Упражение 1

1. В алфавите $\sum = \{a,b,c\}$ постройте грамматику для языка $L = \{\omega \in \sum^* | \omega$ содержит подстроку $aa\}$

$$S \to cS \mid bS \mid aaS_1 \mid aS$$

$$S_1 \to aS_1 \mid bS_1 \mid cS_1 \mid \lambda$$

2. В алфавите $\sum = \{a,b,c\}$ постройте грамматику для языка $L = \{\omega \in \sum^* | \omega$ не полиндром $\}$

3. В алфавите $\sum = \{\emptyset, \mathbb{N}, '\{', '\}', ', ', \cup\}$ постройте грамматику для языка $L = \{\omega \in \sum^* |\omega - \text{синтаксически корректная строка обозначающая множество}\}$

$$S \to \emptyset \mid \mathbb{N} \mid \{S_1\} \mid \cup S_1 \to S, S_2 \mid S \mid \lambda$$

$$S_2 \to S, S_2 \mid S$$

Упражение 2

В алфавите $\sum_{n=0}^\infty = \{1,+,=\}$ Рассмотрим язык $A=\{1^m+1^n=1^{n+m}|m,n\in\mathbb{N}\}$

1. Докажите что язык A регулярный (построением) или не регулярный (через лемму о накачке)

Фиксируем $\forall n=N$ возьмём слово $\alpha=1^N+1^N=1^{2N},\ \alpha\in A,\ |\omega|=4N+2>N,$ так как в лемме $|xy|\leq N,$ как бы мы не взяли $xy,\ y=1^i\implies xy^kz$ выходит за пределы языка при $\forall k\neq 1,\$ так как тогда в выражении перестаёт выполнятся тождество \implies язык A не регулярный

2. Постройте КС-грамматику для языка A, показывающую, что A — контекстно-свободный

$$S \rightarrow 1S1 \mid +S_1 S_1 \rightarrow 1S_11 \mid =$$

Упражение 3

1. Вы пошли гулять с собакой, ваша собака на поводке длины 2. Это значит что она не может отойти от вас более чем на 2 шага. Пусть $\sum = \{h, d\}$, где h — ваше перемещение на один шаг вперёд, а d — шаг собаки. Прогулка может быть завершена, если собака и человек оказались в одной точке.

Пусть $D_1 = \{ \omega \in \sum^* | \omega \text{ описывает последовательность}$ ваших шагов и шагов вашей собаки на прогулке с поводком $\}$

(а) Докажите, что язык D_1 регулярный (построением) или не регулярный (через лемму о накачке)

(b) Постройте КС-грамматику для языка D_1 , показывающую, что D_1 — контекстно-свободный

$$S \rightarrow hS_1 \mid dS_2 \mid \lambda$$

$$S_1 \rightarrow hdS_1 \mid dS$$

$$S_2 \rightarrow dhS_2 \mid hS$$

2. Допустим теперь, что вы также пошли на прогулку с собакой. но не взяли с собой поводок. Это значит, что вы можете отдалится от собаки на любое расстояние.

Пусть $D_2 = \{ \omega \in \sum^* | \omega \text{ описывает последовательность}$ ваших шагов и шагов вашей собаки на прогулке без поводка $\}$

(а) Докажите, что язык D_2 регулярный (построением) или не регулярный (через лемму о накачке)

Фиксируем $\forall n=N$ возьмём слово $\alpha=h^Nd^N,\ \alpha\in D_2,\ |\omega|=2N>N,$ так как в лемме $|xy|\leq N,$ как бы мы не взяли $xy,\ y=h^i\Longrightarrow xy^kz$ выходит за пределы языка при $\forall k\neq 1,\$ так как тогда в конце прогулки вы и собака окажитесь в разных местах \Longrightarrow язык D_2 не регулярный

(b) Постройте КС-грамматику для языка D_2 , показывающую, что D_2 — контекстно-свободный

$$S \rightarrow dShS \mid hSdS \mid \lambda$$

Упражение 4

Пусть $Perm(\omega)$ — это множество всех пермутаций строки ω , то есть, множество всех уникальных строк, состоящих из тех же букв и в том же количестве, что и в ω . Если L — регулярный язык, то Perm(L) — это объединение $Perm(\omega)$ для всех ω в L. Если L регулярный, то Perm(L) иногда тоже регулярный, иногда контекстно-свободный, но не регулярный, а иногда даже не контекстно-свободный. Рассмотрите следующие регулярные выражения R и установите, является ли Perm(R) регулярным, контекстно-свободным или ни тем и ни другим:

- 1. (01)*
 - (а) Фиксируем $\forall n=N$ возьмём слово $\alpha=0^N1^N,\ \alpha\in Perm(R),\ |\alpha|=2N>N,$ так как в лемме $|xy|\leq N,$ как бы мы не взяли $xy,\ y=0^i\implies xy^kz$ выходит за пределы языка при $\forall k\neq 1,$ так как тогдаколичество нулей \neq количество единиц \Longrightarrow α уже не является перестановкой символов в слове состоящем из пар нулей и единиц \Longrightarrow язык Perm(R) не регулярный
 - (b) $S \rightarrow 0S1S \mid 1S0S \mid \lambda$
- $2.0^* + 1^*$
 - (а) Построим автомат

(b)
$$S \to 0S_1 \mid 1S_2 \mid \lambda$$

 $S_1 \to 0S_1 \mid \lambda$
 $S_2 \to 1S_2 \mid \lambda$

3. (012)*

- (а) Фиксируем $\forall n=N$ возьмём слово $\alpha=0^N1^N2^N,\ \alpha\in Perm(R),\ |\alpha|=3N>N,$ так как в лемме $|xy|\leq N,$ как бы мы не взяли $xy,\ y=0^i\implies xy^kz$ выходит за пределы языка при $\forall k\neq 1,$ так как тогдаколичество нулей \neq количество единиц и двоек \Longrightarrow α уже не является перестановкой символов в слове состоящем из троек нулей, единиц и двоек \Longrightarrow язык Perm(R) не регулярный
- (b) Фиксируем $\forall p=N$ возьмём слово $\alpha=0^N1^N2^N,\ \alpha\in Perm(R),\ |\alpha|=3N>N,$ так как в лемме $|v\omega x|\leq N,$ как бы мы не взяли $v\omega x,$ оно никогда не сможет включать в себя и единицы и двойки и нули, а значит если начать что то наращивать в этом слове, тех цифр что в нем не присутствуют станет меньше чем других $\Longrightarrow uv^k\omega x^ky$ выходит за пределы языка

Упражение 5

1. Пусть грамматика G— праволинейная. Опишите алгоритм построения НКА N, такого что (N) = (G). Коротко докажите(от противного), что ваш алгоритм может получить только слова из языка грамматики. Проиллюстрируйте алгоритм на грамматике:

$$\begin{split} A &\rightarrow aB \mid bC \\ B &\rightarrow aB \mid \lambda \\ C &\rightarrow aD \mid A \mid bC \\ B &\rightarrow aD \mid bD \mid \lambda \end{split}$$

Имеем
$$G = \langle V, \sum, R, S \rangle$$
, где

V — множество нетерминальных символов

 \sum — множество терминальных символов

$$R$$
 — правила вида
$$\begin{cases} 1. \ A \to \lambda \\ 2. \ A \to B \\ 3. \ A \to aB \end{cases}$$

S — стартовый нетерминал

Тогда НКА $N = \langle M, Q, y, T, \sigma \rangle$ будет таким:

Мн-во терминальных символов: $M = \sum$

Mн-во вершин: Q = V

Стартовая вершина: y = s

Мн-во конечных вершин.: $T = \{t : t \in V, \exists \omega \in R : t \to \lambda \in T\}$

 ω

Мн-во переходов σ формируем по принципу (относительно номеров из R): $\begin{cases} 1.\text{ничего} \\ 2.\lambda - \text{переход из } A \text{ в } B \\ 3.\text{переход по } a \text{ из } A \text{ в } B \end{cases}$

Докажем (N)=(G)Пусть x не выводится из G , но выводится из NПусть $x=a_1a_2...a_n \ (a_i\in \sum, \forall i)$

При разборе слова автоматом, для каждой буквы a_i , мы должны пройти по λ -переходам из текущей вершины S в вершину S_1 из которой есть переход по букве a_i , когда буквы закончатся мы аналогично должны дойти до какой то конечной вершины по $\lambda-$ переходам. Так как в N каждой вершине мы можем поставить в соответствие правило из G(т.к. Q = V) а λ -переходы между вершинами A и B мы ставили тогда когда в R было правило $A \to B$ то выходит везде где по λ -переходам мы добираемся из вершины S в вершину S_1 , в G $S \Rightarrow^* S_1$, далее так как в N мы ставили переход из A в B по a тогда когда в R было правило $A \to aB$, значит если в автомате есть переход из S_1 в S_2 по a_i , то в G $S_1 \Rightarrow^* a_i S_2$, и наконец так как мы в N обозначали вершину A конечной если в R есть правило $A \to \lambda$, то если в автомате мы смогли добратся по λ -переходам из S_m в вершину S_k которая является конечной, значит в $G S_m \Rightarrow^* S_k, S_k \Rightarrow^* \lambda \implies S_m \Rightarrow^* \lambda \implies G \Rightarrow^* x$ противоречие.

