Tema 4: Espais Vectorials

Bloc 1: Conceptes bàsics sobre espais vectorials

Espai vectorial

Espai vectorial

- 2 Dependència e independència linea
- Sistemes generadors i base
 - Matrius de canvi de base
- Subespais vectoriales

Subespais vectoriales

Direm que un conjunt no buit V és un espai vectorial real (o complex) si:

(1) En V hi ha definida una operació interna, que denotarem per +:

$$\vec{u}, \vec{v} \in V \Rightarrow \vec{u} + \vec{v} \in V$$

verificant les següents propietats:

- (s1) Propietat commutativa: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$, $\forall \vec{x}, \vec{y} \in V$.
- (s2) Propietat associativa: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in V.$
- (s3) Element neutre: Existeix un element $\vec{0} \in V$ tal que $\vec{x} + \vec{0} = \vec{x}$, $\forall \vec{x} \in V$.
- (s4) Element oposat: $\forall \vec{x} \in V$ existeix un element $-\vec{x} \in V$ tal que $\vec{x} + (-\vec{x}) = \vec{0}$.
- (2) En V hi ha definida una operació externa amb escalars en $\mathbb R$ (o en $\mathbb C$):

$$\vec{u} \in V, \ \lambda \in \mathbb{R}(\ \mathsf{o}\ \mathbb{C}) \Rightarrow \lambda \vec{u} \in V$$

verificant les següents propietats:

- (m1) $\lambda(\vec{x} + \vec{y}) = \lambda \vec{x} + \lambda \vec{y}, \quad \forall \lambda \in \mathbb{R}(\mathbb{C}), \forall \vec{x}, \vec{y} \in V.$
- (m2) $(\lambda + \beta)\vec{x} = \lambda \vec{x} + \beta \vec{x}, \quad \forall \lambda, \beta \in \mathbb{R}(\mathbb{C}), \forall \vec{x} \in V.$
- (m3) $(\lambda \beta)\vec{x} = \lambda(\beta \vec{x}), \forall \lambda, \beta \in \mathbb{R}(\mathbb{C}), \forall \vec{x} \in V.$
- (m4) $1 \vec{x} = \vec{x}, \ \forall \vec{x} \in V.$

Notacions i exemples

Notació

Espai vectorial

Usualment els elements de V s'anomenen vectors i els elements de $\mathbb R$ (o $\mathbb C$) escalars. La operació externa s'anomena producte per escalars.

Exemples

- $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i\}$ és un espai vectorial real amb les operacions suma i producte per un escalar usuals.
- $\mathbb{C}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{C} \ \forall i\}$ és un espai vectorial complex amb les operacions suma i producte per un escalar usuals.
- El conjunt de totes les matrius $M_{m \times n}(\mathbb{R})$ (o $M_{m \times n}(\mathbb{C})$) és un espai vectorial real (complex) amb les operacions: suma de matrius i producte escalar-matriu.

Subespais vectoriales

Més exemples

Espai vectorial

- Exemple: El conjunt R[x] dels polinomis en una indeterminada amb coeficients reals és un espai vectorial amb la suma usual de polinomis i el producte usual d'un polinomi per una constant.
- Exemple: Donat un enter positiu n, el conjunt dels polinomis de $\mathbb{R}[x]$ de grau $\leq n$:

$$a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$
, $a_0, a_1, \ldots, a_n \in \mathbb{R}$,

que denotarem per $\mathbb{R}_n[x]$, és també un espai vectorial amb les mateixes operacions.

Propietats

Espai vectorial

Siga V un espai vectorial. Per a qualsevol parella d'escalars α i β i qualsevol parella de vectors $\vec{u}, \vec{v} \in V$ es verifiquen les següents propietats:

- $0\vec{u} = \vec{0}.$
- $\Omega = \vec{0}$
- 3 Si $\alpha \vec{u} = \vec{0}$, aleshores $\alpha = 0$ o $\vec{u} = \vec{0}$.
- **3** Si $\alpha \vec{u} = \beta \vec{u}$ i $\vec{u} \neq \vec{0}$, aleshores $\alpha = \beta$.
- **1** Si $\alpha \vec{u} = \alpha \vec{v}$ i $\alpha \neq 0$, aleshores $\vec{u} = \vec{v}$.

Espai vectorial

Dependència e independència lineal

- - Matrius de canvi de base
- Subespais vectoriales

Combinació lineal

La següent definició és una extensió, a un espai vectorial abstracte, del concepte de combinació lineal que s'ha vist per a vectors de \mathbb{R}^n .

