अपनी संख्याओं की जानकारी

श्रध्याय 1

1.1 भूमिका

वस्तुओं को गिनना अब हमारे लिए सरल है। अब हम वस्तुओं को बड़ी संख्याओं में गिन सकते हैं, जैसे कि एक स्कूल के विद्यार्थियों की संख्या, और इन संख्याओं को संख्यांकों (numerals) द्वारा निरूपित कर सकते हैं। हम उपयुक्त संख्या नामों (number names) का प्रयोग करके बड़ी संख्याओं से संबंधित सूचनाएँ भी दे सकते हैं।

ऐसा नहीं है कि हम हमेशा से ही बड़ी राशियों के बारे में वार्तालाप या संकेतों द्वारा सूचना देना जानते थे। कई हज़ार वर्ष पहले, लोग केवल छोटी संख्याओं के बारे में ही जानते थे। धीरे-धीरे उन्होंने बड़ी संख्याओं के साथ कार्य करना सीखा। उन्होंने बड़ी संख्याओं को संकेतों से व्यक्त करना भी सीखा। यह सब मानव प्राणियों के सामूहिक प्रयासों के कारण संभव हो सका। उनका रास्ता सरल नहीं था और उन्हें इस पूरे रास्ते में संघर्ष करना पड़ा। वास्तव में, संपूर्ण गणित के विकास को इसी रूप में समझा जा सकता है। जैसे-जैसे मानव ने उन्नित की, वैसे-वैसे गणित के विकास की आवश्यकता बढ़ती गई और इसके परिणामस्वरूप गणित में विकास और तेज़ी से हुआ।

हम संख्याओं का प्रयोग करते हैं और उनके बारे में अनेक बातें जानते हैं। संख्याएँ प्रत्यक्ष वस्तुओं को गिनने में हमारी सहायता करती हैं। संख्याएँ हमारी सहायता यह बताने में करती हैं कि वस्तुओं का कौन–सा संग्रह (collection) बड़ा है और वस्तुओं को पहले, दूसरे इत्यादि क्रम में व्यवस्थित करने में भी सहायता करती हैं। संख्याओं का विभिन्न संदर्भों में और अनेक प्रकार से प्रयोग किया जाता है। विभिन्न स्थितियों के बारे में सोचिए जहाँ हम संख्याओं का प्रयोग करते हैं।

हम संख्याओं के साथ कार्य करने का आनंद प्राप्त कर चुके हैं। हम इनके साथ योग, व्यवकलन (घटाने), गुणा और भाग की संक्रियाएँ भी कर चुके हैं। हम संख्या अनुक्रमों (sequences) में प्रतिरूपों (patterns) को देख चुके हैं और संख्याओं के साथ अनेक

रुचिपूर्ण बातें कर चुके हैं। इस अध्याय में, हम कुछ समीक्षा और पुनरावलोकन के साथ इन रुचिपूर्ण बातों पर और आगे कदम बढ़ाएँगे।

1.2 संख्याओं की तुलना

चूँिक हम संख्याओं की तुलना पहले भी बहुत कर चुके हैं, आइए देखें कि क्या हमें याद है कि दी गई संख्याओं में कौन सी संख्या सबसे बड़ी है?

(i) 92, 392, 4456, 89742

मैं सबसे बड़ी हूँ

(ii) 1902, 1920, 9201, 9021, 9210

मैं सबसे बड़ी हूँ

तो, हम यहाँ उत्तर जानते हैं।

अपने मित्रों में चर्चा कीजिए और पता कीजिए कि किसी संख्या समूह में वे सबसे बड़ी संख्या किस प्रकार ज्ञात करते हैं।

प्रयास कीजिए 🔾

क्या आप तुरंत ज्ञात कर सकते हैं कि प्रत्येक पंक्ति में कौन सी संख्या सबसे बड़ी है और कौन सी संख्या सबसे छोटी है?

1. 382, 4972, 18, 59785, 750

उत्तर : 59785 सबसे बड़ी है और 18

सबसे छोटी है।

2. 1473, 89423, 100, 5000, 310

उत्तर :

उत्तर:

3. 1834, 75284, 111, 2333, 450

उत्तर : _____

4. 2853, 7691, 9999, 12002, 124

क्या यह सरल था? यह सरल क्यों था?

यहाँ हमने केवल अंकों की संख्या को देखकर ही उत्तर ज्ञात कर लिया। सबसे बड़ी संख्या में अधिकतम हज़ार थे और सबसे छोटी संख्या सैकड़ों (सौ) अथवा दहाइयों (दस) में थी। इसी प्रकार के पाँच और प्रश्न बनाइए और उन्हें हल करने के लिए अपने मित्रों को दीजिए। हम 4875 और 3542 की तुलना किस प्रकार करते हैं? यहाँ यह अधिक कठिन नहीं है। इन दोनों संख्याओं में अंकों की संख्या समान है। ये दोनों हज़ारों में हैं। परंतु 4875 में हज़ार के स्थान पर अंक, 3542 के हज़ार के स्थान के अंक से बड़ा है। अत: 3542 से 4875 बड़ी है।

अब बताइए कि कौन सी संख्या बड़ी है; 4875 या 4542? यहाँ भी दोनों संख्याओं में अंकों की संख्या समान (बराबर) है। साथ ही, दोनों में हज़ार के स्थान पर समान अंक हैं। अब हम क्या करते हैं? हम अगले अंक की ओर बढ़ते हैं, अर्थात् सौ के स्थान पर आने वाले अंकों को देखते हैं। 4875 में सौवें स्थान वाला अंक 4542 के सौवें स्थान वाले अंक से बड़ा है। अत: संख्या 4542 से संख्या 4875 बड़ी है।

यदि दोनों संख्याओं में सौ के स्थान वाले अंक भी समान होते, तो हम क्या करते? 4875 और 4889 की तुलना कीजिए। 4875 और 4879 की तुलना कीजिए।

प्रयास कीजिए 🔾

प्रत्येक समृह में सबसे बडी और सबसे छोटी संख्याएँ ज्ञात कीजिए:

- (a) 4536, 4892, 4370, 4452
- (b) 15623, 15073, 15189, 15800
- (c) 25286, 25245, 25270, 25210 (d) 6895, 23787, 24569, 24659 इसी प्रकार के पाँच प्रश्न और बनाइए और हल करने के लिए अपने मित्रों को दीजिए।

1.2.1 आप कितनी संख्याएँ बना सकते हैं?

मान लीजिए हमारे पास अंक 7, 8, 3 और 5 हैं। हमें इन अंकों से चार अंकों वाली भिन्न-भिन्न ऐसी संख्याएँ बनाने को कहा जाता है कि एक संख्या में कोई भी अंक दोबारा न आए (अर्थात् किसी भी अंक की पुनरावृत्ति न हो)। इस प्रकार, संख्या 7835 तो बनाई जा सकती है, परंतु 7735 नहीं। इन 4 अंकों से जितनी संख्याएँ बना सकते हैं, बनाइए।

आपको सबसे बड़ी और सबसे छोटी संख्या कौन सी प्राप्त होती है? यहाँ सबसे बड़ी संख्या 8753 है और सबसे छोटी संख्या 3578 है। दोनों में अंकों के क्रम के बारे में सोचिए। क्या आप बता सकते हैं कि दिए गए अंकों से सबसे बड़ी संख्या किस प्रकार ज्ञात की जा सकती है? अपनी प्रक्रिया को लिखिए।

प्रयास कीजिए 🔾

स्थान पर रहे।

प्रयास	ા જાાખ્ય
1.	बिना पुनरावृत्ति किए, दिए हुए अंकों का प्रयोग करके चार अंकों की सबसे बड़ी और
	सबसे छोटी संख्याएँ बनाइए :
	(a) 2, 8, 7, 4 (b) 9, 7, 4, 1 (c) 4, 7, 5, 0
	(d) 1, 7, 6, 2 (e) 5, 4, 0, 3
	(संकेत: 0754 तीन अंकों की संख्या है।)
2.	किसी एक अंक का दो बार प्रयोग करके चार अंकों की सबसे बड़ी और सबसे छोटी
	संख्याएँ बनाइए :
	(a) 3, 8, 7 (b) 9, 0, 5 (c) 0, 4, 9 (d) 8, 5, 1
	(संकेत : प्रत्येक स्थिति में सोचिए कि आप किस अंक का दो बार प्रयोग करेंगे।)
3.	दिए हुए प्रतिबंधों के साथ, किन्हीं चार अंकों का प्रयोग करके, 4 अंकों की सबसे बड़ी
	और सबसे छोटी संख्याएँ बनाइए:
	(a) अंक 7 सदैव इकाई के सबसे बडी 9 8 6 7

 (b) अंक 4 सदैव दहाई के
 सबसे बड़ी
 4

 स्थान पर रहे।
 सबसे छोटी
 4

(ध्यान दीजिए, अंक 0 से संख्या प्रारंभ नहीं हो सकती। क्यों?)

सबसे छोटी

1 0 2 7

 (c) अंक 9 सदैव सौ के
 सबसे बड़ी
 9

 स्थान पर रहे।
 सबसे छोटी
 9

 (d) अंक 1 सदैव हज़ार के
 सबसे बड़ी
 1

 स्थान पर रहे।
 सबसे छोटी
 1

4. मान लीजिए, आप दो अंक 2 और 3 लेते हैं। इन अंकों को समान बार दोहराते हुए, चार अंकों की संख्याएँ बनाइए। कौन सी संख्या सबसे बड़ी है? कौन सी संख्या सबसे छोटी है? आप ऐसी कुल कितनी संख्याएँ बना सकते हैं?

उचित क्रम में खड़े होना :

- 1. इनमें कौन सबसे लंबा है?
- 2. इनमें कौन सबसे छोटा है?
 - (a) क्या आप इन्हें इनकी लंबाइयों के बढ़ते हुए क्रम में खड़ा कर सकते हैं?
 - (b) क्या आप इन्हें इनकी लंबाइयों के घटते हुए क्रम में खड़ा कर सकते हैं?

