手写数字识别实验报告

本实验使用 PyTorch 实现了使用卷积神经网络对 MNIST 手写数字识别数据集进行分类的任务,并分析了学习率的影响。

数据集

MNIST 数据集是一个手写数字识别数据集,它包含 60000 张训练图像和 10000 张测试图像。每个样本都是一张 28×28 像素的灰度手写数字图片,对应了 0~9 十个数字的其中一个。

实验设置

卷积神经网络结构:

Layer (type)	Output Shape	Parameters	Kernels	Kernel Size	Stride	Padding
Conv2d-1	[-1, 16, 28, 28]	416	16	5	1	2
BatchNorm2d- 2	[-1, 16, 28, 28]	32				
ReLU-3	[-1, 16, 28, 28]	0				
MaxPool2d-4	[-1, 16, 14, 14]	0		2	0	0
Conv2d-5	[-1, 32, 14, 14]	12,832	32	5	1	2
BatchNorm2d-	[-1, 32, 14, 14]	64				
ReLU-7	[-1, 32, 14, 14]	0				
MaxPool2d-8	[-1, 32, 7, 7]	0		2	0	0
Linear-9	[-1, 10]	15,690				

超参数设置:

• 初始学习率尝试了三种: $10^{-3}, 5 \times 10^{-4}, 10^{-4}$.

• 优化算法: Adam

$$m_{t} = \beta_{1} * m_{t-1} + (1 - \beta_{1}) * \nabla w_{t}$$

$$v_{t} = \beta_{2} * v_{t-1} + (1 - \beta_{2}) * (\nabla w_{t})^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}} \qquad \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$w_{t+1} = w_{t} - \frac{\eta}{\sqrt{\hat{v}_{t} + \epsilon}} * \hat{m}_{t}$$

批量大小: 128迭代次数: 50激活函数: ReLU

$$\sigma(x) = \left\{egin{array}{ll} max(0,x) & ,x>=0 \ 0 & ,x<0 \end{array}
ight.$$

代码说明

所有代码均在 main.py 文件中。

核心的函数和类:

• CNN: 实现了一个卷积神经网络

• train_epoch: 使用训练集对模型参数进行一轮完整更新,并计算准确率和样本平均损失

• train:通过调用 train_epoch 函数,对模型参数进行 EPOCH 轮更新,并保存测试集表现最好的模型参数,绘制训练中的损失曲线

• evaluate:对数据集进行预测,计算准确率和平均损失

• get_loader: 加载 MNIST 数据集

● main: 函数入口

此外还实现了一些辅助功能:

• seed_evetything: 固定随机数种子,确保实验可复现

args: 命令行参数log: 日志记录

• show_error_images: 展示预测错误的图片

本实验提交了三个不同学习率模型的训练结果,分别在 lr_1e-3, lr_1e-4, lr_5e-4 三个文件夹中,其中包含: 损失曲线 figure.png、模型权重 model.pth、日志 model.log。

运行代码

安装依赖:

pip install torch torchvision torchsummary matplotlib tqdm

训练模型: (参数均为可选)

python main.py --batch_size 128 --epoch 50 --learning_rate 0.001

测试模型: (model_path 为模型参数文件路径)

python main.py --test true --model_path lr_1e-3/model.pth

实验结果和分析

一共训练了三个不同学习率(10^{-3} , 5×10^{-4} , 10^{-4})的模型,分别进行完整 50 个 epoch 的训练,选取测试集损失最小的模型作为最终模型,结果如下:

学习率	训练集损失	训练集准确率	测试集损失	测试集准确率	最佳epoch
0.001	0.000088	0.9964	0.000209	0.9918	10
0.0005	0.000101	0.9962	0.000206	0.9916	10
0.0001	0.000035	0.9997	0.000203	0.9907	36

第50个epoch的结果如下:

学习率	训练集损失	训练集准确率	测试集损失	测试集准确率
0.001	0.000000	1.0000	0.000259	0.9928
0.0005	0.000059	0.9978	0.000539	0.9863
0.0001	0.000013	0.9999	0.000229	0.9903

分析:

- 三个模型均很好地拟合了训练集和测试集,训练集准确率均高于 99.60%,测试集准确率均高于 99%。
- 初始学习率越低,模型拟合训练集的速度越慢,过拟合的时间也更晚。
- 由于 Adam 算法拥有自适应学习率的能力,数据集也较为简单,降低初始学习率并没有使得模型的过拟合更加严重。

学习率为 10^{-3} 的模型的训练曲线:

学习率为 5×10^{-4} 的模型的训练曲线:

学习率为 10^{-4} 的模型的训练曲线:

分析:

• 初始学习率越低,训练中的参数更新就越稳定,损失曲线也越平滑。

使用学习率为 10^{-3} 的模型进行测试,一共有 82 张图片分类错误,其中的 25 张:

其中部分样本是比较简单的,例如第 3 行第 1 列,第 5 行第 3 列,说明模型还是有部分参数优化不够好;另外大部分都比较困难,例如第 1 行第 4 列,第 3 行第 3 列。