Final Project Group 53

Bhuvan Kumar Panduranga, Pratik Bhojkar

2023-11-24

```
# Import needed packages
#library(tidyverse)
library(ggplot2)
#library(tigerstats)
#library(reticulate)
library(MASS)
library(MLmetrics)
## Warning: package 'MLmetrics' was built under R version 4.3.2
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:base':
##
##
       Recall
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
       select
##
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

Part 1: Data reading and Visualization

```
auto mpg<-read.csv("B:/Prog for DA/auto-mpg.csv", sep = ',')</pre>
head(auto_mpg)
     mpg cylinders displacement horsepower weight acceleration model.year
origin
## 1 18
                  8
                             307
                                         130
                                               3504
                                                             12.0
                                                                          70
1
## 2 15
                  8
                             350
                                         165
                                               3693
                                                             11.5
                                                                          70
1
## 3
      18
                  8
                             318
                                         150
                                               3436
                                                             11.0
                                                                          70
1
                  8
## 4
                             304
                                         150
                                               3433
                                                             12.0
                                                                          70
     16
1
## 5
      17
                  8
                                         140
                                               3449
                                                             10.5
                                                                          70
                             302
1
## 6 15
                  8
                             429
                                         198
                                                             10.0
                                                                          70
                                               4341
1
##
                       car.name
## 1 chevrolet chevelle malibu
## 2
             buick skylark 320
            plymouth satellite
## 3
                  amc rebel sst
## 4
                    ford torino
## 5
## 6
              ford galaxie 500
summary(auto_mpg)
##
         mpg
                       cylinders
                                       displacement
                                                        horsepower
weight
## Min.
                            :3.000
                                             : 68.0
                                                      Min.
                                                              : 46.0
           : 9.00
                     Min.
                                     Min.
                                                                       Min.
:1613
## 1st Qu.:17.50
                     1st Qu.:4.000
                                      1st Qu.:104.2
                                                      1st Qu.: 75.0
                                                                       1st
Qu.:2224
## Median :23.00
                     Median :4.000
                                     Median :148.5
                                                      Median: 93.5
                                                                       Median
:2804
## Mean
           :23.51
                     Mean
                            :5.455
                                     Mean
                                             :193.4
                                                      Mean
                                                              :104.5
                                                                       Mean
:2970
                     3rd Qu.:8.000
## 3rd Qu.:29.00
                                      3rd Qu.:262.0
                                                      3rd Qu.:126.0
                                                                       3rd
Qu.:3608
## Max.
           :46.60
                     Max.
                            :8.000
                                     Max.
                                             :455.0
                                                      Max.
                                                              :230.0
                                                                       Max.
:5140
```

```
##
                                                    NA's :6
     acceleration
##
                      model.year
                                        origin
                                                      car.name
         : 8.00
                           :70.00
                                    Min.
##
   Min.
                    Min.
                                          :1.000
                                                    Length: 398
                                    1st Qu.:1.000
##
    1st Qu.:13.82
                    1st Qu.:73.00
                                                    Class :character
   Median :15.50
                    Median :76.00
                                    Median :1.000
                                                    Mode :character
##
##
           :15.57
                           :76.01
                                           :1.573
   Mean
                    Mean
                                    Mean
    3rd Qu.:17.18
                    3rd Qu.:79.00
                                    3rd Ou.:2.000
##
           :24.80
                           :82.00
                                           :3.000
   Max.
                    Max.
                                    Max.
##
summary(auto_mpg)
##
                      cylinders
                                     displacement
                                                      horsepower
         mpg
weight
## Min.
                    Min.
                           :3.000
                                    Min.
                                           : 68.0
                                                    Min.
                                                           : 46.0
           : 9.00
                                                                    Min.
:1613
## 1st Qu.:17.50
                    1st Qu.:4.000
                                    1st Qu.:104.2
                                                    1st Qu.: 75.0
                                                                    1st
Qu.:2224
                    Median :4.000
                                    Median :148.5
                                                    Median: 93.5
                                                                    Median
## Median :23.00
:2804
## Mean
                           :5.455
                                           :193.4
                                                           :104.5
                                                                    Mean
           :23.51
                    Mean
                                    Mean
                                                    Mean
:2970
## 3rd Qu.:29.00
                    3rd Qu.:8.000
                                    3rd Qu.:262.0
                                                    3rd Qu.:126.0
                                                                    3rd
Qu.:3608
           :46.60
## Max.
                    Max.
                           :8.000
                                    Max.
                                           :455.0
                                                    Max.
                                                           :230.0
                                                                    Max.
:5140
##
                                                    NA's
                                                           :6
##
     acceleration
                      model.year
                                        origin
                                                      car.name
## Min.
                           :70.00
                                           :1.000
                                                    Length:398
          : 8.00
                    Min.
                                    Min.
##
   1st Qu.:13.82
                    1st Qu.:73.00
                                    1st Qu.:1.000
                                                    Class :character
   Median :15.50
                    Median :76.00
                                    Median :1.000
                                                    Mode :character
##
## Mean
          :15.57
                    Mean
                           :76.01
                                    Mean
                                           :1.573
                    3rd Qu.:79.00
   3rd Ou.:17.18
                                    3rd Ou.:2.000
##
           :24.80
## Max.
                    Max.
                           :82.00
                                    Max.
                                          :3.000
##
dim(auto mpg)
## [1] 398
```

The Auto MPG set has 398 rows and 9 columns.

