课程代号: PHY17017

北京理工大学 2012-2013 学年第一学期

大学物理II期末试题A卷

2013年1月24日14:00-16:00

班级	学号	
任课教师姓名		

	选择题	填空题	计算1	计算2	计算3	计算4	计算5	总分
得分								

有关数据

支

线

真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12}$ C²·N⁻¹·m⁻² 真空的磁导率 $\mu_0 = 4\pi \times 10^{-7}$ T·m·A⁻¹ 普朗克常量 $h = 6.63 \times 10^{-34}$ J·s 基本电荷 e=1.60×10⁻¹⁹ C

一、选择题(每题3分共15分)

请将答案写在卷面指定方括号内。

1. (3 分) 如图所示,在点电荷 q 的电场中,选取以 q 为中心、R 为半径的球面上一点 P处作电势零点,则与点电荷q距离为r的O点的电势为

(A)
$$\frac{q}{4\pi\varepsilon_0 r}$$
;

(B)
$$\frac{q}{4\pi\varepsilon_0}\left(\frac{1}{r}-\frac{1}{R}\right)$$
;

(C)
$$\frac{q}{4\pi\varepsilon_0(r-R)}$$

(C)
$$\frac{q}{4\pi\varepsilon_0(r-R)}$$
; (D) $\frac{q}{4\pi\varepsilon_0}\left(\frac{1}{R}-\frac{1}{r}\right)$.

- (A) $F \propto U$;
- (B) $F \propto 1/U$;
- (C) $F \propto 1/U^2$; (D) $F \propto U^2$.

3. (3分)如图所示,半径为R的圆周C、D、E、F处固定有四个电量均为g的点电荷,

CD 与 EF 垂直,此圆以角速度 ω 绕过 O 点与圆平面垂直的 轴旋转时,在圆心 O 点产生的磁感强度大小为 B_1 ; 它以同 样的角速度绕 CD 轴旋转时,在 O 点产生的磁感强度的大 小为 B_2 ,则 B_1 与 B_2 间的关系为

- (A) $B_1 = B_2$; (B) $B_1 = 2B_2$;
- (C) $B_1 = B_2/2$; (D) $B_1 = B_2/4$.

4. (3分)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r_1 和 r_2 。管内					
充满均匀介质,其磁导率分别为 μ_1 和 μ_2 。设 $r_1:r_2=1:2$, $\mu_1:\mu_2=2:1$,当将两只螺线管串					
联在电路中通电稳定后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m1}:W_{m2}$ 分别为					
(A) $L_1:L_2=1:1$, $W_{m1}:W_{m2}=1:1$; (B) $L_1:L_2=1:2$, $W_{m1}:W_{m2}=1:1$;					
(C) $L_1:L_2=1:2$, $W_{m1}:W_{m2}=1:2$; (D) $L_1:L_2=2:1$, $W_{m1}:W_{m2}=2:1$.					
5. (3分)假定氢原子原是静止的,则氢原子从 $n=3$ 的激发状态直接通过辐射跃迁到					
基态时的反冲速度大约为(氢原子的质量 $m=1.67\times10^{-27}$ kg)					
(A) 4 m/s; (B) 10 m/s;					
(C) 100 m/s; (D) 400 m/s.					
二、填空题(共 40 分)请将答案写在卷面指定的划线处。					
1. $(4 分)$ 两个同心的薄金属球壳,内、外球壳半径分别为 R_1 和 R_2 。球壳间充满两层均					
匀电介质,它们的相对介电常数分别为 ε_{r1} 和 ε_{r2} 。两层电介质的分界面半径为 R 。设内球					
壳带负电为 Q 。两层电介质的分界面处的电位移大小为; 电位移的方向					
为; 两球壳之间的电势差为。					
2. (4分)设电子的静止能量储藏在它的全部电场中。如果设想电子是一个带电球面,					
则电子球面的半径为。(用电子电量 e 、静止质量 m_0 、光					
速 c 和真空介电常数 a 表示)					
3. $(4 分)$ 一半径为 R 的薄圆盘,放在磁感强度为 B 的均匀磁场中, B 的方向与盘面平					
行。圆盘表面上电荷均匀分布,并且电荷面密度为 σ 。若圆盘以角速度 ω 绕通过盘心并					
垂直盘面的轴转动,则作用在圆盘面上的磁力矩为。					
4.(4分)有平行圆形极板组成的电容器, 电容为1×10 ⁻¹² F, 若在其两端加上频率为50Hz,					
峰值为1.74×10°V的交变电压,则极板间的位移电流最大值为。					
5. (4分) 在 S 系中的 x 轴上相隔为 Δx 处有两只同步的 A 钟和 B 钟,读数相同,在 S' 系					
的 x' 轴上也有一只同样的钟 A' ,若 S' 系相对于 S 系的运动速度为 v ,沿 x 轴方向且 A' 与					
A 相遇时,刚好两钟的读数均为零。那么,当 A' 钟与 B 钟相遇时,在 S 系中 B 钟的读					
数为; 此时,在S'系中A'钟的读数为。					
6.(4分)相对于地面快速运动的介子的能量为 3000MeV, 而介子的静止能量为 100MeV,					
若介子的固有寿命为2×10 ⁻⁶ s,则它相对于地面运动的距离为					

