КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке [a;b] функции f, осью Ox и прямыми x = a и x = b.

Площадь криволинейной трапеции находится по формуле:

$$S_{ABCD} = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

Площадь криволинейной трапеции

Фигура ABCD на рисунке 80 снизу ограничена осью абсцисс, сверху — графиком функции y=f(x), а слева и справа — параллельными прямыми x=a и x=b. Параллельность сторон AD и BC вызывает ассоциации с трапецией, отличие лишь в стороне DC: у трапеции это отрезок, а у фигуры на рисунке — часть графика функции y=f(x).

Криволинейной трапецией называется фигура, ограниченная линиями: y = 0, x = a, x = b и y = f(x), где f(x) — функция, непрерывная на отрезке

[а; b] и принимающая на нем только неотрицательные значения.

Рисунки 81—82 иллюстрируют способ приближенного вычисления площади криволинейной трапеции: разбиение на несколько криволинейных трапеций, замена их прямоугольниками, нахождение высот, а затем и площадей этих прямоугольников.

Puc. 80

Рис. 83

Puc 82

Так, для разбиения на рисунке 82, используя для равных оснований прямоугольников обозначение Δx ,

Рис. 83

$$S_{ABCD} \approx f(a) \cdot \Delta x + f(x_1) \cdot \Delta x + f(x_2) \cdot \Delta x + f(x_3) \cdot \Delta x + f(x_3) \cdot \Delta x + f(x_4) \cdot \Delta x + f(x_5) \cdot \Delta x.$$

При увеличении числа частей п, на которые разбивается трапеция, погрешность приближения уменьшается, и ее можно сделать как угодно малой, взяв п достаточно большим.

Поскольку при увеличении n значение $\Delta x = \frac{b-a}{r}$ стремится к нулю, можно записать:

$$S_{ABCD} = \lim_{\Delta x \to 0} (f(a) \Delta x + f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_{n-1}) \Delta x).$$

Сумму, стоящую под знаком предела, называют интегральной, концы отрезка [a; b] — границами (или пределами) интегрирования, а сам предел называют интегралом и обозначают

f(x) dx (читается: интеграл от а до b эф от икс дэ икс)1.

Таким образом,

$$S_{ABCD} = \int_{a}^{b} f(x) \ dx.$$

 Знак интеграла, представляющий собой удлиненную букву S, был введен Лейбницем в 1686 г. Термин «интеграл» от латинского слова integer — целый (с помощью интеграла находится площадь целой фигуры) предложил И. Бернулли, сотрудник Лейбница. Определение интеграла как предела суммы принадлежит Б. Риману, поэтому интегральную сумму иногда называют римановой.

Первообразная

Будем теперь рассматривать площадь фигуры под кривой y = f(x) как функцию S(x). Действительно, каждому значению x из промежутка (a; b] (рис. 96) соответствует площадь криволинейной трапеции AXYD. Приращению Δx (рис. 97) соответствует прирашение ΔS — площадь заштрихованной криволинейной трапеции, которую и здесь при стремлении Δx к нулю можно заменить площадью прямоугольника f(x) Δx .

Приращение функции при этом превратится в ее дифференциал: dS = f(x) dx. Значит, S'(x) = f(x).

Рис. 96

9 = falgx

Оказалось, что введенная нами функция S(x) имеет произволную, равную функции f(r), чей график ограничивает криволинейную трапецию сверху.

В математике для таких функций используют специальный термин.

Площадь криволинейной трапеции. Пусть на отрезке [a;b] задана непрерывная функция y=f(x), где $f(x)\geqslant 0$ при всех $x\in [a;b]$. Рассмотрим фигуру, ограниченную графиком функции y=f(x), двумя вертикальными прямыми x=a и x=b и осью Ox. Такая фигура называется *криволинейной трапецией* (рис. 2). Пусть требуется найти площадь этой фигуры.

