Statistics

Problem Set 2: Probability Distributions

Javier Tasso

1. Binomial Distribution. Let $X \sim Bi(n, p)$.

- (a) Let n=10. For $p\in\{0.2,0.5,0.8\}$ plot the pdf and comment on the symmetry or asymmetry.
- (b) Let $X_i \sim \text{Ber}(p = 0.8)$ iid and define $Y = \sum_{i=1}^{10} X_i$. Simulate draws of Y, plot an histogram and comment on the resemblance to $X \sim \text{Bi}(n = 10, p = 0.8)$.
- (c) For each of the following cases plot the pdf and comment on the resemblance to the Poisson distribution with $\lambda = 2$. You should also plot the pdf of the Poisson distribution.
 - n = 10 and p = 0.2.
 - n = 100 and p = 0.02.
 - n = 1000 and p = 0.002.

2. Beta Distribution. Consider $X \sim \text{Beta}(\alpha, \beta)$.

- (a) For $(\alpha_1, \beta_1) = (0.5, 0.5)$, $(\alpha_2, \beta_2) = (1, 1)$, and $(\alpha_3, \beta_3) = (2, 2)$ plot the pdfs in the same graph and calculate the mean and variance of the distribution.
- (b) Choose (α, β) such that the distribution is not symmetric.
- (c) **Uniform Distribution**. Focus on $\alpha = \beta = 1$. Write down its pdf and cdf.

3. Gamma Distribution. Consider $X \sim \text{Gamma}(\alpha, \beta)$.

- (a) **Exponential Distribution.** Set $\alpha = 1$.
 - Calculate its mean and variance.
 - Write down the pdf and cdf.
 - Plot the pdf for three different values of β of your choice in the same graph.
 - Let $\beta = 1$, calculate $\mathbb{P}[X > 1]$, $\mathbb{P}[X > 2|X > 1]$, and $\mathbb{P}[X > 3|X > 2]$. This property is called memory-less of the exponential distribution.
- (b) Chi-Square Distribution. Set $\alpha = \frac{v}{2}$ and $\beta = \frac{1}{2}$.
 - Calculate its mean and variance.
 - Plot the pdf when v = 1, 2, 3 in the same graph.
- (c) Choose three specifications of (α, β) and plot the pdfs in the same graph. Make sure $\alpha \neq 1$ and $\beta \neq \frac{1}{2}$ so this is a general case of the Gamma Distribution.
- 4. Normal Approximations. Let $Z \sim N(0,1)$. In many cases the standard Normal distribution can be used to approximate other distributions.
 - (a) To the Binomial Distribution. Consider $X \sim \text{Bi}(n=1000, p=0.6)$. This approximation works well when n is large.

- Calculate $\mathbb{P}[X > 600]$.
- Approximate the probability above by defining $Z \stackrel{\text{Def}}{=} \frac{X np}{\sqrt{np(1-p)}}$ and finding $\mathbb{P}[Z > \frac{600 np}{\sqrt{np(1-p)}}]$.
- (b) To the Poisson Distribution. Consider $X \sim \text{Po}(\lambda = 900)$. This approximation works well when λ is large.
 - Calculate $\mathbb{P}[X > 950]$.
 - Approximate the probability above by defining $Z \stackrel{\text{Def}}{=} \frac{X \lambda}{\sqrt{\lambda}}$ and finding $\mathbb{P}\left[Z > \frac{950 \lambda}{\sqrt{\lambda}}\right]$.