

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
8 January 2004 (08.01.2004)

PCT

(10) International Publication Number
WO 2004/003013 A1

(51) International Patent Classification⁷: C07K 14/415 (74) Common Representative: NOVARTIS FORSCHUNGSSTIFTUNG, ZWEIGNIEDERLAS-SUNG FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH; Maulbeerstrasse 66, CH-4058 Basel (CH).

(21) International Application Number: PCT/EP2003/006757 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 26 June 2003 (26.06.2003) (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English (30) Priority Data: 0214896.3 27 June 2002 (27.06.2002) GB

(71) Applicant (*for all designated States except US*): NOVARTIS FORSCHUNGSSTIFTUNG, ZWEIGNIEDER-LASSUNG FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH [CH/CH]; Maulbeerstrasse 66, CH-4058 Basel (CH).

(72) Inventors; and (75) Inventors/Applicants (*for US only*): FRITSCH, Olivier [FR/FR]; 9, Rue des Artisans, F-68000 Colmar (FR). HOHN, Barbara [AT/CH]; Hangstrasse 35, CH-4144 Arlesheim (CH). LUCHT, Jan, Martin [DE/CH]; Unterer Batterieweg 113, CH-4059 Basel (CH).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/003013 A1

(54) Title: GENE FOR INCREASED SOMATIC RECOMBINATION

(57) Abstract: The present invention relates to nucleic acids encoding polypeptides involved in homologous recombination, as well as vectors and host cells comprising the nucleic acids and polypeptides encoded by the nucleic acids. Also provided are methods for inducing somatic and/or meiotic homologous recombination in a cell, comprising modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80, At3g57300, Rvb1 (At5g22330), Rvb21 (At5g67630), Rvb22 (At3g49830), At3g57290, AtArp5.1 (At3g12380), AtArp5.2 (At5g56180), AtArp5.3 (At3g60830) and AtArp8 (At5g43500), their homologues, fragments or derivatives. In particular, the methods can be used to increase gene targeting.

Gene for increased somatic recombination

TECHNICAL FIELD

The present invention relates to DNA that encodes proteins that control somatic recombination, in particular in plants.

BACKGROUND

Cells of all organisms have evolved a series of DNA repair pathways that counteract the deleterious effects of DNA damage and are triggered by intricate signal cascades. Homologous recombination in plants stabilizes the genome by repairing damaged chromosomes simultaneously generating genetic variability through the creation of new genes and new genetic linkages. Repair of DNA damage by recombination is particularly significant for cells under exogenous and endogenous genotoxic stress because of its potential to remove a wide range of DNA lesions. The current understanding of genetic and molecular components underlying meiotic and somatic recombination and DNA repair in plants is limited. To be able to modify or improve DNA repair using gene technology it is necessary to identify key proteins involved in said pathways or cascades.

The precise manipulation of the genome of higher plants is still a major challenge for plant genetic engineering. Some advances have been made recently for the creation of point mutations at predetermined positions by chimeric RNA/DNA oligonucleotides (Beetham et al. 1999, Hohn & Puchta 1999, Zhu et al. 1999, Kipp et al. 2000, Zhu et al. 2000). However, the targeted insertion of longer stretches of DNA sequence at any desired location ("knock-in") or the replacement of predetermined plant genomic sequences by heterologous DNA ("knock-out) via homologous recombination is at present not possible as a routine technique (Mengiste & Paszkowski 1999, Puchta 2002).

Few reports have appeared in the literature that describe successful "gene targeting" in higher plants (Paszkowski et al. 1988, Lee et al. 1990, Offringa et al. 1990, Miao & Lam 1995, Kempin et al. 1997, Hanin et al. 2001), but the reported absolute numbers and relative

- 2 -

frequencies of the desired events were very low. Indeed, the main problem for "gene targeting" experiments is the low frequency of the desired homologous recombination events - 10^{-3} to 10^{-5} (Hohn & Puchta 1999, Mengiste & Paszkowski 1999) - relative to illegitimate recombination/integration events.

Various attempts of increasing the low relative frequency of targeted homologous recombination events, by improved selection schemes ("positive-negative selection") or by providing extended regions of sequence homology, were not successful (Thykjaer et al. 1997, Gallego et al. 1999). One promising strategy to facilitate gene targeting in higher plants would be to shift the balance between illegitimate and homologous recombination events towards the latter, by facilitating homologous recombination events in plants by genetic manipulation (Gherbi et al. 2001).

One approach described in the literature is the expression in plants of heterologous proteins known to be involved in homologous recombination. Overproduction of the bacterial resolvase RuvC was shown to increase somatic inter-and intra-chromosomal recombination, as well as extrachromosomal recombination (Shalev et al. 1999), but no gene targeting studies were reported yet with this system. Expression of the bacterial RecA protein had similar effects (Reiss et al. 1996, Reiss et al. 1997), but subsequent experiments did not show an increase of gene targeting events (Reiss et al. 2000). So far, it is not clear whether heterologous proteins can successfully interact with the plant recombination machinery to affect the outcome of the recombination events required for gene targeting. In addition, these foreign proteins might have undesired side effects in plants.

An alternative approach is to rely on endogenous plant genes to influence the frequency of homologous recombination events. So far, indirect approaches have been reported to isolate plant genes involved in recombination. The cloning of plant orthologs to recombination and repair genes from other species was reported (Klimyuk & Jones 1997, Doutriaux et al. 1998, Hartung & Puchta 1999, Gallego et al. 2000, Lin et al. 2000), but so far the importance of these genes for recombination in plants has only been evaluated for the RAD50 homologue (Gherbi et al., 2001). Functional screens have been carried out to identify plant mutants hypersensitive to genotoxic treatments (Davies et al. 1994, Jenkins et al. 1995, Jiang et al. 1997, Masson et al. 1997, Albinsky et al. 1999, Mengiste et al. 1999). Since recombination is an important mechanism for DNA repair, some of these mutants might be affected in their

recombination behavior. This was experimentally demonstrated for some X-ray hypersensitive *Arabidopsis* mutants that also showed reduced levels of somatic recombination (Masson & Paszkowski 1997), although the affected gene has not been isolated. Recently, a DNA damage hypersensitive *Arabidopsis* mutant was isolated from a T-DNA tagged population, the affected gene (MIM) was cloned and shown to encode an SMC (Structural Maintenance of Chromatin) protein. Since the *mim* mutant showed decreased frequencies of somatic recombination, MIM seems be involved in some aspect of somatic recombination (Mengiste et al. 1999). Also in tobacco a hyperrecombinogenic mutant was isolated (Gorbunova et al. 2000). However, the gene affected could not be isolated so far.

Previously, a genetic system was described to study somatic homologous recombination between repeated sequences in whole plants (Swoboda et al. 1994, Puchta et al. 1995a, Puchta et al. 1995b). Briefly, a transgene carrying two non-functional halves of the β -glucuronidase reporter gene sharing a stretch of sequence identity serves as a reporter construct. Homologous recombination between the repeated sequences results in the restoration of a functional reporter gene. Such events were detected by a sensitive histochemical assay, and confirmed by Southern blotting. This assay is destructive, since the staining procedure is lethal, so that direct isolation of mutants is difficult.

There is a need in the art to identify genes that increase somatic recombination and this invention meets that need.

RELATED LITERATURE

- 1) Aguilera, A. & Klein, H.L. Genetic control of intrachromosomal recombination in *Saccharomyces cerevisiae*. I. Isolation and genetic characterization of hyper-recombination mutations. *Genetics* 119: 779-790, 1985.
- 2) Albinsky, D. et al. Plant responses to genotoxic stress are linked to an ABA/salinity signaling pathway. *Plant J* 17:73-82, 1999.
- 3) Aravind, L. et al. Conserved domains in DNA repair proteins and evolution of repair systems. *Nucl Acids Res* 27:1223-1242, 1999.
- 4) Beetham, P.R. et al. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause *in vivo* gene-specific mutations. *Proc Natl Acad Sci USA* 96: 8774-8778, 1999.

- 5) Cho, S.-G. et al. TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. *Mol Cell Biol* 21:8398-8413, 2001.
- 6) Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. *Plant J* 16:735-743, 1998.
- 7) Davies, C. et al. Isolation of *Arabidopsis thaliana* mutants hypersensitive to gamma radiation. *Mol Gen Genet* 243:660-665, 1994.
- 8) Davis, J.L. et al. A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast *Saccharomyces cerevisiae*. *Mol Cell Biol* 12:1879-1892, 1992.
- 9) Dilkes, B.P. & Feldmann, K.A. Cloning genes from T-DNA tagged mutants. *Methods Mol Biol* 82:339-351, 1998.
- 10) Doutriaux, M.-P. et al. Isolation and characterisation of the RAD51 and DMC1 homologs from *Arabidopsis thaliana*. *Mol Gen Genet* 257:283-291, 1998.
- 11) Ebbert, R. et al. The product of the SNF2/SWI2 parologue INO80 of *Saccharomyces cerevisiae* required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. *Mol Microbiol* 32:741-751, 1999.
- 12) Emery, H.S. et al. Sequence of RAD54, a *Saccharomyces cerevisiae* gene involved in recombination and repair. *Gene* 104:103-106, 1991.
- 13) Essers, J. et al. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. *EMBO J* 19:1703-1710, 2000.
- 14) Fang, R.X. et al. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. *Plant Cell* 1:141-150, 1989.
- 15) Fridborg, I. et al. The *Arabidopsis* dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. *Plant Cell* 11:1019-1032, 1999.
- 16) Gallego, F. et al. AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. *Plant J* 21:507-518, 2000.
- 17) Gallego, M.E. et al. Positive-negative selection and T-DNA stability in *Arabidopsis* transformation. *Plant Mol Biol* 39:83-93, 1999.
- 18) Galli, A. et al. Characterization of the hyperrecombination phenotype of the *po/3-t* mutation of *Saccharomyces cerevisiae*. *Genetics* 164: 65-79, 2003.
- 19) Gamborg, O.L. et al. Nutrient requirement of suspension cultures of soybean root cells. *Exp Cell Res* 50:151-158, 1968.

- 20) Gherbi, H. et al. Homologous recombination in planta is stimulated in the absence of Rad50. *EMBO Rep* 2:287-291, 2001.
- 21) Gorbalenya, A.E. & Koonin, E.V. Helicases: amino acid sequence comparisons and structure-function relationships. *Curr Opin Struct Biol* 3:419-429, 1993.
- 22) Gorbunova, V. et al. A new hyperrecombinogenic mutant of *Nicotiana tabacum*. *Plant J* 24:601-611, 2000.
- 23) Guerineau, F. et al. Sulfonamide resistance gene for plant transformation. *Plant Mol Biol* 15:127-136, 1990.
- 24) Hanin, M. et al. Gene targeting in *Arabidopsis*. *Plant J* 28:671-677, 2001.
- 25) Hartung, F. & Puchta, H. Isolation of the complete cDNA of the *Mre11* homologue of *Arabidopsis* (Accession No. AJ243822) indicates conservation of DNA recombination mechanisms between plants and other eucaryotes. (PGR99-132). *Plant Physiol* 121: 312, 1999.
- 26) Hayashi, H. et al. Activation of a plant gene by T-DNA tagging: auxin-independent growth *in vitro* [retracted by Schell J. *Science* 284:1275, 1999]. *Science* 258:1350-1353, 1992.
- 27) Hohn, B. & Puchta, H. Gene therapy in plants. *Proc Natl Acad Sci USA* 96:8321-8323, 1999.
- 28) Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. *Cell* 102:463-473, 2000.
- 29) Jenkins, M.E. et al. Radiation-sensitive mutants of *Arabidopsis thaliana*. *Genetics* 140: 725-732, 1995.
- 30) Jelesko J.G. et al. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* 96:10302-10307, 1999.
- 31) Jiang, C.-Z. et al. UV- and gamma-radiation sensitive mutants of *Arabidopsis thaliana*. *Genetics* 147:1401-1409, 1997.
- 32) Jonsson, Z.O. et al. Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. *J Biol Chem* 276:16279-16288, 2001.
- 33) Kakimoto, T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. *Science* 274:9825, 1996.
- 34) Kanemaki, M. et al. TIP49b, a new RuvB-like DNA helicase, is induced in a complex together with another RuvB-like DNA helicase, TIP49a. *J Biol Chem* 274:22437-22444,

- 6 -

1999.

- 35) Kardailsky, I. et al. Activation tagging of the floral inducer FT. *Science* 286:1962-1965, 1999.
- 36) Kempin, S.A. et al. Targeted disruption in *Arabidopsis*. *Nature* 389:802-803, 1997.
- 37) Kipp, P.B. et al. Gene targeting in plants via site-directed mutagenesis. *Methods Mol Biol* 133:213-221, 2000.
- 38) Klimyuk, V.I. & Jones, J.D. AtDMC1, the *Arabidopsis* homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis- associated expression. *Plant J* 11:1-14, 1997.
- 39) Laurent, B.C. et al. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. *Proc Natl Acad Sci USA* 88:2687-2691, 1991.
- 40) Lee, K.Y. et al. Homologous recombination in plant cells after *Agrobacterium*-mediated transformation. *Plant Cell* 2:415-425, 1990.
- 41) Liu, Z. et al. Repair of UV damage in plants by nucleotide excision repair: *Arabidopsis* UVH1 DNA repair gene is a homolog of *Saccharomyces cerevisiae* Rad1. *Plant J* 21:519-528, 2000.
- 42) Masson, J.E. et al. Mutants of *Arabidopsis thaliana* hypersensitive to DNA-damaging treatments. *Genetics* 146:401-407, 1997.
- 43) Masson, J.E. & Paszkowski, J. *Arabidopsis thaliana* mutants altered in homologous recombination. *Proc Natl Acad Sci USA* 94:11731-11735, 1997.
- 44) Mathur, J. et al. Gene identification with sequenced T-DNA tags generated by transformation of *Arabidopsis* cell suspension. *Plant J* 13:707-716, 1998.
- 45) Mayerhofer, R. et al. T-DNA integration: a mode of illegitimate recombination in plants. *EMBO J* 10:697-704, 1991.
- 46) Mengiste, T. & Paszkowski, J. Prospects for the precise engineering of plant genomes by homologous recombination. *Biol Chem* 380:749-758, 1999.
- 47) Mengiste, T. et al. An SMC-like protein is required for efficient homologous recombination in *Arabidopsis*. *EMBO J* 18:4505-4512, 1999.
- 48) Miao, Z.H. & Lam, E. Targeted disruption of the TGA3 locus in *Arabidopsis thaliana*. *Plant J* 7:359-365, 1995.
- 49) Michelet, B. & Chua, N.-H. Improvement of *Arabidopsis* mutant screens based on luciferase imaging in planta. *Plant Mol Biol Rep* 14:320-329, 1996.
- 50) Millar, A.J. Circadian clock mutants in *Arabidopsis* identified by luciferase imaging. *Science* 267:1161-1163, 1995a.

- 51) Millar, A.J. et al. Firefly luciferase as a reporter of regulated gene expression in higher plants. *Plant Mol Biol Rep* 10:324-327, 1992.
- 52) Millar, A.J. et al. The regulation of circadian period by phototransduction pathways in *Arabidopsis*. *Science* 267:1163-1166, 1995b.
- 53) Muchardt, C. & Yaniv, M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. *J Mol Biol* 293:187-98, 1999.
- 54) Muris, D.F. et al. Isolation of the *Schizosaccharomyces pombe* RAD54 homologue, *rhp54+*, a gene involved in the repair of radiation damage and replication fidelity. *J Cell Sci* 109:73-81, 1996.
- 55) Nacry, P. et al. Major chromosomal rearrangements induced by T-DNA transformation in *Arabidopsis*. *Genetics* 149:641-650, 1998.
- 56) Offringa, R. et al. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. *EMBO J* 9:3077-3084, 1990.
- 57) Paszkowski, J. et al. Gene targeting in plants. *EMBO J* 7:4021-4026, 1988.
- 58) Pruitt, R.E. & Meyerowitz, E.M. Characterization of the genome of *Arabidopsis thaliana*. *J Mol Biol* 187:169-183, 1986.
- 59) Puchta, H. et al. Somatic intrachromosomal homologous recombination events in populations of plant siblings. *Plant Mol Biol* 28:281-292, 1995a.
- 60) Puchta, H. et al. Induction of intrachromosomal homologous recombination in whole plants. *Plant J* 7:203-210, 1995b.
- 61) Puchta, H. Gene replacement by homologous recombination in plants. *Plant Mol Biol* 48:173-182, 2002.
- 62) Reiss, B. et al. RecA protein stimulates homologous recombination in plants. *Proc Natl Acad Sci USA* 93:3094-3098, 1996.
- 63) Reiss, B. et al. Targeting of a functional *Escherichia coli* RecA protein to the nucleus of plant cells. *Mol Gen Genet* 253:695-702, 1997.
- 64) Reiss, B. et al. RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by agrobacterium. *Proc Natl Acad Sci USA* 97:3358-3363, 2000.
- 65) Richmond, E. & Peterson, C.L. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. *Nucl Acids Res* 24:3685-92, 1996.
- 66) Schaffer, R. et al. The late elongated hypocotyl mutation of *Arabidopsis* disrupts circadian rhythms and the photoperiodic control of flowering. *Cell* 93:1219-29, 1998.
- 67) Shalev, G. et al. Stimulation of homologous recombination in plants by expression of

the bacterial resolvase ruvC. *Proc Natl Acad Sci USA* 96:7398-7402, 1999.

- 68) Shen, X. et al. A chromatin remodeling complex involved in transcription and DNA processing. *Nature* 406:541-544, 2000.
- 69) Shen, X. et al. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. *Science* 299: 112-114, (2003)
- 70) Simon, M. et al. The 3' to 5' exonuclease activity located in the DNA polymerase δ subunit of *Saccharomyces cerevisiae* is required for accurate replication. *EMBO J* 10: 2165-2170, 1991.
- 71) Sitney, K.C. et al. DNA polymerase III, a second essential DNA polymerase, is encoded by the *S. cerevisiae* CDC2 gene. *Cell* 56:599-605, 1989.
- 72) Steger, D.J. et al. Regulation of chromatin remodeling by inositol polyphosphates. *Science* 299: 114-116, 2003.
- 73) Sugino, A. Yeast DNA polymerases and their role at the replication fork. *TIBS* 20:319-323, 1995.
- 74) Swoboda, P. et al. Intrachromosomal homologous recombination in whole plants. *EMBO J* 13:484-489, 1994.
- 75) Thykjaer, T. et al. Gene targeting approaches using positive-negative selection and large flanking regions. *Plant Mol Biol* 35:523-530, 1997.
- 76) Torres-Ramos, C.A. et al. Requirement of Yeast DNA polymerase δ in post-replicative repair of UV-damaged DNA. *J Biol Chem* 272:25445-25448, 1997.
- 77) Travers, A. An engine for nucleosome remodeling. *Cell* 96:311-314, 1999.
- 78) Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. *Cell* 71:939-53, 1992.
- 79) van Gool, A.J. et al. RAD26, the functional *S. cerevisiae* homolog of the Cockayne syndrome B gene ERCC6. *EMBO J* 13:5361-5369, 1994.
- 80) Walden, R. et al. Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. *Plant Mol Biol* 26:1521-1528, 1994.
- 81) Weigel, D. et al. Activation tagging in *Arabidopsis*. *Plant Physiol* 122:1003-1013, 2000.
- 82) Wilson, K. et al. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an *Arabidopsis* gene related to APETALA2. *Plant Cell* 8: 659-671, 1996.
- 83) Wood, M. et al. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. *Mol Cell* 5:321-330, 2000.
- 84) Zhu, T. et al. Targeted manipulation of maize genes *in vivo* using chimeric RNA/DNA

oligonucleotides. Proc Natl Acad Sci USA 96:8768-8773, 1999.

85) Zhu, T. et al. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555-558,2000.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts an alignment of an AtIno80 sequence (SEQ ID NO:1) and public sequence, At3g57300 (SEQ ID NO:3), showing a splicing difference ("Query" refers to AtIno80 sequence; "Sbjct" to public database sequence, gi|18410689|ref|NM_115590.1| (AGI:At3g57300)

SUMMARY OF THE INVENTION

The present invention provides an isolated nucleic acid, in particular DNA, comprising a sequence having 98.5% or more identity with the sequence depicted in SEQ ID NO: 1 (AtIno80). Also provided are vectors and host cells comprising the nucleic acids of the invention, as well as polypeptides encoded by the nucleic acids.

In a further aspect of the invention, a method for inducing homologous recombination in a cell is provided, comprising modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80 (SEQ ID NOs:1 and 2), At3g57300 (SEQ ID NO:3), Rvb1 (At5g22330; SEQ ID Nos: 4 and 5), Rvb21 (At5g67630; SEQ ID NOs: 6 and 7), Rvb22 (At3g49830: SEQ ID NOs: 8 and 9), At3g57290 (SEQ ID NO: 10), AtArp5.1 (At3g12380; SEQ ID NOs: 11 and 12), AtArp5.2 (At5g56180; SEQ ID NOs: 13 and 14), AtArp5.3 (At3g60830; SEQ ID Nos: 15 and 16) and AtArp8 (At5g43500; SEQ ID Nos: 17 and 18), their homologues, fragments or derivatives. In one embodiment, modulation is achieved by increasing expression of the gene product, such as by introducing a nucleic acid encoding the gene product into the cell operably linked to a promoter; and allowing transcription and translation of the gene in an amount sufficient to affect homologous recombination in said cell.

The method can be used to increase somatic homologous recombination and/or meiotic homologous recombination. The promoter can be an inducible promoter, a tissue-specific promoter, a constitutive promoter or a meiosis-specific promoter, depending on the desired effect.

- 10 -

Also provided is a method of increasing gene targeting to a desired locus in a host cell comprising introducing a desired gene into a host cell, modulating the expression or properties of one or more gene products selected from the group consisting of Atlno80, At3g57300, Rvb1, Rvb21, Rvb22, At3g57290, AtArp5.1, AtArp5.2, AtArp5.3 and AtArp8, or functional fragments, derivatives and homologues thereof in the host cell, and detecting integration of the desired gene at a selected locus in the genome of the host cell.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors have used a direct screening approach to identify mutants of *Arabidopsis thaliana* showing increased frequencies of somatic recombination, by visualizing recombination events in living plants from a mutagenized population and directly isolating plants with the desired phenotype. The description below describes a genetic screen and an *Arabidopsis* mutant *sm22* derived from it, and the associated plant genes responsible for the altered recombination phenotype.