Definició

Siga V un espai vectorial i siga S un subconjunt de V. Direm que un vector \vec{u} és combinació lineal dels vectors de S si existeixen vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ de S tals que

$$\vec{u} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_n \vec{v}_n,$$

on $\lambda_1, \lambda_2, \dots, \lambda_n$ són escalars (anomenats coeficients de la combinació lineal).

Exemple: Si en \mathbb{R}^4 considerem el subconjunt de vectors $S = {\vec{x} = (1, 0, -1, 3), \vec{y} = (0, 2, -4, 5)}$ aleshores el vector $\vec{u} = (2, -2, 2, 1)$ és combinació lineal dels vectors de S ja que

$$(2,-2,2,1) = 2\vec{x} - \vec{y}$$
.

Espai vectorial

Exemple

El vector 0 és combinació lineal de qualsevol conjunt de vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ ja que

$$\vec{0} = 0\vec{v}_1 + 0\vec{v}_2 + \cdots + 0\vec{v}_n.$$

Exemple

Siga el conjunt de vectors de \mathbb{R}^4 següent:

 $S = {\vec{v}_1 = (1, 3, 4, -2), \vec{v}_2 = (0, -2, 4, 1), \vec{v}_3 = (1, 1, 1, 1)}.$ El vector $\vec{w} = (-1, 1, 9, -6)$ és una combinació lineal dels vectors en S perquè

$$\vec{w} = 2\vec{v}_1 + \vec{v}_2 - 3\vec{v}_3.$$

Els coeficients són 2, 1 i -3.

Exemples

Exemple

Considerem l'espai vectorial de les matrius 2×2 sobre \mathbb{C} i el conjunt de vectors

$$\left\{ \vec{v}_1 = \begin{bmatrix} 1 & -2i \\ 3 & 2+5i \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 & 3i \\ 0 & -2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1-5i & 6 \\ -3 & 4 \end{bmatrix} \right\}.$$

El vector $\vec{w} = \begin{bmatrix} 1 - 4i & 8 \\ -3 + 3i & -1 + 2i \end{bmatrix}$ és una combinació lineal dels vectors d'aquest conjunt perquè

$$\vec{w} = i\vec{v}_1 + 0\vec{v}_2 + \vec{v}_3.$$

Els coeficients són i, 0 i 1.

Exemple

En $\mathbb{R}[x]$ considerem els vectors $\{\vec{p}=2+x-3x^3, \vec{q}=-1+x^4\}$. El vector $\vec{r} = 4 + x - 3x^3 - 2x^4$ es combinació lineal de \vec{p} i \vec{q} ja que $\vec{r} = \vec{p} - 2\vec{q}$. Els coeficients són 1 i -2.

Per saber si un vector v és combinació lineal dels vectors $\{e_1, e_2, \dots, e_n\}$ podem fer el següent:

Construir una matriu A les columnes de la qual siguen els vectors $\{e_1, e_2, \dots, e_n\}$.

Sistemes generadors i bases

- 2 Si el sistema $A \cdot x = v$ és compatible, el vector v es combinació lineal dels vectors $\{e_1, e_2, \dots, e_n\}$ y al resoldre el sistema obtindrem els coeficients de la combinació lineal.
- 3 Si el sistema $A \cdot x = v$ és incompatible, aleshores el vector v no és combinació lineal de eixos vectors.

Definició

Direm que $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} \subseteq V$ és un conjunt linealment independent (o lliure) o que els vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ són linealment independents si, donada una combinació lineal nul·la

$$\lambda_1 \vec{\mathbf{v}}_1 + \lambda_2 \vec{\mathbf{v}}_2 + \dots + \lambda_n \vec{\mathbf{v}}_n = \vec{\mathbf{0}},$$

necessariament s'ha de cumplir que tots els escalars λ_i són iguals a zero.

En cas contrari, és a dir, si podem obtenir la igualtat anterior amb algún $\lambda_i \neq 0$, direm que $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ és un conjunt de vectors linealment dependent (o lligat) o que els vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ són linealment dependents.

Exemple

Si un conjunt de vectors S contè al vector zero $\vec{0}$ aleshores és lligat (linealment dependent).

Exemple

Un conjunt format per un únic vector $\vec{u} \neq \vec{0}$ és lliure (linealment independent).

