

Relatório - Estudo da transmissão por

Afonso Maria Estriga Couto

Afonso Maria Estri,

Junho 2023

Afonso Maria Estri,

Junho 2023

Andrew Maria Maria

Figure 1: fcup

Nesta atividade foi usado um cabo coaxial RG-58. Foi calculada a sua impedância característica com um erro de 2% (por excesso) em comparação com o valor do fabricante, e uma incerteza de 2%. Em relação ao coeficiente de atenuação do cabo determinado, corresponde ao esperado, de acordo com o fabricante, e vem com uma incerteza de 2,1%. A velocidade de fase vem acompanhada com um erro de 6%, comparando com o valor teórico calculado (tendo em conta o polietileno de que é feito o cabo), e uma incerteza de 6 × 10e-15 %. Por fim, a velocidade de propagação do sinal teve um erro de 4% e uma incerteza de 0.1%. Entre os valores de velocidade de fase e o de propagação existe um erro de 2%. Daí, concluí-se que as velocidades são praticamente iguais, como seria de esperar. De resto, todos os resultados foram positivos e compatíveis com o estudo do equipamento em causa.

2 Introdução

- 2.1 Estudo da amplitude do impulso refletido, em função da impedância da carga ligada à linha coaxial, $V_r(Z_L)$
 - a) Determinar o valor da impedância da carga ligada à linha, $Z_L = Z_c$, para o qual a amplitude do impulso refletido $V_r(Z_L) = 0$.
 - b) Verificar que em linha aberta $(Z_L \to \infty)$, $\Gamma_L = 1$
 - c) Verificar que em curto-circuito $(Z_L = 0), \Gamma_L = 1.$
- 2.2 Determinação da constante de atenuação α e da velocidade v de propagação de fase na linha coaxial
 - a) A partir da medição das amplitudes V_n de uma sequência de n impulsos reflectidos e das corrrespondentes distâncias d percorridas pelo sinal, calcula-se α
 - b) De seguida para calcular v, registam-se os instantes t_n a que ocorrem as amplitudes V_n , e tem-se $V_n(t)$.
- 2.3 Determinação da velocidade de propagação de sinal v numa linha coaxial, variando a frequência do sinal à entrada
 - registar f, variar entre kHz e 10 MHz
 - registar diferença de fase entre sinal de entrada e sinal refletido.

Um cabo coaxial trata-se de uma linha de transmissão, normalmente formado por dois condutores cilíndricos (que têm o mesmo eixo), um deles é filiforme e

Numerar equações / = falle importante

tem um raio menor que o outro. Está presente entre os mesmos um material dielétrico (polietileno, por exemplo). Para estudarmos este tipo de linha de transmissão, usa-se: Onde V_i é referente à onda incidente e V_r é a onda re-

$$V(z,t) = V_1 e^{\alpha z} e^{j(\omega t + kz)} + V_2 e^{-\alpha z} e^{j(\omega t - kz)} = V_r(z,t) + V_i(z,t)$$

fletida. Estas ondas sofrem uma diminuição da amplitude com a propagação (atenuação). $k=2\pi/\lambda$, k é o nº de onda do sinal.

Tem-se uma fonte de tensão E, de impedância interna Z_o que alimenta uma linha de transmissão de comprimento l, que por sua vez também está ligada a uma impedância de carga Z_L . O coeficiente de reflexão, onde se encontra a carga, dá-se por:

$$\Gamma_L = \frac{Z_L - Z_c}{Z_L + Z_c}$$

 $Z_c=V_i/I_i$ é a impedância característica da linha de transmissão. Esta é a equação que relaciona a reflexão do sinal com a descontinuidade do meio onde este se propaga. Variando Z_L varia-se a forma como o sinal é refletido na

$$V_r = rac{Z_L - Z_c}{Z_L + Z_c} \; V_i$$

impedância:

 $Z_L < Z_c \rightarrow \Gamma_L < 0$ - há inversão do sinal da onda da tensão refletida;

 $Z_L > Z_c \to \Gamma_L > 0$ - a onda da tensão refletida mantém o sinal da onda incidente:

 $Z_L = 0 \rightarrow \Gamma_L = -1$ (curto-circuito) - a onda da tensão refletida inverte o sinal e apresenta a mesma amplitude da onda incidente;

 $Z_L \to \infty \to \Gamma_L \approx 1$ (linha aberta) - a onda da tensão refletida mantém o sinal e a mesma amplitude da onda incidente;

 $Z_L \to \Gamma_L = 0$ - não há reflexão na extremidade da carga $(V_r = 0)$; Permite calcular impedância característica da linha.