₹ 2635 ₹ 1897 ₹ 2854 ₹ 1788 ₹ 3975

क्या खरीदें?

सोहन और रीता एक अलमारी खरीदने गए। वहाँ कई अलमारियाँ उपलब्ध थीं जिन पर उनके मूल्यों की पर्चियाँ लगी हुई थीं।

- (a) क्या आप इनके मूल्यों को बढ़ते हुए क्रम में व्यवस्थित कर सकते हैं?
- (b) क्या आप इनके मूल्यों को घटते हुए क्रम में व्यवस्थित कर सकते हैं?

प्रयास कीजिए 🔾

इसी प्रकार की पाँच और स्थितियों को सोचिए जहाँ आप तीन या अधिक राशियों की तुलना करते हैं।

आरोही क्रम (Ascending order): आरोही या बढ़ते हुए क्रम का अर्थ है सबसे छोटे से प्रारंभ कर सबसे बड़े तक व्यवस्थित करना।

अवरोही क्रम (Descending order): अवरोही क्रम या घटते हुए क्रम का अर्थ है सबसे बडे से प्रारंभ कर सबसे छोटे तक व्यवस्थित करना।

प्रयास कीजिए 🔍

- 1. निम्नलिखित संख्याओं को आरोही क्रम में व्यवस्थित कीजिए:
 - (a) 847, 9754, 8320, 571
 - (b) 9801, 25751, 36501, 38802
- 2. निम्नलिखित संख्याओं को अवरोही क्रम में व्यवस्थित कीजिए:
 - (a) 5000, 7500, 85400, 7861
 - (b) 1971, 45321, 88715, 92547

आरोही/अवरोही क्रमों के ऐसे ही दस उदाहरण और बनाइए और उन्हें आरोही/अवरोही क्रम में व्यवस्थित कीजिए।

1.2.2 अंकों का स्थानांतरण

क्या आपने सोचा है कि यदि किसी संख्या के अंकों के स्थान परस्पर बदल दिए जाएँ तो क्या होगा?

सोचिए कि 182 क्या बन जाएगा। यह 821 जैसी बड़ी हो सकती है अथवा 128 जैसी छोटी। यही प्रक्रिया 391 के साथ करके देखिए।

अब आगे दिए हुए प्रश्नों पर ध्यान दीजिए। तीन भिन्न-भिन्न अंकों की कोई संख्या लीजिए और सौ के स्थान के अंक को इकाई के स्थान के अंक से बदलिए।

- (a) क्या नयी संख्या पहली संख्या से बड़ी है?
- (b) क्या नयी संख्या पहली संख्या से छोटी है?

इस प्रकार बनने वाली संख्याओं को आरोही और अवरोही दोनों क्रमों में लिखिए।

पहल

7

9

5

पहली और तीसरी टाइलों को परस्पर बदलने पर

बाद में

5

9

7

विभिन्न अंक लेकर यदि आप पहली और तीसरी टाइलों (अंकों) को परस्पर बदलते हैं, तो किस स्थिति में संख्या बड़ी हो जाती है?

किस स्थिति में संख्या छोटी हो जाती है?

यह प्रक्रिया चार अंकों की कोई संख्या लेकर दोहराइए।

1.2.3 संख्या 10000 का प्रवेश

हम जानते हैं कि 99 से आगे दो अंकों वाली कोई संख्या नहीं है। 99 दो अंकों की सबसे बड़ी संख्या है। इसी प्रकार 999 तीन अंकों की सबसे बड़ी संख्या है और चार अंकों की सबसे बड़ी संख्या 9999 है। यदि हम 9999 में 1 जोड़ें, तो हमें क्या प्राप्त होगा?

इस प्रतिरूप को देखिए $9+1 = 10 = 10 \times 1$ $99+1 = 100 = 10 \times 10$ $999+1 = 1000 = 10 \times 100$

हम देखते हैं कि

एक अंक की सबसे बड़ी संख्या +1= दो अंकों की सबसे छोटी संख्या, दो अंकों की सबसे बड़ी संख्या +1= तीन अंकों की सबसे छोटी संख्या, तीन अंकों की सबसे बड़ी संख्या +1= चार अंकों की सबसे छोटी संख्या।

तब हम क्या यह नहीं सोच सकते कि चार अंकों की सबसे बड़ी संख्या में 1 जोड़ने पर, हमें पाँच अंकों की सबसे छोटी संख्या प्राप्त होगी, अर्थात् 9999 + 1 = 10000 होगा। इस प्रकार, 9999 से ठीक आगे आने वाली संख्या 10000 है। इसे दस हज़ार कहते हैं। साथ ही, हम सोच सकते हैं कि $10000 = 10 \times 1000$ होगा।

1.2.4 स्थानीय मान पर पुनर्दृष्टि

आप स्थानीय मान के बारे में बहुत पहले पढ़ चुके हैं तथा 78 जैसी दो अंकों की संख्या का प्रसारित रूप आपको अवश्य याद होगा। यह इस प्रकार है:

$$78 = 70 + 8$$

= $7 \times 10 + 8$

इसी प्रकार, आपको तीन अंकों की संख्या जैसे 278 का प्रसारित रूप भी याद होगा। यह इस प्रकार है:

$$278 = 200 + 70 + 8$$
$$= 2 \times 100 + 7 \times 10 + 8$$

हम कहते हैं कि 8 इकाई के स्थान पर है, 7 दहाई के स्थान पर है और 2 सौ के स्थान पर है।

बाद में, हमने इसी अवधारणा को चार अंकों की संख्या के लिए भी लागू कर लिया था। उदाहरणार्थ, 5278 का प्रसारित रूप है:

$$5278 = 5000 + 200 + 70 + 8$$

= $5 \times 1000 + 2 \times 100 + 7 \times 10 + 8$

यहाँ, इकाई के स्थान पर 8, दहाई के स्थान पर 7, सौ के स्थान पर 2 और हज़ार के स्थान पर 5 है।

संख्या 10000 ज्ञात हो जाने पर, हम इस अवधारणा को और आगे लागू कर सकते हैं। हम पाँच अंकों की संख्या जैसे 45278 को इस प्रकार लिख सकते हैं:

$$45278 = 4 \times 10000 + 5 \times 1000 + 2 \times 100 + 7 \times 10 + 8$$

यहाँ हम कहते हैं कि इकाई के स्थान पर 8, दहाई के स्थान पर 7, सौ के स्थान पर 2, हज़ार के स्थान पर 5 और दस हज़ार के स्थान पर 4 है। इस संख्या को पैंतालीस हज़ार दो सौ अठहत्तर पढ़ा जाता है। क्या अब आप 5 अंकों की सबसे छोटी और सबसे बड़ी संख्याएँ लिख सकते हैं?

प्रयास कीजिए

संख्याओं को पढ़िए और जहाँ-जहाँ रिक्त स्थान हैं उनके नाम लिखिए और प्रसारित रूप में लिखिए :

संख्या	संख्या का नाम	प्रसारित रूप
20000	बीस हज़ार	2 × 10000
26000	छब्बीस हजार	$2 \times 10000 + 6 \times 1000$
38400	अड़तीस हज़ार चार सौ	$3 \times 10000 + 8 \times 1000 + 4 \times 100$
65740	पैंसठ हज़ार सात सौ	$6 \times 10000 + 5 \times 1000$
	चालीस	$+ 7 \times 100 + 4 \times 10$
89324	नवासी हज़ार तीन सौ	$8 \times 10000 + 9 \times 1000$
	चौबीस	$+3 \times 100 + 2 \times 10 + 4$
50000		
41000		
47300		
57630		
29485		
29085		
20085		
20005		

पाँच अंकों वाली पाँच और संख्याएँ लिखिए, उन्हें पढ़िए और उनको प्रसारित रूप में लिखिए।

1.2.5 संख्या 100000 का प्रवेश

पाँच अंकों की सबसे बड़ी संख्या कौन सी है? पाँच अंकों की सबसे बड़ी संख्या में 1 जोड़ने पर छ: अंकों की सबसे छोटी संख्या प्राप्त होनी चाहिए। अर्थात्

$$99,999 + 1 = 1,00,000$$

इस संख्या को **एक लाख** नाम दिया जाता है। एक लाख 99999 के ठीक आगे आने वाली संख्या है।

अब हम 6 अंकों की संख्याएँ और उनके प्रसारित रूप लिख सकते हैं। जैसे :

$$2,46,853 = 2 \times 1,00,000 + 4 \times 10,000 + 6 \times 1,000 + 8 \times 100 + 5 \times 10 + 3 \times 1$$

इस संख्या में, इकाई के स्थान पर 3, दहाई के स्थान पर 5, सौ के स्थान पर 8, हजार के स्थान पर 6, दस हजार के स्थान पर 4 और लाख के स्थान पर 2 है। इस संख्या का नाम दो लाख छियालीस हजार आठ सौ तिरपन है।

प्रयास कीजिए 🔍

संख्याओं को पढकर उन्हें रिक्त स्थानों में प्रसारित रूप में और उनके नाम लिखिए:

संख्या	संख्या का नाम	प्रसारित रूप
3,00,000	तीन लाख	$3 \times 1,00,000$
3,50,000	तीन लाख पचास हज़ार	$3 \times 1,00,000 + 5 \times 10,000$
3,53,500	तीन लाख तिरपन हजार पाँच सौ	$3 \times 1,00,000 + 5 \times 10,000$ + $3 \times 1000 + 5 \times 100$
4,57,928		
4,07,928		<u> </u>
4,00,829		
4,00,029		

1.2.6 बड़ी संख्याएँ

यदि हम 6 अंकों की सबसे बड़ी संख्या में 1 जोड़ें, तो हमें 7 अंकों की सबसे छोटी संख्या प्राप्त होती है, जिसे **दस लाख** कहते हैं।

6 अंकों की सबसे बड़ी संख्या और 7 अंकों की सबसे छोटी संख्या लिखिए।

7 अंकों की सबसे बड़ी संख्या और 8 अंकों की सबसे छोटी संख्या लिखिए। 8 अंकों की सबसे छोटी संख्या **एक करोड़** है।

प्रतिरूप को पूरा कीजिए:

9 + 1	= 10
99 + 1	= 100
999 + 1	=
9,999 + 1	=
99,999 + 1	=
9,99,999 + 1	=

99,99,999 + 1 = 1,00,00,000

याद रखिए :	
1 सौ	= 10 दहाइयाँ
1 हज़ार	= 10 सौ
	= 100 दहाइयाँ
1 लाख	= 100 हज़ार
	= 1000 सौ
1 करोड़	= 100 লাভ্ৰ
	= 10,000 हजार

प्रयास कीजिए 🔍

- 10 1 क्या है?
- 3. 10,000 1 क्या है?
- 1,00,00,000 1 क्या है?

