

Support Vector Machines I

COMPCSI 762

Instructor: Thomas Lacombe
Based on slides from Meng-Fen Chiang

WEEK 9

RECAP: Machine Learning Systems

Instance-based Learning

- Compare new data points to known data points
- Non-parametric approaches
- Memory-based approaches
- Prediction can be expensive

use the entire dataset as a model (e.g., k-NN)

Model-based Learning

- Detect a pattern in the training data
- Build a predictive model
- Prediction is extremely fast

use the training data to create a model that has parameters learned from the training datasets (e.g., SVM)

OUTLINE

- Data Characteristics
 - Linearly Separable Data
 - Non-Linearly separable Data
- SVM (9.1,9.2,9.3)
 - Linearly Separable: Hard-margin SVMs
 - Non-Linearly Separable: Soft-margin SVMs
 - Non-Linearly Separable: Kernelized SVMs
- Summary

Data Characteristics

A classification method for both linear and nonlinear data

Linearly Separable Data

Non-Linearly Separable Data

Data Characteristics

Types of Support Vector Machines (SVMs)

 SVM selects the maximum margin linear classifier

Linear SVMs: Hard-margin SVMs

 SVM selects the maximum margin linear classifier with partial misclassifications allowed

Linear SVMs: Soft-margin SVMs

Non-Linear SVMs: Kernelized SVMs

OUTLINE

- Data Characteristics
 - Linearly Separable Data
 - Non-Linearly separable Data
- SVM
 - Linearly Separable Data: Hard-margin SVMs (9.1)
 - Non-Linearly Separable Data: Soft-margin SVMs (9.2)
 - Non-Linearly Separable Data: Kernelized SVMs (9.3)
- Summary

Problem Definition: Margin Maximization

- Given a set of linearly separatable training data $S = ((x_1, y_1), ..., (x_n, y_n)), y_i \in \{+1, -1\}$
- We want to find a linear decision boundary (hyperplane) to separate the 2 classes.
- There is an infinite number of lines (hyperplanes) separating the two classes!

• Goal: The hard-margin SVM algorithm aims to find a linear classifier that maximizes (γ) the margin on S.

Why Margin Maximization?

- Any linear classifier that separates S correctly will have margin $\gamma > 0$
- We want to find the best one (the one that minimizes classification error on unseen data)
- Assumption: the hyperplane with the largest margin will generalise best on unseen data
- SVM searches for the hyperplane with the largest margin, i.e., Maximum Marginal Hyperplane (MMH)

Example: Generalization Performance

We want a classifier which:

- Works well on training data
- Works well on the unseen Data

Margin Maximization Hyperplane (MMH)

Distance of closet data $\overrightarrow{x_i}$ from the hyperplane H $|\overrightarrow{w} \cdot \overrightarrow{x_i} + b|$ $|\overrightarrow{w}|$

$$\blacksquare \quad \text{Margin:} \quad \gamma = \frac{2}{\|\overrightarrow{w}\|}$$

 \blacksquare Maximize γ is equivalent to minimize $\|\overrightarrow{w}\|$

$$\min_{w,b} \frac{\|\overrightarrow{w}\|}{2}$$

s.t.
$$y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b) \ge 1$$
 (discrimination boundary is respected) 11

Margin Maximization Hyperplane (MMH)

- A separating hyperplane (H) can be formally defined as $\vec{w} \cdot \vec{x} + b = 0$
 - $\vec{w} = \{w_1, w_2, ..., w_n\}$ is a weight vector and \vec{b} a scalar (bias)
- For 2-D it can be written as: $w_1 \cdot x_{i,1} + w_2 \cdot x_{i,2} + b = 0$
- The hyperplanes defining the sides of the margin:
 - $H_1: w_1 \cdot x_{i,1} + w_2 \cdot x_{i,2} + b \ge 1$, for $y_i = +1$, and
 - $H_2: w_1 \cdot x_{i,1} + w_2 \cdot x_{i,2} + b \le 1$, for $y_i = -1$

• Any training tuples that fall on margins H_1 or H_2 (i.e., the hyperplanes defining the margin) are support vectors

Example: Support Vectors

Three Support Vectors:

- 1. [0.44359863 3.11530945]
- 2. [2.33812285 3.43116792]
- 3. [2.06156753 1.96918596]

Margin Maximization Hyperplane (MMH)

Linear model:
$$f(\vec{x}) = \begin{cases} +1, & \overrightarrow{w} \cdot \vec{x} + b \ge +1 \\ -1, & \overrightarrow{w} \cdot \vec{x} + b \le -1 \end{cases}$$

- **1. Training Stage**: Learning the model is equivalent to determining the values of \overrightarrow{w} and b
 - How to find \overrightarrow{w} and b from training data S?
- **2.** Testing Stage: Once \vec{w} and \vec{b} are found, given a test data (\vec{x}) , use $f(\cdot)$ to determine the class label
- Decision boundary depends only on support vectors
 - If we have data set with same support vectors, decision boundary will not change

Example: Support Vector Matters

- Only the positions of the support vectors matter to decision boundary
- Other points further from the margin which are on the correct side do not modify the decision boundaries

