

Can MS PDF be negative?

Alessandro Candido February, 2020

Table of contents

- 1. Parton model
- 2. PDF @ NLO: factorization scheme
- 3. An intrinsic positive scheme
- 4. Coefficient functions NLO behaviour
- 5. Is MS negative?

Parton model

The *parton model* consist in a model of the proton structure as a bunch of free components, collectively called *partons*:

- · in principle any elementary particle
- in practice mostly quarks and gluons

This assumption of course relies on the asymptotic freedom of strong interaction¹.

¹e.g. it would be completely unphysical for an atom.

LO PDF definition

Since they are free the main property of each parton is the fraction of the total momentum it carries.

The probability distribution of finding a parton p with momentum fraction x it's encoded in its *Parton Density Function*², $f_p(x)$.

Plot LO PDFs

 $^{^{2}}$ In general PDFs also depend on the energy scale Q^{2} , but at LO they scale (see $Bj\ddot{o}rken$ scaling).

PDF @ NLO: factorization scheme

A step further: NLO -> collinear divergences -> coefficient functions ambiguity (collinear subtraction) -> factorization scheme (as PDF definition)

Catani-Seymour formula for factorization @ NLo

An intrinsic positive scheme

DIS scheme and similar.

Defined on physical observables.

Coefficient functions NLO behaviour

Universality of collinear structure

We can play this game because we know in advance that the relevant structure (the one related to the collinear subtraction) is universal.

Scheme change matrix

How we switch scheme and K properties

A bunch of nontrivial positivity schemes

POS, MPOS, DPOS

Is MS negative?

N-space positivity \neq x-space positivity

The easy way in N-space and Why we need an argument in x-space

Argument from MPOS -> MSbar

