Linear Regression Models

Mingmin Chi

Fudan University, Shanghai, China

Outline

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- Loss Function for Regression
- 5 Linear Basis Function Models
- 6 Model Complexity Issue
 - Bias-Variance Decomposition

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- 4 Loss Function for Regression
- Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

Supervised Learning

Components for learning in common

- a set of variables -> inputs x, which are measured or preset
- one or more outputs (responses) y
- the goal is to use the inputs to predict the values of the outputs $\mathbf{x} > \mathbf{y}$

Supervised learning

- given a set of data $\mathcal{D} = (\mathbf{x}_i, y_i)_{i=1}^n$, where $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$
- the prediction of a new sample \mathbf{x} by \mathcal{D} , i.e., $y(\mathbf{x}|\mathcal{D})$ or $P(\mathbf{x}|\mathcal{D})$

Function Approximation

- If exists a mapping between inputs \mathbf{x} and outputs y, the prediction can be obtained by *function approximation*, i.e., $y := f(\mathbf{x}, \mathbf{w})$
- What's the form of f?
- How to estimate w?

Probabilistic Distribution

- uncertainty over the value of the target variable t can be expressed by a probability distribution
- assume that given the value of x, the corresponding value of $t = p(t|x, \mathcal{D})$

Regression

Sales (\$000,000s) (y _i)	Advertising ($\$000s$) (x_i)		
28	71		
14	31		
19	50		
21	60		
16	35		

Regression (contd)

$$y = w_0 + w_1 x$$

The outputs y is quantitative, the quantitative variables are *continuous* variable \Rightarrow regression when we predict quantitative outputs,

Classification

The outputs y is qualitative, the qualitative variables are also referred to as *categorical* or *discrete* variable \Rightarrow , e.g., handwritten digit recognition, $C = \{0, 1, \dots, 9\}$ classification when we predict qualitative outputs

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- 4 Loss Function for Regression
- 5 Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

A simple regression problem

- observe a real-valued input variable x
- use this observation to predict the value of a real-valued target variable t
- consider synthetically generated data from the function $sin(2\pi x)$ with random noise included in the target values

- given a training set comprising N(N = 10) observations of x
- together with corresponding observations of the values of t
- the goal is to exploit this training set to make predictions of the value for new input variable

Difficulty: finite dataset; corruption with noise -> uncertainty to the appropriate value for \hat{t}

Difficulty

- finite dataset
- corruption with noise
- \Rightarrow uncertainty to the appropriate value for \hat{t}
 - probability theory
 - decision theory

Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \cdots + w_M x^M = \sum_{i=0}^{M} w_i x^i$$

where M is the order of the polynomial and x^{j} denotes x raised to the power of j

Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

where M is the order of the polynomial and x^{j} denotes x raised to the power of j

Noted

- the polynomial function is a nonlinear function of x
- it is linear function of the coefficients w

Functions, such as the polynomial, which are linear in the unknown parameters, are called linear models for regression

Error Function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Error Function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

- the values of the coefficients can be determined by fitting the polynomial to the training data
- this can be done by minimizing an error function that measures the misfit between the function for any given value of w and the training set data points
- the sum of the squares of the errors (SSE) between the predictions $y(x_n, \mathbf{w})$ for each data point and the corresponding target values t_n :

$$Min E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Geometrical Interpretation of SSE

Closed Form Solution of w

$$Min E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- the error function is a quadratic function of the coefficients w
- the derivatives w.r.t w will be linear in the elements of w
- the minimization of the error function has a unique solution denoted by w*

The resulting polynomial is given by the function $y(x, \mathbf{w}^*)$

Choosing M: Model Selection

Over-fitting

 $E(\mathbf{w}^*) = 0$, but very poor representation of the function $\sin 2\pi x$, bad generalization

RMS Errors

The goal of learning: to achieve good generalization by making accurate predictions for new data

- training error
- test error
- root-mean-square (RMS) error: $E_{RMS} = \sqrt{2E(\mathbf{w}^*)/N}$
 - N for comparing different sizes of datasets in the same footing
 - the square root for measuring on the same scale as the target variable

Magnitude w with M

	M=0	M = 1	$M={}^{\scriptscriptstyle 3}$	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

More Training Data Points

Regularization

- Relatively complex and flexible models with limited training dataset
- e.g., curve fitting problem with N = 10, M = 9
- solution?

