Bank Marketing Data Analysis

This notebook presents an analysis of the bankmarketing.csv dataset, which includes data related to a bank's marketing campaigns. The main goal is to understand customer behavior and predict whether a client will subscribe to a term deposit.

```
import pandas as pd

# Load the dataset
df = pd.read_csv('bankmarketing.csv')

# Display the first few rows
df.head()
```

→		age	job	marital	education	default	housing	loan	contact	month	day_o
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	
	1	57	services	married	high.school	unknown	no	no	telephone	may	
	2	37	services	married	high.school	no	yes	no	telephone	may	
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	
	4	56	services	married	high.school	no	no	yes	telephone	may	

5 rows × 21 columns

```
# Check for missing values
print("Missing values:\n", df.isnull().sum())
# Check data types
print("\nData types:\n", df.dtypes)
```

day_of_week 0 duration 0 campaign 0 0 pdays previous 0 0 poutcome 0 emp.var.rate cons.price.idx 0 cons.conf.idx 0 euribor3m 0 nr.employed 0 0 dtype: int64

Data types:

dtype: object

int64 age job object marital object education object default object housing object loan object contact object month object day_of_week object duration int64 int64 campaign pdays int64 int64 previous poutcome object float64 emp.var.rate cons.price.idx float64 cons.conf.idx float64 euribor3m float64 nr.employed float64 object

Summary statistics for numerical features
df.describe()

	age	duration	campaign	pdays	previous	emp.var.rate
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000

Start coding or generate with AI.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Plotting the count of target variable 'y'
sns.countplot(x='y', data=df)
plt.title('Distribution of Target Variable (y)')
plt.xlabel('Subscribed (yes/no)')
plt.ylabel('Count')
plt.show()
```


Distribution of Target Variable (y)

Double-click (or enter) to edit

```
import seaborn as sns
import matplotlib.pyplot as plt

# Plotting the count of target variable 'y'
sns.countplot(x='y', data=df)
plt.title('Distribution of Target Variable (y)')
plt.xlabel('Subscribed (yes/no)')
plt.ylabel('Count')
plt.show()
```

 $\overline{2}$

Distribution of Target Variable (y)

Double-click (or enter) to edit

```
# Correlation matrix for numerical features
import seaborn as sns
import matplotlib.pyplot as plt

# Select only numerical features
numerical_df = df.select_dtypes(include=['int64', 'float64'])

# Compute correlation matrix
corr_matrix = numerical_df.corr()

# Plot heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Matrix for Numerical Features')
plt.show()
```


Correlation Matrix for Numerical Features

