DATA SCIENCE COURSE

MACHINE LEARNING DAY 03

Machine Learning Types

Machine Learning Basics

- Supervised: learning with labeled data
 - Example: email classification, image classification
 - Example: regression for predicting real-valued outputs
- *Unsupervised*: discover patterns in unlabeled data
 - Example: cluster similar data points
- Reinforcement learning: learn to act based on feedback/reward
 - Example: learn to play Go

Decision Tree and Random Forest Let's play a Game!

Decision Trees

Gender	Age	gaA
F	15	.
F	25	(9)
М	32	3
F	40	0
М	12	O
М	14	.

Quiz 1

Answer

Gender	Age	App	Gender	Age	App
F	15	.	F	15	.
F	25	<u>Q</u>	F	25	<u> </u>
М	32	<u> </u>	М	32	<u> </u>
F	40	Q	F	40	
М	12	.	М	12	.
М	14	.	М	14	O

Gender	Age	App
F	15	.
F	25	<u> </u>
М	32	<u> 8</u>
F	40	<u>©</u>
М	12	.
М	14	.

Student Admissions

GRADES

TEST

Definition

A tree-like model that illustrates series of events leading to certain decisions

Each node represents a test on an attribute and each branch is an outcome of

Definition

A tree-like model that illustrates series of events leading to certain decisions

 Each node represents a test on an attribute and each branch is an outcome of that test

Definition

A tree-like model that illustrates series of events leading to certain decisions

 Each node represents a test on an attribute and each branch is an outcome of that test

- We use labeled data to obtain a suitable decision tree for future predictions
 - We want a decision tree that works well on unseen data, while asking as few questions as possible

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

Outlook	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Normal	Weak	Yes
Rainy	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rainy	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rainy	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

n Š	Temperature	Humidity	Wind	Play Tennis?
Sunny	Hot	High	Weak	No
וו ט	Hot	High	Strong	No
š	Mild	High	Weak	No
Outlook	Cool	Normal	Weak	Yes
5	Mild	Normal	Strong	Yes

n					
Overca	Temperature	Humidity	Wind	Play Tennis?	
) Ve	Hot	High	Weak	Yes	
اا	Cool	Normal	Strong	Yes	
Š	Mild	High	Strong	Yes	
UTIOOK	Hot	Normal	Weak	Yes	
3 '					•

کر	Temperature	Humidity	Wind	Play Tennis?
Rainy	Mild	High	Weak	Yes
=	Cool	Normal	Weak	Yes
쏭	Cool	Normal	Strong	No
Outlook	Mild	Normal	Weak	Yes
ŏ	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

Sunny	Temperature	Humidity	Wind	Play Tennis?
'n	Hot	High	Weak	No
II S	Hot	High	Strong	No
쏭	Mild	High	Weak	No
Outlook	Cool	Normal	Weak	Yes
õ	Mild	Normal	Strong	Yes

	Temperature	Humidity	Wind	Play Tennis?
	Hot	High	Weak	Yes
)	Cool	Normal	Strong	Yes
	Mild	High	Strong	Yes
	Hot	Normal	Weak	Yes

کر	Temperature	Humidity	Wind	Play Tennis?
Rainy	Mild	High	Weak	Yes
=	Cool	Normal	Weak	Yes
충	Cool	Normal	Strong	No
Outlook	Mild	Normal	Weak	Yes
ಠ	Mild	High	Strong	No

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

- Basic step: choose an attribute and, based on its values, split the data into smaller sets
 - Recursively repeat this step until we can surely decide the label

What is a good attribute?

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

- Which attribute provides better splitting?
- Why?
 - Because the resulting subsets are more pure
 - Knowing the value of this attribute gives us more information about the label (the entropy of the subsets is lower)

Information Gain

Entropy

Entropy measures the degree of randomness in data

For a set of samples X with k classes:

$$entropy(X) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

where p_i is the proportion of elements of class i

Lower entropy implies greater predictability!

Information Gain

 The information gain of an attribute a is the expected reduction in entropy due to splitting on values of a:

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

where X_v is the subset of X for which a = v

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

entropy
$$(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

entropy $(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$
 $entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918$
 $entropy(X_{color=white}) = 1$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \qquad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \qquad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$\begin{array}{ll} entropy\left(X\right) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx \ 0.985 \\ entropy\left(X_{color=brown}\right) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx \ 0.918 \\ & entropy\left(X_{color=white}\right) = 1 \\ & gain\left(X, color\right) = \mathbf{0}.\ \mathbf{985} - \frac{3}{7} \cdot \mathbf{0}.\ \mathbf{918} - \frac{4}{7} \cdot \mathbf{1} \approx \mathbf{0}.\ \mathbf{020} \\ & entropy\left(X_{fly=yes}\right) = 0 \\ & entropy\left(X_{fly=no}\right) = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \approx \ 0.811 \end{array}$$

In practice, we compute entropy(X) only once!

