4/6/2022

Heart Attack or Myocardial Infarction Detection

CS 699 Data Mining

Osama Muhammad, Sravani Oruganti

Contents

1.	Stateme	ent		4
2.	Description of dataset			
3.	Datami	ning	tools	9
	3.1	Pytl	hon	9
	3.2	R		9
	3.3	Exc	el	9
4.	Classific	cation	n Algorithms	10
	4.1	Gau	ıssian Naïve Bayes	. 10
	4.2	Ran	dom Forest	. 10
	4.3	Log	istic Regression	. 10
	4.4	Dec	ision Tree	. 10
	4.5	Ada	Boost	. 11
5.	Attribut	te Sel	ection Methods	12
	5.1	F — :	score	. 12
	5.2	Rec	ursive Feature Elimination	. 12
	5.3	Sele	ect From Model	. 12
	5.4	Seq	uential Feature Selection	. 12
	5.5	Cor	relation based Feature Selection	. 12
6.	Attribut	tes se	elected by different methods	13
7.	Data Mi	ining	Procedure	14
	7.1	Dat	a Preparation	. 14
	7.2	Bala	ancing the data set and Feature Selection	. 17
	7.3	Ma	chine Learning	. 17
8.	Data M	ining	Results & Evaluation	18
	8.1	Bor	derline SMOTE Balanced Data Set	. 18
	8.1	.1	Ada Boost	. 18
	8.1	.2	Decision Tree	. 23
	8.1	.3	Logistic Regression	. 28
	8.1	.4	Gaussian Naïve Bayesian	. 33
	8.1	.5	Random Forest	. 38

	8.2 E	Sest Model for Borderline SMOTE Balanced Data Set	43
	8.3	MOTE Balanced Data Set	44
	8.3.1	Ada Boost	44
	8.3.2	Decision Tree	49
	8.3.3	Logistic Regression	54
	8.3.4	Gaussian Naïve Bayesian	59
	8.3.5	Random Forest	64
	8.4 E	Sest Model for SMOTE Balanced Data Set	69
	8.5 F	Running the code	70
9.	Conclusio	n	75
10	. Contribut	ion	75
11	. Reference	95	76

1. Statement

This data contains U.S citizens risk behaviors and preventive health practices that could affect their health status. Our goal with this dataset is to analyze the data using multiple data mining tools with different algorithms and accurately predict the risk of Heart Attack. Our goal is to find an algorithm which can give us a good percentage of true positives and minimize the number of false negatives.

2. Description of dataset

This dataset has been taken from CDC website https://www.cdc.gov/brfss/annual_data/annual_2020.html. The original dataset had many variables which were not related to heart attack detection, so we removed those variables. The selected dataset has 25 variables in total of which 1 is the class or target variable. The dataset has 401,950 rows of data. The following table contains the description of each of the variables (the variable highlighted in yellow is the class variable):

Attribute Name	Attribute Description		
GENHLTH	Would you say that in general your health is: 1: Excellent, 2: Very Good, 3:		
	Good, 4: Fair, 5: Poor, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked		
	or missing		
PHYSHLTH	Now thinking about your physical health, which includes physical illness and		
	injury, for how many days during the past 30 days was your physical health not		
	good? 1 – 30: Number of days, 88: None, 77: Don't know / Not sure, 99:		
	Refused, BLANK: Not asked or missing		
MENTHLTH	Now thinking about your mental health, which includes stress, depression, and		
	problems with emotions, for how many days during the past 30 days was your		
	mental health not good? 1 – 30: Number of days, 88: None, 77: Don't know /		
	Not sure, 99: Refused, BLANK: Not asked or missing		
POORHLTH	During the past 30 days, for about how many days did poor physical or mental		
	health keep you from doing your usual activities, such as self-care, work, or		
	recreation? 1 – 30: Number of days, 88: None, 77: Don't know / Not sur		
	Refused, BLANK: Not asked or missing		
HLTHPLN1	Do you have any kind of health care coverage, including health insurance,		
	prepaid plans such as HMOs, or government plans such as Medicare, or Indian		
	Health Service? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not		
	asked or missing		
PERSDOC2	Do you have one person you think of as your personal doctor or health care		
	provider? (If 'No' ask 'Is there more than one or is there no person who you		
	think of as your personal doctor or health care provider? ´.) 1: Yes, 2: No, 7:		
	Don't know / Not sure, 9: Refused, BLANK: Not asked or missing		

MEDCOST	Was there a time in the past 12 months when you needed to see a doctor but could not because of cost? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing
CHECKUP1	About how long has it been since you last visited a doctor for a routine checkup? [A routine checkup is a general physical exam, not an exam for a specific injury, illness, or condition.] 1: Within past year (anytime less than 12 months ago), 2: Within past 2 years (1 year but less than 2 years ago), 3: Within past 5 years (2 years but less than 5 years ago), 4: 5 or more years ago, 7: Don't know / Not sure, 8: Never, 9: Refused, BLANK: Not asked or missing
EXERANY2	During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing
SLEPTIM1	On average, how many hours of sleep do you get in a 24-hour period? 1 – 24: Number of hours [1-24], 77: Don't know/Not Sure, 99: Refused, BLANK: Missing
CVDSTRK3	(Ever told) (you had) a stroke. 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing
ASTHMA3	(Ever told) (you had) asthma? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing
ADDEPEV3	(Ever told) (you had) a depressive disorder (including depression, major depression, dysthymia, or minor depression)? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing
EDUCAG	What is the highest grade or year of school you completed? 1: Did not graduate High School, 2: Graduated High School, 3: Attended College or Technical School, 4: Graduated from College or Technical School, 9: Don't know/Not sure/Missing
EMPLOY1	Are you currently? 1: Employed for wages, 2: Self-employed, 3: Out of work for 1 year or more, 4: Out of work for less than 1 year, 5: A homemaker, 6: A student, 7: Retired, 8: Unable to work, 9: Refused, BLANK: Not asked or missing
INCOMG	Income categories 1: Less than \$15,000, 2: \$15,000 to less than \$25,000, 3: \$25,000 to less than \$35,000, 4: \$35,000 to less than \$50,000, 5: \$50,000 or more, 9: Don't know/Not sure/Missing
PREGNANT	To your knowledge, are you now pregnant? 1: Yes, 2: No, 7: Don't know/Not Sure, 9: Refused, BLANK: Not asked or missing
DIFFWALK	Do you have serious difficulty walking or climbing stairs? 1: Yes, 2: No, 7: Don't know/Not Sure, 9: Refused, BLANK: Not asked or missing
DIFFALON	Because of a physical, mental, or emotional condition, do you have difficulty doing errands alone such as visiting a doctor's office or shopping? 1: Yes, 2: No, 7: Don't know/Not Sure, 9: Refused, BLANK: Not asked or missing
SEX	Calculated sex variable, 1: Mal2, 2: Female
·	

AGEG5YR	Fourteen-level age category 1: Age 18 to 24, 2: Age 25 to 29, 3: Age 30 to 34,			
	4: Age 35 to 39, 5: Age 40 to 44, 6: Age 45 to 49, 7: Age 50 to 54, 8: Age 55 to			
	59, 9: Age 60 to 64, 10: Age 65 to 69, 11: Age 70 to 74, 12: Age 75 to 79, 13:			
	Age 80 or older, 14: Don't know/Refused/Missing			
BMI5CAT	Four-categories of Body Mass Index (BMI) 1: Underweight, 2: Normal Weight,			
	3: Overweight, 4: Obese, BLANK: Don't know/Refused/Missing			
SMOKER3	Four-level smoker status: Every day smoker, Someday smoker, Former smoker,			
	Non-smoker 1: Current smoker -now smokes every day, 2: Current smoker -			
	now smokes some days, 3: Former smoker, 4: Never smoked, 9: Don't			
	know/Refused/Missing			
RFDRHV7	Heavy drinkers (adult men having more than 14 drinks per week and adult			
	women having more than 7 drinks per week) 1: No, 2: Yes, 9: Don't			
	know/Refused/Missing			
CVDINFR4	(Ever told) you had a heart attack, also called a myocardial infarction? 1: Yes,			
	2: No, 7: Don't know / Not sure, 9: Refused, BLANK: Not asked or missing			

Below screenshot shows summary of the dataset that is produced using R:

GENHLTH	PHYSHLTH	MENTHLTH	POORHLTH	HLTHPLN1
Min. :1.000	Min. : 1.00	Min. : 1.00	Min. : 1.00	Min. :1.00
1st Qu.:2.000	1st Qu.:30.00	1st Qu.:15.00	1st Qu.:10.00	1st Qu.:1.00
Median :2.000	Median :88.00	Median :88.00	Median :88.00	Median :1.00
Mean :2.453	Mean :66.14	Mean :61.45	Mean :55.68	Mean :1.12
3rd Qu.:3.000	3rd Qu.:88.00	3rd Qu.:88.00	3rd Qu.:88.00	3rd Qu.:1.00
Max. :9.000	Max. :99.00	Max. :99.00	Max. :99.00	Max. :9.00
NA's :8	NA's :5	NA's :5	NA's :200343	NA's :3
PERSDOC2	MEDCOST	CHECKUP1	EXERANY2	SLEPTIM1
Min. :1.00	Min. :1.000	Min. :1.000	Min. :1.000	Min. : 1.000
1st Qu.:1.00	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1.000	1st Qu.: 6.000
Median :1.00	Median :2.000	Median :1.000	Median :1.000	Median : 7.000
Mean :1.45	Mean :1.929	Mean :1.462	Mean :1.249	Mean : 7.945
3rd Qu.:1.00	3rd Qu.:2.000	3rd Qu.:1.000	3rd Qu.:1.000	3rd Qu.: 8.000
Max. :9.00				
		Max. :9.000 NA's :5	Max. :9.000	Max. :99.000 NA's :3
NA's :3	NA's :3		NA's :3	
CVDSTRK3	ASTHMA3	ADDEPEV3	EDUCAG	EMPLOY1
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:1.000
Median :2.000	Median :2.000	Median :2.000	Median :3.000	Median :2.000
Mean :1.977	Mean :1.884	Mean :1.841	Mean :3.018	Mean :3.845
3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.:4.000	3rd Qu.:7.000
Max. :9.000	Max. :9.000	Max. :9.000	Max. :9.000	Max. :9.000
NA's :3	NA's :3	NA's :6		NA's :2925
INCOMG	PREGNANT	DIFFWALK		SEX
Min. :1.000	Min. :1	Min. :1.000		
1st Qu.:3.000	1st Qu.:2	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:1.000
Median :5.000	Median :2	Median :2.000	Median :2.000	Median :2.000
Mean :4.903	Mean :2	Mean :1.873	Mean :1.951	Mean :1.542
3rd Qu.:5.000	3rd Qu.:2	3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.:2.000
Max. :9.000	Max. :9	Max. :9.000	Max. :9.000	Max. :2.000
	NA's :326368	NA's :15280	NA's :16769	
AGEG5YR	BMI5CAT	SMOKER3	RFDRHV7	CVDINFR4
Min. : 1.000		Min. :1.000	Min. :1.00	Min. :1.000
1st Qu.: 5.000		1st Qu.:3.000	1st Qu.:1.00	1st Qu.:2.000
Median : 8.000		Median :4.000	Median :1.00	Median :2.000
Mean : 7.667		Mean :3.648		Mean :1.973
3rd Qu.:11.000		3rd Qu.:4.000		3rd Qu.:2.000
Max. :14.000		Max. :9.000	Max. :9.00	Max. :9.000
.IT.000	NA's :41357	max5.000	max5.00	NA's :6
	NM 3 .4133/			MA 3 .0

Below plot is a correlation heat map of the entire data set. From this we can see that the highest correlation among the attributes is 0.55. Also, the predictors do not have very high correlation with the target variable. The predictor variable having the highest correlation value with the target variable (HEART_ATTACK) is GENHLTH and the value is 0.19.

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

3. Datamining tools

3.1 Python

Python is an open-source language and easy to learn. It is a large library of packages that can help to create data models from scratch. Python can be used to customize a software to an organization's specifications. Python offers libraries such as Data manipulation, Data visualization, Statistics, Machine learning, etc. Python has libraries like NumPy, Pandas, Matplotlib, etc. for data analysis. It is made for carrying out repetitive tasks and data manipulations. As data mining involves a lot of repetition tasks, it is important to use a tool which handles that.

3.2 R

R is an open-source programming language for statistical computing and graphics. R is one of the 5 languages with an Apache Spark API. R is mostly used among data miners and statisticians for data analysis. It has a large, coherent, integrated collection of intermediate tools for data analysis. R has many libraries that can be used to implement various statistical techniques, spatial and time series analysis, classification, clustering, etc. Another advantage of R is static graphics. It can generate publication-quality graphs with mathematical symbols. R has a group of packages called Tidyverse, which is popularly used for datamining tasks like data import, cleaning, transformation, and visualization. It also has packages for dynamic and interactive graphics.

3.3 Excel

Microsoft Excel is a spread sheet developed to store any kind of data in grid of cells arranged in numbered rows. Excel has many functions like arithmetic operations, display data using graphs, histograms, charts, etc. We can perform arithmetic operations like addition, subtraction, multiplication, division, etc. One can create their own formula to get desired output from a given data.

4. Classification Algorithms

4.1 Gaussian Naïve Bayes

Bayes theorem is used to calculate conditional probability and applied in machine learning for probability. Naïve Bayes classifier is based on bayes theorem. One assumption for naïve bayes classifier is strong independence among the features. This classifier is efficiently trained and need a training data set to estimate the parameters required for classification. It has a simple design and implementation and can be applied in many real-life situations. Gaussian Naïve Bayes is a type of Naïve Bayes algorithm that follows Gaussian normal distribution and supports continuous data. Naïve Bayes makes an assumption that all the attributes are independent of each other.

4.2 Random Forest

Random forest is a machine learning algorithm which combines the output of multiple decision trees to get a single output. It handles both classification and regression problems. It is easy to use and flexible. Random forest builds multiple decision trees using bagging method and merges them together to get single, accurate and stable prediction. Bagging method is a combination of learning models to increase the overall result. The goal of random forest is to reduce variance by averaging multiple decision trees, trained on different parts of the same training data set. Random forest gives output similar to K-fold cross validation.

4.3 Logistic Regression

Logistic Regression is a statistical model that uses a logistic function to model a binary dependent variable along with many more complex extensions. In logistic regression classification, the output can take only discrete values for a given set of inputs. Setting a threshold value is an important aspect of logistic regression and is dependent on the classification problem itself. The threshold value is mainly affected by the values of precision and recall. In applications where we want to reduce the number of false negatives without necessarily reducing the number of false positives, we choose a threshold value with low precision and high recall. In applications where we want to reduce the number of false positives without necessarily reducing number of false negatives, we choose threshold value with high precision and low recall. Logistic regression can be classified as binomial, multinomial and ordinal.

4.4 Decision Tree

Decision tree is like a flow chart in which internal node represents a test on an attribute. Each branch represents an outcome of a test, and each leaf node represents a class label. Paths from root to leaf represents classification rules. One of the important features of decision tree classifier is the capability of capturing descriptive decision-making knowledge from given data. The first node of decision tree is called a root node. We add a node to the tree every time when a question is asked. The result of questions splits the dataset based on the value of a feature and creates new nodes. If there are no further questions or we decide to stop the process after a split, the last nodes are created, and they are called leaf

nodes. The goal of decision tree is to continue to split the feature space and apply rules until there are no more rule to apply or no data point left.

4.5 Ada Boost

Ada Boost, also known as adaptive boosting, is one of the boosting classifiers. It combines multiple classifiers to improve the performance of weak classifiers. It is the first boosting algorithm developed for binary classification. The concept of Ada boost is to set the weights of classifiers and training the data sample in each iteration in a way that it ensures the accurate predictions of unusual observations. Ada boost randomly selects the training dataset and iteratively trains the model by selecting the training set based on the accurate prediction of the last training. Observations that are wrongly classified are assigned higher weight so that these observations will get high probably for classification in the next iteration. In each iteration, the weights are assigned to trained classifier based on the accuracy. More accurate classifier gets high weight. This process continues until the complete training data fits without any error or until the maximum specified number of estimators are reached. To classify, perform a vote across all the learning algorithms that were built.

5. Attribute Selection Methods

5.1 F – score

F-score is a measure of model's accuracy on a dataset. It is used to evaluate binary classification systems. It combines precision and recall of a model, and it is defined as harmonic mean of the model's precision and recall. It is commonly used to evaluate information retrieval systems in machine learning models. It is a feature selection method in which it scores each of the features individually. F-score can be adjusted to give more importance to precision over recall or vice-versa.

5.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is most popular and easy to use method because it is effective in selecting those features from a dataset that are more relevant in predicting the target variable. This method eliminates the weakest features until the specified number of features are reached. It ranks features by the model's "coef" or "feature importance" attributes and then eliminated a minimum number of features per loop thus removing dependencies and collinearities present in the model and increase the model efficiency.

5.3 Select From Model

Select From Model uses a classifier to calculate the feature importance or coef of the features. A threshold value is used to discard the features. The default threshold value is the mean of feature importance. A feature is kept if the feature importance value is greater than the threshold value. Else, it is discarded.

5.4 Sequential Feature Selection

Sequential Feature Selection adds and removes features from a dataset sequentially. The goal of this algorithm is to improve computational efficiency and reduce the generalization error by removing the irrelevant features or noise. It evaluates each feature separately and selects certain number of features based on individual scores from all the features. In Forward Sequential selection features are added to an empty set until the addition of extra features does not reduce the criterion. Sequentially Backward selection picks all the features from input data and combines them in a set and sequentially removes them from the set until removal of features increases criterion.

5.5 Correlation based Feature Selection

Correlation based feature selection evaluates feature subsets based on correlations. Correlation refers to how close two variables have a linear relationship with each other. When two features have high correlation, one feature among them can be dropped because it gives the same effect as the other.

