5.4 Theorems about Definite Integrals

1. The function f(x) is graphed below. Note that it is made of two half circles.

- (a) Find $\int_{0}^{6} f(x) dx$.
- (b) How does this illustrate the property $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$?

2. Which of the following integrals are positive? Why?

(a)
$$\int_{2}^{0} f(x) dx$$

(b)
$$\int_{5}^{10} f(x) dx$$

(c)
$$\int_{-10}^{-5} f(x) dx$$

$$(d) \int_{-5}^{-10} f(x) dx$$

3. Given that $\int_0^{1.25} \cos(x^2) dx = 0.98$ and $\int_0^1 \cos(x^2) dx = 0.90$. Find the following values.

(a) $\int_{1}^{1.25} \cos(x^2) dx$

(b)
$$\int_{-1}^{1} \cos\left(x^2\right) dx$$

(c)
$$\int_{1.25}^{-1} \cos(x^2) dx$$

4. The functions $f(x) = x^2$ and g(x) = x + 3 are graphed below.

- (a) Write and integral that represents the area between $f(x) = x^2$ and g(x) = x + 3.
- (b) Use FTC to compute the integral.

5. Find the average value of f(x) on the interval $0 \le x \le 4$ when you know that

