COL774

Assignment 3

Vaibhav Seth

October 2023

Contents

1	Dec	cision Trees 1
	1.1	Decision Tree Construction and Testing
	1.2	Decision Tree One-Hot encoding
	1.3	Decision Tree Post Pruning
	1.4	Decision Tree sci-kit learn
	1.5	Random Forests
2	Neu	ıral Networks
	2.1	Single Hidden Layer with sigmoid activation
	2.2	Multiple Hidden Layer Architecture
	2.3	Adaptive Learning Rate
	2.4	Tarining with ReLU Activation
	2.5	MLPClassifier

1 Decision Trees

1.1 Decision Tree Construction and Testing

Upon experimenting with Trees of Maximum depth from the set 5,10,15,20,25, the following results were obtained:

The following accuracy vs max depth plot was obtained:

	precision	recall	f1-score	support
0	0.914127	0.848984	0.880352	3887.000000
1	0.860802	0.921320	0.890033	3940.000000
accuracy	0.885397	0.885397	0.885397	0.885397
macro avg	0.887464	0.885152	0.885193	7827.000000
weighted avg	0.887284	0.885397	0.885225	7827.000000
(a) Metrics	on train	ing data	for tree	of depth 5

Figure 1: Testing and Training metrics for various max depth = 5

	precision	recall	f1-score	support	
0	1.000000	0.993054	0.996515	3887.00000	
1	0.993194	1.000000	0.996585	3940.00000	
accuracy	0.996550	0.996550	0.996550	0.99655	
macro avg	0.996597	0.996527	0.996550	7827.00000	
weighted avg	0.996574	0.996550	0.996550	7827.00000	
(a) Metrics of	a) Metrics on training data for tree of depth 10				

Figure 2: Testing and Training metrics for various max depth = 10

	precision	recall	f1-score	support
0	1.000000	0.994340	0.997162	3887.000000
1	0.994447	1.000000	0.997216	3940.000000
accuracy	0.997189	0.997189	0.997189	0.997189
macro avg	0.997224	0.997170	0.997189	7827.000000
weighted avg	0.997205	0.997189	0.997189	7827.000000
(a) Metrics	on traini	ng data	for tree	of depth 15

Figure 3: Testing and Training metrics for various max depth = 15

	precision	recall	f1-score	support		precision	recall	f1-score	:
0	1.000000	0.994340	0.997162	3887.000000	0	0.602510	0.591376	0.596891	487
1	0.994447	1.000000	0.997216	3940.000000	1	0.593047	0.604167	0.598555	480
accuracy	0.997189	0.997189	0.997189	0.997189	accuracy	0.597725	0.597725	0.597725	0
macro avg	0.997224	0.997170	0.997189	7827.000000	macro avg	0.597779	0.597771	0.597723	967
weighted avg	0.997205	0.997189	0.997189	7827.000000	weighted avg	0.597813	0.597725	0.597717	967
(a) Metrics on training data for tree of depth 20					(b) Metrics	on testin	ng data f	or tree of	f dej

Figure 4: Testing and Training metrics for various max depth =20

	precision	recall	f1-score	support
0	0.914127	0.848984	0.880352	3887.000000
1	0.860802	0.921320	0.890033	3940.000000
accuracy	0.885397	0.885397	0.885397	0.885397
macro avg	0.887464	0.885152	0.885193	7827.000000
weighted avg	0.887284	0.885397	0.885225	7827.000000
(a) Metrics	on traini	no data	for tree	of depth 25

Figure 5: Testing and Training metrics for various max depth = 25

Figure 6: Plot of test and train accuracy vs maximum depth

We observe for large maximum depth the training and test accuracies become almost constant. This due to overfitting. It's a well known fact that decision trees are prone to overfitting and it can be seen here. As the max depth increases the model tries to fit parameters that are very specific to the dataset and as a result there is a massive difference between test and training accuracies. The accuracies plateau because the tree overfits sufficiently for smaller depths and as a result at larger depths there is not much new information left for the tree to work on.

```
tree.node_level_dict[12]

v 0.0s

[Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
Depth = 12 | IS_LEAF : True and value : 0 | SPLIT ON : None and GAIN : None,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 12 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
```

Figure 7: Information Gains for different nodes at depth = 12 for a tree with max depth = 25

```
tree.node level dict[11]
 √ 0.0s
[Depth = 11 | IS_LEAF : True and value : 0 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS LEAF : True and value : 0 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : True and value : 0 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 5 and GAIN : 1.0,
 Depth = 11 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : True and value : 0 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : True and value : 1 | SPLIT ON : None and GAIN : None,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0.
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0,
 Depth = 11 | IS_LEAF : False and value : 1 | SPLIT ON : 0 and GAIN : 0.0]
```

Figure 8: Information Gains for different nodes at depth = 11 for a tree with max depth = 25

In the above figures we see that there is no information gain left at depth 12, and at depth 11 there is just one node that offers any information gain. The same follows for all trees with depths

more than 11.
Only win and only loss accuracies:

Max depth	Only Win	Only Loss
5	57.39299610894941%	59.16114790286976%
10	59.38775510204082%	60.37735849056604%
15	59.30470347648262%	60.25104602510461%
20	59.30470347648262%	60.25104602510461%
25	59.30470347648262%	60.25104602510461%

1.2 Decision Tree One-Hot encoding

Upon experimenting with Trees of Maximum depth from the set {15,25,35,45]}, the following results were obtained:

precision	recall	f1-score	support
0.828488	0.513249	0.633836	3887.000000
0.650858	0.895178	0.753713	3940.000000
0.705507	0.705507	0.705507	0.705507
0.739673	0.704213	0.693775	7827.000000
0.739072	0.705507	0.694181	7827.000000
	0.828488 0.650858 0.705507 0.739673	0.828488	0.650858 0.895178 0.753713 0.705507 0.705507 0.705507

	precision	recall	f1-score	support
0	0.619048	0.347023	0.444737	487.000000
1	0.541787	0.783333	0.640545	480.000000
accuracy	0.563599	0.563599	0.563599	0.563599
macro avg	0.580417	0.565178	0.542641	967.000000
weighted avg	0.580697	0.563599	0.541932	967.000000

- (a) Metrics on training data for tree of depth 15
- (b) Metrics on testing data for tree of depth 15

Figure 9: Testing and Training metrics for various max depth = 15

	precision	recall	f1-score	support
0	0.901308	0.780036	0.836298	3887.000000
1	0.808425	0.915736	0.858741	3940.000000
accuracy	0.848345	0.848345	0.848345	0.848345
macro avg	0.854866	0.847886	0.847520	7827.000000
weighted avg	0.854552	0.848345	0.847596	7827.000000

 0
 0.648379
 0.533881
 0.585586
 487.000000

 1
 0.598940
 0.706250
 0.648184
 480.000000

 accuracy
 0.619442
 0.619442
 0.619442
 0.619442

 macro avg
 0.623659
 0.620065
 0.616885
 967.000000

 weighted avg
 0.623838
 0.619442
 0.616658
 967.000000

recall f1-score

support

precision

- (a) Metrics on training data for tree of depth 25
- (b) Metrics on testing data for tree of depth 25

Figure 10: Testing and Training metrics for various max depth = 25

	precision	recall	f1-score	support
0	0.964749	0.880113	0.920490	3887.000000
1	0.891147	0.968274	0.928111	3940.000000
accuracy	0.924492	0.924492	0.924492	0.924492
macro avg	0.927948	0.924194	0.924300	7827.000000
weighted avg	0.927699	0.924492	0.924326	7827.000000

	precision	recall	f1-score	support
0	0.634434	0.552361	0.590560	487.000000
1	0.598527	0.677083	0.635386	480.000000
accuracy	0.614271	0.614271	0.614271	0.614271
macro avg	0.616480	0.614722	0.612973	967.000000
weighted avg	0.616610	0.614271	0.612811	967.000000

(a) Metrics on training data for tree of depth 35

(b) Metrics on testing data for tree of depth 35

Figure 11: Testing and Training metrics for various max depth = 35

	precision	recall	f1-score	support
0	0.994034	0.985850	0.989925	3887.000000
1	0.986153	0.994162	0.990142	3940.000000
accuracy	0.990034	0.990034	0.990034	0.990034
macro avg	0.990093	0.990006	0.990033	7827.000000
weighted avg	0.990067	0.990034	0.990034	7827.000000

precision f1-score support 0.625000 0.585216 0.604454 487.000000 0.643750 0.623613 480.000000 0.604697 0.614271 accuracy 0.614271 0.614271 0.614271 macro avg 0.614848 0.614483 0.614033 967.000000 0.614922 0.614271 0.613964 967.000000

(a) Metrics on training data for tree of depth 45

(b) Metrics on testing data for tree of depth 45

recall

0.589322

f1-score

0.608696

support

487.000000

Figure 12: Testing and Training metrics for various max depth = 45

	precision	recall	f1-score	support
0	0.999484	0.996398	0.997939	3887.000000
1	0.996457	0.999492	0.997973	3940.000000
accuracy	0.997956	0.997956	0.997956	0.997956
macro avg	0.997971	0.997945	0.997956	7827.000000
weighted avg	0.997960	0.997956	0.997956	7827.000000

 1
 0.608611
 0.647917
 0.627649
 480.000000

 accuracy
 0.618407
 0.618407
 0.618407
 0.618407

 macro avg
 0.618998
 0.618620
 0.618172
 967.000000

 weighted avg
 0.619073
 0.618407
 0.618104
 967.000000

precision

0.629386

(a) Metrics on training data for tree of depth 55

(b) Metrics on testing data for tree of depth 55

Figure 13: Testing and Training metrics for various max depth = 55

	precision	recall	f1-score	support
0	0.999484	0.996398	0.997939	3887.000000
1	0.996457	0.999492	0.997973	3940.000000
accuracy	0.997956	0.997956	0.997956	0.997956
macro avg	0.997971	0.997945	0.997956	7827.000000
weighted avg	0.997960	0.997956	0.997956	7827.000000
		_		

support precision recall f1-score 0.629386 0.589322 0.608696 487.000000 0.608611 0.647917 0.627649 480.000000 0.618407 0.618407 0.618407 0.618407 accuracy macro avg 0.618998 0.618620 0.618172 967.000000 weighted avg 0.619073 0.618407 0.618104 967.000000

(a) Metrics on training data for tree of depth 75

(b) Metrics on testing data for tree of depth 75

Figure 14: Testing and Training metrics for various max depth = 75

	precision	recall	f1-score	support
0	0.999484	0.996398	0.997939	3887.000000
1	0.996457	0.999492	0.997973	3940.000000
accuracy	0.997956	0.997956	0.997956	0.997956
macro avg	0.997971	0.997945	0.997956	7827.000000
weighted avg	0.997960	0.997956	0.997956	7827.000000

	precision	recall	f1-score	support
0	0.629386	0.589322	0.608696	487.000000
1	0.608611	0.647917	0.627649	480.000000
accuracy	0.618407	0.618407	0.618407	0.618407
macro avg	0.618998	0.618620	0.618172	967.000000
weighted avg	0.619073	0.618407	0.618104	967.000000

(a) Metrics on training data for tree of depth 100

(b) Metrics on testing data for tree of depth 100

Figure 15: Testing and Training metrics for various max depth = 100

The following accuracy vs max depth plot was obtained:

Figure 16: Plot of test and train accuracy vs maximum depth

The training accuracies decrease when compared to part a, but the testing accuracies increase. This could be due to introduction of new features, the model has more dimensions to learn, but because the max depth is still quite restricted the model prevents overfitting (as can be seen from upward sloping accuracies). As a result, the model performs nicely on testing data.

In a similar fashion to the previous part we see that the train and test accuracy plateau. The reason is same.

1.3 Decision Tree Post Pruning

The pruning algorithm has been implemented in a slightly different manner. It is still a greedy algorithm, but instead of calculating accuracy for each node removal, we follow a layer-wise bottom-up approach. The first Nodes to be pruned are the ones in the level above the lowest level(which has only leaves). We remove all nodes that result in an increased accuracy over validation set in the level and then we move one level up and do the same. We keep doing this process till we reach the root node. The approach might prove to be ineffective if there's a limit on number of nodes that can be removed, but if considering removing all nodes that can be removed, then this approach works.

Figure 17: Plot of accuracies vs number of nodes in the tree for depth = 15

Figure 18: Plot of accuracies vs number of nodes in the tree for depth = 25

Figure 19: Plot of accuracies vs number of nodes in the tree for depth = 35

Figure 20: Plot of accuracies vs number of nodes in the tree for depth = 45

We can see as we remove more nodes the overfitting reduces and validation accuracy increases, but the test accuracy isn't improved. A possible reason could be that because we are doing pruning till accuracies are increasing, we might be somewhat overfitting on the validation set. Hence an eraly stopping condition could improve test accuracies.

1.4 Decision Tree sci-kit learn

Accuracies and plots:

	precision	recall	f1-score	support
0	0.815597	0.546180	0.654237	3887.0000
1	0.662328	0.878173	0.755129	3940.0000
accuracy	0.713300	0.713300	0.713300	0.7133
macro avg	0.738963	0.712176	0.704683	7827.0000
weighted avg	0.738444	0.713300	0.705025	7827.0000

	precision	recall	f1-score	support
0	0.661585	0.445585	0.532515	487.000000
1	0.577465	0.768750	0.659517	480.000000
accuracy	0.605998	0.605998	0.605998	0.605998
macro avg	0.619525	0.607168	0.596016	967.000000
weighted avg	0.619830	0.605998	0.595557	967.000000

(a) Metrics on training data for tree of depth 15

(b) Metrics on testing data for tree of depth 15

Figure 21: Testing and Training metrics for various max depth = 15

	precision	recall	f1-score	support
0	0.916465	0.779007	0.842164	3887.000000
1	0.810082	0.929949	0.865887	3940.000000
accuracy	0.854989	0.854989	0.854989	0.854989
macro avg	0.863273	0.854478	0.854025	7827.000000
weighted avg	0.862913	0.854989	0.854106	7827.000000

precision recall f1-score support 0.679790 0.531828 0.596774 487.000000 0.610922 0.745833 0.671670 480.000000 0.638056 0.638056 0.638056 0.638056 0.645356 0.634222 967.000000 0.645605 0.638056 0.633951 967.000000

(a) Metrics on training data for tree of depth 25

(b) Metrics on testing data for tree of depth 25

Figure 22: Testing and Training metrics for various max depth = 25

	precision	recall	f1-score	support
0	0.961004	0.925650	0.942996	3887.000000
1	0.929219	0.962944	0.945781	3940.000000
accuracy	0.944423	0.944423	0.944423	0.944423
macro avg	0.945111	0.944297	0.944388	7827.000000
weighted avg	0.945004	0.944423	0.944398	7827.000000

support precision recall f1-score 0.645503 487.000000 0.665939 0.626283 480.000000 0.642436 0.681250 0.661274 0.653568 0.653568 0.653568 0.653568 macro avg 0.654188 0.653767 0.653388 967.000000 0.654273 0.653568 0.653331 weighted avg 967.000000

(a) Metrics on training data for tree of depth 35

(b) Metrics on testing data for tree of depth 35

Figure 23: Testing and Training metrics for various max depth = 35

	precision	recall	f1-score	support
0	0.992331	0.998714	0.995512	3887.000000
1	0.998723	0.992386	0.995544	3940.000000
accuracy	0.995528	0.995528	0.995528	0.995528
macro avg	0.995527	0.995550	0.995528	7827.000000
weighted avg	0.995549	0.995528	0.995528	7827.000000

precision recall f1-score support 487.000000 0.644491 0.636550 0.640496 0.635802 0.643750 0.639752 480.000000 0.640124 0.640124 0.640124 0.640124 accuracy 0.640147 0.640150 0.640124 967.000000 0.640178 0.640124 0.640126 967.000000 weighted avg

