01:XXX:XXX - Homework n

Pranav Tikkawar

October 25, 2024

Missed notes: Counting processes $\{N(t), t >= 0\}$ They follow 3 properties:

- 1. $N(t) \ge 0$
- 2. N(t) is integer valued
- 3. N(t) is monotone increasing

$$N(t): R \to N$$

Monotone increasing function of t

$$N(t) - N(s) =$$
Number of events in $(t, s]$

Little o notation

A function f is said to be little o o(h) if

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

eg: $f(h) = h^2$ is little o(h)

If u add two function in little o(h) then it is still little o(h)

Definition: A counting process $\{N(t), t \ge 0\}$ is a Poisson process if:

- 1. N(0) = 0
- 2. The number of events in disjoint intervals are independent.
- 3. $P(N(t+h) N(t) = 1) = \lambda h + o(h)$ where λ is the rate of the Poisson process. (this mean it is dependant on the length of the interval)
- 4. $P(N(t+h) N(t) \ge 2) = o(h)$

Lemma 5.1:

Let $\{N(t), t \ge 0\}$ be a Poisson process. Define $\{N_s(t), t \ge 0\}$ by $N_s(t) = N(s+t) - N(s)$ Then $\{N_s(t), t \ge 0\}$ is a Poisson process with rate λ

Proof:

$$N_{s}(0) = N(s+0) - N(s) = 0$$

$$(a,b) \cap (c,d) = \emptyset$$

$$P(N_{s}(b) - N_{s}(a) = x, N_{s}(d) - N_{s}(c) = y)$$

$$P(N(b-s) - N(a-s) = x, N(d-s) - N(c-s) = y)$$

$$P(N(b-s) - N(a-s) = x)P(N(d-s) - N(c-s) = y)$$

$$P(N_{s}(b) - N_{s}(a) = x)P(N_{s}(d) - N_{s}(c) = y)$$

Thus disjoint intervals are independent.

$$P(N_s(t+h) - N_s(t) = 1) = P(N(s+t+h) - N(s+t) = 1)$$

We assume N has stationary increments.

$$P(N(s+t+h) - N(s+t) = 1) = P(N(t+h) - N(t) = 1) = \lambda h + o(h)$$

Lmma 5.2:

Let $T_1 = min(t > 0 : N(t) = 1)$

it is time of arrival

 T_1 is exponentially distributed with rate λ

Proof:

$$P_0(t) = P(N(t) = 0)$$

$$P_0(t+h) = P(N(t) = 0, N(t+h) - N(t) = 0)$$

$$P_0(t+h) = P(N(t) = 0)P(N(t+h) - N(t) = 0)$$

$$P_0(t+h) = P_0(t)(1 - \lambda h - 2o(h))$$

note that -2o(h) = o(h) cuz it basically 0

$$P_0(t+h) = P_0(t) - \lambda h P_0(t) + o(h) P_0(t)$$

$$\frac{dP_0(t)}{t} = -\lambda P_0(t) + 0$$

This solves to with IC $P_0(0) = 1$

$$P_0(t) = e^{-\lambda t}$$

Define:

 $T_n forn \ge 1$ is the time between the $(n-1)^t h$ and $n^t h$ arrival.

Proposition 5.4:

 T_1, T_2, \ldots are independent and exponentially distributed with rate λ

Proof:

Rea book.

Remark:

Define $S_n = \sum_{i=1}^n T_i$

From last time, S_n has a gamma distribution with parameters n and λ

$$f_{S_n}(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}$$

Theoremm 5.1

If $\{N(t), t \geq 0\}$ is a Poisson process with parameter λ then N(t) is a poisson random variable with parameter λt

Proof:

$$P(N(t) = n) = \int_0^\infty P(N(t) = n | S_n = t) \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!} dt$$

$$= P(T_{n+1} = t - s | T_1 + T_2 + \dots + T_n = s)$$

$$= P(T_{n+1} = t - s)$$

$$= \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

Example

Let $\{N(t), t \ge 0\}$ be a Poisson process with rate $\lambda = \frac{1}{3}$ Find:

a)
$$P(N(5) > N(3))$$

This means there are > 0 events in (3, 5]

$$P(N(5) > N(3)) = 1 - P(N(5) - N(3) = 0)$$
$$= 1 - P(N(2) = 0)$$
$$= 1 - e^{-\frac{2}{3}}$$

b)
$$P({N(4) = 1}, {N(5) = 3})$$

c)
$$E(N(5)|N(3) = 2)$$

d)
$$E(T_b|N(3) = 4)$$

Last time we finished 5.3.2 + examples

5.3.3 Further thinning of a poisson process.

Suppose $\{N(t), t \geq 0\}$ is a Poisson process with rate λ

There are events of 2 types: 1 w/ probability p and 2 w/ probability 1-p

Write $N_1(t)$ for the number of type 1 events in (0, t]

 $N_2(t)$ for the number of type 2 events in (0,t]

textbfProposition 5.5

 $\{N_1(t), t \geq 0\}$ is a Poisson process with rate $p\lambda$ and $\{N_2(t), t \geq 0\}$ Poisson process with rate $(1-p)\lambda$

Compound Poisson process

Suppose random variables are iid with disstribution F with mean μ and variance σ^2 The non-negative integer valued random variable $S = \sum_{i=1}^{N} X_i$ is called a compound Poisson random variable.

Conditional Variance formula

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

If N is a poison random variable with parameter λ then:

$$Var(S) = \lambda \sigma^2 + \mu^2 \lambda$$

Read example 5.27

1 add Missed info

yes

2 10/25

$$P_{j} = \lim_{t \to \infty} P_{ij}(t)$$
$$0 = \sum_{k \neq j} q_{kj} P_{k} - v_{j} P_{j}$$

Read remarks of page 395

Example. Limiting probability: P_j for the Birth-Death process with birth rate λ_j and death rate μ_j

Write the balance equations for P_j

$$\lambda_0 P_0 = \mu_1 P_1$$

$$(\lambda_1 + \mu_1) P_1 = \lambda_0 P_0 + \mu_2 P_2$$

$$(\lambda_n + \mu_n) P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1}$$

We can now go into canceling.

$$\lambda_1 P_1 = \mu_2 P_2$$

$$P_2 = \frac{\lambda_1}{\mu_2} P_1 = \frac{\lambda_1 \cdot \lambda_0}{\mu_2 \cdot \mu_1}$$

$$P_n = \frac{\lambda_{n-1} \cdot \lambda_{n-2} \dots \lambda_0}{\mu_{n+1} \cdot \mu_{n+1} \cdot \mu_{n+1}} P_0$$

Use $\sum_{j=0}^{\infty} P_j = 1$ to find limiting probability

$$1 = P_0 + P_0 \sum_{n=1}^{\infty} \frac{\lambda_{n-1} \cdot \lambda_{n-2} \dots \lambda_0}{\mu_{n+1} \cdot \mu_n \dots \mu_1}$$
$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \frac{\lambda_{n-1} \cdot \lambda_{n-2} \dots \lambda_0}{\mu_{n+1} \cdot \mu_n \dots \mu_1}}$$

We need the infinite sume to be finite for it to be a valid probability.

Read Examples 6.13, 6.14, 6.15 and skip 6.16

Chapter 6.6 Time reversibility

If limiting probabilities exist, a CTMC is called ergodic.

Consider an ergotic CTMC that has been running a long time.

First look at the embedded discrete time markov chain. (forget the time spent in each state. Just look at the transitions)

Let π_i be the limiting probability of being in state i of the embedded chain.

Recall that $\pi_1 = \sum_j \pi_j P_{ji}$ and $\sum_i \pi_1 = 1$ Note that π_i is the proportion of transitions

Recall tha $\frac{1}{v_i}$ mean time spent in state i

Claim P_i is the proportion of time the CTMC is in state i more precisely $P_i = \frac{\pi_i/v_i}{\sum_i \pi_i/v_j}$

Verification:

Know $v_i P_i = \sum_{j \neq i} P_j q_{ji} = \sum_{j \neq i} P_j v_j P_{ji} = \sum_j P_j v_j P_{ji}$ Through some more manufulation we can see that this can only be satisfied by π_i

Time reversibility:

Reversing a CTMC Assume the process has been running a long time. Observe it backwards. Pg 402