### **Descriptive Analysis**

#### R for Stata Users

Luiza Andrade, Rob Marty, Rony Rodriguez-Ramirez, Luis Eduardo San Martin, Leonardo Viotti DIME |The World Bank

24 May 2022



### Table of contents

- 1. Quick summary statistics
- 2. Descriptive statistics tables
- 3. Exporting descriptive statistics tables
- 4. Formatting tables
- 5. Aggregating observations
- 6. Running regressions
- 7. Exporting regression tables

### Workflows for outputs

### Not reproducible

Anything that requires

- Copy-pasting
- ✓ Manual formatting after exported

### Reproducible

- R Markdown: dynamic document containing code and text that is exported directly from R into PDF, HTML, Word, Power Point and other formats
- LaTeX: typesetting system used for scientific publications that automatically reloads tables and figures every time the document is rendered

### Setting the stage

Load the packages that we will use today

```
# Install new packages
install.packages("skimr")
install.packages("lfe")
install.packages("huxtable")
install.packages("openxlsx")
# Load packages
library(here)
library(tidyverse)
library(modelsummary)
library(lfe)
library(huxtable)
library(openxlsx)
```

## Setting the stage

Load the data that we will use today: Stata's census dataset

```
# Load data
census <-
read_rds(
here(
    "DataWork",
    "DataSets",
    "Final",
    "census.rds"
)</pre>
```

02:00

### Taking a peek at the data

```
glimpse(census)
```

```
## Rows: 50
## Columns: 13
## $ state
             <chr> "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Co~
             <chr> "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA", "~
## $ state2
## S region
             <fct> South, West, West, South, West, West, NE, South, South, South~
## $ pop
             <int> 3893888. 401851. 2718215. 2286435. 23667902. 2889964. 3107576~
## $ poplt5
             <int> 296412, 38949, 213883, 175592, 1708400, 216495, 185188, 41151~
## $ pop5 17
             <int> 865836. 91796. 577604. 495782. 4680558. 592318. 637731. 12544~
## $ pop18p
             <int> 2731640, 271106, 1926728, 1615061, 17278944, 2081151, 2284657~
## $ pop65p
             <int> 440015, 11547, 307362, 312477, 2414250, 247325, 364864, 59179~
## $ popurban <int> 2337713, 258567, 2278728, 1179556, 21607606, 2329869, 2449774~
## $ medage
            <dbl> 29.3. 26.1. 29.2. 30.6. 29.9. 28.6. 32.0. 29.8. 34.7. 28.7. 2~
             <int> 35305, 1604, 21226, 22676, 186428, 18925, 26005, 5123, 104190~
## $ death
## $ marriage <int> 49018, 5361, 30223, 26513, 210864, 34917, 26048, 4437, 108344~
## $ divorce <int> 26745, 3517, 19908, 15882, 133541, 18571, 13488, 2313, 71579,~
```

# Quick summary statistics

### Exploring a dataset

```
summary(x, digits)
```

Equivalent to Stata's codebook. Its arguments are:

- x: the object you want to summarize, usually a vector or data frame
- digits: the number of decimal digits to be displayed

#### Exercise =

Use the summary() function to describe the census data frame.

00:45

### Exploring a dataset

#### summary(census)

```
##
      state
                         state2
                                            region
                                                           pop
                                            : 9
    Length:50
                      Length:50
                                                               401851
##
                                         NE
                                                     Min.
   Class :character
                      Class :character
                                         N Cntrl:12
                                                     1st Ou.: 1169218
##
   Mode :character
                                         South :16
                                                     Median : 3066433
##
                      Mode :character
                                                            : 4518149
##
                                         West
                                                :13
                                                     Mean
##
                                                      3rd Qu.: 5434033
##
                                                            :23667902
                                                      Max.
##
       poplt5
                        pop5_17
                                         pop18p
                                                             pop65p
   Min. : 35998
                     Min. : 91796
                                       Min. : 271106
                                                         Min. : 11547
##
   1st Ou.: 98831
                     1st Qu.: 257949
                                       1st Qu.: 823702
                                                         1st Qu.: 118660
##
   Median : 227468
                     Median : 629654
                                       Median : 2175130
                                                         Median : 370495
##
##
   Mean
          : 326278
                           : 945952
                                             : 3245920
                                                                : 509503
                     Mean
                                       Mean
                                                          Mean
   3rd Qu.: 361321
                                       3rd Qu.: 3858173
##
                     3rd Qu.:1143292
                                                          3rd Qu.: 580087
##
   Max. :1708400
                     Max.: 4680558
                                       Max. :17278944
                                                          Max. : 2414250
##
      popurban
                          medage
                                          death
                                                         marriage
##
   Min. : 172735
                           :24.20
                                      Min. : 1604
                                                      Min. : 4437
                      Min.
   1st Qu.: 826651
                      1st Qu.:28.73
                                      1st Qu.:
                                               9087
                                                       1st Qu.: 14840
   Median : 2156905
                      Median :29.75
                                      Median : 26177
                                                       Median : 36279
```