Existing technologies for gene targeting in plants are very inefficient. The modulation of the expression or properties of one or more gene products selected from the group consisting of Atlno80 (SEQ ID NOs:1 and 2), At3g57300 (SEQ ID NO:3), Rvb1 (At5g22330; SEQ ID Nos: 4 and 5), Rvb2(1 and 2; also referred to herein as Rvb21, At5g67630; SEQ ID NOs: 6 and 7 and Rvb22, At3g49830: SEQ ID NOs: 8 and 9, respectively), At3g57290 (SEQ ID NO: 10), AtArp5.1 (At3g12380; SEQ ID NOs: 11 and 12), AtArp5.2 (At5g56180; SEQ ID NOs: 13 and 14), AtArp5.3 (At3g60830; SEQ ID Ns: 15 and 16) and AtArp8 (At5g43500; SEQ ID Nos: 17 and 18), their homologues (including orthologs), fragments or derivatives increases the efficiency of gene targeting events and facilitates the routine manipulation of the genome of higher plants by homologous recombination. For the purposes of this disclosure, to avoid repetition, reference to the above group of gene products is meant to include reference to each gene individually, i.e., the modulation of the expression or properties of Atlno80, the modulation of the expression or properties of At3g57300, and so on.

An *in vivo* screen for *Arabidopsis* mutants has been devised to allow direct detection of mutants with altered recombination. As a result of the screen, mutant plants with a more than 10-fold increased or altered frequency of somatic recombination events are provided, as well as the plant gene Atlno80. One or more of Atlno80, At3g57300, Rvb1, Rvb21,

Rvb22, At3g57290, AtArp5.1, AtArp5.2, AtArp5.3 and AtArp8 or orthologs from other plant species are affected in these mutant plants. The screen allows the identification of mutant plants, and plant genes with a strong effect on recombination having little or no undesired side effects on the plant. An increase in homologous recombination frequency is useful to achieve an increased efficiency of gene targeting in plants.

Within the context of the present invention reference to a gene is to be understood as reference to a DNA coding sequence associated with regulatory sequences, which allow transcription of the coding sequence into RNA such as mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Examples of regulatory sequences are promoter sequences, 5' and 3' untranslated sequences, introns, and termination sequences.

A promoter is understood to be a DNA sequence initiating transcription of an associated DNA sequence, and may also include elements that act as regulators of gene expression such as activators, enhancers, or repressors.

Expression of a gene refers to its transcription into RNA or its transcription and subsequent translation into protein within a living cell. In the case of antisense constructs expression refers to the transcription of the antisense DNA only.

The term transformation of cells designates the introduction of nucleic acid into a host cell, particularly the stable integration of a DNA molecule into the genome of said cell. Any part or piece of a specific nucleotide or amino acid sequence is referred to as a component sequence or fragment.

In one aspect of the invention, nucleic acids and polypeptides are provided that can modulate homologous recombination. A nucleic acid according to the present invention comprises a sequence having 98.5%, 99%, 99.5% or more identity with the sequences depicted in SEQ ID NO:1. The nucleic acid can be DNA or RNA, such as, mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Also provided is a vector comprising the nucleic acid of the invention, as well as host cells comprising the vector or nucleic acid of the invention. Suitable vectors and host cells are described in more detail below. Also provided are polypeptides encoded by the nucleic acids of the invention.

In a further aspect of the invention, methods for increasing homologous recombination are provided by modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80, At3g57300, Rvb1, Rvb21, Rvb22, At3g57290, AtArp5.1, AtArp5.2, AtArp5.3 and AtArp8. In order to increase homologous recombination several methods are useful depending on the gene and the gene targeting technique employed. Typically, modulation will mean increasing the activity of the gene product, which can easily be achieved by methods known in the art.

In one embodiment, the desired gene is overexpressed in a host cell in an amount sufficient to increase homologous recombination in the host cell. By "overexpression", it is meant increasing the amount of desired gene product in a host cell, compared to untreated cells. A simple way to achieve overexpression is to produce transgenic host cells, in particular transgenic plants, carrying a construct (vector) that ectopically overexpresses the sequence of interest under the control of a suitable promoter, such as the 35S CaMV, MAS (mannopine synthase) or ubiquitin promoter.

In another embodiment, an inducible promoter is used to allow an increase in homologous recombination frequency at the time and place needed, for example, for gene targeting.

Alternatively, the construct increasing recombination can be provided at the same time as the targeting construct by co-transformation, the effect is then achieved by the transient expression of the construct containing the said genes.

Functional fragments, homologues (including orthologs) or derivatives can be easily identified by alignment with the sequences referred to above. In general two approaches exist to sequence alignment. Algorithms as proposed by Needleman & Wunsch and by Sellers align the entire length of two sequences providing a global alignment of the sequences. The Smith-Waterman algorithm on the other hand yields local alignments. A local alignment aligns the pair of regions within the sequences that are most similar given the choice of scoring matrix and gap penalties. This allows a database search to focus on the most highly conserved regions of the sequences. It also allows similar domains within sequences to be identified. To speed up alignments using the Smith-Waterman algorithm both BLAST (Basic Local Alignment Search Tool) and FASTA place additional restrictions on the alignments.

Within the context of the present invention alignments are conveniently performed using BLAST, a set of similarity search programs designed to explore all of the available sequence databases regardless of whether the query is protein or DNA. Version BLAST 2.0 (Gapped BLAST) of this search tool has been made publicly available on the internet (currently <http://www.ncbi.nlm.nih.gov/BLAST/>). It uses a heuristic algorithm which seeks local as opposed to global alignments and is therefore able to detect relationships among sequences which share only isolated regions. The scores assigned in a BLAST search have a well-defined statistical interpretation. Particularly useful within the scope of the present invention are the blastp program allowing for the introduction of gaps in the local sequence alignments and the PSI-BLAST program, both programs comparing an amino acid query sequence against a protein sequence database, as well as a blastp variant program allowing local alignment of two sequences only. Said programs are preferably run with optional parameters set to the default values.

Sequence alignments using BLAST can also take into account whether the substitution of one amino acid for another is likely to conserve the physical and chemical properties necessary to maintain the structure and function of the protein or is more likely to disrupt essential structural and functional features of a protein. Such sequence similarity is quantified in terms of a percentage of "positive" amino acids, as compared to the percentage of identical amino acids and can help assigning a protein to the correct protein family in border-line cases.

Specific examples of DNA and encoded proteins according to the present invention are described in SEQ ID NOS: 1-18. The putative ATPase/helicase Atln080 may, as demonstrated in yeast, be part of a complex containing one or more of Rvb1, Rvb2, Arp5 and Arp8. All these proteins may be useful in increasing homologous recombination frequency.

Typically, functional fragments or derivatives are characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more identity with an aligned component sequence of the one or more of the polypeptides encoded by the DNA of SEQ ID NOs: 1, 3, 4, 6, 8, 10, 11, 13, 15, 16 or 18. Preferably the amino acid sequence identity is higher than 50% or even higher than 55%. Most preferably

the protein sequence is that of SEQ ID NO:2.

DNA encoding proteins according to the present invention can be isolated from monocotyledonous and dicotyledonous plants. Preferred sources are corn, sugarbeet, sunflower, winter oilseed rape, soybean, cotton, wheat, rice, potato, broccoli, cauliflower, cabbage, cucumber, sweet corn, daikon, garden beans, lettuce, melon, pepper, squash, tomato, or watermelon. However, they can also be isolated from mammalian sources such as mouse or human tissues. The following general method, can be used, which the person skilled in the art knows to adapt to the specific task. A single stranded fragment of the desired gene consisting of at least 15, preferably 20 to 30 or even more than 100 consecutive nucleotides is used as a probe to screen a DNA library for clones hybridizing to said fragment. The factors to be observed for hybridization are described in Sambrook et al, Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, chapters 9.47-9.57 and 11.45-11.49, 1989. Hybridizing clones are sequenced and DNA of clones comprising a complete coding region encoding a protein characterized by an amino acid sequence comprising a component sequence of at least 150 amino acid residues having 40% or more sequence identity to the protein sequence encoded by the desired gene is purified. Said DNA can then be further processed by a number of routine recombinant DNA techniques such as restriction enzyme digestion, ligation, or polymerase chain reaction analysis. The disclosure of the nucleotide sequences in SEQ ID NOs: 1, 3, 4, 6, 8, 10, 11, 13, 15, 16 and 18 enables a person skilled in the art to design oligonucleotides for polymerase chain reactions which attempt to amplify DNA fragments from templates comprising a sequence of nucleotides characterized by any continuous sequence of 15 and preferably 20 to 30 or more basepairs of the desired gene.

Suitable vectors for practicing the methods of the invention are well known in the art. Similarly, host cells can be derived from monocotyledonous or dicotyledonous plants. Preferred sources are corn, sugarbeet, sunflower, winter oilseed rape, soybean, cotton, wheat, rice, potato, broccoli, cauliflower, cabbage, cucumber, sweet corn, daikon, garden beans, lettuce, melon, pepper, squash, tomato, or watermelon. However, host cells can also be isolated from other sources, including mammalian sources such as mouse or human cells, in particular stem cells. It is preferred that mammalian homologues are used in mammalian cells.

The methods for increasing homologous recombination are useful to obtain gene targeting so that a gene of interest is introduced into the genome at a desired locus, instead of randomly. For some hosts, in particular crop plants, the gene is preferably expressed in a selected tissue where expression is needed. This is easily achieved by the use of tissue specific promoter. Thus, the present invention provides a method for increasing somatic homologous recombination and increasing gene targeting by modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80, At3g57300, Rvb1, Rvb21, Rvb22, At3g57290, AtArp5.1, AtArp5.2, AtArp5.3 and AtArp8 and fragments, derivatives and homologues thereof, essentially as described above. As is apparent to one of ordinary skill in the art, the corresponding ortholog is preferably used for any particular plant. For example, the corn ortholog of Ino80 is used (or modulated) to increase recombination in corn.

The methods are also useful to improve meiotic recombination, thereby facilitating breeding of species, in which genes encoding a particular phenotype are transferred between plants. Crossing in an interesting trait from another variety or species into a given variety by conventional breeding is a very time and labour-intensive process. Several generations of back-crosses have to be carried out to eliminate the undesired genetic material of the donor species, while maintaining the desired phenotype or trait. Using the methods described above for increasing homologous recombination, meiotic recombination frequencies can be increased, preferably by expressing the desired gene under the control of a meiosis-specific promoter or inducible promoter, the breeding process is speeded up. Thus, the present invention provides a method for increasing meiotic recombination by modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80, At3g57300, Rvb1, Rvb21, Rvb22, At3g57290, AtArp5.1, AtArp5.2, AtArp5.3 and AtArp8 and fragments, derivatives and homologues thereof, essentially as described above.

The Examples below are provided for illustrative purposes and are in no way intended to be limiting to the invention.

EXAMPLES:**Example 1: Identification of sm22 gene effective in increasing homologous gene recombination.**

We have used for our screening a newly constructed a transgenic *Arabidopsis thaliana* line that carries a recombination reporter construct based on the firefly luciferase gene. The structure of the reporter construct - two segments of the luciferase gene arranged as inverted repeats - is comparable to that of the previously described beta-glucuronidase reporter (Swoboda et al. 1994, Puchta et al. 1995a, Puchta et al. 1995b), but offers the advantage that recombination events can be detected in living plants. Luciferase activity in cells in which recombination has restored an intact luciferase gene can be detected by light emission after application of the substrate D-luciferin using a high-sensitivity CCD camera (Millar et al. 1992, Millar et al. 1995a, Millar et al. 1995b, Michelet & Chua 1996).

To induce hyperrecombination mutations in the luciferase recombination reporter line, we used T-DNA activation tagging with a mutagenic construct (pAC102). "Activation tagging" refers to the transcriptional activation of endogenous plant genes by random integration of a construct that carries promoter or enhancer sequences. One published approach for "activation tagging" is the introduction, via Agrobacterium-mediated gene transfer, of a T-DNA carrying several copies of the cauliflower mosaic virus (CaMV) 35S enhancer (Fang et al. 1989), which can activate the expression of heterologous genes over a distance (Hayashi et al. 1992, Walden et al. 1994, Kakimoto 1996, Kardailsky et al. 1999, Weigel et al. 2000). Another published approach is the introduction of a complete, outward-pointing CaMV 35S promoter on a transposable Ds element (Wilson et al. 1996, Schaffer et al. 1998, Fridborg et al. 1999). The construct "pAC102" used for our experiments is a combination of these previously described elements: it is a binary vector carrying a T-DNA that can be transferred to plants that contains a complete, outward-pointing copy of the CaMV 35S promoter/enhancer close to the right T-DNA border. Thus, this construct combines the ease of application of T-DNA gene transfer with the genetic ability of a complete promoter, avoiding some of the drawbacks of enhancer-only constructs (Weigel et al. 2000).

In principle, the activation tagging construct can cause several kinds of mutations after integration in the plant genome: gene disruption by insertion within a coding sequence,

activation of plant gene expression by action of the CaMV 35S enhancer, direct expression of a plant gene from the CaMV 35S promoter on the T-DNA, or down-regulation of expression by antisense RNA production driven from the CaMV 35S promoter. The pAC102 T-DNA carries in addition to the 35S promoter a complete copy of the pUC cloning vector to facilitate gene cloning by plasmid rescue (Dilkes & Feldmann 1998), and a sulfonamide resistance marker (Guerineau et al. 1990, Reiss et al. 1996) for selection of transgenic plants.

We transformed 13,000 three-week old *Arabidopsis* ecotype Columbia plants from the luciferase recombination reporter line with the activation-tagging T-DNA construct "pAC102" by Agrobacterium-mediated gene-transfer, using the established "floral dip" procedure (Clough & Bent 1998) with a modified infiltration buffer, in which the Silwet L-77 detergent was replaced by 0.05% Extravon® (Ciba). Seeds from the infiltrated plants were harvested three weeks after infiltration. Transgenic progeny carrying the pAC102 activation tagging T-DNA were selected by sowing seeds on perlite substrate drenched with Gamborg B5 mineral medium (Gamborg et al. 1968) containing 10 mg/l sulfadiazine (Sigma), and transferring surviving individuals after 10 days to soil. About 20,000 sulfonamide-resistant plants were isolated; they represent independent transformants with the pAC102 T-DNA activation tagging construct integrated at different random positions in the *Arabidopsis* genome.

When individual plants had grown to the 10-leaf stage, they were assayed for luciferase activity to detect somatic recombination events. Batches of 25 plants were sprayed with the substrate D-luciferin and pictures (typically two) were taken with a "Astrocam" (Gloor Instruments, Uster) by integrating photons over 15 min. Background noise and cosmic radiation was filtered out by correlating both images using the minimum function. Plants showing an increased number of sectors with luciferase activity relative to the average of the population were observed with a frequency of about 1 in 500 plants.

As a result of the screen, a hyperrecombination mutant plant was isolated called *sm22*. The original hyper-recombination phenotype of *sm22* plant shows an enhancement of about 20- to 50-fold for homologous recombination in the reporter line. No other obvious phenotype was seen and the seed yield was normal. Sulfonamide selection in the second generation (T2) revealed a 2/1 or 3/1 segregation of resistant seedlings, thus showing that there is only 1 locus (or 2 closely related loci) with an active T-DNA inserted. However, the T2

recombination phenotype was even lower (less or same number of recombination events per plant) than in the wild type.

After HindIII digestion of T1 callus genomic DNA prepared essentially according to the method of the Nucleon Phytopure protocol and Plant DNA extraction kit (Amersham), plasmid rescue was applied (Dilkes & Feldmann 1998, Mathur et al. 1998), which gave rise to two independent junction fragments. Briefly, we digested plant genomic DNA with HinDIII, circularized the resulting fragments by ligation at low DNA concentration, and transformed the ligation mixture into competent *E. coli* TOP10 cells (commercially available from INVITROGEN) by electroporation. Since the HindIII fragments containing the fusion joint between plant DNA and the right end of the activation tagging construct carry a plasmid origin and the ampicillin resistance gene (*bla*) contributed by pAC102, circularization of such fragments will result in a functional bacterial plasmid and confer ampicillin resistance to the *E. coli* cells.

Several colonies were obtained after plating the transformed bacteria on selection medium containing ampicillin. Plasmid DNA of these transformants was prepared and characterized by restriction analysis. To determine the nature of the plant sequences joined to the right end of the T-DNA, the plant DNA insert from these rescued plasmids was sequenced from both sides, using one custom sequencing primer complementary to the T-DNA right end reading towards the plant DNA, and the standard M13 reverse sequencing primer, reading from the pAC102 vector sequences into the plant DNA insert from the other end. The obtained DNA sequences were compared to the GenBank nucleotide database using the BLASTN search program.

Two insertions were identified. The first one corresponds to a single T-DNA insertion without deletion (left border, LB, junction sequenced) in the N-terminal region of a putative ATPase/helicase gene, in antisense orientation. The second T-DNA inserted in a gene with no obvious relationship to homologous recombination (gb AF082176_1) and does not confer sulfonamide resistance. Six (T3) resistant families were analysed by PCR and Southern. Only one family contained some plants with the second insertion whereas all families have the helicase insertion site.

In subsequent generations, homozygous plants for the helicase insertion site were obtained. The homologous recombination frequency of heterozygous and homozygous plants for this insertion site was at least 50% and 15%, respectively, and up to 80% and 20%, respectively, of the wild type level.

The complete cDNA (4.8kb) was cloned in two steps. First, a public EST containing the 3' part was sequenced. Then the 5' part of the cDNA was amplified by RT-PCR on Col-0 (*Arabidopsis* Columbia ecotype, wild type) callus RNA (prepared with the Qiagen RNAeasy Plant Kit), using primers in the 5' untranslated region including a stop codon in frame with the predicted ATG (sm5UT) to make sure that the complete 5' part of the cDNA was amplified. The primer sequences were sm5UT: ctagaagcttttaaggatTAAgactctcc (SEQ ID NO:19) and for 3' primer: ctcgttatgtatcccccttctcc (SEQ ID NO:20). The coding sequence is provided as SEQ ID NO.1 and is similar to but not identical to At3g57300 (see Fig.1).

The predicted helicase gene (8kb genomic DNA) has about 23 exons encoding a protein of 1507 amino acids (SEQ ID NO:2). It is predicted to be an ATPase of the Swi2/Snf2 family, and contains several nuclear localization signals (NLS). The ATPase/helicase gene is the putative *Arabidopsis* ortholog of the yeast Ino80p/YGL150c protein (Ebbert et al. (1999), Shen et al. (2000)). Homologs exist in yeast, budding yeast, *Drosophila* and human. These four homologues have several highly conserved regions including the six motifs of the SWI2/SNF2 helicase domain. Several NLS suggest a nuclear localization of the gene product.

In the sm22 heterozygous and homozygous mutant, the level of Ino80 transcript is respectively about 50% of the wild type situation or absent, as measured by semi-quantitative RT-PCR (5' At3g57300 primer: TGATGGATCTATCACCATCAG, SEQ ID NO:21; 3' At3g57300 primer: ggtgggattccaatcactttc, SEQ ID NO:22) and by northern blot hybridization. For this, the RNA was extracted from 2 weeks old seedlings using the QIAGEN RNAeasy plant extraction kit following the manufacturer's instructions. Together with the decrease of homologous recombination in sm22 plants described above (50% in heterozygous plants, 15% in homozygous mutant), this result shows that the level of Ino80 gene product might positively and directly regulate the homologous recombination frequency, making this gene a choice candidate to positively regulate homologous recombination.

Results with a recombination reporter line 1445 (Gherbi et al. 2001) overexpressing the INO80 cDNA under the control of the 35S promoter and with an N-terminal HA-tag interrupted by an intron show upregulation of homologous recombination providing evidence that INO80 upregulates homologous recombination.

The yeast homolog (Ebbert et al., 1999), INO80(=YGL150c) is part of a big complex >1MDa (monomeric form is 171kDa), containing two essential helicases Rvb1p and Rvb2p and actin related proteins (arp) Arp4, Arp5 and Arp8 (Cho et al. 2001; Jonsson et al. 2001; Wood et al. 2000). Thus, the involvement of Ino80 in homologous recombination implicates the activity of these other genes in homologous recombination. In eukaryotes Human Rvb1p and Rvb2p are also known (Kanemaki 1999, Ikura et al. 2000, Shen et al. 2000).

In *Arabidopsis thaliana* we found three genes closely related to Rvbs from other organisms, AtRvb1 (SEQ ID NO:4, SEQ ID NO:5), AtRvb21 (SEQ ID NO: 6, SEQ ID NO:7) and AtRvb22 (SEQ ID NO:8, SEQ ID NO:9). The three genes are expressed (RT-PCR) and some of them are positively regulated by genotoxic stress (UVc, bleomycin). For treatment with Bleomycin (BLM) 2 week-old *Arabidopsis* seedlings were placed under sterile conditions in liquid GM medium containing 10⁻⁶M of BLM (Sigma) or 100 ppm of MMS (Fluka, Switzerland). For UV-C irradiation (6000 ergs) 2 week-old seedlings were irradiated with light provided by a HNS 55W OFR lamp (Osram). After treatment, plants were harvested at several time points (30min, 1h, 4h and 12h) and RNA extracted as described above. Then semi-quantitative RT-PCR analysis was performed with the following primers AtIno80 (TGATGGATCTATCACCACAG, SEQ ID NO:23; ggtgggattccaaatcactttc, SEQ ID NO:24) AtRvb1 (tttgatggccaaatgatg, SEQ ID NO:25; cttccaaCCTAGGttagatgttcaacaaaatgtgc, SEQ ID NO:26) AtRvb21 (tcaacagcaggacacaagg, SEQ ID NO:27; cccaatgCCTAGGaaatccgagtcaacatcctaatac, SEQ ID NO:28) AtRvb22 (acaaaccagatatcagcacatgg, SEQ ID NO:29; aacaagtactcgctctcatgctc, SEQ ID NO:30).

To characterize further the *Atino80-1* HR deficiency, we subjected the mutant to various genotoxic stresses. In parallel with the original *ino80* mutant we also tested two allelic mutants of *INO80* from the publicly available SAIL mutant collection. Neither bleomycin nor Mitomycin-C or UV-C sensitivity was shifted in the *Atino80-1* mutants, in any of the various conditions tested. All the *Atino80-1* alleles seem to be slightly hypersensitive to MMS (methyl

methanesulfonate), which is also known to induce DNA double-strand breaks. The difference in sensitivity is visible at 60 and 80 ppm of MMS on root elongation and rosette growth. Most mutations affecting DNA repair or recombination also give rise to changes in the sensitivity to DNA damaging agents. We challenged *Atino80-1* mutant plants with various treatments known to induce DNA damage and recombination. None of the tested agents (UV-C, bleomycin, Mitomycin-C and MMS) gave rise to a shift in sensitivity, with the exception of a slight change for MMS. This suggests a difference for the role of INO80 in plants compared to yeast (Ebbert et al., 1999; Shen et al. 2000) and supports the use of AtINO80 to regulate homologous recombination without affecting the major repair pathway in plants.

