

利用機器學習演算法提升小鼠疼痛辨識的準確率

專題生:電機四乙何柏昇

指導教授:吳昭正

報告日期:2021/12/4

目錄

摘要

- 仿照生成對抗網路(GAN)的架構
- 結合隨機森林(Random Forests)
- →提升之後小鼠疼痛辨識(SVM)的準確率。
- 根據文獻[5],使用卷積神經網路(CNN)的 InceptionV3作為對照組

動機

Accuracy

文獻[1]: SVM → 80%

文獻[5]: CNN → 94%

頭部姿勢→樣本中或許存在偏差

假設資料集中存在真、假樣本

仿照GAN的架構→鑑別樣本

文獻[2]:2019的Review

文獻[3]與[4]: Random Forest

多個子集→訓練樣本數大幅減少

專題

仿照GAN的架構 並結合Random Forests

專題架構

影像前處理

訓練疼痛辨識器

訓練鑑別器

實驗結果

資料集							
	訓練集	測試集	備註				
個別小鼠	單隻的八成樣本	單隻的兩成樣本	獨立訓練				
全體小鼠	全體的八成樣本	全體的兩成樣本	各取2000樣本				
未知小鼠	五隻小鼠	一隻小鼠	輪流替換測試 集				

個別小鼠

全體小鼠

(a) 訓練樣本數:8000 筆

(c) 訓練樣本數:3000 筆

(b) 訓練樣本數:4000 筆

(d) 訓練樣本數: 2000 筆

未知小鼠

Pain's Accuracy with Discriminator (Random Forests)							
訓練樣本數	10000筆		4000筆		2000筆		
	SVM	InceptionV3	SVM	InceptionV3	SVM	InceptionV3	
В	63.84%	72.33%	69.26%	65.27%	67.70%	60.91%	
KT	26.35%	73.40%	23.91%	51.85%	23.89%	65.35%	
MS	52.00%	78.59%	66.35%	58.13%	62.74%	54.14%	
SWI	61.93%	67.48%	62.39%	73.13%	68.85%	69.53%	
SWs	50.98%	69.67%	54.72%	44.65%	50.45%	48.06%	
TW	69.81%	67.79%	74.27%	63.49%	69.52%	46.88%	

貢獻

- 1. 能使支援向量機(SVM)進行疼痛辨識的準確率由八成提升至九成五。
- 2. 在使用隨機森林(Random Forest)作為鑑別器時,獲得較高的準確率以及通用性。
- 3. 機器學習相對於神經網路較能避免過擬和的發生。
- 4. 機器學習相較神經網路所需較少的時間成本。

未來展望

減少overfitting

- 1. 移除背景特徵,降低誤差。
- 2. 加入間隔取樣,降低過度取樣的誤差。

參考文獻

- [1] 陳毓峯 "Detection and Quantification of Mice in Pain Utilizing Machine Learning Algorithms"
- [2] Najmeh Samadiani, Guangyan Huang, Borui Cai, Chi-Hung Chi, Yong Xiang and Jing He. "A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data"
- [3] Liu, L.; Gui, W.; Zhang, L.; Chen, J. "Real-time pose invariant spontaneous smile detection using conditional random regression forests"
- [4] Y. Liu, J. Chen, Z. Su, Z. Luo, N. Luo, L. Liu, K. Zhang. "Robust head pose estimation using Dirichlet-tree distribution enhanced random forests"
- [5] AH Tuttle, MJ Molinaro, JF Jethwa, SG Sotocinal, JC Prieto, MA Styner, JS Mogil and MJ Zylka1. "A deep neural network to assess spontaneous pain from mouse facial expressions"
- [6] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. "Going Deeper with Convolutions"
- [7] Leo Breiman. "Random Forests"
- [8] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. "You Only Look Once: Unified, Real-Time Object Detection"

謝謝觀賞