Ceramics - I

Instructor: Prof. Bishakh Bhattacharya

Dept. of Mechanical Engineering

IIT Kanpur

India

E-mail : bishakh@iitk.ac.in

Contents

- ✓ Introduction
- ✓ Classification of Ceramics
- ✓ Ceramic crystal structure

Introduction

- Ceramics word is derived from Greek term keramikos means "burnt stuff".
- Clay is the one earliest known ceramics used for making pottery.
- Ceramic materials are the inorganic crystalline materials made from compounds of a metal and a non metal primarily held by ionic and covalent bonds.
- Glass by <u>definition</u> is exactly **not** a **ceramic** because it is an **amorphous** solid (non-crystalline) but its **mechanical properties** behave **similar** to ceramic materials.
- Common characteristics are:
 - ✓ Hard and brittle (carbon in the form of diamond hardest known material).
 - ✓ **Strong** in **compression** (typically 10 times), **weak** in **tension**.
 - ✓ Chemically inert.
 - ✓ Insulators of heat and electricity (exception carbon in the form of diamond & graphite).
 - ✓ High and well defined melting point.

Clay (Alumina & silica) Pottery

Few examples

SiC – as abrasive (grinding wheel) & disc brake

Image: www.waleapparatus.com & Wikipedia

Silicon nitride - rocket thruster Image: Wikipedia

Uranium oxide — nuclear fuel Image: http://hyperphysics.phy-astr.gsu.edu/

Porcelain - High voltage electric insulators

Titanium carbide – Space shuttle heat shield Image: NASA

ZnO - semi-conductor, sunscreen, cigarette filters

Image: Wikipedia

Bearing - Silicon nitride

Boron nitride — crucible
Image: Wikipedia
Smart Materials Structures and Systems
Laboratory
IIT Kanpur

PZT – Ultrasonic transducer Image: sensorsmag.com

Ceramics: Classification and Application

Natural Ceramics

Limestone (largely CaCO₃)

Sandstone (largely SiO₂)

Granite (Aluminium silicate)

Abrasives

- Typical examples Silicon carbide, Tungsten carbide, Al₂O₃ (or corundum), silica sand.
- Used to grind, or cut away other relatively softer material.
- Posses high hardness and wear resistance.
- Used in form as -
 - ✓ Bonded to grinding wheel by glassy ceramic or an organic resin.
 - ✓ Abrasive powder coated on paper or cloth, E.g., Sandpaper.

Tungsten carbide wheel

Diamond abrasive

Refractories

- ✓ Usually used in furnaces operating around 1500°C.
- ✓ Withstand high temperatures without melting.
- ✓ Remain unreactive and inert under severe environments.
- ✓ Example : Alumina, silica, bricks, Fireclay, Zirconia, Magnesia or Periclase (MgO), BeO, etc.

Fireclay (Al₂O₃+SiO₂)

ZrO₂

	Composition (wt%)						Apparent Porosity	
Refractory Type	Al_2O_3	SiO_2	MgO	Cr_2O_3	Fe_2O_3	CaO	TiO_2	(%)
Fireclay	25-45	70-50	0-1		0-1	0-1	1–2	10-25
High-alumina fireclay	90-50	10-45	0-1		0-1	0-1	1-4	18-25
Silica	0.2	96.3	0.6			2.2		25
Periclase	1.0	3.0	90.0	0.3	3.0	2.5		22
Periclase-chrome ore	9.0	5.0	73.0	8.2	2.0	2.2		21

Ceramic Composites

- Ceramics combined with metals or polymers to make composites.
- Done to take advantages of individual component properties.

Ceramic Composites					
Ceramic Composite	Components	Typical Uses			
Fiber glass CFRP	Glass – polymer } Carbon – polymer }	High-performance structures.			
Cermet	Tungsten carbide-cobalt	Cutting tools, dies.			
Bone	Hydroxyapatite-collagen	Main structural material of animals.			
New ceramic composites	Alumina-silicon carbide	High temperature and high toughness applications.			

Reference: Engineering Materials 2: Ashby & Jones, 4th Ed.

Cement & Concrete

- Used as construction material.
- Cement is a mixture of a combination of lime (CaO), silica (SiO₂), and alumina (Al₂O₃), which sets when mixed with water.
- Concrete is sand and stones (aggregate) held together by cement.

High Performance Ceramics

They posses

- ✓ High resistance to fracture.
- ✓ High temperature stability.
- ✓ High load carrying & wear resistant properties.

