Лабораторна робота 2 Статистичне виведення

Піковець Артем КМ-22

Дослідницькі питання

- Як вік, стать та раса впливають на артеріальний тиск людини?
 - Чи погіршується артеріальний тиск зі зростанням віку?
 - Чи існують відмінності за статтю або расою?
- Як кількість та розподіл жиру в тілі людини впливає на її артеріальний тиск?
 - Чи підвищується артеріальний тиск з збільшенням кількості жиру?
 - Чи має кількість жирової маси більший вплив на артеріальний тиск ніж кількість нежирової маси?
 - Чи жир в андроїдній області має більший вплив на артеріальний тиск ніж жир в гіноїдній області?
 - Чи кількість саме вісцерального жиру найбільш пов'язана з артеріальним тиском?

Дані

- Дані були взяті з NHANES за роки 2011-2018.
- Після обробки змінних артеріального тиску (systolic та diastolic), була отримана вибірка з 28097 людей.
- Для кожного дослідницького питання були взяті змінні які його стосуються. Рядки з пропущенними даними було видалено.
- Отримано дві вибірки:

whole_data (28097 рядків)	fat_data (18436 рядків)
systolic diastolic blood_pressure_category age gender race	systolic diastolic blood_pressure_category age gender race android_fat_g android_non_fat_g gynoid_fat_g gynoid_non_fat_g visceral_fat_g subcutaneous_fat_g

Статистичне виведення

- Розподіл артеріального тиску
- 2 Вплив віку, статі та раси на артеріальний тиск
- Вплив кількості та розподілу жиру на артеріальний тиск
- 4 Множинне тестування гіпотез

Статистичне виведення

- 1 Розподіл артеріального тиску
- Вплив віку, статі та раси на артеріальний тиск
- ③ Вплив кількості та розподілу жиру на артеріальний тиск
- 4 Множинне тестування гіпотез

Дескриптивні статистики

- μ_X сподівання
- ullet σ_X середньо-квадратичне відхилення

	Довірчі інтервали (95%)		
	μ_X σ_X		
systolic	[119.29, 119.73]	[18.58, 19.02]	
diastolic	[67.22, 67.53]	[12.95, 13.20]	

• $P_X(X=x)$ - функкція ймовірностей для дискретної випадкової величини

	Довірчі інтервали (95%)
Blood pressure category	$P_X(X=x)$
Normal	[0.548, 0.560]
Elevated	[0.134, 0.142]
Hypertension Stage 1	[0.156, 0.165]
Hypertension Stage 2	[0.143, 0.151]

• В даній вибірці більше ніж 50% людей мають нормальний тиск.

Кореляція між систолічним та діастолічним тиском

- r_s коефіцієнт кореляції Спірмана
- Побудова студентизованого та ВСа довірчих інтервалів є ресурсозатратною.
- Тому було використано невелику бутстреп-вибірку. $R=200, R_{sd}=50.$

	Довірчі інтервали (95%)
	$r_s($ systolic $,$ diastolic $)$
norm	[0.4905, 0.5095]
basic	[0.4902, 0.5101]
stud	[0.4894, 0.5113]
perc	[0.4916, 0.5115]
BCa	[0.4908, 0.5094]

- Присутня позитивна кореляція але недостатньо велика щоб вважати систолічний та діастолічний тиск подібними величинами.
- Надалі обчислюватись будуть тільки norm, basic та perc довірчі інтервали але з більшою бутсреп-вибіркою.

Статистичне виведення

- 1 Розподіл артеріального тиску
- 2 Вплив віку, статі та раси на артеріальний тиск
- ③ Вплив кількості та розподілу жиру на артеріальний тиск
- 4 Множинне тестування гіпотез

Сподівання та дисперсії тиску серед різних вікових груп

	Довірчі інтервали (95%)			
	systolic		diastolic	
age	μ_X	σ_X	μ_X	σ_X
[5, 15]	[103.7, 104.3]	[9.4, 9.8]	[55.7, 56.3]	[10.9, 11.4]
(15, 25]	[111.8, 112.5]	[10.6, 11.2]	[63.3, 63.9]	[10.2, 10.8]
(25, 35]	[114.6, 115.5]	[12.5, 13.4]	[69.4, 70.1]	[10.5, 11.2]
(35, 45]	[118.7, 119.7]	[14.6, 15.7]	[73.8, 74.6]	[10.8, 11.4]
(45, 55]	[123.7, 124.9]	[16.5, 17.9]	[75.0, 75.7]	[10.5, 11.1]
(55, 65]	[129.9, 131.1]	[18.5, 19.7]	[72.7, 73.4]	[11.3, 11.9]
(65, 75]	[133.0, 134.4]	[18.5, 19.7]	[68.0, 68.9]	[11.6, 12.3]
(75, 85]	[137.9, 139.9]	[21.6, 23.2]	[63.4, 64.5]	[11.9, 12.9]

- Зі збільшенням віку систолічний тиск підвищується, та його середньоквадратичне відхилення теж.
- Діастолічний тиск спочатку підвищується, потім починає спадати.
 Відмінність між середньоквадратичними відхилення вже не така помітна.

Сподівання систолічного тиску серед різних вікових груп

• $\mu_{[a,b]}$ - сподівання систолічного тиску для людей вікової групи [a,b]

$$H_0: \mu_{[a_i,b_i]} - \mu_{[a_{i+1},b_{i+1}]} \geq 0 \quad \text{vs} \quad H_1: \mu_{[a_i,b_i]} - \mu_{[a_{i+1},b_{i+1}]} < 0$$

H ₀	р	p < 0.05
$\mu_{[5,15]} - \mu_{(15,25]} \ge 0$	0	TRUE
$\mu_{(15,25]} - \mu_{(25,35]} \ge 0$	2.736e-26	TRUE
$\mu_{(25,35]} - \mu_{(35,45]} \ge 0$	1.305e-34	TRUE
$\mu_{(35,45]} - \mu_{(45,55]} \ge 0$	9.128e-39	TRUE
$\mu_{(45,55]} - \mu_{(55,65]} \ge 0$	5.965e-48	TRUE
$\mu_{(55,65]} - \mu_{(65,75]} \ge 0$	5.786e-11	TRUE
$\mu_{(65,75]} - \mu_{(75,85]} \ge 0$	2.252e-16	TRUE

• Усі *p*-значення дуже малі. Старші вікові групи в середньому мають вищий систолічний тиск.

Дисперсії систолічного тиску серед різних вікових груп

• $\sigma_{[a,b]}$ - середньоквадратичне відхилення систолічного тиску для людей вікової групи [a,b]

$$H_0: \sigma_{[\boldsymbol{a}_i,b_i]} - \sigma_{[\boldsymbol{a}_{i+1},b_{i+1}]} \geq 0 \quad \text{vs} \quad H_1: \sigma_{[\boldsymbol{a}_i,b_i]} - \sigma_{[\boldsymbol{a}_{i+1},b_{i+1}]} < 0$$

H_0	р	p < 0.05
$\sigma_{[5,15]} - \sigma_{(15,25]} \ge 0$	4.8e-13	TRUE
$\sigma_{(15,25]} - \sigma_{(25,35]} \ge 0$	7.859e-15	TRUE
$\sigma_{(25,35]} - \sigma_{(35,45]} \ge 0$	2.801e-10	TRUE
$\sigma_{(35,45]} - \sigma_{(45,55]} \ge 0$	1.256e-06	TRUE
$\sigma_{(45,55]} - \sigma_{(55,65]} \ge 0$	1.077e-05	TRUE
$\sigma_{(55,65]} - \sigma_{(65,75]} \ge 0$	0.5026	FALSE
$\sigma_{(65,75]} - \sigma_{(75,85]} \ge 0$	7.21e-11	TRUE

• Майже усі *p*-значення є малими. Старші вікові групи мають більший розкид систолічного тиску.

Кореляція між віком та артеріальним тиском

• R - кількість бутстреп-вибірок для підрахунку довірчих інтервалів

		Percentile CI (95%), $R=1000$
	$r_s(age, systolic)$	[0.601, 0.616]
age < 50	$r_s(age, diastolic)$	[0.568, 0.589]
$_{\it age} \geq 50$	$r_s(age, diastolic)$	[-0.355, -0.320]

 Зі збільшенням віку систолічний тиск теж збільшується; діастолічний тиск теж спочатку збільшується, але потім зменшується.

