Hadamard 2-Groups Redux

J. F. Dillon

National Security Agency Fort George G. Meade, MD USA

Algebraic Combinatorics: In Memory of Bob Liebler Colorado State University November 2011

"THE NEED FOR HAPPINESS"

"Perhaps it is sufficient to find representations with really simple value enumerator. Unfortunately, I have no really effective idea how to achieve this rather vague objective. For this reason I will call such a representation happy. Perhaps you will then accept that I cannot tell you what happiness is but only that I seem to be able to recognize it when I find it. Happiness is highly basis dependent and therefore not spectral. Perhaps happiness is combinatorial."

"THE NEED FOR HAPPINESS"

"Perhaps it is sufficient to find representations with really simple value enumerator. Unfortunately, I have no really effective idea how to achieve this rather vague objective. For this reason I will call such a representation happy. Perhaps you will then accept that I cannot tell you what happiness is but only that I seem to be able to recognize it when I find it. Happiness is highly basis dependent and therefore not spectral. Perhaps happiness is combinatorial."

Robert A. Liebler, NON-ABELIAN DIFFERENCE SETS, Proceedings NATO Advanced Study Institute on Difference Sets, Sequences and Their Correlation Properties, A. Pott et. al. Eds., Kluwer, 1998.

 ${\it G}$ a group of order ${\it v}$, ${\it D}$ a ${\it k}$ -subset of ${\it G}$

G a group of order v, D a k-subset of G D is a (v, k, λ) -difference set in G if

$$DD^{(-1)} = n + \lambda G, n := k - \lambda.$$

$$DD^{(-1)} = n + \lambda G, n := k - \lambda.$$

$$D^* := G - 2D \Rightarrow$$

$$D^*D^{*(-1)} = 4n + (v - 4n)G$$

$$DD^{(-1)} = n + \lambda G, n := k - \lambda.$$

$$D^* := G - 2D \Rightarrow$$

$$D^*D^{*(-1)} = 4n + (v - 4n)G$$

$$v = 1$$
 or $v = 4n \Rightarrow$

$$D^*D^{*(-1)} = |G|.$$

G a group of order v, D a k-subset of G D is a (v, k, λ) -difference set in G if in the group ring $\mathbb{Z}G$

$$DD^{(-1)} = n + \lambda G, n := k - \lambda.$$

$$D^* := G - 2D \Rightarrow$$

$$D^*D^{*(-1)} = 4n + (v - 4n)G$$

$$v = 1$$
 or $v = 4n \Rightarrow$

$$D^*D^{*(-1)} = |G|.$$

In this case the $v \times v$ matrix $[D^*(yx^{-1})]$ is Hadamard.

G a group of order v, D a k-subset of G D is a (v, k, λ) -difference set in G if in the group ring $\mathbb{Z}G$

$$DD^{(-1)} = n + \lambda G, n := k - \lambda.$$

$$D^* := G - 2D \Rightarrow$$

$$D^*D^{*(-1)} = 4n + (v - 4n)G$$

$$v = 1$$
 or $v = 4n \Rightarrow$

$$D^*D^{*(-1)} = |G|.$$

In this case the $v \times v$ matrix $[D^*(yx^{-1})]$ is Hadamard. Let \mathcal{H} denote the family of groups which have such a difference set.

JFD MH talk (1990):Hadamard Groups of order 64

A SURVEY OF DIFFERENCE SETS (Subtitle: HADAMARD GROUPS OF ORDER 64) J.F.Dillon National Security Agency

> Mashell Hall Gul. 13. Volument Sect. 1990

JFD MH talk (1990):Hadamard Groups of order 64

JFD MH talk (1990):Hadamard Groups of order 64

	27
Theorem. Of the 267 groups	
of order 64 there are exactly	
8 9 Which do not have nontrivial	
difference sets. These hon-Hadamard groups one:	
Exponent Cayley #	
GA 1	Red
32 <u>5</u> 0	$\mathbb{Z}_{32} \times \mathbb{Z}_2$
51) 52	M64= <x44:x3=1=424x4=x7></x44:x3=1=424x4=x7>
constructed by	D64 3D64
16 38	Q64 <x43:x16 1="42" x4="6x</td"></x43:x16>
47	X\$\frac{1}{2}!X\frac{1}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}!X\frac{1}!X\frac{1}!X\frac{1}{2}!X\frac{1}{2}!X\frac{1}{2}!X\f
186	D32 × Z2

