Notas de Topología Algebraica

Prof. Luis Jorge Sánchez Saldaña Notas por Dani

29 de junio de 2023

Índice

I Grupo fundamental		apo fundamental	3	
II	Es	pacios cubrientes	4	
III Homología			5	
1.	Álgebra Homológica		6	
	1.1.	Conceptos básicos	6	
		Sucesiones exactas	7	
			8	
			9	
		Teorema fundamental del álgebra homológica	10	
			11	
	1.7.	Lema de los cinco	11	
2.	Hon	nología singular	12	
		8 8	12	

Parte I Grupo fundamental

Parte II Espacios cubrientes

Parte III

Homología

Capítulo 1

Álgebra Homológica

1.1. Conceptos básicos

En este capítulo R denotará un anillo asociativo con unidad (no necesariamente conmutativo). Normalmente pensaremos que es alguno de los siguientes: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

Recordemos que un R-módulo es básicamente un espacio vectorial pero los escalares están R.

Definición. Un *R***-complejo de cadenas** es una sucesión de *R*-módulos y homomorfismos

$$(C_{\bullet}, \partial) := \cdots \longrightarrow C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} C_{p-2} \longrightarrow \cdots$$

tal que $\partial_{p-1}\partial_p=0$ para toda $p\in\mathbb{Z}$, que es equivalente a que img $\partial_p\subseteq\ker\partial_{p-1}$.

Definición. Un morfismo de R-complejos de cadenas es $(C_{\bullet}, \partial) \to (D_{\bullet}, \delta)$ es una sucesión de R-homomorfismos $C_p \xrightarrow{f_p} D_p$ tal que el siguiente diagrama conmuta:

$$\cdots \longrightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \longrightarrow \cdots$$

$$\downarrow^{f_{p+1}} \qquad \downarrow^{f_p} \qquad \downarrow^{f_{p-1}}$$

$$\cdots \longrightarrow D_{p+1} \xrightarrow{\delta_p} D_p \xrightarrow{\delta_p} D_{p-1} \longrightarrow \cdots$$

es decir $f_{p-1}\partial_p=\delta_p f_p$ para toda $p\in\mathbb{Z}.$

Definición. Decimos que (D_{\bullet}, δ) es un subcomplejo de cadenas de (C_{\bullet}, ∂) si $D_p \leq C_p$ para toda $p \in \mathbb{Z}$ y $\partial|_{D_p} = \delta_p$. El cociente $(C_{\bullet}/D_{\bullet}, \partial)$ es el complejo de cadenas dado por

$$\cdots \longrightarrow C_{p+1}/D_{p+1} \xrightarrow{\partial_{p+1}} C_p/D_p \xrightarrow{\partial_p} C_{p-1}/D_{p-1} \longrightarrow \cdots$$

donde los mapeos frontera son de la forma $\partial_p/\delta_p([c]) = [\partial_p(c)]$.

7

Definición.

- Los elementos en C_p se llaman cadenas de dimensión p.
- Los elementos en $\ker \partial_p := Z_p$ se llaman ciclos de dimensión p.
- Los elementos en img $\partial_{p+1} := F_p := B_p$ se llaman fronteras de dimensión p.

Definición. El p-ésimo grupo de homogía de (C_{\bullet}, d) es

$$H_p(C) := Z_p/B_p = \ker \partial_p/\mathrm{img} \, \partial_{p+1}$$

Y decimos que dos ciclos c y c' son **homólogos** si $[c] = [c'] \in H_p(C_{\bullet})$.

Veamos una figura de dos ciclos homólogos:

Ejercicio (Función inducida). Si $(C_{\bullet}, \partial) \xrightarrow{f} (C'_{\bullet}, \partial')$ es un homeomorfismo, entonces $f(Z_p) \subseteq Z'_p$ y $f(B_p) \subseteq B'_p$ así que la función inducida

$$\bar{f}_p: H_p(C_{\bullet}) \to H_p(C_{\bullet})$$

 $a + B_p \mapsto f_p(a) + B'_p$

está bien <u>definida</u>. Si además tenemos un segundo homomorfismo $(C'_{\bullet}, \partial') \xrightarrow{g} (C''_{\bullet}, \partial'')$, entonces $\overline{g} \circ \overline{f} = \overline{g} \circ \overline{f}$. Y por último, $\overline{Id}_{C_p} = Id_{H_p(C)}$.

Con este ejercicio comenzamos a ver las propiedades funtoriales de la homología, aunque por ahora no profundizaremos en este lenguaje.

1.2. Sucesiones exactas

Definición. Decimos que la sucesión

$$\cdots \longrightarrow C_p \xrightarrow{f_p} C_{p-1} \xrightarrow{f_{p-1}} C_{p-2} \longrightarrow \cdots$$

es **exacta** en C_p si img $f_p = \ker f_{p-1}$. Y la sucesión es **exacta** si es exacta en todos los C_p . Esto sucede si y sólo si $H_p(C_{\bullet}) = 0$ para todo $p \in \mathbb{Z}$.

Observación.

