AN8000/AN8000M Series

3-pin Positive Output Low Dropout Voltage Regulator (50mA Type)

Overview

The AN8000 series is 3-pin low-dropout fixed positive output monolithic voltage regulators. Since thier power consumption can be minimized, they are suitable for battery stabilizing power supply and reference voltage. Thirteen types of output voltage are available; 2V, 2.5V, 3V, 3.5V (TO-92 only), 4V, 4.5V, 5V, 6V, 7V, 8V, 8.5V, 9V, and 10V.

Features

- Input/output voltage difference : 0.3V (max.)
- Output current of up to 50mA
- Low bias current; 0.6mA (typ.)
- Output voltage; 2V, 2.5V, 3V, 3.5V (TO-92 only), 4V,
 4.5V, 5V, 6V, 7V, 8V, 8.5V, 9V, and 10V.
- Over-voltage protective circuit built-in.

■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

Parameter		Symbol	Rating	Unit
Supply voltage		V _I	20	V
Supply current		I_{CC}	100	mA
Power dissipation		P_{D}	650 *	mW
Operating ambient	Operating ambient temperature		-30 to+80	°C
C4	AN8000 Series	T	-55 to+150	°C
Storage temperature	AN8000M Series	T_{stg}	-55 to+125	°C

^{*} Mounting onto the PCB (20 × 20 × 1.7mm glass epoxy copper foil 1 cm² or more), for AN8000M Series.

■ Electrical Characteristics (Ta=25°C)

• AN8002/AN8002M (2V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	1.92	2	2.08	V
Line regulation	REG _{IN}	V ₁ =2.5 to 8V, T _j =25°C	_	2	40	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		7	20	mV
Load regulation	KEG _L	I ₀ =1 to 50mA, T _j =25°C		10	25	mV
M: 1/0 1, 1:00	V _{DIF (min.)}	V _I =1.9V, I _O =20mA, T _j =25°C	_	0.06	0.2	V
Minimum I/O voltage difference		V _I =1.9V, I _O =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.6	1	mA
Ripple rejection ratio	RR	V ₁ =3 to 5V, f=120Hz	62	74		dB
Output noise voltage	V_{no}	f=10Hz to 100kHz		60	_	μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.1		mV/°C

Note1) The specified condition T_j =25°C means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8025/AN8025M (2.5V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	2.4	2.5	2.6	V
Line regulation	REG _{IN}	V ₁ =3 to 8.5V, T _j =25°C	_	2.5	50	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C	_	8	20	mV
Load regulation	KEGL	I ₀ =1 to 50mA, T _j =25°C	_	12.5	25	mV
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =2.4V, I _O =20mA, T _j =25°C		0.07	0.2	V
Millimum I/O voltage difference		V ₁ =2.4V, I ₀ =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I _O =0mA, T _j =25°C		0.6	1	mA
Ripple rejection ratio	RR	V ₁ =3.5 to 5.5V, f=120Hz	60	72		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz	_	65	_	μV
Output voltage temperature coefficient	ΔV _O /Ta	$T_j = -30 \text{ to} + 125^{\circ}\text{C}$		0.13		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

Note2) Unless otherwise specified, $V_I=3V$, $I_O=20mA$, $C_O=10\mu F$

Note2) Unless otherwise specified, $V_I=3.5V$, $I_O=20mA$, $C_O=10\mu F$

• AN8003/AN8003M (3V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	2.88	3	3.12	V
Line regulation	REG _{IN}	V ₁ =3.5 to 9V, T _j =25°C	_	3	50	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		9	25	mV
Load regulation	KEU _L	I ₀ =1 to 50mA, T _j =25°C		15	30	mV
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =2.9V, I _O =20mA, T _j =25°C		0.07	0.2	V
William I/O voltage difference		V ₁ =2.9V, I ₀ =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.6	1	mA
Ripple rejection ratio	RR	V _I =4 to 6V, f=120Hz	58	70		dB
Output noise voltage	V_{no}	f=10Hz to 100kHz		70	_	μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.15		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8035/AN8035M (3.5V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	3.36	3.5	3.64	V
Line regulation	REG _{IN}	V _I =4 to 9.5V, T _j =25°C	_	3.5	50	mV
Load regulation	DEC	I ₀ =1 to 40mA, T _j =25°C	_	10	30	mV
Load regulation	REG_L	I ₀ =1 to 50mA, T _j =25°C	_	20	40	mV
Minimum I/O and to a difference	37	V _I =3.4V, I _O =20mA, T _j =25°C		0.07	0.2	V
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =3.4V, I _O =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.6	1	mA
Ripple rejection ratio	RR	V _I =4.5 to 6.5V, f=120Hz	57	69		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		75		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.2		mV/°C

Note1) The specified condition T_j =25°C means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8004/AN8004M (4V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	3.84	4	4.16	V
Line regulation	REG _{IN}	V _I =4.5 to 10V, T _j =25°C		3.5	50	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		10	30	mV
Load regulation	KEUL	I ₀ =1 to 50mA, T _j =25°C		20	40	mV
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =3.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
William I/O voltage difference		V _I =3.8V, I _O =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.6	1	mA
Ripple rejection ratio	RR	V _I =5 to 7V, f=120Hz	56	67		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		80		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.2		mV/°C

Note1) The specified condition T_j =25°C means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

Note2) Unless otherwise specified, V_I=4V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, V_I=4.5V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, V_I =5V, I_O =20mA, C_O =10 μF

• AN8045/AN8045M (4.5V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	4.32	4.5	4.68	V
Line regulation	REG _{IN}	V ₁ =5 to 10.5V, T _j =25°C	_	4	50	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C	_	11	35	mV
Load regulation	KEUL	I ₀ =1 to 50mA, T _j =25°C	_	23	45	mV
Minimum I/O voltage difference	37	V ₁ =4.3V, I ₀ =20mA, T _j =25°C		0.07	0.2	V
Willimidii 1/O voltage difference	V _{DIF (min.)}	V ₁ =4.3V, I ₀ =50mA, T _j =25°C	_	0.12	0.3	V
Bias current	I _{bias}	I _O =0mA, T _j =25°C	_	0.7	1	mA
Ripple rejection ratio	RR	V ₁ =5.5 to 7.5V, f=120Hz	54	66		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		85	_	μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.23		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8005/AN8005M (5V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	4.8	5	5.2	V
Line regulation	REG_{IN}	V _I =5.5 to 11V, T _j =25°C		4.5	50	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		12	40	mV
Load regulation	KEO_L	I ₀ =1 to 50mA, T _j =25°C		25	50	mV
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =4.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
Millimum 1/O voltage difference		V _I =4.8V, I _O =50mA, T _j =25°C		0.12	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.7	1	mA
Ripple rejection ratio	RR	V _I =6 to 8V, f=120Hz	52	64		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		95		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.25		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8006/AN8006M (6V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	5.76	6	6.24	V
Line regulation	REG _{IN}	V _I =6.5 to 12V, T _j =25°C		5.5	60	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		13	45	mV
Load regulation	KEUL	I ₀ =1 to 50mA, T _j =25°C		28	55	mV
Minimum I/O14 diff	V _{DIF (min.)}	V _I =5.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
Minimum I/O voltage difference		V _I =5.8V, I _O =50mA, T _j =25°C		0.13	0.3	V
Bias current	I_{bias}	I _O =0mA, T _j =25°C		0.7	1.2	mA
Ripple rejection ratio	RR	V _I =7 to 9V, f=120Hz	51	63		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		105		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.3		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

Note2) Unless otherwise specified, $V_I=5.5V$, $I_O=20mA$, $C_O=10\mu F$

Note2) Unless otherwise specified, V_I=6V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, $V_I=7V$, $I_O=20mA$, $C_O=10\mu F$

• AN8007/AN8007M (7V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	6.72	7	7.28	V
Line regulation	REG _{IN}	V _I =7.5 to 13V, T _j =25°C		6.5	70	mV
Load regulation	DEC	I ₀ =1 to 40mA, T _j =25°C		14	50	mV
Load regulation	REG _L	I ₀ =1 to 50mA, T _j =25°C		31	60	mV
M:-: I/O14 1:66	V _{DIF (min.)}	V _I =6.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
Minimum I/O voltage difference		V _I =6.8V, I _O =50mA, T _j =25°C		0.13	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.7	1.3	mA
Ripple rejection ratio	RR	V _I =8 to 10V, f=120Hz	50	62		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		120		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.35		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8008/AN8008M (8V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	7.68	8	8.32	V
Line regulation	REG _{IN}	V ₁ =8.5 to 14V, T _j =25°C		7.5	80	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C		15	55	mV
Load regulation	KEG _L	I ₀ =1 to 50mA, T _j =25°C		34	65	mV
M 1/O 1/ 1/00	V _{DIF (min.)}	V _I =7.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
Minimum I/O voltage difference		V ₁ =7.8V, I ₀ =50mA, T _j =25°C		0.14	0.3	V
Bias current	I _{bias}	I ₀ =0mA, T _j =25°C		0.7	1.3	mA
Ripple rejection ratio	RR	V ₁ =9 to 11V, f=120Hz	49	61		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		135		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.4	_	mV/°C

