

Ompliu la taula:

Amb quina altra nomenclatura podríem trobar les dades a l'etiqueta de la memòria?	PC4 - 19200		
Quantitat total de memòria principal?	48 GBytes		
Número de mòduls de memòria?	3		
Freqüència real del BUS?	1465.8 MHz		
Ample banda teòric de cada mòdul de M.P.?	19200 MB/s		
Ample banda teòric del sistema M.P.?	19200 x 2 = 38400 MB/s (dual)		
Aquest processador fa servir un sistema de comunicació "Single Channel"," Dual Channel"?	Dual Channel		
Quants cicles de bus es necessiten per fer la transferència de 8 Bytes?	RAS to CAS + CAS Latency + data transfer* 18 + 16 + 1 = 35		
Quants cicles de bus es necessiten per fer la transferència de 16 Bytes contigus?	18 + 16 + 1 = 35		
Quants cicles de bus es necessiten per fer la transferència de 64 Bytes contigus?	18 + 16 + 4 = 38 (64/16 = 4 bloques a enviar)		

```
mida caché = 48 GBytes

mida mòdul = 16 GBytes

num mòduls = \frac{mida\ caché}{mida\ mòdul} = \frac{48}{16} = 3 mòduls
```

BW sistema $MP = BW \mod MP \times number of data transper per clock <math>(2 - DDR) \times 64 (memmory bus interface width) \times number of interfaces$

 $DDR - PC : DDR \times 8$

^{*}Bit datapath?? DDR – bit datapath de 64 bits. Por cada clock transportas 64 bits. La SSDRAM envia esos 64 bits por cada subida y cada bajada de flanco, así que en total se envían 16 bytes por clock.

EC – Qüestionari 10

Standard name	Memory clock (MHz)	I/O bus clock (MHz)	Data rate (MT/s)	Module name	Peak trans- fer rate (MB/s)	Timings CL-tRCD-tRP	CAS latency (ns)
DDR4-1600J* DDR4-1600K DDR4-1600L	200	800	1600	PC4-12800	12800	10-10-10 11-11-11 12-12-12	12.5 13.75 15
DDR4-1866L* DDR4-1866M DDR4-1866N	233.33	933.33	1866.67	PC4-14900	14933.33	12-12-12 13-13-13 14-14-14	12.857 13.929 15
DDR4-2133N* DDR4-2133P DDR4-2133R	266.67	1066.67	2133.33	PC4-17000	17066.67	14-14-14 15-15-15 16-16-16	13.125 14.063 15
DDR4-2400P* DDR4-2400R DDR4-2400T DDR4-2400U	300	1200	2400	PC4-19200	19200	15-15-15 16-16-16 17-17-17 18-18-18	12.5 13.32 14.16 15
DDR4-2666T DDR4-2666U DDR4-2666V DDR4-2666W	333.33	1333.33	2666.67	PC4-21300	21333.33	17-17-17 18-18-18 19-19-19 20-20-20	12.75 13.50 14.25 15
DDR4-2933V DDR4-2933W DDR4-2933Y DDR4-2933AA	366.67	1466.67	2933.33	PC4-23466	23466.67	19-19-19 20-20-20 21-21-21 22-22-22	12.96 13.64 14.32 15
DDR4-3200W DDR4-3200AA DDR4-3200AC	400	1600	3200	PC4-25600	25600	20-20-20 22-22-22 24-24-24	12.5 13.75 15

- 2. Considerem un computador format per una CPU, una memòria cau i una memòria principal. Considereu una memòria principal construïda amb xips SDRAM. Les dades es transfereixen en ràfegues tal com es mostra a la figura, llevat que la longitud de ràfega és de 8. Suposem que 32 bits de dades es transfereixen en paral·lel. Si s'utilitza un rellotge de 400 MHz, quant de temps triga a transferir:
 - **A.** 32 bytes de dades
 - **B.** 64 bytes de dades
 - C. Quina és la latència en cada cas?

