Formulação Recursiva com Incerteza

Problema Recursivo Com Incerteza (1/2)

$$v(k,z) = \max_{0 \le k' \le e^z F(k,1) + (1-\delta)k} \left\{ U\left[e^z F(k,1) + (1-\delta)k - k'\right] + \beta \sum_{z'} \pi\left(z'|z\right) v\left(k',z'\right) \right\} = Tv$$

em que:

- z: variável de choque de produtividade tal que $z \in Z = \{-1/5, 0, 1/5\}$
- $\pi(z'|z)$: probabilidade de ir ao estado z' dado que está no estado z tal que

$$\pi = \begin{bmatrix} 3/5 & 2/5 & 0 \\ 1/5 & 3/5 & 1/5 \\ 0 & 2/5 & 3/5 \end{bmatrix}$$
 (matriz de transição)

em que cada linha corresponde aos estados atuais -1/5, 0 e 1/5, respectivamente, e as colunas correspondem aos estados futuros (para os quais um estado atual tem certas probabilidades de transitar).

Problema Recursivo Com Incerteza (2/2)

- Suponha $U(c) = \ln(c)$ e n = 1 (lazer não é valorizado). Logo, $F(k, 1) = k^{\alpha}$.
- Seja $k, k' \in \mathcal{K} = \{0.04, 0.08, 0.12, 0.16, 0.20\}$
- Palpite inicial: $v_0(k, z) = 0$, $\forall k, \forall z$, ou seja:

• Note que, diferente do capítulo 3 em que tínhamos apenas 1 estado e 1 função valor, aqui teremos 3 funções valor – uma para cada estado z.

$1^{\underline{a}}$ Iteração (1/3)

• Dadas as premissas assumidas, na 1ª iteração calcularemos:

$$v_1 \equiv \max_{0 \leq k' \leq e^z F(k,1) + (1-\delta)k} \left\{ \ln \left(e^z k^{\alpha} + (1-\delta)k - k' \right) \right\} = Tv_0$$

• Note que para cada k precisamos escolhe o k' em cada possível estado z. Logo, faremos cálculos em 5 matrizes (cada um dos possíveis capitais atuais k) de dimensões 5×3 (correspondendo aos possíveis capitais do próximo período k' e estados z).

	-1/5	0	1/5	
0.04	-1 .303	-1 .077	-0.856	
0.08	-1.462	-1.202	-0.954	()
0.12	-1.652	-1.344	-1.064	
0.16	-1.886	-1.511	-1.187	
0.20	-2.192	-1.711	-1.328	

• Note que maximizamos em cada coluna (para cada possível z).

$1^{\underline{a}}$ Iteração (2/3)

k = 0.04	-1/5	0	1/5
0.04	-1.303	-1.077	-0.856
0.08	-1.462	-1.202	-0.954
0.12	-1.652	-1.344	-1.064
0.16	-1.886	-1.511	-1.187
0.20	-2.192	-1.711	-1.328
k = 0.08	-1/5	0	1/5
0.04	-1.068	-0.847	-0.63
0.08	-1.191	-0.945	-0.708
0.12	-1.333	-1.053	-0.793
0.16	-1.497	-1.175	-0.885
0.20	-1.694	-1.314	-0.987
k = 0.12	-1/5	0	1/5
0.04	-0.933	-0.715	-0.5
0.08	-1.04	-0.8	-0.568
0.12	-1.16	-0.893	-0.641
0.16	-1.297	-0.996	-0.72
0.20	-1.455	-1.111	-0.806
k = 0.16	-1/5	0	1/5
0.04	-0.838	-0.622	-0.408
0.08	-0.935	-0.699	-0.47
0.12 0.16	-1.043	-0.783	-0.536
0.10	-1.163 -1.3	-0.874 -0.975	-0.607 -0.683
k = 0.20 0.04	-1/5	0	1/5
0.04	-0.765	-0.55	-0.337
0.08	-0.855	-0.622	-0.395
0.12	-0.954	-0.699	-0.456
0.10	-1.064	-0.783	-0.521
0.20	-1.187	-0.875	-0.591

$g_{k,1}(k)$	-1/5	0	1/5
0.04	0.04	0.04	0.04
0.08	0.04	0.04	0.04
0.12	0.04	0.04	0.04
0.16	0.04	0.04	0.04
0.20	0.04	0.04	0.04