Regularization

- Relatively complex and flexible models with limited training dataset
- e.g., curve fitting problem with N = 10, M = 9
- solution?

Regularization is used to control the over-fitting phenomenon, e.g.,

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization (contd)

Magnitude **w** with Regularization

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

RMS Errors with Regularization

M = 9, λ controls the effective complexity of the model and determines the degree of over-fitting

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- 4 Loss Function for Regression
- 5 Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

- Assume that the target variable t is given by a deterministic function $y(x, \mathbf{w})$ with additive Gaussian noise ϵ
- Uncertainty over the value of the target variable t can be expressed by a probability distribution
- Assume that $\epsilon \propto \mathcal{N}(t|0, \beta^{-1})$, then:

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

Determination of w

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, \mathbf{w}), \beta^{-1})$$

$$\Rightarrow \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

- ullet w can be determined by maximum likelihood, denoted by ${f w}_{\sf ML}$
- considering \mathbf{w} , β is constant -> max ln $p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)$ equivalently to min $\frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) t_n\}^2$,

Determination of w

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n, \mathbf{w}), \beta^{-1})$$

$$\Rightarrow \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

- ullet w can be determined by maximum likelihood, denoted by ullet ullet
- considering \mathbf{w} , β is constant -> max $\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta)$ equivalently to $\min \frac{1}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) t_n\}^2$, the sum-of-squares error function
- the sum-of-squares error function has arisen as a consequence of maximizing likelihood under the assumption of a Gaussian noise distribution

Determination of β

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),\beta^{-1})$$

$$\Rightarrow \ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n,\mathbf{w}) - t_n\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

 β can be determined by maximum likelihood

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{ y(x_n, \mathbf{w}_{\rm ML}) - t_n \}^2$$

MAP

• With \mathbf{w}_{MI} and β_{MI} , we have

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}_{ML}), \beta_{ML}^{-1})$$

 Assume that a prior distribution over the coefficients w, e.g., Gaussian distribution of the form

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{1}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\top}\mathbf{w}\right\}$$

Using Bayesian theorem, the posterior distribution for w

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\alpha,\beta) \propto p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta)p(\mathbf{w}|\alpha)$$

MAP (contd)

$$\begin{aligned} & \rho(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto \rho(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) \rho(\mathbf{w}|\beta) \\ & \Rightarrow \ln \rho(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \cdots \\ & \propto -\left\{\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^\top \mathbf{w}\right\} \end{aligned}$$

 \Rightarrow maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function, with a regularization parameter given by $\lambda=\alpha/\beta$

Bayesian Curve Fitting

- In the curve fitting problem, we are given the training data x and t,
- with a new test point x, the goal is to predict the value of t, i.e., the predictive distribution $p(t|x, \mathbf{x}, \mathbf{t})$
- α and β are fixed and known in advance

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}$$
$$\propto \mathcal{N}(t|m(x), s^2(x))$$

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- Loss Function for Regression
- Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

• Suppose that the decision stage consists of choosing a specific estimate y(x) of the values of t for each input x and we incur a loss $\mathcal{L}(t, y(x))$:

$$\mathcal{E}[\mathcal{L}] = \int \int \mathcal{L}(t, y(x)) p(x, t) dx dt$$

• Suppose that the decision stage consists of choosing a specific estimate y(x) of the values of t for each input x and we incur a loss $\mathcal{L}(t, y(x))$:

$$\mathcal{E}[\mathcal{L}] = \int \int \mathcal{L}(t, y(x)) p(x, t) dx dt = \int \int (y(x) - t)^2 p(x, t) dx dt$$

- Our goal is to choose y(x) so as to minimize $\mathcal{E}[\mathcal{L}]$
- If assume a completely flexible function y(x), we can have

$$\frac{\partial \mathcal{E}[\mathcal{L}]}{\partial y(x)} = 2 \int (y(x) - t) p(x, t) dt = 0$$

• Solving for y(x) using the sum and product rules of probability, we obtain

$$y(x) = \frac{\int tp(x,t)dt}{p(x)} =$$

• Suppose that the decision stage consists of choosing a specific estimate y(x) of the values of t for each input x and we incur a loss $\mathcal{L}(t, y(x))$:

$$\mathcal{E}[\mathcal{L}] = \int \int \mathcal{L}(t, y(x)) p(x, t) dx dt = \int \int (y(x) - t)^2 p(x, t) dx dt$$

