Aula 6: Assíntotas

As assíntotas a uma função f(x) dividem-se em assíntotas verticais, assíntotas horizontais e assíntotas oblícuas.

Assíntota vertical: é uma reta vertical x = c tal que $\lim_{x \to c} f(x) = \pm \infty$, ou $\lim_{x \to c^{-}} f(x) = \pm \infty$, ou $\lim_{x \to c^{+}} f(x) = \pm \infty$.

O ponto c é um ponto real de acumulação que não está no domínio de alguma expressão de f. Procurar c nestes pontos.

Assíntota horizontal: é uma reta horizontal y=c tal que $\lim_{x\to +\infty} f(x)=c$ ou $\lim_{x\to -\infty} f(x)=c$ (i.e., $\lim_{x\to \pm \infty} f(x)=c$)

Assíntota oblíqua: é uma reta y=mx+b tal que $\lim_{x\to\pm\infty}f(x)-mx-b=0$ Se y=mx+b é uma assíntota oblíqua de f, então

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 e $b = \lim_{x \to \pm \infty} f(x) - mx$.

Aula 6: Extremos locais - Teorema de Fermat

Teorema 4.5. (Teorema de Fermat) Seja f uma função definida e derivávell num intervalo aberto]a,b[, a < b. Se f tiver um extremo local num ponto $c \in]a,b[$, então f'(c) = 0.

O elemento $a \in \text{Int}(D_f)$ é ponto crítico de f se f'(a) = 0 ou se $a \notin D_{f'}$, ou seja, se a derivada se anula nesse ponto ou se não existe derivada nesse ponto.

Exemplo 4.4. Seja $f:]-2, 2[\to \mathbb{R}, \text{ tal que } f(x) = |1-x^2|.$ Os pontos críticos são $\{-1,0,1\}.$

Esta função não tem derivada em c=-1 nem em c=1 e a derivada anula-se em c=0.

Concavidade:

- Um ponto $c \in \text{Int}(D_f)$ é de inflexão para f se e só se f'' muda de sinal em c. f'' pode mudar de sinal em c sem existir no ponto. Consequentemente, só zeros de f'' ou pontos onde f'' não existe podem ser pontos de inflexão de f.
- **Exercício 4.12** Esboce o gráfico das seguintes funções $g(x) = \frac{e^x}{x}$, $h(x) = 5|x|e^{-|x|}$. e estude a função quanto a

•domínio • sinal e zeros • assíntotas • int. monotonia e ptos de extremos • concavidade e ptos de inflexão • contradomínio

Aula 6: Teorema de Cauchy (generaliza T. de Lagrange)

 $f, g: [a, b] \to \mathbb{R}$ duas funções nas condições do Teorema de Lagrange.

$$\text{Teorema de Lagrange} \ \Rightarrow \ \frac{f(b) - f(a)}{b - a} = f'(c_1) \ \ e \ \ \frac{g(b) - g(a)}{b - a} = g'(c_2) \ \ \Rightarrow \ \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c_1)}{g'(c_2)} \qquad c_1, c_2 \in \]a,b[$$

Teorema 4.7. (Teorema de Cauchy) Sejam f e g duas funções contínuas no intervalo [a,b] e deriváveis em]a,b[. Se $g'(x) \neq 0, \forall x \in]a,b[$, então existe pelo menos um ponto $c \in]a,b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Teorema de Cauchy extende o teorema de Lagrange (tome g(x)=mx+b, com m $\neq 0$)

Teorema 4.9. Seja f uma função definida num intervalo aberto I e n vezes derivável num ponto $c \in I$. Se $f(c) = f'(c) = \ldots = f^{(n-1)}(c) = 0$ então $\lim_{x \to c} \frac{f(x)}{(x-c)^n} = \frac{f^{(n)}(c)}{n!}.$

Nota: Seja f uma função definida num intervalo aberto contendo c. Se $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$, então $\lim_{x\to c} f(x) = L$.

Aula 6: Indeterminações $\frac{0}{0}$, $\frac{\infty}{\infty}$, 0^{∞} , $+\infty - \infty$

Regra de Cauchy: Sejam f, g funções definidas e deriváveis num intervalo aberto $I =]a, b [\neq \emptyset, com \ a = -\infty, ou \ a \in \mathbb{R}, e \ b = +\infty, ou \ b \in \mathbb{R}.$ Seja c um dos extremos de I (c = a, ou c = b) ou um ponto do interior de I. Seja $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$ ou $\frac{\infty}{\infty}$. Se $\lim_{x \to c} \frac{f'(x)}{g'(x)}$ existe, e se $g'(x) \neq 0$ em $I \setminus \{c\}$, então $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$.

