Regresión Logistica Multiple

Jorge Mario Estrada Alvarez PhD. MSc. FETP

Conjunto de datos: stroke.rds

- Contiene **226 observaciones** y **7 variables**:

Variable	Descripción
status	Estado del paciente durante la hospitalización (0 vivo / 1 fallecido)
gcs	Escala de Glasgow al ingreso (3–15)
stroke_type	Tipo de ictus (0 = isquémico; 1 = hemorrágico)
sex	Sexo biológico (1 femenino / 0masculino)
dm	Historia de diabetes (sí / no)
sbp	Presión arterial sistólica (mmHg)
age	Edad al ingreso (años)

Necesidad: Bivariado vs Multivariado

Characteristic	0 N = 171 ¹	1 N = 55 ¹	p-value ²
sex	81 (47%)	16 (29%)	0.017
Stroke Haemorrhagic	39 (23%)	38 (69%)	<0.001

¹ n (%)

² Pearson's Chi-squared test

Regresión Logistica Multiple

- La **Regresión Logistica Mutiple** modela la relación lineal entre:
 - Una variable dependiente categorica (ej. Status).
 - y dos o mas predictores (numéricos y categóricos).

Expresión matemática

$$E(Y \mid X_1, X_2, ..., X_i) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_i X_i$$

E(Y) = P(Y) Recordar que Y = [0, 1] si se asume asi los valores de Y estimados por el modelo lineal simple siempre los valores estimados de Y se salen de 0 o de 1.

Modelo, enlace y probabilidades

Odds =
$$\frac{P(Y/X_i)}{1 - P(Y/X_i)}$$

el logaritmo de Odds Log(odds) si es lineal en terminos de una covariable, y se llama el logit.

$$\log(\frac{P(Y/X_i)}{1 - P(Y/X_i)}) = \beta_0 + \beta_1 X + \dots + \beta_i X_i$$

$$P(Y/X_i) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_i X_i)}}$$

Estimación de los parametros del modelo

Estimación por Máxima Verosimilitud

• La idea central es elegir los parámetros $\beta_0,\beta_1,\dots\beta_i$ que **maximizan** la probabilidad de observar los datos.

$$L(P(\beta_0, \beta_1, \dots, \beta_i/Y, X_i)) = \sum_{i=1}^n \left[y_i(\beta_0 + \beta_1 X_1 + \dots \beta_i) - \log(1 + e^{\beta_0 + \beta_1 X_1 + \dots \beta_i}) \right]$$

Modelo: Probabilidad de muerte en funcion del sexo y tipo de Stroke

• Asumimos que la relación lineal en el logit(P) es decir $log(\frac{P}{1-P})$

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8362480 0.1917084 -4.362084 1.288295e-05
sex -0.7856124 0.3340625 -2.351693 1.868821e-02
```

Ahora ajustemos un nuevo modelo que incluya el efecto que pueda tener el tipo de stroke, el modelo seria:

$$log(odds) = \beta_0 + \beta_1 sex + \beta_2 strokeType$$

Modelo: Probabilidad de muerte en funcion del sexo y tipo de Stroke

¿El modelo es adecuado?

Prueba chi-cuadrado

minimizar la perdida de informacion Deviance residual comparada con la nula.

```
1 residuos_log_1 <- modelo_mult$null.deviance - modelo_mult$deviance
2 #Grados de Libertad.
3 grados_log_1 <- modelo_mult$df.null - modelo_mult$df.residual
4 #p-value.
5 pchisq(residuos_log_1, grados_log_1,lower.tail = F)</pre>
```

[1] 4.940062e-10

Estimación de coeficientes

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.7565411 0.2837494 -6.190467 5.998629e-10
sex -0.7611076 0.3643847 -2.088748 3.673045e-02
stroke_type 2.0141947 0.3483070 5.782815 7.346092e-09
```

Recordar la H_o : $\beta_i = 0$

Interpretación de Coeficientes

• β_0 es el valor medio que asumen la variable dependiente (log(odds)) cuando todas las covariables toman valor cero (Cuidado No aplica siempre o se refiere a una subpoblacion que no es de interes o de proposito)

$$log(odds) = -1.75 - 0.7611sex + 2.01strokeType$$

En nuestro caso, las covariables cero son: Hombre(0), isquemico(0), entonces

$$log(odds) = -1.75$$

$$e^{\log(\text{odds})} = e^{-1.75}$$

odds =
$$0.173$$

Conviertanlo en Probabilidad.

