Матанализ 2 семестр ПИ, Лекции

Собрано 10 апреля 2022 г. в 12:15

Содержание

1.	Интегральное исчисление	1
	1.1. Неопределенный интеграл	1
	1.2. Определенный интеграл Римана	6
	1.3. Суммы Дарбу	7
	1.4. Критерии интегрируемости функции	9
	1.5. Свойства интеграла Римана	14
	1.6. Свойства интеграла, интегральные теоремы о средних, формулы Тейлора и Валлиса	16
	1.7. Интегральные неравенства	23
	1.8. Несобственные интегралы	
	1.8.1. Свойства несобственного интеграла	26
	1.8.2. Признаки сходимости несобственных интегралов	29
	1.9. Интегралы от знакопеременных функций	
	1.10. Длина, площадь и объём	34
	1.10.1. Площадь	34
	1.10.2. Объём	35
	1.10.3. Длина пути	36
	1.10.4. Длина кривой	37
	1.10.5. Приложения интеграла Римана	39
	1.11. Полярные координаты	40
	1.11.1. Вычисление площади в полярных координатах	40
	1.11.2. Вычисление объемов	42
	1.11.3. Длина кривой	43
	1.12. Функции ограниченной вариации	46
2.	Ряды	51

Раздел #1: Интегральное исчисление

1.1. Неопределенный интеграл

Определение 1. $f: \langle A, B \rangle \to \mathbb{R}, F: \langle A, B \rangle \to \mathbb{R}$ называется первообразной функцией f, если F дифференцируема на $(A, B), F'(x) = f(x) \ \forall x \in (A, B).$

Теорема 1. Пусть $f, F, G: \langle A, B \rangle \to \mathbb{R}, F$ — первообразная f. Тогда G — первообразная $f \Leftrightarrow \exists c \in \mathbb{R} : F(x) + c = G(x).$

Доказательство. \Rightarrow . Пусть H(x) = F(x) - G(x). Тогда

$$H'(x) = F'(x) - G'(x) = f(x) - f(x) = 0 \Leftrightarrow H'(x) = 0 \Rightarrow H(x) \equiv \text{const}$$

$$H'(x) = F'(x) - G'(x) = f(x) - f(x) = 0 \Leftrightarrow H'(x) = 0 \Rightarrow H(x) \equiv \text{const}$$
 \Leftarrow . $(F(x) + c)' = (G(x))' \Leftrightarrow f(x) = F'(x) = G'(x) \Rightarrow G$ — первообразная.

Определение 2. $f: \langle A, B \rangle \to \mathbb{R}, F$ — первообразная f. Множество функций $\{F(x) + c, c \in \mathbb{R}\}$ называется неопределенным интегралом f.

$$\int f(x) = F(x) + c, c \in \mathbb{R}$$

Далее, $f: \langle A, B \rangle \to \mathbb{R}$.

1. Дифференцирование

$$\left(\int f(x) dx\right)' = f(x), x \in \langle A, B \rangle$$

2. Арифметические действия:

$$\int f(x) dx + \int g(x) dx = \{ F(x) + G(x) + c, c \in \mathbb{R} \}$$

$$\int f(x) dx + H(x) = \{ F(x) + H(x) + c, c \in \mathbb{R} \}$$

$$\lambda \int f(x) dx = \{ \lambda F(x) + c, c \in \mathbb{R} \}, \lambda \neq 0, \lambda \in \mathbb{R}$$

Утверждение 1. Если функция f непрерывна на $\langle A, B \rangle$, то у неё есть первообразная на $\langle A, B \rangle$.

Упражнение. $f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$. Есть ли первообразная у этой функции?

Определение 3. $E \subset \mathbb{R}, f : E \to \mathbb{R}$. Если F дифференцируема на E и F'(x) = f(x) на E, то F — первообразная f на множестве E.

Таблица неопределенных интегралов

1.
$$\int a dx = ax + c, a \in \mathbb{R}$$

2.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c, a \neq -1$$

3.
$$\int \frac{1}{x} dx = \ln|x| + c$$

4.
$$\int e^x dx = e^x + c$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + c, a > 0, a \neq 1$$

6.
$$\int \sin x \, dx = -\cos x + c$$

7.
$$\int \cos x \, dx = \sin x + c$$

8.
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$$

9.
$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + c$$

10.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c, a \neq 0$$

11.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + c, a > 0$$

12.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, a \neq 0$$

13.
$$\int \frac{dx}{\sqrt{x^2+a}} = \ln |x + \sqrt{x^2+a}| + c, a \in \mathbb{R}$$

Доказательство. Дифференцирование

Пример. $\int \frac{\sin x}{x} dx$ — неберущийся интеграл. Si(x) — интегральный синус (одна из первообразных, закрепленная при $x \to 0+$).

$$(\operatorname{Si}(x))' = \frac{\sin x}{x}$$

Теорема 2 (Линейность неопределенного интеграла). $f, g : \langle A, B \rangle \to \mathbb{R}$, имеют первообразные на $\langle A, B \rangle$. Тогда $\forall \alpha, \beta \in \mathbb{R} : \alpha, \beta \neq 0$

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Доказательство. Пусть F и G — первообразные f и g на $\langle A, B \rangle$. Правая часть равенства: $\{\alpha F(x) + \beta G(x) + c, c \in \mathbb{R}\}.$

$$(\alpha F(x) + \beta G(x) + c)' = \alpha F'(x) + \beta G'(x) = \alpha f(x) + \beta g(x)$$

Теорема 3 (Замена переменной). $f:\langle A,B\rangle \to \mathbb{R}, F$ – первообразная f на $\langle A,B\rangle$, $\varphi:\langle C,D\rangle \to \langle A,B\rangle$ – дифференцируемая функция. Тогда

$$\int f(\varphi(x))\varphi'(x)\,dx = F(\varphi(x)) + c$$

Доказательство.

$$(F(\varphi(x)) + c)' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$$

Замечание. $\varphi'(x) dx = d\varphi(x)$. Пусть $y = \varphi(x)$

$$\int f(y)dy = F(y) + c = F(\varphi(x)) + c$$

Пример. $\int \frac{\ln x}{x} dx = \int \ln x \cdot \frac{1}{x} dx$. Пусть $y = \ln x \Rightarrow dy = \frac{1}{x} dx$

$$\Rightarrow \int \frac{\ln x}{x} dx = \int y dy = \frac{y^2}{2} + c = \frac{\ln^2 x}{2} + c$$

Следствие. Пусть в условиях теоремы φ имеет обратную функцию $\psi: \langle A, B \rangle \to \langle C, D \rangle$. Если G(x) – первообразная функции $(f \circ \varphi(x)) \cdot \varphi'(x)$, то

$$\int f(x) dx = G(\psi(x)) + c$$

Доказательство. Пусть F – первообразная f на (A,B). $F(\varphi(x))$ – первообразная $f(\varphi(y))\varphi'(y)$ (по теореме). Рассмотрим $G(x)-F(\varphi(x))$ – постоянная (т.к. производная равна нулю). $y = \varphi(x) \Leftrightarrow x = \psi(y)$. Тогда

$$G(\psi(y)) - F(y) = \text{const} \Rightarrow \int f(y) \, dy = G(\psi(y)) + c$$

Пример. $\int \frac{dx}{1+\sqrt{x}}$. Пусть $t=\sqrt{x}, t>0 \Leftrightarrow t^2=x \Rightarrow dx=dt^2=2t\,dt$. Тогда

$$\int \frac{dx}{1+\sqrt{x}} = \int \frac{2t}{1+t} dt = \int \left(\frac{2t+2}{t+1} - \frac{2}{t+1}\right) dt = \int \left(2 - \frac{2}{t+1}\right) dt = 2\int dt - 2\int \frac{dt}{t+1} = 2t - \int \frac{d(t+1)}{t+1} = 2t - 2\ln|t+1| + c = 2\sqrt{x} - 2\ln(\sqrt{x}+1) + c$$

Пример. $\int \sin x \cos x \, dx = \int \sin x \, d \sin x = \frac{\sin^2 x}{2} + c$.

Иначе: $\int \sin x \cos x \, dx = -\int \cos x \, d\cos x = -\frac{\cos^2 x}{2} + c$. Иначе: $\int \sin x \cos x \, dx = \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} \cdot \frac{1}{2} \int \sin 2x \, d(2x) = \frac{-\cos 2x}{4} + c$. Мораль сей басни такова: константы разные, а не $\frac{\sin^2 x}{2} = -\frac{\cos^2 x}{2} = -\frac{\cos 2x}{4}$.

Теорема 4 (Формула интегрирования по частям). $f, g \in C^1(A, B)$. Тогда

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Доказательство. H – первообразная $g \cdot f'$. Тогда

$$(f(x)g(x) - H(x))' = f'(x)g(x) + f(x)g'(x) - H'(x) = f(x)g'(x)$$

Замечание. $\int u \, dv = uv - \int v \, du$

Пример. $\int xe^x dx$. Пусть $u = x, u' = 1, v' = e^x, v = e^x$

$$\int xe^x dx = xe^x - \int 1 \cdot e^x dx = xe^x - e^x + c$$

Пример. $\int \ln x \, dx$. Пусть $u = \ln x, u' = \frac{1}{x}, v' = 1, v = x$.

$$\int \ln x \, dx = x \ln x - \int \frac{1}{x} \cdot x \, dx = x \ln x - x + c$$

Упражнение. $\int e^x \cdot \sin x \, dx$ Пусть $f = \sin x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \sin x = e^x \sin x - \int e^x \cos x$$

Пусть теперь $f = \cos x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \cos x = e^x \cos x + \int e^x \sin x$$

Отсюда

$$\int e^x \sin x = e^x \sin x - e^x \cos x - \int e^x \sin x \Leftrightarrow \int e^x \sin x = \frac{e^x}{2} (\sin x - \cos x)$$

Пример. Пусть $a \in \mathbb{R}, a \neq 0, I_n = \int \frac{dx}{(x^2+a)^n}, n \in \mathbb{N}$. Выразим интеграл I_{n+1} через I_n для произвольного натурального n.

Обозначим $f(x) = \frac{1}{(x^2+a)^n}$ и g(x) = x. Тогда

$$df(x) = \left(\frac{1}{(x^2 + a)^n}\right)' dx = -\frac{2nx}{(x^2 + a)^{n+1}} dx, dg(x) = dx$$

По формуле интегрирования по частям:

$$I_n = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2}{(x^2 + a)^{n+1}} dx = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2 + a - a}{(x^2 + a)^{n+1}} dx$$
$$= \frac{x}{(x^2 + a)^n} + 2n \int \frac{dx}{(x^2 + a)^n} - 2na \int \frac{dx}{(x^2 + a)^{n+1}} = \frac{x}{(x^2 + a)^n} + 2nI_n - 2naI_{n+1}$$

Откуда

$$2naI_{n+1} = (2n-1)I_n + \frac{x}{(x^2+a)^n}$$

Утверждение 2. Любая рациональная функция имеет элементарную первообразную.

Рассмотрим простейшие дроби:

- 1. $\frac{a}{(x+p)^n}$, $n \in \mathbb{N}$, $a, p \in \mathbb{R}$

Интегралы от простейших дробей первого рода вычисляются по таблице. Для простейших дробей второго рода используется следующий алгоритм:

1. Если $p \neq 0$, то выделим полный квадрат и выполним замену $y = x + \frac{p}{2}$. Если p = 0, тогда

$$\int \frac{ax+b}{(x^2+px+q)^n} = a \int \frac{x\,dx}{(x^2+q)^n} + b \int \frac{dx}{(x^2+q)^n}$$

- 2. Интеграл $\int \frac{x \, dx}{(x^2+q)^n}$ можно вычислить с помощью замены $y=x^2+q$, т.к. $dy=2x\, dx$.
- 3. Применяя к интегралу $I_n = \int \frac{dx}{(x^2+q)^n}$ формулу понижения n-1 раз сведем его к интегралу I_1 , который является табличным.

Пример (12 и 13 из таблицы).

$$\int \frac{dx}{x^2 - 4} = \int \left(\frac{\frac{1}{4}}{x - 2} + \frac{-\frac{1}{4}}{x + 2}\right) dx = \frac{1}{4} \left(\ln|x - 2| - \ln|x + 2|\right) + c$$

Пример. $\int \frac{dx}{\sqrt{x^2+1}}$. Пусть $x= \sinh t, dx = \cot t \, dt$. Тогда

$$\int \frac{\operatorname{ch} t \, dt}{\sqrt{1 + \operatorname{sh}^2 t}} = \int \frac{\operatorname{ch} t}{\operatorname{ch} t} \, dt = \int dt = t + c$$

Упражнение. Найди формулу для $(\sinh t)^{-1}$

Неберущиеся интегралы:

- $\bullet \int \frac{\cos x}{x} dx$ $\bullet \int \frac{dx}{\ln x}$
- $\bullet \int \frac{e^x}{a} dx$

- $\int \sin x^2 dx$
- $\int \cos x^2 dx$
- $\int e^{-x^2} dx$

1.2. Определенный интеграл Римана

Определение 4. [a,b], a < b. Набор точек $\tau = \{x_k\}_{k=0}^n : x_0 = a < x_1 < x_2 < ... < x_n = b$ – разбиение (дробление) отрезка $[a,b], \Delta x_k = x_{k+1} - x_k$ – длина отрезка $[x_k, x_{k+1}]$. $\lambda = \lambda_\tau = \max_{k \in [0,n-1]} \Delta x_k$ – ранг дробления (мелкость), $\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$ – оснащение дробления τ . Пара (τ, ξ) называется оснащенным дроблением.

Определение 5. $f:[a,b] \to \mathbb{R}, \sigma_{\tau} = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k$ – суммы Римана (интегральные суммы).

Определение 6. $f:[a,b] \to \mathbb{R}$. Число $I \in \mathbb{R}$ называют пределом интегральных сумм при ранге $\to 0$:

$$I = \lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f, \xi) \quad (I = \lim_{\lambda \to 0} \sigma)$$

если $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta$

$$|\sigma_{\tau}(f,\xi) - I| < \varepsilon$$

Замечание. Последовательность оснащенных дроблений $\{(\tau^{(i)}, \xi^{(i)})\}_{i=1}^{\infty} : \lambda^{(i)} \to 0.$ $\forall \{\tau^{(i)}, \xi^{(i)}\} : \lambda^{(i)} \to 0 \ \sigma_{\tau^{(i)}}(f, \xi^{(i)}) \to I.$

Определение 7 (Интеграл Римана). $f:[a,b] \to \mathbb{R}$. Если $\exists \lim_{\lambda \to 0} \sigma = I$, то f называется интегрируемой по Риману на [a,b], а число I называется интегралом f по [a,b]. R[a,b] – класс функций, интегрируемых по Риману на [a,b].

$$\int_{a}^{b} f(x) \, dx$$

1.3. Суммы Дарбу

Определение 8. $f:[a,b] \to \mathbb{R}, \tau = \{x_k\}_{k=0}^n$ – дробление [a,b].

$$M_k = \sup_{x \in [x_k, x_{k+1}]} f(x), m_k = \inf_{x \in [x_k, x_{k+1}]} f(x)$$

Суммы

$$S = S_{\tau}(f) = \sum_{k=0}^{n-1} M_k \Delta x_k, s = s_{\tau}(f) = \sum_{k=0}^{n-1} m_k \Delta x_k$$

называются верхними и нижними интегральными суммами.

