

Advanced Topics in Machine Learning 10 Structure Learning

Prof. Dr. Steffen Staab Dr. Rafika Boutalbi Zihao Wang https://www.ipvs.uni-stuttgart.de/departments/ac/

Learning Objectives

```
Structure Learning
```

Scoring

Maximum Likelihood – BIC

Bayesian Scoring

Bayesian Dirichilet Equivalance (BDE)

Gamma function

Search

Heuristics

Decompositions

Disclaimer

Figures and examples not marked otherwise are taken from the book by Koller & Friedman

1 Likelihood Score for Structure Learning

Where does the graph come from?

- Until now:
 - random variables defined by expert
 - priors defined by expert
 - structure defined by expert
- Now:
 - random variables defined by expert
 - priors defined by expert
 - Bayesian network structure to be learned

Structure may be unknown!

Finding the structure may be the goal!

Issues with mismatching graph structures

"True" structure for

- Incorrect independencies
- P* cannot be learned
- Might generalize better

- Spurious dependencies
- Can learn P*
- Increases # of parameters
- Possibly worse generalizations

Principal approach for learning graph structures

- Score
 - quality of a graph structure
 - for representing a data set

- Search
 - over possible graph structures
 - using the score
 - reasonably limiting the search space

Likelihood Score

• Find (G, θ) that maximizes the likelihood

$$\mathrm{score}_{\mathrm{L}}\big(\mathcal{D};\mathcal{G}\big) = \ell\Big(\mathcal{D};\mathcal{G}, \overset{\wedge}{\theta}\Big)$$

Simple Example for Likelihood Score towards Mutual Information

$$\mathcal{G}_{0} \qquad \qquad Y$$

$$\operatorname{score}_{L}(\mathcal{D}; \mathcal{G}_{0}) = \sum_{m} \left(\log \hat{\theta}_{x[m]} + \log \hat{\theta}_{y[m]} \right)$$

$$\mathcal{G}_{1} \xrightarrow{X} Y$$

$$\operatorname{score}_{L}(\mathcal{D}; \mathcal{G}_{1}) = \sum_{m} \left(\log \hat{\theta}_{x[m]} + \log \hat{\theta}_{y[m]|x[m]} \right)$$

$$score_{L}(\mathcal{D}; \mathcal{G}_{1}) - score_{L}(\mathcal{D}; \mathcal{G}_{0}) = \sum_{m} \left(\log \hat{\theta}_{y[m]|x[m]} - \log \hat{\theta}_{y[m]} \right) =$$

$$= \sum_{x,y} k(x,y) \log \hat{\theta}_{y|x} - \sum_{y} k(y) \log \hat{\theta}_{y} = M \sum_{x,y} \hat{P}(x,y) \log \hat{P}(y|x) - M \sum_{y} \hat{P}(y) \log \hat{P}(y) =$$

$$= M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(y|x) - \sum_{x,y} \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \frac{\hat{P}(x,y)}{\hat{P}(x)\hat{P}(y)} \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y) \log \hat{P}(y) \right) = M \left(\sum_{x,y} \hat{P}(x,y) \log \hat{P}(x,y$$

$$= M \bullet \mathbf{I}(X;Y)$$

General Decomposition

The likelihood score thus decomposes into

$$score_{L}(\mathcal{D};\mathcal{G}) = M \sum_{i=1}^{n} \mathbf{I}_{\hat{P}}(X_{i}; Parents(X_{i};\mathcal{G})) - M \sum_{i=1}^{n} \mathbf{H}_{\hat{P}}(X_{i})$$

score is higher if X_i correlates with its parents

$$\mathbf{I}_{\hat{P}}(X;Y) = \sum_{x,y} \hat{P}(x,y) \log \frac{P(x,y)}{\hat{P}(x)\hat{P}(y)}$$

$$\mathbf{H}_{\hat{P}}(X) = \sum_{x} \hat{P}(x) \log \hat{P}(x)$$

Limitations of Likelihood Score

$$\mathcal{G}_{0} \qquad \qquad \mathcal{Y} \qquad \qquad \mathcal{G}_{1} \qquad \qquad \mathcal{Y}$$

$$\operatorname{score}_{L}(\mathcal{D}; \mathcal{G}_{0}) = \sum_{m} \left(\log \hat{\theta}_{x[m]} + \log \hat{\theta}_{y[m]} \right) \qquad \operatorname{score}_{L}(\mathcal{D}; \mathcal{G}_{1}) = \sum_{m} \left(\log \hat{\theta}_{x[m]} + \log \hat{\theta}_{y[m]|x[m]} \right)$$

$$\operatorname{score}_{\operatorname{L}}(\mathcal{D};\mathcal{G}_1) - \operatorname{score}_{\operatorname{L}}(\mathcal{D};\mathcal{G}_0) = M \bullet \mathbf{I}(X;Y)$$

