LECTURE 2 MIRROR SYMMETRY

LECTURE: PROFESSOR BERND SIEBERT NOTES: JACKSON VAN DYKE

1. Quintic 3-folds

We will be looking at quintic 3-folds $V\left(5\right)\subset\mathbb{P}^{4}$ given by $Z\left(f\right)$ for some homogeneous degree 5 polynomial.

Theorem 1. For X a projective CY manifold then the moduli space of CY deformation-equivalent to X is a smooth space of dimension $h^1(\Theta_X)$.

By an elementary argument we saw that dim $\mathcal{M}_{V(5)} = 101$.

1.1. Computation of $H^1(\Theta_X)$. We will compute in the case $X = V(5) \subset \mathbb{P}^4$. We start with the Euler sequence. We have $\mathbb{P}^4 = \operatorname{Proj} \mathbb{C}[x_0, \dots, x_4]$ and

$$x_i \partial_{x_i} = x_i \frac{\partial}{\partial x_i}$$

are well-define logarithmic vector fields. Then the sequence is

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^4} \longrightarrow \mathcal{O}_{\mathbb{P}^4} \left(1\right)^{\oplus 5} \longrightarrow \Theta_{\mathbb{P}^4} \longrightarrow 0$$

$$1 \longmapsto \sum e_i$$

$$e_i \longmapsto x_i \partial_{x_i}$$

Then we have the conormal sequence

$$0 \longrightarrow \mathcal{I}/\mathcal{I}^2 \longrightarrow \Omega^1_{\mathbb{P}^4} \Big|_X \xrightarrow{\operatorname{res}_x} \Omega^1_X \longrightarrow 0$$

where \mathcal{I} is the ideal sheaf of X. This is dual to

$$(1) 0 \longrightarrow \Theta_X \longrightarrow \Theta_{\mathbb{P}^4}|_{Y} \longrightarrow N_{X/\mathbb{P}^4} \simeq \mathcal{O}_{\mathbb{P}^4} (5) \longrightarrow 0$$

 $\mathcal{I}/\mathcal{I}^2$ can be computed because $\mathcal{I} \simeq \mathcal{O}(-5)$. The restriction sequences are:

$$(2) 0 \longrightarrow \mathcal{O}_{\mathbb{P}^4} (-5) \longrightarrow \mathcal{O}_{\mathbb{P}^4} \longrightarrow \mathcal{O}_X \longrightarrow 0$$

$$(3) 0 \longrightarrow \Theta_{\mathbb{P}^4} (-5) \longrightarrow \Theta_{\mathbb{P}^4} \longrightarrow \Theta_{\mathbb{P}^4}|_{Y} \longrightarrow 0$$

Date: September 3, 2019.

Now (1) gives us

$$H^{0}(\Theta_{X}) \longrightarrow H^{0}(\Theta_{\mathbb{P}^{4}}|_{X}) \longrightarrow H^{0}(\mathcal{O}_{\mathbb{P}^{4}}(5)) \longrightarrow H^{1}(\Theta_{X}) \longrightarrow H^{1}(\Theta_{\mathbb{P}^{4}}|_{X})$$

$$\parallel \qquad \qquad \simeq \uparrow \qquad \qquad \parallel \qquad \qquad \simeq \uparrow \qquad \qquad \parallel \qquad \qquad 0$$

$$0 \qquad \mathbb{C}^{24} \qquad \mathbb{C}^{125} \qquad \mathbb{C}^{101} \qquad \qquad 0$$

For $H^1(\Theta_{\mathbb{P}^4}|_X)$, (3) give us:

$$H^{1}\left(\Theta_{\mathbb{P}^{4}}\right) \longrightarrow H^{1}\left(\left.\Theta_{\mathbb{P}^{4}}\right|_{X}\right) \longrightarrow H^{2}\left(\Theta_{\mathbb{P}^{4}}\left(-5\right)\right) \ .$$

The Euler sequence gives us:

$$H^{1}\left(\mathcal{O}_{\mathbb{P}^{4}}\left(1\right)\right)^{\oplus 5} \longrightarrow H^{1}\left(\Theta_{\mathbb{P}^{4}}\right) \longrightarrow H^{2}\left(\mathcal{O}_{\mathbb{P}^{4}}\right)$$

$$\parallel$$

$$0$$

then we can tensor the Euler sequence with $\mathcal{O}(-5)$ to get

$$H^{i}\left(\mathcal{O}_{\mathbb{P}^{4}}\left(-4\right)\right) \longrightarrow H^{i}\left(\Theta_{\mathbb{P}^{4}}\left(-5\right)\right) \longrightarrow H^{i}\left(\mathcal{O}_{\mathbb{P}^{4}}\right)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 = \longrightarrow 0 \longleftarrow 0$$

For $H^0(\mathcal{O}_{\mathbb{P}^4}(5)|_X)$ we can tensor (2) with $\mathcal{O}(5)$ to get

Now for $H^0(\Theta_{\mathbb{P}^4}|_X)$ we have that (3) gives us

Then the result is that:

$$h^{1}(\Theta_{X}) = 101$$
.