In the sm22 background the steady state level of AtRvb21 and AtRvb22 was shown to be down-regulated using RT-PCR on RNA extracted as above mentioned.

This indicates that the components of the putative Arabidopsis INO80 complex show co-regulation at the transcriptional level, supporting the use of Arabidopsis Rvb1, Rvb21 and Rvb22 and the *Arabidopsis* Arp protein orthologs to manipulate homologous recombination frequency in plants.

Example 2: AtRvb1 as positive regulator of homologous recombination.

As describe above (Example 1), the original recombination-up phenotype found in sm22 can be associated with an effect mediated by the Arabidopsis Rvb1 and 2 orthologs. Thus, AtRvb1 can be used as a positive regulator of homologous recombination.

Example 3: AtRvb21 as positive regulator of homologous recombination.

As describe above (Example 1), the original recombination-up phenotype found in sm22 can be associated with an effect mediated by the Arabidopsis Rvb1 and 2 orthologs. Thus, AtRvb21 can be used as a positive regulator of homologous recombination.

Example 4: AtRvb22 as positive regulator of homologous recombination.

As describe above (Example 1), the original recombination-up phenotype found in sm22 can be associated with an effect mediated by the Arabidopsis Rvb1 and 2 orthologs. Thus, AtRvb22 can be used as a positive regulator of homologous recombination.

Example 5: At3g57290 as positive regulator of homologous recombination.

In the *sm22* mutant (Example 5), the At3g57290p gene is potentially overexpressed by the 35S Enhancer/promoter. Over expression of this gene in the *sm22* context or directly with a 35S promoter can be carried out to reproduce the original recombination-up phenotype. The phenotype was lost in the second generation (Example 1), at which point At3g57290 is not overexpressed any longer allowing a temporal ability to modulate homologous recombination.

Example 6: AtArp as positive regulators of homologous recombination.

As describe above (Example 1), the original recombination-up phenotype found in *sm22* can be associated with an effect mediated by other components of the *Arabidopsis* INO80 complex, such as the Arp homolog AtArp5.1, AtArp5.2, AtArp5.3 and/or AtArp8. Any of these Arp homologues can be used as a positive regulator of homologous recombination, alone or in combination.

All publications referred to herein as well as the disclosure of GB patent application 0214896.3 are incorporated by reference as if each is referred to individually.

What is claimed is:

1. An isolated nucleic acid comprising a sequence having 98.5% or more identity with the sequence depicted in SEQ ID NO:1.
2. The nucleic acid of claim 1, wherein said nucleic acid is DNA.
3. A vector comprising the nucleic acid if claim 2.
4. A host cell comprising the vector or nucleic acid of claim 3.
5. A polypeptide encoded by the isolated nucleic acid of claim 1.
6. A method for inducing homologous recombination in a cell, said method comprising modulating the expression or properties of one or more gene products selected from the group consisting of AtIno80, At3g57300, Rvb1, Rvb21, Rvb22, Arp5 and Arp8, fragments, derivatives and homologues thereof.,
7. The method of claim 11, said method comprising increasing expression of said gene product.
8. The method of claim 12, said method comprising introducing a nucleic acid encoding said gene product into said cell operably linked to a promoter; and allowing transcription and translation of said gene in an amount sufficient to affect homologous recombination in said cell.
9. The method of claim 13, wherein said homologous recombination is somatic homologous recombination.
10. The method of claim 13, wherein said homologous recombination is meiotic homologous recombination.
11. The method of claim 13, wherein said promoter is an inducible promoter.
12. The method of claim 13, wherein said promoter is a tissue-specific promoter.
13. The method of claim 13, wherein said promoter is a constitutive promoter.

14. The method of claim 13, wherein said promoter is a meiosis-specific promoter.
15. A method of increasing gene targeting to a desired locus in a host cell, said method comprising introducing a desired gene into a host cell, modulating the expression or properties of one or more gene products selected from the group consisting of Atln080, At3g57300, Rvb1, Rvb21, Rvb22, Arp5 and Arp8 or functional fragments, derivatives and homologues thereof in said host cell, and detecting integration of said desired gene at a selected locus in the genome of said host cell.

Figure 1

>Alignment of AtIno 80 sequence and public sequence, At3g57300, showing splicing difference

Query: claimed sequence

Sbjct: gi|18410689|ref|NM_115590.1| (AGI:At3g57300)

Sbjct: 3241 |||||||cgtccttcatttgaagcgctagtgtatctcatcaggataggttttcaagtatcaa 3300
Query: 3301 ctcctgcattctgcataacttataccatccaaaagccagagctccacctgttaagcattcat 3360
Sbjct: 3301 |||||||ctcctgcattctgcataacttataccatccaaaagccagagctccacctgttaagcattcat 3360
Query: 3361 tgctcgacagaaaattcggcatacagagttagtacagaagaattacatcaaccatggcttaag 3420
Sbjct: 3361 |||||||tgctcgacagaaaattcggcatacagagttagtacagaagaattacatcaaccatggcttaag 3420
Query: 3421 agactattaatcggtttgcacgaaacgtcagaagctaatggacccaggaaaggcttaacagc 3480
Sbjct: 3421 agactattaatcggtttgcacgaaacgtcagaagctaatggacccaggaaaggcttaacagc 3480
Query: 3481 tttcacatccttaatccaagaattgattcagaacttccagttgtgcagccgtcgctt 3540
Sbjct: 3481 |||||||tttcacatccttaatccaagaattgattcagaacttccagttgtgcagccgtcgctt 3540
Query: 3541 caactgacacacagaatattgggtcttgcacccatggcttgcacccagcaag 3600
Sbjct: 3541 |||||||caactgacacacagaatattgggtcttgcacccatggcttgcacccagcaag 3600
Query: 3601 ttgctcacggactctggaaagctgcagacacttgatataatttgaagcggtcgagct 3660
Sbjct: 3601 |||||||ttgctcacggactctggaaagctgcagacacttgatataatttgaagcggtcgagct 3660
Query: 3661 gggaaatcacagggtgtctgtttgcacaaatgacaaagatgtcaacattctcgaggat 3720
Sbjct: 3661 |||||||gggaaatcacagggtgtctgtttgcacaaatgacaaagatgtcaacattctcgaggat 3720
Query: 3721 tatatgaactatagaaagtacaagtacctcaggcttgcacccatcatggat 3780
Sbjct: 3721 |||||||tatatgaactatagaaagtacaagtacctcaggcttgcacccatcatggat 3780
Query: 3781 cgccgagatatggtagggatttcagcataggagcgtatttgtattttgtgcgc 3840
Sbjct: 3781 |||||||cgccgagatatggtagggatttcagcataggagcgtatttgtattttgtgcgc 3840
Query: 3841 accagagctggaggacttggatcaacttgcacggctgcagacactgtcattttatgaa 3900
Sbjct: 3841 |||||||accagagctggaggacttggatcaacttgcacggctgcagacactgtcattttatgaa 3900
Query: 3901 agtgatttgcacccatggatcaagctatggacagggtcatcgcttggacag 3960
Sbjct: 3901 |||||||agtgatttgcacccatggatcaagctatggacagggtcatcgcttggacag 3960
Query: 3961 acaaaaatgt 3970
Sbjct: 3961 |||||||acaaaaatgt 3970

Score = 1001 bits (505), Expect = 0.0
Identities = 522/528 (98%), Gaps = 6/528 (1%)
Strand = Plus / Plus

Query: 3997 gagacgggtggaaagagaaaaatttgcacaggcaagtcagaaaaatacagttcaacagctt 4056
Sbjct: 3970 gagacgggtggaaagagaaaaatttgcacaggcaagtcagaaaaatacagttcaacagctt 4029
Query: 4057 gttatgactggaggcatgttcagggtgtatttttttggagctgcggatgttgtatct 4116
Sbjct: 4030 gttatgactggaggcatgttcagggtgtatttttttggagctgcggatgttgtatct 4089
Query: 4117 ctgctaattggatgtcgaggcagcacaactggagcagaaattcagagaactaccatta 4176

Sbjct: 4090 ||||||| ctgctaatggatgtcgaggcagcacaactggagcagaattcagagaactaccatta 4149
Query: 4177 caggtaaaggacaggcagaagaaaaagacgaaacgtatcagaatagatgtgaaggagat 4236
Sbjct: 4150 cagg-----acaggcagaagaaaaagacgaaacgtatcagaatagatgtgaaggagat 4203
Query: 4237 gcaacttttggaaagagtttagaagatgttgaccgcacaggataacggacaggaaacctttggaa 4296
Sbjct: 4204 gcaacttttggaaagagtttagaagatgttgaccgcacaggataacggacaggaaacctttggaa 4263
Query: 4297 gaaccggaaaagccaaaatccagtaataaaaagaggagagctgctcaaatccgaaagct 4356
Sbjct: 4264 gaaccggaaaagccaaaatccagtaataaaaagaggagagctgctcaaatccgaaagct 4323
Query: 4357 agagctcctcagaaaggcaaaaggaaagcaatggtaagatactcctcagaggacaaaa 4416
Sbjct: 4324 agagctcctcagaaaggcaaaaggaaagcaatggtaagatactcctcagaggacaaaa 4383
Query: 4417 agggtaaagagacaaacaaagagcataaacgaaagtcttgaacctgtattctgcctct 4476
Sbjct: 4384 agggtaaagagacaaacaaagagcataaacgaaagtcttgaacctgtattctgcctct 4443
Query: 4477 gtaacagaatcaataaaaggattcgatccaagtagctccgtaactaa 4524
Sbjct: 4444 gtaacagaatcaataaaaggattcgatccaagtagctccgtaactaa 4491

SEQUENCE LISTING

<110> Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute for Biomedical Research

<120> Gene for increased somatic recombination

<130> 1-32546B

<160> 30

<170> PatentIn version 3.1

<210> 1

<211> 4524

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(4524)

<223>

<400> 1		
atg gat cct tca aga cga cca ccg aag gac tct cct tac gcg aat cta		48
Met Asp Pro Ser Arg Arg Pro Pro Lys Asp Ser Pro Tyr Ala Asn Leu		
1 5 10 15		
ttc gat ctc gag ccg ttg atg aag ttt aga att ccg aaa cct gaa gat		96
Phe Asp Leu Glu Pro Leu Met Lys Phe Arg Ile Pro Lys Pro Glu Asp		
20 25 30		
gaa gtt gat tat tat ggg agt agt agc cag gat gaa agt aga agc act		144
Glu Val Asp Tyr Tyr Gly Ser Ser Ser Gln Asp Glu Ser Arg Ser Thr		
35 40 45		
caa ggt ggg gta gtg gca aac tac agc aat ggg tct aaa tcg aga atg		192
Gln Gly Gly Val Val Ala Asn Tyr Ser Asn Gly Ser Lys Ser Arg Met		
50 55 60		
aat gcg agc tcc aag aag aga aag cgg tgg aca gaa gct gag gag gca		240
Asn Ala Ser Ser Lys Lys Arg Lys Arg Trp Thr Glu Ala Glu Asp Ala		
65 70 75 80		

gag gac gat gat ctc tac aat caa cat gtt act gag gag cac tac Glu Asp Asp Asp Asp Leu Tyr Asn Gln His Val Thr Glu Glu His Tyr 85 90 95	288
cga tca atg ctt ggg gag cat gta caa aaa ttc aaa aat agg tcc aag Arg Ser Met Leu Gly Glu His Val Gln Lys Phe Lys Asn Arg Ser Lys 100 105 110	336
gag act caa ggg aat cct cct cat ctg atg ggt ttt ccg gtg cta aag Glu Thr Gln Gly Asn Pro Pro His Leu Met Gly Phe Pro Val Leu Lys 115 120 125	384
agc aat gtg ggc agt tac aga ggt agg aaa cca ggg aat gat tac cat Ser Asn Val Gly Ser Tyr Arg Gly Arg Lys Pro Gly Asn Asp Tyr His 130 135 140	432
ggg agg ttc tat gac atg gac aac tct cca aat ttt gca gct gat gtg Gly Arg Phe Tyr Asp Met Asp Asn Ser Pro Asn Phe Ala Ala Asp Val 145 150 155 160	480
acc cca cat agg cga gga agc tac cat gat cgt gat att aca ccc aag Thr Pro His Arg Gly Ser Tyr His Asp Arg Asp Ile Thr Pro Lys 165 170 175	528
ata gca tat gaa cct tcg tat ttg gac att ggt gat ggt gtc atc tac Ile Ala Tyr Glu Pro Ser Tyr Leu Asp Ile Gly Asp Gly Val Ile Tyr 180 185 190	576
aaa atc ccc cca agt tat gac aag ctg gtg gca tca tta aac tta ccg Lys Ile Pro Pro Ser Tyr Asp Lys Leu Val Ala Ser Leu Asn Leu Pro 195 200 205	624
agc ttt tca gac att cat gtg gaa gaa ttt tac ttg aaa gga act ctg Ser Phe Ser Asp Ile His Val Glu Glu Phe Tyr Leu Lys Gly Thr Leu 210 215 220	672
gat ctg aga tca tta gca gaa ctg atg gca agt gat aaa agg tct gga Asp Leu Arg Ser Leu Ala Glu Leu Met Ala Ser Asp Lys Arg Ser Gly 225 230 235 240	720
gta aga agc cgt aat gga atg ggt gag cct cga cct caa tat gaa tct Val Arg Ser Arg Asn Gly Met Gly Glu Pro Arg Pro Gln Tyr Glu Ser 245 250 255	768
ctt caa gct aga atg aag gcc ctg tca cct tca aac tcc acc cca aat Leu Gln Ala Arg Met Lys Ala Leu Ser Pro Ser Asn Ser Thr Pro Asn 260 265 270	816
ttt agc ctc aag gtg tca gaa gct gca atg aat tct gcc att cca gaa Phe Ser Leu Lys Val Ser Glu Ala Ala Met Asn Ser Ala Ile Pro Glu 275 280 285	864
gga tct gct gga agt act gca cgg aca att ctg tct gag ggt ggt gtt Gly Ser Ala Gly Ser Thr Ala Arg Thr Ile Leu Ser Glu Gly Gly Val 290 295 300	912
tta cag gtc cat tac gtg aag att ctg gag aag ggg gat aca tac gag Leu Gln Val His Tyr Val Lys Ile Leu Glu Lys Gly Asp Thr Tyr Glu 305 310 315 320	960
att gtt aaa cga agt cta ccg aag aag ctg aaa gca aag aat gat cct Ile Val Lys Arg Ser Leu Pro Lys Lys Leu Lys Ala Lys Asn Asp Pro 325 330 335	1008
gca gtc att gag aaa aca gaa agg gat aaa att aga aaa gcc tgg atc Ala Val Ile Glu Lys Thr Glu Arg Asp Lys Ile Arg Lys Ala Trp Ile	1056

340	345	350	
aat att gtc aga aga gat ata gca aaa cac cat aga att ttc act act Asn Ile Val Arg Arg Asp Ile Ala Lys His His Arg Ile Phe Thr Thr 355 360 365			1104
ttt cat cgt aaa cta tca att gat gcc aag agg ttt gca gat ggt tgc Phe His Arg Lys Leu Ser Ile Asp Ala Lys Arg Phe Ala Asp Gly Cys 370 375 380			1152
caa aga gag gtg aga atg aag gtg ggt aga tca tac aaa atc cca aga Gln Arg Glu Val Arg Met Lys Val Gly Arg Ser Tyr Lys Ile Pro Arg 385 390 395 400			1200
act gca cca att cgc act agg aag ata tcc aga gac atg ctg cta ttc Thr Ala Pro Ile Arg Thr Arg Lys Ile Ser Arg Asp Met Leu Leu Phe 405 410 415			1248
tgg aag cga tat gac aag cag atg gca gaa gag agg aaa aag caa gaa Trp Lys Arg Tyr Asp Lys Gln Met Ala Glu Glu Arg Lys Lys Gln Glu 420 425 430			1296
aag gaa gct gca gag gct ttt aaa cgt gaa cag gag cag cga gag tca Lys Glu Ala Ala Glu Ala Phe Lys Arg Glu Gln Glu Gln Arg Glu Ser 435 440 445			1344
aaa agg cag caa caa agg ctc aat ttc ctt att aaa cag act gag ctt Lys Arg Gln Gln Gln Arg Leu Asn Phe Leu Ile Lys Gln Thr Glu Leu 450 455 460			1392
tac agt cac ttc atg caa aac aag acc gat tcg aat cct tcc gaa gcc Tyr Ser His Phe Met Gln Asn Lys Thr Asp Ser Asn Pro Ser Glu Ala 465 470 475 480			1440
tta cca ata ggt gat gaa aat ccg att gac gaa gtg ctc cca gaa act Leu Pro Ile Gly Asp Glu Asn Pro Ile Asp Glu Val Leu Pro Glu Thr 485 490 495			1488
tca gcg gca gaa cct tct gag gta gag gat cct gaa gag gct gaa ctg Ser Ala Ala Glu Pro Ser Glu Val Glu Asp Pro Glu Glu Ala Glu Leu 500 505 510			1536
aag gaa aag gtc ttg aga gct gcc caa gat gcg gtg tct aag cag aag Lys Glu Lys Val Leu Arg Ala Ala Gln Asp Ala Val Ser Lys Gln Lys 515 520 525			1584
caa ata aca gat gca ttt gac act gaa tat atg aag cta cgc caa act Gln Ile Thr Asp Ala Phe Asp Thr Glu Tyr Met Lys Leu Arg Gln Thr 530 535 540			1632
tct gaa atg gaa ggt cct tta aat gat ata tca gtt tct ggc tcg agc Ser Glu Met Glu Gly Pro Leu Asn Asp Ile Ser Val Ser Gly Ser Ser 545 550 555 560			1680
aat ata gat ttg cat aac cca tct aca atg cct gtt aca tca aca gtt Asn Ile Asp Leu His Asn Pro Ser Thr Met Pro Val Thr Ser Thr Val 565 570 575			1728
cag act cca gag tta ttt aaa gga acc ctt aaa gaa tac caa atg aaa Gln Thr Pro Glu Leu Phe Lys Gly Thr Leu Lys Glu Tyr Gln Met Lys 580 585 590			1776
ggc ctt cag tgg cta gtc aat tgt tat gag cag ggt ttg aat ggc ata Gly Leu Gln Trp Leu Val Asn Cys Tyr Glu Gln Gly Leu Asn Gly Ile 595 600 605			1824

ctt gct gat gaa atg ggc ttg ggt aag act att caa gct atg gcg ttc Leu Ala Asp Glu Met Gly Leu Gly Lys Thr Ile Gln Ala Met Ala Phe 610 615 620	1872
ttg gca cat ttg gct gag gaa aag aac att tgg ggt cca ttt ctt gtt Leu Ala His Leu Ala Glu Glu Lys Asn Ile Trp Gly Pro Phe Leu Val 625 630 635 640	1920
gtt gcc cct gcc tct gtt ctt aac aat tgg gct gat gaa atc agt cgt Val Ala Pro Ala Ser Val Leu Asn Asn Trp Ala Asp Glu Ile Ser Arg 645 650 655	1968
ttc tgt cct gac ttg aaa act ctt cca tat tgg gga gga tta caa gaa Phe Cys Pro Asp Leu Lys Thr Leu Pro Tyr Trp Gly Leu Gln Glu 660 665 670	2016
cga aca att tta aga aag aat atc aat ccc aag cgt atg tac cga agg Arg Thr Ile Leu Arg Lys Asn Ile Asn Pro Lys Arg Met Tyr Arg Arg 675 680 685	2064
gat gct ggc ttt cat att ttg att act agc tat cag cta tta gtc act Asp Ala Gly Phe His Ile Leu Ile Thr Ser Tyr Gln Leu Leu Val Thr 690 695 700	2112
gat gaa aag tat ttt cgc cg ^g gtg aag tgg caa tat atg gtg cta gat Asp Glu Lys Tyr Phe Arg Arg Val Lys Trp Gln Tyr Met Val Leu Asp 705 710 715 720	2160
gag gcc caa gca atc aag agt tcc tcc agt ata aga tgg aaa acc ctt Glu Ala Gln Ala Ile Lys Ser Ser Ser Ile Arg Trp Lys Thr Leu 725 730 735	2208
ctt agt ttt aac tgt cgg aac cga ttg ctt ctg act ggt act cca att Leu Ser Phe Asn Cys Arg Asn Arg Leu Leu Leu Thr Gly Thr Pro Ile 740 745 750	2256
cag aac aac atg gca gag tta tgg gcc ctg ctg cat ttc atc atg cca Gln Asn Asn Met Ala Glu Leu Trp Ala Leu Leu His Phe Ile Met Pro 755 760 765	2304
atg ttg ttt gac aac cat gat caa ttt aat gaa tgg ttc tca aaa gga Met Leu Phe Asp Asn His Asp Gln Phe Asn Glu Trp Phe Ser Lys Gly 770 775 780	2352
att gag aat cat gct gaa cac gga ggc act tta aat gag cac cag ctt Ile Glu Asn His Ala Glu His Gly Gly Thr Leu Asn Glu His Gln Leu 785 790 795 800	2400
aac aga ctg cat gcg atc ttg aaa ccg ttc atg ctt cga ccg gta aaa Asn Arg Leu His Ala Ile Leu Lys Pro Phe Met Leu Arg Arg Val Lys 805 810 815	2448
aag gat gtg gtt tct gag cta act aca aag acg gaa gtt aca gta cac Lys Asp Val Val Ser Glu Leu Thr Thr Lys Thr Glu Val Thr Val His 820 825 830	2496
tgc aag ctc agt tct cga caa caa gct ttt tat cag gct att aag aac Cys Lys Leu Ser Ser Arg Gln Gln Ala Phe Tyr Gln Ala Ile Lys Asn 835 840 845	2544
aaa att tct ctg gct gag ttg ttt gat agc aac cgc gga caa ttt act Lys Ile Ser Leu Ala Glu Leu Phe Asp Ser Asn Arg Gly Gln Phe Thr 850 855 860	2592
gat aag aaa gta ttg aat tta atg aat att gtc att caa cta agg aag Asp Lys Lys Val Leu Asn Leu Met Asn Ile Val Ile Gln Leu Arg Lys 850	2640

