

Text-guide Zero-Shot Face Multi-attribute Using Diffusion Model AutoEncoder

Dongxu Yue¹
¹Peking University

Motivation

The diffusion model has powerful image generation and modification capabilities, comprehensively outperforming GAN-based approaches in image generation tasks. Recently, some methods based on GAN and CLIP have emerged for zero-shot image manipulation, but these methods have poor realizations and poor reconstructions when manipulating real images. Therefore, we propose a diffusion autoencoder-based method that enables attribute manipulation with text.

Our contributions:

- we propose a novel diffusion based manipulation method a CLIP-guided robust zero-shot method operating in latent space.
- We have designed three different manipulation schemes with their own advantages and disadvantages.

Method

Diffusion Autoencoders Architecture

Encode any image into a two-part latent code where the first part is semantically meaningful and linear, and the second part captures stochastic details, allowing near-exact reconstruction.

Attribute manipulation in hidden space

Attribute manipulation with linear classifier

By finding such a direction from the weight vector of a linear classifier trained on latent codes of negative and positive images of a target attribute consequently changes the semantic attribute in the image.

Image manipulation FID score

Mode	Model	Male	Smiling	Wavy Hair	Young	Blond Hair
Positive vs negative		95.82	11.15	25.04	36.75	39.65
Manipulated vs. positive	Ours	52.85	9.19	20.80	20.68	33.51
	StyleGAN- \mathcal{W}	42.90	18.52	27.10	31.15	33.89
Manipulated vs. negative	Ours	23.15	7.25	4.89	11.81	6.79
	StyleGAN-W	66 92	22 15	20.70	31 15	27.54

> Strategy 1

Optimize the latent space directly with CLIP-loss

> Strategy 2

Optimize DDIM with CLIP-loss

Similar to strategy 1, but instead of the hidden space, CLIP-loss optimizes the DDIM, i.e., the decoder part.

A woman with curl hair

> Strategy 3

Design an MLP

State-of-the-art

performance

- The inputs to MLP are latent code and Bert's encoding of Text, respectively.
- Bert was first finetuned with a single attribute and then for multi-attribute training afterwards.
- Only one training session required.

Multi-attribute manipulation

A man wearing a hat and smiling