

#7

Marsh Effluvia

Lewis Shanks of Va
10 66

Paid March 18th 1823

Dr. Shanks

The
the
or per-
are re-
great
Chinese
descend-
of which
or the
in case
if the
would be
earlier.
So earlier
thus the
members
In the
earlier

up should incline
and reach up

Say
say

Of Marsh Effluvia

The Chemical nature of Marsh Effluvia, and the manner in which it operates on the system in producing the various forms of disease, which are referred to it as their cause, are subjects of great importance to Physicians; because if its Chemical qualities, or nature could be clearly discovered, the antidote would be obvious by means of which its deleterious effects might be prevented, or the Miasma decomposed and destroyed. & in case its Chemical nature could not be discovered, if the particular mode of its operation on the system could be ascertained, it would be advancing a step towards discovering the means whereby its effects on the animal economy might be ~~presented~~ counteracted; & thus the various forms of disease which it produces prevented or their severity lessened.

In the frequent attempts which have been made to analyse the infectious atmosphere, but little dis-

describ
of the
which
differen
sing to
power
to be ha
and t
it to o
ted by
listens
clos
on the
case of
have m
be sta
Dr.
genera
the no
only o

discovery has been made as to the unequivocal nature of Nitric muriate, or the substance, or substances of which it is composed. Different men have been of different opinions as to its real nature, some supposing it to be one thing, & some another. Oxygen by its powerfully stimulating action has been supposed to be the active agent. Hydrogen gas has been considered the nitrogenous cause of disease. Dr. Clark supposed it to be a compound of Hydrogen & light. Sulphurated Hydrogen gas, & also Oxydine gas have been considered the active agents in producing disease.

As to the means of removing Moral Effluvia or the system, Dr. Cullen believed it produced disease by a satiating operation. Dr. Rush says Yellow fever may be cured by stimulus, if the stimulus be stronger than that which produces the disease.

D. Potts says M. E. acts as a stimulus sui generis, first on the Brain, through the medium of the nerves, then on the system generally & particularly on the Stomach & Liver. Notwithstanding the

diverse
chemi
in, be
is repre
the co
regular
a littl
located
on the
In t

of water
the by
are all
number
in the
a varie
any bran
particular
consider
each or

3

Diversity of opinion on the subject, both as to its
chemical nature, & manner of action on the system
in producing disease; Physicians generally agree
in referring its origin to vegetable putrefaction, and
the decomposition of water. But the products of
vegetable putrefaction are so imperfectly known, and
so little has been discovered by chemical analysis, or
observation, that nothing satisfactory has been adduced
on the subject.

In the process of vegetable putrefaction ^{& decomposition} of water, Hydrogen — Carbonated hydrogen — Sulphuric ether vapour — Carbonic acid — & Nitrogen gases
are all known to be produced. In addition to these a
number of other decompositions substances may exist
in the infectious atmosphere, dependent on the kind
or variety of vegetables, & chemical quality of the water de-
composed. As these gases are known to be perfectly
putrefactive, & as they have all by different persons been
considered the noxious agent in producing disease,
each one deserves so much attention as to affect the

where
to the
in so
G
incip
only
have
that a
enough
Can
books
th.
Magan
Mc
be com
In the
script
30.
in May
it goes

4th

what experiment & observation has disclosed, relative
to its chemical nature, & effects on the system when
inhal'd.

Of Nitrogen gas. This gas is known to be uncombustible
& incapable of supporting combustion. Its specific gravity
is about to that of the atmosphere. From its ex-
treme lightness it ascends so rapidly after it is exhaled
that it is more than probable it does not exist long
enough in the atmosphere to be respir'd.

Carburetted Hydrogen gas, is a substance which des-
erves more particular attention than what is given of
it. It is produced in abundance in pools of
stagnant water, & may easily be obtained from them.

When produced from stagnant water it is found to
be combined with carbonic acid, & common air.
In the pure state it is without taste or smell, & its
specific gravity c. 0.555. to about 0.600 as 17 is to
30. As it passes off from the stagnant water it is
so mixed with carbonic acid gas, & common air, that
its gravity is much greater. It is the gas which exhal'd

in
balloons
detached
combed
that of
but to
concrete
surface
thus
such a
new
residence
Lip
the glass
A
breath
conservatory
of trees
absorbed
concrete

3

in such abundance from some coal mines, & which has long been the dead of miners under the name of fire damp. This gas is unrespirable & will not support combustion. Its specific gravity is so much less than that of atmospheric air, that it would tend to ascend, but from the quantity of carbonic acid gas, & air in combination with it, it is most probably retained near the surface, especially in the morning & evening when there is moisture in the air, with which carbonic acid is so disposed to combine. From this view of the subject I apprehend hydrogen is no doubt respiration in greater or less quantities.

Sulphurated hydrogen gas. is that which produces the offensive smell sometimes perceptible in marshes. It does not support combustion. Animals cannot breath it without suffocation. Its specific gravity to common air is as 1.1919. to 1000. consequently it exists near the surface of the earth; & as it is rapidly absorbed by water it probably exists principally in that combined state.

of
consider

587. N

Ne

f orig
time.

only a
is I've
with the
are a

Now
it must

be great
1000. 2

common

gradually,
the range
expanding
time in
they were

77
Of Carbonic acid gas. This gas is produced in considerable quantities. Its specific gravity is 1.587. It is also unrespirable.

Nitrogen gas, is produced by the combustion of Oxygen with carbon in the process of combustion. In this process the atmosphere is not only deprived of a portion of Oxygen, its respirable & vivifying principle, but it is contaminated with the compound thus formed, (Carbonic acid gas) and also with the Nitrogen gas set free.

Nitrogen gas is elastic like common air which it resembles in its mechanical properties. Its specific gravity is to Atmospheric air as 0.9728. is to 1000. Regarding the mechanical & other properties of common air, & so nearly approaching it in specific gravity, a portion of it is usually inhaled with the respirable air in respiration. When we birds also experiment proves that animals if compelled to continue in it, die in a very short time, precisely as they would if plunged under water.

Pro
prob
able
value
value
couple
would
c'sione
gather
e'streme
meat
little
big or
big are
big as
ation.
extreme
e'streme
big or
extreme
Garts

77

From the particular view of the gases it was probable that Hydrogen from its extreme lightness was liable to be inhaled, except as it is ascending when produced in large quantities. When animals are compelled to inhale ^{it} they soon die precisely as they would if plunged under water. Their death is occasioned merely by depriving them of oxygen.

Carburetted Hydrogen, & Nitrogen gases are the substances which most contaminate the atmosphere. They are produced in numbers in large quantities, & from their specific gravity & mechanical qualities properties, not only exist in the strata of air that is respired, but they are also so intimately blended with it, that they are unavoidably inhaled with it in respiration. They both when respired produce death immediately. The former is said to produce a specific change in the blood. This change most probably consists in a lighter than ordinary state of carbonation of the blood, from the superabundance of carbon in the air inspired coming in contact

contac
the recy
adult
with a
lips to
soaa
eggs
The day
moons
vity
you for
Cathie
ear the
that we
that g
Cous
obham
in so
lets a
Bartle

contact with the air cells of the Lungs, & preventing the respiratory effect of Oxygen in removing the reduced carbon from the Blood. The Blood consequently would continue to retain the carbon, & perhaps be combined with an increased quantity fit.

In addition to its effect in this way, it measures ally excludes by its specific gravity, the Oxygen from the Lungs, & thus procure the respiratory effect on the nervous system.

Nitrogen gas, is supposed to act by excluding Oxygen from the Lungs. The Specific gravity of Carbonic acid gas, is so great, that it remains to near the surface of the earth to be inhaled, except that which is rendered light by mixture, as indicated by oxygen gas, which has already been considered.

Conducted by the faint light afforded by observation & chemical experiment, the investigation so far has not been so definite, as it is unsatisfactory. But to go into a full investigation of the modes of action of Marsh Gas on the system, would require the sub-

labeled
Mass
June,
1. On
2. By
3. On
4. On
5. On
6. On
7. On
8. On
9. On
10. On
11. On
12. On
13. On
14. On
15. On
16. On
17. On
18. On
19. On
20. On
21. On
22. On
23. On
24. On
25. On
26. On
27. On
28. On
29. On
30. On
31. On
32. On
33. On
34. On
35. On
36. On
37. On
38. On
39. On
40. On
41. On
42. On
43. On
44. On
45. On
46. On
47. On
48. On
49. On
50. On
51. On
52. On
53. On
54. On
55. On
56. On
57. On
58. On
59. On
60. On
61. On
62. On
63. On
64. On
65. On
66. On
67. On
68. On
69. On
70. On
71. On
72. On
73. On
74. On
75. On
76. On
77. On
78. On
79. On
80. On
81. On
82. On
83. On
84. On
85. On
86. On
87. On
88. On
89. On
90. On
91. On
92. On
93. On
94. On
95. On
96. On
97. On
98. On
99. On
100. On

3

subject of respiration to be considered at large; as Marsh Effluvia seems to act through that medium, either,

1. On the nervous system, or,
2. By preventing the necessary state of oxygen in the blood, & then through the medium of the blood on the nervous system from being produced, or
3. By entering into combination with the blood & imparting to it noxious properties. In one of these ways, or in all of them, it most probably produces its deleterious effects on the system.

