Topología básica de \mathbb{R}^p y Teorema de Bolzano-Weierstrass

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Definiciones básicas

Dado cualquier conjunto no vacío X, una métrica sobre X es una función $d: X \times X \to \mathbb{R}$ cumpliendo, para $x, y, z \in X$

- $d(x,y) \ge 0$ y d(x,y) = 0 si y sólo si x = y.
- $d(x,y) \le d(x,z) + d(z,y)$.

A la pareja (X, d) se le llama espacio métrico

Ejemplos de espacios métricos son los espacios vectoriales normados V, para los cuales hay una función $\|\cdot\|_V:V\to\mathbb{R}$ cumpliendo para $x,y,z\in V$ y $\lambda\in\mathbb{R}$

- $||x||_V \ge 0$ y $||x||_V = 0$ si y sólo si $x = \vec{0}$.
- $\bullet \|\lambda x\|_V = |\lambda| \|x\|_V.$
- $\|x y\|_{V} \le \|x z\|_{V} + \|z y\|_{V}$

Definiciones básicas

Algunos espacios normados provienen de espacios con producto interior (sobre \mathbb{R}) H, para los cuales hay una función $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ cumpliendo para $x, y, z \in H$ y $\lambda \in \mathbb{R}$

- $\langle x, y \rangle \ge 0$ y $\langle x, x \rangle = 0$ si y sólo si $x = \vec{0}$.
- $\langle \lambda x, y \rangle = \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$; $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.

Un espacio con producto interior induce un espacio normado por medio de la fórmula $\|x\|=\sqrt{\langle x,x\rangle}$.

Definiciones básicas

Se pueden hallar ejemplos de

- Espacios métricos que no son espacios vectoriales.
- Espacios métricos que no provienen de espacios vectoriales normados.
- Espacios vectoriales normados que no provienen de un producto interior.

Muchas propiedades pueden probarse para cada uno de los espacios antes mencionados, por ejemplo:

- Designaldad de Cauchy-Schwarz: $|\langle x, y \rangle| \le ||x|| \, ||y||$.
- La otra designaldad triangular: $|||x|| ||y||| \le ||x y||$

El espacio euclidiano \mathbb{R}^p es de hecho un espacio con producto interior. Adoptamos la notación $\|x\|$ para referirnos a la norma euclidiana de $x=(x_1,x_2,\ldots,x_p)\in\mathbb{R}^p$, aunque existen otras normas bien conocidas:

$$||x||_1 = \sum_{j=1}^p |x_j| \qquad ||x||_{\infty} = \max\{|x_1|, \dots, |x_p|\}$$

La bola abierta de radio r > 0 centrada en $x \in \mathbb{R}^p$ es

$$B_r(x) = \{ y \in \mathbb{R}^p : ||x - y|| < r \}$$

La bola cerrada de radio r > 0 centrada en $x \in \mathbb{R}^p$ es

$$\overline{B_r(x)} = \{ y \in \mathbb{R}^p : ||x - y|| \le r \}$$

La bola agujerada de radio r > 0 centrada en $x \in \mathbb{R}^p$ es

$$\dot{B}_r(x) = \{ y \in \mathbb{R}^p : 0 < ||x - y|| < r \}$$

Estos conjuntos pueden de hecho definirse en cualquier espacio métrico, con las adecuaciones necesarias.

La familia $\{B_r(x): r>0, x\in\mathbb{R}^p\}$ de todas las bolas abiertas (o cerradas) de \mathbb{R}^p forman una base de vecindades de la topología euclidiana de \mathbb{R}^p .

Por esto, cuando se hable de vecindades de algún $x \in \mathbb{R}^p$ (como lo hace el texto de Bartle) podemos siempre tomar una bola centrada en x como una vecindad de x.

Esto será usado en algunos teoremas posteriores.

Un conjunto $G \subseteq \mathbb{R}^p$ es abierto si para todo $x \in G$ existe r > 0 (que puede depender de x) tal que $B_r(x) \subseteq G$.

Un conjunto $F \subseteq \mathbb{R}^p$ es cerrado si su complemento F^c es abierto.

Los conjuntos \emptyset y \mathbb{R}^p son simultaneamente abiertos y cerrados.

Cualquier bola abierta es un conjunto abierto. Cualquier bola cerrada es un conjunto cerrado. Cualquier bola agujerada es un conjunto abierto.

En las siguientes $A \subseteq \mathbb{R}^p$.

