SPRAWOZDANIE XII

TEORIA WSPÓŁBIEŻNOŚCI

Własności sieci Petriego.

DAWID BIAŁKA

DATA LABORATORIUM 05.01.2021

DATA ODDANIA 19.01.2021

Ćwiczenia:

Narysować przyklad w symulatorze.

Sprawdzić własciwości sieci (ograniczoność, bezpieczenstwo i możliwy deadlock) w symulatorze Pipe w menu "State Space Analysis".

Wygenerować graf osiągalności "Reachability/Coverability Graph". Zaobserwować:

- Jakie znakowania są osiagalne?
- Ile wynosi maksymalna liczba znaczników w każdym ze znakowań? Jakie mozemy wyciągnac z tego wnioski n.t. ograniczoności i bezpieczenstwa?
- Czy kazde przejście jest przedstawione jako krawedz w grafie ? Jaki z tego wniosek n.t. zywotności przejśc ?
- Czy wychodzac od dowolnego wezla grafu (znakowania) mozna wykonac dowolne przejscie ? Jaki z tego wniosek n.t. zywotności sieci? Czy sa możliwe zakleszczenia ?
- Wykonać analize niezmiennikow (wybrac w menu "Invariant Analysis").
 - wynik analizy niezmiennikow przejsc (T-invariants) pokazuje nam, ile razy trzeba odpalic dane przejscie (T), aby przeksztalcic znakowanie poczatkowege z powrotem do niego samego (wynik nie mowi nic o kolejności odpalen). Z wyniku mozemy m.in. wnioskowac o odwracalności sieci.
 - wynik analizy niezmiennikow miejsc (P-invariants) pokazuje nam zbiory miejsc, w ktorych laczna suma znacznikow sie nie zmienia. Pozwala to wnioskowac n.t. zachowawczosci sieci (czyli wlasnosci, gdzie suma znacznikow pozostaje stala) oraz o ograniczonosci miejsc.

0

Zadanie 1 - wymyslic własna maszyne stanow, zasymulowac przykład i dokonac analizy grafu osiagalności oraz niezmiennikow j.w.

Zadanie 2 - zasymulowac siec jak ponizej.

Dokonac analizy niezmiennikow przejsc. Jaki wniosek mozna wyciagnac o odwracalnosci sieci ? Wygenerowac graf osiagalnosci. Prosze wywnioskowac z grafu, czy siec jest zywa. Prosze wywnioskowac czy jest ograniczona. Objasnic wniosek.

Zadanie 3 - zasymulowac wzajemne wykluczanie dwoch procesow na wspolnym zasobie. Dokonac analizy niezmiennikow. Wyjasnij znaczenie rownan (P-invariant equations). Ktore rownanie pokazuje dzialanie ochrony sekcji krytycznej ?

Zadanie 4 - uruchomic problem producenta i konsumenta z ograniczonem buforem (mozna posluzyc sie przykladem, menu:file, examples). Dokonac analizy niezmiennikow. Czy siec jest zachowawcza? Ktore rownanie mowi nam o rozmiarze bufora?

Zadanie 5 - stworzyc symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonac analizy niezmiennikow. Zaobserwowac brak pelnego pokrycia miejsc.

Zadanie 6 - zasymulowac prosty przyklad ilustrujacy zakleszczenie. Wygenerowac graf osiagalności i zaobserwowac znakowania, z ktoroch nie można wykonac przejsc. Zaobserwowac wlasciwości sieci w "State Space Analysis". Poniżej przyklad sieci z możliwościa zakleszczenia (można wymyslic inny):

Koncepcja

Wszystkie zadania zostaną rozwiązane przy pomocy programu PIPE, gdzie możemy tworzyć i symulować działanie sieci Petriego.

Implementacja i wyniki

Ćwiczenie pierwsze dla maszyny stanów reprezentującej światła uliczne:

• Właściwości sieci:

Graf osiągalności

- Z grafu osiągalności widzimy, że
 - o Każde znakowanie jest osiągalne
 - Maksymalna liczba znaczników w każdym ze znakowań wynosi jeden.
 Oznacza to, że sieć jest ograniczona i bezpieczna.
 - o Każde przejście jest oznaczone jako krawędź, więc są one żywotne
 - o Możemy wykonać dowolne przejście, zatem sieć jest żywotna.

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Analysis time: 0.0s

Zad. 1

Właściwości sieci:

Graf osiągalności:

- Z grafu osiągalności widzimy, że
 - O Każde znakowanie jest osiągalne, zatem sieć jest ograniczona.
 - Maksymalna liczba znaczników w każdym ze znakowań nie wynosi jeden.
 Oznacza to, że sieć nie jest bezpieczna.
 - o Każde przejście jest oznaczone jako krawędź, więc są one żywotne
 - o Możemy wykonać dowolne przejście, zatem sieć jest żywotna.
 - o Mogą wystąpić zakleszczenia, np. dla ścieżki T2 -> T1 -> T0.