Exemple

Entre els vectors del conjunt

$$S = {\vec{v}_1 = (1, 2, -1), \vec{v}_2 = (1, 0, 1), \vec{v}_3 = (1, 5, -4), \vec{v}_4 = (0, 0, 1)} \subseteq \mathbb{R}^3$$
 hi ha la següent relació de dependència lineal:

$$5\vec{v_1} - 3\vec{v_2} - 2\vec{v_3} + 0\vec{v_4} = \vec{0}.$$

Per tant es tracta d'un conjunt linealment dependent.

Observem que esta relació no trivial permet expressar qualsevol dels vectors amb coeficient $\lambda_i \neq 0$ com a combinació lineal dels altres:

$$\vec{v}_1 = \frac{3}{5}\vec{v}_2 + \frac{2}{5}\vec{v}_3 + 0\vec{v}_4,$$

aïllant v̄₂:

$$ec{v}_2 = rac{5}{3} ec{v}_1 - rac{2}{3} ec{v}_3 + 0 ec{v}_4,$$

i aïllant v

3:

$$\vec{v}_3 = \frac{5}{2}\vec{v}_1 - \frac{3}{2}\vec{v}_2 + 0\vec{v}_4.$$

Propietat

Siga *S* un conjunt de vectors d'un espai vectorial *V* que té, almenys, dos elements. Les següents condicions són equivalents:

- (a) S és linealment dependent.
- (b) Almenys un dels vectors de *S* es pot expressar com a combinació lineal de la resta de vectors de *S*.

Exemple: dependéncia e independència lineal

El conjunt de vectors de \mathbb{R}^4 donat per

 $S = \{(1,0,1,2), (1,1,0,0), (1,1,1,1)\}$ és linealment independent.

Comprovació: L'objectiu és provar que l'única relació de dependència lineal entre els vectors de S és la trivial. Considerem:

$$\lambda_1(1,0,1,2) + \lambda_2(1,1,0,0) + \lambda_3(1,1,1,1) = (0,0,0,0), \quad \lambda_i \in \mathbb{R}.$$

Esta igualtat equival a

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Així els coeficients $(\lambda_1,\lambda_2,\lambda_3)$ són les solucions del sistema d'equacions lineals homogeni $A\vec{\lambda}=\vec{0}$, on A és la matriu que té als vectors de S com a vectors columna. Aquest sistema resulta ser compatible determinat: l'única solució és

$$\lambda_1 = \lambda_2 = \lambda_3 = 0$$

i, per tant, el conjunt *S* és linealment independent.

Llavors, per saber si un conjunt de vectors $\{e_1, e_2, \dots, e_n\}$ és un sistema lliure podem fer el següent:

- Construir una matriu A les columnes de la qual siguen els vectors $\{e_1, e_2, \dots, e_n\}$.
- Si el sistema homogeni la matriu de coeficients del qual és A és compatible determinat, el conjunt de vectors és un sistema lliure.
- Si, per contra, aquest sistema homogeni és compatible indeterminat, aleshores el conjunt de vectors es un sistema lligat.

Espai vectorial

Espai vectorial

- 2 Dependència e independència lineal
- Sistemes generadors i bases
 - Matrius de canvi de base
- Subespais vectoriales

Subespais vectoriales

Espai vectorial Dependència e independència lineal Sistemes generadors i bases Subespais vectoriales

Sistema generador

Definició

Direm que un subconjunt S d'un espai vectorial V és un sistema generador de V, o que S genera V, si tot vector de V és combinació lineal de vectors en S; o, equivalentment, V és el conjunt de totes les combinacions lineals que es poden formar amb vectors de S.

Un espai vectorial V que admet un sistema generador finit es dirà que és de dimensió finita.

Els espais \mathbb{R}^n , \mathbb{C}^n , $M_{m \times n}(\mathbb{R})$, o $\mathbb{R}_n[x]$ són de dimensió finita, mentre que el espai dels polinomis $\mathbb{R}[x]$ no.

A partir d'ara

tots els espais vectorials considerats seran de dimensió finita.

Sistema generador

Exemple

Qualsevol vector $\vec{x} = (x_1, x_2, \dots, x_n)$ de \mathbb{R}^n es pot expressar de la següent forma:

$$\vec{x} = x_1(1,0,0,\ldots,0) + x_2(0,1,0,\ldots,0) + \cdots + x_n(0,0,\ldots,0,1).$$

és a dir, és combinació lineal dels vectors del conjunt $S_1 = \{(1,0,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)\}$. Així, S_1 és un sistema generador de \mathbb{R}^n , que és de dimensió finita.

