《数值分析》第七章

- → 方程求根二分算法
- → 不动点迭代法及收敛性
- → 迭代收敛加速方法
- → 牛顿迭代法及变形
- →非线性方程组求解

非线性方程数值解法

考虑方程

$$f(x) = 0$$
 $x \in R, f(x) \in C[a,b]$

若 f(x) 是一次多项式,则称为线性方程;否则称为非线性方程 若 $f(x) = a_0 + a_1 x + \ldots + a_n x^n$,则称为代数方程

n=1, 2, 3, 4 时有相应的求根公式, $n \ge 5$ 时不存在求根公式

非线性方程可能有(无穷)多个解,一般要强调 求解区间

非线性方程一般没有直接解法,通常用迭代法求数值解

一些基本概念

- ●实根与复根
- 根的重数 $f(x) = (x-x_*)^m \cdot g(x)$ 且 $g(x_*) \neq 0$,则 x_* 为 f(x)=0的 m 重根
- 有根区间: [a,b] 上至少存在 f(x) = 0 的一个实根

研究内容: 在有根的前提下求出方程的近似根

7.1 二分法(对分法)

- ■基本思想、数学原理、计算过程
- ■收敛性分析

二分法(对分法)

●基本思想

将有根区间对分,并找出根所在的小区间,然后再对该小区间对分、依次类推、直到有根区间的长度足够小为止。

● 数学原理:零点定理

设 f(x) 在 [a, b] 上连续,且 f(a) f(b) < 0,则由零点定理可得,在 (a, b) 内至少存在一点 ξ 使得 $f(\xi) = 0$

• 适用范围

求有根区间内的 单重实根 或 奇重实根,即 f(a) f(b) < 0

用二分法求根,通常先给出 f(x) 草图以确定有根区间

二分法 (对分法)

二分法

算法: (二分法)

(1) 计算 f(a), f(b), 若 f(a), f(b) > 0, 则算法失效,停止计算

(2) 令
$$x = \frac{a+b}{2}$$
, 计算 $f(x)$

- (3) 若 $|f(x)| < \varepsilon$ 或 $|b-a| < \varepsilon$,停止计算,输出近似解 x
- (4) 若 $f(a) \cdot f(x) < 0$,则令 b = x; 否则令 a = x
- (5) 返回第2步

误差分析

• 误差分析

记 $a_1 = a$, $b_1 = b$, 第 k 步的有根区间为 $[a_k, b_k]$

$$|x_k - x_*| = \left| \frac{b_k + a_k}{2} - x_* \right| \le \frac{b_k - a_k}{2} = \frac{b_{k-1} - a_{k-1}}{4} = \cdots = \frac{b_1 - a_1}{2^k}$$

$$|x_k - x_*| \le \frac{b - a}{2^k} \to 0 \ (k \to \infty)$$

结论: 二分法总是收敛的! (函数满足零点定理)

二分法迭代将得到一系列隔根区间

$$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_n,b_n]\supset\cdots$$

性质:1.
$$f(a_n)$$
: $f(b_n)$ <0; 2. b_n - $a_n = (b-a)/2^n$

定理 设 x^* 是 f(x)=0在 [a,b]内的唯一根,且 $f(a)\cdot f(b)<0$,则二分计算过程中,各区间的中点数列

$$x_n = \frac{1}{2}(a_n + b_n)(n = 0,1,2,\cdots)$$

满足: $|x_n - x^*| \le (b - a)/2^{n+1}$

注记: 若要
$$|x_n - x^*| \le \frac{1}{2} \times 10^{-3}$$

只需
$$\frac{b-a}{2^{n+1}} \le \frac{1}{2} \times 10^{-3}$$
 \rightarrow $n \ge \log_2 \frac{b-a}{10^{-3}}$

$$\log_2 10 \approx 3.3219$$

$$n \ge \log_2 \frac{b-a}{10^{-3}}$$

例 二分法求方程

$$\exp(-x) - \sin(\frac{\pi x}{2}) = 0$$

在区间 [0, 1]内的根.二分十次。

解: 今
$$f(x) = \exp(-x) - \sin(\frac{\pi x}{2})$$

 $f(0) = 1 > 0$ $f(1) = e^{-1} - 1 < 0$ $\Rightarrow f(0)f(1) < 0$
 $f'(x) = -[\exp(-x) + \frac{\pi}{2}\cos(\frac{\pi x}{2})] < 0, 0 < x < 1$

函数在[0,1]内有唯一零点,故[0,1]是隔根区间.

二分法迭代实验数据

n	an	xn	bn
0	0	5.0000e-001	1.0000e+000
1	0	2.5000e-001	5.0000e-001
2	2.5000e-001	3.7500e-001	5.0000e-001
3	3.7500e-001	4.3750e-001	5.0000e-001
4	4.3750e-001	4.6875e-001	5.0000e-001
5	4.3750e-001	4.5313e-001	4.6875e-001
6	4.3750e-001	4.4531e-001	4.5313e-001
7	4.3750e-001	4.4141e-001	4.4531e-001
8	4.4141e-001	4.4336e-001	4.4531e-001
9	4.4336e-001	4.4434e-001	4.4531e-001
10	4.4336e-001	4.4385e-001	4.4434e-001

 $|x_{10} - x^*| \le 1/2^{11} \le 1/2000$

二分法求解非线性方程的优缺点:

- 计算过程简单,收敛性可保证;
 - 对函数的性质要求低,只要连续即可。

- 收敛速度慢;
- 不能求复根和重根;
- 调用一次求解一个[a, b]间的多个根无 法求得。

总结:一般用来计算解的一个粗糙估计

7.2不动点迭代

- ■基本思想
- 迭代格式
- 收敛性分析(全局收敛与局部收敛)

不动点迭代基本思想

• 构造 f(x) = 0 的一个等价方程:

$$x = \varphi(x)$$

不动点迭代格式

•任取一个迭代初始值 x_0 ,计算

$$x_{k+1} = \varphi(x_k)$$
 $k = 0, 1, 2, ...$

得到一个迭代序列: x_0 , x_1 , x_2 , ..., x_n , ...