Розподіл віку серед людей з нормальним тиском та людей з гіпертонією

- $Q_X(q) = F_X^{-1}(q)$ квантиль
- *R* кількість бутстреп-вибірок для підрахунку стандартної похибки вибіркових квантилів

	Довірчі інтервали (95%), $R=300$			
	age			
Blood pressure	Q(0.25) $Q(0.75)$			
Normal	[13.04, 14.96]	[41.15, 42.85]		
Hypertension	[43.04, 44.96]	[68.15, 69.85]		

 Люди з нормальним тиском значно молодші за людей з гіпертонією.

$$H_0: Q_{normal}(0.75) - Q_{hypertension}(0.25) \ge 0 \quad \text{vs} \quad H_1: Q_{normal}(0.75) - Q_{hypertension}(0.25) < 0$$

$$p = 0.001358 < 0.05$$

Відмінність артеріального тиску за статтю

	Довірчі інтервали (95%)		
	$\mu_{ extit{systolic}}$ $\mu_{ extit{diastolic}}$		
Female	[117.73, 118.38]	[66.43, 66.83]	
Male	[120.72, 121.32]	[67.92, 68.38]	

• Чоловіки у середньому мають вищий артеріальний тиск ніж жінки.

$$H_0: \mu^{female} - \mu^{male} \geq 0 \quad \mathrm{vs} \quad H_1: \mu^{female} - \mu^{male} < 0$$

$$p_{systolic} = 1.352e - 40 < 0.05$$

$$p_{diastolic} = 1.32e - 22 < 0.05$$

Відмінність артеріального тиску за расою

$$ullet$$
 $M_X = F_X^{-1}(0.5)$ - медіана

	Довірчі інтервали (95%)		
			R = 300
	$\mu_{systolic}$	$\mu_{ extit{diastolic}}$	M _{age}
Other Race	[115.3, 117.3]	[65.7, 67.2]	[23.6, 28.4]
Mexican American	[116.5, 117.5]	[65.2, 66.0]	[30.6, 33.4]
Non-Hispanic Asian	[116.9, 118.0]	[68.7, 69.5]	[36.7, 39.3]
Other Hispanic	[118.3, 119.7]	[65.9, 66.8]	[38.3, 41.7]
Non-Hispanic White	[119.6, 120.3]	[67.3, 67.8]	[42.9, 45.1]
Non-Hispanic Black	[121.9, 122.9]	[67.6, 68.3]	[36.6, 39.4]

• Спостерігається відмінність систолічного тиску між расами, але це може бути пов'язано з відмінністю розподілу віку між расами.

Статистичне виведення

- 1 Розподіл артеріального тиску
- 2 Вплив віку, статі та раси на артеріальний тиск
- 3 Вплив кількості та розподілу жиру на артеріальний тиск
- 4 Множинне тестування гіпотез

Види жиру

Розташування андроїдної та гіноїдної області

Розташування вісцерального та підшкірного жиру

Розподіл жиру в андроїдній області

		Довірчі інтервали (95%), <i>R</i> = 300		
android		Q(0.2)	Q(0.5)	Q(0.8)
fat	Male	[655, 691]	[1584, 1650]	[2825, 2911]
ıaı	Female	[861, 904]	[1749, 1820]	[3044, 3165]
non fat	Male	[2568, 2681]	[3881, 3958]	[5057, 5155]
non iat	Female	[2146, 2205]	[2951, 3010]	[3941, 4020]
fat percent	Male	[0.194, 0.199]	[0.299, 0.305]	[0.379, 0.384]
rat percent	Female	[0.278, 0.286]	[0.378, 0.383]	[0.449, 0.452]

В андроїдній області:

- Жінки мають більше жиру ніж чоловіки.
- Чоловіки мають більше нежирової маси ніж жінки.
- У середньому, маса жиру становить приблизно 30% для чоловіків та 38% для жінок від загальної маси області.

