AVALIAÇÃO UNIDADE II

Aluno: Rychardson Ribeiro de Souza

Disciplina: Algoritmos e Estruturas de Dados I

Professor: Eduardo de Lucena Falcão

QUESTÃO 1

Algoritmos de Ordenação

ITEM A - Q1

```
#include <stdio.h>
#include <stdlib.h>
void selectionSort(int* v, int tamanho){
  int i, aux, j, menor;
  for(i=0;i<tamanho;i++){</pre>
     menor = v[i];
        for(j=i;j<tamanho;j++){</pre>
           if(v[j]<menor){</pre>
             aux=menor;
             menor=v[j];
             v[j]=aux;
          }
       }
  v[i]=menor;
}
int main () {
  int tamanho, *v;
  printf("Entre com o tamanho: ");
  scanf("%d", &tamanho);
  v = (int*) malloc(tamanho*sizeof(int));
     for(int i=0;i<tamanho;i++){</pre>
           scanf("%d", &v[i]);
     }
     selectionSort(v, tamanho);
     printf("\nSeu vetor ordenado sera: [ ");
     for(int i=0;i<tamanho;i++){</pre>
```

```
printf("%d ", v[i]);
     printf("]");
return 0;
                                          ITEM B - Q1
#include <stdio.h>
#include <stdlib.h>
void bubbleSort(int* v, int tamanho){
  int i, aux, j, cont=0;
   for(i=0;i<tamanho;i++){</pre>
       for(j=0;j<tamanho-1;j++){
          if(v[j]>v[j+1]){
             aux=v[j+1];
             v[j+1]=v[j];
             v[j]=aux;
             cont++;
          }
       }
       if(cont==0){
          break;
       }
       cont=0;
  }
}
int main () {
  int tamanho, *v;
  printf("Entre com o tamanho: ");
  scanf("%d", &tamanho);
  v = (int*) malloc(tamanho*sizeof(int));
     for(int i=0;i<tamanho;i++){</pre>
          scanf("%d", &v[i]);
     }
     bubbleSort(v, tamanho);
     printf("\nSeu vetor ordenado sera: [ ");
```

for(int i=0;i<tamanho;i++){
 printf("%d ", v[i]);</pre>

}

printf("]\n");

```
return 0;
}
                                           ITEM C - Q1
#include <stdio.h>
#include <stdlib.h>
void insertionSort(int* v, int tamanho){
  int i, aux, j;
  for(i=0;i<tamanho;i++){</pre>
        for(j=i;j>0;j--){
           if(v[j-1]>v[j]){
             aux=v[j];
             v[j]=v[j-1];
             v[j-1]=aux;
          }else{
             break;
          }
        }
  }
}
int main () {
  int tamanho, *v;
  printf("Entre com o tamanho: ");
  scanf("%d", &tamanho);
  if(tamanho<=1){
     return 0;
  }
  v = (int*) malloc(tamanho*sizeof(int));
     for(int i=0;i<tamanho;i++){</pre>
           scanf("%d", &v[i]);
     }
     insertionSort(v, tamanho);
     printf("\nSeu vetor ordenado sera: [ ");
     for(int i=0;i<tamanho;i++){</pre>
        printf("%d ", v[i]);
     printf("]\n");
return 0;
}
```

