Financial Programming in C++: Homework Assignment 3 Fall 2025, MSQF, Fordham University

Due: September 18th, 2025

Problem 0

Unzip the file HW3.zip in a folder of your choice.

The folder should contain the following files:

- discount.h and discount0.cpp
- forward.h and forward.cpp
- black_scholes.h and black_scholes0.cpp

Problem 1: Swap Present Value

The present value of a **receiver swap** is given by the following formula:

$$pv = \sum_{i=1}^{N-1} R dT df(t_i) + R dt df(T) + df(T) - 1$$

The present value of a **payer swap** has the opposite sign:

$$pv = -\sum_{i=1}^{N-1} R dT df(t_i) + R dt df(T) - df(T) + 1$$

where all the variables have the same meaning we have seen in class:

- R is the swap rate,
- \bullet T is the maturity of the swap
- t_i are the payment dates of the swap
- df(t) is the discount factor at time t.
- $\mathrm{d}T = \frac{1}{\mathrm{freq}}$ is time between regular swap payments
- \bullet dt is the time between the last swap payment and the swap maturity

Problem 1.1

Make a copy of the file discount0.cpp and name it discount.cpp.

In this file implement the function swap_pv as declared in the file discount.h:

```
double swap_pv(bool is_receiver,double R, double T, double freq, double r);
```

Where the function arguments are:

- a boolean flag is_receiver that is true if the swap is a receiver swap and false if the swap is a payer swap.
- ullet the swap rate R
- the swap maturity T in years.
- the payment frequency freq
- \bullet the discount rate r

The function must return the present value of a swap as defined by those parameters.

Problem 1.2

Create a file named test_discount.cpp.

For every maturity starting with T=0.25 years (one quarter) and up to T=30 years (inclusive) in quarterly increments:

- 1. compute the swap rate R for that maturity.
- 2. verify using the function swap_pv that a receiver swap with that maturity and swap rate has present value equal to zero within the numerical precision of a double variable.

Assume that the swap frequency is semi-annual (freq = 2) and the discount rate r is 0.06.

Your program should output:

- 1. A header line with the following fields: T, R, pv.
- 2. One line for each maturity with the values of T, R and pv separated by commas.

Problem 2: Option Greeks and Multiple Function Returns

Option values are sensitive to changes in the market environment: the underlying price, the volatility, the level of interest rates, etc.

The **option greeks** are a set of measures that quantify the **risk exposure** (sensitivity) of the option value to changes in the market environment.

The most commonly used option greeks are defined as follows:

Delta the derivative of the option value with respect to the underlying price.

We will compute it using a **finite difference** approximation:

$$\Delta = \frac{V(S + \delta S, r, d, \sigma) - V(S, r, d, \sigma)}{\delta S}$$

where $V(S, r, d, \sigma)$ is the value of the option (as computed by bs_price), δS is a small change in the underlying price, by convention $\delta S = 0.01S$ (1% change in spot price).

Gamma is the derivative of the delta with respect to the underlying price. Using again a finite difference approximation we can compute it as:

$$\Gamma = \frac{V(S + \delta S, r, d, \sigma) + V(S - \delta S, r, d, \sigma) - 2V(S, r, d, \sigma)}{\delta S^2}$$

Vega is the change of the option price when volatility increases by 1%:

$$Vega = V(S, r, d, \sigma + \delta\sigma) - V(S, r, d, \sigma)$$

where $\delta \sigma = 0.01$.

DV01 is the change of the option price when the interest rate increases by 1 basis point (0.01%):

$$DV01 = V(S, r + \delta r, d, \sigma) - V(S, r, d, \sigma)$$

where $\delta r = 0.0001$.

Problem 2.1

Copy the file black_shcholes0.cpp to a file named black_scholes.cpp.

In the file $black_scholes.cpp$ implement the function bs_risk with signature:

(as declared in file black_scholes.h).

The function must set the option price as the option's return value and set the greek values Δ , Γ , Vega and DV01 in the arguments provided by reference.

Problem 2.2

Create a file named test_bs_risk.cpp.

In the file test_bs_risk.cpp write a program that computes the option price and the option greeks for a Call option with one year maturity and for strikes ranging between K = 50 and K = 200 (inclusive) in increments of K = 10.

Assume that the market conditions are:

- Spot price S = 110
- Interest rate r = 0.054
- Dividend yield d = 0.03
- Volatility $\sigma = 0.25$

The program output should be a comma separated file a header line and a separate row for each strike K with the following fields:

- \bullet Strike price K
- Option value
- Delta Δ
- Gamma Γ
- Vega
- DV01

Problem 3: Fibonacci Numbers and Recursive Functions

The Fibonacci numbers are defined **recursively** as follows:

$$F_n = F_{n-1} + F_{n-2}$$

where $F_0 = 0$ and $F_1 = 1$.

0.1 3.1

Create a file fibonacci_recursive.cpp.

In the new file Write a recursive function:

long long fibonacci(long long n) {

using the definition above.

Fibonacci numbers grow very fast, so we use a long long to make sure we have enough range.

Problem 3.2

In the same file fibonacci_recursive.cpp write a main function that:

- 1. Prompts the user for an integer n.
- 2. Reads the user input from the terminal using the standard input stream std:cin.
- 3. Outputs the value of F_n to the terminal.

Test the program with small values of $n \approx 10$.

Problem 3.3

The Fibonacci numbers can be computed with a loop using the following algorithm:

- 1. Initialize variables a = 0 and b = 1 to the first to Fibonacci numbers.
- 2. For i = 2, 3, ..., n set

$$c = a + b$$
$$a = b$$
$$b = c$$

so that $a = F_{i-1}$ and $b = F_i$ at each step.

3. The value of F_n is stored in b at the end of the loop.

Create a file fibonacci.cpp and implement the algorithm above in a function:

```
long long fibonacci(long long n) {
```

Re-implement the main function as in Problem 3.2 but calling the new implementation of the fibonacci function.

Test the program with small values of $n \approx 10$ and verify that they return the same values.

Problem 3.4

Try now to compute F_{45} using the recursive function and the loop function. Compare their performance. Which one is faster? Can you explain why? Try computing F_{100} with both functions. What happens?

Submissions

You must submit a zip file to complete this homework. The zip file must contain the following files:

- 1. Problem 1:
 - (a) discount.cpp with the implementation of the swap_pv function.
 - (b) test_discount.cpp with the implementation of the test program.
 - (c) test_discount.txt with the output of running the executable compiled from test_discount.cpp.
- 2. Problem 2:

- (a) black_scholes.cpp with the implementation of the bs_risk function
- (b) test_bs_risk.cpp with the implementation of the test program.
- (c) test_bs_risk.txt with the output of running the executable compiled from test_bs_risk.cpp.

3. Problem 3:

- (a) fibonacci_recursive.cpp with the implementation of the recursive function.
- (b) fibonacci.cpp with the implementation of the iterative function.
- (c) The output of running the executable compiled from fibonacci.cpp with n=45.
- (d) Write (in a comment) you answer to **Problem 3.4** at the end of the file fibonacci.cpp.