Practical Transfer Learning for Bayesian Optimization

· 作者: Matthias Feurer, Benjamin Letham, Frank Hutter, et.al

· 机构: freiburg, Facebook

· 会议: Under review

· 地址: https://arxiv.org/abs/1802.02219

· 代码: 无

摘要

论文提出了一种hyperparameter-free的贝叶斯优化集成,基于高斯过程的线性组合与Agnostic Bayesian Learning of Ensembles(ABE),并且给出了worst-case bound。在超参优化 benchmark上实验表明论文的方法能显著减少优化时间、提升warm-start BO上的当前SOTA水平。

论文主要内容

创新点:

- 1. 防止权重稀释机制(概率drop base model)
- 2. Ranking loss来计算权重

问题建立

高斯过程-BO

$$egin{aligned} \mu\left(\mathbf{x}_*
ight) &= \mathbf{k}_*^T \left(\mathbf{K} + \sigma_n^2 I
ight)^{-1} \mathbf{y}, \quad \sigma^2\left(\mathbf{x}_*
ight) &= k\left(\mathbf{x}_*, \mathbf{x}_*
ight) - \mathbf{k}_*^T \left(\mathbf{K} + \sigma_n^2 I
ight)^{-1} \mathbf{k}_* \ &lpha(\mathbf{x} \mid \mathcal{D}) &= \mathbb{E}_{f(\mathbf{x} \mid \mathcal{D})} \left[\max\left(0, f\left(\mathbf{x}_{ ext{best}}
ight) - f(\mathbf{x})
ight)
ight] &= \sigma(\mathbf{x}) z \Phi(z) + \sigma(\mathbf{x}) \phi(z) \end{aligned}$$

在不同的Task(数据集)上最优的超参一般是不同的,但相似的Task可能有相似的response surface。如何在新的Task上利用过去已经学习过的Task上的知识(Transfer)加速搜索?

SVM RBF Response

Fig. 1 Response surface of an RBF-SVM on the famous Iris data set. Hyperparameters are the cost of slack (C), and the kernel width γ

Base model: 过去已学习任务上的BO model

Target model: 目标任务上的BO model

已有工作:

TST-R: Two-stage transfer surrogate model for automatic hyperparameter optimization.

$$\mathsf{TAF:} \quad \alpha(\mathbf{x}) = w_t EI(\mathbf{x}) + \sum_{i=1}^{t-1} w_i I_i(\mathbf{x}) = w_t EI(\mathbf{x}) + \sum_{i=1}^{t-1} \max \left(0, \operatorname*{arg\,min}_{\mathbf{x}_k \in \mathcal{D}_t} f^i(\mathbf{x}_k) - f^i(\mathbf{x})\right)$$

- 1. 能够随着观测点增多,淡化base model里的知识
- 2. 权重使用TST-R中的计算方式,依赖一个敏感超参bandwidth

提出的方法

Preventing Weight Dilution

$$p_{drop}(i) = 1 - \left(\left(1 - rac{n_t}{H}
ight) rac{\sum_{s=1}^S 1\left(l_{i,s} < l_{t,s}
ight)}{S + lpha S}
ight)$$

- 1. Base model和target model竞争,删掉比target model更差的model,防止权重稀释且能降低开销
- 2. 加入先验知识: target model是'correct model'
- 3. $\left(1-rac{n_t}{H}
 ight)$ 随着观测点的增加线性递减,意味着逐渐增加base model被删掉的概率
- 4. α 增加会增大base model被删掉的概率(超参)

Theorem 4.1. Bayesian optimization using a linear combination of Gaussian processes with weights learned according to Section 4.2 is at most a factor of $1/\left(\frac{1}{H}\sum_{h=1}^{H}\left(1-\left(\left(1-\frac{h}{H}\right)\frac{S}{S+\alpha S}\right)\right)^{t-1}\right)$ slower than Bayesian optimization in the worst case.

理论分析: 概率drop base model策略不会比直接使用target model差太多(在最坏的情况下)

Ranking-weighted

Ranking loss:

$$\mathcal{L}\left(f, \mathcal{D}_{t}
ight) = \sum_{k=1}^{n_{t}} \sum_{l=1}^{n_{t}} 1\left(\left(f\left(\mathbf{x}_{k}^{t}
ight) < f\left(\mathbf{x}_{l}^{t}
ight)
ight) \oplus \left(y_{k}^{t} < y_{l}^{t}
ight)
ight)$$

agnostic Bayesian ensemble learning: $model_i$ 集成的权重由 $model_i$ 是最佳模型(validation上最佳)的概率确定。这里包括了确定target model的权重(TST-R的target model始终是个固定值)

$$w_i = rac{1}{S} \sum_{s=1}^{S} \left(rac{\mathbb{I}\left(i \in rg \min_{i'} l_{i',s}
ight)}{\sum_{j=1}^{t} \mathbb{I}\left(j \in rg \min_{i'} l_{i',s}
ight)}
ight)$$

B.1. Illustration of the Ranking Loss

Figure 2 provides an illustration of the ranking loss.

