$$\pi^{\pi} = ?$$

David Meyer

dmm@1-4-5.net

Last update: January 14, 2022

Can we find an expression for π^{π} ? The first thing we might do is to consider what we know about x^x . We do know that $a^x = e^{x \ln a}$ for positive a, since

$$y = a^x$$
 # define y
 $\Rightarrow \ln y = \ln a^x$ # take the log of both sides
 $\Rightarrow \ln y = x \ln a$ # power rule for logarithms
 $\Rightarrow e^{\ln y} = e^{x \ln a}$ # exponentiate both sides
 $\Rightarrow y = e^{x \ln a}$ # $e^{\ln y} = y$
 $\Rightarrow a^x = e^{x \ln a}$ # $y = a^x$

We can use the same reasoning to show that $x^x = e^{x \ln x}$ for x > 0. Then setting $x = \pi$ we get

$$\pi^{\pi} = e^{\pi \ln \pi} \tag{1}$$

All good, but what is $e^{\pi \ln \pi}$? We can use a Maclaurin series to evaluate this expression as follows:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
Maclaurin series for e^{x}

$$\Rightarrow e^{\pi \ln \pi} = \sum_{n=0}^{\infty} \frac{(\pi \ln \pi)^{n}}{n!}$$
set $x = \pi \ln \pi$

$$\Rightarrow e^{\pi \ln \pi} = \sum_{n=0}^{\infty} \frac{\pi^{n} \ln^{n} \pi}{n!}$$
simplify
$$\Rightarrow \pi^{\pi} = \sum_{n=0}^{\infty} \frac{\pi^{n} \ln^{n} \pi}{n!}$$
$e^{\pi \ln \pi} = \pi^{\pi}$ (Equation (1))

So we get the cool result that

$$\pi^{\pi} = \sum_{n=0}^{\infty} \frac{\pi^n \ln^n \pi}{n!}$$

Next question: is π^{π} rational or irrational?