Note1) The specified condition T_j =25°C means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8085/AN8085M (8.5V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	8.16	8.50	8.84	V
Line regulation	REG _{IN}	V _I =9 to 14.5V, T _j =25°C	_	8.3	90	mV
Load regulation	REG	I ₀ =1 to 40mA, T _j =25°C	_	16	60	mV
Load regulation	KEGL	I ₀ =1 to 50mA, T _j =25°C	_	36	70	mV
M 1/O 1/ 1/00	V _{DIF (min.)}	V _I =8.3V, I _O =20mA, T _j =25°C		0.07	0.2	V
Minimum I/O voltage difference		V _I =8.3V, I _O =50mA, T _j =25°C	_	0.14	0.3	V
Bias current	I_{bias}	I _O =0mA, T _j =25°C	_	0.8	1.4	mA
Ripple rejection ratio	RR	V _I =9.5 to 11.5V, f=120Hz	48	60		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz	_	140		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C	_	0.43		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

Note2) Unless otherwise specified, V_I=8V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, V_I=9V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, V_I=9.5V, I_O=20mA, C_O=10μF

• AN8009/AN8009M (9V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	8.64	9	9.36	V
Line regulation	REG _{IN}	V _I =9.5 to 15V, T _j =25°C		9	100	mV
Load regulation	REG_{L}	I ₀ =1 to 40mA, T _j =25°C		17	70	mV
		I ₀ =1 to 50mA, T _j =25°C		37	75	mV
Minimum I/O voltage difference	$V_{\text{DIF (min.)}}$	V _I =8.8V, I _O =20mA, T _j =25°C	_	0.07	0.2	V
		V _I =8.8V, I _O =50mA, T _j =25°C		0.14	0.3	V
Bias current	I _{bias}	I ₀ =0mA, T _j =25°C		0.8	1.4	mA
Ripple rejection ratio	RR	V _I =10 to 12V, f=120Hz	47	59		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		150		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.45		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

• AN8010/AN8010M (10V Type)

Parameter	Symbol	Condition	min	typ	max	Unit
Output voltage	Vo	T _j =25°C	9.6	10	10.4	V
Line regulation	REG_{IN}	V _I =10.5 to 16V, T _j =25°C		10	100	mV
Load regulation	REG_L	I ₀ =1 to 40mA, T _j =25°C		18	75	mV
		I ₀ =1 to 50mA, T _j =25°C		40	85	mV
Minimum I/O voltage difference	V _{DIF (min.)}	V _I =9.8V, I _O =20mA, T _j =25°C		0.07	0.2	V
		V _I =9.8V, I _O =50mA, T _j =25°C	_	0.14	0.3	V
Bias current	I_{bias}	I ₀ =0mA, T _j =25°C		0.8	1.4	mA
Ripple rejection ratio	RR	V _I =11 to 13V, f=120Hz	46	58		dB
Output noise voltage	V _{no}	f=10Hz to 100kHz		165		μV
Output voltage temperature coefficient	ΔV _O /Ta	T _j =-30 to+125°C		0.5		mV/°C

Note1) The specified condition $T_j=25^{\circ}C$ means that the test should be conducted with each test time reduced (within 10ms) so that the drift in characteristic value due to a temperature rise at chip junction can be ignored.

■ Application Circuit

- The AN8000/AN8000M series has IC internal gain increased in order to improve performance. When the power line on the output side is long, use a capacitor of 10μF.
 - For the capacitor on the output side, attach it as close to the IC as possible.
- When using at a low temperature, it is recommended to use the capacitors with low internal impedance (for example, tantalum capacitor) for output capacitors.

Note2) Unless otherwise specified, V_I=10V, I_O=20mA, C_O=10μF

Note2) Unless otherwise specified, $V_I=11V$, $I_O=20mA$, $C_O=10\mu F$

■ Characteristic Curve

