Bayesian Networks

AIMA Chapter 14.1, 14.2, PRML Chapter 8

Example Application: Topic Modeling

Introduction

- A large body of text available online
 - It is difficult to find and discover what we need.
- Topic models
 - Approaches to discovering the main themes of a large unstructured collection of documents
 - Can be used to automatically organize, understand, search, and summarize large electronic archives
 - Latent Dirichlet Allocation (LDA) is the most popular

Plate Notation

Representation of repeated subgraphs in a Bayesian network

Plate Notation

Representation of repeated subgraphs in a Bayesian network

Plate Notation

Representation of repeated subgraphs in a Bayesian network


```
distribution over words for each topic

e.g., sports: [0.1, 0.3, 0.2, ...]
arts: [0.2, 0.3, 0.1, ...]
science: [0.3, 0.4, 0.1, ...]
.....
```


Dirichlet Distribution

Latent Dirichlet Allocation (LDA)

Illustration

Each topic is a distribution of words; each document is a mixture of corpus-wide topics; and each word is drawn from one of those topics.

Illustration

In reality, we only observe documents. The other structures are hidden variables that must be inferred. (We will discuss inference later.)

Topics inferred by LDA

"Arts"	"Budgets" "Childre		" "Education"	
NEW	MILLION	CHILDREN	SCHOOL	
FILM	TAX	WOMEN	STUDENTS	
SHOW	PROGRAM	PEOPLE	SCHOOLS	
MUSIC	BUDGET	CHILD	EDUCATION	
MOVIE	BILLION	YEARS	TEACHERS	
PLAY	FEDERAL	FAMILIES	HIGH	
MUSICAL	YEAR	WORK	PUBLIC	
BEST	SPENDING	PARENTS	TEACHER	
ACTOR	NEW	SAYS	BENNETT	
FIRST	STATE	FAMILY	MANIGAT	
YORK	PLAN	WELFARE	NAMPHY	
OPERA	MONEY	MEN	STATE	
THEATER	PROGRAMS	PERCENT	PRESIDENT	
ACTRESS	GOVERNMENT	CARE	ELEMENTARY	
LOVE	CONGRESS	$_{ m LIFE}$	HAITI	

- A Bayesian network encodes a joint distribution with a directed acyclic graph
 - A CPT captures uncertainty between a node and its parents

- A Markov network (or Markov random field) encodes a joint distribution with an undirected graph
 - A potential function captures uncertainty between a clique of nodes

- Markov network = undirected graph + potential functions
 - For each clique (or max clique), a potential function is defined
 - A potential function is not locally normalized, i.e., it doesn't encode probabilities
 - A joint probability is proportional to the product of potentials

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient (aka. partition function).

Α	В	С	D	ФавФвсФсоФао
	0	0	0	250
0	0	0	1	37500
0	0	1	0	50000
0	0	1	1	625000
0	1	0	0	1125
0	1	0	1	168750
0	1	1	0	50000
0	1	1	1	625000
1	0	0	0	250
1	0	0	1	375
1	0	1	0	50000
1	0	1	1	6250
1	1	0	0	112500
1	1	0	1	168750
1	1	1	0	5000000
1	1	1	1	625000
				Z = 7520750

Conditional independence and Markov blanket in MN

An example – foreground object

Binary segmentation

$$\phi(\mathbf{x}_i) = [green(\mathbf{x}_i), brown(\mathbf{x}_i)]^T$$
$$\mathbf{w} = [-1, 1]^T$$

A score maximization view

$$\hat{y}_i = \delta[\mathbf{w}^T \phi(\mathbf{x}_i) > 0] \iff \hat{y}_i = \arg\max_{y_i} \quad y_i \mathbf{w}^T \phi(\mathbf{x}_i)$$

$$= \arg\max_{y_i} \quad \mathbf{w}^T \tilde{\phi}(\mathbf{x}_i, y_i)$$
Score function

- Predicted label has a higher score.
- Problem?

(Shotton et al, ECCV 2006)

- Incorporating spatial context
 - Labels are generally spatially smooth

$$F(\mathbf{X}, \mathbf{Y}; \mathbf{W}) = \sum_{i} \mathbf{w}^{T} \phi(y_{i}, \mathbf{x}_{i})$$
"Local" image cues

A simple smooth model

$$\psi(y_i, y_j, |\mathbf{x}_i - \mathbf{x}_j|) = \delta[y_i = y_j]e^{\{-|\mathbf{x}_i - \mathbf{x}_j|\}}$$

Same labeling for neighboring pixels unless an intensity gradient exists

• Inferring the scene properties (i.e., foreground mask) globally

$$\hat{\mathbf{Y}} = \arg \max_{\mathbf{Y}} F(\mathbf{X}, \mathbf{Y}; \mathbf{W})$$

$$= \arg \max_{\mathbf{Y}} \sum_{i} \mathbf{w}^{T} \phi(y_{i}, \mathbf{x}_{i}) + \alpha \sum_{i,j} \psi(y_{i}, y_{j}, |\mathbf{x}_{i} - \mathbf{x}_{j}|)$$

