Volume rectangular prisms

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

$$Volume = cm^3$$

(2)

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

$$Volume = cm^3$$

(3)

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

$$Volume = \dots cm^3$$

(4)

$$H=3cm$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad w=2cm$$

$$l=7cm$$

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

Volume =
$$\dots$$
 cm³

(5)

$$H=3cm$$
 \downarrow $v=5cm$ $l=6cm$

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

$$Volume = cm^3$$

(6)

$$Volume = lwH$$

$$Volume = \dots cm \times \dots cm \times \dots cm$$

$$Volume = \dots cm^3$$

$$H = 1cm \downarrow \qquad \qquad w = 3cm$$

$$l = 7cm$$

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

(10)
$$H = 2cm \downarrow \bigvee_{i}^{l} w = 6cm$$

$$l = 7cm$$

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

(11)
$$H = 4cm$$

$$U = 4cm$$

$$U = 7cm$$

$$U = 9cm$$

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

Volume =
$$lwH$$

Volume = \dots cm × \dots cm × \dots cm
Volume = \dots cm³

(13)

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

 $Volume = \dots cm^3$

(14)

Volume = lwH

 $\mathrm{Volume} = \, \ldots \, \mathrm{cm} \times \, \ldots \, \mathrm{cm} \times \, \ldots \, \mathrm{cm}$

 $Volume = \dots cm^3$

(15)

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

Volume = \dots cm³

(16)

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

Volume = \dots cm³

(17)

$$H=2cm$$

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

Volume = \dots cm³

(18)

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

 $Volume = \dots cm^3$

(19)

 ${\rm Volume} = lwH$

 $Volume = \dots cm \times \dots cm \times \dots cm$

 $Volume = \dots cm^3$

(20)

Volume = lwH

 $Volume = \dots cm \times \dots cm \times \dots cm$

 $Volume = \dots cm^3$