Семинар по теме " Момент силы и момент импульса. Уравнение моментов для одной материальной точки и для системы материальных точек. Момент импульса и сил относительно неподвижной оси."

Теория:

Для описания динамики вращения нам потребуется новые понятий, а именно: момент импульса и момент силы. Каждый из указанных моментов может быть двух видов: момент относительно центра и относительно оси.

Момент импульса и момент силы относительно центра

Пусть $\vec{\mathbf{r}}$ — радиус-вектор материальной точки m , движущейся с импульсом $\vec{\mathbf{p}}$ (см. рис. 1a). Момент импульса $\vec{\ell}$ этой материальной точки относительно центра (точки) O определим соотношением

$$\vec{\ell} = \vec{\mathbf{r}}; \vec{\mathbf{p}} . \tag{1}$$

Рис. 1. К определению моментов относительно центра O: a) $\vec{\ell}$ — момент импульса материальной точки m; б) $\vec{\mathbf{M}}$ — момент силы $\vec{\mathbf{F}}$, приложенной в точке P.

Момент импульса $\vec{\mathbf{L}}$ относительно центра O для системы из N материальных точек с радиус-векторами $\vec{\mathbf{r}}_i$ и импульсами $\vec{\mathbf{p}}_i$ (i=1, 2, ..., N) складывается из моментов импульса отдельных точек:

$$\vec{\mathbf{L}} = \sum_{i=1}^{N} \vec{\ell}_i = \sum_{i=1}^{N} \vec{\mathbf{r}}_i; \vec{\mathbf{p}}_i . \tag{2}$$

По аналогии с моментом импульса введем момент силы. Пусть сила $\vec{\mathbf{F}}$ приложена в точке P с радиус-вектором $\vec{\mathbf{r}}$ (см. рис. 16). Тогда момент силы относительно центра O — вектор

$$\vec{\mathbf{M}} = \begin{bmatrix} \vec{\mathbf{r}}; \vec{\mathbf{F}} \end{bmatrix} \tag{3}$$

Если на некоторое тело действует несколько сил: $\vec{\mathbf{F}}_j$ (j=1, 2, ..., n), то главным моментом сил называется векторная сумма моментов отдельных сил:

$$\vec{\mathbf{M}} = \sum_{j=1}^{n} \vec{\mathbf{M}}_{j} = \sum_{j=1}^{n} \left[\vec{\mathbf{r}}_{j}; \vec{\mathbf{F}}_{j} \right]. \tag{4}$$

Здесь $\vec{\mathbf{r}}_i$ — радиус-вектор точки приложения силы $\vec{\mathbf{F}}_i$.

2 Законы изменения и сохранения момента импульса материальной точки относительно центра

Пусть $\vec{\mathbf{F}}$ – результирующая сила, приложенная к материальной точке m . Рассмотрим производную по времени от момента (5) импульса точки:

$$\frac{d\vec{\ell}}{dt} = \left[\frac{d\vec{\mathbf{r}}}{dt}; \vec{\mathbf{p}}\right] + \left[\vec{\mathbf{r}}; \frac{d\vec{\mathbf{p}}}{dt}\right]$$
 (5)

Первый сомножитель в первом слагаемом правой части этого уравнения — скорость материальной точки: $\frac{d\vec{\mathbf{r}}}{dt} = \vec{\mathbf{v}}$. Импульс — вектор, сонаправленный со скоростью. Векторное произведение сонаправленных векторов, равно нулю, следовательно,

$$\left[\frac{d\vec{\mathbf{r}}}{dt};\vec{\mathbf{p}}\right] = \vec{\mathbf{v}};\vec{\mathbf{p}} = 0 \tag{6}$$

По второму закону Ньютона $\frac{d\vec{\mathbf{p}}}{dt} = \vec{\mathbf{F}}$. Учитывая это и определение момента силы, преобразуем уравнения (5) к виду

$$\frac{d\vec{\ell}}{dt} = \left[\vec{\mathbf{r}}; \frac{d\vec{\mathbf{p}}}{dt}\right] = \left[\vec{\mathbf{r}}; \vec{\mathbf{F}}\right] = \vec{\mathbf{M}}$$
 (7)

Таким образом, *производная по времени от момента импульса точки равна моменту результирующей силы* (закон изменения момента импульса материальной точки).

