20-nm-C-250-nm-ZnO-Silica-15kV-reflin-5e-1

John Minter

Started 2018-08-07, Last modified: 2018-08-11

Abstract

The objective was to measure the time required for this simulation using the Zn L3-M4 transition to reach the REFLIN criterion of an uncertainty of $1.0e^{-1}$. This was a fairly weak transition (0.1140) compared to the stronger Zn L3-M5 transition (1.0). Still, I want to see how the simulation scales with the value of the uncertainty criterion.

Contents

Set up for the analysis
Get the current simulation time
Retrieve the number of showers
Compute the total maximum intensity for each element Retrieve the data
Process the spectra data Load the raw data
Set up for the analysis

Note: This simulation used the same MSIMPA parameters for all layers and a REFLIN parameter (5.E-1) to finish.

```
RSEED -10
                                [Seeds of the random-number generator]
REFLIN 30040800 1 5.E-1
                            [Zn L3-M4 IZ*1e6+S1*1e4+S2*1e2,dete,tol.]
NSIMSH 1.0e8
                                 [Desired number of simulated showers]
TIME
       1.0e6
                                    [Allotted simulation time, in sec]
```

First load the libraries we need...

```
library(rpenepma)
library(dplyr)
library(pander)
panderOptions('table.split.table', Inf)
library(ggplot2)
```

Next, set the paths and constants that we need...

```
moved_data <- FALSE # set to TRUE when simu is done and .rda with data is moved...</pre>
            <- 15 # kV
e0
int_lo_lim <- 1.0e-1
int_hi_lim <- 1.0e4</pre>
reflin_crit <- 5e-1
```

```
ori_sim_dir <- "C:/Users/jrminter/Documents/work/penepma16/20-nm-C-250-nm-ZnO-Silica-reflin2"
sim_dir <- "/Users/jrminter/Desktop/test-plt"
sim_nam <- "20-nm-C-250-nm-ZnO-Silica-reflin-5e-1"
res_fi <- "./penepma-res.dat"
int_fi <- "./pe-intens-01.dat"
spc_fi <- "./pe-spect-01.dat"
out_ti <- sprintf("%s-%gkV", sim_nam, e0)
msa_fi <- sprintf("./%s-%gkV.msa", sim_nam, e0)</pre>
```

Get the current simulation time

```
if (moved_data==FALSE){
  # When we have not moved the sim measure the simulation time.
  # Note copying the files to another directory seems to change the time
  # Test a reload.
 delta_t <- penepma_measure_simulation_time(ori_sim_dir)</pre>
  # print(delta_t)
  save(delta_t, file="./delta_t.rda")
 rm(delta t)
 load("./delta t.rda")
 msg <- "Analyzed from simulation directory."
} else {
  \# When we have moved the simulation, reload the delta_t.rda
 msg <- "Analyzed from data stored in delta_t.rda."</pre>
 load("./delta_t.rda")
print(msg)
[1] "Analyzed from simulation directory."
delta_t_time <- print(delta_t)</pre>
Time difference of 1.410857 hours
Sort summary: this is very short and noisy...
```

Retrieve the number of showers

We want retrieve the number of showers (trajectories) that our penepma16 simulation calculated.

```
options(scipen = -6) # force printing in exponential format
num_showers <- penepma_get_number_of_showers(res_fi)
cat(num_showers)
4.1783e+04</pre>
```

```
options(scipen = 3) # reset to default
```

