WINTER-2018

Q.1 a) Solve:
$$(D^2 + 5D + 6) y = e^{-2x} \sin 2x + 4x^2e^x$$
. (6)

b) Solve by the Method of variation parameters

$$(D^2 - 1) y = e^{-x} \sin(e^{-x}) + \cos(e^{-x})$$
 (7)

Q.2 a) Solve

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = 3x - 7$$
 (7)

b) Solve

$$(D^2 - D - 2)y = 2\log x + \frac{1}{x} + \frac{1}{x^2}$$
 (7)

Q.3 a) Find the Laplace transform of
$$\int_0^t e^t \frac{\sin t}{t} dt$$
 (5)

b) Find f(t) if
$$f(s) = \frac{1}{2} \log \frac{(s^2 - a^2)}{s^2}$$
c) Solve $\frac{dx}{dt} = 2x - 3y$, $\frac{dy}{dt} = y - 2x$

c) Solve
$$\frac{dx}{dt} = 2x - 3y$$
, $\frac{dy}{dt} = y - 2x$

using L. T being given
$$x(0) = 8$$
, $y(0) = 3$ (5)

Q.4 a) Find the inverse Laplace Transform of

$$f(s) = \frac{s^2 + 2s + 3}{(s^2 + 2s + 2)(s^2 + 2s + 5)}$$
 (5)

b) Solve
$$\int_0^\infty t^3 e^{-t} \sin t \, dt$$
 (4)

c) Find the Laplace Transform of f(t) if f(t) = a sin pt, 0 < t

$$<\pi/P = 0, \pi/P < t < 2\pi/P \text{ and } f(t) = f\left(t + \frac{2\pi}{P}\right)$$
 (5)

UNIT 3

Q.5 a) Solve the difference equations

$$U_{n+2} - 16u_n = \cos\frac{n}{2}$$
 (5)

- **b)** Find the Z-Transform of ka^{k-1} , $k \ge 1$
- c) Solve by using Z-Transform

$$y_{n+2} + 3y_{n+1} + 2y_n = 4^n$$
 given $y(0) = 0$, $y(1) = 1$ (4)

Q.6 a) Solve the difference equation

$$(E^2 - 5E + 6) y = x + 2^x$$
 (5)

b) Show that inverse Z-Transform of

$$\frac{1}{(z-a)^3} = \frac{(k-1)(k-2)a^{k-3}}{2}$$
 (4)

c) Find Z-Transform of sin(3n + 5) (4)

UNIT 4

Q.7 a) Solve pq =
$$x^m y^n z^{2^p}$$
. (4)

b) Solve
$$(mz - ny)p + (nx - Pz)q = Py - mx$$
 (4)

c) Express the function, (5)

$$f(t) = t, |x| \le 1$$

= 0, |x| > 1

as Fourier integral, hence

evaluate
$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$

Q.8 a) Solve
$$4xyz = pq + 2px^2y + 2qxy^2$$
 (4)

b) Solve
$$yp = 2xy + \log q$$
 (4)

c) Find the Fourier sine transform of
$$f(x) = \frac{e^{-ax}}{x}$$
. (5)

UNIT 5

Q.9 a) Construct an analytic function

$$f(z) = u + iv \text{ if } u - v = (x - y) (x^2 + 4xy + y^2)$$
 (7)

b) Find Bilinear transformation which maps the points Z = 0, -1, ∞ and from Z-planes into W = -1, -2 -i, i respectively in the W-plane. (6)

Q.10 a) If f(z) is analytic, show that

$$\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) |\mathbf{f}(\mathbf{z})|^n \mathbf{f} = n^2 |\mathbf{f}(\mathbf{z})|^{n-2} |\mathbf{f}'(\mathbf{z})|^2$$
(7)

b) Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region.

i.
$$1 < |z| < 4$$
, ii. $|z| > 4$. (6)

UNIT 6

Q.11 a) Find the directional derivative $f(x, y, z) = x^2y^2z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $x = e^t$, $y = 2 \sin t + 1$, $z = t - \cos t$ at t = 0. (7)

b) A vector field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$

Show that the field is irrotational and find its scalar potential (7)

Q.12 a) Find whether the vector field $\overline{F} = (2xy + z^3)i + x^2j + 3z^2xk$ is conservative and find ϕ such that $\overline{F} = \nabla \phi$ and also evaluate $\int \overline{F} \cdot d\overline{r}$ along any curve joining the points (1, -2, 1) to (3, 1, 4).

b) If
$$r = xi + yj + zk$$
, show that. (9)

i. grad
$$r = \frac{r}{r}$$

ii. grad
$$\left(\frac{1}{r}\right) = \frac{-\bar{r}}{r^3}$$

iii.
$$\nabla_r n = n r^{n-2} \overline{r}$$
.