Reverse-Mode 自動微分を理解する

Hiromi ISHII

2023-03-15

Tsukuba Computer Mathematics Seminar 2023

自動微分とは?

- ◆ 自動微分:与えられた関数の値とその微分係数を,合成関数の微分公式(連鎖律)を使って効率的・厳密に計算する方法
 - ▶ 関数の値を順に計算しながら、連鎖律を使って微分係数も計算する
- ◆ 関連するが異なる計算方法:
 - ▶ 記号微分:数式を記号的な構文木で表現し、微分法則に従い記号的に処理.
 - 厳密だが項数が組合せ爆発して非効率になりがち.
 - ight
 ight
 ight
 ight
 ight
 ho 数値微分:極限 $\lim_{\Delta x o 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ の Δx を微小数で置き換えて近似.
 - あくまで近似. Δt をどう近似するかで振る舞いが変わってくる.

連鎖律

◆皆さんお馴染の基本公式

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^k \xrightarrow{g} \mathbb{R}^m$$

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} (g \circ f) = \frac{\mathrm{d}g}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{x}}$$

◆ 統一性のため $\mathbf{u}_0=\mathbf{x},\mathbf{u}_1=f(\mathbf{u}_0),\mathbf{u}_2=g(\mathbf{u}_1)=g(f(\mathbf{u}_0))$ として並び換えれば、

$$\mathbb{R}^{m} \xleftarrow{u_{2}} \mathbb{R}^{k} \xleftarrow{u_{1}} \mathbb{R}^{n} \xleftarrow{u_{0}} \mathbb{R}^{0}$$

$$\frac{\mathrm{d}u_{2}}{\mathrm{d}u_{0}} = \frac{\mathrm{d}u_{2}}{\mathrm{d}u_{1}} \frac{\mathrm{d}u_{1}}{\mathrm{d}u_{0}}$$

連鎖律

◆皆さんお馴染の基本公式

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^k \xrightarrow{g} \mathbb{R}^m$$

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} (g \circ f) = \frac{\mathrm{d}g}{\mathrm{d}f} \frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{x}}$$

◆ 統一性のため $\mathbf{u}_0=\mathbf{x},\mathbf{u}_1=f(\mathbf{u}_0),\mathbf{u}_2=g(\mathbf{u}_1)=g(f(\mathbf{u}_0))$ として並び換えれば、

$$\mathbb{R}^{m} \xleftarrow{u_{2}} \mathbb{R}^{k} \xleftarrow{u_{1}} \mathbb{R}^{n} \xleftarrow{u_{0}} \mathbb{R}^{0}$$

$$\frac{\mathrm{d}u_{2}}{\mathrm{d}u_{0}} = \frac{\mathrm{d}u_{2}}{\mathrm{d}u_{1}} \frac{\mathrm{d}u_{1}}{\mathrm{d}u_{0}}$$

多変数も同様(但し、各 $\partial u_i/\partial u_j$ はヤコビ行列だと思うこと)

$$\mathbb{R}^{n_N} \stackrel{\boldsymbol{u}_N}{\longleftarrow} \mathbb{R}^{n_{N-1}} \stackrel{\boldsymbol{u}_{N-1}}{\longleftarrow} \cdots \stackrel{\boldsymbol{u}_1}{\longleftarrow} \mathbb{R}^{n_0} \stackrel{\boldsymbol{u}_0}{\longleftarrow} \mathbb{R}^0$$

$$\frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_0} = \frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_{N-1}} \frac{\partial \boldsymbol{u}_{N-1}}{\partial \boldsymbol{u}_{N-2}} \cdots \frac{\partial \boldsymbol{u}_2}{\partial \boldsymbol{u}_1} \frac{\partial \boldsymbol{u}_1}{\partial \boldsymbol{u}_0}$$

