主要内容

- •2.1 关系数据结构及形式化定义
- 2.2 关系操作
- •2.3 关系的完整性
- 2.4 关系代数

2.4 关系代数

- 2.4.1 传统的集合运算 并、差、交、笛卡尔积 一 行
- •2.4.2 专门的关系运算 选择、投影、连接、除 行和列

运	年 符	含义
集合	U	并
运算符	- ((((差
		交
	×	笛卡尔积
专门的	σ	选择
关系 运算符	π	投影
~3113		连接
	•	除

并 (union)

- $\bullet R \cup S$
 - 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

K	A	В	C
	a1	b1	c1
	a1	b2	c2
	a2	b2	c1
C		D	
S	A	В	C
S	A a1	B b2	C c2
S			

RUS

A	В	C
a1	b1	c1
a1	b2	c2
a2	b2	c1
a1	b3	c2

差 (except)

 $\bullet R - S$

S

• 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

R	A	В	C
	a1	b1	c1
	a1	b2	c2
	a2	b2	c1

A	В	C
a1	b2	c2
a1	b3	c2
a2	b2	c1

R-S

A	В	C
a1	b1	c1

交 (intersection)

 $\bullet R \cap S$

D

• 仍为n目关系,由既属于R又属于S的元组组成 $R \cap S = \{ | t | t \in R \land t \in S \}$ $R \cap S = R - (R-S)$

N	A	В	
	a1	b1	c1
	a1	b2	c2
	a2	b2	c1
S	A	В	C
S	A a1	B b2	C c2
S			

 $R \cap S$

A	В	C
a1	b2	c2
a2	b2	c1

笛卡尔积(cartesian product)

- $\bullet R \times S$
 - 列: (*n*+*m*) 列元组的集合
 - •元组的前n列是关系R的一个元组
 - 后m列是关系S的一个元组
 - 行: $k_1 \times k_2$ 个元组 $R \times S = \{ t_r t_s | t_r \in R \land t_s \in S \}$

R	A	В	C
	a1	b1	c1
	a1	b2	c2
	a2	b2	c1
C	Λ	R	
S	A	В	C
S	A a1	B b2	C c2
S			
S	a1	b2	c2

$\mathbf{R} \times$	S				
R.A	R.B	R.C	S.A	S.B	S.C
a1	b 1	c1	a1	b2	c2
a1	b 1	c1	a1	b 3	c2
a1	b 1	c1	a2	b2	c1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b3	c2
a1	b2	c2	a2	b2	c1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1

• R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

t∈R表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

 \bullet A, t[A], A

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\},$ 其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 A_1

 A_2 , ..., A_n 中的一部分,则A称为属性列或属性组。

 $t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩 余的属性组。 $\bullet t_{\rm r} t_{\rm s}$

R为n目关系,S为m目关系。

 $t_{\rm r} \in R$, $t_{\rm s} \in S$, $t_{\rm r} t_{\rm s}$ 称为元组的连接。

 $t_{\rm r}t_{\rm s}$ 是一个n+m列的元组,前n个分量为R中的一个n元组,

后m个分量为S中的一个m元组。

• 象集Z_x

给定一个关系R(X, Z), X和Z为属性组。

当t[X]=x时,x在R中的象集(Images Set)为:

 $\mathbf{Z}_{\mathbf{x}} = \{ t[Z] | t \in R, \quad t[X] = x \}$

它表示R中属性组X上值为x的诸元组在Z上分量的集合

单击此处编辑母版标题样式

R

x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

• x_1 在R中的象集

$$Z_{x1} = \{Z_1, Z_2, Z_3\},$$

• x_2 在R中的象集

$$\mathbf{Z}_{\mathbf{x}2} = \{ Z_2, Z_3 \},$$

• x_3 在R中的象集

$$Z_{x3} = \{Z_1, Z_3\}$$

学生-课程数据库:

学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

选择 (selection)

- 在关系R中选择满足给定条件的诸元组 $\sigma_{F}(R) = \{t | t \in R \land F(t) = '\bar{\mathbf{a}}'\}$
- •F:选择条件,是一个逻辑表达式,取值为"真"或"假"
 - 基本形式为: $X_1\theta Y_1$
 - θ表示比较运算符,它可以是>,≥,<,≤,=或<>

• 查询信息系(IS系)全体学生。 σ_{Sdept = 'IS'} (Student)

Sno	Sname	Ssex	Sage	Sdept
201215125	张立	男	19	IS

• 查询年龄小于20岁的学生。 $\sigma_{Sage < 20}(Student)$

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	IS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

•从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A:R中的属性列

投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组(避免重复行)

• 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影

 $\pi_{Sname,Sdept}(Student)$

Sname	Sdept
李勇	CS
刘晨	CS
王敏	MA
张立	IS

• 查询学生关系Student中都有哪些系。 π_{Sdept}(Student)

Sdept
CS
IS
MA

连接(join)

- •连接也称为0连接
 - 从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie S = \{ t_{r} t_{s} \mid t_{r} \in R \land t_{s} \in S \land t_{r}[A] \theta t_{s}[B] \}$$

