

LIBRARY Brigham Young University

FROM	 		•••••
Call No	Acc. No	77.674	

THE ELECTRICAL CONDUCTIVITY, DISSOCIATION, AND TEMPERATURE COEFFICIENTS OF CONDUCTIVITY FROM ZERO TO SIXTY-FIVE DEGREES OF AQUEOUS SOLUTIONS OF A NUMBER OF SALTS AND ORGANIC ACIDS

BY HARRY C. JONES

PROFESSOR OF PHYSICAL CHEMISTRY IN THE JOHNS HOPKINS UNIVERSITY

The Experimental Work by

A. M. CLOVER	H. H. Hosford	S. F. Howard	C. A. JACOBSON
H. R. KREIDER	E. J. SHAEFFER	L. D. SMITH	A. SPRINGER, JR.
A. P. WEST	G. F. WHITE	E. P. WIGHTMAN	L. G. WINSTON

WASHINGTON, D. C.
PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON
1912

QD 565

THE ELECTRICAL CONDUCTIVITY, D CIATION, AND TEMPERATURE COEFFICIENTS OF CONDUCTIVITY FROM ZERO TO SIXTY-FIVE DEGREES OF AQUEOUS SOLUTIONS OF A NUMBER OF SALTS AND ORGANIC ACIDS

BY HARRY C. JONES

PROFESSOR OF PHYSICAL CHEMISTRY IN THE JOHNS HOPKINS UNIVERSITY

The Experimental Work by

A. M. CLOVER	H. H. Hosford	S. F. Howard	C. A. Jacobson
H. R. Kreider	E. J. Shaeffer	L. D. SMITH	A. Springer, Jr.
A. P. West	G. F. WHITE	E. P. WIGHTMAN	L. G. Winston

WASHINGTON, D. C.
Published by the Carnegie Institution of Washington
1912

CARNEGIE INSTITUTION OF WASHINGTON Publication No. 170

PRESS OF GIBSON BROS. WASHINGTON, D. C.

CONTENTS.

PART I.

	PAGE.		PAGE.
The Method	5	Ammonium Chromium Sulphate (Green)	35
Conductivity Cells	5	Ammonium Copper Sulphate	36
Cell Constants	6	Calcium Chloride	36
Cell Constants at Higher Temperatures.	7	Calcium Bromide	37
Solubility of Glass	7	Calcium Nitrate	37
	8	Calcium Chromate	
Preparation of the Solutions		Calcium Chromate	38
Water	9	Calcium Formate	38
Baths	9	Strontium Chloride	39
Investigators Who Have Worked on the		Strontium Bromide	39
Problem	11	Strontium Nitrate	40
The Results	11	Strontium Acetate	40
Lithium Chloride	12	Barium Chloride	41
Lithium Bromide	$\overline{12}$	Barium Bromide	41
Lithium Nitrate	13	Barium Nitrate	42
	13	Darium Formata	
Lithium Sulphate		Barium Formate	42
Sodium Chloride	14	Barium Acetate	43
Sodium Bromide	14	Magnesium Chloride	43
Sodium Iodide	15	Magnesium Bromide	44
Sodium Nitrate	15	Magnesium Nitrate	44
Sodium Chlorate	16	Magnesium Sulphate	45
Sodium Perchlorate	16	Magnesium Formate	$\overline{45}$
Sodium Sulphate	17	Magnesium Acetate	46
Sodium Carbonate	17	Zinc Nitrate	46
	18		
Sodium Acid Phosphate		Zinc Sulphate	47
Sodium Ammonium Acid Phosphate	18	Zinc Acetate	47
Sodium Ferrocyanide	19	Cadmium Chloride	48
Sodium Tetraborate	19	Cadmium Bromide	48
Sodium Acetate	20	Cadmium Iodide	49
Potassium Chloride	20	Manganous Chloride	49
Potassium Bromide	21	Manganous Nitrate	50
Potassium Iodide	$\overline{21}$	Manganous Sulphate	50
Potassium Nitrate	$\frac{5}{22}$	Nickel Chloride	51
Potassium Chlorate	$\frac{22}{22}$	Nickel Nitrate	51
Potassium Perchlorate	23		
		Nickel Sulphate	$\frac{52}{52}$
Potassium Sulphate	23	Nickel Acetate	52
Potassium Acid Sulphate	24	Cobalt Chloride	53
Potassium Carbonate	24	Cobalt Bromide	53
Potassium Acid Phosphate	25	Cobalt Nitrate	54
Potassium Phosphate	25	Cobalt Sulphate	54
Potassium Sodium Sulphate	26	Cobalt Acetate	55
Potassium Nickel Sulphate	26	Silver Nitrate	55
Potassium Chromium Sulphate (Violet).	27	Cupric Chloride	56
Potassium Chromium Sulphate (Green).	$\frac{27}{27}$	Cupric Bromide	56
Potassium Permanganate	28		
Potassium Chromate	28	Copper Nitrate	57
		Copper Sulphate	57
Potassium Dichromate	29	Lead Chloride	58
Potassium Ferrocyanide	29	Lead Nitrate	58
Potassium Aluminium Sulphate	30	Lead Acetate	59
Potassium Acetate	30	Aluminium Chloride	59
Potassium Sulphocyanate	31	Aluminium Nitrate	60
Ammonium Chloride	31	Aluminium Sulphate	60
Ammonium Bromide	32	Ferric Chloride	61
Tetraethylammonium Iodide	32	Ferric Nitrate	61
Ammonium Nitrate	33	Chromic Chloride	
			62
Ammonium Sulphate	33	Chromic Nitrate	62
Ammonium Acid Sulphate	34	Chromic Sulphate	63
Ammonium Aluminium Sulphate	34	Uranyl Chloride	63
Ammonium Chromium Sulphate (Violet)	35	Uranyl Nitrate	64

PART I—CONTINUED.

	PAGE.		PAGE
Uranyl Sulphate	64	Dissociation of the Various Salts	73
Uranyl Acetate	65	Temperature Coefficients of Conduc-	
Hydrochloric Acid	65	tivity and the Solvate Theory of	
	66	Colution	
Nitric Acid		Solution	76
Sulphuric Acid	66	Substances with Slight Hydrating Power	77
Discussion of the Results	67	Substances with Large Hydrating Power	77
The Conductivity Measurements	67	Hydration and Ionic Volume	80
A Dehydrolytic Time Factor	69	Temperature Coefficients of Conduc-	
Molecular Conductivities	70	tivity in Per Cent	81
Molecular College Williams	.0	orving in 1 or Ocho	0.1
	PAR	p II	
	I AIU.	1 11.	
Organic Acids	87	Phenylpropiolic Acid	-118
Cell Constants	87	Meconic Acid	116
Dissociation of Organic Acids	87	Benzoic Acid	116
Values of μ_{∞} for the Sodium Salts of the		o-Chlorbenzoic Acid	117
Organic Acids	89	o-Nitrobenzoic Acid	117
Values of for the Organia Asida		Mitrobonic Acid	
Values of μ_{∞} for the Organic Acids	91	m-Nitrobenzoic Acid	118
Acetic Acid	93	p-Nitrobenzoic Acid	118
Dichloracetic Acid	93	1, 2, 4-Dinitrobenzoic Acid	119
Trichloracetic Acid	94	1, 3, 5-Dinitrobenzoic Acid	119
Cyanacetic Acid	94	Picric Acid	120
Phenylacetic Acid	95	Salicylic Acid	120
Propionic Acid	95	Acetylsalicylic Acid	121
a-Brompropionie Acid	96	Sulphosalicylic Acid	121
A Indomeniania Asid	96	M Urdrambongia Asid	
β-Iodopropionic Acid		m-Hydroxybenzoic Acid	122
β-Acetylpropionic (Levulinic) Acid	97	p-Hydroxybenzoic Acid	122
n-Butyric Acid	97	1, 2, 4-Dihydroxybenzoic Acid	123
α-Brombutyric Acid	98	1, 2, 5-Dihydroxybenzoic Acid	123
Isobutyric Acid	98	Gallic Acid	124
Hydroxyisobutyric Acid	99	o-Aminobenzoic Acid	124
Isovaleric Acid	99	m-Aminobenzoic Acid	125
Caprylic Acid	100	p-Aminobenzoic Acid	125
Malonic Acid	100	Metanilic Acid	126
Dimethylmalonic Acid	101	Sulphanilic Acid	126
	101	Picramic Acid	
Ethylmalonic Acid	102	- C-l-hihi- A-i-l	127
Diethylmalonic Acid		p-Sulphaminobenzoic Acid	127
Methylethylmalonic Acid	102	Benzenesulphonic Acid	128
Isopropylmalonic Acid	103	m-Nitrobenzenesulphonic Acid	128
Dipropylmalonic Acid	103	p-Toluenesulphonic Acid	129
Butylmalonic Acid	104	1, 2, 4-Nitrotoluenesulphonic Acid	129
Benzylmalonic Acid	104	1, 4, 2-Nitrotoluenesulphonic Acid	130
Allylmalonic Acid	105	o-Toluic Acid	130
Succinic Acid	105	m-Toluic Acid	131
Monobromsuccinic Acid	106	p-Toluic Acid	131
Dibromsuccinic Acid	106	Cinnamic Acid	132
Pyrotartaric Acid	107	Hydrocinnamic Acid	132
l-Tartaric Acid	107	a Dhthalia Asid	
		o-Phthalic Acid	133
Racemic Acid	108	4, 5-Dichlorphthalic Acid	133
Thiodiglycolic Acid	108	Tetrachlorphthalic Acid	134
Tricarballylic Acid	109	Anisic Acid	134
Cyanuric Acid	109	Vanillic Acid	135
Diphenylglycolic (Benzilic) Acid	110	Naphthionic Acid	135
Hippuric Acid	110	Mandelic Acid	136
Uric Acid	111	Camphoric Acid	136
Citric Acid	111	Coumaric Acid	137
Pyromucic Acid	112	Discussion of the Results with the Or-	101
Crotonia Asid			197
Crotonic Acid	112	ganic Acids	137
Maleic Acid	113	Dissociation of Organic Acids	139
Fumaric Acid	113	The Dissociation Constants	140
Itaconic Acid	114	Temperature Coefficients in Conductiv-	
Citraconic Acid	114	ity Units	141
Mesaconic Acid	115	Temperature Coefficients in Per Cent	143
		-	

PART I.-SALTS.

THE EXPERIMENTAL WORK IN PART FIRST WAS CARRIED OUT BY DOCTORS CLOVER, HOSFORD, HOWARD, JACOBSON, SHAEFFER, WEST, AND WINSTON.

PREFACE.

This study of the conductivity and dissociation of electrolytes, and of the temperature coefficients of conductivity, was begun eleven years ago in connection with the solvate theory of solution, which had been proposed in this laboratory shortly before that time. Certain relations of interest, and I hope of some importance, between the temperature coefficients of conductivity and the magnitude of the hydration of the dissolved salt were pointed out.

The work, thus begun, was continued especially for the following reason: When reference was made to the literature for the conductivity of any electrolyte at any given temperature, and for the temperature coefficients of conductivity, we were frequently unable to find what was desired; or, if found, the data were often so discordant that it was impossible to decide what were the true conductivities and dissociations in question.

Since the magnitude of the dissociation of any electrolyte is fundamental to its scientific use in chemistry, it seemed desirable that such data should be made available over the range of temperature most frequently used in the laboratory. With this idea in mind the work has now been continued here until it represents more than twenty years' continuous labor for one man, about 40,000 conductivity measurements having been made. Every one of the investigators has worked from one to two years on the problem, and Doctors Springer, West, and Wightman have each continued their investigations between two and three years.

The result is, that the conductivities and dissociations of about 110 of the more common salts have been worked out from zero to sixty-five degrees, and over a range in dilution extending from about the most concentrated solution that could be used to the dilution of complete dissociation. The temperature coefficients of conductivity have been calculated in both conductivity units and percentages. Moreover, similar data have been obtained for about 90 of the more common organic acids, and their constants have been calculated by means of the Ostwald dilution law.

It is hoped that this work, which has consumed much of the best energy of my laboratory for several years past, may prove to be of some value to other investigators in the field of general or physical chemistry.

HARRY C. JONES.

INTRODUCTION.

THE METHOD.

The method of measuring the conductivity of the solutions, employed throughout this work, was essentially that of Kohlrausch. The bridge used in most of the work was the latest improved form made by Leeds and Northrup, consisting of a manganine wire between 4 and 5 meters long, wound around a marble cylinder. The wire was calibrated by the method of Strouhal and Barus.*

The resistance coils were standardized against a rheostat which had been corrected by the United States Bureau of Standards. A number of forms of telephone receivers were tried, and finally a sensitive form furnished by Leeds and Northrup was adopted. The very satisfactory inductoria were also made by Leeds and Northrup.

Three separate readings on the bridge were made for each solution at each temperature, different resistances being, of course, used for each reading. The average of the conductivities obtained by these measurements, which differed only slightly from one another, was taken as the true conductivity of the solution. The measuring flasks and burettes used in this work were generally calibrated by the method of Morse and Blalock.† For the work from 0° to 35° the measuring apparatus was all calibrated at 20°, and the results at lower and higher temperatures multiplied by the proper factor. For the work from 35° to 65° the measuring apparatus was usually calibrated at 50°, and the proper correction inserted into the results at the lower and higher temperatures.

The conductivities are all expressed in terms of potassium chloride solutions which were used for standardizing the cells.

CONDUCTIVITY CELLS.

The form of cell used in this work is shown in fig. 1. The glass tubes carrying the electrodes are sealed firmly into the tops and bottoms of the ground-glass stoppers, and these tubes are sealed down tightly on to the platinum plates serving as electrodes. The plates are thus held firmly in position, and the distance apart is fixed for any given cell.

In making a series of readings at any given temperature, as many cells were used as there were solutions of different concentrations of the salt in question to be measured. Eight such cells constituted a set, and the distances between the plates and the sizes of the plates were adapted to the concentrations to be studied.

The conductivity of the water was determined in a cell especially constructed for this purpose. It consisted of two concentric platinum cylinders, about 1 mm. apart and 6 cm. long, shown in fig. 2. Glass tubes carrying platinum wires were sealed down on to the tops of these cylinders. These glass tubes were firmly sealed into the top and bottom of the ground-glass stopper.

The cells were generally covered with a little platinum black, to increase the sharpness of the minimum in the reading on the bridge. The cylindrical type of cell, however, was never blackened.

The platinum plates used as electrodes were cut from sheet platinum about 1 mm. thick. The relatively thick plates were much less liable to bend and change the constant after it was once determined.

CELL CONSTANTS.

The cell constants were determined with standard solutions of potassium chloride whose molecular conductivity at 25° was determined with a high degree of accuracy. The cells to be used with the more concentrated solutions, and whose plates were therefore most widely apart, were all standardized with a n/50 solution of potassium

Fig. 1. Fig. 2.

chloride. The cells to be used with the more dilute solutions were all standardized with a n/500 solution of the same salt, while the cylindrical cells were standardized with a n/2000 solution of potassium chloride. The solutions of potassium chloride of different concentrations were used for the different cells, in order that the resistance to be thrown into the rheostat would be of the order of magnitude to give a sharp reading on the bridge.

The cell constants in every set of cells used in this work were redetermined once or twice a month during the entire time that this series of investigations was in progress. With reasonably careful handling the constant of any cell underwent very small change during an entire year's work.

When the cells were used over the temperature range 35° to 65°, certain precautions were necessary in connection with the constants. It was found that at these

higher temperatures a strain seemed to develop in the cells unless they were kept at a fairly uniform temperature. This resulted in a small change in the cell constants, due either to a change in the distance between the plates or in the surfaces of the plates themselves. Errors would be introduced, especially in the case of those cells whose plates were close together—which had small cell constants.

Since such a variation as that referred to above had not previously been observed over the temperature range 0° to 35°, it was thought that the changes in the cell might be reduced to a minimum by keeping the cells at a temperature which was about the mean of those employed in the experimental work. Accordingly, the cells, when not in use, were filled with pure water and placed in a bath which was maintained continuously at a temperature of from 45° to 50°.

To test the accuracy of the procedure adopted the following experiments were carried out. The conductivities of several different substances at the three dilutions, 5, 1024, and 2048 liters were measured in the cells ordinarily used for solutions of these concentrations. The measurements were first carefully made at 35°, then the solutions warmed to 65° and their conductivities determined. The solutions were then cooled down to 35° and their conductivities redetermined. If the conductivities found the second time at 35° agreed with those initially found at this temperature, it would be some evidence as to the reliability of the method used. In about half the cases the two sets of measurements at 35° agreed very satisfactorily, In the other half, the second readings differed slightly from the first, and the difference seemed to be independent of the cell employed or the concentration of the solution used.

In all of those cases where any difference was detected between the initial and final conductivities at 35°, this difference always disappeared entirely on allowing the cells to stand at 35° for two or three hours. This showed that any slight change that the cell might have undergone at the higher temperature disappeared when the cell was kept for a time at the lower temperature.

SOLUBILITY OF GLASS.

In conductivity work at ordinary temperatures this factor has always been neglected and probably is not sufficiently large to influence the results, even with very dilute solutions. However, at 50° the error introduced by this factor at a dilution of 1000 is greater than any of the other ordinary experimental errors. At 65° the solubility of the glass is still greater, and at 80° the conductivity of pure water is increased tenfold on remaining in the cell for a couple of hours. In this connection it may be stated that the cells employed were made of hard glass. Of course, the amount of glass dissolved depends upon the exact nature of the latter, and was found to vary considerably with the different cells used, and at different intervals in the case of any one cell. The idea of introducing a correction for the solubility of the glass was abandoned, but the difficulty was overcome in another way. It was found that after the cells had been heated with water, acid, and alkali for several days, the amount of glass dissolved gradually decreased and finally amounted to practically nothing. After this treatment, as the cells were kept in a bath at 45° to 50° and the water in them changed once a day, the solubility of the glass at 65°

was always negligible. It is quite certain that for cups made and treated as above described the solubility of the glass does not stand in the way of accurate work up to 65°.

Since the solubility of glass increases very rapidly with the temperature above 65°, it was decided not to carry these measurements of conductivity to a temperature higher than 65°.

PREPARATION OF THE SOLUTIONS.

All of the substances used were obtained from Kahlbaum. These were purified by the method best adapted to each substance, and the purity of the compound tested in every case.

Whenever the nature of the compound permitted, the mother solution was prepared by directly weighing out the amount of the pure compound desired. In other cases the mother solution was standardized by the best gravimetric method available for that purpose. In the case of the organic acids the mother solution was frequently standardized by titration against a standard solution of an alkali.

Two sets of solutions of every compound were prepared—the one to be used for measurements from 0° to 35°, and the other set to be studied from 35° to 65°. The solutions to be used over the temperature range 0° to 35° were made up at 20°, and those solutions to be measured from 35° to 65° were generally made up at 50°, in vessels calibrated for 20° and 50° respectively. Since the coefficient of expansion of water increases greatly with the temperature, it is necessary to apply the proper correction to the conductivities of solutions taken at 35° and 65°, when the solutions were made up at 50°.

When a standard solution is cooled from 50° to 35° there is a contraction in volume and a consequent increase in the concentration of the solution. The value of μ_v for any solution would, therefore, be slightly too large. The value of μ_v as found must be multiplied by the factor 0.994 for results at 35° when the solutions were made up at 50°. The correction factor for solutions made up at 50° and used at 65° is 1.0076.

The coefficient of expansion for distilled water is somewhat less than that for an aqueous solution. However, the difference in the coefficients for water and for our most concentrated solution is so small that it is negligible.

By making use of the above correction it was necessary to prepare only one set of solutions for each salt for the temperature range, 35° to 65°; and, consequently, much pure material and time were saved.

By preparing one set of solutions to be used from 0° to 35°, and another set of solutions from entirely new material for use from 35° to 65°, we had a test of the purity of the material used, the proper standardization of the solutions, and the correctness of the conductivity values herein given. The two sets of solutions were both measured at 35°, and when discrepancies in the two sets of results, of appreciable order of magnitude, manifested themselves; as was inevitable in some cases where about 40,000 measurements were made, the work was repeated over the higher range in temperature, or over the lower range in temperature, or over the entire temperature range.

From these two mother solutions all of the more dilute solutions were prepared, directly or indirectly, using carefully calibrated flasks and burettes.

WATER.

All of the water used in this work was purified by the method worked out a number of years ago in this laboratory by Jones and Mackay.* It consisted in distilling the distilled water of the laboratory from chromic acid (potassium dichromate and sulphuric acid), which burned up any organic matter present in the water, and then redistilling the water from barium hydroxide. The sulphuric acid held back all ammonia formed from the organic substances, while the barium hydroxide combined all the carbon dioxide formed from the oxidation of the organic matter by the chromic acid.

When the water was distilled from barium hydroxide, it was distilled first from a Jena glass balloon-flask and the vapor conducted into a retort also containing a little of the hydroxide. The water-vapor after leaving the retort was condensed in a tube of block-tin. By this means 10 to 15 liters of water could be obtained daily, having a conductivity of from 0.8 to 1.0×10^{-6} at zero.

BATHS.

The baths used for obtaining the various temperatures were constructed as follows. The zero bath is shown in fig. 3. The bottom of the bath into which the cells were plunged was filled with finely powdered ice moistened with a little pure water. The air above the cells was kept at very nearly zero by suspending just above the cells a pan filled with finely crushed ice moistened with pure water. In this way the solutions whose conductivities were to be measured at zero were kept to within 0.01 to 0.02 of zero.

^{*}Amer. Chem. Journ., 19, 91 (1897).

The second temperature at which the conductivity measurements were made was at first taken as that of the hydrant water. A reasonably constant temperature could be obtained by allowing a rapid stream of hydrant water to flow through a large vessel of water. This was soon abandoned and a temperature of 10°, 12.5° or 15° was obtained as follows: A stream of hydrant water was allowed to flow through a large tub of water, which was warmed by a small flame placed beneath, and the temperature was regulated by the thermoregulator described by Reid.*

The higher temperatures, 25°, 35°, 50° and 65° were obtained as follows: The water-bath used had the form shown in fig. 4. It consisted of a double-walled

metal tub, the outer walls being 18 inches apart and the inner tub being 14 inches in diameter. The space between the two walls was filled with asbestos cement. which is a very poor conductor of heat. The inner vessel was filled with water, heated by a flame placed beneath and regulated by a thermoregulator. The top of the bath was covered with a neatly fitting piece of asbestos board. It was possible to keep any one of these baths to within 0.02° to 0.03° of the temperature desired. When working over the higher range in temperature the cells were kept over night in the 50° bath.

^{*}Amer. Chem. Journ., 41, 148 (1909).

INVESTIGATORS WHO HAVE WORKED ON THE PROBLEM.

The work recorded in this monograph has been done by twelve investigators, who have worked from one to nearly three years each upon the problem. Drs. Clover, Hosford, Howard, Kreider, Smith, and Winston worked one year each. Drs. Jacobson, Shaeffer, and Wight worked two years each, while Drs. Springer, West, and Wightman worked between two and three years each.

The following abbreviations are used after the name of the compound to show by whom the work in question was done; the first abbreviation referring to the investigator who worked over the range in temperature 0° to 35°, and the second abbreviation referring to the one who worked over the temperature range 35° to 65°. In a number of cases the same experimenter studied a given salt over both ranges in temperature. In these cases there is, of course, only one abbreviation.

C = Clover	J = Jacobson	Sm = Smith	Wt = Wight
H = Hosford	K = Kreider	Sp = Springer	Wm = Wightman
Hw = Howard	Sh = Shaeffer	W = West	Ws = Winston

THE RESULTS.

The volume of the solution, or the number of liters, that contain a gram-molecular weight of the electrolyte, is expressed by v. The molecular conductivity calculated by the equation $\mu_v = \frac{cva}{wb}$ is expressed by μ_v at the temperature in question; c being the constant of the cell, V the volume of the solution, a the reading on the arm of the bridge next to the rheostat, w the resistance in the box, and b the other arm of the bridge.

The percentage dissociation, represented by α , is calculated from the equation $\alpha = \frac{\mu_v}{\mu_{\infty}}$, μ_v being the molecular conductivity at the volume v, and μ_{∞} the molecular conductivity at complete dissociation.

The temperature coefficients are expressed both in "conductivity units" and in "per cent." The coefficients in "conductivity units" are calculated thus—

$$Coefficient = \frac{\mu_v t_1 - \mu_v t}{t_1 - t}$$

where t_1 is the higher temperature and t the lower temperature. The coefficient in "per cent" is calculated by dividing the coefficient in "conductivity units" by $\mu_{\nu}t$, i. e., by the molecular conductivity at the lower temperature.

The values of α for some of the salts are not given. This is the case with those salts for which the value of μ_{∞} was not nearly reached at the highest dilution used in this work. Such salts are nearly always strongly hydrolyzed by water, and this is the chief reason why the maximum molecular conductivity was not obtained at the highest dilutions employed. In such cases it is not possible to calculate even the approximate dissociation.

]	Сітні	јм (Chlor	IDE (J.	AND C	C.).		Lithii	им Вк	OMID	e (J.	AND W	T.).
		Mole	ecular C	Conduction	vity.			i	Molecul	ar Cor	ıductiı	vity.	
v	$\mu_v 0^{\circ}$	$\mu_v 11$.2° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25° $\mu_v 35$	5° $\mu_v 50^{\circ}$	$\rho \mid \mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 9.3^{\circ}$	$\mu_v 25^\circ$	$\rho \mid \mu_v 3$	5° μ _v 50°	$\rho \mid \mu_v 65^\circ$
2 8 16 32 128 512 1024 2048	41.33 47.27 49.20 51.11 53.96 55.55 56.08 57.34	55. 64. 67. 69. 73. 77. 78.	18 88 . 33 92 . 91 96 . 92 101	41 107 89 112 24 116 1.5 124 3.3 128 7.2 130	.2 136.7 .3 .7 149.8 .1 159.3 .6 165.2 .2 167.8	7 167.7 	2 4 8 16 32 128 512 1024	44.83 49.84 51.51 53.10 56.57 57.44 57.97	55.94 63.42 66.75 68.77 73.70 75.06 75.99	78.52 89.78 95.03 98.66 106.7 108.2	3 109 3 114 5 119 7 128 2 130	137.0 .5 139.3 .9 .5 150.7 .6 160.0 .6 169.7	186.4 198.0
2010	01.01	10.		, 1 100	100.0	210.0	2048	61.05	80.68	114.8			216.1
	F	Percei	ntage D	issociat	ion.			I	Percenta	ige Dis	ssocia	tion.	
v	a0°	a11	.2° a2	5° a35	° a50°	a65°	v	a0°	a9.3°	a25°	a35	ο° α50°	α65°
2 8 16 32 128 512 1024 2048	82.4 85.8 89.1 94.1 96.9 97.8	81 88 88 1 88 1 94 9 97 8 98	1.6 80 5.6 85 3.9 87 1.0 91 7.0 96 3.7 97	3.7 69 9.1 81 5.1 7.2 88 1.9 93 3.6 97 7.1 98 9.0 100	.1 80.6 3 88.4 .9 94.6 .3 97.5 .6 98.8	79.6 88.1 94.5 97.5 98.9	2 4 8 16 32 128 512 1024 2048	81.6 84.4 87.0 92.7 94.1	78.6 82.7 85.2 91.4 93.0 94.2	78.2 82.8 85.9 92.9 94.3 95.7 100.0	79 8 83 9 86 9 93 9 94 7 96	79.0 .2 80.4 .1	78.8 86.3 91.6
Tem	peratur	e Coe	efficient	s in Con	ductivity	Units.	Tem	perature	e Coeffic	cients i	n Con	ductivity	Units.
v	0-11.	2° 1	1.2–25°	25-35°	35–50°	50-65°	v	0-9.3	° 9.3-	25° 2	5–35°	35-50°	50-65°
2 8 16 32 128 512 1024 2048	1.5 1.6 1.6 1.7 1.9	51 52 58 79 90	1.49 1.75 1.85 1.91 2.00 2.08 2.15 2.28	1.65 1.88 1.94 2.04 2.26 2.23 2.30 2.35	1.69 1.97 2.21 2.35 2.44 2.49 2.49	1.76 2.07 2.39 2.65 2.67 2.72 2.74	2 4 8 16 32 128 512 1024 2048	1.1 1.4 1.6 1.6 1.8 1.8 1.9 2.3	$egin{array}{cccccccccccccccccccccccccccccccccccc$.43 .67 .80 .90 .10 .11 .16	1.75 1.97 1.99 2.08 2.19 2.24 2.34 2.35	1.99 2.08 2.10 2.61	2.09 2.07 2.38 2.53 2.93
	Temper	atur	e Coeffi	cients in	Per Cer	nt.		Temper	ature C	oefficie	ents in	Per Ce	nt.
v	0-11.	2° 1	1.2-25°	25-35°	35-50°	50-65°	v	0-9.3	° 9.3-	25° 2	5–35°	35-50°	50-65°
2 8 16 32 128 512 1024 2048	$\frac{3.4}{3.3}$	11 39 29 32 42	2.69 2.72 2.75 2.73 2.70 2.69 2.77 2.90	2.18 2.13 2.09 2.12 2.23 2.09 2.15 2.13	1.83 1.84 1.89 1.89 1.90 1.91 1.88	1.50 1.51 1.60 1.66 1.62 1.62 1.62	2 4 8 16 32 128 512 1024 2048	2.6 2.9 3.1 3.1 3.2 3.2 3.3 3.8	$egin{array}{cccccccccccccccccccccccccccccccccccc$.70 .91 .85 .81	2.23 2.19 2.09 2.11 2.05 2.07 2.13 2.05	1.82 1.74 1.63 2.00	1.52 1.49 1.58 1.58 1.72

Lı	LITHIUM NITRATE (J. AND W.)						L	ITHIUI	n Sul	PHATI	E (J.	AND V	V.)
	i	Molecu	lar Cor	aductiv	ity.			<i>N</i>	I olecule	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	μ _v 10°	μ _v 25°	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	μ _v 65°	v	μ_v 0°	$\mu_v 9.6^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
2 4 8 16 32 128 512 1024 2048	38.65 	52.29 57.79 60.32 62.51 66.88 68.07 69.47 70.01	70.56 79.71 84.16 87.39 93.29 96.03 98.01 100.03	82.20 96.99 100.9 105.1 112.2 115.6 117.8 121.0	119.6 128.6 138.2 150.1 154.2 160.3	157.7 170.1 184.9 192.4	2 4 8 16 32 128 512 1024 2048	47.08 66.74 75.50 82.15 96.81 104.6 108.1 111.8	61.97 88.18 100.2 109.5 129.0 139.1 143.8 148.0	89.59 128.4 144.5 159.3 188.5 202.8 211.4 219.5	154.9 175.3 194.0 230.3 248.3	. 168.8 9 197.3 3 0 245.7 8 290.5 8 324.3 8 336.3	207.8 242.7 301.8 302.3 405.0 425.5 430.8
	P	ercenta	ge Dis	sociati	on.			P	'ercenta	ge Dis	sociati	on.	
v	α0°	a10°	α25°	α35°	a50°	a65°	v	a0°	α9.6°	a25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048	73.8 83.6 97.7 90.2 97.4 98.3 99.2 100.0	74.7 82.5 86.2 98.3 95.5 97.2 99.2 100.0	70.4 79.5 83.9 87.1 93.0 95.7 97.7 100.0	80.2 83.4 86.9 92.7 95.5 97.4 100.0	74.6 80.2 86.2 93.6 96.2 100.0	74.0 79.7 86.0 93.5 93.5 100.0	2 4 8 16 32 128 512 1024 2048	42.1 59.7 67.5 73.5 86.6 93.8 96.7 100.0	41.9 59.6 67.7 74.0 87.2 94.0 97.2 100.0	58.5 65.8 72.6 85.9 92.4 96.3 100.0	57.8 65.4 72.4 85.9 92.7 96.6	49.8 58.2 72.5 85.7 95.7 99.3	48.2 56.3 70.0 84.1 94.0 98.7 100.0
·					uctivity			-				uctivity	
	$egin{array}{c cccc} 3 & 1.4 \\ 2 & 1.5 \\ 8 & 1.5 \\ 2 & 1.6 \\ 4 & 1.7 \\ \end{array}$	26 1. 10 1. 14 1. 152 1. 158 1. 155 1.	.35 .46 .59 .66 .76 .86 .90	-35° 3 1.64 . 1.67 . 1.70 . 1.77 . 1.89 . 1.96 . 1.98 .	35–50°	1.48 1.94 2.13 2.32 2.55 2.50		$egin{array}{c ccc} 2 & 2.8 \ 8 & 3.3 \ 2 & 3.4 \ 3.3 \ \end{array}$	55 1 23 2 57 2 85 3 35 3 59 4 72 4	.68 .25 .88 .23 .86 .14	5-35° 1.79	2.83 	50-65° 2.60 3.00 3.74 4.78 5.38 5.95 6.14
T	'empero	iture C	oefficie:	nts in I	Per Cen	ıt.	7	empere	ature C	oefficie	nts in	Per Cen	nt.
v	0-10)° 10–	25° 25	-35°	35–50°	50-65°	v	0-9.	6° 9.6-	-25° 25	5–35°	35–50°	50-65°
2 8 16 32 128 512 1024 2048	1 3 3.1 5 3.1 2 3.2 3 3.1 2 3.2 4 3.3		53 2 64 2 67 2 63 2 73 2 73 2	2.09 2.02 2.03 2.03 2.04	2.09	1.48 1.51 1.54 1.53 1.65 1.56 1.81		$egin{array}{cccccccccccccccccccccccccccccccccccc$	34 2 37 2 47 2 46 2 43 2 41 3	.55 .87 .96 .99 .98	2.00	1.83 1.78 1.74 2.04 2.00 2.09	1.54 1.52 1.52 1.64 1.66 1.77 1.81

So	ODIUM	Снго	RIDE	(Ѕн.	AND (C.).	s	ODIUN	и Вком	MIDE	(W. A	ND C	.).
		Molecule	ar Cone	ductiv	ity.				Molecule	ar Con	ductivit	y.	
v	μ_v 0°	$\mu_v 12.5^{\circ}$	μ _υ 25°	$\mu_v 35$	° µ _v 50°	μ_v65°	v	μ _v 0°	μ _v 11.8°	$\mu_v 25^\circ$	μ ₀ 35°	μ _v 50°	$\mu_v 65^\circ$
2 8 32 128 512 1024 2048 4096	48.1 53.5 57.5 60.4 62.3 61.6 62.2 62.6	66.4 74.7 80.6 84.9 87.8 86.9 88.0 88.3	112.6 116.4 115.4 116.8	104. 118. 129. 136. 141. 140. 140. 141.	5 150.5 5 164.3 3 175.4 2 181.1 0 183.2 9 184.7	184.5 201.0 214.7 222.9 225.5 228.5	2 8 16 32 128 512 1024 2048	51.46 55.36 57.35 58.79 61.23 63.02 64.48	69.24 75.26 78.17 80.03 84.35 87.17 89.34	91.9 100.3 105.1 107.7 113.3 116.8	129.1 136.7	151.4 164.5 174.6 180.1 180.9	$219.5 \\ 222.8$
		Percente	age Dis	socia	tion.				Percenta	ge Dis	sociatio	on.	
v	a0°	a12.5°	a25°	a35°	° a50°	a65°	v	a0°	a11.8°	α25°	a35°	a50°	a65°
2 8 32 128 512 1024 2048 4096	77.2 85.8 92.4 96.9 100.0 98.9 100.0 100.0	76.8 85.3 91.8 96.7 100.0 98.9 100.0 100.0	74.3 84.6 91.7 96.6 100.0 99.1 100.0 100.0	99. 100.	$egin{array}{cccc} 9 & 81.5 \\ 6 & 89.0 \\ 5 & 95.0 \\ 0 & 98.0 \\ 1 & 99.2 \\ 0 & 100.0 \end{array}$	80.7 88.0 94.0 97.5 98.7 100.0	2 8 16 32 128 512 1024 2048	79.8 85.9 88.9 91.2 95.0 97.7	77.5 84.2 87.5 89.6 94.4 97.6	75.9 82.8 86.8 88.9 93.6 96.4	83.8 90.7 96.1 98.7 99.4	83.2 90.4 95.9 98.9 99.4	81.1 88.5 93.7 96.7 98.2
Tem	peratur	re Coeffic	cients ir	n Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	n Cond	uctivity	Units.
v	0–12.	5° 12.5	-25° 25	5–35°	35-50°	50-65°	v	0-11	.8° 11.8	-25° 25	5-35° 3	35–50°	50-65°
2 8 32 128 512 1024 2048 4096	1.4 1.6 1.8 2.0 2.0 2.0 2.0	39 1 34 2 96 2 04 2 02 2 05 2	.89 .09 .21 .28 .28 .30	1.77 2.00 2.27 2.37 2.48 2.46 2.41 2.38	1.89 2.13 2.32 2.61 2.66 2.88 2.92	1.95 2.27 2.45 2.62 2.79 2.82 2.92	2 8 16 32 128 512 1024 2048	1. 1. 1. 1. 2.	69 1 76 2 80 2 96 2 04 2	.04 .10 .19	1.89 2.14 2.34 2.37	1.66 2.15 2.36 2.53 2.64 2.63 2.65	2.10 2.18 2.43 2.53 2.63 2.79 3.00
	Tempe	rature C	oefficie	nts in	Per Cer	ent. Temperature Coefficients in Per					Per Cer	nt.	
v	0-12.	5° 12.5	-25° 25	5–35°	35–50°	50–65°	v	0-11.	.8° 11.8-	-25° 25	5-35° 3	35–50°	50–65°
2 8 32 128 512 1024 2048 4096	3 3 3	15 2 24 2 24 2 27 2 27 2 28 2	.41 .59 .60 .59 .60	2.04 2.03 2.03 2.11 2.12 2.13 2.06 2.02	1.81 1.80 1.79 1.92 1.88 2.06 2.07	1.47 1.51 1.49 1.49 1.54 1.54	2 8 16 32 128 512 1024 2048	3. 3. 3. 3.	05 2 07 2 06 2 20 2 24 2	.61 .62 .60	1.88 1.99 2.07 2.03	1.56 1.80 1.83 1.85 1.88 1.86 1.86	1.60 1.44 1.48 1.45 1.46 1.54 1.65

	So	DIUM	Iodin	E (V	V.).		So	DIUM]	Nitra	ATE (J	. AND C	.).
	A	Iolecul	ar Con	ductiv	ity.			Mol	ecular	Conduc	ctivity.	
v	μ ₀ 0°	μ _v 16°	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ_v 0°	$\mu_v 25^\circ$	$\mu_v 35$	$5^{\circ} \mid \mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	51.90 55.26 57.03 58.62 60.97 61.81 63.14 64.15	77.22 83.52 86.36 89.02 93.20 94.91 96.28 98.40	92.73 100.4 104.2 107.4 112.5 114.7 116.4 119.1	136.3 139.3	9 146.2 6 152.6 8 6 163.4 8 173.2 3 180.6 8 187.0	187.5 200.2 213.2 222.0	2 8 16 32 128 512 1024 2048	43.34 50.27 52.57 55.38 59.28 59.34 59.39 59.93	78 90 97 101 107 111 114 116	9 111. 5 117. 8 122. 7 128. 8 134. 0 138.	3 141.1 5 5 155.7 9 164.8 8 171.0 5 173.0	146.0 171.4 189.0 201.3 209.6 213.2 213.2
	P	ercenta	ge Dis	sociati	ion.			Perc	entage	Dissoc	ciation.	
v	a0°	al6°	a25°	a35°	ο α50°	a65°	v	a0°	α25°	α35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	80.5 85.7 88.4 90.9 94.5 95.8 97.9 100.0	78.5 84.9 87.8 90.5 94.7 96.5 97.8 100.0	77.9 84.3 87.5 90.2 94.5 96.3 97.7 100.0	84.3 87.3 90.4 94.3 96.4 98.3 100.	78.2 2 81.6 1 4 87.4 7 92.6 4 96.6 1 100.0	80.1 85.5 91.1 94.8	2 8 16 32 128 512 1024 2048	72.3 83.9 86.1 92.4 98.9 99.0 99.8 100.0	67.0 77.9 83.0 86.9 92.3 95.3 97.3	78. 6 83. 9 86. 8 91. 5 95. 8 98.	9 80.5 3 9 88.9 4 94.1 6 97.6 2 98.8	68.5 80.4 88.6 94.4 98.3 100.0 100.0
Temp					luctivity		Tempero				'onductivit	
v	0-10	6° 16-	25° 25	-35°	35-50°	50-65°	v	0-25	5° 2	25–35°	35-50°	50-65°
	$egin{array}{c ccc} 2 & 1.9 \\ 8 & 2.0 \\ 2 & 2.0 \\ 4 & 2.0 \\ \end{array}$	77 1 83 1 90 2 01 2 07 2	.88 .98 .04 .14 .20 .24	1.88 2.12 2.16 2.32 2.43 2.46 2.54 2.54	2.02 2.13 2.19 2.43 2.75 3.01	2.19 2.33 2.46 2.67 2.76 3.14	2 8 16 32 128 512 1024 2048	1. 1. 1. 1. 2. 2.	39 62 79 83 94 08 18 27	1.36 2.04 2.00 2.12 2.12 2.35 2.45 2.44	1.89 1.99 	1.73 2.02 2.22 2.43 2.57 2.67 2.53
T	'emper	ature C	oefficie	nts in	Per Cer	nt.	Ten	nperatu	re Coe	fficients	in Per C	ent.
v	0-10	6° 16-	25° 25	-35°	35-50°	50-65°	v	0-25	0 2	25–35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 3.3 \\ 8 & 3.3 \\ 2 & 3.3 \\ 4 & 3.3 \\ \end{array}$	20 2 21 2 24 2 30 2 35 2 28 2		2.03 2.11 2.07 2.16 2.16 2.14 2.18 2.13	1.74 1.75 1.68 1.78 1.98 2.12	1.49 1.52 1.50 1.54 1.53 1.67	2 8 16 32 128 512 1024 2048	3. 3. 3. 3.	21 22 41 30 27 51 68 79	1.74 2.24 2.44 2.05 1.94 2.11 2.15 2.09	2.06 1.79 1.80 1.86 1.78 1.56 1.62	1.44 1.43 1.43 1.47 1.50 1.54 1.44

	Son	oium C	HLOR	ATE	(Ѕн.).			Son	IUM PE	RCHLORA	TE (SI	г.).
		Molecule	ar Con	ductii	vity.				Molecul	ar Conduc	tivity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 3$	5° μ _v 50°	μ_v65°		v	$\mu_v 0^{\circ}$	μ _v 12–5°	μ _v 25°	μ _v 35°
2 8 32 128 512 1024 2048	41.6 47.4 51.7 54.7 56.0 56.2 56.1	57.5 66.1 72.4 76.9 78.9 79.0 78.8	74.7 86.7 95.0 101.1 104.6 104.1 104.1	122 . 127 .	4 132.1 2 151.6 5 158.4 0 165.2 3 167.8	3 186.3 1 198.7 2 204.4 3 211.3		8 32 128 512 1024	49.4 53.2 56.6 57.0 56.8	68.9 74.5 79.2 80.0 79.7	90.2 98.3 104.1 105.7 105.4	108.0 118.1 126.2 127.8 127.8
	Percentage Dissociation.								Percente	age Dissoc	iation.	
v	a0°	α12.5°	a25°	a35	° a50°	a65°		v	a0°	a12.5°	a25°	a35°
2 8 32 128 512 1024 2048	74.0 84.3 91.9 97.3 99.8 100.0 99.7	72.8 83.6 91.6 97.3 100.0 100.0 99.7	71.4 82.9 90.8 96.6 100.0	70. 81. 90. 96. 100.	4 78.5 7 90.0 4 94.1	88.1 94.0 96.7 100.0		8 32 128 512 1024	88.4 93.3 99.3 100.0 99.6	86.2 93.1 99.0 100.0 99.6	84.5 93.0 98.5 100.0 99.7	84.5 92.4 98.7 99.9 100.0
Temp	perature	e Coeffic	ients in	Con	ductivity	Units.	Ter	nperatu	re Coeffic	ients in Co	nductivi	ty Units.
v	0-12	.5° 12.5-	-25° 25	–35°	35-50°	50-65°		v	0-12.5	° 12.5	-25°	25-35°
	3 1.7 2 1.8 4 1.8	50 1. 56 1. 78 1. 33 2. 32 2.	66 1 80 2 94 2 05 2 01 2	1.53 1.77 2.02 2.14 2.36 2.22 2.17	1.85 2.43 2.40 2.55 2.77 2.83	2.15 2.31 2.69 2.61 2.90 2.72		8 32 128 512 1024	1 1 1 1	70 81 84	1.70 1.89 1.99 2.05 2.06	1.78 1.98 2.21 2.21 2.24
′	Гетрег	ature Co	efficier	ıts in	Per Cer	nt.		Temp	erature C	oefficients [.]	in Per C	'ent.
v	0-12	.5 12.5-	25° 25	-35°	35-50°	50-65°		v	0-12.5	° 12.5	-25°	25-35°
32 128 512 1024 2048	3 3.1 2 3.2 3 3.2 2 3.2 4 3.2	12 2. 21 2. 25 2. 26 2. 24 2.	41 2 49 2 53 2 64 2 54 2	2.04 2.05 2.12 2.12 2.25 2.13 2.09	1.82 2.12 1.96 2.01 2.19 2.25	1.62 1.52 1.69 1.58 1.78 1.62		8 32 128 512 1024	3 3 3 3	20 20 22	2.47 2.54 2.52 2.56 2.57	2.00 2.01 2.12 2.09 2.12

So	DIUM	SULPI	HATE	(Ws.	AND (C.).		Son	ium C	ARBO	NATE	(W.).	
		Molecui	'ar Con	ductiv	ity.				Molecu	lar Co	nductii	vity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	μ ₀ 25°	$\mu_v 35$	$\rho \mid \mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 15.3$	$\mu_v 25$	° µv35	6° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
512 1024 2048	$\begin{array}{c} 94.51 \\ 107.54 \\ 117.46 \\ 119.65 \\ 125.95 \end{array}$	111.46 132.72 152.49 166.24 169.61 176.08	146.40 176.76 203.10 221.21 226.34 235.35	178.2 215.1 247.0 269.5 276.9 287.0	4 221.8 9 262.2 2 320.4 0 353.2 2	274.3 337.2 399.0 437.9	2 4 8 16 32 128 512 1024	50.90 70.70 79.75 87.28 99.16 105.8 110.8	78.94 109.1 123.8 134.7 155.4 166.9 173.9	100. 137. 155. 170. 197. 209. 218.	. 145. 8 168. 4 8 209. 9 241. 6 258.	9 190.9 5 219.6 0 272.1 9 318.3 0 336.7	237.9 271.9 343.4 403.3 424.7
		Percen	tage Di	ssocia	tion.			1	Percento	ige Dis	ssociati	ion.	
v	a0°	α12.5°	a25°	a35°	a50°	a65°	v	a0°	α15.3°	α25°	α35	° a50°	a65°
2 4 8 32 128 512 1024 2048 4096	53.6 61.4 73.9 84.1 91.9 93.6 98.5 100.0	53.7 61.4 73.1 84.0 91.6 93.4 97.0 100.0	72.6 83.4 90.9 93.0 96.7	53.2 60.8 73.0 83.9 91.8 94.0 97.4	59.0 69.7 9 85.2 5 93.9 0	58.5 71.9 85.1 93.4	2 4 8 16 32 128 512 1024						
Tem	peratur	e Coeffi	cients i	n Cone	luctivity	Units.	Temp	peratur	e Coeffi	cients	in Con	ductivity	Units.
v	0-12	.5° 12.5	-25° 25	5-35°	35-50°	50-65°	v	0-15	.3° 15.3	3-25° 2	25–35°	35-50°	50-65°
	$egin{array}{c cccc} 8 & 3.5 \ 2 & 3.9 \ 4 & 4.0 \ 8 & 4.0 \ \end{array}$	33 2 05 3 59 4 00 4 00 4 01 4	.80 .52 .05 .40 .54	2.76 3.18 3.84 4.39 4.83 5.06 5.17 5.11	2.91 3.13 4.90 5.58 5.71 5.43	2.19 3.50 5.00 5.24 5.65 5.99 6.18		$egin{array}{c cccc} 3 & 2.3 \\ 2 & 3.3 \\ 3.4 & 3.4 \\ 2 & 3.4 \\ \end{array}$	51 2 88 3 10 3 67 4 99 4	2.21	3.07 3.82 4.40 4.84 5.16	3.00 3.41 4.21 5.09 5.25 5.36	3.13 3.49 4.74 5.67 5.87 5.96
	Temper	ature C	oefficie	nts in	Per Cer	ıt.	,	Temper	rature C	loeffici	ents in	Per Cer	nt.
v	v 0-12.5° 12.5-25° 25-35° 35-50° 50-							0-15	.3° 15.3	3-25° 2	25–35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 3.2 \ 3.3 \ 2 & 3.3 \ 4 & 3.3 \ 3.1 \ \end{array}$	35 2 33 2 34 2 32 2 34 2 .8 2	.59 .51 .65 .66 .65 .68 .69	2.14 2.17 2.17 2.16 2.18 2.19 2.20 2.10	1.63 1.46 2.00 2.07 2.00 1.84	1.27 1.58 1.91 1.64 1.60 1.61 1.64	1024	1 3 3.6 3 3.6 2 3.6 3 3.7 2 3.7	55 2 61 2 55 2 70 2 77 2	2.80 . 2.716477826462	2.23 2.24 2.22 2.39 2.37	2.05 2.02 2.00 2.10 2.04 1.99	1.64 1.59 1.74 1.78 1.74 1.70

	Disor		Acid S		PHATE		Sodium	Ammon	TIUM AC (SH.).	ір Рно	SPHATE
	Λ	Iolecul	ar Cond	luctivit	y.			Molecul	ar Conduc	ctivity.	_
v	μ _v 0°	μ _v 25°	μ _v 30°	$\mu_v 35^{\circ}$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$
16 32 128 512 1024 2048	67.3 75.0 88.4 91.7 91.9 92.0	$182.3 \\ 183.7$	164.5 188.1 203.8 205.2	164.3 182.4 212.1 231.6 236.4 240.3	215.3 238.7 278.4 304.7 310.2 315.6	$\frac{384.6}{393.2}$	8 32 128 512 1024 2048	65.6 84.4 96.5 100.7 104.7 103.9	119.2 136.7 141.4 145.7 144.7	158.7 181.4 186.4 193.6 190.9	$221.6 \\ 235.2$
	P	ercento	ıge Diss	ociatio	n.			Percente	ige Disso	ciation.	
\overline{v}	α0° α25° α30° α35° α50° α65°				a65°	v	a0°	a12.5°	a25°	a35°	
16 32 128 512 1024 2048	68.8 81.5 96.1 99.7 99.9 100.0	72.5 80.3 91.5 99.1 99.8 100.0	72.1 79.8 91.2 98.8 99.5 100.0	68.4 75.9 88.3 96.4 98.4 100.0	75.9 75.6 74 88.3 88.2 87 96.4 96.5 96 98.4 98.3 98		8 32 128 512 1024 2048	62.6 80.6 91.3 96.3 100.0 99.2	81.7 93.1 97.0 100.0 99.3	81.9 93.7 96.2 100.0 98.6	92.1 94.2
Temp	erature	Coeffic	cients in	Condu	ctivity	Units.	Temperate	ure Coeffic	cients in C	Conductiv	ity Units.
v	0-	25°	25–30°	35-	50°	50–65°	v	0-12.	5° 12.	5-25°	25-35°
	2 8 2 4	2.64 2.91 3.21 3.62 3.67 3.68	3.04 3.34 3.90 4.30 4.30 4.44	3 1 4 1 4 1 4	3.40 3.75 4.42 4.87 4.92 5.02	3.55 4.02 4.83 5.33 5.53 5.56	32 128 512 1024 2048	$\begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$	2.78 3.21 3.26 3.36 3.36	3.16 3.57 3.60 3.83 3.70	2.78 3.52 3.52 4.16 3.83
T	empera	ture Co	efficien	ts in P	er Cen	t.	Temp	erature Co	pefficients	in Per C	'ent.
v	0-:	25°	25-30°	35-	50°	50-65°	v	0-12.	5° 12.	5–25°	25–35°
1024 2048	$\begin{bmatrix} 2 \\ 8 \\ 2 \\ 4 \end{bmatrix}$	4.17 3.88 3.63 3.95 3.99 4.00	2.28 2.26 2.32 2.35 2.34 2.41	2 2 2 2 2	.07 .06 .08 .10 .08	1.65 1.69 1.73 1.75 1.78 1.76	5128 5128 512 1024 2048	2 3 3 3 2 3 4 3		2.65 2.61 2.54 2.62 2.55	1.49 1.62 1.58 1.76 1.67

Son	DIUM H	ERROC	YANI	DE (H	I. AND	Hw.).		Sodiu	м Тет (W		DRATE D H.)	(Bor.	AX)	
		Molecul	ar Con	ductii	vity.		Molecular Conductivity.							
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25$	° µ _v 35	6° $\mu_v 50^{\circ}$	$\mu_{i}65^{\circ}$	
8 16 32 128 512 1024 2048 4096	136.7 151.3 167.1 203.5 234.2 253.4 266.4 275.7	194.9 215.5 238.5 289.6 334.1 361.7 380.3 398.1	287.0 318.5 385.9 446.4 482.4 504.0	347 . 386 . 3 464 . 3 543 . 3 581 . 3	4 386 . 89 7 418 . 90 2 487 . 25 5 594 . 44 2 730 . 35 2 781 . 99 0 804 . 49 2 803 . 06	508.69 593.80 727.68 909.86 979.35 1000.84	16 32 128 512 1024 2048 4096	57.99 64.36 72.87 78.04 79.20 83.45 85.50	92.74	125.4 141.7 152.0 153.4 161.2	19 154 .072 174 10 187 10 189 10 189	$37 \dots 31 207.3$	256.2 281.6 316.7	
		Percente	nge Di	ssocia	tion.				Percenta	ige Di	ssociat	ion.		
v	α0°	α12.5°	a25°	a35	° a50°	a65°	v	a0°	a12.5°	a25°	α35	° a50°	a65°	
2048	49.58 54.88 60.61 73.81 84.95 91.91 96.63 100.00	48.96 54.13 59.91 72.74 83.92 90.86 95.53 100.00	60.43 73.21 84.69 91.52 95.62	55.0 61.0 73.4 85.9 91.9 96.8	0 52.07 0 60.57 7 73.89 2 90.78 3 97.20 1 100.00	50.83 59.33 72.71 90.91 97.85 100.00	16 32 128 512 1024 2048 4096	67.8 75.3 85.3 91.3 92.7 97.6 100.0	68.5 75.8 85.7 91.8 92.6 97.8 100.0	69. 76. 86. 92. 93. 98. 100.	5 76. 4 86. 7 92. 5 93. 3 97.	3 75.8 1 82.9 7 91.3 4 8 100.0	71.3 78.4 7 88.1	
Tem	peratur	e Coeffic	ients i	n Con	ductivitį	Units.	Tem	peratur	e Coeffic	cients	in Con	ductivit	y Units.	
v	0-12	.5° 12.5-	-25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	25–35°	35-50°	50-65°	
10 3 12 51 102 2048 4096	2 5.7 8 6.8 2 7.9 4 8.6 8 9.1	14 5. 71 6. 89 7. 99 8. 66 9.	.72 .40 .70 .98 .66 .90	5.42 6.07 6.77 7.86 9.68 9.88 0.80 0.51	4.90 4.75 6.73 8.66 12.48 13.38 12.83 11.39	5.51 5.99 7.10 8.88 11.90 13.16 13.09 11.06	10 32 128 512 102- 2048 4096	2 2. 3 2. 2 2. 4 2. 3 2.	27 2 56 2 73 3 73 3 89 3	.38 .62 .95 .18 .21 .33 .34	2.63 2.91 3.28 3.60 3.60 3.71 3.87	2.87 3.29 3.31 4.00 4.80	3.23 3.48 3.83 4.59 5.93	
	Tempe	rature C	oefficie	ents in	Per Ce	nt.		Tempe	rature C	oeffici	ents in	Per Ce	nt.	
v	0-12	.5° 12.5-	-25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	25–35°	35-50°	50–65°	
10 32 128 512 1024 2048 4096	3.4 2 3.4 3 3.3 2 3.4 4 3.4 3 3.4	10 2. 12 2. 139 2. 11 2. 12 2. 12 2.	65 68 66 69 67 60	2.09 2.12 2.13 2.04 2.17 2.05 2.14 2.00	1.56 1.37 1.74 1.86 2.29 2.30 2.09 1.80	1.42 1.43 1.46 1.49 1.63 1.68 1.63 1.38	16 32 128 512 1024 2048 4096	2 3.6 3 3.6 2 3.6 4 3.4 3 3.4	53 2 51 2 50 2 45 2 46 2	.84 .83 .82 .83 .83 .79 .73	2.32 2.32 2.32 2.37 2.35 2.30 2.36	2.05 2.13 1.89 2.13 	1.76 1.71 1.71 1.85 	

	So	DIUM .	ACETA	ATE (W	V.).			Рота	SSIUM	CHLOR	DE (V	V. ANI	р С.).	
		Molecu	lar Con	aductivit	y.				Mole	ecular Co	nductii	vity.		
v	μ _v 0°	$\mu_v 13.6^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^{\circ}$	v	μ _v 0°	$\mu_v4.3^{\circ}$	$\mu_v 15.5^\circ$	$\mu_v 25^{\circ}$	μ_v35°	$\mu_v 50^\circ$	μ_v65°
2 4 8 16 32 128 512 1024 2048	28.39 34.30 36.37 38.11 40.41 41.21 40.65 41.28	41.93 	54.8 66.2 70.1 73.8 78.3 80.1 79.1 80.1	5 81.09 7 86.01 1 90.55 2 96.43 4 99.34 2 98.6	97.28 106.0 117.9 125.7 129.3	131.7 147.7 157.5	2 8 16 32 128 512 1024 2048	62.96 66.47 68.40 70.27 73.00 74.24 75.14	70.09 74.48 76.95 78.95 82.25 83.59 84.59	91.09 98.24 101.5 104.9 109.4 111.9	109.5 118.6 122.9 126.8 132.4 135.5 137.0	142.5 147.7 152.5 159.9	179.1 192.8 204.3 209.1	$255.8 \\ 258.3$
	1	Percenta	ge Diss	sociation	ı.				Pere	centage D	issocia	tion.	-	
v	a0°	α13.6°	a25°	a35°	a50°	a65°	v	a0°	a4.3°	a15.5°	a25°	a35°	a50°	α65°
2 4 8 16 32 128 512 1024 2048	68.9 83.2 88.3 92.2 98.1 100.0 100.0	82.3 87.4 91.8 97.7 100.0 100.0	82. 87. 92. 97. 100. 100.	7 81.6 6 86.6 1 91.2 7 97.1 0 100.0 0 100.0	74.6 81.3 90.4 96.4 99.2	80.1 89.8 95.7 98.9	2 8 16 32 128 512 1024 2048	83.8 88.5 91.0 93.5 97.2 98.8 100.0	82.9 88.0 91.0 93.3 97.2 98.8 100.0	80.7 87.0 89.9 92.0 96.9 99.1 100.0	89.7 92.6 96.6 98.9	86.2 89.3 92.2 96.7 99.5	84.4 90.9 96.3 98.6 98.8	83.3 90.3 95.3 98.6
Temp	peratur	e Coeffic	ients ir	n Condu	ctivity \	Units.	T	'empera	ture Co	efficients	in Con	ductivit	ty Units	
v	0-13	.6° 13.6	3–25°	25-35°	35-50°	50–65°	v	0-4.3	3° 4.3-1	15.5° 15.5	5-25° 2	5–35°	35–50°	50-65°
2 4 8 16 32 128 512 1024 2048	1. 1. 1. 1. 1.	21 29 36 46 50	1.13 1.36 1.43 1.51 1.59 1.62 1.58 1.59	1.22 1.48 1.58 1.67 1.81 1.92 1.95 1.93	1.73 1.82 1.95 2.00	1.58 1.71 1.99 2.12 2.23	2 8 16 32 128 512 1024 2048	1.8 1.9 2.0 2.1 2.1 2.2	6 2 9 2 2 2 5 2 7 2	$egin{array}{c ccc} .12 & 2 \\ .19 & 2 \\ .32 & 2 \\ .42 & 2 \\ .53 & 2 \\ \end{array}$.94 .14 .25 .31 .42 .48	2.13 2.39 2.48 2.57 2.75 2.75 2.84	2.07 2.44 2.69 2.96 3.07 3.08	2.12 2.45 2.75 2.85 3.11 3.11 3.15
	Tempe	rature C	oefficie	nts in P	er Ceni	.		Ter	nperatu	re Coeffic	cients is	n Per C	Cent.	
v	0-13	.6° 13.6	3-25°	25–35°	35–50°	50–65°	v	0-4.3	3° 4.3–1	15.5° 15.5	5-25° 2	5–35°	35–50°	50-65°
2 4 8 16 32 128 512 1024 2048	3. 3. 3. 3. 3.	53 52 57 61 67	2.69 2.68 2.66 2.67 2.64 2.63 2.58 2.57	2.22 2.23 2.25 2.26 2.31 2.38 2.46 2.41	2.13 2.01 2.02 2.01 2.09	1.62 1.61 1.69 1.69 1.72	2 8 16 32 128 512 1024 2048	$egin{array}{c c} 2.78 \\ 2.9 \\ 2.86 \\ 2.96 \\ 2.96 \\ 2.96 \\ 2.96 \\ \end{array}$	$egin{array}{c cccc} 8 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 3 & 2 & 3 & 3$.80 2 .85 2 .94 2 .94 2 .03 2	1.13 1.18 1.22 1.20 1.21 1.22 1.25	1.94 2.01 2.02 2.03 2.08 2.03 2.07	1.58 1.71 1.76 1.85 1.88 1.86	1.31 1.37 1.43 1.40 1.49 1.47 1.49

P	OTASS	тим Вн	OMID	E (W.	AND	C.).		Po	TASSIU	м Іо	DIDE	(W.).	
		Molecul	ar Cone	ductivi	ty.				Molecul	ar Con	iductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 14.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 10.1^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 8 16 32 128 512 1024 2048	65.82 68.01 70.10 71.84 74.79 75.73 79.23	93.21 98.45 101.7 104.6 109.0 111.3 115.6	114.4 121.3 125.2 128.8 134.5 137.6 143.5	136.2 145.6 150.5 154.6 162.0 165.5 172.6	181.4 195.3 206.0 211.6	218.1 236.5 250.0 256.6 260.3	2 4 8 16 32 128 512 1024 2048	65.78 68.45 70.17 71.90 74.41 76.35 77.77 79.20	83.88 	112.8 120.7 124.5 128.0 133.7 137.3 141.8 147.2	144. 148. 153. 160. 165. 170.	. 174.8 5 181.5 4 0 194.2 2 202.0 9 213.3 9 217.6	$248.0 \\ 261.4$
	j	Percenta	ge Diss	sociatio	on.				Percenta	ge Dis	sociati	ion.	
v	a0°	α14.5°	a25°	a35°	α50°	a65°	v	a0°	a10.1°	a25°	a35°	ο α50°	a65°
2 8 16 32 128 512 1024 2048	83.1 85.8 88.5 90.8 94.4 95.6 100.0	80.6 85.2 88.0 90.5 94.3 96.3 100.0	79.7 84.5 87.2 89.8 93.7 95.9 100.0	78.9 84.4 87.2 89.6 93.9 95.9 100.0	83.7 90.1 95.1 97.6	82.7 89.7 94.8 97.3 98.7	2 4 8 16 32 128 512 1024 2048	83.1 86.4 88.6 90.8 94.0 96.4 98.2 100.0	80.0 84.1 86.3 89.0 92.1 94.3 97.1 100.0	76.6 82.0 84.6 87.0 90.8 93.3 96.3 100.0	81. 83. 83. 86. 890. 893. 93.	80.3 5 83.4 7 3 89.2 4 92.8 6 98.0 4 100.0	87.9 92.5 97.5
Tem		e Coeffic					Temp		e Coeffic				
	2 1.8 8 2.3 6 2.3 2 2.3 8 2.3 2 2.4 4 2.8	10 2. 18 2. 26 2. 35 2. 45 2.	02 2 18 2 24 2 30 2 43 2 50 2	-35° 2.18 2.18 2.43 2.53 . 2.58 2.75 2.79 2.91	1.93 2.39 2.71 2.93 3.07 2.73	2.11 2.45 2.75 2.93 3.00 3.11 3.13	4	2 1. 4 8 1. 6 2. 2 2. 2 2. 4 2.	95 2 01 2 12 2 20 2 23 2 39 2	.94 .94 .18 .28 .33 .48 .58 .68 .84	5-35° 2.09 2.38 2.39 2.50 2.65 2.86 2.91 3.00	35–50° 2.47 2.75 2.79 3.16 3.11	2.53 2.65 2.77 3.07 3.22 3.37
	Temper	rature C	oefficier	nts in	Per Cer	nt.	2	Temper	rature C	oefficie	ents in	Per Cer	nt.
v	0-14	.5° 14.5-	-25° 25	-35°	35–50°	50-65°	v	0-10	0.1° 10.1	-25° 2	5–35°	35–50°	50-65°
102 204	$egin{array}{c cccc} 2 & 3.1 \\ 8 & 3.1 \\ 2 & 3.1 \\ 4 & 3.1 \\ \end{array}$	$egin{array}{cccc} 09 & 2 \ 07 & 2 \ 15 & 2 \ 14 & 2 \ 24 & 2 \ \end{array}$.21 2 .20 2 .20 2 .23 2 .25 3	1.90 2.00 2.02 2.02 2.04 2.03 2.03	1.42 1.64 1.75 1.81 1.86 1.58	1.28 1.35 1.41 1.42 1.42 1.46 1.45		4 8 2. 6 2. 2 2. 8 2. 2 2. 4 3.	84 2 86 2 95 2 96 2 92 2 07 2	.31 .47 .52 .50 .57 .61 .63	1.85 1.97 1.92 1.95 1.98 2.08 2.05 2.04	1.71 1.80 1.74 1.90 1.82	1.45 1.46 1.43 1.52 1.51 1.55

Po	OTASSI	um Ni	TRATI	E (W.	AND	C.).		Рота	SSIUM	Сньс	ORATE	(Ѕн.)	
		Molecule	ar Cone	ductivi	ity.				Molecule	ar Cone	ductivii	y.	
v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
2 8 16 32 128 512 1024 2048	61.94 65.33 67.92 72.05 76.34	69.67 80.22 84.31 87.78 93.57 98.71 99.80	95.21 111.0 116.3 121.3 129.5 137.0 139.6	159	3 182.0 7 194.1 1 199.8 2 202.7	199.6 220.4 235.4 242.1 245.2	8 32 128 512 1024 2048 4096	58.9 64.3 68.5 70.1 70.6 71.2 72.4	80.8 88.3 94.2 96.7 97.7 98.4 100.7	104.7 115.2 122.8 126.1 127.8 128.4 131.4	124.9 137.3 146.5 150.9 153.1 154.0 157.6	173.4 185.0 193.4 197.4	211.9 228.8 239.1 241.5 244.9
		Percenta	ige Dis	sociati	ion.			i	Percenta	ge Dis	sociatio	on.	
v	a0°	α10°	a25°	a35°	a50°	a65°	. v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	70.8 81.2 85.6 89.0 94.4 100.0 100.0	69.8 80.4 84.5 88.0 93.8 98.9 100.0	68.2 79.5 83.3 86.9 92.8 98.1 100.0	70.4 81.9 90.3 96.1 98.9 100.0	81.5 89.9 1 95.9 9 98.7 0 100.0	81.0 89.4 95.5 98.3 99.5	8 32 128 512 1024 2048 4096	81.3 88.8 94.6 96.8 97.5 98.3 100.0	80.2 87.6 93.5 96.0 97.2 97.7 100.0	79.7 87.5 93.2 95.9 97.2 97.7 100.0	79.2 87.1 92.9 95.7 97.1 97.7 100.0	84.9 90.6 94.6 96.6 98.2	84.8 91.6 95.7 96.7 98.0
Tem	peratur	e Coeffic	ients in	n Cond	luctivity	Units.	Temp	peratur	e Coeffic	ients ir	a Cond	uctivity	Units.
v	0-10	0° 10-	25° 25	5-35°	35-50°	50–65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50–65°
	$ \begin{array}{c cccc} 2 & 1.9 \\ 8 & 2.5 \\ 2 & 2.5 \\ 4 & 2.5 \end{array} $	83 2 90 2 99 2 15 2 24 2 35 2	.05 .13 .23 .40 .55 .65	1.80 2.08 2.40 2.52 2.21 2.16	1.87 2.21 2.45 2.63 2.71 2.77 2.77	1.91 2.31 2.56 2.75 2.82 2.83 2.91	31 128 511 1024 2048 4096	8 2.0 2 2.1 4 2.1 8 2.1	94 2 07 2 12 2 15 2 18 2	.15 .29 .35 .42 .44	2.02 2.21 2.36 2.48 2.52 2.56 2.62	2.24 2.41 2.57 2.83 2.95 3.12 3.12	2.23 2.57 2.92 3.05 2.94 2.94 3.03
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie:	nts in .	Per Cer	nt.
v	0-1	0° 10-	25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°
1024 512 2048	$ \begin{array}{c cccc} 2 & 2 & 2 & \\ 8 & 2 & 2 & \\ 2 & 3 & 3 & \\ \end{array} $	$egin{array}{c cccc} 95 & 2 \\ 91 & 2 \\ 93 & 2 \\ 98 & 2 \\ 93 & 2 \\ \end{array}$.56 .53 .54 .56 .58	1.89 1.87 1.98 1.95 1.61 1.53	1.65 1.68 1.69 1.70 1.70 1.72 1.72	1.35 1.40 1.41 1.42 1.41 1.40 1.44	32 128 512 1024 2048 4096	3 2.9 2 3.0 4 3.0 3 3.0	$egin{array}{c c} 00 & 2 \ 90 & 2 \ 02 & 2 \ 04 & 2 \ 06 & 2 \ \end{array}$.43 .42 .43 .47 .47	1.93 1.93 1.92 1.95 1.97 1.98 1.98	1.78 1.76 1.76 1.87 1.92 2.01 1.97	1.40 1.48 1.57 1.57 1.49 1.46 1.48

]	Potas	sium P	ERCH	LORA	TE (SI	н.).	Po	OTASSI	um Su	LPHA	re (1	W AND	C.).	
		Moleculo	ar Con	ductiv	ity.		Molecular Conductivity.							
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	μ_v 35	° $\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 9.5°	μ _v 25°	$\mu_v 35$	5° μ _v 50°	$\mu_v 65^\circ$	
32 128 512 1024 2048 4096	65.1 68.9 71.7 72.0 73.3 74.3	$98.2 \\ 99.5$	116.9 125.1 129.0 130.7 132.6 134.5	149. 154. 155. 158.	5 191.2 2 194.3 3 195.9 6 200.0	2 232.7 3 237.7 9 240.6 0 244.2	2 8 16 32 128 512 1024	87.19 101.9 109.9 117.9 131.9 142.7 145.0	110.1 130.5 140.9 151.5 170.3 184.0 187.0	152.6 183.6 199.2 214.4 242.1 263.5 268.0	181 220 259 296 319 328	3 276.3 7 329.3 9 376.0 6 406.3	7 332.8 2 400.0 0 456.2 7 500.7	
		Percenta	ge Dis	sociat	ion.			I	Percenta	ge Diss	ociati	ion.		
v	a0°	α12.5°	a25°	a35°	a50°	a65°	v	a0°	a9.5°	a25°	a 35	° a50°	a65°	
32 128 512 1024 2048 4096	87.6 92.7 96.5 97.0 98.6 100.0	87.6 92.5 95.7 96.9 98.5 100.0	86.9 93.0 95.9 97.1 98.5 100.0	86. 93. 95. 96. 98.	0 92.1 3 94.1 6 94.9 6 96.9	92.4 94.2 95.7 97.2	2 8 16 32 128 512 1024							
Temp	peratur	e Coeffic	ients in	n Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	Con	ductivity	Units.	
v	0-12	.5° 12.5-	-25° 25	5-35°	35-50°	50-65°	v	0-9.5	5° 9.5-	25° 25	-35°	35-50°	50-65°	
32 128 512 1024 2048 4096	$egin{array}{c c} 3 & 2.0 \ 2 & 2.1 \ 4 & 2.2 \ 3 & 2.2 \ \end{array}$	08 2. 12 2. 20 2. 23 2.	40 46 49 51	2.27 2.44 2.52 2.56 2.60 2.62	2.56 2.71 2.67 2.71 2.76 3.05	2.61 2.83 2.89 2.98 2.94 2.99	2 8 16 32 128 512 1024	3.0 3.2 3.5 4.0 4.5	01 3. 06 3. 04 4. 04 4. 03 5.	43 76 06 63 13	2.85 3.67 4.53 5.48 5.61 3.02	2.91 3.76 4.63 5.27 5.81 6.09	2.83 3.74 4.72 5.35 6.27 6.23	
	Тетрег	cature Co	efficie	nts in	Per Cer	nt.	7		ature Co	pefficie	nts in	Per Ce	nt.	
\overline{v}	0-12	.5° 12.5-	25° 25	-35°	35-50°	50-65°	v	0-9.5	5° 9.5-	25° 25	-35°	35-50°	50-65°	
32 128 512 1024 2048 4096	3 3.0 2 2.9 4 3.0 3 3.0)2 2. 95 2. 95 2. 94 2.	52 60 50 48	1.94 1.95 1.95 1.95 1.96 1.94	1.83 1.81 1.73 1.74 1.67 1.87	1.46 1.48 1.48 1.52 1.47 1.45	2 8 16 32 128 512 1024	2.9 2.9 3.0 3.0 3.0 3.0	5 2. 7 2. 90 2. 96 2. 95 2.	63 67 61 72 79	1.87 2.00 2.11 2.26 2.13 2.25	1.61 1.71 1.78 1.77 1.82 1.86	1.26 1.35 1.43 1.42 1.54 1.48	

P	OTASS	іим А	CID S	ULPH	ATE (W.).	Рот	ASSIU	M CAR	BONA'	re (W	. AND	Hw.).
		Molecul	ar Con	ductivi	ity.				Molecul	ar Con	ductivit	y.	
v	μ _v 0°	μ _v 12.5°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ _v 0°	μ _v 17.8°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
2 4 8 16 32 128 512 2048 8192	153.8 182.1 201.2 223.6 263.1 291.8 290.9 291.2	222.9 248.8 280.7 336.9 383.9 385.8 401.0	207.6 254.2 286.6 323.7 401.0 467.1 478.2 496.0	220.6 274.1 310.0 353.1 446.4 531.0 556.6 569.0	265.8 298.8 1 388.4 1 502.9 0 616.0 6 675.0	313.3 408.9 536.7 675.6	2 8 16 32 128 512	84.34 98.74 105.3 112.9 122.3 131.2	129.2 154.1 166.5 179.6 197.6 211.1	180.9 195.3 210.5 233.6	191.45 216.87 228.87 263.89	5237.57 278.66 296.51 340.18	228.63 291.17 341.86 369.42 424.50 468.12
	i	Percenta	ge Diss	sociati	on.			1	Percentag	ge Diss	sociatio	n.	
v	a0°	α12.5°	a25°	α35°	a50°	a65°	v	a0°	α17.8°	a25°	α35°	α50°	a65°
2 4 8 16 32 128 512 2048 8192							2 8 16 32 128 512	64.3 75.3 80.3 86.0 93.2 100.0	61.2 73.0 78.9 85.1 93.6 100.0	60.0 72.3 78.1 84.2 93.4 100.0	67.3 76.3 80.5 92.8	78.3 89.8	48.8 62.3 73.0 78.9 90.7 100.0
Temp	peratur	e Coeffic	ients ir	n Cond	luctivity	Units.	Tem	peratur	e Coeffic	ients ir	n Condu	ıctivity	Units.
v	0–12	.5° 12.5-	-25° 25	-35°	35–50°	50-65°	v	0-17	7.8° 17.8	-25° 28	5–35° 3	35-50°	50–65°
4	$egin{array}{c cccc} 2 & 4.8 \ 8 & 5.9 \ 2 & 7.8 \ 8 & 7.8 \ \end{array}$	32 2 31 3 57 3 90 5 37 6 59 7	.50 .02 .44 .13 .66	1.30	1.65 2.35 3.77 5.66 7.89	0.87 0.97 1.37 2.25 3.97 4.80		$\begin{bmatrix} 2 & 3 \\ 8 & 4 \end{bmatrix}$	11 3 44 4 75 4 23 5	.90 .72 .00 .29 .00		2.73 3.07 4.12 4.51 5.09 6.29	1.95 2.57 4.21 4.86 5.62 5.89
	Temper	rature C	oefficie	nts in	Per Ce	nt.		Tempe	rature C	oefficie	nts in l	Per Cen	nt.
v	0-12	.5° 12.5-	-25° 25	5–35°	35–50°	50-65°	v	0-17	7.8° 17.8	-25° 25	5–35° 3	35–50°	50–65°
32 128 512 2048 8192	8 2.1 6 1.8 2 2.0 8 2.2 3.2 8 2.6	10 1 39 1 04 1 24 1 21 1	.12 .21 .23 .52 .73 .92	0.78 0.82 0.91 1.13 1.37 1.64	0.60 0.67 0.85 1.07 1.42	0.33 0.32 0.35 0.45 0.64 0.71	10 3 12 51	$\begin{bmatrix} 2 & 3 \\ 8 & 3 \end{bmatrix}$	$egin{array}{c ccc} 15 & 2 \ 26 & 2 \ 32 & 2 \ 46 & 2 \ \end{array}$.41 .40 .39		1.73 1.60 1.90 1.97 1.93 2.21	0.98 1.08 1.51 1.64 1.32 1.26

Dı-	Ротая		ACID I		PHATE	(Ws.		Рота	ssium (Phos K ₃ PO	$_{4}^{\mathrm{PHAT}}$	E (Sн.).
		Molecu	lar Co	nductii	vity.				Molecui	lar Con	ductii	rity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	μ_v65°	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	μ_v 35	° µ ₁ 50°	$\mu_v 65^\circ$
512 1024 2048	91.69 102.47 107.76 109.35 110.47	$109.25 \\ 127.42$	143.3 167.6 188.1 199.4 200.5 206.1	$egin{array}{c} 1\ 203\ .\ 8\ 0\ 230\ .\ 7\ 0\ 239\ .\ 8\ 2\ 242\ .\ 6\ 3\ 242\ .\ 5 \end{array}$	01		8 32 128 512 1024 2048 4096	116.6 144.1 178.9 193.7 192.1 190.0 179.0	163.8 206.7 207.7 274.7 271.5 268.3 252.0	217.2 280.3 348.2 366.1 362.5 359.3 336.7	263. 344. 425. 442. 440. 437. 407.	2 453.6 2 552.2 8 574.6 1 565.1 2 549.5	566.1 685.7 707.6 697.3 676.2
		Percente	age Di	ssociat	ion.				Percente	age Dis	sociat	ion.	
\overline{v}	a0°	α12.5°	a25°	a35°	α50°	a65°	v	a0°	a12.5°	a25°	α35	a50°	a65°
2 8 32 128 512 1024 2048 4096	57.0 71.7 83.0 92.8 97.6 99.0 100.0 97.0	55.3 69.6 81.1 90.7 96.1 96.9 100.0 98.7	54.8 69.3 81.3 91.3 96.7 97.3 100.0 98.0	6 69.3 8 81.3 8 92.9 7 95.7 96.3 96.3	8 3 0 7 7		8 32 128 512 1024 2048	60.2 74.4 92.9 100.0 99.2 98.0	59.6 75.2 93.8 100.0 98.8 97.3	59.3 76.5 95.1 100.0 99.0 98.1	77. 96. 100.	7 78.7 0 96.1 0 100.0 3 98.3	80.0 96.9 100.0 98.5
Tem					ductivity	Units.	Temp	1	e Coeffic				Units.
v	0-12	.5° 12.5	-25° 2	5-35°	35-50°	50-65°	v		2.5° 12.5	-25° 25	5–35°	35-50°	50-65°
	$egin{array}{c cccc} 8 & 3.1 \ 2 & 3.4 \ 4 & 3.4 \ 8 & 3.7 \ \end{array}$	40 2 86 3 19 3 45 3 43 3 73 3	.10 .73 .22 .66 .88 .85 .93	3.62 4.26			3: 12: 51: 102- 204: 409:	8 6.3 2 6.4 4 6.3 8 6.3	$egin{array}{c c} 00 & 5 \ 30 & 7 \ 48 & 7 \ 35 & 7 \ 26 & 7 \ \end{array}$.88 .24 .31 .28 .28	4.64 6.39 7.70 7.67 7.76 7.79 7.09	4.73 7.29 8.46 8.78 8.33 7.49 7.30	5.40 7.50 8.90 8.87 8.81 8.45 8.65
	Temper	rature C	oefficie	ents in	Per Cer	it.		Temper	rature C	oefficie	nts in	Per Cer	nt.
v	0-12	.5° 12.5-	-25° 2	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35-50°	50-65°
	8 3.1 2 3.2 4 3.1 8 3.3	03 2 05 2 11 2 20 2 14 2 38 2	. 42 . 50 . 53 . 57 . 57 . 54 . 50 . 43	2.22 2.21 2.16 2.27 2.03 2.10 1.77 2.42			32 128 512 1024 2048 4096	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	54 2 50 2 34 2 30 2 29 2	.85 .81 .66 .68	2.13 2.24 2.21 2.10 2.14 2.14 2.14	1.79 2.04 1.99 1.98 1.89 1.71 1.81	1.61 1.65 1.61 1.54 1.56 1.53 1.67

	Рота			oium S Hw.)	ULPHA?	re		Ротая	ssium I		EL St Hw.)		re
		Molect	ılar C	onducti	vity.			M	!olecular	Cond	uctivity	· .	
v	$\mu_v 0^{\circ}$	$\mu_v 12.8$	$\delta^{\circ} \mu_v 2$	$5^{\circ} \mid \mu_v 3 $	5° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	ρ μυ50°	$\mu_v 65^\circ$
4 8 32 128 512 1024 2048 4096	88.4 96.1 113.0 128.8 135.6 140.8 140.9 144.3	122. 146. 158. 179. 189. 197. 198. 202.	5 170 1 207 0 236 6 250 1 259 2 261	.6 209 .2 249 .1 284 .8 301 .2 313 .4 316	6 225.22 1 251.1 7 301.6 5 345.9 0 375.4 2 382.6 2 395.5 1 427.4	5367.39 7424.23 7455.59 9469.31 9489.05	32 128 512 1024 2048 4090	122.6 155.4 187.5 219.6 235.5 249.5 268.0	170.7 217.0 263.0 309.3 331.2 349.9 367.9	221.9 283.8 344.8 407.7 437.1 463.0 487.4	339.7 414.1 490.7 527.1 560.1	1 547.33 7 655.16 1 695.98 1 752.23	5407.67 3527.29 3659.73 5798.45 3850.20 2927.00 4960.54
	j	Percen	tage L)issocia	tion.				Percenta	ge Dis	sociati	on.	
v	a0°	α12.5	α2	5° a35	° a50°	α65°	v	a0°	a12.5°.	α25°	a35°	α50°	a65°
4 8 32 128 512 1024 2048 4096	61.3 66.6 78.3 89.3 94.0 97.6 97.6	60. 72. 78. 88. 93. 97. 97.	4 63 0 77 4 88 6 93 3 96 8 97	.7 64 .4 77 .2 88 .7 93 .7 97 .7 98	.9 58.76 .5 70.57 .4 80.94 .5 87.84 .3 89.51	5 58.56 7 70.45 8 81.34 8 87.36 8 99.99 9 93.77	8 32 128 512 1024 2048 4096	47.0 59.6 71.9 84.2 90.3 95.7 100.0	46.4 59.0 71.5 84.1 90.0 95.1 100.0	45.5 58.2 70.7 83.6 89.7 95.0 10.0	57.8 7 70.4 8 83.4 7 89.6 95.5	8 55.76 4 69.64 4 83.36 6 88.55	54.90 68.68 83.13 88.51 96.51
Temp	peratur	e Coeff	icients	in Con	ductivity	Units.	Temp	peratur	e Coeffic	ients i	n Cond	luctivity	Units.
v	0-12	.5° 12.	5–25°	25-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35–50°	50-65°
	8 4.0 2 4.3 4 4.3 8 4.3	04 68 02 32 50 58	2.92 1.92 3.93 4.57 4.90 4.97 5.06 5.20	3.06 3.85 4.25 4.84 5.02 5.40 5.48 5.45		3.17 3.61 4.38 5.22 5.34 5.78 6.24 6.25	31 12 51 102 204 409	$egin{array}{c cccc} 8 & 6.8 \ 2 & 7.4 \ 8 & 8.8 \ \end{array}$	93 5 04 6 18 7 66 8 03 9	.10 .32 .54 .87 .47 .05 .56			4.28 5.94 7.49 9.55 10.28 11.65 11.64
	Tempe	rature	Coeffic	cients ir	Per Ce	nt.		Temper	rature C	oefficie	ents in	Per Cer	nt.
v	0-12	.5° 12.	5–25°	25-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
	3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	30 26 12 19 20 25	2.38 1.30 2.49 2.55 2.58 2.52 2.55 2.56	1.92 1.79 2.05 2.05 2.00 2.08 2.10 2.04		1.41 1.44 1.45 1.51 1.42 1.51 1.58 1.46	3: 12: 51: 102: 204: 409:	8 3. 2 3. 4 3. 8 3.	$egin{array}{c ccc} 17 & 2 \\ 22 & 2 \\ 27 & 2 \\ 25 & 2 \\ 22 & 2 \\ \end{array}$.40 .45 .48 .54 .56 .59 .60	1.96 1.97 2.01 2.04 2.06 2.09 2.07		1.25 1.36 1.37 1.46 1.48 1.55 1.48

P	OTASS	((H. AN	MIUM S D Hw. Variet	•	TE	F	OTAS	(CHRO H. AN	D Hw	•	ATE
		Mole	cular C	onductiv	ity.				Mole	cular C	onducti	vity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.8$	5° $\mu_v 25$	$^{\circ}$ $\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.$	5° $\mu_v 25$	$ \mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	μ _v 65°
512 1024 2048	75.8 87.3 99.0 127.0 161.1 186.6 213.3 245.8	105. 121. 138. 179. 232. 271. 314. 364.	2 157. 1 179. 5 236. 0 311. 6 369. 2 428.	3 185.3 6 211.3 7 279.9 5 374.5 6 443.8 8 520.6	201.86 219.21 271.70 363.28 499.67 586.07 701.81 818.02	242.04 276.73 339.90 467.30 658.91 785.37 928.44 1082.97	16 32 128 512 1024 2048	101.0 119.3 137.8 177.7 210.9 229.7 247.0 273.1	130 154 179 234 283 310 339 379	0 188. 3 219. 4 290. 5 359. 9 399. 5 441.	1 213. 5 249. 6 333. 1 426. 6 479. 3 539.	6 221.47 2 252.44 3 318.16 5 437.81 6 618.30 0 658.54 1 753.80 2 848.62	279.35 352.59 485.99 699.33 771.94 903.28
		Perce	ntage I	Dissociat	ion.	and the second s			Perce	ntage I	Dissocia	tion.	
v	a0°	α12.	5° α2	5° α35	5° α50°	a65°	v	a0°	α12	.5° α2	25° a3	5° α50°	a65°
8 16 32 32 128 128 512 512 1024 1024 2048 2048 4096 4096 Temperature Coefficients in Conductivity Units. Temperature Coefficients in Conductivity Units.											Units.		
v	0-12	2.5° 12	2.5–25°	25-35°	35-50°	50-65°	v	0-1:	2.5° 1	2.5–25°	25-35°	35–50°	50–65°
1 3 12 51 102 204 409	2 3. 8 4. 2 5. 4 6. 8 8.	71 13 20 67 80 07	2.42 2.89 3.32 4.58 6.36 7.84 9.17 10.82	2.41 2.80 3.17 4.32 6.30 7.42 9.18 11.38	2.83 2.26 4.03 5.56 8.35 9.55 12.08 13.61	2.68 3.83 4.55 6.93 10.62 13.29 15.11 17.66	1 3 12 51 102 204 409	6 2. 2 3. 8 4. 2 5. 4 6. 8 7.	33 78 32 54 81 50 40 50	2.26 2.73 3.22 4.50 6.05 7.10 8.14 9.67	2.12 2.51 2.98 4.29 6.75 7.94 9.78 11.59		1.78 1.79 2.30 3.21 5.40 7.56 9.97 11.23
	Tempe	rature	e Coeffi	cients in	Per Cer	nt.		Tempe	ratur	e Coeffi	cients i	n Per Ce	nt.
v	0-12	2.5° 12	2.5–25°	25-35°	35-50°	50-65°	v	0-13	2.5° 1	2.5–25°	25-35	35–50°	50–65°
102 51: 102 204: 409	2 3. 8 3. 2 3. 4 3. 8 3.	10 16 31 52 64 78	2.31 2.38 2.40 2.55 2.74 2.89 2.92 2.97	1.78 1.78 1.77 1.82 2.02 2.01 2.14 2.28	1.77 1.22 1.90 1.99 2.23 2.15 2.32 2.22	1.33 1.28 1.67 1.91 2.15 2.27 2.15 2.16	1 3 12 51 102 204 409	6 2. 2 2. 8 2. 2 2. 4 2. 8 3.	31 33 41 55 76 83 00 11	1.74 1.77 1.80 1.92 2.13 2.28 2.40 2.55	1.34 1.33 1.36 1.48 1.88 1.99 2.22 2.32		0.80 0.71 0.72 0.73 0.87 1.15 1.32 1.32

	Рота	(Ws.			GANATE		Por	rassit	лм Сн	ROMAT	те (Ј	. AND	C.).
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductivi	ty.	
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ \mid$	$\mu_v 65^{\circ}$	v	μ_v 0°	$\mu_v 12.2^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
8 32 128 512 1024 2048 4096	59.34 63.75 66.76 66.46 64.65 63.72 62.64	87.13 91.38 91.14 89.05 86.61	113.70 119.31 117.90 113.95 110.80	136.0 142.4 141.4 137.0 133.0	6 159 . 16 15 171 . 71 .2 181 . 98 .9 185 . 19 19 182 . 45 12 183 . 16 17 178 . 59	208.58 3222.22 226.46 3215.95 3215.22	2 8 16 32 128 512 1024 2048	96.50 111.3 117.8 124.6 140.1 147.1 150.1 151.4	128.1 151.9 163.5 173.7 191.1 205.5 209.2 211.5	$\begin{array}{c} 213.5 \\ 227.2 \\ 252.9 \\ 272.0 \\ 276.2 \end{array}$	256.0 272.0 303.0 327.8 330.2	297.5 343.8 389.4 415.0	468.5
		Percenta	ge Dis	sociat	ion.				Percente	age Dis	sociati	on.	
v	a0°	α12.5°	a25°	a35°	ο α50°	a65°	\overline{v}	a0°	α12.2°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048 4096	88.8 95.4 100.0 99.5 96.8 95.4 93.8	87.7 95.3 100.0 99.7 97.4 94.8 96.2	87.5 95.3 100.0 98.8 95.5 92.9 93.7	95. 100. 99. 96. 93.	5 92.72 0 98.27 4 100.00 3 98.52 4 98.90	92.10 98.13 100.00 95.36 95.04	2 8 16 32 128 512 1024 2048	63.7 73.5 77.8 82.3 92.5 97.2 99.1 100.0	60.6 71.8 77.3 82.1 90.4 97.2 98.9 100.0	70.0 76.3 81.2 90.4 97.2 98.7	70.4 76.6 81.4 90.6 98.3	1	
Tem;	peratur	e Coeffic	cients i	n Con	ductivity	Units.	Tem	peratur	e Coeffic	cients in	n Cond	uctivity	Units.
v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°	v	0-12	2.2° 12.2	-25° 25	5–35°	35–50°	50-65°
	$egin{array}{c ccc} 2 & 1.5 \\ 4 & 1.5 \\ 8 & 1.5 \\ \end{array}$	87 2 97 2 97 2 95 1 83 1	.13 .23 .14	2.04 2.24 2.31 2.36 2.31 2.22 2.22	2.29 2.38 2.64 2.91 3.02 3.34 2.97	2.29 2.46 2.68 2.75 2.23 2.14 1.78		8 3. 6 3. 2 4. 8 4. 2 4. 4 4.	35 3 74 3 04 4 18 4 78 5 84 5	.45 .90 .17 .82 .19 .23	3.18 3.94 4.25 4.48 5.01 5.44 5.40 5.44	3.44 4.16 4.79 5.76 5.81	3.12 4.01 4.91 5.27 6.57
	Tempe	rature C	oefficie	ents in	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50–65°	v	0-12	2.2° 12.2	25° 25	5–35°	35-50°	50-65°
	$ \begin{array}{c cccc} 2 & 2 & \\ 4 & 3 & \\ 8 & 2 & \end{array} $	93 2 95 2 96 2 02 2 87 2	.24	1.96 1.97 1.94 2.00 2.03 2.00 1.99	1.84 1.75 1.85 2.06 2.20 2.51 2.22	1.44 1.43 1.47 1.48 1.22 1.17 1.00		8 3. 6 3. 2 3. 8 2. 3. 4 3.	00 2 17 2 24 2 98 2 24 2 22 2	.27 .39 .40 .52 .53	1.92 2.01 1.99 1.97 1.98 2.00 1.96 1.94	1.74 1.77 1.76 1.90 1.77	1.25 1.35 1.43 1.35 1.58

Por	TASSIU	M DIC	HROM.	ATE (J. AND	W.).	F	POTAS	SIUM	FERI	ROCYA	NID	E (W	.).
		Molecul	ar Con	ductiv	ity.				Molec	ılar C	onduct	ivity	·.	
v	$\mu_v 0^{\circ}$	μ _v 12.6°	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 13.$	1° μ _ν 2	25° μ_v	35°	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
4 8 16 32 128 512 1024 2048	109.1 116.6 122.6 129.9 133.0 133.6 136.8	150.8 161.5 168.8 178.8 182.5 185.7 188.8	195.5 209.3 219.4 231.5 237.3 240.6 245.5	248. 260. 277. 281. 287.	8 9 327.3 3 346.0 2 351.7 9	352.9 396.9 417.9 426.8	4 8 16 32 128 512 1024 2048 8192	162.1 168.8 179.9 195.6 236.1 280.7 295.1 315.0 328.0	255. 277. 335. 399. 421. 449.	8 305 0 327 0 357 5 432 4 516 4 546 0 578	5.1 364 7.1 394 7.8 430 2.8 523 5.6 623 6.5 660 703	4.5 4.1 0.7 3.8	915.4	543.0 651.0
		Percenta	ge Dis	sociat	ion.				Percen	tage 1	Dissoci	ation	ı.	
v	a0°	α12.6°	α25°	a35°	α50°	a65°	v	a0°	α13.1	° a2	5° α3	85°	α50°	a65°
4 8 16 32 128 512 1024 2048	4 74.3 8 79.8 79.9 79.6 79.6 79.8 16 85.2 85.5 85.3 84.7 32 89.6 89.4 89.4 88.9 89.3 128 95.0 94.7 94.3 94.4 94.4 512 97.2 96.7 96.7 95.8 96.0 124 97.7 98.4 98.0 98.1						4 8 16 32 128 512 1024 2048 8192	49.4 51.5 54.8 59.6 72.0 85.6 90.0 96.0 100.0	50. 54. 59. 71. 85. 90. 96.	7 50 6 54 3 59 8 72 5 86 2 91 1 96	0.9 50 4.6 5- 9.7 59 2.3 79 3.2 80 1.2 99 3.4 99	7.2 0.3 4.4 9.5 2.3 6.6 1.2 7.1	44.0 47.8 56.8 70.4 86.9 97.2 100.0	47.1 56.4 70.1 87.2 97.2
		e Coeffic	1				ļ				1			Units.
	4 8 3. 6 3. 2 3. 8 3. 4 4.	56 3 66 4 88 4 93 4 13 4		5-35° 3.85 3.95 4.15 4.39 4.45 4.73 4.81	3.89 	3.65 4.03 4.64 4.79 5.01 5.50		4 4. 8 5. 6 5. 2 6. 8 7. 2 9. 4 9. 8 10.	23	5.29 5.74 6.06 6.79 8.18 9.75 10.51 10.84	5.47 5.94 6.70 7.29 9.10 11.04 11.35 12.50	7 1 1 0) 0) 1 1 5	5-50° 4.85 5.74 6.95 9.29 2.78 4.16 4.60	5.41 6.16 7.73 9.68 12.51 13.73 14.08
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	erature	Coeffi	cients	in P	er Cer	ıt.
v	0-12	2.6° 12.6	-25° 25	5–35°	35-50°	50-65°	v	0-13	3.1° 13	.1–25	25-35	° 3	5-50°	50-65°
	$egin{array}{c ccc} 2 & 2. \\ 8 & 2. \\ 2 & 2. \\ 4 & 3. \end{array}$	$egin{array}{c c} 05 & 2 \\ 98 & 2 \\ 99 & 2 \\ 95 & 2 \\ 09 & 2 \\ \end{array}$.38 .42 .38 .42 .39	1.97 1.89 1.89 1.90 1.88 1.97 1.96	1.58 1.70 1.65 1.67	1.34 1.37 1.42 1.38 1.42 		8 3. 6 3. 2 3. 8 3. 2 3. 4 3. 8 3.	.91 .08 .19 .17 .21 .22 .27 .24 .23	2.36 2.42 2.38 2.45 2.44 2.47 2.49 2.41 2.37	1.97 1.62 2.03 2.04 2.10 2.14 2.08 2.16 2.09	2 5 1 1 1 3	1.42 1.58 1.61 1.77 2.04 2.01 2.01	1.30 1.36 1.44 1.46 1.53 1.50 1.50

Рота	ASSIUM	ALUM	INIUM	SULPHAT	Е (Н.).	Po	OTASS!	UM ACE	TATE (W	Vs. and	C.).
		Molecul	ar Condu	ctivity.				Molecular	Conducti	ivty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$ μ	$\mu_v 35^{\circ} \mu_v 50$	$ \mu_v 65^\circ $	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$ μ	$\mu_v 25^\circ \mid \mu_v 3$	65° $\mu_v 50$	$\circ \mid \mu_v 65$
4 8 32 128 512 1024 2048 4096	78.9 101.2 127.6 158.8 177.8 197.5 218.8	108.9 140.8 177.7 223.7 250.5 281.8 314.7	140.3 1 182.2 2 232.9 2 294.9 3 332.7 4 378.4 4	42.3 172. 65.3 207. 215.7 255. 883.7 356. 558.3 446. 102.8	5 240.6 1 317.4 9 426.2 9 557.1	4 8 16 32 64 128 256 512 1024 2048 4096	46.13 48.60 53.09 55.57 57.17 58.33 59.24 59.06	73.59 9 77.43 10 79.91 10 81.14 10 82.09 10	33 . 35 . 99 38 . 43 105 	.77	6 177. 0 190. 3 199. 1 203. 7 210.
		Percenta	ge Disso	ciation.			i	Percentage	Dissocia	tion.	
v	a0°	α12.5°	α25°	a35° a50°	α 65°	v	a0°	α12.5°	25° a3	5° α50°	α65°
4 8 32 128 512 1024 2048 4096						4 8 16 32 64 128 256 512 1024 2048 4096	77.8 82.0 89.6 93.7 96.4 98.4 100.0 99.6	81.8 89.7 94.4 97.4 98.9 100.0	76.6 76 81.3 81 89.5 90 93.9 94 96.7 97 98.3 99 99.7 99 00.0 100	.5	7 84.0 90.3 4 94.7
Temp	oeratur	e Coeffic	ients in C	Conductivity	y Units.	Temp	erature	Coefficien	its in Con	ductivity	Units.
v	0–12	.5° 12.5-	-25° 25–3	35-50°	50–65°	v	0–12	.5° 12.5–25	5° 25–35°	35-50°	50–65°
32 128 512 1024 2048 4096	2 3.1 8 4.0 2 5.1 4 5.8 8 6.7	17 3. 01 4. 19 5. 31 6. 74 7.	51 2.8 31 3.3 42 5.0 69 6.3 57 7.0 73 9.3 86 10.3	$egin{array}{c c} 35 & 2.63 \\ 08 & 4.88 \\ 34 & 5.91 \\ 01 & \dots \\ 16 & 10.42 \\ \end{array}$	1.57 2.21 4.15 4.62 7.35	16 32 64 128 256 512 1024 2048 4096	3 1.4 3 1.6 3 1.7 3 1.8 4 1.8 3 1.8	1.71 34 1.90 75 1.98 32 2.06 33 2.06 33 2.11	1 1.74 2.02 3 2.09 2 2.17 3 2.23 2 14	2.40 2.46	1.88 2.17 2.36 2.49 2.57 2.94
,	Temper	cature Co	efficients	s in Per Ce	ent.	7	l'emper	ature Coef	ficients in	Per Ce	nt.
v	0-12	.5° 12.5-	·25° 25-3	5° 35–50°	50–65°	v	0-12	.5° 12.5–25	5° 25–35°	35-50°	50–65°
32 128 512 1024 2048 4096	3 3.0 2 3.1 3 3.1 2 3.2 4 3.2 3 3.4	13 2. 14 2. 27 2. 27 2. 11 2.	30 1.3 35 1.8 49 2.1 54 2.1 62 2.1 74 2.4 82 2.4	34 1.22 18 1.72 15 1.65 11 42 2.22	0.87 1.06 1.63 1.29 1.64	4 8 16 32 64 128 256 512 1024 2048 4096	3.0 3.0 3.1 3.1 3.1 3.1	$egin{array}{c cccc} 2.58 & 2.58 \ \hline 2.58 & 2.58 \ \hline & \ \hline & 2.54 \ 2.54 \ 2.54 \ 2.57 \ \hline \ 2.57 \ 2.58 \ \hline \ 2.58 \ \hline$	$\begin{bmatrix} 1.97 \\ 2.07 \\ 2.05 \\ 2.06 \\ 2.09 \\ 1.97 \end{bmatrix}$	1.95	1.46 1.50 1.52 1.53 1.56 1.76

	Potass	SIUM SU	LPHOCY.	ANATE (J. AND (C.).	Ам	MONIU	м Снь	ORIDI	E (W	. AND	C.).
		Mole	cular Con	ductivity.					lolecula	r Cond	luctivi	ity.	
\overline{v}	$\mu_v 0^\circ$	$\mu_v 13.5^{\circ}$	$\mu_v 25^{\circ}$ μ	$u_v30^\circ \mid \mu_v3$	$\mu_v 50$)° μ _v 65°	v	$\mu_v 0^{\circ}$	$\mu_v 14.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	57.75 62.48 64.26 65.99 70.70 71.28 72.25 72.86	87.87 90.81 93.39 100.1 101.2 102.6	110.9 1 115.4 1 118.7 1 127.3 1 129.8 1 131.5 1	10.2	2.9 166. 2.3 179. 3.3 190. 3.7 192.	7 201.8 6 219.6 0 232.4 6 239.3	2 8 16 32 128 512 1024 2048	$73.08 \\ 74.39$	96.11 99.26 102.4 107.6 109.8	109.2 118.6 123.2 127.6 133.4 136.8 137.8	129.9 142.3 148.3 153.7 161.1 165.4 167.3	8 179.4 2 7 194.0 4 206.2 4 211.4	235.9 251.1 259.5 269.7
		Perce	entage Dis	sociation.				P	ercentag	e Diss	ociati	ion.	
v	a0°	a13.5°	a25°	130° a3	5° α50	° a65°	v	a0°	α14.5°	a25°	a35°	ο α50°	a65°
2 4 8 16 32 128 512 1024 2048	79.3 85.8 88.2 90.6 97.0 97.8 99.2 100.0	77.2 85.3 88.2 90.7 97.2 98.3 99.6 100.0	83.0 86.3 88.8 95.2 97.1 98.4	82.8 86.1 88.8 94.6 92	77. 2.4 80. 83.3 87. 92.6 92. 5.4 93. 0.0 100.	8 80.4 0 87.5 1 92.6 3 95.4	2 8 16 32 128 512 1024 2048	84.0 88.4 90.8 93.8 97.6 99.4 100.0	81.3 87.0 89.8 92.7 97.4 99.4 100.0	79.2 86.1 89.4 92.6 96.8 99.3 100.0	77. 85. 88. 91. 96. 98.	4 82.2 6 9 88.9 5 94.4 9 96.8	81.8 88.9 94.6 97.8
	Temper	ature Coe	efficients i	n Conduc	tivity Uni	its.	Temp					luctivity	Units.
v	0-13.5°	13.5-25	5° 25–30°	30-35°	35-50°	50-65°	v	0-14.	5° 14.5–	25° 25	-35°	35–50°	50-65°
2 4 8 16 32 128 512 1024 2048	1.31 1.88 1.97 2.04 2.18 2.23 2.26 2.24	2.00 2.14 2.18 2.38 2.46 2.49	2.20 2.28 2.41 2.42 2.50 2.56	2.20 2.42 1.99 2.28	2.17 2.25 2.49 2.74 2.60	2.06 2.34 2.67 2.83 3.11 2.97		$egin{array}{c ccc} 2 & 2.22 \\ 8 & 2.33 \\ 2 & 2.44 \\ 4 & 2.44 \\ \end{array}$	6 2. 5 2. 2 2. 8 2. 4 2.	14 28 340 346 357 35	2.07 2.42 2.50 2.61 2.80 2.86 2.94	2.10 2.44 2.69 2.99 3.07 3.15	2.17 2.51 2.79 2.99 3.21 3.69 3.14
	Ter	nperatur	e Coefficie	ents in Pe	r Cent.			Tempero	ature Co	efficier	nts in	Per Cer	nt.
v	0-13.5	13.5–25	5° 25-30°	30-35°	35-50°	50-65°	v	0–14.	5° 14.5-	25° 25	-35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	3.00 3.07 3.09 3.08 3.13 3.13 3.07	2.28 2.36 2.33 2.38 2.43 2.43 2.43	1.98 1.98 2.03 1.90 1.93 1.95	1.80 1.85 1.43 1.60	1.70 1.69 1.75 1.84 1.69	1.29 1.40 1.49 1.49 1.62		$egin{array}{c cccc} 2 & 3.10 \\ 8 & 3.20 \\ 2 & 3.20 \\ 4 & 3.20 \\ \end{array}$	$egin{array}{c ccc} 1 & 2. \\ 6 & 2. \\ 6 & 2. \\ 9 & 2. \\ \end{array}$	23 3 30 3 34 3 29 3 34 3	1.90 2.02 2.02 2.04 2.10 2.09 2.13	1.61 1.71 1.75 1.85 1.86 1.89	1.34 1.40 1.44 1.45 1.52 1.72 1.44

	Амп	MONIUM	Bro	MIDE	(W.).		Тет	RAETH	HYL AM	MONI	им Іс	DIDE (Sн.).
		Molecul	ar Con	ductiv	ity.			Λ	Aolecula:	r Cond	luctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	μ_v 35	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024	67.26 69.36 71.53 73.50 76.18 77.55 77.06	89.81 	115.1 123.6 127.4 131.7 137.9 141.3 140.9	136.3 146.8 153.3 158.0 165.0 168.9 169.8	. 174.2 8 182.2 3 0 196.3 0 206.2 9 213.7	220.9 239.3 250.9 259.8	8 32 128 512 1024 2048 4096	38.6 46.5 51.1 52.8 53.3 54.4 54.0	54.6 65.4 72.1 73.9 75.2 77.0 76.5	72.8 86.8 95.4 98.0 99.3 101.7 101.6	105.0 114.8 118.4 119.7 122.8	0	
		Percenta	ge Diss	sociati	ion.				Percenta	ge Dis	sociati	on.	
v	a0°	α12.5°	a25°	a35°	ο α50°	a65°	v	a0°	α12.5°	α25°	a35°	a50°	a65°
2 4 8 16 32 128 512 1024	2 87.3 83.5 81.7 80.6 78.8 3 90.0 88.8 87.7 86.6 82.4 82.4 5 92.8 91.2 90.4 90.4 2 95.4 94.1 93.5 93.2 88.8 89. 3 98.9 98.1 97.9 97.3 93.3 93. 2 100.0 100.0 100.0 99.6 96.7 97.						8 32 128 512 1024 2048 4096	69.6 83.9 92.2 95.3 96.2 100.0 98.7	70.9 84.9 92.3 94.6 96.2 100.0 98.0	71.6 85.3 93.7 96.3 97.6 100.0 99.9	85.4 93.4 96.3 97.8 99.7	4	
			1						e Coeffic				
4	2 1.3 4 8 2.6 6 2.2 2.2 2.8 2.2 2.2	09 2 12 2 21 2 35 2 42 2	.02 25 .25 2 .35 2 .45 2 .59 2 .68 2	2.16 2.32 2.59 2.63 2.71 2.76 2.86	2.36 2.55 2.75 2.99 3.43	50-65° 2.43 2.58 2.87 2.98 3.08 3.11	v 32 128 512 1024 2048 4096	3 1 2 1 3 1 4 1 3 1	51 1 67 1 69 1 76 1 78 1	.46 .70 .86 .92 .93 .98	1.57 1.82 1.94 2.04 2.04 2.08 2.12	35-50°	50-65°
	Tempe	rature C	oefficier	nts in	Per Cer	nt.	7	Гетре	rature C	oefficie	nts in	Per Cen	t.
v	0-12	.5° 12.5-	-25° 25	-35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
4	$\begin{bmatrix} 2 & 3.6 \\ 8 & 3.6 \\ 2 & 3. \end{bmatrix}$	01 2 96 2 01 2 08 2 12 2	.36 .40 .42 .46 .49	1.88 1.88 2.03 2.00 1.98 1.85 2.03	1.61 1.61 1.67 1.77 2.02	1.39 1.42 1.46 1.45 1.44 1.41	32 128 512 1024 2048 4096	2 3. 3 3. 2 3. 4 3. 3 3.	25 2 29 2 20 2 20 2 27 2	. 67 . 60 . 56 . 59 . 58 . 57 . 61	2.15 2.09 2.03 2.08 2.07 2.04 2.08		

Ам	MONI	UM NI	ГRАТЕ	(Ws	S. AND	C.).	Ам	MONIU	JM Sui	PHAT	E (W	S. AND	C.).
		Molecul	ar Con	ductiv	ity.				Molecul	ar Cone	luctivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	μ_v 35	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\rho \mid \mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
2 8 32 128 512 1024 2048 4096	58.44 64.35 68.81 71.64 73.63 74.69 75.25 76.37	84.25 94.30 98.45 101.39 102.51	113.58 123.13 128.44 132.64 134.43 134.79	3 135 . 0 3 146 . 3 4 152 . 9 4 157 . 4 3 159 . 4 9 160 . 3	53 184.2 92 195.2 48 201.4 44 203.7 39 205.3	204.3 223.0 237.5 246.3 249.3 251.6	128 512 1024 2048	98.06 115.27 130.95 139.69 143.84 150.62	$\begin{array}{c} 160.26 \\ 182.65 \\ 195.77 \end{array}$	179.57 210.98 241.38 259.21 267.62 275.96	213.1 254.8 291.6 313.0 322.5 337.4	9 270.8 6 324.3 9 375.8 0 417.0 5 7 428.4	393.3 461.7 506.5 528.2
		Percenta	ge Dis	sociat	ion.				Percento	ge Dis	sociati	on.	
v	a0°	a12.5°	a25°	α35	° a50°	α65°	v	a0°	α12.5°	a25°	a35°	α50°	a65°
2 8 32 128 512 1024 2048 4096	76.5 84.2 90.1 93.8 96.4 97.8 98.5 100.0	74.8 79.9 89.4 93.3 96.1 97.2 98.0 100.0	73.6 82.2 89.3 93.2 96.2 97.5 97.8 100.0	82. 90. 93. 96. 97. 98.	$egin{array}{c c} 6 & 82.5 \\ 0 & 89.7 \\ 5 & 95.1 \\ 3 & 98.1 \\ 5 & 99.2 \\ 0 & 100.0 \end{array}$	81.2 88.6 94.4 97.9 99.1	2 8 32 128 512 1024 2048 4096	54.6 65.0 76.5 86.9 92.7 95.4 100.0 99.8	52.9 64.4 75.7 86.3 92.5 95.6 99.1 100.0	51.6 63.9 75.1 85.9 92.3 95.2 98.2 100.0	50. 62. 74. 85. 91. 94. 99.	6 8 7 7 9 7	
Tem	peratur	e Coeffic	ients i	n Con	ductivity	Units.	Temp	oeratur	e Coeffic	cients in	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5-35°	35-50°	50–65°
	8 2. 2 2. 4 2. 8 2.	59 2 04 2 15 2 22 2 23 2 25 2	.33 .31 .40 .50 .55	1.80 2.17 2.34 2.45 2.48 2.50 2.56 2.58	1.96 2.28 2.51 2.82 2.95 2.95 2.99	2.06 2.33 2.59 2.82 2.99 3.04 3.09		3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4.	06 3 60 4 14 4 49 5 68 5 73 5	.46 .06 .70 .08 .22 .30	2.56 3.36 4.39 5.03 5.38 5.49 6.15 5.95		2.79 3.63 4.60 5.73 5.97 6.65 6.57
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 28	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°
	$egin{array}{c cccc} 8 & 3.0 \ 2 & 3.0 \ 4 & 2.9 \ 8 & 2.9 \ \end{array}$	47 2 97 2 00 2 02 2 99 2 99 2	.77 .45 .44 .47 .49	1.77 1.91 1.90 1.91 1.86 1.86 1.90 1.87	1.64 1.69 1.71 1.84 1.87 1.85 1.86	1.38 1.38 1.41 1.44 1.48 1.49 1.51		3 3. 3 3. 3 3. 4 3. 3 3.	$egin{array}{c cccc} 12 & 2 \\ 12 & 2 \\ 16 & 2 \\ 21 & 2 \\ 25 & 2 \\ 14 & 2 \\ \end{array}$.54 .53 .57 .60 .58	1.76 1.87 2.08 2.08 2.08 2.05 2.23 2.12		1.29 1.34 1.42 1.52 1.43

	Амм	ionium (Ws	ACII			2	Амм	IONIU	m Alun	MINIUM	M SUL	PHATE	(H.).
		Molecul	ar Con	ductivi	ty.				Molecul	ar Cone	ductivii	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
8 32 128 512 1024 2048	303.41	223.84 279.55 339.00 378.25 386.88	258.00 322.68 404.14 463.20 483.51 496.86	277.18 349.24 444.74 522.24 547.04	8 286.0 4 374.2 4 485.9 4 593.5 5 647.1 6 681.5	303.2 396.5 525.3 666.1 794.5 820.6	8 16 32 64 128 512 1024 2048 4096	80.0 102.5 130.1 162.2 181.0 201.8 224.2	110.9 143.1 182.7 230.9 257.5 288.2 322.8	143.1 185.5 238.8 304.5 342.4 386.4 437.6	168.8 202.3 220.4 261.5 284.8 365.9 415.1 485.8 540.3	325.8 347.5 477.5 643.1	288.0 384.8 426.3 573.5
		Percenta	ige Dis	sociati	on.			1	Percenta	ge Diss	sociatio	on.	-
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	α35°	a50°	a65°
2 8 32 128 512 1024 2048 4096	8 60.3 55.7 51.9 48.1 40.1 35.5 16 32 73.5 69.6 65.0 60.6 52.5 46.4 32 128 87.1 84.4 81.3 77.1 68.2 61.4 64 512 95.2 94.2 93.2 90.5 83.3 77.9 128 124 97.0 96.3 97.4 94.9 90.8 93.0 512 048 99.7 99.6 99.9 99.4 95.6 96.0 1024												
Tem	peratur	e Coeffic	cients in	ı Cond	uctivity	Units.	Temp	peratur	e Coeffic	ients in	a Cond	uctivity	Units.
v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35° 3	35–50°	50-65°
	$egin{array}{c cccc} 8 & 5.9 \ 2 & 7.0 \ 4 & 7.3 \ 8 & 7.7 \ \end{array}$	04 2 48 3 90 5 08 6 33 7 73 7	.73 .45 .21 .79 .73 .74	1.41 . 1.91 . 2.66 . 4.06 . 5.90 . 6.35 . 7.66 .		0.77 1.15 1.49 2.63 4.84 9.83 9.27 8.85	16 32 64 128 512 1024 2048 4096	3 2 3 4 3 4 5 4 6 8 6	25 3 21 4 50 5 12 6 91 7	.49 .49 .89 .79 .86	2.57 	2.31 3.01 4.29 4.18 7.44 	2.20 2.70 3.93 5.25 6.40 12.56
	Temper	rature C	oefficier	ıts in I	Per Cen	ıt.	2	Гетрег	rature C	oefficier	nts in I	Per Cer	nt.
v	0-12	.5° 12.5	-25° 25	5–35°	35-50°	50–65°	v	0-12	2.5° 12.5	-25° 25	-35° 3	35-50°	50-65°
3 12 51 102 204 409	$ \begin{array}{c cccc} 2 & 2.4 \\ 4 & 2.4 \\ 8 & 2.4 \end{array} $	20 1 20 1 22 1 44 1 48 2 55 1	.22 .23 .54 .80 .00 .94	0.74 0.82 1.01 1.27 1.31 1.54		0.34 0.40 0.40 0.54 0.82 1.52 1.36 1.23	512 64 128 512 1024 2048 4096	3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 5 6 8	24 2 39 2 38 2 42 2	.37 1 .46 1 .55 2 .64 2 .73 2	1.80 1.88 1.93 2.02 2.12 2.57 2.35	1.37 1.48 1.64 1.47 2.03	1.08 1.09 1.21 1.51 1.34 1.95

A	Аммо			OMIUM Hw.)		IATE	A	MMO:	NIUM (E	CHRO I. AND (GRE	Hw.)	Sulph	ATE
		Mole	ecular C	onductiv	ity.				Molec	ular C	onductiv	rity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12$	2.5° $\mu_v 2$	5° $\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5$	6° $\mu_v 25$	$\circ \mid \mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
128 512 1024 2048	77.5 88.9 100.8 129.5 165.5 187.0 211.9 240.7	123 140 183 238 272 310	3.4 137. 3.2 159. 3.3 182. 3.0 240. 3.0 321. 2.0 372. 3.7 428. 492.	5 188.3 2 216.0 2 285.9 0 385.9 0 455.7 5 530.0	204.92 239.15 274.46 369.58 508.79 604.32 713.72 853.42	244.97 288.79 333.50 459.09 648.99 754.79 897.35 1050.26	16 32 128 512 1024 2048	103.6 119.7 136.4 172.3 202.6 215.6 222.0 234.4	133.5 155.4 178.5 228.4 274.4 294.5 313.4 328.4	1 190. 2 220. 4 288. 4 355. 2 386. 5 414.	6 219.3 8 255.1 1 336.4 7 423.2 2 471.2 0 518.4	3 223.33 3 268.08 3 16.57 4 436.52 2 585.31 2 658.87 4 757.75 3 868.79	
		Perce	ntage D	issociatio	on.				Percer	ntage L)issociai	tion.	
v	α0°	α12.	5° α25	° a35°	a50°	a65°	v	α0°	a12.5	α25	a35°	a50°	α65°
8 16 32 128 512 1024 2048 4096	peratu	re Coo		3 in Conc		Units.	8 16 32 128 512 1024 2048 4096 Temp	peratu	re Coe			ductivity	Units.
v	0-1	2.5° 1	2.5–25°	25-35°	35–50°	50-65°	v	0-1	2.5° 12	.5–25°	25–35°	35-50°	50-65°
1024 2048 4096	6 2. 2 3. 8 4. 2 5. 4 6. 8 7.	.31 .74 .16 .28 .80 .80 .90	2.47 2.90 3.35 4.57 6.64 8.00 9.40 10.93	2.38 4.57 6.49		2.67 3.31 3.94 5.90 9.35 10.03 12.24 13.12	102 204 409	$egin{array}{c cccc} 6 & 2 & 3 & & & & & & & & & & & & & & & &$.37 .70 .34 .49 .74 .29 .32 .52	2.38 2.82 3.41 4.78 6.50 7.36 8.04 10.38	2.24 2.87 3.43 4.83 6.75 8.50 10.44 13.57		1.82 2.10 2.38 3.55 5.90 8.71 11.10 12.56
	Tempe	eratur	e Coeffi	cients in	Per Ce	nt.		Tempe	erature	Coeffic	cients in	Per Ce	nt.
v	0-1	2.5° 1	.2.5–25°	25–35°	35-50°	50-65°	v	0-1	2.5° 12	2.5–25°	25-35°	35-50°	50-65°
1024 2048 4096	6 3. 2 3. 8 3. 2 3. 4 3. 8 3	.98 .08 .14 .31 .51 .64 .73 .82	2.32 2.35 2.39 2.50 2.79 2.94 3.03 3.07	1.86		1.30 1.38 1.44 1.60 1.84 1.66 1.71 1.54	102 204 409	$egin{array}{c c c} 6 & 2 \\ 2 & 2 \\ 8 & 2 \\ 2 & 2 \\ 4 & 2 \\ 8 & 3 \\ \end{array}$.29 .26 .45 .61 .83 .92 .37	1.79 1.82 1.91 2.09 2.37 2.50 2.57 3.16	1.38 1.51 1.55 1.68 1.90 2.20 2.52 2.96		0.81 0.78 0.75 0.81 1.01 1.32 1.46 1.48

	Аммо	NIUM (H.	Coppe and H		LPHAT	`Œ			Calciu (Sh.	M CH		ÞΕ	
		Molecul	ar Cone	ductivi	ty.				Molecule	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ_v 0°	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	$\mu_v 50^{\circ}$	μ_v65°
4 8 32 128 512 1024 2048 4096	106.3 122.7 153.5 187.8 221.6 236.0 246.4 259.4	146.6 169.9 213.8 262.4 312.1 333.5 347.9 367.3	190.4 220.7 280.2 346.7 411.7 442.6 463.6 494.0	225.7 262.2 334.3 412.6 495.7 532.5 560.0 597.3	2 323.5 3 417.5 5 521.1 7 634.0 6 697.8 0 744.1	383.1 496.9 630.1 768.9 850.8 916.2	2 4 8 32 128 512 1024 2048 4096	80.5 95.3 106.4 117.8 124.0 126.5 131.4 131.4	109.6 	142.1 172.5 197.5 219.2 232.4 236.1 245.0 246.5	265.8 281.9 284.6 298.3	306.5 340.8 362.4 382.0	290.4 318.7 378.5 418.9 452.5 474.8
	1	Percenta	ge Dis	sociati	on.				Percenta	ge Dis	sociatio	n.	-
v	a0°	α12.5°	α25°	a35°	a50°	a65°	\overline{v}	a0°	a12.5°	. α25°	α35°	a50°	α65°
4 8 32 128 512 1024 2048 4096	4						2 4 8 32 128 512 1024 2048 4096	61.2 72.5 80.9 89.6 94.3 96.2 100.0 99.9	59.1 71.3 80.6 89.4 94.2 96.1 100.0 99.9	57.6 69.9 80.1 88.9 94.6 95.7 99.3 100.0	56.3 69.1 79.3 88.6 93.9 94.8 99.4 100.0	62.2 67.7 80.2 89.2 94.9 	61.2 67.1 79.7 88.2 95.3 100.0
Tem	peratur	e Coeffic	ients in	a Cond	uctivity	Units.	Temp	peratur	e Coeffic	ients ir	a Cond	uctivity	Units.
v	0-12	.5° 12.5	-25° 25	-35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35° 3	35–50°	50–65°
	8 5.9 2 7.5 4 7.8 8 8.3	78 4 82 5 97 6 24 7 80 8 12 9	.06 .31 .74 .97 .73 .26	3.53 . 4.15 . 5.41 . 6.59 . 8.40 . 8.99 . 9.64 .		3.76 3.97 5.29 7.27 8.99 10.20 11.47 12.57	4	3 3. 2 4. 4 4. 3 4.	94 3 43 3 82 4 06 4 20 4 28 4		2.70	3.41 4.57 5.00 5.37	1.71 1.62 1.78 1.84 1.86
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	oefficie:	nts in	Per Cen	t.
v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35-50°	50–65°
	8 3. 2 3. 4 3. 8 3.	08 2 14 2 18 2 27 2 31 2 30 2	.39 .48 .57 .55 .62	1.85 . 1.88 . 1.93 . 1.90 . 2.04 . 2.03 . 2.08 . 2.09 .		1.35 1.23 1.26 1.39 1.42 1.46 1.54		3. 2 3. 4 3. 8 3.	08 2 21 2 24 2 27 2 39 2 02 2		1.90	1.64 1.92 1.89 1.90	1.48 1.55 1.57 1.53 1.66

C.	ALCIU	м Вко	MIDE	(W. A	AND H	w.).	(Calci	um Ni	TRAT	E (J. 2	AND W	.).
		Molecule	ar Con	ductivi	ty.			٠.	Molecul	ar Cor	iductivi	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 14.4^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\rho \mid \mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 9.7^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	° µ _v 50°	$\mu_v 65^\circ$
2 8 16 32 128 512 1024 2048	85.95 97.74 103.0 108.2 117.3 122.9 126.3 126.8	122.7 144.0 150.5 158.4 173.3 182.0 186.9 188.2	151.0 177.5 188.4 199.0 217.9 229.7 236.5 239.5	214.8 227.6 240.4 265.6 278.4 286.4	3 278.91 5 296.41 5 318.70 0 350.57 5 375.49 5 386.64) 262.05 1 339.40 1 362.30 0 391.68 7 431.83 9 458.67 1 477.18 3 487.30	2 4 8 16 32 128 512 1024 2048	65.84 85.50 94.95 102.3 114.5 122.6 125.7 130.0	85.83 	121.0 157.3 174.2 187.7 212.0 226.7 235.0 242.7	3 188.1 2 209.3 7 225.0 255.7 274.1 0 282.1	212.6 2237.9 3 5 285.6 4 323.1 2 349.4	287.8 350.6 397.7 432.5
	i	Percenta	ge Dis	sociati	on.			j	Percenta	ge Dis	ssociati	on.	
v	a0°	α14.4°	a25°	α35°	α50°	a65°	v	α0°	α9.7°	a25°	α35°	α50°	a65°
2 8 16 32 128 512 1024 2048	67.7 77.1 81.2 85.3 92.5 96.9 99.6 100.0	65.2 76.5 80.0 84.2 92.1 96.7 99.3 100.0	63.1 74.1 78.7 83.1 91.0 95.9 98.7 100.0	62. 73. 78. 82. 90. 95. 98. 100.	7 71.3 75.8 6 81.5 9 89.7 5 96.0 8 98.9	69.6 74.4 80.4 88.6 94.1 97.9	2 4 8 16 32 128 512 1024 2048	50.7 65.8 73.0 78.7 88.1 94.3 96.7 100.0	50.1 65.8 72.3 77.9 88.1 93.7 95.8 100.0	49.9 64.8 71.8 77.3 87.4 93.4 96.8 100.0	8 64.8 8 71.8 8 77.4 8 87.4 93.8 96.8	57.2 4 64.0 8 2 76.8 4 86.9 8 94.0	62.8 76.5 86.8 94.4
Tem	peratur	e Coeffic	ients in	n Cond	luctivity	Units.	Tem	peratur	e Coeffic	ients i	in Cond	luctivity	Units.
v	0-14	.4° 14.4-	-25° 25	5–35°	35-50°	50-65°	v	0–9.	7° 9.7-	-25° 2	25–35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 3.4 \\ 8 & 3.8 \\ 2 & 4.1 \\ 4 & 4.5 \\ \end{array}$	21 3. 30 3. 49 3. 89 4 10 4 21 4	.16 .58 .83 .21 .50	3.01 3.73 3.92 4.15 4.71 4.88 5.00 5.20		2.84 4.03 4.39 4.86 5.42 5.54 6.03 6.42		2 3. 8 3. 2 3. 4 4.	81 2 98 3 22 3 76 3 92 4 01 4	.31 .91 .29 .54 .99 .32 .60	2.40 3.09 3.56 3.79 4.34 4.75 4.79 4.97	3.31 4.00 4.51 5.01 5.30	3.03 3.33 4.33 4.97 5.54 5.77
	Tempe	rature C	oefficie	nts in	Per Ce	nt.		Tempe	rature C	oeffici	ents in	Per Cer	nt.
v	0-14	.4° 14.4-	-25° 25	5-35°	35-50°	50-65°	v	0-9.	.7° 9.7-	-25° 2	25–35°	35-50°	50-65°
1 :	$\begin{bmatrix} 8 & 3 & 3 \\ 2 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$	28 2 20 2 23 2 32 2 34 2 33 2	.19 .37 .42 .43 .47	2.08 2.09 2.16 2.13		1.30 1.44 1.48 1.52 1.55 1.48 1.56 1.64		4 8 3. 6 3. 2 3. 8 3. 2 3. 4 3.	29 2 14 2 15 2 28 2 19 2 19 2	.69 .58 .82 .62 .64 .69 .80	1.98 1.96 2.04 2.02 2.05 2.10 2.04 2.05	1.76 1.77 1.76 1.83	1.42 1.39 1.51 1.53 1.58

Са	LCIUM	г Снво	MATE	: (Н.	AND H	(w.).	C.	ALCIU	м For	MATE	(H. A	AND W	7.).
		Moleculo	ar Con	ductivi	ty.				Molecule	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	ρ μν50°	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	ο μ _ν 50°	$\mu_v 65^{\circ}$
8 16 32 128 512 1024 2048 4096	57.7 64.6 72.2 91.2 106.7 111.6 114.4 116.1	80.9 90.4 101.4 126.9 150.0 157.3 160.8 162.5	118.5 133.1 167.5 198.7 208.8 214.0	140.9 158.2 200.8 239.8 253.3 264.0	158.03 9 180.62 2 204.40 8 261.25 5 315.98 3 332.29 9 344.41 6 340.24	214.73 243.98 315.84 387.01 401.22 418.31	4 8 32 128 512 2048 4096	58.4 67.2 81.4 92.2 95.7 101.4 101.3	81.7 94.4 115.3 131.2 135.5 144.6 145.4		149.3 184.3 211.6 223.8 230.6	7 190.0 7 235.5 6 268.6 5 283.2 6 286.6	230.8 287.8 331.5 349.6
		Percento	ige Dis	sociati	ion.			P	Percentag	ge Diss	ociatio	n.	
v	a0°	a12.5°	a25°	a35°	ο α50°	a65°	v	a0°	a12.5°	a25°	a35°	° a50°	a65°
8 16 32 128 512 1024 2048 4096	49.7 55.6 62.2 78.5 91.9 96.1 98.5 100.0	49.8 55.6 62.4 78.1 92.3 96.8 98.9 100.0	49.0 54.8 61.6 77.5 91.9 96.6 99.0	53.9 6 60.8 76.8 9 91.8 6 96.8 100.	52.44 59.35 875.85 91.75 8 96.48 0 100.00	51.23 5 58.20 5 75.35 6 92.33 8 95.72	4 8 32 128 512 2048 4096	57.6 66.3 80.4 91.0 94.5 100.0 100.0	56.2 64.9 79.3 90.2 93.2 99.5 100.0	56.2 65.3 80.3 91.5 95.4 99.9 100.0	8 65.3 8 80.6 92.3 1 97.4 1 100.6	3 66.3 6 82.2 3 93.7 5 98.8 0 100.0	64.4 80.3 92.5 97.6 100.0
Tem	peratur	e Coeffic	cients i	n Cone	luctivity	Units.	Temp	oeratur 	e Coeffic	cients i	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
	6 2. 2 2. 8 2. 2 3. 4 3. 8 3.	06 2 33 2 86 3 46 3 66 4 71 4	.99 .25 .54 .25 .90 .12 .26	1.96 2.24 2.51 3.33 4.08 4.45 5.00 4.55		1.99 2.27 2.64 3.64 4.74 4.60 4.93 5.26		8 2. 2 2. 8 3. 2 3. 8 3.	18 2 70 3 12 3 18 3 46 3	.03 .41 .02 .45 .71 .66 .62	2.15 2.52 3.16 3.73 4.16 4.02 3.86	2.18 2.69 3.39 3.80 4.00	2.26 2.72 3.49 4.13 4.43 4.77
	Tempe	rature C	oeffici	ents in	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Cer	nt.
v	0-12	2.5° 12.5	-25° 2	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	5-25° 2	5-35°	35-50°	50-65°
1	6 3. 22 3. 28 3. 2 3. 24 3.	19 2 23 2 14 2 24 2 28 2 24 2		1.85 1.89 1.89 1.99 2.05 2.13 2.34 2.11		1.26 1.26 1.29 1.39 1.50 1.38 1.43 1.55		8 3. 2 3. 8 3. 2 3. 8 3.	24 2 32 2 38 2 32 2 41 2	1.49 1.55 1.62 1.63 1.74 1.53 1.49	2.01 2.02 2.06 2.14 2.29 2.11 2.03	1.69 1.80 1.84 1.79 1.79	1.40 1.43 1.48 1.54 1.56 1.66

