

INT 489 Selected Topics IN IT

Dr. Khaled Mostafa Reda

Sinai University (SU)

Faculty of Information Technology and Computer Science (FIT)

E-Mail: khaled.Mostafa@su.edu.eg

Welcome

To the Selected Topics IN IT Course

Code: INT 489

Fall Term 2023

TODAY

- Course information.
- Course Policy.
- What is computation?
- Python basics.
- Mathematical operations.
- Python variables and types
- NOTE: slides and code files up each lecture
 - Highly encourage you to download it before the lecture
 - —Take notes and run code files when I do
 - —Bring computers to answer in-class practice exercises!

Welcome to Selected Topics IN IT Course

Important Course Information

Group	Day	Hours	Locations
A	Sunday	14:40-1620:00	B2013

Course Policy

Grading:

- —5% Course Work (CW)
- —10% Oral/Practical
- —25% on one Term Exam (T.E).
- —60% on the Final Exam (F.E).
- —100% Total Mark
- —TALKING and SLEEPING are strongly forbidden during class.
- —Late assignments
- —Plagiarism

15%

Recitations

- Not mandatory
- Two recommendation
 - 1) Lecture review: **review** lecture material
 - if you missed the lecture
 - if you need a different take on the same concepts
 - 2) Problem-solving teaches you how to solve programming problems
 - Useful if you don't know how to set up pseudocode from summarized words
 - walk you through how to approach solving the problem
 - brainstorm code solutions along with the recitation instructor
 - Will post solutions after

Fast Paced Course

- Position yourself to succeed!
 - —Read the summaries as it comes out and come back to them later.
 - —use late days in emergency situations
- New to programming? Practice. Practice? Practice!
 - —Download the code and the lecture and follow along
 - —Don't be afraid to try out Python commands!

Practice

Program development cycle

• Program?

—a collection of instructions, that directs the computer hardware to accomplish a certain task.

Performing A Task On The Computer

- —Determine what the **output** should be; that is, exactly what the task should produce.
- —Identify the data, or **input**, necessary to obtain the output.
- —The last step is to determine how to **process** the input.
- —Determine what formulas or ways of doing things can be used to obtain the output.

Program development cycle Cont.,

PROGRAM PLANNING

- —Many programmers plan their programs using a sequence of steps.
- Program development cycle.
 - —Analyze: Define the problem.
 - **Design:** Plan the solution to the problem. Find a logical sequence of precise steps that solve the problem. Such a sequence of steps is called an **algorithm**.
 - —Code: Translate the algorithm into a programming language.
 - —**Test and debug:** Locate and remove any errors in the program.
 - —Complete the documentation: Organize all the material that describes the program.

What Does A Computer Do

- Fundamentally:
 - —performs calculations
 - a billion calculations per second!
 - —remembers results
 - 100s of gigabytes of storage!
- What kinds of calculations?
 - —built-in to the language
 - —ones that you define as the programmer
- Computers only know what you tell them

Computers are Machines

- How to capture a recipe in an automatic process
- Fixed program computer
 - Calculator
- Stored program computer
 - —Machine stores and executes instructions

Basic Machine Architecture

Stored Program Computer

- Sequence of instructions stored inside the computer
 - built from a predefined set of primitive instructions
 - 1) arithmetic and logic
 - 2) simple tests
 - 3) moving data
- A special program (interpreter) executes each instruction in order
 - use tests to change the flow of control through a sequence
 - stop when done

What is a recipe

- 1. Sequence of simple steps
- 2. flow of control process that specifies when each step is executed
- 3. a means of determining when to stop

$$1+2+3 =$$
an algorithm!

Algorithms

• Any solvable computing problem can be solved by the execution of a series of actions in a specific order. A procedure for solving a problem in terms of the actions to execute and the order in which these actions execute is called an algorithm.

Programming Fundamentals

- An algorithm is a special type of procedure.
- An algorithm is a procedure that has the following characteristics;
 - 1. terminates,
 - 2. is effective (i.e., executable), and
 - 3. is unambiguous.

Programming Fundamentals

- To describe an algorithm, we need to specify Four things:
 - 1. The input(s) to the algorithm
 - 2. Operations, mathematical formulas, and steps of the algorithm,
 - 3. how these steps are to be structured to achieve the required objectives, and
 - 4. a language in which we can unambiguously describe the steps and structure of the algorithm

Programming Tools

- Flowcharts, a Graphical representation that depicts the logical steps to carry out a task and show how the steps relate to each other.
- Pseudo-code, Uses English-like phrases with some Python terms to outline the task.

