Datum :		Třída:
2022	SPŠ CHOMUTOV	A4
číslo úlohy :	M ěř ení na stabilizátorech	Vaněček Adam

Zadání:

Změřte zatěžovací charakteristiku $U_2 = f(I_2)$, Vypočítejte hodnotu odporu R_a pro dosažení napětí 8V. Zapojení realizujte, případný rozdíl U_2 upravte změnou odporu R_a . Určete proud I_0 .

Schéma zapojení:

1) Měření zatěžovací charakteristika

2) Zapojení pro dosažení jiného než konstrukčního napětí 3)

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	U	260V/3A	LE 5117
Kondenzátor	Ca	10 000 μF/25V	-
Usměrňovač	$D_1 - D_4$	KY 704	-
Voltmetr	V_1	0-600V	LE2 1940/1
Voltmetr	V_2	0-600V	LE2 1942/4
Ampérmetr	Α	0-6A	LE2 1939/10
Oddělovací trafo	OT	220V, 2x25V	-
Reostat	R _{Z1}	108 Ω/1,8A	LE 5084
Reostat	R _{Z2}	18 Ω / 2,5A	
Stabilizátor	-	7805	-
Odporová dekáda	Ra	111111,1 Ω	LE1 1829
Odporová dekáda	R_b	111111,1 Ω	LE1 1919

Teorie:

Stabilizátor je elektrické zapojení diskrétních součástek, nebo elektronická součástka na principu integrovaného obvodu, která umožňuje stabilizovat výstupní napětí nebo proud, při změnách výstupního napětí a teploty okolí. Na jiných veličinách není obvykle hodnota vstupního napětí závislá, pokud ano, je třeba sledovat i takové vlivy jako je například stárnutí součástek, vliv elektromagnetického rušení a další podobné vlivy. Kromě stabilizačních účinků, každý typ stabilizátoru více či méně snižuje střídavou složku, výstupního napětí a pracuje tedy jako filtr.

Postup:

- A) Měření zatěžovací charakteristika
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) V katalogu vyhledáme mezní hodnoty.
 - 3) Navrhneme velikost odporu na reostatech, tak abychom mohli provést měření v rozsahu 0,1 1A s neporušenou podmínkou.
 - 4) Nastavujeme proud a odečítáme napětí.
 - 5) Postup opakujeme pro porušenou podmínku.
- B) Dosažení jiného než konstrukčního napětí
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) R_b zvolíme 150Ω, z toho vypočítáme R_a pro 8V
 - 3) Nastavíme odpory na dekádách, při případném rozdílu $U_{výst}$ (v našem případě 8V) opravíme změnou odporu R_a .
 - 4) Nastavujeme proud a odečítáme napětí.
 - 5) Vypočítáme I₀.

- C) Dosažení konstantního proudu
 - 1) Zapojíme obvod dle příslušného schématu.
 - 2) Vypočítáme hodnotu odporu R_1 pro $I_2=0.05A$.
 - 3) Měníme odpor R_2 a odečítáme napětí a proud, proud by měl být stále stejný (50mA)

Tabulka naměřených hodnot:

A) Měření zatěžovací charakteristika

Splněná podmínka		Nesplněná podmínka			
U _{vst} (V)	U _{výst} (V)	I(A)	U _{vst} (V)	U _{výst} (V)	I(A)
24	5	0	17,8	5	0
21	5	0,1	15,2	5	0,1
19,2	5	0,2	13,4	5	0,2
17,8	5	0,3	12	5	0,3
16,4	5	0,4	10,8	5	0,4
15,4	5	0,5	9,4	5	0,5
14	5	0,6	8,6	5	0,6
13	5	0,7	7,6	4,9	0,7
11,8	5	0,8	6,6	4,7	0,8
10,8	5	0,9	5,6	3,8	0,9
9,8	5	1	4,8	2,6	1

B) Dosažení jiného než konstrukčního napětí

C) Dosažení konstantního proudu

U _{vst} (V)	U _{výst} (V)	I(A)
26	8	0
23,2	8	0,1
21,4	8	0,2
19,8	8	0,3
18,4	8	0,4
16,2	8	0,5
15,8	8	0,6
14,6	8	0,7
13,4	8	0,8
12,6	8	0,9
11,4	8	1

U (V)	R _a (Ω)	I (mA)
0	0	50
1,9	40	50
4	80	50
6	120	50
8	160	50
10	200	50

 $I_0 = 5,56mA$

<u>Grafy:</u>

A) Měření zatěžovací charakteristika

B) Dosažení jiného než konstrukčního napětí

C) Dosažení konstantního proudu

Příklad výpočtu:

$$\begin{split} U_2 &= U_{jm} * \left(1 + \frac{R_a}{R_b}\right) = > R_a = R_b \left(\frac{U_2}{U_{jm}} - 1\right) = 150 * \left(\frac{8}{5} - 1\right) = 90\Omega \\ I_0 &= \frac{U_{jm} - U_{výst}}{R_a} = \frac{0.5}{90} = 5.56mA \\ U_1 &= U_{jm} + I_2 * R_2 + 3 = 5 + 0.05 * 200 + 3 = 18V \\ I_2 &= \frac{U_{jm}}{R_1} + I_0 = > R_1 = \frac{U_{jm}}{I_2} = \frac{5}{0.05} = 100\Omega \end{split}$$

Záv**ě**r:

Při měření nenastaly žádné komplikace. Charakteristiky odpovídají teoretickým předpokladům.