POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA (Prova Online) 28/07/2021

Allievi fisici

Allegare alle soluz	zioni il pres	ente tes	sto indic	cando (in	STAMPA	ATELLO)):	
NOME E COGNOME								
	TD.	1.		•				

Tempo a disposizione: 2 ore

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K), acc. di gravità g= 9.806 m/s²

ESERCIZIO 1 (punti 9)

Si dispone di 15 kg/s di acqua in condizioni di liquido saturo alla temperatura di 90°C (punto 1). Una valvola di laminazione adiabatica riduce la pressione fino a 0.5 bar (punto 2) e la portata di acqua viene poi inviata ad un separatore di fase.

Il vapore saturo uscente dal separatore (punto 3) viene inviato ad una turbina a vapore che lo espande fino alla pressione di 0.08 bar (punto 4) (il salto entalpico isoentropico è pari a Δ his=268.60 kJ/kg).

Il vapore scaricato dalla turbina viene successivamente condensato in uno scambiatore di calore (trasformazione a pressione costante) fino alle condizioni di liquido saturo (punto 5) scambiando calore con aria ambiente (Tamb=15°C, c_{p,aria}=1006 J/kg/K) che si scalda di 20°C.

Sapendo che la potenza elettrica della turbina è pari a 60 kW e che il rendimento meccanicoelettrico è pari a 0.98, si chiede di:

- Rappresentare lo schema di impianto del sistema complessivo
- Riportare qualitativamente i punti termodinamici su un piano T-s
- Calcolare la portata di vapore saturo uscente dal separatore
- Calcolare il rendimento isoentropico della turbina e l'entropia del punto 4
- Calcolare la portata di aria necessaria a condensare il vapore

ESERCIZIO 2 (punti 11)

Viene dato un tubo metallico (k_{MET} = 45 W/m/K) di diametro interno e spessore pari rispettivamente a 40 mm e 2 mm in cui scorre acqua liquida. Allo strato metallico è aggiunto uno strato di materiale isolante (k_{ISO} = 0.8 W/m/K) dello spessore di 5 mm. L'acqua all'interno del tubo si scalda da 5°C a 10°C mentre la superficie interna del tubo è mantenuta alla temperatura di 11°C.

Sapendo che il tubo è lungo 15 m e assumendo sia che le proprietà dell'acqua liquida siano indipendenti dalla temperatura (proprietà riportate in tabella) sia che la pressione tra ingresso e uscita rimanga invariata, si chiede di valutare:

- la variazione di entalpia dell'acqua tra l'ingresso e l'uscita del tubo
- l'espressione del coefficiente di scambio termico convettivo interno in funzione della portata massica m (h(m)=Z*mⁿ – riportare i valori numerici delle costanti Z e n)
- la differenza di temperatura media logaritmica tra la parete interna del tubo e l'acqua e la portata massica di acqua che scorre all'interno del tubo
- la potenza termica scambiata dal tubo
- la resistenza termica conduttiva totale (nel caso non si fosse calcolato il coeff.di scambio termico convettivo, assumerlo pari a 5000 W/m2/K)

<u>Correlazioni per convezione forzata interna (Dim. caratteristica → Diametro interno del tubo).</u>

Convezione Forzata Interna	Proprietà Acqua				
	С	4186	J/kg/K		
$Nu = 0.023Re^{0.8}Pr^{0.4}$	k	0.645	W/m/K		
$Nu = 0.023Re^{3.5}Pr^{3.5}$	μ	0.528E-03	Pa*s		
	ρ	987	kg/m³		

QUESITO 3 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Rappresentare lo schema di impianto di un ciclo Rankine saturo ideale e ricavarne l'espressione del rendimento. Descrivere l'effetto dell'aggiunta del surriscaldamento sulle prestazioni del ciclo.
- 2- Discutere l'approccio a parametri concentrati per la risoluzione di problemi di scambio termico in condizioni non stazionarie. Ricavare l'espressione dell'andamento temporale della temperatura nel caso di raffreddamento di un corpo (rappresentare anche graficamente la funzione T(t)). Evidenziare i numeri adimensionali caratteristici del problema.

QUESITO 4 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.2 punti se sbagliata).

Il coefficiente Joule-Thomson	È sempre negativo per un liquido ideale	vero	□ fa	also
	E' definito come $(\partial T / \partial p)_h$	vero	□ fa	also
	Lungo la curva di inversione è pari a 0	vero	□ fa	also
Il calore specifico a pressione	E' minore del calore specifico a volume costante	□ vero	X fa	also
costante per un gas perfetto	Non dipende dalla temperatura	□ vero	fa	also
biatomico:	In termini massici, è pari a 5/2*(R/MM)	□ vero	X fa	also
In un ciclo Joule-Brayton reale	II β _{compr} è sempre uguale al β _{turb}	□ vero	X fa	also
aperto:	A pari T _{MAX} il rendimento è crescente con β _{compr}	□ vero	X fa	also
	La portata di fluido elaborata dal compressore è			
	minore di quella espansa nella turbina	vero	□ fa	also
In un mixer adiabatico, 2 kg/s di	Una portata volumetrica pari a (m1+m2)/ρ	X vero	□ fa	also
acqua a T1=30°C vengono	Temperatura inferiore a 20°C	□ vero	K fa	also
miscelati con 4 kg/s di acqua a	Temperatura pari a 25°C	□ vero	K fa	also
20°C (T2). Per il flusso di uscita				
si ha:				
In un ciclo combinato:	Rispetto ad una turbina a gas, i fumi scaricati in	vero	□ fa	also
ηCC→ rend. ciclo combinato	ambiente sono a temperatura inferiore			
ηTG→rend.turbina a gas	Sempre ηCC>ηTG	Vero	□ fa	also
ηVAP→rend. ciclo a vapore	E' possibile utilizzare carbone come combustibile	□ vero	X fa	also

