Geproci sets: a new perspective on classification in algebraic geometry.

Brian Harbourne

Cather Professor of Mathematics Fellow of the AMS Department of Mathematics University of Nebraska-Lincoln (UNL)

Conference on: Algebraic Geometry, Computational Commutative Algebra and their effectiveness applications, 20-22 June, 2024 at Galatasaray University, Istanbul, Turkey

Scientific Committee: Antonio Campillo-López, Mustapha Lahyane, Israel Moreno-Mejia, Ali Sinan Sertöz, Meral Tosun

Organizing Committee: Gloria Guadalupe Andablo-Reyes, Serap Gürer, Oğuzhan Kaya, Mustapha Lahyane, Francesco Navarra, Carlos Osvaldo Osuna-Castro

June 20, 2024

Slides available eventually at my website (green text is clickable): https://unlblh.github.io/BrianHarbourne/

0/16

Main references (arXiv), reverse chronologically

University of Nebraka 2024 PhD thesis: Allison Ganger

2312.04644: Pietro De Poi, Giovanna Ilardi and POLITUS

2308.00761: POLITUS

2307.04857: Jake Kettinger

2303.16263: POLITUS

2209.04820: POLITUS

2107.08107: Paulina Fras and Maciej Zięba

1904.02047: Luca Chiantini and Juan Migliore

POLITUS: Luca Chiantini, Lucja Farnik, Giuseppe Favacchio, Brian Harbourne, Juan Migliore, Tomasz Szemberg, Justyna Szpond

1/16: 42.:

Tomography: an inverse scattering example

Apply Inverse Scattering perspective in Algebraic Geometry:

GePro- \mathcal{P} : Pick a property \mathcal{P} and classify finite point sets $Z \subset \mathbb{P}^n$ whose Ge neral Pro jections \overline{Z} to a hyperplane H satisfy $\overline{\mathcal{P}}$.

Example: Geproci (i.e., \mathcal{P} means: \overline{Z} is a complete intersection).

2/16: 39.4

Trivial examples of geproci

If Z is contained in a hyperplane and already a complete intersection, then it is geproci.

If $Z \subset \mathbb{P}^2$, then Z is geproci.

Question: What nontrivial examples of geproci $Z \subset \mathbb{P}^n$ are there (i.e., nondegenerate with n > 2)?

We know examples only for n=3, in which case we say Z is (a,b)-geproci if \overline{Z} is an (a,b) complete intersection with $a \leq b$.

3/16: 36.4

There are 3 kinds of nontrivial geproci in \mathbb{P}^3

Grids: An (a, b)-grid Z has $2 \le a \le b$. It is $Z = A \cap B$ where A is a space curve consisting of a skew black lines and B is a space curve consisting of b skew orange lines and each black line intersects each orange line in exactly 1 point. Note that $\overline{Z} = \overline{A} \cap \overline{B}$. (In the figure a = b = 3.)

Half grids: Here Z is (a,b)-geproci, not a grid and consists of a points on each of b skew lines (i.e., we have B) or it consists of b points on each of a skew lines (i.e., we have A), but we don't have both A and B. I.e., $\overline{Z} = C \cap D$ is a complete intersection of curves $C,D \subset H$ but only one of the curves is the image of a space curve containing Z and consisting of lines.

Nondegenerate nongrid non-half grids: more on these later

4/16 : 33.8

Grids are well understood

Fact: For an (a, b)-grid with $3 \le a \le b$, the grid lines come from the rulings on a smooth quadric.

Fact: A (2, b)-grid consists of $b \ge 2$ points on each of two skew lines (but the grid lines need not all lie on a smooth quadric).

5/16 : 30.9

Half Grids are partly understood

Theorem (POLITUS): For every $n \ge 3$, there is an (n, n+1)-geproci half grid of n points on each of n+1 skew lines (which POLITUS calls the "standard construction"). For n=3, this is the only half grid and comes from the D_4 root system.

Theorem (De Poi, Ilardi, POLITUS): All complex (4, r)-geproci half grids on r skew lines with transversals have $r \le 6$ and arise in only two explicitly described ways, related to the D_4 and F_4 root systems.

Theorem (Kettinger): For any finite field F, let |F|=q. Then $Z=\mathbb{P}_F^3\subset\mathbb{P}_{\overline{F}}^3$ is a $(q+1,q^2+1)$ -geproci half grid on q^2+1 skew lines (which can be taken to come from a kind of Hopf fibration). E.g., if q=3, Z is a (4,10)-geproci half grid on 10 skew lines.

Theorem (Ganger): The half grid skew lines of the standard construction also can (up to projective equivalence) be taken to come from the Hopf fibration.

Combinatorics of skew lines: groupoids

Open Question: When are finitely many skew lines the half grid lines of a half grid?

Groupoid: A category \mathcal{G} whose arrows all are invertible.

Example: Skew lines $\mathcal{L} = \{L_1, \dots, L_r\}, r \geq 3$, give a groupoid $\mathcal{G}_{\mathcal{L}}$.

The lines L_i are the Objects. Define arrows $\phi_{ijk}: L_i \xrightarrow{L_k} L_j$:

Then $\operatorname{Hom}(L_i, L_j) = \operatorname{all}$ possible compositions $\phi_{j_s j k_{s+1}} \cdots \phi_{j_1 j_2 k_2} \phi_{i j_1 k_1}$.