Interpretación de Coeficientes

• β_1 : para obtener interpretación de este coeficiente realizamos la siguiente comparación de resultados del modelo cuando sexo asume ser constante y la variable stroke_type es hemorragico(1) e isquemico(0)

$$\begin{split} e^{log(odds_{hem})} &= odds_{hem} = e^{\beta_0 + \beta_1 sex + \beta_2(1)} \\ e^{log(odds_{isq})} &= odds_{isq} = e^{\beta_0 + \beta_1 sex + \beta_2(0)} \\ \frac{odds_{hem}}{odds_{isq}} &= \frac{e^{\beta_0 + \beta_1 sex + \beta_2(1)}}{e^{\beta_0 + \beta_1 sex + \beta_2(0)}} = e^{\beta_0 + \beta_1 sex + \beta_2(1)} \, e^{-\beta_0 - \beta_1 sex - \beta_2(0)} \, = e^{\beta_2} \end{split}$$

¿Se concluye entonces qué?

Predicciones con el modelo para probabilidades

$$P(Y = 1/X_i) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 + \dots + \beta_i)}}$$

$$P(Y = 1/\text{sex}, \text{stroketype}) = \frac{1}{1 + e^{-(-1.75 - 0.76\text{sex} + + 2.01\text{stroketype})}}$$

Probabilidad de fallecer siendo mujer y stroke hemorragico

Probabilidad de fallecer siendo hombre y stroke hemorragico

```
1 predict(modelo_mult,newdata = data.frame(sex = 0, stroke_type = 1), type = "response")

1
0.5640594
```

Inferencia: Coeficientes y Predicciones

1 summary(modelo_mult)\$coefficients %>% kable()

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.7565411	0.2837494	-6.190467	0.0000000	
sex	-0.7611076	0.3643847	-2.088748	0.0367305	
stroke_type	2.0141947	0.3483070	5.782815	0.0000000	
1 exp(coefficients(modelo mult))					

1 exp(coefficients(modelo_mult))

```
(Intercept) sex stroke_type 0.1726410 0.4671487 7.4946893
```

1 exp(confint(modelo_mult)) %>% kable()

	2.5 %	97.5 %
(Intercept)	0.0956288	0.2926718
sex	0:2238593	0.9409725

	2.5 %	97.5 %
stroke_type	3.8476842	15.1571568

Diagnóstico: Supuestos

Determinar si el modelo representa adecuadamente a los datos.

- L de Linealidad: Los valores de (Y) se pueden expresar como una función lineal de la variable (X).
- I de Independencia:Los valores de (Y) (o los errores/residuos) son independientes entre sí.

Diagnostico con graficos (Verificación de supuestos)

Incluyendo mas variables (Ejemplo: numerica)

```
1 modelo_new <- glm(formula = status ~ sex + stroke_type + gcs, st
2 summary(modelo_new)$coefficients</pre>
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.3012969 0.71127424 3.235457 1.214484e-03
sex -0.5124684 0.42794355 -1.197514 2.311062e-01
stroke_type 1.1189027 0.41587007 2.690510 7.134284e-03
gcs -0.3286912 0.05456293 -6.024076 1.700784e-09
```

Debemos evaluar si la inclusión de la variable glasglow aporta o no al modelo, **No Olvidar** principio de parsimonia en modelamiento.