Замечание. Если f – непрерывна на [a,b], то это две частные суммы из сумм Римана.

Замечание. f ограничена сверху $\Leftrightarrow S$ ограничена.

Свойства сумм Дарбу:

1. $S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f,\xi), s_{\tau} = \inf_{\xi} \sigma_{\tau}(f,\xi)$

Доказательство. $M_k \geqslant f(\xi_k), k = 0, ..., n-1$. Тогда $M_k \Delta x_k \geqslant f(\xi_k) \Delta x_k \Leftrightarrow \sum_{k=0}^{n-1} M_k \Delta x_k \geqslant \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \Rightarrow S_{\tau}(f) \geqslant \sigma_{\tau}$, т.е. S_{τ} – верхняя граница. Докажем, что она является точной верхней границей.

Если f ограничена на [a,b]. Фиксируем $\varepsilon > 0$. На каждом кусочке разбиения $\exists \xi_k^* \in [x_k, x_{k+1}] : f(\xi_k^*) > M_k - \frac{\varepsilon}{b-a}$. Тогда $\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > S - \frac{\varepsilon}{b-a} \sum_{k=0}^{n-1} \Delta x_k = S - \varepsilon$.

Если f не ограничена на $[a,b] \Rightarrow$ не ограничена на каком-то кусочке $[x_l,x_{l+1}]$. Фиксируем A>0 и выберем ξ_k^* при $k\neq l$ произвольно, а для ξ_l^*

$$f(\xi_l^*) > \frac{1}{\Delta x_l} \left(A - \sum_{k \neq l} f(\xi_k^*) \Delta x_k \right)$$

Тогда

$$\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > A \Rightarrow \sup_{\xi} \sigma = +\infty = S$$

2. При добавлении новых точек дробления верхняя сумма не увеличится, а нижняя не уменьшится.

Доказательство. Докажем для верхних сумм при добавлении одной точки. $\tau:\{x_k\}_{k=0}^{n-1}$. Добавим точку c в $[x_l,x_{l+1}]-T$ — новое дробление.

$$S_{\tau} = \sum_{k=0}^{l-1} M_k \Delta x_k + M_l \Delta x_l + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

$$S_T = \sum_{k=0}^{l-1} M_k \Delta x_k + (c - x_l) \cdot M' + (x_{l+1} - c)M'' + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

где $M' = \sup_{x \in [x_l, c]} f, M'' = \sup_{x \in [c, x_{l+1}]} f.$ $M_l \geqslant M', M_l \geqslant M'',$ т.к. $[x_l, c] \subset [x_l, x_{l+1}], [c, x_{l+1}] \subset [x_l, x_{l+1}].$

Рассмотрим $S_{\tau} - S_T = M_l \Delta x_l - (c - x_l) M' - (x_{l+1} - c) M'' \geqslant M_l (x_{l+1} - x_l - c + x_l - x_{l+1} + c) = 0.$ Добавить больше точек можно по индукции.

3. Каждая нижняя сумма Дарбу не превосходит каждой верхней.

Автор: Илья Дудников

Доказательство. τ_1, τ_2 — разные дробления [a,b]. Докажем, что $s_{\tau_1} \leqslant S_{\tau_2}$. Возьмем $\tau = \tau_1 \cup \tau_2$. Тогда $s_{\tau_1} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant S_{\tau_2}$ (по свойству 2).

Утверждение 3. $f \in R[a,b] \Rightarrow f$ ограничена на [a,b].

Доказательство. Пусть f не ограничена на [a,b] сверху. Тогда $\forall \tau \Rightarrow \sup_{\xi} \sigma_{\tau}(f,\xi) = +\infty$. Тогда $\forall \tau$ и числа I \exists оснащение $\xi': \sigma_{\tau}(\xi') > I + 1 \Rightarrow$ никакое число I не является пределом интегральных сумм.

Определение 9. $f:[a,b] \to \mathbb{R}$. Возьмем

$$I^* = \inf_{\tau} S_{\tau} \qquad I_* = \sup_{\tau} s_{\tau}$$

где I^* — верхний интеграл Дарбу, I_* — нижний интеграл Дарбу.

Замечание. $I^* \geqslant I_*$.

Замечание. f ограничена сверху $\Leftrightarrow I^*$ ограничена.

1.4. Критерии интегрируемости функции

Теорема 5 (Критерий интегрируемости функции). Пусть $f:[a,b] \to \mathbb{R}$. Тогда $f \in R[a,b] \Leftrightarrow$ $S_{\tau}(f) - s_{\tau}(f) \xrightarrow[\lambda \to 0]{} 0$, r.e.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon$$

Доказательство. \Rightarrow . Пусть $f \in R[a,b]$. Обозначим $I = \int_a^b f$. Возьмем $\varepsilon > 0$, подберем $\delta > 0$:

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}$$

Переходя к супремуму и инфимуму, получим

$$I - \frac{\varepsilon}{3} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant I + \frac{\varepsilon}{3}$$

откуда $S_{\tau} - s_{\tau} \leqslant I + \frac{\varepsilon}{3} - I + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon$. \Leftarrow . Пусть $S_{\tau} - s_{\tau} \xrightarrow{\lambda \to 0} 0 \Rightarrow$ все суммы Дарбу конечны.

$$s_{\tau} \leqslant I_{*} \leqslant I^{*} \leqslant S_{\tau} \Rightarrow 0 \leqslant I^{*} - I_{*} \leqslant S_{\tau} - s_{\tau}$$

 $\Rightarrow I^*$ = I_* (т.к. это числа). Обозначим I = I^* = I_* .

$$s_{\tau} \leqslant I \leqslant S_{\tau}, s_{\tau} \leqslant \sigma_{\tau} \leqslant S_{\tau} \Rightarrow |I - \sigma_{\tau}| \leqslant S_{\tau} - s_{\tau}$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta \ |I - \sigma_{\tau}| < \varepsilon.$$

Замечание. Если $f \in R[a,b] \Rightarrow s_{\tau} \leqslant \int_a^b f \leqslant S_{\tau}$.

Следствие. $f \in R[a,b] \Rightarrow \lim_{\lambda \to 0} S_{\tau} = \lim_{\lambda \to 0} s_{\tau} = \int_a^b f(a,b) da$

Доказательство. $0 \leqslant S_{\tau} - \int_{a}^{b} f \leqslant S_{\tau} - s_{\tau}, \ 0 \leqslant \int_{a}^{b} f - s_{\tau} \leqslant S_{\tau} - s_{\tau}.$

Замечание. $\lim_{\lambda\to 0} S_{\tau} = I^*, \lim_{\lambda\to 0} s_{\tau} = I_*.$

Утверждение 4 (Критерий Дарбу интегрируемости функции по Риману). $f \in R[a,b] \Leftrightarrow f$ ограничена на [a,b] и $I_* = I^*$.

Утверждение 5 (Критерий Римана интегрируемости). $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0 \ \exists \tau \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon$.

Определение 10. $f: D \to \mathbb{R}$. Величина

$$\omega(f)_D = \sup_{x,y \in D} (f(x) - f(y))$$

называется колебанием f на D. Из определений граней функции ясно, что

$$\omega(f)_D = \sup_{x \in D} f(x) - \inf_{y \in D} f(y)$$

Если задано τ отрезка [a,b], то

$$\omega_k(f) = M_k - m_k$$

Тогда теорему можно записать:

$$f \in R[a,b] \Leftrightarrow \lim_{\lambda \to 0} \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k = 0$$

Теорема 6 (Интегрируемость непрерывной функции). $f:[a,b] \to \mathbb{R}, f \in C[a,b] \Rightarrow f \in R[a,b]$.

Доказательство. По теореме Кантора $f \in C[a,b] \Rightarrow f$ равномерна непрерывна на [a,b].

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall t', t'' \in [a, b] : |t' - t''| < \delta |f(t') - f(t'')| < \frac{\varepsilon}{b - a}$$

По теореме Вейерштрасса f достигает наибольшего и наименьшего значения на любом отрезке, содержащемся в [a,b]. Поэтому колебание f на всяком отрезке, длина которого меньше δ , будет меньше $\frac{\varepsilon}{b-a}$. Значит, $\forall \tau: \lambda_{\tau} < \delta$

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta x_k < \sum_{k=0}^{n-1} \frac{\varepsilon}{b-a} \Delta x_k$$

Теорема 7 (Интегрируемость монотонной функции). f монотонна на $[a,b] \Rightarrow f \in R[a,b]$.

Доказательство. Пусть f монотонно возрастает на [a,b]. Если $f(a) = f(b) \Rightarrow f$ постоянна $\Rightarrow f \in C[a,b] \Rightarrow f \in R[a,b]$.

Если f(a) < f(b). $\forall \varepsilon > 0$ возьмем $\delta = \frac{\varepsilon}{f(b) - f(a)}$. Возьмем произвольное $\tau : \lambda_{\tau} < \delta$ на $[x_k, x_{k+1}]$. В силу монотонности f верно $\omega_k(f) = f(x_{k+1}) - f(x_k)$.

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta_k = \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k)) \Delta x_k < \sum_{k=0}^{n} (f(x_{k+1}) - f(x_k)) \cdot \frac{\varepsilon}{f(b) - f(a)} = \varepsilon$$

Замечание. $f \in R[a,b]$. Если изменить значение f в конечном числе точек, то интегрируемость не нарушится и интеграл не изменится.

Доказательство. \widetilde{f} — отличается от f в точках $t_1, t_2, ..., t_m$. |f| ограничена на $[a, b] \Rightarrow |\widetilde{f}|$ ограничена. $|f| \leqslant A$, возьмем $\widetilde{A} = \max\{A, |\widetilde{f}(t_1)|, |\widetilde{f}(t_2)|, ..., |\widetilde{f}(t_m)|\}$. В интегральных суммах для f и \widetilde{f} отличаются не более 2m слагаемых, поэтому

$$|\sigma_{\tau}(f,\xi) - \sigma_{\tau}(\widetilde{f},\xi)| \leq 2m(A+\widetilde{A})\lambda_{\tau} \xrightarrow{\lambda} 0$$

Поэтому предел $\sigma_{\tau}(\widetilde{f},\xi)$ существует и равен пределу $\sigma_{\tau}(f,\xi)$.

Теорема 8 (Интегрируемость функции и её сужения). 1. $f \in R[a,b], [\alpha,\beta] \subset [a,b] \Rightarrow f \in R[\alpha,\beta]$

2. Если $a < c < b, f : [a,b] \to \mathbb{R}$ и $f \in R[a,c], f \in R[c,b],$ то $f \in R[a,b].$

Доказательство. 1. Возьмем $\varepsilon > 0$, подберем $\delta > 0$ из критерия интегрируемости на [a,b]. τ_0 – дробление $[\alpha,\beta], \lambda_{\tau_0} < \delta$. Добавим точек до дробления [a,b]. Получим $\tau(\lambda_{\tau} < \delta)$.

$$S_{\tau_0} - s_{\tau_0} = \sum_{k=1}^{m-1} \omega_k(f) \Delta x_k \leqslant \sum_{k=0}^{m-1} \omega_k(f) \Delta x_k < \varepsilon$$

2. Пусть f не постоянна, т.е. $\omega(f)_{[a,b]} > 0$. Возьмем $\varepsilon > 0$, подберем $\delta_1, \delta_2 : \forall \tau_1 : \lambda_{\tau_1} < \delta_1, \forall \tau_2 : \delta_1, \forall \tau_2 : \delta_2, \forall \tau_3 : \delta_3, \forall \tau_4 : \delta_4, \forall \tau_5 : \delta_4, \forall \tau_5 : \delta_5, \forall \tau_5 :$

 $\lambda_{\tau_2} < \delta_2$

$$S_{\tau_1} - s_{\tau_1} < \frac{\varepsilon}{3}, S_{\tau_2} - s_{\tau_2} < \frac{\varepsilon}{3}$$

 $\delta = \min\{\delta_1, \delta_2, \frac{\varepsilon}{3\omega}\}$. Пусть τ — дробление $[a,b], \lambda_{\tau} < \delta$. Точка $c \in [x_l, x_{l+1})$. Обозначим $\tau' = \tau \cup \{c\}, \tau_1 = \tau' \cap [a,c], \tau_2 = \tau' \cap [c,b]$

$$S_{\tau} - s_{\tau} \leqslant S_{\tau_1} - s_{\tau_1} + S_{\tau_2} - s_{\tau_1} + \omega_l(f)\delta < \varepsilon$$

Определение 11. Функция $f:[a,b] \to R$ называется кусочно-непрерывной на [a,b], если множество её точек разрыв пусто или конечно (и все разрывы первого рода)

Следствие. f – кусочно-непрерывная на $[a,b] \Rightarrow f \in R[a,b]$

Доказательство. Возьмём точки $a_1, a_2, ..., a_m$ (может $a_1 = a$ и/или $a_m = b$). Рассмотрим отрезки $[a_k, a_{k+1}]$. f непрерывна на (a_k, a_{k+1}) и \exists конечные $\lim_{x \to a_{k+1}} f(x)$ и $\lim_{x \to a_{k+1}} f(x) \Rightarrow f \in R[a_k, a_{k+1}] \Rightarrow$ по теореме о сужении $f \in R[a, b]$

Определение 12. Множество X называется не более, чем счетным, если оно конечно или счетно.

Определение 13. $E \subset \mathbb{R}$ — имеет нулевую меру, если для $\forall \varepsilon > 0$ множество E можно заключить в не более, чем счётное объединение интервалов, суммарная длина которых $< \varepsilon$.

$$\left(\lim_{m\to\infty}\sum_{i=1}^m(b_i-a_i)\right)$$

Пример. Множество из одной точки.

Упражнение. Чему равна мера \mathbb{N} ?

Теорема 9 (Критерий Лебега интегрируемости по Риману). Пусть $f : [a,b] \to R$. $f \in R[a,b] \Leftrightarrow f$ ограничена и множество точек разрыва имеет нулевую меру.

