit gegen 0 sterben.

C.H.
$$\int_{a}^{b} f \, dx = \lim_{\epsilon \to +0} \left(\int_{a}^{u-\epsilon} f \, dx + \int_{u+\epsilon}^{b} f \, dx \right)$$

Zum Beispiel x^{-1} ist nicht über $\mathbb R$ integrierbar, wegen des Poles bei 0. Aber intuitiv wie die Symmetrie vorschlagt

C.H.
$$\int_{-\infty}^{\infty} \frac{1}{x} \, \mathrm{d}x = 0$$

1.4 Majorant-, Minorantenprinzip und Konvergenzkriterien \$521,473,479,481

Gilt für die Funktionen $0 < f(x) \le g(x)$ mit $x \in [a, \infty)$

konvergiert
$$\int_{a}^{\infty} g \, dx \implies \text{konvergiert } \int_{a}^{\infty} f \, dx$$

Die selbe gilt umgekehrt für Divergenz. Wenn $0 < h(x) \le f(x)$

divergiert
$$\int_{a}^{\infty} h \, dx \implies$$
 divergiert $\int_{a}^{\infty} f \, dx$

q und h heißen Majorant und Minorant bzw.

2 Implizite Ableitung 8448

Alle normale differenziazionsregeln gelten.

$$du = u' dx$$

3 Ebene \$250 und Raumkurven \$263

Ebene Kurven	Explizit $y = f(x)$	Polar $r(arphi)$	Parameter $c(t) = (x(t), y(y))$
Bogenlänge \$251	$\int_{a}^{b} \sqrt{1 + (f')^2} \mathrm{d}x$	$\int_{\alpha}^{\beta} \sqrt{(r')^2 + r^2} \mathrm{d}\varphi$	$\int_{t_0}^{t_1} \sqrt{\dot{x}^2 + \dot{y}^2} \mathrm{d}t = \int_{t_0}^{t_1} c \mathrm{d}t$
Fläche	$\int_{a}^{b} f(x) \mathrm{d}x$	$rac{1}{2}\int\limits_{lpha}^{eta}r(arphi)^{2}\mathrm{d}arphi$	$rac{1}{2}\int\limits_{t_{0}}^{t_{1}}x\dot{y}-\dot{x}y\;\mathrm{d}t=rac{1}{2}\int\limits_{t_{0}}^{t_{1}}\mathrm{det}(m{c},\dot{m{c}})\;\mathrm{d}t$
Rotations volumen um x	$\pi \left \int_a^b y^2 \mathrm{d}x \right $	$\pi \left \int\limits_{t_0}^{t_1} y \dot{x} \mathrm{d}t \right $	$\pi \left \int_{\alpha}^{\beta} r^2 \sin^2 \varphi(r' \cos \varphi - r \sin \varphi) d\varphi \right $
Rotationsoberfläche um x	$2\pi \int_{a}^{b} y \sqrt{1 + (y')^2} \mathrm{d}x$	$2\pi \int_{\alpha}^{\beta} r \sin(\varphi) \sqrt{(r')^2 + r^2} d\varphi 2\pi \int_{t_0}^{t_1} y \sqrt{\dot{x}^2 + \dot{y}^2} dt$	$2\pi \int_{t_0}^{t_1} y \sqrt{\dot{x}^2 + \dot{y}^2} \mathrm{d}t$
Krümmung κ	$\frac{f''}{\sqrt{1+(f')^2}^3}$		$rac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\sqrt{\dot{x}^2 + \ddot{y}^2}} = rac{\det(\dot{c},\ddot{c})}{ \dot{c} ^3}$

3.1 Darstellungen

Abbildung 1: Die ebene Kurve $\Lambda(t)$ kann Explizit y(x)(in diesem Fall nicht), Implizit $\boldsymbol{u}(x,y)$, Polar $\boldsymbol{r}(\varphi)$ oder in Parameterform (x(t), y(t)) dargestellt werden.

3.2 Tangente und Normalvektor

3.3 Krümmung

$$\kappa = \frac{\mathrm{d}\phi}{\mathrm{d}s} = \frac{\ddot{y}}{(1 + \dot{y}^2)^{3/2}}$$

Literatur

Rapperswil und der dazugehörige Skript, Dr. Bern-

hard Zgraggen, Frühlingssemester 2020

- [2] Taschenbuch der Mathematik, 10. überarbeitete Auflage, 2016 (1977), Bronstein, Semendjajew, Musiol, Mühlig, ISBN 978-3-8085-5789-1
- [3] Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge, 2012, 7. Auflage, XII, Springer Berlin, Albert Fetzer, Heiner Fränkel, ISBN-10 364224114X, ISBN-13 9783642241147

Notation

Rot markierte Zahlen wie zB \$477 sind Hinweise auf die Seiten im "Bronstein" [2]

License

An2E-ZF (c) by Naoki Pross

An2E-ZF is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License.

You should have received a copy of the license along with this work. If not, see

[1] An2E Vorlesungen an der Hochschule für Technik http://creativecommons.org/licenses/by-sa/4.