Fundamentals of Networks

Michael Brodskiy

Professor: E. Bernal Mor

September 14, 2023

• What is a Network?

 A collection of devices (aka nodes) interconnected by different types of links, which allow devices to communicate at a distance in order to support diverse applications

- Devices:

- * End systems or terminal nodes: computer (desktop, laptop), cell-phone, tablet, car, sensor, and virtually almost anything
- * Intermediate nodes: modem, repeater, hub, switch, router, base station, etc.

- Links:

- * Wired links: fiber, copper, etc.
- * Wireless links: electromagnetic waves (radio, microwave, terahertz band, infra-red, etc.), acoustic waves (ultra-sounds), etc.

- Applications:

* E-mail, instant messaging, web browsing, multimedia streaming, etc.

• A wireless sensor network

- Many applications:
 - * Military applications: battlefield surveillance, nuclear, biological, and chemical attack prevention, etc.
 - * Environmental applications: tracking birds, smart irrigation, earth monitoring, etc.
 - * Health applications: health telemonitoring, drug administration tracking, etc.

• Network Types (classified by size):

- PAN (Personal Area Networks) — Bluetooth, USB, etc.

- * Range of a person
- LAN (Local Area Networks) WiFi, Ethernet, etc.
 - * Range of a single building: a home, office, or factory
- MAN (Metropolitan Area Networks) WiMax, cable, etc.
 - * Range of a city
- WAN (Wide Area Networks) Cellular, landline telephone, etc.
 - * Range of an entire country or continent
- Satellite
- Thus, the internet is a "network of networks"
 - Billions of connected computing devices:
 - * Hosts = end systems
 - * Running network applications at Internet's "edge"
 - Packet switches: forward packets (chunks of data)
 - * Routers, switches, etc.
 - Communication links
 - * Fiber, copper, radio, satellite
 - * Transmission rate: link capacity (bps)
 - Networks
 - * Managed by organization
 - Interconnected ISPs (Internet Service Providers)
- Protocols are everywhere
 - Control sending, receiving of messages
 - Examples: HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, 5G, Ethernet
- Internet Standardization
 - IETF: Internet Engineering Task Force
 - * RFC: Request for Comments
 - IEEE: Institute of Electrical and Electronics Engineers
 - * IEEE 802.3, IEEE 802.11
- Infrastructure that provides services to applications:

- Web, streaming video, multimedia teleconferencing, e-mail, games, e-commerce, social media, interconnected appliances
- Provides programming interface to distributed applications:
 - "Hooks" allowing sending/receiving applications "connect" to, use Internet transport service
 - Provides service options, analogous to postal service

• Protocols

- For humans, an example is language (we have phonetics, grammar, etc.)
- All communication activity in Internet governed by protocols
- Sample definition: Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission and receipt.
- A closer look at internet structure:
 - Edge of the network:
 - * Hosts: clients and servers
 - * Servers often in data centers
 - Access networks:
 - * Wired, wireless communication links
 - Network core:
 - * Interconnected routers
 - * Network of networks

• Physical Media

- Bit: unit of information that is carried by the signal that propagates between transmitter and receiver
- Physical link: what lies between transmitter and receiver
- Types of media:
 - * Guided media: signals propagate solid media (e.g. copper, fiber, coaxial)
 - · Twisted pair (TP) Two insulated copper wires twisted together in a helical form (The signals are usually carried as the difference in voltage between the two wires in the pair to increase robustness against noise).
 - · Coaxial cable Two concentric cooper conductors, with bidirectional capabilities. Longer distances at higher data transmission rates than twisted pairs. A broadband system; that is, multiple frequency channels on cable.

- · Fiber optic cable Glass fiber carrying light pulses, each pulse a bit. High-speed operation, with point-to-point transmissions ranging from 10's-100's Gbps. Very low error rate because it is immune to electromagnetic noise, with repeaters spaced far apart. Downside: expensive and fragile
- * Unguided media: signals propagate freely (no physical wire, like a radio)
 - · Signal can be carried in different ways electromagnetic waves (most commonly used), acoustic waves (typically underwater), magnetic-induction (e.g. Near Field Communications)
 - · Propagation environment effects reflection, obstruction by objects, interference
- Network types classified by switching technology there are two fundamental approaches to moving data through a network of links
 - Circuit Switching
 - * Resources needed along a path (e.g. link transmission rate) to provide for communication between hosts are reserved before the transmission starts
 - * This reservation defines the path followed by data and guarantees the communication
 - * The resources are reserved for the duration of the communication session between the hosts
 - Packet Switching
 - * A message is divided into smaller data units or packets, which are transmitted over the network using the resources demanded
 - * No reservation of resources
 - * Different packets in the same "information stream" may traverse different paths and suffer different delays

• The Network Core

- The network core of the Internet is a meash of interconnected packet switches
- Thus, the Internet is a packet-switched network
- Packet switching: hosts break host messages into packets
 - * Packets are forwarded from one router to the next across links on path from source to destination
 - * Each packet is transmitted at full link capacity in each link
 - * No reservation \rightarrow A packet may have to wait (that is, queue on a router)
- Host sending function
 - 1. Takes application message
 - 2. Breaks into smaller chunks or packets, of length L bits

- 3. Transmits packet into access network at transmission rate R (bits/sec)
 - * Full link transmission rate: link capacity (aka link bandwidth)
- 4. Packet transmission delay = Time needed to transmit L-bit packet into link = $\frac{L}{R}$

Router Function

- * Store and forward entire packet must arrive at input link of router before it can be forwarded to output link and then transmitted on next link
- * Transmission delay takes L/R seconds to transmit (push out) L-bit packet into output link at R bps
- * End-to-end transmission delay 2L/R, ignoring other types of delays (more on delay shortly)

