Colles - Semaine 5

Série 1

Question de cours

Montrer que $P = \begin{pmatrix} 1 & 1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & -1 & 1 \end{pmatrix}$ est inversible et déterminer son inverse.

Exercice

Dans cet exercice, x désigne un réel élément de [0,1] et n un entier supérieur ou égal à 1.

1. a) Montrer que :
$$\forall p \in \mathbb{N}^*$$
, $\frac{1}{p+1} \le \int_p^{p+1} \frac{1}{t} dt \le \frac{1}{p}$.

b) En déduire que :
$$\forall k \in \mathbb{N}^*$$
, $0 \le \sum_{n=1}^k \frac{1}{p} - \ln(k) \le 1$.

2. a) Montrer que :
$$\sum_{p=1}^{n} \frac{x^p}{p} = -\ln(1-x) - \int_0^x \frac{t^n}{1-t} dt$$
.

b) En déduire que la série de terme général
$$\frac{x^n}{n}$$
 converge et exprimer sa somme en fonction de x .

3. a) Pour tout
$$x$$
 de $]0,1[$, calculer $\lim_{n\to+\infty} \ln(n^2 \ln(n)x^n)$.

b) En déduire que, pour tout
$$x$$
 de $[0,1[$, la série de terme général $\ln(n)x^n$ est convergente.

On pose maintenant
$$S_n(x) = \sum_{k=1}^n \ln(k) x^k$$
 et $S(x) = \sum_{k=1}^{+\infty} \ln(k) x^k$.

4. Le but de cette question est de trouver un équivalent simple de
$$S(x)$$
 lorsque x est au voisinage de 1^- .

1

a) Montrer, en utilisant la première question, que :
$$0 \le \sum_{k=1}^n \sum_{p=1}^k \frac{x^k}{p} - S_n(x) \le \sum_{k=1}^n x^k$$
.

b) En déduire que :
$$0 \le \frac{1}{1-x} \left(\sum_{p=1}^{n} \frac{x^p}{p} - x^{n+1} \sum_{p=1}^{n} \frac{1}{p} \right) - S_n(x) \le \frac{x}{1-x}.$$

c) Justifier que :
$$\lim_{n\to+\infty} x^{n+1} \sum_{p=1}^{n} \frac{1}{p} = 0.$$

d) En déduire que :
$$S(x) \underset{x\to 1^{-}}{\sim} -\frac{\ln(1-x)}{1-x}$$
.

Série 2

Question de cours

Montrer que la loi binomiale est stable par somme.

Exercice

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $u_n = \int_0^{+\infty} \frac{e^{-x}}{x + \frac{1}{n}} dx$.

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est bien définie.

2. Pour tout
$$n \in \mathbb{N}^*$$
, on pose alors $v_n = \int_0^1 \frac{\mathrm{e}^{-x}}{x + \frac{1}{n}} dx$ et $w_n = \int_1^{+\infty} \frac{\mathrm{e}^{-x}}{x + \frac{1}{n}} dx$.

a) Montrer que :
$$\forall n \in \mathbb{N}^*, \ 0 \le w_n \le \frac{1}{e}$$
.

b) Montrer que :
$$\forall n \in \mathbb{N}^*, \ v_n \ge \frac{1}{e} \ln(n+1).$$

c) Donner la limite de la suite (u_n) .

3. On se propose de déterminer un équivalent de u_n lorsque n est au voisinage de $+\infty$.

a) Montrer que l'intégrale
$$I = \int_0^1 \frac{1 - e^{-x}}{x} dx$$
 est une intégrale convergente.

b) Établir que :
$$\forall n \in \mathbb{N}^*, \ 0 \le \int_0^1 \frac{1 - e^{-x}}{x + \frac{1}{x}} dx \le I.$$

c) En déduire un encadrement de v_n valable pour tout $n \in \mathbb{N}^*$.

d) Donner enfin, en utilisant cet encadrement, un équivalent simple de u_n .

Série 3

Question de cours

Calculer
$$\int_1^{+\infty} \frac{\ln(x)}{x(1+(\ln(x))^4)} dx$$
.

Exercice

On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$.

- 1. Montrer que I_n existe, pour tout $n \in \mathbb{N}$.
- 2. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
- 3. a) Montrer que, pour tout $n \in \mathbb{N}^*$, $I_n = \frac{2n}{2n+1} I_{n-1}$.
 - b) En déduire l'existence et la nature de la série de terme général $v_n = \ln(I_n) \ln(I_{n-1})$, puis la limite de $(I_n)_{n \in \mathbb{N}}$.
- 4. Pour tout $n \in \mathbb{N}$, on pose $J_n = \sqrt{n} I_n$ et $K_n = \sqrt{n+1} I_n$.
 - a) Montrer que les suites $(J_n)_{n\in\mathbb{N}}$ et $(K_n)_{n\in\mathbb{N}}$ sont adjacentes.
 - **b)** En déduire qu'il existe un réel $\alpha > 0$ tel que $I_n \sim \frac{\alpha}{\sqrt{n}}$
- 5. a) Calculer I_n en fonction de n.
 - b) On admet la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$. Montrer que $I_n \sim e^{-n} \left(\frac{2n}{2n+1}\right)^{2n+1} \frac{\sqrt{\pi}}{\sqrt{n}}$.
 - c) Déterminer la valeur de α .