Exemplo 4.6 Seja $\alpha \in \mathbb{R}^+$ uma constante. Mostre que $\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0$.

- **Observação 4.2** (a) O $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ pode não existir e no entanto existir $\lim_{x\to c} \frac{f(x)}{g(x)}$. Exemplo: $f(x) = x^2 \cos(\frac{1}{x})$ e g(x) = x.
- (b) Se $\frac{f'(x)}{g'(x)} \to \frac{0}{0}$, ou $\frac{\infty}{\infty}$, quando $x \to c$, e a regra de Cauchy é aplicável a $\frac{f'(x)}{g'(x)}$, então $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f''(x)}{g''(x)}.$
- (c) As indeterminações $\lim_{x\to c} f(x)g(x) = 0 \times \infty$ e $\lim_{x\to c} f(x) g(x) = +\infty \infty$ podem ser reduzidas a indeterminações do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ mediante as seguintes transformações: $f(x)g(x) = \frac{f(x)}{\frac{1}{g(x)}} = \frac{g(x)}{\frac{1}{f(x)}}$ e $f(x) g(x) = f(x)g(x)\left(\frac{1}{g(x)} \frac{1}{f(x)}\right)$.
- (d) A indet. $\lim_{x\to c} f(x)^{g(x)} = 0^{\infty}$, ou ∞^0 , levanta-se com $f(x)^{g(x)} = e^{g(x)\ln(f(x))}$.

Aula 6: Teorema de l'Hopital

Sejam f, g funções definidas num intervalo aberto $I =]a, b \neq \emptyset$, com $a = -\infty$, ou $a \in \mathbb{R}$, $b = +\infty$, ou $b \in \mathbb{R}$.

Regra de l'Hopital: Caso $\mathbf{c} \in I$ (ponto interior) e f, g poderem não ter derivadas em $I \setminus \{\mathbf{c}\}$. Se f e g são contínuas em I, $g(x) \neq 0$ em $I \setminus \{\mathbf{c}\}$, e se $f(\mathbf{c}) = g(\mathbf{c}) = 0$ e $g'(\mathbf{c}) \neq 0$, então $\lim_{x \to \mathbf{c}} \frac{f(x)}{g(x)} = \frac{f'(\mathbf{c})}{g'(\mathbf{c})}$.

Nota: • Um função pode ser contínua num intevalo aberto e não ter derivada em nenhum ponto do intervalo. Por exemplo, a função do tipo Weierstrass $g(x) = \sum_{i=1}^{+\infty} \frac{\sin(2^n x)}{2^n}$ é contínua em \mathbb{R} e não é derivável em nenhum ponto de \mathbb{R} . Note-se que g(0) = 0.

- Um função pode ser contínua num intervalo aberto I e ter derivada apenas num ponto. Por exemplo, a função f(x) = xg(x) é contínua em \mathbb{R} e só é derivável em x = 0, f'(0) = 0.
- Um função pode ser contínua num intervalo aberto I e ter derivadas apenas em pontos isolados. Exemplo $f(x) = \operatorname{sen}^2(x)g(x)$.
- Uma função pode ser conínua e derivável num só ponto. Por examplo, p(x) = 0 se $x \in \mathbb{Q}$, e p(x) = 1 se $x \in \mathbb{R} \setminus \mathbb{Q}$. Não é contínua nem derivável em nenhum ponto. No entanto $f(x) = x^2 p(x)$ é apenas contínua e derivável em x = 0.

Aula 6: Exercícios 1

Lema Seja f contínua em c e derivável numa vizinhança própria de c (i.e., sem c). Aplicando a Regra de Cauchy temos:

- Se $\lim_{x \to c^{-}} f'(x) = k$, então $f'_{-}(c) = k$. Se $\lim_{x \to c^{+}} f'(x) = k$, então $f'_{+}(c) = k$. Se $\lim_{x \to c} f'(x) = k$, então f'(c) = k. Se $f'_{-}(c) = f'_{+}(c) = k$, então f'(c) = k.

Exemplo 4.7, 4.20 Caracterize a derivada das funções definidas por

$$h(x) = \begin{cases} x^2 & \text{se } x \le 1 \\ 2x - 1 & \text{se } x > 1. \end{cases} \quad g(x) = \begin{cases} e^x & \text{se } x < 0 \\ \arctan x & \text{se } x \ge 0, \end{cases} \quad f(x) = \begin{cases} x^2 \sec \frac{1}{x} & \text{se } x \ne 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Mostre que (1) f é contínua em R; (2) $f'(x) = 2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x} \operatorname{se} x \neq 0$

(3) não existe o $\lim_{x\to 0} f'(x)$ (4) f é derivável em x=0