

Continuous Measurements and Feedback Control of a Quantum Harmonic Oscillator

Max Eriksson

Bachelor Thesis, 15 ECTS, Spring 2025

Supervised by Kalle Kansanen and Peter Samuelsson Division of Mathematical Physics | Department of Physics

M. ERIKSSON CONTENTS

Contents

1	Introduction				
	1.1 Outline				
2	Theoretical Framework				
	2.1 Quantum Harmonic Oscillator				
	2.2 Open Quantum Systems				
	2.2.1 Master Equation				
	2.3 Continuous Measurements				
	2.4 Feedback Control				
	2.5 Wigner Function				
3	Result				
4	Discussion				
5	Outlook				
R	eferences				
\mathbf{A}	Appendix				
В	EOM Calculation				
	B.1 Solving for $\partial_t \langle \hat{x}^2 \rangle$				
	B.2 Solving for $\partial_t \langle \hat{p}^2 \rangle$				
	B.3 Solving for $\partial_t \langle \{\hat{x}, \hat{p}\} \rangle$				
	R 4 Results				

M. Eriksson 1 Introduction

1 Introduction

As our society is becoming increasingly dependent on technology, the demand for better and more efficient technologies is growing. One kind of technology which has been really important since its conception during the second world war by Alan Turing is computers [1]. The field of computer science has been researched a lot during the second half of the 20th century but has hit a fundamental problem. Our current classical computers have reached a limit where the transistors cannot get any smaller without quantum mechanics causing issues [1]. This has prompted research into quantum technologies such as quantum computers and quantum simulations [1].

To properly understand how quantum mechanical systems work, it is important to understand what happens to them when they are interacted with, during for example a measurement [2]. It is also this interaction with a quantum system, which has prompted many interpretations of quantum mechanics and given rise to what is colloquially known as the measurement problem [2]. The measurement problem is a fundamental philosophical problem in quantum mechanics, which arises since a quantum mechanical state evolves deterministically according to the Schrödinger equation, but collapses probabilistically when measured or interacted with [2].

It is also interesting to see how such a system can be manipulated to create a certain state which can be used for a specific purpose. This could include, but is not limited to, creating a qubit state to be used in a quantum computer or a state which can simulate a certain physical system [1]. Here it is important to understand the effect feedback has on a measured system, and how to utilize this to create a desired state [3].

1.1 Outline

This thesis will look at a quantum harmonic oscillator which is coupled to an environment. Thus creating an open quantum system whose state is temperature dependent. The system will be measured continuously using weak measurements with a feedback loop to control the system. The goal is to see how the system evolves under these conditions, and how the feedback loop can be changed and manipulated to observe different behaviours.

2 Theoretical Framework

2.1 Quantum Harmonic Oscillator

The quantum harmonic oscillator (QHO) is a quantum mechanical system useful for many applications. This stems from the fact that many systems can be approximated as harmonic close to their equilibrium position, and since the QHO is a simple system, which is possible to solve analytically it is a good starting approximation. The system has the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right),\tag{1}$$

where \hat{p} and \hat{x} are the momentum and position operators, m is the mass of the particle, and ω is the angular frequency of the oscillator. The operators \hat{a}^{\dagger} and \hat{a} are the creation and annihilation operators, which are defined as

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \quad \text{and} \quad \hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right).$$
 (2)

It is also reasonable to mention the number operator $\hat{n} = \hat{a}^{\dagger}\hat{a}$ which has the number states, or Fock states, $|n\rangle$ as its eigenstates.

2.2 Open Quantum Systems

With an open quantum system we mean a quantum system which in some ways interact with an environment. This interaction could be described as a thermal coupling between the main system and some temperature bath. This will cause the system to be in a thermal equilibrium with the environment if left alone, and therefore it will be dependent on the temperature. Unless the temperature of the bath is zero, the system will be in a mixed state, described by a density matrix $\hat{\rho}$. Notably, if the temperature is zero, it is equivalent of considering a closed quantum system, since the coupling is thermal.

The thermal coupling will lead to dissipation of quantum information from the system to the environment. During this process, the system loses coherence. That is, the quantum mechanical properties of the system are lost and a classical description of the state becomes more appropriate. The coherence of the system is manifested in the off-diagonal elements of the density matrix.