Теорема 10 (Арифметические действия над интегрируемыми функциями). $f,g \in \mathbb{R}[a,b]$. Тогда

- 1. $f + g \in R[a, b]$
- 2. $f \cdot g \in R[a, b]$

3.
$$\alpha f \in R[a,b], \alpha \in \mathbb{R}$$

4.
$$|f| \in R[a, b]$$

5. Если
$$\inf_{[a,b]} |g| > 0$$
, то $\frac{f}{g} \in R[a,b]$

Доказательство. 1. $D \subset [a, b]$. $x, y \in D$

$$|(f+g)(x) - (f+g)(y)| = |f(x) + g(y) - f(y) - g(y)| \le |f(x) - f(y)| + |g(x) - g(y)| \le \omega_D(f) + \omega_D(g)$$

$$\omega_D(f+g) \le \omega_D(f) + \omega_D(g)$$

$$\omega_D(f+g) \le \omega_D(f) + \omega_D(g)$$

$$[x_k, x_{k+1}] = [x_k, x_{k+1}] = [x_k, x_{k+1}]$$

$$\omega_k(f+g) \le \omega_k f + \omega_k g$$

$$0 \leqslant \sum_{k=0}^{n-1} \omega_k(f+g) \delta x_k \leqslant \sum_{k=0}^{n-1} \omega_k f \Delta x_k + \sum_{k=0}^{n-1} \omega_k g \Delta x_k (\to 0, \lambda \to 0)$$

$$\Rightarrow f + g \in R[a, b]$$

2.
$$|fg(x) - fg(y)| \le |f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)| \le |g(x)||f(x) - f(y)| + |f(y)||g(x) - g(y)| \le A|f(x) - f(y)| + B|g(x) - g(y)|$$
 (т.к. $R[a,b] \Rightarrow$ ограничена на $[a,b]$)

3.
$$g(x) = \alpha$$

4.
$$||f(x)| - |f(y)|| \le |f(x) - f(y)|$$

 $|\omega_k |f|| \le |\omega_k f|$

5.
$$\frac{f}{g} = f \cdot \frac{1}{g}$$
. Докажем, что $\frac{1}{g} \in R[a,b]$. $0 < m = \inf_{[a,b]} |g|$

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \left| \frac{g(x) - g(y)}{g(x)g(y)} \right| \leqslant \frac{g(x) - g(y)}{m^2} \Leftrightarrow \omega_k \left(\frac{1}{g} \right) \leqslant \frac{\omega_k(g)}{m^2}$$

Пример. 1. $\int_0^1 x^2 dx$ $x^2 \in C[a,b] \Rightarrow x^2 \in R[a,b].$

Рассмотрим какую-нибудь интегральную сумму: $x_k = \frac{k}{n} = \xi_k$

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^2 \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=0}^{n-1} k^2 = \lim_{n \to \infty} \frac{1}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} = \frac{1}{3}$$

2.
$$\int_0^1 e^x dx$$
 – упражнение

3.
$$f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$$
, $D \notin R[a, b], a < b$

$$\sum_{k=0}^{n-1} \omega_k(D) \Delta x_k = \sum_{k=0}^{n-1} \Delta x_k = b - a \underset{\lambda \to 0}{\not\to} 0$$

4. r(x) $\begin{cases} \frac{1}{q}, x = \frac{p}{q} \in \mathbb{Q}, \text{ дробь несократима} \\ 0, x \notin \mathbb{O} \end{cases}$

r(x) непрерывна в каждой точке, разрывна в каждой рациональной.

Доказательство. Зафиксируем $\varepsilon > 0, N \in \mathbb{N}: \frac{1}{N} < \frac{\varepsilon}{2}$ Рациональные числа из [0,1] со знаменателем $\leq N$, конечное число $= C_N$, множество X. Возьмём $\delta = \frac{\varepsilon}{4C_N}$ и дробление $\tau : \lambda_{\tau} < \delta$

Точки X попадут в не более, чем $2C_N$ отрезков дробления. В отрезках, где нет точек из X наибольшее значение $<\frac{1}{N}$

$$s_{\tau}(r) = 0$$

$$S_{\tau}(r) = \sum_{k:M_k \geqslant \frac{1}{N}} M_k \Delta x_k \sum_{k:M_k < \frac{1}{N}} M_l \Delta x_k \leqslant \underbrace{1 \cdot 2C_n}_{\underline{\varepsilon}} \cdot \delta + \underbrace{\frac{1}{N}}_{<\frac{\varepsilon}{2}} < \varepsilon$$

$$S_{\tau}(r) - s_{\tau}(r) = S_{\tau}(r) \underset{\lambda_r \to 0}{\to} 0 \Rightarrow r \in R[0, 1] \text{ if } \int_0^1 r(x) \, dx = 0$$

Если $f \in R_D$ $g \in R[a,b]$, то $f(g) \in R[a,b]$? (D- множество значений g) Ответ: нет. Пример: $f(y) = \begin{cases} 1, y \in [0,1] \\ 0, y = 0 \end{cases}$ и g(x) = r(x) на [0,1]

$$f(r(x)) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases} = D(x) \notin R[0, 1]$$

Теорема 11 (Интегрируемость композиции). $\varphi: [\alpha, \beta] \to [a, b], f: [a, b] \to \mathbb{R}$ $f(\varphi): [\alpha, \beta] \to \mathbb{R}$ $\varphi \in R[\alpha, \beta], f \in C[a, b].$ Тогда $f \circ \varphi \in R[\alpha, \beta]$

Доказательство. Например, из критерия Лебега.

1.5. Свойства интеграла Римана

1.
$$\int_{b}^{a} f = -\int_{a}^{b} f$$

2.
$$\int_a^a f = 0$$
 ($\forall f$ на вырожденном отрезке $f \in R[a, a]$)

Свойства:

• Аддитивность интеграла по отрезку: $a, b, c \in \mathbb{R}, f \in R[\min\{a, b, c\}, \max\{a, b, c\}]$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Доказательство. $f \in R[a,b] \Rightarrow f \in \mathbb{R}[a,c], f \in R[c,b], \{\overline{\tau}^{(n)}, \overline{\xi}^{(n)}\}_{n=1}^{\infty}$ и $\{\overline{\overline{\tau}}^{(n)}, \overline{\overline{\xi}}^{(n)}\}_{n=1}^{\infty}$ и $\{\overline{\tau}^{(n)}, \overline{\overline{\xi}}^{(n)}\}_{n=1}^{\infty}$ последовательности оснащенных дроблений [a,c] и [c,b] (равномерных, т.е. $\overline{\lambda} = \frac{c-a}{n}, \overline{\overline{\lambda}}$) $\tau^{(n)} = \overline{\tau}^{(n)} \cup \overline{\overline{\tau}}^{(n)}$ — дробление [a,b] $\xi^{(n)} = \overline{\xi}^{(n)} \cup \overline{\overline{\xi}}^{(n)}$ — оснащение $\tau^{(n)}$ $\sigma = \overline{\sigma} + \overline{\overline{\sigma}}$ при $n \to \infty$

$$\underbrace{\int_{a}^{b} f = \int_{a}^{c} f - \int_{b}^{c} f}_{\text{по доказанному}} = \int_{a}^{c} f + \int_{c}^{b} f$$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f = \int_{a}^{c} f - \int_{b}^{c} f$$

Все остальные случаи – аналогично.

• $f \equiv \alpha$ при $x \in [a,b] \Rightarrow \int_a^b f = \alpha(b-a)$

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta x_k = \alpha \cdot \sum_{k=0}^{n-1} \Delta x_k = \alpha (b-a)$$

• Линейность интеграла: $\alpha, \beta \in \mathbb{R}, f, g \in R[a, b]$

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} + \beta \int_{a}^{b} g$$

 $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} + \beta \int_{a}^{b} g$ Доказательство. $\alpha f + \beta g \in R[a, b]$ $\sigma_{\tau}(\alpha f + \beta g) = \sigma_{\tau}(\alpha f) + \sigma_{\tau}(\beta g) \text{ и переход к пределу.}$

• Монотонность интеграла: a < b, $f, g \in R[a, b]$ и $f \leq g$ на $[a, b] \Rightarrow \int_a^b f \leq \int_a^b g$

Доказательство.
$$\sigma_{\tau}(f) \leqslant \sigma_{\tau}(g)$$

Следствие. $a < b, f \in R[a,b]$, если $f \le M \in \mathbb{R}$ на [a,b], то $\int_a^b f \le M(b-a)$,

если
$$f \geqslant m$$
 на $[a,b]$ то $\int_a^b f \geqslant m(b-a)$

Следствие.
$$f \geqslant 0 \Rightarrow \int_a^b f \geqslant 0$$

• $a < b, f \in R[a, b]$ и $\exists c \in [a, b] : f(c) > 0$ и f непрерывна в точке C.

Тогда
$$\int_a^b f > 0$$

Доказательство. Пусть
$$\varepsilon = \frac{f(c)}{2} > 0 \Rightarrow \exists \delta : \forall x \in \underbrace{\left[c - \delta; c + \delta\right] \cap \left[a, b\right]}_{\left[\alpha, \beta\right]} : |f(x) - f(c)| < \varepsilon$$

$$f(x) > f(c) - \varepsilon = \frac{f(c)}{2} \Rightarrow \int_{\alpha}^{\beta} f \geqslant \frac{f(c)}{2} (\beta - \alpha)$$

$$\int_{\alpha}^{b} f - \int_{\alpha}^{\alpha} f + \int_{\alpha}^{\beta} f + \int_{\alpha}^{b} f + \int_{\alpha$$

$$\int_{a}^{b} f = \int_{a}^{\alpha} f + \int_{\alpha}^{\beta} f + \int_{\beta}^{b} \ge \int_{\alpha}^{\beta} f \ge \frac{f(c)}{2} (\beta - \alpha) > 0$$

Замечание. Таким же образом строгий знак в монотонности интеграла.

Замечание.
$$f \in R[a,b], f > 0 \Rightarrow \int_a^b f > 0$$

• $a < b, f \in R[a, b]$

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

Доказательство.
$$-|f| \leqslant f \leqslant |f|$$

Если не знаем, что $a \geqslant b$ или $b \geqslant a$

$$\Big| \int_{a}^{b} f \Big| \leqslant \Big| \int_{a}^{b} |f| \Big|$$

1.6. Свойства интеграла, интегральные теоремы о средних, формулы Тейлора и Валлиса

Теорема 12.
$$f,g \in R[a,b], g \geqslant 0$$
 на $[a,b], m \leqslant f \leqslant M$. Тогда $\exists \mu \in [m,M] : \int_a^b fg = \mu \int_a^b g$

Доказательство. $mg \leqslant fg \leqslant Mg$ на [a,b]

$$m\int_a^b g \leqslant \int_a^b fg \leqslant M\int_a^b g$$

Если
$$\int_a^b g = 0$$
, то $\exists \mu \in [m, M] : 0 = \mu \cdot 0$
Если $\int_a^b g > 0$, то $m \leqslant \frac{\int_a^b fg}{\int_a^b g} \leqslant M$

Если
$$\int_a^b g > 0$$
, то $m \leqslant \frac{\int_a^b fg}{\int_a^b g} \leqslant M$

Возьмём
$$\mu = \frac{\int_a^b fg}{\int_a^b g}$$

Замечание. Для $q \le 0$ тоже верно.

1. $f \in C[a,b], q \in R[a,b], q \ge 0$ (или $q \le 0$). Тогда $\exists c \in [a,b] : \int_a^b f \cdot g = f(c) \cdot \int_a^b g$

Доказательство. По теореме Вейерштрасса: $\exists m = \min_{[a,b]} f$ и $M = \max_{[a,b]} f$

Подберём $\mu \in [m, M]$ по предыдущей теореме. Тогда по теореме Больцано-Вейерштрасса $\exists c \in [a,b]: f(c) = M$

2. $f \in R[a,b], m, M \in \mathbb{R} : m \le f \le M$ на [a,b]. Тогда $\exists \mu \in [m,M] : \int_a^b f = \mu(b-a)$

Доказательство. $g \equiv 1$ в теореме.

3. $f \in C[a,b]$. Тогда $\exists c \in [a,b] : \int_a^b f = f(c)(b-a)$

Доказательство. $g \equiv 1$ в следствии 1.

Замечание. Теорему и следствия называют ещё теоремами о средних. Почему?

Определение 14. $f \in R[a,b], a < b$

$$\frac{1}{b-a}\int_a^b f$$
 – интегральное среднее f на $[a,b]$

Если возьмём равномерное разбиение [a,b], то $\sigma_n = \sum_{k=0}^{n-1} f(\xi_k) \cdot \frac{b-a}{n}$

To есть $\frac{\sigma_n}{b-a} \to \frac{1}{b-a} \int_a^b f$, где $\frac{\sigma_n}{b-a}$ – среднее арифметическое значений функции в точках

Определение 15. $E \subset \mathbb{R}$ – невырожденный промежуток (может быть и лучом), $f : E \to \mathbb{R}$, f – интегрируема на каждом отрезке, содержащемся в $E.\ a \in E.$

 $\Phi(x) = \int_a^x f(t) dt, x \in E$ – интеграл с переменным верхним пределом.

Теорема 13 (Барроу, об интеграле с переменным верхним пределом). $E \subset \mathbb{R}$ — невырожденный промежуток, $f: E \to \mathbb{R}$, интегрируема на каждом отрезке из $E, a \in E, \Phi(x) = \int_a^x f, x \in E$. Тогда

- 1. $\Phi(x) \in C(E)$
- 2. Если f непрерывна в точке $x_0 \in E$, то Φ дифференцируема в точке $x_0, \Phi'(x_0) = f(x_0)$

Доказательство. 1. Пусть $x_0 \in E$, подберем $\delta > 0[x_0 - \delta; x_0 + \delta] \cap E = [A, B]$ |f| на [A, B] ограничена числом M. $\Delta x : x_0 + \Delta x \in [A, B]$ $|\Phi(x_0 + \Delta x) - \Phi(x_0)| = \left| \int_a^{x_0 + \Delta x} f - \int_a^{x_0} f \right| = \left| \int_{x_0}^{x_0 + \Delta x} f \right| \leqslant \left| \int_{x_0}^{x_0 + \Delta x} |f| \right| \leqslant |\Delta x| \cdot M \underset{\Delta x \to 0}{\to} 0$

2. Проверим, что $\frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} \xrightarrow{\Delta x \to 0} f(x_0)$ Возьмем $\varepsilon > 0$ и $\delta > 0$: $\forall t : |t - x_0| < \delta |f(t) - f(x_0)| < \varepsilon$ (по непрерывности.) $\left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt = f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt = f(x_0) \right| < \frac{1}{|\Delta x|} \cdot \varepsilon \cdot |\Delta x| = \varepsilon, \ k = \int_a^b k \cdot \frac{1}{b - a}$

Пример. $\Phi(x) = \int_1^x \frac{\sin t}{t} dt, x > 1$ $\Phi'(x) = \frac{\sin x}{x} \Rightarrow \text{Si}'(x) = \frac{\sin x}{x}$

Упражнение. $\int \operatorname{Si}(x) dx = ?$

Следствие. Функция, непрерывная на промежутке имеет на нём первообразную. Ей является интеграл с переменным верхним пределом.