- Mutual information is always ≥ 0
- Equals 0 iff X, Y are independent
 - in empirical distribution \hat{P} : $\mathbf{I}_{\hat{P}}(X;Y)>0$ holds almost always
- Adding edges is not punished by the score, almost always improves the score
- Thus: score is maximized for fully connected network

Avoiding overfitting

- Restrict the hypothesis space
 - restrict number of parents
 - restrict number of parameters
- Penalize complexity in the score
 - explicitly
 - Bayesian score averages over all possible parameter values (not only MLE of parameters)

Minimum description length principle

- Algorithmic theory: the description length of a data sequence is the length of the smallest program that outputs that data set (Kolmogorov complexity).
 - uncomputable
 - BUT: Given two models that output the data set
 MDL selects the "better" model
- Applied to machine learning:
 - a smaller model is "better", has "learned more"

Bayesian information criterion

Penalize complexity

$$score_{BIC}(\mathcal{D}; \mathcal{G}) = score_{L}(\mathcal{D}; \mathcal{G}) - \frac{Dim[\mathcal{G}]}{2}logM$$

where

- *M* is the number of training instances
- $Dim[\mathcal{G}]$ are number of independent parameters (degrees of freedom)

Trade-off between fit to data and model complexity using minimum description length principle

Asymptotic Behaviour of BIC

For small M, BIC tends to underfit

$$\operatorname{score}_{\operatorname{BIC}}(\mathcal{D};\mathcal{G}) = \operatorname{score}_L(\mathcal{D};\mathcal{G}) - \frac{\operatorname{Dim}[\mathcal{G}]}{2} \log M =$$

$$= M \sum_{i=1}^{n} \mathbf{I}_{\hat{P}}(X_i; \operatorname{Parents}(X_i; \mathcal{G})) - M \sum_{i=1}^{n} \mathbf{H}_{\hat{P}}(X_i) - \frac{\operatorname{Dim}[\mathcal{G}]}{2} \log M$$

Mutual information is weighted with M, model complexity is weighted with $(\log M)/2$, thus as M grows more emphasis is given to fit the data

Consistency: As $M \to \infty$, the true structure \mathcal{G}^* maximizes the score (or any I-equivalent structure) spurious edges will be penalized, required edges will be added

2 Bayesian Model Averaging

Main principle of Bayesian approach

 Whenever we have uncertainty over anything, we place a distribution over it.

In the context of structure learning:
 we have uncertainty both over structure and over parameters.

Bayesian score (against overfitting)

$$P(\mathcal{G} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathcal{G})P(\mathcal{G})}{P(\mathcal{D})} \propto P(\mathcal{D} \mid \mathcal{G})P(\mathcal{G})$$

$$score_{B}(\mathcal{D}; \mathcal{G}) = log P(\mathcal{D} | \mathcal{G}) + log P(\mathcal{G})$$

Less optimistic than MLE for $\overset{\wedge}{ heta}$

Marginal likelihood of data given ${\mathscr G}$

ullet Averaging over all $heta_{\mathscr{G}}$

$$score_{B}(\mathcal{D}; \mathcal{G}) = log P(\mathcal{D} | \mathcal{G}) + log P(\mathcal{G})$$

likelihood

prior over parameters

$$P(\mathcal{D} \mid \mathcal{G}) = \int P(\mathcal{D} \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

Marginal likelihood intuition

$$P(\mathcal{D} | \mathcal{G}) = P(x[1], ..., x[M] | \mathcal{G})$$

$$P(x[1] | \mathcal{G})$$

$$P(x[2] | x[1], \mathcal{G})$$

• • •

$$P(x[M] | x[1])$$

Marginal likelihood: integrates generalization capability – how well can I predict x[M] given x[M-1]...

Natural way to punish for overfitting!

Contrast MLE: $\theta_{\mathscr{G}}$ depends on all of \mathscr{D} – cannot break down MLE likewise

Marginal Likelihood for Multinomial Bayesian Networks

$$P\big(\mathcal{D}\,|\,\mathcal{G}\big) = \bigg\lceil P\big(\mathcal{D}\,|\,\mathcal{G},\theta_{\mathcal{G}}\big)P\big(\theta_{\mathcal{G}}\,\Big|\,\mathcal{G}\big)d\theta_{\mathcal{G}} =$$

Not to be memorized

$$= \prod_{i} \frac{\Gamma(\alpha_{i}) \prod_{\substack{\text{prior} \\ \Gamma(\alpha_{X_{i}|u_{i}} + M[u_{i}])}} \prod_{\substack{x_{i}^{j} \in \operatorname{Val}(X_{i})}} \frac{\Gamma\left(\alpha_{x_{i}^{j}|u_{i}} + M[x_{i}^{j}, u_{i}]\right)}{\Gamma\left(\alpha_{x_{i}^{j}|u_{i}}\right)}$$

$$\boldsymbol{u}_i$$

$$\in \operatorname{Val}(\operatorname{Parents}(X_i; \mathcal{G}))$$

$$\infty$$

$$\Gamma(x) = \int t^{x-1}e^{-t}dt$$

$$\text{sufficient statistics}$$

$$\Gamma(x) = x \cdot \Gamma(x-1)$$

$$\Gamma(x) = x \bullet \Gamma(x-1)$$

Marginal Likelihood Decomposition

$$\log P(\mathcal{D} | \mathcal{G}) = \sum_{i} \text{FamilyScore}_{B}(X_{i} | \text{Parents}(X_{i}; \mathcal{G}, \mathcal{D}))$$

Struture Priors

$$score_{B}(\mathcal{D}; \mathcal{G}) = log P(\mathcal{D} | \mathcal{G}) + log P(\mathcal{G})$$

Structure prior $P(\mathscr{G})$

- uniform prior: make $P(\mathcal{G})$ constant
 - ullet not bad; averaging in $P(\mathcal{D} \mid \mathcal{G})$ already avoids overfitting
 - prior penalizing of number of edges: $P(\mathcal{G}) \propto c^{|\mathcal{G}|}$, with 0 < c < 1
 - prior penalizing of number of parameters
- Normalizing constant across network is similar and can be ignored

Bayesian Dirichilet Equivalance Prior (BDe prior)

- Construction like in Learning Part II (unit 3)
 - equivalent sample size parameter α
 - B_0 network representing prior probability of events
 - often a network without edges!
 - Set $\alpha_{x|u} := \alpha \bullet P(x, u \mid B_0)$
 - with u the value for parents in the target network (not in B_0)
- B₀ provides priors for all candidate networks
 - Unique prior with the property that I-equivalent networks have the same Bayesian score

BDe and BIC

• As $M o \infty$, a network ${\mathscr G}$ with Dirichlet priors satisfies

$$\log P(\mathcal{D} \mid \mathcal{G}) = \mathcal{E}(\mathcal{D}; \mathcal{G}, \hat{\theta}) - \frac{\mathrm{Dim}[\mathcal{G}]}{2} \log M + \mathcal{O}(1)$$

$$score_{BIC}(\mathcal{D}; \mathcal{G}) = score_{L}(\mathcal{D}; \mathcal{G}) - \frac{Dim[\mathcal{G}]}{2}logM$$

Thus, as BIC score is consistent, BDE is also consistent

3 Learning Forests

Learnings Trees/Forests

- Trees
 - One root, at most one parent per variable
- Forests
 - at most one parent per variable, multiple roots allowed
- Why trees/forests?
 - elegant math
 - efficient optimization
 - sparse parametrization naturally avoids overfitting

Learning Forests

- p(i) is parent of X_i
 - 0 if X_i has no parent

$$score(\mathcal{D}; \mathcal{G}) = \sum_{i=1}^{n} score(X_{i} | Parents(X_{i}; \mathcal{G}); \mathcal{D}) =$$

$$= \sum_{i:p(i)>0} score(X_{i} | X_{p(i)}; \mathcal{D}) + \sum_{i:p(i)=0} score(X_{i}; \mathcal{D}) =$$

$$= \sum_{i:p(i)>0} \left(score(X_{i} | X_{p(i)}; \mathcal{D}) - score(X_{i}; \mathcal{D}) \right) + \sum_{i=1}^{n} score(X_{i}; \mathcal{D})$$

improvement over empty network

score of empty network

Learning Forests I

Set
$$w(i \to j) = \left(\operatorname{score}\left(X_j \middle| X_i; \mathcal{D}\right) - \operatorname{score}(X_j; \mathcal{D})\right)$$

- Given likelihood score $w(i \to j) = M \bullet \mathbf{I}_{\hat{P}}(X_i; X_j)$, all edge weights are non-negative
 - Optimal structure is always a tree
- Given BIC or Bde score, weights can be negative
 - Optimal structure might be a forest

Learning Forests II

- A score satisfies score equivalence if I-equivalent structures have the same scores
 - For example: likelihood, BIC, Bde
- Then, $w(i \rightarrow j) = w(j \rightarrow i)$, we can use an undirected graph

Learning Forests III (for score-equivalence)

- Define undirected graph with nodes {1...n}
- Set

$$w(i \to j) = \max \left(0, \left(\operatorname{score}\left(X_i \middle| X_j; \mathcal{D}\right) - \operatorname{score}(X_j; \mathcal{D})\right)\right)$$

