A heterogeneous vehicle routing problem with drones and multiple depots

Panagiotis Zachos

June 2024

1 Multi-Depot mixed fleet capacitated multiple TSP

The problem takes as input a set of nodes, comprising of customer nodes and depot nodes. Each depot may be equipped with a heterogeneous fleet of vehicles: Trucks, Motorbikes, and Drones. Each vehicle type has a specific capacity k, representing the number of parcels it can carry. The vehicles initiate their routes from their respective depots, fully loaded with parcels, and visit customer nodes, each with a demand of one parcel. Upon completing a route, either due to no customers remaining or reaching capacity, the vehicle returns to its depot, where it is reloaded to full capacity and can be dispatched again if there are remaining customers. The aim is to visit all customers in the minimum possible time, with **no restriction on the total number of parcels available at each depot**, thus differing from traditional MDVRP constraints.

PO1 Solution Using k-means Clustering

Customers Depots
Depots
Mightoribite routes
Direct routes
Direct routes
Size 2000

1500

Size 2000

Size

Figure 1: Solution example

1.1 Objective

The objective of the MD-mfcmTSP is to minimize the total makespan in which all customers have been served i.e min M_{total} .

Notation

- *m* : Number of depots
- D : Set of depots
- R_T^i : Truck route of depot $i \in D$
- R_M^i : Motorbike route of depot $i \in D$
- R_D^i : Drone route of depot $i \in D$
- M_T^i : Makespan of Truck route of depot $i \in D$
- M_M^i : Makespan of Motorbike route of depot $i \in D$
- M_D^i : Makespan of Drone route of depot $i \in D$
- $M_T = max(M_T^i, M_T^{i+1}, ..., M_T^m)$: Makespan of Trucks
- $M_M = max(M_M^i, M_M^{i+1}, ..., M_M^m)$: Makespan of Motorbikes
- $M_D = max(M_D^i, M_D^{i+1}, ..., M_D^m)$: Makespan of Drones
- $M_{total} = max(M_T, M_M, M_D)$: Total makespan

Table 1: Example

Depot	M_T	M_M	M_D	Depot makespan
1	3	2	1	3
2	4	3	2	4
3	1	5	2	5
4	2	6	1	6
Total	4	6	2	

2 Makespan calculations

In the case where a depot is equipped with more than 1 vehicle of either type, the makespan calculations are explained below. Assume 4 routes that need to be assigned to two trucks. Each route has a time cost associated with it. The route assignment needs to be done in such a way that the trucks' makespan is minimized. We first sort the routes based on their cost in a descending order. Then, starting from the route with the maximum cost, we assign it to the truck with the currently minimum makespan. This is done iteratively until all routes have been assigned to a vehicle.

Table 2: 4 routes that need to be assigned to a depot's 2 trucks

Route	Route cost
1	5
2	6
3	2
4	3

Table 3: Optimal split

Route	Route cost	Truck
1	5	1
2	6	2
3	2	2
4	3	1

Procedure for the assignment of 4 routes to 2 trucks of the same depot:

Table 4: Sort routes in descending order based on cost

Route cost
6
5
3
2

Table 5: Iteratively assign routes to Trucks

Iteration	Route	Route cost	Truck	Truck 1 ms	Truck 2 ms
1	2	6	1	6	0
2	1	5	2	6	5
3	4	3	2	6	8
4	3	2	1	8	8
		Total makesp	oan = 8 (o	ptimal)	

Table 6: Non-optimal assignment with routes sorted in increasing order

Iteration	Route	Route cost	Truck	Truck 1 ms	Truck 2 ms
1	3	2	1	2	0
2	4	3	2	2	3
3	1	5	2	7	3
4	2	6	1	7	9
	7	Total makespar	n = 9 (non	-optimal)	

2.1 Motivation / Use case

By introducing this problem, we contribute to the Travelling Salesman Problem and Vehicle Routing Problem research and the field of logistics and routing by introducing a realistic and challenging problem that considers the practical limitations and requirements of different vehicle types used in last-mile delivery. The proposed algorithms have the potential to improve efficiency and reduce costs for logistics companies operating in increasingly complex delivery environments.

