School of Mathematics and Statistics MAST30030

Applied Mathematical Modelling

Problem Sheet 3. First-Order Partial Differential Equations

Question 1

For each of the following partial differential equations, indicate whether the equation is linear or nonlinear, homogeneous or inhomogeneous, and give its order:

- (a) $yu_{xx} + u_{yy} = 0$
- (b) $au_x^2 + 2bu_xu_{yy} + cu_y = 0$, where a, b and c are constants.

(c)
$$\frac{\partial \phi}{\partial x} \frac{\partial^2 \phi}{\partial y^2} = 1$$

(d)
$$\phi \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial \phi}{\partial y} = \frac{\partial^3 \phi}{\partial x \partial z^2}$$

- (e) Schrödinger equation: $i\hbar u_t + \frac{\hbar}{2m} \nabla^2 u = V(x, y, z)u$
- (f) Biharmonic equation: $\nabla^4 u = f(x, y)$
- (g) Eikonal equation: $u_x^2 + u_y^2 = n^2(x, y)$
- (h) Navier-Stokes equation: $\rho(\mathbf{u}_t + [\mathbf{u} \cdot \nabla]\mathbf{u}) = -\nabla p + \mu \nabla^2 \mathbf{u}, \ \nabla \cdot \mathbf{u} = 0$
- (i) Korteweg-de Vries equation: $u_t + 6uu_x + u_{xxx} = 0$
- (j) Black-Scholes equation: $u_t + \frac{1}{2}\sigma^2 x^2 u_{xx} + rxu_x ru = 0$

Question 2

Use the Method of Characteristics to solve:

$$\frac{\partial \phi}{\partial t} + 3 \frac{\partial \phi}{\partial x} = 0, \quad -\infty < x < \infty, \ t > 0$$

subject to the initial condition

$$\phi(x,0) = \begin{cases} 1, & x < 0 \\ 0, & x \ge 0 \end{cases}$$

Sketch the space-time diagram and the solutions for: (a) $\phi(x,1)$; (b) $\phi(x,2)$.

Question 3

Solve the partial differential equation

$$u_t + (xu)_x = 0$$
, $-\infty < x < \infty$, $t > 0$

subject to the initial condition

$$u(x,0) = g(x)$$

Question 4

Find the solution to the partial differential equation, $u_t + 2u_x = u + t$, $-\infty < x < \infty$, t > 0, with initial condition $u(x,0) = u_0(x)$.

Question 5

Consider the partial differential equation

$$\frac{\partial \phi}{\partial t} - \frac{\partial \phi}{\partial x} = 0, \quad -\infty < t < \infty, \ x > 0$$

- (a) Write down the equations of the characteristics for this equation.
- (b) Sketch the graph of a few typical characteristics in the xt-plane.
- (c) Could the solution contain a shock or a fan? Explain your answer.
- (d) Solve the equation for ϕ as a function of a characteristic, i.e., find the general solution.
- (e) Solve for ϕ subject to the boundary conditions

$$\phi(x,0) = A_0, \quad \phi(0,t) = B_0$$

where A_0 and B_0 are constants.

(f) Write down the value of ϕ at the point (3, -5).

Question 6

Solve the differential equation

$$\frac{\partial \phi}{\partial t} + \phi \frac{\partial \phi}{\partial x} = 0, \quad -\infty < x < \infty, \ t > 0$$

subject to the following initial conditions:

(a)
$$\phi(x,0) = \begin{cases} 1, & x < 0 \\ 0, & x \ge 0 \end{cases}$$

(b)
$$\phi(x,0) = \begin{cases} 0, & x < 0 \\ 1, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$$

In each case, sketch the space-time diagram and the solution $\phi(x,t)$ for various times t.

Question 7

Consider the nonlinear equation

$$\frac{\partial \phi}{\partial t} + \phi^2 \frac{\partial \phi}{\partial x} = 0, \quad -\infty < x < \infty, \ t \ge 0$$

(a) Solve the equation in the xt-plane, subject to the initial condition:

$$\phi(x,0) = \begin{cases} 0, & x < 0 \\ 2, & x \ge 0 \end{cases}$$

sketching the characteristics in the xt-plane and indicating any regions that contain a shock or a fan.

- (b) Solve for $\phi(x,t)$ in the fan region.
- (c) Find the value of ϕ at the point (1,2).