

Data Collection and Preprocessing Phase

Date	1 July 2024
Team ID	SWTID1720176710
Project Title	Visual Diagnostics: Detecting Tomato Plant Diseases Through Leaf Image Analysis
Maximum Marks	6 Marks

Preprocessing Template

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detecting edges, converting color space, cropping, batch normalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

Section	Description	
Data Overview	Collect images of Tomato Leaves. Images are then organized into subdirectories based on their respective names as shown in the project structure. In this project, we have collected images of 10 types of Tomato Leaf images like Heatly, Spider Mites, Yellow leaf curl, etc. and they are saved in the respective sub directories with their respective names. You can download the dataset used in this project using the below link Dataset: https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf	
	Tomato leaf disease detection Kaggle Tomato leaf disease detection using CNN https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf	

Resizing	<pre>datagen= keras.preprocessing.image.ImageDataGenerator(rescale= 1/255, validation_split=0.3) datagen2 =keras.preprocessing.image.ImageDataGenerator(rescale=1/255)</pre>	
Edge Detection	<pre>x = base_model.output x= GlobalAveragePooling2D()(x) x = Dense(1000, activation='relu')(x) pred =Dense(10, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=pred) model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics='accuracy')</pre>	
Color Space Conversion	No need	
Image Cropping	<pre>datagen= keras.preprocessing.image.ImageDataGenerator(rescale= 1/255, validation_split=0.3) datagen2 =keras.preprocessing.image.ImageDataGenerator(rescale=1/255)</pre>	
Batch Normalization	from keras.layers import GlobalAveragePooling2D, Dense, BatchNormalization from keras.models import Model model = keras.models.load_model('Training/my_model.h5', custom_objects={'BatchNormalization': BatchNormalization})	
Data Preprocessing Code Screenshots		
Loading Data	from google.colab import drive import os drive.mount('/content/drive') dataset_path = '/content/drive/My Drive/Project/tomato/' os.chdir(dataset_path) print(os.listdir()) from google.colab import drive import os. listdir()) from google.colab import drive import os. drive.mount('/content/drive') step 2: Define the path to your dataset in Google Drive dataset_path = '/content/drive/My Drive/Project/tomato' # Adjust this path to the location of your dataset step 3: Change the working directory to the dataset directory os.chdir(dataset_path) step 4: list the files in the directory to confire print(os.listdir()) Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). The Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).	
Resizing	datagen= keras.preprocessing.image.ImageDataGenerator(rescale= 1/255, validation_split=0.3) datagen2 =keras.preprocessing.image.ImageDataGenerator(rescale=1/255)	

Edge Detection	<pre>x = base_model.output x= GlobalAveragePooling2D()(x) x = Dense(1000, activation='relu')(x) pred =Dense(10, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=pred) model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics='accuracy')</pre>
Color Space Conversion	No need
Image Cropping	<pre>datagen= keras.preprocessing.image.ImageDataGenerator(rescale= 1/255, validation_split=0.3) datagen2 =keras.preprocessing.image.ImageDataGenerator(rescale=1/255)</pre>
Batch Normalization	from keras.layers import GlobalAveragePooling2D, Dense, BatchNormalization from keras.models import Model model = keras.models.load_model('Training/my_model.h5', custom_objects={'BatchNormalization': BatchNormalization})