M.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2018

BIOENERGETICS AND BIOPROCESS ENGINEERING

Time: Three hours Full Marks: 100

Answer all questions

- **1.** a) What are the different models for specific growth rate prediction using unstructured non-segregated model?
 - b) What is the Hanes-Woolf plot?
 - c) What do you mean by saturation constant in Monod equation for cellular system?
 - d) What do you mean by electrophoresis of cell?
 - e) What is an enzyme entrapment?
 - f) What do you mean by uncompetitive inhibitors?
 - g) What is an allostery binding?
 - h) What is a chemostat?
 - i) What is the Damkohler number?
 - j) What is a grid counts for determination of cell number density?

2x10=20

- 2. a) Describe briefly with the help of a neat sketch the various section of cell growth curve.
 - b) In his (Monod) thesis which was published Monod was proposed equation with his name. As experimental support for this equation from his presented results from 4 batch reactor run on the growth of a pure bacteria culture in a lactose solution. One of his runs produced:

Time(hr)	0	0.54	0.90	1.23	1.58	1.95	2.33	2.70
$C_A(mg.L^{-1})$	147	125	104	70	38	18	3	1
$C_c(mg.L^{-1})$	15.5	23	30	38.8	48.5	68.3	61.3	62.5

Fit the Monod equation to this data.

10+10=20

- 3. a) Derive the rate equation for a homogeneous enzyme-catalyzed reaction using the rapid equilibrium assumption.
 - b) The following data have been obtained from an enzyme catalyzed reaction using enzyme concentration ($[E_0] = 0.00875 \text{ g/I}$).

Substrate concentration, [s](g/l)	20	10	6.7	5.0	4.0
Rate of reaction, γ[g/(l.min)]	0.67	0.51	0.41	0.31	0.29

Estimate using Hanes-Woolf plot: 1) Forward reaction velocity (V_m) , 2) Michaelis-Menten constant (K_m) , and 3) Rate constant (k_2) .

4. a) Derive the optimum cell concentration using MFR,

$$C_{C, \mathrm{opt}} = Y_{C/A} \ [C_{A0} - \frac{C_{A0}}{1+N}]$$
, where $N = \sqrt{1 + \frac{C_{A0}}{K_S}}$, and $Y_{C/A} = \text{Yield of cell concentration}$.

b) Briefly write the design and operation of a typical aseptic, aerobic fermentation process.

10+10=20

- 5. a) Briefly describe the non-competitive inhibition kinetics.
 - b) Explain the different methods of enzyme immobilization?
 - c) Explain electrical cell quantification?
 - d) Describe the non-mechanical methods of cell disruption.
 - e) Show the effectiveness factor (η) vs Thiele modulus (ϕ) value curves for different values of dimensionless Machealis-Menten constant. 5+5+3+5+2=20