Uvod u aritmetiku eliptičkih krivulja

1. domaća zadaća

Napomena. Zadatci se odnose samo na lekcije 5, 6i7.

1. zadatak. (i) Dokažite izravno da je uvjet nesingularnosti krivulje zadane afinom jednadžbom $y^2=x^3+Ax+B$ upravo $4A^3+27B^2\neq 0$. Uputa. Pogledajte petu lekciju. Pokažite da sustav $x^3+Ax+B=0$, $3x^2+A=0$ ima rješenje akko $4A^3+27B^2=0$.

(ii) Primijenite (i) za dobivanje analognog uvjeta za krivulje zadane s $y^2 = x^3 + ax^2 + bx + c$.

Uputa. Iskoristite činjenicu da se polinom $x^3 + ax^2 + bx + c$, zgodnom zamjenom može svesti na oblik $x^3 + Ax + B$. Pogledajte knjigu [Silverman-Tate, poglavlje The discriminant na str. 47.].

2. zadatak. Neka je $E: y^2 = x^3 + ax^2 + bx; \ \bar{E}: y^2 = x^3 - 2ax^2 + (a^2 - 4b)x.$ Definirajmo $\phi: E \to \bar{E}$ lokalno formulom $\phi(x,y) = (\frac{y^2}{x^2}, y\frac{x^2-b}{x^2})$, za $P \neq T:= (0,0)$ i $P \neq O$. Pokažite da je ϕ dobro definirano i da je definirano za svaki P i da vrijedi $\phi(T) = \phi(O) = O$.

Uputa. Pogledajte 7. lekciju, naročito Primjer 2.

3. zadatak (zadatak 1.18. a),
b) i c) u [Silverman-Tate]). Provjerite da eliptička krivulj
a $y^2=x^3+17$ ima racionalne točke

 $P_1(-2,3), P_2(-1,4), P_3(2,5), P_4(4,9), P_5(8,23).$

- (a) Pokažite da se svaka od P_2, P_4, P_5 može predočiti kao $mP_1 \oplus nP_2$ za neke cijele m, n.
- (b) Odredite točke $P_6 := -P_1 \oplus 2P_3$ i $P_7 := 3P_1 \oplus (-P_3)$.
- (c) Pronadjite još jednu točku s cjelobrojnim koordinatama različitu od gore spomenutih.
- 4. zadatak (zadatak 1.20. u [Silverman-Tate]). Pokažite da je P(3,8) točka eliptičke krivulje $y^2=x^3-43x+166$. Odredite P,2P,3P,4P i 8P. Koji zaključak izvodite usporedbom točaka P i 8P?
- 5. Neka je eliptička krivulja zadana jednadžbom $y^2=x^3+x^2+x+1$. Riješite jednadžbu 2P=Q, ako je Q(1,2). Što općenito možete reći o jednadžbi 2P=Q na eliptičkoj krivulji?