Clase J J J Funciones Polgres

Las funciones polares resultan de la transformación de las funciones cartesianas a través de un ángulo y un radio. Consideremos un punto (x,y) del plano cartesiano al cual se le puede determinar el ángulo a partir del eje x y la distancia desde el origen.

Para representar puntos y curvas polares es necesario usar el plano polar.

11.1 Plano Polar

El plano polar es un sistema de representación angular, en el cual se usan circunferencias concéntricas, es decir que todas tiene el mismo centro común, para representar puntos y curvas. A continuación mostraremos la representación de un plano polar.

Figura 11.1: Representación gráfica de un plano polar

11.2 Transformación de Coordenadas

Es muy importante conocer el método para transformar coordenadas cartesianas a polares y viceversa, ya que en el estudio del cálculo, la variable compleja y las ecuaciones diferenciales se suelen usar resultados obtenidos de éste método.

Para realizar las transformaciones se usa fundamentalmente el siguiente gráfico.

Figura 11.2: Representación de un punto en el plano cartesiano

De aquí obtenemos dos fórmulas:

1. Cálculo de la distancia del origen al punto a la cual vamos a llamar radio o $\it r$

$$r = \sqrt{(x-0)^2 + (y-0)^2}$$

aplicando la fórmula de la distancia, así

$$r = \sqrt{x^2 + y^2}$$

2. El ángulo medido desde el eje \boldsymbol{x} se calcula mediante la fórmula, usando la relación de tangente

$$\tan \theta = \frac{y}{x}$$

$$\theta = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{Cuadrante I} \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{Cuadrantes II y III} \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{Cuadrante IV} \end{cases}$$

Figura 11.3: Casos para el cálculo del ángulo

Ejemplo 1:

Transformar el punto (3,2) de coordenadas cartesianas a coordenadas polares

Solución

Para transformar el punto se deben usar las fórmulas antes vistas

$$r = \sqrt{(3)^2 + (2)^2}$$
$$= \sqrt{9 + 4} = \sqrt{13} \approx 3.60$$

para encontrar el ángulo, como el punto esta en el primer cuadrante se usa la fórmula

$$\theta = \arctan\left(\frac{y}{x}\right)$$

$$= \arctan\left(\frac{2}{3}\right) \approx 0.588$$

Por lo tanto el punto dado en coordenadas cartesianas (3,2) transformado a coordenadas polares es $(\sqrt{13}, 0.588 \text{rad})$.

Figura 11.4: Representación gráfica del problema

Ejemplo 2:

Transformar el punto (-5,6) dado en coordenadas cartesianas a coordenadas polares

Para transformar el punto se usan la fórmulas de radio y ángulo

$$r = \sqrt{(-5)^2 + (6)^2}$$
$$= \sqrt{25 + 36} = \sqrt{61} \approx 7.81$$

para encontrar el ángulo, como el punto esta en el segundo cuadrante se usa la fórmula

$$\theta = \arctan\left(\frac{y}{x}\right) + \pi$$

$$= \arctan\left(-\frac{6}{5}\right) + \pi = 2.265$$

$$= 6 129.80^{\circ}$$

Por lo tanto el punto dado en coordenadas cartesianas (-5,6) transformado a coordenadas polares es $(\sqrt{61}, 2.265 \text{rad})$.

Figura 11.5: Representación gráfica del problema

Ejemplo 3:

Transformar el punto (-7, -3) dado en coordenadas cartesianas a coordenadas polares

Para transformar el punto se usan la fórmulas de radio y ángulo

$$r = \sqrt{(-7)^2 + (-3)^2}$$
$$= \sqrt{49 + 9} = \sqrt{58} \approx 7.61$$

para encontrar el ángulo, como el punto esta en el tercer cuadrante se usa la fórmula

$$\theta = \arctan\left(\frac{y}{x}\right) + \pi$$

$$= \arctan\left(\frac{-3}{-7}\right) + \pi$$

$$= \arctan\left(\frac{3}{7}\right) + \pi$$

$$= 3.546 \bullet 203.19^{\circ}$$

Por lo tanto el punto dado en coordenadas cartesianas (-7, -3) transformado a coordenadas polares es $(\sqrt{58}, 3.546 \text{rad})$.

Figura 11.6: Representación gráfica del problema

Ejemplo 4:

Transformar el punto (4,-5) dado en coordenadas cartesianas a coordenadas polares

Para transformar el punto se usan la fórmulas de radio y ángulo

$$r = \sqrt{(4)^2 + (-5)^2}$$
$$= \sqrt{16 + 25} = \sqrt{41} \approx 6.40$$

para encontrar el ángulo, como el punto esta en el cuarto cuadrante se usa la fórmula

$$\theta = \arctan\left(\frac{y}{x}\right) + 2\pi$$
$$= \arctan\left(-\frac{5}{4}\right) + 2\pi$$
$$= 5.387 \text{ ó } 308.65^{\circ}$$

Por lo tanto el punto dado en coordenadas cartesianas (-7, -3) transformado a coordenadas polares es $(\sqrt{41}, 5.387)$.