Поставленную задачу можно решить так:

- 1) разобьем отрезок [a;b] на n равных частей и обозначим последовательно точки деления через $x_0, x_1, \ldots, x_{n-1}, x_n$ (рис. 3), причем $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b;$
- 2) обозначим длину отрезка $[x_{k-1}; x_k]$ через Δx_k , т. е. $\Delta x_k = x_k x_{k-1}$, и пусть c_k середина отрезка $[x_{k-1}; x_k]$, где $k=1,2,\ldots,n$;

y = f(x) $O = \begin{cases} c_1 & c_2 & c_k & c_n \\ c_1 & c_2 & c_k & c_n \\ c_1 & c_2 & c_k & c_n \\ c_2 & c_2 & c_k & c_n \\ c_3 & c_4 & c_4 & c_n \\ c_4 & c_5 & c_4 \\ c_6 & c_7 & c_8 \\ c_8 & c_8 & c_8 \end{cases}$

Рис. 2

Рис. 3

3) значение $f(c_k)$ функции f(x) в точке c_k умножим на Δx_k для всех $k=1,2,\ldots,n$, получим $f(c_k)\cdot \Delta x_k$. Геометрически каждое такое произведение численно равно площади прямоугольника со сторонами $f(c_k)$ и Δx_k . Составим сумму всех таких произведений $f(c_k)\cdot \Delta x_k$ ($k=1,2,\ldots,n$)

$$\sigma_n = f(c_1) \cdot \Delta x_1 + f(c_2) \cdot \Delta x_2 + \ldots + f(c_n) \cdot \Delta x_n = \sum_{k=1}^n f(c_k) \cdot \Delta x_k.$$

При $n \to \infty$ длины $\Delta x_n \to 0$ и сумма σ_n , численно равная площади ступенчатой фигуры, составленной из n прямоугольников, стремится к значению площади S данной криволинейной трапеции.

В рассмотренных задачах речь идет о нахождении предела сумм вида $\sum\limits_{k=1}^n f(c_k) \cdot \Delta x_k$, которые называют *интегральными суммами*. К вычислению предела таких сумм сводится решение многих важных задач из геометрии, физики, техники и других дисциплин.

Понятие определенного интеграла

Пусть функция f(x) определена на отрезке [a;b], и пусть задано разбиение отрезка [a;b] произвольным образом на n частей так, что

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$$

Назовем совокупность точек $x_0, x_1, \ldots, x_{n-1}, x_n$ разбиением отрезка [a;b] и обозначим $T = \{x_k, k = 0, 1, \ldots, n\}$, а отрезки $\Delta_k = [x_{k-1}; x_k]$, где $k = 1, \ldots, n$, назовем отрезками разбиения T.

Пусть $\Delta x_k = x_k - x_{k-1} - \overline{\text{длина } k}$ -го отрезка разбиения T. Тогда число $l(T) = \max\{\Delta x_1, \ldots, \Delta x_n\}$ назовем мелкостью разбиения T (или диаметром этого разбиения). Если $c_k \in [x_{k-1}; x_k]$, то совокупность точек c_k $(k=1,\ldots,n)$ назовем выборкой и обозначим $\{c_k\}$ $(k=1,\ldots,n)$.

COCTABUM CVMMV BOOV EDOUGREDAUGH $f(c, \cdot)$, Δv , (b-1)

2(x) = 2cx

составит сумму всех произведения $T(e_k)$ Δx_k ($k=1,\ldots,n$), которую обозначим $\sigma(T,\{c_k\})$ и назовем интегральной суммой функции f(x) для данного разбиения T и фиксированной выборки $\{c_k\}$ ($k=1,\ldots,n$), т. е.

$$\sigma(T, \{c_k\}) = \sum_{k=1}^{n} f(c_k) \cdot \Delta x_k. \qquad (1)$$

Определение. Число J называется определенным интегралом от функции f на отрезке [a;b] и обозначается $\int\limits_a^b f(x)dx$, если для любого $\varepsilon>0$ существует такое число $\delta=\delta(\varepsilon)>0$, что для любого разбиения T, мелкость которого $t(T)<\delta$, и для любой выборки $\{c_k\}$ $\{k=1,\ldots,n\}$ выполняется неравенство

$$\left| \sum_{k=1}^{n} f(c_k) \cdot \Delta x_k - J \right| < \varepsilon.$$
 (2)

Иногда это определение записывают в виде $\sigma(T,\{c_k\}) \to J$ при $l(T) \to 0$ или $\lim_{l(T) \to 0} \sigma(T,\{c_k\}) = J$, имея в виду, что этот предел не зависит от выбора точек c_k $(k=1,\ldots,n)$.