Consider a parcel delivery company operating in Greece, with depots located in two major cities: Athens and Thessaloniki. The company manages numerous last-mile delivery shops in these cities, which serve as depots in the routing problem. For instance, a customer in Thessaloniki sends a parcel to a friend in Athens by visiting a nearby shop. After the shop stops receiving parcels for the day, a truck collects the parcels and delivers them to the Thessaloniki distribution center. Parcels destined for Athens are then transported overnight to the Athens distribution center. Upon arrival, parcels are sorted based on their delivery areas and sent to the appropriate last-mile shops in Athens. These shops, acting as depots in our problem, dispatch vehicles (Trucks, Motorbikes, Drones) to deliver the parcels to their final destinations. The MD-mfcmTSP addresses how these vehicles can be optimally routed to minimize delivery time, while simultaneously solving the problem of parcel allocation in each last-mile shop.

Figure 2: Life of a parcel

3 Problem description

- · Each customer must be visited exactly once
- Each vehicle can serve at most as many customers per trip as its capacity
- Some customers may not be available for delivery via uav or larger vehicles
- Each depot must be equipped with at least one truck
- The composition of each depot's fleet is known
- Depots act as a start, finish and reload point for their fleet
- Each vehicle may perform unlimited routes (multi-trip)

4 Pseudocode for the MD-mfcmTSP

At the end of Algorithm 1, a local optimization function (3) is called which in addition to moving nodes in different places in the same route, also moves nodes between routes of different depots and different vehicle types.

Algorithm 1: MD-mfcmTSP heuristic

```
Input: G_T, G_M, ..., G_D
    Output: M_{total}, Sol = \{Sol^i = \{R_T^i, R_M^i, ..., R_D^i\}, Sol^{i+1}, ..., Sol^m\}
               for each i \in D
 1 Create clusters K^i of customer nodes for each depot d^i \in D
 2 by assigning each customer to the closest possible depot
 3 for each d^i \in D do
         Call Initialization(d^i, K^i)
         while (M_T^i > M_M^i || M_T^i > M_D^i) && stop \neq true do
 5
              diff_M = M_T^i - M_M^i
              diff_D = M_T^i - M_D^i
 7
              if diff_M \ge diff_D then
 8
                   vt = M
                   cap = Motorbike's capacity
10
              else
11
                   vt = D
12
                  cap = 1
13
              end if
14
15
              M_{min} = M_T^i
16
              r_{best} = \emptyset
17
              for j = 1 to |R_T^i| - cap do
18
                   successive\_nodes = \emptyset
19
                   load = 0
                   while load + v_i^{demand} \le cap \&\& v_j \in G_{vt} do
20
                        successive\_nodes += v_i
21
22
                   if |successive\_nodes| == cap then
23
                        r_{new} = R_T^i[0] + \{successive\_nodes\} + R_T^i[0]
24
                        R'^{i}_{vt} = R^{i}_{vt} + r_{new}
25
                        M'_{vt} = R'^{\iota}_{vt} 's makespan
26
                        R_T^{i} = R_T^i - \{successive\_nodes\}
27
                        M'_T = R'_T^i 's makespan
28
                        M_{new} = MAX(M'_T, M'_{vt})
29
30
                        if M_{new} < M_{min} then
31
                             M_{min} = M_{new}
32
                             r_{best} = r_{new}
                        end if
33
34
                        r_{new} = \emptyset
                   end if
35
                   j += 1
36
              end for
37
              if r_{best} \neq \emptyset then
38
                   R_T^i = R_T^i - \{r_{best}^{customers}\}
39
                   M_T = R_T^i 's makespan
40
                   R_{vt}^i += r_{best}
41
                   M_{vt} = R_{vt}^i's makespan
42
                   Call local\_optimization(R_T^i, n_{max})
43
                   Call local\_optimization(R_{vt}^i, n_{max})
44
              else
45
46
                  stop = true
              end if
47
         end while
48
         Sol^{i} = \{R_{T}^{i}, R_{M}^{i}, ..., R_{D}^{i}\}
50 end for
51 M_T = MAX(M_T^i, M_T^{i+1}, ..., M_T^m)
52 M_M = MAX(M_M^i, M_M^{i+1}, ..., M_M^m)
53 M_D = MAX(M_D^i, M_D^{i+1}, ..., M_D^m)
54 M_{total} = MAX(M_T, M_M, ..., M_D)
55 Call optimization\_full(Sol, n_{max})
```