ITEM D - Q1

```
#include <stdio.h>
#include <stdlib.h>
void merge(int *v, int inicio, int meio, int fim) {
  int ini1 = inicio, ini2 = meio+1, iniAux = 0, tamanho = fim-inicio+1;
  int *vAux:
  //alocar o tamanho para o meu vetor auxiliar
  vAux = (int*)malloc(tamanho * sizeof(int));
  //inicio dos laços de repetição para ordenar meu vetor
  while(ini1 <= meio && ini2 <= fim){
     if(v[ini1] < v[ini2]) {
       vAux[iniAux] = v[ini1];
       ini1++;
    } else {
       vAux[iniAux] = v[ini2];
       ini2++;
    iniAux++;
  }
  //repetição para caso tenha sobrado elementos na primeira
  //metade do vetor
  while(ini1 <= meio){
     vAux[iniAux] = v[ini1];
    iniAux++;
    ini1++;
  }
  //repetição para caso tenha sobrado elementos na segunda
  //metade do vetor
  while(ini2 <= fim) {
     vAux[iniAux] = v[ini2];
    iniAux++;
    ini2++;
  }
  //repetição responsável por colocar os vetores de volta
  //no vetor principal que será impresso na Main
  for(iniAux = inicio; iniAux <= fim; iniAux++){</pre>
```

```
v[iniAux] = vAux[iniAux-inicio];
  }
  free(vAux);
}
void mergeSort(int *v, int inicio, int fim){
  if (inicio < fim) {
     int meio = (fim+inicio)/2;
     mergeSort(v, inicio, meio);
     mergeSort(v, meio+1, fim);
     merge(v, inicio, meio, fim);
  }
}
int main() {
  int *vPrincipal, tamanho, aux=0;
  printf("Entre com o tamanho: ");
  scanf("%d", &tamanho);
  vPrincipal = (int*) malloc(tamanho*sizeof(int));
     for(int i=0;i<tamanho;i++){</pre>
          scanf("%d", &vPrincipal[i]);
     }
  mergeSort(vPrincipal, aux, tamanho-1);
  printf("\nSeu vetor ordenado sera: [ ");
     for(int i=0;i<tamanho;i++){</pre>
       printf("%d ", vPrincipal[i]);
     }
     printf("]");
}
                                          ITEM E - Q1
#include <stdio.h>
#include <stdlib.h>
void quickSort(int *v, int esquerda, int direita);
int main(){
 int tamanho, *vet;
  printf("Entre com o tamanho: ");
  scanf("%d", &tamanho);
  if(tamanho<=1){
     return 0;
```

```
}
  vet = (int*) malloc(tamanho*sizeof(int));
     for(int i=0;i<tamanho;i++){</pre>
           scanf("%d", &vet[i]);
     }
quickSort(vet, 0, tamanho-1);
 printf("\nSeu vetor ordenado sera: [ ");
     for(int i=0;i<tamanho;i++){</pre>
        printf("%d ", vet[i]);
     }
     printf("]\n");
return 0;
}
void quickSort(int *v, int esquerda, int direita) {
  int indicel, indiceJ, aux, pivo;
  indicel = esquerda;
  indiceJ = direita;
  pivo = v[(rand()%direita)];
  while(indicel <= indiceJ) {
     while(v[indicel] < pivo && indicel < direita) {
        indicel++;
     }
     while(v[indiceJ] > pivo && indiceJ > esquerda) {
        indiceJ--;
     }
     if(indicel <= indiceJ) {</pre>
        aux = v[indicel];
        v[indicel] = v[indiceJ];
        v[indiceJ] = aux;
        indicel++;
        indiceJ--;
     }
  }
  if(indiceJ > esquerda) {
     quickSort(v, esquerda, indiceJ);
  if(indicel < direita) {</pre>
     quickSort(v, indicel, direita);
```

}			F	uncior	nament	-	STÃO algorit		ordenação		
						ITEM	I A - Q	2			
	-							oasta aloo nte forma	car o espaç :	o necessá	rio para o
• alea	itório =	[3, 6, 2	2, 5, 4	, 3, 7,	1, 10°]						
						Veto	or origi	nal			
3		6		2	5		4	3	7	1	10 ⁹
	Iremos definir o menor valor como o primeiro elemento do vetor na primeira repetição do primeiro laço "for"										
3	3 6 2 5 4 3 7 1 10 ⁹										
os out	Iremos agora comparar o menor valor (1º elemento) com todos os outros elementos do vetor para encontrarmos qual é o menor elemento desse vetor										
3	6	2	5	4	3	7	1	10 ⁹			
3<6?	Verdad T	leiro, s	eguire	mos c	om o 3	3 a pró	xima d	comparaç	ão		
3	6										
	Falso, iremos						s seau	intes do v	/etor		
3	2]									
2<5?	2<5? Verdadeiro, seguiremos com o 2 a próxima comparação										
2											
2<4?	2<4? Verdadeiro, seguiremos com o 2 a próxima comparação										
2											
2<3?	Verdad	i leiro, s	eguire	mos c	om o 2	2 a pró	xima d	comparaç	ão		
2	3										
2<7?	Verdad	leiro, s	eguire	mos c	om o 2	2 a pró	xima d	comparaç	ão		
2	7										
2<4?	Falso,	- 1 será	o nov	o men	or valo	r, entâ	io				

