Vorlesungsmitschrift Höhere Algorithmik gelesen von Prof. Dr. Günter Rote

Tobias Höppner

Wintersemester 2014/2015

Inhaltsverzeichnis

1	Einführung (Vorlesung 1 am 17.10.)					
	1.1	_	nisatorisches			
	1.2		en teilen			
		1.2.1	1. Algorithmus (für 2 Personen)			
		1.2.2	2. Algorithmus (für 3 Personen)			
		1.2.3	3. Teilen und Trimmen			2
		1.2.4	4. Teilen mit bewegtem Messer			2
		1.2.5	5. Simuliertes bewegtes Messer			2
		1.2.6	6. Simuliertes Messer + Zufall			2
		1.2.7	7. Divide & Conquer			3
		1.2.8	8. Divde & Conquer + Zufall			
2	Einführung Teil 2 (Vorlesung 2 am 20.10.)					
	2.1	Ziele d	- der Vorlesung			2
	2.2	Rechne	nermodelle			2
		2.2.1	Turing-Maschine			2
		2.2.2	Registermaschine (RAM - random access machine)			
		2.2.3	Berechnung der Laufzeit			5
	2.3	Laufze	eit eines Algorithmus			6
3	Rechnermodelle (Fortsetzung) (Vorlesung 3 am 24.10.)					
	3.1	Warum	m nicht die Turingmaschine?			7
	3.2	Elemer	entare Operationen			7
	3.3		und Herrsche			
		3.3.1	Beispiel A: Quicksort			
		3.3.2	Beispiel B: Mergesort (Sortieren durch Verschmelzen)			8
		3.3.3	Analysemöglichkeiten			8
4	Rekursion (Fortsetzung) (vorlesung 4 am 31.10.)					
	4.1	Motiv	vation Master-Theorem			10
	4.2		er-Theorem für divide and conquer-Rekursion			
		4.2.1	Bemerkungen			11
	4.3	Beweis	s: Master-Theorem			
5	Master Theorem (Fortsetzung) (Vorlesung 6 am 3.11.)					
	5.1		s Fortsetzung			13
	5.2		n von Fehlständen (Inversion)			

1 Einführung (Vorlesung 1 am 17.10.)

1.1 Organisatorisches

Mitschrift wird von Studenten erstellt.

Korrekturfarbe für Gummipunkte: Grün!

Voraussetzungen

- O-Notation
- Turing-Maschine
- Sortieralgorithmen
- Schubfachprinzip
- Gauß-Nummer
- Harmonische Reihe

1.2 Kuchen teilen

Problem: Ein Kuchen soll unter zwei Personen aufgeteilt werden.

Zwei Lösungsideen:

- perfektes Teilen
- einer teilt den Kuchen und der andere sucht sich eine Hälfte aus.

Was passiert, wenn jemand die Teile des Kuchens unterschiedlich bewertet? (z.B. Kirsche auf einer Seite, viel Sahne auf der anderen Seite)

Perfektes teilen bedeutet, dass jemand für sich perfekt teilt. (nach seinem Maßstab)

Ziel: Fairness Jeder will $\frac{1}{n}$ des Kuchens nach ihrem Maßstab. (n = #Personen)

1.2.1 1. Algorithmus (für 2 Personen)

- 1. Erste teilt
- 2. Zweite sucht aus

Der Algorithmus ist toll, aber es gibt zu viele Schritte. Daher wollen wir den Algorithmus verbessern.

Ziel: möglichst wenige Schritte.

1.2.2 2. Algorithmus (für 3 Personen)

Anton, Berta und Clara:

- 1. Anton teilt $\frac{1}{3}|\frac{2}{3}$
- 2. Berta teilt $\frac{\frac{2}{3}}{2} | \frac{\frac{2}{3}}{2}$
- 3. Clara sucht aus.
- 4. Anton sucht aus.

Fall 1: Clara nimmt eines der rechten Stücke ⇒ Anton nimmt linkes Stück.

Fall 2: Clara nimmt linkes Stück.

Schubfachprinzip: eines der rechten Stücke ist mindestens $\frac{1}{3}$

5. Berta):

1.2.3 3. Teilen und Trimmen

1. Anton teilt:

2. Berta:

Fall 1: Berta denkt $x \leq \frac{1}{3}$

Fall 2: Berta denkt $x > \frac{1}{3} \Rightarrow$ Trimmen

3. Clara darf sich entscheiden:

Fall 1: will x^* dann Algorithmus 1. für den Rest

Fall 2: will x^* nicht.

