State Estimation of Induction Machine using UKF

Ram Milan Verma

Indian Institute of Technology, Bombay

Course Project - CL 653

November 9, 2018

Contents

- Importance/Idea of UKF
- 2 Details of algorithm of UKF
- Model equations and Parameters
- 4 Linearisation Point for KF
- Results
- 6 Conclusion
- References

Importance of UKF(Unscented Kalman Filter)

- Derivative free sampling based filter.
- Uses deterministic sampling and associates weights.
- Numerical approximations of first and second moments can be found using sample points chosen.
- Sample point generation is called sigma point generation.
- Sigma point is generated symmetrically around the mean.
- Hence, works well for signals with unimodal and symmetric probability densities.

Unscented Kalman Filter

Augmented Quantities

- **1** $\chi(k-1) = [\mathbf{X}(k-1)^T, \mathbf{d}(k-1)^T, \mathbf{v}(k-1)^T]^T$
- ② It's mean, $\widehat{\chi}(k-1|k-1) = [\widehat{X}(k-1|k-1)^T, \overline{0}^T, \overline{0}^T]^T$
- **3** Covariance matrix, $P^a(k-1|k-1) = diag[P(k-1|k-1), Q, R]$

Sigma Point generation

- **M**=dim(χ); Number of samples, $N_s = 2M + 1$
- $\chi^{(1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1)$
- $\chi^{(i+1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1) + \rho \sqrt{P^{a}(k-1|k-1)}\zeta^{(i)}$
- $\chi^{(i+M+1)}(k-1|k-1) = \widehat{\chi}(k-1|k-1) \rho \sqrt{P^a(k-1|k-1)}\zeta^{(i)}$ where $\zeta^{(i)} = [0,0,...,1,0,0]^T$ i=1,...,M; $\rho = \sqrt{M+\kappa}$ κ (tuning parameter) = 1 or (3 M) (A Typical choice)

Unscented Kalman Filter

Weights

- Weights are chosen such that $\sum \omega_i = 1$ and weighted sample average equals $\widehat{\chi}(k-1|k-1)$
- $\omega_1 = \frac{\kappa}{M + \kappa}$
- $\omega_{i+1} = \omega_{i+M+1} = \frac{1}{2(M+\kappa)}$ For i=1,..,M

Propagation using system and measurement models

- state propagation
 - Integrate the model equation for each sample points.
 - Get the weighted sum as sample mean, $\widehat{X}(k|k-1) = \sum \omega_i \widehat{X}^{(i)}(k|k-1)$
- Measurement prediction
 - Get $Y^{(i)}(k|k-1)$ by substituting $\widehat{X}^{(i)}(k|k-1)$
 - $\widehat{Y}(k|k-1) = \sum_{i} \omega_i \widehat{Y}^{(i)}(k|k-1)$

Unscented Kalman Filter

Defining error and covariances

- $\varepsilon^{(i)}(k|k-1) = \widehat{X}^{(i)}(k|k-1) \widehat{X}(k|k-1)$
- $\bullet \ \epsilon^{(i)}(k) = \widehat{Y}^{(i)}(k|k-1) \widehat{Y}(k|k-1)$
- Covariances
 - $P_{\varepsilon\varepsilon}(k|k-1) \approx \sum \omega_i \varepsilon^{(i)}(k|k-1) [\varepsilon^{(i)}(k|k-1)]^T$
 - $P_{\varepsilon\epsilon}(k) \approx \sum \omega_i \varepsilon^{(i)} (k|k-1) [\epsilon^{(i)}(k)]^T$
 - $P_{\epsilon\epsilon}(k) \approx \sum \omega_i \epsilon^{(i)}(k) [\epsilon^{(i)}(k)]^T$

Kalman Update

- $L(k) = P_{\varepsilon \epsilon}(k) P_{\epsilon \epsilon}(k)^{-1}$
- innovation, $e(k) = Y(k) \widehat{Y}(k|k-1)$
- $\bullet \ \widehat{X}(k|k) = \widehat{X}(k|k-1) + L(k) \ e(k)$
- $P(k|k) = P_{\varepsilon\varepsilon}(k|k-1) L(k)P_{\epsilon\epsilon}(k)L(k)^T$

