Re-Analysis of the Traditional Architecture

Neural ODE, ResNet Strikes Back, Patches Are All You Need

2021. 11. 4 Dajin Han

Index

- ResNet
 - Analysis on Neural ODE
 - ResNet Strikes Back
- Vision Transformer
 - Patches Are All You Need

Similarity of Residual Block and Euler's Method

ResNet

- Residual block
- Shorcut / Skip connection
- Enable deeper network
 - Plane layer : reproduced info
 - Residual block : additional info, if necessary

Euler's Method

• Taylor series

$$T_f(x) = \sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!} \, (x-a)^n = f(a) + f'(a)(x-a) + rac{1}{2} f''(a)(x-a)^2 + rac{1}{6} f'''(a)(x-a)^3 + \cdots$$

• Euler's Method

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

Solve Differential Equation

Similarity

ResNet:
$$x_{k+1} = x_k + F(x_k)$$

Euler's Method:
$$x_{k+1} = x_k + hF(x_k)$$
,

- Solve Differential Equation
 - From initial point to the target point
 - Initial point == Input Image
 - Target point == prediction

- Continuous Model
 - No Fixed(Discrete) Layer
- Ordinary Differential Equation
 - For single function, single variable

$$rac{dy}{dt}=f\left(t,y
ight) \hspace{0.5cm}y\left(t_{0}
ight) =y_{0}$$

- Continuous Model
 - No Fixed(Discrete) Layer
- Ordinary Differential Equation
 - For single function, single variable

$$rac{dy}{dt}=f\left(t,y
ight) \hspace{0.5cm}y\left(t_{0}
ight) =y_{0}$$

- Continuous Model
 - No Fixed(Discrete) Layer
- Ordinary Differential Equation
 - For single function, single variable

$$rac{dy}{dt}=f\left(t,y
ight) \quad y\left(t_{0}
ight) =y_{0}$$

Similarity

- Solve Differential Equation
 - From initial point to the target point
 - Initial point == Input Image
 - Target point == prediction

ResNet: $x_{k+1} = x_k + F(x_k)$

Euler's Method: $x_{k+1} = x_k + hF(x_k)$,

ResNet Strikes Back

Timm, Advanced Pretrained ResNet, Fair Comparison

Model Accuracy

accuracy (model) =
$$f(A, T, N)$$
,

- Architecture design
- Training setting
- Measurement noise

Training Procedures

Procedure A1 aims at providing the best performance for ResNet-50. It is therefore the longest in terms of epochs (600) and training time (4.6 days on one node with 4 V100 32GB GPUs).

Procedure A2 is a 300 epochs schedule that is comparable to several modern procedures like DeiT, except with a larger batch size of 2048 and other choices introduced for all our recipes.

Procedure A3 aims at outperforming the original ResNet-50 procedure with a short schedule of 100 epochs and a batch size 2048. It can be trained in 15h on 4 V100 16GB GPUs and could be a good setting for exploratory research or studies.

Training	Number	Training	Training	Peak memory	Numbers	Тор-	1 accu	racy
Procedure	of epochs	resolution	time	by GPU (MB)	of GPU	val	real	v2
A1	600	224×224	110h	22,095	4	80.4	85.7	68.7
A2	300	224×224	55h	22,095	4	79.8	85.4	67.9
A3	100	160×160	15h	11,390	4	78.1	84.5	66.1

Training Procedures

- Loss
 - Multi-Label Classification
 - BCE
- Data Augmentation
 - Timm
 - Mixup, Cutmix
- Regularization
 - Weight Decay
 - · Label smoothing
 - Repeated Augmentation
 - Stochastic-Depth
- Optimization
 - LAMB
 - Normalize gradient and scale it by layer

