\vdash

Retículas / Látices

Semana 02 - Clase 005

Definición

Una retícula es un conjunto parcialmente ordenado (CPO), tal que cada subconjunto $\{a,b\}$ de dos elementos tiene una mínima cota superior (MCS) y máxima cota inferior (MCI).

- El MCS($\{a,b\}$) se denota como ($a\lor b$). Esta notación es denominada unión/disyunción de a y b.
- El MCI($\{a,b\}$) se denota como ($a \wedge b$). Esta notación es denominada *conjución/intersección* de a y b.

Es por ello que las reticulas son estructuras algebráicas que constan de dos operaciones binarias (unión y conjunción). Además podemos recalcar que un CPO linealmente ordenado es una retícula pues, cada elemento tiene un MCS y MCI ($\forall a,b\in S$).

Recuerda que para considerarse retícula, todos los elementos deben ser comparables. Por eso si queremos verificar que sea una retícula, tenemos que comprobar para elementos no comparables. Además $A \vee B = A \cup B$.

Por otro lado, en caso que tengamos una retícula de la forma $(\mathbb{Z}^+, |)$ diremos que ella siempre será una retícula, recalcar que deben ser los enteros positivos.

Subretícula

Sea (L,\leq) una retícula, un subconjunto no vacío S de L es una subretícula de L si $a\vee b\in S$ y además $a\wedge b\in S$ siempre que $a\in S$ y $b\in S$. Por ejemplo $X=\{1,2,4\}$ es subretícula de D_{12} , mientras que $Y=\{1,2,4,6\}$ no, pues $4\vee 6=12\notin Y$.

Para considerar subretícula los MCI, MCS deben de encontrarse dentro del conjunto de la subretícula, en caso no se encuentre no se considera, tal como es el caso mencionado en $\,Y\,$.

Isomorfismo

Sean L_1 y L_2 dos CPO, un isomorfismo es una función f tal que cumple ser biyectiva. De esta forma, concluimos que $a \leq_1 b, \iff f(a) \leq_2 f(b)$, siendo a,b elementos de L_1 .

$$f: L_1 \longrightarrow L_2 \ (L_1, \leq)(L_2, \leq)$$

Se cumple también $\,f(a\wedge b)=f(a)\wedge f(b)\,$. Mientras que $\,f(a\vee b)=f(a)\vee f(b)\,$.

Complemento

Sea una retícula acotada con elemento máximo 1 y elemento mínimo 0, y sea $a\in L$. Un elemento $a'\in L$ es un complemento de a si y sólo si $a\wedge a'=0$ y $a\vee a'=1$.

Recordar que el único complemento de 0'=1 y además 1'=0. Mientras que $\wedge=+,\vee=\cdot$. De esta forma decimos que el complemento es único si existe.

De igual forma, si $\,L\,$ es una retícula acotada, si algún elemento tiene más de un complemento entonces la retícula no es distributiva. Entonces una retícula se denomina complementada si está acotada y si todo elemento en $\,L\,$ tiene complemento.