

planetmath.org

Math for the people, by the people.

proof of Carathéodory's extension theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfCaratheodorysExtensionTheorem}$

Date of creation 2013-03-22 18:33:28 Last modified on 2013-03-22 18:33:28

Owner gel (22282)Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 28A12

Related topic CaratheodorysLemma

Related topic Measure

Related topic OuterMeasure2

The first step is to extend the set function μ_0 to the power set P(X). For any subset $S \subseteq X$ the value of $\mu^*(S)$ is defined by taking sequences S_i in A which cover S,

$$\mu^*(S) \equiv \inf \left\{ \sum_{i=1}^{\infty} \mu_0(S_i) : S_i \in A, \ S \subseteq \bigcup_{i=1}^{\infty} S_i \right\}. \tag{1}$$

We show that this is an http://planetmath.org/OuterMeasure2outer measure. First, it is clearly non-negative. Secondly, if $S=\emptyset$ then we can take $S_i=\emptyset$ in (??) to obtain $\mu^*(S)\leq \sum_i \mu_0(\emptyset)=0$, giving $\mu^*(\emptyset)=0$. It is also clear that μ^* is increasing, so that if $S\subseteq T$ then $\mu^*(S)\leq \mu^*(T)$. The only remaining property to be proven is subadditivity. That is, if S_i is a sequence in P(X) then

$$\mu^* \left(\bigcup_i S_i \right) \le \sum_i \mu^*(S_i). \tag{2}$$

To prove this inequality, choose any $\epsilon > 0$ and, by the definition (??) of μ^* , for each i there exists a sequence $S_{i,j} \in A$ such that $S_i \subseteq \bigcup_i S_{i,j}$ and,

$$\sum_{j=1}^{\infty} \mu_0(S_{i,j}) \le \mu^*(S_i) + 2^{-i}\epsilon.$$

As $\bigcup_i S_i \subseteq \bigcup_{i,j} S_{i,j}$, equation (??) defining μ^* gives

$$\mu^* \left(\bigcup_i S_i \right) \le \sum_{i,j} \mu_0(S_{i,j}) = \sum_i \sum_j \mu_0(S_{i,j}) \le \sum_i (\mu^*(S_i) + 2^{-i}\epsilon) = \sum_i \mu^*(S_i) + \epsilon.$$

As $\epsilon > 0$ is arbitrary, this proves subadditivity (??). So, μ^* is indeed an outer measure.

The next step is to show that μ^* agrees with μ_0 on A. So, choose any $S \in A$. The inequality $\mu^*(S) \leq \mu_0(S)$ follows from taking $S_1 = S$ and $S_i = \emptyset$ in (??), and it remains to prove the reverse inequality. So, let S_i be a sequence in A covering S, and set

$$S_i' = (S \cap S_i) \setminus \bigcup_{j=1}^{i-1} S_j \in A.$$

Then, S_i' are disjoint sets satisfying $\bigcup_{j=1}^i S_j' = S \cap \bigcup_{j=1}^i S_j$ and, therefore, $\bigcup_i S_i' = S$. By the countable additivity of μ_0 ,

$$\sum_{i} \mu_0(S_i) = \sum_{i} (\mu_0(S_i') + \mu_0(S_i \setminus S_i')) \ge \sum_{i} \mu_0(S_i') = \mu_0(S).$$

As this inequality hold for any sequence $S_i \in A$ covering S, equation (??) gives $\mu^*(S) \geq \mu_0(S)$ and, by combining with the reverse inequality, shows that μ^* does indeed agree with μ_0 on A.

We have shown that μ_0 extends to an outer measure μ^* on the power set of X. The final step is to apply Carathéodory's lemma on the restriction of outer measures. A set $S \subseteq X$ is said to be μ^* -measurable if the inequality

$$\mu^*(E) \ge \mu^*(E \cap S) + \mu^*(E \cap S^c)$$
 (3)

is satisfied for all subsets E of X. Carathéodory's lemma then states that the collection \mathcal{F} of μ^* -measurable sets is a http://planetmath.org/SigmaAlgebra σ -algebra and that the restriction of μ^* to \mathcal{F} is a measure. To complete the proof of the theorem it only remains to be shown that every set in A is μ^* -measurable, as it will then follow that \mathcal{F} contains $\mathcal{A} = \sigma(A)$ and the restriction of μ^* to \mathcal{A} is a measure.

So, choosing any $S \in A$ and $E \subseteq X$, the proof will be complete once it is shown that (??) is satisfied. Given any $\epsilon > 0$, equation (??) says that there is a sequence E_i in A such that $E \subseteq \bigcup_i E_i$ and

$$\sum_{i} \mu_0(E_i) \le \mu^*(E) + \epsilon.$$

As $E \cap S \subseteq \bigcup_i (E_i \cap S)$ and $E \cap S^c \subseteq \bigcup_i (E_i \cap S^c)$,

$$\mu^*(E \cap S) + \mu^*(E \cap S^c) \le \sum_i \mu_0(E_i \cap S) + \sum_i \mu_0(E_i \cap S^c) = \sum_i \mu_0(E_i) \le \mu^*(E) + \epsilon.$$

Since ϵ is arbitrary, this shows that (??) is satisfied and S is μ^* -measurable.