1. Then, presuming Marsh Effluvia to act primarily on the nervous system the impression must first be produced on the olfactory nerves, & the nerve of the lungs, & conveyed secondly, through the nerve to the Brain; & thence, the effect must be distributed from the Brain, by nervous communication, to every part of the system diseased: or,

2. If it acts by preventing the necessary state of oxygen in the blood, it most probably produces its malic effects

in the
region,
from con-
sidering
Good
the op-
portunities
exist to
the sys-
tem. We
have
the Rea-
son, Part
of by
and in
the la-
bor and
by the

on the system in a negative manner, by excluding oxygen from the lungs, & thus preventing ^{the} oxygen, either from combining with the carbon of the blood & conveying it off in the necessary quantity to keep the blood in a healthy state, or from producing any other effect on the blood necessary to health. The blood not being properly reoxygenated in the lungs would cease to afford the ordinary & necessary stimulus to the system.

3. We have supposed Marsh Gas may affect the system by imparting to the blood noxious properties. The products of vegetal combustion, which we have learnt to constitute Marsh Gas, all produce death immediately when inspired by animals.

Part of them are supposed to produce death negatively by excluding oxygen, as the animal dies just as it would if plunged under water. Those gases that are constitutive principles of carbon are said to produce a specific change in the blood. May they not in addition to excluding oxygen pro-

7. ~~the~~
8. ~~the~~
9. ~~the~~
10. ~~the~~
11. ~~the~~
12. ~~the~~
13. ~~the~~
14. ~~the~~
15. ~~the~~
16. ~~the~~
17. ~~the~~
18. ~~the~~
19. ~~the~~
20. ~~the~~
21. ~~the~~
22. ~~the~~
23. ~~the~~
24. ~~the~~
25. ~~the~~
26. ~~the~~
27. ~~the~~
28. ~~the~~
29. ~~the~~
30. ~~the~~
31. ~~the~~
32. ~~the~~
33. ~~the~~
34. ~~the~~
35. ~~the~~
36. ~~the~~
37. ~~the~~
38. ~~the~~
39. ~~the~~
40. ~~the~~
41. ~~the~~
42. ~~the~~
43. ~~the~~
44. ~~the~~
45. ~~the~~
46. ~~the~~
47. ~~the~~
48. ~~the~~
49. ~~the~~
50. ~~the~~
51. ~~the~~
52. ~~the~~
53. ~~the~~
54. ~~the~~
55. ~~the~~
56. ~~the~~
57. ~~the~~
58. ~~the~~
59. ~~the~~
60. ~~the~~
61. ~~the~~
62. ~~the~~
63. ~~the~~
64. ~~the~~
65. ~~the~~
66. ~~the~~
67. ~~the~~
68. ~~the~~
69. ~~the~~
70. ~~the~~
71. ~~the~~
72. ~~the~~
73. ~~the~~
74. ~~the~~
75. ~~the~~
76. ~~the~~
77. ~~the~~
78. ~~the~~
79. ~~the~~
80. ~~the~~
81. ~~the~~
82. ~~the~~
83. ~~the~~
84. ~~the~~
85. ~~the~~
86. ~~the~~
87. ~~the~~
88. ~~the~~
89. ~~the~~
90. ~~the~~
91. ~~the~~
92. ~~the~~
93. ~~the~~
94. ~~the~~
95. ~~the~~
96. ~~the~~
97. ~~the~~
98. ~~the~~
99. ~~the~~
100. ~~the~~

the lungs, & thus, preventing the carbon from being removed, imbue the blood with more carbon?

As part of the gasses which result from vegetal respiration are found to be deleterious, when inspired by a negative pressure on the system, & as the other part most probably produce the change, which is found to take place in the blood, by increasing the redun-dance of carbon, the conclusion must be, that Marsh Effluvia produce their morbid effects on the system by excluding oxygen from the lungs, & thus preventing it, from producing,

1. The effect on the nerves, & through that medium on the brain, supposed to be produced by some physiologically; and
2. The necessary changes on the blood by removing the redundant carbon. But,
3. From this conclusion Marsh Effluvia impart no noxious properties to the blood, but prevent the noxious principle generated in the system from

bring
less
of the
See a
true
The
atmos
chick
often
color
the
heavy
type
you
about
that
in
the

being removed. In confirmation of these conclusions respecting the nature & mode of action of Marsh Effluvia on the system a general view of the subject of respiration, & the effects of oxygen (the active principle in respirable air) on the system will be my point of attack.

Therefore without entering at all, into an investigation of the different chemical, & metaphysical theories which at different times have been advanced on the subject of respiration; we will consider it in the way indicated by the latest discoveries.

From experiment it is now clearly proven, that when pure atmospheric air is inspired a portion of its oxygen is lost, before it is expired. The quantity of oxygen consumed by a man in 24 hours, is found to be about 45,000 cubic inches. It is also ascertained that the air thrown out of the lungs contains in it a quantity of carbonic acid, which did not exist in it previous to its being used for respiration. The bulk of this gas is considered about equimolar.

to the oxygen consumed. As the above quantity of oxygen is found by experiment to be consumed in respiration, and as the quantity of carbonic acid gas thrown off from the lungs is equal or nearly equal to the quantity consumed, the conclusion is that the oxygen combines with the carbon of the blood, & thus forms the carbonic acid gas. Oxygen gas will combine with carbon so as to form carbonic acid without any change in the volume of the oxygen gas. The quantity of carbon carried out of the blood, through the lungs, in this way, is found by experiment to be about $\frac{3}{5}$ of a pound in 24 hours.

The atmospheric air then, is found to lose by respiration, a portion of oxygen gas the volume of which is supplied by carbonic acid gas.

Before proceeding to consider the changes produced in the blood by respiration, it is necessary to observe that these effects of respiration on the air, are not always at different times, and in different persons, but they are also varied by particular sub-

Sal
go
dine
ice
gum
le
on
gold
pink
The
le
The
one
pink
The
Lena
green
gal
the

substances taken internally. Dr. Prout & Hyle found by experiment, that alkohol & all fermented liquors diminish the production of carbonic acid formed by respiration. They found also that when the system is affected by mercury the proportion of carbonic acid gas in the air exhaled is diminished. Dr. Hyle found that the quantity was likewise diminished by a course of Nitric acid, & by a vegetable diet. [More as to the importance of these facts in the sequel.]

The changes produced in the blood ~~are~~ ^{by respiration}, are; 1. It acquires a bluish cast and colour & the bile also appears, 2. It loses a portion of Carbonic acid & 3. It unit's water. [Thomson's Chemistry, p. 479 & 500.] The first effect resulting from respiration is that which produces the most obvious difference between venous & arterial blood. This change, from a dark to a red colour, may be explained in part by a chemical effect of the air in blood on the blood; the venous blood when exposed to common air lost

of the
a actu
a gins
people
by H.
in the
of some
2. The p
The
to Sun
circula
stease
of live
of clas
is the
probab
catast
is the
comma
cycles

of the system undergoes the same changes: carbonic acid gas being formed, & oxygen absorbed, as in respiration. Venous blood when exposed to oxygen gas, has the same effects produced, much more rapidly & in a higher degree. No change takes place in the colour or visible properties of venous blood, when exposed to nitrogen gas; neither does any change take place in the gas.

The blood not only acquires a fluid, red colour in the lungs, but the chyle entirely disappears, after it circulates through the lungs. Now chyle is the substance of which blood is formed; but the process of blood making cannot take place in the lungs exclusively. The chyle circulates with the blood in the vascular system, and the assimilation probably in part is thus produced. But chyle contains no fibrin, & the waste which is produced in the muscular part of the system, by exercise cannot be repaired but by fibrin. Before the chyle, or part of it, can be changed into fibrin

a portion of the carbon must be abstracted from it. This effect is produced on the fluids in the Lungs. & now unless the Carbon be removed the process of assimilation must not only cease, but a great restlessness of carbon will be produced in the blood. If the assimilation of Oxyd & excretion of Sibiu be checked, by the inadherence of carbon; it follows as an evident consequence that the system will be debilitated as the waste taking place in it from its natural functions, and from exercise cannot be repaired. This debility will be most violent in the parts most remote from the source of the circulation, & where the effects of the restlessness of carbon is greatest, as in the capillary ramifications of the veins, and in the Vena portaria where the circulation goes on slow, & is easiest impeded. Now, if the the carbon which is generated so rapidly be not regularly in the system at the rate of $\frac{3}{4}$ of a pound per day, he

to
of the
top
and
and
as in
that
to a
list
the ga
extra
from
the e
are
by a
Pitt
liquid
would
a dec
As

not regularly removed through the medium of the lungs, may it not produce a tendency to putrefaction in the fluids? Vegetable and Negro-animal liquids in a saccharine and crude state, such as the Chyle and unassimilated blood are in, if they be of the proper temperature, are disposed to run rapidly into a state of fermentation, & putrefaction.

