## Bottom Up Parsing

## Bottom-Up Parsing

- LR methods (Left-to-right, Rightmost derivation)
  - SLR, Canonical LR, LALR
- Other special cases:
  - Shift-reduce parsing
  - Operator-precedence parsing

#### Operations:

Shift, Reduce, Error, Accept

 $S \rightarrow \mathbf{a} A B \mathbf{e}$   $A \rightarrow A \mathbf{b} \mathbf{c}$   $A \rightarrow \mathbf{b}$   $B \rightarrow \mathbf{d}$ 

LL(1) parse LtoR scan LM derivation

LR RM derivation Sentential

form

reduce

a A B e reduce, shift

a A d reduce, shift

a A b c shift, shift

a A b c d e reduce

a b b c d e

a A A c d e

a *A A* **c** *B* **e** 

Shift- PUSH(char from String)
Reduce - POP (TOP/TOPs) replace with NT

## Shift-Reduce Parsing



#### Handles

A handle is a substring of grammar symbols in a right-sentential form that matches a right-hand side of a production

```
Grammar:
                         a b b c d e
                         a Abcde
S \rightarrow \mathbf{a} A B \mathbf{e}
                                                                  Handle
A \rightarrow A \mathbf{b} \mathbf{c} \mid \mathbf{b}
                         a A <u>d</u> e
                         a A B e
B \to \mathbf{d}
                             a b b c d e
                             a A b c d e
                                                      NOT a handle, because
                             a A A c d e
                                                    further reductions will fail
                             ...?
                                                 (result is not a sentential form)
```

### Operator Precedence

a > b a has higher precedence over b a < b a has lower precedence over b a ≐ b a has equal precedence over b Note:

- id has highest precedence
- \$ has lowest precedence
- Apply associativity in case of equal precedence

#### OP table

 $E \rightarrow E + E \mid E * E \mid id$ 

lookahead

Stack[top]

|    | id  | +        | * | \$     |
|----|-----|----------|---|--------|
| id | Err | $\wedge$ | ≫ | ≫      |
| +  | <   | ⋋        | ≪ | ⇒      |
| *  | <   | ≫        | ≽ | ⇒      |
| \$ | <   | ٧        | < | Accept |

#### **Basic Process**

- Scan input string from left to right until >>
- Now scan backward from > until <
- String between <...> is handle
- Reduce handle with head of the production
- Repeat until reaching start symbol

## OP Algo

```
init STACK[top] to $
While do
   Let U be the stack[top]
   Let V be the next input symbol (lookahead)
   if U=V=$ then return ACCEPT
   if U \leq V or U \doteq V
                                         M[U][V]==2
     shift V onto STACK //SHIFT
     advance input pointer(advance the lookahead)
   else if U>V
                                         M[U][V]==3
     do //REDUCE
       POP top of the stack, call it temp
     stop Loop when M[stack[top]][temp]==2
   else
     error
end
```

| STACK                  | INPUT                      | ACTION |
|------------------------|----------------------------|--------|
| <b>\$</b>              | <pre>id + id * id \$</pre> | <      |
| \$ <mark>id</mark>     | <mark>+</mark> id * id \$  | ≽      |
| <mark>\$</mark>        | <mark>+</mark> id * id \$  | <      |
| \$ <mark>+</mark>      | <mark>id</mark> * id \$    | <      |
| \$ + <mark>id</mark>   | * id \$                    | ⇒      |
| \$ <mark>+</mark>      | <mark>*</mark> id \$       | <      |
| \$ + <mark>*</mark>    | <mark>id</mark> \$         | <      |
| \$ + * <mark>id</mark> | <mark>\$</mark>            | ≽      |
| \$ + <mark>*</mark>    | <mark>\$</mark>            | ≽      |
| \$ <mark>+</mark>      | <u>\$</u>                  | ≽      |
| <b>\$</b>              | <mark>\$</mark>            | accept |

|    | id | +        | *        | \$       |
|----|----|----------|----------|----------|
| id | 0  | ٨        | ٨        | $\wedge$ |
| +  | ≪  | $\wedge$ | <b>∀</b> | ≫        |
| *  | <  | $\wedge$ | ⋋        | ≫        |
| \$ | ≪  | ∀        | ∀        | 1        |

M[stack[top]][V]

➤ Reduce

$$id id + id$$
\$  $ERR$ 

ERR-0

Shift-2

Accept-1

Reduce-3

## Precedence Relationship

Need Two lists Firstop+ and Lastop+

- Firstop+:List of all terminals which can appear **first** in any body of production
- Lastop+: List of all terminals which can appear **last** in any body of production

## Precedence Relationship

 $X \rightarrow a... |Bc...|a|A$  put a,B,c,A in Firstop(X) Y $\rightarrow ...u|...vW|u|P$  put u,v,W,P Lastop(Y)

#### Compute Firstop+ and Lastop+

- Replace each Non Terminal with its Firstop for Firstop+
- Same for Lastop+
- Drop all non terminals

### Example

```
S \rightarrow (L)|a

L \rightarrow L, S|S

Firstop(S)={( a} Lastop(S)={) a}

Firstop(L)={L, S} Lastop(L)={, S}

Firstop+(S)={( a} Lastop+(S)={) a}

Firstop+(L)={, ( a} Lastop+(L)={, ) a}
```

$$E \rightarrow E + T | T$$

$$T \rightarrow T*F|F$$

$$F \rightarrow (E)|id$$

$$Firstop(E) = \{E + T\} \qquad Lastop(E) = \{+ T\} \\ Firstop(T) = \{T * F\} \qquad Lastop(T) = \{* F\} \\ Firstop(F) = \{(id)\} \qquad Lastop(F) = \{(id)\} \\ Firstop+(E) = \{+ * (id)\} \qquad Lastop+(E) = \{+ * (id)\} \\ Firstop+(T) = \{* (id)\} \qquad Lastop+(T) = \{* (id)\} \\ Firstop+(F) = \{(id)\} \qquad Lastop+(F) = \{(id)\} \\ \end{cases}$$

