Please create a nice looking 3D lissajous curve. You can find the curve equations at

https://en.wikipedia.org/wiki/Lissajous_curve

Please also change the coloring of the curve based on the distance of vertices from a plane (instead as from the origin as it is in the starter code).

--from the lab notice on the BrightSpace

Tasks:

- 1. Modify the code inside "var implicit = new function()", including:
 - a. initializing the normal vector
 - b. initializing the normal distance from origin
 - c. calculating the distance from the point to the plane based on the formula
- 2. Modify the code inside "lissajousCurve.prototype.getPoint = function (t)" based on the formula below.
- 3. Loop over all vertices and update their color based on the distance to the plane
 - a. Modify codes inside "var dCol = function (nId)" in "updateLissajous()" function

packages needed in this lab:

- 1. dat.gui
- 2. three

Some API Introductions:

THREE.Curve: https://threejs.org/docs/#api/en/extras/core/Curve

THREE. Vector 3. multiply Scalar: https://threejs.org/docs/#api/en/math/Vector3.multiplyScalar
THREE. Tube Geometry: https://threejs.org/docs/#api/en/geometries/Tube Geometry, focus on

paramters: tubularSegments and radialSegments

In term of the parameters inside the getPoint() function of the THREE.Curve() object: t means the positition of the curve, must be range from 0 to 1.

Try these formulas to draw Lissajous curve:

```
X = cos(a*2pi*t+delta)
Y = sin(b*2pi*t)
Z = cos(2pi*t)
```

Final results:

