Cognoms i Nom:

Codi

Examen FINAL de Física 20 de Gener del 2020 Model A

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En un experiment de doble escletxa de Young, la separació entre escletxes és $d=1.2\,$ mm i la separació entre el màxim d'interferència principal i el primer secundari és $x=1.5\,$ mm. Sabent que la llum que fem servir a l'experiment prové d'un làser de $\lambda=450\,$ nm, quina és la separació entre les escletxes i la pantalla?
 - a) 7.7 cm
- b) 450 nm
- c) $0.56 \, \mu m$
- d) 4 m
- T2) Per a corregir el factor de potència d'una instal·lació que treballa a una freqüència $f=1000\,\mathrm{Hz}$ formada per una resistència R i una bobina de valor $L=20.0\,\mathrm{mH}$ en sèrie, cal connectar en paral·lel un condensador de capacitat $C=1.0\,\mu\mathrm{F}$. Els valors de la resistència R i la impedància resultant de la instal·lació més aproximats són:
 - a) $R = 65 \Omega$, $Z = 310 \Omega$
- b) $R = 2.1 k\Omega$, $Z = 390 \Omega$
- c) $R = 20 k\Omega$, $Z = 253 \Omega$
- d) $R = 200 \Omega$, $Z = 1130 \Omega$
- T3) Un circuit està compost per una resistència $R = 300\Omega$ connectada en sèrie amb un condensador de reactància $X_C = 200\Omega$ i una bobina de reactància de $X_L = 100\Omega$, connectats entre si en paral·lel. Tot el conjunt s'alimenta amb una font de tensió alterna $V(t) = 220V\sqrt{2}\cos(100\pi t)$. La intensitat instantània en la resistència R és
 - a) $I_R(t) = 1.037A\cos(100\pi t + 0.588)$
 - b) $I_R(t) = 0.86A\cos(100\pi t 0.588)$
 - c) $I_R(t) = 0.86A\cos(100\pi t + 0.588)$
 - d) $I_R(t) = 1.037A\cos(100\pi t 0.588)$

- **T4)** El transistor PMOS de la figura té per paràmetres $V_T=-1.5~{\rm V}$ i $\beta=500\,\mu{\rm A}/V^2$. Si $V_{SS}=5\,{\rm V}$, el corrent de drenador I_D valdrà
 - a) 3.1 mA

b) $450 \,\mu$ A

c) 0

d) 2.5 mA

- T5) Connectem un condensador pla de capacitat C_0 a un generador de tensió de forma que assoleix una càrrega Q_0 . A continuació treiem la bateria i col·loquem un dielèctric de constant dielèctrica ε_r dins del condensador, omplint completament l'espai entre plaques. Com han variat el mòdul del camp elèctric entre plaques (E) i l'energia electrostàtica del condensador (U)?
 - a) E ha augmentat i U ha disminuït. b) Ca
- b) Cap de les dues quantitats ha variat.
 - c) E ha disminït i U ha augmentat.
- d) Totes dues quantitats han disminuït.
- T6) El senyor Pickwick es mira en un mirall de mida vertical M. El mirall està penjat de forma que el senyor Pickwick tot just arriba a veure els seus peus i l'extrem superior del barret, que està a una alçada P (si fos una mica més alt ja no es veuria els peus i/o el barret sencers). Quina és la relació entre M i P? (com s'indica a la figura, per tal de veure un punt qualsevol del seu cos, cal que surti un raig de llum d'aquest punt, reboti al mirall, i acabi en el seu ull).