865	870	875	880	
gtt tgc aac cat cca gag ttg ttc gaa agg aat gaa ggg agc tcg tat Val Cys Asn His Pro Glu Leu Phe Glu Arg Asn Glu Gly Ser Ser Tyr 885 890 895				2688
ctc tac ttt gga gtg act tcc aat tct ctt ttg ccc cat ccc ttt ggt Leu Tyr Phe Gly Val Thr Ser Asn Ser Leu Leu Pro His Pro Phe Gly 900 905 910				2736
gag cta gag gat gta cat tat tct ggt ggt caa aat ccg ata ata tac Glu Leu Glu Asp Val His Tyr Ser Gly Gly Gln Asn Pro Ile Ile Tyr 915 920 925				2784
aag ata cct aag cta cta cac caa gag gtg ctc caa aat tct gaa aca Lys Ile Pro Lys Leu Leu His Gln Glu Val Leu Gln Asn Ser Glu Thr 930 935 940				2832
ttt tgt tct tct gtc ggg cgt ggc atc tca aga gaa tct ttt ctg aag Phe Cys Ser Ser Val Gly Arg Gly Ile Ser Arg Glu Ser Phe Leu Lys 945 950 955 960				2880
cat ttt aat ata tat tca cct gag tat att ctt aag tca ata ttc cca His Phe Asn Ile Tyr Ser Pro Glu Tyr Ile Leu Lys Ser Ile Phe Pro 965 970 975				2928
tct gat agt ggg gta gat caa gtg gtt agt gga agt gga gca ttt ggc Ser Asp Ser Gly Val Asp Gln Val Val Ser Gly Ser Gly Ala Phe Gly 980 985 990				2976
ttt tca cgc ttg atg gat cta tca cca tca gaa gtt gga tat ctg gct Phe Ser Arg Leu Met Asp Leu Ser Pro Ser Glu Val Gly Tyr Leu Ala 995 1000 1005				3024
ctg tgt tct gtt gca gaa agg cta tta ttt tct ata ctg agg tgg Leu Cys Ser Val Ala Glu Arg Leu Leu Phe Ser Ile Leu Arg Trp 1010 1015 1020				3069
gag cgg caa ttt ttg gat gaa tta gtt aac tct ctt atg gag tcc Glu Arg Gln Phe Leu Asp Glu Leu Val Asn Ser Leu Met Glu Ser 1025 1030 1035				3114
aag gat ggt gat ctt agt gac aat aac atc gag aga gtt aaa acc Lys Asp Gly Asp Leu Ser Asp Asn Asn Ile Glu Arg Val Lys Thr 1040 1045 1050				3159
aaa gct gtc aca aga atg ttg ctg atg cca tca aaa gtt gaa acg Lys Ala Val Thr Arg Met Leu Leu Met Pro Ser Lys Val Glu Thr 1055 1060 1065				3204
aat ttt cag aaa agg aga cta agc aca ggg cct acc cgt cct tca Asn Phe Gln Lys Arg Arg Leu Ser Thr Gly Pro Thr Arg Pro Ser 1070 1075 1080				3249
ttt gaa gcg cta gtg atc tct cat cag gat agg ttt ctt tca agt Phe Glu Ala Leu Val Ile Ser His Gln Asp Arg Phe Leu Ser Ser 1085 1090 1095				3294
atc aaa ctc ctg cat tct gca tat act tat atc cca aaa gcc aga Ile Lys Leu Leu His Ser Ala Tyr Thr Tyr Ile Pro Lys Ala Arg 1100 1105 1110				3339
gct cca cct gta agc att cat tgc tcg gac aga aat tcg gca tac Ala Pro Pro Val Ser Ile His Cys Ser Asp Arg Asn Ser Ala Tyr 1115 1120 1125				3384

aga gtt	aca gaa	gaa tta	cat	caa cca	tgg ctt	aag	aga cta	tta	3429
Arg Val	Thr Glu	Glu Leu	His	Gln Pro	Trp Leu	Lys	Arg Leu	Leu	
1130				1135		1140			
atc ggt	ttt gca	cga acg	tca	gaa gct	aat gga	ccc	agg aag	cct	3474
Ile Gly	Phe Ala	Arg Thr	Ser	Glu Ala	Asn Gly	Pro	Arg Lys	Pro	
1145				1150		1155			
aac agc	ttt cca	cat cct	tta	atc caa	gaa att	gat	tca gaa	ctt	3519
Asn Ser	Phe Pro	His Pro	Leu	Ile Gln	Glu Ile	Asp	Ser Glu	Leu	
1160				1165		1170			
cca gtt	gtg cag	cct gcg	ctt	caa ctg	aca cac	aga	ata ttt	ggt	3564
Pro Val	Val Gln	Pro Ala	Leu	Gln Leu	Thr His	Arg	Ile Phe	Gly	
1175				1180		1185			
tct tgc	cct cca	atg caa	agt	ttt gac	cca gca	aag	ttg ctc	acg	3609
Ser Cys	Pro Pro	Met Gln	Ser	Phe Asp	Pro Ala	Lys	Leu Leu	Thr	
1190				1195		1200			
gac tct	ggg aag	ctg cag	aca	ctt gat	ata tta	ttg	aag cgg	ctt	3654
Asp Ser	Gly Lys	Leu Gln	Thr	Leu Asp	Ile Leu	Leu	Lys Arg	Leu	
1205				1210		1215			
cga gct	gga aat	cac agg	gtg	ctc ctg	ttt gca	caa	atg aca	aag	3699
Arg Ala	Gly Asn	His Arg	Val	Leu Leu	Phe Ala	Gln	Met Thr	Lys	
1220				1225		1230			
atg ctg	aac att	ctc gag	gat	tat atg	aac tat	aga	aag tac	aag	3744
Met Leu	Asn Ile	Leu Glu	Asp	Tyr Met	Asn Tyr	Arg	Lys Tyr	Lys	
1235				1240		1245			
tac ctc	agg ctt	gat gga	tcc	tcc acc	atc atg	gat	cgc cga	gat	3789
Tyr Leu	Arg Leu	Asp Gly	Ser	Ser Thr	Ile Met	Asp	Arg Arg	Asp	
1250				1255		1260			
atg gtt	agg gat	ttt cag	cat	agg agc	gat att	ttt	gta ttc	ttg	3834
Met Val	Arg Asp	Phe Gln	His	Arg Ser	Asp Ile	Phe	Val Phe	Leu	
1265				1270		1275			
ctg agc	acc aga	gct gga	gga	ctt ggt	atc aac	ttg	acg gct	gca	3879
Leu Ser	Thr Arg	Ala Gly	Gly	Leu Gly	Ile Asn	Leu	Thr Ala	Ala	
1280				1285		1290			
gac act	gtc att	ttc tat	gaa	agt gat	tgg aat	ccc	acc ttg	gat	3924
Asp Thr	Val Ile	Phe Tyr	Glu	Ser Asp	Trp Asn	Pro	Thr Leu	Asp	
1295				1300		1305			
tta caa	gct atg	gac agg	gct	cat cgt	ctt gga	cag	aca aaa	gat	3969
Leu Gln	Ala Met	Asp Arg	Ala	His Arg	Leu Gly	Gln	Thr Lys	Asp	
1310				1315		1320			
gtt act	gtt tat	cgt ctc	atc	tgt aag	gag acg	gtg	gaa gag	aaa	4014
Val Thr	Val Tyr	Arg Leu	Ile	Cys Lys	Glu Thr	Val	Glu Glu	Lys	
1325				1330		1335			
att ttg	cac agg	gca agt	cag	aaa aat	aca gtt	caa	cag ctt	gtt	4059
Ile Leu	His Arg	Ala Ser	Gln	Lys Asn	Thr Val	Gln	Gln Leu	Val	
1340				1345		1350			
atg act	gga ggg	cat gtt	cag	ggt gat	gat ttt	ctt	gga gct	gcg	4104
Met Thr	Gly Gly	His Val	Gln	Gly Asp	Asp Phe	Leu	Gly Ala	Ala	
1355				1360		1365			
gat gtg	gta tct	ctg cta	atg	gat gat	gcg gag	gca	gca caa	ctg	4149
Asp Val	Val Ser	Leu Leu	Met	Asp Asp	Ala Glu	Ala	Ala Gln	Leu	

1370	1375	1380	
gag cag aaa ttc aga gaa cta	cca tta cag gta aag	gac agg cag	4194
Glu Gln Lys Phe Arg Glu Leu	Pro Leu Gln Val	Lys Asp Arg Gln	
1385	1390	1395	
aag aaa aag acg aaa cgt atc	aga ata gat gct gaa	gga gat gca	4239
Lys Lys Thr Lys Arg Ile	Arg Ile Asp Ala	Glu Gly Asp Ala	
1400	1405	1410	
act ttg gaa gag tta gaa gat	gtt gac cga cag gat	aac gga cag	4284
Thr Leu Glu Glu Leu Glu Asp	Val Asp Arg Gln Asp	Asn Gly Gln	
1415	1420	1425	
gaa cct ttg gaa gaa ccg gaa	aag cca aaa tcc agt	aat aaa aag	4329
Glu Pro Leu Glu Glu Pro Glu	Lys Pro Lys Ser Ser	Asn Lys Lys	
1430	1435	1440	
agg aga gct gct tca aat ccg	aaa gct aga gct cct	cag aaa gca	4374
Arg Arg Ala Ala Ser Asn Pro	Lys Ala Arg Ala Pro	Gln Lys Ala	
1445	1450	1455	
aag gaa gaa gca aat ggt gaa	gat act cct cag agg	aca aaa agg	4419
Lys Glu Glu Ala Asn Gly Glu	Asp Thr Pro Gln Arg	Thr Lys Arg	
1460	1465	1470	
gta aag aga caa aca aag agc	ata aac gaa agt ctt	gaa cct gta	4464
Val Lys Arg Gln Thr Lys Ser	Ile Asn Glu Ser Leu	Glu Pro Val	
1475	1480	1485	
tcc tct gcc tct gta aca gaa	tca aat aaa gga ttc	gat cca agt	4509
Phe Ser Ala Ser Val Thr Glu	Ser Asn Lys Gly Phe	Asp Pro Ser	
1490	1495	1500	
agc tcc gct aac taa			4524
Ser Ser Ala Asn			
1505			

<210> 2

<211> 1507

<212> PRT

<213> *Arabidopsis thaliana*

<400> 2

Met Asp Pro Ser Arg Arg Pro Pro Lys Asp Ser Pro Tyr Ala Asn Leu			
1	5	10	15

Phe Asp Leu Glu Pro Leu Met Lys Phe Arg Ile Pro Lys Pro Glu Asp		
20	25	30

Glu Val Asp Tyr Tyr Gly Ser Ser Ser Gln Asp Glu Ser Arg Ser Thr		
35	40	45

Gln Gly Gly Val Val Ala Asn Tyr Ser Asn Gly Ser Lys Ser Arg Met		
50	55	60

Asn Ala Ser Ser Lys Lys Arg Lys Arg Trp Thr Glu Ala Glu Asp Ala
65 70 75 80

Glu Asp Asp Asp Asp Leu Tyr Asn Gln His Val Thr Glu Glu His Tyr
85 90 95

Arg Ser Met Leu Gly Glu His Val Gln Lys Phe Lys Asn Arg Ser Lys
100 105 110

Glu Thr Gln Gly Asn Pro Pro His Leu Met Gly Phe Pro Val Leu Lys
115 120 125

Ser Asn Val Gly Ser Tyr Arg Gly Arg Lys Pro Gly Asn Asp Tyr His
130 135 140

Gly Arg Phe Tyr Asp Met Asp Asn Ser Pro Asn Phe Ala Ala Asp Val
145 150 155 160

Thr Pro His Arg Arg Gly Ser Tyr His Asp Arg Asp Ile Thr Pro Lys
165 170 175

Ile Ala Tyr Glu Pro Ser Tyr Leu Asp Ile Gly Asp Gly Val Ile Tyr
180 185 190

Lys Ile Pro Pro Ser Tyr Asp Lys Leu Val Ala Ser Leu Asn Leu Pro
195 200 205

Ser Phe Ser Asp Ile His Val Glu Glu Phe Tyr Leu Lys Gly Thr Leu
210 215 220

Asp Leu Arg Ser Leu Ala Glu Leu Met Ala Ser Asp Lys Arg Ser Gly
225 230 235 240

Val Arg Ser Arg Asn Gly Met Gly Glu Pro Arg Pro Gln Tyr Glu Ser
245 250 255

Leu Gln Ala Arg Met Lys Ala Leu Ser Pro Ser Asn Ser Thr Pro Asn
260 265 270

Phe Ser Leu Lys Val Ser Glu Ala Ala Met Asn Ser Ala Ile Pro Glu
275 280 285

Gly Ser Ala Gly Ser Thr Ala Arg Thr Ile Leu Ser Glu Gly Gly Val
290 295 300

Leu Gln Val His Tyr Val Lys Ile Leu Glu Lys Gly Asp Thr Tyr Glu
305 310 315 320

Ile Val Lys Arg Ser Leu Pro Lys Lys Leu Lys Ala Lys Asn Asp Pro

325

330

335

Ala Val Ile Glu Lys Thr Glu Arg Asp Lys Ile Arg Lys Ala Trp Ile
340 345 350

Asn Ile Val Arg Arg Asp Ile Ala Lys His His Arg Ile Phe Thr Thr
355 360 365

Phe His Arg Lys Leu Ser Ile Asp Ala Lys Arg Phe Ala Asp Gly Cys
370 375 380

Gln Arg Glu Val Arg Met Lys Val Gly Arg Ser Tyr Lys Ile Pro Arg
385 390 395 400

Thr Ala Pro Ile Arg Thr Arg Lys Ile Ser Arg Asp Met Leu Leu Phe
405 410 415

Trp Lys Arg Tyr Asp Lys Gln Met Ala Glu Glu Arg Lys Lys Gln Glu
420 425 430

Lys Glu Ala Ala Glu Ala Phe Lys Arg Glu Gln Glu Gln Arg Glu Ser
435 440 445

Lys Arg Gln Gln Gln Arg Leu Asn Phe Leu Ile Lys Gln Thr Glu Leu
450 455 460

Tyr Ser His Phe Met Gln Asn Lys Thr Asp Ser Asn Pro Ser Glu Ala
465 470 475 480

Leu Pro Ile Gly Asp Glu Asn Pro Ile Asp Glu Val Leu Pro Glu Thr
485 490 495

Ser Ala Ala Glu Pro Ser Glu Val Glu Asp Pro Glu Glu Ala Glu Leu
500 505 510

Lys Glu Lys Val Leu Arg Ala Ala Gln Asp Ala Val Ser Lys Gln Lys
515 520 525

Gln Ile Thr Asp Ala Phe Asp Thr Glu Tyr Met Lys Leu Arg Gln Thr
530 535 540

Ser Glu Met Glu Gly Pro Leu Asn Asp Ile Ser Val Ser Gly Ser Ser
545 550 555 560

Asn Ile Asp Leu His Asn Pro Ser Thr Met Pro Val Thr Ser Thr Val
565 570 575

Gln Thr Pro Glu Leu Phe Lys Gly Thr Leu Lys Glu Tyr Gln Met Lys
580 585 590

Gly Leu Gln Trp Leu Val Asn Cys Tyr Glu Gln Gly Leu Asn Gly Ile
595 600 605

Leu Ala Asp Glu Met Gly Leu Gly Lys Thr Ile Gln Ala Met Ala Phe
610 615 620

Leu Ala His Leu Ala Glu Glu Lys Asn Ile Trp Gly Pro Phe Leu Val
625 630 635 640

Val Ala Pro Ala Ser Val Leu Asn Asn Trp Ala Asp Glu Ile Ser Arg
645 650 655

Phe Cys Pro Asp Leu Lys Thr Leu Pro Tyr Trp Gly Gly Leu Gln Glu
660 665 670

Arg Thr Ile Leu Arg Lys Asn Ile Asn Pro Lys Arg Met Tyr Arg Arg
675 680 685

Asp Ala Gly Phe His Ile Leu Ile Thr Ser Tyr Gln Leu Leu Val Thr
690 695 700

Asp Glu Lys Tyr Phe Arg Arg Val Lys Trp Gln Tyr Met Val Leu Asp
705 710 715 720

Glu Ala Gln Ala Ile Lys Ser Ser Ser Ile Arg Trp Lys Thr Leu
725 730 735

Leu Ser Phe Asn Cys Arg Asn Arg Leu Leu Leu Thr Gly Thr Pro Ile
740 745 750

Gln Asn Asn Met Ala Glu Leu Trp Ala Leu Leu His Phe Ile Met Pro
755 760 765

Met Leu Phe Asp Asn His Asp Gln Phe Asn Glu Trp Phe Ser Lys Gly
770 775 780

Ile Glu Asn His Ala Glu His Gly Gly Thr Leu Asn Glu His Gln Leu
785 790 795 800

Asn Arg Leu His Ala Ile Leu Lys Pro Phe Met Leu Arg Arg Val Lys
805 810 815

Lys Asp Val Val Ser Glu Leu Thr Thr Lys Thr Glu Val Thr Val His
820 825 830

Cys Lys Leu Ser Ser Arg Gln Gln Ala Phe Tyr Gln Ala Ile Lys Asn
835 840 845

Lys Ile Ser Leu Ala Glu Leu Phe Asp Ser Asn Arg Gly Gln Phe Thr

850

855

860

Asp Lys Lys Val Leu Asn Leu Met Asn Ile Val Ile Gln Leu Arg Lys
865 870 875 880

Val Cys Asn His Pro Glu Leu Phe Glu Arg Asn Glu Gly Ser Ser Tyr
885 890 895

Leu Tyr Phe Gly Val Thr Ser Asn Ser Leu Leu Pro His Pro Phe Gly
900 905 910

Glu Leu Glu Asp Val His Tyr Ser Gly Gly Gln Asn Pro Ile Ile Tyr
915 920 925

Lys Ile Pro Lys Leu Leu His Gln Glu Val Leu Gln Asn Ser Glu Thr
930 935 940

Phe Cys Ser Ser Val Gly Arg Gly Ile Ser Arg Glu Ser Phe Leu Lys
945 950 955 960

His Phe Asn Ile Tyr Ser Pro Glu Tyr Ile Leu Lys Ser Ile Phe Pro
965 970 975

Ser Asp Ser Gly Val Asp Gln Val Val Ser Gly Ser Gly Ala Phe Gly
980 985 990

Phe Ser Arg Leu Met Asp Leu Ser Pro Ser Glu Val Gly Tyr Leu Ala
995 1000 1005

Leu Cys Ser Val Ala Glu Arg Leu Leu Phe Ser Ile Leu Arg Trp
1010 1015 1020

Glu Arg Gln Phe Leu Asp Glu Leu Val Asn Ser Leu Met Glu Ser
1025 1030 1035

Lys Asp Gly Asp Leu Ser Asp Asn Asn Ile Glu Arg Val Lys Thr
1040 1045 1050

Lys Ala Val Thr Arg Met Leu Leu Met Pro Ser Lys Val Glu Thr
1055 1060 1065

Asn Phe Gln Lys Arg Arg Leu Ser Thr Gly Pro Thr Arg Pro Ser
1070 1075 1080

Phe Glu Ala Leu Val Ile Ser His Gln Asp Arg Phe Leu Ser Ser
1085 1090 1095

Ile Lys Leu Leu His Ser Ala Tyr Thr Tyr Ile Pro Lys Ala Arg
1100 1105 1110

Ala Pro Pro Val Ser Ile His Cys Ser Asp Arg Asn Ser Ala Tyr
1115 1120 1125

Arg Val Thr Glu Glu Leu His Gln Pro Trp Leu Lys Arg Leu Leu
1130 1135 1140

Ile Gly Phe Ala Arg Thr Ser Glu Ala Asn Gly Pro Arg Lys Pro
1145 1150 1155

Asn Ser Phe Pro His Pro Leu Ile Gln Glu Ile Asp Ser Glu Leu
1160 1165 1170

Pro Val Val Gln Pro Ala Leu Gln Leu Thr His Arg Ile Phe Gly
1175 1180 1185

Ser Cys Pro Pro Met Gln Ser Phe Asp Pro Ala Lys Leu Leu Thr
1190 1195 1200

Asp Ser Gly Lys Leu Gln Thr Leu Asp Ile Leu Leu Lys Arg Leu
1205 1210 1215

Arg Ala Gly Asn His Arg Val Leu Leu Phe Ala Gln Met Thr Lys
1220 1225 1230

Met Leu Asn Ile Leu Glu Asp Tyr Met Asn Tyr Arg Lys Tyr Lys
1235 1240 1245

Tyr Leu Arg Leu Asp Gly Ser Ser Thr Ile Met Asp Arg Arg Asp
1250 1255 1260

Met Val Arg Asp Phe Gln His Arg Ser Asp Ile Phe Val Phe Leu
1265 1270 1275

Leu Ser Thr Arg Ala Gly Gly Leu Gly Ile Asn Leu Thr Ala Ala
1280 1285 1290

Asp Thr Val Ile Phe Tyr Glu Ser Asp Trp Asn Pro Thr Leu Asp
1295 1300 1305

Leu Gln Ala Met Asp Arg Ala His Arg Leu Gly Gln Thr Lys Asp
1310 1315 1320

Val Thr Val Tyr Arg Leu Ile Cys Lys Glu Thr Val Glu Glu Lys
1325 1330 1335

Ile Leu His Arg Ala Ser Gln Lys Asn Thr Val Gln Gln Leu Val
1340 1345 1350

Met Thr Gly Gly His Val Gln Gly Asp Asp Phe Leu Gly Ala Ala

1355	1360	1365
Asp Val Val Ser Leu Leu Met	Asp Asp Ala Glu Ala Ala Gln Leu	
1370	1375	1380
Glu Gln Lys Phe Arg Glu Leu Pro Leu Gln Val Lys Asp Arg Gln		
1385	1390	1395
Lys Lys Lys Thr Lys Arg Ile Arg Ile Asp Ala Glu Gly Asp Ala		
1400	1405	1410
Thr Leu Glu Glu Leu Glu Asp Val Asp Arg Gln Asp Asn Gly Gln		
1415	1420	1425
Glu Pro Leu Glu Glu Pro Glu Lys Pro Lys Ser Ser Asn Lys Lys		
1430	1435	1440
Arg Arg Ala Ala Ser Asn Pro Lys Ala Arg Ala Pro Gln Lys Ala		
1445	1450	1455
Lys Glu Glu Ala Asn Gly Glu Asp Thr Pro Gln Arg Thr Lys Arg		
1460	1465	1470
Val Lys Arg Gln Thr Lys Ser Ile Asn Glu Ser Leu Glu Pro Val		
1475	1480	1485
Phe Ser Ala Ser Val Thr Glu Ser Asn Lys Gly Phe Asp Pro Ser		
1490	1495	1500
Ser Ser Ala Asn		
1505		
<210> 3		
<211> 4492		
<212> DNA		
<213> <i>Arabidopsis thaliana</i>		
<400> 3		
atggatcctt caagacgacc accgaaggac ttccttacg cgaatctatt cgatctcgag		60
ccgttcatca agtttagaat tccgaaacct gaagatgaag ttgattatta tgggagtatg		120
agccaggatg aaagttagaag cactcaaggt gggtagtgg caaactacag caatgggtct		180
aaatcgagaa tgaatgcgag ctccaagaag agaaagcggt ggacagaagc tgaggatgca		240
gaggacgatg atgatctcta caatcaacat gttactgagg agcactaccg atcaatgctt		300
ggggagcatg tacaaaaatt caaaaatagg tccaaggaga ctcaaggaa tcctcctcat		360

