Projet d'audio: Localisation de source audio

Nicolas Pécheux - Clément Burtscher

1. Methode binaurale

Localisation de l'azimut d'une source binaurale

Principe

- Méthode biomimétique
- Reproduction du système auditif
 humain = 2 oreilles, gauche et droite

→ On se restreint ici à la localisation **horizontale** (élévation = 0°)

Indices binauraux (1)

- Quantifier le décalage entre signaux gauche et droit
 - → **ITD** (Interaural Time Difference) : différence en temps
 - → **ILD** (Interaural Level Difference) : différence en amplitude

Indices binauraux (2)

Indices binauraux (3)

Méthodologie

- Génération avec Audacity d'une sinusoïde s(t) d'une seconde à f = 440, 8000 Hz
- **Polarisation** du signal selon θ avec les **HRTF** de la base Kemar
- Calcul de l'ITD et de l'ILD
- Estimation de l'azimut et comparaison avec θ

Base KEMAR (1)

- HRIR (temporel) <-> HRTF (fréquentiel)
- Ensemble des **réponses impulsionnelles** (HRIR) gauche et droite
- Mesures réalisées sur un KEMAR
 - \rightarrow élévation = [-40°; 90°]
 - \rightarrow azimuth = $[0^{\circ}; 360^{\circ}]$

HRTF: Head Related Transfer Function

Base KEMAR (2)

- Spatialisation du son en convoluant s(t) par les HRIR gauche et droite
 - = polarisation de s(t)selon un angle θ donné

Base KEMAR (3)

- To select a pair of HRTF responses, we recommend using symmetrical responses obtained from one of the KEMAR ears.
- For instance, for the HRTF responses for a source

 45 degrees to the right of the head at 0 degrees
 elevation, use "L0e045a.dat" for the left ear and
 "L0e315a.dat" for the right ear, or use
 "R0e315a.dat" for the left ear and "R0e045a.dat"
 for the right ear.
- Note that this approach eliminates binaural localization cues in the median plane.
- \rightarrow 315 45 = 270 $^{\circ}$

Calcul de l'ITD (1)

- Inter-corrélation entre les 2 signaux convolués = degré de similitude
- Le maximum de la courbe d'intercorrélation se trouve à t = délai entre les 2 signaux

A Il faut diviser les abscisses par Fe pour estimer le bon délai

Calcul de l'ITD (2)

Calcul de l'ITD (3)

 Géométrie épipolaire auditive (AEG)

$$\Delta \tau_{AEG} = \frac{d}{c} \cos \theta$$

$$\hat{\theta} = \arccos\left(\frac{c \ \Delta \tau_{AEG}}{d}\right)$$

Calcul de l'ITD (4)

Géométrie épipolaire auditive révisée (RAEG)

Calcul de l'ILD

 L'ILD est fonction de la fréquence et de l'azimut

$$IID = 1.0 + (f/1000)^{0.8} imes \sin heta$$
 ITD ou TDOA

Résultats

• Offset quasi constant entre θ donné et θ estimé

2. Formation de voie

Localisation de l'azimut d'une source par antennerie

Situation:

- Antenne de 10 microphones
- Source sonore à une position inconnu

Procédé

Resultat : sine 440 : energie

Sine440_angle1

Sine440_angle2

Sine440_angle3

Signal	sine440_angle1	sine440_angle2	sine440_angle3	
Angle détecté	0°	90°	180°	

Resultat: sine 440 polarisation

Sine440_angle1

Sine440_angle2

Sine440_angle3

Changement dans le nombre de micro

Essai avec 2, 4, 5 et 10 microphones

3. Conclusion

Conclusion:

- Deux résultats satisfaisant
- Binaurale :
 - Plus precis
 - Besoin d'une base de donnée
- Antennerie :
 - Plus simple
 - Dispositif important

Merci de votre écoute

