

ISIS, Vanderbilt University

Compositional Control Design and Analysis

Passivity

$u(t)y(t) = \dot{S}(t) + \dot{D}(t)$	Power balance equation
$\langle u, y \rangle_t = S(t) + D(t)$ -S(0) - D(0)	Energy balance equation
$\dot{D}(t) \geq 0$	Dissipation condition
$\langle u, y \rangle_t \geq S(t) - S(0)$	Passivity condition

u(t)	Input signal
y(t)	Output signal
S(t)	Stored energy
D(t)	Dissipated energy
$\ \boldsymbol{y_T}\ _2^2$	Energy produced by the component so far (output) in interval T.
$\ \boldsymbol{u_T}\ _2^2$	Energy received by the component so far (input) in interval T.
$\langle y, u \rangle_T$	Correlation between input and output sample values in interval T. This measures dissipation.
a	Real-valued sector lower bound.
b	Real-valued sector upper bound.

Passive systems exhibit robustness to time delays and quantization errors, preserving stability.

Parallel and feedback interconnections of passive systems are passive.

Sector Analysis

Conic systems are a superset of passive systems ([0,b]). Stability is easy to determine using gain conditions.

 $\|\mathbf{y}_{T}\|_{2}^{2} - (\mathbf{a} + \mathbf{b}) < \mathbf{y}, \mathbf{u} >_{T} + \mathbf{ab} \|\mathbf{u}_{T}\|_{2}^{2} \le 0$

Sector analysis follows simple compositional rules.

- 1. *I* is in [1, 1] (Fig. 1 (b))
- 2. kH is in [ka, kb] (Fig. 1 (c))
- 3. -H is in [-b, -a] (Fig. 1 (d))
- 4. sum rule $H + H_1$ is in $[a + a_1, b + b_1]$ (Fig. 1 (e))
- inverse rule(s) (Fig. 1 (f))

(a)
$$a > 0 \to H^{-1}$$
 is in $\left[\frac{1}{b}, \frac{1}{a}\right]$.

(b)
$$a < 0 \rightarrow H^{-1}$$
 is outside $\left[\frac{1}{a}, \frac{1}{b}\right]$.

(c)
$$a = 0 \rightarrow (H^{-1} - (\frac{1}{h}I))$$
 is positive.

$$\begin{array}{c|c}
\hline
 & \hline
 & \hline
 & u(t) & y(t) \\
\hline
 & in7 & \hline
 & inv(H) & \hline
\end{array}$$

Online Stability Validation Using Sector Analysis

Joseph Porter, Graham Hemingway, Nicholas Kottenstette, Gabor Karsai, Janos Sztipanovits

Feedback Gain Conditions

Quadrotor helicopters – discrete-time controller is not quite passive[9]:

- 1. Hold operation introduces small amounts of energy (quantified by sector bound a).
- 2. Fast dynamics aggravate the problem.

Sufficient gain condition for L2 stability:

Online Analysis

Limitations

- 1. Sector condition is only sufficient.
- 2. Sector analyzer approximates.
- 3. Analysis requires high precision and worst-case inputs.
- 4. Analysis must starting at the beginning of time with reasonable initial conditions.
- 5. Evaluation is criteria are design-specific use carefully.

Simplified Quadrotor Example

Evaluation of Analyzer

-3.333

Delay Effects via Brute Force

-3.8811

-3.1054 -6.667

-1.6081

