微處理機系統與介面技術 LAB 5

系所:電機 學號:612415013 姓名:蕭宥羽

<實驗器材>

NUC 140 V2.0 開發板

<實驗過程與方法>

使用 I2C Read 3 axis accelerometer and print on putty

Need to do calibration Result = (Raw data ± offset)/(256 ± offset)

→ I2C 原理:I2C 是一種同步的串列數據通訊方式 使用 2 條線進行通訊 SCL (serial clock)、SDA (serial data), I2C 是一個 bus, 在這個 bus 上所有的裝置都得透過這兩個訊號線相連

✓ SCL:產生時鐘信號來同步資料的傳輸

✓ SDA:用來傳輸兩邊的資料

✓ I2C 的訊號邏輯規則

- 1. 資料的有效性
 - ◆ 資料的有效性取決於 SCL 時鐘訊號的狀態
 - ◆ 當 SCL 是 HIGH 時,SDA 狀態必須保持穩定,這表示此時的資料是有效的
 - ◆ 當 SCL 是 LOW 時, SDA 的狀態可以改變

2. START STOP 傳輸開始、停止

當 SCL 為 high 時,如果 SDA 變動,有兩種特殊狀況:SCL high、SDA 下降代表 START; SCL high、SDA 上升代表 STOP 時序狀態。

3. Ack & Nack

每一個 8-bit 的資料傳輸結束後,會跟著一個 acknowledge bit(bit 9)。這個 acknowledge bit 固定由接收方產生,有兩種用法:

- ◆ 當 master 是 Transmitter、slave 是 Receiver,也就是說這個傳輸是 master 寫入資料到 slave 時,這個 acknowledge bit 是用來讓 slave 告訴 master「收到!」
- ◆ 反過來說, master 從 slave 讀取資料時,這個 acknowledge bit 是用來讓 master 告訴 slave「我還要接著讀,請繼續準備下一筆資料」或者是「夠了,我讀完了」。

✓ I2C 的傳輸流程

1. Slave Address

每次的傳輸都會由 master 發起(start bit),接著會在 bus 傳送 slave address,去指定對哪一個 slave 操作,由下圖說明

- 1. master 發起 start bit, 時脈開始傳送
- 2. master 傳送 slave address 以及操作方式(R/W)
- 3. slave 回傳 acknowledge bit

2. Write

Slave Address 傳輸完,Master 收到 acknowledge 後,就會繼續切換 SCL,並在每一個 SCL 爲 high 的脈波週期中,依序送出資料的每一個 bit,總共 8 個 bit。

第9個 bit 時,傳輸方向會換過來。Master 會在 SCL 變成 high 的第9個時脈週期中,放掉 SDA 不去驅動它(SDA 為 high),並監聽來自 slave 的狀態;如果 slave 在此時有把 SDA 驅動到 low,就代表 slave 有正確地收到了這個 byte 的資料傳輸。

在 master 沒有送出 STOP 之前,就會持續這個循環,直到 master 送出 stop 結束傳輸。

3. Read

Slave Address 傳輸完,Master 收到 acknowledge 後,slave 繼續傳送 data(8 個 bits),第 9 個 bit 由 master 傳送 acknowledge bit 跟 slave 說還要不要繼續讀取

ACK=0: 讀取結束,接著 master 就會發送 stop bit

ACK=1: 還要繼續讀

♣ ADXL345 I2C

✓ Write

master 寫入 adxl 的流程如下圖

SINGLE-BYTE WRITE										
MASTER START SLAVE ADDRESS + WRITE		REGISTER ADDRESS		DATA		STOP				
SLAVE	ACK		ACK		ACK					
MULTIPLE-BYTE WRITE										
MASTER START SLAVE ADDRESS + WRITE		REGISTER ADDRESS		DATA			DATA		STOP	
SLAVE	ACK		ACK		ACK			ACK		

✓ Read

讀取的流程如下圖,比寫入複雜一點的是,master 還是要先傳送要操作的 register 為只給 adxl345,所以會先用 write mode 傳輸,接著 restart(再發送一次 start bit),指定 slave address and read mode,之後 adxl345 才會開始傳輸數據給 master

