Input Output	 None	Merkle root
	Input	Output

Process

- 1. Get transactions hashes as function parameter
- 2. Concatenate every two hashes and hash them using SHA-512 algorithm in ecc package.
 - a. Import module: from ecc import sha512
 - b. Use algorithm: "sha512.Sha512(string.encode(utf-8')).hexdigest()", returns 64 byte hex string
- 3. Hash the concatenated hashes and repeat until only one hash is left, that hash is the Merkle Root

A diagram to help

A B C D = transaction hashes Where the *top hash* is the Merkle Root.

MerkleTreeNode.MerkleTreeNode() class constructor IPO

Input	Output
None	None

Process

- 1. Initialize self.left, self.right to None
- 2. Initialize self.data to parameter data
- 3. Initialize self.hash to the hashes value of self.data

MerkleTree.get_root() IPO						
r	Input		Output			
	None		Merkle root			

Process

- 1. Convert transaction list to MerkleTreeNode object and add to a list named nodes
- 2. Loop through nodes by incrementing by 2
- 3. Concatenate node1 and node2 and convert this data into MerkleTreeNode object and append to a temporary list.
- 4. Assign the temporary list to nodes list
- 5. Loop through until loop finishes
- 6. Nodes[0] is the merkle root