Master Course on Robotics

Legged Robots

Lecture 2

Legged Locomotion

Advantages of walking machines

Legged Robots

Legged robots have a unique ability to:

- Isolate their body from terrain irregularities
- Overcome many obstacles
- ✓ Avoid undesirable footholds
- Regulate their stability

- many DOFs must be controlled in a coordinated way (in comparison to wheels)
- Energetically very inefficient

Legged Robots

Cost of Transport (COT)

$$COT = \frac{E_{used}}{m \cdot g \cdot d}$$
$$= \frac{P}{m \cdot g \cdot v}$$

Efficiency of Walking and Rolling

- number of actuators
- structural complexity
- control expense
- energy efficient
- movement of the involved masses (movement up/down of center of gravity costs)

The wheel is the most efficient locomotion mechanism

Leg Configurations and Stability

Important aspects of legged locomotion are:

- stance (the way the body is supported by the legs)
- number of legs
- functional structure of the leg and foot
- Stability requires (at least) three legs when standing still (statically stable).
- During walking some legs are lifted. Thus loosing stability?
- For static walking at least six legs are required.

Stances

- Some animals, such as humans and bears walk flat footed (palmate)
- Some, like horses and cattle walk more on their fingers (digitate)
- Smaller or stockier animals walk with wide stances (sprawling gaits) (these include insects, many reptiles, and some small mammals)
- Larger animals tend to walk with straighter legs

- Stability means the capability to maintain the body posture given the control patterns
- Statically stable walking implies that the posture can be achieved even if the legs are frozen - the motion is stopped at any time, without loss of stability
- Static stability is achieved through the mechanical design of the robot
- Statically stable systems can be controlled using kinematic models
- Dynamic stability implies that stability can only be achieved through active control of the leg motion (the body must actively balance or move to remain stable)
- Dynamic walking requires use of dynamical models

Statically Stable Walking

If the robot can walk while staying balanced at all times it is statically stable walking

- There need to be enough legs to keep the robot stable
 - Three legged robots are not statically stable
 - Four legged robots can only lift one leg at a time (slow walking pace, energy inefficient)
 - Six legs are very popular (both in nature and in robotics) and allow for very stable walking

- People and humanoid robots, are not statically stable
- Standing up and walking appear effortless to us, but we are actually using active control of our balance
 - We use muscles and tendons
 - Robots use motors
- In order to remain stable, the robot's Center of Gravity (CoG) must fall under its polygon of support
 - The polygon is the projection between all of its support points onto the surface
 - In a biped robot, the polygon is really a line
 - The center of gravity cannot be aligned in a stable way with a point on that line to keep the robot upright

- Statically stable quadruped robot
- Projection of the CoG always lies inside the polygon of support

Projection of the **CoG**

Stability Margin (Tripod Gait)

Gait

The gait is characterized as the sequence of lift and release events of the individual legs.

- More legs gives more possible gaits.
- The number of possible events \mathbb{N} for a walking machine with \mathbb{k} legs:

$$N = (2k - 1)!$$

For bipedal walker:

$$N = (2 \cdot 2 - 1)! = 3! = 6$$

- The six different events are:
 - lift-right-leg, 2. lift-left-leg, 3. release-right- leg, 4. release-left-leg,
 lift-both-legs, 6. release-both-legs.
- For a robot with six legs (hexapod):

$$N = (2 \cdot 6 - 1)! = 11! = 39 916 800$$

Legged Locomotion Terminology

- Gait
 - Gait cycle
 - Gait period
 - Gait frequency
 - Gait phase

- Stepping
 - Step cycle
 - Step phase
 - Support stage, support duration
 - Transfer stage, transfer duration
 - Duty factor
 - Step trigger

Gaits

The **gait** is characterized as the sequence of **lift** and **release** events of the individual legs.

- Each repetition of the sequence is called a gait cycle
- The time taken in one complete cycle is the gait period
- The inverse of the period is the *gait frequency* (1/period)
- Normally, in one gait cycle, each leg goes through exactly one complete step cycle

Gaits

- Gaits can be divided into two main classes:
 - Periodic gaits repeat the same sequence of movements
 - Non-periodic or free gaits no periodicity in the control and could be controlled by the layout of the environment
- Gaits can also be divided into:

Dynamic Gaits

Gait Phase

- The gait phase is a value that ranges from 0 to 1 as the gait cycle proceeds
- We can choose 0 as being any arbitrary point within the cycle (such as when the front right begins its step)
- The phase is like a clock that keeps going round and round (0...1, 0...1, 0...1)
- For a particular gait, the stepping of the legs and all other motion of the character can be described relative to the gait phase

