

Data sets that exceed the boundaries and sizes of normal processing capabilities, forcing you to take a non-traditional approach

File/Object Size, Content Volume

Big Data characteristics

Volume: Describes the amount of data

generated by organizations or

individuals.

Variety: Describes structured and

unstructured data.

Velocity: Describes the frequency at

which data is generated,

captured and shared.

Volume (Scale)

The Digital Universe 2009-2020

Growing By A

Factor Of 44

2020: 35.2 Zettabytes

Data Volume

- 44x increase from 2009 to 2020
- From 8 zettabytes to 35 zb
- Data volume is increasing exponentially

Model of Generating/Consuming Data

Old Model: Few companies are generating data, all others are consuming data

New Model: all of us are generating data, and all of us are consuming data

Who is generating Big Data?

Social

User Tracking & Engagement

Homeland Security

eCommerce

Financial Services

Real Time Search

... and no data is an island

cyber networks

metabolic networks

brain network

Big Data sources

Social media and networks (all of us are generating data)

Mobile devices (tracking all objects all the time)

Scientific instruments
(collecting all sorts of data)

Sensor technology and networks (measuring all kinds of data)

That is a lot of data ...

Variety (Complexity)

n Different Types:

- ✓ Relational Data (Tables/Transaction/Legacy Data)
- ✓ Text Data (Web)
- ✓ Semi-structured Data (XML)
- Graph Data
 - Social Network, Semantic Web (RDF), ...
- Streaming Data
 - You can only scan the data once

To extract knowledge→ all these types of data need to linked together

Structured data vs Unstructured data

Traditional approach is no more sufficient to handle today's big data

A Single View to the Customer

A Global View of Linked Big Data

Diversified social network

Heterogeneous information network

Velocity (Speed)

- ✓ Data is begin generated fast and need to be processed fast
- Online Data Analytics
- ✓ Late decisions → missing opportunities

Processes 20 PB a day (2008) Crawls 20B web pages a day (2012) Search index is 100+ PB (5/2014) Bigtable serves 2+ EB, 600M QPS (5/2014)

150 PB on 50k+ servers running 15k apps (6/2011)

Hadoop: 365 PB, 330K

nodes (6/2014)

S3: 2T objects, I.IM request/second (4/2013)

Hadoop: 10K nodes, 150K cores, 150 PB (4/2014)

300 PB data in Hive + 600 TB/day (4/2014)

400B pages, 10+ PB (2/2014)

How much data?

How Much
Data Is
Generated
Every Minute?
24/7/365

Email Users
Send
20,41,66,667
Emails

How Much
Data Is
Generated
Every Minute?
24/7/365

Google
Receives Over
20,00,000
Search
Queries

How Much
Data Is
Generated
Every Minute?
24/7/365

Apple
Receives
About
47,000
App Downloads

How Much
Data Is
Generated
Every Minute?
24/7/365

Brands on Facebook Get 34,722 Likes

A new style of IT emerging

Digital Data is Exploding

According to IBM 90% of the worlds information...

...was created in the last 2 years

Data in real-life is often dirty

Dirty data: inconsistent, inaccurate, incomplete, stale

Veracity (quality & trust)

Data = quantity + quality

tity:

When we talk about big data, we typically mean its quantity:

- ✓ What capacity of a system provides to cope with the sheer size of the data?
- ✓ Is a query feasible on big data within our available resources?
- ✓ How can we make our queries tractable on big data?
- **√** ...

Can we trust the answers to our queries?

✓ Dirty data routinely lead to misleading financial reports, strategic business planning decision ⇒ loss of revenue, credibility and customers, disastrous consequences

The study of data quality is as important as data quantity

Value

n Big data is meaningless if it does not provide value toward some meaningful goal

Big Data: 6V in Summary

Big Data

Open Data

Volume

Data at Rest

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

Visibility

Data in the Open

Open data is generally open to anyone. Which raises issues of privacy. Security and provenance

Value

Data of Many Values

Large range of data values from free (data philanthropy to high value monetization)

Why Study Big Data Technologies?

- n The hottest topic in both research and industry
- n Highly demanded in real world
- n A promising future career
- Research and development of big data systems:

 Distributed systems (eg, Hadoop), visualization tools, data warehouse,
 OLAP, data integration, data quality control, ...
 - l Big data applications: social marketing, healthcare, ...
- 1 Data analysis: to get values out of big data discovering and applying patterns, predicative analysis, business intelligence, privacy and security, ...

Demand for Big data skills

By 2020 16.4 Million IT jobs will be created to support Big Data – generating 5.9 million jobs in the United States

Big Data: why is it possible Now?

I.Traditional approach

- I.Application server and Database server are separate
- II.Data can be on multiple servers
- III.Analysis Program can run on multiple Application servers
- IV. Network is still at the middle
- V.Data have to go through the network

Big Data Approach

- Analysis Program runs on the data: on Data Node
- ➤ Only the Analysis Program are have to go through the network
- ➤ Analysis Program need to be MapReduce aware
- ➤ Highly Scalable
 - ➤1000s Nodes
 - ➤ Petabytes and more

Big Data Tools

Open Source

One popular solution: Hadoop

Hadoop Cluster at Yahoo! (Credit: Yahoo)