1.

2

▶(3, 1) / (3,) 의 차이

[[1][2][3]]

[1 2 3]

▶행렬의 곱

3.

▶파이토치에서 사용되는 자료 구조

용어	차원	Shape	사용하는 곳	예시
스칼라	0차원	()	학습률, loss	[1]
벡터	1차원	(3,)		[1, 2, 3]
행연	2 차원	(2, 3)	이미지	[[1, 2, 3], [1, 2, 3]]
텐서	3 차원 이상	(2, 2, 3)	다차원 배열	[[[1, 2, 3] [1, 2, 3]],

4.

▶머신러닝 종류

지도학습 : 피쳐와 라벨이 주어진 학습

비지도학습: 정답없이 패턴을 학습(그룹화, 이상탐지에 사용)

강화학습 : 알파고 같은 ai (혼자 실행하고 학습)

▶인공지능, 머신러닝, 딥러닝

인공지능 (AI)

└── 머신러닝 (ML)

└── 딥러닝 (DL)

항목	인공지능 (Al)	머신러닝 (ML)	딥러닝 (DL)
정의	기계가 인간처럼 사고·판단·행동	데이터로부터 스스로 학습	인공신경망으로 학습을 수행하는 ML의 한 분야
방식	규칙 기반 or 학습 기반	알고리즘(결정트리, SVM, 선형회귀 등)	심층신경망(CNN, RNN, Transformer 등)
	· ·	스팸 필터, 추천 시스템, 가격 예측	음성 인식, 이미지 분류, GPT 같은 언어 모델
특징		비교적 얕은 모델	대규모 데이터 필요, 고성능 GPU 필요

▶sigmoid

$$\sigma(x) = rac{1}{1+e^{-x}}$$

0에서1

Saturation

Not zero-centered

▶Tanh

$$\delta(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

-1에서1

Saturation

zero-centered

▶ReLU

$$\delta(x) = \max(0, x)$$

0에서∞

Not Saturated

계산효율이뛰어남

5.

▶경사하강법

함수의최솟값또는최댓값을찾는방법

이 지점으로 수렴하도록 learning rate조절

종류:

경사하강법 - 정확함(안정적임) but 한번에 모든 데이터를 사용해서 시간과 ram문제확률적경사하강법 - 빠름 but 모든 데이터 사용이 아니기 때문에 정확하기 않음미니배치경사하강법 - 빠르고 안정적임 but 배치에 크기 따라 모델 성능이 다름

6.

▶비용함수

손실함수를 시그마 한 것 = 비용함수의 시그마 내부는 손실함수임 회귀 예측 Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

$$J(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

이진 분류

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y_i log(h_ heta(x_i)) + (1-y_i) log(1-h_ heta(x_i))]$$

$$\mathcal{L}(y,\hat{y}) = -\left[y\log(\hat{y}) + (1-y)\log(1-\hat{y})
ight]$$

다중 분류

$$J(\theta) = -\sum_{i=1}^{n} y_i \log(h_{\theta}(x_i))$$

$$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^C y_j \log(\hat{y}_j)$$

$$J(W,b) = rac{1}{N} \sum_{i=1}^{N} \left[-\sum_{j=1}^{C} y_j^{(i)} \log(\hat{y}_j^{(i)})
ight]$$

▶Softmax

$$h_{\theta}(x_i) = \frac{e^{zi}}{\sum_{j=1}^k e^{z_j}}, k = 1, 2, ... M$$

▶ 소프트맥스 (Softmax) 함수와 Crossentropy

$$J(\theta) = -\sum_{i=1}^{n} y_i \log(h_{\theta}(x_i))$$

$$where, h_{\theta}(x_i) = \frac{e^{zi}}{\sum_{j=1}^{k} e^{z_j}}, k = 1, 2, \dots M$$

7.

▶선형 회귀

주로 MSE를 손실함수로 사용

y = wx + b

w: 가중치(기울기)

b : 편향

8.

▶데이터 구성

학습 데이터 : 모델을 학습

검증 데이터 : 하이퍼 파라미터 결정

테스트 데이터 : 모델을 평가

▶교차 검증

데이터를 여러 개의 부분(fold)으로 나눠서 모델을 평가하는 방법 모델이 데이터에 과적합 되는 것을 방지, 일반화된 성능 평가 가능

Fold 중 1개를 테스트 데이터 나머지를 학습데이터로 구성을 k개 fold 각각 수행

▶평가 지표

정확도 (Accuracy)

전체 중 라벨 맞춘 비율

$$\frac{TP + TN}{TP + TN + FP + FN}$$

정밀도(Precision)

예측이 양성 중 정답 비율

$$ext{Precision} = rac{TP}{TP + FP}$$

재현율(Recall, Sensitivity)

정답이 양성 중 정답 비율

$$ext{Recall} = rac{TP}{TP + FN}$$

F1-점수(F1-Score)

정밀도와 재현율의 조화평균

$$ext{F1} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

AUC

9.

▶다중 분류 loss

$$L(p) = -\log(p)$$