Algorithm 2: Initialization(d^i, K^i)

```
1 while \{K^i\} \cap \{G_T\} \neq \emptyset do
 R_T^i += NearestNeighbour(\{K^i\} \cap \{G_T\})
 3 end while
 4 M_T^i = R_T^i 's makespan
 5 v_{free} = \{K^i\} - \{G_T\}
 6 if v_{free} = \emptyset then
         return R_T^i
 8 else
         while v_{free} \neq \emptyset do
 9
              if M_T - M_M \ge M_T - M_D \parallel G_D = \emptyset then
10
                   R_M^i += NearestNeighbour(\{K^i\} \cap \{G_M\})
11
                   v_{free} = v_{free} - \{R_M^i\}
12
                   M_M^i = R_M^i 's makespan
13
                   R_D^i += closest(\{K^i\} \cap \{G_D\})
15
                   M_D^i = R_D^i 's makespan
16
17
         end while
18
19 end if
20 return Soli
```

Algorithm 5: $mutual_depot_optimization(R_{vt}, n_{max})$

```
1 for n = 1 to n_{max} do
        for each possible pair of depots c1 and c2
2
            for each combination of n successive nodes in the route of
 3
                 remove the nodes from the route of c1 and insert them
                 evaluate the newly-created routes
                 if MAX(|R'_{vt}^{c1}|, |R'_{vt}^{c2}|) < MAX(|R_{vt}^{c1}|, |R_{vt}^{c2}|) and all
 6
                   constraints are satisfied then
                     replace the original routes with the new ones
 7
                 continue in point 4 unless all possible places in c2
 8
                  have been evaluated
            end for
 9
        end for
10
11 end for
12 return R<sub>VT</sub>
```

Algorithm 3: $optimization_full(Sol, n_{max})$

```
1 Call vt\_optimization(Sol, n_{max} = 2)
2 for each vt do
3 | for each i \in D do
4 | Call local\_optimization(R_{vt}^i, n_{max} = 2)
5 | end for
6 | Call mutual\_depot\_optimization(R_{vt}, n_{max} = 2)
7 end for
8 Call vt\_optimization(Sol, n_{max} = 2)
```

Algorithm 4: $local_optimization(r, n_{max})$

Algorithm 6: $vt_optimization(Sol, n_{max})$

```
1 for n = 1 to n_{max} do
        for each depot i \in D
2
             for each possible pair of vehicle types t1, t2 \in VT
 3
                  for each combination of n successive nodes in R_{t1}^{i}
                       remove the nodes from R_{t1}^{i} and insert them in R_{t2}^{i}
 5
                      if MAX(|R'_{t1}^i|, |R'_{t2}^i|) < MAX(|R_{t1}^i|, |R_{t2}^i|) and all
                        constraints are satisfied then
                           replace the original routes with the new ones
 7
                      continue in point 5 unless all possible places in
 8
                        R_{t2}^{i} have been evaluated
                  end for
             end for
10
        end for
11
12 end for
13 return Sol
```

Figure 3: p11 Initialization example using k-means clustering

Figure 4: p01 initialization using k-means clustering

Figure 5: p01 solution using k-means clustering

27

return R

Algorithm 7: AACONC+ Algorithm

1 Function $AACONC+(V, n_{ants}, n_{freq}, n_{size}, n_{sect}, n_{prim}, T_{update}, \alpha, \beta, \rho_{min}, \rho_{max}, \delta)$ ² $|R| = \infty$ 2 iter = 03 Initialize pheromone matrices τ 4 5 **for** *each* $v_i \in V$ **do** $K(v_i) = \text{CreateClusters}(V, v_i, n_{\text{size}}, n_{\text{sect}})$ end for 7 while not terminated do $|R_{\text{best}}| = \infty$ 10 iter = iter + 1**for** a = 1 to n_{ants} **do** 11 12 $R_a = \text{AntSolution}(V, K, \tau, \alpha, \beta)$ if $|R_a| < |R_{best}|$ then 13 $R_{\text{best}} = R_a$ 14 15 end if end for 16 17 **if** *iter* $mod n_{freq} = 0$ **then** $R_{\text{best}} = \text{LocalOptimization}(V, R_{\text{best}})$ 18 19 if $|R_{best}| < |R|$ then 20 $R = R_{\text{best}}$ 21 22 end if Update pheromone matrices τ 23 Calculate evaporation coefficient ρ 24 25 Evaporate pheromone matrices τ using ρ end while 26