1<10⁹? Verdadeiro, como chegamos ao fim do vetor e não temos elementos seguintes para fazer a comparação, no primeiro laço de

iremos comparar o 1 com os valores seguintes do vetor

2

repetição do primeiro "for", o 1 será o nosso menor valor

1 10 ⁹

Feito isso, colocaremos o elemento "1" no primeiro laço de repetição "for" como elemento do índice 0 do vetor

		 		_
		1		
1		l		
		l		
•		l		
	I			

Como concluímos a primeira repetição do primeiro laço "for", quando formos a segunda repetição do segundo laço for, faremos n-1 comparações, pois já temos o primeiro elemento do vetor ordenado definido, por isso começamos com o j=i, sabendo disso, faremos os mesmos passos feitos anteriormente e encontraremos o menor valor de cada repetição

Resultado para segundo laço de repetição do primeiro "for"

recountage	para segu	nao iago o	ic repetiçu	o do primi	- 101						
1	2										
Resultado	para o ter	ceiro laço	de repetiçã	ão do prim	eiro "for"			•			
1	2	3									
Resultado	para o qua	arto laço d	e repetição	o do prime	iro "for"						
1	2	3	3								
Resultado	para o qui	nto laço de	e repetição	do prime	iro "for"						
1	2	3	3	4							
Resultado para o sexto laço de repetição do primeiro "for"											
1	2	3	3	4	5						
Resultado	para o sét	imo laço d	e repetiçã	o do prime	eiro "for"						
1	2	3	3	4	5	6					
Resultado	Resultado para o oitavo laço de repetição do primeiro "for"										
1	2	3	3	4	5	6	7				
Resultado	para o nor	no laço de		do primeir							

ITEM B - Q2

4

5

7

6

10⁹

Como já possuímos o tamanho definido do vetor, basta alocar o espaço necessário para o array, com isso, nossas iterações ficarão da seguinte forma:

• aleatório = [3, 6, 2, 5, 4, 3, 7, 1, 10⁹]

2

3

3

1

Vetor Original

_									
	3	6	2	5	4	3	7	1	10 ⁹

No bubbleSort nós iremos comparar o elemento da esquerda com o da sua direita, percorrendo todo o vetor, de maneira que se o elemento da esquerda for maior que o da sua direita, deslocaremos o elemento maior uma posição para a direita.

Como preciso percorrer todo o vetor, "n vezes", adotei uma repetição aninhada com 2 "for", primeiro irei ilustrar a repetição para o segundo for, que será responsável pelo deslocamento para a direita, vale ressaltar que como iremos fazer uma comparação, precisamos de 2 elementos no mínimo para realizá-lo, por isso sempre estaremos utilizando a comparação com "j+1" e indo até "tamanho-1", se não na última repetição iria ser utilizado um "valor lixo" na comparação porque o vetor estaria encerrado e não teria um "j+1".

Primeira repetição do segundo laço "for", iremos comparar 3>6? Falso, logo o vetor não

será mexido

Assim teremos:

10⁹ Segunda repetição do segundo laço "for", iremos comparar 6>2? Verdadeiro, logo o vetor será alterado, onde o 6 trocará de posição com o 2 10⁹ Assim teremos: 10⁹ Terceira repetição do segundo laço "for", iremos comparar 6>5? Verdadeiro, logo o vetor será alterado, onde o 6 trocará de posição com o 5 10⁹ Assim teremos: 10⁹ Quarta repetição do segundo laço "for", iremos comparar 6>4? Verdadeiro, logo o vetor será alterado, onde o 6 trocará de posição com o 4 10⁹ Assim teremos: 10⁹ Quinta repetição do segundo laço "for", iremos comparar 6>3? Verdadeiro, logo o vetor será

3 2 5 4 3 6 7 1 10⁹
Sexta repetição do segundo laço "for", iremos comparar 6>7? Falso, logo o vetor não será mexido

