Add WeChat edu_assist_pr

https://eduassistpro.github.

Assignment Project Exiden Help

Classification IV: Ensemble methods

Assignment Project Exam Help

https://eduassistpro.github.

Overview

- ► Bagging and Random Forests
- ► Boosting

Assignment Project Exam Help

https://eduassistpro.github.

Motivation

Recall model averaging: given T real-valued predictors $\hat{f}^{(1)}, \dots, \hat{f}^{(T)}$, form ensemble predictor \hat{f}_{avg} Assignment $\Pr_{\hat{f}_{\text{avg}}(x) := \frac{1}{T}} \hat{f}^{(t)}(x)$.

https://eduassistpro.github. $\operatorname{mse}(f_{\operatorname{avg}}) = \overline{T}_{t-1} \operatorname{mse}(f^{t}) - \overline{T} \qquad \qquad))^{2} .$

- Adda WeChatjedu_assist_pr

$$\hat{f}_{\mathsf{maj}}(x) := \begin{cases} +1 & \text{if } \sum_{t=1}^{T} \hat{f}^{(t)}(x) > 0 \\ -1 & \text{otherwise} \end{cases}$$

 $(\hat{f}_{\mathrm{avg}}$ is the scoring function used for $\hat{f}_{\mathrm{mai}})$

How to get classifiers to combine?

► Starting anew; how should we train classifiers to combine in majority-vote?

Assignment Project Exam Help

https://eduassistpro.github.

How to get classifiers to combine?

Starting anew; how should we train classifiers to combine in majority-vote?

Assignment Project Exam Help

https://eduassistpro.github.

How to get classifiers to combine?

Starting anew; how should we train classifiers to combine in majority-vote?

Assignment Project Exam Help

- https://eduassistpro.github.
- To second point, learning algorithm shou variance" WeChat edu_assist_pr

Using the same learning algorithm multiple times I

Running same learning algorithm T times on the same data set yields T identical classifiers – not helpful!

yields T identical classifiers – not helpful!

Assignment un project go ith x a fise particular sets.

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

What we want is T da

Using the same learning algorithm multiple times II

- ► Invoke plug-in principle
 - ▶ In IID model, regard empirical disitribution on training examples

Assignment of the example distribution Panal Help algorithm on each data set.

https://eduassistpro.github.
Add WeChat edu_assist_pr

Figure 2: What we can get is T data sets from P_n

Bagging

- ► Bagging: bootstrap aggregating (Breiman, 1994)
- Assignment Project Exam Help Randomly draw n examples with replacement from training
 - https://eduassistpro.github.
 - Add WeChat edu_assist_pr

Aside: Sampling with replacement

▶ Pick n individuals from a population of size n with replacement.

Assignment Projecti Exame Help

https://eduassistpro.github.

Random forests

<u>Random Forests</u> (Breiman, 2001): Bagging with randomized variant of decision tree learning algorithm

Assignmentee Property, per manuse of the present of

https://eduassistpro.github.

Classifiers with independent errors

- $lackbox{ Say we have } T \mbox{ binary classifiers } \hat{f}^{(1)},\ldots,\hat{f}^{(T)}$
- Assume on a given x, each provides an incorrect prediction Assignment⁴: Project Exam Help

$$\Pr(\hat{f}^{(t)}(X) \neq Y \mid X = x) = 0.4.$$

- https://eduassistpro.github.
- What is chance that more than half of the class incorrect prediction? Chat edu_assist_pr

Coping with non-independent errors

► Classifier errors are unlikely to be independent; do something else to benefit from majority-vote

Assignment Project Exam Help

https://eduassistpro.github.

Coping with non-independent errors

► Classifier errors are unlikely to be independent; do something else to benefit from majority-vote

Assignment Project Exam Help

https://eduassistpro.github.

Coping with non-independent errors

► Classifier errors are unlikely to be independent; do something else to benefit from majority-vote

Assignment Project Exam Help

- https://eduassistpro.github.
- Loop:

Use learning algorithm to get new classifi

Re-wight winning example to Get U_assifi

new classifier is incorrect

Adaptive Boosting

- ► <u>AdaBoost</u> (Freund and Schapire, 1997) ► Training data $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \{-1, +1\}$
- Assignment Project Exam Help

https://eduassistpro.github.