Определение 16. $\psi(x) = \int_x^a f$ (Условия на f и а прежние) — интеграл с переменным нижним пределом. $\Rightarrow \psi'(x) = -f(x)$ (Если f непрерывна).

 $\rightarrow \psi(x) - f(x)$ (Lean 1 henpephina).

Теорема 14 (Формула Ньютона-Лейбница). $f \in R[a,b], F$ — первообразная f на [a,b]. Тогда: $\int_a^b f = F(b) - F(a)$

Доказательство. Для каждого $n \in \mathbb{N}$:

$$F(x_1) - F(x_0) + F(x_2) - F(x_1) + F(x_3) - F(x_2) + \dots + F(x_n) - F(x_{n-1}) = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(x_n) - F(x_n)$$

$$F(b) - F(a)$$
По теореме Лагранжа $\exists \xi_{k,n} \in (x_k, x_{k+1})$
 $F(x_{k+1}) - F(x_k) = F'(\xi_{k,n})(x_{k+1} - x_k) = f(\xi_{k,n})\Delta x_k$

$$\int_a^b f = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\xi_{k,n})\Delta x_k = \lim(F(b) - F(a)) = F(b) - F(a)$$

Замечание. $\int_a^b f = F\Big|_a^b$ $\int_a^b f(x) \, dx = F(x)\Big|_{x=a}^b$ — двойная подстановка.

Замечание. G(x) = F(x) + C — тоже первообразная. G(b) - G(a) = F(b) - F(a)

Пример.
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$

Пример. $\int_{-1}^{1} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{-1}^{1} = -2$ - чушь!

- 1. $\left(-\frac{1}{x}\right)' = \frac{1}{x^2}$ не везде на [-1,1]
- 2. $\frac{1}{x^2}$ не интегрируема на [-1;1], т.к. не ограничена.

Замечание. Обобщение теоремы.

 $f \in R[a;b], F \in C[a,b], \ F$ — первообразная f на [a,b] за исключением некоторого конечного

числа точек. Тогда $\int_a^b f = F(b) - F(a)$

Доказательство. Пусть $\alpha_0 = a, \alpha_m = b, \alpha_1, \alpha_2, ..., \alpha_{m-1}$ – все точки на (a,b), в которых $F' \neq f$ $\int_{a}^{b} f = \sum_{k=0}^{m-1} \int_{\alpha_{k}}^{\alpha_{k+1}} f = \sum_{k=0}^{m-1} (F(\alpha_{k+1}) - F(\alpha_{k})) = F(b) - F(a).$ (Рассмотрим $\int_{\alpha_{k}}^{\alpha_{k+1}} f = \lim_{\varepsilon \to 0+} \int_{\alpha_{k+1}-\varepsilon}^{\alpha_{k+1}-\varepsilon} f = \lim_{\varepsilon \to 0+} (F(\alpha_{k+1}-\varepsilon) - F(\alpha_{k}+a)) = F(\alpha_{k+1}) - F(\alpha_{k}))$

Замечание. Без непрерывности F не получится: на [-1,1]

$$F(x) = \operatorname{sign} x = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}, f(x) = 0$$
$$0 = \int_{-1}^{1} f \neq F \Big|_{-1}^{1} = 2$$

Замечание. $\int_{a}^{b} F'(x) dx = F(b) - F(a)$. F дифференцируема, F' интегрируема.

Замечание. $F' \in R[a,b]$ – существенно.

$$F(x) = \begin{cases} x^2 \cdot \sin \frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$F'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cdot \cos \frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$F' \text{ не ограничена, а значит не интегрируема.}$$

 \varkappa sign x интегрируема на [-1, 1], но первообразной нет.

≠ Предыдущее замечание.

Теорема 15 (Интегрирование по частям в определенном интеграле.). f,g — дифференцируемы на [a,b], $f',g' \in R[a,b]$. Тогда $\int_{a}^{b} fg' = fg \Big|_{a}^{b} - \int_{a}^{b} f'g$

Доказательство.
$$f, g$$
— дифференцируемы \Rightarrow непрерывны \Rightarrow интегрируемы. $(f \cdot g)' = f' \cdot g + g' \cdot f \in R[a, b]$
$$\int_a^b (fg)' = fg \Big|_a^b$$

$$\int_a^b (fg)' = \int_a^b (f'g + g'f)$$

Замечание. $\int_a^b f \, dg = fg \Big|_a^b - \int_a^b g \, df$ $dg(x) = g'(x) \, dx$

Теорема 16 (Замена переменной в определенном интеграле). $\varphi : [\alpha, \beta] \to [A, B]$, дифференцируема на $[\alpha, \beta], \varphi' \in R[\alpha, \beta]$

 $f \in C[A;B]$. Тогда

$$\int_{\alpha}^{\beta} f(\varphi) \cdot \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta)} f$$

Доказательство. $f(\varphi) \in C[\alpha, \beta] \Rightarrow f(\varphi) \in R[a, b] \Rightarrow f(\varphi) \cdot \varphi' \in R[a, b]$ Пусть F - первообразная f на $[A, B] \Rightarrow F(\varphi)$ – первообразная $f(\varphi) \cdot \varphi'$ на $[\alpha, \beta]$ $\int_{\alpha}^{\beta} f(\varphi) \cdot \varphi' = F(\varphi) \Big|_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha))$ $\int_{\varphi(\alpha)}^{\varphi(\beta)} f = F \Big|_{\varphi(\alpha)}^{\varphi(\beta)} = F(\varphi(\beta)) - F(\varphi(\alpha))$

Упражнение. Пусть f четная функция. Доказать, что $\int_{0}^{a} = 2 \int_{0}^{a} f$ Пусть f нечетная функция. Доказать, что $\int_{-a}^{a} f = 0$

Теорема 17 (Формула Тейлора с остатком в интегральной форме). $n \in \mathbb{N}_0$,

$$f \in C^{n+1}\langle A; B \rangle, a, x \in \langle A; B \rangle$$
. Тогда $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$

Доказательство. По индукции: База: $n=0:f(x)=f(a)+\int_a^x f'(t)\,dt$ (Формула Ньютона-Лейбница)

Пусть верно для
$$n-1$$
. Докажем для n .
$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt.$$
 Проинтегрируем остаток по

частям: $u = f^{(n)}(t), u' = f^{(n+1)}(t), v' = (x-t)^{n-1}, v = \frac{(x-t)^n}{n}$

$$\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt =$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \left(-f^{(n)}(t) \cdot \frac{(x-t)^n}{n} \Big|_{t=a}^x + \int_a^x \frac{f^{n+1}(t)(x-t)^n}{n} dt \right) =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$$

Замечание. $\exists c :\in (a,x) \int_a^x f^{(n+1)}(t)(x-t)^n dt = f^{(n+1)}(c) \int_a^x (x-t)^m dt = f^{(n+1)}(c) \frac{(x-t)^{n+1}}{n+1}$ (Т.е. остаток в форме Лагранжа следует отсюда)

21/51

Последовательность $\{x_n\}: x_i \in \mathbb{Q}, x_n \to \pi$

Лемма 1.
$$m \in \mathbb{N}_0$$

$$\int_0^{\frac{\pi}{2}} \sin^m x dx = \int_0^{\frac{\pi}{2}} \sin^{m-1} x \cdot \sin x dx = -\sin^{m-1} \cdot \cos x \Big|_0^{\frac{\pi}{2}} + (m-1) \int_0^{\frac{\pi}{2}} \sin^{m-2} x \cdot \cos^2 x dx =$$

$$= (m-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) dx$$

$$I_m = (m-1) \cdot (I_{m-2} - I_m) \Rightarrow I_m = \frac{m-1}{m} I_{m-2}$$

$$I_0 = \int_0^{\frac{\pi}{2}} \sin^0 x dx = \frac{\pi}{2}$$

$$I_1 = \int_0^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_0^{\frac{\pi}{2}} = 1$$

$$I_m = \begin{cases} \frac{(m-1)!!}{m!!} \cdot \frac{\pi}{2}, m - \text{ четно} \\ \frac{(m-1)!!}{m!!} \cdot 1, m - \text{ нечётно} \end{cases}$$

Упражнение. $f:[-1;1] \to \mathbb{R}$ - непрерывна. Доказать, что $\int_0^{\frac{\pi}{2}} f(\sin x) \, dx = \int_0^{\frac{\pi}{2}} f(\cos x) \, dx$

Теорема 18 (Формула Валлиса).
$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Доказательство. $\forall x \in (0; \frac{\pi}{2}) \quad \sin x \in (0; 1)$ $\forall n \in \mathbb{N} \quad \sin^{2n+1} < \sin^{2n} x < \sin^{2n-1} x \Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x \, dx$ $\frac{(2n)!!}{(2n+1)!!} < \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!} < \frac{(2n-2)!!}{(2n-1)!!}$ $< \frac{\pi}{2} < \frac{(2n-2)!! \cdot (2n)!!}{((2n-1)!!)^{2}}$ $\frac{1}{2n+1} \cdot \left(\frac{(2n)!!}{(2n+1)!!}\right)^{2} < \frac{\pi}{2} < \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!}\right)^{2}$ $x_{n} = \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!}\right)^{2} \Rightarrow \pi < x_{n} < \frac{2n+1}{2n} \pi, \Rightarrow x_{n} \to \pi$

Теорема 19 (Вторая теорема о среднем для интегралов, Бонне). $f \in C[a,b],$ $g \in C^1[a,b], g$ монотонна на [a,b]. Тогда $\exists c \in [a,b]:$

$$\int_{a}^{b} fg = g(a) \int_{a}^{c} f + g(b) \int_{c}^{b} f$$

Доказательство.
$$F(x) = \int_{a}^{x} f$$
, $F' = f$, $F(a) = 0$

$$\int_{a}^{b} fg = Fg \Big|_{a}^{b} - \int_{a}^{b} - \int_{a}^{b} Fg' = g(b) \int_{a}^{b} f - \int_{a}^{b} Fg' =$$

$$= g(b) \int_{a}^{b} f - \int_{a}^{c} f \cdot (g(b) - g(a)) = g(a) \int_{a}^{c} f + g(b) \int_{c}^{b} f$$

Упражнение. Оценить $\int_{100\pi}^{200\pi} \frac{\sin x}{x} \, dx$

- 1. По первой теореме о среднем.
- 2. По второй теореме о среднем.

1.7. Интегральные неравенства

Теорема 20 (Неравенство Йенсена). f — выпукла и непрерывна на $\langle A, B \rangle$, $\varphi : [a, b] \to \langle A, B \rangle$ — непрерывна, $\lambda : [a, b] \to [0, +\infty)$ — непрерывна, $\int_a^b \lambda = 1$. Тогда

$$f\left(\int_{a}^{b} \lambda \varphi\right) \leqslant \int_{a}^{b} \lambda \cdot f(\varphi)$$

Упражнение. Доказать.

Доказательство. Обозначим $c=\int_a^b \lambda \varphi, \quad E=\{x\in [a,b]: \lambda(x)>0\},$ $m=\inf_E \varphi, \quad M=\sup_E \varphi \ (\text{m и M конечны по теореме Вейерштрасса})$

Если m=M, то есть φ постоянна на E, то c=m и обе части неравенства равны f(m). Пусть m < M. Тогда $c \in (m,M)$ и, следовательно, $c \in (A,B)$. Функция f имеет в точке c опорную прямую; пусть она задается уравнением $y=\alpha x+\beta$. По определению опорной прямой $f(c)=\alpha c+\beta$ и $f(t)\geqslant \alpha t+\beta$ при всех $t\in \langle A,B\rangle$. Поэтому

$$f(c) = \alpha c + \beta = \alpha \int_{a}^{b} \lambda \varphi + \beta \int_{a}^{b} \lambda = \int_{a}^{b} \lambda \cdot (\alpha \varphi + \beta) \leq \int_{a}^{b} \lambda \cdot (f \circ \varphi)$$

Замечание. Строгое неравенство, если f строго выпукла и $\varphi \not\equiv \mathrm{const.}$

Теорема 21 (Неравенство Гельдера). $p,q>1,\frac{1}{p}+\frac{1}{q}=1,f,g\in C[a,b].$ Тогда

$$\left| \int_a^b fg \right| \leqslant \left(\int_a^b |f|^p \right)^{\frac{1}{p}} \cdot \left(\int_a^b |g|^q \right)^{\frac{1}{q}}$$

Доказательство. Пусть $x_k = \frac{k(b-a)}{n} + a, \xi_k = x_k$. Обозначим $a_k = f(x_k)(\Delta x_k)^{\frac{1}{p}}, b_k = g(x_k)(\Delta x_k)^{\frac{1}{q}} \Rightarrow a_k b_k = f(x_k)g(x_k)\Delta x_k$. Тогда

$$\left| \sum_{k=0}^{n-1} a_k b_k \right| \le \left(\sum_{k=0}^{n-1} |a_k|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=0}^{n-1} |b_k|^q \right)^{\frac{1}{q}}$$

$$\left| \sum_{k=0}^{n-1} f(x_k) g(x_k) \Delta x_k \right| \le \left(\sum_{k=0}^{n-1} |f(x_k)|^p \Delta x_k \right)^{\frac{1}{p}} \cdot \left(\sum_{k=0}^{n-1} |g(x_k)|^q \right)^{\frac{1}{q}}$$

Выполним предельный переход:

$$\left| \int_a^b fg \right| \leqslant \left(\int_a^b |f|^p \right) \frac{1}{p} \cdot \left(\int_a^b |g|^q \right) \frac{1}{q}$$

Следствие (Неравенство Коши-Буняковского). $f,g\in C[a,b]\Rightarrow \left|\int_a^b fg\right|\leqslant \sqrt{\int_a^b f^2}\cdot \sqrt{\int_a^b g^2}$

Теорема 22 (Неравенство Минковского). $f, g \in C[a, b], p \ge 1$.

$$\left(\int_a^b |f+g|^p\right)^{\frac{1}{p}} \leqslant \left(\int_a^b |f|^p\right)^{\frac{1}{p}} + \left(\int_a^b |g|^q\right)^{\frac{1}{q}}$$

Определение 17. Пусть $f \in C[a,b]$.

1. Величина

$$\frac{1}{b-a} \int_{a}^{b} f$$

называется интегральным средним арифметическим функции f на [a,b].

2. Если f > 0, то величина

$$\exp\left(\frac{1}{b-a}\int_a^b f\right)$$

называется интегральным средним геометрическим функции f на [a,b].

Замечание. Интегральное среднее геометрическое есть пределы при $n \to \infty$ последова-

тельности

$$\sqrt[n]{\prod_{k=0}^{n-1} f(x_k)} = \exp\left(\frac{1}{n} \sum_{k=0}^{n-1} \ln f(x_k)\right) = \exp\left(\frac{1}{b-a} \sum_{k=0}^{n-1} \ln f(x_k) \Delta x_k\right)$$

при $x_k = a + \frac{k(b-a)}{n}$.

Теорема 23 (Об интегральных средних). $f \in C[a,b], f > 0$. Тогда

$$\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\right) \leqslant \frac{1}{b-a}\int_{a}^{b} f$$

Доказательство. Предельный переход в неравенстве для сумм, либо применить неравенство Йенсена для $\ln x$.

1.8. Несобственные интегралы

Определение 18. f локально интегрируема (по Риману) на промежутке E, если она интегрируема на каждом отрезке из E.

Замечание. Непрерывность влечет локальную интегрируемость.

Определение 19. Пусть $-\infty < a < b \le +\infty, f \in R_{loc}[a,b]$. Тогда $\int_a^{\to b} f$ — несобственный интеграл.

$$\lim_{t \to b^{-}} \int_{a}^{t} f = \int_{a}^{\to b} f$$

если предел существует в $\overline{\mathbb{R}}$.

Определение 20. Несобственный интеграл называется сходящимся, если из ℝ.

Определение 21. Аналогично, для $-\infty \le a < b < +\infty, f \in R_{loc}(a, b]$

$$\int_{\to a}^b f = \lim_{t\to a+} \int_t^b f$$

если предел существует в $\overline{\mathbb{R}}$.

Теорема 24 (Критерий Больцано-Коши сходимости интегралов). Пусть $-\infty < a < b \le +\infty, f \in R_{loc}[a,b)$. Тогда сходимость интеграла $\int_a^b f$ равносильна условию

$$\forall \varepsilon > 0 \ \exists \Delta \in (a,b) : \forall t_1, t_2 \in (\Delta,b) \ \left| \int_{t_1}^{t_2} f \right| < \varepsilon$$

Доказательство. $\Phi(t) = \int_a^t f \cdot \int_a^b$ сходится $\Leftrightarrow \exists$ конечный $\lim_{t \to b^-} \Phi(t)$. Согласно критерию Больцано-Коши существования предела функции

$$\forall \varepsilon > 0 \ \exists \Delta \in (a,b) : \forall t_1, t_2 \in (\Delta,b) \ |\Phi(t_2) - \Phi(t_1)| < \varepsilon$$

и по аддитивности интеграла $\Phi(t_2) - \Phi(t_1) = \int_{t_1}^{t_2} f$.

Замечание. Расходимость $\int_a^b f \Leftrightarrow \exists \varepsilon > 0 \ \forall \Delta \in (a,b) \ \exists t_1,t_2 \in (\Delta,b) \ \left| \int_{t_1}^{t_2} f \right| \geqslant \varepsilon$

Замечание. Запись:

$$\int_{a}^{b} f = \lim_{t \to b^{-}} \int_{a}^{t} f = \lim_{t \to b^{-}} (F(t) - F(a)) = F(b^{-}) - F(a)$$

Пример. $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{+\infty}, \alpha \neq 1 \\ \ln x \Big|_{1}^{+\infty}, \alpha = 1 \end{cases} = \begin{cases} \frac{1}{\alpha-1}, \alpha > 1 \\ +\infty, \alpha \leq 1 \end{cases}$$

Пример.
$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty, \alpha \geqslant 1 \\ \frac{1}{1-\alpha}, \alpha < 1. \end{cases}$$

1.8.1. Свойства несобственного интеграла

Будем считать, что f локально интегрируема на рассматриваемых промежутках.

1. **Аддитивность по промежутку.** Если $\int_a^b f$ сходится, то $\forall c \in (a,b)$ интеграл $\int_c^b f$ тоже сходится и

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

В обратную сторону, если при $c \in (a,b)$ интеграл $\int_c^b f$ сходится, то сходится и интеграл $\int_a^b f$.

Доказательство. $\forall t \in (a,b) \int_a^t f = \int_a^c f + \int_c^t f$ — по аддитивности определенного интеграла. Переидем к пределу при $t \to b$ — предел левой части и правой части существует или не существует одновременно.

2. Если $\int_a^b f$ сходится, то $\underbrace{\int_t^b f \xrightarrow[t \to b-]{} 0}_{\text{остаток интеграца}}$.

Доказательство.

$$\int_{t}^{b} f = \int_{a}^{b} f - \int_{a}^{t} f \xrightarrow[t \to b^{-}]{} \int_{a}^{b} f - \int_{a}^{b} f = 0$$

3. **Линейность несобственного интеграла.** Если интегралы $\int_a^b f, \int_a^b g$ сходятся, $\alpha, \beta \in \mathbb{R}$, то интеграл $\int_a^b (\alpha f + \beta g)$ сходится и

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Доказательство. Для доказательства надо перейти к пределу в равенстве для частичных интегралов

$$\int_{a}^{t} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{t} g$$

Замечание. Если интеграл $\int_a^b f$ расходится, а интеграл $\int_a^b g$ сходится, то интеграл $\int_a^b (f+g)$ расходится. Действительно, если f+g сходится, то сходится и интеграл от f=(f+g)-f (?!).

4. Монотонность несобственного интеграла. Если интегралы $\int_a^b f, \int_a^b g$ существуют в $\overline{R}, f \le g$ на [a,b), то

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$

Доказательство. Переидем к пределу в неравенстве для частичных пределов

$$\int_a^t f \leqslant \int_a^t g$$

Замечание. Аналогично, с помощью предельного перехода, на несобственные интегралы переносятся неравенства Йенсена, Гельдера, Минковского.

5. Интегрирование по частям в несобственном интеграле. Пусть f, g дифференцируемы на $[a,b), f', g' \in R_{loc}[a,b)$. Тогда

$$\int_a^b fg' = fg|_a^b - \int_a^b f'g$$

Если два из этих трех пределов конечны, то третий предел также существует и конечен.

Доказательство. Устремим t к b слева в равенстве

$$\int_a^t fg' = fg|_a^t - \int_a^t f'g$$

6. Замена переменной в несобственном интеграле. Пусть $\varphi : [\alpha, \beta) \to [A, B)$ – дифференцируема на $[\alpha, \beta), \varphi' \in R_{loc}[\alpha, \beta)$, существует $\varphi(\beta) \in \mathbb{R}$, $f \in C[A, B)$. Тогда

$$\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f$$

Опять же, если существует один из интегралов, то существует и другой.

Доказательство. Обозначим

$$\Phi(t) = \int_{\alpha}^{t} (f \circ \varphi) \varphi', \quad \psi(y) = \int_{\varphi(\alpha)}^{y} f$$

По формуле замены переменной в собственном интеграле

$$\Phi(t) = \psi(\varphi(t))$$

- 1. Пусть $\exists \int_{\varphi(\alpha)}^{\varphi(\beta)} f = I \in \mathbb{R}$. Докажем, что $\exists \int_{\alpha}^{\beta} f(\varphi)\varphi' = I$, т.е. $\Phi(t) \xrightarrow[t \to \beta^{-}]{} I$. Возьмем $\{t_n\}: t_n \to \beta, t_n < \beta$. Тогда $\varphi(t_n) \to \varphi(b-), \varphi(t_n) \in [A,B)$. Поэтому $\Phi(t_n) = \psi(\varphi(t_n)) \to I$. В силу произвольности выбора $\{t_n\}$, $\Phi(t) \to I$ при $t \to \beta$ -.
- 2. Пусть существует интеграл $\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = J \in \overline{R}$. Докажем, что интеграл $\int_{\varphi(\alpha)}^{\varphi(\beta)} f$ существует, и тогда по пункту 1 будет следовать, что он равен J. Если $\varphi(\beta-) \in [A,B)$, то интеграл собственный. Пусть $\varphi(\beta-) = B$. Возьмем $\{y_n\}, y_n \in [A,B), y_n \to B$. Не уменьшая общности, можно считать, что $y_n \in [\varphi(\alpha),B)$. Тогда $\exists \gamma_n \in [\alpha,\beta) : \varphi(\gamma_n) = y_n$ (по теореме Больцано-Коши).

Докажем, что $\gamma_n \to \beta$. Пусть $\beta' \in [\alpha, \beta)$. Т.к. $\max_{[\alpha, \beta']} \varphi < \beta$, а $\varphi(\gamma_n) \to B$, то, начиная с некоторого номера, $\gamma_n \in (\beta', \beta)$. Поэтому $\gamma_n \to \beta$, откуда $\psi(y_n) = \Phi(\gamma_n) \to J$.

Пример. $\int_0^\pi \frac{dx}{2+\cos x}$. Пусть $t=\lg\frac{x}{2}$. Тогда $x=2\arctan t, \cos x\frac{1-t^2}{1+t^2}, dx=\frac{2}{1+t^2}dt$. Если x=0, то t=0. Если $x=\pi$, то $t=+\infty$. Тогда

$$\int_0^{\pi} \frac{dx}{2 + \cos x} = \int_0^{+\infty} \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt = \int_0^{+\infty} \frac{2dt}{(1 + t^2) \cdot 2 + 1 - t^2} = 2 \int_0^{+\infty} \frac{dt}{t^2 + 3} = 2 \cdot \frac{1}{\sqrt{3}} \arctan \left(\frac{t}{\sqrt{3}} \right) \Big|_0^{+\infty} = \frac{2}{\sqrt{3}} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi}{\sqrt{3}}$$

Замечание. $a < b \in \mathbb{R}$. Пусть $x = b - \frac{1}{t}$.

$$\int_{a}^{b} f(x) dx = \int_{\frac{1}{t-a}}^{+\infty} f\left(b - \frac{1}{t}\right) \cdot \frac{1}{t^2} dt$$

Пример.

$$\int_{1}^{+\infty} \cos x \, dx = \sin x \Big|_{1}^{+\infty} = \lim_{x \to +\infty} \sin x - \sin 1 - \text{не существует}$$

1.8.2. Признаки сходимости несобственных интегралов

Лемма 2. $f \in R_{loc}[a,b), f \geqslant 0$. Тогда $\int_a^b f$ сходится $\Leftrightarrow F(t) = \int_a^t f$ на [a,b) ограничена сверху.

Доказательство. F(t) возрастает на [a,b) $(F(t_2) - F(t_1) = \int_{t_1 < t_2}^{t_2} f \ge 0)$.

 $\exists \lim_{t \to b^{-}} F(t) \in \mathbb{R} \Leftrightarrow F$ возрастает и F ограничена сверху.

Замечание. Если $f \geqslant 0$, то $\int_a^b f \in \overline{R}$.

Теорема 25 (Признак сравнения). $f,g \in R_{loc}[a,b), f,g \geqslant 0$

$$f(x) = O(g(x))$$
 при $x \to b-$

Тогда

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int_a^b f$ расходится, то $\int_a^b g$ расходится.

Доказательство. 1. По определению *O*-большого найдутся такие $\Delta \in (a,b)$ и K > 0, что $f(x) \leq Kg(x)$ при всех $x \in [\Delta,b)$. Следовательно,

$$\int_{\Delta}^{b} f \leqslant K \int_{\Delta}^{b} g < +\infty$$

то есть остаток интеграла $\int_a^b f$ сходится, а тогда и сам интеграл $\int_a^b f$ сходится.

2. Если бы интеграл $\int_a^b g$ сходился, то по пункту 1 сходился бы и интеграл $\int_a^b f$.

Следствие (Признак сравнения в предельной форме). $f,g \in R_{loc}[a;b), f \geqslant 0, g > 0$ и $\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = l \in [0; +\infty]$. Тогда

- 1. Если $l \in [0, +\infty)$ и $\int_a^b g$ сходится, то $\int_a^b f$ сходится
- 2. Если $l \in (0, +\infty]$ и $\int_a^b f$ сходится, то $\int_a^b g$ сходится

3. Если
$$l \in (0, +\infty)$$
, то $\int_a^b f$ и $\int_a^b g$ сходятся или расходятся одновременно

Доказательство. 1. $\frac{f}{g}$ ограничено в $(b-\varepsilon;b)\Rightarrow f(x)=O_b(g(x))$ при $x\to b-\Rightarrow$ по теореме $\int_{a}^{b} f$ сходится

- 2. Т.к. l>0, то f>0 в $\left(b-\varepsilon;b\right)$. Тогда поменяем f и g местами в п.1
- 3. Следует из пунктов 1 и 2.

Следствие. Интегралы от неотрицательных эквивалентных функций сходятся или расходятся одновременно.

Упражнение. $\int_{5}^{+\infty} \frac{dx}{r^{\alpha} l n^7 r}$

Пример. Докажем, что
$$f \geqslant 0$$
, $\int_a^{+\infty} f$ сходится $\mathscr{A}f(x) \underset{x \to +\infty}{\to} 0$

Доказательство.
$$E = \bigcup_{k=1}^{+\infty} \left(k - \frac{1}{k^2(k+1)}; k + \frac{1}{k^2(k+1)} \right)$$

$$f(x) = \begin{cases} 0, x \in \mathbb{R} \backslash E \\ k, x = k \\ \text{линейно и непрерывном соединим точки, } x \in E \end{cases}$$

$$f(x) = \begin{cases} 0, x \in \mathbb{R} \backslash E \\ k, x = k \end{cases}$$
линейно и непрерывном соединим точки, $x \in E$
$$\int_0^{+\infty} f = \lim_{b \to \infty} \int_a^b f$$

$$\int_a^b f(x) dx = \sum_{k=1}^N \int_{k-\frac{1}{k^2(k+1)}}^{k+\frac{1}{k^2(k+1)}} f(x) dx = \sum_{k=1}^N \frac{1}{2} k \cdot \frac{2}{k^2(k+1)} = \sum_{k=1}^N \frac{1}{k(k+1)} = \sum_{k=1}^N \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1$$

$$= 1 - \frac{1}{N+1} \xrightarrow{N \to \infty} 1$$

Замечание. Можно построить пример с g > 0. $g(x) = f(x) + \frac{1}{x^2}$

1.9. Интегралы от знакопеременных функций

Определение 22.
$$-\infty < a < b \le +\infty, f \in R_{loc}[a;b)$$
 $\int_a^b f$ сходится абсолютно, если сходится $\int_a^b |f|$

Замечание. Если $\int_a^b f$ и $\int_a^b g$ сходится абсолютно, то $\int_a^b (\alpha f + \beta g)$ сходится абсолютно $\forall \alpha, \beta \in \mathbb{R}$

Доказательство. $|\alpha f + \beta g| \le |\alpha| \cdot |f| + |\beta| \cdot |g| +$ признак сравнения для неотрицательных функций.

