SINGULARITY STRUCTURE OF THE FOUR POINT CELESTIAL LEAF AMPLITUDES

Annual Review Talk by Raju Mandal

Supervisor : Prof. Shamik Banerjee

NISER, Bhubaneswar

December 5, 2024

Previous work?

"All OPEs invariant under the infinite symmetry algebra for gluons on the celestial sphere" is published in Phys.Rev.D 110 (2024) 2, 026020.

DOI: https://doi.org/10.1103/PhysRevD.110.026020

This talk

based on "Singularity Structure of the Four Point Celestial Leaf Amplitudes" with Partha Paul(IMSC),
Sagnik Misra(NISER) and
Baishali Roy(RKMVU).

arXiv: 2410.13969 [hep-th]

OUTLINE

1 OUR GOAL

② MOTIVATION

③ CELESTIAL HOLOGRAPHY

4 BRIEF REVIEW:

→The celestial amplitudes

→The Klein space

➡ Celestial leaf amplitudes

5 ACHIEVING THE GOAL

6 OUTLOOK

What do we want to do?

Why do we want to do that?

 $QG \leftrightarrow CCFT$

What are these?

How do we do it?

What do we expect now?

GOAL

- ① Singularity structure of the 4-point celestial leaf amplitudes
- 2 Constraints on the leaf amplitudes coming from the decoupling of the null states

MOTIVATION

- igspace Celestial leaf amplitudes have a natural holographic interpretation given by AdS_3/CFT_2 correspondence
- Shiraz and collaborators' construction in 2311.03443, Boundary correlator \to S-matrix of a QFT \to massless scattering in Minkowski spacetime \to simple pole-type singularity in the 4-point correlators in cross-ratio space at $z=\bar{z}$
- \blacksquare In the AdS/CFT context, pole type singularity also appeared in the Lorentzian 4-point boundary correlators.

QUICK REVIEW OF CELESTIAL CFT:

A quantum theory of gravity in (3+1)D AFS \equiv $\Big($ A 2D Celestial CFT on CS^2 at null infinity $\Big)$

$$\langle out | S | in
angle \qquad \langle \mathcal{O}_{\Delta_{+}}^{\pm}(z_{1}, ar{z}_{1}) ... \mathcal{O}_{\Delta_{-}}^{\pm}(z_{n}, ar{z}_{n})
angle \qquad (1)$$

Null momentum in split signature (-, -, +, +):

Klein space

$$p_k^{\mu} = \epsilon_k \omega_k (1 - z_k \bar{z}_k, z_k + \bar{z}_k, 1 + z_k \bar{z}_k, z_k - \bar{z}_k) \tag{2}$$

$$\begin{split} ds^2 &= -(dX^0)^2 - (dX^1)^2 + (dX^2)^2 + (dX^3)^2, & SO(2,2) \cong SL(2,\mathbb{R})_L \times SL(2,R)_R/\mathbb{Z}_2 \\ & \qquad \qquad \qquad \downarrow X^0 + iX^1 = qe^{i\psi}, X^2 + iX^3 = re^{i\phi} \\ ds^2 &= -dq^2 - q^2d\psi^2 + dr^2 + r^2d\phi^2 \\ & \qquad \qquad \qquad \downarrow q - r = \tan U, q + r = \tan V \\ ds^2 &= \frac{1}{\cos^2 U \cos^2 V} \Big(-dUdV - \frac{1}{4} sin^2(V + U)d\psi^2 + \frac{1}{4} sin^2(V - U)d\phi^2 \Big) \\ & \qquad \qquad \qquad \downarrow \text{null infinity} \mathscr{I} \text{ at } V = \frac{\pi}{2} \\ \widetilde{ds}^2 &= -d\psi^2 + d\phi^2, \quad \psi \sim \psi + 2\pi, \phi \sim \phi + 2\pi \quad \text{Lorentzian torus} \end{split}$$

FOLIATION OF THE KLEIN SPACE

 \triangle The lightcone $X^2 = 0$ divides the Klein space into two regions

Timelike:
$$X^{\mu} = \tau \hat{x}_{+}^{\mu}, \ \hat{x}_{+}^{2} = -1 \qquad \tau \in (0, \infty)$$

Spacelike: $X^{\mu} = \tau \hat{x}_{-}^{\mu}, \ \hat{x}_{-}^{2} = +1$ (4)

In global coordinates,

Timelike wedge
$$ds^2 = -d\tau^2 + \tau^2(-\cosh^2\rho d\psi^2 + \sinh^2\rho d\phi^2 + d\rho^2)$$