Run learning algorithm on D_t -weighted training examples, get

Add WeChat edu_assist_pr

 $D_{t+1}(i) := \frac{D_t(i) \exp(-\alpha_t \cdot y_i f^{t} \cdot x_i)}{Z_t} \quad \text{for } i = 1, \dots, n.$

Here Z_t is normalizer that makes D_{t+1} a probability distribution.

► Final classifier: $\hat{f}(x) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t \cdot f^{(t)}(x))$

Assignment $\Pr_{z}^{\alpha_t = \frac{1}{2} \ln \frac{1+z_t}{1-z_t} \in \mathbb{R}}$ Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr -0.5 0.5

Figure 3: α_t as function of z_t

Example: AdaBoost with decision stumps

- ► (From Figures 1.1 and 2.2 of Schapire & Freund text.)
- ▶ Use "decision stump" learning algorithm with AdaBoost

https://eduassistpro.github.

Figure 4: Training data for example execution

Example execution of AdaBoost I

Assignment Project Exam Help

Add WaChat adu assist a

https://eduassistpro.github.

Example execution of AdaBoost II

https://eduassistpro.github. -Add WeChat edu_assist_pr

 $f^{(1)}$ $z_1 = 0.40, \ \alpha_1 = 0.42$

Example execution of AdaBoost III

 $z_1 = 0.40, \, \alpha_1 = 0.42$

Example execution of AdaBoost IV

Example execution of AdaBoost V

Example execution of AdaBoost VI

Example execution of AdaBoost VII

zı = https://eduassistpro.github.

Example execution of AdaBoost VIII

z₁ = https://eduassistpro.github.

Final classifier:

$$\mathbf{A}^{f(x)}$$
 \mathbf{A}^{sign} $\mathbf{W}^{(1)}$ $\mathbf{W}^{(2)}$ $\mathbf{W}^{(2)}$

Training error rate of final classifier

lackbox Let $\gamma_t := z_t/2$: advantage over random guessing achieved by

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Training error rate of final classifier

Let $\gamma_t := z_t/2$: advantage over random guessing achieved by

Assignment Project Exam Help

https://eduassistpro.github.

- - ightharpoonup Some γ_t can be small (even negative)—only care about average

Training error rate of final classifier

Let $\gamma_t := z_t/2$: advantage over random guessing achieved by

Assignment Project Exam Help

https://eduassistpro.github.

- ightharpoonup Some γ_t can be small (even negative)—only care about average
- What about true error rate in IID model?
 - ► A very complex model as T becomes large!

Surprising behavior of boosting

► AdaBoost + C4.5 decision tree learning on "letters" data set

Figure 5: Figure 1.7 from Schapire & Fre

- ▶ Training error rate is zero after five iterations.
- ► Test error rate continues to decrease, even up to 1000 iterations.

Margins theory

▶ Look at (normalized) scoring function of final classifier

Assignment $P_{\text{topect}}^{T_{t-1}\alpha_t, f^{(t)}(x)}$ Exam Help

 \blacktriangleright Say y $\hat{h}(x)$ is margin achieved by \hat{h} on example (x,y)

https://eduassistpro.github.

Margins theory

▶ Look at (normalized) scoring function of final classifier

Assignment $P_{\mathbf{M}}^{\hat{r}_{t-1}\alpha_t, f^{(t)}(x)}$ Exam Help

- \blacktriangleright Say y $\hat{h}(x)$ is margin achieved by \hat{h} on example (x,y)
- https://eduassistpro.github.
 - ► AdaBoost tends to increase margins on t
- * Add WeChat edu_assist_pr

Margins theory

▶ Look at (normalized) scoring function of final classifier

Assignment $P_{\text{Expect}}^{\hat{h}}$ Exam Help Say y $\hat{h}(x)$ is margin achieved by \hat{h} on example (x, y)

- https://eduassistpro.github.
 - ► AdaBoost tends to increase margins on t
- Similar to but not same as SVM margins)

 On letters" data set Chat edu_assist_pr
 - $T = 5 \mid T = 100 \mid T = 1000$ 0.0%0.0%0.0%training error rate 8.4%3.3%3.1%test error rate % margins < 0.57.7%0.0%0.0%min margin achieved 0.140.520.55