Замечание. Если $\int_a^b f \in \overline{\mathbb{R}}$, то $\left| \int_a^b f \right| \leqslant \int_a^b |f|$

Лемма 3. Если интеграл сходится абсолютно, то он сходится.

Доказательство. $\int_a^b |f| \, \mathrm{cxo}$ дится $\Rightarrow \forall \varepsilon > 0 \exists \Delta \in (a;b) \int_\Delta^b |f| < \varepsilon$ Тогда $\left| \int_\Delta^b f \right| < \int_\Delta^b |f| < \varepsilon \Rightarrow \int_a^b f = \int_a^\Delta f + \int_\Delta^b f \, \mathrm{cxo}$ дится по критерию Больцано-Коши. \square

Определение 23.

$$x_{+} = \max\{x,0\} = \begin{cases} x,x \geqslant 0 \\ 0,x < 0 \end{cases} - \text{положительная часть } x$$

$$x_{-} = \max\{-x,0\} = \begin{cases} 0,x > 0 \\ -x,x \leqslant 0 \end{cases} - \text{ отрицательная часть } x$$

$$x_{+} - x_{-} = x \Rightarrow x_{+} = \frac{|x| + x}{2}$$

$$x_{+} + x_{-} = |x| \Rightarrow x_{-} = \frac{|x| - x}{2}$$

 $0 \leqslant x_{\pm} \leqslant |x|, f_{+} = \max\{f; 0\}, f_{-} = \max\{-f; 0\}$

Доказательство. $\int_a^b |f| \cos du \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_+ \ \text{и} \ \int_a^b f_- - \cos du \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_+ \ \text{и} \ \int_a^b f_- - \cos du \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_+ \ \text{и} \ \int_a^b f_- - \cos du \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_+ \ \text{и} \ \int_a^b f_- - \cos du \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_- \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_+ \ \text{и} \ \int_a^b f_- - \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_- \cos \frac{1}{0 \le f_\pm \le |f|} \int_a^b f_-$

Замечание. Обратное утверждение к лемме неверно: $\int_a^b f$ сходится $\divideontimes \int_a^b |f|$ сходится.

Определение 24. Если $\int_a^b f$ сходится, а $\int_a^b |f|$ расходится, то $\int_a^b f$ называют условно сходящимся.

Замечание. $\int_a^b f$ сходится абсолютно, $\int_a^b g$ сходится условно $\Rightarrow \int_a^b (f+g)$ сходится условно, т.к. g = (f+g) - f.

Теорема 26 (Признаки Абеля и Дирихле сходимости несобственных интегралов). $f \in C[a;b), g \in C^1[a;b], g$ монотонна.

- 1. **Признак Дирихле.** Если функция $F(t) = \int_a^t f$ ограничена, а $g(x) \xrightarrow[x \to b^-]{} 0$, то интеграл $\int_a^b fg$ сходится.
- 2. **Признак Абеля.** Если интеграл $\int_a^b f$ сходится, а g ограничена, то интеграл $\int_a^b f g$ сходится.

Доказательство. 1. Проинтегрируем по частям:

$$\int_{a}^{b} fg = \int_{a}^{b} F'g = Fg \Big|_{a}^{b} - \int_{a}^{b} Fg'$$

Двойная подстановка обнуляется, поэтому сходимость исходного интеграла равносильна сходимости интеграла $\int_a^b Fg'$. Докажем, что $\int_a^b Fg'$ сходится абсолютно.

$$\int_a^b |Fg'| \leq \underset{|F| \leq K}{K} \int_a^b |g'| = K \left| \int_a^b g' \right| = K \cdot |g|_a^b | = K|g(a)|$$

2. g ограничена и монотонна $\Rightarrow \alpha = \lim_{x \to b^-} g(x)$ Функция $g - \alpha$ монотонна, $\xrightarrow[x \to b^-]{} 0 \Rightarrow \int_a^b f(g - \alpha)$ сходится по признаку Дирихле. Поэтому интеграл $\int_a^b f(g - \alpha)$ сходится, а интеграл $\int_a^b fg$ сходится как сумма двух сходящихся:

$$\int_{a}^{b} fg = \int_{a}^{b} f(g - \alpha) + \int_{a}^{b} f \cdot \alpha$$

Замечание. Можно ослабить условия: $f \in R_{loc}[a;b), g$ монотонна на [a;b)

Определение 25. v.p. $\int_a^b f = \lim_{\varepsilon \to 0} \left(\int_a^{c-\varepsilon} f + \int_{c+\varepsilon}^b f \right)$ – главное значение.

Пример.

$$\int_{-1}^{1} \frac{dx}{x} = 0$$

$$\int_{-\infty}^{\infty} x dx = 0$$

$$\int_{-\infty}^{\infty} x^{2} dx = +\infty$$

Пример. 1. $\int_{1}^{+\infty} f(x) \cdot \sin x \, dx, f(x) \ge 0.$

- Если $\int_1^{+\infty} f$ сходится, то $\int_1^{+\infty} f(x) \sin x dx$ сходится абсолютно. $0 \le |f(x) \cdot \sin x| \le |f(x)| = f(x)$
- Если $\int_{1}^{+\infty} f$ расходится $l = \lim_{x \to +\infty} f(x)$
 - 1. l = 0 и f монотонна, то признак Дирихле и $\int_{1}^{+\infty} f(x) \sin x dx$ сходится. Ho: $\int_{1}^{+\infty} |f(x) \sin x| dx$ не сходится. $|\sin x| \geqslant \sin^2 x = \frac{1 - \cos 2x}{2}$

$$\int_{1}^{\infty} f(x) |\sin x| dx \ge \underbrace{\int_{1}^{+\infty} \frac{1}{2} f(x) dx}_{\text{расходится}} - \underbrace{\int_{1}^{+\infty} \frac{1}{2} f(x) \cos 2x dx}_{\text{сходится}}$$

- 2. $l > 0 \Rightarrow \int_{1}^{+\infty} f \sin x dx$ расходится. $\int_{a_{k}}^{b_{k}} f(x) \cdot \sin x dx \geqslant \frac{1}{2} \int_{a_{k}}^{b_{k}} f(x) dx \geqslant \frac{1}{2} \cdot \frac{2\pi}{3} \cdot \min\{f(a_{k}), f(b_{k})\} \underset{k \to \infty}{\to} \frac{\pi}{3} \cdot l = \varepsilon > 0$
- 2. $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ сходится условно. $\int_{1}^{+\infty} \frac{\sin x}{x^2} dx$ сходится абсолютно по признаку сравнения. $\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ сходится условно $\int_{1}^{+\infty} \sqrt{x} \sin x dx$ расходится
- 3. Нельзя пользоваться эквивалентностью в случае знакопеременной функции.

$$\int_{1}^{\infty} \frac{\sin x}{\sqrt{x} - \sin x} dx - \text{расходится}$$

$$f(x) \sim \frac{\sin x}{\sqrt{x}} \text{ при } x \to \infty \int_{1}^{\infty} \frac{\sin x}{\sqrt{x}} \text{ сходится.}$$

Выделим главную часть:
$$\frac{\sin x}{\sqrt{x}} \left(\frac{1}{1 - \frac{\sin x}{\sqrt{x}}} \right) = \frac{\sin x}{\sqrt{x}} \left(1 + \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{x} + \frac{\sin^3 x}{x\sqrt{x}} + r(x) \right) = \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{\sqrt{x}} + \frac{\sin^2 x}{x\sqrt{x}} + r(x) = \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{\sqrt{x}} + \frac{\sin^2 x}{x\sqrt{x}} + r(x) = \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{\sqrt{x}} + \frac{\sin^2 x}{x\sqrt{x}} + \frac{\sin^2 x}{x\sqrt{x}} + r(x) = \frac{\sin x}{\sqrt{x}} + \frac{\sin^2 x}{\sqrt{x}} + \frac{\sin^2 x}{x\sqrt{x}} + \frac{\sin^$$

$$\frac{\sin^2 x}{x} + \frac{\sin^3 x}{x\sqrt{x}} + \frac{\sin^4 x}{x\sqrt{x}} + |q(x)|, \quad |q(x)| \leqslant \frac{c}{x^2}$$
pacxogutch $\exp(-x)$ cx-ch afc.

$$\left(\frac{1}{1-t} = 1 + t + t^2 + t^3 + r(t), t \to 0\right)$$

4.
$$\int_{0}^{+\infty} \frac{\sin x}{x^{\alpha}} dx = \int_{0}^{1} + \int_{1}^{+\infty}$$
 При $x \to 0 \sin x \sim x$ и $\sin x > 0$ на $(0; 1)$
$$\int_{0}^{1} \frac{dx}{x^{\alpha - 1}}$$

5. $\int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x}$ расходится. Но сходится в смысле главного значения.

Замечание. $\int_1^{+\infty} f \cdot g, f$ — периодична с периодом T > 0, g — монотонна $\underset{x \to +\infty}{\to} 0$

- 1. Если $\int_1^{+\infty} g \, \operatorname{сходится} \Rightarrow \int_1^{+\infty} f g$
- 2. Если $\int_1^{+\infty} g$ расходится, то $\left(\int_1^{+\infty} fg$ сходится $\iff \int_1^{1+T} f = 0\right)$

Доказательство. Упражнение.

Следствие. $\int_1^{+\infty} \frac{\sin^2 x}{x} dx$ расходится $\int_1^{+\infty} \frac{\sin^3 x}{x} dx$ сходится

1.10. Длина, площадь и объём

1.10.1. Площадь

Определение 26. $||x||, x \in \mathbb{R}^n$ – длина вектора.

$$||A - B|| = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2}$$

Определение 27. Движение — отображение $U: \mathbb{R}^n \to \mathbb{R}^n$, сохраняющее расстояния.

$$||A - B|| = ||U(A) - U(B)|| \quad \forall A, B \in \mathbb{R}^n$$

Определение 28. Площадь – функционал $S: P \to [0; +\infty)$, где $\{P\}$ – множество квадрируемых фигур из \mathbb{R}^2

Теорема 27 (Свойства площади). 1. Аддитивность: P_1, P_2 – квадрируемы и $P_1 \cap P_2$ = Ø. Тогда $P_1 \cup P_2$ – квадрируемая и $S(P_1 \cup P_2) = S(P_1) + S(P_2)$

- 2. Нормированность на прямоугольниках: площадь прямоугольника со сторонами a и b равна ab
- 3. Инвариантность относительно движений: S(U(P)) = S(P)
- 4. Монотонность: P, P_2 квадрируемые, $P_1 \subset P$, тогда $S(P_1) \leqslant S(P)$

Доказательство.
$$P = P_1 \cup (P \backslash P_1), \ P_1 \cap (P \backslash P_1) = \emptyset$$
. Тогда по аддитивности площади: $S(P) = S(P_1) + S(P \backslash P_1) \geqslant S(P_1)$

5. Если P содержится в некотором отрезке, то S(p) = 0

Доказательство. P можно поместить в прямоугольник сколь угодно малой площади. \Box

6. Усиленная аддитивность: P_1 и P_2 пересекаются по множеству нулевой площади. Тогда $S(P_1 \cup P_2)$ = $S(P_1)$ + $S(P_2)$

Доказательство. Возьмем
$$P = P_1 \cap P_2 \Rightarrow S(P_1) = S(P) + S(P_1 \backslash P) = S(P_1 \backslash P)$$
 $S(P_1 \cup P_2) = S(P_1 \backslash P) + S(P_2) = S(P_1) + S(P_2)$

1.10.2. Объём

Определение 29. Объём – функционал $V: \{T\} \to [0; +\infty)$, где $\{T\}$ – класс кубируемых тел

Теорема 28 (Свойства объёма). 1. Аддитивность: T_1, T_2 – кубируемые, $T_1 \cap T_2 = \emptyset$, тогда $T_1 \cup T_2$ – кубируемое, $V(T_1 \cup T_2) = V(T_1) + V(T_2)$

- 2. Нормированность на прямоугольных параллелепипедах. Объём параллелепипеда: $a \times b \times c = abc$
- 3. Инвариантность относительно движения: V(U(T)) = V(T)
- 4. Монотонность: T_1, T кубируемые, $T_1 \subset T$, тогда $V(T_1) \leq V(T)$
- 5. Если тело Т содержится в некотором прямоугольнике, то его объём равен нулю.
- 6. Усиленная аддитивность. T_1, T_2 кубируемые, $T_1 \cap T_2$ нулевого объёма, тогда $V(T_1 \cup T_2) = V(T_1) + V(T_2)$

Определение 30. $P \subset \mathbb{R}^2, h \geqslant 0$. Множество $Q = P \times [0; h]$ называется прямым цилиндром с основанием P и высотой h.

Определение 31.
$$T \subset \mathbb{R}^3, x \in \mathbb{R}$$
 $T(x) = \{(y,z) \in \mathbb{R}^2 : (x,y,z) \in T\}$ — сечение

1.10.3. Длина пути

Определение 32. $\gamma:[a;b] \to R^m, \gamma$ – непрерывное отображение $\gamma_i, \quad i=1,...,m-i$ -тая координатная функция. Если все γ_i непрерывны, то отображение γ непрерывно.

Определение 33. Путь в $R^m - \gamma = (\gamma_1, \gamma_2, ..., \gamma_m) : [a, b] \to R^m$ $\gamma(a)$ — начало пути $\gamma(b)$ — конец пути $\gamma(a)$ — носитель пути. В каком-то смысле можно считать, что это изображение пути.

Пример. Полуокружность: $\gamma^1(t) = (t, \sqrt{1-t^2}), t \in [-1,1], \text{ пробегаем дугу слева направо.}$ $\gamma^2(t) = (-\cos t, \sin t), t \in [0,\pi]$ $\gamma^3(t) = (\cos t, \sin t), t \in [0,\pi]$ $\gamma^4(t) = (\cos t, |\sin t|), t \in [-\pi,\pi]. \text{ пробежали дугу туда и обратно.}$ Все четыре отображения разные, но носитель пути у всех одинаковый.