Para a extremidade da impedância interna da fonte, tem-se: Para o coe-

ficiente de atenuação da linha de transmissão, faz-se o seguinte - impedância de carga muito elevada ($Z_L >> Z_c$) na extremidade da linha de transmissão, ou seja, nessa extremidade haverá praticamente uma reflexão total da onda de tensão. Apenas haverá reflexão da onda na impedância da fonte de tensão, $_0$. Lança-se um impulso pela fonte de tensão e será refletido totalmente na outra extremidade, e o sinal obtido logo a seguir será a referência, V_0 . De seguida, o impulso percorrerá a linha, até refletir na impedância da fonte e voltar a percorrer toda a linha até chegar à impedância de carga (referência). Com o

$$ln(V_n) = [ln(\Gamma_0) - 2\alpha l]n + ln(V_0)$$

logaritmo:

Conhecendo Γ_0 e analisando $\ln(V_n)$ em função de n, é fácil determinar α através do declive da relação entre as duas grandezas (m = $\ln(\Gamma_0)$ 2 α l). Usando este procedimento, também é possível calcular a velocidade de fase do impulso a propagar-se na linha, com t_n , e os picos V_n , tomando como referência $t_0 = 0$. Logo: $d_n = 2$ nl é a distância percorrida pelo impulso desde t_0 até à extremidade

$$v = \frac{d_n}{t_n - t_0}$$

$$v = \frac{2n}{t}$$

$$2nl = v t_n$$

da carga pela x vez. Também é possível determinar a velocidade pelo declive. Na terceira parte, quer-se a velocidade de propagação da onda de tensão com a frequência, e da diferença de fase entre a onda à entrada e à saída do cabo. Tendo a onda à entrada uma fase ϕ_0 e a onda à saída uma fase ϕ_1 , podemos relacionar a diferença de fase com o número de onda k: $\delta \phi = \phi_1 - \phi_0$ e = 1,

$$k = \frac{\Delta \Phi}{\Delta x}$$

Sabendo que k é o quociente entre 2π e λ :

$$\lambda = \frac{2\pi l}{\Delta \Phi}$$

$$v = \lambda f = \frac{2\pi l}{\Delta \Phi} f$$

$$f = \frac{v}{2\pi l} \Delta \Phi$$

Velocidade é calculada através do declive entre f e $\delta \phi$.

3 Proceedings experimental

64

Experiencia

3.1 Material utilizado

• Gerador de impulsos (com fonte de alimentação anexa): período ≈ 5 µs, largura dos impulsos a meia altura 200 ns, resistência interna comutável 50 Ω ou 600 Ω , saída coaxial BNC.

4

NOTA: fultain as ey? le propagnes (en anexo, p.ex

his cutient or a front of the contract of the

- Gerador sinusoidal Resistência interna 50 Ω e saída coaxial BNC.
- Linha coaxial cabo coaxial RG58, comprimento l = (61, 50 \pm 0.05) m, condutores em cobre estanhado (diâmetro interno a = 0,90 mm), dielétrico polietileno (diâmetro externo b = 2,95 mm), revestimento externo PVC, impedância característica 50 Ω , capacidade 100 pF/m, atenuação ; 0, 02 dB/m.
- Osciloscópio, com dupla base de tempo.
- Caixa de resistências, que se liga à terminação 1 da linha coaxial
- Adaptador de impedâncias, que se liga à terminação 2 da linha coaxial

3.2 Montagem

 $1^{\underline{\mathbf{a}}}$ Parte: $V_r(Z_L)$

tidulo; aperenta'- "o "

