Topic: Complex number equations

Question: Find the solution of the complex equation that lies in the third quadrant.

$$z^3 = 125$$

Answer choices:

$$A \qquad z = -\frac{5}{2} + \frac{5\sqrt{3}}{2}i$$

B
$$z = -\frac{5}{2} - \frac{5\sqrt{3}}{2}i$$

$$C \qquad z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$D \qquad z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Solution: B

Rewrite z^3 as

$$z^n = r^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$

$$z^3 = r^3 \left[\cos(3\theta) + i \sin(3\theta) \right]$$

Rewrite 125 as the complex number 125 + 0i. The modulus and angle of 125 + 0i are

$$r = \sqrt{125^2 + 0^2}$$

$$r = \sqrt{125^2}$$

$$r = 125$$

and

$$\theta = \arctan \frac{b}{a} = \arctan \frac{0}{125} = \arctan 0 = 0$$

This arctan equation is true at $\theta = 0$, but also at 2π , 4π , 6π , 8π , etc. So if we put this into polar form, we get

$$z = 125 \left[\cos(0, 2\pi, 4\pi, 8\pi, \dots) + i \sin(0, 2\pi, 4\pi, 8\pi, \dots) \right]$$

$$z = 125 \left[\cos(2\pi k) + i \sin(2\pi k) \right]$$

We could also write this in degrees instead of radians as

$$z = 125 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k) \right]$$

Starting again with $z^3 = 125$, we can start making substitutions.

$$z^3 = 125$$

$$r^{3} \left[\cos(3\theta) + i \sin(3\theta) \right] = 125$$

$$r^{3} \left[\cos(3\theta) + i\sin(3\theta)\right] = 125 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k)\right]$$

Because we've got the same polar form on both sides of the equation, we can equate associated values and get this system of equations:

$$r^3 = 125$$

$$3\theta = 360^{\circ}k$$

From these equations, we get

$$r^3 = 125$$
, so $r = 5$

$$3\theta = 360^{\circ}k$$
, so $\theta = 120^{\circ}k$

To $\theta = 120^{\circ}k$, if we plug in $k = 0, 1, 2, \ldots$, we get

For
$$k = 0$$
, $\theta = 120^{\circ}(0) = 0^{\circ}$

For
$$k = 1$$
, $\theta = 120^{\circ}(1) = 120^{\circ}$

For
$$k = 2$$
, $\theta = 120^{\circ}(2) = 240^{\circ}$

. . .

We could keep going for k = 3, 4, 5, 6, ..., but k = 3 gives 360° , which is coterminal with the 0° value we already found for k = 0, so we realize that

we'll just be starting to repeat the same solutions. So the only solutions we need to consider are $\theta = 0^{\circ}$, 120° , 240° .

Plugging these three angles and r = 5 into the formula for polar form of a complex number, we'll get the solutions to $z^3 = 125$.

$$z_1 = 5 \left[\cos(0^\circ) + i \sin(0^\circ) \right] = 5 \left[1 + i(0) \right] = 5$$

$$z_2 = 5\left[\cos(120^\circ) + i\sin(120^\circ)\right] = 5\left[-\frac{1}{2} + i\left(\frac{\sqrt{3}}{2}\right)\right] = -\frac{5}{2} + \frac{5\sqrt{3}}{2}i$$

$$z_3 = 5\left[\cos(240^\circ) + i\sin(240^\circ)\right] = 5\left[-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right] = -\frac{5}{2} - \frac{5\sqrt{3}}{2}i$$

Topic: Complex number equations

Question: Find the solutions of the complex equation.

$$z^2 = 81$$

Answer choices:

A
$$z = 3$$
 and $z = -3$

B
$$z = 3i$$
 and $z = -3i$

C
$$z = 9$$
 and $z = -9$

D
$$z = 9i$$
 and $z = -9i$

Solution: C

Rewrite z^2 as

$$z^n = r^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$

$$z^2 = r^2 \left[\cos(2\theta) + i \sin(2\theta) \right]$$

Rewrite 81 as the complex number 81 + 0i. The modulus and angle of 81 + 0i are

$$r = \sqrt{81^2 + 0^2}$$

$$r = \sqrt{81^2}$$

$$r = 81$$

and

$$\theta = \arctan \frac{b}{a} = \arctan \frac{0}{81} = \arctan 0 = 0$$

This arctan equation is true at $\theta = 0$, but also at 2π , 4π , 6π , 8π , etc. So if we put this into polar form, we get

$$z = 81 \left[\cos(0, 2\pi, 4\pi, 8\pi, \dots) + i \sin(0, 2\pi, 4\pi, 8\pi, \dots) \right]$$

$$z = 81 \left[\cos(2\pi k) + i \sin(2\pi k) \right]$$

We could also write this in degrees instead of radians as

$$z = 81 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k) \right]$$

Starting again with $z^2 = 81$, we can start making substitutions.

$$z^2 = 81$$

$$r^2 \left[\cos(2\theta) + i \sin(2\theta) \right] = 81$$

$$r^{2} \left[\cos(2\theta) + i \sin(2\theta) \right] = 81 \left[\cos(360^{\circ}k) + i \sin(360^{\circ}k) \right]$$

