

Description

The VSM50N15 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150 \text{V}, I_D = 50 \text{A}$ $R_{DS(ON)} < 23 \text{m}\Omega \text{ @ } V_{GS} = 10 \text{V}$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

TO-220F

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM50N15-TF	VSM50N15	TO-220F	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	150	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	50	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	35	А
Pulsed Drain Current	I _{DM}	210	А
Maximum Power Dissipation	P _D	60	W
Derating factor		0.4	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	640	mJ
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}$ C

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	2.5	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	150	170	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.2	4.5	V
Drain-Source On-State Resistance			-	19.5	23	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =30A	85	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	- V _{DS} =25V,V _{GS} =0V,	-	3250	-	PF
Output Capacitance	C _{oss}		-	670	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	150	-	PF
Switching Characteristics (Note 4)	<u> </u>		'			
Turn-on Delay Time	t _{d(on)}		-	26	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =2A, R_{L} =15 Ω V_{GS} =10V, R_{G} =2.5 Ω	-	24	-	nS
Turn-Off Delay Time	t _{d(off)}		-	91	-	nS
Turn-Off Fall Time	t _f		-	39	-	nS
Total Gate Charge	Qg	- V _{DS} =30V,I _D =30A,	-	163		nC
Gate-Source Charge	Q _{gs}		-	31		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	64		nC
Drain-Source Diode Characteristics	<u> </u>		'			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	50	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	42		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)		66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance