Semi-supervised Convolutive NMF for Automatic Piano Transcription

CREATIS

Haoran Wu, Axel Marmoret, Jeremy E. Cohen

IRISA, Rennes, France CREATIS, CNRS, Villeurbanne, France

Paper link

Code link

Transcription principle with Nonnegative Matrix Factorization

NMF on simple audio

First 5 seconds of Jordu, transcribed

Challenges

- More than one spectral template per note
- Time-dependent spectral templates
- Supervised but frugal

Proposed approach: Convolutive NMF

$$W, H \in \underset{W \geq 0, H \geq 0}{argmin} \ KL(Y, \sum_{q=1}^{r} W_{::q} * H_{q:})$$

Learning note templates...

Requires only individual notes recordings.

...then transcribing easily as a convex program

$$H \in \underset{H \geq 0}{argmin} \ KL(Y, \sum_{q=1}^{r} W_{::q} * H_{q:})$$

with W fixed.

Results on MAPS

			EN1		EN2		AkB1		AkB2		AkC		AkS		Sp		St	
thresh		au	F	A	F	A	F	A	F	A	F	A	F	A	F	A	F	A
global	CNMF	5	78	65	70	55	88	80	75	62	83	72	80	69	81	70	75	61
		10	85	75	77	64	93	88	87	78	91	84	88	79	89	82	84	74
		20	83	72	76	63	94	89	87	79	92	86	87	79	90	83	86	77
	AD*		81	69	68	53	66	50	71	56	60	43	67	51	64	47	67	50
song	CNMF	5	82	70	74	59	90	82	80	69	87	78	84	74	86	77	81	69
		10	88	79	80	68	95	91	90	83	94	89	90	82	93	87	89	80
		20	85	75	78	66	95	91	90	83	94	90	89	81	92	87	89	81
	AD*		82	70	69	54	68	52	73	59	61	45	69	54	66	50	70	54
	AD [3]			70	-	-	-	-	-	-	85	74	-	-	-	-	-	-
ByteDance DNN [8]			89	81	77	65	98	97	95	90	98	96	87	77	97	95	95	90

(Activations post-processing uses per-song threshold detector or global threshold detector)

Conclusions

- Comparable results with fully trained DNN
- Applicable when instrument in available, no registration
- Does not generalize well
- Time consuming

Some Relevent References

- Seminal papers: Smargadis2003 (NMF), Smaragdis2006 (CNMF)
- Fully supervised DNN: Cogliati2015, Sigtia2016, Hawthorne2018+2019, Kong2020, Shibata2021, Yan2021
- Several templates per note: Cheng2015, Ewert2016, Ewert2017
- Time-dependent frequency templates: Hennequin2010, Cheng2016, Gao2017

jeremy.cohen@cnrs.fr Sound and Music Computing 2022