1 Abstract

We propose a decentralized reputation system that can replace the word-of-mouth, stars- and review-based systems. The basic idea is that a member A trusts her friends with a certain value (with a 1/2 multisig), thus risking to lose their value. When A wants to transfer value V to a (maybe previously unknown) member B, A asks the system if she trusts B enough to transfer this value to B. The system will search throughout the network for trust paths that begin from A and reach B and add up to V and will answer whether the proposed transaction is within the trust capabilities of A towards B. If the answer is positive, it means that transferring value V to B will not raise the risk for A to lose their value. Note: we use Bitcoin terminology.

2 Introduction

3 Tags/Keywords

decentralized, trust, web-of-trust, bitcoin, multisig, line-of-credit, trust-as-risk, flow

4 Related Work

5 Key points

6 Definitions

Definition 6.1 (Direct Trust from A to B, $DTr_{A\to B}$).

Total amount of value that exists in 1-of-A,B multisigs in the utxo, where the money is deposited by A.

Definition 6.2 (B steals x from A).

B steals value x from A when B reduces the $DTr_{A\to B}$ by x. This makes sense when $x \leq DTr_{A\to B}$.

Definition 6.3 (Honest strategy).

A member A is said to follow the honest strategy if for any value x that is stolen from her, she substitutes it by stealing from others that trust her value equal to $min(x, \sum_{B \in members} DTr_{B \to A})$ and she takes no other action.

Definition 6.4 (Indirect trust from A to B $Tr_{A\to B}$).

Value that A will lose if B steals the maximum amount she can steal (all her incoming trust) and everyone else follows the honest strategy.

7 Theorems-Algorithms

Theorem 7.1 (Saturation theorem).

Let s source, $x_i, i \in \{1, ..., |N(s)|\}$, flows to s's neighbours as calculated by the maxFlow algorithm, u_i' new direct trusts to the |N(s)| neighbours and x_i' new flows to the neighbours as calculated by the maxFlow algorithm with the new direct trusts, u_i' . It holds that $\forall i \in \{1, ..., |N(s)|\}, u_i' \leq x_i \Rightarrow x_i' = u_i'$.

Proof.

- 1. $\forall i \in \{1, ..., |N(s)|\}, x'_i > u'_i$ is impossible because a flow cannot be higher than its corresponding capacity. Thus $\forall i \in \{1, ..., |N(s)|\}, x'_i \leq u'_i$.
- 2. In the initial configuration of u_i and according to the flow problem setting, a combination of flows y_i such that $\forall i \in \{1, ..., |N(s)|\}, y_i = u_i'$ is a valid, albeit not necessarily maximum, configuration with a flow $\sum_{i=1}^{|N(s)|} y_i$. Suppose that $\exists j \in \{1, ..., |N(s)|\} : x_j' < u_j'$ as calculated by the maxFlow algorithm with the new direct trusts, u_i' . Then for the new maxFlow F' it holds that $F' = \sum_{i=1}^{|N(s)|} x_i' < \sum_{i=1}^{|N(s)|} y_i$ since $x_j' < y_j$ which is impossible because the configuration $\forall i \in \{1, ..., |N(s)|\}, x_i' = y_i$ is valid since $\forall i \in \{1, ..., |N(s)|\}, y_i = u_i'$ and also has a higher flow, thus the maxFlow algorithm will prefer the configuration with the higher flow. Thus we deduce that $\forall i \in \{1, ..., |N(s)|\}, x_i' \geq u_i'$.

From (1) and (2) we conclude that $\forall i \in \{1, ..., |N(s)|\}, x'_i = u'_i$.

Theorem 7.2 (Trust flow theorem).

 $Tr_{A\rightarrow B} = MaxFlow_{A\rightarrow B}$ (Treating trusts as capacities)

Proof.

- 1. $Tr_{A\to B} \geq MaxFlow_{A\to B}$ because by the definition of $Tr_{A\to B}$, B leaves taking with him all the incoming trust, so there is no trust flowing towards him after leaving. $Tr_{A\to B} < MaxFlow_{A\to B}$ would imply that after B left, there would still remain trust flowing from A to B.
- 2. $Tr_{A\to B} \leq MaxFlow_{A\to B}$ Suppose that $Tr_{A\to B} > MaxFlow_{A\to B}$ (1). Then, using the min cut - max flow theorem we see that there is a set of capacities $U = \{u_1, ..., u_n\}$ with flows $X = \{x_1, ..., x_n\}$ such that $\sum_{i=1}^n x_i = MaxFlow_{A\to B}$ and, if severed $(\forall i \in \{1, ..., n\}u'_i = 0)$ the flow from A to B would be 0, or, put differently, there would be no directed trust path from A to B. No strategy followed by B could reduce

Combining the two results, we see that $Tr_{A\to B} = MaxFlow_{A\to B}$.