Розподіл жиру в гіноїдній області

		Довірчі інтервали (95%), <i>R</i> = 300			
gynoid		Q(0.2)	Q(0.5)	Q(0.8)	
fat	Male	[1971, 2041]	[3212, 3292]	[4614, 4741]	
ıaı	Female	[2886, 2980]	[4325, 4428]	[6198, 6348]	
non fat	Male	[6052, 6349]	[8421, 8532]	[10377, 10515]	
	Female	[4827, 4936]	[6257, 6347]	[7845, 7978]	
fat percent	Male	[0.232, 0.236]	[0.286, 0.289]	[0.345, 0.348]	
	Female	[0.363, 0.366]	[0.413, 0.416]	[0.458, 0.460]	

В гіноїдній області:

- Жінки мають більше жиру ніж чоловіки.
- Чоловіки мають більше нежирової маси ніж жінки.
- У середньому, маса жиру становить приблизно 29% для чоловіків та 41% для жінок від загальної маси області.

Розподіл жиру між андроїдною та гіноїдною областю

	Довірчі інтерва	ли (95%), <i>R</i> = 300
	$M_{rac{ ext{android fat}}{ ext{gynoid fat}}}$	Mandroid non fat
Female	[0.393, 0.400]	[0.474, 0.477]
Male	[0.463, 0.475]	[0.465, 0.468]

 Чоловіки більш схильні зберігати жир в андроїдній області ніж жінки. З нежировою масою це вже не так.

$$\begin{array}{c} H_0: M_{\frac{\mathrm{dendle}}{\mathrm{android}}}^{\frac{\mathrm{dendle}}{\mathrm{android}}} - M_{\frac{\mathrm{android}}{\mathrm{gynoid}}}^{\frac{\mathrm{male}}{\mathrm{fat}}} \geq 0 \quad \mathrm{vs} \quad H_1: M_{\frac{\mathrm{android}}{\mathrm{gynoid}}}^{\frac{\mathrm{dendle}}{\mathrm{fat}}} - M_{\frac{\mathrm{android}}{\mathrm{gynoid}}}^{\frac{\mathrm{male}}{\mathrm{fat}}} < 0 \\ p = 8.63e - 109 < 0.05 \\ H_0: M_{\frac{\mathrm{android}}{\mathrm{android}}}^{\frac{\mathrm{male}}{\mathrm{non}}} - M_{\frac{\mathrm{android}}{\mathrm{non}}}^{\frac{\mathrm{female}}{\mathrm{fat}}} \geq 0 \quad \mathrm{vs} \quad H_1: M_{\frac{\mathrm{android}}{\mathrm{gynoid}}}^{\frac{\mathrm{male}}{\mathrm{non}}} - M_{\frac{\mathrm{android}}{\mathrm{gynoid}}}^{\frac{\mathrm{female}}{\mathrm{non}}} < 0 \\ p = 1.189e - 14 < 0.05 \end{array}$$

Розподіл вісцерального та підшкірного жиру

		Довірчі інтервали (95%), <i>R</i> = 300		
gynoid		Q(0.2)	Q(0.5)	Q(0.8)
visceral	Female	[131, 138]	[297, 312]	[568, 592]
VISCELAI	Male	[193, 198]	[324, 338]	[604, 625]
subcutaneous	Female	[926, 964]	[1570, 1614]	[2381, 2438]
	Male	[347, 374]	[973, 1018]	[1661, 1708]
visceral subcutaneous	Female	[0.128, 0.131]	[0.181, 0.185]	[0.270, 0.279]
	Male	[0.268, 0.277]	[0.421, 0.432]	[0.657, 0.673]

- Чоловіки мають більше вісцерального жиру ніж жінки.
- Жінки мають більше підшкірного жиру ніж чоловіки.
- Кількість вісцерального жиру менше ніж кількість інших розглянутих видів жиру.
- Чоловіки більше схильні до накопичення вісцерального жиру ніж жінки.

Кореляція між жировою та нежировою масою

	Percentile CI (95%), $R = 1000$		
	Female Male		
r_s (android fat, android non fat)	[0.846, 0.860]	[0.883, 0.894]	
r_s (gynoid fat, gynoid non fat)	[0.850, 0.864] [0.738, 0.75		

- Досить великі кореляції. Збільшення жирової маси асоційовано зі збільшенням нежирової маси.
- Яка саме з цих змінних буде мати вплив на артеріальний тиск?