Функция f(x), для которой существует интеграл $\int_a^b f(x)dx$, называется интегрируемой на отрезке [a;b], числа a и b— соответственно нижним и верхним пределами интегрирования.

Пример Вычислить площадь криволинейной трапеции, ограниченной графиком функции $y = x^2$, вертикальными прямыми x = 0 и x = 1 и осью Ox.

 \triangle Разобьем отрезок [0; 1] на n равных частей, тогда $\Delta x_k = \frac{1}{n}$ и $x_k = \frac{k}{n}$ (см. рис. 4).

2-1 0 1 2 х Рис. 4

Положим $c_k = x_k = \frac{k}{n}, \ k = 1, 2, \ldots, n$ (т. е. c_k совпадает с правым концом отрезка $[x_{k-1}, x_k]$). Тогда $f(c_k) = \frac{k^2}{n^2}$. Составляя сумму σ_n , получим

$$\sigma_n = \sum_{k=1}^n \frac{k^2}{n^2} \cdot \frac{1}{n} = \frac{1^2 + 2^2 + \dots + n^2}{n^3}.$$

Так как $1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$, то, подставляя в сумму, получим

$$\sigma_n = \frac{1}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) \underset{n \to \infty}{\longrightarrow} \frac{1}{3}.$$

Поэтому искомая площадь равна $S = \frac{1}{3}$.

Замечание. Используя предельный переход, еще Архимед получил, что площадь фигуры, ограниченной графиком функции $y=x^2$, отрезками прямых x=0 и x=a, где a>0, и осью Ox, равна $\frac{a^3}{2}$.

$$2 = \sum_{0}^{1} x^{9} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3} - \frac{0}{3} = \frac{1}{3}$$

Геометрический смысл определенного интеграла. Заметим, что для неотрицательной, непрерывной на [a;b] функции f(x) геометрически сумма

$$\frac{n(h+1)(2n+1)}{6} = \frac{1}{6} \left(1 + \frac{1}{h}\right) \left(1 + \frac{1}{h}\right) = \frac{1}{6}$$

$$\lim_{N \to \infty} \frac{1}{6} \left(1 + \frac{1}{h}\right) \left(1 + \frac{1}{h}\right) = \frac{1}{6}$$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

 $S = f(c_1) \cdot \Delta x_1 + f(c_2) \cdot \Delta x_2 + \dots + f(c_n) \cdot \Delta x_n = \sum f(c_k) \cdot \Delta x_k$

численно равна площади ступенчатой фигуры, составленной из n прямоугольников, и при $l(T) \to 0$ стремится к площади криволинейной трапеции, т. е.

$$S = \lim_{l(T) \to 0} \sum_{k=1}^{n} f(c_k) \cdot \Delta x_k = \int_{a}^{b} f(x) dx.$$

Следовательно, определенный интеграл от неотрицательной непрерывной функции f(x) на отрезке [a;b] численно равен площади криволинейной трапеции с основанием [a;b], ограниченной сверху графиком функции y=f(x). В этом заключается геометрический смысл определенного интеграла.

Выясним условия интегрируемости функции f(x).

Теорема 1 (необходимое условие интегрируемости). Если функция f(x) интегрируема на отрезке [a;b], то она ограничена на этом отрезке.

Достаточные условия интегрируемости функции

Теорема 2. Всякая функция, непрерывная на отрезке [a;b], интегрируема на этом отрезке.

Замечание. Имеет место общая теорема: если функция f(x) ограничена на отрезке [a;b] и непрерывна на нем всюду, кроме конечного числа точек, то она интегрируема на этом отрезке.

Теорема 3. Всякая функция, монотонная на отрезке [a;b], интегрируема на этом отрезке.

4. Свойства определенного интеграла

- 1. Если k константа, то $\int_{a}^{b} k dx = k(b-a)$.
- 2. Если функции f(x) и g(x) интегрируемы на отрезке [a;b], то функции $f(x)\pm g(x)$ также интегрируемы на отрезке [a;b] и выполняется равенство

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$
 (3)

Это значит, что интеграл от алгебраической суммы интегрируемых функций равен алгебраической сумме их интегралов.

3. Если функция f(x) интегрируема на отрезке [a;b], а k- константа, то функция kf(x) также интегрируема на отрезке [a;b] и выполняется равенство

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx.$$
 (4)

Это значит, что постоянный множитель можно выносить за знак определенного интеграла.

Совокупность свойств 2 и 3 называется линейностью определенного интеграла.

4. Если функция f(x) интегрируема на отрезке [a;b] и $f(x)\geqslant 0$,

$$f(x)dx \geqslant 0.$$

Замечание. Если f(x) непрерывна на отрезке $[a;b],\ f(x)\geqslant 0$ на [a;b] и f(x)>0 хотя бы в одной точке этого отрезка, то $\int\limits_a^b f(x)dx>0$.

5. Если функции f(x) и g(x) интегрируемы на отрезке [a;b] и $f(x) \geqslant g(x)$ для всех точек этого отрезка, то

$$\int_{a}^{b} f(x)dx \geqslant \int_{a}^{b} g(x)dx. \tag{5}$$

6. Если функция f(x) интегрируема на отрезке [a;b], то функция |f(x)| также интегрируема на этом отрезке и выполняется неравенство

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx. \tag{6}$$

7. Если функция f(x) интегрируема на отрезке $[a;\,c]$ и на отрезке $[c;\,b]$, причем a < c < b, то эта функция интегрируема также на отрезке $[a;\,b]$ и выполняется равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
 (7)

Это означает, что определенный интеграл по всему отрезку равен сумме интегралов по его частям.

Формула Ньютона—Лейбница осуществляет связь между первообразной данной функции и определенным интегралом. Правую часть формулы часто записывают в виде $F(x) \mid_a^b$. Тогда формула принимает вид

$$\int_{a}^{b} f(t)dt = F(x)|_{a}^{b} > F(b) - F(a)$$

Пример 3. Вычислить интеграл:

1)
$$\int_{0}^{1} x^{2} dx$$
; 2) $\int_{0}^{3} (2x^{2} - 3x) dx$; 3) $\int_{a}^{b} \cos x dx$; 4) $\int_{0}^{\frac{\pi}{3}} \cos (2x - \frac{\pi}{6}) dx$.

 Δ 1) Одной из первообразных функции $f(x)=x^2$ является функция $F(x)=rac{x^3}{3},$ поэтому $\int\limits_0^1 x^2 dx=rac{x^3}{3}\Big|_0^1=rac{1^3}{3}-rac{0^3}{3}=rac{1}{3}.$

2) Одной из первообразных функции $f(x)=2x^2-3x$ является функция $F(x)=\frac{2x^3}{3}-\frac{3x^2}{2}$. Поэтому

$$\int_{1}^{3} (2x^{2} - 3x) dx = \left(\frac{2x^{3}}{3} - \frac{3x^{2}}{2}\right) \Big|_{1}^{3} =$$

$$= \left(\frac{2 \cdot 3^{3}}{3} - \frac{3 \cdot 3^{2}}{2}\right) - \left(\frac{2 \cdot 1^{3}}{3} - \frac{3 \cdot 1^{2}}{2}\right) = 5\frac{1}{3}. \quad \text{A.F.} \quad \text{A.$$

3) Одной из первообразных функции $f(x) = \cos x$ является функ-

ция
$$F(x) = \sin x$$
. Поэтому $\int_a^b \cos x dx = \sin x |_a^b = \sin b - \sin a$.

