NEC

NPN SILICON TRANSISTOR 2SC1940

DESCRIPTION

The 2SC1940 is designed for use in driver stages of audio

frequency amplifiers.

FEATURES

 \bullet High total power dissipation and high breakdown voltage:

1.0 W at 25 °C ambient temperature/V_{CEO}=120 V

• Complementary to the NEC 2SA915 PNP transistor.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures				
Storage Temperature				
Junction Temperature+150 °C Maximum				
Maximum Power Dissipation (Ta = 25 °C)				
Total Power Dissipation				
Thermal Resistance(Junction to Ambient) 125 °C/W				
Maximum Voltages and Currents (Ta = 25 °C)				
V _{CBO}	Collector to Base Voltage V			
V _{CEO}	Collector to Emitter Voltage 120 V			
V _{EBO}	Emitter to Base Voltage 5.0 V			
I _C	Collector Current 50 mA			
ΙB	Base Current · · · · · · · · · · · · · · · · 10 mA			

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	90	200	400	_	V _{CE} = 10 V, I _C =10 mA
hFE2	DC Current Gain	50	180		_	$V_{CE} = 10 \text{ V, I}_{C} = 1.0 \text{ mA}$
f _T	Gain Bandwidth Product	50	120		MHz	$V_{CE} = 10 \text{ V, } I_{E} = -10 \text{ mA}$
Cob	Output Capacitance		2.3	3.0	pF	$V_{CB} = 10 \text{ V, I}_{E} = 0, f = 1.0 \text{ MHz}$
СВО	Collector Cutoff Current			100	· nA	V _{CB} = 120 V, I _E =0
I _{EBO}	Emitter Cutoff Current			100	nΑ	$V_{EB} = 5.0 \text{ V, } 1_{C} = 0$
V _{BE}	Base to Emitter Voltage	650	685	750	mΫ	$V_{CE} = 10 \text{ V, } I_{C} = 10 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		0.07	0.6	V	$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$
V _{BE(sat)}	Base Saturation Voltage		0.75	1.0	· V	I _C = 20 mA, I _B =2.0 mA

Classification of hFE1

Rank	м	L	К
Range	90 – 180	135 – 270	200 – 400

hFE1 Test Conditions: $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta=25 °C unless otherwise noted)

 V_{CB} — Collector to Base Voltage — V V_{EB} — Emitter to Base Voltage — V