Dominik Wawszczak numer indeksu: 440014

numer grupy: 6

Zadanie 3

Rozpocznijmy od udowodnienia, że język L nie jest obliczalny.

Przypuśćmy nie wprost, że $L = L(\mathcal{H})$, dla pewnej maszyny Turinga \mathcal{H} , która zawsze terminuje i zostawia na taśmie 1, jeżeli wejściowy napis jest postaci $u_1 \$ u_2$, gdzie u_1 i u_2 są kodami podobnych maszyn Turinga, lub 0 w przeciwnym wypadku. Wskażemy redukcję

$$HALT_{\varepsilon} \leqslant_f L$$
,

co da oczywistą sprzeczność, gdyż problem ${\rm HALT}_\varepsilon$ jest nierozstrzygalny.

Weźmy funkcję f o następującej definicji:

$$f(\operatorname{kod}(\mathcal{M})) = \langle \operatorname{kod}(\mathcal{M}), \operatorname{kod}(\mathcal{M}') \rangle,$$

gdzie \mathcal{M} jest dowolną maszyną Turinga, a \mathcal{M}' maszyną Turinga działającą w sposób opisany poniżej:

- jeśli wejściowym napisem jest ε , to maszyna \mathcal{M}' najpierw symuluje działanie maszyny \mathcal{M} na tym napisie, a następnie w miejsce wystąpienia pierwszego blanka wpisuje 1 i kończy działanie;
- \bullet w przeciwnym wypadku symuluje działanie maszyny ${\mathcal M}$ na napisie wejściowym, po czym kończy działanie.

Funkcja f jest oczywiście obliczalna.

Zauważmy, że

 \mathcal{M} terminuje na $\varepsilon \iff \text{maszyny } \mathcal{M} \text{ oraz } \mathcal{M}' \text{ nie są podobne,}$

czyli równoważnie

$$\operatorname{kod}(\mathcal{M}) \in \operatorname{HALT}_{\varepsilon} \iff \langle \operatorname{kod}(\mathcal{M}), \operatorname{kod}(\mathcal{M}') \rangle \notin L.$$

Wynika to z tego, że jeżeli \mathcal{M} terminuje na ε , to \mathcal{M}' również terminuje na ε , jednak daje inny wynik. Z drugiej strony, jeśli maszyny \mathcal{M} oraz \mathcal{M}' nie są podobne, to \mathcal{M} terminuje na ε , ponieważ w przeciwnym wypadku, obie maszyny \mathcal{M} oraz \mathcal{M}' nie terminowałaby na ε , dając jednak inny wynik. Z implikacji w obie strony dostajemy więc równoważność.

Z powyższego wynika, że język L nie jest obliczalny.