Aprendizaje Automático Segundo Cuatrimestre de 2016

Aprendizaje por Refuerzos

Gracias a Carlos "Greg" Diuk por los materiales para las transparencias.

Aprendizaje por Condicionamiento

- Primeras teorías:
 - Condicionamiento clásico o Pavloviano.

Ivan Pavlov (1849-1936)

Aprendizaje por Condicionamiento

 Visión ultra-limitada del aprendizaje, pero funciona!
 Demuestra que los animales pueden aprender relaciones arbitrarias entre estímulo → respuesta.

- Pero el perro de Pavlov no tomó decisiones.
- Hasta ahora no tuvo que hacer nada.
 - Sólo salivó porque la campana le recordó el churrasco.
- Agreguemos "control": no solamente estímulo-respuesta.
- Las acciones que tomamos tienen consecuencias.

Condicionamiento Instrumental/Operacional

 Thorndike experimentó con gatos hambrientos tratando de escapar de una jaula.

• Midió el "tiempo requerido para escapar" como métrica de aprendizaje.

"Curva de aprendizaje"

Edward Thorndike (1874-1949)

Crédito: Yael Niv

Condicionamiento Instrumental/Operacional

La lección importante a extraer:

Los animales no sólo pueden aprender relaciones estímulorespuesta arbitrarias, sino también comportamientos arbitrarios en base a dichos estímulos.

Crédito: Björn Brembs, FU Berlin

Rescorla & Wagner (1972)

 Aprendizaje guiado por errores: el cambio en el valor de una asociación es proporcional a la diferencia entre nuestra predicción y lo observado:

$$V_{
m nuevo} = V_{
m viejo} + lpha \left(R - V_{
m viejo}
ight)$$
 tasa de aprendizaje error de predicción

Aprendizaje por Refuerzos

- Agente (ej, un robot):
 - Tiene sensores para observar el estado de su entorno.
 - Puede realizar acciones para alterar ese estado.
 - Cada acción conlleva una recompensa numérica inmediata.

Crédito: Sutton y Barto

Aprendizaje por Refuerzos

 Tarea del agente: aprender una estrategia o política de control para elegir las acciones que maximicen las recompensas.

$$\pi: S \to A$$

- Diferencias con aprendizaje supervisado:
 - Las recompensas vienen con demora (ej: ganar un juego te premia al final). Un agente debe aprender a discernir cuáles acciones de una secuencia fueron las meritorias.
 - Exploración: la distribución de los datos de entrenamiento está determinada por las acciones que el agente elige.

Formalismo estándar

Proceso de Decisión de Markov (MDP)

- Conjunto de estados S
- Conjunto de acciones A
- Función de transición $T: S \times A \rightarrow S$
- Función de recompensa $R: S \times A \to \mathbb{R}$
- Ejemplo: Grid World
 6 estados, 5 acciones (←↑→↓ C)

Proceso de Decisión de Markov (MDP): $\langle S, A, T(s, a), R(s, a) \rangle$

Definimos:

• Política $\pi: S \to A$

Función de valor:

$$V^{\pi}(s_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} + \dots = \sum_{i=1}^{3} \gamma^{i-1} r_{t+i}$$

- $V^{\pi}(s_t)$ es el valor acumulado que se consigue al seguir la política π a partir del estado s_t .
- γ se conoce como factor de descuento (0 $\leq \gamma <$ 1).

Función de recompensa R:

Política π:

Función de valor V^{π} :

Función de valor:

$$V^{\pi}(s) = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots = \sum_{t=0}^{\infty} \gamma^t r_t$$

• Definición recursiva (ecuación de Bellman):

$$V^{\pi}(s) = \underbrace{R(s,\pi(s))}_{\text{recompensa}} + \gamma \underbrace{V^{\pi}(T(s,\pi(s)))}_{\text{valor del inmediata}}$$
 valor del siguiente estado

• Objetivo: aprender la función de valor óptima V^* , fruto de ejecutar la política óptima π^* :

$$\pi^*(s) = \operatorname*{argmax}_a \left[R(s,a) + \gamma \, V^*(T(s,a)) \right]$$

$$V^*(s) = \operatorname*{max}_a \left[R(s,a) + \gamma \, V^*(T(s,a)) \right]$$
 Idea para un algoritmo iterativo de aprendizaje

