Предел последовательности

В дальнейшем будем пользоваться символами ∃ и ∀.

∃ означает "существует", ∀ означает "для каждого".

Последовательность – это функция натурального аргумента.

Обозначение последовательности: x_n , n = 1, 2, ...

Здесь n — аргумент (независимая переменная). Вообще для функций принято обозначение, при котором аргумент ставится в круглые скобки, но для последовательностей по традиции ставят аргумент в виде индекса, т.е. вместо x(n) обычно пишут x_n .

 $\underline{\mathsf{Oпределениe}}.$ Число a называется **пределом** последовательности x_n ,

если $\forall \varepsilon > 0 \; \exists \; N$, что $\forall n > N$ выполняется условие

$$|x_n - a| < \varepsilon \tag{1}$$

<u>Определение</u>. **эпсилон-окрестностью** числа a называется интервал $(a - \varepsilon, a + \varepsilon)$, т.е. множество всех x, удовлетворяющих неравенству $a - \varepsilon < x < a + \varepsilon$.

Для краткости будем говорить просто окрестность. Используя понятие окрестности, можно дать равносильное определение предела.

Определение. Число a называется **пределом** последовательности x_n , если для каждой ε -окрестности числа a найдется число N, что для всех n>N члены последовательности x_n принадлежат этой окрестности.

Обозначения: $a=\lim_{n \to +\infty} x_n \;\;$ или $x_n \to a \;$ при $n \to +\infty.$

Пример.
$$x_n = \frac{n+1}{n}$$
.

Имеем
$$x_1=2$$
, $x_3=\frac{4}{3}=1{,}33\ldots$, $x_5=1{,}2$, $x_{10}=1{,}1\ldots$

Видим, что x_n приближается к 1 по мере увеличения номера. Можно предположить, что $x_n \to 1$ при $n \to +\infty$. Проверим это предположение, применив определение.

Задаем любое число $\varepsilon>0$. Если наше предположение верно, то начиная с некоторого номера должно выполняться условие $|x_n-1|<\varepsilon$, т.е.

$$\left|\frac{n+1}{n} - 1\right| < \varepsilon \tag{2}$$

Отсюда получаем $\frac{1}{n} < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$.

Например, при $\varepsilon=0.1$ получаем n>10, т.е. начиная с n=11, будет выполняться (2).

При arepsilon=0.01 получаем n>100, т.е. начиная с n=101, будет выполняться (2) и т.д. .

Итак, согласно определению предела получаем, что $x_n \to 1$ при $n \to +\infty$.

<u>Определение</u>. Последовательность x_n называется **ограниченной**, если существует такое число M, что справедливо неравенство $|x_n| \le M$, n = 1,2,3,...

Если неравенство $|x_n| \le M$ заменить на $x_n \le M$ или на $x_n \ge M$, то последовательность называется ограниченной сверху или ограниченной снизу.

Определение. Последовательность x_n называется возрастающей (убывающей), если $m > n \Rightarrow x_m > x_n$ ($m > n \Rightarrow x_m < x_n$).

<u>Определение</u>. Последовательность x_n называется **невозрастающей** (**неубывающей**), если $m>n \Rightarrow x_m \leq x_n \ (m>n \Rightarrow x_m \geq x_n)$.

<u>Определение</u>. Последовательность называется **монотонной**, если она либо возрастающая либо убывающая.

Примеры.

1. $x_n = \sin(\pi n/6)/n$. Очевидно, $|x_n| < 1$, значит, последовательность ограниченная. Далее

x_1	x_2	x_3	x_4	x_5
0,5	$\sqrt{3}/4$	1/3	$\sqrt{3}/8$	0,1

Может показаться, что последовательность убывающая, но это не так. Проверить самостоятельно.

2. $x_n = [n/3]$, т.е. целая часть от деления n на 3.

x_1	x_2	x_3	x_4	x_5
0	0	1	1	1

Последовательность неограниченная и неубывающая. Проверить самостоятельно.

