بسم الله الرحمن الرحيم

بهینه سازی ترکیبیاتی - برنامه ریزی خطی و صحیح

تعریف درس

- 🔾 سریع تر پیش می رویم
- 🔾 تفاوت با درس الگوریتمهای تقریبی
 - 🔵 فهم در مقابل روش
 - نناخت چند وجهیها :مثال
 - مباحث احتمالی جدید
 - ماترويد

مثال برنامهریزی خطی

Maximize

 $x_1 + x_2$

among all vectors $(x_1, x_2) \in \mathbb{R}^2$ satisfying the constraints

$$x_1 \ge 0$$

 $x_2 \ge 0$
 $x_2 - x_1 \le 1$
 $x_1 + 6x_2 \le 15$
 $4x_1 - x_2 \le 10$.

مثال برنامه ریزی خطی - چندوجهی

$$egin{array}{l} x_1 \geq 0 \ x_2 \geq 0 \ x_2 - x_1 \leq 1 \ x_1 + 6x_2 \leq 15 \ 4x_1 - x_2 \leq 10. \end{array}$$

مثال برنامه ریزی خطی -چندو جهی -تابع هدف

Maximize

 $x_1 + x_2$

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \ge 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

$$x_1 + 3x_2 \le 7$$

$$-x_1-3x_2 \leq -7,$$

$$x_1 + 3x_2 = 7$$

🧿 جهت نامساوي

$$-x_1-3x_2\leq -7,$$

$$x_1 + 3x_2 \geq 7$$

تساوي

$$x_1 + 3x_2 \le 7$$

$$x_1 + 3x_2 = 7$$

$$-x_1-3x_2\leq -7,$$

تبدیل همه به تساوی

تعریف برنامه ریزی خطی (Linear Programming)

🔾 فرم كنونيكال

Maximize the value of $\mathbf{c}^T \mathbf{x}$ among all vectors $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} \leq \mathbf{b}$,

مسئله LP در P است

Maximize the value of $\mathbf{c}^T \mathbf{x}$ among all vectors $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} \leq \mathbf{b}$,

- o الگوريتم simplex
- چند جملهای نیست
 - ellipsoid الگوريتم
- o الگوريتم interior point

مثال برای برنامه ریزی خطی

مسئله رژیم غذایی

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15^*	_

مسئله رژیم غذایی

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15*	_

🔾 هدف: کم هزینه ترین غذای کامل

مسئله رژیم غذایی - برنامه ریزی خطی

Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15*	_

مسئله رژیم غذایی - برنامه ریزی خطی

 x_1 x_2 x_3 Food White Cucumber, Required Carrot, Pickled Raw Cabbage, Raw per dish Vitamin A [mg/kg] 350.50.5 $0.5\,\mathrm{mg}$

 Vitamin A [mg/kg]
 35
 0.5
 0.5 mg

 Vitamin C [mg/kg]
 60
 300
 10
 15 mg

 Dietary Fiber [g/kg]
 30
 20
 10
 4 g

 price [€/kg]
 0.75
 0.5
 0.15*
 —

مسئله رژیم غذایی - برنامه ریزی خطی

	x_1	x_2	x_3	
Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	15 mg
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15^*	_

Minimize
$$0.75x_1 + 0.5x_2 + 0.15x_3$$

subject to $x_1 \ge 0$
 $x_2 \ge 0$
 $x_3 \ge 0$
 $35x_1 + 0.5x_2 + 0.5x_3 \ge 0.5$
 $60x_1 + 300x_2 + 10x_3 \ge 15$
 $30x_1 + 20x_2 + 10x_3 \ge 4$.