Training Stage

- Objective is to maximize: $\gamma = \frac{2}{\|\vec{w}\|}$
 - Equivalently, the objective is to minimize: $\min_{w,b} \frac{||w||}{2}$
 - Subject to the following constraints:

$$y_{i} = \begin{cases} +1, & \overrightarrow{w} \cdot \overrightarrow{x}_{i} + b \ge +1 \\ -1, & \overrightarrow{w} \cdot \overrightarrow{x}_{i} + b \le -1 \end{cases}$$

• Or $y_i(\overrightarrow{w}\cdot\overrightarrow{x_i}+b)\geq 1, \qquad i=1,2,...,n$ \rightarrow m inequality contrains

minimization

maximization

This becomes a **constrained (convex) quadratic optimization** problem:

• Quadratic objective function with linear constraints → Quadratic Programming (QP)

Quadratic Programming (QP)

- QP is a well-studied solution algorithm
- Lagrange Multipliers and Constrained Optimization
 - Finding the local minima and maxima of a differentiable function subject to equality or inequality constraints
 - The point at which the function and constraint touch each other is the solution to the optimization problem

Lagrange Multipliers and Constrained Optimization

- Optimization function: $f = x_1^2 + x_2^2$
- Subject to the constraint: g = 2 x + 6 y = c, with c = 5

- At the minimum of f s.t. the constraint: $\nabla f = \alpha \nabla g$
- Finding the minimum is then equivalent to solving: $\nabla f \alpha \nabla g = 0$

Lagrange Multipliers and Constrained Optimization

- Optimization function: $f = x_1^2 + y^2$
- Subject to the constraint: g = 2x + 6y 5
- Lagrange function (Lagrangian multiplier α):

•
$$\mathcal{L}(x,y,\lambda) = f(x,y) - \alpha g(x,y)$$

= $x_1^2 + y^2 - \alpha (2x + 6y - 5)$

 Solution for the constrained problem is obtained by solving for the points where the partial derivatives of \mathcal{L} are zero:

•
$$\frac{d\mathcal{L}}{dx} = 2x - 2\alpha = 0$$

•
$$\frac{d\mathcal{L}}{dy} = 2y - 6\alpha = 0$$

•
$$\frac{d\mathcal{L}}{dx} = 2x - 2\alpha = 0$$
•
$$\frac{d\mathcal{L}}{dy} = 2y - 6\alpha = 0$$
•
$$\frac{d\mathcal{L}}{d\alpha} = -2x - 2y + 5 = 0$$

Training Stage: Duality

SVM primal problem form:

$$\min_{\mathbf{w}, b} \frac{\|\overrightarrow{w}\|}{2} \qquad \text{s.t. } y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + \mathbf{b}) \ge 1, \quad i = 1, 2, ..., n$$

• We can convert it to the dual problem of SVM by introducing Lagrange multipliers (α_i)

$$\mathcal{L}(\overrightarrow{w}, b, \alpha) = \frac{\|\overrightarrow{w}\|}{2} - \sum_{i=1}^{n} \alpha_{i} [y_{i}(\overrightarrow{w} \cdot \overrightarrow{x_{i}} + b) - 1], \quad \alpha_{i} > 0$$

Solving the primal problem is equivalent to solving the dual problem:

$$\min_{w,b} \frac{\|\overrightarrow{w}\|}{2} \equiv \max_{\alpha} \min_{w,b} \mathcal{L}(\overrightarrow{w},b,\alpha)$$

Training Stage: Duality

SVM primal problem form:

$$\min_{\mathbf{w}, b} \frac{\|\overrightarrow{w}\|}{2} \qquad \text{s.t. } y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + \mathbf{b}) \ge 1, \quad i = 1, 2, ..., n$$

- We can convert it to the dual problem of SVM by introducing Lagrange multipliers (α_i)
 - Set the derivatives of SVM Lagrangian function w.r.t. \vec{w} and b to be zero:

$$\mathcal{L}(\vec{w}, b, \alpha) = \frac{\|\vec{w}\|}{2} - \sum_{i=1}^{n} \alpha_{i} [y_{i}(\vec{w} \cdot \vec{x_{i}} + b) - 1], \quad \alpha_{i} > 0$$

$$\bullet \quad \frac{d\mathcal{L}}{d\vec{w}} = 0 \Rightarrow \vec{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x_{i}}$$

$$\bullet \quad \frac{d\mathcal{L}}{d\vec{w}} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x_{i}}$$

• Substituting them in the Lagrangian function \mathcal{L} , we obtain the final dual optimization function:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \overrightarrow{x_{i}} \overrightarrow{x_{j}}$$

Training Stage: Solving the Dual Problem

Dual Problem Optimization

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \overrightarrow{x_{i}} \overrightarrow{x_{j}}$$
s.t. $\alpha_{i} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$, $i = 1, 2, ..., n$

- This can be solved efficiently using numerical optimization
 - $\alpha_i > 0$ for support vectors $\vec{x_i}$ that lie on the margin H_1 and H_2
 - $\alpha_i = 0$ for other training points
- Thus, the solution for \vec{w} corresponding to the maximal margin classifier can be written as a linear combination of just the support vectors: $\vec{w} = \sum_{x_i \in SV} \alpha_i y_i \vec{x_i}$

