Project2 实验记录

1. A*算法

• 不同启发式函数对结果的影响

启发 函数	Manhattan	Euclidean	Diag	Dijkstra (0)
计算	0.222003 /	0.304705 /	9.838718 /	42.552539 /
时间	0.278314 /	0.400282 /	6.731228 /	13.698346 /
(ms)	0.395144	0.815002	7.054498	14.566917
最短	1.472943 /	1.371507 /	1.371507 /	1.371507 /
路径	1.330524 /	1.260229 /	1.260229 /	1.260229 /
长度	1.454515	1.411371	1.407516	1.403661
访问 网格 数	28 / 26 / 27	29 / 52 / 132	2559 / 1992 / 2868	22216 / 21259 / 22374

实验设定的每个方格邻域为26个方格,由于场景中障碍物较多,因此上述的启发式函数在很多情况下都满足最优性条件,故实验时给启发函数值乘以1.1。从左到右对不同方位的点的HScore差异逐渐变小,搜索的区域逐渐扩大,所用时间变长。

• Tie Breaker的影响

固定Euclidean距离,选取叉乘Tie Breaker:

	不使用Tie Breaker	使用Tie Breaker
计算时间(ms)	42.059702 / 41.310040	42.936039 / 15.557868
访问网格数	20638 / 20416	18986 / 18661

使用了Tie Breaker以后访问网格数有减少,但在有的情况下若减少的网格数不多,计算Tie Breaker的时间会造成总计算时间加长。