- Escolher a impedância interna do gerador de impulsos com $Z_o = 50 \Omega$, de modo que nao haja reflexão do impulso na extremidade da linha associada à fonte;
- Esperar um pouco enquanto os aparelhos eletrónicos aquecem;
- Registar resultados no osciloscópio quando $Z_L = 0$, curto-circuito, e quando $Z_L \to \infty$ (remover o adaptador da caixa de resistências, ficando em contacto com o ar), linha aberta;
- Fazer um varrimento numa gama ampla de impedâncias de carga, comprovando situações descritas acima, e verificar que o valor da impedância característica é aproximadamente 50 Ω;
- Retirar uma gama de dados mais densa em torno do valor estimado para Z_{c} .

 $2^{\underline{a}}$ Parte: Determinação de α e de v

((one do sitio)

- A impedância do osciloscópio é muito elevada, $Z=1M\Omega$, portanto há praticamente reflexão total na extremidade da linha onde está o osciloscópio que, também faz a leitura dos sucessivos impulsos refletidos na outra extremidade.
- Escolher a impedância interna do gerador de impulsos com Zo = 600 Ω , de modo que não haja reflexão do impulso na extremidade da linha associada à fonte;
- Ajustar cursores no osciloscópio para que o primeiro cursor da tensão esteja no zero da tensão do primeiro pico, e o primeiro cursor do tempo esteja fixo no instante do mesmo pico, V_0 ;
- Usar os outros cursores para medir os valores de t_n e V_n , tendo como referência os primeiros.

 $3^{\underline{a}}$ Parte: Determinação de v
 a partir do estudo de f
 em função de $\Delta\phi$

- Passar para o gerador sinusoidal;
- Ligar um conector BNC-T ao canal 1 do osciloscópio e ligar ao canal 2 a outra extremidade do cabo;
- Ajustar escala do osciloscópio, colocando um cursor como referência no zero da tensão alinhar com esse o sinal de entrada e o sinal de saída da linha;
- Começar com uma frequência elevada (f = 10 MHz) e diminuir até os sinais estarem em fase e anotar os valores de f e de $\Delta \phi$;

• Continuar o processo diminuindo a frequência até encontrar situações em que os sinais estão em fase ou em anti-fase.

pale V and i'm

277

de que!

4 Dados e análise

4.1 1ª Parte ...

Em primeiro lugar, serão analisados linha aberta e curto-circuito. Linha aberta $(Z_L \to \infty)$ Para estudar em linha aberta manteve-se o adaptador de impedâncias, em contacte com o ar - sem estar inserido na caixa de resistências - e observou-se o seguinte. O primeiro pico corresponde ao impulso de tensão que entra no cabo coaxial e que percorre toda a linha até ser refletido na outra extremidade. O segundo pico é o impulso que já foi refletido e chega novamente à extremidade do cabo ligada ao osciloscópio. Os dois impulsos, obviamente, têm o mesmo sinal. No entanto, os dois picos não têm a mesma altura, têm valores de tensão diferentes:

$$V_{in}(z = 0) = (3, 58 \pm 0, 05) \text{ V}$$

 $V_r(z = 0) = (2, 40 \pm 0, 05) \text{ V}$

Nota-se bem a atenuação do impulso que percorreu o cabo, pela diferença dos dois picos.

Falts otimizer

sar escales p/

lextura c/

cursores

Curto-circuito $(Z_L = 0)$

Para o estudo desta situação colocou-se o cabo com o adaptador conectado à caixa de resistências, com todos os botões no zero. Aqui temos a imagem no osciloscópio: Existe inversão total do impulso refeltido, como era previsto.

