Bounce Cosmology from a Compact Internal Degree of Freedom

A standalone derivation for the $X-\theta$ framework

Divyang Panchasara September 2025

Abstract

We show how a nonsingular cosmological bounce arises once a compact internal angle $\theta \in S^1$ —the hallmark of the X- θ framework—and its mixed-curvature backreaction are included in FRW dynamics. The θ -sector by itself acts as stiff matter (w = 1), which is not enough to bounce flat FRW under standard GR. However, the cross-coupling encoded by the mixed curvature $F_{i\theta}$ produces an *effective negative* a^{-6} term in the Friedmann constraint, acting as a centrifugal barrier in the scale-factor dynamics. We derive the bounce conditions, obtain an explicit expression for the minimum scale factor a_{\min} , and give a simple numerical recipe that reproduces the simulated bounce reported elsewhere.

1 Setup: FRW + a compact rotor

We take a homogeneous, isotropic FRW metric (spatial curvature $k \in \{0, \pm 1\}$):

$$ds^{2} = -dt^{2} + a(t)^{2} \gamma_{ij} dx^{i} dx^{j}, \qquad \gamma_{ij} dx^{i} dx^{j} = \frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2},$$
(1.1)

with scale factor a(t) and Hubble parameter $H \equiv \dot{a}/a$. In the X- θ picture, every particle carries an internal compact angle $\theta \in S^1$. At the coarse-grained level, the θ -sector behaves as a homogeneous "rotor field" with Lagrangian density

$$\mathcal{L}_{\theta} = \frac{I}{2} g^{\mu\nu} \, \partial_{\mu} \theta \, \partial_{\nu} \theta, \qquad I > 0, \tag{1.2}$$

so for a homogeneous configuration $\theta(t)$,

$$\mathcal{L}_{\theta} = \frac{I}{2}\dot{\theta}^2. \tag{1.3}$$

The conjugate momentum and the effective fluid variables are

$$\Pi_{\theta} \equiv \frac{\partial (a^3 \mathcal{L}_{\theta})}{\partial \dot{\theta}} = Ia^3 \dot{\theta}, \qquad \rho_{\theta} = \frac{I}{2} \dot{\theta}^2 = \frac{\Pi_{\theta}^2}{2Ia^6}, \qquad p_{\theta} = \rho_{\theta} \ (w = 1).$$
(1.4)

Thus a compact rotor is a *stiff* component with $\rho_{\theta} \propto a^{-6}$. By itself, this *does not* generate a bounce for flat FRW in standard GR; it enhances focusing.

2 Mixed-curvature backreaction and an effective centrifugal term

On the extended space $Q = \mathbb{R}^3 \times S^1$ with a single connection $A = A_i(x,\theta) dx^i + A_{\theta}(x,\theta) d\theta$, the mixed curvature $F_{i\theta} = \partial_i A_{\theta} - \partial_{\theta} A_i$ continuously transfers momentum between the center (X) and fiber (θ) channels. A homogeneous coarse-graining of this coupling generates an *effective* negative a^{-6} term in the Friedmann constraint, analogous to the repulsive spin–torsion correction in Einstein–Cartan cosmology:

$$H^{2} = \frac{8\pi G}{3} \left(\rho_{\text{std}} + \rho_{\theta} \right) - \frac{\sigma^{2}}{a^{6}} - \frac{k}{a^{2}}.$$
 (2.1)

Here $\rho_{\rm std}$ includes the usual radiation/matter sectors; ρ_{θ} is the positive stiff piece in Eq. (1.4); and σ is a constant fixed by the conserved mixed charge (set by $F_{i\theta}$). The minus sign captures the defocusing effect of fiber holonomy backreaction. This equation will serve as our working theory at early times when a is small.

3 Bounce conditions and the minimum scale factor

A bounce occurs at time $t_{\rm b}$ when

$$H(t_{\rm b}) = 0, \qquad \dot{H}(t_{\rm b}) > 0.$$
 (3.1)

Let $a_{\min} \equiv a(t_b)$. Close to the would-be singularity the dominant terms scale as a^{-6} , so Eq. (2.1) reduces to

$$0 = H^2 \Big|_{a_{\min}} = \frac{8\pi G}{3} \frac{\Pi_{\theta}^2}{2Ia_{\min}^6} - \frac{\sigma^2}{a_{\min}^6} - \frac{k}{a_{\min}^2}.$$
 (3.2)

Two useful limits illustrate the physics:

• Self-balanced a^{-6} sector (curvature negligible). If the a^{-6} pieces dominate, the bounce condition is simply

$$\frac{8\pi G}{3} \frac{\Pi_{\theta}^2}{2I} = \sigma^2, \tag{3.3}$$

which sets a_{\min} finite (independent of k at leading order) and ensures a turning point.