- summary() can also be used with a single variable.
- When used with continuous variables, it works similarly to summarize in Stata.
- When used with categorical variables, it works similarly to tabulate.

#### Exercise =

Use the summary() function to display summary statistics for a continuous variable in the census data frame.

00:45

#### Exercise =

Use the summary() function to display summary statistics for a continuous variable in the census data frame.

```
summary(census$pop)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 401851 1169218 3066433 4518149 5434033 23667902
```

### Summarizing categorical variables

#### table()

Equivalent to tabulate in Stata, creates a frequency table. Its main arguments are vectors to be tabulated.

#### Exercise =

Use the table() function to display frequency tables for:

- 1. The variable region in the census data frame
- 2. The variables region and state in the census data frame, simultaneously

01:00

## Summarizing categorical variables

### One way tabulation

```
table(census$region)

##

## NE N Cntrl South West
## 9 12 16 13
```

### Two way tabulation

```
table(census$state, census$region)
```

| ## |             |    |   |       |       |      |
|----|-------------|----|---|-------|-------|------|
| ## |             | NE | N | Cntrl | South | West |
| ## | Alabama     | 0  |   | 0     | 1     | 0    |
| ## | Alaska      | 0  |   | 0     | 0     | 1    |
| ## | Arizona     | 0  |   | 0     | 0     | 1    |
| ## | Arkansas    | 0  |   | 0     | 1     | 0    |
| ## | California  | 0  |   | 0     | 0     | 1    |
| ## | Colorado    | 0  |   | 0     | 0     | 1    |
| ## | Connecticut | 1  |   | 0     | 0     | 0    |
| ## | Delaware    | 0  |   | 0     | 1     | 0    |
| ## | Florida     | 0  |   | 0     | 1     | 0    |
| ## | Georgia     | 0  |   | 0     | 1     | 0    |
| ## | Hawaii      | 0  |   | 0     | 0     | 1    |
| ## | Idaho       | 0  |   | 0     | 0     | 1    |
| ## | Illinois    | 0  |   | 1     | 0     | 0    |
| ## | Indiana     | 0  |   | 1     | 0     | 0    |
|    |             |    |   |       |       |      |

# Descriptives tables

### Descriptives tables

#### What if you want to...

- ...export the summary statistics to another software?
- ...customize which statistics to display?
- ...format the table?

### Well, then you will need to go beyond base R

- There are many packages that can be used both for displaying and exporting summary statistics
- Today we will show you a combination of two packages: modelsummary and huxtable
- We chose this combination because together, they can perform all the tasks we are interested in
- In fact, modelsummary can perform most of them by itself -- with the exception of exporting formatted tables to Excel

The package *modelsummary* contains a family of functions called **datasummary** which can be used to create different types of summary statistics tables. These include:

- datasummary\_skim, to create descriptive statistics tables
- datasummary\_balance, to create balance tables
- datasummary\_correlation, to create a correlation table
- datasummary\_crosstab, to create a twoway tabulation
- datasummary, to create customized descriptive statistics tables

### datasummary\_skim()

- data: the data set to be summarized, the only required argument
- output: the type of output desired
- ...: additional options allow for formatting customization, such as including notes and titles

```
datasummary_skim(
  data,
  type = "numeric",
  output = "default",
  histogram = TRUE,
  title = NULL,
  notes = NULL,
  ...
)
```

