Telemetriecomputer Modellrakete Semesterausblick

Elektronische Produktentwicklung 1 MECH-B-4-AED-EPE1-ILV

Bachelorstudium - Mechatronik, Design and Innovation

5. Semester

Lektor: Dipl.-Ing.(FH) Mathias Gfall

Gruppe: BA-MECH-22

Autor: Reimeir Benedikt, Peer Samuel

17. September 2024

Inhaltsverzeichnis

1	Projektüberblick							
	1.1	aktueller Stand	1					
	1.2	Gewünschtes Endresultat	1					
	1.3	Messablauf	2					
	1.4	Meilensteine und Zeitplan	2					
Abbildungsverzeichnis								
Literaturverzeichnis								

1 Projektüberblick

Dieses Semesterprojekt ist die Weiterentwicklung des Telemetriecomputers für eine Modellrakete. Das Projekt begann im Sommersemester 2024 und in diesem Zeitraum wurde das fertige PCB gefertigt.

1.1 AKTUELLER STAND

Zum Ende des Sommersemesters war die Platine soweit, dass sie mittels Microchip Studio verbunden und geflasht werden kann.

Abbildung 1.1: PCB

1.2 GEWÜNSCHTES ENDRESULTAT

Endziel des aktuellen Semesters ist es eine Messung in einer Modellrakete durchzuführen und somit wie bereits im Sommersemester angekündigt den Q_{max} in der Steigphase zu bestimmen. Der maximale aerodynamische Staudruck auf die Rakete folgt nachstehender Beziehung [1]:

$$Q_{max} = \frac{\rho}{2} v_{max}^2 \tag{1}$$

Die Datenerfassung findet nach wie vor mithilfe des ADXL-326 Beschleunigungssensors statt. Dieser liefert ein Analogsignal für jede Achse.

Abbildung 1.2: ADXL 326

1.3 MESSABLAUF

Die Beschleunigungsdaten des Sensors werden am Analogeingang des Microcontrollers eingelesen und durch einmalige Integration in den korrespondierenden Geschwindigkeitsvektor umgerechent. [2]

$$\vec{v} = \int \vec{a} \, dt \tag{2}$$

Denn es gilt im Umkehrschluss:

$$a(t) = \frac{\partial v}{\partial t} \tag{3}$$

1.4 MEILENSTEINE UND ZEITPLAN

Auf dem Weg zur Vollendung des Projekts, gibt es einige essentielle Zwischenetappen, die zu erreichen sind.

Meilenstein	Datum
Einlesen der Beschleunigungsdaten	30.09.2024
Speichern der Daten auf die SD-Karte	15.10.2024
Feldversuch mit der Rakete	30.10.2024

Sind die Meilensteine 1 bis 4 erfolgreich abgearbeitet, steht ein mögliches Re-Design des PCB an. Da das PCB schlussendlich in einer Rakete Platz finden soll, ist Zweck des Re-Designs eine Miniaturisierung der Baugruppe, da wie in Abbildung 1.1 erkenntlich ist, hier sicher noch Optimierungsbedarf herrscht.

Abbildungsverzeichnis

1.1	PCB	 	
1.2	ADXL 326	 	

Literaturverzeichnis VERZEICHNISSE

Literaturverzeichnis

- [1] D. Bernoulli, "Hydrodynamica," Author, 1738.
- [2] J. S. W. A. Dietmar Gross, Werner Hauger, *Technische Mechanik 3*, 14th ed. Berlin, Deutschland: Springer, 2019.