Name: 陳以瑄 Student ID: 109705001

Part1

1-1 Minimax

Code explanation

在 minimax 演算法中各種情況的 V 如下:

```
V_{\mathsf{minmax}}(s, \mathbf{d}) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \mathsf{Eval}(s) & \mathbf{d} = 0 \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a), \mathbf{d}) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a), \mathbf{d} - 1) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}
```

因此我使用了 Vminimax() 來獲得各個情境下的 V

```
145def Vminimax (self,gameState,tmpDepth,agentIndex):146#邏姆終止條件 不想了或玩完了147"""148IsEnd(s): Vminimax(s) = Utility(s)149"""150if tmpDepth== self.depth or gameState.isWin() or gameState.isLose():151return self.evaluationFunction(gameState)
```

150 與 151 行表示遞迴碰到了中止條件,即超過要考慮的 depth 或是遊戲結束,此時會回傳用 evaluationFunction() 計算出來的 Utility。

```
#精靈 做max
153
154
              Player = agent: Vminimax(s) = max_action{Vminmax(Succ(s,a))}
155
156
              if agentIndex==0:
                  MaxScore=float('-inf')
157
158
                  legalMoves = gameState.getLegalActions(agentIndex)
                 for move in legalMoves:
159
                     nextState = gameState.getNextState(agentIndex, move)
169
                      #預期下一步的鬼會做啥
161
162
                     nextStateScore =self.Vminimax(nextState,tmpDepth,agentIndex+1)
163
                      MaxScore = max(MaxScore, nextStateScore) #所有可選的之中挑最大
                  return MaxScore
```

如果 player 輪到小精靈,他會在所有可能的 action 中,挑出能讓下一步 V 最大的 action (即第 159 行的迴圈)。由於下一步的 V 是由鬼來做決定,因此在 162 行呼叫的是鬼。

```
165
              #鬼 做min
166
              Player = opp: Vminimax(s) = min_action{Vminmax(Succ(s,a))}
167
168
169
              if agentIndex>0:
170
                  MinScore=float('inf')
171
                  legalMoves = gameState.getLegalActions(agentIndex)
172
                  for move in legalMoves:
173
                     nextState = gameState.getNextState(agentIndex, move)
174
                     if agentIndex < gameState.getNumAgents()-1: #還要讓下一隻鬼跑
175
                         nextStateScore = self.Vminimax(nextState,tmpDepth,agentIndex+1)
                     else: #鬼都跑過一步了 換精靈
176
177
                         nextStateScore = self.Vminimax(nextState,tmpDepth+1,0)
                     MinScore = min(MinScore,nextStateScore) #鬼就是故意要選最爛的給你
178
179
                  return MinScore
```

如果 player 輪到鬼,則他會在所有可能的 action 中,挑出能讓下一步 V 最小的 action (即第 172 行的迴圈)。此外,因為鬼不只一隻,所以在第 174 行會檢查是否所有的鬼都有移動了,如果還有鬼還沒動作的話就要呼叫下一隻鬼,否則就換小精靈。

而在 getAction()中,由於第一步是小精靈採取行動,因此與 $V_{minimax}$ 中小精靈的部分很像,都是跑遍所有可能的 action,只不過最後是回傳 action 而非 V。

```
134
              legalMoves = gameState.getLegalActions(0) # 這一步是小精靈
135
              MaxScore=float('-inf')
136
              Move = None
137
             for move in legalMoves:
                 nextState = gameState.getNextState(0, move)
138
139
                 Score =self.Vminimax(nextState,0,1) #下一步是鬼
140
                  if Score>MaxScore:
141
                     MaxScore = Score
142
                     Move = move
143
              return Move
```

Observation

- 1. 小精靈會自殺是因為他預期鬼會選 V_{min} 的行為,但是實際上鬼的 action 是 random 的。由於小精靈預估錯誤,所以看起來就像自殺。
- 2. 我試跑了 python pacman.py -p MinimaxAgent -l minimaxClassic -a depth=4 -n 10,確實如 SPEC 所述有七成的勝率。

```
D:\Download\HW3\HW3\Adversarial_search>python pacman.py -p MinimaxAgent -l minimaxClassic -a depth=4 -q -n 10
Pacman emerges victorious! Score: 513
Pacman emerges victorious! Score: 516
Pacman died! Score: -492
Pacman emerges victorious! Score: 516
Pacman died! Score: -492
Pacman died! Score: -492
Pacman died! Score: -492
Pacman died! Score: -495
Necores: 513.0, 516.0, 516.0, -492.0, 516.0, 516.0, 516.0, -492.0, 516.0, -495.0
Win Rate: 7/10 (0.70)
Record: Win, Win, Win, Loss, Win, Win, Loss, Win, Loss
```

