III- Year I- Semester	Name of the Course	L	T	P	C
PC3102	Machine Learning	3	0	0	3

Course Objectives:

- 1. Familiarity with a set of well-known supervised, unsupervised and semi-supervised learning algorithms.
- 2. Understanding the machine learning model prediction through classification, scoring and ranking using R.
- 3. Predict objects classification through decision tree building and rule building.
- 4. Know the importance of features and perform feature engineering
- 5. Summarizing the data from large tables into smaller set of summary indices through principal component analysis.

Syllabus:

Unit 1-Introduction to Statistical Learning and Linear Regression

Introduction to Statistical Learning: What Is Statistical Learning? Assessing Model Accuracy. **Linear Regression:** Simple Linear Regression, Estimating the Coefficients, Assessing the Accuracy of the Coefficient Estimates, Assessing the Accuracy of the Model.

Unit 2-Multiple Linear Regression and Classification

Multiple Linear Regression: Estimating the Regression Coefficients, Other Considerations in the Regression Model, Comparison of Linear Regression with K-Nearest Neighbours.

Classification: An Overview of Classification, Why Not Linear Regression?Logistic Regression, Generative Models for Classification, A Comparison of Classification Methods.

Unit 3-Resampling Methods, Linear Model Selection and Regularization

ResamplingMethods: Cross-Validation, the Bootstrap.

Linear Model Selection and Regularization, Subset Selection, Shrinkage Methods, Dimension Reduction Methods, Considerations in High Dimensions.

Unit 4-Tree-Based Methods

Tree-Based Methods: The Basics of Decision Trees, Regression Trees, Classification Trees, Trees Versus Linear Models, Advantages and Disadvantages of Trees, Bagging, Random Forests, Boosting and Bayesian AdditiveRegression Trees.

Unit 5-Support Vector Machines and Unsupervised Learning

Support Vector Machines, Maximal Margin Classifier, Support Vector Classifiers, Support Vector Machines.

Unsupervised Learning: The Challenge of Unsupervised Learning, Principal Components Analysis, Missing Values and Matrix Completion, Clustering Methods.