Cal State Long Beach

- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false. Throughout G is a group.
 - \bigcirc If $g \in G$ is the only element of order 2, then $g \in Z(G)$, the center.
 - (2) The intersection of two subgroups of G is also a subgroup.
 - \bigcirc The union of two subgroups of G is also a subgroup.
 - (4) The largest order of an element in S_{12} is 60.
 - (5) If an Abelian group has an element of order 10 and an element of order 12, then it has an element of order 30.

Solution.

(1) True.

Proof. Assume that $g \in G$ is the only element of order 2. Let h be an arbitrary element in G. It suffices to show that gh = hg. We claim that $|hgh^{-1}| = 2$. So we have that $(hgh^{-1})^2 = hgh^{-1}hgh^{-1} = hg^2h^{-1} = hh^{-1} = e$. Now suppose that $hgh^{-1} = e$. Then it must be the case that $g = h^{-1}h = e$, a contradiction since |g| = 2. Thus we have that $|hgh^{-1}| = 2$. But since g is the only element of order 2, it follows that $hgh^{-1} = g$, so that hg = gh; since the choice of h was arbitrary, we can conclude that $g \in Z(G)$.

(2) True.

Proof. Let $H_1 \leq G$, $H_2 \leq G$, and $H' = H_1 \cap H_2$. Since e is in both H_1 and H_2 , it follows that $e \in H'$. The set H' is also associative because it is a subset of G. Now let $a, b \in H'$. Thus we must have that $a, b \in H_1$ and $a, b \in H_2$. Since H_1 and H_2 are groups, it follows that they both contain ab and a^{-1} so that $ab, a^{-1} \in H'$. That is, H is closed under the operation of G and also closed under taking inverses. Thus $H' \leq G$.

(3) False.

Counterexample: Consider $2\mathbb{Z}, 3\mathbb{Z} \leq \mathbb{Z}$. We have that $2 \in 2\mathbb{Z}$ and $3 \in 3\mathbb{Z}$, but $2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

(4) True. The permutation

$$\sigma = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9)(10\ 11\ 12)$$

has order 60. Let Suppose $\alpha \in S_{12}$ has order greater than 60. Now write α as a product of disjoint cycles

$$\alpha = \alpha_1 \alpha_2 \cdots \alpha_n.$$

Let $j \in \{1, 2, ..., n\}$. Then α_j cannot be a 12-cycle since that would imply that $|\alpha| = 12$. For the same reason α_j can neither be an 11-cycle or a 10-cycle. If α_j is a 9-cycle, then $|\alpha|$ is either 9 (9+3)or 18 (9+2+1). Now if α_j is a 8-cycle, then $|\alpha|$ is either 8 (8+4, 8+2+2, 8+2+1+1) or 24(8+3+1). If α_j is a 7-cycle then the

largest order of α has to be 35 (7+3+2 If α_j is a 6-cycle then the largest order of α has to be 30 (6+5+1). If we inspect the remaining possible partitions of α , we observe that none of them can have order bigger than σ , so that $|\sigma|$ is of maximum order in S_{12} .

(5) True.

Proof. Let g and h have orders 10 and 12 in some abelian group. The element g^2 has order 5 and the element h^2 has order 6. Since gcd(5,6) = 1, it follows that $|g^2h^2| = 5 \cdot 6 = 30$.

- 2. We have beads of four different colors.
 - (1) How many distinct four-bead necklaces can we make?
 - (2) How many distinct five-bead necklaces can we make?
 - (3) How many distinct six-bead necklaces can we make?

BONUS: Answer the same questions if we now have beads of five colors.

Solution.

 \bigcirc We shall let D_8 act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1 + 1 + 1 + 1	(1)	4^4	1
2 + 1 + 1	(24)	4^3	2
2 + 2	(1 2)(3 4)	4^2	3
4	$(1\ 2\ 3\ 4)$	4^1	2

Thus we have
$$\frac{4^4\cdot 1+4^3\cdot 2+4^2\cdot 3+4^1\cdot 2}{8}=55 \text{ distinct beads}.$$

(2) We shall let D_{10} act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1+1+1+1+1	(1)	4^{5}	1
2 + 2	$(1\ 3)(4\ 5)$	4^3	5
4	$(1\ 2\ 3\ 4\ 5)$	4^1	4

Thus we have $\frac{4^5 \cdot 1 + 4^3 \cdot 5 + 4^1 \cdot 4}{10} = 136 \text{ distinct beads.}$

 \bigcirc Let D_{12} act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1+1+1+1+1	(1)	4^{6}	1
2 + 2	$(1\ 5)(2\ 4)$	4^4	3
2 + 2 + 2	$(1\ 2)(3\ 6)(4\ 5)$	4^3	4
3 + 3	$(1\ 5\ 3)(2\ 6\ 4)$	4^2	2
6	$(1\ 2\ 3\ 4\ 5\ 6)$	4^1	2

Thus we have
$$\frac{4^6 \cdot 1 + 4^4 \cdot 3 + 4^3 \cdot 4 + 4^2 \cdot 2 + 4^1 \cdot 2}{12} = 430$$
 distinct beads.

Bonus.

(1) We shall let D_8 act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1+1+1+1	(1)	5^4	1
2 + 1 + 1	(24)	5^3	2
2 + 2	$(1\ 2)(3\ 4)$	5^2	3
4	$(1\ 2\ 3\ 4)$	5^{1}	2

Thus we have
$$\frac{5^4\cdot 1 + 5^3\cdot 2 + 5^2\cdot 3 + 5^1\cdot 2}{8} = 120 \text{ distinct beads.}$$

(2) We shall let D_{10} act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1+1+1+1+1	(1)	5^{5}	1
2 + 2	$(1\ 3)(4\ 5)$	5^3	5
4	$(1\ 2\ 3\ 4\ 5)$	5^1	4

Thus we have
$$\frac{5^5 \cdot 1 + 5^3 \cdot 5 + 5^1 \cdot 4}{10} = 377 \text{ distinct beads.}$$

 \bigcirc Let D_{12} act on the set of beads.

Conjugacy Class	Representative g	#g	# of elements
1+1+1+1+1	(1)	5^{6}	1
2 + 2	$(1\ 5)(2\ 4)$	5^4	3
2 + 2 + 2	$(1\ 2)(3\ 6)(4\ 5)$	5^3	4
3 + 3	$(1\ 5\ 3)(2\ 6\ 4)$	5^2	2
6	$(1\ 2\ 3\ 4\ 5\ 6)$	5^1	2

Thus we have
$$\frac{5^6 \cdot 1 + 5^4 \cdot 3 + 5^3 \cdot 4 + 5^2 \cdot 2 + 5^1 \cdot 2}{12} = 1505$$
 distinct beads.

3. Consider the following two sets of matrices

$$S_1 = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\} \text{ and } S_2 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}.$$

Do the following for both:

- (1) Decide if they are rings or not—and give reasons.
- (2) Decide if they are integral domains or not—and give reasons.
- (3) Can you find a root for the polynomial $x^2 + 1$ in either place? If so find all the roots or give reasons.

Solution.

 \bigcirc We claim that S_1 and S_2 are both commutative rings.

Proof. First we want to show that $(S_1, +)$ and $(S_2, +)$ are abelian groups.

Identity. It is clear that S_1 and S_2 both contain the zero matrix, which is the identity under addition.

Associativity, Closure & Commutativity under +. Since \mathbb{Z} is associative, closed, and commutative under addition, it follows that S_1 and S_2 are both associative, closed, and commutative under addition.

Inverse. For each matrix A in S_1 (resp. S_2) we have that -A is in S_1 (resp. S_2) so that S_1 and S_2 are both closed under taking inverses.

Thus we have shown that S_1 and S_2 are abelian groups.

Identity under multiplication. It is clear that S_1 and S_2 both contain the 2×2 identity matrix, which serves as the multiplicative identity.

Associativity, Closure & Commutativity under multiplication. Let

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix}, \begin{pmatrix} c & d \\ d & c \end{pmatrix} \in S_1 \text{ and } \begin{pmatrix} e & f \\ -f & e \end{pmatrix}, \begin{pmatrix} g & h \\ -h & g \end{pmatrix} \in S_2.$$

Then it follows that

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} ac + bd & ad + bc \\ ad + bc & ac + bd \end{pmatrix} = \begin{pmatrix} c & d \\ d & c \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in S_1$$

and

$$\begin{pmatrix} e & f \\ -f & e \end{pmatrix} \begin{pmatrix} g & h \\ -h & g \end{pmatrix} = \begin{pmatrix} eg - fh & eh + fg \\ -eh - fg & eg - fh \end{pmatrix} = \begin{pmatrix} g & h \\ -h & g \end{pmatrix} \begin{pmatrix} e & f \\ -f & e \end{pmatrix} \in S_2$$

so that S_1 and S_2 are both closed and commutative under multiplication. Associativity follows since matrices are associative under multiplication.

Distributivity. For any $n \times n$ matrices A, B, and C, we know that

$$A(B+C) = AB + AC$$
 and that $(B+C)A = BA + CA$;

thus multiplication distributes over addition in S_1 and S_2 .

From the arguments above, we have thus shown that S_1 and S_2 are rings. \square

(2) S_1 is not an integral domain because we have that

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in S_1,$$

with A and B nonzero but AB = 0. We now claim that S_2 is an integral domain.

Proof. Suppose to the contrary that S_2 is not an integral domain. Then there exist nonzero matrices $A, B \in S_2$, where

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, B = \begin{pmatrix} c & d \\ -d & c \end{pmatrix},$$

such that AB = 0. Then it follows that $0 = \det(0) = \det(A) \det(B)$. Since $\det(A)$ and $\det(B)$ are integers and since \mathbb{Z} is an integral domain, it follows that $\det(A) = 0$ or $\det(B) = 0$. Assume without loss that $\det(A) = 0$. Then it follows that $a^2 + b^2 = 0$, so that a = b = 0, a contradiction since A is nonzero. Thus S_2 is an integral domain.

③ Suppose first that some matrix $\begin{pmatrix} a & b \\ b & a \end{pmatrix} \in S_1$ satisfies the equation $x^2 + 1 = 0$. So we must have that

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

so that

$$\begin{pmatrix} a^2+b^2+1 & 2ab \\ 2ab & a^2+b^2+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

By equating corresponding entries, we get that 2ab = 0 and $a^2 + b^2 + 1 = 0$. Since \mathbb{Z} is an integral domain, we can assume without loss that a = 0, so that $b^2 + 1 = 0$. This preceding equation has no solution for any integer b. Now if we assume that b = 0, we shall reach the same conclusion; thus we must conclude that $x^2 + 1$ has no roots in S_1 . Now suppose tha

$$\begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

so that

$$\begin{pmatrix} c^2 - d^2 + 1 & 2cd \\ -2cd & c^2 - d^2 + 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus we get that 2cd = 0, -2cd = 0, and $c^2 - d^2 + 1 = 0$. The equations 2cd = 0 and -2cd reduce to cd = 0. So assume first that d = 0. Then we have that $c^2 + 1 = 0$, a dead end; so assume that c = 0 to get $0 = 1 - d^2 = (1 + d)(1 - d)$. Thus the equation $x^2 + 1$ has two roots in S_2 , namely:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- 4. Let R be a ring. An additive subgroup I is called an ideal if whenever $r \in R$ and $a \in I$, then $ra, ar \in I$.
 - \bigcirc Find two ideals of \mathbb{Z} that are neither 0 nor \mathbb{Z} .
 - (2) Let I be an ideal. Prove the following are true: if I + x and I + y are the same coset and I + m and I + n are the same coset, then I + (x + m) and I + (y + n) are the same coset, and so are I + xm and I + yn.

(3) Let S be a ring, and let $\alpha: R \to S$ be a ring homomorphism—this means with respect to both operations. Show $I = \ker(\alpha) = \{a \in R : \alpha(a) = 0\}$ is an ideal.

Solution.

- (1) Consider $n\mathbb{Z} < \mathbb{Z}$, with n > 1. Let $x \in n\mathbb{Z}$ and let $z \in \mathbb{Z}$. Then x = nm for some integer m, so that $zx = xz = (nm)z = n(mz) \in n\mathbb{Z}$. Thus $n\mathbb{Z}$ is an ideal of \mathbb{Z} , so that $444\mathbb{Z}$ and $410\mathbb{Z}$ are both nontrivial ideals of \mathbb{Z} .
- 2 **Proof.** Let I be an ideal. Assume that $x, y, m, n \in R$ such that I + x = I + y and I + m = I + n. We want to show that $I + (x + m) \subseteq I + (y + n)$ and $I + xm \subseteq I + yn$. So let $r_1 \in I + (x + m)$ and $r_2 \in I + xm$. Thus

$$\begin{split} r_1 &= i_1 + (x+m) & [\text{for some } i_1 \in I] \\ &= (i_1+x) + m \\ &= (i_2+y) + m & [I+x=I+y; i_2 \in I] \\ &= (i_2+m) + y & [(R,+) \text{ is abelian}] \\ &= (i_3+n) + y & [I+m=I+n; i_3 \in I] \\ &= i_3 + (y+n) \in I + (y+n) \end{split}$$

and $r_2 = i_4 + xm$ for some $i_4 \in I$. Since I + x = I + y and I + m = I + n, it follows that $i_4 + x = i_5 + y$ and $i_4 + m = i_6 + n$ for some $i_5, i_6 \in I$. Thus we have that $x = y + i_5 - i_4$ and $m = n + i_6 - i_4$, so that

$$r_2 = i_4 + xm$$

$$= i_4 + (y + i_5 - i_4)(n + i_6 - i_4)$$

$$= i_4 + y(i_6 - i_4) + n(i_5 - i_4) + (i_5 - i_4)(i_6 - i_4) + yn.$$

Since I is an ideal, it must be the case that

$$i_4 + y(i_6 - i_4) + n(i_5 - i_4) + (i_5 - i_4)(i_6 - i_4) \in I.$$

Thus $r_2 \in I + yn$. We have thus shown that $I + (x + m) \subseteq I + (y + n)$ and $I + xm \subseteq I + yn$. The argument that $I + (y + n) \subseteq I + (x + m)$ and $I + yn \subseteq I + xm$ follows by symmetry. Thus I + (x + m) = I + (y + n) and I + xm = I + yn. \square

(3) **Proof.** Let $\alpha: R \to S$ be a homomorphism of rings. To show that $\ker(\alpha)$ is an ideal of R, we have to first show that $(\ker(\alpha), +) \leq (R, +)$.

Identity. Since α is also a group homomorphism, we know from our discussion in group theory that $\alpha(1) = 1$, so that $1 \in \ker(\alpha)$.

Closure. Let $a, b \in \ker(\alpha)$. Then we have that $\alpha(a+b) = \alpha(a) + \alpha(b) = 0 + 0 = 0$, so that $a+b \in \ker(\alpha)$; i.e., $\ker(\alpha)$ is closed under addition.

Inverse. Let $a \in \ker(\alpha)$. Then we have that

$$\alpha(-a) = \alpha(-1 \cdot a)$$

$$= \alpha(-1) \cdot \alpha(a)$$

$$= \alpha(-1) \cdot 0 = 0,$$

so that $-a \in \ker(\alpha)$, and thus $\ker(\alpha)$ is closed under taking inverses.

It follows from above that $\ker(\alpha)$ is an additive subgroup of R. Now let $a \in \ker(\alpha)$, $r \in R$. To complete the proof, we must show that $ar \in \ker(\alpha)$ and $ra \in \ker(\alpha)$. Thus

$$0 = 0 \cdot \alpha(r)$$

$$= \alpha(a) \cdot \alpha(r)$$

$$= \alpha(ar)$$

$$= 0$$

$$= \alpha(r) \cdot \alpha(a)$$

$$= \alpha(ra),$$
[so that $ar \in \ker(\alpha)$]
$$= 0$$
[so that $ra \in \ker(\alpha)$]

so that $ra, ar \in \ker(\alpha)$ and $\ker(\alpha)$ is an ideal.