MODEL FREE CONTROL AND FUNCTION APPROXIMATION INTRODUCTION TO REINFORCEMENT LEARNING

Bogdan Ivanyuk-Skulskyi, Dmytro Kuzmenko

Department of Mathematics, National University of Kyiv-Mohyla Academy

March 6, 2023

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

ON AND OFF-POLICY LEARNING

- ► On-policy learning
 - Direct experience
 - Learn to estimate and evaluate a policy from experience obtained from following that policy
- ► Off-policy learning
 - Learn to estimate and evaluate a policy using experience gathered from following a different policy

MODEL-FREE POLICY ITERATION

- ▶ Init policy π
- ► Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}
- ► May need to modify policy evaluation:
 - If π is deterministic, can't compute Q(s, a) for any $a \neq \pi(s)$
- ► How to interleave policy evaluation and improvement?
 - Policy improvement is now using an estimated Q

THE PROBLEM OF EXPLORATION

- ▶ Goal: Learn to select actions to maximize total expected future reward
- ▶ Problem: Can't learn about actions without trying them (need to explore)
- ▶ Problem: But if we try new actions, spending less time taking actions that our past experience suggests will yield high reward (need to exploit knowledge of domain to achieve high rewards)

ϵ - GREEDY POLICIES

- ▶ Simple idea to balance exploration and achieving rewards
- ightharpoonup Let |A| be the number of actions
- ▶ Then an ϵ -greedy policy w.r.t. a state-action value Q(s, a) is $\pi(a|s) =$
 - $argmax_aQ(s,a)$, w. prob $1 \epsilon + \frac{\epsilon}{|A|}$
 - $a' \neq argmaxQ(s, a)$ w. prob $\frac{\epsilon}{|A|}$

POLICY IMPROVEMENT WITH ϵ -GREEDY POLICIES

- ▶ Recall we proved that policy iteration using given dynamics and reward models, was guaranteed to monotonically improve
- ▶ That proof assumed policy improvement output a deterministic policy
- ► Same property holds for ϵ -greedy policies

MONOTONIC ε-GREEDY POLICY IMPROVEMENT

Theorem 1

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

$$Q^{\pi_i}(s, \pi_{i+1}(s)) = \sum_{a \in A} \pi_{i+1}(a|s) Q^{\pi_i}(s, a)$$

$$= \frac{\epsilon}{|A|} \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1 - \epsilon) \max_a Q^{\pi_i}(s, a)$$

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

RECALL MONTE CARLO POLICY EVALUATION

Init
$$Q(s,a)=0$$
, $N(s,a)=0$ $\forall (s,a)$, $k=1$, Input $\epsilon=1$, π Loop

- Sample k-th episode from π
- Compute $G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + ... + \gamma^{T_i-1} r_{k,T_i}, \forall t$
- ▶ for t = 1 ... T do
 - If First visit to (s,a) in episode k then
 - N(s,a)+=1
 - $Q(s_t, a_t) + = \frac{1}{N(s, a)} (G_{k,t} Q(s_t, a_t))$
 - end if
- end for
- ▶ k = k + 1

GREEDY IN THE LIMIT OF INFINITE EXPLORATION (GLIE)

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a|s) \to \operatorname{argmax}_a Q(s,a)$$

A simple GLIE strategy is -greedy where is reduced to 0 with the following rate: $\epsilon_i = \frac{1}{i}$

GLIE MONTE-CARLO CONTROL

Theorem 2

GLIE Monte-Carlo control converges to the optimal state-action value function $Q(s,a) \rightarrow Q^*(s,a)$

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

MODEL-FREE POLICY ITERATION WITH TD METHODS

- ▶ Initialize policy π
- ► Repeat:
 - Policy evaluation: compute Q^{π} using temporal difference updating with ϵ -greedy policy
 - Policy improvement: Same as Monte Carlo policy improvement, set π to ϵ -greedy (Q^{π})
- ▶ First consider SARSA, which is an on-policy algorithm
- ▶ On policy: SARSA is trying to compute an estimate *Q* of the policy being followed