M. Eriksson 5 OUTLOOK

- 2.2.1 Master Equation
- 2.3 Continuous Measurements
- 2.4 Feedback Control
- 2.5 Wigner Function
- 3 Result
- 4 Discussion
- 5 Outlook

M. Eriksson References

References

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press, 2010.

- [2] A. N. Jordan and I. A. Siddiqi, *Quantum Measurement: Theory and Practice*. Cambridge: Cambridge University Press, 2024.
- [3] B. Annby-Andersson, Continuous measurements of small systems: Feedback control, thermodynamics, entanglement. Doctoral thesis (compilation), Lund University, 4 2024.

A Appendix

B EOM Calculation

Consider a quantum harmonic oscillator described by the Hamiltonian

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + 1/2). \tag{3}$$

Consider also that the quantum harmonic oscillator is subject to a temperature bath and is continuously measured. The system then evolves according to the master equation

$$\partial_t \hat{\rho} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] + \gamma (\bar{n} + 1) \mathcal{D}[\hat{a}] \hat{\rho} + \gamma \bar{n} \mathcal{D}[\hat{a}^{\dagger}] \hat{\rho} + \lambda \mathcal{D}[\hat{A}] \hat{\rho}$$
(4)

where γ is the damping rate, \bar{n} is the thermal occupancy defined as

$$\bar{n} = \frac{1}{e^{\hbar \omega/k_B T} - 1},\tag{5}$$

 λ is the measurement rate, \hat{A} is the measurement operator, and $\mathcal{D}[\hat{O}]$ is the Lindblad super operator defined as

$$\mathcal{D}[\hat{O}]\hat{\rho} = \hat{O}\hat{\rho}\hat{O}^{\dagger} - \frac{1}{2}\{\hat{O}^{\dagger}\hat{O}, \hat{\rho}\}. \tag{6}$$

Then we also have the quadrature operators defined as

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}), \quad \hat{p} = i\sqrt{\frac{m\omega\hbar}{2}} (\hat{a} - \hat{a}^{\dagger}). \tag{7}$$

We want to find the equations of motion when measuring the position quadrature

$$\partial_t \left\langle \hat{x}^2 \right\rangle = \operatorname{tr}(\hat{x}^2 \partial_t \hat{\rho}) \tag{8}$$

$$\partial_t \left\langle \hat{p}^2 \right\rangle = \operatorname{tr}(\hat{p}^2 \partial_t \hat{\rho}) \tag{9}$$

$$\partial_t \langle \{\hat{x}, \hat{p}\} \rangle = \operatorname{tr}(\{\hat{x}, \hat{p}\} \partial_t \hat{\rho}).$$
 (10)

We start by defining the Liouvillian super operator

$$\mathcal{L}\hat{\rho} = -\frac{i}{\hbar}[\hat{H}, \hat{\rho}] + \gamma(\bar{n} + 1)\mathcal{D}[\hat{a}]\hat{\rho} + \gamma\bar{n}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho}$$
(11)

which turns the master equation into

$$\partial_t \hat{\rho} = \mathcal{L} \hat{\rho} + \lambda \mathcal{D}[\hat{x}] \hat{\rho}. \tag{12}$$

B.1 Solving for $\partial_t \langle \hat{x}^2 \rangle$

We can write Eq. (8) as

$$\partial_t \langle \hat{x}^2 \rangle = \operatorname{tr}(\hat{x}^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}(\hat{x}^2 \lambda \mathcal{D}[\hat{x}]\hat{\rho})$$
 (13)

and then rewriting the left term using the creation and annihilation operators we get

$$\operatorname{tr}(\hat{x}^{2}\mathcal{L}\hat{\rho}) = \frac{\hbar}{2m\omega}\operatorname{tr}\left((\hat{a}^{2} + (\hat{a}^{\dagger})^{2} + \hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a})\mathcal{L}\hat{\rho}\right)$$
(14)

$$= \frac{\hbar}{2m\omega} \left[\operatorname{tr}(\hat{a}^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}((\hat{a}^{\dagger})^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}(\hat{a}\hat{a}^{\dagger} \mathcal{L}\hat{\rho}) + \operatorname{tr}(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}) \right]$$
(15)