#### Exercise =

Use datasummary\_skim() to create a descriptive statistics table for the census data

00:45

datasummary\_skim(census)

|          | Unique (#) | Missing (%) | Mean      | SD        | Min      | Median    | Max        |            |
|----------|------------|-------------|-----------|-----------|----------|-----------|------------|------------|
| рор      | 50         | 0           | 4518149.4 | 4715037.8 | 401851.0 | 3066433.0 | 23667902.0 | ■          |
| poplt5   | 50         | 0           | 326277.8  | 331585.1  | 35998.0  | 227467.5  | 1708400.0  | <b>-</b>   |
| pop5_17  | 50         | 0           | 945951.6  | 959372.8  | 91796.0  | 629654.0  | 4680558.0  | <b>-</b> . |
| pop18p   | 50         | 0           | 3245920.1 | 3430531.3 | 271106.0 | 2175130.0 | 17278944.0 | <b>-</b>   |
| pop65p   | 50         | 0           | 509502.8  | 538932.4  | 11547.0  | 370495.0  | 2414250.0  | <b>_</b>   |
| popurban | 50         | 0           | 3328253.2 | 4090177.9 | 172735.0 | 2156905.0 | 21607606.0 |            |
| medage   | 37         | 0           | 29.5      | 1.7       | 24.2     | 29.8      | 34.7       |            |
| death    | 50         | 0           | 39474.3   | 41742.3   | 1604.0   | 26176.5   | 186428.0   | <b>-</b>   |
| marriage | 50         | 0           | 47701.4   | 45130.4   | 4437.0   | 36279.0   | 210864.0   | <b>-</b>   |
| divorce  | 50         | 0           | 23679.4   | 25094.0   | 2142.0   | 17112.5   | 133541.0   | <b>-</b>   |

- modelsummary summarizes only numeric variables by default.
- To summarize categorical variables, use the argument type:

```
datasummary_skim(census, type = "categorical")
```

| data    | N  | %    |
|---------|----|------|
| NE      | 9  | 18.0 |
| N Cntrl | 12 | 24.0 |
| South   | 16 | 32.0 |
| West    | 13 | 26.0 |

You can also customize the variables and statistics to include using a **formula** with the <code>datasummary()</code> function.

### datasummary()

- **formula:** a two-sided formula to describe the table: rows ~ columns
- data: the data set to be summarized
- output: the type of output desired
- ...: additional options allow for formatting customization

```
datasummary(
  var1 + var2 + var3 ~ stat1 + stat2 + stat3 + stat4,
  data = data
)
```

#### Exercise =

Create a table showing the number of observations, mean, standard deviation, minimum, maximum and median value for all the population, number of deaths, number of marriage and number of divorces in the census data.

```
datasummary(
  var1 + var2 + var3 ~ stat1 + stat2 + stat3 + stat4,
  data = data
)
```

Tip: some of the allowed statistics are N, Mean, SD, Min, Max, Median, P0, P25, P50, P75, P100, Histogram

```
datasummary(
  pop + death + marriage + divorce ~ N + Mean + SD + Median + Min + Max,
  data = census
)
```

|          | N  | Mean       | SD         | Median     | Min    | Max      |
|----------|----|------------|------------|------------|--------|----------|
| pop      | 50 | 4518149.44 | 4715037.75 | 3066433.00 | 401851 | 23667902 |
| death    | 50 | 39474.26   | 41742.35   | 26176.50   | 1604   | 186428   |
| marriage | 50 | 47701.40   | 45130.42   | 36279.00   | 4437   | 210864   |
| divorce  | 50 | 23679.44   | 25094.01   | 17112.50   | 2142   | 133541   |

```
datasummary(
  All(census) ~ N + Mean + SD + Median + Min + Max,
  data = census
)
```

