

Prepared by:
Dr. Muhammad Iqbal Hossain
Associate Professor
Department of CSE, Brac University



- Cryptography study of encryption principles/methods.
- Cryptanalysis (code breaking) study of principles/methods of deciphering ciphertext without knowing key.
- Cryptographic systems are generically classified along three independent dimensions.

#### How to attack



- Brute force attack
- Cryptanalysis



# The type of operations used for transforming plaintext to ciphertext.

#### 1.1 Substitution:

 Each element (bit, letter, group of bits or letters) in the plaintext is mapped into another element.

#### 1.2 Transposition:

- Elements in the plaintext are rearranged.
- Fundamental requirement is that no information be lost.
- Product systems involve multiple stages of substitutions and transpositions.



## 2. The number of keys used.

- Referred to as symmetric, single-key, secret-key, or conventional encryption if both sender and receiver use the same key.
- Referred to as asymmetric, two-key, or public-key encryption if the sender and receiver each use a different key.



# 3. The way in which the plaintext is processed.

- A block cipher processes the input one block of elements at a time, producing an output block for each input block.
- A stream cipher processes the input elements continuously, producing output one element at a time, as it goes along.



#### Cryptanalysis

The strategy used by the cryptanalyst depends on the nature of the encryption scheme and the information available to the cryptanalyst.

- Cipher text Only
- Known Plaintext
- Chosen-plaintext
- Chosen-Cipher text





### 1. Ciphertext Only:

- The cryptanalyst knows ciphertext only.
- Uses brute-force approach try all possible keys.
- Make the key space very large so it becomes impractical.
- Easiest to defend







#### 2. Known plaintext:

- The analyst may be able to capture one or more plaintext messages as well as their encryptions.
- Or he may know that certain plaintext patterns will appear in a message.
- May deduce the key.







#### 3. Chosen-plaintext:

- A cryptanalyst can choose arbitrary plaintext data to be encrypted and then he receives the corresponding ciphertext.
- If the analyst is able to choose the messages to encrypt, the analyst may deliberately pick patterns that can be expected to reveal the structure of the key.







#### 4. Chosen-Ciphertext:

- a cryptanalyst can analyse any chosen ciphertexts together with their corresponding plaintexts
- If the analyst is able to choose the messages to decrypt, the analyst may deliberately pick patterns that can be expected to reveal the structure of the key.
- used for breaking systems with public key encryption





| Type of Attack    | Known to Cryptanalyst                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
| Ciphertext Only   | Encryption algorithm                                                                                                 |
|                   | • Ciphertext                                                                                                         |
| Known Plaintext   | Encryption algorithm                                                                                                 |
|                   | Ciphertext                                                                                                           |
|                   | One or more plaintext-ciphertext pairs formed with the secret key                                                    |
| Chosen Plaintext  | Encryption algorithm                                                                                                 |
|                   | Ciphertext                                                                                                           |
|                   | Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key   |
| Chosen Ciphertext | Encryption algorithm                                                                                                 |
|                   | Ciphertext                                                                                                           |
|                   | Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key |
| Chosen Text       | Encryption algorithm                                                                                                 |
|                   | Ciphertext                                                                                                           |
|                   | Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key   |
|                   | Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key |



- Chosen ciphertext and chosen text are less commonly employed as cryptanalytic techniques but are nevertheless possible avenues of attack.
- Only a relatively weak algorithm will fail to withstand a ciphertextonly attack.
- Generally, an encryption algorithm is designed to withstand a known-plaintext attack.
- An encryption scheme is **computationally secure** if ciphertext generated by the scheme meets one or both of the criteria:
- The cost of breaking the cipher exceeds the value of the encrypted information.
- The time required to break the cipher exceeds the useful lifetime of the information.



#### **Brute Force attack:**

- Involves trying every possible key until an intelligible translation of the ciphertext into plaintext is obtained
- On average, half of all possible keys must be tried to achieve success.
- Suppose that a cipher has a 100 bit key
  - Then keyspace is of size 2<sup>100</sup>
- On average, for exhaustive search Trudy tests  $2^{100}/2 = 2^{99}$  keys
- Suppose Trudy can test 2<sup>30</sup> keys/second
  - Then she can find the key in about 37.4 trillion years

# **Why Study Cryptanalysis?**



- Study of cryptanalysis gives insight into all aspects of crypto
- Also gain insight into attacker's mindset
  - "black hat" vs "white hat" mentality
- Cryptanalysis is more fun than cryptography
  - Cryptographers are boring
  - Cryptanalysts are cool
- But cryptanalysis is hard