

ARM DEVICE.COM

北京安之谋科技有限责任公司 2012年8月

前言

关键词、专业术语解释:

名称	描述	属性
PWR	Supply voltage	POWER
AP	Analog Power	POWER
A	Analog	Analog
DGND	GND	GND
GNDA_ADC	Analog GND	GND
REF	Reference voltage	Ref-Voltage
VBUS	USB voltage	USB-Power
Input	Digital input	IN
Output	Digital output	OUT
I/O	Digital input/ output	I/O
BAT	Battery power supply	POWER
VRTC	RTC power supply	POWER
PMIC	Power manager IC	IC
AIN	Analog input	Analog

版权声明

本手册版权归属北京安之谋科技有限责任公司(以下简称"安之谋科技")所有, 并保留一切权力。非经安之谋科技同意(书面形式),任何单位及个人不得擅自 摘录本手册部分或全部,违者我们将追究其法律责任。

第2页

1. AZM335X系统模组特点

- ◆ 采用TI AM335X处理器, CortexA8内核, 720MHz主频;
- ◆ 模组尺寸大小: 52mm X 42mm, 精致小巧;
- ◆ 模组采用多层板单面器件工艺,并设计预留金属屏蔽罩,高可靠性与稳定性;
- ◆ AZM335X系列模组采用半孔制作工艺,非常适合对产品厚度要求较高的客户,可直接贴焊在底板上,牢固、可靠且成本较低:
- ◆ 较宽的工作温度范围: -40° +85°, 工业级品质;
- ◆ AZM335X系列模组CPU工作主频最高可达720MHz;
- ◆ 模组标配128M DDR2内存; 最大可支持到512MB;
- ◆ 模组标配256MB SLC NAND FLASH, 最大可支持到2GB可选;
- ◆ 防抄板设计,保护客户的知识产权;
- ◆ 模组默认启动方式为nand flash/micro sd/ uart启动, 支持SD卡刷机;
- ◆ AZM335X模组全部功能引脚引出,方便客户使用;
- ◆ AZM335X模组的供电可选择为AC-DC适配器供电, USB供电及电池供电;
- ◆ AZM335X模组带电池充电、温度检测及电池电压检测功能;
- ◆ AZM335X模组系统供电为:外部电源5V/500mA,电池供电范围: 2.7-5.5V
- ◆ 系统功耗: 典型功耗 2W, 最大功耗 3W。测试条件: VDD=+5.0V,128MB DDR II-SDRAM,256MB NAND FLASH,720Mhz CPU 频率, 常温;

2. AZM335X模组可扩展的外设功能

- ◆2路CAN
- ◆4路独立串口,第5路和LCD复用,调试串口和CAN0复用
- ◆2路高速USB OTG
- ◆1路MICRO SD/MMC
- ◆2路MCASP
- ◆2路I2C
- ◆1路SPI
- ◆2路千兆以太网,RGMII接口
- ◆24BIT LCD接口
- ◆电池电压检测及温度检测
- ◆7路模拟量输入(含触摸4线电阻输入)
- ◆可作中断的GPIO
- ◆可扩展16位Local Bus

北京安之谋科技有限责任公司 www.armdevice.com

3. AZM335X模组系统功能框图

4. AZM335X模组BOOT配置

系统默认启动方式为: NAND FLASH-SD-UART

内部 Rom 首先探测 Nand Flash 上是否有启动代码,如果存在启动代码,则从中加载 MLO 代码并运行。

核心板专门提供一个管脚,用于跳过 NAND Flash 启动,直接进入 SD 卡刷机模式。

第3页

第4页

5. AZM335X模组系统电源管理

模组采用一颗 PMIC 电源管理芯片,为获得系统的最佳性能而提供了丰富的电源控制管理;

支持电池供电(带电源监测和管理), USB供电, AC/DC供电。

6. AZM335X模组PCB布局

该模组采用单面器件贴装的方式,所有器件均在 TOP 层,工艺上具有便捷,可靠,成本低的优势。

北京安之谋科技有限责任公司 www.armdevice.com

7. AZM335X模组机械物理特性

模组尺寸大小 : 52mmX42mm;

金属屏蔽罩尺寸: 49.8mm X 39.5mm;