Solving these separately

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = -\frac{i}{\hbar}\operatorname{tr}(\hat{a}^{2}[\hat{H},\hat{\rho}]) + \gamma(\bar{n}+1)\operatorname{tr}(\hat{a}^{2}\mathcal{D}[\hat{a}]\hat{\rho}) + \gamma\bar{n}\operatorname{tr}(\hat{a}^{2}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho})$$
(16)

$$= -i\omega \operatorname{tr}\left(\hat{a}^2 \hat{a}^{\dagger} \hat{a} \hat{\rho}\right) + i\omega \operatorname{tr}\left(\hat{a}^2 \hat{\rho} \hat{a}^{\dagger} \hat{a}\right)$$
(17)

$$+\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{3}\hat{\rho}\hat{a}^{\dagger}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{2}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{2}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right)$$
(18)

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a}^2 \hat{a}^{\dagger} \hat{\rho} \hat{a} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^3 \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^2 \hat{\rho} \hat{a} \hat{a}^{\dagger} \right)$$

$$\tag{19}$$

Using cyclic permutations of the trace and combining terms we get

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = i\omega\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a}, \hat{a}^{2}\right]\hat{\rho}\right) + \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a}, \hat{a}^{2}\right]\hat{\rho}\right) + \frac{\gamma\bar{n}}{2}\operatorname{tr}\left(\left[\hat{a}^{2}, \hat{a}\hat{a}^{\dagger}\right]\hat{\rho}\right)$$
(20)

The commutators are

$$\left[\hat{a}^{\dagger}\hat{a},\hat{a}^{2}\right] = \left[\hat{a}^{\dagger},\hat{a}^{2}\right]\hat{a} = \hat{a}\left[\hat{a}^{\dagger},\hat{a}\right]\hat{a} + \left[\hat{a}^{\dagger},\hat{a}\right]\hat{a}^{2} = -2\hat{a}^{2} \tag{21}$$

$$\left[\hat{a}^{2},\hat{a}\hat{a}^{\dagger}\right] = \hat{a}\left[\hat{a}^{2},\hat{a}^{\dagger}\right] = \hat{a}^{2}\left[\hat{a},\hat{a}^{\dagger}\right] + \hat{a}\left[\hat{a},\hat{a}^{\dagger}\right]\hat{a} = 2\hat{a}^{2}$$
(22)

Thus

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = -2i\omega\operatorname{tr}(\hat{a}^{2}\hat{\rho}) - \gamma(\bar{n}+1)\operatorname{tr}(\hat{a}^{2}\hat{\rho}) + \gamma\bar{n}\operatorname{tr}(\hat{a}^{2}\hat{\rho}) = -(\gamma+2i\omega)\operatorname{tr}(\hat{a}^{2}\hat{\rho})$$
(23)

$$= -(\gamma + 2i\omega) \left\langle \hat{a}^2 \right\rangle. \tag{24}$$

By taking the hermition conjugate of the above we get

$$\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\mathcal{L}\hat{\rho}\right) = (\gamma - 2i\omega)\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\hat{\rho}\right) = -(\gamma - 2i\omega)\left\langle(\hat{a}^{\dagger})^{2}\right\rangle. \tag{25}$$

Now we do the same for $\operatorname{tr}(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho})$, so

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\frac{i}{\hbar}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\left[\hat{H},\hat{\rho}\right]\right) + \gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{D}[\hat{a}]\hat{\rho}\right) + \gamma\bar{n}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho}\right)$$
(26)

$$= -i\omega \operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + i\omega \operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right)$$
(27)

$$+\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}^{2}\hat{\rho}\hat{a}^{\dagger}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right) \tag{28}$$

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{\rho} \hat{a} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a}^{2} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a} \hat{\rho} \hat{a} \hat{a}^{\dagger} \right)$$

$$(29)$$

using cyclic permutations of the trace and combining terms we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = i\omega\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a},\hat{a}^{\dagger}\hat{a}\right]\hat{\rho}\right) + \gamma(\bar{n}+1)\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\hat{a}^{2}\hat{\rho}\right) - \gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right)$$
(30)

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a} \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a}^{2} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a} (\hat{a}^{\dagger})^{2} \hat{a} \hat{\rho} \right)$$

$$(31)$$

Commuting to simplify we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \gamma\bar{n}\operatorname{tr}\left(\left[\hat{a}\hat{a}^{\dagger},\hat{a}^{\dagger}\hat{a}\right]\hat{\rho}\right) + \gamma\bar{n}\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\hat{\rho}\right)$$
(32)