Основные теоремы о пределах

- 1. Последовательность не может иметь более одного предела. <u>Доказательство</u>. Предположим, что это не так, т.е. существуют два предела $a = \lim_{n \to +\infty} x_n \;, \quad b = \lim_{n \to +\infty} x_n \;, \quad \text{причем } a \neq b \;.$ Рассмотрим непересекающиеся окрестности точек a и b. По определению предела, начиная с некоторого номера, точка x_n должна принадлежать обеим окрестностям, а это невозможно, так как они не пересекаются.
- 2. Последовательность, имеющая предел, ограничена.

<u>Доказательство</u> . Пусть $x_n o a$. Зададим число $\varepsilon>0$. По определению предела имеем $a-\varepsilon < x_n < a+\varepsilon$ при n>N .

Обозначим $M_1 = \max(|a-\varepsilon|, |a+\varepsilon|)$. Очевидно, что $|x_n| < M_1$ при n > N Пусть $M = \max(x_1, x_2, ..., x_N, M_1)$. Тогда $|x_n| < M$ при всех n, что и требовалось доказать.

Остальные теоремы без доказательства.

- 3. $\lim_{n\to+\infty} (cx_n) = c \lim_{n\to+\infty} x_n$
- 4. $\lim_{n\to+\infty} (x_n + y_n) = \lim_{n\to+\infty} x_n + \lim_{n\to+\infty} y_n$
- 5. $\lim_{n\to+\infty} (x_n \cdot y_n) = \lim_{n\to+\infty} x_n \cdot \lim_{n\to+\infty} y_n$
- 6. $\lim_{n\to+\infty}(x_n/y_n)=\lim_{n\to+\infty}x_n/\lim_{n\to+\infty}y_n$, если $\lim_{n\to+\infty}y_n\neq 0$.
- 7. Если $x_n \leq y_n$, n=1,2 ,3, ... , то $\lim_{n \to +\infty} x_n \leq \lim_{n \to +\infty} y_n$

Признаки существования предела

Теорема 1. (Больцано-Вейерштрасса)

Из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность. <u>Доказательство</u>. По условию $-M \le x_n \le M$. Обозначим $a_1 = -M$; $b_1 = M$; $c_1 = (a_1 + b_1)/2$ и рассмотрим отрезки $\begin{bmatrix} a_1;c \end{bmatrix}$, $\begin{bmatrix} c;b_1 \end{bmatrix}$. Хотя бы один из них содержит бесконечное число \mathbf{x}_n , например, $\begin{bmatrix} a_1;c \end{bmatrix}$. Обозначим $a_2 = a_1;b_2 = c_1;c_2 = (a_2 + b_2)/2$ и т.д. . Получаем последовательность вложенных отрезков $I_1 \supseteq I_2 \supseteq ... \supseteq I_n \supseteq ...$, причем

каждый следующий в два раза короче предыдущего. По лемме о вложенных отрезках $\exists c \in \bigcap_{n=1}^{+\infty} I_n$.

В каждом отрезке выберем точку. Получим последовательность x_n и докажем, что $\lim_{n\to+\infty}x_n=c$. Зададим ε и найдем такое N , что при всех n>N будет $|x_n-c|<\varepsilon$

Действительно, начиная с некоторого N+1, длина отрезка $[a_n,\ b_n]$ будет меньше ε . Но x_n и c принадлежат $[a_n,\ b_n]$ и, значит, удовлетворяют условию (3).

Теорема 2. Монотонная и ограниченная последовательность имеет предел.

Доказательство.

Пусть, например, $A = \{a_n, n=1,2,3,...\}$ — возрастающая ограниченная последовательность и $\alpha = \sup A$. Сравнивая определения предела и супремума , получаем

$$\lim_{n\to+\infty}a_n=\alpha.$$

Теорема 3. О сжатой переменной.

Пусть последовательности x_n, y_n, z_n удовлетворяют условию

$$x_n \le y_n \le z_n \tag{4}$$

Если $\lim_{n\to +\infty} x_n = \lim_{n\to +\infty} z_n = a$, то $\lim_{n\to +\infty} y_n$ существует и тоже равен a.

<u>Доказательство</u>. Задаем $\varepsilon>0$. Рассмотрим окрестность числа a. По определению предела найдется номер, начиная с которого члены последовательностей x_n , z_n принадлежат этой окрестности . Тогда в силу условия (1) y_n тоже принадлежит этой ε -окрестности, что требовалось доказать.