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

Zad. 2

Właściwości sieci:

Petri net state space analysis results

Bounded false
Safe false
Deadlock false

Graf osiągalności:

- Z grafu osiągalności widzimy, że
 - Każde znakowanie jest osiągalne, lecz nie mamy maksymalnej liczby znaczników na niektórych znakowaniach, zatem sieć nie jest ograniczona.
 - Maksymalna liczba znaczników w każdym ze znakowań nie wynosi jeden.
 Oznacza to, że sieć nie jest bezpieczna.
 - o Każde przejście jest oznaczone jako krawędź, więc są one żywotne
 - o Możemy wykonać dowolne przejście, zatem sieć jest żywotna.
 - Brak zakleszczeń.

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

P0	P1	P2	P3	P3
1	1	1	0	0
0	0	0	0	1

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) = 1$

Analysis time: 0.0s

Zad. 3

Przykład sieci, w której dwa procesy wzajemnie się wykluczają. Wzajemne wykluczenie jest zapewnione przez obecność tylko jednego znacznika w bufferze. Wszystkie sytuacje są połączone, a przejście "pół-żywe" (ang. semi-live).

Petri net invariant analysis results										
T-Invariants										
	то	T1	T2	тз	T4	T5	Т6	T7		
	1	1	0	0	0	0	0	0		
	0	0	1	1	0	0	0	0		
	0	0	0	0	1	1	0	0		
	0	0	0	0	0	0	1	1		
The net is cove	ered							s, the	refore it n	iight
be bounded and live.										
			P-I	nva	ariai	nts				
p1_read p2_	read	l p					p2_	idle	p1_write	p2
	read	l p				fer		_ idle 0	p1_write	p2
1 (_	l p			buf	fer			p1_write 1 1	p2
1 (0	l p1	1_id		buf	fer		0	p1_write 1 1 0	p2
1 0	0 0 1		1_id	lle	buf 0 1	fer		0 0 1	1 1 0	
1 0 0	0 0 1		1_id 1 0 0 y po	II e	buf 0 1	fer -Inva		0 0 1	1 1 0	
1 0 0	0 0 1 vere	d by	1_id 1 0 0 y po	sitiv	0 1 0 7e P-	fer Inva	ariar	0 0 1 nts, tl	1 1 0	
1 0 0 The net is co	0 0 1 vere	d by	1_id 0 0 y po b	sitiv	bufi 0 1 0 re P- nded	fer Inva I.	ariar	0 0 1 nts, ti	1 1 0 nerefore it	
1 0 0	0 1 vere F _read	d by P-In d) +	1_id 0 0 y po b var M(p	sitivour	buff 0 1 0 re P- nded t eq	fer Inval. uati	ariar ions	0 0 1 nts, ti	1 1 0 nerefore it	

Równania P-Invariants wskazują, że liczba znaczników w wszystkich osiągalnych znakowaniach spełnia jakąś zależność liniową. Równanie M(buffer) + M(p1_write) + M(p2_write) = 1 oznacza, że tylko dokładnie jedno miejsce buffer, p1_write i p2_write są oznakowane, czyli w szczególności żadne dwa miejsca nie mogą być znakowane naraz, czyli mamy zabezpieczenie sekcji krytycznej.

Analysis time: 0.001s

Zad. 4

Analiza niezmienników:

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Rozmiar bufora pokazuje nam równanie 3: M(P6) + M(P7) = 3

Analizując wszystkie osiągalne znakowania na grafie zależności widać, że liczba znaczników w sieci pozostaje stała. Zatem sieć jest zachowawcza.

Zad. 5

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) = 1$$

 $M(P3) + M(P4) + M(P5) = 2$

Na podstawie analizy niezmienników widzimy, że nie wszystkie miejsca w tej sieci są pokryte.

Zad. 6

Jest to ta sama sieć, co w zadaniu pierwszym, w którym przedstawiona jest cała analiza.

Wnioski

Sieci Petriego są bardzo dobrym sposobem na opisywanie systemów rozproszonych. Analizując sieć Petriego możemy określić właściwości danego systemu rozproszonego, np. czy występują zakleszczenia.

Bibliografia

Z. Weiss, T. Gruźlewski, Programowanie współbieżne i rozproszone. WNT, Warszawa 1993.

http://home.agh.edu.pl/~funika/tw/lab12/

http://www.lsv.fr/~schwoon/enseignement/verification/ws0910/nets2

 $\underline{http://jedrzej.ulasiewicz.staff.iiar.pwr.wroc.pl/ProgramowanieWspolbiezne/wyklad/Sieci-\underline{Petriego15.pdf}}$

https://en.wikipedia.org/wiki/Petri_net#Boundedness

http://pipe2.sourceforge.net/