

WPISUJE ZDAJĄCY

KOD	IMIĘ I NAZWISKO	O*
		* nieobowiązkowe
	AMIN MATURALNY OWĄ ERĄ	dysleksja
MATEMATYKA –	POZIOM PODSTAWOWY	
Instrukcja dla zdającego		STYCZEŃ 2015
 Sprawdź, czy arkusz egzaminacy Ewentualny brak stron zgłoś nau 	jny zawiera 20 stron (zadania 1–33). czycielowi nadzorującemu egzamin.	
3. Pamiętaj, że pominięcie argumen	zapisz w miejscu na to przeznaczonym. ntacji lub istotnych obliczeń w rozwiązaniu wać, że za to rozwiązanie nie otrzymasz pełnej	Czas pracy: 170 minut
5. Nie używaj korektora, a błędne z6. Pamiętaj, że zapisy w brudnopisi		
cyrkla i linijki oraz kalkulatora. 8. Na tej stronie wpisz swój kod ora		Liczba punktów do uzyskania: 50
je w części karty przeznaczonej d		

Powodzenia!

ZADANIA ZAMKNIĘTE

W zadaniach 1-23 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Marek obserwował zwycięski skok Kamila Stocha i oszacował jego długość na 138 m. Oficjalny wynik zawodnika to 132,5 m. Jaki błąd względny popełnił Marek (w zaokrągleniu do części tysięcznych)?

A. 0,040

B. 0.042

C. 0,960

D. 5,500

Zadanie 2. (0-1)

Liczba *a* jest o 20% mniejsza od liczby *b*. Jaki procent liczby *a* stanowi liczba *b*?

A. 20%

B. 80%

C. 120%

D. 125%

Zadanie 3. (0-1)

Iloraz
$$\frac{\sqrt{6} - \sqrt{3}}{\sqrt{6} + \sqrt{3}}$$
 jest równy

A.
$$3 - 2\sqrt{2}$$

B.
$$\frac{\sqrt{3}}{3}$$

C.
$$3-6\sqrt{2}$$

C.
$$3-6\sqrt{2}$$
 D. $9-2\sqrt{2}$

Zadanie 4. (0-1)

Zbiorem rozwiązań nierówności $(x-2)^2 \le 14 - (2-x)(x+2)$ jest przedział

A.
$$\left\langle -\frac{3}{2}, +\infty \right\rangle$$

B.
$$\left(-\frac{3}{2}, +\infty\right)$$
 C. $\left\langle -1, 3\right\rangle$ D. $\left(-\infty, -\frac{3}{2}\right)$

C.
$$\langle -1, 3 \rangle$$

D.
$$\left(-\infty, -\frac{3}{2}\right)$$

Zadanie 5. (0-1)

Wskaż zdanie nieprawdziwe.

A.
$$-\sqrt[3]{125} = \sqrt[3]{-125}$$

A.
$$-\sqrt[3]{125} = \sqrt[3]{-125}$$
 B. $\sqrt{(-125)^2} = -125$ C. $\sqrt[5]{-64} = -2\sqrt[5]{2}$ D. $5\frac{7}{3} = 25\sqrt[3]{5}$

C.
$$\sqrt[5]{-64} = -2\sqrt[5]{2}$$

D.
$$5^{\frac{7}{3}} = 25\sqrt[3]{5}$$

Zadanie 6. (0-1)

Po przesunięciu wykresu funkcji wykładniczej wzdłuż osi Oy układu współrzędnych otrzymano wykres przedstawiony na rysunku. Jest to wykres funkcji

A.
$$f(x) = \frac{4}{x} + 1$$

B.
$$f(x) = (\sqrt{2})^x + 1$$

A.
$$f(x) = \frac{4}{x} + 1$$
 B. $f(x) = (\sqrt{2})^x + 1$ C. $f(x) = (\sqrt{3})^{\frac{1}{2}x+1}$ D. $f(x) = (\sqrt{2})^{x-1}$

D.
$$f(x) = (\sqrt{2})^{x-1}$$

Zadanie 7. (0-1)

Liczby a i b są dodatnie, $b \neq 1$ i $\log_b a = 4$. Wyrażenie $\log_b \sqrt[3]{ab^2}$ przyjmuje wartość

A.
$$\frac{8}{9}$$

C.
$$\frac{14}{3}$$

Zadanie 8. (0-1)

Wykres funkcji liniowej f(x) = 3x - 2 odbito symetrycznie względem osi Oy. Otrzymano wykres funkcji

$$A. g(x) = -3x + 2$$

B.
$$g(x) = 3x + 2$$

C.
$$g(x) = -3x - 2$$
 D. $g(x) = 3x - 2$

D.
$$g(x) = 3x - 2$$

Zadanie 9. (0-1)

Wskaż oś liczbową, na której przedstawiono zbiór wszystkich wartości p, dla których funkcja liniowa $f(x) = (8 - p^2)x + p$ jest rosnąca.

A.
$$\frac{1}{\sqrt{8}}$$

C.
$$\sqrt{8}$$
 $\sqrt{8}$ $\sqrt{8}$

B.
$$\frac{1}{-\sqrt{8}} \sqrt{8} \sqrt{p}$$

Zadanie 10. (0-1)

Wykres funkcji $f(x) = -\frac{1}{2}(x-3)^2 + 2$ ma dwa punkty wspólne z prostą o równaniu y = m, jeżeli

A.
$$m < 2$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m > 3$$

Zadanie 11. (0-1)

Punkty M = (-2, 0) i N = (2, 4) są wierzchołkami trójkata równobocznego. Wysokość tego trójkata jest równa

A.
$$4\sqrt{2}$$

B.
$$2\sqrt{2}$$

C.
$$2\sqrt{6}$$

D.
$$8\sqrt{3}$$

Zadanie 12. (0-1)

Wzór ogólny ciągu (a_n) określonego dla wszystkich liczb naturalnych $n \ge 1$ ma postać $a_n = \sqrt{n^3} \cdot \sqrt[3]{n} \cdot \sqrt[6]{n}$. Wynika stąd, że

A.
$$a_3 = \sqrt[11]{243}$$

B.
$$a_3 = 9$$

C.
$$a_3 = \sqrt[6]{243}$$
 D. $a_3 = 2$

D.
$$a_3 = 2$$

Zadanie 13. (0-1)

Dany jest nieskończony ciąg (a_n) , w którym $a_1 = 4^{10}$, a każdy następny wyraz jest dwukrotnie mniejszy od poprzedniego. Wtedy wyraz a_{15} jest równy

C.
$$\frac{4^{10}}{15}$$

Zadanie 14. (0-1)

Na rysunku przedstawiono interpretację geometryczną jednego z niżej zapisanych układów równań.

Wskaż ten układ.

A.
$$\begin{cases} y = -\frac{1}{2}x - 2 \\ y = -\frac{1}{2}x + 1 \end{cases}$$
B.
$$\begin{cases} y = \frac{1}{2}x - 2 \\ y = \frac{1}{2}x + 1 \end{cases}$$
C.
$$\begin{cases} y = -\frac{1}{2}x + 2 \\ y = -\frac{1}{2}x - 1 \end{cases}$$
D.
$$\begin{cases} y = -2x - 2 \\ y = 2x + 1 \end{cases}$$

B.
$$\begin{cases} y = \frac{1}{2}x - 2 \\ y = \frac{1}{2}x + 1 \end{cases}$$

C.
$$\begin{cases} y = -\frac{1}{2}x + 2x \\ y = -\frac{1}{2}x - 1 \end{cases}$$

D.
$$\begin{cases} y = -2x - 2\\ y = 2x + 1 \end{cases}$$

Zadanie 15. (0-1)

Zależność temperatury w skali Fahrenheita (°F) od temperatury w skali Celsjusza (°C) wyraża się wzorem: $f = \frac{9}{5}c + 32$, gdzie f oznacza temperaturę w skali Fahrenheita, a c – w skali Celsjusza. 25 maja 2014 r. o godzinie 12 czasu lokalnego temperatura w Warszawie wynosiła 20°C, a w Nowym Jorku 77°F. O ile stopni temperatura w Nowym Jorku była wyższa od temperatury w Warszawie?

Zadanie 16. (0-1)

Rzucono równocześnie trzema sześciennymi kostkami do gry. Prawdopodobieństwo, że na wszystkich kostkach wypadła taka sama liczba oczek, jest równe

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{6^2}$$

C.
$$\frac{1}{6^3}$$

D.
$$\frac{3}{6^3}$$

Zadanie 17. (0-1)

W trójkat równoramienny ABC o podstawie AB wpisano okrąg o promieniu 5. Odległość wierzchołka C od punktu styczności S okręgu z ramieniem BC jest równa 12. Wysokość CD tego trójkąta ma długość

C.
$$5 + \sqrt{119}$$

Zadanie 18. (0-1)

Wskaż poprawną wartość funkcji trygonometrycznej kata rozwartego α (rysunek obok).

A.
$$\cos \alpha = -\frac{4}{5}$$
 B. $\cos \alpha = \frac{4}{5}$ C. $\sin \alpha = \frac{3}{4}$

B.
$$\cos \alpha = \frac{4}{5}$$

C.
$$\sin \alpha = \frac{3}{4}$$

D. tg
$$\alpha = -\frac{4}{3}$$

Zadanie 19. (0-1)

Na trójkącie *ABC* opisano okrąg o środku *S* i promieniu równym 6. Kąt wpisany ACB ma miarę 15°. Pole trójkąta ABS jest równe

A. 9

B. $9\sqrt{2}$

C. $9\sqrt{3}$

D. 18

Zadanie 20. (0-1)

Ile jest wszystkich naturalnych liczb trzycyfrowych podzielnych przez 5, w których cyfra dziesiątek jest liczbą pierwszą? (Uwaga: 1 nie jest liczbą pierwszą.)

