Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction Diffusion Model for Turing Instability

Litu Rout

Association for the Advancement of Artificial Intelligence (AAAI-21)

Preprint: https://liturout.github.io/data/aaai21 preprint.pdf

Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction Diffusion Model for Turing Instability

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics

Three Pillars of Deep Learning

Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction Diffusion Model for Turing Instability

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing

Colin Raffel, 2018

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing

Why Generative Adversarial Networks?

- Image Classification as Discriminator
 - Given input X, predict label Y
 - Estimate P(Y|X)

Why Generative Adversarial Networks?

- Image Classification as Discriminator
 - Given input X, predict label Y
 - Estimate P(Y|X)
- Challenges in Discriminative Models
 - Unknown P(X)
 - Can't sample from P(X)

Why Generative Adversarial Networks?

- Image Classification as Discriminator
 - Given input X, predict label Y
 - Estimate P(Y|X)
- Challenges in Discriminative Models
 - Unknown P(X)
 - Can't sample from P(X)
- Motivation for GANs
 - Model P(X)
 - Generate new samples

Faces Dataset

Generative Modeling: Latent Space Interpolation

Generative Modeling: Image-to-Image Translation

Generative Modeling: Image-to-Image Translation

Generative Modeling: Sample Generation

(CelebA)

Sample Generator (Karras et al, 2017)

Generative Modeling: Sample Generation

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing

$$\min_{G} \mathbb{E}_{x \sim \mathbb{P}_{R}} \left[D\left(x\right) \right] - \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{R}}} \left[D\left(\hat{x}\right) \right]
+ \mathbb{E}_{y \sim \mathbb{P}_{R}} \left[\left\| \tau\left(\hat{x} - y\right) \right\|_{2} \right],$$

$$\min_{D} \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{R}}} \left[D \left(\hat{x} \right) \right] - \mathbb{E}_{x \sim \mathbb{P}_{R}} \left[D \left(x \right) \right]
+ \lambda \mathbb{E}_{\tilde{x} \sim \mathbb{P}_{\tilde{R}}} \left[\left(\| \nabla_{\tilde{x}} D \left(\tilde{x} \right) \|_{2} - 1 \right)^{2} \right]$$

Jin et al. 2020, ICML

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing
 - Problem Formulation

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

- Reformulate as conditional band synthesis.
- Geometry from existing high resolution bands: HR-NIR, R, G.
- FCC: NIR (R), R (G), G(B) Radiometry from corresponding low resolution band: LR-SWIR.

LR-SWIR

FCC: SWIR (R), NIR (G), Red (B)

HR-SWIR-Original HR-SWIR-Predicted HR-NIR,R,G LR-Upsampled-SWIR **LR-SWIR**

Over dependence on upsampled <u>coarse</u> resolution band results in unpleasant artifacts

- Geometric distortion
- Radiometric imbalance

FCC: SWIR (R), NIR (G), Red (B)

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

Proposed Approach

resolution band can be suppressed by replacing it with spatial attention map.

Traditional Approach

Proposed Approach

FCC: SWIR (R), NIR (G), Red (B)

$$A_s(x) = \mathcal{N}(D_s(x)),$$
 $D_s(x) = \sum_{i=1}^K \mathcal{N}\left(\sum_{j=1}^C |A_{ij}(x)|\right)$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss
$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\|A_{s}(\tilde{y}) - A_{s}(y)\|_{2}^{2} \right]$$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Real/Fake

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\tilde{y}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Discriminator Objective

$$\min_{D} \mathbb{E}_{\hat{X} \sim \mathbb{P}_{\hat{X}}} \left[D\left(\hat{X}\right) \right] - \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[D\left(X\right) \right]$$

$$+ \lambda_{gp} \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathbb{P}_{\tilde{\mathbf{x}}}} \left[(\|\nabla_{\tilde{\mathbf{x}}} D(\tilde{\mathbf{x}})\|_{2} - 1)^{2} + \lambda_{sa} \mathcal{L}_{sa} + \lambda_{da} \mathcal{L}_{da}, \right]$$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\tilde{y}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Discriminator Objective

$$\begin{split} \min_{D} \mathbb{E}_{\hat{X} \sim \mathbb{P}_{\hat{X}}} \left[D\left(\hat{X}\right) \right] - \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[D\left(X\right) \right] \\ + \lambda_{gp} \mathbb{E}_{\tilde{X} \sim \mathbb{P}_{\tilde{X}}} \left[\left(\left\| \nabla_{\tilde{X}} D\left(\tilde{X}\right) \right\|_{2} - 1 \right)^{2} \right] \\ + \lambda_{sa} \mathcal{L}_{sa} + \lambda_{da} \mathcal{L}_{da}, \end{split}$$

Spatio-Spectral Laplacian Attention

Spatio-Spectral Laplacian Attention

Spectral attention coefficients

Combining Spatial Attention with Source Bands

Multiplication:

- Attention module latches on to bright targets.
- Synthesized band contains blocky artifacts.

Source Ground Truth AeroGAN DSen2 DeepSWIR ALERT S2A (ours) (SRE/SSIM) (44.62/86.03)(50.04/93.85)(50.35/94.02)(50.81/94.54)(**50.83/95.08**)

Method	RMSE	SSIM(%)	SRE(dB)	PSNR(dB)	SAM(deg)
AeroGAN [31]	21.62	86.03	44.62	36.50	12.15
DSen2 [21]	14.14	93.85	50.04	41.94	7.88
DeepSWIR [33]	13.75	94.02	50.35	42.27	7.66
ALERT [32]	12.97	94.54	50.81	42.80	7.48
S2A (ours)	11.74	95.08	50.83	42.76	6.87

- Learns to attend to relevant parts of source imagery.
- Homogeneous and heterogeneous targets are discernible.
- Similar features have similar attention coefficients

Wetland Delineation

Wetland Delineation

Water Segmentation

Additional Value Product Generation Hilly Terrain Desert

India Main land Coastal

Outline

- Maximum Likelihood Estimation
- Reverse KL Divergence
- Introduction to GANs
- GANs in Remote Sensing
 - Problem Formulation

Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction Diffusion Model for Turing Instability

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics