ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{SS} = 12$ V, $U_{GG} = 8$ V, $R_S = 2$ k Ω , $R_I = R_2 = 56$ k Ω , $R_T = 2$ k Ω . Parametri *n*-kanalnog MOSFET-a su: K = 2 mA/V², $U_{GSO} = 1$ V i $\lambda = 0,005$ V⁻¹.

- a) Odrediti statičku radnu točku tranzistora (I_{DQ} , U_{DSQ} , U_{GSQ}) te strminu i dinamički otpor u radnoj točki. Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja (**3 boda**).
- b) Nacrtati nadomjesnu shemu za dinamičku analizu te izvesti izraze i izračunati naponsko pojačanje $A_{Vg} = u_{iz}/u_g$ i strminsko pojačanje $G_{Mg} = i_{iz}/u_g$ (3 boda).
- c) Izračunati ulazni otpor R_{ul} i izlazni otpor R_{iz} (2 boda).

ZADATAK 2. Na slici je prikazana raspodjela manjinskih nosilaca bipolarnog npn tranzistora ($n_{B0}=8\cdot10^{14}~{\rm cm}^{-3},~n_{0B}=4\cdot10^3~{\rm cm}^{-3}$ i $p_{E0}=2\cdot10^{13}~{\rm cm}^{-3}$). Pokretljivosti manjinskih nosilaca su $\mu_{pE}=300~{\rm cm}^2/{\rm Vs}$ i $\mu_{nB}=450~{\rm cm}^2/{\rm Vs}$. Efektivna širina baze je 1 µm. Širina baze je puno manje, a širina emitera puno veća od difuzijskih duljina manjinskih nosilaca ($L_{pE}=15~{\rm \mu m}$). Vrijeme života elektrona u bazi $\tau_{nB}=0,11~{\rm \mu s}$. Površina tranzistora je 0,15 mm². Pretpostaviti $T=300~{\rm K}$ i $I_{CB0}\approx0$.

- a) Odrediti napon U_{BE} te koncentraciju primjesa u bazi i emiteru (**2 boda**).
- b) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora (5 bodova).
- c) Izračunati faktor injekcije i transportni faktor, te faktore pojačanja α i β (1 bod).

ZADATAK 3. Za pojačalo sa slike zadano je $R_1 = 56$ kΩ, $R_2 = 56$ kΩ, $R_E = 1,8$ kΩ, $R_T = 50$ kΩ, $R_G = 10$ kΩ. Napon napajanja $U_{CC} = 12$ V. Parametri tranzistora su $\beta = h_{fe} = 100$ i $U_\gamma = 0,7$ V. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature je $U_T = 25$ mV.

- C_{iz} R_{i} $R_{$
- a) Odrediti statičku radnu točku tranzistora i dinamički otpor r_{be} (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu. Izvesti izraze i odrediti ulazni otpor R_{ul}' , naponsko pojačanje $A_{Vg} = u_{iz}/u_g$ (4 boda).
- c) Izvesti izraz i odrediti izlazni otpor pojačala R_{iz} (2 boda).

ZADATAK 4. Odrediti izlazni napon U_{IZL} za sklop na slici ako je ulazni napon $U_{UL} = 100$ mV. Zadani su otpori $R_1 = 1$ k Ω , $R_2 = 2$ k Ω , $R_3 = 3$ k Ω , $R_4 = 12$ k Ω , $R_5 = 36$ k Ω i $R_6 = 2$ k Ω . Operacijsko pojačalo ima beskonačan ulazni otpor, izlazni otpor jednak je nuli, a pojačanje pojačala A_{VOP} iznosi 10^4 . Pojačalo je spojeno je na napajanje -15 V i 15 V (**6 bodova**).

PITANJA

- 1. Koje pojačalo je prikazano na slici i koje tvrdnje su istinite? (2 boda)
 - a) Spoj zajedničkog uvoda, radna točka je stabilizirana,
 u_{ul} i u_{iz} su u protufazi ✓
 - Spoj zajedničkog odvoda, radna točka je stabilizirana, u_{ul} i u_{iz} su fazi
 - Spoj zajedničkog uvoda, radna točka nije stabilizirana, u_{ul} i u_{iz} su u protufazi
 - d) Spoj zajedničkog odvoda, radna točka je stabilizirana, u_{ul} i u_{iz} su u protufazi
 - e) Spoj zajedničkog uvoda, radna točka nije stabilizirana, u_{ul} i u_{iz} su u fazi

- 2. Koju logičku funkciju ostvaruje CMOS sklop na slici? (2 boda)
 - a) Y = A + (B + C)DE
 - b) niti jedan od odgovora
 - c) Y = A(BC + D + E)
 - d) $Y = \overline{A + (B + C)DE} \checkmark$
 - e) Y = A(BC + D + E)

3. Na slikama su prikazane koncentracije manjinskih nosilaca u emiteru i bazi različitih tranzistora pri jednakim naponima. Koji tranzistor ima najveći faktor injekcije? (**2 boda**)

- **4.** U kakvom su faznom odnosu signali u_{ul} i u_{iz} ? U kakvom su odnosu R_{ul} i R_{iz} ? (**2 boda**)
 - a) u_{ul} i u_{iz} su u fazi; $R_{ul} = R_{iz}$.
 - b) u_{ul} i u_{iz} su u fazi; $R_{ul} < R_{iz}$.
 - c) u_{ul} i u_{iz} su u fazi; $R_{ul} > R_{iz}$.
 - d) u_{ul} i u_{iz} su u protufazi; $R_{ul} < R_{iz}$.
 - e) u_{ul} i u_{iz} su u protufazi; $R_{ul} > R_{iz}$.

