

Number Theory

Chapter 4

Edited by: Dr. Meshal Alfarhood

Applications of Congruences

Sections 4.5 and 4.6

Section Summary

Check Digits

UPCs

ISBNs

Cryptography

Classical Cryptography

Public Key Cryptography

RSA Cryptosystem

Check Digits: UPCs

Retail products are identified by their *Universal Product Codes* (*UPCs*).
 Usually these have <u>12 decimal digits</u>, the last one being the check digit. The check digit is determined by the congruence:

$$3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \pmod{10}$$

Examples:

- a. If the first 11 digits of the UPC are 79357343104. What is the check digit?
- b. Is 041331021641 a valid UPC?

Solutions:

- a. $3.7 + 9 + 3.3 + 5 + 3.7 + 3 + 3.4 + 3 + 3.1 + 0 + 3.4 + x_{12} \equiv 0 \pmod{10}$ $21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x_{12} \equiv 0 \pmod{10}$ $98 + x_{12} \equiv 0 \pmod{10}$ $x_{12} \equiv 2 \pmod{10}$ So, the check digit is 2.
- b. $3.0 + 4 + 3.1 + 3 + 3.3 + 1 + 3.0 + 2 + 3.1 + 6 + 3.4 + 1 \equiv 0 \pmod{10}$ $0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 \equiv 4 \not\equiv 0 \pmod{10}$ Hence, 041331021641 is **not** a valid UPC.

Check Digits: ISBNs

• **B**ooks are identified by an *International Standard Book Number* (ISBN-10), a 10 digit code. The first 9 digits identify the language, the publisher, and the book. The tenth digit is a check digit, which is determined by the following congruence:

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}.$$

• The validity of an ISBN-10 number can be evaluated with: $\sum_{i=1}^{i} ix_i \equiv 0 \pmod{11}$

Examples:

- a. Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check digit?
- b. Is 084930149X a valid ISBN10?

• Solution:

a.
$$X_{10} \equiv 1.0 + 2.0 + 3.7 + 4.2 + 5.8 + 6.8 + 7.0 + 8.0 + 9.8 \pmod{11}$$
. $X_{10} \equiv 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 \pmod{11}$. $X_{10} \equiv 189 \equiv 2 \pmod{11}$. Hence, $X_{10} = 2$.

b.
$$1.0 + 2.8 + 3.4 + 4.9 + 5.3 + 6.0 + 7.1 + 8.4 + 9.9 + 10.10 \equiv 0 \pmod{11}$$

 $0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 \equiv 2 \not\equiv 0 \pmod{11}$
Hence, 084930149X is **not** a valid ISBN-10.

X is used for the digit 10.

Cryptography: Caesar Cipher

- Julius Caesar created secret messages by shifting each letter three letters forward in the alphabet.
- Here is how the encryption process works:
 - Replace each letter by an integer from \mathbf{Z}_{26} , that is an integer from 0 to 25.
- The encryption function is $f(p) = (p + 3) \mod 26$.
- Replace each new integer p back to alphabet letters.

Α	В	C	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	M 12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	Z 25

- **Example**: Encrypt the message "**MEET YOU IN THE PARK**" using Caesar cipher.
- **Solution**: 12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10.

Now replace each of these numbers p by $f(p) = (p + 3) \mod 26$.

15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.

Translating the numbers back to letters produces the encrypted message:

"PHHW BRX LQ WKH SDUN"

Shift Cipher

A	В	C	D	E	F	G	Н	Ι	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- The Caesar cipher is one of a family of ciphers called *shift* ciphers. Letters can be shifted by an integer k.
- Example: Encrypt the message "STOP GLOBAL WARMING" using the shift cipher with k = 11.

Solution:

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6.

Apply the shift $f(p) = (p + 11) \mod 26$, yielding

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17.

Translating the numbers back to letters produces the ciphertext

"DEZA RWZMLW HLCXTYR"

Public Key Cryptography

- All classical ciphers, including shift ciphers, are private key cryptosystems. Knowing the encryption key allows one to quickly determine the decryption key.
 - All parties who wish to communicate using a private key cryptosystem must share the key and keep it a secret.
- In public key cryptosystems, knowing how to encrypt a
 message does not help one to decrypt the message. Therefore,
 everyone can have a publicly known encryption key. The only
 key that needs to be kept secret is the decryption key.

The RSA Cryptosystem

- RSA system was introduced in 1976 by three researchers at MIT.
- How does it work?
 - 1. Pick two large prime numbers, p and q
 - Let *n* = p x q
 - 3. Pick public key $e \ni \gcd(e, (p-1) \times (q-1)) = 1$
 - 4. Compute Secure key $d \ni de \equiv 1 \mod ((p-1) \times (q-1))$.
- To Encrypt: $C = M^e \ mod(n)$, where M = original message and C = cipher text
- To Decrypt: $M = C^d \mod(n)$

RSA Encryption

Example: Encrypt the message "STOP" using the RSA cryptosystem.

- Let p = 43, q = 59.
- $n = 43 \cdot 59 = 2537$.
- Pick e=13, where $gcd(13, 42 \cdot 58) = 1 \rightarrow gcd(13, 2436) = 1$
- Compute $d \ni 13d \equiv 1 \mod(2436)$.
 - Using Extended Euclidean, we get (937 x 13 5 x 2436) =1 \rightarrow d=937
- Translate the letters in "STOP" to their numerical equivalents 18 19 14 15.
- Divide into blocks of four digits to obtain 1819 1415.
- Encrypt each block using the mapping $C = M^{13} \mod 2537$.
- $C_1 = 1819^{13} \text{ mod } 2537 = 2081$
- $C_2 = 1415^{13} \text{ mod } 2537 = 2182$
- The encrypted message is 2081 2182.
- To decrypt the message:
 - $M_1 = 2081^{937} \mod 2537 = 1819$
 - $M_2 = 2182^{937} \mod 2537 = 1415$