Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

КАФЕДРА ФИЗИКИ

Группа	P3217	К работе допущен	
Студент	Григорьев Георгий	Работа выполнена	
Преполавате	ель Самолётов В. А.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 13

ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРА ПО ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЕ ПОЛОС РАВНОГО НАКЛОНА

1. Цель работы.

Определение длины волны излучения гелий-неонового лазера с помощью интерференционной картины полос равного наклона и

- 2. Задачи, решаемые при выполнении работы.
 - Проведение необходимых расчетов для расчета длины волны.
- Объект исследования.
 Интерференционная картина.
- 4. Метод экспериментального исследования. Эмпирический: снятие показаний, их обработка, формулировка выводов
- 5. Рабочие формулы и исходные данные

$$\Delta=2d\sqrt{n^2-sin^2i}+rac{\lambda}{2}$$
 (1), $sinipproxrac{D}{4L}$, L-расстояние от

пластины до экрана, D – диаметр темного кольца

$$\lambda = \frac{d(D_2^2 - D_1^2)}{16L^2n\Delta k} \quad k = \frac{2dn}{\lambda}$$

$$d \pm \Delta d = (8.07 \pm 0.01) \text{MM } n \pm \Delta n = 1.51 \pm 0.02(3)$$

6. Измерительные приборы.

Nº п/ п	Наименование	Тип прибора	Используемые диапозон	Погрешность прибора	
1	Линейка	Линейный		±5мм	
2	Нониус	Линейный	360°	±1′	

- 7. Схема установки (перечень схем, которые составляют *Приложение 1*). Схема гониометра
- 8. Результаты прямых измерений и их обработки.

Таблица 1-1

Величина	Опыт 1		Опыт 2			Опыт 3			
Беличина	1	2	3	1	2	3	1	2	3
L								,	
D1									
D2									
$D_2^2 - D_1^2$									

9. Расчет результатов косвенных измерений

Таблица 2

Величина	Опыт 1		Опыт 2			Опыт 3			
	1	2	3	1	2	3	1	2	3
λ									
k									

10. Расчет погрешностей измерений

Расчет погрешностей прямых измерений

$$t = \frac{|\overline{x} - \mu|}{se}, \quad se = \frac{\sigma_{\lambda}}{\sqrt{n}} \quad \Rightarrow \quad |\overline{x} - \mu| = \Delta x = t \frac{\sigma_{\lambda}}{\sqrt{n}} = \sum_{i=1}^{3} \sqrt{\frac{(\lambda_i - \overline{\lambda})^2}{n(n-1)}} t$$

t-значение берется из таблицы значений T-распределения, в нашем конкретном случае кол-во измерений равно 3, соответствующее значение t будет равно 2,92.

$$\Delta \lambda = 2.92 \sum_{i=1}^{3} \sqrt{\frac{(\phi_i -)^2}{3 \times 2}} \approx$$

$$\Delta k = 2.92 \sum_{i=1}^{3} \sqrt{\frac{(k_i -)^2}{3 \times 2}} \approx$$

Расчет погрешностей косвенных измерений

- 11. Графики (перечень графиков, которые составляют Приложение 2)
- 12. Окончательные результаты

Получены результаты вычислений разрешающей способности дифракционной решетки, рассчитана погрешность вычислений.

13. Выводы и анализ результатов работы.

Измерение углов на гониометре требует определенной сноровки, при этом я получил результаты с довольно большой погрешностью, это обусловлено малым количеством измерений. Из-за этого на воспроизведение правильных результатов надеяться не приходится.