NI USB-443x Specifications

Français	Deutsch	日本語	한국어	简体中文
ni.com/manuals				

This document lists specifications for the NI USB-443*x* devices. The specifications apply to both the NI USB-4431 and NI USB-4432 unless otherwise noted. These specifications are typical at 25 °C unless otherwise stated. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Caution The inputs of this sensitive test and measurement product are not protected for electromagnetic interference for functional reasons. As a result, this product may experience reduced measurement accuracy or other temporary performance degradation when cables are attached in an environment with electromagnetic interference present. Refer to the Declaration of Conformity (DoC) of this product for details of the standards applied to assess electromagnetic compatibility performance. To obtain the DoC, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Caution To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

Analog Input

Input channels
NI USB-44314
NI USB-44325
Input connector
PC communicationUSB 2.0
Power consumption2.5 W max
ADC resolution24 bits
ADC typeDelta-sigma
Sampling modeSimultaneous
Sample rates (f_s)
Range
Resolution ¹ ≤2.10 mS/s
Internal frequency timebase accuracy±100 ppm max

Depends on the sample rate. Refer to the Sample Rate and Update Rate, Accuracy and Coercion section of the NI Dynamic Signal Acquisition User Manual for more information.

Input range

NI USB-4431	±10 V _{pk}
NI USB-4432	±40 V _{pk}
FIFO buffer size	
Input coupling	AC or DC, each channel independently software
	selectable

Input Impedance

Terminal	NI USB-4431 Input Impedance	NI USB-4432 Input Impedance
Between positive input and negative input	200 kΩ 130 pF	800 kΩ ∥ 120 pF
Between negative input and chassis ground	1 kΩ	1 kΩ

Absolute Maximum Input Voltage

Input	Voltage (V _{pk})*
Positive terminal (+)	±60
Negative terminal (–)	±10

Notes: Voltages above those listed in this table may cause permanent damage to the device.

This is a stress rating only; specifications for the device are only valid when it is operated within its listed input range.

Al Gain Accuracy (NI USB-4431)

Temperature Range	Amplitude Accuracy (AC at 1 kHz)*†	Amplitude Accuracy (DC)*
10 °C to 40 °C	±0.025 dB typ	±0.15% typ
10 C to 40 C	±0.032 dB max	±0.3% max
−30 °C to 70 °C	±0.052 dB max	±0.5% max

 $^{^{\}ast}$ For sample rates lower than 40 kS/s, add 0.01 dB of AC error and 0.1% of DC error to both typical and maximum specifications.

^{*} Voltages with respect to chassis ground.

[†] Applies to both AC and DC coupling.

Al Gain Accuracy (NI USB-4432)

Temperature Range	Amplitude Accuracy (AC at 1 kHz)*	Amplitude Accuracy (DC)*
10 °C to 40 °C	±0.025 dB typ	±0.25% typ
10 C to 40 C	±0.035 dB max	±0.35% max
−30 °C to 70 °C	±0.055 dB max	±0.65% max

^{*} For sample rates lower than 40 kS/s, add 0.06 dB of AC error and 0.25% of DC error to both typical and maximum specifications.

AI interchannel gain mismatch (-30 °C to 70 °C)

NI USB-4431	0.01 dB at 1 kHz
NI USB-4432	0.015 dB at 1 kHz

AI Offset

Temperature Range	NI USB-4431 Offset*	NI USB-4432 Offset*
10 °C to 40 °C	±750 μV typ	±2.6 mV typ
10 °C to 40 °C	±2.25 mV max	±7 mV max
−30 °C to 70 °C	±6.25 mV max	±17 mV max

^{*} Source impedance ≤1 Ω. Offsets apply for both AC and DC coupling settings.

Al Frequency Response

Al Amplitude Flatness

±0.01 dB typ
±0.02 dB max
±0.02 dB typ
±0.05 dB max

AI phase linearity

$$f_{in} = 20 \text{ Hz to } 20 \text{ kHz} \dots \pm 0.01^{\circ}$$

 $f_{in} = 20 \text{ Hz to } 46.4 \text{ kHz} \dots \pm 0.05^{\circ}$

AI interchannel phase mismatch

$$(f_{in} \geq 100 \; \mathrm{Hz}).....0.02^{\circ}/\mathrm{kHz} \cdot f_{in} \; \mathrm{typ}, \, 0.04^{\circ}/\mathrm{kHz} \cdot f_{in} \; \mathrm{max}$$

-3 dB bandwidth......0.49 · f_s

AC coupling

NI USB-4431

-3 dB cutoff frequency0.8 Hz

-0.1 dB cutoff frequency6 Hz

NI USB-4432

-3 dB cutoff frequency	0.1 Hz
-0.1 dB cutoff frequency	0.7 Hz

ADC filter delay (nominal)......39 samples

Al Distortion Plus Noise (NI USB-4431)