Structured prediction framework

- Input $\mathbf{X} = \{x_i\}_{i=1}^n, \quad x_i \in \mathbf{R}^d$
- Output $Y = \{y_i\}_{i=1}^n, y_i \in L, L = \{1, \dots, K\}$
- Structured prediction model

$$\begin{split} \hat{\mathbf{Y}} &= \arg\max_{\mathbf{Y}} F(\mathbf{X}, \mathbf{Y}, \mathbf{W}) \\ F(\mathbf{X}, \mathbf{Y}, \mathbf{W}) &= \sum_{i} \phi(x_i, y_i; \mathbf{w}_u) \quad \text{Unary potential} \\ &+ \sum_{i,j} \psi(\mathbf{x}_{ij}, y_i, y_j; \mathbf{w}_p) \quad \text{Pairwise potential} \\ &+ \sum_{c} \psi_c(\mathbf{x}_c, \mathbf{y}_c; \mathbf{w}_c) \quad \text{Higher-order potential} \end{split}$$

Examples: surface contour, object class, depth, pose, ...

Structured prediction framework

- A probabilistic view (conditional) random field
 - Conditional probability

$$P(\mathbf{Y}|\mathbf{X}; \mathbf{W}) = \frac{1}{Z_{\mathbf{X}, \mathbf{W}}} \exp\{F(\mathbf{X}, \mathbf{Y}, \mathbf{W})\}$$

- Label prediction: MAP estimation
- Main question in scene modeling
 - What are the potential functions?
 - Hand-crafted features, deep neural networks, ...

Multiclass scene labeling

- TextonBoost CRF (Shotton et al., ECCV 2006)
 - Simultaneous recognition and segmentation
 - Explain every pixel (dense features)

Model overview – TextonBoost CRF

- What are useful cues for object classification?
 - Appearance (color, texture,...)
 - Shape
 - Object location
 - Spatial context
- Incorporating those factors into a score function:

```
F = shape-texture term (A) + color term (B)
+ location term (C) + spatial context term (D)
```

A. Shape-texture potential

shape-texture potentials

$$F(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) = \sum_{i} \psi_{i}(y_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi})$$
 jointly across all pixels

- broad intra-class appearance distribution
- log boosted classifier
- lacksquare parameters $oldsymbol{ heta}_{\psi}$ learned offline

shape-texture potentials

B. Color potential

colour potentials

$$F(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) = \sum_{i} \psi_{i}(y_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi}) + \pi(y_{i}, \mathbf{x}_{i}; \boldsymbol{\theta}_{\pi})$$

- Colour potentials
 - compact appearance distribution
 - Gaussian mixture model

intra-class appearance variations

C. Location potential

location potentials

$$F(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) = \sum_{i} \psi_{i}(y_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi}) + \pi(y_{i}, \mathbf{x}_{i}; \boldsymbol{\theta}_{\pi}) + \lambda(y_{i}, i; \boldsymbol{\theta}_{\lambda})$$

Capture prior on absolute image location

D. Spatial context

$$F(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) = \sum_{i} \psi_{i}(y_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi}) + \pi(y_{i}, \mathbf{x}_{i}; \boldsymbol{\theta}_{\pi}) + \lambda(y_{i}, i; \boldsymbol{\theta}_{\lambda})$$
sum over neighbouring pixels
$$+ \sum_{i} \phi(y_{i}, y_{j}, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi})$$
edge potentials

Potts model

encourages neighbouring pixels to have same label

Contrast sensitivity

encourages segmentation to follow image edges

image edge map

Good Results

Graphical Models

- A graphical model is a probabilistic model for which a graph expresses conditional dependence between random variables
 - Bayesian networks: directed acyclic graph
 - Markov networks: undirected graph
 - Factor graphs, conditional random fields, etc.

Converting Directed to Undirected Graphs (1)

Converting Directed to Undirected Graphs (2)

Additional links (moralization)

$$p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$= \frac{1}{Z}\psi(x_1, x_2, x_3, x_4)$$

Bayesian Network -> Markov Network

- Steps
 - 1. Moralization
 - 2. Construct potential functions from CPTs
- The BN and MN encode the same distribution
- Do they encode the same set of conditional independence?

Encoding Conditional Independence

$$\begin{array}{c|c} A \perp \!\!\! \perp B \mid \emptyset \\ A \perp \!\!\! \perp B \mid C \end{array}$$

$$A \not\perp \!\!\!\perp B \mid \emptyset$$

$$A \perp \!\!\!\!\perp B \mid C \cup D$$

$$C \perp \!\!\!\!\perp D \mid A \cup B$$

Encoding Conditional Independence

The set of distributions whose conditional independence can be exactly (i.e., no more, no less) represented by a directed/undirected graph

Markov networks vs. Constraint graphs

 Constraint graphs can be seen as Markov networks with 0/1 potentials

BN/MN vs. Logic

- Which logic is BN/MN more similar to: PL? FOL?
 - Boolean nodes represent propositions
 - No explicit representation of objects, relations, quantifiers

- BN/MN can be seen as a probabilistic extension of PL
- PL can be seen as BN/MN with deterministic CPTs/potentials