ctgatgggtt ttccggtgct aaagagcaat gtgggcagtt acagaggtag gaaaccaggg	420
aatgattacc atgggagggtt ctatgacatg gacaactctc caaatttcgc agctgatgtg	480
accccacata ggcgaggaag ctaccatgtat cgtatatta caccaagat agcatatgaa	540
ccttcgtatt tggacattgg tgatgggtgc atctacaaaa tcccccaag ttatgacaag	600
ctgggtggcat cattaaactt accgagcttt tcagacattc atgtgaaaga attttacttg	660
aaaggaactc tggatctgag atcattagca gaactgatgg caagtataa aaggtctgga	720
gtaagaagcc gtaatggaat gggtgaggcct cgacctcaat atgaatctct tcaagctaga	780
atgaaggccc tgtcacccccc aaactccacc ccaaatttttgcctcaaggt gtcagaagct	840
gcaatgaatt ctgccattcc agaaggatct gctggaagta ctgcacggac aattctgtct	900
gagggtggtg ttttacaggt ccattacgtg aagattctgg agaaggggga tacatacgag	960
attgttaaac gaagtcttacc gaagaagctg aaagcaaaaga atgatcctgc agtcattgag	1020
aaaacagaaaa gggataaaaat tagaaaagcc tggatcaata ttgtcagaag agatatacgaa	1080
aaacaccata gaattttcac tacttttcat cgtaaaactat caattgatgc caagaggttt	1140
gcagatgggtt gccaaagaga ggtgagaatg aaggtggta gatcatacaa aatccaaaga	1200
actgcaccaa ttgcacttag gaagatatcc agagacatgc tgctattctg gaagcgatata	1260
gacaagcaga tggcagaaga gaggaaaaag caagaaaagg aagctgcaga ggctttaaa	1320
cgtgaacagg agcagcgaga gtcaaaaagg cagcaacaaa ggctcaattt ctttattaaa	1380
cagactgagc tttacagtca cttcatgcaaa aacaagaccg attcgaatcc ttccgaagcc	1440
ttaccaatag gtgatgaaaa tccgattgac gaagtgcctt cagaaacttc agcggcagaa	1500
ccttctgagg tagaggatcc tgaagaggct gaactgaagg aaaaggtctt gagagctgcc	1560
caagatgcgg tgtctaagca gaagcaataa acagatgcat ttgacactga atatatgaag	1620
ctacgccaaa cttctgaaat ggaaggcct ttaaatgata tatcagtttc tggctcgagc	1680
aatatagatt tgcataaccc atctacaatg cctgttacat caacagtca gactccagag	1740
ttattttaag gaacccttaa agaataccaa atgaaaggcc ttcaatggctt agtcaattgt	1800
tatgagcagg gtttgaatgg catacttgct gatgaaatgg gcttggtaa gactattcaa	1860
gctatggcgt tcttggcaca tttggctgag gaaaagaaca tttggggtcc atttcttgc	1920
gttgcctctg cctctgttct taacaattgg gctgatgaaa tcagtcgtt ctgtcctgac	1980
ttgaaaactc ttccatattt gggaggatta caagaacgaa caattttaaag aaagaatatc	2040
aatcccaagc gtatgtaccg aagggatgct ggctttcata ttttattac tagctatcg	2100
ctattagtca ctgatgaaaa gtatttcgc cgggtgaagt ggcaatataat ggtgcttagat	2160
gaggcccaag caatcaagag ttccctccagt ataagatgga aaacccttct tagtttaac	2220
tgtcgaaacc gattgcttct gactggtaact ccaattcaga acaacatggc agagttatgg	2280
gccctgctgc atttcatcat gccaatgttgc ttgacaacc atgatcaatt taatgaatgg	2340

ttctcaaaag gaattgagaa tcatgctcaa cacggaggca ctttaaatga gcaccagctt 2400
aacagactgc atgcgtatctt gaaaccgttc atgcttcgac gggtaaaaaaa ggatgtggtt 2460
tctgagctaa ctacaaagac ggaagttaca gtacactgca agctcagttc tcgacaacaa 2520
gcttttatac aggctattaa gaacaaaatt tctctggctg agttgttga tagcaaccgc 2580
ggacaattta ctgataagaa agtattgaat ttaatgaata ttgtcattca actaaggaag 2640
gtttgcaacc atccagagtt gttcgaaagg aatgaaggga gctcgtatct ctactttgga 2700
gtgacttcca attctctttt gccccatccc tttggtgagc tagaggatgt acattattct 2760
ggtgtcaaa atccgataat atacaagata cctaagctac tacaccaaga ggtgctccaa 2820
aattctgaaa cattttgttc ttctgtcggg cgtggcatct caagagaatc ttttctgaag 2880
cattttaata tatattcacc tgagtatatt cttaagtcaa tattccatc tgatagtggg 2940
gtagatcaag tggtagtgg aagtggagca tttggctttt cacgcttgat ggatctatca 3000
ccatcagaag ttggatatct ggctctgtgt tctgttgcag aaaggctatt attttctata 3060
ctgaggtggg agcggcaatt tttggatgaa ttagttaact ctcttatgga gtccaaaggat 3120
ggtgatctta gtgacaataa catcgagaga gttaaaacca aagctgtcac aagaatgttg 3180
ctgatgccat caaaagtta aacgaatttt cagaaaagga gactaagcac agggcctacc 3240
cgtccttcatttgaagcgct agtgatctt catcaggata ggtttcttc aagtatcaaa 3300
ctcctgcatt ctgcatac ttatatccca aaagccagag ctccacctgt agcattcat 3360
tgctcggaca gaaattcggc atacagagtt acagaagaat tacatcaacc atggcttaag 3420
agactattaa tcggtttgc acgaacgtca gaagctaattg gacccaggaa gcctaacagc 3480
tttccacatc cttaatcca agaaatttgcatcacttc cagttgtgca gcctgcgtt 3540
caactgacac acagaatatt tggttcttgc cctccaatgc aaagtttga cccagcaaag 3600
ttgctcacgg actctggaa gctgcagaca cttgatatat tattgaagcg gcttcgagct 3660
ggaaatcaca ggggtctcctt gtttgcacaa atgacaaaga tgctgaacat tctcgaggat 3720
tatatgaact atagaaagta caagtaccc aggttgcattt gatcctccac catcatggat 3780
cgccgagata tggtaggaa ttttcagcat aggagcgata tttttgtatt ctgcgtgagc 3840
accagagctg gaggacttgg tatcaacttgc acggctgcag acactgtcat tttctatgaa 3900
agtgattgga atcccacctt ggatttacaa gctatggaca gggctcatcg tcttggacag 3960
acaaaagatg gagacggtgg aagagaaaat tttgcacagg gcaagtcaga aaaatacagt 4020
tcaacagctt gttatgactg gagggcatgt tcagggatgat gatTTTCTTG gagctgcgg 4080
tgtggatct ctgctaattttt gatgtcgaa ggcagcacaatggcagcaga aattcagaga 4140
actaccatta caggacaggc agaagaaaaa gacgaaacgt atcagaatag atgctgaagg 4200
agatgcaact ttggaaagagt tagaagatgt tgaccgacag gataacggac aggaaccttt 4260
ggaagaacgg aaaaagccaa aatccagtaa taaaaagagg agagctgctt caaatccgaa 4320

agcttagagct cctcagaaag caaaggaaga agcaaatggt gaagatactc ctcagaggac 4380
aaaaagggtta aagagacaaa caaagagcat aaacgaaagt cttaaacctg tattctctgc 4440
ctctgttaaca qaatcaaata aaggattcga tccaaqtaqc tccqctaact aa 4492

<210> 4

<211> 1377

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(1377)

<223>

<400> 4

```

atg gag aaa gta aag att gaa gaa att cag tcc acc gct aag aaa caa
Met Glu Lys Val Lys Ile Glu Glu Ile Gln Ser Thr Ala Lys Lys Gln
1          5           10          15

```

cgg att gct act cac acc cat atc aaa ggc ctt ggc ctc gag cca act 96
Arg Ile Ala Thr His Thr His Ile Lys Gly Leu Gly Leu Glu Pro Thr
20 25 30

ggt atc cct ata aaa ttg gca gct gga ttt gtt ggt caa ctt gag gct
 Gly Ile Pro Ile Lys Leu Ala Ala Gly Phe Val Gly Gln Leu Glu Ala
 35 40 45

aga gag gca gct ggt ctt gta gtt gac atg att aag cag aag aaa atg
 Arg Glu Ala Ala Gly Leu Val Val Asp Met Ile Lys Gln Lys Lys Met
 50 55 60

gcg ggc aag gct ctt ttg ctt gct gga cct cct gga act ggg aaa aca 240
 Ala Gly Lys Ala Leu Leu Leu Ala Gly Pro Pro Gly Thr Gly Lys Thr
 65 70 75 80

gct ttg gct ctt gga atc tct caa gag ctg gga agc aag gtt cca ttc 288
 Ala Leu Ala Leu Gly Ile Ser Gln Glu Leu Gly Ser Lys Val Pro Phe
 85 90 95

tgt cca atg gtt gga tct gag gtt tac tca tca gag gtt aag aaa aca 336
 Cys Pro Met Val Gly Ser Glu Val Tyr Ser Ser Glu Val Lys Lys Thr
 100 105 110

gag gtt ctc atg gag aat ttt aga cgt gcc att ggt cta cgt atc aag 384
 Glu Val Leu Met Glu Asn Phe Arg Arg Ala Ile Gly Leu Arg Ile Lys
 115 120 125

gaa acc aaa gaa gtc tat gaa ggg gag gtc acc gag ctg tca cca gaa 432
 Glu Thr Lys Glu Val Tyr Glu Gly Glu Val Thr Glu Leu Ser Pro Glu
 130 135 140

145	150	155	160	
gta att aca ctc aag aca gtc aaa gga acc aaa cat ctg aaa ttg gat Val Ile Thr Leu Lys Thr Val Lys Gly Thr Lys His Leu Lys Leu Asp 165 170 175				528
ccc act atc tat gat gcc ttg att aag gaa aag gta gct gta gga gat Pro Thr Ile Tyr Asp Ala Leu Ile Lys Glu Lys Val Ala Val Gly Asp 180 185 190				576
gta atc tat atc gaa gca aac agt gga gct gtc aaa cg ^g gta ggt aga Val Ile Tyr Ile Glu Ala Asn Ser Gly Ala Val Lys Arg Val Gly Arg 195 200 205				624
agt gat gct ttt gcc act gaa ttt gat ctg gaa gca gaa gaa tat gtt Ser Asp Ala Phe Ala Thr Glu Phe Asp Leu Glu Ala Glu Glu Tyr Val 210 215 220				672
cca ctt ccc aaa gga gag gtc cac aaa aag aaa gag ata gtg cag gat Pro Leu Pro Lys Gly Glu Val His Lys Lys Lys Glu Ile Val Gln Asp 225 230 235 240				720
gtc aca ctc caa gat ctg gat gca gca aat gct cga cct caa ggt ggc Val Thr Leu Gln Asp Leu Asp Ala Ala Asn Ala Arg Pro Gln Gly Gly 245 250 255				768
cag gat ata ctt tct ttg atg ggc caa atg atg aaa ccg cgg aag act Gln Asp Ile Leu Ser Leu Met Gly Gln Met Met Lys Pro Arg Lys Thr 260 265 270				816
gag atc act gat aag ctt cg ^g caa gaa att aac aag gtt gtg aac cga Glu Ile Thr Asp Lys Leu Arg Gln Glu Ile Asn Lys Val Val Asn Arg 275 280 285				864
tat ata gat gaa ggt gtg gca gag ctt gtt cca gga gtt cta ttt att Tyr Ile Asp Glu Gly Val Ala Glu Leu Val Pro Gly Val Leu Phe Ile 290 295 300				912
gat gag gtt cat atg ctt gat atg gag tgc ttc tca tac ttg aac cgt Asp Glu Val His Met Leu Asp Met Glu Cys Phe Ser Tyr Leu Asn Arg 305 310 315 320				960
gct ctt gag agc tca tta tct ccg ata gtg ata ttt gca aca aat aga Ala Leu Glu Ser Ser Leu Ser Pro Ile Val Ile Phe Ala Thr Asn Arg 325 330 335				1008
ggt gtt tgc aac gta aga ggg act gat atg ccc agc ccc cat gga gtc Gly Val Cys Asn Val Arg Gly Thr Asp Met Pro Ser Pro His Gly Val 340 345 350				1056
cct att gat cta tta gat cga ttg gtt atc atc cgg act caa atc tat Pro Ile Asp Leu Leu Asp Arg Leu Val Ile Ile Arg Thr Gln Ile Tyr 355 360 365				1104
gat ccc tct gaa atg atc cag att ata gcc att cgt gc ^g caa gtt gaa Asp Pro Ser Glu Met Ile Gln Ile Ile Ala Ile Arg Ala Gln Val Glu 370 375 380				1152
gaa tta acc gtg gat gaa gaa tgc ttg gtt cta ctt ggg gag att ggg Glu Leu Thr Val Asp Glu Glu Cys Leu Val Leu Leu Gly Glu Ile Gly 385 390 395 400				1200
caa aga act tca cta agg cac gct gtg cag ctt ctg tct cct gcc agc Gln Arg Thr Ser Leu Arg His Ala Val Gln Leu Leu Ser Pro Ala Ser 405 410 415				1248

att gta gcg aaa atg aat ggc cgt gac aat att tgc aag gct gat ata 1296
 Ile Val Ala Lys Met Asn Gly Arg Asp Asn Ile Cys Lys Ala Asp Ile
 420 425 430

gag gaa gta aca tca ctc tac ttg gat gct aaa tct tca gca aag ctt 1344
 Glu Glu Val Thr Ser Leu Tyr Leu Asp Ala Lys Ser Ser Ala Lys Leu
 435 440 445

ttg cat gag caa caa gaa aaa tac atc tca tga 1377
 Leu His Glu Gln Gln Glu Lys Tyr Ile Ser
 450 455

<210> 5

<211> 458

<212> PRT

<213> *Arabidopsis thaliana*

<400> 5

Met Glu Lys Val Lys Ile Glu Glu Ile Gln Ser Thr Ala Lys Lys Gln 15
 1 5 10 15

Arg Ile Ala Thr His Thr His Ile Lys Gly Leu Gly Leu Glu Pro Thr 30
 20 25 30

Gly Ile Pro Ile Lys Leu Ala Ala Gly Phe Val Gly Gln Leu Glu Ala 45
 35 40 45

Arg Glu Ala Ala Gly Leu Val Val Asp Met Ile Lys Gln Lys Lys Met 60
 50 55 60

Ala Gly Lys Ala Leu Leu Ala Gly Pro Pro Gly Thr Gly Lys Thr 80
 65 70 75 80

Ala Leu Ala Leu Gly Ile Ser Gln Glu Leu Gly Ser Lys Val Pro Phe 95
 85 90 95

Cys Pro Met Val Gly Ser Glu Val Tyr Ser Ser Glu Val Lys Lys Thr 110
 100 105 110

Glu Val Leu Met Glu Asn Phe Arg Arg Ala Ile Gly Leu Arg Ile Lys 125
 115 120 125

Glu Thr Lys Glu Val Tyr Glu Gly Glu Val Thr Glu Leu Ser Pro Glu 140
 130 135 140

Glu Thr Glu Ser Leu Thr Gly Gly Tyr Gly Lys Ser Ile Ser His Val 160
 145 150 155 160

Val Ile Thr Leu Lys Thr Val Lys Gly Thr Lys His Leu Lys Leu Asp

165

170

175

Pro Thr Ile Tyr Asp Ala Leu Ile Lys Glu Lys Val Ala Val Gly Asp
180 185 190

Val Ile Tyr Ile Glu Ala Asn Ser Gly Ala Val Lys Arg Val Gly Arg
195 200 205

Ser Asp Ala Phe Ala Thr Glu Phe Asp Leu Glu Ala Glu Glu Tyr Val
210 215 220

Pro Leu Pro Lys Gly Glu Val His Lys Lys Glu Ile Val Gln Asp
225 230 235 240

Val Thr Leu Gln Asp Leu Asp Ala Ala Asn Ala Arg Pro Gln Gly Gly
245 250 255

Gln Asp Ile Leu Ser Leu Met Gly Gln Met Met Lys Pro Arg Lys Thr
260 265 270

Glu Ile Thr Asp Lys Leu Arg Gln Glu Ile Asn Lys Val Val Asn Arg
275 280 285

Tyr Ile Asp Glu Gly Val Ala Glu Leu Val Pro Gly Val Leu Phe Ile
290 295 300

Asp Glu Val His Met Leu Asp Met Glu Cys Phe Ser Tyr Leu Asn Arg
305 310 315 320

Ala Leu Glu Ser Ser Leu Ser Pro Ile Val Ile Phe Ala Thr Asn Arg
325 330 335

Gly Val Cys Asn Val Arg Gly Thr Asp Met Pro Ser Pro His Gly Val
340 345 350

Pro Ile Asp Leu Leu Asp Arg Leu Val Ile Ile Arg Thr Gln Ile Tyr
355 360 365

Asp Pro Ser Glu Met Ile Gln Ile Ile Ala Ile Arg Ala Gln Val Glu
370 375 380

Glu Leu Thr Val Asp Glu Glu Cys Leu Val Leu Leu Gly Glu Ile Gly
385 390 395 400

Gln Arg Thr Ser Leu Arg His Ala Val Gln Leu Leu Ser Pro Ala Ser
405 410 415

Ile Val Ala Lys Met Asn Gly Arg Asp Asn Ile Cys Lys Ala Asp Ile
420 425 430

Glu Glu Val Thr Ser Leu Tyr Leu Asp Ala Lys Ser Ser Ala Lys Leu
 435 440 445

Leu His Glu Gln Gln Glu Lys Tyr Ile Ser
 450 455

<210> 6

<211> 1584

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(1410)

<223>

<400> 6	48
atg gcg gaa cta aag cta tca gag agt cgg gac tta acc aga gtc gag Met Ala Glu Leu Lys Leu Ser Glu Ser Arg Asp Leu Thr Arg Val Glu 1 5 10 15	
cga atc ggc gca cac tca cac atc aga gga cta ggt ctc gac tct gcc Arg Ile Gly Ala His Ser His Ile Arg Gly Leu Gly Leu Asp Ser Ala 20 25 30	96
ctc gag ccg cga gct gtt tcc gaa ggt atg gtc ggt caa gtg aag gcg Leu Glu Pro Arg Ala Val Ser Glu Gly Met Val Gly Gln Val Lys Ala 35 40 45	144
cgt aaa gcc gcc ggt gta atc ctt cag atg att aga gaa ggg aaa atc Arg Lys Ala Ala Gly Val Ile Leu Gln Met Ile Arg Glu Gly Lys Ile 50 55 60	192
gcg ggt cggt gct att cta ata gcg ggt caa ccc gga acg ggt aag aca Ala Gly Arg Ala Ile Leu Ile Ala Gly Gln Pro Gly Thr Gly Lys Thr 65 70 75 80	240
gcg att gca atg ggt atg gcg aaa tct ctt ggc ttg gaa act cct ttt Ala Ile Ala Met Gly Met Ala Lys Ser Leu Gly Leu Glu Thr Pro Phe 85 90 95	288
gcg atg att gca gga agt gaa att ttc tca tta gag atg tca aag aca Ala Met Ile Ala Gly Ser Glu Ile Phe Ser Leu Glu Met Ser Lys Thr 100 105 110	336
gaa gct ttg act cag tct ttt cgt aaa gcg att ggt gtt agg atc aaa Glu Ala Leu Thr Gln Ser Phe Arg Lys Ala Ile Gly Val Arg Ile Lys 115 120 125	384
gaa gag aca gag gtt att gaa gga gaa gtt gtt gag gtt cag att gat Glu Glu Thr Glu Val Ile Glu Gly Glu Val Val Glu Val Gln Ile Asp 130 135 140	432

agg cct gct tct tct ggt gtt gct tcc aag tca ggg aag atg act atg Arg Pro Ala Ser Ser Gly Val Ala Ser Lys Ser Gly Lys Met Thr Met 145 150 155 160	480
aaa acg act gat atg gaa act gtg tat gat atg gga gct aag atg att Lys Thr Thr Asp Met Glu Thr Val Tyr Asp Met Gly Ala Lys Met Ile 165 170 175	528
gag gct ttg aac aag gag aaa gtg cag agt ggt gat gtt att gcc att Glu Ala Leu Asn Lys Glu Lys Val Gln Ser Gly Asp Val Ile Ala Ile 180 185 190	576
gat aaa gct act ggg aag att act aag ctt gga aga tcg ttt tcg agg Asp Lys Ala Thr Gly Lys Ile Thr Lys Leu Gly Arg Ser Phe Ser Arg 195 200 205	624
tct cgt gat tat gat gct atg ggt gcg cag acc aag ttt gtg cag tgc Ser Arg Asp Tyr Asp Ala Met Gly Ala Gln Thr Lys Phe Val Gln Cys 210 215 220	672
cct gaa ggt gag ttg cag aag agg aaa gag gtt gta cat tgt gtc act Pro Glu Gly Glu Leu Gln Lys Arg Lys Glu Val Val His Cys Val Thr 225 230 235 240	720
ctt cac gag att gat gtt atc aac agc agg aca caa ggg ttt ctt gcc Leu His Glu Ile Asp Val Ile Asn Ser Arg Thr Gln Gly Phe Leu Ala 245 250 255	768
ctt ttc act ggc gat act gga gaa atc cga tca gaa gtc cg ^g gaa caa Leu Phe Thr Gly Asp Thr Gly Glu Ile Arg Ser Glu Val Arg Glu Gln 260 265 270	816
att gat aca aaa gta gct gaa tgg aga gaa gaa gga aaa gca gag ata Ile Asp Thr Lys Val Ala Glu Trp Arg Glu Glu Gly Lys Ala Glu Ile 275 280 285	864
gtt ccc gga gtt ctc ttc att gat gaa gtc cac atg ctc gac atc gaa Val Pro Gly Val Leu Phe Ile Asp Glu Val His Met Leu Asp Ile Glu 290 295 300	912
tgc ttc tca ttc ctt aac cga gct cta gaa aac gaa atg tca cca atc Cys Phe Ser Phe Leu Asn Arg Ala Leu Glu Asn Glu Met Ser Pro Ile 305 310 315 320	960
ctt gtg gtg gca aca aac cga gga gtg acg aca atc cgt ggc aca aac Leu Val Val Ala Thr Asn Arg Gly Val Thr Thr Ile Arg Gly Thr Asn 325 330 335	1008
cag aaa tca cca cac ggg atc ccg att gat ctc ctt gac cgt ctt ctc Gln Lys Ser Pro His Gly Ile Pro Ile Asp Leu Leu Asp Arg Leu Leu 340 345 350	1056
atc atc act acc caa cct tac aca gac gat gac ata agg aag ata tta Ile Ile Thr Thr Gln Pro Tyr Thr Asp Asp Asp Ile Arg Lys Ile Leu 355 360 365	1104
gaa atc cgt tgc caa gag gaa gac gtt gag atg aac gaa gag gcc aaa Glu Ile Arg Cys Gln Glu Glu Asp Val Glu Met Asn Glu Glu Ala Lys 370 375 380	1152
cag ctt ttg aca ttg atc gga cgt gat aca tct cta agg tat gcg att Gln Leu Leu Thr Leu Ile Gly Arg Asp Thr Ser Leu Arg Tyr Ala Ile 385 390 395 400	1200
cat ctt ata acc gca gct gca ttg tca tgc cag aaa cgg aaa ggg aaa His Leu Ile Thr Ala Ala Leu Ser Cys Gln Lys Arg Lys Gly Lys	1248