(संकेत: प्रतिरूप को पहचानिए)

- 2. 100 1 क्या है?
- 4. 1,00,000 1 क्या है?

अनेक विभिन्न स्थितियों में हमारे सम्मुख बड़ी संख्याएँ आती हैं। उदाहरणार्थ, आपकी कक्षा के बच्चों की संख्या दो अंकों की होगी, जबिक आपके स्कूल के कुल बच्चों की संख्या 3 या 4 अंकों की होगी। पास के शहर में रहने वाले लोगों की संख्या और अधिक बड़ी होगी।

क्या यह 5 या 6 या 7 अंकों की संख्या है? क्या आप अपने राज्य में रहने वाले लोगों की संख्या के बारे में जानते हैं?

इस संख्या में कितने अंक होंगे?

गेहूँ से भरी एक बोरी में दानों (grains) की संख्या क्या होगी? यह एक 5 अंकों की संख्या या 6 अंकों की संख्या या और बडी संख्या होगी?

प्रयास कीजिए

- 1. ऐसे पाँच उदाहरण दीजिए जहाँ गिनी जाने वाली वस्तुओं की संख्या 6 अंकों की संख्या से अधिक होगी।
- 2. 6 अंकों की सबसे बड़ी संख्या से प्रारंभ करते हुए, अवरोही क्रम में पिछली पाँच संख्याएँ लिखिए।
- 3. 8 अंकों की सबसे छोटी संख्या से प्रारंभ करते हुए, आरोही क्रम में अगली पाँच संख्याएँ लिखिए और उन्हें पढिए।

1.2.7 बड़ी संख्याएँ पढ़ने और लिखने में एक सहायता

निम्नलिखित संख्याओं को पढ़ने का प्रयत्न कीजिए:

- (a) 279453
- (b) 5035472
- (c) 152700375
- (d) 40350894

क्या आपको कुछ कठिनाई हुई?

आपको ऐसा करने में क्या कठिनाई हुई?

कभी-कभी बड़ी संख्याओं के पढ़ने और लिखने में कुछ सूचक (indicators) लगे होते हैं। शगुफ्ता भी सूचकों का प्रयोग करती है जो उसे बड़ी संख्याओं को पढ़ने और लिखने में सहायता करते हैं। उसके ये सूचक, संख्याओं को प्रसारित रूप में लिखने में भी सहायक होते हैं। उदाहरणार्थ, वह 257 में इकाई के स्थान, दहाई के स्थान और सौ के स्थान पर अंकों को ज्ञात करके उन्हें सारणी में O, T और H के नीचे निम्न प्रकार से लिखती है:

- H T O प्रसारित रूप
- $2 5 7 2 \times 100 + 5 \times 10 + 7 \times 1$

इसी प्रकार, 2902 के लिए वह प्राप्त करती है:

- Th H T O प्रसारित रूप
- $2 9 0 2 \times 1000 + 9 \times 100 + 0 \times 10 + 2 \times 1$

वह इस अवधारणा को लाखों तक की संख्याओं के लिए लागू करती है, जैसा कि नीचे दी हुई सारणी में देखा जा सकता है। (हम इन्हें शगुफ्ता के खाने या बॉक्स (Boxes) कहेंगे)। ध्यान से देखिए और रिक्त स्थानों पर छूटी हुई प्रविष्टियों को भिरए:

संख्या	TLa	La	TTh	Th	Н	Т	О	संख्या नाम	प्रसारित रूप
7,34,543		7	3	4	5	4	3	सात लाख चौंतीस हजार पाँच सौ तैंतालीस	
32,75,829	3	2	7	5	8	2	9		$3 \times 10,00,000$ + $2 \times 1,00,000$ + $7 \times 10,000$ + 5×1000 + 8×100 + $2 \times 10 + 9 \times 1$

इसी प्रकार, हम करोड़ों तक की संख्याओं को सिम्मिलित कर सकते हैं, जैसा कि नीचे दिखाया गया है:

संख्या	TCr	Cr	TLa	La	TTh	Th	Н	Т	O	संख्या नाम
2,57,34,543	-	2	5	7	3	4	5	4	3	
65,32,75,829	6	5	3	2	7	5	8	2	9	पैंसठ करोड़ बत्तीस
					>					लाख पचहत्तर हजार
										आठ सौ उनतीस

आप संख्याओं को प्रसारित रूप में लिखने के लिए अन्य तालिकाओं का प्रारूप भी बना सकते हैं।

अल्प विरामों (commas) का प्रयोग

आपने ध्यान दिया होगा कि उपरोक्त तालिकाओं में बड़ी संख्याओं के लिखने में हमने अल्प विरामों का प्रयोग किया है। बड़ी संख्याओं को पढ़ने और लिखने में अल्प विराम हमारी बड़ी सहायता करते हैं। संख्यांकन की भारतीय पद्धित (Indian system of numeration) में हम इकाई, दहाई, सौ (सैकड़ा), हजारों का प्रयोग करते हैं तथा आगे लाखों और करोड़ों का प्रयोग करते हैं। हजारों, लाखों और करोड़ों को प्रदर्शित करने के लिए अल्प विरामों का प्रयोग किया जाता है। पहला अल्प विराम सौ के स्थान (दाएँ से चलते हुए तीसरे अंक) के बाद आता है और हजारों को प्रदर्शित करता है। दूसरा अल्प विराम अगले दो अंकों (दाएँ से पाँचवें अंक) के बाद आता है। यह दस हजार के स्थान के बाद आता है और लाखों को प्रदर्शित करता है। तीसरा अल्प विराम अन्य दो अंकों (दाएँ से सातवें अंक) के बाद आता है। यह दस लाख के स्थान के बाद आता है। यह दस लाख के स्थान के बाद आता है। यह दस लाख के स्थान के बाद आता है। यह दस लाख के स्थान के बाद आता है। यह दस

उदाहरणार्थ, 5, 08, 01, 592 3, 32, 40, 781 7, 27, 05, 062

संख्याओं के नाम लिखते समय, हम अल्प विरामों का प्रयोग नहीं करते हैं।

ऊपर दी हुई संख्याओं को पढ़ने का प्रयत्न कीजिए। इसी रूप में पाँच और संख्याओं को लिखिए और फिर उन्हें पढ़िए।

अंतर्राष्ट्रीय संख्यांकन पद्धति

संख्यांकन की अंतर्राष्ट्रीय (International) पद्धित में, इकाई, दहाई, सौ, हजारों और आगे मिलियनों (millions) का प्रयोग किया जाता है। हजारों और मिलियनों को प्रदर्शित करने के लिए अल्प विरामों का प्रयोग किया जाता है। अल्प विराम दाएँ से प्रत्येक तीसरे अंक के बाद आता है। पहला अल्प विराम हजारों को प्रदर्शित करता है और दूसरा अल्प विराम मिलियनों को प्रदर्शित करता है। उदाहरणार्थ, संख्या 50, 801, 592 को अंतर्राष्ट्रीय पद्धित में पचास मिलियन आठ सौ एक हजार पाँच सौ बानवे पढ़ा जाता है। भारतीय पद्धित में, यह पाँच करोड़ आठ लाख एक हजार पाँच सौ बानवे है।

कितने लाख से एक मिलियन बनता है?

कितने मिलियन से एक करोड बनता है?

तीन बड़ी संख्याओं को लीजिए। इन्हें भारतीय और अंतर्राष्ट्रीय दोनों संख्यांकन पद्धतियों में व्यक्त कीजिए।

इसमें आपकी रुचि हो सकती है:

सौ मिलियनों से बड़ी संख्याओं को व्यक्त करने के लिए, अंतर्राष्ट्रीय पद्धति में बिलियनों (Billions) का प्रयोग किया जाता है।

1 बिलियन = 1000 मिलियन

क्या आप जानते हैं?

भारत की जनसंख्या में इस प्रकार वृद्धि हुई है:

1921-1931 के अंतराल में करीब 27 मिलियन;

1931-1941 के अंतराल में करीब 37 मिलियन;

1941-1951 के अंतराल में करीब 44 मिलियन;

1951-1961 के अंतराल में करीब 78 मिलियन;

1991–2001 के अंतराल में कितनी वृद्धि हुई। इस जानकारी को प्राप्त करने का प्रयत्न कीजिए। क्या आप जानते हैं कि इस समय भारत की जनसंख्या कितनी है? पता करने का प्रयत्न कीजिए।

प्रयास कीजिए 🔍

- 1. इन संख्याओं को बक्सों का प्रयोग करते हुए लिखिए और फिर प्रसारित रूप में लिखिए:
 - (i) 475320
- (ii) 9847215
- (iii) 97645310
- (iv) 30458094
- (a) इनमें कौन-सी संख्या सबसे छोटी है?
- (b) इनमें कौन-सी संख्या सबसे बड़ी है?
- (c) इन संख्याओं को आरोही और अवरोही क्रमों में व्यवस्थित कीजिए।
- 2. निम्नलिखित संख्याओं को देखिए :
 - (i) 527864
- (ii) 95432
- (iii) 18950049
- (iv) 70002509
- (a) इन संख्याओं को बक्सों का प्रयोग करते हुए लिखिए और फिर अल्प विरामों का प्रयोग करते हुए लिखिए।
- (b) इन संख्याओं को आरोही और अवरोही क्रमों में व्यवस्थित कीजिए।
- 3. ऐसी ही तीन और बड़ी संख्याएँ लेकर इस प्रक्रिया को दोहराइए।

क्या आप संख्यांक लिखने में मेरी सहायता कर सकते हैं?

