Name: Jigar Siddhpura SAPID: 60004200155

DIV: C/C2 Branch: Computer Engineering

ML - Experiment 6

(D)	6000 A 210155
	Jijan Siddhpuna
	Experiment 6 - ML c22
	colin: To implement K-Neavest Neighbor
	Theory: KNN is a simple ML also based on supervised learning.
	It assumes similarity between new case & seen
-	cases & put new case into category that is most likely.
	This means new data can be easily classified into a
-	well suite rategory by using knn algorithm. It can be
	Used as tregoression as well as classification. It is
	called lazy learness also as it doesn't learn from toaining
	Set, immediately it stores dataset and at time of classification,
	it performs action on dataset. KNN working is as:
	O select no of Kneighbors
	@ Calculate enclidean distance of K number of neighbors.
	3 Take K - NN as per calculated euclidean distance.
	(4) camong these k numbers, count no of data pts in
	each category.
	(5) Assign new data points to that category for which number
	of registors are man.
	0.4.0
	For selection of KMV
	- There is no way to determine best value for k' most
	preferred is 5.
	- A very low value such as k=1 or k=1, can be noised lead to effects of outliers in model. - hange values of K are good but it may find Some
	lead to effects of outliers is model.
	- hange values of K are good but it may find sime
	difficulties.
	FOR EDUCATIONAL USE
Gundaram	
1	

					187				
					3				
	Advantages.								
	D Simple to implement								
	(a) Robust to pairy topining data								
	(3) More effective if topining data is large.								
	Disadvantages:								
	1 Determining 'k' value is complex.								
	@ Computation cost is high box of calculating dist. between								
	data pts for all tocining somples.								
	Problem 1: - Dataset 1								
	Let new data pt: (xn, Yn) = (55, 38)								
			1 1	10 12 1	. 0				
	ID	Height (Xi)	A je (ji)	/(xi-xn)+(yi-yn)2	weight				
	2	5.11	45	(5-5-5) 2+ (45-38) 2) 1/2 7.018					
	3		26	$\frac{\left(\left(5.11-5.5\right)^{2}+\left(26-38\right)^{2}\right)^{1/2}}{\left(\left(5.6-55\right)^{2}+\left(30-38\right)^{2}\right)^{1/2}=8}$	97				
	4	5.6	30	((59-55)2+ (31-38)2 "L= 4.01	59				
	5	18	40	19.8-5.51 7190-3812 18-5 2.118	72				
	1	5.8	36	((5.8-5.5)+ (36-38)+)1- 2.022 ((5.8-5.5)+ (38-19))1- 11001	60 -				
	7	5:3	17	115.3-5.5)+ /38-1971 11=11001	- 70				
	8	5-8	28	((5.8-5.5)2+ (28-38)2)42 = 10.004	60				
	9	5.5	23	115-5-5-512/123-38/2/11 = 15	45				
	10	5.6	32	((56-5.5) + (31-38) 2) " = 15	45				
	Now for	Now for date point 105,38) if K=1 Hen weight will be 60							
	1 00	I as endidean distance is less than that point as K=1 so							
	only	poor, for date point (c.5, 38) if K=1 Hen weight will be 60 (as endidoon distance is less than that point as K=1, so only 1 nearest neighbor is checked) for K more than 1, avarage will be taken.							
	for k more than I avasage will be taken.								
(Sundaram)			FC	OR EDUCATIONAL USE					

