Mathematics

Robin Adams

September 11, 2023

Contents

1	Sets	s and Functions	į
	1.1	Primitive Terms	
	1.2	Definitions Used in the Axioms	
	1.3	The Axioms	6

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be *sets*.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f:A\to C$, the *composite* of f and g.

For any set A, let there be a function $id_A:A\to A$, the *identity* function on A.

Let there be a set 1, the terminal set.

For any sets A and B, let there be a set $A \times B$, the *product* of A and B, and functions $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$, the *projections*.

Given functions $f:A\to B$ and $g:A\to C$, let there be a function $\langle f,g\rangle:A\to B,C.$

1.2 Definitions Used in the Axioms

Definition 1.1 (Injective). A function $f: A \to B$ is *injective* iff, for every set X and functions $x, y: X \to A$, if fx = fy then x = y.

Definition 1.2 (Element). For any set A, an *element* of A is a function $1 \to a$. We write $a \in A$ for $a: 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for $f \circ a: 1 \to B$.

Definition 1.3 (Surjective). A function $f: A \to B$ is *surjective* iff, for every element $b \in B$, there exists $a \in A$ such that f(a) = b.

Definition 1.4. Given functions $f: A \to B$ and $g: C \to D$, let $f \times g = \langle f \circ \pi_1, g \circ \pi_2 \rangle$.

Definition 1.5 (Function Set). Let A and B be sets. A function set from A to B consists of a set B^A and function $\epsilon: B^A \times A \to B$ such that, for any set

I and function $q: I \times A \to B$, there exists a unique function $\lambda q: I \to B^A$ such that $\epsilon \circ (\lambda q \times \mathrm{id}_A) = q$.

Definition 1.6 (Pullback). Let $p:A\to B,\ q:A\to C,\ f:B\to D$ and $g:C\to D$. Then we say that $A,\ p$ and q form the *pullback* of f and g if and only if:

- fp = gq
- For any set X and functions $x: X \to B$, $y: X \to C$ such that fx = gy, there exists a unique function $(x,y): X \to A$ such that p(x,y) = x and q(x,y) = y.

We also say p is the pullback of g along f, or q is the pullback of f along g. In the case g is injective, we also say A and p form the *inverse image* of g under f.

$$A \xrightarrow{p} B$$

$$\downarrow f$$

$$C \xrightarrow{g} D$$

1.3 The Axioms

Axiom 1.7 (Associativity). Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h(qf) = (hq)f$$
.

Axiom 1.8 (Unit Laws). For any function $f: A \to B$, we have $id_B \circ f = f \circ id_A = f$.

Axiom 1.9 (Terminal Set). For any set X, there is exactly one function $X \to 1$.

Axiom 1.10 (Empty Set). There exists a set that has no elements.

Axiom 1.11 (Extensionality). Let A and B be sets and $f, g : A \to B$. If $\forall a \in A. f(a) = g(a)$ then f = g.

Axiom 1.12 (Products). Let $f: A \to B$ and $g: A \to C$. Then $\langle f, g \rangle$ is the unique function $A \to B \times C$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Axiom 1.13 (Function Sets). Any two sets have a function set.

Axiom 1.14 (Inverse Images). Given any function $f: X \to Y$ and element $y \in Y$, then there exists a pullback of f and y.

1.4. FUNCTIONS 7

Axiom 1.15 (Subset Classifier). There exists a set 2 and element $T \in 2$ such that, for any sets A and X and injective function $j: A \rightarrow X$, there exists a unique function $\chi: X \rightarrow 2$ such that j and the unique function $A \rightarrow 1$ form the pullback of T and X.

Axiom 1.16 (Natural Numbers Set). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for any set A, element $a \in A$ and function $f : A \to A$, there exists a unique function $r : \mathbb{N} \to A$ such that r(0) = a and $f \circ r = r \circ s$.

Axiom 1.17 (Choice). For any surjective function $r: A \to B$, there exists $s: B \to A$ such that $rs = id_B$.

1.4 Functions

Proposition 1.18. Let $f: A \to B$, $g: B \to C$ and $a \in A$. Then

$$(g \circ f)(a) = g(f(a)) .$$

Proof: Immediate from the Axiom of Associativity. \square