MAE 560

Applied CFD

Project-3

Avinash Raj DGSK

Name	Task	Collaboration
Anurudh Kamma	Task 2	Geometry
Anurudh Kamma	Task 3	Table Calculation

Task - 1

a)

(D1) The Reynold's Number can be given from

$$Re = \frac{\rho vD}{\mu}$$

Here we know that the Diameter of the circle is 4 cm i.e

$$D = 0.04 m$$

The density of the water is $\rho = 998.2 \frac{kg}{m^3}$

The velocity of the stream is $v = 0.025 \, m/s$

The dynamic viscosity of water is $\mu = 0.001003 \frac{kg}{ms}$

So, the Reynold's Number is Re = 995.214

(D2)

A 2-D cylinder is created on a plane with a diameter of 4 cm and the origin as the center. A computational domain is also created around the cylinder with the given dimensions as shown in the figure 1.1 below and is meshed with 3mm element size.

Display		
Display Style	Use Geometry Setting	
Defaults		
Physics Preference	CFD	
Solver Preference	Fluent	
Element Order	Linear	
Element Size	3.e-003 m	
Export Format	Standard	

Statistics		
Nodes	25280	
Elements	24914	

D3)

Stream function Contour:

Vorticity Magnitude Contour

Lift Force Plot: The maximum and the minimum values of lift are 0.165 N and 0.1 N

Lift Force Plot for Run1: The maximum and the minimum values of lift are 0.071 N and 0.062 N

Lift Force Plot for Run2: The maximum and the minimum values of lift are 0.026 N and 0.037 N

Table for amplitude and Time Period for all the above Lift Force Plots:

	Amplitude	Period (in sec)
Circular Cylinder	0.142	9.3
Run 1	0.0675	12.2
Run 2	0.0415	9.6

Task 2:

D6) Mesh along the plane of symmetry

D7) X-Velocity Contour on the plane of symmetry for

a)
$$\theta = 0^{\circ}$$

b)
$$\theta = 16^{\circ}$$

c) $\theta = 32^{\circ}$

D8)

The values of lift force and drag force as a function of tilt angle is given in the table below:

	Lift Force(N)	Drag Force (N)
$\theta = 0^{\circ}$	19	11
$\theta = 16^{\circ}$	85	36.5
$\theta = 32^{\circ}$	122	116.5

Task 3:

D9) The Static Pressure and the y-velocity plots on the horizontal plane with z=1.25m for Run1 and Run2 are given respectively:

For Run 1:

For Run 2:

	Total Drag (N)	Pressure term of drag (N)	Viscous Term of drag (N)
Run 1	5434.392919	5428.598633	5.7942858
Run 2	8963.54665	8955.75293	7.7937202

D11) The geometry for the design of asymmetric cylinder is given below:

