HW 2 - Graphical and Simplex Solutions

Joshua Ward A02081581 CEE 5410/6410 9/11/2020

Format Key

Notes/Comments

Inputs/Givens

Calculations

Check Values

Output/Answers

	A	В	С	D	Е	F	G	Н	I	J	K	L
1	Problem 2.	.3	•		•	•					•	
2		ft, 18,000 ac aqueduct cap	-ft, and 6,000 a	nc-ft, respectiv	ely. It is prop iveries. Two	osed to dev	elop not mo	ore than 10	000 acres of new	fuly, and August o land by utilizing the water requiremer	ne excess	
3	Given		Monthly Wat	er Requiremer July	nt (ac-ft/acre) August	Return, \$/acre						
5 6		Hay Grain	2	1 2	1 0	100 120						
7 8 9	Find	B) Solve gra	-	-	the irrigation	n developmo	ent. Clearly	define all t	he variables used	and give their unit	s.	
10	Solution	_										
11	A)	Formulate t										
12				ision variable								
13		Symbol	Units		Description							
14		A_h	acre	Area of land a	allocated to h	ay crops						
15		$A_{ m g}$	acre	Area of land a	allocated to g	rain crops						
16												
17	Objective Fu	nction										
18	Maximize the	return (\$) pro	duced by cultiv	vating hay and	grain on not	more than 1	10,000 acres	s of land us	ing only excess w	ater		
19	Or, for simple:	x methods, mi	inimize the neg	gative return as	shown.				Constraint Equation	ns - Granhical		
20 21 22		Max Z =	$\frac{\$100}{acre}(A_h) + \frac{\$1}{a}$	$\frac{120}{cre}(A_g)$					1. $A_h \ge$	-		
23 24		Min - Z =	$-\frac{\$100}{acre}(A_h) -$	$\frac{\$120}{acre}(A_g)$					2. A _g ≥			
25									$3. A_h + A_g \le 10$),000 acres		
26				aint Equation	<u>s</u>			a	cft acft			
27	1		cannot be less					4. 2 a	$\frac{\partial f}{\partial c}(A_h) + 1 \frac{\partial c}{\partial c}(A_h)$	$(A_g) \le 14,000 \ acft$		
28	2		n cnanot be les						ac ac			
29	3		rea of hay and	•				5 1 a	cft (4.) ± 2 $acft$	$(A_g) \le 18,000 \ acft$		
30	4		us by crops in J					J. 1	$\frac{1}{ac}$ $\frac{(A_h) + 2}{ac}$	$(A_g) \leq 10,000 \text{ ac} f$		
31	5		us by crops in I						acft			
32	6	Total water u	use by crops in	August canno	t exceed 6,00	00 acre-ft		6.	$1\frac{acft}{ac}(A_h) + 0(A_h)$	g) $\leq 6,000 \ acft$		
33									uc			

