Algorithm 1: Generalization Algorithm for a wide range of inputs

Inputs:

Read y

Where y is the percentage of A in Fe_xA_yB .

Constraints:

i.
$$A \in \{Ni, Cr, Co, Mn\}, B \in \{S, Se, Te\}$$

ii. $x+y \leftarrow 100$, where x is the percentage of Fe in Fe_xA_yB.

iii.
$$0 < y \le 62.5$$
.

Read S_i for $i \leftarrow 1$ to 4

Where S_i is the percentage of element A on ith site of the structure Fe_xA_yB .

Constraints:

i.
$$S_i \leq \frac{1}{4*y} \times 100 \times 100$$

ii.
$$\sum_{i \leftarrow 1}^{4} S_i = 100$$

Step 1:

Convert percentage into real number to fit on our pretrained model

$$y' \leftarrow y \times \frac{16}{100}$$

$$x' \leftarrow 16 - y'$$

Step 2 (Reduction step):

Convert percentage values to the original range of 16

for
$$i \leftarrow 1$$
 to 4

$$S_i' \leftarrow y' \times \frac{S_i}{100}$$

Step 3:

Input $\frac{x'}{16}$, $\frac{y'}{16}$, and S'_i as the concentration of Fe, the concentration of A, and the number of atoms A on sites i=1 to 4.