LABORATÓRIO 3 - SIMULAÇÃO DE PORTAS LÓGICAS NAND E NOR

Fernando Moraes 11/setembro/2023

Objetivo deste laboratório

Analisar a influência do número de **transistores em série** no atraso das portas lógicas e **a posição do chaveamento** (qual entrada está mudando de estado).

Fazer download dos arquivos necessários ao laboratório

wget https://fgmoraes.github.io//microel/lab3/nand6.sp wget https://fgmoraes.github.io//microel/lab3/nor6.sp wget https://fgmoraes.github.io//microel/lab3/st65.scs

Arquivo que descreve as portas NAND, de 2 a 6 entradas

Abrir o netlist nand6.sp e observar neste arquivo (na linha 2 há a data de atualização: 11/set/23):

- ☐ Linha 11: processo 65nm
- ☐ Linha 14: .param Cload=4fF mob=2.45 wp=0.5 wn='2*wp/mob', onde:
 - Cload: carga de saída de cada porta NAND
 - mob: relação de mobilidade (μn/μp) para esta tecnologia
 - wp: dimensão W_P em μm
 - wn: dimensão W_N em μm (2*wp/mob)
- ☐ Linha **86**: tensão de alimentação (vcc vcc 0 dc 1.0)
- ☐ linhas 87 e 88: comandos PWL (geração dos estímulos para as entradas i1 e i2)
- □ linhas **89** e **92**: tensão fixa em '1.0' nas entradas intermediárias da pilha série (i3, i4, i5, i6)
- □ **Linhas 23-30:** descrição *spice* da porta lógica NAND3. Transistores P em paralelo, e os transistores N em série.

```
.SUBCKT nand3 o1 i1 i2 i3 vcc

M1 o1 i1 vcc vcc psvtgp w=wp l=0.06

M2 o1 i2 vcc vcc psvtgp w=wp l=0.06

M3 o1 i3 vcc vcc psvtgp w=wp l=0.06

M10 0 i1 4 0 nsvtgp w=wn l=0.06

M11 4 i3 2 0 nsvtgp w=wn l=0.06

M12 2 i2 o1 0 nsvtgp w=wn l=0.06

.ENDS nand3
```


- i2 é a entrada que está variando mais próxima da saída
- i1 é a entrada que está mudando de estado mais próximo de gnd
- as demais entradas (i3 a i6) ficam em 1, para os transistores N em série conduzirem
- □ Dimensionamento dos transistores. Para estudarmos o efeito dos transistores em série, manteremos o dimensionamento das portas NAND (NAND2 a NAND6) igual ao dimensionamento da porta NAND2

Os transistores P, na porta NAND2, por estarem em paralelo, possuem o mesmo dimensionamento. Neste exemplo: $0.5 \mu m$. Os transistores N, em **série**, devem ter a relação de

mobilidade (mob) respeitada, devendo ter o dimensionamento de um inversor equivalente, seguindo o princípio do método *logic effort* (inverso da soma dos inversos).

Para a NAND2:

$$W_P = W_N * mob \rightarrow W_N = \frac{W_P}{mob}$$

$$\frac{1}{1/W_N + 1/W_N} = \frac{W_P}{mob}$$

$$W_N = \frac{2*W_P}{mob} = \frac{2*0.5}{2.45} = 0.41 \quad \text{(conforme acima: wn='2*wp/mob')}$$

Simulação da porta NAND [6 pt]

RESPONDER:

 [1 pt] Apresentar as formas de onda com as entradas (I1 e I2) e as saídas das portas lógicas nand de 2 a 6 entradas, como abaixo. Comparar a formas de onda com a descrição dos estímulos. Por exemplo:

Preencher a tabela abaixo para as portas NAND (acessar o arquivo *nand6.measure*). O NETLIST SPICE PRECISA SER COMPLETADO COM AS MEDIDAS DAS NANDS 3 a 6.