	01 1 01 000								
	If $k=3$, then weight = $(59+72+60)/3 = 63.6667$								
	If K=5, Hen weight = (59+72+60+58+77) 15 = 65-2								
	Datoset 2: Let the new print be (2n, In) = (#10,57)								
	4:01 14:1	201 1,20	1 (xn-ni)2+ (yn-yi)2	C Clars					
	167	SI Weight (WI)	1 (167-170)2+ (51-57)2 = 6.708	Underweight					
	182	62	(182-170)27 (12-57)2 - 13	Normal					
	118	69	1/16-170/2+ (69-57)2 = 13.416	Nomal					
	173	64	1/13-120)2+161-57)2 = 7.615	Nimal					
	172	6 <	1/(172-170)2+ (65-57)= 8.296	Normal					
	174	56	1/(174-171)+/56-57)- 4.123	Underweight					
	169	58	V(119+71)7+(58-57)2=1.914	Nosmal					
	173	57	(173-170) + (57-51) - 3	Normal					
	110	55	1(170-170) + (55-57) = 2	Nosmal					
	٨	For K=1, class for (170,57) will be Normal							
	For K=1 y	clans for	(70,57) will be Norman						
	por K=3,	Nearest no	eighbros for (170,57) are						
	Normal (Norm	ral (2), Normal (3).						
	So Final a	DO 13 10-111							
	N_ k = 5	for K=5, Normal (1.4), Normal (2), Normal (3), Underweight (4.123)							
	736 1	Maden reight 16.708).							
	So firal is Nismal.								
		1 1 1							
Gundaram			FOR EDUCATIONAL USE						

```
### 1st DATASET
import numpy as np

def euclidean_distance(p1, p2):
    return np.sqrt(np.sum((p1 - p2)**2))

dataset1 = np.array([[5, 45], [5.11, 26], [5.6, 30], [5.9, 34], [4.8, 40], [5.8, 36], [5.3, 19], [5.8, 28], [5.5, 23], [5.6, 32]])
target1 = np.array([77, 47, 55, 59, 72, 60, 40, 60, 45, 58])
test1 = np.array([5.5, 38])

for k in [1,3,5]:
    # Calculate distances to all points in the dataset distances = np.array([euclidean_distance(test1, d) for d in dataset1])

# Get indices of K nearest neighbors nearest_indices = np.argsort(distances)[:k]

# Predict the target value based on the average of K nearest neighbors predicted_target = np.mean(target1[nearest_indices])
```

```
Predicted target for height=5.5 and age=38: for k=1 is 60.0
Predicted target for height=5.5 and age=38: for k=3 is 63.666666666666666664
Predicted target for height=5.5 and age=38: for k=5 is 65.2
```

print(f"Predicted target for height=5.5 and age=38: for k = {k} is {predicted target}")

```
"""### 2nd DATASET"""
import math
def euclidean distance(p1, p2):
  return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
# Define the dataset
data = [
  [167, 51, 'under'],
  [182, 62, 'normal'],
  [176, 69, 'normal'],
  [173, 64, 'normal'],
  [172, 65, 'normal'],
  [174, 56, 'under'],
  [169, 58, 'normal'],
  [173, 57, 'normal'],
  [170, 55, 'normal']
1
point = [170, 57]
k = 3
for k in [1,3,5]:
 distances = [(euclidean_distance(point, d[:2]), d) for d in data]
 nearest neighbors = sorted(distances)[:k]
 category count = {}
 for _, neighbor in nearest_neighbors:
    category = neighbor[2]
    category_count[category] = category_count.get(category, 0) + 1
 predicted category = max(category count, key=category count.get)
 print(f"Predicted category for height=170 and weight=57: for k = {k} is {predicted category}")
```

```
Predicted category for height=170 and weight=57: for k = 1 is normal

Predicted category for height=170 and weight=57: for k = 3 is normal

Predicted category for height=170 and weight=57: for k = 5 is normal
```

```
"""### 3rd DATASET"""
from google.colab import
drive
drive.mount('/content/gdrive
import numpy as
np import pandas
as pd
import matplotlib.pyplot as plt
          sklearn.model selection
                                         import
train test split from sklearn.neighbors import
KNeighborsClassifierplt.style.use('ggplot')
df = pd.read csv('/content/gdrive/MyDrive/ML/diabetes.csv')
X =
df.drop('Outcome',axis=1).values
y = df['Outcome'].values
X train, X test, y train, y test = train test split(X, y, test size=0.4, random state=42,
stratify=y)neighbors = np.arange(1,6)
train accuracy =np.empty(len(neighbors))
test accuracy = np.empty(len(neighbors))
for i,k in enumerate(neighbors):
  #Setup a knn classifier with k neighbors
  KNeighborsClassifier(n neighbors=k)
  #Fit the model
  knn.fit(X train,
  y train)
  #Compute accuracy on the training set
  train accuracy[i] = knn.score(X train,
  y_train)
  #Compute accuracy on the test set
  test accuracy[i] = knn.score(X_test, y_test)
plt.title('kNN Varying number of neighbors')
plt.plot(neighbors, test_accuracy, label='Testing
Accuracy') plt.plot(neighbors, train accuracy,
label='Training accuracy')plt.legend()
plt.xlabel('Number of
neighbors')
plt.ylabel('Accuracy')
plt.show()
```

kNN Varying number of neighbors