- $x \in \mathbb{R}^p$ es punto interior de A si existe r > 0 tal que $B_r(x) \subset A$.
- $x \in \mathbb{R}^p$ es punto frontera de A si para toda $\epsilon > 0$ ocurre que

$$B_{\epsilon}(x) \cap A \neq \emptyset$$
, $B_{\epsilon}(x) \setminus A \neq \emptyset$.

• $x \in \mathbb{R}^p$ es punto de acumulación de A si para toda $\epsilon > 0$ ocurre que

$$\dot{B}_{\epsilon}(x)\cap A
eq\emptyset$$
 nótese el uso de la bola agujerada

• $x \in \mathbb{R}^p$ es punto de adherencia de A si para toda $\epsilon > 0$ ocurre que

$$B_{\epsilon}(x) \cap A \neq \emptyset$$

Basados en las definiciones anteriores, dado $A \subseteq \mathbb{R}^p$ se define

- A° el interior de A como el conjunto de puntos interiores de A.
- ∂A la frontera de A como el conjunto de puntos frontera de A.
- A' el conjunto de puntos de acumulación de A.
- \overline{A} la cerradura de A como el conjunto de puntos de adherencia de A.

Propiedades (de la cerradura y el interior)

Para cualquier $A \subseteq \mathbb{R}^p$ se tiene:

- (i) $A \subseteq \overline{A}$
- (ii) $A^{\circ} \subseteq A$
- (iii) Si A es cerrado entonces $A = \overline{A}$.
- (iv) Si A es abierto entonces $A^{\circ} = A$.

Demostración de (i): Si $x \in A$ y , r > 0 entonces $B_r(x) \cap A \neq \emptyset$, por lo que x es punto de adherencia de A.

Demostración de (ii): Si $x \in A^{\circ}$, existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \subseteq A$, por tanto $x \in A$.

Demostración de (iii): Si $x \in \overline{A}$, se sabe que A^c es abierto, por lo que si suponemos que $x \notin A$ existe $\delta > 0$ tal que $B_{\delta}(x) \subset A^c$. Entonces x no sería punto de adherencia de A.

Demostración de (iv): Si $x \in A$, se sabe que existe r > 0 tal que $B_r(x) \subseteq A$, por lo que $x \in A^{\circ}$.

Para el interior y la cerradura de A se tienen equivalencias útiles e interesantes.

Teorema

Sea $A \subseteq \mathbb{R}^p$. Entonces

- A° es el más grande abierto contenido en A, es decir $A^{\circ} = \bigcup \{G \subseteq A : G \text{ es abierto}\}$
- \overline{A} es el más pequeño cerrado que contiene a A, es decir $\overline{A} = \bigcap \{F \supseteq A : F \text{ es cerrado}\}$

Demostración del Teorema

Daremos los detalles de la demostración para la cerradura, quedando la demostración para el interior como ejercicio.

Primero verificamos que en efecto $\mathcal{F} = \bigcap \{F \supseteq A : F \text{ es cerrado}\}$ es el más pequeño cerrado que contiene a A.

Obsérvese que \mathcal{F} es cerrado por ser intersección de cerrados. Luego nótese que si \mathcal{C} es cualquier cerrado que contiene a A entonces es uno de los elementos de la intersección que define a \mathcal{F} ; por tanto contiene a dicha intersección.

A continuación verificamos que $\mathcal{F} = \overline{A}$.

- (⊆) Tomando $x \in \mathcal{F}$, sabemos que $x \in F$ para todo $F \supseteq A$ cerrado. Debemos probar que x es punto de adherencia de A.
 - Supóngase que existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \cap A = \emptyset$.
 - Pero entonces, $F = B_{\epsilon}(x)^c$ es un cerrado que contiene a A, y $x \notin F$. (!!)
- (⊇) Si $x \in \overline{A}$ y $F \supseteq A$ es cerrado tal que $x \notin F$, entonces existe r > 0 tal que $B_r(x) \subseteq F^c$, pues F^c es abierto.
 - Pero entonces $B_r(x) \cap A = \emptyset$, lo cual contradice que $x \in \overline{A}$.

EJERCICIOS

En los ejercicios 9J y 9L de [Bartle] se pide esencialmente establecer el siguiente resultado. Usando las propiedades hasta ahora demostradas, dar una prueba de esta proposición.