1-2 Expectimax Search

Code explanation

在 expectimax 演算法中各種情況的 V 如下:

```
V_{\mathsf{exptmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{exptmax}}(\mathsf{Succ}(s,a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \sum_{a \in \mathsf{Actions}(s)} \pi_{\mathsf{opp}}(s,a) V_{\mathsf{exptmax}}(\mathsf{Succ}(s,a)) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}
```

因此我使用了 Vexptmax() 來獲得各個情境下的 V

```
208def Vexptmax (self,gameState,tmpDepth,agentIndex):209#避姆於止條件 不想了或玩完了210"""211IsEnd(s): Vexpectimax(s) = Utility(s)212"""213if tmpDepth== self.depth or gameState.isWin() or gameState.isLose():214return self.evaluationFunction(gameState)
```

213 與 214 行表示遞迴碰到了中止條件,即超過要考慮的 depth 或是遊戲結束,此時會回傳用 evaluationFunction() 計算出來的 Utility。

```
215
              #精靈 做max
216
217
              Player = agent: Vexptmax(s) = max_action{Vexptmax(Succ(s,a))}
218
219
              if agentIndex==0:
                 MaxScore=float('-inf')
220
221
                 legalMoves = gameState.getLegalActions(agentIndex)
222
                 for move in legalMoves:
223
                     nextState = gameState.getNextState(agentIndex, move)
                      #預期下一步的鬼會做唱
224
225
                      nextStateScore =self.Vexptmax(nextState,tmpDepth,agentIndex+1)
226
                     MaxScore = max(MaxScore, nextStateScore) #所有可選的之中挑最大
227
                  return MaxScore
```

如果 player 輪到小精靈,他會在所有可能的 action 中,挑出能讓下一步 V 最大的 action (即第 222 行的迴圈)。由於下一步的 V 是由鬼來做決 定,因此在 225 行呼叫的是鬼。

```
228
              #鬼做exp
229
230
              Player = opp: Vexptmax(s) = sum_action{pi_opp(s,a)*Vexptmax(Succ(s,a))}
231
              if agentIndex>0:
232
233
                  Score=0
234
                  legalMoves = gameState.getLegalActions(agentIndex)
235
                  for move in legalMoves:
236
                      nextState = gameState.getNextState(agentIndex, move)
237
                      if agentIndex < gameState.getNumAgents()-1: #還要讓下一隻鬼鼬
238
                          Score += self.Vexptmax(nextState,tmpDepth,agentIndex+1)
                      else: #鬼都跑過一步了 換精鹽
239
                         Score += self.Vexptmax(nextState,tmpDepth+1,0)
240
                  ExpScore = Score/len(legalMoves)
241
                  return ExpScore
242
```

如果 player 輪到鬼,則他會在所有可能的 action 中,挑出 V 的期望值最小的 action (即第 235 行的迴圈)。此外,因為鬼不只一隻,所以在第 237 行會檢查是否所有的鬼都有移動了,如果還有鬼還沒動作的話就要呼叫下一隻鬼,否則就換小精靈。當所有的可能都窮舉完後,因為這些action 的發生機率都一樣,所以期望值就是總值除以可能的 action 數(即 第 241 行)。

而在 getAction()中,由於第一步是小精靈採取行動,因此與 Vexptmax 中小精靈的部分很像,都是跑遍所有可能的 action,只不過最後是回傳 action 而非 V。

```
197
             legalMoves = gameState.getLegalActions(0) # 這一步是小精靈
198
             MaxScore=float('-inf')
199
             Move = None
200
             for move in legalMoves:
201
                 nextState = gameState.getNextState(0, move)
                 Score =self.Vexptmax(nextState,0,1) #下一步是鬼
202
203
                 if Score>MaxScore:
                     MaxScore = Score
294
205
                     Move = move
206
             return Move
```