ST	RONTI	им Сн	ILORII	рε (J.	. AND	Sн.).		STR	ONTIUN	A BR	OMIDE	(W.).	
		Molecule	ar Con	ductivi	ity.				Molecul	ar Con	iductivi	ty.	
v	$\mu_v 0^{\circ}$	μ _v 9.9°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 13.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
2 8 16 32 128 512 1024 2048 4096	81.36 92.97 101.1 106.3 118.5 125.0 129.1 133.9 133.3	106.2 124.3 134.5 141.5 157.6 166.1 171.4 176.1	141.5 173.7 187.7 198.4 225.0 236.7 242.8 248.7 248.6	172.0 207.4 225.9 238.7 271.6 285.4 294.1 300.3 (303.9	4 265.6 9 285.6 7 305.7 6 342.4 4 367.7 1 373.0 3 383.2	350.2 377.5 424.6 453.9 463.3 476.5	2 4 8 16 32 128 512 1024 2048	88.03 100.0 103.7 110.0 171.8 128.8 129.1	122.1 141.8 148.1 157.2 170.6 185.4 186.6	153.8 180.6 190.0 202.2 219.1 239.1	3 217.2 3 228.1 2 243.9 1 267.1 1 289.9	256.3 2282.5 316.9 356.2 380.3	343.7 388.7 437.6
	1	Percenta	ge Dis	sociati	on.			j	Percenta	ge Dis	sociati	on.	
v	a0°	α9.9°	a25°	a35°	a50°	a65°	v	a0°	a13.5°	α25°	a35°	a50°	α65°
2 8 16 32 128 512 1024 2048 4096	60.8 69.5 75.5 79.4 88.5 93.4 96.4 100.0 100.0	60.3 70.6 76.4 80.4 89.5 94.3 97.3 100.0	56.9 69.8 75.5 79.8 90.5 95.2 97.6 100.0	57.3 69.1 75.2 79.3 90.3 95.0 97.9 100.0	67.7 72.8 77.9 87.3 93.7 95.1 97.7	77.5 87.2 93.2 95.2 97.8	2 4 8 16 32 128 512 1024 2048	68.2 77.5 80.3 85.2 91.2 99.8 100.0	76.0 79.4 84.2 91.4 99.4 100.0	75.4 79.3 84.4 91.4 99.8 100.0	74.3 78.0 4 83.4 1 91.4 3 99.2	63.1 69.6 78.1 87.7 2 93.7	62.4 68.6 77.6 87.3 93.8
Temp	perature	e Coeffic	ients in	a Cond	luctivity	Units.	Temp	peratur	e Coeffic	ients i	n Cond	uctivity	Units.
v	0–9.	9° 9.9-	25° 25	-35°	35–50°	50-65°	v	0-13	3.5° 13.5	-25° 2	5-35°	35-50°	50-65°
1024 2048 4096	$egin{array}{c cccc} 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	16 3 38 3 56 3 96 4 15 4 27 4 27 4	.27 .52 .90 .46 .67 .73 .81	3.05 3.37 3.82 4.03 4.66 4.87 5.13 5.16 5.31		3.92 4.25 4.79 5.48 5.75 6.02 6.22 6.32		$ \begin{array}{c cccc} 2 & 3. \\ 8 & 3. \\ 2 & 4. \\ 4 & 4. \end{array} $	10 3 29 3 50 3 91 4 19 4	.76 .37 .64 .91 .22 .67	2.93 3.66 3.81 4.17 4.80 5.08 5.27		3.76 4.08 4.79 5.43 5.99
	Temper	cature C	oefficie	nts in	Per Cer	nt.		Tempe	rature C	'oeffici	ents in	Per Cer	nt.
\overline{v}	0-9.	9° 9.9-	25° 25	5-35°	35–50°	50-65°	v	0-13	3.5° 13.5	-25° 2	25-35°	35-50°	50-65°
	2 3.3 8 3.3 2 3.3 4 3.3 8 3.3	39 2 34 2 35 2 34 2 32 2 31 2 22 2	.63 .62 .76 .83 .81 .76 .73	2.03 2.03 2.07 2.06 2.11 2.07		1.48 1.49 1.56 1.60 1.57 1.62 1.62		$egin{array}{c ccc} 6 & 3. \\ 2 & 3. \\ 8 & 3. \\ 2 & 3. \\ 4 & 3. \end{array}$	10 2 17 2 18 2 32 2 25 2 30 2	.26 .38 .46 .49 .17 .52 .47	2.03 2.01 2.06 2.19 2.13		1.46 1.44 1.51 1.52 1.57 1.50

S	Stron	TIUM]	Vitra	TE (J. AND	W.).	ST	RONTI	им Ас	ETATI	E (W	s. AND	W.).
	j	Molecule	ar Con	ductiv	ity.				Molecul	ar Con	ductiv	rity.	
v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^{\circ}$	μ_v 35	5° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	μ_v 35	$5^{\circ} \mid \mu_v 50^{\circ}$	$\mu_v 65^\circ$
16 32 128 512 1024	63.24 84.33 93.33 100.7 114.8 122.5 126.9 131.3	81.25 	112.4 154.1 171.4 185.3 211.2 227.1 233.7 238.6	135. 181. 205. 223. 254. 273. 282. 287.	206.1 7 234.3 7 5 284.2 0 322.5 5 351.7 3	354.4 400.7 441.0	2 4 8 32 128 512 1024 2048 4096	34.94 	49.26 	157 . 69 170 . 16 177 . 44 180 . 07	5 129 . 5 164 . 5 193 . 4 218 . 5 219 . 7 219 . 7	. 132.4 99 153.7 88 207.7 44 244.3 22 267.0 24 77 279.9	7 193.8 7 256.5 8 305.0 9 336.6
	1	Percenta	ge Dis	sociat	ion.			j	Percenta	ge Dis	sociat	ion.	
v	a0°	α10°	a25°	α35	° a50°	a65°	v	a0°	α12.5°	α25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	48.2 71.1 77.7 87.4 93.3 96.7 100.0	65.5 72.6 77.5 88.1 94.0 97.2 100.0	47 1 64.6 71.8 77.7 88.5 95.2 97.9 100.0	63. 71. 77. 88. 95. 98. 100.	55.8 2 63.4 5 7 76.9 4 87.3 1 92.2	62.5 76.9 86.9 95.7	2 4 8 32 128 512 1024 2048 4096	35.7 57.7 72.2 83.6 90.4 93.1 99.3 100.0	35.3 57.4 71.8 83.9 91.7 93.9 99.6 100.0	58.0 73.4 85.5 92.3 96.4 97.7 100.0	57. 73. 86. 93. 97. 97.	47.3 8 54.9 4 74.2 1 87.3 1 95.4 1 8 100.0	54.7 72.4 8 86.1 95.0
Temp	erature	Coeffic	ients ir	n Cone	ductivity	Units.	Tem	peratur	e Coeffic	eients in	n Con	ductivity	Units.
v	0-10)° 10–2	25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 28	5–35°	35-50°	50–65°
2 4 8 16 32 128 512 1024 2048	3 2.8 3 3.1 2 3.2 3 3.6 3 3.6 4 4.0	35 2 4 3 26 3 66 3 01 4 01 4	.75 .11 .47 .99 .37 .45	2.30 2.76 3.43 3.82 4.28 4.64 4.86 4.89	3.51 4.05 4.57 5.21	3.17 3.58 4.68 5.21 5.95	4	8 2.8 2 3.3 4 3.3 8 3.3	89 2 36 2 82 3 17 3 19 3 34 3	.14 .80 .24 .37 .70 .28	1.46 2.30 2.96 3.58 3.91 4.08 3.97 4.03	2.86 3.39 3.85 4.01	1.80 2.67 3.25 4.05 4.64
7	Гетрег	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	nts in	Per Ce	nt.
v	0-10)° 10–2	25° 25	5–35°	35–50°	50–65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50–65°
2 4 8 16 32 128 512 1024 2048	3.3 3.3 3.2 3.1 3.1 3.1	38 2 36 2 24 2 9 2 9 2 6 2	44 49 60 63 70 66		1.81 1.80 1.90	1.54 1.53 1.65 1.62 1.69	32 128 512 1024 2048 4096	1 3 3.3 2 3.3 3 3.4 3 3.4 3 3.4 3 3.5 3 3 3.5 3 3 5 3 5	35 2 34 2 44 2 58 2 50 2 43 2	.67 .79 .77 .63 .82 .36	2.20 2.15 2.19 2.27 2.30 2.30 2.21 2.19	1.73 1.75 1.84	1.43 1.73 1.56 1.66 1.74

	Ва	RIUM	Снгог	IDE (W	. AND	C.).		В	BARIUM	Вкомп	ое (J	and Sh.).
		<i>N</i>	Iolecular	Conduct	ivity.				M	olecular C	onductiv	rity.	
v	μ _v 0°	$\mu_v 4.6^\circ$	$\mu_v 16.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$	v	μ _v 0°	$\mu_v 10^\circ \mid \mu_v 2$	25° $\mu_v 35$	5° μ _v 50°	$\mu_v 65^\circ$
2 8 16 32 64 128 256 512 1024 2048	86.62 99.06 105.2 116.2 125.1 126.5 130.9 132.7	96.6 112.3 119.5 132.4 142.7 144.3 149.3 151.2	151.1 161.2 180.2 194.7 197.2 203.8	150.0 179.0 191.6 215.2 232.9 235.5 243.4 247.1	178.6 215.3 230.4 260.3 282.6 286.2 296.4 300.5	220.6 272.4 313.9 348.7 378.0	259.8 322.3 	2 8 16 32 128 512 1024 2048 4096	103.4 109.3 114.4 123.6 131.8 133.8	119.3 158 137.0 187 144.8 198 151.0 209 163.7 228 175.5 246 177.2 244 178.7 252	7.4 224 3.9 238 9.4 251 3.5 274 5.8 298 9.9 301	0 280.1 8 301.1 4 320.2 4 358.0 2 379.6 6 385.3	467.6 475.1 484.6
		P	ercentage	Dissoci	ation.				Pe	rcentage I	Dissociat	ion.	
\overline{v}	a0°	α4.6°	a16.5°	a25°	a35°	a50°	a65°	v	a0°	α10° α2	5° a35	° a50°	a65°
2 8 16 32 64 128 256 512 1024 2048	65.3 74.6 79.3 87.6 94.3 95.3 98.6 100.0	63.9 74.3 79.0 87.6 94.4 95.4 98.7 100.0	73.2 78.1 87.3 94.4 95.6 98.8	60.7 72.4 77.5 	59.4 71.6 76.6 86.6 94.0 95.2 98.6 100.0			2 8 16 32 128 512 1024 2048 4096	68.4 77.1 81.5 85.3 92.1 98.2 99.7 100.0	76.7 74 81.0 78 84.5 82 91.6 90 98.2 97	2.8 61 4.2 73 3.7 78 2.9 82 9.5 89 7.7 97 8.9 98 100	3 69.2 1 74.4 2 79.1 8 88.5 6 93.8 7 95.2	68.4 73.9 79.0 83.3 94.0 95.5 97.4 100.0
	Tempe	erature	Coefficie	nts in Co	nductivi	ity Units	3.	Tempe	erature (Coefficient	s in Con	ductivity	Units.
v	0-4	4.6° 4.	6-16.5°	16.5-25°	25-35°	35-50°	50-65°	v	0-10	° 10–25°	25-35°	35-50°	50-65°
3	8 2 16 3 32 34 3 28 56 3 12 3 4	2.17 2.88 3.11 3.52 3.83 3.87 4.00 4.02	2.66 3.26 3.50 4.02 4.36 4.45 4.57 4.63	2.56 3.28 3.58 4.12 4.49 4.51 4.66 4.80	2.86 3.63 3.88 4.51 4.97 5.07 5.30 5.34		2.61 3.33 4.09 4.85 5.05		2 3.6 8 4.0 2 4.3 4 4.3 8 4.4	6 3.36 5 3.60 6 3.89 1 4.32 7 4.75 4 4.85	2.95 3.66 3.99 4.20 4.59 5.14 5.18 5.24		4.00 4.43 4.84 5.41 5.87 5.99 6.05 6.18
	T	empera	ture Coe	fficients	in Per C	Cent.		T	emperat	ture Coeffi	cients in	Per Cen	<i>t</i> .
v	0-4	1.6° 4.	6-16.5°	16.5-25°	25-35°	35-50°	50–65°	v	0-10	° 10–25°	25-35°	35-50°	50-65°
1 3	8 2 66 2 32 34 3 28 36 3 24 3	2.51 2.91 2.96 3.03 3.06 3.06 3.05 3.03	2.75 2.90 2.93 3.04 3.06 3.08 3.06 3.06 3.06	2.00 2.17 2.22 2.29 2.30 2.29 2.28 2.33	1.91 2.02 2.03 2.10 2.13 2.19 2.18 2.16		1.18 1.22 1.30 1.39 		2 3.20 3.24 2 3.33 4 3.24 8 3.33	$\begin{array}{c cccc} 5 & 2.45 \\ 5 & 2.49 \\ 0 & 2.58 \\ 4 & 2.64 \\ 2 & 2.71 \\ 4 & 2.74 \end{array}$	1.86 1.95 2.01 2.01 2.01 2.08 2.07 2.07		1.42 1.47 1.51 1.51 1.54 1.55 1.54 1.53

]	Bariu	м Ni	FRATE	(J. A	AND C	.).	В	ARIUM	For	MATE	(J. A	ND SH	.).
	A.	Iolecule	ar Con	ductivi	ity.			Л	Iolecul	ar Con	ductive	ity.	
v	$\mu_v 0^{\circ}$	μ _v 10°	μ _v 25°	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	\overline{v}	μ _v 0°	$\mu_v 10^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$
1024	88.29	103.0 117.6 129.8 150.8 163.8 167.8 171.6	146.4 165.2 183.2 210.0 229.2 234.2 239.8	$ \begin{array}{c c} 219.8 \\ 251.8 \\ 275.5 \end{array} $	1 8 282.0 8 325.5 2 360.7	334.2 398.3 440.7	2 8 16 32 128 512 1024 2048	51.67 72.22 77.72 85.56 86.20 102.2 103.0 111.8	67.74 95.34 102.7 114.3 114.3 133.6 135.0 149.4	93.97 133.4 144.6 160.6 162.4 182.0 184.0 210.0	159. 173. 193. 197. 1215. 1226.	2 201.0 8 227.3 1 252.1 4 289.6 2 308.2 2 313.2	275.1 307.3 359.6 383.6 385.5
	P	ercenta	ge Dis	sociati	on.			P	'ercenta	ge Dis	sociati	ion.	
v	a0°	α10°	a25°	a35°	α50°	a65°	v	a0°	α10°	a25°	a35°	α50°	a65°
8 16 32 128 512 1024 2048 4096	58.1 67.2 74.3 87.1 94.6 97.0 100.0	60.0 68.5 75.6 87.9 95.5 97.8 100.0	61.1 68.9 76.4 87.6 95.6 97.7 100.0	95.3 97.3	3 1 73.8 2 85.1 3 94.3	72.4 83.8 92.7	2 8 16 32 128 512 1024 2048	46.2 64.6 69.5 76.5 77.1 91.4 92.1 100.0	45.3 63.8 68.7 76.5 76.5 89.4 90.3 100.0	44.8 63.3 68.9 76.8 77.3 86.7 87.7	61. 9 69. 5 75. 7 83. 7 87.	8 64.2 0 72.6 0 80.5 6 92.4 5 98.4 8 100.0	79.7 93.3 99.5
Temp	erature	Coeffic	ients ii	n Cono	luctivity	Units.	Temp	erature	Coeffice	ients i	n Cone	luctivity	Units.
v	0-10	0° 10-	25° 25	5-35°	35–50°	50–65°	v	0-1	0° 10-	-25° 2	5–35°	35-50°	50–65°
10 3: 12: 51: 102: 204: 409:	2 3.5 8 3.6 2 3.9 4 4.6 8 4.6	93 3 22 3 64 3 95 4 04 4	.17 .56 .95 .36 .43	3.09 3.49 3.66 4.18 4.60 4.74 4.90	3.25 4.16 4.91 5.70 5.99 5.23	3.34 4.15 4.85 5.33 5.91 6.21	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 2 49 2 87 3 81 3 15 3 20 3	.75 .54 .79 .09 .27 .23 .33 .04	1.81 2.58 2.92 3.25 3.50 3.32 4.22 4.76		2.96 3.19 3.68 4.67 5.03 4.82 4.46
Т	Tempero	ature C	oefficie	nts in	Per Cer	nt.	7	Cemper	ature C	oeffici	ents in	Per Cer	nt.
v	0-10	0° 10-	25° 25	5–35°	35–50°	50-65°	v	0-1	0° 10-	-25° 2	5–35°	35-50°	50-65°
1 3 12 51 102 204 409	2 3.3 8 3. 2 3. 4 3. 8 3.	32 2 30 2 18 2 18 2 17 2	.70 .74 .62 .66 .64	2.11 2.11 2.00 1.99 2.01 2.02 2.04	1.83 1.90 1.95 2.07	1.48 1.47 1.49 1.48 1.56 1.62	1	8 3. 6 3. 32 3. 28 3. 24 3.	$egin{array}{c c c} 20 & 2 \ 20 & 2 \ 35 & 2 \ 26 & 2 \ 08 & 2 \ 10 & 2 \ \end{array}$.58 .66 .72 .70 .86 .41 .46 .70	1.93 1.93 2.02 2.02 2.16 1.82 2.29 2.27		1.47 1.43 1.46 1.61 1.63 1.54 1.44

	В	ARIUM	Ace	TATE (J.).		MA	GNESI	им Сн	LORII	DE (S	H. AND	H.).
	Λ	Moleculo	ar Con	ductivit	y.*				Molecul	ar Con	ductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	$\mu_v 25^\circ$	μ_v35°	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	° µ _v 50°	$\mu_v 65^\circ$
2 8 16 32 128 512 1024 2048	40.16 59.05 65.68 72.93 78.15 90.75 92.63 95.96	53.25 79.46 87.10 97.58 104.5 123.1 124.7 129.3	113.3 124.3	3 136.0 3 149.3 5 168.6 0 181.2 9 215.8 5 219.8			4 8 32 128 512 1024 2048 4096	80.2 87.6 99.9 110.3 115.7 118.3 120.3 123.5	112.1 123.2 141.1 156.1 164.3 168.4 172.8 176.3	147.3 162.1 187.1 208.0 219.4 224.9 230.2 234.7	196. 226. 252. 266. 272. 280.	1 249.7 4 294.7 4 311.8 9 348.3 2 1 373.2	303.8 364.8 401.6
	j	Percente	age Dis	ssociatio	n.				Percenta	ge Dis	sociati	ion.	
v	a0°	α10°	a25°	a35°	a50°	a65°	v	a0°	α12.5°	α25°	α35	° a50°	a65°
2 8 16 32 128 512 1024 2048	41.9 63.0 68.4 76.0 81.4 94.6 96.5 100.0	4.12 61.5 67.4 75.5 80.8 95.2 96.4 100.0	60.8 66.7 74.9 80.0 95.0 96.9	8 60.0 66.0 74.4 79.9 95.2 97.0			4 8 32 128 512 1024 2048 4096	64.9 70.9 80.9 89.2 93.7 95.8 97.3 100.0	63.6 69.9 80.0 88.6 93.1 95.5 98.0 100.0	62.8 69.1 79.7 88.6 93.5 95.8 98.1 100.0	68. 79. 88. 93. 95. 98.	8 66.9 4 79.0 5 83.5 3 93.3 4 2 100.0	65.3 78.4 86.3 93.0
Tem	peratur	e Coeffic	rients i	n Condu	uctivity	Units.	Tem	peratur	e Coeffic	ients i	n Cone	ductivity	Units.
v	0-1	0° 10-	-25° 2	25–35° 3	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35–50°	50-65°
	$egin{array}{c ccc} 2 & 2 & 2 \ 8 & 2 & 3 \ 2 & 3 & 3 \ \end{array}$	04 2 14 2 40 2 63 2 23 2 20 3	.52 2.26 2.48 2.79 2.97 2.59 3.72 3.80	2.52 .				$egin{array}{c cccc} 8 & 3. \\ 2 & 3. \\ 4 & 4. \\ 8 & 4. \end{array}$	85 3 29 3 67 4 89 4 02 4 21 4	.82 .11 .68 .15 .41 .52 .59 .67	3.03 3.40 3.93 4.44 4.74 4.72 4.98 5.05	3.36 3.57 4.55 4.00 4.76 	3.51 3.61 4.67 5.93 5.65
	Tempe	rature (Coeffici	ents in .	Per Cer	nt.		Tempe	rature C	oefficie	ents in	Per Cer	nt.
v	0-1	0° 10-	-25° 2	25–35° 3	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50–65°
1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 2 26 2 38 2 37 2 06 2 45 2	2.85 2.84 2.85 2.86 2.84 2.91 2.98 2.93	1.80 . 2.00 . 2.03 . 2.09 . 2.16 . 2.20 . 2.18 . 2.17 .				8 3. 2 3. 8 3. 2 3. 4 3. 8 3.	25 2 29 2 33 2 36 2 39 2 48 2	.51 .52 .60 .65 .67 .68 .65 .65	2.05 2.09 2.10 2.13 2.16 2.09 2.16 2.15	1.90 1.82 2.01 1.58 1.78	1.54 1.45 1.58 1.90 1.62

^{*}Decomposed at higher temperatures.

Mac	GNESI	им Ві	ROMID	E (W	s. AND	W.).	MA	AGNES	IUM N	ITRAT	е (Ws	s. AND	C.).
	ì	Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductivi	y.	
v	μ _v 0°	$\mu_v 12.5^{\circ}$	μ _v 25°	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
4 . 8 32 1 128 1 512 1 1024 1 2048 1	93.73 04.56 13.52 18.93 22.80 27.28	173.39	170 . 64 194 . 42 211 . 91 223 . 06 230 . 94 238 . 70	206 . 1 2235 . 5 257 . 3 270 . 4 279 . 3	. 251.2 .8 263.2 .61 297.6 .61 332.4 .0 358.0 .88 .62 377.0	324.4 367.7 412.8 445.5	128 512 1024 2048	101.55 110.78 119.01 120.68 123.34	123 . 42 141 . 97 155 . 50 165 . 77 170 . 27 173 . 18 173 . 70	187.10 204.72 220.89 224.49 229.70) 223 . 24 2 247 . 60) 265 . 33) 272 . 30) 280 . 09	283.5 316.8 341.6 0 9 357.0	298.1 347.4 390.8 421.1
	1	Percento	ige Dis	sociat	ion.				Percente	age Dis	sociati	on.	_
v	a0°	a12.5°	a25°	a35	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 4 . 8 32 128 512 1024 2048 4096	58.3 71.6 79.9 86.8 90.9 93.9 97.3 100.0	56.2 70.3 79.5 86.4 90.6 93.7 97.1 100.0	54.3 69.7 79.4 86.5 91.1 94.3 97.5 100.0	67. 76. 84. 88. 91. 94.	66.6 4 69.8 9 78.9 1 88.2 3 95.0 3 6 100.0	68.8 78.0 87.6 94.5	2 8 32 128 512 1024 2048 4096	72.1 82.4 89.9 96.5 97.9 100.0 99.7	71.1 81.7 89.5 95.4 98.0 99.7 100.0	81.5 89.1 96.2 99.7 100.0	79.7 88.4 94.7 97.2 100.0		
Temp	eratur	e Coeffic	cients i	n Con	ductivity	Units.	Tem	peratur	e Coeffic	cients i	n Cond	uctivity	Units.
v	0-12	.5° 12.5	-25° 2	5–35°	35-50°	50-60°	v	0-12	2.5° 12.5	5–25° 2	5–35°	35–50°	50-65°
2 4 8 32 128 512 1024 2048 4096	2.9 2.3.4 3.7 3.9 4.0 4.0	311 3 41 3 71 4 90 4 95 4 20 4		2.93 3.55 4.11 4.54 4.73 4.84 5.08 6.10	3.80 4.14 5.01 5.84	3.81 4.08 4.67 5.36 5.83		2 3. 24 3. 8 3.	23 3 58 3 74 4 97 4 99 4	2.99 3.61 3.54 4.41 4.34 4.52 4.47	3.10 3.61 4.29 4.44 4.78 5.04 4.80	3.51 4.02 4.61 5.08	2.74 3.57 4.26 4.93 5.30 5.76
T	Гетрег	rature C	oefficie	nts in	Per Cer	nt.		Tempe	rature (Coefficie	ents in	Per Cer	nt.
v	0-12	.5° 12.5	-25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	5-25° 2	5-35°	35–50°	50-65°
2 4 8 32 128 512 1024 2048 4096	3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	11 2 26 2 27 2 28 2 30 2	56 60 64 65	2.20 2.08 2.11 2.14 2.12 2.10 2.13 2.49	1.84 1.76 1.95 2.16	1.41 1.46 1.54 1.57 1.56	3 12 51 102 204 409	32 3. 28 3. 22 3. 24 3. 48 3.	10 2 18 2 23 2 14 2 28 2 23 2	2.42	1.93 1.93 2.10 2.01 2.12 2.11	1.83 1.83 1.87 1.91	1.41 1.46 1.50 1.56 1.55

M	AGNES	ium Si	JLPHA	те (Ј.	AND	Sн.).	MA	GNESI	им Бо	RMAT	E (W	S. AND	W.).
		Molecule	ar Con	ductivit	y.				Molecule	ar Cone	ductivi	ty.	
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 10^{\circ}$	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^{\circ}$	μ _v 65°	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
	32.12 45.70 50.95 59.57 71.17 95.57 102.7 111.1	95.38	$96.50 \\ 112.4$	72.68 102.4 115.0 135.3 164.4 221.9 240.9 261.0	3 90.5 131.0 150.7 174.6 230.3 288.1 317.7 341.7	155.4 179.0 208.6 279.1 353.1 395.4	2 4 8 32 128 512 1024 2048 4096	37.33 58.15 74.68 85.99 88.58 94.03 97.22 97.18	106.05	109 . 29 141 . 71 164 . 06 167 . 86 176 . 23 184 . 73	172.3 200.3 205.4 209.9 226.3	. 135.7 4 165.2 1 212.8 0 253.8 4 273.7 0 7 284.2	261.8 313.8 337.9
	1	Percenta	ge Dis	sociatio	on.			j	Percenta	ge Dis	sociati	on.	
v	a0°	α10°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024 2048	28.9 41.1 45.9 53.6 64.1 86.0 92.4 100.0	29.1 41.0 45.9 53.7 64.2 84.4 93.2 100.0	28.2 39.8 44.8 52.2 63.2 85.2 92.3 100.0	39.2 44.1 51.8 63.0 85.0 92.3	27.8 26.5 25.2 2 38.4 37.9 37.5 36.8							. 47.7 4 58.1 74.9 5 89.3 7 96.3 7	74.4 89.1 96.0
Tem;		e Coeffic					Tem		e Coeffic	- 1	ī		
	$egin{array}{c ccc} 2 & 2.0 \ 8 & 2.4 \ 2 & 3.5 \ 4 & 3.8 \ \end{array}$	10 1 52 1 71 1 01 2 42 2 27 3 57 3	.16 .65 .89 .18 .75 .73	1.21 . 1.67 .	35-50°	50-65° 1.07 1.63 1.89 2.27 3.25 4.33 5.18 5.39	1	2 1. 4 8 2. 2 2. 8 2. 2 2. 4 3. 8 3.	02 2 51 2 89 3 82 3 19 3 31 3	.33 	5-35° 1.40 2.29 3.06 3.62 3.76 3.37 4.16 4.03	35–50° 2.20 2.70 3.57 3.85	1.41 1.46 1.54 1.57 1.56
	Tempe	rature C	oefficie	nts in	Per Ce	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
v	0-10	0° 10–	25° 25	5–35° [35–50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5–35°	35-50°	50-65°
	$egin{array}{c cccc} 8 & 3.4 \ 2 & 3.4 \ 4 & 3.4 \ \end{array}$	33 2 36 2 37 2 40 2 42 2 48 2	.71 .77 .73 .88 .91	1.92 . 2.04 . 2.10 . 2.11 . 2.15 .		1.18 1.24 1.27 1.30 1.41 1.50 1.63 1.58		8 3. 2 3. 4 3. 8 3.	47 2 36 2 36 2 18 2 39 2 40 2		2.10 2.16 2.21 2.24 1.91 2.25	1.67 1.57 1.79	1.41 1.46 1.54 1.57 1.56 1.59

MA	GNESI	им Ас	ETATI	E (Ws	s. AND	W.).	2	ZINC N	VITRAT	е (Н.	AND	Hw.).	
		Molecule	ar Con	ductivi	ty.		1	Λ	Iolecula	r Cond	uctivity	/.	AV
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
4 8 32 128 512 1024 2048 4096	37.56 46.35 60.99 71.13 78.03 80.38 83.85 84.99	103.35 113.23 116.73	89.79 119.31 139.51 153.41 158.95 164.72	109.8 146.2 172.3 189.5 201.7 2203.0	7 258.2	171.2 231.7 276.6 310.9	4 8 32 128 512 1024 2048 4096	80.6 87.6 100.0 110.4 114.1 117.1 120.4 124.4	110.8 121.2 139.2 154.1 164.9 165.0 169.2 175.0	146.6 157.2 182.1 202.6 210.1 216.6 222.4 229.1	188.5 219.0 243.5 254.3 261.3 270.2	238.23 280.00 312.91 336.48 347.35 2352.62	3 258.65 5 289.67 0 343.09 1 384.97 3 415.20 5 428.50 2 434.82 7 445.53
	1	Percenta	ge Dis	sociati	on.			i	Percenta	ge Dis	sociatie	on.	
v	a0°	α12.5°	α25°	a35°	a50°	a65°	v	a0°	α12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	44.2 56.6 71.8 83.7 91.9 94.6 98.7 100.0	44.8 54.8 72.2 84.9 93.0 95.9 99.7 100.0	43.8 54.3 72.1 84.3 92.8 96.1 99.6 100.0	53.9 71.8 84.6 93.0 99.0	53.8 72.4 6 85.1 95.2 100.0	52.3 70.8 84.5 95.0	4 8 32 128 512 1024 2048 4096	64.8 70.4 80.4 88.7 91.9 94.1 96.8 100.0	63.3 69.3 59.5 88.1 94.3 94.3 96.7 100.0	64.0 68.6 79.5 88.4 94.7 94.5 97.1 100.0	67.5 78.4 87.1 91.0 93.5 96.7	6 66.2 77.8 86.9 93.5 96.5 98.0	77.0 86.4 93.2 96.2 97.6
Temp	oerature	e Coeffic	ients i	n Cond	uctivity	Units.	Temp	perature	e Coeffic	ients ir	n Cond	uctivity	Units.
v	0-12	.5° 12.5-	-25° 25	5–35°	35–50°	50-65°	v	0-12	.5° 12.5-	-25° 25	5–35° 3	35-50°	50-65°
32 128 512 1024 2048 4096	$egin{array}{c ccc} 2 & 2.1 \ 8 & 2.5 \ 2 & 2.8 \ 4 & 2.9 \ 8 & 3.0 \ \end{array}$	33 1. 16 2. 58 2. 81 3. 91 3. 90 3.	84 51 89 21 38 47	1.64 2.01 2.69 3.28 3.61 4.28 3.84 3.83	1.45 1.93 2.73 3.16 3.76	1.69 2.16 2.97 3.79 4.33 4.60	32 128 512 1024 2048 4096	3 2.6 2 3.3 3 3.4 4 3.8 3 3.8 3 3.8	69 2 34 3 50 3 06 3 83 4 90 4	.88 .43 .88 .62 .13	2.46 3.13 3.69 4.09 4.42 4.47 4.78 5.03		3.16 3.42 4.21 4.80 5.22 5.41 5.48 5.70
	Temper	rature Co	oefficie	nts in	Per Cer	ıt.	2	Гетрег	rature Co	oefficie	nts in I	Per Cer	ıt.
v	0-12	.5° 12.5-	-25° 25	5–35°	35–50°	50-65°	v	0-12	.5° 12.5-	-25° 25	5-35°	35-50°	50-65°
	3.6 2 3.6 4 3.6 8 3.5	52 2. 54 2. 53 2. 50 2. 52 2. 58 2.	76 85 80 83 89 86	2.26 2.24 2.25 2.35 2.35 2.69 2.33 2.32	1.63 1.74 1.87 1.83 2.00	1.52 1.56 1.59 1.72 1.76	32 128 512 1024 2048 4096	3.0 2 3.3 3 3.1 2 3.8 4 3.2 3 3.2	07 2 34 2 17 2 56 2 27 2 24 1	.38 .46 .52 .20 .50	1.68		1.50 1.44 1.50 1.53 1.55 1.56 1.55 1.55

	2	Zinc S	ULPHA	ATE (W.).			Zinc	Асета	те (Н	I. AND	Hw.)	
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	nductivi	ty.	-
v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25$	° $\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
2048	30.57 	45.56 64.74 75.20 86.96 115.8 147.3 156.9 170.4 176.0	56.62 80.01 93.6 108.8 144.8 185.1 197.8 213.0 218.0	84.7	217.9 286.5 338.4	137.2 186.9 259.6 347.3 417.3	4 8 32 128 512 1024 2048 4096	27.8 37.7 55.5 70.0 78.6 79.9 83.2 83.8	38.0 52.2 78.6 100.7 113.7 116.1 120.8 121.3	48. 66. 103. 134. 153. 156. 163.	6 77.5 0 122.4 2 162.5 2 185.4 7 191.6 2 200.5	90.46 149.28 1 205.63 5 242.88 6 246.67 1 257.8	3100.61 8172.86 3243.46 5298.49 7298.74 1319.47 1320.44
	1	Percento	ige Dis	sociati	Con.				Percente	ige Di	ssociati	on.	
v	a0°	al5°	a25°	α35°	a50°	a65°	v	a0°	a12.5°	a25°	α35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048 4096	26.1 36.9 43.6 50.7 65.5 82.9 89.5 96.8 100.0	25.9 36.8 42.7 49.4 65.8 83.7 89.2 96.8 100.0	25.9 36.7 42.9 49.9 66.4 84.9 90.7 97.7 100.0	28.4 32. 43.5 58.4 77.4 88.0	30.6 341.3 456.5 474.3 387.8	25.6 28.7 39.1 54.4 72.7 87.4 100.0	4 8 32 128 512 1024 2048 4096	33.2 45.0 66.2 83.6 93.8 95.3 99.3 100.0	31.3 43.0 64.8 83.0 93.7 95.7 99.6 100.0	40. 63. 82. 93. 95. 99.	8 38.4 0 60.9 1 80.0 8 92.1 9 95.3 9 99.4	34.9 57.6 79.4 2 93.7 8 95.2 5 99.5	53.9 76.0 93.1 93.2 99.7
Tem	peratur	e Coeffic	cients in	n Cond	luctivity	Units.	Temp	peratur	e Coeffic	cients	in Cond	uctivity	Units.
v	0-18	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	25-35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 1.8 \ 8 & 2.6 \ 2 & 3.3 \ 4 & 3.4 \ 8 & 3.8 \ \end{array}$	14 1 31 1 34 2 31 2 36 3 48 4 30 4	.84 .18 .90 .78 .09	1.56 2.00 2.92 4.00	1.32 1.47 2.03 2.93 4.09 4.97 5.85	1.17 1.29 1.84 2.78 4.05 5.26 6.13		$egin{array}{c cccc} 2 & 1. \\ 8 & 2. \\ 2 & 2. \\ 4 & 2. \\ 8 & 3. \\ \end{array}$	16 1 85 1 45 2 81 3 90 3 01 3	.80 .15 .95 .68 .16 .25 .39 .37	0.70 1.06 1.94 2.79 3.23 3.49 3.69 3.77		0.68 1.57 2.52 3.71 3.47 4.11 4.09
	Temper	ature C	'oefficie	nts in	Per Cer	nt.		Tempe	rature (oeffici	ients in	Per Ce	nt.
v	0-18	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	5-25°	25-35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 3.1 \ 8 & 3.4 \ 2 & 3.4 \ 4 & 3.3 \ 8 & 3.3 \ \end{array}$	33 2 16 2 10 2 11 2 16 2 11 2 16 2 18 2 28 2 28 2	.36 .45 .51 .50 .57 .61	1.95 1.84 2.02 2.16	1.56 1.54 1.58 1.68 1.82 1.88 1.96	1.12 1.10 1.15 1.27 1.41 1.55 1.59		8 3. 2 3. 8 3. 2 3. 4 3. 8 3.	08 2 33 2 50 2 58 2 63 2 61 2	1.11 1.20 1.48 1.66 1.78 1.79 1.81 1.78	1.88 2.08		0.75 1.05 1.23 1.53 1.41 1.59 1.58

CAI	DMIUM	Сньо	RIDE ((Ws	AND V	V.).	CA	DMIUM	BROM	MIDE (Ws.	AND W	7.).
		Molecul	ar Cond	luctivit	y.			A.	Iolecula	r Condu	uctivity	1.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	μ _ι 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
1024 2048	88.34 106.14 113.78 121.19	122.98	118.55 162.32 197.57 212.53 221.36	94.59 142.48 195.71 236.99 258.73 269.00	9 117.3 8 179.9 1 247.1 9 309.5 3	139.6 216.2 300.0 378.8 440.5	1024 2048	101.37 110.69 121.23	53.36	109.34 151.23 190.52 208.48 227.41	84.8 132.6 184.1 232.8 252.8 275.2	1 107.0 9 167.6 6 234.0 3 299.1 1 2 350.7	$202.3 \\ 286.4$
	i	Percento	ige Dist	sociatio	on.			i	Percento	ige Dis	sociati	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	α25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	27.8 37.4 54.2 72.9 87.6 93.9 100.0 99.9	26.7 35.2 52.3 71.2 85.9 92.4 96.2 100.0	25.9 34.2 51.1 69.9 85.1 91.6 95.4 100.0	25.5 33.5 50.5 69.3 83.9 91.6 95.3 100.0	33.0 50.6 69.5 87.1	31.7 49.1 68.1 86.0	4 8 32 128 512 1024 2048 4096	23.1 30.5 46.7 64.4 81.9 89.4 97.9 100.0	23.3 30.6 47.1 65.2 82.3 90.1 98.2 100.0	23.0 30.3 47.1 65.1 82.1 89.8 97.9 100.0	23.0 30.2 47.3 65.6 82.9 90.0 98.0 100.0	2 30.5 47.8 6 66.7 85.3 0	29.5
Tem	peratur	e Coeffic	cients in	ı Cond	uctivity	Units.	Tem	peratur	e Coeffi	cients i	n Cono	luctivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35° 3	35-50°	50-65°	v v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50-65°
	$egin{array}{c cccc} 8 & 2.7 \ 2 & 3.3 \ 4 & 3.6 \ 8 & 3.6 \ \end{array}$	24 1 27 2 38 3 37 4 60 4	.47 1 .26 2 .15 3 .94 3 .23 4 .41 4	1.18 1.53 2.39 3.34 3.94 4.62 1.76 5.04	1.19 1.51 2.49 3.42 4.83 5.76	1.12 1.49 2.42 3.52 4.62		8 2.7 2 3.4 4 3.6 8 3.9	24 1 94 2 70 3 55 3 69 4 97 4	.37 .18 .01 .78 .13 .52	1.11 .114 .144 .1		1.07 1.43 2.31 3.49 4.67 5.69
7	Tempero	ature Co	efficien	ts in P	er Cen	t.		Temper	rature C	oefficier	nts in .	Per Cen	t.
v	0-12	.5° 12.5	-25° 25	-35° 3	35–50°	50-65°	v	0-12	.5° 12.5	-25° 25	-35°	35-50°	50-65°
	8 3.1 2 3.1 4 3.2 8 2.9	74 2 01 2 .4 2 .8 2 .8 2 .97 2	.42 1 .50 2 .54 2 .66 1 .65 2	1.96 1.93 2.02 2.06 1.99 2.17 2.10 2.12	1.65 1.60 1.75 1.75 2.04 	1.25 1.27 1.34 1.42 1.49		3 3.3 2 3.3 4 3.3 8 3.2	28 2 35 2 38 2 30 2 33 2 21 2	.56 5 .66 5 .65 5 .64 5 .62 5 .64 5			1.33 1.34 1.38 1.49 1.56 1.62

C	CADMII	um Ioi	OIDE (Ws. A	AND W	7.).	MA	NGANO	ous Ch	LORII	DE (W	. AND	Ѕн.).
		Molecul	ar Con	ductivi	ity.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^{\circ}$	μ _v 65°	v	μ _v 0°	$\mu_v 10.4^\circ$	μ _v 25°	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ _v 65°
4 8 32 128 512 1024 2048 4096	20.45 24.31 39.45 62.73 87.06 96.31 109.01 118.78	29.76 35.85 59.23 93.36 127.74 140.03 157.20 170.69	48.44 81.53 127.36 172.93	101.2 157.3 211.9	$ \begin{array}{c c} 3 & 77.16 \\ 2 & 130.4 \\ 5 & 204.8 \\ 0 & 276.7 \end{array} $	$ \begin{array}{c} 94.61 \\ 161.3 \\ 254.8 \\ 345.5 \end{array} $	8 16 32 128 512	68.14 84.98 91.79 97.4 107.0 114.1 114.9	89.64 113.5 121.9 130.0 143.8 154.0 154.9	121.3 156.7 169.0 181.6 202.5 216.6 216.8	188.1 205.1 221.2 246.7 264.5	242.2 266.8 2 289.1 325.0 356.2	293.7 326.6 357.0 402.3 447.4 459.2
		Percenta						1	Percenta	ge Dis	sociatio	on.	
v	a0°	α12.5°	a25°	a35°	α50°	a65°	v	a0°	α10.4°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	17.2 20.5 33.2 52.8 73.3 81.0 91.7 100.0	17.4 21.0 34.7 54.7 74.8 82.6 92.1 100.0	17.7 21.5 36.3 56.6 76.9 83.9 93.3 100.0	17.8 21.9 37.3 58.0 78.1 85.2 94.5	23.1 39.1 61.4 83.0 2	22.8 38.9 61.4 83.3	2 8 16 32 128 512 1024 2048	59.3 84.0 79.0 84.8 93.1 99.3 100.0	57.9 73.3 78.7 83.9 92.8 99.4 100.0	56.0 72.3 78.0 83.8 93.4 99.0 100.0	54.6 70.9 77.3 83.1 93.0 99.7 100.0	64.9 71.5 77.5 87.2 95.5	62.7 69.7 76.2 85.9 95.5 98.1
Temp	perature	e Coeffic	ients in	Cond	uctivity	Units.	Temp	perature	e Coeffic	ients in	Condi	uctivity	Units.
v	0-12.	.5° 12.5-	-25° 25	-35°	35-50°	50–65°	v	0-10	.4° 10.4-	-25° 25	-35° 3	35-50°	50-65°
32 128 512 1024 2048 4096	$egin{array}{c ccc} 3 & 0.9 \\ 2 & 1.5 \\ 3 & 2.4 \\ 2 & 3.2 \\ 4 & 3.5 \\ 3 & 3.8 \\ \end{array}$	2 1. 8 1. 5 2. 25 3. 7 3. 6 4.	01 1 78 1 72 3 62 3 82 4 20 4	0.86 .10 .97 8.00 8.90 4.24 .67	0.88 1.18 1.96 3.16 4.32 5.13	0.88 1.16 2.06 3.33 4.59 5.41	1024 2048	3 2.7 3 2.8 2 3.1 3 3.5 2 3.8 4 3.8	74 2. 39 3. 3 3. 34 4. 33 4.	96 3 23 3 53 3 02 4 28 4	2.37 3.14 3.61 3.96 4.42 4.79 4.86		2.21 3.43 3.99 4.53 5.15 6.08 6.19 6.37
2	$\Gamma emper$	ature C	oefficier	its in .	Per Cen	nt.	2	Temper	ature Co	efficien	ats in I	Per Cen	t.
v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-10	.4° 10.4-	-25° 25	-35° 3	35-50°	50–65°
4 8 32 128 512 1024 2048 4096	3.7 2. 4.0 3.9 3.7 4. 3.7 3.5	8 2. 0 3. 0 2. 3 2. 1 3. 4 3.	82 2 01 2 91 2 83 2 71 2 67 2	2.16 2.27 2.42 2.36 2.26 2.25 2.23 2.06	1.82 1.99 1.94 2.01 2.04	1.42 1.50 1.58 1.62 1.66	10 32 128 512 1024 2048	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	22 2. 5 2. 21 2. 31 2. 37 2.	61 5 65 5 72 5 79 5 80 5	2.00 . 2.14 . 2.13 . 2.18 .		1.25 1.41 1.49 1.57 1.59 1.71 1.79 1.71

	Man	IGANOU	s Nr	TRATE	E (Sн.)	•	Ma	NGANO	ous Su	LPHA'	re (W	s. AND	H.).
		Molecule	ar Con	ductivi	ty.				Molecule	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 10.2^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
2 8 16 32 128 512 1024	66.1 83.1 85.5 90.5 98.3 104.8 105.4	104.1 111.5 118.8 129.7 138.4	116.3 144.3 154.5 165.0 182.0 194.6 195.8	172.5 185.1 197.9 219.8	5		2048	97.99 107.12 116.15	$111.74 \\ 138.76$	109.27 147.24 184.58 202.94 221.33	$egin{array}{c} 94.06 \\ 129.72 \\ 176.16 \\ 222.69 \\ 245.72 \\ 268.33 \\ \end{array}$	112.8 2 156.4 2 204.1 277.5 2	108.3 130.0 181.8 241.9 338.7 404.6
	i	Percenta	ge Dis	sociati	ion.			1	Percenta	ge Dis	sociatio	n.	
v	a0°	α10.2°	a25°	a35°	a50°	a65°	v	a0°	α12.5°	a25°	α35°	a50°	- a65°
2 8 16 32 128 512 1024	62.7 78.8 81.1 85.9 93.3 99.4 100.0	61.3 74.7 80.0 85.2 93.1 99.4 100.0	59.4 73.7 78.9 84.3 93.0 99.4 100.0	92.6 99.8	7 0 1 3		4 8 32 128 512 1024 2048 4096	29.9 35.4 47.9 63.8 78.7 86.1 93.3 100.0	29.2 34.6 47.0 62.9 78.1 85.8 93.1 100.0	28.2 33.5 45.9 61.8 77.5 85.2 92.9 100.0	32.5 44.8 60.8 76.9 84.9		
Tem	peratur	e Coeffic	ients ir	n Cond	luctivity	Units.	Tem	peratur	e Coeffic	ients ir	n Cond	uctivity	Units.
v	0-10	.2° 10.2-	-25° 25	5-35°	35-50°	50–65°	v	0-12	2.5° 12.5	-25° 25	5–35°	35-50°	50-65°
1	$2 \mid 3.$	$ \begin{array}{c ccc} 06 & 2 \\ 55 & 2 \\ 77 & 3 \\ 07 & 3 \\ 29 & 3 \end{array} $.72 .90 .12 .53 .08	2.24 2.82 3.06 3.29 3.78 4.16 4.16				2 3. 4 3. 8 3.	38 1 91 2 58 2 26 3 62 4 93 4	.47 .06 .84 .67 .05 .48	$egin{array}{cccc} 1.19 & . & . & . \\ 1.43 & . & . & . \\ 2.05 & . & . & . \\ 2.89 & . & . & . \\ 3.81 & . & . & . \\ 4.28 & . & . & . \\ 4.70 & . & . & . \\ 5.12 & . & . \\ . & . & . \\ \end{array}$	1.25 1.78 3.65	1.35 1.15 1.69 2.52 4.08
	Tempe	rature C	o <i>effici</i> e	nts in	Per Cer	ıt.		Tempe	rature C	oefficie	nts in	Per Cen	ıt.
v	0-10	0.2° 10.2	-25° 25	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5-35°	35-50°	50–65°
1	$2 \mid 3$.	48 2 98 2 06 2 12 2 13 2	.61 .60 .63 .72 .75	1.93 1.95 1.98 1.99 2.08 2.14 2.13				2 3. 24 3. 8 3.	13 2 20 2 25 2 33 2 38 2 38 2	.40 .47 .54 .64 .66 .71	1.77 1.79 1.88 1.96 2.06 2.11 2.12 2.15	1.33 1.37 1.64	1.53 1.04 1.08 1.24 1.47

	Nic	CKEL (Снгон	RIDE (W.).		l n	Vicke	L NIT	RATE	(W.	AND S	н.).
	Л	Iolecule	ar Cone	luctivit	y.			Λ	Iolecul	ar Con	ıductiv	ity.	
v	$\mu_v 0^\circ$	$\mu_v 6.3^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ _ν 65°	v	$\mu_v 0^\circ$	$\mu_v 6^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	6° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
128 512	73.07 89.51 95.79 102.1 112.0 119.0 120.7	86.49 106.3 114.4 122.0 134.7 144.5 145.4	131.7 164.8 177.4 190.5 211.6 227.2 229.0	158.0 198.9 215.3 231.2 256.8 278.6 279.4	$321.4 \\ 344.4$	301.5 354.7 398.4 426.1	512		102.7 109.9 116.8 128.7 137.2	125.3 157.9 169.7 180.9 200.1 215.4 214.3	190. 204. 218. 242. 261.	0 237.5 8 6 278.3 9 310.6 3 336.2	291.9 342.7 386.1 416.0 427.3 453.9
	P	ercenta	ge Diss	sociatio	n.			P	ercenta	ge Dis	sociat	ion.	
v	α0°	a6.3°	α25°	a35°	α50°	a65°	v	a0°	a6°	a25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	60.5 74.2 79.4 84.6 92.8 99.3 100.0	59.5 73.1 78.7 83.9 92.6 99.4 100.0	57.5 72.0 77.5 83.1 92.4 99.2 100.0	71.2 77.1 82.7 91.9 99.1 100.0	59.3 57.2 78.3 87.4 93.6	77.9 87.5 93.5	2 8 16 32 128 512 1024 2048 4096	61.6 75.4 80.9 85.6 93.5 100.0 100.0	60.5 74.7 80.0 85.0 93.7 99.9 100.0	58.8 73.7 79.2 84.4 93.4 100.0 100.0	73. 78. 84. 84. 93. 100.		64.3 75.5 85.0 91.6 94.1
Tempe	erature	Coeffic	ients in	Condi	uctivity	Units.	Temp	erature	Coeffic	ients i	n Con	ductivity	Units.
v	0-6.3	° 6.3-	25° 25	-35° 3	85-50°	50-65°	v	0-6°	6-2	25° 2	5–35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	2.13 2.67 2.98 3.16 3.57 3.90 3.92	7 3: 5 3: 6 3: 7 4: 0 4:	. 13 3 .37 3 .66 4 .11 4 .42 4	2.63		3.20 3.61 4.44 5.13 5.45 5.84	2 8 16 32 128 512 1024 2048 4096	1.90 2.50 2.77 2.94 3.44 3.55 3.60	$egin{array}{c cccc} 6 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$. 22 .91 .15 .37 .76 .12 .05	2.51 3.21 3.51 3.77 4.28 4.59 4.58		2.47 3.49 4.29 5.03 5.32 5.53 5.61 5.72
T	'empero	iture C	oefficier	nts in I	Per Cen	nt.	T	'empera	ature C	oefficie	ents in	Per Cer	nt.
v	0-6.3	° 6.3-	25° 25	-35° 3	5-50°	50–65°	v	0-6°	6-2	5° 2	5–35°	35–50°	50–65°
2 4 8 16 32 128 512 1024 2048	2.91 2.98 3.08 3.10 3.19 3.25 3.25	3 2. 3 2. 3 3. 3 3. 5 3.	94 2 95 2 00 2 05 2 06 2 07 2	2.07 2.14 2.14 2.14 2.14 2.18 2.20		1.46 1.46 1.54 1.59 1.58	2 8 16 32 128 512 1024 2048 4096	2.73 2.93 2.89 2.97 3.14 3.03 3.11	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.92 .00 .95	2.07 2.08 2.14 2.13 2.14		1.35 1.42 1.54 1.65 1.58 1.60 1.52 1.57

N	Vicke	L Sul	PHAT	е (Ј.	AND F	I.).	N	ICKEL	. A	CET	ATE	(J. A	ND H	w.).
	Л	Ioleculo	ar Con	ductii	rity.				Mol	ecul	ar Co	nductio	vity.	
v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^{\circ}$	μ_v 38	5° μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ	_v 10°	$\mu_v 2\xi$	5° $\mu_v 3$	$5^{\circ} \mu_v 50$	0° $\mu_v 65^{\circ}$
2 4 8 16 32 128 512 1024 2048	28.77 40.58 47.78 54.78 73.95 93.12 100.4 108.3	38.37 54.42 64.00 73.23 99.92 124.7 134.8 145.5	54.58 77.06 90.44 103.5 140.3 177.5 193.8 208.7	90.9 106. 123. 168. 213. 234.	95.8 95 115.8 9 0 158.2 4 215.6 5 278.9	5 135.7 2 187.8 3 259.8 9 339.7	2 8 16 32 128 512 1024 2048	20.11 38.95 47.81 54.11 69.22 76.66 78.65 82.24	5 52 64 73 2 92 5 10 5 10	7.24 2.07 1.03 3.82 2.82 03.5 05.9 10.9	39.2 74.1 91.6 105. 134. 150. 153.	10 89.5 30 110 .8 128 .6 164 .7 184 .9 189	29 115. .2 144. .1 171. .0 223. .7 256. .1 270.	45 72.22 65138.32 47171.27 78206.39 26272.67 95316.98 18336.46 44347.66
	P	'ercenta	ge Dis	socia	tion.			I	Perc	centa	ge D	issocia	tion.	
v	α0°	α10°	a25°	α35	° a50°	a65°	v	a0°	a	10°	α25	° a35	ο α50	° a65°
2 4 8 16 32 128 512 1024 2048	26.6 37.5 44.1 50.6 68.3 86.0 92.7 100.0	25.8 37.4 44.0 50.3 68.7 85.7 92.6 100.0	26.2 36.9 43.3 49.6 67.2 85.1 92.9 100.0				2 8 16 32 128 512 1024 2048	24.5 47.4 56.8 65.8 84.2 93.2 95.6 100.0	8 8 9	24.6 47.0 57.7 56.6 33.7 93.3 95.5	24. 45. 57. 65. 83. 93. 95.	1 45 0 56 9 65 8 83 8 93 8 96	.4 41 .1 52 .2 62 .4 80 .9 92 .2 97	8 39.8 3 49.3 1 59.4 8 78.4 9 91.2 7 96.8
$\left \begin{array}{c} Tempe \\ \hline v \end{array} \right $	0-10			n Con 5–35°	ductivity 35–50°	Units. 50-65°	$-\frac{Temps}{v}$	0-1		effica		in Con 25–35°	ductivii 35–50°	ty Units.
	2 0.9 4 8 1.8 6 1.6 2 1.8 2 3.1 4 3.4	96 1. 38 1. 32 1. 34 2. 39 2. 66 3. 44 3.	08 50 76 01 69 52 93	0.98 1.39 1.64 1.95 2.81 3.60 4.08 4.52	1.64 2.35 3.15 4.36	1.09 1.35 1.97 2.95 4.05		2 0. 8 1. 6 1. 2 1. 8 2. 2 2. 4 2.	71 31 62 97 36 68 72 86	0. 1. 1. 2. 2. 3.	79 47 84 13 78 14 20 31	0.82 1.51 1.86 2.23 2.94 3.40 3.52 3.60	55-50	. 0.78 . 1.49 . 1.79 . 2.31 . 3.29 . 4.00 . 4.42 . 4.73
T	'empera	ture Co	oefficie	nts in	Per Ce	nt.	T	'emper	atui	re Co	effic	ients in	Per C	ent.
v	0-10)° 10-	25° 25	5–35°	35-50°	50–65°	v	0-1	.0°	10-	25°	25–35°	35-50	50-65°
2 4 8 16 32 128 512 1024 2048	3 3.4 3 3.3 2 3.3 3 3.5 2 3.3 4 3.4		75 75 74 69 82 91		1.80 1.91 1.87 2.04	1.14 1.17 1.25 1.37 1.45		3 3. 3 3. 3 3. 3 3. 4 3.	53 39 39 64 41 50 46 48	2. 2. 2. 3. 3.	90 82 87 89 00 03 02 98	$\frac{2.04}{2.03}$		1.29 1.24 1.34 1.47 1.56 1.64

	C	Совацт	Снь	ORIDE	: (W.)		C	OBAL	r Bro	MIDE	(Ws.	AND V	V.).
		Molecul	ar Con	luctivi	ty.				Molecul	ar Con	ductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 7.2^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ_v 0°	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	6° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512	71.77 87.75 94.08 100.2 109.6 116.5	107.4 115.3 122.8 135.1 143.7	129.5 161.5 174.2 186.7 207.1 221.2	154.9 195.4 211.3 226.6 252.1 270.5	226.4 249.4 3	302.5 355.6 404.2	128 512 1024 2048	105.56 115.88 119.47 120.80 124.00	131.29 147.10 162.19 169.42 173.38 174.68	171.30 193.09 214.02 224.49 231.56 234.28	0 204 .4 9 233 .0 2 259 .9 9 273 .4 3 281 .	35 370.6	315.7 367.3 406.7 436.6
1024 2048	116.8	144.0	221.1	270.6	368.7	463.2	4096	125.45	177.93	236.78	3289.3	34	
	1	Percenta	ge Diss	sociati	on.			1	Percento	ige Dis	sociat	ion.	
v	a0°	a7.2°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	α25°	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	61.4 75.1 80.5 85.8 93.8 99.7 100.0	60.5 74.6 80.1 85.3 93.8 99.8 100.0	58.6 73.0 78.8 84.4 93.7 100.0 100.0	72.2 78.1 83.7 93.2 100.0	. 61.4 2 67.6 7 78.3 2 88.6 95.5	65.3 76.8 87.3 95.6	4 8 32 128 512 1024 2048 4096	70.0 75.7 84.1 92.3 95.2 96.3 98.8 100.0	67.6 73.8 82.7 92.0 95.2 97.5 98.2 100.0	65.7 72.3 81.5 90.4 94.8 97.8 98.9 100.0	70. 80. 89. 94. 97.	7 70.0 5 80.8 8 88.9 5 95.3 2 7 100.0	68.0 79.1 87.6 94.0
Temp		e Coeffic										ductivity	
	$egin{array}{c cccc} 5 & 2.9 \ 2 & 3.1 \ 8 & 3.5 \ 2 & 3.7 \ 4 & 3.7 \ \end{array}$	73 3. 95 3. 14 3. 54 4. 77 4.	38 2 04 3 .31 3 .59 3 .04 4 .35 4	-35° 3 2.54	3.60 4.14 4.99 5.45	3.19 3.54 4.46 5.17 6.04		4 2.8 8 2.9 2 3.3 8 3.7 4.0 4 4.2 8 4.0	90 3 32 3 71 4 00 4 21 4 05 4	.83 .20 .68 .15 .41 .65	5-35° 3.32 4.00 4.59 4.90 4.96 4.84 5.26	35–50° 2.85 3.66 4.43 4.64 5.31 5.86	3.37 3.75 4.52 5.15 5.57 6.25
	Тетрег	rature Co	oefficier	its in I	Per Cer	nt.		Temper	rature C	oefficie	nts in	Per Ce	nt.
v	0-7.	2° 7.2-	25° 25	-35° 3	35–50°	50-65°	v	0-12	.5° 12.5	-25° 2	5-35°	35–50°	50-65°
	6 3.1 2 3.1 8 3.2 2 3.2 4 3.2	11 2. 14 2. 13 2. 23 2. 23 3.	.83 2 .87 2 .92 2 .99 2	2.14 2.17 2.22	1.84 1.83 1.98 2.02	1.41 1.42 1.54 1.58 1.71		8 3.3 2 3.3 4 3.4 8 3.5	05 2 15 2 20 2 35 2 49 2 27 2	.44 .50 .56 .60 .68 .73	2.62 1.94 2.07 2.15 2.18 2.14 2.07 2.22	1.45 1.79 1.90 1.80 1.94	1.41 1.44 1.51 1.56 1.58

	Со	BALT	Nitra	ATE (W.).		Co	OBALT	Sulp	НАТІ	E (J. A	AND H.).
	M	lolecula	r Cond	u c tivit	y.			N.	Iolecule	ar Coi	nductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_{v}5.4^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 10^{\circ}$	$\mu_v 25$	$^{\circ}$ $\mu_v 35$	0° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048		82.27 101.0 108.2 114.7 125.8 135.5 135.4	125.9 157.9 169.2 180 8 200.4 215.5 215.3	150.7 189.9 204.7 218.6 242.2 262.1 262.0	216.8 239.7 276.9 2 310.1 334.7	291.4 340.2 384.0 414.6	2 4 8 16 32 128 512 1024 2048	29.47 42.06 49.26 56.26 75.89 94.88 101.9 110.9	39.22 56.00 65.61 75.04 101.5 126.9 137.6 148.4	55.1 78.3 91.9 105. 143. 180. 196. 214.	7 93.1 7 109. 4 125. 4 172. 2 218. 9 239.	95.6 4 117.2 4 8 160.0 1 203.4 1 290.7 2	137.5 189.6 256.6 346.0
	P	ercenta'	ge Dis	sociati	on.			P	'ercenta	ge Di	ssociat	ion.	~
v	a0°	a5.4°	a25°	a35°	a50°	a65°	v	a0°	α10°	a25	a35	° a50°	a65°
2 4 8 16 32 128 512 1024 2048	61.7 	60.8 	58.5 73.3 78.6 84.0 93.1 100.0 100.0	57.8 72.8 78.1 83.4 92.4 100.0 100.0	61.0 67.5 77.9 87.3 94.2	66.4 77.5 87.5 94.4 100.0	2 4 8 16 32 128 512 1024 2048	26.6 37.9 44.4 50.7 68.4 85.6 91.9 100.0	26.4 37.7 44.2 50.6 68.4 85.5 92.7 100.0	25. 36. 43. 49. 67. 84. 92. 100.	6 35. 0 42. 2 48. 0 66. 2 84. 0 92. 0 100.	9 2 5 4 2 3	Units.
v	0-5.4	° 5.4-	25° 25	-35°	35-50°	50-65°	v	0-10	° 10-	25°	25–35°	35-50°	50-65°
2 4 8 16 32 128 512 1024 2048	1.9 2.3 2.7 2.9 3.3 3.6 3.5	9 2 9 3 2 3 0 3 3 4	.90 .11 .37 .81	2.48 3.20 3.55 3.78 4.18 4.66 4.67	3.32 3.89 4.53 4.84	3.11 3.45 4.22 4.93 5.33 5.58	2 4 8 16 32 128 512 1024 2048	1.3 1.6 1.8 2.5 3.2 3.5	9 1 3 1 8 2 6 2 1 3 7 3	.06 	1.04 1.47 1.74 2.04 2.87 3.79 4.23 4.51		1.14 1.35 1.97 3.55 3.49 5.42
2	Temper	ature C	oefficie	nts in	Per Cer	ıt.	T	empere	ature C	oeffici	ents in	Per Cen	ıt.
v	0-5.4	° 5.4-	25° 25	-35°	35–50°	50-65°	v	010	° 10-	25°	25–35°	35-50°	50–65°
2 4 8 16 32 128 512 1024 2048	2.7 2.7 2.9 2.9 3.0 3.1 3.0	$egin{array}{cccccccccccccccccccccccccccccccccccc$.87 .87 .94 .03 .01	2.03 2.09 2.09 2.09 2.09 2.16 2.17	1.75 1.78 1.87 1.85	1.43 1.44 1.52 1.59 1.59	2 4 8 16 32 128 512 1024 2048	3.3 3.3 3.3 3.3 3.3 3.5	$egin{array}{c cccc} & & & & & & \\ 0 & & & & & \\ 1 & & & & \\ 2 & & & & \\ 4 & & & & \\ 2 & & & & \\ 2 & & & & \\ 0 & & & & \\ 2 & & & & \\ \end{array}$.70 .66 .68 .69 .75 .79 .87	1.89 1.88 1.89 1.94 2.00 2.10 2.15 2.11		1.19 1.15 1.23 1.74 1.20

	Соваі	LT ACE	ETATE	(J. A	ND W	.).	Sı	LVER	NITRA	TE (Ws. A	ND C.)	•
		Molecul	ar Con	ductiv	ity.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^{\circ}$	μ_v 35	° µ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\rho = \mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
2 4 8 16 32 128 512 1024 2048	22.20 41.31 50.07 56.92 71.25 78.29 78.88 82.71	29.79 55.27 67.20 76.66 95.67 106.0 107.1 113.2	42.55 78.37 95.68 109.8 136.8 153.6 155.3 163.7	94.0 114.1 132. 166.3 188.	91.4 0 106.8 9 1 175.8 3 206.9 1 241.9	131.2 217.1 256.4 300.7	2 4 8 32 128 512 1024 2048 4096	51.43 56.01 61.80 65.79 69.24 	91.06 94.99 96.67	99.8 111.2 119.1 125.2 126.8	$0133.1 \\ 4142.6$	7 150.7 4 168.6 7 180.4 7 187.7 190.1 4 191.5	152.2 184.8 207.7 221.4 229.0 230.7 232.4
		Percento	ige Dis	sociat	ion.				Percento	ige Dis	ssociati	on.	
v	a0°	α10°	a25°	α35°	ο α50°	a65°	v	a0°	α12.5°	a25°	a35°	ο α50°	a65°
2 8 16 32 128 512 1024 2048	2 26.8 26.3 26.0 25.6						2 4 8 32 128 512 1024 2048 4096	72.4 78.8 87.0 92.6 97.4 	97.6	70.6 76.9 85.1 91.8 96.8	78. 7 86. 8 93. 97. 7 98.	5 78.7 8 88.0 1 94.2 0 98.0 . 99.3 7 100.0	79.5 89.4 95.3 98.5 99.3
Tem	-1				luctivity		Tem		e Coeffic				
v	0-10	0° 10-	25° 2	5–35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	25–35°	35–50°	50-65
2 4 8 16 32 128 512 1024 2048	1. 1. 1. 2. 2.	39 1 71 1 97 2 44 2 77 3 82 3	.85 	0.87 1.56 1.92 2.23 2.95 3.45 3.45 3.56		1.30 1.63 2.75 3.30 3.92 4.37	1	4 8 1. 2 1. 8 2. 2 2. 4 8 2.	65 1 88 2 02 2 06 2 15 2	.69 .65 .07 .25 .42 .41 .45	1.83 2.06 2.19 2.35 2.35 2.35	2.02 2.36 2.52 2.60	1.82 2.27 2.61 2.73 2.75 2.71 2.73
	Tempe	rature C	Coefficie	ents in	Per Ce	nt.		Tempe	rature C	l'oeffici	ents in	Per Cer	nt.
v	0-1	0° 10-	25° 2	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	5–25° 2	25-35°	35-50°	50-65
1	2 3. 8 3. 2 3. 4 3.	36 2 42 2 46 2 42 2 54 2 58 2	.85 .88 .88 .86 .97 .99	2.04 1.99 2.01 2.03 2.16 2.25 2.22 2.17		1.42 1.52 1.56 1.59 1.62		4 8 2. 2 2. 8 2. 2 2. 4 8 3.	95 2 94 2 94 2 98 2	2.40 2.43 2.47 2.55 2.49 2.47	2.00 2.06 1.97 1.97 1.87 1.92 1.82	1.68 1.78 1.77 1.75	1.46 1.51 1.55 1.51 1.46 1.43

	Cu	PRIC C	CHLOR	IDE ((W.).			C	UPRIC	Brom	HDE (J.).	
	1	Molecula	r Cond	uctivi	ty.*				Molecule	ar Con	ductivi	'y.*	
v	$\mu_v 0^{\circ}$	μ _v 13.8°	$\mu_v 25^{\circ}$	μ_v 35	5° $\mu_v 50^{\circ}$	$^{\circ}$ $\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	μ _v 13.3°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ.50°	$\mu_v 65^\circ$
128 512	68.95 87.57 94.82 101.3 111.5 118.4 123.0	127.0	119.8 158.3 173.5 187.5 210.1 224.0 232.2	141. 189. 208. 226. 255. 273. 282.	9 6 2 6 4		$128 \\ 512 \\ 1024$	75.27 91.31 99.30 105.0 118.2 122.2 125.4 131.4	103.9 131.0 141.4 149.8 169.0 177.3 181.2 187.5	135.3 169.6 183.0 194.3 220.0 230.8 236.6 242.7 248.8 274.8	203.8 220.3 234.1 266.0 278.4 285.9 295.0 300.2		
		Percenta	ge Dis	sociat	ion.			i	Percenta	ge Dis	sociatie	on.	-
v	a0°	α13.8°	a25°	a35°	° a50°	a65°	v	a0°	α13.3°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024	56.1 71.2 77.1 82.4 90.7 96.3 100.0	53.0 69.9 75.4 81.0 90.5 96.5 100.0	51.6 68.2 74.7 80.7 90.5 96.5 100.0	50. 67. 73. 80. 90. 96.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 8 16 32 128 512 1024 2048	57.3 69.5 75.6 79.9 90.0 93.0 95.4 100.0	55.4 69.9 75.4 79.9 90.1 94.6 96.6 100.0	55.7 69.9 75.4 80.1 90.6 95.1 97.5 100.0	69.1 74.7 79.3 90.2 94.4 96.9		
Tem	peratur	e Coeffic	ients ir	n Cone	ductivity	Units.	Tem	peratur	e Coeffic	ients i	n Cond	uctivity	Units.
v	0-13	.8° 13.8-	-25° 25	5-35°	35-50°	50-65°	v	0-13	3.3° 13.3	-25° 2	5-35°	35-50°	50-65°
	$ \begin{array}{c cccc} 2 & 3.3 \\ 8 & 3.3 \\ 2 & 4. \end{array} $	86 2 06 3 32 3 84 4 12 4	.79 .26 .61 .07 .35	2.15 3.16 3.51 3.87 4.55 4.94 5.04			\$	2 3.3 8 3.3 4 4.4 8 4.5 6	99 3 17 3 37 3 82 4 14 4 19 4	.50 .75 .35 .57	2.08 . 3.42 . 3.73 . 3.98 . 4.60 . 4.76 . 4.93 . 5.23 . 5.14 . 5.03 .		
	Tempe	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oe,fficie	ents in	Per Ce	nt.
v	0-13	3.8° 13.8	-25° 25	5-35°	35-50°	50-65°	v	0-13	3.3° 13.3	-25° 2	5–35°	35–50°	50-65°
	$egin{array}{c cccc} 2 & 3.5 \\ 8 & 3.4 \\ 2 & 3.4 \\ \end{array}$	26 2 23 2 28 2 44 2 48 2	.20 .37 .45 .47 .48	$2.02 \\ 2.06 \\ 2.17$				$egin{array}{c cccc} 2 & 3.3 \\ 8 & 3.3 \\ 2 & 3.3 \\ 4 & 3.3 \\ \end{array}$	27 2 19 2 21 2 23 2 38 2 34 2	.51 .48 .50 .57 .57			

^{*}Decomposed at higher temperatures.