एक संख्या के संख्यांक लिखने के लिए आप पुन: बक्सों का प्रयोग कर सकते हैं:

- (a) बयालीस लाख सत्तर हजार आठ।
- (b) दो करोड़ नब्बे लाख पचपन हज़ार आठ सौ।
- (c) सात करोड़ साठ हजार पचपन।

प्रयास कीजिए

- 1. आपके पास 4, 5, 6, 0, 7 और 8 के अंक हैं। इनका प्रयोग करते हुए 6 अंकों की पाँच संख्याएँ बनाइए।
 - (a) पढ़ने में सरलता के लिए अल्प विराम लगाइए।
 - (b) इन्हें आरोही और अवरोही क्रमों में व्यवस्थित कीजिए।
- 2. अंकों 4, 5, 6, 7, 8 और 9 का प्रयोग कर 8 अंकों की कोई तीन संख्याएँ बनाइए। पढ़ने में सरलता के लिए, अल्प विरामों का प्रयोग कीजिए।
- 3. अंकों 3, 0 और 4 का प्रयोग कर 6 अंकों की पाँच संख्याएँ बनाइए। अल्प विरामों का भी प्रयोग कीजिए।

प्रश्नावली 1.1

- 1. रिक्त स्थानों को भरिए:
 - (a) 1 लाख = दस हजार
 - (b) 1 मिलियन = ____ सौ हज़ार
 - (c) 1 करोड़ = ____ दस लाख
 - (d) 1 करोड़ = ____ मिलियन
 - (e) 1 मिलियन = ____ लाख
- 2. सही स्थानों पर अल्प विराम लगाते हुए, संख्यांकों को लिखिए:
 - (a) तिहत्तर लाख पचहत्तर हजार तीन सौ सात
 - (b) नौ करोड़ पाँच लाख इकतालीस
 - (c) सात करोड़ बावन लाख इक्कीस हज़ार तीन सौ दो
 - (d) अट्ठावन मिलियन चार सौ तेईस हज़ार दो सौ दो
 - (e) तेईस लाख तीस हजार दस
- 3. उपयुक्त स्थानों पर अल्प विराम लगाइए और संख्या नामों को भारतीय संख्यांकन पद्धति में लिखिए:
 - (a) 87595762
- (b) 8546283
- (c) 99900046
- (d) 98432701
- 4. उपयुक्त स्थानों पर अल्प विराम लगाइए और संख्या नामों को अंतर्राष्ट्रीय संख्यांकन पद्धति में लिखिए:
 - (a) 78921092
- (b) 7452283
- (c) 99985102
- (d) 48049831

1.3 व्यावहारिक प्रयोग में बड़ी संख्याएँ

पिछली कक्षाओं में, हम पढ़ चुके हैं कि लंबाई के एक मात्रक (या इकाई) (unit) के लिए सेंटीमीटर (सेमी) का प्रयोग किया जाता है। पेंसिल की लंबाई, अपनी पुस्तक या अभ्यास-पुस्तिका की चौड़ाई इत्यादि मापने के लिए हम सेंटीमीटर का प्रयोग करते हैं। हमारे रूलर पर सेंटीमीटर के चिह्न अंकित होते हैं। परंतु, एक पेंसिल की मोटाई मापने के लिए हम पाते हैं कि सेंटीमीटर एक बड़ा मात्रक है। अत: पेंसिल की मोटाई दर्शाने के लिए, हम एक छोटे मात्रक मिलीमीटर (मिमी) का प्रयोग करते हैं।

(a) $10 \, \text{Heeled}$ = $1 \, \text{Heeled}$

अपनी कक्षा के कमरे की लंबाई या स्कूल के भवन की लंबाई मापने के लिए, हम पाते हैं कि सेंटीमीटर एक बहुत छोटा मात्रक है। अत: इस कार्य के लिए हम मीटर का प्रयोग करते हैं।

(b) 1 Hizt = 100 Hizt = 1000 Hierarchical

यदि हमें दो शहरों, जैसे — दिल्ली-मुंबई या दिल्ली-कोलकाता के बीच की दूरियाँ बतानी हों, तो मीटर भी एक बहुत छोटा मात्रक होता है। इसके लिए हम एक बड़े मात्रक किलोमीटर (किमी) का प्रयोग करते हैं।

(c) 1 किलोमीटर = 1000 मीटर
 कितने मिलीमीटरों से 1 किलोमीटर बनता है?
 चूँिक 1 मीटर = 1000 मिमी, इसलिए
 1 किमी = 1000 मी = 1000 × 1000 मिमी = 10,00,000 मिमी

प्रयास कीजिए 🔍

- 1. कितने सेंटीमीटरों से एक किलोमीटर बनता है?
- 2. भारत के पाँच बड़े शहरों के नाम लिखिए। उनकी जनसंख्या पता कीजिए। इन शहरों में से प्रत्येक युग्म शहरों के बीच की दूरी भी किलोमीटरों में पता कीजिए।

हम बाज़ार में गेहूँ या चावल खरीदने जाते हैं। हम इन्हें किलोग्राम (किग्रा) में खरीदते हैं। परंतु अदरक या मिर्च जैसी वस्तुओं की हमें अधिक मात्रा में आवश्यकता नहीं होती है। हम इन्हें ग्राम (ग्रा) में खरीदते हैं। हम जानते हैं कि

1 किलोग्राम = 1000 ग्राम

बीमार पड़ने पर जो दवाई की गोली ली जाती है, क्या उसके भार पर कभी आपने ध्यान दिया है? यह बहुत कम होता है। यह भार मिलीग्राम (मिग्रा) में होता है।

1 ग्राम = 1000 मिलीग्राम

प्रयास कीजिए 🔍

- 1. कितने मिलीग्राम से एक किलोग्राम बनता है?
- 2. दवाई की गोलियों के एक बक्से में 2,00,000 गोलियाँ हैं, जिनमें प्रत्येक का भार 20 मिग्रा है। इस बक्से में रखी सभी गोलियों का कुल भार ग्रामों में कितना है और किलोग्रामों में कितना है?

पानी वाली एक साधारण बाल्टी की धारिता (capacity) प्राय: कितनी होती है? यह प्राय: 20 लीटर होती है। धारिता को लीटर में दर्शाया जाता है, परंतु कभी-कभी हमें एक छोटे मात्रक की भी आवश्यकता पड़ती है। यह मात्रक मिलीलीटर है। बालों के तेल, सफ़ाई करने वाले द्रव या एक सॉफ्ट ड्रिंक (पेय) की बोतलों पर जो मात्रा लिखी होती है वह उनके अंदर भरे द्रव की मात्रा को मिलीलीटर में दर्शाती है।

1 लीटर = 1000 मिलीलीटर

ध्यान दीजिए कि इन सभी मात्रकों में, हम कुछ सर्वनिष्ठ शब्दों जैसे किलो, मिली और सेंटी को पाते हैं। आपको याद रखना चाहिए कि किलो का अर्थ है हजार और यह इनमें सबसे बड़ा है और मिली का अर्थ है हजारवाँ भाग और यह सबसे छोटा है। किलो 1000 गुना दर्शाता है, जबिक मिली हजारवाँ भाग दर्शाता है। अर्थात् 1 किलोग्राम = 1000 ग्राम और 1 ग्राम = 1000 मिलीग्राम है।

इसी प्रकार, सेंटी सौवाँ भाग दर्शाता है। अर्थात् 1 मीटर = 100 सेंटीमीटर है।

प्रयास कीजिए 🔍

एक बस ने अपनी यात्रा प्रारंभ की और 60 किमी/घंटा की चाल से विभिन्न स्थानों पर पहुँची। इस यात्रा को नीचे दर्शाया गया है।

- (i) A से D तक जाने में बस द्वारा तय की गई कुल दूरी ज्ञात कीजिए।
- (ii) D से G तक जाने में बस द्वारा तय की गई कुल दूरी ज्ञात कीजिए।
- (iii) बस द्वारा तय की गई कुल दूरी ज्ञात कीजिए।
- (iv) क्या आप C से D तक और D से E तक की दूरियों का अंतर ज्ञात कर सकते हैं?
- से (F) 2550 कि.मी. (B) 4830 कि.मी. (E) 8140 कि.मी.
- (v) बस द्वारा निम्नलिखित यात्रा में लिया समय ज्ञात कीजिए:
 - (a) A से B तक
- (b) C से D तक
- (c) E से G तक

3410 कि.मी.

2160 कि.मी

(d) कुल यात्रा

रमन की दुकान

वस्तुएँ	द	र
सेब	₹ 40	प्रति किग्रा
संतरा	₹ 30	प्रति किग्रा
कंघा	₹3	प्रति नग
दाँतों का ब्रुश	₹ 10	प्रति नग
पेंसिल	₹ 1	प्रति नग
अभ्यास-पुस्तिका	₹6	प्रति नग
साबुन की टिकिया	₹8	प्रति नग

पिछले वर्ष	की विकी
सेब	2457 किग्रा
संतरा	3004 किग्रा
कंघा	22760
दाँतों का ब्रुश	25367
पेंसिल	38530
अभ्यास-पुस्तिका	40002
साबुन की टिकिया	20005

(a) क्या आप रमन द्वारा पिछले वर्ष बेचे गए सेब और संतरों का कुल भार ज्ञात कर सकते हैं?