$1^{\frac{a}{2}}$ Iteração (3/3)

• Ao escolher o k' que maximizar cada coluna (estado z) de cada uma dessas 5 matrizes ("tornando cada matriz em uma linha") e obtemos v_1 e $g_{k,1}$:

	v_1			$g_{k,1}=k'$
	-1/5	0	1/5	-1/5 0 1/5
k = 0.04	-1.303	-1.077	-0.856	k = 0.04 0.04 0.04 0.04
k = 0.08	-1.068	-0.847	-0.630	k = 0.08 0.04 0.04 0.04
k = 0.12	-0.933	-0.715	-0.500	k = 0.12 0.04 0.04 0.04
k = 0.16	-0.838	-0.622	-0.408	k = 0.16 0.04 0.04 0.04
k = 0.20	-0.765	-0.55	-0.337	k = 0.20 0.04 0.04 0.04

• Como $v_1 = Tv_0 \neq v_0$, faremos outra iteração.

$2^{\underline{a}}$ Iteração (1/2)

Na 2^a iteração calcularemos:

$$v_2 \equiv \max_{0 \leq k' \leq e^z F(k,1) + (1-\delta)k} \left\{ \ln \left(e^z k^\alpha + (1-\delta)k - k' \right) + \beta \sum_{z'} \pi \left(z'|z \right) v_1 \left(k', z' \right) \right\} = Tv_1$$

- Focaremos em como calcular o $2^{\underline{o}}$ termo da equação, $\beta \sum_{z'} \pi\left(z'|z\right) v\left(k',z'\right)$:
 - Para cada z, pegamos as probabilidades de transição para cada possível estado z', multiplicamos pelos valores correspondentes em v_1 (de acordo com k' e z') e depois somamos estes valores para obter o valor esperado de $v_1(k', z')$.
 - Isso pode ser calculado via produto vetorial. Para z = 0 e k' = 0.04, temos:

$$\begin{bmatrix} 1/5 & 3/5 & 1/5 \end{bmatrix} \begin{bmatrix} -1.303 \\ -1.077 \\ -0.856 \end{bmatrix} = -1.0777$$

Foram usadas a $2^{\underline{a}}$ linha da matriz de transição (z=0) e a $1^{\underline{a}}$ linha de v_1 (k=0.04).

$2^{\underline{a}}$ Iteração (1/2)

• Usando esse cálculo para calcular a função objetivo nas 5 matrizes de dimensões 5×3 e escolhendo k' para maximizar dado k e z, obtemos:

	<i>V</i> ₂				$g_2=k$./	
	-1/5	0	1/5		-1/5	0	1/5
k = 0.04	-2.030	-1.710	-1.385	k = 0.04	0.04	0.08	0.08
k = 0.08	-1.779	-1.454	-1.138	k = 0.08	0.08	0.08	0.08
k = 0.12	-1.628	-1.309	-0.993	k = 0.12	0.08	0.08	0.12
k = 0.16	-1.523	-1.208	-0.888	k = 0.16	0.08	0.08	0.12
k = 0.20	-1.443	-1.128	-0.808	k = 0.20	0.08	0.12	0.12

Formulação Recursiva com Escolha de Trabalho

Problema Recursivo com Escolha de Trabalho (1/3)

ullet Agora, não necessariamente teremos a quantidade de trabalho n=1, logo

$$F(k,n) = k^{\alpha} n^{1-\alpha}$$
 e $U(c,\ell) = U(c,1-n)$

em que $\ell = 1 - n$ é a quantidade de lazer, que gera utilidade para o consumidor.

• Considere sempre que z = 0 (sem incerteza), então, para solucionar o problema:

$$v(k) = \max_{\substack{0 \le k' \le e^z F(k,n) + (1-\delta)k \\ 0 \le n \le 1}} \left\{ U\left[e^z F(k,n) + (1-\delta)k - k', \ell\right] + \beta v\left(k'\right) \right\}$$

Considere que a função utilidade é dada por

$$U(c,\ell) = \ln c - rac{n^{1+arphi}}{1+arphi} = \ln c - rac{(1-\ell)^{1+arphi}}{1+arphi}, \qquad \operatorname{com} \ arphi > 0$$

Problema Recursivo com Escolha de Trabalho (2/3)

- Suponha $n \in \mathcal{N} = \{1/4, 2/4, 3/4, 1\}$
- Assim como no caso com incerteza, calcularemos a função objetivo em 5 matrizes, correspondendo aos 5 possível valores de k, de dimensões 5×4 (combinações dos 5 possíveis k' com os 4 possíveis n).