Theorem 7.3 (Honest world theorem).

If everybody follows the honest strategy, nobody steals any amount from anybody.

Proof. Suppose that there exists a series of stealing actions represented by a vector where $action_i$ ="member i steals value V > 0 from member i+1". This vector must have an initial element, $action_1$. However, member 1 follows the honest strategy, thus somebody must have stolen from her as well, so member 1 cannot be the initial element. We have a contradiction, thus there cannot exist a series of stealing actions when everybody is honest.

Theorem 7.4 (Trust transfer theorem (flow terminology)).

the value of A, so our supposition (1) cannot be true.

Let s source, t sink,

 $X_s = \{x_{s,1}, ..., x_{s,n}\}$ outgoing flows from s,

 $X_t = \{x_{1,t}, ..., x_{m,t}\}$ incoming flows to t,

 $U_s = \{u_{s,1}, ..., u_{s,n}\}$ outgoing capacities from s,

 $U_t = \{u_{1,t}, ..., u_{m,t}\}$ incoming capacities to t,

V the value to be transferred.

Nodes apart from s, t cannot create or consume flow.

Obviously $maxFlow = F = \sum_{i=1}^{n} x_{s,i}$.

We create a new graph where

1.
$$\sum_{i} u'_{s,i} = F - V$$

2.
$$\forall i \in \{1, ..., n\} u'_{s,i} \leq x_{s,i}$$

It holds that maxFlow' = F' = F - V.

Proof.

- 1. It is impossible to have F' > F V because $F' \le \sum u'_{s,i} = F V$.
- 2. It is impossible to have F' < F V.

Let i be a node such that $x_{s,i} > 0$ and $I = \{(i,j) \in E\}$ the set of direct trusts outgoing from i. In the initial graph we have $x_{s,i} = \sum_j x_{i,j}, F = \sum_i x_{s,i}$ and in the new graph we have $x'_{s,i} = u'_{s,i} \le x_{s,i}, F' = \sum_i x'_{s,i}, \forall j x_{i,j} \le u_{i,j} = u'_{i,j}$. We can construct a set $X'_i = \{x'_{i,j}\}$ of flows such that $x'_{i,j} \le x_{i,j}$ and $\sum_{i} x'_{i,j} = x'_{s,i}$. This shows that there is a possible flow such that F' = F - V, so the maxFlow algorithm will not return a flow less than F - V.

Example construction:

 $\forall j \in \{1,...,k\}, x'_{i,j} = x_{i,j} \text{ with } k \text{ such that}$

(a)
$$\sum_{j=1}^{k} x_{i,j} \le x'_{s,i}$$
 and

(b)
$$\sum_{j=1}^{k+1} x_{i,j} > x'_{s,i}$$

$$\begin{array}{l} x'_{i,(k+1)} = x'_{s,i} - \sum_{j=1}^k x'_{i,j} \\ \forall j \in \{k+2,...,|X'_i|\}, x'_{i,j} = 0 \end{array}$$

Corollary 7.1 (Requirement for $\sum_i u'_{s,i} = F - V$, $u'_{s,i} \leq x_{s,i}$).

In the setting of 7.4, it is impossible to have maxFlow' = F-V if $\sum_i u'_{s,i} > F-V \land \forall i \in \{1,...,n\}, u'_{s,i} \leq x_{s,i}$.

Proof. Due to 7.4, maxFlow' = F - V if $\sum_i u'_{s,i} = F - V \land \forall i \in \{1,...,n\}, u'_{s,i} \leq x_{s,i}$. If we create new capacities such that $\forall i \in \{1,...,n\}, u''_{s,i} \leq x_{s,i}$, then obviously $maxFlow'' = \sum_i u''_{s,i}$. If additionally $\sum_{i} u_{s,i}'' > F - V$, then maxFlow'' > F - V.