- Our goal is to choose y(x) so as to minimize $\mathcal{E}[\mathcal{L}]$
- If assume a completely flexible function y(x), we can have

$$\frac{\partial \mathcal{E}[\mathcal{L}]}{\partial y(x)} = 2 \int (y(x) - t) p(x, t) dt = 0$$

• Solving for y(x) using the sum and product rules of probability, we obtain

$$y(x) = \frac{\int tp(x,t)dt}{p(x)} = \int tp(t|x)dt =$$

• Suppose that the decision stage consists of choosing a specific estimate y(x) of the values of t for each input x and we incur a loss $\mathcal{L}(t, y(x))$:

$$\mathcal{E}[\mathcal{L}] = \int \int \mathcal{L}(t, y(x)) p(x, t) dx dt = \int \int (y(x) - t)^2 p(x, t) dx dt$$

- Our goal is to choose y(x) so as to minimize $\mathcal{E}[\mathcal{L}]$
- If assume a completely flexible function y(x), we can have

$$\frac{\partial \mathcal{E}[\mathcal{L}]}{\partial y(x)} = 2 \int (y(x) - t) p(x, t) dt = 0$$

• Solving for y(x) using the sum and product rules of probability, we obtain

$$y(x) = \frac{\int tp(x,t)dt}{p(x)} = \int tp(t|x)dt = \mathcal{E}_t[t|x]$$

Regression Function (contd)

 $y(x) = \int tp(t|x)dt = \mathcal{E}_t[t|x]$ is known as the regression function

The regression function y(x) which minimizes the expected squared loss, is given by the mean of the conditional distribution p(t|x)

Three Approaches for Regression Problems

$$y(x) = \int tp(x,t)dt = \mathcal{E}_t[t|x]$$

- $p(x,t) \rightarrow p(x) p(t|x) \rightarrow \int tp(x,t)dt$
- $p(t|x) \rightarrow \int tp(x,t)dt$
- Find a regression function y(x) directly from the training data

Minkowski Loss

One simple generalization of the squared loss, called the Minkowski loss, whose expectation is given by

$$\mathcal{E}[\mathcal{L}_{q}] = \int \int |y(x) - t|^{q} p(x, t) dx dt$$

q = 2: the expected squared loss

Minkowski Loss (contd)

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- 4 Loss Function for Regression
- 5 Linear Basis Function Models
- 6 Model Complexity Issue
 - Bias-Variance Decomposition

Linear Regression

The simplest linear model for regression is one that involves a linear combination of the input variables

$$y(\mathbf{x},\mathbf{w}) = w_0 + w_1 x_1 + \cdots + w_D x_D$$

where
$$\mathbf{x} = (x_1, \dots, x_D)^{\top}$$
.

- This is often simply known as linear regression
- A linear function of the parameters w_0, \dots, \mathbf{w}_D
- A linear function of the input variables x_i

Basis Functions

- Limitation of the linear regression
- An extension by considering linear combinations of fixed nonlinear functions of the input variables:

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are know as basis function, e.g., in polynomial curve fitting, $\phi_i(\mathbf{x}) = x^j$

• w_0 is called a bias parameter. For convenience,

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \Phi(\mathbf{x})$$

where
$$\mathbf{w} = (w_0, \dots, w_{M-1})^{\top}$$
 and $\Phi = (\phi_0, \dots, \phi_{M-1})^{\top}$

Linear Regression: Revisit

• The simplest linear regression model

$$y(\mathbf{x},\mathbf{w}) = w_0 + w_1 x_1 + \cdots + w_D x_D$$

• By using nonlinear basis functions,

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Basis Functions (contd)

- Polynomial curve fitting, $\phi_i(x) = x^j$
- Gaussian basis functions, $\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$
- Sigmoidal basis functions, $\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$, where $\sigma(a)$ is the logistic sigmoid function defined by $\sigma(a) = \frac{1}{1+\exp(-a)}$

Basis Functions (contd)

Maximum Likelihood

• Assume that the target variable t is given by a deterministic function $y(\mathbf{x}, \mathbf{w})$ with additive Gaussian noise so that

