Vysoké učení technické v Brně

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

MSP - Štatistika a pravdepodobnosť Cvičenie - streda, 08:00

Projekt – zadanie 28, 14

Zadanie projektu:

- 1. Pri kontrole výrobkov bola sledovaná odchýlka X [mm] ich rozmerov od požadovanej veľkosti. Namerané hodnoty tvoria štatistický súbor v liste Data pr.1.
 - (a) Urobte roztriedenie štatistického súboru, vytvorte tabuľku početností a nakreslite histogramy pre relatívnu početnosť a relatívnu komutatívnu početnosť.
 - (b) Vypočítajte aritmetický priemer, medián, modus, rozptyl a smerodajnú odchýlku.
 - (c) Vypočítajte bodové odhady strednej hodnoty, rozptylu a smerodajnej odchýlky.
 - (d) Testujte predpoklad o výbere z normálneho rozdelenia Pearsonovým (chi-kvadrát) testom na hladine významnosti 0,05.
 - (e) Za predpokladu (bez ohľadu na výsledok časti d)), že štatistický súbor bol získaný náhodným výberom z normálneho rozdelenia, určte intervalové odhady strednej hodnoty, rozptylu a smerodajnej odchýlky so spoľahlivosťou 0,95 a 0,99.
 - (f) Testujte hypotézu optimálneho nastavenia stroja, tj. že stredná hodnota odchýlky je nulová, proti dvojstrannej alternatívnej hypotéze, že stredná hodnota odchýlky je rôzna od nuly, a to na hladine významnosti 0,05.
 - (g) Overte štatistickým testom na hladine významnosti 0,05, či nastavenie stroja ovplyvnilo kvalitu výrobu, ak viete, že vyššie uvedený štatistický súbor 50-tich hodnôt vznikol spojením dvoch čiastočných štatistických súborov, tak, že po nameraní prvých 20-tich hodnôt bolo vykonané nové nastavenie stroja a následne bolo nameraných zvyšných 30 hodnôt.

Návod: Oba súbory spracujte nezotriedené. Testujte najskôr rovnosť rozptylov odchýliek pred a po nastavení stroja. Podľa výsledkov potom zvoľte vhodný postup pre testovanie rovnosti stredných hodnôt odchýliek pred a po nastavení stroja.

- 2. Nameraním dvojice (Výška[cm], Váha[kg]) u vybraných študentov z fakulty VUT FIT bol získaný dvojrozmerný štatistický súbor zapísaný po dvojiciach v riadkoch v liste Data pr.2.
 - (a) Vypočítajte bodový odhad koeficientu korelácie.
 - (b) Na hladine významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha sú lineárne nezávislé.
 - (c) **Regresná analýza** dáta preložte priamkou: Váha = $\beta_1 + \beta_1 * Výška$
 - a) Bodovo odhadnite β_1 , β_1 a rozptyl s^2 .
 - b) Na hladine významnosti 0,05 otestujte hypotézy:

$$H: \beta_1 = -100, \quad H_A: \beta_1 \neq -100,$$
 (1)

$$H: \beta_1 = 1, \quad H_A: \beta_1 \neq 1,$$
 (2)

c) Vytvorte graf bodov spolu s regresnou priamkou a pásom spoľahlivosti pre individuálnu hodnotu výšky.

Vypracovanie:

1) Pri kontrole výrobkov bola sledovaná odchýlka X [mm] ich rozmerov od požadovanej veľkosti. Namerané hodnoty tvoria štatistický súbor v liste Data_pr.1, zadanie č. 28.

Štatistický súbor				
n	x_n	n	x_n	
1	-0,43	26	0,22	
2	-0,12	27	-0,37	
3	0,04	28	0,30	
4	-1,05	29	0,74	
5	0,30	30	-0,02	
6	0,27	31	0,36	
7	0,18	32	-0,19	
8	0,86	33	0,49	
9	0,40	34	0,12	
10	0,39	35	0,00	
11	-0,25	36	0,39	
12	-0,73	37	0,70	
13	0,25	38	0,00	
14	-0,25	39	-0,50	
15	-0,40	40	0,05	
16	0,59	41	-0,47	
17	-0,19	42	-0,59	
18	0,09	43	0,29	
19	-0,27	44	-0,15	
20	-0,07	45	0,00	
21	0,31	46	0,40	
22	0,31	47	-0,09	
23	-1,16	48	0,08	
24	0,70	49	0,08	
25	0,78	50	0,56	

