EEE201 Jan 2012 Solutions

Q1(a)
$$\frac{dy(t)}{dt} + 5y(t) = 5x(t)$$

Taking the LT,

$$sY(s) - y(0) + 5Y(s) = 5X(s)$$

$$Y(s)(s+5) = 5X(s) + y(0)$$

To work out the forced response, $Y_{forced}(s) = \frac{5X(s)}{(s+5)} = \frac{5}{s(s+5)} = \frac{1}{s} - \frac{1}{(s+5)}$.

Therefore we have time domain forced response given by $y_{forced}(t) = [1 - \exp(-5t)]u(t)$.

Note that since the input is u(t), the forced response will approach 1 at large t.

To work out the natural response, $Y_{natural}(s) = \frac{y(0)}{(s+5)} = \frac{1}{(s+5)}$ and therefore the corresponding expression in time domain is $y_{natural}(t) = [\exp(-5t)]u(t)$.

Q1(b)
$$H(s) = \frac{1}{(s+0.1)(s^2+18s+45)}$$
.

$$H(s) = \frac{1}{(s+0.1)(s^2+18s+45)} = \frac{1}{(s+0.1)(s+15)(s+3)}$$

There is no zeros. Poles are at s = -0.1, -3 and -15. The dominant pole is s = -0.1.

Q1(c)
$$H(s) = \frac{3s-1}{(s^2+s-6)} = \frac{2}{(s+3)} + \frac{1}{(s-2)}$$

Therefore for a causal system $h(t)=(2e^{-3t}+e^{2t})u(t)$. Since $e^{2t}u(t)$ is not integrable, the system is not stable.

Q2(a) Note that the RC circuit is a linear system. If $H(\omega)$ is the transfer function of the RC circuit, $W(\omega)=Y(\omega)/W(\omega)$

i) Let $\omega_0 = 100\pi$ be the fundamental frequency of the signal w(t) so that $\omega = k\omega_0$, where k is an

integer.
$$H(\omega) = \frac{1}{1 + j\omega RC} = \frac{1}{1 + jk100\pi RC}$$

$$W(\omega) = Y(\omega) / H(\omega) = \frac{\left(\frac{1}{1 + j100k\pi RC}\right) \left(\frac{4}{\pi} \sum_{k=-\infty}^{N} \frac{-1^{k}}{(1 - 4k^{2})} \delta(\omega - 100k\pi)\right)}{\left(\frac{1}{1 + j100k\pi RC}\right)} = \frac{4}{\pi} \sum_{k=-\infty}^{N} \frac{-1^{k}}{(1 - 4k^{2})} \delta(\omega - 100k\pi)$$

ii) Taking the first harmonic only, we have k =-1, 0 and 1.

We have

$$Y(\omega) = \frac{4}{\pi} \left(\left(\frac{-1^{-1}}{(1-4)} \right) \left(\frac{1}{1-j100\pi RC} \right) \delta(\omega + 100\pi) + \delta(\omega) + \left(\frac{-1^{1}}{(1-4)} \right) \left(\frac{1}{1+j100\pi RC} \right) \delta(\omega - 100\pi) \right)$$

$$Y(\omega) = \frac{4}{\pi} \left(\frac{1}{3} \left(\frac{\delta(\omega + 100\pi)}{1-j100\pi RC} \right) + \delta(\omega) + \frac{1}{3} \left(\frac{\delta(\omega - 100\pi)}{1+j100\pi RC} \right) \right)$$

$$y(t) = \frac{4}{\pi} \left(\frac{1}{3} \left(\frac{1}{2\pi} \left(\frac{e^{-j100\pi}}{1 - j100\pi RC} \right) \right) + \frac{1}{2\pi} + \frac{1}{3} \left(\frac{1}{2\pi} \left(\frac{e^{j100\pi}}{1 + j100\pi RC} \right) \right) \right)$$

$$y(t) = \frac{2}{\pi^2} + \frac{2}{3\pi^2} \left[\frac{e^{j100\pi}}{1 + j100\pi RC} + \frac{e^{-j100\pi}}{1 - j100\pi RC} \right]$$

iii)The dc (or the average value) is $2/\pi^2$ and the magnitude of the ripple is given by

$$\left[\frac{2}{3\pi^2} \left[\frac{e^{j100\pi}}{1 + j100\pi RC} + \frac{e^{-j100\pi}}{1 - j100\pi RC} \right] \right].$$

Therefore,

$$\left| \frac{2}{3\pi^2} \left\lceil \frac{e^{j100\pi}}{1 + j100\pi RC} + \frac{e^{-j100\pi}}{1 - j100\pi RC} \right\rceil \right| < 0.01 \left(\frac{2}{\pi^2} \right)$$

Solving this gives RC > 0.2s.

