LP25 – Ondes Acoustiques

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Equation de propagation d'une onde de pression.

1. Hypothèse acoustique.

I. Equation de propagation d'une onde de pression.

3. Célérité des ondes acoustiques

Matériau	Masse unitaire	Coefficient de compressibilité	c (à 295 K)
Air (considéré comme un gaz parfait)	$M = 28,8 \ g. mol^{-1}$	$\chi_0 = \frac{1}{\gamma P_0} = 7 \times 10^{-6} Pa^{-1}$	$c = 344 m. s^{-1}$
Eau (fluide quasi-incompressible)	$\mu = 1.0 \times 10^3 kg. m^{-3}$	$\chi_0 = 5.0 \times 10^{-10} Pa^{-1}$	$c = 1.4 \times 10^3 m. s^{-1}$
Solide (modèle du solide élastique) Exemple du fer	$\mu = 7,88 \times 10^3 kg. m^{-3}$	Module d'Young : $E = 190 \ GPa$	$c = 4,91 \times 10^3 m. s^{-1}$

III. Production, transmission et détection.

1. Adaptation d'impédance dans l'oreille moyenne.