多変数も同様(但し、各 $\partial u_i/\partial u_j$ はヤコビ行列だと思うこと)

$$\mathbb{R}^{n_N} \stackrel{\boldsymbol{u}_N}{\longleftarrow} \mathbb{R}^{n_{N-1}} \stackrel{\boldsymbol{u}_{N-1}}{\longleftarrow} \cdots \stackrel{\boldsymbol{u}_1}{\longleftarrow} \mathbb{R}^{n_0} \stackrel{\boldsymbol{u}_0}{\longleftarrow} \mathbb{R}^0$$

$$\frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_0} = \frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_N} \frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_{N-1}} \frac{\partial \boldsymbol{u}_{N-1}}{\partial \boldsymbol{u}_{N-2}} \cdots \frac{\partial \boldsymbol{u}_2}{\partial \boldsymbol{u}_1} \frac{\partial \boldsymbol{u}_1}{\partial \boldsymbol{u}_0} \frac{\partial \boldsymbol{u}_0}{\partial \boldsymbol{u}_0}$$

多変数も同様(但し、各 $\partial u_i/\partial u_i$ はヤコビ行列だと思うこと)

$$\mathbb{R}^{n_{N}} \stackrel{\boldsymbol{u}_{N}}{\longleftarrow} \mathbb{R}^{n_{N-1}} \stackrel{\boldsymbol{u}_{N-1}}{\longleftarrow} \cdots \stackrel{\boldsymbol{u}_{1}}{\longleftarrow} \mathbb{R}^{n_{0}} \stackrel{\boldsymbol{u}_{0}}{\longleftarrow} \mathbb{R}^{0}$$

$$\frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{0}} = \frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{N}} \frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{N-1}} \frac{\partial \boldsymbol{u}_{N-1}}{\partial \boldsymbol{u}_{N-2}} \cdots \frac{\partial \boldsymbol{u}_{2}}{\partial \boldsymbol{u}_{1}} \frac{\partial \boldsymbol{u}_{1}}{\partial \boldsymbol{u}_{0}} \frac{\partial \boldsymbol{u}_{0}}{\partial \boldsymbol{u}_{0}}$$
Forward

これを前から計算するのが Forward-Mode 自動微分

多変数も同様(但し、各 $\partial u_i/\partial u_i$ はヤコビ行列だと思うこと)

$$\mathbb{R}^{n_{N}} \stackrel{\boldsymbol{u}_{N}}{\longleftarrow} \mathbb{R}^{n_{N-1}} \stackrel{\boldsymbol{u}_{N-1}}{\longleftarrow} \cdots \stackrel{\boldsymbol{u}_{1}}{\longleftarrow} \mathbb{R}^{n_{0}} \stackrel{\boldsymbol{u}_{0}}{\longleftarrow} \mathbb{R}^{0}$$

$$\frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{0}} = \frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{N}} \frac{\partial \boldsymbol{u}_{N}}{\partial \boldsymbol{u}_{N-1}} \frac{\partial \boldsymbol{u}_{N-1}}{\partial \boldsymbol{u}_{N-2}} \cdots \frac{\partial \boldsymbol{u}_{2}}{\partial \boldsymbol{u}_{1}} \frac{\partial \boldsymbol{u}_{1}}{\partial \boldsymbol{u}_{0}} \frac{\partial \boldsymbol{u}_{0}}{\partial \boldsymbol{u}_{0}}$$
Forward
$$\stackrel{\bullet}{\longrightarrow} \text{Reverse}$$