(Сорре	r Nit	TRATE ((W. A.	ND H	w.).	C	ОРРЕБ	SULP	HATE	(Ws.	AND I	H.).
	1	Molecul	ar Cond	uctivitį	/·*			i	Molecul	ar Cone	ductivii	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 5^\circ$	$\mu_v 15.8^\circ$	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
512	93.0 99.15 109.0 117.7	$99.21 \\ 106.7$	102.5 130.0 140.2 150.0 166.5 180.2 183.3	123.3 156.7 169.4 181.8 201.9 218.4 222.9	$219.9 \\ 245.0$		2048	97.88 105.85 113.36	42.12 59.35 80.53 108.74 138.92 150.86 161.78 171.07	143.21 184.97 202.57 217.71	91.16 124.94 170.66 221.08 245.04 264.4	93.8 109.1 152.7 210.3 279.1 4343.3	107.4 124.5 173.8 247.3 237.7 422.7
	i	Percent	age Diss	sociatio	n.			1	Percenta	ge Dis	sociatio	on.	
v	a0°	a5°	a15.8°	a25°	α35°	a50°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
2 8 16 32 128 512 1024	57.9 72.2 77.6 82.8 91.0 98.2 100.0	57.1 71.6 77.0 82.1 90.5 98.2 100.0	55.9 70.9 76.5 81.9 90.8 98.3 100.0	55.3 70.3 76.0 81.6 90.6 98.0 100.0	69.4 75.1 80.9 90.2 98.0		2 8 32 128 512 1024 2048 4096	25.2 35.5 48.0 64.5 82.1 88.8 95.1 100.0	24.6 34.7 47.1 63.6 81.2 88.2 94.6 100.0	23.8 33.4 45.7 61.9 80.0 87.6 94.1 100.0	23.2 32.4 44.4 60.6 78.6 87.1 94.0 100.0		
Tem	perature	e Coeffi	cients in	Condu	ıctivity	Units.	Temp	perature	e Coeffic	ients ir	a Cond	uctivity	Units.
\overline{v}	0-5	5° 5-1	5.8° 15.8	8-25° 2	25–35°	35-50°	v	0-12	.5° 12.5	-25° 25	5–35°	35-50°	50-65°
	$egin{array}{c cccc} 2 & 2.9 \ 8 & 3.3 \ 2 & 3.6 \ \end{array}$	55 2 74 3 93 3 30 3 68 4	.85 .10 .35 .80 .08	2.26 2.90 3.17 3.46 3.85 4.15 4.30	2.38 3.18 3.46 3.81 4.31 4.82 4.88			$egin{array}{c cccc} 8 & 2.8 \ 2 & 3.2 \ 4 & 3.6 \ 8 & 3.8 \ \end{array}$	36 1 36 2 54 2 28 3 60 4 87 4		1.00	1.26 1.85 2.65 3.87	0.91 1.02 1.41 2.45 3.91 5.29
	Temper	rature (Coefficie	nts in I	Per Cer	nt.		Temper	rature C	oefficie	nts in	Per Cer	nt.
v	0-5	5° 5-1	5.8° 15.8	8-25° 2	25-35°	35–50°	v	0-12	.5° 12.5	-25° 28	5–35°	35–50°	50-65°
	$egin{array}{c cccc} 2 & 2.9 \\ 8 & 3.0 \\ 2 & 3.1 \\ \end{array}$	95 2 95 2 95 2 03 3 13 3	.87 .91 .94 .03	2.20 2.23 2.26 2.31 2.33 2.30 2.35	1.93 2.03 2.04 2.10 2.14 2.21 2.19			$egin{array}{c cccc} 8 & 3.3 \ 2 & 3.3 \ 4 & 3.4 \ 8 & 3.4 \ \end{array}$	22 2 25 2 30 2 35 2 40 2		1.82 . 1.79 1.83 1.91 1.95 2.10 2.15 2.17	1.38 1.48 1.55 1.75	0.97 0.93 0.92 1.16 1.40

^{*}Decomposed at higher temperatures.

	LEAD	Снго	RIDE ((Ws. A	ND H	.).		LEAD	NITR.	ATE (J. ANI	о Ѕн.)	. }
		Molecus	ar Con	ductivii	ły.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	$\mu_v 12.5$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 10^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
$\begin{array}{c} 128 \\ 512 \\ 1024 \\ 2048 \end{array}$	116.27 133.10 136.89 138.88	144.76 161.56 186.16 191.98 195.16 204.36	211.43 246.3 253.90 258.49	3 252 . 17 1 293 . 03 6 306 . 43 9 312 . 13	7314.895370.263387.253412.06	379.39 452.75 476.90	1024	93.85 115.1 129.1	63.55 97.32 113.3 128.3 153.1 171.9 178.1 178.7	161.5 181.5	169.4 195.6 118.8 256.7 287.1	5 218.4 6 251.7 8 281.6 7 333.3 1 369.6	267.8 309.4 347.8 410.2 455.0 477.7
		Percent	age Dis	sociatio	n.			1	Percenta	ge Dis	sociati	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a10°	a25°	a35°	a50°	a65°
64 128 512 1024 2048 4096	72.2 80.4 92.0 94.6 96.0 100.0	70.8 79.0 91.1 93.9 95.5 100.0	78.2 91.1 94.0 95.6	76.9 89.4 93.5 95.2	75.5 88.8 92.9 98.8	73.6 87.9 92.6 97.6	2 8 16 32 128 512 1024 2048	34.3 52.6 62.5 69.5 85.2 95.6 98.9 100.0	35.6 54.5 63.4 71.8 85.7 96.2 99.7 100.0	37.5 55.3 65.3 73.4 86.6 96.4 100.0	56. 65. 73. 85. 96.	35.8 54.4 62.9 70.7 83.4 92.5 97.2 100.0	
Tem	peratur	e Coeffi	cients i	n Cond	uctivity	Units.	Tem	peratur	e Coeffic	ients i	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 2	5–35° 3	35–50°	50-65°	v	0-1	0° 10–	25° 2	5–35°	35-50°	50-65°
6 12 51 102 204 409	2 4. 4 4. 8 4.	$egin{array}{c cccc} 63 & 3 & 3 \ 25 & 4 & 4 \ 41 & 4 & 5 \ 70 & 5 & 5 \ \end{array}$.52 .99 .81 .96 .07	3.61 . 4.07 . 4.67 . 5.25 . 5.36 . 5.75		3.61 4.30 5.50 5.98 6.05 6.57		2 3. 8 3. 2 4. 4 4.	62 2 88 3 44 3 80 4 28 4 45 4	.83 .21 .55 .06 .43 .62	2.03 2.97 3.41 3.73 4.27 4.88 5.01 5.18		2.19 3.29 3.85 4.41 5.13 5.69 6.17 6.36
	Tempe	rature (Coefficie	ents in .	Per Cer	nt.		Tempe	rature C	oefficie	nts in	Per Cer	nt.
\overline{v}	0-12	2.5° 12.5	5-25° 2	5–35°	35-50°	50-65°	v	0-1	0° 10-	25° 2	5–35°	35–50°	50-65°
12 51 102 204 409	28 3. 2 3. 24 3. 48 3.	12 2 19 2 22 2 24 2	2.43 2.47 2.58 2.58 2.60 2.58	1.93 . 1.90 . 2.07 . 2.07 .		1.30 1.37 1.49 1.54 1.47 1.58		2 3. 8 3. 2 3. 4 3.	$egin{array}{c cccc} 68 & 2 \\ 41 & 2 \\ 67 & 2 \\ 30 & 2 \\ 32 & 2 \\ 33 & 2 \\ \end{array}$.05 .91 .83 .77 .65 .58	2.19 2.12 2.11 2.05 2.00 2.05 2.03 2.10		1.53 1.51 1.53 1.53 1.53 1.54 1.60 1.64

	LEAD	ACETA	лте (I	I. AN	b Hw	.).	AL	UMINI	им Сн	LORID	E (Ws	S. AND	SH.)
		Molecul	ar Cone	ductivi	ty.				Molecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ _υ 0°	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
4 8 32 128 512 1024 2048 4096	11.2 16.0 28.8 46.4 65.3 74.5 84.3 87.8	16.4 23.3 41.4 66.3 92.7 108.2 119.4 124.6	22.1 31.2 54.9 87.1 123.1 139.1 156.8 165.5	146.2 167.2 189.1	48.18 89.36 132.56 191.61 214.38 242.06		8 16 32 64 128 512 1024 2048	120.22 142.21 162.66 176.77 184.58 193.37	200.06 231.08 252.75	220.86 265.12 308.86 341.24 360.56 381.44	2322.18 0377.28 4421.06 6446.95	8 341.6 381.1 3 455.5 6 5 567.5 6 609.3 6 647.5	361.4 419.1 470.9 567.3 730.0 796.7 868.5 953.2
	1	Percenta	ge Dis	sociatio	on.			1	Percenta	ge Dis	sociatio	n.	
v	a0°	α12.5°	a25°	a35°	a50°	α65°	v	a0°	α12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	12.8 18.2 32.8 52.8 74.4 84.9 96.0 100.0	13.2 18.7 33.2 53.2 74.4 86.8 95.8 100.0	13.3 18.8 33.2 52.6 74.4 84.0 94.7 100.0	13.6 19.0 33.3 52.4 73.6 84.2 95.2 100.0	18.5 32.3 50.8 73.4 82.1 92.7	18.4 32.5 50.2 72.3 81.0 91.7	4 8 16 32 64 128 512 1024 2048 4096	53.2 60.4 71.5 81.7 88.8 92.8 97.2 100.0	50.8 58.0 69.0 	48.5 55.4 66.5 77.4 85.5 90.4 95.6 100.0	53.3 6 64.4 75.5 6 84.2 8 89.4 6 94.5	48.6 54.2 	37.9 44.0 49.4 59.5 76.6 83.6 91.1 100.0
Temp	peratur	e Coeffic	cients i	n Cond	luctivity	Units.	Tem	peratur	e Coeffic	cients i	in Cond	uctivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 2	5–35° 3	35–50°	50-65°
4 8 32 128 512 1024 2048 4096	$egin{array}{c cccc} 3 & 0.5 \\ 2 & 1.6 \\ 3 & 1.5 \\ 2 & 2.1 \\ 4 & 2.7 \\ 3 & 2.8 \\ \end{array}$	58 0 59 1 19 2 70 2 81 2	63 08 66 43 47	0.49 . 0.66 . 1.13 . 1.71 . 2.31 . 2.81 . 3.23 . 3.32 .		0.46 0.66 1.22 1.73 2.44 2.74 3.16 3.64	1 3	2 4.6 4 8 5.4 2 6.6 4 6.8 8 6.8	84 4 	.69 .21 	3.90 4.57 5.71 6.85 7.98 8.64 9.10 0.11		4.30 5.16 5.99
7	Гетрег	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oefficie	ents in I	Per Cen	nt.
v	0-12	.5° 12.5	-25° 25	5-35°	35–50°	50–65°	v	0-12	2.5° 12.5	-25° 2	5–35° 3	35–50°	50–65°
4 8 32 128 512 1024 2048 4096	3 3.6 3 3.4 3 3.4 3 3.6 3 3.8	33 2 50 2 42 2 35 2 32 2 34 2	.70 .61 .50 .62 .28	2.12 2.06 1.96 1.88 2.02 2.06		1.33 1.37 1.45 1.31 1.27 1.28 1.36 1.39	1 3	2 3.5 4 8 3.5 2 3.6 4 3.8 8 3.6	26 2 36 2 07 2 55 2 56 2	.50 .50 .60 .80 .82 .92 .00			1.45 1.51 1.58 1.62 1.91 2.05 2.27 2.37

AL	UMINI	JM NI	TRATE	(Ws	. AND	Sн.).	ALU	MINIU	и Sui	PHAT	E (Ws	S. AND	SH.).
		Molecul	ar Con	ductivi	ty.				Molecul	ar Cone	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048	102.82 115.67 136.32 156.18 166.97 173.45 179.32 187.89	158.84 188.54 217.14 234.81 247.08 255.68	206.89 247.70 287.08 313.08 332.20 345.82	248.8 299.9 349.4 384.4 410.1 2428.3	2 320.8 6 394.3 9 464.4 3 535.8 8 575.8 2 613.3	393.6 487.3 583.9 685.9 750.5 820.9	512 1024 2048	121.87 164.08 191.95 222.31		$\begin{array}{c} 114.44 \\ 158.01 \\ 219.04 \\ 301.01 \\ 359.16 \\ 425.03 \end{array}$	132.46 183.5 266.2 358.79 433.5 518.19	2 339.9 9 497.3 1 613.2 9 746.8	185.7 266.2 395.1 594.6 740.2 943.0
	1	Percento	ige Dis	sociati	on.			i	Percenta	ge Dis	sociatio	on.	
v	a0°	a12.5°	a25°	a35°	a50°	a65°	v	a0°	a12.5°	a25°	a35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	54.7 61.6 72.5 83.1 88.9 92.3 95.4 100.0	51.2 58.4 69.3 79.8 86.3 90.8 94.0 100.0	48.5 55.6 66.6 77.1 84.1 89.3 92.9 100.0	46.8 53.8 64.9 75.6 83.1 88.7 92.6 100.0	8 48.8 9 60.0 6 70.7 1 82.0 7 87.7 6 93.4	43.4 53.6 64.3 75.5 82.6 90.4	4 8 32 128 512 1024 2048 4096	19.8 24.9 34.1 46.5 62.5 73.2 84.7 100.0	19.0 23.7 32.7 44.8 61.0 71.7 83.9 100.0	18.0 22.3 30.7 42.6 58.5 69.9 82.7 100.0	17.0 20.9 28.9 41.9 56.5 68.3 81.6	17.8 25.3 36.3 53.1 65.5 79.8	15.2 21.8 32.4 48.7 60.6
Tem	perature	Coeffic	ients ir	Cond	uctivity	Units.	Tem	peratur	e Coeffic	ients ir	a Cond	uctivity	Units.
v	0-12	.5° 12.5	-25° 25	5-35°	35–50°	50-65°	v	0-12	2.5° 12.5	-25° 25	-35°	35-50°	50-65°
	$egin{array}{c cccc} 8 & 4.8 \ 2 & 5.4 \ 4 & 5.9 \ 8 & 6.1 \ \end{array}$	15 3 8 4 88 5 15 6 9 7	.84 .75 .60 .28 .86	3.60 4.19 5.23 6.25 7.17 7.86 8.37 9.32	3.96 4.79 6.29 7.66 10.09 11.04 12.33 12.92	4.17 4.87 6.20 7.97 10.07 11.65 13.84 16.77		$egin{array}{c cccc} 8 & 3.8 \ 2 & 5.3 \ 4 & 6.3 \ 7.3 \ \end{array}$	97 1 73 2 80 3 84 5 84 7 59 8	.97 .75 .97 .61 .03 .63	1.53 . 1.80 . 2.55 . 1.72 . 5.78 . 7.44 . 9.32 .		1.09 1.27 1.97 3.67 6.49 8.47 13.08 19.01
	Temper	ature C	oefficie	nts in	Per Cer	nt.		Тетрег	rature C	oefficier	nts in	Per Cen	nt.
v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	.5° 12.5	-25° 25	-35° 3	35–50°	50-65°
	8 3.1 2 3.2 4 3.4 8 3.4	18 2 10 2 12 2 12 2 13 2 14 2	.42 .51 .58 .67 .77	1.90 2.03 2.11 2.18 2.28 2.36 2.39 2.45	1.83 1.92 2.09 2.19 2.62 2.69 2.88 2.79	1.51 1.52 1.57 1.72 1.88 2.01 2.25 2.55		3 3.3 2 3.5 4 3.3 8 3.4	02 2 05 2 12 2 25 2 30 2 41 2	.19 .23 .34 .43 .59 .72	1.66 . 1.57 . 1.61 . 2.16 . 1.79 . 2.07 . 2.19 .		0.80 0.76 0.83 1.08 1.31 1.38 1.75 2.03

I	ERRI	с Снг	ORIDE	(J. A	ND H	.).		FER	RIC N	ITRAT	E (J.)	•	
	Л	Iolecul	ar Cond	ductivit	y.			Л	Iolecul	ar Con	ductivit	y.*	
v	$\mu_v 0^{\circ}$	μ _v 10°	μ _v 25°	μ _υ 35°	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 10°	$\mu_v 25^{\circ}$	μ _v 35°	μ _v 50°	$\mu_v 65^\circ$
2 4 8 16 32 128 512 1024 2048	80.50 127.2 143.4 166.7 198.9 351.2 486.3 609.7	104.6 168.5 190.7 226.0 274.0 563.1 688.4 799.9	892.4	285.4 332.7 400.4 508.9 945.0 1130.3	269.8 346.9 515.8 1037.6 1405.4	31512.5 31685.9 4	2 8 16 32 128 512 1024 2048	97.68 138.2 150.7 171.4 199.5 371.3 490.9 585.2	128.1 185.7 202.7 233.7 271.7 408.7 571.4 693.5		364.3 422.6	2 3 3 4 	
	P	ercenta	ge Diss	sociatio	n.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	α10°	α25°	a35°	a50°	a65°	v	a0°	α10°	a25°	α35°	a50°	a65°
2 4 8 16 32 128 512 1024 2048 Tempe	erature	Coeffic	ients in	Condi	uctivity	Units.	2 8 16 32 128 512 1024 2048	erature	Coeffic	ients in	ı Condu	ıctivity	Units.
v	0-10	0° 10-	25° 25	-35° 3	5-50°	50-65°	v	0-10	0° 10-	25° 25	5–35° 3	85-50°	50–65°
4	$egin{array}{c cccc} 2 & 5.9 \ 8 & 7.8 \ 2 & 21 \ \end{array}$	13 4 73 5 93 6 51 8 .1 9	64 4 59 5 82 7 53 10 61 23	2.65 . 4.73 . 5.81 . 7.21 . 0.70 . 3.78 . 3.60 .				$egin{array}{c cccc} 2 & 6.3 \\ 8 & 7.3 \\ 2 & 3.3 \\ 4 & 8.6 \\ \end{array}$	75 5 20 6 23 7 22 8 74 19 05 20	.39 .17 .26 .50 .80 2 .42 2	3.91 . 6.17 . 6.90 . 8.00 . 9.20 . 2.13 . 3.88 .		
Т	'empero	iture C	oefficier	ıts in I	Per Cer	nt.	T	'empero	ture C	oefficie	nts in I	Per Cen	at.
v	0-10)° 10-	25° 25	-35° 3	5-50°	50-65°	v	0-10	0° 10-	25° 25	5-35° 3	35-50°	50-65°
4	$egin{array}{c cccc} 2 & 3.5 \\ 8 & 3.7 \\ 2 & 6.0 \\ \end{array}$	25 2 30 2 56 3 78 3 01 1.	75 1 93 2 02 2 11 2 71 3	.85				$egin{array}{c cccc} 2 & 3.6 \ 8 & 3.6 \ 2 & 1.6 \ 4 & 1.6 \ \end{array}$	14 2 14 3 33 3 32 3 01 4 34 3	.90 .04 .11 .13 .84	2.15 2.32 2.34 2.34 2.30 3.14 2.72 2.30		

^{*}Decomposed at higher temperatures.

Ст	HROMI	с Снь	ORIDE	(Ws.	AND	Sн.).	(Снком	iic Ni	TRATE	E (J	and Si	н.).
		Molecul	ar Cone	ductivi	ty.				Molecul	ar Con	ductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	$\mu_v 10^\circ$	$\mu_v 25^{\circ}$	μ_v 35	$5^{\circ} \mid \mu_v 50^{\circ}$	$\rho \mid \mu_v 65^\circ$
32 128 512 1024 2048	104.53 130.03 162.34 188.46 200.21 214.48	116.97 138.83 182.75 231.28 272.50 294.55 316.60 341.14	184.18 245.00 313.45 372.34 403.58 434.36	243.5 319.1 393.6 465.1 504.3 543.0	5 332.3 5 431.2 2 534.3 0 650.9 1 724.2 2 783.9	538.5 681.5 834.4 941.3	2 8 16 32 128 512 1024 2048	87.17 117.6 129.7 138.5 149.0 188.7 203.0 210.4	112.1 153.1 169.7 181.9 198.9 253.0 274.0 295.3	$\begin{vmatrix} 286.2\\ 370.2\\ 412.9 \end{vmatrix}$	256. 3287. 312. 350. 459. 511.	5 335.9 4 380.6 6 420.5 7 511.2 4 634.7 8 692.0	9 416.3 6 473.8 6 531.2 2 658.9 7 821.2 9 894.4
	i	Percenta	on.			1	Percenta	ge Dis	sociat	ion.			
v	a0°	α12.5°	a25°	a65°	v	a0°	α10°	a25°	a35	° a50°	a65°		
4 8 32 128 512 1024 2048 4096	37.6 45.5 56.6 70.7 82.1 87.2 93.3 100.0	34.3 40.7 53.6 67.8 79.9 86.4 92.9 100.0	32.8 39.4 52.4 67.0 79.6 86.3 92.9 100.0	34.3 42.0 55.0 67.9 80.2 86.9 93.6 100.0	39.7 51.6 63.9 77.9 86.6 93.8	61.9 75.7 85.5 92.2	2 8 16 32 128 512 1024 2048	41.4 55.9 61.6 65.8 70.8 89.7 96.5 100.0	38.0 51.9 57.5 61.8 67.4 85.7 92.8 100.0	35.3 48.9 54.5 58.9 65.3 84.5 94.3 100.0	46. 52. 56. 63. 83. 93.	6 43.8 2 49.6 8 54.8 7 66.6 6 82.7 4 90.2	8 41.7 6 47.4 8 53.2 6 65.9 7 82.2 2 89.5
Tem	perature	e Coeffic	ients in	Cond	uctivity	Units.	Temp	perature	e Coeffic	ients in	n Cone	ductivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35°	35–50°	50-65°	v	0-10	0° 10-	25° 25	5-35°	35-50°	50-65°
	5.5 2 6.7 4 7.5 8 8.1	74 3 22 4 52 6 72 7 54 8 8 9	.63 5 .98 7 .57 8 .99 9 .72 10 .42 10	7.42 3.02 0.28 0.07 0.87		5.18 7.15 9.81 12.23 14.47 15.45 17.66		$egin{array}{c cccc} 2 & 4.3 \\ 3 & 4.9 \\ 2 & 6.4 \\ 4 & 7.1 \\ \hline \end{array}$	55 4 00 4 34 5 99 5 43 7 10 9	.06 .61 .08 .82 .81	2.89 4.25 4.06 5.45 6.45 8.92 9.89 1.29		3.11 5.36 6.22 7.38 9.85 12.43 13.49 15.47
	Тетрег	rature C	oefficier	its in .	Per Cen	at.		Temper	ature C	oefficie	nts in	Per Cer	nt.
v	0-12	.5° 12.5-	-25° 25	-35° 3	35-50°	50-65°	v	0-10	0° 10-	25° 25	5-35°	35-50°	50-65°
	3 3.4 2 3.5 4 3.7 8 3.8	32 2. 25 2. 40 2. 57 2. 77 2. 32 2.	.62 3 .73 3 .84 2 .93 3 .96 2 .98 2	.03		1.56 1.66 1.83 1.87 1.99 1.53 1.60	1024 2048	3.0 2 3.1 3 3.3 2 3.4 4 3.5	02 2 08 2 13 2 35 2 41 3 50 3	.65 .72 .79 .93 .09	1.87 1.99 2.04 2.11 2.25 2.41 2.40 2.58		1.34 1.59 1.63 1.75 1.92 1.96 1.95 2.01

Сь	HROMI	SULF	HATE	(Ws.	AND	Sн.)	U	RANYI	Сньс	RIDE	(Ws.	AND V	V.).
		Molecul	ar Con	ductivii	ty.				Molecul	ar Con	ductivi	ty.	
v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _ν 50°	$\mu_v 65^\circ$
$\begin{array}{c} 128 \\ 512 \\ 1024 \\ 2048 \end{array}$	120.59 169.08 215.36 240.48 293.38	78.48 103.64 158.67 225.60 292.66 329.96 405.65 445.16	130.18 197.34 283.56 376.23 459.83 534.55	230 . 37 338 . 67 3472 . 16 3561 . 76 5708 . 14	7 121.1 7 209.7 7 328.0 6 488.8 6 585.4 1 713.3		8 32 128 512 1024 2048	110.48 133.05 148.39 155.98 161.02 168.42	139.09 157.64 186.56 209.75 220.70 231.37 242.69 254.22	206.03 246.13 279.00 296.50 311.93 328.24	1246.5 2297.8 0339.4 0360.4 0383.8 0360.9	1 318.9 4 380.3 0 439.4 4 491.1 8 8 546.8	387.8 473.2 548.5 610.6 693.7
		Percente	ige Dis	sociatie	on.			1	Percento	ige Dis	sociati	on.	
v	a0°	α12.5°	a25°	a35°	a50°	a65°	v	a0°	α12.5°	a25°	a35°	α50°	a65°
4 8 32 128 512 1024 2048 4096	18.4 24.7 38.2 53.6 68.3 76.2 93.0 100.0	17.6 23.3 35.6 50.7 65.7 74.1 91.1 100.0	21.7 33.0 47.4 62.8 76.8	18.7 28.5 41.9 58.5 69.5 87.7	14.5 23.8 37.2 55.5 66.5 80.9	$ \begin{array}{r} 32.7 \\ 51.7 \\ 64.6 \end{array} $	4 8 32 128 512 1024 2048 4096	58.0 63.1 76.0 84.8 89.1 92.0 96.3 100.0	54.7 62.0 73.4 82.5 86.8 91.0 95.5 100.0	70.7 80.2 85.2 89.6 94.3	2 56.8 68.2 78.3 2 83. 3 88.4 8 93.0	8	
Tem		e Coeffic			uctivity	Units.	Tem	peratur 	e Coeffic	cients i	n Cond	luctivity	Units.
v	0-12	2.5° 12.5	-25° 25	5–35°	35–50°	50-65°	v	0-12	2.5° 12.5	5-25° 2	5–35°	35-50°	50-65°
	2 6. 4 7. 8 8.	$egin{array}{c c} 06 & 2 \\ 05 & 2 \\ 52 & 4 \\ 18 & 4 \\ 16 & 10 \\ 98 & 10 \\ \hline \end{array}$.12 .46 .64 .69 .39 1 .31 1	$\begin{bmatrix} 2.10 \\ 3.30 \end{bmatrix}$.		0.79 1.25 2.84 6.43 9.78 12.79 16.77		2 5. 4 5. 8 5.	77 3 28 4 91 5 18 6 63 6 94 6	3.31 3.87 3.76 3.54 3.07 3.44 3.84 3.52	3.43 4.05 5.17 6.04 6.39 7.20 7.77 8.55	3.99 4.82 5.50 6.66	3.91 4.59 6.19 7.27 7.97 9.79
	Tempe	rature C	Coefficie	ents in	Per Cer	ıt.		Tempe	rature (Coeffici	ents in	Per Ce	nt.
v	0-12	2.5° 12.5	5-25° 2	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	5-25° 2	5-35°	35-50°	50-65°
	2 2. 24 2. 8 3.	65 2 54 1 67 2 87 1 98 3 06 2	2.15 2.05 55 2.06 60 3.15 2.54 2.75	1.67 1.94 2.55		0.62 0.60 0.86 1.32 1.67 1.78 1.94	12 51 102 204 409	8 3. 32 3. 28 3. 22 3. 24 3. 48 3.	41 22 23 31 32 50 53 25 53	2.38 2.46 2.55 2.64 2.75 2.78 2.82 2.96	1.90 1.97 2.10 2.17 2.16 2.31 2.37 2.46	1.86 1.95 1.85 1.96	1.42 1.44 1.63 1.65 1.62

U	RANYI	NITE	ATE (Ws.	AND H	w.).	U:	RANYL	Sulpi	HATE	(Ws. 2	AND F	Hw.).
		Molecul	ar Con	ductiv	ity.			A	Iolecula	r Cond	uctivity	·.	
v	μ _v 0°	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
128 512 1024 2048	83.44 97.22 110.14 116.33 123.14 128.92	114.71 136.35 153.84 166.65 177.76 187.20	150.57 180.64 207.89 224.95 241.47 255.38	181 . 2 219 . 3 254 . 2 5277 . 3 298 . 6 317 . 4	34 199 . 01 20 226 . 59 38 279 . 42 21 327 . 08 35 376 . 93 3404 . 71 44 422 . 83 99 467 . 92	0277.69 2345.77 8406.32 5476.52 1514.08 5538.35	128 512 1024 2048	128.62 157.54 175.68 191.68	$129.52 \\ 166.72$	156.80 203.02 257.69 296.95 332.57	176.52 229.42 295.20 343.01	2 279.5 0 369.5 1 421.7 0 498.9	231.0 300.1 403.7 471.0 562.6
	i	Percenta	ge Dis	sociat	ion.			i	Percenta	ge Dis	sociatio	on.	
v	a0°	a12.5°	a25°	α35	° a50°	a65°	v	a0°	α12.5°	a25°	α35°	a50°	a65°
4 8 32 128 512 1024 2048 4096	54.8 61.9 71.1 80.5 85.0 90.0 94.2 100.0	51.0 57.3 68.1 77.9 83.3 88.8 93.6 100.0	48.4 54.9 65.8 75.8 82.0 88.0 93.1 100.0	52. 63. 74. 80. 87. 92.	8 48.4 9 59.7 1 69.9 8 80.6 1 86.5 5 90.4	46.5 57.9 68.1 79.8 86.1 90.2	8 32 128 512 1024 2048 4096	38.4 49.5 63.2 77.5 86.4 94.2 100.0	35.0 45.4 58.5 72.9 82.5 91.5 100.0	32.3 42.0 54.3 69.0 79.5 89.0 100.0	51.4 66.2 76.9 87.6	37.7 49.0 64.7 73.9 87.4	34.6 44.9 60.4 70.5 84.2
Tem	peratur	e Coeffic	cients i	n Con	ductivity	Units.	Tem	peratur	e Coeffic	ients ir	n Condu	uctivity	Units.
v	0-12	.5° 12.5	-25° 25	5–35°	35–50°	50–65°	v	0-12	.5° 12.5	–25° 25	5-35° 3	35–50°	50-65°
	$egin{array}{c cccc} 8 & 3.6 \ 2 & 4.6 \ 4 & 4.3 \ 8 & 4.6 \ \end{array}$	50 3 13 3 66 4 03 4 37 5 56 5	.07 .54 .16 .66 .10	2.59 3.06 3.87 4.63 5.24 5.72 6.21 6.86	2.68 3.03 4.00 4.86 6.64 7.07 7.03 8.32	3.07 3.41 4.42 5.28 6.64 7.29 7.70 8.59	3 12 51 102 204 409	$egin{array}{c cccc} 8 & 3.0 \ 2 & 4.0 \ 4 & 4.3 \ 8 & 5.5 \ \end{array}$	31 2 05 2 03 3 77 4 53 5	.18 .90 .98 .93 .74	1.56 . 1.97 . 2.64 . 3.75 . 4.61 . 5.84 . 7.27 .		1.16 1.05 1.37 2.28 3.29 4.25 6.48
	Temper	ature Co	efficier	its in	Per Cen	t.	T	'empera	ture Coe	efficient	s in Pe	er Cent	
v	0-12	.5° 12.5	-25° 25	5-35°	35-50°	50-65°	v	0-12	2.5° 12.5	-25° 25	5-35° 3	35–50°	50-65°
	$egin{array}{c cccc} 8 & 3.3 \ 2 & 3.4 \ 4 & 3.5 \ 8 & 3.6 \ \end{array}$	00 2 22 2 32 2 47 2 55 2 32 2	.68 .60 .67 .80 .87	1.95 2.03 2.14 2.23 2.33 2.37 2.43 2.50	1.69 1.67 1.82 1.91 2.39 2.37 2.22 2.43	1.54 1.50 1.58 1.61 1.76 1.80 1.82 1.84	3 12 51 102 204 409	$egin{array}{c cccc} 8 & 2.3 \ 2 & 2.4 \ 4 & 2.3 \ 8 & 2.8 \ \end{array}$	30 1 37 1 56 1 72 2 39 2	.68 .74 .91 .10	1.30 . 1.46 . 1.55 .		0.67 0.49 0.49 0.62 0.78 0.85 1.14

	Uı	RANYL	ACET.	ATE (Ws.).			Ну	DROCH	LORIC	Acii	(W.)	
		Molecul	ar Con	ductivi	ty.				Moleculo	ar Cond	luctivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^\circ$	$\mu_v 25^{\circ}$	μ _ν 35°	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	μ _v 50°	$\mu_v 65^\circ$
8 32 128 512 1024 2048 4096	51.48 63.57 70.13 76.81		91.34 110.47 120.37 131.78	86.67 108.52 129.06 141.12 154.46	7 2 3 3 		4 8 16 32 128 512 1024	223.3 227.0 231.8 235.0 238.8 235.5 221.5	285.9 292.2 298.7 303.3 309.0 304.2 287.7	348.2 357.0 365.2 370.7 379.3 374.7 353.4	397.9 407.1 415.8 423.4 433.3 428.3 405.3	1	
	i	Percenta	ge Dis	sociatio	on.			P	ercentag	e Disse	ociatio	n.	
v	a0°	α12.5°	a25°	a35°	α50°	a65°	v	a0°	α12.5°	a25°	a35°	a50°	α65°
8 32 128 512 1024 2048 4096	36.5 47.3 61.5 75.9 83.7 91.7 100.0	37.6 48.4 62.1 75.6 83.3 91.1 100.0	39.0 48.8 63.0 76.1 83.0 90.8 100.0	40.0 50.8 63.7 75.7 82.8 90.6 100.0			4 8 16 32 128	93.5 95.1 97.1 98.4 100.0	92.5 94.6 96.7 98.2 100.0	91.8 94.1 96.3 97.7 100.0	91.8 93.9 95.9 97.7 100.0	9	
Temp	perature	Coeffic	ients in	Condi	uctivity	Units.	Temp	erature	e Coeffic	ients in	Cond	uctivity	Units.
v	0-12	.5° 12.5-	-25° 25	-35° 3	5-50°	50-65°	v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°
32 128 512 1024 2048 4096	2 1.2 3 1.5 2 1.8 4 1.9 3 2.1	3 1. 3 1. 60 1. 7 2. 5 2.	37 1 65 1 95 1 05 2 25 2	72 86 08 27			16 32 128 512 1024	5.2 5.3 2 5.4 5.6 5.6 5.6 5.6	22 5. 35 5. 46 5. 32 5. 50 5.	18 3 32 3 39 3 62 3 64 3	4.97 . 5.01 . 5.03 . 5.27 . 5.40 . 5.36 . 5.19 .		
2	Temper	ature Co	pefficier	ıts in I	Per Cen	et.	7	Гетрег	rature Co	pefficier	its in .	Per Cen	t.
v	0-12.	5° 12.5-	25° 25-	-35° 3	5–50°	50–65°	v	0-12	.5° 12.5-	-25° 25	-35°	35-50°	50-65°
8 32 128 512 1024 2048 4096	2 3.1 3 2.9 2 2.8 4 2.8 3 2.8	$egin{array}{c ccc} 0 & 2. \\ 7 & 2. \\ 3 & 2. \\ 1 & 2. \\ 0 & 2. \\ \end{array}$	$egin{array}{c ccc} 49 & 1 \\ 34 & 1 \\ 26 & 1 \\ 16 & 1 \\ 17 & 1 \\ \end{array}$.05 .99 .88 .68 .73 .72 .75			4 8 16 32 128 512 1024	$egin{array}{c c} 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.3 \\ \end{array}$	30 1. 31 1. 37 1. 35 1. 34 1.	77 1 78 1 77 1 82 1 85 1	1.43 . 1.40 . 1.38 . 1.42 . 1.42 . 1.43 .		

		Nitri	c Acı	ID (V	V.).			s	ULPHU	RIC A	CID (W.).	
		Molecul	ar Con	ductiv	vity.				Molecule	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 12.5^{\circ}$	$\mu_v 25^{\circ}$	μ_v 35	5° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 16.3^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _ν 50°	$\mu_v 65^\circ$
4 8 16 32 128 512 1024	222.4 226.9 231.3 235.4 238.3 236.7 231.4	284.3 290.5 296.3 301.7 308.2 306.0 299.9	344.4 354.4 362.0 368.7 376.6 373.9 366.5	402. 411. 418. 429. 426.	7 8 6 9		4 8 16 32 128 512 2048 8192	292.9 303.9 323.6 347.2 403.6 442.7 449.2 441.6	382.8 393.9 417.3 450.0 535.6 601.1 622.4 618.2	419.3 431.5 456.6 491.4 589.4 675.2 709.9 708.6	471.7 498.0 533.6 646.2 753.0 814.4		
	Percentage Dissociation. Percentage Dissociation.												
v	a0°	α12.5°	a25°	a35	° a50°	a65°	v	a0°	a16.3°	α25°	a35°	a50°	a65°
4 8 16 32 128	93.3 95.2 97.1 98.8 100.0	92.2 94.3 96.1 97.9 100.0	91.4 94.1 96.1 97.6 100.0	93. 95. 97.	8		4 8 16 32 128 512 2048	65.2 67.7 72.0 77.3 89.8 98.6 100.0	61.5 63.3 67.0 72.3 86.1 96.6 100.0	59.1 60.8 64.3 69.2 83.0 95.1 100.0	57.9 61.2 65.5 79.3 92.5		
Temp					ductivity	Units.	Temp		e Coeffic			uctivity	Units.
v	0-12	.5° 12.5-	-25° 25	5–35°	35-50°	50–65°	v	0-16	.3° 16.3-	-25° 28	5–35° 3	35–50°	50-65°
	$egin{array}{c cccc} 2 & 5.3 \ 8 & 5.5 \ 2 & 5.5 \ \end{array}$	09 5. 20 5. 30 5. 59 5. 54 5.	.11 .25 .36 .47 .43	4.64 4.83 4.98 4.99 5.28 5.30 5.33			128 128 512 2048 8192	5.8 5.5 2 6.3 8 8 2 9.3 8 10.6	52 4. 75 4. 31 4. 10 6. 72 8. 33 10.	.32 .52 .76 .18 .52 .06 1	3.79 . 4.02 . 4.14 . 4.22 . 5.68 . 7.78 . 0.45 . 0.77 .		
	Temper	rature C	oefficie	nts in	Per Cer	nt.		Temper	rature C	oe.fficie	nts in I	Per Cen	nt.
v	0-12	.5° 12.5-	-25° 25	5–35°	35-50°	50-65°	v	0-16	.3° 16.3-	-25° 25	5–35° [35-50°	50-65°
	$egin{array}{c ccc} 2 & 2.2 \\ 8 & 2.3 \\ 2 & 2.3 \\ \end{array}$	24 1	.76 .77 .78 .77	1.35 1.36 1.38 1.35 1.40 1.42 1.45			10 32 128 512 2048 8192	3 1.3 2 1.8 3 2.0 2 2.3 3 2.3	19 1. 78 1. 32 1. 01 1. 19 1. 37 1.	.10 .08 .06 .15 .42	0.90 0.93 0.91 0.86 0.96 1.15 1.47 1.52		

DISCUSSION OF THE RESULTS.

THE CONDUCTIVITY MEASUREMENTS.

The conductivities of about 110 salts and mineral acids have been measured and the results are herein recorded. These have been studied from about the most concentrated solution that could be prepared, up to a volume of from 1000 to 4000. The temperature range is from 0° to 65°. Salts of nearly all of the more common metals have been included within this work.

It is almost self-evident that in an investigation of this scope certain peculiarities would be presented by some of the substances studied.

The salts of lithium crystallize with more water than the corresponding salts of the other alkali elements. This means that the lithium ion is more hydrated in aqueous solution than the potassium, sodium, or ammonium ion. The result is that the lithium ion moves more slowly than the other alkali ions, and, consequently, the conductivities of lithium salts are smaller than those of the corresponding salts of sodium and potassium. Before we had the solvate theory it was very difficult to account for the fact that the lithium ion, which has a much smaller mass and smaller atomic volume than either sodium or potassium, should have a smaller velocity. But we now have the explanation of this fact. The larger conductivity of lithium sulphate, especially at high dilutions, as compared with other salts of lithium, is due to this being a ternary electrolyte, while the other three salts are binary electrolytes.

The salts of sodium with the simpler acids call for no special comment. The conductivities are larger than those of the corresponding salts of lithium, since the sodium ion is less hydrated than lithium, and, consequently, moves faster through the solution. Sodium carbonate has very great conductivity, especially at high dilution and elevated temperatures. This is undoubtedly due to large hydrolysis under these conditions. The very large conductivity of disodium phosphate is also probably due to hydrolysis. Sodium ammonium acid phosphate (microcosmic salt) begins, in fairly concentrated solutions, to give off ammonia at 25°, and this is still more marked at 35°.

The unusually high conductivity of sodium ferrocyanide, especially at N=1024 and 65° , is due in part to the large number of ions yielded by this substance, and in part to hydrolytic dissociation.

The salts of potassium have somewhat larger conductivity than those of sodium. The potassium ion has less hydrating power than sodium, as is shown by the fact that potassium salts show less tendency to crystallize with water than sodium. Notwithstanding the greater mass of potassium, the ion moves faster than sodium, since it drags less water with it through the solution. This would increase the conductivity of potassium salts over that of sodium. The large conductivities of potassium carbonate, dipotassium phosphate, and tripotassium phosphate are due to hydrolysis. The large values for potassium nickel sulphate, and for both the violet and green potassium chromium sulphates are due chiefly to the large number of ions into which these compounds dissociate. It was shown some time ago by Jones and

Mackay* "that compounds of this type first break down into the constituent sulphates, especially in dilute solution, and these then dissociate as if they alone were present in the solution."

Potassium permanganate underwent slight decomposition, especially at more elevated temperatures. The high conductivity of potassium ferrocyanide is explained by the large number of ions into which it breaks down.

Ammonium salts with the ordinary mineral acids crystallize with little or no water. This means that the ammonium ion is very slightly hydrated in aqueous solution. Ammonium salts, in general, conduct to just about the same extent as potassium salts. Tetraethylammonium iodide decomposes slowly around 50 degrees.

Turning to the bivalent metals, let us consider, first, salts of calcium, strontium, barium, and magnesium. Most of the salts of these metals with the ordinary mineral acids crystallize with six molecules of water; calcium nitrate, which crystallizes with four molecules of water; strontium nitrate, which crystallizes anhydrous; barium chloride and bromide, which crystallize with two molecules of water each, and barium nitrate, which crystallizes without water, are exceptions.

Earlier work in this laboratory on the approximate composition of the hydrates formed by various substances† has shown that salts of calcium, strontium, barium, and magnesium hydrate to approximately the same extent, and that all four of these elements have very great hydrating power. While the masses of the atoms of these four elements vary from magnesium=24.36, calcium=40.1, strontium=87.6, to barium=137.4, yet the amounts of water with which these substances in solution are combined are so large that the total masses of the four ions when hydrated as they are, especially in dilute solution, are not very different. Further, the atomic volumes of these four substances are not very different, magnesium being somewhat less than the other three. Ionic velocity is a function of the ionic volume and ionic mass of the hydrated ions. We should, therefore, expect the velocities of these four ions to be just about the same, and such is the fact. The velocities are: Mg=58, Ca=62, Sr=63, and Ba=64.

Conductivity is a function of the number and velocities of the ions taking part in the conduction of the current. Since salts of the above four elements are dissociated to just about the same extent, it follows that salts of calcium, strontium, barium, and magnesium should give conductivities of the same order of magnitude. An examination of the results will show this to be the case. The salts of these elements with the organic acids—formic and acetic—are probably somewhat hydrolyzed, especially the salts of acetic acid. The formate showed a short hydrolysis time factor, while the acetate precipitated a small amount of barium hydroxide on the platinum plates.

Zinc nitrate, like magnesium nitrate, crystallizes with six molecules of water and the two have very nearly the same conductivity. There was evidence that zinc nitrate underwent slight hydrolysis. Zinc sulphate and magnesium sulphate crystallize with the same amount of water—each with seven molecules—and they have very nearly the same conductivities. Zinc acetate was undoubtedly strongly hydrolyzed, especially at the high dilutions and high temperatures. There was an appreciable odor of acetic acid in these solutions.

^{*}Amer. Chem. Journ., 19, 83 (1897).

The salts of cadmium present several points of interest. The chloride crystallizes with two molecules of water, while the bromide and iodide crystallize without water. Notwithstanding the small hydrating power of the cadmium ion, its salts conduct less than the corresponding compounds of calcium, strontium, barium, and magnesium. The explanation of this is well known. The halides of cadmium are much less dissociated than the halides of the metals related chemically to it, hence the smaller conductivity.

The conductivities of the salts of manganese, nickel, and cobalt call for no special comment. Manganese nitrate underwent some decomposition at 35°. Nickel acetate underwent hydrolysis, the solution having the odor of acetic acid. Salts of these three metals give conductivities that are of the same order of magnitude, and are, indeed, very nearly equal. This would be expected from the relative hydrating power of the manganese, cobalt, and nickel ions.

The above comments also apply to the salts of copper that were investigated. At 65° these salts, in general, underwent decomposition, and the work, therefore, could not be extended to this temperature. The salts of aluminium, iron, and chromium are all quaternary electrolytes, *i. e.*, the molecule breaks down into four ions. The conductivities of these substances are, therefore, large. Many of these salts undergo hydrolysis at the higher temperatures. This is so pronounced with the salts of iron that they could not be studied at all at the higher temperatures. The salts of aluminium, iron, and chromium crystallize with large amounts of water, *i. e.*, these ions have great hydrating power. The order of magnitude of this power can be seen from the earlier work in this laboratory.* That these substances have very large temperature coefficients of conductivity will be seen a little later.

The salts of uranyl undergo hydrolysis, especially at the more elevated temperatures. To this hydrolysis there is an appreciable time factor. This accounts for the difficulties encountered by different workers in obtaining concordant results.

The relations pointed out above will be seen from the table of molecular conductivities on pages 70 and 71. Here the results are given at two dilutions widely removed from one another, and at three temperatures as widely different as possible.

A DEHYDROLYTIC TIME FACTOR.

An observation of some importance was made by Mr. Shaeffer. He took four parts of a n/32 solution of chromium chloride. One of these was kept at room temperature. A second was heated for two hours to 50° , a third for the same time to 65° , while a fourth was heated for two hours to 90° . All four solutions were then brought to the same temperature and their conductivities determined. The conductivities of all four solutions were taken at 35° , at 50° , and at 65° , and the results are given in the following table:

CHROMIUM CHI	LORIDE.
--------------	---------

v	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Not heated	Heated to 50°	Heated to 65°	Heated to 90°
32 32 32	35° 50° 65°	330.5 424.6 532.4	$331.4 \\ 429.7 \\ 536.9$	$342.0 \\ 439.0 \\ 544.6$	$\begin{array}{c} 415.7 \\ 519.0 \\ 624.2 \end{array}$

^{*}Carnegie Institution of Washington Publication No. 60, pp. 87-93.

MOLECULAR CONDUCTIVITIES.

	C)°	2.	5°	65	S°
	v = 8	v = 1024	v = 8	v = 1024	v = 8	v = 1024
LiCl	47.27	56.08	88.41	107.2	167.7	208.3
LiBr	49.84	57.97	89.78	109.9	170.4	
LiNO ₃	43.83	52.0	79.71	98.0	157.7	197.8
Li ₂ SO ₄	66.74	108.1	128.4	211.4	242.7	425.5
NaCl	53.5	61.6	98.5	115.4	184.5	225.5
NaBr	55.36		100.3		184.1	222.8
NaI	55.26	63.14	100.4	116.4	187.5	234.1
NaNO ₃	50.27	59.39	111.3	138.5	171.4	213.2
NaClO ₃	47.4	56.2	86.7	104.1	164.4	211.3
NaClO ₄	49.4	56.8	$90.2 \\ 146.4$	105.4	974.9	
Na_2SO_4	$\frac{78.51}{70.7}$	119.65		$226.34 \\ 218.1$	274.3	420 5
Na_2CO_3	70.7	110.8	137.8		271.9	$\frac{439.5}{393.2}$
Na ₂ HPO ₄	65.6	$91.9 \\ 104.7$		183.7 193.6		393.2
NaNH ₄ HPO ₄		253.4	259.2		460 61	020 25
$Na_4Fe(CN)_6 \dots$	136.7	79.20	209.2	482.4 153.4	469.61	939.35
Na ₂ B ₄ O ₇	34.30	40.65	66.25	79.12	131.7	
KCl	66.47	75.14	118.6	137.0	215.9	258.3
KBr	68.01	79.23	121.3	143.5	218.1	260.3
KI	68.45	77.77	$121.3 \\ 120.7$	141.8	221.2	268.1
NO_3	61.94	76.31	111.0	139.6	199.6	245.2
ClO ₃	58.9	70.6	104.7	127.8	192.1	241.5
KClO ₄		72.0	101.1	130.7	102.1	240.6
$\mathcal{K}_2\mathrm{SO}_4$	101.9	145.0	183.6	268.0	332.8	513.1
KHSO ₄	182.1	110.0	254.2	200.0	313.3	010.1
$\widetilde{\mathrm{CO}_3}$	98.74		180.9		291.17	
Z ₂ HPO ₄	79.19	109.35	143.34	200.52		
₹3PO4	116.6	192.1	217.2	362.5	415.5	697.3
KNaSO4	96.1	140.8	170.6	259.2	272.73	469.31
$KNi(SO_4)_2$	122.6	235.5	221.9	437.1	407.67	850.20
$KAl(SO_4)_2$	78.9	177.8	140.3	332.7	240.6	
$(Cr(SO_4)_2 \text{ violet}$	75.8	186.6	135.3	369.6	242.04	785.37
$KCr(SO_4)_2$ green	101.0	229.7	158.4	399.6	248.10	771.94
KMnO ₄	59.34	64.65	104.36	113.95	193.58	215.95
K_2CrO_4	111.3	150.1	196.0	276.2	357.7	
$K_2Cr_2O_7$	109.1	133.6	195.5	240.6	352.9	
K_4 Fe(CN) ₆	168.8	295.1	305.1	546.5	543.0	
CH₃COOK	48.6	58.33	88.43	106.84		203.7
CNSK	62.48	72.25	110.9	131.5	201.8	
NH₄Cl	66.17	74.84	118.6	137.8	217.1	269.7
$\mathrm{NH_2Br}$	69.36	77.06	123.6	140.9	220.9	267.6
$N(C_2H_5)_4I$	38.6	53.3	72.8	99.3	204.2	240 2
NH ₄ NO ₃	64.35	74.69 143.84	113.38 179.57	134.43	$\begin{array}{c} 204.3 \\ 325.2 \end{array}$	249.3
NH ₄) ₂ SO ₄	$98.06 \\ 183.40$	295.22	258.00	267.62	325.2	794.5
NH4HSO4	80.00	181.0	258.00 143.1	$483.51 \\ 342.4$	$\frac{303.2}{236.5}$	794.5
$ \begin{array}{lll} \operatorname{NH_4Al}(\mathrm{SO_4})_2. & \dots & \dots \\ \operatorname{NH_4Cr}(\mathrm{SO_4})_2 & \operatorname{violet}. & \dots \end{array} $	77.5	181.0	137.3	372.0	244.97	754.79
$NH_4Cr(SO_4)_2$ green	103.6	215.6	162.9	386.2	250.70	789.57
$(NH_4)_2Cu(SO_4)_2$	122.7	236.0	$\frac{102.9}{220.7}$	442.6	383.1	850.8
CaCl_2	95.3	126.5	172.5	236.1	318.7	000.0
$CaBr_2$	97.74	126.3	177.5	236.5	339.4	477.18
$Ca(NO_3)_2$	85.50	125.7	157.3	235.0	287.8	
$CaCrO_4$	57.7	111.6	105.8	208.8	187.81	401.22
$Ca(HCOO)_2$	67.2		124.5	200.0	230.8	
SrCl_2	92.97	129.1	173.7	242.8	324.4	463.3
${ m SrBr_2}$	100.00	129.1	180.6	239.6	343.7	
$Sr(NO_3)_2$	84.33	126.9	154.1	233.7	288.0	
$Sr(CH_3COO)_2$	56.51	91.18	106.96	177.44	193.8	
BaCl ₂	99.06	130.9	179.00	243.4	322.3	
						484.6

MOLECULAR CONDUCTIVITIES—Continued.

	()°	2	5°	6	5°
	v=8	v = 1024	v=8	v = 1024	v=8	v = 1024
Ba(NO ₃) ₂	76.37	127.4	146.4	234.2	276.2	
Ba(HCOO) ₂	72.22	103.0	133.4	184.0	245.4	385.5
Ba(CH ₃ COO) ₂	59.05	92.63	113.3	180.5		
MgCl ₂	87.6	118.3	162.1	224.9	303.8	
$M\ddot{g}Br_{2}$	93.73	122.8	170.64	230.94	324.4	
$Mg(NO_3)_2$	88.91	120.68	160.86	224.49	298.1	
$MgSO_4$	45.70	102.7	85.62	198.3	102.4	240.9
$Mg(HCOO)_2$	58.15	94.03	109.29	176.23	201.4	
$Mg(CH_3COO)_2$	46.35	80.38	89.79	158.95	171.2	
$\operatorname{Zn}(\operatorname{NO}_3)_2$	87.6	117.1	157.2	216.6	289.67	415.20
ZnŠO ₄	43.20	104.7	80.01	197.8		
$Zn(CH_3COO)_2$	37.7	79.9	66.6	156.7	100.61	298.74
$CdCl_2$	45.32	113.78	79.30	212.53	139.6	
$CdBr_2$	37.80	110.69	70.44	208.48	128.5	
CdI_2	24.31	96.31	48.44	188.66	94.61	
$MnCl_2$	84.98	114.9	156.7	216.8	293.7	468.4
$Mn(NO_3)_2$	83.1	105.4	144.3	195.8	100.0	
MnSO ₄	44.11	107.13	79.77	202.94	130.0	
NiCl ₂	89.51	120.7	164.8	229.0	301.5	
Ni(NO ₃) ₂	87.35	115.8	157.9	214.3	107 7	
NiSO ₄	40.58	100.4	77.06	193.8	135.7	000 40
NiCH ₃ COO	38.95	78.65	74.10	153.9	138.32	336.46
CoCl ₂	87.75	116.8	161.5	221.1	302.5	
CoBr ₂	95.04	120.80	171.3	231.56	315.7	
$C_0(NO_3)_2$	87.07	116.1	157.9	215.3	291.4	
CoSO4	42.06	101.9	78.37	196.9	137.5	
$C_0(CH_3COO)_2$	41.31	78.88	78.37 99.80	155.3	131.2 184.8	230.7
$AgNO_3$	56.01	123.0	158.3	232.2		230.7
CuCl ₂	$87.57 \\ 91.31$	$125.0 \\ 125.4$	169.6	236.6		
$CuBr_2$ $Cu(NO_3)_2$	86.48	119.8	156.7	222.9		
$Cu(NO_3)_2$ $CuSO_4$	42.30	105.85	77.33	202.57	124.5	
PbCl ₂	42.00	136.89	11.00	253.96	124.0	476.90
$Pb(NO_3)_2$	71.12	133.6	139.8	247.4	267.8	477.7
$Pb(CH_3COO)_2$	16.0	74.5	31.2	139.1	58.12	255.53
AlCl ₃	120.22	184.58	220.86	360.56	419.1	796.7
$Al(NO_3)_3$	115.67	173.45	206.89	332.20	393.6	750.5
$Al_2(SO_4)_3$	65.21	191.95	114.44	359.16	185.7	740.2
$FeCl_3$	127.2	486.3	238.1	892.4	100	
$Fe(NO_3)_3$	138.2	490.9	266.5	877.7		
CrCl ₃ .	104.53	200.21	184.18	403.58	410.0	941.3
$Cr(NO_3)_3$	117.6	203.0	214.0	412.9	416.3	894.4
$\operatorname{Cr}_2(\operatorname{SO}_4)_3$	77.85	240.48	130.18	459.83	139.9	732.1
$\mathrm{UO_2Cl_2}$	110.48	161.02	206.01	311.92	387.8	548.5
$\mathrm{UO_2(NO_3)_2}$	83.44	123.14	150.57	241.47	277.69	514.08
UO ₂ SO ₄	78.13	175.68	120.82	296.95		
$UO_2(CH_3COO)_2$	30.59	70.13	56.53	120.37		
HCl	227.0	221.5	357.0	353.4		
HNO_3	226.9	231.4	354.4	366.5		
$\mathrm{H}_2\mathrm{SO}_4$	303.9		431.5			

The vessels used for holding the solutions were of Jena glass, which had been treated for months to remove all soluble matter. The increase in conductivity in the heated solutions could, therefore, not have been due to matter dissolved from the glass vessels. It will be seen that the solutions which had been heated had higher conductivity than those which had not. This is especially true of the solution which had been heated to 90°. This was undoubtedly due to hydrolytic dissociation of the salt into acid and base, and these did not completely recombine on cooling the solution to the initial temperature.

The same process was repeated, using a solution of chromium chloride which was n/512, heating one part to 50°, another to 65°, still another to 90°, then cooling all down to room temperature, and measuring the conductivities at the following temperatures:

CHROMIUM CHLORIDE.

v	T	Not heated	Heated to 50°	Heated to 65°	Heated to 90°
512	35°	487.4	489.5	500.6	559.7 724.6 915.1
512	50°	652.2	656.7	667.7	
512	65°	842.5	843.8	856.6	

The results for the more dilute solutions are of the same general character as those for the more concentrated.

To throw some light on the length of time required for the acid and base to recombine, the following experiment was carried out: The n/512 solution of chromium chloride, which had been heated to 90°, was cooled to room temperature and allowed to stand for 20 days. It was then warmed to 35°, and its conductivity determined. The value found was 508, while the value found shortly after heating was 559.9. The unheated solution gave a conductivity of 487.4. It is thus obvious that in 20 days the hydrolysis had not all disappeared.

A similar experiment with n/512 chromium chloride, which had been heated to 90°, cooled to room temperature and allowed to stand 20 days, and then warmed to 65° and its conductivity determined, gave the value 885. The conductivity shortly after heating was 915.1. The conductivity of the unheated solution was 842.5. This shows that the dehydrolysis, in this case, was not complete even after the solution had stood for 20 days. We propose to study these changes quantitatively in the near future, and see how long it requires for the completion of the dehydrolysis, in the cases especially of those salts which are strongly hydrolyzed.

The bearing of these facts on the purification of salts by recrystallization from water is important. The usual method of purification, by preparing a saturated solution at a higher temperature and then lowering the temperature and allowing the salt to crystallize is open to objection, especially for those salts which are strongly hydrolyzed by water. It has been supposed that when the solution in question was cooled down, the free acid and free base recombined. This work shows that such is not the case. There remains in the solution, for a long time, some free acid; and when the salt crystallizes from such a solution it is likely to occlude some of the free acid.

The better method for purifying hydrolyzable salts by crystallization is to make the saturated solution at low temperatures, and then remove the water by an airpump or over sulphuric acid. It is well known that hydrolysis increases very rapidly with rise in temperature.

DISSOCIATION OF THE VARIOUS SALTS.

The dissociation of the various salts can be best compared and studied by bringing together the results for the different salts under comparable conditions. For some of the salts it is impossible at present to give their true dissociations. This is due to the fact that they underwent more or less hydrolysis, and the true value of μ_{∞} for the unhydrolyzed salt was not obtained. In some other cases the dissociation may not have been complete, even in the most dilute solution investigated. In such cases the true value of μ_{∞} would not have been reached. However, most of the dissociations given are nearly correct.

DISSOCIATIONS OF THE VARIOUS SALTS.

	0	0	25	5°	68	5°
	v=8	v = 1024	v = 8	v = 1024	v = 8	v = 1024
LiCl	82.4	97.8	80.1	97.1	79.6	98.9
LiBr	81.6	95.0	78.2	95.7	78.8	
LiNO ₃	83.6	99.2	79.5	97.7	79.7	100.0
Li ₂ SO ₄	59.7	96.7	58.5	96.3	56.3	98.7
NaCl	85.8	98.9	84.6	99.1	80.7	97.5
NaBr	85.9		82.8		81.1	98.2
NaI	85.7	97.9	84.3	97.7	80.1	100.0
NaNO ₃	83.9	99.8	77.9	97.8	80.4	100.0
NaClO ₃	84.3	100.0	82.9	100.0	77.7	100.0
NaClO ₄	88.4	99.6	84.5	99.7		
Na ₂ SO ₄	61.4	93.6	60.1	93.0	58.5	
Na ₂ HPO ₄		99.9		99.8		98.5
NaHNH ₄ PO ₄	62.6	100.0		100.0		100.0
Na ₄ Fe(CN) ₆	49.6	91.9	49.2	91.5	46.9	97.8
Na ₂ B ₄ O ₇		92.7		93.5		
NaCH ₃ COO	83.2	100.0	82.7	100.0	80.1	100.0
KCl	88.5	100.0	86.6	100.0	83.3	99.6
KBr	85.8	100.0	84.5	100.0	82.7	98.7
KI	86.4	98.2	82.0	96.3	82.5	100.0
KNO ₃	81.2	100.0	79.5	100.0	81.0	99.5
KClO ₃	81.3	97.5	79.7	97.2	76.8	96.7
KClO ₄		97.0	10.1	97.1	10.0	95.7
K_2CO_3	75.3	31.0	72.3	31.1	62.2	00.1
K_2HPO_4	71.7	99.0	69.5	97.3	02.2	
K_3PO_4	60.2	99.2	59.3	99.0	58.7	98.5
KNaSO ₄	66.6	97.6	63.7	96.9	58.6	90.0
$K_2Ni(SO_4)_2$	$\frac{60.0}{47.0}$	90.3	45.5	89.7	42.4	88.5
KMnO ₄	88.8	96.8	87.5	95.5	85.5	95.4
	73.5	99.1	70.0	98.7	00.0	99.4
K_2CrO_4	79.8	97.7	79.6	98.0	78.6	
$K_2Cr_2O_7$	51.5	90.0	50.9	93.0	47.1	
K_4 Fe(CN) ₆	$\frac{31.5}{82.0}$		81.3	98.3	47.1	96.6
KCH ₃ COO		98.4	81.3	98.4	80.4	90.0
KSCN	85.8	99.2			81.8	100.0
NH ₄ Cl	88.4	100.0	86.1	100.0	$\frac{81.8}{82.5}$	100.0
NH ₄ Br	90.0	100.0	87.7	100.0	82.5	100.0
$N(C_2H_5)_4I$	69.6	96.2	71.6	97.6	01.0	
HN_4NO_3	84.2	97.8	82.2	97.5	81.2	99.1
$(NH_4)_2SO_4$	65.0	95.4	63.9	95.2		
NH ₄ HSO ₄	60.3	97.0	51.9	97.4	35.5	93.0

DISSOCIATIONS OF THE VARIOUS SALTS—Continued.

	0	0	2.	5°	6	5°
	v = 8	v = 1024	v=8	v = 1024	v = 8	v = 1024
CaCl ₂	72.5	96.2	69.9	95.7	67.1	
$CaBr_2$	77.1	99.6	74.1	98.7	69.6	97.9
$Ca(NO_3)_2$	65.8	96.7	64.8	96.8	62.8	
CaCrO ₄	49.7	96.1	49.0	96.6	44.8	95.7
Ca(HCOO) ₂	66.3		65.3		64.4	
SrCl ₂	69.5	96.4	69.8	97.6	69.1	97.9
$SrBr_2$	77.5	100.0	75.4	100.0	68.6	
$Sr(NO_3)_2$	64.2	96.7	64.6	97.9	62.5	
$Sr(CH_3COO)_2$	57.7	93.1	58.0	96.4	54.7	
$BaCl_2$	74.6	98.6	72.4	98.5		
BaBr ₂	77.1	99.7	74.2	98.9	73.9	97.4
$Ba(NO_3)_2$	58.1	97.0	61.1	97.7	58.1	
Ba(HCOO) ₂	64.6	92.1	63.5	87.7	63.6	100.0
Ba(CH ₃ COO) ₂	63.0	96.5	60.8	96.9		
$MgCl_2$	70.9	95.8	69.1	95.8	65.3	
$MgBr_2$	71.6	93.9	69.7	94.3	68.8	
$Mg(NO_3)_2$	72.1	97.9	70.0	99.7		
MgSO ₄	41.1	92.4	39.8	92.3	36.8	93.6
$Mg(HCOO)_2$	59.8	96.7	59.2	95.4	57.2	
Mg(CH ₃ COO) ₂	56.6	94.6	54.3	96.1	52.3	
$Zn(NO_3)_2$	70.4	94.1	68.6	94.5	65.0	96.2
ZnŠO ₄	36.9	89.5	36.7	90.7	28.7	
Zn(CH ₃ COO) ₂	45.0	95.3	40.8	95.9	31.4	93.2
CdCl_2	37.4	93.9	34.2	91.6	31.7	
$CdBr_2$	30.5	89.4	30.3	89.8	29.5	
CdI_2	20.5	81.0	21.5	83.9	22.8	
MnČl ₂	74.0	100.0	72.3	100.0	62.7	100.0
$Mn(NO_3)_2$	78.8	100.0	73.7	100.0		
MnSO ₄	35.4	86.1	33.5	85.2		
NiCl ₂	74.2	100.0	72.0	100.0	66.2	
$NiNO_3$	75.4	100.0	73.7	100.0	73.0	100.0
NiSO ₄	37.5	92.7	36.9	92.9		
NiCH ₃ COO	47.4	95.6	45.1	95.8	39.8	96.8
$CoCl_2$	75.1	100.0	73.0	100.0	65.3	100.0
CoBr_2	75.7	96.3	72.3	97.8	68.0	
$Co(NO_3)_2$	75.0	100.0	73.3	100.0	66.4	
CoSO ₄	37.9	91.9	36.6	92.0		
$C_0(CH_3COO)_2$	50.0	95.4	47.9	94.9		
AgNO ₃	78.8		76.9	0210	79.5	99.3
CuCl_2	71.2	100.0	68.2	100.0		
$CuBr_2$	69.5	95.4	69.9	97.5		
$Cu(NO_3)_2$	72.2	100.0	70.3	100.0		1
CuSO ₄	35.5	88.8	33.4	87.6		
PbCl ₂		94.6		94.0		92.6
$Pb(NO_3)_2$	52.6	98.9	55.3	100.0	54.4	97.2
Pb(CH ₃ COO) ₂	18.2	84.9	18.8	84.0	18.4	81.0
AlČl ₃	60.4	92.8	55.4	90.4	44.0	83.6
$Al(NO_3)_3$	61.6	92.3	55.6	89.3	43.4	82.6
$Al_2(SO_4)_3$	24.9	73.2	22.3	69.9	15.2	60.6
CrCl ₃	45.5	87.2	39.4	86.3	48.9	85.5
$Cr(NO_3)_3$	55.9	96.5	48.9	94.3	41.7	89.5
$\operatorname{Cr}_2(\operatorname{SO}_4)_3$	24.7	76.2	21.7	76.8	12.4	64.6
UO_2Cl_2	63.1	92.0	59.2	89.6		
$UO_2(NO_3)_2 \dots$	61.0	90.0	54.9	88.0	46.5	86.1
TYO GO						
UO_2SO_4	38.4	86.4	32.3	79.5	28.4	70.5

An examination of the preceding tables shows the following relations. The halogen salts of lithium are all dissociated to just about the same extent, the sulphate in the more concentrated solutions very much less.