В том случае, когда момент результирующей силы равен нулю, из закона (7) следует, что момент импульса точки должен сохраняться:

$$\vec{\mathbf{M}} = 0 \quad \Rightarrow \quad \frac{d\vec{\ell}}{dt} = 0 \quad \Rightarrow \vec{\ell} = \text{const}. \tag{8}$$

3 Законы изменения и сохранения момента импульса системы МТ

Моментом импульса $\vec{\mathbf{L}}$ относительно центра (точки) O для системы MT называется векторная сумма моментов отдельных MT относительно O:

$$\vec{\mathbf{L}} = \sum_{i=1}^{N} \vec{\ell}_i = \sum_{i=1}^{N} \vec{\mathbf{r}}_i; \vec{\mathbf{p}}_i . \tag{9}$$

Здесь индекс i = 1, 2, ..., N нумерует МТ, $\vec{\mathbf{r}}_i$ и $\vec{\mathbf{p}}_i$ — радиус-векторы и импульсы отдельных МТ.

Продифференцировав уравнение (9), получим:

$$\frac{d\vec{\mathbf{L}}}{dt} = \sum_{i=1}^{N} \frac{d\vec{\ell}_i}{dt} = \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} \vec{\mathbf{M}}_{ij} + \sum_{i=1}^{N} \vec{\mathbf{M}}_{i}^{(ex)}$$
(10)

Здесь $\vec{\mathbf{M}}_{ij}$ — момент силы, действующей на i-тую МТ со стороны j-той, $\vec{\mathbf{M}}_i^{(\mathrm{ex})}$ — момент результирующей внешних сил, действующий на i-тую МТ.

Двойная сумма $\sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \vec{\mathbf{M}}_{ij}$ в уравнении (10) может быть разбита

на суммы пар моментов сил $\vec{\mathbf{M}}_{ij} + \vec{\mathbf{M}}_{ji}$, с которыми i-тая и j-тая МТ действуют друг на друга. Пара моментов $\vec{\mathbf{M}}_{ij}$ и $\vec{\mathbf{M}}_{ji}$ с учетом третьего закона Ньютона ($\vec{\mathbf{F}}_{ij} = -\vec{\mathbf{F}}_{ji}$) при сложении обращается в нуль:

$$\vec{\mathbf{M}}_{ij} + \vec{\mathbf{M}}_{ji} = \begin{bmatrix} \vec{\mathbf{r}}_i; \vec{\mathbf{F}}_{ij} \end{bmatrix} + \begin{bmatrix} \vec{\mathbf{r}}_j; \vec{\mathbf{F}}_{ji} \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{r}}_j - \vec{\mathbf{r}}_i; \vec{\mathbf{F}}_{ji} \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{r}}_{ji}; \vec{\mathbf{F}}_{ji} \end{bmatrix} = 0.$$
 (11)

Рис. 2 Силы взаимодействия *i*-той и *j*-той МТ $\vec{\mathbf{F}}_{ij}$ и $\vec{\mathbf{F}}_{ji}$ коллинеарны вектору, соединяющему МТ.

Как правило, между МТ действуют центральные силы, в этом случае последнее векторное произведение в формуле (11) равно нулю, т.к. вектор $\vec{\mathbf{F}}_{ji}$ коллинеарен вектору $\vec{\mathbf{r}}_{ji}$, соединяющему i-тую и j-тую МТ (см рис. 2). Из (11) следует

$$\sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \vec{\mathbf{M}}_{ij} = 0, \qquad (12)$$

поэтому окончательно из уравнения (10) получаем

$$\frac{d\vec{\mathbf{L}}}{dt} = \sum_{i=1}^{N} \vec{\mathbf{M}}_{i}^{(\text{ex})} \,. \tag{13}$$

Сумма моментов внешних сил в правой части равенства называется главным моментом сил относительно центра (точки) О. Уравнение выражает закон изменения момента импульса относительно центра (точки) О для системы МТ: скорость изменения момента импульса системы равна главному моменту сил.

