# **FCC** Report

**Application Purpose** : Original grant

**Applicant Name:** : WINTOP ELECTRONICS CO., LIMITED

**FCC ID** : 2AB75-WM-773

**Equipment Type** : Wireless optical mouse

Model Name : WM-773

Report Number : FCC15080653

Standard(S): FCC Part 15 Subpart C Section 15.249

Date Of Receipt : August 24, 2015

Date Of Issue : August 30, 2015

Test By

Fall Ma

(Fall Ma)

Reviewed By :

(Robie Chen)

Authorized by

(Michal Ling)

Prepared by

Shenzhen WST Testing Technology Co., Ltd.

1F,No.9 Building,TGK Science & Technology ParkYangtian

Rd., NO.72 Bao'an Dist., Guang Dong, China

## **REPORT REVISE RECORD**

| Report Version | Revise Time | Issued Date     | Valid Version | Notes           |
|----------------|-------------|-----------------|---------------|-----------------|
| V1.0           | /           | August 30, 2015 | Valid         | Original Report |

# **Table of Contents Page** 1. GENERAL INFORMATION ......5 2.1 MEASUREMENT UNCERTAINTY .......7 2.3 CONFIGURATION OF SYSTEM UNDER TEST ......9 2.4 DESCRIPTION OF SUPPORT UNITS ......9 3. SUMMARY OF TEST RESULTS......10 4. MEASUREMENT INSTRUMENTS......11 5. ANTENNA REQUIREMENTS ......12 5.1 STANDARD APPLICABLE .......12 6. CONDUCTED EMISSIONS MEASUREMENT......13 6.1 POWER LINE CONDUCTED EMISSION LIMITS ......13 6.4 ENVIRONMENTAL CONDITIONS ......14 6.5 TEST RESULTS ......14 7. RADIATED EMISSION MEASUREMENT......15 8. 20DB OCCUPIED BANDWIDTH ......25 8.4 ENVIRONMENTAL CONDITIONS ......25

| Table of Contents              | Page |  |  |  |  |
|--------------------------------|------|--|--|--|--|
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
| 9. PHOTOGRAPHS OF TEST SETUP28 |      |  |  |  |  |
| 10. PHOTOGRAPHS OF EUT         | 30   |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |
|                                |      |  |  |  |  |

## 1. GENERAL INFORMATION

## GENERAL DESCRIPTION OF EUT

| INCINAL DEGORII             |                                                                                                                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Type              | Wireless optical mouse                                                                                                                      |
| Test Model                  | WM-773                                                                                                                                      |
| Brand Name                  | N/A                                                                                                                                         |
| Applicant                   | WINTOP ELECTRONICS CO., LIMITED                                                                                                             |
| Address                     | Unit 04 7/F, Bright Way Tower 33, Mong Kok RDKL, HONGKONG                                                                                   |
| Manufacturer                | Shenzhen Wintop Electronics Co., Limited                                                                                                    |
| Address                     | HuaGuan Industrial Park, Xinhe Road, Baolai Industrial District, Shangmugu,<br>Pinghu Town, Longgang District, Shenzhen City, 518000, China |
| Hardware version:           | HG-WM-773-VC                                                                                                                                |
| Software version:           | HK9230                                                                                                                                      |
| Operating<br>Voltage        | DC 3.0V(AAA Battery * 2) 15mA                                                                                                               |
| Operating<br>Frequency      | 2405-2472MHz                                                                                                                                |
| Channels                    | 68                                                                                                                                          |
| Channel Spacing             | 1MHz                                                                                                                                        |
| Modulation Type             | FSK                                                                                                                                         |
| Antenna Type:               | PCB Antenna                                                                                                                                 |
| Antenna gain:               | 1.76dBi                                                                                                                                     |
| Data of receipt             | August 24, 2015                                                                                                                             |
| Date of test                | August 24, 2015 to August 30, 2015                                                                                                          |
| Deviation                   | None                                                                                                                                        |
| Condition of<br>Test Sample | Normal                                                                                                                                      |

| We hereby certify that:                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The above equipment was tested by Shenzhen WST Testing Technology Co., Ltd.  Registration Number: 939433  The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2009. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart C.  The test results of this report relate only to the tested sample identified in this report. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## 2. TEST DESCRIPTION

