LED-Matrix - Cheat Sheet

1 Hardware

RaspberryPi Pico to PCB Mapping

Schiebeschalter: **GPIO9**

Joystick: **GPIO2,3,6,7,8**

Neopixel LEDs: **GPIO19**

LED-Matrix Index Layout

```
56 57 58 59 60 61 62 63
48 49 50 51 52 53 54 55
40 41 42 43 44 45 46 47
32 33 34 35 36 37 38 39
24 25 26 27 28 29 30 31
16 17 18 19 20 21 22 23
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7
```

2 Software

2.1 MicroPython Grundlagen

Ein Programm wird von oben nach unten gelesen und auch in dieser Reihenfolge ausgeführt. Python benutzt Enrückung um Code in Blöcke zu unterteilen.

Kommentar

ich bin ein Kommentar

Print

Print
print("Hello World")
print(5)

Schlafen

from utime import sleep_ms

Schlafen fuer 1'000 Millisekunden = 1 Sek
sleep_ms(1000)

Variable

my_number = 5
print(my_number) # prints 5

my_number = my_number + 3
print(my_number) # prints 10

Variablentypen

```
a = 5  # number
c = "Hello World!" # string

# boolean
d = True
e = False
g = (2 > a)  # False
h = (5==a)  # True

# lists
list1 = ["Hi", "you"]
list2 = [1, 5, 7, 3]
print(list1[0]) # prints first element "Hi"
print(len(list1)) # prints length "2"
```

If - Else

```
if number > 10:
    print("Groesser als 10")
elif number < 5:
    print("Kleiner als 5")
else:
    print("Zwischen 5 und 10")</pre>
```

Schleifen

```
# for Schleife
for i in range(1, 5):
    # i Werte: 1,2,3,4
    print(i)
for i in range(5):
    # i Werte: 0,1,2,3,4
    print(i)
mylist = [2,4,6,7]
for i in range(len(mylist)):
    # i Werte: 0,1,2,3 (len=Laenge=4)
for i in mylist:
    # i Werte: 2,4,6,7
    print(i)
# while Schleife
while number < 10:
   number += 1
# Dauerschleife
while True:
```

Funktionen

```
# Funktionsdefinition
def addieren(number1, number2):
    return number1 + number2

#Funktion aufrufen
addieren(1, 2) # Resultat ist 3

# Beispiel 2
def welcome(name):
    phrase = "Hello, " + name + "!"
    print(phrase)

welcome("Sarah") # prints "Hello, Sarah!"
```

2.2 RaspberryPi Pico

GPIO Control

from machine import Pin # Definiere GPIOO als Output (Ausgabe) p0 = Pin(0, Pin.OUT) # Setze den Output Wert auf 0 oder 1 p0.value(0) p0.value(1) # Definiere GPIO5 als Input (Eingabe)

RTC (real time clock)

Lese den Wert von GPI05

p1 = Pin(5, Pin.IN)

p1.value()

Der RaspberryPi Pico hat eine Echtzeituhr. Mit dieser kann man physikalische Zeit messen. Die Zeit muss jedoch richtig eingestellt werden, jedes mal wenn der Pico neu eingesteckt wird.

NeoPixel Library - Beispiel 1

```
from machine import Pin
from neopixel import NeoPixel

# GPIO Pin verbunden mit den LEDs
gpio = 19

# Anzahl LEDs
led_count = 64

# Initialisiere NeoPixel
np = NeoPixel(Pin(gpio, Pin.OUT), led_count)

# Setze den RGB Wert der ersten LED
np[0] = [50,0,0]

# Setze den RGB Wert der zehnten LED
np[9] = [0,25,25]

# Farbwerten an LEDs senden
np.write()
```

NeoPixel Library - Beispiel 2

```
from machine import Pin
from neopixel import NeoPixel
# Initialisiere NeoPixel
np = NeoPixel(Pin(19, Pin.OUT), 64)
# Erstelle Liste fuer LEDs, welche rot
# leuchten sollen
red_leds = [42,45,50,53]
# Erstelle Liste fuer LEDs, welche blau
# leuchten sollen
blue leds = [10,11,12,13,17,22]
# Setze die LEDs aus den Listen im Neopixel
for i in red leds:
   np[i] = [50,0,0]
for i in blue_leds:
   np[i] = [0,0,50]
# Farbwerte an LEDs senden
np.write()
```

