Algebra Script RWTH Aachen

Melkonian Dmytro

14 October 2018

Inhoudsopgave

1	Gruppen, Ringe, Körper	2
2	Matrizen und Lineare Gleichungen	11
3	Vektorräume	15
4	Bilinearformen, euklidische Räume und ihre komplexen Varianten	18
5	Unitäre Abbildungen und Operatoren in Unitären Räumen	23
6	Normalformen	26
7	Ringe, Algebren, Moduln	28

Gruppen, Ringe, Körper

Definition 1.1 (Gruppe) Eine **Gruppe** ist eine nicht-leere Menge G versehen mit einer inneren Verknüpfung $G \times G \to G, (a, b) \mapsto a \cdot b$, die folgende Axiomen genügt:

- 1. Asoziativität $\forall a, b, c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. neutrales Element $\exists e \in G : \forall a \in G : a \cdot e = e \cdot a$
- 3. inverses Element $\forall a \in G \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$

Die Gruppe G heisst **kommutativ** (oder **abelsch**), falls

4. Kommutavität $\forall a,b \in G: a \cdot b = b \cdot a$

Example 1 $(\mathbb{Z}, +)$

- G1: (a+b) + c = a + (b+c)
- G2: e = 0: 0 + a = a + 0 = a
- G3: $a^{-1} = -a : (-a) + a = a + (-a) = 0$
- G4: a + b = b + a

 $\forall a, b, c \in \mathbb{Z}$

Example 2 (S_m, \circ) $\sigma_1 \circ \sigma_2 : \{1, \dots, m\} \to \{1, \dots, m\}$ $S_m = \{\sigma\{1, \dots, m\} \to \{1, \dots, m\} | \sigma - \text{Bijektiv}\}$

- G2: $e = id = \begin{pmatrix} 1, \dots, m \\ 1, \dots, m \end{pmatrix} = (1)(2), \dots, (m)$
- G3: Sei $\sigma \in S_m : \sigma \circ \sigma^{-1} = e = \sigma^{-1} \circ \sigma$
- G4: $(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$

Proposition 1.2 Eine Gruppe hat die folgenden Eigenschaften:

- 1. Das neutrale Elemenet e ist eindeutig bestimmt.
- 2. Das inverse Element zu a inG ist eindeutig bestimmt.
- 3. $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ für alle $a, b \in G$.
- 4. Für alle $a, b \in G$ hat die Gleichung $a \cdot x = b$ eine eindeutige Lösung in G. Die Gleichung $y \cdot a = b$ hat eindeutige Lösung in G. Es gilt $x = a^{-1} \cdot b$ und $y = b \cdot a^{-1}$.

Proof Sei ${\cal G}$ - Gruppe

1. Angenohmen $\exists e_1, e_2 \in G$ - Neutrale
lemente

$$\implies e_1 = e_1 \circ e_2 = e_2 \iff e_1 = e_2$$

2. Angenohmen $\exists a_1, a_2$ sind inverse Elemente zu $a \in G$

$$\implies a_1 = a_1 \circ e = a_1 \circ (a \circ a_2) = (a_1 \circ a) \circ a_2 = e \circ a_2 = a_2 \iff a_1 = a_2$$

3.

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ ((a^{-1} \circ a) \circ b) = b^{-1} \circ (e \circ b) = b^{-1} \circ b = e$$

Definition 1.3 (Gruppenhomomorphismus) Sei $\phi: G_1 \to G_2$ eine Abbildung zwischen zwei Gruppen. Dann heisst ϕ Gruppenhomomorphismus falls für alle $g_1, g_2 \in G_1$:

$$\phi(g_1 \cdot_{G_1} g_2) = \phi(g_1) \cdot_{G_2} \phi(g_2)$$

Der **Kern** von ϕ ist die Menge

$$Ker(\phi) := \{ g \in G_1 | \phi(g) = e_{G_2} \}$$

Ein bijektiver (resp. surjektiver bzw. injektiver) Gruppenhomomorphismus heisst Isomorphismus (resp. Epimorphismus bzw. Monomorphismus).

Example 3 $exp: (\mathbb{R}, +) \to (\mathbb{R}^*, \cdot)$

$$x \mapsto e^x = exp(x)$$

$$epx(x + y) = exp(x)exp(y)$$

Proposition 1.4 Sei $\phi: G_1 \rightarrow G_2$ ein Gruppenhomomorphismus, dann gelten:

- 1. $\phi(e_1) = e_2$
- 2. $\phi(a^{-1}) = (\phi(a))^{-1} \text{ für alle } a \in G_1.$
- 3. Sei $\psi: G_2 \to G_3$ ein weiterer Gruppenhomomorphismus, dann ist acuh $\psi \circ \phi: G_1 \to G_3$ ein Gruppenhomomorphismus.

PROOF 1. $(\phi(e_1) = e_2)$ Sei $a \in G_1$, dann

$$\phi(a) = \phi(a \cdot e_1) = \phi(a) \cdot \phi(e_1)$$
$$\phi(a)^{-1} \cdot \phi(a) = \phi(a)^{-1} \cdot \phi(a) \cdot \phi(e_1)$$
$$e_2 = e_2 \cdot \phi(e_1) = \phi(e_1)$$

2.
$$(\phi(a^{-1}) = (\phi(a))^{-1}$$
 für alle $a \in G_1)$

$$e_2 = \phi(e_1) = \phi(a \cdot a^{-1}) = \phi(a) \cdot \phi(a^{-1})$$

 $\implies \phi(a^{-1})$ ist das inverse zu $\phi(a)$

Definition 1.5 (Untergruppe) Eine Teilmenge H von G heisst **Untergruppe** von G, wenn folgende Axiome erfüllt sind:

- 1. $a, b \in H \implies a \cdot b \in H$ (abgeschlossen unter ·).
- $2. e \in H.$
- 3. $a \in H \implies a^{-1} \in H$.