Gaussian Process Ensemble

RGPE

$$egin{aligned} ar{f}(\mathbf{x} \mid \mathcal{D}) &= \sum_{i=1}^t w_i f^i\left(\mathbf{x} \mid \mathcal{D}_i
ight) \ ar{f}(\mathbf{x} \mid \mathcal{D}) &\sim \mathcal{N}\left(\sum_{i=1}^t w_i \mu_i(\mathbf{x}), \sum_{i=1}^t w_i^2 \sigma_i^2(\mathbf{x})
ight) \end{aligned}$$

TST-R方式

均值使用加权求和,方差只使用target model

Mixture of Gaussian Processes

RMoGP混合高斯过程:
$$p_{ ext{mix}}\left(f(\mathbf{x})
ight) = \sum_{i=1}^{t} p_i(f(\mathbf{x})) w_i$$

$$EI_{ ext{mix}}(\mathbf{x}) = \mathbb{E}_{f(\mathbf{x}) \sim p_{ ext{mix}}}[I(\mathbf{x})] = \mathbb{E}_i \mathbb{E}_{f(\mathbf{x}) \sim p_i}[I(\mathbf{x})] = \sum_{i=1}^t w_i EI_i(\mathbf{x})$$

· 和TAF形式相似,区别在于对base model使用的是EI不是I

Scaling study

Figure 1: Caption

- Multi-task Gaussian processes (MTGP)
 - 。 时间复杂度: $O(t^3n^3)$
 - 。只建立一个高斯过程模型,考虑所有tasks的观测点
- · RGPE的额外开销仅在计算权重

benchmark

Table 1: Final results on four hyperparameter optimization benchmarks. The numbers reported are the average normalized regret [66]. Top groups: single task baselines; middle groups: multitask baselines; bottom groups: our methods.

	10	20	30	40	50	10	20	30	40	50	
		GL	MNET (2	(2d)	SVM(4d)						
GP(MAP)	1.91	0.59	0.31	0.21	0.15	5.30	1.70	0.97	0.70	0.56	
Random(1x)	4.79	1.39	0.88	0.70	0.52	5.56	2.98	2.12	1.77	1.59	
Random(4x)	0.70	0.36	0.29	0.24	0.21	<u>1.77</u>	1.16	0.90	0.79	0.70	
TST-R	1.63	0.86	0.65	0.40	0.21	3.91	1.85	1.17	0.92	0.75	
TAF(TST-R)	0.99	0.35	0.23	0.20	0.18	3.24	1.73	0.99	0.70	0.57	
TAF(RGPE)	0.76	0.34	0.27	0.20	0.17	3.18	1.19	0.76	0.60	0.47	
RMoGP	0.65	0.31	0.24	0.19	0.16	3.16	1.16	0.74	0.51	0.42	
RGPE(mean)	1.60	0.85	0.67	0.62	0.14	3.29	1.03	0.72	0.53	0.43	
			NN (7d)			XGB (10d)					
GP(MAP)	16.40	11.51	9.69	8.62	7.84	5.29	2.46	1.66	1.20	0.98	
Random(1x)	14.66	11.73	10.09	9.05	8.07	5.69	3.41	2.46	2.08	1.78	
Random(4x)	9.05	6.27	5.00	4.11	3.49	2.08	1.50	1.28	1.20	1.14	
TST-R	8.50	6.95	6.12	5.60	4.99	1.37	1.00	0.85	0.77	0.73	
TAF(TST-R)	6.11	5.01	4.27	3.79	3.41	1.55	1.05	0.85	0.75	0.71	
TAF(RGPE)	4.52	3.26	2.72	2.36	2.14	1.53	0.99	0.80	0.72	0.67	
RMoGP	5.72	3.83	3.29	2.86	2.53	1.49	0.95	0.80	0.72	0.67	
RGPE(mean)	6.50	4.67	3.90	3.37	3.02	1.41	0.94	0.77	0.69	0.66	

- · Wilcoxon signed-rank test
 - 。 带下划线是best method,不带下划线但加粗是 与best method没有显著差异
- · TST-R的方法比最好方法显著表现差(敏感的bandwith超参)
 - We provided each meta-learning method with a single meta-learned configuration and each other method with a Latin hypercube design of size 10.