|          | N  | Mean       | SD         | Median     | Min    | Max      |
|----------|----|------------|------------|------------|--------|----------|
| рор      | 50 | 4518149.44 | 4715037.75 | 3066433.00 | 401851 | 23667902 |
| poplt5   | 50 | 326277.78  | 331585.14  | 227467.50  | 35998  | 1708400  |
| pop5_17  | 50 | 945951.60  | 959372.83  | 629654.00  | 91796  | 4680558  |
| pop18p   | 50 | 3245920.06 | 3430531.31 | 2175130.00 | 271106 | 17278944 |
| рор65р   | 50 | 509502.80  | 538932.38  | 370495.00  | 11547  | 2414250  |
| popurban | 50 | 3328253.18 | 4090177.93 | 2156905.00 | 172735 | 21607606 |
| medage   | 50 | 29.54      | 1.69       | 29.75      | 24.20  | 34.70    |
| death    | 50 | 39474.26   | 41742.35   | 26176.50   | 1604   | 186428   |
| marriage | 50 | 47701.40   | 45130.42   | 36279.00   | 4437   | 210864   |

### Balance tables with modelsummary

```
census_rct <-
 census %>%
 mutate(
   treatment = as.numeric(runif(n()) > 0.5)
  ) 응>응
 select(
    -starts_with("state")
datasummary_balance(
 ~ treatment,
 data = census_rct
```

# Balance tables with modelsummary

|          |         | 0         |           |           | 1         |                |            |
|----------|---------|-----------|-----------|-----------|-----------|----------------|------------|
|          |         | Mean      | Std. Dev. | Mean      | Std. Dev. | Diff. in Means | Std. Error |
| pop      |         | 5757007.7 | 5646595.8 | 3176053.0 | 3015272.8 | -2580954.8     | 1266940.1  |
| poplt5   |         | 407722.2  | 404115.1  | 238046.3  | 202748.8  | -169675.9      | 89408.7    |
| pop5_17  |         | 1196229.4 | 1146488.1 | 674817.3  | 620154.1  | -521412.1      | 258030.7   |
| рор18р   |         | 4153056.1 | 4104355.7 | 2263189.3 | 2196259.6 | -1889866.8     | 921354.7   |
| pop65p   |         | 652173.7  | 634232.4  | 354942.6  | 365532.8  | -297231.1      | 145046.3   |
| popurban |         | 4399925.8 | 5045363.6 | 2167274.5 | 2295045.8 | -2232651.2     | 1094775.5  |
| medage   |         | 30.2      | 1.5       | 28.8      | 1.7       | -1.3           | 0.4        |
| death    |         | 50559.7   | 48435.0   | 27465.0   | 29542.5   | -23094.7       | 11251.4    |
| marriage |         | 62722.3   | 53703.1   | 31428.8   | 25942.3   | -31293.5       | 11788.4    |
| divorce  |         | 31411.7   | 31378.8   | 15302.8   | 11423.5   | -16108.9       | 6580.9     |
|          |         | N         | Pct.      | N         | Pct.      |                |            |
| region   | NE      | 6         | 23.1      | 3         | 12.5      |                |            |
|          | N Cntrl | 6         | 23.1      | 6         | 25.0      |                |            |
|          | South   | 10        | 38.5      | 6         | 25.0      |                |            |
|          | West    | 4         | 15.4      | 9         | 37.5      |                |            |

# Exporting tables

### Exporting modelsummary table to LaTeX

To export the tables we created, we can simply use the option output:

```
descriptives <-
 All(census) ~ N + Mean + SD + Median + Min + Max
datasummary(
  descriptives,
  data = census,
 output = here( # file path to output file
   "DataWork",
   "Output",
    "Raw",
    "summary-stats.tex"
```

## Exporting modelsummary table

Other valid output formats include:

- .docx
- .pptx
- .html
- .md

### Exporting modelsummary table

Other valid output formats include:

- .docx
- .pptx
- .html
- .md
- ... but not .xls

### Exporting modelsummary table to Excel

- To export the table to Excel, we will first convert it into an object of type huxtable
- huxtable is another R package, one that allows not only for exporting tables, but also for extensive customization
- Before getting to the customization part, however, let's export this table:

```
# Create the huxtable object
summary stats table <-
  datasummary(
    descriptives,
    data = census,
    output = "huxtable"
# Export it to Excel
quick_xlsx(
  summary stats table, # object to be exported
  file = here( # file path to output file
    "DataWork",
    "Output",
    "Raw",
    "summary-stats.xlsx"
```