Training Stage: Solving the Dual Problem

- For support vectors, we have $y_i (\vec{w} \cdot \vec{x} + b) = 0$
 - Blue support vector ($y_i = +1$)
 - Green support vector ($y_i = -1$)
- Thus, the solution for b from any of the support vectors

$$b = \frac{1}{|SV|} \sum_{x_i \in SV} y_i - (\overrightarrow{w} \cdot \overrightarrow{x_i})$$

Testing Stage

• Given a new data point \vec{x} , we use the learned SVM classifier (\vec{w} and \vec{b}) to derive the class label as follow:

$$f(\vec{x}) = \begin{cases} +1, & \overrightarrow{w} \cdot \vec{x} + b \ge 0 \\ -1, & \overrightarrow{w} \cdot \vec{x} + b \le 0 \end{cases}$$

$$= \begin{cases} +1, & \sum_{x_i \in SV} \alpha_i y_i(\overrightarrow{x_i} \cdot \vec{x}) + b > 0 \\ -1, & \sum_{x_i \in SV} \alpha_i y_i(\overrightarrow{x_i} \cdot \vec{x}) + b < 0 \end{cases}$$

$$(Dual Form)$$

$$\overrightarrow{w} \cdot \vec{x} + b = 0$$

Example: Training Stage

Example: Testing Stage

• Given a new data point $\vec{x} = [0.5, 0.9]$, what is the class label of \vec{x} using the trained SVM?

Support
Vectors

<i>X</i> _"	$X_{\#}$	y	$lpha_!$
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

$$f(\vec{x}) = \begin{cases} +1, & \sum_{x_i \in SV} \alpha_i y_i(\vec{x_i} \cdot \vec{x}) + b > 0 \\ -1, & \sum_{x_i \in SV} \alpha_i y_i(\vec{x_i} \cdot \vec{x}) + b < 0 \end{cases}$$

$$sign\left(\sum_{x_{i} \in SV} \alpha_{i} y_{i}(\overrightarrow{x_{i}} \cdot \overrightarrow{x}) + b\right)$$

$$= sign\left(65.5261 \cdot 1 \cdot \begin{bmatrix} 0.3858 \\ 0.4687 \end{bmatrix}^{T} [0.5,0.9] + 65.5261 \cdot (-1) \cdot \begin{bmatrix} 0.4871 \\ 0.611 \end{bmatrix}^{T} [0.5,0.9] \right)$$

Quiz: Linear SVM

- Question: Suppose we want to build a hard-margin SVM classifier for two-class classification in one dimension space ($d = 1, x_i \in \mathbb{R}$) contains three sample points:
 - point $x_1 = 3$ with label $y_1 = 1$
 - point $x_2 = 1$ with label $y_2 = 1$
 - point $x_3 = -1$ with label $y_3 = -1$

What are the values of \vec{w} and \vec{b} given by our hard-margin SVM?

• Solve the optimization problem for w and b with the following constraints

$$\min_{\mathbf{w}, \mathbf{b}} \frac{\mathbf{w}^{2}}{2} \quad \text{s.t.} \quad \begin{cases} w * x_{1} + b \ge 1 \\ w * x_{2} + b \ge 1 \\ w * x_{3} + b \le -1 \end{cases}$$

$$E: w = 1, b = 0$$

$$C: w = 0, b = 1$$

$$D: w = \infty, b = 0$$

A:
$$w = 1$$
, $b = 1$
B: $w = 1$, $b = 0$
C: $w = 0$, $b = 1$
D: $w = \infty$, $b = 0$

Advantages v.s. Disadvantages

Advantages

- SVMs depends on relatively few support vectors
 - SVMs are very compact models, and take up very little memory
 - SVMs work well with high-dimensional data, even with more dimensions than samples (d > |S|)
- Once the model is trained, the prediction phase is very fast

Disadvantages

- For large numbers of training samples, the computational cost can be prohibitive
- The results do not have a direct probabilistic interpretation

Jupyter Notebook

Hard-margin SVM Coding Example

SUMMARY

- Data Characteristics
 - Linearly Separable Data
 - Non-Linearly separable Data
- Linearly Separable Data: Hard-margin SVMs
 - Margin Maximization Hyperplane (MMH)
 - Primal Form Optimization
 - Duality Form Optimization
 - Training Phase
 - Testing Phase
 - Advantages v.s. Disadvantages

Resources

- SVM Website: http://www.kernel-machines.org/
- Representative Implementation
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light**: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C
 - **Scikit-Learn**: a set of supervised learning methods used for classification, regression and outliers detection. [link]

Resources (Contd.)

- Book Chapters: Christopher Bishop, "Pattern Recognition and Machine Learning" (PDF)
 - Sec 7.1.1-7.1.2
 - Sec 4.1.1
 - Sec 6.1, 6.2
 - Appendix E
- Literatures
 - C.J.C. Burges, Chris J.C. Burges "A Tutorial on Support Vector Machines for Pattern Recognition." Data Mining and Knowledge Discovery, 1998