- 5. U pojačalu na slici napon $u_g = 10 \sin \omega t$ mV. Koliki su zajednički i diferencijski napon pojačala? (2 boda)
 - a) $u_z = 10 \sin \omega t \text{ mV i } |u_d| = 5 \sin \omega t \text{ mV}$
 - b) $u_z = 5 \sin \omega t \text{ mV i } |u_d| = 10 \sin \omega t \text{ mV}$
 - c) $u_z = 10 \sin \omega t \text{ mV i } |u_d| = 10 \sin \omega t \text{ mV}$
 - d) $u_z = 20 \sin \omega t \text{ mV i } |u_d| = 10 \sin \omega t \text{ mV}$
 - e) $u_z = 5 \sin \omega t \text{ mV i } |u_d| = 5 \sin \omega t \text{ mV}$

- **6.** Za sklop na slici zadano je U_{CC} = 0 V, U_{EE} = 5 V, ulazni naponi logičkih 1 i 0 su U_0 = -1,8 V i U_1 = -1 V. Pri kojem naponu U_R sklop može raditi kao strujna sklopka? (**2 boda**)
 - a) $U_R = -1 \text{ V}$,
 - b) $U_R = -1.4 \text{ V}, \checkmark$
 - c) $U_R = -1.8 \text{ V}$,
 - d) $U_R = -2.5 \text{ V}$,
 - e) $U_R = -3.4 \text{ V}.$

- **7.** Ako se kratko spoji jedna od četiri serijski spojene diode što će se dogoditi sa trajanjem periode negativnog izlaznog napona u_{iz} ? (**2 boda**)
 - a) povećat će se✓
 - b) smanjit će se 25 %
 - c) ovisi o iznosu otpornika R₁
 - d) ostat će nepromijenjena
 - e) smanjit će se

RJEŠENJA ZADATAKA

ZADATAK 1:

$$U_{SS} - U_{GG} = U_{GSQ} + I_{DQ}R_S = U_{GSQ} + \frac{K}{2}(U_{GSQ} - U_{GSO})^2 \cdot R_S$$

$$U_{GSO}^2 - 1,5U_{GSO} - 2,5 = 0$$
,

$$U_{GSQ1} = 2 \text{ V}$$
 i $U_{GSQ2} = -0.5 \text{ V}$

$$I_{DQ} = \frac{K}{2} (U_{GSQ} - U_{GS0})^2 = 1 \text{ mA}$$

$$U_{DSO} = U_{DD} - I_{DO} R_{S} = 10 \text{ V}$$

$$U_{\scriptscriptstyle DSzas} = 1 \ V, \ U_{\scriptscriptstyle DSQ} > U_{\scriptscriptstyle DSzas},$$
 zasićenje

Dinamički parametri:

$$g_m = K(U_{GSQ} - U_{GS0})(1 + \lambda U_{DSQ}) = 2,1 \text{ mA/V} (g_m = 2 \text{ mA/V} - \text{ako se zanemari } \lambda)$$
 $r_d = 1/(\lambda \cdot I_{DQ}) = 200 \text{ k}\Omega$
 $\mu = g_m \cdot r_d = 420 \text{ (400)}$

b) Dinamička analiza:

$$U_{iz} = R_s ||r_d|| R_T \cdot g_m u_{gs}$$
 - naponsko dijelilo

$$U_g = u_{gs} + R_S ||r_d|| R_T \cdot g_m u_{gs} = (1 + R_S ||r_d|| R_T \cdot g_m) u_{gs}$$

$$A_{Vg} = \frac{U_{iz}}{U_g} = \frac{R_S ||r_d|| R_T \cdot g_m}{1 + R_S ||r_d|| R_T \cdot g_m} \approx 0,677 \quad (0.667)$$

$$A_{Gm} = \frac{i_{iz}}{u_g} = \frac{u_{iz}}{u_g} \cdot \frac{i_{iz}}{u_{iz}} = A_{Vg} \cdot \frac{\frac{u_{iz}}{R_T}}{u_{iz}} = A_{Vg} \cdot \frac{1}{R_T} = 0,339 (0,333) \text{ mA/V}$$