Image

	A1-A2-org. A3						Cost				ImageNet-1k-val				
	train	test	train	test	A1	A2	A1-	-A2		A3		A1	A2	A3	org.
↓ Architecture	res.	res.	res.	res.	time ((hour)	# GPU	Pmem	time	# GPU	Pmem		Accura	acy(%)	
ResNet-18 [13] [†]	224	224	160	224	186	93	2	12.5	28	2	6.5	71.5	70.6	68.2	69.8
ResNet-34 [13] [†]	224	224	160	224	186	93	2	17.5	27	2	9.0	76.4	75.5	73.0	73.3
ResNet-50 [13] [†]	224	224	160	224	110	55	4	22.0	15	4	11.4	80.4	79.8	78.1	76.1
ResNet-101 [13] [†]	224	224	160	224	74	37	8	16.3	8	8	8.5	81.5	81.3	79.8	77.4
ResNet-152 [13] [†]	224	224	160	224	92	46	8	22.5	9	8	11.8	82.0	81.8	80.6	78.3
RegNetY-4GF [32]	224	224	160	224	130	65	4	27.1	15	4	13.9	81.5	81.3	79.0	79.4
RegNetY-8GF [32]	224	224	160	224	106	53	8	19.8	10	8	10.3	82.2	82.1	81.1	79.9
RegNetY-16GF [32]	224	224	160	224	150	75	8	25.6	13	8	13.4	82.0	82.2	81.7	80.4
RegNetY-32GF [32]	224	224	160	224	120	60	16	17.6	12	16	9.4	82.5	82.4	82.6	81.0
SE-ResNet-50 [20]	224	224	160	224	102	51	4	27.6	16	4	14.2	80.0	80.1	77.0	76.7
SENet-154 [20]	224	224	160	224	110	55	16	23.3	12	16	12.2	81.7	81.8	81.9	81.3
ResNet-50-D [14]	224	224	160	224	100	50	4	23.9	14	4	12.3	80.7	80.2	78.7	79.3
ResNeXt-50-32x4d [51] [†]	224	224	160	224	80	40	8	14.3	15	4	14.6	80.5	80.4	79.2	77.6
EfficientNet-B0 [41]	224	224	160	224	110	55	4	22.1	15	4	11.4	77.0	76.8	73.0	77.1
EfficientNet-B1 [41]	240	240	160	224	62	31	8	17.9	8	8	7.9	79.2	79.4	74.9	79.1
EfficientNet-B2 [41]	260	260	192	256	76	38	8	22.8	9	8	11.9	80.4	80.1	77.5	80.1
EfficientNet-B3 [41]	300	300	224	288	62	31	16	19.5	6	16	10.1	81.4	81.4	79.2	81.6
EfficientNet-B4 [41]	380	380	320	380	64	32	32	20.4	8	32	14.3	81.6	82.4	81.2	82.9
ViT-Ti [45]*	224	224	160	224	98	49	4	16.3	14	4	7.0	74.7	74.1	66.7	72.2
ViT-S [45]*	224	224	160	224	68	34	8	16.1	8	8	7.0	80.6	79.6	73.8	79.8
ViT-B [11]*	224	224	160	224	66	33	16	16.4	5	16	7.3	80.4	79.8	76.0	81.8
timm [50] specific architectures															
ECA-ResNet-50-T	224	224	160	224	112	56	4	29.3	15	4	15.0	81.3	80.9	79.6	_
EfficientNetV2-rw-S [42]	288	384	224	288	52	26	16	16.6	7	16	10.1	82.3	82.9	80.9	83.8
EfficientNetV2-rw-M [42]	320	384	256	352	64	32	32	18.5	9	32	12.1	80.6	81.9	82.3	84.8
ECA-ResNet-269-D	320	416	256	320	108	54	32	27.4	11	32	17.8	83.3	83.9	83.3	85.0

- Not Fair Comparison
 - For Dataset
 - For Model

	Top-1 accuracy (%)									
dataset↓	mean	std	max	min	seed 0					
ImageNet-val	79.72	0.10	79.98	79.50	79.85					
ImageNet-real	85.37	0.08	85.55	85.21	85.45					
ImageNet-V2	67.99	0.23	68.69	67.39	67.90					

Figure 1: $Top \uparrow$: Statistics for ResNet-50 trained with A2 and 100 different seeds. The column "seed 0" corresponds to the weights that we take as reference. Its performance is +0.13% above the average top-1 accuracy on Imagenet-val.

