Lecture 18

Logistic Regression

STAT 8020 Statistical Methods II October 22, 2020

> Whitney Huang Clemson University

Logistic Regression								
CLEMS N Y								

A Motivating Example: Horseshoe Crab Malting [Brockmann, 1996, Agresti, 2013]

8 1 3.05 28.3 1.55 22.5 2.10 2.60 26.0 2.10 23.8 2.35 26.5 24.7

23.7

Source: https://www.britannica.com/story/ $\verb|horseshoe-crab-a-key-player-in-ecology-medicine-and-more|\\$

In the rest of today's lecture, we are going to use this data set to illustrate logistic regression. The response variable is y: whether there are males clustering around the female

Notes

Notes

Logistic Regression

Let $P(Y=1)=\pi\in[0,1]$, and x be the predictor (weight in the previous example). In SLR we have

$$\pi(x) = \beta_0 + \beta_1 x,$$

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

$$\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x.$$

- $\log(\frac{\pi}{1-\pi})$: the log-odds or the logit
- $\bullet \ \pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \in (0, 1)$

Notes			

Logistic Regression Fit

Notes ______

Properties

- • Similar to SLR, Sign of β_1 indicates whether $\pi(x)\uparrow$ or \downarrow as $x\uparrow$
- If $\beta_1=0$, then $\pi(x)=e^{\beta_0}/(1+e^{\beta 0})$ is a constant w.r.t x (i.e., π does not depend on x)
- Curve can be approximated at fixed x by straight line to describe rate of change: $\frac{d\pi(x)}{dx} = \beta_1 \pi(x) (1 \pi(x))$
- $\pi(-\beta_0/\beta_1)=0.5$, and $1/\beta_1\approx$ the distance of x values with $\pi(x)=0.5$ and $\pi(x)=0.75$ (or $\pi(x)=0.25$)

Notes

18.5

Odds Ratio Interpretation

Recall $\log(\frac{\pi(x)}{1-\pi(x)})=\beta_0+\beta_1 x$, we have the odds

$$\frac{\pi(x)}{1 - \pi(x)} = \exp(\beta_0 + \beta_1 x).$$

If we increase \boldsymbol{x} by 1 unit, the the odds becomes

$$\begin{split} \exp(\beta_0 + \beta_1(x+1)) &= \exp(\beta_1) \times \exp(\beta_0 + \beta_1 x). \\ \Rightarrow & \frac{\text{Odds at } x+1}{\text{Odds at } x} = \exp(\beta_1), \, \forall x \end{split}$$

Example: In the horseshoe crab example, we have $\hat{\beta}_1 = 1.8151 \Rightarrow e^{1.8151} = 6.14 \Rightarrow$ Estimated odds of satellite multiply by 6.1 for 1 kg increase in weight.

Notes

Parameter Estimation

In logistic regression we use maximum likelihood estimation to estimate the parameters:

- Statistical model: $Y_i \sim \mathsf{Bernoulli}(\pi(x_i))$ where $\pi(x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}.$
- Likelihood function: We can write the joint probability density of the data $\{x_i, y_i\}_{i=1}^n$ as

$$\prod_{i=1}^{n} \pi(x_i)^{y_i} (1 - \pi(x_i))^{(1-y_i)}.$$

We treat this as a function of parameters (β_0,β_1) given data.

• Maximum likelihood estimate: The maximizer $\hat{\beta}_0, \hat{\beta}_1$ is the maximum likelihood estimate (MLE). This maximization can only be solved numerically.


```
Notes
```

Horseshoe Crab Logistic Regression Fit
> logitFit <- glm(y ~ weight, data = crab, family = "binomial")
> summary(logitFit)

glm(formula = y ~ weight, family = "binomial", data = crab) Deviance Residuals: Min 1Q Median 3Q Max -2.1108 -1.0749 0.5426 0.9122 1.6285 | Estimate Std. Error z value Pr(>|z|) | (Intercept) -3.6947 | 0.8802 | -4.198 | 2.70e-05 | *** | weight | 1.8151 | 0.3767 | 4.819 | 1.45e-06 | *** Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 195.74 on 171 degrees of freedom

AIC: 199.74 Number of Fisher Scoring iterations: 4

Notes

Inference: Confidence Interval

A 95% confidence interval of the parameter β_i is

$$\hat{\beta}_i \pm z_{0.025} \times SE_{\hat{\beta}_i}, \quad i = 0, 1$$

Horseshoe Crab Example

A 95% (Wald) confidence interval of β_1 is

$$1.8151 \pm 1.96 \times 0.3767 = [1.077, 2.553]$$

Therefore a 95% CI of e^{β_1} , the multiplicative effect on odds of 1-unit increase in \boldsymbol{x} , is

$$[e^{1.077}, e^{2.553}] = [2.94, 12.85]$$

Notes			

Inference: Hypothesis Test

Null and Alternative Hypotheses:

 $H_0:\beta_1=0\Rightarrow Y$ is independent of $X\Rightarrow \pi(x)$ is a constant $H_a:\beta_1\neq 0$

Test Statistics:

$$z_{obs} = \frac{\hat{\beta}_1}{\text{SE}_{\hat{\beta}_1}} = \frac{1.8151}{0.3767} = 4.819$$

 $\text{P-value} = 1.45 \times 10^{-6}$

We have sufficient evidence that <code>weight</code> has positive effect on $\pi,$ the probability of having satellite male horseshoe crabs

18.10

Diagnostic: Raw Residual Plot

Notes

Notes

Diagnostic: Binned Residual Plot

Notes

Model Selection

```
> logitFit2 <- glm(y ~ weight + width, data = crab, family = "binomial")
> step(logitFit2)
Start: AIC=198.89
y ~ weight + width

Df Deviance AIC
- weight 1 194.45 198.45
<none> 192.89 198.89
- width 1 195.74 199.74

Step: AIC=198.45
y ~ width

Df Deviance AIC
<none> 194.45 198.45
- width 1 225.76 227.76

Call: glm(formula = y ~ width, family = "binomial", data = crab)

Coefficients:
(Intercept) width
-12.3508 0.4972

Degrees of Freedom: 172 Total (i.e. Null); 171 Residual
Null Deviance: 225.8
Residual Deviance: 194.5 AIC: 198.5
```


Notes	
Notes	
Notes	