#### Precedence Matrix

• Terminal **a** immediately precedes B in any production, put  $\mathbf{a} < \alpha$  where  $\alpha$  is any terminal in Firstop+(B)

$$A \rightarrow aB...$$
 then  $a < Firstop+(B)$ 

• Terminal **b** immediately follows C in any production, put  $\beta \gg \mathbf{b}$  where  $\beta$  is any terminal in Lastop+(C)

$$A \rightarrow ...Cb...$$
 then Lastop+(C)  $> b$ 

- for aBc or ac occurs in any production then a  $\leq$  c
- \$<Firstop+ lists
- Lastop+ lists > \$

Firstop+(E)=
$$\{+,*,id,(\}\}$$
 Lastop+(E)= $\{+,*,id,()\}$   
Firstop+(T)= $\{*,id,(\}\}$  Lastop+(T)= $\{*,id,()\}$   
Firstop+(F)= $\{id,()\}$ 

 $E \rightarrow E + T | T$   $T \rightarrow T * F | F$  $F \rightarrow (E) | id$ 

|    | id | + | * | ( | ) | \$  |
|----|----|---|---|---|---|-----|
| id |    | > | > |   | > | >   |
| +  | <  | > | < | < | > | >   |
| *  | <  | > | > | < | > | >   |
| (  | <  | < | < | < | < |     |
| )  |    | > | > |   | > | >   |
| \$ | <  | < | < | < |   | Acc |

### Example

```
S \rightarrow (L)|a

L \rightarrow L, S|S

Firstop+(S)={( a} Lastop+(S)={) a}

Firstop+(L)={, ( a} Lastop+(L)={, ) a}
```

(a,((a,a),(a,a)))

# Stack Implementation of Shift-Reduce Parsing



#### Conflicts

- Shift-reduce and reduce-reduce conflicts are caused by
  - The limitations of the LR parsing method (even when the grammar is unambiguous)
  - Ambiguity of the grammar

## Shift-Reduce Parsing: Shift-Reduce Conflicts

Stack Action Input **\$...**  $\dots$  if E then S shift or reduce? else...\$ ...if E then S else Ambiguous grammar:  $S \rightarrow \text{if } E \text{ then } S$ | if E then S else Sother Resolve in favor of shift, so else matches closest if

## Shift-Reduce Parsing: Reduce-Reduce Conflicts



# LR(*k*) Parsers: Use a DFA for Shift/Reduce Decisions



E'→E
E→E+T|T
T→T\*F|F
F→(E)|id



# LR(*k*) Parsers: Use a DFA for Shift/Reduce Decisions



The states of the DFA are used to determine if a handle is on top of the stack

| U | rai | nr            | nar: |  |
|---|-----|---------------|------|--|
| 1 | S-  | $\rightarrow$ | C    |  |

$$2 C \rightarrow A B$$

$$3A \rightarrow \mathbf{a}$$

$$4 B \rightarrow \mathbf{a}$$



| Stack                  | Input        | Action                                     |
|------------------------|--------------|--------------------------------------------|
| <b>\$</b> 0            | aa\$         | start in state 0                           |
| \$ <u>0</u>            | <u>a</u> a\$ | shift (and goto state 3)                   |
| <b>\$</b> 0 <b>a</b> 3 | <b>a</b> \$  | reduce $A \rightarrow \mathbf{a}$ (goto 2) |
| \$ 0 A 2               | <b>a</b> \$  | shift (goto 5)                             |
| \$ 0 A 2 a 5           | \$           | reduce $B \rightarrow \mathbf{a}$ (goto 4) |
| \$ 0 A 2 B 4           | \$           | reduce $C \rightarrow AB$ (goto 1)         |
| <b>\$</b> 0 C 1        | \$           | $\operatorname{accept}(S \to C)$           |
|                        |              |                                            |
|                        |              |                                            |
|                        |              |                                            |
|                        |              |                                            |

The states of the DFA are used to determine if a handle is on top of the stack

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

| State $I_0$ :                   | g        | $toto(I_0,A)$                      |
|---------------------------------|----------|------------------------------------|
| $S \to {}^{\bullet}C$           |          | State $I_2$ :                      |
| $C \rightarrow {}^{\bullet}A B$ | <b>~</b> | $C \rightarrow A \cdot B$          |
| $A \rightarrow \mathbf{a}$      |          | $B \rightarrow \bullet \mathbf{a}$ |
|                                 | -        |                                    |

| Stack                                | Input | Action                                             |
|--------------------------------------|-------|----------------------------------------------------|
| \$ 0                                 | aa\$  | start in state 0                                   |
| <b>\$</b> 0                          | aa\$  | shift (and goto state 3)                           |
| <b>\$</b> <u>0</u> <u><b>a</b></u> 3 | a\$   | reduce $A \rightarrow \mathbf{a}$ (goto 2)         |
| <b>\$</b> 0 A 2                      | a\$   | shift (goto 5)                                     |
| <b>\$</b> 0 <i>A</i> 2 <b>a</b> 5    | \$    | reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$ |
| <b>\$</b> 0 <i>A</i> 2 <i>B</i> 4    | \$    | reduce $C \rightarrow AB$ (goto 1)                 |
| <b>\$</b> 0 <i>C</i> 1               | \$    | $\operatorname{accept}(S \to C)$                   |
|                                      |       | _ ,                                                |
|                                      |       |                                                    |
|                                      |       |                                                    |
|                                      |       |                                                    |
|                                      |       |                                                    |