M64 Hadamard matrix

56092 groups

56092 groups

Al Schwartz started this project but world-changing events intervened! :(

56092 groups

Al Schwartz started this project but world-changing events intervened! :(
Fewer than 5000 groups left after analogous tests! :)

prehistory James Singer formally defined difference sets in 1938;

prehistory James Singer formally defined difference sets in 1938; but Rev. Thomas Kirkman constructed many around 1857.

prehistory James Singer formally defined difference sets in 1938; but Rev. Thomas Kirkman constructed many around 1857. These were all cyclic difference sets.

 $1955 \ \mathsf{R.\ H.\ Bruck:}$ first paper on difference sets in general groups

1955 R. H. Bruck: first paper on difference sets in general groups gave example in $G := \mathbb{Z}_2^4$:

Example 6. Let G be the multiplicative abelian group of order $v=2^4$, type (2, 2, 2, 2), with generators a, b, c, d, and let D consist of the k=6 elements a, b, c, d, ab, cd. Then (G, D) is a (16, 6, 2) difference set. Note that the multiplier group is isomorphic to the group of permutations 1, (ab)(cd), (ac)(bd), (ad)(be).

$$D := \{a, b, c, d, ab, cd\}$$

1955 R. H. Bruck: first paper on difference sets in general groups gave example in $G := \mathbb{Z}_2^4$:

Example 6. Let G be the multiplicative abelian group of order $v=2^4$, type (2, 2, 2, 2), with generators a, b, c, d, and let D consist of the k=6 elements a, b, c, d, ab, cd. Then (G, D) is a (16, 6, 2) difference set. Note that the multiplier group is isomorphic to the group of permutations 1, (ab)(cd), (ac)(bd), (ad)(be).

$$D := \{a, b, c, d, ab, cd\}$$

Equivalent to $\{0000,1000,0100,0010,0001,1111\}$ in E_{16}

1955 R. H. Bruck: first paper on difference sets in general groups gave example in $G := \mathbb{Z}_2^4$:

Example 6. Let G be the multiplicative abelian group of order $v=2^4$, type (2, 2, 2, 2), with generators a, b, c, d, and let D consist of the k=6 elements a, b, c, d, ab, cd. Then (G, D) is a (16, 6, 2) difference set. Note that the multiplier group is isomorphic to the group of permutations 1, (ab)(cd), (ac)(bd), (ad)(be).

$$D := \{a, b, c, d, ab, cd\}$$

Equivalent to $\{0000,1000,0100,0010,0001,1111\}$ in E_{16} but Dev(D) is the (16,6,2)-design studied by Jordan around 1869

Jordan 4 x 4 Difference Set

1956 Marshall Hall, Jr.: A Survey of Difference Sets

1956 Marshall Hall, Jr.: A Survey of Difference Sets A survey of (v, k, λ) cyclic difference sets, $k \le 50$

1956 Marshall Hall, Jr.: A Survey of Difference Sets A survey of (v, k, λ) cyclic difference sets, $k \le 50$ 12 undecided cases included:

1956 Marshall Hall, Jr.: A Survey of Difference Sets A survey of (v, k, λ) cyclic difference sets, $k \le 50$ 12 undecided cases included:

$$(36, 15, 6), (64, 28, 12), (100, 45, 20)$$

1956 Marshall Hall, Jr.: A Survey of Difference Sets A survey of (v, k, λ) cyclic difference sets, $k \le 50$ 12 undecided cases included:

$$(36, 15, 6), (64, 28, 12), (100, 45, 20)$$

Note: v = 4n

1956 Marshall Hall, Jr.: A Survey of Difference Sets A survey of (v, k, λ) cyclic difference sets, $k \le 50$ 12 undecided cases included:

$$(36, 15, 6), (64, 28, 12), (100, 45, 20)$$

Note: v = 4n These would give circulant Hadamard matrices! :)

1960-62 P. Kesava Menon:

1960-62 P. Kesava Menon: **1960**

 Formally introduced characters to prove Multiplier Theorem for abelian groups.

