数理逻辑

郑为杰

e-mail: zhengweijie@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机学院

自然演绎系统ND的语言部分

字母表是集合:

$$\sum = \{(,),\neg,\land,\lor,\longrightarrow,e,p,q,r,p_1,p_2,p_3,\ldots\}$$

注释:

- (1) 三个部分构成: 助记符 + 联结词 + $Atom(L^p)$ 。
- (2) $\{p,q,r,p_1,p_2,\cdots\}$ 就是 $Atom(L^p)$ 。
- (3) {¬,∧,∨,→,↔}是联结词。
- (4) {(,)}是助记符。目的是体现公式的层次感。

自然演绎系统ND的语言部分

字母表: $\Sigma = \{(,),\neg,\land,\lor,\rightarrow,\leftrightarrow,p,q,r,p_1,p_2,p_3,\ldots\}$

助记符+完备联结词组+ $Atom(L^p)$

ND的公式(递归定义):

- (1) $p,q,r,p_1,p_2,p_3,...$ 为(原子)公式。
- (2) 如果 $A \setminus B$ 是公式,那么 $\neg A \setminus A \setminus B \setminus A \vee B \setminus A \rightarrow B \setminus A \leftrightarrow B$ 也是公式。
- (3) 只有(1)和(2)确定的 Σ *的字符串才是公式。在不产生歧义的情况下
- ,公式中最外层的括号可以省略。

自然演绎系统ND中的公理

公理模式:

$$\Gamma \cup \{A\} \vdash A \in$$

注释:

- (1) ND中只有这一条公理
- (2) Γ 代表的是ND中的公式集合
- (3) A代表的是ND中的公式
- (4) 该公理实际上表示了一个公理模板

推理规则: 共有14条

推理规则1: 假设引入规则,出自重言式 $B \rightarrow (A \rightarrow B)$

$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B} \ \ (+)$$

证明(PC证明):

• 由 $\Gamma \vdash B$,则可得以 Γ 为前提对 $A \to B$ 的如下演绎序列:

$$B, B \rightarrow (A \rightarrow B), A \rightarrow B$$

• 从而 $\Gamma \vdash A \to B$,再由演绎定理知 $\Gamma ; A \vdash B$ 。

推理规则: 共有14条

推理规则2: 假设消除规则,出自重言式 $\neg A \rightarrow (A \rightarrow B)$

$$\frac{\Gamma;A\vdash B\;,\quad \Gamma;\neg A\vdash B}{\Gamma\vdash B} \ \ (-)$$

- 由 Γ ; $A \vdash B$, Γ ; $\neg A \vdash B$, 根据演绎定理知: $\Gamma \vdash A \to B$, $\Gamma \vdash \neg A \to B$
- 可构造以广为前提的如下演绎序列:
 - (1) $A \rightarrow B$ 已知条件
 - (2) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ 定理13
 - (3) $\neg B \rightarrow \neg A$ (1) 和 (2) 用rmp分离规则
 - (4) $(\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$ 定理14
 - (5) $\neg A \rightarrow B$ 已知条件
 - (6) $\neg B \rightarrow A$ (5) 和 (4) 用rmp分离规则
 - (7) $(\neg B \rightarrow A) \rightarrow ((\neg B \rightarrow \neg A) \rightarrow B)$ 定理16
 - (8) $(\neg B \rightarrow \neg A) \rightarrow B$ (6) 和 (7) 用rmp分离规则
 - (9) B (3) 和 (8) 用rmp分离规则
- 从上述演绎序列可知 $\Gamma \vdash B$

推理规则: 共有14条

推理规则3: 析取引入规则, 出自重言式 $A \rightarrow A \lor B, B \rightarrow A \lor B$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ $(V+)$

证明(PC证明):

• 由 $\Gamma \vdash A$ 可以得到以 Γ 为前提的如下演绎序列:

$$A , A \rightarrow A \lor B , A \lor B$$

- 从上述演绎序列可知Γ ⊢ A ∨ B
- 由 $\Gamma \vdash B$ 可以得到以 Γ 为前提的如下演绎序列:

$$B , B \rightarrow A \vee B , A \vee B$$

从上述演绎序列可知Γ ⊢ A ∨ B

推理规则: 共有14条

推理规则4: 析取消除规则, 出自重言式 $(A \lor B) \land (A \to C) \land (B \to C) \to C$

$$\frac{\Gamma;A\vdash C, \quad \Gamma;B\vdash C, \quad \Gamma\vdash A\lor B}{\Gamma\vdash C} \quad (V-)$$