6. Attributes selected by different methods

We ran the models with 5 random splits into the train and test sets and each of the splits has resulted in different set of attributes. The attributes mentioned below are the ones that were selected when the splitting algorithm was run with random state 600. We used different random states during the 5 splits to make sure that the results were reproducible. The following are the selected attributes:

Balancing Method	Classifier	Features Selected
	Correlation Based Feature Selection	STROKE', 'EXERANY', 'EDUCATION', 'CHECKUP', 'PHYSHLTH', 'GENDER', 'DIFFWALK', 'EMPLOYMENT STATUS', 'GENHLTH', 'AGE CAT'
	F Score Feature Selection	GENHLTH', 'PHYSHLTH', 'CHECKUP', 'EXERANY', 'STROKE', 'EDUCATION', 'EMPLOYMENT_STATUS', 'DIFFWALK', 'GENDER', 'AGE_CAT'
Borderline SMOTE	Forward Sequential Feature Selection	GENHLTH', 'PERSDOC', 'CHECKUP', 'STROKE', 'EDUCATION', 'EMPLOYMENT_STATUS', 'GENDER', 'AGE_CAT', 'SMOKER_CAT', 'HVY_DRINK'
	Recursive Feature Elimination	GENHLTH', 'PERSDOC', 'CHECKUP', 'STROKE', 'ASTHMA', 'EDUCATION', 'DIFFWALK', 'GENDER', 'AGE_CAT', 'SMOKER_CAT'
	Select From Model Feature Selection	GENHLTH', 'PHYSHLTH', 'EXERANY', 'SLEPTIM', 'STROKE', 'EDUCATION', 'INCOME_CAT', 'GENDER', 'AGE_CAT', 'SMOKER_CAT'
	Correlation Based Feature Selection	EXERANY', 'EDUCATION', 'GENDER', 'STROKE', 'CHECKUP', 'PHYSHLTH', 'DIFFWALK', 'EMPLOYMENT_STATUS', 'GENHLTH', 'AGE_CAT'
	F Score Feature Selection	GENHLTH', 'PHYSHLTH', 'CHECKUP', 'EXERANY', 'STROKE', 'EDUCATION', 'EMPLOYMENT_STATUS', 'DIFFWALK', 'GENDER', 'AGE_CAT'
SMOTE	Forward Sequential Feature Selection	GENHLTH', 'HLTHPLN', 'PERSDOC', 'CHECKUP', 'STROKE', 'EDUCATION', 'GENDER', 'AGE_CAT', 'BMI_CAT', 'SMOKER_CAT'
	Recursive Feature Elimination	GENHLTH', 'PERSDOC', 'MEDCOST', 'CHECKUP', 'STROKE', 'ASTHMA', 'DEPRDIS', 'EDUCATION', 'DIFFWALK', 'AGE_CAT'
	Select From Model Feature Selection	GENHLTH', 'PHYSHLTH', 'EXERANY', 'SLEPTIM', 'STROKE', 'EDUCATION', 'INCOME_CAT', 'GENDER', 'AGE_CAT', 'SMOKER_CAT'

7. Data Mining Procedure

7.1 Data Preparation

The data preparation of the data set was done using R. We mainly used the R Tidyverse library for doing the data preparation. The following are the steps followed during data preparation:

- 1. We loaded the data set in R which is a CSV file named "Heart Attack Detection Dataset.csv".
- 2. Then we renamed the columns in the data set so it would be easy to understand what each column represents.
- 3. Then we check the dimensions of the data set which were 401958 rows and 25 columns including the target variable.
- 4. Then we checked for null values in the entire dataset. The results are shown below:

> sapply(df_1, fun	ction(x) sum(is.na	a(x)))	
GENHLTH	PHYSHLTH	MENTHLTH	POORHLTH
8	5	5	200343
HLTHPLN	PERSDOC	MEDCOST	CHECKUP
3	3	3	5
EXERANY	SLEPTIM	STROKE	ASTHMA
3	3	3	3
DEPRDIS	EDUCATION	EMPLOYMENT_STATUS	INCOME_CAT
6	0	2925	0
PREGNANT	DIFFWALK	DIFFALON	GENDER
326368	15280	16769	0
AGE_CAT	BMI_CAT	SMOKER_CAT	HVY_DRINK
0	41357	0	0
HEART_ATTACK			
6			

- 5. We filtered the data for rows with class attribute HEART_ATTACK = 1 & HEART_ATTACK = 2.
- 6. We can see from the above results that the columns POORHLTH & PREGNANT have a very large number of null values. Therefore, we just removed those columns from the dataset. For the rest of the columns with the null values, we imputed the median value of those columns in place of the null values with respect to the class of each null value.
- 7. We swapped the labels of class HEART_ATTACK = 1 & HEART_ATTACK = 2 so that HEART_ATTACK = 1 meant "no risk of a heart attack" and HEART_ATTACK = 2 meant "at risk of a heart attack". This produced the full clean data set.

The cleaned data set has 377918 rows for class HEART_ATTACK = 1 and 21957 rows for class HEART_ATTACK = 2 and 23 rows including the target variable. The following table below shows the final set of attributes and their description:

Attribute Name	Attribute Description
GENHLTH	Would you say that in general your health is: 1: Excellent, 2: Very Good, 3: Good, 4: Fair, 5: Poor, 7: Don't know / Not sure, 9: Refused
PHYSHLTH	Now thinking about your physical health, which includes physical
	illness and injury, for how many days during the past 30 days was your
	physical health not good? 1 – 30: Number of days, 88: None, 77: Don't
	know / Not sure, 99: Refused
MENTHLTH	Now thinking about your mental health, which includes stress,
	depression, and problems with emotions, for how many days during
	the past 30 days was your mental health not good? 1 – 30: Number of
	days, 88: None, 77: Don't know / Not sure, 99: Refused
HLTHPLN	Do you have any kind of health care coverage, including health
	insurance, prepaid plans such as HMOs, or government plans such as
	Medicare, or Indian Health Service? 1: Yes, 2: No, 7: Don't know / Not
	sure, 9: Refused
PERSDOC	Do you have one person you think of as your personal doctor or health
	care provider? (If 'No' ask 'Is there more than one or is there no
	person who you think of as your personal doctor or health care
	provider? ´.) 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused
MEDCOST	Was there a time in the past 12 months when you needed to see a
	doctor but could not because of cost? 1: Yes, 2: No, 7: Don't know /
	Not sure, 9: Refused
CHECKUP	About how long has it been since you last visited a doctor for a routine
	checkup? [A routine checkup is a general physical exam, not an exam
	for a specific injury, illness, or condition.] 1: Within past year (anytime
	less than 12 months ago), 2: Within past 2 years (1 year but less than 2
	years ago), 3: Within past 5 years (2 years but less than 5 years ago), 4:
CVCDANV	5 or more years ago, 7: Don't know / Not sure, 8: Never, 9: Refused
EXERANY	During the past month, other than your regular job, did you participate
	in any physical activities or exercises such as running, calisthenics, golf,
	gardening, or walking for exercise? 1: Yes, 2: No, 7: Don't know / Not
SLEPTIM	Sure, 9: Refused On average, how many hours of sleep do you get in a 24-hour period?
SLEPTIIVI	1 – 24: Number of hours [1-24], 77: Don't know/Not Sure, 99: Refused
STROKE	(Ever told) (you had) a stroke. 1: Yes, 2: No, 7: Don't know / Not sure,
JINOKL	9: Refused
ASTHMA	(Ever told) (you had) asthma? 1: Yes, 2: No, 7: Don't know / Not sure,
	9: Refused

DEPRDIS	(Ever told) (you had) a depressive disorder (including depression,
	major depression, dysthymia, or minor depression)? 1: Yes, 2: No, 7: Don't know / Not sure, 9: Refused
EDUCATION	What is the highest grade or year of school you completed? 1: Did not
	graduate High School, 2: Graduated High School, 3: Attended College
	or Technical School, 4: Graduated from College or Technical School, 9: Don't know/Not sure/Missing
EMPLOYMENT_STATUS	Are you currently? 1: Employed for wages, 2: Self-employed, 3: Out
	of work for 1 year or more, 4: Out of work for less than 1 year, 5: A
	homemaker, 6: A student, 7: Retired, 8: Unable to work, 9: Refused
INCOME_CAT	Income categories 1: Less than \$15,000, 2: \$15,000 to less than
	\$25,000, 3: \$25,000 to less than \$35,000, 4: \$35,000 to less than
	\$50,000, 5: \$50,000 or more, 9: Don't know/Not sure/Missing
DIFFWALK	Do you have serious difficulty walking or climbing stairs? 1: Yes, 2: No,
	7: Don't know/Not Sure, 9: Refused
DIFFALON	Because of a physical, mental, or emotional condition, do you have
	difficulty doing errands alone such as visiting a doctor's office or
	shopping? 1: Yes, 2: No, 7: Don't know/Not Sure, 9: Refused
GENDER	Sex variable, 1: Male, 2: Female
AGE_CAT	Fourteen-level age category 1: Age 18 to 24, 2: Age 25 to 29, 3: Age 30
	to 34, 4: Age 35 to 39, 5: Age 40 to 44, 6: Age 45 to 49, 7: Age 50 to 54,
	8: Age 55 to 59, 9: Age 60 to 64, 10: Age 65 to 69, 11: Age 70 to 74, 12:
	Age 75 to 79, 13: Age 80 or older, 14: Don't know/Refused/Missing
BMI_CAT	Four-categories of Body Mass Index (BMI) 1: Underweight, 2: Normal
01.101/55 0.15	Weight, 3: Overweight, 4: Obese
SMOKER_CAT	Four-level smoker status: Every day smoker, Someday smoker, Former
	smoker, Non-smoker 1: Current smoker -now smokes every day, 2:
	Current smoker -now smokes some days, 3: Former smoker, 4: Never
INAV DRIMIY	smoked, 9: Don't know/Refused/Missing
HVY_DRINK	Heavy drinkers (adult men having more than 14 drinks per week and
	adult women having more than 7 drinks per week) 1: No, 2: Yes, 9:
LICADT ATTACK	Don't know/Refused/Missing
HEART_ATTACK	(Ever told) you had a heart attack, also called a myocardial infarction?
	1: Yes, 2: No

7.2 Balancing the data set and Feature Selection

Python was used for this part of the project. The cleaned dataset was loaded into python and then min max scaled between 1 and 2. Then the data was split into training and testing parts in the ratio of 66% to 34% respectively.

Then we performed balancing of the training dataset using the imbalanced learn library in python. The training data set was highly imbalanced as the original data set was also highly unbalanced. Therefore, we used two oversampling techniques (SMOTE & Borderline SMOTE) to balance the training dataset.

Once the training dataset was balanced, we performed 5 different feature selection techniques on the training dataset which are as follows:

- 1. Correlation based feature selection
- 2. F Score feature selection
- 3. Forward sequential feature selection
- 4. Recursive feature elimination
- 5. Select from model feature selection

These techniques produced 5 different feature selected data sets which are then used in machine learning.

