Graph connectivity

INDUSTRIAL UNIVERSITY OF HOCHIMINH CITY

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Exercises

Chapter 2 Graph connectivity

Graph theory on August 28, 2023

Huynh Tuong Nguyen, Vo Dang Khoa Faculty of Information Technology Industrial University of Ho Chi Minh City {htnguyen,khoavo}@iuh.edu.vn

Acknowledgement

Some slides about Euler and Hamilton circuits are created by Chung Ki-hong and Hur Joon-seok from KAIST.

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

	Course learning outcomes			
CLO.1	Understanding of the basic concepts of graphs			
	Special types of graph,			
	computer based graph representation, isomorphism,			
	planar graph, connectivity in graph, graph traversal.			
CLO.2	Describe definition of path and circuit			
	Identify the existence of Euler path & circuit			
	Identify the existence of Hamilton path & circuit			
CLO.3	Compute minimum spanning tree in a (weighted) graph			
	Use algorithms: Prim, Kruskal			
CLO.4	CLO.4 Determine shortest path in a weighted graph			
	Use algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall			
CLO.5	Solve maximum flow problem			
	Use Ford-Fulkerson's algorithm			

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Fuler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Exercises

1 Connectivity Paths and Circuits

2 Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

- **3** Graph Coloring
- **Exercises**

Paths and Circuits

Simple path of length 4

Simple circuit of length 4

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Path and Circuits

Definition (in undirected graph)

- Path (đường đi) of length n from u to v: a sequence of n edges $\{x_0, x_1\}, \{x_1, x_2\}, \ldots, \{x_{n-1}, x_n\}$, where $x_0 = u$ and $x_n = v$.
- A path is a circuit (chu trình) if it begins and ends at the same vertex, u = v.
- A path or circuit is simple (don) if it does not contain the same edge more than once.

Simple path

Not simple path

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton
Paths
Euler Paths and Circuits
Hamilton Paths and Circuits

Graph Coloring

Path and Circuits

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Exercises

Definition (in directed graphs)

Path is a sequence of $(x_0, x_1), (x_1, x_2), \ldots, (x_{n-1}, x_n)$, where $x_0 = u$ and $x_n = v$.

Connectedness in Undirected Graphs

Definition

- An undirected graph is called connected (liên thông) if there
 is a path between every pair of distinct vertices of the graph.
- There is a simple path between every pair of distinct vertices of a connected undirected graph.

Connected graph
Disconnected graph
Connected components (thành phần liên thông)

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Terminology

Definition

- *b* is a cut vertex (*đỉnh cắt*) or articulation point (*điểm khớp*). What else?
- $\{a,b\}$ is a cut edge (cạnh cắt) or bridge (cầu). What else?

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

How is a graph connected?

Definition

- If a graph does not have cut vertices, it is called nonseparable graph (đồ thị không thể phân tách).
- The minimum number of vertices in a vertex cut defines the vertex connectivity (liên thông đỉnh), e.g., the vertex cut $\{c,f\}$ results in the vertex connectivity $\kappa(G)=2$.
- The minimum number of edges in an edge cut defines the edge connectivity (liên thông cạnh), e.g., the edge cut $\{\{b,c\},\{a,f\},\{f,g\}\}$ results in the edge connectivity $\lambda(G)=3$.

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Applications of Vertex and Edge Connectivity

Graph connectivity

Contents

Connectivity

Paths and Circuits

Fuler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Evercises

- Reliability of networks
 - Minimum number of routers that disconnect the network
 - Minimum number of fiber optic links that can be down to disconnect the network
- Highway network
 - Minimum number of intersections that can be closed
 - Minimum number of roads that can be closed

Connectedness in Directed Graphs

Definition

- An directed graph is strongly connected (liên thông mạnh) if there is a path between any two vertices in the graph (for both directions).
- An directed graph is weakly connected (liên thông yếu) if there is a path between any two vertices in the underlying undirected graph.

Strongly connected

Weakly connected

Graph connectivity

Contents

Connectivity

Paths and Circuits

Fuler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Evercises

Applications

Example

Determine whether the graphs below are isomorphic.

Solution

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Exercises

Example

Determine whether the graphs below are isomorphic.

Solution

Both graphs have the same vertices, edges, degrees, circuits. They may be isomorphic.

To find a possible isomorphism, we can follow paths that go through all vertices so that the corresponding vertices in the two graphs have the same degrees.

The Famous Problem of Seven Bridges of Königsberg

Is there a route that a person crosses all the seven bridges once?

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Euler Solution

• Euler gave the solution: It is **not** possible to cross all the bridges exactly once.

What is Euler Path and Circuit?

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Exercises

• Euler Path (đường đi Euler) is a path in the graph that passes each edge only once.

The problem of Seven Bridges of Königsberg can be also stated: Does Euler Path exist in the graph?

