CM005 Algebra Linear Lista 1

Alberto Ramos

1. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique se o sistema é consistente ou não (isto é, se o sistema possue solução ou não). Se o sistema for possível e determinado (isto é, sem variáveis livres), use susbtitução para encontrar a única solução. Se o sistema for possível e indeterminado (isto é, com variáveis livres) coloque-o em forma escada reduzida por linhas e encontre o conjunto solução.

2. Considere o sistema de equações lineares

$$ax_1 + x_2 = b$$
$$cx_1 + x_2 = d$$

- Prove que o sistema tem uma única solução se e somente se $a \neq c$;
- Se a=c. Mostre que o sistema tem solução, se e somente se b=d.

3. Dado $\alpha \in \mathbb{R}$ e $\beta \in \mathbb{R},$ considere o sistema de equações cuja matriz aumentada é

$$\begin{pmatrix} 2 & 2 & \alpha & \beta & | & 1 \\ 1 & 0 & \alpha & 0 & | & 1 \\ 1 & 1 & \alpha & \beta & | & 1 \\ 1 & 1 & \alpha & 0 & | & 1. \end{pmatrix}$$

Para quais valores de α e β

- (a) o sistema não tem solução;
- (b) o sistema tem uma única solução;
- (c) o sistema tem infinitas soluções.
- 4. Utilize a eliminação de Gauss-Jordan para calcular a inversa de ${\cal A}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & - & 1 & 1 & - & 1 \\ 0 & & 1 & - & 1 & & 1 \\ 0 & & 0 & & 1 & - & 1 \\ 0 & & 0 & & 0 & & 1 \end{pmatrix}$$

5. Sejam as matrizes $A = \begin{pmatrix} -3 & 2 & 1 \\ 1 & 2 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & -1 \\ 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Escrevendo a matriz B em termos das suas colunas, $B = [B_1 \ B_2]$, em que $B_1 = (2 \ 2 \ 0)^T$ e $B_2 = (-1 \ 0 \ 3)^T$. Verifique que o produto AB pode ser escrito como $AB = A[B_1 \ B_2] = [AB_1 \ AB_2]$.

Generalize para matrizes arbitrárias, isto é, se $A \in M_{m \times n}(\mathbb{K})$ e $B \in M_{n \times p}(\mathbb{K})$, com $B = [B_1 \dots B_p]$ onde B_i é a *i*-ésima coluna de B. Então, $AB = A[B_1 \dots B_p] = [AB_1 \dots AB_p]$.

- 6. Sejam A uma matriz invertível $n \times n$ e B uma matriz $n \times p$. Mostre que a forma escada reduzida por linhas de (A|B) é (I|C) onde $C = A^{-1}B$.
- 7. Considere as matrizes $A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix}$ $C = \begin{pmatrix} 4 & -2 \\ -6 & 3 \end{pmatrix}$ Encontre matrizes $X \in M_2(\mathbb{R})$ tal que
 - $\bullet \ AX + B = C$
 - $\bullet \ XA + B = C$
 - $\bullet \ AX + B = X$
 - $\bullet XA + C = X$
- 8. Prove que se B é equivalente por linhas a A se e somente se existe uma matriz invertível M tal que B = MA.
- 9. Determine os coeficientes a, b, c e d da função polinomial $p(x) = ax^3 + bx^2 + cx + d$, cujo gráfico passa pelos pontos $q_1 = (0, 10)$, $q_2 = (1, 7)$, $q_3 = (3, -11)$ e $q_4 = (4, -14)$. Dica: Escreva um sistema linear associado.

- 10. Verifique (multiplicando corretamente) que a inversa da matriz M está dada por
 - (a) $M^{-1} = I + uv^T/(1 v^Tu)$ se $M = I uv^T$ e $v^Tu \neq 1$
 - (b) $M^{-1} = I + U(I VU)^{-1}V$ se M = I UV e (I VU) é invertível.
 - (c) $M^{-1} = A^{-1} + A^{-1}U(W VA^{-1}U)^{-1}VA^{-1}$ se $M = A - UW^{-1}V$ e $W - VA^{-1}U$ é invertível.
- 11. Considere as matrizes 3×4

$$A_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Verifique que os sistemas homogêneos associados às matrizes A_1, A_2, A_3 e A_4 admite uma solução não trivial. Isto é, verifique para cada matriz $A_j, j=1,\ldots,4$, que existe um $\bar{x}\in\mathbb{R}^4$ diferente do vetor zero, tal que $A_j\bar{x}=\bar{0}\in\mathbb{R}^3$.

