Lesson – 8

Neural Network: An inspiration from Human Brain

Network of neurons in Human Brain

Lesson 8:

Neural Network: Terminologies and a Toy Example

Terminologies in Artificial Neural Network

Terminologies in Artificial Neural Network

Connections/Dendrites

Weights/Synapses

Input Layer

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	-

Forward pass

Lower level features

Higher level features

A Toy Example

Higher level features

Lesson 9 Multilayer Perceptron

What is Multilayer Perceptron Neural Network?

Multilayer Perceptron

For a given node I, the perceptron is defined as weighted summation of the incoming data from the nodes of the previous layer.

$$p_i = x_0 w_{0i} + x_2 w_{2i} + ... + x_n w_{ni} = \sum_{j=1}^n x_j w_{ji}$$

Multilayer Perceptron

Input Layer

Hidden Layer

Output Layer

Logistic (sigmoid)
$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic tangent
$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Input Layer Hidden Layer Output Layer

1 0.668 0.812
0 0.912 0.151
1 0.471

Weight Matrix

W

$$p_1 = x_1 W_{11} + x_2 W_{21} + x_3 W_{31}$$

 $h_1 = Sigmoid(p_1)$

W

$$p_2 = x_1 W_{12} + x_2 W_{22} + x_3 W_{32}$$

 $h_2 = Sigmoid(p_2)$

$$\bar{p}^T = \bar{h}^T.V$$
 $\bar{y}^T = Sigmoid(\bar{p}^T)$

$$\bar{y}^T = Sigmoid(Sigmoid(\bar{x}^TW)^T.V)$$

Lesson 11

Learning the parameters

What are the parameters?

What are the parameters?

Why there is an error in prediction?

$$\nabla = \frac{\delta E}{\delta V} = 0$$

$$\nabla_{ij} = \frac{\delta E}{\delta V_{ij}} = \frac{\delta \|\bar{y} - \hat{y}\|}{\delta V_{ij}} = 0$$

$$\nabla = \frac{\delta E}{\delta V} = 0$$

$$\nabla_{ij} = \frac{\delta E}{\delta V_{ij}} = \frac{\delta \|\bar{y} - \hat{y}\|}{\delta V_{ij}} = 0$$

$$V_{ij}^t = V_{ij}^{t-1} + \eta \, \nabla_{ij}^t$$

$$\eta = [0, 1]$$

$$E = ||\bar{y} - \acute{y}|| = 0$$
 or
$$E = ||\bar{y} - \acute{y}|| \le \epsilon$$

$$E = ||\bar{y} - \acute{y}|| = 0$$
 or
$$E = ||\bar{y} - \acute{y}|| \le \epsilon$$

$$E = ||\bar{y} - \acute{y}|| = 0$$
 or
$$E = ||\bar{y} - \acute{y}|| \le \epsilon$$

$$E = ||\bar{y} - \acute{y}|| = 0$$
 or
$$E = ||\bar{y} - \acute{y}|| \le \epsilon$$

$$\nabla = \frac{\delta E}{\delta V} = 0$$

$$\nabla_{11} = \frac{\delta E}{\delta V_{11}} = 0$$

$$\nabla = \frac{\delta E}{\delta V} = 0$$

$$\nabla_{11} = \frac{\delta E}{\delta V_{11}} = 0$$

$$\nabla = \frac{\delta E}{\delta V} = 0$$

$$\nabla_{11} = \frac{\delta E}{\delta V_{11}} = 0$$

$$z_1(V_{11}) = h_1 V_{11} + h_2 V_{21} + h_3 V_{31} + h_4 V_{41}$$

$$\begin{array}{c|c}
V_{11} & \downarrow \\
\hline
 z_1 = \sum h_j V_{j1} & \downarrow \\
E(y) = \|\bar{y} - \hat{y}\|
\end{array}$$

$$y_1(z_1) = Sigmoid(z_1)$$

$$\nabla_{11} = \frac{\delta E}{\delta V_{11}} = \frac{\delta z_1}{\delta V_{11}} \cdot \frac{\delta y_1}{\delta z_1} \cdot \frac{\delta E}{\delta y_1}$$

$$z_1 = h_1 V_{11} + h_2 V_{21} + h_3 V_{31} + h_4 V_{41}$$

$$y_1 = Sigmoid(\mathbf{z_1})$$

$$z_1 = \sum h_j V_{j1} \quad y_1 = f(z_1) \longrightarrow \mathbf{E}$$

Backpropagation

Loss function $E = \|\bar{y} - \hat{y}\|$

$$\nabla = \frac{\delta E}{\delta W} = 0$$

$$\nabla_{ij} = \frac{\delta E}{\delta W_{ij}} = 0$$

$$\frac{\delta E}{\delta W_{11}} = \frac{\delta a_1}{\delta W_{11}} \times \frac{\delta h_1}{\delta a_1} \times$$

$$\frac{\delta z_1}{\delta h_1} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