सेबों का भार =	_. किग्रा	
संतरों का भार =	_ किग्रा	
अत:, कुल भार =	किग्रा + किग्रा = _	किग्रा
उत्तर : संतरों और सेबों का कु	ल भार =	

- (b) क्या आप रमन द्वारा सेबों को बेचने से प्राप्त कुल धनराशि ज्ञात कर सकते हैं?
- (c) क्या आप रमन द्वारा सेबों और संतरों को बेचने से प्राप्त कुल धनराशि ज्ञात कर सकते हैं?
- (d) रमन द्वारा प्रत्येक वस्तु के बेचने से प्राप्त धनराशियों को दर्शाने वाली एक सारणी बनाइए। धनराशियों की इन प्रविष्टियों को अवरोही क्रम में व्यवस्थित कीजिए। वह कौन-सी वस्तु है जिससे रमन को सबसे अधिक धनराशि प्राप्त हुई? यह धनराशि क्या है?

जोड़, घटा, गुणा और भाग पर हम अनेक प्रश्न कर चुके हैं। यहाँ हम ऐसे कुछ और प्रश्न करेंगे। प्रारंभ करने से पहले निम्नलिखित उदाहरणों को देखिए तथा प्रश्नों के विश्लेषण का अनुसरण कीजिए और देखिए कि इन्हें किस प्रकार हल किया गया है।

उदाहरण 1: वर्ष 1991 में सुंदरनगर की जनसंख्या 2,35,471 थी। वर्ष 2001 में पता चला कि जनसंख्या में 72,958 की वृद्धि हो गई। वर्ष 2001 में इस शहर की जनसंख्या क्या थी?

हल : 2001 में इस शहर की जनसंख्या = 1991 में जनसंख्या + जनसंख्या में वृद्धि =
$$2,35,471 + 72,958$$
 अब, $235471 + 72958 - 308429$

सलमा ने इन संख्याओं को इस प्रकार जोड़ा : 235471 = 200000 + 35000 + 471, 72958 = 72000 + 958 और फिर 200000 + 107000

+1429 = 308429 तथा मेरी ने इस जोड़ को इस प्रकार किया : 200000

+35000 + 400 + 71 + 72000 + 900 + 58 = 308429

उत्तर : 2001 में शहर की जनसंख्या 3,08,429 थी। तीनों विधियाँ सही हैं।

Rata Bycycles &

उदाहरण 2: किसी राज्य में, वर्ष 2002-2003 में 7,43,000 साइकिलें बेची गईं। वर्ष 2003-04 में बेची गई साइकिलों की संख्या 8,00,100 थी। किस वर्ष में अधिक साइकिलें बेची गईं और कितनी अधिक बेची गईं?

हल : स्पष्ट है कि संख्या 8,00,100 संख्या 7,43,000 से अधिक है। अत:, उस

राज्य में वर्ष 2003-04 में वर्ष 2002-03 से अधिक साइकिलें बेची गईं। अब,

जोड़ कर उत्तर की जाँच कीजिए:

(उत्तर सही है)

क्या आप इसे करने के और भी तरीके सोच सकते हैं? उत्तर : वर्ष 2003-04 में 57,100 साइकिलें अधिक बेची गईं।

उदाहरण 3: एक शहर में समाचार पत्र प्रतिदिन छपता है। एक प्रति में 12 पृष्ठ होते हैं। प्रतिदिन इस समाचार पत्र की 11,980 प्रतियाँ छपती हैं। प्रतिदिन सभी प्रतियों के लिए कितने पृष्ठ छपते हैं?

हल : प्रत्येक प्रति में 12 पृष्ठ हैं। अत:, 11,980 प्रतियों में 12 × 11,980 पृष्ठ होंगे। यह संख्या क्या होगी? 1,00,000 से अधिक या कम।

उत्तर : प्रतिदिन सभी प्रतियों के लिए 1,43,760 पृष्ठ छपते हैं।

उदाहरण 4: अभ्यास-पुस्तिकाएँ बनाने के लिए कागज़ की 75,000 शीट (sheet) उपलब्ध हैं। प्रत्येक शीट से अभ्यास-पुस्तिका के 8 पृष्ठ बनते हैं। प्रत्येक अभ्यास-पुस्तिका में 200 पृष्ठ हैं। उपलब्ध कागज़ से कितनी अभ्यास-पुस्तिकाएँ बनाई जा सकती हैं?

हल

: प्रत्येक शीट से 8 पृष्ठ बनते हैं। अत:, 75,000 शीटों से 8 × 75,000 पष्ठ बनेंगे।

इस प्रकार, अभ्यास-पुस्तिका बनाने के लिए 6,00,000 पृष्ठ उपलब्ध हैं। अब, 200 पृष्ठों से एक अभ्यास-पुस्तिका बनती है। अत:, 6,00,000 पृष्ठों से 6,00,000 ÷ 200 अभ्यास-पुस्तिकाएँ बनेंगी।

্ৰৰ,
$$200 \frac{3000}{600000}$$

$$0000$$

उत्तर : 3,000 अभ्यास-पुस्तिकाएँ।

प्रश्नावली 1.2

- 1. किसी स्कूल में चार दिन के लिए एक पुस्तक प्रदर्शनी आयोजित की गई। पहले, दूसरे, तीसरे और अंतिम दिन खिड़की पर क्रमश: 1094, 1812, 2050 और 2751 टिकट बेचे गए। इन चार दिनों में बेचे गए टिकटों की कुल संख्या ज्ञात कीजिए।
- 2. शेखर एक प्रसिद्ध क्रिकेट खिलाड़ी है। वह टैस्ट मैचों में अब तक 6980 रन बना चुका है। वह 10,000 रन पूरे करना चाहता है। उसे कितने और रनों की आवश्यकता है?
- 3. एक चुनाव में, सफल प्रत्याशी ने 5,77,500 मत प्राप्त किए, जबिक उसके निकटतम प्रतिद्वंद्वी ने 3,48,700 मत प्राप्त किए। सफल प्रत्याशी ने चुनाव कितने मतों से जीता?
- 4. कीर्ति बुक-स्टोर ने जून के प्रथम सप्ताह में ₹2,85,891 मूल्य की पुस्तकें बेचीं। इसी माह के दूसरे सप्ताह में ₹4,00,768 मूल्य की पुस्तकें बेची गईं। दोनों सप्ताहों में कुल मिलाकर कितनी बिक्री हुई? किस सप्ताह में बिक्री अधिक हुई और कितनी अधिक?
- 5. अंकों 6, 2, 7, 4 और 3 में से प्रत्येक का केवल एक बार प्रयोग करते हुए, पाँच अंकों की बनाई जा सकने वाली सबसे बड़ी और सबसे छोटी संख्याओं का अंतर ज्ञात कीजिए।
- 6. एक मशीन औसतन एक दिन में 2,825 पेंच बनाती है। जनवरी 2006 में उस मशीन ने कितने पेंच बनाए?

- 7. एक व्यापारी के पास ₹78,592 थे। उसने 40 रेडियो खरीदने का ऑर्डर दिया तथा प्रत्येक रेडियो का मूल्य ₹1200 था। इस खरीदारी के बाद उसके पास कितनी धनराशि शेष रह जाएगी?
- 8. एक विद्यार्थी ने 7236 को 56 के स्थान पर 65 से गुणा कर दिया। उसका उत्तर सही उत्तर से कितना अधिक था? (संकेत: दोनों गुणा करना आवश्यक नहीं)।
- 9. एक कमीज़ सीने के लिए 2 मी 15 सेमी कपड़े की आवश्यकता है। 40 मी कपड़े में से कितनी कमीज़ें सी जा सकती हैं और कितना कपड़ा शेष बच जाएगा?
- 10. दवाइयों को बक्सों में भरा गया है और ऐसे प्रत्येक बक्स का भार 4 किग्रा 500 ग्रा है। एक वैन (Van) में जो 800 किग्रा से अधिक का भार नहीं ले जा सकती, ऐसे कितने बक्से लादे जा सकते हैं?
- 11. एक स्कूल और किसी विद्यार्थी के घर के बीच की दूरी 1 किमी 875 मी है। प्रत्येक दिन यह दूरी दो बार तय की जाती है। 6 दिन में उस विद्यार्थी द्वारा तय की गई कुल दूरी ज्ञात कीजिए।
- 12. एक बर्तन में 4 ली 500 मिली दही है। 25 मिली धारिता वाले कितने गिलासों में इसे भरा जा सकता है?

1.3.1 आकलन

समाचार

- 1. भारत और पाकिस्तान के बीच हुए एक हॉकी मैच को जिसे स्टेडियम में लगभग 51,000 दर्शकों ने देखा और विश्व-भर में 40 मिलियन लोगों ने टेलीविज़न पर देखा, हार-जीत का फ़ैसला न हो सका।
- 2. भारत और बंगलादेश के तटवर्तीय क्षेत्रों में आए एक चक्रवाती तूफ़ान में लगभग 2000 व्यक्तियों की मृत्यु हो गई और 50000 से अधिक घायल हुए।
- 3. रेलवे द्वारा प्रतिदिन 63,000 किलोमीटर से अधिक रेलपथ पर 13 मिलियन से अधिक यात्री यात्रा करते हैं।
 - क्या हम विश्वास के साथ कह सकते हैं कि इन समाचारों में जितने व्यक्ति कहे गए हैं वहाँ ठीक उतने ही व्यक्ति थे? उदाहरणार्थ,
 - (1) में, क्या स्टेडियम में ठीक 51,000 दर्शक थे? अथवा क्या टेलीविज़न पर ठीक 40 मिलियन लोगों ने मैच देखा?

