Q project 2

April 24, 2025

```
[68]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      from fuzzywuzzy import fuzz
      from fuzzywuzzy import process
      from scipy.stats import ttest_ind
      from functools import reduce
 [2]: df = pd.read_excel("QVI_data.xlsx")
 [3]: df.dtypes
 [3]: LYLTY_CARD_NBR
                                    int64
                           datetime64[ns]
     DATE
      STORE_NBR
                                    int64
      TXN_ID
                                    int64
      PROD_NBR
                                    int64
      PROD_NAME
                                   object
      PROD_QTY
                                    int64
      TOT_SALES
                                  float64
      PACK_SIZE
                                    int64
      BRAND
                                   object
     LIFESTAGE
                                   object
     PREMIUM_CUSTOMER
                                   object
      dtype: object
```

1 Monthly analysis

```
[6]: monthly['avgtxncustom']=monthly['nTxn']/monthly['nCustomers']
     monthly['avgprice']=monthly['totSales']/monthly['totQty']
[7]: print(monthly.head())
       STORE NBR YEARMONTH totSales nCustomers nTxn totQty
                                                                 avgtxncustom \
                                                             62
    0
                    201807
                                206.9
                                               49
                                                     52
                                                                      1.061224
    1
               1
                    201808
                                               42
                                                     43
                                                             54
                                176.1
                                                                      1.023810
                    201809
                                                             75
    2
               1
                                278.8
                                               59
                                                     62
                                                                      1.050847
    3
               1
                    201810
                                188.1
                                               44
                                                     45
                                                             58
                                                                     1.022727
    4
                    201811
                                192.6
                                               46
                                                     47
                                                             57
                                                                      1.021739
       avgprice
    0 3.337097
    1 3.261111
    2 3.717333
    3 3.243103
    4 3.378947
```

2 Calculate similarity to select control store

```
[21]: def calculate_correlation(df, metric_col, trial_store):
          results = []
          stores = df['STORE_NBR'].unique()
          for store in stores:
              if store == trial store:
                  continue
              trial_series = df[df['STORE_NBR'] == trial_store][metric_col].values
              compare_series = df[df['STORE_NBR'] == store][metric_col].values
              if len(trial_series) == len(compare_series):
                  corr = pd.Series(trial_series).corr(pd.Series(compare_series))
                  results.append({
                      'Trial': trial_store,
                      'otherS': store,
                      'corr_measure': corr
                  })
          return pd.DataFrame(results)
```

```
[25]: def calculate_magnitude_distance(df, metric_col, trial_store):
    results = []
    stores = df['STORE_NBR'].unique()

    trial_vals = df[df['STORE_NBR'] == trial_store][metric_col].values

    for store in stores:
        if store == trial_store:
```

```
continue

compare_vals = df[df['STORE_NER'] == store][metric_col].values

if len(trial_vals) == len(compare_vals):
    distance = abs(trial_vals - compare_vals)
    normalized = 1 - ((distance - distance.min()) / (distance.max() -_u

distance.min()))
    magnitude_score = normalized.mean()

results.append({
        'Trial': trial_store,
        'otherS': store,
        'mag_measure': magnitude_score
    })

return pd.DataFrame(results)
```

```
[81]: metrics = ['totSales', 'nCustomers']
      trial_stores = [77, 86, 88]
      merged_all = []
      for trial in trial_stores:
          metric_scores = []
          for metric in metrics:
              corr_df = calculate_correlation(monthly, metric, trial)
              corr_df.rename(columns={'Store1': 'Trial', 'Store2': 'otherS'},__
       →inplace=True)
              mag_df = calculate_magnitude_distance(monthly, metric, trial)
              mag_df.rename(columns={'Store1': 'Trial', 'Store2': 'otherS'},__
       →inplace=True)
              merged = pd.merge(corr_df, mag_df, on=['Trial', 'otherS'])
              merged[f'{metric}_score'] = (merged['corr_measure'] +__
       →merged['mag_measure']) / 2
              metric_scores.append(merged[['Trial', 'otherS', f'{metric}_score']])
          merged_metric = reduce(lambda left, right: pd.merge(left, right,__

→on=['Trial', 'otherS']), metric_scores)
          merged_metric['final_score'] = merged_metric[[f'{m}_score' for m in_
       →metrics]].mean(axis=1)
```