Input Signal Frequency (fin)	THD*	THD+N*	
20 Hz to 20 kHz	–99 dB typ	−90 dB typ	
	–93 dB max	–84 dB max	
20 Hz to 46.4 kHz	−93 dB typ	-86 dB typ	
20 HZ to 40.4 KHZ	-87 dB max	-80 dB max	
$^*V_{in} = 8.9 \text{ V}_{pk}$			

Al Distortion Plus Noise (NI USB-4432)

Input Signal Frequency (f_{in})	THD*	THD+N*
20 Hz to 20 kHz	−97 dB typ	−92 dB typ
20 HZ to 20 KHZ	–91 dB max	-86 dB max
20 Hz to 46.4 kHz	−95 dB typ	−91 dB typ
20 HZ to 40.4 KHZ	-89 dB max	-85 dB max
$^*V_{in} = 8.9 \text{ V}_{pk}$		

AI dynamic range (-60 dBFS, 1 kHz tone; $f_s = 102.4$ kS/s)

NI USB-4431100 dB typ, 98 dB min

NI USB-4432101 dB typ, 99 dB min

AI spurious free dynamic range (SFDR)

 $(-1 \text{ dBFS}, 1 \text{ kHz tone}; f_s = 102.4 \text{ kS/s}).....104 \text{ dB}$

AI non-harmonic SFDR

 $(-1 \text{ dBFS}, 1 \text{ kHz tone}; f_s = 102.4 \text{ kS/s}).....110 \text{ dB}$

AI intermodulation distortion (IMD)

(CCIF 11 kHz + 12 kHz, 1:1, -6 dBFS).....-100 dB

AI Noise

Measurement Bandwidth	NI USB-4431 Noise	NI USB-4432 Noise
20 kHz	$55 \mu V_{rms}$ typ	$200~\mu V_{rms}$ typ
20 KHZ	$75 \mu V_{rms} max$	240 μV_{rms} max
46.4 kHz	$75 \mu V_{rms}$ typ	$250~\mu V_{rms}$ typ
	$100~\mu V_{rms}$ max	$300 \mu V_{rms} max$

Al Common-Mode Rejection Ratio (CMRR)

AI CMRR (f_{in} = 20 Hz to 1 kHz) NI USB-443155 dB NI USB-443245 dB

Al Crosstalk

f_{in}	NI USB-4431*	NI USB-4432*
1 kHz	-110 dB	-105 dB
46.4 kHz	−90 dB	-80 dB
* Source impedance ≤50 Ω		

IEPE Excitation

Channels	AI0, AI1, AI2, AI3	
Current	0 or 2.1 mA, each channel independently software selectable	
Compliance voltage	20 V min	
Output impedance	200 kΩ at 1 kHz	
Current noise density	25 pA/ $\sqrt{\text{Hz}}$ at 10 kHz	
Fault detection		
Thresholds	<1.5 V (short),	
	>19.5 V (open)	
Indication	Software, per channel	

Transducer Electronic Data Sheet (TEDS) Support

Analog inputs AI<0..3> support Transducer Electronic Data Sheet (TEDS) according to the IEEE 1451 Standard.

For more information about TEDS, go to ni.com/info and enter the Info Code rdteds.

Maximum cable length100 ft

Tachometer Inputs

You can use any analog input channel as a tachometer input.

Analog Output (NI USB-4431)

Output channels	1
AO signal connection	BNC
AO frequency range	DC to 43.5 kHz
Internal frequency timebase accuracy	±100 ppm max
DAC resolution	24 bits
DAC type	Delta-sigma
Output signal range	±3.5 V _{pk}

Output coupling	DC
Short circuit protection	Indefinite
Minimum working load	1 kΩ
Output impedance	50 Ω
DAC filter delay ¹	63.3 samples max
FIFO buffer size	4,095 samples

AO Update Rates

Available rates are expressed by the following equation:

 f_M/n

where

$$f_M = \{51.2 \text{ kS/s}, 80 \text{ kS/s}, 96 \text{ kS/s}\}, \text{ and } n = \{1, 2, 4, 8, 16, 32, 64\}$$

n	51.2 kS/s	80 kS/s	96 kS/s
1	51.2 kS/s	80 kS/s	96 kS/s
2	25.6 kS/s	40 kS/s	48 kS/s
4	12.8 kS/s	20 kS/s	24 kS/s
8	6.4 kS/s	10 kS/s	12 kS/s
16	3.2 kS/s	5 kS/s	6 kS/s
32	1.6 kS/s	2.5 kS/s	3 kS/s
64	800 S/s	1.25 kS/s	1.5 kS/s

AO Gain Accuracy

Temperature Range	Amplitude Accuracy (AC at 1 kHz)	Amplitude Accuracy (DC)
10 °C to 40 °C	±0.025 dB typ	±0.2% typ
10 C to 40 C	±0.045 dB max	±0.4% max
−30 °C to 70 °C	±0.1 dB max	±1.1% max

AO Offset

Temperature Range	Offset (DC)
10 °C to 40 °C	±700 μV typ
	±2 mV max
−30 °C to 70 °C	±6.5 mV max

¹ Refer to the Filter Delay section of the NI Dynamic Signal Acquisition User Manual for more information.