- El grupo de homología mide qué tan lejos está la sucesión de ser exacta.
- La sucesión puede ser "finita", o sea pueden haber muchos módulos que son cero.

Definición. Una sucesión exacta de la forma

$$0 \to P \to Q \to R \to 0$$

se llama **sucesión exacta corta**. Las sucesiones exactas infinitas en ambas direcciones se llaman **sucesiones exactas largas**.

Proposición.

- 1. $0 \to A \xrightarrow{\alpha} B$ es exacta si y sólo si ker $\alpha = 0$, es decir α es invectiva.
- 2. $A \xrightarrow{\alpha} B \to 0$ es exacta si y sólo si img $\alpha = B$, es decir α es suprayectiva.
- 3. $0 \to A \xrightarrow{\alpha} B \to 0$ es exacta si y sólo si α es un isomorfismo por los dos incisos anteriores.
- 4. $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ es exacta si y sólo si α es inyectiva, β es suprayectiva y $\ker \beta = \operatorname{img} \alpha$, de manera que β induce un isomorfismo $C \cong B/\operatorname{img} \alpha$.

Si pensamos que α es la inclusión de A como subgrupo de B, podemos escribir $C\cong B/A$.

Observación (Primer teorema de isomorfismo). Si $M' \subseteq M$, entonces

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M/M' \longrightarrow 0$$

es una sucesión exacta.

1.3. Homotopía

Definición. Dos homomorfismos

$$f,g:(C_{\bullet},\partial)\to(C'_{\bullet},\partial')$$

son **homotópicos** si existen homomorfismos $H_p:C_p\to C'_{p+1}$ para toda $p\in\mathbb{Z}$ tales que

$$f_p - g_p = \partial'_{p+1} H_p + H_{p-1} \partial_p$$

Estas flechas se pueden visualizar aquí:

$$\cdots \longrightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \longrightarrow \cdots$$

$$\downarrow^{f_{p+1}-g_{p+1}} \downarrow H_p \qquad \downarrow^{f_p-g_p} H_{p-1} \downarrow^{f_{p-1}-g_{p-1}}$$

$$\cdots \longrightarrow C'_{p+1} \xrightarrow{\partial'_{p+1}} C'_p \xrightarrow{\partial'_p} C'_{p-1} \longrightarrow \cdots$$

Así que la suma de las flechas azules es igual a la flecha roja. (No estamos diciendo que el diagrama sea conmutativo).

Lema. Con la notación de arriba, $\bar{f}_p = \bar{g}_p : H_p(C_{\bullet}) \to H_(C'_{\bullet})$. Es decir, funciones homotópicas inducen funciones iguales en homología.

1.4. El lema de la serpiente

Lema (de la serpiente). Consideremos el diagrama conmutativo de R-módulos y supongamos que sus filas son exactas:

$$Z'_{1} \xrightarrow{\phi'} Z'_{2} \xrightarrow{\psi'} Z'_{3} \longrightarrow 0$$

$$\downarrow \partial_{1} \qquad \downarrow \partial_{2} \qquad \downarrow \partial_{3}$$

$$0 \longrightarrow Z_{1} \xrightarrow{\phi} Z_{2} \xrightarrow{\psi} Z_{3}$$

Entonces existe un homomorfismo $\delta_*:\ker\partial_3\to Z_1/\operatorname{img}\partial_1$ tal que

$$\ker \partial_1 \xrightarrow{\phi''} \ker \partial_2 \xrightarrow{\phi''} \ker \partial_3 \xrightarrow{\delta_*} Z_1 / \operatorname{img} \partial_1 \xrightarrow{\bar{\phi}} Z_2 / \operatorname{img} \partial_2 \xrightarrow{\bar{\psi}} Z_3 / \operatorname{img} \partial_3$$

es exacta, donde ϕ'' y ψ'' son las restricciones de ϕ' y ψ' , y $\bar{\phi}$ y $\bar{\psi}$ son homomorfismos inducidos por ϕ y ψ . ¿Dónde está la serpiente?

donde $\operatorname{coker} \partial_i = Z_i/\partial_i$. (En la versión **original** de este diagrama sí están las flechas).

Observación. Intuitivamente, el coker nos da información de qué tan lejos está un homomorfismo de ser suprayectivo.

1.5. Teorema fundamental del álgebra homológica

Primero introduciremos algo de notación

Definición. Diremos que una sucesión de complejos de cadena

$$\cdots \longrightarrow C_{\bullet} \xrightarrow{f} D_{\bullet} \xrightarrow{g} E_{\bullet} \longrightarrow \cdots$$

es exacta en *D*∙ si

$$\cdots \longrightarrow C_p \xrightarrow{f_p} D_p \xrightarrow{g_p} E_p \longrightarrow \cdots$$

es exacta para todo $p \in \mathbb{Z}$

Teorema (fundamental del álgebra homológica). Si

$$\cdots \longrightarrow A_{\bullet} \stackrel{\phi}{\longrightarrow} B_{\bullet} \stackrel{\psi}{\longrightarrow} C_{\bullet} \longrightarrow \cdots$$

es una sucesión exacta de complejos de cadena, entonces existen homomorfismos

$$\partial_{*p}: H_p(C.) \to H_{p-1}(A.)$$

tales que la sucesión

$$\cdots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\bar{\phi}_p} H_p(B_{\bullet}) \xrightarrow{\bar{\psi}_p} H_p(C_{\bullet}) \xrightarrow{\delta_{*p}} H_{p-1}(A_{\bullet}) \xrightarrow{\bar{\phi}_{p-1}} H_{p-1}(B_{\bullet}) \longrightarrow \cdots$$

es exacta.