Algorithm 8: createClusters

```
1 Function createClusters(V^{(t_i)}, v_i, n_{size}, n_{sect}, n_{prim})
            id = 1
            K_{id}^{(v_i)} = \emptyset
            V_{free} = V^{(t_i)} - v_i
 4
            for j = 1 to n_{sect} do
 5
                  Find closest vertex v \in V_{free} to v_i in sector j
 6
                  \begin{split} K_{id}^{(v_i)} &= K_{id}^{(v_i)} + \{v\} \\ V_{free} &= V_{free} - \{v\} \end{split}
 7
 8
            end for
 9
            while V_{free} \neq \emptyset do
10
                  if |K_{id}^{(v_i)}| \geq n_{size} then
11
                        i\vec{d} = id + 1
12
                       K_{id}^{(v_i)} = \emptyset
13
                   end if
14
                  Find closest vertex v \in V_{free} to v_i
15
                  \begin{split} K_{id}^{(v_i)} &= K_{id}^{(v_i)} + v \\ V_{free} &= V_{free} - v \end{split}
16
17
            end while
18
            return K^{(v_i)}
19
```

Algorithm 9: antSolution

```
Function ant Solution (V = \{D, C\}, K, \tau, \alpha, \beta)
 2
         V_{free} = C
         while V_{free} \neq \emptyset do
 3
               d = \text{selectDepot}(vt, V_{free}, K^{(vt)}, \tau)
 4
               vt = \text{selectVehicleType}(V_{free}, K, \tau)
 5
               pos = vehicle's position
              k = \text{selectCluster}(vt, d, v, V_{free}, K^{(pos)(vt)}, \tau, \alpha, \beta)
 7
              V_{candidates} = V_{free} \cap K_k^{(pos)(vt)}
 8
               c = \text{selectCustomer}(vt, d, pos, V_{candidates}, \tau, \alpha, \beta)
 9
              if v_{load} < c^{(demand)} then
10
                    R_d^{(vt)} = R_d^{(vt)} + \{d\}
11
                   v_{load} = vt_{capacity}
12
               end if
13
              R_d^{vt} = R_d^{vt} + \{c\}
14
              v_{load} = v_{load} - c^{(demand)}
15
               V_{\text{free}} = V_{\text{free}} - \{c\}
16
         end while
17
         for each d \in D and vt \in VT //Vehicles return to their
18
           depots
              R_d^{vt} = R_d^{vt} + \{d\}
19
         end for
20
          return R = \{R_1^1, R_2^1, ..., R_2^3, R_3^3, R_D^{VT}\}
21
```

```
Algorithm 10: selectVehicleType
```

```
1 Function selectVehicleType(vt, d, V_{free}, K^{(vt)}, \tau)
2 | for each v_i \in V^{(vt)(d)} do
                V_{\rm cand} = \emptyset
 3
                pos ←vehicle's current location
 4
                5
 6
 7
         \begin{array}{c} p(v_i) = \sum_{v_j \in V_{cand}} \tau_{v_{pos}v_j}^{(vt)(d)} \\ \textbf{end for} \\ \_ \end{array}
 8
 9
          p_{sum} = \sum_{v_i \in V^{(vt)(d)}} p(v_i)
10
          return rouletteWheel(p(V^{(vt)(d)}), p_{sum})
11
```

