

Norwegian University of Life Sciences

Partial and multiblock matrix correlations

Kristian Hovde Liland

Correlation

- What is it?
 - -Broadly: Any dependence or association between two variables
 - Typically: Degree of linear relation between two random variables

$$r(aX_1, X_2) = r(X_1, bX_2) = r(X_1, X_2)$$

 $r(X_1, X_2) = r(X_2, X_1)$
 $r(X_1, X_2) = 1 \text{ if } X_1 = bX_2$
 $r(X_1, X_2) = 0 \text{ iff } X_1^t W X_2 = 0$

Matrix correlation

- Generalisation of correlation to pairs of matrices
- Even more
 - possible definitions,
 - aspects to emphasise,
 - -restrictions to apply
- Simplest variation?: Inner product correlation

A1	A2
0.4	1.2
0.3	2.1
0.6	2.9
0.4	2.5

B1	B2
0.5	1.5
0.2	1.9
0.5	2.3
0.3	1.3

$$R_{in}(\mathbf{X}_1, \mathbf{X}_2) = tr(\mathbf{X}_1^t \mathbf{X}_2) / \sqrt{tr(\mathbf{X}_1^t \mathbf{X}_1)tr(\mathbf{X}_2^t \mathbf{X}_2)}$$

Matrix correlation – some history

- 1965 Rozeboom's squared vector correlation
- 1974 Coxhead's coefficient
- 1974 Yannai's Generalised Coefficient of Determination (GCD)
- 1976 RV
- 1978 Procrustes Similarity Index (PSI)
- 1984 Ramsay's r1, r2, r3, r4
- 2009 RV2
- 2011 RV_{adjusted} (Maye)
- 2015 RV_{adjusted} (Ghaziri)
- 2018 Similarity of Matrices Index (SMI)

All these measures are included in the R package *MatrixCorrelation*, maintained by K.H. Liland.

Several are described in the Multiblock Data Fusion book by Smilde et al.

Similarity of matrices indexes – SMI

- Similarity between unscaled subspaces
- Compute left singular vectors (T, U) for two centred matrices
- Explained variance of smallest subspace when predicted from largest

$$SMI_{OP}(\mathbf{T}, \mathbf{U}) = max\left(\frac{\|\mathbf{B}_{\mathbf{T}}\|_F^2}{p}, \frac{\|\mathbf{B}_{\mathbf{U}}\|_F^2}{q}\right) = \frac{\|\mathbf{T}^t\mathbf{U}\|_F^2}{r}$$

- Close relation to GCD, restricted number of comp.
- Can restrict regression to Procrustes rotations

Partial correlation

Correlation between two random variables conditioned on a third variable corr(a, b | c)

• Can be calculated as correlation between residuals from regressions $a{\sim}c \Rightarrow a^{\perp}$ and $b{\sim}c \Rightarrow b^{\perp}$ corr (a^{\perp}, b^{\perp})

 Useful on its own and in estimating connections between variables in a network

Partial matrix correlation

• RV, RV2*, GCD and SMI^{II} can all be formulated as correlations between vectorised configuration matrices:

$$RV = \frac{tr(\mathbf{S}_{1}\mathbf{S}_{2})}{\sqrt{tr(\mathbf{S}_{1})tr(\mathbf{S}_{2})}} \qquad RV2 = \frac{tr(\tilde{\mathbf{S}}_{1}\tilde{\mathbf{S}}_{2})}{\sqrt{tr(\tilde{\mathbf{S}}_{1})tr(\tilde{\mathbf{S}}_{2})}} \qquad SMI = cor(vec(\mathbf{C}_{1}), vec(\mathbf{C}_{2})) / \min(p, q) \cdot \sqrt{p \cdot q} = cor(vec(\mathbf{S}_{1}), vec(\tilde{\mathbf{S}}_{2})) \approx cor(vec(\tilde{\mathbf{S}}_{1}), vec(\tilde{\mathbf{S}}_{2}))$$

• ... which give simple translations to partial correlation

$$\begin{split} pRV &= cor(vec(\mathbf{S}_1), vec(\mathbf{S}_2) | vec(\mathbf{S}_3)) \\ pRV2 &= cor(vec(\tilde{\mathbf{S}}_1), vec(\tilde{\mathbf{S}}_2) | vec(\tilde{\mathbf{S}}_3)) \\ pSMI &= cor(vec(\mathbf{C}_1), vec(\mathbf{C}_2) | vec(\mathbf{C}_3)) \end{split}$$

^{*} non-centred configuration matrices

Norwegian University of Life Sciences

Approximately data from iTOP

• SMI with 5 components per block (cheating due to time constraints)

mut

Multiblock matrix correlation

- Basic idea:
 - Reuse configuration matrix formulations
 - -Exchange correlation with Generalised Correlation Analysis (GCA)

$$mRV = GCA(vec(\mathbf{S}_1), vec(\mathbf{S}_2), vec(\mathbf{S}_3), ...)$$

 $mRV2 \approx GCA(vec(\mathbf{\tilde{S}}_1), vec(\mathbf{\tilde{S}}_2), vec(\mathbf{\tilde{S}}_3), ...)$
 $mSMI = GCA(vec(\mathbf{C}_1), vec(\mathbf{C}_2), vec(\mathbf{C}_3), ...)$

