Gustavo Nunes Guedes Lógica Sétima Lista de Exercícios

1) a- p
$$\rightarrow$$
 q, (p \rightarrow r) \rightarrow s V q, p Λ q \rightarrow r, \sim s \mid q

$$R \colon (p \to q) \land (p \to r) \to (sVq) \land (p \land q \to r) \land (\sim s) \to q$$

p	q	r	S	~s	$p \rightarrow q$	p→ r	$(p \rightarrow q)^{\wedge}$ $(p \rightarrow r)$	(sVq)	(p ∧ q → r)	(p ∧ q → r) ∧ (~s)	^ (p ^	(p → q) ^ (p → r) → (sV q) ^ (p ^ q → r) ^ (~s)
V	V	V	V	F	V	V	V	V	V	F	F	F
V	V	V	F	V	V	V	V	V	V	V	V	V
V	V	F	V	F	V	F	F	V	F	F	F	V
V	V	F	F	V	V	F	F	V	F	F	F	V
V	F	V	V	F	F	V	F	V	V	F	F	V
V	F	V	F	V	F	V	F	F	V	V	F	V
V	F	F	V	F	F	F	F	V	V	F	F	V
V	F	F	F	V	F	F	F	F	V	F	F	V
F	V	V	V	F	V	V	V	V	V	V	V	V
F	V	V	F	V	V	V	V	V	V	F	F	F
F	V	F	V	F	V	V	V	V	F	F	F	F
F	V	F	F	V	V	V	V	V	F	F	F	F
F	F	V	V	F	V	V	V	V	V	F	F	F
F	F	V	F	V	V	V	V	F	V	V	F	F
F	F	F	V	F	V	V	V	V	V	F	F	F
F	F	F	F	V	V	V	V	F	F	F	F	F

O argumento é válido

R:
$$(qVp) \land \sim q \rightarrow p$$

p	q	~q	qVp
V	V	F	V
V	F	V	V
F	V	F	V
F	F	V	F

É válido

c)
$$p \rightarrow q$$
, $r \rightarrow s$, $pV s \mid qV r$
 $q = f$
 $r = f$
 $p = f$
 $s = v$

O argumento não é valido

2) a) O sistema interpretou como sendo um Theorem, sendo assim, cheguei a conclusão que o argumento é válido supondo que o TPTP aponta com theorem um argumento verdadeiro, com todas as premissas e a conclusão correta.

```
fof(premissa1,axiom, (p \Rightarrow q)).
fof(premissa2,axiom, ((p \Rightarrow r) \Rightarrow (s \mid q))).
fof(premissa3,axiom, ((p \& q) \Rightarrow r)).
fof(premissa4,axiom, (\sim s)).
fof(conclusa0,conjecture, (q)).
```

b)

O sistema interpretou como sendo um Theorem, sendo assim, cheguei a conclusão que o argumento é válido supondo que o TPTP aponta com theorem um argumento verdadeiro, com todas as premissas e a conclusão correta.

```
fof(premissa1,axiom, (q | p)). fof(premissa2,axiom, (\sim q)). fof(conclusao,conjecture, (p)).
```

c)

```
fof(premissa1,axiom, (p => q)).
fof(premissa2,axiom, (r=> s)).
fof(premissa3,axiom, (p|s)).
fof(conclusao,conjecture, (q | r)).
```

O sistema interpretou como sendo um CounterSatisfiable, sendo assim, cheguei a conclusão que o argumento não é válido supondo que o TPTP aponta com theorem um argumento verdadeiro e CounterSatisfiable quando sendo falso, quando as permissão estão corretas e a conclusão falsa.