Grid data benchmark

Table 9: Results for Adaboost $_g$ and SVM $_g$ benchmarks. Top group: non-multitask baselines; middle group: multitask baselines; bottom group: our methods.

		A	daboos	t_g		SVM_g					
	10	20	30	40	50	10	20	30	40	50	
GP(MAP)	5.42	2.28	1.27	0.83	0.68	9.66	3.64	2.06	1.45	1.13	
Random(1x)	5.61	3.41	2.43	1.88	1.58	11.91	6.54	4.60	3.82	3.04	
Random+box	5.91	3.59	2.50	1.94	1.47	9.79	5.51	4.32	3.65	3.10	
GP(MAP,Box)	5.44	2.32	1.37	0.92	0.77	9.58	3.06	1.85	1.23	0.92	
SMFO	4.43	2.93	2.15	1.59	1.29	5.45	3.69	2.50	2.02	1.71	
WAC	9.10	6.52	5.10	3.87	3.10	11.62	9.33	8.09	7.35	6.59	
ABLR	5.17	2.38	1.56	0.99	0.67	5.57	3.36	1.92	1.27	1.07	
TST-R	4.87	2.49	1.40	0.84	0.53	4.56	2.20	0.95	0.66	0.39	
TAF	4.00	2.60	1.63	1.15	0.73	4.59	2.52	1.53	1.03	0.56	
TAF(RGPE)	3.90	2.26	1.39	0.96	0.60	3.81	2.05	1.26	0.75	0.39	
RMoGP	4.52	2.60	1.40	0.87	0.51	3.35	1.75	1.15	0.67	0.39	
RGPE(mean)	5.43	2.74	1.65	1.06	0.65	5.35	2.99	1.43	0.79	0.51	
CFNEI	6.01	2.78	1.68	1.02	0.51	4.81	2.01	0.95	0.61	0.38	

消融实验

Table 10: Ablation study on all benchmarks.

	$Adaboost_g$						SVM_g				
GP(MAP)	5.42	2.28	1.27	0.83	0.68	9.66	3.64	2.06	1.45	1.13	
TST-R(HPO)	4.81	2.46	1.59	1.00	0.70	4.85	2.85	1.79	1.27	0.69	
TST-R	4.87	2.49	1.40	0.84	0.53	4.56	2.20	0.95	0.66	0.39	
TAF(TST-R,HPO)	3.84	1.99	1.31	1.01	0.74	4.43	2.32	1.17	0.62	0.43	
TAF(TST-R)	4.00	2.60	1.63	1.15	0.73	4.59	2.52	1.53	1.03	0.56	
RMoGP	4.52	2.60	1.40	0.87	0.51	3.35	1.75	1.15	0.67	0.39	
RMoGP(None)	4.28	2.37	1.54	0.95	0.76	3.51	1.80	1.10	0.78	0.63	
$RMoGP(\alpha=0.1)$	4.56	2.68	1.48	0.94	0.55	3.30	1.82	0.94	0.55	0.45	
$RMoGP(\alpha=0.2)$	4.37	2.42	1.48	1.01	0.67	3.38	1.83	1.14	0.71	0.53	
RMoGP(α =0.5)	4.33	2.62	1.51	0.99	0.50	3.51	1.84	1.07	0.70	0.45	
$RMoGP(\alpha=1)$	4.32	2.51	1.60	1.14	0.70	3.38	1.91	1.09	0.57	0.33	
$RMoGP(\alpha=2)$	4.34	2.46	1.55	1.15	0.73	3.59	1.79	1.00	0.63	0.39	
RMoGP(α =5)	4.54	2.73	1.62	1.11	0.77	3.63	1.78	0.98	0.66	0.52	
RMoGP(S=100)	4.36	2.40	1.47	1.04	0.67	3.36	1.95	1.09	0.64	0.43	
RMoGP(S=1000)	4.63	2.58	1.68	1.03	0.66	3.32	1.80	1.07	0.75	0.56	
RMoGP(S=100000)	4.41	2.55	1.54	1.15	0.73	3.25	1.85	1.13	0.74	0.56	
	GLMNET						SVM				
GP(MAP)	1.91	0.59	0.31	0.21	0.15	5.30	1.70	0.97	0.70	0.56	
TST-R(HPO)	1.92	0.78	0.29	0.23	0.19	3.34	1.92	1.33	1.10	1.00	
TST-R	1.63	0.86	0.65	0.40	0.21	3.91	1.85	1.17	0.92	0.75	
TAF(TST-R,HPO)	0.76	0.37	0.26	0.18	0.16	3.11	1.20	0.72	0.56	0.47	
TAF(TST-R)	0.99	0.35	0.23	0.20	0.18	3.24	1.73	0.99	0.70	0.57	
RMoGP	0.65	0.31	0.24	0.19	0.16	3.16	1.16	0.74	0.51	0.42	
RMoGP(None)	0.66	0.30	0.23	0.19	0.17	2.88	1.06	0.70	0.55	0.47	
DM-CD(0.1)	0.70	0.21	0.21	0.17	0.15	2.01	116	0.00	0.50	0.20	