Proprietà termodinamiche dell'acqua alla saturazione (10°C-120°C)

		Liq.Saturo		Vap. Saturo			
Т	Р	h	s	V	h	s	v
[°C]	[bar]	[kJ/kg]	[kJ/kg-°C]	[m³/kg]	[kJ/kg]	[kJ/kg-°C]	[m³/kg]
10	0.01227	41.994	0.15099	0.0010003	2519.90	8.90196	106.43
15	0.01704	62.941	0.22432	0.0010008	2529.05	8.78257	77.978
20	0.02337	83.862	0.29630	0.0010017	2538.18	8.66840	57.838
25	0.03166	104.767	0.36701	0.0010029	2547.28	8.55916	43.402
30	0.04241	125.664	0.43651	0.0010043	2556.35	8.45456	32.929
35	0.05622	146.557	0.50486	0.0010060	2565.38	8.35434	25.245
40	0.07375	167.452	0.57212	0.0010078	2574.37	8.25826	19.546
45	0.09582	188.351	0.63832	0.0010099	2583.30	8.16607	15.276
50	0.12335	209.256	0.70351	0.0010121	2592.17	8.07757	12.046
55	0.15741	230.168	0.76772	0.0010145	2600.98	7.99255	9.5789
60	0.19920	251.091	0.83099	0.0010171	2609.71	7.91081	7.6785
65	0.25009	272.025	0.89334	0.0010199	2618.36	7.83217	6.2023
70	0.31162	292.973	0.95482	0.0010228	2626.92	7.75647	5.0463
75	0.38549	313.936	1.01544	0.0010259	2635.39	7.68353	4.1341
80	0.47360	334.916	1.07525	0.0010292	2643.75	7.61322	3.4091
85	0.57803	355.917	1.13427	0.0010326	2652.01	7.54537	2.8288
90	0.70109	376.940	1.19253	0.0010361	2660.14	7.47987	2.3613
95	0.84526	397.988	1.25005	0.0010399	2668.14	7.41658	1.9822
100	1.01325	419.065	1.30687	0.0010437	2676.01	7.35538	1.6730
105	1.20800	440.173	1.36301	0.0010477	2683.73	7.29616	1.4193
110	1.43266	461.316	1.41849	0.0010519	2691.31	7.23880	1.2099
115	1.69060	482.497	1.47334	0.0010562	2698.72	7.18321	1.0363
120	1.98543	503.719	1.52759	0.0010606	2705.96	7.12928	0.89152

Proprietà termodinamiche dell'acqua alla saturazione (0.01 bar – 2 bar)

		Liq.Saturo		Vap. Saturo			
T	Р	h	s	V	h	s	v
[°C]	[bar]	[kJ/kg]	[kJ/kg-°C]	[m³/kg]	[kJ/kg]	[kJ/kg-°C]	[m³/kg]
6.983	0.01	29.335	0.10604	0.0010001	2514.37	8.97667	129.21
17.513	0.02	73.457	0.26065	0.0010012	2533.65	8.72456	67.006
24.100	0.03	101.003	0.35436	0.0010027	2545.65	8.57848	45.667
28.983	0.04	121.412	0.42246	0.0010040	2554.51	8.47548	34.802
32.898	0.05	137.772	0.47626	0.0010052	2561.59	8.39596	28.194
36.183	0.06	151.502	0.52088	0.0010064	2567.51	8.33124	23.741
39.025	0.07	163.376	0.55909	0.0010074	2572.62	8.27669	20.531
41.534	0.08	173.865	0.59255	0.0010084	2577.11	8.22957	18.105
43.787	0.09	183.279	0.62235	0.0010094	2581.13	8.18810	16.204
45.833	0.1	191.832	0.64925	0.0010102	2584.78	8.15108	14.675
60.086	0.2	251.453	0.83207	0.0010172	2609.86	7.90943	7.6498
69.124	0.3	289.302	0.94411	0.0010223	2625.43	7.76953	5.2293
75.886	0.4	317.650	1.02610	0.0010265	2636.88	7.67089	3.9934
81.345	0.5	340.564	1.09121	0.0010301	2645.99	7.59473	3.2402
85.954	0.6	359.926	1.14544	0.0010333	2653.57	7.53270	2.7318
89.959	0.7	376.768	1.19206	0.0010361	2660.07	7.48040	2.3647
93.512	0.8	391.723	1.23301	0.0010387	2665.77	7.43519	2.0870
96.713	0.9	405.207	1.26960	0.0010412	2670.85	7.39538	1.8692
99.632	1	417.511	1.30271	0.0010434	2675.43	7.35982	1.6937
120.23	2	504.701	1.53008	0.0010608	2706.29	7.12683	0.88544