This tendency to putrefaction seems to depend on the quantity of carbonic oxide & saccharine fluids contained, as when the carbon passes off in the process of fermentation, in the form of carbonic acid gas, the component parts of the liquid are again separated & the tendency to fermentation ceases. But if by any particular circumstances, or state of the fluid, this effect of fermentation is prevented, the liquid instead of undergoing such changes as would free it from any tendency to fermentation, is decomposed, & passes into the putrid state.

As the unassimilated blood, is similar in

To go
to bed
at 8 p.m.
at the
playa
first
The
other
parties
of the
class
in the
7th class
comes
late
after
I have
the
up up
was

its qualities to crude Liquids, & as in the body the
Carbon is incipiently combining with Oxygen
& passing out of the blood through the medium
of the lungs in the form of carburec acid gas,
may not the functions of the lungs from their
effect in this respect, be considered to ~~function~~ ^{partake}?
The one completes the assimilation of the blood,
the other assimilates a crude fluid tending to
putrefaction. All this would be more obvious
if the blood were not under the vital, or living
influence of the system. In some cases of life
as there is such a tendency in the fluids to per-
turbation, that soon after death the whole body
becomes putrid. This tendency to putrefaction is
checked by the living powers of the system until
after death. The,

A change produced in the blood by Respiration
is the removal of the redundant carbon, amounting
upon an average to $\frac{1}{2}$ of a pound a day.
This we have found is produced by that portion

4. Very
many
days
and
3. That
This
would
be like
we be
bring
out
that
the
at the
The
4. the
in the
to the
other
so the

18

of oxygen lost from the air in respiration, combining with the carbon of the blood in the lungs & consequently, ^{it} goes, in the form of carbonic acid gas.

3. Water is emitted by respiration from the lungs
This transpiration from the lungs is a fluid somewhat similar to that thrown out of the body by insensible perspiration from the skin. They are both most probably localised secretions answering the double purpose of keeping the parts moist & dissipating redundant fluids.

But these changes produced in the blood are not the most important effects of respiration.
The transpiration of all animals depends upon it.

The manner in which animal heat is generated in the lungs & excreted throughout the system has been very ingeniously explained by Dr. Crawford. He found that the capacity of arterial blood for caloric, was so much greater than that of venous blood, that all the caloric evolved by the

Brig
Lus
tree
My
yed
V
allot
maste
cricat
ipre
Sauv
lecte
the M
Gatth
wide
had
groun
perim
hom
perim

22

Oxygen in the combination with Carbon, was thus rendered latent; & that the blood in its course of circulation through the system gradually gave out this latent heat, as it became changed from arterial to venous blood.

We have now taken a general view of the gaseous products of vegetable putrefaction, which constitute Marsh Gas, both as to their chemical nature, & Mosse Branzi on the system in producing disease: & in confirmation of the opinions advanced, we have found, that certain effects must be produced on the system through the medium of respiration, or the economy of health will be destroyed. In the atmosphere rendered infectious by vegetable putrefaction, we have also found unequivocal evidence to believe, that gaseous substances exist, which are known by experiment to prevent those effects on the system from taking place, which are produced by breathing pure air, and which are inexpressibly

rec
ge

tin
creas

gethe
stea

der
for

ay
yste

gau
tab

to p
the

yste
to th

Le.

The
rea

the

necessary to health.

From all these circumstances taken in connection, we are led to conclude that Marsh Gases consist in a superabundance of Carbureaceous & other adventitious substances, in the gaseous state in the atmosphere, which act negatively, by diminishing the relative quantity of Oxygen in the air respired, & thus preventing the necessary effects of Oxygen gas on the system from being produced. Carbureaceous gases in addition to their negative effect may imbue the blood with carbon, as they are said to produce a specific change in the blood.

The changes which are produced in the system by respiration, are effected principally by the removal of carbon from the blood by the chemical agent, Oxygen gas.

Hence Marsh Gases produce disease by preventing the Carbon from being removed from the blood, & the other changes from taking

place
to be
on
a
in
the

subject
of the
which
time
was
of great
importance
through
years

the
Carrie
begin
featur
e ex

place, consequent, on its removal; it remains
to be explained how this redundancy of car-
bon in the system produces a disease, so various
in its form, & yet so characteristic in its gen-
eric symptoms.

To throw some light on this part of the
subject, as well as on the nature of Marsh
Effusion, I will give a brief history of a pe-
culiar case, which came under my obser-
vation, & which affords the data, from which
assisted by subsequent reading, observation,
& reflection, I have predicated the present
thing of the cause of the disease produced by
Marsh Effusion, of its Pathology, & of the cure.

The Case

The subject of the present case was (my father)
David Banks Esq^r Resident in Botetourt County
Virginia. He was originally of a robust &
healthy constitution. At the age of 32 or 33
he exerted himself so violently lifting in an inc-

yellow
of give
young,
noon,
the
Du
years
the
estates
ties, h
have
ten to
a year
such
very t
those
time
ough,
locate
of the

yellow
of give
young,
noon,
the
Du
years
the
estates
ties, h
have
ten to
a year
such
very t
those
time
ough,
locate
of the

inclining posture that he easily fell something hard
or give way in his chest, he immediately stood
away from the injury. After he recovered from the
soothing, though much disabled he exposed himself
without caution to the vicissitudes of the weather.

During the violent exertion there was no pain
against his breast. Wherefore it is more than pos-
sible that from a full inspiration & the great
distension of his chest to give way to his exer-
tions, he ruptured some of the bronchial tubes.

However be this as it may, a violent inflam-
mation took place in his lungs, attended with
a great degree of fulness, and tension in the chest,
& such difficulty of breathing that it was next
to impossible him in an erect posture.

These symptoms gradually abated from the applica-
tion of blisters to the chest. He had a severe
cough, but not much expectoration. After the
acute symptoms disappeared, the peculiarity
of his case became manifest in a continuous

The
part
other
age
grade
true
was a
of the
quality
hates
no a
he, all
ration
His
interior
the
catalyst
tibia;
slabag
does

of the tension, and apparent impotency, particularly of the right lobe of his lungs, though without the extreme sensibility of the acute stage. The panics of the right side of his chest gradually sank in, and became more feeble than natural. The usual motion of respiration was changed. In his full inspirations, instead of the sternum & anterior part of his ribs rising equally regularly, the ribs of his left side only, were elevated in any considerable degree; the right side low down conformed to their elevation by sinking in, as the Adams does in a full natural inspiration, when the sternum is regularly elevated.

His situation in short seemed to be this, from the intensity of inflammation the air cells of the right lobe of his lungs had united, by means of the coagulating lymph thrown out, or the Bronchial tubes of the right side from the injury, and the subsequent inflammation had become so impervious as to prevent the air from passing into the

re, for
Luton
The
of the
The
to say
this
very
done
and
I con-
sider
that,
one
peculi-
ar this
the
for
but
by ac-

air passing into the right lobe; the consequence of which was, a deformed state of that lobe of his lungs. The pressure on the lobe was increased, the action of the left intercostal muscles, was increased also.

The right lobe owing to expansion, the action of the right intercostal muscles was diminished.

This state of his chest was obvious to any observer, and the surprise of the many physicians whom he consulted, all concluding they never had seen a parallel case. From this state of his lungs he could not exercise himself violently without producing symptoms of suffocation. Particles of dust floating in the air affected him much more than other persons. But the greatest peculiarity in the case, was the remote effect of this state of his lungs on the health of his system. Nature is unisious in all her works in adapting one part exactly to suit the demands of another. In this case by accident the lungs of bent of a very

in 50
The
Seal
the by
seen
year
and
the
big the
death
and
1400
1300
Many
be sta
that
the use
the
of ray

important organ in the system were destroyed
the natural consequence of which it was,
the defect must be made up in some way, or
the system must suffer. The defect though
local was considerable, as from every ap-
pearance nearly one half of the lungs was
rendered inactive, incapable of performing
the function of respiration. Notwithstanding
this was the state of his lungs, when the
weather was dry and temperate, by a regular
and easy course of life, which he observed, he
enjoyed tolerable health for a number of years.

