Methods to Optimize for Energy

Efficiency



Developed by David J. Moorhouse & David M. Pratt

Air Vehicles Directorate
U.S. Air Force Research Laboratory

Presented by:
José Camberos & John Doty

Thermodynamics: Can Macro Learn from Nano? 22- 15 May 2011, Sweden

Cleared for Public Release: 88ABW-2008-1174

| including suggestions for reducing                                                                             | completing and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding ar<br>OMB control number. | arters Services, Directorate for Info | ormation Operations and Reports | s, 1215 Jefferson Davis    | Highway, Suite 1204, Arlington              |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|----------------------------|---------------------------------------------|--|
| 1. REPORT DATE MAY 2011                                                                                        | 2. REPORT TYPE N/A                                                                                                                       |                                       | 3. DATES COVERED                |                            |                                             |  |
| 4. TITLE AND SUBTITLE                                                                                          |                                                                                                                                          |                                       | 5a. CONTRACT NUMBER             |                            |                                             |  |
| Methods to Optimize for Energy Efficiency                                                                      |                                                                                                                                          |                                       |                                 |                            | 5b. GRANT NUMBER                            |  |
|                                                                                                                |                                                                                                                                          |                                       |                                 |                            | 5c. PROGRAM ELEMENT NUMBER                  |  |
| 6. AUTHOR(S)                                                                                                   |                                                                                                                                          |                                       |                                 |                            | 5d. PROJECT NUMBER                          |  |
|                                                                                                                |                                                                                                                                          |                                       |                                 |                            | 5e. TASK NUMBER                             |  |
|                                                                                                                |                                                                                                                                          |                                       |                                 | 5f. WORK UNIT NUMBER       |                                             |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Vehicles Directorate U.S. Air Force Research Laboratory |                                                                                                                                          |                                       |                                 |                            | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                        |                                                                                                                                          |                                       |                                 |                            | 10. SPONSOR/MONITOR'S ACRONYM(S)            |  |
|                                                                                                                |                                                                                                                                          |                                       |                                 | 11. SPONSOR/M<br>NUMBER(S) | IONITOR'S REPORT                            |  |
| 12. DISTRIBUTION/AVAIL Approved for publ                                                                       | LABILITY STATEMENT<br>ic release, distributi                                                                                             | on unlimited                          |                                 |                            |                                             |  |
| 23-25, 2011. Appro                                                                                             | OTES<br>49. Thermodynamic<br>oved for public relea<br>ne original documen                                                                | se; distribution is u                 | nlimited. U.S. Go               | • ,                        | •                                           |  |
| 14. ABSTRACT                                                                                                   |                                                                                                                                          |                                       |                                 |                            |                                             |  |
| 15. SUBJECT TERMS                                                                                              |                                                                                                                                          |                                       |                                 |                            |                                             |  |
| 16. SECURITY CLASSIFIC                                                                                         | 17. LIMITATION OF                                                                                                                        | 18. NUMBER                            | 19a. NAME OF                    |                            |                                             |  |
| a. REPORT<br>unclassified                                                                                      | b. ABSTRACT <b>unclassified</b>                                                                                                          | c. THIS PAGE<br>unclassified          | - ABSTRACT<br>SAR               | OF PAGES 33                | RESPONSIBLE PERSON                          |  |

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

**Report Documentation Page** 

Form Approved OMB No. 0704-0188



# Wright-Patterson AFB...



#### is the birthplace, home and future of aerospace



- On base organizations; missions ranging from acquisition & logistics management to research & development, education, flight operations and many other defense related activities
- Wright—Patterson Air Force Base (WPAFB) is the home of
  - U. S. Air Force Research Laboratory
  - Organizations that support for over 100 Air Force entities
  - U. S. Air Force Institute of Technology
  - National Museum of the U. S. Air Force

**–** ...



### U. S. Air Force Research Laboratory











# **Air Vehicles Directorate Core Technical Competencies**



#### **Aeronautical Sciences**



- **★**High Fidelity Computational Simulation
- **★**Advanced Air Vehicle Concepts

#### **Control Sciences**

Collision avoidance





UAS range & endurance via aerial refueling

- **★**Cooperative and Adaptive Control
- ★ Autonomous and Advanced Control

#### **Structures**





- **★**Advanced Structural Concepts
- **★**Multidisciplinary Structural Design & Analysis

#### Integration





Lightweight, Survivable Inlets

- **★**Modeling and Simulation
- **★Quantitative Technology Assessment**
- **★**Experimental Validation



# Air Vehicles Directorate Research Centers





High Fidelity Computational Simulation







Dr. Siva Banda (ST) Director, CS Center

Cooperative and Adaptive Control

**Control Sciences** 

#### **Structural Sciences**



Dr. Ravi Chona (ST)
Director, SS Center



Combined Extreme Environments

### Multidisciplinary Science &



Dr. Ray Kolonay, Acting Director MSTC Center

Multidisciplinary Analysis & Design Space Exploration





# **Team 1: Prototype Exploration**











**Feature Presentation** 

### **EXERGY-BASED METHODS**



# **Energy-Based Design Methods Background**



#### **Historically:**

- Energy always an *implicit* consideration, e.g.
  - Breguet Range Equation ~ Energy to overcome Drag
  - Trajectory Optimization → trade Potential & Kinetic Energy

#### **Problem:**

- Energy Considerations are Only Implicit & unrelated.
- Aircraft Subsystems are 'Optimized' as Separate Components.
- "Integration" accomplished, but often with incompatible objectives



### **Evolutionary vs. Revolutionary**



"Polishing Old Methods Can Only Give Incremental Improvement, But New Methods Can Open the World"

#### **ASSESS CUSTOMER REQUIREMENTS**

**EVOLUTIONARY SOLUTION** 

OR

REVOLUTIONARY

PRE-EXISTING DATA

(Physical ~ even with approximations Validated with FLIGHT DATA!!)

THEORETICAL MODELS

**VALIDATED TOOLS** 

 $\langle \hspace{-2mm} \rangle$ 

WHAT TOOLS ??

**EXISTING MDO PROCESS** 

**ALLOW FLEXIBILITY** 

IMPROVE 'COMPONENTS' and/or INNOVATE



INVENTION, with PHYSICS

INCREMENTAL IMPROVEMENT CAN BE VERY GOOD OR ??

FIRST TIME CAPABILITY
IS VERY GOOD



# **Customer and Overhead Work**



- Define specific energy as kinetic + potential energies per unit mass:  $E = h + \frac{1}{2g}U^2$
- <u>Customer work rate</u> includes generating specific payload energy & overcoming drag and power requirements:  $\frac{dW_c}{dt} = W_p \frac{dE_W}{dt} + P_P + D_P U$
- Overhead work Sum of work consumed and drag caused by every component of the system:

$$\frac{dw_o}{dt} = \sum \left( W_i \frac{dE}{dt} + P_i + D_i U \right)$$

Design Problem → Minimize Overhead Work (Loss)



### **AFRL Energy-Based Design**



Develop Thermodynamics Laws into common currency for system optimization, e.g. hypersonic airframe/propulsion integration

Develop energy-minimizing algorithms based on consumption, so every subsystem component is optimized to system-level metrics

Develop topology and mechanization to enable energy-efficient adaptive structures for fully morphing aircraft concepts

Develop methodologies for entropy generation minimization and optimization of thermal components

**Additional tasks:** 

Understand and develop energy harvesting
High fidelity computation of entropy generation









### **Exergy-Based Design Methods:**



Specify all vehicle design requirements as work potential (exergy destruction, entropy production)

### Multidisciplinary Design:

- Decompose system into energy subsystems
- Design all components to optimize system to minimize loss





Example

# MISSION LEVEL OPTIMIZATION



### **Mission Level Optimization**



#### Mission for an Advanced Aircraft Fighter (AAF):

PS, ECS, and AFS-A



Source: Mattingly et. al., 1987

| Mission Segments |                         |  |  |  |  |
|------------------|-------------------------|--|--|--|--|
| 10.              | Name                    |  |  |  |  |
| 1                | Warm-up                 |  |  |  |  |
| 2                | Take-off acceleration   |  |  |  |  |
| 3                | Take-off rotation       |  |  |  |  |
| 4                | Accelerate              |  |  |  |  |
| 5                | Climb                   |  |  |  |  |
| 6                | Subsonic cruise climb 1 |  |  |  |  |
| 7                | Combat air patrol       |  |  |  |  |
| 8                | Supersonic penetration  |  |  |  |  |
| 9                | Combat turn             |  |  |  |  |
| 10               | Combat acceleration     |  |  |  |  |
| 11               | Escape dash             |  |  |  |  |
| 12               | Subsonic cruise climb 2 |  |  |  |  |
| 13               | Loiter                  |  |  |  |  |
| 14               | Descend and Landing     |  |  |  |  |



# Optimal Vehicles Predicted for Four Optimization Metrics



#### **Traditional**:

Minimize Gross Takeoff Weight

#### **Exergy Methods:**

- Maximize Thrust Efficiency = thrust divided by fuel mass flow x heating value
- Maximize Thermo Effectiveness = thrust divided by max thrust if no irreversibilities
- Minimize Exergy Destruction



# Optimal Vehicles Predicted for Four Optimization Metrics





Optimization Metric Makes Little Difference ~~~ SO ????