几何含义:求曲线 $y = \varphi(x)$ 与直线y = x的交点。

例 方程 $x^3 + 4x^2 - 10 = 0$ 在 [1, 2] 上有一个根, 将方程变换成另一形式

(1)
$$x = \sqrt{10 - x^3} / 2$$
 $\varphi(x) = \sqrt{10 - x^3} / 2$
 $x_{n+1} = \varphi(x_n)$
 $x_0 = 1.5$ $(n = 0, 1, 2, \dots)$
(2) $x = \sqrt{10/(x+4)}$ $\varphi(x) = \sqrt{10/(x+4)}$
 $x_{n+1} = \varphi(x_n)$
 $x_0 = 1.5$ $(n = 0, 1, 2, \dots)$

$$x_{n+1} = \frac{1}{2} \sqrt{10 - x_n^3}$$

		10
J	$c_{n+1} = $	$\overline{x_n+4}$

n	x_n	$ x_{n+1} - x_n $
0	1.5000	
1	1.2870	2.1e-1
2	1.4025	1.1e-1
3	1.3455	5.7e-2
4	1.3752	2.9e-2
5	1.3601	1.5e-2
6	1.3678	7.7e-3
7	1.3639	3.9e-3
8	1.3659	2.0e-3
9	1.3649	1.0e-3
10	1.3654	5.3e-4

n	x_n	$ x_{n+1} - x_n $
0	1.5000	
1	1.3484	1.5e-1
2	1.3674	1.8e-2
3	1.3650	2.4e-3
4	1.3653	3.0e-4
5	1.3652	3.9e-5
6	1.3652	4.9e-6

$$f(x) = 0 \quad \Rightarrow \quad x = \varphi(x)$$

若存在 x^* , 使得 $x^* = \varphi(x^*)$, 则称 x^* 为 $\varphi(x)$ 的 不动点

$$\varphi(x)$$
 — 迭代函数

$$x_{n+1} = \varphi(x_n)$$

$$\Rightarrow \begin{cases} y_n = \varphi(x_n) \\ x_{n+1} = y_n \end{cases}$$

$$(x_n, y_n) \rightarrow (x_{n+1}, y_n) \rightarrow (x_{n+1}, y_{n+1}) \cdots$$

$$\rightarrow (x_{n+1}, y_{n+1}) \cdots \cdots$$

$$\varphi(x) = \sqrt{10 - x^3} / 2$$

不动点迭代蛛网图

 $\varphi(x)$ 在x*附近较陡峭

收敛性分析

设
$$\varphi(x)$$
 连续,若 $\left\{x_k^{\infty}\right\}_{k=0}^{\infty}$ 收敛,即 $\lim_{k\to\infty}x_k=x_*$,则

$$\lim_{k\to\infty} x_{k+1} = \lim_{k\to\infty} \varphi(x_k) = \varphi\left(\lim_{k\to\infty} x_k\right)$$

$$x_* = \varphi(x_*) \quad \text{in} \quad f(x_*) = 0$$

$$f(x_n) = 0$$

性质: 若 $\lim_{k\to\infty} x_k = x_*$,则不动点迭代收敛,且 x_* 就是 f(x)=0 的解; 否则迭代法发散。

定理 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

(1)
$$a \le \varphi(x) \le b$$
; (2) $|\varphi'(x)| \le L < 1$ 则 $\varphi(x)$ 在 $[a,b]$ 有唯一的不动点 x^* 证 若 $\varphi(a) = a$ 或 $\varphi(b) = b$,显然 $\varphi(x)$ 有不动点 设 $\varphi(a) \ne a$, $\varphi(b) \ne b$ 则有 $\varphi(a) > a$, $\varphi(b) < b$ 记 $\psi(x) = \varphi(x) - x$ 则有 $\psi(a) \cdot \psi(b) < 0$ 所以, 存在 x^* , 使得 $\psi(x^*) = 0$ 即 $x^* = \varphi(x^*)$, 故 x^* 是 $\varphi(x)$ 的不动点.

如果 $\varphi(x)$ 有两个不同的不动点 $x_1^* \neq x_2^*$ 则有

$$x_1^* = \varphi(x_1^*)$$
 $x_2^* = \varphi(x_2^*)$

两式相减得

$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*)$$

由拉格朗日中值定理知, 存在 ξ 介于 x_1^* x_2^* 之间, 使

$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*) = \varphi'(\xi)(x_1^* - x_2^*)$$

$$|x_1^* - x_2^*| \le L \cdot |x_1^* - x_2^*|$$

$$\rightarrow$$
 1 \leq L (与 L <1 条件矛盾)

故不动点唯一。

不动点迭代的收敛性判断

定理:设 $\varphi(x) \in C[a,b]$ 且满足

- (1) 对任意的 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$
- (2) 存在常数 0 < L < 1,使得任意的 $x, y \in [a,b]$ 有

$$|\varphi(x)-\varphi(y)|\leq L|x-y|$$

则对任意初始值 $x_0 \in [a,b]$,不动点迭代 $x_{k+1} = \varphi(x_k)$ 收敛,且

$$|x_k - x_*| \le \frac{L}{1 - L} |x_k - x_{k-1}| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

注:一般来说,L越小,收敛越快!