Observation

當執行了 python pacman.py -p ExpectimaxAgent -l trappedClassic -a depth=3 -n 10 確實如 SPEC 所述,在左圖的情況下,雖然小精靈往左下衝有可能會像中圖被鬼吃掉,但他也有可能像右圖一樣逃脫,所以他還是會往左下衝。

這與 minimax 不同是因為 minimax 會假設鬼一定會往上衝來圍捕他,但 expectimax 只有一半的機率會往上衝,有另一半是有可能順利吃到豆子的。

Part2

2-1 Value Iteration

Code explanation

Value Iteration 的演算法如下

從最小的部分開始,即 Qopt 的計算。其計算公式如下:

Optimal value if take action a in state s:

$$\label{eq:Qopt} \begin{aligned} Q_{\mathsf{opt}}(s,a) &= \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathsf{opt}}(s')]. \end{aligned}$$

底下為 computeQValueFromValues()的程式碼

```
107
108
              Q(s,a) = sum_{T(s,a,s')}[R(s,a,s') + discount* arg_max_{a'} in actions} Q(s',a')]
109
110
111
112
              Transition = self.mdp.getTransitionStatesAndProbs(state, action)
              for nextState, prob in Transition:
113
114
                  reward = self.mdp.getReward(state, action, nextState)
                  QValue = QValue + prob *(reward + self.discount* self.values[nextState])
115
              return QValue
116
```

首先先用 mdp.getTransitionStatesAndProbs() 取得在 s 情況下做 a 所有可能的下一個情境 s'以及他們的機率 T(s,a,s')。再來針對所有 s',Reward(s,a,s')可以使用 mdp.getReward 取得,而 $V_{opt}(s')$ 可從 self.values 這個 Counter 取得。只要針對所有 s'跑迴圈(第 113 行),累計 T(s,a,s')[Reward(s,a,s')+ discount*Vopt]極為我們要求的 QValue。

有了 QValue 後就可以計算 π_{opt} , 計算公式如下:

Given Q_{opt} , read off the optimal policy:

$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

底下為 computeActionFromValues ()的程式碼:

```
legalActions = self.mdp.getPossibleActions(state)
136
              #如果沒有Legal actions 要回傳None
137
              if len(legalActions)==0:
138
                  return None
              ActionValue = util.Counter()
139
              for action in legalActions:
140
                  ActionValue[action] = self.computeQValueFromValues(state, action)
141
142
              bestAction = ActionValue.argMax()
143
              return bestAction
```

就如同之前的公式所述,要先針對所有可能的 action 計算其 Q_{opt} (即第 140 與 141 行),之後再取 argMax 即可得到 π_{opt} (第 142 行)。

有了上述兩個函數之後就可以計算 Vopt,公式如下

Optimal value from state s:

$$V_{\mathrm{opt}}(s) = \begin{cases} 0 & \text{if } \mathrm{IsEnd}(s) \\ \max_{a \in \mathrm{Actions}(s)} Q_{\mathrm{opt}}(s, a) & \text{otherwise}. \end{cases}$$

底下為 runValueIteration ()的程式碼:

```
72
73
             isEnd(s): V(s) = 0
             otherwise: V(s) = max_{a in actions} Q(s,a)
74
75
76
             for i in range (self.iterations):
77
                 StateValue = util.Counter()
78
                 for state in self.mdp.getStates():
79
                     #isEnd(s)
80
                     if self.mdp.isTerminal(state):
81
                         StateValue[state] = 0
82
                         continue
83
                     MaxAction = self.getPolicy(state)
                     MaxValue = self.getQValue(state, MaxAction)
84
85
                     StateValue[state] = MaxValue
                 #統一更新
86
                 self.values = StateValue
```

在一開始的演算法有提到,針對每個 iteration 都要更新 $V_{opt}(s)$,即第 76 行的迴圈。因次需要針對每一個 state s (第 78 行的迴圈),去計算 $V_{opt}(s)$ 。如果該 state 要結束了,則 $V_{opt}(s)$ = 0 (即第 80~82 行),不然就是所有 action 中最大 Q Value(第 83~85 行)。