Usporiadaný štatistický súbor

n	x_n	n	x_n
(1)	-1,16	(26)	0,08
(2)	-1,05	(27)	0,09
(3)	-0,73	(28)	0,12
(4)	-0,59	(29)	0,18
(5)	-0,50	(30)	0,22
(6)	-0,47	(31)	0,25
(7)	-0,43	(32)	0,27
(8)	-0,40	(33)	0,29
(9)	-0,37	(34)	0,30
(10)	-0,27	(35)	0,30
(11)	-0,25	(36)	0,31
(12)	-0,25	(37)	0,31
(13)	-0,19	(38)	0,36
(14)	-0,19	(39)	0,39
(15)	-0,15	(40)	0,39
(16)	-0,12	(41)	0,40
(17)	-0,09	(42)	0,40
(18)	-0,07	(43)	0,49
(19)	-0,02	(44)	0,56
(20)	0,00	(45)	0,59
(21)	0,00	(46)	0,70
(22)	0,00	(47)	0,70
(23)	0,04	(48)	0,74
(24)	0,05	(49)	0,78
(25)	0,08	(50)	0,86

a) Urobte roztriedenie štatistického súboru, vytvorte tabuľku početností a nakreslite histogramy pre relatívnu početnosť a relatívnu komutatívnu početnosť.

$$x_{(1)} = \min_{i} x_i = -1, 16$$

 $x_{(n)} = \max_{i} x_i = 0, 86$

Variačný obor:
$$\left\langle x_{(1)};\,x_{(n)}\right\rangle =\left\langle \,-\,1,16;\,0,86\right\rangle$$

Rozpätie:
$$x_{(n)} - x_{(1)} = 2,02$$

Počet tried
$$m = \frac{\sqrt{n} + 2\sqrt{n}}{2} \approx 11$$

Dĺžka triedy
$$h = \frac{x_{(n)} - x_{(1)}}{m} = 0,183636364$$

trieda	xi-	xi+	stred triedy	kp	р	rp	rkp
1	-1,1600	-0,9764	-1,0682	2	2	0,04	0,04
2	-0,9764	-0,7927	-0,8845	2	0	0	0,04
3	-0,7927	-0,6091	-0,7009	3	1	0,02	0,06
4	-0,6091	-0,4255	-0,5173	7	4	0,08	0,14
5	-0,4255	-0,2418	-0,3336	12	5	0,1	0,24
6	-0,2418	-0,0582	-0,1500	18	6	0,12	0,36
7	-0,0582	0,1255	0,0336	28	10	0,2	0,56
8	0,1255	0,3091	0,2173	35	7	0,14	0,7
9	0,3091	0,4927	0,4009	43	8	0,16	0,86
10	0,4927	0,6764	0,5845	45	2	0,04	0,9
11	0,6764	0,8600	0,7682	50	5	0,1	1

Tabuľka početností štatistického súboru, kde \mathbf{kp} je kumulatívna početnosť, \mathbf{p} je početnosť, \mathbf{rp} je relatívna početnosť a \mathbf{rkp} je relatívna kumulatívna početnosť.

Histogram - relatívna kumulatívna početnosť

b) Vypočítajte aritmetický priemer, medián, modus, rozptyl a smerodajnú odchýlku.

Aritmetický priemer:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,059$$

Medián: $\tilde{x} = 0.08$

Modus: $\hat{x} = 0$

Rozptyl:
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0,18864258$$

Smerodajná odchýlka:
$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0,434330036$$

c) Vypočítajte bodové odhady strednej hodnoty, rozptylu a smerodajnej odchýlky.

Bodový odhad strednej hodnoty:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,059$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0,200924490$$

Bodový odhad smerodajnej odchýlky:
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0,4482460148$$

d) Testujte predpoklad o výbere z normálneho rozdelenia Pearsonovým (chi-kvadrát) testom na hladine významnosti 0,05.