存储温度 : -40° - 125°; 工作温度 : -40° - 80°;

湿度 : 5%到 95%RH, 非凝结;

环保无铅工艺;

8. AZM335X模组接口以及管脚

Pin	Signal	Pin on CPU	Туре	POWER	Description
1	DGND	-	GND	GND	Digital power gnd 0V
2	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
3	VLDO_EXT	-	POWER	+3.3V	NOTE:THIS power is output; 100mA
4	GPIO2 1	V21	I/O	+3.3V	GPIO2 1
5	GPIO1_30	U9	I/O	+3.3V	GPIO1_30
6	GPIO2_0	T13	I/O	+3.3V	GPIO2_0
7	GPIO3_2/ SPI1_D1	J15	I/O	+3.3V	GPIO3_2/ SPI1_D1
8	GPIO3_1/ SPI1_D0	H17	I/O	+3.3V	GPIO3_1/ SPI1_D0
9	GPIO3_0/ SPI1_CLK	H16	I/O	+3.3V	GPIO3_0/ SPI1_CLK
10	USB1_VBUS	T18	IN	+5V	USB 1 bus voltage
11	USB1_DRVVBUS	F15	OUT	+3.3V	USB 1 VBUS control output
12	USB1_ID	P17	IN	+1.8V	USB 1 port identification
13	USB0_VBUS	P15	IN	+5V	USB 0 bus voltage
14	USB0_DRVVBUS	F16	OUT	+3.3V	USB 0 VBUS control output
15	USB0_ID	P16	IN	+1.8V	USB 0 port identification
16	USB1_DM	R18	Α	+3.3V	USB 1 data
17	USB1_DP	R17	Α	+3.3V	USB 1 data
18	USB0_DP	N17	Α	+3.3V	USB 0 data
19	USB0_DM	N18	Α	+3.3V	USB 0 data
20	USB_DC	-	POWER	VDD5V	USB power supply
21	CAN1_RX	E17	IN	+3.3V	CAN1 Receive Data
22	CAN1_TX	E18	OUT	+3.3V	CAN1 Transmit Data
23	CAN0_TX	E15	OUT	+3.3V	CAN0 Transmit Data
24	CAN0_RX	E16	IN	+3.3V	CAN0 Receive Data
25	GPI00_7	C18	I/O	+3.3V	GPIO0_7/ SPI1_CS1
26	BAT_TEMP	-	IN	AP	电池温度检测输入
27	BAT	-	POWER	VBAT	Battery Supply
28	VRTC_EXT	-	POWER	VRTC	外部 RTC 电池供电
29	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
30	DGND	-	GND	GND	Digital power GND 0V
31	DGND	-	GND	GND	Digital power GND 0V
32	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
33	PWR_BUT	-	IN	+3.3V	开机按键输入
34	UART1_TXD	D15	OUT	+3.3V	UART1 TXD
35	UART1_RXD	D16	IN	+3.3V	UART1 RXD

