CSC236 Term Test 1 Version 2 Review

Hyungmo Gu

May 12, 2020

Question 1

• Proof. Define $P(n): f(n) = 3^n$.

I will use complete induction to prove that $\forall n \in \mathbb{N}, P(n)$.

Base Case (n = 0):

Let n = 0.

Then,

$$f(n) = 1$$
 [By def.] (1)
 $\leq 3^0$ (2)

$$\leq 3^0 \tag{2}$$

$$=3^{n} \tag{3}$$

Thus, P(n) follows in this step.

Base Case (n = 1):

Let n=1.

Then,

$$f(n) = 1$$
 [By def., since $n = 1$] (4)
 $\leq 3^1$ (5)

$$\leq 3^1 \tag{5}$$

$$=3^{n} \tag{6}$$

Thus, P(n) follows in this step.

Base Case (n=2):

Let n=2.

Then,

$$f(n) = 9$$
 [By def., since $n = 2$] (7)

$$\leq 3^{2}$$
 (8)

$$= 3^{n}$$
 (9)

Thus, P(n) follows in this step.

Base Case (n = 3):

Let n=3.

Then,

$$f(n) = f(n-1) + 3f(n-2) +$$

$$9f(n-3)$$

$$= 9 + 3 \cdot 3 + 9 \cdot 1$$

$$= 3^{2} + 3^{2} + 3^{2}$$

$$= 3^{3}$$

$$= 3^{n}$$

$$\leq 3^{n}$$
[By def., since $n - 1 = 2$, $n - 2 = 1$, $n - 3 = 0$] (11)
$$(12)$$

$$(13)$$

$$(14)$$

Thus, P(n) follows in this step.

Case (n > 3):

Let n > 3.

Then, since $0 \le n-3 < n-2 < n-1 < n, P(n-3), P(n-2), P(n-1)$ holds by induction hypothesis. That is, $P(n-3) \le 3^{n-3}, P(n-2) \le 3^{n-2}, P(n-1) \le 3^{n-1}$.

Thus,

$$f(n) = f(n-1) + 3f(n-2) + 9f(n-3)$$
 [By def., since $n > 2$] (16)
 $\leq 3^{n-1} + 3 \cdot 3^{n-2} + 9 \cdot 3^{n-3}$ [By header] (17)

$$\leq 3^{n-1} + 3 \cdot 3^{n-2} + 9 \cdot 3^{n-3}$$
 [By header] (17)

$$= 3^{n-1} + 3^{n-1} + 3^{n-1}$$
(18)

$$=3^{n} \tag{19}$$

So, P(n) follows from H(n) in this step.