 $\Rightarrow w^* \geq \frac{2}{3}$ für Clara und Anton

1.2.4 4. Teilen mit bewegtem Messer

Man nimmt ein Messer und jede Person sagt einfach Stop, wenn die *perfekte Wahl* für die Person getroffen ist.

#Schritte = n - 1

1.2.5 5. Simuliertes bewegtes Messer

- Jeder macht bei $\frac{1}{n}$ eine Markierung
- • der/die Linkeste bekommt das Stück #Schritte = $n+(n-1)+...3+2=\theta(n^2)$ (Gauß-Nummer)

1.2.6 6. Simuliertes Messer + Zufall

Wie 5., aber

- 1. Reihenfolge zufällig
- 2. nur neue Linkeste Markierung werden gemacht

$$3. \ \ T(n) = \# \text{erwartete Markierungen} \\ = \underbrace{\frac{1}{n}}_{\text{Erwartete Anzahl der letzten Markierung}} + \underbrace{T(n-1)}_{\text{Erwartete Anzahl von Markierungen aller Anderen.}}$$

4.
$$T(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}=\theta(\log n)$$
 (harmonische Reihe)

5. Gesamtlaufzeit
$$\leq n * O(\log n) = O(n * \log n)$$

1.2.7 7. Divide & Conquer

- $n \ {\sf Personen}$

n Markierungen bei $\frac{k}{n}$ #Schritte im Worst Case T(n)=n+2

1.2.8 8. Divde & Conquer + Zufall

(erwartete) Laufzeit pro Teilen $\theta(\log n)$ also insgesamt $\theta(n)$

2 Einführung Teil 2 (Vorlesung 2 am 20.10.)

2.1 Ziele der Vorlesung

- Algorithmen nach den wichtigsten Entwurfsprinzipien entwerfen:
 - Devide and Conquer
 - dynamisches Programmieren
 - bound and bound
 - greedy-Algorithmen
- Algorithmen mit Analysetechniken analysieren im Bezug auf Laufzeit und Speicherbedarf (Stromverbrauch ist (Stromverbrauch)
 - randomisierte Analyse
 - amortisierte randomisierte Analyse
 - Rekursionsgleichungen
- Vergleich und Beurteilung von Algorithmen nach Einsatzzweck
- Theorie der NP Vollständigkeit verstehen und einfache Vollständigkeitsbeweise führen

(Stromverbrauch ist zunehmend wichtig, aber nicht Teil der Vorlesung. Allgemein sind Algorithmen mit weniger Laufzeit besser.)

2.2 Rechnermodelle

2.2.1 Turing-Maschine

Eine Turing-Maschine ist ein theoretisches Modell. Es handelt sich um ein unendliches Band mit Symbolen aus einem endlichen Alphabet mit endlichem Zustandsraum. In jedem Schritt wird ein Symbol gelesen, das Band entsprechend der Eingabe beschrieben und der Zustand verändert. Prinzipiell ist alles mit einer Turing-Maschine berechenbar, jedoch teilweise sehr umständlich, weil immer nur ein Symbol gelesen werden kann.

2.2.2 Registermaschine (RAM - random access machine)

Eine RAM funktioniert nach einem ähnlichen Prinzip wie moderne Rechner arbeiten. Es gibt eine potentiell unendliche (unbeschränkte) Anzahl von Registern R0, R1, R2, ... wobei jedes Register eine ganze Zahl enthalten kann. Die Programmiersprache ist ähnlich wie Assembler.

RAM ist auch als random access memory als Arbeitsspeicher bekannt

1. Befehle

Zuweisung R4 = R17

Rechenbefehl R1 = R2 + R3

R1 = R2 - R3

R1 = R2 * R3

R1 = R2 / R3

Operanden der Befehle

- 1. Register R17
- 2. direkte Operanden (Zahlen) 250
- 3. indirekte Adressen: (R1)

den Inhalt des Registers, dessen Nummer in Register R1 steht.