В том случае, если главный момент сил отсутствует, из уравнения следует закон сохранения момента импульса:

$$\vec{\mathbf{L}} = \text{const}$$
 при условии $\vec{\mathbf{M}}^{\text{ex}} = 0$. (14)

4 Момент импульса МТ и момент силы относительно оси

Рассмотрим МТ m, движущуюся с импульсом \vec{p} (см. рис. 3). Моментом импульса l_z МТ относительно оси Oz (осевым моментом импульса МТ) называется проекция вектора момента импульса $\vec{\ell}$ на ось Oz . Эта проекция может быть вычислена по формуле

$$l_z = \vec{\ell}_z = \pm p_\perp d_p, \tag{15}$$

где p_{\perp} — проекция импульса на плоскость, перпендикулярную оси, d_p — расстояние от оси Oz до прямой, проходящей через MT в направлении p_{\perp} (линии действия импульса p_{\perp}). Расстояние d_p называется $nne-uom\ umnynьca$. Знак в формуле (15) определяется следующим образом: если вращению MT вокруг оси Oz по правилу правого винта соответствует поступательное движение в направлении оси Oz, то выбирается знак «+», иначе выбирается знак «-».

Рис. 3 К определению момента импульса МТ относительно оси *Oz* .

Аналогично вводится момент силы относительно оси (осевой момент силы). Для силы $\vec{\mathbf{F}}$, приложенной в точке A, момент силы относительно оси Oz (см. рис. 4) вычисляется по формуле

Рис. 4 К определению момента силы $\vec{\mathbf{F}}$ относительно оси Oz.

$$M_z = \vec{\mathbf{M}}_z = \pm F_\perp d_F \,, \tag{16}$$

где F_{\perp} — проекция силы на плоскость, перпендикулярную оси, d_F — расстояние от оси Oz до прямой, проходящей через точку A в направлении действия F_{\perp} (линии действия силы F_{\perp}). Расстояние d_F называется *плечом силы*, Если вращению под действием силы F_{\perp} вокруг оси Oz по правилу правого винта соответствует поступательное движение в направлении оси Oz, то выбирается знак «+», иначе выбирается знак «-». Заметим, что перенос точки приложения силы вдоль линии действия силы не изменяет осевого момента силы.

Из закона изменения вектора момента импульса МТ следует закон изменения осевого момента импульса:

$$\frac{dl_z}{dt} = M_z. ag{17}$$

Задачи:

- Центрифуга ЦФ-18 в Гагаринском центре для подготовки космонавтов имеет длину плеча 18 метров и массу вращающейся части 300 тонн. Её скорость может достигать 70 оборотов в минуту. Найдите момент импульса этой центрифуги относительно её оси вращения.
- 2. Момент силы, необходимый при закручивании гайки относительно оси вращения О, равен 10 Н *м. На каком расстоянии (5 см или 10 см) от оси вращения О нужно приложить силу к рукоятке гаечного ключа, чтобы сила при закручивании гайки была меньше (и какова будет величина этой силы)?
- 3. Планета движется вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце. Доказать, что момент импульса (момент количества движения) \vec{L} планеты относительно Солнца есть величина постоянная.
- 4. Небольшой шарик массы m, привязанный на нити длины l к потолку в точке O, движется по горизонтальной окружности с постоянной угловой скоростью ω . Относительно каких точек момент импульса M шарика остается постоянным? Найти модуль приращения вектора момента импульса шарика относительно точки O за половину оборота.
- 5. Шарик массы m, двигавшийся со скоростью v_0 , испытал упругое лобовое соударение с одним из шариков покоившейся жесткой гантели. Масса каждого шарика гантели равна m/2, расстояние между ними l. Пренебрегая размерами шариков, найти собственный момент импульса М гантели после соударения, т.е. момент импульса в поступательно движущейся системе отсчета, связанной с центром инерции гантели.