Spacelike wedge $ds^2 = d\tau^2 - \tau^2(-\cosh^2\rho d\psi^2 + \sinh^2\rho d\phi^2 + d\rho^2)$ (5)

- riangle each constant au leaf gives a metric on AdS_3/\mathbb{Z}
- null coordinates(global coordinates), $\sigma = \frac{\psi + \phi}{2}$, $\bar{\sigma} = \frac{\psi \phi}{2}$
- \triangle planar coordinates, $z = \tan \sigma, \bar{z} = \tan \bar{\sigma}$

$$\langle \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \rangle = \prod_{i=1}^{n} \int_{0}^{\infty} d\omega_{i} \, \omega_{i}^{\Delta_{i}-1} \overline{\left[\mathcal{S}_{n}(\{\omega_{i},z_{i},\bar{z}_{i},\sigma_{i},a_{i}\})\right]}$$
 (6)

Mellin transform

Momentum space amplitude

MHV 4-GLUON CELESTIAL AMPLITUDE (COLOR STRIPPED):

$$\mathcal{A}(1^-2^-3^+4^+)$$

$$= \prod_{j=1}^4 \int_0^\infty d\omega_j \ \omega_j^{\Delta_j - 1} \boxed{\frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \delta \Biggl(\sum_{i=1}^4 p_i^\mu \Biggr)}$$

Parke-Taylor Formula 1986

$$= \prod_{i=1}^{4} \int_{0}^{\infty} d\omega_{j} \ \omega_{j}^{\Delta_{j}-1} \mathcal{F}(\{\omega_{i}\}) \delta(\omega_{1} - \omega_{1}^{\star}) \delta(\omega_{2} - \omega_{2}^{\star}) \delta(\omega_{3} - \omega_{3}^{\star}) \delta(z_{12} z_{34} \bar{z}_{13} \bar{z}_{24} - z_{13} z_{24} \bar{z}_{12} \bar{z}_{34})$$

$$\mathcal{A}(1^{-}2^{-}3^{+}...n^{+}) = \prod_{j=1}^{n} \int_{0}^{\infty} d\omega_{j} \ \omega_{j}^{\Delta_{j}-1} \frac{\langle 12 \rangle^{3}}{\langle 23 \rangle \cdots \langle n1 \rangle} \boxed{\int \frac{d^{4}X}{(2\pi)^{4}} e^{\sum_{j} \omega_{j}(i\hat{p}_{j} \cdot X - \epsilon)}}$$

$$= \frac{s_{12}^3}{s_{23}\cdots s_{n1}} \int \frac{d^4X}{(2\pi)^4} \prod^n \Phi_{2\bar{h}_i}(X,\hat{p}_i) \qquad \text{scalar conformal primary wavefunction}$$

break the integral over Klein space

$$= \frac{s_{12}^3}{s_{23} \cdots s_{n1}} \int_0^\infty d\tau \ \tau^3 \qquad \qquad s_{ij} := sin\sigma_{ij}$$

$$\times \left\{ \int_{\hat{x}_+^2 = -1} d^3 \hat{x}_+ \prod_{i=1}^n \Phi_{2\bar{h}_i}(\tau \hat{x}_+, \hat{p}_i) + \int_{\hat{x}_+^2 = +1} d^3 \hat{x}_- \prod_{i=1}^n \Phi_{2\bar{h}_i}(\tau \hat{x}_-, \hat{p}_i) \right\}$$

 τ integral

 $\mathcal{A}(1^{-}2^{-}3^{+}...n^{+}) = \frac{\delta(\beta)}{2-3} \Big(\mathcal{L}(\sigma_{i}, \bar{\sigma}_{i}) + \mathcal{L}(\sigma_{i}, -\bar{\sigma}_{i}) \Big), \qquad \beta = \sum_{i=1}^{n} (\Delta_{k} - 1)$

Timelike leaf Spacelike leaf

$$\mathcal{L}(\sigma_i, \bar{\sigma}_i) = \frac{s_{12}^3}{s_{23} \cdots s_{n1}} \int_{AdS_3/\mathbb{Z}} d^3 \hat{x}_+ \prod_{i=1}^n \Phi_{2\bar{h}_i}(\hat{x}_+, \hat{p}_i)$$
(9)

INTERPRETATION:

$$\Phi_{\Delta}(X,\hat{p}) = \int_0^\infty d\omega \omega^{\Delta-1} e^{i\omega\hat{p}\cdot X - \epsilon\omega} = \frac{\Gamma(\Delta)}{(-i\hat{p}\cdot X + \epsilon)^{\Delta}}$$
 hyperbolic coordinates bulk-to-boundary propagator on Lorentzian AdS_3/\mathbb{Z}

PROPERTIES...