Bioestadistica III

19

Pruebas para comparación entre modelos

Prueba χ^2

compara las diferencias entre las deviance entre los modelos, la cual tiene una distribución χ^2 .

```
H_o : model_1 = model_2
```

```
1 anova(modelo_mult, modelo_new)
```

AIC

1 AIC(modelo_mult, modelo_new)

```
modelo_mult 3 213.9693
modelo_new 4 170.7152
```

Prueba de bondad de ajuste o test de Hosmer-Lemeshow

- Cuando llegamos a este punto del análisis, estamos presuponiendo que el modelo contiene todas las variables importantes.
- Ahora el siguiente paso es saber lo eficiente que es es modelo a la hora de predecir la variable respuesta. A esto se le llama bondad de ajuste.
- Diremos que un modelo ajusta bien si la diferencia entre los valores observados y los ajustados, es pequeña.

Test de Hosmer y Lemeshow

 H_0 : el modelo se ajusta bien a los datos.

 H_1 : el modelo no se ajusta bien (mal ajuste).

- ightharpoonup Si p > 0.05, no se rechaza H_0 , lo que sugiere un buen ajuste.
- ightharpoonup Si p < 0.05, se rechaza H_o , indicando un posible mal ajuste.

```
1 hoslem.test(stroke$status, fitted(modelo_new), g = 10)
```

```
Hosmer and Lemeshow goodness of fit (GOF) test

data: stroke$status, fitted(modelo_new)
X-squared = 5.911, df = 5, p-value = 0.315
```

Confusión e Interacción

Confusión

• Recordando: Es un efecto sesgado o no real entre una exposición y un desenlace, que ocurre como consecuencia de una variable o unas variables confusoras.

$$\log(\text{Odds}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Para la exposición principal $X_1 = 1$, veamos que sucede al estar X_2 en el modelo:

$$\log(\text{Odds}) = \beta_0 + \beta_1 + \beta_2 X_2$$

ullet Para un valor constante de X_2 ejemplo 1

$$\log(\text{Odds}) = \beta_0 + \beta_1 + \beta_2$$

• Para un valor constante de X_2 ejemplo 0

$$\log(\text{Odds}) = \beta_0 + \beta_1$$

Graficamente (Pendientes iguales)

Interacción

Definición: El efecto de una exposición sobre el desenlace varia en función de otra covariable.
 (heterogeneidad de efectos o modificación de efectos).

$$\log \left[\frac{P(\widehat{\text{status}} = 1)}{1 - P(\widehat{\text{status}} = 1)} \right] = 2.3 - 0.51(\widehat{\text{sex}}) + 1.12(\widehat{\text{stroke_type}}) - 0.33(\widehat{\text{gcs}})$$

Con interacción

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.7422663 0.74532432 3.6792926 2.338818e-04
sex -1.9581832 0.84758859 -2.3102992 2.087160e-02
stroke_type 0.4192474 0.50167231 0.8356996 4.033239e-01
gcs -0.3391453 0.05641262 -6.0118702 1.833952e-09
sex:stroke_type 2.4216873 1.03907813 2.3306114 1.977386e-02
```

$$\log \left[\frac{P(\widehat{\text{status}} = 1)}{1 - P(\widehat{\text{status}} = 1)} \right] = 2.74 - 1.96(\widehat{\text{sex}}) + 0.42(\widehat{\text{stroke_type}}) - 0.34(\widehat{\text{gcs}}) + 2.42(\widehat{\text{sex}} \times \widehat{\text{stroke_type}})$$

$$\log \left[\frac{P(\text{status} = 1)}{1 - P(\text{status} = 1)} \right] = \alpha + \beta_1(\text{sex}) + \beta_2(\text{stroke_type}) + \beta_3(\text{gcs}) + \beta_4(\text{sex} \times \text{stroke_type})$$

$$\log \left[\frac{P(\widehat{\text{status}} = 1)}{1 - P(\widehat{\text{status}} = 1)} \right] = 2.74 - 1.96(\widehat{\text{sex}}) + 0.42(\widehat{\text{stroke_type}}) - 0.34(\widehat{\text{gcs}}) + 2.42(\widehat{\text{sex}} \times \widehat{\text{stroke_type}})$$

Estimemos efectos ajustados y su heterogeneidad

sex	stroke_type	gcs	Efecto	Odds	OR	Coeficiente
1	0	1+	-1.958	-0.4068	0.14	$\beta_0 + \beta_1 \sec x - \beta_3 \gcd$
1	1	1+	0.464	0.0362	1.59	$\beta_0 + (\beta_1 + \beta_4)$ sex + β_2 stroketype + β_3 gcs