Figura 11.7: Representación gráfica del problema

11.3 Transformación de Coordenadas Polares a Coordenadas Cartesianas

Para determinar las formulas de cálculo de las coordenadas según la figura

Figura 11.8: Determinación de las fórmulas de transformación de coordenadas polares a cartesianas

decimos que

$$\cos \theta = \frac{x}{r}$$

y despejando a x se tiene

$$x = r\cos\theta \tag{11.1}$$

por otra parte

$$\sin \theta = \frac{y}{r}$$

y despejando a y tenemos

$$y = r\sin\theta \tag{11.2}$$

Ejemplo 5:

Transformar el punto $\left(5, \frac{\pi}{4}\right)$ dado en coordenadas polares a coordenadas cartesianas

Debemos usar las fórmulas

O
$$x = r \cos \theta$$

O
$$y = r \sin \theta$$

Para determinar

$$x = 5\cos\left(\frac{\pi}{4}\right)$$
$$= \frac{5\sqrt{2}}{2} \approx 3.535$$

y para determinar

$$y = r \sin\left(\frac{\pi}{4}\right)$$
$$= \frac{5\sqrt{2}}{2} \approx 3.535$$

Por lo tanto el punto dado en coordenadas polares $\left(5,\frac{\pi}{4}\right)$ transformado a coordenadas cartesianas es $\left(\frac{5\sqrt{2}}{2},\frac{5\sqrt{2}}{2}\right)$

11.4 Transformación de Ecuaciones

Para transformar ecuaciones debemos usar las siguientes fórmulas

1.
$$x = r \cos(\theta)$$

$$2. \ y = r\sin\left(\theta\right)$$

Ejemplo 6:

Transformar la función y = x a coordenadas polares

Solución

Para transformar la función se usan las fórmulas $x = r \cos(\theta)$ y $y = r \sin(\theta)$

$$y = x$$

$$r \sin \theta = r \cos \theta$$

$$\sin \theta = \cos \theta$$

$$\frac{\sin \theta}{\cos \theta} = 1$$

$$\tan \theta = 1$$

$$\theta = \arctan(1)$$

$$\theta = \frac{\pi}{4}$$

Ejemplo 7:

Transformar la relación $x^2 + y^2 = a^2$ a coordenadas polares

Solución

Para transformar la función se usan las fórmulas $x = r \cos(\theta)$ y $x = r \sin(\theta)$

$$x^{2} + y^{2} = a^{2}$$
$$(r\cos\theta)^{2} + (r\sin\theta)^{2} = a^{2}$$
$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta = a^{2}$$
$$r^{2}(\sin^{2}\theta + \cos^{2}\theta) = a^{2}$$
$$r^{2} = a^{2}$$
$$r = a$$

Ejemplo 8:

Transformar la función $y = x^2$ a coordenadas polares

Solución

Para transformar la función se usan las fórmulas $x = r \cos(\theta)$ y $x = r \sin(\theta)$

$$y = x^{2}$$

$$r \sin \theta = (r \cos \theta)^{2}$$

$$r \sin \theta = r^{2} \cos^{2} \theta$$

$$\sin \theta = r \cos^{2} \theta$$

$$\frac{\sin \theta}{\cos^{2} \theta} = r$$

$$r = \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta}$$

$$r = \tan \theta \sec \theta$$

Ejemplo 9:

Transformar la función y = mx a coordenadas polares. Sugerencia $m = \tan{(\alpha)}$

Solución

Para transformar la función se usan las fórmulas $x = r \cos(\theta)$ y $x = r \sin(\theta)$

$$y = \tan \alpha x$$

$$r \sin \theta = \tan \alpha r \cos \theta$$

$$\sin \theta = \tan \alpha \cos \theta$$

$$\frac{\sin \theta}{\cos \theta} = \tan \alpha$$

$$\tan \theta = \tan \alpha$$

$$\theta = \alpha$$

Ejemplo 10:

Transformar la ecuación $r = 2a\cos(\theta)$ a coordenadas cartesianas

Solución

Para transformar la función se usa la fórmula $r=\sqrt{x^2+y^2}$ o $r^2=x^2+y^2$ y $x=r\cos\theta$ y $y=r\sin\theta$

$$r = 2a\cos\theta$$
$$r^2 = 2ar\cos\theta$$
$$x^2 + y^2 = 2ax$$

apliquemos la factorización por completación de cuadrados

$$x^{2} - 2ax + \left(\frac{2a}{2}\right)^{2} - \left(\frac{2a}{2}\right)^{2} + y^{2} = 0$$
$$x^{2} - 2ax + a^{2} - a^{2} + y^{2} = 0$$
$$(x - a)^{2} + y^{2} = a^{2}$$

Ejercicios

Transformar las siguientes ecuaciones dadas en coordenadas cartesianas a coordenadas polares.

