

DISTRIBUCIONES MULTIVARIADAS

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 05A) 18.JULI0.2023

Sea $X = (X_1, X_2, \dots, X_d) \in \mathbb{R}^d$ un vector aleatorio (esto es, cada componente X_i es una variable aleatoria $X_i : \Omega \to \mathbb{R}$).

Definición

Definimos el **valor esperado** de X como el vector $\mu \in \mathbb{R}^d$ dado por

$$\mathbb{E}(X) = \mu = (\mu_1, \mu_2, \dots, \mu_d)^T \in \mathbb{R}^d,$$

donde $\mu_i = \mathbb{E}(X_i)$, para $i = 1, 2, \dots, d$.

Definición

Definimos la **varianza** de X como la matriz $\Sigma \in \mathbb{R}^{d \times d}$ dada por

$$Cov(X) = \Sigma = (Cov(X_i, X_j))_{i,j}$$
.

La entrada (i,j) de esta matriz corresponde a la covarianza de las variables X_i y X_j . A Σ también se le conoce como la **matriz de covarianza** de X_i .

Para cualquier vector aleatorio $X \in \mathbb{R}^d$, la matriz de covarianzas $\Sigma = \text{Cov}(X)$ satisface

- 1. Σ es simétrica (como consecuencia, tiene autovalores reales).
- 2. Σ es semi-definida positiva (todos sus autovalores son no-negativos). En particular, para todo vector $\mathbf{x} \in \mathbb{R}^d$, se cumple que $\mathbf{x}^T \Sigma \mathbf{x} \geq 0$.
- 3. La diagonal de Σ contiene a las varianzas $\sigma_i^2 = \text{Cov}(X_i)$, para $i = 1, 2, \dots, d$.
- **4.** Si $\mathbb{X} \in \mathbb{R}^{n \times d}$ es la matriz de datos. Entonces $\Sigma = \mathbb{X}^T \mathbb{X}$.

Sea $X_1, X_2, \dots, X_n \in \mathbb{R}^d$ es una muestra aleatoria de vectores i.i.d (independientes e identicamente distribuidos), todos con distribución X.

Podemos codificar esta muestra dentro de una matriz, $\mathbb{X} \in \mathbb{K} \times \mathbb{A}$, llamada la **matriz de datos** (cada dato de la muestra es un renglón de \mathbb{X}).

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix},$$

donde

$$X_i = (x_{i1}, x_{i2}, \dots, x_{id}) \in \mathbb{R}^d, \quad i = 1, 2, \dots, n.$$

Observe que la i-ésima columna de $\mathbb X$ corresponde a una muestra (de tamaño n) de la variable aleatoria X_i . Podemos entonces restar a cada columna su correspondiente media $\mu_i = \mathbb E(X_i)$. Así, obtenemos una versión centrada de la matriz de datos:

$$\mathbb{X}_{c} = \mathbb{X} - \mu = \begin{pmatrix} X_{11} - \mu_{1} & X_{12} - \mu_{2} & \dots & X_{1d} - \mu_{d} \\ X_{21} - \mu_{1} & X_{22} - \mu_{2} & \dots & X_{2d} - \mu_{d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} - \mu_{1} & X_{n2} - \mu_{2} & \dots & X_{nd} - \mu_{d} \end{pmatrix}.$$

Es posible mostrar (con las propiedades de la página siguiente) que la matriz de covarianzas empírica (muestral) se puede escribir como

$$\Sigma = \mathsf{Cov}(X) = \mathbb{X}_{\mathsf{c}}^\mathsf{T} \mathbb{X}_{\mathsf{c}}.$$

Sea $X,Y\in\mathbb{R}^d$ vectores aleatorios, $a,b\in\mathbb{R}$, $c\in\mathbb{R}^d$ constantes, $A\in\mathbb{R}^{p\times d}$ una matriz constante. Entonces

- 1. $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$,
- **2.** $\mathbb{E}(c) = c$,
- 3. $\mathbb{E}(\mathbb{E}(X)) = \mathbb{E}(X)$,
- **4.** $Cov(aX) = a^2 Cov(X)$,
- 5. $Cov(AX) = A^T Cov(X)A$,
- **6.** $Cov(aX + bY) = a^2 Cov(X) + b^2 Cov(Y) + 2abCov(X, Y),$
- 7. Si $X \perp Y$, entonces Cov(X, Y) = 0,
- 8. Si $X \perp Y$, entonces $Cov(aX + bY) = a^2 Cov(X) + b^2 Cov(Y)$.

Sea $X=(X_1,X_2,\ldots,X_d)\in\mathbb{R}^d$ un vector aleatorio. Decimos que X sigue una **distribución normal multivariada** $\mathcal{N}_d(\mu,\Sigma)$ si su densidad está dada por

$$f_X(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \, \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^\mathsf{T} \Sigma^{-1}(\mathbf{x} - \mu)\right) d\mathbf{x}.$$

Aquí,

$$\mathbb{E}(X) = \mu = (\mu_1, \mu_2, \dots, \mu_d)^T,$$

У

$$\mathsf{Cov}(X) = \Sigma = \begin{pmatrix} \mathsf{Cov}(X_1, X_1) & \mathsf{Cov}(X_1, X_2) & \dots & \mathsf{Cov}(X_1, X_d) \\ \mathsf{Cov}(X_2, X_1) & \mathsf{Cov}(X_2, X_2) & \dots & \mathsf{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_d, X_1) & \mathsf{Cov}(X_d, X_2) & \dots & \mathsf{Cov}(X_d, X_d) \end{pmatrix}.$$

Densidad de una normal bivariada: (a) como nube de puntos, (b) como función.

Típicamente la matriz Σ proporciona información sobre la relación entre las variables componentes.

 $Cov(X) = [Cov(X_i, X_i)]$ es una matriz simétrica y pos. definida.

Caso d = 2:

$$\begin{pmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_1, X_2) & Var(X_2) \end{pmatrix} = \begin{pmatrix} \sigma_{X_1}^2 & Cor(X_1, X_2)\sigma_{X_1}\sigma_{X_2} \\ Cor(X_1, X_2)\sigma_{X_1}\sigma_{X_2} & \sigma_{X_2}^2 \end{pmatrix}$$

Cambiar $\rho = Cor(X_1, X_2)$:

http://personal.kenyon.edu/hartlaub/MellonProject/images/Bivariate52.gif.

Una forma práctica de ver esta información de covarianza o correlación entre las componentes es a través de *pair-plots*.

Pairplot de una muestra para una normal 3-variada.

¿Cómo generar una muestra de una distribución normal d-variada con μ y Σ específicas?

Algoritmo (o receta):

1. Generar d muestras (de tamaño n), independientes, de distribuciones normales estándar $Z_1, Z_2, \ldots, Z_d \in \mathbb{R}^n$, y construir una matriz de datos \mathbb{Z} con las muestras Z_i como columnas.

Como son independientes y estándar el vector $Z = (Z_1, \dots, Z_d)$ sigue una distribución normal estándar $\mathcal{N}_d(\mathbf{o}, I_d)$.

- 2. Asegurarse que la matriz Σ es simétrica y positiva definida. Luego, construir descomposición de Cholesky $L^TL = \Sigma$, (veremos este algoritmo más adelante).
- 3. Construir la variable aleatoria $X = LZ + \mu$, la cual tiene una matriz de datos dada por $\mathbb{X} = L\mathbb{Z} + \mu$ (la muestra que queremos). De las propiedades anteriores, tenemos que $\mathbb{E}(Z) = \mu$ y $Cov(X) = L^T I_d L = L^T L = \Sigma$.