Двойственный симплекс-метод

Приведем алгоритм решения задачи ЛП двойственным симплексметодом. Заметим, что в отличие от прямого симплекс-метода не обязательно знание начального базисного плана (ни прямого, ни двойственного) — достаточно знать лишь какую-либо невырожденную $m \times m$ -матрицу $A_{\rm b}$ (или, что то же самое, $J_{\rm b}$).

Сначала опишем алгоритм двойственного симплекс-метода для двойственно невырожденных задач.

Пусть rankA=m и задана базисная $m\times m$ -матрица $A_{\mathbb B}$ (или, что то же самое, множество $J_{\mathbb B}\subset J,\ |J_{\mathbb B}|=m$).

Шаг 1. Решаем систему уравнений относительно потенциалов: $a'_j u = c_j, \ j \in J_{\mathrm{B}}$

Шаг 2. Подсчитываем небазисные компоненты коплана $\delta_{\mathit{uj}} = c_{\mathit{j}} - a'_{\mathit{j}} u, \;\; \mathit{j} \in J_{\mathrm{H}}$.

Шаг 3. Определяем базисный псевдоплан $\mathfrak{x}_u = (\mathfrak{x}_{u\mathrm{B}}, \ \mathfrak{x}_{u\mathrm{H}})$ из системы

$$\mathbf{æ}_j = \begin{cases} d_{*j}, & \text{если} & \delta_{uj} < 0, \\ d_j^*, & \text{если} & \delta_{uj} > 0, \ j \in J_{\mathrm{H}}; \end{cases}$$

$$A_{\rm B} \alpha_{u{\rm B}} = b - A_{\rm H} \alpha_{u{\rm H}} \quad (\alpha_{u{\rm B}} = A_{\rm B}^{-1} (b - A_{\rm H} \alpha_{u{\rm H}}))$$
.

Шаг 4. Проверяем условия оптимальности: $d_{*_{\rm B}} \le \alpha_{u{\rm B}} \le d_{\rm B}^*$. Если они выполняются, то $\alpha_u = x^0$. Решение завершаем. Если не выполняются, переходим к следующему шагу.

Шаг 5. Определяем индекс j_* , для которого $\rho_{j_*} > 0$. Где

$$\rho_{j} = \rho(\mathfrak{X}_{j}, [d_{*_{j}}, d_{j}^{*}]) = \min_{x_{j} \in [d_{*_{j}}, d_{j}^{*}]} |\mathfrak{X}_{j} - x_{j}| = |\mathfrak{X}_{j} - \overline{x}_{j}|$$

— расстояние от \mathfrak{x}_j до отрезка $[d_{*_j}, d_j^*]$, \overline{x}_j — ближайшая к \mathfrak{x}_j точка отрезка $[d_{*_j}, d_j^*]$. Его можно взять произвольным из $J_{\mathtt{B}}^1 = \{j \in J_{\mathtt{B}} : \rho_j > 0\}$, либо из условия $\rho_{j*} = \max_{i \in I} \rho_j$.

Шаг 6. Решаем линейную систему уравнений относительно l_u :

$$a'_{j_*}l_u = -\operatorname{sign}(\ \mathfrak{X}_{j_*} - \overline{X}_{j_*}),$$

 $a'_{j_u} = 0, \ j \in J_{\overline{b}} \setminus j_*.$

Шаг 7. Подсчитываем компоненты вектора $l_{\delta_{\mathrm{H}}}: l_{\delta_{j}} = -a'_{j}l_{u}, \ j \in J_{\mathrm{H}}.$

Шаг 8. Определяем числа

$$\sigma_j = \begin{cases} -\frac{\delta_{uj}}{l_{\delta_j}}, & \text{если } l_{\delta_j} \delta_{uj} < 0, \\ \infty, & \text{если } l_{\delta_j} \delta_{uj} \geq 0 \ (\delta_{uj} \neq 0), \ j \in J_{\mathrm{H}}. \end{cases}$$

Шаг 9. Находим $\sigma^1 = \sigma_{j_1} = \min_{j \in J_H} \sigma_j$. Если $\sigma^1 = \infty$, решение задачи прекращаем, поскольку у прямой задачи ограничения несовместны. В противном случае переходим к следующему шагу.

Шаг 10. Формируем множество $\overline{J}_{\rm B} = (J_{\rm B} \setminus j_*) \bigcup j_1$ и переходим к шагу 1.

Значение двойственной целевой функции уменьшается на величину $\sigma^1|\mathbf{æ}_{j_*}-\overline{x}_{j_*}|>0 \ , \ \text{так что скорость изменения двойственной целевой функции}$ на отрезке $[0,\sigma^1]$ равна $\alpha^1=-|\mathbf{æ}_{j_*}-\overline{x}_{j_*}|<0$.