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2}$

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

•
$$(v, k, \lambda) = (4N^2, 2N^2 - N, N^2 - N);$$

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

- $(v, k, \lambda) = (4N^2, 2N^2 N, N^2 N);$
- \mathcal{H} contains \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$,

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

- $(v, k, \lambda) = (4N^2, 2N^2 N, N^2 N);$
- \mathcal{H} contains \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_6$,

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

- $(v, k, \lambda) = (4N^2, 2N^2 N, N^2 N);$
- \mathcal{H} contains \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_6$, $D_6 \times D_6$.

1960-62 P. Kesava Menon: **1960**

- Formally introduced characters to prove Multiplier Theorem for abelian groups.
- General construction for ds in $G = \mathbb{Z}_2^{2s+2} := E_{2^{s+2}}$:
- $D := \{v \in G | wt(v) = 0, 1 \pmod{4}\}$

- $(v, k, \lambda) = (4N^2, 2N^2 N, N^2 N);$
- \mathcal{H} contains \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_6$, $D_6 \times D_6$.
- ullet $\mathcal H$ is closed under direct product.

JFD MH talk (1990):Hadamard Groups of order 64

PRODOCT THEOREM. HUHZEH H1, H2 < G, G=H1H2, H10H2=1 Then GEH. Proof. Let Di be a difference set in Hi. Define D = G= HiHz by D#=D* D* . Then D*D*G) = (D* D*)(D*D*)(D*D*) = D* D* D* D* (4) D* (4) = D* [H2] D* (A) = 0* 0* C1) [H2] = 1H111H21 = 161. OB.

J. F. Dillon

JFD MH talk (1990):Hadamard Groups of order 64

14

1965 Richard J. Turyn

• Motivated by v = 4n (group-developed Hadamard matrices);

1965 Richard J. Turyn

• Motivated by v = 4n (group-developed Hadamard matrices); called the ds H-sets

- Motivated by v = 4n (group-developed Hadamard matrices); called the ds H-sets
- Says of Menon "The connection with Hadamard matrices is mentioned in neither paper."

- Motivated by v = 4n (group-developed Hadamard matrices); called the ds H-sets
- Says of Menon "The connection with Hadamard matrices is mentioned in neither paper."
- $\mathbb{Z}_8 \times \mathbb{Z}_2 \in \mathcal{H}$

- Motivated by v = 4n (group-developed Hadamard matrices); called the ds H-sets
- Says of Menon "The connection with Hadamard matrices is mentioned in neither paper."
- $\bullet \ \mathbb{Z}_8 \times \mathbb{Z}_2 \in \mathcal{H}$
- characteristic artistry finished off Hall's undecided and many noncyclic ds as well

- Motivated by v = 4n (group-developed Hadamard matrices); called the ds H-sets
- Says of Menon "The connection with Hadamard matrices is mentioned in neither paper."
- $\bullet \ \mathbb{Z}_8 \times \mathbb{Z}_2 \in \mathcal{H}$
- characteristic artistry finished off Hall's undecided and many noncyclic ds as well
- in particular . . .

Theorem (R. J. Turyn, JFD dihedral trick)

G of order 2^{2s+2} is NOT Hadamard if G/K is cyclic or dihedral of order greater than 2^{s+2} .

Theorem (R. J. Turyn, JFD dihedral trick)

G of order 2^{2s+2} is NOT Hadamard if G/K is cyclic or dihedral of order greater than 2^{s+2} .

s=1, |G|=16: 2 groups ruled out: \mathbb{Z}_{16} and D_{16} .

