JMBAG: Ime i prezime:

Programiranje i programsko inženjerstvo Zimski ispitni rok 12. veljače 2015.

Odgovore na 1., 2., 3. i 4. pitanje napišite na svojim papirima, a na 5. i 6. pitanje na listu s zadacima.

Zadatak 1. (25 bodova)

Udaljenosti između gradova zadane su dvodimenzijskim poljem koje se naziva "matrica susjedstva". Ako je element dvodimenzijskog polja $a_{ij} = 0$, tada iz grada s indeksom i nije moguće doći do grada s indeksom j. Ako je element $a_{ij} > 0$, tada on sadrži udaljenost između grada s indeksom i i grada s indeksom j u kilometrima. Matrica je simetrična s obzirom na glavnu dijagonalu pa vrijedi $a_{ij} = a_{ij}$.

- a) Napisati funkciju fudal jenost koja preko parametara prima dvodimenzijsko polje s udaljenostima između gradova i jednodimenzijsko polje s indeksima gradova koje je potrebno posjetiti redom kako su navedeni u polju (pretpostavite da su zadani indeksi unutar matrice sustava i da nema duplikata). Ako je moguće posjetiti sve gradove tim redoslijedom, funkcija mora vratiti ukupnu udaljenost koju je potrebno prijeći kako bi se posjetili zadani gradovi. U suprotnom funkcija mora vratiti vrijednost 0.
- b) Napisati glavni program u kojem je s tipkovnice potrebno učitati broj gradova iz intervala [3, 10] te njihovu matricu susjedstva. Nakon toga s tipkovnice učitati broj gradova koje je potrebno posjetiti (minimalno 3 grada) i njihove indekse. Zatim je potrebno pozvati funkciju iz a) dijela zadatka i ispisati udaljenost. Ako se zadani gradovi ne mogu posjetiti jedan za drugim ispisati poruku "Zadani gradovi ne mogu se posjetiti".

Primjer: Zadano je 6 gradova i njihova matrica susjedstva. Na slici je vidljivo da udaljenost od grada G0 do grada G1 iznosi 10 km (element a_{01} odnosno element a_{10} matrice susjedstva), a udaljenost od grada G0 do grada G2 iznosi 20 km (element a_{02} odnosno element a_{20} matrice susjedstva), itd.

0	10	20	0	0	0
10	0	0	10	40	0
20	0	0	0	0	0
0	10	0	0	0	0
0	40	0	0	0	10
0	0	0	0	10	0

Ako je potrebno posjetiti gradove 0, 1, 4 i 5 tada funkcija fUdaljenost mora vratiti vrijednost 60 jer je ukupna udaljenost 10 + 40 + 10 = 60 km. Ako je potrebno posjetiti gradove 0, 1, 3 i 5 tada funkcija fUdaljenost mora vratiti vrijednost 0 jer iz grada G3 nije moguće direktno doći do grada G5.

Zadatak 2. (10 bodova)

Napisati funkciju određiZadatke koja određuje zadatke za laboratorijsku vježbu koja ima dvije grupe zadataka. Funkcija prima redne brojeve zadataka u obliku jednodimenzijskih polja, a vraća po jedan redni broj zadatka za svaku grupu određen slučajnim odabirom. Pretpostaviti da je generator slučajnih brojeva inicijaliziran prije poziva funkcije.

Primjer 1: Primjer 2:

Grupa1: 2, 1, 5, 4, 3 Grupa1: 15, 2, 11, 22, 16, 3, 9, 1

Grupa2: 10, 9, 8, 7, 11 Grupa2: 5, 3, 8, 10, 7

Povratna vrijednost: 4, 8 Povratna vrijednost: 16, 3

Zadatak 3. (15 bodova)

- a) Napisati vlastitu implementaciju funkcije strrchr bez korištenja drugih ugrađenih funkcija iz zaglavlja string.h. Prototip funkcije je: char *moj_strrchr(const char *s, int c);
- b) Napisati glavni program u kojem je s tipkovnice potrebno učitati niz s (maksimalne duljine 30 znakova) i znak c. Pomoću funkcije moj_strrchr pronađite gdje se u nizu s nalazi zadnji znak c, te koristeći dobiveni rezultat ispišite sadržaj niza s od početka niza do pronađenog znaka c.