Uvažujme hypotézu: $H: X \sim N(\mu, \sigma^2)$, kde μ, σ^2 sú neznáme parametre. Využijeme ich bodové odhady z predchádzajúcej úlohy:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,059$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0,200924490$

Ďalej použijeme zoradený štatistický súbor z kroku (a), kde sme štatistický súbor roztriedili do celkovo 11 tried nasledovne:

Variačný obor: $\langle x_{(1)}; x_{(n)} \rangle = \langle -1, 16; 0, 86 \rangle$

Rozpätie: $x_{(n)} - x_{(1)} = 2,02$

Dĺžka triedy
$$h = \frac{x_{(n)} - x_{(1)}}{m} = 0,183636364$$

K početnostiam spočítame teoretické početnosti \hat{f}_j - tj. početnosti za podmienky, že by mala náhodná premenná X distribučnú funkciu normálneho rozdelenia s parametrami (\bar{x}, s^2) .

trieda	xi-	xi+	f_{j}	$\hat{f_j}$
1	$-\infty$	-0,9764	2	0,5225
2	-0,9764	-0,7927	0	0,9129
3	-0,7927	-0,6091	1	1,9672
4	-0,6091	-0,4255	4	3,5923
5	-0,4255	-0,2418	5	5,5590
6	-0,2418	-0,0582	6	7,2902
7	-0,0582	0,1255	10	8,1023
8	0,1255	0,3091	7	7,6313
9	0,3091	0,4927	8	6,0913
10	0,4927	0,6764	2	4,1204
11	0,6764	∞	5	4,2106
Σ			50	50

Následne potrebujeme zlúčiť triedy tak, aby boli splnené podmienky pre teoretické početnosti:

- 1) všetky teoretické početnosti majú byť väčšie než 1, a
- 2) aspoň 80% z nich je väčších ako 5.

Triedy, ktoré sa zlúčili do jednej triedy sú farebne vyznačené.

trieda	xi-	xi+	f_{j}	$\hat{f_j}$
1	$-\infty$	-0,4255	7	6,9949
2	-0,4255	-0,2418	5	5,5590
3	-0,2418	-0,0582	6	7,2902
4	-0,0582	0,1255	10	8,1023
5	0,1255	0,3091	7	7,6313
6	0,3091	0,4927	8	6,0913
7	0,4927	∞	7	8,3310
Σ			50	50

Testovacie kritérium:
$$t = \sum_{j=1}^{m} \frac{(f_j - \hat{f}_j)^2}{\hat{f}_j} = 1,59200788$$

Počet stupňov voľnosti: k = m - q - 1 = 7 - 2 - 1 = 4

Kvantil: $\chi^2_{1-\alpha}(k) = \chi^2_{1-\alpha}(4) = 9,487729037$

Doplnok kritického oboru: $\overline{W}_{\alpha} = \langle 0; \chi^2_{1-\alpha} \rangle = \langle 0; 9, 487729037 \rangle$

Pretože $t \in \overline{W}_{\alpha}$, hypotéza $H: X \sim N(0,059;\, 0,200924490)$ sa **nezamieta**.

e) Za predpokladu (bez ohľadu na výsledok časti (d)), že štatistický súbor bol získaný náhodným výberom z normálneho rozdelenia, určte intervalové odhady strednej hodnoty, rozptylu a smerodajnej odchýlky so spoľahlivosťou 0,95 a 0,99.

Predpoklad: $X \sim N(\mu, \sigma^2), \sigma^2$ - nepoznáme

Bodový odhad strednej hodnoty: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,059$

Bodový odhad rozptylu: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0,200924490$

Bodový odhad smerodajnej odchýlky: $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2} = 0,4482460148$

Intervalový odhad parametra μ :

0,975 kvantil Studentovho rozdelenia sk=n-1=49stupňami voľnosti:

$$t_{0,975}(49) = 2,009575237$$

0,995 kvantil Studentovho rozdelenia sk=n-1=49stupňami voľnosti:

$$t_{0.995}(49) = 2,679951974$$

$$\alpha = 0.05 : \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -0.068390108; 0.186390108 \right\rangle$$

$$\alpha = 0,01: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \ \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -0,110886335; \ 0,228886335 \right\rangle$$

Intervalový odhad parametra σ^2 :