1.
$$(x-a)^2 + y^2 = a^2$$

2.
$$x^2 + (y-a)^2 = a^2$$

Transformar las siguientes ecuaciones dadas en coordenadas polares a coordenadas rectangulares.

1.
$$r = a + b\cos(\theta)$$

2.
$$r = a\cos(n\theta)$$

Gráficas Especiales de Coordenadas Polares

En coordenadas polares tenemos algunas funciones especiales como las siguientes:

- 1. Circunferencia con centro en el polo
- 2. Circunferencia tangente al eje polar
- 3. Caracoles
- 4. Rosas
- 5. Lemniscatas
- 6. Espirales
- 7. Cónicas (no se estudiaran en este curso, ya que se necesitan algunos conceptos de geometría analítica)

11.5.1 Circunferencia con centro en el polo

Esta ecuación tiene la forma

$$r = a$$

donde a es el radio de la la circunferencia

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = a$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.9: Representación gráfica de la circunferencia con centro en el Polo

11.5.2 Circunferencia tangente al eje polar

Esta ecuación tiene la forma

$$r = 2a\sin(\theta)$$

donde a es el radio de la la circunferencia

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = 2a\sin(\theta)$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.10: Representación gráfica de la circunferencia con centro en el Polo

$oxed{11.5.3}$ Circunferencia tangente al eje $rac{\pi}{2}$

Esta ecuación tiene la forma

$$r = 2a\cos(\theta)$$

donde a es el radio de la la circunferencia

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = 2a\cos(\theta)$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.11: Representación gráfica de la circunferencia tangente al eje polar

11.5.4 Caracoles

Los caracoles tienen la forma

$$r = a + b\cos\left(\theta\right)$$

o

$$r = a + b\sin\left(\theta\right)$$

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = a + b\cos(\theta)$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.12: Representación gráfica del caracol

11.5.4.1 Condiciones

1. ¿Qué figura se forma cuando $\frac{a}{b} < 1$? y ¿Qué nombre recibe?

Figura 11.13: Representación gráfica del caracol: Limazón o Caracol con Lazo Interno

2. ¿Qué figura se forma cuando $\frac{a}{b}=1$? y ¿Qué nombre recibe?

Figura 11.14: Representación gráfica del caracol: Cardioide

3. ¿Qué figura se forma cuando $1 < \frac{a}{b} < 2$? y ¿Qué nombre recibe?

Figura 11.15: Representación gráfica del caracol: Caracol con Hendidura

4. ¿Qué figura se forma cuando $\frac{a}{b}>2$? y ¿Qué nombre recibe?

Figura 11.16: Representación gráfica del caracol: Caracol convexo

11.5.5 Rosas

Las rosas tienen la forma

$$r = a\cos\left(n\theta\right)$$

o

$$r = a\sin\left(n\theta\right)$$

donde $n \in \mathbb{Z} > 1$.

Para gráficar vamos a usar geogebra y realizamos los siguientes pasos:

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = a\sin\left(n\theta\right)$$

3. Escribir la ecuación $x = r \cos(\theta)$

4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.17: Representación gráfica una rosa

- O ¿Qué pasa con el valor de n ?
 - \square Si n es par se graficar 2n pétalos
 - $\hfill \square$ Si n es impar se grafican n pétalos

Figura 11.18: Gráficas de rosas con n=2,3,4,5

11.5.5.1 Gráficas especiales de rosas

Algunas gráficas especiales de rosas se puede conseguir usando el software "" que podemos encontrar en el siguiente link: https://sourceforge.net/projects/software-educativo/files/Setup_SAE_Coordenadas_Polares.exe/download

11.5.6 Lemniscatas

Las rosas tienen la forma

$$r^2 = a^2 \cos\left(2\theta\right)$$

0

$$r^2 = a^2 \sin\left(2\theta\right)$$

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r^2 = a^2 \sin\left(n\theta\right)$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.19: Representación gráfica de algunas lemniscatas

11.5.7 Espirales

Las espirales tienen la forma

$$r = a\theta$$

- 1. Crear un deslizador para θ
- 2. Escribir la ecuación

$$r = a\theta$$

- 3. Escribir la ecuación $x = r \cos(\theta)$
- 4. Escribir la ecuación $y = r \sin(\theta)$

Figura 11.20: Representación gráfica de algunas espirales

11.6 Aplicaciones que he desarrollado para trabajar coordenadas polares

1. **Copo:** Explorando el mundo de las coordenadas polares.

Descarga en sourceforge.net/projects/software-educativo/ files/Setup_Copo_30082017.exe/download

2. **Descartes:** Evaluación de Coordenadas Polares

Descargar https://sourceforge.net/projects/ software-educativo/files/Setup_Descartes.exe/download

3. SAE Coordenadas Polares: Software para el aprendizaje y la enseñanza de las coordenadas polares

Descargar en

https://sourceforge.net/projects/software-educativo/ files/Setup_SAE_Coordenadas_Polares.exe/download