Accuracy of $\mathrm{Q}_{\mathrm{VEM}}^{pk}$ fit for UB and UUB

Mauricio Suárez Durán and Ioana C. Mariș

IIHE-ULB

March 21, 2022

How the moving window works

The goal: To choose the more stable 7-days in a row for fitted Q_{VEM}^{Pk} .

- 1. An $\langle Q_{\mathrm{VEM}}^{Pk} \rangle$ is calculate per day, then a first 7-day-series of $\langle Q_{\mathrm{VEM}}^{Pk} \rangle$ is built.
- 2. A linear fit is applied to the 7-day-series, and the respective slope and χ^2 are stored.
- 3. A new [7-day-series]₁ is built by replacing the seventh day in previous [7-day-series]₀ by next day.
- 4. A check for continuity is applied, i.e. if 7 days are not consecutive a new series is built, e.g. if series *i* has a discontinuity in day 3 jumping to day 5, a new 7-day-series is calculated from day 5.

It is possible to see how the average $\langle Q_{\mathrm{VEM}}^{Pk} \rangle_{7\mathrm{days}}$ is moving leftward.

Distribution of Qpk per day

Moving window algorithm results

After a cut for > 10 Qpk per day

Moving window algorithm results

After a cut for $\chi^2 <$ 10, Slope $\mu \pm \sigma$, and Log10(Pval) > -5.0

How the accuracy is calculate

- 1. After the cuts, per station and per PMT, a set of 7-day-series is obtained.
- 2. If for the same station, a PMT was not chosen, e.g. in UB version, this one is not taken into the account for UUB, and vice versa.
- 3. With the chosen PMT, a singular normalized distribution is built for UB and UUB version.
- 4. A Gaussian function is fitted to the normalized distribution and then the accuracy is calculated as: σ/μ , respectively.

How the accuracy is calculate

Accuracy results

For accuracy distribution, only σ/μ < 5.0 % considered.

Outliers, $\mu/\sigma > 10.\%$

Outliers, $\mu/\sigma >$ 3.5 % and $(\mu/\sigma)_{\mathrm{UB}} - (\mu/\sigma)_{\mathrm{UUB}} < -1.$ %

Outliers, $(\mu/\sigma)_{\mathrm{UB}} - (\mu/\sigma)_{\mathrm{UUB}} < -1.\%$

Outliers, $(\mu/\sigma)_{\mathrm{UB}} - (\mu/\sigma)_{\mathrm{UUB}} < -1.\%$

Outliers, $(\mu/\sigma)_{\mathrm{UB}} - (\mu/\sigma)_{\mathrm{UUB}} > 1.\%$

Backup

Moving window