## **Exporting tables**

A similar code can also export the same table to a self-standing LaTeX document

```
# Export to LaTeX
quick_latex(
    summary_stats_table,
    file = here(
        "DataWork",
        "Output",
        "Raw",
        "summary-stats.tex"
)
```

### Exporting tables to different Excel tabs

```
# Start a new workbook
wb <- createWorkbook()
# Add one sheet to it
wh <-
  as Workbook(
    summary_stats_table,
    Workbook = wb,
    sheet = "Summary stats"
# Add another sheet to it
wb <-
  as_Workbook(
   hux("Mock", "table"),
    Workbook = wb,
    sheet = "Other sheet"
# Save the workhook
saveWorkbook(
  wb, # object to be saved
  file = here( # file path to output file
    "DataWork",
    "Output",
    "Raw",
    "summary-stats.xlsx"
  overwrite = TRUE # replace existing file
```

### Exporting tables to LaTeX fragment

```
summary_stats_table %>%
print_latex() %>% # See LaTeX code

# Save LaTeX code
capture.output(
file = here(
    "DataWork",
    "Output",
    "Raw",
    "summary-stats.tex"
)
)
```

You will also need to load the required LaTeX packages. To copy the code that creates a preamble with all of them, use this code:

```
report_latex_dependencies()
```

# Formatting tables

### Beautifying tables

- huxtable also allows you to customize table formatting so it can be exported with the same layout to multiple software
- Before we do that, however, we will create a version of the data where the variable names are the Stata labels

```
# Fxtract variable labels from data frame
labels <- names(census)
names(labels) <- attributes(census)$var.labels</pre>
# Rename the variables
census labelled <-
  census %>%
  rename(
   labels
# Create a labelled summary table
summary stats table <-
  datasummary(
    All(census_labelled) ~ N + Mean + SD + Median + Min + Max,
    data = census_labelled,
    output = "huxtable"
```

### Beautifying tables

The code below shows the table summary\_stats\_table can be formatted

```
# Format table
summary_stats_table %>%
set_header_rows(1, TRUE) %>% # Use first row as table header
set_header_cols(1, TRUE) %>% # Use first column as row header
set_number_format(everywhere, 2:ncol(.), "%9.0f") %>% # Don't round large numbers
set_align(1, everywhere, "center") %>% # Centralize cells in first row
theme_basic() # Set a theme for quick formatting
```

|                    | N  | Mean    | SD      | Median  | Min    | Мах      |
|--------------------|----|---------|---------|---------|--------|----------|
| Population         | 50 | 4518149 | 4715038 | 3066433 | 401851 | 23667902 |
| Pop, < 5 year      | 50 | 326278  | 331585  | 227468  | 35998  | 1708400  |
| Pop, 5 to 17 years | 50 | 945952  | 959373  | 629654  | 91796  | 4680558  |
| Pop, 18 and older  | 50 | 3245920 | 3430531 | 2175130 | 271106 | 17278944 |
| Pop, 65 and older  | 50 | 509503  | 538932  | 370495  | 11547  | 2414250  |
| Urban population   | 50 | 3328253 | 4090178 | 2156905 | 172735 | 21607606 |
| Median age         | 50 | 30      | 2       | 30      | 24     | 35       |
| Number of deaths   | 50 | 39474   | 41742   | 26177   | 1604   | 186428   |
|                    |    |         |         |         |        |          |

### Export beautified tables

```
quick_xlsx(
  summary_stats_table,
  file = here(
    "DataWork",
    "Output",
    "Raw",
    "summary-stats-basic.xlsx"
quick_latex(
  summary_stats_table,
  file = here(
    "DataWork",
    "Output",
    "Raw",
    "summary-stats-basic.tex"
```