स्पष्टत:, नहीं। शब्द लगभग स्वयं यह दर्शाता है कि व्यक्तियों की संख्याएँ इन संख्याओं के निकटतम थीं। स्पष्ट रूप से, 51000 संख्याओं 50800 या 51300 में से कोई भी संख्या हो सकती है, परंतु 70000 नहीं होगी। इसी प्रकार, 40 मिलियन का अर्थ 39 मिलियन से बहुत अधिक और 41 मिलियन से कुछ कम हो सकता है। परंतु निश्चय ही इसका अर्थ 50 मिलियन नहीं है।

इसी प्रकार, भारतीय रेलवे द्वारा यात्रा करने वाले यात्रियों की वास्तविक संख्या दी हुई संख्या के बराबर नहीं हो सकती है, परंतु इससे कुछ अधिक या कम हो सकती है।

इन उदाहरणों में दी गई संख्याओं को ठीक-ठीक गिनकर (या यथार्थ रूप से) नहीं लिखा गया है, बल्कि ये उस संख्या के बारे में अनुमान देने वाले आकलन (estimate) हैं।

चर्चा कीजिए कि इनसे क्या सुझाव मिलते हैं।

हम सिन्तकट (approximate) मान कहाँ निकालते हैं? अपने घर पर होने वाले एक बड़े उत्सव की कल्पना कीजिए। पहला काम जो आप करेंगे वह यह होगा कि आप यह पता करेंगे कि आपके घर पर लगभग कितने मेहमान आ सकते हैं। क्या आप मेहमानों की ठीक (exact) संख्या का विचार लेकर प्रारंभ कर सकते हैं? व्यावहारिक रूप से यह असंभव है।

हमारे देश के वित्त मंत्री प्रति वर्ष बजट पेश करते हैं। मंत्री महोदय 'शिक्षा' मद के अंतर्गत कुछ राशि का प्रावधान रखते हैं। क्या यह राशि यथार्थ रूप से सही होगी? यह उस वर्ष देश में शिक्षा पर व्यय होने वाली आवश्यक धनराशि का केवल एक विवेकसंगत अच्छा अनुमान या आकलन (estimate) हो सकता है।

उन स्थितियों के बारे में सोचिए जहाँ आपको ठीक-ठीक संख्याओं की आवश्यकता पड़ती है तथा इनकी उन स्थितियों से तुलना कीजिए जहाँ आप केवल एक सन्निकट आकलित (estimated) संख्या से ही काम चला लेते हैं। ऐसी स्थितियों के तीन उदाहरण दीजिए।

1.3.2 सन्निकटन द्वारा निकटतम दहाई तक आकलन

निम्नलिखित चित्र को देखिए:

- (a) ज्ञात कीजिए कि कौन-से झंडे 270 की तुलना में 260 के अधिक समीप हैं।
- (b) ज्ञात कीजिए कि कौन-से झंडे 260 की तुलना में 270 के अधिक समीप हैं।

पटरी की संख्याओं 10, 17 और 20 के स्थानों को देखिए। क्या संख्या 17 संख्या 10 के अधिक निकट है या 20 के? 17 और 20 के बीच का रिक्त स्थान 17 और 10 के बीच के रिक्त स्थान की तुलना में कम है। इसलिए, हम 17 को निकटतम दहाई तक 20 के रूप में सन्निकटित करते हैं।

अब 12 को लीजिए। यह भी 10 और 20 के बीच स्थित है। परंतु 12 संख्या 20 की तुलना में 10 से अधिक निकट है। इसलिए हम 12 को निकटतम दहाई तक 10 के रूप में सिन्नकटित करते हैं।

आप 76 को निकटतम दहाई तक किस प्रकार सन्निकटित करेंगे? क्या यह 80 नहीं है?

हम देखते हैं कि संख्याएँ 1,2,3 और 4 संख्या 10 की तुलना में संख्या 0 के अधिक निकट हैं। इसलिए हम इन्हें 0 के रूप में सिन्नकिटत करते हैं। संख्याएँ 6,7,8 और 9 संख्या 10 के अधिक निकट हैं। इसलिए हम इन्हें 10 के रूप में सिन्नकिटत करते हैं। संख्या 5, संख्याओं 0 और 10 से बराबर की दूरी पर है। यह सामान्य पिरपाटी है कि इसे 10 के रूप में सिन्नकिटत किया जाता है।

प्रयास कीजिए 🔍

इन संख्याओं को निकटतम दहाई तक सन्निकटित कीजिए:

					-
28	32	52	41	39	48
64	59	99	215	1453	2936

1.3.3 सन्निकटन द्वारा निकटतम सैकड़े तक आकलन

संख्या 410 संख्या 400 के अधिक निकट है या 500 के अधिक निकट है?

410, संख्या 400 के अधिक निकट (समीप) है, इसलिए इसे निकटतम सौ तक 400 के रूप में सन्निकटित किया जाता है।

संख्या 889, संख्याओं 800 और 900 के बीच में है।

यह 900 के अधिक निकट है। इसलिए, इसे निकटतम सौ तक 900 के रूप में सन्निकटित किया जाता है।

संख्याएँ 1 से 49, संख्या 100 की तुलना में, संख्या 0 के अधिक निकट हैं। इसलिए, इन्हें 0 के रूप में सिन्निकटित किया जाता है। 51 से 99 तक की संख्याएँ 0 की तुलना में 100 से अधिक निकट हैं। इसलिए, इन्हें 100 के रूप में सिन्निकटित किया जाता है। संख्या 50 संख्याओं 0 और 100 से बराबर दूरी पर है। सामान्य परिपाटी के अनुसार, इसे 100 के रूप में सिन्निकटित किया जाता है।

जाँच कीजिए कि निम्नलिखित सन्निकटन (सैकड़े तक) सही हैं या नहीं:

 $841 \rightarrow 800; 9537 \rightarrow 9500; 49730 \rightarrow 49700;$

 $2546 \rightarrow 2500; 286 \rightarrow 300; 5750 \rightarrow 5800;$

 $168 \rightarrow 200; 149 \rightarrow 100; 9870 \rightarrow 9800.$

उन्हें सही कीजिए जो गलत हैं।

1.3.4 सन्निकटन द्वारा निकटतम हजार तक आकलन

हम जानते हैं कि 1 से 499 तक की संख्याएँ 1000 की तुलना में 0 के अधिक निकट हैं। इसलिए, इन्हें 0 के रूप में सिन्नकिटत करते हैं। 501 से 999 तक की संख्याएँ 0 की तुलना में 1000 के अधिक निकट हैं। इसलिए, इन्हें 1000 के रूप में सिन्नकिटत किया जाता है।

संख्या 500 को भी 1000 के रूप में सिन्नकटित किया जाता है।

निम्नलिखित सन्निकटनों की जाँच कीजिए और उन्हें सही कीजिए जो गलत हैं।

 $2573 \longrightarrow 3000;$ $53552 \longrightarrow 53000;$ $6404 \longrightarrow 6000;$ $65437 \longrightarrow 65000;$ $7805 \longrightarrow 7000;$ $3499 \longrightarrow 4000$

प्रयास कीजिए 🔍

दी हुई संख्या को निकटतम दहाई, सौ, हज़ार और दस हज़ार तक सन्निकटित कीजिए:

9.		· ·
दी हुई संख्या	निम्न के निकटतम	सन्निकटित रूप
75847	दहाई	
75847	सौ	
75847	हज़ार	
75847	दस हजार	

1.3.5 संख्या संक्रियाओं के परिणामों का आकलन

हम संख्याओं को किस प्रकार जोड़ते हैं? हम संख्याओं को एक एल्गोरिथ्म (algorithm) (दी हुई विधि) का चरणबद्ध रूप से प्रयोग करते हुए जोड़ते हैं। हम संख्याओं को यह ध्यान रखते हुए लिखते हैं कि एक ही स्थान (इकाई, दहाई, सौ इत्यादि) के अंक एक ही स्तंभ (Column) में रहें। उदाहरणार्थ, 3946 + 6579 + 2050 को निम्न रूप में लिखते हैं:

TTh	Th	H	\mathbf{T}	0
	3	9	4	6
	6	5	7	9
+	2	0	5	0

फिर हम इकाई वाले स्तंभ की संख्याओं को जोड़ते हैं। यदि आवश्यक हो, तो हम एक उचित संख्या को हासिल के रूप में दहाई के स्थान पर ले जाते हैं, जैसे कि इस स्थिति में है। फिर हम इसी प्रकार दहाई के स्तंभ की संख्याओं को जोड़ते हैं और ऐसा आगे चलता रहता है। आप शेष प्रश्न को स्वयं पूर्ण कर सकते हैं। इस प्रक्रिया में स्पष्टत: समय लगता है।

अनेक स्थितियों में, हमें उत्तरों को अधिक तीव्रता से ज्ञात करने की आवश्यकता होती है। उदाहरणार्थ, जब आप किसी मेले या बाज़ार में कुछ धनराशि लेकर जाते हैं, तो आकर्षक वस्तुओं की किस्मों और मात्राओं को देखकर वहाँ आप सोचते हैं कि सभी को खरीद लिया जाए। आपको तुरंत यह निर्णय लेने की आवश्यकता होती है कि आप किन-किन वस्तुओं को खरीद सकते हैं। इसके लिए आपको आवश्यक धनराशि का आकलन करने की आवश्यकता पड़ती है, जो उन वस्तुओं के मूल्यों का योग होती है जिन्हें आप खरीदना चाहते हैं।

किसी विशेष दिन, एक व्यापारी को दो स्थानों से धनराशि प्राप्त होनी है। एक स्थान से प्राप्त होने वाली धनराशि ₹ 13,569 है और अन्य स्थान से प्राप्त होने वाली धनराशि ₹ 26,785 है। उसे शाम तक किसी अन्य व्यक्ति को ₹ 37,000 देने हैं। वह संख्याओं को उनके निकटतम हजारों तक सिन्नकिटत करता है और तुरंत कच्चा या रफ (rough) उत्तर निकाल लेता है। वह खुश हो जाता है कि उसके पास पर्याप्त धनराशि है।

क्या आप सोचते हैं कि उसके पास पर्याप्त धनराशि होगी? क्या आप बिना यथार्थ योग किए यह बता सकते हैं?

शीला और मोहन को अपना मासिक बजट बनाना है उन्हें परिवहन, स्कूल की आवश्यकताओं, किराने का सामान, दूध और कपड़ों पर होने वाले अपने मासिक व्यय के बारे में भी जानकारी है तथा अन्य नियमित व्ययों की भी जानकारी है। इस महीने में उन्हें घूमने भी जाना है और उपहार भी खरीदने हैं। वे इन सभी पर होने वाले व्ययों का आकलन करते हैं और

उन्हें जोड़कर देखते हैं कि जो राशि उनके पास है वह पर्याप्त है या नहीं।

क्या वे हजारों तक सन्निकटित करेंगे. जैसा कि व्यापारी ने किया था?

ऐसी पाँच और स्थितियों के बारे में सोचिए और चर्चा कीजिए, जहाँ हमें योग या अंतरों का आकलन करना पड़ता है।

क्या हम इन सभी में एक ही स्थान तक सन्निकट मान ज्ञात करते हैं?

जब आप संख्याओं के परिणामों का आकलन करते हैं, तो उसके लिए कोई निश्चित नियम नहीं है। यह विधि इस पर निर्भर करती है कि परिशुद्धता की वांछित मात्रा कितनी है, आकलन कितनी जल्दी चाहिए तथा सबसे महत्त्वपूर्ण बात है कि अनुमानित उत्तर कितना अर्थपूर्ण होगा।

1.3.6 योग अथवा अंतर का आकलन

जैसा कि हमने ऊपर देखा, हम एक संख्या को किसी भी स्थान तक सिन्नकिटत कर सकते हैं। व्यापारी ने धनराशि को निकटतम हजारों तक सिन्नकिटत किया और संतुष्ट हो गया कि उसके पास पर्याप्त धनराशि है। इसिलए जब आपको किसी योग अथवा अंतर का आकलन करना है, तो आपको यह पता होना चाहिए कि आप क्यों सिन्नकिटत कर रहे हैं और इसिलए किस स्थान तक आपको सिन्नकिटत करना है। निम्नलिखित उदाहरणों को देखिए:

उदाहरण 5 : 5,290 + 17,986 का आकलन कीजिए।

द्रल

: हम देखते हैं कि 17,986 > 5,290 है।

हम निकटतम हजारों तक सन्निकटित करते हैं।

17,986 सन्निकटित होता है 18,000

+5,290 सिन्नकटित होता है + 5,000

आकलित योग = 23,000

क्या यह विधि काम करती है? आप यथार्थ उत्तर ज्ञात करके जाँच कर सकते हैं कि यह आकलन विवेकपूर्ण है या नहीं।

उदाहरण 6: 5,673 – 436 का आकलन कीजिए।

हल

: प्रारंभ में, हम हज़ारों तक सन्निकटित करते हैं। (क्यों?)

 5,673 सिन्नकटित होता है
 6,000

– 436 सन्निकटित होता है – 🗀 🖰

आकलित अंतर = 6,000

यह विवेकपूर्ण आकलन नहीं है। यह विवेकपूर्ण क्यों नहीं है? निकटतम आकलन प्राप्त करने के लिए, आइए प्रत्येक संख्या को निकटतम सौ तक सन्निकटित करने का प्रयत्न करें।

 5,673 सिन्नकटित होता है
 5,700

 - 436 सिन्नकटित होता है
 - 400

 आकित अंतर =
 5,300

 यह एक अच्छा और अधिक अर्थपूर्ण आकलन है।

1.3.7 आकलन करना : गुणनफल

हम गुणनफल का किस प्रकार आकलन करते हैं?

 19×78 के लिए आकलन क्या है?

स्पष्ट है कि यह गुणनफल 2000 से कम है। क्यों? यदि हम 19 का निकटतम दहाई तक मान निकालें, तो हमें 20 प्राप्त होता है और फिर 78 का निकटतम दहाई तक मान निकालें, तो 80 प्राप्त होता है। अब $20 \times 80 = 1600$ है।

63 × 182 को देखिए।

यदि हम दोनों संख्याओं का निकटतम सौ तक का मान निकालें, तो हमें $100 \times 200 = 20,000$ प्राप्त होता है। यह वास्तविक गुणनफल से बहुत अधिक है। इसिलए अब हम क्या करें? एक अधिक विवेकपूर्ण आकलन ज्ञात करने के लिए हम 63 और 182 दोनों को निकटतम दहाई तक सिन्निकटित करते हैं। ये क्रमशः 60 और 180 हैं। इसे हम 60×180 अर्थात् 10,800 प्राप्त करते हैं। यह एक अच्छा आकलन है, परंतु यह इतनी जल्दी प्राप्त नहीं होता है। यदि हम 63 को निकटतम दहाई तक 60 लें और 182 को निकटतम सौ तक 200 लें, तो हमें $60 \times 200 = 12,000$ प्राप्त होता है, यह गुणनफल का एक अच्छा आकलन है और जल्दी भी प्राप्त हो जाता है।

सिनकटन का व्यापक नियम यह है कि प्रत्येक गुणा की जाने वाली संख्या को उसके सबसे बड़े स्थान तक सिनकिटत कीजिए और सिनकिटत संख्याओं को गुणा कर दीजिए। इस प्रकार, उपरोक्त उदाहरण में हमने 63 को दहाई तक और 182 को सौ तक सिनकिटत किया है।

अब उपरोक्त नियम का प्रयोग करके, 81×479 का आकलन कीजिए। 479 सिन्नकिटत होता है 500 के (सौ तक सिन्नकिटत) 81 सिन्नकिटत होता है 80 के (दहाई तक सिन्नकिटत) अत:, आकलित गुणनफल = $500 \times 80 = 40,000$ है।

प्रयास कीजिए 🐊

निम्नलिखित गुणनफलों का आकलन कीजिए:

- (a) 87×313
- (b) 9×795
- (c) 898×785
- (d) 958×387

ऐसे ही पाँच और प्रश्न बनाइए और उन्हें हल कीजिए।

आपके लिए आकलनों का एक महत्त्वपूर्ण उपयोग यह है कि आप अपने उत्तरों की जाँच कर सकते हैं। मान लीजिए आपने 37×1889 ज्ञात किया है, परंतु आप निश्चित नहीं हैं कि

उत्तर सही है या नहीं। इस गुणनफल का एक तुरंत (जल्दी) प्राप्त होने वाला और विवेकपूर्ण आकलन $40 \times 2000 = 80000$ है। यदि आपका उत्तर 80,000 के निकट है, तो संभवत: आपका उत्तर सही है। दूसरी ओर, यदि यह 8000 या 8,00,000 के निकट है, तो आपके गुणा करने में अवश्य ही कुछ गलती हुई है।

प्रश्नावली 1.3

- 1. व्यापक नियम का प्रयोग करते हुए, निम्नलिखित में से प्रत्येक का आकलन कीजिए :
 - (a) 730 + 998
- (b) 796 314
- (c) 12,904 + 2,888
- (d) 28,292 21,496

जोड़ने, घटाने और उनके परिणामों के आकलन के दस और उदाहरण बनाइए।

- 2. एक मोटेतौर पर (Rough) आकलन (सौ तक सन्निकटन) और एक निकटतम आकलन (दस तक सन्निकटन) दीजिए :
 - (a) $439 + 334 + 4{,}317$
- (b) 1,08,734 47,599
- (c) 8325 491
- (d) 4,89,348 48,365

ऐसे चार और उदाहरण बनाइए।

- 3. व्यापक नियम का प्रयोग करते हुए, निम्नलिखित गुणनफलों का आकलन कीजिए :
 - (a) 578×161
- (b) 5281×3491
- (c) 1291×592
- (d) 9250×29

ऐसे चार और उदाहरण बनाइए।

1.4 कोष्ठकों का प्रयोग

मीरा ने बाज़ार से 6 अभ्यास-पुस्तिकाएँ खरीदीं जिनका मूल्य ₹10 प्रति पुस्तिका था। उसकी बहन सीमा ने इसी प्रकार की 7 अभ्यास-पुस्तिकाएँ खरीदीं। उनके द्वारा दी गई कुल धनराशि ज्ञात कीजिए।

सीमा ने धनराशि इस प्रकार	मीरा ने धनराशि इस प्रकार
परिकलित की	परिकलित की
$6 \times 10 + 7 \times 10$	6 + 7 = 13
= 60 + 70	और 13 × 10
उत्तर = ₹130	उत्तर = ₹130

आप देख सकते हैं कि सीमा और मीरा के उत्तर प्राप्त करने की विधियों में कुछ अंतर है, परंतु दोनों के उत्तर समान हैं और प्राप्त परिणाम सही है। क्यों?

सीमा ने कहा कि मीरा ने 7 + 6 × 10 करके उत्तर प्राप्त किया है।

अप्पू बताता है कि $7+6\times10=7+60=67$ है। लेकिन मीरा ने जो उत्तर प्राप्त किया है वह यह नहीं है। बस तीनों विद्यार्थी उलझन में पड़ जाते हैं।

ऐसी स्थितियों में उलझन दूर करने के लिए हम कोष्ठकों (brackets) का प्रयोग कर सकते हैं। हम कोष्ठकों का प्रयोग करके 6 और 7 को मिलाकर एक समूह बना सकते हैं,

जो दर्शाएगा कि इस समूह को एक अकेली संख्या समझा जाए। जिससे उत्तर इस प्रकार प्राप्त होता है :

$$(6 + 7) \times 10 = 13 \times 10$$

यह वही है जो मीरा ने किया है। उसने पहले 6 और 7 को जोड़ा और फिर प्राप्त योग को 10 से गुणा कर दिया।

कोष्ठकों का प्रयोग यह स्पष्ट रूप में हमें बताता है कि पहले कोष्ठकों () के अंदर दी हुई संख्याओं को एक अकेली संख्या के रूप में बदलिए और फिर बाहर दी हुई संक्रिया कीजिए जो यहाँ 10 से गुणा करना है।

प्रयास कीजिए 🔍

- 1. कोष्ठकों का प्रयोग करते हुए, निम्नलिखित में से प्रत्येक के लिए व्यंजक लिखिए :
 - (a) नौ और दो के योग की चार से गुणा।
 - (b) अठारह और छ: के अंतर को चार से भाग।
 - (c) पैंतालीस को तीन और दो के योग के तिगुने से भाग देना।
- 2. (5 + 8) × 6 के लिए तीन विभिन्न स्थितियाँ लिखिए। (ऐसी एक स्थिति है : सोहनी और रीता ने 6 दिन कार्य किया। सोहनी 5 घंटे प्रतिदिन कार्य करती है और रीता 6 घंटे प्रतिदिन कार्य करती है। दोनों ने एक सप्ताह में कुल कितने घंटे कार्य किया?)
- 3. निम्नलिखित के लिए पाँच स्थितियाँ लिखिए, जहाँ कोष्ठकों का प्रयोग आवश्यक हो : (a) 7(8-3) (b) (7+2) (10-3)

1.4.1 कोष्ठकों का प्रसार (खोलना) (हटाना)

अब देखिए कि किस प्रकार कोष्ठकों के प्रयोग और उनके प्रसार (खोलने या हटाने) से, हमें अपने कार्य को क्रमबद्ध रूप से करने में सहायता मिलती है। क्या आप सोचते हैं कि कोष्ठकों का बिना प्रयोग किए जिन चरणों का हम पालन कर रहे हैं उन्हें समझ पाएँगे?