Example 1

- Problem: To compute and display the square of a given number.
- Analysis:

input: any number x; **output:** y=square of x; Relation: y=x*x

- Design 1- Pseudo-code
 - Ask the user to enter the number
 - Store it in variable (memory location) x
 - Set y to x * x
 - Print y

2- Flowcharts

Sequential

Structure

Example 2

- Problem: To compute the absolute value of a given number.
- Analysis:

```
Input; any number x; output y=absolute value (x);
Relation: y = x if x \ge 0
Design = -x if x < 0
     1- Pseudo-code
        Ask the user to enter a number
                                                   Sequential
        get the number and store it in variable x
                                                    Structure
        if x \ge 0 then
           set y to x
                                  Conditional
        else
                                   Structure
          set y to -x
        Display y
```

Lecture (1)

2- Flowcharts

Python Programs

- A **program** is a sequence of definitions and commands
 - —definitions **evaluated**
 - —commands **executed** by a Python interpreter in a shell
- Commands (statements) instruct the interpreter to do something.
- Can be typed directly in a shell or stored in a file that is read into the shell and evaluated

Where to get Python

- You can download your own copy, it is free
 - —Download Python recommended
 - Download Spyder
- More advanced tasks (data science, machine learning)
 - —Download Anaconda
 - —Not recommended at this level
- You can use online compilers/IDEs
 - —Programiz recommended

Python IDE

- What is an IDE?
 - An Integrated Development Environment allows you to write programs in a programming language and provides extra tools to help the process
 - Syntax highlighting
 - Code completion
 - Bracket completion/matching
 - Debugging
 - Profiling
- PyCharm is a very powerful and popular IDE for Python
- IDLE comes built-in with any Python distribution
- Eric Python IDE , Spyder, Eclipse PyDev
- Sublime Text, VS Code, Atom, etc. are generic editors that can be extended with Python capabilities

 Lecture (1)

Python Indentation

- Indentation refers to the spaces at the beginning of a code line.
- In other programming languages the indentation in code is for readability only, the indentation in Python is very important.
- Python uses indentation to indicate a block of code.

```
• if 5 > 2:
    print("Five is greater than two!")
```

Python will give you an error if you skip the indentation:

```
if 5 > 2:
print("Five is greater than two!")
```

Python Indentation, cont.

• The number of spaces is up to you as a programmer, but it has to be at least one.

```
if 5 > 2:
  print("Five is greater than two!")
if 5 > 2:
    print("Five is greater than two!")
```

• You have to use the same number of spaces in the same block of code, otherwise, Python will give you an error:

```
if 5 > 2:
print("Five is greater than two!")
print("Five is greater than two!")
Lecture (1)
```

26

Objects

- Programs manipulate data objects
- Objects have a **type** that defines the kinds of things programs can do to them
 - —Ali is a human so he can walk, speak English, etc.
- objects are
 - —scalar (cannot be subdivided)
 - —non-scalar (have an internal structure that can be accessed)

Scalar Objects

- int represent **Integer**, ex. 5
- float represent **real numbers**, ex. 3.27
- bool represent **Boolean** values True and False
- NoneType Special and has one value, None
- can use type() to see the type of an object
- >>> type(5)
 - —int
- >>> type(3.0)
 - —float

28

Non-Scalar Objects

Strings are non-scalar objects. They have internal structures.

```
name = "Hasen"
print(name[2:4])
## se
```

- We can construct new non-scalar objects.
- Object-oriented programming is the art of programming using non-scalar objects.

Types Conversions (CAST)

- We can convert objects of one type to another
 - —Not all types are convertible!
- float(3) converts integer 3 to float 3.0
- int(3.9) truncates float 3.9 to integer 3
- float(3)
- ## 3.0
- int(3.9)
- ## 3
- int("Hasen")
- ## ValueError: invalid literal for int() with base 10: 'Hasen'

Lecture (1)

30

Printing To Console

• To show output from code to a user, use the print command

```
print("Hello World!")
## Hello World!
print(3 + 2)
## 5
print("My age is", 41)
## My age is 41
```

Expressions

- Combine objects and operators to form expressions
- An expression has a value, which has a type
- Syntax for a simple expression
- <object> <operator> <object>

Operators On ints and floats

• i+j the sum

• i-j the difference

• i*j the product

• i/j the division

- —For the sum, the difference, and the product, if both objects are integers, then the result is an integer.
- —If one or both are floats, then the result is a float.
- —For the division, the result is always a float.
- i%j the remainder when i is divided by j
- i**j i to the power of j