- a) $M = P/\sqrt{3}$
- b) M = P/2
- c) $M = P/\sqrt{2}$
- d) Ens cal la distància del senyor Pickwick a la paret.
- T7) Dues bateries idèntiques estàn connectades en paral·lel. Si les utilitzem per a alimentar una resistència R variable i mesurem la intensitat i la diferència de potencial d'aquesta, trobem que si $R=0 \Rightarrow I=10\,\mathrm{A}$ i en canvi si $R=\infty \Rightarrow V(R)=7.5\,\mathrm{V}$. Quina intensitat trobarem si $R=5\,\Omega$?

a)
$$I = 1.0 \text{ A}$$

b)
$$I = 1.30 \text{ A}$$

c)
$$I = 2.30 \text{ A}$$

d)
$$I = 1.15$$
 A

T8) Considereu una ona electromagnètica harmònica, plana i linealment polaritzada que es propaga en el buit. Quin parell de vectors amplitud (\vec{E}_0, \vec{B}_0) és físicament possible si la propagació és en el sentit negatiu de l'eix y?

a)
$$\vec{E}_0 = (3 \text{ V/m}) \mathbf{k} \; ; \; \vec{B}_0 = (10^{-8} \text{ T}) \mathbf{i}$$

b)
$$\vec{E}_0 = -(3 \text{ V/m}) \mathbf{i} \; ; \; \vec{B}_0 = (10^{-8} \text{ T}) \mathbf{k}$$

c)
$$\vec{E}_0 = (3 \text{ V/m}) \mathbf{i} ; \vec{B}_0 = -(10^{-8} \text{ T}) \mathbf{k}$$

d)
$$\vec{E}_0 = (3 \text{ V/m}) \mathbf{k} ; \vec{B}_0 = -(10^{-8} \text{ T}) \mathbf{i}$$

Examen FINAL de Física 20 de Gener del 2020

Model B

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Considereu una ona electromagnètica harmònica, plana i linealment polaritzada que es propaga en el buit. Quin parell de vectors amplitud (\vec{E}_0, \vec{B}_0) és físicament possible si la propagació és en el sentit negatiu de l'eix y?
 - a) $\vec{E}_0 = (3 \text{ V/m}) \mathbf{i} ; \vec{B}_0 = -(10^{-8} \text{ T}) \mathbf{k}$
 - b) $\vec{E}_0 = (3 \text{ V/m}) \mathbf{k} ; \vec{B}_0 = -(10^{-8} \text{ T}) \mathbf{i}$
 - c) $\vec{E}_0 = -(3 \text{ V/m}) \mathbf{i} ; \vec{B}_0 = (10^{-8} \text{ T}) \mathbf{k}$
 - d) $\vec{E}_0 = (3 \text{ V/m}) \mathbf{k} ; \vec{B}_0 = (10^{-8} \text{ T}) \mathbf{i}$
- T2) El transistor PMOS de la figura té per paràmetres $V_T=-1.5$ V i $\beta=500\,\mu\text{A}/V^2$. Si $V_{SS}=5\,\text{V},$ el corrent de drenador I_D valdrà
 - a) $450\,\mu$ A $\,$ b) $3.1\,$ mA $\,$ c) $0\,$
- d) 2.5 mA

T3) El senyor Pickwick es mira en un mirall de mida vertical M. El mirall està penjat de forma que el senyor Pickwick tot just arriba a veure els seus peus i l'extrem superior del barret, que està a una alçada P (si fos una mica més alt ja no es veuria els peus i/o el barret sencers). Quina és la relació entre M i P? (com s'indica a la figura, per tal de veure un punt qualsevol del seu cos, cal que surti un raig de llum d'aquest punt, reboti al mirall, i acabi en el seu ull).

- a) M = P/2
- b) $M = P/\sqrt{2}$
- c) $M = P/\sqrt{3}$
- d) Ens cal la distància del senyor Pickwick a la paret.
- T4) Un circuit està compost per una resistència $R=300\Omega$ connectada en sèrie amb un condensador de reactància $X_C=200\Omega$ i una bobina de reactància de $X_L=100\Omega$, connectats entre si en paral·lel. Tot el conjunt s'alimenta amb una font de tensió alterna $V(t)=220V\sqrt{2}\cos(100\pi t)$. La intensitat instantània en la resistència R és
 - a) $I_R(t) = 0.86A\cos(100\pi t 0.588)$
 - b) $I_R(t) = 1.037A\cos(100\pi t + 0.588)$
 - c) $I_R(t) = 1.037A\cos(100\pi t 0.588)$
 - d) $I_R(t) = 0.86A\cos(100\pi t + 0.588)$