Theorem 7.5 (Trust-saving Theorem).

$$\forall i \in \{1, ..., n\}, u'_i = F_{A_i \to B} \Leftrightarrow u'_i = u_i$$

Proof. We know that $x_i \leq F_{A_i \to B}$, thus we can see that any increase in u_i' beyond $F_{A_i \to B}$ will not influence x_i and subsequently will not incur any change on the rest of the flows.

Theorem 7.6 (Invariable trust reduction with naive algorithms).

If $\forall i \in \{1,...,n\}, u'_i \leq x_i$, Trust Reduction (TrR) invariable \forall configurations of x_i

Proof. $TrR = \sum_{i=1}^{n} TrR_i$ total Trust Reduction, $TrR_i = u_i - u_i'$, Trust Reduction on i. Since $\forall i \in$ $\{1,\ldots,n\}, u_i' \leq x_i$ it is $x_i' = u_i'$, thus $TrR_i = u_i - x_i'$. We know that $\sum_{i=1}^n x_i' = F - V$, so we have $TrR = \sum_{i=1}^n TrR_i = \sum_{i=1}^n (u_i - x_i') = \sum_{i=1}^n u_i - F + V$ independent of x_i', u_i'

Theorem 7.7 (Dependence impossibility theorem). $\frac{\partial x_j}{\partial x_i} = 0 \text{ with } x_i \text{ the flow from } MaxFlow \Rightarrow \forall x_i' \leq x_i, \frac{\partial x_j}{\partial x_i} = 0 \text{ ceteris paribus}$

Proof. TODO

Here we show three naive algorithms for calculating new direct trusts so as to maintain invariable risk when paying a trusted party.

Page 3 of 5

Algorithm 1: First-come, first-served trust transfer

```
Input: x_i flows, n flows number, V value

Output: u_i' capacities

1 F \leftarrow \sum_{i=1}^n x_i

2 if F < V then

3 | return \bot

4 Fcur \leftarrow F

5 for i \leftarrow 1 to n do

6 | u_i' \leftarrow x_i

7 i \leftarrow 1

8 while Fcur > F - V do

9 | reduce \leftarrow min(u_i', Fcur - V)

10 | Fcur \leftarrow Fcur - reduce

11 | u_i' \leftarrow u_i' - reduce

12 | i \leftarrow i + 1

13 return U' = \bigcup_{i=1}^n \{u_i'\}
```

Algorithm 2: Absolute equality trust transfer

```
Input: x_i flows, n flows number, V value
    Output: u'_i capacities
 1 F \leftarrow \sum_{i=1}^{n} x_i
2 if F < V then

ightharpoonupreturn ot
 4 for i \leftarrow 1 to n do
 u_i' \leftarrow x_i
 6 reduce \leftarrow \frac{V}{n}
 7 reduction \leftarrow 0
 \mathbf{8} \ empty \leftarrow 0
 \mathbf{9} \ i \leftarrow 0
10 while reduction < V do
         if u_i' > 0 \land x_i < reduce then
               empty \leftarrow empty + 1
              reduce = reduce + \frac{x_i - reduce - u_i'}{n - empty}
13
              reduction \leftarrow reduction + u'_i
14
              u_i' \leftarrow 0
15
         else if x_i \ge reduce then
16
              reduction \leftarrow reduction + u'_i - (x_i - reduce)
17
              u_i' \leftarrow x_i - reduce
         i \leftarrow (i+1) mod n
20 return U' = \bigcup_{i=1}^n \{u_i'\}
```

Algorithm 3: Proportional equality trust transfer

```
Input: x_i flows, n flows number, V value

Output: u_i' capacities

1 F \leftarrow \sum_{i=1}^n x_i

2 if F < V then

3 | return \bot

4 for i \leftarrow 1 to n do

5 | u_i' \leftarrow x_i - \frac{V}{F}x_i

6 return U' = \bigcup_{i=1}^n \{u_i'\}
```

Proof of correctness. In all three algorithms, we have $u'_i \le x_i$ because in the only case where u'_i is altered after its initialisation, it is reduced. Furthermore, a total of V is subtracted from all the u'_i , thus $\sum_{i=1}^n u'_i = x_i$

$$F-V$$
.

However, we need to minimize $\sum_{i=1}^{n} (u_i - u_i')$.

8 Further Research

9 References