2-2 Q-learning

Code explanation

Q-learning 的演算法如下:

```
Algorithm: Q-learning [Watkins/Dayan, 1992]

On each (s, a, r, s'):
\hat{Q}_{\mathsf{opt}}(s, a) \leftarrow (1 - \eta) \hat{Q}_{\mathsf{opt}}(s, a) + \eta \underbrace{(r + \gamma \hat{V}_{\mathsf{opt}}(s'))}_{\mathsf{target}}

Recall: \hat{V}_{\mathsf{opt}}(s') = \max_{a' \in \mathsf{Actions}(s')} \hat{Q}_{\mathsf{opt}}(s', a')
```

底下為初始化的程式碼:

```
52 ##G#QValue
53 self.QValue = util.Counter()
```

因為沒有見過的 state s 其 $Q_{opt}(s) = 0$,而 util.Counter 具有對沒見過的 key 會補 0 的特性。

接著如果有需要知道 Qopt 就用 getQValue()回傳

有了 Q_{opt} 後就可以算 π_{opt},公式與上方 value iteration 類似,底下為 computeActionFromQValues() 的程式碼

```
104
105
              policy(s) = arg_max_{a in actions} Q(s,a)
106
107
              legalActions = self.getLegalActions(state)
108
              if len(legalActions) == 0:
                  return None
              ActionValue = util.Counter()
110
              for action in legalActions:
111
                  ActionValue[action] = self.getQValue(state, action)
112
113
              #break ties randomly
114
              MaxValue= ActionValue[ActionValue.argMax()]
115
              MaxActions = [action for action in ActionValue if ActionValue[action] == MaxValue]
116
117
              Action = random.choice(MaxActions)
              return Action
```

先針對所有可能的 action 計算其 Q_{opt} (第 110 與 111 行)。但是可能有不只一個 argMax,所以要先記錄最佳解的候選人(第 115 與 116 行),之後再用 random.choice() 隨機宣一個做為 π_{opt} (第 117 行)。

再來就可以去計算 Vopt,公式也與上方 value iteration 類似,底下為 compute Value From QValues () 的程式碼

```
83
84
             公式
85
             isEnd(s): V(s) = 0
86
             otherwise: V(s) = max_{a in actions} Q(s,a)
87
             legalActions = self.getLegalActions(state)
89
             if len(legalActions)==0:
90
                 return 0.0
             MaxAction = self.getPolicy(state)
91
92
             MaxValue = self.getQValue(state, MaxAction)
             return MaxValue
```

如果該 state 要結束了,即沒有辦法再走下一步,則 $V_{opt}(s) = 0$ (即第 89、90 行),不然就是所有 action 中最大 Q Value(第 91~93 行)。

最後是 update 的部分,公式如下:

$$\hat{Q}_{\mathsf{opt}}(s,a) \leftarrow (1-\eta) \underbrace{\hat{Q}_{\mathsf{opt}}(s,a)}_{\mathsf{prediction}} + \eta \underbrace{(r+\gamma \hat{V}_{\mathsf{opt}}(s'))}_{\mathsf{target}}$$

底下為 update () 的程式碼

```
165
              Qopt(s,a) <- (1-eta)Qopt(s,a)+ eta(reward + discount* Vopt(s'))</pre>
166
              Qopt(s,a)為 prediction
167
              reward + discount* Vopt(s')為target
168
169
              prediction = self.getQValue(state, action)
170
              prediction_ = (1-self.alpha)*prediction
171
              Value = self.getValue(nextState)
172
              target = reward + self.discount* Value
              target_ = self.alpha * target
173
              self.QValue[(state,action)] = prediction_ + target_
```

首先在第 169×170 行,使用 getQValue 取得 $Q_{opt}(s,a)$,即 predicition 的部分, 之後再乘以 1- η (在程式裡 η 是 self.alpha)。然後在第 $171\sim173$ 行,使用 getValue 取得 $V_{opt}(s')$,並計算 target 項,再乘以 η 。最後將兩項相加,更新 $Q_{opt}(s,a)$ 。

2-3 epsilon-greedy action selection Code explanation epsilon-greedy 的演算法如下:

底下為 getAction ()的程式碼:

```
139
             if len(legalActions) == 0:
140
                 return None
141
             explore = util.flipCoin(self.epsilon)
             #硬幣擲到要隨機選action的話
142
143
             if explore:
                 action = random.choice(legalActions)
144
             #硬幣說要直接走
145
146
                 action = self.getPolicy(state)
147
148
             return action
```