- 由 Γ ; $A \vdash C$ 和 Γ ; $B \vdash C$,根据演绎定理知: $\Gamma \vdash A \to C$, $\Gamma \vdash B \to C$
- 可以构造以广为前提的如下演绎序列:
 - (1) $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))$ 定理22二难推理
 - (2) $A \rightarrow C$ 已知条件
 - (3) $(B \rightarrow C) \rightarrow (A \lor B \rightarrow C)$ (2) 和 (1) 用rmp分离规则
 - (4) $B \rightarrow C$ 已知条件
 - (5) $A \lor B \to C$ (4) 和 (3) 用rmp分离规则
 - (6) A V B 已知条件
 - (7) C (6) 和 (5) 用rmp分离规
- 从上述演绎序列可知 $\Gamma \vdash C$

推理规则: 共有14条

推理规则5: 合取引入规则,出自重言式 $A \rightarrow (B \rightarrow A \land B)$)

$$\frac{\Gamma \vdash A, \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land +)$$

证明(PC证明):

• $\mathbf{h}^{\Gamma} \vdash A \setminus \Gamma \vdash B$, 可以构造以 Γ 为前提的如下演绎序列:

(1) A

已知条件

(2) B

已知条件

(3) $A \rightarrow (B \rightarrow A \land B)$ 定理26

(4) *B* → *A* ∧ *B* (1) 和 (3) 用rmp分离规则

(5) *A ∧ B* (2) 和 (4) 用rmp分离规则

• 从上沭演绎序列可知 $\Gamma \vdash A \land B$

推理规则: 共有14条

推理规则6: 合取消除规则,出自重言式 $A \wedge B \rightarrow A, A \wedge B \rightarrow B$)

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$$
 , $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ (\lambda -)

- 由 $\Gamma \vdash A \land B$ 可以构造以 Γ 为前提的如下演绎序列:
 - (1) $A \wedge B$ 已知条件
 - (2) $A \wedge B \rightarrow A$ 定理24
 - (3) A (1) 和 (2) 用rmp分离规则
- 由 $\Gamma \vdash A \land B$ 也可以构造以 Γ 为前提的如下演绎序列:
 - (1) *A ∧ B* 已知条件
 - (2) $A \wedge B \rightarrow B$ 定理25
 - (3) B (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知 $\Gamma \vdash B$

推理规则: 共有14条

推理规则7: 蕴含引入规则

$$\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$$

证明(PC证明):

由 Γ ; $A \vdash B$ 根据演绎定理知 $\Gamma \vdash A \rightarrow B$ 。

推理规则: 共有14条

推理规则8: 蕴含消除规则

$$\frac{\Gamma \vdash A, \quad \Gamma \vdash A \to B}{\Gamma \vdash B} \quad (\to -)$$

证明(PC证明):

- 由 $\Gamma \vdash A \setminus \Gamma \vdash A \to B$ 可以构造以 Γ 为前提的如下演绎序列:
 - (1) A

已知条件

(2) $A \rightarrow B$

已知条件

- (3) B (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知 $\Gamma \vdash B$

推理规则: 共有14条

推理规则9: ¬引入规则

$$\frac{\Gamma;A\vdash B, \quad \Gamma;A\vdash \neg B}{\Gamma\vdash \neg A} \quad (\neg+)$$

- 由 Γ ; $A \vdash B$, Γ ; $A \vdash \neg B$ 根据演绎定理知: $\Gamma \vdash A \rightarrow B$, $\Gamma \vdash A \rightarrow \neg B$
- 可以构造以广为前提的如下演绎序列:
 - (1) $A \rightarrow B$ 已知条件
 - (2) $A \rightarrow \neg B$ 已知条件
 - (3) $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ 定理17
 - (4) $(A \rightarrow \neg B) \rightarrow \neg A$ (1) 和 (3) 用rmp分离规则
 - (5) ¬A(2)和(4)用rmp分离规则
- 从上述演绎序列可知

