Outline

- Basics
 - Control Theory
 - Demo: Inverted Pendulum
- 2 Control Goals
 - Examples
 - Exercise
- Closed-loop systems
 - Sensitivity Robustness
 - Types of systems and Steady State Error
 - Noise and disturbance rejection

- Measurement noise is often modelled by zero-mean white noise.
- Disturbances are actual changes to the state of the system

- Cruise control:
 - Measurement errors on the speed are noise
 - A change in slope is a disturbance

Disturbance

Noise and disturbance rejection

$$Y(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}R(s) + \frac{1}{1 + P(s)C(s)}D(s)$$

• Setting $M(s) = \frac{1}{1 + P(s)C(s)}$ sufficiently small results in the rejection of D. This can be achieved by choosing C(s) sufficiently high.

- What happens to the measurement noise?
 - It will be amplified and applied to the input of the plant which in turn leads to a nervous controller.

- Good disturbance rejection requires fast control actions to bring the system back to the desired state
- Good noise rejection requires slow control actions
- Note that a controller can not see the difference between measurement noise and disturbances. Slow controllers will be less sensitive to measurement noise but fast controllers will have better disturbance rejection

Slow Controllers

Not sensitive to noise Small control actions

Fast Controllers

Good disturbance rejection
Fast tracking

Robust Controllers

Model errors will not affect the behaviour of the system strongly

Aggresive Controllers:

Exchanges robustness for better performance