<u>Определение</u>. Последовательность x_n называется **сходящейся в себе** (**фундаментальной**), если $\forall \varepsilon > 0 \quad \exists N$, что для любых n_1, n_2 бо'льших, чем N, выполняется неравенство

$$\left|x_{n_1} - x_{n_2}\right| < \varepsilon$$

Теорема 4. Признак Коши.

Сходящаяся в себе последовательность имеет предел. (Без доказательства).

Бесконечно малые последовательности

Определение. Последовательность называется бесконечно малой, если ее предел равен нулю.

Лемма. Для того , чтобы число a было пределом последовательности x_n , необходимо и достаточно, чтобы x_n можно было представить в виде $x_n=a+\alpha_n$, где α_n —бесконечно малая. Доказательство.

1) Необходимость.

Дано:
$$a=\lim_{n\to+\infty}x_n$$
 . Обозначим $\alpha_n=x_n-a$. По условию $|x_n-a|<\varepsilon$ при $n>N$, т.е. $|\alpha_n|<\varepsilon$. Значит, $\alpha_n\to 0$ при $n\to+\infty$.

2) Достаточность.

Те же рассуждения, что и в 1), только в обратном порядке.

В дальнейшем ради краткости будем писать вместо бесконечно малая просто б.м. .

Свойства бесконечно малых

- 1. x_n является б.м. тогда и только тогда, когда $|x_n|$ является б.м.
- 2. Произведение б.м. на ограниченную последовательность тоже б.м. .
- 3. Произведение двух б.м. тоже б.м.
- 4. Сумма двух б.м. тоже б.м.

Эти свойства следуют из теорем о пределах. Например, докажем 2.

Пусть x_n б.м., а y_n ограниченная. Тогда $0 \le |x_n y_n| \le |x_n| M$.

Далее имеем $|x_n|M \to 0 \cdot M = 0$. По теореме о сжатой переменной получаем $|x_ny_n| \to 0$.

<u>Замечание</u>. Отношение двух б.м. не обязательно является б.м. . Например, пусть $x_n = \frac{1}{n}$, $y_n = \frac{1}{n^2}$. Тогда $x_n/y_n = n \to \infty$.

Сравнение бесконечно малых

Пусть x_n и y_n — б.м. и $\lim_{n\to+\infty}(x_n/y_n)=q$

Определение. x_n и y_n называются бесконечно малыми **одного порядка** , если $q \neq 0$.

Если к тому же q=1 , то $\ x_n$ и $\ y_n$ называются **эквивалентными** б.м. .

Обозначение $x_n \sim y_n$.

<u>Определение</u>. Если q=0, то x_n называется б.м. **более высокого порядка**, чем y_n . Обозначение $x_n=o(y_n)$.

Попросту это означает , что x_n стремится к 0 "быстрее", чем y_n . Пусть, например, $x_n=\frac{1}{n^2}$, $y_n=\frac{1}{n}$. Очевидно, $x_n/y_n=1/n\to 0$, т.е. $x_n=o(y_n)$. Например, начиная с номера n=11 будет $x_n<0$,01, а $y_n<0$,01 только начиная с номера n=101.

Свойства эквивалентных бесконечно малых

Соотношение эквивалентность отчасти похоже на равенство, но имеются существенные отличия.

- 1. Если $x_n \sim y_n$ и $c \neq 0$, то $cx_n \sim cy_n$.
- 2. Если $x_n \sim y_n$ и $y_n \sim z_n$, то $x_n \sim z_n$.
- 3. Если $x_n \sim y_n$ и $u_n \sim v_n$, то $x_n u_n \sim y_n v_n$
- 4. Если $y_n=x_n+u_n$, где $u_n=o(x_n)$, то $y_n\sim x_n$
- 5. Если $x_n \sim y_n$ и $u_n \sim v_n$, то $x_n + u_n$ не обязательно $\sim y_n + v_n$.

Доказательства.

- 1. и 2. Самостоятельно.
- 3. Имеем

$$\lim_{n \to +\infty} \frac{x_n u_n}{y_n v_n} = \lim_{n \to +\infty} \frac{x_n}{y_n} \cdot \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

4. Самостоятельно.