2. Sprünge

```
GOTO x

2 IF R_i = 0 THEN GOTO x

4 GZ R1, label ;if R1 is greater 0, goto label

x ist eine Sprungmarke im Programm.

1 loop:

2 \\ some commands

3 GOTO loop

Es sind nur die drei

Vergleichsoperationen

GLZ: < 0 , GGZ: >

0 , GZ: = 0

erlaubt!
```

3. HALT

Ein Programm endet immer mit HALT

Ein- und Ausgabe

Eingabe: R0 = n = die Länge der Eingabe R1, R2, ... Rn. Alle andere Zellen sind auf 0 initialisiert.

Ausgabe steht am Ende im Speicher!

2.2.3 Berechnung der Laufzeit

a) Einheitskostenmaß (EKM)

Jede Operation dauert eine Zeiteinheit. unfair, weil es Operationen gibt, die offensichtlich komplizierter sind.

b) logarithmisches Kostenmaß (LKM)

Laufzeit = Summe der Längen aller vorkommenden Adressen und Operanden.

$$\begin{split} l(x) &= \lfloor \log_2 \max\{|x|,1\} \rfloor + 1 \\ \text{R2} &= (\text{R0}) + 250 \\ \text{...} \text{Kosten} &= l(2) + l(0) + \underbrace{l(\text{R0})}_{\text{Adresse}} + \underbrace{l((\text{R0}))}_{\text{Operanden}} + \underbrace{l(250)}_{\text{Operanden}} \end{split}$$

Das LKM ist gerechter, als das EKM.

Im EKM kann man schwindeln:

Operationen auf langen Daten können in einem Schritt erledigt werden.

Andererseits ist das EKM näher an einem tatsächlichen Prozessor. Sofern die Operanden in ein Wort eines konventionellen Speichers (64 Bit) passen.

Abschätzung: LKM $< O(EKM \cdot l(längster vorkommender Operand oder Adresse))$

Wenn die größten vorkommenden Zahlen nicht zu groß sind, dann ist das EKM realistisch.

LKM ist fairer, wenn es um sehr unterschiedliche Operanden geht (verschieden lang)

2.3 Laufzeit eines Algorithmus

Man muss den möglichen Eingaben eine Länge zuordnen.

x.. Eingabe L(x)

Bsp. n Zahlen $x_1, x_2, ..., x_n$ sortieren: $L = \underline{n}$

 $\overline{\mathsf{Bsp.}}$ Multiplikation von langen Zahlen x,y: L=# Bits in der Eingabe.

Bsp. Lösen eines linearen Gleichungssystems: $Ax = bA \in \mathbb{Z}^{n \times x} b \in \mathbb{Z}^n x \in \mathbb{Q}^n$

 $\overline{\text{Länge}}$ der Eingabe: n^2

Gauß-Elimination $O(n^3)$ Zeit, erfordert Rechnen mit rationalen Zahlen.

Man kann Zeigen, dass die Länge der Zähler und Nenner in den Zwischenergebnissen höchstens

n-Mal $(\leq n)$ ist, wenn man Brüche immer kürzt. Laufzeit im LKM: $O(n^4, l(\text{größte Eingabezahl}))$

Was ist die Laufzeit eines Algorithmus?

T(x) = Laufzeit des Algorithmus bei Eingabe x

 $(AnalyseimschlimmstenFall).T(n) = \max\{T(x)|L(x) = n\}$

Andere Möglichkeiten

Analyse im Durchschnitt, Erwartungswert der Laufzeit Benötigt eine Wahrscheinlichkeitsverteilung auf der Menge der Eingaben. Tendenziell kompliziertes Beispiel, um zu illustrieren, dass LKM nicht immer leicht zu berechnen ist.

3 Rechnermodelle (Fortsetzung) (Vorlesung 3 am 24.10.)

3.1 Warum nicht die Turingmaschine?

Die Registermaschine ist näher am heutigen Rechnermodell. Die Turingmaschine ist viel primitiver. Satz:

- a) Ein Alogrithmus, der auf einer Registermaschine Laufzeit T(n) im logarithmischen Kosteneinheitsmaß hat, kann auf einer Turingmaschine in Laufzeit $O((T(n))^3)$ simuliuert werden.
- b) Ein Alogirhtmus mit Laufzeit U(n) auf einer Turingmaschine kann mit Laufzeit $O(U(n) \log U(n))$ auf einer Registermaschine im LKM simuliert werden.
- zu b) In Zeit U(n) kann die Maschine höchstens die Felder -U(n)...+U(n) beschreiben. Adressen sind durch 2U(n) beschränkt jeden Schritt der TM kann in konstant vielen Operationen der Registermaschine simuliert werden. $\rightarrow O(\log U(n)$
- zu a) Speicherinhalt auf dem Band notieren.

i: (Inhalt von Register i).(i + 1 : Inhalt von Register(i + 1)...

