

VICTOR FONSECA
OCTOBER 2019

The challenge

How many bikes are demanded for rental in San Francisco every hour?

Ford 2 Go - Lyft

- More than 300 stations and more than
 6,000 bikes available for rental
- Affordable prices start at \$2/30 minutes ride, or \$5/year (membership)
- Recently acquired by Lyft and rebranded to **Bay Wheels**

Available data

FordGoBike 2017-2019

Cleaned and merged bike sharing transactions from July-17 to April-2019

- Start and end station
- Date and time
- 6M transactions
- 16k stations-hour

World Weather Online API

Weather Data and API for Businesses and Developers

- Weather conditions history for San
 Francisco between 2017 and 2019
- Hourly data: 16k observations

Project walkthrough

Exploratory analysis

- Charts to describe the predictors and raise hypothesis
 - Matplotlib
 - Seaborn
 - Folium

collect weather information

Download the

Kaggle dataset Build the API to

Data collection

- **Requests**
- Beautiful Soup
- Time

Modelling

04

- **Linear Regression**
- **Decision Trees**
 - Scikit-learn

Data Preparation

- Aggregate transactional data by hour
- Merge weather conditions (temperature, weather description, rain)
- Create additional variables (holidays, season, month, day, working day, weekday, hour, city, log)
 - **Pandas**
 - Numpy

WeCloudData

03

Ford GoBike System

Rentals by month

Rentals by weekday

WeCLoudData

Rentals by hour

Rentals by weekday and hour

Rentals by weather condition

Linear Regression

Log transformation

Linear Regression

R2 - Train	R2 - Test	MSE
0.8707	0.8667	0.3417

Decision Tree

Recommendations

- Investigate the models both seem to be good for predictions
- Incorporate new information to the model (school calendar, weather specifics, membership, etc)
- Stations demand forecast model
- Stochastic models