AKS алгоритм проверки числа на простоту

Рубаненко Евгений

2017

Аннотация

В данной работе рассматривается тест Агравала - Каяла - Саксены проверки числа на простоту. Алгоритм работает за полиномиальное время. Приведено доказательство корректности и сравнение с другими алгоритмами проверки числа на простоту.

- 1 Введение
- 2 Идея
- 3 Обозначения

4 Алгоритм

```
Data: n: integer
Result: True, если п простое, False - иначе
if n = a^b, \varepsilon \partial e \ a \in \mathbb{N}, b > 1 then
   return False;
else
    r := \min\{r \mid o_r(n) > \log^2 n\};
   if 1 < (a, n) < n, для какого-то a \le r then
       return False;
    else
       if n \leq r then
           return True;
        else
            for a := 1 to |\sqrt{\phi(r)} \log n| do
                if ((X + a)^n \neq X^n + a \pmod{X^r - 1, n}) then
                   return False;
                end
            end
            return True;
        end
    end
end
```

Algorithm 1: AKS алгоритм

5 Доказательство корректности

6 Анализ временной сложности алгоритма

Теорема 1. Алгоритм определяет простоту числа за время $O^{\sim}(\log^{\frac{21}{2}}n)$.

Лемма 1. Первый шаг алгоритма работает за время $O^{\sim}(log^3n)$.

Доказательство леммы 1. На первом шаге проверяется, что $n \neq a^b$. Для этого надо перебрать $O(\log n)$ вариантов для a. Для конкретного a с помощью бинарного поиска проверяется, что не существует подходящего b. Перебор b требует $O(\log n)$ времени, а вычисление каждого числа вида a^b - $O^{\sim}(\log n)$. Тогда общая сложность первого шага составит $O^{\sim}(\log^3 n)$.

Лемма 2. Второй шаг алгоритма работает за время $O^{\sim}(log^7n)$.

Доказательство леммы 2. На втором шаге алгоритма находится такое r, что $o_r(n) > log^2 n$. Это можно сделать следующим образом: в цикле по r будем проверять, что $n^k \neq 1 \pmod{r}$ для всех $k \leq log^2 n$. Для конкретного r потребуется не больше $O(log^2 n)$ умножений по модулю r, откуда сложность одной итерации - $O^{\sim}(log^2 n \log r)$. Согласно лемме *, необходимое r найдется,

причем перебрать придется всего $O(log^5n)$ значений. Тогда общая сложность второго шага составит $O^\sim(log^7n)$. \square Лемма 3. Третий шаг алгоритма работает за время $O(log^6n)$.

Доказательство леммы 3. Третий шаг алгоритма - цикл из r итераций. На каждой итерации вычисляется НОД двух чисел, что требует O(log n) времени. Тогда общая сложность третьего шага составит $O(r log n) = O(log^6n)$.

Лемма 4. Пятый шаг алгоритма работает за время $O^{\sim}(\log^{\frac{21}{2}}n)$. **Доказательство леммы 4.** Пятый шаг алгоритма - цикл из $\lfloor \sqrt{\phi(r)} \log n \rfloor$ итераций. На каждой итерации полином степени r возводится в степень n (что требует $O(\log n)$ времени); его коэффициенты можно оценить как $O(\log n)$. Таким образом, каждая итерация требует $O^{\sim}(r\log^2 n)$ времени. Тогда общая сложность пятого шага составит

$$O^{\sim}(r\sqrt{\phi(r)}\ log^3n) = O^{\sim}(r^{\frac{3}{2}}log^3n) = O^{\sim}(log^{\frac{21}{2}}n)$$

Доказательство теоремы 1. Так как четвертый шаг алгоритма выполняется за $O(\log n)$, то из лемм 1 - 4 следует, что временная сложность алгоритма составляет $O^{\sim}(\log^{\frac{21}{2}}n)$.

- 7 Сравнение с другими алгоритмами
- 8 Литература