Register mit Inhalt 0 können weggelassen werden. Register werden in natürlicher Reihenfolge aufgeschrieben. Alle Zahlen binär oder dezimal (nach Belieben).

Die Länge des Bandes = L ist durch T(n) beschränkt.

Jede Adresse, jede Registereinheit wurde bei der letzten Benutzung in voller Länge bei T(n) berücksichtigt.

3.2 Elementare Operationen

- 1. Adresse im Speicher suchen; (Adresse steht im linken Zwischenbereich)
- 2. entsprechenden Inhalt zwischen Speicher und Zwischenbereich übertragen
- 3. Rechenoperationen im Zwischenbereich

$$_{1}$$
 R2 = (R17)

Jede Stelle die verglichen wird, erfordert im schlimmsten Fall ein Wandern über das gesamte Band.

Operation 1 dauert $O(L^2)$ Schritte, wobei L die Länge des Bandes ist.

Operation 2 ist ähnlich. Gegebenenfalls muss man den rechten Teil des Bandinhalts verschieben (Um eine Stelle verschieben dauert O(L) Zeit, $\leq O(L^2)$ insgesamt).

Operation 3 $\leq O(L^2)$

 $O(L^2)$ für 1 Schritt der Registermaschine $=O(T(n))^2$

3.3 Teile und Herrsche

(eng. divide and conquer) (lat. divide et impera)

- 1. Zerlege das Problem P in Teilprobleme $P_1, P_2, ..., P_k$ (typischerweise k=2)
- 2. Löse die Teilprobleme rekursiv.
- 3. Füge die Teillösung zur Lösung von P zusammen.

3.3.1 Beispiel A: Quicksort

- 3. Teilfolgen aneinanderhängen.

3.3.2 Beispiel B: Mergesort (Sortieren durch Verschmelzen)

- 1. Zerlegung in 2 gleich große Teile
- 3. Verschmelzen der beiden sortierten Teillisten.

Laufzeit
$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + \Theta(n)$$

$$n \text{ gerade } T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$\text{L\"osung } T(n) = O(n \log n)$$

3.3.3 Analysemöglichkeiten

- I. Lösung erraten und durch vollständige Induktion beweisen.
- II. Wiederholtes einsetzen auf der rechten Seite:

$$\begin{split} T(n) & \leq 2T(\frac{n}{2}) + cn \quad (c > 0) \\ T(\frac{n}{2}) & \leq 2T(\frac{n}{4}) + c * \frac{n}{2} \\ T(n) & \leq 2(2T(\frac{n}{4}) + c\frac{n}{2}) + cn \\ & = 4 \quad T(\frac{n}{4}) \quad + cn + cn \\ & = 2T(\frac{n}{8}) + c\frac{n}{4} \\ & \leq 8T(\frac{n}{8}) + cn + cn + cn \\ & \leq 2^k T(\frac{n}{2^k}) + k.c.n \end{split}$$

Bei Quicksort ist der erste Schritt aufwändiger, bei Mergesort der letzte Schritt. Annahme $n=2^l$ ist eine Zweierpotenz $l=\log_2 n$

$$\begin{split} T(n) &= \underbrace{2^l}_{n} \underbrace{T(1)}_{\text{konst.}} + \underbrace{l}_{\log_2 n}.c.n = O(n\log n) \\ &= O(n) + O(n\log n) \end{split}$$

nur gültig für Zweierpotenzen.

Möglichkeit a) n auf die nächste $n'=2^l$ aufrunden.

$$n \le n' \le 2n$$

Sortieren von n Elementen kann nicht länger dauern als Sortieren von n' Elementen. (zu beweisen! z.B. mit vollst. Indunktion anhand der Rekursion)

$$T(n) \le T(n') = O(n' \log n') = O(2n \cdot \log(2n)) = O(n \log n) \checkmark$$

Möglichkeit b) Als Inspiration, um auf die Vermutung $O(n\log n)$ zu bekommen. Beweis mit Methode I.

III. Rekursionsbaum $\lfloor \frac{\lfloor \frac{n}{2} \rfloor}{2} \rfloor = \lfloor \frac{n}{4} \rfloor$ Laufzeit: 2^l Probleme konstanter Größe. $T(1), T(2) \leq c'$

Ebene
$$0: \leq \Theta(n)$$

Ebene
$$1: \leq 2\Theta(\lceil \frac{n}{2} \rceil)$$

Ebene
$$2: \leq 4\Theta(\lceil \frac{n}{4} \rceil)$$

$$\Theta(n) \le c.n$$

$$\begin{split} \operatorname{Summe} & \leq cn + 2c \lceil \frac{n}{2} \rceil + 4c \lceil \frac{n}{4} \rceil + \ldots + 2^{l-1}c \lceil \frac{n}{2^{l-1}} \rceil + 2^l c' \\ & \leq cn + 2c (\frac{n}{2} + 1) + 4c (\frac{n}{4} + 1) + \ldots \\ & = \underbrace{cn + cn + \ldots + cn}_{\text{I-mal}} + \underbrace{2c + 4c + 8c + \ldots + 2^{l-1}c}_{(2^l-2)c} + 2^l c' \end{split}$$

4 Rekursion (Fortsetzung) (Vorlesung 4 am 31.10.)

4.1 Motivation Master-Theorem

$$T(n) = \underbrace{T(\frac{n}{b})}_{T(\lfloor \frac{n}{b} \rfloor) + \dots + T(\lceil \frac{n}{b} \rceil)} *a + f(n)$$

Für Probleme $\leq n_0$ wird das Problem irgendwie direkt gelöst.

Startbedingung: $1 \le T(n) \le M$ für $n \le n_0$

In der Praxis muss man natürlich irgendwann das n_0 ausrechnen und kann nicht beliebig lange aufteilen.

Die Konstanten $a \ge 1$ und b > 1 müssen erfüllt sein und außerdem müssen wir fordern:

$$\lceil \frac{n}{b} \rceil \leq n - 1 \text{ für } n > n_0$$

$$\Leftrightarrow \frac{n}{b} \leq n - 1$$

$$n(1 - \frac{1}{b}) \geq 1$$

$$n \geq \frac{b}{b - 1}$$

$$\Rightarrow n_0 \geq \frac{b}{b - 1}$$

sonst werden die Probleme nicht kleiner und die Rekursion kann nicht gelöst werden.

 $n\log_b n \text{ Elemente} \begin{cases} 1 \text{ Problem der Größe } n & \text{Aufwand } 1f(n)n^k \text{ Annahme } f(n) = n^k \\ 2 \text{ Probleme der Größe } \frac{n}{b} & \text{Aufwand } a*f(\frac{n}{b})a(\frac{n}{b})^k \\ 3 \text{ Probleme der Größe } \frac{n}{b^2} & \text{Aufwand } a^2*f(\frac{n}{b^2})a^2(\frac{n}{b})^k \\ \vdots & \vdots & \vdots \end{cases}$

Beispiel: Mergesort

$$a = b = 2$$
$$\gamma = \log_2 2 = 1$$

4.2 Master-Theorem für divide and conquer-Rekursion

$$a \ge 1, b > 1, M, n_0 \ge 1(\frac{n_0}{b} \le n_0 - 1)$$

f(n), T(n)Funktionen auf den natürlichen Zahlen

$$f(n) \geq 0$$

Es gelten die Rekursionsbedingungen

$$T(n) \le aT(\lceil \frac{n}{b} \rceil) + f(n)$$
 $(n > n_0)$

$$T(n) \ge aT(\lfloor \frac{n}{b} \rfloor) + f(n)$$
 $(n > n_0)$

$$1 \le T(n) \le M$$

Dann definieren wir den kritischen Exponenten

$$n = \log a > 0$$

- (-) Wenn $f(n)=\mathcal{O}(n^{\gamma-\epsilon})$ für ein $\epsilon>0$, dann $T(n)=\Theta(n^{\gamma})$
- (=) Wenn $f(n) = \Theta(n^{\gamma})$ ist, dann $T(n) = \Theta(n^{\gamma} \log n)$
- (+) Wenn $f(n) = \Theta(n^{\gamma+\epsilon})$ für ein $\epsilon>0$ ist oder wenn die Reularitätsbedingung erfüllt ist $\exists c<^1$:

(*)
$$a.f(\lceil \frac{n}{b}) \lceil < c.f(n)$$
 für alle $n > n_0$ dann gilt: $T(n) = \Theta(f(n))$

4.2.1 Bemerkungen

- 1. Wenn f monoton ist, dann gelten die Schlussfolgerungen auch für beliebig gemischtes Auf- und Abrunden.
- 2. Mit (*) kann man auch Funktionen wie $f(n) = 2^n$ oder $f(n) = 2^{\sqrt{n}}$ erfassen.
- 3. $\Omega(n^{\gamma+\epsilon})$ im Fall (+) reicht leider nicht.
- 4. $f(n) = n \log n, \gamma = 1$ wird nicht erfasst.

4.3 Beweis: Master-Theorem

- a.) Wir betrachten die oberen Schranken für die Fälle (-) und (=)
 - (a) Ersetze f(n) durch die oberen Schranke $\underline{u}.n^k$ $f(n) \leq u.n^k$ Finde eine Funktion P(n) mit $(***)P(n) \geq aP(\lceil \frac{n}{\hbar} \rceil) + un^k$ für

$$\begin{aligned} n &\geq n_0 \\ \text{und } P(n) &\geq M \text{ für } n \geq n_0 \end{aligned}$$

Dann ergibt sich durch vollständige Induktion: $T(n) \leq P(n)$

Basis:
$$(n \le n_0)$$

$$T(n) \le aT(\lceil \frac{n}{b} \rceil) + f(n) \le (I.V.)$$

$$\le aP(\lceil \frac{n}{b} \rceil) + f(n)$$

$$\le aP(\lceil \frac{n}{b} \rceil) + un^k \le P(n)$$

$$v = \frac{b}{b-1} \Rightarrow -\frac{v}{b} = 1 - v$$

$$P(n) = T'(n-v) \text{ bzw. } T'(n) = P(n+v)$$

$$T'istjetztauf\mathbb{R}_{>0} \text{ definiert.}$$
 Wir bestimmten dann T' so, dass

$$(**)T'(n) = aT'(\frac{n}{b}) + u'n^k$$
 (u ist eine Konstante)

Behauptung: aus (**) folgt (***), falls T' monoton wächst

$$\underbrace{P(n)} \geq aP(\lceil \frac{n}{b} \rceil) + un^k$$

$$\text{L.S.} = P(n) = T'(n-v) = aT'(\frac{n}{b} - \frac{v}{b}) + u'(n-v)^k$$

$$\text{R.S.} = aP(\lceil \frac{n}{b} \rceil) + un^k$$

$$= aT'(\lceil \frac{n}{b} \rceil - v) + un^k$$

$$< aT'(\frac{n}{b} + 1 - v) + un^k$$

$$= aT'(\frac{n-v}{b}) + un^k$$

Jetzt müssen wir nur noch u' so wählen, dass $u'(n-v)^k \geq un^k$ für $n \geq n_0 u' \geq n_0 u'$ $u\frac{n_0^k}{(n_0-v)^k}$ Lösen von (**) durch Ansatz:

Fall (-) $k = \gamma - \epsilon : T'(n) = Dn^{\gamma} + En^k$ Einsetzen in (**)

$$Dn^{\gamma} + En^{k} = aD(\frac{n}{b})^{\gamma} + aE(\frac{n}{b})^{k} + u'n^{k}$$
$$= Dn^{\gamma} \underbrace{\frac{a}{b^{\gamma}}}_{1} + n^{k}(aE\frac{1}{b^{k}} + u')$$

$$E(1 - \frac{a}{b^k} = u', E = \frac{u'}{1 - \frac{a}{b^2}})$$

$$E(1 - \frac{b^{\gamma}}{b^{\gamma - \epsilon}}) = u'$$

$$E(1 - b^{\epsilon}) = u'$$

$$\underline{E} = \frac{-u'}{b^{\epsilon} - 1} < 0$$

D ist noch frei: Wähle D groß genug, dass $P(n) = T'(n-v) = D(n-v)^{\gamma} + C'(n-v)$ $E(n-v)^k \ge M$ für $n \le n_0$ ist.