Example 4 $(\mathbb{Z}, +)$

$$m\mathbb{Z} = \{a \in \mathbb{Z} | a = lm : l \in \mathbb{Z}\}$$
$$3\mathbb{Z} = \{0, \pm 3, \pm 6, \dots\}$$

Behauptung: $(m\mathbb{Z},+)\subset (\mathbb{Z},+)$ - Untergruppe

- u1: $a_1 = l_1 m = a_2 = l_2 m \implies a_1 + a_2 = l_1 m + l_2 m = (l_1 + l_2) m$
- u2: $0 \in m\mathbb{Z}$, da $0 = 0 \cdot m$
- u3: Sei $a = lm \in m\mathbb{Z} \implies -a = (-l)m \in \mathbb{Z}$

Example 5

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

$$(\mathbb{Z},+) \subset (\mathbb{Q},+) \subset (\mathbb{R},+)$$

Example 6

$$(S_m, \circ) \supseteq (S_{m-1}, \circ)$$

Proposition 1.6 Es sei $\phi: G_1 \to G_2$ ein Gruppenhomomorphismus.

1. $\ker(\phi)$ ist eine Untergruppe von G_1 .

- 2. $\operatorname{Im}(\phi)$ ist eine Untergruppe von G_2 .
- 3. ϕ ist injecktiv \iff $\ker(\phi) = \{e_1\}.$

PROOF 1. $(\ker(\phi) \text{ ist eine Untergruppe von } G_1)$ Seien $a, b \in \ker(\phi)$

• u1: D.h.
$$\phi(a) = e_2 = \phi(b)$$

 $\implies \phi(a \cdot b) = \phi(a) \cdot \phi(b) = e_2 \cdot e_2 = e_2$

- u2: $\operatorname{zz} e_1 \in \ker(\phi)$. Gilt $\phi(e_1) = e_2$.
- u3: Sei $a \in \ker(\phi)$. D.h. $\phi(a) = e_2$

$$\phi(a^{-1} = (\phi(a))^{-1} = e_2^{-1} = e_2$$

- 2. $(\operatorname{Im}(\phi) \text{ ist eine Untergruppe von } G_2)$
 - u1: Das Bild von ϕ .

$$\operatorname{Im}(\phi) = \{ x \in G_2 | \exists a \in G_1 : \phi(a) = x \}$$

Seien $x, y \in \text{Im}(\phi)$. D.h.

$$\exists a_1, a_2 \in G_1 : \phi(a_1) = x, \phi(a_2) = y$$

$$\implies x \cdot y = \phi(a_1) \cdot \phi(a_2) = \phi(a_1 \cdot a_2)$$

$$\implies x \cdot y \in \operatorname{Im}(\phi)$$

3. $(\phi \text{ ist injecktiv} \iff \ker(\phi) = \{e_1\})$ Sei ϕ -injektiv

$$\implies \left(\phi(a) = \phi(b) \implies a = b\right)$$

Sei
$$a \in \ker(\phi) \implies \phi(a) = e_2 = \phi(e_1) \implies a = e_1$$

Sei $\ker(\phi) = \{e_1\}$

Angenommen $\phi(a) = \phi(b)$

$$\implies \phi(a) \cdot \phi(b)^{-1} = e_2 \iff \phi(a \cdot b^{-1}) = e_2$$
$$\implies a \cdot b^{-1} = e_1 \iff a = b$$

Remark 1 Sei G eine Gruppe, H eine Untergruppe von G. Für $g_1, g_2 \in G$ definieren wir

$$g_1 \equiv g_2 \pmod{H} : \iff g_1(g_2)^{-1} \in H$$

Wir sagen, dass g_1 kongruent zu g_2 modulo H ist.

Proposition 1.7 Die Kongruenz modulo H ist eine Äquivalenzrelation. Wir schreiben $G \setminus H$ für Menge der Äquivalenzklassen.

Proposition 1.8 Sei G eine abelesche Gruppe. Dann ist $G \setminus H$ eine abelesche Gruppe mit der Verknüpfung

$$+: G \setminus H \times G \setminus H, ([g_1], [g_2]) \mapsto [g_1] + [g_2] := [g_1 + g_2]$$

Lemma 1 Sei G eine abelescha Gruppe, $H \subseteq G$ eine Untergruppe. Die Abbildung

$$\pi: G \to G \setminus G, g \mapsto [g]$$

ist ein surjektiver Gruppenhomomorphismus mit $ker(\pi) = H$

Corollary 1 $\mathbb{Z} \setminus m\mathbb{Z}$ ist eine abelesche Gruppe für jedes $m \in \mathbb{Z}$ und besteht aus m paarweise verschiedene Restklassen.

Definition 1.9 (Normalteiler) Eine Untergruppe $N \subseteq G$ heisst **Normalteiler** von G falls für alle $g \in G$ gilt:

$$\{g\cdot n|n\in N\}=:gN=Ng:=\{n\cdot g|n\in N\}$$

Proposition 1.10 Sei N ein Normalteiler von G, dann ist $G \setminus N$ mit obiger Verknüpfung eine Gruppe.

Proposition 1.11 Sei $\varphi: G \to H$ ein Gruppenhomomorphismus, dann gilt

- 1. $\ker \varphi$ ist ein Normalteiler von G
- 2. φ induziert einen Isomorphismus von Gruppen $\bar{\varphi}: G \backslash \ker \varphi \to \operatorname{Im}(\varphi), [g] \mapsto \varphi(g)$

Definition 1.12 (Ring) Ein **Ring** ist eine Menge R mit zwei inneren Verknüpfungen $+, \cdot$ so, dass (R, +) eine abelesche Gruppe ist und \cdot eine assoziative Verknüpfung für R mit einem neutrales Element (**Einselement**) ist. Es sollen für alle $a, b, c \in R$ gelten:

- $a \cdot (b+c) = a \cdot b + a \cdot c$
- $\bullet \ (b+c) \cdot a = b \cdot a + c \cdot a$

Remark 2 Ein Ring R heisst **kommutativ**, falls $\forall a, b \in R$ gilt: $a \cdot b = b \cdot a$. Das neutrale Element bezüglich der Addition + bezeichnen wir mit 0 und das Inverse von a mit -a. Wir schreiben a - b für a + (-b). Der Einselement der Multiplikation bezeichnen wir mit 1.

Definition 1.13 (Kürper) Ein **Körper** ist ein kommutativer Ring K so, dass $K \setminus \{0\}$ mit der Multiplikation als Verknüpfung eine Gruppe ist. Insbesondere ist $0 \neq 1$.

