course: CSC 135

instructor: Ted Krovetz

related_notes: <u>2022-02-17</u>

Hash Array Mapped Tries

W07.4 | Thursday, February 17, 2022 | 09:00 AM

HAMT - Hash Array Mapped Trie (Tree-retrieval)

Implementation we are going apply will have four children

- Binary search tree searches with a key gen(c)
- In a HAMT will need to compare with bits (00, 01, 10, 11)
 - Where do they come from? with a good hash function It's random...
 - Using two pairs of bits will allow us to determine which branch to go down
 - **PRO**: HAMT is self-balancing


```
set(c, "c")
hash(c) = 01100110 \# random-ish hash hash(c) == hash(c)
```


HAMT Pseudocode Algorithm

random.org

8 bits (1 byte) hashes

X	hash(x)
Α	10100111
В	01101000

x	hash(x)
С	11101100
D	00001011
Е	11100100

```
t = hamt(A,1)
t1 = t.set(B,2)
t2 = t1.set(C,3)
```


BOW DOWN TO THE HAMT

NOTE:

- Bits are read right to left
- All nodes have 4 children, but to save space null nodes will not be shown

ALTERNATIVE PERSPECTIVES

RED IS ROOT and remember that bits are read right to left

HEY LISTEN!

When traversing down the Hash Array Mapped Trie (HAMT) bits are read right to left

Cues/Questions

- What is a "side effect"
 - A print statement is an example
 - A side effect is a change to the global state
- f(x) = x + y
 - ullet x is bound
 - y is free
 - f(1) is not really possible