MA'RUZA

BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMALAR

Mavzuning rejasi

- 1. Birinchi tartibli bir jinsli differensial tenglamalar.
- 2. Bir jinsli tenlamaga keltiriladigan differensial tenlamalar.
- 3. Birinchi tartibli chiziqli differensial tenglama.

Tayanch so'z va iboralar: bir jinsli differensial tenglama, bir jinsli funksiya, *n* o'lchovli bir jinsli funksiya, birinchi tartibli chiziqli differensial tenglama, hosilasiga nisbatan chiziqli, differensial tenglamani tartibi, umumiy yechimi, umumiy integrali.

1. Birinchi tartibli bir jinsli differensial tenglama

1-ta'rif: Agar λ ning har qanday qiymatida $f(\lambda x, \lambda y) = \lambda^n(x, y)$ (1) ayniyat to'g'ri bo'lsa, f(x, y) funksiya x va y o'zgaruvchilarga nisbatan n o'lchovli bir jinsli funksiya deyiladi.

1-misol: $f(x,y) = \sqrt[3]{x^3 + y^3}$ funksiya bir o'lchovli bir jinsli funksiyadir, chunki $f(\lambda x, \lambda y) = \sqrt[3]{(\lambda x)^3 + (\lambda y)^3} = \lambda \cdot \sqrt[3]{x^3 + y^3} = \lambda \cdot f(x,y)$ bo'ladi.

2-misol: $f(x,y) = \frac{x^2 - y^2}{xy}$ funksiya nol o'lchovli bir jinsli funksiyadir, chunki $f(\lambda x, \lambda y) = \frac{(\lambda x)^2 - (\lambda y)^2}{(\lambda x)(\lambda y)} = \lambda^0 \cdot \frac{x^2 - y^2}{xy} = \lambda^0 f(x,y)$ bo'ladi.

2-ta'rif: Agar birinchi tartibli $\frac{dy}{dx} = f(x, y)$ (2) tenglamada f(x, y) funksiya x va y ga nisbatan nol o'lchovli bir jinsli funksiya bo'lsa, (2) tenglama x va y o'zgaruvchilarga nisbatan bir jinsli tenglama deyiladi.

2. Bir jinsli tenglamani yechish

Funksiya bir jinsli bo'lishining shartiga ko'ra $f(\lambda x, \lambda y) = f(x, y)$. Bu ayniyatda $\lambda = \frac{1}{x}$ deb olsak, $f(x, y) = f\left(1, \frac{y}{x}\right)$, ya'ni nol o'lchovli bir jinsli funksiya faqat argumentlar nisbatigagina bog'liq. Bu holda (2) tenglama

$$\frac{dy}{dx} = f\left(1, \frac{y}{x}\right) \tag{2}$$

ko'rinishida bo'ladi. O'zgaruvchilarini almashtiramiz.

$$u = \frac{y}{x} \text{ yoki } y = u \cdot x. \tag{3}$$

U holda $\frac{dy}{dx} = u + \frac{du}{dx}x$. Hosilaning ifodasini (2`) ga qo'ysak, o'zgaruvchilari ajralgan $u + x \frac{du}{dx} = f(1,u)$ tenglama hosil bo'ladi. O'zgaruvchilarini ajratib yozsak $x \frac{du}{dx} = f(1,u) - u$ yoki $\frac{du}{f(1,u)} = \frac{dx}{x}$ buni integrallasak:

$$\int \frac{du}{f(1,u) - u} = \int \frac{dx}{x} + C \tag{4}$$

hosil qilamiz. Integraldan keyin u o'rniga $\frac{y}{x}$ nisbatni (2`) tenglamaning umumiy integrali hosil bo'ladi.

3-misol: $\frac{dy}{dx} = \frac{xy}{x^2 - y^2}$ tenglamani umumiy integralini toping.

