Universidade do Minho Departamento de Matemática Lic. em Ciências da Computação 6 de janeiro de 2024

2º teste de Álgebra Linear CC

Duração: 2 horas

Nome do aluno:	Número:

Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

F

1. A aplicação $f: \mathbb{R}^3 \to \mathbb{R}$ definida por f(x, y, z) = xyz, para todo $(x, y, z) \in \mathbb{R}^3$, \mathbf{X} é uma aplicação linear.

A aplicação f não é uma aplicação linear, uma vez que existem $(1,1,1) \in \mathbb{R}^3$ e $2 \in \mathbb{R}$ tais que

$$f(2(1,1,1)) = f(2,2,2) = 2^3 \neq 2 \times 1^3 = 2f(1,1,1).$$

Existe uma aplicação linear $f: \mathbb{R}^2 \to \mathbb{R}^3$ tal que f(2,2) = (1,2,3) e f(3,3) = (0,1,0).

 \mathbf{X}

Se admitirmos que $f: \mathbb{R}^2 \to \mathbb{R}^3$ é uma aplicação linear e que f(2,2) = (1,2,3), então

$$f(3,3) = f\left(\frac{3}{2}(2,2)\right) = \frac{3}{2}f(2,2) = \frac{3}{2}(1,2,3) = \left(\frac{3}{2},3,\frac{9}{2}\right) \neq (0,1,0).$$

Logo, não existe qualquer aplicação linear nas condições indicadas.

Para quaisquer espaços vetoriais reais $V \in V'$ de dimensão finita, se existe uma aplicação linear injetiva $f:V\to V',$ então dim $V\le\dim V'.$

Sejam $V \in V'$ espaços vetoriais reais de dimensão finita e admitamos que existe uma aplicação linear injetiva $f: V \to V'$. Considerando que f é injetiva, tem--se $\text{Nuc} f = \{0_V\}$. Por conseguinte, como dim $V = \dim \text{Nuc} f + \dim \text{Im} f$, segue que dim $V = \dim \operatorname{Im} f$. Atendendo a que dim $\operatorname{Im} f \leq \dim V'$ (pois $\operatorname{Im} f \in \operatorname{um}$ subespaço de V'), conclui-se que dim $V \leq \dim V'$.

4. Para quaisquer $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é invertível, tem-se X $\det(2A^TA^{-1}) = 2.$

Considerando as propriedades relativas a determinantes, temos

$$\det(2A^TA^{-1}) = 2^n \det(A^T) \det(A^{-1}) = 2^n \det(A)(\det(A))^{-1} = 2^n.$$

Assim, se $n \neq 1$, tem-se $\det(2A^TA^{-1}) \neq 2$.

Para quaisquer $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, $\det(A^T B) = \det(B^T A)$.

Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Considerando que A e B são matrizes quadradas, A^T e B^T também são matrizes quadradas. Assim,

$$\det(A^T B) = \det(A^T) \det(B) = \det(B) \det(A^T) = \det(B^T) \det(A) = \det(B^T A).$$

6. Para qualquer matriz A do tipo 5×5 , se det A = 1, então $car(A) \neq 4$.

Se A é uma matriz do tipo 5×5 tal que det A=1, então A é invertível. Logo car(A)=5 e, portanto, $car(A)\neq 4$.

7. Para qualquer matriz $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$, se $(A - 3I_2)x = 0_{2\times 2}$ é um sistema de \square Cramer, então 3 não é um valor próprio de A.

Se $(A-3I_2)x=0_{2\times 2}$ é um sistema de Cramer, então a matriz $A-3I_2$ é invertível. Logo $|A-3I_2|\neq 0$ e, portanto, 3 não é um valor próprio de A.

8. Para quaisquer $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, se $y \in \mathcal{M}_{n \times 1}(\mathbb{R})$ é um vetor próprio de A associado ao valor próprio 2, então 7y é um vetor próprio de A associado ao valor próprio 14.

Se $y \in \mathcal{M}_{n \times 1}(\mathbb{R})$ é um vetor próprio de A associado ao valor próprio 2, tem-se $y \neq 0_{n \times 1}$ e Ay = 2y. Logo, A(7y) = 7(Ay) = 7(2y) = 2(7y). Então, como $7y \neq 0_{n \times 1}$ e A(7y) = 2(7y), 7y é um vetor próprio de A associado ao valor próprio 2.

