

BAHRIA UNIVERSITY (KARACHI CAMPUS)

ASSIGNMENT I - Fall 2021

COMPUTER ARCHITECTURE & LOGIC DESIGN

Class: $BSE[4]-2(A)/(B)$	
Course Instructor: Dr. Syed Samar Yazdani	Due Date:
Date: <u>17.11.2021</u>	Max Marks: 10 Marks
Student's Name:	Reg. No:

Note:

Attempt all questions

Question 1 [CLO 3]

A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8000	2

Determine the effective *CPI*, and execution time for this program.

Question 2 [CLO 3]

Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Machine A		
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3
Machine A		
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

- a. Determine the effective CPI, MIPS rate, and execution time for each machine.
- **b.** Comment on the results.

Question 3 [CLO 3]

The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O 0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program execution (using the format of Figure 3.5) for the following program:

- 1. Load AC from device 5.
- 2. Add contents of memory location 940.
- 3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains a value of 2.

Question 4 [CLO 3]

The program execution of Figure 3.5 is described in the text using six steps. Expand this description to show the use of the MAR and MBR.

Question 5 [CLO 3]

Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two fields: the first byte contains the opcode and the remainder the immediate operand or an operand address.

- **a.** What is the maximum directly addressable memory capacity (in bytes)?
- **b.** Discuss the impact on the system speed if the microprocessor bus has:
 - 1. 32-bit local address bus and a 16-bit local data bus, or
 - 2. 16-bit local address bus and a 16-bit local data bus.
- **c.** How many bits are needed for the program counter and the instruction register?

Program counter (PC) = Address of instruction Instruction register (IR) = Instruction being executed Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory 0010 = Store AC to memory 0101 = Add to AC from memory

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)