Yechish: Tenglama bir jinsli. Tenglamani $\frac{y}{x} = u$ almashtirish bilan yechamiz. Bu holda $y = u \cdot x$, $\frac{dy}{dx} = u + x \frac{du}{dx}$, $u + x \frac{du}{dx} = \frac{u}{1 - u^2}$, $x \frac{du}{dx} = \frac{u^3}{1 - u^2}$. O'zgaruvchilarni ajratib, $\frac{(1 - u^2)du}{u^3} = \frac{dx}{x}$, $\left(\frac{1}{u^3} - \frac{1}{u}\right)du = \frac{dx}{x}$ ni hosil qilamiz: buni integrallab $-\frac{1}{2u^2} - \ln|u| = \ln|x| + \ln|C|$ yoki $-\frac{1}{2u^2} = \ln|Cu \cdot x|$.

u ning o'rniga $\frac{y}{x}$ ni qo'ysak, berilgan tenglamaning umumiy integrali hosil bo'ladi: $\frac{x^2}{2y^2} = \ln|Cy|$ yoki $x = y\sqrt{2\ln|Cy|}$ ni topamiz.

3. Bir jinsli tenglamaga keltiriladigan tenglamalar

Ushbu

$$\frac{dy}{dx} = \frac{ax + by + c}{a_1 x + b_1 y + c_1} \tag{5}$$

ko'rinishdagi tenglamalarga bir jinsli tenglamalarga keltiriladigan tenglamalar deyiladi. Agar c=0, $c_1=0$ bo'lsa, (5) tenglama bir jinsli bo'ladi. Endi $c_1\neq 0$, $c_2\neq 0$ yoki bittasi noldan farqli bo'lgan holni qaraymiz. Bu holda $x=x_1+h$, $y=y_1+k$ almashtirib olib, tenglamani

$$\frac{dy}{dx} = \frac{dy_1}{dx_1} \tag{6}$$

ga keltiramiz. x, y va $\frac{dy}{dx}$ larning ifodalarini (5)ga qo'ysak

$$\frac{dy}{dx} = \frac{ax_1 + by_1 + ah + bk + c}{a_1x_1 + b_1y_1 + a_1h + b_1k + c_1}$$
(7)

hosil bo'ladi. h va k ni

$$\begin{cases}
 ah + bk + c = 0, \\
 a_1h + b_1k + c_1 = 0
\end{cases}$$
(8)

tenglamalar o'rinli bo'ladigan qilib tanlaymiz, ya'ni h va k ni (8) tenglamalar sistemasining yechimi kabi aniqlaymiz. Bu shartlarda (7) tenglama (bunda biz $ab_1 - ab_1 \neq 0$, deb qaraymiz) $\frac{dy}{dx} = \frac{ax_1 + by_1}{a_1x_1 + b_1y_1}$ ko'rinishda bo'lib, bir jinsli tenglamaga aylanadi. Bu tenglamani yechib, (6) so'ngra formulaga muvofiq yana x va y larga o'tsak, (5) tenglamani yechimini hosil qilamiz. Agar $ab_1 - ab_1 = 0$ bo'lsa, (5) ning yechimi quyidagicha topiladi. Bu holda $\frac{a_1}{a} = \frac{b_1}{b} = \lambda$, ya'ni $a_1 = \lambda a$, $b_1 = \lambda b$ va demak (5) tenglamani

$$\frac{dy}{dx} = \frac{(ax+by)c}{\lambda(ax+by)+c_1} \tag{9}$$

ko'rinishga keltirish mumkin bo'lib, bu holda

$$z = ax + by ag{10}$$

almashtirish yordamida tenglama o'zgaruvchilari ajraladigan tenglamaga keltiriladi. Haqiqatan ham, $\frac{dz}{dx} = a + b\frac{dy}{dx}$ bundan

$$\frac{dz}{dx} = \frac{1}{b}\frac{dz}{dx} - \frac{a}{b} \,. \tag{11}$$

(9) tenglamaga (10) va (11) ifodalarni qo'yib,

$$\frac{1}{b}\frac{dz}{dx} - \frac{a}{b} = \frac{z+c}{\lambda z + c_1}$$

tenglamani hosil qilamiz, bu esa o'zgaruvchilari ajraladigan tenglamadir. Umuman, (5) tenglamani integrallashda foydalanilgan usul

$$\frac{dy}{dx} = f\left(\frac{ax + by + c}{a_1x + b_1y + c_1}\right)$$

ko'rinishdagi tenglamani integrallashga ham tatbiq etiladi, bunda f(.)- har qanday uzluksiz funksiya bo'la oladi.