## 2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k=2}$ , providing a level of confidence of approximately 95 %  $\circ$ 

| No. | Item                          | Uncertainty |
|-----|-------------------------------|-------------|
| 1   | Conducted Emission Test       | ±3.2dB      |
| 2   | RF power, conducted           | ±0.16dB     |
| 3   | Spurious emissions, conducted | ±0.21dB     |
| 4   | All emissions, radiated(<1G)  | ±4.7dB      |
| 5   | All emissions, radiated(>1G)  | ±4.7dB      |
| 6   | Temperature                   | ±0.5°C      |
| 7   | Humidity                      | ±2%         |

### 2.2 DESCRIPTION OF TEST MODES

The system was configured for testing in engineering mode, which was provided by the manufacturer. The engineering mode was configured under maximum power output and switched the channels by keys.

68 channels were provided by the manufacturer.

| Channel List |                    |         |                    |         |                    |         |                    |
|--------------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel      | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00           | 2405               | 17      | 2422               | 34      | 2439               | 51      | 2456               |
| 01           | 2406               | 18      | 2423               | 35      | 2440               | 52      | 2457               |
| 02           | 2407               | 19      | 2424               | 36      | 2441               | 53      | 2458               |
| 03           | 2408               | 20      | 2425               | 37      | 2442               | 54      | 2459               |
| 04           | 2409               | 21      | 2426               | 38      | 2443               | 55      | 2460               |
| 05           | 2410               | 22      | 2427               | 39      | 2444               | 56      | 2461               |
| 06           | 2411               | 23      | 2428               | 40      | 2445               | 57      | 2462               |
| 07           | 2412               | 24      | 2429               | 41      | 2446               | 58      | 2463               |
| 08           | 2413               | 25      | 2430               | 42      | 2447               | 59      | 2464               |
| 09           | 2414               | 26      | 2431               | 43      | 2448               | 60      | 2465               |
| 10           | 2415               | 27      | 2432               | 44      | 2449               | 61      | 2466               |
| 11           | 2416               | 28      | 2433               | 45      | 2450               | 62      | 2467               |
| 12           | 2417               | 29      | 2434               | 46      | 2451               | 63      | 2468               |
| 13           | 2418               | 30      | 2435               | 47      | 2452               | 64      | 2469               |
| 14           | 2419               | 31      | 2436               | 48      | 2453               | 65      | 2470               |
| 15           | 2420               | 32      | 2437               | 49      | 2454               | 66      | 2471               |
| 16           | 2421               | 33      | 2438               | 50      | 2455               | 67      | 2472               |

| Test Mode List |                |         |  |  |
|----------------|----------------|---------|--|--|
| Test Mode      | Description    | Remark  |  |  |
| TM1            | Low Channel    | 2405MHz |  |  |
| TM2            | Middle Channel | 2448MHz |  |  |
| TM3            | High Channel   | 2472MHz |  |  |

## Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Record the worst case of each test item in this report.

### 2.3 CONFIGURATION OF SYSTEM UNDER TEST

**EUT** 

(EUT: Wireless optical mouse)

## 2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model No. | ID or Specification | Remark |
|------|-----------|-----------|---------------------|--------|
| 1    | /         | /         | /                   | /      |

## Note:

- (1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- (2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

## 3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part15 (15.249) , Subpart C |                               |          |        |  |  |  |
|---------------------------------|-------------------------------|----------|--------|--|--|--|
| Standard<br>Section             | Test Item                     | Judgment | Remark |  |  |  |
| §15.203                         | Antenna Requirement           | PASS     |        |  |  |  |
| §15.207                         | Conducted Emission            | N/A      |        |  |  |  |
| §15.249 (a)                     | Field Strength of Fundamental | PASS     |        |  |  |  |
| §15.249 (a) (d)/<br>§15.209     | Spurious Emissions            | PASS     |        |  |  |  |
| §15.249 (d)/ §15.205            | Band Edge                     | PASS     |        |  |  |  |
| §15.215 (c)                     | 20dB Occupied Bandwidth       | PASS     |        |  |  |  |

### Note:

- Pass: Test item meets the requirement.
   Fail: Test item does not meet the requirement.
   N/A: Test case does not apply to the test object.
   The test result judgment is decided by the limit of test standard.