5. Пусть
$$x_n=\frac{1}{n}$$
, $y_n=\frac{1}{n}+\frac{1}{n^3}$, $u_n=-\frac{1}{n}+\frac{1}{n^2}$, $v_n=-\frac{1}{n}+\frac{1}{n^3}$
Имеем $x_n+u_n=\frac{1}{n^2}$, $y_n+v_n=\frac{2}{n^3}$. Очевидно, x_n+u_n не $\sim y_n+v_n$

Примеры.

1.
$$\lim_{n\to+\infty} (4n^2+1)/(3n^2+2) = \frac{4}{3}$$

2.
$$\lim_{n\to+\infty} (10n^{2/3} + \sqrt{n} + 1)/(3n^{3/4} + 2) = 0$$

Бесконечно большие последовательности

<u>Определение</u>. Последовательность x_n называется **бесконечно большой** (б.б.), если $\forall M>0 \ \exists N,$ что при всех n>N выполняется $|x_n|>M.$

Обозначение: $\lim_{n \to +\infty} x_n = \infty$ или $x_n \to \infty$.

Если, начиная с некоторого номера, все члены последовательности имеют один и тот же знак, то соответственно $\lim_{n\to+\infty} x_n = +\infty$ или $\lim_{n\to+\infty} x_n = -\infty$.

Свойства бесконечно больших

- 1. Если $x_n 6.6$., то $1/x_n 6.м$.
- 2. Если $x_n 6.6$., то cx_n тоже б.б. (при $c \neq 0$). Отметим, что произведение б.б. на ограниченную последовательность не всегда является б.б. Например, $x_n = n \sin(\pi n/2)$ (объясните, почему).
- 3. Если x_n и y_n б. б. , то $x_n \cdot y_n$ тоже б.б.
- 4. Если x_n и y_n-6 . б. , то $z_n=x_n+y_n$ не всегда б.б. . Возможны также случаи: а) z_n-6 .м.; б) z_n имеет конечный предел, не равный 0; в) z_n не имеет предела. Вот пример к случаю а), $x_n=n$, $y_n=-n+\frac{1}{n}\Longrightarrow z_n=\frac{1}{n}\longrightarrow 0$.

К б) и в) приведите примеры самостоятельно.

<u>Упражнение</u>. Найти пределы при $n \to +\infty$ последовательностей $x_n = \sqrt{n^2 + n^{3/4}} - n, \ y_n = \sqrt{n^2 + n} - n, \ z_n = \sqrt{n^2 + 1} - n$

Сравнение бесконечно больших

Похоже на сравнение бесконечно малых, но есть и отличия.

Пусть
$$x_n$$
 и $y_n-6.6$. и $\lim_{n\to+\infty}(x_n/y_n)=q$

Определение. x_n и y_n называются бесконечно большими **одного порядка** , если $q \neq 0$.

Если к тому же q=1 , то $\ x_n$ и $\ y_n$ называются эквивалентными б.б. .

Обозначение $x_n \sim y_n$.

<u>Определение</u>. Если q=0, то y_n называется бесконечно большой **более высокого порядка**, чем x_n . (*сравните с соответствующим свойством бесконечно малых*)

Обозначение $x_n = o(y_n)$.

Попросту это означает , что y_n стремится к ∞ "быстрее", чем x_n . Пусть, например, $x_n=n$ и $y_n=n^2$. Очевидно, y_n- б.б. более высокого порядка, чем x_n .

Для бесконечно больших справедливо утверждение, аналогичное такому же для бесконечно малых.

Лемма. Если x_n и y_n- б. б. , причем x_n более высокого порядка, чем y_n , то $x_n\sim x_n+y_n$

Доказать самостоятельно.

Эту лемму удобно использовать при вычислении пределов, используя правило

<u>Правило</u>. Предел отношения или произведения бесконечно малых или бесконечно больших не изменится при замене их эквивалентными величинами.

Символы о и О

Символ "о" уже использовался для бесконечно малых и бесконечно больших (см. выше). Символ "О" имеет более широкий смысл, его можно применять к любым переменным величинам, хотя чаще всего она применяется к б.м. или б.б. .