4-misol: $\frac{dy}{dx} = \frac{x+y-3}{x-y-1}$ tenglama berilgan. Buni bir jinsli tenglamaga keltirish uchun o'zgaruvchilarini almashtiramiz $x = x_1 + h$, $y = y_1 + k$. Bu holda,

$$\frac{dy}{dx} = \frac{x_1 + y_1 + h + k - 3}{x_1 - y_1 + h - k - 1},$$

 $\begin{cases} h+k-3=0, \\ h-k-1=0 \end{cases}$ yechib h=2, k=1 ekanini topamiz. Natijada bir jinsli

$$\frac{dy_1}{dx_1} = \frac{x_1 + y_1}{x_1 - y_1}$$

tenglamani hosil qilamiz, buni $\frac{y_1}{x_1} = u$ almashtirish yordamida o'zgaruvchilari ajraladigan

tenglamaga ega bo'lamiz $x \frac{du}{dx_1} = \frac{1-u^2}{1-u}$. Hosil bo'lgan tenglamada o'zgaruvchilarni ajratamiz

$$\frac{1+u^2}{1-u}du = \frac{dx_1}{x_1}$$
. Buni integrallab, $arctgu = \ln \left| Cx_1\sqrt{1+u^2} \right|$ yoki $Cx_1\sqrt{1+u^2} = e^{arctgu}$ ni topamiz.

$$u = \frac{y_1}{x_1}$$
 ekanligidan

 $C\sqrt{x_1^2+y_1^2}=e^{arctg\frac{y_1}{x_1}}$ ni hosil qilamiz. Nihoyat, x va y o'zgaruvchilarga o'tib, natijada $C\sqrt{(x-2)^2+(y-2)^2}=e^{arctg\frac{y-1}{x-2}}$ tenglikni hosil qilamiz.

4. Birinchi tartibli chiziqli differensial tenglama

Birinchi tartibli chiziqli differensial tenglama deb noma'lum funksiya va uning hosilasiga nisbatan chiziqli bo'lgan differensial tenglamaga aytiladi. Uning umumiy ko'rinishi

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{1}$$

shaklda bo'ladi, bunda P(x) va Q(x) lar x ning uzluksiz funksiyalaridir. (1) tenglamani yechimimni ning x ikkita noma'lum differensiyallanuvchi funksiyalar ko'paytmasi shaklida izlaymiz.

$$y = u(x) \cdot v(x) \tag{2}$$

Bu funksiyalardan birini ixtiyoriy ma'lum shartni qanoatlantiradigan qilib olish, ikkinchisini esa (1) tenglamaga asosan aniqlaydi. U holda (2) dan

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} \tag{3}$$

y va $\frac{dy}{dx}$ larni (2) va (3)dagi ifodalarini (1) ga qo'yib,

$$u\frac{dv}{dx} + v\frac{du}{dx} + puv = Q$$

yoki

$$u\left(\frac{dv}{dx} + pv\right) + v\frac{du}{dx} = Q\tag{4}$$

ni hosil qilamiz. Bundan v funksiyani tenglama o'rinli bo'ladigan qilib tanlaymiz. Bu differensial tenglamada o'zgaruvchilarni v ga nisbatan ajratamiz. $\frac{dv}{v} = -pdx$, buni integrallab $\ln |v| = -\int pdx + C_0$ yoki $v = C_1 e^{-\int pdx}$, bu yerda $C_1 = \pm e^{C_0}$ deb olingan. (4) tenglamaning noldan

$$v(x) = e^{-\int pdx} \tag{6}$$

ya'ni $C_1 = 1$ bo'lganda, olishimiz kifoya, bunda $\int pdx$ biror boshlang'ich funksiya $v(x) \neq 0$ bo'lishi o'z-o'zidan ravshan. v(x) ning topilgan qiymatini (4) ga qo'yib, $\frac{dv}{dx} + pv = 0$ ekanligini e'tiborga olib,