Base de un espai vectorial

Definició

Un conjunt (finit) de vectors \mathcal{B} d'un espai vectorial V és una base de E si és linealment independent i, a més , és un sistema generador de V.

Exemple 1:
$$\mathcal{B} = \{(1,0,\ldots,0), (0,1,\ldots,0),\ldots, (0,0,\ldots,1)\}$$
 és una base de \mathbb{R}^n , anomenada base canònica.

Exemple 2: El conjunt $\{1, x, x^2, \dots, x^n\}$ és una base de $\mathbb{R}_n[x]$.

Pregunta natural:

Tot espai vectorial té una base?

Base d'un espai vectorial

Dependència e independència lineal

Exemple 3: El conjunt $\mathcal{B} = (1, 1, 0), (1, 0, 2), (0, 1, -1)$ és una base de \mathbb{R}^3 , ja que si $\vec{v} = (a, b, c)$ és un vector qualsevol i expressem:

$$\vec{v} = \lambda_1(1,1,0) + \lambda_2(1,0,2) + \lambda_3(0,1,-1)$$

aleshores s'obté el sistema d'equacions

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

Com que aquest sistema és compatible determinat (el rang de la matriu de coeficients és 3) deduïm:

- \mathcal{B} és un sistema generador de \mathbb{R}^3 ,
- \mathcal{B} és un conjunt lliure (es pot comprovar considerant $\vec{v} = (0, 0, 0)$).

Per tant \mathcal{B} és una base de \mathbb{R}^3 .

Base d'un espai vectorial

Propietat

Si $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ és un sistema generador de V i un dels vectors \vec{v}_i és combinació lineal dels vectors restants, aleshores el conjunt que s'obté eliminant \vec{v}_i :

$$\{\,\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_{i-1},\vec{v}_{i+1},\ldots,\vec{v}_n\,\}$$

és també un sistema generador de V.

Aplicant successivament esta propietat obtindrem un sistema generador minimal, que és lliure. Així:

Propietat

Tot sistema generador d'un espai vectorial V conté una base.

Coordenades d'un vector respecte d'una base

Quántes expressions admet un vector de V com a combinació lineal dels vectors d'una base?

Propietat-definició

Si $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ és una base de V aleshores qualsevol vector \vec{x} de V s'expressa de forma única com a combinació lineal dels vectors d'aquesta base.

Els coeficients únics $\lambda_1, \lambda_2, \dots, \lambda_n$ tals que

$$\vec{v} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \dots + \lambda_n \vec{e}_n$$

s'anomenen coordenades del vector \vec{v} respecte a la base \mathcal{B} . Notació: $\vec{\mathbf{v}} = (\lambda_1, \dots, \lambda_n)_{\mathcal{B}}$.

Coordenades d'un vector respecte d'una base

Exemple 1: Si considerem la base canónica

$$\mathcal{B} = \{(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)\}$$

les coordenades d'un vector $\vec{v} = (x_1, x_2, \dots, x_n)$ de \mathbb{R}^n respecte d'aquesta base són precisament les components (x_1, x_2, \dots, x_n) .

Exemple 2: Com hem comprovat abans el conjunt $\mathcal{B} = \{(1,1,0), (1,0,2), (0,1,-1)\}\$ és una base de \mathbb{R}^3 . Per calcular les coordenades d'un vector $\vec{v} = (a, b, c)$ respecte de la base \mathcal{B} plantegem

$$\vec{v} = \lambda_1(1,1,0) + \lambda_2(1,0,2) + \lambda_3(0,1,-1)$$

Resolent el sistema

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

obtenim les coordenades de \vec{v} respecte de la base \mathcal{B} .

Dimensió d'un espai vectorial

Propietat

Si $\mathcal{B} = \{\vec{e}_1, \dots, \vec{e}_n\}$ és una base de V i $S = \{\vec{u}_1, \dots, \vec{u}_m\}$ és un conjunt de vectors amb m > n aleshores S és lligat.

Conseqüència

Todas les bases d'un espai vectorial V tenen el mateix nombre d'elements.

Definició

S'anomena dimensió d'un espai vectorial V (dim V) al nombre d'elements de gualsevol base de V.

Siga $S = \{ \vec{u}_1, \vec{u}_2, \dots, \vec{u}_k \}$ un conjunt de vectors de V linealment independent. Entonces existeixen vectors $\vec{u}_{k+1}, \dots, \vec{u}_n$ tals que

$$\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k, \vec{u}_{k+1}, \dots, \vec{u}_n\}$$

és una base de E.

Teorema (caracterització de bases)

Siga V un espai vectorial de dimensió n i siga $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ un conjunt formado per n vectors. Són equivalents:

- B és una base de V.
- B és linealment independent.
- \mathcal{B} és un sistema generador de V.

Matriu de canvi de base

Siguen

$$\mathcal{B} = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\} \ i \ \mathcal{B}' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

dues bases d'un espai vectorial no trivial V. Suposem que els vectors de coordenades d'un vector

$$\vec{x} \in V$$

respecte d'aquestes bases són, respectivament:

$$\vec{x}_{\mathcal{B}} = (x_1, x_2, \dots, x_n)$$
 i $\vec{x}_{\mathcal{B}'} = (x'_1, x'_2, \dots, x'_n)$.

Quina relació hi ha entre els dos vectors de coordenades? Es pot calcular un d'ells a partir de l'altre?.

Matriu de canvi de base

Suposem conegudes les coordenades dels vectors de la base \mathcal{B}' respecte de la base \mathcal{B} :

$$\vec{v}_j = p_{1j}\vec{u}_1 + p_{2j}\vec{u}_2 + \cdots + p_{nj}\vec{u}_n, \quad j = 1, 2, \dots, n.$$

Per tant:

$$(x_1, x_2, \dots, x_n) = \vec{x}_{\mathcal{B}} = (x_1' \vec{v}_1 + x_2' \vec{v}_2 + \dots + x_n' \vec{v}_n)_{\mathcal{B}} = x_1' (\vec{v}_1)_{\mathcal{B}} + x_2' (\vec{v}_2)_{\mathcal{B}} + \dots + x_n' (\vec{v}_n)_{\mathcal{B}}$$

$$= x_1' \begin{bmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{bmatrix} + x_2' \begin{bmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{bmatrix} + \dots + x_n' \begin{bmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix}.$$

La matriu

$$\mathsf{M}_{\mathcal{B}'\mathcal{B}} := \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

s'anomena matriu de canvi de base de \mathcal{B}' a \mathcal{B} .

Matriu de canvi de base

Dependència e independència lineal

Així, el vector de coordenades d'un vector respecte de la base \mathcal{B} es pot calcular a partir del de coordenades respecte de \mathcal{B}' multiplicant per la matriu de canvi de base $M_{B'B}$, es a dir:

Canvi de base

$$\vec{x}_{\mathcal{B}} = \mathsf{M}_{\mathcal{B}'\mathcal{B}}\vec{x}_{\mathcal{B}'}.$$

De la mateixa manera podem construir la matriu de canvi de base de \mathcal{B} a \mathcal{B}' , $M_{BB'}$. En aquest cas, es cumpleix:

Propietat

Les matrius de canvi de base

$$M_{B'B}$$
 i $M_{BB'}$

són invertibles i una és la inversa de l'altra.

Matriu de canvi de base: Exemple

Exemple:

Considerem les bases de \mathbb{R}^2 següents:

$$\mathcal{B}_1 = \{(1,1), (5,-1)\}, \ \mathcal{B}_2 = \{(0,3), (2,5)\}.$$

Per a obtindre $M_{\mathcal{B}_1\mathcal{B}_2}$ hem de calcular els vectors de coordenades de cada vector de \mathcal{B}_1 respecte de la base \mathcal{B}_2 i posar-los en columnes. Així hem de resoldre dos sistemes d'equacions lineals amb la mateixa matriu de coeficients:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = x_1 \begin{bmatrix} 0 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \qquad \begin{bmatrix} 5 \\ -1 \end{bmatrix} = x_1 \begin{bmatrix} 0 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Podem resoldre els dos sistemes simultàniament:

$$\left[\begin{array}{cc|ccc} 0 & 2 & 1 & 5 \\ 3 & 5 & 1 & -1 \end{array}\right] \sim \sim \left[\begin{array}{ccc|ccc} 1 & 0 & -1/2 & -9/2 \\ 0 & 1 & 1/2 & 5/2 \end{array}\right].$$

Els vectors de coordenades que busquem són

$$(1,1)_{\mathcal{B}_2} = (-1/2,1/2)$$
 i $(5,-1)_{\mathcal{B}_2} = (-9/2,5/2)$

i la matriu de canvi de base de \mathcal{B}_1 a \mathcal{B}_2 és

$$\mathsf{M}_{\mathcal{B}_1\mathcal{B}_2} = \begin{bmatrix} -1/2 & -9/2 \\ 1/2 & 5/2 \end{bmatrix}.$$

