Problem setting

Figure: Pricing Framework

Problem Formulation

Goal: find a policy ρ that maximizes the seller's revenue (R) while minimizing the prediction error of learning the demand function,

$$\min_{\rho,d,f} \mathbb{E}_{(\mathbf{x},p,\tilde{d})\sim D_T} \|d(f(\mathbf{x}),p;\theta_d) - \tilde{d}\|_2 - \lambda d(f(\mathbf{x}),\rho(f(\mathbf{x}));\theta_d)\rho(f(\mathbf{x})),$$
(1)

where

- \mathbf{x} , \tilde{d} , p are observed from the data
- $d(\cdot; \theta_d) : D \to \mathbb{R}_+$ is the demand function parametrized by θ_d that satisfies assumption 1.
- $f(\cdot): D \to D_z$ is a feature extractor
- ullet λ is a hyper-parameter

Assumption 1 (The law of demand)

Quantity purchased varies inversely with price.

Problem Formulation

In model training, the objective is defined as,

$$\min_{\rho,\theta_d,f,g} \mathbb{E}_{(\mathbf{x},p,\tilde{d})\sim D_T \cup D_S} \|d(f(\mathbf{x}),p;\theta_d) - \tilde{d}\|_{2}$$

$$-\lambda d(f(\mathbf{x}),\rho(f(\mathbf{x}));\theta_d)\rho(f(\mathbf{x}))$$

$$-\gamma (y \log(h(f(\mathbf{x}))) + (1-y) \log(1-h(f(\mathbf{x})))),$$
(2)

where

- $h(\cdot)$ is the domain classifier
- $y = 1(x \in D_S)$ is the domain label

JPO Loss

Definition 1

(JPO Loss). Given a vector of observed information $(\mathbf{x}, \tilde{d}, p)$, the JPO loss $L_{\lambda_0}^{JPO}$ with respect to a hyper-parameter $\lambda = \lambda_0$, where λ_0 could guarantee convergence is defined as $\mathbb{E}_{(\mathbf{x},p,\tilde{d})\sim D_T} \|d(f(\mathbf{x}),p;\theta_d) - \tilde{d}\|_2 - \lambda_0 \ d(f(\mathbf{x}),\rho(f(\mathbf{x}));\theta_d)\rho(f(\mathbf{x}))$, $\forall d\in \Gamma_d$, where Γ_d is a restrictive function class that only contains functions satisfying assumption 1 (i.e., monotonic with respect to p and p).

JPO loss is adopted in UMNN algorithm

JPO+ Loss

• If function *d* is differentiable,

Definition 2

(JPO+ Loss). Given a vector of observed information $(\mathbf{x}, \tilde{d}, p)$, the JPO+ loss L_{λ}^{JPO+} with respect to any hyper-parameter tuples $\lambda = (\lambda_0, \lambda_1, \lambda_2)$ is defined as $\mathbb{E}_{(\mathbf{x}, p, \tilde{d}) \sim D_T} \|d(f(\mathbf{x}), p; \theta_d) - \tilde{d}\|_2^2 - \lambda_0 \ d(f(\mathbf{x}), \rho(f(\mathbf{x})); \theta_d) \rho(f(\mathbf{x})) + \lambda_1 \frac{\partial d}{\partial p} + \lambda_2 \frac{\partial d}{\partial \rho}$

- JPO+ loss is a Lagurangian relaxation of JPO loss.
- JPO+ loss is used in MLP algorithm

Model Architecture

Experiment Setup

Synthetic Data Setting

- Price values are sampled from the same uniform distribution for both source and target domains.
- Source features are sampled from multivariate distribution while target features are sample from chi-squared distribution.
- Demand function is linear w.r.t to features and price.
- Half of the features are dropped out in the target domain.
- Source domain has 1M data samples, while target domain only has 1K samples.

Experiment Results

- Enforcing monotonicity can drastically increase the R/MSE ratio.
- Domain Adaption loss improves domain generalization.

Model	Revenue (R)	MSE	R/MSE
LR baseline	0.479	0.093	5.15
MLP w/o DA	0.861	0.090	9.57
MLP	0.794	0.066	12.03
MLP w/ GradReg	0.565	0.023	24.57
UMNN	0.619	0.019	32.58