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Considere as bases de \mathbb{R}^3

$$\mathcal{B} = ((1,1,1), (1,1,0), (1,0,0)),$$

$$\mathcal{B}' = ((-1,1,1), (0,2,0), (1,0,0))$$

e a base de \mathbb{R}^4

$$\mathcal{B}'' = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)).$$

Seja $g: \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação linear definida por

$$M(g; \mathcal{B}'', \mathcal{B}) = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix}.$$

(a) Mostre que, para todo $(a, b, c, d) \in \mathbb{R}^4$,

$$g(a, b, c, d) = (3a + 2b - c - 2d, 2a + b - c - d, 2a - 2c).$$

Temos

$$(a, b, c, d) = a(1, 0, 0, 0) + b(0, 1, 0, 0) + c(0, 0, 1, 0) + d(0, 0, 0, 1),$$

logo

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

é o vetor coluna de (a, b, c, d) relativamente à base \mathcal{B}'' . Por conseguinte,

$$M(g; \mathcal{B}'', \mathcal{B}) \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2a - 2c \\ b + c - d \\ a + b - d \end{bmatrix}$$

é o vetor coluna de g(a, b, c, d) relativamente à base \mathcal{B} .

Assim,

$$g(a,b,c,d) = (2a-2c)(1,1,1) + (b+c-d)(1,1,0) + (a+b-d)(1,0,0)$$

= $(3a+2b-c-2d, 2a+b-c-d, 2a-2c)$.

(b) Determine uma base de Nucge a dimensão de Img. Diga se g é injetiva e se é sobrejetiva.

Por definição de Nuc g, temos

Nuc
$$g$$
 = { $(a, b, c, d) \in \mathbb{R}^4 | g(a, b, c, d) = (0, 0, 0)$ }
= { $(a, b, c, d) \in \mathbb{R}^4 | 3a + 2b - c - 2d = 0, 2a + b - c - d = 0, 2a - 2c = 0$ }
= { $(a, b, c, d) \in \mathbb{R}^4 | a = c, b = -c + d$ }
= { $(c, -c + d, c, d) \in \mathbb{R}^4 | c, d \in \mathbb{R}$ }
= { $c(1, -1, 1, 0) + d(0, 1, 0, 1) \in \mathbb{R}^4 | c, d \in \mathbb{R}$ }
= $c(1, -1, 1, 0), (0, 1, 0, 1) > 0$

A sequência ((1,-1,1,0),(0,1,0,1)) é linearmente independente, pois, para quaisquer $\alpha,\beta\in\mathbb{R}$,

$$\alpha(1, -1, 1, 0) + \beta(0, 1, 0, 1) = (0, 0, 0, 0) \Rightarrow \alpha = \beta = 0.$$

Logo, a sequência ((1,-1,1,0),(0,1,0,1)) é uma base de Nucg e, por conseguinte, dim Nucg=2.

Uma vez que $\dim \mathbb{R}^4 = \dim \operatorname{Nuc} g + \dim \operatorname{Im} g, \ \dim \mathbb{R}^4 = 4$ e $\dim \operatorname{Nuc} g = 2$, concluímos que $\dim \operatorname{Im} g = 2.$

A aplicação g não é injetiva, pois Nuc $g \neq \{0_{\mathbb{R}^4}\}$. A aplicação g também não é sobrejetiva, pois Im $g \neq \mathbb{R}^3$ (dim Im $g = 2 \neq 3 = \dim \mathbb{R}^3$).

(c) Determine as matrizes $M(id_{\mathbb{R}}^3; \mathcal{B}, \mathcal{B}')$ e $M(g; \mathcal{B}'', \mathcal{B}')$.