 $\frac{1}{1}$

4) $\int_{0}^{2\pi} \cos\left(2x - \frac{\pi}{6}\right) dx = \frac{1}{2}\sin\left(2x - \frac{\pi}{6}\right)\Big|_{0}^{3} = \frac{1}{2}\left(\sin\frac{\pi}{2} - \sin\left(-\frac{\pi}{6}\right)\right) = \frac{3}{4}.$

Sin (-5)=- Sin ===

Пример 4. Вычислить интеграл $\int_{0}^{6} f(x)dx$, если

$$f(x) = \begin{cases} x+1 & \text{при } x < 2, \\ x^2 & \text{при } x \geqslant 2. \end{cases}$$

△ Используя свойство 7 определенного интеграла, получаем:

$$\int_{0}^{6} f(x)dx = \int_{0}^{2} f(x)dx + \int_{2}^{6} f(x)dx = \int_{0}^{2} (x+1)dx + \int_{2}^{6} x^{2}dx =$$

$$= \left(\frac{x^{2}}{2} + x\right)\Big|_{0}^{2} + \frac{x^{3}}{3}\Big|_{2}^{6} = (4-0) + \left(72 - \frac{8}{3}\right) = 73\frac{1}{3}.$$

Пример 5. Вычислить интеграл:

1)
$$\int_{-1}^{6} |5 - 2x| dx$$
; 2) $\int_{-2}^{2} |2x - |x - 1| |dx$.

△ 1) Раскрывая модуль, получаем

$$|5 - 2x| = \begin{cases} 5 - 2x & \text{при } x \le 2,5, \\ 2x - 5 & \text{при } x > 2,5. \end{cases}$$

Для вычисления интеграла воспользуемся формулой (7):

$$\int_{-1}^{6} |5 - 2x| dx = \int_{-1}^{2,5} (5 - 2x) dx + \int_{2,5}^{6} (2x - 5) dx =$$

$$= \left(5x - x^2 \right) \Big|_{-1}^{2,5} + \left(x^2 - 5x \right) \Big|_{2,5}^{6} =$$

$$= (7,5 - 6,25) - (-5 - 1) + (36 - 30) - (6,25 - 7,5) = 14,5.$$

2) Раскрывая модули, начиная с внутреннего, получаем

$$\begin{aligned} |2x - |x - 1|| &= \left\{ \begin{array}{l} |2x + (x - 1)| & \text{при } x < 1, \\ |2x - (x - 1)| & \text{при } x \geqslant 1 \end{array} \right. = \\ &= \left\{ \begin{array}{l} |3x - 1| & \text{при } x < 1, \\ |x + 1| & \text{при } x \geqslant 1 \end{array} \right. = \\ &= \left\{ \begin{array}{l} 1 - 3x & \text{при } x < \frac{1}{3}, \\ 3x - 1 & \text{при } \frac{1}{3} \leqslant x < 1, \\ x + 1 & \text{при } x \geqslant 1. \end{array} \right. \end{aligned}$$

Далее, используя формулу (7), имеем

$$\int_{-2}^{2} |2x - |x - 1|| dx = \int_{-2}^{\frac{1}{3}} (1 - 3x) dx + \int_{\frac{1}{3}}^{1} (3x - 1) dx + \int_{1}^{2} (x + 1) dx =$$

$$= \left(x - \frac{3x^{2}}{2}\right) \Big|_{-2}^{\frac{1}{3}} + \left(\frac{3x^{2}}{2} - x\right) \Big|_{\frac{1}{3}}^{1} + \left(\frac{x^{2}}{2} + x\right) \Big|_{1}^{2} =$$

$$= \left(\frac{1}{3} - \frac{3}{2} \cdot \frac{1}{9}\right) - \left(-2 - \frac{3 \cdot 4}{2}\right) + \left(\frac{3}{2} - 1\right) - \left(\frac{3}{2} \cdot \frac{1}{9} - \frac{1}{3}\right) + (2 + 2) - \left(\frac{1}{2} + 1\right) = \frac{34}{3}.$$

Способы вычисления определенного интеграла. Для вычисления определенных интегралов так же, как и для неопределенных, часто используется замена переменной

замена переменной
$$\varphi(t) = X, \quad \varphi'(t) = dX$$

$$\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{a}^{b} f(x) dx, \quad (10)$$

где функция $\varphi(t)$ имеет непрерывную производную на отрезке $[\alpha; \beta]$, $\varphi(\alpha) = a, \ \varphi(\beta) = b, \ f(x)$ непрерывна, и множество значений функции $\varphi(t)$ на отрезке $[\alpha; \beta]$ содержится в области определения функции f(x).