 $v(x)\frac{du}{dx} = Q(x)$ yoki $\frac{du}{dx} = \frac{Q(x)}{v(x)}$ yoki $\frac{du}{dx} = Q(x)e^{\int p(x)dx}$ tenglamani hosil qilamiz. Bundan $v = \int Q(x)e^{-\int p(x)dx}dx + C$ (7)

ekanligi kelib chiqadi. u va v larni topilgan qiymatlarini (2) ga qo'ysak, natijada

farqli biror yechimini topish yetarli bo'lgani uchun v(x) funksiya, deb

$$y = e^{\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$$
 (8)

hosil bo'ladi. Bu (1) tenglamaning umumiy yechimidir. $y|_{x=x_0} = y_0$ bo'ladigan xususiy yechimini

topish, ya'ni Koshi masalasini yechsak, $y = e^{\int_{x_0}^x p(t)dt} \left[\int_{x_0}^x Q(t)e^{\int_{x_0}^x p(t)dt} dt + y_0 \right]$ bo'ladi.

5-misol: $\frac{dy}{dx} - \frac{2}{x+1}y = (x+1)$ chiziqli diiferensial tenglamani yeching.

Yechish: y = uv deb faraz qilsak, u holda $\frac{dy}{dx} = u\frac{du}{dx} + v\frac{du}{dx}$ bo'ladi. $\frac{dy}{dx}$ hosila ifodasini dastlabki tenglamaga qo'ysak. $\frac{dy}{dx} + v\frac{du}{dx} - \frac{2}{x+1}uv = (x+1)^3$ yoki $u\left(\frac{dv}{dx} - \frac{2}{x+1}v\right) + v\frac{du}{dx} = (x+1)^3$ ko'rinishda bo'ladi, bundan v ni aniqlaymiz va quyidagi $\frac{dv}{dx} - \frac{2}{x+1}v = 0$ yoki $\frac{dv}{v} = \frac{2dx}{x+1}$

tenglamani hosil qilamiz. Uni integrallab, $\ln |v| = 2\ln |x+1| + \ln C \implies v = C_0(x+1)^2$ tenglikni hosil qilamiz, bundan $v = \pm C_0(x+1)^2$, $v = C_1(x+1)^2$, $C_1 = 1$ desak, $v = (x+1)^2$ bo'ladi. v ni topilgan ifodasini (8)ga qo'yib u ni topish uchun $(x+1)^2 \frac{du}{dx} = (x+1)^3$ yoki $\frac{du}{dx} = x+1$ tenglamani hosil qilamiz, bundan $u = \frac{(x+1)^2}{2} + C$ ekanligi kelib chiqadi. Demak, berilgan tenglamani umumiy yechimi $y = (x+1)^2 \left(\frac{(x+1)^2}{2} + C\right)$ yoki $y = \frac{1}{2}(x+1)^4 + C(x+1)^2$ bo'ladi. Berilgan tenglamani yechimini (8) formulaga asosan topsak, $P(x) = -\frac{2}{x+1}$, $Q(x) = (x+1)^8$ bo'lgani uchun

$$y = e^{-\int \left(-\frac{2}{x+1}\right) dx} \left[\int (x+1)^3 e^{\int \left(-\frac{2}{x+1}\right) dx} dx + C \right]$$

umumiy yechim bo'ladi. Bundan

$$y = e^{2\ln|x+1|} \left[\int (x+1)^3 e^{-2\ln|x+1|} dx + C \right] = (x+1)^2 \left[\int (x+1)^3 \frac{1}{(x+1)^2} dx + C \right] = (x+1)^2 \left[\int (x+$$

Demak, berilgan differensial tenglamani umumiy yechimi $y = \frac{1}{2}(x+1)^4 + C(x+1)^2$ bo'ladi.