confuso

Além disso, repare-se que o impulso refletido volta a ter uma amplitude muito menor do que o impulso incidente:

$$Vr(z = 0) = (-2, 40 \pm 0, 05) V$$

De notar que o valor em módulo do pico refletido no curto-circuito, é exatamente o mesmo que o valor do pico refletido na situação de linha-aberta, o que confirma a aproximação $\Gamma_L\approx 1$ para a linha aberta. Determinação de Z_c Em primeiro lugar fez-se um varrimento numa gama mais ampla de impedância - $Z_L\in [0,5000]$ Ω - anotando-se também o valor de V_r , de onde se retirou uma maior densidade de pontos próximo ao valor crítico ($Z_L=50~\Omega$), para se comprovar que o gráfico de V_r em função de Z_L cruza o eixo horizonal (correspondente a $V_r=0$) num ponto próximo desse valor crítico. Pelo gráfico, temos valores negativos da tensão do sinal refletido, quando Z_L é menor que o valor de Z_c e temos valores positivos quando Z_L o ultrapassa. Quando Z_L cresce muito mais do que Z_c , o valor de V_r tende para o valor medido em linha aberta. Em relação

Falta o perfil « parc o que observa ne vizinhança de Ze

aos dados retirados perto do valor crítico, restringimos a gama para $Z_L \in [40; 60]$ Ω . Pelos dados, o valor da impedância característica do cabo é próxima de

50 Ω, uma vez que o gráfico parece intersetar o eixo correspondente a $V_r = 0$, aí. Para termos uma melhor ideia do valor de V_r mais próximo de zero, ocorreu quando $Z_L=51~\Omega~(V_r=0,~02{\rm V})$. Depois, recolheram-se pontos numa gama mais ampla - $Z_L \in [20; 80]$ Ω : Vê-se pequenas quebras ao longo de toda a gama. Estes "degraus" ocorrem sempre para impedâncias múltiplas de 10Ω , correspondendo à mudança no botão das dezenas da caixa de resistências. Este comportamento também foi comprovado por outros grupos de trabalho que utilizaram o mesmo material. No laboratório realizámos uma experiência onde se utilizou um ohmímetro para medir diretamente as resistências da caixa quando se alterava o valor das dezenas, mantendo as unidades no zero. O resultado obtido foi que para cada valor das dezenas, a resistência lida no ohmímetro foi sempre inferior (1 ou 2 $\Omega)$ à resistência escolhida nos botões da caixa. Para determinar o valor de Z_c fez-se um ajuste polinomial de 3º grau: Os valores de V_r foram calculados a partir deste ajuste e estão representados no gráfico anterior. Os resíduos resultantes deste ajuste foram representados graficamente barras de incerteza $u(V_r)$. A forma dos resíduos relaciona-se com as quebras no gráfico

Mer berger of in

onde?

Ajuste polinomial de 3.º grau				
	a_3	a_2	a_1	a_0
Valor	-5×10^{-7}	$-1,2 \times 10^{-4}$	0,042	-1,76
Incerteza	6×10^{-7}	9×10^{-5}	0,004	0,07
\mathbb{R}^2	0,9981			
sy	0,02			

quando se altera as dezenas da caixa. Um ponto encontra-se fora do intervalo [-2sy,2sy], porém, no entanto, como está muito perto dos restantes, não foi denominado como um ponto duvidoso pois continua perto dos restantes resíduos. Z_c , é o zero da função polinomial do ajuste.

$$Z_{cexp.} = (51 \pm 1) \Omega$$

erenté-lo como tel Erro percentual relativo $\epsilon(\%) = 2\%$, $Z_{cref} = 50 \Omega$ e uma incerteza relativa u(%) = 2%

4.2 2ª Parte

Determinação do coeficiente de atenuação, α

Mediu-se a amplitude dos picos que apareciam no osciloscópio, sendo que eram no total 8 picos (1 do sinal incidente e 7 dos refletidos) e a partir do 8°

) Falta

perfil observado c/ indicaep da "linke de zero

titulo

impulso, a amplitude do impulso refletido já era muito baixa, e o pico estava praticamente irreconhecível. Para determinar o coeficiente de reflexão foi usado o valor de Z_c experimental (impedância interna referência do gerador, $Z_o = 600 \Omega$).

 $\Gamma_0 = 0,843 \pm 0,004$ que vem com um erro de $\epsilon(\%) = 0.4\%$ e uma incerteza relativa u(%) = 0,4%. Passando para o gráfico de $\ln(V_n)$ em função de n:

No primeiro ajuste do gráfico apareceu um ponto duvidoso, no iltimo ponto, pelo que se removeu pois seria de esperar que não fosse um ponto muito confiavel pelo motivo explicado acima $(8^{\circ} \text{ ponto})$.

