PRINT Cipher

Aayush Deshmukh^{1,2}, Aman Khan¹ and Manohar Das¹

 1 Institute A, City, Country, jane@institute $\,$

Abstract. In this paper we prove that the One-Time-Pad has perfect security.

Keywords: Something · Something else

1 Introduction

Widely used primitives like the AES [?] do not have perfect security, and can be analysed with linear cryptanalysis [?], differential cryptanalysis [?], or differential power analysis [?]. We show that the One-Time-Pad is unconditionally secure in Section 2.

2 Main Result

2.1 Sbox Analysis

The sbox for the PRINT cipher is a 3-bit to 3-bit. Since input is 3-bit so for a b-bit block, the sbox is applied $\frac{b}{3}$ parallely. The current state for the sbox is a $\frac{b}{3}$ words, for each word same sbox is used and the next state is the concatenation of outputs. It is a balanced sbox and has a linear structure. The sbox is given in the following table:-

X	0	1	2	3	4	5	6	7
s[x]	0	1	3	6	7	4	5	2

2.1.1 Difference Distribution Table

The sbox has a differential branch number defined as $\min_{v, w \neq v} \{ wt(v \oplus w) + wt(S(v) \oplus S(w)) \}$ of **2**. The difference distribution table (ddt) which is generated using Sage is as follows:-

² Institute B, City, Country, john@institute

PRINT Cipher

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	2	0	2	0	2	0	2
2	0	0	2	2	0	0	2	2
3	0	2	2	0	0	2	2	0
4	0	0	0	0	2	2	2	2
5	0	2	0	2	2	0	2	0
6	0	0	2	2	2	2	0	0
7	0	2	2	0	2	0	0	2

2.1.2 Linear Approximation Table

The linear branch number which is defined as $\min_{\alpha \neq \beta, LAM(\alpha,\beta) \neq 0} \{ wt(\alpha) + wt(\beta) \}$ for this sbox is **2**. The linearity of this sbox is **4**. The linear approximation table generated from Sage is as follows:-

	0	1	2	3	4	5	6	7
0	4	0	0	0	0	0	0	0
1	0	-2	0	2	0	2	0	2
2	0	0	2	2	0	0	2	-2
3	0	2	-2	0	0	2	2	0
4	0	0	0	0	2	-2	2	2
5	0	2	0	2	2	0	-2	0
6	0	0	2	-2	2	2	0	0
7	0	2	2	0	-2	0	0	2

2.1.3 Additional Properties of Sbox

1. The component funcion in 3 variables in algebraic normal form of the sbox is

$$x0*x2 + x0 + x1*x2$$

2. The interpolation polynomial for the sbox is

$$(a + 1)x^6 + (a^2 + a + 1)x^5 + (a^2 + 1)x^3$$

3. The polynomials which satisfy the sbox is

•
$$x0*x2 + x0 + x1 + y1$$

•
$$x0*x1 + x0 + x1 + x2 + y2$$

•
$$x0*y1 + x0 + x2 + y1 + y2$$

•
$$x0*y2 + x1 + y1$$

- x1*x2 + x0 + y0
- x1*y0 + x1 + x2 + y0 + y2
- x0*y0 + x1*y1 + x2 + y2
- x1*y2 + x0 + x1 + y0
- x2*y0 + x1 + y0 + y1
- x2*y1 + x0 + y0
- x0*y0 + x2*y2 + x0 + x1 + x2 + y0 + y1
- y0*y1 + x2 + y0 + y1 + y2
- y0*y2 + x1 + y1
- y1*y2 + x0 + y0 + y1
- x input variables y output variables
- **4.** Maximum degree of component function 2
- **5.** Minimum degree of component function 2
- **6.** Maximal differential probability 0.25
- 7. Absolute maximal linear bias 2
- **8.** Relative maximal linear bias 0.25

References