(a) Metrics on training data for tree of depth 45

(b) Metrics on testing data for tree of depth 45

Figure 24: Testing and Training metrics for various max depth = 45

The following accuracy vs max depth plot was obtained:

Figure 25: Plot of test and train accuracy vs maximum depth

The following accuracy vs max depth plot was obtained over validation data:

Figure 26: Plot of test and train accuracy vs maximum depth over val We can clearly see that we get the best accuracy at max depth 35. The accuracy is around 0.579

The following accuracy vs ccp alpha plot was obtained over validation data:

Figure 27: Plot of test and train accuracy vs ccp alpha over val

We can clearly see that we get the best accuracy at ccp alpha = 0.001. The accuracy is around 0.572

When comparing the two max depth models, we see that we get similar performance at max depth = 35. This could be because the model does not over fit or under fit too much.

When comparing ccp alpha and pruning models we find that our pruning model slightly outperformed the sk learn model over validation set. This could be because our pruning is unrestricted while sklearn has an upper bound decided by ccp alpha.

1.5 Random Forests

Best Parameters obtained after grid search with OOB score :

$$\begin{aligned} & \max \text{ features} = 0.9 \\ & \min \text{ samples split} = 8 \\ & \text{n estimators} = 250 \end{aligned} \tag{1}$$

The following results were obtained on the best model:

Training Accuracy =
$$0.9793024147182828$$

Test Accuracy = 0.7280248190279214
Validation Accuracy = 0.7091954022988506
OOB Score = 0.721732464545803 (2)

The test accuracy is higher than all the decision tree models.

2 Neural Networks

2.1 Single Hidden Layer with sigmoid activation

The following stopping criteria were used:

$$MAX_EPOCH = 1000$$

$$Constant_Threshold = 1e - 7$$
(3)

If the number of epochs surpasses MAX_EPOCH, the training is terminated. If we detect 5 successive iterations where loss doesn't improve(Constant_Threshold) then we stop training. Also if there are 5 consecutive epoch for which loss increase we stop training and return the best model (least loss). A limit of thousand was set on epochs due to computational limitations. Training for further epoch could have led to improved accuracies over test and train.

Metrics for hidden layers: $\{1, 5, 10, 50, 100\}$

	Unnamed: 0	precision	recall	f1-score	support
0	0	0.903930	0.932432	0.917960	222.000
1	1	0.621212	0.754601	0.681440	163.000
2	2	0.447236	0.566879	0.500000	157.000
3	3	0.315508	0.412587	0.357576	143.000
4	4	0.967914	0.574603	0.721116	315.000
5	accuracy	0.659000	0.659000	0.659000	0.659
6	macro avg	0.651160	0.648221	0.635618	1000.000
7	weighted avg	0.722157	0.659000	0.671647	1000.000

	precision	recall	f1-score	support
0	0.904110	0.910112	0.907101	1958.000
1	0.649141	0.778654	0.708023	1649.000
2	0.489242	0.600629	0.539243	1590.000
3	0.320219	0.449650	0.374055	1430.000
4	0.949785	0.588793	0.726940	3373.000
accuracy	0.665000	0.665000	0.665000	0.665
macro avg	0.662499	0.665568	0.651072	10000.000
weighted avg	0.728011	0.665000	0.678790	10000.000

- (a) Metrics for layer dim 1 on test data
- (b) Metrics for layer dim 1 on train data

recall f1-score

support

Figure 28: Metrics for hidden layer: {1}

	Unnamed: 0	precision	recall	f1-score	support
0	0	0.921397	0.909483	0.915401	232.000
1	1	0.752525	0.693023	0.721550	215.000
2	2	0.703518	0.507246	0.589474	276.000
3	3	0.390374	0.496599	0.437126	147.000
4	4	0.550802	0.792308	0.649842	130.000
5	accuracy	0.676000	0.676000	0.676000	0.676
6	macro avg	0.663723	0.679732	0.662679	1000.000
7	weighted avg	0.698717	0.676000	0.678938	1000.000

0	0.927955	0.897008	0.912219	2039.0000
1	0.798281	0.721994	0.758223	2187.0000
2	0.722336	0.529081	0.610786	2665.0000
3	0.433765	0.524699	0.474918	1660.0000
4	0.586801	0.846791	0.693220	1449.0000
accuracy	0.691600	0.691600	0.691600	0.6916
macro avg	0.693828	0.703914	0.689874	10000.0000
weighted avg	0.713329	0.691600	0.693884	10000.0000

precision

- (a) Metrics for layer dim {5} on test data
- (b) Metrics for layer dim {5} on train data

Figure 29: Metrics for hidden layer: {5}

	Unnamed: 0	precision	recall	f1-score	support			precision	recall	f1-score	sup
0	0	0.943231	0.939130	0.941176	230.000		0	0.958904	0.927835	0.943114	2037.0
1	1	0.712121	0.801136	0.754011	176.000		1	0.757836	0.834168	0.794172	1797.0
2	2	0.577889	0.649718	0.611702	177.000		2	0.614242	0.699942	0.654297	1713.0
3	3	0.609626	0.532710	0.568579	214.000		3	0.606574	0.599115	0.602821	2033.0
4	4	0.775401	0.714286	0.743590	203.000		4	0.858919	0.742149	0.796276	2420.0
5	accuracy	0.731000	0.731000	0.731000	0.731		accuracy	0.760200	0.760200	0.760200	0.7
6	macro avg	0.723654	0.727396	0.723812	1000.000		macro avg	0.759295	0.760642	0.758136	10000.0
7	weighted avg	0.732429	0.731000	0.730072	1000.000	١	weighted avg	0.767906	0.760200	0.762158	10000.0

Figure 30: Metrics for hidden layer : $\{10\}$

	Unnamed: 0	precision	recall	f1-score	support		precision	recall	f1-score	SL
0	0	0.973799	0.961207	0.967462	232.000	0	0.982243	0.937984	0.959603	2064
1	1	0.813131	0.800995	0.807018	201.000	1	0.837209	0.835520	0.836364	1982
2	2	0.648241	0.712707	0.678947	181.000	2	0.689549	0.725216	0.706933	1856
3	3	0.582888	0.615819	0.598901	177.000	3	0.558267	0.672869	0.610234	1666
4	4	0.812834	0.727273	0.767677	209.000	4	0.879005	0.755757	0.812735	2432
5	accuracy	0.774000	0.774000	0.774000	0.774	accuracy	0.789700	0.789700	0.789700	C
6	macro avg	0.766179	0.763600	0.764001	1000.000	macro avg	0.789255	0.785469	0.785174	10000
7	weighted avg	0.779746	0.774000	0.776001	1000.000	weighted avg	0.803431	0.789700	0.794358	10000

Figure 31: Metrics for hidden layer : $\{50\}$

	Unnamed: 0	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0	0.938865	0.968468	0.953437	222.000	0	0.948757	0.965909	0.957256	1936.0000
1	1	0.818182	0.786408	0.801980	206.000	1	0.852376	0.830133	0.841108	2031.0000
2	2	0.628141	0.714286	0.668449	175.000	2	0.674693	0.732073	0.702213	1799.0000
3	3	0.663102	0.599034	0.629442	207.000	3	0.635956	0.639780	0.637862	1996.0000
4	4	0.775401	0.763158	0.769231	190.000	4	0.837877	0.782842	0.809425	2238.0000
5	accuracy	0.771000	0.771000	0.771000	0.771	accuracy	0.790200	0.790200	0.790200	0.7902
6	macro avg	0.764738	0.766271	0.764508	1000.000	macro avg	0.789932	0.790147	0.789573	10000.0000
7	weighted avg	0.771486	0.771000	0.770298	1000.000	weighted avg	0.792628	0.790200	0.790948	10000.0000
(a) Metrics	for layer	dim {10	0) on tes	st data	(b) Metrics	s for laye	r dim {1	00} on t	rain data

Figure 32: Metrics for hidden layer : $\{100\}$

Figure 33: Plot of weighted average test F1 score vs number units

Figure 34: Plot of average test accuracy score vs number units

2.2 Multiple Hidden Layer Architecture

 $Metrics \ for \ hidden \ layers: \ \{\{512\}, \ \{512, \ 256\}, \ \{512, \ 256, \ 128\}, \ \{512, \ 256, \ 128, \ 64\}\}.$

	Unnamed: 0	precision	recall	f1-score	support
0	0	0.947598	0.960177	0.953846	226.000
1	1	0.732323	0.805556	0.767196	180.000
2	2	0.673367	0.635071	0.653659	211.000
3	3	0.620321	0.563107	0.590331	206.000
4	4	0.721925	0.762712	0.741758	177.000
5	accuracy	0.747000	0.747000	0.747000	0.747
6	macro avg	0.739107	0.745324	0.741358	1000.000
7	weighted avg	0.743623	0.747000	0.744486	1000.000
	(0) Motrice		data	

(a) Metrics on test data

(a) Metrics on test data

(b) Metrics on train data

(b) Metrics on train data

Figure 35: Metrics for hidden layer : $\{512\}$

	Unnamed: 0	precision	recall	f1-score	support		precision	recall	f1-score	suppor
0	0	0.991266	0.978448	0.984816	232.000	0	0.991882	0.979459	0.985631	1996.0000
1	1	0.838384	0.864583	0.851282	192.000	1	0.901416	0.916238	0.908767	1946.0000
2	2	0.693467	0.770950	0.730159	179.000	2	0.746414	0.804528	0.774382	1811.0000
3	3	0.786096	0.625532	0.696682	235.000	3	0.750498	0.638559	0.690018	2360.0000
4	4	0.727273	0.839506	0.779370	162.000	4	0.758489	0.840488	0.797386	1887.0000
5	accuracy	0.814000	0.814000	0.814000	0.814	accuracy	0.828800	0.828800	0.828800	0.8288
6	macro avg	0.807297	0.815804	0.808462	1000.000	macro avg	0.829740	0.835854	0.831237	10000.0000
7	weighted avg	0.817625	0.814000	0.812600	1000.000	weighted avg	0.828815	0.828800	0.827130	10000.0000
	(a) Metrics	s on test	data		((b) Metri	cs on tra	in data	