We may have multiple layers.

$$\frac{\delta E}{\delta V_{11}} = \frac{\delta z_1}{\delta V_{11}} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

We may have multiple layers

We may have multiple layers

$$\frac{\delta E}{\delta U_{11}} = \frac{\delta b_1}{\delta U_{11}} \times \frac{\delta g_1}{\delta b_1} \times \frac{\delta a_1}{\delta g_1} \times \frac{\delta h_1}{\delta a_1} \times \frac{\delta h_1}{\delta a_1} \times \frac{\delta z_1}{\delta h_1} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

$$U_{11} = \sum x_i U_{i1} \quad g_1 = f(b_1) \quad W_{11} = \sum g_i W_{i1} \quad h_1 = f(a_1) \quad V_{11} = \sum h_j V_{j1} \quad y_1 = f(z_1)$$

24

Summary

- What is loss function?
- What are the parameters of a multilayer perceptron neural network?
- How to estimate parameters using backpropagation through time?

Lesson 11

Learning with different Loss Functions and Their Derivatives

Two Commonly used Loss Functions are

- Mean Square Error Standard Loss Function for Regression
- Cross Entropy Loss Standard Loss Function for Classification

Mean Square Error (MSE)

$$MSE E = (y - \acute{y})^2$$

Ground truth is ý

Mean Square Error (MSE)

For the Single Sample

$$MSE E = (y - \acute{y})^2$$

Ground truth is \acute{y}

$$\frac{\delta E}{\delta V_1} = \frac{\delta z}{\delta V_1} \times \frac{\delta y}{\delta z} \times \frac{\delta E}{\delta y}$$

For the Single Sample

$$E = (y - \acute{y})^2$$

$$\frac{\delta E}{\delta y} = \frac{\delta (y - \acute{y})^2}{\delta y} = 2(y - \acute{y})$$

$$\frac{\delta E}{\delta V_1} = \frac{\delta z}{\delta V_1} \times \frac{\delta y}{\delta z} \times \frac{\delta E}{\delta y}$$

If the ground truth is \acute{y}

For *n* Samples

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{i} - \acute{y}^{i})^{2}$$

$$\frac{\delta E}{\delta y} = \frac{\delta \frac{1}{n} \sum_{i=1}^{n} (y^i - \dot{y}^i)^2}{\delta y} = \frac{2}{n} \sum_{i=1}^{n} (y^i - \dot{y}^i)$$

$$\frac{\delta E}{\delta V_1} = \frac{\delta z}{\delta V_1} \times \frac{\delta y}{\delta z} \times \frac{\delta E}{\delta y}$$

If the ground truth is \acute{y}

For *n* Samples

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{i} - \dot{y}^{i})^{2}$$

$$\frac{\delta E}{\delta y} = \frac{\delta \frac{1}{n} \sum_{i=1}^{n} (y^i - \dot{y}^i)^2}{\delta y} = \frac{2}{n} \sum_{i=1}^{n} (y^i - \dot{y}^i)$$

Backpropagation will be done after a batch of *n* Samples

If the ground truth is \acute{y}

For the n Sample

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}$$

$$\frac{\delta \mathbf{E}}{\delta y_1} = \frac{\delta \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}^i - \mathbf{\hat{y}}^i)^2}{\delta y_1} = \frac{2}{n} \sum_{i=1}^{n} (y_1^i - \mathbf{\hat{y}}_1^i)$$

$$Z_1 = \sum h_j V_{j1} \quad y_1 = f(z_1) \longrightarrow \mathbf{E}$$

$$\frac{\delta E}{\delta V_{11}} = \frac{\delta z_1}{\delta V_{11}} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

Let us illustrate with a toy example

#Wheel	Height	Weight	
4	6	500	
4	5.5	600	8 1
4	5	550	
2	3	200	
2	3.5	150	
2	4	250	30%

#Wheel Height Weight 5.5 3.5

Error
$$E_{y_1} = (0.9 - 1)^2 = 0.01$$

Error
$$E_{y_2} = (0.1 - 0)^2 = 0.01$$

If these errors are not acceptable, then Backpropagate.