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy(X_{color=brown}) = -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \approx 0.918 \quad entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0 \quad entropy(X_{fly=no}) = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \approx 0.811$$

$$gain(X, fly) = 0.985 - \frac{3}{7} \cdot 0 - \frac{4}{7} \cdot 0.811 \approx 0.521$$

Gini Impurity

Gini Impurity

 Gini impurity measures how often a randomly chosen example would be incorrectly labeled if it was randomly labeled according to the label distribution

Error of classifying randomly picked fruit with randomly picked label

For a set of samples X with k classes:

$$gini(X) = 1 - \sum_{i=1}^{k} p_i^2$$

where p_i is the proportion of elements of class i

Can be used as an alternative to entropy for selecting attributes!

Entropy versus Gini Impurity

- Entropy and Gini Impurity give similar results in practice
 - ➤ They only disagree in about 2% of cases "Theoretical Comparison between the Gini Index and Information Gain Criteria" [Răileanu & Stoffel, AMAI 2004]
 - > Entropy might be slower to compute, because of the log

Pruning

Pruning

- Pruning is a technique that reduces the size of a decision tree by removing branches of the tree which provide little predictive power
- It is a **regularization** method that reduces the complexity of the final model, thus reducing overfitting
 - Decision trees are prone to overfitting!
- Pruning methods:
 - Pre-pruning: Stop the tree building algorithm before it fully classifies the data
 - Post-pruning: Build the complete tree, then replace some nonleaf nodes with leaf nodes if this improves validation error

Pre-pruning

- Pre-pruning implies early stopping:
 - ➤ If some condition is met, the current node will not be split, even if it is not 100% pure
- It will become a leaf node with the label of the majority class in the current set (the class distribution could be used as prediction confidence)
- Common stopping criteria include setting a threshold on:
 - Entropy (or Gini Impurity) of the current set
 - > Number of samples in the current set
 - > Gain of the best-splitting attribute
 - Depth of the tree

Post-pruning

Number of pruned nodes

Prune nodes in a bottom-up manner, if it decreases validation error

Post-pruning

Number of pruned nodes

Prune nodes in a bottom-up manner, if it decreases validation error

Post-pruning

Number of pruned nodes

Prune nodes in a bottom-up manner, if it decreases validation error

Decision Boundaries

Decision trees produce non-linear decision boundaries

Decision Trees: Training and Inference

Random Forests (Ensemble learning with decision trees)

Gender	Age	Location	Platform	Job	Hobby	Арр
F	30	US	IOS	School	Games	Whatsapp
F	11	France	Android	Work	Tennis	Pokemon Go
M	16	Chile	IOS	Temp	Tennis	
F	15	China	IOS	Retired	Chess	Whatsapp
M	25	Us	Android	School	Games	
M	32	Us	IOS	School	Tennis	Whatsapp
F	40	Egypt	Android	Work	Chess	
M	12	France	Android	Temp	Tennis	Whatsapp
М	14	Australia	Android	School	chess	Pokemon Go

Random Forests

Random Forests

- Random Forests:
 - Instead of building a single decision tree and use it to make predictions, build many slightly different trees and combine their predictions
- We have a single data set, so how do we obtain slightly different trees?
 - 1. Bagging (Bootstrap Aggregating):
 - Take random subsets of data points from the training set to create N smaller data sets
 - Fit a decision tree on each subset
 - 2. Random Subspace Method (also known as Feature Bagging):
 - ➤ Fit N different decision trees by constraining each one to operate on a random subset of features

Bagging at training time

Bagging at inference time

Random Subspace Method at training time

Random Subspace Method at inference time

Random Forests

Mass (g)	Color	Texture	pН	Label
84	Green	Smooth	3.5	Apple
121	Orange	Rough	3.9	Orange
85	Red	Smooth	3.3	Apple
101	Orange	Smooth	3.7	Orange
111	Green	Rough	3.5	Apple
117	Red	Rough	3.4	Orange

Bagging +
Random Subspace Method +
Decision Tree Learning Algorithm

Ensemble Learning

- Ensemble Learning:
 - Method that combines multiple learning algorithms to obtain performance improvements over its components
- Random Forests are one of the most common examples of ensemble learning
- Other commonly-used ensemble methods:
 - Bagging: multiple models on random subsets of data samples
 - Random Subspace Method: multiple models on random subsets of features
 - Boosting: train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples

All samples have the same weight

Learning Algorithm

All samples have the same weight

Reweight based on model's mistakes

Summary

- Ensemble Learning methods combine multiple learning algorithms to obtain performance improvements over its components
- Commonly-used ensemble methods:
 - Bagging (multiple models on random subsets of data samples)
 - Random Subspace Method (multiple models on random subsets of features)
 - Boosting (train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples)
- Random Forests are an ensemble learning method that employ decision tree learning to build multiple trees through bagging and random subspace method.
 - They rectify the overfitting problem of decision trees!

Decision Trees and Random Forest (Python)

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
clf = DecisionTreeClassifier(criterion = "entropy", min samples leaf = 3)
# Lots of parameters: criterion = "gini" / "entropy";
#
                      max depth;
                      min impurity split;
clf.fit(X, y) # It can only handle numerical attributes!
# Categorical attributes need to be encoded, see LabelEncoder and OneHotEncoder
clf.predict([x]) # Predict class for x
clf.feature importances # Importance of each feature
clf.tree # The underlying tree object
clf = RandomForestClassifier(n estimators = 20) # Random Forest with 20 trees
```