Función de recompensa R:

Política óptima π*:

Función de valor V*:

Algoritmo 1: Value Iteration

$$V(s) \leftarrow 0 \ \forall s \in S$$
$$\Delta \leftarrow 0$$

Repetir

Para cada $s \in S$:

$$V(s) \leftarrow \max_{a} \left[R(s, a) + \gamma V(T(s, a)) \right]$$

Fin para

Hasta que el modelo sea "suficientemente bueno"

Definition
$$\pi(s) = \underset{a}{\operatorname{argmax}} \left[R(s, a) + \gamma V(T(s, a)) \right]$$

- VI en acción: http://www.cs.ubc.ca/~poole/demos/mdp/vi.html
- VI requiere conocer el modelo: S, A, R y T (es "model-based").

• Objetivo: aprender la función de valor óptima V^* , fruto de ejecutar la política óptima π^* :

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \left[R(s, a) + \gamma V^*(T(s, a)) \right]$$

$$V^*(s) = \underset{a}{\operatorname{max}} \left[R(s, a) + \gamma V^*(T(s, a)) \right]$$

$$\underbrace{\operatorname{Def:}} Q(s, a)$$

- Q(s, a) es la máxima ganancia esperada a partir de s, ejecutando la acción a.
- Si expandimos el término V*(T(s,a)) en la definición de V*(s), llegamos a esta definición recursiva de Q(s, a):

$$Q(s,a) = R(s,a) + \gamma \max_{a'} Q(T(s,a),a')$$

Función de recompensa R:

Política óptima π*:

Función de valor V*:

Q(s, a):

$$Q(s,a) = R(s,a) + \gamma \max_{a'} Q(T(s,a),a')$$

Idea para otro algoritmo iterativo de aprendizaje:

$$Q(s,a) \leftarrow R(s,a) + \gamma \max_{a'} Q(T(s,a),a')$$

Si incorporamos una tasa de aprendizaje α (0 < $\alpha \le 1$):

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Algoritmo 2: Q-Learning

Inicializar Q(s, a) al azar

Repetir (para cada episodio):

Inicializar s

Repetir (para cada paso del episodio):

Elegir a en s según una política basada en Q

Ejecutar la acción a, observar r, s'

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

$$s \leftarrow s'$$

Hasta que s sea terminal

Definimos
$$\pi(s) = \underset{a}{\operatorname{argmax}} [Q(s, a)]$$

- QL en acción: http://www.cs.ubc.ca/~poole/demos/rl/q.html
- QL no requiere conocer el modelo (es "model-free").
- Falta decidir cómo elegir la acción a en el estado s.

K-armed bandits

Cada máquina tiene su propia probabilidad de pagar. ¿Cómo hacemos para maximizar nuestra ganancia?

Dilema exploración-explotación: cuándo explorar mejores opciones, cuándo explotar lo que ya sabemos.

Bandidos: Eligiendo un brazo

- Estrategia ε-greedy:
 - Con prob. ε: elegir al azar (distribución uniforme).
 - Con prob. $(1-\varepsilon)$: elegir el mejor brazo conocido.
- Estrategia ε-first (primero exploración, después explotación).
 - Primeros $(1-\varepsilon)$ % trials: elegimos al azar (distrib. uniforme).
 - Restantes ε % trials: elegimos el mejor brazo conocido.
- Estrategia softmax:
 - La probabilidad de elegir a es proporcional al valor Q(s,a):

$$\Pr(a) = \frac{e^{Q(s,a)/\tau}}{\sum_a e^{Q(s,a)/\tau}} \quad \begin{array}{l} \text{$\tau > 0$ es la temperatura.} \\ \text{τ alta: elección al azar (distr. uniforme)} \\ \text{τ se reduce gradualmente.} \end{array}$$

Resumen

Proceso de Decisión de Markov (MDP):

$$\langle S, A, T(s, a), R(s, a) \rangle$$

- Política π , función de valor V, función Q.
- Algoritmos Value Iteration y Q-Learning.
- K-armed bandits. Estrategias ε -greedy, ε -first, softmax.