A. 53

B. 72

C. 90

D. 100

Zadanie 21. (0-1)

Wszystkie oceny Ani z matematyki to 5, 4, 6, 5, 5 i nieznana ocena x. Średnia arytmetyczna wszystkich ocen Ani jest większa niż ich mediana. Tą oceną może być

A. 3

B. 4

C. 5

D. 6

Zadanie 22. (0-1)

W graniastosłupie prawidłowym czworokątnym, którego krawędź podstawy ma długość a, pole powierzchni bocznej jest 8 razy większe od pola podstawy. Objętość tego graniastosłupa wynosi

A. $8a^{3}$

B. $2a^{3}$

C. $\frac{a^3}{32}$

D. $\frac{2}{3}a^{3}$

Zadanie 23. (0-1)

Dany jest stożek, którego tworząca ma długość 4, a kąt rozwarcia wynosi 120°. Pole powierzchni bocznej tego stożka jest równe

A.
$$8\sqrt{3}\pi$$

B.
$$4\pi(2\sqrt{3}+3)$$
 C. 8π

D.
$$\frac{8\sqrt{3}\pi}{3}$$

ZADANIA OTWARTE

Rozwiązania zadań 24-33 należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (0-2)

Wykres funkcji kwadratowej $f(x) = \frac{1}{2}x^2$ przesunięto o cztery jednostki w prawo i otrzymano wykres funkcji g(x). Wyznacz zbiór wszystkich argumentów x, dla których funkcja g(x) przyjmuje wartości większe od 2.

Zadanie 25. (0-2)

Rozwiąż równanie $\frac{x^2 - 9}{x + 3} = 1 - x$.

	Nr zadania	24	25
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 26. (0-2)

W pudełku znajduje się 10 piłeczek: 3 białe i 7 czarnych. Z pudełka losujemy kolejno dwie piłeczki bez zwracania. Oblicz prawdopodobieństwo, że obie będą czarne.

Zadanie 27. (0-2)

Oblicz pole kwadratu, gdy dane są współrzędne dwóch jego wierzchołków (–1, 1) i (2, 1). Rozpatrz różne przypadki.

	Nr zadania	26	27
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 28. (0-2)

Uzasadnij, że funkcja kwadratowa $f(x) = 2x^2 - 3^9x + 27^7$ nie ma miejsc zerowych.

Zadanie 29. (0-2)

Bartek w czasie wakacji podjął pracę w pizzerii. Pracodawca zaproponował mu następujące warunki płacy: za pierwszy dzień pracy 20 zł, a za każdy następny o 3 zł więcej niż za poprzedni. Bartek w każdym tygodniu pracuje przez 5 dni. Ile łącznie zarobi po 8 tygodniach pracy?

	Nr zadania	28	29
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 30. (0-2)

W trapezie ABCD, w którym $AB \parallel CD$, przedłużono ramiona AD i BC tak, aby przecięły się w punkcie E. Wiadomo, że |AB| = 8 cm, |CD| = 2 cm, a pole powstałego trójkąta DCE jest równe 2 cm². Oblicz pole trapezu ABCD.

Zadanie 31. (0-4)

Janek, który chodzi ze średnią prędkością $4\frac{km}{h}$, a biega ze średnią prędkością $6\frac{km}{h}$, zauważył, że biegnąc na popołudniowy trening koszykówki, przybywa na miejsce o 4 minuty wcześniej niż idąc normalnym krokiem. Jak daleko od domu Janka znajduje się hala treningowa?

	Nr zadania	30	31
Wypełnia sprawdzający	Maks. liczba pkt	2	4
1	Uzyskana liczba pkt		

Zadanie 32. (0-5)

Punkty A = (-2, -4), B = (8, 1), C = (4, 4) są kolejnymi wierzchołkami trapezu równoramiennego ABCD (niebędącego równoległobokiem) o podstawach AB oraz CD.

- a) Wyznacz równanie prostej, która jest osią symetrii tego trapezu.
- b) Oblicz współrzędne punktu będącego środkiem podstawy CD.

Zadanie 33. (0-4)

W czworościanie foremnym, którego krawędź ma długość a, kąt α jest kątem nachylenia krawędzi bocznej do płaszczyzny podstawy. Oblicz wartość wyrażenia $\cos^2(90^\circ-\alpha)-\cos^2\alpha$.

	Nr zadania	32	33
Wypełnia sprawdzający	Maks. liczba pkt	5	4
1	Uzyskana liczba pkt		

WPISUJE ZDAJĄCY

KOD	IMIĘ I NAZW	ISKO *
		* nieobowiązkowe

KARTA ODPOWIEDZI

Nr zad.	Odpowiedzi			
1	A	В	С	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	A	В	С	D
6	A	В	С	D
7	A	В	С	С
8	A	В	С	D
0	A	В	С	D
10	A	В	С	D
11	A	В	С	D
12	A	В	С	D
13	A	В	С	D
14	A	В	С	D
15	A	В	С	D
16	A	В	С	D
17	A	В	С	D
18	A	В	С	D
19	A	В	С	D
20	A	В	С	D
21	A	В	С	D
22	A	В	С	D
23	A	В	С	D

WYPEŁNIA ZESPÓŁ NADZORUJĄCY

dostosowania kryteriów oceniania. nieprzenoszenia zaznaczeń na kartę.

Punkty Nr zad.

WYPEŁNIA SPRAWDZAJĄCY