APPENDIX

A. Common Privacy Compression Scenario

Consider a typical PC scenario: Yang wants to use an image recognition service on a autonomous AI server provided by Wang on cloud while being cautious of potential privacy threats from malicious attackers. Yang minimizes exposure risks before sending the images to the cloud by applying a privacy compression mechanism to his healthcare images. Wang then processes the privatized images for his service. The central challenge of a PC system lies in balancing utility (the informational value of the utility service provider) and privacy (the information obtained by adversaries), which can be effectively analyzed using the information bottleneck theory. This analysis has led to the development of Differential Mutual Information (DMI) [1], [2], providing quantitative guidance for designing these mechanisms.

B. Define the Network Structure

"Conv1" refers to a single Conv block; "Conv2" indicates two Conv blocks; and "Conv3" represents three Conv blocks. Similarly, just like "Conv1," "ConvRes1" denotes a single ConvRes1 block. The same naming pattern applies to "De-Conv" and "De-ConvRes" blocks.

1) Conv block: The Conv block is shown in Figure 1. The

Model: "conv_block"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	multiple	1216
<pre>max_pooling2d (MaxPooling2D)</pre>	multiple	Θ

Fig. 1. Conv block

output unit for Conv1 is 6. The output unit for Conv2 is 16. 2) ConvRes block: The ConvRes block is shown in Figure 2. The output unit for ConvRes1 is 6. The output unit for

Layer (type) 	Output Shape	Param #
conv2d (Conv2D)	multiple	228
batch_normalization (BatchN ormalization)	multiple	12
conv2d_1 (Conv2D)	multiple	228
batch_normalization_1 (Batc hNormalization)	multiple	12
max_pooling2d (MaxPooling2D)	multiple	0

Fig. 2. ConvRes block

ConvRes2 is 16.

- *3) DeConv block:* The DeConv block is shown in Figure 3. The output unit for DeConvRes is 32 or 3.
- 4) DeConvRes block: The DeConvRes block is shown in Figure 4. The output unit for DeConvRes is 32 or 3.

Layer (type)	Output Shape	Param #
conv2d_transpose (Con nspose)	v2DTra multiple	448

Fig. 3. DeConv block

Layer (type)	Output Shape	Param #
conv2d_transpose (Conv2DTra nspose)	multiple	168
batch_normalization (BatchN ormalization)	multiple	24
conv2d_transpose_1 (Conv2DT ranspose)	multiple	330
batch_normalization_1 (Batc hNormalization)	multiple	24
<pre>conv2d_transpose_2 (Conv2DT ranspose)</pre>	multiple	24
======================================		

Fig. 4. DeConvRes block

C. Final Parameters

Just list final parameters for each dataset.

1) Final Parameters: Face Recognition: The final parameters for face recognition are shown in Table I.

TABLE I
PARAMETERS FOR FACE RECOGNITION

Symbol	AutoAgent1	AutoAgent2
PA_{DcNN}	DeConvRes3	DeConvRes3
η_{DcNN}	$3*10^{-3}$	$2*10^{-3}$
$\beta_{1,DcNN}$	0.9	0.8919
$\beta_{2,DcNN}$	0.9981	0.9993
$ ho_{RR}$	0.002	0.001
ρ_{NKR}	0.9952	0.9976
MD	2564	2058
Ker	RBF	RBF
σ_K	0.002	0.002
σ_P	1	4
PA_U	ResNet50V2	ResNet50V2
$\mid \eta_U$	$9*10^{-4}$	10^{-3}
$\beta_{1,U}$	0.9	0.8846
$\beta_{2,U}$	0.9973	0.9987
PA_{pc}	Conv2	Conv2
$\mid \eta_{pc} \mid$	10^{-3}	$2*10^{-3}$
$\beta_{1,pc}$	0.8394	0.895
$\beta_{2,pc}$	0.9959	0.9981
$ e ^n$	170	137
n	1	1

2) Final Parameters: Chest X-ray Recognition: The final parameters for X-ray recogniton are shown in Table II.

TABLE II
PARAMETERS FOR X-RAY RECOGNITION

~		
Symbol	AutoAgent1	AutoAgent2
PA_{DcNN}	DeConv2	DeConv2
η_{DcNN}	$5*10^{-4}$	$5*10^{-4}$
$\beta_{1,DcNN}$	0.8780	0.8566
$\beta_{2,DcNN}$	0.9981	0.9904
$ ho_{RR}$	0.003	0.001
ρ_{NKR}	0.0021	0.0007
MD	4312	4999
Ker	RBF	RBF
σ_K	0.003	0.003
σ_P	5	3
PA_U	ResNet50V2	ResNet50V2
$\mid \eta_U$	$9*10^{-4}$	10^{-3}
$\beta_{1,U}$	0.8163	0.8747
$\beta_{2,U}$	0.9876	0.9895
PA_{pc}	Conv2	Conv2
$\mid \eta_{pc} \mid$	$2*10^{-3}$	$8*10^{-4}$
$\beta_{1,pc}$	0.8531	0.8164
$\beta_{2,pc}$	0.9907	0.9680
$ e ^{n}$	113	86
$\mid n \mid$	2	1

3) Final Parameters: HAR Recognition: The final parameters for face recogniton are shown in Table III.

TABLE III
PARAMETERS FOR HAR RECOGNITION

Symbol	AutoAgent1	AutoAgent2
PA_{DcNN}	DeConv4	DeConv4
η_{DcNN}	$9*10^{-4}$	10^{-3}
$\beta_{1,DcNN}$	0.8763	0.8967
$\beta_{2,DcNN}$	0.9991	0.9982
$ ho_{RR}$	0.004	0.001
$ ho_{NKR}$	0.0859	0.0979
MD	4013	4996
Ker	Polynomial	RBF
σ_K	0.006	0.001
σ_P	2	2
PA_U	ResNet50V2	CapsNet
η_U	$6*10^{-4}$	$8*10^{-4}$
$\dot{eta}_{1,U}$	0.8273	0.8458
$eta_{2,U}$	0.9996	0.9993
PA_{pc}	Conv2	Conv2
$\mid \eta_{pc} \mid$	$9*10^{-4}$	$2*10^{-3}$
$\hat{\beta}_{1,pc}$	0.8972	0.8899
$\beta_{2,pc}$	0.9781	0.9541
e^{-iP}	167	169
n	32	32

REFERENCES

- [1] S.-Y. Kung, "Compressive privacy: From information\/estimation theory to machine learning [lecture notes]," *IEEE Signal Processing Magazine*, vol. 34, no. 1, pp. 94–112, 2017.
- vol. 34, no. 1, pp. 94–112, 2017.

 [2] S. Kung, "A compressive privacy approach to generalized information bottleneck and privacy funnel problems," *Journal of the Franklin Institute*, vol. 355, no. 4, pp. 1846–1872, 2018, special Issue on Recent advances in machine learning for signal analysis and processing. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0016003217303162