

Komplexität von Algorithmen: Laufzeit, Speicherplatz

Manfred Hauswirth | Open Distributed Systems | Einführung in die Programmierung, WS 21/22

Grundlagen der Algorithmen-Analyse

Inhalt:

- Wie beschreibt man einen Algorithmus?
- Rechenmodell
- Laufzeitanalyse (Zeitkomplexität)
- Speicherplatzanalyse (Raumkomplexität)
- Wie beweist man die Korrektheit eines Algorithmus?

Insertion Sort

InsertionSort(Array A)

- 1. for $j \leftarrow 2$ to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. A[i+1] ← A[i]
- 6. i ← i-1
- 7. A[i+1] ← key

Idee Insertion Sort:

- Die ersten j-1 Elemente sind sortiert (zu Beginn j=2)
- Innerhalb eines Schleifendurchlaufs wird das j-te Element in die sortierte Folge eingefügt
- Am Ende ist die gesamte Folge sortiert

Insertion Sort – Laufzeit?

InsertionSort(Array A)

- 1. for $j \leftarrow 2$ to length(A) do
- 2. key ← A[j]
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

- ▲ Größe der Eingabe: length(A) → n
- ▲ verschiebe alle Elemente aus
- ▲ A[1...j-1], die größer als key
- ▲ sind eine Stelle nach rechts
- ▲ Speichere key in Lücke

Kernfrage:

Wie kann man die Laufzeit eines Algorithmus vorhersagen?

Insertion Sort – Laufzeit?

Laufzeit hängt ab von:

- Größe der Eingabe (Parameter n)
- Art der Eingabe
- Beobachtung:
 - Insertion Sort ist schneller bei aufsteigend sortierten Eingaben
 - Insertion Sort ist langsam bei absteigend sortierten Eingaben

Laufzeitanalyse – Beobachtungen

- Analyse
 - Laufzeit als Funktion der Eingabegröße
 - Wie?
 - Parametrisiert, d.h. in Abhängigkeit von der Eingabegröße
 - Eingabegröße: n
 - Laufzeit: T(n)
- Ziel
 - Finde Schranken (Garantien) an die Laufzeit
 - Obere Schranken "f mit f(n) => T(n)"
 - Untere Schranken "f mit f(n) <= T(n)"
 - •

LineareMethode(int n)

- $1. \quad sum = 0$
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. $sum \leftarrow sum + 1$

Nach der Ausführung hat sum den Wert n

QuadratischeMethode(int n)

- $1. \quad \mathsf{sum} = 0$
- 2. **for** i ← 1 **to** n **do**
- 3. for $j \leftarrow 1$ to n do
- 4. sum ← sum + 1

Nach der Ausführung hat sum den Wert n²

KubischeMethode(int n)

- $1. \quad sum = 0$
- 2. **for** $i \leftarrow 1$ **to** n **do**
- 3. for $j \leftarrow 1$ to n do
- 4. for $k \leftarrow 1$ to n do
- 5. sum ← sum + 1

Nach der Ausführung hat sum den Wert n³

Laufzeitanalyse – Beobachtungen

- Tatsächliche Laufzeit hängt ab von vielen Faktoren
 - Hardware (Prozessor, Cache, Pipelining)
 - Software (Betriebssystem, Programmiersprache, Compiler)

Ziel

- Laufzeitanalyse soll unabhängig von Hard- und Software gelten
- D.h. wird in der Regel auf der Basis von Pseudocode gemacht
- D.h. C-, Java-, oder Programmiersprachen-Implementierungsdetails sollen abstrahiert werden

Laufzeitanalyse – Beobachtungen

- Tatsächliche Laufzeit hängt ab von vielen Faktoren
 - Rechnerarchitektur
 - Übersetzer
 - Implementierung

Laufzeitanalyse

- Größenordnung der Laufzeit, also das asymptotische Verhalten der Laufzeit als Funktion der Eingabegröße n.
- D.h., wir ignorieren Details, z.B. konstante Faktoren
- Dadurch erhält man Laufzeit- / Wachstumsklassen (logarithmisch, linear, quadratisch, exponentiell, etc.), in die man Algorithmen einordnet.

