Übungsgruppe: I07, Fr. 10-12, SRZ217

Blatt 8

Aufgabe 30.

(a)

Folgende Funktionen g_i sind jeweilige asymptotische obere Schranken von f_i , $i = 1, \dots, 4$.

$$g_1: \mathbb{N} \to \mathbb{R}^+, n \mapsto n^4$$

$$g_2: \mathbb{N} \to \mathbb{R}^+, n \mapsto n \cdot \log_2^2(n)$$

$$g_3: \mathbb{N} \to \mathbb{R}^+, n \mapsto n^2$$

$$g_4: \mathbb{N} \to \mathbb{R}^+, n \mapsto \log_2^2(n)$$

(b)

Satz 1. Sei $f: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto \log_2(n^n)$ und $g: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto n^2 \cdot \log_2(n)$. Dann gilt: $f \in \mathcal{O}(g)$

Beweis. Ferner sei $n \ge 1$, dann gilt

$$f(n) = \log_2(n^n) = n \cdot \log_2(n) \le n^2 \log_2(n) = g(n)$$

Folglich gilt $f \in \mathcal{O}(g)$.

(c)

Satz 2. Sei $f: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto n \cdot \log_4(n)$ und $g: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto n \cdot \log_2(n)$. Dann gilt: $f \in \Omega(g)$.

Beweis. Wir definieren $c = \frac{1}{\log_4(2)} \in \mathbb{R}^+$. Dann folgt f.a. $n \in \mathbb{N}$:

$$g(n) = n \cdot \log_2(n) = n \frac{\log_4(n)}{\log_4(2)} = c \cdot n \log_4(n) = f(n)$$

Damit ist nun $f \in \Theta(g)$ und insbesondere $f \in \Omega(g)$.

(d)

Satz 3. Sei

$$f: \mathbb{N} \to \mathbb{R}^+, n \mapsto \begin{cases} n! & \text{for } 1 \le n \le 17\\ 2^{2^n} & \text{for } 18 \le n \le 42\\ \log_2(n) & \text{for } 43 \le n \end{cases}$$

Felix Janssen Benedikt Rips Marcel Schoppmeier

Informatik II (SS2016)

Übungsgruppe: I07, Fr. 10-12, SRZ217

Blatt 8

Ferner sei $g: \mathbb{N} \to \mathbb{R}^+, n \mapsto \log +2n$.

Dann gilt: $f \in \mathcal{O}(g)$.

Beweis. Sei $n \geq 43$. Dann gilt $f(n) = \log_2(n) = g(n)$. Und damit gilt per Definition $f \in \mathcal{O}(g)$. \square