Geometry and Topology

Individual (Please select 5 problems to solve)

- 1. Let $D^* = \{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\}$ be the punctured unit disc in the Euclidean plane. Let g be the complete Riemannian metric on D^* with contsant curvature -1. Find the disctance under the metric between the points $(e^{-2\pi}, 0)$ and $(-e^{-\pi}, 0)$.
- **2.** Show that every closed hypersurface in \mathbb{R}^n has a point at which the second fundamental form is positive definite.
- **3.** Prove that the real projective space $\mathbb{R}P^n$ is orientable if and only if n is odd.
- **4.** Suppose $\pi: M_1 \longrightarrow M_2$ is a C^{∞} map of one connected differentiable manifold to another. And suppose for each $p \in M_1$, the differential $\pi_*: T_pM_1 \longrightarrow T_{\pi(p)}M_2$ is a vector space isomorphism.
- (a). Show that if M_1 is connected, then π is a covering space projection.
- (b). Given an example where M_2 is compact but $\pi: M_1 \longrightarrow M_2$ is not a covering space (but has the π_* isomorphism property).
- **5.** Let Σ_g be the closed orientable surface of genus g. Show that if g > 1, then Σ_g is a covering space of Σ_2 .
- **6.** Let M be a smooth 4-dimensional manifold. A symplectic form is a closed 2-form ω on M such that $\omega \wedge \omega$ is a nowhere vanishing 4-form.
- (a). Construct a symplectic form on \mathbb{R}^4 .
- (b). Show that there are no symplectic forms on S^4 .