Первая программа

- #include <iostream> и using namespace std; для вывода текста
- int main() точка входа; с неё начинается **любая** программа
- cout << "текст"; выводит текст на экран
- end1; перевод строки

Задачи

- ? Напишите программу, которая выводит на экран ваше имя.
- ? Выведите на экран звёздочки в виде прямоугольного треугольника.

**

? Вычислите, используя арифметические операции и скобки: $25+17; \qquad \frac{5}{4}; \qquad 1+\frac{1}{1+\frac{1}{2}}.$

$$25+17;$$
 $\frac{5}{4};$ $1+\frac{1}{1+\frac{1}{2}}.$

Основные типы данных

- int целое число
- float число с плавающей точкой
- string строка
- char символ
- cin >> переменная; считывает значение в переменную

Задачи

- ? Сложите два целых числа.
- ? Вычислите площадь квадрата по длине стороны.
- ? Переведите заданное количество метров в километры.
- ? Напечатайте последнюю цифру заданного натурального числа.
- ${f ?}$ Вычислите ${f a}^4$, использовав не более двух операций умножения.
- **?** Вычислите a^{20} , использовав не более пяти операций умножения.

Материалы

savthe.com/edu

- VimC++ (запускать ярлык GVim)
- Учебник по С++
- Шпаргалка по Vim

github.com/hant05080/lessons

Бисер

В шкатулке хранится разноцветный бисер или бусины). Все бусины имеют одинаковую форму, размер и вес. Бусины могут быть одного из N различных цветов. В шкатулке много бусин каждого цвета. Требуется определить минимальное число бусин, которые можно не глядя вытащить из шкатулки так, чтобы среди них гарантированно были две бусины одного цвета.

Входные данные

На вход подаётся одно натуральное число N — количество цветов бусин (1 \leq N \leq 10^9).

Результат работы

Напечатайте одно целое число — минимальное количество бусин.

Входные данные	Результат работы
3	4

Следующее и предыдущее

Напишите программу, которая считывает целое число и выводит текст с упоминанием следующего и предыдущего для него чисел.

Входные данные

На вход подаётся целое число, не превосходящее 10^9 по абсолютной величине.

Результат работы

Напечатайте текст, аналогичный приведённому в примере.

Входные данные	Результат работы
42	Следующее число после 42: 43 Предыдущее число перед 42: 41

Магазин канцелярских товаров

Однажды, посетив магазин канцелярских товаров, Вася купил X карандашей, Y ручек и Z фломастеров. Известно, что цена ручки на 2 рубля больше цены карандаша и на 7 рублей меньше цены фломастера. Также известно, что стоимость карандаша составляет 3 рубля. Требуется определить общую стоимость покупки.

Входные данные

На вход подаются 3 натуральных числа, не превосходящих 10^9

Результат работы

Напечатайте одно натуральное число — стоимость покупки в рублях.

Входные данные	Результат работы
111	20
1 2 3	49

Сумма цифр

Найдите сумму цифр трёхзначного натурального числа.

Входные данные

На вход подаётся трёхзначное натуральное число.

Результат работы

Напечатайте одно натуральное число — сумму его цифр.

Входные данные	Результат работы
100	1
123	6

Инструкции ветвления

```
if (/* условие */)
{
    // некоторые действия
    // выполнятся, если условие верно
}
else
{
    // если условие неверно
}
```

Операторы сравнения

- == равно (не путать с =)
- != не равно
- < меньше
- > больше
- <= меньше либо равно
- >= больше либо равно
- && логическое И
- | | логическое ИЛИ

Задачи

- ? Поменять местами значения двух переменных.
- ? Решить предыдущую задачу без дополнительной переменной.
- ? Вычислить модуль введённого числа.
- ? Определить, является ли введённое число чётным.
- ? Найти максимальное из двух чисел.
- ? Проверить, могут ли 3 заданных числа быть сторонами треугольника.

Калькулятор

Напишите калькулятор, выполняющий одно из 4 арифметических действий над двумя заданными вещественными числами.