SINGLE-B	SINGLE-BYTE READ											
MASTER	START SLAVE ADDRESS + WRITE		REGISTER ADDRESS		START ¹	SLAVE ADDRESS + READ			NACK	STOP		
SLAVE		ACK		ACK			ACK	DATA				
MULTIPLE	MULTIPLE-BYTE READ											
MASTER	START SLAVE ADDRESS + WRITE		REGISTER ADDRESS		START ¹	SLAVE ADDRESS + READ			ACK			NACK STOP
SLAVE			ACK	ACK			ACK	DATA			DATA	

✓ ADXL slave address

✓ 本實驗我們將 ALT ADDRESS(SDO)接地,所以會使用 0x53 這個做為 ADXL 的 address 藉由不同接法 adxl 會有不同 address,這樣可以接兩顆 adxl345 在 bus 上並且避免衝突

shown in Figure 41. With the ALT ADDRESS pin high, the 7-bit I²C address for the device is 0x1D, followed by the R/W bit. This translates to 0x3A for a write and 0x3B for a read. An alternate I²C address of 0x53 (followed by the R/W bit) can be chosen by grounding the SDO/ALT ADDRESS pin (Pin 12). This translates to 0xA6 for a write and 0xA7 for a read.

♣ NUC140 I2C

- ✓ I2CON: I2C Control Register
 - EI (使能中斷)
 - ◆ 1:啟用 I2C 中斷。
 - ◆ 0:禁止 I2C 中斷。
 - ◆ 控制 I2C 模組是否可以觸發中斷。
 - ENS1 (I2C 控制器使能位)
 - ◆ 1: 開啟 I2C 模組。
 - ◆ 0:禁用 I2C 模組。
 - ◆ 用來啟用或禁用整個 I2C 模組。
 - STA (I2C 起始控制位)
 - ◆ 1:進入起始模式,發送 START 信號。
 - ◆ 用來啟動 I2C 通訊,設定為 1 時,I2C 硬體會開始送出起始信號。
 - 位元 [4] STO (I2C 停止控制位)
 - ♦ 1:發送 STOP 信號。
 - ◆ 在 I2C 傳輸結束時設置此位元來停止傳輸。
 - 位元 [3] SI (I2C 中斷標誌)
 - ◆ 當 I2C 狀態改變時 (例如完成一個操作) 這個位元會被設置。
 - ◆ 當此位元為 1 時,表示有中斷需要處理,MCU 需進行相應處理。
 - 位元 [2] AA (應答控制位)
 - ◆ 1:在主機模式下表示需要應答確認,在從機模式下表示準備好接收數據。
 - ◆ 0:不應答確認。
 - ◆ 這個位元用來控制是否發送應答信號。

Bits	描述	
[31:8]	Reserved	保留
		使能中断
[7]	EI	1 = 使能 I ² C 中断
		0 = 禁用 I ² C 中断
		I ² C 控制器使能位
		1 = 使能
[6]	ENS1	0 = 禁用
		设置使能 I^2C 串行控制器功能。当 ENS1=1, I^2C 串行功能使能。SDA 和 SCL 对应的多功能管脚功能必须设置为 I^2C 功能。
[5]		I ² C 起始控制位
	STA	设置 STA 为 1,进入主机模式,如果总线处于空闲状态, I^2C 硬件会送出 START 或 重复 START 条件。
1		I ² C 停止控制位
[4]	STO	在主机模式,设置 STO 来传送一个 STOP 条件到总线,然后 $\mathbf{l}^2\mathbf{C}$ 硬件将会检查总线状况,如果检测到一个 STOP 状况,这个标志会被硬件自动清除。在 $\mathbf{l}^2\mathbf{C}$ 从机模式,设置 STO 复位 $\mathbf{l}^2\mathbf{C}$ 硬件来定义"无编址"从机模式,这表示在从机接收模式不再接收从主机传送装置发送的数据。
É	2, 8	I ² C 停止标志
[3]	SI	当一个新的 I^2 C 状态出现在寄存器 I^2 C 对于 I^2 C 中断请求。 I^2 C 中断, I^2 C 中述, I
	200	应答控制位
[2]	AA 🦠	当 AA=1 先于地址或数据接收,在以下两种情况: 1.) 从机正在应答主机发送的地址, 2.) 接收设备正在应答发送设备发送的数据,在 SCL 线上的应答时钟脉冲期间将返回一