Remark 3 Es gelten folgende Rechenregeln für alle $a, b, c \in R$:

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. Das Einselement ist eindeutig. Wenn 1 = 0, dann ist $R = \{0\}$
- 3. $-a = (-1) \cdot a$
- 4. $a \cdot (b-c) = a \cdot b a \cdot c$ und $(b-c) \cdot a = b \cdot a c \cdot a$

Definition 1.14 (Ringhomomorphismus) Es seien R und S zwei Ringe und $\varphi: R \to S$ eine Abbildung. Dann heisst φ ein **Ringhomomorphismus** falls für alle $a,b,c \in R$ gilt

$$\varphi(a \cdot b + c) = \varphi(a) \cdot \varphi(b) + \varphi(c) \text{ und } \varphi(1_R) = \varphi(1_S)$$

Proposition 1.15 $\mathbb{Z} \setminus m\mathbb{Z}$ ist genau dann ein Körper, wenn m ein Primzahl ist.

Definition 1.16 (Polynom) Ein **Polynom** ist eine Folge $(a_i)_{i\in\mathbb{N}_0}$ von Elementen aus K, so dass nur endlich viele $a_i \neq 0$. Wir definieren $x := (\delta_{i,1})_{i\in\mathbb{N}_0}$. Die Menge aller Polynome mit Koeffizienten in K bezeichnen wir als K[x].

Remark 4 Zwei Polynome $(a_i)_{i\in\mathbb{N}_0}$ und $(b_i)_{i\in\mathbb{N}_0}$ sind per Definition gleich, wenn $a_i = b_i$ für alle $i \in \mathbb{N}_0$.

Proposition 1.17 Mit den Operation + und \cdot wird K[x] zu einem kommutativer Ring.

PROOF Für ein Polynom $(a_i)_{i\in\mathbb{N}_0}\in K[x]$ gilt

$$(a_i)_{i \in \mathbb{N}_0} = \sum_{i \in \mathbb{N}_0} a_i x^i$$

Dann ist + (bzw. \cdot) die übliche Addition (bzw, Multiplikation) von Polynomen.

Definition 1.18 (Leitkoeffizienten und Grad) Es sei $p = \sum_{i \in \mathbb{N}_0} a_i x^i \in K[x]$ und m maximal mit $a_m \neq 0$. Dann heisst a_m der **Leitkoeffizient** von p. In diesem Fall definieren wir den **Grad** von p als deg p = m. Konvention: $\deg(0)_{i \in \mathbb{N}_0} = -\infty$.

Proposition 1.19 Sei $\alpha \in K$ gegeben, dann ist die Abbildung

$$\pi_{\alpha}: K[x] \to K; p \mapsto p(\alpha) := \sum_{i \in \mathbb{N}_0} a_i \alpha^i$$

ein Ringhomomorphismus, der Einsetzungshomomorphismus.

Definition 1.20 (Nullstelle von Polynome) Sie $\alpha \in K$ gegeben. Dann heisst α eine **Nullstelle** von $p \in K[x]$ falls $\pi_{\alpha}(p) = p(\alpha) = 0$.

Proposition 1.21 Für Polynome $p, q \in K[x]$ gilt:

- 1. $\deg(p+q) \leq \max \deg p, \deg q$. Falls $\deg p \neq \deg q$, dann gilt =.
- 2. $\deg(p \cdot q) = \deg p + \deg q$.

Corollary 2 Im Ring K[x] gilt die Kürzungsregel

$$p \cdot q = p \cdot r \wedge p \neq 0 \implies q = r$$

und er ist nullteilerfrei

$$p \cdot q = 0 \implies p = 0 \lor q = 0$$

Theorem 1 (Polynomdivision) Für $p, q \in K[x]$ mit $q \neq 0$ gibt es eindeutige $a, b \in K[x]$ mit

$$p = a \cdot q + b \wedge \deg b < \deg q$$

Corollary 3 Sei $\alpha \in K$ eine Nullstelle von $p \in K[x]$. Dann $\exists ! q \in K[x]$ mit $\deg q = \deg p - 1$ und

$$p = (x - \alpha) \cdot q$$

Corollary 4 Sei $p \in K[x]$ ein Polynom vom Grad m. Dann hat p höchstens m paarweise verschiedene Nullstellen.

Matrizen und Lineare Gleichungen

Definition 2.1 (Lineares Gleichungssystem) Es sei K ein Körper, $m, n \in \mathbb{N}, a_{ij}, b_i \in K$. Dann nennt man

ein **lineares Gleichungssystem (LGS)**, wobei die Menge aller $(x_1, \ldots, x_n) \in K^n$ gesucht ist, die alle Gleichungen erfüllen.

Definition 2.2 (Matrix) Etwas kompakter: Für $n, m \in \mathbb{N}$ und $a_{ij} \in K$, nennt man

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

eine $m \times n$ -Matrix, die Zahlen a_{ij} heissen Einträge oder Elemente der Matrix.

Definition 2.3 (Operationen mit Matrizen) Die Menge aller $m \times n$ -Matrizen mit Einträgen in K bezeichnen wir mit $M_{m,n}(K)$.

1. Es seien $A=(a_{ij})_{1\leq i\leq m, 1\leq j\leq n}, B=(b_{ij})_{1\leq i\leq m, 1\leq j\leq n}\in M_{m,n}(K).$ Dann definieren wir $A+B\in M_{m,n}(K)$ durch

$$(A+B) := C = (c_{ij})_{1 \le i \le m, 1 \le j \le n}$$
 wobei $c_{ij} := a_{ij} + b_{ij}$.

2. Es seien $A \in M_{m,n}(K)$ und $B \in M_{n,\ell}(K)$. Dann definieren wir $A \cdot B \in M_{m,\ell}(K)$ durch

$$(A \cdot B) := C = (c_{ij})_{1 \le i \le m, 1 \le j \le \ell}$$
 wobei $c_{ij} := \sum_{k=1}^{n} a_{ik} b_{kj}$.

Definition 2.4 Das lineare Gleichungssystem Ax = b heisst **homogen**, falls b = 0, ansonsten heisst es **inhomogen**

Remark 5 Jedes homogene LGS besitzt immer die triviale Lösung x = 0. Wir suchen also vor allem Lösungen $x \neq 0$.