Пусть $u \, v$ любые переменные величины.

Формула

$$v = O(u) \tag{4}$$

это просто краткая запись того факта, что существует такая постоянная c>0, при которой справедливо неравенство $|v| \le c|u|$.

Например, пусть $v_n=n\sin(\pi n/2)$, $u_n=n\big(2+\sin(\pi n/2)\big)$. Очевидно, $|v_n|\leq |u_n|$, т.е. $v_n=O(u_n)$. Заметим, что v_n не является б.б. , но формула (4) применима.

Если u и v бесконечно малые, то (4) означает, что v стремится к 0 по крайней мере не медленнее, чем u, a, может, и быстрее.

Если u и v бесконечно большие, то (4) означает, что v стремится к ∞ не быстрее, чем u, а, может, и медленнее.

Примеры.

- 1. Сравним две б.м. : $u_n=1/n$, $v_n=\sin n/n$. Очевидно, $|v_n|\leq |u_n|$, поэтому $v_n=O(u_n)$. Заметим, что при этом u_n и v_n не являются б.м. одного порядка.(Почему?)
- 2. Вычислим $\lim_{n\to +\infty} (3^n-2^n)/(3^n+4^n)$. Имеем $3^n-2^n{\sim}3^n$, $3^n+4^n{\sim}4^n$. Отсюда $\lim_{n\to +\infty} 3^n/4^n=\lim_{n\to +\infty} 0$, $75^n=0$.
- 3. Последовательность x_n задана уравнением.

$$x_{n+1} = 0.5x_n + 1$$
, $n = 1.2.3...$, $x_1 = 0$ (5).

Найдем $\lim_{n\to+\infty} x_n$. Имеем

$$x_n = 0.5x_{n-1} + 1$$
.

Вычтем это уравнение из (5)

 $x_{n+1}-x_n=0.5(x_n-x_{n-1}),\;\;n=2.3.4\;\dots$. Эти разности образуют убывающую геометрическую прогрессию со знаменателем 0,5. Очевидно, $x_{n+1}-x_n\to 0$ при $n\to +\infty$. Далее вычтем x_n из обеих частей уравнения (5)

$$x_{n+1}-x_n=-0$$
,5 x_n+1 . Отсюда $x_n=2-2(x_{n+1}-x_n) o 2$.

Вопросы для самоконтроля

- 1) Пусть $\lim_{n\to+\infty} x_n = 0$. Обязательно ли, что $|x_{1000}| < |x_{10}|$?
- 2) Тот же вопрос, если дополнительно известно, что x_n монотонная последовательность.
- 3) Пусть $\lim_{n\to+\infty}x_n=0$, $y_n=x_n\sin n$. Является ли y_n бесконечно малой?
- 4) Пусть $\lim_{n \to +\infty} x_n = \infty$, $y_n = x_n \sin n$. Является ли y_n бесконечно большой?(более сложно)
- 5) Пусть $\lim_{n\to +\infty} x_n = \infty$, $|y_n| > 0,1$. Является ли $y_n x_n$ бесконечно большой?
- 6) Пусть $\lim_{n\to+\infty}x_n=\infty$. Может ли быть, что $\lim_{n\to+\infty}x_n/n=0$? А $\lim_{n\to+\infty}x_n/n=\infty$?
- 7) $x_n = n/(n+1)$, n=1,2,... Найти $supx_n$, $infx_n$, а также наибольшее и наименьшее x_n .
- 8) Верно ли, что : $n \sim n + \sqrt{n}$, $n \sim \sqrt{n^2 + \sqrt{n}}$?
- 9) Пусть $x_n=(-1)^ny_n$ и $\lim_{n\to+\infty}y_n=a$. При каком условии существует $\lim_{n\to+\infty}x_n$?
- 10) Маятник отклонили от положения равновесия на некоторый угол и отпустили. Каждую секунду отмечали его угловое отклонение от положения равновесия. Получили последовательность углов φ_n , $n=1,2,3,\dots$ Что можно сказать о поведении последовательности φ_n при $n\to +\infty$ при наличии трения и без него?