Nanophotonics – poised to revolutionize displays and imaging!

LiDAR

Virtual reality

Artificial vision

3D displays

Optical computing

Quantum materials exhibit fast and large tunability!

Either small or slow tuning speed limit the application

- Mechanical and thermal tuning can be slow
- Small tunability due to a single mechanism involved in light-matter interaction

A new class of tunable optical materials: Quantum materials!

Conventional Materials: Single particle response

Quantum Materials: Collective response

1T-TaS₂ exhibits charge density waves at room temperature

- NCCDW: nearly commensurate CDW (nearly an integer)
- ICCDW: incommensurate CDW (not an integer)

Charge density waves (CDW) result in a large change in electrical resistance with temperature.

Journal of Electron Spectroscopy and Related Phenomena, Strongly correlated systems, 117–118 (2001): 433–49.

Physical properties of 1T-TaS₂ are sensitive to stimuli

Journal of Electron Spectroscopy and Related Phenomena, Strongly correlated systems, 117–118 (2001): 433–49.

Yu, Y., Yang, F., Lu, X. et al. Nature Nanotech **10**, 270–276 (2015).

Low intensity light tunes out-of-plane permittivity of 1T-TaS₂ by unity order!

Wavelength (nm)

Li, and Naik, Nano Lett. (2020)

Photorefractive effect of 1T-TaS, in z-axis is fast! RICE

Electronic reconfiguration results in the sub-microsecond relaxation time constant

Possible mechanisms of optical tunability in 1T-TaS₂

- Free electron generation?
 - 1 W/cm² @ 550 nm => 27.7 ns⁻¹·nm⁻² => with 1 μ s relaxation time and 100 nm thick film, $\Delta n \approx 3 \times 10^{17} cm^{-3}$
 - Too small Δn for unity order index change in visible
- Nonlinear optics?
 - No higher harmonic generation
- Light induced thermo-optic effect?
 - White light intensity is too small to expect heating
- Collective electronic mode?

Li, and Naik, Nano Lett. (2020)

CDW stacking changes electronic properties dramatically!

Different charge domain stacking leads to very different electronic (and optical) properties.

Light reorganizes stacking of CDW domains across layers

Hypothesis: Light reorganizes the CDW stacking order and thus changes the refractive index of 1T-TaS2. Illumination causes the center-to-corner stacking domains to shrink and the center-to-center stacking domains to grow.

3-level model & Maxwell-Garnet equation describe 1T-TaS, optical properties

Maxwell-Garnet equation

10
10
10
10
10
10
10
100
1000
Intensity (mW/cm²)

The 3-level model predicts the fraction of CDW domains in the two stacking orders. Maxwell-Garnett's effective medium theory predicts the optical constants for a given stacking domain composition. With no free-fitting parameter, our model matches the experimental results well. This proves our hypothesis.

1T-TaS₂ exhibit light tunable optical properties at room T

We show that 1T-TaS₂ is

- An anisotropic dielectric in visible.
- Shows large index tunability with AC and DC biases.
- Exhibits a light tunable ϵ_c
- Light reorganizes CDW domain stacking.
- 3-level system and Maxwell-Garnett model predicting ϵ_c .
- Light is an important tool to control the energy landscape of strong correlations.
- Possible light-induced superconductivity
- 1T-TaS₂ is promising for fast tunable nanophotonics!

