Probabilités

Définition. Une expérience est **aléatoire** si on connait ses issues possibles mais on ignore quelle issue sera réalisée **Définitions.** L'univers est l'ensemble des issues possibles d'une expérience aléatoire. On le note Ω .

Exemple. On lance une pièce de monnaie et on regarde de quel côté elle tombe. Les issues sont "Pile" ou "Face". C'est une expérience aléatoire dont l'univers est $\Omega = \{\text{"Pile"}, \text{"Face"}\}.$

Définition. Donner une loi de probabilité associée à une expérience aléatoire, c'est donner une probabilité (un nombre entre 0 et 1) à chaque issue, de sorte que la somme des probabilités soit égale à 1. On représente une loi de probabilité avec un tableau à deux lignes (issues et probabilités).

Exemple. Une étude menée sur la répartition des groupes sanguins en France a montré que 45 % de la population est du groupe A, 9 % du groupe B, 4 % du groupe AB et 42 % du groupe O.

On choisit au hasard une personne en France et on note son groupe sanguin. La loi de probabilité est :

Issue	Α	В	AB	0
Probabilité	0,45	0,09	0,04	0,42

Définition. Une loi est dite équiprobable (ou équirépartie) lorsque chaque issue a la même probabilité de se réaliser, qui est alors $\frac{1}{n}$ où n est le nombre total d'issues.

Exemple. On lance un dé cubique équilibré et on observe le résultat. Chaque issue a une chance sur 6 de se réaliser.

Définition. Un événement est un ensemble d'issues. Il est souvent décrit par une phrase, et noté en lettre capitale.

Exemple. On lance un dé cubique équilibré et on observe le résultat.

Alors l'univers est $\Omega = \{1; 2; 3; 4; 5; 6\}$. L'événement « Obtenir un nombre pair » peut être écrit $A = \{2; 4; 6\}$

Définition. La probabilité d'un événement A est égale à la somme des probabilités des issues qui réalisent cet événement. Elle se note P(A) si on parle d'un événement noté A.

Exemple. Dans le cas précédent, $P("obtenir un nombre pair") = <math>P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$

Exemple. Dans le cas de la répartition des groupes sanguins, la probabilité qu'une personne en France ait un groupe sanquin différent de A est égale à : P("groupe B") + P("groupe AB") + P("groupe O") = 0.09 + 0.04 + 0.42 = 0.55.

Propriété. Dans une situation d'équiprobabilité, où il y a *n* issues possibles, la probabilité d'un événement A constitué de k issues est alors : $P(A) = \frac{k}{n} = \frac{\text{nombre d'issues réalisées par A}}{\text{nombre total d'issues de }\Omega}$

Exemple. Si A = « Obtenir un nombre pair » pour un lancer de dé équilibré à 6 faces alors $P(A) = P({2;4;6}) = \frac{3}{4} = \frac{1}{2}$

Définition. L'événement contraire d'un événement A, noté \overline{A} , est l'ensemble des issues qui ne sont pas dans A. **Propriété**. $P(\bar{A}) = 1 - P(A)$.

Exemple. Pour un lancer de dé équilibré à 6 faces, on note A = "Le résultat est un multiple de 3" = $\{3; 6\}$.

 $P(\text{"Le résultat n'est } pas \text{ un multiple de 3"}) = P(\overline{A}) = 1 - P(A) = 1 - \frac{2}{6} = \frac{4}{6} = \frac{2}{3}$

Définition. L'événement A ∪ B (se lit A union B) est l'ensemble des issues dans A ou B. **Définition**. L'événement $A \cap B$ (se lit **A inter B**) est l'ensemble des issues dans A \underline{et} B

Exemple. On lance un dé à 6 faces et on considère les

A = « Obtenir un nombre pair » = $\{2; 4; 6\}$

B = « Obtenir un résultat inférieur ou égal à 3 » = $\{1; 2; 3\}$

Alors .

 $A \cup B = \{1, 2, 3, 4, 6\}$

 $A \cap B = \{2\}$

Remarques.

$$\overline{A} = \{1; 3; 5\}$$
 $\overline{B} = \{4; 5; 6\}$

$$\overline{A \cup B} = \overline{\{1; 2; 3; 4; 6\}} = \{5\} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{\{2\}} = \{1; 3; 4; 5; 6\} = \overline{A} \cup \overline{B}$$

Propriété.

Propriété. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ **Exemple**. Dans l'exemple précédent, $P(A) = \frac{3}{6}$; $P(B) = \frac{3}{6}$; $P(A \cap B) = \frac{1}{6}$. Donc $P(A \cup B) = \frac{3}{6} + \frac{3}{6} - \frac{1}{6} = \frac{5}{6}$