10⁹

alterado, onde o 6 trocará de posição com o 3

3 2 5 4 3 6 7 1 10⁹

Sétima repetição do segundo laço "for", iremos comparar 7>1? Verdadeiro, logo o vetor será alterado, onde o 7 trocará de posição com o 1

3	2	5	4	3	6	7	1	10 ⁹
---	---	---	---	---	---	---	---	-----------------

Assim teremos:

3	2	5	4	3	6	1	7	10 ⁹
	1							

Oitava repetição do segundo laço "for", iremos comparar 7>109? Falso, logo o vetor não será mexido

Com o fim da última repetição do segundo laço "for", chega ao fim a primeira repetição do primeiro laço "for", que ficará:

3	2	5	4	3	6	1	7	10 ⁹

Agora irei ilustrar as demais repetições para o primeiro laço "for", utilizando da mesma ideia dos passos anteriores, desta vez, indo de maneira bem mais rápida.

Operações feitas na segunda repetição: 3>2? (V); 3>5? (F); 5>4? (V); 5>3? (V); 5>6? (F) 6>1? (V); 6>7? (V)

Resultado para o fim da segunda repetição do primeiro laço "for":

		2	3	4	3	5	1	6	7	10 ⁹
--	--	---	---	---	---	---	---	---	---	-----------------

Visto isso, operações semelhantes irão ocorrer nas demais repetições do primeiro laço.

Resultado para o fim da terceira repetição do primeiro laço "for":

3	3	4	1	5	6	7	10 ⁹			
Resultado para o fim da quarta repetição do primeiro laço "for":										
3	3	1	4	5	6	7	10 ⁹			
Resultado para o fim da quinta repetição do primeiro laço "for":										
3	1	3	4	5	6	7	10 ⁹			
Resultado para o fim da sexta repetição do primeiro laço "for":										
1	3	3	4	5	6	7	10 ⁹			
Resultado para o fim da sétima repetição do primeiro laço "for":										
2	3	3	4	5	6	7	10 ⁹			
	3 para o fim 3 para o fim 1	3 3 para o fim da quinta r 3 1 para o fim da sexta re 1 3	3 3 1 para o fim da quinta repetição d 3 1 3 para o fim da sexta repetição do 1 3 3	3 3 1 4 para o fim da quinta repetição do primeiro 3 1 3 4 para o fim da sexta repetição do primeiro la 1 3 3 4	para o fim da quarta repetição do primeiro laço "for": 3	para o fim da quarta repetição do primeiro laço "for": 3	para o fim da quarta repetição do primeiro laço "for": 3			

Seguindo a sequência do código que implementei, o laço de repetição do primeiro "for" deveria ser passado mais duas vezes, sendo a oitava e nona repetição, mas como podemos notar, o vetor já está totalmente ordenado com apenas 7 repetições, isso se dá porque o código implementado foi pensado para situações que o vetor estivesse totalmente desordenado e precisasse realizar o máximo de iterações possíveis.

Para resolver isso, criei uma variável "cont=0" que iria aumentar em 1 unidade sempre que alguma troca de valores fosse realizada no vetor, caso toda a repetição do segundo "for" terminasse e o "cont" continuasse em 0, isso significa que o meu vetor está ordenado e eu posso parar a execução do programa.

Vale ressaltar que essa otimização só foi notada quando eu estava ilustrando para a "Questão 02" cada iteração do meu código.

ITEM C - Q2

• aleatório = [3, 6, 2, 5, 4, 3, 7, 1, 10⁹]

Vetor Original

3	6	2	5	4	3	7	1	10 ⁹
---	---	---	---	---	---	---	---	-----------------

No InsertionSort nós iremos inserir ordenadamente um elemento "x" na sua posição correta no vetor, em outras palavras, guardaremos o "elemento da vez" e faremos comparações para saber a real posição dele, desta forma, nos lembra o BubbleSort, a grande diferença é que o nosso vetor fará menos operações, pois ele não precisará percorrer todo o tamanho do vetor original em cada repetição, já que será inserido apenas 1 novo elemento para comparação a cada repetição do "for" externo, desta forma, sendo mais eficiente.

Na primeira repetição do primeiro laço "for", será simplesmente adicionado o primeiro valor, porque não temos um outro para comparar, nesta situação, pela confecção do meu código, montei o algoritmo visando ignorar o segundo laço de repetição ("for" interno) nessa situação

- 1					
- 1					
- 1	2				
- 1	.5				
- 1					
- 1					

Próximo elemento a ser adicionado: 6, com isso faremos a seguinte comparação v[j-1]>v[j]? 3>6? Falso, logo apenas adicionaremos o 6 no final do vetor:

Ī	2	6				
ı	၁	O				

Com isso, o 3 e o 6, já estarão ordenados, agora iremos adicionar o próximo elemento: 2 Agora faremos uma comparação, v[j-1]>v[j]? 6>2? Verdadeiro, logo iremos trocá-los de posição

Į	posição										
I	3	2	6								

Depois disso, será feito novamente v[j-1]>v[j]? Repare que como estamos decrescendo o valor de "j" e estamos na repetição seguinte do laço "for" interno, o elemento v[j-1] será o "3", desta forma, 3>2? Verdadeiro, logo os trocamos de posição, ficando:

2	3	6				
					l	

Próximo elemento a ser adicionado: 5, então faremos v[j-1]>v[j]? 6>5? Verdadeiro, logo os trocamos de posição, gerando:

_							
	2	3	5	6			

É importante comentar que uma otimização que notei para evitar fazer muitas comparações, foi colocar um comando "break", porque como estamos inserindo ordenadamente, quando formos a próxima repetição, se percebemos que "v[j-1]>v[j]" se provar sendo falso, apenas uma única vez, podemos encerrar o "loop do for interno", pois significa que irá falhar para todas as outras repetições, que é o que acontece no passo acima, quando chegarmos na comparação 3>5, será falso, e como os elementos adicionados anteriormente já estavam ordenados, não há necessidade de continuar as comparações.

			nado: 4, co cará assim		emos a se	guinte con	nparação, (6>4?	
2	3	5	4	6					
A próxima	comparaç	ão será 5>	∙4? Verdac	leiro, logo	nosso veto	r fica:	<u> </u>	<u> </u>	
2	3	4	5	6					
	·		•		•		a condição dadeiro, ei		
	suas posiç								
2	3	4	5	3	6				
A próxima	comparaç	ão será: 5	>3? Verda	deiro, entã	o trocamo	s suas pos	ições, fica	ndo:	
2	3	4	3	5	6				
Próxima c	omparação	o: 4>3? Ve	rdadeiro, e	ntão troca	mos suas	posições,	ficando:		
2	3	3	4	5	6				
					•		mento, que so vetor fi		
2	3	3	4	5	6	7			
Próximo elemento a ser adicionado: 1, então iremos comparar 7>1? Verdadeiro, então trocamos suas posições, ficando:									
2	3	3	4	5	6	1	7		
(V), 3>1 (\ sempre ire	/), 2>1? (V emos realiz	/), todas as zar sucessi	-	ções se pro	ovaram ve	rdadeiras,	I? (V), 4>1 desta forn		
2	ão 6>1, ve	3	4	5	1	6	7		
	ão 5>1, ve		•	9			1		
2	3	3	4	1	5	6	7		
L Comparaç	l :ão 4>1, v∈	etor fica:						l	
2	3	3	1	4	5	6	7		
 Comparaç	ão 3>1, ve	tor fica:							
2	3	1	3	4	5	6	7		
Comparaç	ão 3>1, ve	tor fica:							
2	1	3	3	4	5	6	7		
Comparaç	ão 2>1, ve	etor fica:							
1	2	3	3	4	5	6	7		

Próximo elemento a ser adicionado: 10⁹, com isso faremos a seguinte comparação, 7>10⁹? Falso, logo nossa repetição se encerra e não possuímos mais elementos para adicionar, isso significa que temos o **Vetor Ordenado**:

1	2	3	3	4	5	6	7	10 ⁹
•	_		-	-			-	

Observação: é importante reparar que o meu código de ordenação está semelhante a implementação feita pelo professor, mesmo assim, esse foi o código que implementei por conta própria, tanto que para exemplificar isso, em versão anteriores eu estava utilizando uma relação errônea:

```
for(i=0;i<tamanho;i++){
    for(j=0;j<i;j++){
        if(v[j]>v[i]){
        aux=v[j];
        v[j]=v[i];
        v[i]=aux;
    }
}
```

Neste código, tinham situações que eu estava desordenando o vetor para adicionar um elemento e depois precisava reordena-lo novamente, ou seja, muitas comparações desnecessárias, vale mencionar que eu só notei esses erros quando estava ilustrando iteração por iteração na questão 02C, desta forma, coloquei apenas a versão final melhorada do meu código, que como mencionei acima, é semelhante a realizada pelo professor.

ITEM D - Q2

• decrescente = [7, 6, 5, 4, 3, 3, 2, 1]

Vetor Original

7 6 5	4	3	3	2	1
-------	---	---	---	---	---

Primeiramente, iremos dividir o vetor em 2 partes, e cada parte dessa, iremos dividir pela metade sucessivamente até que tenha apenas 1 elemento, essa é a nossa função "mergeSort".

PRIMEIRA divisão do vetor original:

7 6 5 4									
SEGUNDA divisão do vetor original:									
3 3 2 1									
Inicialmente manage									

Inicialmente, pegamos o vetor [7, 6, 5, 4] e iremos dividir até que sobre apenas 1 elemento, na próxima divisão, teremos como resultado:

7	6
5	4

Com isso, na próxima repetição, após outra divisão por 2, sobrará apenas um elemento, gerando assim 4 partes, cada uma com 1 elemento: primeiro elemento: 7 segundo elemento: 6 terceiro elemento: 5 quarto elemento: 4 Agora partiremos para a **SEGUNDA** divisão do vetor original, que é: 3 1 Os processos a serem feitos, serão os mesmos feitos anteriormente, desta vez com os elementos [3, 3, 2, 1], desta forma, irei ilustrar mais rapidamente, já que a função "mergeSort" é responsável por sucessivas divisões para depois chamar a função de ordenação "merge": 3 3 2 1 quinto elemento: 3 sexto elemento: 3 sétimo elemento: 2 oitavo elemento: 1

Devemos lembrar que o algoritmo de ordenação Merge Sort é do tipo de divisão e conquista, ou seja, quando não for mais divisível, sobrando apenas um elemento, será a hora de "conquistar".

Com isso, faremos um caminho inverso, com a chamada da função "merge" responsável por ordenar todas as 8 partes do nosso vetor.

Iremos comparar o 1º elemento com o 2º elemento

ona repetição do p	Primeira repetição do primeiro laço while, 7<6? Falso								
	7		6						
Assim na parte da "cor	nquista" temos os 2 prim	neiros elementos orden	ados:						
	6		7						
Em seguida, comparar	nos o 3º elemento com	4° elemento, 5<4? Fals	80, :						
!	5		4						
Gerando:									
	4		5						
Comparando os 4 elementos obtidos dos 2 passos anteriores, chegaremos a uma ordenação, assim temos que essa primeira parte do nosso vetor original está ordenada já:									
4	5	6	7						
	r seu 5° elemento com		aremos: 3<3? Falso						
Ficando:									
:	3		3						
Depois, iremos compar	rar o 7º elemento com o	8º elemento, 2<1? Fa	lso:						
	2		1						
	1		2						
	1		2						
Desta forma, quando c	1								
Desta forma, quando com: 1 Resultado da ordenação	1 omparamos os elementos 2 do para os 4 primeiros	tos obtidos nos 2 passo 3 elementos:	2 os anteriores, ficaremos 3						
Desta forma, quando com: 1 Resultado da ordenaçã	omparamos os elementos 2 áo para os 4 primeiros 5	tos obtidos nos 2 passo 3 elementos:	2 os anteriores, ficaremos						
Desta forma, quando com: 1 Resultado da ordenaçã 4 Resultado da ordenaçã	omparamos os elementos ao para os 4 primeiros 5 ao para o 4 últimos ele	as a selementos: 6 mentos:	2 os anteriores, ficaremos 3						
Desta forma, quando com: 1 Resultado da ordenaçã 4 Resultado da ordenaçã 1	omparamos os elementos ao para os 4 primeiros ao para o 4 últimos ele 2 so de ordenação, comp	as a selementos: 6 mentos: 3	2 os anteriores, ficaremos 3						