```
str(auto_mpg)
## 'data.frame':
                  398 obs. of 9 variables:
## $ mpg
                : num 18 15 18 16 17 15 14 14 14 15 ...
## $ cylinders : int 8 8 8 8 8 8 8 8 8 ...
## $ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
## $ horsepower : int 130 165 150 150 140 198 220 215 225 190 ...
## $ weight
                : int 3504 3693 3436 3433 3449 4341 4354 4312 4425 3850
## $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
## $ model.year : int 70 70 70 70 70 70 70 70 70 ...
## $ origin
                : int 111111111...
                : chr "chevrolet chevelle malibu" "buick skylark 320"
## $ car.name
"plymouth satellite" "amc rebel sst" ...
```

The data types covered are int, num and character. It has one strings.

```
#factor(data$model_year)['levels']
print("Unique model years")
## [1] "Unique model years"
unique(auto_mpg$model.year)
## [1] 70 71 72 73 74 75 76 77 78 79 80 81 82
```

This are the years when the models were built.

```
print("Unique origin")
## [1] "Unique origin"
unique(auto_mpg$origin)
## [1] 1 3 2
```

This are the unique origins or say countries that are given numbers, for eg- 1='China', 2='japan', 3='America'. This is a categorical value.

```
print("Unique cylinders")
## [1] "Unique cylinders"
unique(auto_mpg$cylinders)
## [1] 8 4 6 3 5
```

Data Cleaning

```
Converting the horsepower from char to int and Car name from char to factor
auto mpg$horsepower <- as.integer(as.character(auto mpg$horsepower))</pre>
# Converting 'car.name' to a factor
auto_mpg$car.name <- as.factor(auto_mpg$car.name)</pre>
# Displaying the first few rows of the dataset
head(auto_mpg)
##
     mpg cylinders displacement horsepower weight acceleration model.year
origin
## 1 18
                             307
                                        130
                                              3504
                                                            12.0
                 8
                                                                         70
1
## 2
     15
                 8
                             350
                                        165
                                              3693
                                                            11.5
                                                                         70
1
## 3
                 8
                                        150
                                                            11.0
     18
                             318
                                              3436
                                                                         70
1
## 4
     16
                 8
                             304
                                        150
                                              3433
                                                            12.0
                                                                         70
1
## 5
                 8
                                        140
                                                            10.5
                                                                         70
     17
                             302
                                              3449
1
## 6 15
                 8
                             429
                                        198
                                              4341
                                                            10.0
                                                                         70
1
##
                      car.name
## 1 chevrolet chevelle malibu
## 2
             buick skylark 320
            plymouth satellite
## 3
## 4
                 amc rebel sst
## 5
                   ford torino
## 6
              ford galaxie 500
summary(auto_mpg)
##
                      cylinders
                                      displacement
                                                       horsepower
         mpg
weight
## Min.
           : 9.00
                    Min.
                            :3.000
                                     Min.
                                            : 68.0
                                                     Min.
                                                             : 46.0
                                                                      Min.
:1613
## 1st Qu.:17.50
                    1st Qu.:4.000
                                     1st Qu.:104.2
                                                     1st Qu.: 75.0
                                                                      1st
Ou.:2224
                                                     Median: 93.5
## Median :23.00
                    Median :4.000
                                     Median :148.5
                                                                      Median
:2804
## Mean
           :23.51
                    Mean
                            :5.455
                                     Mean
                                            :193.4
                                                     Mean
                                                             :104.5
                                                                      Mean
:2970
                    3rd Qu.:8.000
                                     3rd Qu.:262.0
                                                     3rd Qu.:126.0
## 3rd Qu.:29.00
                                                                      3rd
Qu.:3608
## Max.
         :46.60
                    Max. :8.000
                                     Max. :455.0
                                                     Max. :230.0
                                                                      Max.
```