مسئله شار بیشینه

مسئله شار بیشینه

مسئله شار بیشینه - برنامهریزی خطی

مسئله انبار

ذخیره و تولید متوازن تر
(یخچال) هزینه ذخیره
تومان ۲۰
هزینه تغییر تولید
تومان ۵۰

نیاز بازار به بستنی

- d_i میزان نیاز بازار در ماه i (عدد ثابت)
 - x_i O: تولید در ماه
 - s_i C: ذخیره در انتهای ماه i
 - رفع نیاز بازار 🔾

$$x_i + s_{i-1} \ge d_i$$
 for $i = 1, 2, \dots, 12$.

$$x_i + s_{i-1} - s_i = d_i$$
 for $i = 1, 2, \dots, 12$.

$$s_0 = 0$$
 $s_{12} = 0$

- d_i میزان نیاز بازار در ماه i (عدد ثابت)
 - $^{\mathsf{i}}$ تولید در ماه: $\mathsf{x}_{\mathsf{-}}\mathsf{i}$
 - s_i C: ذخیره در انتهای ماه أ
 - رفع نیاز بازار 🔾

$$x_i + s_{i-1} \ge d_i$$
 for $i = 1, 2, \dots, 12$.

$$x_i + s_{i-1} - s_i = d_i$$
 for $i = 1, 2, \dots, 12$.

$$s_0 = 0$$
 $s_{12} = 0$

تابع هدف: کمینه

- x_i O: تولید در ماه
- i دخیره در انتهای ماه i C
 - رفع نیاز بازار 🔾

$$x_i + s_{i-1} \ge d_i$$
 for $i = 1, 2, \dots, 12$.

$$x_i + s_{i-1} - s_i = d_i$$
 for $i = 1, 2, \dots, 12$.

$$s_0 = 0$$
 $s_{12} = 0$

تابع هدف: کمینه

$$50\sum_{i=1}^{12}|x_i-x_{i-1}|+20\sum_{i=1}^{12}s_i,$$

اغير خطي

- d_i O: میزان نیاز بازار در ماه i (عدد ثابت)
 - x_i O: تولید در ماه
 - i دخیره در انتهای ماه i S_i
 - رفع نیاز بازار 🔾

$$x_i + s_{i-1} \ge d_i$$
 for $i = 1, 2, \dots, 12$.

$$x_i + s_{i-1} - s_i = d_i$$
 for $i = 1, 2, \dots, 12$.

$$s_0 = 0$$
 $s_{12} = 0$

تابع هدف: کمینه

$$50\sum_{i=1}^{12}|x_i-x_{i-1}|+20\sum_{i=1}^{12}s_i,$$

$$x_0 = 0$$

اغير خطي

- d_i میزان نیاز بازار در ماه i (عدد ثابت)
 - x_i O: تولید در ماه
 - i دخیره در انتهای ماه i S_i
 - رفع نیاز بازار 🔾

$$x_i + s_{i-1} \ge d_i$$
 for $i = 1, 2, \dots, 12$.

$$x_i + s_{i-1} - s_i = d_i$$
 for $i = 1, 2, \dots, 12$.

$$s_0 = 0$$
 $s_{12} = 0$

تكنيك برخورد با قدر مطلق

$$y_i$$
میزان افزایش $|x_i-x_{i-1}|$ میزان کاهش z_i

$$x_i - x_{i-1} = y_i - z_i$$

$$|x_i - x_{i-1}| = y_i + z_i$$

تكنيك برخورد با قدر مطلق

Minimize
$$50 \sum_{i=1}^{12} y_i + 50 \sum_{i=1}^{12} z_i + 20 \sum_{i=1}^{12} s_i$$

subject to $x_i + s_{i-1} - s_i = d_i$ for $i = 1, 2, ..., 12$
 $x_i - x_{i-1} = y_i - z_i$ for $i = 1, 2, ..., 12$
 $x_0 = 0$
 $s_0 = 0$
 $s_{12} = 0$
 $x_i, s_i, y_i, z_i \ge 0$ for $i = 1, 2, ..., 12$.

$$x_i - x_{i-1} = y_i - z_i$$

$$|x_i - x_{i-1}| = y_i + z_i$$

تكنيك برخورد با قدر مطلق

اینجا خوب است

Minimize
$$50 \sum_{i=1}^{12} y_i + 50 \sum_{i=1}^{12} z_i + 20 \sum_{i=1}^{12} s_i$$

subject to $x_i + s_{i-1} - s_i = d_i$ for $i = 1, 2, ..., 12$
 $x_i - x_{i-1} = y_i - z_i$ for $i = 1, 2, ..., 12$
 $x_0 = 0$
 $s_0 = 0$
 $s_{12} = 0$
 $x_i, s_i, y_i, z_i \ge 0$ for $i = 1, 2, ..., 12$.