GENERAL FORM OF SARSA ALGORITHM

- Set initial ϵ -greedy policy π randomly, t = 0, initial state $s_t = s_0$
- ► Take $a_t \pi(s_t)$
- ightharpoonup Observe (r_t, s_{t+1})
- ► Loop
 - Take action $a_{t+1}\pi(s_{t+1})$ // Sample action from policy
 - Observe (r_{t+1}, s_{t+2})
 - $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
 - $\pi(s_t) = argmax_a Q(s_t, a)$ w.prob 1ϵ , else random
 - *t*+= 1

EXAMPLE: SARSA FOR MARS ROVER

- ▶ Initialize $\epsilon = \frac{1}{k}$, k = 1, and $\alpha = 0.5$, $Q(, a_1) = [1, 0, 0, 0, 0, 0, 0, +10]$, $Q(, a_2) = [1, 0, 0, 0, 0, 0, +5]$, $\gamma = 1$
- ► Tuple: $(s_6, a_1, 0, s_7, a_2, 5, s_7)$
- $Q(s_6, a_1) = .50 + .5(0 + \gamma Q(s_7, a_2)) = 2.5$

PROPERTIES OF SARSA WITH ϵ -GREEDY POLICIES

Convergence:

Theorem 3

SARSA for finite-state and finite-action MDPs converges to the optimal action-value, $Q(s,a) \rightarrow Q^{(s,a)}$, under the following conditions:

- The policy sequence $\pi_t(a|s)$ satisfies the condition of GLIE
- The step-sizes α_t satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

- Result builds on stochastic approximation
- ▶ Relies on step sizes decreasing at the right rate
- Relies on Bellman backup contraction property
- ▶ Relies on bounded rewards and value function

Q-LEARNING: LEARNING THE OPTIMAL STATE-ACTION VALUE

- ► SARSA is an on-policy learning algorithm
- ► SARSA estimates the value of the current behavior policy (policy using to take actions in the world)
- ► And then updates that (behavior) policy
- ▶ Alternatively, to directly estimate the value of π^* while acting with another behavior policy π_b use
- ▶ Q-learning, an off-policy RL algorithm

Q-LEARNING: LEARNING THE OPTIMAL STATE-ACTION VALUE

- ► SARSA is an on-policy learning algorithm
- ► SARSA estimates the value of the current behavior policy (policy using to take actions in the world)
- ► And then updates that (behavior) policy
- ▶ Alternatively, to directly estimate the value of π^* while acting with another behavior policy π_b use
- Q-learning, an off-policy RL algorithm
- ▶ Maintain state-action Q estimates and use to bootstrap— use the value of the best future action
- ► Recall SARSA

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t))$$

Q-learning

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a) - Q(s_t, a_t))$$

Q-Learning with ϵ -greedy Exploration

- ▶ Initialize Q(s, a), $\forall s \in S$, $a \in A$, t = 0, initial state $s_t = s_0$
- ▶ Set π_b to be ϵ -greedy w.r.t. Q
- ► Loop
 - Take a_t from $\pi_h(s_t)$
 - Observe (r_t, s_{t+1})
 - $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
 - $\pi(s_t) = argmax_a Q(s_t, a)$ w.prob 1ϵ , else random
 - *t*+ = 1

EXAMPLE: Q-LEARNING FOR MARS ROVER

- ► Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(, a_1) = [1, 0, 0, 0, 0, 0, 0, +10]$, $Q(, a_2) = [1, 0, 0, 0, 0, 0, +5]$, $\gamma = 1$
- ► Tuple: $(s_6, a_1, 0, s_7)$
- $Q(s_6, a_1) = 0 + .5 * (0 + \gamma \max_{a'} Q(s_7, a') 0) = .5 * 10 = 5$
- ▶ Recall that in the SARSA update we saw $Q(s_6, a_1) = 2.5$ because we used the actual action taken at s_7 instead of the max
- ▶ Does how Q is initialized matter (initially? asymptotically?)? Asymptotically no, under mild conditions, but at the beginning, yes