	A	В	С	D	Е	F	G	Н	I	J	K	L
72	C) Solve using the Simplex Method											
73	The simplex method requires equity constraints, positive variable values, and a function to minimize. Modify the inequality constraints to equity											
74	consraints with	n slack variabl	es.									
75	Man 7	$\frac{\$100}{acre}(A_h) + \frac{\$}{\$}$	\$120						Constraint Equation	ons - Simplex		
76	Max Z =	$\overline{acre}^{(A_h)}$ +	acre (A _g)									
77		\$100	\$120					-	1. $A_h \ge 0$: Implie	d in simplex		
78 79	Min - Z =	$=-\frac{$100}{acre}(A_h)$	$-\frac{$120}{acre}(A_g)$;	2. $A_q \ge 0$: Implie	d in simplex		
80		uer e	acre						y =			
81			Constra	int Equations				3	$A_h + A_g + S_3 =$	10,000 acres		
82	1	Area of hav	cannot be less t	_	1			anti	t aaft			
83	2		cnanot be less					4. $2\frac{ac}{ac}$	$\frac{1}{2}(A_h) + 1 \frac{acft}{ac} (A_g)$	$S_4 = 14,000 a$	ucf t	
84	3		ea of hay and		ceed 10,000	acres		uc	uc -			
85	4	Total water u	s by crops in J	une cannot exc	eed 14,000 a	cre-ft		$5.1\frac{acft}{}$	$\frac{t}{(A_k)} + 2\frac{acft}{acf}(A_k)$	$(S_5) + S_5 = 18,000 a$	ıcft	
86	5		s by crops in J					ac ac	ac	1) 105 10,000 4		
87	6	Total water u	se by crops in	August cannot	exceed 6,00	0 acre-ft			ncft			
88								6. 1-	$\frac{1}{ac}(A_h) + 0(A_g)$	$+ S_6 = 6,000 \ acft$,	
89			Slaci	« Variables								
90	Symbol	Units	** 11 1		scription							
91	S_3	acres	Unused land a									
92	S_4	acre-ft	Unused availa									
93	S_5	acre-ft		ble water from								
94	S_6	acre-ft	Unused availa	ble water from	aqueduct ex	cess in Aug	gust					
95												
96	Set up the first	Tableau with	the basic feas	ible solution co	ontaining the			asis sets all	decision variabl	es to 0, slack val	ues at maxii	mum.
97						Tabl	leau 1			N	D.	D: I
00	Item	A _h	$\mathbf{A}_{\mathbf{g}}$	S_3	S_4	S_5	S_6	b	-Z	Most - Obj	Pivot	Binding:
98	V-1	0		10000	14000	10000	(000			Func. Coeff	Variable	b _i /a _{ij}
99 100	Value Obj. Z Coeff	-100	-120	10000 0	14000	18000			\$0.00	-120	2	
100	C3	1	-120 1	1	0	0		10000	\$0.00	Continue	<u> </u>	10000
102	C4	2	1	0	1	0		14000		Continue		14000
103	C5	1	2	0	0	1	0	18000				9000
104	C6	1	0	0	0	0	1	6000				#DIV/0!
105	The basic solu	tion shows S ₅	the unused av	ailable water f	rom the aque	duct excess	s in July, is	most bindii	ng. S ₅ will leave th	ne basis.		
106										variable column	in constrain	t 5's row.
107			; R[Obj]=R[Ol									

