- 1. What is your name?
- For each of the following propositions, determine whether it is true or not; indicate your 2. determination in the usual way and then write a paragraph justifying your choice:
 - $X \in \{ \text{ Bernoulli random variables } \} \rightarrow X \in \{ \text{ binomial random variables } \}$ A.

Sample justification:

Compare the two definitions:

 $X \in \{ \text{ Bernoulli random variables of } \Omega \} \Leftrightarrow$ $X \in \{ \text{ discrete random variables of } \Omega \} \land X : \Omega \rightarrow \{ 0, 1 \} \}$

Given $n \in \mathbb{N} \land \Omega = \{1, 2, 3, ..., n\} \land X \in \{\text{Bernoulli random variables of } \{0, 1\}\} \land$ (A string of *n* experiments are conducted with $X \ni (X(i) = 0 \ \lor (X(i) = 1 \text{ depending}))$ on the results of the i^{th} experiment $\land |\{(i, X(i)) : X(i) = 1\}| = k\}$, $(Y \in \{ \text{ binomial random variables of } \Omega \} \Leftrightarrow$

$$Y: \Omega \to \omega \ni Y(i) = \sum_{i=1}^{n} X(i) = k$$

Any Bernoulli random variable is a binomial random variable in which n from the definition of binomial random variable is 1.

B. $X \in \{$ binomial random variables $\} \Rightarrow X \in \{$ Bernoulli random variables $\}$

Sample justification:

Look at the following statement from the definition of Bernoulli random variable: $X: \Omega \to \{0, 1\}$. This assures us that the *n* in the definition of binomial random variable cannot be greater than 1 for any Bernoulli random variable. So any binomial random variable that requires more than 1 trial is not Bernoullian.

3. Smile.