Определение 34. $\gamma(a) = \gamma(b)$ – замкнутый путь

Определение 35. Если $\gamma(t_1) = \gamma(t_2)$ только при $t_1 = t_2$ или $t_1, t_2 \in \{a; b\}$, то путь несамопересекающийся (простой)

Определение 36. Если $\gamma_i \in C^r[a;b], i=1,...,m,$ то путь γ гладкости $r, r \in \mathbb{N} \cup \{\infty\}$

Определение 37. Если $\gamma^-(t) = \gamma(a+b-t)$ – противоположный путь.

Упражнение. Посмотреть на кривые Пеано.

Определение 38. $\gamma:[a;b] \to \mathbb{R}^m, \ \widetilde{\gamma}:[\alpha;\beta] \to \mathbb{R}^m$ — эквивалентные, если существует строго возрастающая функция и $[a;b] \overset{\text{ha}}{\to} [\alpha;\beta]: \gamma = \widetilde{\gamma} \circ u$. Это отношение эквивалентности:

- 1. $\gamma \sim \gamma$, u = id[a;b]
- 2. $\gamma \sim \widetilde{\gamma} \Leftrightarrow \gamma \sim \widetilde{\gamma}$ u^{-1} обратное отображение
- 3. $\gamma_1 \sim \gamma_2, \gamma_2 \sim \gamma_3 \Rightarrow \gamma_1 \sim \gamma_3 \quad u_1 \circ u_2$

Определение 39. Класс эквивалентных путей – кривая Каждый представитель класса – параметризация кривой Кривая называется г-гладкой, если у неё найдется гладкая параметризация

1.10.4. Длина кривой

Определение 40. $\gamma \in C([a;b] \to \mathbb{R}^m)$ – путь в R^m

- 1. Длина кривой, соединяющей точки A и B не меньше ||AB||
- 2. Нужна аддитивность: $a < c < b, \ \gamma^1 = \gamma \big|_{[a;c]}, \ \gamma^2 = \gamma \big|_{[c;b]} \Rightarrow S_\gamma = S_{\gamma^1} + S_{\gamma^2}$

Пример. $\tau = \{t_0, t_1, t_2, ..., t_n\}$ — дробление [a, b] l_{τ} — вписанная ломаная.

Определение 41. γ – путь в \mathbb{R}^m . Длиной пути γ называется S_γ = $\sup l_\tau$

Определение 42. Путь с S_{γ} < +∞ – спрямляемый.

Лемма 4. Длины эквивалентных путей равны.

Доказательство. $\gamma \sim \widetilde{\gamma} \circ u, \quad u:[a;b] \stackrel{\text{на}}{\to} [\alpha;\beta]$ строго возрастает $\tau = \{t_k\}_{k=1}^n$ — дробление [a;b] $\widetilde{t}_k = u(t_k), \widetilde{\tau} = \{\widetilde{t}_k\}$ — дробление $[\alpha,\beta]$

$$l_{\tau} = \sum_{k=0}^{n-1} ||\gamma(t_{k+1}) - \gamma(t_k)|| = \sum_{k=0}^{n-1} ||\widetilde{\gamma}(\widetilde{t}_{k+1}) - \widetilde{t}_k|| = l_{\widetilde{\tau}}$$
 длина отрезка
$$l_{\tau} = l_{\widetilde{\tau}} \leqslant S_{\widetilde{\gamma}} \Rightarrow S_{\gamma} \leqslant S_{\widetilde{\gamma}}$$
 Поменяем: γ и $\widetilde{\gamma}$ местами $\Rightarrow S_{\widetilde{\gamma}} \leqslant S_{\gamma}$

Замечание. Противоположные пути имеют одинаковую длину.

Лемма 5 (Аддитивность длины пути).
$$\gamma:[a;b] \to \mathbb{R}, a < c < b$$
 $\gamma^1 = \gamma\big|_{[a;c]}, \gamma^2 = \gamma\big|_{[c;b]}$ $S_\gamma = S_{\gamma^1} + S_{\gamma^2}$

Доказательство. Обозначим $S_1 = S_{\gamma^1}, S_2 = S_{\gamma^2}$. Возьмём дробления τ_1 и τ_2 отрезков [a,c] и [c,b]; тогда $\tau = \tau_1 \cup \tau_2$ – дробление [a,b]. Построим по τ_1 и τ_2 ломаные, вписанные в γ^1 и γ^2 , и обозачим через l_1 и l_2 их длины. Тогда $l_1 + l_2 = l_{\tau} \leqslant s_{\gamma}$. Последовательно переходя в левой части к супремуму по всевозможным дроблениям τ_1 и τ_2 , получаем

$$s_1 + l_2 \leqslant s_{\gamma}$$

$$s_1 + s_2 \leqslant s_{\gamma}$$
.

Докажем противоположное неравенство

$$s_{\gamma} \leqslant s_1 + s_2$$
.

Возьмём дробление $\tau = \{t_k\}_{k=0}^n$ отрезка [a,b] и докажем, что $l_\tau \leqslant s_1 + s_2$; отсюда и будет следовать требуемое. Если $c \in \tau$, то $\tau = \tau_1 \cup \tau_2$, где τ_1 и τ_2 – дробления [a,c] и [c,b]. Поэтому

$$l_{\tau} = l_1 + l_2 \leqslant s_1 + s_2.$$

Если $c \notin \tau$, то добавим c в число точек дробления, то есть положим $\tau^* = \tau \cup \{c\}$. Пусть $c \in (t_{\nu}, t_{\nu+1})$. По неравенству треугольника

$$l_{\tau} = \sum_{k=0}^{\nu-1} |\gamma(t_{k+1}) - \gamma(t_k)| + |\gamma(t_{\nu+1}) - \gamma(t_{\nu})| + \sum_{k=\nu+1}^{n-1} |\gamma(t_{k+1}) - \gamma(t_k)| \le 1$$

$$\leq \sum_{k=0}^{\nu=1} |\gamma(t_{k+1}) - \gamma(t_k)| + |\gamma(c) - \gamma(t_{\nu})| + |\gamma(t_{\nu+1}) - \gamma(c)| + \sum_{k=\nu+1}^{n-1} |\gamma(t_{k+1}) - \gamma(t_k)| = l_{\tau^*}$$

По доказанному

$$l_{\tau} \leqslant l_{\tau^*} \leqslant s_1 + s_2$$

Определение 43. Длина кривой – длина какой-то из её параметризаций

Пример. Пример ограниченной, но неспрямляемой кривой: кривая Коха. Длины:

1.
$$n = 1 : \frac{1}{3} \cdot 4$$

2.
$$n = 2: \left(\frac{4}{3}\right)^2$$

3.
$$n = 3$$
: $\left(\frac{4}{3}\right)^3$

1.10.5. Приложения интеграла Римана

Определение 44. $f:[a;b] \to \mathbb{R}$ $Q_f\{(x,y)\in\mathbb{R}^2:x\in[a;b],y\in[0;f(x)]\}$ – подграфик Если $f \in C[a;b]$, то Q_f называют криволинейной трапеция

Теорема 29. Пусть $f \in R[a;b]$. Тогда Q_f квадрируема

Доказательство. Без доказательства

Замечание. Суммы Дарбу
$$s_{\tau}, S_{\tau}$$
 $\forall \tau \quad s_{\tau} \leq S(Q_f) \leq S_{\tau}$ Вспомним, что $\sup_{\tau} S_{\tau} = \inf_{\tau} S_{\tau}$ $\Rightarrow S(Q_f) = \int_a^b f dx$

Замечание. $S(Q_f) = -\int_a^b f$

Пример. Площадь эллипса: $E = \{(x,y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}, a,b > 0$

$$y = b\sqrt{1 - \frac{x^2}{a^2}}, x \in [0; a]$$

$$S_E = 4\int_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx = 4b\int_0^{\frac{\pi}{2}} a\cos^2 t \, dt = 4ba \cdot \frac{\pi}{4} = \pi ba$$

1.11. Полярные координаты

Чтобы была взаимная однозначность, можно считать, что $\varphi \in [0, 2\pi]$. Можно обобщать на $r \in \mathbb{R}$, а не только \mathbb{R}_+ .

Рис. 1: Примеры функций в полярных координатах

1.11.1. Вычисление площади в полярных координатах

 $r(\varphi): [\varphi_1, \varphi_2] \to \mathbb{R}, \tau = \{\psi_k\}$ — разбиение $[\varphi_1, \varphi_2]$.

Площадь сектора равна $\frac{1}{2}r^2\varphi$. Обозначим

$$s_{\tau} = \frac{1}{2} \sum_{k=0}^{n-1} \Delta \psi_k \cdot \min_{\varphi \in [\psi_k, \psi_{k+1}]} r^2(\varphi)$$
$$S_{\tau} = \frac{1}{2} \sum_{k=0}^{n-1} \Delta \psi_k \cdot \max_{\varphi \in [\psi_k, \psi_{k+1}]} r^2(\varphi)$$

Тогда

$$s_{\tau} \leqslant S(Q) \leqslant S_{\tau}$$

Если $r^2(\varphi) \in R[\varphi_1, \varphi_2]$, то $\sup_{\tau} s_{\tau} = \inf_{\tau} S_{\tau} = S(Q)$. Значит, искомая площадь равна:

$$S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} r^2(\varphi) \, d\varphi$$

Пример. Найдем площадь S правого лепестка лемнискаты Бернулли

$$r = a\sqrt{2\cos 2\varphi}, \qquad \varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right], \quad a > 0$$

$$S = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} a^2 \cdot 2\cos 2\varphi \, d\varphi = \left. a^2 \frac{\sin 2\varphi}{2} \right|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = a^2$$

Упражнение. Посчитать площадь правого лепестка лемниската Бернулли.

Замечание. Можно было приближать не секторами, а треугольниками.

$$\frac{1}{2} \min_{\varphi \in [\psi_k, \psi_{k+1}]} r^2(\varphi) \sin \Delta \psi_k$$

В данном случае, нельзя перейти к эквивалентным. Тогда

$$\alpha - \frac{\alpha^3}{3!} \leqslant \sin \alpha \leqslant \alpha$$

1.11.2. Вычисление объемов

Т – кубируемое.

- Существует отрезок [a,b] такой, что $T(x) = \emptyset \ \forall x \notin [a,b]$
- $\forall x \in [a,b] \ T(x)$ квадрируемая фигура.

 $au=\{x_k\}$ — разбиение [a,b]. Возьмем цилиндры с $h=\Delta x_k$, основаниями $\min_{x\in[x_k,x_{k+1}]}S(x)$ и $\max_{x\in[x_k,x_{k+1}]}S(x)$. Тогда

$$V = \int_{a}^{b} S(x) \, dx$$

Пример. Найдем объем V эллипсоида

$$D = \left\{ (x, y, z), \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}, \qquad a, b, c > 0$$

Если $x \notin [-a, a]$, то $D(x) = \emptyset$. Если $x = \pm a$, то $D(x) = \{(0, 0)\}$. Если $x \in (-a, a)$, то

$$D(x) = \left\{ (x,y) \in \mathbb{R}^2 : \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 - \frac{x^2}{a^2} \right\}$$

есть эллипс с полуосями $b\sqrt{1-\frac{x^2}{a^2}}$ и $c\sqrt{1-\frac{x^2}{a^2}}$. Площадь эллипса вычисляется по формуле: $S(x)=\pi bc\left(1-\frac{x^2}{a^2}\right)$. Отсюда

$$V = \int_{-a}^{a} \pi bc \left(1 - \frac{x^2}{a^2} \right) dx = 2\pi bc \left[x - \frac{x^3}{3a^2} \right]_{x=0}^{a} = \frac{4}{3}\pi abc$$

Замечание. Пусть $f:[a,b] \to [0,+\infty), T_f$ — тело, получающееся вращением подграфика функции f вокруг оси OX. Тело T_f задается равенством

$$T_f = \{(x, y, z) \in \mathbb{R}^3 : x \in [a, b], y^2 + z^2 \leq f^2(x)\}$$

Замечание. Пусть $f \in C[a,b], f \geqslant 0$. Для тела вращения T_f при каждом $x \in [a,b]$ сечение

есть круг радиуса f(x), поэтому $S(x) = \pi f^2(x)$. Значит

$$V(T_f) = \pi \int_a^b f^2$$

Пример. Найдем объем V_T тора — тела, образованного вращением круга $\{(x,y): x^2 + (y-R)^2 \le r^2\}$ (0 < r < R) вокруг оси OX.

Тор представляется в виде разности тел вращения подграфиков функций, графики которых – верхняя и нижняя полуокружности, то есть функции

$$f_1(x) = R + \sqrt{r^2 - x^2}, \quad f_2(x) = R - \sqrt{r^2 - x^2}, \quad x \in [-r, r]$$

Поэтому

$$V_T = \pi \int_{-r}^{r} f_1^2 - \pi \int_{-r}^{r} f_2^2 =$$

$$= \pi \int_{-r}^{r} \left(\left(R + \sqrt{r^2 - x^2} \right)^2 - \left(R - \sqrt{r^2 - x^2} \right)^2 \right) dx =$$

$$= 4\pi R \int_{-r}^{r} \sqrt{r^2 - x^2} dx = 2\pi^2 R r^2$$

Замечание. Вокруг OY вращаем y = f(x)

$$V = \int_{a}^{b} 2\pi x f(x) \, dx$$

1.11.3. Длина кривой

Если $\gamma = (\gamma_1,...,\gamma_m)$ — путь в $\mathbb{R}^m,\ \gamma_i \in C^1[a,b], \gamma' = (\gamma'_1,\gamma'_2,...,\gamma'_m).$ По определению евклидовой

длины

$$||\gamma'|| = \sqrt{\sum_{i=1}^{m} \gamma_i'^2}$$

Теорема 30 (Длина гладкого пути). Пусть $\gamma:[a,b] \to \mathbb{R}^m$ – гладкий путь. Тогда γ спрямляем и

$$s_{\gamma} = \int_{a}^{b} ||\gamma'||$$

Доказательство. 1. Пусть Δ = $[\alpha, \beta]$ \subset [a, b]. Пусть дробление η = $\{u_k\}_{k=0}^n$ отрезка Δ . Тогда

$$l_{\eta} = \sum_{k=0}^{n-1} ||\gamma(u_{k+1}) - \gamma(u_k)|| = \sum_{k=0}^{n-1} \sqrt{\sum_{i=1}^{m} (\gamma_i(u_{k+1}) - \gamma_i(u_k))^2}$$

По формуле Лагранжа при каждых i и k найдется такая точка $c_{ik} \in (u_k, u_{k+1})$, что

$$\gamma_i(u_{k+1}) - \gamma_i(u_k) = \gamma_i'(c_{ik}) \Delta u_k$$

Поэтому

$$l_{\eta} = \sum_{k=0}^{n-1} \sqrt{\sum_{i=1}^{m} \gamma_i'^2(c_{ik})} \cdot \Delta u_k$$

Обозначим

$$M_{\Delta}^{(i)} = \max_{t \in \Delta} |\gamma_i'(t)|, \qquad m_{\Delta}^{(i)} = \min_{t \in \Delta} |\gamma_i'^2(t)|$$

$$M_{\Delta} = \sqrt{\sum_{i=1}^{m} \left(M_{\Delta}^{(i)}\right)^2}, \qquad m_{\Delta} = \sqrt{\sum_{i=1}^{m} \left(m_{\Delta}^{(i)}\right)^2}$$

Тогда

$$m_{\Delta}(\beta - \alpha) \leq l_{\eta} \leq M_{\Delta}(\beta - \alpha)$$

Переходя к супремуму по всем дроблениям, мы получим

$$m_{\Delta}(\beta - \alpha) \leqslant s_{\gamma|_{\Delta}} \leqslant M_{\Delta}(\beta - \alpha)$$

В частности, при Δ = [a,b], отсюда следует, что путь γ спрямляем.