Compute the total maximum intensity for each element

Retrieve the data

First retrieve the intensity data as a tibble and print a preview.

```
tib <- penepma_get_intensities(int_fi)</pre>
print(tib)
# A tibble: 21 x 14
      IZ SO
                S1
                        keV
                                P.mu
                                        P.se
                                                 C.mu
                                                          C.se
                                                                  B.mu
                                                                           B.se
   <int> <chr> <chr> <dbl>
                               <dbl>
                                        <dbl>
                                                <dbl>
                                                         <dbl>
                                                                 <dbl>
                                                                          <dbl>
1
                      0.277 5.50e-7 1.65e-6 0.
                                                      0.
                                                               0.
                                                                        0.
       6 K
               1.2
 2
       6 K
               L3
                      0.277 5.50e-7 1.65e-6 1.21e-8 3.63e-8 1.90e-9 5.69e-9
 3
       8 K
               L2
                      0.525 8.82e-6 3.09e-6 0.
                                                      0.
                                                               4.36e-8 8.10e-8
 4
       8 K
               L3
                      0.525 2.05e-5 4.74e-6 8.46e-8 9.59e-8 7.58e-9 1.14e-8
 5
                      0.884 2.57e-5 5.33e-6 2.42e-8 5.13e-8 1.76e-8 1.71e-8
      30 L3
               M1
 6
      30 L2
               M1
                      0.906 1.72e-5 4.31e-6 0.
                                                       0.
                                                               1.33e-8 1.50e-8
 7
      30 L3
               M2
                      0.932 1.21e-7 3.63e-7 0.
                                                       0.
                                                               0.
                                                                        Ω
8
      30 L2
                      0.957 1.21e-7 3.63e-7 0.
                                                       0.
               МЗ
                      1.01 3.52e-5 6.18e-6 4.83e-8 7.25e-8 2.46e-8 2.05e-8
9
      30 L3
                М5
10
      30 L3
                      1.01 4.47e-6 2.20e-6 1.21e-8 3.63e-8 1.90e-9 5.69e-9
# ... with 11 more rows, and 4 more variables: TF.mu <dbl>, TF.se <dbl>,
    Int.mu <dbl>, Int.se <dbl>
What features did we measure?
print(names(tib))
 [1] "IZ"
               "S0"
                         "S1"
                                  "keV"
                                            "P.mu"
                                                      "P.se"
                                                               "C.mu"
 [8] "C.se"
               "B.mu"
                        "B.se"
                                  "TF.mu"
                                            "TF.se"
                                                     "Int.mu" "Int.se"
How many transitions did we measure?
print(nrow(tib))
[1] 21
Measure our test transition ("Zn L3-M4")
val <- penepma_get_total_intensity_z_transition(tib, 30, "L3", "M4")</pre>
print(val)
# A tibble: 1 x 7
  Symbol
            IZ SO
                      S1
                                 Int.mu
                                            Int.se Int.snr
  <chr>
         <int> <chr> <chr>
                                  <dbl>
                                             <dbl>
                                                      <dbl>
            30 L3
                      M4
                             0.00000449 0.0000022
                                                       2.04
And see how close we are to the REFLIN criterion
cur_ref_crit <- val$Int.se/val$Int.mu</pre>
rv <- c(cur_ref_crit, 100*reflin_crit/cur_ref_crit)</pre>
names(rv) <-c("value", "target %")</pre>
print(rv)
      value
                target %
  0.4905128 101.9341364
```

Let's estimate the remaining time

```
pct <- rv[2]/100.
names(pct) <- c()
tr <- delta_t*(1.0-pct)
print(tr)</pre>
```

Time difference of -0.02728791 hours

Let's store a .rda file with REFLIN info

name	reflin	time	showers	value	target %
20-nm-C-250-nm-ZnO-Silica-reflin-5e-	0.5	1.410857 hours	41783	0.4905	101.9

Compute the maximum total intensity for each element

- 1. Compute the maximum total intensity for each element.
- 2. Stack each row of data together into a tibble.
- 3. Prepend the sample ID to the data.
- 4. Print a well-formatted a table using pander.
- 5. Save the final tibble so it can be r-loaded later

```
# 1
C_t <- penepma_get_max_total_intensity_z(tib, 6)
O_t <- penepma_get_max_total_intensity_z(tib, 8)
Zn_t <- penepma_get_max_total_intensity_z(tib, 30)
Si_t <- penepma_get_max_total_intensity_z(tib, 14)
# 2
tot_int <- dplyr::bind_rows(C_t, 0_t, Zn_t, Si_t)
#3
C_20_nm_Zn0_250_nm_Si02_15kV_reflin_5e_m1 <- prepend_sample_id_max_int_tib(tot_int, out_ti)
# 4
pander(C_20_nm_Zn0_250_nm_Si02_15kV_reflin_5e_m1)</pre>
```

Sample.ID	Symbol	IZ	S0	S1	Int.mu	Int.se	Int.snr
20-nm-C-250-nm-ZnO-Silica-reflin- 5e-1-15kV	С	6	К	L3	0.0000005645	0.00000165	0.3421
$20\text{-nm-C-}250\text{-nm-ZnO-Silica-reflin-}\\5\text{e-}1\text{-}15\text{kV}$	О	8	K	L3	0.00002064	0.00000475	4.344
$20\text{-nm-C-}250\text{-nm-ZnO-Silica-reflin-}\\5\text{e-}1\text{-}15\text{kV}$	Zn	30	L3	M5	0.00003524	0.00000618	5.702
$20\text{-nm-C-}250\text{-nm-ZnO-Silica-reflin-}\\5\text{e-}1\text{-}15\text{kV}$	Si	14	K	L3	0.00002673	0.00008	0.3342

Process the spectra data

Load the raw data

```
tib <- penepma_read_raw_data(spc_fi,min_intensity_clip=5.0e-10)
rownames(df) <- c()</pre>
```

Examine the start:

pander(head(tib))

keV	mu	se
0.01183	0.5	0.5
0.01549	0.5	0.5
0.01915	0.5	0.5
0.02281	0.5	0.5
0.02647	0.5	0.5
0.03013	0.5	0.5

Examine the end:

pander(tail(tib))

keV	mu	se
14.98	0.5	0.5
14.98	0.5	0.5
14.99	0.5	0.5
14.99	0.5	0.5
14.99	0.5	0.5
15	0.5	0.5

Plot the spectrum.

There is a very large dynamic range for both the **probability density** and the **uncertainty**. Penepma sets a lower limit for data at **1.0e-35**. Missing values are set to zero. We want to remove values from the dataframe that are below a useful limit. We do this below and plot a copy of the dataframe that is limited to the useful values.

And on a linear intensity scale...

Write a spectrum file in MSA format

```
penepma_to_msa(spc_fi, msa_fi,e0, out_ti)
```