推理规则: 共有14条

推理规则10: ¬消除规则,出自重言式 $A \rightarrow (\neg A \rightarrow B)$

$$\frac{\Gamma \vdash A, \quad \Gamma \vdash \neg A}{\Gamma \vdash B} \left(\neg -\right)$$

- 由 $\Gamma \vdash A, \Gamma \vdash \neg A$,构造以 Γ 为前提的如下演绎序列:
 - (1) A 已知条件
 - (2) ¬*A* 已知条件
 - (3) $A \rightarrow (\neg A \rightarrow B)$ 定理7
 - (4) $\neg A \rightarrow B$ (1) 和 (3) 用rmp分离规则
 - (5) B (2) 和 (4) 用rmp分离规则
 - 从上述演绎序列可知 $\Gamma \vdash B$

推理规则: 共有14条

推理规则11: $\neg\neg$ 引入规则,出自重言式 $A \rightarrow \neg\neg A$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A} \ (\neg \neg +)$$

- 由 $\Gamma \vdash A$ 构造以 Γ 为前提的如下演绎序列:
 - (1) A 已知条件
 - (2) *A* → ¬¬*A* 定理12
 - (3) ¬¬A (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知

推理规则: 共有14条

推理规则12: $\neg\neg$ 消除规则,出自重言式 $\neg\neg A \rightarrow A$

$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \ (\neg \neg -)$$

- 由 $\Gamma \vdash \neg \neg A$ 构造以 Γ 为前提的如下演绎序列:
 - (1) ¬¬A 已知条件
 - (2) ¬¬*A* → *A* 定理10
 - (3) A (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知 $\Gamma \vdash A$

推理规则: 共有14条

推理规则13: 等价引入规则,出自↔的定义

$$\frac{\Gamma \vdash A \to B, \ \Gamma \vdash B \to A}{\Gamma \vdash A \leftrightarrow B} \ (\leftrightarrow +)$$

证明:根据↔的定义而得

推理规则: 共有14条

推理规则14: 等价消除规则,出自↔的定义

11 222

$$\frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash A \to B}, \quad \frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash B \to A} \ (\leftrightarrow -)$$

证明:根据↔的定义而得

公理模式: Γ∪{A} ⊢ A (€)

推理规则1:假设引入规则,
$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B}$$
 (+)

推理规则2: 假设消除规则,
$$\frac{\Gamma;A\vdash B, \quad \Gamma;\neg A\vdash B}{\Gamma\vdash B}$$
 (一)

推理规则3: 析取引入规则,
$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ ($V+$)

推理规则4: 析取消除规则,
$$\frac{\Gamma;A\vdash C, \Gamma;B\vdash C, \Gamma\vdash A\lor B}{\Gamma\vdash C}$$
 (V-)

推理规则5: 合取引入规则,
$$\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B}$$
 (\land +)

推理规则6: 合取消除规则,
$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$$
, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ (\land —)

推理规则7:
$$\rightarrow$$
引入规则, $\frac{\Gamma;A\vdash B}{\Gamma\vdash A\to B}$ (\rightarrow +)

推理规则8: \rightarrow 消除规则, $\frac{\Gamma\vdash A, \Gamma\vdash A\to B}{\Gamma\vdash B}$ (\rightarrow -)

推理规则9: \neg 引入规则, $\frac{\Gamma;A\vdash B, \Gamma;A\vdash \neg B}{\Gamma\vdash \neg A}$ (\neg +)

推理规则10: \neg 消除规则, $\frac{\Gamma\vdash A, \Gamma\vdash \neg A}{\Gamma\vdash B}$ (\neg -)

推理规则11: $\neg\neg$ 引入规则, $\frac{\Gamma\vdash A}{\Gamma\vdash \neg \neg A}$ ($\neg\neg$ +)

推理规则12: $\neg\neg$ 消除规则, $\frac{\Gamma\vdash A\to B, \Gamma\vdash B\to A}{\Gamma\vdash A\to B}$ (\rightarrow +)

推理规则13: \leftrightarrow 引入规则, $\frac{\Gamma\vdash A\to B, \Gamma\vdash B\to A}{\Gamma\vdash A\to B}$ (\leftrightarrow +)

推理规则14: \leftrightarrow 消除规则, $\frac{\Gamma\vdash A\to B, \Gamma\vdash B\to A}{\Gamma\vdash A\to B}$ (\leftrightarrow -)

