Brazo robótico de bajo coste para la docencia universitaria

Vidal Pérez Bohoyo

vperezb.2019@alumnos.urjc.es

Trabajo fin de grado

xx de xxxxxxx de 20xx

(CC) Vidal Pérez Bohoyo

Este trabajo se entrega bajo licencia CC BY-NC-SA. Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.

Contenidos

- Introducción
- 2 Conclusiones

Introducción

Robótica industrial

Robótica educativa

Robótica de bajo coste

Situación de la Robótica

- La tecnología está cada vez más presente en la vida cotidiana.
- Los robots de servicio aparecen en el mercado.
- La domótica presenta cada vez más aplicaciones domésticas.

Precedentes de la robótica

Primera revolución industrial de 1800

Productos fabricados por máquinas. La máquina de vapor fue clave.

Objetivos

Descripción del problema

Primera revolución industrial de 1800

Productos fabricados por máquinas. La máquina de vapor fue clave.

Requisitos

- Oste inferior a 200€.
- En su mayoría impreso en 3D.
- 3 Bajo consumo eléctrico, inferior a 25 vatios.
- Tamaño reducido.
- Sencillo de montar.
- Tener integración con ROS 2 y Movelt 2.

Metodolog'ia

Plataforma de desarrollo

Software

> MoveIt2

Hardware

Desarrollo hardware

Resistencia de un material

• Si material piezoresistivo se deforma, cambia su resistencia eléctrica.

$$R = \rho \frac{I}{A} \tag{1}$$

donde:

R: resistencia del material $[\Omega]$

 ρ : resistividad $[\Omega - m]$

/ : longitud [m]

A: área de sección transversal $[m^2]$

• El cambio de resistencia se obtiene a partir de:

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} = \frac{\Delta A}{A} = \frac{\Delta I}{I} \tag{2}$$

• Otra forma de medir el efecto piezoresistivo: el factor de deformación.

$$GF(Gauge\ Factor) = \frac{\frac{\Delta R}{R}}{\varepsilon} = \frac{\frac{\Delta R}{R}}{\frac{\Delta I}{I}}$$
 (3)

Algoritmo de visión

```
cvCvtColor (&image, IpITmp1, CV_RGB2GRAY);//to Gray
cvNormalize(IpITmp1, IpITmp1, 0, 255, CV_MINMAX);
cvSmooth(IpITmp1,IpITmp2,CV_BLUR,3,3);//Avrg filter
cvLaplace(IpITmp2, IpILaplace, 3);//Laplace
cvConvertScale(IpILaplace,IpITmp1);
cvThreshold(IpITmp1,IpITmp2,Thress,255,CV_THRESH_BIN);
```

Conclusiones

Objetivos cumplidos

- Herramienta multiplataforma: soporta Linux, Windows, MacOS.
- Intuitiva para el usuario final: no se necesita instalar nada.
- Solo se necesita un navegador web.

Líneas futuras

- Permitir el uso de otras herramientas.
- Ampliar los botones disponibles en el interfaz.

Brazo robótico de bajo coste para la docencia universitaria

Vidal Pérez Bohoyo

vperezb.2019@alumnos.urjc.es

Trabajo fin de grado

xx de xxxxxxx de 20xx