En el siguiente diagrama conmutativo se ve claramente qué está pasando:

$$0 \qquad 0 \qquad 0 \qquad 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\cdots \longrightarrow A_{p+1} \xrightarrow{\partial_{p+1}} A_p \xrightarrow{\partial_p} A_{p-1} \longrightarrow \cdots$$

$$\downarrow^{i_{p+1}} \qquad \downarrow^{i_p} \qquad \downarrow^{i_{p-1}}$$

$$\cdots \longrightarrow B_{p+1} \xrightarrow{\partial_{p+1}} B_p \xrightarrow{\partial_p} B_{p-1} \longrightarrow \cdots$$

$$\downarrow^{j_{p+1}} \qquad \downarrow^{j_p} \qquad \downarrow^{j_{p-1}}$$

$$\cdots \longrightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \longrightarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

1.6. Natrualidad del homomorfismo de conexión

Teorema (Naturalidad del homomorfismo de conexión).

$$0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow A'_{\bullet} \longrightarrow B'_{\bullet} \longrightarrow C'_{\bullet} \longrightarrow 0$$

donde las filas son exactas.

Entonces, el siguiente diagrama conmuta

$$\cdots \longrightarrow H_p(A) \longrightarrow H_p(B) \longrightarrow H_p(C) \xrightarrow{\delta_*} H_{p-1}(A) \longrightarrow H_{p-1}(B) \longrightarrow H_{p-1}(C) \longrightarrow \cdots$$

$$\downarrow_{\bar{f}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{h}} \qquad \downarrow_{\bar{f}} \qquad \downarrow_{\bar{h}}$$

$$\cdots \longrightarrow H_p(A') \longrightarrow H_p(B') \longrightarrow H_p(C') \longrightarrow H_{p-1}(A') \longrightarrow H_{p-1}(B') \longrightarrow H_{p-1}(C') \longrightarrow \cdots$$

(Para acomodar este diagrama aquí hay soluciones)

Parece que ésta es una propiedad relacionada con la estructura de funtor de la homología.

1.7. Lema de los cinco

Lema (de los cinco). Consideremos el diagrama conmutativo con filas exactas

$$M_{5} \xrightarrow{f_{5}} M_{4} \xrightarrow{f_{4}} M_{3} \xrightarrow{f_{3}} M_{2} \xrightarrow{f_{2}} M_{1}$$

$$\downarrow h_{5} \qquad \downarrow h_{4} \qquad \downarrow h_{3} \qquad \downarrow h_{2} \qquad \downarrow h_{1}$$

$$N_{5} \xrightarrow{g_{5}} N_{4} \xrightarrow{g_{4}} N_{3} \xrightarrow{g_{3}} N_{2} \xrightarrow{g_{2}} N_{1}$$

Si h_5, h_4, h_2 y h_1 son isomorfismos, entonces h_3 también.

¿En dónde se usará esto?

Capítulo 2

Homología singular

2.1. Simplejos

Comenzaremos definiendo varios conceptos nuevos. Fijemos un entero $n \geq 0$. Un n-simplejo es el convexo más pequeño en \mathbb{R}^m (m>n) que contiene n+1 puntos $v_0,...,v_n$ que no viven en un hiperplano de dimensión menor que n.

Lo denotaremos por $[v_0, ..., v_n]$ y diremos que $v_0, ..., v_n$ son sus **vértices**.

De hecho,

$$[v_0, ..., v_n] = \{t_0v_0 + \dots + t_nv_n | t_i \ge 0, t_0 + \dots + t_n = 1\}$$

El *n*-simplejo estándar es $\Delta^n := [e_1, ..., e_n]$ donde e_1, \cdots, e_n es la base canónica de \mathbb{R}^{n+1} .

Y observemos que $\Delta^n=\{(t_0,...,t_n)\in\mathbb{R}^{n+1}|t_0+\cdots+t_n=1\}$ Para nosotros el orden de los vértices en $[v_0,...,v_n]$ es importante y siempre hay que tenerlo en mente.

2.1. SIMPLEJOS 13

Dado un n-simplejo siempre tenemos la función:

$$(v_0, ..., v_n) : \Delta^n \to [v_0, ..., v_n]$$
$$(t_0, \cdots + t_n) \mapsto t_0 v_0 + \cdots + t_n v_n$$

Y diremos que $(t_0, \dots + t_n$ son las **coordenadas baricéntricas** del punto $t_0v_0 + \dots + t_nv_n \in [v_0, \dots, v_n]$.