Topologie & Calcul différentiel

Quizz 1

1) Dans chacun des cas ci-dessous, préciser si la notion définie est une distance ou pas, en précisant le ou les conditions invalidées. Décrire, lorsqu'il s'agit d'une distance, et que cela est possible, la forme des boules.		
Vrai □	Faux □	La somme de deux distances
Vrai \square	Faux □	Le produit de deux distances
Vrai □	Faux □	Le symbole de Kronecker $(x,y) \in X \times X \mapsto \delta_{xy} = 1$ si $x \neq y$, et 0 sinon.
Vrai \square (y_1,\ldots,y_n)	Faux \square (y_n) de \mathbb{R}^n .	Le nombre de composantes différentes entre deux vecteurs (x_1,\ldots,x_n) et
2) Dans chacun des cas ci-dessous, préciser si l'ensemble proposé est un ouvert ou pas $(\mathbb{R}^n$ est supposé muni de la distance euclidienne canonique)		
Vrai \square	Faux □	$]0,+\infty[\subset\mathbb{R}$
Vrai \square	Faux □	$\mathbb Q$
Vrai 🗆	Faux □	$\bigcup]q_k-1/2^k,q_k+1/2^k[$, où q_k est une énumération des rationnels.
Vrai □	Faux □	$\bigcap]q_k-1/2^k, q_k+1/2^k[,$ où q_k est une énumération des rationnels (tordu).
Vrai 🗆	Faux □	$]0,1[imes]0,1[imes\{0\}\subset\mathbb{R}^3$
3) Soit X un espace métrique, et $A \subset B \subset X$.		
Vrai 🗆	Faux □	$ar{A}\subset \overline{B}$
Vrai □	Faux □	$\partial A \subset \partial B$
4) Suites		
Vrai 🗆	Faux □	Une suite convergente sur $\mathbb R$ est bornée
Vrai 🗆	Faux □	Une suite bornée sur $\mathbb R$ est convergente
Vrai □	Faux \square	Une suite sur $\mathbb R$ peut admettre une infinité de valeurs d'adhérence