7.3 Machine Learning

We used each of the 5 feature selected data sets with 5 different classifiers. The 5 classifiers that we used are:

- 1. Ada Boost with Logistic Regression as base estimator
- 2. Decision Tree Classifier
- 3. Logistic Regression
- 4. Gaussian Naïve Bayesian
- 5. Random Forest Classifier

These classifiers were fit on the balanced feature selected training datasets and then tested on the independent unbalanced testing data set. Then the metrics were calculated for each of these classifiers.

8. Data Mining Results & Evaluation

We ran each algorithm 5 times for each feature selection method. The columns random state shows the different values that were used to run each time. These values were set so that the results are reproducible. Then we averaged the results over the 5 runs of the algorithms. The confusion matrices were also averaged so the values have been rounded to the nearest whole number. As we used two balanced methods, we analyzed results from both the methods.

8.1 Borderline SMOTE Balanced Data Set

8.1.1 Ada Boost

This classifier was implemented in python with Logistic Regression as the base estimator. The default max number of base estimators, 50 were used to run this algorithm.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	мсс	ROC
Correlation	Heart Attack = 1	0.943644361	0.998132171	0.001867829	0.945299146	0.998132171	0.970997406	0.01382565	0.512735356
based feature	Heart Attack = 2	0.943644361	0.004583292	0.995416708	0.125296482	0.004583292	0.008839774	0.01382565	0.512735356
selection	Weighted	0.943644361	0.943644361	0.056355639	0.900326299	0.943644361	0.918231565	0.01382565	0.512735356
F Score	Heart Attack = 1	0.941989438	0.996269284	0.003730716	0.945303092	0.996269284	0.970117092	0.010193589	0.57751485
feature	Heart Attack = 2	0.941989438	0.006521094	0.993478906	0.091946692	0.006521094	0.012177457	0.010193589	0.57751485
selection	Weighted	0.941989438	0.941989438	0.058010562	0.898502344	0.941989438	0.917581872	0.010193589	0.57751485
Forward	Heart Attack = 1	0.942549905	0.996795631	0.003204369	0.945390942	0.996795631	0.970411522	0.016775978	0.653372377
Sequential	Heart Attack = 2	0.942549905	0.007678544	0.992321456	0.129027063	0.007678544	0.014134905	0.016775978	0.653372377
Feature Selection	Weighted	0.942549905	0.942549905	0.057450095	0.900620089	0.942549905	0.917966984	0.016775978	0.653372377
Recursive	Heart Attack = 1	0.941318643	0.995303511	0.004696489	0.945487607	0.995303511	0.969751133	0.022000973	0.639595686
Feature	Heart Attack = 2	0.941318643	0.011036088	0.988963912	0.144768779	0.011036088	0.019508946	0.022000973	0.639595686
Elimination	Weighted	0.941318643	0.941318643	0.058681357	0.901598677	0.941318643	0.917631732	0.022000973	0.639595686
Calast fram	Heart Attack = 1	0.910297298	0.955370616	0.044629384	0.950100717	0.955370616	0.952437056	0.090141901	0.699211019
Select from Model	Heart Attack = 2	0.910297298	0.133029812	0.866970188	0.151948227	0.133029812	0.126473479	0.090141901	0.699211019
iviouei	Weighted	0.910297298	0.910297298	0.089702702	0.906328444	0.910297298	0.907152289	0.090141901	0.699211019

Correlation Based Feature Selection					
HEART ATTACK = 1 HEART ATTACK =					
HEART ATTACK = 1	128262	240			
HEART ATTACK = 2	7422	34			

F Score Feature Selection						
	HEART ATTACK = 1	HEART ATTACK = 2				
HEART ATTACK = 1	128022	479				
HEART ATTACK = 2	7408	49				

Forward Sequential Feature Selection						
	HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	128090	412				
HEART ATTACK = 2	7399	57				

Recursive Feature Elimination							
	HEART ATTACK = 1 HEART ATTACK = 2						
HEART ATTACK = 1	127898	604					
HEART ATTACK = 2	7374	82					

Select From Model Feature Selection						
HEART ATTACK = 1 HEART ATTACK = 2						
HEART ATTACK = 1	122768	5734				
HEART ATTACK = 2	6462	994				

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.1.2 Decision Tree

This classifier was implemented in python using entropy as the measure of quality of the split

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	МСС	ROC
Correlation	Heart Attack = 1	0.368472617	0.348251467	0.651748533	0.942249441	0.348251467	0.46053387	0.021764693	0.530846926
based	Heart Attack = 2	0.368472617	0.713680245	0.286319755	0.060409347	0.713680245	0.110564444	0.021764693	0.530846926
feature									
selection	Weighted	0.368472617	0.368472617	0.631527383	0.893896239	0.368472617	0.44145991	0.021764693	0.530846926
F Score	Heart Attack = 1	0.610020742	0.627077794	0.372922206	0.937958858	0.627077794	0.743691443	-0.027591147	0.470803203
feature	Heart Attack = 2	0.610020742	0.313790602	0.686209398	0.049192303	0.313790602	0.084235987	-0.027591147	0.470803203
selection	Weighted	0.610020742	0.610020742	0.389979258	0.889220582	0.610020742	0.707593075	-0.027591147	0.470803203
Forward	Heart Attack = 1	0.680352756	0.704337489	0.295662511	0.94164905	0.704337489	0.796269083	-0.007632153	0.486413521
Sequential	Heart Attack = 2	0.680352756	0.268458523	0.731541477	0.058852476	0.268458523	0.090271269	-0.007632153	0.486413521
Feature									
Selection	Weighted	0.680352756	0.680352756	0.319647244	0.89324416	0.680352756	0.757524885	-0.007632153	0.486413521
Recursive	Heart Attack = 1	0.526452287	0.527989715	0.472010285	0.945780352	0.527989715	0.667219014	0.013359905	0.51312783
Feature	Heart Attack = 2	0.526452287	0.498337831	0.501662169	0.060990579	0.498337831	0.107606474	0.013359905	0.51312783
Elimination	Weighted	0.526452287	0.526452287	0.473547713	0.897257369	0.526452287	0.63658044	0.013359905	0.51312783
Select	Heart Attack = 1	0.640587534	0.652842971	0.347157029	0.951157354	0.652842971	0.771315026	0.041820438	0.541617839
from	Heart Attack = 2	0.640587534	0.430152752	0.569847248	0.069925432	0.430152752	0.11964779	0.041820438	0.541617839
Model	Weighted	0.640587534	0.640587534	0.359412466	0.90282836	0.640587534	0.73556036	0.041820438	0.541617839

Correlation Based Feature Selection						
	HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	44764	83738				
HEART ATTACK = 2	2123	5333				

F Score Feature Selection						
	HEART ATTACK = 1	HEART ATTACK = 2				
HEART ATTACK = 1	80593	47909				
HEART ATTACK = 2	5112	2344				

Forward Sequential Feature Selection						
	HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	90502	38000				
HEART ATTACK = 2	5458	1998				

Recursive Feature Elimination						
	HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	67857	60645				
HEART ATTACK = 2	3738	3718				

Select From Model Feature Selection							
	HEART ATTACK = 1	HEART ATTACK = 2					
HEART ATTACK = 1	83889	44612					
HEART ATTACK = 2	4253	3204					

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.1.3 Logistic Regression

This classifier was implemented in python using the default parameters.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	мсс	ROC
Correlation	Heart Attack = 1	0.93962253	0.993566294	0.006433706	0.945339286	0.993566294	0.968852836	0.00945789	0.389521608
based	Heart Attack = 2	0.93962253	0.009889616	0.990110384	0.080841391	0.009889616	0.017544069	0.00945789	0.389521608
feature									
selection	Weighted	0.93962253	0.93962253	0.06037747	0.897932099	0.93962253	0.916685141	0.00945789	0.389521608
F Score	Heart Attack = 1	0.940818488	0.994228711	0.005771289	0.945917731	0.994228711	0.969471512	0.040896709	0.619528511
feature	Heart Attack = 2	0.940818488	0.020331557	0.979668443	0.169298485	0.020331557	0.036262895	0.040896709	0.619528511
selection	Weighted	0.940818488	0.940818488	0.059181512	0.903325357	0.940818488	0.918292963	0.040896709	0.619528511
Forward	Heart Attack = 1	0.938725195	0.991176266	0.008823734	0.94651709	0.991176266	0.968330086	0.058188162	0.659068422
Sequential	Heart Attack = 2	0.938725195	0.034735477	0.965264523	0.186567093	0.034735477	0.057973982	0.058188162	0.659068422
Feature									
Selection	Weighted	0.938725195	0.938725195	0.061274805	0.904839791	0.938725195	0.918406879	0.058188162	0.659068422
Recursive	Heart Attack = 1	0.938391268	0.990967618	0.009032382	0.946374602	0.990967618	0.968157631	0.052314496	0.65337832
Feature	Heart Attack = 2	0.938391268	0.032245039	0.967754961	0.171954622	0.032245039	0.054204339	0.052314496	0.65337832
Elimination	Weighted	0.938391268	0.938391268	0.061608732	0.903903064	0.938391268	0.918036988	0.052314496	0.65337832
Select	Heart Attack = 1	0.9199238	0.96464528	0.03535472	0.951317313	0.96464528	0.95792908	0.129149269	0.731736896
from	Heart Attack = 2	0.9199238	0.149063378	0.850936622	0.195817836	0.149063378	0.168717102	0.129149269	0.731736896
Model	Weighted	0.9199238	0.9199238	0.0800762	0.909888	0.9199238	0.914652965	0.129149269	0.731736896

Correlation Based Feature Selection						
	HEART ATTACK = 1	HEART ATTACK = 2				
HEART ATTACK = 1	127675	827				
HEART ATTACK = 2	7382	74				

F Score Feature Selection				
	HEART ATTACK = 1	HEART ATTACK = 2		
HEART ATTACK = 1	127760	742		
HEART ATTACK = 2	7304	152		