北京安之谋科技有限责任公司 www.armdevice.com

36	UART2 TXD	B17	OUT	+3.3V	UART2 TXD
37	UART2 RXD	A17	IN	+3.3V	UART2 RXD
38	I2C1_SDA	B16	I/O	+3.3V	•I2C1 SDA
39	I2C1_SCL	A16	I/O	+3.3V	●I2C1 SCL
40	I2C2_SDA	D18	I/O	+3.3V	
41	I2C2_SCL	D17	I/O	+3.3V	
42	SYS_RESETn	A10	I/O	+3.3V	SYSTEM RESET (有 10K 上拉到 3.3V)
43	MMC0_DAT2	F18	I/O	+3.3V	MMC/SDIO 0 data2
44	MMC0_DAT3	F17	I/O	+3.3V	MMC/SDIO 0 data3
45	MMC0_CMD	G18	I/O	+3.3V	MMC/SDIO 0 command
46	MMC0_CLKO	G17	I/O	+3.3V	MMC/SDIO 0 clk
47	MMC0_DAT0	G16	I/O	+3.3V	MMC/SDIO 0 data0
48	MMC0_DAT1	G15	I/O	+3.3V	MMC/SDIO 0 data1
49	MMC0_CD	C15		+3.3V	CARD Detection Signal
50	CLKOUT2	D14	OUT	+3.3V	CLOCK OUTPUT
51	GPIO0_29	H18	I/O	+3.3V	GPIO0_29
52	MCASP0_FSR	C13	I/O	+3.3V	MCASP0 Receive Frame Sync
53	MCASP0_AHCLKR	C12	I/O	+3.3V	McASP0 Receive Master Clock
54	MCASP0_ACLKX	A13	I/O	+3.3V	McASP0 Transmit Bit Clock
55	MCASP0_FSX	B13	I/O	+3.3V	McASP0 Transmit Frame Sync
56	MCASP0_AXR0	D12	I/O	+3.3V	McASP0 Serial Data 0
57	MCASP0_AXR1	D13	I/O	+3.3V	McASP0 Serial Data 1
58	MCASP0_AHCLKX	A14	I/O	+3.3V	McASP0 Transmit Master Clock
59	AIN0	В6	IN	AP	ADC input 0
60	AIN1	C7	IN	AP	ADC input 1
61	AIN2	В7	IN	AP	ADC input 2
62	AIN3	A7	IN	AP	ADC input 3
63	AIN4	C8	IN	AP	ADC input 4
64	AIN5	В8	IN	AP	ADC input 5
65	AIN6	A8	IN	AP	ADC input 6
66	GNDA_ADC	-	GND	AGND	ANALOG GND
67	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
68	DGND	-	GND	GND	Digital power gnd 0V
69	DGND	-	GND	GND	Digital power gnd 0V
70	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
71	GPIO2_6	R1	I/O	+3.3V	LCD DATA 0 signal
72	GPIO2_7	R2	I/O	+3.3V	LCD DATA 1 signal

北京安之谋科技有限责任公司 www.armdevice.com

73	GPIO2_8	R3	I/O	+3.3V	LCD DATA 2 signal
74	GPIO2 9	R4	I/O	+3.3V	LCD DATA 3 signal
/ -	_		1/0	10.0 V	Ü
75	GPIO2_10	T1	I/O	+3.3V	LCD DATA 4 signal
76	GPIO2_11	T2	I/O	+3.3V	LCD DATA 5 signal
77	GPIO2_12	Т3	I/O	+3.3V	LCD DATA 6 signal
78	GPIO2_13	T4	I/O	+3.3V	LCD DATA 7 signal
79	UART5_TXD	U1	OUT	+3.3V	●LCD DATA 8 signal ●UART5_TXD
80	UART5_RXD	U2	IN	+3.3V	●LCD DATA 9 signal ●UART5_RXD
81	UART3_CTSN	U3	IN	+3.3V	●LCD DATA 10 signal ●UART35_CTSN
82	UART3_RTSN	U4	OUT	+3.3V	●LCD DATA 11 signal ●UART3_RTSN
83	UART4_CTSN	V2	IN	+3.3V	●LCD DATA 12 signal ●UART4_CTSN
84	UART4_RTSN	V3	OUT	+3.3V	●LCD DATA 13 signal ●UART4_RTSN
85	UART5_CTSN	V4	IN	+3.3V	●LCD DATA 14 signal ●UART5_CTSN
86	UART5_RTSN	T5	OUT	+3.3V	●LCD DATA 15 signal ●UART5_RTSN
87	GPIO1_15	U13	I/O	+3.3V	LCD DATA 16 signal
88	GPIO1_14	V13	I/O	+3.3V	LCD DATA 17 signal
89	GPIO1_13	R12	I/O	+3.3V	LCD DATA 18 signal
90	GPIO1_12	T12	I/O	+3.3V	LCD DATA 19 signal
91	GPIO0_27	U12	I/O	+3.3V	LCD DATA 20 signal
92	GPIO0_26	T11	I/O	+3.3V	●LCD DATA 21 signal ●Ehrpwm2_tripzone_input
93	EHRPWM2B	T10	I/O	+3.3V	●LCD DATA 22 signal ●EHRPWM2B
94	EHRPWM2A	U10	I/O	+3.3V	●LCD DATA 23 signal ●EHRPWM2B
95	GPIO2_25	R6	I/O	+3.3V	LCD DE signal
96	GPIO1_28	U18	I/O	+3.3V	●LCD POWER EN signal ■MCASP0_ACLKR
97	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
98	DGND	-	GND	GND	Digital power gnd 0V
99	DGND	-	GND	GND	Digital power gnd 0V

