Kryptologie LAB - 4.2

Summer Semester 2020

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena

Rivest-Shamir-Adleman (RSA)

- Public-key cryptosystem
- Different keys for encyption and decryption
- Keys are interpreted as (unsigned) integers
- Texts are interpreted as sequences of (unsigned) integers

Key generation recap

- choose two distinct primes p and q
- set n = pq, note $\phi(n) = (p-1)(q-1)$
- public key: *e* := 3
- private key: $d := e^{-1} \pmod{\phi(n)}$ (compute with EEA)
- *n* should be expressible as a 64-bit unsigned integer, and larger than all 32-bit unsigned integers:

$$4,294,967,295 < n \le 18,446,744,073,709,551,615$$

Encryption and Decryption with RSA

- main concept: $(m^e)^d \equiv m \pmod{n}$
- given a plaintext m_1, \ldots, m_r :
 - encryption: $c_1, \ldots, c_r := m_1^e \pmod{n}, \ldots, m_r^e \pmod{n}$
 - decryption: $m_1, \ldots, m_r = c_1^d \pmod{n}, \ldots, c_r^d \pmod{n}$
- to compute m^e (mod n):

$$c := 1$$
, $e' := 0$
while $e' < e$
 $c := m \cdot c \pmod{n}$
 $e' := e' + 1$
return c

Task 4 - part 2

- Implement RSA encryption and decryption routines.
 - assume the plaintext is ASCII encoded text
 - break up the text into 32-bit blocks
 - if necessary, pad out the final block with whitespace
- Perform a runtime comparison between:
 - (a) encryption and decryption of plaintext with RSA
 - (b) encryption and decryption of DES key with RSA, together with encryption and decryption of plaintext with DES
 - try to produce a plaintext for which (b) is fast (e.g. < 30 seconds) but (a) is slow (e.g. > 3 mins)

Examination format

- Demonstrate your tools:
 - Additive cypher
 - Vigenère
 - DES
 - RSA
- Demonstrate an RSA/DES runtime comparison

Guidelines

- Bring your laptop
- Try to polish your user interface (rather than your code)
- Be creative: if your tools have extra features show them!
- Prepare your demonstration
- Demonstrate what you have even if it is unfinished