- **T5)** En un experiment de doble escletxa de Young, la separació entre escletxes és $d=1.2\,$ mm i la separació entre el màxim d'interferència principal i el primer secundari és $x=1.5\,$ mm. Sabent que la llum que fem servir a l'experiment prové d'un làser de $\lambda=450\,$ nm, quina és la separació entre les escletxes i la pantalla?
 - a) 450 nm
- b) $0.56 \, \mu m$
- c) 7.7 cm
- d) 4 m
- **T6)** Dues bateries idèntiques estàn connectades en paral.lel. Si les utilitzem per a alimentar una resistència R variable i mesurem la intensitat i la diferència de potencial d'aquesta, trobem que si $R=0 \Rightarrow I=10\,\mathrm{A}$ i en canvi si $R=\infty \Rightarrow V(R)=7.5\,\mathrm{V}$. Quina intensitat trobarem si $R=5\,\Omega$?
 - a) I = 1.0 A

b) I = 1.30 A

c) I = 2.30 A

- d) I = 1.15 A
- T7) Per a corregir el factor de potència d'una instal·lació que treballa a una freqüència $f=1000\,\mathrm{Hz}$ formada per una resistència R i una bobina de valor $L=20.0\,\mathrm{mH}$ en sèrie, cal connectar en paral·lel un condensador de capacitat $C=1.0\,\mu\mathrm{F}$. Els valors de la resistència R i la impedància resultant de la instal·lació més aproximats són:
 - a) $R = 200 \Omega$, $Z = 1130 \Omega$
- b) $R = 20 k\Omega$, $Z = 253 \Omega$
- c) $R = 2.1 k\Omega$, $Z = 390 \Omega$
- d) $R = 65 \Omega$, $Z = 310 \Omega$
- T8) Connectem un condensador pla de capacitat C_0 a un generador de tensió de forma que assoleix una càrrega Q_0 . A continuació treiem la bateria i col·loquem un dielèctric de constant dielèctrica ε_r dins del condensador, omplint completament l'espai entre plaques. Com han variat el mòdul del camp elèctric entre plaques (E) i l'energia electrostàtica del condensador (U)?
 - a) Totes dues quantitats han disminuït.
 - b) E ha disminït i U ha augmentat.
 - c) Cap de les dues quantitats ha variat.
 - d) E ha augmentat i U ha disminuït.

Examen FINAL de Física

20 de Gener del 2020

Problema 1 (20% de l'examen)

Donat el circuit representat a la figura:

- a) Sabent que que $I_2=10\,\mathrm{mA},$ calculeu els valors el valor de la f.e.m. $\varepsilon,$ i el de les intensitats I_1 i $I_3.$
- b) Determineu el valor de la diferència de potencial $V_A V_B$.
- c) Trobeu l'equivalent Thévénin entre els punts A i B.
- d) Si entre els punts A i B connectem un condensador de capacitat 2 μ F, quina energia s'hi emmagatzemarà a l'estat estacionari?

Problema 2 (20% de l'examen)

Un generador de corrent altern subministra la tensió instantània $V(t) = 220 \text{ V} \sin(1000 t)$ al circuit representat a la figura, en el que $C = 5 \mu\text{F}$ i $R = 200 \Omega$. Determineu:

- a) Les intensitats instantànies $I_R(t)$ i $I_C(t)$.
- b) La impedància equivalent del circuit i la intensitat instantània total.
- c) La potència mitjana dissipada al circuit i el factor de potència.
- d) Quin element caldria connectar al circuit per corregir-ne el factor de potència?

Problema 3 (20% de l'examen)

Als circuits de la figura, els transitors nMOS te els paràmetres característics $V_T=1\,\mathrm{V}$ i $\beta=2\,\mu\mathrm{A/V^2}$, i el pMOS $V_T=-1\,\mathrm{V}$ i $\beta=5\,\mu\mathrm{A/V^2}$. El valor de la resistència de càrrega és $R=10\,\mathrm{k}\Omega$.

