

Detecting malicious beaconing in enterprise environments

Dr. Daniel Varga
Associate Cyber Security Specialist

What's a beacon?

Time delta distribution

Data size distribution

Ref:

https://www.activecountermeasures.com/identifying-beacons-through-session-size-analysis/

https://www.scworld.com/podcast-segment/4295-beacon-analysis-chris-brenton

What's a beacon?

Time delta distribution

Data size distribution

Ref:

https://www.activecountermeasures.com/identifying-beacons-through-session-size-analysis/

https://www.scworld.com/podcast-segment/4295-beacon-analysis-chris-brenton

What's a beacon?

Time delta distribution

Data size distribution

Ref:

https://www.activecountermeasures.com/identifying-beacons-through-session-size-analysis/

https://www.scworld.com/podcast-segment/4295-beacon-analysis-chris-brenton

Jitter

RITA (Real Intelligence Threat Analytics)

- Analyze skewness: skewness score
- Analyze dispersion: MAD score

Score = (skewness_score + mad_score)/2

Score > 0.85 BEACONING!!!

Let's have a slightly better SOP

Phase	Duration (min)	Sleep (s)
Normal	30	2
Keyboard activity	450	90
Idle	960	900

The beacon will be lost in the ocean of false positives...

#	Source	Destination	Destination Prevalence	Score	Result
1	src_01	ah3s32ds.cloudfront.net	2	0.95	FP
2	src_02	dst_01	4	0.94	FP
3	src_03	music.youtube.com	5	0.90	FP
4	src_04	<xyz>.amazon.com</xyz>	3	0.89	FP
					FP
150	src_130	dst_130	9	0.81	FP
240	src_240	www.amazon.com	105	0.77	TP

AC&CD: Active C&C Detector by Mehmet Ergene

- Use 15th, 30th and 45th percentiles
- Use jitter
- Do not use skewness

Same with data-size distribution with one additional factor:

 At least 1 connection must have received data size > 20 kB

#	Sourc e	Destination	Destination Prevalence	Sco re	Result
			105	1.00	TP
2	src_05	dst_08	3	1.00	FP
3	src_02	dst_01	4	0.94	FP
					FP
15 0	src_13 0	dst_130	9	0.81	FP
•••					

What if the attacker took real efforts to hide the traffic?

Time delta distribution

Network connection histogram with 1 hour bin size

But we are getting better... Right?

"Dwell time (time for persistent connections) used to be 6 months, now it's only 4 months."

Ref: https://www.theguardian.com/science/2017/jul/26/cats-vs-dogs-in-terms-of-evolution-are-we-barking-up-the-wrong-tree 10.1083/jcb.201907026.

HOW TO CONFUSE MACHINE LEARNING

TRADITIONAL PROGRAMMING

MACHINE LEARNING

Example from image analysis

How to find thousands of those double line structures in SMLM images for statistical analysis?

Let's use machine learning!

Solution: simulation!

scientific reports

OPEN Machine learning framework to segment sarcomeric structures in SMLM data

Dániel Varga^{1⊠}, Szilárd Szikora², Tibor Novák¹, Gergely Pap³, Gábor Lékó⁴, József Mihály^{2,5} & Miklós Erdélyi¹

You can do the same with logs...

Implementation in our environment: BYO-ML utilities in Azure Machine learning Studio

- 1. Set up Azure Databricks environment
- I. Create an Azure Databricks Workspace
- II. Configure a Databricks cluster
- 2. Data preparation and ingestion
- Use existing network logs as the baseline for non-malicious activity, since no malicious actor is inside our network
- II. Generate artificial malicious beaconing network logs
- III. Combine the "not malicious" logs and synthetic malicious logs into a labeled dataset
- IV. Split the dataset into training and testing subsets
- 3. Build and Train ML model
- I. Copy-paste from Microsoft Sentinel GitHub repository
- II. Build ML model with BYO-ML libraries and templates
- III. Train the model

- 4. Model Scoring Workflow for Log Analytics Integration
- Configure the trained model to score incoming network logs in real time or on a scheduled basis
- II. Use the BYO-ML utilities to write detection scores to Log Analytics in Microsoft Sentinel
- 5. Operationalize the Detection Rule
- Set up the analytics rule based on the ML results
- 6. Monitor and Maintain
- I. Refine during solving the generated incidents to reduce false positives
- II. Regularly retrain the model with updated network logs

(S) DALL-E

Thank you for your attention!

daniel.varga@lego.com