LATEX Workshop

Naoki Pross <npross@hsr.ch>

Hochschule für Technik Rapperswil

March 7, 2020

The last equality follows by observing that $(\Omega \setminus B_R(\mathbf{r}_0)) \cap B_R(\mathbf{r}_0) = \emptyset$, and the argument above. The RHS is the electric flux generated by a charged sphere, and so:

$$\Phi(R) = \frac{Q(R)}{\varepsilon_0} = \frac{1}{\varepsilon_0} \int_{B_R(\mathbf{r}_0)} \rho(\mathbf{r}') \, d\mathbf{r}' = \frac{1}{\varepsilon_0} \rho(\mathbf{r}'_c) |B_R(\mathbf{r}_0)| \quad \text{with } r'_c \in B_R(\mathbf{r}_0)$$

Where the last equality follows by the mean value theorem for integrals. Finally for the Squeeze theorem and the continuity of ρ :

$$\nabla \cdot \mathbf{E}_0(\mathbf{r}_0) = \lim_{R \to 0} \frac{\Phi(R)}{|B_R(\mathbf{r}_0)|} = \frac{\rho(\mathbf{r}_0)}{\varepsilon_0}$$

7.2 Deriving Coulomb's law from Gauss's law

Strictly speaking, Coulomb's law cannot be derived from Gauss's law alone, since Gauss's law does not give any information regarding the curl of **E** (see Helmholtz decomposition and Faraday's law). However, Coulomb's law can be proven from Gauss's law if it is assumed, in addition, that the electric field from a point charge is spherically symmetric (this assumption, like Coulomb's law itself, is exactly true if the charge is stationary, and approximately true if the charge is in motion).

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- 5 Bibliography management
- 6 Extras

What is Typesetting

History & LATEX

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- 5 Bibliography management
- 6 Extras

Source code spacing

Special characters

Commands

Environments

Document structure

Spacing and newlines

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- Bibliography management
- 6 Extras

Emphasis, Bold, Italic

Lists

Tables

Figures (floats)

Cross-References

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- 5 Bibliography management
- 6 Extras

Math environments

Math symbols and fonts

Equations

Spacing in math mode

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- 5 Bibliography management
- 6 Extras

TheBibliography

External bibliography

- 1 Introduction
- 2 Fundamentals
- 3 Basics
- 4 Mathematics
- 5 Bibliography management
- 6 Extras

Source code listings

Plots

TikZ