2. Hodge diamond

Let X be a compact Kähler manifold. Recall we have the Dolbeault cohomology $H^{i,j}_{\bar{\partial}}$ is the cohomology of the sequence

$$\mathcal{A}^{i,j} \xrightarrow{\bar{\partial}} \mathcal{A}^{i,j+1}$$

where this looks like

$$\sum h_{\mu\nu} dz_{\mu_1} \wedge \ldots \wedge dz_{\mu_i} \wedge d\bar{z}_{\nu_1} \wedge \ldots \wedge d\bar{z}_{\nu_j}$$

where the $h_{\mu\nu} \in \mathcal{C}^{\infty}$.

Then we have the following facts:

(1) We have a canonical isomorphism from the Dolbeault cohomology

$$H_{\bar{\partial}}^{i,j}=H^{j}\left(X,\Omega_{X}^{i}\right)=\overline{H_{\bar{\partial}}^{j,i}}$$

which implies

$$\dim H_{\bar{\partial}}^{i,j} = h_{ij} = h_{ji} .$$

(2)

name

$$H^{n-i,n-j}_{\bar{\partial}} = H^{n-j}\left(X,\Omega_X^{n-i}\right) = {}^1H^j\left(X,K_X\otimes \left(\mathcal{O}_X^{n-i}\right)^*\right)^*H^{i,j}_{\bar{\partial}}$$

which, in particular, means $h_{ij} = h_{n-i,n-j}$.

(3)

$$H^{k}\left(X,\mathbb{C}\right)=H_{dR}^{k}\left(X\right)=\bigoplus_{i+j=k}H_{\bar{\partial}}^{i,j}\ .$$

Recall $b_i = \dim_{\mathbb{C}} H^k(X, \mathbb{C})$. For CY *n*-folds, $b_1 = 0$ by the definition of CY. This implies $h_{10} = h_{01} = 0$. Moreover

$$H^{n,0} = H^0\left(X, \underbrace{K_X}_{\mathcal{O}_X}\right) \simeq \mathbb{C} .$$

This implies that

$$h_{n,0} = h_{0,n} = 1$$
.

We say a CY is irreducible if the universal cover $\tilde{X} \to X$ is not a nontrivial product of CY. This is equivalent to $H^{k,0} = 0$ for k = 1, ..., n-1.

Counterexample 1. The product $K3 \times K3$ is not irreducible.

3. Hodge diamond

The hodge diamond is the following:

$$h_{33}$$
 $\leftarrow H^6$
 h_{23} h_{32} $\leftarrow H^5$
 h_{13} h_{22} h_{31} \vdots
 h_{01} h_{12} h_{21} h_{30}
 h_{02} h_{11} h_{20}
 h_{01} h_{00}

The only interesting part is the center:

¹By Serre duality

since

$$H^1\left(\Theta_X\right) = H^1\left(\Theta_X \otimes \underbrace{K_X}_{\mathcal{O}_X}\right) = H^1\left(\mathcal{O}_X^{n-1}\right) = H^{n-1,1}.$$

So the question is reduced to making these calculations. In the V(5) case $h_{21} = 101$ as we saw.

3.1. **Lefschetz theorem on** (1,1)-**classes.** Now we work at the generality of compact Kähler manifolds. The Néron-Severi group NS(X), is the preimage of $H^{1,1}$ under $H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{C})$. So somehow morally $NS(X) = H^2(X,\mathbb{Z}) \cap H^{1,1}$. Now we have the exponential sequence of abelian sheaves:

$$1 \longrightarrow \underline{\mathbb{Z}} \xrightarrow{\cdot 2\pi i} \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}_X^{\times} \longrightarrow 1$$

$$\begin{array}{ccc} H^{1}\left(X,\mathbb{Z}\right) \longrightarrow H^{1}\left(X,\mathcal{O}_{X}\right) \longrightarrow H^{1}\left(X,\mathcal{O}_{X}^{\times}\right) \longrightarrow H^{2}\left(X,\mathbb{Z}\right) \longrightarrow H^{2}\left(X,\mathcal{O}_{C}\right) \\ & \parallel & \parallel \\ & H^{0,1} & \operatorname{Pic}\left(X\right) \end{array}$$

So c_1 (Pic (X)) = NS(X).

Now we know how to compute $\operatorname{Pic}(X)$ for CY n-folds. In particular, as long as $n \geq 3$, $h_{11} = \operatorname{rank}_{\mathbb{Z}} NS(X)$ and $\operatorname{Pic}(X) \simeq NS(X)$ since $\operatorname{Pic}^{0}(X) = 0$ in the CY case.

3.2. Hard Lefschetz theorem. Let $X\subset \mathbb{P}^n$ be a Kähler manifold. This tells us that

$$H^{k}\left(\mathbb{P}^{n},\mathbb{Z}\right)\to H^{k}\left(X,\mathbb{Z}\right)$$

is an isomorphism for $k < n - 1 = \dim X$ and surjective for k = n - 1.

Now for a CY 3-fold we have $0 = H^1(\mathbb{P}^n, \mathbb{Z}) = H^1(X, \mathbb{Z})$ and $H^2(\mathbb{P}^n, \mathbb{Z}) \simeq \mathbb{Z} \to H^2(X, \mathbb{Z})$ which means $NS(X) \simeq \mathbb{Z}$. This is generated by the hyperplane class $c_1(\mathcal{O}(1))$ and then restricting to X gives the ample line bundle on X and this generates the group.

So today we learned that the interesting part of the diamond in the quintic case looks like $\,$

1

101 101

1

and then as it turns out, the mirror quintic will look like

101

1 1

101

so we have a huge Picard group.