Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

КАФЕДРА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

ЗАЩИТА ОТ РАЗРУШАЮЩИХ ПРОГРАММНЫХ ВОЗДЕЙСТВИЙ, ЗАЩИТА ПРОГРАММ ОТ ИЗМЕНЕНИЯ И КОНТРОЛЬ ЦЕЛОСТНОСТИ

отчет о

лабораторной работе №1

по дисциплине

ПРОГРАММНЫЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ

ВАРИАНТ 13

Выполнила: ст. гр. 230711 Павлова В.С.

Проверил: асс. каф. ИБ Греков М.М.

ЦЕЛЬ И ЗАДАЧА РАБОТЫ

Цель: познакомиться с общими принципами защиты программного обеспечения и способами организации контроля целостности исполняемых модулей и важных программных данных.

Задача: в данной работе требуется написать программу, демонстрирующую использование изученных принципов.

ЗАДАНИЕ НА РАБОТУ

Написать программу для контроля целостности используемой Windows библиотеки.

СХЕМА АЛГОРИТМА

Схема алгоритма программы для контроля целостности библиотеки, представлена на рисунке 1.

Рисунок 1 – Схема алгоритма программы

ТЕКСТ ПРОГРАММЫ

Текст программы на языке программирования C++ для контроля целостности библиотеки представлен в листинге 1.

Листинг 1. Текст программы

```
#include <iostream>
#include <fstream>
#include <string>
#include <cstring>
#include <openssl/evp.h>
#include <openssl/md5.h>
using namespace std;
int main()
```

Листинг 1. Текст программы (продолжение)

```
string path = "C:\\Windows\\RtlExUpd.dll";
ifstream file(path, ios::binary);
if (!file)
    cout << "Error: Unable to open file " << path << "\n";</pre>
EVP_MD_CTX* md5_context = EVP_MD_CTX_new();
EVP_DigestInit_ex(md5_context, EVP_md5(), nullptr);
char buf[1024];
while (file.read(buf, sizeof(buf)).gcount() > 0)
    EVP_DigestUpdate(md5_context, buf, file.gcount());
unsigned char hash[EVP_MAX_MD_SIZE];
unsigned int hashLength;
EVP_DigestFinal_ex(md5_context, hash, &hashLength);
cout << "The hash sum is: ";</pre>
for (int i = 0; i < hashLength; i++)</pre>
    cout << hex << (int)hash[i];</pre>
} cout << "\n";</pre>
EVP MD CTX free(md5 context);
file.close();
return 0;
```

ИНСТРУКЦИЯ ПОЛЬЗОВАТЕЛЯ

Данная программа предназначена для контроля целостности библиотеки. По заданному пути производится расчёт хэш-суммы соответствующего файла и выводится на экран в консоль.

ИНСТРУКЦИЯ ПРОГРАММИСТА

Структуры данных, используемые в программе, приведены в таблице 1.

Таблица	1 –	Стру	vктvры	ланных	В	программе

Имя	Тип (класс)	Предназначение
path	string	Полный путь к файлу
file	ifstream	Файловая переменная
md5_context	EVP_MD_CTX*	Контекст хеширования

Таблица 1 – Структуры данных в программе (продолжение)

buf	char	Буфер для хранения данных
hash	unsigned char	Буфер для хранения хэш-суммы
hashLength	unsigned int	Длина хэш-суммы

ДЕМОНСТРАЦИОННЫЙ ПРИМЕР

Пусть имеется путь: C:\Windows\RtlExUpd.dll. Для сравнения сперва вычислим его хэш-сумму по алгоритму MD5 с помощью PowerShell. Как видно по рисунку 2, она должна быть равна D0B22CFA9BFB7635A5B5D4C46B515257.

Рисунок 2 – Результат расчёта хэш-суммы с помощью PowerShell

Результат работы программы приведён на рисунке 3. Полученная хэшсумма d0b22cfa9bfb7635a5b5d4c46b515257 соответствует расчётам с точностью до регистра.

Рисунок 3 – Результат работы программы

ВЫВОДЫ

В ходе данной лабораторной работы я ознакомилась с общими принципами защиты программного обеспечения и способами организации контроля целостности исполняемых модулей и важных программных данных.