Q3(a) i)The sampling frequency is $\omega_s = 2\pi/T_s$. The largest frequency is ω_2 . Hence Nyquist Theorem states that $2\pi/T_s > 2\omega_2$. Therefore $T_s < \pi/\omega_2$.

ii) Here it is best to use a graphical approach to work out the answer. After sampling the signal is illustrated below. There will be a copy of $X(\omega)$ represented by the black lines and a copy of $X(\omega)$ represented by dashed lines.

No aliasing if there is no overlap within $\omega_1 \le \omega \le \omega_2$ if $\omega_s + \omega_1 > \omega_2$. Therefore we have $\omega_s > \omega_2 - \omega_1$ and $T_s < 2\pi/(\omega_2 - \omega_1)$. To recover the signal we need to use a band pass filter as illustrated.

(b)

(c)

Spectrum of x(t) can be recovered by low pass filtering only when $\omega_s > 2\omega_B$. this is the Nyquist sampling theorem. When $\omega_s < 2\omega_B$ the repetitions of $X(\omega \cdot n\omega_s)$ will overlap as shown in (ii). This effect is known as aliasing.

(d)
$$W(\omega) = \int_{-\infty}^{\infty} w(t)e^{-j\omega t}dt = \int_{-\tau/2}^{\tau/2} e^{-j\omega t}dt$$

$$W(\omega) = \frac{1}{j\omega} \left[-e^{-j\omega t} \right]_{-\tau/2}^{\tau/2} = \frac{e^{j\omega\tau/2} - e^{-j\omega\tau/2}}{j\omega} = \frac{e^{j\omega\tau/2} - e^{-j\omega\tau/2}}{j2\omega/2} = \frac{\tau}{\omega\tau/2} \frac{e^{j\omega\tau/2} - e^{-j\omega\tau/2}}{j2}$$

$$W(\omega) = \tau \frac{\sin(\omega \tau/2)}{(\omega \tau/2)}.$$

Q4(a)

 $x_1(t)=x(t)-x(t-1)+x(t-2)+x(t-3)$. Therefore the output is y(t)-y(t-1)+y(t-2)+y(t-3)

Q4(b)

$$x[n] = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & otherwise \end{cases} \text{ and } h[n] = \begin{cases} e^{-n}, & 0 \le n \le 4 \\ 0, & otherwise \end{cases}$$

k	-4	-3	-2	-1	0	1	2	3	4	5	
											$\sum x[k]h[n-k]$
x[k]	0	0	0	0	1	1	1	1	0	0	
h[0-k]	e ⁻⁴	e ⁻³	e ⁻²	e ⁻¹	1	0	0	0	0	0	1
h[1-k]	0	e ⁻⁴	e ⁻³	e-2	e ⁻¹	1	0	0	0	0	1.368
h[2-k]	0	0	e ⁻⁴	e-3	e ⁻²	e ⁻¹	1	0	0	0	1.503
h[3-k]	0	0	0	e ⁻⁴	e ⁻³	e ⁻²	e ⁻¹	1	0	0	1.553
h[4-k]	0	0	0	0	e ⁻⁴	e ⁻³	e ⁻²	e ⁻¹	1	0	0.571
h[5-k]	0	0	0	0	0	e ⁻⁴	e ⁻³	e ⁻²	e ⁻¹	1	0.203
h[6-k]	0	0	0	0	0	0	e ⁻⁴	e ⁻³	e ⁻²	e ⁻¹	0.068
h[7-k]	0	0	0	0	0	0	0	e ⁻⁴	e ⁻³	e ⁻²	0.018
h[8-k]	0	0	0	0	0	0	0	0	e ⁻⁴	e ⁻³	0

Q4(c)
$$\begin{array}{lll}
\alpha) & y(t) = \chi(e) + \chi(e) = \int_{-\infty}^{\infty} \chi(\tau) h(t-\tau) d\tau \\
+ \zeta(t) = 0 & + \zeta(t) = \int_{-\infty}^{\infty} \chi(\tau) h(t-\tau) d\tau \\
= i & 0 \leq t \leq T \\
= 0 & t > T
\end{array}$$

area =
$$\frac{1}{2} + (t/T) = \frac{1}{2} t^2 / T$$

$$\begin{array}{c|c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \end{array} \end{array} \begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \begin{array}{c}
 & \\
 & \end{array}
\end{array} \begin{array}{c}
 & \end{array}$$

aven =
$$T - \Delta_1 - \Delta_2$$

= $T - \frac{1}{2}(t - T)^2 / T - \frac{1}{2}(2T - t)^2 / T$
= $T - \frac{1}{2T}(t^2 - 2Tt + T^2) - \frac{1}{2T}(4T^2 - 4Tt + t^2)$
= $T - \frac{1}{2T}(2t^2 - 6Tt + 5T^2)$
= $T - \frac{5}{2T} - t^2 / T + 3t$
= $3t - t^2 / T - \frac{3}{2T}$

