

9 What about a double integral over a more general region? Recall suppose that we integrate wrt x First. Then you get a Fon of y and you integrate wrt y $= 3 \int_{\mathbb{R}^{3}} \times \wedge q \times q \lambda = \int_{\mathbb{R}^{3}} \frac{S}{\lambda^{3}} \int_{\mathbb{R}^{3}} \times = q \lambda$ $= \left(\begin{array}{c} y \left(\begin{array}{c} 2 & 3 \end{array}\right) dy$ $= \left[\begin{array}{ccc} \frac{5}{\lambda_{5}} \left(\begin{array}{ccc} \frac{5}{\rho_{5}} & \frac{5}{\alpha_{5}} \end{array}\right) \right] \stackrel{\lambda = c}{\lambda} = 0$ Key ' this expr has no x's in it Conly y and constants) $= \left(Q_{5} - C_{5} \right) \left(p_{5} - Q_{5} \right)$ Q/What if we integrated from $x = \frac{y}{z}$ to x = y?

A/ Then $\int_{x=y}^{y} f(x,y) dy \qquad \text{would still be a fen of}$ Y (W/o x's). And then when we integrate wit y, we end up pith a const. $\int_{x=\frac{y}{2}}^{x=y} x y \, dx = \left[\frac{y}{2} \right]_{x=\frac{y}{2}}^{x=y}$ $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{2}$ = y³ - y³ - 3 y³ to compute SS do: $\begin{cases} y = 4 & \frac{3}{3} \frac{3}{3} & \frac{3}{3$ =3(44-64) Q/ What is the geometric interpretation? A/ For each y, we go from x = 1/2 + 6 x = y. Then we add up From y= c +0 y= 0 e_g, c=2,d=4 At y= 2 we go From x=1 to x=2 A + y= 4 we go From x = 2 to x = 4 (a + y = 3) From $x = \frac{3}{2} + 6 \times = 3$

3 2	$R = \text{red region} = \begin{cases} (x,y) \in \mathbb{R}^2 & x \leq y \leq 4 \end{cases}$
	15 a trapezoid
	2 3 4 5 6
е	$9. \iint \times y dx dy = \frac{3}{32} \left(d^{3} - c^{4} \right)$
	= 3 (44-54)
	$\frac{32}{3}$ (28-24)
	$\frac{3}{2}(2^3-1)$
	= 3.7 = 27 = 2
	o the same integral in the opposite order?
J _z J <u>Y</u> x y dx d y	$\frac{2}{x} = \int_{y}^{y} \frac{1}{x} \times y dy dx$
	7 2
	$= \int_{\frac{y}{2}}^{y} \frac{x y^{2}}{2} \int_{y=2}^{y=4} dx$
	$= \int_{\frac{\lambda}{2}}^{\lambda} C \times d \times$
-	$=3x^2$
	$3y^{2} - 3y^{2}$
	PROBLEM this is not a #
	For rectangles, we can integrate wit x ory
	For region R, it depends on the limits of
	-9 IF R has 2 vertical sides, you can (ntegrate wrt y first then x
	Opposite
Summary	
	integration must be constants

also think of it as having two vertical sides - one side: segment from (1,0) to (1,1) > another side: point (3,0) $\int_{X=1}^{X=3} \int_{Y=0}^{Y=-\frac{x}{2}} + \frac{5}{2}$ $\int_{X=1}^{X=3} \int_{Y=0}^{Y=-\frac{x}{2}} + \frac{5}{2}$