Перепишем следствие 1.8, считая, что $2V_p(\alpha) - ||p|| > 0$

$$\Delta \le \frac{Q_p(T) + \frac{A(\alpha V_p(\alpha) - M_p(\alpha))}{T}}{2V_p(\alpha) - \|p\|}$$

Возьмем $p(x) = \frac{1-\cos x}{\pi x^2}$, тогда ||p|| = 1, $M_p(\alpha) = 0$,

$$Q_p(T) = \frac{1}{2\pi} \int_{-T}^{T} \left(1 - \frac{|t|}{T} \right) \frac{|f(t) - e^{\frac{-t^2}{2}}|}{t} dt$$

Имеем

$$\Delta \leq \frac{1}{2\pi(2V_p(\alpha)-1)} \int_{-T}^{T} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{\sqrt{2\pi}T(2V_p(\alpha)-1)} = \frac{1}{2\pi} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha V_p(\alpha)}{T}\right| dt + \frac{\alpha V_p(\alpha)}{T}$$

$$= \frac{1}{2\pi(2V_p(\alpha) - 1)} \int_{-T}^{T} \left(1 - \frac{|t|}{T}\right) \left| \frac{f(t) - e^{\frac{-t^2}{2}}}{t} \right| dt + \frac{\alpha}{2\sqrt{2\pi}T} \left(1 + \frac{1}{2V_p(\alpha) - 1}\right)$$

Лемма 1. $|\hat{f}_n(t)| \le e^{-t^2/4}$ для $|t| \le T_1 = \frac{1}{94L^3}$

Лемма 2.
$$|\hat{f}_n(t) - e^{-t^2/2}| \le 4L^3|t|^3e^{-t^2/2}$$
 для $|t| \le T_0 = \frac{1}{3L}$

Рассмотрим случай $T_1>T_0$. Это значит, что $\frac{1}{94L^3}>\frac{1}{3L}$ или $L<\sqrt{\frac{3}{94}}$. Мы хотим показать, что $\Delta\leq C_0L^3$, значит для всех $\hat{F}_n(x)$ с $L^3>\frac{0.55}{C_0}$ оценка верна и остается доказать оценку для $L^3<\frac{0.55}{C_0}$.

Будем рассматривать C_0 такие, что $\frac{0.55}{C_0} < \sqrt{\frac{3}{94}}$, то есть которые укладываются в случай $T_1 > T_0$. Имеем $C_0 > \frac{0.55}{\sqrt{\frac{3}{94}}} = 96.4656...$

 $\Delta \leq L^3C(L,\alpha)$, где

$$C(L,\alpha) = C_1(\alpha)I(L) + C_2(\alpha),$$

$$C_1(\alpha) = \frac{1}{2\pi(2V_p(\alpha) - 1)},$$

$$I(L) = 4\int_{-\frac{1}{3L}}^{\frac{1}{3L}} (1 - 94L^3|t|)t^2e^{-t^2/2} dt + \int_{\frac{1}{3L} \le |t| \le \frac{1}{94L^3}} (1 - 94L^3|t|)\frac{e^{-t^2/2} + e^{-t^2/4}}{L^3|t|} dt,$$

$$C_2(\alpha) = \frac{94\alpha}{2\sqrt{2\pi}} (1 + \frac{1}{2V_p(\alpha) - 1})$$

Построим графики I(L) на $l \leq L < \sqrt{\frac{3}{94}}$ при достаточно малом l, чтобы оценить сверху I(L). Возьмем l=0.001, шаг графика h=0.0005:

График функций I(L) и y(L)=23.26

График тех же функций, увеличенное изображение

Рассмотрим поведение I(L) при $L \to 0$. Вычислим первое слагаемое:

$$4\int_{-\frac{1}{3L}}^{\frac{1}{3L}} (1-94L^3|t|) t^2 e^{-t^2/2} \, dt = 4\int_{-\frac{1}{3L}}^{\frac{1}{3L}} t^2 e^{-t^2/2} \, dt - 4 \cdot 94L^3 \int_{-\frac{1}{3L}}^{\frac{1}{3L}} |t|^3 e^{-t^2/2} \, dt \xrightarrow[L \to 0]{}$$

{второй интеграл сходится к некоторому конечному числу}

$$\xrightarrow[L\to 0]{} 4 \int_{-\infty}^{\infty} t^2 e^{-t^2/2} dt = 4\sqrt{2\pi} = 10.0265...$$

Теперь докажем, что второе слагаемое I(L) при $L \to 0$ стремится к 0.

Учитывая, что $e^{\frac{-t^2}{2}} \le e^{-\frac{1}{18L^2}}$, при $|t| > \frac{1}{3L}$, получаем:

$$\begin{split} \int_{\frac{1}{3L} < |t| < \frac{1}{94L^3}} \frac{1 - 94L^3|t|}{L^3|t|} \cdot e^{-\frac{t^2}{2}} \, dt &\leq \int_{\frac{1}{3L} < |t| < \frac{1}{94L^3}} \left(\frac{1}{3L^3} - 94 \right) \cdot e^{-\frac{1}{18L^2}} \, dt \leq \\ &\leq \frac{1}{3L^2} \cdot 2 \left(\frac{1}{94L^3} - \frac{1}{3L} \right) \cdot e^{-\frac{1}{18L^2}} \leq \frac{\frac{1}{L^5}}{141 \cdot e^{\frac{1}{18L^2}}} \longrightarrow 0 \end{split}$$

Нужно подобрать такое $l(\varepsilon)$:

$$\forall \varepsilon > 0 \,\exists l(\varepsilon) \,\forall 0 < L \leq l$$
:

$$|I(L) - 4\sqrt{2\pi}| < \varepsilon$$

Таким образом, $I(L) \leq 23.26$ при $0 < L \leq \sqrt{\frac{3}{94}}$

Осталось минимизировать $C_0(\alpha)=C_1(\alpha)\cdot 23.26+C_2(\alpha)$ по $\alpha>\alpha_p$, где α_p — корень уравнения $2V_p(\alpha)-1=0$. $\alpha_p=1.6995\dots$ (стр. 144). График $C_0(\alpha)$:

Иллюстрации

График функций $C_0(\alpha)$ и $y(\alpha)=173.3$

График тех же функций, увеличенное изображение

То есть $C_0 \le 173.3$