## 4. MEASUREMENT INSTRUMENTS

| Kind of Equipment | Manufacturer   | Type No.       | Serial No. | Last<br>Calibrated | Calibrated until |
|-------------------|----------------|----------------|------------|--------------------|------------------|
| EMI Test Receiver | R&S            | ESCI           | 100005     | 2015-08-19         | 2016-08-18       |
| LISN              | Mestec         | AN3016         | 04/10040   | 2015-08-19         | 2016-08-18       |
| Coaxial cable     | Megalon        | LMR400         | C001       | 2015-08-19         | 2016-08-18       |
| System Controller | СТ             | SC100          | 011208     | 2015-08-19         | 2016-08-18       |
| Bi-log Antenna    | SUNOL Sciences | JB3            | A021907    | 2014-09-13         | 2015-09-12       |
| Spectrum Analyzer | R&S            | FSU            | 100114     | 2015-08-19         | 2016-08-18       |
| Horn Antenna      | SCHWARZBECK    | 9120D          | 1141       | 2015-08-19         | 2016-08-18       |
| Loop Antenna      | EMCO           | 6502           | 00042960   | 2015-08-19         | 2016-08-18       |
| Pre Amplifier     | H.P.           | HP8447E        | 2945A02715 | 2014-10-13         | 2015-10-12       |
| Pre-Amplifier     | CDSI           | PAP-1G18-38    | 7621       | 2014-10-13         | 2015-10-12       |
| 9*6*6 Anechoic    | SAEMC          | L×W×H<br>9×6×6 | A002       | 2015-08-21         | 2016-08-20       |
| RF cable          | H+S            | SUCOFLEX 102   | R002       | 2015-08-19         | 2016-08-18       |
| Horn Antenna      | SCHWARZBECK    | BBHA 9170      | 1123       | 2015-08-19         | 2016-08-18       |

| 5. ANTENNA REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 5.1 STANDARD APPLICABLE                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. |  |  |  |  |  |  |
| 5.2 TEST RESULT                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| This product has an PCB antenna, fulfill the requirement of this section.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |

## **6. CONDUCTED EMISSIONS MEASUREMENT**

## 6.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

The specification used was with the FCC Part 15.207 Limit.

| FREQUENCY (MHz)  | Class A (dBuV) |         | Class B (dBuV) |           | Standard |  |
|------------------|----------------|---------|----------------|-----------|----------|--|
| FREQUENCY (MINZ) | Quasi-peak     | Average | Quasi-peak     | Average   | Standard |  |
| 0.15 -0.5        | 79.00          | 66.00   | 66 - 56 *      | 56 - 46 * | FCC      |  |
| 0.50 -5.0        | 73.00          | 60.00   | 56.00          | 46.00     | FCC      |  |
| 5.0 -30.0        | 73.00          | 60.00   | 60.00          | 50.00     | FCC      |  |

## Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### **6.2 TEST PROCEDURE**

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### **6.3 TEST SETUP**



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

## **6.4 ENVIRONMENTAL CONDITIONS**

| Temperature:       | 24 °C     |
|--------------------|-----------|
| Relative Humidity: | 60 %      |
| ATM Pressure:      | 1012 mbar |

#### 6.5 TEST RESULTS

The EUT is supplied by 3.0V from AAA battery, so Conducted Emission is not applicable.