如果沒得做下一步要回傳 None (第 139、140 行)。如果有得選就使用util.flipCoin(epsilon),即第 141 行,決定是否做 exploration。其中有 epsilon 的機率會是 True,就從所有可行的 action 中隨機選取,即做 exploration(第 143、144 行)。如果沒有要 exploration,則用 getPolicy 找到這個 state 下該做的action(第 146、147 行)。

Observation

當使用不同的 epsilon, 會發現探索的程度差很多,下圖從左到右的 epsilon 分別為 0.1, 0.5 及 0.9。可以看到最左邊還有很多未探索的(尤其是右下角區域),而右邊全部都走過了。

2-4 Approximate Q-learning

Code explanation

Approximate Q-learning 的演算法如下:

其中 Q 的估計值計算方法如下:

底下為 getQValue()的程式碼:

```
featureVector = self.featExtractor.getFeatures(state, action)

Q = 0

for feature in featureVector.keys():

Q += self.weights[feature]*featureVector[feature]

return Q
```

先透過 featureExtractor. getFeatures()取得 features (第 245 行),再將所有 feature;乘上對應的權重 w_i,加起來就是 Q 的估計值(第 247、248 行)。

再來是更新權重的部分,更新的公式如下:

$$w_i \leftarrow w_i + \alpha[correction]f_i(s, a)$$

 $correction = (R(s, a) + \gamma V(s')) - Q(s, a)$

底下為 update()的程式碼:

```
featureVector = self.featExtractor.getFeatures(state, action)

correction = (reward +self.discount* self.getValue(nextState))-(self.getQValue(state, action))

for feature in featureVector.keys():

self.weights[feature] = self.weights[feature] + self.alpha* correction *featureVector[feature]

self.weights[feature] = self.weights[feature] + self.alpha* correction *featureVector[feature]
```

一樣是先用 featureExtractor. getFeatures()取得 features (第 260 行)。然後 按照上面的第二條公式計算 correlation (第 261 行)。之後再用第一條公式 去更新權重(第 262、263 行)。

Observation

我對於 featureExtractors.py 中的 SimpleExtractor 做了一些更動。 起因是我知道當小精靈吃了 capsule 後,它就不怕鬼甚至還可以反過來吃鬼得分。但是當我在還沒更動任何程式前執行 python pacman.py -p ApproximateQAgent -x 50 -n 60 -l smallClassic -a extractor=SimpleExtractor時,發現小精靈不會去吃 capsule。 以下是我做的更動: 首先用 getCapsules() 取得 capsule 所在的座標(第 80 行)。再用 getNumAgents() 减去一(小精靈本人)後得到 ghost 總數 (第 81 行)。接著 針對所有的 ghost,使用 getGhostState()獲取每隻鬼的狀態是沒有被嚇(值 為 0),或是被嚇到的狀態還可以持續多久(第 82 行)。

```
capsules = state.getCapsules()
num_ghost = state.getNumAgents()-1
ghostState = [state.getGhostState(agentID).scaredTimer for agentID in range(1,num_ghost+1)]
```

在原先的程式的第 99 行可以看到,食物的 feature 為 1。而我為了鼓勵小精靈去吃 capsule, 在第 102 行設定如果該座標是 capsule 的話,feature 為 1.5,這會使小精靈比起吃普通食物,更想吃 capsule。接著當小精靈吃到 capsule 後,它就不用躲鬼而是去吃鬼贏得更高的分數,因此我在第 104~106 行寫到,如果隔壁的那隻鬼是被嚇到的(ghostState>0),就可以去反吃那隻鬼,feature 為 2。

```
97
               # if there is no danger of ghosts then add the food feature
               if not features["#-of-ghosts-1-step-away"] and food[next_x][next_y]:
98
99
                   features["eats-food"] = 1.0
100
               # no danger + capsule
101
               if (next_x, next_y) in capsules:
102
                    features["eats-food"] = 1.5
103
               # eat scared ghost
               for g in ghosts:
104
105
                    if g[\emptyset] == next_x and g[1] == next_y and ghostState[ghosts.index(g)]>0: features["eats-food"] = 2
106
```

