Part IA - Differential Equations Definitions

Lectured by M. G. Worster

Michaelmas 2014

Basic calculus

Informal treatment of differentiation as a limit, the chain rule, Leibnitz's rule, Taylor series, informal treatment of O and o notation and l'Hôpitals rule; integration as an area, fundamental theorem of calculus, integration by substitution and parts. [3]

Informal treatment of partial derivatives, geometrical interpretation, statement (only) of symmetry of mixed partial derivatives, chain rule, implicit differentiation. Informal treatment of differentials, including exact differentials. Differentiation of an integral with respect to a parameter. [2]

First-order linear differential equations

Equations with constant coefficients: exponential growth, comparison with discrete equations, series solution; modelling examples including radioactive decay.

Equations with non-constant coefficients: solution by integrating factor. [2]

Nonlinear first-order equations

Separable equations. Exact equations. Sketching solution trajectories. Equilibrium solutions, stability by perturbation; examples, including logistic equation and chemical kinetics. Discrete equations: equilibrium solutions, stability; examples including the logistic map. [4]

Higher-order linear differential equations

Complementary function and particular integral, linear independence, Wronskian (for second-order equations), Abel's theorem. Equations with constant coefficients and examples including radioactive sequences, comparison in simple cases with difference equations, reduction of order, resonance, transients, damping. Homogeneous equations. Response to step and impulse function inputs; introduction to the notions of the Heaviside step-function and the Dirac delta-function. Series solutions including statement only of the need for the logarithmic solution.

Multivariate functions: applications

Directional derivatives and the gradient vector. Statement of Taylor series for functions on \mathbb{R}^n . Local extrema of real functions, classification using the Hessian matrix. Coupled first order systems: equivalence to single higher order equations; solution by matrix methods. Non-degenerate phase portraits local to equilibrium points; stability.

Simple examples of first- and second-order partial differential equations, solution of the wave equation in the form f(x+ct)+g(x-ct). [5]

Contents

1	Diff	erentiation 4				
	1.1	Differentiation				
	1.2	Small o and big O notations				
	1.3	Methods of differentiation				
	1.4	Taylor's theorem				
	1.5	L'Hopital's rule				
2	Inte	gration 5				
	2.1	Integration				
	2.2	Methods of integration				
3	Par	ial differentiation 6				
	3.1	Partial differentiation				
	3.2	Chain rule				
	3.3	Implicit differentiation				
	3.4	Differentiation of an integral w.r.t. parameter in the integrand . 6				
4	Firs	t-order differential equations 7				
	4.1	The exponential function				
	4.2	Homogeneous linear ordinary differential equations				
		4.2.1 Discrete equations				
		4.2.2 Series solution				
	4.3	Forced (inhomogeneous) equations				
		4.3.1 Constant forcing				
		4.3.2 Eigenfunction forcing				
	4.4	Non-constant coefficients				
	4.5	Non-linear equations				
		4.5.1 Separable equations				
		4.5.2 Exact equations				
	4.6	Solution curves (trajectories)				
	4.7	Fixed (equilibrium) points and stability 8				
		4.7.1 Perturbation analysis				
		4.7.2 Autonomous systems				
		4.7.3 Logistic Equation				
	4.8	Discrete equations (Difference equations)				
5	Sec	ond-order differential equations 9				
	5.1	Constant coefficients				
		5.1.1 Complementary functions				
		5.1.2 Second complementary function				
		5.1.3 Phase space				
	5.2	Particular integrals				
		5.2.1 Guessing				
		5.2.2 Resonance				
		5.2.3 Variation of parameters 9				
	5.3	Linear equidimensional equations				
		5.3.1 Solving by eigenfunctions $\dots \dots \dots$				
		5.3.2 Solving by substitution				

			Degenerate solutions			
	5.4	Difference equations				
			Complementary functions			
		5.4.2 1	Particular integrals	10		
	5.5	Transier	nts and damping	10		
		5.5.1 1	Free (natural) response $f = 0 \dots \dots \dots \dots$	10		
		5.5.2 U	Underdamping	10		
		5.5.3 (Critically damping	10		
		5.5.4 (Overdamping	10		
		5.5.5 I	Forcing	10		
	5.6	Impulse	es and point forces	10		
		5.6.1 I	Dirac delta function	10		
	5.7	Heavisio	de step function	10		
6	Series solutions 12					
	6.1	Ordinar	ry points	12		
	6.2	Regular	r singular points	12		
			Resonance of solutions			
7	Directional derivative 13					
	7.1	Stationa	ary points	13		
	7.2	Taylor s	series for multi-variable functions	13		
	7.3	Classific	cation of stationary points	13		
			Determination of definiteness			
			Contours of $f(x,y)$			
8	Systems of linear differential equations 14					
	Sys	tems of	linear differential equations	14		
	8.1					
	-	Nonline	linear differential equations ear dynamical systems	14		
	-	Nonline 8.1.1	ear dynamical systems	14 14		
9	8.1	Nonline 8.1.1 I 8.1.2 S	ear dynamical systems	14 14		
9	8.1	Nonline 8.1.1 I 8.1.2 S tial diffe	ear dynamical systems	14 14 14 15		
9	8.1 Par	Nonline 8.1.1 I 8.1.2 S tial difference of the second seco	ear dynamical systems	14 14 14 15 15		

1 Differentiation

1.1 Differentiation

Definition (Derivative of function). The *derivative* of a function f(x) with respect to x, interpreted as the rate of change of f(x) with x, is

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

A function f(x) is differentiable at x if the limit exists (i.e. the left-hand and right-hand limits are equal).

1.2 Small o and big O notations

Definition (O and o notations).

- (i) f(x) = o(g(x)) as $x \to x_0$ if $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$. Intuitively, f(x) is much smaller than g(x).
- (ii) f(x) = O(g(x)) as $x \to x_0$ if $\frac{f(x)}{g(x)}$ is bounded as $x \to x_0$. Intuitively, f(x) is about as big as g(x).

Note:
$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
 need not exist for $f(x) = O(g(x))$.

1.3 Methods of differentiation

- 1.4 Taylor's theorem
- 1.5 L'Hopital's rule

2 Integration

2.1 Integration

Definition (Integral). An *integral* is the limit of a sum, e.g.

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{n=0}^{N} f(x_n) \Delta x.$$

For example, we can take $\Delta x = \frac{b-a}{N}$ and $x_n = a + n\Delta x$. Note that an integral need not be defined with this particular Δx and x_n . The term "integral" simply refers to any limit of a sum. (The usual integrals we use are a special kind known as Riemann integral, c.f. Analysis I) Pictorially, we have

2.2 Methods of integration

3 Partial differentiation

3.1 Partial differentiation

Definition (Partial derivative). Given a function of several variables f(x, y), the *partial derivative* of f with respect to x is the rate of change of f as x varies, keeping y constant. It is given by

$$\left. \frac{\partial f}{\partial x} \right|_{y} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}$$

- 3.2 Chain rule
- 3.3 Implicit differentiation
- 3.4 Differentiation of an integral w.r.t. parameter in the integrand

4 First-order differential equations

4.1 The exponential function

Definition (Exponential function). $\exp(x) = e^x$ is the unique function f satisfying f'(x) = f(x) and f(0) = 1.

4.2 Homogeneous linear ordinary differential equations

Definition (Eigenfunction). An *eigenfunction* under the differential operator is a function whose functional form is unchanged by the operator. Only its magnitude is changed. i.e.

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lambda f$$

Definition (Linear differential equation). A differential equation is *linear* if the dependent variable (y, y', y'') etc.) appears only linearly.

Definition (Homogeneous differential equation). A differential equation is homogeneous if y = 0 is a solution.

Definition (Differential equation with constant coefficients). A differential equation has *constant coefficients* if the independent variable x does not appear explicitly.

Definition (First-order differential equation). A differential equation is *first-order* if only first derivatives are involved.

4.2.1 Discrete equations

4.2.2 Series solution

4.3 Forced (inhomogeneous) equations

4.3.1 Constant forcing

4.3.2 Eigenfunction forcing

4.4 Non-constant coefficients

4.5 Non-linear equations

4.5.1 Separable equations

Definition (Separable equation). A first-order differential equation is *separable* if it can be manipulated into the following form:

$$q(y) dy = p(x) dx$$
.

in which case the solution can be found by integration

$$\int q(y) \, \mathrm{d}y = \int p(x) \, \mathrm{d}x.$$

4.5.2 Exact equations

Definition (Exact equation). $Q(x,y)\frac{dy}{dx} + P(x,y) = 0$ is an exact equation iff the differential form Q(x,y) dy + P(x,y) dx is exact, i.e. there exists a function f(x,y) for which

$$df = Q(x, y) dy + P(x, y) dx$$

Definition (Simply-connected domain). A domain \mathcal{D} is simply-connected if it is connected and any closed curve in \mathcal{D} can be shrunk to a point in \mathcal{D} without leaving \mathcal{D} .

4.6 Solution curves (trajectories)

4.7 Fixed (equilibrium) points and stability

Definition (Equilibrium/fixed point). An equilibrium point or a fixed point of a differential equation is a solution with $\frac{dy}{dt} = 0$ for all t. This happens when y = c for some constant c.

Definition (Stability of fixed point). An equilibrium is *stable* if when y is deviated slightly from the constant solution $y=c,\ y\to c$ as $t\to\infty$. An equilibrium is *unstable* if the deviation grows as $t\to\infty$.

4.7.1 Perturbation analysis

4.7.2 Autonomous systems

Definition (Autonomous system). An autonomous system is a system in the form $\dot{y} = f(y)$, where the derivative is only (explicitly) dependent on y.