### 7. RADIATED EMISSION MEASUREMENT

### 7.1 RADIATED EMISSION LIMITS

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental Frequency | Field strength of fundamental (milli-volts/meter) | Field strength of Harmonics (micro-volts/meter) |
|-----------------------|---------------------------------------------------|-------------------------------------------------|
| 902-928 MHz           | 50                                                | 500                                             |
| 2400-2483.5 MHz       | 50                                                | 500                                             |
| 5725-5875 MHz         | 50                                                | 500                                             |
| 24.0-24.25 GHz        | 250                                               | 2500                                            |

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

### 7.2 TEST EQUIPMENT SETUP

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Spectrum Parameter              | Setting                                            |  |
|---------------------------------|----------------------------------------------------|--|
| Attenuation                     | Auto                                               |  |
| Start Frequency                 | 1000 MHz                                           |  |
| Stop Frequency                  | 10th carrier harmonic                              |  |
| RB / VB (emission in restricted | 4 Mile /4 Mile for Dook 4 Mile /401 le for Average |  |
| band)                           | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average   |  |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

### 7.3 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

## 7.4 TEST SETUP

## (A) Radiated Emission Test-Up Frequency Below 30MHz



## (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



## (C) Radiated Emission Test-Up Frequency Above 1GHz



## 7.5 ENVIRONMENTAL CONDITIONS

| Temperature:       | 25 °C     |
|--------------------|-----------|
| Relative Humidity: | 57 %      |
| ATM Pressure:      | 1012 mbar |

## 7.6 TEST RESULTS

Field Strength of Fundamental

| Frequency | Reading  | Correct<br>Factor | Emission<br>Level | Limit    | Margin | Polar | Detector |
|-----------|----------|-------------------|-------------------|----------|--------|-------|----------|
| (MHz)     | (dBuV/m) | dB/m              | (dBuV/m)          | (dBuV/m) | (dB)   | H/V   |          |
| 2405      | 92.84    | -8.67             | 84.17             | 114      | -29.83 | Н     | PK       |
| 2405      | 89.97    | -8.67             | 81.30             | 94       | -12.70 | Н     | AV       |
| 2448      | 93.16    | -8.4              | 84.76             | 114      | -29.24 | Н     | PK       |
| 2448      | 90.93    | -8.4              | 82.53             | 94       | -11.47 | Н     | AV       |
| 2472      | 93.61    | -8.25             | 85.36             | 114      | -28.64 | Н     | PK       |
| 2472      | 91.70    | -8.25             | 83.45             | 94       | -10.55 | Н     | AV       |
| 2405      | 95.00    | -8.67             | 86.33             | 114      | -27.67 | V     | PK       |
| 2405      | 92.21    | -8.67             | 83.54             | 94       | -10.46 | V     | AV       |
| 2448      | 92.48    | -8.4              | 84.08             | 114      | -29.92 | V     | PK       |
| 2448      | 91.89    | -8.4              | 83.49             | 94       | -10.51 | V     | AV       |
| 2472      | 93.32    | -8.25             | 85.07             | 114      | -28.93 | V     | PK       |
| 2472      | 89.02    | -8.25             | 80.77             | 94       | -13.23 | V     | AV       |

## Note:

1.Correction Factor= Antenna Factor + Cable loss - Pre-amplifier; Emission Level=Peak Reading + Correction Factor; Margin=Emission Level - Limit.

Spurious Emissions Frequency Range (9 kHz-30MHz)

| Freq. | Emission Level | Limit    | Margin | State |
|-------|----------------|----------|--------|-------|
| (MHz) | (dBuV/m)       | (dBuV/m) | (dB)   | P/F   |
|       |                |          |        | Р     |
|       |                |          |        | Р     |

## Note:

| 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp fact | able loss-Antenna factor-Amเ | Cable | Level=Reading+ | 1. Emission |
|---------------------------------------------------------------|------------------------------|-------|----------------|-------------|
|---------------------------------------------------------------|------------------------------|-------|----------------|-------------|

| 2. The emission le | evels are 20 | dB below the I | imit value, ı | which are no | ot reported. | It is deeme | d to compl | y with the |
|--------------------|--------------|----------------|---------------|--------------|--------------|-------------|------------|------------|
| requirement.       |              |                |               |              |              |             |            |            |

## Frequency Range (30MHz-1000MHz)



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *   | 30.7455  | 22.47            | 2.99              | 25.46            | 40.00  | -14.54 | peak     |
| 2   |     | 122.8340 | 24.36            | -2.22             | 22.14            | 43.50  | -21.36 | peak     |
| 3   |     | 216.0240 | 25.56            | -5.39             | 20.17            | 46.00  | -25.83 | peak     |
| 4   |     | 348.0274 | 32.41            | -4.29             | 28.12            | 46.00  | -17.88 | peak     |
| 5   |     | 432.5457 | 30.16            | -2.41             | 27.75            | 46.00  | -18.25 | peak     |
| 6   |     | 932.2715 | 22.94            | 6.74              | 29.68            | 46.00  | -16.32 | peak     |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | Ħ   | 30.7455  | 22.47            | 2.99              | 25.46            | 40.00  | -14.54 | peak     |
| 2   | 1   | 122.8340 | 24.36            | -2.22             | 22.14            | 43.50  | -21.36 | peak     |
| 3   | 2   | 216.0240 | 25.56            | -5.39             | 20.17            | 46.00  | -25.83 | peak     |
| 4   | 3   | 348.0274 | 32.41            | -4.29             | 28.12            | 46.00  | -17.88 | peak     |
| 5   | 4   | 132.5457 | 30.16            | -2.41             | 27.75            | 46.00  | -18.25 | peak     |
| 6   | 6   | 932.2715 | 22.94            | 6.74              | 29.68            | 46.00  | -16.32 | peak     |

## Note:

Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

## Frequency Range (Above 1G)

| Frequency           | Reading  | Correct | Emission    | Limit       | Margin | Polar | Detector |
|---------------------|----------|---------|-------------|-------------|--------|-------|----------|
|                     |          | Factor  | Level       |             |        |       |          |
| (MHz)               | (dBuV/m) | dB/m    | (dBuV/m)    | (dBuV/m)    | (dB)   | H/V   |          |
| Low Channel-2405MHz |          |         |             |             |        |       |          |
| 4810                | 59.00    | -1.29   | 57.71       | 74          | -16.29 | Ι     | PK       |
| 4810                | 40.52    | -1.29   | 39.23       | 54          | -14.77 | Ι     | AV       |
| 7215                | 47.42    | 6.51    | 53.93       | 74          | -20.07 | Ι     | PK       |
| 7215                | 34.27    | 6.51    | 40.78       | 54          | -13.22 | Ι     | AV       |
|                     |          |         |             |             |        |       |          |
| 4810                | 54.67    | -1.29   | 53.38       | 74          | -20.62 | V     | PK       |
| 4810                | 39.18    | -1.29   | 37.89       | 54          | -16.11 | V     | AV       |
| 7215                | 47.05    | 6.51    | 53.56       | 74          | -20.44 | V     | PK       |
| 7215                | 31.67    | 6.51    | 38.18       | 54          | -15.82 | V     | AV       |
|                     |          |         | Middle Chan | nel-2448MHz |        |       |          |
| 4896                | 58.56    | -0.98   | 57.58       | 74          | -16.42 | Ι     | PK       |
| 4896                | 43.76    | -0.98   | 42.78       | 54          | -11.22 | Η     | AV       |
| 7344                | 46.19    | 6.83    | 53.02       | 74          | -20.98 | Н     | PK       |
| 7344                | 31.91    | 6.83    | 38.74       | 54          | -15.26 | Ι     | AV       |
|                     |          |         |             |             |        |       |          |
| 4896                | 58.04    | -0.98   | 57.06       | 74          | -16.94 | V     | PK       |
| 4896                | 40.28    | -0.98   | 39.30       | 54          | -14.70 | V     | AV       |
| 7344                | 44.31    | 6.83    | 51.14       | 74          | -22.86 | V     | PK       |
| 7344                | 33.70    | 6.83    | 40.53       | 54          | -13.47 | V     | AV       |
|                     |          |         | High Chann  | el-2472MHz  |        |       |          |
| 4944                | 59.08    | -0.8    | 58.28       | 74          | -15.72 | Η     | PK       |
| 4944                | 40.22    | -0.8    | 39.42       | 54          | -14.58 | Ι     | AV       |
| 7416                | 43.60    | 6.94    | 50.54       | 74          | -23.46 | Н     | PK       |
| 7416                | 33.13    | 6.94    | 40.07       | 54          | -13.93 | Η     | AV       |
|                     |          |         |             |             |        |       |          |
| 4944                | 59.97    | -0.8    | 59.17       | 74          | -14.83 | V     | PK       |
| 4944                | 42.94    | -0.8    | 42.14       | 54          | -11.86 | V     | AV       |
| 7416                | 43.93    | 6.94    | 50.87       | 74          | -23.13 | V     | PK       |
| 7416                | 30.69    | 6.94    | 37.63       | 54          | -16.37 | V     | AV       |