3-1 DQN

Result

完整比較結果寫在 4-1 Compare the performance of every method

```
D:\Download\HW3\HW3\DQN>python pacman.py -p PacmanDQN -n 25 -x 20 -l smallClassic
Started Pacman DQN algorithm
Hodel has been trained
                                                                                                  True; Q(s,a) = 194.3805343864543; reward = 716.0; and epsilon = 0.0

True; Q(s,a) = 238.13077796364138; reward = 657.0; and epsilon = 0.0

True; Q(s,a) = 221.15298305427393; reward = 779.0; and epsilon = 0.0

False; Q(s,a) = 225.0778003949599; reward = -7.0; and epsilon = 0.0

True; Q(s,a) = 227.44598633541997; reward = 814.0; and epsilon = 0.0

True; Q(s,a) = 223.03364716480195; reward = 97.0; and epsilon = 0.0

True; Q(s,a) = 213.58284060658954; reward = 701.0; and epsilon = 0.0

True; Q(s,a) = 205.1219826244877; reward = 678.0; and epsilon = 0.0

True; Q(s,a) = 218.921194447013; reward = 721.0; and epsilon = 0.0

: True; Q(s,a) = 218.921194447013; reward = 788.0; and epsilon = 0.0

: True; Q(s,a) = 208.02762309193636; reward = 693.0; and epsilon = 0.0

: True; Q(s,a) = 219.65331375528075; reward = 650.0; and epsilon = 0.0

: True; Q(s,a) = 210.21357982584308; reward = 779.0; and epsilon = 0.0

: True; Q(s,a) = 224.26182294144573; reward = 708.0; and epsilon = 0.0

: True; Q(s,a) = 221.43914750798; reward = 753.0; and epsilon = 0.0

: True; Q(s,a) = 209.51981341750798; reward = 669.0; and epsilon = 0.0

: True; Q(s,a) = 214.9876773823759; reward = 669.0; and epsilon = 0.0

: True; Q(s,a) = 214.9876773823759; reward = 669.0; and epsilon = 0.0

: True; Q(s,a) = 214.9876773823759; reward = 669.0; and epsilon = 0.0

: True; Q(s,a) = 214.8876773823759; reward = 669.0; and epsilon = 0.0

: True; Q(s,a) = 214.8876773823759; reward = 813.0; and epsilon = 0.0
Episode no = 1; won:
Episode no = 2; won:
  pisode no = 3;
     pisode no = 6;
    pisode no = 8;
      pisode no = 9:
    pisode no = 10; won:
    pisode no = 11; won:
   pisode no = 12; won:
    pisode no = 13; won:
   pisode no = 14; won:
                                                              15; won:
    pisode no = 16; won:
    pisode no = 17; won:
Episode no = 19; won: True; Q(s,a) = 199.49614793395088; reward = 629.0; and epsilon = 0.0 Episode no = 20; won: True; Q(s,a) = 218.8541459685461; reward = 813.0; and epsilon = 0.0 Pacman emerges victorious! Score: 1777 Episode no = 21; won: True; Q(s,a) = 211.38800653322068; reward = 814.0; and epsilon = 0.0 Pacman emerges victorious! Score: 1567 Episode no = 22; won: True; Q(s,a) = 210.50210546235883; reward = 753.0; and epsilon = 0.0 Pacman emerges victorious! Score: 1328 Episode no = 23; won: True; Q(s,a) = 216.18152690167653; reward = 652.0; and epsilon = 0.0 Pacman emerges victorious! Score: 1360 Episode no = 24; won: True; Q(s,a) = 210.92649252833226; reward = 695.0; and epsilon = 0.0 Pacman emerges victorious! Score: 1555 Episode no = 24; won: True; Q(s,a) = 211.68175285163596; reward = 741.0; and epsilon = 0.0
                                                                                                                                                                                                                                                                                            reward = 741.0; and epsilon = 0.0
 verage Score: 1517.4
                                                                          1777.0, 1567.0, 1328.0, 1360.0, 1555.0
5/5 (1.00)
Win, Win, Win, Win
  cores:
in Rate:
```

Questions

- 1. What is the difference between On-policy and Off-policy 當跟環境互動的 agent 與訓練的 agent 是同一個,也就是邊做邊學的話,屬於 On-policy。如果訓練的 agent 與跟環境互動的 agent 不同,而是看別人互動來學習的話,即為 Off-policy。
- Briefly explain value-based, policy-based and Actor-Critic. Also, describe the value function V^π (S) policy-based 是訓練一個負責執行動作的 neural network ~ actor, 當輸入 observation 後會輸出各個 action 的機率。

value-based 則是訓練一個對目前狀況給與評價的 critic,也就是給定某個 actor π ,然後衡量 π 的好壞程度。而 State value function $\sim V^{\pi}(S)$ 即為一種 critic。 $V^{\pi}(S)$ 的值是給定某 actor π 並看到某個 observation state s 後,評估到遊戲結束會得到的期望值。可以用 Monte-Carlo 或是 Temporal-difference 來評估 $V^{\pi}(S)$ 。