```
sex stroke_type gcs Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % 1 0 3 -1.958 0.848 -2.31 0.0209 5.6 -3.619 -0.297 1 3 0.464 0.586 0.79 0.4293 1.2 -0.686 1.613
```

Term: sex
Type: link

Comparison: 1 - 0

Graficamente: Para un valor medio de GCS

Estimando RR, OR, DR desde la regresión logistica

$$P(\text{status} = 1/\text{sex}, \text{stroke}_{\text{t}} \text{ype}, \text{gcs}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \text{sex} + \beta_2 \text{stroke}_{\text{t}} \text{ype} + \beta_3 \text{gcs} + \beta_4 \text{sexstroke}_{\text{t}})}$$

Propensity Score

Problema central

- Ensayos Clínicos: Evidencia mas alta en cuanto a evaluar el efecto de un tratamiento.
- Asignación de tratamientos equiparable, incluso para variables no medidas.
- Probabilidad de asignación de tratamiento es: 50%.

Asgnación aleatoria

Asignación no aleatoria

Una solución: Estimando la probabilidad de asignación de exposición/tratamiento

Journal of the American Heart Association

ORIGINAL RESEARCH

Changing or Retaining Direct Oral Anticoagulant After Ischemic Stroke Despite Direct Oral Anticoagulant Treatment

Shin-Yi Lin ¹ MS*; Yun-Tsz Liao, MPH*; Sung-Chun Tang ¹ MD, PhD; Ching-Ching Claire Lin ¹ PhD; Chi-Chuan Wang ¹ PhD

BACKGROUND: The optimal antithrombotic strategies for patients with atrial fibrillation who experience ischemic stroke (IS) despite direct oral anticoagulant (DOAC) therapy remain inconclusive. This study compared outcomes for patients with DOAC treatment failure who changed or retained their prestroke DOAC.

METHODS AND RESULTS: This retrospective cohort study analyzed data from the National Health Insurance Research Database from 2012 to 2020. Patients with atrial fibrillation who experienced IS during DOAC therapy were assigned to either (f) the DOAC-change group: changing prestroke DOAC or (2) the DOAC-retain group: retaining prestroke DOAC. The primary outcome was a composite of recurrent IS and transient ischemic attack. The secondary outcomes included intracranial hemorrhage, major bleeding, systemic thromboembolism, and all-cause death. Propensity score–based inverse probability of treatment weighting was applied to balance the baseline characteristics between the DOAC-change and DOAC-retain groups. The Cox proportional hazards model compared the risk of outcomes between the 2 groups. In total, 1979 patients were enrolled (609 DOAC-change patients and 1370 DOAC-retain patients). The incidence rates of recurrent IS or transient ischemic attack were 7.20 and 6.56 per 100 person-years in the DOAC-change and DOAC-retain groups, respectively (hazard ratio [HR], 1.07 [95% CI, 0.87–1.30]). A nonsignificantly higher incidence rate of intracranial hemorrhage was observed in the DOAC-retain group (0.75 versus 0.53 per 100-person-years; HR, 1.49 [95% CI, 0.78–2.83]). The systemic thromboembolism, major bleeding, and death rates were comparable between the DOAC-change and DOAC-retain groups.