Temos

$$id_{\mathbb{R}}^{3}(1,1,1) = (1,1,1) = 1(-1,1,1) + 0(0,2,0) + 2(1,0,0)$$

$$id_{\mathbb{R}}^{3}(1,1,0) = (1,1,0) = 0(-1,1,1) + \frac{1}{2}(0,2,0) + 1(1,0,0)$$

$$id_{\mathbb{R}}^{3}(1,0,0) = (1,0,0) = 0(-1,1,1) + 0(0,1,0) + 1(1,0,0),$$

logo

$$M(id^3_{\mathbb{R}}; \mathcal{B}, \mathcal{B}') = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & rac{1}{2} & 0 \ 2 & 1 & 1 \end{array}
ight]$$

e

$$\begin{array}{rcl} M(g;\mathcal{B}'',\mathcal{B}') & = & M(id_{\mathbb{R}}^3;\mathcal{B},\mathcal{B}')M(g;\mathcal{B}'',\mathcal{B}) \\ & = & \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix} \\ & = & \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 5 & 2 & -3 & -2 \end{bmatrix}. \end{array}$$

2. Sejam

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 2 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} -1 & -1 & 5 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

(a) Calcule $\det A$.

Calculando o $\det A$ recorrendo ao Teorema de Laplace, temos

$$\begin{vmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 2 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{vmatrix} = (-1)^{2+4} \times 1 \times \begin{vmatrix} 1 & -1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 2 \end{vmatrix}$$
$$= (-1)^{1+1} \times 1 \times \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} + (-1)^{2+1} \times 2 \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix}$$
$$= (2 \times 2 - 2 \times 1) - 2 \times ((-1) \times 2 - 1 \times 1)$$
$$= 8$$

(b) Justifique que B é invertível e calcule $\det(2B^{-2}B^TA^2)$.

Uma vez que B é uma matriz quadrada e

$$\det B = (-1) \times 1 \times 1 \times 2 = -2 \neq 0,$$

então B é invertível.

Considerando que as matrizes B^{-2} , B^T e A^2 são matrizes quadradas e $B^{-2}B^TA^2$ é uma matriz do tipo 4×4 , temos

$$\det(2B^{-2}B^{T}A^{2}) = 2^{4} \times \det(B^{-2}) \times \det B^{T} \times \det(A^{2})
= 2^{4} \times (\det(B))^{-2} \times \det B \times (\det(A))^{2}
= 2^{4} \times (-2)^{-2} \times (-2) \times 2^{16}
= -2^{19}$$

3. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que se det A = 1 e todas as entradas de A são números inteiros, então A é invertível e todas as entradas de A^{-1} são números inteiros.

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, com $n \in \mathbb{N}$. Admitamos que det A = 1 e que todas as entradas de A são números inteiros. Como A é uma matriz quadrada e det $A \neq 0$, então A é invertível e tem-se $A^{-1} = \frac{1}{\det A} A dj(A) = A dj(A)$. Considerando que $A dj(A) = [\widehat{a}_{ij}]^T$, onde $\widehat{a}_{ij} = (-1)^{i+j} \det(A(i|j))$, $i, j \in \{1, \ldots, n\}$, e todas as entradas de A são números inteiros, segue que todas as entradas de A dj(A) são também números inteiros. De facto, se todas as entradas de A são números inteiros, então, as entradas de A(i|j) também são números inteiros, para todos $i, j \in \{1, \ldots, n\}$. Além disso, como o determinante de uma matriz é obtido a partir das suas entradas recorrendo apenas às operações de adição e multiplicação, o determinante de uma matriz cujas entradas são números inteiros é um número inteiro. Logo, todas as entradas de A^{-1} são números inteiros.

4. Sejam \mathcal{B} a base canónica de \mathbb{R}^3 e h o endomorfismo de \mathbb{R}^3 definido por

$$M(h, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -2 & 0 \\ -1 & -1 & -1 \end{bmatrix}.$$

(a) Verifique que (-1,0,1) é um vetor próprio de h e indique a que valor próprio está associado.

Tem-se

$$(-1,0,1) = -1(1,0,0) + 0(0,1,0) + 1(0,0,1),$$

pelo que

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

é o vetor coluna de (-1,0,1) relativamente à base \mathcal{B} . Logo

$$M(h; \mathcal{B}, \mathcal{B}) \left[egin{array}{c} -1 \ 0 \ 1 \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

é o vetor coluna de h(-1,0,1) relativamente à base \mathcal{B} . Portanto,

$$h(-1,0,1) = 0(1,0,0) + 0(0,1,0) + 0(0,0,1) = (0,0,0).$$

Uma vez que $(-1,0,1) \neq (0,0,0)$ e h(-1,0,1) = 0(-1,0,1), concluímos que (-1,0,1) é um vetor próprio de h associado ao valor próprio 0.

