Acknowledgements

Dr Nazar Khan (PUCIT) Ms Adeela Islam (PhD Scholar PUCIT) Dr Rawat (UCF)

Image Filtering Applications

- Uses of filtering:
 - Enhance an image (denoise, sharp, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Image Filtering

Neighborhood Operations

Neighborhood Operations

- Operations considering pixel neighborhoods
- ► The moving-window/filter/mask/kernel is placed over image pixel (x, y), corresponding pixels are multiplied and the result is summed (dot product).

Pixel Neighborhood

Derivatives and Average

- Derivative: rate of change
 - Speed is a rate of change of a distance, X=V.t
 - · Acceleration is a rate of change of speed, V=a.t
- Average: mean
 - Dividing the sum of N values by N

Derivatives

- Derivative represents the rate of change.
- ▶ Image derivatives represent the rate of color changes in images.
- ▶ Interesting features in images (and in the real world) have high derivatives.
- ► Therefore, derivatives are used for detecting semantically important features such as edges, corners and lines.

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$y = x^2 + x^4 \qquad y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^3 \qquad \frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x - 1) = f'(x)$$

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x - 1) = f'(x)$$

Discrete Derivative / Finite Difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Central difference

Example: Finite Difference (backward difference)

$$f(x) = 10$$
 15 10 10 25 20 20 20
 $f'(x) = 0$ 5 -5 0 15 -5 0 0
 $f''(x) = 0$ 5 10 5 15 -20 5 0

Example: Finite Difference (backward difference)

$$f(x) = 10$$
 15 10 10 25 20 20 20
 $f'(x) = 0$ 5 -5 0 15 -5 0 0
 $f''(x) = 0$ 5 10 5 15 -20 5 0

Derivative Masks

Backward difference [-1 1]
Forward difference [1 -1]
Central difference [-1 0 1]

Derivative in 2-D

Given function
$$f(x, y)$$

Gradient vector
$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude
$$|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction
$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Derivative of Images

$$\text{Derivative masks} \qquad f_{\scriptscriptstyle x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{\scriptscriptstyle y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Derivative of Images

$$\text{Derivative masks} \qquad f_{\scriptscriptstyle x} \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_{\scriptscriptstyle y} \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Example

- a. Original image
- b. Laplacian operator
- c. Horizontal derivative
- d. Vertical derivative

Correlation (**)

If we have

- ightharpoonup Image = f(x, y)
- \triangleright Kernel = h(x, y)

f

	,	
f ₁	f2	f3
f4	f5	f6
f7	f8	f9

h

h1	h2	hз
h4	h5	h6
h7	h8	h9

Then correlation is

 $f^{**}h = f_1h_1 + f_2h_2 + f_3h_3 + f_4h_4 + f_5h_5 + f_6h_6 + f_7h_7 + f_8h_8 + f_9h_9$ (dot product)

**

Correlation (**)

- Compares the similarity of two sets of data
- ► The correlation result reaches a maximum at the time when the two signals match best
- It is the measure of relatedness of two products

Template Matching

- Correlation can also be used for matching
- If we want to determine whether an image f(x, y) contains a particular object, we let h(x, y) be that object (also called a template) and compute the correlation between f and h
- ► If there is a match, the correlation will be maximum at the location where h finds a correspondence in f

Chair detection using template matching (Naïve approach)

This is a chair h(x,y)

0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
0	0	0	0	0

2021 CAREATE - Lecture 6

0	0	0	0	0	
0	0	1	0	0	
0	1	0	1	0	
1	0	0	0	1	
0	0	0	0	0	

	0	0	0	0	0
	0	0	1	0	0
:	0	1	0	1	0
	1	0	0	0	1
	0	0	0	0	0

$$1x1 + 1x1 + ... + 1x1 = 5$$

0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	1	1	1	1
0	0	0	0	0

	0	0	0	0	0
	0	0	1	0	0
:	0	1	0	1	0
	1	0	0	0	1
	0	0	0	0	0

1x1 = 1

Template Matching

Find the chair in this image

Epic fail!
Simple template matching is not going to make it

Convolution (*)

Same as correlation but kernel flipped horizontally and vertically

- ► Image = f(x, y)
- ightharpoonup Kernel = h(x, y)

$$f*h = f_1h_9 + f_2h_8 + f_3h_7 + f_4h_6 + f_5h_5 + f_6h_4 + f_7h_3 + f_8h_2 + f_9h_1$$

Convolution (*)

It can be explained as the "mask/kernel convolved with an image".

$$f'(x, y) = h(x, y) * f(x, y)$$

Or it can be explained as "image convolved with mask/kernel".

$$f'(x,y) = f(x,y) * h(x,y)$$

What is mask/kernel?

