WORK DONE

1)Data Ingestion

2. Exploratory Data Analysis

Data Ingestion

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

Exploratory Data Analysis

Show Descriptive Statistics

Data Description

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768	768	768	768	768	768	768	768	768
mean	3.8451	120.8945	69.1055	20.5365	79.7995	31.9926	0.4719	33.2409	0.349
std	3.3696	31.9726	19.3558	15,9522	115.244	7.8842	0.3313	11.7602	0.477
min	0	0	0	0	0	0	0,078	21	0
25%	1	99	62	0	0	27.3	0.2438	24	0
50%	3	117	72	23	30.5	32	0.3725	29	0
75%	6	140.25	80	32	127.25	36.6	0.6263	41	1
max	17	199	122	99	846	67.1	2,42	81	1

Data Types and Null Values

	Data Type	Null Values	Non-null Count
Pregnancies	int64	No null values	768
Glucose	int64	No null values	768
BloodPressure	int64	No null values	768
SkinThickness	int64	No null values	768
Insulin	int64	No null values	768
ВМІ	float64	No null values	768
DiabetesPedigre	float64	No null values	768
Age	int64	No null values	768
Outcome	int64	No null values	768

2. Exploratory Data Analysis

Data Ingestion

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

Highly Correlated Features

	Feature 1	Feature 2	Correlation
0	Pregnancies	Age	0.5443
1	Glucose	Outcome	0.4666
2	Insulin	SkinThickness	0.4368
3	ВМІ	SkinThickness	0.3926
4	Glucose	Insulin	0.3314
5	ВМІ	Outcome	0.2927
6	BloodPressure	ВМІ	0.2818
7	Glucose	Age	0.2635
8	BloodPressure	Age	0.2395
9	Age	Outcome	0.2384

Interpretation of Correlations

Understanding Correlation:

Correlation values range from -1 to 1:

- Positive Correlation (closer to 1): As one feature increases, the other feature tends to increase. Example: Higher study
 hours leading to better grades.
- Negative Correlation (closer to -1): As one feature increases, the other feature tends to decrease. Example: More exercise
 might result in lower body fat percentage.
- . No Correlation (closer to 0): Minimal or no linear relationship between features. Example: Shoe size vs. exam scores.

Importance for Predictive Modeling:

- Strong correlations (values near ±1) indicate a significant relationship and are often key features for prediction.
- High correlation between independent features can lead to multicollinearity, which may require addressing by removing
 or combining features to avoid redundancy and overfitting.

Deploy :

2. Exploratory Data Analysis

Data Ingestion

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

- Box: Represents the interquartile range (IQR), which contains the middle 50% of the data.Lower Edge: 1st Quartile (Q1). Upper Edge: 3rd Quartile (Q3). Horizontal Line inside the Box: Median
- Whiskers: The lines that extend from the box to the smallest and largest values within 1.5 * IQR.
- Outliers: Data points that lie outside the whisker range are considered outliers and are displayed as individual dots.
- · All Points: Every data point, including outliers.
- . Only Whiskers: Displays only the key data range within the whiskers, hiding outliers.
- Suspected Outliers: Data points that fall outside 1.5 * IQR but aren't extreme enough to be definite outliers.
- . Whiskers and Outliers: Displays both the whiskers and any definite outliers.

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

3. Data Cleaning

Outlier Detection Methods

Data Cleaning

Outlier detection helps identify extreme values in the dataset. Below are two common methods:

- 1. Tukey's Method: Uses the interquartile range (IQR) to detect outliers. It is robust to extreme values and identifies outliers outside the range [Q1 1.5/QR, Q3 + 1.5IQR].
- 2. **Z-score Method**: Identifies outliers based on how many standard deviations a data point is from the mean. A common threshold is 3, meaning points more than 3 standard deviations away from the mean are flagged as outliers.

4. Feature Engineering Deploy : Data Ingestion **Feature Engineering Exploratory Data Analysis** Data Cleaning Select Target Variable Feature Importance Feature Scaling Select the target variable: Model Selection Outcome Model Tuning Independent features: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age Ensembling Report Variable Importance Glucose -BMI -Age · DiabetesPedigreeFunction -Pregnancies -BloodPressure -SkinThickness ·

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

5. Feature Scaling

Feature Scaling / Normalization

Scaling will be applied to the following features: Age, BMI, Glucose

The target variable is: Outcome (which will not be scaled).