The commutator is equal to 0, and thus we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + \gamma\bar{n} + \gamma\bar{n}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) = -\gamma\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + \gamma\bar{n} = -\gamma\left\langle\hat{a}^{\dagger}\hat{a}\right\rangle + \gamma\bar{n}. \tag{33}$$

Similarly we can find that

$$\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\mathcal{L}\hat{\rho}\right) = -\gamma\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\hat{\rho}\right) + \gamma(\bar{n}+1) = -\gamma\left\langle\hat{a}\hat{a}^{\dagger}\right\rangle + \gamma(\bar{n}+1). \tag{34}$$

Then since \hat{x}^2 commutes with \hat{x} (the measurement operator) we can write Eq. (13) the equation

of motion

$$\partial_{t} \left\langle \hat{x}^{2} \right\rangle = \operatorname{tr}(\hat{x}^{2} \mathcal{L} \hat{\rho}) \tag{35}$$

$$= \frac{\hbar}{2m\omega} \left(-(\gamma + 2i\omega) \left\langle \hat{a}^{2} \right\rangle - (\gamma - 2i\omega) \left\langle (\hat{a}^{\dagger})^{2} \right\rangle - \gamma \left\langle \hat{a}^{\dagger} \hat{a} \right\rangle + \gamma \bar{n} - \gamma \left\langle \hat{a} \hat{a}^{\dagger} \right\rangle + \gamma (\bar{n} + 1) \right) \tag{36}$$

$$= -\gamma \frac{\hbar}{2m\omega} \left(\left\langle \hat{a}^{2} \right\rangle + \left\langle (\hat{a}^{\dagger})^{2} \right\rangle + \left\langle \hat{a}^{\dagger} \hat{a} \right\rangle + \left\langle \hat{a} \hat{a}^{\dagger} \right\rangle \right) + \frac{i\hbar}{m} \left(\left\langle (\hat{a}^{\dagger})^{2} \right\rangle - \left\langle \hat{a}^{2} \right\rangle \right) + \frac{\gamma \hbar}{m\omega} (\bar{n} + 1/2) \tag{37}$$

Since we have

$$\{\hat{x}, \hat{p}\} = i\hbar((\hat{a}^{\dagger})^2 - \hat{a}^2)$$
 (38)

We can write the equation of motion as

$$\partial_t \langle \hat{x}^2 \rangle = -\gamma \langle \hat{x}^2 \rangle + \frac{1}{m} \langle \{ \hat{x}, \hat{p} \} \rangle + \frac{\gamma \hbar}{m \omega} (\bar{n} + 1/2)$$
(39)

B.2 Solving for $\partial_t \langle \hat{p}^2 \rangle$

Writing Eq. (9) as

$$\partial_t \langle \hat{p}^2 \rangle = \operatorname{tr}(\hat{p}^2 \mathcal{L} \hat{\rho}) + \operatorname{tr}(\hat{p}^2 \lambda \mathcal{D}[\hat{x}] \hat{\rho}) \tag{40}$$

Rewriting the left terms using $\hat{a}, \hat{a}^{\dagger}$ we get

$$\operatorname{tr}(\hat{p}^{2}\mathcal{L}\hat{\rho}) = -\frac{m\omega\hbar}{2}\operatorname{tr}\left((\hat{a}^{2} + (\hat{a}^{\dagger})^{2} - \hat{a}^{\dagger}\hat{a} - \hat{a}\hat{a}^{\dagger})\mathcal{L}\hat{\rho}\right)$$

$$\tag{41}$$

$$= -\frac{m\omega\hbar}{2} \left(\operatorname{tr}(\hat{a}^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}((\hat{a}^\dagger)^2 \mathcal{L}\hat{\rho}) - \operatorname{tr}(\hat{a}^\dagger \hat{a} \mathcal{L}\hat{\rho}) - \operatorname{tr}(\hat{a}\hat{a}^\dagger \mathcal{L}\hat{\rho}) \right)$$
(42)