CONCLUSIONS: Changing prestroke DOAC does not reduce the risk of recurrent cerebral ischemia in patients with atrial fibrillation who develop IS during DOAC therapy. However, future studies should continue to observe the potential trends of increased intracranial hemorrhage risk.

Key Words: atrial fibrillation ■ changing DOAC ■ direct oral anticoagulant ■ ischemic stroke

	Before IPTW			
Characteristics	Change prestroke DOAC (N=609)	Retain prestroke DOAC (N=1370)	SMD	
Age (years), mean (SD)	77.15 (9.47)	77.47 (9.26)		
≥65	558 (91.63%)	1,252 (91.39%)	0.009	
Sex, male	314 (51.56%)	726 (52.99%)	0.029	
CHA ₂ DS ₂ -VASc score, mean (SD)	3.86 (1.44)	3.85 (1.46)		
≥3	514 (84.40%)	1,130 (82.48%)	0.052	
HAS-BLED score, mean (SD)	2.64 (1.07)	2.66 (1.03)		
≥3	331 (54.35%)	763 (55.69%)	0.027	
Stroke severity index, mean (SD)	10.76 (6.42)	8.23 (5.61)		
≤5	222 (36.45%)	733 (53.50%)	0.348	
>5 to ≤12	119 (19.54%)	287 (20.95%)	0.035	
>12	268 (44.01%)	350 (25.55%)	0.395	
Comorbidities				
Congestive heart failure	190 (31.20%)	419 (30.58%)	0.013	
Coronary artery disease	171 (28.08%)	391 (28.54)	0.010	
Ischemic stroke	98 (16.09%)	243 (17.74%)	0.044	
Hypertension	409 (67.16%)	908 (66.28%)	0.019	
Diabetes mellitus	192 (31.53%)	428 (31.24%)	0.006	
Renal disease	55 (9.03%)	125 (9.12%)	0.003	
Venous thromboembolism	13 (2.13%)	19 (1.39%)	0.057	
Intracranial hemorrhage	7 (1.15%)	17 (1.24%)	0.008	
Gastrointestinal bleeding	35 (5.75%)	78 (5.69%)	0.002	
Baseline medication history				
Agents acting on the renin-angiotensin system	397 (65.19%)	882 (64.38%)	0.017	
Antiarrhythmics	187 (30.71%)	464 (33.87%)	0.068	
Beta blockers	408 (67.00%)	845 (61.68%)	0.111	
Calcium channel blockers	280 (45.98%)	630 (45.99%)	0.000	
Digitalis glycosides	119 (19.54%)	258 (18.83%)	0.018	
Antiepileptic drugs	18 (2.96%)	56 (4.09%)	0.061	
HMG-CoA reductase inhibitors	214 (35.14%)	471 (34.38%)	0.016	
NSAIDs	319 (52.38%)	716 (52.26%)	0.002	
Proton pump inhibitors	80 (13.14%)	176 (12.85%)	0.009	

Propensity Score: Probabilidad de tratamiento asignado

• Un modelo de regresión logistica ayudaria:

$$P(T = 1/X_1, X_2, X_3, ..., X_i) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_i X_i$$

donde, X_i son Confusores

Formas de usarlo:

- 1. Parear (Matching) por propensity score los sujetos de la muestra.
- 2. Estratificar por rangos (percentiles) usando propensity score.
- 3. Crear un modelo para desenlace colocando como covariable el propensity score
- 4. Aplicar re-ponderación muestral IPTW (Inverse Probability Treatment Weight)

38

Pareo (Matching) por propensity score

Patient Characteristics	Received (RHC) (n=2184)	Did Not Receive RHC (n= 3551)
Percent over 80 Years of Age	8%	14%
Mean SBP	68	85
Mean Heart Rate	119	112
Mean Creatinine	221	168
Mean of Apache Score	61	51
(Measure of Disease Severity)		
Mean Albumin	29	32
Mean of Estimate for 2-	56	61
Month Survival from		
Prediction Rule		

Figure: Directed Acyclic Graph (DAG) displaying potential for confounding in the study by Connors et al.