$KMOGP(\alpha=0.1)$	U./U	0.51	0.21	U.17	0.15	2.91	1.10	0.08	0.50	0.39
RMoGP(α =0.2)	0.83	0.34	0.25	0.19	0.17	2.75	1.02	0.64	0.48	0.40
RMoGP(α =0.5)	0.73	0.29	0.21	0.17	0.14	3.04	1.14	0.77	0.52	0.44
$RMoGP(\alpha=1)$	0.77	0.28	0.22	0.18	0.16	3.44	1.21	0.74	0.60	0.53
$RMoGP(\alpha=2)$	0.80	0.37	0.25	0.20	0.18	3.12	1.15	0.69	0.55	0.49
RMoGP(α =5)	0.71	0.35	0.25	0.20	0.18	3.09	1.27	0.71	0.50	0.42
RMoGP(S=100)	0.70	0.32	0.20	0.16	0.13	2.62	0.97	0.59	0.47	0.42
RMoGP(S=1000)	0.71	0.31	0.22	0.18	0.16	2.73	1.12	0.76	0.59	0.51
RMoGP(S=100000)	0.67	0.33	0.24	0.20	0.17	2.93	1.05	0.67	0.50	0.43
	ľ		NN					XGB		
GP(MAP)	16.40	11.51	9.69	8.62	7.84	5.29	2.46	1.66	1.20	0.98
TST-R(HPO)	7.88	6.37	5.25	4.82	4.36	1.52	1.18	1.01	0.93	0.88
TST-R	7.91	6.36	5.49	4.87	4.40	1.37	1.00	0.85	0.77	0.73
TAF(TST-R,HPO)	4.54	3.10	2.56	2.25	2.00	1.36	0.94	0.79	0.73	0.69
TAF(TST-R)	6.11	5.01	4.27	3.79	3.41	1.55	1.05	0.85	0.75	0.71
RMoGP	5.72	3.83	3.29	2.86	2.53	1.49	0.95	0.80	0.72	0.67
RMoGP(None)	5.95	3.97	3.25	2.77	2.47	1.58	1.04	0.82	0.74	0.68
$RMoGP(\alpha=0.1)$	5.71	4.05	3.38	2.93	2.56	1.56	0.96	0.81	0.76	0.72
RMoGP(α =0.2)	5.45	4.02	3.36	2.99	2.65	1.54	0.98	0.80	0.75	0.69
RMoGP(α =0.5)	5.77	3.84	3.11	2.76	2.42	1.50	0.91	0.79	0.71	0.67
$RMoGP(\alpha=1)$	5.87	4.04	3.27	2.79	2.52	1.55	0.97	0.84	0.77	0.72
RMoGP(α =2)	5.47	4.04	3.48	3.00	2.73	1.53	0.98	0.82	0.75	0.72
RMoGP(α =5)	6.05	4.27	3.54	3.14	2.80	1.41	0.95	0.80	0.73	0.69
RMoGP(S=100)	5.59	3.84	3.18	2.71	2.46	1.58	0.95	0.78	0.72	0.67
RMoGP(S=1000)	5.95	4.21	3.31	2.83	2.43	1.51	0.94	0.77	0.71	0.67
RMoGP(S=100000)	5.82	3.92	3.10	2,65	2.46	1.53	0.91	0.79	0.73	0.69

- · leave-one-task-out hyperparameter tuning (HPO)
 - 。 使用grid search在t-1个tasks上找到最好的超参,应用在target task上
 - 。 代价昂贵、不切实际
 - 。 实验结果说明TST-R中的bandwidth超参如果能设置好,效果就很好。
- · None表示不使用减枝base model
 - 。实验说明防止权重稀释的方法有用,并且在最坏的情况下比纯BO慢一个乘数比例
- · α 不敏感
- · S 样本数增加不敏感,实验中100个就足够