Theorem (R. J. Turyn, JFD dihedral trick)

G of order 2^{2s+2} is NOT Hadamard if G/K is cyclic or dihedral of order greater than 2^{s+2} .

s=1, |G|=16: 2 groups ruled out: \mathbb{Z}_{16} and D_{16} .

s = 2, |G| = 64: 8 groups ruled out

Theorem (R. J. Turyn, JFD dihedral trick)

G of order 2^{2s+2} is NOT Hadamard if G/K is cyclic or dihedral of order greater than 2^{s+2} .

```
s=1, |G|=16: 2 groups ruled out: \mathbb{Z}_{16} and D_{16}.
```

s = 2, |G| = 64: 8 groups ruled out

s = 3, |G| = 256: 43 groups ruled out

Theorem (R. J. Turyn, JFD dihedral trick)

G of order 2^{2s+2} is NOT Hadamard if G/K is cyclic or dihedral of order greater than 2^{s+2} .

```
s=1, |G|=16: 2 groups ruled out: \mathbb{Z}_{16} and D_{16}. s=2, |G|=64: 8 groups ruled out s=3, |G|=256: 43 groups ruled out \{1,371,406,432,438,448,459,497,500,525,526,527,528,529,530,531,533,534,535,537,538,539,540,541,6601,6619,6637,6649,6673,6682,6691,6699,6707,6713,6719,6723,6726,6727,6728,6729,6730,6731,26963 }
```

JFD MH talk (1990):Hadamard Groups of order 64

Theorem (RTTuryn)
GEH, IGI= 228+2 KAG, 6/KCyclic. Then $|K| \ge 2^S$ and $|G/K| \le 2^{S+2}$. COF (TURYIN'S Exponent Bound) Gabelian \Rightarrow exp(6) $\leq 2^{9+2}$ (161-64 => exp(6) < 16) Theorem. The above result is true If "cyclic" is replaced by "dihedral" Rad (The "directal HTCK"). Habbian, G= < H.g. = 1, 8 hg-h).
G= H+gH. Suppose GG (-) = 2°5×2, G (2G. 22=13(-) (a+gB)(a+gB) = aa+BB+2gBac-1) = 80(-1) = 0 AND 00(-1)+BB+2gBac-1) = 22-12 Now if Arisany abolian group with [4:H]=2 say 4: H+OH. Define C= 02+0B. Then EE (4)=020(4)+BB(4)=229+2

1973 R. L. McFarland: $G = K \times E_{q^{s+1}}$, $|K| = 1 + \frac{q^{s+1}-1}{q-1}$, K any!

1973 R. L. McFarland:
$$G = K \times E_{q^{s+1}}$$
, $|K| = 1 + \frac{q^{s+1}-1}{q-1}$, K any! $q = 2$ gives $K \times E_{2^{s+1}} \in \mathcal{H}$, $|E| = |K| = 2^{s+1}$, E e.a., K any.

1973 R. L. McFarland: $G = K \times E_{q^{s+1}}$, $|K| = 1 + \frac{q^{s+1}-1}{q-1}$, K any! q = 2 gives $K \times E_{2^{s+1}} \in \mathcal{H}$, $|E| = |K| = 2^{s+1}$, E e.a., K any. K = E gives bent functions constructed earlier by O. S. Rothaus and J. A. Maiorana

$$[D^*(x,y)] := \Delta^* P [(-1)^{x \cdot y}] = \Delta^* P \otimes^{s+1} \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Family M (aka Maiorana-McFarland): $f(x,y) := \pi(x) \cdot y + g(x)$

1973 R. L. McFarland: $G = K \times E_{q^{s+1}}$, $|K| = 1 + \frac{q^{s+1}-1}{q-1}$, K any! q = 2 gives $K \times E_{2^{s+1}} \in \mathcal{H}$, $|E| = |K| = 2^{s+1}$, E e.a., K any. K = E gives bent functions constructed earlier by O. S. Rothaus and J. A. Maiorana

$$[D^*(x,y)] := \Delta^* P [(-1)^{x \cdot y}] = \Delta^* P \otimes^{s+1} \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Family M (aka Maiorana-McFarland): $f(x,y) := \pi(x) \cdot y + g(x)$ $K = \mathbb{Z}_{2^{s+1}}$ gives $\mathbb{Z}_{2^{s+1}} \times E_{2^{s+1}} \in \mathcal{H}$