0,025 kvantil Pearsonovho rozdelenia $\chi^2_{\alpha/2}$ s k=n-1=49stupňami voľnosti:

$$\chi^2_{0,025}(49) = 31,55491646$$

0,975 kvantil Pearsonovho rozdelenia $\chi^2_{1-\alpha/2}$ s k=n-1=49stupňami voľnosti:

$$\chi^2_{0,975}(49) = 70,22241357$$

0,005 kvantil Pearsonovho rozdelenia $\chi^2_{\alpha/2}$ s k=n-1=49stupňami voľnosti:

$$\chi^2_{0,005}(49) = 27,24934907$$

0,995 kvantil Pearsonovho rozdelenia $\chi^2_{1-\alpha/2}$ s k=n-1=49 stupňami voľnosti:

$$\chi^2_{0,995}(49) = 78,23070809$$

$$\alpha = 0,05 : \left\langle \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}; \frac{(n-1)s^2}{\chi_{\alpha/2}^2} \right\rangle = \left\langle 0,140201675; 0,312005263 \right\rangle$$

$$\alpha = 0,01 : \left\langle \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}; \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right\rangle = \left\langle 0,125849558; 0,361304043 \right\rangle$$

Intervalový odhad parametra σ :

$$\alpha = 0,05 : \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle 0,374435141; 0,558574313 \right\rangle$$

$$\alpha = 0,01 : \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle 0,354752812; 0,601085721 \right\rangle$$

f) Testujte hypotézu optimálneho nastavenia stroja, tj. že stredná hodnota odchýlky je nulová, proti dvojstrannej alternatívnej hypotéze, že stredná hodnota odchýlky je rôzna od nuly, a to na hladine významnosti 0,05.

Bodové odhady strednej hodnoty a smerodajnej odchýlky:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0,059$$
 $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0,4482460148$

Studentov jednovýberový test:

Testujeme hypotézu $H_0: \mu = 0$:

Testovacie kritérium:
$$t = \frac{\overline{x} - \mu_0}{s} \sqrt{n} = \frac{\overline{x} - 0}{s} \sqrt{n} = 0,930723279$$

Doplnok kritického oboru: $\overline{W}_{\alpha} = \langle -t_{1-\alpha/2}; t_{1-\alpha/2} \rangle$ pre alternatívnu hypotézu: $H_A: \mu \neq \mu_0$ 0, 975 kvantil Studentovho rozdelenia $t_{1-\alpha/2}$ s k=n-1=49 stupňami voľnosti:

$$t_{0.975} = -2,009575237$$

$$\overline{W}_{\alpha} = \langle -t_{1-\alpha/2}; t_{1-\alpha/2} \rangle = \langle -2,009575237; 2,009575237 \rangle$$

Pretože $t \in \overline{W}_{\alpha}$, tak hypotéza $H_0: \mu = 0$ sa **nezamieta** a alternatívna hypotéza $H_A: \mu \neq 0$ sa **zamieta**.

g) Overte štatistickým testom na hladine významnosti 0,05, či nastavenie stroja ovplyvnilo kvalitu výrobku, ak viete, že vyššie uvedený štatistický súbor 50-ich hodnôt vznikol spojením dvoch čiastočných štatistických súborov, tak, že po nameraní prvých 20-ich hodnôt bolo vykonané nové nastavenie stroja a následne bolo nameraných zvyšných 30 hodnôt.

Štatistický súbor X

zeatisticii, sazor 11					
n	x_n	n	x_n		
1	-0,43	11	-0,25		
2	-0,12	12	-0,73		
3	0,04	13	0,25		
4	-1,05	14	-0,25		
5	0,30	15	-0,40		
6	0,27	16	0,59		
7	0,18	17	-0,19		
8	0,86	18	0,09		
9	0,40	19	-0,27		
10	0,39	20	-0,07		

Štatistický súbor Y

n	y_n	n	y_n	n	y_n			
21	0,31	31	0,36	41	-0,47			
22	0,31	32	-0,19	42	-0,59			
23	-1,16	33	0,49	43	0,29			
24	0,70	34	0,12	44	-0,15			
25	0,78	35	0,00	45	0,00			
26	0,22	36	0,39	46	0,40			
27	-0,37	37	0,70	47	-0,09			
28	0,30	38	0,00	48	0,08			
29	0,74	39	-0,50	49	0,08			
30	-0,02	40	0,05	50	0,56			

