120 ЗАДАТАК

Посматра се део рачунара који чине меморија и процесор.

Меморија је капацитета 2¹⁶ бајтова. Ширина меморијске речи је 1 бајт.

Процесор је са једноадресним форматом инструкција. Подаци су целобројне величине са знаком и без знака дужине два бајта. Адресе у меморији заузимају две суседне меморијске локације, при чему се млађи бајт налази на вишој локацији, а старији бајт на нижој локацији.

У процесору постоје програмски бројач РС, указивач на врх стека SP, 16 регистара опште намене који се налазе у регистарском фајлу, програмска статусна реч PSW, регистар IVTP (*Interrupt Vector Table Pointer*), адресни регистар меморије MAR, прихватни регистар податка меморије MDR, прихватни регистар инструкције IR, регистар акумулатора A.

У процесору постоје безадресне инструкције, инструкције условног скока инструкције безусловног скока и адресне инструкције:

1) Безадресне инструкције

Инструкција	Значење	IR ₃₁₂₄	IR ₂₃₁₆	IR ₁₅₈	IR70	Дужина
HALT	заустављање рада процесора	0000 0000Ь	/	/	/	1B
RTS	повратак из потпрограма	0000 0001b	/	/	/	1B
RTI	повратак из прекидне рутине	0000 0010b	/	/	/	1B
INTE	инструкција постављања индикатора I на 1	0000 0011b	/	/	/	1B
INTD	инструкција постављања индикатора I на 0	0000 0100b	/	/	/	1B
ROL	ротирање садржаја акумулатора улево	0000 0101b	/	/	/	1B
ROR	ротирање садржаја акумулатора удесно	0000 0110b	/	/	/	1B
DEC	инструкција декрементирања акумулатора за 1	0000 0111b	/	/	/	1B

2) Инструкције условног скока (попуњавају се само прва три бајта IR регистра)

Инструкција	Значење	Услов	IR3124	IR2316	IR ₁₅₈	Дужина
BLEQ	скок на мање него или једнако (са знаком)	$(N \oplus V) \vee Z = 1$	0001 0000b	PPPP PPPPb	/	2B
BNVF	скок на $V = 0$	V = 0	0001 0001b	PPPP PPPPb	/	2B
BLSSU	скок на мање него (без знака)	C = 1	0001 0010b	PPPP PPPPb	/	2B
BOVF	скок на $V = 1$	V = 1	0001 0011b	PPPP PPPPb	/	2B
JEQL	апсолутни скок на једнако	Z = 1	0001 0100b	адреса	скока	3B

3) Инструкције безусловног скока

Инструкција	Значење	IR ₃₁₂₄	IR2316	IR ₁₅₈	IR ₇₀	Дужина
BR	релативни скок	0010 0000b	PPPP PPPPb	/	/	2B
JMP	апсолутни скок	0010 0001b	адреса	скока	/	3B
JSR	апсолутни скок на потпрограм	0010 0010b	адреса	скока	/	3B

4) Адресне инструкције

Инструкција	Значење	IR ₃₁₂₄	Дужина
LD	инструкција преноса у акумулатор	0011 0000b	
ST	инструкција преноса из акумулатора	0011 0001b	
SUB	аритметичка инструкција одузимања	0011 0010b	Зависи од начина адресирања
ADD	аритметичка инструкција сабирања	0011 0011b	
MUL	инструкција множења (без знака) *	0011 0100b	

^{*} MUL — инструкција множи најнижа осам бита акумулатора са најнижих осам бита операнда и резултат смешта у акумулатор.

Начини адресирања:

Адресирање	Значење	IR ₂₃₁₆	IR ₁₅₈	IR ₇₀	Дужина
immed	непосредно адресирање	0000 0000b	податак		4B
memdir	меморијско директно адресирање	0001 0000b	адреса податка		4B
memind	меморијско индиректно адресирање	0010 0000b	адреса	податка	4B
regind	регистарско индиректно адресирања	0011 RRRRb	/	/	2B
regdir	регистарско директно адресирање	0100 RRRRb	/	/	2B
predec	регистарско индиректно са предерементирањем адресирање	0101 RRRRb	/	/	2B
preinc	регистарско индиректно са преинкрементирањем адресирање	0110 RRRRb	/	/	2B

- Х битови који се не користе.
- R битови који означавају индекс регистра опште намене који се користи.
- Р битови који представљају померај са знаком.

Формат PSW регистра:

15	14	13	12	11	10	9	8
PSWI	/	/	/	/	/	/	/
7	6	5	4	3	2	1	0

Неактивна бредност бита PSWSTART зауставља рад процесора, док активна вредност враћа процесор у рад.

Стек расте према вишим меморијским локацијама, а регистар SP указује на прву слободну меморијску локацију.

