第2节 垂直关系证明思路大全(★★☆)

强化训练

1. $(2023 \cdot 上海模拟 \cdot ★★)如图,四棱锥 <math>P-ABCD$ 中,AB//CD,且 $\angle BAP = \angle CDP = 90^{\circ}$,证明:平面 $PAB \perp$ 平面 PAD.

证明:(要证面面垂直,又已知交线,故只需在一个面内找与交线垂直的直线,它必垂直于另一个面,条件中已有 $\angle BAP = 90^\circ$,所以就证 $AB \perp \text{平面 } PAD$)

因为 $\angle BAP = \angle CDP = 90^{\circ}$,所以 $AB \perp PA$, $CD \perp PD$,又AB // CD,所以 $AB \perp PD$,

因为PA, PD \subset 平面PAD, $PA \cap PD = P$, 所以 $AB \perp$ 平面PAD,

又AB \subset 平面PAB, 所以平面PAB \bot 平面PAD.

2. (2023 • 四川成都模拟 • ★★)如图,在三棱锥 P - ABC 中,AB 是 $\triangle ABC$ 的外接圆直径,PC 垂直于圆所在的平面,D,E 分别是棱 PB,PC 的中点,证明: DE ⊥平面 PAC.

证明: (D, E 都是中点,联想到中位线,故可借助 DE//BC 把结论转化为证 $BC \perp$ 平面 PAC)

由题意, $PC \perp$ 平面 ABC, $BC \subset$ 平面 ABC,所以 $BC \perp PC$,又 AB 是 ΔABC 的外接圆直径,所以 $BC \perp AC$,因为 PC, $AC \subset$ 平面 PAC, $PC \cap AC = C$, 所以 $BC \perp$ 平面 PAC,

又 D, E 分别是棱 PB, PC 的中点,所以 DE // BC,故 $DE \perp$ 平面 PAC.

3. $(2022 \cdot 云南昆明模拟 \cdot \star \star)$ 如图,在直三棱柱 $ABC - A_1B_1C_1$ 中,侧面 ACC_1A_1 为正方形, $\angle CAB = 90^\circ$, AC = AB = 2,M,N 分别为 AB 和 BB_1 的中点,D 为棱 AC 上的点,证明: $A_1M \perp DN$.

证明: (观察发现 A_1M 在面 ABB_1A_1 内,DN 在该面的投影好找,即为 AN,故由三垂线定理想到只需证 $A_1M \perp AN$)

如图,连接 AN,因为 $\angle CAB = 90^\circ$,所以 $DA \perp AB$,又 $ABC - A_lB_lC_l$ 为直三棱柱,所以 $AA_l \perp$ 平面 ABC,而 $DA \subset \text{平面 }ABC$,所以 $DA \perp AA_l$,结合 AB, AA_l 是平面 ABB_lA_l 内的相交直线可得 $DA \perp \text{平面 }ABB_lA_l$, 因为 $A_lM \subset \text{平面 }ABB_lA_l$,所以 $DA \perp A_lM$ ①,(再证 $AN \perp A_lM$,可在面 ABB_lA_l 内分析)由题意, $AB = AA_l = 2$,所以 ABB_lA_l 为正方形,故 BN = AM = 1,

所以
$$\tan \angle NAB = \frac{BN}{AB} = \frac{1}{2}$$
, $\tan \angle AA_1M = \frac{AM}{AA_1} = \frac{1}{2}$, 故 $\angle NAB = \angle AA_1M$,

又 $\angle AA_1M + \angle AMA_1 = 90^\circ$,所以 $\angle NAB + \angle AMA_1 = 90^\circ$,故 $AN \perp A_1M$ ②,由①②结合 DA,AN 是平面 DAN 内的相交直线可得 A_1M 上平面 DAN,又 DN \subset 平面 DAN,所以 $A_1M \perp DN$.

《一数•高考数学核心方法》

4. $(2020 \cdot 新课标 I 卷 \cdot ★★)$ 如图,D 为圆锥的顶点,O 是圆锥底面的圆心, $\triangle ABC$ 是底面的内接正三角形,P 为 DO 上一点, $\angle APC = 90^\circ$,证明:平面 PAB ⊥ 平面 PAC.

证法 1:(要证面面垂直,又已知交线,故只需在一个面内找与交线垂直的直线,它必垂直于另一个面,由 $\angle APC = 90^\circ$ 可发现应选 PC,证 $PC \perp PC$ 平面 PAB 即可,而要证这一结果,还需证 PC = AB 或 PB 垂直,下面先考虑证 $PC \perp AB$,注意到 PC 在面 ABC 内的射影是 PC0,故只需证 PC0 并延长,交 PC0 中点,且 PC0

由题意, $PO \perp$ 平面 ABC, $AB \subset$ 平面 ABC,所以 $AB \perp PO$,又 CG,PO 是平面 POC 内的相交直线,所以 $AB \perp$ 平面 POC,因为 $PC \subset$ 平面 POC,所以 $AB \perp PC$,

由题意, $\angle APC = 90^{\circ}$,所以 $PA \perp PC$,又PA, $AB \subset \text{平面 } PAB$, $PA \cap AB = A$,所以 $PC \perp \text{平面 } PAB$,因为 $PC \subset \text{平面 } PAC$,所以平面 $PAB \perp \text{平面 } PAC$.

