Compact Implantable Antenna for Leadless Cardiac Pacemaker System

Murray Brown (BEng) and Hongjian Sun

Motivation

- Reduced complications in implantation
- Improved patient monitoring
- Patient comfort

Objectives

- Enhanced Bandwidth: improve the bandwidth of the system for greater data rates and for tolerance to detuning in implantation
- Compact Size: miniaturise the design to fit in a leadless pacemaker
- 2.4GHz ISM Band: operate in Bluetooth low energy to communicated with patient smartphones

Contribution

- Implementing a shorting pin for improved bandwidth and miniaturisation.
- Achieveing a miniaturised 3 X 3 X 0.71 mm footprint

Simulation Setup $300~\mathrm{mm}$ Radiation Box Musele Simulation in a homogeneous heart phantom.

gain across the 2.4GHz band to achieve communication with patient smart-

Proposed Antenna Dimensions

Current Distribution

Top and bottom current paths at 2.3 GHz and 2.5 GHz showing alternative paths for lower and higher frequencies

Conclusion

- The proposed dimensions are close to the smallest in the literature while attaining an improved simulated fractional bandwidth of 20.0%.
- Miniaturisation is achieved through a shorting pin and spiral meander pattern.
- Fabrication and real world testing is needed to validate the design

Specific Absorption Rate

phones.

The specific Absorption Rate of this design adheres to IEEE C95.1-1999 in multiple different simulation scenarios

ACKNOWLEDGEMENT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 872172 (TESTBED2 project: www.testbed2.org

2 PAGE CONFERENCE PAPER QR CODE

Murray Brown

Durham University - Engineering Undergraduate Student

Murray.Brown@Durham.ac.uk

https://github.com/Murray-Br/