- a) Considereu el circuit de l'esquerra. Amb $V_A = 5\,\mathrm{V}$, determineu el règim de treball del transistor pMOS i el corrent I_2 . Determineu també el règim de treball del nMOS, la tensió de sortida V_D , el corrent I_1 i el corrent total I.
- b) Considereu ara el circuit de la dreta, on hem canviat la connexió de la porta del pMOS. Amb $V_A = 0$ V, determineu el règim de treball de cada transistor, els corrents I_1 i I_2 , així com la tensió de sortida V_D .

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	d	b
T2)	a	b
T3)	b	a
T4)	a	a
T5)	d	d
T6)	b	b
T7)	b	d
T8)	d	a

Resolució del Model A

- T1) Es produeix el primer màxim d'interferència quan la diferència de camins recorreguts pels raigs, $\Delta x = x_2 x_1$, és igual a la longitud d'ona, $\Delta x = \lambda$. Degut a la llei de proporcionalitat dels triangles, trobem que $\Delta x/d = x/\sqrt{D^2 + x^2}$, i per tant al nostre cas es satisfà la relació $\lambda/d = x/\sqrt{D^2 + x^2}$, d'on resulta $D = x\sqrt{d^2/\lambda^2 1} = 1.5 \times 10^{-3} \sqrt{(1.2 \times 10^{-3})^2/(450 \times 10^{-9})^2} m = 4m$. També es pot notar que $d \gg \lambda$ i utilitzar la formula aproximada, $D = xd/\lambda = 4m$.
- T2) La impedància de la instal·lació és $R+j\,X_L$, amb $X_L=L\,\omega=L\,2\pi f=125.6\,\Omega$ La reactància del condensador que corregeix el factor de potència és $X_C=-(R^2+X_L^2)/X_L$, i d'altra banda $|X_C|=1/(C\,\omega)=159.1\,\Omega Pertanttenim que -X_C|\,X_L=20000, \Omega^2=(R^2+X_L^2)$, d'on resulta que $R=308,\Omega$. Finalment la impedància resultant ve donada per l'expressió $Z_{corr}=(R^2+X_L^2)/R=253,\Omega$
- **T3)** La impedància del circuit és $\overline{Z}=R+\frac{(jX_L)(-jX_C)}{jX_L-X_C}=(300+j200)\Omega=360.6\Omega|\underline{33.7}.$ El fasor de la intensitat és $\overline{I}=\frac{\overline{V}}{\overline{Z}}=\frac{\overline{2}20\sqrt{2}|\underline{0}}{360.6\Omega|\underline{33.7}}=0.86A|\underline{-33.7}$ i la intensitat instantània $I(t)=0.86A\cos(100\pi t-0.588)$
- T4) La diferencia de potencial entre la porta i la font, $V_{GS} = 5V$ és menor que la tensió llindar del transistor, $V_{GS} = 5V < V_T = 1.5V$, i per tant el transistor està en conducció. La diferència de potencial entre el drenador i la font $V_{DS} = 5V$ és menor que $V_{GS} V_T = 3.5V$ i el transistor està treballant en la zona desaturació. La intensitat és $I_D = \beta/2(V_{GS} V_T)^2 = \frac{500 \, 10^{-6}}{2}/(3.5)^2 \approx 3.1 \, \text{mA}$.
- T5) En carregar el condensador i després desconnectar la pila, la càrrega es mantindrà constant. Quan hi posem el dielèctric, la capacitat augmenta $C = \varepsilon_r C_0$ però la càrrega seguirà essent constant $Q = Q_0$. Així, tenim que $C = Q_0/V = \varepsilon_r Q_0/V_0$, on V és la diferència de potencial entre plaques i d'on deduïm que $V = V_0/\varepsilon_r$, o sigui que al diferència de potencial i el camp elèctric (que són proporcionals) han disminuït. Finalment, l'energia $U = QV/2 = Q_0V_0/(2\varepsilon_r)$ també ha disminuït.