- ► It can be represented by a two-dimensional matrix
- ► The mask is usually of the order of 1×1 , 3×3 , 5×5 , 7×7
- ► A mask should always be in odd number, because other wise you cannot find the **mid of the mask**.

In order to perform convolution on an image, following steps should be taken

- 1. Flip the mask (horizontally and vertically) only once
- 2. Slide the mask onto the image
- 3. Multiply the corresponding elements and then add them (dot product)
- 4. Repeat this procedure until all values of the image has been calculated

Mask

1	2	3
4	5	6
7	8	9

Flip the mask horizontally

3	2	1
6	5	4
9	8	7

Flip the mask vertically

9	8	7
6	5	4
3	2	1

Image

2	4	6
8	10	12
14	16	18

How to perform convolution?

Slide the mask onto the image and multiply the corresponding elements and then add them

9		8	7		
6	2	5	4 4	6	
3	8	2	10 1	12	
	14		16	18	

First pixel =
$$(5*2) + (4*4) + (2*8) + (1*10)$$

= $10 + 16 + 16 + 10$
= 52

Place 52 in the original image at the first index and repeat this procedure for each pixel of the image.

Dealing with Boundaries

- Padding with Zeros
- Copy boundary values
- Ignore boundaries (not recommended)

Convolution Animation

Performing Convolution on a 7×7 image with a 3×3 kernel

Image

Convolution

Dealing with Boundaries (Padding with Zeros):

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

What if the filter size was 5×5 instead of 3×3 ?

Convolution Animation

Demo: https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

Original

Original

Filtered (no change)

*

Original

Original

Shifted left By 1 pixel

Original

box filter)

Image filtering

f[.,.]

0 2 - 3									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

Separability

➤ A 2D filter is separable if it can be written as the product of a "column" and a "row" (outer product)

- 2D convolution with a separable filter is equivalent to two 1D convolutions:
 - 1. First convolve the image with a one-dimensional horizontal filter
 - Then convolve the result of the first convolution with a one-dimensional vertical filter

Separability

Why is separability useful?

If the image has $M \times M$ pixels and the filter kernel has size $N \times N$:

- Cost (multiplication) of convolution with a non-separable filter: = $M^2 \times N^2$
- Cost (multiplication) of convolution with a separable filter: = $2 \times N \times M^2$
- Hence, it is computationally much cheaper

Separability Example (same result)

1 2 1

2 3 3 3 5 5 4 4 6

	11	
	18	
	18	

1 2 1

11 18 18

	65	

1 2 1

x 1 2 1

$$=2 + 6 + 3 = 11$$

= 6 + 20 + 10 = 36
= 4 + 8 + 6 = 18

65

Convolution Masks

- Different masks (Box vs Prewitt) lead to different effects
- Low pass filters: (Smoothing) Low pass filtering, is employed to remove high spatial frequency noise from a digital image
- High pass filters: (Edge Detection, Sharpening)
 A high-pass filter can be used to make an image appear sharper. These filters emphasize fine details in the image

Averages

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

· Weighted mean

$$I = \frac{w_1 I_1 + w_2 I_2 + \ldots + w_n I_n}{n} = \frac{\sum_{i=1}^{n} w_i I_i}{n}$$

Smoothing Filters

- Averaging/Mean Filters (e.g., Box filter)
- Weighted Averaging Filters (e.g., Gaussian filter)

Box Filter

Also known as the averaging filter

	,	· •	
	1	1	1
$\frac{1}{9}$	1	1	1
,	1	1	1

- Replaces pixel with local average
- All the pixels have same weight
- Has smoothing (blurring) effect
- size of mask determines extent of smoothing

Gaussian Filter

A widely used mask for smoothing is the Gaussian mask, named after Carl Friedrich Gauss

1D:
$$g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

$$2D: G(x,y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu_1)^2 + (y-\mu_2)^2/2\sigma^2}$$

where μ is the 1D mean, (μ_1, μ_2) is the 2D mean and σ^2 is the variance.