Figure 36: Metrics for hidden layer: {512, 256}

	Unnamed: 0	precision	recall	f1-score	support			Unnamed: 0	precision	recall	f1-score	suppor
0	0	0.991266	0.970085	0.980562	234.000	•	0	0	0.991266	0.970085	0.980562	234.000
1	1	0.909091	0.849057	0.878049	212.000		1	1	0.909091	0.849057	0.878049	212.000
2	2	0.718593	0.764706	0.740933	187.000	:	2	2	0.718593	0.764706	0.740933	187.000
3	3	0.631016	0.648352	0.639566	182.000	;	3	3	0.631016	0.648352	0.639566	182.000
4	4	0.796791	0.805405	0.801075	185.000		4	4	0.796791	0.805405	0.801075	185.000
5	accuracy	0.817000	0.817000	0.817000	0.817		5	accuracy	0.817000	0.817000	0.817000	0.817
6	macro avg	0.809352	0.807521	0.808037	1000.000		6	macro avg	0.809352	0.807521	0.808037	1000.000
7	weighted avg	0.821312	0.817000	0.818752	1000.000		7	weighted avg	0.821312	0.817000	0.818752	1000.000

Figure 37: Metrics for hidden layer : $\{512, 256, 128\}$

	Unnamed: 0	precision	recall	f1-score	support		precision	recall	f1-score	suppor
0	0	1.000000	0.970339	0.984946	236.000	0	0.997463	0.965619	0.981283	2036.000
1	1	0.904040	0.895000	0.899497	200.000	1	0.919616	0.914990	0.917297	1988.0000
2	2	0.753769	0.797872	0.775194	188.000	2	0.797131	0.810417	0.803719	1920.0000
3	3	0.663102	0.666667	0.664879	186.000	3	0.642928	0.694086	0.667528	1860.0000
4	4	0.818182	0.805263	0.811671	190.000	4	0.838833	0.798725	0.818288	2196.0000
5	accuracy	0.835000	0.835000	0.835000	0.835	accuracy	0.838600	0.838600	0.838600	0.8386
6	macro avg	0.827819	0.827028	0.827238	1000.000	macro avg	0.839194	0.836767	0.837623	10000.0000
7	weighted avg	0.837308	0.835000	0.835968	1000.000	weighted avg	0.842745	0.838600	0.840318	10000.0000
	(a) Metrics	s on test	data		((b) Metri	cs on tra	in data	

Figure 38: Metrics for hidden layer : $\{512, 256, 128, 64\}$

Figure 39: Plot of weighted average test F1 score vs network depth

Figure 40: Plot of average test accuracy score vs network depth

2.3 Adaptive Learning Rate

 $Metrics \ for \ hidden \ layers: \ \{\{512\}, \ \{512, \ 256\}, \ \{512, \ 256, \ 128\}, \ \{512, \ 256, \ 128, \ 64\}\}.$

	precision	recall	f1-score	support		precision	recall	f1-score
0	0.903930	0.900000	0.901961	230.000	0	0.900051	0.867906	0.883686
1	0.676768	0.666667	0.671679	201.000	1	0.694641	0.686314	0.690452
2	0.497487	0.568966	0.530831	174.000	2	0.543033	0.559662	0.551222
3	0.534759	0.478469	0.505051	209.000	3	0.470120	0.512486	0.490390
4	0.689840	0.693548	0.691689	186.000	4	0.748924	0.706041	0.726851
accuracy	0.669000	0.669000	0.669000	0.669	accuracy	0.671800	0.671800	0.671800
macro avg	0.660557	0.661530	0.660242	1000.000	macro avg	0.671354	0.666482	0.668520
veighted avg	0.670572	0.669000	0.669033	1000.000	weighted avg	0.678595	0.671800	0.674801

Figure 41: Metrics for hidden layer : $\{512\}$

	precision	recall	f1-score	support
0	0.912664	0.896996	0.904762	233.000
J	0.512004	0.000000	0.504702	200.000
1	0.661616	0.678756	0.670077	193.000
2	0.507538	0.577143	0.540107	175.000
3	0.540107	0.469767	0.502488	215.000
4	0.668449	0.679348	0.673854	184.000
accuracy	0.667000	0.667000	0.667000	0.667
macro avg	0.658075	0.660402	0.658258	1000.000
weighted avg	0.668279	0.667000	0.666677	1000.000
(a) Metric	cs on test	data	

Figure 42: Metrics for hidden layer: {512, 256}

	precision	recall	f1-score	support			precision	recall	f1-score	support
0	0.903930	0.869748	0.886510	238.000		0	0.903930	0.869748	0.886510	238.000
1	0.611111	0.654054	0.631854	185.000		1	0.611111	0.654054	0.631854	185.000
2	0.472362	0.556213	0.510870	169.000		2	0.472362	0.556213	0.510870	169.000
3	0.486631	0.464286	0.475196	196.000		3	0.486631	0.464286	0.475196	196.000
4	0.737968	0.650943	0.691729	212.000		4	0.737968	0.650943	0.691729	212.000
accuracy	0.651000	0.651000	0.651000	0.651		accuracy	0.651000	0.651000	0.651000	0.651
macro avg	0.642400	0.639049	0.639232	1000.000		macro avg	0.642400	0.639049	0.639232	1000.000
weighted avg	0.659849	0.651000	0.654004	1000.000		weighted avg	0.659849	0.651000	0.654004	1000.000
(a) Metrics on test data						(b) Metric	s on train	n data	