But when the atmosphere was cloudy,
damp and cold, and he was at all exposed
he felt languor & oppression about the breast in
great sensibility to cold & all the symptoms to
be described, presented though in a mild degree.

With this brief history of the accident, the
destruction in, & peculiar state of the organ
of respiration produced by the accident, we

pass on to the last years of his life, when the symptoms become more urgent from the decline of his constitution.

He lived about 97 years after the accident, in a salubrious country situation, & in that way which was most conducive to his health. During the last years of his life, particularly, in the fall, winter, & spring seasons of the year, when the atmosphere became cool, cloudy, damp & heavy, or in other words, when from an increase of moisture in the atmosphere, there condensed by the cold air, the ordinary quantity of oxygen gas was prevented from coming in contact with the lungs in respiration, that does when the air is pure, dry, and most fit for respiration; his whole system was sometimes powerfully affected. Nothing is more common than to hear healthy persons, in the above state of the atmosphere, complain of feeling heavy & dull; produced no doubt from the necessary effect

for the
the a
heath
of the
quar
the
for re
syste
this
would
the
unpl
the
asce
at e
your
and
The
ug.
eraser

of injur on the system, not being produced from
the above cause. This being a known fact in
healthy constitutions it requires but little effort
of the imagination to conceive, that much
greater effects would be produced in a person
who under the most favorable circumstances
for respiration, could with caution but just
suspect the regular functions of life. Though
it is easy to conceive, that such violent respiration
would produce peculiar symptoms, yet it would
be difficult to point them out, without an ex-
ample of the kind.

When the changes in the atmosphere above
described would take place, the first apparent
effect on man would be witnessed by, low
quar, latitudo, indisposition to motion, incre-
ased sensibility to cold, want of appetite &c.

The paroxysms generally came on in the morn-
ing. They were preceded by drowsiness, in-
creased sensibility to cold, a shrinking of

the
second
on the
a date
etrieve
a good
old boy
wings,
with,
of man
trees
beast
will be
the day
stocks
is a
country
the tiny
away
Next

the whole body, Corrugation of the surface, & circulation in the external vessels, pallor in the head & chest, the surface of the body has a pale bluish cast, and the blood in the cutaneous veins had a proto-naturally venous appearance. [Vide *Vitae Materiae*, pages 77 to 85 in vol. II.] All these symptoms gradually increased, finally he became chilly, and was affected with pain in his head, back, Breast, Groins & scrotum; sickness of his stomach, sometimes vomiting, great fullness & oppression in his breast, and difficulty of breathing. When he was not ~~too~~ too much disturbed by the vomiting, or diarrhea, he frequently lay in a torpid & snoring unconscious state; but when his attention was called up by questions, his answers were always correct, probably from the influence of habit, as, after the paroxysm, when violent, he sometimes could recollect nothing that had occurred during it.

A
T
Y
D
H
W
O
G
Y
B
L
W
R
The
The
See
The
up

The cold stage of the paroxysm, after continuing about as long as in intermitent fever was succeeded by the hot stage. About the time the reaction took place he was generally affected with great oppression, ~~and~~ anxiety and violent coughing attend with a considerable expectoration of viscid phlegm. The hot stage was very similar to that in intermitent fever, except more anxiety & difficulty of breathing generally. The hot stage always ended in a general determination to the surface of the body by which the excitement was equalized, & in the last years of his life it generally went off by profuse perspiration.

It is evident from this description of the paroxysms that they were very similar to the paroxysms of intermitent fever. He had occasionally paroxysms of this kind from the time of the accident until his death; though for several years after the accident they were

ella
mme
ley
jouy
euse
P.
l'ho
iba
chic
rap
stee
one
years
one
time
key
note
iron
tell
stop

seldom so severe as to produce much inconveniency. For 12 or 15 years before his death they were occasionally as violent as above described, but they became more frequent as his constitution declined. From an attack of Pleurisy, succeeded by Bilious fever, three years before his death, the functions of his system were so impaired, that the efforts of supported respiration which before only produced material distress under particular circumstances, of the atmosphere, afterwards became a constant cause of the paroxysms. I have known him during the last two years of his life, sometimes to have a paroxysm more or less severe every day, for several days; sometimes to have one every other day for several weeks; & sometimes to labour for several days under oppression, anxiety, cough &c., virtually proceeding from a redundancy of fluids of varying the total organs; & then to be relieved by a brief paroxysm, which would produce such

nact
rebel
two
steu,
was
Bla
guin
part
wate
had
the
greg
years,
Gols
cuss
have
be in Th
other
he tell

reaction as to force the fluids to the extreme
repels. During the last two years of his life,
there seemed to be a constant tendency in his sys-
tem, to paroxysms of the kind above described,
of the tertious nature. This state of his system
was attended with an insensible secretion of
Bile. The above description would lead to the
opinion, that his disease was common Intermittent
fever: But he lived in a neighborhood where there
were no cases of the kind, for ten miles, & he never
had intermittent fever, from the ordinary cause
Having then, briefly described the symptoms
aggregately, which he suffered for a number of
years, I will endeavor to give some idea of the
effects of remedies, & of the opinions, as to the
cause of the symptoms.

Hauling had the effect of having up his system
& in this way proved advantageous. Colic was
afterward most conducive to this effect when
the atmosphere was dry. In addition to this a

ropes
second
is pay
wages
They
of his
true
in the
As
people
were
world
states
In Syria
a sacra
as abs
which
Moor
Moor
Ghaz

^{regular}
regular course of living was observed. But when his constitution began to decline, hastened by the imperfection of the Lungs the symptoms became urgent. He then resorted to medical remedies. Physicians differed in opinion as to the nature of his disease. Some supposed it to be similar to Interstitial Leucos, though they could not account for the symptoms, & their obstinate continuance.

As he always had more or less cough during the paroxysm, & was very much troubled with cough, when the pulmonary symptoms of a paroxysm would continue two or three days, before its complete cessation; some physicians ascribed all the symptoms, to an affection of the lungs, & considered them of the hectic kind, produced by an absorption of matter from the lungs; of which however, there was no evidence as he never expectorated mucus, but viscid white phlegm, & when it was retained from the effects of opiate it came away in a concocted

fran
acia
la
L
atio
Slo
wee
grea
f
e
j
d
e
a
9
optio
but ta
under
the
know
some

form, or in the state of mucus. Some physicians were surprised, that he had survived the injury so long.

I had every opportunity to observe his situation, both during the paroxysms & intermissions. For a number of years while the symptoms were seldom so violent. When I began to acquire principles from which to reason accurately, I reflected that he had, had exactly similar symptoms though less violent, & less frequent, than the time of the accident; I immediately came to the conclusion, that they were not as had been supposed of the hectic kind, & produced by matter in the lungs, or an absorption of matter from the lungs; for had this been the case, his system would soon have sunk under the disease. This theory vanishing before the test of reflection, I started from the well known fact that healthy persons during the same state of the atmosphere that affected

1. 1. 1.
2. 2. 2.
3. 3. 3.
4. 4. 4.
5. 5. 5.
6. 6. 6.
7. 7. 7.
8. 8. 8.
9. 9. 9.
10. 10. 10.
11. 11. 11.
12. 12. 12.
13. 13. 13.
14. 14. 14.
15. 15. 15.
16. 16. 16.
17. 17. 17.
18. 18. 18.
19. 19. 19.
20. 20. 20.
21. 21. 21.
22. 22. 22.
23. 23. 23.
24. 24. 24.
25. 25. 25.
26. 26. 26.
27. 27. 27.
28. 28. 28.
29. 29. 29.
30. 30. 30.
31. 31. 31.
32. 32. 32.
33. 33. 33.
34. 34. 34.
35. 35. 35.
36. 36. 36.
37. 37. 37.
38. 38. 38.
39. 39. 39.
40. 40. 40.
41. 41. 41.
42. 42. 42.
43. 43. 43.
44. 44. 44.
45. 45. 45.
46. 46. 46.
47. 47. 47.
48. 48. 48.
49. 49. 49.
50. 50. 50.
51. 51. 51.
52. 52. 52.
53. 53. 53.
54. 54. 54.
55. 55. 55.
56. 56. 56.
57. 57. 57.
58. 58. 58.
59. 59. 59.
60. 60. 60.
61. 61. 61.
62. 62. 62.
63. 63. 63.
64. 64. 64.
65. 65. 65.
66. 66. 66.
67. 67. 67.
68. 68. 68.
69. 69. 69.
70. 70. 70.
71. 71. 71.
72. 72. 72.
73. 73. 73.
74. 74. 74.
75. 75. 75.
76. 76. 76.
77. 77. 77.
78. 78. 78.
79. 79. 79.
80. 80. 80.
81. 81. 81.
82. 82. 82.
83. 83. 83.
84. 84. 84.
85. 85. 85.
86. 86. 86.
87. 87. 87.
88. 88. 88.
89. 89. 89.
90. 90. 90.
91. 91. 91.
92. 92. 92.
93. 93. 93.
94. 94. 94.
95. 95. 95.
96. 96. 96.
97. 97. 97.
98. 98. 98.
99. 99. 99.
100. 100. 100.

him, complaint of the same symptoms, as lethargy, dullness, headache, &c, only in a less degree. Attributing this lethargic state in healthy persons, to the unusual state of the atmosphere, I immediately concluded that the defect produced in the organ of respiration by the accident, would greatly increase these symptoms in him, as there was imperfect respiration in addition to an unnatural state of the atmosphere. Knowing the harmony of nature in forming me so it exactly to suit the demands of health in all the work she completes, & knowing also that this proportion of parts had been deranged by accident and disease, the symptoms manifestly appeared to result from imperfect respiration.

