Rettevejledning

Opgave 1

1. Det regner ofte flere dage i træk, derfor vil uafhængighed være en tvivlsom antagelse. Andre forklaringer godtages. Der er tre udfald: sne, regn, og tørvejr. Lad X_1 være antallet af snedage på en uge, X_2 antallet af regnsvejrsdage, X_3 antallet af tørvejsdage. Så er $X_1, X_2 \sim MULT(7, \frac{2}{7}, \frac{2}{7})$. Antallet af tørvejrsdage følger af $n = x_1 + x_2 + x_3$.

$$P(X_1 = 4, X_2 = 1) = {7 \choose 4, 1, 2} \cdot \left(\frac{2}{7}\right)^4 \cdot \frac{2}{7} \cdot \left(1 - \frac{2}{7} - \frac{2}{7}\right)^2 = 0,037$$

2. Y er antallet snedage i løbet af en uge. $Y \sim BIN(7, \frac{2}{7})$ fordi den marginale fordeling i multinomialfordelingen er binomialfordelt. $P(Y \ge 2) = 1 - P(Y \le 1) = 0,640$.

$$E[Y] = 7\frac{2}{7} = 2$$

$$Var(Y) = 7\frac{2}{7}(1 - \frac{2}{7}) = \frac{10}{7}.$$

Sandsynligheden for at Y ligger inden
for 2 std. afv. er givet ved $P(2-\frac{20}{7}\le Y\le 2+\frac{20}{7})=P(Y\le 4)=0,977$

3. Lad Y_1 være antallet af snedage i uge 1 og Y_2 være antallet af snedage i uge 2. $Y_1+Y_2\sim BIN(14,\frac{2}{7})$. Find $P(Y_1=1,Y_2=6|Y_1+Y_2=7)=\frac{P(Y_1=1)\cdot P(Y_2=6)}{P(Y_1+Y_2=7)}=\frac{0.000722}{0.1045}=0.0069$.

Opgave 2

- 1. Uden tilbagelægning skal vi anvende en hypergeometrisk fordeling. $X \sim HYPGEO(942,700,100).P(X \geq 75) = 1 P(X \leq 74) = 0,488$. Binomialfordelingen anvendes når n
 er lille i fht. N. I dette tilfælde blæser svaret i vinden, da lærebogen ikke opstiller en tommelfingerregel. På forelæsningsslides er anvend
t $\frac{n}{N} \leq 0.05$, hvilket også kan anvendes. Med binomialfordelingen, $X^{\sim}BIN(100;\frac{700}{942})$ er $P(X \geq 75) = 1 P(X \leq 74) = 0,490$.
- 2. Lad Y være en sum af 100 uafhængige stokastiske variable, der hver især er Bernouilli fordelte, og Y vil derfor være normalfordelt. Der skal approksimeres med middelværdi og varians i binomialfordeling fra 1. Hvis der vælges middelværdi og varians fra den hypergeometrisk fordeling er

det ok. Så $Y N(100 \cdot \frac{700}{942}; 100 \cdot \frac{700}{942} \cdot (1 - \frac{700}{942})) = N(74.3; 19.1)$. Bemærk at sandsynligheden, som skal findes og approksimeres er $P(Y \le 74)$.

$$P(Y \le 74) = \Phi(\frac{74 + 0.5 - 74.3}{\sqrt{19.1}}) = 0.518$$

3. Uafhængighed vil være en fin antagelse hvis sygdom ikke smitter mellem eleverne. Ellers vil den være tvivlsom.

$$D^{^{\sim}}N(\frac{1}{56}\sum\mu_{Y_1}-\frac{1}{44}\sum\mu_{Y_2},\frac{1}{56^2}\sum\sigma_{Y_1}^2+\frac{1}{44^2}\sum\sigma_{Y_2}^2)=N(4-3,\frac{1}{56}\cdot2+\frac{1}{44}\cdot1)$$

$$P(D > 0) = 1 - P(D < 0)$$

= $1 - \Phi(\frac{0 - 1}{\sqrt{\frac{2}{56} + \frac{1}{44}}}) = 0.999$

Opgave 3

- 1. Lad Y være resultatet af et terningslag. Så er $E(Y) = \frac{1}{6}(1+2+3+4+5+6) = 3, 5 = \frac{21}{6}.E(Y^2) = \frac{1}{6}(1^2+2^2+3^2+4^2+5^2+6^2) = \frac{91}{6}.Var(Y) = E(Y^2) E(Y)^2 = \frac{91}{6} (\frac{21}{6})^2 = \frac{105}{36}.$ Lad $X = \frac{1}{5}(Y_1 + Y_2 + Y_3 + Y_4 + Y_5).$ Dermed er E(X) = 3, 5 og $Var(X) = \frac{1}{25}5Var(Y) = \frac{105}{36 \cdot 5} = \frac{105}{180} = 0, 58$
- 2. $H_0: \sigma^2 = 0,58$. $H_A: \sigma^2 > 0,58$. Lad $Q = \frac{(n-1)s^2}{\sigma^2} = (20-1) \cdot \frac{0,60}{0,58} = 19,7$ som er χ^2 med 19 frihedsgrader. Sss = $P(\chi^2(19) > 19,7) = 41,6\%$ dvs. stor Sss og dermed opretholdes H_0 . Så vi opretholder, at variansen er 0,58.
- 3. $H_0: \mu=3,5, H_A: \mu\neq3,5$. Lad $t=\sqrt{n} \frac{(\mu-3,5)}{s}=\sqrt{20} \frac{(3,66-3,5)}{\sqrt{0,6}}=0,92$ som er t-fordelt med 19 frihedsgrader. Sss=p-værdi=2P(t-fordeling med 19 frihedsgrader>1,19)=0,37 så vi opretholder H_0 og dermed opretholder vi at middelværdien er lig 3,5. (Bruges et U-test er dette også OK, så skal $\sigma^2=0,58$. Vi har jo lige testet dette)
- 4. $(X_1, X_2, X_3, X_4, X_5, X_6)$ bliver multinomisk fordelt, hvor N = 100 og med sandsynligheden 1/6 hvis terningen er fair.

5.

værdi	antal kast	Forventet	O-F	$\frac{(O-F)^2}{F}$
1	12	16,67	-4,76	1, 31
2	14	16,67	-2,67	0,43
3	16	16,67	-0,67	0,03
4	17	16,67	0, 33	0,01
5	28	16,67	11, 33	7,71
6	13	16,67	-0,67	0,81
I alt	100	100	0	10,28

Teststørrelsen bliver 10,28 som er χ^2 fordelt med df=6-1. Sss bliver da 7% som jo altså er større end de "berømte" 5%. Så vi opretholder, at terningen er fair.

6. Estimatoren bliver $\widehat{p} = \frac{28}{100} = 0,28$ og det tilhørende 95% cf interval bliver $\widehat{p} \pm 1,96\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$. $0,28\pm 1,96\sqrt{\frac{0,28(1-0,28)}{100}} = [0,19-0,37]$. Et interval der ikke indeholder $\frac{1}{6} = 0,16$. Så noget kunne tyde på at terningen er skæv.