Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:
------------	------

Pracovní úkoly

- 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
 - 1. platinový odporový teploměr (určete konstanty R_0 , A, B).
 - 2. termočlánek měď-konstantan (určete konstanty a, b, c)
- 2. Registrujte časový průběh termoelektrického napětí termočlánku $\varepsilon(\tau)$ a odporu platinového teploměru $R(\tau)$ při ohřevu a varu vody a při tuhnutí cínu. Změřené průběhy graficky znázorněte.
- 3. Nakreslete graf teplotní závislosti odporu *R* (kalibrační křivka odporového teploměru) a graf teplotní závislosti termoelektrického napětí *ε* (kalibrační křivka termočlánku).
- 4. Ze závislostí $\varepsilon(\tau)$ a $R(\tau)$ dle bodu 2 a kalibračních hodnot dle bodu 1 určete časové závislosti $t_R(\tau)$ a $t_\varepsilon(\tau)$ teplot měřených odporovým teploměrem a termočlánkem při ohřevu vody a tuhnutí cínu. Určené závislosti porovnejte.

Teoretická část

Termočlánek se skládá ze dvou kovů, které jsou na jeho koncích bodově svařeny. Na kontaktu obou kovů se indukuje termoelektrické napětí. Pokud je mezi konci teplotní rozdíl nastává v obvodu rozdíl potenciálů. Termoelektrické napětí v obvodu lze podle [1] aproximovat vztahem:

(1)
$$\varepsilon = a + b \Delta t + c \Delta t^2$$

Konstanty a, b, c je nutno určit experimentálně. Teploty budeme měřit v ledu ($t_1 = 0$ °C), ve vodní páře (t_2) a v roztaveném cínu ($t_3 = 232$ °C). Budeme využívat toho, že při změně skupenství látek je tepolta uvnitř látky konstantní. t_1 , t_3 jsme určili z [1].

Po naměření napětí (označme je ε_l , ε_2 , ε_3) při třech různých teplotních rozdílech ($\Delta t_l = t_l - t_l$, $\Delta t_2 = t_2 - t_l$, $\Delta t_3 = t_3 - t_l$) získáme z (1) tři rovnice pro tři neznámé. Díky $\Delta t_l = 0$ a využitím Cramerova pravidla získáme následující vztahy:

$$(2) \qquad a = \varepsilon_1 \\ b = \frac{\Delta t_3^2 (\varepsilon_2 - \varepsilon_1) - \Delta t_2^2 (\varepsilon_3 - \varepsilon_1)}{\Delta t_3^2 \Delta t_2 - \Delta t_2^2 \Delta t_3} \\ c = \frac{\Delta t_2 (\varepsilon_3 - \varepsilon_1) - \Delta t_3 (\varepsilon_2 - \varepsilon_1)}{\Delta t_3^2 \Delta t_2 - \Delta t_2^2 \Delta t_3}$$

U odporového teploměru se měří změna odporu platinového válečku při změně teploty. Opět jsme naměřili tři různé odpory (R_1 , R_2 , R_3) při výše zmíněných teplotách. Odpor lze aproximovat podle [1] vztahem:

(3)
$$R = R_0 (1 + At + Bt^2)$$

Díky t_l = 0°C získáme R_0 = R_1 . Poté využitím Cramerova pravidla pro 2 rovnice o dvou neznámých máme:

$$A = \frac{\left(\frac{R_2}{R_0} - 1\right)t_3^2 - \left(\frac{R_3}{R_0} - 1\right)t_2^2}{t_2t_3^2 - t_2^2t_3}$$

$$B = \frac{t_2\left(\frac{R_3}{R_0} - 1\right) - t_3\left(\frac{R_2}{R_0} - 1\right)}{t_2t_3^2 - t_2^2t_3}$$

Dále podle [1] lze určit t_2 vztahem:

(5)
$$t_2 = 100,0 + 28,0216\left(\frac{p}{p_0} - 1\right) - 11,642\left(\frac{p}{p_0} - 1\right)^2 + 7,1\left(\frac{p}{p_0} - 1\right)^3$$

kde p je atmosférický tlak a p_0 je standartní tlak 1013,25hPa.

Metoda měření

Nejprve jsme umístili oba konce termočlánku a odporový teploměr do termosky s ledem a počkali než se teploty ustálí. Poté jsme umístili jeden konec termočlánku a odporový teploměr do baňky s vroucí vodou a počkali než se měřené hodnoty ustálí. Následně jsme umístili jeden konec termočlánku a odporový teploměr do roztaveného cínu a čekali než se měřené hodnoty ustálí.