Maschinenmodell Formal: Random Access Machine

- Maschinenmodell uniform
 - Eine Pseudocode-Instruktion braucht einen Zeitschritt
 - Wird eine Instruktion r-mal aufgerufen, werden r Zeitschritte benötigt
 - Die Zahlengröße spielt keine Rolle

Maschinenmodell Formal: Random Access Machine

- Maschinenmodell logarithmisch
 - Rechen- und Speicheroperationen werden per Bit berechnet
 d.h. die Größe der Zahlen ist wichtig und geht logarithmisch ein
 - Sonstige Pseudocode-Instruktionen brauchen einen Zeitschritt
 - Wird eine Instruktion r-mal auf k-Bit Zahlen (d.h. Zahlen bis zu 2^k) aufgerufen, werden r * k Zeitschritte benötigt

Hinweis

- Oft sind die Ergebnisse gleich, da der Zahlenbereich beschränkt ist auf int, long, long long, etc. Damit handelt es sich nur um Konstanten.
- Das logarithmische Modell ist das übliche Modell für die Analyse

LineareMethode(int n) Zeit:

1. sum = 0

2. **for** $i \leftarrow 1$ **to** n **do** n+1

3. $sum \leftarrow sum + 1$ r

Nach der Ausführung hat sum den Wert n

Quad	ratisc	heM	let	hoc	le((in	t n	Zeit:
------	--------	-----	------------	-----	-----	-----	-----	-------

1.
$$sum = 0$$

3. **for**
$$j \leftarrow 1$$
 to n **do** $n * (n + 1)$

4.
$$sum \leftarrow sum + 1$$
 n^2

Nach der Ausführung hat sum den Wert n²

Kuk	oischeMethode(int n)	Zeit:
1.	sum = 0	1
2.	for i ← 1 to n do	n+1
3.	for j ← 1 to n do	n * (n + 1)
4.	for k ← 1 to n do	n ² * (n + 1)
5.	sum ← sum + 1	n³

Nach der Ausführung hat sum den Wert n³

Laufzeitanalyse – Größenordnungen

n	linear	quadratisch	kubisch	exponentiell
1	1 μs	1 μs	1 μs	2 μs
10	10 μs	100 μs	1 ms	1 ms
20	20 μs	400 μs	8 ms	1 sec
30	30 μs	900 μs	$27~\mathrm{ms}$	18 min
40	40 μs	2 ms	64 ms	13 Tage
50	50 μs	3 ms	125 ms	36 Jahre
60	60 μs	4 ms	216 ms	36560 Jahre
100	100 μs	10 ms	1 sec	$4 \cdot 10^{16} \text{ Jahre}$
1000	1 ms	1 sec	17 min	

InsertionSort(Array A)

- for j ← 2 to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. A[i+1] ← key

Was ist die Eingabegröße?

InsertionSort(Array A)

- for j ← 2 to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. A[i+1] ← key

Was ist die Eingabegröße?

Die Länge des Feldes A

7eit·

InsertionSort(Array A)

- for j ← 2 to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. A[i+1] ← key

Was ist die Eingabegröße? Die Länge des Feldes A

InsertionSort(Array A)

- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

InsertionSort(Array A)

- 1. for $j \leftarrow 2$ to length(A) do
- 2. key ← A[j]
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. A[i+1] ← key

Zeit:

n

n-1

n-1

InsertionSort(Array A)

1. for
$$j \leftarrow 2$$
 to length(A) do

2.
$$key \leftarrow A[j]$$

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

Zeit:

n

n-1

n-1

 $n-1 + \sum t_i$

InsertionSort(Array A)

1. for
$$j \leftarrow 2$$
 to length(A) do

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

Zeit:

H

n-1

n-1

 $n-1 + \sum t_j$

 $\sum t_j$

InsertionSort(Array A)

- **1. for** j ← 2 **to** length(A) **do**
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. **while** i>0 and A[i]>key **do**
- 5. $A[i+1] \leftarrow A[i]$
- 6. i ← i-1
- 7. $A[i+1] \leftarrow key$

Zeit:

n-1

n-1

 $n-1 + \sum t_i$

 $\sum_{j} t_{j}$

InsertionSort(Array A)		Zeit:
1.	for j ← 2 to length(A) do	n
2.	key ← A[j]	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	n-1 + ∑t _i
5.	$A[i+1] \leftarrow A[i]$	$\sum t_i$
6.	i ← i-1	$\overline{\Sigma} t_i$
7.	A[i+1] ← key	<u>-</u> , n-1