Primieri:

Za učitan znak **b** i učitan niz **Abra kad abra**, glavni program na zaslon ispisuje **Abra kad ab**Za učitan znak **e** i učitan niz **Abra kad abra**, glavni program na zaslon ispisuje **U zadanom nizu nema znaka e**

Zadatak 4. (20 bodova)

Zadana je tekstualna datoteka "rezultati.txt" koja sadrži rezultate ispita za studente u obliku:

1000344#2#3.5#4#5

1000003#5.5#3#2.5#8

Podaci su razdvojeni znakom #. Prvi stupac predstavlja šifru studenta (šesteroznamenkasti cijeli broj), dok su ostali stupci ostvareni bodovi po zadacima (realni brojevi). Na ispitu je ukupno 4 zadataka.

Binarna datoteka "ukupno.dat" sadrži ostvarene bodove studenta po zadacima i ukupan ostvareni broj bodova na ispitu. Svaki zapis sadrži šifru studenta (šesteroznamenkasti cijeli broj), bodove po zadacima i ukupan broj bodova na ispitu (realan broj). Redni broj zapisa u datoteci odgovara šifri studenta umanjenoj za 1000000. Pretpostavlja se da u datoteci inicijalno postoje zapisi za sve studente u kojima su bodovi po zadacima i ukupni bodovi postavljeni na 0.

Napisati program koji će na temelju rezultata ispita za studente iz datoteke "rezultati.txt", pohraniti bodove po zadacima i ukupan broj bodova u datoteci "ukupno.dat". Na standardni izlaz potrebno je ispisati šifru studenta koji je pisao ispit i informaciju o rezultatu na ispitu na način da za one zapise gdje je ukupan rezultat veći od prosjeka piše "iznad", a za one ispod prosjeka "ispod".

1000344#ispod

1000003#iznad

Zadatak 5. (5 bodova)

Kolika je vrijednost pohranjena u varijablu tipa float ako je njezin sadržaj:

Rješenje:

b) 42150000₁₆

Rješenje:

Zadatak 6. (5 bodova)

Zadana je funkcija koja računa iznos poreza p koji je potrebno platiti ovisno o cijeni artikla c po sljedećoj formuli:

$$p = \begin{cases} 0.1 * c, & c \le 1000 \\ 100 + 0.2 * (c - 1000), & 1000 < c \le 5000 \\ 500 + 0.3 * (c - 5000), & c > 5000 \end{cases}$$

U prostoru s desne strane napišite programski odsječak za skretnicu (switch) označen s /*nadopuniti*/

```
float f(float c) {
    int kat; float p;
    if (c <= 1000) {
        kat = 1;
    } else if (c <= 5000) {
        kat = 2;
    } else {
        kat = 3;
    }
    switch (kat) {
        /*nadopuniti*/
    }
    return p;
}</pre>
```

Zadatak 1

```
#include <stdio.h>
#include <stdlib.h>
#define MIN 3
#define MAX 10
int fUdaljenost(int *matrSus, int maxStup, int *gradovi, int nGP) {
   int k, trenG, sljedG, udaljenost = 0;
   trenG = gradovi[0];
   for (k = 1; k < nGP; k++) {
       sljedG = gradovi[k];
       if (matrSus[trenG * maxStup + sljedG] == 0) {
           udaljenost = 0;
           break;
       }
       udaljenost += matrSus[trenG * maxStup + sljedG];
       trenG = sljedG;
    return udaljenost;
}
int main(void) {
    int i, j, nG, nGP, matrSus[MAX][MAX] = { 0 }, gradovi[MAX] = { 0 };
    int udaljenost;
    do {
        printf("\nUnesite broj gradova [%d, %d]: ", MIN, MAX);
        scanf("%d", &nG);
    } while (nG < MIN || nG > MAX);
    for (i = 0; i < nG; i++) {</pre>
        for (j = 0; j < i; j++) {
             if (i == j) {
                 continue;
             }
             printf("\nUnesite udaljenost izmedju grada G%d i grada G%d: ", i, j);
             scanf("%d", &matrSus[i][j]);
            matrSus[j][i] = matrSus[i][j];
        }
    }
    do {
        printf("\nUnesite broj gradova koje je potrebno posjetiti [%d, %d]: ", MIN, nG);
        scanf("%d", &nGP);
    } while (nGP < MIN || nGP > nG);
    for (i = 0; i < nGP; i++) {
        printf("\nUnesite indeks %d. grada (%d/%d): ", i + 1, i + 1, nGP);
        scanf("%d", &gradovi[i]);
    }
    udaljenost = fUdaljenost(&matrSus[0][0], MAX, gradovi, nGP);
    if (udaljenost == 0) {
        printf("\nZadani gradovi ne mogu se posjetiti.");
    } else {
        printf("\nUkupna udaljenost posjecenih gradova iznosi %d.", udaljenost);
    }
    return 0;
}
```