Statistical test for common component

- Permutation test:
 - −H₀: blocks originate from same source

• P-value for common components in PCA-GCA

Dimensionality of single blocks

```
#% Projection with rank reduction
def Proj(X, rrank='none', prop=0.95):
    """Projection matrix
   Compute X inv(X'X) X' with support for singular X solved
    by Moore-Penrose pseudo inverse of (X'X) or PCA of X using
    components up to a chosen cummulative explained variance.
    Parameters
    X : numpy array
        Data to create projection matrix from.
        Type of rank reduction. Either 'none' (default), 'pinv' for
       Moore-Penrose pseudo-inverse or 'PCA' (see next argument).
    prop : float
        Proportion of explained variance in PCA rank reduction
        (see previous argument).
    if rrank == 'none':
        return X @ npl.inv(X.T @ X) @ X.T
    elif rrank == 'pinv':
        return X @ npl.pinv(X.T @ X) @ X.T
    elif rrank == 'PCA':
       X = X - np.mean(X, axis=0)
                                                      # Centre
       U,D,_ = npl.svd(X, full_matrices=False)
                                                      # PCA (by SVD)
       expl = np.cumsum(D**2/np.sum(D**2))
                                                      # Explained variance
        comp = np.where(np.array(expl) >= prop)[0][0] # First comp > prop
        return U[:,:comp] @ U[:,:comp].T
```


Wines $-A \rightarrow E$

Wines – all paths ending at E

Mobile – A -> E and C -> E

Single path

Direct and indirect effects between two blocks

1 tab, effs, orth_inds = pe.path_effects(blocks, paths, 'A', '\[
2 tab\]

\(0.9s \)

	effect	explained variance
0	direct: A -> E	1.866591
1	indirect: A -> B -> C -> D -> E	0.000000
2	indirect: A -> B -> C -> E	0.000000
3	indirect: A -> B -> D -> E	0.000000
4	indirect: A -> B -> E	0.192438
5	sum of effects	2.059028
6	uncorrected total: A -> E	34.382584

Single path

Direct and indirect effects between two blocks

	effect	explained variance
0	direct: C -> E	9.833953
1	indirect: C -> D -> E	1.913509
2	sum of effects	11.747462
3	uncorrected total: C -> E	46.564378

Mobile – all paths ending at E

Simulation

Orthogonal info in middle block

[A] -> [Ba Bc] -> [C], i.e., local effect from A to Ba, but neither direct or indirect effect from A to C

```
1 # Random data
   X = np.random.normal(0,1,[10,5])
4 # PCA
5 X = X - np.mean(X, axis=0)
6 u,s,v = npl.svd(X,False)
8 # Orthogonal block variables relating to A and C
   Ba = u[:,:-1:2]
10 Bc = u[:,1::2]
    Bs = np.hstack([Ba, Bc])
12
13 # Create A and C as linear combinations of orthogonal block variables plus a little noise
   As = Ba @ np.array([[1,2],[2.3,-1.6]]) + np.random.normal(0,0.001,[10,2]) # A made from Ba
   Cs = Bc @ np.array([[1.4,3],[-1.1,1.3]]) + np.random.normal(0,0.001,[10,2]) # C made from Bc
17 # Blocks and paths
18 blocks_sim = {'A': As, 'B': Bs, 'C': Cs}
    paths_sim = np.array([[0,1],[0,2],[1,2]])
```

Single path

Direct and indirect paths from A to C

```
1 # A->B and Bhat->C
   2 tab, effs, orth_inds = pe.path_effects(blocks_sim, paths_sim, 'A', 'C', rrank='none', prop=0.99, continue_from_prediction=True)
   3 print(tab)
   4 print(effs)
 √ 0.8s
                     effect explained variance
             direct: A -> C
                                       0.000050
      indirect: A -> B -> C
                                       0.000031
                                      0.000080
             sum of effects
3 uncorrected total: A -> C
                                      0.000052
[[4.97051740668818e-05], [49.999909693296914, 6.138974705392872e-05], [8.039999215478956e-05], [5.1991218477012093e-05]]
   1 # A->B and B->C
   2 tab, effs, orth_inds = pe.path_effects(blocks_sim, paths_sim, 'A', 'C', rrank='none', prop=0.99, continue_from_prediction=False)
   3 print(tab)
   4 print(effs)
 ✓ 0.2s
                     effect explained variance
             direct: A -> C
                                       0.000050
      indirect: A -> B -> C
                                     49.999864
             sum of effects
                                     49.999914
3 uncorrected total: A -> C
                                      0.000052
[[4.97051740668818e-05], [49.99900693296914, 99.99990934548399], [49.99991407129484], [5.1991218477012093e-05]]
```


Age K. Smilde • Tormod Næs • Kristian Hovde Liland

Buy the book!

Multiblock Data Fusion in Statistics and Machine Learning

Applications in the Natural and Life Sciences