定理 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

(1) $a \le \varphi(x) \le b$; (2) $|\varphi'(x)| \le L < 1$ 则对任意的 $x_0 \in [a, b]$,迭代格式 $x_{n+1} = \varphi(x_n)$ 产生的序列 $\{x_n\}$ 收敛到不动点 x^* ,且有

$$|x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

证

$$\begin{cases} x_n = \varphi(x_{n-1}) & |x_n - x^*| = |\varphi(x_{n-1}) - \varphi(x^*)| \\ x^* = \varphi(x^*) & = |\varphi'(\xi)| \cdot |x_{n-1} - x^*| \end{cases}$$

$$\rightarrow |x_n - x^*| \le L |x_{n-1} - x^*|$$

$$|x_{n}-x^{*}| \leq L^{n}|x_{0}-x^{*}|$$

$$\lim_{n\to\infty} |x_n - x^*| \le \lim_{n\to\infty} L^n |x_0 - x^*| = 0 \quad (0 \le L \le 1)$$

所以,
$$\lim_{n\to\infty} x_n = x^*$$
 故迭代格式收敛

$$|x_n - x^*| = |x_n - x_{n+1} + x_{n+1} - x^*|$$

$$\leq |x_n - x_{n+1}| + |x_{n+1} - x^*| \leq |x_n - x_{n+1}| + L|x_n - x^*|$$

$$\rightarrow$$
 $(1-L)|x_n-x^*| \le |x_n-x_{n+1}|$

$$\rightarrow |x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

不动点迭代的收敛性判断

推论: 若 $\varphi(x) \in C^1[a,b]$, 对任意的 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$ 且 对任意 $x \in [a,b]$ 有

$$|\varphi'(x)| \le L < 1$$

则上述定理中的结论成立。

以上两个结论中的 收敛性与初始值的选取无关!

举例

例: 求 $f(x) = x^3 - x - 1 = 0$ 在区间 [1, 2] 中的根

(1)
$$\varphi(x) = \sqrt[3]{x+1}$$
 $1 \le \varphi(x) \le 2$ $(x \in [1,2])$

$$\varphi'(x) = \frac{1}{3}(x+1)^{-2/3} \qquad |\varphi'(x)| \le \frac{1}{3}\sqrt[3]{0.25} < 1$$

全局收敛

(2)
$$\varphi(x) = x^3 - 1$$
 $0 \le \varphi(x) \le 7$ $(x \in [1, 2])$ $\varphi'(x) = 3x^2$ $|\varphi'(x)| > 1$

不动点迭代的局部收敛

定义: 设 x_* 是 $\varphi(x)$ 的不动点,若存在 x_* 的某个 δ -邻域 $U_\delta(x_*) = [x_* - \delta, x_* + \delta]$,对任意 $x_0 \in U_\delta(x_*)$,不动点迭代

$$x_{k+1} = \varphi(x_k)$$

产生的点列都收敛到 x_* ,则称该迭代局部收敛。

定理: 设 x_* 是 $\varphi(x)$ 的不动点,若 $\varphi'(x)$ 在 x_* 的某个邻域内 连续,且

$$|\varphi'(x_*)| \leq 1$$

则不动点迭代 $x_{k+1} = \varphi(x_k)$ 局部收敛

定理(局部收敛性) 设 $x*为\varphi(x)$ 的不动点, $\varphi'(x)$ 在 $x*的某邻域连续,且|\varphi'(x*)|<1,则不动点迭代法<math>x_{k+1}=\varphi(x_k)$ 局部收敛。

证明:根据连续函数性质,因 $\varphi'(x)$ 连续,存在x*的某邻域 $R: |x-x*| \le \delta$,对任意 $x \in R$, $|\varphi'(x)| \le L < 1$,且

$$|\varphi(x)-x^*| = |\varphi(x)-\varphi(x^*)| = |\varphi'(\xi)| |x-x^*|$$

$$\leq L |x-x^*| \leq |x-x^*| \leq \delta$$

即对任意 $x \in R$, 总有 $\varphi(x) \in R$ 。

由全局收敛性定义知,迭代过程 $x_{k+1} = \varphi(x_k)$ 对于任意初值 $x_0 \in R$ 均收敛。

例 用不同方法求 $x^2-3=0$ 的根。

解: 格式 (1)
$$x_{k+1} = x_k^2 + x_k - 3$$

格式 (2)
$$x_{k+1} = \frac{3}{x_k}$$

格式 (3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3)$$

格式 (4)
$$x_{k+1} = \frac{1}{2} (x_k + \frac{3}{x_k})$$

取 $x_0=2$,对上述四种方法,计算三步所得结果如下:

 $k x_k (1) (2) (3)$

 $0 x_0 2 2 2$

 $1 \quad x_1 \quad 3 \qquad 1.5 \qquad 1.75 \qquad 1.75$

 $2 \quad x_2 \quad 9 \quad 2 \quad 1.73475 \quad 1.732143$

 $3 \quad x_3 \quad 87 \qquad 1.5 \qquad 1.732361 \quad 1.732051$

注: x*=1.7320508......