JFD MH talk (1990):Hadamard Groups of order 64

OCHOSONAL PIECES
$$|G| = 2^{25+2} \qquad E = E_2 + 1 \cong \mathbb{Z}_2^{5+1} \leqslant G.$$

$$G = \sum_{i=0}^{25+1} g_i E$$

$$N_0, N_1, \dots N_{2^{5+1}}, \text{ chandons of } E,$$

$$Define \quad D^* = \sum_{i=0}^{25+1} g_i \gamma_i .$$

$$Then \quad D^*B^{(G)} = \sum_{i,j} (g_i \gamma_i)(g_j \gamma_j)^{(G)}$$

$$= \sum_{i,j} g_i \gamma_i \chi_j^* g_j^{-1}$$

$$= 2^{5+1} \sum_{i,j} g_i \gamma_i g_j^{-1}$$

$$= 2^{5+1} \sum_{i,j} g_i \gamma_i g_j^{-1}$$

$$Theorem \quad Jf \quad E_{2^{5+1}} \leqslant Z(G), \quad flan \quad G \in \mathcal{H}$$

$$Cor. \quad Turin's \quad bound sharp finalls.$$

$$Example: \quad Sheukica \in \mathcal{H}.$$

$$Consecture \quad S$$

The Conjecture is TRUE! :)

```
Apr 9 12:43 1997 standard input Page 1
   Art Drisko proved the combinatorial
THEOREM. Any (2n-1) x n array with no repeats in any row has a transversal;
          i.e. there are n distinct entries no two in the same row or column.
COROLLARY. Dillon's "transversal conjecture" is TRUE! i.e.
COROLLARY, If a group G of order 2°m acts by automorphisms on an elementary
           abelian group E of order 2°m, then there exists a bijection
                            pi: E --> G
           such that (e^(pi(e)): e in E) = E.
COROLLARY. Let G be a group of invertible 2°m x 2°m matrices over F 2 and
           let M be the 2°m x 2°m array whose rows ( resp columns ) are
           indexed by the elements of G ( resp. V = (F 2) m ) and whose
            (g, v) 'th entry is gv.
           Then M has a transversal.
COROLLARY, Every group of order 4°m which has a normal elementary abelian
            subgroup of order 2^m has a ( Hadamard ) difference set.
         What a great result!...it'll be fun to think up other applications!
                                               cheers.
                                               ifd
```

1987

 $\bullet \ \ \mathsf{Jim \ Davis:} \ \mathbb{Z}_{2^{s+1}} \times \mathbb{Z}_{2^{s+1}} \ , \ \mathbb{Z}_{2^s} \times \mathbb{Z}_{2^{s+2}} \in \mathcal{H}.$

1987

- Jim Davis: $\mathbb{Z}_{2^{s+1}} imes \mathbb{Z}_{2^{s+1}}$, $\mathbb{Z}_{2^s} imes \mathbb{Z}_{2^{s+2}} \in \mathcal{H}$.
- RJT Robert Kraemer: Abelian Hadamard 2-groups are characterized as those meeting Turyn's exponent bound.

1987

- Jim Davis: $\mathbb{Z}_{2^{s+1}} \times \mathbb{Z}_{2^{s+1}}$, $\mathbb{Z}_{2^s} \times \mathbb{Z}_{2^{s+2}} \in \mathcal{H}$.
- RJT Robert Kraemer: Abelian Hadamard 2-groups are characterized as those meeting Turyn's exponent bound.
- RJT JFD: simple construction.

Turyn $\mathbb{Z}_8 \times \mathbb{Z}_8$ difference set

Turyn $\mathbb{Z}_8 \times \mathbb{Z}_8$ ds Hadamard matrix

Turyn $\mathbb{Z}_8 \times \mathbb{Z}_8$ ds Hadamard matrix .2

JFD Generalization

(JFD 87) G=H x H,
H =
$$Z_2$$
s+1= {0,1,2, ..., 2^{s+1} -1}
f*:H \rightarrow {1,-1},f*(x+2^s)=-f*(x)
 Π :H \rightarrow H, Π (2^rt)=2^rt⁻¹, t odd
D={(x,y): f*(Π (x)y)=-1} is a DS fixed by -1.
Exp many inequiv DS in G
e.g. f(x)="high order bit" of x
s=2 coincides with RJT

JFD $\mathbb{Z}_{16}\times\mathbb{Z}_{16}$ difference set

JFD $\mathbb{Z}_{16} \times \mathbb{Z}_{16}$ Hadamard

JFD $\mathbb{Z}_{16} \times \mathbb{Z}_{16}$ Hadamard .2

JFD MH talk (1990):Hadamard Groups of order 64

TRANSFER OF
$$\mathbb{Z}_{8} \times \mathbb{Z}_{8} \, d.s.$$
 TO OTHER GROUPS.

