Algorithms and Decision Procedures for Regular Languages

Chapter 9

Decision Procedures

A decision procedure is an algorithm whose result is a Boolean value. It must:

- Halt
- Be correct

Important decision procedures exist for regular languages:

- Given an FSM M and a string s, does M accept s?
- Given a regular expression α and a string w, does α generate w?

Membership

We can answer the membership question by running an FSM.

But we must be careful:

Membership

decideFSM(M: FSM, w: string) =
If ndfsmsimulate(M, w) accepts then return True
 else return False.

 $decideregex(\alpha)$: regular expression, w: string) = From α , use regextofsm to construct an FSM M such that $L(\alpha) = L(M)$. Return decideFSM(M, w).

Emptiness, Finiteness, Equivalence

- Given an FSM M, is L(M) empty?
- Given an FSM M, is $L(M) = \Sigma_M^*$?
- Given an FSM M, is L(M) finite?
- Given an FSM M, is L(M) infinite?
- Given two FSMs M_1 and M_2 , are they equivalent?

Emptiness

- Given an FSM M, is L(M) empty?
 - The graph analysis approach:
 - 1. Mark all states that are reachable via some path from the start state of *M*.
 - 2. If at least one marked state is an accepting state, return *False*. Else return *True*.
 - The simulation approach:
 - 1. Let M' = ndfsmtodfsm(M).
 - 2. For each string w in Σ^* such that $|w| < |K_M| / |$ do: Run decideFSM(M', w).
 - 3. If *M* ′ accepts at least one such string, return *False*. Else return *True*.

Totality

- Given an FSM M, is $L(M) = \sum_{M} *?$
 - 1. Construct M' to accept $\neg L(M)$.
 - 2. Return *emptyFSM(M′*).

- Given an FSM M, is L(M) finite?
 - The graph analysis approach:

- Given an FSM M, is L(M) finite?
 - The graph analysis approach:

The mere presence of a loop does not guarantee that L(M) is infinite. The loop might be:

- labeled only with ε ,
- unreachable from the start state, or
- not on a path to an accepting state.

- Given an FSM M, is L(M) finite?
 - The graph analysis approach:
 - 1. M' = ndfsmtodfsm(M).
 - 2. M'' = minDFSM(M').
 - 3. Mark all states in M'' that are on a path to an accepting state.
 - 4. Considering only marked states, determine whether there are any cycles in $M^{\prime\prime}$.
 - 5. If there are cycles, return *False*. Else return *True*.

- Given an FSM M, is L(M) finite?
 - The simulation approach:
 - 1. M' = ndfsmtodfsm(M).
 - 2. For each string w in Σ^* such that $|K_M| \le |w| \le 2 \cdot |K_M| 1$ do:
 - 3. Run decideFSM(M', w).
 - 4. If *M* ′ accepts at least one such string, return *False*. Else return *True*.

Equivalence

• Given two FSMs M_1 and M_2 , are they equivalent? In other words, is $L(M_1) = L(M_2)$?

Two solutions.

Equivalence

• Given two FSMs M_1 and M_2 , are they equivalent? In other words, is $L(M_1) = L(M_2)$?

 $equalFSMs_1(M_1: FSM, M_2: FSM) =$

- 1. M_1 = buildFSMcanonicalform(M_1).
- 2. M_2 = buildFSMcanonicalform(M_2).
- 3. If M_1 and M_2 are equal, return *True*, else return *False*.

Equivalence

• Given two FSMs M_1 and M_2 , are they equivalent? In other words, is $L(M_1) = L(M_2)$?

Observe that M_1 and M_2 are equivalent iff:

$$(L(M_1) - L(M_2)) \cup (L(M_2) - L(M_1)) = \emptyset.$$

$equalFSMs_2(M_1: FSM, M_2: FSM) =$

- 1. Construct M_A to accept $L(M_1)$ $L(M_2)$.
- 2. Construct M_B to accept $L(M_2)$ $L(M_1)$.
- 3. Construct M_C to accept $L(M_A) \cup L(M_B)$.
- 4. Return *emptyFSM*(M_{\odot}).

Minimality

• Given DFSM *M*, is *M* minimal?

- 1. M' = minDFSM(M).
- 2. If $|K_M| = |K_{M'}|$ return *True*; else return *False*.

Answering Specific Questions

Given two regular expressions α_1 and α_2 , is:

$$(L(\alpha_1) \cap L(\alpha_2)) - \{\epsilon\} \neq \emptyset$$
?

- 1. From α_1 , construct an FSM M_1 such that $L(\alpha_1) = L(M_1)$.
- 2. From α_2 , construct an FSM M_2 such that $L(\alpha_2) = L(M_2)$.
- 3. Construct M such that $L(M') = L(M_1) \cap L(M_2)$.
- 4. Construct M_{ϵ} such that $L(M_{\epsilon}) = {\epsilon}$.
- 5. Construct M' such that $L(M'') = L(M') L(M_{\epsilon})$.
- 6. If L(M'') is empty return *False*; else return *True*.

Answering Specific Questions

Given two regular expressions α_1 and α_2 , are there at least 3 strings that are generated by both of them?

Summary of Closure Properties

- Compute functions of languages defined as FSMs:
 - Given FSMs M_1 and M_2 , construct a FSM M_3 such that $L(M_3) = L(M_1) \cup L(M_2)$.
 - Given FSMs M_1 and M_2 , construct a new FSM M_3 such that $L(M_3) = L(M_1) L(M_2)$.
 - Given FSM M, construct an FSM M_3 such that $L(M_3) = (L(M))^*$.
 - Given a DFSM M, construct an FSM M_3 such that $L(M_3) = \neg L(M)$.
 - Given two FSMs M_1 and M_2 , construct an FSM M_3 such that $L(M_3) = L(M_1) \cap L(M_2)$.
 - Given two FSMs M_1 and M_2 , construct an FSM M_3 such that $L(M_3) = L(M_1) L(M_2)$.
 - Given an FSM M, construct an FSM M_3 such that $L(M_3) = (L(M))^R$.

Summary of Decision Procedures

- Decision procedures that answer questions about languages defined by FSMs:
 - Given an FSM M and a string s, decide whether s is accepted by M.
 - Given an FSM M, decide whether L(M) is empty.
 - Given an FSM M, decide whether L(M) is finite.
 - Given two FSMs, M_1 and M_2 , decide whether $L(M_1) = L(M_2)$.
 - Given an FSM M, is M minimal?