To discover how the system could be affected by imperfect respiration, so as to produce the symptoms which took place in this case

1
this
and
to
the
to rea
to abu
from
May
prob
to pre
to co
in the
the s
true of
total
know
and
what
before

I investigated the subject as I have done in this Dissertation, so far as the experiments, and discoveries of scientific men have explained it. From this investigation I found, that one indispensable effect of respiration, was to remove the redundant Carbon, amounting to about $\frac{3}{4}$ of a pound in twenty four hours, from the blood. One lobe of his lungs being collapsed, & apparently impervious to the grip of air, though in such a state as not to prevent some circulation of blood through it, convinced me that this effect of respiration on the blood, with all the other effects on the system dependent on it, as the production of animal heat, a facilitation &c. could not take place to the extent necessary, to preserve the health of the system. From these considerations, reduced from the manifestly defective state of his lungs, & the consequent imperfect respiration, I concluded that the m-

the esp
st. See
that h
bearded
N. Mea
the be
the tur
See
Lrusp
charu
lugs,
succell
state
succes
The
& the
'The r
be iuu
The vanc
the

the necessary quantity of carbon was not retained from the blood by respiration; and finally that the symptoms were produced by a superabundance of carbon in the system.

These conclusions have led us irresistibly to the very point to which we had arrived in the investigation of the subject of Marsh Gastro.

In this case we found the effect in the organs of respiration was such as to prevent the necessary effects of respiration on the system from being produced; & in the case of disease produced by Marsh Gastro, we found the state of the atmosphere was such as to produce the same effects.

Further to apply this case in of Slavery & the nature, & Morbus fermenti of Marsh Gastro & the pathology of the disease produced by it, we will take a view of the effects produced by the superabundance of carbon in the system. Then 1. We have the dark colic, or venous state of

the Nor
a t.
the b
ypho
hins i
2. Ucc
rie go
with t
place
possible
The a
note
3. Way
piration
and be
can be
of the d
things a
in this
occupy

the blood, depends on a resistance of carbon in it. Once the usual appearance of the surface of the body, & stock proportionally becomes a appearance of the blood in the superficial veins at the commencement of perspiration.

2. We believe animal heat is affected by the carbon given out in the combination of oxygen with carbon in the lungs. This not taking place in the respiration affords accounts for the sensibility to cold &c. which would be felt first at the surface of the body, or in the parts most remote from the heart & lungs.

3. We found in investigating the subject of respiration, that a certain quantity of carbon must be abstracted from the chyle, before it can be assimilated & applied to the support of the system. The chyle passes through the lungs soon after it enters the circulation to this purpose, and if this effect is not accomplished, the system cannot receive

Its
9.00
4.00
High
roads
cross
the
ridges
to the
valleys
of the
rivers
that
inhabit
Lat
Lester
now to
f the
provinc
The
gau

the necessary support; hence the latitude
of action of the system.

4. We have reason moreover to believe, that
oxygen in ordinary healthy respiration, pro-
duces a stimulant effect on the system; this
conclusion we are supported in, from the
stimulating effect of oxygen gas, & carbonic
oxide gas, when respired; this fact accords
to the dull and lethargic state of the system. If the above
conclusions be correct, whether the necessary stimulus
of oxygen gas in respiration, nor the necessary nutritive
agent from the aliment taken in, would be
imparted to the system. Further we know
that venous blood is not only darker, but
thicker & more dense than arterial blood; Is it not
more than probable that the density of venous state
of the blood, would retard its circulation, &
prevent it from affording the necessary stimulus
to the heart, the blood vessels, the glandular
organs of secretion &c. All these facts take

together
the R.
in pr.
ring off
necessar.
to all
found
out of
various
state of
incubation
with co
day &c.
increase
produce
just time
stage of
the winter
is very
desirab.

together go very far in explaining the manner in which the Premonitory symptoms of a Paroxysm are produced. Then the cause of these symptoms being explained, by keeping it in view, & tracing its increasing effects on the system, we may account for all the symptoms of a paroxysm. — We found a cause for the particular appearance, or cast of the countenance — for the increased sensibility to cold — for the languid lethargic state of the system — for the retarded & feeble circulation in the superficial vessels, attended with corrugation of the surface, shrinking of the body &c. These symptoms then being gradually increased by the cause, the shock to the system producing falter circulation, chilling &c, would give rise to all the phenomena of the cold stage of a paroxysm. In the cold stage of fever the distribution of blood in the arteries & veins is unequal. The blood moreover passes from the superficial into the deep seated veins, & from

tree
the
that
about
years
that
trees
the tree
atmosphere
to be
seen
a botany
rules
that can
another
The Dyers
the way
Baptized
we are

These again into the grand venous reservoirs
of the interior, so that it is a slowly accumulated
heat in the Spleen, The Liver, (The Vena Portaria)
about the right side of the Heart & the large
Vessels. This state of the circulation, causing
what we call the cold Stage, could not con-
tinue without the destruction of the System: But
the preternatural accumulation of humor blood,
attended with a preternatural contraction of heat
disturbs the heart, & large vessels & excites there
the increased action; By this increased action,
termed the motion of the system, the hot Stage
is brought about; or in other words by the like
mulus of congestion, & the increase of internal
heat consequent on it, such excitement is
produced as to distribute the blood throughout
the system. [See Anatomy on Syphilis, Leonor Senor
Edi. page 285.] That consequent on the internal
congestions, there is an increase of internal heat
we are induced to believe from the great distin-

for can
takey,
172
The
red up
is the
terence
The
station
The great
weathering
action
mistake
He says
the per
periphi
the
be fine
of the
he often
I have

for cold drink, about the time the reaction takes place.

The hot stage is the natural cure for the cold, and is produced by the accumulated Blood & Heat in the internal parts, being distributed to the external, by the action of the heart & lungs.

The heart, & lungs being oppressed by the accumulation of blood about them, is the cause of the great oppression, anxiety & difficulty of breathing which sometimes exists during the reaction. When the reaction is complete & the excitability of the system is somewhat abated, the capillaries resume their natural functions, & the pre-tropical heat is removed by profuse perspiration; And thus the sweating stage is the natural cure for the hot stage.

In fine the hot, & sweating stages are produced by the salutary efforts of the system, to remove the effects of the cold stage.

I have now given a history of the symptoms

of the
one per
Choco
besting
to the
Purse
expens
simili
her to
lays
trans
produ
tree, &
produc
The
feats
will be
very sm
grass
produce

of this case, & advanced the opinion that they
were produced by imperfect respiration; which
I have endeavoured to support, by a fair in-
vestigation of the cause, & an explanation of
its effects.

Pursuing from the symptoms of this case, that
no person will deny that it was a disease
similar to tubercular fever; & presuming fur-
ther that no one will dispute the cause of the
symptoms assigned, it requires but an easy
transition from this case, to the cases of disease
produced by Marsh Gellia, to explain its na-
ture, & mode of action in the system, in
producing disease.

We have already sufficiently insisted on the
fact, that the same superabundance of carbon
will be produced in the system, when the at-
mosphere is rendered imperfectly respirable by
Marsh Gellia, (or Carbonaceous gases,) as was
produced in the case adduced by the unprofit-

state,
area
Marin
caught
trace
the tree
feet,
would
you
area
all up
several
allow
pegs
trotter
Guy
the year
just to
increas
the size

State of the Lungs. The symptoms of the above case being so exactly similar to those produced by Mariol & Pflueger; & the cause of the symptoms being the same, differing only in the circumscribed nature of one being in the Lungs & the other in the atmosphere, but both producing the same effect, seem to afford conclusive evidence of the identity of the cases.

Further to substantiate the doctrine I have advanced, & to shew that it has descent from me self upon the observations & experiments of physicians, biased by their notions, I make the following quotations. Russos Equinus Vol. 4. page 107 & 108. About the time Mrs D. Trotter when twice was taken of the pulmonary fever on the wharf at Philadelphia, in the year 1793, a Captain of a man of war just returned from the Jamaica Station, & informed me, that several British sailors with the same produce, came to Kingston from St.

