Question-1(Pre Tutorial Question): Three star connected impedances Z1 = 20 +j37.7 Ω per phase are in parallel with three delta connected impedances $Z2 = 30 - j159.3 \Omega$ per phase. The line voltage is 398 volts rms. Find the line currents, power factor, power and reactive volt ampere taken by the combination. (Hint: Convert impedances connected in delta into their equivalent star connected configuration. For a balanced network, $Z_{Star} = \frac{Z_{Delta}}{3}$)

Solution: Converting delta connected load to star connected load $Z_2^{/} = \frac{Z_2^2}{3Z_2} = \frac{Z_2}{3} = 10 - j53.1$

Total impedance per phase =
$$\frac{Z_1\,Z_2^{/}}{Z_1+Z_2^{/}}=\frac{(20+j37.7)(10-j53.1)}{30-j15.4}=68.38 \angle 9.89^0~\Omega$$
 a) Line current = $\frac{398}{\sqrt{3}}\times\frac{1}{68.38 \angle 9.89^0}=3.36 \angle -9.89^0~\text{A}$

- b) P.F. = $\cos 9.89^0 = 0.985$ lagging
- c) Total power = $\sqrt{3} \text{ V}_{L} \text{ I}_{L}^{*} = \sqrt{3} \times 398 \times 3.36 \angle 9.89^{\circ}$ Reactive VA = 397.83 VAR

Question-2: In the balanced three phase system of Fig. 1, let $Z_P = 12 + j5 \Omega$ and $I_{bB} = 20 \angle 0^0$ A rms with (+) phase sequence. If the source is operating with a power factor of 0.935, find (a) R_w (b) V_{bn} (c) V_{AB} (d) complex power supplied by the source.

Solution:

(Phase and Line voltages for a balanced star connected 3-Ø circuit)

a) Considering only phase b-B, the equivalent circuit is:

b) n-N is the virtual neutral line

$$Z_P = 12 + j5 \Omega$$

$$I_{bB} = 20 \angle 0^0 A$$

Source power factor is 0.935 which corresponds to an angle of 20.77° ($\cos^{-1} 0.935$) P.F. angle = 20.77° , Power factor angle is the angle of load.

As this is the source power factor, this angle corresponds to the angle of load Z_P and line resistance R_W .

So,
$$\tan^{-1}\left(\frac{5}{12+R_w}\right) = 20.77^0 \implies \frac{5}{12+R_w} = 0.38 \implies 13.18 = 12 + R_w \implies \mathbf{R_w} = \mathbf{1}.\mathbf{18} \Omega$$

b) $V_{bn} = I_{bB} (Z_P + R_W) = 20 \angle 0^0 (12 + j5 + 1.18) = 20 (13.18 + j5) = 263.6 + j 100 = 282 \angle 20.77^0 V$.

Since, for a balanced star connected 3-phase circuit,

 $|V_{line}| = \sqrt{3} |V_{phase}|$ and it leads corresponding phase voltage by 30°.

$$\text{V}_{\text{BC}} = \sqrt{3} \ \times 282 \angle (20.77^0 + 30^0) = 488.44 \angle 50.77^0 \ \text{V}$$

- c) $V_{AB} = 488.44 \angle 170.77^0 \text{ V}$
- d) Total complex power supplied by the source = $\sqrt{3}$ V_L I_L =16.92 KVA

Question-3: Transfer characteristics of a circuit are shown below.

Draw the output (as a function of time) of this circuit for the following inputs: 5+cosωt, 0.2cosωt, 1.2cosωt

Solution:

Inputs: 5+cos@t, 0.2cos@t, 1.2cos@t

Question-4:

Draw the transfer (output amplitude w.r.t. input amplitude) characteristics of the above circuits.

Solution:

Question-5:

A voltage controlled resistor R_{AB} has the following characteristics.

$$R_{AB} = \begin{cases} \infty & \text{for } V_{AB} < 0 \\ 0 & \text{for } V_{AB} \ge 0 \end{cases}$$

Plot the transfer characteristics of the following circuits. R_{L} is a normal resistor.

Solution:

