

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Определение вязкости жидкости по скорости истечения через капилляр

Работа №2.2.5; дата: 14.02.22

Семестр: 2

1. Аннотация

В данной работе изучается влияние вязкости жидкости на ее ламинарное течение. При этом рассматривается истечение через капилляр и определяется вязкость воды. Также происходит знакомство с вискозиметром Оствальда и применение его на практике для измерения вязкости растворов глицерина разной концентрации.

Схема установки:

Рис. 1: Схема установки А

В работе используются: пробка А с капилляром С, сосуд Мариотта, пробка с толстой трубкой В, микроскоп М на стойке, мензурка П, секундомер.

2. Теоретические сведения

Из курса общей физики известна формула Пуазейля:

$$Q = \pi \frac{P_1 - P_2}{8\eta l} R^4$$

Из нее следует, что вязкость жидкости η можно определить, измеряя ее расход Q, перепад давления $P_1 - P_2$, длину капилляра l и его радиус R. Также вспомним число Рейнолдса:

$$Re = \frac{vR\rho}{\eta}$$

Из предыдущих уравнений и уравнения Бернулли определяется применимость формулы Пуазейля. В нашем случае ламинарное течение устанавливается после расстояния a:

$$a \approx 0.2R \cdot Re$$

То есть формула Пуазейля справедлива при длине капилляра $l\gg a$.

3. Проведение эксперимента

3.1. Определение вязкости воды

Измерение параметров установки

Занесем в таблицу длину l капиллярной трубки и ее диаметр d.

l, mm	d, mm
135 ± 1	1.00 ± 0.05

Табл. 1: Параметры установки

Определение поправки для разницы давлений

Найдем высоту Δh , при которой поток жидкости остановится:

$$\Delta h = (1.0 \pm 0.1) \text{ cm}$$

Измерение расхода жидкости

$N_{\bar{0}}$	h, cm	V, мл	Δt , c	Q, мл/с
1	2.7 ± 0.1	25	407 ± 1	0.0614 ± 0.0001
2	3.7 ± 0.1	25	282 ± 1	0.0887 ± 0.0001
3	4.7 ± 0.1	25	204 ± 1	0.1225 ± 0.0001
4	5.7 ± 0.1	25	167 ± 1	0.1497 ± 0.0001

Табл. 2: Измерение расхода жидкости

Построим график зависимости Q(h) и по нему расчитаем γ - коэффициент наклона. При этом, поскольку Δh постоянна, она не влияет на расчет γ .

Рис. 2: График зависимости Q(h)

Методом линейной аппроксимации получаем:

$$\gamma = (2.99 \pm 0.09) \cdot 10^{-2} \text{ мл/см} \cdot \text{с}$$

Теперь при помощи формулы Пуазейля выразим нужную нам вязкость:

$$\eta = \frac{\pi R^4 \rho g}{8l\gamma} = (7.9 \pm 0.9) \cdot 10^{-4} \text{ Ha} \cdot \text{c}$$

3.2. Определение вязкости растворов глицерина вискозиметром Оствальда

Измерение времени протекания жидкостей

Раствор	$ au_i$, c			$\overline{ au}$, c		
Вода	6.24 ± 0.20	6.42 ± 0.20	6.45 ± 0.20	6.28 ± 0.20	6.30 ± 0.20	6.34 ± 0.20
Глицерин 10%	8.92 ± 0.20	8.81 ± 0.20	8.79 ± 0.20	8.71 ± 0.20	8.90 ± 0.20	8.86 ± 0.20
Глицерин 20%	11.86 ± 0.20	11.40 ± 0.20	11.44 ± 0.20	11.52 ± 0.20	11.88 ± 0.20	11.62 ± 0.20
Глицерин 30%	15.08 ± 0.20	15.90 ± 0.20	15.46 ± 0.20	15.38 ± 0.20	15.25 ± 0.20	15.41 ± 0.20

Табл. 3: Измерение времени протекания

Теперь вспомним формулу для вязкости исследуемой жидкости:

$$\eta_x = \eta_0 \frac{\rho_x t_x}{\rho_0 t_0}$$

Необходимые данные и результаты вычислений оформим таблицей, при этом вязкость воды возьмем из предыдущей части эксперимента:

Жидкость	ρ_x , Γ/cm^3	t_x , c	$\eta_x, \Pi \mathbf{a} \cdot \mathbf{c}$
Вода	1.000	9.32 ± 0.20	$(7.9 \pm 0.9) \cdot 10^{-4}$
Глицерин 10%	1.019	13.96 ± 0.20	$(1.13 \pm 0.14) \cdot 10^{-3}$
Глицерин 20%	1.042	19.45 ± 0.20	$(1.51 \pm 0.20) \cdot 10^{-3}$
Глицерин 30%	1.065	29.21 ± 0.20	$(2.05 \pm 0.31) \cdot 10^{-3}$

4. Выводы

В ходе работы определено значение вязкости воды $\eta = (7.9 \pm 0.9) \cdot 10^{-4} \, \text{Па} \cdot \text{c}$, что близко к табличному значению $\eta_0 = (8.9 \pm 0.9) \cdot 10^{-4} \, \text{Па} \cdot \text{c}$ в пределах двух величин стандартного отклонения.

Также при помощи вискозиметра Оствальда определены вязкости нескольких растворов глицерина $\eta_{10\%}=(1.13\pm0.14)\cdot 10^{-3}~\Pi a\cdot c,~\eta_{20\%}=(1.51\pm0.20)\cdot 10^{-3}~\Pi a\cdot c,~\eta_{30\%}=(2.05\pm0.31)\cdot 10^{-3}~\Pi a\cdot c,~\eta_{10\%}$ также близко к табличным значениям в пределах двух стандартных отклонений.