证法 2:(也可通过证 $PC \perp PB$ 来证 $PC \perp$ 平面 PAB,只需证 $\Delta PAC \subseteq \Delta PBC$,观察发现又只需证 PA = PB,要证这一结果,可通过证 $\Delta POA \subseteq \Delta POB$ 来完成)

如图 2,连接 OA, OB,则 OA = OB ,由题意, $PO \bot$ 平面 ABC, OA, $OB \subset$ 平面 ABC, 所以 $PO \bot OA$, $PO \bot OB$, 故 $\angle POA = \angle POB = 90^\circ$,结合 PO = PO 可得 $\Delta POA \cong \Delta POB$, 所以 PA = PB , 又 ΔABC 是正三角形, 所以 AC = BC ,结合 PC = PC 可得 $\Delta PAC \cong \Delta PBC$, 所以 $\angle BPC = \angle APC = 90^\circ$, 故 $PC \bot PB$, $PC \bot PA$, 又 PA , $PB \subset$ 平面 PAB , $PA \cap PB = P$, 所以 $PC \bot$ 平面 PAB , 因为 $PC \subset$ 平面 PAC , 所以 平面 $PAB \bot$ 平面 PAC .

5. (2023・陕西榆林一模・ $\star\star$)如图,在四棱锥 P-ABCD中,平面 PAD 上平面 ABCD,AB // CD, $\angle DAB = 60^\circ$, $PA \perp PD$,且 $PA = PD = \sqrt{2}$, AB = 2CD = 2 ,证明: $AD \perp PB$.

证明:(条件中有面 PAD 上面 ABCD,可构造线面垂直,找到 PB 在平面 ABCD 内的投影,结合三垂线定理,我们发现只需证 AD 与该投影垂直即可)

如图,取 AD 中点 O,连接 OP, OB, 因为 $PA=PD=\sqrt{2}$, 所以 $PO\perp AD$, 又 $PA\perp PD$, 所以 AD=2, 因为 AB=2, $\angle DAB=60^\circ$, 所以 ΔADB 是正三角形,故 $AD\perp OB$,

因为 OP, $OB \subset \mathbb{T}$ 面 POB, $OP \cap OB = O$, 所以 $AD \perp \mathbb{T}$ 面 POB, 又 $PB \subset \mathbb{T}$ 面 POB, 所以 $AD \perp PB$.

6. (2023•吉林模拟•★★★) 如图,在多面体 ABCDEF 中,四边形 ABCD 为菱形,且 $\angle DAB = 60^{\circ}$,四边形 BDEF 为矩形, BD = 2BF = 2, AC 与 BD 交于点 O, FA = FC,证明: DE ⊥平面 ABCD.

证明:(要证 DE \bot 平面 ABCD,需在面 ABCD 内找两条相交直线与 DE 垂直,其中 BD 是给的,另一条选 谁呢? AB,AD,还是 AC? 观察发现应选 AC,因为条件中与 AC 有关的垂直较多,如菱形对角线垂直,故 接下来证 DE \bot AC ,若无思路,可考虑逆推法,假设 DE \bot AC ,结合 AC \bot BD 可知 AC \bot 平面 BDEF,所 以通过证 AC \bot 平面 BDEF来证 AC \bot DE ,而要证这一线面垂直,除 AC \bot BD 外,还可用 FA = FC)

因为四边形 ABCD 为菱形, 所以 $AC \perp BD$, 且 O 为 AC 中点, 又 FA = FC, 所以 $AC \perp OF$,

因为 BD,OF \subset 平面 BDEF,BD \cap OF = O ,所以 AC \perp 平面 BDEF,又 DE \subset 平面 BDEF,所以 DE \perp AC ,因为四边形 BDEF 为矩形,所以 DE \perp BD ,

结合 BD, $AC \subset$ 平面 ABCD, $BD \cap AC = O$ 可得 $DE \perp$ 平面 ABCD.

7. (2023 · 浙江杭州模拟 · $\star\star\star$)如图,四边形 *ABCD* 为正方形,*PD* 上平面 *ABCD*,*AQ* // *PD*, PD=2QA=2AB,证明: PQ 上平面 DCQ.

证明: (要证 PQ \bot 平面 DCQ,需证 PQ \bot 平面 DCQ 内的两条相交直线,观察图形发现不外乎在 CD,DQ,CQ 中选,先看条件中已有的垂直关系,我们发现与 CD 有关的垂直较多,故其中一条选 CD)因为 PD \bot 平面 ABCD,且 AD, CD \subset 平面 ABCD,所以 AD \bot PD , CD \bot PD ,

又 ABCD 是正方形,所以 $CD \perp AD$,结合 PD ,AD 是平面 ADPQ 内的相交直线可得 $CD \perp$ 平面 ADPQ,因为 $PQ \subset$ 平面 ADPQ,所以 $PQ \perp CD$ ①,

(条件中还有PD=2QA=2AB,可用它分析 ΔPDQ 的三边长,用勾股定理证明 $PQ\perp DQ$)

不妨设 QA = AB = 1,则 AD = 1, PD = 2,因为 $AD \perp PD$,AQ // PD,所以 $AQ \perp AD$,

从而 ΔADQ 是等腰直角三角形,故 $DQ = \sqrt{2}$,且 $\angle ADQ = 45^{\circ}$,所以 $\angle PDQ = 45^{\circ}$,

在 ΔPDQ 中,由余弦定理, $PQ^2 = PD^2 + DQ^2 - 2PD \cdot DQ \cdot \cos \angle PDQ = 2^2 + (\sqrt{2})^2 - 2 \times 2 \times \sqrt{2} \times \cos 45^\circ = 2$,所以 $DQ^2 + PQ^2 = 4 = PD^2$,故 $PQ \perp DQ$ ②,

由①②以及 CD,DQ 是平面 DCQ 内的相交直线可得 PQ 上平面 DCQ.