Рассмотрим вырожденный случай. Пусть $J_{\rm H0} = \{j \in J_{\rm H}: \delta_{uj} = 0\} \neq \varnothing$. Разобьем множество $J_{\rm H0}$ произвольным образом на два подмножества: $J_{\rm H0} = J_{\rm H0}^+ \bigcup J_{\rm H0}^-, \ J_{\rm H0}^+ \cap J_{\rm H0}^- = \varnothing$. Введем множества $J^+ = \{j \in J_H: \delta_{uj} > 0\}$, $J^- = \{j \in J_H: \delta_{uj} < 0\}$. Тогда в приведенный выше алгоритм следует внести следующие изменения.

Шаг 3. Псевдоплан построим следующим образом:

$$\mathbf{æ}_{j} = \begin{cases} d_{*j}, & j \in J^{-} \bigcup J_{\text{H0}}^{-}, \\ d_{j}^{*}, & j \in J^{+} \bigcup J_{\text{H0}}^{+}, \end{cases} A_{\text{B}} \mathbf{æ}_{u\text{B}} = b - A_{\text{H}} \mathbf{æ}_{u\text{H}} \quad (\mathbf{æ}_{u\text{B}} = A_{\text{B}}^{-1} (b - A_{\text{H}} \mathbf{æ}_{u\text{H}})).$$

Шаг 9. Находим

$$\sigma^{1} = \sigma_{j_{1}} = \min_{j \in J^{+} \cup J^{-}} \sigma_{j}. \tag{2.12}$$

Определяем суммарный скачок скорости двойственной целевой функции $\Delta\alpha^0 = \sum_{i \in J^0} (d_j^* - d_{*_j}) \, | \, p_{\delta_j} \, |, \, \text{где}$

$$J^{0} = \{ j \in J_{H0}^{+} : p_{\delta_{j}} < 0 \} \bigcup \{ j \in J_{H0}^{-} : p_{\delta_{j}} > 0 \},$$

и новую скорость изменения двойственной целевой функции на отрезке $[0, \sigma^1]$: $\overline{\alpha}^1 = \alpha^1 + \Delta \alpha^0$.

Шаг 10. Если $\overline{\alpha}^1 < 0$, то шаг равен $\sigma^1 > 0$. Если $\overline{\alpha}^1 \ge 0$, тогда шаг равен нулю. Формируем множество $\overline{J}_{\rm B} = (J_{\rm B} \setminus j_*) \cup j_1$ и переходим к шагу 1. В первом случае в качестве j_1 выбираем индекс, полученный согласно (2.12), во втором – любой индекс из множества J^0 .

1.2.7. Первая фаза

Как и для прямого симплекс-метода, процедуру построения начального базисного двойственного плана опишем для двух типов задач.

Пусть каноническая задача получена из нормальной, т. е. имеем

$$c'x \rightarrow \max, Ax + x_{CB} = b,$$

 $d_* \le x \le d^*, 0 \le x_{CB} \le d_{CB}^*.$

Для нее начальный базисный двойственный план строится легко. Возьмем $A_{\rm B}=(a_{n+i}=e_i,\ i\in I)=E$. Тогда $u=0,\ \delta_{uj}=c_j,\ j\in J_{\rm H}=J,\ v_j,\ w_j,$ $j\in J\bigcup J_{\rm CB}$, строятся по обычным правилам базисного двойственного плана, $J_{\rm B}=J_{\rm CB}=\{n+i,\ i=\overline{1,m}\}$.

Рассмотрим теперь каноническую задачу (2.1):

$$c'x \rightarrow \max, Ax = b, d_* \le x \le d^*.$$

Никаких предположений относительно параметров этой задачи не делаем. Введем вспомогательную ("буферную") задачу

$$c'x \to \max, Ax + A_{6y\phi}x_{6y\phi} = b,$$

$$d_* \le x \le d^*, \ 0 \le x_{6y\phi} \le 0,$$
(2.13)

где $\overline{A}=(A,\,A_{\text{буф}}),\,\,A_{\text{буф}}=(a_{n+i}=e_i,\,\,i\in I)$. Начальный базисный двойственный план для нее строим с базисной матрицей $A_{\text{буф}}=E$. Тогда $u=0,\,\,\delta_{uj}=c_j,\,\,j\in J,\,\,v_j,\,\,w_j,\,\,j\in J$, строятся по тем же правилам, что и выше. Задачу (2.13) решаем двойственным симплекс-методом, последовательно заменяя столбцы матрицы $A_{\text{буф}}$ на столбцы матрицы A, и удаляя из задачи (2.13) соответствующие фиктивные переменные.