#Wheel Height Weight

4

6

500

4 5 550

2 3 200

2 3.5 150

2 4 250

Error
$$E = (y - \acute{y})^2$$

Error
$$E_{y_1} = (0.6 - 1)^2 = 0.16$$

Error
$$E_{y_2} = (0.4 - 0)^2 = 0.36$$

If these errors are not acceptable, then Backpropagate.

One complete cycle of training is called Epoch

Backpropagation after every sample is expensive.

Do it in batches.

Summary

Mean Square Loss Function and how to estimate its gradient

Lesson 12

Learning with different Loss Functions and Their Derivatives

Two Commonly used Loss Functions are

- Mean Square Error Standard Loss Function for Regression
- Cross Entropy Loss Standard Loss Function for Classification

Cross-entropy is a measure of the difference between two probability distributions for a given random variable or set of events. If p and q are two probability distributions drown from a random variable X, cross entropy is defined as

$$CE = -\sum_{x \in X}^{n} p(x) \log q(x)$$

Cross-entropy is a measure of the difference between two probability distributions for a given random variable or set of events. If p and q are two probability distributions drown from a random variable X, the distance of p from q i.e., cross entropy is defined as

$$CE = -\sum_{x \in X}^{n} q(x) \log p(x)$$

$$X = \{H, T\},$$
 $p = \{0.9, 0.1\}$ and $q = \{0.6, 0.4\}$

How different p from q?

$$CE = -0.6 \log(0.9) - 0.4 \log(0.1) = 1.42$$

$$CE = -\sum_{x \in X}^{n} q(x) \log p(x)$$

$$E = -\sum_{i}^{C} \acute{y}_{i} \log(y_{i})$$

$$\frac{\delta E}{\delta y_i} = -\sum_{i}^{C} \frac{\dot{y}_i}{y_i}$$

$$z_1 = \sum h_j V_{j1} \quad y_1 = f(z_1) \longrightarrow \mathbf{E}$$

$$\frac{\delta E}{\delta V_{11}} = \frac{\delta z_1}{\delta V_{11}} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

Backpropagation

Softmax

softmax: $\mathbb{R}^n \to \mathbb{R}^n$

$$z = \{z_1, z_2, z_3, \dots, z_n\}$$
 $z = \{1.1, 2.2, 0.2, -1.7\}$

Softmax(
$$z_i$$
) = $\frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$ $z = \{0.224, 0.672, 0.091, 0.013\}$

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

$$Z = \{1.1, 2.2, 0.2, -1.7\}$$

$$\left\{ \frac{e^{z_1}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_2}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_3}}{\sum_{j=1}^n e^{z_j}} ..., \frac{e^{z_n}}{\sum_{j=1}^n e^{z_j}} \right\}$$

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

$$Z = \{1.1, 2.2, 0.2, -1.7\}$$

$$\left\{ \frac{e^{z_1}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_2}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_3}}{\sum_{j=1}^n e^{z_j}} ..., \frac{e^{z_n}}{\sum_{j=1}^n e^{z_j}} \right\}$$

If i = k

$$\frac{\delta \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}}{\delta z_k} = \frac{e^{z_i} \sum_{j=1}^n e^{z_j} - e^{z_k} e^{z_i}}{(\sum_{j=1}^n e^{z_j})^2} = \frac{e^{z_i} (\sum_{j=1}^n e^{z_j} - e^{z_k})}{(\sum_{j=1}^n e^{z_j})^2} = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}} \times \frac{\sum_{j=1}^n e^{z_j} - e^{z_k}}{\sum_{j=1}^n e^{z_j}} = p_i (1 - p_i)$$

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}} \qquad Z = \{1.1, 2.2, 0.2, -1.7\}$$

$$\{ \frac{e^{z_1}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_2}}{\sum_{j=1}^n e^{z_j}}, \frac{e^{z_3}}{\sum_{j=1}^n e^{z_j}}, \dots, \frac{e^{z_n}}{\sum_{j=1}^n e^{z_j}} \}$$

