

Introduction to Deep Learning

Pablo Lamata Eric Kerfoot Esther Puyol

School of Biomedical Engineering & Imaging Sciences King's College London

What is AI?

The science (and art) of programming computers so they can "learn from and make predictions on data"

What is machine learning?

The science (and art) of programming computers so they can "learn from and make predictions on data"

AI, Machine Learning and Deep Learning:

Perceptron

The first neural network (Frank Rosenblatt, 1957)

$$f(x) = \begin{cases} 1 & if \sum_{i} w_i \cdot x_i > b \\ 0 & otherwise \end{cases}$$

"Mark 1 perceptron" - machine designed for image recognition: it had an array of 400 photocells, randomly connected to the "neurons". Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors

Application of Al

- Optical character recognition
- Spam filtering
- Speech recognition
- Face recognition
- Object recognition
- Robotics
- Recommending products based on what customers bought before
- Detect fraudulent transactions

A single-layer perceptron

A single-layer perceptron looks as follows:

^{*}This and the following slides follow the example on https://hackernoon.com/a-hands-on-introduction-to-neural-networks-6a03afb468b1

A single-layer perceptron

Input:

• Each input to the neuron $(x_1, x_2, ... x_n)$ is known as a **feature**

Weights:

• Each feature is weighted with a number to represent the strength of that input $(w_{k1}, w_{k2}, ... w_{km})$.

Activation function:

Calculate weighted sum of inputs (v_k) , pass through an activation function and threshold result y_k to 0 or 1

A single-layer perceptron can be trained as follows:

- 1. Ask the neuron* to classify a sample (forward pass)
- 2. Update the neuron's weights based on how wrong the prediction is.
- 3. Repeat for a set number of times (=**epochs**).

Activation function

Added to the output end of any neural network

- Can be regarded as a Transfer Function
- Can also be attached in between two Neural Networks

Used to determine whether the output of a neural network is 'yes' or 'no' (or something in between).

 Maps the resulting values in between 0 to 1 or -1 to 1 (depending upon the activation function)

We distinguish between (piecewise) linear and nonlinear activation functions

Training a perceptron

What else do we need?

- We need an error function (cost function or loss function):
 - The cost function must be able to be written as an average over cost functions Ei for individual training examples xi:

$$E = \frac{1}{N} \sum_{i=1}^{N} E_i$$

- This allows us to compute the gradient (with respect to weights and biases) for a single training example, and run e.g. Gradient Descent
- Examples of loss function: L1 norm $\rightarrow E = \sum_i |E_i|$
- We need an optimisation method (e.g. gradient descent)
- Our activation function should be differentiable

From single-layer to multi-layer perceptron

A more complex MLP is shown below (still only 1 hidden layer):

Multi-layer perceptron

We have stacked multiple perceptrons to generate hidden layers:

If we have more than one hidden layer, the neural network is considered to be "deep" and we move into **deep learning**

From shallow to deep fully connected networks

Compare this to a deep fully-connected network with N hidden layers:

Shallow neural network

hidden layer output layer

6x9=54 connections to first layer 9x4=36 connections to output layer 54+36=90 connections in total

Deep neural network

8x9=72 from input layer, 9x4=36 to output layer 9x9 connections between each hidden layer, ie $(9x9)^{(N-2)}$ 8x9 + (N-2)x81 + 9x4

E.g. 108 (N=2), 189 (N=3), 270 (N=3)

Convolutional neural network (CNN)

Convolutional neural networks

Src: towardsdatascience.com

Convolutional Neural Networks (CNNs)

CNNs have several important **building blocks**:

- 1. 2D (or 3D) input layer
- 2. Convolutional layer
 - Neurons in the first convolutional layer are not connected to every single pixel, but only to pixels in their receptive fields
 - Neurons in the second convolutional layer are only connected to neurons within a small rectangular region in the first layer
- 3. Pooling layer
 - Goal is to subsample the input image to reduce computational load, memory usage, numbers of parameters (limits risk of overfitting)
- 4. Fully-connected output layer
 - This is a regular feed-forward network which produces final output prediction
 - E.g. softmax layer that outputs estimated class probabilities

Convolutional layer

Convolutional layers allow the network to:

- Concentrate on low-level features in the first hidden layer
- Assemble them to higher-level features in the next hidden layer

1,	1,0	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Convolutional layer

Need to apply **zero-padding** at each layer and also apply a stride for further **dimensionality reduction**:

Connections between layers and zero padding

Reducing dimensionality using a stride

Pooling layer

- Goal is to subsample the input image to reduce computational load, memory usage, numbers of parameters (limits risk of overfitting)
- Each neuron in pooling layer is connected to the outputs of limited number of neurons in previous layer, again located within a small rectangular receptive field
- Most common type is max pooling

Convolutional Neural Networks (CNNs)

Putting it all together:

In this case, 3-channel RGB image)

Many variants of CNN exist and have been boosted by the advent of **ImageNet in 2010**

CNNs for image classification

First rewind and look at a simple CNN applied to real image classification

CNNs for image classification

First rewind and look at a simple CNN applied to real image classification

CNNs for image segmentation

One major focus in computer vision and medical imaging is on **image** segmentation

- Challenging in medical imaging due to variability in patient anatomy & pathology, patient pose and motion, image artefacts
- U-net is the most common used network, which was proposed by Ronneberger (Google DeepMind) in 2015:

Bits & Bobs

All of the networks so far (deep neural networks, with our without convolutional layers), need to be carefully designed and trained:

Choice of:

- Number of hidden layers and neurons, stacking (AE)
- Loss function, activation function, learning rate, epochs
- Optimisation methods
- Regularisation methods
- Transfer learning

Optimisation

Choice of faster gradient-based optimisation methods for use with backpropagation:

- 1. Gradient Descent
- 2. Momentum optimisation
- 3. Nesterov Accelerated Gradient
- 4. AdaGrad
- 5. RMSProp
- 6. Adam Optimiser

Regularisation

To avoid **overfitting**, we can do the following:

- Early stopping: Interrupt training when its performance on the validation set starts dropping
- 2. I_1 and I_2 regularization: Add a regularization term in the cost function.
- **3. Dropout**: At every training step, every neuron (input or hidden) has a probability p of being temporarily "dropped out"
- **4. Data augmentation:** Generate new training instance artificially boosting the size of the training set.
 - E.g. you can rotate, shift (translate), resize (scale), fli

Dropped

Summary

We can also exploit existing network architectures or parts thereof by:

Stacking different types of layers, such as convolutional and pooling layers – it's very modular

Creating **ensemble** architectures by aggregating results from different, separately trained architectures

Using pre-trained networks (e.g. U-net) for similar applications (transfer learning)