Forward Sequential Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	127368	1134		
HEART ATTACK = 2	7197	259		

Recursive Feature Elimination				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	127341	1160		
HEART ATTACK = 2	7216	241		

Select From Model Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	123959	4543		
HEART ATTACK = 2	6344	1112		

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.1.4 Gaussian Naïve Bayesian

This classifier was implemented in python using the default parameters.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	мсс	ROC
Correlation	Heart Attack = 1	0.51676253	0.509793769	0.490206231	0.963158641	0.509793769	0.642735997	0.069862471	0.632093558
based	Heart Attack = 2	0.51676253	0.631766939	0.368233061	0.071393146	0.631766939	0.126100009	0.069862471	0.632093558
feature									
selection	Weighted	0.51676253	0.51676253	0.48323747	0.914243024	0.51676253	0.614523307	0.069862471	0.632093558
F Score	Heart Attack = 1	0.935856662	0.989450341	0.010549659	0.945244413	0.989450341	0.966842238	0.00364669	0.490675735
feature	Heart Attack = 2	0.935856662	0.012194868	0.987805132	0.062843518	0.012194868	0.020416392	0.00364669	0.490675735
selection	Weighted	0.935856662	0.935856662	0.064143338	0.896853737	0.935856662	0.914939725	0.00364669	0.490675735
Forward	Heart Attack = 1	0.937830801	0.99161649	0.00838351	0.945287658	0.99161649	0.967892173	0.005213157	0.597317896
Sequential	Heart Attack = 2	0.937830801	0.010835585	0.989164415	0.067050468	0.010835585	0.017908071	0.005213157	0.597317896
Feature									
Selection	Weighted	0.937830801	0.937830801	0.062169199	0.897127403	0.937830801	0.915796238	0.005213157	0.597317896
Recursive	Heart Attack = 1	0.924314862	0.97614705	0.02385295	0.945528203	0.97614705	0.960575299	0.011313978	0.596688478
Feature	Heart Attack = 2	0.924314862	0.030832348	0.969167652	0.073616947	0.030832348	0.042016894	0.011313978	0.596688478
Elimination	Weighted	0.924314862	0.924314862	0.075685138	0.897706531	0.924314862	0.910207336	0.011313978	0.596688478
Select	Heart Attack = 1	0.924314862	0.97614705	0.02385295	0.945528203	0.97614705	0.960575299	0.011313978	0.596688478
from	Heart Attack = 2	0.924314862	0.030832348	0.969167652	0.073616947	0.030832348	0.042016894	0.011313978	0.596688478
Model	Weighted	0.924314862	0.924314862	0.075685138	0.897706531	0.924314862	0.910207336	0.011313978	0.596688478

Correlation Based Feature Selection			
	HEART ATTACK = 1	HEART ATTACK = 2	
HEART ATTACK = 1	65529	62973	HE
HEART ATTACK = 2	2727	4729	HEA

Forward Sequential Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	127425	1077			
HEART ATTACK = 2	7375	81			

Select From Model Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	125437	3064		
HEART ATTACK = 2	7226	231		

F Score Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	127146	1356		
HEART ATTACK = 2	7365	91		

	Recursive Feature Elimination			
CK = 2		HEART ATTACK = 1	HEART ATTACK = 2	
1077	HEART ATTACK = 1	125437	3064	
81	HEART ATTACK = 2	7226	231	

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.1.5 Random Forest

This classifier was implemented in python using entropy as the measure of quality of the split. The default number of trees, 100 were used to build this model.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	МСС	ROC
Correlation	Heart Attack = 1	0.797455096	0.837469496	0.162530504	0.94167275	0.837469496	0.88590295	-0.034908929	0.432081655
based	Heart Attack = 2	0.797455096	0.106761219	0.893238781	0.036199842	0.106761219	0.053260208	-0.034908929	0.432081655
feature selection	Weighted	0.797455096	0.797455096	0.202544904	0.892018454	0.797455096	0.840263844	-0.034908929	0.432081655
F Score	Heart Attack = 1	0.845005075	0.887896961	0.112103039	0.94471569	0.887896961	0.912795619	-0.004409428	0.485727929
feature	Heart Attack = 2	0.845005075	0.105202035	0.894797965	0.052386576	0.105202035	0.061438169	-0.004409428	0.485727929
selection	Weighted	0.845005075	0.845005075	0.154994925	0.895782493	0.845005075	0.866118095	-0.004409428	0.485727929
Forward	Heart Attack = 1	0.836158225	0.87502868	0.12497132	0.94769769	0.87502868	0.908232402	0.029514606	0.563582495
Sequential	Heart Attack = 2	0.836158225	0.166104822	0.833895178	0.074772597	0.166104822	0.096205604	0.029514606	0.563582495
Feature Selection	Weighted	0.836158225	0.836158225	0.163841775	0.899831739	0.836158225	0.863705443	0.029514606	0.563582495
Recursive	Heart Attack = 1	0.828903044	0.867023518	0.132976482	0.947415603	0.867023518	0.904710287	0.028490227	0.563454276
Feature	Heart Attack = 2	0.828903044	0.171358739	0.828641261	0.07418109	0.171358739	0.100373258	0.028490227	0.563454276
Elimination	Weighted	0.828903044	0.828903044	0.171096956	0.899519985	0.828903044	0.860606181	0.028490227	0.563454276
Select	Heart Attack = 1	0.777178246	0.803290358	0.196709642	0.953902596	0.803290358	0.871608275	0.071393258	0.600906931
from	Heart Attack = 2	0.777178246	0.326892863	0.673107137	0.085376017	0.326892863	0.134642127	0.071393258	0.600906931
Model	Weighted	0.777178246	0.777178246	0.222821754	0.906272322	0.777178246	0.831197088	0.071393258	0.600906931

Correlation Based Feature Selection					
	HEART ATTACK = 1	HEART ATTACK = 2			
HEART ATTACK = 1	107621	20881			
HEART ATTACK = 2	6656	800			

Forward Sequential Feature Selection				
	HEART ATTACK = 1	HEART ATTACK = 2		
HEART ATTACK = 1	112443	16059		HE
HEART ATTACK = 2	6217	1239		HE

Select From Model Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	103225	25277			
HEART ATTACK = 2	5017	2439			

F Score Feature Selection					
	HEART ATTACK = 1	HEART ATTACK = 2			
HEART ATTACK = 1	114098	14403			
HEART ATTACK = 2	6670	787			

Recursive Feature Elimination					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	111417	17085			
HEART ATTACK = 2	6177	1279			

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.2 Best Model for Borderline SMOTE Balanced Data Set

We first look at the best model for each machine learning classifier from the feature selected data sets. The following models were chosen:

The above models were chosen because they have a positive MCC score and the ROC area of each one of these models is greater than 0.5. Having a MCC score of

Classifier	Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	MCC	ROC
	Recursive	Heart Attack = 1	0.941318643	0.995303511	0.004696489	0.945487607	0.995303511	0.969751133	0.022000973	0.639595686
Ada Boost	Feature	Heart Attack = 2	0.941318643	0.011036088	0.988963912	0.144768779	0.011036088	0.019508946	0.022000973	0.639595686
	Elimination	Weighted	0.941318643	0.941318643	0.058681357	0.901598677	0.941318643	0.917631732	0.022000973	0.639595686
Б	G 1 C	Heart Attack = 1	0.640587534	0.652842971	0.347157029	0.951157354	0.652842971	0.771315026	0.041820438	0.541617839
Decision Tree	Select from Model	Heart Attack = 2	0.640587534	0.430152752	0.569847248	0.069925432	0.430152752	0.11964779	0.041820438	0.541617839
1166	Model	Weighted	0.640587534	0.640587534	0.359412466	0.90282836	0.640587534	0.73556036	0.041820438	0.541617839
T	G 1 C	Heart Attack = 1	0.9199238	0.96464528	0.03535472	0.951317313	0.96464528	0.95792908	0.129149269	0.731736896
Logistic	Select from Model	Heart Attack = 2	0.9199238	0.149063378	0.850936622	0.195817836	0.149063378	0.168717102	0.129149269	0.731736896
Regression	Model	Weighted	0.9199238	0.9199238	0.0800762	0.909888	0.9199238	0.914652965	0.129149269	0.731736896
Gaussian	Recursive	Heart Attack = 1	0.924314862	0.97614705	0.02385295	0.945528203	0.97614705	0.960575299	0.011313978	0.596688478
Naïve	Feature	Heart Attack = 2	0.924314862	0.030832348	0.969167652	0.073616947	0.030832348	0.042016894	0.011313978	0.596688478
Bayesian	Elimination	Weighted	0.924314862	0.924314862	0.075685138	0.897706531	0.924314862	0.910207336	0.011313978	0.596688478
D 1	G 1 C	Heart Attack = 1	0.777178246	0.803290358	0.196709642	0.953902596	0.803290358	0.871608275	0.071393258	0.600906931
	Select from Model	Heart Attack = 2	0.777178246	0.326892863	0.673107137	0.085376017	0.326892863	0.134642127	0.071393258	0.600906931
Polest	MOUEI	Weighted	0.777178246	0.777178246	0.222821754	0.906272322	0.777178246	0.831197088	0.071393258	0.600906931

greater than 0 means that the predictions are better than random. These models also have a better TPR for Heart Attack = 2 class which is the class of concern to us. We want to be able to be better at predicting a patient with heart attack chances but at the same time we do not want to misclassify too many patients with no risk of heart attack as those having a risk of a heart attack. These models also had much better accuracy than others.