We have solved for these before, so we can write

$$\operatorname{tr}(\hat{p}^{2}\mathcal{L}\hat{\rho}) = -\frac{m\omega\hbar}{2} \left(-(\gamma + 2i\omega) \left\langle \hat{a}^{2} \right\rangle - (\gamma - 2i\omega) \left\langle (\hat{a}^{\dagger})^{2} \right\rangle + \gamma \left\langle \hat{a}^{\dagger} \hat{a} \right\rangle - \gamma \bar{n} + \gamma \left\langle \hat{a} \hat{a}^{\dagger} \right\rangle - \gamma (\bar{n} + 1) \right) \tag{43}$$

$$= -\gamma \left\langle \hat{p}^2 \right\rangle + mi\omega^2 \hbar \left(\left\langle \hat{a}^2 \right\rangle - \left\langle (\hat{a}^\dagger)^2 \right\rangle \right) + \gamma m\omega \hbar (\bar{n} + 1/2) \tag{44}$$

$$= -\gamma \langle \hat{p}^2 \rangle - m\omega^2 \langle \{\hat{x}, \hat{p}\} \rangle + \gamma m\omega \hbar (\bar{n} + 1/2) \tag{45}$$

Solving the measurement term

$$\operatorname{tr}(\hat{p}^2 \lambda \mathcal{D}[\hat{x}]\hat{\rho}) = \lambda \left(\operatorname{tr}(\hat{p}^2 \hat{x} \hat{\rho} \hat{x}) - \frac{1}{2} \operatorname{tr}(\hat{p}^2 \hat{x}^2 \hat{\rho}) - \frac{1}{2} \operatorname{tr}(\hat{p}^2 \hat{\rho} \hat{x}^2) \right)$$
(46)

$$= \lambda \left(\operatorname{tr} \left(\hat{x} \hat{p}^2 \hat{x} \hat{\rho} \right) - \frac{1}{2} \operatorname{tr} \left(\hat{p}^2 \hat{x}^2 \hat{\rho} \right) - \frac{1}{2} \operatorname{tr} \left(\hat{x}^2 \hat{p}^2 \hat{\rho} \right) \right)$$

$$(47)$$

Commuting the operators

$$\hat{x}\hat{p}^{2}\hat{x} = \frac{1}{2}(\hat{p}\hat{x} + i\hbar)\hat{p}\hat{x} + \frac{1}{2}\hat{x}\hat{p}(\hat{x}\hat{p} - i\hbar) = \frac{1}{2}\hat{p}\hat{x}\hat{p}\hat{x} + \frac{1}{2}\hat{x}\hat{p}\hat{x}\hat{p} + \frac{i\hbar}{2}[\hat{p}, \hat{x}]$$
(48)

$$= \frac{1}{2}\hat{p}\hat{x}\hat{p}\hat{x} + \frac{1}{2}\hat{x}\hat{p}\hat{x}\hat{p} + \frac{\hbar^2}{2}$$
 (49)

$$\hat{p}^2 \hat{x}^2 = \hat{p}(\hat{x}\hat{p} - i\hbar)\hat{x} = \hat{p}\hat{x}\hat{p}\hat{x} - i\hbar\hat{p}\hat{x}$$

$$\tag{50}$$

$$\hat{x}^2 \hat{p}^2 = \hat{x}(\hat{p}\hat{x} + i\hbar)\hat{p} = \hat{x}\hat{p}\hat{x}\hat{p} + i\hbar\hat{x}\hat{p} \tag{51}$$

This gives

$$\operatorname{tr}(\hat{p}^{2}\lambda\mathcal{D}[\hat{x}]\hat{\rho}) = \lambda \left(\frac{1}{2}\operatorname{tr}(\hat{p}\hat{x}\hat{p}\hat{x}\hat{\rho}) + \frac{1}{2}\operatorname{tr}(\hat{x}\hat{p}\hat{x}\hat{p}\hat{\rho}) + \frac{\hbar^{2}}{2} - \frac{1}{2}\operatorname{tr}(\hat{p}\hat{x}\hat{p}\hat{x}\hat{\rho}) - \frac{1}{2}\operatorname{tr}(\hat{x}\hat{p}\hat{x}\hat{p}\hat{\rho}) + \frac{i\hbar}{2}\operatorname{tr}([\hat{p},\hat{x}]) \right)$$

$$(52)$$

$$= \frac{\lambda \hbar^2}{2} + \frac{\lambda i \hbar}{2} \operatorname{tr}([\hat{p}, \hat{x}]) = \lambda \hbar^2$$
(53)