4.7.3 Logistic Equation

4.8 Discrete equations (Difference equations)

5 Second-order differential equations

5.1 Constant coefficients

5.1.1 Complementary functions

Definition (Characteristic equation). The *characteristic equation* of a (second-order) differential equation ay'' + by' + c = 0 is

$$a\lambda^2 + b\lambda + c = 0.$$

5.1.2 Second complementary function

5.1.3 Phase space

Definition (Wronskian). Given a differential equations with solutions y_1, y_2 , the *Wronskian* is the determinant

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}.$$

Definition (Independent solutions). Two solutions $y_1(x)$ and $y_2(x)$ are *independent* solutions of the differential equation if and only if \mathbf{Y}_1 and \mathbf{Y}_2 are linearly independent as vectors in the phase space, i.e. iff the Wronskian is non-zero.

5.2 Particular integrals

- 5.2.1 Guessing
- 5.2.2 Resonance
- 5.2.3 Variation of parameters

5.3 Linear equidimensional equations

Definition (Equidimensional equation). An equation is *equidimensional* if it has the form

$$ax^2y'' + bxy' + cy = f(x),$$

where a, b, c are constants. It is "equidimensional" since if a, b, c are dimensionless numbers and x, y have dimensions of, say pressure and length, then the three terms on the left have the same dimension.

- Solving by eigenfunctions 5.3.1
- 5.3.2Solving by substitution
- 5.3.3 Degenerate solutions
- **5.4** Difference equations
- Complementary functions 5.4.1
- 5.4.2Particular integrals
- 5.5 Transients and damping
- Free (natural) response f = 05.5.1
- 5.5.2Underdamping
- 5.5.3 Critically damping
- 5.5.4 Overdamping
- 5.5.5Forcing
- 5.6 Impulses and point forces
- 5.6.1 Dirac delta function

Definition (Dirac delta function). The *Dirac delta function* is defined by

$$\delta(x) = \lim_{\epsilon \to 0} D(x; \epsilon)$$

on the understanding that we can only use its integral properties. For example, when we write

$$\int_{-\infty}^{\infty} g(x)\delta(x) \, \mathrm{d}x,$$

we actually mean

$$\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} g(x) D(x; \epsilon) \, \mathrm{d}x.$$

In fact, this is equal to g(0). More generally, $\int_a^b g(x)\delta(x-c) \ \mathrm{d}x = g(c)$ if $c \in (a,b)$ and 0 otherwise, provided g is continuous at x=c.

5.7 Heaviside step function

Definition (Heaviside step function). Define the Heaviside step function as:

$$H(x) = \int_{-\infty}^{x} \delta(t) dt$$

We have

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \\ \text{undefined} & x = 0 \end{cases}$$

By the fundamental theorem of calculus,

$$\frac{\mathrm{d}H}{\mathrm{d}x} = \delta(x)$$

But remember that these functions and relationships can only be used inside integrals.

6 Series solutions

Definition (Ordinary and singular points). The point $x=x_0$ is an *ordinary* point of the differential equation if $\frac{q}{p}$ and $\frac{r}{p}$ have Taylor series about x_0 (i.e. "analytic", c.f. Complex Analysis). Otherwise, x_0 is a singular point.

If x_0 is a singular point but the equation can be written as

$$P(x)(x - x_0)^2 y'' + Q(x)(x - x_0)y' + R(x)y = 0,$$

and $\frac{Q}{P}$ and $\frac{R}{P}$ have Taylor series about x_0 , then x_0 is a regular singular point.

- 6.1 Ordinary points
- 6.2 Regular singular points
- 6.2.1 Resonance of solutions

7 Directional derivative

Definition (Directional derivative). The *directional derivative* of f in the direction of $\hat{\mathbf{s}}$ is

$$\frac{\mathrm{d}f}{\mathrm{d}s} = \hat{\mathbf{s}} \cdot \nabla f.$$

Definition (Gradient vector). The gradient vector ∇f is defined by

$$\frac{\mathrm{d}f}{\mathrm{d}s} = \hat{\mathbf{s}} \cdot \nabla f$$

7.1 Stationary points

7.2 Taylor series for multi-variable functions

Definition (Hessian matrix). The *Hessian matrix* is the matrix

$$\nabla \nabla f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$$

7.3 Classification of stationary points

7.3.1 Determination of definiteness

Definition (Signature of Hessian matrix). The *signature* of H is the pattern of the signs of the subdeterminants:

$$\underbrace{f_{xx}}_{|H_1|},\underbrace{\left|\begin{matrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{matrix}\right|}_{|H_2|}, \cdots, \underbrace{\left|\begin{matrix} f_{xx} & f_{xy} & \cdots & f_{xz} \\ f_{yx} & f_{yy} & \cdots & f_{yz} \\ \vdots & \vdots & \ddots & \vdots \\ f_{zx} & f_{zy} & \cdots & f_{zz} \end{matrix}\right|}_{|H_n|=|H|}$$

7.3.2 Contours of f(x, y)

8 Systems of linear differential equations

8.1 Nonlinear dynamical systems

8.1.1 Equilibrium (fixed) points

Definition (Equilibrium point). An *equilibrium* point is a point in which $\dot{x} = \dot{y} = 0$ at $\mathbf{x}_0 = (x_0, y_0)$.

8.1.2 Stability

- 9 Partial differential equations (PDEs)
- 9.1 First-order wave equation
- 9.2 Second-order wave equation
- 9.3 The diffusion equation