• Circuit Switching

- End-to-end resources reserved for, and allocated to communication between source and destination
- Commonly used in traditional telephone networks
- Usually, the communication is referred to as a "call"
- Before the sender can send the information, the network must establish a connection between the sender and the receiver (resource reservation)
 - * Switches on the path between the sender and receiver maintain connection state

• Internet Structure

- Hosts connect to Internet via access to Internet Service Provider (ISPs)
 - * Residential, enterprise (company, university, commercial) ISPs
- Access ISPs in turn must be interconnected
 - * So that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - * Evolution was driven by economics and national policies

• Nodal Delay

- Four types Nodal processing, transmission, queueing, and propagation
- $d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop}$
- Nodal Processing (d_{proc})
 - * Check bit errors, determine output link, ...
 - * Typically $< 1[\mu s]$ or less

- Queuing Delay (d_{queue})
 - * Time waiting at output link for transmission
 - * Depends on congestion level of router
 - * Can vary from packet to packet
 - * Each output link has its own buffer (aka queue)
 - * Buffers have finite memory space
 - * Arrival rate (bps) to output link in router exceeds transmission rate, R bps, of this link temporarily
- Transmission Delay (d_{trans})
 - * L packet length (bits)
 - * R link transmission rate (bps)
 - $* d_{trans} = L/R$
- Propagation Delay (d_{prop})
 - * d length of physical link
 - * s propagation speed $(2 \cdot 10^8 \text{ to } 3 \cdot 10^8 \text{ meters per second})$
 - $* d_{prop} = d/s$

• Packet Queuing Delay

- -R link capacity (bps)
- L packet length (bits per packet)
- a average packet arrival rate (packets per second)
- The traffic intensity is (La)/R
 - * When $(La)/R \approx 0$, average queueing delay small
 - * When (La)/R = 1, average queueing delay large
 - * When (La)/R > 1, "work" arriving is more than can be serviced average delay is infinite

• End-to-end Delay

- Total delay from source to destination
- Nodal delays in the source to destination path accumulate to give the end-to-end delay
- There can also be additional delays in the end system, e.g.:
 - * Delays when transmitting a packet in shared links (more later)
 - * Packetization delay: typically present in real-time applications
 - · Time that it takes to fill a packet with encoded real-time data before sending the packet

• Throughput

- Throughput: rate (bits/time unit) at which the receiver receives the data from the sender (aka end-to-end throughput)
 - * Instantaneous rate at given point in time
 - * Average Rate over longer period of time
- Protocol Layers and Service Models
 - Example Think about the organization of air travel
 - * Ticket purchase, baggage check, gates (loading), runway takeoff, airplane routing, and then the steps repeat in the reverse order
 - Layers Each layer implements a service
 - * Via its own internal-layer actions
 - * Using the services provided by the layer directly below

• Why Layering?

- Explicit structure allows identification, relationship of complex system's pieces
 - * Layered reference model for discussion: conceptual framework for building components of the network
 - · TCP/IP reference model (Internet reference model)
 - · OSI model
 - * Modularization eases maintenance, updating of system
 - · Change of implementation of layer's service transparent to rest of system
 - · For example, change in gate procedure doesn't affect rest of system
- Protocol Layering
 - * Network designers organize protocols in layers to provide structure to the design of network protocols
 - · Each protocol belongs to one of the layers
 - · A layer protocol can be implemented in software or hardware or in a combination of the two
 - * Service model of a layer services that a layer offers to the layer above
 - · Each layer provides its service by:
 - · Performing certain actions within the layer
 - · Using the services of the layer directly below
 - * Network architecture A set of layers and protocol
 - · Provide the network developer with specific set of services to implement the layer
 - · Does not provide details of implementation

- * Protocol stack the protocols of various layers
- Internet Protocol Stack
 - 1. Application Supporting network applications
 - Protocols: IMAP, SMTP, HTTP
 - 2. Transport Process-process data transfer; adds a transport header to message bits to form segment
 - Protocols: TCP, UDP
 - 3. Network Routing of packets from source to destination; adds another header to form packet
 - Protocols: IP, routing protocols
 - 4. Link Data transfer between neighboring network elements; adds another header to form frame
 - IEEE 802.3 (Ethernet), IEEE 802.11 (WiFi), PPP, ...
 - 5. Physical Bits "on the wire"

Application
Transport
Network
Link
Physical

• ISO OSI Reference Model

- Has two layers not found in the Internet protocol stack
 - * Presentation allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
 - * Session Syncrhonization checkpointing, recovery of data exchange
 - * Internet stack "missing" these layers
 - · These services, if needed, must be implemented in application

Application
Presentation
Session
Transport
Network
Link
Physical

• Internet History

- 1961: Kleinrock queueing theory shows effectiveness of packet-swtiching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: First ARPAnet node operational
- -1972:
 - * ARPAnet public demo
 - * NCP (Network Control Protocol) first host-host protocol
 - * First e-mail program
 - * ARPAnet has 15 nodes
- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
 - * Minimalism, autonomy no internal changes required to interconnect networks
 - * Best-effort service model
 - * Stateless routing
 - * Decentralized control
 - * This defined today's internet structure
- 1976: Ethernet at Xerox PARC
- Late 70's: Proprietary architectures: DECnet, SNA, XNA
- Late 70's: Switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes
- 1983: Deployment of TCP/IP
- 1982: SMTP e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: FTP protocol defined
- 1988: TCP congestion control
- New national networks: CSnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks
- Early 1990s: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSF net (decommissioned, 1995)
- Early 1990s: Web
 - * Hypertext [Bush 1945, Nelson 1960s]
 - * HTML, HTTP: Berners-Lee
 - * 1994: Mosaic, later Netscape
- Late 1990s: Commercialization of the Web