Model equations

State space model of system

$$\frac{dx_1}{dt} = k_1 x_1 + z_1 x_2 + k_2 x_3 + z_2 \tag{1}$$

$$\frac{dx_2}{dt} = z_1 x_1 + k_1 x_2 + k_2 x_4 \tag{2}$$

$$\frac{dx_3}{dt} = k_3 x_1 + k_4 x_3 + (z_1 - x_5) x_4 \tag{3}$$

$$\frac{dx_4}{dt} = k_3 x_2 - (z_1 - x_5) x_3 + k_4 x_4 \tag{4}$$

$$\frac{dx_5}{dt} = k_5(x_1x_4 - x_2x_3) + k_6z_3 \tag{5}$$

where x_1, x_2 and x_3, x_4 are components of stator and rotor flux; x_5 is angular velocity; z_1, z_2, z_3 are inputs indicating frequency, amplitude and load torque

Measurement model and Parameters

Measurement model equations

$$y_1 = k_7 x_1 + k 8 x_3 \tag{6}$$

$$y2 = k_7 x_2 + k_8 x_4 \tag{7}$$

•
$$x(0)=[0.2, -0.6, -0.4, 0.1, 0.3]^T$$
; $x(0|0) = 0.9 * x(0)$; $Q = 10^{-4} I_{5x5}$; $R = 10^{-2} I_{2x2}$; $T_s = 0.1$ sec; $P(0|0) = I_{5x5}$; $N = 500$

Table: Parameters and inputs

<i>k</i> 1	k ₂	k ₃	k_4	k ₅	k ₆	k ₇	k ₈	z_1	z_2	<i>z</i> ₃
-0.186	0.178	0.225	-0.234	-0.081	4.643	-4.448	1	1	1	0

Linearisation point for KF

- Used fsolve function of MATLAB.
- it takes initial point (x_0) as one argument to perform search.
- Used feval to check the correctness of steady state point obtained.
- For $x_0 = [0 \ 0 \ 0 \ 1 \ 1]$ or $[0 \ -1 \ 0.5 \ -1 \ 1]$
- $x_{ss} = [0.0148 0.9998 \ 0.0143 0.9613 \ 1.0000]$
- Output of feval: 1.0e-08 *[0.0000 0.0000 0.0481 -0.1631 -0.0023]

Results: True Vs Estimated(All Filter)

Results: True Vs Estimated (EKF and UKF)

Results: Innovation(All Filter)

Results: Innovation(EKF and UKF)

Results: Spectral Radii(All on same plot)

Results: Spectral Radii(subplots)

Results: Estimation error(All Filter)

Results: Estimation error for EKF

Results: Estimation error for UKF

Results: Estimation error for EKF and UKF(State 1)

Results: Estimation error for EKF and UKF(State 2)

Results: Estimation error for EKF and UKF(State 3)

Results: Estimation error for EKF and UKF(State 4)

Results: Estimation error for EKF and UKF(State 5)

Tables: Mean and Variance of innovation; RMSE of states

Table: Mean and variances across time

	KF		E	(F	UKF		
	y1	y2	y1	y2	y1	y2	
Mean	0.0028	-0.0146	0.0096	-0.0058	0.0607	0.0077	
Variance	0.0854	0.1210	0.0160	0.0182	0.0205	0.0235	

Table: Root Mean Square Error

Filter	State 1	State 2	State 3	State 4	State 5
KF	2.2648	2.9405	10.0561	12.2089	19.8373
EKF	0.0358	0.0387	0.1288	0.1374	0.2158
UKF	0.0343	0.0597	0.1047	0.2104	0.1185

Figure: Mean, Variance and RMSE for filters

Results: Normalised Estimation Error Squared (NESS)

Results: Normalised Estimation Error Squared(NESS)

Results: Normalised Estimation Error Squared(NESS)

Conclusion

- The fraction of time instants for which β_k exceeded the bounds is 0.368 for EKF and 1 for both KF and UKF.
- No filter is consistent for the initial estimate used.
- Initial estimate should be carefully chosen random guess or far from true state doesn't seemed to work.
- KF didn't work well on this system at chose linearisation point.
- Both EKF and UKF performed decently well but not satisfactory.
- For few states EKF estimated better, for few UKF and for few both did better

References

- Lectrue slides
- Kandepu, R., and Foss, B., and Imsland, L.; Applying the Unscented Kalman Filter for Nonlinear State Estimation, Journal of Process Control, 18, 2008, 753-768.

The End