		个应答(SDA 上的低电平)。
		当 AA = 0 先于地址或数据接收,则在 SCL 线上的应答时钟脉冲期间将返回一个非应答(SDA 上的高电平)。
[1:0]	Reserved	保留

✓ I2CDAT: I2C Data Register

Bits	描述					
[31:8]	Reserved	保留				
[7:0]	I2CDAT	I ² C 数据寄存器 Bit [7:0] 为 8 位 I ² C 串行端口传输数据				

✓ I2CSTATUS: I2C Status Register

Bits	描述						
[31:8]	Reserved	保留					
		I ² C 状态寄存器					
[7:0]		低三位一直为 0。高五位是状态码,共有 26 个可能的状态码。当 I2CSTATUS [7:0] 的值为 F8H时,没有串行中断请求。所有其他的 I2CSTATUS [7:3] 的值对应 I ² C 的状态。当进入其中任一状态时,就会产生状态中断请求 (SI = 1)。在 SI 被硬件置位或 SI 被软件复位后一个机器周期,有效状态码出现在 I2CSTATUS[7:3] 中。					
		此外,00H 状态表示总线错误。总线错误发生在 START 或 STOP 条件出现在帧结构不正确的位置。不正确的位置比如是在串行传输地址字节、数据字节或应答位期间。					

<Mian function code>

✓ 會使用以下這些 function

I2C 的程式原理是,收到 start、ack/nack、stop 會進入中斷並得到該狀態的狀態碼,中斷期間會做對應的操作,就如同上面所介紹了,這樣就可以完成 i2c 的操作

1. I2C0_IRQHandler(void)

這是 I2C0 中斷處理函數。當 I2C 發生中斷時,會執行這個函數:

- I2C_GET_STATUS(I2C0) 用來取得 I2C 的當前狀態。
- 如果偵測到超時 (I2C_GET_TIMEOUT_FLAG),則清除超時旗標。
- 如果有註冊的 I2C 回調函數 (s_I2C0HandlerFn),則執行該函數。

2. I2C_MasterRx(uint32_t u32Status)

這是 I2C 讀取操作的回調函數,用於處理 I2C 傳輸中的不同狀態:

- 0x08: 已經發送 START,準備傳送 SLA+W (Slave Address + Write)。
- 0x18: SLA+W 被發送,並且已收到 ACK(應答)。
- 0x20: SLA+W 被發送,並且收到 NACK(未應答),停止並重新開始。
- 0x28: 資料已發送且已收到 ACK, 進行下一步。
- 0x10: 發送重複 START, 準備 SLA+R (Slave Address + Read)。

- 0x40: SLA+R 被發送且已收到 ACK。
- 0x58: 已接收資料且返回 NACK, 停止 I2C 讀取。

3. I2C MasterTx(uint32 t u32Status)

這是 I2C 寫入操作的回調函數,用於處理 I2C 傳輸中的不同狀態:

- 0x08: 發送 START。
- 0x18: SLA+W 被發送並收到 ACK,將要寫入的註冊位址發送到從設備。
- 0x20: SLA+W 被發送並收到 NACK,停止並重新開始。
- 0x28: 資料已發送且收到 ACK,若有資料要發送,繼續發送,否則停止並完成。

4. SYS_Init(void)

用來初始化系統,包括時鐘及 I/O 設定:

- 啟用內部 RC 振盪器、外部 12MHz 晶體、PLL 等來配置系統時鐘。
- 啟用 UARTO 和 I2CO 的模組時鐘。
- 設定 I2C0 的 SDA (PA.8) 和 SCL (PA.9),以及 UARTO 的 RXD 和 TXD。

5. I2C0_Init(void)

初始化 I2C0 模組:

- 設置 I2C 的 bus 時鐘為 100kHz。
- 啟用 I2C 中斷並在 NVIC 中使能 I2C0 的 IRQ。

6. I2C0_Close(void)

關閉 I2C0:

- 禁用 I2C0 中斷並清除 NVIC 中的中斷設置。
- 關閉 I2C0 及其時鐘,節省功耗。

7. ADXL_WriteBytes(uint8_t slvaddr, uint8_t reg_addr, uint8_t data)

用於向 ADXL345 加速度計寫入資料:

- 設定從設備位址和註冊位址,並將要寫入的資料存入 g_u8MstTxData。
- 設定 I2C 傳輸回調函數為 I2C_MasterTx,然後發送 START 信號來開始資料傳輸。
- 使用 while 等待傳輸完成。

8. ADXL_ReadBytes(uint8_t slvaddr, uint8_t reg_addr)

用於從 ADXL345 加速度計讀取資料:

- 設定從設備位址和註冊位址。
- 設定 I2C 傳輸回調函數為 I2C_MasterRx, 然後發送 START 信號來開始讀取。
- 使用 while 等待讀取完成,並返回讀取的資料。

9. ADXL_init(void)

初始化 ADXL345 加速度計:

- 設置電源控制 (POWER_CTL)、資料格式 (DATA_FORMAT) 及 FIFO 控制 (FIFO_CTL) 等寄存器。
- 使用 ADXL_WriteBytes 向從設備地址 0x53 寫入配置。

10. my_round(float number)

進行浮點數的四捨五入運算,返回整數。正數大於等於 0 時,+0.5f 後轉換為整數;負數小於 0 時,-0.5f 後轉換為整數。

11. ADXL calibrate(void)

對 ADXL345 進行校準:

- 重複讀取 X、Y、Z 軸 10 次並取平均,計算出平均偏移量。
- 計算補償偏移值(將 X、Y、Z 平均偏移除以 4),並將其寫入偏移寄存器 (0x1E, 0x1F, 0x20)。

12. main(void)

- 解鎖受保護的寄存器,進行系統和 UART 初始化。
- 初始化 I2C0 和 ADXL345。
- 讀取設備的 Device ID,並進行加速度計的校準。
- 進入無窮迴圈,不斷讀取 X、Y、Z 軸的資料並轉換為 g 值,最後將結果打印出來。

<心得與收穫>

這次的 I2C 實驗看似簡單,但在實作過程中發現,成功實現 I2C 通訊功能,需要對 I2C 通訊 協議及其硬體配置有深入的理解。每一個步驟都需要仔細設定,例如 I2C 的主從機模式選擇、啟動與停止條件的生成,以及應答訊號的控制,都需要對 I2C 模組的工作機制及硬體設計有充

分的認識。此外,如何正確初始化 I2C、管理資料的傳輸、及確保通訊的正確性,這些細節都 非常重要。

在實驗過程中,我學習到如何有效設置 I2C 的參數,包括主從機模式的選擇、傳輸速率的設置,以及如何在資料傳輸中管理 START 和 STOP 信號。我理解了應答訊號(ACK/NACK)的重要性,並明白了如何控制中斷來處理通訊過程中的不同狀態,以確保資料的正確傳輸。這些操作看似簡單,但對於精確控制 I2C 通訊過程以及確保從機正確接收資料都至關重要。

同時,我也體會到在 I2C 實作中,系統初始化和資料傳輸時序管理是非常關鍵的部分。從 I2C 控制暫存器的配置,到生成 START 信號並處理應答,再到釋放 STOP 信號,每一個步驟都要求精確和系統性,以確保資料的正確性,並避免在通訊過程中發生干擾或錯誤。此外,如何有效管理中斷及超時情況也是確保 I2C 通訊穩定的重要挑戰。

這次實驗給了我寶貴的經驗,使我對嵌入式系統中的 I2C 模組有了更深刻的理解,也明白了如何在硬體與軟體之間協調,以實現穩定、準確的 I2C 通訊。這些經驗不僅加強了我對 I2C 的認識,也增強了我在嵌入式系統開發中的實作能力。