	X	Y
n	20	30
priemer	-0,0195000	0,111333
s^2	0,19466475	0,185751556
s	0,441208284	0,430989043

Test rovnosti rozptylov – F-test:

Testujeme hypotézu $H_0: \sigma_X^2 = \sigma_Y^2$:

Testovacie kritérium: $t = \frac{s^2(X)}{s^2(Y)} = = 1,047984494$

Doplnok kritického oboru: $\overline{W}_{\alpha}=\langle F_{\alpha/2}(n-1,m-1);\, F_{1-\alpha/2}(n-1,m-1)\rangle$ pre $H_A:\sigma_X^2\neq\sigma_Y^2$

$$F_{\alpha/2}(n-1, m-1) = F_{0,025}(19, 29) = 0,416329668$$

$$F_{1-\alpha/2}(n-1, m-1) = F_{0,975}(19, 29) = 2,231273833$$

$$\overline{W}_{\alpha} = \langle F_{\alpha/2}(n-1, m-1); F_{1-\alpha/2}(n-1, m-1) \rangle = \langle 0, 416329668; 2, 231273833 \rangle$$

Pretože $t \in \overline{W}_{\alpha}$, hypotéza $H_0: \sigma_X^2 = \sigma_Y^2$ sa **nezamieta**.

Studentov dvojvýberový test:

Testujeme hypotézu $H_0: \mu_X - \mu_Y = 0$ za podmienky $\sigma_X^2 = \sigma_Y^2$

Testovacie kritérium:
$$t = \frac{\overline{x} - \overline{y} - \mu_0}{\sqrt{(n-1)s^2(X) + (m-1)s^2(Y)}} \sqrt{\frac{nm(n+m)}{n+m}} = -1,041734424$$

Doplnok kritického oboru: $\overline{W}_{\alpha} = \langle -t_{1-\alpha/2}; t_{1-\alpha/2} \rangle$ pre alternatívnu hypotézu:

$$H_A: \mu_X - \mu_Y \neq 0,$$

 $t_{1-\alpha/2}$ - kvantil Studentovho rozdelenia s k=n+m-2=48 stupňami voľnosti:

$$t_{0.975}(48) = 2,010634758$$

$$\overline{W}_{\alpha} = \left\langle -t_{1-\alpha/2}; t_{1-\alpha/2} \right\rangle = \left\langle -2,010634758; -2,010634758 \right\rangle$$

Pretože $t \in \overline{W}_{\alpha}$, hypotéza $H_0: \mu_X - \mu_Y = 0$ sa **nezamieta.**

2. Meraním dvojice (Výška[cm], Váha[kg]) u vybraných študentov z fakulty VUT FIT bol získaný dvojrozmerný štatistický súbor zapísaný po dvojiciach v riadkoch v liste Data pr.2, zadanie č.14.

X - Výška [cm]	Y - Váha [kg]	X - Výška [cm]	Y - Váha [kg]
170	59	170	66
197	100	175	65
168	75	178	97
157	52	177	68
182	78	153	43
190	89	168	44
188	90	168	66
187	84	167	61
198	97	176	87
193	109	151	54

$$n = 20, \overline{x} = 175, 65, \overline{y} = 74, 257642$$

$$\sum_{i=1}^{n} x_i^2 = 620633, \sum_{i=1}^{n} y_i^2 = 117452, 39139, \sum_{i=1}^{n} x_i y_i = 265291, 9784$$

a) Vypočítajte bodový odhad koeficientu korelácie

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2\right)\left(\sum_{i=1}^{n} y_i^2 - n\overline{y}^2\right)}} = 0,874135371$$

b) Na hladine významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha sú lineárne nezávislé.