$$x_i - x_{i-1} = y_i - z_i$$

$$|x_i - x_{i-1}| = y_i + z_i$$

جواب بهینه برای یخچال مجانی

برازش خط

ر یافتن خط با :هدف کمترین فاصله با نقاط

$$\sum_{i=1}^{n} |ax_i + b - y_i|.$$

برازش نقاط - برنامهریزی خطی

Minimize
$$e_1 + e_2 + \cdots + e_n$$

subject to $e_i \geq ax_i + b - y_i$ for $i = 1, 2, \dots, n$
 $e_i \geq -(ax_i + b - y_i)$ for $i = 1, 2, \dots, n$.

جداسازی نقاط

جداسازی نقاط - برنامهریزی خطی

Maximize δ subject to $y(\mathbf{p}_i) \geq ax(\mathbf{p}_i) + b + \delta$ for i = 1, 2, ..., m $y(\mathbf{q}_j) \leq ax(\mathbf{q}_j) + b - \delta$ for j = 1, 2, ..., n.

بزرگترین دایره در یک چندوجهی محدب

بزگترین دایره محاط

فاصله تا خط أ ام

$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}}.$$

🔾 خطهای بالا و خطهای پایین

بزرگترین دایره محاط - برنامهریزی خطی

Maximize r

subject to
$$\frac{s_2-a_is_1-b_i}{\sqrt{a_i^2+1}}\geq \quad r \quad \text{for } i=1,2,\ldots,k$$

$$\frac{s_2-a_is_1-b_i}{\sqrt{a_i^2+1}}\leq -r \quad \text{for } i=k+1,k+2,\ldots,n.$$

مسئله برش کاغذ

- 🔾 کاغذهای ۳ متری
 - :سفارش
- 97 rolls of width 135 cm,
- 610 rolls of width 108 cm,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.
- هدف: 🔿
- مصرف كمترين تعداد كاغذ

برش کاغذ - برنامهریزی خطی

برشهای مختلف

P1: 2×135 P7: $108 + 93 + 2 \times 42$

P2: 135 + 108 + 42 P8: $108 + 4 \times 42$

P3: 135 + 93 + 42 P9: 3×93

P4: $135 + 3 \times 42$ P10: $2 \times 93 + 2 \times 42$

P5: $2 \times 108 + 2 \times 42$ P11: $93 + 4 \times 42$

P6: $108 + 2 \times 93$ P12: 7×42

- 97 rolls of width 135 cm,
- 610 rolls of width 108 cm,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.

برش کاغذ - برنامهریزی خطی

برشهای مختلف

P1: 2×135 P7: $108 + 93 + 2 \times 42$

P2: 135 + 108 + 42 P8: $108 + 4 \times 42$

P3: 135 + 93 + 42 P9: 3×93

P4: $135 + 3 \times 42$ P10: $2 \times 93 + 2 \times 42$

P5: $2 \times 108 + 2 \times 42$ P11: $93 + 4 \times 42$

P6: $108 + 2 \times 93$ P12: 7×42

$$x_3 + 2x_6 + x_7 + 3x_9 + 2x_{10} + x_{11} \ge 395.$$

- 97 rolls of width 135 cm,
- 610 rolls of width 108 cm,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.

برش کاغذ – برنامه ریزی خطی

برشهای مختلف

P1: 2×135 P7: $108 + 93 + 2 \times 42$

P2: 135 + 108 + 42P8: $108 + 4 \times 42$

P3: 135 + 93 + 42P9: 3×93

P4: $135 + 3 \times 42$ P10: $2 \times 93 + 2 \times 42$

P5: $2 \times 108 + 2 \times 42$ P11: $93 + 4 \times 42$

P6: $108 + 2 \times 93$ P12: 7×42

$$x_3 + 2x_6 + x_7 + 3x_9 + 2x_{10} + x_{11} \ge 395.$$

- 97 rolls of width 135 cm.
- 610 rolls of width 108 cm,
- 395 rolls of width 93 cm, and
- 211 rolls of width 42 cm.