2. Возьмем дробление τ = $\{t_k\}_{k=0}^n$ отрезка [a,b] и обозначим

$$m_k = m_{[t_k, t_{k+1}]}, \qquad M_k = M_{[t_k, t_{k+1}]}$$

По доказанному

$$m_k \Delta t_k \leqslant s_{\gamma|_{[t_k, t_{k+1}]}} \leqslant M_k \Delta t_k$$

Кроме того, при всех $t \in [t_k, t_{k+1}]$

$$m_k \le ||\gamma'(t)|| \le M_k$$

и поэтому

$$m_k \Delta t_k \leqslant \int_{t_k}^{t_{k+1}} ||\gamma'|| \leqslant M_k \Delta t_k$$

Складывая неравенства и пользуясь аддитивностью длины пути и интеграла, получаем:

$$\sum_{k=0}^{n-1} m_k \Delta t_k \leqslant s_\gamma \leqslant \sum_{k=0}^{n-1} M_k \Delta t_k$$

$$\sum_{k=0}^{n-1} m_k \Delta t_k \leqslant \int_a^b ||\gamma'|| \leqslant \sum_{k=0}^{n-1} \leqslant \sum_{k=0}^{n-1} M_k \Delta t_k$$

Докажем, что для всех дроблений между левой и правой суммами лежит лишь одно число. Суммы в левой и правой части не обязаны быть интегральными для $\|\gamma'\|$, поэтому оценим разность между ними непосредственно. Если M_{Δ} + m_{Δ} \neq 0, то

$$\begin{split} M_{\Delta} - m_{\Delta} &= \frac{M_{\Delta}^2 - m_{\Delta}^2}{M_{\Delta} + m_{\Delta}} = \frac{\sum_{i=1}^m \left(\left(M_{\Delta}^{(i)} \right)^2 - \left(m_{\Delta}^{(i)} \right)^2 \right)}{M_{\Delta} + m_{\Delta}} = \\ &= \sum_{i=1}^m \left(M_{\Delta}^{(i)} - m_{\Delta}^{(i)} \right) \cdot \frac{M_{\Delta}^{(i)} + m_{\Delta}^{(i)}}{M_{\Delta} + m_{\Delta}} \leqslant \sum_{i=1}^m \left(M_{\Delta}^{(i)} - m_{\Delta}^{(i)} \right) \end{split}$$

Если же M_{Δ} = m_{Δ} = 0, то доказанное неравенство очевидно.

Возьмем $\varepsilon > 0$. По теореме Кантора все функции $|\gamma_i'|$ равномерно непрерывны на [a,b]. Поэтому для каждого i=1,...,m найдется такое $\delta_i > 0$, что

$$x, y \in [a, b], |x - y| < \delta_i \Rightarrow ||\gamma_i'(x)| - |\gamma_i'(y)|| < \frac{\varepsilon}{m(b - a)}$$

Положим $\delta = \min_{1 \le i \le m} \delta_i$. Для любого разбиения с рангом меньше, чем $\delta |M_k - m_k| < \frac{\varepsilon}{b-a}$. Поэтому

$$\left| s_{\gamma} - \int_{a}^{b} \|\gamma'\| \right| \leqslant \sum_{k=0}^{n-1} M_{k} \Delta t_{k} - \sum_{k=0}^{n-1} m_{k} \Delta t_{k} < \frac{\varepsilon}{b-a} \sum_{k=0}^{n-1} \Delta t_{k} = \varepsilon$$

Так как ε произвольно, то $s_{\gamma} = \int_a^b ||\gamma'||.$

Замечание. По аддитивности эта теорема распространяется на кусочно-гладкие пути.

Замечание. Запишем частный случай теоремы 1 при m=2. Пусть $\gamma=(x(t),y(t))\in C^1\left([a,b]\to\mathbb{R}^2\right)$

$$s_{\gamma} = \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2}$$

Следствие. $y = f(x) \in C^1[a, b]$. Тогда график спрямляем и

$$S_{\Gamma_f} = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$$

График f – это путь

$$\Gamma_f(t) = (t, f(t)), \quad t \in [a, b]$$

Пример. Длина дуги эллипса.

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t \end{cases}, \quad t \in [0, \beta]$$

$$s = \int_0^\beta \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt$$
$$= \int_0^\beta \sqrt{b^2 - (b^2 - a^2) \sin^2 t} \, dt = b \int_0^\beta \sqrt{1 - \varepsilon^2 \sin^2 t} \, dt$$

Величина $\varepsilon = \frac{\sqrt{b^2 - a^2}}{b}$ называется эксцентриситетом эллипса. Интеграл

$$E(\varepsilon,\beta) = \int_0^\beta \sqrt{1 - \varepsilon^2 \sin^2 t} \, dt$$

называется эллиптическим интегралом второго рода.

Замечание. Эллиптическим интегралом первого рода называется интеграл

$$K(\varepsilon,\beta) \int_0^\beta = \frac{1}{\sqrt{1-\varepsilon^2 \sin^2 t}} dt$$

1.12. Функции ограниченной вариации

Определение 45. Величина

$$\bigvee_{a}^{b} f = \sup_{\tau} \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$$

называется полной вариацией f на [a,b].

Если $V_a^b f < +\infty$, то f называется функцией **ограниченной вариации** на отрезке [a,b]. Множество всех функций ограниченной вариации на [a,b] обозначается V[a,b].

Теорема 31 (Свойства). 1. Вариация аддитивна: если $f:[a,b] \to \mathbb{R}, a < c < b$, то

$$\overset{b}{\overset{c}{V}} = \overset{c}{\overset{c}{V}} + \overset{b}{\overset{c}{V}}$$

2. Если f является кусочно-гладкой на [a,b], то

$$\bigvee_{a}^{b} f = \int_{a}^{b} |f'|$$

3. Вариация монотонна: если $f:[a,b] \to \mathbb{R}, [\alpha,\beta] \subset [a,b]$, то

$$\overset{\beta}{\underset{\alpha}{V}} = \overset{b}{\underset{a}{V}} f$$

Вариацию можно определить и для функция, заданных на промежутке произвольного типа. Если $f:\langle a,b\rangle \to \mathbb{R}$, то

$$\bigvee_{a}^{b} f = \sup_{[\alpha,\beta] \subset (a,b)} \bigvee_{\alpha}^{\beta} f$$

- 4. Пусть $\gamma = (\gamma_1, ..., \gamma_m) : [a, b] \to \mathbb{R}^m$. Тогда γ спрямляем в том и только том случае, когда $\gamma_i \in V[a, b]$ при всех i = 1, ..., m.
- 5. Если f монотонна на [a,b], то $f \in V[a,b]$

$$\bigvee_{a}^{b} f = |f(b) - f(a)|$$

6. Если $f \in V[a,b]$, то f ограничена на [a,b].

Доказательство. Докажем свойства 3, 4, 5 и 6.

3. По аддитивности

$$\bigvee_{a}^{b} f = \bigvee_{a}^{\alpha} + \bigvee_{\alpha}^{\beta} + \bigvee_{\beta}^{b} \geqslant \bigvee_{\alpha}^{\beta} f$$

4. Доказательство следует из двусторонней оценки

$$|\gamma_i(t_{k+1}) - \gamma_i(t_k)| \le ||\gamma(t_{k+1}) - \gamma(t_k)|| \le \sum_{j=1}^m |\gamma_i(t_{k+1}) - \gamma_j(t_k)|$$

5. Для любого дробления

$$\sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)| = \left| \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k)) \right| = |f(b) - f(a)|$$

6. При всех $x \in [a, b]$

$$|f(x)| \le |f(a)| + |f(x) - f(a)| + |f(b) - f(x)| \le |f(a)| + \bigvee_{a=0}^{b} f(a)|$$

Теорема 32 (Арифметические действия над функциями ограниченной вариации). Пусть $f,g \in V[a,b]$. Тогда

- 1. $f + g \in V[a, b]$
- 2. $fg \in V[a,b]$
- 3. $\alpha f \in V[a,b] \ (\alpha \in \mathbb{R})$
- 4. $|f| \in V[a, b]$
- 5. если $\inf_{x \in [a,b]} |g(x)| > 0$, то $\frac{f}{g} \in V[a,b]$

Доказательство. Обозначим $\Delta_k f = f(x_{k+1}) - f(x_k)$

1. Складывая по всем k неравенства

$$|\Delta_k(f+g)| \leq |\Delta_k f| + |\Delta_k g|$$

получим

$$\sum_{k=0}^{n-1} |\Delta_k(f+g)| \le \sum_{k=0}^{n-1} |\Delta_k f| + \sum_{k=0}^{n-1} |\Delta_k g| \le \bigvee_a^b + \bigvee_a^b g$$

Переходя в левой части к супремуму по всем дроблениям, получаем, что

$$\bigvee_{a}^{b} (f+g) \leqslant \bigvee_{a}^{b} f + \bigvee_{a}^{b} g$$

2. По свойству 6 функции f и g ограничены; пусть |f| ограничена числом K, а |g| — числом L. Тогда

$$|\Delta_k(fg)| \leq L|\Delta_k f| + K|\Delta_k g|$$

Складывая эти неравенства и переходя к супремуму, получим

$$\bigvee_{a}^{b} fg \leq L \bigvee_{a}^{b} f + K \bigvee_{a}^{b} g$$

3. Утверждение для αf следует из 2, если взять в качестве g функцию, тождественно равную α .

4. Аналогично, из неравенств

$$|\Delta_k|f|| \le |\Delta_k f|$$

сложив и перейдя к супремуму, вытекает, что

$$\bigvee_{a}^{b} |f| \leq \bigvee_{a}^{b} f$$

5. Достаточно доказать, что $\frac{1}{g} \in V[a,b]$, а потом воспользоваться утверждением 2. Пусть $m = \inf_{x \in [a,b]} |g(x)|$. Тогда

$$\left|\Delta_k \frac{1}{g}\right| = \left|\frac{\Delta_k g}{g(x_k)g(x_{k+1})}\right| \leqslant \frac{|\Delta_k g|}{m^2}$$

откуда

$$\bigvee_{a}^{b} \frac{1}{g} \leqslant \frac{1}{m^2} \bigvee_{a}^{b} g$$

Теорема 33 (Характеристика функций ограниченной вариации). Пусть $f:[a,b] \to \mathbb{R}$. Тогда $f \in V[a,b]$ в том и только том случае, когда f представляется в виде разности двух возрастающих на [a,b] функций.

Доказательство. Достаточность очевидна из свойства 5 и предыдущей теоремы. Докажем необходимость. Пусть

$$g(x) = \bigvee_{a}^{x} f$$
, $x \in [a, b]$; $h = g - f$

Если $a \leqslant x_1 < x_2 \leqslant b$, то по аддитивности

$$g(x_2) - g(x_1) = \bigvee_{x_1}^{x_2} f \ge 0,$$

$$h(x_2) - h(x_1) = \bigvee_{x_1}^{x_2} f - (f(x_2) - f(x_1)) \ge 0$$

то есть функции g и h возрастают.

Следствие. $V[a,b] \subset R[a,b]$

Доказательство. Действительно, монотонная функция интегрируема и разность интегрируемых функций интегрируема.

Следствие. Функция ограниченной вариации не может иметь разрывов второго рода.

Доказательство. Это следует из теоремы 33 и из того, что монотонная на отрезке функция не может иметь разрывов второго рода.

Следствие. Ни один из классов V[a,b] и C[a,b] не содержится в другом.

Доказательство. Так как существуют разрывные монотонные функции, то $V[a,b] \not\in C[a,b]$ Приведем пример непрерывной функции, вариация которой бесконечна. Пусть

$$f(x) = \begin{cases} x \cos \frac{\pi}{x}, & x \in (0, 1], \\ 0, & x = 0 \end{cases}$$

Тогда $f \in C[0,1]$. Обозначим $x_k = \frac{1}{k}$ ($k \in \mathbb{N}$). При этом

$$f(x_k) = \frac{(-1)^k}{k}, \qquad |f(x_k) - f(x_{k+1})| = \frac{1}{k} + \frac{1}{k+1}$$

Возьмем $n \in \mathbb{N}$ и рассмотрим дробление: $0 < x_n < ... < x_1 = 1$ (для удобства точки дробления замурованы в порядке убывания). Сумма из определения вариации равна

$$\sum_{k=1}^{n-1} |f(x_{k+1}) - f(x_k)| + |f(x_n) - f(0)| = -1 + 2\sum_{k=1}^{n} \frac{1}{k}$$

Докажем, что последовательность гармонических сумм

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

не ограничена сверху. При $m \in \mathbb{N}$ оценим сумму с номером 2^m снизу. Для этого сгруппируем слагаемые, а затем оценим сумму в каждой группе как количество слагаемых, умноженное на самое малое слагаемое:

$$\begin{split} H_{2^m} &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \ldots + \left(\frac{1}{2^{m-1} + 1} + \ldots + \frac{1}{2^m}\right) \geqslant \\ &\geqslant 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \ldots + 2^{m-1} \cdot \frac{1}{2^m} = 1 + \frac{m}{2} \end{split}$$

Поэтому $f \notin V[0,1]$

Раздел #2: Ряды

Определение 46. Рядами называется сумма

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots$$

где $\{a_k\}$ — последовательность из $\mathbb R$ (из $\mathbb C$)

Определение 47. Частичной суммой называется величина

$$S_n = \sum_{k=1}^n a_k$$

Определение 48. $\sum_{k=1}^{\infty} a_k$ сходится $\Leftrightarrow \exists$ конечный $\lim_{n \to \infty} S_n$

Утверждение 6. $\forall \{S_n\}$ является последовательностью частичных сумм какого-то ряда.

Доказательство. $a_1 = S_1, a_k = S_k - S_{k-1}$