Final control store: {77: 233, 86: 229, 88: 188} Best control store will be {77: 233, 86: 229, 88: 188}

3 Test

```
[74]: pre_trial = [f"{y}{m:02d}" for y in range(2018, 2019 + 1) for m in range(1, 13)]
pre_trial = [m for m in pre_trial if '201807' <= m <= '201901']

trial_period = ['201902', '201903', '201904']
```

```
[75]: monthly['YEARMONTH'] = monthly['YEARMONTH'].astype(str)
```

```
plt.title(f"Sales Comparison: Trial {trial_store} vs Control⊔
→{control_store}")
  plt.legend()
  plt.xticks(rotation=45)
  plt.tight_layout()
  plt.show()
```

[77]: plot_sales(77, 233)

```
STORE_NBR YEARMONTH totSales nCustomers nTxn totQty avgtxncustom \
880
                  201807
                             296.8
                                                   55
            77
                                            51
                                                           84
                                                                   1.078431
            77
                             255.5
                                                   48
                                                           74
881
                  201808
                                            47
                                                                   1.021277
882
            77
                             225.2
                                            42
                                                  44
                                                           70
                  201809
                                                                   1.047619
883
            77
                  201810
                             204.5
                                             37
                                                   38
                                                           52
                                                                   1.027027
884
            77
                  201811
                             245.3
                                            41
                                                   44
                                                           67
                                                                   1.073171
     avgprice
```

880 3.533333

881 3.452703

882 3.217143

883 3.932692

884 3.661194

['201807' '201808' '201809' '201810' '201811' '201812' '201901' '201902' '201903' '201904']

[78]: plot_sales(86, 229)

	STORE_NBR	YEARMONTH	totSales	nCustomers	nTxn	totQty	avgtxncustom	\
977	86	201807	892.20	99	126	251	1.272727	
978	86	201808	764.05	94	110	215	1.170213	
979	86	201809	914.60	103	128	258	1.242718	
980	86	201810	948.40	109	138	276	1.266055	
981	86	201811	918.00	100	125	254	1.250000	

avgprice

977 3.554582

978 3.553721

979 3.544961

980 3.436232

981 3.614173

['201807' '201808' '201809' '201810' '201811' '201812' '201901' '201902' '201903' '201904']

Sales Comparison: Trial 86 vs Control 229

]: plot	plot_sales(88, 188)									
	STORE_NBR	YEARMONTH	totSales	nCustomers	s nTxn	totQty	avgtxncustom	\		
1001	88	201807	1310.0	129	9 153	306	1.186047			
1002	88	201808	1323.8	13:	1 158	303	1.206107			
1003	88	201809	1423.0	124	4 157	318	1.266129			
1004	88	201810	1352.4	123	3 155	316	1.260163			
1005	88	201811	1382.8	130	156	314	1.200000			
1001	avgprice 4.281046									
1002	4.368977									
1003	4.474843									
1004	4.279747									
1005	4.403822									
-	807' '20180 903' '20190		' '201810'	'201811'	'201812'	'201901'	'201902'			

Purpose of t-test is to judge the effect of strategy, so if p-value > 0.05, then difference betweem two stores is not meaningful and otherwise, it is meaningful. The result of t-test shows that the values of two stores is different meaningfully after strategy.

```
Store 77 vs 233 → t: 2.10, p: 0.1261
Store 86 vs 229 → t: 0.06, p: 0.9551
Store 88 vs 188 → t: 31.29, p: 0.0000
```

- The results tell us that only 88 vs 188 is meaningful(p<0.05), but in graph, difference in sales of two stores is already too big. This means we cannot use store 188 as control store.
- p-value of 86 vs 229 > 0.05, difference is not meaningful. This means their strategy is not effective. We can use this as control store because in graph, they are similar.

• 77 vs 233, their p-value is $0.12 > 0.05$. But it is not clearly big and strategy is bit effective. In graph, they looks similar. This store is not enough to select as control store.