Proposición

Sea $A \subseteq \mathbb{R}^p$. Entonces se cumplen las siguientes identidades:

$$(A^{\circ})^{\circ} = A^{\circ}, \quad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}, \quad (\mathbb{R}^{p})^{\circ} = \mathbb{R}^{p}, \quad (\mathbb{Q}^{p})^{\circ} = \emptyset$$

$$\overline{(\overline{A})} = \overline{A}, \quad \overline{(A \cup B)} = \overline{A} \cup \overline{B}, \quad \overline{\emptyset} = \emptyset, \quad \overline{\mathbb{Q}^{p}} = \mathbb{R}^{p}.$$

También se puede pensar si hay un ejemplo en que

$$(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$$
 y $\overline{(A \cap B)} \neq \overline{A} \cap \overline{B}$

Caracterización de cerrados y de la cerradura

Teorema

- (i) Un conjunto $F \subseteq \mathbb{R}^p$ es cerrado si y sólo si contiene a todos sus puntos de acumulación.
- (ii) Si $A \subseteq \mathbb{R}^p$ entonces $\overline{A} = A \cup A'$.

Demostración de (i).

- (⇒) Si F es cerrado y $x \in F' \setminus F$, entonces, como en particular $x \in F^c$, existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \cap F = \emptyset$. Esto contradice que $x \in F'$.
- (\Leftarrow) Se probará que F^c es abierto. Si $y \in F^c$ entonces y no es punto de acumulación de F.

Entonces existe $\delta > 0$ tal que $F \cap B_{\delta}(y) \cap F = \emptyset$, es decir $B_{\delta}(y) \subseteq F^{c}$.

Caracterización de cerrados y de la cerradura

Demostración de (ii).

- (⊆) Si $x \in \overline{A}$ pero $x \notin A$, entonces sabríamos que x es punto de adherencia de A; por tanto para cada r > 0 se tiene $B_r(x) \cap A \neq \emptyset$. Así, como $x \notin A$ entonces también ocurrirá que $\dot{B}_r(x) \cap A \neq \emptyset$, es decir $x \in A'$.
- (\supseteq) Sabemos por la propiedad (i) de la cerradura que $A \subseteq \overline{A}$. Ahora, si existiera $x \in A'$ tal que $x \notin \overline{A}$, que es abierto, entonces existe $\delta > 0$ tal que $B_{\delta}(x) \subseteq (\overline{A})^c \subseteq A^c$. Por tanto $\dot{B}_{\delta}(x) \cap A = \emptyset$, lo que contradice que $x \in A'$.

Ahora como ejercicio se puede intentar probar que $\overline{A} = A \cup \partial A$, que es el Ejercicio 9M de [Bartle].

También se puede intentar demostrar que si $x \in \overline{A}$ y $x \notin A'$, entonces $x \in A$, que es otro modo de establecer la contención (\subseteq).

Teorema de Bolzano-Weierstrass

Estamos listos para enunciar uno de los teoremas más importantes del curso.

Teorema (de Bolzano-Weierstrass)

Todo conjunto infinito y acotado de \mathbb{R}^p tiene un punto de acumulación.

Para demostrar este teorema, iniciemos con $B \subset \mathbb{R}^p$ acotado. Entonces B está contenido en una celda cerrada I_1 . Ahora subdividimos diádicamente a la celda I_1 , obteniendo 2^p nuevas celdas cerradas, todas contenidas en I_1 .

Como una de ellas debe tener una cantidad infinita de elementos de B, la nombramos I_2 y repetimos este procedimiento.

De este modo obtenemos una familia de celdas $\{I_k\}$, todas cerradas, contenidas en I_1 , y de hecho cumpliendo $I_k \supset I_{k+1}$.

Por el teorema de celdas anidadas se cumplirá $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$, y podemos tomar y en esta intersección

Teorema de Bolzano-Weierstrass

El plan es ahora demostrar que $y \in B'$. Sea r > 0Iniciemos notando que

$$0 < \ell(I_k) = \frac{1}{2^{k-1}} \ell(I_1), \qquad k = 1, 2...$$

donde en general $\ell(I)$ denota la longitud de la arista más grande de I.

Notemos ahora que si r > 0 entonces existe $k \in \mathbb{N}$ tal que $I_k \subset B_r(y)$.

Como I_k tiene una cantidad infinita de elementos de B, entonces alguno será distinto de y. Esto llevaría a que $y \in B'$.

Para probar que $I_k \subset B_r(y)$, recuérdese que si $w \in I_k$ entonces

$$||y-w|| \leq \sqrt{p}||y-w||_{\infty} \leq \sqrt{p}\,\ell(I_k) = \frac{\sqrt{p}}{2^{k-1}}\ell(I_1) \leq \frac{\sqrt{p}}{k-1}\ell(I_1).$$

y se elige k de manera que $\dfrac{\sqrt{p}}{k-1}\ell(\mathit{I}_1) < r.$

Conjuntos compactos

Dado un espacio métrico (X,d) y $A \subseteq X$, una cubierta abierta de A es una familia de conjuntos abiertos $\mathcal{F} = \{A_{\alpha} : \alpha \in \mathcal{A}\}$ tales que

$$A\subseteq\bigcup_{\alpha\in\mathcal{A}}A_{\alpha}.$$

Un subcubierta finita de \mathcal{F} es una subfamilia $\{A_1, \ldots, A_N\}$ de \mathcal{F} con un número finito de elementos tal que $A \subseteq A_1 \cup \cdots \cup A_N$.