A和B:分别为R和S上度数相等且可比的属性组

θ:比较运算符

等值连接 自然连接 equijoin natural join

- · 等值连接 (equijoin)
 - ●θ为"="的连接运算称为等值连接
 - ●从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \overrightarrow{t_r} \overrightarrow{t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

$$A = B$$

- 自然连接(Natural join)
 - 自然连接是一种特殊的等值连接
 - > 两个关系中进行比较的分量必须是相同的属性组
 - 产在结果中把重复的属性列去掉

R和S具有相同的属性组B

$$R \bowtie S = \widehat{\{t_{r} t_{s} [U-B] \mid t_{r} \in R \land t_{s} \in S \land t_{r}[B] = t_{s}[B] \}}$$

•一般的连接操作是从行的角度进行运算

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

A	В	C
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S

B

b1

b2

b3

b3

b2

R	MS
C	< <i>E</i>

E

3

7

10

2

2

A	R.B	C	S.B	E
a1	b1	5	b2	7
a1	b1	5	b3	10
a1	b2	6	b2	7
a1	b2	6	b 3	10
a2	b 3	8	b3	10

A	В	C
a1	b1	5
a1	b2	6
a2	b 3	8
a2	b 4	12

S

В	E
b1	3
b2	7
b3	10
b3	2
b2	2

R ⋈**S** R.B=S.B

A	R.B	C	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b3	10
a2	b3	8	b3	2

 $R\bowtie S$

R

A	В	C
a1	b1	5
a1	b2	6
a2	b 3	8
a2	b4	12

В	E
b1	3
b2	7
b 3	10
b 3	2
b2	2

A	В	C	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2

- •外连接 (Outer Join)
 - 如果把悬浮元组也保存在结果关系中,而在其他属性上填空值(Null),就叫做外连接
 - 左外连接(LEFT OUTER JOIN或LEFT JOIN)
 - ●只保留左边关系R中的悬浮元组
 - 右外连接(RIGHT OUTER JOIN或RIGHT JOIN)
 - ●只保留右边关系S中的悬浮元组

A	В	C
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S

В	E
b1	3
b2	7
b 3	10
b3	2
b2	2

R和S的外连接

	A	В	C	E
C	a1	b1	5	3
	a1	b2	6	7
	a2	b 3	8	10
	a2	b3	8	2
	a2	b4	12	NULL
	NULL	b5	NULL	2

A	В	C
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S

B

b1

b2

b3

b3

b2

E

3

10

R和S的左外连接

A	В	C	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL

A	В	C
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S

B

b1

b2

b3

b3

b2

E

10

R和S的右外连接

A	В	C	E
a1	b1	5	3
a1	b2	6	7
a2	b 3	8	10
a2	b3	8	2
NULL	b 5	NULL	2

除 (division)

• 给定关系R (X, Y)和S (Y, Z),其中X, Y, Z为属性组。

R与S的除运算得到一个新的关系P(X),

P是R中满足下列条件的元组在 X 属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{t_{r}[X] | t_{r} \in R \land \pi_{Y}(S) \subseteq Y_{x}\}$$

 Y_x : x在R中的象集, $x = t_r[X]$

R			S		
A	В	C	B	C	D
a1	b1	c2	b1	c2	d1
a2	b 3	c 7	b2	c1	d1
a3	b4	c6	b2	c3	d2
a1	b2	c 3		R÷	- C
a4	b6	c6		A	
a2	b2	c 3			
01	h2	o1		\mathbf{a}	

CI

al

DZ

- 在关系R中, A可取四个值{a1, a2, a3, a4}
 - a_1 的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}$
 - a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$
 - a_3 的象集为 $\{(b_4, c_6)\}$
 - a_4 的象集为 $\{(b_6, c_6)\}$
- d2 S在(B, C)上的投影为

$$\{(b1, c2), (b2, c1), (b2, c3)\}$$

• 只有 a_1 的象集包含了S在(B, C)属性组上的 投影

所以: $R \div S = \{a_1\}$

•查询至少选修1号课程和3号课程的学生号码

• 建立一个临时关系K:

• 再求: $\pi_{\text{Sno.Cno}}(SC) \div K$

Cno

1

3

 $\pi_{\text{Sno,Cno}}(SC)$

Sno	Cno
201215121	1
201215121	2
201215121	3
201215122	2
201215122	3

201215121象集{1, 2, 3}

201215122象集{2, 3}

 $K = \{1, 3\}$

于是: $\pi_{\text{Sno,Cno}}(SC) \div K = \{201215121\}$

• 查询选修了2号课程的学生的学号 $\pi_{Sno}(\sigma_{Cno='2}(SC))=\{201215121,201215122\}$

• 查询至少选修了一门其直接先行课为5号课程的学生姓名

 $\pi_{\text{Sname}}(\sigma_{\text{Cpno='5}}, (\text{Course} \bowtie \text{SC} \bowtie \pi_{\text{Sno,Sname}}(\text{Student}))$

 $\pi_{\text{Sname}} (\pi_{\text{Sno}} (\sigma_{\text{Cpno}='5'} (\text{Course}) \bowtie SC) \bowtie \pi_{\text{Sno},\text{Sname}} (\text{Student}))$

• 查询选修了全部课程的学生号码和姓名

$$\pi_{\text{Sno,Cno}}(\text{SC}) \div \pi_{\text{Cno}}(\text{Course}) \bowtie \pi_{\text{Sno,Sname}}(\text{Student})$$