- Non-distributional, unlike celestial amplitudes
- Celestial amplitudes are obtained by adding the TL and SL leaf amplitudes
- Governed by the same infinite-dimensional soft "S algebra" + Lorentz/conformal sym.

Melton, Sharma, Strominger '24

- 4-point massless scalar and gluon leaf amplitudes have a simple pole-type singularity in cross-ratio space Paul, Roy, Misra, RM '24
- Constrained by the same BG equations

4-POINT MASSLESS SCALAR AMPLITUDE: ϕ^4 Theory

contact diagram:

$$A_4(p_1, p_2, p_3, p_4) = -i(2\pi)^4 \tilde{\lambda} \delta^4(p_1 + p_2 + p_3 + p_4)$$
(10)

4-point scalar leaf amplitudes:

$$\mathcal{L}_{4}^{s}(\sigma_{i}, \bar{\sigma}_{i}) = -i(2\pi)^{4} \tilde{\lambda} \mathcal{C}_{4}(\sigma_{i}, \bar{\sigma}_{i}), \qquad \mathcal{L}_{4}^{s}(\sigma_{i}, -\bar{\sigma}_{i}) = -i(2\pi)^{4} \tilde{\lambda} \mathcal{C}_{4}(\sigma_{i}, -\bar{\sigma}_{i})$$
(11)

$$\mathcal{C}(\sigma_{i}, \bar{\sigma}_{i}) = \int_{\hat{x}_{+}^{2} = -1} d^{3}\hat{x}_{+} \prod_{j=1}^{4} \int_{0}^{\infty} d\omega_{j} \omega_{j}^{2\bar{h}_{j} - 1} e^{\sum_{k=1}^{4} \epsilon_{k} \omega_{k} q_{k} \cdot \hat{x}_{+} - \epsilon \omega_{k}}$$

$$\downarrow \text{go to the planar coordinates} \qquad \lambda_{i} = \lambda, \forall i \text{ (for simplicity)}$$

$$\mathcal{C}_{4}(z_{i}, \bar{z}_{i}) \qquad (12)$$

conformal transformations $|z_1,\bar{z}_1 \rightarrow \infty; z_2=\bar{z}_2=1; z_3=z, \bar{z}_3=\bar{z}; z_4=\bar{z}_4=0$

$$S_4(z,\bar{z}) = \frac{i\pi}{2} \Gamma(1+2i\lambda) e^{2\pi\lambda} H(1+i\lambda, 1+i\lambda, 1+2i\lambda, 2+2i\lambda; u_+, v_+)$$
$$-\frac{i\pi}{2} \Gamma(1+2i\lambda) e^{-2\pi\lambda} H(1+i\lambda, 1+i\lambda, 1+2i\lambda, 2+2i\lambda; u_-, v_-)$$

$$H(2\bar{h}_{1}, \bar{h}_{1} + \bar{h}_{2} - \bar{h}_{3} + \bar{h}_{4}, 1 + \bar{h}_{1} - \bar{h}_{2} - \bar{h}_{3} + \bar{h}_{4}, 2\bar{h}_{1} + 2\bar{h}_{4}; \tilde{u}, \tilde{v})$$

$$= \int_{-c-i\infty}^{-c+i\infty} \frac{ds}{2\pi i} \int_{-c'-i\infty}^{-c'+i\infty} \frac{dr}{2\pi i} \Gamma(-s)\Gamma(-r)\Gamma(2\bar{h}_{1} + r + s)\Gamma(-\bar{h}_{1} + \bar{h}_{2} + \bar{h}_{3} - \bar{h}_{4} - s)$$

$$\times \Gamma(\bar{h}_{1} + \bar{h}_{2} - \bar{h}_{3} + \bar{h}_{4} + r + s)\Gamma(-\bar{h}_{1} - \bar{h}_{2} + \bar{h}_{3} + \bar{h}_{4} - r)\tilde{u}^{r}\tilde{v}^{s}$$

$$(13)$$

scalar case

$$\delta(\lambda)H(1+i\lambda,1+i\lambda,1+2i\lambda,2+2i\lambda;u_{\pm},v_{\pm}) = \frac{\delta(\lambda)}{\bar{z}-z\pm i\epsilon} \Big[\Big\{ \log(z\mp i\epsilon) + \log(\bar{z}\pm i\epsilon) \Big\} \Big\{ \log(1-\bar{z}\mp i\epsilon) + \log(1-z\pm i\epsilon) \Big\} - 2Li_2(z\mp i\epsilon) + 2Li_2(\bar{z}\pm i\epsilon) \Big]$$
(14)

