

Shift in human behaviour & energy

Past

People were predictable

Present & Future

People behave stochastically

Story so far

Weather forecasting

Historical data

Behavior-ignored forecasting

- -usually accurate
- -not flexible energy grid

EnergAlser

Weather forecasting

Historical data

Al model for Energy forecasting

Behavior-aware forecasting

- -accuracy
- -resource managements
- -flexibility

Our Solution

Our Product

Forecasting

- Peak loading
- Day/week-ahead
- Districts wise demand

Value proposition

- Resilient grid
- Reduced energy loss
- Integration of renewables and DERs (prosumers)

Contribute to net-zero and sustainable energy

Windows of opportunity

Cost benefit

Money equivalent of increased accuracy of forecast

~\$100-500 per week per substation (~10000 substations in a major city)

Flexibility management

- Grid operators
- Utilities
- Facility management
- Prosumers

Efficient interaction with the demand side
Trigger energy production (renewables)

Trends in Market

People behaviour data

Smart meter data

EnergAlser team

Team leader
Sergei Bykov
Astrophysicist

Armin Nabizadeh Astrophysicist

Elvira Khromykh
BIM expert

Dannie ShengData Scientist

Deepti YadavData Scientist

Patrick Fu
Urban Data Scientist

DEMO By Patrick

Backup

Market Status & opportunities

EAI

Key Metrics: money equivalent of increased accuracy of our solutions (forecasts).

MONEY PROFIT(compared with old models)

\$769 (y/home)*300(homes)*0.1(error reduction)~

~\$450 per week per substation

\$280 mil per city per year (London)

WINDOW OF OPPORTUNITY FOR FLEXIBILITY MANAGEMENT

- Grid operators
- Utilities
- Facility management
- Prosumers

Efficient interaction with the demand side
Trigger energy production (e.g. from renewables)

FINANCIAL INVESTMENTS

Data: \$20k/year

Research and development:

~3-4 person years

Software: ~2-3 person years

Business model

Key Partners	Key Activities
Grid operators	Real-time data collection
Prosumers (Passive partners) Data aggregators	Demand forecasting Predictions to operators
	Key Resources (cloud, servers etc) already available with siemens
Cost Structure	
Data: \$20k/year	
Research and development: ~3-4 person years	

Software: ~2-3 person years

Value Proposition

Net zero contribution from prosumers

Reduced Carbon Emission

Grid flexibility and Stability

Electricity cost reduction up to 30%

Reduction of energy waste by clients

Customer Relationships

Co-creation

Customer segments

Grid operators

Energy producers??

Channels Digital

Revenue Stream

License as per need

UN sustainability goals

