02/12/2020

Devoir cours Machine Learning

Ecole Polytechnique Universitaire spécialité MAIN.

Instructions

Ecrire l'examen avec un traitement de texte, e.g. avec Overleaf.

Vous avez une semaine pour le faire, i.e. rendu le 9/12/2020

M'envoyer ensuite le pdf par courrier, patrick.gallinari@sorbonne-universite.fr

Modèles de langue neuronaux

Le sujet porte sur des modèles de langue neuronaux. Il s'agit d'apprendre des représentations des mots en contexte à partir de corpus de texte. On s'intéresse à des modèles qui « lisent » un mot et doivent prédire le contexte du mot dans la phrase. Le contexte peut être défini de différentes façons : le mot suivant dans la phrase, les mots qui entourent le mot courant dans la phrase, etc.

On dispose d'un corpus C constitué de phrases, d'un dictionnaire de n mots $Dict = \{w_1, \dots, w_n\}$. On veut construire un modèle neuronal qui étant donné un mot w_I dans une phrase, doit prédire le mot suivant dans la phrase, noté w_O . On considère le modèle neuronal de la figure 1.

Le mot w_i sera codé par un vecteur « 1 parmi n » noté $x \in \{0,1\}^n$ avec un 1 en position i et 0 partout ailleurs. Le réseau comprend n entrées et n sorties correspondant chacune à un mot du dictionnaire. U et V sont des matrices de poids de dimensions respectives d. n et n. d. Le vecteur $u_i \in R^d$ est la i^{eme} colonne de U et $v_j \in R^d$ est la j^{eme} ligne de V. Pour une entrée w_I codée par x , on calcule la sortie du réseau de la façon suivante : on calcule d'abord la représentation cachée $Ux = u_I$, puis la sortie correspondant au mot w_k , $y_k = \frac{\exp(v_k.u_I)}{\sum_{j=1}^n \exp(v_j.u_j)} = p(w_k|w_I)$ pour tous les mots $w_k \in Dict$. La notation v. u désigne le produit scalaire des deux vecteurs v et u. On reconnait un « softmax » calculé sur les cellules de sortie.

Figure 1

Les paramètres du modèle sont les u_i , $i=1\dots n$ et v_j , $j=1\dots n$. u_i et v_i sont deux représentations différentes du mot w_i . On dira que u_i est la représentation d'entrée et v_i est la représentation de sortie. y_k est un estimateur de la probabilité a posteriori $(w_k|w_l)$.

On note D l'ensemble des (w_I, w_O) qui forment un couple mot d'entrée – mot de contexte. Dans notre exemple, D sera constitué de tous les mots rencontrés dans les phrases et de leur suivant dans la phrase. Le critère d'apprentissage est la vraisemblance conditionnelle des observations (w_I, w_O) . La fonction de coût est la log vraisemblance $L = \sum_{(w_I, w_O) \in D} \log p(w_O | w_I)$. On note $e(w_I, w_O) = \log p(w_O | w_I)$.

- 1. Quel est l'effet de la maximisation de la log vraisemblance L sur les vecteurs u_{I},v_{O} ?
- 2. Si deux mots w_I , w_J apparaissent souvent avec les mêmes mots de contexte w_O , que pouvez-vous dire sur les représentations apprises u_I , u_I de ces mots ?
- 3. Dérivation d'un algorithme d'apprentissage

On va utiliser un algorithme de gradient stochastique : à chaque itération, on tire un exemple $(w_L w_Q)$ et on utilise le gradient stochastique pour maximiser e.

- 3.1 Donner l'expression de $e(w_I, w_O) = \log p(w_O|w_I)$ en fonction des paramètres u et v.
- 3.2 On note e=e (w_I,w_O) , $a_i=v_i.u_I$ et $b_i=\sum_{j=1}^n u_{ij}x_{Ij}=u_{iI}$

En utilisant la règle de dérivation $\frac{\partial e}{\partial v_{ij}} = \frac{\partial e}{\partial a_i} \cdot \frac{\partial a_i}{\partial v_{ij}}$ donner l'expression de $\frac{\partial e}{\partial v_{ij}}$

En utilisant la règle de dérivation $\frac{\partial e}{\partial u_{ij}} = \frac{\partial e}{\partial b_i} \cdot \frac{\partial b_i}{\partial u_{ij}}$ et $\frac{\partial e}{\partial b_i} = \sum_{k=1}^n \frac{\partial e}{\partial a_k} \frac{\partial a_k}{\partial b_i}$ donner l'expression de $\frac{\partial e}{\partial u_{ij}}$

- 3.3 Proposer un algorithme de gradient stochastique pour mettre à jour les poids du réseau.
- 4. Analyse de la complexité.

Lors de l'apprentissage, on échantillonne les couples (w_I, w_O) , et pour chaque couple on calcule $p(w_O|w_I)$. Quelle est la complexité de ce calcul ?

Quelle est la complexité de la mise à jour des poids pour un couple d'exemple ?

Voyez-vous des alternatives pour réduire cette complexité ?