← *Left:* Point cloud plotting the ImageNet-val top-1 accuracy vs ImageNet-V2 for all seeds. Note that the outlying seed that achieves 68.5% top-1 accuracy on ImageNet-V2 has an average performance on ImageNet-val.

- Not Fair Comparison
 - For Dataset
 - For Model

Dataset	Train size	Test size	#classes	Pytorch [1]	A1	A2	A3
ImageNet-val [36]	1,281,167	50,000	1000	76.1	80.4	79.8	78.1
iNaturalist 2019 [18]	265,240	3,003	1,010	73.2	73.9	75.0	73.8
Flowers-102 [29]	2,040	6,149	102	97.9	97.9	97.9	97.5
Stanford Cars [24]	8,144	8,041	196	92.5	92.7	92.6	92.5
CIFAR-100 [25]	50,000	10,000	100	(86.6)	86.9	(86.2)	85.3
CIFAR-10 [25]	50,000	10,000	10	98.2	98.3	98.0	97.6

	test set \rightarrow	ImageNet	t-val	ImageNet-v2		
↓ architecture	$training \rightarrow$	A2	A2 T2		T2	
ResNet-50 DeiT-S		79.9 > 79.6 <	79.2 80.4	67.9 68.1	67.9	

Patches Are All You Need

Attention, Patch

Vision Transformer

- Patch + Positional Embedding
- Self-Attention

Patches Are All You Need

- Traditional CNN
 - Image Input
 - CNN Architecture
- ViT
 - Patch Input
 - Transformer Architecture
- PAAYN
 - Patch Input
 - CNN Architecture

Figure 2: ConvMixer uses "tensor layout" patch embeddings to preserve locality, and then applies d copies of a simple fully-convolutional block consisting of *large-kernel* depthwise convolution followed by pointwise convolution, before finishing with global pooling and a simple linear classifier.

Figure 3: Implementation of ConvMixer in PyTorch; see Appendix D for more implementations.

Patches Are All You Need

Convolutions

- Standard Convolution
- Depthwise Convolution

GELU

$$\operatorname{GELU}(x) = xP(X \leq x) = x\Phi(x) = x \cdot rac{1}{2} \Big[1 + \operatorname{erf}(x/\sqrt{2}) \Big],$$

- Gaussian Error Linear Unit
 - ReLU Deterministic
 - Dropout Stochastic
- Good
 - Bounded below
 - Non-monotonic
 - Unbounded above
 - Smooth

Figure 1: The GELU ($\mu=0,\sigma=1$), ReLU, and ELU ($\alpha=1$).

** *										
Current "Most Interesting" ConvMixer Configurations vs. Other Simple Models										
Network $\begin{vmatrix} Patch \\ Size \end{vmatrix}$ $\begin{vmatrix} Kernel \\ Size \end{vmatrix}$ $\# Params \\ (\times 10^6) \end{vmatrix}$ $\begin{cases} Throughput \\ (img/sec) \end{vmatrix}$ $Act. \\ Fn. \end{vmatrix}$ $\# Epochs \end{vmatrix}$ $\begin{cases} ImNet \\ top-1 (\%) \end{cases}$										
ConvMixer-1536/20 ConvMixer-768/32	7 7	9 7	51.6 21.1	89 203	G R	150 300	81.37 80.16			
ResNet-152 DeiT-B ResMLP-B24/8	- 16 8	3 -	60.2 86 129	872 703 140	R G G	150 300 400	79.64 81.8 81.0			

Table 1: Models trained and evaluated on 224×224 ImageNet-1k only. See more in Appendix A.

QA