405	410	415	
gtc gtg gag gtt gag gat att cag aga gtt tac aga ctg ttc ttg gat Val Val Glu Val Glu Asp Ile Gln Arg Val Tyr Arg Leu Phe Leu Asp 420 425 430			1296
gtg agg aga tcg atg cag tat ctt gtt gag tat cag agt cag tat atg Val Arg Arg Ser Met Gln Tyr Leu Val Glu Tyr Gln Ser Gln Tyr Met 435 440 445			1344
ttc agt gaa cca atc aaa aac gat gaa gct gct gca gaa gac gaa caa Phe Ser Glu Pro Ile Lys Asn Asp Glu Ala Ala Glu Asp Glu Gln 450 455 460			1392
gat gct atg cag atc tga ggatccacct ctgtttgcct tatttatcat Asp Ala Met Gln Ile 465			1440
gtttcgtgg t gatatgtatg attaggatgt tgaactcgga tttatgtttt tttttttta agttgtgacg agattcgggtt ctagaaaatg atttaaccaa gttcaataca gatcggtttg gtacaaaaca aaaaaaaaaa aaaa			1500 1560
			1584
 <210> 7			
<211> 469			
<212> PRT			
<213> <i>Arabidopsis thaliana</i>			
 <400> 7			
Met Ala Glu Leu Lys Leu Ser Glu Ser Arg Asp Leu Thr Arg Val Glu 1 5 10 15			
Arg Ile Gly Ala His Ser His Ile Arg Gly Leu Gly Leu Asp Ser Ala 20 25 30			
Leu Glu Pro Arg Ala Val Ser Glu Gly Met Val Gly Gln Val Lys Ala 35 40 45			
Arg Lys Ala Ala Gly Val Ile Leu Gln Met Ile Arg Glu Gly Lys Ile 50 55 60			
Ala Gly Arg Ala Ile Leu Ile Ala Gly Gln Pro Gly Thr Gly Lys Thr 65 70 75 80			
Ala Ile Ala Met Gly Met Ala Lys Ser Leu Gly Leu Glu Thr Pro Phe 85 90 95			
Ala Met Ile Ala Gly Ser Glu Ile Phe Ser Leu Glu Met Ser Lys Thr 100 105 110			
Glu Ala Leu Thr Gln Ser Phe Arg Lys Ala Ile Gly Val Arg Ile Lys			

115

120

125

Glu Glu Thr Glu Val Ile Glu Gly Glu Val Val Glu Val Gln Ile Asp
130 135 140

Arg Pro Ala Ser Ser Gly Val Ala Ser Lys Ser Gly Lys Met Thr Met
145 150 155 160

Lys Thr Thr Asp Met Glu Thr Val Tyr Asp Met Gly Ala Lys Met Ile
165 170 175

Glu Ala Leu Asn Lys Glu Lys Val Gln Ser Gly Asp Val Ile Ala Ile
180 185 190

Asp Lys Ala Thr Gly Lys Ile Thr Lys Leu Gly Arg Ser Phe Ser Arg
195 200 205

Ser Arg Asp Tyr Asp Ala Met Gly Ala Gln Thr Lys Phe Val Gln Cys
210 215 220

Pro Glu Gly Glu Leu Gln Lys Arg Lys Glu Val Val His Cys Val Thr
225 230 235 240

Leu His Glu Ile Asp Val Ile Asn Ser Arg Thr Gln Gly Phe Leu Ala
245 250 255

Leu Phe Thr Gly Asp Thr Gly Glu Ile Arg Ser Glu Val Arg Glu Gln
260 265 270

Ile Asp Thr Lys Val Ala Glu Trp Arg Glu Glu Gly Lys Ala Glu Ile
275 280 285

Val Pro Gly Val Leu Phe Ile Asp Glu Val His Met Leu Asp Ile Glu
290 295 300

Cys Phe Ser Phe Leu Asn Arg Ala Leu Glu Asn Glu Met Ser Pro Ile
305 310 315 320

Leu Val Val Ala Thr Asn Arg Gly Val Thr Thr Ile Arg Gly Thr Asn
325 330 335

Gln Lys Ser Pro His Gly Ile Pro Ile Asp Leu Leu Asp Arg Leu Leu
340 345 350

Ile Ile Thr Thr Gln Pro Tyr Thr Asp Asp Asp Ile Arg Lys Ile Leu
355 360 365

Glu Ile Arg Cys Gln Glu Glu Asp Val Glu Met Asn Glu Glu Ala Lys
370 375 380

Gln Leu Leu Thr Leu Ile Gly Arg Asp Thr Ser Leu Arg Tyr Ala Ile
 385 390 395 400

His Leu Ile Thr Ala Ala Leu Ser Cys Gln Lys Arg Lys Gly Lys
 405 410 415

Val Val Glu Val Glu Asp Ile Gln Arg Val Tyr Arg Leu Phe Leu Asp
 420 425 430

Val Arg Arg Ser Met Gln Tyr Leu Val Glu Tyr Gln Ser Gln Tyr Met
 435 440 445

Phe Ser Glu Pro Ile Lys Asn Asp Glu Ala Ala Ala Glu Asp Glu Gln
 450 455 460

Asp Ala Met Gln Ile
 465

<210> 8

<211> 1422

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (64)..(1389)

<223>

<400> 8		
atggcagaac taaggttatc agaaactcga gacttaacta ggatcgaaag aatcgagca		60
cac tca cac ata cga ggt tta ggt ctc gac tca gta ctc gag cca cga		108
Ser His Ile Arg Gly Leu Gly Leu Asp Ser Val Leu Glu Pro Arg		
1 5 10 15		
gcc gta tcc gaa gga atg gtt ggt caa atc aaa gca cgt aaa gcc gcc		156
Ala Val Ser Glu Gly Met Val Gly Gln Ile Lys Ala Arg Lys Ala Ala		
20 25 30		
gga gta acc ctc gag ttg atc aga gac ggc aaa atc tcg ggt cggt gct		204
Gly Val Thr Leu Glu Leu Ile Arg Asp Gly Lys Ile Ser Gly Arg Ala		
35 40 45		
ata ctt ata gcg ggt caa ccc gga acg ggt aaa atc gca ata gca atg		252
Ile Leu Ile Ala Gly Gln Pro Gly Thr Gly Lys Ile Ala Ile Ala Met		
50 55 60		
ggt ata gca aaa tca ctt gga caa gaa aca cca ttc act atg att gca		300
Gly Ile Ala Lys Ser Leu Gly Gln Glu Thr Pro Phe Thr Met Ile Ala		

65	70	75	
gga agt gag atc ttt tct tta gag atg tca aag act gaa gct tta act Gly Ser Glu Ile Phe Ser Leu Glu Met Ser Lys Thr Glu Ala Leu Thr 80 85 90 95			348
caa gct ttt cgt aaa gct att ggt gtt agg atc aaa gaa gag act gac Gln Ala Phe Arg Lys Ala Ile Gly Val Arg Ile Lys Glu Glu Thr Asp 100 105 110			396
gtg ata gaa gga gaa gtt gtg acg att tcg att gat aga cct gct tct Val Ile Glu Gly Glu Val Val Thr Ile Ser Ile Asp Arg Pro Ala Ser 115 120 125			444
tct ggt ggt tct gtg aag aag act ggg aag ata aca atg aag acg act Ser Gly Gly Ser Val Lys Lys Thr Gly Lys Ile Thr Met Lys Thr Thr 130 135 140			492
gat atg gaa tct aat ttt gat ttg gga tgg aaa ttg att gag cca ttg Asp Met Glu Ser Asn Phe Asp Leu Gly Trp Lys Leu Ile Glu Pro Leu 145 150 155			540
gat aag gag aaa gta cag agt ggt gat gtt att gtt ttg gat agg ttt Asp Lys Glu Lys Val Gln Ser Gly Asp Val Ile Val Leu Asp Arg Phe 160 165 170 175			588
tgt ggg aag att act aag ctt gga aga tct ttt acg agg tct aga gat Cys Gly Lys Ile Thr Lys Leu Gly Arg Ser Phe Thr Arg Ser Arg Asp 180 185 190			636
ttt gat gtt atg ggt tca aag act aag ttt gtg cag tgc cct gaa ggt Phe Asp Val Met Gly Ser Lys Thr Lys Phe Val Gln Cys Pro Glu Gly 195 200 205			684
gag ctt gag aag agg aag gag gtt ttg cat tct gtc aca ctt cat gag Glu Leu Glu Lys Arg Lys Glu Val Leu His Ser Val Thr Leu His Glu 210 215 220			732
att gat gtt att aat agc agg act caa ggg tat cta gcc ctc ttc aca Ile Asp Val Ile Asn Ser Arg Thr Gln Gly Tyr Leu Ala Leu Phe Thr 225 230 235			780
ggt gat aca ggc gag att cgt tca gaa acc cga gag caa agc gat act Gly Asp Thr Gly Glu Ile Arg Ser Glu Thr Arg Glu Gln Ser Asp Thr 240 245 250 255			828
aaa gtg gca gag tgg aga gaa gaa ggg aaa gct gaa ata gta cct ggt Lys Val Ala Glu Trp Arg Glu Glu Gly Lys Ala Glu Ile Val Pro Gly 260 265 270			876
gtt ctc ttc att gat gaa gtc cat atg ctt gat atc gaa tgc ttc tct Val Leu Phe Ile Asp Glu Val His Met Leu Asp Ile Glu Cys Phe Ser 275 280 285			924
ttc ctg aat aga gct ctc gaa aac gat atg tca cca atc ctg gtc gtg Phe Leu Asn Arg Ala Leu Glu Asn Asp Met Ser Pro Ile Leu Val Val 290 295 300			972
gct aca aac aga gga atg aca aca atc cga gga aca aac cag ata tca Ala Thr Asn Arg Gly Met Thr Thr Ile Arg Gly Thr Asn Gln Ile Ser 305 310 315			1020
gca cat ggg atc cca atc gat ttt ctt gac cgt ctt ctt att atc aca Ala His Gly Ile Pro Ile Asp Phe Leu Asp Arg Leu Leu Ile Ile Thr 320 325 330 335			1068

aca cag cct tac aca caa gac gag atc aga aat att tta gag atc cgt Thr Gln Pro Tyr Thr Gln Asp Glu Ile Arg Asn Ile Leu Glu Ile Arg	340	345	350	1116
tgc caa gaa gag gat gtg gag atg aac gag gaa gcg aaa cag ctt ctg Cys Gln Glu Glu Asp Val Glu Met Asn Glu Glu Ala Lys Gln Leu Leu	355	360	365	1164
act ttg atc gga tgt aat acc tcg ctt agg tac gcg att cat cta atc Thr Leu Ile Gly Cys Asn Thr Ser Leu Arg Tyr Ala Ile His Leu Ile	370	375	380	1212
aat gca gct gcc cta gct tgc ctg aaa cgt aaa ggg aaa gtc gta gag Asn Ala Ala Ala Leu Ala Cys Leu Lys Arg Lys Gly Lys Val Val Glu	385	390	395	1260
att cag gac att gag aga gtt tat aga ttg ttt tta gac acc aag aga Ile Gln Asp Ile Glu Arg Val Tyr Arg Leu Phe Leu Asp Thr Lys Arg	400	405	410	1308
415				
tcg atg cag tac ttg gtt gag cat gag agc gag tac ttg ttt agc gtg Ser Met Gln Tyr Leu Val Glu His Glu Ser Glu Tyr Leu Phe Ser Val	420	425	430	1356
cct ata aaa aac aca cag gag gct act gca gga gaagaaaacag aacacgaggc Pro Ile Lys Asn Thr Gln Glu Ala Thr Ala Gly	435	440		1409
catggaaagt tga				1422
<210> 9				
<211> 442				
<212> PRT				
<213> <i>Arabidopsis thaliana</i>				
<400> 9				
Ser His Ile Arg Gly Leu Gly Leu Asp Ser Val Leu Glu Pro Arg Ala 1 5 10 15				
Val Ser Glu Gly Met Val Gly Gln Ile Lys Ala Arg Lys Ala Ala Gly 20 25 30				
Val Thr Leu Glu Leu Ile Arg Asp Gly Lys Ile Ser Gly Arg Ala Ile 35 40 45				
Leu Ile Ala Gly Gln Pro Gly Thr Gly Lys Ile Ala Ile Ala Met Gly 50 55 60				
Ile Ala Lys Ser Leu Gly Gln Glu Thr Pro Phe Thr Met Ile Ala Gly 65 70 75 80				
Ser Glu Ile Phe Ser Leu Glu Met Ser Lys Thr Glu Ala Leu Thr Gln 85 90 95				

Ala Phe Arg Lys Ala Ile Gly Val Arg Ile Lys Glu Glu Thr Asp Val
100 105 110

Ile Glu Gly Glu Val Val Thr Ile Ser Ile Asp Arg Pro Ala Ser Ser
115 120 125

Gly Gly Ser Val Lys Lys Thr Gly Lys Ile Thr Met Lys Thr Thr Asp
130 135 140

Met Glu Ser Asn Phe Asp Leu Gly Trp Lys Leu Ile Glu Pro Leu Asp
145 150 155 160

Lys Glu Lys Val Gln Ser Gly Asp Val Ile Val Leu Asp Arg Phe Cys
165 170 175

Gly Lys Ile Thr Lys Leu Gly Arg Ser Phe Thr Arg Ser Arg Asp Phe
180 185 190

Asp Val Met Gly Ser Lys Thr Lys Phe Val Gln Cys Pro Glu Gly Glu
195 200 205

Leu Glu Lys Arg Lys Glu Val Leu His Ser Val Thr Leu His Glu Ile
210 215 220

Asp Val Ile Asn Ser Arg Thr Gln Gly Tyr Leu Ala Leu Phe Thr Gly
225 230 235 240

Asp Thr Gly Glu Ile Arg Ser Glu Thr Arg Glu Gln Ser Asp Thr Lys
245 250 255

Val Ala Glu Trp Arg Glu Glu Gly Lys Ala Glu Ile Val Pro Gly Val
260 265 270

Leu Phe Ile Asp Glu Val His Met Leu Asp Ile Glu Cys Phe Ser Phe
275 280 285

Leu Asn Arg Ala Leu Glu Asn Asp Met Ser Pro Ile Leu Val Val Ala
290 295 300

Thr Asn Arg Gly Met Thr Thr Ile Arg Gly Thr Asn Gln Ile Ser Ala
305 310 315 320

His Gly Ile Pro Ile Asp Phe Leu Asp Arg Leu Leu Ile Ile Thr Thr
325 330 335

Gln Pro Tyr Thr Gln Asp Glu Ile Arg Asn Ile Leu Glu Ile Arg Cys
340 345 350

Gln Glu Glu Asp Val Glu Met Asn Glu Glu Ala Lys Gln Leu Leu Thr

355

360

365

Leu Ile Gly Cys Asn Thr Ser Leu Arg Tyr Ala Ile His Leu Ile Asn
 370 375 380

Ala Ala Ala Leu Ala Cys Leu Lys Arg Lys Gly Lys Val Val Glu Ile
 385 390 395 400

Gln Asp Ile Glu Arg Val Tyr Arg Leu Phe Leu Asp Thr Lys Arg Ser
 405 410 415

Met Gln Tyr Leu Val Glu His Glu Ser Glu Tyr Leu Phe Ser Val Pro
 420 425 430

Ile Lys Asn Thr Gln Glu Ala Thr Ala Gly
 435 440

<210> 10

<211> 1591

<212> DNA

<213> *Arabidopsis thaliana*

<400> 10		
ccacgcgtcc gtaagaagat tttgccagtg cggaaagcgg cggagattga gagattagcg	60	
acgatggagg aaagcaaaca gaactatgac ctgacgccac taatagcgcc taacctggac	120	
agacacttgg tgtttcctat attcgagttc cttcaagagc gtcagcttta ccctgatgag	180	
cagatcctga agtctaaaat ccagctttg aaccagacga acatggttga ttacccatg	240	
gatattcaca agagtctcta ccacactgaa gacgctcctc aagaaatggt ggagagaaga	300	
acagaggttg tcgcttaggct caaatcttg gaggaggctg ctgcaccact cgtgtcttt	360	
cttttgaacc ctaacgctgt gcaggagcta agagctgaca agcagtacaa tctccaaatg	420	
ctcaaggaac gctaccagat tggtccagac cagattgagg ctttgtacca gtacccaag	480	
tttcagtttgc aatgtggcaa ctattctggc gctgctgatt atctttacca gtacaggacc	540	
ctgtgctcta accttgagag gagttgagt gccttgggg gaaagctcgc atctgaaata	600	
ttgatgcaaa actgggatat tgctctgaa gagcttaacc gtctcaaaga gattattgac	660	
tcaaagagtt tttcatcgcc gttaaaccag gtgcagaaca ggatttgggt gatgcattgg	720	
ggtctgtata tctttttaa ccatgataat ggaaggacac agatcattga tcttttaac	780	
caagacaagt atctgaatgc catccaaact agtgctccac acttgctgcg ctacttggca	840	
actgcttca ttgtcaacaa aaggagaaga ccacaattga aagaattcat taaggtcatt	900	
cagcaagagc actactccta caaagatcca attatcgagt tcctggcatg tgtgtttgtc	960	

aattatgact ttgatggggc tcaaaagaag atgaaagagt gtgaagaggt cattgtaat	1020
gatccattcc ttggcaagcg agttgaggat ggaaactttt caactgtacc actgagagat	1080
gaatttcttg aaaatgcccg cctattcgtc tttgaaacct attgaaaaat tcataaaagg	1140
attgacatgg gggtaacttgc tgaaaaattt aatctgaact atgaggaggc cgagagatgg	1200
attgtgaacc taatccgcac ctcaaagctt gatgccaaga ttgattctga gtcaggaact	1260
gtaatcatgg agcctactca gcccaacgtg catgagcagt tgataaacca caccaaaggc	1320
ttatcaggac gaacatacaa gtttgtaat cagctttgg aacacacaca ggcgcaagca	1380
actcgctagt caaaattttt ctgtggaagc cttcccttga taaaactcac cttcggttga	1440
ctggaattat ttctttttc ttgctctgag ttcacctttt actttgaaaa agattattat	1500
ggagttgttc tatttgaat gttggatcca cagattggaa cattttccaa ccaaatcagc	1560
atttttaaaa aaaaaaaaaa aaaaaaaaaa a	1591

<210> 11

<211> 1773

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(1773)

<223>

<400> 11	
atg gca gaa ctg cta ttt gag act tat gga gtg cct gca gtt gca ttt	48
Met Ala Glu Leu Leu Phe Glu Thr Tyr Gly Val Pro Ala Val Ala Phe	
1 5 10 15	
gga gtc gat gct gct ttc agc tac aaa tac aat caa cta cat gga att	96
Gly Val Asp Ala Ala Phe Ser Tyr Lys Tyr Asn Gln Leu His Gly Ile	
20 25 30	
tgt aaa aaa gat gga att gtt ctc tgt cct gga ttc acg aca aca cac	144
Cys Lys Lys Asp Gly Ile Val Leu Cys Pro Gly Phe Thr Thr His	
35 40 45	
tcc att ccg ttt gtc gac gga gaa cct ata tat aaa gga tcc acg cga	192
Ser Ile Pro Phe Val Asp Gly Glu Pro Ile Tyr Lys Gly Ser Ser Arg	
50 55 60	
act aac att ggt gga tat cat gtc act gat tat tta aag cag ctt ctg	240
Thr Asn Ile Gly Gly Tyr His Val Thr Asp Tyr Leu Lys Gln Leu Leu	
65 70 75 80	
tca ctt aag tac cct ttt cat tcg tct agg ttt aca tgg gag aag gcc	288
Ser Leu Lys Tyr Pro Phe His Ser Ser Arg Phe Thr Trp Glu Lys Ala	