The salts of sodium with the common mineral acids are all dissociated to just about the same extent, and slightly greater than the corresponding salts of lithium. This applies also to the sulphate in the more concentrated solution. Potassium salts of the common mineral acids show just about the same dissociation. The potassium salts of these acids are, in general, slightly more dissociated than the corresponding sodium salts.

The salts of ammonium are even slightly more dissociated than those of potassium. This points strongly to the correctness of the theory that ammonium hydroxide is a strong and not a weak base. Salts of strong bases are more dissociated than those of weak bases. The fact that ammonium hydroxide has small conductivity and is yet a strong base has been satisfactorily explained by Hantzsch. When ammonia is dissolved in water only a little ammonium hydroxide is formed, and this is strongly dissociated. Most of the ammonia in the presence of water remains there as ammonia and does not form the hydroxide with water. This explains the small conductivity of an aqueous solution of ammonia.

That ammonium hydroxide is a strong base is in keeping with the fact that ammonium salts of strong acids are so little hydrolyzed. Only the salts of comparatively weak bases with strong acids are appreciably hydrolyzed.

Salts of calcium, strontium, barium, and magnesium are dissociated to approximately the same extent, but considerably less than the corresponding salts of the alkali metals under the same conditions of dilution and temperature. Salts of zinc are dissociated somewhat less than those of magnesium. This applies especially to the halogen salts, which were not studied in this work because of the ease with which they break down with water.

The halogen salts of cadmium are dissociated less than those of any other known metal except mercury. What this means we do not know. The comparatively small dissociation of the cadmium halides is seen from the above table. The halides of mercury are scarcely dissociated at all, the aqueous solutions of these salts being practically nonelectrolytes, not conducting the current to any appreciable extent. The salts of manganese, nickel, and cobalt have approximately the same dissociation. These substances are dissociated to just about the same extent as the corresponding salts of calcium, strontium, barium, and magnesium. The same applies to the salts of copper. Lead salts show considerably less dissociation.

The salts of aluminium and iron are quaternary electrolytes, each molecule dissociating into four ions. The percentage dissociation, which, on account of hydrolysis can be taken only as an approximation, is much less than that of the salts of calcium, strontium, barium, magnesium, manganese, nickel, and cobalt.

TEMPERATURE COEFFICIENTS OF CONDUCTIVITY AND THE SOLVATE THEORY OF SOLUTION.

The temperature coefficients of conductivity are expressed both in conductivity units and in per cent. Certain relations between the coefficients in conductivity units and the solvate theory of solution have already been pointed out for a few substances.* We can now see how general these relations are. We have seen that the chief factor conditioning the increase in conductivity with rise in temperature is the increase in the velocities with which the ions move. If we assume that the force which drives the ions is constant, the velocity would be conditional chiefly by the viscosity of the medium through which the ion moves, and by the mass and size of the ion. The force that drives the ion would be greater at the more elevated temperatures, and the viscosity of the medium through which the ion moves would be less. Both of these factors would increase the ionic velocities and, consequently, the conductivity with rise in temperature.

There is, however, another factor which must be taken into account. That many ions in aqueous solution are hydrated seems now to be generally accepted. We have shown that these hydrates are relatively unstable; the higher the temperature the less complex the hydrate existing in solution. One example will make this point clear. In a normal solution of aluminium chloride, every molecule of the salt, or the ions resulting from it, is combined with about 30 molecules of water at the freezing point of the solution. Practically all of the water can be removed from such a solution by boiling it, except six molecules to one of aluminium chloride, this being the number brought out of solution as water of crystallization. The smaller the number of molecules of water combined with the ion the less the mass of the ion, and the less its resistance when moving through the solvent. Consequently, the ion will move faster the higher the temperature.

When we refer to the mass of the ion decreasing with rise in temperature, we do not refer to the charged atom or group of atoms which we usually term the ion, but to this charged nucleus *plus* a larger or smaller number of molecules of water which are attached to it, and which it must drag along with it in its motion through the remainder of the solvent.

The above conclusion can be tested by the results of experiment. If this factor of diminishing complexity of the hydrate of the ion with rise in temperature plays any prominent rôle in determining the large temperature coefficient of conductivity, then we should expect to find those ions with the largest hydrating power, having the largest temperature coefficients of conductivity. This condition can be tested by the results, as can be seen from the tables on page 77.

The hydrating power of a salt (or the ions resulting from it) is roughly proportional to the number of molecules of water with which the salt crystallizes. This is the same as to say that the salt which has the greatest power to bring water with it out of solution as water of crystallization would be the salt which, in solution, would combine with the largest amount of water. Water of crystallization is, then, a good general criterion of the degree of hydration in aqueous solution.

^{*}Amer. Chem. Journ., 35, 445 (1906).

TABLE I.

		perature d conductivi			
Substances with slight hydrating power.	25° 1	to 35°	50° to 65°		
	v = 8	v = 1024	v=8	v = 1024	
Sodium chloride	2.00	2.46	2.27	2.82	
Sodium bromide	$\frac{1.89}{2.12}$	2.54	$\frac{2.18}{2.33}$	2.79 3.14	
Sodium nitrate	$\frac{2.12}{2.04}$	2.45	2.02	2.67	
Sodium chlorate	1.77	2.22	2.15	2.90	
Potassium chloride	$\frac{2.39}{2.43}$	2.84 2.91	$\frac{2.45}{2.45}$	3.11	
Potassium iodide	$\frac{2.40}{2.38}$	2.91	$\frac{2.45}{2.65}$	3.37	
Potassium nitrate	2.08	2.16	2.31	2.83	
Potassium chlorate	2.02	2.52	2.23	2.94	
Potassium permanganate	2.04	2.31	2.29	2.23	
Potassium sulphocyanate	2.20	2.56	2.34		
Ammonium chloride	2.42	2.94	2.51	3.69	
Ammonium bromide	2.32	2.86	2.58	3.11	
Ammonium nitrate	2.17	2.50	2.33	3.04	

TABLE II.

		perature conductiv			
Substances with large hydrating power.	25°	to 35°	35° to 50°		
	v=8	v = 1024	v=8	v = 1024	
Calcium chloride	3.49	4.85		Ý	
Calcium bromide	3.73	5.00	4.03	6.03	
Calcium nitrate	3.09	4.79	3.33		
Strontium chloride	3.37	5.13	3.92	6.02	
Strontium bromide	3.66	5.27	4.08		
Strontium nitrate	2.76	4.86	3.58		
Barium chloride	3.63	5.30	3.33		
Barium bromide	3.66	5.18	4.00	5.99	
Barium nitrate	3.09	4.74	3.34		
Magnesium chloride	3.40	4.72	3.61		
Magnesium bromide	3.55	4.84	4.08		
Magnesium nitrate	3.10	4.78	3.57		
Zinc nitrate	3.13	4.47	3.43	5.41	
Manganous chloride	3.14	4.86	3.43	6.37	
Nickel chloride	3.41	5.04	3.61		
Nickel nitrate	3.21	4.58	0.01		
Cobalt chloride.	3.39	4.95	3.54		
Cobalt bromide.	3.32	4.96	3.75		
Cobalt nitrate.	3.20	4.67	3.05		
Cupric chloride	3.16	5.04	0.00		
Cupric bromide.	3.42	4.93			
Cupric nitrate	3.18	4.88			
Aluminium chloride	4.57	8.64	5.16	12.49	
Aluminium nitrate	4.19	7.86	4.87	11.65	
Administrate	T. 13	1.00	4.01	11.00	

The approximate hydration of a large number of substances has, however, been worked out in this laboratory, and published in monograph No. 60 of the Publications of the Carnegie Institution of Washington. It will be seen that the substances in Table I have little or no water of crystallization, and are therefore only slightly

hydrated in aqueous solution. Those in Table II crystallize with very different amounts of water, but all with fairly large amounts of water. These substances are, therefore, much hydrated in aqueous solution.

It should be noted that the sulphates, single and double phosphates, chromates, bichromates, ferro- and ferricyanides, etc., are omitted from both of the above tables. The relations here under discussion do not apply to these more complex substances.

Let us now compare the temperature coefficients of conductivity, expressed in conductivity units per degree rise in temperature, for some of those substances which have slight hydrating power, with the corresponding coefficients for some of those compounds which have a much greater power to combine with water.

The volumes range from 8 to 1024, and the temperature coefficients are calculated between 25° and 35°, and between 50° and 65°. It will be seen, in general, that the substances in Table I have much smaller coefficients of conductivity at all dilutions and all temperatures than those in Table II. This is true, even when we take into account the fact that the substances in Table I are binary electrolytes—each molecule breaking down into two ions; while those in Table II are nearly all ternary electrolytes, each molecule yielding three ions, while the two salts of aluminium are quaternary electrolytes, each molecule breaking down into four ions.

Another fact of equal importance is brought out by comparing the results in Table I with one another, and similarly those in Table II with one another. If the temperature coefficient of conductivity is a function of the decrease in the complexity of the hydrate formed by the ion, with rise in temperature, then we might expect that those substances which have equal hydrating power would have approximately the same temperature coefficients of conductivity.

An examination of the above tables will show this to be true. The substances in Table I all have slight hydrating power, as would be expected from the fact that they all crystallize with little or no water. It will be seen that their temperature coefficients of conductivity are all of the same order of magnitude.

The compounds in Table II have different hydrating power, but all have very great hydrating power. Most of them, however, have hydrating power of the same order of magnitude. Indeed, this would be expected, since most of these substances crystallize with six molecules of water. There are a few substances in this table which crystallize with less than six molecules of water. Thus, barium chloride crystallizes with only two molecules, yet it forms hydrates of comparable complexity* with those substances which crystallize with larger amounts of water. That its temperature coefficients of conductivity are of the same order of magnitude as the other substances in the table is, therefore, entirely in keeping with the above relation. The hydrates formed by barium nitrate have not yet been worked out, so that it is impossible to say whether or not it presents an exception to the above relation, it crystallizing without water.

Manganous chloride crystallizes with only four molecules of water, yet the work of Jones and Bassett† has shown that it forms hydrates about as complex as the

^{*}Carnegie Institution of Washington Publication No. 60. †Amer. Chem. Journ., 33, 562 (1905); Carnegie Institution of Washington Publication No. 60, pp. 75 and 76.

other salts in Table II. Its temperature coefficients of conductivity are of the same order of magnitude as the other compounds included in this table.

The halogen salts of copper present apparent exceptions to the above relation. The chloride crystallizes with only two molecules of water, and yet has temperature coefficients of conductivity that are nearly as large as the salts with six molecules of water of crystallization. It might be inferred from this that this salt has much less hydrating power than the other compounds in Table II. The work of Jones and Bassett,* however, shows that this is not the case. Copper chloride has almost as great hydrating power as the compounds in this table which crystallize with six molecules of water. When we take this fact into account its temperature coefficients of conductivity are not surprisingly large.

Aluminium chloride crystallizes with six molecules of water, and aluminium nitrate with eight. They are, however, quaternary electrolytes, and their temperature coefficients are therefore larger than those of the ternary electrolytes. hydrating power of these salts has been worked out and has been found to be of the same order of magnitude as that of the ternary electrolytes in this table.

A third point brought out by the above tables is the following. The temperature coefficients of conductivity for any given substance are greater at the higher dilution than This is satisfactorily explained on the basis of the above suggestion. The complexity of the hydrates at the higher dilutions is greater than at the lower, as has been shown by Jones and his co-workers, on the composition of the hydrates formed by different substances at different dilutions.

The hydrates being more complex at the higher dilutions, the change in the composition of the hydrates with change in temperature would be greater at the higher dilutions; and, consequently, the temperature coefficients of conductivity would be greater the more dilute the solution.

To summarize the above three points:

- (a) The temperature coefficients of conductivity of aqueous solutions of salts, expressed in conductivity units, are greater the greater the hydrating power of the salt.
- (b) The temperature coefficients of conductivity of aqueous solutions of electrolytes are of the same order of magnitude for those substances having approximately the same hydrating power.
- (c) The temperature coefficients of conductivity for any given salt increase with the dilution of the solution, and this increase is greatest for those substances with large hydrating power.

All three of these conclusions are necessary consequences of the assumption that the large change in conductivity with change in temperature is due, in part, to the decreasing complexity of the hydrates formed around the ions, with rise in temperature. As these conclusions are verified by the experimental results, and as there seems to be no other assumption which would lead to these conclusions, we must accept the assumption which led to them as containing a large element of truth.

†Carnegie Institution of Washington Publications No. 60, pp. 67 and 88. ‡Carnegie Institution of Washington Publication No. 60.

^{*}Carnegie Institution of Washington Publication No. 60, pp. 84 and 85; Amer. Chem. Journ., 33,

HYDRATION AND IONIC VOLUME.

While discussing the hydrating powers of different ions, the following relation should be pointed out. Jones and Pearce,* after calling attention to the fact that the hydrating power of any salt is primarily a function of the cation, point out this relation:

If the atomic volumes of the elements are plotted as ordinates against the atomic weights as abscissas, we have the well-known atomic-volume curve. tains well-defined maxima and minima. The alkali metals fall at the maxima of the The three elements with the largest atomic volumes are potassium, rubidium, and cæsium. Salts of these metals usually crystallize from aqueous solution without water of crystallization, and they, therefore, have very little hydrating power. Lithium and sodium, some of whose salts crystallize with two and three molecules of water, and which, therefore, show some hydrating power in solution, have much smaller atomic volumes. At the minimum of the third section of the atomic-volume curve we find the elements strontium, iron, cobalt, copper, and nickel. The salts of these metals crystallize with relatively large amounts of water, and they show great hydrating power in solution. Aluminium, which has less than half the atomic weight of iron, but slightly greater atomic volume, falls at the second minimum of the atomic-volume curve. Its salts crystallize with six and eight molecules of water and show great hydrating power in solution.

Comparing the metals of the calcium group, we find that barium, whose salts crystallize with two molecules of water, has the largest atomic volume. The salts of the other elements of this group crystallize each with six molecules of water, with the exception of calcium nitrate, which crystallizes with four molecules. The magnesium ion, which has the smallest atomic volume of any element of this group, has the greatest hydrating power. Strontium, which has a slightly larger atomic volume than calcium, has a somewhat smaller hydrating power than calcium.

A careful examination of all of the evidence available shows that the hydrating power of the cation is an inverse function of its atomic volume.

This explains why it is that ions with large mass often have larger migration velocities than ions with smaller mass, which is the reverse of what would be expected. Thus, potassium, rubidium, and cæsium have larger migration velocities than sodium and lithium, notwithstanding the greater mass and volume of the former. This was for a long time inexplicable. We now have the explanation. Lithium and sodium have smaller atomic volume than potassium, rubidium, and cæsium, and, consequently, greater hydrating power. The hydrated lithium and sodium ions move more slowly, due to the atmosphere of the solvent which they must drag with them through the solution.

A large number of similar relations have been pointed out by Jones and Pearce.† The question arises, Why this relation between hydrating power and atomic volume? It probably has to do with the electrical density upon the ion. The smaller the ion the greater the electrical density, and, consequently, the greater the power of the ion to condense molecules of the solvent upon it and hold them there in a state of loose combination.

^{*}Amer. Chem. Journ., 38, 736 (1907).

It should be noted, before leaving the discussion of the temperature coefficients expressed in "conductivity units," that these coefficients in general increase with rise in temperature. This increase is only slight in the cases of those substances which are only a little hydrated, as will be seen in Table I. Table II shows a large increase in the coefficients with rise in temperature, and it will be recalled that this table contains those substances that have large hydrating power. This shows that the hydrates became more and more unstable the higher the temperature, there being more decomposition of the hydrates between 50° and 65° than between, say, 20° and 35°. This is what would be expected from the results already obtained in this laboratory* in connection with the effect of temperature on hydrates in aqueous solution.

Certain of the temperature coefficients from 35° to 50° are not given. This is due to the fact that one set of solutions was used from 0° to 35°, and an entirely different set from 35° to 65°. The solutions of these substances are more or less hydrolyzed, and probably have an hydrolysis time factor. Since the two sets of solutions of the substances in question stood for different lengths of time before using, this factor would make its influence felt.

The agreements, in general, between the two sets of results for the two sets of solutions at 35° were very good. In those cases where the deviations were more than a fraction of 1 per cent, the work, as has already been stated, was repeated.

TEMPERATURE COEFFICIENTS OF CONDUCTIVITY IN PER CENT.

The temperature coefficients of conductivity are also expressed in "per cent." These are the temperature coefficients in conductivity units divided by the conductivity at the lower temperature. The relations between the coefficients expressed in per cent can best be seen from the table on pages 82 and 83, which contains practically all of the salts studied in this investigation. The coefficients are given for two dilutions V=8 and V=1024, and over two ranges in temperature 25° to 35° and 50° to 65°. This will enable us to see the effect of dilution and of temperature on these coefficients.

The most striking feature of the table is the following: Take any one column, which gives the results for the different substances at the same dilution and temperature. It will be seen that for nearly all of these different types of salts, and the number is large, the temperature coefficients of conductivity in per cent is approximately the same; and not very widely removed from two, for V=8; and the range of temperature from 25° to 35°. There are some exceptions to this conclusion.

There are two lithium salts, the nitrate and sulphate, which are, the one much less, and the other much greater than two. Then there are exceptions among the complex salts. Potassium sodium sulphate, potassium chromium sulphate, potassium aluminium sulphate, and potassium ferrocyanide have values considerably less than two. Ammonium acid sulphate is a marked exception, the significance of which we shall try to work out in the future. Similarly, the green variety of ammonium chromium sulphate has a coefficient of only 1.38.

^{*}Carnegie Institution of Washington Publication No. 60, 156 (1907).

The salts of calcium, strontium, barium, and magnesium have, in general, coefficients which do not differ widely from 2; although strontium nitrate has a value of only 1.79. It might be mentioned that strontium nitrate crystallizes without water. Zinc acetate also has a small coefficient, 1.59. This may be due to hydrolysis. Cadmium iodide, which crystallizes without water, has the large coefficient 2.27. Manganous sulphate has the rather small value 1.79, and copper sulphate has the same value. Aluminium sulphate has the very low value 1.57, chromium sulphate 1.61, and uranyl sulphate only 1.29.

Notwithstanding these apparent exceptions, there is unmistakably this general relation, that the temperature coefficients for V=8 and over this temperature range, for a large number of very widely different compounds, are very nearly the same and not widely removed from 2.

If we examine the other columns of data corresponding to other dilutions and other temperatures, we find relations similar to the above. Thus, for V = 1024, and the temperature range 25° to 35°, the average value of the coefficient is a round 2.1. The average value of the coefficients for V = 8, between 50° and 65°, is from 1.4 to 1.5, while the average value for V = 1024, between 50° and 65°, is slightly greater.

We thus see that change in volume, range of temperature being constant, has very little effect on the temperature coefficients of conductivity expressed in per cent.

The effect of rise in temperature is to decrease the magnitude of these coefficients.

TEMPERATURE COEFFICIENTS IN PER CENT.

0.1	25°	to 35°	50° t	to 65°
Substances.	v=8	v = 1024	v=8	v = 1024
Lithium chloride	2.13	2.15	1.51	1.62
Lithium bromide	2.19	2.13	1.49	
Lithium nitrate		1.98	1.94	2.50
Lithium sulphate	2.65	2.24	3.00	1.77
Sodium chloride		2.13	1.51	1.54
Sodium bromide			1.44	1.54
Sodium iodide	2.11	2.18	1.52	1.67
Sodium nitrate		2.15	1.43	1.54
Sodium chloride		2.13	1.62	1.78
Sodium perchlorate		2.12		
Sodium sulphate		2.19	1.58	
Sodium carbonate		2.37	1.59	1.70
Sodium ferrocyanide		2.05	1.42	1.68
Sodium acetate		2.46	1.61	1.00
Potassium chloride		2.07	1.37	1.47
Potassium bromide		2.03	1.35	1.46
Potassium iodide		2.05	1.46	1.35
Potassium nitrate		1.53	1.40	1.40
Potassium chlorate		1.97	1.40	1.49
Potassium sulphate		2.25	1.35	1.48
Potassium phosphate		2.14	1.61	1.56
Potassium sodium sulphate		2.08	1.44	1.51
Potassium nickel sulphate	1.96	2.06	1.25	1.48
Potassium chromium sulphate		2.01	1.33	2.27
Potassium permanganate		2.03	1.44	1.22
Potassium chromate		1.96	1.35	1
Potassium bichromate		1.97	1.37	
Potassium ferrocyanide	1.62	2.08	1.36	
Potassium aluminium sulphate		2.11	1.06	
Potassium acetate		2.09	1.00	1.56
Potassium sulphocyanate		1.95	1.40	1.00
Ammonium chloride	2.02	2.13	1.40	1.72
Ammonium bromide	1.88	$\frac{2.13}{2.03}$	1.42	1.41
Ammonium nitrate	1.91	1.86	1.38	1.49

TEMPERATURE COEFFICIENTS IN PER CENT—Continued.

Substances. Ammonium sulphate	v=8			to 65°
Ammonium sulphate	0-0	v = 1024	v=8	v = 1024
Ammonium acid sulphate	1.87 0.74 1.80	2.05 1.31 2.12	1.34 0.40 1.08	1.52
Ammonium chromium sulphate (violet)	1.85 1.38 1.88	$2.25 \\ 2.20 \\ 2.03$	$ \begin{array}{c} 1.30 \\ 0.81 \\ 1.23 \end{array} $	1.66 1.32 1.46
Calcium chloride	2.02 2.10 1.96	2.05 2.11 2.04	1.55 1.44 1.39	1.56
Calcium chromate. Calcium formate. Strontium chloride.	1.85 2.02 1.94	2.13	1.26 1.43 1.48	1.38
Strontium bromide. Strontium nitrate. Strontium acetate.	$ \begin{array}{c} 2.03 \\ 1.79 \\ 2.15 \\ \end{array} $	2.20 2.08 2.30	1.44 1.53 1.73	1.50
Barium chloride. Barium bromide. Barium nitrate.	2.17 1.95 2.11	2.28 2.07 2.02	1.22 1.42 1.48	1.54
Barium formate. Barium acetate. Magnesium chloride.	1.93 2.00 2.09	2.29	1.47 2.18 1.45	1.54
Magnesium bromide Magnesium nitrate Magnesium sulphate	2.08 1.93 1.95	2.10 2.12 2.15	1.46 1.46 1.24	1.63
Magnesium formate Magnesium acetate Zinc nitrate	2.10 2.24 1.99 1.95	$ \begin{array}{r} 1.91 \\ 2.69 \\ 2.06 \end{array} $	1.46 1.56 1.44 1.10	1.56
Zinc sulphate. Zinc acetate. Cadmium chloride.	1.59 1.59 1.93 2.03	2.23 2.17 2.12	0.75 1.27 1.34	1.41
Cadmium bromide Cadmium iodide Manganous chloride	2.03 2.27 2.00 1.95	2.12 2.25 2.24 2.13	1.50 1.41	1.02
Manganous nitrate Manganous sulphate Nickel chloride Nickel nitrate	1.79 2.07 2.03	2.11 2.18	1.04 1.46 2.14	1.58
Nickel sulphate Nickel acetate Cobalt chloride	$ \begin{array}{r} 2.03 \\ 1.80 \\ 2.04 \\ 2.10 \end{array} $	2.11 2.29 2.24	$ \begin{array}{c} 1.17 \\ 1.29 \\ 1.42 \end{array} $	1.64
Cobalt bromide. Cobalt nitrate. Cobalt sulphate.	1.94 2.03 1.88	2.14 2.17 2.15	1.44 1.44 1.15	
Cobalt acetate. Silver nitrate. Copper chloride	1.99 2.06 2.00	2.22	1.52 1.51 2.17	
Copper bromide. Copper nitrate. Copper sulphate.	$ \begin{array}{c} 2.02 \\ 2.03 \\ 1.79 \end{array} $		2.08 2.19 0.93	
Lead chloride. Lead nitrate. Lead acetate.		2.07	1.51 1.37	1.54
Aluminium chloride Aluminium nitrate Aluminium sulphate	2.07 2.03 1.57	2.40 2.36 2.07	1.51 1.52 0.76	$ \begin{array}{c c} 2.05 \\ 2.01 \\ 1.38 \end{array} $
Ferric chloride. Ferric nitrate. Chromium chloride	$1.99 \\ 2.32 \\ 3.23$	$2.64 \\ 2.72 \\ 2.50$	1.56	1.99
Chromium nitrate. Chromium sulphate. Uranyl chloride.	$1.99 \\ 1.61 \\ 1.97$	$ \begin{array}{c c} 2.40 \\ 2.22 \\ 2.31 \end{array} $	1.59 0.60 1.44	1.95 1.67
Uranyl nitrate. Uranyl sulphate. Uranyl acetate.	$\begin{array}{c} 2.03 \\ 1.29 \\ 2.05 \end{array}$	2.37	1.50 1.55 1.73	1.80

PART II.—ORGANIC ACIDS.

THE EXPERIMENTAL WORK IN PART II WAS CARRIED OUT BY DOCTORS CLOVER, JACOBSON, KREIDER, SMITH, SPRINGER, WHITE, AND WIGHTMAN.

ORGANIC ACIDS.

The acids used were all obtained from Kahlbaum. Each acid was purified by the method best adapted to that particular acid, and its purity tested.

The method of work was, in general, the same as that followed with the inorganic salts. The cell constants were determined as in the work with salts. The following table of data will show how well the constants as calculated from three different readings with three different resistances agreed with one another, the table being taken from the work of Wightman; W being the resistance in the rheostat, b the distance on the wire from the point of contact to one end of the wire, and K the cell constants.

CELL CONSTANTS.

Cell	Solution	W	b	K	Mean	Cell	Solution	W	b	K	Mean
VIII	0.02 N	100	559.0	328.82)	I	0.002 N	40	505.6	11.240)
		140	475.2	328.84	328.82			46	470.5	11.241	11.243
		150	458.0	328.80	J			48	460.0	11.245)
VII	$0.02~\mathrm{N}$	80	471.3	184.99		A	0.0005 N	40	451.0	2.381	1
		84	459.1	184.94	184.97			42	439.0	2.381	$\{2.381$
		88	447.6	184.97)			44	427.5	2.381	J
VI	0.02 N	60	458.0	131.52	1	V	0.002 N	250	555.7	138.68	
		63	445.9	131.52	131.52			260	546.0	138.67	
		66	434.5	131.54)			270	536.5	138.75	
V	0.02 N	40	454.3	86.38	1	IV	0.002 N	250	511.2	138.66	
		42	442.2	88.37	86.38			260	501.5	138.60	138.66
		44	430.8	86.40	J			270	492.0	138.64	J
IV	0.02 N	30	481.6	72.30)	II	0.0005 N	340	473.4	143.49	
		32	465.5	72.30	72.30			350	466.0	143.64	
		34	450.4	72.24	J			370	452.3	143.46	
III	0.002 N	200	445.0	44.10)	I	0.0005 N	160	495.0	143.39	
		210	433.0	44.10	\44.10			170	479.9	143.41	143.44
		220	421.6	44.10	J			180	465.6	143.39	
II	0.002 N	100	443.7	21.94	1						
		110	420.5	21.95	21.94						
		120	469.9	21.94	J						

The first eight cells were used with the various dilutions of the acid. Cell A is the cell with cylindrical electrodes with very small constant, and was employed to determine the conductivity of the water.

Cells V, IV, II, and I were used to determine the molecular conductivity of a 0.002 normal and a 0.0005 normal solution of potassium chloride at 25°, these solutions being used to standardize the cells with small constants. The data show how concordant were the results obtained.

DISSOCIATION OF ORGANIC ACIDS.

The dissociation of most of the organic acids cannot be determined directly by simply increasing the dilution of the solution until complete dissociation is reached. The dilution at which μ_{∞} would be reached for these weakly dissociated compounds would be so great that the conductivity method could not be applied to them. It is well known that we have an indirect method of determining the dissociation of

solutions of such weakly dissociated substances. This method is based upon Kahlrausch's law of the independent migration velocities of the ions. If we knew the value of μ_{∞} for the sodium salt of the acid it is only necessary to subtract from this the constant for sodium and add the constant for hydrogen to obtain the value of μ_{∞} for the acid in question. Thus:

$$\mu_{\infty} \operatorname{acid} = \mu_{\infty} \operatorname{HCl} + \mu_{\infty} \operatorname{Na. salt} \text{ of acid} - \mu_{\infty} \operatorname{NaCl.}$$
 (1)

The μ_{∞} for hydrochloric acid, as calculated from the equation, $\mu_{\infty} = 245.4 + 6.06t - 0.00776t^2$, for the increase in conductivity with temperature (t = temperature), is 331.1 at 14.82°, while the value obtained by direct measurement is 331.0. The value of μ for sodium chloride at 12.13° calculated from the equation

$$\mu_{m} = 63.04 + 204t - 0.00823t^{2}$$

is 88.99, while the value found is 88.98.

From equation (1) we see that it is also necessary to know the value of μ_{∞} for the sodium salt of the acid in question. This has been determined directly for a number of the acids.

Values of μ_{∞} for the Sodium Salts of the Organic Acids.—Ostwald obtained μ_{∞} for the sodium salts of the organic acids, by calculating the difference between the conductivity of sodium chloride at a certain dilution, e. g., V=32, and at infinite dilution. This difference he assumed to be constant for all sodium salts, and, therefore, by adding it to the conductivity of the sodium salt of any acid at the dilution V=32, μ_{∞} for that acid could be obtained. Instead of using this method in this investigation, μ_{∞} for the sodium salts was determined directly from conductivity measurements.

The sodium salts were prepared as follows: A dilute solution of the acid (usually about n/128) was titrated with a standard solution of sodium hydroxide, using a drop of phenolphthaline as indicator. Alizarine is also a good indicator, and was used in later work because it is less sensitive to carbonic acid.

In a few cases the purified sodium salts were weighed out and made up to the desired concentrations. The sodium hydroxide used for titrating the organic acids was prepared as follows:

One hundred grams of sodium hydroxide, purified from alcohol, was dissolved in 100 grams of conductivity water (obtained as above described) and the concentrated solution was allowed to stand in a closed vessel for about a week. By that time practically all the carbonate, etc., was precipitated, and there was left a perfectly clear solution of sodium hydroxide, portions of which were pipetted out and diluted to the proper strength with conductivity water. The dilute solution was then standardized by means of the standard sulphuric acid, and otherwise. When thus prepared the solution is very nearly free from carbonate, as is shown by the fact that it does not give a precipitate of barium carbonate with barium hydroxide, and that when titrated with indicators, both those that are sensitive and those that are not sensitive to carbonates, the results are practically the same.

The conductivities of the sodium salts of a large number of the acids used in this work are given in the table on pp. 89 and 90.

CONDUCTIVITIES OF SODIUM SALTS OF CERTAIN ACIDS.

Sodium.	v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ_v65°	Kt=
	$\begin{cases} 1024 \\ 2048 \\ 4096 \end{cases}$	43.35 44.56 44.60		84.82 87.69 87.64	107.9	130.4	164.5	$44.56+1.520t+0.00822t^2$
Trichloracetate Cyanacetate Phenylacetate	1024 2048 2048	41.96 44.65	64.75 65.43	82.45 86.80	101.98 106.0 97.0	135.6 121.1	171.9 157.0	$\begin{array}{c} 41.96 + 1.38t + 0.00952t^2 \\ 44.65 + 1.52t + 0.00668t^2 \end{array}$
Propionate	$\begin{cases} 1024 \\ 2048 \\ 4096 \end{cases}$	39.82 40.57 40.58		81.00 81.03	100.8	132.0	165.8	$40.57 + 1.378t + 0.00959t^2$
α-Brompropionate	4096	42.10 44.94 46.63	65.04 69.83 70.38		$108.2 \\ 111.2$	151.8	(a)	$44.94+1.74t+0.002t^2$
B-Iodopropionate Levulinate	2048	38.47 39.33	63.70 59.11	81.16 75.13 77.69	$ \begin{array}{c} 102.8 \\ 92.94 \\ 96.39 \end{array} $	(a) 121.0	151.0	$41.54 + 1.18t + 0.0168t^2 38.47 + 1.242t + 0.00898t^2$
Butyrate		40.51 40.54 41.50	64.16	80.95 80.86 81.90	$100.2 \\ 100.1$	128.3	161.1	$40.51 + 1.401t + 0.00868t^2$
8-Brombutyrate Isobutyrate	${2048} \ 4096$	42.46 43.34	65.07 66.33	$82.53 \\ 84.32$	$102.6 \\ 103.4$	(a)	(a)	$42.46 + 1.32t + 0.0115t^2$
Hydroxyisobutyrate Hydroxyisobutyrate	2048 2048	40.44	62.36	$80.95 \\ 79.42$	$100.2 \\ 97.74$	$92.29 \\ 126.2$	$89.46 \\ 158.3$	$40.44+1.36t+0.00779t^2$
Isovalerate	2048	39.64	60.62	77.5	95.5	123.0	153.8	$34.64 + 1.357t + 0.00708t^2$
Caprylate	2048	$42.67 \\ 25.1$	61.85	$77.61 \\ 69.5$	$95.77 \\ 86.2$	119.4	159.9	$42.67 + 1.099t + 0.0120t^2$
Benzilate	1024 2048 4096 1024	$\frac{36.3}{35.8}$		$71.5 \\ 70.8$	88.9 88.1 86.74	113.6	140.7	$36.3 + 1.17t + 0.0095t^2$
Hippurate	2048 4096	$36.23 \\ 36.31$		$71.54 \\ 71.60$	87.98 88.20	112.43		$36.23 + 1.250t + 0.00651t^2$
Pyromucate	2048 2048 2048	40.89 39.53 39.86	61.41	81.84 79.00 78.81	100.5 97.03 95.63	$126.1 \\ 130.1 \\ 125.1$	160.7 164.8 160.3	$40.89 + 1.478t + 0.00639t^{2}$ $39.53 + 1.416t + 0.00639t^{2}$
dry salt) Benzoate(by titration)	2048 2048	$\frac{38.93}{38.91}$		$77.69 \\ 77.73$	96.04 96.25			$38.93 + 1.348t + 0.00811t^2$
o-Chlorbenzoate o-Nitrobenzoate m-Nitrobenzoate	2048 2048 2048		58.97		93.18	123.0 123.8 124.4	153.5 155.5 156.3	$38.03 + 1.30t + 0.0078t^2$
p-Nitrobenzoate	$\begin{cases} 1024 \\ 2048 \\ 4096 \end{cases}$	38.85 39.78 38.91		75.71 76.48 75.86	93.30 95.80 94.00	123.0	153.8	$39.78 + 1.14t + 0.0133t^2$
1, 2, 4-Dinitro-benzo- ate	{2048 	37.80	58.25	74.77	$92.90b \\ 92.83c$	121.1	151.8	$37.80 + 1.24t + 0.0095t^2$
1, 3, 5-Dinitro-benzo- ate (by titration) 1, 3, 5-Dinitro-benzo-	2048 (1024 (2048	37.83 36.74 37.46	58.30 56.53 57.56	74.60 71.81 73.13	92.93 87.70 86.64	121.7	152.6	$37.83 + 1.24t + 0.0095t^2$
ate (from dry salt). Picrate	4096 2048	37.98	58.10	74.60	91.70	106.6	127.6	
Salicylate	$\begin{cases} 1024 \\ 2048 \\ 4096 \end{cases}$	40.02 40.55 40.56			96.21 98.90 98.90	127.6	160.3	$40.51 + 1.353t + 0.00902t^2$
Acetylsalicylate m -Hydroxybenzoate p -Hydroxybenzoate $1, 2, 4$ -Dihydroxy-ben-	2048 2048 2048	38.41	59.90	76.42 79.97 79.97	93.90 98.90 98.90	128.2 127.4	122.5 159.8 158.9	
zoate	2048	39.64	60.72	77.49	95.11	122.6	153.4	$39.64 + 1.337t + 0.00708t^2$
zoate	2048 2048 2048	39.36 37.91 38.20	60.58	77.52 74.38 75.26	95.62 91.80 92.51	114.10	(a) 135.15	$39.36+1.324t+0.0081t^2$ $37.91+1.259t+0.00799t^2$ $38.20+1.308t+0.00696t^2$
	2010	30.20		.0.20	02.01			23.20 2.0000 0.00000

a Acid decomposed.

b By titration. c From dry salt.

CONDUCTIVITIES OF SODIUM SALTS OF CERTAIN ACIDS—Continued.

Sodium.	v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	Kt=
m-Aminobenzoate	2048	28.63		69.36	89.49			$38.20+1.308t+0.00696t^2$
p-Aminobenzoate	2048	38.20		75.26	92.51			
Metanilate	2048			77.69	95.60	125.0	160.2	
	1024	38.47		76.20	93.81			
Sulphanilate	{2048	39.52		77.69	96.05	125.0	160.2	$39.52+1.307t+0.00879t^2$
	4096	39.36		77.70	95.85			
p-Sulphamido-ben-								
zoate	2048	39.30	60.23	76.57	94.00	123.3	154.4	$39.30 + 1.31t + 0.0072t^2$
	1024	37.82		74.04	91.87			
o-Toluate	$\{2048$	38.26		70.48	92.68	125.09	156.8	
	4096	38.18		74.92	92.58			
	(1024	38.02		74.33	92.16			
<i>m</i> -Toluate	{2048	38.25		75.63	92.88	125.05	162.7	
	4096	38.28		75.59	92.79			
	1024	38.02		74.90	91.93			
p-Toluate	$\{2048$	38.25		75.44	92.40	124.12	159.65	
•	4096	38.28		75.28	92.29			
	(1024	27.15		72.86	89.91			
Cinnamate	$\{2048$	37.69		74.49	92.06	125.1	158.7	$37.69+1.271t+0.00811t^2$
	4096	37.60		74.41	91.95			
Hydrocinnamate	2048	38.49	59.95	76.54	93.21	122.50	155.83	
Anisate	2048	39.36	60.12	76.96	95.04	125.06	158.68	
Vanillate	2048	38.98	60.08	76.64	93.26			
Naphthionate		39.54	57.28	79.05	97.10	123.00	156.02	
Mandelate		38.25		76.00	93.20	130.74	160.78	
Coumarate	2048	38.50	59.97	76.56	93.81	123.00	168.37	

The μ_{∞} for a number of the acids used in this work could not be determined as above described. These acids are di- or polybasic, and their sodium salts do not give a μ_{∞} value even at a dilution of n/4096.

The method first used in this laboratory by Wightman for determining the μ_{∞} for such acids is as follows: A curve was plotted in which the ordinates are the values of μ_{∞} for a number of organic acids, and the abscissas are the number of

atoms in the molecules of the acids. These curves were drawn for the various temperatures used in the work.

By placing the dibasic acid in question in its proper position on one of these curves (the position being determined by the number of atoms in its molecule) the μ_{∞} value for the acid can be read off at once.

To show how this method works the preceding figure (fig. 5) is given. The dots represent the positions of a number of acids on the curves, the asterisks the positions of a number of dibasic acids, whose μ_{∞} values were found by this method.

Values of μ_{∞} for the Organic Acids.

V ALUES	Ο Γ μ ∞	FOR THE ORGANI	C ACIDS.			
Acid.	0°	μ _∞ 15°	μ _∞ 25°	μ _∞ 35°	μ _∞ 50°	μ _∞ 65°
Acetic	227	292 (12°)	361.0	412.0		
Dichloracetic	221.7	305.6	359.3	408.7	477.3	545.8
Trichloracetic	224.8	303.9	355.9	406.4	478.5	520.9
Cyanacetic	227.0	304.5	360.0	410.0	480.6	551.1
Phenylacetic	221.0	290.0 (13.2°)	349.0	400.0	466.0	535.2
Propionic	223.0	260.0 (6.9°)	354.0	405.0	477.0	545.0
a-Brompropionie	229.0	308.9	363.6	415.2	2000	010.0
β-Iodopropionic	223.9	302.8	354.4	406.8		
n-Butyric	223.0	273 (9.4°)	354.0	404.0	473.3	540.3
a-Brombutyric	224.9	304.1	357.5	407.4	1,0.0	010.0
Isobutyric	223.0	310 (16.46°)	353.8	403.0	437.3	468.7
Hydroxyisobutyric	222.8	301.4	352.6	401.7	471.2	537.5
Isovaleric	222.0	299.7	350.0	399.5	468.0	533.0
Caprylic	225.1	300.9	350.8	399.8	464.4	539.1
Malonic	223.1	250.0 (4.9°)	355.0	405.0	477.0	546.0
Dimethylmalonic	$\frac{225.0}{222.2}$	300.4	352.0	400.0	470.0	539.0
Ethylmalonic	$\frac{222.2}{222.2}$	300.4	352.0	400.0	470.0	539.0
	219.4	296.1	346.2	393.9	464.8	533.9
Diethylmalonic	$\frac{219.4}{221.0}$	299.0	349.8	397.3	464.0	533.0
Methylethylmalonic	$\frac{221.0}{221.0}$				464.0	533.0
Isopropylmalonic		299.0	349.8	397.3		
Dipropylmalonic	218.6	295.1	345.7	392.8	458.0	520.0
Butylmalonic	219.4	296.1	346.2	393.9	464.8	533.9
Benzylmalonic	219.0	295.6	345.7	393.2	464.0	533.0
Allylmalonic	221.4	299.3	350.9	400.0	468.0	537.0
Succinic	223.0	249.8 (5.7°)	355.0	405.8	472.1	539.1
Monobromsuccinic	222.2	302.1	354.1			
Dibromsuccinic	001 0	000 0 (100)			400.0	F00 0
Pyrotartaric	221.0	290.0 (12°)	349.0	397.0	468.0	533.0
L-Tartaric	221.0	298.8	350.0	399.9	469.3	534.9
Racemic	222.0	286.0 (12°)	350.0	398.0	468.2	534.9
Thiodiglycolic	221.6	300.2	351.1	401.0	470.8	537.5
Tricarballylic	219.9	296.7	347.6	396.8	468.0	535.0
Cyanuric				405.0		
(Benzilic) or diphenylglycolic	218.7	280.5 (12°)	344.7	392.9	458.6	519.9
Hippuric	219.0	280.0 (12°)	345.0	392.0	446.4	499.8
Uric	221.0	298.8	350.0	399.9	404 5	
Citric	219.0	311 (18.1°)	345.0	392.0	464.5	528.5
Pyromucic	223.0	286 (12°)	355.0	405.0	471.0	539.2
Crotonic	222.0	286 (12°)	352.0	402.0	475.1	544.0
Maleic	223.0	289 (12°)	353.0	402.0	475.0	544.0
Fumaric	223.0	289 (12°)	353.0	402.0	475.0	544.0
Itaconic	221.3	284.6 (12°)	351.0	400.0	471.0	537.5
Citraconic	221.3	284.6 (12°)	351.0	400.0	471.0	537.5
Mesaconic	221.3	284.6 (12°)	351.0	400.0	471.0	537.5
Phenylpropiolic	222.2	300.4	352.0	400.0	470.0	539.0
Benzoic	222.0	304.0 (15.8°)	351.0	400.0	471.0	537.5
o-Chlorbenzoic	220.4	301.8	348.7	397.2	468.0	532.7
o-Nitrobenzoic	222.2	284.6 (12°)	349.7	399.8	468.8	534.7
m-Nitrobenzoic	222.2	284.6	349.7	399.8	469.4	535.2
p-Nitrobenzoic	222.2	284.6	347.9	399.8	468.0	533.2
1, 2, 4-Dinitrobenzoic	220.0	297.3	347.9	396.8	466.1	531.0
1, 3, 5-Dinitrobenzoic	220.2	297.4	347.4	396.9	466.7	531.8

Values of μ_{∞} for the Organic Acids—Continued.

Acid.	μ∞0°	μ _∞ 15°	$\mu_{\infty}25^{\circ}$	$\mu_{\infty}35^{\circ}$	$\mu_{\infty} 50^{\circ}$	$\mu_{\infty}65^{\circ}$
Picric					451.6	506.8
Salicylic	237.0	260.0 (6.9°)	353.0	403.0	472.5	539.0
Acetylsalicylic	220.8	297.4	344.0	397.9	463.5	
Sulphosalicylic						
m-Hydroxybenzoic	223.0	260.0 (6.9°)	353.0	403.0	472.5	539.0
p-Hydroxybenzoic	223.0	260.0 (6.9°)	353.0	403.0	472.5	539.0
1, 2, 4-Dihydroxybenzoic	222.0	299.8	350.7	399.1	467.6	532.6
1, 2, 5-Dihydroxybenzoic	221.8	299.6	350.7	399.6	467.6	532.6
Gallic	220.0	254.0 (6.5°)	348.0	396.0	459.1	513.4
o-Aminobenzoic	221.0	269 (7.5°)	349.0	396.0		
m-Aminobenzoic	211.0	305.8 (18°)	332.6	393.5		
p-Aminobenzoic	221.0	260 (7.5°)	349.0	396.0		
Metanilic	222.0	255 (6.3°)	351.0	400.0	470.0	538.8
Sulphanilic	222.0	255 (6.3°)	351.0	400.0	470.0	538.8
Picramic	221.7	299.1	350.2	399.0	470.0	537.2
p-Sulphaminobenzoic	221.7	299.3	349.8	398.0	468.3	533.6
Benzenesulphonic	228.0	309.0	359.0	410.0	475.3	544.3
m-Nitrobenzenesulphuric	204.5	275.5 (16°)	323.5	369.4	432.6	591.0
p-Toluenesulphonic	210.6	269.7 (12°)	332.7	379.3	445.9	503.4
1, 2, 4-Nitrotoluenesulphonic	200.5	276.5	318.4	361.9	487.5	556.3
1, 4, 2-Nitrotoluenesulphonic	228.9	318.5 (16°)	362.3	413.6	487.5	556.3
o-Toluic	221.0	284.0 (12°)	349.0	397.0	470.1	536.0
<i>m</i> -Toluic	221.0	284.0	349.0	397.0	470.1	540.2
<i>p</i> -Toluic	221.0	284.0	349.0	397.0	469.1	535.9
Cinnamic	220.0	248.0 (5.3°)	348.0	399.2	470.0	537.2
Hydrocinnamic	220.8	299.9	349.7	397.2	463.5	532.6
o-Phthalic	221.0	267.0 (8.2°)	349.0	397.0	470.0	538.8
4, 5-Dichlorphthalic						
Tetrachlorphthalic						
Anisic	221.7	299.1	350.2	399.0	470.0	537.2
Vanillic	221.3	299.1	349.8	397.3	464.0	532.8
Naphthionic	221.9	296.3	352.2	401.1	468.0	534.5
Mandelic	221.0	283.0 (12°)	349.0	397.0	475.4	540.0
Camphoric	218.3	279.8 (12°)	344.5	392.0	458.2	519.0
Coumaric	220.9	298.9	349.8	397.9	468.0	534.4

	Асет	nc Ac	ть (И	/T. A	ND C.)			Dich	LORAC	ETIC	Acıı	(Sp.)	
,	1	1 olecule	ar Con	ductivi	ity.			1	Molecule	ar Con	ductiv	ity.	
\overline{v}	$\mu_v 0^{\circ}$	μ _v 9.2°	$\mu_v 25^{\circ}$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	6° $\mu_v 50$	$^{\circ}$ $\mu_v 65^{\circ}$
2 8 32 128 512 1024 2048	$20.45 \\ 28.03$	3.292 6.612 13.04 25.40 34.95	8.699	4.94	18 5.62 11.19 3 22.04 5 41.84 0 58.29	6.24 12.40 24.48 46.31	32 128 512 1024 2048	166.0 203.7 220.5 221.7 217.0	220.3 272.6 300.0 305.6 302.1	253.9 318.0 352.8 359.3 358.1	360. 3 403. 408.	4 418.3 8 468.6 7 470.6	3 453.3 6 528.4 0 535.8
	P	ercenta'	ge Dis	sociat	ion.			F	Percenta	ge Dis	sociat	ion.	
v	a0°	a9.2°	α25°	a35	° a50°	a65°	v	a0°	a15°	α25°	a35	° a50°	a65°
2 8 32 128 512 1024 2048	0.56 1.18 2.37 4.62 8.80 12.35 17.20	0.56 1.19 2.40 4.71 9.13 12.51 17.56	0.58 1.20 2.41 4.74 9.21 12.71 17.45	$egin{array}{c} 1.2 \\ 2.4 \\ 4.7 \\ 9.1 \\ 12.6 \\ \end{array}$	$egin{array}{c c} 0 & 1.18 \\ 1 & 2.38 \\ 2 & 4.63 \\ 6 & 8.80 \\ 4 & 12.26 \\ \end{array}$	3 1.14 5 2.28 4.50 8 8.51	32 128 512 1024 2048		$89.20 \\ 98.17 \\ 100.00$	88.5 98.13 100.0	1 88.3 8 98.8 0 100.0	12 87.6 80 98.1 00 98.4	4 83.05 8 96.81
	Dis	sociatio	n Cons	tants	× 104.			Dis	sociatio	n Cons	stants	× 104.	
v	0°	9.2°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
2 8 32 128 512 1024 2048	0.157 0.175 0.179 0.175 0.166 0.170 0.174	0.182 0.179 0.175	0.169 0.183 0.186 0.184 0.182 0.181 0.180	0.18 0.18 0.18 0.18 0.17	2 0.176 5 0.177 3 0.175 1 0.165 9 0.165	0.164 0.166 0.165 0.154 0.159	2 8 32 128 512 1024						
Temp	erature	Coeffic	ients ir	n Cone	luctivity	Units.	Temp	perature	e Coeffic	cients 1	in Con	ductivit	y Units.
v	0-9.	2° 9.2-	-25° 25	5-35°	35-50°	50-65°	v	0-1	5° 15-	25° 2	5-35°	35-50°	50-65°
	$\begin{bmatrix} 2 & 0.5 \\ 4 & 0.5 \end{bmatrix}$	07 0. 14 0. 28 0. 54 0. 72 0.	.07 .13 .26 .50	0.03 0.06 0.12 0.24 0.45 0.62 0.79	0.03 0.05 0.08 0.17 0.27 0.42	0.019 0.041 0.080 0.16 0.30 0.46	3 12 51 102 204	$ \begin{array}{c cccc} 2 & 5. \\ 4 & 5. \end{array} $	59 4 30 5 46 5	.36 .54 .28 .37 .60	3.30 4.24 5.10 4.94 5.04	2.93 3.86 4.19 4.09 4.59	1.75 2.33 3.99 4.39 4.57
2	Temper	ature C	oefficie	nts in	Per Ce	nt.	7	'emper	iture Co	oefficie	nts in	Per Ce	nt.
v	0-9.	2° 9.2-	-25° 25	5–35°	35-50°	50-65°	v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°
	$egin{array}{c c} 2 & 2.6 \\ 4 & 2.8 \\ \end{array}$	61 2. 62 2. 66 1. 63 1. 57 1.	02 00 98 96 95	1.30 1.40 1.39 1.37 1.36 1.32 1.25	1.27 1.01 0.81 0.87 0.72 0.81	0.72 0.73 0.72 0.74 0.71 0.79	3 12 51 102 204	$egin{array}{c c} 8 & 2. \\ 2 & 2. \\ 4 & 2. \end{array}$	25 1 41 1 46 1	.66 .76 .75	1.30 1.33 1.43 1.37 1.41	1.02 1.07 1.04 1.00 1.12	0.52 0.56 0.87 0.90 0.95

	Тпісн	LORAC	ETIC	Acid	(WM.)		Суд	NACE'	гіс А	CID (Wм.)	
	A	Iolecul	ar Con	ductiv	ity.			Λ	Iolecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_i 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048	208.75 221.73 223.65 224.77	277.67 297.62 302.33 303.94	322.46 344.96 353.96 355.9	6 363 . 6 0 389 . 8 6 403 . 4 4 406 . 4	37 388.8 39 423.7 33 455.1 45 476.5 44 478.5 46 473.0	$\begin{array}{c c} 465.0 \\ 501.8 \\ 519.5 \\ 520.9 \end{array}$	8 32 128 512 1024 2048	114.23 164.90 187.49	92.26 154.10 223.37 252.59	106.47 178.86 259.64 291.56	118.7 199.6 293.0 332.0	5 74.72 9 134.00 7 227.80 0 337.30 0 381.70 0 418.10	0 144 . 50 0 249 . 00 0 368 . 00 0 426 . 90
	P	ercenta	ige Dis	sociati	ion.			P	ercenta'	ge Dis	sociati	on.	
v	a0°	a15°	α25°	a35°	ο α50°	a65°	v	a0°	al5°	α25°	a35°	a50°	a65°
8 32 128 512 1024	85.87 92.87 98.65 99.50 100.00	$97.92 \\ 99.47$	83.83 90.59 96.90 99.44 100.00	$\begin{vmatrix} 89.8 \\ 95.9 \\ 99.2 \end{vmatrix}$	$egin{array}{c c} 8 & 88.55 \ 1 & 95.11 \ \end{array}$	89.27 96.33 99.73	8 32 128 512 1024 2048	16.86 30.26 50.31 72.63 82.58 88.04	$\begin{vmatrix} 30.30 \\ 50.60 \\ 73.36 \\ 82.96 \end{vmatrix}$	$\begin{vmatrix} 49.68 \\ 72.12 \\ 80.99 \end{vmatrix}$	48.70 71.46 80.98	7 27.88 0 47.40 6 70.18 79.42	$egin{array}{c} 26.22 \\ 45.18 \\ 66.78 \\ 77.46 \\ \end{array}$
	Diss	ociatio	n Cons	stants	× 104.			Diss	sociatio	n Cons	tants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048							8 32 128 512 1024 2048	43 41 40 38 38 38	42 40 39 37 36 31	41 39 38 36 35 29	39 37 36 35 34 28	34 33 32 30	31 29 29 26 26 26 25
Temp	erature	Coeffic	ients i	n Cone	luctivity	Units.	Temp	erature	Coeffic	ients in	ı Cond	uctivity	Units.
v	0-1	5° 15-	-25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5–35°	35–50°	50-65°
	12 5. 24 5.	$egin{array}{c ccc} 60 & 4 \ 06 & 4 \ 25 & 5 \ 28 & 5 \ \end{array}$.22 .48 .73 .16 .20 .94	3.63 4.12 4.49 4.95 5.05 4.79	3.61 4.00 4.34 4.87 4.80 5.04	2.52 2.75 3.11 2.87 2.83 2.69		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c cccc} 7 & 1.4 \\ 6 & 2.4 \\ 0 & 3.4 \\ 5 & 3.4 \\ \end{array}$	$egin{array}{c ccc} 42 & 1 \ 48 & 2 \ 63 & 3 \ 97 & 4 \ \end{array}$.662 .23 .08 .04 .04 .23	0.57 1.01 1.87 2.95 3.31 4.10	0.38 0.70 1.41 2.05 3.01 3.63
′	Temper	ature C	oefficie	ents in	Per Cer	nt.		Temper	ature C	Coefficie	ents in	Per Ce	nt.
v	0-1	5° 15-	-25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35°	35–50°	50-65°
	12 2. 24 2.	$ \begin{array}{c cccc} 20 & 1 \\ 28 & 1 \\ 35 & 1 \\ 35 & 1 \end{array} $.61 .59 .70	1.22 1.28 1.30 1.40 1.42 1.37	1.08 1.10 1.11 1.21 1.18 1.27	0.65 0.65 0.68 0.60 0.59 0.57		$\begin{bmatrix} 2 & 2 \\ 24 & 2 \end{bmatrix}$	29 1 33 1 36 1 32 1	. 54 . 61 . 62 . 57	1.11 1.16 1.16 1.17 1.39 1.35	0.87 0.85 0.93 1.01 1.00 1.15	0.51 0.52 0.62 0.60 0.79 0.87

Рн	ENYL	ACETIC	ACID	(WT.	AND S	Sp.).	PR	OPION	ic Ac	CID (V	VT. AI	ND WM	ı.).			
	Molecular Conductivity.								Molecular Conductivity.							
v	$\mu_v 0^\circ$	$\mu_v 13.25^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 6.9^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$			
32 128 512 1024 2048	45.68	11.76 23.39 43.51 59.59 79.49	14.15 27.96 52.39 71.63 95.50	31.20 58.55 79.8	34.75 5 65.64 4 88.31		1024	9.004 17.47 23.82	$2.700 \\ 5.450 \\ 10.60$	3.704 7.436 14.57 28.40 38.94	$ \begin{array}{r} 8.425 \\ 16.50 \\ 32.14 \end{array} $	4.740				
		Percentag	je Diss	ociatio	n.				Percen	tage D	issociat	ion.				
v	a0°	α13.25°	a25°	a35°	a50°	a65°	v	a0°	a6.9°	a25°	a35°	α50°	a65°			
32 128 512 1024 2048	4.07 8.06 15.09 20.67 27.60	4.06 8.06 15.01 20.55 27.41	4.05 8.01 14.97 20.52 27.36	4.01 7.87 14.75 20.11 26.77	$ \begin{array}{c c} 7.46 \\ 14.08 \\ 18.95 \end{array} $	7.01 13.26 17.78	2 8 32 128 512 1024 2048	0.46 1.03 2.08 4.04 7.83 10.69 14.99	$\begin{array}{c} 0.47 \\ 1.04 \\ 2.10 \\ 4.08 \\ 7.92 \\ 10.78 \\ 15.09 \end{array}$	0.48 1.05 2.10 4.12 8.02 11.00 15.10	$ \begin{array}{c c} 1.04 \\ 2.08 \\ 4.07 \\ 7.93 \\ 10.87 \end{array} $	$ \begin{array}{c} 0.99 \\ 2.01 \\ 3.96 \\ 7.61 \\ 10.48 \end{array} $	0.96 1.91 3.72 7.20 9.95			
	Di	ssociation	Const	ants ×	104.			Dis	sociati	on Con	stants	× 10 ⁴ .				
v	0°	13.25°	25°	35°	50°	65°	v	0°	6.9°	25°	35°	50°	65°			
32 128 512 1024 2048	0.540 0.552 0.524 0.526 0.514	0.536 0.553 0.518 0.519 0.507	0.536 0.545 0.515 0.518 0.504	$0.526 \\ 0.499$	$\begin{bmatrix} 0.470 \\ 0.451 \\ 0.433 \end{bmatrix}$	$\begin{array}{c} 0.413 \\ 0.396 \\ 0.375 \end{array}$	2 8 32 128 512 1024 2048	$\begin{array}{c} 0.133 \\ 0.138 \\ 0.133 \\ 0.130 \\ 0.125 \end{array}$	0.111 0.136 0.140 0.135 0.133 0.127 0.131		0.137 0.138 0.135 0.134 0.130	$ \begin{array}{c c} 0.125 \\ 0.129 \\ 0.128 \\ 0.122 \\ 0.120 \end{array} $	0.126 0.116 0.113 0.109 0.108			
Tem	peratur	e Coeffici	ents in	Condv	ictivity	Units.	Temp	peratur	e Coeffi	cients i	n Cond	uctivity	Units.			
v 0-13.25° 13.25-25° 25-35° 35-50° 50-65°							v	0-6.9	° 6.9-	25° 2	5-35°	35-50°	50-65°			
32 128 512 1024 2048	0.4 0.7 1.0	$\begin{bmatrix} 41 & 0 \\ 77 & 0 \\ 05 & 1 \end{bmatrix}$.40 .76 .03	0.18 0.33 0.62 0.82 1.06	0.13 0.23 0.47 0.57 0.91	0.098 0.185 0.356 0.451 0.666	2 8 32 128 512 1024 2048	0.0 0.1 0.2 0.4 0.6	$egin{array}{c c} 6 & 0 \ 2 & 0 \ 3 & 0 \ 5 & 0 \ 1 & 0 \ \end{array}$.03 .06 .11 .22 .43 .59 .79	0.02 0.05 0.10 0.19 0.37 0.51 0.68	0.02 0.04 0.08 0.16 0.28 0.40 0.45	0.02 0.03 0.05 0.09 0.19 0.28 0.44			
	Tempe	rature Co	efficien	its in 1	Per Cen	t.	1	Гетрег	ature (Coeffici	ents in	Per Ce	nt.			
v	0-13.	25° 13.25	-25° 25	5-35°	35-50°	50-65°	v	0-6.9	0° 6.9-	-25° 2	5-35°	35–50°	50-65°			
32 128 512 1024 2048	2. 2. 2.	32 1 30 1 30 1	.70 .72 .72	1.23 1.18 1.18 1.15 1.15	0.81 0.73 0.80 0.71 0.86	0.550 0.494 0.542 0.511 0.555	2 8 32 128 512 1024 2048	2.5 2.5 2.5 2.5 2.5	$egin{array}{c c} 9 & 2 \ 6 & 2 \ 8 & 2 \ 9 & 2 \ 6 & 2 \ \end{array}$.19 .05 .01 .07 .10 .11	1.25 1.36 1.33 1.32 1.31 1.31 1.27	1.05 0.95 0.95 0.97 0.88 0.91 0.75	0.75 0.69 0.56 0.50 0.54 0.57 0.66			

a	-Bron	MPROP:	IONIC	Acii	о (Wм	:.)	ļ A	8-Іоро	PROPI	ONIC	Acid	(Wм.)		
	Λ	Molecul	ar Con	ductivi	ity.			Л	Iolecule	ar Cone	ductivit	y.			
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	\overline{v}	$\mu_v 0^\circ$	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65$		
32 128 512 1024 2048	77.10 124.7 151.7		114.4 186.8 229.5	61.4 125.9 206.7 257.0 295.3	9 7 0	*	8 32 128 512 1024 2048	6.30 12.57 23.79 44.36 58.61 76.55	8.42 16.81 31.86 59.47 78.67 102.87	19.37 36.67 68.42 91.05	21.98 41.69 78.04 104.24		§		
Percentage Dissociation.								Percentage Dissociation.							
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65		
32 128 512 1024 2048	16.60 33.37 54.45 66.25 77.52	15.99 32.37 53.13 65.01 73.62	15.38 31.47 50.21 62.98 72.06	14.8 30.3 49.7 61.9 71.1	3		8 32 128 512 1024 2048	2.84 5.66 10.71 19.97 26.38 34.46	2.78 5.55 10.56 19.64 25.98 33.98	2.75 5.48 10.37 19.35 25.75 33.47	2.74 5.42 10.29 19.26 25.73 33.42				
	Diss	sociatio	n Consi	ants >	× 104.			Diss	ociation	n Const	ants ×	104.			
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°		
32 128 512 1024 2048	10.3 13.4 12.7 12.7 13.1	10.2 13.2 13.1 13.5 11.9	8.7 11.3 9.9 10.6 11.4	8.0 10.3 9.6 9.8 8.4			8 32 128 512 1024 2048	1.04 1.04 1.00 0.97 0.92 0.89	1.00 1.02 0.97 0.94 0.89 0.85	0.97 0.99 0.94 0.91 0.87 0.82	0.97 0.97 0.93 0.90 0.87 0.82				
Temp	erature	Coeffic	ients in	Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units		
v	0-1	5° 15-	25° 25	-35°	35–50°	50-65°	v	0-1	5° 15–	25° 25	-35° 3	5–50°	50-65		
32 0. 128 1. 512 2. 1024 3. 2048 3.		$\begin{bmatrix} 53 & 1 \\ 63 & 2 \\ 27 & 2 \end{bmatrix}$.44 1 .27 1 .87 2	0.56 . 1.15 . 1.99 . 2.75 . 3.33 .		†	3 12 51 102 204	$egin{array}{cccc} 8 & 0.8 \ 2 & 1.0 \ 4 & 1.3 \ \end{array}$	28 0. 54 0. 01 0. 34 1.	. 26 0 .48 0 .89 0 .24 1	0.14 0.26 0.50 0.96 1.32				
Т	"empero	ature C	oefficier	its in	Per Cer	nt.	Т	'empero	iture Co	pefficier	its in F	er Cen	ıt.		
v	0-1	5° 15-	25° 25	-35°	35–50°	50-65°	v	0-18	5° 15–	25° 25	-35° 3	5-50°	50-65		
3 12 51 102 204	$egin{array}{c cccc} 8 & 1.9 \ 2 & 2.1 \ 4 & 2.1 \ \end{array}$	99 1. 11 1. 16 1.	.44 1 .38 1 .43 1	.00 .01 .07 .17 .127	‡	†	33 128 513 1024 204	$egin{array}{c cccc} 8 & 2.2 \ 2.2 \ 4 & 2.2 \ \end{array}$	25 1. 26 1. 27 1. 28 1.	52 1 51 1 51 1 57 1	43 35 37 41 45				

^{*}Decomposes very rapidly at this temperature. †Decomposes. †This acid decomposes slowly at 50°, but very rapidly at 65°. \$Decomposes slowly at 35°, and rapidly at higher temperatures.