Für ein LGS Ax = b betrachten wir die **erweiterte Koeffizientenmatrix** (A|b):

$$(A|b) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_m \end{pmatrix}$$

Definition 2.5 (Gaussalgorithmus) Bestandteil des Gaussalgorithmus:

- 1. Vorwärtselimination (\rightarrow erreiche **Zeilenstufenform**)
- 2. Lösbarkeitsentscheidung
- 3. Rückwärtssubstitution (→ Unterscheidung **freie und abhängige** Variable)

Zeilenstufenform: Eine Matrix $A \in M_{m,n}(K)$ ist in Zeilenstufenform, wenn es eine Zahl $0 \le r \le m$ gibt, so dass

- in den ersten r-Zeilen jeweils nicht nur Nullen stehen und in den Zeilen r+1 bis m nur Nullen stehen
- $j_1 < j_2 < \ldots < j_r$ wobei für $1 \le i \le r, j_i$ den minimale Index, so dass $a_{i,j_i} \ne 0$ ist.

Proposition 2.6 Der Gaussalgorithm liefert nach endlich vielen Schritten entweder alle Lösungen des inhomogenen LGS oder endet mit einer negativen Entscheidung über Lösbarkeit des LGS.

Es sei G eine abelesche Gruppe, dann ist G^n auch eine abelesche Gruppe.

Definition 2.7 Es sei $\operatorname{End}(G^n) = \{f : G^n \to G^n | f \text{ ist Gruppenhomomorphismus } \}$. Wir definiern

$$+: \operatorname{End}(G^n) \times \operatorname{End}(G^n) \to \operatorname{End}(G^n), \ (f_1, f_2) \mapsto (g \mapsto f_1(g) + f_2(g))$$

und

$$\circ : \operatorname{End}(G^n) \times \operatorname{End}(G^n) \to \operatorname{End}(G^n), \ (f_1, f_2) \mapsto (g \mapsto f_1(g)f_2(g))$$

Proposition 2.8 End (G^n) ist ein Ring.

Proposition 2.9 Die Menge $M_{n,n}(K)$ mit Addition und Multiplikation bildet einen Ring.

Vektorräume

Definition 3.1 (Vektorraum) Sei K ein Körper. Ein K-Vektorraum ist ein Menge V mit einer **Addition** $+: V \times V \to V$ und einer **skalaren Multiplikation** $K \times V \to V$, $(\lambda, v) \mapsto \lambda \cdot v$ die folgende Axiomen genügen für alle $\lambda, \mu \in K, v, \omega \in V$:

- 1. (V, +) ist eine abeleshe Gruppe.
- 2. $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ und $\lambda \cdot (\mu + v) = \lambda \cdot v + \mu \cdot v$
- 3. $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$
- 4. $1 \cdot v = v$

Die Elementen in einem Vektorraum nennen wir Vektoren.

Proposition 3.2 Für $\lambda \in K$ und v aus einem K-Vektorraum V gilt:

- 1. $\lambda \cdot 0_V = 0_V$
- 2. $0_K \cdot \upsilon = 0_v$
- 3. $(-\lambda) \cdot v = \lambda \cdot (-v) = -(\lambda \cdot v)$
- 4. $\lambda \cdot v = 0_V \implies \lambda = 0_K \ oder \ v = 0_V$

Definition 3.3 (Lineare Abbildung) Eine **lineare Abbildung** von (oder **Vektorraumhomomorphismus**) $\phi: V \to W$ zwischen K-Vektorräumen V und W ist ein Gruppenhomomorphismus der abeleschen Gruppen (V, +) und (W, +) so, dass $\phi(\lambda v) = \lambda \phi(v)$ für alle $v \in V, \lambda \in K$.

Proposition 3.4 Es sei $\varphi:V\to W$ ein e linerare Abbildund von K-Vektorräumen. Dann gilt:

- 1. $\varphi(0) = 0$
- 2. $\varphi(-v) = -\varphi(v)$
- 3. Wenn $\psi: W \to U$ eine weitere K-lineare Abbildung ist, dann ist $\psi \circ \varphi: V \to U$ eine K-lineare Abbildung.

Definition 3.5 (Isomorphismus) Eine K-leneare Abbildung $\varphi: V \to W$ heisst **Isomorphismus**, wenn es eine K-lineare Abbildung $\psi: W \to V$ gibt mit:

$$\psi \circ \varphi = \mathrm{id}_V \text{ und } \varphi \circ \psi = \mathrm{id}_W$$

Proposition 3.6 Sei $\varphi: V \to W$ eine lineare Abbildung. Dann sind äquivalent:

- 1. φ ist ein Isomorphismus
- 2. φ ist bijektiv.

Definition 3.7 (Unterraum) Eine Teilmenge U des K-Vektorraums V heisst **Unterraum** genau dann, wenn folgende Axiome erfüllt sind

1.
$$u_1, u_2 \in U \implies u_1 + u_2 \in U$$

2.
$$\lambda \in K, u \in U \implies \lambda u \in U$$

- 3. $0 \in U$
- (3) ist notwendig um $U = \emptyset$ auszuschliessen.

Proposition 3.8 Sei $\varphi: V \to W$ eine lineare Abbildung. Dann ist $\ker \varphi$ ein Unterraum von V, $\operatorname{Im} \varphi$ ein Unterraum von W.

Proposition 3.9 Seien U_1, U_2 Unterräume eines Vektorraums V, dann ist auch

$$U_1 + U_2 = \{u_1 + u_2 \in V | u_1 \in U_1, u_2 \in U_2\}$$

ein Unterraum von V.

Proposition 3.10 Sei $(U_i)_{i\in I}$ eine Familie von Unterräumen eines Vektorraums V. Dann ist auch $\bigcap_{i\in I} U_i$ eine Unterraum von V.

Proposition 3.11 Seien U_1, U_2 Unterräume eines Vektorraums V und U := U1 + U2. Dann sind die folgenden Bedingungen äquivalent

1.
$$U_1 \cap U_2 = \{0\}$$

2.
$$\forall u \in U \text{ gilt: } \exists!(u_1, u_2) \in U_1 \times U_2 \text{ mit } u = u_1 + u_2$$

Ist eine der beiden Bedingungen erfüllt, so heisst U die **direkte Summe** von U_1 und U_2 .

