Cyclic Topsort

Input file: standard input
Output file: standard output

Time limit: 1.5 seconds Memory limit: 256 megabytes

You are given a directed graph with n vertices and m edges. Your task is to find the length of the longest sequence a of distinct integers from 1 to n such that the following condition holds:

• Let l be the length of a. Then for all integers $i \in [2, l]$ and all vertices v such that there exists an edge (v, a_i) , there exists an index j < i such that $a_j = v$.

Input

First line contains 2 integers n, m $(2 \le n \le 3 \cdot 10^5, 0 \le m \le 3 \cdot 10^5)$ — number of vertices and edges of the graph.

Next m lines contain pairs of integers $u_i, v_i \ (1 \le u_i, v_i \le n)$ — edges of the graph. The graph is allowed to have loops and multiple edges.

Output

In the first line, output the maximal length of the correct sequence l.

Examples

standard input	standard output
5 0	5
5 5	5
1 2	
3 2	
2 4	
3 5	
5 3	
3 3	1
1 1	
2 2	
3 3	

Note

In the first sample case, one of the correct sequences could be $\{1, 2, 3, 4, 5\}$.

In the second sample case, one of the correct sequences could be {3, 5, 1, 2, 4}.

In the third sample case, one of the correct sequences could be $\{1\}$. Sequences $\{2\}$ and $\{3\}$ also satisfy the conditions of the problem.