N# Entradas	descida_out (ps) - <mark>fo</mark>	descida_gnd (ps) - <mark>fs</mark>	subida_out (os)- <mark>ro</mark>	subida_gnd (ps) - <mark>rs</mark>
2	16,1131	17,4086	16,3744	18,5525
3				
4				
5				
6				

Os tempos são gerados no arquivo *measure*:

descida_out: t2_2_fo t2_3_fo t2_4_fo t2_5_fo (fall out – transição i2 próximo à saída) t2_6_fo descida gnd: t1_3_fs t1_4_fs t1_5_fs t4_4_ro t4_5_ro (fall gnd - transição i1próximo à gnd) t1_2_fs t1_6_fs t4_2_ro (rise, transição em i2) subida out: t4_3_ro t4_6_ro t3_2_rs t3_3_rs t3_6_rs (rise, transição em i1) subida_gnd: t3_4_rs

2. [1 pt] Plotar um gráfico com <u>4 curvas</u>, uma para cada coluna da tabela acima. No eixo X teremos o número de entradas, e no eixo Y o atraso em pico-segundos para as 4 curvas.

- 3. [1 pt] Como pode-se explicar o impacto do número de transistores em série no plano N na porta NAND no **tempo de propagação de descida**?
- 4. [0,5 pt] O **tempo de propagação de descida** é mais afetado quando a entrada que varia está próxima de *gnd* ou da *saída*? Explicar a razão.
- 5. [0,5 pt] Porque o **tempo de propagação de subida** aumenta, apesar de os transistores P estarem com o mesmo dimensionamento e em paralelo?
- 6. [1,0 pt] Utilizando o método *logic effort* alterar o dimensionamento dos transistores N (sugestão, criar parâmetros w2, w3, w4, w5 e w6 → w2='2*wp/mob, w3=...) de tal forma que o tempo de propagação de **descida próximo à saída** (t2_2_fo, ..., t2_6_fo) para as 5 portas NAND sejam praticamente iguais (haverá uma a diferença de 1,493 ps apenas). Preencha a tabela abaixo.

N# Entradas	descida_out (ps)	descida_gnd (<i>ps</i>)	subida_out (ps)	subida_gnd (<i>ps</i>)
2	16,1097	17,4087	16,3757	18,5628
3				
4				
5				
6				

A diferença observada em *descida_out* conferiu com os 1,493 ps?

7. [1 pt] Plotar um gráfico com 4 curvas (como na questão 3), usando os tempos obtidos na questão 7. Qual dos 4 tempos foi o mais penalizado (descida vdd, descida out, subida out, subida vdd)? Por quê?

Simulação da porta NOR [4 pt]

