MINI-TESTE 4

Universidade Federal de Jataí (UFJ) Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

26 de junho de 2019

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro minitestes (MT), uma prova final (PF), exercícios em formato de *Quizzes* (QZ) e questões conceituais (QC) aplicadas em sala de aula pelo método de Instrução pelos Colegas;
- \bullet A média final (MF) será calculada assim como se segue

$$\begin{split} MF &= MIN(10,S) \\ S &= [(\sum_{i=1}^4 max(MT_i,SMT_i) + PF].0, 2 + QC + QZ \end{split}$$

em que

- -S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Demonstrações.

Nome:		
-------	--	--

Quarto Teste

1. (5,0 pt) Usar a Regra DC (Demonstração Condicional) para mostrar que são **válidos** os seguintes argumentos: por meio de **regras de inferência** e **regras auxiliares**.

P

(a) (2,0 pt) [Alencar 13.3(b)]

$$\sim p \vee \sim q, \, p \vee (r \wedge s) \vdash q \to s$$

- $(1) \sim p \vee \sim q$
- (2) $p \lor (r \land s)$ P
- (3) q PA
- (4) $\sim \sim q$ DN (3)
- (5) $\sim p$ SD (1), (4)
- (6) $r \wedge s$ SD (2), (5)
- (7) s SIMP (6)
- (b) (3,0 pt) [Alencar 13.3(d)]

$$p \to q, p \lor \sim r, \sim s \lor t \to r \vdash \sim s \to q$$

- (1) $p \to q$ P
- (2) $p \lor \sim r$ P
- $(3) \sim s \lor t \to r$ P
- $(4) \sim s$ PA
- (5) $\sim s \vee t$ AD (4)
- (6) r MP (3), (5)
- (7) $\sim r$ DN (6)
- (8) p SD (2), (7)
- (9) q MP (1), (8)

- 2. (5,0 pt) Usar a Regra DI (Demonstração Indireta) para mostrar que são **válidos** os seguintes argumentos: por meio de **regras de inferência** e **regras auxiliares**.
 - (a) (2,0 pt) [Alencar 13.6(b)]

$$p \to q, q \leftrightarrow s, t \lor (r \land \sim s) \vdash p \to s$$

- (1) $p \to q$ P
- (2) $q \leftrightarrow s$ P
- (3) $t \vee (r \wedge \sim s)$ P
- (4) $\sim (p \to s)$ PA
- (5) $\sim (\sim p \vee s)$ COND (4)
- (6) $\sim \sim p \land \sim s$ DM (5)
- (7) $\sim \sim p$ SIMP (6)
- (8) p DN (7)
- (9) q MP (1), (8)
- (10) $(q \to s) \land (s \to q)$ BIC (2)
- (11) $q \to s$ SIMP (10)
- (12) s MP (9), (11)
- (13) $\sim s$ SIMP (6)
- (14) $s \wedge \sim s$ CONJ (12), (13) [Contradição]

(b) (3,0 pt) [Alencar 13.6(e)]

$$(\sim p \to q) \land (r \to s), \, p \leftrightarrow t \, \lor \sim s, \, r, \, \sim t \vdash q$$

- (1) $(\sim p \to q) \land (r \to s)$ P
- (2) $p \leftrightarrow t \lor \sim s$ P
- (3) r P
- (4) $\sim t$
- (5) $\sim q$ PA
- (6) $r \to s$ SIMP (1)
- (7) s MP (3), (6)
- (8) $\sim p \to q$ SIMP (1)
- (9) $\sim p$ MT (8), (5)
- (10) p DN (9)
- (11) $(p \to t \lor \sim s) \land ((t \lor \sim s) \to p)$ BIC (2)
- (12) $p \to t \lor \sim s$ SIMP (11)
- (13) $t \vee \sim s$ MP (10), (12)
- (14) $\sim s$ DN (7)
- (15) t SD (13), (14)
- (16) $t \wedge \sim t$ CONJ (15), (4) [Contradição]

Regras de Inferência

- Regra da Adição (AD)
 - (i) $p \vdash p \lor q$ (ii) $p \vdash q \lor p$
- Regra da Simplificação (SIMP)
 - (i) $p \wedge q \vdash p$ (ii) $p \wedge q \vdash q$
- Regra da Conjunção (CONJ)
 - (i) $p, q \vdash p \land q$ (ii) $p, q \vdash q \land p$
- Regra da Absorção (ABS) $p \to q \vdash p \to (p \land q)$
- Regra *Modus Ponens* (MP) $p \to q, p \vdash q$
- Regra Modus Tollens (MT) $p \to q, \sim q \vdash \sim p$
- Regra do Silogismo Disjuntivo (SD)
 (i) p ∨ q, ~ p ⊢ q
 (ii) p ∨ q, ~ q ⊢ p
- Regra do Silogismo Hipotético (SH) $p \to q, q \to r \vdash p \to r$
- Regra do Dilema Construtivo (DC) $p \to q, r \to s, p \lor r \vdash q \lor s$
- Regra do Dilema Destrutivo (DD) $p \to q, \, r \to s, \, \sim q \, \vee \sim s \, \vdash \sim p \, \vee \sim r$

Regras Auxiliares

- Regra da Dupla Negação (DN)
 - (i) $p \vdash \sim \sim p$ (ii) $\sim \sim p \vdash p$
- Regra do Bicondicional (BIC)
 - (i) $p \leftrightarrow q \vdash (p \to q) \land (q \to p)$
- $(ii) \ (p \to q) \land (q \to p) \vdash p \leftrightarrow q$
- Regra de De Morgan (DM)
 - (i) $\sim (p \lor q) \vdash \sim p \land \sim q$ (ii) $\sim p \land \sim q \vdash \sim (p \lor q)$
- (iii) $\sim (p \land q) \vdash \sim p \lor \sim q$ (iv) $\sim p \lor \sim q \vdash \sim (p \land q)$
- Regra do Condicional (COND)
 - (i) $p \to q \vdash \sim p \lor q$ (ii) $\sim p \lor q \vdash p \to q$