The states of the DFA are used to determine if a handle is on top of the stack

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow a$$

| Stack                      | Input       | Action                                             |
|----------------------------|-------------|----------------------------------------------------|
| <b>\$</b> 0                | aa\$        | start in state 0                                   |
| \$ 0                       | aa\$        | shift (and goto state 3)                           |
| <b>\$</b> 0 <b>a</b> 3     | <b>a</b> \$ | reduce $A \rightarrow \mathbf{a}$ (goto 2)         |
| \$ 0 A <u>2</u>            | <u>a</u> \$ | shift (goto 5)                                     |
| <b>\$</b> 0 A 2 <b>a</b> 5 | \$          | reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$ |
| \$ 0 A 2 B 4               | \$          | reduce $C \rightarrow AB$ (goto 1)                 |
| <b>\$</b> 0 <i>C</i> 1     | \$          | $\operatorname{accept}(S \to C)$                   |
|                            |             | - , , ,                                            |
|                            |             |                                                    |
|                            |             |                                                    |
|                            |             |                                                    |

| State $I_2$ :                | $goto(I_2,\mathbf{a})$               |
|------------------------------|--------------------------------------|
| $C \rightarrow A^{\bullet}B$ | State $I_5$ :                        |
| $B \rightarrow \mathbf{a}$   | $B \rightarrow \mathbf{a}^{\bullet}$ |
|                              |                                      |

The states of the DFA are used to determine if a handle is on top of the stack

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

| Stack                      | Input | Action                                     |
|----------------------------|-------|--------------------------------------------|
| <b>\$</b> 0                | aa\$  | start in state 0                           |
| <b>\$</b> 0                | aa\$  | shift (and goto state 3)                   |
| <b>\$</b> 0 <b>a</b> 3     | a\$   | reduce $A \rightarrow \mathbf{a}$ (goto 2) |
| <b>\$</b> 0 A 2            | a\$   | shift (goto 5)                             |
| \$ 0 A <u>2</u> <b>a</b> 5 | \$    | reduce $B \rightarrow \mathbf{a}$ (goto 4) |
| \$ 0 A 2 B 4               | \$    | reduce $C \rightarrow AB$ (goto 1)         |
| <b>\$</b> 0 <i>C</i> 1     | \$    | $\operatorname{accept}(S \to C)$           |
|                            |       |                                            |
|                            |       |                                            |
|                            |       |                                            |
|                            |       |                                            |

| State $I_2$ :              | $goto(I_2,B)$                 |
|----------------------------|-------------------------------|
| $C \to A \bullet B$        | $\rightarrow$ State $I_4$ :   |
| $B \rightarrow \mathbf{a}$ | $C \rightarrow A B^{\bullet}$ |

The states of the DFA are used to determine if a handle is on top of the stack

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

| Stack                             | Input       | Action                                             |
|-----------------------------------|-------------|----------------------------------------------------|
| \$ 0                              | aa\$        | start in state 0                                   |
| \$ 0                              | aa\$        | shift (and goto state 3)                           |
| <b>\$</b> 0 <b>a</b> 3            | <b>a</b> \$ | reduce $A \rightarrow \mathbf{a}$ (goto 2)         |
| <b>\$</b> 0 A 2                   | a\$         | shift (goto 5)                                     |
| \$ 0 A 2 a 5                      | \$          | reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$ |
| \$ <u>0</u> <u>A</u> 2 <u>B</u> 4 | \$          | reduce $C \rightarrow AB$ (goto 1)                 |
| <b>\$</b> 0 <i>C</i> 1            | \$          | $\operatorname{accept}(S \to C)$                   |
|                                   |             |                                                    |
|                                   |             |                                                    |
|                                   |             |                                                    |
|                                   |             |                                                    |

|                                            | goto $(I_0,C)$              |
|--------------------------------------------|-----------------------------|
| State $I_0$ :<br>$S \rightarrow \bullet C$ | $State I_1$ :               |
| $C \to A B$                                | $S \rightarrow C^{\bullet}$ |
| $A \rightarrow \mathbf{a}$                 |                             |

The states of the DFA are used to determine if a handle is on top of the stack

$$S \rightarrow C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow a$$

| Stack                             | Input       | Action                                             |
|-----------------------------------|-------------|----------------------------------------------------|
| \$ 0                              | aa\$        | start in state 0                                   |
| \$ 0                              | aa\$        | shift (and goto state 3)                           |
| <b>\$</b> 0 <b>a</b> 3            | a\$         | reduce $A \rightarrow \mathbf{a}$ (goto 2)         |
| <b>\$</b> 0 A 2                   | <b>a</b> \$ | shift (goto 5)                                     |
| <b>\$</b> 0 <i>A</i> 2 <b>a</b> 5 | \$          | reduce $B \rightarrow \mathbf{a} \text{ (goto 4)}$ |
| \$ 0 A 2 B 4                      | \$          | reduce $C \rightarrow AB$ (goto 1)                 |
| <b>\$</b> 0 C <u>1</u>            | <u>\$</u>   | $\operatorname{accept}(S \to C)$                   |
|                                   |             | • ` ` /                                            |
|                                   |             |                                                    |
|                                   |             |                                                    |
|                                   |             |                                                    |

| State $I_0$ :                                                       | $goto(I_0,C)$                                     |
|---------------------------------------------------------------------|---------------------------------------------------|
| $S \to {}^{\bullet}C$ $C \to {}^{\bullet}A B$ $A \to {}^{\bullet}a$ | $\longrightarrow State I_1: \\ S \to C^{\bullet}$ |
|                                                                     |                                                   |