(i)
$$7 \times 109 = 7 \times (100 + 9) = 7 \times 100 + 7 \times 9 = 700 + 63 = 763$$

(ii) $102 \times 103 = (100 + 2) \times (100 + 3)$
 $= 100 \times 100 + 2 \times 100 + 100 \times 3 + 2 \times 3$
 $= 10,000 + 200 + 300 + 6 = 10,000 + 500 + 6$
 $= 10,506$
(iii) $17 \times 109 = (10 + 7) \times 109 = 10 \times 109 + 7 \times 109$
 $= 10 \times (100 + 9) + 7 \times (100 + 9)$

1.5 रोमन संख्यांक

अभी तक हम हिंदू-अरेबिक संख्यांकों (Hindu Arabic Numerals) की पद्धित का ही प्रयोग करते रहे हैं। यह एकमात्र संख्यांक पद्धित नहीं है। संख्यांक लिखने की प्रानी पद्धितयों

 $= 10 \times 100 + 10 \times 9 + 7 \times 100 + 7 \times 9$

= 1000 + 90 + 700 + 63 = 1,790 + 63 = 1,853

में से एक पद्धित रोमन संख्यांकों (Roman Numerals) की पद्धित है। यह पद्धित अभी भी अनेक स्थानों पर प्रयोग की जाती है। उदाहरणार्थ, हम घड़ियों में रोमन संख्यांकों का प्रयोग देख सकते हैं। IX इनका प्रयोग स्कूल की समय-सारणी में कक्षाओं के लिए भी किया जाता है, इत्यादि।

ऐसे तीन और उदाहरण ज्ञात कीजिए जहाँ रोमन संख्यांकों का प्रयोग होता है। रोमन संख्यांक

I, II, III, IV, V, VI, VII, VIII, IX, X

क्रमश: संख्याएँ 1,2,3,4,5,6,7,8,9 और 10 व्यक्त करते हैं। इसके बाद 11 के लिए XI और 12 के लिए XII,... 20 के लिए XX का प्रयोग होता है।

इस पद्धति के कुछ और संख्यांक संगत हिंदू-अरेबिक संख्यांकों के साथ इस प्रकार हैं:

I	V	X	L	C	D	M
1	5	10	50	100	500	1000

इस पद्धति के नियम इस प्रकार हैं:

- (a) यदि किसी संकेत की पुनरावृत्ति होती है, तो जितनी बार वह आता है उसका मान उतनी ही बार जोड़ दिया जाता है। अर्थात् II बराबर 2 है, XX बराबर 20 है और XXX बराबर 30 है।
- (b) कोई संकेत तीन से अधिक बार नहीं आता है। परंतु संकेतों V, L और D की कभी पुनरावृत्ति नहीं होती है।
- (c) यदि छोटे मान वाला कोई संकेत एक बड़े मान वाले संकेत के दाईं ओर जाता है, तो बड़े मान में छोटे मान को जोड़ दिया जाता है। जैसे :

$$VI = 5 + 1 = 6$$
 $XII = 10 + 2 = 12$
 $LXV = 50 + 10 + 5 = 65$

(d) यदि छोटे मान वाला कोई संकेत बड़े मान वाले किसी संकेत के बाईं ओर आता है, तो बड़े मान में से छोटे मान को घटा दिया जाता है। जैसे :

$$IV = 5 - 1 = 4$$
 $IX = 10 - 1 = 9$ $XL = 50 - 10 = 40$ $XC = 100 - 10 = 90$

(e) संकेतों V, L और D को कभी भी बड़े मान वाले संकेत के बाईं ओर नहीं लिखा जाता है। अर्थात् V, L और D के मानों को कभी भी घटाया नहीं जाता है।

संकेत I को केवल V और X में से घटाया जा सकता है। संकेत X को केवल L, M और C में से ही घटाया जा सकता है।

इन नियमों का पालन करने से, हमें प्राप्त होता है:

$$1 = I$$
 $20 = XX$
 $2 = II$ $30 = XXX$
 $3 = III$ $40 = XL$
 $4 = IV$ $50 = L$
 $5 = V$ $60 = LX$
 $6 = VI$ $70 = LXX$
 $7 = VII$ $80 = LXXX$
 $8 = VIII$ $90 = XC$
 $9 = IX$ $100 = C$

- (a) उपरोक्त सारणी में छूटी हुई संख्याओं को रोमन पद्धति में लिखिए।
- (b) XXXX, VX, IC, XVV ... इत्यादि, नहीं लिखे जाते हैं। क्या आप बता सकते हैं क्यों?

उदाहरण 7: निम्नलिखित को रोमन संख्यांकों में लिखिए:

हल

प्रयास कीजिए

रोमन पद्धति में लिखिए

1. 73

2. 92

हमने क्या चर्चा की?

- 1. दो संख्याओं में वही संख्या बड़ी होती है, जिसमें अंकों की संख्या अधिक होती है। यदि दोनों में अंकों की संख्या समान है, तब हम उनके सबसे बाएँ स्थित अंकों की तुलना करते हैं और जिस संख्या में यह अंक बड़ा होगा वही बड़ी भी होगी। अगर ये अंक भी समान हैं, तब हम इसी प्रकार अंकों की तुलना करते जाते हैं।
- 2. दिए गए अंकों से संख्या बनाते समय, ध्यान रखना चाहिए कि संख्या को किन प्रतिबंधों के साथ बनाना है। जैसे अंकों 7, 8, 3 व 5 से, किसी भी अंक को बिना दोहराए, चार अंकों की बड़ी से बड़ी संख्या बनाने के लिए सबसे बड़े अंक 8 को सबसे बाईं ओर रखना होगा और फिर उससे छोटे अंक रखते जाएँगे।
- 3. चार अंकों की सबसे छोटी संख्या 1000 है। जिसका अर्थ है कि तीन अंकों की सबसे बड़ी संख्या 999 होगी। पाँच अंकों की सबसे बड़ी संख्या 10,000 (दस हजार) है, जिसका अर्थ है कि चार अंकों की बड़ी से बड़ी संख्या 9999 है।

इसी प्रकार आगे, छ: अंकों की छोटी से छोटी संख्या 1,00,000 (एक लाख) है जिसका अर्थ है कि पाँच अंकों की बड़ी से बड़ी संख्या 99999 है। यही क्रम और बड़ी संख्याओं के लिए भी लागू होता है।

- 4. अल्पविरामों का प्रयोग, संख्याओं के लिखने तथा पढ़ने में सहायता करता है। भारतीय संख्यांकन पद्धित में पहला अल्पविराम दाईं ओर से प्रारंभ कर तीन अंकों बाद और बाकी दो-दो अंकों बाद लगाए जाते हैं और ये अल्पविराम क्रमश: हजार, लाख व करोड़ को अलग-अलग करते हैं। अंतर्राष्ट्रीय संख्यांकन पद्धित में अल्पविराम दाईं ओर से प्रारंभ कर तीन-तीन अंकों के बाद लगाए जाते हैं। तीन और छ: अंकों के बाद अल्पविराम क्रमश: हजार व मिलियन को अलग-अलग करते हैं।
- 5. दैनिक जीवन में अनेक स्थानों पर हमें बड़ी-बड़ी संख्याओं की भी आवश्यकता होती है। जैसे किसी विद्यालय में विद्यार्थियों की संख्या, गाँव या शहर की जनसंख्या बड़े-बड़े लेन-देन में धन तथा दो बड़े शहरों के बीच की दुरी।
- 6. याद रखिए किलो का अर्थ है—हजार, सेंटी का अर्थ है—सौवाँ भाग तथा मिली का अर्थ है—हजारवाँ भाग, इस प्रकार 1 किलोमीटर = 1000 मीटर, 1 मीटर = 100 सेंटीमीटर = 1000 मिलीमीटर
- 7. अनेक स्थितियों में हमें पूर्णतया सही-सही संख्याओं की आवश्यकता नहीं होती बिल्क एक उपयुक्त आकलन से ही काम चल सकता है। जैसे एक अंतर्राष्ट्रीय हॉकी मैच के दर्शकों की संख्या बताने के लिए कह देते हैं कि लगभग 51,000 दर्शकों ने मैच देखा। यहाँ हमें दर्शकों की सही संख्या की आवश्यकता नहीं है।
- 8. आकलन में किसी संख्या को एक वांछित मात्रा तक परिशुद्ध करना होता है। जैसे 4117 का सिन्निकटन, हजारों में 4000 तथा सैकड़ों में 4100 किया जा सकता है, जो आवश्यकता पर निर्भर करता है।
- 9. अनेक स्थितियों में हमें संख्याओं पर संक्रियाओं के फलस्वरूप प्राप्त परिणामों का भी आकलन उपयोगी सिद्ध होता है। ऐसे आकलनों में हम पहले प्रयोग होने वाली संख्याओं को सन्निकटित कर शीघता से परिणाम प्राप्त कर लेते हैं।