Actor-Critic 就是結合上述兩種,它會先有一個 \arctan π 。 π 。 會與環境互動並取得很多資料,接著 \arctan 。 會計算 $N^{\pi}(S)$,再基於 $N^{\pi}(S)$ 更新 π 成 π ,然後繼續跟環境互動,一直進行互動、評估、更新的循環。

What is the difference between Monte-Carlo (MC) based approach and Temporal-difference (TD) approach for estimating V^π(S)
 MC 是讓 critic 觀察 actor π 的行為,假設 actor 做了 action a,critic 就 會估計出V^π(Sa),而這個值應該要跟最後結束時真正的 reward Ga 越 接近越好。

TD 則是只讓 critic 觀察 actor π 一小段的行為,假設在 state s_t 時, π 做了 action a_t 後會得到 reward r_t ,那麼就表示 $V^{\pi}(S_t) + r_t = V^{\pi}(S_{t+1})$ 。也 就是說 $V^{\pi}(S_{t+1}) - V^{\pi}(S_t)$ 要越接近 r_t 越好。

兩者的差異為,MC 是考慮累計到最後的總 reward G,而 TD 是考慮 單一一個 reward r。因此 MC 估計出的 variance 較大,但是 TD 的結果會有 bias。

4. Describe State-action value function Q^{π} (s, α) and the relationship between V^{π} (S) in Q-learning.

 $Q^{\pi}(s,a)$ 是輸入 state-action pair 後,估計出在 state s 下做 action a 可能的 reward。

其實從參數就可以看出 $V^{\pi}(S)$ 與 $Q^{\pi}(s,a)$ 的差異,前者只考慮 state,而 後者同時考慮了 state 跟 action。

5. Describe following tips Target Network, Exploration and Replay Buffer using in Q-learning.

Target Network: Q-learning 是要使 Q^{π} (s_t , a_t) = r_t + Q^{π} (s_{t+1} , $\pi(s_{t+1})$),但是這個 target ~ r_t + Q^{π} (s_{t+1} , $\pi(s_{t+1})$)是會不斷更新變動的,會導致不好訓練,因此訓練時可以把 Q^{π} (s_{t+1} , $\pi(s_{t+1})$)固定住,在訓練過程中不去更新它的參數,這樣他就可以產生出固定的 target,而這個就是Target Network。

Exploration: 因為 Q-learning 會取該 state 底下 Q value 最大的 action,問題是一開始大家都是 0,但是只要某 action 被挑中並且它的 Q value 變正,則之後永遠都選這個 action,因為只有它是正的其餘都是 0。 因此就要用 Exploration,有時隨機挑出 action 而非基於 policy。

Replay Buffer: 當 policy π 與環境互動後,可將每一步的(s_t, a_t, r_t, s_{t+1}) 存進 Replay Buffer。好處是 Replay Buffer 可以存放不同 policy π 互動 的資料,這樣可以提升訓練資料的 diversity。

6. Explain what is different between DQN and Q-learning 傳統 Q-learning 會建一個 Q 表來存某 state-action pair 的 $Q\pi$ (s, a),而 DQN 是使用神經網絡來估 Q 值。

4-1 Compare the performance of every method

1. Pacman

以下的結果都是在 map layout= smallClassic , 並採用 fixRandomSeed 下,玩 10 場遊戲的結果。不過因為 Approximate Q-learning 需要訓練 episodes,所以玩的不是同一場遊戲。

Minimax (depth = 4)

平均得分: 710.2

最高分: 1392 最低分: -439 獲勝率: 6/10

:\Download\HW3\HW3\Adversarial_search>python pacman.py -p MinimaxAgent -n 10 -l smallClassic -f --fixRandomSeed -a depth=
acman died! Score: 27
acman emerges victorious! Score: 1339
acman emerges victorious! Score: 1107
acman emerges victorious! Score: 1328
acman died! Score: -439
acman emerges victorious! Score: 1260
acman emerges victorious! Score: 1274
acman died! Score: -384
acman died! Score: -384
acman died! Score: -384
acman emerges victorious! Score: 1200
acman emerges victorious! Score: 1200 27.0, 1339.0, 1107.0, 1328.0, 6/10 (0.60) Loss, Win, Win, Loss, Win, Win, Loss, Loss, Win