北京安之谋科技有限责任公司 www.armdevice.com

100	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
101	GPIO2_24	V5	I/O	+3.3V	LCD PCLK signal
102	GPIO2_23	R5	I/O	+3.3V	LCD HSYNC signal
103	GPIO2_22	U5	I/O	+3.3V	LCD VSYNC signal
104	RGMII2_RCTL	V14	IN	+3.3V	RGMII2 Receive Control
105	RGMII2_RXD3	V16	IN	+3.3V	RGMII2 Receive Data 3
106	RGMII2_RXD2	U16	IN	+3.3V	RGMII2 Receive Data 2
107	RGMII2_RXD1	T16	IN	+3.3V	RGMII2 Receive Data 1
108	RGMII2_RXD0	V17	IN	+3.3V	RGMII2 Receive Data 0
109	RGMII2_RCLK	T15	IN	+3.3V	RGMII2 Receive Clock
110	DGND	ı	GND	GND	Digital power gnd 0V
111	RGMII2_TCLK	U15	OUT	+3.3V	RGMII2 Transmit Clock
112	RGMII2_TXD3	U14	OUT	+3.3V	RGMII2 Transmit Data 3
113	RGMII2_TXD2	T14	OUT	+3.3V	RGMII2 Transmit Data 2
114	RGMII2_TXD1	R14	OUT	+3.3V	RGMII2 Transmit Data 1
115	RGMII2 TXD0	V15	OUT	+3.3V	RGMII2 Transmit Data 0
116	RGMII2_TCTL	R13	OUT	+3.3V	RGMII2 Transmit Control
117	RGMII1_RXD3	L17	IN	+3.3V	
118	RGMII1_RXD2	L16	IN	+3.3V	
119	RGMII1_TXD3	J18	OUT	+3.3V	●RGMII1 Transmit Data 3 ■UART4_RXD
120	RGMII1_TXD2	K15	OUT	+3.3V	●RGMII1 Transmit Data 2 ●UART4_TXD
121	RGMII1_RCTL	J17	IN	+3.3V	RGMII1 Receive Control
122	RGMII1_RXD1	L15	IN	+3.3V	RGMII1 Receive Data 1
123	RGMII1_RXD0	M16	IN	+3.3V	RGMII1 Receive Data 0
124	DGND	-	GND	GND	Digital power gnd 0V
125	RGMII1_RCLK	L18	IN	+3.3V	RGMII1 Receive Clock
126	RGMII1_TCLK	K18	OUT	+3.3V	RGMII1Transmit Clock
127	RGMII1_TCTL	J16	OUT	+3.3V	RGMII1 Transmit Control
128	RGMII1_TXD1	K16	OUT	+3.3V	RGMII1 Transmit Data 1
129	RGMII1_TXD0	K17	OUT	+3.3V	RGMII1 Transmit Data 0

北京安之谋科技有限责任公司 www.armdevice.com

130	MDIO_DATA	M17	I/O	+3.3V	MDIO_DATA
131	MDIO_CLK	M18	OUT	+3.3V	MDIO_CLK
132	GPIO1_31	V9	I/O	+3.3V	GPIO1_31
133	GPIO0_31	U17	I/O	+3.3V	GPIO0_31
134	BOOT_MODE	-	IN	+3.3V	Skip Nand boot if Pull to 3.3V
135	VDD_5V	-	POWER	VDD5V	+5V Digital power supply
136	DGND	-	GND	GND	Digital power gnd 0V

SD / MMC Card

Pin#	Signal	Туре	POWER	Description
43	MMC0_DAT2	1/0	+3.3V	MMC/SDIO 0 data2
44	MMC0_DAT3	I/O	+3.3V	MMC/SDIO 0 data3
45	MMC0_CMD	I/O	+3.3V	MMC/SDIO 0 command
46	MMC0_CLKO	I/O	+3.3V	MMC/SDIO 0 clk
47	MMC0_DAT0	I/O	+3.3V	MMC/SDIO 0 data0
48	MMC0_DAT1	I/O	+3.3V	MMC/SDIO 0 data1
49	CD/EMU4	I	+3.3V	CARD Detection Signal