#### Model of an LR Parser



## LR Parsing (Driver)

Configuration ( = LR parser state):

$$\underbrace{(s_0 X_1 s_1 X_2 s_2 \dots X_m s_m, a_i a_{i+1} \dots a_n \$)}_{stack}$$

If  $action[s_m, a_i] = \text{shift } s$  then push  $a_i$ , push s, and advance input:  $(s_0 X_1 s_1 X_2 s_2 \dots X_m s_m a_i s, a_{i+1} \dots a_n \$)$ 

If  $action[s_m, a_i] = \text{reduce } A \rightarrow \beta$  and  $goto[s_{m-r}, A] = s$  with  $r = |\beta|$  then pop 2r symbols, push A, and push s:

$$(s_0 X_1 s_1 X_2 s_2 \dots X_{m-r} s_{m-r} A s, a_i a_{i+1} \dots a_n \$)$$

If  $action[s_m, a_i] = accept then stop$ 

If  $action[s_m, a_i] = \text{error then attempt recovery}$ 

## Example LR(0) Parsing Table



State  $I_5$ :  $B \rightarrow \mathbf{a}^{\bullet}$ 

1. 
$$C' \rightarrow C$$
  
2.  $C \rightarrow AB$ 

$$3. A \rightarrow a$$

$$4. B \rightarrow a$$



## Another Example LR Parse Table

|                                                                    |     | action |    |    |    |     | goto |   |   |    |
|--------------------------------------------------------------------|-----|--------|----|----|----|-----|------|---|---|----|
| Grammar: sto                                                       | ate | id     | +  | *  | (  | )   | \$   | E | T | F  |
| $1. E \rightarrow E + T$                                           | 0   | s5     |    |    | s4 |     |      | 1 | 2 | 3  |
| $2. E \rightarrow T$ $3. T \rightarrow T * F$ $4. T \rightarrow F$ | 1   |        | s6 |    |    |     | acc  |   |   |    |
|                                                                    | 2   |        | r2 | s7 |    | r2  | r2   |   |   |    |
|                                                                    | 3   |        | r4 | r4 |    | r4  |      |   |   |    |
| $5. F \rightarrow (E)$                                             |     |        | 14 | 14 |    | 14  | r4   |   |   |    |
| $6. F \rightarrow id$                                              | 4   | s5     |    |    | s4 |     |      | 8 | 2 | 3  |
| , 1 <del>9</del> 2                                                 | 5   |        | r6 | r6 |    | r6  | r6   |   |   |    |
|                                                                    | 6   | (s5)   |    |    | s4 |     |      |   | 9 | 3  |
| Shift & goto 5                                                     | 7   | s5     |    |    | s4 |     |      |   |   | 10 |
| _                                                                  | 8   |        | s6 |    |    | s11 |      |   |   |    |
| Reduce byproduction #1                                             | 9   |        | rl | s7 |    | r1  | r1   |   |   |    |
|                                                                    | 10  |        | r3 | r3 |    | r3  | r3   |   |   |    |
|                                                                    | 11  |        | r5 | r5 |    | r5  | r5   |   |   |    |

# Example LR Shift-Reduce Parsing

#### Grammar:

$$1. E \rightarrow E + T$$

$$2. E \rightarrow T$$

$$3. T \rightarrow T * F$$

4. 
$$T \rightarrow F$$

$$5. F \rightarrow (E)$$

$$6. F \rightarrow id$$

| Stack                                  | Input              | Action           |
|----------------------------------------|--------------------|------------------|
| \$ 0                                   | <u>id</u> *id+id\$ | shift 5          |
| <b>\$</b> 0 <b>id</b> 5                | <u>*</u> id+id\$   | reduce 6 goto 3  |
| <b>\$</b> 0 <i>F</i> 3                 | <u>*</u> id+id\$   | reduce 4 goto 2  |
| \$ 0 T 2                               | <u>*</u> id+id\$   | shift 7          |
| \$ 0 T 2 * 7                           | <u>id</u> +id\$    | shift 5          |
| <b>\$</b> 0 <i>T</i> 2 * 7 <b>id</b> 5 | <u>+</u> id\$      | reduce 6 goto 10 |
| \$ 0 T 2 * 7 F 10                      | <u>+</u> id\$      | reduce 3 goto 2  |
| \$ 0 T 2                               | <u>+</u> id\$      | reduce 2 goto 1  |
| <b>\$</b> 0 <i>E</i> 1                 | <u>+</u> id\$      | shift 6          |
| \$ 0 E 1 + 6                           | <u>id</u> \$       | shift 5          |
| \$ 0 E 1 + 6 id 5                      | <u>\$</u>          | reduce 6 goto 3  |
| \$ 0 E 1 + 6 F 3                       | <u>\$</u>          | reduce 4 goto 9  |
| \$ 0 E 1 + 6 T 9                       | <u>\$</u>          | reduce 1 goto 1  |
| <b>\$</b> 0 <i>E</i> 1                 | \$                 | accept           |

#### **SLR Grammars**

- SLR (Simple LR): SLR is a simple extension of LR(0) shift-reduce parsing
- SLR eliminates some conflicts by populating the parsing table with reductions  $A \rightarrow \alpha$  on symbols in FOLLOW(A)



### SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise the same as LR(0)



### **SLR Parsing**

- An LR(0) state is a set of LR(0) items
- An LR(0) item is a production with a (dot) in the right-hand side
- Build the LR(0) DFA by
  - Closure operation to construct LR(0) items
  - Goto operation to determine transitions
- Construct the SLR parsing table from the DFA
- LR parser program uses the SLR parsing table to determine shift/reduce operations

### Constructing SLR Parsing Tables

- 1. Augment the grammar with  $S' \rightarrow S$
- 2. Construct the set  $C=\{I_0,I_1,\ldots,I_n\}$  of LR(0) items
- 3. If  $[A \rightarrow \alpha \bullet a\beta] \in I_i$  and  $goto(I_i,a)=I_j$  then set action[i,a]=shift j
- 4. If  $[A \rightarrow \alpha \bullet] \in I_i$  then set action[i,a]=reduce  $A \rightarrow \alpha$  for all  $a \in FOLLOW(A)$  (apply only if  $A \neq S'$ )
- 5. If  $[S' \rightarrow S^{\bullet}]$  is in  $I_i$  then set action[i,\$]=accept
- 6. If  $goto(I_i,A)=I_i$  then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the  $I_i$  holding item  $[S' \rightarrow \bullet S]$

#### LR(0) Items of a Grammar

- An *LR*(0) *item* of a grammar *G* is a production of *G* with a at some position of the right-hand side
- Thus, a production

$$A \rightarrow XYZ$$

has four items:

$$[A \rightarrow \bullet X Y Z]$$

$$[A \rightarrow X \bullet YZ]$$

$$[A \rightarrow XY \cdot Z]$$

$$[A \rightarrow XYZ \bullet]$$

• Note that production  $A \to \varepsilon$  has one item  $[A \to \bullet]$ 

## Constructing the set of LR(0) Items of a Grammar

- 1. The grammar is augmented with a new start symbol S' and production  $S' \rightarrow S$
- 2. Initially, set  $C = closure(\{[S' \rightarrow \bullet S]\})$  (this is the start state of the DFA)
- 3. For each set of items  $I \in C$  and each grammar symbol  $X \in (N \cup T)$  such that  $goto(I,X) \notin C$  and  $goto(I,X) \neq \emptyset$ , add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

## The Closure Operation for LR(0) Items

- 1. Start with closure(I) = I
- 2. If  $[A \rightarrow \alpha \bullet B\beta] \in closure(I)$  then for each production  $B \rightarrow \gamma$  in the grammar, add the item  $[B \rightarrow \bullet \gamma]$  to I if not already in I
- 3. Repeat 2 until no new items can be added

# The Closure Operation (Example)

$$closure(\{[E' \rightarrow \bullet E]\}) = \{ [E' \rightarrow \bullet E] \} \{ [E \rightarrow \bullet E + T] \} \{$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

## The Goto Operation for LR(0) Items

- 1. For each item  $[A \rightarrow \alpha \bullet X\beta] \in I$ , add the set of items  $closure(\{[A \rightarrow \alpha X \bullet \beta]\})$  to goto(I,X) if not already there
- 2. Repeat step 1 until no more items can be added to goto(I,X)
- 3. Intuitively, goto(I,X) is the set of items that are valid for the viable prefix  $\gamma X$  when I is the set of items that are valid for  $\gamma$

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

### The Goto Operation (Example 1)

```
Suppose I = \{ [E' \rightarrow \bullet E] \}
                                                            Then goto(I,E)
                                                           = closure(\{[E' \rightarrow E \bullet, E \rightarrow E \bullet + T]\})
                          [E \rightarrow \bullet E + T]
                                                           = \{ [E' \rightarrow E \bullet] \}
                          [E \rightarrow \bullet T]
                                                                  [E \rightarrow E \cdot + T]
                          [T \rightarrow \bullet T * F]
                          [T \rightarrow \bullet F]
                          [F \rightarrow \bullet (E)]
                          [F \rightarrow \bullet id]
                                                                                                 Grammar:
                                                                                                 E \rightarrow E + T \mid T
                                                                                                 T \rightarrow T * F \mid F
```

### The Goto Operation (Example 2)

```
Suppose I = \{ [E' \rightarrow E \bullet], [E \rightarrow E \bullet + T] \}
Then goto(I,+) = closure(\{[E \rightarrow E + \bullet T]\}) = \{[E \rightarrow E + \bullet T]\}
                                                                                       [T \rightarrow \bullet T * F]
                                                                                       [T \rightarrow \bullet F]
                                                                                       [F \rightarrow \bullet (E)]
                                                                                       [F \rightarrow \bullet id]
```

Grammar:

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E)$$

$$F \to id$$

### Example Grammar and LR(0) Items

Augmented  $I_0 = closure(\{[C' \rightarrow \bullet C]\})$  $I_1 = goto(I_0, C) = closure(\{ [C' \rightarrow C^{\bullet}] \})$ grammar: 1.  $C' \rightarrow C$ 2.  $C \rightarrow AB$ State  $I_4$ :  $goto(I_0,C)$  $3. A \rightarrow a$  $C \rightarrow A B^{\bullet}$  $4. B \rightarrow a$  $goto(I_2,B)$ State  $I_0$ : start  $goto(I_2,\mathbf{a})$ State  $I_5$ :  $goto(I_0,\mathbf{a})$ State  $I_3$ :