Because we've got the same polar form on both sides of the equation, we can equate associated values and get this system of equations:

$$r^2 = 81$$

$$2\theta = 360^{\circ}k$$

From these equations, we get

$$r^2 = 81$$
, so $r = 9$

$$2\theta = 360^{\circ}k$$
, so $\theta = 180^{\circ}k$

To $\theta = 180^{\circ}k$, if we plug in k = 0, 1, ..., we get

For
$$k = 0$$
, $\theta = 180^{\circ}(0) = 0^{\circ}$

For
$$k = 1$$
, $\theta = 180^{\circ}(1) = 180^{\circ}$

•••

We could keep going for $k=2,3,4,5,\ldots$, but k=2 gives 360° , which is coterminal with the 0° value we already found for k=0, so we realize that we'll just be starting to repeat the same solutions. So the only solutions we need to consider are $\theta=0^\circ,\,180^\circ.$

Plugging these two angles and r=9 into the formula for polar form of a complex number, we'll get the solutions to $z^2=81$.

$$z_1 = 9 \left[\cos(0^\circ) + i \sin(0^\circ) \right] = 9 \left[1 + i(0) \right] = 9$$

$$z_2 = 9 \left[\cos(180^\circ) + i \sin(180^\circ) \right] = 9 \left[-1 + i(0) \right] = -9$$

Topic: Complex number equations

Question: How many solutions of the complex equation lie in the fourth quadrant?

$$z^6 = 64$$

Answer choices:

- **A** 1
- B 2
- **C** 3
- D 4

Solution: A

Rewrite z^6 as

$$z^n = r^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$

$$z^6 = r^6 \left[\cos(6\theta) + i \sin(6\theta) \right]$$

Rewrite 64 as the complex number 64 + 0i. The modulus and angle of 64 + 0i are

$$r = \sqrt{64^2 + 0^2}$$

$$r = \sqrt{64^2}$$

$$r = 64$$

and

$$\theta = \arctan \frac{b}{a} = \arctan \frac{0}{64} = \arctan 0 = 0$$

This arctan equation is true at $\theta = 0$, but also at 2π , 4π , 6π , 8π , etc. So if we put this into polar form, we get

$$z = 64 \left[\cos(0, 2\pi, 4\pi, 8\pi, \dots) + i \sin(0, 2\pi, 4\pi, 8\pi, \dots) \right]$$

$$z = 64 \left[\cos(2\pi k) + i \sin(2\pi k) \right]$$

We could also write this in degrees instead of radians as

$$z = 64 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k) \right]$$

Starting again with $z^6 = 64$, we can start making substitutions.

$$z^6 = 64$$

$$r^6 \left[\cos(6\theta) + i \sin(6\theta) \right] = 64$$

$$r^{6} \left[\cos(6\theta) + i\sin(6\theta) \right] = 64 \left[\cos(360^{\circ}k) + i\sin(360^{\circ}k) \right]$$

Because we've got the same polar form on both sides of the equation, we can equate associated values and get this system of equations:

$$r^6 = 64$$

$$6\theta = 360^{\circ}k$$

From these equations, we get

$$r^6 = 64$$
, so $r = 2$

$$6\theta = 360^{\circ}k$$
, so $\theta = 60^{\circ}k$

To $\theta = 60^{\circ}k$, if we plug in k = 0, 1, 2, 3, 4, 5, ..., we get

For
$$k = 0$$
, $\theta = 60^{\circ}(0) = 0^{\circ}$

For
$$k = 1$$
, $\theta = 60^{\circ}(1) = 60^{\circ}$

For
$$k = 2$$
, $\theta = 60^{\circ}(2) = 120^{\circ}$

For
$$k = 3$$
, $\theta = 60^{\circ}(3) = 180^{\circ}$

For
$$k = 4$$
, $\theta = 60^{\circ}(4) = 240^{\circ}$

For
$$k = 5$$
, $\theta = 60^{\circ}(5) = 300^{\circ}$

•••

We could keep going for k = 6, 7, 8, 9, ..., but k = 6 gives 360° , which is coterminal with the 0° value we already found for k = 0, so we realize that we'll just be starting to repeat the same solutions. So the only solutions we need to consider are $\theta = 0^\circ$, 60° , 120° , 180° , 240° , 300° .

Plugging these six angles and r=2 into the formula for polar form of a complex number, we'll get the solutions to $z^6=64$.

$$z_1 = 2 \left[\cos(0^\circ) + i \sin(0^\circ) \right] = 2 \left[1 + i(0) \right] = 2$$

$$z_2 = 2 \left[\cos(60^\circ) + i \sin(60^\circ) \right] = 2 \left[\frac{1}{2} + i \left(\frac{\sqrt{3}}{2} \right) \right] = 1 + \sqrt{3}i$$

$$z_3 = 2 \left[\cos(120^\circ) + i \sin(120^\circ) \right] = 2 \left[-\frac{1}{2} + i \left(\frac{\sqrt{3}}{2} \right) \right] = -1 + \sqrt{3}i$$

$$z_4 = 2 \left[\cos(180^\circ) + i \sin(180^\circ) \right] = 2 \left[-1 + i(0) \right] = -2$$

$$z_5 = 2\left[\cos(240^\circ) + i\sin(240^\circ)\right] = 2\left[-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right] = -1 - \sqrt{3}i$$

$$z_6 = 2\left[\cos(300^\circ) + i\sin(300^\circ)\right] = 2\left[\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right] = 1 - \sqrt{3}i$$

Roots in the fourth quadrant will have a positive real part and a negative imaginary part. That's only z_6 , so there's one solution in the fourth quadrant.

