Examples of Representations

WDRP - Representation Theory of Finite Groups

- 1. Determine a representation of D_4 of dimension 2n for each $n \in \mathbb{N}$.
- 2. Determine the matrix representations for the elements of V_4 (the Klein four group) for the left regular representation. Are there any subspaces fixed by all elements? (Hint: Try looking at eigenvectors)
- 3. Recall \mathbb{Z}_3 is the cyclic group with three elements $\{0, 1, 2\}$.
 - a) Determine the matrix representation of each element of \mathbb{Z}_3 for the left regular representation (ρ, V) .
 - b) Find the real eigenvalues of the matrix representation $\rho(1)$, as well as the associated eigenspace.
 - c) You may have noticed there is only one eigenvector in part b), call it v. Find two other vectors u, w orthogonal to v so that v, u, w forms an orthonormal basis for V (One way would be to use the Gram-Schmidt algorithm).
 - d) Write $\rho(1)$ as a block diagonal matrix with respect to this basis (ie. how does $\rho(1)$ act on the subspace spanned by $\{u, w\}$?).
 - e) Using the same characteristic polynomial you found for $\rho(1)$, determine both the real and complex eigenvalues, as well as the associated eigenspace. Use this to diagonalize $\rho(1)$.
 - f) Is $\rho(2)$ diagonal with respect to this complex eigenspace?
- 4. Determine the rotational symmetries of an Octahedron. How many are there? (Hint: Any rotation has an axis of rotation which stays fixed.) Then give a representation of D_4 using these symmetries.
- 5. Let $\alpha: G \times V \to V$ be a structure map defining an action of G on a vector space V. Show that if the function $\alpha(g, -): V \to V$ is linear for each $g \in G$, then this action defines a group representation.
- 6. Consider the following representations of D_3 . Are these representations Isomorphic?

(a)
$$\rho_1(r) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0\\ \sqrt{3}/2 & -1/2 & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \rho_1(s) = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$\rho_2(r) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 & 0\\ \sqrt{3}/2 & -1/2 & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \rho_2(s) = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix}$$