If i = k

$$\frac{\delta \frac{e^{Zi}}{\sum_{j=1}^{n} e^{Zj}}}{\delta z_{k}} = \frac{e^{Zi} \sum_{j=1}^{n} e^{Zj} - e^{Zk} e^{Zi}}{(\sum_{j=1}^{n} e^{Zj})^{2}} = \frac{e^{Zi} (\sum_{j=1}^{n} e^{Zj} - e^{Zk})}{(\sum_{j=1}^{n} e^{Zj})^{2}} = \frac{e^{Zi}}{\sum_{j=1}^{n} e^{Zj}} \times \frac{\sum_{j=1}^{n} e^{Zj} - e^{Zk}}{\sum_{j=1}^{n} e^{Zj}} = p_{i} (1 - p_{i})$$

If i != k

$$\frac{\delta \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}}{\delta z_k} = \frac{0 - e^{z_k} e^{z_i}}{(\sum_{j=1}^n e^{z_j})^2} = \frac{-e^{z_k}}{\sum_{j=1}^n e^{z_j}} \times \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}} = -p_i p_k$$

Backpropagation

Summary

• Cross Entropy Loss Function and Softmax and their gradients.

Lesson 13

Activation Functions and Their Derivatives

Activation Functions

Activation Function is applied over the linear weighted summation of the incoming information to a node.

Convert linear input signals from perceptron to a linear/non-linear output signal.

It decides whether to activate a node or not.

Activation Functions

Activation functions must be monotonic, differentiable, and quickly converging.

Types of Activation Functions:

- Linear
- Non-Linear

Linear

$$f(x) = ax + b$$

$$\frac{df(x)}{dx} = a$$

- Constant gradient
- Gradient does not depend on the change in the input

Linear

$$f(x) = ax + b$$

$$f(x) = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + b$$

Linear

$$f(x) = ax + b$$

$$f(x) = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + b$$

Non-Linear

- Sigmoid (Logistic)
- Hyperbolic Tangent (Tanh)
- Rectified Linear Unit (ReLU)
 - Leaky Relu
 - Parametric Relu
- Exponential Linear Unit (ELU)

Sigmoid Activation Functions (Logistics)

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{df(x)}{dx} = f(x)(1 - f(x))$$

- Output: 0 to 1
- Outputs are not zero-centered
- Can saturate and kill (vanish) gradients

Tanh Activation Function

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\frac{df(x)}{dx} = 1 - f(x)^2$$

- Output: -1 to +1
- Outputs are zero-centered
- Can Saturate and kill (vanish) gradients
- Gradient is more steeped than Sigmoid, resulting in faster convergence

Rectified Linear Unit(ReLU)

$$f(x) = \max(0, x)$$

$$\frac{df(x)}{dx} = 1$$

- Greatly increase training speed compared to tanh and sigmoid
- Reduces likelihood of killing(vanishing) gradient
- It can blow up activation
- Dead nodes

Leaky-ReLU

$$f(x) = \max(0.01x, x)$$

$$\frac{df(x)}{dx} = \begin{cases} 0.01, & x < 0\\ 1, & x \ge 0 \end{cases}$$

Observations:

Fixed dying ReLU

Parameterized-ReLU

$$f(x) = \max(\alpha x, x)$$

$$\frac{df(x)}{dx} = \begin{cases} \alpha, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Exponential Linear Unit (ELU)

$$f(x) = \begin{cases} \alpha(e^x - 1), & x < 0 \\ 1x & x \ge 0 \end{cases}$$

$$\frac{df(x)}{dx} = \begin{cases} f(x) + \alpha, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

- It can produce –ve output
- It can blow up activation function

Complete Chain

$$\frac{\delta E}{\delta V_{11}} = \frac{\delta z_1}{\delta V_{11}} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

Deep Network

Deep Network - Vanishing/Exploding Gradient

$$\frac{\delta E}{\delta U_{11}} = \frac{\delta b_1}{\delta U_{11}} \times \frac{\delta g_1}{\delta b_1} \times \frac{\delta a_1}{\delta g_1} \times \frac{\delta h_1}{\delta a_1} \times \frac{\delta h_1}{\delta a_1} \times \frac{\delta z_1}{\delta h_1} \times \frac{\delta y_1}{\delta z_1} \times \frac{\delta E}{\delta y_1}$$

$$U_{11} = \sum x_i U_{i1} \quad g_1 = f(b_1) \quad W_{11} = \sum g_i W_{i1} \quad h_1 = f(a_1) \quad V_{11} = \sum h_j V_{j1} \quad y_1 = f(z_1)$$

Summary

- We learn characteristics of different Activation Functions and their gradient
- The choice of activation function depend on the nature of the problem, nature of the target output and the deepness of the network.