- T6) Per tal de veure els peus el marge inferior del mirall haurà d'estar a la distància intermèdia entre els ulls i els peus, degut a que l'angle d'incidència i de reflexió són iguals. Si entre els ulls i els peus hi ha una distància U, llavors el marge inferior del mirall estarà a una alçada U/2. Pel que fa a la part superior, i pel mateix raonament, com la distància entre els ulls i la part superior del barret és P-U, el marge superior del mirall caldrà que estigui a una alçada U+(P-U)/2. Així doncs, com la mida vertical del mirall és la distància entre el marge superior i l'inferior, tindrem M = U +(P-U)/2 U/2 = P/2. No ens ha calgut saber la distància a la paret per deduir aquesta relació.
- T7) Podem considerar les dues bateries, a partir del seu equivalent Thévenin, com una única bateria amb fem ϵ_{TH} i resistència interna R_{Th} . Quan connectem una resistència molt gran $(R \mapsto \infty)$ resulta $I = \epsilon_{TH}/(R_{Th} + R) = 0$ i per tant la diferència de potencial V(R) = 7.5 V ens proporciona $\epsilon_{TH} = 7.5 V$. Quan connectem R = 0 resulta $I = \epsilon_{TH}/(R_{Th} + R) = \epsilon_{TH}/R_{Th} = 10 A$ i per tant trobem $R_{Th} = 0.75 \Omega$. Si connectem una resistència $R = 5 \Omega$ la intensitat resultant serà $I = \epsilon_{TH}/(R_{Th} + R) = 7.5 V/5.75 \Omega = 1.30 A$.
- **T8)** Tots els parells verifiquen que pel que fa al mòdul $B_0 = E_0/c$. Així doncs sol cal que ens ocupem de la direcció i sentit. Com la propagació està definida per -j, l'únic parell compatible és \mathbf{k} pel camp elèctric i -i pel camp magnètic.

Resolució del Problema 1

- a) Escrivim les equacions corresponents a la segona llei de Kirchhoff per a les dues malles del circuit, que són $20-600\,I_1-\varepsilon-200\,I_2=0$ per la malla de l'esquerra, $200\,I_2+\varepsilon-600\,(I_1-I_2)=0$ per la malla de la dreta, ja que $I_3=I_1-I_2$. Substituint $I_2=10\times 10^{-3}({\rm A})$, trobem que cal resoldre el sistema d'equacions $\varepsilon=-600\,I_1+18$, $\varepsilon=600\,I_1-8$. Obtenim $\varepsilon=5\,({\rm V})$, i trobem que els valors de les intensitats són $I_1=21.67\,{\rm mA}$, $I_2=10.0\,{\rm mA}$ i $I_3=11.67\,{\rm mA}$.
- b) La diferència de potencial val $V_A V_B = 20 300 I_1 = 13.5 \text{ V}.$
- c) La força electromotriu Thévénin entre els punts A i B és igual a la diferència de potencial $(V_A V_B)$ en circuit obert. Per tant, $\epsilon_{Th} = 13.5$ V. Trobarem la resistència Thévénin curtcircuitant les bateries (substituint les forçes electromotrius per cables sense resistència) i trobant la resistència equivalent de l'associació resultant. Les resistències de 200 Ω i de 600 Ω estan en paral.lel, la seva resistència equivalent està en sèrie amb la de 300 Ω situada a la branca superior de la malla esquerra. La resistència equivalent a l'associació anterior es troba en paral.lel amb la de 300 Ω situada a la branca esquerra de la malla esquerra. Finalment, l'associació en sèrie d'aquesta amb la de 200 Ω és la resistència equivalent. Per tant, la resistència Thévenin val $R_{Th} = 200 + (1/300 + 1/(300 + (1/200 + 1/600)^{-1}))^{-1} = 380 \Omega$.
- d) Donat que el circuit de la figura es pot substituir pel seu equivalent Thévénin, la diferència de potencial entre les armadures del condensador a l'estat estacionari serà igual a $\epsilon_{Th} = 13.5 \text{ V}$. L'energia a l'estat estacionari val $U = C \cdot \epsilon_{Th}^2 / 2 = 182.25 \,\mu\text{J}$.