Agora, seja $A \in M_{m \times n}(\mathbb{R})$ tal que n > m (número de incógnitas é maior que o número de equações). Mostre que o sistema linear homogêneo $A\bar{x} = \bar{0}, \, \bar{x} \in \mathbb{R}^n$, tem solução diferente da solução trivial (isto é, $\bar{x} \neq \bar{0}$).

Dica: Use a forma escada reduzida por linhas.

- 12. Se A e B são matrizes quadradas. Mostre que I-AB é invertível se I-BA for invertível. Dica: Use B(I-AB)=(I-BA)B.
- 13. Quais dos seguintes subconjuntos são sub-espaços vetoriais de \mathbb{R}^2 ? Esboçe.
 - (a) $W = \{(x, y) \in \mathbb{R}^2 : x \le 0, y \le 0\}$
 - (b) $W = \{(x, y) \in \mathbb{R}^2 : xy \le 0\}$
 - (c) $W = \{(x, y) \in \mathbb{R}^2 : y < x^2\}$
 - (d) $W = \{(x, y) \in \mathbb{R}^2 : y \le x, x \le y\}$
 - (e) $W = \{(x, y) \in \mathbb{R}^2 : x = y^3\}$
- 14. Dado dois subespações vetoriais W_1 e W_2 de V. A interseção $W_1 \cap W_2$ é um subespaço vetorial? e a união $W_1 \cup W_2$?
- 15. Considere os subespaços vetoriais

$$W_1 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \begin{array}{c} x_1 + 2x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 5x_2 + 4x_3 + 8x_4 = 0 \end{array} \right\}$$

е

$$W_2 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \begin{array}{c} x_1 + 3x_2 + 2x_3 + 5x_4 = 0 \\ 2x_2 + 4x_4 = 0 \end{array} \right\}.$$

Calcule o subespaço vetorial $W_1 \cap W_2$.

- 16. Dado uma matriz $A = (a_{ij}) \in M_{m \times n}(\mathbb{K}), i = 1, ..., m, j = 1, ..., n.$ A trasposta de A, denotada $A^T \in M_{n \times m}(\mathbb{K})$, é a matriz definida por $(A^T)_{ij} = a_{ji}$ para i = 1, ..., m, j = 1, ..., n.Mostre:
 - $\bullet \ (A+B)^T = A^T + B^T;$
 - $\bullet \ (AB^T)^T = BA^T;$
 - Suponha adicionalmente que n=m, então $(AB)^T=B^TA^T$.
- 17. Usando as seguintes propriedades do determinante det(A): (i) det(AB) = det(A)det(B), (ii) $det(\alpha A) = \alpha^n det(A)$ e (iii) det(I) = 1 para todo $A, B \in M_n(\mathbb{K})$. Calcule det(adj(A)) e $det(A^{-1})$. Dica: Use adj(A)A = det(A)I.
- 18. Calcule o determinante das matrizes

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 6 & 2 & 0 \\ 1 & 1 & -2 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & -2 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 2 - \alpha & 4 \\ 3 & 3 - \alpha \end{pmatrix}$$

Para a matriz C, encontre todos os valores de α para os quais o determinante é igual a zero.

19. Para as seguintes matrizes determine se o vetor \bar{b} está em col(A) (espaçocoluna de A), se \bar{w} está em lin(A) (espaço-linha de A) e se $v \in Nuc(A)$, onde Nuc(A) é o núcleo da matriz A.

$$\bullet \ A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix} \ \bar{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \ \bar{w} = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix} \ \bar{v} = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$$

•
$$A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 2 & 1 \\ 1 & -1 & -4 \end{pmatrix}$$
 $\bar{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ $\bar{w} = \begin{pmatrix} -1 & 4 & 1 \end{pmatrix}$ $\bar{v} = \begin{pmatrix} 7 \\ 3 \\ -1 \end{pmatrix}$

20. Determine se os seguintes vetores são linearmente independente em \mathbb{R}^3 e esboçe o correspondente espaço gerado.

$$\bullet \ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

$$\bullet \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} -2\\1\\2 \end{pmatrix}, \begin{pmatrix} 4\\2\\-4 \end{pmatrix}.$$

$$\bullet \ \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}, \ \begin{pmatrix} 8 \\ 8 \\ 24 \end{pmatrix}$$

- 21. Determine se as seguintes matrizes são linearmente independente em $M_2(\mathbb{R})$
 - $\bullet \begin{pmatrix} 5 & 3 \\ 6 & 2 \end{pmatrix}, \begin{pmatrix} 6 & 2 \\ 8 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -6 & 3 \end{pmatrix}$
 - $\bullet \ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \ \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 2 & 6 \\ 0 & 3 \end{pmatrix}$
 - $\bullet \ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
- 22. Determine se as seguintes funções são linearmente independente em C[0,1] (conjunto de todas as funções reais contínuas definidas em [0,1])
 - $cos(\pi x)$, $sen(\pi x)$
 - e^x , e^{-x} , e^{2x}
 - cos(x), 1, $sen^2(x/2)$
- 23. Seja $A \in M_n(\mathbb{R})$ uma matriz. Mostre que se $\{v_1, \ldots, v_p\} \in \mathbb{R}^n$ é linearmente dependente, então $\{Av_1, \ldots, Av_p\}$ é também linearmente dependente.