Proposition 3.12 $V \setminus W$ ist ein K-Vektorraum mit den Operationen

$$[\upsilon] + [\omega] := [\upsilon + \omega] \ und \ \lambda[\upsilon] := [\lambda \upsilon]$$

Proposition 3.13 Die kanonishe Abbildung $\pi: V \to V \setminus W, v \mapsto [v]$ ist eine surjektive, lineare Abbildung mit $\ker(\pi) = W$.

Theorem 2 (Homomorphiesatz) Sei $\varphi: V_1 \to V_2$ eine lineare Abbildung, $W_1 \subset V_1$ ein Unterraum mit $W_1 \subseteq \ker(\phi)$. Dann gibt es geanu eine lineare Abbildung:

$$\bar{\varphi}: V_1 \setminus W_1 \to V_2$$

 $mit \ \bar{\varphi}([\upsilon_1] = \varphi(\upsilon_1) \ f\ddot{u}r \ alle \ \upsilon_1 \in V_1.$

Bilinearformen, euklidische Räume und ihre komplexen Varianten

Definition 4.1 (Bilinearform) Es sei V ein K-Vektorraum. Eine Bilinearform b auf V ist eine Abbildung $b: V \times V \to K$, die bilinear ist, d.h. linear in beiden Argumenten:

$$b(\lambda v_1 + v_2, w) = \lambda b(v_1, w) + b(v_2, w)$$

$$b(v, \mu w_1 + w_2) = \mu b(v, w_1) + b(v, w_2)$$

für alle $\lambda, \mu \in K, v, w, v_1, v_2, w_1, w_2 \in V$.

Definition 4.2 (Gramsche Matrix) Es sei $dimV < \infty$ und $(v_1, \dots v_n)$ eine Basis von V. Wir nennen die Matrix $A_B(b) = (a_{ij}) \in M_{n,n}(K)$, difiniert durch $(a_{ij}) = b(v_i, v_j)$, die Matrix zur Bilinearform b bezüglich der Basis B oder auch **Gramsche Matrix**.

Definition 4.3 (Sequilinearform) Es sei V ein \mathbb{C} -Vektorraum. Eine Abbildung $b: V \times V \to \mathbb{C}$ heisst Sequilinearform auf V falls

 $b(\alpha v_1 + v_2, w) = \alpha b(v_1, w) + b(v_2, w)$ linear in 1. Argument $b(v, \alpha w_1 + w_2) = \overline{\alpha}b(v, w_1) + b(v, w_2)$ konjugiert linear in 2. Argument.

für alle $\alpha \in \mathbb{C}, v, w, v_1, v_2, w_1, w_2 \in V$

Definition 4.4 (kongruent) Zwei Matrizen $A_1, A_2 \in M_{n,n}(\mathbb{C})$ heissen **kongruent** wenn es ein $B \in GL_n(\mathbb{C})$ gibt, so dass $A_1 = B^t A_2 \overline{B}$ gibt.

Definition 4.5 (Orthogonal) Es sei b eine Bilinearform auf V. Wir sagen $v \in V$ ist **orthogonal** zu $w \in V$ bezüglich b, wenn b(v, w) = 0. Wir schreiben dann $v \perp w$. Für $S \subset V$ definieren wir

$$S^{\perp} := \{ w \in V | b(v, w) = 0 \,\forall v \in S \}.$$

als Menge aller Vektoren, die **rechtsorthogonal** auf S bzgl. b sind. Analog ist die Menge der **linksorthogonalen** Vektoren auf S

$$^{\perp}S:=\{w\in V|b(w,v)=0\ \forall v\in S\}.$$

Definition 4.6 (Nicht ausgeartet) Eine Bilinearform b auf V heisst **nicht ausgeartet**, wenn $V^{\perp} = 0$ und $^{\perp}V = 0$.

Definition 4.7 (Symmetrisch/ Hermitesch) Es sei V ein K-Vektorraum und b eine Bilinearform auf V. Dann heisst b symmetrisch, falls b(v, w) = b(w, v) für alle $v, w \in V$.

Es sei V ein \mathbb{C} -Vektorraum und b eine Sequilinearform auf V. dann heisst b hermitesch, falls $b(v, w) = \overline{b(w, v)}$ für alle $v, w \in V$.

Definition 4.8 (Quadratische Form) Eine **quadratische Form** auf V ist eine Funktion $q:V\to K$ mit folgende Eigenschaften

 $q(\alpha v) = \alpha^2 q(v), \forall \alpha in K, v \in V.$

 $b_q: V \times V \to K, b_q(v, w) := q(v + w) - q(v) - q(w)$ ist eine Bilinearform auf V..

 b_q heisst die zu q assozierte (symmetrische) Bilinearform.

Definition 4.9 (Orthonormalbasis) Es sie b eine symmetrische oder hermitesche Form auf V.

- Eine Orthogonalbasis von V ist eine Basis $B = \{v_i | i \in I\}$ so, dass $b(v_i, v_j) = 0$ für $i \neq j$.
- Eine Orthogonalbasis mit $b(v_i, v_i) = 1$ für alle $i \in I$ heisst Orthonormalbasis.
- Allgemein heisst jede Familie von Vektoren $\{x_i|i\in I\}$ eine orthogonale Familie falls $b(x_i,x_j)=0$ für $i\neq j$, und orthonormal falls auch $b(x_i,x_i)=1$ für alle $i\in I$.

