

CALCULUS – Second Partial Exam

Bachelor in Computer Science and Engineering

ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID

November 2021

maximum 3 points

Name		GROUP	87
------	--	-------	----

1. /1 point/ Let

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x < 0, \\ xe^x + 1 & \text{if } x \ge 0. \end{cases}$$

- (a) Study the continuity and differentiability of f in the domain.
- (b) Prove whether f is bounded in the interval $[-\pi, \pi]$.

SOLUTION

(a) First, for all $x \in \mathbb{R}$, with $x \neq 0$, the given function is continuous and differentiable as defined in terms of continuous and differentiable elementary functions. On the other hand, f(x) is also continuous at x = 0 since $\lim_{x\to 0} f(x) = f(0) = 1$. In addition, in order for f(x) to be differentiable at x = 0, the following lateral limits must provide the same result:

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(xe^{x} + 1) - 1}{x} = \lim_{x \to 0^{+}} e^{x} = 1,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\sin(x) - x}{x^{2}} = \lim_{x \to 0^{-}} \frac{\cos(x) - 1}{2x} = \lim_{x \to 0^{-}} \frac{-\sin(x)}{2} = 0.$$

Note that for the calculation of $f'_{-}(0)$ l'Hôpital's rule has been applied twice. Thus, being $f'_{+}(0) \neq f'_{-}(0)$, we can conclude that the given function is not differentiable at x = 0.

(b) Since f(x) is continuous for all $x \in \mathbb{R}$, it is also continuous in the closed and bounded interval $[-\pi, \pi]$. Hence, by the Weierstrass' theorem, it is bounded in the same interval.

2. [1 point] Calculate

$$\lim_{x \to 0} \frac{2x + \sqrt{1 + x^2} + x \arctan(x) - e^{3x} [1 - \ln(1 + x)]}{7x^2}$$

using appropriate Taylor polynomials for the involved functions.

SOLUTION

In the given limit, we have $x \to 0$, hence we can approximate all involved elementary functions by suitable Maclaurin polynomials, namely

$$\lim_{x\to 0}\,\frac{2x+1+\frac{1}{2}x^2+o(x^2)+x\big[\,x+o(x)\,\big]-\big[\,1+3x+\frac{9}{2}x^2+o(x^2)\,\big]\,\big[\,1-x+\frac{1}{2}x^2+o(x^2)\,\big]}{7x^2}\,.$$

Finally, after simplifying the previous expression and retaining terms up to degree 2, we get

$$\lim_{x \to 0} \frac{-\frac{1}{2}x^2 + o(x^2)}{7x^2} = -\frac{1}{14}.$$

$$\frac{1}{e^{1/3}}$$

using a Taylor polynomial of suitable degree such that the involved error is smaller than 10^{-3} .

SOLUTION

The value $e^{-1/3}$ can be calculated by evaluating the function $f(x) = e^x$ at x = -1/3. Such function can be expressed by means of the Taylor's theorem as

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + R_n(x),$$

where the remainder $R_n(x)$ is given by

$$R_n(x) = \frac{e^c}{(n+1)!} x^{n+1},$$

with $c \in (x,0)$. Hence, at x = -1/3, we can estimate the involved error as

$$|R_n(-1/3)| = \frac{e^c}{3^{n+1}(n+1)!} < \frac{1}{3^{n+1}(n+1)!}.$$

Finally, imposing

$$\frac{1}{3^{n+1}(n+1)!} < 10^{-3} \iff 3^{n+1}(n+1)! > 1000,$$

we can deduce that the considered Maclaurin polynomial must have degree n=3, at least. Thus, a proper approximation is

$$e^{-1/3} \approx 1 - \frac{1}{3} + \frac{1}{18} - \frac{1}{162}$$
.