

Completeness of Inst-saturated Sets of Clauses with Equality

Alexander Maringele

alexander.maringele@gmail.com

December 6th, 2017

Harald Ganzinger and Konstantin Korovin.

Integrating Equational Reasoning into Instantiation-Based Theorem Proving.

In 18th CSL 2004. Proceedings, volume 3210 of LNCS, pages 71–84, 2004.

The big picture

Instantiation-based first order theorem proving

The big picture

 $S_0 = S$, S_{i+1} is inferred from S_i by a sound calculus.

Preliminaries I

- ▶ a clause *C* is a multiset of literals
- ▶ literals are (in)equations of first order terms
- ightharpoonup a closure $C \cdot \sigma$ is a pair of clause C and substitution σ

Preliminaries II

orderings

 \succ_{gr} order on ground terms, literals, and clauses defined by a total, well-founded, and monotone extension of a total simplification ordering \succ'_{gr} on ground terms

 \succ_{ℓ} an arbitrary total well-founded extension of \succ_{gr} such that $L\sigma \succ_{gr} L'\sigma' \Rightarrow L \cdot \sigma \succ_{\ell} L' \cdot \sigma'$

 \succ_{cl} an arbitrary total well-founded extension of \succ_{gr} such that $C\tau \succ_{gr} D\rho) \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho$ $(C\tau = D\rho \text{ and } C\theta = D) \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho$

Unit Paramodulation Inferences

Unit Paramodulation

Definition

$$\frac{(\ell \approx r) \cdot \sigma \quad L[\ell'] \cdot \sigma'}{L[r]\theta \cdot \rho} \theta \qquad \qquad \frac{(s \not\approx t) \cdot \tau}{\Box} \mu$$

where

- ▶ $\ell\sigma \succ_{gr} r\sigma$, $\theta = \text{mgu}(\ell, s)$, $\ell\sigma = \ell'\sigma' = \ell'\theta\rho$, $\ell' \notin \mathcal{V}$
- ightharpoonup s au=t au, $\mu= ext{mgu}(s,t)$

Remark

The set of literal closures $\{(f(x) \approx b) \cdot \{x \to a\}, a \approx b, f(b) \not\approx b\}$ is inconsistent, but the empty clause is not derivable if $a \succ_{gr} b$.

Unit Paramodulation Redundancy

UP-Redundancy

▶ We define the set

$$irred_R(\mathcal{L}) = \{ L \cdot \sigma \in \mathcal{L} \mid \sigma \text{ is irreducible w.r.t. } R \}$$

for a set of literal closures \mathcal{L} and a ground rewrite system R.

- ▶ Let $\mathcal{L}_{L \cdot \sigma \succ_{\ell}} = \{ L' \cdot \sigma' \in \mathcal{L} \mid L \cdot \sigma \succ_{\ell} L' \cdot \sigma' \}.$
- ▶ A literal closure $L \cdot \sigma$ is UP-redundant in \mathcal{L} if

$$R \cup irred_R(\mathcal{L}_{L \cdot \sigma \succ_{\ell}}) \vDash L\sigma$$

for every ground rewrite system R oriented by \succ_{gr} where σ is irreducible w.r.t. R.

 $ightharpoonup \mathcal{R}_{UP}(\mathcal{L})$ denotes the set of all UP-redundant closures in \mathcal{L} .

Unit Paramodulation Satuaration

UP-Saturation I

A UP-saturation process is a sequence $\{\mathcal{L}_i\}_{i=0}^{\infty}$ of sets of literal closures where \mathcal{L}_{i+1} is obtained from \mathcal{L}_i by adding a conclusion of an UP-inference with premises in \mathcal{L}_i or by removing a UP-redundant closure w.r.t. \mathcal{L}_i .