これを前から計算するのが Forward-Mode 自動微分 これを後から計算するのが Reverse-Mode 自動微分

Foward Mode 自動微分

- ◆ Dual Number $\mathbb{R}[d]/(d^2)$ を使って計算できる
 - > x + yd の y が一次微分係数を覚える役割を果す (f(x) + f'(x)d と思う)
- lacktriangle 代数演算はそのまま延長、(区分的に)滑らかな関数についても Weil 環の標準的な C^∞ 環構造が入る
 - ▶ 難しく聞こえるが、以下のような感じ:

$$\sin(x + yd) = \sin(x) + y\cos(x)d,$$

$$\cos(x + yd) = \cos(x) - y\sin(x)d,$$

$$e^{(x+yd)} = e^x + ye^xd$$

Forward Mode 計算例

ullet 次で定まる関数 $f: \mathbb{R} \to \mathbb{R}^3$ の x に関する微分を求めてみよう:

$$f(x) = (\sin(x^2 + 1), e^{x^2}, x^3 e^{-x})$$

• 入口はx + (dx/dx)d = x + dを入れてf(x + d)を評価してみる:f(x + d)

$$= (\sin((x+d)^2+1), e^{(x+d)^2}, (x+d)^3 e^{-(x+d)})$$

 $= (\sin(x^2 + 2xd + 1), e^{x^2 + 2xd}, (x^3 + 3x^2d)(e^{-x} - e^{-x}d))$

$$= (\sin(x^2 + 1) + 2x\cos(x^2 + 1)d, e^{x^2} + 2xe^{x^2}d, (x^3 + 3x^2d)(e^{-x} - e^{-x}d))$$

$$= (\sin(x^2 + 1), e^{x^2}, x^3e^{x-x}) + (2x\cos(x^2 + 1), 2xe^{x^2}, -x^3e^{-x} + 3x^2e^{-x})d$$

Forward-Mode だけでいいのでは?

- ◆ 入力が一変数、出力が多変数の場合は Forward-Mode で十分効率的
- ◆ しかし、機械学習のように $f: \mathbb{R}^N \to \mathbb{R}$ で $N \gg 0$ の場合、Forward-Mode では効率がわるすぎる!
 - (a) 素朴にやると、 $\mathbb{R}[d]^N$ を用意して、i < N ごとに $(0,...,0,x+d_i,0,...)$ みたいなのを何回も渡すことになる
 - (b) これを組にして $(\mathbb{R}[d]^N)^N$ について一挙に計算すると one-pass
 - (c) しかしいずれにせよ変数の数について自乗のオーダーがかかってしま い非効率!

- $\bullet dx/dx = du_0/du_0$ ではなく du_N/du_N の側から辿ったらどうか?
 - ▶ これが Reverse-Mode 自動微分!

Reverse-Mode 自動微分いろいろ

Reverse-Mode 自動微分

◆ Reverse-Mode の概念図はこうだった

$$\mathbb{R}^{n_N} \leftarrow \frac{u_N}{\mathbb{R}^{n_{N-1}}} \leftarrow \frac{u_{N-1}}{\mathbb{R}^{n_{0-1}}} \cdots \leftarrow \frac{u_1}{\mathbb{R}^{n_0}} \leftarrow \frac{u_0}{\mathbb{R}^0} \subset \mathbb{R}^0$$

$$\frac{\mathrm{d}\boldsymbol{u}_N}{\mathrm{d}\boldsymbol{u}_0} = \frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_N} \frac{\partial \boldsymbol{u}_N}{\partial \boldsymbol{u}_{N-1}} \frac{\partial \boldsymbol{u}_{N-1}}{\partial \boldsymbol{u}_{N-2}} \cdots \frac{\partial \boldsymbol{u}_2}{\partial \boldsymbol{u}_1} \frac{\partial \boldsymbol{u}_1}{\partial \boldsymbol{u}_0} \frac{\partial \boldsymbol{u}_0}{\partial \boldsymbol{u}_0}$$

$$\longrightarrow \mathbb{R}\text{everse}$$

- ◆ 問題:計算の入出力と逆順に辿る必要がある!
 - ▶ 微分係数の計算には関数の値そのものが必要、往復する必要がある
 - 機械学習で誤差逆伝播法 (back propagation) と呼ばれるもの
 - ▶ これを実現するためにいくつかやり方が知られている