EMBEDDED SYSTEM ET 658

Lecture · 3 Vear · III Tutorial : 1 Part : II Practical: 3/2 **Course Objective:** To introduce students to understand and familiarization on applied computing principles in emerging technologies and applications for embedded systems 1. Introduction to Embedded System (3 Hours) **Embedded Systems overview** 1 1 Classification of Embedded Systems 1.2 13 Hardware and Software in a system 1.4 Purpose and Application of Embedded Systems 2. Hardware Design Issues (4 Hours) 2.1 Combination Logic 2.2 Sequential Logic 2.3 Custom Single-Purpose Processor Design 2.4 Optimizing Custom Single-Purpose Processors 3. **Software Design Issues** (6 Hours) 3 1 Basic Architecture 3.2 Operation 3.3 Programmer's View 3.4 **Development Environment** 3.5 Application-Specific Instruction-Set Processors 3.6 Selecting a Microprocessor 3.7 General-Purpose Processor Design Memory 4. (5 Hours) 4.1 Memory Write Ability and Storage Permanence

4.4 Memory Hierarchy and Cache

Interfacing

4.2

4.3

5.

(6 Hours)

5.1 Communication Basics

Types of Memory

Composing Memory

- 5.2 Microprocessor Interfacing: I/O Addressing, Interrupts, DMA
- 5.3 Arbitration
- 5.4 Multilevel Bus Architectures
- 5.5 Advanced Communication Principles

6. Real-Time Operating System (RTOS)

(8 Hours)

6.1 Operating System Basics

- 6.2 Task, Process, and Threa6.3 Multiprocessing and Multiprocessing
- 6.4 Task Scheduling
- 6.5 Task Synchronization
- 6.6 Device Drivers

7. Control System

(3 Hours)

- 7.1 Open-loop and Close-Loop control System overview
- 7.2 Control System and PID Controllers
- 7.3 Software coding of a PID Controller
- 7.4 PID Tuning

8. IC Technology

(3 Hours)

- 8.1 Full-Custom (VLSI) IC Technology
- 8.2 Semi-Custom (ASIC) IC Technology
- 8.3 Programming Logic Device (PLD) IC Technology

9. Microcontrollers in Embedded Systems

(3 Hours)

- 9.1 Intel 8051 microcontroller family, its architecture and instruction sets
- 9.2 Programming in Assembly Language
- 9.3 A simple interfacing example with 7 segment display

10. VHDL

(4 Hours)

- 10.1 VHDL overview
- 10.2 Finite state machine design with VHDL

Practical:

Student should be complete lab works and project work in practical classes.

Reference Books:

- 1. David E. Simon, "An Embedded Software Primer", Addison-Wesley
- Muhammad Ali Mazidi, "8051 Microcontroller and Embedded Systems", Prentice Hall
- 3. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley & Sons
- 4. Douglas L. Perry, "VHDL Programming by example", McGraw Hill