L	EVULIN					ONIC	$ $ $ $ $ $ $ $	-Виту	TRIC A	CID (Wt. A	ND SI	м.).
	1	Molecul	ar Con	ductiv	ity.			1	Iolecul	ar Con	ductivit	y.	
v	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 9.4°	μυ25°	$\mu_v 35^\circ$	$\mu_v 50^\circ$	μ_v65°
8 32 128 512 1024 2048	5.85 11.57 22.06 29.81	8.24 16.13 30.78 41.92	9.71 19.08 36.37 49.85	11.10 21.84 41.68 56.99	$egin{array}{c c} 12.96 \\ 4 & 25.54 \\ 8 & 48.08 \\ 0 & 66.15 \\ \hline \end{array}$	$\begin{bmatrix} 14.39 \\ 28.38 \\ 51.79 \\ 72.81 \end{bmatrix}$	2 8 32 128 512 1024 2048	$ \begin{array}{r} 5.072 \\ 10.00 \\ 19.44 \\ 26.82 \end{array} $	3.062 6.230 12.23 23.79 32.83	$\begin{array}{c} 3.891 \\ 7.902 \\ 15.45 \end{array}$	[4.35]		2 - 5.265
	F	Percento	ige Dis	sociat	ion.			P	ercenta	ge Diss	sociatio	n.	
v	a0°	al5°	a25°	α35	a50°	α65°	v	a0°	α9.4°	a25°	a35°	α50°	α65°
8 32 128 512 1024 2048	2.65 5.24 9.99 13.50	2.76 5.41 10.32 14.06	2.79 5.48 10.44 14.31	2.8 5.5 10.5 14.3	$egin{array}{c c} 0 & 2.78 \\ 0 & 5.48 \\ 0 & 10.32 \\ 6 & 14.19 \\ \end{array}$	$ \begin{array}{cccc} 2.71 \\ 5.35 \\ 9.77 \\ 13.73 \end{array} $	2 8 32 128 512 1024 2048	0.49 1.12 2.27 4.48 8.72 12.02 16.76	0.49 1.12 2.28 4.48 8.71 12.02 16.71	0.49 1.10 2.23 4.36 8.44 11.64 16.15	0.48 1.08 2.18 4.24 8.17 11.20 15.52	0.47 1.03 2.10 4.18 7.98	0.97 2.00 3.93 7.61
	Diss	ociation	n Consi	tants ;	× 10 ⁴ .			Diss	ociation	n Consi	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	9.4°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.225 0.226 0.217 0.206	$\begin{array}{c} 0.238 \\ 0.235 \\ 0.226 \\ 0.219 \end{array}$	$\begin{array}{c} 0.250 \\ 0.248 \\ 0.238 \\ 0.233 \end{array}$	0.250 0.250 0.241 0.235	0.249 0.248 1 0.232 5 0.229	$0.237 \\ 0.236$	2 8 32 128 512 1024 2048	0.120 0.159 0.165 0.164 0.163 0.161 0.165	0.120 0.159 0.166 0.164 0.163 0.161 0.164	0.120 0.153 0.157 0.152 0.152 0.150 0.152	0.115 0.147 0.152 0.147 0.142 0.138 0.139	0.111 0.133 0.141 0.142 0.135	0.118 0.127 0.125 0.122
Temp	erature	Coeffic	ients in	Cond	luctivity	Units.	Tempe	erature	Coeffici	ents in	Condu	ctivity	Units.
v	0-15	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-9.4	4° 9.4-	-25° 25	-35° 3	5-50°	50-65°
32 128	$egin{array}{c ccc} 2 & 0.16 \ 8 & 0.36 \ 2 & 0.58 \ 4 & 0.86 \ \end{array}$	$egin{array}{c c} 60 & 0.1 \ 04 & 0.2 \ 31 & 0.5 \ 07 & 0.7 \ \end{array}$	47 0. 95 0. 59 0. 93 0.	139 276 531	0.124 0.247 0.43	0.048 0.095 0.189 0.247 0.444 0.585	32 128 512 1024 2048	$egin{array}{c ccc} 3 & 0.0 \\ 2 & 0.1 \\ 3 & 0.2 \\ 2 & 0.4 \\ 4 & 0.6 \\ \end{array}$	06 0. 22 0. 24 0. 66 0. 64 0.	$egin{array}{c ccc} 05 & 0 & 0 \ 11 & 0 & 0 \ 21 & 0 & 39 & 0 \ 54 & 0 & 0 \ \end{array}$	$egin{array}{c cccc} 0.05 & 0 & 0 & 0 \\ 0.09 & 0 & 0 & 0 \\ 0.17 & 0 & 0 \\ 0.31 & 0 & 0 \\ 0.41 & \dots & 0 \\ \end{array}$	0.019 0.034 0.077 0.176 0.32	0.013 0.027 0.057 0.097 0.221
T	'empera	ture Co	efficien	its in	Per Cen	t.	T	empera	ture Co	efficien	ts in P	er Cen	t.
v	0-15	5° 15–2	25° 25-	-35°	35-50°	50-65°	v	0-9.4	1° 9.4-	·25° 25	-35° 3	5-50°	50-65°
32 128 512 1024 2048	$egin{array}{c ccc} 2 & 2.7 \ 8 & 2.6 \ 2 & 2.6 \ 4 & 2.7 \ \end{array}$	$egin{array}{c cccc} 4 & 1. \\ 3 & 1. \\ 3 & 1. \\ 1 & 1. \\ \end{array}$	78 1 83 1 82 1 89 1	.42 .43 .45 .46 .43 .55	1.12 1.12 1.15 1.03 1.07 0.91	0.75 0.74 0.74 0.51 0.67 0.67	128 128 512 1024 2048	$egin{array}{c ccc} 3 & 2.3 \\ 2 & 2.4 \\ 3 & 2.4 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	$egin{array}{c cccc} 3 & 1. \\ 4 & 0. \\ 8 & 1. \\ 8 & 1. \\ \end{array}$	$egin{array}{c c c} 74 & 1 \ 72 & 1 \ 69 & 1 \ 64 & 1 \ 64 & 0 \ \end{array}$.19 .14 .09 .05	0.98 0.78 0.87 1.03 0.97	0.59 0.55 0.57 0.49 0.58

	a-Br	OMBU	TYRIC	Acid	(WM.).	I	sobut	YRIC A	CID (WT. A	ND SM	ι.).
		Molecu	lar Con	nductivi	ity.				Molecula	r Cond	uctivity	•	
v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	μ_v65°	v	$\mu_v 0^{\circ}$	$\mu_v 16.46^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
1024	84.94 133.7 160.6	54.70 109.5 173.2 209.3 238.0	122.8 195.2 239.8	66.42 134.3 214.9 266.0 305.9			1024	1.034 2.453 4.912 9.736 18.91 26.32 35.96	6.809	1.633 3.82 7.62 15.13 29.30 40.90 55.01	$egin{array}{cccc} 1 & 4.273 \\ 1 & 8.514 \\ 16.90 \\ 32.70 \\ \end{array}$	2 4.409	4.76
	1	Percent	age Dis	sociatie	on.				Percenta	ge Dis	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	α16.46°	a25°	a35°	α50°	a65°
32 128 512 1024 2048	18.53 36.82 57.97 69.61 78.32	17.99 36.00 56.92 68.82 78.26	17.06 34.35 54.59 67.08 76.91	32.97			2 8 32 128 512 1024 2048	0.47 1.10 2.20 4.37 8.48 11.80 16.13	$\begin{array}{c} 0.47 \\ 1.10 \\ 2.20 \\ 4.35 \\ 8.39 \\ 11.67 \\ 15.88 \end{array}$	0.46 1.08 2.15 4.27 8.28 11.55 15.54	$egin{array}{cccc} 1.06 \\ 2.11 \\ 4.18 \\ 8.09 \\ 11.27 \end{array}$	$ \begin{array}{c c} 1.01 \\ 2.02 \\ 4.02 \\ 7.71 \\ 10.58 \end{array} $	1.02 2.02 3.97 7.64 10.46
	Dis	sociatio	n Cons	tants >	⟨ 10⁴.			Di	ssociation	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	16.46°	25°	35°	50°	65°
32 128 512 1024 2048	13.1 16.8 15.6 15.6 13.8	13.2 17.2 16.4 17.0 16.6	11.0 14.0 12.8 13.2 12.5	10.1 12.7 11.5 12.0 11.1			2 8 32 128 512 1024 2048	0.108 0.153 0.155 0.156 0.154 0.154 0.151	0.110 0.153 0.154 0.154 0.150 0.150 0.146	0.108 0.147 0.148 0.149 0.146 0.147	$\begin{bmatrix} 0.141 \\ 0.142 \\ 0.143 \\ 0.139 \\ 0.140 \end{bmatrix}$	$ \begin{array}{c} 0.128 \\ 0.130 \\ 0.131 \\ 0.125 \\ 0.122 \end{array} $	0.131 0.129 0.128 0.123 0.119
Temp	perature	e Coeffic	cients i	n Condu	uctivity	Units.	Tem	peratur	e Coeffici	ents in	Condu	ctivity	Units.
\overline{v}	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-16.	46° 16.46	-25° 2	5-35°	35–50°	50-65°
31 12 51: 103- 204	$egin{array}{c cccc} 8 & 1.6 \ 2 & 2.6 \ 4 & 3.5 \ \end{array}$	34 1 33 2 25 3	.33 .20 .05	0.54 1.15 1.97 2.62 3.09			2 8 32 128 512 1024 2048	0.0	06 0 12 0 23 0 43 0 60 0	.05 .10 .19 .36	0.02 0.05 0.09 0.18 0.34 0.46 0.63		0.009 0.024 0.041 0.067 0.14 0.18 0.21
7	$\Gamma emper$	ature C	oefficie	nts in I	Per Cen	nt.		Tempe	rature Co	pefficie:	nts in I	Per Cen	<i>t</i> .
v	0-1	5° 15-	25° 25	5-35° 3	5-50°	50–65°	v	0-16.	46° 16.46	-25° 2	5-35°	35-50°	50-65°
3 12 51 102 204	$egin{array}{c cccc} 8 & 1.9 \ 2 & 1.9 \ 4 & 2.0 \ \end{array}$	93 1 97 1 02 1	.21 .27 .46	0.89 0.94 1.01 1.09 1.12			2 8 32 128 512 1024 2048	2.3 2.3 2.3 2.3	38 1 35 1 33 1 28 1 28 1	.40 .40 .43 .41	1.27 1.18 1.17 1.17 1.16 1.13 1.15		0.47 0.54 0.46 0.38 0.41 0.39 0.34

Note—Solutions more concentrated than v=128 decompose at 35°, and all dilutions decompose rapidly at 50°.

Н		XYISOI	BUTYRI	c Acid	(Wa	л.).		Isc	VALE	RIC A	CID (Wм.).	
		Molecu	ılar Con	ductivity				М	oleculo	ır Cond	luctivity	/-	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ ₀ 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	μ_v35°	μ _ν 50°	$\mu_v 65^\circ$
128 512 1024	6.075 12.11 23.50 44.06 58.80 76.78	$\begin{array}{c} 8.553 \\ 17.04 \\ 33.04 \\ 61.74 \\ 81.95 \\ 106.95 \end{array}$	$10.147 \\ 20.19 \\ 39.18 \\ 73.16 \\ 97.00 \\ 126.20$	11.576 22.97 44.65 83.41 111.60 144.07	26.84 51.41 96.52 128.30	1 29.43	$\begin{array}{c} 512 \\ 1024 \end{array}$		7.061 14.04 26.97 37.11	8.052 16.01 30.74 42.18			5.115 10.57 20.94 39.92 53.48 72.93
		Percent	age Diss	sociation	•			F	Percente	age Dis	sociati	on.	
v	a0°	al5°	a25°	a35°	a50°	a65°	\overline{v}	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	2.75 5.47 10.62 19.92 25.58 34.70	$\begin{array}{c} 5.653 \\ 10.96 \\ 20.48 \\ 27.19 \end{array}$		2.89 5.74 11.15 20.84 27.88 36.00	2.83 5.70 10.91 20.48 27.23 35.24	$ \begin{array}{cccc} 5.43 \\ 10.48 \\ 319.71 \\ 26.17 \end{array} $	8 32 128 512 1024 2048	1.16 2.42 4.81 9.24 12.34 16.74	1.13 2.36 4.69 9.00 12.38 16.65	1.11 2.30 4.57 8.78 12.05 16.25	1.07 2.24 4.34 8.44 11.60 15.66	11.87	0.96 1.98 3.93 7.49 10.03 13.68
	D_i	issociati	on Cons	tants ×	104.			Dis	sociatio	on Cons	stants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.97 0.99 0.99 0.97 0.94 0.90	1.05 1.06 1.17 1.03 0.99 0.95	1.08 1.10 1.09 1.07 1.03 0.98	1.08 1.10 1.09 1.07 1.08 0.99	1.03 1.08 1.05 1.03 1.00 0.94	0.95 0.98 0.96 0.95 0.91 0.82	8 32 128 512 1024 2048	0.170 0.187 0.189 0.184 0.170 0.164	0.162 0.178 0.180 0.180 0.171 0.162	0.154 0.169 0.171 0.165 0.161 0.154	0.145 0.160 0.160 0.152 0.149 0.140	$ \begin{vmatrix} 0.143 \\ 0.142 \\ 0.132 \\ 0.130 \end{vmatrix} $	$0.126 \\ 0.119$
Tem	peratui	re Coeffi	cients in	Conduc	tivity l	Inits.	Temp	peratur	e Coeffi	cients i	n Cond	uctivity	Units.
v	C	-15° 1	5-25° 2	5-35° 3	5-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°
1	8 32 128 512 024 048	0.16 0.33 0.64 1.18 1.54 2.01	0.31	0.14 0.28 0.55 1.03 1.46 1.79	0.12 0.26 0.45 0.88 1.11 1.47	0.094 0.17 0.36 0.68 0.90 1.02	32 128 512 1024 2048	$egin{array}{c c} 2 & 0.13 \\ 3 & 0.22 \\ 2 & 0.43 \\ 4 & 0.58 \\ \hline \end{array}$	13 0.0 24 0.3 30 0.3 39 0.4	099 0 197 0 377 0 507 0	.087 .167 .297 .415	0.032 0.064 0.123 0.216 0.301 0.483	0.016 0.045 0.095 0.138 0.175 0.209
	Temp	erature (Coefficie	nts in P	er Cen	t.	7	Cemper	ature C	l'oefficie	ents in	Per Cer	nt.
v	()–15° 1	5–25° 2	5-35° 3	5–50°	50–65°	v	0-1	5° 15-	·25° 25	5–35° 3	35–50°	50-65°
1	$\begin{array}{c c} 32 \\ 128 \end{array}$	2.72 2.71 2.71 2.68 2.62 2.62	1.85 1.86 1.85	1.41 1.38 1.40 1.40 1.50 1.41	1.00 1.13 1.01 1.06 1.01 1.02	0.71 0.65 0.70 0.71 0.70 0.61	32 128 512 1024 2048	$egin{array}{c cccc} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 $	10 1 10 1 10 1 108 1	.40 .40 .40 .37	1.35 1.07 1.04 0.97 0.98 1.00	$\begin{array}{c} 0.74 \\ 0.72 \\ 0.70 \\ 0.64 \\ 0.65 \\ 0.77 \end{array}$	0.33 0.46 0.49 0.37 0.34 0.45

	Ca	PRYLIC	c Acı	D (W	м.).			MALO	NIC A	CID (WT. A	ND C.).
	Л	Iolecul	ar Con	ductivit	y.			A	Iolecul	ar Con	ductivii	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^{\circ}$	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 4.9^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _ν 50°	$\mu_v 65^\circ$
512 1024 2048	24.39 32.84	32.76 44.08	27.79 37.84 51.08		47.28	50.57	2 4 8 16 32 64 128 512 1024 2048	43.51 78.30 127.1	26.20 	38.40 72.23 129.8 208.7 251.2	148.2 237.4 284.8	37.38 3 71.76 5 130.8 173.8 277.8	3 41.47 3 79.73 145.8 191.7 310.9
	P	ercenta	ge Dis	sociatio	n.			P	'ercenta	ge Dis	sociatio	on.	
v	a0°	α15°	a25°	a35°	a50°	α65°	v	a0°	α4.9°	a25°	a35°	a50°	a65°
512 1024 2048	12 7.96 7.80 7.43 24 10.84 10.89 10.84 10.64 10.18						2 8 32 128 512 1024 2048	5.30 10.40 19.57 35.12 56.99 68.74 79.32	5.34 10.48 19.70 35.53 57.36 69.28 79.66	5.53 10.81 20.34 36.58 58.80 70.76 81.45	10.87 20.38 36.59 58.60 70.31	36.43 58.24 69.52	56.94
	Diss	ociatio	n Cons	tants >	< 10⁴.			Diss	ociatio	n Cons	tants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	4.9°	25°	35°	50°	65°
512 1024 2048	0.129 0 122	0.130 0.123	0.134 0.129 0.123		0.113	0.095	2 8 32 128 512 1024 2048	14.8 15.1 14.8 14.8 14.8 14.8 14.9	15.0 15.3 15.1 15.3 15.1 15.3 15.3	16.1 16.4 16.3 16.4 16.4 16.7 17.5	16.5 16.3 16.5 16.2 16.3	16.3 15.9	14.7
Temp	erature	Coeffic	ients in	Condi	ctivity	Units.	Temp	perature	Coeffic	ients i	n Cond	uctivity	Units.
v	0-15	° 15-	25° 25	5–35° 3	35–50°	50–65°	v	0-4.9	° 4.9-	25° 25	5–35°	35–50°	50-65°
512 1024 2048	0.5		. 51	0.33 0.45 0.47	0.23 0.33 0.45	0.20 0.22 0.17	2 4 8 16 32 64 128 512 1024 2048	0.6 1.1' 2 2.0' 3.3' 4.0'	1 0 7 1 9 2 3 3 6 3	.04 .25 .88	0.29 . 0.58 . 1.03 . 1.84 . 2.87 . 3.36 . 3.75 .	1.70 2.70 3.12	0.27 0.53 1.00 1.19 2.21
2	Temper	ature C	'oessicie	nts in	Per Cer	nt.	7	$\Gamma empero$	ature C	oefficie	nts in	Per Cer	ıt.
v	0-15	° 15–	25° 2	5-35°	35–50°	50-65°	v	0-4.9	° 4.9-	25° 25	5–35°	35–50°	50-65°
512 1024 2048	2.2	9 18 1	. 55	1.18 1.17 1 12	0.74 0.78 0.80	0.58	2 4 8 16 32 64 128 512 1024 2048	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c cccc} & & & & & & & & \\ & & & & & & & & \\ 6 & & & &$.32 .32 .32 .30 .27 .24	1.48 . 1.47 . 1.43 . 1.42 . 1.38 . 1.34 . 1.30 .	1.15 1.14 1.09	0.73 0.74 0.76 0.68 0.80

]	Diмет	HYLM	ALONI	c Ac	eid (Sp	.).		Етн	YLMAI	ONIC	Acid	(Sp.)	•
National Property and Publishers	A	Iolecul	ar Con	ductiv	ity.			Λ	Iolecul	ar Con	ductivit	y.	
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	μ _v 25°	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048	$101.42 \\ 124.10$	43.76 80.57 136.94 169.74	51.23 94.61 160.28 198.93	$107.2 \\ 182.4 \\ 226.0$		77.10 2139.53 240.72 3299.26	1024	$ 119.83 \\ 146.45$	55.22 98.35 161.73 197.80	64.42 114.55 188.90 231.24	$\begin{array}{c} 72.53 \\ 129.09 \\ 213.00 \\ 260.00 \end{array}$	82.52 9146.60 9243.30 9297.95	
	P	ercenta	ge Dis	sociati	ion.			P	ercento	ige Dis	sociatio	n.	
v	a0°	a15°	a25°	a35°	ο α50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	7.24 14.40 26.55 45.64 55.85 68.36	7.35 14.59 26.86 45.65 56.58 68.57	7.34 14.56 26.89 45.56 56.55 68.53	7.33 14.63 26.84 45.60 56.50 68.48	$egin{array}{c cccc} 2 & 14.63 \\ 5 & 26.56 \\ 6 & 46.17 \\ 6 & 56.72 \\ \hline \end{array}$	14.30 25.88 44.66 55.52	8 32 128 512 1024 2048	9.38 18.41 32.89 53.93 65.91 75.04	9.34 18.38 32.73 53.82 65.83 75.00	65.72	32.30 53.30 65.06	$\begin{vmatrix} 31.20 \\ 51.77 \\ 63.40 \end{vmatrix}$	16.82 30.01 50.08 61.34
	Diss	ociation	n Cons	tants)	× 10 ⁴ .	The state of the s		Diss	ociatio	n Cons	tants ×	(104.	
v .	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	7.06 7.57 7.50 7.48 6.90 7.21	7.28 7.79 7.71 7.49 7.20 7.30	7.27 7.75 7.73 7.45 7.21 7.29	7.27 7.82 7.70 7.50 7.20 7.28	7.82 7.51 7.69 7.26	6.72 7.45 7.06 7.04 6.77 5.84	8 32 128 512 1024	12.1 12.9 12.6 12.3 12.4	12.0 12.9 12.4 12.2 12.3	11.8 12.8 12.3 12.2 12.3	11.6 12.5 12.0 11.9 11.8	10.7 11.6 11.0 10.9 10.7	10.0 10.6 10.0 9.8 9.5
Temp	erature	Coeffic	ients in	Cond	luctivity	Units.	Temp	erature	Coeffic	cients in	n Cond	uctivity	Units.
v	0-1	5° 15–	25° 25	-35°	35-50°	50–65°	v	0-1	5° 15-	-25° 2	5-35° 3	35-50°	50-65°
3: 12: 51: 102: 204:	$egin{array}{c cccc} 8 & 1.4 \ 2 & 2.3 \ 4 & 3.6 \ \end{array}$	$egin{array}{c cccc} 78 & 0.4 & 1.37 & 2.04 & 2.5 \ \hline \end{array}$	75 0 40 33 3 92 3	0.35 0.72 1.27 2.22 2.71 3.26	0.32 0.69 1.17 2.13 2.71 2.74	0.27 0.55 0.98 1.57 2.17 2.32		$\begin{array}{c cccc} 2 & 2. \\ 4 & 3. \end{array}$	$egin{array}{c c} 95 & 0 \ 68 & 1 \ 79 & 2 \ 42 & 3 \ \end{array}$.92 .62 .72 .34	0.40 0.81 1.45 2.41 2.88 3.48	0.34 0.67 1.70 2.02 2.53 3.13	0.29 0.54 1.01 1.64 2.18 2.63
T	Tempero	ature C	oe <u>f</u> ficie	nts in	Per Cer	nt.	7	l'emper	ature C	'oefficie	ents in	Per Cer	nt.
v	0-1	5° 15-	25° 25	-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 2	5-35°	35–50°	50-65°
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 1. 12 1. 133 1. 15 1.	.70 .74 .70 .72	1.34 1.40 1.34 1.38 1.36 1.35	1.08 1.18 1.09 1.17 1.18 1.00	0.79 0.80 0.79 0.72 0.82 0.74		$\begin{array}{c cccc} 2 & 2. \\ 4 & 2. \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.66 .65 .68 .69	1.23 1.27 1.26 1.27 1.25 1.32	0.91 0.92 0.90 0.95 0.97 1.04	0.71 0.66 0.69 0.67 0.71 0.76

	DIETH	IYLMA	LONIC	Acı	D (Sp.).	ME	THYL	ETHYL	MALO	NIC A	CID (S	Sp.).
	Λ	Iolecul	ar Con	ductive	ity.			Л	Iolecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	μ_v 35	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
	92.77 141.81 189.03 201.22	121.64 187.35 252.30 268.24	138.84 215.34 292.24 311.98	153.6 240.2 328.7 353.5	66 94.03 60 174.26 20 274.96 3 378.84 66 413.66 60 424.37	$ \begin{array}{r} 6186.22 \\ 5299.01 \\ 422.61 \\ 5462.78 \end{array} $	$ \begin{array}{r} 32 \\ 128 \\ 512 \\ 1024 \end{array} $	81.39 129.95 156.21	61.89 110.44 175.96 211.25	72.4 129.7 206.3 248.1	$1147.13 \\ 2234.09 \\ 280.0$	$egin{array}{cccc} 93.6 \ 8168.5 \ 0269.50 \ 1323.20 \end{array}$	3 54.11 1 104.35 1 188.20 0 304.26 0 365.54 6 411.58
	P	ercenta	ge Dis	sociat	ion.			F	ercenta'	ige Dis	sociati	on.	
v	a0°	al5°	a25°	a35°	α50°	a65°	v	a0°	a15°	α25°	a35°	a50°	a65°
8 32 128 512 1024 2048	23.88 42.29 64.65 86.17 91.73 91.92	22.92 41.08 63.27 85.21 90.59 91.94	22.22 40.10 62.19 84.40 90.10 91.62	60.9 83.4 89.7	$egin{array}{c c} 0 & 37.49 \\ 8 & 59.15 \\ 6 & 81.56 \\ 6 & 89.00 \\ \hline \end{array}$	34.87 56.00 79.14 86.66	8 32 128 512 1024 2048	10.68 20.78 36.85 58.84 70.73 80.68	10.67 20.70 36.94 58.85 70.66 80.38	58.99 70.96	20.61 36.99 58.81 70.37	20.17 9 36.31 58.08 7 69.65	19.58 35.31 57.08 68.58
	Diss	ociatio	n Cons	tants	× 104.			Diss	ociatio	n Cons	stants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048							8 32 128 512 1024 2048	16.0 17.0 16.8 16.4 16.7 16.5	15.9 16.9 16.4 16.6 16.1	15.9 16.9 17.1 16.6 16.9 15.9	15.7 16.7 17.0 16.4 16.3 15.0	15.6 15.9 16.1 15.7 15.6 14.3	14.3 14.5 15.0 14.8 14.6 12.8
Tempe	erature	Coeffici	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients i	n Cond	uctivity	Units.
v	0-1	5° 15-	25° 25	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 2	5-35°	35-50°	50-65°
3 12 51 102 204	$egin{array}{c cccc} 8 & 3.0 \\ 2 & 4.5 \\ 4 & 4.4 \\ \end{array}$	02 1 04 2 02 3 17 4	.72 .80 .99 .37	0.77 1.48 2.49 3.65 4.16 4.32	0.73 1.38 2.33 3.34 4.01 4.26	0.42 0.80 1.67 2.92 3.27 3.83		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} 07 & 1 \ 94 & 1 \ 07 & 3 \ 67 & 3 \ \end{array}$.54 .06 .93 .04 .69	0.49 0.95 1.75 2.77 3.18 3.44	0.40 0.77 1.42 2.37 2.88 3.36	0.39 0.72 1.31 2.32 2.82 3.07
T	l'empero	iture C	oefficie	nts in	Per Cer	ıt.	T	Temper	ature C	oefficie	ents in .	Per Cer	it.
v	0-1	5° 15-	25° 25	-35°	35-50°	50–65°	v	0-1	5° 15-	-25° 2	5-35°	35-50°	50-65°
3: 12: 51: 102- 204:	$egin{array}{c c} 8 & 2.1 \ 2.2 \ 4 & 2.2 \ \end{array}$	07 1. 4 1. 23 1. 22 1.	.41 .49 .58 .63	1.00 1.06 1.15 1.25 1.33 1.36	0.85 0.89 0.97 1.01 1.13 1.18	0.44 0.46 0.61 0.77 0.79 0.90	3 12 51 102 204	$egin{array}{c cccc} 8 & 2.3 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	33 1 38 1 36 1 35 1	.74 .72 .75	1.30 1.31 1.34 1.34 1.28 1.28	0.96 0.94 0.96 1.01 1.02 1.07	0.72 0.76 0.77 0.85 0.87 0.83

]	Isopro	PYLM	ALONI	c Ac	ID (SP	.).	1	Oipro:	PYLMA	LONIC	Acii	o (Sp.).
	Λ	Iolecule	ar Con	ductivit	y.			Λ	Iolecule	ar Cond	luctivit	y.	
v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
		$98.65 \\ 161.6 \\ 197.0$	117.00 192.95 234.00	$0132.3 \ 5217.6 \ 0264.4 \ $	$egin{array}{c} 4151.88 \ 2248.81 \ 0307.7 \end{array}$	91.73 3168.00 278.36 343.80 402.50	32 128 512 1204 2048	$152.25 \\ 192.10$	135.09 204.36 258.80 272.90 281.11	234.92 300.65 317.78	261 . 75 339 . 30 359 . 10	5 297 . 53 0 386 . 50 0 417 . 00	1430.81 1468.00
	P	ercenta'	ge Dis	sociati	on.			P	ercenta'	ge Diss	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
32 18.14 18.29 18.56 18.50 18.11 17.21 32 47.1 128 32.69 33.00 33.45 33.26 32.73 31.52 128 69.6 512 53.70 54.04 55.15 54.69 53.62 52.23 512 87.8 1024 65.24 65.89 66.89 66.44 66.31 64.50 1024 93.0 2048 75.79 76.59 77.80 77.30 75.94 75.51 2048 95.7										44.70 67.95 86.97 91.92 95.15	43.35 66.60 86.35 91.41 94.93	64.96 84.40 91.06 94.89	$82.77 \\ 90.00$
	Diss	ociatio	n Cons	tants >	< 10⁴.			Diss	ociatio	n Consi	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
32 128 512 1024 2048	12.5 12.4 12.2 12.0 11.6	12.8 12.7 12.4 12.4 12.2	13.2 13.1 13.2 13.2 13.3	13.1 12.9 12.9 12.8 12.9	12.5 12.5 12.1 12.5 12.5	11.2 11.3 11.2 11.4 11.3	32 128 512 1024 2048	132.0 125.0 124.0 122.0 105.0	121.0 121.0 122.0 111.0 93.0	113.0 113.0 113.0 102.0 91.0	104.0 104.0 106.0 95.0 90.0	90 89 90 90	81 78 79 78
Гетре	erature	Coeffici	ents in	Condu	ctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units.
v	0-15	5° 15-	25° 25	5-35° 3	35-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°
3 12 51 120 204	$egin{array}{c c c} 8 & 1.7 \ 2 & 2.8 \ 4 & 3.5 \ \end{array}$	$egin{array}{c cccc} 76 & 1.86 & 3.$	83 14 70	0.87 1.53 2.47 3.04 3.77	0.69 1.30 2.08 2.89 3.27	0.51 1.07 1.97 2.41 3.03	31 122 511 1024 204	$egin{array}{c cccc} 8 & 3.4 \ 2 & 4.4 \ 4 & 4.6 \ \end{array}$	47 3 45 4 63 4	$ \begin{array}{c c c} 06 & 2 \\ 18 & 3 \\ 49 & 4 \end{array} $.58 2.68 3.86 4.14 4.41	2.39 3.15 3.86 4.11	1.78 2.95 3.40 3.75
7	Cempero	iture C	oefficie	nts in 1	Per Cen	et.	T	'empero	ature C	oefficier	nts in I	Per Cen	et.
v	0-18	5° 15-	25° 25	5–35° 3	35–50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°
3 12 51 102 204	$egin{array}{c cccc} 8 & 2.4 \\ 2 & 2.4 \\ 4 & 2.4 \\ \end{array}$	13 1. 11 1. 15 1.	.86 .88 .88	1.34 1.31 1.28 1.30 1.38	0.94 0.98 0.96 0.92 1.06	0.61 0.71 0.79 0.78 0.85	3: 12: 51: 102: 204:	$egin{array}{c cccc} 8 & 2.3 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	28 1 31 1 27 1	.49 .62 .64	1.02 1.14 1.28 1.30 1.34	0.91 0.93 1.09 1.10	0.60 0.74 0.81 0.86

Bur	YLMAI	LONIC	Acır	(No	RMAL)	(Sp.).		Benz	YLMAI	LONIC	Acid	(Sp.)	•
	A	Iolecul	ar Co	nductii	vity.			Λ	Iolecul	ar Cone	ductivit	y.	
v	μ _υ 0°	$\mu_v 15^\circ$	$\mu_v 25$	$\circ \mid \mu_v 35$	5° μ _ι 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$
32 128 512 1024 2048	37.53 68.80 113.8 140.0 163.7	$154.2 \\ 187.2$	107.3 180.9 218.3	4121.50204.50248.502400000000000000000000000000000000000	30 76.00 86 141.00 84 236.22 0 286.2 3 340.0	$156.00 \\ 264.25 \\ 320.1$	128	80.22 128.30 153.05	107.44 171.80 205.65	124.99 199.60 239.44	$140.37 \\ 225.13 \\ 269.62$	$160.03 \\ 258.98 \\ 310.79$	5 97.76 3 175.82 8 285.80 9 345.35 3 395.32
	P	ercenta	ge Di	ssociat	ion.			P	ercenta	ge Diss	sociatio	n.	
v	a0°	al5°	a25°	α35	° a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	17.11 31.36 51.88 63.82 74.62	17.09 31.08 52.08 63.22 73.89	$ \begin{array}{c} 31.00 \\ 52.2 \\ 63.00 \end{array} $	$\begin{bmatrix} 30.9 \\ 52.0 \\ 62.9 \end{bmatrix}$	$\begin{vmatrix} 30.33 \\ 00 & 50.82 \\ 6 & 61.57 \end{vmatrix}$	$\begin{vmatrix} 29.21 \\ 49.48 \\ 60.00 \end{vmatrix}$	32 128 512 1024 2048	20.57 36.63 58.58 69.88 81.16	69:56	20.19 36.16 57.74 69.26 79.16	$35.70 \\ 57.24 \\ 68.57$	$55.81 \\ 66.98$	$\begin{vmatrix} 32.98 \\ 53.62 \\ 64.79 \end{vmatrix}$
	Diss	ociatio	n Con	stants	× 104.			Diss	ociation	n Const	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
32 128 512 1024 2048	11.0 11.2 10.9 11.0 10.7	11.0 11.0 11.0 10.6 10.2	10.8 10.9 11.1 10.5 10.0	10.8 11.0 10.4	$ \begin{array}{c cccc} 8 & 10.3 \\ 10.2 \\ 4 & 9.6 \end{array} $	9.15 9.4 9.5 8.8 8.8	32 128 512 1024 2048	16.6 16.5 16.2 15.8 17.0	16.5 16.2 15.7 15.5 15.5	16.0 16.0 15.4 15.2 14.7	15.5 15.5 15.0 14.6 14.4	14.2 14.1 13.8 13.3 12.7	12.8 12.7 12.1 11.7 10.4
Temp	erature	Coeffic	ients 1	in Con	ductivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units.
\overline{v}	0-18	5° 15-	25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	5–50°	50-65°
128 512 102 2048	$egin{array}{c c} 8 & 1.5 \ 2.6 \ 4 & 3.1 \ \end{array}$	55 1 39 2 15 3	.81 .53 .67 .11 .66	0.78 1.45 2.39 2.97 3.59	$ \begin{array}{c c} 0.65 \\ 1.28 \\ 2.09 \\ 2.55 \\ 3.25 \end{array} $	0.53 1.00 1.87 2.26 2.84	3 12 51 102 204	$egin{array}{c c c} 8 & 1.8 \ 2 & 2.9 \ 4 & 3.8 \ \end{array}$	$ \begin{vmatrix} 31 & 1 \\ 00 & 2 \\ 50 & 3 \end{vmatrix} $	75 1 78 2 38 3	0.85 1.54 2.55 3.02 3.64	0.72 1.31 2.26 2.75 3.19	0.57 1.05 1.79 2.30 2.49
Т	'empera	ature C	oeffici	ents in	Per Cen	et.	7	'empero	iture C	oefficier	nts in F	Per Cer	nt.
v	0-15	5° 15-	25° 2	5–35°	35-50°	50-65°	v	0-13	5° 15-	25° 25	-35° 3	5-50°	50-65°
32 128 512 1024 2048	$egin{array}{c c} 3 & 2.2 \ 2.3 \ 4 & 2.2 \ \end{array}$	$egin{array}{c cccc} 25 & 1. \\ 36 & 1. \\ 25 & 1. \\ \end{array}$	60 66 73 66 67	1.32 1.35 1.32 1.36 1.40	0.98 1.04 1.02 1.02 1.11	0.69 0.71 0.79 0.79 0.83	3: 12: 51: 102: 204:	$egin{array}{c c} 8 & 2.2 \ 2.2 \ 4 & 2.2 \ \end{array}$	20 1. 29 1. 29 1.	57 1 61 1 64 1	22 23 27 26 32	0.91 0.93 1.00 1.02 1.04	0.65 0.66 0.69 0.74 0.69

	ALLY	YLMAL	ONIC	Acid	(Sp.).			Suc	CINIC	Acid (WT. A	ND C.)	
	1	Molecu	lar Con	ductivi	ty.				Mole	cular Co	nductive	ity.	
\overline{v}	μ _v 0°	$\mu_{\nu}15^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 5.7$	° µ _v 25°	$\mu_v 35$	° µ _v 50°	$\mu_v 65^{\circ}$
1024	45.62	61.58 109.08 176.28 214.00	71.47 126.33 204.36 248.67	80.30 142.15 231.00 281.00	92.02 164.78 264.51 322.75	358.28	128 512 1024		$ \begin{array}{c c} 40.59 \\ 55.91 \end{array} $	16.01 31.24 59.34 81.31	18.30	$egin{array}{c cccc} 3 & 21.94 \ 0 & 42.64 \ 7 & 82.36 \ \end{array}$	24.71 48.07
	F	ercente	age Dis	sociati	on.				Perce	ntage Di	ssociati	on.	
v	α0°	al5°	a25°	a35°	a50°	α65°	v	a0°	a5.7°	α25°	a35°	α50°	a65°
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											3 4.64 4 9.03 6 17.43 1 23.26	4.58 8.91 16.90 23.25	
	Dis	sociati	on Con	stants)	× 10 ⁴ .			L	dissocia	tion Con	stants)	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	5.7°	25°	35°	50°	65°
8 32 128 512 1024	16.8 16.7 16.4 16.5	16.6 16.6 16.3 16.5	16.2 16.2 15.8 15.9	15.6 15.7 15.3 15.4	15.3 15.0 14.9 14.4 14.9	13.8 13.7 13.5 12.8 13.1	8 32 128 512 1024 2048	0.556 0.56 0.56 0.57	$egin{array}{cccc} 6 & 0.600 \\ 9 & 0.623 \\ 2 & 0.613 \\ 2 & 0.629 \\ \end{array}$	$ \begin{array}{c cccc} 0 & 0.666 \\ 0.664 \\ 0.655 \\ 0.665 \end{array} $	$ \begin{array}{c c} 0.67 \\ 0.67 \\ 0.65 \\ 0.66 \end{array} $	$ \begin{array}{c c} 3 & 0.705 \\ 0 & 0.701 \\ 9 & 0.719 \end{array} $	0.687 0.681 0.671 0.688
Tem	perature	e Coeffi	cients i	n Cond	uctivity	Units.	Tem	perati	ıre Coe	ficients i	in Cond	uctivity	Units.
v	0-15	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-	-5.7° 5	5.7-25°	25-35°	35-50°	50–65°
32 128 512 1024 2048	$egin{array}{c c} 3 & 1.8 \\ 2 & 3.0 \\ 4 & 3.6 \\ \end{array}$	06 0.88 1.05 2.67 3.67	99 0 72 1 81 2 47 3	0.45 0.88 1.58 2.66 3.23 3.64	0.44 0.78 1.51 2.23 2.78 2.98	0.31 0.61 1.12 1.92 2.37 2.86	1:	32 28 12 24	0.14 0.28 0.55 1.02 1.41 1.87	0.14 0.27 0.51 0.97 1.32 1.78	0.12 0.24 0.46 0.85 1.16 1.52	0.12 0.24 0.46 0.90 1.13 1.40	0.09 0.18 0.36 0.59 1.03 1.13
T	'empera	ture C	oefficier	nts in F	Per Cen	t.		Ten	peratu	re Coeffic	cients ir	Per Cer	nt.
v	0-15	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-	-5.7° 5	.7–25°	25-35°	35-50°	50-65°
512 1024 2048	$egin{array}{c ccc} 2 & 2.3 \\ 3 & 2.3 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	$egin{array}{c cccc} 3 & 1. \\ 3 & 1. \\ 3 & 1. \\ 1 & 1. \end{array}$	60 1 58 1 59 1 62 1	20 23 25 30 30	1.05 0.98 1.06 0.97 0.99 0.95	0.63 0.66 0.68 0.72 0.73 0.79	1:	32 28 12 24	3.07 3.03 2.99 2.95 2.94 2.90	2.57 2.56 2.40 2.39 2.36 2.36	1.52 1.47 1.46 1.44 1.42 1.39	1.30 1.31 1.29 1.33 1.21 1.12	0.84 0.84 0.85 0.71 0.94 0.77

N	Monoe	ROMS	UCCIN	ic Ac	ID (SP	.).		Dibro	OMSUC	CINIC	Acid	(Sp.)	
	Λ	Iolecul	ar Con	ductivii	ty.			Λ	Iolecule	ar Cone	ductivi	ty.	
v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	μ_v65°
128 512 1024 2048	156.00	252.44	246.72 293.74				1024		501.79	367.56 497.38 571.44	399.6 546.4 634.9	8448.5' 8614.9' 707.1	7 509 . 83 7 685 . 93 8 786 . 10
	P	ercenta'	ge Dis	sociatio	n.			P	ercenta	ge Diss	sociatio	on.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65°
128 512 1024 2048	45.66 70.20 85.25 93.77	45.02 70.40 83.55 93.67	44.67 69.66 82.94 92.76				128 512 1024 2048						
	Diss	ociatio	n Cons	tants ×	< 10 ⁴ .			Dis	sociatio	n Cons	tants)	× 10 ⁴ .	١.
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	30.0 32.3 48.1 68.9	28.8 32.7 41.4 67.7	28.2 31.2 39.4 58.0				128 512 1024 2048						
Temp	erature	Coeffic	ients in	a Condu	uctivity	Units.	Temp	erature	Coeffici	ients in	Cond	uctivity	Units.
v	0-1	5° 15-	25° 25	-35° 3	35-50°	50-65°	v	0-1	5° 15–	25° 25	-35° 3	35-50°	50-65°
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.21 60 13				3: 12: 51: 102: 204:	$egin{array}{c cccc} 8 & 4.8 \ 2 & 6.6 \ 4 & 8.0 \ \end{array}$	33 4. 32 5. 31 6.	07 3 99 4 96 6	3.21 3.21 3.91 3.35 7.39	2.03 3.26 4.56 4.81 5.82	3.28 4.08 4.73 5.26 5.82
T	l'empera	iture Co	oefficier	nts in I	Per Cen	t.	T	'empera	ture Co	efficien	its in I	Per Cen	nt.
v	0-15	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-15	5° 15-5	25° 25	-35° 3	35-50°	50–65°
12 51 102 204	$\begin{array}{c cccc} 2 & 2.3 \\ 4 & 2.2 \end{array}$	$\begin{bmatrix} 32 & 1. \\ 22 & 1. \end{bmatrix}$	60 62 60 61				31 128 511 1024 2048	$egin{array}{c cccc} 8 & 1.8 \ 2 & 1.9 \ 4 & 2.1 \ \end{array}$	39 1. 05 1. 0 1.	24 0 34 0 39 1	0.71 0.87 0.98 .11 .15	0.77 0.82 0.83 0.76 0.83	1.09 0.91 0.77 0.74 0.73

^{*}Decomposed at higher temperatures.

Py	ROTA	RTARI	с Ас	EID (W	r. AND	Ѕм.).		L-7	Γarta	RIC A	CID (W	7м.).	
		Molec	ular C	onductii	rity.				Molect	ular Co	nductivii	y.	
\overline{v}	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 2$	5° μ _ε 35	$5^{\circ} \mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	μ _v 0°	$\mu_v 15^{\circ}$	$\mu_v 25^\circ$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65^\circ$
$128 \\ 512 \\ 1024$	21.08 40.45 54.18	7.150 14.41 27.68 53.06 71.31 96.00	9.0 18. 35.0 67.0 89.1 120.3	$egin{array}{c c} 00 & 40.0 \ 02 & 76.0 \ 73 & 102.0 \ \end{array}$	$egin{array}{c c} 80 & 24.30 \\ 00 & 46.80 \\ 56 & 86.64 \\ 157.90 \\ \hline \end{array}$	52.92 52.92 4 98.14	$ \begin{array}{r} 32 \\ 128 \\ 512 \\ 1024 \end{array} $	15.64 34.18 62.81 109.3 136.0 171.7	49.03				90.80 165.4 280.7 348.9 434.4
		Percen	tage I	Dissociat	ion.				Percen	tage Di	ssociatio	on.	
v	an°	a12°	a25	5° α35	° a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	2.44 4.95 9.54 18.30 24.51 33.03	2.46 4.97 9.55 18.30 24.60 33.11	5. 10. 19. 25.	$\begin{array}{c cccc} 21 & 19.2 \\ 71 & 25.7 \end{array}$	24 5.20 08 10.00 29 18.51 79	5.11 9.92 18.41	8 32 128 512 1024 2048	7.08 15.47 28.42 49.46 61.54 77.69	$\begin{vmatrix} 30.16 \\ 52.48 \end{vmatrix}$	16.78 30.64 53.46 65.5	$egin{array}{c c} 8 & 16.91 \\ 8 & 30.88 \\ 0 & 53.25 \\ 4 & 65.40 \\ \hline \end{array}$	17.18 30.96 53.03 65.71	$\begin{vmatrix} 30.92 \\ 52.47 \\ 65.23 \end{vmatrix}$
	Dis	ssociati	on Co	onstants	\times 10 ⁴ .			Dis	ssociati	on Con	stants ×	(104.	
v	0°	12°	25	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.77 0.81 0.79 0.80 0.78 0.80	0.78 0.81 0.79 0.80 0.78 0.80	0.8 0.8 0.8 0.8 0.8	89 0.90 87 0.88 89 0.90 87 0.88	$ \begin{array}{c c} 0 & 0.89 \\ 8 & 0.86 \\ 0 & 0.82 \\ 8 & 0.83 \end{array} $	0.85 0.85 0.85 0.81 0.79	8 32 128 512 1024 2048	6.7 8.9 8.8 9.5 9.6 13.2	7.7 10.1 10.2 11.3 11.3 16.4	8.0 10.6 10.6 12.0 12.2 17.6	8.2 10.8 10.8 11.8 12.1 17.4	11.1 10.8 11.7 12.3 18.8	11.1 10.8 11.3 11.9 17.1
Tem	peratur	e Coeff	icients	s in Con	ductivity	Units.	Tem	peratur	e Coeff	icients 1	in Condu	ıctivity	Units.
v	0-	12° 12	2-25°	25-35°	35-50°	50-65°	v	0-	15° 15	5-25° 2	25–35° 3	35–50°	50–65°
1:	$egin{array}{c c} 32 & 0 \ 28 & 0 \ 12 & 1 \ 24 & 1 \ \end{array}$. 29 . 56 . 05 . 43	0.15 0.29 0.56 1.07 1.42 1.87	0.14 0.27 0.50 0.95 1.27 1.74	0.11 0.24 0.45 0.67	0.11 0.29 0.38 0.76	1:	$egin{array}{c c} 32 & 0 \\ 28 & 1 \\ 12 & 3 \\ 24 & 3 \\ \end{array}$.99 .89 .17 .73	0.43 0.97 1.73 3.01 3.74 4.44	0.42 0.89 1.61 2.61 3.22 4.09	0.86 1.45 2.40 3.12 4.08	0.68 1.34 2.12 2.70 3.18
	Tempe	rature	Coeffic	cients in	Per Cer	nt.		Temper	rature	Coeffici	ents in I	Per Cen	t.
v	0-:	12° 12	2-25°	25-35°	35-50°	50-65°	v	0-	15° 15	5–25° 2	25–35° 3	5-50°	50-65°
1:	32 2 28 2 12 2 24 2	.64 .61 .60 .63	2.04 1.99 2.03 2.02 1.99 1.95	1.49 1.47 1.43 1.42 1.42 1.45	1.06 1.15 1.13 0.88	0.82 0.79 0.82 0.88	1:	$egin{array}{c cccc} 32 & 2 & 2 & 3 \\ 28 & 3 & 2 & 2 \\ 24 & 2 & 2 \\ \end{array}$.94 .00 .90 .75	1.93 1.98 1.92 1.92 1.95 1.84	1.55 1.52 1.47 1.40 1.40 1.40	1.27 1.17 1.13 1.19 1.26	0.84 0.92 0.85 0.88 0.82

]	RACEN	ис А	CID (V	VT. A	ND SM	.).	,	Гніор	IGLYC	olic A	Acid ((Wм.)	•
	N	I olecul	ar Con	ductivi	ty.			Л	Iolecul	ar Cone	luctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\rho \mid \mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	μ _v 25°	μ_v35°	μ _υ 50°	$\mu_v 65^\circ$
1024	18.02 34.60 63.24 110.6 139.0 175.3	85.15 147.8 183.7	59.65 108.2 187.0 230.0	69.0 124.7 215.1 264.3	$377.91 \\ 141.44 \\ 243.91$	87.21 159.40 271.34 336.09	8 32 128 512 1024 2048	15.70 28.86 52.79 93.31 119.93 152.20	39.38 72.42 127.47 164.00	46.27 84.80 148.93 191.30	52.18 96.00 169.03 216.13	249.8°	66.48 122.5 214.7 278.9
	P	ercenta	ge Dis	sociati	on.			P	ercenta	ge Diss	sociatio	n.	
v	a0°	a12°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	8.15 15.66 28.62 50.03 62.90 79.30	8.51 16.38 29.77 51.68 64.22 80.93	8.85 17.04 30.91 53.42 65.70 82.96	9.04 17.34 31.32 54.04 66.40 83.85	1 16.64 2 30.21 4 52.09 64.7	8.39 16.30 29.61 50.72 62.83 77.53	8 32 128 512 1024 2048	7.09 13.03 23.83 42.12 54.14 68.70	7.13 13.11 24.12 42.45 34.61 69.06	7.12 13.17 24.14 42.39 54.46 69.10	7.02 13.01 23.94 42.15 53.90 68.76	$\begin{vmatrix} 12.88 \\ 23.58 \\ 41.40 \\ 53.06 \end{vmatrix}$	12.37 22.79 39.94 51.88
	Diss	ociatio	n Cons	tants >	× 10 ⁴ .			Diss	ociatio	n Const	tants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	9.1 9.1 9.0 9.8 10.4 18.8	9.9 10.0 9.9 10.8 11.3 16.8	10.8 10.9 10.8 12.0 12.3 19.7	11.2 11.3 11.2 12.4 12.3 21.3	9.96 10.36	9.91 9.63 10.19	8 32 128 512 1024 2048	6.77 6.10 5.83 5.99 6.24 7.36	6.85 6.18 5.99 6.11 6.33 7.53	6.82 6.24 6.00 6.09 6.36 7.54	6.63 6.08 5.89 6.00 6.16 7.39	6.39 5.95 5.68 5.71 5.86 6.86	5.90 5.46 5.26 5.19 4.52 6.29
Tempe	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients in	Condi	uctivity	Units.
v	0-1	2° 12-	25° 25	-35°	35–50°	50-65°	v	0-1	5° 15-	25° 25	-35° 3	35–50°	50-65°
32 128 512 102 2048	$egin{array}{c cccc} 8 & 1.8 \ 2 & 3.4 \ 3.7 \ \end{array}$	02 0 83 1 10 3 73 3	.99 .77 .02 .56	0.50 0.95 1.65 2.81 3.43 4.34	0.27 0.60 1.19 1.92 2.58 2.77	$\begin{array}{c} 0.33 \\ 0.62 \\ 1.20 \\ 1.83 \\ 2.21 \\ 2.62 \end{array}$	3 12 51 102 204	$egin{array}{c cccc} 8 & 1.3 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	70 0 31 1 28 2 94 2	.69 0 .24 1 .15 2 .73 2	0.32 0.59 1.12 2.01 2.48 3.31	0.29 0.57 1.00 1.67 2.24 2.82	0.21 0.39 0.77 1.32 1.94 2.49
T	empero	ature C	oefficie:	nts in	Per Cen	ıt.	T	"empero	ature C	oefficier	nts in I	Per Cer	nt.
v	0-1	2° 12-	·25° 25	-35°	35–50°	50–65°	v	0-1	5° 15-	·25° 25	-35° 3	35-50°	50-65°
31 128 511 1024 2048	$egin{array}{c cccc} 8 & 2.3 \ 2 & 2.3 \ 4 & 2.3 \ \end{array}$	93 1 89 2 80 2 68 2	.10 .08 .04 .94	1.62 1.59 1.53 1.50 1.49 1.50	0.75 0.87 0.95 0.89 0.98 0.83	0.82 0.80 0.85 0.75 0.73 0.70	3 12 51 102 204	$egin{array}{c cccc} 8 & 2.4 \ 2 & 2.4 \ 4 & 2.4 \ \end{array}$	43 1 48 1 44 1 45 1	.75 1 .71 1 .68 1 .67 1	1.26 1.28 1.32 1.35 1.30 1.36	1.03 1.09 1.04 0.99 1.04 1.03	0.65 0.64 0.69 0.68 0.78

^{*}Interpolated values.

	Tric	ARBA	LLYLI	c Acı	D (W	Vм.).			Су	ANURI	с Асі	D (W	м.).	
		Mole	cular C	onducti	ivity.]	Molecul	ar Cond	luctivit	y.	-
v	$\mu_v 0^{\circ}$	μ_v	$15^{\circ} \mu_v 2$	$5^{\circ} \mid \mu_v 3$	35° μ	ι _ν 50°	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	μ _v 15°	$\mu_v 25^\circ$	μ_v35°	μ _v 50°	$\mu_v 65^\circ$
8 32 128 512 1024 2048	78.7	9 23 2 45 5 83 9 110	.73 14 .41 28 .13 53 .65 99 .53 131 .90 170	$\begin{array}{ccc} 02 & 32 \\ 98 & 62 \\ 99 & 115 \\ 67 & 152 \end{array}$. 38 3 . 28 7 . 38 13 . 40 18	30.20	203.10	128 512 1024 2048				1.46 2.78 3.52 4.67		
		Perce	entage L	Dissocio	ition.				F	Percente	age Diss	sociatio	n.	
v	a0°	From graph.		a25°	α35°	a50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	3.76 7.45 14.47 26.99 35.83 46.85	7.89 15.2 28.19 37.2	9 7.88 1 15.18 9 28.14 5 37.18		15 . 69 29 . 06 38 . 39	8.1 15.75 29.00 38.50	1 8.03 5 15.41 0 28.07 0 37.96	128 512 1024 2048				0.36 0.69 0.87 1.15		
	Dis	socia	tion Co	nstants	× 10	04.			Dis	sociatio	n Consi	tants ×	(104.	<u>'</u>
v	0°	From graph.	From equation.	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
8 32 128 512 1024 2048	1.84 1.87 1.91 1.95 1.95 2.02	2.03 2.11 2.13 2.16 2.16 2.25	$ \begin{array}{c c} 2.11 \\ 2.12 \\ 2.15 \\ 2.15 \end{array} $	2.13 2.21 2.23 2.27 2.25 2.32	2.18 2.27 2.28 2.33 2.34 2.38	2.21 2.24 2.30 2.31 2.35 2.30	$egin{array}{cccc} 2.19 \\ 2.19 \\ 2.14 \\ 2.27 \\ \end{array}$	8 32 128 512 1024 2048						
Тетр	oeratur	e Coe	efficients	in Con	nduct	ivity l	Units.	Tempe	erature	Coeffic	cients in	Condi	ıctivity	Units.
v	0-	15°	15–25°	25–35°	35-	-50° 8	50–65°	v	0-1	5° 15-	-25° 25	5–35° 3	85-50°	50-65°
12	$egin{array}{c cccc} 32 & 0 \ 28 & 0 \ 12 & 1 \ 24 & 2 \ \end{array}$.23 .47 .89 .63 .12 .73	0.23 0.46 0.88 1.63 2.11 2.70	0.22 0.44 0.83 1.54 2.06 2.58	0.0.1.1	.20 .35 .76 .35 .85 .28	0.19 0.33 0.58 0.97 1.22 2.05	3: 12: 51: 102- 204:	$\begin{bmatrix} 8 \\ 2 \\ \dots \\ 4 \end{bmatrix} \dots$					
7	Гетрег	ature	: Coeffic	ients ir	ı Per	Cent		$T\epsilon$	empera	ture Co	pefficien	ts in P	er Cent	
v	0-	·15°	15-25°	25-35	35-	50° 8	50–65°	v	0-1	5° 15	-25° 25	5-35° 3	35-50°	50–65°
12	$egin{array}{c cccc} 32 & 2 & 2 \ 28 & 2 \ 12 & 2 \ 24 & 2 \ \end{array}$.79 .86 .79 .74 .68	1.97 1.97 1.96 1.95 1.91 1.87	1.55 1.56 1.54 1.54 1.57	1 1 1 1 1 1	.23 .08 .22 .17 .21 .16	0.97 0.88 0.79 0.71 0.68 0.89	31 122 511 102- 2043	$\begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix} \dots$					

 $^{{}^{*}}K_{15} = [219.9 \times (5.22 \times 15) - (0.00438 \times 225)] = 297.2.$

BEN	ZILIC	or D		ENYLGI M.).	YCOLIC	c Acid	H	IPPUI	RIC .	ACID	(WT	. AN	D SM	.).
		Molecu	lar (Conduct	ivity.			1	Molec	ular C	onduc	ctivit	у.	
v	$\mu_v 0^{\circ}$	μ _v 12°	μ_v 2	25° $\mu_v 35$	5° μ _v 50°	$\rho \mid \mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 1$	2° μ _v	25° μ	$\iota_v 35^\circ$	μ _ν 50°	$\mu_v 65^\circ$
128 512 1024 2048	63.8 106.4 133.6 152.3	81.7 138.3 169.8 193.0		$\begin{array}{c cccc} 0.5 & 192 \\ 3.4 & 237 \end{array}$	$\begin{array}{c c} 4 & 220.6 \\ 1 & 266.5 \end{array}$	5 293.0	128 512 1024 2048	33.90 61.60 81.10 103.0	$\begin{array}{c} 80. \\ 105. \end{array}$		$\begin{array}{c c} .2 & 11 \\ .1 & 14 \end{array}$	13.5 17.2	131.23 169.13	77.97 3184.77 5186.18 0242.15
	F	ercenta	ige I	Dissocia	ion.			1	Percer	ntage I	Dissoc	ciatio	n.	,
v	a0°	al2°	a 2	5° α35	° a50°	a65°	v	a0°	α12	2° a2	25° 6	235°	a50°	a65°
128 512 1024 2048	29.17 48.64 61.08 69.63	29.08 49.24 60.44 68.71	29. 48. 60. 67.	60 47.5 46 60.2	$ \begin{array}{c c} \hline{57} & 48.01 \\ \hline{20} & 58.11 \\ \end{array} $	56.36	128 512 1024 2048	15.51 28.16 37.03 47.03	28. 37.	76 29 79 38	$\begin{array}{c c} .04 & 2 \\ .00 & 3 \end{array}$	5.85 8.96 7.55 7.42	$\begin{vmatrix} 29.38 \\ 37.87 \end{vmatrix}$	$\begin{vmatrix} 28.97 \\ 37.25 \end{vmatrix}$
	Diss	ociatio	n Co	onstants	\times 104.			Dis	socia	tion C	onstar	ıts ×	(104.	
v	0°	12°	25	5° 35°	50°	65°	v	0°	12	2	5°	35°	50°	65°
128 512 1024 2048	9.38 9.00 9.36 7.80	9.10 9.32 9.02 7.37	9.0 8.9 9.0 6.9	$egin{array}{c c} 97 & 8.4 \ 02 & 8.8 \ \end{array}$	$ \begin{array}{c c} 3 & 8.66 \\ 9 & 7.87 \end{array} $	7.77 7.09 6.65	128 512 1024 2048	2.22 2.16 2.13 2.04	2.3 2.2 2.2 2.1	$\begin{bmatrix} 7 & 2. \\ 4 & 2. \end{bmatrix}$	$\begin{array}{c c} 32 & 2 \\ 28 & 2 \end{array}$	2.33 2.31 2.26 2.09	2.33 2.38 2.25 2.33	2.25 2.30 2.16 2.23
Temp	erature	Coeffic	ient	s in Con	ductivity	Units.	Temp	erature	Coe	ficient	s in C	Condi	ctivity	Units.
v	0-1	2° 12-	-25°	25–35°	35-50°	50-65°	v	0-1	2°	2-25°	25-3	35° 3	35-50°	50-65°
12 51 102 204	$\begin{array}{c cccc} 2 & 2. \\ 4 & 3. \end{array}$	$egin{array}{c c} 66 & 2 \ 02 & 2 \end{array}$.50 .24 .97 .13	1.28 2.29 2.87	1.88 1.96 2.63	1.29 1.77 1.85	12 51 102 204	$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$	87 57 06 59	0.83 1.52 1.95 2.44	0.3 1.5 1.6 2.6	25 61	0.57 1.18 1.46 2.27	0.48 0.90 1.13 1.48
T	emper	ature C	'oe,ffi	cients in	Per Ce	nt.	7	"emper	ature	Coeffi	icients	s in I	Per Cer	nt.
v	0-1	2° 12-	-25°	25-35°	35–50°	50–65°	v	0-1	12°	2-25°	25-3	35° 3	35–50°	50-65°
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 50 & 1 \\ 26 & 1 \end{bmatrix}$.84 .62 .75 .62	1.26 1.35 1.23	0.98 0.83 0.93	0.58 0.66 0.58	12 51 102 204	$\begin{array}{c cccc} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 $	57 55 54 52	1.86 1.84 1.84 1.82	1.5 1.5 1.5 1.5	25 23	0.92 1.04 0.99 1.22	0.67 0.68 0.66 0.67

		URIC	ACID	(Wм	.).			Сіт	RIC ACI	т р (W	r. AND	Sм.)	•
	1	Molecui	lar Con	ductivii	ty.			-	Molecule	ar Cond	luctivity	<i>i</i> .	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	μ,18.1°	$\mu_v 25^\circ$	μ _v 35°	μ _v 50°	$\mu_v 65^{\circ}$
8 32 128 512 1024 2048	8.34	14.85	18.92	22.77				15.64 30.27 55.94 97.22 127.3 153.2	24.34 46.74 86.40 148.3 193.3 229.3	52.76		75.80 136.44 234.37 305.21	43.77 86.99 155.61 267.22 338.70 410.66
	F	Percente	age Dis	sociatio	on.				Percenta	ge Diss	ociation	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a10°	a18.1°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	3.77	4.97	5.41	5.71	*	*	8 32 128 512 1024 2048	7.14 13.82 25.55 44.40 58.13 69.97	7.82 15.03 27.77 47.46 62.16 73.72	15.30 28.20 48.59 63.23	15.67 28.74 49.76 64.25	8.16 16.31 29.37 50.45 65.70 77.02	8.28 16.46 29.44 50.56 64.08 77.70
	Dis	sociatio	n Cons	tants >	< 10⁴.			Di	ssociatio	n Const	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	18.1°	25°	35°	50°	65°
8 32 128 512 1024 2048	0.0072	0.0127	0.0151	0.0069			8 32 128 512 1024 2048	6.87 6.92 6.85 6.92 7.88 7.96	8.30 8.30 8.34 8.38 9.96 10.1	8.63 8.63 8.66 8.97 10.6 10.8	9.10 9.10 9.05 9.63 11.3 11.7	$9.55 \ 10.36 \ 12.28$	9.34 10.13 9.59 10.09 11.16 13.21
Temp	perature	e Coeffi	cients ir	n Condu	uctivity	Units.	Tem	peratu	re Coeffic	ients ir	c Condu	ctivity	Units.
v	0-1	5° 15-	25° 25	-35° 3	5-50°	50-65°	v	0-18	8.1° 18.	1-25° 2	5-35° 3	35–50°	50–65°
32 128 512 1024 2048	2 3 2 4	43 0	.40	0.38			3 12 51 102 204	$\begin{bmatrix} 2 & 0 \\ 8 & 1 \\ 2 & 2 \\ 4 & 3 \end{bmatrix}$.91 .68 .82 .64	0.87 1.58 2.80 3.59	0.46 0.87 1.54 2.66 3.38 3.99	0.39 0.96 1.58 2.62 3.55 3.99	0.39 0.75 1.28 3.28 4.35 5.29
7	Temper	ature (Coefficie	ents in	Per Ce	nt.		Tempe	erature C	oefficie	nts in P	er Cen	t.
v	0-1	5° 15-	-25° 25	-35° 3	35-50°	50-65°	v	0-18	8.1° 18.	1-25° 2	5-35° 3	35-50°	50–65°
32 128 512 1024 2048	2 3 2 4	20 2		2.03			3 12 51 102 204	$egin{array}{c c} 2 & 3 \\ 8 & 3 \\ 2 & 2 \\ 4 & 2 \\ \end{array}$.00	1.87 1.83 1.87 1.86	1.66 1.64 1.58 1.58 1.55 1.55	1.22 1.56 1.40 1.34 1.41 1.34	1.02 0.98 0.93 0.93 0.95 0.95

^{*}Decomposes at higher temperatures.