自然演绎系统ND的演绎和定理

演绎结果:在ND 系统中称A为 Γ 的演绎结果,记为 $\Gamma \vdash_{ND} A$,如果存在一个序列:

$$\Gamma_1 \vdash A_1, \Gamma_2 \vdash A_2, \ldots, \Gamma_m \vdash A_m (= \Gamma \vdash A)$$

对任意的i = 1,2,...,m, $\Gamma_i \vdash A_i$ 都满足下列情况之一:

- Γ_i ⊢ A_i 公理
- $\Gamma_i \vdash A_i \not\equiv \Gamma_j \vdash A_j \ (j < i)$
- $\Gamma_i \vdash A_i 是 \Gamma_{j_1} \vdash A_{j_1}, \Gamma_{j_2} \vdash A_{j_2}, \dots, \Gamma_{j_k} \vdash A_{j_k} \quad (j_1, j_2, \dots, j_k < i)$ 使用推理规则导出

特别地, 称 A 为 ND 的定理, 如果 $\Gamma \vdash A$, 并且 $\Gamma = \emptyset$, 即 $\vdash A$ 。

自然演绎系统ND的基本定理

定理1: ⊢_{ND} A ∨ ¬A

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

定理3: $\vdash_{ND} \neg (A \land B) \leftrightarrow \neg A \lor \neg B$

定理4: $\neg A \rightarrow B \vdash \dashv A \land \neg B$

定理5: $A \rightarrow B \vdash \neg \neg A \lor B$

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$

定理7: PC的公理是ND的定理,即

 $(1) \vdash_{ND} A \to (B \to A)$

 $(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

定理1: ⊢_{ND} A ∨ ¬A

- 1. $A \vdash A$ (\in)
- 2. $A \vdash A \lor \neg A$ (1)(V +)
- $3. \neg A \vdash \neg A$ (\in)
- 4. $\neg A \vdash A \lor \neg A \ (3)(V+)$
- 5. $\vdash A \lor \neg A$ (2)(4)(-)

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

证明: 先证
$$\vdash \neg (A \lor B) \rightarrow \neg A \land \neg B$$

1.
$$\neg (A \lor B), A \vdash A$$
 (\in)

2.
$$\neg (A \lor B), A \vdash A \lor B$$
 (1)($V+$)

$$3. \neg (A \lor B), A \vdash \neg (A \lor B) \quad (\in)$$

$$4. \neg (A \lor B) \vdash \neg A \qquad (2)(3)(\neg +)$$

$$5. \neg (A \lor B), B \vdash B \qquad (\in)$$

6.
$$\neg (A \lor B), B \vdash A \lor B$$
 (5)(V+)

7.
$$\neg (A \lor B), B \vdash \neg (A \lor B) (\in)$$

8.
$$\neg (A \lor B) \vdash \neg B$$
 (6)(7)(¬+)

$$9. \neg (A \lor B) \vdash \neg A \land \neg B \quad (4)(8)(\land +)$$

$$10. \vdash \neg (A \lor B) \rightarrow \neg A \land \neg B \ (9)(\rightarrow +)$$

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

证明: 再证
$$\vdash \neg A \land \neg B \rightarrow \neg (A \lor B)$$

11. $\neg A \land \neg B, A \lor B, A \vdash A$ (\in)

12. $\neg A \land \neg B, A \lor B, A \vdash \neg A \land \neg B$ (\in)

13. $\neg A \land \neg B, A \lor B, A \vdash \neg A$ (12)($\land -$)

14. $\neg A \land \neg B, A \lor B, A \vdash A \land \neg A$ (11)(13)($\land +$)

15. $\neg A \land \neg B, A \lor B, B \vdash B$ (\in)

16. $\neg A \land \neg B, A \lor B, B \vdash \neg A \land \neg B$ (\in)

17. $\neg A \land \neg B, A \lor B, B \vdash \neg A \land \neg B$ (16)($\land -$)

18. $\neg A \land \neg B, A \lor B, B \vdash A \land \neg A$ (15)(17)($\neg -$)

19. $\neg A \land \neg B, A \lor B \vdash A \lor B$ (\in)

20. $\neg A \land \neg B, A \lor B \vdash A \land \neg A$ (14)(18)(19)($\lor -$)