John
Edward
Anne
Lay
Mrs
Sarah
Louisa
Anna
Julia
Alice
Hee
Mad
Upper
& Lower
Catharine
Alice
Anne
Elizabeth
George
William
John

Drownings during the disturbed state of that
below, this article took other productions had
been allowed to soil & ferment. The evolution
of a great quantity of fixed air, or Carbonic acid
gas was the consequence; & in these depths
when of course the water always, such was its
concentrated state the whole of the crew in some
few cases found dead on the deck? [Hogarth's
Medical Dictionary page 11. Art. Respiration.]

The constituent principles of the combustible
fluid seem to be 1. water, attenuated into
vapor by the action of heat. 2. Animal gas
or Combinated Hydrogen, as the production of
combustible air with the oxygen of the atmosphere
shows. 3. Cugot's gas, or water in which a
man has bathed soon becomes putrid. Carb-
onated Hydrogen chemically combined with
oxide, would appear to constitute putrid
mines. May not this be the origin of putrid
gas in those narrow confined chambers in

white
arts
log
table
Dong
Cra
tree
van
by
ut
in
wheel
tagu
at
com
for
steens
the
title

which there are many persons?"

From these facts established by exploring its uses on the subject of respiration Mr Hooper was led to a hypothesis, which not only favors the doctrine I have advanced, but very much strengthens it. It is well known that respiration becomes more or less difficult when the air is confined, that the oxygen is consumed & its place is supplied by carbonic acid, & other gases. Now may not this infectious state of the confined air, infect the system with materials, from which by vascular action, the genuine contagion of Typhus fever is formed, and thrown out of the body, with the excretions? This idea seems exactly to accord with that quoted from Hooper, which is founded on experience. This disease being peculiar to the winter season, is it not probable, that in addition to the contagious, & infectious state of the

3 page
break
type
Lead

ing to
that
is w

blue-
tailed
the two

are 68
feet

the ad-

same
Berac

outsize
of ex-

is the
ealed.

letter
but th

confined air, that cold, by its sedative operation, may assist in producing the low type of syphus fever?

Leaving the contested subject of contagion and returning to Marsh Fever, we presume that the remote cause, & the remote cause of the symptoms, & the symptoms of the case detailed, have been identified; & further, that the manner in which its effects in one case are produced, has been explained, by its effects in the other. Further to substantiate the doctrine advanced I might adduce the opinion of Culley in favor of the sedative operation of Marsh Fever, for which I have contended. In explaining the phenomena, & proximate cause of fever, Dr. Culley observes "the hot stage of fever is so constantly preceded by a cold stage, we presume that the latter is the cause of the former; & therefore that the cause of the cold stage is the cause

fl
xis
abo
not
Se
at
an
of th
other
cough
els,
heat
blue
Rou
sely
face
face
This
the
stone

of all that follows in the course of the Euro-
pean". He then supposes, that a general
debility, induced in the system by the re-
mote cause, is the cause of the chill.

So far Dr. Cullen supports our doctrine both
as to the operation of Marsh Fever, & the ex-
planation of the phenomena of Fever. But taking
of the proximate cause being Spasms of the
arteries reflex, we have supposed it to be a
congestion of the fluids in the interval of
sets, attended with an increase of internal
heat, which affording a preternatural stim-
ulus to the heart & large arteries disturbs
them & produces such excitement as to de-
velop the phenomena of the hot stage of
Fever. This effect is increased from the accu-
mulation of excitability in the system.

This internal congestion, or engorgement of
the vessels takes place in the vessels of the
Stomach, Liver & Spleen as well as other

part
are
the
we,
near
este
a pa
This
succ

the
of je
need
to be,
the t
W
surf
to g,
coun
tua.

447

parts; & when the heart is excited these organs are excited also. Hence the vomiting which takes place during the ^{acute} Stage, & which can be generally so soon as the reaction, ~~pro~~ ^{more} congestion; & hence the increased excretion of Bile which takes place during a paroxysm; & hence moreover the enlarged & discoloured state of the Spleen so often produced by protracted Intercurrent Fever.

As we have objected to spasms of the extreme vessels being the propulsive cause of fever, we will endeavour to explain what we conceive the state of the extreme vessels to be, to which Dr. Bullen has applied the term spasms.

With this view we may observe that the surface of the body is tenser, redder, hotter & more sensible than is natural, & this resembles a part affected with inflammation. The phenomena of inflammation

free
ant
pri
tree
she
meal
robs
natur
Plan
the
of the
side
have
The
knot
200
she
bath
was
gave

30

has induced some late pathologists to af-
firm, that it depends on debility of the
heart, instead of increased action; or
that the remote cause produces debility,
which, forms the predisposition to inflam-
mation, & the local debility, or predisposition,
acted on by the proximate cause, which is the
natural, or an increased action of the heart
of large vessels, gives rise to the distension of
the vessels, the congestion, or accumulation
of blood, & the preternatural heat & redness
indication of inflammation. Thus we
have two series, two causes & two effects.
The remote cause produces the predis-
position, which is local debility, & the
proximate or exciting cause, develops the
phenomena of inflammation. This plain
pathology of inflammation, we will ende-
avor presently to shew, corresponds exac-
tly with our doctrine of Fever.

15
in op
els
tot
to pe
the
by w
cony
of one
people
Dow
the
glove
take
to our
heads
looks
Tutis
The
scro

But to apply it to our present purpose, in explaining the state of the extreme vessels, & the surface of the body, in the hot stage of fever, it will be necessary to premise something of the anatomy of the skin. Dr. Baywham has proven by injection that that the Cutis Uva is composed of two lamellæ, & that the external lamella is vascular. In this the perspirable matter is most probably secreted.

Towards the surface of the cutis, the paws of the Cuticular project like the fingers of a glove, & come in contact with it, wheretho take up the perspirable fluid, & admit that to enter which is taken in by the absorbents. — Then by the remote cause of fever we suppose the capillary vessels of the cutis, (as well as the whole system) are ~~more~~ ^{more} active. The increased action of the heart & arteries propelling the fluids to the extreme vessels

excu
offic
lecte
repla
the
action
base
is 800
the ca
way
take
feet
infla
the o
clea
let to
land
open
is /
out

excuse these obstructions capillary vessels to expand, & they are thus charged from the secretaries of the fluid of perspiration, to receptacles of the blood. This dilatation of the extreme vessels not only stops the excretions of the skin, but presses the coriac pores of the cuticula upon themselves, so as completely to close them. That this is the case we infer from the phenomena corresponding so exactly with those which take place in a part of the surface when affected by Erysipelas, in which the tunic is inflamed. In Erysipelas the outer tunic of the skin is inflamed, the little coriac pores, or pores of the cuticle are pressed back upon themselves, forming a kind of valve, which prevents the fluid of perspiration from being discharged, hence it is poured out forming little vesicles; sometimes more especially in the face.

The
for
her
year
by the
upper
The
Lori
really
more
tral
2000
How
round
Lori
is we
face
spac
ours

there is swelling, redness &c. but no vesicles. It may be asked, why are not these vesicles formed in force? We would say because the remote cause of Fevers acts with so much greater force than that of Erysipelas, that by the exciting cause the vessels are too much expanded to secrete the humor of perspiration.

That this is the case we infer from the different effects of stimulants applied externally. The gentle stimulus of camphor increases the secretion, but the more penetrating stimulus of mustard, checks it, by producing inflammation. We are further confirmed in this opinion, by the phenomena which occur in certain malignant Fevers; as the plague, Yellow Fever &c., in which the remote cause acts with such force as to weaken, or paralyse the capillary vessels so much, that the blood itself becomes effused under the cuticle, & thus forms

Po
W
the
are
for
of M
cause
in he
a go
from
ear,
with
flea
to e.
Nina
Wha
ed too
in th
latio
The

Peteochia.

We have now endeavoured to explain all the important phenomena of fever as they are developed in a series of intermittent fever. To give more explicitly our doctrine of Marsh fever, we would say the remote causes, acts on the system in the different ways we have already explained, & thus produces a general debility in the system. This debility gives the predisposition to disease. — Cold, damp, fear, Inanition &c act as concomitant causes with Marsh Effluvia in producing this state of debility. This state of debility gives rise to a reception of the blood, from the superficial to the internal vessels, & to the collapse & shrunk state of the exterior vessels, attended with tremors &c; to a congestion of blood in the internal vessels; & to an accumulation of excitability in the system. The congestion of blood in the interior of the

systole
aborts
4 large
acting
systems
develop
stage of
that in
with p
respirat
in our
tour.
affine
57
1. Loo
! M.
tia C
%, per
stable
but of

system, with its consequent increase of heat, affords a preternatural stimulus to the heart & large vessels. This preternatural stimulus acting on the accumulated excitability of the system, causes the heart & large arteries to develop the phenomena of fever, or the hot stage of a paroxysm, which is the only stage that the affection, fever, can be applied to with propriety; the other stages being the predisposition to & effects of the fever. As in our definition of suffocation we had four series of causes & effects, so in our definition of fever we have four also.