Decimos que $K \subseteq X$ es un conjunto compacto si a toda cubierta abierta de K se le puede extraer una subcubierta finita.

Obsérvese:

- Que para probar que un conjunto K es compacto se debe comenzar con una cubierta abierta de K arbitraria y exhibir cómo extraer una subcubierta finita de K.
- Que para probar que un conjunto B no es compacto basta exhibir una cubierta de B a la que no se le puede extraer una subcubierta finita.

Ejemplos de conjuntos compactos y conjuntos que NO compactos

- Todo conjunto finito en un espacio métrico es compacto.
- El conjunto \mathbb{Z} en \mathbb{R} no es compacto.
- El conjunto (0,1) de $\mathbb R$ no es compacto.

Para este ejemplo basta considerar la cubierta de (0,1) dada por los intervalos $\left(0,1-\frac{1}{n}\right)$ con $n\in\mathbb{N}$. Nótese que si se tomara una familia finita de intervalos de esta forma ya no es cubierta del intervalo (0,1).

- Se puede también con una idea similar probar que la bola unitaria $B_1(\vec{0})$ no es compacto. y que el espacio total \mathbb{R}^p tampoco lo es.
- A continuación ilustraremos lo complicado que puede resultar probar que el intervalo [0, 1] es compacto.

El intervalo [0,1] es compacto

Iniciemos con una cubierta arbitraria de [0,1], digamos $\mathcal{G} = \{G_{\alpha} : \alpha \in \mathcal{A}\}.$

Entonces $0 \in G_{\alpha_0}$ para cierta α_0 . Al ser G_{α_0} abierto, al elegir $\epsilon_0 > 0$ suficientemente pequeña se cumplirá que $[0, \epsilon_0] \subset G_{\alpha_0}$.

Con esta observación, podemos definir

$$x^* := \sup \left\{ x \in [0,1] : [0,x] \subset \bigcup_{\mathsf{finita}} G_{\alpha} \right\}.$$

Notemos primero que $x^*>0$ pues debe ser mayor o igual a la ϵ_0 antes mencionada. Si $x^*\in(0,1]$ entonces $x^*\in G_{\alpha_1}$ para alguna α_1 y por tanto para cierta $\epsilon_1>0$ suficientemente pequeña se tiene $[x^*-\epsilon_1,x^*+\epsilon_1]\subset G_{\alpha_1}$

Además por la propiedad del *"salto de supremo"* se puede concluir $[0,x^*-\epsilon_1]\subset\bigcup_{\mathsf{finita}} G_\alpha$ y en conclusión $[0,x^*+\epsilon_1]\subset G_{\alpha_1}\cup\bigcup_{\mathsf{finita}} G_\alpha$.

Esto es una contradicción, a menos que $x^* \ge 1$. Queda de ejercicio probar que de hecho no puede ocurrir $x^* > 1$, por lo que $x^* = 1$. Y con esto queda demostrada la afirmación.

19 / 20

Más ejemplos

• Si $K \subset \mathbb{R}^p$ es compacto y $F \subseteq K$ es cerrado, entonces F es compacto.

Para probar esta afirmación iniciamos con una cubierta abierta arbitraria de F, digamos $\{A_{\alpha}: \alpha \in \mathcal{A}\}$.

Para poder usar la hipótesis de que K es compacto, necesitamos "completar" esta cubierta de F para que sea una cubierta de K.

Para esto añadimos sólo un elemento más: $A_0 = F^c$. Nótese que en efecto $\bigcup_{\alpha \in \mathcal{A}} A_\alpha$ cubre a F y A_0 cubre a $K \setminus F$, por lo que $A_0 \cup \bigcup_{\alpha \in \mathcal{A}} A_\alpha$ cubre a K.

Por compacidad de K tenemos que $K \subset \bigcup_{\text{finita}} A_j$

Si en esta unión se hubiera incluído A_0 , lo podemos remover, y de todos modos obtendríamos una unión finita que sigue cubriendo a F.

Así que a la cubierta arbitraria $\{A_{\alpha} : \alpha \in \mathcal{A}\}$ de F le hemos logrado extraer una subcubierta finita. Esto quiere decir que F es compacto.