The final equation of motion then becomes

$$\partial_t \left\langle \hat{p}^2 \right\rangle = -\gamma \left\langle \hat{p}^2 \right\rangle - m\omega^2 \left\langle \left\{ \hat{x}, \hat{p} \right\} \right\rangle + \gamma m\omega \hbar (\bar{n} + 1/2) + \lambda \hbar^2 \tag{54}$$

B.3 Solving for $\partial_t \langle \{\hat{x}, \hat{p}\} \rangle$

Writing Eq. (10) as

$$\partial_t \langle \{\hat{x}, \hat{p}\} \rangle = \operatorname{tr}(\{\hat{x}, \hat{p}\} \mathcal{L} \hat{\rho}) + \operatorname{tr}(\{\hat{x}, \hat{p}\} \lambda \mathcal{D}[\hat{x}] \hat{\rho})$$
(55)

Rewriting the left term as

$$\operatorname{tr}(\{\hat{x},\hat{p}\}\mathcal{L}\hat{\rho}) = i\hbar\operatorname{tr}\left((\hat{a}^2 - (\hat{a}^{\dagger})^2)\mathcal{L}\hat{\rho}\right) = i\hbar\operatorname{tr}\left(\hat{a}^2\mathcal{L}\hat{\rho}\right) - i\hbar\operatorname{tr}\left((\hat{a}^{\dagger})^2\mathcal{L}\hat{\rho}\right)$$
(56)

We have calculated these terms before, so we can write

$$\operatorname{tr}(\{\hat{x}, \hat{p}\}\mathcal{L}\hat{\rho}) = -i\hbar \left((\gamma + 2i\omega) \left\langle \hat{a}^2 \right\rangle - (\gamma - 2i\omega) \left\langle (\hat{a}^{\dagger})^2 \right\rangle \right) \tag{57}$$

$$= -\gamma i\hbar \left(\left\langle \hat{a}^2 \right\rangle - \left\langle (\hat{a}^{\dagger})^2 \right\rangle \right) + 2\hbar\omega \left(\left\langle \hat{a}^2 \right\rangle + \left\langle (\hat{a}^{\dagger})^2 \right\rangle \right) \tag{58}$$

We also have that

$$\hat{a}^2 + (\hat{a}^\dagger)^2 = \frac{m\omega}{\hbar} \hat{x}^2 - \frac{1}{m\omega\hbar} \hat{p}^2 \tag{59}$$

Thus we get

$$\operatorname{tr}(\{\hat{x}, \hat{p}\}\mathcal{L}\hat{\rho}) = -\gamma \left\langle \{\hat{x}, \hat{p}\}\right\rangle + 2m\omega^2 \left\langle \hat{x}^2 \right\rangle - \frac{2}{m} \left\langle \hat{p}^2 \right\rangle \tag{60}$$

Solving for the measurement term

$$\lambda \operatorname{tr}(\{\hat{x}, \hat{p}\} \mathcal{D}[\hat{x}] \hat{\rho}) = \frac{\lambda}{2} \left(\operatorname{tr}([\hat{x}^2, \hat{p}\hat{x}] \hat{\rho}) + \operatorname{tr}([\hat{x}\hat{p}, \hat{x}^2]) \right)$$
(61)

Solving the commutators shows that this will become zero.

B.4 Results

The final equations of motion are

$$\partial_t \left\langle \hat{x}^2 \right\rangle = -\gamma \left\langle \hat{x}^2 \right\rangle + \frac{1}{m} \left\langle \left\{ \hat{x}, \hat{p} \right\} \right\rangle + \frac{\gamma \hbar}{m \omega} (\bar{n} + 1/2) \tag{62}$$

$$\partial_t \langle \hat{p}^2 \rangle = -\gamma \langle \hat{p}^2 \rangle - m\omega^2 \langle \{\hat{x}, \hat{p}\} \rangle + \gamma m\omega \hbar (\bar{n} + 1/2) + \lambda \hbar^2$$
(63)

$$\partial_t \langle \{\hat{x}, \hat{p}\} \rangle = -\gamma \langle \{\hat{x}, \hat{p}\} \rangle + 2m\omega^2 \langle \hat{x}^2 \rangle - \frac{2}{m} \langle \hat{p}^2 \rangle \tag{64}$$