P	YROMU	JCIC A	CID (WT. A	AND SI	P.).	C	ROTO	vic A	CID (V	VT. AI	ND SM	.).
	Λ	Iolecul	ar Con	ductivi	ty.			N.	I olecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	μ_v35°	μ _v 50°	$\mu_v 65^\circ$
1024	17.47 34.24 62.90 107.1 132.0 159.5	42.76 79.22 136.4 169.0	51.15 94.61 163.2 201.0	56.3 104.5 180.0 222.9	$7 62.36 \\ 116.32 \\ 199.9$	265.3	8 32 128 512 1024 2048	2.75 5.53 10.92 21.25 29.14 39.78	3.64 7.31 14.49 28.23 38.50 53.41	4.55 9.12 18.00 35.15 48.04 65.33		$ \begin{array}{r} 11.90 \\ 23.88 \\ 46.54 \\ 62.67 \end{array} $	6.56 13.13 26.20 51.73 69.54 98.12
	P	ercenta'	ge Dis	sociati	on.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	α12°	a25°	a35°	a50°	a65°	v	a0°	α12°	a25°	α35°	a50°	a65°
8 32 128 512 1024 2048	7.83 15.36 28.21 48.03 59.20 71.53	7.64 14.85 27.51 47.36 58.68 70.49	$\begin{array}{c} 7.38 \\ 14.41 \\ 26.65 \\ 45.97 \\ 56.99 \\ 69.05 \end{array}$	7.18 13.92 25.80 44.44 55.03 66.70	2 13.24 0 24.69 4 42.44 3 52.91	$ \begin{array}{r} 23.07 \\ 39.65 \\ 49.20 \end{array} $	8 32 128 512 2048 2048	1.24 2.49 4.92 9.57 13.12 17.74	1.27 2.56 5.07 9.87 13.46 18.32	1.29 2.59 5.11 10.00 13.65 18.57	1.29 2.57 5.05 9.91 13.58 18.45	$\begin{bmatrix} 2.50 \\ 5.02 \\ 9.79 \\ 13.19 \end{bmatrix}$	1.21 2.41 4.82 9.51 12.78 18.03
	Diss	ociation	n Cons	tants >	< 10⁴.			Diss	ociation	ı Consi	tants ×	104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
8 32 128 512 1024 2048	8.3 8.7 8.7 8.7 8.4 8.7	7.9 8.1 8.1 8.3 8.1 8.2	7.4 7.6 7.6 7.6 7.4 7.5	6.9 7.0 7.0 6.9 6.6 6.5	6.0 6.3 6.3 6.1 5.8 6.1	5.1 5.4 5.4 5.1 4.8 4.9	8 32 128 512 1024 2048	0.195 0.199 0.199 0.198 0.194 0.187	0.205 0.210 0.211 0.211 0.205 0.201	0.212 0.215 0.215 0.216 0.211 0.207	0.211 0.211 0.210 0.213 0.208 0.204	$0.205 \\ 0.195$	0.185 0.185 0.190 0.193 0.182 0.193
Tempe	erature	Coeffic	ients in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients in	Condu	ctivity	Units.
v	0-1	2° 12-	25° 25	-35°	35–50°	50–65°	v	0-12	2° 12-	25° 25	-35° 3	5-50°	50–65°
32 128 512 1024 2048	$ \begin{array}{c cccc} 3 & 1.3 \\ 2 & 2.4 \\ 4 & 3.0 \end{array} $	71 0. 36 1. 44 2. 08 2.	65 0 18 0 06 1 49 2	0.28 0.52 0.99 1.68 2.06 2.50	$egin{array}{c} 0.18 \\ 0.40 \\ 0.79 \\ 1.46 \\ 1.75 \\ 2.59 \\ \end{array}$	0.12 0.28 0.54 0.93 1.07 1.67	3 12 51: 102 204:	$egin{array}{c c} 8 & 0.3 \\ 2 & 0.5 \\ 4 & 0.7 \\ \hline \end{array}$	15 0 30 0 58 0 78 0	14 0 27 0 53 0 73 0	0.06 0.12 0.23 0.47 0.66 0.89	0.05 0.11 0.24 0.45 0.54 0.95	0.043 0.082 0.15 0.35 0.46 0.64
T	'empero	ature Co	oefficier	nts in .	Per Cen	at.	T	'empera	ture Co	pefficier	its in I	Per Cen	t.
v	0-13		25° 25	-35°	35-50°	50–65°	v	0-12	2° 12-	35° 25	-35° 3	5-50°	50-65°
32 128 512 1024 2048	$egin{array}{c ccc} 2 & 2.0 \ 8 & 2.1 \ 2 & 2.2 \ 4 & 2.3 \ \end{array}$	08 1. 16 1. 28 1. 31 1.	61 1 50 1 51 1 47 1	05 04 05 03 02	0.62 0.71 0.76 0.82 0.79 0.96	0.37 0.45 0.46 0.46 0.43		$\begin{array}{c cccc} 2 & 2.7 \\ 4 & 2.6 \end{array}$	39 1. 72 1. 74 1. 38 1.	91 1 86 1 89 1 91 1	1.38 1.31 1.27 1.34 1.37 1.36	0.97 1.07 1.18 1.13 0.99 1.28	0.72 0.68 0.64 0.74 0.73 0.72

1	MALEI	c Acı	W) ar	T. AN	ть Ѕм.)		I	TUMAE	RIC AC	eid (W	T. AN	D SM.).
	Л	Iolecul	ar Cor	nductiv	ity.			Λ	Molecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 25^\circ$	$\rho \mid \mu_v 35$	° µ _v 50°	μ _υ 65°	v	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 25^\circ$	μ_v35°	μ _v 50°	$\mu_v 65^{\circ}$
32 128 512 1024 2048	108.1 159.2 198.5 212.8 221.1	141.0 206.6 257.4 274.7 286.6	256.2 317.6 337.9	2 290. 3 360. 9 384.	8 230.35 7 338.46 8 422.18 6 451.57 8 457.98	378.51 477.78 514.57	32 128 512 1024 2048	35.46 65.67 114.1 141.4 176.5	86.42 149.1 184.9	58.00 107.2 184.9 228.1 281.0	$121.2 \\ 209.6 \\ 258.1$		82.75 3152.14 262.94 325.09 396.63
	P	'ercenta	ge Di	ssociat	ion.			F	Percento	ige Dis	sociatio	n.	
v	α0°	α12°	a25°	α35	α50°	a65°	v	a0°	α12°	a25°	a35°	α50°	a65°
32 128 512 1024 2048	48.48 71.50 89.00 95.06 99.10	48.78 71.50 89.06 95.06 99.17	49.72 72.56 89.97 95.72 99.79	$\begin{bmatrix} 72.3 \\ 89.7 \\ 95.6 \end{bmatrix}$	$ \begin{array}{c c} 1 & 71.25 \\ 6 & 88.88 \\ 8 & 95.06 \end{array} $	69.57 87.82 94.59	32 128 512 1024 2048	15.90 29.45 51.17 63.43 79.14	29.90 51.59 63.97	16.43 30.37 52.37 64.62 79.60	16.37 30.15 52.14 64.21 79.12	29.02 50.08 61.93	27.96 48.33 59.75
	Diss	ociatio	n Cons	stants	× 10 ⁴ .			Diss	sociatio	n Cons	tants ×	(104.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
32 128 512 1024 2048	143.0 141.0 141.0 179.0	$140.0 \\ 142.0$	154.0 150.0 158.0 209.0	148. 154.	$ \begin{array}{c cccc} 0 & 137.8 \\ 0 & 138.7 \\ 0 & 178.6 \end{array} $		32 128 512 1024 2048	9.40 9.61 10.5 10.7 14.7	9.72 9.97 10.7 11.1 14.8	10.1 10.4 11.3 11.5 15.2	10.0 10.2 11.0 11.2 14.6	9.3 9.2 9.8	8.5 8.5 8.8 8.6 9.5
Тетре	erature	Coeffic	ients i	n Cone	luctivity	Units.	Temp	erature	Coeffic	ients in	a Condu	uctivity	Units.
v	0-12	2° 12-	25° 2	5-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 25	5-35° 3	85-50°	50-65°
32 128 512 1024 2048	$ \begin{array}{c cccc} 3 & 3.9 \\ 2 & 4.8 \\ 4 & 5.1 \end{array} $	$ \begin{array}{c cccc} 05 & 3 \\ 35 & 4 \\ 44 & 4 \\ \end{array} $	65 82 63 86 05	2.34 3.45 4.32 4.67 4.85	2.10 3.18 4.09 4.46 3.81	1.80 2.67 3.70 4.20 4.28	312 511 102 204	$\begin{bmatrix} 8 & 1.2 \\ 2 & 2.4 \\ 3. \end{bmatrix}$	$ \begin{array}{c cccc} 73 & 1 \\ 92 & 2 \\ 62 & 3 \end{array} $.60 .75 .32	1.78 1.46 2.47 3.00 3.71	0.63 1.11 1.89 2.41 2.89	0.50 0.95 1.70 2.05 2.34
T	'empera	iture C	oefficie	ents in	Per Cen	t.	T	'emper	ature C	oefficie	nts in I	Per Cen	t.
v	0-12	2° 12-	25° 2	5-35°	35–50°	50-65°	v	0-1	2° 12-	25° 25	-35° 3	5-50°	50-65°
32 128 512 1024 2048	$egin{array}{c c} 2.4 \\ 2.5 \\ 4 \\ 2.4 \\ \end{array}$	8 1. 30 1. 3 1.	85 80 77	1.34 1.35 1.36 1.38 1.41	1.05 1.09 1.14 1.16 0.95	0.78 0.78 0.87 0.93 0.93	32 128 512 1024 2048	$egin{array}{c cccc} 3 & 2.0 \ 2 & 2.0 \ 4 & 2.0 \ \end{array}$	63 1 56 1 56 1	.85 1 .85 1	1.19 1.20 1.18 1.17	0.96 0.92 0.90 0.93 0.91	0.67 0.68 0.69 0.70 0.65

]	ITACO	NIC ACI	р (W	T. ANI	Sм.)).	Cı	TRACC	NIC A	CID (WT. A	ND S	и.).
		Molecula	r Cond	uctivity	/.			Ĭ.	Molecui	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 18.12^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$
32 128 512 1024 2048	13.50 26.00 49.51 66.70 87.91	20.77 39.95 74.57 99.51 129.9	$45.52 \\ 84.74 \\ 113.3$	52.21 97.11 129.8	62.17 116.70 153.97	36.60 70.76 132.59 175.02 227.02	512 1024	114.3 165.9 186.1	85.82 144.0 210.2 273.0 257.1	103.0 173.4 255.4 289.1 315.0	$\begin{vmatrix} 194.4 \\ 288.2 \\ 326.5 \end{vmatrix}$	222.88 331.96 382.98	3 142.98 3 248.18 3 377.09 3 431.52 3 475.08
		Percentag	ge Diss	ociatio	n.			1	Percente	age Dis	sociati	on.	
v	a0°	a18.12°	a25°	a35°	a50°	a65°	v	a0°	al2°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	6.10 11.75 22.38 30.14 39.72	6.57 12.64 23.60 31.49 41.11	24.15	$24.28 \\ 32.45$	24.77	$\begin{vmatrix} 13.16 \\ 24.64 \\ 32.55 \end{vmatrix}$	32 128 512 1024 2048	51.64 74.98 84.09		29.34 49.40 72.76 82.37 89.74	28.77 48.60 72.04 81.62 89.01	70.48 81.31	$\begin{vmatrix} 46.17 \\ 70.15 \\ 80.28 \end{vmatrix}$
	Di	ssociation	Const	ants ×	104.			Dis	sociatio	n Cons	tants >	< 10 ⁴ .	
v	0°	18.12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
32 128 512 1024 2048	1.24 1.23 1.26 1.27 1.28	1.45 1.43 1.43 1.42 1.40	1.53 1.51 1.50 1.50 1.49	1.55 1.53 1.52 1.52 1.47	1.57 1.56 1.59 1.54 1.52	1.55 1.55 1.57 1.53 1.50	32 128 512 1024 2048	43.6 43.1 43.9 43.4 42.6	40.7 40.5 40.8 40.5 41.0	38.1 37.7 38.0 37.6 38.3	36.3 35.9 36.2 35.4 35.3	32.45 33.20 32.86 32.79 33.88	$\begin{vmatrix} 30.93 \\ 32.19 \\ 31.91 \end{vmatrix}$
Tem	peratur	e Coeffici	ients in	Condu	ctivity	Units.	Temp	peratur	e Coeffi	cients i	n Cond	uctivity	Units.
v	0–18	.12° 18.1	2-25° 2	5–35° 3	5-50°	50–65°	v	0-1	2° 12-	25° 25	-35° 3	35–50°	50-65°
32 128 512 1024 2048	$\begin{bmatrix} 8 & 0 \\ 2 & 1 \\ 4 & 1 \end{bmatrix}$.77 0 .38 1	0.83 0 1.48 1 2.01 1	0.35 0.67 1.24 1.65 2.02	$\begin{array}{c} 0.33 \\ 0.66 \\ 1.31 \\ 1.61 \\ 2.17 \end{array}$	0.29 0.57 1.06 1.40 1.80	3 12 51 102 204	$ \begin{array}{c cccc} 8 & 2 & 3 \\ 2 & 3 & 4 \end{array} $	48 2 69 3 24 4	.26 .48 .00	1.21 2.10 3.28 3.74 4.10	0.95 1.90 2.92 3.77 4.11	0.91 1.69 3.01 3.24 3.83
	Tempe	erature Co	efficien	ets in P	er Cen	t.		Tempe	rature (Coeffici	ents in	Per Ce	ent.
v	0–18	.12° 18.1	2–25° 2	5-35° 3	5-50°	50-65°	v	0-1	2° 12-	-25° 25	-35° 3	35–50°	50-65°
3: 12: 51: 102- 204:	$\begin{bmatrix} 8 & 2 \\ 2 & 2 \\ 4 & 2 \end{bmatrix}$.97 .79 .71	2.03 1.98 2.01	1.50 1.47 1.46 1.45 1.44	1.21 1.27 1.35 1.24 1.30	0.90 0.92 0.90 0.91 0.90	3 12 51 102 204	$ \begin{array}{c cccc} 8 & 2. \\ 2 & 2. \\ 4 & 2. \end{array} $	17 1 23 1 28 1	. 57 . 65 . 69	1.18 1.21 1.28 1.29 1.30	0.83 0.97 1.02 1.15 1.15	0.70 0.75 0.90 0.84 0.91

M	ESACO	NIC A	CID	(Wt. A	.nd Si	и.).		PHEN	YLPRO	PIOLIC	с Асп	o (Sp.)	
	· A	Iolecul	ar Con	nductivi	ty.			Λ	Iolecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 25$	$\circ \mid \mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ _v 0°	μ _ν 15°	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
32 128 512 1024 2048	33.31 62.60 108.0 134.7 160.9	80.18 139.0 172.9	97.3 168.5 209.8	$0108.5 \\ 188.2$	65.94 123.0 214.1 266.1 318.3	72.66 135.5 235.3 293.35 352.7	128 256 512 1024 2048	154.79 176.08 191.44	207.96 236.63 258.04	239.19 274.45 299.84	267.59 307.85 339.21	5 255 . 63 9 301 . 25 5 349 . 73 392 . 11 1 416 . 56	327.39 375.33 422.13
	P	ercento	ige Di	ssociatio	on.			P	Percenta	ge Dis	sociatio	on.	
\overline{v}	a0°	α12°	α25°	α35°	α50°	a65°	v	a0°	a15°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	15.05 28.29 48.79 60.87 72.69	15.04 28.17 48.67 60.74 72.49	27.73 48.00	$egin{array}{c c} 2 & 27.13 \\ 0 & 47.06 \\ 7 & 58.49 \\ \hline \end{array}$	$ \begin{array}{r} 26.11 \\ 45.45 \\ 56.49 \end{array} $	25.20 43.77 54.57	128 256 512 1024 2048	59.67 69.66 79.24 86.15 90.25	58.91 69.22 78.76 85.89 89.54	57.87 68.08 78.12 85.34 89.60	76.97 84.81	64.09 74.41 83.43	50.98 60.76 69.66 78.35 83.43
	Diss	ociatio	n Con	stants >	< 10 ⁴ .			Diss	sociatio	n Cons	tants >	< 10⁴.	
v	0°	12°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
32 128 512 1024 2048	8.4 8.7 9.1 9.3 9.5	8.4 8.6 9.0 9.2 9.3	8.1 8.3 8.6 8.7 8.6	8.2 8.1	6.6 7.2 7.3 7.1 6.9	6.6 6.6 6.6 6.4 6.1	128 256 512 1024 2048	68.9 62.5 59.1 52.3 40.8	66.0 60.8 57.0 51.1 37.4	62.1 56.7 54.5 48.5 37.7	58.4 52.8 50.2 46.2 37.2	50.7 44.7 42.3 41.0 33.7	41.4 36.8 31.2 27.7 20.5
Temp	erature	Coeffic	ients 1	in Cond	uctivity	Units.	Temp	erature	Coeffic	cients in	n Cond	uctivity	Units.
v	0-1	2° 12-	-25° 2	25–35°	35–50°	50-65°	v	0-1	5° 15-	-25° 25	5–35° (35-50°	50-65°
3 12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c} 47 & 1 \ 54 & 2 \ 78 & 2 \ \end{array}$.70 .32 .27 .84 .36	0.60 1.12 1.97 2.42 2.88	0.53 0.97 1.71 2.14 2.63	0.41 0.83 1.41 1.86 2.29	12 25 51 102 204	$ \begin{array}{c cccc} 6 & 3. \\ 2 & 4. \\ 4 & 4. \end{array} $	$ \begin{array}{c cccc} 54 & 3 \\ 05 & 3 \\ 44 & 4 \end{array} $.12 .78 .08	2.39 2.84 3.34 3.94 4.31	1.89 2.24 2.77 3.53 3.91	1.27 1.53 1.71 2.00 2.20
2	$\Gamma emper$	ature C	'oe,ffici	ents in	Per Cer	nt.	T	'emper	ature C	oefficie	nts in 1	Per Cen	t.
v	0-1	2° 12-	-25° 2	25–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35°	35-50°	50-65°
3 12 51 102 204	2 2. 24 2.	$ \begin{array}{c cccc} 36 & 1 \\ 35 & 1 \\ 37 & 1 \end{array} $.63 .64 .63 .64 .63	1.16 1.15 1.16 1.15 1.15	0.91 0.90 0.91 0.92 0.94	0.67 0.68 0.66 0.68 0.72	12 25 51 102 204	$egin{array}{c cccc} 6 & 2. \\ 2 & 2. \\ 4 & 2. \\ \end{array}$	$ \begin{array}{c cccc} 24 & 1 \\ 25 & 1 \\ 32 & 1 \end{array} $.50 .59 .61	1.17 1.18 1.21 1.31 1.36	0.83 0.84 0.90 1.04 1.09	0.50 0.51 0.49 0.51 0.53

	M	ECON	ic A	CID (W	7м.).			BENZ	ZOIC .	Acid	(W	T. AN	D С.)	•
	I	Molecu	ılar Co	nductiv	ity.				Molec	ular C	Cond	uctivitį	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^{\circ}$	$\mu_v 25$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15$.8° μι	25°	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
32 128 512 1024 2048	347.8 412.8 435.9 442.1	358.6 463.2 553.6 586.8 597.3	536. 645. 686.	4 598.9 4 729.5 2 778.0	684.7 5 839.2 0 899.0	754.9	64 128 512 1024 2048	13.42 18.49 36.00 47.63 64.95	19. 26. 51. 68. 91.	93 31 30 59 33 79	2.29 1.39 9.79 9.56 3.0	35.71 67.81 90.11	40.81	45.56
	I	Percent	tage D	issociat	ion.				Percer	ntage I	Diss	ociatio	n.	
v	a0°	al5°	a25°	a35°	α50°	a65°	v	a0°	a15.	8° α	25°	a35°	α50°	α65°
32 128 512 1024 2048							64 128 512 1024 2048	6.04 8.46 16.21 21.45 29.25		$ \begin{array}{c c} 92 & 8 \\ 00 & 17 \\ 62 & 22 \end{array} $	3.35 3.94 7.02 2.67 0.20	6.34 8.92 16.94 22.52 29.92	$ \begin{array}{c c} 8.66 \\ 16.48 \\ 21.95 \end{array} $	$\begin{array}{c c} 8.48 \\ 15.42 \\ 21.12 \end{array}$
	Diss	sociati	on Cor	stants	× 10 ⁴ .			Di	ssocial	ion C	onst	ants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15.8	° 2	5°	35°	50°	65°
32 128 512 1024 2048							64 128 512 1024 2048	0.607 0.611 0.613 0.572 0.591	0.6 0.6 0.6 0.6	82 0. 79 0. 46 0.	672 686 683 649 638	0.672 0.684 0.676 0.640 0.624	$\begin{array}{c c} 0.641 \\ 0.635 \\ 0.603 \end{array}$	$\begin{bmatrix} 0.614 \\ 0.549 \\ 0.552 \end{bmatrix}$
Tem	peratur	e Coeff	icients	in Con	ductivit	y Units.	Ten	iperatu	re Coe	fficien	ts in	Condu	uctivity	Units.
v	0-1	5° 15	-25° 2	25-35°	35–50°	50-65°	v	0-1	5.8° 1	5.8-25	° 25	-35° 3	35–50°	50-65°
125 515 102 2045	$egin{array}{c cccc} 8 & 7.6 \\ 2 & 9.3 \\ 4 & 10.6 \\ \hline \end{array}$	69 7 39 9 06 9	5.42 7.32 9.18 9.94 9.28	4.86 6.25 8.41 9.18 10.26	4.19 5.72 7.31 8.07 9.49	3.32 4.68 6.77 8.59 9.08	6 12 51 102 204	$egin{array}{c c} 8 & 0 \ 2 & 0 \ 4 & 1 \ \end{array}$.36 .50 .97 .26 .67	0.35 0.49 0.92 1.22 1.60	(0.31 0.43 0.80 1.06 1.37	0.27 0.34 0.65 0.89 1.06	0.18 0.32 0.35 0.67 0.84
	Temper	ature (Coeffic	ients in	Per Ce	ent.		Тетре	rature	Coeffi	cien	ts in F	Per Cen	<i>t</i> .
v	0-18	5° 15	-25° 2	25-35°	35-50°	50-65°	v	0-18	5.8° 1	5.8–25	° 25	-35° 3	35-50°	50–65°
31 122 511 102 204	$egin{array}{c cccc} 8 & 2.5 \\ 2 & 2.5 \\ 4 & 2.5 \\ \end{array}$	21 1 27 1 36 1	58 44 65 69	1.18 1.17 1.33 1.34 1.47	0.91 0.94 1.00 1.04 1.18	0.63 0.68 0.80 0.96 0.96	12 51 102 204	$\begin{bmatrix} 8 & 2 \\ 2 & 2 \\ 4 & 2 \end{bmatrix}$.67 .66 .64 .64 .57	1.83 1.81 1.81 1.79 1.75]	1.40 1.38 1.35 1.35 1.30	1.07 0.95 0.96 0.99 0.88	0.62 0.78 0.45 0.65 0.62

o	-Снь	ORBEN	ZOIC	ACID	(Wm.)	•	o-N	ITROB	ENZOI	с Асі	ю (J.	AND I	ζr.).
	. Л	Iolecul	ar Co	nductiv	ity.			Λ	Iolecul	ar Con	ductivi	ity.	
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25$	5° μ _v 35	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	$\mu_v 0^\circ$	μ _v 15°	μ _v 25°	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
$\frac{512}{1024}$	109.00 134.81 158.72	138.40 172.70 205.64	154.0 194.0 232.9	$12167.1 \ 05211.8 \ 91256.4$	9 138.4 2 182.3 6 231.8 3 281.9 4 329.2	$\begin{vmatrix} 240.1 \\ 298.8 \end{vmatrix}$	32 128 512 1024 2048	98.15 146.9 187.5 196.3 200.8	120.5 184.9 244.1 261.7 267.4		222.6 307.8 336.9	$\begin{bmatrix} 240.8 \\ 345.9 \\ 393.5 \end{bmatrix}$	
	P	ercente	ige D	issociati	ion.			P	ercenta	ige Dis	sociati	on.	
v	a0°	al5°	α25	° a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	α65°
128 256 512 1024 2048	38.66 49.45 61.16 72.00 80.76	35.94 46.45 57.96 69.01 78.29	34.1 44.2 55.6 66.8 76.4	$egin{array}{c cccc} 22 & 42.06 \ 57 & 53.33 \ 64.5 \ \end{array}$	$\begin{bmatrix} 38.95 \\ 49.53 \\ 460.23 \end{bmatrix}$	37.97 48.16 59.94	32 128 512 1024 2048	43.1 64.4 82.2 86.1 88.1	39.6 60.8 80.3 86.1 88.0	78.4 85.0	55. 77.0 84.5	7 51.36 0 73.78 2 83.94	69.31 79.82
	Diss	sociatio	n Cor	nstants	× 10 ⁴ .			Diss	sociatio	n Cons	tants)	× 10 ⁴ .	
\overline{v}	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 256 512 1024 2048	19.0 18.9 18.8 18.1 16.6	15.8 15.7 15.6 15.0 13.8	13.3 13.7 13.1 13.1 12.1	$egin{array}{c cccc} 7 & 11.9 \ 7 & 11.9 \ 1 & 11.5 \ \end{array}$	$ \begin{array}{c c} 9.7 \\ 9.5 \\ 8.9 \\ \end{array} $	9.0 9.1 8.7 8.8 8.2	32 128 512 1024 2048	$ \begin{array}{c} 102.0 \\ 91.0 \\ 74.0 \\ 52.0 \\ 32.0 \end{array} $	81.1 73.6 63.9 52.0 34.4	68.9 62.2 55.6 47.0 34.4	59.7 54.7 50.3 43.7 34.4	$ \begin{array}{c c} 42.4 \\ 32.2 \\ 42.8 \end{array} $	32.7 32.1 30.6 30.8 34.1
Тетр	erature	Coeffic	cients	in Cone	ductivity	Units.	Temp	erature	Coeffic	cients i	n Cone	luctivity	Units.
\overline{v}	0-1	5° 15-	-25°	25-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 2	5-35°	35-50°	50-65°
12 25 51 102 204	$egin{array}{c ccc} 66 & 1. \\ 2 & 2. \\ 24 & 3. \\ \end{array}$	$ \begin{array}{c c c} 96 & 1 \\ 52 & 2 \\ 13 & 2 \end{array} $.18 .57 .13 .73 .32	0.95 1.30 1.78 2.35 3.04	0.67 1.01 1.33 1.70 2.15	0.31 0.47 0.55 1.13 1.42	3 12 51 102 204	28 2. 2 3. 24 4.	53 2 77 3 36 4	.17 .07 .42 .01 .48	0.84 1.70 2.95 3.51 3.96	0.29 1.21 2.54 3.77 4.94	0.153 0.606 1.65 3.22 3.23
2	$\Gamma emper$	ature (Coeffic	cients in	Per Cer	nt.	7	l'emper	ature (Coefficie	ents in	Per Cer	nt.
v	0-1	5° 15-	-25°	25–35°	35-50°	50-65°	v	0-1	.5° 15-	-25° 2	5–35°	35-50°	50-65°
12 52 51 102 204	26 1. 22 1. 24 1.	80 1 87 1 97 1	.11 .14 .24 .33 .42	0.80 0.84 0.92 1.01 1.14	0.52 0.60 0.63 0.66 0.73	0.23 0.26 0.24 0.40 0.43	12 51 102 204	28 1. 22 2. 24 2.	$ \begin{array}{c cccc} 72 & 1 \\ 61 & 1 \\ 22 & 1 \end{array} $	0.97 .12 .40 .53 .68	0.59 0.76 1.06 1.16 1.27	0.20 0.54 0.83 1.12 1.40	$\begin{array}{c} 0.11 \\ 0.25 \\ 0.48 \\ 0.55 \\ 0.75 \end{array}$

<i>m</i> -1	Vitroi	BENZO	ic Ac	его (Ј	. AND	Kr.).	1	o-Niti	ROBEN	ZOIC	Acid	(Wм.)	
\	Λ	<i>lolecul</i>	ar Con	ductiv	ity.			I	Iolecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
128 512 1024 2048	$\begin{vmatrix} 71.95 \\ 92.44 \end{vmatrix}$	129.8	67.66 120.0 153.8 190.5	77.5 137.1 175.4 216.7	$\begin{vmatrix} 160.1 \\ 210.7 \end{vmatrix}$	177.9 235.9	512 1024 2048	79.1 99.9 126.8		128.9 163.4 205.4		218.7	238.6
	P	'ercenta	ge Dis	sociati	ion.			F	ercento?	ige Dis	sociati	on.	
v	a0°	a15°	a25°	a35°	α50°	a65°	v	a0°	α12°	a25°	α35°	a50°	a65°
128 512 1024 2048	18.7 33.6 43.1 53.7	19.0 33.8 43.4 53.8	19.1 33.8 43.3 53.7	19.2 33.9 43.4 53.6	34.1 44.9	18.7 33.2 44.0 55.2	512 1024 2048	35.59 44.93 55.47	46.20	46.73	46.86	6 46.73	44.76
	Diss	ociatio	n Cons	tants)	× 10 ⁴ .			Diss	sociatio	n Cons	tants >	< 10⁴.	
v	0°	15°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
128 512 1024 2048	3.36 3.38 3.19 3.04	3.48 3.37 3.25 3.06	3.52 3.37 3.23 3.04	3.57 3.40 3.25 3.02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.34 3.23 3.38 3.33	512 1024 2048	3.84 3.58 3.43	4.11 3.87 3.98	4.30 4.00 4.08	4.28 4.03 4.11	4.00	3.52 3.54 3.70
Temp	erature	Coeffic	ients is	n Cond	luctivity	Units.	Temp	erature	Coeffic	ients ir	a Cond	uctivity	Units.
v	0-1	5° 15-	-25° 2	5-35°	35–50°	50-65°	v	0-1	2° 12-	-25° 25	5-35°	35-50°	50-65°
12 51 102 204	$\begin{vmatrix} 2 & 1.8 \\ 4 & 2.4 \end{vmatrix}$	$\begin{bmatrix} 37 & 1 \\ 49 & 2 \end{bmatrix}$. 90 . 40	$0.99 \\ 1.71 \\ 2.16 \\ 2.62$	0.82 1.53 2.35 3.08	0.67 1.19 1.67 2.19	51 102 204	$4 \mid 2$.	63 2	.46	1.95 2.40 3.00	1.49 2.09 2.65	1.15 1.33 1.93
7	Гетрего	ature C	oefficie	nts in	Per Cer	ıt.	T	'emper	ature C	oefficie:	nts in .	Per Cer	nt.
v	0-1	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-1	2° 12-	-25° 25	5–35°	35–50°	50-65°
12 51 102 204	$ \begin{array}{c cccc} 2 & 2.6 \\ 4 & 2.6 \end{array} $	30 1. 39 1.	.88 .85	1.46 1.43 1.40 1.38	1.06 1.12 1.34 1.42	0.74 0.74 0.78 0.83	51: 1024 2048	4 2.	63 1	.87	1.51 1.47 1.46	1.00 1.12 1.13	0.67 0.61 0.70

	1	Molecul	ar Con	ductivi	ty.			Л	Iolecul	ar Con	ductivi	ty.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
32 128 512 1024 2048	199 . 23 214 . 97 218 . 60	262.30 288.23 293.40	299 . 83 334 . 50 343 . 55	$336.3 \\ 379.0 \\ 391.0$	0 284.5 5 376.2 0 443.4 2 459.8 3 466.7	$\begin{vmatrix} 412.0 \\ 493.2 \end{vmatrix}$	512 1024 2047	122.28 147.86 167.63	205.4	244.0	280.0	328.7	311.8 366.0 426.9
	F	Percento	ige Dis	sociati	on.			P	ercenta	ge Dis	sociati	on.	
\overline{v}	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	α12°	α25°	a35°	a50°	a65°
32 128 512 1024 2048	$\begin{vmatrix} 90.55 \\ 97.70 \\ 99.35 \end{vmatrix}$	$96.93 \\ 98.67$	85.96 95.90 98.50	84.74 95.47 98.49	80.71 95.13	78.42 93.87 97.56	512 1024 2048	55.52 67.14 76.12	57.62 69.06 77.96	70.23	70.54	70.43	
	Diss	sociatio	n Cons	tants >	< 10⁴.			Diss	ociatio	n Cons.	tants >	< 10 ⁴ .	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048							512 1024 2048	13.5 13.4 11.9	15.3 15.1 13.5	16.2 16.2 14.2	16.4 16.5 14.4	16.4	16.4 15.6 17.2
Temp	erature	Coeffic	ients ir	ı Cond	uctivity	Units.	Temp	erature	Coeffic	ients ir	a Cond	uctivity	Units.
v	0-1	5° 15-	·25° 25	5–35°	35-50°	50–65°	${v}$	0-1	5° 15-	-25° 25	5-35°	35-50°	50-65°
3 12 51 102 204	$ \begin{bmatrix} 2 & 4 \\ 24 & 5 \end{bmatrix} $	$ \begin{array}{c cccc} 21 & 3 \\ 88 & 4 \\ 05 & 4 \end{array} $.75 .63 .87	2.15 3.65 4.55 4.80 4.89	1.63 2.66 4.30 4.59 4.66	1.14 2.39 3.32 3.52 3.19	51 102 204	4 3.8	34 3	.87	2.99 3.59 3.95	3.08 3.25 3.84	2.14 2.49 3.16
7	Temper	ature C	oefficie	nts in	Per Cer	ıt.	7	'empero	iture C	oefficie:	nts in	Per Cer	ıt.
v	0-1	5° 15-	-25° 25	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35°	35-50°	50-65°
3 12 51 102 204	12 2. 24 2.	$ \begin{array}{c cccc} 11 & 1 \\ 27 & 1 \\ 31 & 1 \end{array} $.43 .61 .66	0.90 1.22 1.36 1.40 1.41	0.63 0.79 1.14 1.17	0.40 0.64 0.75 0.77 0.84	51 102 204	4 2.0	30 1	.88	1.47 1.47 1.44	1.32 1.16 1.19	0.77 0.76 0.74

	Picr	ic Ac	ю (Ј.	AND	Sm.).		s	ALICY	LIC A	CID (V	VT. AI	ND SP.).
	Л	Iolecul	ar Con	ductiv	ity.			Л	Iolecul	ar Con	ductivit	y.	
v	μ _v 0°	μ _v 15°	$\mu_v 25^{\circ}$	μ_v 35	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 6.9^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
32 128 512 1024 2048	193.0 201.1 207.6 206.9 203.5	260.2 272.4 280.9 281.7 277.1	303.7 319.9 329.6 332.6 325.6	365. 377. 379.	$\begin{bmatrix} 2 & 433.3 \\ 5 & 449.3 \\ 9 & 455.2 \end{bmatrix}$	$ \begin{bmatrix} 485.1 \\ 501.2 \\ 507.1 \end{bmatrix} $	64 128 512 1024 2048	62.65 105.4 130.7 153.8	$126.4 \\ 156.9$	108.3 181.2 223.2		110.55 148.72 249.1 301.7 350.1	124.6 166.5 280.1 337.2 592.6
	P	'ercenta	ge Dis	sociati	ion.			P	ercento	ige Dis	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	a6.9°	a25°	a35°	a50°	a65°
32 128 512 1024 2048	93.0 96.9 100.0 100.0 100.0	92.4 96.7 99.7 100.0 100.0	91.3 96.2 99.1 100.0 100.0	96.3 99.4 100.0	95.9 4 99.4 0 100.0	$95.7 \\ 98.8 \\ 100.0$	64 128 512 1024 2048	28.09 47.28 58.60 68.96	29.06 48.62 60.34 70.73	$51.34 \\ 63.22$	23.02 31.03 51.37 63.37 73.36	$\begin{array}{c} 23.37 \\ 31.44 \\ 52.67 \\ 63.78 \\ 74.01 \end{array}$	23.13 30.96 52.00 62.58 72.67
	Diss	ociation	n Cons	tants)	× 10 ⁴ .			Diss	sociatio	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	6.9°	25°	35°	50°	65°
32 128 512 1024 2048							64 128 512 1024 2048	8.6 8.3 8.1 7.5	9.3 9.0 9.0 9.0 8.4	10.5 10.6 10.6 10.6 9.4	10.7 10.9 10.6 10.7 9.9	11.1 11.2 11.4 11.0	10.9 10.8 11.0 10.2
Temp	erature	Coeffic	ients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	a Condu	ectivity	Units.
\overline{v}	0-1	5° 15–	25° 25	5–35°	35-50°	50-65°	v	0-6.	9° 6.9	-25° 25	5-35° 3	5-50°	50-65°
31 123 511 102 204	$egin{array}{c cccc} 8 & 4.7 \ 2 & 4.8 \ 4 & 4.9 \ \end{array}$	75 4. 39 4. 99 4.	.75 .87 .89	4.14 4.53 4.79 4.93 4.71	3.79 4.54 4.79 5.12 4.58	3.61 3.45 3.46 3.46 3.44	6 12 51 102 204	$ \begin{array}{c cccc} 8 & 1. \\ 2 & 3. \\ 4 & 3. \end{array} $	$\begin{vmatrix} 12 & 3 \\ 80 & 3 \end{vmatrix}$.83 .00 .63	1.23 1.68 2.58 3.22 3.58	1.18 1.57 2.81 3.09 3.63	0.94 1.20 2.07 2.37 2.77
7	l'emper	ature C	oefficie	nts in	Per Cer	nt.	7	Temper	ature C	'oefficie	nts in 1	Per Cen	t.
v	0-1	5° 15-	25° 25	5-35°	35-50°	50–65°	v	0-6.	9° 6.9	-25° 25	5-35° 8	35–50°	50–65°
312 511 102 204	$egin{array}{c cccc} 8 & 2.3 \\ 2 & 2.3 \\ 4 & 2.4 \\ \end{array}$	36 1. 36 1. 41 1.	.77 .73 .74	1.36 1.42 1.42 1.48 1.45	1.09 1.22 1.27 1.34 1.22	0.90 0.79 0.77 0.75 0.76	6 12 51 102 204	$\begin{bmatrix} 8 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	$ \begin{array}{c c} 96 & 2 \\ 91 & 2 \end{array} $.42 .37 .31	1.53 1.55 1.42 1.41 1.38	1.27 1.25 1.35 1.21 1.23	0.85 0.81 0.83 0.79 0.79

	Асету	LSALI	CYLIC	Acıı	(Sp.)			Sulf	HOSAI	LICYLI	c Ac	EID (SP	.).
	Λ	Iolecul	ar Con	ductivi	ity.			Л	Iolecul	ar Con	ductivi	ity.	
v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\rho \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	μ _υ 25°	μ_v 35	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^{\circ}$
128 512 1024 2048	73.10	$95.21 \\ 121.0$	109.27 139.3	$124.3 \\ 158.7$	9 79.41 4 142.88 2 184.09 7 238.31	3	32 128 512 1024 2048	239.61 291.92 322.50	$328.53 \\ 403.30 \\ 443.04$	386.46 474.12 522.38	5440.0 538.5 598.1	50 432 . 9 97 508 . 88 54 622 . 44 3 701 . 32 70 762 . 38	3 575 . 40 1 706 . 24 2 785 . 66
***************************************	P	'ercenta	ge Dis	sociati	on.			P	ercenta	ge Dis	sociati	on.	
v	a0°	al5°	α25°	a35°	a50°	a65°	v	a0°	al5°	α25°	a35°	α50°	a65°
128 512 1024 2048	18.30 33.11 41.49 53.50		17.59 31.73 40.45 51.55	31.25 39.89	$\begin{vmatrix} 30.82 \\ 39.72 \end{vmatrix}$		128 512 1024 2048						
	Diss	ociatio	n Cons	tants >	× 10 ⁴ .			Diss	ociatio	n Cons	tants)	× 10 ⁴ .	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	3.2 3.2 3.0 3.0	3.0 2.9 2.7 2.7	2.9 2.9 2.7 2.7	2.8 2.8 2.6 2.7	2.7		128 512 1024 2048						
Temp	erature	Coeffic	ients ir	n_{Cond}	uctivity	Units.	Temp	erature	Coeffic	ients ir	n Cond	luctivity	Units.
v	0-18	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-1	5° 15-	25° 25	5–35°	35-50°	50–65°
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 1 39 1	.41	0.83 1.51 1.94 2.75	0.70 1.24 1.69 2.35		3 12 51 102 204	8 5.1 2 7.4 4 8.0	$ \begin{array}{c cccc} 93 & 5 \\ 42 & 7 \\ 04 & 7 \end{array} $.79 .08 .93	4.56 5.36 6.44 7.57 8.13	3.69 4.61 5.59 6.84 7.38	3.59 4.43 5.58 5.62 6.38
7	l'empero	uture C	oefficie	nts in	Per Cer	nt.	7	emper	ature C	oefficie	nts in	Per Cer	nt.
v	0-18	5° 15-	25° 25	5–35°	35–50°	50-65°	v	0-1	5° 15-	-25° 23	5–35°	35-50°	50-65°
12 51 102 204	$ \begin{array}{c cccc} 2 & 2.0 \\ 4 & 2.0 \end{array} $	01 1.	.48	1.37 1.38 1.39 1.54	1.02 1.00 1.06 1.14		3 12 51 102 204	$\begin{bmatrix} 8 & 2.4 \\ 2 & 2.4 \\ 4 & 2.4 \end{bmatrix}$	47 1 54 1 49 1	.76 .75 .79	1.37 1.38 1.35 1.44 1.42	0.98 1.05 1.04 1.14 1.13	0.83 0.87 0.89 0.81 0.84

<i>m</i> -H	YDRO	XYBENZ	гоіс А	CID (V	VT. AN	ъΚ.).	<i>p</i> -H	YDROX	YBENZ(oic A	CID (V	VT. AN	ъ К.).
		Molecul	ar Cone	luctivit	y.				Molecula	r Cona	luctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 13.22^\circ$	$\mu_{\nu}25^{\circ}$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	$\mu_v 13.23^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
$128 \\ 512 \\ 1024$	14.65 20.48 39.04 53.09 71.20	19.97 27.85 52.89 72.01 96.03	24.35 33.95 64.50 87.80 116.9	$38.63 \\ 73.28$	44.46 83.92 116.0	48.77 92.10 127.5	512 1024	8.746 18.29 23.87 33.03 44.40	16.81 32.45 44.91	20.69 39.96 55.30	16.97 23.71 45.77 63.24 85.60	19.41 26.70 51.95 72.92 99.51	29.38 57.15
		Percenta	ge Diss	sociatio	n.				Percentag	e Diss	sociatio	n.	
v	a0°	a13.22°	a25°	a35°	a50°	a65°	v	a0°	a13.23°	a25°	a35°	a50°	a65°
1024	6.57 9.18 17.51 23.81 31.93	$\begin{array}{c} 6.82 \\ 9.50 \\ 18.05 \\ 24.56 \\ 32.77 \end{array}$	6.90 9.62 18.27 24.87 33.12	6.88 9.58 18.19 24.74 32.91	$ \begin{array}{c c} 6.7 \\ 9.4 \\ 17.7 \\ 24.5 \\ 32.1 \end{array} $	17.1	64 128 512 2024 2048	3.92 5.51 10.70 14.81 19.91	15.32	$11.32 \\ 15.66$		4.11 5.65 11.00 15.43 21.07	$10.62 \\ 14.91$
	D_i	issociatio	n Consi	tants ×	104.			Dis	sociation	Const	ants ×	104.	
v	0°	13.22°	25°	35°	50°	65°	v	0°	13.23°	25°	35°	50°	65°
$128 \\ 512 \\ 1024$	$egin{array}{c} 0.722 \ 0.725 \ 0.725 \ 0.726 \ 0.715 \ \end{array}$	0.779 0.780 0.776 0.781 0.780	0.799 0.799 0.789 0.804 0.801	0.795 0.794 0.798 0.794 0.788	$egin{array}{c} 0.764 \ 0.745 \ 0.752 \end{array}$	$\begin{bmatrix} 0.689 \\ 0.687 \\ 0.692 \end{bmatrix}$	64 128 512 0124 2048	$\begin{array}{c} 0.250 \\ 0.251 \\ 0.251 \\ 0.252 \\ 0.242 \end{array}$	$0.273 \\ 0.269 \\ 0.271$	$\begin{array}{c} 0.285 \\ 0.282 \\ 0.284 \end{array}$	0.284	0.275 0.267 0.239 0.275 0.275	$egin{array}{c} 0.246 \ 0.245 \ 0.261 \end{array}$
Tem	peratu	re Coeffic	ients in	Condu	ictivity	Units.	Tem	peratur	e Coeffici	ents in	Condi	ictivity	Units.
v	0-13	.22° 13.22	2-25° 25	5-35° 3	5-50°	50-65°	v	0-13.	23° 13.23	-25° 25	5-35° 3	5-50°	50-65°
64 128 512 1024 2048	0. 1. 1.	.56 (0 .05 (0 .44 1	$\begin{bmatrix} 0.52 & 0.52 & 0.99 & 0.31 & 1.31 $	0.34 0.47 0.88 1.19 1.57	$\begin{array}{c} 0.27 \\ 0.39 \\ 0.71 \\ 1.09 \\ 1.29 \end{array}$	0.20 0.29 0.54 0.77 1.04	64 128 512 1024 2048	0.5 0.6 0.9 1.	$\begin{bmatrix} 34 & 0 \\ 65 & 0 \\ 90 & 0 \end{bmatrix}$.33 0 .64 0 .88 0).22).30).58).79 1.05	0.16 0.20 0.41 0.65 0.93	0.13 0.27 0.35 0.49 0.66
	Tempe	erature C	oefficier	nts in F	Per Cen	ıt.		Temper	rature Co	efficier	ıts in I	Per Cen	nt.
v	0-13	.22° 13.22	2-25° 25	5–35° 3	5-50°	50-65°	v	0-13.	25° 13.25	-25° 25	5-35° 3	5-50°	50-65°
64 128 512 1024 2048	2. 2. 2. 2.	.72 1 .68 1 .71 1	1.86 1 1.86 1 1.81 1	1.39 1.38 1.36 1.36 1.36	0.98 1.01 0.97 1.09 0.99	0.64 0.64 0.64 0.66 0.68	64 128 512 1024 2048	2.3 2.3 2.3 2.3 2.3	$ \begin{array}{c cccc} 78 & 1 \\ 72 & 1 \\ 72 & 1 \end{array} $.96 1 .97 1 .97 1	1.46 1.46 1.45 1.44 1.41	0.94 0.84 0.90 1.00 1.01	0.69 0.67 0.68 0.67 0.67

1, 2,	4-Оін	YDROX	KYBEN	ZOIC 2	Acid (Wм.).	1,2,5	5-Діну	DROX	YBENZ	гоіс А	CID (V	Vм.).*
	Л	Iolecul	ar Con	ductivi	ty.			Л	1 olecul	ar Con	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$
128 512 1024 2048			$140.15 \\ 177.20$	$162.02 \\ 203.58$	2 189.7 8 241.4	$211.9 \\ 266.7$	128 512 1024 2048	$114.49 \\ 141.50$	$163.00 \\ 200.68$	$191.90 \\ 234.70$	131 . 22 219 . 43 267 . 72 328 . 42		
	P	'ercenta	ge Dis	sociatio	on.			P	'ercenta	ge Dis	sociatio	n.	
v	a0°	al5°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	α50°	a65°
128 512 1024 2048	20.16 36.37 46.54 57.51	21.71 38.82 49.28 60.22	22.70 40.12 50.73 61.79	23.10 40.62 51.04 62.24	$\frac{2}{51.63}$	39.78 50.07	128 512 1024 2048	29.85 51.63 63.82 83.15	31.87 54.39 66.97 84.22	$32.49 \\ 54.71 \\ 66.91 \\ 82.92$	32.83 54.89 66.98 82.17		
	Diss	ociatio	n Cons	tants >	< 10⁴.			Diss	ociatio	n Cons	$tants \times$	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
128 512 1024 2048	3.98 4.06 3.94 3.80	4.62 4.81 4.66 4.45	5.21 5.25 5.08 4.88	5.42 5.43 5.12 5.01	5.56 5.38 5.38 5.23	5.33 5.13 4.90 4.52	128 512 1024 2048	9.9 10.8 10.6 23.9	11.7 12.7 13.3 22.0	12.2 12.9 13.2 19.7	12.5 13.0 13.3 18.5		
Temp	erature	Coeffic	ients ir	ı Cond	uctivity	Units.	Temp	erature	Coeffic	ients ir	a Condu	ctivity	Units.
v	0-18	5° 15-	25° 25	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	5-50°	50-65°
12 51 102 204	$\begin{array}{c cccc} 2 & 2.3 \\ 4 & 2.9 \end{array}$	38 2 97 2	.38	1.28 2.19 2.64 3.25	1.14 1.85 2.52 3.08	0.86 1.48 1.69 1.85	12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 23 & 2 \\ 95 & 3 \end{vmatrix}$.89	1.73 2.75 3.30 3.76		
7	Tempero	ature C	oefficie	nts in	Per Cer	nt.	T	'emper	ature C	oefficie	nts in I	Per Cen	et.
v	0-1	5° 15-	25° 25	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	5-50°	50-65°
12 51 102 204	$\begin{array}{c cccc} 2 & 2.9 \\ 4 & 2.8 \end{array}$	95 2 87 1	.04	1.62 1.56 1.46 1.50	1.24 1.14 1.24 1.24	0.79 0.78 0.70 0.63	12 51 102 204	$\begin{array}{c cccc} 2 & 2. \\ 4 & 2. \end{array}$	83 1 79 1	.77 .70	1.52 1.43 1.41 1.29		

^{*}Decomposes too rapidly above 35° to obtain satisfactory results.

	Galli	c Acı	D (W	T. AN	D Sм.)			о-Амі	NOBE	NZOIC	Acir	(Wт.)	
	A	Iolecul	ar Con	ductivi	ty.			Λ	Iolecul	ar Con	ductivi	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 6.5^\circ$	$\mu_v 25^{\circ}$	μ_v35°	$\mu_v 50^\circ$	$\mu_v 65$	5° v	$\mu_v 0^{\circ}$	$\mu_v 7.5^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$
64 128 512 1024 2048	9.79 14.01 28.89 37.84 51.50	11.66 16.55 34.08 44.63 60.72	16.90 23.60 48.33 62.50 85.02	27.10 55.12 71.18	$\begin{vmatrix} 33.09 \\ 67.58 \end{vmatrix}$	36. 75. 95.	64 128 54 512 96 1024	10.90	6.283 14.31 20.48	$\begin{array}{c} 23.26 \\ 33.53 \end{array}$	13.39 28.96 41.57		
	P	'ercenta	ge Dis	sociati	on.			F	Percente	nge Dis	sociati	ion.	
\overline{v}	a0°	a6.5°	a25°	a35°	a50°	a65	$\stackrel{\circ}{}$ v	a0°	α7.5°	a25°	a35°	a50°	a65°
64 128 512 1024 2048	$\begin{array}{r} 4.44 \\ 6.36 \\ 13.11 \\ 17.18 \\ 23.37 \end{array}$	4.59 6.51 13.41 17.55 23.88	4.86 6.78 13.89 17.96 24.43	$ \begin{array}{c c} 6.85 \\ 13.92 \\ 17.98 \end{array} $	$\begin{bmatrix} 7.20 \\ 14.72 \\ 18.76 \end{bmatrix}$	5.0 7.1 14.6 18.6 24.1	12 128 36 512 33 1024	1.39 2.12 4.93 7.25 7.88	1.60 2.42 5.50 7.87 10.88	3.07 6.67 9.62	$\begin{vmatrix} 3.38 \\ 7.3 \\ 10.48 \end{vmatrix}$	8	
	Diss	sociatio	n Cons	tants >	× 10 ⁴ .			Dis	sociatio	n Cons	tants ;	× 10 ⁴ .	
\overline{v}	0°	6.5°	25°	35°	a50°	a6	5° v	0°	7.5°	25°	35°	a50°	a65°
64 128 512 1024 2048		$0.354 \\ 0.405 \\ 0.365$	0.387 0.385 0.437 0.384 0.386	0.394 0.440 0.388	$ \begin{array}{c cccc} 1 & 0.42 \\ 0 & 0.49 \\ 5 & 0.42 \end{array} $	0.4 0.4 0.4	42 128 41 512 42 1024	0.0499	0 . 046 0 . 0626 1 0 . 0658	70.0761 60.0932 80.1000	$egin{array}{c} 0.092 \ 20.112 \ 00.120 \end{array}$	22	
Temp	erature	Coeffic	cients i	n Cond	luctivity	Unit	s. Temp	perature	e Coeffi	cients i	n Con	ductivity	Units.
v	0-6	.5° 6.5	-25° 2	5–35°	35-50°	50-6	5° v	0-7	.5° 7.5	5-25° 2	5-35°	35-50°	50-65°
6 12 51 102 204	28 0. 12 0. 24 1.	39 0 80 0 05 0	.28 .38 .77 .97 .31	0.25 0.35 0.68 0.87 1.17	0.26 0.40 0.83 1.00 1.04	0.1 0.2 0.5 0.6 0.7	24 12 53 51 55 102	28 0. 12 0. 24 0.	21 (45 (65 (65 (65 (65 (65 (65 (65 (65 (65 (6).17).25).51).72).97	0.19 0.27 0.57 0.81 1.05		
2	Temper	ature C	Coefficie	ents in	Per Cer	nt.	4	Temper	ature (Coefficie	ents in	Per Cer	nt.
v	0-6	.5° 6.5	-25° 2	5–35°	35–50°	50-6	5° v	0-7	.5° 7.	5–25° 2	5–35°	35–50°	50–65°
	$egin{array}{c cccc} 28 & 2. \\ 12 & 2. \\ 24 & 2. \\ \end{array}$	79 2 77 2 76 2	.43 .30 .26 .17	1.46 1.48 1.41 1.39 1.38	1.34 1.48 1.51 1.40 1.08	0.8 0.7 0.7 0.7 0.7	$\begin{bmatrix} 72 & 12 \\ 78 & 51 \\ 76 & 105 \end{bmatrix}$	28 4. 12 4. 24 4.	.52 3 .17 3 .03 3	1.08 3.98 3.58 3.46 3.43	2.59 2.57 2.45 2.40 2.33		

	т-Ам	INOBI	ENZOI	с Асп	о (Wм	.).		p-An	IINOBEN	ZOIC	ACID ((WT.)	
	1	Molecu	lar Co	onductiv	ity.				Molecule	ar Cono	luctivity	·.	
v	$\mu_v 0^{\circ}$	μ _v 18°	$\mu_v 25$	$^{\circ}$ $\mu_v 35^{\circ}$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	\overline{v}	$\mu_v 0^\circ$	$\mu_v 10.19^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$
128 512 1024 2048	3.57 6.26 11.75 17.20	6.91 10.33 22.61 32.38	$\begin{vmatrix} 12.1 \\ 27.7 \end{vmatrix}$	7 35.57			1024			7.370 10.84 24.54 35.07 50.13	8.92 12.97 29.06 41.31 58.56		
	I	Percen	tage D	issociat	ion.				Percenta	ge Diss	sociation	ı.	
v	a0°	a18°	α25	° a35°	a50°	a65°	v	a0°	a10.19°	a25°	a35°	a50°	a65°
128 512 1024 2048	1.69 2.97 5.57 8.15	2.26 3.38 7.39 10.59	$\frac{3.6}{8.3}$	$\begin{vmatrix} 66 & 3.80 \\ 5 & 9.04 \end{vmatrix}$) L		64 128 512 1024 2048	1.68 2.42 5.69 8.54 13.73		2.11 3.11 7.04 10.07 14.38	$ \begin{array}{c c} 3.27 \\ 7.47 \\ 10.42 \end{array} $		
	Dis	sociati	on Co	nstants	× 104.			Di	issociatio	n Cons	tants ×	104.	
v	0°	18°	25°	35°	50°	65°	v	0°	10.19°	25°	35°	50°	65°
128 512 1024 2048							$128 \\ 512 \\ 1024$	0.0448 0.0468 0.0670 0.0678 0.107	0.0606 0.0838	$0.0780 \\ 0.104 \\ 0.110$	$egin{array}{c} 40.0790 \ 00.0865 \ 0.118 \ 0.119 \ 0.125 \end{array}$		
Tem	peratur	e Coef	ficient	s in Con	ductivit	y Units.	Tem	peratu	re Coeffic	ients ir	ı Condu	ctivity	Units.
v	0-1	8° 18	-25°	25-35°	35–50°	50-65°	v	0-10	0.19° 10.1	19-25° 2	25-35° 3	35-50°	50-65°
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 0 60 0	0.23 0.26 0.73 1.00	0.25 0.28 0.78 1.06			12 51 102 204	28 0 22 0 24 0).14).21).47).67).87	0.15 0.22 0.48 0.63 0.87	0.16 0.21 0.45 0.62 0.84		
	Temper	rature	Coeffic	cients in	Per Ce	ent.		Temp	erature C	oefficie	nts in F	Per Cen	t.
\overline{v}	0-1	.8° 18	3–25°	25-35°	35–50°	50-65°	v	0-1	0.19° 10.	19-25°	25-35°	35–50°	50-65
12 51 102 204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 11	3.33 2.52 3.23 3.09	2.93 2.30 2.81 2.69			12 51 102 204	28 4 12 3 24 3	3.78 1.00 3.76 3.57 3.08	2.92 2.97 2.78 2.46 2.35	2.10 1.96 1.84 1.79 1.68		

M	ETAN	ilic A	CID ((Wt. A	AND SE	2.).	Su	LPHAN	ILIC A	Acid (WT . A	AND S	Р.).	
	Л	Iolecul	ar Cor	ıductivi	ty.			Л	Iolecul	ar Cone	luctivit	y.		
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 6.3^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	
32 128 512 1024 2048	11.60 22.90 42.76 58.01 76.38		$51.4 \\ 95.1 \\ 125.8$	$0 66.8 \\ 0 121.1 \\ 158.1$		123.89 216.84 267.3	32 128 512 1024 2048	$\begin{vmatrix} 40.66 \\ 74.25 \\ 96.40 \end{vmatrix}$	91.33 118.1	85.40 148.66 182.77	107.80 180.88 221.60	$145.00 \\ 237.00 \\ 287.00$	100.50 186.40 298.00 352.60 406.67	
	P	ercenta	ge Di	ssociati	on.			P	ercenta	ge Dis	sociatio	n.		
v	a0°	al2°	a25°	α35°	a50°	a65°	v	a0°	a6.3°	α25°	a35°	a50°	a65°	
32 128 512 1024 2048	5.23 10.27 19.26 26.13 34.41	6.32 12.23 23.04 30.87 40.39	7.67 14.64 27.10 25.84 46.37	$egin{array}{c c} 16.72 \\ 0 30.27 \\ 4 39.53 \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$12.99 \\ 40.24 \\ 49.61$	32 128 512 1024 2048	9.82 18.31 33.44 43.42 54.71	10.69 19.96 35.82 46.33 58.21	$\begin{vmatrix} 24.34 \\ 41.79 \\ 52.08 \end{vmatrix}$	$ \begin{array}{r} 26.95 \\ 45.22 \\ 55.40 \end{array} $	18.65 34.59 55.30 65.44 75.48		
	Diss	sociatio	n Con	stants)	× 10 ⁴ .									
\overline{v}	0°	12°	25°	35°	50°	65°	v	0°	6.3°	25°	35°	50°	65°	
32 128 512 1024 2048	0.90 0.89 0.90 0.90 0.88	1.33 1.33 1.35 1.35 1.34	1.99 1.96 1.97 1.96 1.96	$egin{array}{c} 2.62 \\ 2.57 \\ 2.52 \\ \end{array}$	$\begin{array}{c} 3.80 \\ 3.72 \\ 3.52 \end{array}$	5.34 5.36 5.29 4.79 4.81	32 128 512 1024 2048	3.34 3.20 3.28 3.26 3.23	4.00 3.89 3.90 3.90 3.96	6.01 6.09 5.86 5.53 5.40	7.78 7.77 7.30 6.72 6.64	10.4 10.7 10.0 9.35 8.84	13.4 14.2 13.4 12.1 11.3	
Temp	erature	Coeffic	cients	in Cond	luctivity	Units.	Temp	erature	Coeffic	ients in	a Condu	uctivity	Units.	
v	0-1	2° 12-	-25° 2	25-35°	35–50°	50-65°	v	0-6.	.3° 6.3	-25° 25	5–35° 3	35-50°	50-65°	
3 12 51 102 204	$egin{array}{c cccc} 8 & 1.0 \ 2 & 1.5 \ 4 & 2.5 \ \end{array}$	$ \begin{array}{c c} 00 & 1 \\ 91 & 2 \\ 50 & 2 \end{array} $.68 .28 .27 .91 .67	0.81 1.55 2.60 3.23 4.07	0.96 1.72 2.94 3.46 4.05	1.10 2.08 3.44 3.82 4.49	3 12 51 102 204	$ \begin{array}{c cccc} 8 & 1. \\ 2 & 2. \\ 4 & 3. \end{array} $	$egin{array}{c c} 62 & 1 \\ 71 & 3 \\ 45 & 3 \\ \end{array}$.84 .07 .46	1.30 2.24 3.22 3.88 4.50	1.33 2.48 3.73 4.36 4.58	1.48 2.73 4.07 4.37 4.66	
7	Tempere	ature C	oeffici	ents in	Per Cer	nt.	7	"emper	ature C	oefficie	nts in 1	Per Cen	ıt.	
\overline{v}	0-1	2° 12-	-25° 2	25-35°	35-50°	50-65°	v	0-6.	.3° 6.3	-25° 25	5-35° 3	35-50°	50-65°	
3 12 51 102 204	$ \begin{array}{c cccc} 8 & 4 & 4 \\ 2 & 4 & 4 \\ 4 & 4 & 4 \end{array} $	40 3 46 3 30 3	.79 .66 .45 .41	3.02 3.01 2.73 2.63 2.50	2.74 2.57 2.43 2.19 2.00	2.23 2.24 2.09 1.81 1.63	3 12 51 102 204	$\begin{bmatrix} 8 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$ \begin{array}{c c} 99 & 3 \\ 65 & 3 \\ 57 & 2 \end{array} $.62 .36 .93	2.68 2.62 2.17 2.12 2.02	2.28 2.30 2.06 1.97 1.91	1.89 1.88 1.72 1.52 1.38	

	P	ICRAM	ic A	CID (S	P.).		p-Si	ULPHA	MINOB	BENZO	іс Ас	ю (W	м.).
	Λ	Iolecul	ar Coi	nductiv	ity.			Λ	Iolecul	ar Cone	ductivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25$	$\rho \mid \mu_v 35$	° µ _v 50°	μ_v65°	v	μ _v 0°	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^{\circ}$
512 1024 2048	24.00 32.90 44.60	54.09	51.80 70.10 95.20	6 88.6	03 85.67 60 119.00 70 161.8	153.50	1024		124.82	146.94	128.03 167.17 210.05	189.1	213.1
	F	ercenta	ige Di	ssociati	ion.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	α15°	α25°	α35°	α50°	a65°	v	α0°	a15°	α25°	a35°	α50°	a65°
512 1024 2048	10.82 14.84 20.10	18.08	14.73 19.93 27.20	5 22.26	0 25.32	20.62 28.57 38.79	512 1024 2048	30.59 40.88 51.68	$32.06 \\ 41.69 \\ 52.56$	42.01	$32.17 \\ 42.01 \\ 52.79$	31.67 40.38 52.08	39.93
	Diss	sociatio	n Con	stants)	× 104.			Diss	ociatio	n Cons	tants ×	104.	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048	$\begin{array}{c} 0.256 \\ 0.253 \\ 0.247 \end{array}$	$0.398 \\ 0.389 \\ 0.392$	0.497 0.486 0.496	0.619	9 0.838	1.05 1.11 1.20	512 1024 2048	2.63 2.76 2.70	2.96 2.91 2.84	$3.01 \\ 2.97 \\ 2.91$	2.98 2.97 2.88	2.87 2.67 2.76	2.64 2.59 2.54
Temp	erature	Coeffic	rients 1	in Cond	luctivity	Units.	Tempe	erature	Coeffic	ients in	Condi	ectivity	Units.
v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	·25° 25	-35° 3	5-50°	50-65°
51: 102- 204:	4 1.4	41 1	. 20 . 61 . 26	1.31 1.84 2.25	1.38 2.02 2.80	1.67 2.30 3.11	51 102 204	4 2.5	$28 \mid 2$.21	1.50 2.02 2.49	1.35 1.46 2.26	1.01 1.27 1.77
I	"empe r	ature C	oeffici	ents in	Per Cen	at.	Т	'empero	ature C	oefficie	nts in I	Per Cer	nt.
v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 3	35-50°	50-65°
51: 102- 2048	4 4.3	$30 \mid 2$.02 .97 .10	$\begin{array}{c c} 2.53 \\ 2.58 \\ 2.57 \end{array}$	2.12 2.28 2.34	1.94 1.93 1.92	51: 102- 204:	4 2.	52 1	.77	1.17 1.21 1.19	1.06 0.87 1.08	$0.68 \\ 0.67 \\ 0.73$

ВЕ	NZENI	ESULP	HONIC	Ac	ID (W	м.).	m-	-Nitro		ENES (Wm.		ionic A	CID
	M	oleculo	ır Cond	luctiv	ity.			Λ	Molecul	ar Con	iductii	vity.	
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50$	° µ _v 65°	v	$\mu_v 0^{\circ}$	μ _ν 16°	$\mu_v 25^\circ$	$\mu_v 3$	5° μ _v 50	$^{\circ}$ $\mu_v 65^{\circ}$
32 2 128 2 512 2 1024 2	210 . 23 2 222 . 14 3 226 . 92 3 228 . 00 3	281.69 300.43 305.81 308.97	321.07 336.55 350.47 356.38 359.03 354.22	370. 399.8 407.0 410.3	1 453.0 8 473.9 0 475.3 3 474.5	515.4 540.6 544.3 544.2	32 128 512 1024 2048	195.9 200.5 202.0 204.3 204.3	202.9 269.1 272.9 275.5 274.6		357 4 367 5 369	.0 409.0 .2 419 .2 430.4 .4 432.0	5 478.4 * 489.5
	$P\epsilon$	ercenta	ge Diss	ociati	ion.			P	ercento	ige Dis	ssocia	tion.	
v	a0°	a15°	α25°	a35°	α50°	a65°	v	a0°	α16°	α25°	a35	6° a50°	α65°
32 128 512	92.21 97.43 99.53	98.98	$90.95 \\ 97.62$	90.2 97.4 99.2	$egin{array}{ccc} 0 & 95.3 \ 4 & 99.7 \ 0 & 100.0 \end{array}$	2 89.09 0 94.69 0 99.30 0 100.00	32 128 512 1024	97.84 98.58	95.43 97.68 99.09 100.00	97.0 99.0	96. 4 99.		
Temper	rature (Coeffici	ents in	Cond	uctivity	Units.	Temp	erature	Coeffic	ients i	n Con	ductivity	Units.
\overline{v}	0-15	° 15–2	25° 25-	-35°	35-50°	50-65°	v	0-1	6° 16-	-25° 2	5–35°	35-50°	50-65°
8 32 128 512 1024 2048	4.79 4.70 5.29 5.20 5.40 5.20	$egin{array}{c cccc} 3 & 4.4 \\ 2 & 5.6 \\ 3 & 5.6 \\ 0 & 5.6 \\ \end{array}$	$egin{array}{c cccc} 49 & 4 & 4 \\ 00 & 4 & 4 \\ 05 & 5 & 5 \\ 01 & 5 & \\ \end{array}$.50 .35 .93 .06 .13	4.21 5.53 4.94 4.55 4.26 4.39	3.71 4.16 4.45 4.60 4.67 4.48	31 12 51 102 2048	$egin{array}{c cccc} 8 & 4.5 \\ 2 & 4.5 \\ 4 & 4.5 \\ \end{array}$	57 4 73 4 73 4	.75	4.29 4.34 4.68 4.59 4.68	3.93 4.15 4.24 4.21	3.77 3.93 3.94 3.89
Te	mpera	ture Co	efficien	ts in	Per Cer	nt.	T	'empero	iture Co	oefficie	nts in	Per Cer	nt.
v	0-15	2 15-2	25° 25-	-35°	35-50°	50-65°	v	0-16	6° 16-	25° 25	5–35°	35-50°	50-65°
8 32 128 512 1024 2048	2.31 2.22 2.35 2.32 2.32 2.32	$egin{array}{c cccc} 7 & 1.8 \ 5 & 1.6 \ 2 & 1.6 \ 7 & 1.6 \ \end{array}$	59 1 67 1 65 1 62 1	.40 .33 .41 .42 .43 .49	1.15 1.49 1.24 1.12 1.04 1.08	0.86 0.92 0.94 0.97 0.98 0.95	32 128 512 1024 2048	$egin{array}{c c} 3 & 2.2 \ 2 & 2.3 \ 4 & 2.3 \ \end{array}$	28 1. 34 1. 31 1.	66 74 74	1.40 1.38 1.46 1.42 1.45	1.12 1.16 1.15 1.14	0.92 0.94 0.92 0.90

^{*}Interpolated.

p-T	'orne	NESUI	PHON	пс А	CID (W	м.).	1, 2,	4-Ni	FROT	OLUEI (WM	NESULI	PHONIC	Acid
	Λ	Iolecul	ar Cor	iductiv	ity.			i	Molec	ular C	onductiv	ity.	
v	$\mu_v 0^{\circ}$	$\mu_v 12^\circ$	$\mu_v 25^\circ$	μ_v 35	° µ _v 50°	μ _v 65°	v	$\mu_v 0^{\circ}$	$\mu_v 1$	$5^{\circ} \mid \mu_v 2$	$5^{\circ} \mid \mu_v 35$	° µ _v 50°	$\mu_v 65^\circ$
32 128 512 1024 2048	203.0 208.4 210.0 210.6 206.7	258.5 267.0 269.0 269.7 266.4	317.3 328.2 331.7 332.7 327.7	2 374. 376. 380.	$7 \begin{vmatrix} 440.0 \\ 8 \end{vmatrix} 444.2 \\ 3 \begin{vmatrix} 445.9 \end{vmatrix}$	$ \begin{array}{r} 499.3 \\ 502.0 \\ 503.4 \end{array} $	8 32 128 512 1024 2048	176.9 193.0 198.4 199.9 200.5 199.7	264 272 274 276	.1 303 .0 312 .3 315 .5 318	.6 344. .4 354. .6 358. .4 361.	2 7 6 9	*
	P	'ercente	ige Di	ssociat	ion.			1	Percei	ntage L	issociat	ion.	
v	a0°	α12°	α25°	a35°	° a50°	a65°	v	a °	a15	5° α2	5° α35	° a50°	α65°
32 128 512 1024 2048	32 96.4 95.8 95.4 95.3 96.5 97.2 8 88.22 87.12 86.94 86.38 28 99.0 99.0 98.7 98.7 98.7 99.2 32 96.27 95.52 95.35 95.13 12 99.7 99.7 99.7 99.3 99.6 99.7 128 98.97 98.37 98.13 98.02 124 100.0 100.0 100.0 100.0 100.0 100.0 512 99.62 99.22 99.10 99.08								13 02 08				
Temp	erature	Coeffic	cients	in Con	ductivity	Units.	Temp	eratur	e Coe	<i>(ficients</i>	in Con	ductivity	Units.
v	0-1	2° 12-	-25° 2	5–35°	35-50°	50-65°	v	0-	15°	15–25°	25-35°	35–50°	50-65°
3: 12: 51: 102: 204:	$egin{array}{c c} 8 & 4.5 \\ 2 & 4.5 \\ 4 & 4.5 \\ \end{array}$	88 4 92 4 93 4	.52 .76 .82 .84 .76	4.59 4.65 4.51 4.76 5.21	4.59 4.39 4.52 4.44 4.87	3.94 3.95 3.85 3.83 3.82		2 4 8 4 2 4 4 4	.00 .44 .60 .65 .74	3.86 4.31 4.49 4.59 4.67 4.48	3.70 4.06 4.23 4.30 4.35 4.28		
T	"emper	ature (Coeffici	ents in	Per Cer	nt.	2	Гетре	rature	Coeffi	cients in	Per Cer	nt.
v	0-1	2° 12-	-25° 2	25–35°	35-50°	50-65°	v	0-	15°	15–25°	25-35°	35-50°	50-65°
3 12 51 102 204	$ \begin{array}{c cccc} 8 & 2. \\ 2 & 2. \\ 4 & 2. \end{array} $	$ \begin{array}{c cccc} 34 & 1 \\ 35 & 1 \\ 34 & 1 \end{array} $.75 .76 .79 .80 .79	1.45 1.42 1.36 1.43 1.59	1.27 1.17 1.20 1.17 1.31	0.92 0.90 0.87 0.86 0.86	12 51 102 204	$egin{array}{c cccc} 32 & 2 & 2 \ 28 & 2 & 2 \ 12 & 2 & 2 \ 24 & 2 & 2 \ \end{array}$.26 .30 .32 .33 .37 .34	1.60 1.63 1.65 1.67 1.69 1.63	1.34 1.34 1.35 1.36 1.37 1.36		

^{*}Higher temperatures were not studied because of lack of material.

