practical deep learning convolutional neural networks

Alex Honchar University of Verona

Day 3 goals

- You understand how convolutional neural network (CNN) works
- You understand modern approaches to CNNs
- You can train your own CNN for different computer vision problems
- You can use Caffe framework

On-Center Off-Surround Receptive Field

Off-Center On-Surround Receptive Field

Receptive Fields in V1

Convolution

$$egin{aligned} (fst g)(t) &\stackrel{ ext{def}}{=} \int_{-\infty}^{\infty} f(au) \, g(t- au) \, d au \ &= \int_{-\infty}^{\infty} f(t- au) \, g(au) \, d au. \end{aligned}$$

Convolution as kernel

1 _{×1}	1 _{×0}	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Convolution as kernel

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
5×5 Unsharp (with no image mask)	$\frac{-1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & -476 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	

MLP -> CNN

connections cutting

weights sharing

MLP -> CNN

CNN

input neurons

input neurons

hidden neuron

CNN: convolutional layer

1,	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Convolved

Feature

Image

CNN: pooling layer

hidden neurons (output from feature map)

Convolved feature

Pooled feature

CNN:building block

- Convolution (linear activations)
 - ReLU (detection stage)
- Pooling (modify output for next layer)

https://www.youtube.com/watch?v= AgkflQ4IGaM&t=141s

https://www.youtube.com/watch?v= GhqOMJIHD8A

cnn backprobagation

http://www.simon-hohberg.de/2014/10/10/conv-net.html

CNN backpropagation

$$v(x,y) = \sum_{x_k=0}^{N_k-1} \sum_{y_k=0}^{N_k-1} i(x - x_k, y - y_k) k(x_k, y_k)$$

$$l\left({x,y} \right) = \sum\limits_{{x_k} = 0}^{{N_k} - 1} {\sum\limits_{{y_k} = 0}^{{N_k} - 1} {i\left({x + {x_k},y + {y_k}} \right)k\left({{x_k},{y_k}} \right)} }$$

CNN backpropagation

$$egin{aligned} i_{n,m}^{l}\left(x,\,y
ight) &= \sum_{l}o_{n}^{l-1}\left(x-x',\,y-y'
ight)\cdot w_{n,m}^{l}\left(x',\,y'
ight) \\ c_{m}^{l}\left(x,\,y
ight) &= \sum_{n}i_{n,m}^{l}\left(x,\,y
ight) + b_{m}^{l} \\ &= \sum_{n,\,x',\,y'}o_{n}^{l-1}\left(x-x',\,y-y'
ight)\cdot w_{n,m}^{l}\left(x',\,y'
ight) + b_{m}^{l} \\ o_{m}^{l}\left(x,\,y
ight) &= a\left(c_{m}^{l}\left(x,\,y
ight)
ight) \end{aligned}$$

CNN weight update

$$rac{\partial E}{\partial w_{n,m}^{l}\left(x,\,y
ight)}=\sum_{x',y'} \underbrace{rac{\partial E}{\partial c_{m}^{l}\left(x',\,y'
ight)}}_{\delta_{m}^{l}\left(x',\,y'
ight)} \cdot rac{\partial c_{m}^{l}\left(x',\,y'
ight)}{\partial w_{n,m}^{l}\left(x,\,y
ight)}$$

$$\begin{split} \frac{\partial c_{m}^{l}\left(x',\,y'\right)}{\partial w_{n,m}^{l}\left(x,\,y\right)} &= \frac{\partial}{\partial w_{n,m}^{l}\left(x,\,y\right)} \left(\sum_{n,\,x'',\,y''} o_{n}^{l-1}\left(x'-x'',\,y'-y''\right) \cdot w_{n,m}^{l}\left(x'',\,y''\right) + b_{m}^{l}\right) \\ &= \frac{\partial}{\partial w_{n,m}^{l}\left(x,\,y\right)} \left(o_{0}^{l-1}\left(x'-0,\,y'-0\right) \cdot w_{0,m}^{l}\left(0,\,0\right) + \ldots + o_{n}^{l-1}\left(x'-x,\,y'-y\right) \cdot w_{n,m}^{l}\left(x,\,y\right) + \ldots + b_{m}^{l}\right) \\ &= o_{n}^{l-1}\left(x'-x,\,y'-y\right) \\ &\frac{\partial E}{\partial w_{n,m}^{l}\left(x,\,y\right)} &= \sum_{x',y'} o_{n}^{l-1}\left(x'-x,\,y'-y\right) \cdot \delta_{m}^{l}\left(x',\,y'\right) \end{split}$$