6 Instances

Table 7: MD-mfcmTSP-C Instances

Instance	Customers	Depots	Dimensions	Truck capacity	Layout
p01	50	4	3150m x 3450m	8	Random
p02	50	4	3150m x 3450m	16	Random
p03	75	5	3500m x 3800m	14	Random
p04	100	2	3350m x 3850m	10	Random
p05	100	2	3350m x 3850m	20	Random
p06	100	3	3350m x 3850m	10	Random
p07	100	4	3350m x 3850m	10	Random
p08	249	2	9900m x 9800m	50	Random
p09	249	3	9900m x 9800m	50	Random
p10	249	4	9900m x 9800m	50	Random
p11	249	5	10500m x 5000m	50	Random
p12	80	2	10500m x 5000m	6	Regular
p13	80	2	10500m x 5000m	6	Regular
p14	80	2	10500m x 5000m	6	Regular
p15	160	4	10500m x 10500m	6	Regular
p16	160	4	10500m x 10500m	6	Regular
p17	160	4	10500m x 10500m	6	Regular
p18	240	6	16000m x 10500m	6	Regular
p19	240	6	16000m x 10500m	6	Regular
p20	240	6	16000m x 10500m	6	Regular
p21	360	9	16000m x 16000m	6	Regular
p22	360	9	16000m x 16000m 6		Regular
p23	360	9	16000m x 16000m	6	Regular

Figure 6: Regular Layout Instance

7 Results

7.1 New heuristic vs old heuristic

mfcmTSP heuristic (original): Finds and swaps the minimum cost route in each iteration

MD-mfcmTSP heuristic (v1): Finds and swaps the route which minimizes the depot's makespan in each iteration

Figure 7: Comparison between new and original heuristic

Figure 8: Comparison between new and original heuristic

Figure 9: Comparison between new and original heuristic

8 MD-mfcmTSP Results Analysis

8.1 Local optimization impact on the heuristic

8.1.1 Proximity clustering

Table 8: Local optimization impact on heuristic using proximity clustering

Instance	Best	Full Local Opt	gap(%)	No Local Opt	gap(%)	Final Only	gap(%)	Swap Only	gap(%)
p01-C	215.15	217.42	1.06	334.04	55.26	215.15	0.00	173.96	27.33
p02-C	218.4	219.20	0.37	308.83	41.41	218.40	0.00	289.58	32.59
р03-С	202.43	214.84	6.13	253.18	25.07	202.43	0.00	255.52	26.23
p04-C	668.81	668.81	0.00	779.34	16.53	711.80	6.43	691.62	3.41
p05-C	630.78	630.78	0.00	726.62	15.19	655.4	3.90	697.86	10.63
p06-C	431.32	435.42	0.95	650.32	50.77	431.32	0.00	564.79	30.94
p07-C	309.48	309.48	0.00	350.77	13.34	349.19	12.83	366.51	18.43
p08-C	3079.58	3333.93	8.26	3321.63	7.86	3079.58	0.00	3428.15	11.32
p09-C	1917.82	1917.82	0.00	2429.24	26.67	2102.98	9.65	2303.70	20.12
p10-C	1493.13	1493.13	0.00	1864.23	24.85	1525.37	2.16	1706.14	14.27
p11-C	1101.33	1145.75	4.03	1239.36	12.53	1101.33	0.00	1276.59	15.91
p12-C	1273.77	1273.77	0.00	1356.09	6.46	1307.11	2.62	1273.77	0.00
p13-C	1191.96	1226.63	2.91	1455.87	22.14	1191.96	0.00	1259.97	5.71
p14-C	1248.53	1284.73	2.90	1413.87	13.24	1248.53	0.00	1302.34	4.31
p15-C	1347.67	1347.67	0.00	1508.50	11.93	1355.08	0.55	1375.95	2.10
p16-C	1289.29	1289.29	0.00	1448.53	12.35	1328.00	3.00	1289.29	0.00
p17-C	1282.38	1320.91	3.00	1375.55	7.27	1282.38	0.00	1320.91	3.00
p18-C	1260.24	1260.24	0.00	1446.92	14.81	1317.54	4.55	1339.83	6.32
p19-C	1266.92	1266.92	0.00	1406.13	10.99	1289.95	1.82	1301.62	2.74
p20-C	1323.1	1323.10	0.00	1429.00	8.00	1338.42	1.16	1351.39	2.14
p21-C	1309.14	1363.18	4.13	1470.03	12.29	1309.14	0.00	1363.18	4.13
p22-C	1295.67	1295.67	0.00	1465.74	13.13	1351.96	4.34	1306.6	0.84
p23-C	1252.36	1252.36	0.00	1396.11	11.48	1262.65	0.82	1254.42	0.16
AVG	1113.44	1134.39	1.46	1279.56	18.85	1138.07	2.34	1199.72	10.54

Figure 10: Gaps to full local optimization (proximity clustering)