Step Cycle

- In one gait cycle, each individual leg goes through a complete step cycle
- Each leg's step cycle is phase shifted relative to the main gait cycle
- The step cycle is broken into two main stages
 - Support stage (foot on ground stance)
 - Transfer stage (foot in the air moving to the new position fly)
- The amount of time a leg spends in the support stage is the support duration (and likewise for transfer duration)

 $SupportDur\ ation + TransferDu\ ration = GaitPeriod$

Duty Factor

 The relative amount of time a foot spends on the ground is called the duty factor

$$DutyFactor = \frac{SupportDur\ ation}{GaitPeriod}$$

- For a human walking, the duty factor is greater than 0.5, indicating that there is an overlap time when both feet are on the ground
- For a run, the duty factor is less than 0.5, indicating that there is a time when both feet are in the air and the body is undergoing ballistic motion

Step Phase

- The step phase is a value that ranges from 0 to 1 during an individual leg's step cycle
- We can choose 0 to indicate the moment when the foot begins to lift (i.e., the beginning of the transfer phase)
- The foot contacts the ground and comes to rest when the phase equals 1 minus the duty factor

Step Trigger

- Each leg's step cycle is phase shifted relative to the main gait cycle
- This phase shift is called the step trigger
- The trigger is the phase within the main gait cycle where a particular leg begins its step cycle

Gait Description

- A simple description of the timing of a particular gait requires the following information
 - Number of legs
 - Gait period
 - Duty factor and step trigger for each leg

Symmetrical Gaits

Walk

0.5

Trot

Asymmetrical Gaits

Equestrian Gallop

Rotary Gallop

Transverse Gallop

Pronk

Dark areas indicate times of contact, bottom axis is % of cycle

Changeover Walking

Galloping

Trot:

- The trot is a medium paced gait where alternate diagonal legs step nearly in sync (though often slightly led by the forefoot)
- The duty factor is usually relatively low (< 0.4) and there are moments where all 4 legs are off the ground

Horse Gaits

Hexapod Gaits

Tripod Gait

Tripod Gait - an example of a static gait with 6 legs

Hexapod Gaits

Diagram of Tripod Gait – Duty Factor = 0.5

Gait Efficiency

Leg Design

- The number of DOF of a leg is determined by the number of joints it has.
- At least 2 DOF is required to move a leg forward a lift and a swing motion.
- Robot legs often have three DOF.
- A fourth ankle joint might improve walking.
- More DOF increase complexity, weight and power requirements.

Examples of Legs with 3 DOF

hip abduction angle (θ)

Atlas Leg Design

Efficient Dynamic Walking

The optimal actuator for dynamic walking should:

- be backdrivable to allow unimpeded natural dynamics
- have a low inertia and gear ratio to keep the reflected inertia small
- be able to perform negative work
- have an adjustable actuator compliance
- be highly efficient

Series Elastic Actuators can emulate some of these properties:

Series Elastic Actuator

Monopeds

- The MIT 3D one-legged hopper (4 DOF) M. Raibert [1983]
- The hip is powered by hydraulics and the leg by compressed air
- Modeled as spring and inverted pendulum with adjustable rest length L_d :

$$f_L = k_L(L - L_d) + b_L(\dot{L} - \dot{L}_d)$$

 f_L - force, k_L , b_L - gains

Monopeds

Walking Robots

Biped Walking

- Biped walking can be approximated by a rolling polygon
 - Polygon side length = step length
 - As the step size decreases, the polygon approaches a circle

Examples of Legged Robots

Humanoid Robots

HRP Robots - Kawada Industries and AIST

Asimo – Honda

Examples of Legged Robots

Humanoid Robots

Qrio (Sony)

Examples of Walking Robots

Passive walking

- An approach to robot motion control based on utilizing the gravity and the momentum of swinging limbs for greater efficiency
 - Conserves momentum
 - Less number of actuators
 - Natural (anthropomorphic)
- In a purely passive dynamic walking, gravity and natural dynamics alone generate the walking cycle
 - Active input is necessary only to modify the cycle, as in turning or changing speed

Examples of Walking Robots

Passive walking

Quadrupeds - Robots with Four Legs

WildCat Boston Dynamics

Titan VIII, a quadruped robot, Tokyo Institute of Technology

Hexapods - Robots with Six Legs

Lauron II, University of Karlsruhe

Maximum Speed: 0.5 m/s

Weight: 6 kg

Height: 0.3 m

Length: 0.7 m

No. of legs: 6

DOF in total: 6x3

Power Consumption: 10 W

Weight: 12 kg without batteries

Length: 0,56 m Width: 0,4 m

Height: 0.14 m (legs not extended)

RHEX

Atlas robot

Atlas robot

Dancing robots