 Escrever o netlist para simular portas NOR, de 2 a 6 entradas. Utilizar o arquivo disponibilizado como modelo.

```
* circuitos nor
simulator lang=spectre insensitive=no
include "st65.scs"
simulator lang=spice
.param Cload=4fF mob=2.45 wn=0.2 wp='wn*mob*2'
. SUBCKT
           nor2 o1
                       i1
                             i2
                                  VCC
M1 10
         i1 vcc vcc psvtgp
                                          w=wp 1=0.06
           i2 10 vcc psvtgp
M2
     01
                                          w = wp 1 = 0.06
M10 0
           il ol 0 nsvtgp
                                          w=wn 1=0.06
M11
     0
           i2
                 o1
                       0
                             nsvtgp
                                          w=wn 1=0.06
.ENDS nor2
.SUBCKT nor3 o1 i1 i2 i3 vcc
                            * Lembrar: entrada i1 próxima à vcc e entrada i2 próxima à saída
... completar ...
.ENDS nor3
           nor4 o1 i1 i2 i3 i4 vcc
. SUBCKT
... completar ...
.ENDS nor4
... completar ...
                 o1 i1 i2 i3 i4 i5 vcc
.ENDS nor5
          nor6 o1 i1 i2 i3 i4 i5 i6 vcc
. SUBCKT
... completar ...
.ENDS nor6
```

```
1.25
** circuito propriamente dito
                                               i1
X1 o2 i1 i2 vcc nor2
X2 o3 i1 i2 i3 vcc nor3
                                                             fall=1
X3 o4 i1 i2 i3 i4 vcc nor4
                                                   .25
X4 o5 i1 i2 i3 i4 i5 vcc nor5
                                                   0.0
X5 o6 i1 i2 i3 i4 i5 i6 vcc nor6
                                                                 3ns
                                                                     4 ns
                                                                              6 ns
                                                   -.25
1.25
** alimentações
                                                   1.0
vcc vcc 0 dc 1.0
                                               i2
                                                                     rise=1
                                                                                         rise=2
v1 i1 0 pwl(... completar ...)
v2 i2 0 pwl(... completar ...)
                                                   .25
v3 i3
       0
          dc 0
                   ***
                          entradas não utilizadas
                          devem estar em 0 (zero)
       0
                   ****
v4 i4
           dc 0
                                                                          5 ns
                                                                                  7 ns
                                                   -.25
v5 i5
       0
           dc 0
                                                                           5.0
v6 i6
       0
           dc 0
                                                                          lembrar que o slew
                                                                          (rampa) das entradas i1
.tran 0.001N 10N
                     *** tempo de simulação aumentado para 10 ns
                                                                          e i2 deve ser 1ps.
Cl1 o2 0 Cload
Cl2 o3 0 Cload
Cl3 o4 0 Cload
Cl4 o5 0 Cload
Cl5 o6 0 Cload
.measure tran n2 subida vdd trig v(i1) val=0.5 td=2n fall=1 targ v(o2)
                                                                           val=0.5 rise=1
.measure tran n2 descida vdd trig v(i1) val=0.5 td=2n rise=1 targ v(o2)
                                                                           val=0.5 fall=1
                                                               targ v(o2)
.measure tran n2 subida out trig v(i2) val=0.5 td=2n fall=1
                                                                           val=0.5 rise=2
.measure tran n2 descida out trig v(i2) val=0.5 td=2n rise=2 targ v(o2)
                                                                          val=0.5 fall=2
.measure tran t SU V 2
                         param = '1e12*n2 subida vdd'
                         param = '1e12*n2 descida vdd'
.measure tran t DE V 2
.measure tran t SU O 2
                         param = '1e12*n2 subida out'
                         param = '1e12*n2 descida out'
.measure tran t DE O 2
...completar as medidas para outras NOR...
```

RESPONDER:

. END

- [1 pt] Apresentar as formas de onda com as entradas (i1 e i2) e as saídas das nor 2 a 6 entradas (questão semelhante à 1 da simulação das portas nand)
- [2 pt] Para as portas NOR fazer uma tabela equivalente à NAND e plotar um gráfico com <u>4 curvas</u>, uma para cada coluna da tabela. No eixo X teremos o número de entradas, e no eixo Y os tempos de propagação.

Valores iniciais para referência:

N# Entradas	descida_out (ps)	descida_vcc (ps)	subida_out (ps)	subida_vcc (ps)
2	19,6353	24,8842	17,4871	20,0721
3				
4				
5				
6				

- 3. [0,5 pt] Como pode-se resumir o impacto do número de transistores em série na porta NOR em função do número de transistores em série no plano P no **tempo de propagação de subida**?
- 4. [0,5 pt] O **tempo de propagação de subida** é mais afetado quando a entrada que varia está próxima de vcc ou da saída? Explicar a razão.

MATERIAL PARA CONSULTA:

Livro: RABAEY, 2ª ED, capítulo 6, Seções 6.1 e 6.2.

WESTE: 4.4.1 Logical Effort:

FIGURE 4.22 Logic gates sized for unit resistance

(c)

Transistors in Series: CMOS NAND

- Several devices in series each with effective channel length $L_{\rm eff}$ can be viewed as a single device of channel length equal to the combined channel lengths of the separate series devices
 - e.g. 3 input NAND: a single device of channel length equal to 3L_{eff} could be used to model the behavior of three series devices each with Leff channel length, assuming there is no skew in the increasing gate voltage of the three N pull-down devices.
 - The source/drain junctions between the three devices essentially are assumed as simple zero resistance connections
 - During saturation transient, the bottom two devices will be in their linear region and only the top device will be pinched

R. W. Knepper SC571, page 4-26

DO LAB NAND-NOR