Improved scaling of the disk space taken by the Bitcoin blockchain

Benjamin Loison

Introduction to blockchains

(a) Master-slave network

(b) Peer-to-peer network

The scalability problem

Blockchain Size

The idea of the internship

Mining in Logarithmic Space 2021 Aggelos Kiayias, Nikos Leonardos and Dionysis Zindros

Transactions history

Person 1 pays	person 2	n Bitcoins
Network	Alice	5
Alice	Bob	2
Alice	Charlie	1
Network	Charlie	5
Charlie	Bob	3
Bob	Charlie	2
Network	Alice	5
Bob	Alice	1

Current state

Person has	n Bitcoins
Alice	8
Bob	2
Charlie	5

How Bitcoin works

Mining blocks

Data:

Block 0 n Alice earns 5 BTC Alice pays Bob 2 BTC Alice pays Charlie 1 BTC

n	SHA-256 ² hash
0	6c7c2450bd52e950a3db47d8dc91cbdb04a792561759
1	6442a403b0cd2bac7b3af363a342769d1955f9851d65
86	00e9d707e8f386a73d2455cfa9c06d618285f03e434a

The fork problem

The fork problem

8/15

The advantages of the theory

Proposal	Storage	Communication	Can mine?
BTC Full	$n(c+\delta)$	$n(c+\delta)$	yes
BTC SPV	nc	nc	no
Ethereum	$nc + k\delta + a$	$nc + k\delta + a$	yes
This work	$poly\log(n)c + k\delta + a$	$poly\log(n)c + k\delta + a$	yes

Table 1. A comparison of our results and previous work. n: the number of blocks in the chain; δ : size of transactions in a block; c: block header size; a: size of snapshot; k: common prefix parameter

Figure: Excerpt from the table on page 9 of "Mining in Logarithmic Space" (BTC means Bitcoin)

n=695590, δ between 0 and 2 Mb, c=97, a=4.24 Gb, k=6

The interlink set problem

Fig. 2. The interlinked blockchain. Each superblock is drawn taller according to its level. A new block links to all previous blocks that have not been overshadowed by higher levels in the meantime.

Figure: Set of "Mining in Logarithmic Space" pointers necessary for the proper execution of their approach

Some statistics

Figure: Distribution of Bitcoin block hashes by difficulty m (n) where m is the number of hexadecimal zeros at the beginning of the hash and n the number of hashes beginning precisely with m hexadecimal zeros

Some statistics

Figure: Distribution of Bitcoin block hashes by difficulty m (n) where m is the number of binary zeros at the beginning of the hash and n the number of hashes beginning precisely with m binary zeros

The compression algorithm

Algorithm 1 Chain compression algorithm for transitioning a full miner to a logspace miner. Given a full chain, it compresses it into logspace state.

```
1: function Dissolve<sub>m,k</sub>(C)
              C^* \leftarrow C[:-k]
            \mathcal{D} \leftarrow \emptyset
             if |\mathcal{C}^*| \geq 2m then
                    \ell \leftarrow \max\{\mu : |\mathcal{C}^*\uparrow^{\mu}| \geq 2m\}
                    \mathcal{D}[\ell] \leftarrow \mathcal{C}^* \uparrow^{\ell}
                    for \mu \leftarrow \ell - 1 down to 0 do
                           b \leftarrow C^* \uparrow^{\mu+1} [-m]
                          \mathcal{D}[\mu] \leftarrow \mathcal{C}^{*\uparrow\mu} [-2m:] \cup \mathcal{C}^{*\uparrow\mu} \{b:\}
                     end for
11:
              else
12:
                    \mathcal{D}[0] \leftarrow \mathcal{C}^*
13:
              end if
              \chi \leftarrow C[-k:]
              return (\mathcal{D}, \ell, \chi)
16: end function
17: function Compress<sub>m,k</sub>(C)
              (\mathcal{D}, \ell, \chi) \leftarrow \mathsf{Dissolve}_{m,k}(\mathcal{C})
              \pi \leftarrow \bigcup_{\mu=0}^{\ell} \mathcal{D}[\mu]
              return \pi \chi
21: end function
```

Figure: Algorithm 1 of "Mining in Logarithmic Space" allowing to compress a blockchain.

C is the blockchain

 $C^* \uparrow^{\mu}$ denotes blocks of exactly the same difficulty level μ of C^* $C^* \uparrow^{\mu} \{b:\}$ denotes blocks of $C^* \uparrow^{\mu}$ newer than the block b

The results

Figure: Distribution of the hashes of the blocks selected by the algorithm 1, where each block has a width of 1 pixel

Sources of illustrations

- ▶ Page 2: Wikipedia: peer-to-peer
- ▶ Page 3: Blockchain.com