To exhibit explicitly our doctrine of the 4 fevers, we will give the following syllabus
 1. Marsh Ectasia alone, or assisted by situational causes, as cold, fatigue, fear, exertion &c, produce a state of debility, diminished excitability. Causes which act by a stimulant operation, & thus produce indirect de-

deb

ket

D.

sozo

ma

3.

opter

lity

tham

4.

tham

each

list

can

law

rose

rose

Le

debility, may also be taken into the account.

This state, of debility, & increased irritability, is,

1. The predisposition to fever. This predisposition gives rise to internal congestions, and protracted internal heat; which,
2. Form the exciting cause of Fever. The exciting cause acting on the increased irritability of the heart & lungs actives, causes thus, to developes,

4. The phenomena of fever.

Though our definitions, of fever & inflammation seem so perfectly, to corroborate each other, an important practical distinction must be made. The remote cause of inflammation produces the same effect that the remote cause of fever does, viz, Debility, which is the predisposition to both; but in inflammation the predisposition is local, in fever it

is gen
eral, o
at tem
beasca
in
increa
congi
extinct
arteria
theory
in inst
The
inte
tively
off the
natural
is as 2
the
contra
all the

is general, In inflammation, the natural, or an increased action of the heart & arteries, acting on local debility, and increased excitability, is the proximate cause.

In Fever the predisposing debility, & increased excitability are general. The congestion & internal heat which form the exciting cause, disturb the heart & large arteries, & thus produce the morbid action throughout the whole vascular system which in inflammation is local.

This doctrine of Fever & inflammation, reconcile with almost mechanical accuracy the general indications of cure.

If there be local inflammation without protracted action of the heart, local depletion so as to empty the weak vessels, & distract deposit, & then ^{various} applications to cause them to contract & resume their wanted energy, is all that is necessary. If the local infla-

allow
by a
by pa
ited
the ac
action
the ag
it is
used
line -

the
system
or imp
tant, &
In
to act
tal th
le of h
in the
for .

inflammation be accomplished, or kept up by a protracted action of the heart & lungs, before, then the above means must be applied by general depletion so as to neutralize the action of the heart. In favor the most action is general, though it may be unequal, the depletion also must be general, until it is subdued. Then you will, (when necessary) and with caution cause the vessels to resume their regular & healthy action.

When local predispositions exist in the system, or when intercurrent fever is neglected, or improperly treated, it sometimes ^{causes} becomes stout, & then into confirmed, & terminates in death.

In these cases the venous mass continuing to act on the system, it becomes so debilitated that the heart & vital organs become incapable of moving of the blood, which is congested in them. Therefore the proximate cause which before only, reacted periodically, now becomes

a con
The
of the
feet
some
proce
tile T
The sy
system
the co
gato
titles,
sustai
parox
perso
almost
indic
or serc

J. Ma

a constant exertion to the capillary system.

Though congestions of blood in a greater or less degree constantly exist, yet the dilatory parts of the heart & large vessels, remove in some measure the congested blood, & thus procure a respiration, which continues until the congestions again take place, when the system again renews. The reaction of the system thus becoming weaker & weaker, & the congestions increasing, the constrictive parts of the system, become almost imperceptible, & are finally extinguished. When intermitting fevers terminate in this way, the first paroxysm rarely terminates completely by perspiration, & some deep seated uneasiness almost always exists during the interval, indicating a morbid state of the Brains, or some of the viscera of the body, or teeth.

Allowing this to suffice as to the pathology of Marsh Fever, we will consider none fur-

pair
2
Nature
series
by us
these
of the
in the
1
system
that
perceiv
to acc
in the
earliest
supply
the de
of the
Journal

particularly the indications of cure.

The similarity between the case I have detailed & Sulcinate Lecor is further confirmed by the effect of medical treatment.

In that case the paroxysms could be protracted by wine & Bals., until from me it lost its effect on the system. Plasters applied to the extremities so as to keep up the circulation in them, would also prevent the paroxysms.

By exciting the mercurial action in the system, the paroxysms were protracted while this action was kept up. As to the virus operandi of Mercury in this case, it seemed to act by producing an inflammatory diathesis in the system; & probably it acted also, by increasing the excretions, & thus in some degree, supplying the place of respiration by enabling the system to throw off through the medium of the excretions Carbonaceous matter. We have found, from the experiments of Dr. Dyer that lep-

bottom
what
it is
how it
did or
spirit
the pro

I will
Review
earlier
Books
sup 88,
now,
and the
epistles
Macon
for the
to tell
bed, g

61

carbonic acid gas is thrown off from the lungs when the system is affected by mercury than when it is not. We have also found in the Hutchinson River Gopher, that carbonic acid gases are carried out of the system with the fluid of expiration. These facts at least go to increase the probability of the opinion advanced,

Pursuing now the subject of Intermittent, I will make a few observations on Bilious Recurrent fever as it occurred in the flat country adjacent to the Roanoke river in Botetourt Co. Va. In addition to the sea shore & territory of the county, contiguous to the river, in the sickly neighborhood there are several marshes. These sources of Marsh Effluvia assisted by a mill pond, which was frequently drawn off during the summer season for the purpose of fishing, & then allowed to fill up after the sun had acted on its bed, gave rise to a disease the autumn of

1821

over

all the

to it.

tyhe

inhabit

As

the a

I wen

Speng

me a

lot,

uncon

flat

D

near

about

of

the

looks

1821 which was more fatal than any disease ever before visited in this country. Nearly all the members of some families fell victims to it. The physicians from its apparent low type treated the disease principally with emetics.

In an introduction to the consideration of the disease as it occurred the last season (1820) I will give a general idea of the weather from Spring till Autumn. — The Spring & summer until July were unusually warm & hot, so that vegetation was forward & ripe without. A month commenced about the 15th of July & continued until the last of September.

During which time there was no rain worth speaking of, except one hasty Thunder-Storm about the 25th of August.

About the first of July 8 or 9 Cases of Bilious Intermittent Disease of Bilious Remitted form occurred, not very distant from each other

From
Lang
Mueller
But
greater
cheer
to see
a few
less than
than
The
two, or
He
of the
ring up
The
in the
in the
next day
stage one

From the first of July, until the 11. or 12 of August the cases continued to increase in number, generally of the Recurrent form.

But about this time the drought was so great, that Vegetable decomposition was checked, for the want of moisture. From this, & some other cause, the disease declined, until a few days after the Thunder storm on the 25th, when cases occurred more malignant than before.

The attack was generally preceded, one, two, or three days by premonitory symptoms.

These symptoms were succeeded by coldness of the extremities, & sensations of coldness running up the back, & in some cases chilliness.

The cold stage was attended with pain in the head & back, suffused & acute pain in the Epigastrium, & hypochondriac regions, Avidity, Yawning, Stretching, &c. The cold stage was succeeded by fever, attended with

In this
He
Dra
first
mention
it at
because
who ha
She ha
her she
deliv
thead
whole
with a
foully
so int
wallow
by, she
was save
the sati

An increase of the pains, & at last, visiting
H.

D. French was in company with me, when
I first saw the case of Kilian Remond, now
mentioning above. He immediately pronounced
it a dangerous case, of the same fever, which
prevailed the preceding autumn. The woman
who had the fever, was about 28 years old.

She had been ill 5 or 6 days. When we saw
her, she lay in a state of great prostration.

Suffered great anxiety, & pain in her back, breast
& head. Her pulse was weak & quick, the
whole surface of her body was cool, & covered
with sweat, her mouth was dry, her tongue
foul, eruptions on her lips, & her stomach
so irritable as to eject almost every thing
swallowed. During her illness before we saw
her, she had been bled, & the morning before
we saw her she had taken a dose of salts
The salts had purged of green bile. She soon

f the
From
expect to
the best
place,
intabil
secretie
the sec
capitale
trumite

D
that w
applied
over the
Brain
to the
would
not an
insensib
large, to

of the blood they told us was green.

From these symptoms I concluded, that the irritability of the system, was concentrated in the viscera, that congestions had also taken place, which produced the dyspepsia, the irritable state of the stomach, the increased secretion of Bile, also the relaxed state of the surface, the torpid circulation in the capillaries, the coldness of the surface & extremitie.