Pomůcky

- 1. Termočlánek
- 2. Odporový teploměr
- 3. Termoska s ledem
- 4. Pícka na cín
- 5. Baňka s vodou
- 6. Voltmetr (chyba 0,0035mV + 90ppm z naměřené hodnoty)
- 7. Ohmmetr (chyba 0,5% z naměřené hodnoty)

Výsledky měření

Tlak v místnost 1001hPa. Z (5) máme $t_2 = 99,7^{\circ}$ C. V tabulce č. 1 jsou naměřené hodnoty termočlánku. V tabulce č. 2 jsou uvedeny naměřené hodnoty odporového teploměru. V tabulce č. 3 jsou uvedeny konstanty pro termočlánek a odporový teploměr spočítané z hodnot v tabulkách č. 1 a č. 2. a uvedena je též střední mezní chyba pro jednotlivé konstanty.

Tabulka 1: naměřené hodnoty pro termočlánek a chyba měření

termoetanen a enysa merem					
ε [mV]		<i>∆t</i> [°C]	Δε [μV]		
	0,00	0	3,5		
	4,28	99,7	3,9		
	10,86	232	4,5		

Tabulka 2: naměřené hodnoty pro odporový teploměr a chyba měření

enperory represented to enget mediciti			
R [Ω]	t [°C]	ΔR [Ω]	
101,4	0	0,5	
138,7	99,7	0,7	
187,3	232	0,9	

Tabulka 3: konstanty termočlánku a odnorového teploměru včetně střední mezní chyby

Iuouiku	uka 5. konstanty termocianka a oaporoveno teptomera veetne sireant mezhi enyoy					
	a [µV]	b [µVK ⁻¹]	c [µVK ⁻²]	R ₀ [Ω]	A [mK ⁻¹]	Β [μK ⁻²]
hodnoty	-4,0	39,98	0,0296	101,4	3,72	-0,3
chyby	3,5	0,09	0,0004	0,5	0,15	0,6

Pro chyby jsme využili vztahu pro vyjádření chyby z nepřímého měření. Bohužel neznáme chybu s jakou jsme určili jednotlivé teploty, proto do jednotlivých relativních chyb konstant budou promlouvat pouze chyby ohmmetru/voltmetru. Pro střední mezní chyby tedy platí následující vztahy:

$$\begin{split} u_{b} &= \sqrt{\frac{\Delta t_{2} + \Delta t_{3}}{\Delta t_{2} \Delta t_{3}}^{2} \Delta \varepsilon_{1}^{2} + \left(\frac{\Delta t_{3}}{\Delta t_{2}^{2} - \Delta t_{2} \Delta t_{3}}\right)^{2} \Delta \varepsilon_{2}^{2} + \left(\frac{\Delta t_{2}}{\Delta t_{2} \Delta t_{3} - \Delta t_{3}^{2}}\right)^{2} \Delta \varepsilon_{3}^{2}} \\ u_{c} &= \sqrt{\frac{1}{\Delta t_{2} \Delta t_{3}}^{2} \Delta \varepsilon_{1}^{2} + \left(\frac{1}{\Delta t_{2} \Delta t_{3} - \Delta t_{3}^{2}}\right)^{2} \Delta \varepsilon_{2}^{2} + \left(\frac{1}{\Delta t_{3}^{2} - \Delta t_{2} \Delta t_{3}}\right)^{2} \Delta \varepsilon_{3}^{2}} \\ u_{c} &= \sqrt{\frac{1}{\Delta t_{2} \Delta t_{3}}^{2} \Delta \varepsilon_{1}^{2} + \left(\frac{1}{\Delta t_{2} \Delta t_{3} - \Delta t_{3}^{2}}\right)^{2} \Delta R_{1}^{2} + \left(\frac{t_{3}}{R_{1} (t_{2} t_{3} - t_{2}^{2})}\right)^{2} \Delta R_{2}^{2} + \left(\frac{t_{2}}{R_{1} (t_{3}^{2} - t_{2} t_{3})}\right)^{2} \Delta R_{3}^{2}} \\ u_{d} &= \sqrt{\frac{R_{2} t_{3} - R_{3} t_{2}}{t_{2} R_{1}^{2} t_{3}^{2} - t_{3} R_{1}^{2} t_{2}^{2}}} \Delta R_{1}^{2} + \left(\frac{1}{R_{1} (t_{2} t_{3} - t_{2}^{2})}\right)^{2} \Delta R_{2}^{2} + \left(\frac{1}{R_{1} (t_{3}^{2} - t_{2} t_{3})}\right)^{2} \Delta R_{3}^{2}} \\ u_{d} &= \sqrt{\frac{R_{2} t_{3} - R_{3} t_{2}}{t_{2} R_{1}^{2} t_{3}^{2} - t_{3} R_{1}^{2} t_{2}^{2}}} \Delta R_{1}^{2} + \left(\frac{1}{R_{1} (t_{2} t_{3} - t_{2}^{2})}\right)^{2} \Delta R_{2}^{2} + \left(\frac{1}{R_{1} (t_{3}^{2} - t_{2} t_{3})}\right)^{2} \Delta R_{3}^{2}} \\ u_{d} &= \sqrt{\frac{R_{2} t_{3} - R_{3} t_{2}}{t_{2}^{2} t_{3}^{2} - t_{3} R_{1}^{2} t_{2}^{2}}}} \Delta R_{1}^{2} + \left(\frac{1}{R_{1} (t_{2} t_{3} - t_{2}^{2})}\right)^{2} \Delta R_{2}^{2} + \left(\frac{1}{R_{1} (t_{3}^{2} - t_{2} t_{3})}\right)^{2} \Delta R_{3}^{2}} \\ u_{d} &= \sqrt{\frac{R_{1} t_{3} - R_{3} t_{2}}{t_{3}^{2} - t_{3} R_{1}^{2} t_{2}^{2}}}} \Delta R_{1}^{2} + \left(\frac{1}{R_{1} (t_{2} t_{3} - t_{2}^{2})}\right)^{2} \Delta R_{2}^{2} + \left(\frac{1}{R_{1} (t_{3}^{2} - t_{2} t_{3})}\right)^{2} \Delta R_{3}^{2}}$$