Q-Learning with ϵ -greedy Exploration

- ▶ What conditions are sufficient to ensure that Q-learning with ϵ -greedy exploration converges to optimal Q?
 - Visit all (s,a) pairs infinitely often, and the step-sizes α_t satisfy the Robbins-Munro sequence. Note: the algorithm does not have to be greedy in the limit of infinite exploration (GLIE) to satisfy this (could keep ϵ large)
- ▶ What conditions are sufficient to ensure that Q-learning with ϵ -greedy exploration converges to optimal π^* ?
 - The algorithm is GLIE, along with the above requirement to ensure the Q value estimates converge to the optimal Q

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

MOTIVATION FOR FUNCTION APPROXIMATION

- ▶ Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy
- ▶ Want more compact representation that generalizes across state or states and actions

BENEFITS OF FUNCTION APPROXIMATION

- ► Reduce memory needed to store $(P, R)/V/Q/\pi$
- ▶ Reduce computation needed to compute $(P, R)/V/Q/\pi$
- ▶ Reduce experience needed to find a good $(P,R)/V/Q/\pi$

FUNCTION APPROXIMATORS

- Many possible function approximators including
 - Linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors
 - Fourier/ wavelet bases
- ▶ In this class we will focus on function approximators that are differentiable
- ► Two very popular classes of differentiable function approximators
 - Linear feature representations
 - Neural networks

VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION WITH AN ORACLE

- First assume we could query any state s and an oracle would return the true value for $V^{\pi}(s)$
- ▶ Similar to supervised learning: assume given $(s, V^{\pi}(s))$ pairs
- ▶ The objective is to find the best approximate representation of V^{π} given a particular parameterized function $\hat{V}(s; w)$

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

MODEL FREE VFA POLICY EVALUATION

- ▶ No oracle to tell true $V^{\pi}(s)$ for any state s
- ▶ Use model-free value function approximation

LINEAR VALUE FUNCTION APPROXIMATION FOR PREDICTION WITH AN ORACLE

► Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; w) = \sum_{j=1}^{n} x_j(s) w_j = x(s)^T w$$

► Objective function is

$$J(w) = \mathbb{E}_{\pi} \left[(V^{\pi}(s) - \hat{V}(s; w)^2) \right]$$

weight update is

$$\Delta w = -\frac{1}{2}\alpha \nabla_w J(w)$$

- Update is: $\Delta w = -\frac{1}{2}\alpha(V^{\pi}(s) x(s)^{T}w)x$
- ► Update = step-size × prediction error × feature value

TABLE OF CONTENTS

- ► Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- ► Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

MONTE CARLO VALUE FUNCTION APPROXIMATION

- ▶ Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- ► Therefore can reduce MC VFA to doing supervised learning on a set of (state,return) pairs: $\langle s_1, G_1 \rangle, \langle s_2, G_2 \rangle, \dots, \langle s_T, G_T \rangle$
 - Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator
- ► Concretely when using linear VFA for policy evaluation

$$\Delta w = \alpha(G_t - \hat{V}(s_t; w)) \nabla_w \hat{V}(s_t, w)$$
$$= \alpha(G_t - \hat{V}(s_t; w)) x(s_t)$$
$$= \alpha(G_t - x(s_t)^T w) x(s_t)$$

ightharpoonup Note: G_t may be a very noisy estimate of true return

MC LINEAR VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION

- ▶ Init w = 0, k = 1
- ► Loop
 - Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, ..., s_{k,L_k})$ given π
 - for $t = 1, ..., L_k$ do
 - ▶ if First visit to (s) in episode k then
 - $ightharpoonup G_t(s) = \sum_{i=t}^{L_k} r_{k,i}$
 - ▶ Update weights: $w = +\alpha(G_t(s) x(s)^T w)x(s)$
- ▶ k = k + 1

TABLE OF CONTENTS

- Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

TEMPORAL DIFFERENCE (TD(0)) LEARNING WITH VALUE FUNCTION APPROXIMATION

- Uses bootstrapping and sampling to approximate true V^{π}
- Updates estimate V^{π} after each transition (s, a, r, s):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- ► Target is $r + \gamma V^{\pi}(s')$, a biased estimate of the true value $V^{\pi}(s)$
- ▶ In value function approximation, target is $r + \gamma V^{\pi}(s'; w)$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- ▶ 3 forms of approximation:
 - Sampling
 - Bootstrapping
 - Value function approximation