AO Frequency Response

AO phase linearity

$$f_{out}$$
 = DC to 20 kHz±0.25°
 f_{out} = DC to 43.5 kHz±2.5°

AO Amplitude Flatness

Output Signal Frequency (f_{out})	Flatness*
DC to 20 kHz	±0.05 dB typ
DC to 20 kHz	±0.09 dB max
DC to 43.5 kHz	±0.3 dB typ
DC to 45.5 kHz	±0.4 dB max
* Relative to 1 kHz	

AO Distortion and Noise

Note Specifications for the listed update rates also apply to their respective derivative rates as listed in the *AO Update Rates* section.

AO Distortion

Update Rate*	THD [†] (1 kHz)	THD [†] (20 Hz to 20 kHz)
51.2 kS/s	−100 dB typ	-89 dB max
80 kS/s	−97 dB typ	-86 dB max
96 kS/s	−95 dB typ	-85 dB max

Note: The measurement bandwidth is 0 Hz to $0.453 \times$ the Update Rate.

AO Distortion Plus Noise

Update Rate*	THD+N [†] (1 kHz)	THD+N [†] (20 Hz to 20 kHz)
51.2 kS/s	–92 dB typ	-86 dB max
80 kS/s	–91 dB typ	−84 dB max
96 kS/s	–90 dB typ	-82 dB max

Note: The measurement bandwidth is 0 Hz to $0.453 \times$ the Update Rate.

^{*} Refer to the note under the AO Distortion and Noise section for applicability to other update rates.

[†] $V_{out} = 3.1 \text{ V}_{pk}$

^{*} Refer to the note under the AO Distortion and Noise section for applicability to other update rates.

 $^{^{\}dagger} V_{out} = 3.1 \text{ V}_{pk}$

AO Noise

Update Rate*	Noise
51.2 kS/s	90 μV _{rms} typ
	$120~\mu V_{rms}$ max
80 kS/s	$100~\mu V_{rms}$ typ
	$150~\mu V_{rms}$ max
96 kS/s	$120~\mu V_{rms}$ typ
	$200~\mu V_{rms}$ max

Note: The measurement bandwidth is 0 Hz to $0.453 \times$ the Update Rate.

AO Spurious Free Dynamic Range (Includes Harmonics)

Update Rate*	SFDR (-1 dBFS, 1 kHz)
51.2 kS/s	102 dB
80 kS/s	98 dB
96 kS/s	96 dB

Note: The measurement bandwidth is 0 Hz to $0.453 \times$ the Update Rate.

AO Dynamic Range

Update Rate *	Dynamic Range [†]
51.2 kS/s	89 dB typ
	86 dB min
80 kS/s	88 dB typ
	84 dB min
96 kS/s	86 dB typ
	82 dB min

Note: The measurement bandwidth is 0 Hz to $0.453 \times$ the Update Rate.

AO intermodulation distortion

(CCIF 11 kHz + 12 kHz, 1:1, -6 dBFS).....-96 dB

^{*} Refer to the note under the AO Distortion and Noise section for applicability to other update rates.

^{*} Refer to the note under the AO Distortion and Noise section for applicability to other update rates.

^{*} Refer to the note under the *AO Distortion and Noise* section for applicability to other update rates.

 $^{^{\}dagger}$ $V_{out} = -60$ dBFS, 1 kHz

AO Transients

The following actions will result in a transient on the analog output:

- Powering up the NI USB-4431
- Changing between AO rates in different columns of the table in the AO Update Rates section
- Changing the AI sample rate

Digital I/O Lines

Power-up mode	Inputs pulled low
Input protection	+5.6 V/–0.5 V
Purpose	Start or reference trigger (importing only)
Source	PFI<07>
Compatibility	Transistor-transistor logic (5V TTL)
Polarity	Rising or falling edge

Environment Specifications

Pollution degree	2
Maximum altitude	2,000 m
Indoor use only.	

Operating Environment

Operating temperature	–30 °C to 70 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range	0% to 95% RH, non-condensing (Tested in accordance with IEC-60068-2-56.)

Storage Environment

Ambient temperature range	–30 °C to 70 °C
	(Tested in accordance with IEC-60068-2-1 and
	IEC-60068-2-2.)

Calibration

External calibration interval	1 year
Warm-up time	15 minutes to rated specifications

General Specifications

Physical

Dimensions	142 mm × 180 mm × 38 mm
	$(5.6 \text{ in.} \times 7.1 \text{ in.} \times 1.5 \text{ in.})$
Weight	675 g (1.5 lbs)

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-2-1 (IEC 61326-2-1): Class A emissions: Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generates radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $\subset \in$

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the *Trademark Information* at ni.com/trademarks for other National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.