At Tevatron, $t\bar{t}$ production was initiated mainly by $q\bar{q}$ annihilation while at the LHC, ggfusion is dominant. We compare the f(t) amplitude, between samples generated at the same center-of-mass energy $\sqrt{s} = 1.96$ TeV for D \emptyset and CMS. We find similar amplitudes between DØ and CMS at $\sqrt{s} = 1.96$ TeV for the benchmarks $c_{XX} = -c_{YY} \neq 0$ and $c_{XY} = c_{YX} \neq 0$. However, at the same energy and production mechanism, the LHC position induces worst expected sensitivity to $c_{XZ} = c_{ZX} \neq 0$ and $c_{YZ} = c_{ZY} \neq 0$ benchmarks. We scanned the latitude and azimuth of poential experiments on earth and foiund that both ATLAS or CMS sit in a dip for the projected sensitivity on those SME coefficients.