drugi način

$$A_{Gm} = \frac{i_{iz}}{U_g} = \frac{\frac{R_S || r_d}{R_S || r_d + R_T} \cdot g_m}{1 + R_S || r_d || R_T \cdot g_m} \approx 0,339 (0,333) \text{ mA/V}$$

c) otpori

$$R_{ul} = R_1 = 56k$$

$$R_{iz} = R_{s} ||r_{d}|| R'_{iz}$$

$$R_{iz}' = \frac{u_{iz}}{i_{iz}} = \frac{-u_{gs}}{-g_{m} \cdot u_{gs}} = \frac{1}{g_{m}} = 0,476k(0,5k)$$

$$R_{iz} = 0,384k(0,4k)$$

ZADATAK 2:

a)

$$U_{BE} = U_T \ln \left(\frac{n_{B0}}{n_{0B}} \right) = 0,672 V$$

$$N_{AB} \cong \frac{n_i^2}{n_{0B}} = 5,26 \cdot 10^{16} \text{ cm}^{-3}$$

$$p_{0E} = p_{E0} / \exp\left(\frac{U_{BE}}{U_T}\right) = 104 cm^{-3}$$

$$N_{DE} \cong \frac{n_i^2}{p_{0E}} = 2,02 \cdot 10^{18} \text{ cm}^{-3}$$

b)

$$D_{pE} = \mu_{pC} \cdot U_T = 7,76 \ cm^2/s$$

$$D_{nB} = \mu_{nB} \cdot U_T = 11,64cm^2/s$$

$$I_{pE} = qSD_{pE} \frac{p_{E0}}{L_{pE}} = 24,83 \ \mu A$$

$$I_{nE} = qSD_{nB} \frac{n_{B0}}{w_{B}} = 22,35mA$$

$$Q_{nB} = q \cdot S \cdot \frac{n_{B0} \cdot w_B}{2} = 9,6 pC$$

$$I_R = \frac{Q_{nB}}{\tau} = 87,3 \mu A$$

$$I_{nC} = I_{nE} - I_R = 22,2627 \text{ mA}$$

$$I_C = I_{nC} = 22,2627 \text{ mA}$$

$$I_B = I_{pE} + I_R = 112,13 \mu A$$

$$I_E = -(I_{nE} + I_{pE}) = -22,37483 \text{ mA}$$

c)

$$\beta^* = \frac{I_{nC}}{I_{nE}} = 0,9961$$

$$\gamma = \frac{1}{1 + \frac{I_{pE}}{I_{nE}}} = 0,9989$$

$$\alpha = \gamma \cdot \beta^* = 0,9949$$

$$\alpha = \frac{I_C}{-I_E} = 0,9949$$

$$\beta = \frac{\alpha}{1 - \alpha} = 200$$

$$\beta = \frac{I_C}{I_B} = 199$$

ZADATAK 3:

Statika:

$$\begin{split} U_{BB} &= U_{CC} \frac{R_2}{R_1 + R_2} = 6 \ V \\ R_B &= R_1 || R_2 = 28 \ k\Omega \\ I_{BQ} &= \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = 25 \ \mu A \\ r_{be} &= \frac{U_T}{I_{BQ}} = 1 \ k\Omega \end{split}$$

Dinamika:

Shema (2)

Ulazni otpor:

$$R_{ul}' = \frac{u_{ul}}{i_{ul}} = \frac{i_b r_{be} + (1 + h_{fe})i_b R_E || R_T}{i_b} = r_{be} + (1 + h_{fe})R_E || R_T = 176 \text{ k}\Omega$$

Naponsko pojačanje: (2)

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \frac{u_{ul}}{u_g} = \frac{(1 + h_{fe})R_E ||R_T|}{r_{be} + (1 + h_{fe})R_E ||R_T|} \frac{R_B ||R_{ul}|'}{R_g + R_B ||R_{ul}|'}$$

$$A_{Vg}=0.70$$

Izlazni otpor:

$$R_{iz} = R_E || R_{iz}'$$

$$R'_{iz} = \frac{u_{iz}}{(1 + h_{fe})i_b} = \frac{u_{iz}}{(1 + h_{fe})u_{iz}} (r_{be} + R_g \parallel R_B) = \frac{r_{be} + R_g \parallel R_B}{1 + h_{fe}}$$

$$R_{iz} = 1.81 \parallel \frac{1 + 7.37}{101} = 70 \Omega$$

ZADATAK 4:

(1)
$$Uizl = A(u_{+} - u_{-}) = A\frac{1}{3}(Uul - Ux)$$

(2) $\frac{Uul - Ux}{R1 + R2 + R3} = \frac{Ux}{R4} + \frac{Ux - Uizl}{R5}$

$$(2)\frac{Uul - Ux}{R1 + R2 + R3} = \frac{Ux}{R4} + \frac{Ux - Uizl}{R5}$$

$$Uizl = Uul\left(\frac{A}{3} - \frac{2A}{10}\right)\left(\frac{30}{30 + A}\right) = 399 \text{ mV}$$