3-Coloration est NP-complet

Clarence Kineider

Leçons: 915, 916, 925, 928

Référence(s): Cormen, Leiserson, Rivest, Stein, Introduction à l'algorithmique.

On définit le problème de 3-coloration (problème de décision) :

| Entrée : Un graphe non-orienté G = (V, E).

3COL Sortie: Oui si le graphe admet une 3-coloration, i.e. une application $c: V \to \{1, 2, 3\}$ tel que

 $(u, v) \in E \Rightarrow c(u) \neq c(v)$. Non sinon.

Théorème : Le problème 3COL est NP-complet.

Ce problème est bien dans NP : l'application $c: V \to \{1, 2, 3\}$ est un certificat pour ce problème, i.e. on peut vérifier en temps polynomial si c'est une 3-coloration.

Il reste donc à montrer que **3COL** est NP-dur. Pour cela, on va définir une réduction du problème **3SAT** qui est NP-dur (et même NP-complet) au problème **3COL**.

 $\mathbf{3SAT} \begin{vmatrix} \text{Entrée} : \text{Un formule propositionnelle } \varphi \text{ en forme 3-CNF.} \\ \text{Sortie} : \text{Oui si } \varphi \text{ est satisfiable, non sinon.} \end{vmatrix}$

Soit φ une formule du calcul propositionnel en 3-CNF. On note $\varphi = \bigwedge_{j=1}^m \mathcal{C}_j$ avec \mathcal{C}_j les clauses de φ . Notons p_1, \ldots, p_n les variables propositionnelles qui apparaissent dans φ . On va construire un graphe $tr(\varphi)$ qui sera basé sur le graphe suivant :

On peut remarquer que dans une 3-coloration de ce graphe, la couleur d'une variable propositionnelle p sera toujours différente de celle de $\neg p$ et qu'un littéral aura toujours la couleur de v ou de f, jamais de celle de r.

Puis, pour chaque clause $C = (\alpha_C \vee \beta_C \vee \gamma_C)$ de φ , on va « coller » à \widetilde{G} le gadget suivant (les sommets α_C , β_C , γ_C et v sont déjà dans le graphe \widetilde{G} , on rajoute les autres sommets et toutes les arêtes) :

Le graphe $G = tr(\varphi)$ ainsi obtenu possède 3 + 2n + 5m sommets. La réduction $tr(\varphi)$ est donc calculable en temps polynomial en m, le nombre de clauses de φ (car $n \leq 3m$).

Pour montrer que tr définit bien une réduction de 3SAT à 3COL, nous utiliserons les deux lemmes suivants :

Lemme : Soit \tilde{c} une 3-coloration de \tilde{G} où pour toute clause $\mathcal{C} = (\alpha_{\mathcal{C}} \vee \beta_{\mathcal{C}} \vee \gamma_{\mathcal{C}})$ de φ , l'un des 3 littéraux est de la couleur de v. Alors on peut compléter \tilde{c} en une 3-coloration c de G.

Démonstration : Il faut montrer qu'étant donnée une telle 3-coloration de \widetilde{G} , on peut la compléter en une 3-coloration de $G_{\mathcal{C}}$ pour toute clause \mathcal{C} de φ . Il suffit de traiter tous les cas, il y en a $2^3 - 1 = 7$ (n'en traiter qu'un à l'oral).

Lemme : Soit c une 3-coloration de G. Pour toute clause $C = (\alpha_C \vee \beta_C \vee \gamma_C)$ de φ , l'un des sommets α_C , β_C ou γ_C a la couleur de v.

Démonstration : Par l'absurde, supposons que $\alpha_{\mathcal{C}}$, $\beta_{\mathcal{C}}$ et $\gamma_{\mathcal{C}}$ ont tous la couleur de f (on rappelle qu'ils ont soit la couleur de v, soit celle de f). Comme $\alpha_{\mathcal{C}}$ et $\beta_{\mathcal{C}}$ ont la couleur de f, les sommets $x_{\mathcal{C}}$ et $y_{\mathcal{C}}$ ont les couleurs de r ou v et leurs couleurs sont différentes car ils sont liés par une arête. Ainsi $z_{\mathcal{C}}$ a nécessairement la couleur de f. De même, comme $z_{\mathcal{C}}$ et $\gamma_{\mathcal{C}}$ ont la couleur de f, on en déduit que v a la couleur de f. Absurde.

Proposition : Pour tout formule φ en 3-CNF, φ est satisfiable si et seulement si $tr(\varphi)$ admet une 3-coloration.

Démonstration : Soit φ une formule en 3-CNF.

 \Rightarrow : Soit ν une valuation qui satisfait φ (on note $\nu \models \varphi$). On fixe des couleurs différentes pour les sommets v, f et r de $G = tr(\varphi)$, et on colorie les sommets associés aux variables propositionnelles de φ de la façon suivante :

$$\forall i \in \{1, \dots, n\}, \ c(p_i) = \begin{cases} c(v) & \text{si } \nu(p_i) = 1\\ c(f) & \text{sinon} \end{cases}, \ \text{et } c(\neg p_i) = \begin{cases} c(v) & \text{si } \nu(p_i) = 0\\ c(f) & \text{sinon} \end{cases}.$$

On a ainsi obtenu une 3-coloration \widetilde{c} de \widetilde{G} . De plus, comme $\nu \models \varphi = \bigwedge_{j=1}^m \mathcal{C}_j$, on a pour tout $j \in \{1, \ldots, m\}$, $\nu \models \mathcal{C}_j = (\alpha_{\mathcal{C}_j} \vee \beta_{\mathcal{C}_j} \vee \gamma_{\mathcal{C}_j})$, donc dans chacun des gadgets $G_{\mathcal{C}}$ l'un des sommets $\alpha_{\mathcal{C}}$, $\beta_{\mathcal{C}}$ ou $\gamma_{\mathcal{C}}$ est de la couleur de v. Donc d'après le premier lemme, on peut compléter la coloration \widetilde{c} de \widetilde{G} en une coloration c de $G = tr(\varphi)$. Donc $tr(\varphi)$ est 3-coloriable.

 \Leftarrow : Soit c une 3-coloration de $tr(\varphi).$ On définit une valuation ν par

$$\forall i \in \{1, \dots, n\}, \ \nu(p_i) = \begin{cases} 1 & \text{si } c(p_i) = c(v) \\ 0 & \text{sinon} \end{cases}.$$

D'après le deuxième lemme, dans chaque gadget $G_{\mathcal{C}}$, l'un des sommets $\alpha_{\mathcal{C}}$, $\beta_{\mathcal{C}}$ ou $\gamma_{\mathcal{C}}$ a la couleur de v, donc pour tout $j \in \{1, \ldots, m\}$ $\nu \models \mathcal{C}_j$, donc $\nu \models \varphi$. La formule φ est satisfiable.

On a donc réduit le problème **3SAT** qui est NP-dur au problème **3COL** en temps polynomial. Donc le problème **3COL** est NP-dur.

Remarque:

On a supposé que les instances de **3SAT** sont des formules ayant exactement 3 littéraux par clauses, mais si considère que les clauses ont au plus 3 littéraux, alors on construit les gadgets $G_{\mathcal{C}}$ en mettant des f à la place de $\gamma_{\mathcal{C}}$ si $\mathcal{C} = \alpha_{\mathcal{C}} \vee \beta_{\mathcal{C}}$ ou $\beta_{\mathcal{C}}$ et $\gamma_{\mathcal{C}}$ si $\mathcal{C} = \alpha_{\mathcal{C}}$.

Merci à David Xu pour ce développement.