Operators on ints and floats

- 3 + 5- ## 8
- 3 5
 - -- ## -2
- 3 * 5
 - **—** ## 15
- 3/5
 - **—** ## 0.6
- 32 % 5
 - **-** ## 2
- 3 ** 4
 - **-** ## 81

Simple Operations

parentheses are used to tell Python to prioritize operations

```
--3 * (2 + 5)
--## 21
```

operator precedence without parentheses

```
___**
```

—+ and – executed left to right, as appear in the expression

Binding Variables And Values

- Equal sign is an assignment of a value to a variable name
- # variable = value
- pi = 3.14159
- pi_approx = 22/7
- value stored in computer memory
- an assignment binds a variable name to a value
- retrieve the value associated with the variable name by invoking the name, by typing
 pi
- pi
- ## 3.14159
- pi_approx
- ## 3.142857142857143

Multiple Assignments

- you can assign multiple values to variables at once
- a, b = 3, 5
- Print(a)
- ## 3
- Print(b)
- ## **5**

Variable Naming

- it is important to use clear and understandable names for variables
- also, using parenthesis in expressions helps with code readability
- a, b, c = 5, 8, 3.14
- d = c * a ** 2 * b

- r, h, pi = 5, 8, 3.14
- $V_{cyl} = pi * (r ** 2) * h$
- $Vcyl = \pi^* r^2^*h$

Variables Cont.,

Single or Double Quotes?

• String variables can be declared either by using single or double quotes:

```
x = "John"
# is the same as
x = 'John'
```

Case-Sensitive

Variable names are case-sensitive.

Comments

- You can enrich your code by adding comments
- to add a comment, start a line with #
- lines starting with # are ignored by Python
- Python has the commenting capability for the purpose of in-code documentation.
- Comments can be used to explain Python code.
- Comments can be used to make the code more readable.
- # Radius, height, and pi are defined
- r, h, pi = 5, 8, 3.14
- # The volume of the cylinder is computed
- # Volume is equal to height times the base area
- $V_{cyl} = pi * (r ** 2) * h$

Lecture (1)

40

Comments cont.

Multi-Line Comments

11 11 11

- Python does not really have a syntax for multi-line comments.
- To add a multiline comment, you could insert a # for each line:

```
#This is a comment written in #more than just one line print("Hello, World!")
```

• Since Python will ignore string literals that are not assigned to a variable, you can add a multiline string (triple quotes) in your code, and place your comment inside it:

```
This is a comment written in more than just one line
"""

print("Hello, World!")
```

Abstracting Expressions

- Why give names to values of expressions?
- to reuse names instead of values
- easier to change code later
- pi = 3.14159
- radius = 2.2
- area = pi * (radius ** 2)
- print(area)
- ## 15.205295600000001

Programming vs MATH

- in programming, variables do not get automatically updated
- pi = 3.14159
- radius = 2.2
- # area of a circle
- area = pi * (radius**2)
- print(area)
- ## 15.205295600000001
- radius = radius + 1
- print(radius)
- ## 3.2
- print(area)
- ## 15.205295600000001
- area = pi * (radius**2)
- print(area)
- ## 32.169881600000004

Changing Bindings

- can re-bind variable names use new assignment statements
- previous value may still be stored in memory but lost the handle for it
- value for the area does not change until you tell the computer to do the calculation again
- pi = 3.14
- radius = 2.2
- area = pi * (radius**2)
- radius = radius + 1

Assignment

- 1. Analyze and design an algorithm to calculate the area of a rectangle, by drawing flowcharts and writing pseudocode. Finally, write a Python program to express your design.
- 2. Analyze and design an algorithm to calculate the area and the circumference of a circle by drawing the flowchart and writing pseudocode to solve this problem, where the area of the circle (A) = π * r^2, the circumference of a circle (C)=2* π *r, r...radius of the circle, and π (pi) = 3.14. Finally, write a Python program to express your design.
- 3. Analyze and design an algorithm to find the roots of quadratic equations $ax^2 + bx + c = 0$ and print a message the roots of the equation are r1 and r2 by drawing the flowchart and writing pseudocode according to the following:

$$D = b^{2} - 4ac$$

$$r1 = \frac{-b + \sqrt{D}}{2 * a}$$

$$r2 = \frac{-b - \sqrt{D}}{2 * a}$$

Finally, write a Python program to express your design.

Lecture (1)

Thank You