### Constructing SLR Parsing Tables

- 1. Augment the grammar with  $S' \rightarrow S$
- 2. Construct the set  $C=\{I_0,I_1,\ldots,I_n\}$  of LR(0) items
- 3. If  $[A \rightarrow \alpha \bullet a\beta] \in I_i$  and  $goto(I_i,a)=I_j$  then set action[i,a]=shift j
- 4. If  $[A \rightarrow \alpha \bullet] \in I_i$  then set action[i,a]=reduce  $A \rightarrow \alpha$  for all  $a \in FOLLOW(A)$  (apply only if  $A \neq S'$ )
- 5. If  $[S' \rightarrow S^{\bullet}]$  is in  $I_i$  then set action[i,\$]=accept
- 6. If  $goto(I_i,A)=I_i$  then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the  $I_i$  holding item  $[S' \rightarrow \bullet S]$

### Example SLR Parsing Table

State  $I_0$ :  $C' \rightarrow {}^{\bullet}C$   $C \rightarrow {}^{\bullet}A B$  $A \rightarrow {}^{\bullet}\mathbf{a}$ 

State  $I_1$ :  $C' \to C^{\bullet}$ 

State  $I_2$ :  $C \to A \cdot B$  $B \to {\bf a}$  State  $I_3$ :  $A \rightarrow \mathbf{a}^{\bullet}$ 

State  $I_4$ :  $C \to A B \bullet$  State  $I_5$ :  $B \rightarrow \mathbf{a}^{\bullet}$ 





Grammar:

1. 
$$C' \rightarrow C$$

2. 
$$C \rightarrow AB$$

$$3. A \rightarrow a$$

$$4. B \rightarrow a$$

$$-FOLLOW(A) = \{a\}$$

FOLLOW(
$$C$$
) = { $\$$ }

$$-FOLLOW(B) = \{\$\}$$

### SLR, Ambiguity, and Conflicts

- SLR grammars are unambiguous
- But **not** every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

$$1. S \rightarrow L = R$$
  $2. S \rightarrow R$ 

$$2. S \rightarrow R$$

$$3. L \rightarrow * R$$

$$4. L \rightarrow id$$

$$5. R \rightarrow L$$

$$I_0$$
:  
 $S' \rightarrow \bullet S$   
 $S \rightarrow \bullet L = R$   
 $S \rightarrow \bullet R$   
 $L \rightarrow \bullet * R$   
 $L \rightarrow \bullet * Id$   
 $R \rightarrow \bullet L$ 

```
 \begin{array}{|c|c|c|c|c|}\hline I_1: & & I_2: & & I_3: & & I_4: \\ S' \to S^{\bullet} & & S \to L^{\bullet} = R & & S \to R^{\bullet} & & L \to * \bullet R \\ R \to L^{\bullet} & & & R \to \bullet L \\ \hline \end{array}
```

$$\begin{array}{c} I_3: \\ S \to R^{\bullet} \end{array}$$

$$\begin{split} I_4: \\ L &\to {}^* {}^\bullet R \\ R &\to {}^\bullet L \\ L &\to {}^\bullet {}^*R \\ L &\to {}^\bullet \mathbf{id} \end{split}$$

$$I_5$$
:  $L \rightarrow id \bullet$ 

$$I_7: \\ L \to *R^{\bullet}$$

$$I_8$$
:  $R \to L^{\bullet}$ 

action[2,=]=s6 Conflict: has no SLR action[2,=]=r5 parsing table! parsing table!

$$I_9: \\ S \to L = R \bullet$$

S→SS+|SS\*|a SLR Parse Table??

#### LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- LR(1) item = LR(0) item + lookahead

LR(0) item: LR(1) item: 
$$[A \rightarrow \alpha \bullet \beta] \qquad [A \rightarrow \alpha \bullet \beta, a]$$

#### SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1. 
$$S \rightarrow L = R$$

- $2. S \rightarrow R$
- 3.  $L \rightarrow R$
- 4.  $L \rightarrow id$
- 5.  $R \rightarrow L$



Should not reduce on =, because no right-sentential form begins with R=

#### LR(1) Items

- An LR(1) item  $[A \rightarrow \alpha \bullet \beta, a]$  contains a *lookahead* terminal a, meaning  $\alpha$  already on top of the stack, expect to parse  $\beta a$
- For items of the form  $[A \rightarrow \alpha \bullet, a]$  the lookahead a is used to reduce  $A \rightarrow \alpha$  only if the next lookahead of the input is a
- For items of the form  $[A \rightarrow \alpha \cdot \beta, a]$  with  $\beta \neq \epsilon$  the lookahead has no effect

## The Closure Operation for LR(1) Items

- 1. Start with closure(I) = I
- 2. If  $[A \rightarrow \alpha \bullet B\beta, a] \in closure(I)$  then for each production  $B \rightarrow \gamma$  in the grammar and each terminal  $b \in FIRST(\beta a)$ , add the item  $[B \rightarrow \bullet \gamma, b]$  to I if not already in I
- 3. Repeat 2 until no new items can be added

### The Goto Operation for LR(1) Items

- 1. For each item  $[A \rightarrow \alpha \bullet X\beta, a] \in I$ , add the set of items  $closure(\{[A \rightarrow \alpha X \bullet \beta, a]\})$  to goto(I,X) if not already there
- 2. Repeat step 1 until no more items can be added to goto(I,X)