2.3 ZHAW Module

Lade die Module unter folgendem Link herunter:

```
ledmatrix.py
from ledmatrix import (
    ColorTable,
    LedMatrix.
    PixelColor.
from utime import sleep_ms
# Kreiere eigene Farbe
my_color = PixelColor(2, 211, 13)
# LED Matrix Objekt
matrix = LedMatrix(8.8)
# Setze Helligkeit
matrix.set brightness(20)
# Setze Pixel x=0,y=1
# ColorTable beinhaltet 16 Farben
matrix[0, 1] = ColorTable.YELLOW
# Sende Farbwerte an LED-Matrix
matrix.apply()
sleep ms(1000)
# Alle Neopixel auf blau setzen
matrix.fill(ColorTable.BLUE)
matrix.apply()
sleep ms(1000)
# Alle Farben auf Null setzen
matrix.clear()
matrix.apply()
sleep ms(1000)
# Liste von Pixel auf einen Farbwert setzen
pixel list = [(5, 1), (5, 2), (6, 1)]
matrix.draw_list(pixel_list, ColorTable.GREEN)
matrix.applv()
sleep ms(1000)
# Linien zeichnen:
# Gerade Linie
matrix.draw_line(
    (0, 0), (0, 4), ColorTable.ORANGE
# Diagonale Linie
matrix.draw line(
    (0, 7), (5, 5), ColorTable.PINK
matrix.apply()
```

button.py

```
from button import Button

# Button initialisieren
btn = Button()

# Verhalten bei einem button Ereignis festlegen
def left(_):
    print(".")
btn.set_left_handler(left)

# Werte vom Joystick & Schiebeschalter einlesen
btn.up.value()
btn.down.value()
btn.left.value()
btn.right.value()
btn.center.value()
btn.switch.value()
```

characters.py

```
from characters import (
    ClockTable.
    CharacterTable.
from ledmatrix import ColorTable, LedMatrix
from utime import sleep ms
# LED-Matrix initialisieren
matrix = LedMatrix(8, 8)
matrix.set_brightness(20)
# Die 10 von der Minutenanzeige in blau
# leuchten lassen
matrix.draw list(
    ClockTable.MIN_TEN, ColorTable.BLUE
matrix.apply()
sleep_ms(1000)
# Die 10 von der Stundenanzeige in gruen
# leuchten lassen
matrix.clear()
matrix.draw_list(
    ClockTable.HOUR_TEN, ColorTable.GREEN
)
matrix.apply()
sleep_ms(1000)
# Buchstabe A auf LED-Matrix ausgeben in rot
matrix.clear()
matrix.draw list(
    CharacterTable.A. ColorTable.RED
)
```

LED-Matrix Layout (X,Y)

```
[0,7] [1,7] [2,7] [3,7] [4,7] [5,7] [6,7] [7,7] [0,6] [1,6] [2,6] [3,6] [4,6] [5,6] [6,6] [7,6] [0,5] [1,5] [2,5] [3,5] [4,5] [5,5] [6,5] [7,5] [0,4] [1,4] [2,4] [3,4] [4,4] [5,4] [6,4] [7,4] [0,3] [1,3] [2,3] [3,3] [4,3] [5,3] [6,3] [7,3] [0,2] [1,2] [2,2] [3,2] [4,2] [5,2] [6,2] [7,2] [0,1] [1,1] [2,1] [3,1] [4,1] [5,1] [6,1] [7,1] [0,0] [1,0] [2,0] [3,0] [4,0] [5,0] [6,0] [7,0]
```

3 Links

Download Links:

• Alle Workshop Materialien (Dokumente & Programme):

https://github.com/InES-HPMM/ LED-Matrix-Workshop

• Thonny herunterladen & installieren: https://thonny.org/

Anleitungen:

- Getting startet with Raspberry Pi Pico: https://projects. raspberrypi.org/en/projects/ getting-started-with-the-pico/0
- Raspberry Pi Pico: WS2812 als Lauflicht programmieren:

https://www.elektronik-kompendium.de/sites/raspberry-pi/2703111.htm