21. $\neg A \land \neg B, A \lor B \vdash A$ (20)($\land -$)

22. $\neg A \land \neg B, A \lor B \vdash \neg A$ (20)($\land -$)

23. $\neg A \land \neg B, A \lor B \vdash \neg A$ (20)($\land -$)

24. $\vdash \neg A \land \neg B \rightarrow \neg (A \lor B)$ (24)($\rightarrow +$)

25. $\vdash \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$ (10)(24)($\leftrightarrow +$)

定理3: ⊢_{ND}¬(A∧B) ↔¬A∨¬B

证明: 先证
$$\vdash \neg (A \land B) \rightarrow \neg A \lor \neg B$$

(1) $\neg (A \land B), \neg A \vdash \neg A (\in)$

(2) $\neg (A \land B), \neg A \vdash \neg A \lor \neg B$ (1)($\lor +$)

(3) $\neg (A \land B), A, B \vdash A (\in)$

(4) $\neg (A \land B), A, B \vdash B$ (\in)

(5) $\neg (A \land B), A, B \vdash A \land B$ (3)(4)($\land +$)

(6) $\neg (A \land B), A, B \vdash \neg (A \land B)$ (\in)

(7) $\neg (A \land B), A \vdash \neg B$ (5)(6)($\neg +$)

(8) $\neg (A \land B), A \vdash \neg A \lor \neg B$ (7)($\lor +$)

(9) $\neg (A \land B) \vdash \neg A \lor \neg B$ (8)(2)($-$)

 $(10) \vdash \neg (A \land B) \rightarrow \neg A \lor \neg B \quad (9)(\rightarrow +)$

定理3: ⊢_{ND} ¬(A ∧ B) ↔ ¬A ∨ ¬B

证明: 再证
$$\vdash \neg A \lor \neg B \to \neg (A \land B)$$

(11) $\neg A \lor \neg B, A \land B, \neg A \vdash A \land B$ (\in)

(12) $\neg A \lor \neg B, A \land B, \neg A \vdash A$ (11)($\land -$)

(13) $\neg A \lor \neg B, A \land B, \neg A \vdash \neg A$ (\in)

(14) $\neg A \lor \neg B, A \land B, \neg A \vdash A \land \neg A$ (12)(13)($\land +$)

(15) $\neg A \lor \neg B, A \land B, \neg B \vdash A \land B$ (\in)

(16) $\neg A \lor \neg B, A \land B, \neg B \vdash A \land B$ (\in)

(17) $\neg A \lor \neg B, A \land B, \neg B \vdash \neg B$ (\in)

(18) $\neg A \lor \neg B, A \land B, \neg B \vdash A \land \neg A$ (16)(17)($\neg -$)

(19) $\neg A \lor \neg B, A \land B \vdash \neg A \lor \neg B$ (\in)

(20) $\neg A \lor \neg B, A \land B \vdash A \land \neg A$ (14)(18)(19)($\lor -$)

(21) $\neg A \lor \neg B, A \land B \vdash A$ (20)($\land -$)

(22) $\neg A \lor \neg B, A \land B \vdash \neg A$ (20)($\land -$)

(23) $\neg A \lor \neg B \vdash \neg (A \land B)$ (21)(22)($\neg +$)

(24) $\vdash \neg A \lor \neg B \to \neg (A \land B)$ (23)($\to +$)

(25) $\vdash \neg (A \land B) \leftrightarrow \neg A \lor \neg B$ (10)(24)($\leftrightarrow +$)

定理 $4: \neg A \rightarrow B \vdash \dashv A \lor B$

证明: 先证 $\neg A \rightarrow B \vdash_{ND} A \lor B$

1: $\neg A \rightarrow B, A \vdash A \in$

2: $\neg A \rightarrow B, A \vdash A \lor B$ (1)(\lor +)

3: $\neg A \rightarrow B$, $\neg A \vdash \neg A$ (\in)

4: $\neg A \rightarrow B$, $\neg A \vdash \neg A \rightarrow B$ (\in)

5: $\neg A \rightarrow B$, $\neg A \vdash B$ (3)(4)($\rightarrow -$)

6: $\neg A \rightarrow B$, $\neg A \vdash A \lor B$ (5)($\lor +$)

