1 Derivação implícita

Questão 1:

Suponha que f(x) é uma função que satisfaz $f(x) \ge 0$ e a equação $x^2 + f(x)^2 = 1$.

- a) Para quais valores de x existe f(x)?
- b) Podemos expressar f(x) explicitamente em termos de x?
- c) Imaginando agora que $f(x) \leq 0$, expresse f(x) explicitamente em termos de x.

Questão 2:

Considere a curva formada pelos pontos que satisfazem $x^3 + y^3 = 6xy$ e veja o seu gráfico abaixo. Ela é chamada Folium de Descartes.

- a) Verifique que os pontos (0,0) e (3,3) são pontos da curva, mas que (1,1) não é.
- b) Observando a figura, verifique que podemos encontrar, dentro do Folium de Descartes, o gráfico de 3 funções $f_1(x)$, $f_2(x)$ e $f_3(x)$, definidas para x no intervalo (1.8, 2.2). Pinte esses gráficos.
- c) Mesmo reconhecendo o gráfico das funções do item anterior, não conseguimos explicitálas. Por isso, dizemos que que elas são funções da variável x definidas implicitamente. Imaginando que y é dado implicitamente em termos de x, encontre $\frac{dy}{dx}$.
- d) Encontre a inclinação da reta tangente à curva no ponto (3, 3).

Questão 3:

Para a curva abaixo, determine os pontos onde inclinação da reta tangente vale 1

$$x^2 + y^2 - xy = 1.$$

Questão 4:

Seja $y^2 = x^2 + \operatorname{sen}(xy)$. Se y é dado implicitamente em termos de x, determine $\frac{dy}{dx}$.

Cálculo Diferencial e Integral I Derivação implícita; Primitivas (continuação)

Questão 5:

Considere um tanque cilíndrico de raio 1m com água dentro atingindo uma altura h.

- a) Escreva o volume da água dentro do tanque em função da altura h.
- b) Se abrirmos uma torneira na parte de baixo do tanque, a água irá escoar, fazendo com que a altura de água prenchida mude em função do tempo. Por consequência, o volume também. Encontre uma expressão que relacione $\frac{dV}{dt}$ e $\frac{dh}{dt}$.
- c) Se a água escoa uma taxa de $3000\,\mathrm{L/min}$, qual é a taxa de variação da altura da água em função do tempo?

Questão 6:

Ar está sendo injetado em um balão esférico à uma taxa de $100\,\mathrm{cm}^3/\mathrm{s}$. Quão rápido o raio do balão está aumentando no momento em que o diâmetro é $50\,\mathrm{cm}$?

2 Primitivas

Definição: uma função F é uma primitiva de f se F'(x) = f(x).

Questão 7:

Encontre pelo menos uma primitiva para cada função abaixo.

- a) f(x) = 2.
- b) f(x) = 2x.
- c) $f(x) = 3x^2$.
- d) $f(x) = x^2$.
- e) $f(x) = x^a, a \neq -1$.
- f) f(x) = 0.
- g) $f(x) = \cos(x)$.
- $h) f(x) = -\sin(x).$
- i) $f(x) = \operatorname{sen}(x)$.
- i) $f(x) = \sec^2(x)$.
- k) $f(x) = \sec(x) \operatorname{tg}(x)$.
- 1) $f(x) = e^x$.
- m) $f(x) = a^x \ln(a), 0 < a \neq 1.$
- n) $f(x) = a^x$, $0 < a \ne 1$.

Cálculo Diferencial e Integral I Derivação implícita; Primitivas (continuação)

Questão 8:

Sejam f(x) = 1/x e $g(x) = \ln(x)$.

- a) Para quais valores de x está definida f(x)? E g(x)?
- b) Seja $h(x) = \ln |x|$. Para quais valores de x está definida h(x)?
- c) Calcule a derivada de h(x) em cada ponto onde ela está definida.
- d) h(x) é uma primitiva de f(x)?

Questão 9:

Encontre a única primitiva F de $f(x) = \cos(x) + x^3$ tal que F(0) = 3.