Network Structure

Kyra Bankhead

2023-03-02

In this markdown I will:

- 1. Create the network structure from the association matrix.
- 2. Evaluate local and global network metrics.
- 3. Permutate the link weights using the WalkTrap algorithm.
- 4. Evaluate modularity.

PART 1: Network Structure

```
## load all necessary packages
require(igraph) # Look at Dai Shizuka/Jordi Bascompte
require(tnet) # For weights
require(sna)
require(statnet)
\# Read in social association matrix
setwd("C:/Users/bankh/My_Repos/Dolphins/data")
# Read in social association matrix
nxn <- readRDS("nxn.RData")</pre>
# Test one year at a time
year <- 1
nxn <- nxn[[year]]</pre>
## Create social network
ig <- graph_from_adjacency_matrix(as.matrix(nxn),</pre>
                                   mode = c("undirected"),
                                   weighted = TRUE,
                                   diag = F, # No loops
                                   add.colnames = T,
                                   add.rownames = NA)
# Plot network
plot(ig,
     layout = layout_with_fr(ig),
     # link weight, rescaled for better visualization
     edge.width= E(ig)$weight*4,
```

```
# node size as degree (rescaled)
vertex.size= sqrt(igraph::strength(ig, vids = V(ig), mode = c("all"), loops = TRUE) *10 ),
vertex.frame.color= NA, #"black",
vertex.label.family = "Helvetica",
vertex.label.color="black",
vertex.label.cex=0.8,
vertex.label.dist=2,
# edge.curved=0,
vertex.frame.width=0.01,
```


PART 2: Network Metrics

Local Network Metrics

- Local clustering coefficient: Measure of the prevalence of node clusters in a network.
- Betweeness: A high betweenness means that the individual is in the communication path of other individuals, therefore, the individuals it interacts with, depend on its presence.
- Closeness: The larger the closeness centrality is for an individual, the more rapidly and easily it can influence the behavior of others.
- Degree: # Individual's associates
- Strength: Total strength of an individuals' associations

Global Network Metrics

- Size: Number of nodes.
- Density/Connectance: Proportion of realized links (observed/possible links).
- Average Path Length (geodesic): Measures the shortest distance between two random nodes then average shortest pathways between all pairs of nodes. Shows how far apart any pair of individuals will be on average.
- Geodesic path: the shortest path through the network from one node to another (1).
- Diameter: Length of the longest geodesic path (d).
- Clustering coefficient: Tendency of nodes to cluster in the network (Are the friends' friends also friends?).

PART 3: Permutate Link Weights

Walktrap algorithm breakdown with one interation

Permutate with multiple interations

```
# Run modularity permutations 1000 times
iter = 1000
randmod = numeric()
for(i in 1:iter){
  # Save the edgelist into a new object
  auxrand <- el
  # igraph format
  igrand <- graph.edgelist(auxrand[,1:2]) # Create a network from the list of nodes
  E(igrand)$weight <- auxrand[,3] # Add link weights</pre>
  igrand <- as.undirected(igrand) # Make undirected graph</pre>
  # Permutate the link weights
  E(igrand)$weight <- sample(E(igrand)$weight)</pre>
  # calculate the modularity Q-value
 rand_walk <- walktrap.community(igrand)</pre>
  randmod[i] <- modularity(rand_walk) # Save Q-value into a vector</pre>
}
## Calculate the 95% confidence interval (two-tailed test)
ci = quantile(randmod, probs=c(0.025, 0.975), type=2)
## Compare with the empirical Q-value
data.frame(Q=modularity(dolphin_walk), LowCI=ci[1], HighCI=ci[2])
```

```
## Q LowCI HighCI
## 2.5% 0.5782209 0.2496046 0.3606259
```

```
## Visualization random Q distribution
hist(randmod, xlim=c(0,1))
### Empirical Q-value
abline(v= modularity(dolphin_walk), col="red")
### 2.5% CI
abline(v= ci[1], col="blue")
### 97.5% CI
abline(v= ci[2], col="blue")
```

Histogram of randmod

We can reject the null hypothesis that individuals cluster at random and conclude that there is evidence that modularity is higher than what we would expect by chance.

PART 4: Modularity

• Newman's Q modularity: Stopping parameter Q removes links according to the betweenness.

```
# Create a network from the first two columns
dolp_ig <- graph.edgelist(el[,1:2])
# Add the edge weights to this network by assigning an edge attribute called 'weight'.
E(dolp_ig)$weight <- as.numeric(el[,3])
# Create undirect network
dolp_ig <- as.undirected(dolp_ig)</pre>
```

```
# Plot
plot(dolp_ig, edge.width=E(dolp_ig)$weight*4, vertex.size=10, vertex.label=NA, edge.curved=F)
```


Since these modules can represent functional units, I need to test which mechanisms drive the modular topology by creating null models.