Definition 4.10 (Hauptminor) Es sei A eine $n \times n$ -Matrix und $1 \le k \le n$. Der k-Hauptminor D_k von A ist die Determinant der $k \times k$ -Matrix mit dem Einträgen $(a_{ij})_{1 \le i,j \le k}$

Definition 4.11 Es sei b eine hermitesche Form auf V. Dann b heisst:

- positiv definit, falls $\forall v \in V \setminus \{0\} : b(v, v) > 0$
- negativ definit, falls $\forall v \in V \setminus \{0\} : b(v, v) < 0$
- positiv semidefinit, falls $\forall v \in V \setminus \{0\} : b(v, v) \ge 0$
- negativ semidefinit, falls $\forall v \in V \setminus \{0\} : b(v, v) \leq 0$
- indefinit, falls $\exists v, w \in V : b(v, v) > 0 \land b(w, w) < 0$

Definition 4.12 (Signatur) Es sei nun b entweder eine reell-symmetrische oder komplex-hermitesche Form. Weiter sei V endlich-dimensional, also finden wir für b eine Orthogonalbasis $B = (v_1, \ldots v_n)$. Es sei $c_i = b(v_i, v_i)$. Falls $c_i \neq 0$, so normieren wir v_i durch $\frac{1}{\sqrt{c_i}}v_i$. Damit erhalten wir für die Gramsche Matrix

$$E_n^{p,q} = diag(\underbrace{1,\ldots,1}_p,\underbrace{-1,\ldots,-1}_q,0,\ldots,0)..$$

Weiter definieren wir für b die **Signatur** (p,q) und wir sagen b ist **vom Typ** (p,q). Eine hermitesche Matrix ist **vom Typ** (p,q) wenn sie die Matrix einer hermiteschen Form vom Typ (p,q) ist.

Definition 4.13 (Skalarprodukt) Eine positiv-definite, nicht-ausgeartete, hermitesche Sequilinearform auf V heisst **Skalarprodukt** auf V.

- Ein euklidischer Vektorraum ist ein endlich-dimensionaler reeller Vektorraum mit einem gegebenen Skalarprodukt $\langle -, \rangle$.
- Ein **unitärer Vektorraum** ist ein endlich- dimensionaler komplexer Vektorraum mit einem gegebenen Skalarprodukt.

Definition 4.14 (Seminorm) Es sei V ein K-Vektorraum ($K = \mathbb{R}, \mathbb{C}$). Eine Funktion $\|\cdot\|: V \to \mathbb{R}$ heisst **Seminorm**, wenn folgende Axiome erfüllt sind

$$\|\alpha v\| = |\alpha| \|v\|$$

 $\|v + w\| \le \|v\| + \|w\|$ Dreiscksungleichung.

für alle $\alpha \in K, v, w \in V$. Falls zusätzlich

$$||v|| = 0 \implies v = 0.$$

erfüllt ist, so sprechen wir von einer Norm

Definition 4.15 (Metrik) Eine **Metrik** auf V ist eine Funktion $d:V\times V\to K$ mit

- $\forall x, y \in V : d(x, y) \ge 0$ und d(x, y) = 0 genau dann wenn x = y.
- $\forall x, y \in V : d(x, y) = d(y, x)$.
- $\forall x, y, z \in V : d(x, z) \le d(x, y) + d(y, z)$.

Unitäre Abbildungen und Operatoren in Unitären Räumen

Definition 5.1 (Projection) Es sei V ein K-Vktorraum und $p \in End(V)$. Dann heisst p eine **Projektion**, wenn $p^2 = p$.

Proposition 5.2 Es sei $p \in \text{End}(V)$ ein Projektion, dann gilt

$$V = Im(p) \oplus Ker(p)$$

Falls dim $V < \infty$, so ist p diagonalisierbar mit den Eigenwerte 1 und 0

Definition 5.3 (Orthogonale Projektion) Es sei V ein unitäre Raum, $W \subseteq V$ und $W \oplus W^{\perp} = V$, dann nennen wir die kanonische Abbildun $p_W : V \to W$, **orthogonale Projektion** von V auf W längs W^{\perp} .

Proposition 5.4 Es sei V ein unitärer Raum und $p: V \to V$ eine Projektion. Dann ist p genau dann eine orthogonale Projektion, wenn für alle $x \in V$ gilt

 $||p(x)|| \le ||x||$ Besselsche Ungleichung

In diesem Fall gilt: ||p(x)|| = ||x|| genau dann, wenn $x \in p(V)$.

Proposition 5.5 Es sei V ein unitärer Raum unt $p: V \to V$ eine Projektion. Dann ist p genau dann orthogonale Projektion, wenn für alle $x, y \in V$ gilt

$$\langle p(x), y \rangle = \langle x, p(y) \rangle.$$

Satz 1 Es sei V ein unitärer Raum, $W \subseteq V$ ein Unterraum mit $V = W \oplus W^{\perp}$. Für alle $x \in V$ ist $p_W(x)$ der eindeutig bestimmte Vektor $y \in W$, für den der Abstand d(x,y) = ||x-y|| minimal ist.

Proposition 5.6 Bedingungen wie oben und es sei $(w_1 ldots w_s)$ eine Orthonormalbasis von W. Dann ist

$$p_W(x) = \sum_{i=1}^s \langle x, w_i \rangle w_i.$$

Definition 5.7 (Isometrie) Es sei V ein K-Vektorraum mit hermiteschen Form b. $f \in End(V)$ heisst **isometisch** oder eine **Isometrie**, wenn $\forall v, w \in V$ gilt

$$b(f(v), f(w)) = b(v, w).$$

Einen isometischen Isomorphismus nennen wir auch Kongruenzabbildung

Definition 5.8 • Eine Matrix $A \in M_{n,n}(\mathbb{R})$ heisst **orthogonal**, wenn $E_n = A^t A$ ist.

- Eine Matrix $A \in M_{n,n}(\mathbb{C})$ heisst **unitär**, wenn $E_n = A^t \overline{A}$ ist.
- Die **orthogonale Gruppe** ist definiert als $O_n = \{A \in M_{n,n}(\mathbb{R}) | A \text{ ist orthogonal} \}.$
- Die unitäre Gruppe ist definiert als $U_n = \{A \in M_{n,n}(\mathbb{C}) | A \text{ ist unitär} \}$

Definition 5.9 (Adjungierte Operation) Es sei V ein K-Vektorraum mit einer nicht-ausgearteten hermiteschen Form \langle,\rangle . Dann hessen zwei lineare Abbildungen f und g adjungiert bezüglich \langle,\rangle , wenn $\forall v, w \in V$ gilt

$$\langle f(v), w \rangle = \langle v, g(w) \rangle.$$

Definition 5.10 (Selbstadjungiert) Es sei V ein Vektorraum mit Skalarprodukt. Ein $f \in End(V)$ heisst **selbstadjungiert**, wenn $f = \hat{f}$, d.h. $\forall v, w \in V$ gilt

$$\langle f(v), w \rangle = \langle v, f(w) \rangle.$$

Definition 5.11 (Normale Operatoren) Es sei V ein Vektorraum mit Skalarprodukt, $f \in End(V)$ und \hat{f} existiere. Wir nennen f normal falls $f \circ \hat{f} = \hat{f} \circ f$ ist.

