

Super-Resolution Vision System (SRVS)

Proposer's Day Brief Washington, DC 9 Mar 06

> Dr. Jennifer C. Ricklin Program Manager, ATO

NOTES:

(1) TECHNOLOGY DEVELOPMENT AND TESTING APPROACHES ARE PRESENTED INFORMATION ONLY AND SHOULD NOT BE REGARDED AS REQUIREMENTS FOR PROPOSAL UNLESS STATED IN THE PROPOSER INFORMATION PAMPHLET.

Program Overview

Dr. Jennifer Ricklin DARPA/ATO

SRVS: Physical Concept

Turbulence-induced random phase distortions can be exploited to achieve resolution beyond the diffraction limit

Potential for System Performance

Long-term average of 100 short-exposure image frames, with super-resolution image constructed from lucky regions in these 100 image frames [experimental laboratory data obtained using a single phase screen, M. Vorontsov, unpublished data, 1998].

"Lucky" image- image with wavefront distortion over the aperture < 1 rad² (near-diffraction limited)

"Lucky" region – image region with near or better-than-diffraction limited resolution

Number of images required to obtain one "lucky" image

"Probability of getting a lucky short- exposure image through turbulence" (FRIED, 1978)

Distribution Unlimited) Case #6741 2 March 2006

Experimental Proof of Principle

A-LOT: Atmospheric Laser Optics Testbed (ARL, Adelphi, MD)

Program Objective

Develop an optical spotter scope with range performance better than current systems

Key Technical Innovation

 Exploit turbulence-generated microlensing phenomenon

Key Technical Application

 Facial recognition and reading text at extended ranges

The mission

- Recon/sniper Team mission
 - Two optical sights
 - Spotter scope target detection and recognition
 - Rifle scope aim point
- Work as team

Distribution Statement A: (Approved for Public Release - Distribution Unlimited) Case #6741 2 March 2006

Program Goals

- Develop Technologies for and Build
 - field prototype man-portable optical system
 - credibly demonstrate improved recognition range over existing systems
 - Less than 2 kilograms
 - Less than 35 cm length
 - 6 cm aperture

Program Technical Interests

- Development of image quality computational algorithms for:
 - on-the-fly local image quality analysis and fusion (image quality map estimation and fusion of "lucky" highresolution image regions)
 - rapid, on-the-fly local region shift/jitter removal and image stabilization
- Design of interface between high-speed camera and computational hardware
- Investigation and resolution of critical technological issues associated with the physics of super-resolution
- •Field demonstration of a prototype scaled to in-service system size, weight and power (use of standard batteries)

Program approach

- Technologies first developed and proven in laboratory and brassboard environments
- After demonstrations show the technology viable and technically sound
 - prototype an advanced development model, scaled to field experiment size, weight and power

The End State

- Man-portable spotting scope system
- Comparable in size and weight to existing systems
 - weight less than 2 kilograms, including the weight of any batteries (standard AA preferred) and electronics
 - length less than 35 cm
 - 6 cm optical aperture
- System should be able to capture at least one hundred 1 megabyte sized images and be able to export them in a common format onto a common media

Technical Challenges

- Algorithms for on-the-fly (<5 msec) local image quality analysis and fusion in volume turbulence (image quality map estimation & "lucky" region fusion)
- Rapid, on-the-fly local region shift/jitter removal combined with on-the-fly lucky region fusion for volume turbulence (new algorithms required)
- Image stabilization and pointing, acquisition and tracking of targets in a compact, manportable package
- Photon starving under low-light conditions
- High performance, low-power image processing

Integration challenges

- Image stabilization and pointing, acquisition and tracking of targets in a compact, manportable package
- System size, weight and power
- Power management (use of standard batteries)
 - -environmental Packaging

Programmatics

Dr. Jennifer Ricklin DARPA/ATO

Schedule

BAA Release 2006 March 3,

Proposers' Conference 2006

March 9,

Proposals Due

April 17, 2006

Source Selection Completed May 2006

Contract(s) Awarded

July 2006

Go/No Go Phase 1

For severe volume turbulence (Cn2 $\sim 5x10^{-13}$ m- $^{2/3}$) and full scale facial images meeting ANSI INCITS 385-2004, demonstrate with an aperture not to exceed 6 cm better-than-diffraction-limited super-resolution imaging, with resolution greater than one-half cycle per millimeter, at a speed of not less than 1 Hz and a range of at least 1 kilometer.

Go/No Go Phase 2

- For severe volume turbulence (Cn2 $\sim 5x10^{-13}$ m^{-2/3}):
 - With an aperture not to exceed 6 cm, demonstrate that full scale facial images meeting ANSI INCITS 385-2004 can be correctly identified by trained observers (90% correct identification) at a distance of 1 km (representing a 3x improvement over current performance).
 - Demonstrate better-than-diffraction-limited superresolution imaging at a speed of not less than 1 Hz where human subjects moving at 1 m/s can be correctly identified by trained observers (90% correct identification) at a distance of 1 km.

Go/No Go Phase 3

Develop prototype super-resolution spotting scope replacement for a Leupold® Mark 4® (part number 53756 or 60040, or equivalent) 6 cm aperture spotting scope with specifications that do not exceed the following in size and weight: 35cm length, 2 kg weight. Prototype system must operate with commercially available batteries (AA preferred), with an operational life sufficient for capture of 100 1MB super-resolution images, and must meet or exceed Phase 2 imaging and identification performance at a distance of at least 1 km in severe turbulence (Cn2 ~ $5x10^{-13}$ m^{-2/3}).

Programmatics

- Phased program
 - Phase 1 is the base program; subsequent phases are options
 - Each phase will have metrics to determine potential for continuation to the next phase
 - Likely to have only one team go forward to Phase 2
- Teaming
 - Strongly encouraged: combine expertise to provide good value to Government and cross-pollination of ideas
- Use or participation of Government labs
 - Nature of partnering arrangement must be described
 - Government labs cannot be exclusive; firewalls needed