Recitation 1

Gradients and Directional Derivatives

Brett Bernstein

CDS at NYU

January 21, 2018

Intro Question

Question

We are given the data set $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to fit a linear function to this data by performing empirical risk minimization. More precisely, we are using the hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}$ and the loss function $\ell(a, y) = (a - y)^2$. Given an initial guess \tilde{w} for the empirical risk minimizing parameter vector, how could we improve our guess?

Intro Solution

Solution

• The empirical risk is given by

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 = \frac{1}{n} ||Xw - y||_2^2,$$

where $X \in \mathbb{R}^{n \times d}$ is the matrix whose *i*th row is given by x_i .

• Can improve a non-optimal guess \tilde{w} by taking a small step in the direction of the negative gradient.

Single Variable Differentiation

- Calculus lets us turn non-linear problems into linear algebra.
- For $f: \mathbb{R} \to \mathbb{R}$ differentiable, the derivative is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Can also be written as

$$f(x+h) = f(x) + hf'(x) + o(h)$$
 as $h \to 0$,

where o(h) denotes a function g(h) with $g(h)/h \to 0$ as $h \to 0$.

• Points with f'(x) = 0 are called *critical points*.

1D Linear Approximation By Derivative

Multivariable Differentiation

- Consider now a function $f: \mathbb{R}^n \to \mathbb{R}$ with inputs of the form $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.
- Unlike the 1-dimensional case, we cannot assign a single number to the slope at a point since there are many directions we can move in.

Multiple Possible Directions for $f: \mathbb{R}^2 \to \mathbb{R}$

Directional Derivative

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$. The directional derivative f'(x; u) of f at $x \in \mathbb{R}^n$ in the direction $u \in \mathbb{R}^n$ is given by

$$f'(x; u) = \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h}.$$

- By fixing a direction u we turned our multidimensional problem into a 1-dimensional problem.
- Similar to 1-d we have

$$f(x + hu) = f(x) + hf'(x; u) + o(h).$$

• We say that u is a descent direction of f at x if f'(x; u) < 0.

Directional Derivative as a Slope of a Slice

Partial Derivative

- Let $e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$ denote the *i*th standard basis vector.
- The *i*th *partial derivative* is defined to be the directional derivative along e_i .
- It can be written many ways:

$$f'(x; e_i) = \frac{\partial}{\partial x_i} f(x) = \partial_{x_i} f(x) = \partial_i f(x).$$

• What is the intuitive meaning of $\partial_{x_i} f(x)$? For example, what does a large value of $\partial_{x_3} f(x)$ imply?

Differentiability

• We say a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}^n$ if

$$\lim_{v \to 0} \frac{f(x+v) - f(x) - g^{T}v}{\|v\|_{2}} = 0,$$

for some $g \in \mathbb{R}^n$.

 If it exists, this g is unique and is called the gradient of f at x with notation

$$g = \nabla f(x)$$
.

It can be shown that

$$\nabla f(x) = \begin{pmatrix} \partial_{x_1} f(x) \\ \vdots \\ \partial_{x_n} f(x) \end{pmatrix}.$$

11 / 1

Useful Convention

- Consider $f: \mathbb{R}^{p+q} \to \mathbb{R}$.
- Split the input $x \in \mathbb{R}^{p+q}$ into parts $w \in \mathbb{R}^p$ and $z \in \mathbb{R}^q$ so that x = (w, z).
- Define the partial gradients

$$\nabla_w f(w,z) := \left(\begin{array}{c} \partial_{w_1} f(w,z) \\ \vdots \\ \partial_{w_p} f(w,z) \end{array} \right) \quad \text{and} \quad \nabla_z f(w,z) := \left(\begin{array}{c} \partial_{z_1} f(w,z) \\ \vdots \\ \partial_{z_q} f(w,z) \end{array} \right).$$

Tangent Plane

Analogous to the 1-d case we can express differentiability as

$$f(x + v) = f(x) + \nabla f(x)^T v + o(||v||_2).$$

- The approximation $f(x + v) \approx f(x) + \nabla f(x)^T v$ gives a tangent plane at the point x.
- The tangent plane of f at x is given by

$$P = \{(x + v, f(x) + \nabla f(x)^T v) \mid v \in \mathbb{R}^n\} \subseteq \mathbb{R}^{n+1}.$$

• Methods like gradient descent approximate a function locally by its tangent plane, and then take a step accordingly.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Tangent Plane for $f: \mathbb{R}^2 \to \mathbb{R}$

Directional Derivatives from Gradients

• If f is differentiable we have

$$f'(x; u) = \nabla f(x)^T u.$$

• If $\nabla f(x) \neq 0$ this implies that

$$\underset{\|u\|_2=1}{\arg\max} f'(x;u) = \frac{\nabla f(x)}{\|\nabla f(x)\|_2} \quad \text{and} \quad \underset{\|u\|_2=1}{\arg\min} f'(x;u) = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}.$$

- The gradient points in the direction of steepest ascent.
- The negative gradient points in the direction of steepest descent.