7. (4分)设铜的逸出功为 4.47eV。以波长为().2μm 的光照射一铜球,铜球放出电子。
若将铜球充电,当充电到电势为	V 时,铜球不再放出电子。
8. (3分)设 m_e 为电子的静止质量, c 为光速。	
的德布罗意波长是 $\lambda =$ 。	
9. (3 分) 波长λ= 632.8nm 的氦氖激光器所发约	I光沿 x 轴正向传播。已知它的光子 x 坐
标的不确定量为 400km。则利用不确定关系式 Δ	$p_x \Delta x \ge h$,谱线宽度 $\Delta \lambda =$ nm。
10. (3分) 主量子数 $n=2$, 自旋磁量子数 $m_s=1$	/2 的量子态中,能填充的最大电子数为
,当氢原子中的角动量 $L=2\sqrt{3}\hbar$ 时	,角动量有几个空间取向;
在外磁场方向的分量 Lz=	0
11.(3分)已知半导体硫化镉的禁带宽度为2.42	2eV, 若用光来激发半导体硫化镉的电子,
光波波长最大为nm。	
三、 计算题 (共45分)	
1.(10分)如图所示,半径为 R 的导体球原为心 O 距离为 r_0 (r_0 > R)处,导体球内 P 点离点为 r 处。试求: (1)导体球上的感应电荷在 P 点处的电场强度(2)若导体球接地,导体表面上感应电荷 q'	电荷 q 距离 度和电势;

2. (10 分)如图所示,通有电流 I 的无限长直导线与一宽为 a 的电流均匀分布的无限长矩形薄平板构成闭合回路,且彼此平行共面。试求它们之间单位长度上的相互作用力大小。

I II

 $3.(10\, eta)$ 如图所示,一个半径为 a 的小圆线圈,电阻为 R,开始时与一个半径为 b(b>>a) 的大圆线圈共面而且同心。固定大圆线圈,并且在其中维持恒定电流 I,使小圆线圈绕其直径以匀角速度 ω 转动(设线圈的自感可忽略),试求:

- (1) t 时刻小圆线圈中的电流大小;
- (2) t 时刻大圆线圈中的感应电动势大小。

- 4.(10分)宽为 a 的一维无限深方势阱中的粒子的波函数在边界处为零, 其定态为驻波。
- (1) 试根据德布罗意关系式和驻波条件, 求粒子最小动能公式 (不考虑相对论效应)。
- (2) 若基态波函数为 $\psi_1(x)=A\sin\frac{\pi}{a}x$,0<x<a,求粒子处于基态时在 0<x<a/a4 区间内发现粒子的概率。

- 5. (5分)如图所示,金属探测器的探头内通入脉冲电流,才能测到埋在地下的金属物品发回的电磁信号。试问:
- (1) 埋在地下的金属物品为什么能发回电磁信号?
- (2) 能否用恒定电流代替脉冲电流来探测?