- Find tree with maximal weight
 - Standard algorithms for max-weight spanning trees in $\mathcal{O}(n^2)$ time
 - Prim's or Kruskals's
 - Remove all edges of weight 0 to produce a forest

Learning Forests III (for score-equivalent scores)

- Define undirected graph with nodes $\{1...n\}$
- Set

$$w(i \to j) = \max \left(0, \left(\operatorname{score}\left(X_i \middle| X_j; \mathcal{D}\right) - \operatorname{score}(X_j; \mathcal{D})\right)\right)$$

- Find tree with maximal weight
 - Standard algorithms for max-weight spanning trees in $\mathcal{O}(n^2)$ time
 - Prim's or Kruskals's
 - Remove all edges of weight 0 to produce a forest

Summary

- Structure learning is an optimization over the combinatorial space of graph structures
- Decomposability
 - network score is a sum of terms for different families
- Optimal tree-structured network can be found using standard MST algorithms

4 Heuristic Search

Optimization Problem

- Input
 - Training data
 - Scoring function
 - Set of possible structures
- Output
 - A network that maximizes the score

Beyond Trees/Forests

- Problem is not obvious for general networks
 - Example: Allowing two parents, greedy algorithm is no longer guaranteed to find the optimal network

Theorem

 Finding maximal scoring network structure with at most k parents for each variable is NP-hard for k>1

Heuristic Search

- Search operators
 - local steps: edge addition, deletion, reversal
 - global steps

- Search techniques
 - greedy hill-climbing
 - best first search
 - simulated annealing
 - ...

Heuristic Search: Greedy Hill Climbing

- Start with a given network
 - empty network
 - best tree
 - random network
 - prior knowledge
- At each iteration
 - Consider score for all possible one-step changes
 - Apply change that most improves the score
- Stop when no modification improves the score
 - local maximum

Greedy Hill Climbing Pitfalls

- Getting stuck in
 - local maxima

- plateau
 - typically because equivalent networks are often neighbors in the search space

Edge reversal: Get (conditional) independences right

local maximum

A pretty good, simple algorithm

Greedy hill-climbing augmented with:

- Random restarts
 - when we get stuck, take some number of random steps and then start climbing again
- Tabu list
 - keep a list of K steps most recently taken
 - search cannot reverse any of these steps ("momentum")

Synthetic example from book (Intensive Care Unit alarm)

.01.22

Knowledge Discovery Example

Sachs, Karen, et al. "Causal protein-signaling networks derived from multiparameter single-cell data." *Science* 308.5721 (2005): 523-529.

Summary

- Useful for building better predictive models:
 - when domain experts don't know the structure
 - for knowledge discovery
- Finding highest-scoring structure is NP-hard
- Typically solved using simple heuristic search
 - local steps: edge addition, deletion, reversal
 - hill climbing with tabu lists and random restarts
- But there are more advanced algorithms!

5 Learning General Graphs: Search and Decomposability

Naive Computational Analysis of Structure Learning

- Operations per search step:
 - $\mathcal{O}(n(n-1)) = \mathcal{O}(n^2)$ possible edges to consider
 - per edge:
 - if present, consider delete or reverse
 - if absent, consider addition
 - Costs per network evaluation
 - components in score: *n* edges
 - ullet compute sufficient statistics: scan M instances
 - Acyclicity check: $\mathcal{O}(m)$ number of present edges

• Total:
$$\mathcal{O}\left(n^2(Mn+m)\right)$$
, usually $<\mathcal{O}\left(Mn^3\right)$ per search step

$$score(A | \{\}) + score(B | \{\}) + score(C | \{A, B\}) + score(D | \{C\})$$
$$score(A | \{\}) + score(B | \{\}) + score(C | \{A, B\}) + score(D | \{B, C\})$$

Computational Cost

- Having picked a step
 - 1 or 2 families affected by step
 - Compute $\mathcal{O}(n)$ delta-scores
 - Each one takes $\mathcal{O}(M)$ time
- Priority queue of operators sorted by delta-score

More computational efficiency

- Most plausible families are variations on a theme
 - A might depend on B_1, \ldots, B_k with a small k
- Re-use and adapt previously computed sufficient statistics
 - $A \rightarrow B$ and $B \rightarrow A$ require the same count M[A, B]
- Restrict in advance the set of operators considered in search
 - changes what can be found!

Thank you!

Steffen Staab

E-Mail Steffen.staab@ipvs.uni-stuttgart.de
Telefon +49 (0) 711 685e be defined
www.ipvs.uni-stuttgart.de/departments/ac/

Universität Stuttgart Analytic Computing, IPVS Universitätsstraße 32, 50569 Stuttgart