 Euler Circuit (chu trình Euler) is a path in the graph that passes each edge only once and return back to its original position.

From Definition, Euler Circuit is a subset of Euler Path.

Examples of Euler Path and Circuit

Euler Circuit

Euler Path

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Conditions for Existence

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Exercises

In a connected multigraph,

- Euler Circuit existence: no odd-degree nodes exist in the graph.
- Euler Path existence: **2 or no odd-degree nodes exist** in the graph.

Back to the Seven Bridges Problem

- Four vertices of odd degree
- No Euler circuit → cannot cross each bridge exactly once, and return to starting point
- No Euler path, either

Searching Euler Circuits and Paths - Fleury's Algorithm

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Evercises

- Choose a random vertex (if circuit) or an odd degree vertex (if path)
- Pick an edge joined to another vertex so that it is not a cut edge unless there is no alternative
- Remove the chosen edge. The above procedure is repeated until all edges are covered.

Searching Euler Circuits and Paths – Hierholzer's Algorithm

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Exercises

- Choose a starting vertex and find a circuit
- As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another circuit from v

More efficient algorithm, O(n).

Exercise

Example

Are these following graph Euler path (circuit)? If yes, find one.

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits
Hamilton Paths and Circuits

Graph Coloring

Traveling Salesman Problem

Is there the possible tour that visits each city exactly once?

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

What Is A Hamilton Circuit?

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits Graph Coloring

Exercises

The circuit that visit each vertex in a graph once

Rules of Hamilton Circuits

deg(v) = 2 for $\forall v$ in Hamilton circuit!

Rule 1 if deg(v) = 2, both edge must be used.

- Rule 2 No subcircuit (chu trình con) can be formed.
- Rule 3 Once two edges at a vertex v is determined, all other edges incident at v must be removed.

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

. .

Finding Hamilton Circuits

Graph connectivity

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits
Graph Coloring

Exercises

Vertices : cities

Edges: possible routes

Rule 1 $\deg(v) = 2$

Rule 3

Once two edges are determined, other edges must be removed

Existence of Hamilton Circuit

Graph connectivity

Contents

Connectivity

Paths and Circuits

Fuler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

Exercises

Hamilton circuit does not exist for all graph. But, there is no specific way to find whether Hamilton circuit exists or not.

Simple check by rules of Hamilton circuit

Violates Rule 2! (No subcircuit)

Graph connectivity

We can verify nonexistence of the graph during find Hamilton circuit.

INDUSTRIAL UNIVERSITY OF HOCHIMINH CITY

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits Graph Coloring

Definition

The binary sequence that express consecutive numbers by differing just one position of sequence.

Decimal number		Binary number	Gray code
1	=	001	000
2	=	010	100
3	=	011	110
4	=	100	010
5	=	101	011
:		:	:
•		:	:

Used at digital communication for reduce the effect of noise; it prevents serious changes of information by noise.

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Evercises

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

Exercises

n-digit gray code can be generated by finding Hamilton circuits of n-dimensional hypercube! Consider the case n=3.

Coordinate of each vertex is 3-digit binary sequences. Coordinates of adjacent vertices differ in just on place. Hamilton circuits of a cubic graph makes the order of binary sequences!

Maps and Graphs

Definition

- Every map can be represented by a graph. We call it dual graph.
- Problem of coloring the regions of a map → coloring the vertices of the dual graph so that no two adjacent vertices have the same color

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Coloring

INDUSTRIAL UNIVERSITY OF HOCHIMINH CIT

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Colori

Exercises

Definition

- A coloring (tô màu) of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.
- The chromatic number $(s \hat{o} \ m \grave{a} u)$ of a graph, denoted by $\chi(G)$, is the least number of colors needed for a coloring of this graph.

Four color theorem

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits
Hamilton Paths and Circuits

Exercises

Theorem (Four color theorem)

The chromatic number of a planar graph is no greater than four.

- Was a conjecture in the 1850s
- Was not proved completely until 1976 by Kenneth Appel and Wolfgang Haken, using computer
- No proof not relying on a computer has yet been found

Applications of Graph coloring

Scheduling Final Exam

- How can the final exams at a university be scheduled so that no student has two exams at the same time?
- Suppose we have 7 finals, numbered 1 through 7.
- The pairs of courses have common students are depicted in the following graph

Graph connectivity

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Colorin

Applications of Graph Coloring

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits Hamilton Paths and Circuits

Graph Color

Exercises

Other Applications

- Frequency Assignments: Television channels 2 through 12 are assigned to stations in North America so that no two stations within 150 miles can operate on the same channel. How can the assignment of channels be modeled by graph coloring?
- Index Registers: In an execution of loop, the frequently used variables should be stored in index registers to speed up. How many index registers are needed?

Contents

Connectivity

Paths and Circuits

Euler and Hamilton Paths

Euler Paths and Circuits

Hamilton Paths and Circuits

Graph Coloring