Note: $Hom(L_i, L_i)$ is a group, the group of the groupoid.

Open Problem: When is the group finite?

7/16 : 25.3

Groupoid orbits, geproci half grids and the Hopf fibration

The groupoid $\mathcal{G}_{\mathcal{L}}$ acts on points of the skew lines $\mathcal{L} = \{L_1, \dots, L_r\}$, so we can talk about groupoid orbits.

Theorem (POLITUS): A geproci half grid is a union of groupoid orbits on the half grid lines.

Examples (Ganger's thesis):

- (1) If F is a finite field, then the points $Z = \mathbb{P}_F^3$ form a single groupoid orbit on the skew lines coming from the Hopf fibration.
- (2) Up to projective equivalence, the half grid lines of the standard construction can be chosen to be fibers of the Hopf fibration and then the half grid points form a single groupoid orbit on these lines.

8/16 : 22.

The Hopf fibration

The original Hopf fibration comes from the field extension $\mathbb{R} \subset \mathbb{C}$:

$$S^3 \to \mathbb{P}^3_{\mathbb{R}} = \mathbb{P}(\mathbb{C} \oplus \mathbb{C})_{\mathbb{R}} \to \mathbb{P}(\mathbb{C} \oplus \mathbb{C})_{\mathbb{C}} = \mathbb{P}^1_{\mathbb{C}} = S^2.$$

More generally: let $F \subset K$ be any degree 2 field extension. Then:

- K is a 1 dimensional K and a 2 dimensional F vector space;
- $K \oplus K$ is a 2 dimensional K vector space;
- $K \oplus K$ is a 4 dimensional F vector space;

and we get a canonical "Hopf fibration" map

$$\mathbb{P}^3_F = \mathbb{P}(K \oplus K)_F o \mathbb{P}(K \oplus K)_K = \mathbb{P}^1_K$$

where the fibers are collinear sets of points.

Theorem (Ganger): When $F \subset K$ is a degree 2 extension of finite fields, the group of the groupoid on the fibers of the Hopf fibration is K^*/F^* , hence cyclic of order $\frac{|F|^2-1}{|F|-1}=|F|+1$.

9/16 9/16: 19.

More combinatorics

Consider \mathbb{P}_F^3 over a finite field F. In combinatorics, skew lines L_1, \ldots, L_r in \mathbb{P}_F^3 with each L_i defined over F is called a *spread*.

If every point of \mathbb{P}^3_F is in some line it is a *full* spread, otherwise a partial spread.

A spread L_1, \ldots, L_r is maximal if every F-line L meets some line L_i .

Problems partially addressed by combinatorists:

Count the number of full spreads up to projective equivalence. (The Hopf fibration always gives 1; usually there are others. Hence $Z=\mathbb{P}^3_F$ is usually a half grid in more than one way.)

More generally, count the number of maximal spreads up to projective equivalence.

Problems not yet addressed by combinatorists:

Study the groupoid for maximal spreads. For example, when is the group nonabelian?

10/16 : 16.9

Nondegenerate nongrid non-half grid geproci sets

Very few examples are known in characteristic 0:

- (1) The H_4 root system gives a (5, 12)-geproci (Fras and Zieba).
- (2) A (5,8)-geproci set (arxiv:2209.04820).
- (3) A (10, 12)-geproci set (arxiv:2209.04820).

Kettinger gives more examples in characteristic p > 0 using maximal partial spreads.

Open Problem: Are there more examples in characteristic 0?

11/16: 14.

The $Z = Z_{D_4}$ half grid

This Z is in the intersection of combinatorics, representation theory and algebraic geometry:

It's the smallest complex half grid, given by the standard construction for n=3 (and hence by the groupoid action on fibers coming from the Hopf fibration).

 \overline{Z} is the complete intersection of 4 lines with an irreducible cubic:

12/16 : 11.3

Visualizing Z_{D_4}

The D_4 root system consists of the 24 vectors obtained by permuting $(\pm 1, \pm 1, 0, 0) \in \mathbb{R}^4$.

These give the 12 points of $Z_{D_4} \subset \mathbb{P}^3_{\mathbb{R}}$ (i.e., the permutations of $[\pm 1:\pm 1:0:0]$, but note that [1:1:0:0]=[-1:-1:0:0]).

Up to change of coordinates these 12 points can be visualized as a cube in 3 point perspective:

13/16: 8.4

Why Z_{D_4} is geproci

The quartic comes from lines through collinear points:

The cubic is one in a pencil of cubics:

14/16 : 5.6

Some open problems

A (2,2)-grid is a nontrivial geproci set of 4 linearly general points:

No other nontrivial geproci set that we know of is linearly general.

Open problem: Find a nontrivial linearly general geproci set or prove none exist.

Example: Say \mathcal{P} means " \overline{Z} is Gorenstein". Then a set Z of n+1 general points in \mathbb{P}^n is gepro- \mathcal{P} since the image \overline{Z} is a set of n+1 general points in a hyperplane, which is Gorenstein.

Open Problem: Classify gepro-Gorenstein sets *Z*.

Every geproci set is also gepro-Gorenstein but not conversely.

15/16: 2.8

Thanks for your attention!

FINIS

16/16 : 0.0