Now, we will select the best model from these 5 models. We have selected the Logistic Regression Model with Select from Model feature selection as the best model. The reason for this being that this model has the best ROC area under curve and the best MCC. Although, it has slightly lower accuracy than other models, but it is also better than the other models at predicting the Heart Attack = 2 (TPR = 0.149063378) class which is of concern to us as we want to be able to identify patient with risk of a heart attack. At the same time, it does not misclassify a lot of the Heart Attack = 1 class (TPR = 0.96464528).

8.3 SMOTE Balanced Data Set

8.3.1 Ada Boost

This classifier was implemented in python with Logistic Regression as the base estimator. The default max number of base estimators, 50 were used to run this algorithm.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	мсс	ROC
Correlation	Heart Attack = 1	0.943895909	0.998404437	0.001595563	0.94530761	0.998404437	0.971130645	0.015895248	0.583381099
based	Heart Attack = 2	0.943895909	0.004478198	0.995521802	0.144906683	0.004478198	0.008656026	0.015895248	0.583381099
feature									
selection	Weighted	0.943895909	0.943895909	0.056104091	0.901396561	0.943895909	0.918347218	0.015895248	0.583381099
F Score	Heart Attack = 1	0.941849689	0.996071584	0.003928416	0.945337477	0.996071584	0.970041476	0.012266354	0.579878388
feature	Heart Attack = 2	0.941849689	0.007379195	0.992620805	0.098273264	0.007379195	0.013726906	0.012266354	0.579878388
selection	Weighted	0.941849689	0.941849689	0.058150311	0.898881302	0.941849689	0.917595413	0.012266354	0.579878388
Forward	Heart Attack = 1	0.942333662	0.996614509	0.003385491	0.945340977	0.996614509	0.970296033	0.01313136	0.700430025
Sequential	Heart Attack = 2	0.942333662	0.006907136	0.993092864	0.116275926	0.006907136	0.012183363	0.01313136	0.700430025
Feature									
Selection	Weighted	0.942333662	0.942333662	0.057666338	0.899878271	0.942333662	0.917747393	0.01313136	0.700430025
Recursive	Heart Attack = 1	0.943954751	0.998365781	0.001634219	0.945396378	0.998365781	0.97115917	0.024017229	0.631823228
Feature	Heart Attack = 2	0.943954751	0.006225691	0.993774309	0.18033645	0.006225691	0.012034592	0.024017229	0.631823228
Elimination	Weighted	0.943954751	0.943954751	0.056045249	0.903438401	0.943954751	0.918558979	0.024017229	0.631823228
Select	Heart Attack = 1	0.915259124	0.961845377	0.038154623	0.949270616	0.961845377	0.955267138	0.076989577	0.702672513
from	Heart Attack = 2	0.915259124	0.112024146	0.887975854	0.141530531	0.112024146	0.109501674	0.076989577	0.702672513
Model	Weighted	0.915259124	0.915259124	0.084740876	0.904972904	0.915259124	0.908893848	0.076989577	0.702672513

Correlation Based Feature Selection					
	HEART ATTACK = 1	HEART ATTACK = 2			
HEART ATTACK = 1	128297	205			
HEART ATTACK = 2	7423	33			

Forwa			
	HEART ATTACK = 1	HEART ATTACK = 2	
HEART ATTACK = 1	128067	435	HEART A
HEART ATTACK = 2	7405	51	HEART A

Select From Model Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	123600	4902			
HEART ATTACK = 2	6619	837			

F Score Feature Selection						
	HEART ATTACK = 1	HEART ATTACK = 2				
HEART ATTACK = 1	127997	505				
HEART ATTACK = 2	7401	55				

Recursive Feature Elimination					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	128292	210			
HEART ATTACK = 2 7410 46					

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.3.2 Decision TreeThis classifier was implemented in python using entropy as the measure of quality of the split.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	МСС	ROC
Correlation	Heart Attack = 1	0.327321673	0.305250414	0.694749586	0.948860002	0.305250414	0.400174037	0.004793428	0.504230474
based	Heart Attack = 2	0.327321673	0.703218762	0.296781238	0.054155784	0.703218762	0.099439713	0.004793428	0.504230474
feature selection	Weighted	0.327321673	0.327321673	0.672678327	0.899791389	0.327321673	0.383813658	0.004793428	0.504230474
F Score	Heart Attack = 1	0.429919534	0.427920142	0.572079858	0.930220056	0.427920142	0.57640923	-0.050797608	0.446463024
feature	Heart Attack = 2	0.429919534	0.465307847	0.534692153	0.045590604	0.465307847	0.082672478	-0.050797608	0.446463024
selection	Weighted	0.429919534	0.429919534	0.570080466	0.881704639	0.429919534	0.549306752	-0.050797608	0.446463024
Forward	Heart Attack = 1	0.528092499	0.533295031	0.466704969	0.937497783	0.533295031	0.658013549	-0.015043831	0.486272887
Sequential	Heart Attack = 2	0.528092499	0.439120875	0.560879125	0.054244103	0.439120875	0.09506401	-0.015043831	0.486272887
Feature									
Selection	Weighted	0.528092499	0.528092499	0.471907501	0.889053806	0.528092499	0.627100404	-0.015043831	0.486272887
Recursive	Heart Attack = 1	0.451274658	0.443705899	0.556294101	0.933524525	0.443705899	0.561061427	0.006325978	0.514042861
Feature	Heart Attack = 2	0.451274658	0.583836127	0.416163873	0.059204522	0.583836127	0.106316954	0.006325978	0.514042861
Elimination	Weighted	0.451274658	0.451274658	0.548725342	0.885563456	0.451274658	0.53603736	0.006325978	0.514042861
Select	Heart Attack = 1	0.463094485	0.45480204	0.54519796	0.951618537	0.45480204	0.593006675	0.030341864	0.53129727
from	Heart Attack = 2	0.463094485	0.607772787	0.392227213	0.063128287	0.607772787	0.113216569	0.030341864	0.53129727
Model	Weighted	0.463094485	0.463094485	0.536905515	0.902892084	0.463094485	0.56665121	0.030341864	0.53129727

Correlation Based Feature Selection				
	HEART ATTACK = 1 HEART ATTACK = 2			
HEART ATTACK = 1	39240	89262	HE	
HEART ATTACK = 2	2194	5262	HE	

Forward Sequential Feature Selection			
	HEART ATTACK = 1	HEART ATTACK = 2	
HEART ATTACK = 1	68525	59977	Н
HEART ATTACK = 2	4183	3273	Н

Select From Model Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	58439	70063		
HEART ATTACK = 2 2934 4522				

F Score Feature Selection					
	HEART ATTACK = 1	HEART ATTACK = 2			
HEART ATTACK = 1	54985	73517			
HEART ATTACK = 2	3990	3466			

Recursive Feature Elimination					
	HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	57010	71492			
HEART ATTACK = 2	ART ATTACK = 2 3112 4344				

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.3.3 Logistic Regression

This classifier was implemented in python using the default parameters.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	мсс	ROC
Correlation	Heart Attack = 1	0.939925565	0.993660139	0.006339861	0.945552382	0.993660139	0.969006476	0.020211067	0.555098065
based	Heart Attack = 2	0.939925565	0.013902739	0.986097261	0.112105045	0.013902739	0.024199227	0.020211067	0.555098065
feature									
selection	Weighted	0.939925565	0.939925565	0.060074435	0.899846398	0.939925565	0.917188268	0.020211067	0.555098065
F Score	Heart Attack = 1	0.92568146	0.975048673	0.024951327	0.947818235	0.975048673	0.961240309	0.069293863	0.625568559
feature	Heart Attack = 2	0.92568146	0.074835996	0.925164004	0.148487005	0.074835996	0.099468677	0.069293863	0.625568559
selection	Weighted	0.92568146	0.92568146	0.07431854	0.903982558	0.92568146	0.913981198	0.069293863	0.625568559
Forward	Heart Attack = 1	0.930821283	0.980358199	0.019641801	0.948203107	0.980358199	0.964010279	0.087814234	0.689557136
Sequential	Heart Attack = 2	0.930821283	0.07699684	0.92300316	0.186903503	0.07699684	0.108602659	0.087814234	0.689557136
Feature									
Selection	Weighted	0.930821283	0.930821283	0.069178717	0.906449559	0.930821283	0.917102204	0.087814234	0.689557136
Recursive	Heart Attack = 1	0.924169229	0.973034647	0.026965353	0.94809654	0.973034647	0.960392896	0.07304206	0.655215776
Feature	Heart Attack = 2	0.924169229	0.081769912	0.918230088	0.150837778	0.081769912	0.104565068	0.07304206	0.655215776
Elimination	Weighted	0.924169229	0.924169229	0.075830771	0.904372082	0.924169229	0.913468204	0.07304206	0.655215776
Select	Heart Attack = 1	0.891469424	0.928317529	0.071682471	0.95563816	0.928317529	0.941629602	0.153130997	0.72649508
from	Heart Attack = 2	0.891469424	0.255907016	0.744092984	0.17385881	0.255907016	0.202943629	0.153130997	0.72649508
Model	Weighted	0.891469424	0.891469424	0.108530576	0.91276306	0.891469424	0.901130137	0.153130997	0.72649508

Correlation Based Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	127687	815		
HEART ATTACK = 2 7353 1				

F Score Feature Selection					
	HEART ATTACK = 1	HEART ATTACK = 2			
HEART ATTACK = 1	125296	3206			
HEART ATTACK = 2	6898	558			

Forward Sequential Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	125978	2524		
HEART ATTACK = 2 6881 5				

Recursive Feature Elimination				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	125037	3465		
HEART ATTACK = 2 6845 63				

Select From Model Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	119291	9211			
HEART ATTACK = 2	5545	1911			

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.3.4 Gaussian Naïve Bayesian