### Note:

<sup>1.</sup> Correction Factor= Antenna Factor + Cable loss - Pre-amplifier; Emission Level=Peak Reading + Correction Factor; Margin=Emission Level - Limit.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.

<sup>3.</sup> Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

## **OUT OF BAND EMISSION**

| Frequenc             | Reading             | Correct<br>Factor | Emission<br>Level | Limit    | Margin | Polar | Detector |
|----------------------|---------------------|-------------------|-------------------|----------|--------|-------|----------|
| (MHz)                | (dBuV/m)            | dB/m              | (dBuV/m)          | (dBuV/m) | (dB)   | H/V   |          |
|                      | Low Channel-2405MHz |                   |                   |          |        |       |          |
| 2390                 | 68.93               | -8.73             | 60.20             | 74       | -13.80 | Н     | PK       |
| 2390                 | 49.30               | -8.73             | 40.57             | 54       | -13.43 | Н     | AV       |
| 2390                 | 68.26               | -8.73             | 59.53             | 74       | -14.47 | V     | PK       |
| 2390                 | 49.45               | -8.73             | 40.72             | 54       | -13.28 | V     | AV       |
| High Channel-2472MHz |                     |                   |                   |          |        |       |          |
| 2483.5               | 66.61               | -8.17             | 58.44             | 74       | -15.56 | Н     | PK       |
| 2483.5               | 49.41               | -8.17             | 41.24             | 54       | -12.76 | Н     | AV       |
| 2483.5               | 65.46               | -8.17             | 57.29             | 74       | -16.71 | V     | PK       |
| 2483.5               | 48.83               | -8.17             | 40.66             | 54       | -13.34 | V     | AV       |

### Note:

- 1. Correction Factor= Antenna Factor + Cable loss Pre-amplifier; Emission Level=Peak Reading + Correction Factor; Margin=Emission Level Limit.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

#### 8. 20DB OCCUPIED BANDWIDTH

#### 8.1 STANDARD APPLICABLE

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

#### **8.2 TEST PROCEDURE**

According to the ANSI 63.4-2009, the emission bandwidth test method as follows.

- 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function =peak; Trace = max hold.
- 4. Measure and record the results in the test report.

## 8.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

#### 8.4 ENVIRONMENTAL CONDITIONS

| Temperature:       | 22 °C     |
|--------------------|-----------|
| Relative Humidity: | 58 %      |
| ATM Pressure:      | 1012 mbar |

## **8.5 TEST RESULTS**

| Frequency | 20dB Bandwidth<br>(kHz) | Result |
|-----------|-------------------------|--------|
| 2405 MHz  | 1450                    | PASS   |
| 2448 MHz  | 2194                    | PASS   |
| 2472 MHz  | 2236                    | PASS   |





## 9. PHOTOGRAPHS OF TEST SETUP







## 10. PHOTOGRAPHS OF EUT

























——END OF REPORT——