Design of Machinery

Assignment
Chapters 4, 6 and 7
Position, velocity and acceleration analysis

Dr. Jaafar Hallal

1. Fourbar pin-jointed position analysis (4, 6.27, 7.21)

The angle between the X and x axes is 25-deg. Find the angular displacement of link 4 when link 2 rotates clockwise from the position shown (+37 deg) to horizontal (0 deg).

Find ω_4 , V_A and V_B in the local coordinate system if $\omega_2 = 15$ rad/s CW.

Find alpha2, A_A and A_B in the global coordinate system if $\alpha 2=25$ rad/s² CCW.

Take L2 = 116 mm., L3 = 108 mm., L4 = 110 mm and L1 = 174 mm.

2. Fourbar slider crank

For the compressor shown in the following figure, find the position of the piston with respect to O_2 . Also find the linear velocity of the piston as the crank rotates clockwise at constant rate of 120 rad/s.

Put clearly the vector loop and the global coordinate system. All dimensions are in inches.

3. Sixbar

The device shown in figure below can be analyzed as a pin-jointed fourbar mechanism in series with a slider-crank mechanism. At the instant shown, the crank OC makes an angle 45⁰ with the horizontal axis;

- Draw the vector loop of the two mechanisms separately
- Determine the position of the slider D with respect to A.

OC = 150 mm, AB = 200 mm, BC = 300 mm, BD = 450 mm.

4. Quick return mechanism

For the quick-return mechanism shown below, the rod *DC* rotates with a constant angular velocity of 1 rad/s CCW. For the position shown find:

- a) the position of the sliding block C with respect to A
- b) the angular velocity of member *AB* and the velocity of sliding of block *C* within the member *AB*
- c) the velocity of the node B.

Dimensions are in inches.

5. Fourbar pin-jointed mechanism

The device in the figure below is an oil well pump. Link number is shown on the figure.

L1=4m; L2=1m; L3=3.5m and L4=3m

In the local coordinate systems, take $\theta_{2=}315^{\circ}$, $\omega 2=6$ rad/s, $\alpha 2=-1$ rad/s, $\delta_{4}=-60^{\circ}$, u=4m.

- a) Draw the kinematic diagram of the mechanism and the vector loop.
- b) Find the acceleration of point A, B and U

6. Sixbar mechanism

For the following six-bar drag-Link mechanism, the crank O_2A makes an angle $\theta_2 = 225^\circ$.

- a) Determine the Grashof conditions and Barker classification for the first Fourbar (O2-A-B-O4)
- b) Find the position of the Slider 6. (Dimensions are in Inch)

$$L_2 = 5$$
 $L_3 = 5$ $L_5 = 15$ $BC = 8$ $O_2 O_4 = 2.5$ $O_4 B = 6$ $O_4 C = 6$

7. Elliptical trammel (4-58)

The elliptical trammel in the figure below must be driven by rotating link 3 in a full circle. Derive analytical expressions for the positions, velocity and accelerations of points A, B and a point C on link 3 midway between A and B as a function of θ_3 and the length AB of link 3. Use a vector loop equation.

Formula sheet

Position analysis: Pin-jointed Fourbar linkage

$$\theta_{4_{1,2}} = 2 \arctan \left(\frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \right)$$

- $\bullet \quad A = \cos\theta_2 K_1 K_2 \cos\theta_2 + K_3$
- $C = K_1 (K_2 + 1)\cos\theta_2 + K_3$

- $K_1 = \frac{d}{a}$ $K_2 = \frac{d}{c}$ $K_3 = \frac{a^2 b^2 + c^2 + d^2}{2ac}$

$$\theta_{3_{1,2}} = 2 \arctan\left(\frac{-E \pm \sqrt{E^2 - 4DF}}{2D}\right)$$

- $\bullet \quad D = \cos\theta_2 K_1 K_4 \cos\theta_2 + K_5$
- $E = -2\sin\theta_2$
- $\bullet \quad F = K_1 + (K_4 1)cos\theta_2 + K_5$
- $K_5 = \frac{c^2 d^2 a^2 b^2}{2ab}$

