RA	Nome	Assinatura		

Observações: (a) Resolva as questões nas folhas de papel almaço e copie o resultado, quando possível, no espaço apropriado. (b) Use três algarismos significativos. (c) A avaliação é sem consulta a qualquer material didático. (d) O tempo de duração da prova é de 100 minutos. O oferecimento de um possível tempo adicional é prerrogativa do professor. (e) Todas as folhas de almaço deverão ser identificadas com RA e nome. (f) O processo de solução de todas as questões deverá constar no almaço, caso contrário as questões serão anuladas.

 $1^{\underline{a}}$ Questão: Deseja-se projetar um compensador de avanço para o sistema dado na Figura 1 com realimentação unitária (F(s) = 1, W(s) = V(s) = 0). Ou seja, o ganho de malha é dado por

$$C(s)P(s) = k_c \alpha \frac{(Ts+1)}{(\alpha Ts+1)} P(s) = C_1(s)G_1(s), \qquad G_1(s) = kP(s)$$

com $k = k_c \alpha$. O projeto não visa modificar o erro em regime do sistema. Os valores do diagrama de Bode da planta P(s) foram computados e são apresentados na Tabela 1. Ignore a margem de ganho.

- (a) Obtenha uma estimativa para a constante de velocidade k_v . Use o fato de que $k_v \approx j\omega G_1(j\omega)$ em baixas frequências.
- (b) Se $\alpha=0.25$, qual o ganho de fase máximo que o compensador pode prover? Qual será aproximadamente a margem de fase do sistema compensado?
- (c) Usando $\alpha = 0.25$, qual deve ser a frequência de *crossover* do sistema compensado? Qual deve ser o valor de T para esta frequência? Forneça a expressão final do compensador C(s).

1	
2	
3	
4	
5	
6	
7	
8	

 $2^{\underline{a}}$ Questão: Considere o mesmo sistema de controle trabalhado na questão 1. O objetivo agora é projetar um controlador do tipo atraso. Assim, o ganho de malha será dado por

$$C(s)P(s) = k_c \beta \frac{(Ts+1)}{(\beta Ts+1)}P(s) = C_1(s)G_1(s), \qquad G_1(s) = kP(s)$$

com $k = k_c \beta$, $\beta > 1$. A margem de fase desejada é 41^o e o projeto não visa modificar o erro em regime do sistema.

- (a) Determine a frequência de *crossover* do sistema compensado. Lembre-se de dar uma margem de segurança, e escolha essa margem de segurança de forma a facilitar a busca na tabela.
- (b) Qual valor de β resulta neste crossover?
- (c) Assumindo que o zero do compensador está uma década abaixo da frequência de *crossover*, qual o valor de T?
- (d) Apresente a expressão final do compensador C(s) obtido.

 $3^{\underline{a}}$ Questão: Considere o sistema de controle apresentado na Figura 1 com

$$C(s) = 5,$$
 $P(s) = \frac{e^{-2\tau s}}{(s+1)^2},$ $F(s) = 1$ $(W(s) = V(s) = 0)$

Determine o maior valor admissível de τ de modo que o sistema em malha fechada seja estável.

Figura 1: Sistema um-grau-de-liberdade.

 ${f 4}^{\underline{a}}$ Questão: Considere o sistema de controle apresentado na Figura 1 com realimentação unitária $(F(s)=1,\,W(s)=V(s)=0)$ e

$$C(s) = k,$$
 $P(s) = \frac{3}{s(s+1)(s+9)}$

- (a) Esboçe o lugar das raízes. As seguintes informações devem ser calculadas: lugar da raízes no eixo real, assíntotas, interseção das assíntotas, pontos de entrada e saída no eixo real, pontos de cruzamento com o eixo imaginário.
- (b) Para qual valor de k o sistema apresenta raízes reais repetidas?
- (c) Para qual valor de k o sistema apresenta raízes sobre o eixo imaginário?

 $\mathbf{5}^{\underline{a}}$ Questão: Considere o sistema de controle apresentado na Figura 1 com V(s) = W(s) = 0. Determine o erro de regime, se existir, para as seguintes configurações:

(a)
$$F(s) = 1$$
, $C(s) = -1$, $P(s) = 10/(s(s+4))$, $R(s) = 1/s^2$

(b)
$$F(s) = 1$$
, $C(s) = 2$, $P(s) = 1/((s+2)(s+4))$, $R(s) = 1/s$

(c)
$$F(s) = 3$$
, $C(s) = 1$, $P(s) = 1/(s(s+1))$, $R(s) = 1/s$

6^a Questão: Esboce o Lugar das Raízes da equação característica

$$1 + \frac{5}{(s+2)(s+\gamma)} = 0$$

em função de $0 \le \gamma < \infty$. Determine o valor de γ para o qual as raízes da equação são reais e iguais.

 $7^{\underline{a}}$ Questão: Considere um sistema de controle em malha fechada com realimentação unitária e planta descrita por

$$P(s) = \frac{1}{s(s+3)(s+5)}$$

Utilize o método do Lugar das Raízes para projetar um compensador C(s) na forma

$$C(s) = k \frac{s+z}{s+p}$$

tal que o sistema em malha fechada apresente pólos dominantes em $-2 \pm j4$. Assuma z=2.