Пусть теперь x выводится из G , но не выводится из N Пусть $x = a_1 a_2 ... a_n \ (a_i \in \sum, \forall i)$

Доказывать будем аналогично. Чтобы $y \implies *a_1S_1$ нужно пройти по переходам вида $A \to B$ из y в S: есть переход $S \to a_1S_1$, в N можно сделать тоже-самое перейдя по λ —переходам из y в S, а далее из S в S_1 по a_1 , из за принципа построения N. Аналогично происходит до конца слова, когда закончатся буквы, допустим на S_n , далее $S_n \Rightarrow *\lambda$, по тем же соображениям мы и в N можем сделать так-же и прийти из S_n в конечную вершину, выходит что если слово выводится из G оно выводится и из N.

2. Пусть N — HKA. Опишите алгоритм построения KC-грамматики G, такой что (G) = (N). Коротко докажите (от противного), что ваш алгоритм может получить только слова из языка HKA. Проиллюстрируйте алгоритм на автомате:

Имеем $N = \langle M, Q, y, T, \sigma \rangle$, где

М – множество терминальных символов

Q — множество вершин

у — стартовая вершина

T — множество конечных вершин

 σ — множество переходов

Тогда грамматика $G = \langle V, \sum, R, S \rangle$ будет такой:

Мн-во нетерминальных символов: V = Q

Mн-во терминальных символов: $\sum = M$

Стартовый нетерминал: S = y

Мн-во правил вывода R формируем

по принципу: $\begin{cases} A \to B \text{ (есть } \lambda - \text{переход из } A \text{ в } B) \\ A \to aB \text{ (есть переход по } a \text{ из } A \text{ в } B) \\ A \to \lambda \text{ (}A \text{ — терминальная вершина)} \end{cases}$

Докажем (N) = (G)

Пусть x не выводится из G, но выводится из N Пусть $x = a_1 a_2 ... a_n \ (a_i \in \sum, \forall i)$

При разборе слова автоматом, для каждой буквы a_i , мы должны пройти по λ -переходам из текущей вершины S в вершину S_1 из которой есть переход по букве a_i , когда буквы закончатся мы аналогично должны дойти до какой то конечной вершины по λ —переходам. Так как в N каждой вершине мы можем поставить в соответствие правило из G (т.к. V=M) и так как мы создавали правила вида $A\to B$ когда есть λ —переход из A в B, $S\Rightarrow^*S_1$, так как мы создавали правила вида $A\to aB$ когда из вершины A есть переход в B по a, то $S_1\Rightarrow^*a_iS_2$, аналогично со всеми переходами, теперь если мы можем из вершины S_n перейти в конечную вершину значит $S_n\Rightarrow^*\lambda$, значит x выводится из G — противоречие.

Пусть теперь x выводится из G , но не выводится из N Пусть $x=a_1a_2...a_n \ (a_i\in \sum, \forall i)$

Доказывать будем аналогично. Чтобы $y \Rightarrow^* a_1S_1$ нужно пройти по переходам вида $A \to B$ из y в S: есть переход $S \to a_1S_1$, в N можно сделать тоже-самое ,так как для каждого подобного правила есть λ -переход, перейдя по λ -переходам из y в S, а далее из S в S_1 по a_1 , из за принципа построения N. Аналогично происходит до конца слова, когда закончатся буквы, допустим на S_n , далее $S_n \Rightarrow^* \lambda$, по тем же соображениям мы и в N можем сделать так-же и прийти из S_n в конечную вершину, выходит что если слово выводится из G оно выводится и из N.

$$\begin{array}{l} q_{0} \to \ aq_{0} \ | \ aq_{1} \ | \ q_{3} \\ q_{1} \to \ aq_{1} \ | \ bq_{4} \ | \ aq_{2} \ | \ q_{2} \\ q_{2} \to \ aq_{2} \ | \ bq_{2} \ | \ aq_{5} \ | \ \lambda \\ q_{3} \to \ bq_{0} \ | \ \lambda \\ q_{4} \to \ q_{5} \ | \ \lambda \\ q_{5} \to \ aq_{5} \ | \ bq_{2} \end{array}$$