收敛速度

定义: 设迭代 $x_{k+1} = \varphi(x_k)$ 收敛到 $\varphi(x)$ 的不动点 x_* ,

记
$$e_k = x_k - x_*$$
,若

$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C$$

其中常数 C > 0,则称该迭代为 p 阶收敛。

- (1) 当 p = 1 且 0 < C < 1 时称为线性收敛
- (2) 当 p=2 时称为二次收敛,或平方收敛
- (3) 当 p > 1 或 p = 1且 C = 0 时称为超线性收敛
 - 二分法是全局线性收敛的
 - 若 $0 < |\varphi'(x_*)| < 1$,则不动点迭代 $x_{k+1} = \varphi(x_k)$ 局部线性收敛

例 方程 $x^3+10x-20=0$,取 $x_0=1.5$,证明迭代法

1.8

1.4

$$x_{n+1} = 20/(x_n^2 + 10)$$
 是线性收敛

$$\Rightarrow$$
 $\varphi(1) \approx 1.82$ $\varphi(2) \approx 1.43$

$$\Rightarrow \begin{cases} \varphi'(x) = -40x/(x^2 + 10)^2 \\ \varphi''(x) = 40 \frac{3x^2 - 10}{(x^2 + 10)^3} \end{cases}$$

$$\varphi''(x) = 0 \quad \Rightarrow \quad \hat{x} = \sqrt{10/3}$$

$$\varphi'(\hat{x}) \approx -0.4108 \quad \Rightarrow \quad |\varphi'(x)| \leq 0.411$$

10

显然,在x*附近

$$|\varphi'(x)| < 1 \quad \varphi'(x) \neq 0$$

利用Lagrange中值定理,有

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = |\varphi'(\xi_n)| |x_n - x^*|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} |\varphi'(\xi_n)| = |\varphi'(x^*)|$$

由此可知,这一序列的收敛阶数为1,即迭代法是线性收敛.

n	\boldsymbol{x}_n	$ x_{n+1}-x_n $	$ x_{n+2}-x_{n+1} $
0	1.5000000		$ x_{n+1}-x_n $
1	1.6326530	1.3265e-001	
2	1.5790858	5.3567e-002	4.0381e-001
3	1.6008308	2.1745e-002	4.0594e-001
4	1.5920195	8.8113e-003	4.0521e-001
5	1.5955927	3.5732e-003	4.0553e-001
6	1.5941442	1.4486e-003	4.0540e-001
7	1.5947315	5.8733e-004	4.0545e-001
8	1.5944934	2.3812e-004	4.0543e-001
9	1.5945899	9.6545e-005	4.0544e-001
10	1.5945508	3.9143e-005	4.0544e-001
11	1.5945666	1.5870e-005	4.0544e-001
12	1.5945602	6.4343e-006	4.0544e-001

收敛定理 设x*是 $\varphi(x)$ 的不动点,且

$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$

而 $\varphi^{(p)}(x^*) \neq 0$ 则 $x_{n+1} = \varphi(x_n)$ p阶收敛

由Taylor公式

$$|x_{n+1}-x^*|=|\varphi(x_n)-\varphi(x^*)|=\frac{|x_n-x^*|^p}{p!}|\varphi^{(p)}(\xi_n)|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = \frac{1}{p!} \lim_{n\to\infty} |\varphi^{(p)}(\xi_n)| = \frac{1}{p!} |\varphi^{(p)}(x^*)|$$

故迭代法p阶收敛.

举例

例: 求
$$f(x) = x^2 - 3 = 0$$
 的正根 $x_* = \sqrt{3}$

(1)
$$\varphi(x) = x^2 - 3 + x$$
 $\varphi'(x_*) = 2\sqrt{3} + 1 > 1$

(2)
$$\varphi(x) = x - \frac{x^2 - 3}{4}$$
 $\varphi'(x_*) = 1 - \frac{\sqrt{3}}{2} \approx 0.134 < 1$

(3)
$$\varphi(x) = \frac{1}{2} \left(x + \frac{3}{x} \right)$$
 $\varphi'(x_*) = 0$ $\varphi''(x_*) = \frac{2}{\sqrt{3}} \neq 0$

一般来说, $|\varphi'(x_*)|$ 越小,收敛越快!

7.3不动点迭代的加速

- Aitken 加速方法
- Steffensen 迭代方法

Aitken 加速

$$x_{1} = \varphi(x_{0}) \implies x_{1} - x_{*} = \varphi(x_{0}) - \varphi(x_{*}) = \varphi'(\xi_{1})(x_{0} - x_{*})$$

$$x_{2} = \varphi(x_{1}) \implies x_{2} - x_{*} = \varphi(x_{1}) - \varphi(x_{*}) = \varphi'(\xi_{2})(x_{1} - x_{*})$$

若 $\varphi'(x)$ 变化不大,则可假定 $\varphi'(\xi_1) \approx \varphi'(\xi_2)$

$$\frac{x_{1} - x_{*}}{x_{2} - x_{*}} \approx \frac{x_{0} - x_{*}}{x_{1} - x_{*}}$$

$$x_{*} \approx x_{0} - \frac{(x_{1} - x_{0})^{2}}{x_{2} - 2x_{1} + x_{0}} = y_{1}$$

Aitken 加速

$$y_{k+1} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

收敛性
$$\lim_{k\to\infty}\frac{y_{k+1}-x_*}{x_k-x_*}=0$$
 少 收敛较快

Steffenson 加速

基本思想:将 Aitken 加速技巧与不动点迭代相结合

$$y_k = \varphi(x_k), \quad z_k = \varphi(y_k), \quad x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k}$$

$$k = 0, 1, 2, \dots$$

Steffensen 迭代函数:

$$x_{k+1} = \psi(x_k), \ \psi(x) = x - \frac{(\varphi(x) - x)^2}{\varphi(\varphi(x)) - 2\varphi(x) + x}$$