## Before

| 4  | Α          | В       | С       | D       | Е      | F        |
|----|------------|---------|---------|---------|--------|----------|
| 1  | skim_varia | Mean    | Median  | SD      | Min    | Max      |
| 2  | рор        | 4520000 | 3070000 | 4720000 | 402000 | 23700000 |
| 3  | poplt5     | 326000  | 227000  | 332000  | 36000  | 1710000  |
| 4  | pop5_17    | 946000  | 630000  | 959000  | 91800  | 4680000  |
| 5  | pop18p     | 3250000 | 2180000 | 3430000 | 271000 | 17300000 |
| 6  | рор65р     | 510000  | 370000  | 539000  | 11500  | 2410000  |
| 7  | popurban   | 3330000 | 2160000 | 4090000 | 173000 | 21600000 |
| 8  | medage     | 29.5    | 29.8    | 1.69    | 24.2   | 34.7     |
| 9  | death      | 39500   | 26200   | 41700   | 1600   | 186000   |
| 10 | marriage   | 47700   | 36300   | 45100   | 4440   | 211000   |
| 11 | divorce    | 23700   | 17100   | 25100   | 2140   | 134000   |

## After

| <b>⊿</b> A             | В       | С       | D       | Е      | F        |
|------------------------|---------|---------|---------|--------|----------|
| 1 Variable             | Mean    | Median  | SD      | Min    | Max      |
| 2 Population           | 4518149 | 3066433 | 4715038 | 401851 | 23667902 |
| 3 Pop, < 5 year        | 326278  | 227468  | 331585  | 35998  | 1708400  |
| 4 Pop, 5 to 17 years   | 945952  | 629654  | 959373  | 91796  | 4680558  |
| 5 Pop, 18 and older    | 3245920 | 2175130 | 3430531 | 271106 | 17278944 |
| 6 Pop, 65 and older    | 509503  | 370495  | 538932  | 11547  | 2414250  |
| 7 Urban population     | 3328253 | 2156905 | 4090178 | 172735 | 21607606 |
| 8 Median age           | 30      | 30      | 2       | 24     | 35       |
| 9 Number of deaths     | 39474   | 26177   | 41742   | 1604   | 186428   |
| 10 Number of marriages | 47701   | 36279   | 45130   | 4437   | 210864   |
| 11 Number of divorces  | 23679   | 17113   | 25094   | 2142   | 133541   |

# Other themes to play with

- If you want to show aggregated statistics, the function summarise is a powerful tool.
- It is similar to skim in that it calculates a series of statistics for a data frame.
- However, it does not have pre-defined statistics, so it requires more manual input.
- On the other hand, its output is a regular data frame, so it is also useful to create constructed data sets.
- Its Stata equivalent would be collapse

```
summarise(.data, ...,)
```

- data: the data frame to be summarized
- ...: Name-value pairs of summary functions. The name will be the name of the variable in the result.

The "name-value" pairs mentioned under ... look like this: new\_variable = stat(existing\_variable), where stat takes the
same functions as sfl

```
region_stats <-
  census %>%
  group_by(region) %>%
  summarise(
    `Number of States` = n_distinct(state),
    `Total Population` = sum(pop)
)
```

| region  | Number of States | <b>Total Population</b> |
|---------|------------------|-------------------------|
| NE      | 9                | 49135283                |
| N Cntrl | 12               | 58865670                |
| South   | 16               | 74734029                |
| West    | 13               | 43172490                |

#### Exercise =

Recreate the region\_stats data set, now including the average and the standard deviation of the population.

01:30

```
region_stats <-
  census %>%
  group_by(region) %>%
  summarise(
    `Number of States` = n_distinct(state),
    `Total Population` = sum(pop),
    `Average Population` = mean(pop),
    `SD of Population` = sd(pop)
)
```

| region  | Number of States | Total Population | Average Population | SD of Population |
|---------|------------------|------------------|--------------------|------------------|
| NE      | 9                | 49135283         | 5459476            | 5925235          |
| N Cntrl | 12               | 58865670         | 4905473            | 3750094          |
| South   | 16               | 74734029         | 4670877            | 3277853          |
| West    | 13               | 43172490         | 3320961            | 6217177          |

#### Exercise =

Use huxtable to format and export the object region\_stats.

