Arithmétique et suites - exercices supplémentaires

Arithmétique 🛇 🛇 🛇 🛇 🛇 🗞

Démontrer que le nombre $7^n + 1$ est divisible par 8 si n est impair ; dans le cas n pair, donner le reste de sa division par 8.

Trouver tous les entiers relatifs n tels que $n^2 + n + 7$ soit divisible par 13. Exercice 2

Exercice 3 Soient a et b deux entiers.

- 1) Démontrer que si a et b sont premiers entre eux, il en est de même des entiers a + b et ab.
- 2) On revient au cas général. Calculer pgcd(a + b, ppcm(a, b)).

Exercice 4 Résoudre dans \mathbb{Z} le système suivant :

$$S: \left\{ \begin{array}{ll} x & \equiv & 3 \mod 6 \\ x & \equiv & 1 \mod 10 \end{array} \right.$$

On recherchera d'abord une solution particulière.

Exercice 5 Soient $a \in \mathbb{Z}$, $n \in \mathbb{N}^*$ et p un nombre premier. Montrer que p divise a si et seulement si p divise a^n .

Suites 🖏 🖏 🖏 🖏 🧠 🦠

Soit $(u_n) \in \mathbb{Z}^{\mathbb{N}}$. Montrer que (u_n) converge si et seulement si (u_n) est stationnaire. Exercice 6

Exercice 7 Soit A une partie bornée de \mathbb{R} et x un réel.

- 1) Montrer que $x = \sup(A)$ ssi $(x \text{ majore } A \text{ et il existe une suite } (x_n)_{n \in \mathbb{N}} \text{ de } A \text{ qui converge vers}$
- 2) Énoncer un résultat analogue pour $\inf(A)$.

Exercice 8 Calculer, lorsqu'elles convergent, les limites des suites définies par :
$$u_n = n - \sqrt{n^2 - n}$$
 $u_n = \sqrt{n(n+a)} - n$ $u_n = \frac{n}{2} \sin \frac{n\pi}{2}$ $u_n = \frac{\sin n^2 - \cos n^3}{n}$.

Arithmétique A A A A A A A A

Exercice 9 Soit p un nombre premier.

- 1) Montrer que p divise $\binom{p}{k}$ pour tout $k \in [1, p-1]$.
- 2) En déduire l'identité de Frobenius : $\forall x, y \in \mathbb{Z}, (x+y)^p \equiv x^p + y^p [p].$
- 3) En déduire le petit théorème de Fermat.

Exercice 10 On souhaite montrer que l'ensemble E des nombres premiers congrus à 3 modulo 4 est infini.

Pour cela on s'inspire de la démonstration du caractère infini de l'ensemble des nombres premiers. En raisonnant par l'absurde, on suppose E fini : on peut alors noter p_1, p_2, \ldots, p_n la liste des éléments distincts de E. On introduit l'entier $N = 4p_1p_2 \ldots p_n - 1$. À vous de finir !

Exercice 11 On appelle valeur d'adhérence d'une suite (u_n) toute limite d'une suite extraite de (u_n) .

On considère une suite réelle bornée (u_n) . Montrer que (u_n) converge si et seulement si (u_n) possède une seule valeur d'adhérence.

Est-ce vrai si (u_n) n'est pas bornée ? Pas réelle ?