Ajuste linear $ln(V_n)(n)$ - s/duvidoso					
\overline{m}	-0,466	2,23	b		
u(m)	0,004	0,02	u(b)		
\mathbb{R}^2	0.9996	0.02	sv		

Por observação dos resíduos parecem haver duas tendências (crescente e decrescente). Pelos gráficos de resíduos de outros grupos, verificou-se que esta forma é característica. O coeficiente calculado:

Não é possível calcular o erro relativo percentual mas verifica-se a conformidade com a especificação do cabo

Litulo la presenti - lo (mo tal

Determinação da velocidade de fase, v

Medimos os tempos correspondentes aos picos no osciloscópio, t_n , em relação ao primeiro (n = 0). Sabendo a distância percorrida pelo sinal no n-ésimo pico relativamente ao primeiro, $d_n = 2$ nl, faz-se $d_n(t_n)$. Com a gama completa de

dados recolhidos - $t_n \in [0; 5]$ µs - identificaram-se 2 tendências diferentes no gráfico de resíduos: Para n = 0, 1, 2, 3, 4, 5 (t_n ϵ [0; 3, 5] µs) há uma tendência

crescente. Os centros dois pontos pedem já não ser tão viáveis pelo que foram descartados e fez se uma nova análise aos dados. Por apresentarem uma tendêm con descartados e fez se uma nova análise aos dados.

Gráfico de d_n(t_n) - gama selecionada

625

500

• gama selecionada

125

• gama selecionada

ajuste linear - gama selecionada

0.0E+00 3.0E-07 6.0E-07 9.0E-07 12E-06 1.5E-06 1.8E-06 2.1E-06 2.4E-06 2.7E-06 3.0E-06 3.3E-06

Ajuste linear $d_n(t_n)$ - gama selecionada				
m	$1,8636363636363600 \times 10^{8}$	-6×10 ⁻¹⁴	b	
u(m)	1×10^{-8}	2×10^{-14}	u(b)	
R^2	1	3×10^{-14}	sy	

O resultado foi bastante positivo, visto que, os resíduos são nulos (ultrapassando o limite do computador, 15 casas decimais), à exceção do primeiro, mas que não deixa de estar muito próximo dos outros. A matriz por si só mostra a "perfeição" do ajuste linear.

Polietileno:

$$\epsilon=2.3$$
 , $\epsilon 0=8.85\times 10\mathrm{e}12$ Fm-1)
 $\mu\approx\mu0=4\pi\times 10\mathrm{e}\text{-}7$ Hm-1, $\nu_{ref}=1,\,98\times 10\mathrm{e}8$ ms-1

Obteve se:

 $vf = (1, 86363636363636363600 \pm 0, 0000000000000001) \times 10^{10} e80^{10} ms-1$

Erro de $\epsilon(\%)=6$ % e uma incerteza percentual relativa de u(%) = 6×1015 %.

A incerteza relativa é baixíssima devido à qualidade do ajuste. O erro não é muito elevado, mas mostra a presença de um erro sistemático, por exemplo, o cabo pode já estar demasiado gasto e danificado.

4.3 3ª Parte

Determinação da velocidade de propagação de um sinal sinusoidal, v

O objetivo seria que este valor que vamos calcular fosse igual ao calculado anteriormente, pelo que iremos usar o mesmo valor de referência,

$$v_{ref} = 1,98 \times 10e8 \text{ ms-1}$$

Registaram-se os valores de f, correspondentes a estados de fase ($\phi = 0, 2, 4, ...$) e de anti-fase ($\phi = 0, 3, 5, ...$), entre o sinal de entrada e de saída no cabo coaxial (canal 1 e 2, respetivamente). Aqui temos um exemplo de uma medição feita em laboratório, com os sinais em fase. Para cada situação, registaram-se dois valores de frequência lidos no ecrã do gerador de sinais, para os sinais em fase ou anti-fase. O primeiro ponto era obviamente duvidoso, já que estava

completamente fora da tendência dos outros todos pelo que foi removido.