This classifier was implemented in python using the default parameters.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	МСС	ROC
Correlation	Heart Attack = 1	0.593221436	0.597961847	0.402038153	0.955939566	0.597961847	0.698236374	0.059092199	0.588311161
based	Heart Attack = 2	0.593221436	0.508529906	0.491470094	0.076929565	0.508529906	0.127456164	0.059092199	0.588311161
feature	Mariaba ad	0.502224.426	0.502224.426	0.406770564	0.003335033	0.502224.426	0.667003643	0.050002400	0.500244464
selection	Weighted	0.593221436	0.593221436	0.406778564	0.907725877	0.593221436	0.667002642	0.059092199	0.588311161
F Score	Heart Attack = 1	0.850155195	0.89339052	0.10660948	0.945064536	0.89339052	0.918501163	-0.001179156	0.501235911
feature	Heart Attack = 2	0.850155195	0.105010211	0.894989789	0.05406605	0.105010211	0.071379539	-0.001179156	0.501235911
selection	Weighted	0.850155195	0.850155195	0.149844805	0.896201432	0.850155195	0.872044426	-0.001179156	0.501235911
Forward	Heart Attack = 1	0.934903426	0.988040617	0.011959383	0.945534841	0.988040617	0.966315006	0.014756836	0.589052123
Sequential	Heart Attack = 2	0.934903426	0.019153443	0.980846557	0.086149322	0.019153443	0.030615629	0.014756836	0.589052123
Feature									
Selection	Weighted	0.934903426	0.934903426	0.065096574	0.898399865	0.934903426	0.914997838	0.014756836	0.589052123
Recursive	Heart Attack = 1	0.87457303	0.920822836	0.079177164	0.945052032	0.920822836	0.932763005	-0.001346887	0.584556073
Feature	Heart Attack = 2	0.87457303	0.077359496	0.922640504	0.053979697	0.077359496	0.063410847	-0.001346887	0.584556073
Elimination	Weighted	0.87457303	0.87457303	0.12542697	0.896183985	0.87457303	0.885089343	-0.001346887	0.584556073
Select	Heart Attack = 1	0.87457303	0.920822836	0.079177164	0.945052032	0.920822836	0.932763005	-0.001346887	0.584556073
from	Heart Attack = 2	0.87457303	0.077359496	0.922640504	0.053979697	0.077359496	0.063410847	-0.001346887	0.584556073
Model	Weighted	0.87457303	0.87457303	0.12542697	0.896183985	0.87457303	0.885089343	-0.001346887	0.584556073

Correlation Based Feature Selection				
	HEART ATTACK = 1	HEART ATTACK = 2		
HEART ATTACK = 1	76851	51651		HEART
HEART ATTACK = 2	3654	3802		HEART

Forward Sequential Feature Selection			
	HEART ATTACK = 1	HEART ATTACK = 2	
HEART ATTACK = 1	126965	1537	HEART
HEART ATTACK = 2	7314	142	HEART

Select From Model Feature Selection				
HEART ATTACK = 1 HEART ATTACK = 2				
HEART ATTACK = 1	118328	10174		
HEART ATTACK = 2 6879 57				

F Score Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	114803	13699			
HEART ATTACK = 2	6673	783			

Recursive Feature Elimination					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	118328	10174			
HEART ATTACK = 2	RT ATTACK = 2 6879 577				

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.3.5 Random Forest

This classifier was implemented in python using entropy as the measure of quality of the split. The default number of trees, 100 were used to build this model.

Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	МСС	ROC
Correlation	Heart Attack = 1	0.49936451	0.498902735	0.501097265	0.944821975	0.498902735	0.643547883	0.004891152	0.502739416
based feature	Heart Attack = 2	0.49936451	0.507213641	0.492786359	0.058497443	0.507213641	0.103590408	0.004891152	0.502739416
selection	Weighted	0.49936451	0.49936451	0.50063549	0.89621531	0.49936451	0.613947283	0.004891152	0.502739416
E Cooks footuus	Heart Attack = 1	0.727112785	0.757211373	0.242788627	0.942079646	0.757211373	0.830697443	-0.016554567	0.478281542
F Score feature selection	Heart Attack = 2	0.727112785	0.20786423	0.79213577	0.050379653	0.20786423	0.075889555	-0.016554567	0.478281542
Selection	Weighted	0.727112785	0.727112785	0.272887215	0.893183917	0.727112785	0.78931956	-0.016554567	0.478281542
Forward	Heart Attack = 1	0.7371806	0.76359033	0.23640967	0.94923014	0.76359033	0.835047959	0.025591626	0.543785335
Sequential	Heart Attack = 2	0.7371806	0.280669931	0.719330069	0.066402759	0.280669931	0.10044698	0.025591626	0.543785335
Feature									
Selection	Weighted	0.7371806	0.7371806	0.2628194	0.90082409	0.7371806	0.794793721	0.025591626	0.543785335
Recursive	Heart Attack = 1	0.559458068	0.565114091	0.434885909	0.937900204	0.565114091	0.647639433	0.012350493	0.541127136
Feature	Heart Attack = 2	0.559458068	0.467077242	0.532922758	0.060961525	0.467077242	0.103535007	0.012350493	0.541127136
Elimination	Weighted	0.559458068	0.559458068	0.440541932	0.889799699	0.559458068	0.61764464	0.012350493	0.541127136
Calast from	Heart Attack = 1	0.740769944	0.763996558	0.236003442	0.952375335	0.763996558	0.847600244	0.054819755	0.586494884
Select from Model	Heart Attack = 2	0.740769944	0.340011244	0.659988756	0.076554944	0.340011244	0.124782534	0.054819755	0.586494884
Model	Weighted	0.740769944	0.740769944	0.259230056	0.904343254	0.740769944	0.807967736	0.054819755	0.586494884

Correlation Based Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	64113	64389			
HEART ATTACK = 2	3677	3779			

Forward Sequential Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	98126	30376			
HEART ATTACK = 2	5356	2100			

Select From Model Feature Selection					
HEART ATTACK = 1 HEART ATTACK = 2					
HEART ATTACK = 1	98177	30325			
HEART ATTACK = 2 4919 2533					

F Score Feature Selection				
	HEART ATTACK = 1	HEART ATTACK = 2		
HEART ATTACK = 1	97304	31197		
HEART ATTACK = 2	5904	1553		

Recursive Feature Elimination									
	HEART ATTACK = 1 HEART AT								
HEART ATTACK = 1	72599	55903							
HEART ATTACK = 2	3992	3464							

Correlation Based Feature Selection ROC Curve

F Score Feature Selection ROC Curve

Forward Sequential Feature Selection ROC Curve

Recursive Feature Elimination

Select from Model Feature Selection

8.4 Best Model for SMOTE Balanced Data Set

We first look at the best model for each machine learning classifier from the feature selected data sets. The following models were chosen:

The above models were chosen because they have a positive MCC score and the ROC area of each one of these models is greater than 0.5. Having a MCC score of

Classifier	Feature Selection	Class	Accuracy	TPR	FPR	Precision	Recall	F1 Score	MCC	ROC
Ada Boost	Select from Model	Heart Attack $= 1$	0.915259124	0.961845377	0.038154623	0.949270616	0.961845377	0.955267138	0.076989577	0.702672513
		Heart Attack $= 2$	0.915259124	0.112024146	0.887975854	0.141530531	0.112024146	0.109501674	0.076989577	0.702672513
		Weighted	0.915259124	0.915259124	0.084740876	0.904972904	0.915259124	0.908893848	0.076989577	0.702672513
Decision Tree	Select from Model	Heart Attack = 1	0.463094485	0.45480204	0.54519796	0.951618537	0.45480204	0.593006675	0.030341864	0.53129727
		Heart Attack = 2	0.463094485	0.607772787	0.392227213	0.063128287	0.607772787	0.113216569	0.030341864	0.53129727
		Weighted	0.463094485	0.463094485	0.536905515	0.902892084	0.463094485	0.56665121	0.030341864	0.53129727
Logistic Regression	Select from Model	Heart Attack = 1	0.891469424	0.928317529	0.071682471	0.95563816	0.928317529	0.941629602	0.153130997	0.72649508
		Heart Attack = 2	0.891469424	0.255907016	0.744092984	0.17385881	0.255907016	0.202943629	0.153130997	0.72649508
		Weighted	0.891469424	0.891469424	0.108530576	0.91276306	0.891469424	0.901130137	0.153130997	0.72649508
Gaussian Naïve Bayesian	Forward Sequential Feature Selection	Heart Attack = 1	0.934903426	0.988040617	0.011959383	0.945534841	0.988040617	0.966315006	0.014756836	0.589052123
		Heart Attack = 2	0.934903426	0.019153443	0.980846557	0.086149322	0.019153443	0.030615629	0.014756836	0.589052123
		Weighted	0.934903426	0.934903426	0.065096574	0.898399865	0.934903426	0.914997838	0.014756836	0.589052123
Random Forest	Select from Model	Heart Attack = 1	0.740769944	0.763996558	0.236003442	0.952375335	0.763996558	0.847600244	0.054819755	0.586494884
		Heart Attack = 2	0.740769944	0.340011244	0.659988756	0.076554944	0.340011244	0.124782534	0.054819755	0.586494884
		Weighted	0.740769944	0.740769944	0.259230056	0.904343254	0.740769944	0.807967736	0.054819755	0.586494884

greater than 0 means that the predictions are better than random. These models also have a better TPR for Heart Attack = 2 class which is the class of concern to us. We want to be able to be better at predicting a patient with heart attack chances but at the same time we do not want to misclassify too many patients with no risk of heart attack as those having a risk of a heart attack. These models also had much better accuracy than others.

Now, we will select the best model from these 5 models. We have selected the Logistic Regression Model with Select from Model feature selection as the best model. The reason for this being that this model has the best ROC area under curve and the best MCC. Although, it has slightly lower accuracy than other models, but it is also better than the other models at predicting the Heart Attack = 2 (TPR = 0.255907016) class which is of concern to us as we want to be able to identify patient with risk of a heart attack. At the same time, it does not misclassify a lot of the Heart Attack = 1 class (TPR = 0.928317529).