```
:5140
                                                       NA's
##
                                                               :6
##
     acceleration
                       model.year
                                          origin
                                                                  car.name
##
   Min.
          : 8.00
                            :70.00
                                      Min.
                                             :1.000
                                                       ford pinto
                     Min.
   1st Qu.:13.82
                     1st Qu.:73.00
                                      1st Qu.:1.000
##
                                                       amc matador
##
   Median :15.50
                     Median :76.00
                                      Median :1.000
                                                       ford maverick:
                                                                         5
                                                                         5
##
   Mean
           :15.57
                     Mean
                            :76.01
                                      Mean
                                             :1.573
                                                       toyota corolla:
    3rd Qu.:17.18
                     3rd Qu.:79.00
                                      3rd Qu.:2.000
                                                       amc gremlin
                                                                         4
##
                                                       amc hornet
##
   Max.
           :24.80
                            :82.00
                                              :3.000
                     Max.
                                      Max.
                                                                         4
##
                                                       (Other)
                                                                      :369
null_values<-colSums(is.na(auto_mpg))</pre>
null_values
##
                    cylinders displacement
                                              horsepower
                                                                 weight
            mpg
acceleration
##
                            0
                                          0
                                                        6
                                                                      0
0
##
     model.year
                       origin
                                   car.name
##
```

##Removing the null values

```
auto mpg <- na.omit(auto mpg)</pre>
null values after clean<-colSums(is.na(auto mpg))</pre>
null_values_after_clean
##
             mpg
                     cylinders displacement
                                                horsepower
                                                                   weight
acceleration
                                                          0
##
                                            0
                                                                         0
0
##
     model.year
                        origin
                                    car.name
##
                              0
dim(auto_mpg)
## [1] 392
```

now the data set has 392 points and 9 variables.

```
table(auto_mpg$cylinders)
##
## 3 4 5 6 8
## 4 199 3 83 103
sum(duplicated(auto_mpg))
## [1] 0
```

The cars have one of the numbers of the cylinders. This is a categorial data that we have because the are choose from one of the following categories

```
mean_mpg_by_cylinders <- tapply(auto_mpg$mpg, auto_mpg$cylinders, mean)
mean_mpg_by_cylinders

## 3 4 5 6 8
## 20.55000 29.28392 27.36667 19.97349 14.96311</pre>
```

This is the mean of the MPG group wise. The average of MPG in unique cylinders.

```
#minimum value of the mpg/ lowest mpg by the car
min_mpg<-min(auto_mpg$mpg)</pre>
min_mpg
## [1] 9
#max mpg of all the cars in the dataset
max_mpg<-max(auto_mpg$mpg)</pre>
max_mpg
## [1] 46.6
# Calculate min and max MPG for each unique cylinder value
min_max_mpg_by_cylinders <- tapply(auto_mpg$mpg, auto_mpg$cylinders,</pre>
function(x) c(min(x), max(x))
# Display the results
print(min_max_mpg_by_cylinders)
## $`3`
## [1] 18.0 23.7
##
## $`4`
## [1] 18.0 46.6
##
## $`5`
## [1] 20.3 36.4
##
## $`6`
## [1] 15 38
##
## $`8`
## [1] 9.0 26.6
```

Part 2: Graphical Representation

Histogram of MPG to see the distribution of the data

```
hist(auto_mpg$mpg, breaks = 30, col = "red", main = "Histogram of
mpg",xlab="mpg", ylab = " frequency (number of cars)")
```

Histogram of mpg


```
par(mfrow = c(1, 1))
boxplot(auto_mpg$mpg, main= "Boxplot for Mpg")
abline(h = min(auto_mpg$mpg), col = "Blue")
abline(h = max(auto_mpg$mpg), col = "Yellow")
abline(h = median(auto_mpg$mpg), col = "Green")
abline(h = quantile(auto_mpg$mpg, c(0.25, 0.75)), col = "Red")
```

Boxplot for Mpg

This is a box plot to check if there are any outliers. We can conclude from the observation that there are no a outlier.

```
ggplot(auto_mpg, aes(x=acceleration)) +
  geom_histogram(aes(y=..density..), colour="black", fill="white", binwidth =
1, bins = 30)+
  geom_density(alpha=.2, fill="#FF6666")

## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2
3.4.0.

## i Please use `after_stat(density)` instead.

## This warning is displayed once every 8 hours.

## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```


This is a histogram for the acceleration. We can conclude that this is a approximately linearly distributed.

```
# Load ggplot2 package if not already loaded
library(ggplot2)

# Creating a boxplot to compare 'mpg' by 'origin'
ggplot(auto_mpg, aes(x = as.factor(origin), y = mpg)) +
    geom_boxplot(fill = "skyblue") +
    labs(title = "Boxplot of MPG by Origin", x = "Origin", y = "MPG")
```

Boxplot of MPG by Origin

This is a box plot to see the outliers ffor the origin. We conclude that there are outliers. We can also see that MPG for the cars of origin 3 is greater. There may be many factors that may affect it.

```
ggplot(auto_mpg, aes(x = as.factor(origin), y = weight)) +
  geom_boxplot(fill = "skyblue") +
  labs(title = "Boxplot of weight by Origin", x = "Origin", y = "weight")
```

Boxplot of weight by Origin

Weight is one of the reasons. The region 3 is having autos with lower weight and with higher mpg as seen above. So we can say that the weight plays imp role in determining mpg.

```
# Creating a histogram with overlay for 'mpg' by 'origin' with border
ggplot(auto_mpg, aes(x = mpg, fill = as.factor(origin))) +
   geom_histogram(position = "identity", alpha = 0.7, bins = 30, color =
"black") +
   labs(title = "Histogram of MPG with Overlay by Origin", x = "MPG", y =
"Frequency") +
   scale_fill_manual(values = c("skyblue", "lightgreen", "lightcoral"), name =
"Origin") +
   theme_minimal()
```


30

MPG

10

20

this is a overlay Histogram of MPG and origin. We see that one value is numeric and other is categorial.

40

```
# Load ggplot2 package if not already loaded
library(ggplot2)
# Creating a histogram with overlay for 'mpg' by 'cylinders'
ggplot(auto_mpg, aes(x = mpg, fill = as.factor(cylinders))) +
    geom_histogram(position = "identity", alpha = 0.7, bins = 30,
color="black") +
    labs(title = "Histogram of MPG with Overlay by Cylinders", x = "MPG", y =
"Frequency") +
    scale_fill_manual(values = c("orange", "lightgreen", "lightcoral",
"yellow", "skyblue"), name = "Cylinders") +
    theme_minimal()
```

Histogram of MPG with Overlay by Cylinders

This shows mpg of cars with different cylinders.

```
# Load gaplot2 package if not already loaded
library(ggplot2)
# Scattered plot for 'mpg' vs 'acceleration'
scatter_acceleration <- ggplot(auto_mpg, aes(x = displacement, y = mpg)) +</pre>
  geom_point(color = "skyblue") +
  labs(title = " MPG vs Acceleration", x = "Acceleration", y = "MPG") +
  theme minimal()
# Scattered plot for 'mpg' vs 'cylinders'
scatter_cylinders <- ggplot(auto_mpg, aes(x = as.factor(cylinders), y = mpg))</pre>
  geom_point(color = "lightgreen") +
  labs(title = " MPG vs Cylinders", x = "Cylinders", y = "MPG") +
  theme minimal()
# Scattered plot for 'mpg' vs 'weight'
scatter_weight <- ggplot(auto_mpg, aes(x = weight, y = mpg)) +</pre>
  geom_point(color = "lightcoral") +
  labs(title = " MPG vs Weight", x = "Weight", y = "MPG") +
  theme minimal()
# Displaying the scattered plots side by side
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
grid.arrange(scatter_acceleration, scatter_cylinders, scatter_weight, ncol =
3)
```


This are the scatterplots that are made to see the relation between mpg and different variables.

```
# Scattered plot for weight vs mpg
ggplot(auto_mpg, aes(x = weight, y = mpg)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    labs(title = "Weight vs MPG", x = "Weight", y = "MPG") +
    theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
```

Weight vs MPG


```
# Scattered plot for horsepower vs mpg
ggplot(auto_mpg, aes(x = horsepower, y = mpg)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    labs(title = "Horsepower vs MPG", x = "Horsepower", y = "MPG") +
    theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
```

Horsepower vs MPG


```
# Scattered plot for displacement vs mpg
ggplot(auto_mpg, aes(x = displacement, y = mpg)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    labs(title = "Displacement vs MPG", x = "Displacement", y = "MPG") +
    theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
```


wee can see from the fighure as the hp, weight, displacement incresease the mpg decreases.

Hypothesis Test:

```
# Converting 'origin' to a factor (if it's not already)
auto_mpg$origin <- as.factor(auto_mpg$origin)</pre>
# Performing ANOVA test
anova_result <- aov(mpg ~ origin, data = auto_mpg)</pre>
# Summarize the ANOVA results
summary(anova_result)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## origin
                                     96.6 <2e-16 ***
                2
                     7904
                             3952
## Residuals
               389 15915
                               41
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Null hypothesis: There is no significant difference in MPG between cars from different origins.

Alternative hypothesis: There is at least one significant difference in MPG between cars from different origins.

The ANOVA test performed is a valid way to test for a significant relationship between MPG and the origin of the cars. The ANOVA results show that there is a significant difference in MPG between cars from different origins (p-value < 0.001). This means that we can reject the null hypothesis and conclude that there is at least one significant relationship between MPG and origin.

Linear Regression

```
pairs(auto_mpg[,1:8], col = "blue")
```



```
# Excluding 'carname' and any other non-numeric variables
numeric_columns <- auto_mpg[, sapply(auto_mpg, is.numeric)]</pre>
# Calculating the correlation matrix for numeric variables
correlation matrix <- cor(numeric columns)</pre>
# Print the correlation matrix
print(correlation matrix)
##
                            cylinders displacement horsepower
                                                                   weight
                       mpg
## mpg
                 1.0000000 -0.7776175
                                        -0.8051269 -0.7784268 -0.8322442
## cylinders
                -0.7776175 1.0000000
                                         0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233
                                         1.0000000 0.8972570
                                                                0.9329944
## horsepower
                -0.7784268 0.8429834
                                         0.8972570 1.0000000
                                                                0.8645377
## weight
                -0.8322442 0.8975273
                                         0.9329944 0.8645377
                                                                1.0000000
## acceleration 0.4233285 -0.5046834
                                         -0.5438005 -0.6891955 -0.4168392
## model.year
                 0.5805410 -0.3456474
                                         -0.3698552 -0.4163615 -0.3091199
##
                acceleration model.year
## mpg
                   0.4233285 0.5805410
## cylinders
                  -0.5046834 -0.3456474
## displacement
                  -0.5438005 -0.3698552
## horsepower
                  -0.6891955 -0.4163615
## weight
                  -0.4168392 -0.3091199
```

```
## acceleration
                  1.0000000 0.2903161
## model.year
                  0.2903161 1.0000000
print(correlation_matrix)
##
                      mpg cylinders displacement horsepower
                                                               weight
## mpg
                1.0000000 -0.7776175
                                      -0.8051269 -0.7784268 -0.8322442
                                       0.9508233 0.8429834 0.8975273
## cylinders -0.7776175 1.0000000
## displacement -0.8051269 0.9508233
                                       1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834
                                       0.8972570 1.0000000 0.8645377
## weight
              -0.8322442 0.8975273
                                       0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834
                                      -0.5438005 -0.6891955 -0.4168392
## model.year 0.5805410 -0.3456474
                                      -0.3698552 -0.4163615 -0.3091199
##
               acceleration model.year
## mpg
                  0.4233285 0.5805410
## cylinders
                 -0.5046834 -0.3456474
## displacement
                 -0.5438005 -0.3698552
## horsepower
                 -0.6891955 -0.4163615
## weight
                 -0.4168392 -0.3091199
## acceleration
                  1.0000000 0.2903161
## model.year 0.2903161 1.0000000
```

Pairs function show a us the correlation between the variables.

Simple linear regression

For Linear Regression, we are going to determine what all factors are dependent on the mpg variable.

we divide the dataset into training(80) and testing data(20).

Regression:Modelling the relationship between dependent variable and one or more independent variables..

```
lm_model1 <- lm(mpg ~ weight, data=auto_mpg_Training)
summary(lm_model1)

##
## Call:
## lm(formula = mpg ~ weight, data = auto_mpg_Training)</pre>
```

```
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -9.6965 -2.8008 -0.3309 2.2101 16.3539
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.5947894 0.9081344
                                              <2e-16 ***
                                      51.31
              -0.0077482 0.0002892 -26.79
                                              <2e-16 ***
## weight
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.33 on 305 degrees of freedom
## Multiple R-squared: 0.7018, Adjusted R-squared:
## F-statistic: 717.7 on 1 and 305 DF, p-value: < 2.2e-16
```

In summary, the linear regression model shows that there is a statistically significant relationship between weight and mpg in the auto.

```
lm_model2 <- lm(mpg ~ horsepower, data=auto_mpg_Training)</pre>
summary(lm model2)
##
## Call:
## lm(formula = mpg ~ horsepower, data = auto mpg Training)
## Residuals:
##
        Min
                  10
                       Median
                                    30
                                            Max
## -13.5698 -3.2524 -0.4482
                                2.9233
                                        16.9247
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.939832
                           0.820423
                                      48.68
                                              <2e-16 ***
## horsepower -0.157916
                           0.007257
                                    -21.76
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.962 on 305 degrees of freedom
## Multiple R-squared: 0.6083, Adjusted R-squared: 0.607
## F-statistic: 473.6 on 1 and 305 DF, p-value: < 2.2e-16
```

In summary, the linear regression model shows that there is a statistically significant relationship between horsepower and mpg in the auto.

```
predictions <- predict(lm_model1, newdata = auto_mpg_Test)
predictions1 <- predict(lm_model2, newdata = auto_mpg_Test)
summary(predictions)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.769 20.406 25.520 24.753 30.091 32.857</pre>
```

multiple linear regression

```
mlm_model <- lm(mpg ~ ., data = auto_mpg_Training[,1:8])</pre>
# Print's the summary of the multiple linear regression model
summary(mlm model)
##
## Call:
## lm(formula = mpg ~ ., data = auto_mpg_Training[, 1:8])
## Residuals:
##
      Min
               10 Median
                               3Q
                                     Max
## -8.2955 -2.0724 -0.1432 1.8754 13.4500
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -16.571248
                            5.512434 -3.006 0.00287 **
## cylinders
                -0.572920
                            0.355412 -1.612 0.10802
## displacement 0.026026
                            0.008322 3.128 0.00194 **
## horsepower
                -0.022953
                            0.015172 -1.513 0.13138
               -0.006659  0.000734  -9.073  < 2e-16 ***
## weight
## acceleration 0.021759
                            0.113628 0.191 0.84827
## model.year
                 0.775323
                            0.060275 12.863 < 2e-16 ***
## origin2
                 2.797265
                            0.641672 4.359 1.80e-05 ***
## origin3
                 2.902732
                            0.630444 4.604 6.14e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.325 on 298 degrees of freedom
## Multiple R-squared: 0.8281, Adjusted R-squared: 0.8235
## F-statistic: 179.5 on 8 and 298 DF, p-value: < 2.2e-16
```

We exclude the variable called car.name. The model indicates that the contributing factors to mpg are origin, weight, model.year, displacement.

MAE: Mean absolute error, measure of average mistake in a collection of prediction. MSE:Average squared difference between estimated values and actual value.

forward stepwise egression

```
intercept_only <- lm(mpg ~ 1, data=auto_mpg_Training[,1:8])</pre>
all <- lm(mpg~., data=auto mpg Training[,1:8])
# performing forward step-wise regression
forward <- stepAIC (intercept_only, direction='forward',scope = formula(all))</pre>
## Start: AIC=1271.26
## mpg \sim 1
##
##
                  Df Sum of Sq
                                   RSS
                                           AIC
                       13454.8 5717.8 901.82
## + weight
## + displacement 1
                       12430.2 6742.4 952.42
## + cylinders
                       11821.9 7350.7 978.94
                   1
                   1 11661.8 7510.8 985.56
## + horsepower
## + model.year
                   1 6923.1 12249.5 1135.72
## + origin 2 6139.7 13032.9 1156.75
## + acceleration 1 3182.8 15989.8 1217.53
## <none>
                               19172.6 1271.26
##
## Step: AIC=901.82
## mpg ~ weight
##
##
                  Df Sum of Sq
                                  RSS
                                          AIC
## + model.year
                   1
                       2093.76 3624.0 763.83
                   1
## + horsepower
                        273.75 5444.0 888.76
## + origin
                  2 196.48 5521.3 895.08
## + acceleration 1 100.97 5616.8 898.35
## + cylinders
                   1
                         95.72 5622.0 898.63
## + displacement 1
                         95.19 5622.6 898.66
## <none>
                               5717.8 901.82
```

```
##
## Step: AIC=763.83
## mpg ~ weight + model.year
                 Df Sum of Sq
##
                                 RSS
                                        AIC
                      213.963 3410.0 749.14
## + origin
## <none>
                               3624.0 763.83
                  1
## + cylinders
                        4.572 3619.4 765.44
                       2.970 3621.0 765.57
                  1
## + horsepower
## + acceleration 1
                        2.683 3621.3 765.60
                        0.727 3623.3 765.76
## + displacement 1
##
## Step: AIC=749.14
## mpg ~ weight + model.year + origin
##
                 Df Sum of Sq
##
                                 RSS
## + displacement 1
                       44.676 3365.4 747.09
## <none>
                               3410.0 749.14
## + horsepower
                        4.287 3405.8 750.76
                  1
## + acceleration 1 1.012 3409.0 751.05
                      0.721 3409.3 751.08
## + cylinders
                  1
##
## Step: AIC=747.09
## mpg ~ weight + model.year + origin + displacement
##
##
                 Df Sum of Sq
                                 RSS
                                        AIC
                     40.134 3325.2 745.41
## + horsepower
                  1
## + acceleration 1 22.571 3342.8 747.03
                               3365.4 747.09
## <none>
                  1 21.447 3343.9 747.13
## + cylinders
##
## Step: AIC=745.41
## mpg ~ weight + model.year + origin + displacement + horsepower
##
##
                 Df Sum of Sq
                                 RSS
                                        AIC
                      29.4305 3295.8 744.68
## + cylinders
                               3325.2 745.41
## <none>
## + acceleration 1 1.1008 3324.1 747.31
##
## Step: AIC=744.68
## mpg ~ weight + model.year + origin + displacement + horsepower +
##
       cylinders
##
##
                 Df Sum of Sq
                                        AIC
                                 RSS
## <none>
                               3295.8 744.68
## + acceleration 1
                      0.40549 3295.4 746.64
summary(forward)
```