117 | | | | | | | | | | | | | | | |

7: $\neg A \to B \vdash A \lor B$ (2)(6)(-)

定理4:¬A → B ⊢¬ A ∨ B

证明: 再证 $A \lor B \vdash_{ND} \neg A \rightarrow B$

1: $A \vee B$, $\neg A$, $A \vdash A$ (\in)

2: $A \vee B$, $\neg A$, $A \vdash \neg A \in A$

3: $A \lor B$, $\neg A$, $A \vdash B$ (1)(2)($\neg -$)

4: $A \vee B$, $\neg A$, $B \vdash B$ (\in)

5: $A \lor B$, $\neg A \vdash A \lor B \in$

6: $A \vee B$, $\neg A \vdash B$ (3)(4)(5)(\vee –)

7: $A \lor B \vdash \neg A \rightarrow B \ (6)(\rightarrow +)$

定理5: $A \rightarrow B \vdash \dashv \neg A \lor B$

证明: 先证 $A \rightarrow B \vdash \neg A \lor B$

$$(1) A \to B, \neg A \vdash \neg A \qquad (\in)$$

(2)
$$A \rightarrow B$$
, $\neg A \vdash \neg A \lor B$ (1) $(\lor +)$

$$(3) A \rightarrow B, A \vdash A \qquad (\in)$$

$$(4) A \to B, A \vdash A \to B \qquad (\in)$$

(5)
$$A \to B, A \vdash B$$
 (3) (4) $(\to -)$

(6)
$$A \rightarrow B, A \vdash \neg A \lor B$$
 (5) $(\lor +)$

(7)
$$A \to B \vdash \neg A \lor B$$
 (6) (2) (-)

定理5: $A \rightarrow B \vdash \neg \neg A \lor B$

证明: 再证 $\neg A \lor B \vdash A \rightarrow B$

$$(1) \neg A \lor B, A, \neg A \vdash A \qquad (\in)$$

(2)
$$\neg A \lor B, A, \neg A \vdash \neg A$$
 (\in)

(3)
$$\neg A \lor B, A, \neg A \vdash B$$
 (1) (2) ($\neg -$)

$$(4) \neg A \lor B, A, B \vdash B \qquad (\in)$$

(5)
$$\neg A \lor B, A \vdash \neg A \lor B$$
 (\in)

(6)
$$\neg A \lor B, A \vdash B$$
 (3) (4) (5) (\lor –)

$$(7) \neg A \lor B \vdash A \to B \quad (6) \quad (\to +)$$

$$(8) A \rightarrow B \vdash \dashv \neg A \lor B$$

定理6: ⊢ A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)

证明: 先证
$$\vdash A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$$

1: $A \land (B \lor C), B \vdash B \in (E)$

2: $A \land (B \lor C), B \vdash A \land (B \lor C) \in (E)$

3: $A \land (B \lor C), B \vdash A \land (B \lor C) \in (E)$

4: $A \land (B \lor C), B \vdash A \land B \in (3)(1)(\land +)$

5: $A \land (B \lor C), B \vdash (A \land B) \lor (A \land C) \in (A)(\lor +)$

6: $A \land (B \lor C), C \vdash C \in (E)$

7: $A \land (B \lor C), C \vdash A \land (B \lor C) \in (E)$

8: $A \land (B \lor C), C \vdash A \land (B \lor C) \in (E)$

9: $A \land (B \lor C), C \vdash A \land C \in (A \land B) \lor (A \land C) \in (B)(\lor C)$

10: $A \land (B \lor C), C \vdash (A \land B) \lor (A \land C) \in (B)(\lor C)$

11: $A \land (B \lor C), C \vdash (A \land B) \lor (A \land C) \in (B)(\lor C)$

12: $A \land (B \lor C) \vdash A \land (B \lor C) \in (B)(\lor C)$

13: $A \land (B \lor C) \vdash (A \land B) \lor (A \land C) \in (B)(\lor C)$

14: $\vdash A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$ (13)(\rightarrow +)

定理6: ⊢ A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)

证明: 再证 \vdash $(A \land B) \lor (A \land C) \rightarrow A \land (B \lor C)$

15: $(A \land B) \lor (A \land C)$, $A \land B \vdash A$ (\in)之上做(\land -)