Ins	ertionSort(Array A)	Zeit:
1.	for $j \leftarrow 2$ to length(A) do	n
2.	key ← A[j]	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	n-1 + ∑t _i
5.	$A[i+1] \leftarrow A[i]$	$\sum t_i$
6.	i ← i-1	$\overline{\sum} t_i'$
7.	A[i+1] ← key	<u>n-1</u>
		5n-4+3∑t _i

Laufzeitanalyse

- Worst-Case Analyse
 - Für jedes n definiere Laufzeit
 T(n) = Maximum über alle Eingaben der Größe n
 - Garantie f
 ür jede Eingabe / "schlechtester Fall"
 - Üblich für Laufzeitanalyse
- Average-Case Analyse
 - Für jedes n definiere Laufzeit
 T(n) = Durchschnitt über alle Eingaben der Größe n
 - Hängt von Definition des Durchschnitts ab (wie sind die Eingaben verteilt)
- Best-Case Analyse
 - Für jedes n definiere Laufzeit
 T(n) = Minimum über alle Eingaben der Größe n
 - "Nicht" garantiert für jede Eingabe / "bester Fall"

Ins	ertionSort(Array A)	Zeit:
1.	for j ← 2 to length(A) do	n
2.	key ← A[j]	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	n-1 + ∑t _i
5.	$A[i+1] \leftarrow A[i]$	$\sum t_i$
6.	i ← i-1	,
7.	A[i+1] ← key	∑t _j <u>n-1</u>
		5n-4+3∑t _i

- Worst-Case Analyse
 - t = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n)=5n-4+3\sum_{j=2}^{n} (j-1)$$

$$=2n+3n-4+3\sum_{j=1}^{n-1} j$$

$$=2n-4+3(n+\sum_{j=1}^{n-1} j)$$

- Worst-Case Analyse
 - t = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n)=2n-4+3\left(\sum_{j=1}^{n} j\right)$$

$$=2n-4+3\frac{n(n+1)}{2}$$

$$=\frac{4n-8+3n^2+3n}{2}$$

$$T(n)=\frac{3n^2+7n-8}{2}$$

- Worst-Case Analyse
 - t = j-1 f
 ür absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j - 1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2}$$

Abstraktion von multiplikativen Konstanten

→ O-Notation (Groß-O-Notation)

Laufzeitanalyse – Beobachtungen

Diskussion

- Die konstanten Faktoren sind wenig aussagekräftig, da wir bereits bei den einzelnen Befehlen konstante Faktoren ignorieren
- Je nach Rechnerarchitektur oder/und genutzten Befehlen k\u00f6nnte also z.B. 3n+4 langsamer sein als 5n+7
 - Fall 1: b = a; b += a; Fall 2: b = 3 * a;
- Betrachte nun Algorithmus A mit Laufzeit 100n und Algorithmus B mit Laufzeit 5n²
 - Ist n klein, so ist Algorithmus B schneller
 - Ist n groß, so wird das Verhältnis Laufzeit B / Laufzeit A beliebig groß
 - Algorithmus B braucht also einen beliebigen Faktor mehr Laufzeit als A (wenn die Eingabe groß genug ist)

Asymptotische Laufzeitanalyse

- Idee: asymptotische Laufzeitanalyse
 - Ignoriert konstante Faktoren und Terme niederer Ordnung
 - Betrachtet das Verhältnis von Laufzeiten für n $\rightarrow \infty$
 - Klassifizierung der Laufzeiten durch Angabe von "einfachen Vergleichsfunktionen"

O-Notation – Obere Schranke

O-Notation

- f(n) ∈ O(g(n)) = {f(n) : \exists c > 0, \exists n₀ > 0, \forall n ≥ n₀, sodass gilt f(n) ≤ c · g(n)}
- (wobei f(n), g(n) > 0)

Interpretation

- f(n) ∈ O(g(n)) bedeutet, dass f(n) für n→∞
 höchstens genauso stark wächst wie g(n)
- Man sagt, f wird von g dominiert oder f wächst nicht stärker als g (Abschätzung nach oben)

Ω-Notation – Untere Schranke

Ω-Notation

- f(n) ∈ Ω (g(n)) = {f(n) : ∃ c > 0, n₀ > 0, ∀ n ≥ n₀, sodass gilt f(n) ≥ c ⋅ g(n)}
- (wobei f(n), g(n)>0)