Входные данные

На вход подаётся вещественное число a, символ s и вещественное число b ($|a|, |b| \le 1000, c \in \{\text{'+'}, \text{'-'}, \text{'*'}, \text{'}'\}$).

Результат работы

Напечатайте одно число — результат вычисления, либо сообщение об ошибке.

Входные данные	Результат работы
2+3	5
3.14*2.72	8.5408
42/0	Ошибка

Логические выражения

- bool логический тип данных
- ! оператор отрицания
- 0 == false, !0 == true // любое число, кроме нуля
- а = !!а; // 0, если а была 0; иначе 1
- Операторы сравнения возвращают результат логического типа

МКАД

Длина Московской кольцевой автомобильной дороги — 109 километров. Байкер Вася стартует с первого километра МКАД и едет со скоростью v километров в час. На какой отметке он остановится через t часов?

Входные данные

На вход подаются два целых числа t и v ($0 \le t, v \le 10000$).

Результат работы

Напечатайте единственное число от 1 до 109 — километр МКАД, на котором остановится Вася.

Входные данные	Результат работы
60 2	12
109 42	1
0 146	1

Счастливый билет

Вы пользуетесь общественным транспортом? Вероятно, вы расплачивались за проезд и получали билет с номером. Счастливым билетом называют такой билет с шестизначным номером, где сумма первых трех цифр равна сумме последних трех. Т.е. билет с номером 385916 — счастливый, т.к. 3+8+5=9+1+6. Вам требуется написать программу, которая проверяет счастливость билета.

Входные данные

На вход подаётся одно целое число N ($0 \le N < 10^6$).

Результат работы

Напечатайте «YES», если билет с номером N счастливый и «NO» в противном случае.

Входные данные	Результат работы
385916	YES
123456	NO

Торт

На свой день рождения Петя купил красивый и вкусный торт, который имел идеально круглую форму. Петя не знал, сколько гостей придет на его день рождения, поэтому вынужден был разработать алгоритм, согласно которому он сможет быстро разрезать торт на *N* равных частей. Следует учесть, что разрезы торта можно производить как по радиусу, так и по диаметру. Помогите Пете решить эту задачу, определив наименьшее число разрезов торта по заданному числу гостей.

Входные данные

На вход подаётся натуральное число \emph{N} – число гостей, включая самого виновника торжества ($\emph{N} \leq 10^9$).

Результат работы

Напечатайте одно целое число — минимальное возможное число разрезов торта.

Входные данные	Результат работы
2	1
3	3

Ладья

Напомним, что в шахматах используется клеточная доска размером 8х8, где располагаются шахматные фигуры, которые могут перемещаться по определенным правилам. В частности, *падья* может перемещаться на любое расстояние, как по вертикали, так и по горизонтали. Требуется определить: может ли ладья выполнить ход из клетки с

координатами (X_1, Y_1) в клетку с координатами (X_2, Y_2) на стандартной шахматной доске?

Входные данные

На вход подаются 4 числа: начальная координата *ладьи* X_1,Y_1 и конечная — X_2,Y_2 . Гарантируется, что начальная и конечная координаты не совпадают.

Результат работы

Напечатайте «YES», если ход допустим и «NO» в противном случае.

•	
Входные данные	Результат работы
4 3 7 3	YES
4 3 6 1	NO

Слон

Напомним, что в шахматах используется клеточная доска размером 8х8, где располагаются шахматные фигуры, которые могут перемещаться по определенным правилам. В частности, *слон* может перемещаться на любое расстояние по диагонали.

Требуется определить: может ли слон выполнить ход из клетки с координатами (X_1, Y_1) в клетку с координатами (X_2, Y_2) на стандартной шахматной доске?

Входные данные

На вход подаются 4 числа: начальная координата *слона* X_1, Y_1 и конечная — X_2, Y_2 . Гарантируется, что начальная и конечная координаты не совпадают.

Результат работы

Напечатайте «YES», если ход допустим и «NO» в противном случае.

• •	
Входные данные	Результат работы
4 3 7 3	YES
4 3 6 1	NO