Misura della caratteristica di due diodi a giunzione p-n

Lo scopo della prova era la misura della caratteristica di un diodo al Silicio ed uno al Germanio per ricavare il parametro ηV_T della legge di Schotky.

Il circuito utilizzato per la prova é il seguente

Gli strumenti utilizzati nella prova sono:

- (i) Potenziometro da $1k\Omega$
- (ii) Diodi a giunzione p-n: AAZ15/OA47 Germanio, 1N914A/1N4446/1N4148 Silicio
- (iii) Breadboard generica
- (iv) Oscilloscopio ISR 622 ISO-TECH
- (v) Multimetro digitale FLUKE 75
- $\left(\mathrm{vi}\right)$ Generatore di tensione continua IPS 3303 ISO-TECH

I dati misurati per la calibrazione di multimetro ed oscilloscopio sono:

V_{mul}	ov_{mul}	V_{osc}	ov_{osc}
0.099	0.0003	0.1	0.002
0.151	0.0004	0.15	0.005
0.199	0.0005	0.2	0.005
0.294	0.0006	0.3	0.01
0.394	0.0008	0.4	0.01
0.491	0.0009	0.5	0.01
0.591	0.001	0.6	0.01
0.691	0.003	0.7	0.02
0.791	0.003	0.8	0.02

Il cui grafico in scala lineare:

Calibrazione Oscilloscopio-Multimetro

I dati misurati per il diodo al Silicio e al Germanio sono rispettivamente:									
\mathbf{V}	δV	I	δI		\mathbf{V}	δV	I	$\delta \mathrm{I}$	
0.07	0.01	0.01	0.0004		0.4	0.01	0.01	0.0004	
0.08	0.01	0.01	0.0004		0.5	0.01	0.06	0.0009	
0.1	0.01	0.02	0.0005		0.54	0.01	0.12	0.003	
0.12	0.01	0.04	0.0007		0.56	0.01	0.2	0.005	
0.14	0.01	0.07	0.001		0.58	0.01	0.25	0.006	
0.16	0.01	0.10	0.004		0.59	0.01	0.33	0.006	
0.18	0.01	0.16	0.005		0.6	0.01	0.42	0.007	
0.20	0.01	0.24	0.005		0.61	0.01	0.5	0.008	
0.24	0.01	0.53	0.008		0.62	0.01	0.6	0.009	
0.26	0.01	0.73	0.01		0.64	0.01	0.92	0.01	
0.28	0.01	1.07	0.04		0.65	0.01	1.06	0.03	
0.29	0.01	1.26	0.04		0.66	0.01	1.27	0.03	
0.30	0.01	1.48	0.04		0.67	0.01	1.55	0.05	
0.31	0.01	1.74	0.05		0.68	0.01	1.88	0.05	
0.32	0.01	2.03	0.05		0.7	0.01	2.65	0.06	

 $\begin{bmatrix} 0.32 & 0.01 & 2.03 & 0.05 \end{bmatrix}$ $\begin{bmatrix} 0.7 & 0.05 & 0.05 \end{bmatrix}$ Seguono i loro rispettivi grafici in scala semilogaritmica:

Caratteristica I-V del diodo al Silicio

Caratteristica I-V del diodo al Germanio