Кореляція між різними видами жиру

	Percentile CI (95%), $R = 1000$		
	Female Male		
r _s (android fat, gynoid fat)	[0.897, 0.907]	[0.916, 0.924]	
r_s (visceral fat, subcutaneous fat)	[0.831, 0.846]	[0.805, 0.822]	

- Досить великі кореляції. Збільшення кількості одного виду жиру асоційовано зі збільшенням кількості іншого виду жиру.
- Який саме вид жиру буде мати вплив на артеріальний тиск?

Зміна кількості жиру з віком

 На початку життя людини (0-20 років) розмір її тіла помітно збільшується, і кількість жиру теж. Чи збільшується кількість жиру і після 26 років?

	Percentile CI (95%), $R = 1000$		
$age \geq 26$	Female	Male	
r_s (age, android fat)	[0.103, 0.156]	[0.113, 0.169]	
r_s (age, gynoid fat)	[-0.0016, 0.0554]	[-0.0858, -0.0293]	
r_s (age, visceral fat)	[0.290, 0.341]	[0.365, 0.413]	
r_s (age, subcutaneous fat)	[0.0265, 0.0819]	[0.0239, 0.0815]	

• Для дорослих людей, зі збільшенням віку найбільш помітно збільшується тільки вісцеральний жир на відмінну від гіноїдного та підшкірного.

Кореляції жирової та нежирової маси з артеріальним тиском

		Percentile CI (9	95%), R = 1000
android		$r_s(., systolic)$	$r_s(., diastolic)$
fat	Female	[0.454, 0.486]	[0.377, 0.412]
тат	Male	[0.470, 0.505]	[0.457, 0.491]
non fat	Female	[0.488, 0.520]	[0.413, 0.449]
non iat	Male	[0.539, 0.570]	[0.509, 0.539]
fot movement	Female	[0.321, 0.356]	[0.256, 0.293]
fat percent	Male	[0.263, 0.300]	[0.269, 0.307]

- Кореляції присутні, підвищення жирової та нежирової маси асоційовано з підвищенням артеріального тиску.
- Жирова чи нежирова маса має більший вплив на артеріальний тиск?
 - Кореляція нежирової маси з артеріальним тиском більша за кореляцію жирової маси з артеріальним тиском.
 - 3 іншого боку, збільшення проценту саме жиру асоційовано з підвищенням артеріального тиску. Тому, мабуть, жирова маса має більший вплив на артеріальний тиск.

Кореляції жирової та нежирової маси з артеріальним тиском

		Percentile CI (95%), $R = 1000$		
gynoid		$r_s(., systolic)$	$r_s(., diastolic)$	
fat	Female	[0.392, 0.426]	[0.340, 0.377]	
тат	Male	[0.386, 0.423]	[0.337, 0.375]	
non fat	Female	[0.403, 0.440]	[0.328, 0.368]	
	Male	[0.480, 0.513]	[0.427, 0.460]	
fot movement	Female	[0.192, 0.23]	[0.178, 0.217]	
fat percent	Male	[-0.037, 0.003]	[-0.049, -0.007]	

- Кореляції присутні, але менші ніж в андроїдній області.
- Для чоловіків кореляція нежирової маси з артеріальним тиском більша за кореляцію жирової маси з артеріальним тиском. Для жінок вони майже однакові.
- Збільшення проценту жиру асоційовано з підвищенням артеріального тиску тільки для жінок.

Вплив розподілу маси між андроїдною та гіноїдною областю

	Percentile CI (95%), $R = 1000$		
	Female Male		
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{systolic})$	[0.389, 0.423]	[0.476, 0.509]	
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{systolic})$ $r_s(\frac{\text{android non fat}}{\text{gynoid non fat}}, \text{systolic})$	[0.344, 0.381]	[0.285, 0.323]	
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{diastolic})$	[0.302, 0.338]	[0.514, 0.543]	
$r_s(\frac{\text{android non fat}}{\text{gynoid non fat}}, \text{siastolic})$	[0.306, 0.342]	[0.327, 0.363]	

- Кореляції позитивні і достатньо помітні.
- Більше зосередження жирової та нежирової маси в андроїдній області свідчить про вищий артеріальний тиск.
- Для чоловіків кореляції вищі для відношень жирових мас ніж нежирових.

