CHE636A Homework-1 Due date: Jan 22nd, 2022 at 5 pm on Mookit

Question 1: Using Taylor series expansion approach, obtain the order of the following expressions of second derivate:

(a)
$$\frac{\partial^2 f}{\partial x^2} = \frac{f_i - 2f_{i-1} + f_{i-2}}{(\Delta x)^2}$$

(b)
$$\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

Question 2: sin(x) function can be approximated using the following infinite series:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Write a program that approximates $\sin(x)$ using the infinite series mentioned above. The program should allow as many terms to be incorporated as desired. For example, a use may take 2, 3 and 4 terms as shown below:

$$\sin(x) = x - \frac{x^3}{3!}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

Using the program, obtain the error as a function of number of terms taken (maximum up to 8 terms that is $x^{15}/15!$). Test your program for x=pi/3 and x=pi/2 and prepare a table similar to one shown below:

Number of terms	Actual value	Computed value	%Error
2			
3			
4			
5			())

where % error =
$$\frac{Actual\ value - Computed\ value}{Actual\ value} \times 100$$

Question 3: Piecewise continuous functions are often used to describe the relationship between dependent and independent variable when a single function cannot describe this relationship. Write a program for the piecewise continuous function given below:

$$f(x) = 11t^{2} - 5t for 0 \le t \le 10$$

$$f(x) = 1100 - 5t for 10 < t \le 20$$

$$f(x) = 50t + 2(t - 20)^{2} for 20 < t \le 30$$

$$f(x) = 1520 \exp(-0.2(t - 30)) for t > 30$$

$$f(x) = 0 otherwise$$

Use this program to plot f(x) vs t for $-5 \le t \le 50$

CHE-636A - Assignment - I

QI a) taylor's series expansion for flor-Dx) about
$$x$$
,

$$f(oc-0x) = f(oc) - Dx \frac{\partial t}{\partial x} + \frac{(Dx)^2}{\partial x^2} \frac{\partial^2 t}{\partial x^2} - \frac{(Dx)^3}{3!} \frac{\partial^3 t}{\partial x^3} + \dots$$

-) Now similar coay for fex-20x) we can cosite it as below,

$$f(x-20x)=f(x)-(20x)\frac{\partial f}{\partial x}+(20x)^2\frac{\partial^2 f}{\partial x^2}-\frac{(20x)^3}{3!}\frac{\partial^3 f}{\partial x^3}+\dots$$

-) let's do eq \$ 3 - 2x eq 0 so we get,

$$f(x) - 2f(x - 0x) = -f(x) + 2(0x)^{2} \frac{\partial^{2}f}{\partial x^{2}} - (0x)^{\frac{3}{2}} \frac{\partial^{2}f}{\partial x^{3}} + \dots$$

$$f(x-2\Delta x) - 2f(x-\Delta x) + f(x) = \frac{\partial^2 f}{\partial x^2} - \Delta x \frac{\partial^2 f}{\partial x^3} + \dots$$

$$(\Delta x)^2$$

$$\frac{(\Delta x)^2}{\partial x^2} = \frac{f(x) - 2f(x - \Delta x) + f(x - 2\Delta x)}{(\Delta x)^2} + 0 (\Delta x)^{\frac{1}{2}}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{f(x) - 2f(x - \Delta x) + f(x - 2\Delta x)}{(\Delta x)^2}$$

-) above equi can be cositten as,

$$\frac{\partial^2 f}{\partial x^2} = \frac{f_i \cdot - 2f_{i-1} + f_{i-2}}{(\Delta x)^2} + 0 \cdot (\Delta x) \implies \text{Hence}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{f_i \cdot - 2f_{i-1} + f_{i-2}}{(\Delta x)^2} + 0 \cdot (\Delta x) \implies \text{Hence}$$

cohere, $f_i = f(x)$, $f_{i-1} = f(x-\Delta x)$, $f_{i-2} = f(x-2\Delta x)$

- the above equ represent's the backward difference approximation for the 2nd desirative of function flag & it's order is ocasi.

q-1-B) -) taylor's series expansion for $f(\alpha + \Delta x)$, $f(x(+\Delta x) = f(x) + \Delta x \frac{\partial +}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f}{\partial x^3} + \cdots$

_, Now eq " () + eq " (3),

: $f(x-\Delta x) + f(x+\Delta x) = 2f(x) + 2(\Delta x)^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2(\Delta x)^{4} \frac{\partial^{4} f}{\partial x^{4}} +$

 $\frac{1}{2} - f(x + \Delta x) - 2f(x) + f(x - \Delta x) = \frac{\partial^2 f}{\partial x^2} + \frac{2(\Delta x)^4}{4!} \frac{\partial^4 f}{\partial x^4} + \dots$

 $\frac{\partial^2 f}{\partial x^2} = \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2} + O(Dx)^2$

= above eq can be woithen as,

 $\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+1} - 2f_i + f_{i+1}}{(\Delta x)^2} + \frac{O(D)(1)^2}{2g_i} + \text{Hence proved},$

- the above egy sepsesents the central difference approximation for 2nd desirative of function f(x) & it's order is o (1)2

```
clear
clc
x = pi/3;
digits(10)
Actual_Value = vpa(sin(x));
n = 2;
while(n < 9)
    y = zeros(1,n);
for i = 1:n
  y(i) = (-1)^{(i+1)*x^{(2*i-1)/factorial(2*i-1)}}
end
Computed_value = vpa(sum(y));
Error = (Actual_Value-Computed_value)*100/Actual_Value;
table(n,Actual_Value,Computed_value,Error)
n = n + 1;
end
```

```
clear
clc
x = pi/2;
digits(10)
Actual_Value = vpa(sin(x));
n = 2;
while (n < 9)
    y = zeros(1,n);
for i = 1:n
  y(i) = (-1)^{(i+1)*x^{(2*i-1)}/factorial(2*i-1)};
end
Computed_value = vpa(sum(y));
Error = (Actual_Value-Computed_value)*100/Actual_Value;
table(n,Actual_Value,Computed_value,Error)
n = n + 1;
end
```

Matlab gives empty spaces in between answer so i have provided all answer as table below.

For X=pi/3

n	Actual_Value	Computed_value	%Error	
2	0.8660254038	0.8558007816	1.180637678	
3	0.8660254038	0.8662952838	-0.03116305841	
4	0.8660254038	0.8660212717	0.0004771370503	
5	0.8660254038	0.8660254451	-0.000004770684815	
6	0.8660254038	0.8660254035	0.0000003359670225	
7	0.8660254038	0.8660254038	-0.000000001756376028	
8	0.8660254038	0.8660254038	0.0	
Fo	r X=pi/2			
n	Actual_Value	Computed_value	Error	
2	1.0	0.9248322293	7.516777071	
3	1.0	1.004524856	-0.4524855535	
4	1.0	0.9998431014	0.01568986005	
5	1.0	1.000003543	-0.0003542584286	
6	1.0	0.9999999437	0.000005625894905	
7	1.0	1.000000001	-0.00000006627802751	
8	1.0	1.0	0	