# Optimum Vehicles Including Aero Design Variables









Example

# MORPHING WING MISSION ANALYSIS



# **Morphing Wing Mission Analysis**



#### **Wing Optimization Details:**

- Wing sweep, wing length, root and tip chord lengths (2D geometries) are morphed, mission optimized by segment
- Wing twist and camber changes (3-D geometries) are not morphed
- 15% weight penalty factor > varied up to 9 x baseline weight
- ☐ 3% fuel penalty factor > varied up to double baseline mission fuel

#### **Model Characteristics**

- Turbojet propulsion subsystem (PS)
- Airframe subsystem
- Genetic algorithm (QMOO)
- ☐ Investigated mission effects of using morphing wing technology on supersonic fighter aircraft



# Effect of Morphing Wing on Exergy Destruction







# **Exergy Destruction Distributions**







# Effect on Different Mission Segments



|                        | Morphing Wing |                        | Fixed Wing |                        |  |
|------------------------|---------------|------------------------|------------|------------------------|--|
| Mission Segment        | Cruise        | Supersonic Penetration | Cruise     | Supersonic Penetration |  |
| Wing length (ft)       | 35.50         | 29.09                  | 41.4301    |                        |  |
| Wing sweep (deg)       | 13.16         | 43.63                  | 41.7168    |                        |  |
| Root Chord Length (ft) | 4.04          | 4.00                   | 5.0138     |                        |  |
| Tip Chord Length (ft)  | 1.53          | 1.68                   | 2.6809     |                        |  |
| Fuel Consumption (lbm) | 76.8          | 712.2                  | 210.1      | 662.2                  |  |
| Percent Decrease       | 63.4%         | -7.55%                 | Baseline   |                        |  |





Example

# **ENERGY DEPOSITION**



# Potential Areas of System Usage for On-board Energy





Requires Accurate & Consistent Second-Law-Based, System-Level Performance and Optimized Fuel Usage



# 2-D Vehicle Study



 Used VULCAN "ignition sub-blocks" to add energy into discrete locations in the flow-field





# 2-D Vehicle Force Summary Mach 10









Example

# ENTROPY GENERATION MINIMIZATION & MAXIMUM SYSTEM PERFORMANCE



## **System Dynamics**



- Step input change in source voltage  $(V_C)$ :
  - Rise time: Time for  $(V_C)$  10% to 90% of step change
  - Slew rate: Maximum ( $V_C$ ) change rate
  - Overshoot: Maximum normalized (V<sub>C</sub>)
  - Settling time: Elapsed time for meta-stability







### **Dynamic Response**



1<sup>st</sup> & 2<sup>nd</sup> Law Comparison

★ 1st Law (
$$V_c$$
) →  $\frac{d(V_c)}{dt} = 0$ 

**★ 2<sup>nd</sup> Law (Entropy)** 
$$\rightarrow \frac{d^2(S_{Gen})}{dt^2} = 0$$





SAME PHYSICS; BUT DIFFERENT INTERPRETATION:

1st & 2nd LAW → STATIONARY POINTS, → EQUILIBRIUM OR NOT?



### Interpretation

# TA DRICE RESEARCH USORBOTE

#### **Dynamics AND Exergy Destruction**



~29% lower Rise Time & Settling Time, with ~43% reduction in Thermal Load; 2% Overshoot

"Anomaly" in exergy destruction due to settling time definition

DYNAMIC BEHAVIOR CAPTURED VIA STATIONARY INPUTS

MIN THERMAL LOAD & MIN EXERGY DESTRUCTION→~INCREASED PERFORMANCE



### **Exergy-Based Design Methods**



#### **Summary:**



- Optimization metric options are equivalent for propulsion + power components
- Adding airframe component → optimizing to minimize exergy destruction saved 6% fuel
- Morphing wing 
   significant system benefits
- Net thrust demonstrated with strategic energy deposition, using work potential loss

Exergy-Based Design Methods MUST be used to enable truly integrated, system/mission-level analysis and design optimization



### **Research Questions**



- What are relevant time scales for dynamic systems?
- How to incorporate dramatically different timescales into cohesive system?
- How to appropriately define system and its relevant boundaries such that interactions properly captured?
- How to properly pose the physical problem such that the models are more correctly developed
- How to validate models with physical experiments?