Algoritmo Branch-and-Bound

Derivazione di un algoritmo per la PLI

In generale, un problema intero si può scrivere

$$min z(x) = c^T x$$

$$x \in S_0 \subseteq \mathbb{Z}_+^n$$

 S_0 è l'insieme ammissibile del problema di PLI (S_0,c)

Possibili Algoritmi Risolutivi

1. Enumerazione Totale:

$$x_{PLI}^* = argmin\{z(x) | x \in S_0\}$$

- 2. Divide et impera:
 - a) Si partiziona l'insieme ammissibile $S_0 = \bigcup_{i=1}^k S_i$ $S_i \cap S_j = \emptyset$ $i \neq j$
 - b) Si risolve ogni sottoproblema (S_i, c) (Come? Per enumerazione totale?)

$$(x^*)^i = argmin\{z(x) | x \in S_i\}$$
 $i = 1, \dots, k$

c) x_{PLI}^* è la migliore delle soluzioni dei sottoproblemi (S_i, c)

$$x_{PLI}^* = argmin\{z((x^*)^i) \mid i = 1, \dots, k\}$$

Come effettuare una partizione della regione ammissibile?

Il rilassato lineare PL fornisce le seguenti informazioni su PLI:

- 1. Se PL è inammissibile, allora PI è inammissibile;
- 2. Il costo della soluzione ottima di PL è un lower bound per il costo della soluzione ottima di PI nel caso di problemi di minimo ($z_{PLI}^* \ge z_{PL}^*$); nel caso di problemi di massimo, esso costituisce un upper bound ($z_{PLI}^* \le z_{PL}^*$).
- 3. Se x_{P0}^* è a componenti intere, allora
 - a. $x^* = x_{PLI}^* = x_{P0}^*$
 - b. $z_{PLI}^* = z_{P0}^*$

ma anche altre.....

Il rilassato lineare PL fornisce le seguenti ulteriori informazioni su PI:

4. Se x_{P0}^* non è a componenti intere, allora esiste almeno una componente k di x_{P0}^* tale che

$$(x_k)_{P0}^* = \alpha \notin \mathbb{Z}$$

Considerati i due insiemi

$$S_1=S_0\cap\{x\in\mathbb{R}^n|\ x_k\leq\lfloor\alpha\rfloor\}$$
 e $S_2=S_0\cap\{x\in\mathbb{R}^n|\ x_k\geq\lfloor\alpha\rfloor+1\}$ si ha

vincoli di Branching

$$[\alpha] = \max\{k \in Z \mid k \le \alpha\}$$

a.
$$S_1 \cap S_2 = \emptyset$$
 $S_1 \cup S_2 = S_0$
b. $x^* \in S_1$ oppure $x^* \in S_2$

Si possono risolvere i problemi (S_1,c) e (S_2,c)

Partizione di $S_0 \Rightarrow$ Divide et impera

Risoluzione di (S_1, c) e (S_2, c)

- 1. Entrambi sono problemi interi
- 2. Si risolvono i rilassati lineari di (S_j, c) j = 1,2

$$(z_{PL}^*)_j = \min \quad c^T x$$
$$x \in P_j$$

- a. $P_j = \emptyset$. $\Rightarrow S_j$ inammissibile ed è risolto;
- b. $x_{PLj}^* \in \mathbb{Z}^n \implies S_j$ è risolto;
- c. $x_{PLj}^* \notin \mathbb{Z}^n \implies S_j$ non è risolto; partiziona S_j in S_{j_1} e S_{j_2} e ripeti.....

Senza opportuni accorgimenti, la procedura appena descritta porterebbe, con buone probabilità, ad un'enumerazione totale di S_0 .

La procedura di bounding con un esempio

Il problema (S_0, c)

$$x_{P0}^* = \left(\frac{48}{11}, \frac{15}{11}\right)^T \quad z_{P0}^* = -\frac{174}{11} \approx -15.81$$

Soluzione di P_0 , rilassato lineare di S_0

Dalla risoluzione di P_0

- $1. \quad z_{PLI}^* \geq z_{P0}^*$
- 2. $(x_1)_{PLI}^* \le 4$ oppure $(x_1)_{PLI}^* \ge 5$
- 3. $(x_2)_{PLI}^* \le 1$ oppure $(x_2)_{PLI}^* \ge 2$

Consideriamo la seguente partizione di S_0

$$S_1 = S_0 \cap \{x \in \mathbb{R}^n | x_2 \le 1\}$$
 e $S_2 = S_0 \cap \{x \in \mathbb{R}^n | x_2 \ge 2\}$

Da quanto detto

$$x_{PLI}^* \in S_1$$
 oppure $x_{PLI}^* \in S_2$

La soluzione del problema S_1

Il problema (S_1, c)

Soluzione di P_1 , rilassato lineare di S_1

$$x_{P1}^* = (4,1)^T \quad z_{P1}^* = -14$$

Dalla risoluzione di P_1

- 1. Il sottoproblema S_1 è stato risolto all'ottimo (il suo rilassato lineare P_1 ha soluzione ottima intera)
- 2. $z_{P0}^* = -15.85 \le z_{PLI}^* \le -14 = U = z_{P1}^*$
- 3. $x_{P0}^* \notin P_1$

