

Laboratory of Microwave Circuits and Systems

Prof. Dr.-Ing.S. Peik

LAB REPORT

Lab Exercise: Designing a Low Noise Amplifier (LNA) Microwave Circuit.

Lab date: 06/28/2018

Group	Student Name	Matriculation Number
G10	Karthik Nagaraj	5020058
	Mrinal Vinayak Shinde	5021349
	Sanath Kumar Yama	5021387

AMW-Low Noise Amplifier

Table of Contents

- 1. Review of the design
- 2. S-parameter line for the specific transistor, bias and frequency.
- 3. Calculate the two reflection coefficients Γs and ΓL .
- 4. Calculate the Maximum Gain.

AMW-Low Noise Amplifier

Milestone 1:

Task: Theoretical design for maximum gain for transistor BFP640

Procedure:

1. Specifications:

Transistor: – BFP640 $V_{CE} = 2.0V$ $I_{CE} = 20.0mA$ f = 4.0 GHz

2. Reading S – Parameters from the data sheet:

$$S_{11} = 0.3820 \angle 136.6^{\circ} \Rightarrow -0.28 + j \ 0.26$$
 $|S_{11}| = 0.38$
 $S_{12} = 0.096 \angle 37.0^{\circ} \Rightarrow 0.08 + j \ 0.06$ $|S_{12}| = 0.1$
 $S_{21} = 5.694 \angle 48.5^{\circ} \Rightarrow 3.77 + j 4.26$ $|S_{21}| = 5.69$
 $S_{22} = 0.0730 \angle -81.2^{\circ} \Rightarrow 0.01 - j 0.07$ $|S_{22}| = 0.07$
 $\Delta = |S_{11}S_{22} - S_{12}S_{21}|$ $\Delta = 0.53$

3. Calculation:

Reflection Coefficients (Γ_S , Γ_L):

$$\Gamma_S = \frac{B_1 \pm \sqrt{B_1^2 - 4|C_1|^2}}{2C_1}$$

$$\Gamma_L = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2C_2}$$

Where B_1 , B_2 , C_1 , C_2 can be calculated from the following equations:

$$B_1 = 1 + |S_{11}|^2 - |S_{22}|^2 - |\Delta|^2$$

$$B_1 = 1 + (0.38)^2 - (0.07)^2 - (0.53)^2$$

$$B_1 = 0.8586$$

$$B_2 = 1 + |S_{22}|^2 - |S_{11}|^2 - |\Delta|^2$$

$$B_2 = 1 + (0.07)^2 - (0.38)^2 - (0.53)^2$$

$$B_2 = 0.5796$$

AMW-Low Noise Amplifier

$$C_1 = S_{11} - \Delta S_{22}^*$$

$$C_1 = -0.2853 + j \ 0.2229 \Rightarrow 0.36 \angle 142.0^{\circ}$$

$$|C_1| = 0.36$$

$$C_2 = S_{22} - \Delta S_{11}^*$$

$$C_2 = 0.1584 + j \ 0.0678 \Rightarrow 0.17 \angle 23.17^{\circ}$$

$$|C_2| = 0.1$$

$$\Gamma_S = -0.5089 - j0.4386 \implies 0.67 \angle -139.243^{\circ}$$

$$|\Gamma_{S}| = 0.57$$

$$\Gamma_L = 0.2837 + j0.4565 \Rightarrow 0.54 \angle 58.67^{\circ}$$

$$|\Gamma_L| = 0.32$$

Maximum Gain ($G_{T,max}$):

The Overall Transducer gain,

$$G_T = G_S + G_O + G_L$$

$$G_S = \frac{1}{1 - |\Gamma_S|^2}$$

$$G_0 = |S_{21}|^2$$

$$G_L = \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

$$G_T = 16.5534 \ dB$$

Circuit diagram with lumped elements:

The final amplifier circuit is designed as shown in the below figure:

Figure 1: Transmission Line Circuit

Figure 2: Transmission Line Response