Figure 11: Results using proximity clustering

8.1.2 k-means clustering

Table 9: Local optimization impact on heuristic using k-means clustering

Instance	Best	Full Local Opt	gap(%)	No Local Opt	gap(%)	Final Only	gap(%)	Swap Only	gap(%)
p01	191.03	191.03	0.00	225.72	18.16	202.96	6.25	201.60	5.53
p02	187.17	188.60	0.76	209.39	11.87	187.17	0.00	198.02	5.80
p03	185.82	185.82	0.00	200.64	7.98	188.63	1.51	198.01	6.56
p04	694.96	694.96	0.00	807.71	16.22	700.95	0.86	694.96	0.00
p05	624.33	624.33	0.00	695.79	11.45	629.61	0.85	642.77	2.95
p06	416.25	416.25	0.00	492.31	18.27	417.09	0.20	456.81	9.74
p07	313.57	314.41	0.27	359.30	14.58	313.57	0.00	339.09	8.14
p08	3051.63	3186.02	4.40	3288.45	7.76	3051.63	0.00	3256.46	6.71
p09	1932.21	1964.49	1.67	2099.99	8.68	1932.21	0.00	2031.19	5.12
p10	1463.63	1500.38	2.51	1636.23	11.79	1463.63	0.00	1658.74	13.33
p11	1031.09	1031.09	0.00	1209.73	17.33	1060.37	2.84	1080.39	4.78
p12	1273.77	1273.77	0.00	1356.09	6.46	1307.11	2.62	1273.77	0.00
p13	1191.96	1226.63	2.91	1455.87	22.14	1191.96	0.00	1259.97	5.71
p14	1248.53	1284.73	2.90	1413.87	13.24	1248.53	0.00	1302.34	4.31
p15	1295.23	1295.23	0.00	1434.72	10.77	1303.76	0.66	1295.23	0.00
p16	1289.29	1289.29	0.00	1436.36	11.41	1328.00	3.00	1289.29	0.00
p17	1273.39	1273.39	0.00	1375.55	8.02	1282.38	0.71	1283.38	0.78
p18	1211.56	1211.56	0.00	1369.81	13.06	1243.53	2.64	1280.85	5.72
p19	1248.93	1248.93	0.00	1384.13	10.83	1263.35	1.15	1281.68	2.62
p20	1234.12	1234.12	0.00	1389.60	12.60	1256.25	1.79	1267.53	2.71
p21	1231.23	1231.23	0.00	1354.91	10.05	1261.89	2.49	1278.10	3.81
p22	1230.99	1230.99	0.00	1379.49	12.06	1250.49	1.58	1265.17	2.78
p23	1222.63	1222.63	0.00	1363.52	11.52	1233.67	0.90	1250.29	2.26
Average	1088.84	1100.86	0.67	1214.75	12.45	1100.81	1.31	1134.16	4.32

Figure 12: Comparison to full local optimization (k-means clustering)

Figure 13: Results using k-means clustering

8.2 AACONC+ Results and Comparison to heuristics

Table 10: AACONC+ Results

Instance	Best	Average	gap(%)	Worst	gap(%)	Average time(s)
p01-C	178.56	196.74	10.18	225.60	26.34	141
p02-C	172.73	196.57	13.8	234.78	35.92	123
p03-C	173.82	187.26	7.73	210.15	20.90	350
p04-C	629.88	644.84	2.37	675.63	7.26	1203
p05-C	573.03	613.47	7.06	692.44	20.84	884
p06-C	379.10	390.34	2.96	403.39	6.41	1316
p07-C	288.24	297.91	3.35	314.78	9.21	798
p08-C	3023.77	3100.23	2.53	3265.97	8.01	1635
p09-C	1705.03	1774.86	4.10	1846.92	8.32	3391
p10-C	1286.28	1319.78	2.60	1349.47	4.91	3549
p11-C	992.16	1035.63	4.38	1061.7	7.01	3600
p12-C	1082.12	1123.30	3.81	1175.39	8.62	446
p13-C	1099.02	1135.30	3.30	1191.96	8.46	491
p14-C	1111.12	1123.33	1.10	1170.17	5.31	423
p15-C	1166.08	1202.57	3.13	1228.27	5.33	2471
p16-C	1178.51	1209.60	2.64	1241.67	5.36	2146
p17-C	1142.74	1199.88	5.00	1253.47	9.69	2628
p18-C	1231.96	1263.90	2.59	1296.42	5.23	3368
p19-C	1250.26	1266.54	1.30	1284.23	2.72	3600
p20-C	1246.36	1266.70	1.63	1280.77	2.76	3445
p21-C	1296.19	1330.11	2.62	1347.09	3.93	3600
p22-C	1317.94	1332.07	1.07	1354.61	2.78	3600
p23-C	1319.93	1341.50	1.63	1356.62	2.78	3600
Average	1036.73	1067.50	3.95	1107.02	9.48	2035.13