02:00

```
region_stats_table <-
 region_stats %>%
 rename(Region = region) %>%
 as_hux %>%
  set_header_cols("Region", TRUE) %>%
  theme_bright()
quick_xlsx(
 region_stats_table,
   file = here(
     "DataWork",
     "Output",
     "Raw",
     "region-stats.xlsx"
```

# Ok, can we run some regressions now?!

The base R command for linear regressions is called lm

### lm(formula, data, subset, weights, ...)

- formula: an object of class "formula" containing a symbolic description of the model
- data: a data frame containing the variables indicated in the formula
- subset: an optional vector specifying a subset of observations to be used in the regression
- weights: an optional vector of weights to be used in the regression

#### Formulas can take three specifications:

- $y \sim x1 + x2$  regresses variable y on covariates x1 and x2
- y ~ x1:x2 regresses variable y on the interaction of covariates x1 and x2
- $y \sim x1*x2$  is equivalent to  $y \sim x1 + x2 + x1:x2$

#### Exercise =

Using the **census** data, run a regression of the number of divorces on population, urban population and number of marriages.

```
lm(y \sim x1 + x2, data)
```

01:00

#### Exercise =

Using the **census** data, run a regression of the number of divorces on population, urban population and number of marriages.

```
reg1 <-
lm(
   divorce ~ pop + popurban + marriage,
   census
)</pre>
```

- The output of regression commands is a list of relevant information.
- By default, it prints only a small portion of this information.
- The best way to visualize results is to store this list in an object and then access its contents using the function summary

## Residual standard error: 7466 on 46 degrees of freedom
## Multiple R-squared: 0.9169, Adjusted R-squared: 0.9115
## F-statistic: 169.2 on 3 and 46 DF, p-value: < 2.2e-16</pre>

```
reg1 <-
  lm(
    divorce ~ pop + popurban + marriage,
    census
summary(reg1)
## Call:
## lm(formula = divorce ~ pop + popurban + marriage, data = census)
## Residuals:
       Min
                10 Median 30
  -22892.3 -1665.1 796.5 4138.0 17212.2
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.207e+02 1.838e+03 0.066
                                         0.948
          1.044e-03 1.633e-03 0.639
                                          0.526
## pop
## popurban 1.954e-03 1.796e-03 1.088
                                           0.282
## marriage 2.587e-01 5.958e-02 4.342 7.7e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The lfe command felm allows for more flexibility in model specification

### felm(formula, data, subset, weights, ...)

- formula: an object of class "formula" containing a symbolic description of the model
- data: a data frame containing the variables indicated in the formula
- subset: an optional vector specifying a subset of observations to be used in the regression
- weights: an optional vector of weights to be used in the regression

Formulas for felm are more complex, and take the following format: y ~ x1 + x2 | fe1 + fe2 | (Q|W ~ iv3+iv4) | clu1 + clu2

- $y \sim x1 + x2$  takes all the same formulas as lm
- fel + fel list the variables to be included as fixed effects
- (Q|W ~ iv3 + iv4) uses instruments iv3 and iv4 for variables Q and W
- clu1 + clu2 indicates that standard errors should be clustered using variables clu1 and clu2

#### Exercise =

Using the **census** data, run a regression of the number of divorces on population, urban population and number of marriages controlling for region fixed effects.

```
felm(
   y ~ x1 + x2 | fe1 + fe2 | 0 | 0,
   data
)
```

01:00

#### Exercise =

Using the **census** data, run a regression of divorce on population, urban population and number of marriages controlling for region fixed effects.

```
reg2 <-
felm(
    divorce ~ pop + popurban + marriage | region | 0 | 0,
    census
)
summary(reg2)</pre>
```