Amin

Após isso, temos uma gama com f ϵ [1; 9, 3]MHz: Ora, não existem pentos

Ajuste linear $f(\Phi)$ - gama selecionada				
m	$4,915 \times 10^{5}$	-5,1×10 ⁴	b	
u(m)	3×10^{2}	2×3^3	u(b)	
\mathbb{R}^2	0.999999	4×10^{3}	sy	

duvidoses, o que referça a qualidade do ajuste linear dos dados selecionados. Como os resíduos estão espalhados sem uma particular tendência, os erros serão maioritariamente aleatórios. v será dado então pelo declive do ajuste:

$$v = (1, 899 \pm 0, 002) \times 10e8 \text{ ms-1}$$

Erro $\epsilon(\%)=4\%$ e uma incerteza relativa u(%) = 0.1%. Comparando este erro e o da velocidade de fase, este é um pouco inferior, mas em termos de incerteza relativa este fica muito aquém em relação ao anterior. Calculou-se o erro percentual da velocidade de propagação do sinal harmónico em relação à velocidade de fase:

$$\epsilon(\%) = 2\%$$

5 Resultados finais

5.1 1º Parte

- $Z_c = (51 \pm 1) \Omega$
- Erro(%) = 2 %
- Incerteza(%) = 2 %

5.2 2ª Parte

- $\alpha = (2, 40 \pm 0, 05) \times 10\text{--}3 \text{ dB m--}1$
- Incerteza(%) = 2,1 %
- vf = (1, 863636363636363600 \pm 0, 0000000000000001) \times 10e8 ms-1
- Erro(%) = 6 %
- Incerteza(%) = 6x10e-15 %

5.3 3² Parte

- $v = (1, 899 \pm 0, 002) \times 10e8 \text{ ms-1}$
- Erro(%) = 4 %
- Incerteza(%) = 0.1 %
- Erro(%) = 2% (em relação a vf)

6 Conclusão

Na 1ª parte da experiência verificámos o comportamento de um impulso de tensão quando $Z_L=0$ Ω , acontecendo reflexão total com inversão do sinal. Também concluímos que quando $Z_L\to\infty$, observou-se reflexão total sem inversão do sinal. A impedância característica da linha é dada por $Z_c=(51\pm1)\Omega$ com $\mathrm{Erro}(\%)=2$ % em comparação com $Z_{cref}=50$ Ω e Incerteza(%) = 2 %. Resultados bastante satisfatórios.

Na 2^{a} parte da experiência calculámos o valor do coeficiente de atenuação, $\alpha = (2, 40 \pm 0, 05) \times 10^{-3}$ dB m-1 com Incerteza(%) = 2, 1 %, coincidente com a indicação do fabricante (α é menor que 0, 02 dB m-1). Comparado com outros grupos, o valor α está de acordo com a norma. Calculámos também a velocidade de fase de um impulso que se propaga na linha, $v_f = (1, 863636363636363600\pm 0, 000000000000001)\times 10^{-2}$ m6-1 com Erro(%) = 6 % e Incerteza(%) = 6 × 10e-15 %, por isso, o grau de confiança é elevadíssimo mas não muito exato devido talvez a algum dano no cabo coaxial.

o que evidencia o qualidade excelente do

Na terceira parte da experiência calculou-se o valor da velocidade de propagação de um sinal sinusoidal no cabo coaxial, v = (1, 899 ± 0, 002) × 1(e8) ms-1, Erro(%) = 4 % e Incerteza(%) = 0, 1 % 2 resultado obtido foi bastante positivos e comparado com o valor da velocidade de fase, apresenta produziu resultados positivos para o estudo da linha de transmissão em causa.

18

7 Bibliografia

• Protocolo relativo à experiência

disponibilizados no moodle, desta

• Logbooks e relatórios de outros grupos disponibilizados no moodle, desta experiência, após a correção dos mesmos

• Documentos referentes à cadeira de Eletrónica

• D.J.Griffiths. Introduction to Eletrodynamics.

texts.