Digital Circuits and Systems

State Machines 1

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

JK Flipflop

CLK	J	K	Q*
	0	0	Q
_	0	1	0
_	1	0	1
	1	1	Q

J: Set

K: Reset

J=K=0: Keep old value

J=K=1: toggle

Example:

1. Input/Output logic equations:

$$J_{0} = Q_{1}\overline{X}; \quad K_{0} = Q_{1}X;$$

$$J_{1} = X; \quad K_{1} = \overline{X \oplus Q_{0}} = XQ_{0} + \overline{X}\overline{Q_{0}}$$

2. State table:

$$J_0 = Q_1 \overline{X};$$
 $K_0 = Q_1 X;$ $J_1 = X;$ $K_1 = \overline{X \oplus Q_0} = XQ_0 + \overline{X} \overline{Q_0}$

Input	Present State		Flip-flop Inputs			Next State		Out		
X	Q_1	Q_0	J_1	K_1	J ₀	<i>K</i> ₀	Q ₁ *	Q ₀ *	(none)	
0	0	0	0	1	0	0				
0	0	1	0	0	0	0				
0	1	0	0	1	1	0				
0	1	1	0	0	1	0				
1	0	0	1	0	0	0				
1	0	1	1	1	0	0				
1	1	0	1	0	0	1				
1	1	1	1	1	0	1		 I		

3. State Diagram:

Sequential Logic Synthesis

- Sequential network design is simply the inverse process of sequential network analysis:
 - Construct a state diagram
 - 2. Choose a set of state variables and assign state-variable combinations to the named states in the state diagram.
 - 3. Construct the excitation table: For a given transition from a present state to its next state, this table indicates the inputs that must be applied to the flip-flops.
 - Derive the boolean equations for flip-flop excitation and the explicit outputs.
 - 5. Draw a logic diagram to implement the above equations using logic gates and flip-flops.

Flip-flop Excitation Tables

Excitation tables for D and T flip-flops:

Q	Q*	D
0	0	0
0	1	1
1	0	0
1	1	1

T
0
1
1
0

Excitation table for JK flip-flop:

Q	Q*	J	K	J	K
0	0	0	0 or 1	0	X
0	1	1	0 or 1	1	X
1	0	0 or 1	1	X	1
1	1	0 or 1	0	X	0

Design a 2-bit binary counter using D flip-flops.

□ State diagram:

Excitation table:

Input	Present State		Next State		Flip-flop Inputs		Output
(none)	Q_1	Q_{0}	Q_1^*	Q ₀ *	D_1	D_0	Output (none)
	0	0	0	1	0	1	
	0	1	1	0	1	0	
	1	0	1	1	1	1	
	1	1	0	0	0	0	

Circuit implementation:

End of Week 6: Module 29

Thank You