Long-term air quality trends in tropical future megacities

Karn Vohra^{1,2}, E. A. Marais², W. J. Bloss¹, J. Schwartz³, L. J. Mickley³, M. Van Damme⁴, L. Clarisse⁴, P. F. Coheur⁴

¹University of Birmingham; ²University College London; ³Harvard University; ⁴Université libre de Bruxelles.

Tropical cities are experiencing unprecedented growth

46 cities in tropical Asia and Africa will be megacities by 2100 [Hoornweg & Pope, 2016]

Trends in NO_x in tropical future megacities in 2005-2018

NO₂ increases in 41 cities by 0.1-14.1 % a⁻¹; leading to a gradual transition in ozone production regime from NO_x-sensitive to NO_x-saturated

CEDS_{GBD-MAPS} NO_x emission trends reproduce the direction of trends in satellite NO₂ for most cities

Trends in NH₃ in tropical future megacities in 2008-2018

NH₃ increases in cities in all regions except the Indian subcontinent

Trends in CEDS_{GBD-MAPS} NH₃ emissions are 2-5 times less than the trends in satellite NH₃

Trends in PM_{2.5} in tropical future megacities in 2005-2018

Large and significant increases of 3-8 % a⁻¹ in PM_{2.5} over Indian subcontinent

Dominant sources are many: secondary sources from NOx, NH3, NMVOCs, primary sources of windblown dust, crop and trash burning, residential and open fires

Severe health burden in tropical future megacities