Choose a scaling method:

MinMaxScaler

StandardScaler

MinMaxScaler scales the features to a fixed range, usually [0,1].

Scaled Data Preview (including only selected features and target variable):

	Age	BMI	Glucose	Outcome
0	0.4833	0.5007	0.7437	1
1	0.1667	0.3964	0.4271	0
2	0.1833	0.3472	0.9196	1
3	0	0.4188	0.4472	0
4	0.2	0.6423	0.6884	1
5	0.15	0.3815	0.5829	0
6	0.0833	0.462	0.392	1
7	0.1333	0.5261	0.5779	0
8	0.5333	0.4545	0.9899	1
9	0.55	0	0.6281	1

Download Scaled Data CSV

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

6. Model Selection

Model Selection & Baseline Algorithm Evaluation

Model will be trained on features: Age, BMI, Glucose

The target variable is: Outcome

Binary Classification

The target variable Outcome has exactly two unique values, indicating a binary outcome. Therefore, the problem can be modeled as a binary classification task, where the goal is to predict whether an individual falls into one of two categories.

Suggested Models for Binary Classification

The following models are suggested for binary classification tasks:

- Logistic Regression
- K-Nearest Neighbors
- Support Vector Machine
- Decision Tree
- AdaBoost
- · Gradient Boosting
- Random Forest
- Extra Trees

Metric Comparison Across Models

Model	Accuracy	Precision	Recall	F1-score	ROC AUC
Logistic Regression	0.8182	0.8421	0.5926	0.6957	0.8452
K-Nearest Neighbors	0.7792	0.7273	0.5926	0.6531	0.807
Support Vector Machine	0.7922	0.7895	0.5556	0.6522	0.877
Decision Tree	0.6753	0.5333	0.5926	0.5614	0.6563
AdaBoost	0.8312	0.8889	0.5926	0.7111	0.8893
Gradient Boosting	0.7922	0.7619	0.5926	0.6667	0.8681
Random Forest	0.7532	0.7	0.5185	0.5957	0.8352
Extra Trees	0.7792	0.75	0.5556	0.6383	0.8189

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

6. Model Selection

Comparison Plot of Model Performance

Model Performance Comparison

Select Models for Ensembling

Choose one or more models for further evaluation:

You have selected the following models for further evaluation:

Selected models saved: Logistic Regression, K-Nearest Neighbors, Support Vector Machine

Logistic Regression, K-Nearest Neighbors, Support Vector Machine

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

Selected Models for Hyperparameter Tuning

7. Model Tuning

```
0: "Logistic Regression"
1: "K-Nearest Neighbors"
2: "Support Vector Machine"
```

Hyperparameter Tuning Methods

Auto Tuning Hyperparameters

Manual Tuning Hyperparameters

Auto-Tuning Hyperparameters

Tuning: Logistic Regression

Tuning: K-Nearest Neighbors

Tuning: Support Vector Machine

Best Hyperparameters for Each Model:

Logistic Regression: {'penalty': 'l2', 'C': 0.1}

K-Nearest Neighbors: {'n_neighbors': 7, 'weights': 'uniform'}

Support Vector Machine: {'C': 10, 'kernel': 'poly'}

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

Evaluation Metrics for Tuned Models:

Predicted

Classification Reports:

Predicted

Classification Report for Logistic Regression:

- 100

	precision	recall	f1-score	support
0	0.7910	0.8780	0.8322	500.0000
1	0.7081	0.5606	0.6258	264.0000
accuracy	0.7683	0.7683	0.7683	0.7683
macro avg	0.7496	0.7193	0.7290	764.0000
weighted avg	0.7624	0.7683	0.7609	764.0000

- 100

- 100

- 50

Predicted

8. Ensembling

<

Data Ingestion

Exploratory Data Analysis

Data Cleaning

Feature Importance

Feature Scaling

Model Selection

Model Tuning

Ensembling

Report

Super Learner Training

Select All Models

Selected models:

```
T [
0 : "Logistic Regression"
1 : "K-Nearest Neighbors"
2 : "Support Vector Machine"
]
```

Train Super Learner

Super Learner trained successfully!

Super Learner Accuracy: 0.8438

Super Learner Precision: 0.8571

Super Learner Recall: 0.6000

Super Learner F1-score: 0.7059

Super Learner ROC AUC: 0.7773

Deploy :