Steffensen 迭代方法

定理: 若 x_* 是 $\psi(x)$ 的不动点,则 x^* 是 $\varphi(x)$ 的不动点。反之,若 x_* 是 $\varphi(x)$ 的不动点,且 $\varphi''(x)$ 存在, $\varphi'(x_*) \neq 1$,则 x_* 是 $\psi(x)$ 的不动点,且 Steffensen 加速迭代是二阶收敛的。

- ●若原迭代是p 阶收敛的,则 Steffensen 加速后p+1 阶收敛
- 原来不收敛的迭代, Steffensen 加速可能收敛

7.4 Newton 迭代法

- ■基本思想、几何意义
- 二阶局部收敛性
- 简化 Newton 法
- Newton 下山法
- ■重根情形

Newton 法

●基本思想

将非线性方程线性化

设 x_k 是f(x)=0的近似根,将f(x)在 x_k 处 Taylor 展开

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(\xi)}{2!}(x - x_k)^2$$

$$\approx f(x_k) + f'(x_k)(x - x_k) \triangleq P(x)$$

条件: $f'(x) \neq 0$

Newton 法

Newton 法

算法: (Newton 法)

(1) 任取迭代初始值 x_0

(2) 计算
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- (3) 判断收敛性:如果 $|x_1-x_0|<\varepsilon$ 或者 $|f(x_1)|<\varepsilon$,则算法收敛,停止计算,输出近似解 x_1
- (4) 令 $x_0 \leftarrow x_1$,返回第二步

Newton迭代法的收敛性:

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

设 $f(x^*)=0$, $f`(x^*)\neq 0$,则 $\varphi`(x^*)=0$,故Newton迭代法在 x^* 附近至少平方收敛。

定理: 假设f(x)在x*的某邻域内具有连续的二阶导数,且设f(x*)=0, $f`(x*)\neq 0$,则对充分靠近x*的初始值 x_0 ,Newton迭代法产生的序列 $\{x_n\}$ 至少平方收敛于x*。

50/93

应用举例: 计算平方根

例: 用 Newton 法求 $f(x) = x^2 - C = 0$ 的正根

$$\mathbf{\widetilde{R}}: \quad x_{k+1} = \frac{1}{2} \left(x_k + \frac{C}{x_k} \right) \qquad x_{k+1} - \sqrt{C} = \frac{1}{2x_k} \left(x_k - \sqrt{C} \right)^2$$

$$x_{k+1} + \sqrt{C} = \frac{1}{2x_k} \left(x_k + \sqrt{C} \right)^2$$

$$\frac{x_{k+1} - \sqrt{C}}{x_{k+1} + \sqrt{C}} = \left(\frac{x_k - \sqrt{C}}{x_k + \sqrt{C}}\right)^2$$

$$x_{k+1} + \sqrt{C} \quad \left(x_k + \sqrt{C}\right)$$

$$x_k - \sqrt{C}$$

$$x_k - \sqrt{C}$$

$$x_k + \sqrt{C} = \left(\frac{x_0 - \sqrt{C}}{x_0 + \sqrt{C}}\right)^{2^k} \triangleq q^{2^k}$$
总有 $|q| < 1$,

即牛顿法收敛

$$x_k - \sqrt{C} = 2\sqrt{C} \frac{q^{2^k}}{1 - q^{2^k}}$$

即牛顿法收敛

例 平方根算法求 $\sqrt{2}$

初值: $x_0=1.5$

迭代格式: $x_{n+1}=0.5(x_n+2/x_n)$ $(n=0,1,2,\dots)$

表1 平方根算法实验

\boldsymbol{x}_n	Error
1.41666666666667	2.45e-003
1.414215686274510	2.12e-006
1.414213562374690	1.59e-012
1.414213562373095	2.22e-016
1.414213562373095	2.22e-016

$$x_{n+1} - \sqrt{2} = \frac{1}{2} [x_n + \frac{2}{x_n}] - \sqrt{2}$$

$$= \frac{1}{2x_n} [x_n^2 - 2x_n \sqrt{2} + 2] = \frac{1}{2x_n} (x_n - \sqrt{2})^2$$

$$\frac{x_{n+1} - \sqrt{2}}{(x_n - \sqrt{2})^2} = \frac{1}{2x_n}$$

$$\lim_{n \to \infty} \frac{|x_{n+1} - \sqrt{2}|}{|x_n - \sqrt{2}|^2} = \frac{1}{2\sqrt{2}}$$

由此可知,平方根算法具有2阶收敛速度

例.求 $x^3 + 10x - 20 = 0$ 在 $x_0 = 1.5$ 附近的根

解:取
$$f(x) = x^3 + 10x - 20$$

则有 $f'(x) = 3x^2 + 10$

牛顿迭代格式
$$x_{n+1} = x_n - \frac{x_n^3 + 10x_n^2 - 20}{3x_n^2 + 10}$$

表2 牛顿迭代法实验

n	\boldsymbol{x}_n	$ x_{n+1}-x_n $
0	1.5	
1	1.59701492537313	9.7015e-002
2	1.59456374876881	2.4512e-003
3	1.59456211663188	1.6321e-006
4	1.59456211663115	7.2298e-013