16: $(A \wedge B) \vee (A \wedge C)$, $A \wedge B \vdash B$ (\in)之上做(\wedge -)

17: $(A \wedge B) \vee (A \wedge C)$, $A \wedge B \vdash B \vee C$ (16) $(\vee +)$

18: $(A \wedge B) \vee (A \wedge C)$, $A \wedge B \vdash A \wedge (B \vee C)$ (15)(17)(\wedge +)

19: $(A \land B) \lor (A \land C)$, $A \land C \vdash A \in \mathbb{Z}$ 上做 $(\land -)$

20: $(A \land B) \lor (A \land C)$, $A \land C \vdash C$ (\in)之上做($\land -$)

21: $(A \wedge B) \vee (A \wedge C)$, $A \wedge C \vdash B \vee C$ (20)(\vee +)

22: $(A \wedge B) \vee (A \wedge C)$, $A \wedge C \vdash A \wedge (B \vee C)$ (19)(21)(\wedge +)

23: $(A \wedge B) \vee (A \wedge C) \vdash (A \wedge B) \vee (A \wedge C)$ (\in)

24: $(A \land B) \lor (A \land C) \vdash A \land (B \lor C)$ (18)(22)(23)(\lor –)

25: $\vdash (A \land B) \lor (A \land C) \rightarrow A \land (B \lor C) \quad (24)(\rightarrow +)$

26: $\vdash (A \land B) \lor (A \land C) \leftrightarrow A \land (B \lor C) (14)(25)(\leftrightarrow +)$

定理7: PC的公理是ND的定理,即

$$(1) \vdash_{ND} A \to (B \to A)$$

$$(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$(1) \vdash A \rightarrow (B \rightarrow A)$$

1:
$$A, B \vdash A$$
 (\in)

2:
$$A \vdash B \rightarrow A$$
 (1)(\rightarrow +)

3:
$$\vdash A \rightarrow (B \rightarrow A)$$
 (2)($\rightarrow +$)

$$(2) \vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

1:
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash A \in (E)$$

2:
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash A \rightarrow B \in (E)$$

3:
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash A \rightarrow (B \rightarrow C) (\in)$$

4:
$$A \to (B \to C), A \to B, A \vdash B$$
 (1)(2)($\to -$)

5:
$$A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash B \rightarrow C$$
 (1)(3)(\rightarrow –)

6:
$$A \to (B \to C), A \to B, A \vdash C \ (4)(5)(\to -)$$

7:
$$A \rightarrow (B \rightarrow C), A \rightarrow B \vdash A \rightarrow C$$
 (6)(\rightarrow +)

8:
$$A \rightarrow (B \rightarrow C) \vdash (A \rightarrow B) \rightarrow (A \rightarrow C) \quad (7)(\rightarrow +)$$

9:
$$\vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \ (8)(\rightarrow +)$$

$$(3) \vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

1:
$$\neg A \rightarrow \neg B, B, \neg A \vdash B$$
 (\in)

2:
$$\neg A \rightarrow \neg B, B, \neg A \vdash \neg A \in$$

3:
$$\neg A \rightarrow \neg B, B, \neg A \vdash \neg A \rightarrow \neg B$$
 (\in)

4:
$$\neg A \to \neg B, B, \neg A \vdash \neg B$$
 (2)(3)($\to -$)

5:
$$\neg A \to \neg B, B \vdash \neg \neg A \ (1)(4)(\neg +)$$

6:
$$\neg A \to \neg B, B \vdash A \ (5)(\neg \neg \neg -)$$

7:
$$\neg A \rightarrow \neg B \vdash B \rightarrow A \ (6)(\rightarrow +)$$

8:
$$\vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) (7)(\rightarrow +)$$

自然演绎系统ND的基本定理

定理1: ⊢_{ND} A ∨ ¬A ✓

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B \checkmark$

定理3: ⊢_{ND} ¬(A ∧ B) ↔ ¬A ∨ ¬B ✓

定理4: $\neg A \rightarrow B \vdash \neg A \lor B \checkmark$

定理5: $A \rightarrow B \vdash \neg \neg A \lor B \checkmark$

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C) \checkmark$

定理7: PC的公理是ND的定理,即 √

 $(1) \vdash_{ND} A \to (B \to A)$

 $(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

 $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$