Zadatak 2

```
#include <stdlib.h>
void odrediZadatke(int *grupa1, int duljina1, int *grupa2, int duljina2, int *zadaci){
      *(zadaci + 0) = *(grupa1 + rand() % duljina1);
      *(zadaci + 1) = *(grupa2 + rand() % duljina2);
}
Zadatak 3 - funkcija
#include <stdio.h>
#include <stdlib.h>
char *moj_strrchr(const char *s, int c) {
    char *rez = NULL;
    while (*s) {
        if (*s == c) {
            rez = s;
        }
        s++;
    if (rez != NULL) {
        return rez;
    } else {
        /*null-character smatra se dijelom znakovnog niza pa se ova funkcija može
        koristiti kako bi se dobio pokazivač na kraj znakovnog niza*/
        return c == '\0' ? s : NULL;
    }
}
/*Alternativno rješenje*/
char *moj_strrchr_1(const char *s, int c) {
    char *rez = NULL;
    do {
        if (*s == c) {
            rez = s;
        }
    } while (*s++);
    return rez;
}
```

```
Zadatak 3 – glavni program
int main(void) {
    char c, s[30 + 1], *p;
    int i = 0;
    printf("\nUnesite niz znakova: ");
    gets(s);
    printf("\nUnesite znak c: ");
    scanf("%c", &c);
    p = moj_strrchr(s, c);
    if (p == NULL) {
        printf("U zadanom nizu nema znaka %c", c);
    } else {
        do {
            printf("%c", *(s + i));
        } while ((s + i++) != p);
    }
    /*Alternativno rješenje 1*/
    if (p == NULL) {
        printf("U zadanom nizu nema znaka %c", c);
    } else {
        do {
            printf("%c", *(s + i));
            i++;
        \} while ((s + i) != p);
        printf("%c", *(s + i));
    }
    */
    /*Alternativno rješenje 2*/
    if (p == NULL) {
        printf("U zadanom nizu nema znaka %c", c);
    } else {
        while ((s + i) != p) {
            printf("%c", *(s + i));
        printf("%c", *(s + i));
    */
    return 0;
}
```

Zadatak 4

```
#include <stdio.h>
#define BR_ZAD 4
int main(void){
       FILE *fin, *foutst;
       float sumauk, prosjekuk;
       int br, i;
       char tmp;
       struct {
              int sifra;
              float bodovi[BR ZAD];
              float suma;
       } zapis;
       fin = fopen("rezultati.txt", "r");
foutst = fopen("ukupno.dat", "w+b");
       br = sumauk = 0;
       while (fscanf(fin, "%d%c%f%c%f%c%f\n", &zapis.sifra, &tmp, &zapis.bodovi[0],
              &tmp, &zapis.bodovi[1], &tmp, &zapis.bodovi[2], &tmp, &zapis.bodovi[3])
                     == BR ZAD + 5){
              zapis.suma = 0;
              for (i = 0; i < BR_ZAD; i++){
                     zapis.suma += zapis.bodovi[i];
              }
              fseek(foutst, (long)(zapis.sifra - 1000000) * sizeof(zapis), SEEK_SET);
              fwrite(&zapis, sizeof(zapis), 1, foutst);
              sumauk += zapis.suma;
              br++;
       prosjekuk = sumauk / br;
       fseek(foutst, 0L, SEEK_SET);
       while (fread(&zapis, sizeof(zapis), 1, foutst) == 1) {
              printf("%d#%s\n", zapis.sifra, zapis.suma > prosjekuk ? "iznad" : "ispod");
       }
       fclose(fin);
       fclose(foutst);
       return 0;
}
Zadatak 5
a) NaN
b) 37.25
Zadatak 6
case 1:
    p = 0.1 * c;
    break;
case 2:
    p = 100 + 0.2 * (c - 1000);
    break;
case 3:
    p = 500 + 0.3 * (c - 5000);
```