缺陷

1.被零除错误

$$f(x) = x^3 - 3x + 2 = 0$$

在
$$x*=1$$
附近, $f'(x) \approx 0$

2.程序死循环

对 $f(x) = \arctan x$

存在 x_0 , 使Newton迭 代法陷入死循环

IX
$$x_0=0$$
, $x_{n+1}=x_n-\frac{x_n^3-x_n-3}{3x_n^2-1}$ $(n=0,1,\cdots)$

Newton迭代法陷入死循环的另一个例子

牛顿迭代法收敛的四种情况

例 已知方程 $x^3 - 3x + 2 = 0$

有两根:
$$x_1^* = -2$$
 $x_2^* = 1$

取根附近值做初值,分析牛顿迭代法实验的数据。

表3 初值取 - 1.5 时牛顿迭代法速度

n	\mathcal{X}_n	$ e_n $	$ e_{n+1} / e_n ^2$
0	-1.5	5.00e-001	
1	-2.33333333333	3.33e-001	1.3333
2	-2.055555555	5.55e-002	0.5000
3	-2.00194931773	1.94e-003	0.6316
4	-2.00000252829	2.52e-006	0.6654
5	-2.00000000000	4.26e-012	0.6667

表4 初值取 1.5 时牛顿迭代法速度

n	v	a	
	X_n	$\frac{ e_n }{5.00 \cdot 001}$	$ e_{n+1} / e_n $
0	1.5	5.00e-001	0.7000
1	1.2666666	2.66e-001	0.5333
2	1.1385620	1.38e-001	0.5196
3	1.0707773	7.07e-002	0.5108
4	1.0357918	3.57e-002	0.5057
5	1.0180008	1.80e-002	0.5029
6	1.0090271	9.02e-003	0.5015
7	1.0045203	4.52e-003	0.5007
8	1.0022618	2.26e-003	0.5004
9	1.0011313	1.13e-003	0.5002
10	1.0005657	5.65e-004	0.5001
11	1.0002829	2.82e-004	0.5000

引理 设 x^* 是f(x)=0的二重根,则牛顿迭代法只具有一阶收敛

证:
$$x^*$$
是二重根 $\Rightarrow f(x) = (x - x^*)^2 g(x)$

$$f'(x) = (x - x^*)[2g(x) + (x - x^*)g'(x)]$$

$$\varphi(x) = x - \frac{(x - x^*)g(x)}{2g(x) + (x - x^*)g'(x)}$$

$$\Rightarrow \varphi'(x^*) = 1 - \frac{1}{2}$$
 牛顿迭代法只是一阶收敛.

若 x^* 是 f(x)=0 的 m 重根,修正的牛顿迭代法

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

为二阶收敛

$$m=2 \qquad \Rightarrow \qquad x_{n+1}=x_n-2\frac{f(x_n)}{f'(x_n)}$$

表5 x*为二重根时修正的牛顿迭代实验

n	\mathcal{X}_n	$ e_n $	$ e_{n+1} / e_n ^2$
0	1.5	5.00e-001	
1	1.03333333333	3.33e-002	0.1333
2	1.00018214936	1.85e-004	0.1639
3	1.0000000552	5.52e-009	0.1667

牛顿法

● 牛顿的优点

至少二阶局部收敛,收敛速度较快,特别是当迭代点充分靠近精确解时。

牛顿法是目前求解非线性方程(组)的主要方法

- 牛顿的缺点
 - 对重根收敛速度较慢(线性收敛)
 - 对初值的选取很敏感,要求初值相当接近真解

先用其它算法获取一个近似解,然后使用牛顿法

● 每一次迭代都需要计算导数!

7.4.2 简化Newton法(平行弦法)

迭代公式:

$$x_{k+1} = x_k - cf(x_k)$$
 (c≠0,k=0,1,....)

迭代函数:

$$\varphi(x) = x - cf(x)$$

- $若 | \varphi`(x)| = |1-cf`(x)| < 1$,即取0 < cf`(x) < 2在x*附近成立,则收敛。
- 若取 $c=1/f`(x_0)$,则称简化Newton法。

7.4.2 Newton下山法

- 为防止Newton法发散,可增加一个条件: $|f(x_{k+1})| < |f(x_k)|$,满足该条件的算法称下山法。
- 可用下山法保证收敛,Newton法加快速度。 记

$$\overline{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = \lambda \overline{x}_{k+1} + (1 - \lambda)x_k$$

即

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

称Newton下山法。

A的选取:

从λ=1开始,逐次减半计算。

$$\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots$$

的顺序,直到使下降条件 $|f(x_{k+1})| < |f(x_k)|$ 成立为止。

例: 求解方程
$$\frac{x^3}{3} - x = 0$$

要求达到精度 $|x_n-x_{n-1}| \le 10^{-5}$,取 $x_0 = -0.99$ 。

解: 先用Newton迭代法: $f`(x)=x^2-1$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 3x_k}{3(x_k^2 - 1)}$$

$$x_1 = x_0 - \frac{x_0^3 - 3x_0}{3(x_0^2 - 1)} = 32.505829$$

$$x_2$$
=21.69118 x_3 =15.15689 x_4 = 9.70724 x_5 = 6.54091 x_6 = 4.46497 x_7 = 3.13384 x_8 = 2.32607 x_9 = 1.90230 x_{10} = 1.75248 x_{11} = 1.73240 x_{12} = 1.73205

