AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for generating code to perform
2	anticipatory prefetching for data references, comprising:
3	receiving code to be executed on a computer system;
4	analyzing the code to identify data references to be prefetched, wherein
5	analyzing the code involves,
6	performing a first marking phase in which only data
7	references located in blocks that are certain to execute are
8	considered in determining which data references are covered by
9	preceding data references, and
10	performing a second marking phase in which data
11	references that are located in blocks that are not certain to execute
12	are considered; and
13	inserting prefetch instructions into the code in advance of the identified
14	data references, wherein inserting prefetch instructions includes inserting multiple
15	redundant prefetch instructions for a given data reference.
1	2. (Original) The method of claim 1, further comprising:
2	profiling execution of the code to produce profiling results; and
3	using the profiling results to determine whether a given block of
4	instructions is executed frequently enough to perform the second marking phase
5	on the given block of instructions.

1	3. (Original) The method of claim 2, wherein determining whether the
2	given block of instructions is executed frequently enough to perform the second
3	marking phase involves comparing a frequency of execution for the given block
4	from the profiling results with a threshold value indicating a minimum frequency
5	of execution to be considered in the second marking phase.
1	4. (Original) The method of claim 1, wherein analyzing the code involves:
2	identifying loop bodies within the code; and
3	identifying data references to be prefetched from within the loop bodies.
1	5. (Original) The method of claim 4, wherein if there exists a nested loop
2	within the code, analyzing the code involves:
3	examining an innermost loop in the nested loop; and
4	examining a loop outside the innermost loop if the innermost loop is
5	smaller than a minimum size or is executed fewer than a minimum number of
6	iterations.
1	6. (Original) The method of claim 4, wherein analyzing the code to
2	identify data references to be prefetched involves examining a pattern of data
3	references over multiple loop iterations.
1	7. (Original) The method of claim 1, wherein analyzing the code involves
2	analyzing the code within a compiler.
1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for generating code to perform anticipatory prefetching for data

references, the method comprising:

5	receiving code to be executed on a computer system;
6	analyzing the code to identify data references to be prefetched, wherein
7	analyzing the code involves,
8	performing a first marking phase in which only data
9	references located in blocks that are certain to execute are
10	considered in determining which data references are covered by
11	preceding data references, and
12	performing a second marking phase in which data
13	references that are located in blocks that are not certain to execute
14	are considered; and
15	inserting prefetch instructions into the code in advance of the identified
16	data references, wherein inserting prefetch instructions includes inserting multiple
17	redundant prefetch instructions for a given data reference.
,	
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	the method further comprises:
3	profiling execution of the code to produce profiling results; and
4	using the profiling results to determine whether a given block of
5	instructions is executed frequently enough to perform the second marking phase
6	on the given block of instructions.
1	10. (Original) The computer-readable storage medium of claim 9, wherein
2	determining whether the given block of instructions is executed frequently enough
3	to perform the second marking phase involves comparing a frequency of
4	execution for the given block from the profiling results with a threshold value
5	indicating a minimum frequency of execution to be considered in the second
6	marking phase.

1	11. (Original) The computer-readable storage medium of claim 8, wherein
2	analyzing the code involves:
3	identifying loop bodies within the code; and
4	
5	dentifying data references to be prefetched from within the loop bodies.
1	12. (Original) The computer-readable storage medium of claim 11,
2	wherein if there exists a nested loop within the code, analyzing the code involves:
3	examining an innermost loop in the nested loop; and
4	examining a loop outside the innermost loop if the innermost loop is
5	smaller than a minimum size or is executed fewer than a minimum number of
6	iterations.
1	13. (Original) The computer-readable storage medium of claim 11,
2	wherein analyzing the code to identify data references to be prefetched involves
3	examining a pattern of data references over multiple loop iterations.
1	14. (Original) The computer-readable storage medium of claim 11,
2	wherein analyzing the code involves analyzing the code within a compiler.
1	15. (Currently amended) An apparatus that generates code to perform
2	anticipatory prefetching for data references, comprising:
3	a receiving mechanism that is configured to receive code to be executed on
4	a computer system;
5	an analysis mechanism that is configured to analyze the code to identify
6	data references to be prefetched, wherein the analysis mechanism is configured to,
7	perform a first marking phase in which only data references
8	located in blocks that are certain to execute are considered in

9	determining which data references are covered by preceding data
10	references, and to
11	perform a second marking phase in which data references
12	that are located in blocks that are not certain to execute are
13	considered; and
14	an insertion mechanism that is configured to insert prefetch instructions
15	into the code in advance of the identified data references, wherein inserting
16	prefetch instructions includes inserting multiple redundant prefetch instructions
17	for a given data reference.
1	16. (Original) The apparatus of claim 15, further comprising a profiling
2	mechanism that is configured to profile execution of the code to produce profiling
3,	results;
4	wherein the analysis mechanism is configured to use the profiling results
5	to determine whether a given block of instructions is executed frequently enough
6	to perform the second marking phase on the given block of instructions.
1	17. (Original) The apparatus of claim 16, wherein the analysis mechanism
2	is configured to compare a frequency of execution for the given block from the
3	profiling results with a threshold value indicating a minimum frequency of
4	execution to be considered in the second marking phase.
1	18. (Original) The apparatus of claim 15, wherein the analysis mechanism
2	is configured to:
3	identify loop bodies within the code; and to
4	identify data references to be prefetched from within the loop bodies.

- 1 19. (Original) The apparatus of claim 18, wherein if there exists a nested
- 2 loop within the code, the analysis mechanism is configured to:
- 3 examine an innermost loop in the nested loop; and to
- 4 examine a loop outside the innermost loop if the innermost loop is smaller
- 5 than a minimum size or is executed fewer than a minimum number of iterations.
- 1 20. (Original) The apparatus of claim 18, wherein the analysis mechanism
- 2 is configured to examine a pattern of data references over multiple loop iterations.
- 1 21. (Original) The apparatus of claim 15, wherein the apparatus resides
- within a compiler.
- 1 22-45 (Canceled).