Кореляції вісцерального та підшкірного жиру з артеріальним тиском

	Percentile CI (95%), <i>R</i> = 1000		
	Female Male		
r_s (visceral fat, systolic)	[0.476, 0.508]	[0.476, 0.508]	
r_s (subcutaneous fat, systolic)	[0.404, 0.438]	[0.400, 0.434]	
r_s (visceral fat, diastolic)	[0.409, 0.445]	[0.518, 0.548]	
r_s (subcutaneous fat, diastolic)	[0.322, 0.358]	[0.368, 0.406]	

- Присутні позитивні кореляції.
- Вісцеральний жир має більшу кореляцію з артеріальним тиском ніж підшкірний жир.

Статистичне виведення

- 1 Розподіл артеріального тиску
- 2 Вплив віку, статі та раси на артеріальний тиск
- ③ Вплив кількості та розподілу жиру на артеріальний тиск
- 4 Множинне тестування гіпотез

Множинне тестування гіпотез I

• Використаємо метод Беньяміні-Хохберга для усіх протестованих гіпотез.

H_0	p_{BH}	$p_{BH} < 0.05$
$\frac{\mu_{[5,15]} - \mu_{(15,25]} \ge 0}{\mu_{[5,15]} - \mu_{(15,25]} \ge 0}$	0	TRUE
$\mu_{(15,25]} - \mu_{(25,35]} \ge 0$	7.426e-26	TRUE
$\mu_{(25,35]} - \mu_{(35,45]} \ge 0$	4.131e-34	TRUE
$\mu_{(35,45]} - \mu_{(45,55]} \ge 0$	3.469e-38	TRUE
$\mu_{(45,55]} - \mu_{(55,65]} \ge 0$	3.778e-47	TRUE
$\mu_{(55,65]} - \mu_{(65,75]} \ge 0$	8.457e-11	TRUE
$\mu_{(65,75]} - \mu_{(75,85]} \ge 0$	4.754e-16	TRUE
$\sigma_{[5,15]} - \sigma_{(15,25]} \ge 0$	7.6e-13	TRUE
$\sigma_{(15,25]} - \sigma_{(25,35]} \ge 0$	1.493e-14	TRUE
$\sigma_{(25,35]} - \sigma_{(35,45]} \ge 0$	3.548e-10	TRUE
$\sigma_{(35,45]} - \sigma_{(45,55]} \ge 0$	1.491e-06	TRUE

Множинне тестування гіпотез II

$\sigma_{(45,55]} - \sigma_{(55,65]} \geq 0$	1.204e-05	TRUE
$\sigma_{(55,65]} - \sigma_{(65,75]} \ge 0$	0.5026	FALSE
$\sigma_{(65,75]} - \sigma_{(75,85]} \ge 0$	9.786e-11	TRUE
$Q_{normal}(0.75) - Q_{hypertension}(0.25) \ge 0$	0.001433	TRUE
$\mu_{systolic}^{female} - \mu_{systolic}^{male} \geq 0$	6.423e-40	TRUE
$\mu_{diastolic}^{ ext{female}} - \mu_{diastolic}^{ ext{male}} \geq 0$	3.134e-22	TRUE
$M_{ m android\ fat}^{female}-M_{ m android\ fat}^{male}\geq 0$	8.199e-108	TRUE
$M_{rac{ ext{and roid fat}}{ ext{gynoid fat}}}^{ ext{gynoid fat}} - M_{rac{ ext{and roid fan fat}}{ ext{gynoid non fat}}}^{ ext{gynoid fat}} \geq 0$	2.055e-14	TRUE

Висновки

- Помітний вплив віку на артеріальний тиск. Зі зростанням віку систолічний тиск збільшується, а діастолічний тиск спочатку збільшується і потім зменшується.
- Спостерігається відмінність артеріального тиску за статтю:
 чоловіки у середньому мають вищий артеріальний тиск ніж жінки.
- Розподіл жиру та його вплив на артеріальний тиск відрізняється між чоловіками та жінками.
- Збільшення жирової маси асоційованно з підвищенням артеріального тиску.
- Більше скупчення жиру в андроїдній області у порівнянні з гіноїдною областю ассоційовано з підвищенням артеріального тиску.
- Залишається проблемою встановити чи насправді існує вплив жирової або нежирової маси на артеріальний тиск, та порівняти вплив різних видів жиру.