Expectimax (depth = 4)

平均得分: 1116.6

最高分: 1715 最低分: 384 獲勝率: 7/10

```
Nownload\HW3\Adversarial_search>python pacman.py -p ExpectimaxAgent -n 10 -l smallClassic -f --fixRandomSeed -a depth=4 -q cman died! Score: 384 cman emerges victorious! Score: 1255 cman died! Score: 449 cman emerges victorious! Score: 1715 cman died! Score: 68 cman died! Score: 68 cman emerges victorious! Score: 1754 cman emerges victorious! Score: 1754 cman emerges victorious! Score: 1754 cman emerges victorious! Score: 1855
                                                   0.70)
Win, Win, Loss, Win, Loss, Win, Win, Win
```

Approximate Q-learning (training episode = 500)

平均得分: 1017.1

最高分: 1372 最低分: 46 獲勝率: 9/10

• DQN

平均得分: 1313.2

最高分: 1760 最低分: 80 獲勝率: 8/10

Average Score: 1313.2 Scores: 1328.0, 1731.0, 1760.0, 1349.0, 286.0, 1751.0, 80.0, 1753.0, 1532.0, 1562.0 Win Rate: 8/10 (0.80) Record: Win, Win, Win, Loss, Win, Loss, Win, Win

以整體來說, Minimax 表現最差。

而 Expectimax 比我想像中的高分,所以我就去觀察小精靈的行為,並發現雖然 Expectimax 不會特別積極去吃 capsule,但是一旦他吃到 capsule 就會很積極的去吃鬼。此外,我還發現由於 depth 的限制,如果 Expectimax 小精靈距離食物太遠時,他就會放棄不動,直到有鬼來追他。如下圖所示,從 1044 扣到 891 他都不動。

但是光 depth = 4 小精靈每步就要想停久的,所以我就沒嘗試增加更多的 depth。

Approximate Q-learning 中我為了增加存活率,所以小精靈的行為相對保守,他雖然會很積極的去吃 capsule 來防身,但是當小精靈遇到被嚇到變成白色的鬼時,他竟然會回過身逃跑(如下圖所示)。

而他只有在碰巧可以吃到鬼時才會順便吃鬼。

DQN 就相對積極很多,他不但會去吃 capsule,而且含會特別繞路去吃被嚇到的鬼(如下圖所示)。

2. GridWorld

以下的結果都是玩 100 場遊戲,分無 noise 與 noise = 0.2 兩個版本。

- Value Iteration (100 iterations)
 - 1. 無 noise

平均 return: 0.5904

AVERAGE RETURNS FROM START STATE: 0.590490000000011

2. 有 noise

平均 return: 0.488

AVERAGE RETURNS FROM START STATE: 0.4881568423805106

- Q-learning without exploration
 - 1. 無 noise

平均 return: 0.5650

AVERAGE RETURNS FROM START STATE: 0.5650789198099183

2. 有 noise

平均 return: 0.2291

AVERAGE RETURNS FROM START STATE: 0.2291431122374289

- Q-learning with epsilon-greedy action selection (epsilon = 0.5)
 - 1. 無 noise

平均 return: 0.3315

AVERAGE RETURNS FROM START STATE: 0.3315787456372349

2. 有 noise

平均 return: 0.1273

AVERAGE RETURNS FROM START STATE: 0.12732893364791373

以 return 來說,Value Iteration 表現最好,因為他已經有參照標準了。 沒有 exploration 的 Q-learning 可以從他的 Value 表看出,他基本上有一條習慣走的路,尤其在無 noise 時更為明顯,因為他完全沒有可能亂走,所以除了走過的那條路之外其他的值都是 0。不過兩次實驗因為第一個 episode 走的路不同,所以兩條路線有落差(無 noise 是先往右再往上;有 noise 是先往上再往右)。

而 epsilon-greedy 的結果最差,這是因為他有 0.5 的機率會去探索,而不是順著最高分的走法,這就有可能導致他的表現變差。