Figure 43: Metrics for hidden layer: {512, 256, 128}

	precision	recall	f1-score	support		musalalan	wa a a ll	44	
0	0.000	0.0000	0.000000	0.000		precision	recall		SL
1	0.000	0.0000	0.000000	0.000	0	0.0000	0.00000	0.000000	(
•	0.000	0.0000	0.000000	0.000	1	0.0000	0.00000	0.000000	(
2	0.000	0.0000	0.000000	0.000	2	0.0000	0.00000	0.000000	C
3	0.000	0.0000	0.000000	0.000	3	0.0000	0.00000	0.000000	C
4	1.000	0.1870	0.315080	1000.000	4	1.0000	0.20910	0.345877	10000
accuracy	0.187	0.1870	0.187000	0.187	accuracy	0.2091	0.20910	0.209100	(
macro avg	0.200	0.0374	0.063016	1000.000	macro avg	0.2000	0.04182	0.069175	10000
weighted avg	1.000	0.1870	0.315080	1000.000	weighted avg	1.0000	0.20910	0.345877	10000

(a) Metrics on test data (b) Metrics on train data

Figure 44: Metrics for hidden layer : $\{512, 256, 128, 64\}$

Figure 45: Plot of weighted average test F1 score vs network depth

Figure 46: Plot of average test accuracy score vs network depth

We observe a decrease in F1-score here. This could be due to the fact that for more hidden layers it takes much more steps to reach the optimum value. Over here we are also decreasing the learning rate, as a result the step size decreases and the larger network is unable to reach optimum in given number of epochs. For other layer sizes as well, the performance is nowhere near the

previous sub-part because the gradient update steps become too small.

There isn't much boost to the training time as convergence in the given order was not achieved, but if the threshold was minimized, an early convergence would have surely occurred.

2.4 Tarining with ReLU Activation

Metrics for hidden layers: $\{\{512\}, \{512, 256\}, \{512, 256, 128\}, \{512, 256, 128, 64\}\}.$

	precision	recall	f1-score	support
0	0.908297	0.920354	0.914286	226.000
1	0.696970	0.722513	0.709512	191.000
2	0.582915	0.604167	0.593350	192.000
3	0.577540	0.521739	0.548223	207.000
4	0.711230	0.722826	0.716981	184.000
accuracy	0.703000	0.703000	0.703000	0.703
macro avg	0.695390	0.698320	0.696470	1000.000
weighted avg	0.700733	0.703000	0.701475	1000.000

Unnamed: 0 precision recall f1-score support 0 0.900051 0.895055 0.897546 1982.0000 1 0.720425 0.725745 1949.0000 2 0.630635 0.619215 2024.0000 3 0.533865 0.583878 0.557752 1836.0000 0.796270 0.753735 0.774419 2209.0000 5 0.716700 0.716700 0.716700 0.7167 macro avg 0.716249 0.714403 0.714935 10000.0000 0.720355 0.716700 0.718143 10000.0000

(a) Metrics on test data

(b) Metrics on train data

Figure 47: Metrics for hidden layer: {512}

	precision	recall	f1-score	support
0	0.995633	0.970213	0.982759	235.000
1	0.868687	0.843137	0.855721	204.000
2	0.728643	0.714286	0.721393	203.000
3	0.620321	0.610526	0.615385	190.000
4	0.711230	0.791667	0.749296	168.000
accuracy	0.794000	0.794000	0.794000	0.794
macro avg	0.784903	0.785966	0.784911	1000.000
weighted avg	0.796448	0.794000	0.794763	1000.000

	precision	recall	f1-score	support
0	0.989346	0.955414	0.972084	2041.0000
1	0.881699	0.867662	0.874624	2010.0000
2	0.779201	0.728100	0.752784	2089.0000
3	0.628984	0.666139	0.647029	1896.0000
4	0.783357	0.834012	0.807891	1964.0000
accuracy	0.811600	0.811600	0.811600	0.8116
macro avg	0.812517	0.810265	0.810882	10000.0000
weighted avg	0.815029	0.811600	0.812805	10000.0000

(a) Metrics on test data

(b) Metrics on train data

Figure 48: Metrics for hidden layer: {512, 256}

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	1.000000	0.978632	0.989201	234.000	0	1.000000	0.978632	0.989201	234.000
1	0.949495	0.903846	0.926108	208.000	1	0.949495	0.903846	0.926108	208.000
2	0.788945	0.867403	0.826316	181.000	2	0.788945	0.867403	0.826316	181.000
3	0.796791	0.659292	0.721550	226.000	3	0.796791	0.659292	0.721550	226.000
4	0.705882	0.874172	0.781065	151.000	4	0.705882	0.874172	0.781065	151.000
accuracy	0.855000	0.855000	0.855000	0.855	accuracy	0.855000	0.855000	0.855000	0.855
macro avg	0.848223	0.856669	0.848848	1000.000	macro avg	0.848223	0.856669	0.848848	1000.000
weighted avg	0.860957	0.855000	0.854678	1000.000	weighted avg	0.860957	0.855000	0.854678	1000.000