High-Performance Ceramics					
Ceramic	Typical Composition	Typical Uses			
Dense alumina Silicon carbide, nitride Sialons	Al ₂ O ₃ SiC, Si ₃ N ₄ Si ₂ AlON ₃	Cutting tools, dies; wear-resistant surfaces, bearings; medical implants; engine and turbine parts; armor.			
Cubic zirconia	$ZrO_2 + 5$ wt% MgO	•			

Reference: Engineering Materials 2: Ashby & Jones, 4th Ed.

Glasses

- Non-crystalline silicates containing other oxides, notably CaO, Na₂O, K₂O, and Al₂O₃, etc., which influence the glass properties.
- Glasses behave like a liquid at high temperature.
- Can be made crystalline by the proper high-temperature heat treatment, then called as Glass-ceramic.

Reference: W.D Callister, 7 Ed.

	Glasses	
Glass	Typical Composition (wt%)	Typical Uses
Soda-lime glass	70 SiO ₂ , 10 CaO, 15 Na ₂ O	Windows, bottles, etc.; easily formed and shaped.
Borosilicate glass	80 SiO ₂ , 15 B ₂ O ₃ , 5 Na ₂ O	Pyrex; cooking and chemical glassware; high-temperature strength, low coefficient of expansion, good thermal shock resistance.

Piezoelectric Ceramics

- Exhibit reversible piezoelectric phenomenon.
- Example: Barium Titanate (BaTiO₃), Lead Titanate (PbTiO₃), Lead Zirconate Titanate (PZT), Potassium Niobate (KNbO₃).
- Applications: Ink-jet printing head, ultrasonic testing, strain gauges, etc.

Bonding & Crystal Structure

Bonding between Atoms

Bonding between Atoms

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Periodic Table

Columns: Similar valence structure

Electropositivity increases

Readily give up electrons to become +ve ions. (Cesium most electropositive)

Electronegativity increases

Readily acquire electrons to become -ve ions. (Fluorine most electronegative)

Reference: W.D Callister. 7Ed.

Understanding the origin of material properties requires study at the atomic level.

<u>Interatomic bonds</u>: Hold atoms together and act like spring by linking one to atom to other in solid state.

Atomic packing: Signifies the way in which atoms are packed together.

No. of little springs per unit area and angle at which they are pulled.

Bonds (like a spring)

Atomic Packing

Reference: Engineering Materials 1: Ashby & Jones, 4th Ed.

The ways in which atoms can be bound together are:

- > Primary Bonds Ionic, Covalent and Metallic bonds.
 - They are relatively strong.
 - Generally melt between 1000 4000 K.
- > Secondary Bonds Van der Waals and Hydrogen bonds.
 - Both are relatively weak.
 - They melt between 100-500 K.

Primary Interatomic Bonding

1. Ionic Bonds

- ✓ Found in compounds that are composed of both metallic and nonmetallic element.
- ✓ Large difference in electronegativity required, means bonding occurs between elements that are situated at the horizontal extremities of the periodic table.
- ✓ Requires **electron transfer** to achieve stabilized outermost electronic configuration.
- ✓ The bonding forces are coulombic, i.e., attraction between opposite charges.
- ✓ Example : NaCl, AgCl, CsCl, ZnS, CaF₂, LiF, MgO, Al₂O₃

 Sodium atom transfers its valence electron (expending 5.14 eV of work) to a vacant position in a chlorine atom giving back 4.02 eV of energy.

Net work done to make isolated ions,

$$U_i = 5.14 - 4.02 = 1.12eV$$

The force between opposite charges is

$$\mathbf{F} = \frac{(\mathbf{Z}_1 \mathbf{e})(\mathbf{Z}_2 \mathbf{e})}{4\pi \, \mathbf{\varepsilon}_0 \mathbf{r}^2},$$

 Z_1 , Z_2 : Valences of the two ion types

 $e: Electronic charge = 1.6 \times 10^{-19} C$

 ε_o : Permittivity of vacuum (8.85 x 10⁻¹² F/m)

r: Separation between the ions

- The work done as the ions are brought to a separation r is $U = \int_r^\infty F dr = \frac{q^2}{4\pi \, \epsilon_c r}$
- For r < 1 nm , ionic bond becomes more stable.
- For stable NaCl, $r = 0.28 \text{ nm} (1 \text{nm} = 10^{-9} \text{m}).$
- Below a certain 'r' repulsion starts.

NaCl – ionic bond formation

POTENTIAL ENERGY

$$U(r) = U_i - \underbrace{\frac{q^2}{4\pi\epsilon_0 r}}_{\text{attractive part}} + \underbrace{\frac{B}{r^n}}_{\text{repulsive part}} \quad n \approx 8$$

Ionic bond formation – Energy consideration

$$U(r) = U_i - \underbrace{\frac{q^2}{4\pi\epsilon_0 r}}_{\text{attractive part repulsive part}} + \underbrace{\frac{B}{r^n}}_{\text{repulsive part}}$$

n ≈ 8

Reference: Engineering Materials 1: Ashby & Jones, 4th Ed.

Properties of Ionic Bond

- ✓ Ionic bonds are **non-directional** because magnitude of the bond is equal in all the directions around an ion.
- ✓ **Higher melting point** because of large bond energy typically 600-1500 kJ/mol or (3-8 eV/atom).
- ✓ Often hard, brittle materials.
- ✓ Ionic solids are good insulators of electricity in their solid state and good conductors of electricity in their molten state.

Primary Interatomic Bonding

2. Covalent Bonds

- ✓ **Stable** electron configurations are obtained by the **sharing of electrons** between adjacent atoms.
- ✓ The covalent bond is generally **directional in nature** [occurs between specific atoms and only in the direction between one atom and another that participates in the electron sharing].
- ✓ No. of covalent bond for a particular atom = 8 N, where N is the no. of valence electrons.
- ✓ Example :
 - Non-metallic molecules H₂, F₂, Cl₂, etc.
 - Molecules containing dissimilar atoms CH₄, H₂O, HNO₃, HF, etc.
 - Elemental solids Diamond (carbon), Si, Ge
 - Solid Compounds Gallium arsenide (GaAs), Indium Antimonide (InSb), and Silicon Carbide (SiC).
 - Polymers also contains secondary bonds

Examples

Covalent bond formation between two hydrogen atoms – making hydrogen molecule

Reference: Engineering Materials 1: Ashby & Jones, 4th Ed.

Covalent bonding in Methane molecule:

Carbon atom shares it 4 valence electron with four hydrogen atoms

Reference: W.D Callister, 7Ed.

Diamond

- Diamond has high thermal conductivity (2000 W/m-K, 5 times of Cu) and high melting temperature (3600 °C) due to the presence of tetrahedral geometry and highly directional covalent bonding.
- No free electrons, heat conduction only by lattice vibration
- Used in applications such as cutting tools, polishing wheels, precision bearings, etc.

Directional covalent bonding in Diamond

Reference: Engineering Materials 1: Ashby & Jones, 4th Ed.

Covalent bond formation – Energy consideration

$$U = -\underbrace{\frac{A}{r^m}}_{\text{attractive part}} + \underbrace{\frac{B}{r^n}}_{\text{repulsive part}}$$

where m, n = 5 to 12 If m < n, then attraction else repulsion

Important Points : Covalent Bond

- ✓ Very few compounds exhibit pure ionic or covalent bonding.
- ✓ Usually partially ionic and partially covalent.

More difference in electronegativity: Ionic bond predominates

✓ The percentage ionic character of a bond between elements A (most electronegative) and B is given by:

% Ionic character = $\{1 - \exp[-(0.25)(X_{\Delta}-X_{B})^{2}]\} \times 100$

where X_A and X_B are the electronegativity's for element A & B.

		W
Material	% Ionic Character	
CaF ₂	89	
MgO	73	
NaCl	67	
Al_2O_3	63	
SiO ₂	51	
Si_3N_4	30	
ZnS	18	
SiC	12	

Primary Interatomic Bonding

3. Metallic Bonds

- Found in metals and their alloys.
- Metallic materials have at most three valence electrons which are not bound to any particular atom in the solid forming "electron cloud".
- Rest non-valence and atomic nuclei form ion cores having net positive charge.
- There is a force of attraction between valence electrons and the metal ions.
- Free electrons act as a "glue" to hold the ion cores together.
- The metallic bond imparts properties such as strength, malleability, ductility, luster, conduction of heat and electricity.

Reference: W.D Callister, 7Ed.

Secondary Interatomic Bonding

1. Van der Waals Bonding

- Weak in comparison to primary bonding (bond energy of order 10kJ/mol or 0.1 eV/atom).
- Occur to some extent in all materials but are particularly important in plastics and polymers.
- Result from attractive forces between electric dipoles.

2. Hydrogen Bonding

- Strong dipole-dipole attractions that involve molecules with -OH, -NH, or FH groups.
- Example: Water expands upon freezing.
- In solid ice, each water molecule participates in 4 hydrogen bonds.
- Hydrogen bond keeps molecule apart, thus relatively open structure. Hence ice has lower density than liquid water and it floats.

Reference: W.D Callister. 7Ed.

Summary

Ceramics

(lonic & covalent bonding):

Large bond energy
High melting temperature T_m
Large elastic modulus E
Small coefficient of expansion α

Metals

(Metallic bonding):

Variable bond energy moderate T_m moderate E moderate α

Polymers

(Covalent & Secondary):

Directional Properties Secondary bonding dominates small T_m small E large α

Ionic Ceramics

- ✓ Ionic bonding is predominant.
- ✓ They are compounds of a metal with a nonmetal.
- ✓ The electrostatic attraction between the unlike charges is responsible for dense packing.
- ✓ Example: NaCl, MgO, ZrO₂, Al₂O₃, etc.

Rocksalt or NaCl

Magnesia, MgO

Cubic Zirconia, ZrO₂

Alumina, Al₂O₃

Covalent Ceramics

- ✓ Covalent bonding is predominant.
- ✓ They are compounds of two nonmetals or occasionally pure element (diamond, C).
- ✓ Bonds are formed by sharing electrons with its neighbors to give a fixed number of directional bonds.

Diamond cubic structure

Silicon carbide

Silica cubic structure

Reference: Engineering Materials 2: Ashby & Jones, 4th Ed.

Ceramic crystal structure

- Stable ceramic crystal structures form when anions surrounding a cation are all in contact with that cation.
- Cations (+ve charge, gives up e⁻) are smaller than anions (-ve charge, accepts e⁻) in size.
- The coordination number (i.e., number of anion nearest neighbors for a cation) is related to the cation—anion radius ratio.

Orange circle - Anion, Blue circle - Cation

Coordination Numbers and Geometries	Coordination Number	Cation-Anion Radius Ratio	Coordination Geometry	
	2	<0.155		Linear Manner
Orange circle - Anion Blue circle - Cation	3	0.155-0.225		Planar Equilateral Triangle
For a radius ratio greater than unity , the coordination number is 12	4	0.225-0.414		Tetrahedron
	6	0.414-0.732		Octahedron
	8	0.732-1.0		Cubic

AX - Type Crystal Structures

- Those in which there are equal numbers of cations and anions.
- Often referred to as AX compounds, where A denotes the cation and X the anion.

1) Zinc Sulphide (ZnS)

- ✓ Coordination number is 4, i.e, all ions are tetrahedrally coordinated.
- ✓ Other examples SiC, ZnTe

- ✓ Coordination number for both cations and anions is 6.
- ✓ Other examples MgO, MnS, LiF, and FeO.

✓ Coordination number is 8 for both ion types.

A_mX_p - Type Crystal Structures

- Charges on the cations and anions are not the same.
- Example: CaF₂, ZrO₂, UO₂, PuO₂, ThO₂

$A_m B_n X_p$ - Type Crystal Structures

Have more than one type of cation
 Example: Barium Titanate (BaTiO₃) having both Ba²⁺and Ti⁴⁺ cations.
 It has a perovskite crystal structure – an inorganic Chameleon

Summary

	Structure		Coordination Numbers		
Structure Name	Туре	Anion Packing Cation		Anion Examples	
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CsCl
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂
Perovskite	ABX_3	FCC	12(A) 6(B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃
Spinel	AB_2X_4	FCC	4(A) 6(B)	4	$MgAl_2O_4$, $FeAl_2O_4$

Piezoceramic

Theoretical density Computation

$$\rho = \frac{n(\sum A_c + \sum A_A)}{V_C N_A}$$

Where,

n = no. of ions in the chemical formula

 ΣA_C = sum of atomic weights of all cations in the formula unit

 ΣA_{Δ} = sum of atomic weights of all anions in the formula unit

 V_c = unit cell volume

 N_A = Avogadro's number, 6.023 x 10^{23} formula units/mol

Theoretical density of NaCl?

Given: Atomic weight of Sodium = 22.99 g/mol

Atomic radius of Sodium = $0.102 \text{ nm} = 0.102 \text{ x } 10^{-7} \text{ cm}$

Atomic weight of Chlorine= 35.45 g/mol

Atomic radius of Chlorine = 0.181 nm = 0.181×10^{-7} cm

n = no. of ions in NaCl = 2

If 'a' is unit cell edge length, then its volume,

$$V_C = a^3 = (2r_{Na+} + 2r_{Cl-})^3$$

Thus,
$$\rho = \frac{n \left(\sum A_{\text{Na}} + \sum A_{\text{Cl}}\right)}{\left(2r_{Na} + 2r_{Cl}^{-}\right)^{3} N_{A}} = \frac{2 \left(22.99 + 35.45\right)}{\left[2(0.102 \times 10^{-7}) + 2(0.181 \times 10^{-7})\right]^{3} \left(6.023 \times 10^{23}\right)}$$

Theoretical value of NaCl density = 2.14 g/cm³

While, Experimental value = 2.16 g/cm³

In the next lecture, we will learn about :-

- ✓ Ceramics : Mechanical behaviour
- ✓ Failure
- ✓ Processing

