Data Science Survival Skills

Homework 8

Homework 8: Machine Learning/AI II

In this week's lecture, we covered the topic Deep Learning. In this homework, you will build a Convolutional Neural Network using TensorFlow.

Fig. 2. Architecture of LeNet-5, a convolutional NN, here used for digits recognition. Each plane is a feature map, i.e., a set of units whose weights are constrained to be identical.

Homework 8: Useful information

Video: Why TensorFlow?

- Keras is an API for defining a model by layers.
 More info: tf.keras, Model building with keras
- MNIST is a size-normalized database of handwritten digits used very often as example in Machine Learning and Deep Learning

Homework 8: Tasks 1/4

 Load the MNIST dataset (train and test set) using your Python script or Jupyter notebook. Load it directly from Keras: https://keras.io/api/datasets/mnist/

Plot a random sample and display its label in the title.
 Remember to set a suitable colormap!

Name five examples of activation functions.

→ Slide: Screenshot of the random sample

→ Slide: List of five activation functions

Homework 8: Tasks 2/4

Build the following CNN using tf.keras.Sequential()
 Hint: You can display it using model.summary()

Table 1: Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i

Stage	Operators	Resolution	#Channels	#Layers
i	$\hat{\mathcal{F}}_i$	$\hat{H}_i \times \hat{W}_i$	\hat{C}_i	\hat{L}_i
1	Conv3x3 & Relu & Max Pooling	28×28	8	3
2	Conv3x3 & Relu & Max Pooling	14×14	16	3
3	Conv3x3 & Relu	7×7	32	2
4	Flatten	7×7	1568	1
5	Dense & Relu & Dropout(0.2)	1×1568	128	3
6	Dense & Softmax	1×128	10	2

→ Slide: Screenshot of your code snippet where you built the model

Homework 8: Tasks 3/4

Compile the model using the following parameters:

```
"adam", "sparse_categorical_crossentropy", metrics=['acc']
```

- Answer these questions:
 - a) What is adam?
 - b) What does *sparse_categorical_crossentropy* mean?

Train (fit) the model for 10 epochs. What does "epoch" mean?

→ Slide: Your answers to the above questions

Homework 8: Tasks 4/4

Evaluate the performance of your fancy CNN!

- → Slide: Your plot showing the training loss over the epochs
- → Slide: The test accuracy your CNN achieves

Homework 8: Example

0.025

Answers to all questions

• • •

...

Report here the final test accuracy: 99%

15

Label: 2

Homework: Requirements

You must complete **all** homework assignments (**unless otherwise specified**) following these guidelines:

- One slide/page.
- **PDF** file format only.
- It has to contain your name and student (matriculation) number and IdM in the down-left corner.
- Font: Arial, Font-size: > 10 Pt.
- Answer all the questions and solve all the tasks requested.
- Be careful with plagiarism. Repeated solutions will not be accepted!

And we are done!

Thank you