USB0

集成PHY的USB2.0 高速OTG端口0

Pin#	Signal	Туре	POWER	Description
13	USB0_VBUS	IN	+5V	USB 0 bus voltage
14	USB0_DRVVBUS	OUT	+3.3V	USB 0 VBUS control output

北京安之谋科技有限责任公司 www.armdevice.com

15	USB0_ID	IN	+1.8V	USB 0 port identification
18	USB0_DP	Α	+3.3V	USB 0 data
19	USB0_DM	Α	+3.3V	USB 0 data

USB1

集成PHY的USB2.0 高速OTG端口1

Pin#	Signal	Туре	POWER	Description
10	USB1_VBUS	IN	+5V	USB 1 bus voltage
11	USB1_DRVVBUS	OUT	+3.3V	USB 1 VBUS control output
12	USB1_ID	IN	+1.8V	USB 1 port identification
16	USB1_DM	Α	+3.3V	USB 1 data
17	USB1_DP	Α	+3.3V	USB 1 data

SPI1

Pin#	Signal	Туре	POWER	Description
7	GPIO3_2	I/O	+3.3V	GPIO3_2/ SPI1_D1
8	GPIO3_1	I/O	+3.3V	GPIO3_1/ SPI1_D0
9	GPIO3_0	I/O	+3.3V	GPIO3_0/ SPI1_CLK
25	GPI00_7	I/O	+3.3V	GPIO0_7/ SPI1_CS1

北京安之谋科技有限责任公司 www.armdevice.com

I2C

可配置成标准模式(高达 100Khz)及快速模式(高达 400Khz),注意: 板上 I2C 信号均未作上拉处理,建议底板使用 4.7K 电阻上拉到+3.3V;

38	I2C1_SDA	I/O	+3.3V	I2C1	SDA
39	I2C1_SCL	I/O	+3.3V	I2C1	SCL
40	I2C2_SDA	I/O	+3.3V	I2C2	SDA
41	I2C2_SCL	I/O	+3.3V	I2C2	SCL

CAN₀

该 CAN0 控制器端口支持 CAN2.0 版本的 A 和 B;

注意, CANO 可作为 DEBUG 串口使用, 当作为 DEBUG 使用时, CANO 无法使用;

		, , , , , ,		2 - 1 - 2 - 1 - 2
Pin#	Signal	Туре	POWER	Description
23	CAN0_TX	OUT	+3.3V	CAN0 Transmit Data
24	CAN0_RX	IN	+3.3V	CAN0 Receive Data

CAN1

该 CAN1 控制器端口支持 CAN2.0 的 A 和 B 版本;

Pin#	Signal	Туре	POWER	Description
21	CAN1_RX	IN	+3.3V	CAN1 Receive Data
22	CAN1_TX	OUT	+3.3V	CAN1 Transmit Data

北京安之谋科技有限责任公司 www.armdevice.com

UART

四路串口,其中 UART1 为带流控,其余三路如需带流控可将相应未使用的复用管脚流控信号加上即可;

Pin#	Signal	Туре	POWER	Description
34	UART1_TXD	OUT	+3.3V	UART1 TXD
35	UART1_RXD	IN	+3.3V	UART1 RXD
40	UART1_CTSN	IN	+3.3V	UART1_CTSN
41	UART1_RTSN	OUT	+3.3V	UART1_RTSN
36	UART2_TXD	OUT	+3.3V	UART2 TXD
37	UART2_RXD	IN	+3.3V	UART2 RXD
117	UART3_RXD	IN	+3.3V	UART3_RXD
118	UART3_TXD	OUT	+3.3V	UART3_TXD
119	UART4_RXD	IN	+3.3V	●UART4_RXD
120	UART4_TXD	OUT	+3.3V	●UART4_TXD

IrDA

UART3 可作为 IrDA 使用

IrDA 支持 SIR Mode 和 MIR Mode

Pin#	Signal	Туре	POWER	Description
117	UART3_RXD	IN	+3.3V	IrDA Receive
118	UART3_TXD	OUT	+3.3V	IrDA Transmit

