Student ID:	Duration: 20 mins	Date: 26/02,	/2024
Student name:		Score:	/ 3

Q1 (2.5pts) Consider the following graph. The initial state is **vertex S**, and the goal state is **vertex G**. The heuristic table is shown aside the graph. **Ties are broken in alphabetical order**.

For each of the following search strategies, state the order in which states are expanded and the path returned. Vertices should be presented in their exact order. *Note that:*

- The path returned will not be accepted if the list of expanded states is wrong.
- We apply early stopping for BFS, DFS, and GBFS.

Algorithm	List of expanded states in exact order	Path returned
Uniform cost search (0.5pt)	SCBDEFAG	S C F G
Breadth-first search (0.5pt)	S A	S A G
Depth-first search (0.5pt) avoid repeating any state on the current path	S A	S A G
GBFS (0.5pt)	SBDF	SBDFG
A* (0.5pt)	S B C D E F G	S C F G

Q2 (0.5pt) Is the heuristic given in Q1 consistent? If not, point out any pair of vertices that violate the condition of consistency and explain why.

No. The two vertices, A and D, give h(A) = 8 > h(D) + cost(A, D) = 5, which violates the condition of consistency.

Student ID:	Duration: 20 mins	Date: 26/02/2024
Student name:		Score:/ <u>3</u>

Q1 (2.5pts) Consider the following graph. The initial state is **vertex S**, and the goal state is **vertex G**. The heuristic table is shown aside the graph. **Ties are broken in alphabetical order**.

Vertex	Heuristic
S	6
Α	5
В	3
С	5
D	1
E	2
F	3
G	0

For each of the following search strategies, state the order in which states are expanded and the path returned. Vertices should be presented in their exact order. *Note that:*

- The path returned will not be accepted if the list of expanded states is wrong.
- We apply early stopping for BFS, DFS, and GBFS.

Algorithm	List of expanded states in exact order	Path returned
Uniform cost search (0.5pt)	SAFBCDEG	S F G
	SAFBUDEG	(S A D G acceptable)
Breadth-first search (0.5pt)	S A B C F	S F G
Depth-first search (0.5pt)	S A D	S A D G
avoid repeating any state on the current path		
GBFS (0.5pt)	S B D	S B D G
A* (0.5pt)	S F A B D G	S F G
	STABUG	(S A D G acceptable)

Q2 (0.5pt) Is the heuristic given in Q1 consistent? If not, point out any pair of vertices that violate the condition of consistency and explain why.

No. The two vertices, S and F, give h(S) = 6 > h(F) + cost(S, F) = 5, which violates the condition of consistency.

Student ID:	Duration: 20 mins	Date: 26/02	/2024
Student name:		Score:	/ 3

Q1 (2.5pts) Consider the following graph. The initial state is **vertex A**, and the goal state is **vertex H**. The heuristic table is shown aside the graph. **Ties are broken in alphabetical order**.

For each of the following search strategies, state the order in which states are expanded and the path returned. Vertices should be presented in their exact order. *Note that:*

- The path returned will not be accepted if the list of expanded states is wrong.
- We apply early stopping for BFS, DFS, and GBFS.

Algorithm	List of expanded states in exact order	Path returned
Uniform cost search (0.5pt)	A D B C H	A D C H
Breadth-first search (0.5pt)	АВС	АСН
Depth-first search (0.5pt) avoid repeating any state on the current path	A B G	A B G H
GBFS (0.5pt)	A C	АСН
A* (0.5pt)	A D C H	A D C H

Q2 (0.5pt) Is the heuristic given in Q1 consistent? If not, point out the pair of vertices that violate the condition of consistency.

No. The two vertices, G and H, give h(G) = 7 > h(H) + cost(G, H) = 3, which violates the condition of consistency

Student ID:	Duration: 20 mins	Date: 26/02	/2024
Student name:		Score:	/ 3

Q1 (2.5pts) Consider the following graph. The initial state is **vertex S**, and the goal state is **vertex G**. The heuristic table is shown aside the graph. **Ties are broken in alphabetical order**.

Vertex	Heuristic
S	4
Α	6
В	3
С	3
D	2
E	5
F	5
G	0

For each of the following search strategies, state the order in which states are expanded and the path returned. Vertices should be presented in their exact order. *Note that:*

- The path returned will not be accepted if the list of expanded states is wrong.
- We apply early stopping for BFS, DFS, and GBFS.

Algorithm	List of expanded states in exact order	Path returned
Uniform cost search (0.5pt)	S B A C D E G	S A D G
Breadth-first search (0.5pt)	S A B C D	S A D G
Depth-first search (0.5pt) avoid repeating any state on the current path	S A D	S A D G
GBFS (0.5pt)	S B D	S B D G
A* (0.5pt)	S B C A D G	S A D G

Q2 (0.5pt) Is the heuristic given in Q1 consistent? If not, point out the pair of vertices that violate the condition of consistency.

No. The two vertices, A and D, give h(A) = 6 > h(D) + cost(A, D) = 4, which violates the condition of consistency.