Website:- https://www.arjun00.com.np New Course Model Question Set

Council for Technical Education and Vocational Training Office of the Controller of Examination, Sanothimi, Bhaktapur

Programs: Engineering (All) New Course

Full Marks: 80

Year/Part: First Year/Second Semester

Pass Marks: 32

Subject: Mathematics-II

Time: 3 hrs.

Website:- https://www.arjun00.com.np <u>Group- 'A' $[(7 \times 2) \times 2 = 28]$ </u>

Attempt All Questions

1. (a) What are roots of a quadratic equation? For what value of P will the equation $5x^2 - px + 45 = 0$ has equal roots?

(b) Express, 3(cos 120° + i sin 120°) in the form of a + ib. Express into polar from to (1 + i).

2. (a) If $A = \begin{pmatrix} -5 & 3 & 2 \\ 6 & 0 & 9 \\ 4 & 8 & 1 \end{pmatrix}$ Website: https://www.arjun00.com.np then find the minor and co-factors of the element at a_{32} and a_{21} .

- (b) Find the open half plane of: $x + 2y \le 8$ and its solution set also.
- 3. (a) Find the focus and length of latus rectum of the parabola: $y^2 = 16x$.
 - (b) Define a hyperbola in conic section and write the equation of hyperbola whose centre is at (0, 0).
- (a) Find the angle between two straight lines with direction cosines respectively l₁, m₁, n₁ and l₂, m₂, n₂. Also write their condition of parallel.
 - (b) Write the values of direction ratios of the normal line to the plane: 2x 3y + 6z = 7.
- 5. (a) Find the vector \overrightarrow{AB} and its magnitude if its initial point is at A (3, 2) and that of Website: https://www.arjun00.com.np
 - (b) Prove that \overrightarrow{d} , $\overrightarrow{b} = 1$ if $\overrightarrow{d} = (\overrightarrow{1} + 3\overrightarrow{1} 2\overrightarrow{k})$ and $\overrightarrow{b} = (\overrightarrow{6}\overrightarrow{1} \overrightarrow{1} + \overrightarrow{k})$.
- 6. (a) Find the vector perpendicular to \overrightarrow{d} and \overrightarrow{b} both and prove \overrightarrow{d} . $(\overrightarrow{d} \times \overrightarrow{b}) = 0$ where $\overrightarrow{d} = \overrightarrow{7} + 3\overrightarrow{7} + 4\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{7} + \overrightarrow{7} \overrightarrow{k}$.
 - (b) If 20% of electric bulbs manufactured by a company are defective, find the probability that out of 4 bulbs chosen at random, non will be defective.
- (a) If two coins are tossed at once together then prepare its sample space and find the number of exhaustive cases.
 - (b) Define a mode of a given data and if the values of mean and median of a frequency distribution are respectively 20 and 21 then find its mode.

Group - B [13 × 4 = 52]

8. If the roots of the quadratic equation $qx^2 + bx + b = 0$ be in the ratio of p:q then prove that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{b}{a}} = 0$.

Website:- https://www.arjun00.com.np

Website:- https://www.arjun00.com.np

9. If
$$x + iy = \sqrt{\frac{1+i}{1-i}}$$
, prove that $x^2 + y^2 = 1$

OR Evaluate: $z^3 = i$ using the theorem

10. Prove that
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc (a-b) (b-c) (c-a).$$
Website:- https://www.arjun00.com.np

OR Find the inverse matrix at
$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$

- 11. Solve by Cramer's rule or by row-equivalent matrix method: x-2y-3z=3, x+y-2z=7 and 2x-3y-2z=0.
- 12. Find the optimum values of F = 34x + 6y subject to: $x + y \le 6$, $x + y \ge 1$, $1 \le x \le 3$.
- 13. Find the equations of tangent and normal to the parabola $y^2 = 9x$ at (4, 6).
- 14. Find the centre, eccentricity, foci and length axes of the ellipse: $x^2 + 4y^2 4x + 24y + 24 = 0$.
- 15. Find the direction cosines of the lines whose direction cosines are given by the relations: 3l + m + 5n = 0 and 6m 2nl + 5lm = 0.
- 16. Find the equation of the plane passing through the points (-1, 2, 3), (2, -3, 4) and perpendiculare to the plane 3x + y z + 5 = 0.
- 17. Show that the angle between two diagonals of a cube is $cos^{-1}\left(\frac{1}{3}\right)$ using vector rule. Website:- https://www.arjun00.com.np
- 18. Find the area of the parallelogram determined by the vectors $\overrightarrow{d} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = -3\overrightarrow{i} 2\overrightarrow{j} + \overrightarrow{k}$. Also find sine of angle between them.
- A coin is tossed successively three times. Find the probability of getting (a) no heads (b) exactly 2 heads (c) at least 2 heats (d) at most two heads.
- OR The problem of hitting a target is $\frac{1}{4}$. If 5 hitting are made. Find the probability that (a) non strike the target (b) exactly one will strick the target (c) at most one strike the target.
- 20. Find the correlation coefficient from product moment method of the data:

x	12	9	8	10	11	12	7
y	14	8	6	2	11	13	
					11	12	3

Engineering Mathematics - II

Website:- https://www.arjun00.com.np