Practicality and Feasibility of Improving Linux Container Utilization with Task Rebalancing Strategy

Pongsakorn U-chupala Nara Institute of Science and Technology

HPC is everywhere

HPC workloads are diverse

Resource sharing with VM is cost effective

PROBLEM: Scheduling is inefficient

Moving Hourly Average from Google Cluster Data (color indicates priority)

CPU

Memory

Overcommitting

- Allocating more resource than available => Increase chance of task failure
- Overcommit factor: How much over-commit is allowed? (example: 1.2x of available resources)
 - Too high => Increase task failure rate
 - Too low => Resources are underutilized

Advent of Linux Container

Linux Container

Less overhead

Lower spin-up time

Migration Time

Faster migration

Enabling task micromanagement

PROPOSAL: Task Rebalancing

- Real-time host load-balancing
 - Increase optimal overcommit factor => Increase utilization
- Minimal interference to the scheduler and scheduled tasks
- Easier to explain with example

Example

Task

Unable to overcommit

Scheduling

Open for overcommit

Host Utilization

Host Machine B

Scheduling + Rebalancing

Open for overcommit Juling + Rebala Open for overcommit

Increased Optimal Overcommit Factor!!

Increased Utilization!!

Host Machine A

Host Machine B

Utilization

Host

Evaluation

- Simulate cluster with/without task rebalancing
- Driven by Google's cluster data traces *,**
- Measure performances
 - Metrics: cpu utilization, # of completed tasks, etc.

^{*} J. Wilkes, "More Google cluster data." Nov-2011.

^{**} C. Reiss, J. Wilkes, and J. L. Hellerstein, "Google cluster-usage traces: format + schema," Mountain View, CA, USA, Nov. 2011.

Preliminary Results

Conclusion

- PROBLEM: Scheduling is inefficient
- INSIGHT: Linux container enables task micromanagement
- PROPOSAL: Task rebalancing
 - Find and swap swappable task pair to load-balance hosts
 - Increase optimal overcommit factor => Increase cluster utilization
- EVALUATION: Simulation driven by Google's cluster data