(Suposeu, en cas de necessitar-ho, que les dades es troben en la mateixa fila)

Tiempo de clock =
$$\frac{1}{f} = \frac{1}{400 \times 10^6} = 2.5 \text{ ns} = (2.5 \times 10^{-9} \text{s})$$

Α

Adress: para obtener la fila tardas 3 ciclos. para obtener la columna tardas 2 ciclos RASTOCAS = 3 ciclos (desde que se acaba el RAS hasta que empieza el CAS CASLATENCY = 2 ciclos (desde que acaba el CAS hasta que se empiezan a enviar datos)

Para enviar un cacho de datos tardas 4 Bytes por cacho, cada cacho = 32 bits = 4 Bytes Tardas 1 ciclo en enviar un cacho, queremos enviar 8 cachos → 8 ciclos de reloj para enviar los cachos

cicles de bus = 3 + 2 + 8 = 13 cicles per enviar les dades temps total = cicles \times tiempo de clock = $13 \times 2.5 = 32.5$ ns

В

Se pueden enviar 32 Bytes en una ráfaga. 4 Bytes por cacho, hay 8 cachos. Para enviar 64 Bytes nos harán falta 2 ráfagas.

cicles de bus = row + col + datos + col + datoscicles de bus = 3 + 2 + 8 + 2 + 8 = 23 cicles per enviar les dades temps total = cicles × tiempo de clock = $23 \times 2.5 = 57.5$ ns

 C

Latencia = desde que lanzas el RAS hasta que lanzas el primer dato (RAS TO CAS + CAS Latency) $Latencia = (RAS\ TO\ CAS + CAS\ Latency) \times tiempo\ de\ clock = 5 \times 2.5 = 12.5$

- **3.** Considereu una llarga sèrie d'accessos a un disc amb un temps mitjà de cerca de 6 ms i un retard de rotació mitjà de 3 ms. La mida mitjana d'un bloc al què s'accedeix és de 8 KiB. La velocitat de transferència de dades del disc és de 34 MiB / segon.
- **A.** Suposant que els blocs de dades estan ubicats a l'atzar al disc, calculeu el percentatge mitjà del temps total ocupat per operacions de cerca i retards de rotació.
- **B.** Repetiu la part (a) per la situació en què es disposen els accessos al disc, de manera que en el 90 per cent dels casos, el següent accés serà a un bloc de dades del mateix cilindre.
- * temps mitjà de cerca = temps que trigues en trobar un arxiu al disc
- * retard de rotació mitjà = temps que trigues en fer una rotació -> per trobar coses al disc s'han de fer rotacions

 $t_{med\ cerca} = 6\ ms$ $t_{med\ rotacio} = 3\ ms$ $mida\ mitjana\ d'un\ bloc = 8\ KiB$ $v_{transferencia} = 34\ MiB/s$

A.

$$t_{transferencia} = \frac{mida \ mitjana \ d'un \ bloc}{v_{transferencia}} = \frac{8 \ KiB}{34000 \ KiB/s} = \mathbf{0.235} \ ms$$

$$t_{total} = t_{med\;cerca} + t_{med\;rotacio} + t_{transferencia}$$

$$t_{total} = 6ms + 3ms + 0.235ms = 9.235 ms$$

$$porcentaje = \frac{t_{med\ cerca} + t_{med\ rotacio}}{t_{total}} = \frac{9}{9.235} = 0.974 = \textbf{97.4}\%$$

<u>B.</u>

Me quiero suicidar

El 90% de los casos ya estan en el mismo sitio. Solo seria 0.9*3 = 2.7

3 = lo que tarda en rotar

El 10% restante es 0.1*9 = 0.9

$$9 = t_{med\ cerca} + t_{med\ rotacio}$$

$$t_{total} = 2.7 + 0.9 + 0.235 = 3.835 \,\mathrm{ms}$$

$$porcentaje = \frac{2.7 + 0.9}{3.835} = 0.9387 = 93.87\%$$