- 1. For a given amplifier, you are given the following information.
 - The source is a microphone that produces a sine wave with a peak input signal of 0.2 V and 1mA.
 - The output drives a 100 Ω resistor that absorbs 48.4 mW of average power.
 - The DC supplies are ±3V with dc currents of 20mA (assume average quantities).

Find the following:

- a. Voltage gain, Current gain, and Power gain in ratio units and dB units
- b. Amplifier efficiency
- c. Power dissipated by the amplifier
- 2. An amplifier provides linear operation at a gain of 200 V/V. You are given the following information about the clipping levels for given DC supplies.

DC supplies	Input at which Clipping occurs		
± 2V	± 0.00850 V		
± 5V	± 0.02150 V		
± 10V	± 0.0.4250 V		

Find the output voltage range for each power supply level and at what the percentage of the DC supplies does the output clips.

- 3. An amplifier with a gain of 1 V/V has an input resistance of $1M\Omega$ and an output resistance of $40~\Omega$. A source with a peak 2 volt signal and a $200k\Omega$ resistance is utilized as an input to drive a $150~\Omega$ load. Draw the circuit and find the voltage, current and power gains in ratio units and dB.
- 4. You have a 10mV, $100\text{k}\Omega$ source that will drive a $50~\Omega$ load. You are given the following amplifiers to cascade between the source and load. What combination works best? Why?

	Voltage Gain (dB)	Ri (Ω)	$Ro(\Omega)$
Amplifier I	40	10k	10k
Amplifier II	6	100k	20