 $G = \langle a \rangle \times \langle b \rangle > H = \langle a^{2} \rangle \times \langle b \rangle > K = \langle a^{2} \rangle \times \langle b^{2} \rangle > E < d.s.$
 $\mathbb{Z}_{8} \times \mathbb{Z}_{8} \qquad \mathbb{Z}_{4} \times \mathbb{Z}_{8} \qquad \mathbb{Z}_{4} \times \mathbb{Z}_{8}$
 $G = K + bK + aK + abK$
 $D^{*} = \Delta_{0}^{*} + b\Delta_{1}^{*} + a\Delta_{2}^{*} + ab\Delta_{3}^{*}$

FACTS: $\Delta_{1}^{*} \cdot \Delta_{1}^{*} \cdot (-1) = 0$ $\forall i \neq j$
 $\Delta_{1}^{*} \cdot \Delta_{1}^{*} \cdot (-1) = 10$ $\Re_{1}^{*} \cdot , 0 \leq i \leq 3$,

where $\Re_{1}^{*} \cdot S$ are character of $E = E_{4}$.

Also $G = H + aH$
 $D^{*} = A^{*} + aB^{*}$

when $A^{*} = \Delta_{0}^{*} + b\Delta_{1}^{*}$ and $B^{*} = \Delta_{2}^{*} + b\Delta_{3}^{*}$

when $A^{*} = \Delta_{0}^{*} + b\Delta_{1}^{*}$ and $B^{*} = \Delta_{2}^{*} + b\Delta_{3}^{*}$
 $A^{*} + A^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + B^{*} + (-1) = 32(1 + b^{4})$
 $A^{*} + (-1) = 32(1 + b^{4})$
 A^{*}

JFD MH talk (1990):Hadamard Groups of order 64

23

1990 Marshall Hall Conference.

1991-1997

• Smith-Liebler: $M_{64} \in \mathcal{H}$

1991-1997

• Smith-Liebler: $M_{64} \in \mathcal{H}$

• Davis-Smith: $\mathbb{Z}_{2^{s+3}} \rtimes_{2^{s+2}+1} \mathbb{Z}_{2^{s-1}} \in \mathcal{H}$

1991-1997

- Smith-Liebler: $M_{64} \in \mathcal{H}$
- $\bullet \ \ \mathsf{Davis\text{-}Smith:} \ \ \mathbb{Z}_{2^{s+3}} \rtimes_{2^{s+2}+1} \mathbb{Z}_{2^{s-1}} \in \mathcal{H}$
- Davis-liams: $\mathbb{Z}_{2^{3t+2}}
 times_{2^{2t+2}+1} \mathbb{Z}_{2^t} \in \mathcal{H}$

1991-1997

- Smith-Liebler: $M_{64} \in \mathcal{H}$
- $\bullet \ \, \mathsf{Davis\text{-}Smith} \colon \, \mathbb{Z}_{2^{s+3}} \rtimes_{2^{s+2}+1} \mathbb{Z}_{2^{s-1}} \in \mathcal{H}$
- Davis-liams: $\mathbb{Z}_{2^{3t+2}}
 times_{2^{2t+2}+1} \mathbb{Z}_{2^t} \in \mathcal{H}$
- liams, Davis-Jedwab, et al

Test	Hadamard	non-Hadamard	?
Start	_	_	267

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT	_	8	259

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
	•	•	•

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
[G:H]=4	233	8	26
<u>-</u>	'	•	1

Status Report for |G| = 64

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
[G:H]=4	233	8	26
transfers	258	8	1
	'	'	

Status Report for |G| = 64

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
[G:H]=4	233	8	26
transfers	258	8	1
M ₆₄	259	8	0

Status Report for |G| = 64

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
[G:H]=4	233	8	26
transfers	258	8	1
M ₆₄	259	8	0

Contributors include Jim Davis, Ken Smith

Status Report for |G| = 64

Test	Hadamard	non-Hadamard	?
Start		_	267
TBDT		8	259
H4H16	166	8	93
[G:H]=4	233	8	26
transfers	258	8	1
M ₆₄	259	8	0

Contributors include Jim Davis, Ken Smith and Bob Liebler!