Interpretation

- f(n) ∈ Ω (g(n)) bedeutet, dass f(n) für n → ∞ mindestens so stark wächst wie g(n)
- Beim Wachstum ignorieren wir Konstanten

Beispiele

Obere Schranke

- $10 \text{ n} \in O(n)$
- $10 \text{ n} \in O(n^2)$
- $n^2 \notin O(1000 \text{ n})$
- O(1000 n) = O(n)

Untere Schranke

- $10 \text{ n} \in \Omega(\text{n})$
- $1000 \text{ n} \notin \Omega(\text{n}^2)$
- $n^2 \in \Omega(n)$
- $-\Omega(1000 \text{ n}) = \Omega(\text{n})$

Hierarchie

-
$$O(\log n) \subseteq O(n) \subseteq O(n^2) \subseteq O(n^c) \subseteq O(2^n)$$

(für c >= 2)

Θ-Notation – Scharfe Schranke

Θ-Notation

- $f(n) ∈ Θ(g(n)) = {f(n) : ∃ c₁ > 0, ∃ c₂ > 0, ∃ n₀ > 0, ∀ n ≥ n₀, sodass gilt c₁ ⋅ g(n) ≤ f(n) ≤ c₂ ⋅ g(n)}$
- (f(n), g(n) > 0)
- $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \text{ und}$ $f(n) \in \Omega(g(n))$

Beispiele

- 1000 n ∈ Θ(n)
- $10 \text{ n}^2 + 1000 \text{ n} \in \Theta(\text{n}^2)$

Echte obere und untere Schranken

- o-Notation echte obere Schranke
 - $o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0, \forall n \ge n_0, \text{ sodass gilt } f(n) < c \cdot g(n)\}$
 - (f(n), g(n) > 0)
- ω-Notation echte untere Schranke
 - \bullet $\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0, \forall n \ge n_0, \text{ sodass gilt } f(n) > c \cdot g(n)\}$
 - (f(n), g(n) > 0)
- Beispiele
 - $n^2 \in \omega(n)$
 - n ∉ ω(n)

Laufzeitanalyse

- Eine weitere Interpretation
 - Grob gesprochen sind O, Ω , Θ , o, ω die "asymptotischen Versionen" von \leq , \geq , =, <, > (in dieser Reihenfolge)

f ∈ <i>o</i> (g)	Wachstum von f	<	Wachstum von g
$f \in O(g)$	Wachstum von f	≤	Wachstum von g
$f \in \Theta(g)$	Wachstum von f	=	Wachstum von g
$f \in \Omega(g)$	Wachstum von f	≥	Wachstum von g
$f \in \omega(g)$	Wachstum von f	>	Wachstum von g

Notation

- Häufig f(n) = O(g(n)) statt $f(n) \in O(g(n))$

Typische Laufzeitklassen

• O(n!)

faktoriell

• O(2ⁿ)

exponentiell

• O(n²)

- quadratisch (polynomiell)
- O(n log(n))
- super-linear

• O(n)

- linear
- O(sqrt(n))
- Wurzelfunktion
- O(log(n))
- logarithmisch

• O(1)

beschränkt

Insertion Sort – Laufzeitanalyse

- Worst-Case Analyse
 - t = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j-1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2} = \Theta(n^2)$$

- D.h. Korrekt: Falsch:
 - $O(n^2)$, $\Omega(n^2)$ $o(n^2)$, $\Omega(n^3)$
 - $O(n^3)$, $\Omega(n)$ O(n)

Insertion Sort – Laufzeitanalyse

InsertionSort(Array	/ A)
----------------	-------	------

1. for
$$j \leftarrow 2$$
 to length(A) do

2.
$$key \leftarrow A[j]$$

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

Zeit:

n-1

n-1

n-1

Best-Case Analyse (aufsteigend sortiertes Array)

Selection Sort – mit swap

SelectionSort(Array A)

- **1.** for $j \leftarrow 1$ to length(A) 1 do
- 2. $min \leftarrow j$
- 3. **for** $i \leftarrow j + 1$ **to** length(A) **do**
- 4. **if** A[i] < A[min] **then** min ← i
- 5. swap(A, min, j)

Idee Selection Sort

- Die ersten j-1 Elemente sind sortiert (zu Beginn j=1)
- Innerhalb eines Schleifendurchlaufs wird das j-kleineste Element (entspricht des kleinsten aus dem Rest) an die sortierte Folge "angehängt"
- Am Ende ist die gesamte Folge sortiert

