

Práctico de laboratorio Nº1

Álgebra de Boole

circuitos combinacionales

• Autor:

- Nahuel Pereyra Leg. Leg. 402333
- Marcos Raúl Gatica Leg. 402006
- Valentino Rao Leg. 402308
- **Curso:** 3R1
- **Asignatura:** Técnicas Digitales I Departamento de Ingeniería Electrónica.
- **Institución:** Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.		oducción i
	1.1.	Objetivos generales
	1.2.	Objetivos específicos
		Elementos utilizados
2.	Prác	eticos realizados
	2.1.	$BCD \rightarrow Exceso-3$
	2.2.	Comparador binario
3.	Cálc	eulos y respuestas
	3.1.	Exceso 3
		3.1.1. Tabla de verdad
		3.1.2. Obtención de funciones lógicas por Karnaugh
		3.1.3. Implementación y simulación
		3.1.4. Circuito con compuertas lógicas
	3.2.	Comparador binario
		3.2.1. Tabla de verdad
		3.2.2. Obtención de funciones lógicas por Karnaugh
		3.2.3. Implementación y simulación
		3.2.4. Circuito con compuertas lógicas
4.	Cone	clusiones
		Dificultades enfrentadas
		Objetivos alcanzados

1. Introducción

1.1. Objetivos generales

El propósito de este trabajo práctico es resolver problemas prácticos usando el conjunto de circuitos "MiniLab", para afianzar los conocimientos teóricos y prácticos adquiridos en el aula.

1.2. Objetivos específicos

- Poner en práctica los conocimientos adquiridos en la materia.
- Realizar ejemplos prácticos para ejercitar los temas de álgebra de Boole y circuitos combinacionales.
- Reforzar los conocimientos aplicando diferentes métodos de minimización de funciones.

1.3. Elementos utilizados

2. Prácticos realizados

2.1. BCD \rightarrow Exceso-3

Consigna: Diseñar y armar un conversor de código BCD a XS3 (exceso 3). Realizar:

- I. Tabla de verdad
- Obtener las funciones lógicas de calidas con circuitos combinacionales.
- III. Minimizar el circuito y verificar su funcionamiento en el MiniLab.
- IV. Armar el circuito y verificar su funcionamiento en el simular "falstad.com"

2.2. Comparador binario

El siguiente circuito es un comparador binario de dos números A y B de dos bits cada uno. Las salidas (S0, S1 y S2) representan la salida del comparador y cuando S0 = 1 cuando A > B y S2 = 1 para A = B, en caso de no darse la condición, la salida permanece en cero.

Se pide:

- I. Tabla de verdad.
- II. Obtener las funciones lógicas de salidas con circuitos combinacionales.
- III. Circuito mínimo usando mapa de Karnaugh.
- IV. Circuito mínimo usando teoremas y postulados de álgebra de Boole.

- V. Armado de circuito y verificado en MiniLab.
- VI. Armado de circuito y verificado con simulador "falstad.com"

3. Cálculos y respuestas

3.1. Exceso 3

3.1.1. Tabla de verdad

A	В	C	D	W	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

3.1.2. Obtención de funciones lógicas por Karnaugh

ab cc	00	01	11	10
00	0	1	1	1
01	1	0	0	0
11	0	1	X	X
10	X	X	X	X

$$X = \sum (1; 2; 3; 4; 9)$$
$$X = D.\overline{B} + C.\overline{B} + \overline{C}.\overline{D}.B$$

$$Y = \sum (0;3;4;7;8)$$

$$Y = C.D + \overline{C}.\overline{D}$$

$$W = \sum (5;6;7;8;9)$$

$$W = A + B.D + B.C$$

$$Z = \sum (0; 2; 4; 6; 8)$$

$$Z = \overline{D}$$

3.1.3. Implementación y simulación

Figura 1: Implementación con MiniLab

Figura 2: Circuito simulado en Falstab

Figura 3: Integrados usados

3.1.4. Circuito con compuertas lógicas

3.2. Comparador binario

$$S_0 = 1 \rightarrow A > B$$

$$S_1 = 1 \rightarrow A < B$$

$$S_2 = 1 \rightarrow A = B$$

3.2.1. Tabla de verdad

A_1	A_0	B_1	B_0	S_0	S_1	S_2
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

3.2.2. Obtención de funciones lógicas por Karnaugh

ab	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	0	1
10	1	1	0	0

$$S_0 = \sum (4; 9; 15; 14; 13; 12; 8)$$

$$S_0 = (A_0 \cdot \overline{B_1} \cdot \overline{B_0}) + (A_1 \cdot A_0 \cdot \overline{B_0}) + (A_1 \cdot \overline{B_1})$$

$$S_1 = \sum (1;2;3;6;7;11)$$

$$S_1 = (\overline{A_1} \cdot \overline{A_0} \cdot B_0) + (\overline{A_1} \cdot B_1) + (\overline{A_0} \cdot B_1 \cdot B_0)$$

ab cc	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

$$S_2 = \sum (0; 5; 10; 15)$$

$$S_2 = (\overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0}) + (\overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0) + (A_1 \cdot A_0 \cdot B_1 \cdot B_0) + (A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0})$$

$$XNOR = (\overline{X} \cdot \overline{Y}) + (X \cdot Y)$$

$$\Rightarrow S_2 = \overline{A_1} \cdot \overline{B_1} (\overline{A_0} \cdot \overline{B_0} + A_0 \cdot B_0) + A_1 \cdot B_1 (A_0 \cdot B_0 + \overline{A_0} \cdot \overline{B_0})$$

$$S_2 = (\overline{A_0} \cdot \overline{B_0} + A_0 \cdot B_0) \cdot (\overline{A_1} \cdot \overline{B_1} + A_1 \cdot B_1)$$

$$S_2 = \overline{(A_0 \oplus B_0)} \cdot \overline{(A_1 \oplus B_1)}$$

3.2.3. Implementación y simulación

Figura 4: Implementación para el MiniLab

Figura 5: Circuito para la simulación de Falstab

Figura 6: Integrados usados

3.2.4. Circuito con compuertas lógicas

4. Conclusiones

4.1. Dificultades enfrentadas

"La principal dificultad que hemos tenido fue en el desarrollo del mini-laboratorio, ya que quisimos experimentar con el diseño de placas por KiCad y el método casero para hacer placas de circuitos. En cierto punto decidimos frenar y pasar a hacer el mini-laboratorio con protoboards."

"En cuanto al desarrollo del trabajo práctico, la otra dificultad enfrentada fue la selección de los integrados a usar y la forma de la que íbamos a conectarlos, porque también quisimos experimentar con el uso de placas hechas en casa. Decidimos abandonar brevemente la idea para hacer las conexiones por protoboard, que resultó difícil por sus conecxiones."

4.2. Objetivos alcanzados

"Se logró aplicar lo aprendido sobre mapas de Karnaugh, simplificaciones y circuitos combinacionales para diseñar el BCD-Exceso 3 y el comparador binario, una forma más real de ver las salidas de un sistema."