需迭代13次才 达到精度要求

· 用Newton下山法,结果如下:

k 下山因子 x_k $f(x_k)$

k=0		$x_0 = -0.99$	$f(x_0) = 0.666567$	
k=1		$x_1 = 32.505829$	f(x) = 11416.4	
	$\lambda = 0.5$	$x_1 = 15.757915$	f(x) = 1288.5	
	$\lambda = 0.25$	$x_1 = 7.383958$	f(x) = 126.8	
	$\lambda = 0.125$	$x_1 = 3.196979$	f(x) = 7.69	
	$\lambda = 0.0625$	$x_1 = 1.103489$	f(x) = -0.655	<u> </u>
k = 2		$x_2 = 4.115071$	f(x) = 19.1	
	$\lambda = 0.5$	$x_2 = 2.60928$	f(x)=3.31	
	$\lambda = 0.25$	$x_2 = 1.85638$	f(x)=0.27	
k = 3		$x_3 = 1.74352$	f(x)=0.023	
k = 4		$x_4 = 1.73216$	f(x)=0.00024	
k = 5		$x_5 = 1.73205$	f(x)=0.00000	
k = 6		$x_6 = 1.73205$	f(x)=0.000000	67/93

重根情形

$$f(x) = (x - x_*)^m g(x) \quad \underline{\mathbf{I}} \quad g(x_*) \neq 0 \quad \longrightarrow \quad m \text{ 重零点}$$

● 解法一: 直接使用 Newton 法

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
 $\varphi'(x_*) = 1 - \frac{1}{m}$ 线性收敛

● 解法二: 改进的 Newton 法

$$\varphi(x) = x - m \frac{f(x)}{f'(x)}$$
 $\varphi'(x_*) = 0$ 二阶收敛

重根情形

• 解法三:用 Newton 法解 $\mu(x) = 0$,其中

$$\varphi(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

迭代格式:
$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

二阶收敛

弦截法与抛物线法

目的:避免计算 Newton 法中的导数,并且尽可能 地保持较高的收敛性(超线性收敛)

●弦截法(割线法): 用差商代替微商

●抛物线法:用二次多项式近似 f(x)

弦截法

$$f'(x_k) \approx f[x_{k-1}, x_k] = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

● 弦截法迭代格式:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$

$$k = 1, 2, 3, \dots$$

注: 弦截法需要提供两个迭代初始值

收敛性

定理:设 x_* 是f(x)的零点,f(x)在 x_* 的某邻域 $U(x_*,\delta)$ 内有二阶连续导数,且 $f'(x)\neq 0$,若初值 x_0 , $x_1 \in U(x_*,\delta)$,则当 δ 充分小时,弦截法具有p阶收敛性,其中

$$p = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$(p^2 - p - 1 = 0)$$

弦截法几何含义

73/93

例 用简化的Newton迭代法和弦截法计算方程 x^3 -3x+1=0的根。

解: 设 $f(x)=x^3-3x+1$, 则 $f'(x)=3x^2-3$

由简化的Newton法,得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)} = x_k - \frac{x_k^3 - 3x_k + 1}{3x_0^2 - 3}$$

由弦截法,得

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

$$= x_k - \frac{x_k^3 - 3x_k + 1}{x_k^2 + x_k x_{k-1} + x_{k-1}^2 - 3}$$
74/93

简化Newton法

$x_0 = 0.5$

$$x_1 = 0.33333333333$$

$$x_2 = 0.3497942387$$

$$x_3 = 0.3468683325$$

$$x_4 = 0.3473702799$$

$$x_5 = 0.3472836048$$

$$x_6 = 0.3472985550$$

$$x_7 = 0.3472959759$$

$$x_8 = 0.3472964208$$

$$x_9 = 0.3472963440$$

$$x_{10} = 0.3472963572$$

$$x_{11} = 0.3472963553$$

弦截法

$$x_0 = 0.5$$
;

$$x_1 = 0.4;$$

$$x_2 = 0.3430962343$$

$$x_3 = 0.3473897274$$

$$x_4 = 0.3472965093$$

$$x_5 = 0.3472963553$$

$$x_6 = 0.3472963553$$

要达到精度10⁻⁸,简化 Newton法迭代11次,弦 截法迭代5次,Newton 迭代法迭代4次。

无论前面哪种迭代法:

(Newton迭代法、简化Newton法、弦截法)

是否收敛均与初值的位置有关。

如
$$f(x) = \arctan(x) = 0$$
 精确解为 $x = 0$

Newton迭代法
$$x_{k+1} = x_k - \arctan x_k \cdot (1 + x_k^2)$$

取初值 $x_0 = 1$

$$x_0 = 1$$

$$x_1 = -0.5708$$

$$x_2 = 0.1169$$

$$x_3 = -0.0011$$

$$x_4 = 7.9631e-010$$

$$x_5 = 0$$

收敛

取初值 $x_0 = 2$

$$x_0 = 2$$

$$x_1 = -3.54$$

$$x_2 = 13.95$$

$$x_3 = -279.34$$

$$x_4 = 122017$$

发散

抛物线法

基本思想:

用二次曲线与 x 轴的交点作为 x* 的近似值

抛物线法

• 计算过程

二次曲线方程 (三点 Newton 插值多项式)

$$p_{2}(x) = f(x_{k}) + f[x_{k}, x_{k-1}](x - x_{k})$$
$$+ f[x_{k}, x_{k-1}, x_{k-2}](x - x_{k})(x - x_{k-1})$$

• 问题: $p_2(x)$ 与 x 轴有两个交点,取哪个点?

解决方法: 取靠近 x_k 的那个点!