TEMPORAL DIFFERENCE (TD(0)) LEARNING WITH VALUE FUNCTION APPROXIMATION

- ► In value function approximation, target is $r + \gamma V^{\pi}(s'; w)$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- ► Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs: $\langle s_1, r_1 + \gamma V^{\pi}(s_2; w) \rangle, \langle s_2, r_2 + \gamma V^{\pi}(s_3; w) \rangle...$
- ► Find weights to minimize mean squared error

$$J(w) = \mathbb{E}_{\pi} \left[(r_j + \gamma \hat{V}^{\pi}(s_{j+1}, w) - \hat{V}^{\pi}(s_j; w))^2 \right]$$

TEMPORAL DIFFERENCE (TD(0)) LEARNING WITH VALUE FUNCTION APPROXIMATION

- ▶ In value function approximation, target is $r + \gamma V^{\pi}(s'; w)$, a biased and approximated estimate of the true value $V^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs: $\langle s_1, r_1 + \gamma V^{\pi}(s_2; w) \rangle, \langle s_2, r_2 + \gamma V^{\pi}(s_3; w) \rangle...$
- ► In linear TD(0)

$$\Delta w = \alpha (r + \gamma \hat{V}^{\pi}(s; w) - \hat{V}^{\pi}(s; w)) \nabla_w \hat{V}^{\pi}(s; w)$$
$$= \alpha (r + \gamma \hat{V}^{\pi}(s; w) - \hat{V}^{\pi}(s; w)) x(s)$$
$$= \alpha (r + \gamma x(s')^T w - x(s)^T w) x(s)$$

TD(0) LINEAR VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION

- Initialize w = 0, k = 1
- ► Loop
 - Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
 - Update weights:

$$w = w + (r + \gamma x(s')^T w - x(s)^T w)x(s)$$

• k + = 1

TABLE OF CONTENTS

- Model-Free Control with a Tabular Representation
 - Generalized Policy Improvement
 - Monte-Carlo Control with Tabular Representations
 - Temporal Difference Methods for Control
- Value Function Approximation
 - Model Free Value Function Approximation Policy Evaluation
 - Monte Carlo Value Function Approximation Policy Evaluation
 - Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
 - Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

CONVERGENCE GUARANTEES FOR LINEAR VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION

Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE_{\mu}(w) = \sum_{s \in S} \mu(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; w))^{2}$$

- where
 - $\mu(s)$: probability of visiting state s under policy π . Note $\sum_{s} \mu(s) = 1$
 - $V^{\pi}(s; w) = x(s)^{T}w$, a linear value function approximation

CONVERGENCE GUARANTEES FOR LINEAR VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION

Define the mean squared error of a linear value function approximation for a particular policy π relative to the true value as

$$MSVE_{\mu}(w) = \sum_{s \in S} \mu(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; w))^{2}$$

- where
 - $\mu(s)$: probability of visiting state s under policy π . Note $\sum_s \mu(s) = 1$
 - $\hat{V}^{\pi}(s;w) = x(s)^{T}w$, a linear value function approximation
- ▶ Monte Carlo policy evaluation with VFA converges to the weights w_{MC} which has the minimum mean squared error possible with respect to the distribution μ :

$$MSVE_{\mu}(w_{MC}) = min_{w} \sum_{s \in S} \mu(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; w))^{2}$$

CONVERGENCE GUARANTEES FOR LINEAR VALUE FUNCTION APPROXIMATION FOR POLICY EVALUATION

Define the mean squared error of a linear value function approximation for a particular policy relative to the true value given the distribution d as

$$MSVE_d(w) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; w))^2$$

- where
 - d(s): stationary distribution of π in the true decision process
 - $\hat{V}^{\pi}(s; w) = x(s)^T w$, a linear value function approximation
- ▶ TD(0) policy evaluation with VFA converges to weights w_{TD} which is within a constant factor of the min mean squared error possible given distribution d:

$$MSVE_d(w_{TD}) \le \frac{1}{1-\gamma} min_w \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; w))^2$$