Agora suponha que A é invertível. Então, se $\{v_1, \ldots, v_p\} \in \mathbb{R}^n$ é linearmente independente, então $\{Av_1, \ldots, Av_p\}$ é linearmente independente.

24. Dados W_1 e W_2 dois subespaços vetoriais de V. Defina:

$$W_1 + W_2 := \{ v \in V : v = w_1 + w_2, \text{ onde } w_1 \in W_1 \text{ e } w_2 \in W_2 \}.$$

Mostre que W_1+W_2 é um subespaço vetorial de V. W_1+W_2 é chamado de soma dos espaços vetoriais W_1 e W_2 . Se adicionalmente, $W_1\cap W_2=\{\bar{0}\},$ W_1+W_2 é denotado por $W_1\oplus W_2$. $W_1\oplus W_2$ é chamado de soma direta de W_1 e W_2 .

Dados os vetores $w_1 = (2 \ 1 \ 3)^T$, $w_2 = (3 \ -1 \ 4)^T$ e $w_3 = (1 \ 3 \ 2)^T$ em $V = \mathbb{R}^3$.

- (a) Calcule os seguintes subespaços: $\operatorname{Span}(w_1, w_2, w_3), \operatorname{Span}(w_1, w_2) + \operatorname{Span}(w_3), \operatorname{Span}(w_1, w_2) + \operatorname{Span}(w_3, w_2).$
- (b) Descreva geometricamente cada ums dos subespaços mencionados.
- (c) Quais das somas descritas são somas diretas?
- 25. Considere os subconjuntos W_1 e W_2 de $M_n(\mathbb{K})$,

$$W_1 := \{ A \in M_n(\mathbb{K}) : A = A^T \}$$

е

$$W_2 := \{ A \in M_n(\mathbb{K}) : A = -A^T \}.$$

 W_1 é o subconjunto de todas as matrizes simétricas $(A = A^T)$ e W_2 é o subconjunto das matrizes antisimétricas $(A = -A^T)$.

Mostre que $M_n(\mathbb{K}) = W_1 \oplus W_2$, isto é, (i) $M_n(\mathbb{K}) = W_1 + W_2$ e (ii) $W_1 \cap W_2 = \{\bar{0}\}$, onde $\bar{0}$ representa a matrix zero em $M_n(\mathbb{K})$.

Dica: Dado $A \in M_n(\mathbb{K})$, considere $B := (A + A^T)/2$.

- 26. Um espaço vetorial V possui dimensão k, dim(V) = k, se existem k vetores, $\{v_1, \ldots, v_k\}$ em V, tais que:
 - I Os vetores v_1, \ldots, v_k são linearmente independente, isto é, sempre que $\alpha_1 v_1 + \ldots, \alpha_k v_k = \bar{0}$, com $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$, necessariamente temos que todos os $\alpha_1, \ldots, \alpha_k$ devem ser iguais ao zero.
 - II $Span(v_1, ..., v_k) = V$, ou seja, todo vetor v em V se escreve como combinação linear dos vetores $v_1, ..., v_k$.

Um conjunto $\{v_1, \ldots, v_k\}$ satisfazendo as propriedades acimas mencionadas é chamada de *base*. Temos as seguintes propriedades:

- (a) Todo espaço vetorial possui uma base.
- (b) Se $\{w_1, \ldots, w_p\}$ é uma base de V, com dim(V) = k. Então, p = k.
- (c) O espaço n-dimensional \mathbb{R}^n tem dimensão n, $dim(\mathbb{R}^n) = n$. O espaço das matrizes $M_{m \times n}(\mathbb{R})$ tem dimensão $m \times n$.
- (d) Se W é um subespaço vetorial de V. Então, $dim(W) \leq dim(V)$. Ainda mais, se dim(W) = dim(V), então W = V.
- (e) Se W_1 e W_2 são dois subespações vetoriais de V. Então temos que, $dim(W_1 + W_2) + dim(W_1 \cap W_2) = dim(W_1) + dim(W_2)$.

Usando essas informações responda, prove ou calcule:

- Se S_1, S_2 são subespaços tridimensional de \mathbb{R}^5 , então devem possuir um vetor não nulo em comum. *Dica:* O que acontece se $S_1 \cap S_2 = \{0\}$?
- Se $w_1 = (4 \ 2 \ 6)^T$, $w_2 = (3 \ -1 \ 4)^T$ e $w_3 = (1 \ 3 \ 2)^T$. Calcule a dimensão de Span (w_1, w_2, w_3) .
- Se $\{v_1, \ldots, v_k\}$ é uma base de V, se e somente se, todo vetor $v \in V$ é escrito de maneira única como combinação linear de $\{v_1, \ldots, v_k\}$.
- Dê exemplo de três vetores v_1 , v_2 e v_3 sendo $\{v_1\}$ l.i., $\{v_2, v_3\}$ l.i., v_2 e v_3 não são múltiplos de v_1 e $\{v_1, v_2, v_3\}$ l.d.
- Dados $v_1 = (-3 \ 5 \ 2 \ 1)^T$ e $v_2 = (1 \ -2 \ -1 \ 2)^T$. (i) Por que v_1 e v_2 não pode gerar \mathbb{R}^4 ? (ii) Encontre vetores v_3 e v_4 que complete junto com v_1 e v_2 uma base de \mathbb{R}^4 .
- 27. Encontre bases para lin(A) (espaço-linha de A), col(A) (espaço-coluna) e para Nuc(A) (núcleo de A).

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 2 & 1 \\ 1 & -1 & -4 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix} \quad A = \begin{pmatrix} 2 & -4 & 0 & 2 & 1 \\ -1 & -2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{pmatrix}$$

28. Para quais números c e d as seguintes matrizes têm posto 2? Lembre que o posto de uma matriz A, posto(A), é a dimensão do espaço-linha, posto(A) = dim(lin(A)).

$$A = \begin{pmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{pmatrix}, \ B = \begin{pmatrix} c & d \\ d & c \end{pmatrix}$$

29. Ache todos os valores possíveis para posto(A) em função dos valores de α .

$$A = \begin{pmatrix} 1 & 2 & \alpha \\ -2 & 4\alpha & 2 \\ \alpha & -2 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 6 & 6 & -4 \\ -2 & -1 & \alpha \\ \alpha & 2 & -1 \end{pmatrix}$$

- 30. Seja $A \in M_{m \times n}(\mathbb{R})$. Prove que todo vetor em Nuc(A) é ortogonal a todo vetor em lin(A).
- 31. Para toda matriz $A \in M_{m \times n}(\mathbb{K})$, temos
 - (a) posto(A) = dim(col(A)) = dim(lin(A)). Essa propriedade é geralmente abreviado como $posto\ linha = posto\ coluna$.
 - (b) Sempre, $n=\dim(Nuc(A))+\dim(col(A))$. Perceba que n é o número de coluna de A.

Então, com essas informações responda:

- Se m = n. Prove que A é invertível se e somente se posto(A) = n.
- Qual é o posto(A) e a dim(Nuc(A)), em função da variável α

$$A = \begin{pmatrix} 1 & 1 & \alpha \\ 1 & \alpha & 1 \\ \alpha & 1 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} \alpha & 3 & -1 \\ 3 & 6 & -2 \\ -1 & -3 & -\alpha \end{pmatrix}$$

- 32. Sejam A e $B \in M_n(\mathbb{K})$. Mostre que AB = O, se e somente se o espaçocoluna de B é um subespaço de Nuc(A).
- 33. Seja $A \in M_{m \times n}(\mathbb{K})$ e $B \in M_{n \times p}(\mathbb{K})$. Considere $C = AB \in M_{m \times p}(\mathbb{K})$. Mostre que:
 - (a) O espaço coluna de C está contido no espaço coluna de A.
 - (b) O espaço linha de C está contido no espaço linha de B
 - (c) $posto(C) \leq min(posto(A), posto(B))$
 - (d) Se as coluna de A e B são l.i, então as colunas de C também são l.i.
 - (e) Se as linhas de A e B são l.i, então as linhas de C também são linearmente independente
 - (f) Se as colunas de Bsão linearmente dependente, então as colunas de C também são linearmente dependente

- (g) Se as linhas de Asão linearmente dependente, então as linhas de C também são linearmente dependente
- (h) O núcleo de B está contido no núcleo de ${\cal C}$
- 34. Seja $A \in M_{m \times n}(\mathbb{R})$. A matriz A tem posto 1, se e somente se $A = uv^T$ para algum $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$. Dica: Toda linha é multiplo de alguma linha não nula
 - Se $A=uv^T$, prove que u é uma base para o espaço-coluna de A e v^T é uma base para o espaço-linha de A. Qual a dimensão de Nuc(A)?