Definition 5.12 Es sei $f \in End(V)$, V ein komplexer Vektorraum mit Skalarprodukt, und es existiere \hat{f} . Dann nennen wir

$$f_1 := \frac{1}{2}(f + \hat{f}), \ f_2 := \frac{1}{2i}(f - \hat{f}).$$

die selbstadjungierte Komponenten von f.

Normalformen

Definition 6.1 (Köcher) Ein Quadruopel $Q = (Q_0, Q_1, s, t)$ bestehend aus Mengen Q_0, Q_1 und Abbildungen $s, t : Q_1 \to Q_0$ nennen wir **Köcher**. Wir nennen die Elementen in Q_1 die **Pfeile** und die Elemente aus Q_0 die **Knoten** des Köchers. Für $\alpha \in Q_1$ schreiben wir $s(\alpha) \stackrel{\alpha}{\longrightarrow} t(\alpha)$. Der Köcher heisst endlich, falls Q_0 und Q_1 jeweils endlich sind.

Definition 6.2 (Darstellung) Eine **Darstellung** $V = (V_i, f_{\alpha})_{i \in Q_0, \alpha \in Q_1}$ eines Köchers Q ist eine Familie von K-Vektorräumen $(V_i)_{i \in Q_0}$ zusammen mit lineare Abbildungen $(f_{\alpha} : V_{s(\alpha)} \to V_{t(\alpha)})_{\alpha \in Q_1}$.

Definition 6.3 Es sei V eine Darstellung eines endliches Köchers Q. Falls dim $V_i < \infty$ für alle $i \in Q_0$, so sagen wir die Darstellung ist endlichdimensional und notieren den **Dimensionsvektor**

$$\underline{\dim} V = (\dim V_i)_{i \in Q_0}.$$

Definition 6.4 (Morphismus) Es sei Q ein Köcher und $V = (V_i, f_\alpha, W = (W_i, g_\alpha \text{ Darstellungen von } Q.$ Eine Abbildung (Morphismus) zwischen V und W ist eine Familie $\phi = (\phi_i)_{i \in Q_0}$ von linearen Abbildungen $\phi_i : V_i \to W_i$ so, dass für alle $\alpha \in Q_1$ gilt:

$$\phi_{t(\alpha)} \circ f_{\alpha} = g_{\alpha} \circ \phi_{s(\alpha)}.$$

Ein Isomorphismus von Darstellung ist ein Morphismus bei dem alle ϕ_i invertierbar sind. Wir sagen dann, dass V und W isomorph sind.

Definition 6.5 Es seien $V = (V_i, f_\alpha)$ und $W = (W_i, g_\alpha)$ Darstellungen von Q, dann ist $M = (M_i, h_\alpha) = V \oplus W$, die **direkte Summe von Darstellungen**, eine Darstellung von Q mit $M_i = V_i \oplus W_i$ und $h_\alpha = (f_\alpha, g_\alpha)$

Definition 6.6 (Unzerlegbare Darstellung) Es sei $V \neq 0$ eine Darstellung von Q, dann heisst V unzerlegbar falls aus $V \cong V_1 \oplus V_2$ stets $V_1 = 0$ oder $V_2 = 0$ folgt.

Ringe, Algebren, Moduln

Definition 7.1 Ein **Ring** ist eine Menge R mit zwei inneren Verknüpfungen +, * so, dass (R, +) eine abelshe Gruppe ist und * eine assoziative Verknüpfung für R mit einem neutralen Element (**Einselement**) ist. Es sollfür alle $a, b, c \in R$ gelten:

$$a * (b + c) = a * b + a * c$$

 $(b + c) * a = b * a + c * a.$

Definition 7.2 Es seien R und S zwei Ringe und $\phi:R\to S$ eine Abbildung. Dann heisst ϕ ein **Ringhomomorphismus** falls für alle $a,b,c\in R$ gilt

$$\phi(a*b+c) = \phi(a)*\phi(b) + \phi(c) \text{ und } \phi(1_R) = 1_S.$$

Definition 7.3 (Ideal) Es sei R ein Ring und $I \subseteq R$ eine Untergruppe (bzgl. +). Dann heisst I

- ein Linksideal von R, falls für alle $r \in R$ und $a \in I : ra \in I$.
- ein Rechtsideal von R, falls für alle $r \in R$ und $a \in I : ar \in I$.
- ein (beidseitiges) Ideal von R, falls für alle $r \in R$ und $a \in I$: $ra \in I \land ar \in I$.

Proposition 7.4 Es sei $\varphi: R \to S$ ein Ringhomomorphismus, dann ist $\ker \varphi$ ein Ideal in R. Umgekehrt sei $I \subseteq R$ ein Ideal, dann ist die kanonische Abbildung $\pi: R \to R \setminus I, r \mapsto \overline{r}$ ein Ringhomomorphismus.

Definition 7.5 (Algebra) Es sei K ein Körper. Ein K-Vektorraum A heisst **Algebra** über K, falls es eine Abbildung gibt,

$$A \times A \rightarrow A, (a, b) \mapsto a * b.$$

so, dass (A, +, *) ein Ring mit Eins ist und für alle $a, b \in A, \lambda \in K$ gilt

$$\lambda(a*b) = (\lambda a)*b = a*(\lambda b).$$

Definition 7.6 (Algebrahomomorphismus) Es seien A_1, A_2 jeweils K-Algebren. Es sei $\phi: A_1 \to A_2$ ein Vektorraumhomomorphismus. Dann heisst ϕ **Algebrenhomomorphismus** wenn ϕ auch ein Ringhomomorphismus ist.

Definition 7.7 (Modul) Es sei R ein Ring mit Eins, M eine abelshe Gruppe. Dann ist M ein R-Linksmodul, falls es ein Abbildung gibt

$$R \times M \to M, (r, m) \mapsto r.m.$$

so, dass für alle $r, s \in R$ und für alle $m, n \in M$ gilt

$$(r*s).m = r.(s.m)$$
 und $1.m = m$
 $(r+s).(m+n) = r.m + s.m + r.n + s.n$.

Entsprechend isr R ein R-Reschtsmodul, falls es eine Abbildung gibt

$$M \times R, (m,r) \mapsto m.r.$$

so, dass für alle $r, s \in R$ und für alle n, m in M gilt

$$m.(r*s) = (m.r).s \text{ und } m = m.1$$

 $(m+n).(r+s) = m.r + m.s + n.r + n.s.$

Definition 7.8 (Untermodul) Es sei M ein R-Modul, eine Untergruppe $U \subseteq M$ heisst Untermodul von M, falls $\forall r \in R, u \in U : r.u \in U$.

Definition 7.9 (Modul-Homomorphismus) Es seien N, M zwei R-Moduln und $\varphi: M \to N$ ein Gruppenhomomorphismus. Dann heisst φ ein R-Modul-Homomorphismus genau dann, wenn

$$\forall m \in M, r \in R : \varphi(r.m) = r\varphi(m).$$

Die Menge der R-Modul-Homomorphismen beziechnen wir mit $\hom_R(M,N)$. Ein invertierbarer **Modul-Homomorphismus** heisst Isomorphismus, die Moduln M und N heisst dann **isomorph**

Definition 7.10 Es seien M und N zwei R-Moduln, dann wird $M \times N$ wieder zum einem R-Modul durch

$$r.(m,n) = (r.m,r.n).$$

Definition 7.11 (direkte Summe) Es sei M ein R-Modul, $U_1, U_2 \subseteq M$ R-Untermoduln, dann sagen wir M ist **direkte Summe** von U_1 und $U_2, M = U_1 \oplus U_2$, falls $U_1 \cap U_2 = 0$ und $U_1 + U_2 = M$.

Definition 7.12 Es sei $M \neq 0$ ein R-Modul. M heisst **unzerlegbar** falls für alle Untermoduln $U_1, U_2 \subseteq M$ gilt

$$U_1 \oplus U_2 = M \implies U_1 = 0 \lor U_2 = 0.$$

Anderfalls heisst M zerlgebar.

Proposition 7.13 Es sei $U \subseteq M$ ein R-Untermodul, dann ist $M \setminus \ker \varphi$ isomoph $zu \Im \varphi$.

Wir erhalten also eine kurze exacte Sequenz

$$0 \to \ker \varphi \to M \to \Im \varphi \to 0.$$

Definition 7.14 (Endlich-erzeugte Moduln) Es sei R ein Ring und M ein R-Modul. Ein **Erzeugendensystem** von M ist eine Teilmenge

 $S = \{s_i | i \in I\} \subseteq M$ so, dass für jedes $m \in M$ existieren $\{r_i | i \in I\}$, wobei nur endlich vile $r_i \neq 0$ sind, mit

$$m = \sum_{i \in I} r_i s_i.$$

M heisst **endlich-erzuegt**, falls es ein endliches Erzeugendensystem gibt und **zyklisch**, falls es ein Erzuegendensystem S gibt, mit |S| = 1.

Example 7 Sei M eine R-Modul, $m_1, \ldots, m_l \in M$, dann ist $(m_1, \ldots, m_l) = \sum Rm_i \subseteq M$

$$R = \mathbb{Z}, m_1 = 3, m_2 = 2 \implies (2,3) = 2\mathbb{Z} + 3\mathbb{Z} = \mathbb{Z} = (1)$$

$$R = \mathbb{C}[x, y](xy - 2, x + y) = \mathbb{C}[x, y](xy - 2) + \mathbb{C}[x, y](x + y)$$

R als R-Linksmodul \implies Untermodul \cong Linksideal

Proposition 7.15 Es sei R ein Ring, dann ist die Abbildug

 $\{(Links-)Ideale\ in\ R\} \rightarrow \{zyklische\ (Links-)\ Moduln\ \} \setminus Isomorphie$ eine Bijektion.

Definition 7.16 (Freier Modul) Es sei R ein Ring und M ein R-Modul. Eine **Basis** von M ist ein linear unabhängiges Erzeugendensystem von M. Wenn M eine Basis besitzt, so nennen wir M einen **freien Modul** über R. Für jede Indexmenge I, schreiben wir R^I für den freien R-Modul mit einer Basis indiziert durch I.

Proposition 7.17 Es sei M ein R-Modul und $\{m_i|i\in I\}$ eine Teilmenge von M. Dann existiert genau ein Modulhomomorphismus

$$\pi: R^I \to M, e_i \mapsto m_i \text{ für alle } i \in I.$$

Das gilt insbesondere wenn $\{m_i|i\in I\}$ ein Erzeugendensystem von M ist.

Definition 7.18 (Kring) Einen kommutativen Ring mit 1 nennen wir einen **Kring**.

Definition 7.19 Es sei $R \neq 0$ ein Ring. Dann heisst R nullteilerfrei, wenn für alle $a, b \in R$ gilt:

$$a * b = 0 \implies a = 0 \lor b = 0.$$

Ist R darüber hinaus ein Kring, se nennen wir R einen **Integritätsbereich**

Definition 7.20 Ein R ein Integritätsberiech. R heisst ein **euklidischer** Ring, falls eine Funktion $\delta: R \setminus \{0\} \to \mathbb{N}$ existiert mit:

$$\forall a,b \in R, a \neq 0 \\ \exists q,r \in R: b = qa+r, r \neq 0 \implies \delta(r) < \delta(a).$$

Definition 7.21 Es sei R ein Ring, die Menge der **Einheiten** R^* in R ist die Menge der multiplikativ invertierbaren Elemente. $r \in R$ heisst **irreduzible** wenn r keine Einheit hat und r = fg impliziert, dass $f \in R^*$ oder $g \in R^*$.

Definition 7.22 Es sei R ein Ring und $\{f_i|i\in I\}\subseteq R$. Dann bezeichnet $(\{f_i|i\in I\})=\sum_{i\in I}Rf_iR$ das von $\{f_i|i\in I\}$ erzeugte Ideal in R. R ist ein Hauptidealring, wenn jedes Ideal in R von einem Element erzeugt wird.