$$x_6 = 197.5$$

$$x_6 = 197.5$$
 $x_5 = 206.25$ $x_1 = 48.5$

$$x_1 = 48.5$$

جواب بهينه

$$x_6 = 197.5$$
 $x_5 = 206.25$ $x_1 = 48.5$

إجواب غير صحيح

🔿 گرد کردن

454 rolls

 $x_1 = 49, x_5 = 207, \text{ and } x_6 = 198$

$$x_6 = 197.5$$

$$x_6 = 197.5$$
 $x_5 = 206.25$ $x_1 = 48.5$

إجواب غير صحيح

🔵 گرد کردن

454 rolls

$$x_1 = 49, x_5 = 207, \text{ and } x_6 = 198$$

453 rolls.

$$x_6 = 197.5$$
 $x_5 = 206.25$ $x_1 = 48.5$

إجواب غير صحيح

🔿 گرد کردن

454 rolls
$$x_1 = 49, x_5 = 207, \text{ and } x_6 = 198$$

453 rolls. $x_1 = 49, x_5 = 207, x_6 = 196, \text{ and } x_9 = 1$

برنامهريزي صحيح

An integer program:

Maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \in \mathbb{Z}^n$.

چند وجهی برنامهریزی صحیح

حداكثر حداكثر

🔾 حداقل یکی از همسایهها

🔾 حداقل یکی از همسایهها

minimize subject to

 $\sum_{v \in S} X_v$ $\sum_{v: u \sim v} X_v \ge 1 \qquad \text{for all } u \in X$ $x_v \in \{0,1\} \qquad \text{for all } v \in S$

🔾 حداقل یکی از همسایهها

minimize subject to

 $\sum_{v \in S} X_v$ $\sum_{v: u = v} X_v \ge 1 \qquad \text{for all } u \in X$ $x_v \in \{0, 1\} \qquad \text{for all } v \in S$

دقیقا یکی از همسایهها

🔾 حداقل یکی از همسایهها

دقیقا یکی از همسایهها

minimize subject to

 $\sum_{v:u \sim v} x_v \ge 1 \qquad \text{for all } u \in X$ $x_v \in \{0,1\} \qquad \text{for all } v \in S$

minimize subject to

$$\sum_{v \in S} X_v$$

$$\sum_{v:u \sim v} X_v = 1 \qquad \text{for all } u \in X$$

$$x_v \in \{0,1\} \qquad \text{for all } v \in S$$

🔾 حداقل یکی از همسایهها

ر دقیقا یکی از همسایهها

minimize subject to

minimize subject to

$$\sum_{v \in S} X_v$$

$$\sum_{v:u \sim v} x_v = 1 \qquad \text{for all } u \in X$$

$$x_v \in \{0,1\} \qquad \text{for all } v \in S$$

🔾 حداکثر یکی از همسایهها

🔾 حداقل یکی از همسایهها

دقیقا یکی از همسایهها

minimize subject to

 $\sum_{v \in S} X_v$ $\sum_{v: u \sim v} X_v \ge 1 \qquad \text{for all } u \in X$ $X_v \in \{0,1\} \qquad \text{for all } v \in S$

minimize subject to $\sum_{v \in S} X_v$ $\sum_{v:u \sim v} x_v = 1 \qquad \text{for all } u \in X$ $x_v \in \{0,1\} \qquad \text{for all } v \in S$

maximize subject to

 $\sum_{v \in S} x_v$ $\sum_{v: u \sim v} x_v \le 1 \qquad \text{for all } u \in X$ $x_v \in \{0,1\} \qquad \text{for all } v \in S$

🔾 حداکثر یکی از همسایهها

مسئله مكانيابي تجهيزات

- n حکان بالقوه برای تجهیزات
- \mathbf{j} هزينه احداث تجهيزات در مكان $\mathbf{C}_{\mathbf{j}}$
 - مشتری m 🔾
- j هزينه ارسال مشترى ا به به مكان i: **d**_{ij}
- 🔾 هدف: کم ترین هزینه برای خدمت به همه