Testujeme hypotézu $H_0: \rho = 0:$

Testovacie kritérium:
$$t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} = 7,635941928$$

Doplnok kritického oboru: $\overline{W}_{\alpha}=\left\langle 0;\,t_{1-\alpha/2}\right\rangle$ pre alternatívnu hypotézu: $H_A:\rho\neq0,$

$$t_{1-\alpha/2}(n-2) = t_{0,975}(18) = 2,10092204$$

Pretože $t \notin \overline{W}_{\alpha}$, teda hypotéza $H_0: \rho = 0$ sa **zamieta.**

c) Regresná analýza - dáta preložte priamkou: Váha = $\beta_1 + \beta_1 * Výška$

$$n = 20, \sum_{i=1}^{n} x_i = 3513; \sum_{i=1}^{n} y_i = 1485, 152831; \sum_{i=1}^{n} x_i^2 = 620633; \sum_{i=1}^{n} y_i^2 = 117452, 391388;$$

$$\sum_{i=1}^{n} x_i y_i = 265291,978445; \qquad \det(H) = n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2 = 71491$$

1) Bodovo odhadnite β_1 , β_1 a rozptyl s^2

$$b_2 = \frac{1}{\det(H)} \left(n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i \right) = 1,237885505$$

$$b_1 = \overline{y} - b_2 \overline{x} = -143,1769473$$

$$y = b_1 + b_2 x = -143,1769473 + 1,237885505x$$

$$S_{min}^* = \sum_{i=1}^n y_i^2 - b_1 \sum_{i=1}^n y_i - b_2 \sum_{i=1}^n x_i y_i = 1690,94547$$

$$s^2 = \frac{S_{min}^*}{n-2} = \frac{S_{min}^*}{20-2} = 93,94141499$$

2) Na hladine významnosti 0,05 otestujte nasledujúce hypotézy:

Testujeme hypotézu $H:\beta_0=-100,\,H_A:\beta_0\neq-100,$

$$h^{11} = \frac{\sum_{i=1}^{n} x_i^2}{\det(H)} = 8,681274566$$

Testovacie kritérium:
$$t = \frac{b_1 - (-100)}{s\sqrt{h^{11}}} = -1,511929842$$

$$t_{1-\alpha/2}(n-2) = t_{0,975}(18) = 2,10092204$$

$$t\in \overline{W}=\langle -2,10092204;\, -2,10092204\rangle,$$
a teda $H:\beta_1=-100$ sa **nezamieta**.

Testujeme hypotézu $H: \beta_1 = 1, H_A: \beta_1 \neq 1,$

$$h^{22} = \frac{n}{\det(H)} = 0,000279755$$

Testovacie kritérium:
$$t = \frac{b_2 - 1}{s\sqrt{h^{22}}} = 1,46740542$$

$$t_{1-\alpha/2}(n-2) = t_{0,975}(18) = 2,10092204$$

$$t\in \overline{W}=\langle -2,10092204;\, -2,10092204\rangle,$$
a teda $H:\beta_2=1$ sa nezamieta.

3) Vytvorte graf bodov spolu s regresnou priamkou a pásom spoľahlivosti pre individuálnu hodnotu výšky

		stredná váha		individuálna váha		
\mathbf{v} ýška $_i$	váha $_i$	váha $_i^-$	vá ha_i^+	váha $_i^-$	váha $_i^+$	h*
150	42,50587837	32,65443863	52,35731812	19,88517149	65,12658525	0,234057434
155	48,69530589	40,31694012	57,07367167	26,67616586	70,71444592	0,169294037
160	54,88473342	47,87451736	61,89494947	33,34898073	76,4204861	0,118518415
165	61,07416094	55,25271669	66,8956052	39,89552246	82,25279942	0,081730567
170	67,26358846	62,32038451	72,20679242	46,309334	88,21784292	0,058930495
175	73,45301599	68,89436646	78,01166551	52,58613313	94,31989884	0,050118197
180	79,64244351	74,85420024	84,43068678	58,72420295	100,5606841	0,055293673
185	85,83187103	80,27550263	91,38823944	64,72455608	106,939186	0,074456925
190	92,02129855	85,34154152	98,70105559	70,59083732	113,4517598	0,107607951
195	98,21072608	90,20041732	106,2210348	76,32898572	120,0924664	0,154746751
200	104,4001536	94,93913322	113,861174	81,94672577	126,8535814	0,215873327

Regresná priamka

Pás spoľahlivosti pre strednú hodnotu

Pás spoľahlivosti pre individuálnu hodnotu