1, 4,	2-N11	ROTO!	LUEN (Wm.	esulf).	HONIC	Acid	0-	-Tolu	ис Ас	OID (W	T. AN	ND SM.).
	Л	Iolecul	ar Cor	iductiv	ity.			Л	Iolecul	ar Cone	ductivi	ty.	
v	$\mu_v 0^\circ$	$\mu_v 16^{\circ}$	$\mu_v 25^\circ$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^{\circ}$	v	$\mu_v 0^{\circ}$	μ _v 12°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$
8 32 128 512 1024 2048	203.0 221.6 225.3 228.3 228.9 228.0	281.8 308.7 312.8 317.5 318.5 318.7	349.3 355.6 360.7 362.3	393. 407. 411. 3 413.	3 433.3 1 462.1* 6 476.7 8 486.0 6 487.5 2 485.4	493.4 524.8 542.6 554.5 556.3 553.2	512 2048 2048	54.71 71.65 95.06		106.7	88.4 116.7 154.7		102.41 134.94 177.70
	P	ercento	ige Di	ssociat	ion.			P	'ercenta	ge Dis	sociati	on.	
v	a0°	α16°	a25°	a35°	a50°	a65°	v	a0°	a12°	a25°	a35°	a50°	a65°
8 32 128 512 1024	99.74	96.92 98.21	99.5	7 95.0 5 98.5 6 99.5	94.79 55 97.78 66 99.69	$94.34 \\ 97.54$	1024 2048	24.76 32.44 43.01	31.71	23.23 30.50 40.54	29.47	7 27.29	19.10 26.10 33.15
	Diss	oc iat ion	a Cons	tants >	⟨ 10⁴.			Disse	ociation	Const	ants $ imes$	104.	
v	0°	16°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
512 1024 2048							512 1024 2048	1.59 1.52 1.59	1.49 1.44 1.46	1.37 1.32 1.35	1.25 1.30 1.22	1.00	0.88 0.90 0.80
Temp	erature	Coeffic	cients	in Cone	luctivity	Units.	Temp	erature	Coeffic	ients ir	i Cond	uctivity	Units.
v	0-1	6° 16-	-25° 2	5-35°	35–50°	50-65°	v	0-1	2° 12-	-25° 25	5-35°	35-50°	50-65
3: 12: 51: 102: 204:	8 5.4 2 5.4 4 5.4	42 4 44 4 55 4 58 4	.30 .53 .76 .80 .87 .68	4.38 4.36 5.20 5.11 4.95 5.14	4.60 4.60 4.61 4.95 4.92 4.88	4.01 4.18 4.39 4.57 4.59 4.52	51 102 204	4 1.	$52 \mid 1$. 29	0.74 1.00 1.33	0.53 0.71 0.91	$0.40 \\ 0.51 \\ 0.62$
7	'emper	ature C	oeffici	ents in	Per Cer	nt.	7	'emper	ature C	oefficie	nts in	Per Cen	ıt.
v	0-1	6° 16-	-25° 2	5–35°	35-50°	50-65°	v	0-1	2° 12-	-25° 25	5-35°	35-50°	50-65°
3: 12: 51: 102: 204:	$ \begin{array}{c cccc} 8 & 2.4 \\ 2 & 2.4 \\ 4 & 2.4 \end{array} $	44 1 41 1 43 1 44 1	.53 .47 .52 .51 .53 .47	1.37 1.25 1.46 1.42 1.37 1.42	1.26 1.17 1.13 1.20 1.19 1.18	0.92 0.91 0.92 0.94 0.94 0.93	51 102 204	$4 \mid 2$.	11 1	.44	0.91 0.94 0.94	0.60 0.61 0.59	0.41 0.40 0.36

^{*}Interpolated value.

n	n-Tol	uic A	CID (WT. A	nd Sm	ι.).	\parallel p	-Tolu	JIC A	CID (V	VT. AN	D SM	.).
	1	Molecu	lar Cor	ıductivi	ty.			Л	Iolecul	ar Con	ductivit	у.	
v	μ _v 0°	μ _υ 12°	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	μ _v 0°	$\mu_v 12^\circ$	μ _v 25°	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$
512 1024 2048	33.05 45.20 61.24	43.57 59.43 80.79	74.10		98.70	78.44 108.33 140.90	1024		52.52 71.75	48.48 66.13 89.96	75.54	62.98 86.30 114.93	95.43
	F	Percente	age Dis	ssociatio	on.			P	ercenta	ge Dis	sociatio	n.	
v	a0°	α12°	a25°	a35°	a50°	α65°	v	a0°	al2°	a25°	a35°	a50°	a65°
512 1024 2048	14.95 20.45 27.71	15.44 21.05 28.63	21.25	21.14	21.00	20.00	512 1024 2048	17.93 24.49	18.49 25.26	13.89 18.95 25.78	13.96 19.02 26.07	12.68 17.71 23.26	
	Dis	sociatio	on Con	stants >	× 10 ⁴ .			Dis	sociatio	n Cons	tants >	< 10 ⁴ .	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
512 1024 2048	0.513 0.513 0.519	$0.550 \\ 0.548 \\ 0.560$	$0.567 \\ 0.560 \\ 0.567$	0.554	0.54	$\begin{array}{c c} 0.47 \\ 0.48 \\ 0.45 \end{array}$	512 1024 2048	0.383 0.388	0.410 0.417	$0.438 \\ 0.433 \\ 0.437$	$\begin{bmatrix} 0.433 \\ 0.437 \\ 0.449 \end{bmatrix}$	0.406 0.405 0.388	$\begin{bmatrix} 0.359 \\ 0.372 \\ 0.344 \end{bmatrix}$
Temp	erature	Coeffic	ients ir	n Condu	ıctivity	Units.	Tempe	erature	Coeffici	ients in	Condu	ctivity	Units.
\overline{v}	0-12	2° 12-	25° 25	5–35° 3	5-50°	50–65°	v	0-12	2° 12-	25° 25	-35° 3	5-50°	50–65°
512 1024 2048	4 1.1	.9 1.	13	0.75 0.98 1.27	0.62 0.98 1.05	0.48 0.64 0.80	512 1024 2048	1.0		05 0	0.70 0.94 1.35	$\begin{array}{c c} 0.50 \\ 0.72 \\ 0.76 \end{array}$	$0.36 \\ 0.61 \\ 0.69$
T	'empera	ture Co	efficies	nts in I	Per Cen	t.	T	empera	ture Co	efficien	nts in P	er Cen	t.
v	0-12	° 12-	25° 25	5–35° 3	5-50°	50–65°	v	0-12	2° 12-	25° 25	-35° 3	5-50°	50–65°
512 1024 2048	1 2.6	$2 \mid 1$.	91	1.37 1.32 1.27	1.00 1.17 0.93	0.65 0.65 0.62	512 1024 2048	2.7		99 1	.42	0.90 0.95 0.73	0.57 0.70 0.60

C	CINNAN	ис А	CID (Wt. A	ND Sp.	.).		Hydr	OCINN	NAMIC	Acid	(Sp.).	
	A	Iolecul	ar Con	ductivi	ity.			Λ	Iolecul	ar Cond	luctivit	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 5.3^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35$	$^{\circ}$ $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	μ _ε 50°	$\mu_v 65^\circ$
512 1024 2048	26.50 36.40 49.69	30.67 42.11 57.40		69.6		90.20	32 128 512 1024 2048	5.89 11.49 22.18 30.40 41.60	8.07 15.64 30.46 41.76 56.41	$35.49 \\ 48.84$	54.79	$\frac{44.82}{61.37}$	13.00 25.28 49.00 67.04 89.66
	P	ercente	ige Dis	ssociati	ion.			P	ercento	ige Dis	sociatio	n.	
v	α0°	α5.3°	α25°	α35°	ο α50°	a65°	v	a0°	α15°	α25°	a35°	a50°	α65°
512 1024 2048	12.04 16.55 22.08	12.37 16.97 23.14		17.5	8 17.22	16.79	32 128 512 1024 2048	2.67 5.20 10.04 13.76 18.84	13.97	10.14		$\begin{bmatrix} 5.01 \\ 9.67 \\ 13.24 \end{bmatrix}$	$\begin{bmatrix} 4.75 \\ 9.20 \\ 12.59 \end{bmatrix}$
	Dis	sociatio	on Con	stants	\times 104.			Dis	sociatio	on Cons	stants >	< 10 ⁴ .	
\overline{v}	0°	5.3°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048	0.322 0.320 0.305	0.341 0.339 0.342	0.368 0.367 0.370	0.36	6 0.350	0.331	32 128 512 1024 2048	0.229 0.223 0.219 0.214 0.214	0.222	$0.225 \\ 0.223 \\ 0.221$	0.227 0.220 0.218 0.215 0.205	$ \begin{array}{c} 0.206 \\ 0.202 \\ 0.197 \end{array} $	0.185
Temp	erature	Coeffic	cients i	in Cone	luctivity	Units.	Temp	erature	Coeffic	cients in	n Condu	uctivity	Units.
v	0-5.	3° 5.3	-25° 2	5–35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5-35° 8	35-50°	50-65°
51 102 204	4 1.0	0 80	.71 .97 .32	0.61 0.84 1.14	0.61 0.75 1.45	0.47 0.62 0.87	3 12 51 102 204	$\begin{bmatrix} 2 & 0.5 \\ 4 & 0.7 \end{bmatrix}$	$ \begin{array}{c c} 76 & 0. \\ 52 & 0. \\ 57 & 0. \end{array} $	268 0 503 0 708 0	.224 .436 .595	0.083 0.176 0.331 0.438 0.620	0.079 0.138 0.278 0.378 0.443
7	Tempere	ature C	oeffici	ents in	Per Cer	nt.	7	Temper	ature C	Coefficie	nts in	Per Cer	nt.
v	0-5.	3° 5.3	-25° 2	5-35°	35-50°	50-65°	v	0-1	5° 15-	-25° 25	5–35°	35–50°	50–65°
51 102 204	4 2.9	$96 \mid 2$.31 .30 .30	1.37 1.37 1.36	1.20 1.08 1.53	0.79 0.77 0.78	3 12 51 102 204	8 2. 2 2. 4 2.	41 1 49 1 49 1	.71 .65 .69	1.24 1.22 1.23 1.22 1.23	0.78 0.85 0.83 0.80 0.84	0.67 0.59 0.62 0.61 0.53

0	-Рнтн	ALIC A	rcid (WT. A	AND SI	P.).	$\begin{vmatrix} 4, \end{vmatrix}$	5-Dici	HLORPI	HTHAL	ic Ac	CID (W	и.).
		Molecul	ar Con	ductivi	ty.				Molecul	ar Con	ductivi	y.	
v	$\mu_v 0^{\circ}$	$\mu_v 8.23^{\circ}$	$\mu_v 25^{\circ}$	$\mu_v 35^\circ$	μ _v 50°	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^{\circ}$	$\mu_v 50^{\circ}$	$\mu_v 65^\circ$
1024	55.98 75.56 122.3 148.2 174.2	66.45 88.32 145.7 177.1 298.4	114.8 189.2 231.9		5147.58 244.8 300.3	122.70 163.86 272.4 336.9 395.1	512 1024	$238.55 \\ 263.80$	353.00 314.66 348.53 378.49	359.02 397.13	398.4940.78	$2 451.7 \\ 499.3$	492.5 543.3
	I	Percenta	ge Diss	sociatio	n.			1	Percenta	ge Diss	sociatio	n.	
v	a0°	a8.23°	a25°	a35°	a50°	a65°	v	a0°	al5°	a25°	a35°	a50°	a65°
64 128 512 1024 2048	25.33 33.75 55.34 67.07 78.81	24.89 33.09 54.58 66.33 78.05	24.62 32.90 54.23 66.45 78.14	24.08 32.01 53.20 64.62 75.68	$\begin{vmatrix} 31.40 \\ 52.09 \\ 63.89 \end{vmatrix}$	$\begin{vmatrix} 30.41 \\ 50.55 \\ 62.53 \end{vmatrix}$	128 512 1024 2048						
	Dis	ssociatio	n Cons	stants >	< 10 ⁴ .			Di	ssociatio	on Cons	tants >	< 10 ⁴ .	,
v	0°	8.23°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
64 128 512 1024 2048	13.4 13.4 13.4 13.4 14.3	12.9 12.8 12.8 12.8 13.6	12.6 12.6 12.5 12.8 13.6	11.9 11.8 11.8 11.5 11.5	11.2 11.2 11.1 11.0 11.0	10.5 10.4 10.1 10.2 9.8	128 512 1024 2048						
Tem p	perature	Coeffici	ients in	Condi	ictivity	Units.	Temp	perature	e Coeffic	ients in	Cond	uctivity	Units.
v	0-8.2	23° 8.23-	-25° 25	-35° 3	35–50°	50–65°	v	0-15	5° 15-	25° 25	-35° 3	35–50°	50-65°
64 128 512 1024 2048	$egin{array}{c c} 3 & 1.6 \\ 2 & 2.8 \\ 4 & 3.5 \\ \end{array}$	$egin{array}{c cccc} 7 & 1. \\ 4 & 2. \\ 1 & 3. \\ \end{array}$	58 1 59 2 27 2	1.04 1.42 2.36 2.66 3.00	0.93 1.30 2.13 2.78 3.33	0.83 1.09 1.84 2.44 2.83	128 513 102- 2048	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07 4 55 4	.44 3	3.15 3.94 4.37 5.14	2.42 3.55 3.91 5.02	1.60 2.72 2.93 3.41
	Temper	ature Co	efficier	nts in I	Per Cen	t.		Temper	ature Co	oefficier	nts in I	Per Cen	ıt.
v	0-8.2	3° 8.23-	-25° 25	-35° 3	5-50°	50–65°	v	0-15	5° 15–2	25° 25	-35° 3	35-50°	50-65°
64 128 512 1024 2048	$egin{array}{c c} 3 & 2.2 \\ 2 & 2.3 \\ 4 & 2.3 \\ \end{array}$	4 1. 3 1. 7 1.	79 1 78 1 85 1	1.21 1.24 1.25 1.15	0.96 1.02 1.01 1.08 1.10	0.75 0.74 0.75 0.81 0.80	128 519 1024 2048	$ \begin{array}{c cccc} 2 & 2.1 \\ 4 & 2.1 \end{array} $	3 1.4 1.	$\begin{array}{c c} 41 & 1 \\ 39 & 1 \end{array}$	1.10 1.10 1.10 1.18	0.76 0.89 0.89 1.03	$0.45 \\ 0.60 \\ 0.59 \\ 0.60$

Te	FRACH	LORPI	НТНА	LIC A	CID (W	м.).		I	Anisio	Acı	D (SP	.).	
	Л	Iolecui	ar Co	nductii	rity.			Л	Iolecul	ar Cor	iductive	ity.	
\overline{v}	$\mu_v 0^{\circ}$	$\mu_v 15^{\circ}$	$\mu_v 2$	5° μ _v 38	5° $\mu_v 50^{\circ}$	$\mu_v 65^\circ$	v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$
512 1024 2048	296.8 328.6 356.0	386.5 432.7 469.2	495	9 555		669.3	1024 2048	35.80 47.13			67.6 90.1	0 80.29 5 103.67	90.25 7115.17
	P	ercent	age D	issocia	tion.			$P\epsilon$	ercentag	ge Dis	sociatio	on.	
v	a0°	al5°	α25	° a35	° a50°	a65°	v	a0°	al5°	α25°	a35°	a50°	α65°
512 1024 2048							1024 2048						
	Disa	sociatie	on Co	nstants	\times 104.			Dis	sociatio	n Con	stants	× 10 ⁴ .	
v	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
512 1024 2048							1024 2048	0.303 0.280		0.338 0.319			
Temp	erature	Coeffic	cients	in Con	ductivity	Units.	Temp	erature	Coeffic	ients i	n Cone	luctivity	Units.
\overline{v}	0-1	5° 15-	-25°	25–35°	35-50°	50-65°	v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°
51: 102- 204:	4 6.9	94 6	.48 .32 .06	5.14 5.93 6.52	4.00 4.15 5.33	3.24 3.46 3.65	102 204			.86	0.85 1.13	0.84 0.90	0.66 0.77
T	'empere	ature C	l'oeffic	ients in	Per Ce	nt.	7	"empere	ature C	oeffici	ents in	Per Cer	ıt.
v	0-13	5° 15-	-25°	25–35°	35-50°	50–65°	v	0-1	5° 15-	25° 2	5–35°	35-50°	50–65°
512 1024 2048	4 2.1	1 1	. 42 . 46 . 50	1.17 1.20 1.21	0.81 0.75 0.88	0.59 0.56 0.53	102 204			.70	1.43 1.43	1.24 1.00	0.82 0.74

	V.	ANILL	іс А	CID (S	ъ.).			Nai	нтні	ONIC .	Acid	(Sp.).	
	M	lolecule	ar Co	nductivi	ty.			Л	Iolecul	ar Con	ductiv	ity.	
v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 2\xi$	$5^{\circ} \mid \mu_v 35$	$\circ \mid \mu_v 50^\circ$	$\mu_v 65^\circ$	v	$\mu_v 0^\circ$	$\mu_v 15^\circ$	$\mu_v 25^{\circ}$	$\mu_v 35$	° µ _v 50°	$\mu_v 65^\circ$
256 512 1024 2048	18.48 26.16 35.87 47.26	50.10	$\frac{43.3}{59.5}$	30 49.89 55 69.0	$ \begin{array}{c c} 9 & 57.80 \\ 0 & 80.38 \end{array} $	2 47.41 64.62 8 89.42 5 120.08	1024 2048	142.17 169.80	212.69 245.52	262.0 295.4	312.9 1347.2	95 382 . 58 20 420 . 98	3450.58 3491.21
	P	ercenta	ge D	issociati	ion.			P	ercenta	ge Dis	sociati	ion.	
v	a0°	α15°	α25	° a35°	α50°	a65°	v	a0°	a15°	α25°	α35	° a50°	a65°
256 512 1024 2048	8.35 11.82 16.21 21.35	8.84 12.25 16.75 22.53	9.0 12.3 17.3 23.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 12.46 \\ 7 & 17.32 \end{bmatrix}$	$12.13 \\ 16.78$	1024 2048	64.04 76.58	71.82 82.98	74.43 83.92		84.29 91.90	
	Diss	ociatio	n Con	nstants)	× 10 ⁴ .			Dis	sociatio	on Con	stants	\times 104.	
\overline{v}	0°	15°	25°	35°	50°	65°	v	0°	15°	25°	35°	50°	65°
256 512 1024 2048	0.30 0.31 0.31 0.28	0.33 0.33 0.33 0.32	0.34 0.34 0.34	$egin{array}{c c} 4 & 0.35 \ \hline 5 & 0.36 \ \end{array}$	$0.35 \\ 0.35$	$\begin{array}{c} 0.34 \\ 0.33 \\ 0.33 \\ 0.32 \end{array}$	1024 2048	11.1 12.2	17.9 19.7	21.2 21.4	27.4 27.9		44.2 50.9
Temp	erature	Coeffic	ients	in Cond	luctivity	Units.	Temp	erature	Coeffic	ients i	n Cono	luctivity	Units.
v	0-1	5° 15-	25°	25-35°	35–50°	50-65°	v	0-1	5° 15-	-25° 2	5–35°	35-50°	50-65°
250 511 102 2048	$ \begin{array}{c cccc} 2 & 0.7 \\ 4 & 0.9 \end{array} $	$\begin{bmatrix} 0 & 0 \\ 05 & 0 \end{bmatrix}$. 52 . 66 . 95 . 34	0.48 0.66 0.94 1.26	0.39 0.53 0.76 1.04	0.34 0.45 0.60 0.73	102- 2048				5.09 5.16	4.64 4.92	4.56 4.68
I	'empero	iture C	oe,ffic	ients in	Per Cer	ıt.	Т	'emper	ature C	oe.fficie	nts in	Per Cer	ıt.
v	0.18	5° 15-	25°	25–35°	35-50°	50-65°	v	0-1	5° 15-	25° 2	5–35°	35-50°	50-65°
256 512 1024 2048	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 7 & 1 \\ 33 & 1 \end{bmatrix}$.98 .81 .88 .99	1.52 1.52 1.58 1.55	1.07 1.06 1.10 1.11	0.80 0.79 0.75 0.67	102- 2048				1.94 1.48	1.48 1.42	1.19 1.11

M	ANDE	LIC A	CID (Wт. A	ND SM	i.).		CAN	1PHOR	іс Ас	ID (W	νм.).	
	Л	Iolecul	ar Con	ductivi	ty.			Λ	Iolecul	ar Con	ductivit	y.	
\overline{v}	μ _v 0°	μ _v 12°	$\mu_v 25^{\circ}$	$\mu_v 35$	$\mu_v 50^\circ$	$\mu_v 65^{\circ}$	v	μ _v 0°	μ _v 12°	μυ25°	μ_v35°	μ _v 50°	$\mu_v 65^\circ$
8 32 128 512 1024 2048	82.21	$31.21 \\ 59.64 \\ 106.1 \\ 135.2$	38.56	43.6	$\begin{array}{c c} 2 & 50.07 \\ 9 & 94.42 \\ 168.20 \\ 216.03 \end{array}$	55.40	1024 2048	24.94 34.05 45.10	45.27	38.17 52.12 68.15	42.57 57.99 76.12	63.86	69.26
	P	'ercenta	ge Dis	sociati	on.			I	Percento	ige Dis	sociatio	n.	
v	α0°	al2°	a25°	a35°	a50°	a65°	v	a0°	a12°	a25°	a35°	a50°	a65°
8 32 128 512 1024 2048	5.70 11.09 20.99 37.20 47.96 59.91	5.69 11.03 20.78 36.98 47.76 59.47	5.69 11.05 20.90 37.18 47.97 59.03	10.98 20.78 36.84 47.58	8 10.52 5 19.84 4 35.35 8 45.40	19.34 34.41 44.32	512 1024 2048	11.43 15.60 20.66	16.18		14.78	13.94	
	Diss	ociatio	n Cons	tants >	× 10 ⁴ .			Dis	sociatio	n Cons	tants >	< 10⁴.	
v	0°	12°	25°	35°	50°	65°	v	0°	12°	25°	35°	50°	65°
8 32 128 512 1024 2048	4.32 4.30 4.36 4.30 4.32 4.37	4.29 4.27 4.26 4.24 4.26 4.26	4.29 4.29 4.31 4.30 4.32 4.16	4.24 4.24 4.25 4.20 4.21 4.16	3.86 3.83 3.78 3.69	3.71 3.66 3.62 3.53 3.45 3.32	512 1024 2048	0.288 0.282 0.263	0.305	0.264	0.250	0.220	0.201
Temp	erature	Coeffic	ients i	n Cond	luctivity	Units.	Temp	erature	Coeffic	cients in	i Cond	uctivity	Units.
v	0-1	2° 12-	-25° 2	5–35°	35-50°	50–65°	v	0-1	2° 12	-25° 2	5-35°	35-50°	50-65°
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c cccc} 56 & 0 & 10 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $.56	0.26 0.51 0.94 1.66 2.13 2.90	0.22 0.43 0.82 1.47 1.82 2.28	0.19 0.35 0.67 1.18 1.55 1.96	51 102 204	4 0.	75 C	.68	0.44 0.59 0.80	0.33 0.39 0.69	0.26 0.36 0.51
7	Гетрег	ature C	oefficie	ents in	Per Cer	ıt.	7	l'emper	ature C	Coefficie	nts in .	Per Cer	nt.
v	0-1	2° 12-	-25° 2	5–35°	35-50°	50-65°	v	0-1	2° 12	-25° 2	5–35°	35-50°	50-65°
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 1 38 1 42 1 30 1	.81 .72 .71	1.30 1.31 1.29 1.28 1.27 1.40	0.99 0.99 0.99 1.01 0.97 0.97	0.74 0.71 9.71 0.70 0.72 0.73	51 102 204	$24 \mid 2$.	$20 \mid 1$. 57	1.15 1.13 1.17	0.78 0.67 0.91	0.54 0.56 0.59

					Cou	MARIC	ACID (Sp.).				
	Λ	Iolecul	ar Cond	luctivit	у.		Temper	ature Co	efficient	s in Con	ductivity	Units.
v	$\mu_v 0^{\circ}$	$\mu_v 15^\circ$	$\mu_v 25^\circ$	$\mu_v 35^\circ$	$\mu_v 50^\circ$	$\mu_v 65^\circ$	v	0-15°	15-25°	25-35°	35-50°	50-65°
256 512 1024 2048	16.00 22.40 31.48 44.53	23.22 32.39 46.00 65.13	27.08 37.58 53.38 75.56	$\frac{42.01}{59.52}$	35.56 49.08 69.57 90.50	$54.24 \\ 76.92$	256 512 1024 2048	0.48 0.67 0.97 1.37	$\begin{array}{c} 0.38 \\ 0.52 \\ 0.74 \\ 1.04 \end{array}$	0.33 0.44 0.61 0.19	0.34 0.47 0.67 0.87	$\begin{array}{c} 0.25 \\ 0.34 \\ 0.49 \\ 0.55 \end{array}$
	Percentage Dissociation.						Ten	nperatur	e Coeffic	cients in	Per Ce	nt.
v	a0°	al5°	a25°	a35°	a50°	a65°	v	0-15°	15-25°	25–35°	35-50°	50–65°
256 512 1024 2048	7.27 10.18 14.30 20.23	7.74 10.80 15.34 21.72	7.75 10.74 15.25 21.59	7.60 10.51 14.89 19.39	7.59 10.48 14.86 19.34	$10.15 \\ 14.39$	256 512 1024 2048	3.00 2.99 3.07 3.08	1.64 1.61 1.63 1.60	1.21 1.17 1.15 0.25	1.13 1.12 1.12 1.12	0.71 0.70 0.70 0.61
	Diss	ociation	n Const	ants ×	104.							
\overline{v}	0°	15°	25°	35°	50°	65°						
256 512 1024 2048	0.223 0.225 0.233 0.250	0.254 0.255 0.271 0.294	0.253 0.252 0.268 0.290	0.244 0.241 0.254 0.228	0.240	$0.224 \\ 0.236$						

DISCUSSION OF THE RESULTS WITH THE ORGANIC ACIDS.

It does not seem necessary or desirable, in discussing the results with the organic acids, to tabulate these results as was done in the case of the salts. The anions of these acids are not related as the cations of the salts were, and any relations must be of a more limited nature. Certain relations will, however, be pointed out, and they can easily be verified from the data for the various acids.

Take, first, the conductivities of the various acids: The presence of chlorine in acetic acid increases enormously its dissociation. Thus, at volume 32 and 0° the conductivity of acetic acid is 5.33; of dichloracetic acid 166, and of trichloracetic acid 208.7. The conductivity of cyanacetic acid under the same conditions is 68.7, and of phenylacetic acid 9. Acetic acid is slightly stronger than propionic, which at volume 32 and 0° has a conductivity of 4.63. This illustrates the general principle that in a homologous series of organic acids the lower members of the series are the stronger, at the same temperature and volume α -brompropionic acid having a conductivity of 38, β -iodopropionic acid of 12.57, while β -acetylpropionic acid has a conductivity of 5.85. Butyric acid at the same volume and temperature has the value 5.0; α -brombutyric 42.75, showing the marked increase in the strength due to the presence of bromine.

Isobutyric acid at volume 32 and 0° has the value 4.91, while hydroxyisobutyric has the conductivity 12.11, showing the increase in the strength due to the presence of the hydroxyl group. The conductivities of butyric and isobutyric acids are very nearly the same, which is characteristic of a large number of isomeric compounds. Isovaleric acid has the conductivity 5.36.

Turning to the dibasic acids of the oxalic series, we come first to oxalic acid. This was decomposed by the platinum plates, and was therefore not studied. Malonic acid

and a large number of its derivatives were investigated.	The following table gives
the results for two volumes and three temperatures for a	all of these substances:

Acid.	0°		2	5°	65°	
Aciu.	v = 32	v = 1024	v=32	v = 1024	v = 32 77.1 90.66 186.22 104.35 91.73	v = 1024
Malonic	43.51	153.3	72.23	251.2		
Dimethylmalonic	32.00	124.1	51.23	198.93		299.26
Ethylmalonic	40.90	146.45	64.42	231.24	90.66	330.62
Diethylmalonic	92.77	201.22	138.84	311.98	186.22	462.78
Methylethylmalonic		156.21	72.45	248.19	104.35	365.54
Isopropylmalonic	40.07	144.1	64.92	234.00	91.73	343.8
Dipropylmalonic	103.16	203.51	154.54	317.78		468.0
Butylmalonic	37.53	140.0	58.72	218.3	83.93	320.1
Benzylmalonic	45.06	153.05	69.82	239.44	97.76	345.35
Allylmalonic	45.62	158.93	71.47	248.67	101.16	358.28

The presence of two methyl groups weakens the acid, while two ethyl groups more than double the strength. Ethyl, methylethyl, isopropyl, butyl, benzyl, and allyl affect the conductivity very slightly. Dipropyl more than doubles the strength of the acid. These empirical relations have a certain kind of interest, but their meaning is at present not at all fully understood.

Succinic acid at zero and v=32 has a conductivity of 9.21, being much less than malonic. This is in accord with the relation pointed out between the strengths of acids and their position in an homologous series. Monobromsuccinic acid was studied at v=128. It had a conductivity of 101.46 against succinic at this volume of 18.24, showing that bromine increases acidity. Dibromsuccinic at volume 128 and 0° has the conductivity 254.34, showing the effect on acidity of the second bromine atom

Pyrotartaric at v=32 has $\mu_v=10.94$, μ_v for α -tartaric at v=32=34.18 and for racemic = 34.60. These two isomeric acids have practically the same conductivity.

The kind of isomerism, illustrated by maleic and fumaric acids stereoisomerism, is interesting in the present connection. We have seen that ordinary isomeric acids, using that term as we generally do, have very nearly the same conductivity. Maleic and fumaric acids at the same volumes and temperatures have widely different conductivities. Thus at v=32 and 0° , μ_{o} for maleic acid = 108.1, μ_{o} for fumaric = 35.46. The results for itaconic, eitraconic, and mesaconic acids differ widely. For v=32:

$$\mu_{v}$$
 for itaconic = 13.50 μ_{v} for citraconic = 68.66 μ_{v} for mesaconic = 33.31

Passing to the acids of the aromatic compounds, the introduction of chlorine into benzoic acid raises the conductivity at v = 64 and 0° from 18.49 to 85.20. μ_{v} for orthonitrobenzoic at v = 128 (0°) is 146.9, for metanitrobenzoic = 40.1. This shows the effect of chlorine and of the nitro group in the ortho position on the acidity. The 1, 2, 4 dinitrobenzoic at 0° and v = 32, $\mu_{v} = 166.51$, showing that the second nitro group in these positions still further increases the acidity. The 1, 3, 5 dinitrobenzoic at v = 512 has a value for μ_{v} of only 122.28.

The effect of the nitro group in increasing acidity is well illustrated by picric acid. Phenol is a very weak acid, one of the weakest, while trinitrophenol is very strong. Its dissociation is of the same order of magnitude as the strongest mineral acids.

The effect of the introduction of the hydroxyl group into benzoic acid, on the

strength of that acid, depends upon the position of the group. Benzoic acid at zero and v=128 has a value of $\mu_v=18.49$. μ_v for salicylic or orthohydroxybenzoic acid = 62.65, for metahydroxybenzoic = 20.48, while for parahydroxybenzoic at 128 and 0° , $\mu_v=18.29$.

The introduction of the second hydroxyl group raises the conductivity, the amount depending on the position of those groups. At zero and v = 128, μ_{σ} for 1, 2, 4 dihydroxybenzoic acid = 44.74, while μ_{σ} for 1, 2, 5 dihydroxybenzoic = 66.18.

Gallic acid, or trihydroxybenzoic acid, has an interest of its own. For zero and v = 128, $\mu_v = 14.01$. The third hydroxyl, instead of raising, lowers the conductivity below that of benzoic acid itself.

The presence of the amino group lowers the strength of the acid, as would be expected. Thus, benzoic acid at 0° and v = 64, $\mu_v = 13.42$. For orthoaminobenzoic acid $\mu_v = 3.07$; while for paraaminobenzoic acid $\mu_v = 3.71$.

The four sulphonic acids studied are all strong, as are sulphonic acids in general. Of the three toluic acids, the ortho is much stronger than the benzoic, while the other two are of the same order of strength. Cinnamic acid is slightly stronger than hydrocinnamic.

When we come to the dibasic phthalic acid, we have a much stronger compound than the monobasic acid. Thus, at 0° and v=64, μ_v for phthalic acid = 55.98. The introduction of the second carboxyl thus increases the strength of the acid.

DISSOCIATIONS OF ORGANIC ACIDS.

It is not necessary to consider the dissociations of the several acids in detail. It is better to take up the constants calculated from the dissociations, since these are the quantities so often desired in connection with the organic acids. Some conclusions have, however, been reached, especially by White and Wightman, in connection with the dissociations of these compounds, and these will be given.

The conductivity of most of the organic acids is a parabolic function of the temperature, as is shown by comparing the values found with those calculated from interpolation formula. Several of the amino acids are exceptions to this relation, their conductivities not being a parabolic function of the temperature.

The effect of rise in temperature on the dissociation of organic acids can be formulated thus: The dissociation of some of the organic acids decreases regularly with rise in temperature from 0°. Maxima occur in the dissociation of many of the organic acids. In some cases the maximum appears between 15° and 25°; in others between 25° and 35°, while in still other cases it falls at a higher temperature, *i. e.*, around 50°. This is apparently not in accord with the Thomson-Nernst hypothesis, which connects the dissociating power of a solvent with its dielectric constant, and the dielectric constant decreases with rise in temperature.

The strong organic acids do not obey the Ostwald dilution law and, therefore, "dissociation constants" could not be calculated for them by means of this law.

Isomeric acids are not always dissociated to the same extent, and their dissociations change differently with rise in temperature.

The migration velocities of metameric ions are identical. The migration velocities of the anions of organic acids are a function of the number of atoms present in the anions. This fact is utilized to find the values of μ_{∞} for the dibasic organic acids.

THE DISSOCIATION CONSTANTS.

The "constants" for the various acids are calculated by means of the Ostwald dilution law, $\frac{\alpha^2}{(1-\alpha)v}$ const. This, as is well known, does not apply to the strongly dissociated compounds, which therefore have no "constants." The constants are given for the volumes 32 and 1024, and for the temperatures 0°, 25°, and 65°.

DISSOCIATION CONSTANTS.

D.	ISSOCIATIO	N CONSI	ANIS.			
Acid.	0	0	28	5°	6	5°
Aciu.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Acetic	0.179	0.170	0.184	0.175	0.166	0.154
Cyanacetic	41.0	38.0	39.0	35.0	29.0	26.0
Phenylacetic	0.540	0.526	0.536	0.518	0.420	0.375
Propionic	0.138	0.125	0.141	0.123	0.116	0.108
a-Brompropionic	10.3	12.7	8.7	10.6		
β-Iodopropionic	1.04	0.92	0.99	0.87		
Acetylpropionic	0.225	0.206	0.250	0.233	0.237	0.213
n-Butyric	0.165	0.161	0.157	0.150		
a-Brombutyric	13.1	15.6	11.0	13.2		
Isobutyric	0.155	0.154	0.148	0.147	0.129	0.119
Hydroxyisobutyric	0.99	0.94	1.10	1.03	0.98	0.91
Isovaleric		0.170	0.169	0.161	0.125	0.109
Caprylic		0.129		0.129		0.095
Malonic	14.8	14.8	16.3	16.7		
Dimethylmalonic	7.57	6.90	7.75	7.21	7.45	6.77
Ethylmalonic	12.9	12.4	12.8	12.3	10.6	9.5
Methylethylmalonic	17.0	16.7	16.9	16.9	14.5	14.6
Isopropylmalonic	12.5	12.0	13.2	13.2	11.2	11.4
Dipropylmalonic	132.0	122.0	113.0	102.0		79.0
Butylmalonic	11.0	11.0	10.8	10.5	9.15	8.8
Benzylmalonic	16.6	15.8	16.0	15.2	12.8	11.7
Allylmalonic	16.8		16.2		13.8	13.1
Succinic	0.556	0.572	0.655	0.665	0.687	0.688
Monobromsuccinic		48.1		39.4		
Pyrotartaric		0.78	0.89	0.87	0.85	0.81
<i>l</i> -Tartaric		9.6	10.6	12.2	11.1	11.9
Racemic		10.4	10.9	12.3	9.9	10.4
Thiodiglycolic		6.24	6.23	6.36	6.08	6.16
Tricarballylic		1.95	2.11	2.15	2.19	2.27
Benzilic		9.36		9.02		7.09
Hippuric		2.13		2.28		2.16
Citric		7.88	8.63	10.6	10.13	11.16
Pyromucic		8.4	7.6	7.4	5.4	4.8
Crotonic		0.194	0.215	0.211	0.185	0.182
Maleic		179.0	154.0 10.1	209.0	106.0	161.5
Fumaric		$10.7 \\ 1.27$	10.1	$\frac{11.5}{1.50}$	$8.5 \\ 1.55$	8.6
Itaconic			38.1		30.12	$\frac{1.53}{31.91}$
Citraconic		43.4	8.1	$\begin{array}{c} 37.6 \\ 8.7 \end{array}$	6.6	6.4
Mesaconic	8.4	$\frac{9.3}{52.3}$	0.1	48.5	0.0	27.7
Phenylpropiolic		0.572		0.649		0.552
Benzoico-Chlorbenzoic		18.1		13.1		8.8
o-Nitrobenzoic	102.0	$\frac{16.1}{52.0}$	68.9	$\frac{13.1}{47.0}$	32.7	30.8
m-Nitrobenzoic	102.0	3.19	00.0	3.23		3.38
p-Nitrobenzoic		3.58		4.00		3.54
1, 3, 5-Dinitrobenzoic		13.4		16.2		15.6
Salicylic		8.1		10.6		11.0
Acetylsalicylic				$\frac{10.0}{2.7}$		
m-Hydroxybenzoic		0.726		0.804		0.692
p-Hydroxybenzoic				0.284		0.261
1, 2, 4-Dihydroxybenzoic		3.94		5.08		4.90
1, 2, 5-Dihydroxybenzoic		10.6		13.2		
Gallic		0.348		0.384		0.420
o-Aminobenzoic		0.0554	:	0.100		
	J		1			

DISSOCIATION CONSTANTS—Continued.

A : J	0	•	25	5°	35°		
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024	
m-Aminobenzoic							
p-Aminobenzoic		0.0678		0.110		0.119	
Metanilic	0.90	0.90	1.99	1.96	5.34	4.79	
Sulphanilic	3.34	3.26	6.01	5.53	13.4	12.10	
Pieramie		0.253		0.486		1.11	
p-Sulphaminobenzoic		2.76		2.97		2.59	
o-Toluic		1.52		1.32		0.90	
<i>m</i> -Toluic		0.513		0.560		0.48	
p-Toluic		0.383		0.433		0.372	
Cinnamic		0.320		0.367		0.331	
Hvdrocinnamic	0.229	0.214	0.232	0.221	0.191	0.177	
o-Phthalic		13.4		12.8		10.2	
Anisic		0.303		0.335		0.331	
Vanillic		0.31		0.35		0.33	
Naphthionic				21.2		44.2	
Mandelic		4.32	4.29	4.32	3.66	3.45	
Camphoric		0.282		0.264		0.201	
Coumarie		0.233		0.268		0.236	

These "affinity constants" are of fundamental importance in dealing with organic acids. From these values we learn more about the organic acids as acids than from any other data. The constants are tabulated for convenience of reference, and a glance will give a very good idea of the relative activities of a fairly large number of very different types of the acids of carbon.

TEMPERATURE COEFFICIENTS IN CONDUCTIVITY UNITS.

The following tabulation of some of the results will aid in an examination of these values. The heading 0° means zero to the next temperature.

Acid.		0°	25° t	o 35°	50° 1	to 65°
Aciu.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Acetic	0.14	0.72	0.12	0.62	0.08	0.46
Dichloracetic	3.62	5.46	3.30	4.94	1.75	4.39
Trichloracetic		5.26	4.12	5.05	2.75	2.83
Cyanacetic		4.35	1.23	4.04	0.70	3.01
Phenylacetic		1.05	0.18	0.82	0.98	0.45
Propionie		0.61	0.10	0.51	0.05	0.28
a-Brompropionic		3.27	0.56	2.75		
β-Iodopropionic		1.34	0.26	1.32		
Acetylpropionic	0.16	0.81	0.14	0.71	0.095	0.44
n-Butyric		0.64	0.05	0.41		
α-Brombutyric	0.79	3.25	0.54	2.62		
Isobutyric	0.12	0.60	0.09	0.46	0.041	0.18
Hydroxyisobutyric	0.33	1.54	0.28	1.46	0.17	0.90
Isovaleric	0.113	0.589	0.87	0.415	0.45	0.175
Caprylic		0.56		0.45		0.22
Malonic	1.17	4.06	1.03	3.36	0.53	
Dimethylmalonic		3.04	0.72	2.71	0.55	2.17
Ethylmalonic	0.95	3.42	0.81	2.88	0.54	2.18
Diethylmalonic	1.92	4.47	1.48	4.16	0.80	3.27
Methylethylmalonic	1.07	3.67	0.95	3.18	0.72	2.82
Isopropylmalonic	0.97	3.53	0.87	3.04	0.51	2.41
Dipropylmalonic	2.13	4.63	1.58	4.14		3.40
Butylmalonic	0.87	3.15	0.78	2.97	0.53	2.26
Benzylmalonic	1.03	3.50	0.85	3.02	0.57	2.30
Allylmalonic	1.06	3.67	0.88	3.23	0.61	2.37

TEMPERATURE COEFFICIENTS IN CONDUCTIVITY UNITS—Continued.

A c: J	0,	o	25° t	o 35°	50° t	o 65°
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Succinic	0.28	1.41	0.24	1.16	0.18	1.03
Monobromsuccinic	3.10	$\frac{4.20}{8.01}$	1.74	6.35	3.28	5.26
Pyrotartaric	0.29	1.43	0.27	1.27	0.29	0.20
l-Tartaric	0.99	3.73	0.89	3.22	0.68	2.70
Racemic	1.02	3.73	0.95	3.43	0.62	2.21
Thiodiglycolic	0.70	2.94	0.59	2.48	0.39	1.94
Tricarballylic	0.47	2.12	0.44	2.06	0.33	1.22
Diphenylglycolic		3.02		2.87		1.77
Hippuric		$\frac{2.06}{3.64}$	0.87	$\frac{1.61}{3.38}$	0.75	$\frac{1.13}{4.35}$
Citrie Pyromucie	0.91	$\frac{3.04}{3.08}$	$0.57 \\ 0.52$	$\frac{3.38}{2.06}$	0.73	1.07
Crotonic	0.15	0.78	0.12	0.66	0.082	0.64
Maleic	2.74	5.14	2.34	4.67	1.80	4.20
Fumaric	0.94	3.62	1.78	3.00	0.50	2.05
Itaconic	0.40	1.81	0.35	1.65	0.29	1.40
Citraconic	1.43	2.24	1.21	3.74	0.91	3.24
Mesaconic	0.80	3.78	0.60	2.42	0.41	1.86
Phenylpropiolic		4.44	1 86	3.94	3.32	$\frac{2.00}{8.59}$
Meconic Benzoic		$\frac{10.06}{1.26}$	4.86	$\frac{9.18}{1.06}$	3.32	0.67
o-Chlorbenzoic.		3.13		$\frac{1.00}{2.35}$		1.13
o-Nitrobenzoic	1.49	4.36	0.84	3.51	0.153	2.22
m-Nitrobenzoic		2.49		2.16		1.67
p-Nitrobenzoic		2.63		2.40		1.33
1, 2, 4-Dinitrobenzoic	3.04	5.05	2.15	4.80	1.14	3.52
1, 3, 5-Dinitrobenzoic		3.84		3.59		2.49
Picric		4.99	4.14	4.93	3.61	3.46
Salicylic	• • • • • • •	3.80 1.89				2.37
Sulphosalicylic	4 95	8.04	4.56	7.57	3.59	5.62
m-Hydroxybenzoic	1.50			1.19		0.77
p-Hydroxybenzoic				0.79		0.49
1. 2. 4-Dihvdroxybenzoic		2.97				1.69
1, 2, 5-Dihydroxybenzoic						
Gallic						0.65
o-Aminobenzoic					• • • • • • •	
m-Aminobenzoic				0.78		
Metanilic	0.53	2.50	0.81	3.23	1.10	3.82
Sulphanilie	0.88	3.45	1.30	3.88	1.48	4.37
Picramic				1.84		2.30
p-Sulphaminobenzoic						1.27
Benzenesulphonic	4.76	5.40	4.50	5.13	4.16	4.67
m-Nitrotoluenesulphonic	4.47	4.73	4.29	4.59	$\frac{3.77}{3.94}$	3.89
p-Toluenesulphonic	4.62	4.93	4.59	$\frac{4.76}{4.35}$	3.94	3.83
1, 2, 4-Nitrotoluenesulphonic	4.44	$\frac{4.74}{1.52}$	4.06			0.51
m-Toluic						0.64
p-Toluic						0.61
Cinnamic		1.08		0.84		0.62
Hydrocinnamic	0.145	0.757	0.104	0.595	0.079	0.38
o-Phthalic						2.44
4, 5-Dichlorphthalic						$\begin{bmatrix} 2.93 \\ 3.46 \end{bmatrix}$
Tetrachlorphthalic						0.66
AnisicVanillie		1111				0.60
Naphthionic						4.56
Mandelic	0.56	2.43	0.51	2.13	0.35	1.55
Camphoric		0.75		0.59		0.36
Coumaric				0.61		0.49

The temperature coefficients of conductivity, expressed in conductivity units, increase rapidly with the dilution of the solution, and for weak organic acids, when not much hydrated, decrease rapidly with rise in temperature. When the acids are hydrated the temperature coefficients of conductivity are larger, and their increase with dilution and decrease with rise in temperature both take place at a slower rate.

The organic acids with the larger constants also have, in general, the larger temperature coefficients of conductivity expressed in conductivity units. The ortho acids usually have a somewhat larger coefficient than the meta and the para. The meta and the para have very nearly the same values for the temperature coefficients expressed in conductivity units.

TEMPERATURE COEFFICIENTS IN PER CENT.

The following coefficients in per cent were obtained; the heading 0° means from zero to next temperature.

Acid.	()°	25° t	o 35°	50° t	o 65°
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Acetic	2.62	2.57	1.39	1.32	0.72	0.79
Dichloracetic	2.18	2.46	1.30	1.37	0.52	0.90
Trichloracetic	2.20	2.35	1.28	1.42	0.65	0.59
Cvanacetic	2.29	2.32	1.16	1.39	0.52	0.79
Phenylacetic	2.32	2.30	1.23	1.15	0.55	0.51
Propionic	2.56	2.56	1.33	1.31	0.56	0.57
a-Brompropionic	2.00	2.16	1.00	1.17		
β-Iodopropionic	2.25	2.28	1.35	1.45		
Acetylpropionic	2.74	2.71	1.43	1.43	0.74	0.67
<i>n</i> -Butyric	2.38	2.38	1.19	0.98		0.01
a-Brombutyric	1.86	2.02	0.89	1.09		
Isobutyric	2.35	2.02	1.17	1.13	0.46	0.39
Hydroxyisobutyric	$\frac{2.33}{2.71}$	2.62	1.38	1.50	$0.40 \\ 0.65$	0.39
Isovaleric	2.10	2.08	1.07	0.98	0.46	0.70
Caprylic		$\frac{2.08}{2.29}$	1.07	1.17	0.40	0.34
Malonic	2.69	2.65	1.43	1.34	0.74	0.40
Dimethylmalonic	$\frac{2.03}{2.43}$	2.45	1.40	1.36	0.74	
	$\frac{2.43}{2.33}$	2.43	$\frac{1.40}{1.27}$	$\frac{1.30}{1.25}$		0.82
Ethylmalonic					0.66	0.71
Diethylmalonic	2.07	2.22	1.06	1.33	0.46	0.79
Methylethylmalonic	2.33	2.35	1.31	1.28	0.76	0.87
Isopropylmalonic	2.43	2.45	1.34	1.30	0.61	0.78
Dipropylmalonic	2.06	2.27	1.02	1.30		0.81
Butylmalonic	2.32	2.25	1.32	1.36	0.69	0.79
Benzylmalonic	2.29	2.29	1.22	1.26	0.65	0.74
Allylmalonic	2.33	2.31	1.23	1.30	0.16	0.73
Succinic	2.03	2.94	1.47	1.42	0.84	0.94
Monobromsuccinic		2.22				
Dibromsuccinic	1.77	2.10	0.71	1.11	1.09	0.74
Pyrotartaric	2.64	2.63	1.47	1.42	0.79	
<i>l</i> -Tartaric	2.94	2.75	1.52	1.40	0.84	0.88
Racemic	2.93	2.68	1.59	1.49	0.80	0.73
Thiodiglycolic	2.43	2.45	1.28	1.30	0.64	0.78
Tricarballylic	2.86	2.68	1.56	1.57	0.88	0.68
Diphenylglycolic		2.26		1.23		0.66
Hippuric		2.54		1.23		0.66
Citric	3.00	2.86	1.64	1.55	0.98	0.95
Pyromucic	2.08	2.31	1.04	1.02	0.45	0.43
Crotonic	2.69	2.68	1.31	1.37	0.68	0.73
Maleic	2.54	2.43	1.34	1.38	0.78	0.93
Fumaric	2.64	2.56	1.19	1.17	0.67	0.70
Itaconic	2.97	2.71	1.50	1.45	0.90	0.91
Citraconic	2.08	2.28	1.18	1.29	0.70	0.84
Mesaconic	2.39	2.37	1.16	1.15	0.67	0.68
	2.00	2.01	1.10	1.10	0.07	0.08

Acid.	0°		25° to 35°		50° to 65°	
Acid.	v = 32	v = 1024	v = 32	v = 1024	v = 32	v = 1024
Phenylpropiolic		2.32		1.31		0.51
Meconic		2.36	1.18	1.34	0.63	0.96
Benzoic		2.64		1.35		0.65
o-Chlorbenzoic		1.97		1.01		0.40
o-Nitrobenzoic	1.52	2.22	0.59	1.16	0.11	0.55
m-Nitrobenzoic		2.69		1.40		0.78
p-Nitrobenzoic		2.63	1	1.47		0.61
1, 2, 4-Dinitrobenzoic		2.31	0.90	1.40	0.40	0.77
1, 3, 5-Dinitrobenzoic		2.60		1.47		0.76
Picric	2.32	2.41	1.36	1.48	0.90	0.75
Salicylic		2.91		1.41		0.79
Acetylsalicylic		2.04		1.39		1.06
Sulphosalicylic	2.36	2.49	1.37	1.44	0.83	0.81
m-Hydroxybenzoic		2.71		1.36		0.66
p-Hydroxybenzoic		2.72		1.44		0.67
1, 2, 4-Dihydroxybenzoic		2.87		1.46		0.70
1, 2, 5-Dihydroxybenzoic		2.79		1.41		
Gallic		2.76		1.39		0.76
o-Aminobenzoic		4.03		2.40		
m-Aminobenzoic		5.11		2.81		
p-Aminobenzoic		3.57		1.79		
Metanilic		2.30	3.02	2.63	2.23	1.81
Sulphanilic		3.57	2.68	2.12	1.89	1.52
Picramic		4.30		2.58		1.93
<i>p</i> -Sulphaminobenzoic		2.52		1.21		0.67
Benzenesulphonic	2.27	2.37	1.33	1.43	0.92	0.98
m-Nitrobenzenesulphonic		2.31	1.40	1.42	0.92	0.90
p-Toluenesulphonic		2.34	1.45	1.43	0.92	0.86
1, 2, 4-Nitrotoluenesulphonic		2.37	1.34	1.37		
o-Toluic		2.11		0.94		0.40
m-Toluic		2.62		1.32		0.65
<i>p</i> -Toluic		2.76		1.42		0.70
Cinnamic		2.96		1.37		0.77
Hydrocinnamic		2.49	1.24	1.22	0.67	0.61
o-Phthalic		2.37		1.15		0.81
4, 5-Dichlorphthalic		2.14		1.10		0.59
Tetrachlorphthalic		2.11		1.20		0.56
Anisic		2.74		1.43		0.82
Vanillie		2.63		1.58		0.75
Naphthionic		3.30	1 01	1.94		1.19
Mandelic		2.30	1.31	1.27	0.71	0.72
Camphoric		$\frac{2.20}{3.07}$		1.13		0.56
Coumaric		3.07		1.15		0.70

The temperature coefficients of conductivity, expressed in conductivity units, are, for the same volume and temperature, of the same order of magnitude. Take v=32, and at 0° these coefficients range in general from 2.2 to 2.7. There are a few comparatively wide discrepancies. Thus $\alpha=$ brombutyric, dibromsuccinic, o-nitrobenzoic, and 1, 2, 4 dinitrobenzoic have percentage coefficients that are much lower than 2.2; while citric, coumaric, and especially metanilic and sulphanilic, have coefficients much larger than 2.7. That the relation pointed out above holds in general will be seen from the results. It will also be noted that the temperature coefficients in "per cent" decrease with rise in temperature.

The results recorded in this monograph are for 200 of the most frequently used salts and organic acids. Work along this same line is being continued in this laboratory. It is intended to include in this investigation a much larger number of salts, organic acids, the strong mineral acids and bases, and the organic bases in water and nonaqueous and mixed solvents.

INDEX.

Acetate	PAGE.	Acid, continued—	PAGE.
Barium		Meta-aminobenzoic	125
Cobalt		Meta-hydroxybenzoic	122
Lead		Metanilic	126
Magnesium		Meta-nitrobenzenesulphonic	128
Nickel		Meta-nitrobenzoic	121
PotassiumSodium		Meta-toluic	
Strontium		Monobromsuccinic	106
Uranyl		Naphthionic	135
Zinc		Nitrie	
Acetic acid		Nitrobenzoic, meta	
Cyan		Nitrobenzoic, para	
Dichlor		Nitrotoluenesulphonic (1, 2, 4)	129
Phenyl		Nitrotoluenesulphonic	130
Trichlor	94	Organic acids, values of μ_{∞} for the	91
Acetylpropionic acid, beta	97	Ortho-aminobenzoic	124
Acetylsalicylic acid	121	Ortho-chlorbenzoic	
Acid—	00	Ortho-nitrobenzoic	
Acetic	93	Ortho-phthalic	133
Acetylsalicylic	121	Ortho-toluic	130
Acetylpropionic, beta		Para-aminobenzoic	125
Allylmalonic		Para-hydroxybenzoic Para-sulphaminobenzoic	197
Alpha-brompropionic		Para-toluenesulphonic	120
Aminobenzoic, meta		Para-toluic	113
Anisic	134	Picramic	
Benzenesulphonic	128	Picric	
Benzilic	110	Phenylacetic	
Benzoic	116	Phenylpropiolic	115
Benzylmalonic	104	Propionic	98
Butylmalonic		Pyromucic	112
Butyric normal		Pyrotartaric	107
Camphoric	136	Racemic	108
Caprylic	100	Salicylic	120
Cinnamic		Succinic	105
Citraconic		Sulphanilic	120
Citric		Sulphosalicylic	66
CoumaricCrotonic		Sulphuric Tetrachlorphthalic	
Cyanuric		Thiodiglycolie	109
Cyanacetic		Tricarballylic	109
Dibromsuccinic		Trichloracetic	94
Dichloracetic		Uric	
Dichlorphthalic (4, 5)	133	Vanillic	135
Diethylmalonic	102	Allylmalonic	108
Dihydroxybenzoic (1, 2, 4) Dihydroxybenzoic (1, 2, 5)	123	Alpha-brompropionic	96
Dihydroxybenzoic (1, 2, 5)	123	Aluminium—	0
Dimethylmalonic	101	Ammonium sulphate	
Dinitrobenzoic (1, 2, 6)	119	Chloride	
Diphenylglycolic	101	NitratePotassium sulphate	
Fumaric		Sulphate	
Gallic		Aminobenzoic acid—	
Hippuric		Meta	125
Hydrochloric		Ortho	124
Hydrocinnamic		Para	125
Hydroxyisobutyric		Ammonium aluminium sulphate	\dots 34
Iodopropionic, beta		Ammonium acid sulphate	34
Isobutyric	98	Ammonium—	
Isopropylmalonic	103	Bromide	
Isovaleric		Chloride	
Itaconic	114	Chromium sulphate (green)	35
Laevo-tartaric		Chromium sulphate (violet)	
Levulinic		Copper sulphate	
Maleic Malonic	100	Iodide, tetraethyl Nitrate	
Mandelic		Sodium acid phosphate	
Meconic		Sulphate	
Mesaconic		Anisic acid	

146 INDEX.

	PAGE.		PAGE.
AcetateBromide		Strontium. Uranyl.	
Chloride		Chromate—	. 00
Formate		Calcium	. 38
Nitrate		Potassium	. 28
Baths		Chromic—	200
Benzenesulphonic acid		Chloride	
Benzilic acidBenzoic acid		NitrateSulphate	
Benzylmalonic acid		Chromium—	. 00
Beta-acetylpropionic acid	97	Ammonium sulphate (green)	. 35
Beta-iodopropionic acid	96	Ammonium sulphate (violet)	. 35
Borax	. 19	Potassium sulphate (green)	
Brombutyric acid, alpha	98	Potassium sulphate (violet)	
Bromide— Ammonium	32	Cinnamic acid	
Barium		Citric acid.	
Cadmium	48	Cobalt—	
Calcium	. 37	Acetate	
Cobalt		Bromide	
Cupric	. 56	Chloride	
Lithium	$\begin{bmatrix} 12 \\ 44 \end{bmatrix}$	NitrateSulphate	. 54
Potassium		Coefficients—	. 01
Sodium		Temperature, in conductivity units	. 141
Strontium		Temperature, in per cent	
Brompropionic acid, alpha	. 96	Temperature, of conductivity and th	
Butylmalonic acid	. 104	solvate theory of solution	
Butyric acid—	. 98	Temperature, of conductivity in pe	
Alpha-bromIso		Conductivities, molecular	
Normal		Conductivity—	
		Cells	
Cadmium—		Measurements	
Bromide	. 48	Temperature, coefficients of in per cent	
Chloride		Units, temperature coefficients in	. 141
Iodide	. 49	Constants— Cell	6.87
Calcium— Bromide	. 37	Dissociation	. 140
Chloride		Copper ammonium sulphate	. 36
Chromate		Coumaric acid	. 137
Formate	. 39	Crotonic acid	. 112
Nitrate		Cupric— Bromide	. 56
Camphoric acid		Chloride	
Carbonate—	. 100	Nitrate	
Potassium	. 24	Sulphate	. 57
Sodium		Cyanacetic acid	
Cell constants		Cyanuric acid	. 109
Cells, conductivity	. 5	Dehydrolytic time factor	. 69
Chlorate—	. 22	Dibromsuccinic acid	
Potassium		Dichloracetic acid	
Chlorbenzoic acid, ortho		Dichlorphthalic acid	. 133
Chloride—		Dichromate potassium	. 29
Aluminium		Dihydroxybenzoic acid (1, 2, 4)	123
Ammonium		Dihydroxybenzoic acid $(1, 2, 5) \dots$. 123
Barium		Dimethylmalonic acid	. 101
Cadmium Calcium		Dinitrobenzoic acid (1, 2, 6)	. 119
Chromic	62	Dinitrobenzoic acid (1, 3, 5)	. 119
Cobalt	. 53	Diphenylglycolic acid	
Cupric	. 56	Dipropylmalonic acid	
Ferric		Discussion of the results	
LeadLithium	$\begin{array}{ccc} . & 58 \\ . & 12 \end{array}$	Dissodium acid phosphate	
Magnesium	43	Dissociation—	140
Manganous	. 49	Constants	. 140
Nickel	. 51	Of organic acids	. 73
Potassium	. 20		
Sodium	. 14	Ethylmalonic acid	. 101

INDEX. 147

P	AGE.		GE
Ferric		Measurements, conductivity	6
Chloride	61	Meconic acid	
Nitrate	61	Mesaconic acid	
Ferrocyanide -		Meta-aminobenzoic acid	
Potassium		Meta-hydroxybenzoic acid	122
Sodium	19	Metanilic acid	120
Formate—	42	Meta-nitrobenzenesulphonic acid Meta-nitrobenzoic acid	110
Barium		Meta-toluic acid	
Calcium		Methylethylmalonic acid	
Magnesium		Methylmalonic acid, di	102
	1/1	Molecular conductivities	70
Gallic acid	$\begin{array}{c c} 124 \\ 7 \end{array}$	Monobromsuccinic acid	
,		Naphthionic acid	
Hippuric acid	110	Nickel—	100
Hydration and ionic volume		Acetate	52
Hydrochloric acid	139	Chloride	5
Hydroxybenzoic acid—	102	Nitrate	5.
Meta	122	Potassium sulphate	26
Para		Sulphate	52
Hydroxyisobutyric acid		Nitrate—	
Investigators who have worked on the		Aluminium	60
problem		Ammonium	33
Introduction		Barium	42
Iodide		Calcium	37
Cadmium	49	Chromic	$\frac{62}{54}$
Potassium		CobaltCupric	5
Sodium		Ferric	6
Tetraethylammonium		Lead	58
Iodopropionic acid, beta		Lithium	13
Ionic volume and hydrationIsobutyric acid	80 98	Magnesium	4
Hydroxy	99	Manganous	50
Isopropylmalonic acid	103	Nickel	5.
Isovaleric acid		Potassium	23
Itaconic acid	114	Silver	$\frac{58}{18}$
Laevo-tartaric acid		SodiumStrontium	40
Lead—	10.	Uranyl	64
Acetate	59	Zinc	40
Chloride		Nitric acid	66
Nitrate			128
Levulinic acid	97	Nitrobenzoic acid—	
Lithium—	10	Meta	
Bromide	$\begin{array}{c c} 12 \\ 12 \end{array}$	OrthoPara	110
ChlorideNitrate		Nitrotoluenenesulphonic acid (1, 2, 4)	120
Sulphate		Nitrotoluenesulphonic acid (1, 4, 2)	130
	10	Organic acids	
Magnesium—	46	Discussion of the results with the	
AcetateBromide	40	Dissociation of	
Chloride	43	Values of μ_{∞} for the	
Formate		Ortho-aminobenzoic acid	124
Nitrate	44	Ortho-chlorbenzoic acid	11
Magnesium sulphate	45		11'
Maleic acid	113	Ortho-phthalic acid	133
Malonic acid	100	Ortho-toluic acid	
Allyl.		Para-aminobenzoic acid	123
Benzyl		Para-hydroxybenzoic acid	122
Butyl		Para-nitrobenzoic acid	113
Diethyl		Para-sulphaminobenzoic acid	120
Dipropyl		Para-toluic acid	13
Ethyl.		Per cent—	IU.
Isopropyl	103		143
Methylethyl	102	Temperature coefficients of conduc-	
Mandelic acid	136	tivity	8.
Manganous—	40	Perchlorate—	0.
Chloride	49	Potassium	25
NitrateSulphate	50 50	Sodium	$\frac{16}{28}$
outphate	90	Permanganate, potassium	40

PA	GE.		AGE.
Phenylacetic acid	95	Solutions, preparation of	8
Phenylpropiolic acid	115	Succinic ácid	105
Phosphate—		Sulphaminobenzoic acid, para	127
Dipotassium acid	25	Sulphate—	121
	18	Aluminium	60
Disodium acid	$\frac{16}{25}$	Aluminium	
Potassium		Ammonium	33
Sodium ammonium acid	18	Ammonium acid	34
Phthalic acid, ortho		Ammonium aluminium	34
Picramic acid		Ammonium chromium (green)	35
Picric acid	120	Ammonium chromium (violet)	35
Potassium—		Ammonium copper	36
Acetate	30	Chromic	63
Acid sulphate	24	Cobalt	54
Aluminium sulphate	30	Cupric	57
Bromide	21	Lithium	13
Carbonate	24	Magnesium	45
Chlorate	22	Manganous	50
Chloride	20	Nickel	52
Chromate	$\frac{28}{28}$	Potassium	23
Chromium sulphate (green)	27	Potassium acid	24
Chromium sulphate (violet)	$\frac{27}{27}$	Potassium aluminium	30
Dichromate	29	Potassium chromium (green)	$\frac{30}{27}$
Formograpido	29	Potassium chromium (violet)	$\frac{27}{27}$
Ferrocyanide	$\frac{29}{21}$		
Iodide		Potassium nickel	
Nickel sulphate	26	Potassium sodium	26
Nitrate	22	Sodium	
Monacid phosphate	25	Uranyl	
Perchlorate	23	Zinc	47
Permanganate	28	Sulphaminobenzoic acid, para	127
Phosphate	25	Sulphanilic acid	126
Sodium sulphate	26	Sulphocyanate, potassium	31
Sulphate	23	Sulphosalicylic acid	121
Sulphocyanate	31	Sulphuric acid	66
Preparation of the solutions	8	Strontium—	
Problem, investigators who have worked		Acetate	40
on the	11	Bromide	39
Propionic acid	95	Chloride	
Alpha-brom	96	Nitrate	
Beta-acetyl	97		
Beta-iodo	96	Tartaric acid, laevo	101
Propylmalonic acid, di	103	Temperature coefficients—	141
Pyromucic acid		In conductivity units	
Pyrotartaric acid	107	In per cent	
Racemic acid	108	Of conductivity and the solvate theory	
Results	11	of solution	
Disaucción of the	67	Of conductivity in per cent	
Discussion of the		Tetraborate, sodium	
With the organic acids, discussion of	137	Tetrachlorphthalic acid	
Salts—		Tetraethylammonium iodide	
Dissociation of the various	73	Thiodiglycolic acid	108
Sodium, of the organic acids, values of		Time factor, dehydrolytic	69
μ_{∞}	88	Toluenesulphonic acid, para	129
Salicylic acid	120	Toluic acid—	
Silver nitrate	55	Meta	13.
Sodium—	0	Ortho	130
Acetate	20	Para	. 132
Ammonium acid phosphate	18	Tricarballylic acid	109
Bromide	14	Trichloracetic acid	. 94
Carbonate	17 .	Uranyl—	
Chlorate	16	Åcetate	. 6
Chloride	14	Chloride	63
Ferrocyanide	19	Nitrate	
Iodide	$\overline{15}$	Sulphate	
Nitrate	15	Uric acid	
Perchlorate	16	Valeric acid, iso	
Potassium sulphate	26	Vanillic acid	
Salts of the organic acids, values of μ_{∞} .	88	Volume ionic and hydration	
Sulphate	17	Water	
Tetraborate	19	Zinc—	
Solvate theory of solution and temperature		Acetate	. 4
coefficients of conductivity	76	Nitrate	
Solubility of glass			
Columnity of glass	- 1	Sulphate	. 1

Date Due

All library items are subject to recall 3 weeks from the original date stamped.

ADD O 4 see	date stainped.
APR 0 1 2002	
1482	0.7
Dii	
Brigha	m Young University

Brigham Young University

