SIA - TP4 Modelos de aprendizaje no supervisado

Grupo 1

Alberto Bendayan Tobias Ves Losada Cristian Tepedino

Introducción

Csv de países de Europa

28 países:

- Nombre del país
- Área
- Producto bruto interno
- Inflación anual
- Expectativa de vida media en años
- Presupuesto militar
- Tasa de crecimiento poblacional
- Tasa de desempleo

Red de Kohonen

Learning Rate inicial: 0,1 Iteraciones: 10000

Learning Rate inicial: 0,1 Iteraciones: 10000

Learning Rate inicial: 0,1 Iteraciones: 10000

Learning Rate inicial: 0,4

Learning Rate inicial: 0,8

Learning Rate inicial: 0,05 Iteraciones: 10000

Learning Rate: 0,05 Iteraciones: 10.000

Conclusiones

- Grupos bien definidos (Ucrania y España siempre solos)
- Regiones cercanas y opuestas
- Kohonen como herramienta agrupadora poderosa
- Buenos resultados variando el Learning Rate

Modelo de Oja

PC1 por librería

Learning rate constante $\eta(0) = 0.1$

E = 0.646

Learning rate constante $\eta(0) = 0.01$

 $Cos(\theta) = 0.99185$

 $E = 8.14 \cdot 10^{-3}$

Learning rate constante $\eta(0) = 0.01$

 $Cos(\theta) = -0.99185$

 $E = 8.14 \cdot 10^{-3}$

Learning rate constante $\eta(0) = 0.001$

 $E = 7.63 \cdot 10^{-5}$

Learning rate constante $\eta(0) = 0.0001$

 $E = 7.57 \cdot 10^{-7}$

Learning rate adaptativo $\eta(0) = 0.01$

 $E = 1.87 \cdot 10^{-5}$

Learning rate adaptativo $\eta(0) = 0.1$

 $E = 1.09 \cdot 10^{-8}$

Resumen de los resultados

Learning Rate	η(0)	E
Constante	0.1	0.646
Constante	0.01	8.14 · 10 ⁻³
Constante	0.001	7.63 · 10 ⁻⁵
Constante	0.0001	7.57 · 10 ⁻⁷
Adaptativo	0.1	1.09 · 10 ⁻⁸
Adaptativo	0.01	1.87 · 10 ⁻⁵
Adaptativo	0.001	0.423

Otras posibilidades

- Un learning rate inicial más alto causa que los pesos divergan, eventualmente convirtiéndose en NaNs
- Un learning rate constante más bajo podría llevar a menor error, pero requiere más epochs para converger
- Un learning rate adaptativo más bajo causará que los pesos no convergan a la PC1, como se vio en el caso de 0.001

 Se podría probar con otras funciones para actualizar el learning rate, que quizás permitan converger a la PC1 con menor error

Interpretación de los resultados

- El GDP, la expectativa de vida y el crecimiento poblacional tienen una correlación (positiva) fuerte en el índice
- La inflación y el desempleo tienen una correlación (negativa) en el índice
- Si bien el área y la inversión militar tienen una correlación negativa, su peso en la PC1 es bajo

Conclusiones

• Se debe elegir un learning rate adecuado para que el modelo de Oja converga a la PC1

- La regla de Oja permite calcular la PC1 sin la necesidad de almacenar y operar sobre toda la matriz de datos.
 - Calcular la matriz de covarianza y sus autovectores y autovalores es muy costoso para datasets grandes
 - Oja incluso permitiría actualizar los pesos a medida que llegan nuevos datos, en caso de no tenerlos todos desde un principio

Modelo de Hopfield

Set de 4 letras aleatorio

Convergencia letra A

Estado espurio

Recuperaciones exitosas

Recuperaciones exitosas

25% de ruido

35% de ruido

Recuperaciones exitosas

40% de ruido

50% de ruido

Análisis de ortogonalidad

Ortogonalidad E, A, L, J

Mejores set de letras

Set elegido

Evolución del estado

Paso 1 - Energía = -1.6

Paso 2 - Energía = -6.08

Paso 3 - Energía = -7.52

Paso 4 - Energía = -0.72

Mejor set de 3 letras

Comparación distinta cantidad de patrones almacenados

Comparación distinta cantidad de patrones almacenados

Capacidad teórica Hopfield

• Según Amit et al. (1985), el número máximo de patrones que se puede almacenar en una red según es:

p≤ 0,138N

Utilizando regla de capacidad teórica

Si quisiéramos almacenar un abecedario completo de 26 letras en una red de Hopfield:

$$N \geq \sqrt{rac{26}{0.138}}$$

N tiene que ser mayor o igual a 13,72, tomamos N= 15

Abecedario 15x15

• Letras de 225 píxeles

25 pixeles ~ 10% ruido

50 píxeles ~ 20% ruido

75 píxeles ~ 30% ruido

100 pixeles ~ 40% ruido

125 píxeles ~ 50% ruido

Conclusiones

- El comportamiento de la red es sensible a la correlación entre patrones almacenados
- Con bajos niveles de ruido y patrones ortogonales la red tiene un buen desempeño