$$\mathcal{L}_{i+1} = \left\{ \begin{array}{ll} \mathcal{L}_i \cup \square & \text{if} \quad \mathcal{L}_i \ni (s \not\approx t) \cdot \tau, \ s\tau = t\tau, \ \mu = \mathsf{mgu}(s,t) \\ \mathcal{L}_i \backslash L \cdot \sigma & \text{if} \quad R \cup \mathsf{irred}_R(\mathcal{L}_{i,L \cdot \sigma \succ_\ell}) \vDash L\sigma \\ \mathcal{L}_i \cup L[r]\theta \cdot \rho & \text{if} \quad \left\{ \begin{array}{ll} (\ell \approx r) \cdot \sigma \in \mathcal{L}_i, \ L[\ell'] \cdot \sigma' \in \mathcal{L}_i \\ \ell\sigma \succ_{gr} r\sigma, \ \theta = \mathsf{mgu}(\ell,\ell'), \\ \ell' \notin \mathcal{V}, \ \ell\sigma = \ell'\sigma' = \ell'\theta\rho, \\ \mathsf{check} \end{array} \right. \\ \mathcal{L}_i & \text{otherwise} \end{array} \right.$$

Unit Paramodulation Satuaration

UP-Saturation II

Definition

Let \mathcal{L}^{∞} be the set of persistent closures, i.e. the lower limit of the sequence. The process is UP-fair if for every UP-inference with premises in \mathcal{L}^{∞} the conclusion is UP-redundant w.r.t. \mathcal{L}_{j} for some j. For a set of literals \mathcal{L} we define the saturated set of literal closures $\mathcal{L}^{sat} = \mathcal{L}^{\infty} \backslash \mathcal{R}_{UP}(\mathcal{L}^{\infty})$ for some UP-saturation process $\{\mathcal{L}_{i}\}_{i=0}^{\infty}$ with $\mathcal{L}_{0} = \mathcal{L}$.

Lemma

The set \mathcal{L}^{sat} is unique because for any two UP-fair saturation processes $\{\mathcal{L}_i\}_{i=0}^{\infty}$ and $\{\mathcal{L}_i'\}_{i=0}^{\infty}$ with $\mathcal{L}_0 = \mathcal{L}_0'$ we have

$$\mathcal{L}^{\infty} \backslash \mathcal{R}_{\mathit{UP}}(\mathcal{L}^{\infty}) = \mathcal{L}'^{\infty} \backslash \mathcal{R}_{\mathit{UP}}(\mathcal{L}'^{\infty})$$

Instantiation Redundancy

Inst-Redundancy

Let S be a set of clauses.

- ▶ A ground closure C is called Inst-redundant if there exist ground instances C_1, \ldots, C_k of S such that
 - $ightharpoonup C \succ_{cl} C_i$ for all i
 - $ightharpoonup C_1, \ldots, C_k \models C$
- ▶ A (possible non-ground) clause C is called Inst-redundant in S if each ground closure $C \cdot \sigma$ is Inst-redundant in S
- $ightharpoonup R_{Inst}(S)$ denotes the set of all Inst-redundant clauses in S.

Instantiation Selection

Selection

Let S be a set of clauses S, let I_{\perp} be a model of S_{\perp} .

A selection function sel maps clauses to literals such that

$$\operatorname{sel}(C) \in C$$
 $I_{\perp} \models \operatorname{sel}(C) \perp$

► The set of *S*-relevant literal closures

$$\mathcal{L}_{S} = \left\{ L \cdot \sigma \mid \begin{array}{c} L \lor C \in S, \ L = \text{sel}(L \lor C) \\ (L \lor C) \cdot \sigma \text{ is not Inst-redundant in S,} \end{array} \right\}$$

- $\triangleright \mathcal{L}_{S}^{sat}$ denotes the satuarion process of \mathcal{L}_{S} .
- ▶ A set of clauses S is Inst-saturated w.r.t. a selection function, if \mathcal{L}_S^{sat} does not contain the empty clause.

Instantiation Completeness

Completeness

Theorem

If a set of clauses S is Inst-saturated, and $S\perp$ is satisfiable, then S is also satisfiable.

Proof.