抛物线法

$$p_2(x) = f(x_k) + f[x_k, x_{k-1}](x - x_k)$$

$$+ f[x_k, x_{k-1}, x_{k-2}](x - x_k)(x - x_{k-1})$$

$$x_{k+1} = x_k - \frac{2f(x_k)}{\omega \pm \sqrt{\omega^2 - 4f(x_k)f[x_k, x_{k-1}, x_{k-2}]}}$$

$$\omega = f[x_k, x_{k-1}] + f[x_k, x_{k-1}, x_{k-2}](x_k - x_{k-1})$$

取靠近 x_k 的那个点

● 抛物线法可能涉及复数运算,因此可以用来求复根

收敛性

在一定条件下可以证明: 抛物线法的收敛阶为

$$p \approx 1.840$$

$$(p^3 - p^2 - p - 1 = 0)$$

- 与弦截法相比,抛物线法具有更高的收敛阶
- 抛物线法需提供三个初始值
- 抛物线法也称为 Muller 法

7.7非线性方程组

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0 \\ f_2(x_1, x_2, ..., x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, ..., x_n) = 0 \end{cases} F = \begin{bmatrix} f_1, f_2, ..., f_n \end{bmatrix}^T F(x) = 0$$

$$x = \begin{bmatrix} x_1, x_2, ..., x_n \end{bmatrix}^T$$

迭代法: 单变量函数 f(x) \rightarrow 多变量函数 F(x)

基本性质

$$\lim_{x \to x_*} F(x) = F(x_*)$$

F(x) 在区域 $D \subseteq \mathbb{R}^n$ 内连续

F(x) 在 D 内所有点都连续

导数: Jacobi 矩阵

$$F'(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \frac{\partial f_n(x)}{\partial x_2} & \cdots & \frac{\partial f_n(x)}{\partial x_n} \end{bmatrix}$$

迭代方法

- ■不动点迭代法
- Newton 迭代法

不动点迭代

• 构造 F(x) = 0 的一个等价方程组: $x = \Phi(x)$

迭代格式

给定迭代初始值 $x^{(0)}$ 。计算

$$x^{(k+1)} = \Phi(x^{(k)})$$
 $k = 0, 1, 2, ...$

注:函数 $\Phi(x)$ 称为迭代函数

收敛性分析

设 $\Phi(x)$ 连续,若迭代序列 $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ 收敛,即

$$\lim_{k\to\infty} x^{(k)} = x_*$$

则

$$x_* = \Phi(x_*) \qquad \text{iff} \quad F(x_*) = 0$$

注: x_* 为 $\Phi(x)$ 的不动点,F(x) 的零点。

收敛性分析

定理: 设函数 $\Phi(x)$ 在区域 $D \subseteq \mathbb{R}^n$ 内有定义,且:

(1) 存在闭集 $D_0 \subseteq D$ 和实数 $L \in (0,1)$,使得

$$\|\Phi(x) - \Phi(y)\| \le L \|x - y\|, \quad \forall x, y \in D_0$$

(2) 对任意 $x \in D_0$ 有 $\Phi(x) \in D_0$

则 $\Phi(x)$ 在 D_0 内存在唯一不动点 x_* ,且对任意 $x^{(0)} \in D_0$,由迭代法生成的序列都收敛到 x_* ,同时有以下误差估计

$$||x^{(k)} - x_*|| \le \frac{L^k}{1 - L} ||x^{(1)} - x^{(0)}||$$

注:该定理也称为压缩映像原理,条件(1)称为压缩条件。

局部收敛性

定理: 设 x_* 是 $\Phi(x)$ 的不动点,且 $\Phi(x)$ 在 x_* 的某个领域 $U_{\delta}(x_*)$ 内存在连续偏导数,且

$$\rho(\Phi'(x_*))<1,$$

则存在 x_* 的一个领域 D_0 ,对任意 $x^{(0)} \in D_0$,由迭代法生成的序列都收敛到 x_* 。

收敛阶

定义: 设序列 $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ 收敛到 x_* ,且存在常数 $p \ge 1$ 和 C > 0,使得

$$\lim_{k \to \infty} \frac{\|x^{(k+1)} - x_*\|}{\|x^{(k)} - x_*\|^p} = C$$

则
$$\left\{x^{(k)}\right\}_{k=0}^{\infty}$$
 为 p 阶收敛。

- (1) 当 p = 1 且 0 < C < 1 时称为线性收敛
- (2) 当 p=2 时称为二次收敛,或平方收敛
- (3) 当 p > 1 或 p = 1且 C = 0 时称为超线性收敛

Newton 迭代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x^{(k+1)} = x^{(k+1)} - \left[F'(x^{(k)}) \right]^{-1} F(x^{(k)})$$

$$k = 0, 1, 2, ...$$

收敛性分析

定理:设 x_* 是F(x)的零点,且F(x)在 x_* 的某个领域 $U_{\delta}(x_*)$ 内存在连续偏导数。若 $F'(x_*)$ 非奇异,则存在 x_* 的一个闭领域S,使得 Newton 法生成的序列都超线性收敛到 x_* 。

进一步,若还存在常数 $L \in (0,1)$,使得 $\|F'(x) - F'(x_*)\| \le L \|x - x_*\|, \quad \forall x \in S$

则 Newton 法生成的序列至少平方收敛。

Newton 法举例

例: 用 Newton 法求解非线性方程组

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 8 = 0 \\ x_1x_2^2 + x_1 - 10x_2 + 8 = 0 \end{cases}$$

$$F(x) = \begin{bmatrix} x_1^2 - 10x_1 + x_2^2 + 8 \\ x_1x_2^2 + x_1 - 10x_2 + 8 \end{bmatrix}$$

$$F'(x) = \begin{bmatrix} 2x_1 - 10 & 2x_2 \\ x_2^2 + 1 & 2x_1x_2 - 10 \end{bmatrix}$$

取迭代初始值 $x^{(0)}=[0,0]^{T}$

总结

- → 方程求根二分算法
- → 不动点迭代法及收敛性
- → 迭代收敛加速方法
- → 牛顿迭代法及变形
- → 非线性方程组牛顿迭代