## Constructing the set of LR(1) Items of a Grammar

- 1. Augment the grammar with a new start symbol S' and production  $S' \rightarrow S$
- 2. Initially, set  $C = closure(\{[S' \rightarrow \bullet S, \$]\})$  (this is the start state of the DFA)
- 3. For each set of items  $I \in C$  and each grammar symbol  $X \in (N \cup T)$  such that  $goto(I,X) \notin C$  and  $goto(I,X) \neq \emptyset$ , add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

### Example Grammar and LR(1) Items

• Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

- Augment with  $S' \to S$
- LR(1) items (next slide)

 $\$  goto( $I_6,R$ )= $I_9$ 

| $[S \rightarrow \bullet L = R,$ $[S \rightarrow \bullet R,$ $[L \rightarrow \bullet * R,$ $[L \rightarrow \bullet id,$ $[R \rightarrow \bullet L,$ | \$ $goto(I_0,L)=I_2$<br>\$ $goto(I_0,R)=I_3$<br>=/\$ $goto(I_0,*)=I_4$<br>=/\$ $goto(I_0,id)=I$<br>\$ $goto(I_0,L)=I_2$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| $I_1: [S' \to S^{\bullet},$                                                                                                                        | <b>\$</b> ]                                                                                                             |
| $I_2: [S \to L \bullet = R,$ $[R \to L \bullet,$                                                                                                   | \$] goto( <i>I</i> <sub>0</sub> ,=)= <i>I</i> <sub>6</sub><br>\$]                                                       |

 $S = I_1$ 

 $I_0: [S' \rightarrow \bullet S]$ 

 $I_3: [S \to R^{\bullet}]$ 

 $[R \rightarrow \bullet L,$  $\$  goto( $I_6,L$ )= $I_{10}$  $[L \rightarrow \bullet *R,$  $\$  goto $(I_6,*)=I_{11}$  $\{ \text{goto}(I_6, \text{id}) = I_{12} \}$  $[L \rightarrow \bullet id,$  $I_7$ :  $[L \rightarrow *R \bullet,$ =/\$]  $I_{\aleph}$ :  $[R \to L^{\bullet}]$ =/\$| \$]  $I_0: [S \rightarrow L = R^{\bullet}]$  $I_{10}$ :  $[R \rightarrow L^{\bullet}]$ \$]  $I_{11}$ :  $[L \rightarrow * \bullet R]$  $\S$ ] goto( $I_{11},R$ )= $I_{13}$  $[R \rightarrow \bullet L,$  $\$ ] goto( $I_{11},L$ )= $I_{10}$  $\$  goto $(I_{11},*)=I_{11}$  $[L \rightarrow \bullet id,$ **\$**] goto( $I_{11}$ ,**id**)= $I_{12}$ \$]

 $I_6: [S \rightarrow L = \bullet R,$ 

 $I_{12}$ :  $[L \rightarrow id \bullet]$ 

 $I_{13}$ :  $[L \rightarrow *R \bullet]$ 

 $I_4$ :  $[L \rightarrow * \bullet R,$  $=/\$] goto(I_4,R)=I_7$  $[R \rightarrow \bullet L, =/\$] goto(I_4,L)=I_8$   $[L \rightarrow \bullet *R,$  $[L \rightarrow \bullet *R,$  $=/\$] goto(I_4,*)=I_4$  $\lceil L \rightarrow \bullet id,$ =/\$] goto( $I_4$ ,**id**)= $I_5$ =/\$]  $I_5$ :  $[L \rightarrow id^{\bullet},$ 

\$]

# Constructing Canonical LR(1) Parsing Tables

- 1. Augment the grammar with  $S' \rightarrow S$
- 2. Construct the set  $C=\{I_0,I_1,\ldots,I_n\}$  of LR(1) items
- 3. If  $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$  and  $goto(I_i, a) = I_j$  then set action[i, a] = shift j
- 4. If  $[A \rightarrow \alpha^{\bullet}, a] \in I_i$  then set action[i,a]=reduce  $A \rightarrow \alpha$  (apply only if  $A \neq S'$ )
- 5. If  $[S' \rightarrow S^{\bullet}, \$]$  is in  $I_i$  then set action[i,\$]=accept
- 6. If  $goto(I_i,A)=I_i$  then set goto[i,A]=j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the  $I_i$  holding item  $[S' \rightarrow \bullet S, \$]$

### Example LR(1) Parsing Table

| $\sim$ |    |   |     |
|--------|----|---|-----|
| Gra    | วฑ | m | ar. |
| OI (   | am | ш | aı. |

| 1  | $\alpha$ , |               | C |
|----|------------|---------------|---|
| 1. | 5          | $\rightarrow$ | S |

$$2. S \rightarrow L = R$$

$$3. S \rightarrow R$$

$$4. L \rightarrow * R$$

$$5. L \rightarrow id$$

$$6. R \rightarrow L$$

|     | <u> </u> |     |    |          | <u> </u> |    |    |
|-----|----------|-----|----|----------|----------|----|----|
|     | id       | *   | =  | \$       | S        | L  | R  |
| 0   | s5       | s4  |    |          | 1        | 2  | 3  |
| 1   |          |     |    | acc      |          |    |    |
| 2 3 |          |     | s6 | r6       |          |    |    |
| 3   |          |     |    | r3       |          |    |    |
| 4   | s5       | s4  |    |          |          | 8  | 7  |
| 5   |          |     | r5 | r5       |          |    |    |
| 6   | s12      | s11 |    |          |          | 10 | 9  |
| 7   |          |     | r4 | r4       |          |    |    |
| 8   |          |     | r6 | r6       |          |    |    |
| 9   |          |     |    | r2       |          |    |    |
| 10  |          |     |    | r6       |          |    |    |
| 11  | s12      | s11 |    |          |          | 10 | 13 |
| 12  |          |     |    | r5<br>r4 |          |    |    |
| 13  |          |     |    | r4       |          |    |    |

