EECS545 Lecture 16 Quiz Solutions

- 1. What is the main goal of PCA?
 - (a) To cluster the dataset in a latent subspace
 - (b) To reduce the dimensionality of a dataset
 - (c) To maximize the correlation between the features in a dataset
 - (d) To minimize the variance in a dataset

Solution: (b). PCA is a dimensionality reduction method.

- 2. Which of the following are true about PCA? Choose all that apply.
 - (a) The principal component vectors discovered by PCA are always orthogonal to each other.
 - (b) It is possible to kernerlize PCA algorithm.
 - (c) PCA can be used for feature selection.
 - (d) PCA is an supervised learning algorithm.
 - (e) PCA requires an assumption that the data is normally (Gaussian) distributed.

Solution: (a), (b), and (c).

- (a) The principal component vectors are eigenvectors, which are always orthogonal to each other;
- (c) PCA transforms the data to smaller dimension that retains most of the information as a linear combination of the data, so we can find which features are important for best describing the variance in a broader sense; (d) PCA is an unsupervised learning method; (e) We did not assume so when deriving PCA.
- 3. In PCA, to find the principal components, we try to maximize _____:
 - (a) the data likelihood
 - (b) the variance of the data in the feature space
 - (c) the variance of the data projected onto the principal components
 - (d) the average norm of the data points projected onto the principal components
 - (e) the approximation error of the data projected onto the principal components
 - (f) the matrix norm of the data covariance matrix

Solution: (c). Please note that (e) is what PCA tries to minimize, and that (d) may also be true when data is zero-centered.

- 4. What kind of computation(s) are being done in PCA? Choose all that are correct.
 - (a) $\max_{\mathbf{u}:\|\mathbf{u}\|_2=1} \frac{1}{N} \sum_n \mathbf{u}^\top \mathbf{x}^{(n)}$
 - (b) $\max_{\mathbf{u}:\|\mathbf{u}\|_2=1} \frac{1}{N} \sum_n (\mathbf{u}^\top \mathbf{x}^{(n)} \mathbf{u}^\top \overline{\mathbf{x}})^2$
 - (c) $\max_{\mathbf{u}:\|\mathbf{u}\|_2=1} \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} (\mathbf{u}^\top \mathbf{x}^{(n)}) \mathbf{u}\|^2$
 - (d) $\min_{\mathbf{u}:\|\mathbf{u}\|_2=1} \frac{1}{N} \sum_n \|\mathbf{x}^{(n)} (\mathbf{u}^\top \mathbf{x}^{(n)}) \mathbf{u}\|^2$
 - (e) Find the eigenvector(s) with the largest eigenvalue(s) of the data feature matrix
 - (f) Find the eigenvector(s) with the largest eigenvalue(s) of the data covariance matrix
 - (g) Find the eigenvector(s) with the smallest eigenvalue(s) of the data covariance matrix
 - (h) Find the eigenvector(s) with the smallest eigenvalue(s) of the data covariance matrix

Solution: (b), (d), and (f).

- (a) Note that $\overline{\mathbf{x}} \neq 0$ in general. (b) This is the variance maximization objective we've seen in the lecture. (d) This is the minimum distortion objective which is equivalent to the maximization objective; note that $(\mathbf{u}^{\mathsf{T}}\mathbf{x}^{(n)})\mathbf{u}$ is the projection of $\mathbf{x}^{(n)}$ onto \mathbf{u} .
- 5. In PCA, let's suppose we are finding the first principal component \mathbf{u}_1 and in order to do so you have found the (real) eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_R$ such that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_R$, and their corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_R$ of the data covariance matrix. Then, how can you recover the projection variance for the first principal component?

Solution: λ_1 .

Note that the variance of the first principal component is same as $\mathbf{u}_1^{\mathsf{T}} \mathbf{S} \mathbf{u}_1$. This equals λ_1 because $\mathbf{S} \mathbf{u}_1 = \lambda \mathbf{u}_1$.