Challenge Problems Set 1 Solutions

Jacob Terkel

November 2021

Contents

Problems 1

Solutions 3

Problem Index

Problem	1	2	3	4	5	6	7	8	9	10
Difficulty/10	7	7	5	8	5	4	5	6	8.5	4
Category	NT	AL	AN	CO	NT	GM	NT	NT	AN	NT

Key:

• NT: Number Theory

AL: AlgebraAN: Analysis

CO: Combinatorics

GM: Geometry

Problems

1. Prove that the equation

$$\binom{m}{3} + \binom{m}{2} + \binom{m}{1} + 1 = 2^n$$

only has finitely many solutions for positive integers m and n.

2. Given some Gaussian integer $a \in \mathbb{Z}[i]$ show that the group of Gaussian integers mod a is cyclic under addition if a is a Gaussian prime with both real and imaginary components non-zero.

3. Show that the quantity

$$a = \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{\cdots}}}}}$$

exists, ie. the above nested radical converges onto a real number.

- 4. Prove that in any set A of 7 numbers with different remainders when divided by 15, there exists $a,b,c\in A$ such that a+b+c is divisible by 15. (a,b,c) need not be distinct).
- 5. Find all positive integer solutions to

$$a^2 - b^2 = 2^k$$

where both a and b are odd.

- 6. Prove that the square is the only regular polygon with side length 1 that has integer area.
- 7. Prove that

$$1^3 + 2^3 + \cdots + n^3$$

is never prime

- 8. Determine when the polynomial $f(x) = x^3 + 2abx^2 + ax$ has only real rational roots for $a, b \in \mathbb{Z}$.
- 9. Equations of the form

$$x^3 + y^3 + ax^2 + by^2 + cxy = 0$$

sometimes have two self intersections, find the conditions for this occurring (in terms of an equation or inequality containing only a, b and c as variables) and the points of self intersection in terms of a, b and c).

10. Let p be some prime not equal to 2 or 5. Prove that $\frac{1}{p}$ cannot be represented as a terminating decimal in base 10, and prove that ℓ_{10} , the period of the decimal's repeating cycle, divides p-1.

November 2021

Solutions

- 1. Simplify the equation, showing that m+1 can only take the form $3 \cdot 2^k$ or 2^k , then show that k is bounded from above via parity and/or rationality.
- 2. Demonstrate that for any z = x + yi, the group Gaussian integers is cyclic if gcd(x, y) = 1, and explain that all Gaussian primes with non-zero components have relatively prime x and y.
- 3. Show that a sequence defined by iterations of $a=\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{\cdots}}}}}$ is monotone and bounded from above. (Many ways to do this)
- 4. First, one may note that if A has no three elements who have a sum divisible by 15, then no element in A is divisible by 5. Therefore, every element of A must be 1,2,3,4 mod 5. Now, we examine the sets mod 15 $A_2 = \{2a \ a \in A\}$ and $A_1 = \{15 a \ a \in A\}$. Now, note that for A to not contain a 15 divisible triplet, $A_1 \cap A_2 = \emptyset$. Furthermore, neither set can contain 0, 5 or 10, giving us that $A_1, A_2, \{0, 5, 10\}$ are pairwise disjoint. However, $|A_1| = 7$ and $|A_2| = 7$, however $|A_1 \cup A_2 \cup \{0, 5, 10\}| \le 15$ but $7 + 7 + 3 \le 15$ is obviously untrue.
- 5. We have that $(a+b)(a-b)=2^k$ Meaning $a+b=2^m$ and $a-b=2^n$, this means that $\frac{a+b}{a-b}=2^{m-n}$. Because they are both odd, -2b is only divisble by 2 once, and we would have that a-b=2, and $a+b=2^{k-1}$.
- 6. Many ways to show this, I prefer showing that the area of such a regular n-gon with side length 1 is $\frac{n}{4}\cot\left(\frac{\pi}{n}\right)$, and that for this to be an integer, it is required that $\frac{n}{4}$ is an integer, thus n is divisible by 4. Furthermore, $\cot\left(\frac{\pi}{n}\right)$ is only rational for n=4.
- 7. One way to show this is that the quantity is always a square.
- 8. First, show that the roots for f(x) are 0 and $\pm \sqrt{a^2b^2-a}-ab$. Now, the question has been simplified to when a^2b^2-a is square. We have that

$$a^2b^2 - a = a(ab^2 - 1)$$

must also be square, however this means that either a is square or ab^2-1 is divisible by a. The former is clearly never valid as this would make ab^2 a square, and a square minus 1 is never a square. The latter implies that $a=\pm 1$ or b=0. However, if a=1, then that would also mean that b^2-1 is a square, giving us that b is either 1, 0 or -1. If a=-1, then we must have that b^2+1 is square, which is only possible when b=0. Now, The last case, when b=0. This is easily seen to result in a rational real solution when a is a negative square. Thus, we have the full list of solutions

$$(1,1),(1,-1),(1,0),(A,0)$$

where A is -1 times any integer square.

9. Condition for double intersection: a + b - c = 0

Points of self-intersection when two self intersection points are present:

$$(0,0), \left(\frac{b-a}{3}, \frac{a-b}{3}\right)$$

10. First part follows relatively easily from the fact that p is prime, second follows from Fermat's little theorem.

November 2021 3