- 1. construct candidate model
- 2. assume candidate is not a model
- 3. reach contradiction in all cases

Instantiation Construction

Model Construction I

Let S be an Inst-saturated set of clauses.

- \triangleright $S\perp$ is satisfiable
- $ightharpoonup \square
 ot \in \mathcal{L}_{\mathcal{S}}^{sat}$

Let $L = L' \cdot \sigma \in \mathcal{L}_S^{sat}$. We define by induction on \succ_{ℓ}

- ▶ $I_L = \bigcup_{I \succ_{e} M} \epsilon_M$ ϵ_M allready defined for all M with $L \succ_{\ell} M$
- $P_L = \{s \rightarrow t \mid s \approx t \in I_L, s \succ_{gr} t \}$

$$\bullet \ \epsilon_L = \left\{ \begin{array}{cc} \emptyset & \text{if } L'\sigma \text{ reducible by } R_L \\ \emptyset & \text{if } I_L \vDash L'\sigma \text{ or } I_L \vDash \overline{L'}\sigma \text{ (defined)} \\ \{L'\sigma\} & \text{if } L'\sigma \text{ is productive (irreducible, undefined)} \end{array} \right.$$

Instantiation Construction

Model Construction II

- $R_S = \bigcup_{L \in \mathcal{L}_S^{sat}} R_L$
- $\blacktriangleright I_S = \bigcup_{L \in \mathcal{L}_S^{sat}} \epsilon_L$

 R_S is convergent and interreduced

 I_S is consistent, $L\sigma \in L_S$ is irreducible by R_S

▶ Let \mathcal{I} be an arbitrary total consistent extension of I_S .

Lemma

 ${\cal I}$ is a model for all ground instances of clauses in ${\cal S}$.

Assume \mathcal{I} is not a model of S.

Let
$$D = \min_{\succ_{cl}} \{ C' \cdot \sigma \mid C' \in S, \mathcal{I} \not\models C' \sigma \}$$

Then

- ▶ $D = D' \cdot \sigma$ is not Inst-redundant. Otherwise $D_1, \dots, D_n \models D$, $D \succ_{cl} D_i$ for all i, and $\mathcal{I} \not\models D_j$ for one j contradicts minimality.
- ▶ $x\sigma$ irreducible by R_S for every variable x in D'. Otherwise let $(\ell \to r)\tau \in R_L$ and $x\sigma = x\sigma[l\tau]_p$ for some variable x in D'. We define substitution σ' with $x\sigma' = x\sigma[r\tau]_p$ and $y\sigma' = y\sigma$ for $y \neq x$. $\mathcal{I} \not\models D'\sigma'$ and $D \succ_{cl} D' \cdot \sigma'$ contradicts minimality.

Since D is not Inst-redundant in S, we have for some literal L, that $D' = L \vee D''$, sel(D') = L, $L \cdot \sigma \in \mathcal{L}_S$, $L\sigma$ is false in \mathcal{I} .

Assume $L \cdot \sigma$ is UP-redundant in \mathcal{L}_S^{sat} .

By construction σ is irreducible by R_S . Then we have

$$R_{\mathcal{S}} \cup irred_{R_{\mathcal{S}}}(\{\mathcal{L}' \cdot \sigma' \in \mathcal{L}_{\mathcal{S}}^{sat} \mid \mathcal{L} \cdot \sigma \succ_{\ell} \mathcal{L}' \cdot \sigma'\}) \models \mathcal{L}\sigma$$

Therefore there is $L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat})$ that is false in I.

$$M \cdot \tau = \min_{\succ_{\ell}} \left\{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{\mathsf{sat}}), \mathcal{I} \not\models M' \tau' \right\}$$

is irreducible by R_S .