مسئله مكانيابي تجهيزات - برنامهريزي خطي

- انتخاب تجهیزات 🔾
- \mathbf{j} توسط تجهیزات $\mathbf{X}_{\mathbf{i}\mathbf{j}}$

مسئله مكانيابي تجهيزات - برنامهريزي خطي

- انتخاب تجهیزات 🔾
- \mathbf{j} توسط تجهیزات $\mathbf{X}_{\mathbf{ij}}$

$$\begin{array}{lll} \min & \sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\ s.t. & \sum_{j=1}^{n} x_{ij} = 1, & \forall \ i \\ & x_{ij} \leq y_{j}, & \forall \ i, j. \\ & x_{ij}, y_{j} \in \{0, 1\}, & \forall \ i, j. \end{array}$$

مسئله مكانيابي تجهيزات - برنامهريزي خطي

- انتخاب تجهیزات 🔾
- \mathbf{j} توسط تجهیزات $\mathbf{X}_{\mathbf{i}\mathbf{j}}$

$$\begin{array}{ll} \min & \sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\ s.t. & \sum_{j=1}^{n} x_{ij} = 1, & \forall \ i \\ & x_{ij} \leq y_{j}, & \forall \ i, j. \\ & x_{ij}, y_{j} \in \{0, 1\}, & \forall \ i, j. \end{array}$$

اگر انتخاب شده، ارسال کن! $X_{ij} \leq y_j$

min
$$\sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = 1$$
,

$$\forall i$$

$$x_{ij} \leq y_j$$

$$\forall i, j$$
.

$$x_{ij}, y_j \in \{0, 1\},\$$

$$\forall i, j$$
.

min
$$\sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

s.t.
$$\sum_{i=1}^{n} x_{ij} = 1$$
,

$$\forall i$$

$$\sum_{i=1}^{m} x_{ij} \le m y_j,$$

$$\forall j$$

$$x_{ij}, y_j \in \{0, 1\},\$$

$$\forall i, j$$
.

مسئله مکانیابی تجه دو نوع فرمولبندی

نه فقط • و ١

$$x \in \{ a_1, a_2, \dots, a_m \}$$

$$x = \sum_j a_j y_j$$

$$\sum_j y_j = 1,$$

$$y_j \in \{0, 1\}$$

«و» و «يا»

$$(c^Tx \ge d) \circ (a^Tx \ge b) \bigcirc$$

$$a^Tx \ge b$$

$$c^Tx \ge d$$

$$(c^T x \ge d) \circ (a^T x \ge b) \circ$$

$$a^Tx \ge b$$

$$c^Tx \ge d$$

$$(c^Tx \ge d) \circ (a^Tx \ge b) \bigcirc$$

$$(c^T x \ge d)$$
 ي $(a^T x \ge b)$

$$a^Tx \ge b$$

$$c^Tx \ge d$$

$$(c^Tx \ge d) \circ (a^Tx \ge b) \bigcirc$$

$$a^Tx \ge b - My$$
,

$$c^Tx \ge d - M(1 - y)$$

$$y \in \{\cdot, 1\}$$

$$(c^Tx \ge d) \ (a^Tx \ge b)$$

(و) و (ی**ی**ا)

$$a^Tx \ge b$$

$$c^Tx \ge d$$

$$(\mathbf{c}^\mathsf{T}\mathbf{x} \ge \mathbf{d}) \ \ (\mathbf{a}^\mathsf{T}\mathbf{x} \ge \mathbf{b}) \ \ \mathbf{O}$$

$$a^Tx \ge b - My$$
,

$$c^T x \ge d - M(1 - y)$$

$$y \in \{\cdot, 1\}$$

$$(c^T x \ge d) \ \ (a^T x \ge b) \bigcirc$$

بیشتر از ۲ تا؟

<u> (۷۳ = !X۱) :</u> نه: (

(**y**_۳ = !**X**₁) :ها 🔾

 $y_r = 1 - x_1$

- $(y_r = !X_1)$ نه: (
- $y_{r=1}-x_1$
- $(y_1 = X_1 \&\& X_7) : 0$

- نه: (X۱ = !X۱) نه: (
- $y_{r=1}-x_1$
- $(y_1 = X_1 \&\& X_7) : 0$

- $(y_r = !X_1)$ نه: (
- $y_{r=1}-x_1$
- $(y_1 = X_1 \&\& X_7) : 0$
- $\cdot \leq y_1 \leq 1$, $y_1 \leq x_2$, $y_3 \leq x_4$, $x_4 + x_7 1 \leq 1$