```
##
## Call:
## lm(formula = mpg ~ weight + model.year + origin + displacement +
      horsepower + cylinders, data = auto_mpg_Training[, 1:8])
##
## Residuals:
      Min
                10 Median
                                30
                                      Max
## -8.3119 -2.0848 -0.1394 1.8593 13.4692
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.611e+01 4.938e+00 -3.262 0.00124 **
               -6.591e-03 6.389e-04 -10.315 < 2e-16 ***
## weight
## model.year
               7.742e-01 5.990e-02 12.925 < 2e-16 ***
                2.798e+00 6.406e-01 4.368 1.73e-05 ***
## origin2
## origin3
                2.903e+00 6.294e-01 4.612 5.93e-06 ***
## displacement 2.586e-02 8.265e-03 3.129 0.00193 **
## horsepower -2.476e-02 1.185e-02 -2.089 0.03752 *
## cylinders
              -5.781e-01 3.538e-01 -1.634 0.10331
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.32 on 299 degrees of freedom
## Multiple R-squared: 0.8281, Adjusted R-squared: 0.8241
## F-statistic: 205.8 on 7 and 299 DF, p-value: < 2.2e-16
ypred forward <-predict(object = forward, newdata = auto mpg Test[,1:8])</pre>
MAE(y_pred = ypred_forward, y_true = auto_mpg_Test$mpg)
## [1] 2.56686
MSE(y pred = ypred forward, y true = auto mpg Test$mpg)
## [1] 10.59884
backward stepwise regression
intercept_only <- lm(mpg ~ 1, data=auto_mpg_Training[,1:8])</pre>
all <- lm(mpg~., data=auto_mpg_Training[,1:8])
backward <- stepAIC (all, direction='backward')</pre>
## Start: AIC=746.64
## mpg ~ cylinders + displacement + horsepower + weight + acceleration +
##
       model.year + origin
##
                                 RSS
##
                 Df Sum of Sq
                                        AIC
## - acceleration 1
                         0.41 3295.8 744.68
## <none>
                               3295.4 746.64
                        25.31 3320.7 746.99
## - horsepower
                  1
## - cylinders
                  1
                        28.74 3324.1 747.31
## - displacement 1 108.17 3403.6 754.56
```

```
2
                       305.77 3601.2 769.89
## - origin
                       910.33 4205.7 819.53
## - weight
                  1
                      1829.70 5125.1 880.22
## - model.year
                  1
##
## Step: AIC=744.68
## mpg ~ cylinders + displacement + horsepower + weight + model.year +
##
      origin
##
##
                 Df Sum of Sq
                                 RSS
                                        AIC
## <none>
                               3295.8 744.68
                        29.43 3325.2 745.41
## - cylinders
                        48.12 3343.9 747.13
## - horsepower
                  1
## - displacement 1
                     107.94 3403.7 752.58
## - origin
                  2
                      305.86 3601.7 767.93
                  1
                      1172.79 4468.6 836.14
## - weight
## - model.year
                  1 1841.48 5137.3 878.95
summary(backward)
##
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight +
       model.year + origin, data = auto_mpg_Training[, 1:8])
##
## Residuals:
      Min
               10 Median
                               3Q
##
                                      Max
## -8.3119 -2.0848 -0.1394 1.8593 13.4692
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.611e+01 4.938e+00 -3.262 0.00124 **
## cylinders
               -5.781e-01 3.538e-01 -1.634 0.10331
## displacement 2.586e-02 8.265e-03
                                       3.129 0.00193 **
## horsepower -2.476e-02 1.185e-02 -2.089 0.03752 *
               -6.591e-03 6.389e-04 -10.315 < 2e-16 ***
## weight
               7.742e-01 5.990e-02 12.925 < 2e-16 ***
## model.year
## origin2
                2.798e+00 6.406e-01 4.368 1.73e-05 ***
## origin3
                2.903e+00 6.294e-01
                                      4.612 5.93e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.32 on 299 degrees of freedom
## Multiple R-squared: 0.8281, Adjusted R-squared: 0.8241
## F-statistic: 205.8 on 7 and 299 DF, p-value: < 2.2e-16
ypred backward <-predict(object = backward, newdata = auto_mpg_Test[,1:8])</pre>
MAE(y_pred = ypred_backward, y_true = auto_mpg_Test$mpg)
## [1] 2.56686
MSE(y_pred = ypred_backward, y_true = auto_mpg_Test$mpg)## [1] 10.59884
```