• Curvature-assisted bounce. If the repulsion is weaker, k/a^2 participates. Multiplying Eq. (3.2) by a_{\min}^6 and defining $x \equiv a_{\min}^2$ yields

$$\left(\frac{8\pi G}{3} \frac{\Pi_{\theta}^2}{2I} - \sigma^2\right) - k x^2 = 0. \tag{3.4}$$

For k = +1,

$$a_{\min} = \left[\frac{\frac{8\pi G}{3} \frac{\Pi_{\theta}^2}{2I} - \sigma^2}{1} \right]^{1/4},$$
 (3.5)

which is real/positive when the bracketed quantity is positive.

4 Verifying it is a bounce: sign of \dot{H}

Use the (modified) Raychaudhuri equation consistent with Eq. (2.1):

$$\dot{H} = -4\pi G \left(\rho_{\text{tot}} + p_{\text{tot}}\right) + \frac{k}{a^2} + \frac{3\sigma^2}{a^6}.$$
(4.1)

Near a_{\min} the stiff piece dominates, so $\rho_{\theta} + p_{\theta} = 2\rho_{\theta} = \Pi_{\theta}^2/(Ia^6)$. Inserting into Eq. (4.1) and using H = 0 from Eq. (3.2) gives

$$\dot{H}\big|_{a_{\min}} = -\frac{4\pi G \,\Pi_{\theta}^2}{I a_{\min}^6} + \frac{k}{a_{\min}^2} + \frac{3\sigma^2}{a_{\min}^6}.\tag{4.2}$$

At a self-balanced bounce (curvature negligible) with $\frac{8\pi G}{3} \frac{\Pi_{\theta}^2}{2I} = \sigma^2$, one finds

$$\dot{H}\big|_{a_{\min}} = \frac{4\pi G \,\Pi_{\theta}^2}{I a_{\min}^6} > 0,$$
 (4.3)

confirming the turning point is indeed a bounce.

5 Compact summary and scaling law

The competition between the positive stiff term $+\Pi_{\theta}^2/(2Ia^6)$ and the negative backreaction $-\sigma^2/a^6$ sets a finite minimum scale factor. In the self-balanced regime,

$$a_{\min} = \left(\frac{\frac{8\pi G}{3} \Pi_{\theta}^2}{2I \sigma^2}\right)^{1/4} a_{\star},\tag{5.1}$$

with an arbitrary unit choice a_{\star} (often $a_{\star} = 1$). Equation (3.5) includes curvature assistance when needed. The lower bound $a \geq a_{\min} > 0$ realizes singularity softening.

6 Numerical recipe

To reproduce the bounce numerically:

- 1. Choose parameters $(\Pi_{\theta}, I, \sigma, k)$ and initial $a(t_0) > a_{\min}$ consistent with Eq. (2.1); pick $H(t_0) > 0$.
- 2. Integrate $\dot{a} = aH$ with H from Eq. (2.1) and update \dot{H} from Eq. (4.1). A simple explicit stepper suffices.
- 3. Detect the event $H \to 0$ with $\dot{H} > 0$; report $a_{\min} = a(t_b)$.

This matches the notebook result (e.g., $a_{\min} \approx 0.67$ in dimensionless units for a representative parameter set).

Appendix: Microscopic sketch of the $-\sigma^2/a^6$ term

In minisuperspace the Einstein–Hilbert piece is $L_{\rm grav} = -(3/8\pi G)\,a\dot{a}^2 + (3k/8\pi G)\,a$. For the homogeneous rotor, $L_{\theta} = (I/2)a^3\dot{\theta}^2$ with conserved $\Pi_{\theta} = Ia^3\dot{\theta}$. The X- θ mixing from the single connection on Q introduces a conserved mixed charge $\mathcal J$ whose quadratic contribution to the Hamiltonian constraint is centrifugal-like. After dividing by a^3 to form an energy density, the competing terms $+\Pi_{\theta}^2/(2Ia^6)$ and $-\sigma^2/a^6$ emerge with $\sigma \propto \mathcal J$; the minus sign encodes defocusing due to fiber holonomy in the a-equation.