 $(\mu_1, \mu_2) = (0, 0), \sigma = 1$

Courtesy: N. Khan

$$\mu = 0, \sigma = 1$$

$$\mu = 0, \sigma = 1$$
 $(\mu_1, \mu_2) = (0, 0), \sigma = 1$

Gaussian Kernel 1D Discrete approximation

[0.0044 0.054 0.242 0.399 0.242 0.054 0.0044]

Slide credit: Dr Nazar

Gaussian Kernel 2D Discrete Approximation

[0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.00007
0.0002	0.0029	0.0131	0.0215	0.0131	0.0029	0.0002
0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011
0.0018	0.0215	0.0965	0.1592	0.0965	0.0215	0.0018
0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011
0.0002	0.0029	0.0131	0.0215	0.0131	0.0029	0.0002
0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.0000

Gaussian Kernel 2D Discrete approximation

Separability of Gaussian Kernels: Convolution with 2D Gaussian can be performed via two successive convolutions with 1D Gaussians which are computationally much cheaper.

Slide credit: Dr Nazar

Gaussian Filter

- Nearest neighboring pixels have the most influence on the output
- This kernel approximates a 2D Gaussian function

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Replaces pixel with weighted average of neighborhood
- Has smoothing (blurring) effect
- Size of mask and variance of Gaussian determines extent of smoothing

Gaussian Filter

Variance/standard deviation of Gaussian determines extent of smoothing

Properties of Smoothing Filters

- Values are positive
- Sum to 1
- Amount of smoothing proportional to mask size
- Remove high-frequency components ("low-pass" filters)

Gaussian vs. Box Filtering

original

Which blur do you like better?

Gaussian vs. Box Filtering

original

Which blur do you like better?

7x7 Gaussian

7x7 box

kernel = np.ones((7, 7),np.float32)/25 Box_output = cv2.filter2D(img, -1, kernel)

Noise Removal

Gaussian Noise

After Averaging

After Gaussian Smoothing

Demo

- adding noise
- smoothing with avg and gaussian filter

Sharpening Filters

- ► The sharpen kernel emphasizes differences in adjacent pixel values. This makes the image look more vivid.
- For a 3x3 mask, the simplest arrangement is as below

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

When the mask is over a constant or slowly varying region the output is zero or very small

Sharpening Filters

0	0	0
0	2	0
0	0	0

Original

Homework:3

- 1) 2*I neighborhood operation avg(I)
- 2) Apply previously slide kernel on an image

Sharpening filter

- Accentuates differences with local average

Sharpening Filter

after

Sobel Filtering

1	0	-1
2	0	-2
1	0	-1

Vertical Edge (absolute value)

Sobel Filtering

1	2	1
0	0	0
-1	-2	-1
	0-11	

Sobel

Horizontal Edge (absolute value)

Key properties of linear filters

Linearity:

```
\label{eq:filter} \text{filter}(f_1 \ + \ f_2) \ = \ \text{filter}(f_1) \ + \ \text{filter}(f_2) \, \text{, as did in sharping filter}
```

Shift invariance: same behavior regardless of pixel location

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: ((($a*b_1)*b_2$) * b_3)
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Non-linear Filtering

- ► Any filtering performed via convolution is linear filtering
- ► Non-linear filtering yields additional benefits
 - Median filtering
 - Bilateral filtering
 - Non-local means

Median Filter

- A Median Filter operates over a window by selecting the median intensity in the window.
- Advantage? 79
- Is it same as convolution?

Image filtering - mean

Credit: S. Seitz

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

$$g(3) = \frac{1}{9} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

Image filtering - mean

n[.,.]									
0	10	20	30	30					
			50						

1. Г

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Image filtering - median

Image filtering - median

Median Filter

58