(b) Justifique que -2 é um valor próprio de h e determine uma base do subespaço próprio de h associado a este valor próprio.

Dado $\lambda \in \mathbb{R}$, λ é valor próprio de h se e só se $|M(h; \mathcal{B}, \mathcal{B}) - \lambda I_3| = 0$. Então, como

$$|M(h; \mathcal{B}, \mathcal{B}) - (-2)I_3| = \begin{vmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & -1 & 1 \end{vmatrix} = 0$$
 (pois a matriz tem uma linha nula),

concluímos que -2 é um valor próprio de h.

Por definição de subespaço próprio de h associado ao valor próprio -2, temos

$$\begin{array}{lll} \mathbb{R}^3_{[h,-2]} &=& \{(a,b,c) \in \mathbb{R}^3 \,|\, h(a,b,c) = -2(a,b,c)\} \\ &=& \{(a,b,c) \in \mathbb{R}^3 \,|\, h(a,b,c) + 2(a,b,c) = 0_{\mathbb{R}^3}\} \\ &=& \{(a,b,c) \in \mathbb{R}^3 \,|\, (h+2id_{\mathbb{R}^3})(a,b,c) = 0_{\mathbb{R}^3}\} \end{array} \ (*) \\ &=& \left\{ (a,b,c) \in \mathbb{R}^3 \,|\, (A+2I_3) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} \\ &=& \left\{ (a,b,c) \in \mathbb{R}^3 \,|\, \left[a+b-c \\ 0 \\ -a-b+c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} \\ &=& \{(a,b,c) \in \mathbb{R}^3 \,|\, a=-b+c\} \\ &=& \{(-b+c,b,c) \in \mathbb{R}^3 \,|\, b,c \in \mathbb{R}\} \\ &=& \{b(-1,1,0)+c(1,0,1) \in \mathbb{R}^3 \,|\, b,c \in \mathbb{R}\} \\ &=& < (-1,1,0),(1,0,1) > . \end{array}$$

(*) Uma vez que (a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1), o vetor coluna de (a,b,c) relativamente à base \mathcal{B} é $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

A sequência ((-1,1,0),(1,0,1)) é linearmente independente, pois, para quaisquer $\alpha,\beta\in\mathbb{R}$,

$$\alpha(-1,1,0) + \beta(1,0,1) = (0,0,0) \Rightarrow \alpha = \beta = 0.$$

Logo, ((-1,1,0),(1,0,1)) é uma base de $\mathbb{R}^3_{[h,-2]}$.

(c) Justifique que h é diagonalizável. Dê exemplo de uma base \mathcal{B}' de \mathbb{R}^3 tal que $M(h; \mathcal{B}', \mathcal{B}')$ seja diagonal.

Da alínea (a) sabe-se que (-1,0,1) é um vetor próprio de h associado ao valor próprio 0. A sequência ((-1,0,1)) é linearmente independente, pois $(-1,0,1) \neq (0,0,0)$. Da alínea (b) sabemos que a sequência ((-1,1,0),(1,0,1)) é linearmente independente e é formada por vetores próprios de h associados ao valor próprio -2. Como as duas sequências anteriores são sequências linearmente independentes formadas por vetores próprios associados a valores próprios distintos, a sequência $\mathcal{B}' = ((-1,0,1),(-1,1,0),(1,0,1))$ é linearmente independente. Como a sequência \mathcal{B}' tem 3 vetores e dim $\mathbb{R}^3 = 3$, então \mathcal{B}' é uma base de \mathbb{R}^3 . Considerando que h é um endomorfismo de \mathbb{R}^3 e existe uma base de \mathbb{R}^3 formada por vetores próprios de h, concluímos que h é diagonalizável. A base $\mathcal{B}' = ((-1,0,1),(-1,1,0),(1,0,1))$ é uma base de \mathbb{R}^3 tal que $M(h;\mathcal{B}',\mathcal{B}')$ é diagonal, pois

$$M(h; \mathcal{B}', \mathcal{B}') = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & -2 & 0 \ 0 & 0 & -2 \end{array}
ight].$$