Chase Hiatt Midterm 2

1. Short answer

(a) The syntax of a logic is the structure of the symbols that make up the logic. It only defines the way the characters come together to form parts of a larger whole. For example, the syntax of the \exists symbol is to follow it with a variable, then have a sentence which includes uses of that variable, such as $\exists xFx$. The semantics of a logic is the meaning behind a given sentence. The semantics of the sentence $\exists xFx$ is the meaning of the sentence, 'Something exists which is an F'. Both syntax and semantics play crucial roles in the expressiveness of a logic, and you cannot have one without the other

(b) The difference between $\Diamond \exists x Px$ and $\exists x \Diamond Px$ is where the P might be happening, and in which domain the P may fall. In the sentence $\Diamond \exists x Px$, we are claiming that something in some world is a P. The P thing does not necessarily exist in our world, but it does exist in some world. To contrast this, the sentence $\exists x \Diamond Px$ says there is something in this world which could be a P. If we let P indicate somebody being a magic user, the second sentence ($\exists x \Diamond Px$) says that somebody in our world is possibly magic. The first sentence ($\Diamond \exists x Px$) says that it is possible that some person in some world (which may not be our own) is magic.

2. Symbolization

- (a) $\square(M \to J)$ with M = mail has been checked and J = James is home
- (b) $\Diamond(V \land I)$ with V = Vase produced before 1000 B.C. and I = Hittites had iron weapons. The formula can be understood as 'It is possible that the vase was produced before 1000 B.C. and that Hittites had iron weapons'

3. Countermodels

Chase Hiatt Midterm 2

(a) To understand part a, we want to get $\Diamond\Diamond\Diamond P \land \neg P$ to form a counter example of $\neg\Diamond\Diamond\Diamond P \lor P$ World 1 does not have P, so we get $\neg P$. World 2 is accessible from world 1 and world 1 is accessible from world 1, which leads us to $\Diamond\Diamond\Diamond P$. We have shown $\Diamond\Diamond\Diamond P \land \neg P$, which forms a counterexample to $\neg\Diamond\Diamond\Diamond P \lor P$.

- (b) To give a counter example for b, we want to show $P \to \Box Q$ and $\neg \Box Q$. World 1 is not a P world, so we can conclude $P \to \Box Q$ through explosion. World 1 is accessible from world 1, and it is not a Q world, so we can conclude $\neg \Box Q$. By showing $P \to \Box Q \land \neg \Box Q$, we have given a counterexample for $\neg (P \to \Box Q) \lor \Box Q$
- 4. Symbolizing quantified modal logic
 - (a) $(\forall x \Diamond F) \rightarrow \Diamond \forall x F x$
 - (b) $[\Box(\exists xFx)] \rightarrow \exists x\Box Fx$

5. Counter models quantified modal logic

Let $\{a,b,c\}$ indicate a,b,c are in the domain of the adjacent world. let 'P $\{a\}$ ' mean a is 'a' P in the adjacent world