Table 11: AACONC+ best and heuristic results

Instance	AACONC+	heuristic (prox.)	gap(%)	heuristic (k-means)	gap(%)
p01-C	178.56	217.42	21.76	191.03	6.98
p02-C	172.73	219.2	.2 26.90 188.60		9.19
p03-C	173.82	214.84	23.60	185.82	6.90
p04-C	629.88	668.81	6.18	694.96	10.33
p05-C	573.03	630.78	10.08	624.33	8.95
p06-C	379.10	435.42	14.86	416.25	9.80
p07-C	288.24	309.48	7.37	314.41	9.08
p08-C	3023.77	3333.93	10.26	3186.02	5.37
p09-C	1705.03	1917.82	12.48	1964.49	15.22
p10-C	1286.28	1493.13	16.08	1500.38	16.64
p11-C	992.16	1145.75	15.48	1031.09	3.92
p12-C	1082.12	1273.77	17.71	1273.77	17.71
p13-C	1099.02	1226.63	11.61	1226.63	11.61
p14-C	1111.12	1284.73	15.62	1284.73	15.62
p15-C	1166.08	1347.67	15.57	1295.23	11.08
p16-C	1178.51	1289.29	9.40	1289.29	9.40
p17-C	1142.74	1320.91	15.59	1273.39	11.43
p18-C	1231.96	1260.24	2.30	1211.56	-1.66
p19-C	1250.26	1266.92	1.33	1248.93	-0.11
p20-C	1246.36	1323.10	6.16	1234.12	-0.98
p21-C	1296.19	1363.18	5.17	1231.23	-5.01
p22-C	1317.94	1295.67	-1.69	1230.99	-6.60
р23-С	1319.93	1252.36	-5.12	1222.63	-7.37
Average	1037.52	1134.39	11.24	1100.86	6.84

Figure 15: Comparison to the best solution found by AACONC+

Figure 16: Comparison of best results found

Figure 17: Comparison to the best solution found by AACONC+

Figure 18: Comparison to the average solution found by AACONC+

Figure 19: Comparison to the worst solution found by AACONC+

Figure 20: Comparison of best results found

Figure 21

9 Related Literature

At the same time, it is important that we address flight range limitations. Such limitations have important roles in much of the existing drone routing research. However, even he first drones developed by Amazon and JD.com ahad a flight range of 15 to 20 miles [33, 56]. Such a range is suitable to allow out and back travel in the medium-sized cities in which the authors live, Braunschweig, Germany, and Iowa City, United States. In fact, it is suitable for many larger cities such as Hamburg, Munich, and Paris. Thus, in contrast to other drone applications, in this work, we do not consider flight range as a limiting factor (Ulmer & Thomas (2018)).

