1. P1

Design decisions

- \bullet count to 31 and stay there in the cycling mode
- always start from 0 in cycling mode

Testbenches

- read without write in cycling mode
- write while reading in cycling mode to show the synchronicity
- verify the write and read at any address in normla mode. The testbench provides the read addresses.

Simulations

Figure 1: Test Case 1

Figure 2: Test Case 2

Figure 3: Test Case 3

2. P2

Modifications

- changed w_{data} to double the size of r_{data}
- changed the w_{succ} to increment by 2 every time

Made sure it is able to write at any good address but stops when full; make sure it's able to read at any address till it's empty; make sure it writes before reads.

Simulations

Figure 4: Keeps writing the FIFO till it's full

Figure 5: Keeps reading the FIFO till it's empty

Figure 6: Write and read at the same time

3. P3

Figure 7: The ASM chart

4. Comments

I like this homwork. I spent around 3 hours doing it. The major difficulty lies in organizing the logic. It's kind of challenging and intellectually stimulating.