Resolució del Problema 2

- a) La intensitat que circula per la resistència R està en fase amb la diferència de potencial. Per tant, $I_R(t) = 220 \sin 1000 t/200 = 1.1 \sin 1000 t$ A.
 - La impedància del condensador val $\bar{Z}_C = -j/(C\omega) = -j/5 \cdot 10^{-3} = 200 \cdot \exp(-j\pi/2)$, de manera que $I_C(t) = 1.1 \sin(1000t + \pi/2)$ A.
- b) La impedància equivalent del circuit és l'associació en paral·lel de les impedàncies associades a la resistència i al condensador $1/\bar{Z} = 1/R + C\omega j = (1 + RC\omega j)/R$ d'on $\bar{Z} = 100 100j = 100\sqrt{2}\exp(-j\pi/4)$.

I llavors $I(t) = 220 \sin (1000t + \pi/4)/100\sqrt{2} = 1.56 \sin (1000t + \pi/4)$ A

c) La potència mitjana dissipada a tot el circuit és la que es dissipa a la resistència $P=RI_{Ref}^2=200\cdot(1.1/\sqrt{2})^2=121~{
m W}$

El factor de potència del circuit serà $\cos \phi = 100/100\sqrt{2} = 0.7071$

d) Caldrà afegir en paral·lel una reactància de valor $X' = -Z^2/X = 200\Omega$. Per tant, serà una bobina de coeficient d'autoinducció $L = X'/\omega = 0.2$ H.

Resolució del Problema 3

a) Donal que al transistor pMOS les portes G i S es troben connectades, la seva tensió és igual i per tant $V_{GS} = 0$ V. Així doncs, $V_T < V_{GS} = 0$ V i per tant el transistor es troba en tall, de forma que $I_2 = 0$ A.

D'alta banda, amb $V_A = 5 \,\mathrm{V}$, la tensió de porta del transistor nMOS és també de $5 \,\mathrm{V}$, i per tant $V_{GS} = 5 - 0 > (V_T = 1) > 0$, de forma que aquest transistor no treballa en tall. Ens queda per determinar si es troba en règim òhmic o de saturació. Per tal de resoldre el problema, fem la hipòtesis de que es troba en saturació. En aquest cas, el corrent que circula pel nMOS ve donat per

$$I_D = \frac{1}{2}\beta(V_{GS} - V_T)^2 = \frac{1}{2}(2 \cdot 10^{-6})(5 - 1)^2 = 16\,\mu\text{A}$$
,

i analitzant la malla de sortida

$$V_D = 5 - 10 \cdot 10^3 \times 16 \cdot 10^{-6} = 4.84 \,\mathrm{V}$$
,

de forma que $V_{DS}=4.84-0=4.82\,\mathrm{V}$. Ara comprobem que el nMOS teballa efectivament en saturació, donat que $4.84=V_{DS}>V_{GT}=4>0$.

Finalment, el corrent total és $I = I_1 + I_2 = 16 \,\mu\text{A} + 0 = 16 \,\mu\text{A}$.

b) Amb $V_A = 0 \,\mathrm{V}$, el transistor nMOS es troba en tall, donat que $V_G = V_S = 0 \,\mathrm{V}$ i per tant $V_T > V_{GS}$. Així doncs, $I_1 = 0 \,\mathrm{A}$. Això implica que el corrent total I és igual al corrent I_2 . Si el transistor pMOS condueix, la tensió de sortida seria $V_D < 5 \,\mathrm{V}$ i per tant, per aquest transistor tindriem $V_{GS} = 5 - V_D > 0$, la qual cosa no pot ser. Així doncs, aquest transistor tampoc pot conduir. Per tant $I_2 = 0 \,\mathrm{A}$, el transistor es troba en tall, i $I = I_1 + I_2 = 0 \,\mathrm{A}$. Sota aquestes condicions, no hi ha cap diferència de potencial a la resistència i la tensió de sortida és $V_D = 5 \,\mathrm{V}$.