北京安之谋科技有限责任公司 www.armdevice.com

McASP0

A. 支持I2S、TDM音频数据传输格式;

B. 支持SPDIF、IEC60958-1和AES-3格式音频接口传输;

Pin#	Signal	Туре	POWER	Description
52	MCASP0_FSR	I/O	+3.3V	MCASP0 Receive Frame Sync
53	MCASP0_AHCLKR	I/O	+3.3V	McASP0 Receive Master Clock
54	MCASP0_ACLKX	I/O	+3.3V	McASP0 Transmit Bit Clock
55	MCASP0_FSX	1/0	+3.3V	McASP0 Transmit Frame Sync
56	MCASP0_AXR0	1/0	+3.3V	McASP0 Serial Data 0
57	MCASP0_AXR1	I/O	+3.3V	McASP0 Serial Data 1
58	MCASP0_AHCLKX	I/O	+3.3V	McASP0 Transmit Master Clock
96	MCASP0_ACLKR	I/O	+3.3V	MCASP0_ACLKR

24BIT LCD

TFT LCD 屏接口可配置成 16bit, 18bit 及 24bit,刷新频率为 60Hz 时最大分辨率可达 WXGA(1366 X 768);

Pin#	Signal	Туре	POWER	Description
71	GPIO2_6	I/O	+3.3V	LCD DATA 0 signal
72	GPIO2_7	I/O	+3.3V	LCD DATA 1 signal
73	GPIO2_8	1/0	+3.3V	LCD DATA 2 signal

北京安之谋科技有限责任公司 www.armdevice.com

74	GPIO2_9	I/O	+3.3V	LCD DATA 3 signal
75	GPIO2_10	I/O	+3.3V	LCD DATA 4 signal
76	GPIO2_11	I/O	+3.3V	LCD DATA 5 signal
77	GPIO2_12	I/O	+3.3V	LCD DATA 6 signal
78	GPIO2_13	I/O	+3.3V	LCD DATA 7 signal
79	UART5_TXD	OUT	+3.3V	LCD DATA 8 signal
80	UART5_RXD	IN	+3.3V	LCD DATA 9 signal
81	UART3_CTSN	IN	+3.3V	LCD DATA 10 signal
82	UART3_RTSN	OUT	+3.3V	LCD DATA 11 signal
83	UART4_CTSN	IN	+3.3V	LCD DATA 12 signal
84	UART4_RTSN	OUT	+3.3V	LCD DATA 13 signal
85	UART5_CTSN	IN	+3.3V	LCD DATA 14 signal
86	UART5_RTSN	OUT	+3.3V	LCD DATA 15 signal
87	GPIO1_15	I/O	+3.3V	LCD DATA 16 signal
88	GPIO1_14	I/O	+3.3V	LCD DATA 17 signal
89	GPIO1_13	I/O	+3.3V	LCD DATA 18 signal
90	GPIO1_12	I/O	+3.3V	LCD DATA 19 signal
91	GPIO0_27	I/O	+3.3V	LCD DATA 20 signal
92	GPIO0_26	I/O	+3.3V	LCD DATA 21 signal

北京安之谋科技有限责任公司 www.armdevice.com

93	EHRPWM2B	I/O	+3.3V	LCD DATA 22 signal
94	EHRPWM2A	I/O	+3.3V	LCD DATA 23 signal
95	GPIO2_25	I/O	+3.3V	LCD DE signal
96	GPIO1_28	I/O	+3.3V	LCD POWER EN signal
101	GPIO2_24	I/O	+3.3V	LCD PCLK signal
102	GPIO2_23	I/O	+3.3V	LCD HSYNC signal
103	GPIO2_22	I/O	+3.3V	LCD VSYNC signal

Touch screen input

四线电阻触摸屏控制器接口

Touch controller 与 ADC 输入对应如下

 $AIN0 = TOUCH_X +$

AIN1 = TOUCH_X-

 $AIN2 = TOUCH_Y +$

 $AIN3 = TOUCH_Y$

Pin#	Signal	Туре	POWER	Description
59	AIN0	IN	AP	ADC input 0
60	AIN1	IN	AP	ADC input 1
61	AIN2	IN	AP	ADC input 2
62	AIN3	IN	AP	ADC input 3