Ventaja: calculo de medidas de asociacion o efecto no cambian

Desventaja: Grado de tolerancia en el match por el propensity

Estratificación por Propensity score

			Falleció	ó Sobrevivió	Total	
		BPMEDS1 = 1	91	48	139	
		BPMEDS1 = 0	627	606	1233	
Variable	Medicad	os No medica	dos	Rango de PS	BPMEDS=1	BPMEDS=0
Edad media	56.3	53.6		0.00-0.05	8.6%	19.0%
Colesterol	257	246		0.05-0.10	30.9%	46.6%
SBP	165	154		0.10-0.15	26.6%	21.6%
Diabetes (%)	6	4		0.15-0.20	14.4%	6.6%
CHD (%)	14	7		0.20-0.25	6.5%	2.6%
Hombres (%)	30	47		0.25-0.30	5.8%	2.3%
			_	>0.30	7.2%	1.4%

No es sorprendente que el 33,81 % de los participantes que toman medicación para la hipertensión pertenezcan a los últimos cuatro estratos, en comparación con solo el 12,90 % de los participantes que no toman medicación.

Variable	Crudo: Meds	Crudo: No Meds	PS- ajustado: Meds	PS- ajustado: No Meds
Edad	56.3	53.6	53.9	53.8
Colesterol	257	246	245.8	247.4
SBP	165	154	153.9	155.4
Diabetes (%)	6	4	4	5
CHD (%)	14	7	9	8

La medida de efecto es calculada para cada estrato y la medida total es un promedio ponderado. (OR y RR por el metodo de Mantel-Haenszel)

Recordar: Metodo de Mantel-Haenszel

Para g tabla de cada estrato:

	Falleció	Sobrevivió	Total
BPMEDS1 = 1	a	b	a + b
BPMEDS1 = 0	С	d	c + d
Total	a + c	b + d	n

$$OR_{MH} = \frac{\sum_{i=1,g} (a_i d_i / T_i)}{\sum_{i=1,g} (b_i c_i / T_i)}$$

Donde T_i es el numero total de observaciones en cada tabla.

$$OR_{c} = 1.83$$

$$OR_a = 1.37$$

Incluir como covariable de ajuste el propensity en el modelo:

- Ventajas: Reduce la cantidad de parámetros en el modelo.
- Desventaja: No permite evaluar heterogeneidad de efectos (incluir varibales para intereacción).

Weighting IPTW

• Se crea un ponderador que corresponde al inverso de la probabilidad de tratamiento asigando, similar a encuestas con muestreo complejo.

Para grupo tratado: $\frac{1}{PS}$

Para grupo no tratado: $\frac{1}{1-PS}$

PS = Propensity Score

Resultado: Expansión de la muestra con grupos asigandos creando una pseudo-población.

veamos como ...

Demostrando como actua IPTW

Queremos evaluar el efecto de un tratamiento (T=1) sobre un desenlace, sabiendo que los grupos son desiguales.

ID	Tratamiento (T)	Edad (X)	PS = P(T=1)
1	1	70	0.80
2	1	60	0.40
3	0	55	0.40
4	0	40	0.30
5	0	30	0.20
6	0	25	0.10

Solo 2 tratados y 3 no tratados → grupos desbalanceados.

Cálculo de pesos IPTW

$$w_i = \begin{cases} 1/PS_i, & \text{si } T_i = 1 \\ 1/(1 - PS_i), & \text{si } T_i = 0 \end{cases}$$

ID	Т	PS	Fórmula peso	Peso (w _i)	Eventos
1	А	0.80	1 / 0.70	1.42	1
2	А	0.60	1/0.40	2.5	0
3	В	0.40	1 / (1-0.40)	1.67	1
4	В	0.30	1 / (1-0.30)	1.43	1
5	В	0.20	1 / (1-0.20)	1.25	0

T = A: 1/2 = 0.5

T = B: 2/3 = 0.66

Muestra expandida

Grupo	n real	Σ w (pesos)	Eventos
Tratados	2	1.42 + 2.25 = 3.65	1.42
No	4	1.67 + 1.43 + 1.25 = 4.35	1.67+1.43 = 3.1
tratados			

$$T = A: 1.42/3.65 = 0.39$$

$$T = B: 3.1/4.35 = 0.71$$

Gracias