Combinatorics

Thomas Fleming

October 1, 2021

Contents

Lecture 16 Wed 29 Sep 2021 10:27

First, we examine some more random graphs. For a random graph G, it is a trivial result of probability theory that the number of four cycles is precisely $\frac{1}{2} \sum_{u,v \in V(G);v \neq u} \binom{\hat{d}(u,v)}{2}$. Then, applying our estimation $\hat{d}(u,v) = \frac{n}{4} + o(u)$ yields $\binom{n}{2}$ possible pairs u,v and $\hat{d} \approx \frac{n}{4}$, hence the number of four cycles is

$$\frac{1}{n} \binom{\frac{n}{4}}{2} \binom{n}{2} = \frac{n^4}{128} + o\left(n^4\right).$$

Now, we examine the k-walks.

Definition 0.1 (Walks). A k-walk is a k-path $v_1, v_2, v_3, \ldots, v_k$. A closed k-walk is a k-cycle, $v_1, v_2, \ldots, v_k, v_1$.

Remark. Walks need not have all vertices distinct, hence a graph of order 2 where one simply oscillates between the vertices to produce a degenerate 2n-walk. Similarly, one can traverse a triangle to induce a 4-walk as well. Overall this yields 14 possible 4-walks on a graph of order 4.

Now, we examine the number of closed 4-walks on a random graph of order n. We see nondegenerate 4-walks are just 4-cycles of which we know there to be $\frac{n^4}{128}$ with 8 possible permutations of directions and starting point yields $8 \cdot \frac{n^4}{128}$. Similairly, we note that $4 \cdot \sum_{v \in V} \binom{d_i(v)}{2} = 4n\binom{n}{2} = \frac{1}{2}n^3 + o\left(n^3\right) = o\left(n^4\right)$ degenerate graphs on 3 vertices exist. Lastly, the number of degenerate graphs on 2-vertices is clearly, $2 \cdot e\left(g\right) = o\left(n^4\right)$. Hence, the number of 4 - walks is just $\frac{n^4}{16} + o\left(n^4\right)$.

Proposition 0.1. $\operatorname{tr}\left(A\left(G\right)^{k}\right) = \sum_{i=1}^{n} \lambda_{i}^{k}$ is the number of closed k-walks in a graph G of order n.

From this, we arrive at $6k_3(G) = \operatorname{tr}(A^3) = \sum_{i=1}^3 \lambda_i^3$. We also see the number of closed walks of order 4 is

$$CW_4 = \sum_{i=1}^n \lambda_i^4$$
$$\frac{n^4}{16} + o(n^4) = \lambda_1^4 + \sum_{i=2}^n \lambda_i^4$$
$$\Rightarrow \sum_{i=2}^n \lambda_i^4 = o(n^4).$$

Similarly, we find $\sigma_2(G) = o(n)$ and $O(\sqrt{n})$.

Definition 0.2 (Local Density). The **local density** of a graph is simply e(U) for some graph $U \subseteq V$.

Remark. Local density is highly variable. For instance in $K_{n,n}$ we find U being one of the partite sets yields 0 local density and U being a set of half the vertices in each partite set yields $\frac{1}{4}e(G)$ local density.

Proposition 0.2. Suppose G is a random graph of order n and let U be a set with $|U| > 502 \log{(n)}$. Then, $\left| e\left(U \right) - \frac{1}{2} \binom{|U|}{2} \right| < \binom{|U|}{2} \left(\frac{3.5 \log{n}}{|U|} \right)^{\frac{1}{2}}$.

Proposition 0.3. There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that almost every graph of order n as clique number f(n) or f(n+1).

This function is approximated by

$$f(n) \approx 2 \log_2(n)$$
.

Remark. There is clearly also such a function for the independence number.

Furthermore, more investigation yields $\chi(G) \approx \frac{n}{2\log_2(n)}$ for almost all graphs G.

Lecture 17 Fri 01 Oct 2021 10:20

Recall that for eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have $\lambda_1 = \frac{n}{2} + \sqrt{n \log(n)} = o(n)$. Additionally, we know $\sigma_1 = \lambda_1$ and $\sigma_2, \sigma_3, \ldots, \sigma_n$ correspond to $|\lambda_2|, |\lambda_3|, \ldots, |\lambda_n|$. Further, it is known by Furedi and Kowlos that $\sigma_2 = O(\sqrt{n})$.

Theorem 0.1. For a randomly chosen graph of order n, with eigenvalues $\lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n$. Define $W_n(x) : \mathbb{R} \to \mathbb{Z}^+$ to be the number of eigenvalues λ_i , such that $\frac{\lambda_i}{\sqrt{n} \leq x}$, divided by n. Then, we find the function which

$$W_{n}\left(x\right)$$
 tends to pointwise, $W\left(x\right)$ has $W\left(x\right)=\left\{ egin{array}{ll} \frac{2}{\pi}\sqrt{1-x^{2}}, & |x|\leq1\\ 0, & |x|>1 \end{array} \right.$

Here recall that $\sqrt{1-x^2}$ is an upper half semicircle of radius 1 and the factor $\frac{2}{\pi}$ compresses it into an ellipse. This fact essentially characterizes the distribution of eigenvalues of a random graph. That is, plurality of eigenvalues will be 0 and we find the number of eigenvalues of a given magnitude decreases as $\lambda \to \sqrt{n}$. We note that the leading $\frac{2}{\pi}$ is to normalize the area such that this is a probability density function. Then, we note $E\left[x^2W\left(x\right)\right] = \int_{-1}^{1} \frac{2}{\pi}x^2\sqrt{1-x^2}dx = \frac{1}{4}$. Hence, we find $\frac{1}{n^2}\sum_{i=2}^{n}\lambda_i^2 \approx \frac{1}{4}$. It is a well known result that $\sum_{i=1}^{n}|\lambda_i|=\sum_{i=1}^{\infty}\sigma_i \leq \frac{1}{2}n^{\frac{3}{2}} \leq 2\left(n-1\right)$. Applying our integral formula from earlier yields $\sum_{i=1}^{\infty}|\lambda_i|=\int_{-1}^{1}|x|\sqrt{1-x^2}=$

 $2\int_0^1 x\sqrt{1-x^2}$.