Coloração: Soluções

GRAFOS

Como resolver a coloração de grafos?

- Força Bruta
- Welsh e Powell
- DSATUR

Força Bruta

ullet A solução por força bruta para uma k-coloração deve considerar cada uma das k^n alocações de k cores para n vértices e verificar a viabilidade da solução. Tal abordagem é impraticável, exceto para grafos pequenos.

Usando programação dinâmica e um limite para o número de conjuntos independentes maximais, k-coloração pode ser decidido no tempo e no espaço em $O(2.445^n)$.

•Esta heurística colore o grafo com uma cor de cada vez, iniciando pelos vértices de maior grau, ou seja, os vértices que contém mais arestas ligadas a ele.

- Ordenar os vértices pelo seu grau em ordem decrescente
- Criar um vetor de cores
- •Inicializar todos os vértices como "sem cor"
- Enquanto o existir um vértice sem cor no grafo {
 - o Definir a primeira cor não utilizada ainda como cor atual
 - Para cada vértice do grafo sem cor (seguindo a lista ordenada){
 - Atribuir a cor atual caso ele n\u00e3o tenha um v\u00e9rtice adjacente com a mesma cor
 - 0 }
- •}

Vetor de cores

Vetor de vértices

Nome	Α	В	С	D	E
Grau					
Cor					

Vetor de cores

Vetor de vértices

Nome	Α	В	С	D	E
Grau	2	4	2	3	3
Cor					

Vetor de vértices

Nome	В	D	E	Α	С
Grau	4	3	3	2	2
Cor					

Vetor de vértices Nome B D E A C Grau 4 3 3 2 2 Cor

•A heurística DSATUR procura colorir todos os vértices a partir de seu grau de saturação, ou seja, a partir do número de cores **diferentes** adjacentes que ele já possui.

- Ordenar os vértices pelo seu grau em ordem decrescente
- Criar um vetor de cores
- •Inicializar todos os vértices como "sem cor"
- Colorir o vértice com maior grau com a primeira cor
- Enquanto existir um vértice sem cor no grafo{
 - Selecionar o vértice com maior grau de saturação, em caso de empate, escolher o com maior grau dentre os de maior saturação
 - Atribuir para este vértice a primeira cor que não esteja em um vértice adjacente