 $8^{\underline{a}}$ Questão: Seja

$$P(s) = \frac{s+2}{s(s+1)(s+p)}.$$

Os lugares das raízes de P(s) para p=10 e p=16 estão mostrados na Figura 2. É importante notar que essas figuras não mostram o pólo em -p.

- (a) Determine qual figura corresponde a qual valor de p. Como você chegou a essa conclusão?
- (b) Considere a Figura 2 (b). Assuma que o valor de k é tal que o sistema em malha fechada tem um pólo no trecho f. Onde estão os outros pólos do sistema? Como você chegou a essa conclusão.

Figura 2: Lugares das raízes associados a p=10 e p=16 para P(s) da questão 8.

ω	$ G_1(j\omega) _{dB}$	$\angle G_1(j\omega)$	ω	$ G_1(j\omega) _{dB}$	$\angle G_1(j\omega)$	ω	$ G_1(j\omega) _{dB}$	$\angle G_1(j\omega)$
0.01	43.52	-90.57	0.51	8.85	-118.54	7.86	-38.72	-241.46
0.04	31.48	-92.29	0.62	6.90	-124.37	9.56	-43.65	-246.38
0.05	29.78	-92.79	0.75	4.85	-131.22	10.00	-44.78	-247.38
0.06	28.08	-93.39	0.91	2.65	-139.15	11.63	-48.62	-250.48
0.07	26.37	-94.12	1.00	1.58	-143.13	14.14	-53.64	-253.90
0.09	24.67	-95.01	1.11	0.26	-148.16	17.20	-58.68	-256.73
0.10	23.50	-95.72	1.35	-2.37	-158.14	20.91	-63.74	-259.07
0.11	22.96	-96.09	1.64	-5.29	-168.86	25.43	-68.81	-261.01
0.13	21.25	-97.40	2.00	-8.52	-180.00	30.92	-73.89	-262.60
0.16	19.53	-98.99	2.43	-12.08	-191.14	37.61	-78.98	-263.91
0.19	17.81	-100.93	2.96	-15.96	-201.86	45.73	-84.07	-264.99
0.23	16.07	-103.27	3.60	-20.13	-211.84	55.61	-89.16	-265.88
0.28	14.32	-106.10	4.37	-24.54	-220.85	67.62	-94.25	-266.61
0.34	12.54	-109.52	5.32	-29.13	-228.78	82.23	-99.35	-267.21
0.42	10.72	-113.62	6.47	-33.87	-235.63	100.00	-104.44	-267.71

Tabela 1: Resposta em frequência (módulo e fase) de um sistema de controle.

Formulário

• A tabela abaixo resume os valores dos erros de regime (para uma configuração em realimentação unitária) e das constantes de posição, velocidade e aceleração para as entradas degrau, rampa e parábola em função do tipo do sistema.

N	1/s	$1/s^2$	$1/s^{3}$	Constantes
0	$\frac{1}{1+K_n}$	∞	∞	$k_p = \lim_{s \to 0} C(s)P(s)$
1	0	$\frac{1}{k_v}$	∞	$k_v = \lim_{s \to 0} sC(s)P(s)$
2	0	0	$\frac{1}{k_a}$	$k_a = \lim_{s \to 0} s^2 C(s) P(s)$

• Lugar das Raízes: Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 0$$

- Magnitude e fase: |kG(s)| = 1, $\angle G(s) = 180^{\circ} \times r$, $r = \pm 1, \pm 3, \dots$
- Assíntotas: $\theta = \frac{180^{o} \times r}{n-m}, \ r = \pm 1, \pm 3, ...$
- Ângulo de partida de um pólo:

$$\phi_{p_j} = \sum_i \phi_{z_i} - \sum_{i \neq j} \phi_{p_i} + 180^o \times r, \ r = \pm 1, \pm 3, \dots$$

- Ângulo de chegada de um zero:

$$\phi_{z_j} = \sum_i \phi_{p_i} - \sum_{i \neq j} \phi_{z_i} + 180^o \times r, \ r = \pm 1, \pm 3, \dots$$

- Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0$$

- Cruzamento com o eixo imaginário:

$$D(j\omega) + kN(j\omega) = 0 + 0j$$

• Compensação avanço: $C(s) = k_c \alpha(Ts+1)/(\alpha Ts+1), T>0, 0<\alpha<1$

$$\operatorname{sen}(\alpha_m) = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad 20 \log \left| \frac{jT\omega + 1}{j\alpha T\omega + 1} \right|_{\omega = \omega_m} = 20 \log \frac{1}{\sqrt{\alpha}}$$

• Compensação atraso: $C(s) = k_c \beta(Ts+1)/(\beta Ts+1), T>0, \beta>1$

$$20\log\left|\frac{jT\omega+1}{j\beta T\omega+1}\right|_{\omega=\omega} = -20\log\beta, \qquad (\omega >> 1/T)$$