4□ > 4□ > 4 = > 4 = > = 90

Critical Points

- Analogous to 1-d, if $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and x is a local extremum then we must have $\nabla f(x) = 0$.
- Points with $\nabla f(x) = 0$ are called *critical points*.
- Later we will see that for a convex differentiable function, x is a critical point if and only if it is a global minimizer.

Critical Points of $f: \mathbb{R}^2 \to \mathbb{R}$

Computing Gradients

Question

For questions 1 and 2, compute the gradient of the given function.

 $f: \mathbb{R}^3 \to \mathbb{R}$ is given by

$$f(x_1, x_2, x_3) = \log(1 + e^{x_1 + 2x_2 + 3x_3}).$$

2 $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(x) = ||Ax - y||_2^2 = (Ax - y)^T (Ax - y) = x^T A^T Ax - 2y^T Ax + y^T y,$$

for some $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$.

Assume A in the previous question has full column rank. What is the critical point of f?

18 / 1

$$f(x_1, x_2, x_3) = \log(1 + e^{x_1 + 2x_2 + 3x_3})$$
 Solution 1

We can compute the partial derivatives directly:

$$\begin{array}{lcl} \partial_{x_1} f(x_1, x_2, x_3) & = & \frac{e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \\ \partial_{x_2} f(x_1, x_2, x_3) & = & \frac{2e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \\ \partial_{x_3} f(x_1, x_2, x_3) & = & \frac{3e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \end{array}$$

and obtain

$$\nabla f(x_1, x_2, x_3) = \begin{pmatrix} \frac{e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \\ \frac{2e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \\ \frac{3e^{x_1 + 2x_2 + 3x_3}}{1 + e^{x_1 + 2x_2 + 3x_3}} \end{pmatrix}.$$

$$f(x_1, x_2, x_3) = \log(1 + e^{x_1 + 2x_2 + 3x_3})$$
 Solution 2

- Let $w = (1, 2, 3)^T$.
- Write $f(x) = \log(1 + e^{w^T x})$.
- Apply a version of the chain rule:

$$\nabla f(x) = \frac{e^{w^T x}}{1 + e^{w^T x}} w.$$

Theorem (Chain Rule)

If $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}$ are differentiable then

$$\nabla (g \circ h)(x) = g'(h(x)) \nabla h(x).$$

20 / 1

$f(x) = ||Ax - y||_2^2$ Solution

- We could use techniques similar to the previous problem, but instead we show a different method using directional derivatives.
- Note that

$$f(x + tv) = (x + tv)^{T} A^{T} A(x + tv) - 2y^{T} A(x + tv) + y^{T} y$$

= $x^{T} A^{T} Ax + t^{2} v^{T} A^{T} Av + 2t x^{T} A^{T} Av - 2y^{T} Ax - 2t y^{T} Av + y^{T} y$
= $f(x) + t(2x^{T} A^{T} A - 2y^{T} A)v + t^{2} v^{T} A^{T} Av$.

This gives

$$f'(x; v) = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} = (2x^T A^T A - 2y^T A)v$$

• Thus $\nabla f(x) = 2(A^T A x - A^T y) = 2A^T (A x - y)$.

Critical Points of $f(x) = ||Ax - y||_2^2$

- Need $\nabla f(x) = 2A^TAx 2A^Ty = 0$.
- Since A is assumed to have full column rank, we see that A^TA is invertible.
- Thus we have $x = (A^T A)^{-1} A^T y$.
- As we will see later, this function is strictly convex (Hessian $\nabla^2 f(x) = A^T A$ is positive definite).
- Thus we have found the unique minimizer (least squares solution).

Technical Aside: Differentiability

- When computing the gradients above we assumed the functions were differentiable.
- Can use the following theorem to be completely rigorous.

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ and suppose $\partial_{x_i} f: \mathbb{R}^n \to \mathbb{R}$ is continuous for $i = 1, \dots, n$. Then f is differentiable.