Ethernet 1 RGMII

集成工业千兆以太网MAC1(10/100/1000Mbps);

北京安之谋科技有限责任公司 www.armdevice.com

该集成的MAC1支持MII/RMII/RGMII和MDIO接口;

Pin#	Signal	Туре	POWER	Description
117	RGMII1_RXD3	IN	+3.3V	●RGMII1 Receive Data 3 ●UART3_RXD
118	RGMII1_RXD2	IN	+3.3V	●RGMII1 Receive Data 2 ●UART3_TXD
119	RGMII1_TXD3	OUT	+3.3V	●RGMII1 Transmit Data 3 ●UART4_RXD
120	RGMII1_TXD2	OUT	+3.3V	●RGMII1 Transmit Data 2 ●UART4_TXD
121	RGMII1_RCTL	IN	+3.3V	RGMII1 Receive Control
122	RGMII1_RXD1	IN	+3.3V	RGMII1 Receive Data 1
123	RGMII1_RXD0	IN	+3.3V	RGMII1 Receive Data 0
125	RGMII1_RCLK	IN	+3.3V	RGMII1 Receive Clock
126	RGMII1_TCLK	OUT	+3.3V	RGMII1Transmit Clock
127	RGMII1_TCTL	OUT	+3.3V	RGMII1 Transmit Control
128	RGMII1_TXD1	OUT	+3.3V	RGMII1 Transmit Data 1
129	RGMII1_TXD0	OUT	+3.3V	RGMII1 Transmit Data 0

Ethernet 2 RGMII

集成工业千兆以太网MAC2(10/100/1000Mbps); 该集成的MAC2支持MII/RMII/RGMII和MDIO接口;

Pin#	Signal	Туре	POWER	Description

104	RGMII2_RCTL	IN	+3.3V	RGMII2 Receive Control
105	RGMII2_RXD3	IN	+3.3V	RGMII2 Receive Data 3
106	RGMII2_RXD2	IN	+3.3V	RGMII2 Receive Data 2
107	RGMII2_RXD1	IN	+3.3V	RGMII2 Receive Data 1
108	RGMII2_RXD0	IN	+3.3V	RGMII2 Receive Data 0
109	RGMII2_RCLK	IN	+3.3V	RGMII2 Receive Clock
111	RGMII2_TCLK	OUT	+3.3V	RGMII2 Transmit Clock
112	RGMII2_TXD3	OUT	+3.3V	RGMII2 Transmit Data 3
113	RGMII2_TXD2	OUT	+3.3V	RGMII2 Transmit Data 2
114	RGMII2_TXD1	OUT	+3.3V	RGMII2 Transmit Data 1
115	RGMII2_TXD0	OUT	+3.3V	RGMII2 Transmit Data 0
116	RGMII2_TCTL	OUT	+3.3V	RGMII2 Transmit Control

PHY management

MDIO 模块配置 PHY 的状态及控制命令

Pin#	Signal	Туре	POWER	Description
130	MDIO_DATA	I/O	+3.3V	MDIO_DATA
131	MDIO_CLK	OUT	+3.3V	MDIO_CLK

Enhanced PWM

增强型的高分辨率PWM模块,具有时间和频率控制的专用16为时基计数器

Pin#	Signal	Туре	POWER	Description
92	EHRPWM2_tripzone_input	I/O	+3.3V	EHRPWM 2_tripzone_input
93	EHRPWM2B	I/O	+3.3V	EHRPWM2B
94	EHRPWM2A	1/0	+3.3V	EHRPWM2B

General Purpose I/Os

通用的GPIO信号,均可被配置成中断信号;

4	GPIO2_1	I/O	+3.3V	GPIO2_1
5	GPIO1_30	I/O	+3.3V	GPIO1_30
6	GPIO2_0	I/O	+3.3V	GPIO2_0
132	GPIO1_31	I/O	+3.3V	GPIO1_31
133	GPIO0_31	I/O	+3.3V	GPIO0_31

Battery power

外接电池供电接口,可采用外部电池供电的方式给AM335X模组供电,该接口包括电池温度检测,

Pin#	Signal	Туре	POWER	Description
26	BAT_TEMP	IN	AP	电池温度检测输入
27	BAT	POWER	VBAT	Battery Supply