La soluzione del problema S_2

Soluzione di P_2 , rilassato lineare di S_2

$$x_{P2}^* = \left(\frac{18}{5}, 2\right)^T$$
 $z_{P2}^* = -14.8$

Dalla risoluzione di P_2

- 1. Il sottoproblema S_2 non è stato risolto all'ottimo (il suo rilassato lineare P_2 ha soluzione ottima non intera)
- 2. Si potrebbe partizionare S_2 in

$$S_3 = S_2 \cap \{x \in \mathbb{R}^n | x_1 \le 3\}$$
 e $S_4 = S_2 \cap \{x \in \mathbb{R}^n | x_1 \ge 4\}$ ma non conviene perché

 $z_{P2}^* = -14.8$ è un lower bound (L_2) su tutta la sottoregione S_2 , cioè $c^Tx \ge -14.8 = L_2 \ \forall x \in$

 S_2 ed è già nota una soluzione ammissibile per S_0 di valore U=-14

Criterio di bounding: Se, risolvendo il rilassato lineare di un sottoproblema S_j , troviamo un lower bound L_j su S_j tale che $U \leq L_j$, l'esplorazione della sottoregione S_j può essere arrestata, anche se il rilassato lineare di S_j ha fornito un ottimo non intero

Nota: nell'esempio in esame il criterio di bounding sembrerebbe non essere verificato perché $U=-14\geq L_{\rm j}=-14.8$

Ma, poiché i coefficienti di costo della funzione obiettivo sono interi, infatti esplorando la regione ammissibile di S_2 , nel caso migliore non si potrebbe ottenere una soluzione intera con valore di funzione obiettivo migliore di -14 (che già abbiamo).

A rigore il criterio di bounding nel caso di coefficienti della funzione obiettivo interi dovrebbe essere dunque:

Criterio di bounding: se $U \leq \lfloor L_j \rfloor$, l'esplorazione della sottoregione S_j può essere arrestata, anche se il rilassato lineare di S_i ha fornito un ottimo non intero

Algoritmo Branch-and-Bound: notazione

- 1. (S_0, c) il problema di min che si vuole risolvere, P_0
- 2. Q: la lista dei sottoproblemi non ancora esaminati (sottoproblemi aperti)
- 3. \overline{x} : una soluzione ammissibile per (S_0, c) (ottimo corrente o incombente)
- 4. $U=z(\bar x)=c^T\bar x$: il valore della funzione obiettivo in corrispondenza di $\bar x$; esso è un upper bound su z_{PLI}^*
- 5. L_i : lower bound calcolato sul sottoproblema S_i
- 6. x_{Pj}^* : soluzione ottima del rilassato lineare del sottoproblema S_j
- 7. Per tenere traccia dell'evoluzione dell'algoritmo, faremo uso di un albero binario in cui ogni nodo corrisponde ad un sottoproblema S_j generato nel corso dell'algoritmo; ogni arco, invece, rappresenta un vincolo di sepaarazione (branching)

$$x_k \leq \lfloor \alpha \rfloor$$
 o $x_k \geq \lfloor \alpha \rfloor + 1$

I nodi foglia corrispondono a sottoproblemi S_i chiusi:

- perché inammissibili;
- 2. perché sono stati risolti all'ottimo (hanno fornito soluzione intera);
- 3. perché sono dominati dall'ottimo corrente (chiusi per bounding)

NOTA: Criterio d'arresto $U \leq L_0$

L'algoritmo inizializza ed iterativamente aggiorna un intervallo di incertezza [L U] che contiene il valore ottimo incognito del problema:

$$L_0 \le z_{PLI}^* \le U$$

L'algoritmo riduce iterativamente l'ampiezza dell' intervallo di incertezza, attraverso il miglioramento dell'accuratezza della stima di U, perché questo permette di introdurre un criterio di arresto per l'algoritmo che potrebbe scattare ben prima di aver completato l'esplorazione della regione ammissibile. E' evidente, infatti, che la condizione: $U \leq L_0$ garantisce che z_{PLI}^* è stato determinato, e coincide con U

Quale sotto problema risolvo prima?

Due strategie:

- > LIFO (visita in profondità): consiste nello scegliere come problema da esaminare l'ultimo problema di PLI generato.
- > FIFO (visita in ampiezza): Consiste nello scegliere come problema da esaminare il problema di PLI generato prima degli altri.

Esempio 1

$$min \quad -5x_1 - 8x_2$$

$$x_1 + x_2 \leq 6$$

$$4x_1 + 9x_2 \leq 36$$

$$x \geq 0$$

$$x \in \mathbb{Z}^2$$

Algoritmo B&B con visita in ampiezza

Soluzione di P_0 , rilassato lineare di S_0

Inizializzazione

$$Q = \{S_0\}, \qquad L = -\infty, \qquad U = +\infty, \qquad \bar{x} = \perp$$

 $-\infty < z_{PLI}^* < +\infty$

Soluzione di P_0

$$x_{P0}^* = \left(\frac{18}{5}, \frac{12}{5}\right)^T$$
 intersezione iperpiani 1 e 2 $z_{P0}^* = -\frac{186}{5} = -37.2 = L_0$

 $L_0 < z_{PLI}^* < +\infty$ aggiornamento intervallo di incertezza

Si esegue il test $U \leq L_0$?

Test non verificato e x_{P0}^* non intero. Si esegue il branching.

Branching su
$$x_1$$
 $\alpha = \frac{18}{5}$
 $S_1 = S_0 \cap \{x \in \mathbb{R}^2 | x_1 \le 3\}$

$$S_2 = S_0 \cap \{ x \in \mathbb{R}^2 | x_1 \ge 4 \}$$

$$Q = \{S_1, S_2\}$$

Esempio 1 - Soluzione di S_1

$$\begin{array}{cccc} min & -5x_1 - 8x_2 \\ & x_1 + x_2 & \leq & 6 \\ & 4x_1 + 9x_2 & \leq & 36 \\ & x_1 & \leq & 3 \\ & x & \geq & 0 \\ & x \in \mathbb{Z}^2 \end{array}$$

Soluzione di P_1 , rilassato lineare di S_1

Estraiamo S_1 da Q $Q = \{S_2\}, \qquad U = +\infty, \qquad \bar{x} = \perp \quad L_0 < z^*_{PLI} < +\infty$

Soluzione di P_1

$$x_{P1}^* = \left(3, \frac{8}{3}\right)^T$$
 intersezione iperpiani 2 e $x_1 = 3$

$$z_{P1}^* = -\frac{109}{3} = -36.\overline{3} = L_1$$

Si esegue il test: $U \le L_1$? Test non verificato e x_{P1}^* non intero. Si esegue il branching.

Branching su x_2 $\alpha = \frac{8}{3}$ $S_3 = S_1 \cap \{x \in \mathbb{R}^2 | x_2 \le 2\}$ $S_4 = S_1 \cap \{x \in \mathbb{R}^2 | x_2 \ge 3\}$ $Q = \{S_2, S_3, S_4\}$

Esempio 1 - Soluzione di S_2

$$min \quad -5x_1 - 8x_2$$

$$x_1 + x_2 \leq 6$$

$$4x_1 + 9x_2 \leq 36$$

$$x_1 \geq 4$$

$$x \geq 0$$

$$x \in \mathbb{Z}^2$$

Soluzione di P_2 , rilassato lineare di S_2

Estraiamo S_2 da Q

$$Q = \{S_3, S_4\}, \qquad U = +\infty, \qquad \bar{x} = \perp \quad L_0 < z_{PLI}^* < +\infty$$

Soluzione di P_2

$$x_{P2}^* = (4,2)^T$$
 intersezione iperpiani 1 e $x_1 = 4$ $z_{P2}^* = -36 = L_2$

Si esegue il test: $U \le L_2$. Il test non è verificato, e x_{P2}^* è intero. Si chiude S_2 e si aggiorna l'ottimo corrente.

$$U = -36$$
, $\bar{x} = (4,2)^T$ $L_0 < z_{PLI}^* \le U$

Si esegue il test: $U \leq L_0$?

Il test non è verificato. Si procede con la soluzione di un altro sottoproblema.

Esempio 1 - Soluzione di S_3 e S_4

Formulazione di S_3

Soluzione di P_3 $x_3^* = (3,2)^T$ $z_{P3}^* = -31 = L_3$ $U \le L_3 \text{ è verificata}$ $\text{chiudi } S_3$

Formulazione di S_4

$$min \quad -5x_1 - 8x_2$$

$$x_1 + x_2 \leq 6$$

$$4x_1 + 9x_2 \leq 36$$

$$x_1 \leq 3$$

$$x_2 \geq 3$$

$$x \leq 2$$

$$x \in \mathbb{Z}^2$$

Soluzione di
$$P_4$$

$$x_4^* = \left(\frac{9}{4}, 3\right)^T$$

$$z_{P4}^* = -\frac{141}{4} = -35.25 = L_4$$

 $U \le L_4$ è verificata chiudi S_4

Dopo la risoluzione di S_4

$$\mathcal{Q} = \{\emptyset \}$$
, l'algoritmo si arresta fornendo come soluzione ottima

$$x_{PLI}^* = (4.2)^T \quad z_{PLI}^* = -36$$

B&B

Nel caso di problemi di max

- 1) Si può operare la trasformazione in problema di min
- 2) Alternativamente si può lavorare direttamente con il problema di max osservando che:
 - a) La soluzione del rilassato di un problema S_j fornirà un upper bound U_j sul valore ottimo incognito z_{PLI}^*
 - b) Se la soluzione ottima del rilassato di un problema S_j $(x_{PL}^*)_j$ è intera, allora il valore della funzione obiettivo calcolato in $(x_{PL}^*)_j$ è un lower bound L su z_{PLI}^*
 - c) L'intervallo di incertezza sarà $L \leq z_{PLI}^* \leq U_0$
 - d) Il test per il criterio di bounding sarà $U_i \leq L$