TIAL AMPLITUDE FROM LEAF AMPLITI

 \triangle simple pole-type singularity as $z \to \bar{z}$

Timelike leaf

$$\delta(\lambda)S_4(z,\bar{z}) = \frac{i\pi}{2} \frac{\delta(\lambda)}{\bar{z} - z + i\epsilon} \left[4\pi^2 + 2\pi i \ln\left(\frac{z}{\bar{z}} \frac{1 - \bar{z}}{1 - z}\right) \right], \qquad z, \bar{z} > 1$$
 (15)

spacelike leaf

$$\delta(\lambda)\bar{S}_4(z,\bar{z}) = \frac{i\pi}{2} \frac{\delta(\lambda)}{\bar{z} - z - i\epsilon} \left[-4\pi^2 - 2\pi i \ln\left(\frac{z}{\bar{z}} \frac{1 - \bar{z}}{1 - z}\right) \right], \qquad z, \bar{z} > 1 \quad (16)$$

celestial amplitude is recovered by adding the timelike and spacelike leaf amplitudes

$$\widetilde{\mathcal{M}}_4(z,\bar{z}) = ((-2\pi)^4 \tilde{\lambda}) \frac{\delta(\lambda)}{16} \Theta(z-1) \left[\frac{i}{\bar{z}-z+i\epsilon} - \frac{i}{\bar{z}-z-i\epsilon} \right]$$
$$= ((-2\pi)^4 \tilde{\lambda}) \delta(\lambda) \frac{\pi}{8} \Theta(z-1) \delta(z-\bar{z})$$

(17)

MHV GLUON LEAF AMPLITUDES

$$\mathcal{G}_{4}(z,\bar{z}) = \lim_{z_{1},\bar{z}_{1}\to\infty} z_{1}^{2h_{1}} \bar{z}_{1}^{2\bar{h}_{1}} \mathcal{L}_{4}^{g}(z_{i},\bar{z}_{i})$$

$$= \frac{i\pi}{2} \Gamma(1+2i\lambda) e^{2\pi\lambda} \frac{z\bar{z}^{2}}{z-1} H(2+i\lambda,2+i\lambda,3+2i\lambda,4+2i\lambda;u_{+},v_{+})$$

$$- \frac{i\pi}{2} \Gamma(1+2i\lambda) e^{-2\pi\lambda} \frac{z\bar{z}^{2}}{z-1} H(2+i\lambda,2+i\lambda,3+2i\lambda,4+2i\lambda;u_{-},v_{-})$$

$$\downarrow \text{ using the identities of H functions}$$

$$= \mathcal{G}_{4}^{sing}(z,\bar{z}) + \mathcal{G}_{4}^{reg}(z,\bar{z})$$
(18)

where,

$$\mathcal{G}_{4}^{sing}(z,\bar{z}) = \frac{i\pi}{2}\Gamma(1+2i\lambda)e^{2\pi\lambda}\frac{\bar{z}}{z-1}\underbrace{H(1+i\lambda,1+i\lambda,1+2i\lambda,2+2i\lambda;u_{+},v_{+})}_{-\frac{i\pi}{2}\Gamma(1+2i\lambda)e^{-2\pi\lambda}\frac{\bar{z}}{z-1}\underbrace{H(1+i\lambda,1+i\lambda,1+2i\lambda,2+2i\lambda;u_{-},v_{-})}_{(19)}$$

same H function that appeared in scalar case

• $\mathcal{G}_{4}^{reg}(z,\bar{z})$ is not singular at $z=\bar{z}$

MHV GLUON LEAF AMPLITUDES...

Timelike gluon leaf:

$$\delta(\lambda)\mathcal{G}_4(z,\bar{z}) = \frac{i\pi}{2} \frac{\bar{z}}{z-1} \frac{\delta(\lambda)}{\bar{z}-z+i\epsilon} \left[4\pi^2 + 2\pi i \ln\left(\frac{z}{\bar{z}} \frac{1-\bar{z}}{1-z}\right) \right] + \delta(\lambda) \operatorname{Reg}^t(\text{as } z \to \bar{z})$$
(20)