北京安之谋科技有限责任公司 www.armdevice.com

RTC

RTC 电池供电电压为 1.8V,外接 RTC 纽扣电池

Pin#	Signal	Туре	POWER	Description
28	VRTC_EXT	POWER	VRTC	RTC 外部纽扣电池供电

ADC input

ADC 接口包含 12 位主次逼近寄存器;

每秒 100K 采样率:

内部包含模拟开关,可任意选择一路作为 ADC 输入;

可配置成四线、五线电阻触摸屏控制器(四线电阻触摸控制器信号接口见 Touch screen input);

mput);		T	T	
Pin#	Signal	Туре	POWER	Description
59	AIN0	IN	AP	ADC input 0
60	AIN1	IN	AP	ADC input 1
61	AIN2	IN	AP	ADC input 2
62	AIN3	IN	AP	ADC input 3
63	AIN4	IN	AP	ADC input 4
64	AIN5	IN	AP	ADC input 5
65	AIN6	IN	AP	ADC input 6
66	GNDA_ADC	GND	AGND	ANALOG GND

JTAG

AZM335X 模组 JTAG 信号分布在 BOTTOM 层,以测试点的方式引出,如下:

北京安之谋科技有限责任公司 www.armdevice.com

E-Mial: Contact@armdevice.com 第 21 页

PIN	Signal	Туре	POWER	Description
TP13	JTAG_TRSTn	IN	+3V3	JTAG TEST RESET
TP14	JTAG_TMS	IN	+3V3	JTAG TEST MODE SELECT
TP15	JTAG_TDI	IN	+3V3	JTAG TEST DATA INPUT
TP16	JTAG_TCK	IN	+3V3	JTAG TEST CLOCK
TP17	JTAG_TDO	OUT	+3V3	JTAG TEST DATA OUTPUT
TP18	JTAG_EMUO	I/0	+3V3	MISC EMULATION PIN
TP19	JTAG_EMU1	I/0	+3V3	MISC EMULATION PIN
TP20	VDD_3V3B	POWER	+3V3	+3.3V Digital power output
TP21	GND	GND	GND	Digital power gnd 0V

Local Bus

AZM335X 模组可提供 16 位 Local bus 扩展。并有多达 20 位的地址线。由于 Local Bus 信号多数为复用信号,如有需要使用 Local Bus,请联系安之谋科技获取支持。

北京安之谋科技有限责任公司 www.armdevice.com

9. AZM335X模组焊接工艺

AZM335X 模组采用核心板与外设功能板分离的方式方便客户进行二次开发,并且采用了半孔工艺,焊接方式采用直接焊板的方式,省掉了核心板与底板的接插件成本,且牢固、可靠性高,其次可以很大程度地减少核心板与底板的厚度,对产品厚度有要求的客户是一个很好的解决方案。

10. EMI性能指标

该模组具有非常好的 EMI 性能指标。正面预留有金属屏蔽罩 (EMI Shielding Case),根据客户实际使用情况自行选择是否安装屏蔽罩。

北京安之谋科技有限责任公司 www.armdevice.com E-Mial: Contact@armdevice.com

11. 注意事项

VDDx_5V 输入电压范围: 4.3V---5.5V,默认输入 5V/1A

为方便底板的 VDDx_5V 电源输入,在 AM335X 核心板的四个脚位均有引出 VDDx_5V 管脚,根据底板的电源分布就近接某一角的 VDDx_5V 电源即可。

VLDO_EXT 电压为 AM335X 核心板对外输出电压,输出电压为 3.3V,仅 能提供最大 100mA 的电流,在使用时务必注意不要过载,在不使用时做悬空处理即可。

VRTC_EXT 为外部 RTC 电池供电,外接 3.0V 锂纽扣电池即可。

BAT 为电池供电,电压输入范围: 2.7V---5.5V, 在不使用电池供电时悬空该管脚即可。

I2C 信号未做上拉处理,需要在底板加 4.7K 上拉电阻到+3.3V。

北京安之谋科技有限责任公司 www.armdevice.com

E-Mial: Contact@armdevice.com 第 24 页