	1/4	2/4	3/4	1	
0.04	-3.323	-2.888	- 2.867	-3.077	
0.08	-3.807	-3.118	-3.027	-3.202	()
0.12	-4.781	-3.418	-3.216	-3.344	
0.16	- ∞	-3.849	-3.451	-3.511	
0.20	- ∞	-4.621	-3.758	-3.711	

• Diferente do caso com incerteza, escolhemos ambos k' e n, então, escolhemos o maior elemento em cada matriz inteira (e não um em cada coluna).

Problema Recursivo com Escolha de Trabalho (3/3)

Formulação Recursiva com Incerteza e Escolha de Trabalho

Problema Recursivo com Incerteza e Escolha de Trabalho (1/2)

		z	= -1,	/5	
		1/4	2/4	3/4	1
	0.04	*	*		
k = 0.04	0.08				(8)
$\kappa = 0.04$	0.12		2	1	-
	0.16	27	41	N.	(4)
	0.20			-	-
		1/4	2/4	3/4	1
	0.04	-			
1 0 00	0.08		-	¥	-
k = 0.08	0.12	-		-	-
	0.16			i.	170
	0.20				-
		1/4	2/4	3/4	1
	0.04	7,	*	÷	170
k = 0.12	0.08	-	-	-	-
	0.12		*		
	0.16		5	iñ.	61
	0.20	-		*	
		1/4	2/4	3/4	1
	0.04		•	-	-
k = 0.16	0.08	5		10	(5)
$\kappa = 0.10$	0.12		-	÷	-
	0.16	-1	-	Ŀ	140
	0.20	- 5	-		-
		1/4	2/4	3/4	1
	0.04	5)		ŧ	17.1
1. 0.20	0.08		-	-	
k = 0.20	0.12		*		
	0.16		8	ē	

	1/4	2/4	3/4	1
0.04	-/-	-/-	-,1	- 222
0.04				
		(8)	(*)	
0.12	-	-	-	-
0.16	12	(4)	540	-
0.20		•		ā
	1/4	2/4	3/4	1
0.04	-	-		-
0.08	- 14	(4)	0.00	
0.12	-	-		-
0.16		570		
0.20	-		-	-
	1/4	2/4	3/4	1
0.04	12	-	12	-
0.08	-	*		-
0.12		-	-	
0.16	- 2	127		2
0.20		*	-	-
	1/4	2/4	3/4	1
0.04				
0.08				
0.12			141	
0.16				
0.20	-	-		-
	1/4	2/4	3/4	1
0.04		-/-	3/4	
0.08				
		*		
0. 12 0. 16				

	z = -1/5					
	1/4	2/4	3/4	1		
0.04		-				
0.08	2000					
0.12	72	2	2	-		
0.16	35-3	- 2	2	12		
0.20	(-)	*		÷		
	1/4	2/4	3/4	1		
0.04	1.7	5:	5	-		
0.08	545		×	14		
0.12		-		-		
0.16						
0.20	(-)	-	-	-		
	1/4	2/4	3/4	1		
0.04	520	2	2			
0.08						
0.12						
0.16	142	2	0	12		
0.20	-			-		
	1/4	2/4	3/4	ī		
0.04						
0.08						
0.12	-		2	-		
0.16	-			9-		
0.20	1.71	5				
	1/4	2/4	3/4	1		
0.04	-	17.0		-		
0.08		94.5	-	-		
0.12						
0.16		253				
0.20		- 1				

Problema Recursivo com Incerteza e Escolha de Trabalho (2/2)

• Em cada matriz calculada a partir de um dupla (k, z), seleciono o elemento de maior valor na matriz inteira, o que nos dá uma dupla (k', n).

v_1	-1/5	0	1/5
0.04	-	-	-
0.08	-	-	=
0.12	-	-	-
0.16	-	-	:=
0.20		÷	-

$g_{k,1}(k)$	-1/5	0	1/5
0.04	-	-	-
0.08	-	-	-
0.12	-	-	-
0.16	-	-	=
0.20	-	-	- 11

$g_{n,1}(k)$	-1/5	0	1/5
0.04	-	-	-
0.08	-	-	-
0.12	-	-	-
0.16	-	-	-
0.20	-	÷	-