CNN weight update

$$rac{\partial E}{\partial w_{n,m}^{l}\left(x,\,y
ight)}=\mathrm{rot}_{180}\left(\underbrace{\sum_{x',y'}o_{n}^{l-1}\left(x+x',\,y+y'
ight)\cdot\delta_{m}^{l}\left(x',\,y'
ight)}_{\mathrm{Cross-Correlation}}
ight)$$

CNN delta calculation

$$\begin{split} \delta_{m}^{l}(x,y) &= \frac{\partial E}{\partial c_{m}^{l}(x,y)} = \sum_{o} \sum_{x',y'}^{N_{w},N_{w}} \underbrace{\frac{\partial E}{\partial c_{o}^{l+1}(x+x',y+y')} \cdot \frac{\partial c_{o}^{l+1}(x+x',y+y')}{\partial c_{m}^{l}(x,y)}} \cdot \frac{\partial c_{o}^{l+1}(x+x',y+y')}{\partial c_{m}^{l}(x,y)} \\ &\frac{\partial c_{o}^{l+1}(x+x',y+y')}{\partial c_{m}^{l}(x,y)} &= \frac{\partial}{\partial c_{m}^{l}(x,y)} \left(\sum_{m'} \sum_{x'',y''}^{N_{w},N_{w}} c_{m'}^{l}(x+x'-x'',y+y'-y'') \cdot w_{m',o}^{l+1}(x'',y'') \right) \\ &= \frac{\partial}{\partial c_{m}^{l}(x,y)} \left(\sum_{m'} \sum_{x'',y''}^{N_{w},N_{w}} a \left(c_{m'}^{l}(x+x'-x'',y+y'-y'') \right) \cdot w_{m',o}^{l+1}(x'',y'') \right) \\ &= \frac{\partial}{\partial c_{m}^{l}(x,y)} \left(w_{0,o}^{l+1}(0,0) \cdot a \left(c_{0}^{l}(x'-0,y'-0) \right) + \ldots + w_{m,o}^{l+1}(x'',y'') \cdot a \left(c_{m}^{l}(x,y) \right) + \ldots \right) \\ &= w_{m,o}^{l+1}(x+x',y+y') \cdot \frac{\partial a \left(c_{m}^{l}(x,y) \right)}{\partial c_{m}^{l}(x,y)} \end{split}$$

CNN delta calculation

$$\delta_{m}^{l}\left(x,\,y\right) = \underbrace{\sum_{o}^{N_{w},N_{w}} \delta_{o}^{l+1}\left(x+x',\,y+y'\right) \cdot w_{m,o}^{l+1}\left(x',\,y'\right)}_{Cross-Correlation,\,Backpropagated\,Error} \cdot \frac{\partial a\left(c_{m}^{l}\left(x,\,y\right)\right)}{\partial c_{m}^{l}\left(x,\,y\right)}$$

CNN: basic structure

CNN: AlexNet 2012

CNN: VGG Oxford 2014

CNN: GoogleNet 2014

CNN: GoogleNet 2014

(a) Inception module, naïve version

CNN: ResNet 2015

CNN: ResNet 2015

Figure 2. Residual learning: a building block.

CNN: Stochastic depth 2016

CNN: DenseNet 2016

CNN: Recent advances

- Batch normalization
- Different convolution types (dilated etc)
- Knowledge transfer
- Multi-task learning
- Convolution as FFT
- Several outputs
- Weights pruning / quantization

CNN: applications

- Classification (any object)
- Localization (any object)
- Segmentation (any object)
- Identification (face for example)
- Pose estimation
- Image captioning