Selection Sort – Worst Case Laufzeit

- Suchen des kleinsten verbleibenden Elementes:
 - Im ersten Durchlauf c"*n Operationen, dann c"*(n-1), dann c"*(n-2), usw.
 - Dann eine swap Operation
- Worst Case Laufzeit Insgesamt:

$$T(n) = c'n + c'' \sum_{i=1}^{n} i = c'n + c'' \frac{n(n+1)}{2} = O(n^2)$$

Bubble Sort

BubbleSort(Array A)

- 1. for $j \leftarrow length(A) 1$ downto 1 do
- 2. for $i \leftarrow 1$ to j do
- 3. **if** A[i] > A[i+1] **then** swap(A, i, i+1)

Idee Bubble Sort

- Die letzten Elemente von j bis n sind sortiert (zu Beginn j=n-1)
- Die größten Elemente steigen auf (bubblen), wie Luftblasen, die zu ihrer richtigen Position aufsteigen
- Am Ende ist die gesamte Folge sortiert

Bubble Sort

Komplexität:

$$T(n) = O(n^2)$$

Count Sort

CountSort(Array A)

- 1. C ist Hilfsarray mit 0 initialisiert
- 2. for $j \leftarrow 1$ to length(A) do
- 3. $C[A[j]] \leftarrow C[A[j]] + 1$
- 4. k ← 1
- 5. for $j \leftarrow 1$ to length(C) do
- 6. for $i \leftarrow 1$ to C[i] do
- 7. A[k] ← j
- 8. $k \leftarrow k + 1$

- Annahmen:
- Eingabegröße n
- \triangleright length(A) = n
- Wertebereich von A: 1 m
- length(C) = m
- Zähle, wie häufig jedes Element vorkommt

Füge jedes Element der Reihe nach entsprechend seiner Häufigkeit in das Array hinein.

Count Sort – Laufzeit

CountSort(Array A)

- 1. C ist Hilfsarray mit 0 initialisiert
- 2. for $j \leftarrow 1$ to length(A) do
- 3. $C[A[i]] \leftarrow C[A[i]] + 1$
- 4. k ← 1
- 5. for $j \leftarrow 1$ to length(C) do
- 6. for $i \leftarrow 1$ to C[j] do
- 7. A[k] ← i
- 8. $k \leftarrow k+1$

- Annahmen:
- Eingabegröße n
- \rightarrow length(A) = n
- Wertebereich von A: 1 m
- length(C) = m
- > O(n)
- > O(n)
- > C
- > O(m)
- > O(n)
- > O(n)
- > O(n)

Count Sort - Worst Case Laufzeit

- Die Laufzeit hängt auch vom Wertebereich der Zahlen, d.h. von m ab: T(n, m)
- Worst Case Laufzeit insgesamt:

$$T(n,m)=O(n+m)$$

Ist m = O(n), dann hat Count Sort eine lineare Laufzeit

Laufzeiten – Diskussion

- Wir haben 4 Algorithmen mit den folgenden Laufzeiten, welchen wählen Sie?
- Es kann sein, das für gewisse n (in diesem Fall n < 20) die Laufzeit des effizientesten Algorithmus (O(n)) nicht am besten ist!

Laufzeit – Zusammenfassung

Rechenmodell

- Abstrahiert von maschinennahen Einflüssen wie Cache, Pipelining, Prozessor, etc.
- Jede Pseudocodeoperation braucht einen Zeitschritt

Laufzeitanalyse

- Normalerweise Worst-Case, manchmal Average-Case (sehr selten auch Best-Case)
- Asymptotische Analyse für $n \to \infty$
- Ignorieren von Konstanten und Terme niederer Ordnung → O-Notation

Raumkomplexität

Speicherplatz

- Der Speicherbedarf unterschiedlicher Algorithmen für dasselbe Problem unterscheidet sich oft nur um einen (geringen) konstanten Faktor.
- Allerdings kann zeitlicher Aufwand durch räumlichen Aufwand ersetzt werden und umgekehrt, z.B.:
 - Bei wiederholt auszuführenden identischen Berechnungen kann man das Ergebnis speichern und wiederverwenden
- Der Speicherbedarf wächst häufig mit der Menge der Daten, mehr als quadratisches Wachstum ist selten.

