GEOMETRÍA Capítulo 7

SEGMENTOS PROPORCIONALES @ SACO OLIVEROS

MOTIVATING | STRATEGY

También llamada

1. PROPORCIÓN ÁUREA

sección áurea, se halla presente en la naturaleza, el arte y la arquitectura. Los griegos la conocieron en el estudio del cuerpo humano y la utilizaron, en la escultura y la arquitectura y la definieron como una característica fundamental en su estética.

$$\frac{a}{b} = \frac{a+b}{a} = \varphi$$
 (Phi) = **1.61803399...**

HELICO | THEORY SEGMENTOS PROPORCIONALES

Razón geométrica de dos segmentos

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

Ejemplo:

: razón geométrica de AB y CD

Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.

$$\frac{AB}{CD} = \frac{MN}{PQ}$$
 Son proporcionales

Teorema de Tales

$$\frac{a}{b} = \frac{m}{n}$$

Corolario de Tales

$$\frac{a}{b} = \frac{m}{n}$$

Teorema del Incentro

I: Incentro del ABC

Teorema de Menelao

Teorema de Ceva

$$(a)(b)(c) = (m)(n)(p)$$

1. Halle el valor de x, si L1 // L2 // L3.

TEOREMA DE TALES

$$\frac{a}{b} = \frac{9b}{a}$$
 $a^2 = 9b^2$

$$\frac{a}{b} = \frac{x}{8}$$

$$\frac{3b}{k} = \frac{x}{8}$$

$$3(8) = X$$

2. Halle el valor de X.

COROLARIO DE TALES

3. En un triángulo ABC, donde AB = 6 y BC = 12, se traza la bisectriz interior BD. Halle AD, si m&BAD = m & ABC.

5. En un triángulo rectángulo ABC, recto en B, la mediana \overline{AM} y las cevianas interiores \overline{BN} y \overline{CS} se intersecan en P. Si SB = 3, AN = 2 y NC = 6, halle

7. En un triángulo rectángulo ABC, recto en A, se traza la bisectriz interior \overline{BD} . Halle (BI/ID) si AB = 8, BC = 10 y, además, I es incentro del triángulo ABC.

8. Los triángulos ABC, CDE y EFG son equiláteros. Halle el valor de x.

Teorema de Tales

$$\overrightarrow{\mathsf{L}_1} /\!/ \, \overrightarrow{\mathsf{L}_2} /\!/ \, \overrightarrow{\mathsf{L}_3}$$

$$\stackrel{\longleftarrow}{\mathsf{L}_4} /\!/ \stackrel{\longleftarrow}{\mathsf{L}_5} /\!/ \stackrel{\longleftarrow}{\mathsf{L}_6}$$

$$\frac{a}{b} = \frac{4}{2} \dots (1)$$

$$\frac{a}{b} = \frac{x}{3}$$
(2)

<u>Igualando 1 y 2</u>

$$\frac{4}{x} = \frac{x}{3}$$

$$12 = x^2$$

$$x = 2\sqrt{3}$$