Захтеве за прекид може да генерише осам контролера периферија који су повезани на већ реализован блок INTERRUPT_INTERFACE_8. На улазе BTN_INTR_{7..0} у блок INTERRUPT_INTERFACE_8 треба довести осам дугмета која симулирају захтеве за прекид контролера периферија. На улаз UEXT_{2..0} треба довести бинарну вредност која представља индекс прихваћеног захтева за прекид. На улаз *inta* треба довести сигнал који је активан у случају да се прихвата неки од захтева за прекид (сигнал за учитавање у регистар BRU). Излаз блока *intr*_{7..0} представља запамћене захтеве за прекид. Ови прекиди се називају спољашњи маскирајући прекиди јер долазе од уређаја ван процесора и могу бити дозвољени или маскирани јер процесор на њих реагује или не реагује у зависности од тога да ли се у разреду PSWI registra програмске статусне речи PSW налази вредност 1 или 0, респективно. Сматрати да процесор реагује само на ову врсту прекида.

Опслуживање захтева за прекид се састоји из две групе корака.

У оквиру прве групе корака на стеку се чувају програмски бројач РС, акумулатор А и програмска статусна речи PSW. У оквиру друге групе корака утврђује се адреса прекидне рутине. Утврђивање адресе прекидне рутине се реализује на основу садржаја табеле адреса прекидних рутина, која се назива IV табела (*Interrupt Vector Table*), и броја улаза у IV табелу. Стога је у поступку иницијализације целог система у меморији, почев од адресе на коју указује садржај регистра IVTP, креирана IV табела са 8 улаза, тако да се у улазима 7 до 0 налазе адресе прекидних рутина за сваки од прекида који долазе по линијама $intr_7$ до $intr_0$ који долазе из блока INTERRUPT_INTERFACE_8, респективно. Прекиди који долазе по линијама $intr_7$ до $intr_0$ треба уредити по приоритету при чему линија $intr_7$ има највиши, а линија $intr_0$ најнижи ниво приоритета. Број улаза у IV табелу треба да генерише процесор на основу позиције линије $intr_7$ до $intr_0$ највишег нивоа приоритета на којој постоји захтев за прекид.

Реализовати процесор према задатој спецификацији његове архитектуре, и то помоћу блокова FETCH, ADDR, EXEC, INTR и COMMON:

Блок са заједничким секвенцијалним и комбинационим мрежама (COMMON блок). Блок који садржи помоћне регистре, флип-флопове и комбинационе модуле који се користе у више него једној фази извршавања инструкције.

За симулацију процесора потребно је додати дугме BTN_RST који генерише сигнал rst. Активна вредност сигнала rst враћа процесор у почетно стање, а у регистар PC уписује вредност 1000h, у регистар PSW 8001h, у регистар SP F000h, у акумулатор A 0h и у регистар IVTP 0h. Сигнал rst треба искористити у сваком реализованом блоку.

- а) [5 поена] Блок дохватања инструкције (FETCH блок). Блок FETCH креће са фазом читања инструкције уколико се и у флип-флопу FETCH и у биту PSWSTART налази вредност 1. По завршеном читању инструкције уписивањем вредности 1 у флип-флопове ADDR или EXEC стартује се блок ADDR или блок EXEC, док се уписивањем вредности 0 у флип-флоп FETCH зауставља блок FETCH. Дефинисати сигнал grinst који је активан уколико је прочитана инструкција са недефинисаним операционим кодом или у случају недефинисаног начина адресирања или у случају недозвољене комбинације операционог кода и начина адресирања. Одмах при активирању сигнала grinst прећи на учитавање следеће инструкције.
- **б)** [10 поена] Блок формирање адресе и дохватање операнда (ADDR блок). Блок ADDR креће са формирањем адресе операнда и читањем операнда уколико се у флип-флопу ADDR налази вредност 1. По завршеном формирању адресе и дохватања операнда уписивањем вредности 1 у флип-флоп EXEC стартује се блок EXEC и продужава се са извршавањем фазе извршавања операције, док се уписивањем вредности 0 у флип-флоп ADDR зауставља блок ADDR.
- **в)** [10 поена] Блок извршавања операције (ЕХЕС блок). Блок ЕХЕС креће са фазом извршавања операције уколико се у флип-флоп ЕХЕС налази вредност 1. По завршеном извршавању операције уписивање вредности 1 у флип-флоп INTR стартује се блок INTR и продужава се са извршавањем фазе опслуживања прекида, док се уписивањем вредности 0 у флип-флоп EXEC зауставља блок EXEC.
- **г)** [5 поена] Блок опслуживања прекида (INTR блок). Блок INTR креће са фазом опслуживања прекида уколико се у флип-флопу INTR налази вредност 1. По завршетку опслуживања прекида уписивањем вредности 1 у флип-флоп FETCH стартује се блок FETCH и креће се са фазом читања следеће инструкције, док се уписивањем вредности 0 у флип-флоп INTR зауставља блок INTR.

Операциона јединица сваког блока треба да буде реализована директним повезивањем прекидачких мрежа, а сваки блок осим COMMON блока треба да има управљачку јединицу реализовану микропрограмирањем.

Напомена: Начин функционисања блокова FETCH, ADDR, EXEC и INTR треба да буде имплементиран као у литератури (са тим да се заједнички елементи налазе у блоку COMMON). Студенту се препоручује да направи тест програме који тестирају реализоване блокове.

Линкови:

- https://rti.etf.bg.ac.rs/rti/ir2ort2/literatura/Projektovanje_dela_procesora.pdf
- https://rti.etf.bg.ac.rs/rti/ir2ort2/literatura/Organizacija procesora.pdf