	A	В	С	D	Е	F	G	Н	I	J	K	L
108	Tableau 2											
109	Item	A_h	$\mathbf{A}_{\mathbf{g}}$	S_3	S_4	S ₅	S ₆	b	-Z	Most - Obj Func. Coeff	Pivot Variable	Binding: b _i /a _{ij}
110	Value	0	9000	1000	14000	0	6000					
111	Obj. Z Coeff	-40	0	0	0	60	0		-\$1,080,000.00	-40	1	
112	C3	0.5	0	1	0	-0.5	0	1000		Continue		2000
113	C4	1.5	0	0	1	-0.5	0	5000				3333.3333
114	C5	0.5	1	0	0	0.5	0	9000				18000
115	C6	1	0	0	0	0	1	6000				6000
116	This iteration shows S ₃ , the unused land area, is next most binding. S ₃ will leave the basis.											
117	The most negative objective function coefficient is -40 for the area planted with hay (Ah). Pivot the next tableau on this variable column in constraint 3's row.											
118	Operations: R[C3]=R[C3]/0	.5; R[Obj]=R[0	Obj]+40*R[C3]; R[C4]=R[0			=R[C5]-R[C3]; R[C6]=R[C6]-R[C3]		
119	Tableau 3											
117						1 401	leau 5					
117	Item	Aı	A_	S	Sı			h	-7.	Most - Obj	Pivot	Binding:
120	Item	$\mathbf{A_h}$	$\mathbf{A}_{\mathbf{g}}$	S_3	S_4	S ₅	S ₆	b	-Z	Most - Obj Func. Coeff	Pivot Variable	Binding: b _i /a _{ij}
120 121	Value	A _h 2000	8000	0	S ₄ 2000	S ₅	S ₆ 4000	b		Func. Coeff		O .
120 121 122	Value Obj. Z Coeff		8000	0 80	2000	S ₅ 0 20	S ₆ 4000 0	~	-\$1,160,000.00	Func. Coeff		b _i /a _{ij}
120 121 122 123	Value Obj. Z Coeff C3	2000	8000 0 0	0 80 2		S ₅	S ₆ 4000 0 0	2000	-\$1,160,000.00	Func. Coeff		b _i /a _{ij}
120 121 122 123 124	Value Obj. Z Coeff C3 C4	2000 0 1 0	8000	0 80 2 -3	2000	S ₅ 0 20	\$6 4000 0 0	2000	-\$1,160,000.00	Func. Coeff		#DIV/0! #DIV/0!
120 121 122 123 124 125	Value Obj. Z Coeff C3 C4 C5	2000 0 1 0 0	8000 0 0 0	0 80 2 -3 -1	2000	S ₅ 0 20	S ₆ 4000 0 0	2000 2000 8000	-\$1,160,000.00	Func. Coeff		#DIV/0! #DIV/0! 8000
120 121 122 123 124 125 126	Value Obj. Z Coeff C3 C4 C5 C6	2000 0 1 0 0 0	8000 0 0 0 1	0 80 2 -3 -1 -2	2000 0 0 1 0 0	S ₅ 0 20 -1 1 1	\$6 4000 0 0 0 0	2000 2000 8000 4000	-\$1,160,000.00	Func. Coeff 0 STOP	Variable 1	#DIV/0! #DIV/0! 8000 #DIV/0!
120 121 122 123 124 125 126 127	Value Obj. Z Coeff C3 C4 C5 C6 The identity mages	2000 0 1 0 0 0 atrix is found	8000 0 0 0 1 0 in the real dec	0 80 2 -3 -1 -2 ision variables	2000 0 0 1 0 0 and no object	S ₅ 0 20 -1 1 1	\$6 4000 0 0 0 0 1 con cefficien	2000 2000 8000 4000 ts are negat	-\$1,160,000.00	Func. Coeff	Variable 1	#DIV/0! #DIV/0! 8000 #DIV/0!
120 121 122 123 124 125 126 127 128	Value Obj. Z Coeff C3 C4 C5 C6 The identity mass Slack Variable	2000 0 1 0 0 0 atrix is found Status	8000 0 0 0 1 0 in the real dec Slack Value	0 80 2 -3 -1 -2 ision variables Shadow Value	2000 0 0 1 0 0 and no object	S ₅ 0 20 -1 1 1 1 2tive function	\$6 4000 0 0 0 0 1 con cefficien Interpreta	2000 2000 8000 4000 ts are negat	-\$1,160,000.00	Func. Coeff 0 STOP	Variable 1	#DIV/0! #DIV/0! 8000 #DIV/0!
120 121 122 123 124 125 126 127	Value Obj. Z Coeff C3 C4 C5 C6 The identity ms Slack Variable S3	2000 0 1 1 0 0 0 atrix is found Status Binding	8000 0 0 0 1 0 in the real dec Slack Value	0 80 2 -3 -1 -2 ision variables	2000 0 0 1 0 and no object	\$5 0 20 -1 1 1 1 ctive function	\$6 4000 0 0 0 0 1 con cefficien Interpreta	2000 2000 8000 4000 ts are negation of land avail	-\$1,160,000.00 ive. Simplex algo	Func. Coeff 0 STOP rithm has arrived a	Variable 1 at a solution	#DIV/0! #DIV/0! 8000 #DIV/0!
120 121 122 123 124 125 126 127 128	Value Obj. Z Coeff C3 C4 C5 C6 The identity ms Slack Variable S3	2000 0 1 0 0 0 atrix is found Status	8000 0 0 0 1 0 in the real dec Slack Value	0 80 2 -3 -1 -2 ision variables Shadow Value	2000 0 0 1 0 and no object	\$5 0 20 -1 1 1 1 ctive function	\$6 4000 0 0 0 0 1 con cefficien Interpreta	2000 2000 8000 4000 ts are negation of land avail	-\$1,160,000.00	Func. Coeff 0 STOP rithm has arrived a	Variable 1 1 at a solution	#DIV/0! #DIV/0! 8000 #DIV/0!
120 121 122 123 124 125 126 127 128 129	Value Obj. Z Coeff C3 C4 C5 C6 The identity ms Slack Variable S3	2000 0 1 1 0 0 0 atrix is found Status Binding	8000 0 0 0 1 0 in the real dec Slack Value	0 80 2 -3 -1 -2 ision variables Shadow Value	2000 0 0 1 1 0 and no object Profit will in 2000 ac-ft of	\$5 0 20 -1 1 1 1 ctive function crease \$80. excess wa	S ₆ 4000 0 0 0 0 1 con cefficien Interpreta /add. Acre of ter will rem	2000 2000 8000 4000 ts are negation of land availain in June	-\$1,160,000.00 ive. Simplex algo	Func. Coeff 0 STOP rithm has arrived a	Variable 1 at a solution lution is to d 8000 acre	#DIV/0! #DIV/0! 8000 #DIV/0! a.