(a) Metrics on test data

(b) Metrics on train data

Figure 49: Metrics for hidden layer: {512, 256, 128}

	precision	recall	f1-score	support
0	1.000000	0.966245	0.982833	237.000
1	0.939394	0.873239	0.905109	213.000
2	0.798995	0.823834	0.811224	193.000
3	0.764706	0.680952	0.720403	210.000
4	0.705882	0.897959	0.790419	147.000
accuracy	0.849000	0.849000	0.849000	0.849
macro avg	0.841795	0.848446	0.841998	1000.000
eighted avg	0.855650	0.849000	0.849762	1000.000

(a) Metrics on test data

(b) Metrics on train data

Figure 50: Metrics for hidden layer : $\{512,\,256,\,128,\,64\}$

Figure 51: Plot of weighted average test F1 score vs network depth

Figure 52: Plot of average test accuracy score vs network depth

The following plots are for comparing the accuracies of the two models : sigmoid vs relu with variable learning rate

Figure 53: Comparison of accuracies

We can clearly see that ReLU model performs much better than sigmoid. The gradients in ReLU are simple and are either 0 or 1. This means a faster training in less epochs. Hence when we train a network using ReLU we get better results for the same epoch even with variable learning rate.

2.5 MLPClassifier

Stopping Criteria : Max Iteration = 1000 and defualt tolerance Metrics for hidden layers : $\{\{512\}, \{512, 256\}, \{512, 256, 128\}, \{512, 256\},$

	precision	recall	f1-score	support					
0	0.890830	0.607143	0.722124	336.00		precision	recall	f1-score	
1	0.227273	0.401786	0.290323	112.00	0	0.908676	0.533036	0.671919	33
2	0.150754	0.410959	0.220588	73.00	1	0.199191	0.372049	0.259467	10
_					2	0.131660	0.392966	0.197237	65
3	0.213904	0.333333	0.260586	120.00	3	0.192729	0.345536	0.247442	112
4	0.860963	0.448468	0.589744	359.00	4	0.855093	0.469661	0.606307	380
accuracy	0.480000	0.480000	0.480000	0.48	accuracy	0.461700	0.461700	0.461700	
macro avg	0.468745	0.440338	0.416673	1000.00	macro avg	0.457470	0.422650	0.396474	1000
weighted avg	0.670532	0.480000	0.534241	1000.00	weighted avg	0.682140	0.461700	0.524676	1000
(a) Metric	s on test	data		(b) Metri	cs on tra	in data	

Figure 54: Metrics for hidden layer: {512}

	precision	recall	f1-score	support		precision	recall	f1-score
0	0.938865	0.571809	0.710744	376.000	0	0.941654	0.512141	0.663450
1	0.136364	0.375000	0.200000	72.000	1	0.132457	0.339378	0.190545
2	0.080402	0.333333	0.129555	48.000	2	0.100410	0.400000	0.160524
3	0.122995	0.252747	0.165468	91.000	3	0.156873	0.334395	0.213559
4	0.877005	0.397094	0.546667	413.000	4	0.892874	0.447507	0.596200
accuracy	0.445000	0.445000	0.445000	0.445	accuracy	0.449600	0.449600	0.449600
macro avg	0.431126	0.385997	0.350487	1000.000	macro avg	0.444854	0.406684	0.364856
weighted avg	0.740086	0.445000	0.528689	1000.000	weighted avg	0.743686	0.449600	0.531862

Figure 55: Metrics for hidden layer: {512, 256}

	precision	recall	f1-score	support
0	0.934498	0.629412	0.752197	340.000
1	0.292929	0.491525	0.367089	118.000
2	0.140704	0.388889	0.206642	72.000
3	0.053476	0.238095	0.087336	42.000
4	0.898396	0.392523	0.546341	428.000
accuracy	0.478000	0.478000	0.478000	0.478
macro avg	0.464000	0.428089	0.391921	1000.000
weighted avg	0.749185	0.478000	0.551444	1000.000
((a) Metric	cs on test	data	

Figure 56: Metrics for hidden layer: {512, 256, 128}

	precision	recall	f1-score	support		precision	recall	f1-score	suppo
0	0.973799	0.547912	0.701258	407.000	0	0.981228	0.500129	0.662556	3867.000
1	0.106061	0.466667	0.172840	45.000	1	0.076340	0.305051	0.122119	495.000
2	0.045226	0.428571	0.081818	21.000	2	0.056352	0.506912	0.101429	217.000
3	0.096257	0.163636	0.121212	110.000	3	0.121016	0.226257	0.157690	1074.000
4	0.930481	0.417266	0.576159	417.000	4	0.948350	0.456177	0.616030	4347.000
accuracy	0.445000	0.445000	0.445000	0.445	accuracy	0.442100	0.442100	0.442100	0.442
macro avg	0.430365	0.404810	0.330657	1000.000	macro avg	0.436657	0.398905	0.331965	10000.0000
weighted avg	0.800658	0.445000	0.548500	1000.000	weighted avg	0.809687	0.442100	0.549180	10000.000
((a) Metric	cs on test	data		((b) Metri	cs on tra	in data	

Figure 57: Metrics for hidden layer: {512, 256, 128, 64}

Figure 58: Plot of weighted average test F1 score vs network depth

Figure 59: Plot of average test accuracy score vs network depth

We see that the accuracies and F1-score are fairly low as compared to the those in the previous part. This could be a result of difference in threshold. It seems that sklearn models have stopped early and as result don't show good results. Trainign with a smaller threshold will surely help.