- $(y_r = !X_1)$ نه: (
- $y_{r}=1-x_1$
- $(y_1 = X_1 \&\& X_7) : 0$
- $\cdot \leq y_1 \leq 1$, $y_1 \leq x_2$, $y_2 \leq x_3$, $x_1 + x_2 1 \leq 1$

 - $\downarrow \leq Y_{\gamma} \leq 1$, $\downarrow Y_{\gamma} \geq X_{\gamma}$, $\downarrow Y_{\gamma} \geq X_{\gamma}$, $\downarrow Y_{\gamma} \leq X_{\gamma} + X_{\gamma}$

برنامهریزی صحیح NP-سخت است

برنامه ریزی صحیح NP-سخت است

- O کاهش (تقلیل) یک مسئله NP–تمام:
 - O مسئله SAT

برنامه ریزی صحیح ۱۲-سخت است

- O کاهش (تقلیل) یک مسئله NP–تمام:
 - O مسئله SAT

O آیا NP-تمام است؟ مسئله تصمیم

برنامهریزی صحیح NP-سخت است

مسئله SAT:

 $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$

minimize 1

subject to: $x_1 + (1-x_2) \ge 1$

 $1-x_1 + x_2 + x_3 \ge 1$

 $1-x_1 \ge 1$

> O آیا NP-تمام است؟ مسئله تصمیم

تابع محدب، محدب قطعه -قطعه خطی

تابع محدب قطعه-قطعه خطی

minimize $\max_{i=1,...,m} (\mathbf{c}_i' \mathbf{x} + d_i)$

subject to $\mathbf{A}\mathbf{x} \geq \mathbf{b}$.

تابع محدب قطعه-قطعه خطى

minimize
$$\max_{i=1,...,m} (\mathbf{c}_i' \mathbf{x} + d_i)$$

subject to
$$\mathbf{A}\mathbf{x} \geq \mathbf{b}$$
.

minimize
$$z$$
 subject to $z \geq \mathbf{c}_i'\mathbf{x} + d_i,$ $\mathbf{A}\mathbf{x} \geq \mathbf{b},$

قدر مطلق

minimize
$$\sum_{i=1}^{n} c_i |x_i|$$

subject to
$$\mathbf{A}\mathbf{x} \ge \mathbf{b},$$

minimize
$$\sum_{i=1}^{n} c_i z_i$$
subject to
$$\mathbf{Ax} \geq \mathbf{b}$$
$$x_i \leq z_i, \qquad i = 1, \dots, n,$$
$$-x_i \leq z_i, \qquad i = 1, \dots, n.$$

minimize
$$\sum_{i=1}^{n} c_i |x_i|$$
 subject to $\mathbf{A}\mathbf{x} \ge \mathbf{b}$,

قدر مطلق، روش دوم

minimize
$$\sum_{i=1}^{n} c_i(x_i^+ + x_i^-)$$
subject to
$$\mathbf{A}\mathbf{x}^+ - \mathbf{A}\mathbf{x}^- \ge \mathbf{b}$$
$$\mathbf{x}^+, \mathbf{x}^- \ge \mathbf{0},$$

where $\mathbf{x}^+ = (x_1^+, \dots, x_n^+)$ and $\mathbf{x}^- = (x_1^-, \dots, x_n^-)$.

تابع قطعه خطى (غير محدب)

تابع قطعه -قطعه خطی (غیر محدب)