```
##
## Call:
## felm(formula = divorce ~ pop + popurban + marriage | region | 0 | 0, data = census)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
reg2 <-
  felm(
    divorce ~ pop + popurban + marriage | region | 0 | 0.
    census
summary(reg2)
## Call:
     felm(formula = divorce ~ pop + popurban + marriage | region | 0 | 0, data = census)
## Residuals:
     Min
            10 Median 30 Max
  -17919 -3112 -448 3047 13830
## Coefficients:
           Estimate Std. Error t value Pr(>|t|)
           0.0003951 0.0017881 0.221 0.82615
## pop
## popurban 0.0035532 0.0019981 1.778 0.08243 .
## marriage 0.1836593 0.0580271 3.165 0.00285 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6748 on 43 degrees of freedom
## Multiple R-squared(full model): 0.9365 Adjusted R-squared: 0.9277
## Multiple R-squared(proj model): 0.9354 Adjusted R-squared: 0.9264
## F-statistic(full model):105.8 on 6 and 43 DF, p-value: < 2.2e-16
## F-statistic(proj model): 207.7 on 3 and 43 DF, p-value: < 2.2e-16
```

### Some notes on regressions

- Whenever a factor is included in the list of covariates, it is treated as a categorical variable, i.e., as if you had written i.x in Stata.
- Whenever a boolean is included in the list of covariates, it is treated as a dummy variable, where TRUE is 1 and FALSE is 0.
- felm also allows for bootstrapping, but this is beyong the scope of this session.

# Exporting regression tables

### Exporting regression tables

huxtable also has a quick wrapper for regression tables

### huxreg(...)

- ...: Models, or a single list of models. Names will be used as column headings.
- number\_format: Format for numbering. See number\_format() for details.
- stars: Levels for p value stars.
- bold\_signif: Where p values are below this number, cells will be displayed in bold.
- *note:* Footnote for bottom cell, which spans all columns.
- statistics: A vector of summary statistics to display.
- *coefs:* A vector of coefficients to display. To change display names, name the coef vector: c("Displayed title" = "coefficient\_name", ...)

# Exporting regression tables

huxreg(reg1, reg2)

|                                         | (1)        | (2)      |  |
|-----------------------------------------|------------|----------|--|
| (Intercept)                             | 120.730    |          |  |
|                                         | (1838.216) |          |  |
| рор                                     | 0.001      | 0.000    |  |
|                                         | (0.002)    | (0.002)  |  |
| popurban                                | 0.002      | 0.004    |  |
|                                         | (0.002)    | (0.002)  |  |
| marriage                                | 0.259 ***  | 0.184 ** |  |
|                                         | (0.060)    | (0.058)  |  |
| N                                       | 50         | 50       |  |
| R2                                      | 0.917      | 0.937    |  |
| logLik                                  | -514.766   |          |  |
| AIC                                     | 1039.531   |          |  |
| *** p < 0.001; ** p < 0.01; * p < 0.05. |            |          |  |

### Formatting regression tables

```
huxreg(
 reg1, reg2,
   coefs = c(
     "Population" = "pop", # Show variable labels instead of names
     "Urban population" = "popurban",
     "Number of marriages" = "marriage"
   statistics = c("N. obs." = "nobs")) %>%
   add_rows(
     c("Region FE", "No", "Yes"),
    after = 7
```

# Formatting regression tables

|                                         | (1)       | (2)      |  |
|-----------------------------------------|-----------|----------|--|
| Population                              | 0.001     | 0.000    |  |
|                                         | (0.002)   | (0.002)  |  |
| Urban population                        | 0.002     | 0.004    |  |
|                                         | (0.002)   | (0.002)  |  |
| Number of marriages                     | 0.259 *** | 0.184 ** |  |
|                                         | (0.060)   | (0.058)  |  |
| Region FE                               | No        | Yes      |  |
| N. obs.                                 | 50        | 50       |  |
| *** p < 0.001; ** p < 0.01; * p < 0.05. |           |          |  |

### References and recommendations

- Econometrics with R https://www.econometrics-with-r.org/index.html
- modelsummary documentation: https://vincentarelbundock.github.io/modelsummary/index.html
- Introduction to huxtable: https://cran.r-project.org/web/packages/huxtable/vignettes/huxtable.html
- Using huxtable for regression tables: https://cran.r-project.org/web/packages/huxtable/vignettes/huxreg.html
- Johns Hopkins Exploratory Data Analysis at Coursera: https://www.coursera.org/learn/exploratory-data-analysis
- Udacity's Data Analysis with R: https://www.udacity.com/course/data-analysis-with-r--ud651

#### Since we talked about LaTeX so much...

- DIME LaTeX templates and trainings: https://github.com/worldbank/DIME-LaTeX-Templates
- All you need to know about LaTeX: https://en.wikibooks.org/wiki/LaTeX

# Thank you!