Spacelike gluon leaf:

$$\delta(\lambda)\bar{\mathcal{G}}_4(z,\bar{z}) = \frac{i\pi}{2} \frac{\bar{z}}{z-1} \frac{\delta(\lambda)}{\bar{z}-z-i\epsilon} \left[-4\pi^2 - 2\pi i \ln\left(\frac{z}{\bar{z}} \frac{1-\bar{z}}{1-z}\right) \right] + \delta(\lambda) \operatorname{Reg}^s(\text{as } z \to \bar{z})$$
(21)

MHV GLUON CELESTIAL AMPLITUDE

Adding them we get,

$$\widetilde{\mathcal{M}}_{4}^{g}(z,\bar{z}) = \delta(\lambda) \frac{\pi}{8} \Theta(z-1) \frac{z}{z-1} \delta(z-\bar{z}) + \delta(\lambda) \operatorname{Reg}(\operatorname{as} z \to \bar{z}). \tag{22}$$

BG EQUATIONS FOR MHV GLUON LEAF AMPLITUDES

$$\mathcal{L}_{4}^{g}(1_{\Delta_{1}}^{-,a_{1}}, 2_{\Delta_{2}}^{-,a_{2}}, 3_{\Delta_{3}}^{+,a_{3}}, 4_{\Delta_{4}}^{+,a_{4}}) = -g_{YM}^{2} \frac{z_{12}^{3}}{z_{23}z_{34}z_{41}} \left[f^{a_{1}a_{2}x} f^{xa_{3}a_{4}} - \frac{z_{12}z_{34}}{z_{13}z_{24}} f^{a_{1}a_{3}x} f^{xa_{2}a_{4}} \right]$$

$$\int_{\hat{x}_{+}^{2}=+1} d^{3}x_{+} \left(\prod_{j=1}^{2} \Phi_{\Delta_{j}+1,-}(\hat{x}_{+}, q_{j}) \right) \left(\prod_{j=3}^{4} \Phi_{\Delta_{j}-1,+}(\hat{x}_{+}, q_{j}) \right)$$

$$\downarrow \text{collinear factorisation}$$

$$\mathcal{O}_{\Delta_{+}}^{+,a_{3}}(z_{3}, \bar{z}_{3}) \mathcal{O}_{\Delta_{+}}^{+,a_{4}}(z_{4}, \bar{z}_{4})$$

$$= -\frac{g_{YM}}{2} \frac{1}{z_{34}} B(\Delta_3 - 1, \Delta_4 - 1) i f^{a_3 a_4 x} \mathcal{O}_{\Delta_3 + \Delta_4 - 1}^{+, x}(z_4, \bar{z}_4)$$

$$+ \frac{g_{YM}}{2} \left[B(\Delta_3, \Delta_4 - 1) (-i f^{x a_3 a_4}) L_{-1} \mathcal{O}_{\Delta_3 + \Delta_4 - 1}^{+, x}(z_4, \bar{z}_4) + B(\Delta_3 - 1, \Delta_4 - 1) \right]$$

$$\times \left[\frac{\Delta_4 - 1}{\Delta_3 + \Delta_4 - 2} R_{-1,0}^{1,a_3} \mathcal{O}_{\Delta_3 + \Delta_4 - 1}^{+,a_4} (z_4, \bar{z}_4) \right] + \frac{\Delta_3 - 1}{\Delta_3 + \Delta_4 - 2} R_{-1,0}^{1,a_4} \mathcal{O}_{\Delta_3 + \Delta_4 - 1}^{+,a_3} (z_4, \bar{z}_4) \right] + \cdots$$

- igcup Take sub-leading soft limit $(\Delta o 0)$ in (23)
- O check consistency with the sub-leading soft gluon theorem
- Obtain the $\mathcal{O}(1)$ null state

$$if^{abc}L_{-1}\mathcal{O}_{\Delta-1,+}^{+,c}(z,\bar{z}) + R_{-\frac{1}{2},\frac{1}{2}}^{0,a}\mathcal{O}_{\Delta,+}^{+,b}(z,\bar{z}) - R_{-1,0}^{1,b}\mathcal{O}_{\Delta-1,+}^{+,a}(z,\bar{z}) + (\Delta-1)R_{-1,0}^{1,a}\mathcal{O}_{\Delta-1,+}^{+,b}(z,\bar{z}) = 0$$

$$(24)$$

- It is the same null state obtained for the celestial MHV amplitude
- Decoupling of these null states will give the same BG equations for leaf amplitudes.
 Banerjee, Ghosh 2021

OUTLOOK

- What happens to our conclusion without the constraints coming from bulk scale invariance?
- What about the singularity structure of the other bulk scattering processes?

Thank you for your attention !!