• crescente=[1,2,3,3,4,5,6,7]

1 2 3	3 4	1 5	6	7
-------	-----	-----	---	---

Como nosso vetor está ordenado, se escolhermos o pivô como o último número, o nosso código começará com o índice "i" da esquerda e continuará enquanto ele for menor que o pivô, a fim de deixar todos os elementos menores que o pivô a sua esquerda e enquanto o índice "i" for menor que o pivô, ele será acrescido.

1	2	3	3	4	5	6	7
							pivô
1	2	3	3	4	5	6	7
i = 0							
1	2	3	3	4	5	6	7
	i=1						
1	2	3	3	4	5	6	7
		i=2					
1	2	3	3	4	5	6	7
			i=3				
1	2	3	3	4	5	6	7
				i=4			
1	2	3	3	4	5	6	7
					i=5		
1	2	3	3	4	5	6	7
						i=6	pivô

Como podemos notar, de acordo com o exemplo de nossa primeira repetição, é perceptível que os índices continuarão a se alterar, nosso algoritmo fará o particionamento, escolherá o pivô, mas o resultado final continuará sendo o vetor original, pois mesmo que ainda tenhamos que fazer as comparações, sempre que escolhermos um novo pivô e fizermos eventuais trocas para colocar os elementos menores a esquerda e maiores a direita, o próprio algoritmo irá "desfazer" posteriormente.

QUESTÃO 03

Experimentos com algoritmos de ordenação

ITEM A - Q3

Para realizar a experimentação do "item a", iremos utilizar um tamanho pequeno para os vetores, nestes testes, usarei como base um tamanho de 10 para o array, para calcular o tempo, inclui a biblioteca "time.h" no meu código e marcar o tempo de execução antes da chamada da função (0) e o tempo após o término do ordenamento.

Tipo de Ordenação	Tempo (ms)	
Selection Sort	0,000000	
Bubble Sort	0,000000	
Insertion Sort	0,000000	
Merge Sort	0,000000	
Quick Sort	0,000000	

Como o vetor é muito pequeno, independente da disposição dos elementos, não influenciará no tempo, com todos os algoritmos tendo um desempenho semelhante.

ITEM B - Q3

No item B, verifiquei que para o tamanho de 10³ os algoritmos permaneciam com desempenho muito semelhante, desta forma, passei a utilizar valores de 10⁴ para uma melhor análise e de fato isso se constatou na tabela abaixo, onde notamos que dependendo do tamanho do vetor e da sua configuração de valores, o funcionamento será consideravelmente afetado, mas o principal destaque vai para o "Quick Sort", que se manteve extremamente estável para os diferentes casos, tendo um desempenho excelente.

	Vetor Decrescente	Vetor Crescente	Vetor Aleatório
Tipo de Ordenação	Tempo (ms)	Tempo (ms)	Tempo (ms)
Selection Sort	140	133	249
Bubble Sort	335	0	350
Insertion Sort	234	0	124
Merge Sort	1	2	3
Quick Sort	0	0	0

ITEM C - Q3

Conforme a tabela do "item b - q3", podemos reparar que o Merge Sort tem um desempenho bom para os diferentes casos, não é tão excepcional quanto o Quick Sort, mas podemos afirmar que sua eficiência é boa para valores menores que a casa de 10⁵ independente da distribuição dos valores, dado que em diversas experimentações o Merge Sort se manteve bem.

ITEM D - Q3

Durante a experimentação, utilizando valores de 10⁴ que gera a tabela mostrada no "item b - q3", o desempenho se manteve estável, utilizando 10⁵ o desempenho teve uma pequena variação, mas continuou se mantendo estável, sem variar tanto, as maiores variações só vieram quando utilizamos elementos da grandeza de 10⁶, que enquanto davam tempos próximos de 0ms para 10⁴, tempos próximo de 10ms para 10⁵, para valores de 10⁶ o tempo ficou próximo de 150ms.