Пример 6. Вычислить интеграл $\int_{0}^{4} \frac{dx}{1+\sqrt{x}}$.

 \triangle Обозначим $\sqrt{x} = t$. Тогда $x = t^2$ и dx = 2t dt. Так как x изменяется от 0 до 4, то $t \in [0; 2]$, поэтому

$$\int_{0}^{4} \frac{dx}{1+\sqrt{x}} = \int_{0}^{2} \frac{2t}{1+t} dt = \int_{0}^{2} \left(\frac{2t+2-2}{1+t}\right) dt = \int_{0}^{2} \frac{2t}{t+1} dt = \int_{0}^{2} \left(2-\frac{2}{1+t}\right) dt = (2t-2\ln|1+t|)|_{0}^{2} = 4-2\ln 3.$$

Замечание. При вычислении определенного интеграла не нужно возвращаться к исходной переменной.

*Еще одним методом вычисления определенных интегралов служит метод интегрирования по частям:

$$\int_{a}^{b} u(x) \, dv(x) = (u(x)v(x))|_{a}^{b} - \int_{a}^{b} v(x) \, du(x).$$

Пример 7. Вычислить интеграл $\int \ln x \, dx$.

И

△ Используя формулу интегрирования по частям, получим

$$\int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x d \ln x = e - \int_{1}^{e} dx = e - e + 1 = 1.$$

Для непрерывной на отрезке [-a; a] функции f(x) справедливы равенства:

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx, \quad \text{если } f(x) \text{ четная,}$$
 (11)

$$\int_{-\infty}^{a} f(x)dx = 0, \quad \text{если } f(x) \text{ нечетная.}$$
 (12)

Пример 8. Вычислить интеграл:

1)
$$\int_{-1}^{1} (6x^5 - \sqrt[5]{x} - x^2 + x) dx$$
; 2) $\int_{-\pi}^{\pi} \sin^3 x \cos^4 x dx$.

 А 1) Используя свойства линейности определенного интеграла, получаем

$$\int_{-1}^{1} \left(6x^5 - \sqrt[5]{x} - x^2 + x \right) dx = \int_{-1}^{1} 6x^5 dx - \int_{-1}^{1} \sqrt[5]{x} dx - \int_{-1}^{1} x^2 dx + \int_{-1}^{1} x dx.$$

Так как функции $6x^5$, $\sqrt[5]{x}$ и x — нечетные, то соответствующие интегралы на $[-1;\ 1]$ от этих функций равны нулю. Следовательно,

$$\int_{-1}^{1} \left(6x^5 - \sqrt[5]{x} - x^2 + x \right) dx = -\int_{-1}^{1} x^2 dx = -2 \int_{0}^{1} x^2 dx = -2 \cdot \frac{x^3}{3} \Big|_{0}^{1} = -\frac{2}{3}.$$

2) Так как функция $\sin^3 x \cos^4 x$ является нечетной, то интеграл на $[-\pi;\pi]$ от нее равен нулю. Следовательно, $\int\limits_{-\pi}^{\pi} \sin^3 x \cos^4 x \, dx = 0$.

Пример 9. Найти все положительные значения параметра a, для которых выполняется неравенство

$$\int\limits_{0}^{a}(1-x)dx\leqslant\frac{1+a}{4}.$$

 \triangle Имеем $\int\limits_0^a (1-x) dx = \left(x-\frac{x^2}{2}\right)\Big|_0^a = a-\frac{a^2}{2}$. Таким образом, искомые значения a удовлетворяют системе неравенств

$$\begin{cases} a > 0, \\ a - \frac{a^2}{2} \leqslant \frac{1+a}{4}. \end{cases}$$

Решениями системы являются $a \in (0; 0, 5] \cup [1; +\infty)$.

Пример 10. Найти все положительные значения параметра a, для которых

$$\int_{1}^{2} (a^{2} - (4 - 4a)x + 4x^{3}) dx \le 12.$$