### LALR Parsing

- LR(1) parsing tables have many states
- LALR parsing (Look-Ahead LR) merges two or more LR(1) state into one state to reduce table size
- Less powerful than LR(1)
  - Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
  - May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages

## Constructing LALR Parsing Tables

1. Construct sets of LR(1) items

 $[L \rightarrow \bullet id,$ 

2. Combine LR(1) sets with sets of items that share the same first part

# Example Grammar and LALR Parsing Table

• Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$

$$\mid R$$

$$L \rightarrow *R$$

$$\mid id$$

$$R \rightarrow L$$

- Augment with  $S' \to S$
- LALR items (next slide)

$$I_{0} \colon [S' \to \bullet S, \\ [S \to \bullet L = R, \\ [S \to \bullet L = R, \\ [S \to \bullet R, \\ [L \to \bullet *R, \\ [L \to \bullet *id, \\ [R \to \bullet L, \\ [R \to L \bullet, \\ [R \to \bullet L, \\ [R \to \bullet R, \\ [R \to \bullet L, \\ [R \to \bullet R, \\ [R \to \bullet L, \\ [R \to \bullet R, \\ [R \to \bullet L, \\ [R \to \bullet R, \\ [R \to \bullet R$$

=/\$]

 $I_5: [L \to id^{\bullet}]$ 

$$I_{6}: [S \rightarrow L = \bullet R, \\ [R \rightarrow \bullet L, \\ [L \rightarrow \bullet *R, \\ [L \rightarrow \bullet * id, \\ ] goto(I_{6}, L) = I_{9} \\ goto(I_{6}, *) = I_{4} \\ [L \rightarrow \bullet * id, \\ ] goto(I_{6}, * id) = I_{5}$$

$$I_{7}: [L \rightarrow *R \bullet, \\ =/\$]$$

$$I_{8}: [S \rightarrow L = R \bullet, \\ \$]$$

$$I_{9}: [R \rightarrow L \bullet, \\ [R \rightarrow L \bullet, \\ \$]$$
Shorthand for two items
$$[R \rightarrow L \bullet, \\ \$]$$

### Example LALR Parsing Table

#### Grammar:

$$1. S' \rightarrow S$$

$$2. S \rightarrow L = R$$

$$3. S \rightarrow R$$

$$4. L \rightarrow * R$$

$$5. L \rightarrow id$$

$$6. R \rightarrow L$$

|     | id | *  | =  | \$  | S | L | R |
|-----|----|----|----|-----|---|---|---|
| 0   | s5 | s4 |    |     | 1 | 2 | 3 |
| 1   |    |    |    | acc |   |   |   |
| 2 3 |    |    | s6 | r6  |   |   |   |
| 3   |    |    |    | r3  |   |   |   |
| 4   | s5 | s4 |    |     |   | 9 | 7 |
| 5   |    |    | r5 | r5  |   |   |   |
| 6   | s5 | s4 |    |     |   | 9 | 8 |
| 7   |    |    | r4 | r4  |   |   |   |
| 8   |    |    |    | r2  |   |   |   |
| 9   |    |    | r6 | r6  |   |   |   |

#### LL, SLR, LR, LALR Summary

- LL parse tables computed using FIRST/FOLLOW
  - Nonterminals  $\times$  terminals  $\rightarrow$  productions
  - Computed using FIRST/FOLLOW
- LR parsing tables computed using closure/goto
  - LR states  $\times$  terminals  $\rightarrow$  shift/reduce actions
  - LR states  $\times$  nonterminals  $\rightarrow$  goto state transitions
- A grammar is
  - LL(1) if its LL(1) parse table has no conflicts
  - SLR if its SLR parse table has no conflicts
  - LALR if its LALR parse table has no conflicts
  - LR(1) if its LR(1) parse table has no conflicts

### LL, SLR, LR, LALR Grammars



### Dealing with Ambiguous Grammars

$$1. S' \rightarrow E$$

$$2. E \rightarrow E + E$$

 $3. E \rightarrow id$ 

|   | id | +     | \$  | E |
|---|----|-------|-----|---|
| 0 | s2 |       |     | 1 |
| 1 |    | s3    | acc |   |
| 2 |    | r3    | r3  |   |
| 3 | s2 |       |     | 4 |
| 4 |    | s3/r2 | r2  |   |

Shift/reduce conflict:

$$action[4,+] = shift 4$$

 $action[4,+] = reduce E \rightarrow E + E$ 



When shifting on +: yields right associativity id+(id+id)

When reducing on +: yields left associativity (id+id)+id

## Using Associativity and Precedence to Resolve Conflicts

- Left-associative operators: reduce
- Right-associative operators: shift
- Operator of higher precedence on stack: reduce
- Operator of lower precedence on stack: shift



### Error Detection in LR Parsing

- Canonical LR parser uses full LR(1) parse tables and will never make a single reduction before recognizing the error when a syntax error occurs on the input
- SLR and LALR may still reduce when a syntax error occurs on the input, but will never shift the erroneous input symbol

### Error Recovery in LR Parsing

#### Panic mode

- Pop until state with a goto on a nonterminal A is found,
   (where A represents a major programming construct),
   push A
- Discard input symbols until one is found in the FOLLOW set of A
- Phrase-level recovery
  - Implement error routines for every error entry in table
- Error productions
  - Pop until state has error production, then shift on stack
  - Discard input until symbol is encountered that allows parsing to continue