Table 12: Drone-related Routing literature

Murray & Chu (2015) Ha et al. (2015) Freitas & Penna (2018)	FSTSP	1-Truck 1-Drone 1-Depot				
	DDCTCD	r riden r Brone r Bepor	Yes	Yes	No	MILP, Heuristics
	PDSTSP	1-Truck n-Drone 1-Depot	No	Yes	No	MILP, Heuristics
Freitas & Penna (2018)	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MIP, Heuristics
	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	IP, Heuristics
Boccia et al. (2021)	FSTSP/PDSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MILP, Heuristics
Dell'Amico et al. (2021)	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MILP
Dell'Amico et al. (2021)	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	Branch and bound, Heuristic
Kuroswiski et al. (2023)	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MILP, Metaheuristics
Pilcher (2023)	FSTSP	1-Truck 1-Drone 1-Depot	Yes	Yes	No	Self-adaptive GA
Mbiadou Saleu et al. (2018)	PDSTSP	1-Truck n-Drone 1-Depot	No	Yes	No	MILP, Heuristics
Dinh et al. (2021)	PDSTSP	1-Truck n-Drone 1-Depot	No	Yes	No	Metaheuristics
Nguyen et al. (2022)	PDSTSP	1-Truck n-Drone 1-Depot	No	Yes	No	MILP
Mbiadou Saleu et al. (2022)	PDSMTSP	m-Truck n-Drone 1-Depot	No	Yes	No	MILP, Metaheuristics
Montemanni et al. (2023)	PDSTSP	1-Truck n-Drone 1-Depot	Yes	Yes	No	Constraint Programming
Nguyen et al. (2023)	PDSTSP-c	1-Truck n-Drone 1-Depot	No	Yes	No	MILP, Metaheuristics
Montemanni et al. (2024)	PDSTSP-c	1-Truck n-Drone 1-Depot	No	Yes	No	MILP, Constraint Programming
Ham (2018)	$PDSTSP^{+DP}$	m-Truck n-Drone 2-Depot	No	Yes	No	Constraint Programming
Agatz et al. (2018)	TSP-D	1-Truck 1-Drone 1-Depot	Yes	Yes	No	IP, Heuristics
Yurek et al. (2018)	TSP-D	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MIP, Heuristics
Ha et al. (2018)	min-cost TSP-D	1-Truck 1-Drone 1-Depot	Yes	Yes	No	MILP, GRASP, TSP-LS
Dorling et al. (2016)	DDPs	0-Truck n-Drone 1-Depot	No	Yes	Yes	MILP, SA
Ulmer & Thomas (2018)	SDDPHF	m-Truck n-Drone 1-Depot	No	No	No	Adaptive dynamic programming
Salama & Srinivas (2020)	JOCR	1-Truck n-Drone 1-Depot	Yes	Yes	No	IP, MILP, Heuristics
Lu et al. (2022)	FDTSP	1-Truck n-Drone 1-Depot	Yes	Yes	No	Heuristics, Metaheuristics
Lan (2024)	TSPTWD	1-Truck 1-Drone 1-Depot	Yes	Yes	No	Metaheuristics
Wang et al. (2017)	VRPD	m-Truck n-Drone 1-Depot	Yes	Yes	Yes	Problem formulation, theoretical stud
Schermer et al. (2018)	VRPD	m-Truck n-Drone 1-Depot	Yes	Yes	Yes	Heuristics
Sacramento et al. (2019)	VRP-D	m-Truck m-Drone 1-Depot	Yes	Yes	Yes*	MIP, ALNS
Schermer et al. (2019)	VRPDERO	m-Truck n-Drone 1-Depot	No	Yes	No	MILP, VNS, TS
Nguyen et al. (2022)	PDSVRP	m-Truck n-Drone 1-Depot	No	Yes	Yes	MILP, Metaheuristics
Schermer et al. (2019)	VRPD	m-Truck n-Drone 1-Depot	Yes	Yes	No	MILP, Matheuristic
Wang & Sheu (2019)	VRPD	m-Truck n-Drone 1-Depot	No	Yes	Yes	MIP, branch-and-price
Euchi & Sadok (2021)	VRP-D	m-Truck m-Drone 1-Depot	Yes	Yes	Yes	MILP, HGA
Lei et al. (2022)	VRPD	m-Truck m-Drone 1-Depot	Yes	Yes	Yes	Dynamical Artificial Bee Colony
Karak et al. (2019)	HVDRP	m-Truck n-Drone 1-Depot	Yes	Yes	Yes(Drones)	MIP, Heuristics
Kuo et al. (2022)	VRPDTW	m-Truck m-Drone 1-Depot	Yes	Yes	Yes	MIP, VNS
Stodola et al. (2024)	MDVRP-D	m-Truck m-Drone m-Depot	Yes	Yes	Yes	ACO
Oikonomou et al. (2019)	mfcmTSP	1-Truck 1-Drone 1-Depot	No	No	No	Heuristics
This paper	MD-mfcmTSP	m-Truck n-Drone k-Depot	No	No	Yes	Metaheuristics, Heuristics