If θ_4 is calculated before you can use the equations below to solve for θ_3 :

1.
$$bcos\theta_3 = -acos\theta_2 + ccos\theta_4 + d$$

or

2.
$$bsin\theta_3 = -asin\theta_2 + csin\theta_4$$

Position analysis: Slider-crank linkage

$$heta_{3_1} = arcsin\left(rac{asin heta_2 - c}{b}
ight) \ or \ heta_{3_2} = arcsin\left(-rac{asin heta_2 - c}{b}
ight) + \pi \ d = acos heta_2 - bcos heta_3$$

Position analysis: Inverted Slider-crank linkage

$$\theta_{4 1,2} = 2 \arctan \left(\frac{-T \pm \sqrt{T^2 - 4SU}}{2S} \right)$$

$$\theta_3 = \theta_4 \pm \gamma \qquad b = \frac{a \sin \theta_2 - c \sin \theta_4}{\sin \theta_3}$$

$$P = asin\theta_2 sin \gamma + (acos\theta_2 - d)cos\gamma$$

$$Q = -asin\theta_2 cos \gamma + (acos\theta_2 - d)sin\gamma$$

$$R = -c\sin \gamma; \quad S = R - Q; \qquad T = 2P; \qquad U = Q + R$$

Transmission Angles for a pin-jointed fourbar linkage

$$\theta_{trans} = \left| \theta_3 - \theta_4 \right|$$
 if
$$\theta_{trans} > \frac{\pi}{2}$$
 then
$$\theta_{trans} = \pi - \theta_{trans}$$

Extreme Values of the Transmission Angle

1. Grashof crank-rocker-rocker

2. Grashof rocker-crank-rocker

The transmission angle can vary from 0 to 90 degrees

3. Non-Grashof triple-rocker

The minimum transmission angle is 0 degree

Toggle Positions of the Non-Grashof triple-rocker

$$\theta_{2_{toggle}} = \arccos\left(\frac{a^2 + d^2 - b^2 - c^2}{2ad} \pm \frac{bc}{ad}\right); \quad 0 \le \theta_{2_{toggle}} \le \pi$$

Design of Machinery

TABLE 2-4 Barker's Complete Classification of Planar Fourbar Mechanisms

Adapted from ref. (10). s = shortest link, t = longest link, Gxx = Grashof, RRRx = non-Grashof, Sxx = Special case

Туре	s + 1 vs. p + q	Inversion	Class	Barker's Designation	Code	Also Known As
1	<	$L_1 = s = \text{ground}$	I-1	Grashof crank-crank	GCCC	double-crank
2	<	$L_2 = s = input$	I-2	Grashof crank-rocker-rocker	GCRR	crank-rocker
3	<	$L_3 = s = \text{coupler}$	I-3	Grashof rocker-crank-rocker	GRCR	double-rocker
4	<	$L_4 = s = \text{output}$	I-4	Grashof rocker-rocker-crank	GRRC	rocker-crank
5	>	$L_1 = l = ground$	II-1	Class 1 rocker-rocker-rocker	RRR1	triple-rocker
6	>	$L_2 = l = input$	II-2	Class 2 rocker-rocker-rocker	RRR2	triple-rocker
7	>	$L_3 = l = \text{coupler}$	II-3	Class 3 rocker-rocker-rocker	RRR3	triple-rocker
8	>	$L_4 = l = output$	II-4	Class 4 rocker-rocker-rocker	RRR4	triple-rocker
9	=	$L_1 = s = \text{ground}$	III-1	change point crank-crank-crank	sccc	SC* double -crank
10	=0	$L_2 = s = input$	III-2	change point crank-rocker-rocker	SCRR	SC crank-rocker
11		$L_3 = s = \text{coupler}$	III-3	change point rocker-crank-rocker	SRCR	SC double-rocker
12	=	$L_4 = s = \text{output}$	III-4	change point rocker-rocker-crank	SRRC	SC rocker-crank
13	E	two equal pairs	III-5	double change point	\$2X	parallelogram or deltoid
14	= 1	$L_1 = L_2 = L_3 = L_4$	III-6	triple change point	S3X	square

^{*} SC = special case.