85	90	95	
gaa gat ttg aaa ttg gaa cac tgt tat atc gca cct gac tat gct tcg Glu Asp Leu Lys Leu Glu His Cys Tyr Ile Ala Pro Asp Tyr Ala Ser 100	105	110	336
gaa att cgg tta ttc cag gaa gga aga aaa gaa gct gaa gag aaa aca Glu Ile Arg Leu Phe Gln Glu Gly Arg Lys Glu Ala Glu Glu Lys Thr 115	120	125	384
agt tat tgg cag ctt cca tgg ata cct cct ccc acc gaa gtt cct cca Ser Tyr Trp Gln Leu Pro Trp Ile Pro Pro Pro Thr Glu Val Pro Pro 130	135	140	432
tca gaa gaa gag att gca agg aag gca gct ata aga gaa aaa caa ggt Ser Glu Glu Glu Ile Ala Arg Lys Ala Ala Ile Arg Glu Lys Gln Gly 145	150	155	480
caa agg ctg cga gaa atg gct gaa gca aag aga gtg tcc aag att aat Gln Arg Leu Arg Glu Met Ala Glu Ala Lys Arg Val Ser Lys Ile Asn 165	170	175	528
gac atg gag aat caa ctg att agc ttg cgt ttc ctt ttg aag caa gtt Asp Met Glu Asn Gln Leu Ile Ser Leu Arg Phe Leu Leu Lys Gln Val 180	185	190	576
gac cag gtt gaa gag gat gat att cca acc ttt ttg tca gac acc ggt Asp Gln Val Glu Glu Asp Asp Ile Pro Thr Phe Leu Ser Asp Thr Gly 195	200	205	624
tac gcg tcc agg caa gag cta gag tct act att acg aaa gtg aca cag Tyr Ala Ser Arg Gln Glu Leu Glu Ser Thr Ile Thr Lys Val Thr Gln 210	215	220	672
tcg ctt aga aaa gca agg ggt gag ccg aag aat gaa cca gct gag tat Ser Leu Arg Lys Ala Arg Gly Glu Pro Lys Asn Glu Pro Ala Glu Tyr 225	230	235	720
gaa gaa aac cct gat tct ctt aat aat gaa aag tat cca ctt atg aat Glu Glu Asn Pro Asp Ser Leu Asn Asn Glu Lys Tyr Pro Leu Met Asn 245	250	255	768
gtc ccc gat gat att ctt act cct gag cag ctt aag gac aag aag agg Val Pro Asp Asp Ile Leu Thr Pro Glu Gln Leu Lys Asp Lys Lys Arg 260	265	270	816
caa atg ttt ctt aaa aca aca gca gag ggc cgg cta cga gct aga caa Gln Met Phe Leu Lys Thr Thr Ala Glu Gly Arg Leu Arg Ala Arg Gln 275	280	285	864
aag cgt aat gag gag gaa ctc gaa aaa gag aaa aga aat caa tta gag Lys Arg Asn Glu Glu Leu Glu Lys Glu Lys Arg Asn Gln Leu Glu 290	295	300	912
gag gaa aga cgt cgt gag aac cca gag tct tac tta gag gag ttg caa Glu Glu Arg Arg Glu Asn Pro Glu Ser Tyr Leu Glu Glu Leu Gln 305	310	315	960
gct cag tac aag gaa gtg ttg gag aga gtt gag cag aag aag cgt ctg Ala Gln Tyr Lys Glu Val Leu Glu Arg Val Glu Gln Lys Lys Arg Leu 325	330	335	1008
aaa aca aac ggg tcc agt aac ggg aat aac aag tct gga ggt att ggg Lys Thr Asn Gly Ser Ser Asn Gly Asn Asn Lys Ser Gly Gly Ile Gly 340	345	350	1056

cga ggc gag cga ctc agt gct gca cag agg gag aga atg cgt ctg ctg Arg Gly Glu Arg Leu Ser Ala Ala Gln Arg Glu Arg Met Arg Leu Leu 355 360 365	1104
acg aca gca gcc ttt gat aga ggg aaa ggc gag gat acg ttt ggt tct Thr Thr Ala Ala Phe Asp Arg Gly Lys Gly Glu Asp Thr Phe Gly Ser 370 375 380	1152
aga gat gaa gat tgg cag ctc tac aaa ctt atg agc aag gat aat gac Arg Asp Glu Asp Trp Gln Leu Tyr Lys Leu Met Ser Lys Asp Asn Asp 385 390 395 400	1200
gat gat gac gaa caa cct gat tca gac gag gca gag ttg gct cgt tta Asp Asp Asp Glu Gln Pro Asp Ser Asp Glu Ala Glu Leu Ala Arg Leu 405 410 415	1248
tca tct aga ctt cag gaa att gat cca aca ttt gtg cag aaa gta gaa Ser Ser Arg Leu Gln Glu Ile Asp Pro Thr Phe Val Gln Lys Val Glu 420 425 430	1296
gga gaa ttg agt cag aca tca ggg gag gtg cca cgc gta cgc cca tta Gly Glu Leu Ser Gln Thr Ser Gly Glu Val Pro Arg Val Arg Pro Leu 435 440 445	1344
aca gag gaa gac tac aag ata gtg att ggt ata gaa aga ttc cgt tgc Thr Glu Glu Asp Tyr Lys Ile Val Ile Gly Ile Glu Arg Phe Arg Cys 450 455 460	1392
cca gag atc ctg ttc cat cca aac ctt att ggt att gac caa gta ggc Pro Glu Ile Leu Phe His Pro Asn Leu Ile Gly Ile Asp Gln Val Gly 465 470 475 480	1440
tta gac gag atg gct ggc aca tca atc aga agg cta ccg cac gac gag Leu Asp Glu Met Ala Gly Thr Ser Ile Arg Arg Leu Pro His Asp Glu 485 490 495	1488
aaa gag tta gag gag agg cta acg agc tcg ata cta atg acg ggc ggg Lys Glu Leu Glu Glu Arg Leu Thr Ser Ser Ile Leu Met Thr Gly Gly 500 505 510	1536
tgt agc ctt ctt cca ggg atg aac gag cgg ttg gaa tgt ggg att agg Cys Ser Leu Leu Pro Gly Met Asn Glu Arg Leu Glu Cys Gly Ile Arg 515 520 525	1584
atg ata aga cct tgc gga tca ccc att aac gtg gtt aga gct atg gat Met Ile Arg Pro Cys Gly Ser Pro Ile Asn Val Val Arg Ala Met Asp 530 535 540	1632
cca gtg ctg gat gca tgg cga gga gca tct gca ttt gct gct aat ttg Pro Val Leu Asp Ala Trp Arg Gly Ala Ser Ala Phe Ala Ala Asn Leu 545 550 555 560	1680
aac ttc ttg ggg aat gcc ttt act aag atg gat tac gac gag aaa ggt Asn Phe Leu Gly Asn Ala Phe Thr Lys Met Asp Tyr Asp Glu Lys Gly 565 570 575	1728
gaa gat tgg ctt aga aat tat caa att cga tac aac tat ttg tga Glu Asp Trp Leu Arg Asn Tyr Gln Ile Arg Tyr Asn Tyr Leu 580 585 590	1773

<210> 12

<211> 590

<212> PRT

<213> *Arabidopsis thaliana*

<400> 12

Met Ala Glu Leu Leu Phe Glu Thr Tyr Gly Val Pro Ala Val Ala Phe
1 5 10 15

Gly Val Asp Ala Ala Phe Ser Tyr Lys Tyr Asn Gln Leu His Gly Ile
20 25 30

Cys Lys Lys Asp Gly Ile Val Leu Cys Pro Gly Phe Thr Thr Thr His
35 40 45

Ser Ile Pro Phe Val Asp Gly Glu Pro Ile Tyr Lys Gly Ser Ser Arg
50 55 60

Thr Asn Ile Gly Gly Tyr His Val Thr Asp Tyr Leu Lys Gln Leu Leu
65 70 75 80

Ser Leu Lys Tyr Pro Phe His Ser Ser Arg Phe Thr Trp Glu Lys Ala
85 90 95

Glu Asp Leu Lys Leu Glu His Cys Tyr Ile Ala Pro Asp Tyr Ala Ser
100 105 110

Glu Ile Arg Leu Phe Gln Glu Gly Arg Lys Glu Ala Glu Glu Lys Thr
115 120 125

Ser Tyr Trp Gln Leu Pro Trp Ile Pro Pro Pro Thr Glu Val Pro Pro
130 135 140

Ser Glu Glu Glu Ile Ala Arg Lys Ala Ala Ile Arg Glu Lys Gln Gly
145 150 155 160

Gln Arg Leu Arg Glu Met Ala Glu Ala Lys Arg Val Ser Lys Ile Asn
165 170 175

Asp Met Glu Asn Gln Leu Ile Ser Leu Arg Phe Leu Leu Lys Gln Val
180 185 190

Asp Gln Val Glu Glu Asp Asp Ile Pro Thr Phe Leu Ser Asp Thr Gly
195 200 205

Tyr Ala Ser Arg Gln Glu Leu Glu Ser Thr Ile Thr Lys Val Thr Gln
210 215 220

Ser Leu Arg Lys Ala Arg Gly Glu Pro Lys Asn Glu Pro Ala Glu Tyr
225 230 235 240

Glu Glu Asn Pro Asp Ser Leu Asn Asn Glu Lys Tyr Pro Leu Met Asn
245 250 255

Val Pro Asp Asp Ile Leu Thr Pro Glu Gln Leu Lys Asp Lys Lys Arg
260 265 270

Gln Met Phe Leu Lys Thr Thr Ala Glu Gly Arg Leu Arg Ala Arg Gln
275 280 285

Lys Arg Asn Glu Glu Glu Leu Glu Lys Glu Lys Arg Asn Gln Leu Glu
290 295 300

Glu Glu Arg Arg Arg Glu Asn Pro Glu Ser Tyr Leu Glu Glu Leu Gln
305 310 315 320

Ala Gln Tyr Lys Glu Val Leu Glu Arg Val Glu Gln Lys Lys Arg Leu
325 330 335

Lys Thr Asn Gly Ser Ser Asn Gly Asn Asn Lys Ser Gly Gly Ile Gly
340 345 350

Arg Gly Glu Arg Leu Ser Ala Ala Gln Arg Glu Arg Met Arg Leu Leu
355 360 365

Thr Thr Ala Ala Phe Asp Arg Gly Lys Gly Glu Asp Thr Phe Gly Ser
370 375 380

Arg Asp Glu Asp Trp Gln Leu Tyr Lys Leu Met Ser Lys Asp Asn Asp
385 390 395 400

Asp Asp Asp Glu Gln Pro Asp Ser Asp Glu Ala Glu Leu Ala Arg Leu
405 410 415

Ser Ser Arg Leu Gln Glu Ile Asp Pro Thr Phe Val Gln Lys Val Glu
420 425 430

Gly Glu Leu Ser Gln Thr Ser Gly Glu Val Pro Arg Val Arg Pro Leu
435 440 445

Thr Glu Glu Asp Tyr Lys Ile Val Ile Gly Ile Glu Arg Phe Arg Cys
450 455 460

Pro Glu Ile Leu Phe His Pro Asn Leu Ile Gly Ile Asp Gln Val Gly
465 470 475 480

Leu Asp Glu Met Ala Gly Thr Ser Ile Arg Arg Leu Pro His Asp Glu
485 490 495

Lys Glu Leu Glu Glu Arg Leu Thr Ser Ser Ile Leu Met Thr Gly Gly
500 505 510

Cys Ser Leu Leu Pro Gly Met Asn Glu Arg Leu Glu Cys Gly Ile Arg
515 520 525

Met Ile Arg Pro Cys Gly Ser Pro Ile Asn Val Val Arg Ala Met Asp
530 535 540

Pro Val Leu Asp Ala Trp Arg Gly Ala Ser Ala Phe Ala Ala Asn Leu
545 550 555 560

Asn Phe Leu Gly Asn Ala Phe Thr Lys Met Asp Tyr Asp Glu Lys Gly
565 570 575

Glu Asp Trp Leu Arg Asn Tyr Gln Ile Arg Tyr Asn Tyr Leu
580 585 590

<210> 13

<211> 1416

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(1416)

<223>

<400>	13	
atg atc ctg aag aaa gta tgg gga tcg gtg tgg aac cga tcg aat agt		48
Met Ile Leu Lys Lys Val Trp Gly Ser Val Trp Asn Arg Ser Asn Ser		
1 5 10 15		
ggc aag gat ttg gtg aat cat cag aga gcg atc gat gtt cct cct ctg		96
Gly Lys Asp Leu Val Asn His Gln Arg Ala Ile Asp Val Pro Pro Leu		
20 25 30		
tta ttg tct tca tcg tct ctt ggt gcg ttt gat cag cta ccg atg		144
Leu Leu Ser Ser Ser Ser Leu Gly Ala Phe Asp Gln Leu Pro Met		
35 40 45		
gat att cta gtc cag ata ctg atg atg gag cca aaa gat gct gtg		192
Asp Ile Leu Val Gln Ile Leu Met Met Met Glu Pro Lys Asp Ala Val		
50 55 60		
aaa ttg ggc tta acg tgc aaa gcc tgg aaa tgc gta gct agt ggt aat		240
Lys Leu Gly Leu Thr Cys Lys Ala Trp Lys Cys Val Ala Ser Gly Asn		
65 70 75 80		
cgt ctc tgg ata ttt tat ctc cag tgt tct caa gag cca tgg gac tcc		288

Arg Leu Trp Ile Phe Tyr Leu Gln Cys Ser Gln Glu Pro Trp Asp Ser			
85	90	95	
att ttc ttc gct gaa act agt ttg cgt tct ggt tat cct ctc cga atg			336
Ile Phe Phe Ala Glu Thr Ser Leu Arg Ser Gly Tyr Pro Leu Arg Met			
100	105	110	
att tct agt caa tca gga gag ttg tcg ttt atg cac att tat agt cag			384
Ile Ser Ser Gln Ser Gly Glu Leu Ser Phe Met His Ile Tyr Ser Gln			
115	120	125	
agg gca caa gtt cct ggt tct atc att att gat ggt ggt tct gga tat			432
Arg Ala Gln Val Pro Gly Ser Ile Ile Ile Asp Gly Gly Ser Gly Tyr			
130	135	140	
tgt aag ttt ggt tgg agc aag tat gcg tct cct tct gga cgt tct gct			480
Cys Lys Phe Gly Trp Ser Lys Tyr Ala Ser Pro Ser Gly Arg Ser Ala			
145	150	155	160
act ttt ttg gaa ttt ggt aac att gag tca ccg att tat gct aga ctt			528
Thr Phe Leu Glu Phe Gly Asn Ile Glu Ser Pro Ile Tyr Ala Arg Leu			
165	170	175	
caa cag ttc ttt gca acc att ttc acc agg atg cag gta aag ccc tct			576
Gln Gln Phe Phe Ala Thr Ile Phe Thr Arg Met Gln Val Lys Pro Ser			
180	185	190	
atg cag cca ata gtg gta tca cta cct ctc tgc cat ttt gat gat act			624
Met Gln Pro Ile Val Val Ser Leu Pro Leu Cys His Phe Asp Asp Thr			
195	200	205	
gaa tca gcc aag gca tca agg cgg caa ctt aag act gct att ttc aat			672
Glu Ser Ala Lys Ala Ser Arg Arg Gln Leu Lys Thr Ala Ile Phe Asn			
210	215	220	
gtc ttg ttt gac atg aac gtc cct gca gtg tgt gca gtt aat cag gct			720
Val Leu Phe Asp Met Asn Val Pro Ala Val Cys Ala Val Asn Gln Ala			
225	230	235	240
gtg tta gct cta tat gca gca cgg cgg aca tct gga att gtt gtc aac			768
Val Leu Ala Leu Tyr Ala Ala Arg Arg Thr Ser Gly Ile Val Val Asn			
245	250	255	
att ggt ttc caa gtc atc acc att ctt ccg att tta cat ggt aag gtg			816
Ile Gly Phe Gln Val Ile Thr Ile Leu Pro Ile Leu His Gly Lys Val			
260	265	270	
atg cgc cag gta ggt gta gaa gtc att ggt ttt gga gca ttg aaa ctc			864
Met Arg Gln Val Gly Val Glu Val Ile Gly Phe Gly Ala Leu Lys Leu			
275	280	285	
acg ggc ttc ctt aag gag aag atg caa gaa aac aac att tcc ttt caa			912
Thr Gly Phe Leu Lys Glu Lys Met Gln Glu Asn Asn Ile Ser Phe Gln			
290	295	300	
tca ctc tac act gtt cgt act ctt aaa gag aaa ctg tgt tat gtg gct			960
Ser Leu Tyr Thr Val Arg Thr Leu Lys Glu Lys Leu Cys Tyr Val Ala			
305	310	315	320
ctt gat tat aaa gct gaa ctt tca aaa gac aca caa gct tca gtg gaa			1008
Leu Asp Tyr Lys Ala Glu Leu Ser Lys Asp Thr Gln Ala Ser Val Glu			
325	330	335	
gtt tca ggt gaa gga tgg ttt act tta tca aaa gag cgt ttc caa aca			1056
Val Ser Gly Glu Gly Trp Phe Thr Leu Ser Lys Glu Arg Phe Gln Thr			
340	345	350	

ggg gag ata tta ttc caa cca cgt ctc gct gga atg cgt gca atg agt Gly Glu Ile Leu Phe Gln Pro Arg Leu Ala Gly Met Arg Ala Met Ser 355 360 365	1104
ctg cac cag gcc gtc tcg ctc tgt atg gac cac tgt gat gca gca gga Leu His Gln Ala Val Ser Leu Cys Met Asp His Cys Asp Ala Ala Gly 370 375 380	1152
ctt aca ggt gac gat agt tgg ttc aag act gta gta cta act ggg gga Leu Thr Gly Asp Asp Ser Trp Phe Lys Thr Val Val Leu Thr Gly Gly 385 390 395 400	1200
agc gcg tgt ttg cct gga ctc tca gag agg cta gag aga gaa ctg caa Ser Ala Cys Leu Pro Gly Leu Ser Glu Arg Leu Glu Arg Glu Leu Gln 405 410 415	1248
gat cac ctt cct tca tct ata agt aac gga atc aga gta ata cct cct Asp His Leu Pro Ser Ser Ile Ser Asn Gly Ile Arg Val Ile Pro Pro 420 425 430	1296
cct tac ggc gtg gac aca tca tgg cat ggg gca aag ctt att agt aat Pro Tyr Gly Val Asp Thr Ser Trp His Gly Ala Lys Leu Ile Ser Asn 435 440 445	1344
ttg agc atc ttt cct ggt cct tgg tgt atc aca agg aag cag ttc cgt Leu Ser Ile Phe Pro Gly Pro Trp Cys Ile Thr Arg Lys Gln Phe Arg 450 455 460	1392
cgc aag tca aga ctc atg tgg tga Arg Lys Ser Arg Leu Met Trp 465 470	1416

<210> 14

<211> 471

<212> PRT

<213> *Arabidopsis thaliana*

<400> 14

Met Ile Leu Lys Lys Val Trp Gly Ser Val Trp Asn Arg Ser Asn Ser 1 5 10 15
--

Gly Lys Asp Leu Val Asn His Gln Arg Ala Ile Asp Val Pro Pro Leu 20 25 30

Leu Leu Ser Ser Ser Ser Leu Gly Ala Phe Asp Gln Leu Pro Met 35 40 45

Asp Ile Leu Val Gln Ile Leu Met Met Met Glu Pro Lys Asp Ala Val 50 55 60

Lys Leu Gly Leu Thr Cys Lys Ala Trp Lys Cys Val Ala Ser Gly Asn 65 70 75 80
--

Arg Leu Trp Ile Phe Tyr Leu Gln Cys Ser Gln Glu Pro Trp Asp Ser
85 90 95

Ile Phe Phe Ala Glu Thr Ser Leu Arg Ser Gly Tyr Pro Leu Arg Met
100 105 110

Ile Ser Ser Gln Ser Gly Glu Leu Ser Phe Met His Ile Tyr Ser Gln
115 120 125

Arg Ala Gln Val Pro Gly Ser Ile Ile Ile Asp Gly Gly Ser Gly Tyr
130 135 140

Cys Lys Phe Gly Trp Ser Lys Tyr Ala Ser Pro Ser Gly Arg Ser Ala
145 150 155 160

Thr Phe Leu Glu Phe Gly Asn Ile Glu Ser Pro Ile Tyr Ala Arg Leu
165 170 175

Gln Gln Phe Phe Ala Thr Ile Phe Thr Arg Met Gln Val Lys Pro Ser
180 185 190

Met Gln Pro Ile Val Val Ser Leu Pro Leu Cys His Phe Asp Asp Thr
195 200 205

Glu Ser Ala Lys Ala Ser Arg Arg Gln Leu Lys Thr Ala Ile Phe Asn
210 215 220

Val Leu Phe Asp Met Asn Val Pro Ala Val Cys Ala Val Asn Gln Ala
225 230 235 240

Val Leu Ala Leu Tyr Ala Ala Arg Arg Thr Ser Gly Ile Val Val Asn
245 250 255

Ile Gly Phe Gln Val Ile Thr Ile Leu Pro Ile Leu His Gly Lys Val
260 265 270

Met Arg Gln Val Gly Val Glu Val Ile Gly Phe Gly Ala Leu Lys Leu
275 280 285

Thr Gly Phe Leu Lys Glu Lys Met Gln Glu Asn Asn Ile Ser Phe Gln
290 295 300

Ser Leu Tyr Thr Val Arg Thr Leu Lys Glu Lys Leu Cys Tyr Val Ala
305 310 315 320

Leu Asp Tyr Lys Ala Glu Leu Ser Lys Asp Thr Gln Ala Ser Val Glu
325 330 335

Val Ser Gly Glu Gly Trp Phe Thr Leu Ser Lys Glu Arg Phe Gln Thr
340 345 350

Gly Glu Ile Leu Phe Gln Pro Arg Leu Ala Gly Met Arg Ala Met Ser
355 360 365

Leu His Gln Ala Val Ser Leu Cys Met Asp His Cys Asp Ala Ala Gly
370 375 380

Leu Thr Gly Asp Asp Ser Trp Phe Lys Thr Val Val Leu Thr Gly Gly
385 390 395 400

Ser Ala Cys Leu Pro Gly Leu Ser Glu Arg Leu Glu Arg Glu Leu Gln
405 410 415

Asp His Leu Pro Ser Ser Ile Ser Asn Gly Ile Arg Val Ile Pro Pro
420 425 430

Pro Tyr Gly Val Asp Thr Ser Trp His Gly Ala Lys Leu Ile Ser Asn
435 440 445

Leu Ser Ile Phe Pro Gly Pro Trp Cys Ile Thr Arg Lys Gln Phe Arg
450 455 460

Arg Lys Ser Arg Leu Met Trp
465 470

<210> 15

<211> 1092

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(1092)