V grafu č. 1 je uvedena časová závislost napětí termočlánku a odporu odporového teploměru při varu vody. Napětí nejprve klesá, což je způsobeno tím, že při měření v cínu se projevila závada v termočlánku, proto byl vyměněn a v měření se pokračovalo v opačném pořadí. Napětí klesá tedy proto, že termočlánek chladne po vyjmutí z cínu.

Graf 1: časový průběh napětí termočlánku a odporu odporového teploměru při varu vody

V grafu č. 2 je znázorněna časová závislost napětí termočlánku a odpor odporového teploměru při tuhnutí cínu. Napětí nejprve stoupá, což je způsobeno výše zmíněnou výměnou termočlánků, kdy se nový termočlánek nejprve zahřívá v roztaveném cínu. Drobné zakřivení napěťové křivky okolo 325s lze připsat kondenzaci kapiček vody v okolí termočlánku.

Graf 2: časový průběh napětí termočlánku a odporu odporového teploměru při tuhnutí cínu

V grafu č. 3 je uvedena kalibrační křivka odporového teploměru a v grafu č. 4 je uvedena kalibrační křivka termočlánku. Za povšimnutí stojí, že kalibrační křivka odporového teploměru je velice podobná přímce, ale kalibrační křivka termočlánku je "pokřivená".

Graf 3: kalibrační křivka odporového teploměru

Graf 4: kalibrační křivka termočlánku

Graf č. 5 ukazuje časovou závislost teploty při chladnutí cínu tak, jak byla zaznamenaná termočlánkem a odporovým teploměrem. V grafu si lze všimnout v čase 660s zjemnění hodnot u odporového teploměru způsobeného změnou rozsahu ohmmetru. Graf č. 6 ukazuje časovou závislost teploty při varu vody, tak jak ji zaznamenali termočlánek a odporový teploměr.

Graf 5: časová závislost teploty při chladnutí roztaveného cínu

Graf 6: časová závislost teploty při varu vody

Diskuse

Výsledek mohlo ovlivnit špatné určení teplot t_1 , t_2 , t_3 . Předpokládali jsme také, že rozložení teploty v prostoru je homogenní, což ale ve skutečnosti není. Například cín začal tuhnout od shora a ve spod zůstal stále natavený, což svědčí o tom, že teplota na povrchu byla nižší než u dna. Tento teplotní gradient zřejmě více ovlivnil odporový teploměr, který měří teplotu podél platinového válečku, kdežto termočlánek měří teplotu v okolí bodového sváru dvou kovů.

Při vaření vody vznikali v okolí obou teploměrů kapičky, které při kondenzaci odebírali teplo a tudíž museli okolí teploměru ochladit. Dále se voda vařila v uzavřené baňce, ze které se pára odváděla hadičkou. Je tedy možné, že v baňce vznikl nepatrně vyšší tlak a to pozměnilo teplotu varu vody.

Teplotu v termosce s ledem mohl ovlivnit fakt, že s postupem času led roztával a směs led/voda se stávala méně homogenní. To v důseledku mohlo způsobit zvýšení teploty v okolí teploměrů.

Problém s kondenzujícími kapičkami, by se mohl odstranit opakovaným měření a následným průměrováním naměřených hodnot, jelikož vznik kapiček lze považovat za náhodný.

Závěr

Výsledné konstanty:

$$a = (-4.0 \pm 3.5) \mu V$$

 $b = (39.98 \pm 0.09) \mu V K^{-1}$
 $c = (29.6 \pm 0.4) \cdot 10^{-3} \mu V K^{-2}$
 $R_0 = (101.4 \pm 0.5) \Omega$
 $A = (3.72 \pm 0.15) m K^{-1}$
 $B = (-0.3 \pm 0.6) \mu K^{-2}$

Během měření se vyskytl problém s termočlánkem, nejspíše způsobený špatným kontaktem v jednom z kabelů.

Zajímavý je výsledek u konstanty B, kde je chyba větší než samotná konstanta.

Literatura

[1] Kalibrace odporového teploměru a termočlánku – fázové přechody. *Fyzikální praktikum* [online]. [cit. 17.3.2016]. Dostupné z: http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_108.pdf