Semaine n° 31 : du 26 mai au 30 mai

Lundi 26 mai

- Cours à préparer : Chapitre XXIX Espaces euclidiens et préhilbertiens réels
 - Partie 1 : Produit scalaire; espace préhilbertien réel, espace euclidien; distance; norme; distance associée à une norme, norme associée à un produit scalaire; inégalité de Cauchy-Schwarz, inégalité triangulaire; identité du parallélogramme, identité de polarisation.
 - Partie 2.1: Vecteur unitaire, vecteurs orthogonaux.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 28 : exercices 4, 7, 8, 9, 15, 16, 17.

Mardi 27 mai

- Cours à préparer : Chapitre XXIX Espaces euclidiens et préhilbertiens réels
 - De la définition 2.2.1 au corollaire 2.2.7 : Famille orthogonale, famille orthonormale ; théorème de Pythagore ; toute famille orthogonale de vecteurs non nuls est libre.
 - Du corollaire 2.2.11 (premier point) au corollaire 2.2.16 : Existence d'une base orthonormale d'un espace euclidien ; coordonnées dans une base orthonormale ; expression du produit scalaire et de la norme en fonction des coordonnées dans une base orthonormale.

Échauffements

Mardi 27 mai

	as le même déterminant	matrice 4×4 de determ que A ?	mant -1 . Laquene des
$\Box \ A^{\top}$	$\Box A^{-1}$	\Box $-A$	$\Box A^2$

• Cocher toutes les phrases correctes : Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base d'un espace vectoriel E et x un vecteur de E. La coordonnée de x selon le vecteur e_1 vaut :

$\square \det_{\mathscr{B}}(e_1, x, x, \ldots, x)$	$\Box \det_{\mathscr{B}}(x,e_2,\ldots,e_n)$
$\Box \det_{\mathscr{B}}(e_1, e_2 + x, \dots, e_n + x)$	$\Box \det_{\mathscr{B}}(x+e_1,e_2,\ldots,e_n)$

• Cocher toutes les phrases correctes : Soit $\sum u_n$ une série. Quelle condition est suffisante pour garantir que cette série converge?

$$\Box u_n \sim \frac{(-1)^n}{\sqrt{n}} \qquad \qquad \Box u_n = O\left(n^2 2^{-n}\right)$$

\(\sigma u_{n+1} - u_n\) tend vers 0