<223>

<400> 15

atg gaa gca cta gtt gtt gat gct ggc tct aag ttc ctg aaa gca gga
 Met Glu Ala Leu Val Val Asp Ala Gly Ser Lys Phe Leu Lys Ala Gly
 1 5 10 15 48

gca gca att cct gac cag tct cct gca atg ata att ccc tct caa atg 96
Ala Ala Ile Pro Asp Gln Ser Pro Ala Met Ile Ile Pro Ser Gln Met
20 25 30

aaa cga atg gtt gat gat ggg tct tct tca gct gat aac ccc acc act 144
 Lys Arg Met Val Asp Asp Gly Ser Ser Ser Ala Asp Asn Pro Thr Thr
 35 40 45

gtc ttt gag gat gtc act ctt gat cct att gaa agg ggt ttg att aga Val Phe Glu Asp Val Thr Leu Asp Pro Ile Glu Arg Gly Leu Ile Arg 50 55 60	192
gat tgg gat gct atg gaa gat ctg ttg cgt tat gtt gtc tac act ggg Asp Trp Asp Ala Met Glu Asp Leu Leu Arg Tyr Val Val Tyr Thr Gly 65 70 75 80	240
ctt gga tgg gaa gag gga aac gaa ggc aat ata ctt ttt aca gat cca Leu Gly Trp Glu Glu Gly Asn Glu Gly Asn Ile Leu Phe Thr Asp Pro 85 90 95	288
ctt tgt act cct aag gct att agg gag caa ttg gtg cag ttg atg ttt Leu Cys Thr Pro Lys Ala Ile Arg Glu Gln Leu Val Gln Leu Met Phe 100 105 110	336
gaa aca ttc aat gtc tct gga ttt tat gca tct gag caa gca gtg ttg Glu Thr Phe Asn Val Ser Gly Phe Tyr Ala Ser Glu Gln Ala Val Leu 115 120 125	384
tcc ctt tat gct gtt gga cgc atc tcc ggt tgc act gtt gat att ggt Ser Leu Tyr Ala Val Gly Arg Ile Ser Gly Thr Val Asp Ile Gly 130 135 140	432
cat ggg aag ata gat att gcc cca gtt ctt gaa ggt gca gta caa cac His Gly Lys Ile Asp Ile Ala Pro Val Leu Glu Gly Ala Val Gln His 145 150 155 160	480
att gcc tcg aaa cggtt gag cta ggt gga acc gag cta act aaa tta Ile Ala Ser Lys Arg Phe Glu Leu Gly Gly Thr Glu Leu Thr Lys Leu 165 170 175	528
ttt gcc caa gag ctt gga aaa acc aac ccgtcg atg aat ctc agc atg Phe Ala Gln Glu Leu Gly Lys Thr Asn Pro Ser Met Asn Leu Ser Met 180 185 190	576
tct gat gtt gaa aaa ctc aag gag cag tat gca aac tgt gcc gag gac Ser Asp Val Glu Lys Leu Lys Glu Gln Tyr Ala Asn Cys Ala Glu Asp 195 200 205	624
gaa att gct tac aaa aaa acc caa aac tgt gaa atc gag cag cat act Glu Ile Ala Tyr Lys Lys Thr Gln Asn Cys Glu Ile Glu Gln His Thr 210 215 220	672
ctt cct gat gga cag gtg ata agc atc ggg cga gag aga tac tcg gtt Leu Pro Asp Gly Gln Val Ile Ser Ile Gly Arg Glu Arg Tyr Ser Val 225 230 235 240	720
gga gaa gct ctg ttt cag cca tca ata ctg gga ctg gag gag cat gga Gly Glu Ala Leu Phe Gln Pro Ser Ile Leu Gly Leu Glu Glu His Gly 245 250 255	768
atc gtt gag cag ctt gtc cgg att atc tcc aca gtg tca tct gag aac Ile Val Glu Gln Leu Val Arg Ile Ile Ser Thr Val Ser Ser Glu Asn 260 265 270	816
cat agg cag ctc ttg gag aac act gta ctt tgt ggt ggt aca acc tcc His Arg Gln Leu Leu Glu Asn Thr Val Leu Cys Gly Gly Thr Thr Ser 275 280 285	864
atg aca gga ttc gaa agt aga ttc cag aaa gaa gca aac ttg tgc tca Met Thr Gly Phe Glu Ser Arg Phe Gln Lys Glu Ala Asn Leu Cys Ser 290 295 300	912
tct gcc att agg cca aca ctg gtg aaa ccg cca gaa tat atg ccg gag	960

Ser Ala Ile Arg Pro Thr Leu Val Lys Pro Pro Glu Tyr Met Pro Glu	
305 310 315 320	
aat ttg ggg atg tat tcg gct tgg gtt gga gga gcc ata cta gct aaa	1008
Asn Leu Gly Met Tyr Ser Ala Trp Val Gly Gly Ala Ile Leu Ala Lys	
325 330 335	
gtg gtg ttt ccg cag aat cag cac gtt act aaa gca gat tat gac gag	1056
Val Val Phe Pro Gln Asn Gln His Val Thr Lys Ala Asp Tyr Asp Glu	
340 345 350	
act gga cca tca gtg gtt cac agg aaa tgt ttc tga	1092
Thr Gly Pro Ser Val Val His Arg Lys Cys Phe	
355 360	
 <210> 16	
<211> 363	
<212> PRT	
<213> <i>Arabidopsis thaliana</i>	
 <400> 16	
Met Glu Ala Leu Val Val Asp Ala Gly Ser Lys Phe Leu Lys Ala Gly	
1 5 10 15	
Ala Ala Ile Pro Asp Gln Ser Pro Ala Met Ile Ile Pro Ser Gln Met	
20 25 30	
Lys Arg Met Val Asp Asp Gly Ser Ser Ser Ala Asp Asn Pro Thr Thr	
35 40 45	
Val Phe Glu Asp Val Thr Leu Asp Pro Ile Glu Arg Gly Leu Ile Arg	
50 55 60	
Asp Trp Asp Ala Met Glu Asp Leu Leu Arg Tyr Val Val Tyr Thr Gly	
65 70 75 80	
Leu Gly Trp Glu Glu Gly Asn Glu Gly Asn Ile Leu Phe Thr Asp Pro	
85 90 95	
Leu Cys Thr Pro Lys Ala Ile Arg Glu Gln Leu Val Gln Leu Met Phe	
100 105 110	
Glu Thr Phe Asn Val Ser Gly Phe Tyr Ala Ser Glu Gln Ala Val Leu	
115 120 125	
Ser Leu Tyr Ala Val Gly Arg Ile Ser Gly Cys Thr Val Asp Ile Gly	
130 135 140	
His Gly Lys Ile Asp Ile Ala Pro Val Leu Glu Gly Ala Val Gln His	
145 150 155 160	

Ile Ala Ser Lys Arg Phe Glu Leu Gly Gly Thr Glu Leu Thr Lys Leu
165 170 175

Phe Ala Gln Glu Leu Gly Lys Thr Asn Pro Ser Met Asn Leu Ser Met
180 185 190

Ser Asp Val Glu Lys Leu Lys Glu Gln Tyr Ala Asn Cys Ala Glu Asp
195 200 205

Glu Ile Ala Tyr Lys Lys Thr Gln Asn Cys Glu Ile Glu Gln His Thr
210 215 220

Leu Pro Asp Gly Gln Val Ile Ser Ile Gly Arg Glu Arg Tyr Ser Val
225 230 235 240

Gly Glu Ala Leu Phe Gln Pro Ser Ile Leu Gly Leu Glu Glu His Gly
245 250 255

Ile Val Glu Gln Leu Val Arg Ile Ile Ser Thr Val Ser Ser Glu Asn
260 265 270

His Arg Gln Leu Leu Glu Asn Thr Val Leu Cys Gly Gly Thr Thr Ser
275 280 285

Met Thr Gly Phe Glu Ser Arg Phe Gln Lys Glu Ala Asn Leu Cys Ser
290 295 300

Ser Ala Ile Arg Pro Thr Leu Val Lys Pro Pro Glu Tyr Met Pro Glu
305 310 315 320

Asn Leu Gly Met Tyr Ser Ala Trp Val Gly Gly Ala Ile Leu Ala Lys
325 330 335

Val Val Phe Pro Gln Asn Gln His Val Thr Lys Ala Asp Tyr Asp Glu
340 345 350

Thr Gly Pro Ser Val Val His Arg Lys Cys Phe
355 360

<210> 17

<211> 1791

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1791)

<223>

Glu	Asp	Leu	Thr	Ala	Ile	Leu	Asp	Trp	Ile	Leu	Leu	Glu	Lys	Leu	His
225					230				235			240			
ata	act	cac	aag	gag	aga	ttc	tct	ttt	cat	gct	gtt	att	gtt	gtc	cca
Ile	Thr	His	Lys	Glu	Arg	Phe	Ser	Phe	His	Ala	Val	Ile	Val	Val	Pro
245									250			255			
gaa	aca	ttt	gac	acc	cgc	gaa	ata	aag	gaa	atg	cta	act	att	gtg	ttg
Glu	Thr	Phe	Asp	Thr	Arg	Glu	Ile	Lys	Glu	Met	Leu	Thr	Ile	Val	Leu
260							265					270			
gga	gag	cta	tac	ttt	aac	tca	gca	gtt	gtc	cac	caa	gaa	ggt	cta	tcg
Gly	Glu	Leu	Tyr	Phe	Asn	Ser	Ala	Val	Val	His	Gln	Glu	Gly	Leu	Ser
275							280					285			
gcc	gtt	ttt	ggg	aat	ggt	ttg	aca	aca	gct	tgt	att	gtg	aat	ata	gga
Ala	Val	Phe	Gly	Asn	Gly	Leu	Thr	Thr	Ala	Cys	Ile	Val	Asn	Ile	Gly
290						295					300				
gcc	cag	aca	agt	aca	gta	gtt	tgt	gtc	gag	gat	ggg	gtc	tca	ttg	cca
Ala	Gln	Thr	Ser	Thr	Val	Val	Cys	Val	Glu	Asp	Gly	Val	Ser	Leu	Pro
305						310					315				320
aat	act	gaa	aag	att	tta	cct	ttt	gga	gga	gag	gat	ata	tgt	aga	tgc
Asn	Thr	Glu	Lys	Ile	Leu	Pro	Phe	Gly	Gly	Glu	Asp	Ile	Cys	Arg	Cys
325								330					335		
ctt	cta	tgg	att	cag	agg	cat	tac	caa	aag	tgg	cca	caa	atc	aac	aca
Leu	Leu	Trp	Ile	Gln	Arg	His	Tyr	Gln	Lys	Trp	Pro	Gln	Ile	Asn	Thr
340								345					350		
gat	gtt	ttg	gca	aag	cca	atc	gat	atg	ctg	atg	ctt	aat	caa	ctt	aag
Asp	Val	Leu	Ala	Lys	Pro	Ile	Asp	Met	Leu	Met	Leu	Asn	Gln	Leu	Lys
355							360					365			
gag	tca	ttt	tgt	gaa	att	aga	gca	gga	gaa	ctt	gaa	act	gtt	gca	acg
Glu	Ser	Phe	Cys	Glu	Ile	Arg	Ala	Gly	Glu	Leu	Glu	Thr	Val	Ala	Thr
370							375					380			
gtt	cat	tct	tat	gag	gaa	ggc	atg	cca	gct	gtg	cct	cac	aag	aca	aat
Val	His	Ser	Tyr	Glu	Glu	Gly	Met	Pro	Ala	Val	Pro	His	Lys	Thr	Asn
385							390					395			400
ctc	acc	tcc	ctt	aac	gtt	cca	cca	atg	ggt	ctg	ttt	tat	cct	aac	ctt
Leu	Thr	Ser	Leu	Asn	Val	Pro	Pro	Met	Gly	Leu	Phe	Tyr	Pro	Asn	Leu
405								410					415		
ttg	gtc	cct	gaa	ata	ttt	ccc	cag	cca	cca	cgt	caa	tgg	ttt	caa	gac
Leu	Val	Pro	Glu	Ile	Phe	Pro	Gln	Pro	Pro	Arg	Gln	Trp	Phe	Gln	Asp
420							425						430		
tac	gag	aat	atg	ttg	gaa	gac	act	tgg	aac	atg	gac	ttt	gga	ggt	ggt
Tyr	Glu	Asn	Met	Leu	Glu	Asp	Thr	Trp	Asn	Met	Asp	Phe	Gly	Gly	Gly
435							440						445		
ggt	aac	atg	gga	tta	cca	atg	tgg	gat	agt	ttt	gca	ttt	tcg	cct	tca
Gly	Asn	Met	Gly	Leu	Pro	Met	Trp	Asp	Ser	Phe	Ala	Phe	Ser	Pro	Ser
450							455						460		
aaa	cca	aag	aaa	gaa	gag	aag	att	ggt	ctc	gct	gaa	gcc	att	aca	agc
Lys	Pro	Lys	Lys	Glu	Glu	Lys	Ile	Gly	Leu	Ala	Glu	Ala	Ile	Thr	Ser
465							470						475		
agc	att	ctc	tct	gct	gga	cgc	ata	gac	ctt	aga	cgg	aag	ctt	tcc	tcc
Ser	Ile	Leu	Ser	Ala	Gly	Arg	Ile	Asp	Leu	Arg	Arg	Lys	Leu	Phe	Ser
485									490					495	

agc att caa ttg att ggt ggt gct ggt ttg acg aaa ggt ctt gta gcg Ser Ile Gln Leu Ile Gly Gly Ala Gly Leu Thr Lys Gly Leu Val Ala 500 505 510	1536
gca gtg gaa gaa aga gtt ctt cac gcg ata cct cca act gaa gcc att Ala Val Glu Glu Arg Val Leu His Ala Ile Pro Pro Thr Glu Ala Ile 515 520 525	1584
gat aca gtg cag gtt ctg cca tca aga acg gag cca caa ttc gta act Asp Thr Val Gln Val Leu Pro Ser Arg Thr Glu Pro Gln Phe Val Thr 530 535 540	1632
tgg aaa gga gga gcg ata ttg gga att ctg gac ttt ggg agg gag gag gct Trp Lys Gly Gly Ala Ile Leu Gly Ile Leu Asp Phe Gly Arg Glu Ala 545 550 555 560	1680
tgg att gag aga cat caa tgg atg gta aat ggg gtt aat aaa ggt ggt Trp Ile Glu Arg His Gln Trp Met Val Asn Gly Val Asn Lys Gly Gly 565 570 575	1728
cta aag aag tac aaa gac tct tat cac ctt caa ggt caa gca atg tac Leu Lys Lys Tyr Lys Asp Ser Tyr His Leu Gln Gly Gln Ala Met Tyr 580 585 590	1776
ttc atc aac ccc tag Phe Ile Asn Pro 595	1791

<210> 18

<211> 596

<212> PRT

<213> *Arabidopsis thaliana*

<400> 18

Met Ala Lys Pro Lys Ser Asn Ser His Leu Ser Trp Gln Asp Tyr Leu 1 5 10 15
--

Lys Thr Val Ala Pro Thr Gln Ile Leu Ser Glu Arg Gly Ala Asn Leu 20 25 30

Val Val Ile Asn Leu Gly Ser Ala Asn Val Arg Val Gly Leu Ala Met 35 40 45

Asp Glu Lys Pro Phe Asn Val Pro Asn Cys Ile Ala Arg Tyr Ile Thr 50 55 60

Gln Ser Gly Lys Pro Thr Val Val Asp Gln Met Leu Asn Thr Glu Val 65 70 75 80
--

Thr Thr Asn Gln His Val Asp Arg Glu Arg Ala Tyr Asn Ser Ala Ala 85 90 95

Ser Leu Leu Lys Ile Leu Phe Leu Asp Glu Ser Ser Ser Ser Gly Ser
100 105 110

Ala Ser Arg Lys Met Gly Arg Ile Asp Gly Tyr Asn Gln Ala Ser Thr
115 120 125

Ile Lys Lys Asp Ser Val Phe Thr Trp Thr Asp Val Tyr Glu Asp Glu
130 135 140

Lys Ile Ser Leu Ala Ser Pro Ala Glu Thr Ser Pro Asp Lys Gly Asp
145 150 155 160

Ala Ser Ala Ser Glu Ala Val Pro Asp Val Thr Asp Ser Lys Asp Thr
165 170 175

Ser Glu Ser Lys Arg Lys Tyr Arg Lys Met Ile Phe Gly Glu Glu Ala
180 185 190

Leu Lys Ile Ser Pro Lys Glu Pro Tyr Cys Leu Tyr His Pro Ile Arg
195 200 205

Arg Gly His Phe Asn Val Ser Pro His Tyr Ser Ala Gln Arg Val Cys
210 215 220

Glu Asp Leu Thr Ala Ile Leu Asp Trp Ile Leu Leu Glu Lys Leu His
225 230 235 240

Ile Thr His Lys Glu Arg Phe Ser Phe His Ala Val Ile Val Val Pro
245 250 255

Glu Thr Phe Asp Thr Arg Glu Ile Lys Glu Met Leu Thr Ile Val Leu
260 265 270

Gly Glu Leu Tyr Phe Asn Ser Ala Val Val His Gln Glu Gly Leu Ser
275 280 285

Ala Val Phe Gly Asn Gly Leu Thr Thr Ala Cys Ile Val Asn Ile Gly
290 295 300

Ala Gln Thr Ser Thr Val Val Cys Val Glu Asp Gly Val Ser Leu Pro
305 310 315 320

Asn Thr Glu Lys Ile Leu Pro Phe Gly Gly Glu Asp Ile Cys Arg Cys
325 330 335

Leu Leu Trp Ile Gln Arg His Tyr Gln Lys Trp Pro Gln Ile Asn Thr
340 345 350

Asp Val Leu Ala Lys Pro Ile Asp Met Leu Met Leu Asn Gln Leu Lys
355 360 365

Glu Ser Phe Cys Glu Ile Arg Ala Gly Glu Leu Glu Thr Val Ala Thr
370 375 380

Val His Ser Tyr Glu Glu Gly Met Pro Ala Val Pro His Lys Thr Asn
385 390 395 400

Leu Thr Ser Leu Asn Val Pro Pro Met Gly Leu Phe Tyr Pro Asn Leu
405 410 415

Leu Val Pro Glu Ile Phe Pro Gln Pro Pro Arg Gln Trp Phe Gln Asp
420 425 430

Tyr Glu Asn Met Leu Glu Asp Thr Trp Asn Met Asp Phe Gly Gly Gly
435 440 445

Gly Asn Met Gly Leu Pro Met Trp Asp Ser Phe Ala Phe Ser Pro Ser
450 455 460

Lys Pro Lys Lys Glu Glu Lys Ile Gly Leu Ala Glu Ala Ile Thr Ser
465 470 475 480

Ser Ile Leu Ser Ala Gly Arg Ile Asp Leu Arg Arg Lys Leu Phe Ser
485 490 495

Ser Ile Gln Leu Ile Gly Gly Ala Gly Leu Thr Lys Gly Leu Val Ala
500 505 510

Ala Val Glu Glu Arg Val Leu His Ala Ile Pro Pro Thr Glu Ala Ile
515 520 525

Asp Thr Val Gln Val Leu Pro Ser Arg Thr Glu Pro Gln Phe Val Thr
530 535 540

Trp Lys Gly Gly Ala Ile Leu Gly Ile Leu Asp Phe Gly Arg Glu Ala
545 550 555 560

Trp Ile Glu Arg His Gln Trp Met Val Asn Gly Val Asn Lys Gly Gly
565 570 575

Leu Lys Lys Tyr Lys Asp Ser Tyr His Leu Gln Gly Gln Ala Met Tyr
580 585 590

Phe Ile Asn Pro
595

<210> 19

<211> 29

<212> DNA

<213> *Arabidopsis* sp.

<400> 19

ctagaagctt ttaaggatta agactctcc

29

<210> 20

<211> 22

<212> DNA

<213> *Arabidopsis* sp.

<400> 20

ctcgtatgta tcccccttct cc

22

<210> 21

<211> 21

<212> DNA

<213> *Arabidopsis thaliana*

<400> 21

tgatggatct atcaccatca g

21

<210> 22

<211> 21

<212> DNA

<213> *Arabidopsis thaliana*

<400> 22

ggtgggattc caatcacttt c

21

<210> 23

<211> 21

<212> DNA

<213> *Arabidopsis thaliana*

<400> 23

tgatggatct atcaccatca g

21

<210> 24

<211> 21

<212> DNA

<213> *Arabidopsis thaliana*

<400> 24

ggtgggattc caatcaacttt c

21

<210> 25

<211> 19

<212> DNA

<213> *Arabidopsis thaliana*

<400> 25

tttgatgggc caaatgatg

19

<210> 26

<211> 36

<212> DNA

<213> *Arabidopsis thaliana*

<400> 26

cttccaaacct aggtgagatg tttcaacaaa atgtgc

36

<210> 27

<211> 19

<212> DNA

<213> *Arabidopsis thaliana*

<400> 27

tcaacagcag gacacaagg

19

<210> 28

<211> 37

<212> DNA

<213> *Arabidopsis thaliana*

<400> 28
cccaatgcct aggaaatccg agttcaacat cctaattc 37

<210> 29

<211> 23

<212> DNA

<213> *Arabidopsis thaliana*

<400> 29
acaaaccaga tatcagcaca tgg 23

<210> 30

<211> 23

<212> DNA

<213> *Arabidopsis thaliana*

<400> 30
aacaagtact cgctctcatg ctc 23

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/06757

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07K14/415

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, BIOSIS, EPO-Internal, SEQUENCE SEARCH, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL/GENBANK/DDBJ 'Online! "Arabidopsis thaliana putative helicase (At3g57300) mRNA, partial cds." retrieved from EBI Database accession no. AY080695 XP002254488 abstract</p> <p>—</p> <p>DATABASE EMBL/GENBANK/DDBJ 'Online! 21 March 2002 (2002-03-21) "Arabidopsis thaliana cDNA clone:RAFL09-38-B21, 5'-end." retrieved from EBI Database accession no. AV829055 XP002254489 abstract</p> <p>—</p> <p>—</p>	1,2
X		1-3

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

15 September 2003

02/10/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Paresce, D

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/06757

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL/GENBANK/DDBJ 'Online! 21 January 2000 (2000-01-21) "Arabidopsis thaliana DNA chromosome 3, BAC clone F2809" retrieved from EBI Database accession no. AL137080 XP002254490 abstract —	1,2
X	DATABASE EMBLGENBANK DDBJ 'Online! 1 October 2000 (2000-10-01) "Helicase-like protein F2809.150." retrieved from EBI Database accession no. Q9M2L7 XP002254491 abstract —	5
X	SHEN XUETONG ET AL: "A chromatin remodelling complex involved in transcription and DNA processing." NATURE (LONDON), vol. 406, no. 6795, 2000, pages 541-544, XP002254485 ISSN: 0028-0836 see p. 541, 543-4	6,15
Y	—	1-15
X	EBBERT RONALD ET AL: "The product of the SNF2/SWI2 parologue IN080 of <i>Saccharomyces</i> <i>cerevisiae</i> required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex." MOLECULAR MICROBIOLOGY, vol. 32, no. 4, May 1999 (1999-05), pages 741-751, XP002254486 ISSN: 0950-382X see abstract, p. 741-2	6,15
Y	—	1-15
Y	GHERBI HASSEN ET AL: "Homologous recombination in <i>planta</i> is stimulated in the absence of Rad50." EMBO REPORTS, vol. 2, no. 4, April 2001 (2001-04), pages 287-291, XP002254487 April, 2001 ISSN: 1469-221X cited in the application see abstract, p. 287-8 —	1-15