

Universidad Nacional Autónoma de México Posgrado en Ciencia e Ingeniería de la Computación CÓMPUTO CIENTÍFICO CON ALTO VALOR AGREGADO Dr. Luis Miguel De La Cruz Salas

Implementación y comparación de métodos iterativos para resolver sistemas de ecuaciones lineales

Daniel Becerra Pedraza

## Planteamiento

**PROBLEMA** 

Implementar Jacobi, Gauss-Seidel, SOR, CGM, BICGSTAB, GMRES. Probar la convergencia para un problema en 2D y diferentes parámetros (tamaño de malla, iteraciones, tolerancia, etc.)

| Método          | Criterios de Convergencia                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| Jacobi          | <ul> <li>Matriz estrictamente diagonal dominante.</li> <li>Si la matriz no es estrictamente diagonal dominante es</li> </ul> |
| The Mark Street | posible que pueda converger.                                                                                                 |
| Gauss-Seidel    | <ul> <li>Matriz simétrica y definida positiva.</li> </ul>                                                                    |
|                 | Matriz estrictamente diagonal dominante.                                                                                     |
| SOR             | • Depende del factor de relajación $\omega$ con $0 < \omega < 2$ .                                                           |
| CGM             | <ul> <li>Matriz simétrica y definida positiva.</li> </ul>                                                                    |
|                 | <ul> <li>Puede aplicarse a matrices dispersas, pero su conver-</li> </ul>                                                    |
| THE STATE       | gencia no está garantizada.                                                                                                  |
| BICGSTAB        | <ul> <li>Matriz no necesariamente simétrica.</li> </ul>                                                                      |
|                 | • Su convergencia no está garantizada para algunos ca-                                                                       |
|                 | sos.                                                                                                                         |
| GMRES           | Matriz no necesariamente simétrica.                                                                                          |
| THE STREET      | <ul> <li>Para matrices simétricas Arnoldi se transforma en Lan-</li> </ul>                                                   |
| An O'T A        | czos.                                                                                                                        |



Malla: 25x25 - Tolerancia: 1e-8 - Max. Iter.: 200



Malla: 25x25 - Tolerancia: 1e-8 - Max. Iter.: 200



Malla: 45x45 - Tolerancia: 1e-8 - Max. Iter.: 200



Malla: 45x45 - Tolerancia: 1e-8 - Max. Iter.: 200



Malla: 45x45 - Tolerancia: 1e-8 - Max. Iter.: 200 - w: 2



MÉTODOS PRUEBAS CON FDM 000000000000



Malla: 25x25 - Tolerancia: 1e-20 - Max. Iter.: 200



Malla: 25x25 - Tolerancia: 1e-20 - Max. Iter.: 200



Malla: 100x100 - Tolerancia: 1e-20 - Max. Iter.: 200









Malla: 100x100 - Tolerancia: 1e-20 - Max. Iter.: 450







Malla: 100×100 - Tolerancia: 1e-20 - Max. Iter.: 450



TODOS

IEBAS CON FDM

PRUEBAS CON RI

CONCLUSIONES

FIN O











Problema: Transferencia de calor - Malla: 25x25 - Tolerancia: 1e-8 - Max. Iter.: 29



PRUEBAS CON RBF

CONCLUSIONES

FIN





Problema: Advección-Difusión - Malla: 25x25 - Tolerancia: 1e-8 - Max. Iter.: 29



PRUEBAS CON RBF

CONCLUSIONES

FIN

Problema: Advección-Difusión - Malla: 25x25 - Tolerancia: 1e-8 - Max. Iter.: 2





Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.
- Con matrices de Gram:

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.
- Con matrices de Gram:
  - GMRES converge más rápido que BICGSTAB.

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.
- Con matrices de Gram:
  - GMRES converge más rápido que BICGSTAB.
  - Dependiendo de las entradas de la matriz el método BICGSTAB puede no converger.

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.
- Con matrices de Gram:
  - GMRES converge más rápido que BICGSTAB.
  - Dependiendo de las entradas de la matriz el método BICGSTAB puede no converger.
  - Los métodos básicos divergen rápido.

- Los métodos del subespacio de Krylov fueron más eficientes que los métodos básicos.
- Con matrices diagonal-dominante, el método BICGSTAB converge más rápido que GMRES.
- Con matrices de Gram:
  - GMRES converge más rápido que BICGSTAB.
  - Dependiendo de las entradas de la matriz el método BICGSTAB puede no converger.
  - Los métodos básicos divergen rápido.
  - El método de gradiente conjugado diverge lento.

# GRACIAS POR SU ATENCIÓN