Matriu de canvi de base: Exemple

Exemple:

El vector de coordenades d'un cert vector \vec{u} de \mathbb{R}^2 respecte de la base \mathcal{B}_1 de l'exercici anterior és

$$(-3,5).$$

Utilitzant la matriu de canvi de base anterior, calcularem les coordenades de \vec{u} respecte de la base \mathcal{B}_2 :

$$\vec{u}_{\mathcal{B}_2} = \mathsf{M}_{\mathcal{B}_1 \mathcal{B}_2} \vec{u}_{\mathcal{B}_1} = \begin{bmatrix} -1/2 & -9/2 \\ 1/2 & 5/2 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} -21 \\ 11 \end{bmatrix}.$$

Nota: La matriu de canvi de base de \mathcal{B}_2 a \mathcal{B}_1 es pot obtindre de forma anàloga, o bé calculant la matriu inversa de $M_{\mathcal{B}_1\mathcal{B}_2}$:

$$M_{\mathcal{B}_2\mathcal{B}_2} = M_{\mathcal{B}_1\mathcal{B}_2}^{-1} = \begin{bmatrix} -1/2 & -9/2 \\ 1/2 & 5/2 \end{bmatrix}^{-1} = \begin{bmatrix} 5/2 & 9/2 \\ -1/2 & -1/2 \end{bmatrix}.$$

Espai vectorial

Espai vectorial

- 2 Dependència e independència linea
- Sistemes generadors i bases
 - Matrius de canvi de base
- Subespais vectoriales

Subespais vectoriales

Subespais vectorials

Definició

Un subconjunt no buit E d'un espai vectorial V es diu que és un subespai vectorial de V si és un espai vectorial amb les operacions induïdes per les de V.

Caracterització de subespais vectorials

Un subconjunt E d'un espai vectorial V és un subespai vectorial de V si i només si es satisfan les següents condicions:

- (a) E és tancat respecte a la suma: $\vec{a} + \vec{b} \in E \quad \forall \vec{a}, \vec{b} \in E$.
- (b) E és tancat respecte al producte per un escalar: $\alpha \vec{a} \in E$ per a qualsevol vector \vec{a} de \vec{E} i per a qualsevol escalar α .

En particular: $\vec{0} \in E$.

Subespais vectorials

Exemple

Espai vectorial

Donat un espai vectorial V, l'espai vectorial trivial $\{\vec{0}\}$ i V són subespais vectorials de V anomenats subespais impropis. Els altres subespais vectorials de V es diu que són propis.

Exemples

- Qualsevol recta de \mathbb{R}^2 que passe per (0,0) és un subespai vectorial de \mathbb{R}^2 .
- Si n és qualsevol nombre enter ≥ 0 aleshores el conjunt de polinomis de grau menor o igual que n, $\mathbb{R}_n[x]$, és un subespai vectorial de l'espai de polinomis $\mathbb{R}[x]$.

Embolcall lineal

Propietat-Definició

Siga S un conjunt de vectors de V i denotem per $\langle S \rangle$ al conjunt de totes les combinacions lineals de vectors de S. Aleshores $\langle S \rangle$ és un subespai vectorial de V, que anomenarem embolcall lineal de S o subespai vectorial generat per S.

NOTA: $\langle S \rangle$ es el menor subespai vectorial de V que conté a S: $S \subseteq \langle S \rangle$.

ATENCIÖ!!! Si $S \neq \{\vec{0}\}$, aleshores $S \neq \langle S \rangle$.

$$S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$$

$$\langle S \rangle = \{ \lambda_1 \vec{\mathbf{v}}_1 + \lambda_2 \vec{\mathbf{v}}_2 + \dots + \lambda_k \vec{\mathbf{v}}_k \mid \lambda_i \in \mathbb{R} \ i = 1, 2, \dots, n \}.$$

Dimensió de subespais vectorials

Propietat

Espai vectorial

Siguen U_1 i U_2 dos subespais vectorials d'un espai vectorial V tals que $U_1 \subseteq U_2$. Aleshores:

- (a) $\dim(U_1) \leq \dim(U_2)$.
- (b) $\dim(U_1) = \dim(U_2)$ si i només si $U_1 = U_2$.

Exemples:

- Tots els subespais propis de \mathbb{R}^2 tenen dimensió 1, és a dir, són rectes que passen per l'origen de coordenades.
- Tots els subespais propis de R³ tenen dimensió 1 (rectes que passen per l'origen de coordenades) ó 2 (plans que passen per l'origen de coordenades).