a*b具体分析

- ABY phase总共分了
 P_INIT, P_CIRCUIT, P_NETWORK, P_BASE_OT, P_OT_EXT, P_GARBLE, P_ONLINE 7个阶段
- new ABYPatty // new party
 - 指针初始化m_cCrypt(std::make_unique(seclvl.symbits)), //一个密码学指针 glock(std::make_unique()), // 时间?? m_eMTGenAlg(mg_algo), //mts方式 m_eRole(pid), //角色 m_nNumOTThreads(nthreads),//ot线程 m_tComm(std::make_unique<comm_ctx>()), //comm有4个指针 m_pSetup(std::make_unique(m_cCrypt.get(), m_nNumOTThreads, m_eRole, m_eMTGenAlg)), m_nPort(port), //端口 m_sSecLvl(seclvl),//安全等级 m_cAddress(addr)
 - P_INIT //没有参数,返回一个bool
 - Init(); //m_vSockets = 2 ,建立2个连接一个receiver一个sender 初始化了 m_nMyNumInBits = 0; m_nHelperThreads = 2; m_vSockets.resize(2); 返回一个 true

m_pCircuit = NULL;

P_INIT STOP

- 。 P_CIRCUIT //初始话算术电路参数
 - InitCircuit(bitlen, reservegates, abycircdir) //bitlen为位数,reservegates为最大电路门个数,abycircdir 为一个电路路径 输出为../../bin/circ/ 输出一个bool
 - m_pCircuit = new ABYCircuit(reservegates); //m_nMaxVectorSize{1}, m_nMaxDepth{0}
 - 这是初始化电路参数s_bool, S_YAO, S_ARITH, 算术以bitlen位数确定生成电路以32为例
 - m_vSharings[S_ARITH] = new ArithSharing<uint32_t>(S_ARITH, m_eRole, 1, m_pCircuit, m_cCrypt.get(), m_eMTGenAlg); // S_ARITH代表电路, m_eRole角色, sharebitlen, m_pCircuit, m_cCrypt.get()为密码参数, m_eMTGenAlg为mts构造方式
 - Init () 初始化算术电路参数
 - new ArithmeticCircuit 里面继续Init()这个初始话是and门,cons门的个数

P CIRCUIT STOP

- ABYPatty STOP
- party->GetSharings(); //获取输入电路类型
- (ArithmeticCircuit*) sharings[S_ARITH] //一个算术电路
- Arith_circ->PutINGate //输入一个值
- Arith_circ->PutMULGate //计算乘法
- ABYParty::ExecCircuit()
 - ConnectAndBaseOTs();
 - P_NETWORK

- EstablishConnection () //建立网络连接, m_tComm
- P_NETWORK STOP
- P_BASE_OT
 - PrepareSetupPhase () //传入参数 m_tComm指针

m_tSetupChan = new channel 建立了一个setup channel通道

初始化BaseOT参数

若使用MT_PAILLIER时该阶段生成密钥m_cPaillierMTGen->keyExchange(m_tSetupChan

_ _ _ . _ _ . _ _ .

- P_BASE_OT STOP
- o P_TOTAL
 - P SETUP

m_vSharings[i]->PrepareSetupPhase(m_pSetup.get()) //遍历执行各个电路的 PrepareSetup

主要以Arith的PrepareSetupPhase (m_pSetup.get) 为例

m_nMTS 乘法三元组个数

InitMTs()//用随机值填充m_vA ,m_vB; m_vC,m_vS填充了m_nMTs*m_nTypeBitLen个0

其他初始化大小为1

然后搞了个结构体指针 pgentask = (PKMTGenVals*) malloc(sizeof(PKMTGenVals));

将A, B, C, m_nMTs, m_nTypeBitLen赋值进去, 然后push_back到vector<PKMTGenVals*> m_vPKMTGenTasks;

■ P_OT_EXT

m_pSetup->PerformSetupPhase(); //此阶段 主要是OT_EXT和在线计算乘法三元组

WakeupWorkerThreads(e_MTPaillier);

switch (job)

bSuccess = m_pCallback-

>ThreadRunPaillierMTGen(threadid);

初始化参数,线程参数等

根据角色computeArithmeticMTs

success &= WaitWorkerThreads(); //

- P_OT_EXT STOP
- P_GARBLE

[S_YAO]->PerformSetupPhase/这个阶段是初始化yao 跳过

- P_GARBLE STOP
- P_SETUP STOP
- P_ONLINE

EvaluateCircuit() //在线计算

m_tPartyChan = new channel

```
m_vSharings[i]->PrepareOnlinePhase();//遍历电路 每个电路都跑 主要看一下算术电路

//获取自己输入总bitlen,输出总bitlen,获取另外一方

//初始化m_vInputShareSndBuf 随机数

//m_vOutputShareSndBuf,m_vInputShareRcvBuf,
m_vOutputShareRcvBuf 为0

InitNewLayer()

// m_vInputShareSndBuf //掩码

//其他部分 Evaluate Circuit layerwise

P_ONLINE STOP

P_TOTAL
```