8.5 Running the code

First, the data cleaning part was done using R. So, we first run the R Script named "Data Preparation.R". Before running this, make sure to go to the Session tab in R, then Set Working Directory and select To Source File Location. Running this code will produce the cleaned data in a csv file named "Full Clean Data.csv".

Then, we created a python file named "Run Balancing & Feature Selection.py". This will run all the python files which contain the code to balance the data set and then produce the features selected data set. A CSV file named "Features Selected.csv" is also output which contains the list of features selected by each of the feature selection methods. The python files run in this code are:

1. Balancing the Dataset.py – This script contains the code to min max scale, split into train test sets and balance the training set. This script is used to generate the data sets for multiple runs. The screenshot below shows the random state values in the **train_test_split** function that can be changed to 200, 300, 400, 500 & 600 to reproduce the same results. We just need to change the random state values and then run the main scripts as mentioned in the **NOTE** section below.

- 2. Correlation Based FS Data Set.py This script produces the correlation feature selected data set in "Classifiers" folder named "Borderline SMOTE Correlation Selected Data Set.csv" & "SMOTE Correlation Selected Data Set.csv".
- 3. F Score Attribute Selection Data Set.py This script produces the f score feature selected data set in "Classifiers" folder named "Borderline SMOTE F Score Selected Data Set.csv" & "SMOTE F Score Selected Data Set.csv".
- 4. Forward SFS Data Set.py This script produces the forward sequential feature selected data set in "Classifiers" folder named "Borderline SMOTE Forward SFS Data Set.csv" & "SMOTE Forward SFS Data Set.csv".

- 5. RFE FS Data Set.py This script produces the recursive feature elimination feature selected data set in "Classifiers" folder named "Borderline SMOTE RFE Data Set.csv" & "SMOTE RFE Data Set.csv".
- 6. Select From Model Data Set.py This script produces the select from model feature selected data set in "Classifiers" folder named "Borderline SMOTE Select from Model Data Set.csv" & "SMOTE Select from Model Data Set.csv".

Now, to perform machine learning on the dataset, go inside the "Classifiers" folder and run the python script named "Run Classification.py". This script will run all the python scripts for the classification models. The output of this script are the calculated metrics saved in the "Borderline SMOTE Metrics.csv" & "SMOTE Metrics.csv" files. ROC curves are also plotted, displayed, and saved. The python files run in this code are:

- 1. Ada Boost Correlation Feature selection.py This script will run the Ada Boost classifier on the Correlation Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 2. Ada Boost F Score Feature Selection.py This script will run the Ada Boost classifier on the F Score Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 3. Ada Boost Forward SFS.py This script will run the Ada Boost classifier on the Forward Sequential Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 4. Ada Boost RFE Feature Selection.py This script will run the Ada Boost classifier on the Recursive Feature Elimination Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 5. Ada Boost Select from Model Feature Selection.py This script will run the Ada Boost classifier on the Select from Model Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 6. Decision Tree Correlation Feature selection.py This script will run the Decision Tree classifier on the Correlation Feature Selected data set which was balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.

- 7. Decision Tree F Score Feature Selection.py This script will run the Decision Tree classifier on the F Score Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 8. Decision Tree Forward SFS.py This script will run the Decision Tree classifier on the Forward Sequential Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 9. Decision Tree RFE Feature Selection.py This script will run the Decision Tree classifier on the Recursive Feature Elimination Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 10. Decision Tree Select from Model Feature Selection.py This script will run the Decision Tree classifier on the Select from Model Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 11. Logistic Regression Correlation Feature selection.py This script will run the Logistic Regression classifier on the Correlation Feature Selected data set which was balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 12. Logistic Regression F Score Feature Selection.py This script will run the Logistic Regression classifier on the F Score Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 13. Logistic Regression Forward SFS.py This script will run the Logistic Regression classifier on the Forward Sequential Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 14. Logistic Regression RFE Feature Selection.py This script will run the Logistic Regression classifier on the Recursive Feature Elimination Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 15. Logistic Regression Select from Model Feature Selection.py This script will run the Logistic Regression classifier on the Select from Model Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.

- 16. Naïve Bayes Correlation Feature selection.py This script will run the Gaussian Naïve Bayesian classifier on the Correlation Feature Selected data set which was balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 17. Naïve Bayes F Score Feature Selection.py This script will run the Gaussian Naïve Bayesian classifier on the F Score Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 18. Naïve Bayes Forward SFS.py This script will run the Gaussian Naïve Bayesian classifier on the Forward Sequential Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 19. Naïve Bayes RFE Feature Selection.py This script will run the Gaussian Naïve Bayesian classifier on the Recursive Feature Elimination Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 20. Naïve Bayes Select from Model Feature Selection.py This script will run the Gaussian Naïve Bayesian classifier on the Select from Model Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 21. Random Forest Correlation Feature selection.py This script will run the Random Forest classifier on the Correlation Feature Selected data set which was balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 22. Random Forest F Score Feature Selection.py This script will run the Random Forest classifier on the F Score Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 23. Random Forest Forward SFS.py This script will run the Random Forest classifier on the Forward Sequential Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.
- 24. Random Forest RFE Feature Selection.py This script will run the Random Forest classifier on the Recursive Feature Elimination Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.

25. Random Forest Select from Model Feature Selection.py – This script will run the Random Forest classifier on the Select from Model Feature Selected data sets which were balanced by both SMOTE & Borderline SMOTE techniques. This will also display the metrics and save the ROC Curve.

To perform 10-fold cross validation, we need to run the script named "Run 10 Cross Validation.py". The output of this script are the calculated metrics saved in a CSV file named "10 CV Metrics.csv" and the ROC curves which are plotted, displayed, and saved. This script will then run the following python files to perform the 10-fold cross validation:

- 1. Ada Boost 10 CV.py This script runs 10-fold cross validation using Ada Boost classifier and then calculates the metrics and plots and save the ROC curves.
- 2. Decision Tree 10 CV.py This script runs 10-fold cross validation using Decision Tree classifier and then calculates the metrics and plots and save the ROC curves.
- 3. Logistic Regression 10 CV.py This script runs 10-fold cross validation using Logistic Regression classifier and then calculates the metrics and plots and save the ROC curves.
- 4. Naïve Bayes 10 CV.py This script runs 10-fold cross validation using Naïve Bayes classifier and then calculates the metrics and plots and save the ROC curves.
- 5. Random Forest 10 CV.py This script runs 10-fold cross validation using Random Forest classifier and then calculates the metrics and plots and save the ROC curves.

NOTE: Please run the scripts from the main scripts in the following order:

- 1. Data Preparation.R
- 2. Run Balancing & Feature Selection.py
- 3. Run Classification.py
- 4. Run 10 Cross Validation.py

We calculated the average over the runs in excel and displayed the averaged results in this report. The excel files in which the averages were performed are also included. These scripts will take quite some time to run as the data set is very large and the techniques are computation extensive.

9. Conclusion

We used two techniques to balance the data set, and both yielded the same results that Logistic Regression was the best classifier for this data set. We saw that different data set balancing techniques can give different results and can impact the metrics as well. Feature selection yielded different results for the two techniques used to balance the data set.

In this project, we followed the overall process of data mining from data preparation to machine learning. We learnt how to deal with unbalanced data sets by using different techniques. We also learnt about different feature selection methods and different classification algorithms. We saw that there is no one algorithm which always works the best. We need to experiment with different algorithms and then calculate the metrics to decide which one is the best for the data set. In this project, we only used 5 algorithms to test on the data set. But, to select the best algorithm, we need to experiment with more classifiers and other data set balancing techniques to get an evaluation of the best model to implement for the data set.

10. Contribution

Osama, Muhammad – Data preparation & Visualization, Correlation based feature selection, F Score feature selection, implementation of Ada Boost, Decision Tree & Logistic Regression Classifier. Explained these in the project report as well.

Oruganti, Sravani – Data preparation & Visualization, forward sequential feature selection, recursive feature elimination, select from model feature selection, implementation of Gaussian Naïve Bayesian & Random Forest Classifier. Explained these in the project report as well.

11. References

https://builtin.com/data-science/random-forest-algorithm

https://builtin.com/data-science/random-forest-algorithm

https://en.wikipedia.org/wiki/Random forest

https://www.geeksforgeeks.org/understanding-logistic-regression/

https://web.stanford.edu/~jurafsky/slp3/5.pdf

https://towardsdatascience.com/decision-tree-classifier-explained-in-real-life-picking-a-vacation-destination-6226b2b60575

https://www.sciencedirect.com/topics/computer-science/decision-tree-classifier

https://www.datacamp.com/community/tutorials/adaboost-classifier-python

https://medium.datadriveninvestor.com/data-science-adaboost-classifier-4879a45c4300

https://www.researchgate.net/publication/323119678 AdaBoost classifier an overview

 $\frac{\text{https://deepai.org/machine-learning-glossary-and-terms/f-score\#:} \sim \text{text=The\%20F-score\%2C\%20also\%20called\%20the\%20F1-score\%2C\%20is\%20a,} \text{harmonic\%20mean\%20of\%20the\%20model\%E2\%80\%99s\%20precision\%20and\%20recall.}$

https://stats.stackexchange.com/questions/20341/the-disadvantage-of-using-f-score-in-feature-selection

https://www.simplilearn.com/recursive-feature-elimination-article

http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

https://analyticsindiamag.com/a-complete-guide-to-sequential-feature-selection/#:~:text=%20A%20Complete%20Guide%20to%20Sequential%20Feature%20Selection,wrapper...%204%20Results%20of%20SFS.%20%20More%20