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

• $\epsilon = \mathcal{N}(0, \beta^{-1})$, thus we have

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Recall that

$$\mathcal{E}_{\mathbf{t}}[\mathbf{t}|\mathbf{x}] = \int \mathbf{t} \rho(\mathbf{t}|\mathbf{x}) dt = y(\mathbf{x}, \mathbf{w})$$

• the likelihood function of the adjustable parameters **w** and β :

$$p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\top}\Phi(\mathbf{x}_n),\beta^{-1})$$

Determination of **w**_{ML}

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\top} \Phi(\mathbf{x}_n), \beta^{-1})$$

$$\Rightarrow \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\top} \Phi(\mathbf{x}_n), \beta^{-1})$$

$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \Phi(\mathbf{x}_n)\}^2$$
.

We can use maximum likelihood to determine **w** and β :

$$\nabla \ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \Phi(\mathbf{x}_n)\} \Phi(\mathbf{x}_n)^{\top}$$

Determination of \mathbf{w}_{ML} and β_{ML}

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \Phi(\mathbf{x}_n)\} \Phi(\mathbf{x}_n)^{\top}$$

$$\Rightarrow \mathbf{w}_{ML} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} \mathbf{t}$$

$$\nabla_{\beta} \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) \Rightarrow \frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \{\mathbf{t}_n - \mathbf{w}^{\top} \Phi(\mathbf{x}_n)\}^2$$

Pseudo-Inverse of A Matrix

$$\Phi \in \mathbb{R}^{\textit{N} \times \textit{M}}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

• Moore-Penrose pseudo-inverse of the matrix $\Phi: \Phi^{\dagger} \equiv (\Phi^{\top} \Phi)^{-1} \Phi^{\top}$

Geometry of Least Squares

- M < N, $S = \text{span}(\varphi_1, \cdots, \varphi_{M-1})$
- **y** can live anywhere in the *M*-dimensional subspace
- $E_D(\mathbf{w}) = ||\mathbf{y} \mathbf{t}||^2$
- the least-squares solution for w corresponds to that choice of y that lies in subspace S and that is closest to t
- \bullet the solution corresponds to the orthogonal projection of t onto the subspace $\mathcal S$

Numerical difficulty when $\Phi^{\top}\Phi$ is close to singular,e.g., when two or more of the basis vectors φ_i are co-linear, or nearly so

Possible solutions

- singular value decomposition
- regularization

Regularized Least Squares

To control over-fitting, total error function takes the form

$$\tilde{E}(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_{\mathbf{w}}(\mathbf{w})$$

one of the simplest forms of regularizer is given by

$$\textit{E}_{\boldsymbol{w}}(\boldsymbol{w}) = \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{w}$$

 if the sum-of-squares error function is taken, then total error functions

$$\frac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^{\top}\Phi(\mathbf{x}_n)\}^2+\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

• the close-formed solution for w is

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{t}$$

Regularized Least Squares

To control over-fitting, total error function takes the form

$$\tilde{E}(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_{\mathbf{w}}(\mathbf{w})$$

one of the simplest forms of regularizer is given by

$$\textit{E}_{\boldsymbol{w}}(\boldsymbol{w}) = \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{w}$$

 if the sum-of-squares error function is taken, then total error functions

$$\frac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^{\top}\Phi(\mathbf{x}_n)\}^2+\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

• the close-formed solution for w is

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{t}$$

Regularizers

A more general regularizer is sometimes used

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\top} \Phi(\mathbf{x}_n)\}^2 + \frac{1}{2} \sum_{j=1}^{M} |\mathbf{w}|^q$$

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- 4 Loss Function for Regression
- 5 Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

Over-fitting Problem

Linear models for regression

Fixing the form and the number of basis functions

- Over-fitting for complex models trained by datasets of limited size, e.g., ML or least square
- Loss of flexibility of the model by limiting the number of basis function to avoid over-fitting
- How to determine λ by the introduction of regularization terms to control over-fitting

Over-fitting for MLE but not in a Bayesian setting when we marginalize over parameters

- Introduction
- Polynomial Curve Fitting
- Probability Perspective for Regression
- Loss Function for Regression
- 5 Linear Basis Function Models
- Model Complexity Issue
 - Bias-Variance Decomposition

Expected Squared Loss: Revisited

- Given the conditional distribution $p(t|\mathbf{x})$
- Optimal prediction

$$h(\mathbf{x}) = \mathcal{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x})dt.$$

Squared loss function:

$$\{y(\mathbf{x}) - t\}^2 = \{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}] + \mathcal{E}[t|\mathbf{x}] - t\}^2$$
$$= \{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}]\}^2 + \{\mathcal{E}[t|\mathbf{x}] - t\}^2 + 2\{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}]\}\{\mathcal{E}[t|\mathbf{x}] - t\}$$

Expected squared loss function:

$$\mathcal{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \underbrace{\int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt}_{}$$

independent of $y(\mathbf{x})$; intrinsic noise on the data

Expected Squared Loss: Revisited

- Given the conditional distribution $p(t|\mathbf{x})$
- Optimal prediction

$$h(\mathbf{x}) = \mathcal{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x})dt.$$

Squared loss function:

$$\begin{aligned} \{y(\mathbf{x}) - t\}^2 &= \{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}] + \mathcal{E}[t|\mathbf{x}] - t\}^2 \\ &= \{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}]\}^2 + \{\mathcal{E}[t|\mathbf{x}] - t\}^2 + 2\{y(\mathbf{x}) - \mathcal{E}[t|\mathbf{x}]\}\{\mathcal{E}[t|\mathbf{x}] - t\} \end{aligned}$$

• Expected squared loss function:

$$\mathcal{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \underbrace{\int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt}_{}$$

independent of $y(\mathbf{x})$; intrinsic noise on the data

Expected Squared Loss (contd)

- Modeling $h(\mathbf{x})$ using a parametric function $y(\mathbf{x}, \mathbf{w})$
- expressed by a posterior distribution over **w**

Uncertainty in the model from a Bayesian perspective being

- ullet Estimation of ullet based on the dataset $\mathcal D$ in a frequentist treatment
- Obtaining different prediction functions $y(\mathbf{x}, \mathcal{D})$ based on different datasets \Longrightarrow different values of the squared loss
- The performance of a particular learning algorithm is assessed by taking the average over this ensemble of datasets

For
$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^2$$

- ullet Dependent on the particular dataset ${\cal D}$
- Taking its average over the ensemble of datasets:

$$\begin{aligned} \{y(\mathbf{x}; \mathcal{D}) - \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &= \{y(\mathbf{x}; \mathcal{D}) - \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2 + \{\mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\} \end{aligned}$$

ullet the expectation of the expression wrt ${\cal D}$

$$\mathcal{E}\left[\left\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\right\}^{2}\right]$$

$$=\underbrace{\left\{\mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\right\}^{2}}_{\text{(bias)}^{2}} + \underbrace{\mathcal{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x}; \mathcal{D}) - \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\right\}^{2}\right]}_{\text{variance}}$$

- ◆ □ ▶ ◆ 圖 ▶ ◆ 圖 • • 夕 Q ©

expected loss =
$$(bias)^2 + variance + noise$$

where

$$\begin{aligned} (\text{bias})^2 &= \left\{ \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \right\}^2 \\ \text{variance} &= \mathcal{E}_{\mathcal{D}}\left[\left\{ y(\mathbf{x}; \mathcal{D}) - \mathcal{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] \right\}^2 \right] \\ \text{noise} &= \int \left\{ h(\mathbf{x}) - t \right\}^2 p(\mathbf{x}, t) d\mathbf{x} dt \end{aligned}$$

Our goal is to minimize the expected loss

- trade-off between bias and variance
- flexible models having low bias and high variance
- rigid models having high bias and low variance

Result of averaging many solutions for the complex model is a very good fit to the regression function

- averaging might be a beneficial procedure
- the average prediction is estimated from

$$\bar{y}(\mathbf{x}) = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(\mathbf{x})$$

and the integrated squared bias and integrated variance

(bias)² =
$$\frac{1}{N} \sum_{n=1}^{N} {\{\bar{y}(\mathbf{x}) - h(\mathbf{x})\}^2}$$

variance = $\frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{n=1}^{L} y^{(l)}(\mathbf{x}) - \bar{y}(\mathbf{x})\}^2$

