Wprowadzenie teoretyczne:

Sformułuj twierdzenie Rice'a-Shapiro.

Odpowiedź:

Niech A będzie zbiorem funkcji obliczalnych, że zbiór ich indeksów $A=(x \in IN : \phi_x \in A)$ jest rekurencyjnie przeliczalny.

Wówczas $f \in A$ wtedy i tylko wtedy, gdy istnieje skończona funkcja $\Theta \in A$, taka że $\Theta \subseteq f$.

Zadanie 1

Niech M oznacza maszynę Turinga zaś L(M) język rozpoznawany przez tę maszynę. Dla poniższych zbiorów określ, czy są one rekurencyjnie przeliczalne:

- 1. $\{M \mid L(M) \text{ jest niepusty}\}$?
- 2. $\{M \mid L(M) \text{ jest pusty}\}$?
- 3. {M | L(M) jest nieskończony}?
- 4. $\{M \mid L(M) \text{ jest skończony}\}$?
- 5. $\{x \in \mathbb{N} \mid 0 \in D_x\}$
- 6. $\{x \in \mathbb{IN} \mid 0 \notin D_x\}$
- 7. $\{x \in \mathbb{N} \mid |D_x| = 5\}$
- 8. $\{x \in IN \mid |D_x| \le 5\}$
- 9. $\{x \in \mathbb{N} \mid |D_x| > 5\}$

Zadanie 2

Niech L_1, L_2, \ldots, L_k będą parami rozłącznymi, rekurencyjnie przeliczalnymi językami nad Σ^* , których suma daje całe Σ^* . Uzasadnij, że każdy z tych języków jest rekurencyjny.