Fall (=)

$$T'(n) = Dn^{\gamma} + En^{\gamma} \log_b n$$

 $\cdots \Rightarrow E = u'$, D bleibt frei. - D groß genung.

Ergebnis im Fall (-) $T(n) \leq D(n-v)^{\gamma} + E(n-v)^{\gamma-k} = \mathcal{O}(\setminus^{\gamma})$ Ergebnis im Fall (=) = $\mathcal{O}(\setminus^{\gamma} \log \frac{1}{\gamma})$

5 Master Theorem (Fortsetzung) (Vorlesung 6 am 3.11.)

5.1 **Beweis Fortsetzung**

Fall (+)

$$\begin{split} T(n) &\leq T(\lceil \frac{n}{b} \rceil) + f(n) \\ T(n) &\geq T(\lfloor \frac{n}{b} \rfloor) + f(n) \\ f(n) &= \Theta(n^{\gamma + \epsilon}) \\ \gamma &= \log_b a \\ \text{oder: } \forall n > n_0 : \quad a.f(\lceil \frac{n}{b} \rceil) < c.f(n) \end{split}$$

c < 1 ist eine Konstante

$$\Rightarrow T(n) = \Theta(f(n))$$

Beweis (Induktion)

untere Schranke $T(n) \geq f(n)$ (aus der Rekursion) $\Rightarrow T(n) = \Omega(f(n))$

obere Schranke: Ansatz: $T(n) \leq D.f(n)$

Versuch eines Beweises durch Induktion.

 n_0 groß genug machen, dass $\frac{n_0}{b} \leq n_0 - 1 \Rightarrow \frac{n}{b} \leq n - 1 \forall n \geq n_0$

 $\Rightarrow \left\lceil \frac{n}{h} \right\rceil < n$ Induktion kann funktionieren.

Induktionsschritt: $n \ge n_0$ für i < n sei T(i)D.f(i) schon bewiesen.

$$\begin{split} T(n) & \leq aT(\lceil\frac{n}{b}\rceil) + f(n) \\ & \leq a.D.f(\lceil\frac{n}{b}\rceil) + f(a) \quad \text{ nach I.V.} \\ & \leq D.cf(n) + f(n) \quad \text{Regularitätsbedingung} \\ & \leq D.f(n) \end{split}$$

$$\underbrace{Dc+1 \leq D}_{\text{notwendig}}$$

$$\leftrightarrow D(1-c) \leftrightarrow D \geq \frac{1}{1-c}$$

Induktionsbasis: Wähle D groß genug, dass $T(i) \leq Df(i)$ für $i = 1, 2, ..., n_0 - 1$ gilt.

(Voraussetzung:
$$f(i) > 0$$
)
$$D = \max\{\frac{T(1)}{f(1)}, \frac{T(2)}{f(2)}, \dots, \frac{T(n_0)}{f(n_0)}, \frac{1}{1-c}\}$$
 2. Fall: $f(n) = \Theta(n\gamma + \epsilon), \epsilon > 0$

Obere Schranke (a) Ersetze f(n) durch $u.n^{\gamma+\epsilon}$

Beweise, dass $f(n) = u.n^{\gamma + \epsilon}$ die Regularitätsbedingung erfüllt. (zunächst ohne Aufrunden, weil leichter).

$$a.f(\frac{n}{b}) < c.f(n)$$
 L.S. = $a.u.(\frac{n}{b})^{\gamma+\epsilon} = \frac{a.un^{\gamma+\epsilon}}{b^{\gamma}.b^{\epsilon}}$ R.S. = $c.u.n^{\gamma+\epsilon}$

 n_0 so groß wählen, dass $\frac{(\frac{n}{b}+1)^{\gamma+\epsilon}}{(\frac{n}{b})^{\gamma+\epsilon}}$ nahe genug bei 1 ist, sodass die L.S. immer noch < cf(n) ist.

$$\Leftarrow (1+rac{b}{n_0})^{\gamma+\epsilon} < b^\epsilon \leftarrow n_0$$
 groß genug wählen.

5.2 Zählen von Fehlständen (Inversion)

Ein Fehlstand ist ein Paar $a_i>a_j$ mit i>j. $(7,3,17,12,16,20)=(a_1,\ldots,a_n)$ $0\leq \text{Fehlstände}\leq {n\choose 2}$