 $M \cdot \tau = \min_{\succ_{\ell}} \{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat}), \mathcal{I} \not\models M'\tau' \}$ Assume $M \cdot \tau$ is reducible by $(\ell \to r) \in R_S$ and $(\ell \to r)$ is produced by $(\ell' \approx r') \cdot \rho \in \mathcal{L}_S^{sat}$ τ is irreducible by R_S , hence UP-inference is applicable:

$$\frac{(\ell' \approx r') \cdot \rho \quad M[\ell''] \cdot \tau}{M[r']\theta \cdot \mu} \ \textit{UP}$$

$$\ell' \rho = \ell'' \tau = \ell'' \theta \mu, \ \theta = \mathsf{mgu}(\ell', \ell''), \ \mathcal{I} \not\models M[r']\theta \mu$$

- ▶ If $M[r']\theta \cdot \mu$ is not UP-redundant in \mathcal{L}_S^{sat} then $M[r']\theta \cdot \mu \in \mathcal{L}_S^{sat}$. $M[r']\theta \cdot \mu \in irred_{R_S}(\mathcal{L}_S^{sat})$ because μ is irreducible.
- ▶ If $M[r']\theta \cdot \mu$ is UP-redundant in \mathcal{L}_{S}^{sat} . From definiton:

$$R_{\mathcal{S}} \cup irred_{R_{\mathcal{S}}}(\{M' \cdot \tau' \in \mathcal{L}_{\mathcal{S}}^{sat} \mid M[r']\theta \cdot \mu \succ_{\ell} M'\tau'\} \models M[r']\theta\mu$$

Hence there is $M' \cdot \tau' \in \mathcal{L}_{S}^{sat}$, $M \cdot \tau \succ_{\ell} M[r']\theta \cdot \mu \succ_{\ell} M' \cdot \tau'$ false in \mathcal{I} . contradicts minimality of $M \cdot \tau$.

Instantiation Final step

Final Step I

$$M \cdot \tau = \min_{\succeq_{\ell}} \{ M' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{sat}), \mathcal{I} \not\models M'\tau' \}$$

We have that $M \cdot \tau$ • is false in \mathcal{T}

- ightharpoonup is in \mathcal{L}_{S}^{sat}
- ▶ is irreducible by R_S
- is not productive.

Hence $I_{M \cdot \tau} \models \overline{M}\tau$ with two possible cases:

1. $M \cdot \tau$ is equation $(s \approx t) \cdot \tau$

$$I_{M \cdot \tau} \models (s \not\approx t)\tau$$

2. $M \cdot \tau$ is inequation $(s \not\approx t) \cdot \tau$

$$I_{M\cdot\tau}\models(s\approx t)\tau$$

Instantiation Final step

Final Step II

 $M \cdot \tau = \min_{\succeq_{\ell}} \{ M' \cdot \tau' \mid L' \cdot \sigma' \in irred_{R_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{sat}), \mathcal{I} \not\models M'\tau' \}$ $M \cdot \tau$ is false in \mathcal{I} , in $\mathcal{L}_{\mathcal{S}}^{sat}$, irreducible in $R_{\mathcal{S}}$, not productive.

- 1. Assume $M \cdot \tau$ is equation $(s \approx t) \cdot \tau$:
 - $I_{M \cdot \tau} \models (s \not\approx t)\tau$
 - ▶ All literals in $I_{M \cdot \tau}$ are irreducible by $R_{M \cdot \tau}$
 - $s\tau$ and $t\tau$ are irreducible by $R_{M\cdot\tau}$
 - $R_{M \cdot \tau}$ is a convergent term rewrite system

Hence $(s \not\approx t)\tau \in I_{M\cdot\tau}$ and produced to $I_{M\cdot\tau}$ by a $(s' \not\approx t')\cdot\tau'$. Contradicts the minimality of $M\cdot\tau$.

- 2. Assume $M \cdot \tau$ is inequation $(s \not\approx t) \cdot \tau$:
 - $I_{M\cdot\tau}\models(s\approx t)\tau$
 - $s\tau$ and $t\tau$ are irreducible by $R_{M\cdot\tau}$

Hence $s\tau=t\tau$ and equality resolution is applicable. Contradicts that the empty clause is not in \mathcal{L}_{S}^{sat} .