Thanks for help!:

Thanks for help!: Al Schwartz

Thanks for help!: Al Schwartz Joe Bohanon

Thanks for help!: Al Schwartz Joe Bohanon

Test	Hadamard	non-Hadamard	?
Start	_	_	56092

Thanks for help!: Al Schwartz Joe Bohanon

Test	Hadamard	non-Hadamard	?
Start		_	56092
TBDT		43	56049
		•	

Thanks for help!: Al Schwartz Joe Bohanon

Test	Hadamard	non-Hadamard	?
Start		_	56092
TBDT		43	56049
$E_{16} \triangleleft G$	42268	43	13781
		'	ı

Thanks for help!: Al Schwartz Joe Bohanon

Hadamard	non-Hadamard	?
	_	56092
	43	56049
42268	43	13781
48921	43	7128
1	!	ı
	— — 42268	— — 43 42268 43

Thanks for help!: Al Schwartz Joe Bohanon

Status Report for |G| = 256

Test	Hadamard	non-Hadamard	?
Start	_	_	56092
TBDT		43	56049
$E_{16} \triangleleft G$	42268	43	13781
H4H64	48921	43	7128
H16H16	51752	43	4297
	1	ı	

Thanks for help!: Al Schwartz Joe Bohanon

Test	Hadamard	non-Hadamard	?
Start		_	56092
TBDT		43	56049
$E_{16} \triangleleft G$	42268	43	13781
H4H64	48921	43	7128
H16H16	51752	43	4297
[G:H]=4	55254	43	795
	•	•	,

Thanks for help!: Al Schwartz Joe Bohanon

Status Report for |G| = 256

	•	1 1	
Test	Hadamard	non-Hadamard	?
Start		_	56092
TBDT		43	56049
$E_{16} \triangleleft G$	42268	43	13781
H4H64	48921	43	7128
H16H16	51752	43	4297
[G:H]=4	55254	43	795
transfers	?	43	?
	'	•	

Thanks for help!: Al Schwartz Joe Bohanon

Status Report for |G| = 256

Test	Hadamard	non-Hadamard	?
Start		_	56092
TBDT		43	56049
$E_{16} \triangleleft G$	42268	43	13781
H4H64	48921	43	7128
H16H16	51752	43	4297
[G:H]=4	55254	43	795
transfers	?	43	?
regs	?	43	?

Let's all work together on this!

Surely there are known results/techniques I have not yet incorporated

Let's all work together on this!

 Surely there are known results/techniques I have not yet incorporated e.g. Davis-Jedwab "building sets, etc."

- Surely there are known results/techniques I have not yet incorporated e.g. Davis-Jedwab "building sets, etc."
- Surely when we look at the groups that are left we will discover new theorems!

- Surely there are known results/techniques I have not yet incorporated e.g. Davis-Jedwab "building sets, etc."
- Surely when we look at the groups that are left we will discover new theorems!
- Such work could well lead to a complete classification of Hadamard 2-groups!

- Surely there are known results/techniques I have not yet incorporated e.g. Davis-Jedwab "building sets, etc."
- Surely when we look at the groups that are left we will discover new theorems!
- Such work could well lead to a complete classification of Hadamard 2-groups!
- Let's do it to honor the memory of Bob Liebler! :)

Thanks to ...

Thanks to ...

• Allan Schwartz

Thanks to ...

• Allan Schwartz for the beautiful matrices! :)

Thanks to ...

- Allan Schwartz for the beautiful matrices! :)
- John Cannon and MAGMA:)

```
Thanks to . . .
```

- Allan Schwartz for the beautiful matrices! :)
- John Cannon and MAGMA:)
- Joe Bohanon

Thanks to . . .

- Allan Schwartz for the beautiful matrices! :)
- John Cannon and MAGMA :)
- Joe Bohanon for independently checking the SmallGroups! :)