تابع قطعه خطی (غیر محدب)

$$x = \sum_{i=1,\ldots,k} \lambda_i a_i$$

$$f(x) = \sum_{i=1,\ldots,k} \lambda_i f(a_i)$$

تابع قطعه خطی (غیر محدب)

$$x = \sum_{i=1, ..., k} \lambda_i a_i$$

$$f(x) = \sum_{i=1, ..., k} \lambda_i f(a_i)$$

minimize subject to

$$\Sigma_{i} \lambda_{i} f(a_{i})$$

$$\Sigma_{i} \lambda_{i} = 1,$$

$$\lambda_{i} \leq y_{i},$$

$$\lambda_{i} \leq y_{i-1} + y_{i}, i = 7, ..., k$$

$$\lambda_{k} \leq y_{k-1},$$

$$\Sigma_{i} y_{i} = 1,$$

$$\lambda_{i} \geq \cdot,$$

$$y_{i} \in \{\cdot, 1\}$$
45

مسئله كوله پشتى مربعى

$$\sum_{j=1}^{n} p_j x_j + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{ij} x_i x_j$$

subject to
$$\sum_{j=1}^{n} w_j x_j \leq W$$
,

$$x_j \in \{0,1\}$$

$$1 \le j \le n$$

مسئله کوله پشتی مربعی

$$\sum_{j=1}^n p_j x_j + \sum_{i=1}^{n-1} \sum_{j=i+1}^n p_{ij} x_i x_j$$
 subject to
$$\sum_{j=1}^n w_j x_j \le W,$$

$$x_j \in \{0, 1\}$$

$$y \le x_1$$
 ضرب $y \le x_2$ $y \ge x_1 + x_2 - 1$ y binary

$$1 \le j \le n$$

for all

انتخاب فرمول بندى مناسب

```
max x_1 + 0.64 x_2

50x_1 + 31x_2 \le 250

3x_1 - 2 x_2 \ge -4

x_1, x_2 \ge 0 integers.
```


max
$$x_1 + 0.64 x_2$$

 $50x_1 + 31x_2 \le 250$
 $3x_1 - 2x_2 \ge -4$
 $x_1, x_2 \ge 0$ integers.

max
$$x_1 + 0.64 x_2$$

 $-x_1 + x_2 \le 2$
 $x_1 + x_2 \le 6$
 $3x_1 + 2 x_2 \le 15$
 $x_1, x_2 \ge 0$ integers.

تطابق كامل بيشينه وزندار

برنامهریزی صحیح - تطابق کامل بیشینه وزندار

maximize

maximize
$$\sum_{e \in E} w_e x_e$$

subject to $\sum_{e \in E: v \in e} x_e = 1$ for each vertex $v \in V$, and $x_e \in \{0, 1\}$ for each edge $e \in E$.

Maximize

Maximize
$$\sum_{e \in E} w_e x_e$$

subject to $\sum_{e \in E: v \in e} x_e = 1$ for each vertex $v \in V$, and $0 \le x_e \le 1$ for each edge $e \in E$.

رابطه IP و LP

- O جواب LP بهتر از IP است.
 - O اگر LP جواب نداشته باشد
 - 🔾 اگر جواب داشت …

maximize $\sum_{e \in E} w_e x_e$ subject to $\sum_{e \in E: v \in e} x_e = 1$ for each vertex $v \in V$, and $x_e \in \{0, 1\}$ for each edge $e \in E$.

Maximize $\sum_{e \in E} w_e x_e$ subject to $\sum_{e \in E: v \in e} x_e = 1 \text{ for each vertex } v \in V, \text{ and } 0 \le x_e \le 1 \text{ for each edge } e \in E.$

اثبات: اگر جواب داشت، یک جواب بهینه صحیح هست

 $\begin{array}{ll} \text{Maximize} & \sum_{e \in E} w_e x_e \\ \text{subject to} & \sum_{e \in E: v \in e} x_e = 1 \text{ for each vertex } v \in V, \text{ and} \\ & 0 \leq x_e \leq 1 \text{ for each edge } e \in E. \end{array}$

🔾 جواب با بیشترین متغیر صحیح

الگوريتم بر اساس اين قضيه؟

مجموعه مستقل بيشينه

Maximize
$$\sum_{v \in V} x_v$$

subject to $x_u + x_v \le 1$ for each edge $\{u, v\} \in E$, and $x_v \in \{0, 1\}$ for all $v \in V$.

- 🔾 فاصله جواب بهينه و
- O ۲/|V|:گراف کامل:

J. Håstad: Clique is hard to approximate within $n^{1-\varepsilon}$, Acta Mathematica 182(1999) 105–142,

با تشكر

نا تشکر 🔿

ادامه

🔾 ... آشنایی با چندوجهیها