Directed by this pathology, we prescried warm applications, & simplicies to be applied to her extremities, also a Blister over her stomach to invigilate the energy of the Brain which was mortally distributed to the viscera, to the surface, the blister would relieve the irritability of the stomach also. In addition to these remedies, we prescribed Cal. in repeated doses sufficiently large, to evacuate the Bile in the first

place
ative
is abs
acts o
is pay
any of
glued
of the
the per
the bo
lated
parts
meat
unseen
is of c
of the
diseas
a disor
which
for th

place, & in the second to produce its alterative effects on the system. When mercury is absorbed into the system, we presume it acts especially on the excretory organs as it is passing out. In this way by its secondary operation, it stimulates the Salivary glands, the Liver, the Kidneys, the pores of the body, or the excretory organs by which the perceptible matter is thrown out of the body &c.; & thus the excitement is translated from the vital organs, to less vital parts. By this effect of mercury, the excretion is not only translated to parts less immediately connected with life, but it is excited in parts from which, (instead of the organic arrangement, which the disease produces in the vital organs,) a discharge can take place; it is produced, which, when produced soon enough before the vital organs are impaired, or

the
rarely,
was the
water
probably
the con-
tinued
she was
of Davies
Lepanto
The
indication
of Liver
I. In the
a state;
obliging
encour-
aging
stions Re
to the
out of the

the system is too much prostrated, will rarely fail to produce a Crisis, & rebore the system of the unequal, & mortise excretive, which otherwise would most probably destroy the patient.

The course of heat was above laid down was pursued in with attention, & in 8 or 10 days she was convalescent, without the assistance of tonics or stimulants, except infusion of Serpentaria.

The following I conceive to be the general indications of fever, in the different stages of fever.

1. In the predisposition to fever, we know a state of debility exists in the system. This debility is not disease, & in itself deserves no concern, but its effects, as internal congestions &c, are what we are to obviate. As to this, the patient should first be removed out of the influence of the remote cause.

then
which
obliges
books
make
takes.
If the
will p
2. As
a to pro
to the p
cause is
from the
keeping
Lord Reg
but also
of action
May often
mention
Wm. C. T.

Then temperance, and avoiding all causes which may produce either direct, or indirect debility, assisted by gentle depletion from the bowels by laxatives, & if necessary from the vapular system by træsection, so as to take off part of the pressure of the blood, & thus relieve the overtaxed heart & arteries, will prevent the fever.

2. As in the predisposition to fevers, the indication is to prevent the predisposition from giving rise to the proximate cause; so when the proximate cause is found, the indication is, to prevent it from producing fever. To do this, depletion is necessary from the bowels, & sometimes from the blood vessels. With this view in view I have but few, I prescribe large doses of belladonna & antimony, sanguine unctious, so that they may operate early about the time, or before the miasma commences. When the internal heat & reaction, produce thirst, & anxiety &c. I allow the

potential
isolated
below,
ing head
has a
action
to prov
stage of
to reacce
tion, to
and can
stately
turbulent
bulk.

This
sec., 8
It is
tree dry
treat n
bisturie

patient to drink cold water alone, or associated with some of the saline laxatives.

Below, in this state of the system, by abstracting heat, & by its peculiar effects on the system has a powerful effect in restoring the natural action of the system. In this way it serves to promote the operation of perspiration at this stage of fever. If these means are not sufficient to remove the congestion, & prevent violent reaction, when the reaction takes place, I open a vein and abstract blood, until the heart is completely freed, from the exciting causes of its turbulent action, which I determine from the pulse.

Thus the predisposition to fever, may be removed, & fever in its forming state, and after it is formed, may be arrested. But in practice difficulties are presented when the patient has suffered two, three, or more violent paroxysms without mitigation

and
but
fever,
what
was.
thought
only
gave
the
life,
face &
applications.
the
But
feet,
days, 12
the
pletely
case. It

77

and when his system is almost exhausted.
In this stage of violent Bilious Reactions
fever, the patient is found in a state some-
what similar to the one described, & sometimes
worse. The pulse small, weak, & frequent,
though sometimes it is slow—The surface
cold, pallid in the Epigastric & hypo-epigastric
regions, sicknes of the stomach & vomiting, dry-
ness etc. In this state of the system the energies
of life, remaining in the extremities, that the sur-
face should be relieved, & cherished by warm
applications, & in urgent cases mercurial fum-
inations. If the stomach be very irritable a blis-
ter drawn over it will be dangerous;
But that the Blister may produce the necessary
effect, Saliva should be prepared in pretty large
doses, repeated so as to evacuate the Bile in
the stomach & bowels. When the bile is com-
pletely evacuated, Saliva combined with Ghee
& sometimes opium so as to diffuse it through

the sign
what
ges the
This
parts
calomel
the albu
produce
the stu
bilateral
If the
they
near a
with the
of cases
for the
susp
become
protection
The

171

the system, & thus speedily, ^{to} produce its stimulant & alterative effects in the system equalizes the excitability & thus produces a crisis.

This combination of remedies seems to have a particular action on the Capillaries. The calomel should be discontinued so soon as its alteration effects are discoverable, lest it produce salivation, which would counteract its stimulant and salutary effects by the irritative effect of the discharge thus produced.

If the prostrated state of the system demands it, any of the stimulants which circumstances may render preferable, may be used with the above remedies. But in a majority of cases when the calomel operates, so as to free the alimentary canal from its loaded & oppressed state, the system immediately becomes invigorated, & rises from its great prostration.

The pathology of Bilious Remittent Fevers

and
happily
a use
lost &
evidence
In
mild &
start,
that,
my rea
because
With
ating &
tions,
success
fining
as, w
ence to
the rec
Pac

73

and the course of treatment which I have
briefly laid down, has enabled me to treat
a disease with nearly complete success, which
last season was a terror to the people, as it
carried with it the besom of destruction.

In about 65 cases of the different grades, from
mild bilious Remittent, to violent Bilious remit-
tent & continued fever, for which I prescri-
bed, before the precursors of death superseded
my remedies, but two died. Their deaths
occurred under very unfavorable circumstances.

Without saying any thing of the exhilar-
ating effects on the feelings of a young practi-
tioner, of the success, & the prospects of future
success, in wielding the implements of the pa-
tientia, so as to controll, so deleterious a dis-
ease, we will conclude with the more up-
to-date doctrine of Marsh Effluvia, as
the remote cause of disease.

Preliminary to this let us for a moment

contin
ther
source
no
say
princip
but
the
time
the
conveni
which
telle
keyhole
wedgwo
A
The
S. A.
Egypt
descript
reciproc

contemplate the works of nature, in all their various forms and trace them to their source. There we find the elementary principles of which they are formed to be few & simple. A certain quantity of elementary principles exists, these keeping through all their changes, & combinations, constitute all the various appearances, and operations, productions which nature affords. Part of these elementary principles constitute the atmosphere which affords the paleum of animal & vegetable life, & supports combustion. The atmosphere, from these spontaneous operations, undergoes perpetual change; one principle is abstracted from it, and another is supplied.

Thus respiration, combustion, transpiration &c abstract Oxygen, & return Carbonic acid gas. Vegetation absorbs the carbonic acid gas, decomposes it & returns the Oxygen, & thus the necessary equilibrium in the atmosphere, or the

easy

During

probabl

in spe

place.

the s

exhibit

These

springs

include

mineral

water

bazaar

beginning

standard

which

produces

water.

A large

sheet

bearing

component parts, is harmoniously balanced). During the spring season if there be any dis- proportion, then the balance of respiration an excess of oxygen is supplied to the atmosphere. Oxygen being the vivifying principle to the animal economy, produces a gently cordial & stimulating effect on the system.

Hence the exhilarating influence of the pas- sprung breezes, & hence the diseases which prevail at this season are generally inflam- matory, or of the syphilitic class, as pleuris, catarrhal &c. In autumn when vegetation begins to decay & ferment, then a sudden abundance of carbonaceous gases is evolved, which seem to constitute, Marsh Miasma & produce the disease which we have de- scribed. The evolution of carbonaceous gas is finally checked by the cold weather, which checks the putrefaction of vegetation.

Leaving the subject in this way it appears to

to circu
by lat
things
be defin

of the v
are co
earth,
places,
inated,
sions to
constitut
illustrati

True
notan
perceiv
institut.

obviously, that different seasons giving rise to greater, or less luxuriance of vegetation, & to circumstances of heat, & moisture, more or less favorable to their subsistence, would through the medium of the atmosphere be differently salubrious to the people.

Add to those considerations that of the various chemical operations, which are constantly going on, in the bowels of the earth, by which the atmosphere in particular places, or even neighborhoods, may be contaminated, & they afford a kind of proof sufficient to the explanation of the Epidemical constitutions of the air, Anticipated by the illustrious Sydenham, & others.

But here at the threshold of this important investigation, we lay aside our pen, until the path becomes more illustrious.

pp

Paper

of

attention

noticing

history

feel the

ing the

time.

the more

they are

they have

guarded

of them.

they do

generate