A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems With Genetic Rule Selection and Lateral Tuning

鍾岳峰

元智大學

pchomekimojuf@gmail.com

March 12, 2015

Overview

- INTRODUCTION
- PRELIMINARIES
- 3 FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
- EXPERIMENTAL SETUP
- **5** EXPERIMENTAL RESULTS
- **6** CONCLUDING REMARKS

Outline for section 1

- INTRODUCTION
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
 - FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis
- EXPERIMENTAL RESULTS
 - A.Comparison With Other Genetic Fuzzy Systems
 - B.Comparison With Other Fuzzy Associative Classifiers
 - C.Comparison With Classical Approaches
 - D.Analysis of the Influence of Depthmax and the Number of Evaluations

A Fuzzy Association Rule-Based Classification

- E.Analysis of Scalability
- 6 CONCLUDING REMARKS

INTRODUCTION:

- FUZZY rule-based classification systems (FRBCSs) are useful and well-known tools in the machine learning framework, since they can provide an interpretable model for the end user .
- Association discovery is one of the most common data mining techniques that are used to extract interesting knowledge from large datasets.
- Much effort has been made to use its advantages for classification under the name of associative classification.

INTRODUCTION:

- Both association discovery and classification rules mining are essential in practical data mining applications, and their integration could result in greater savings and convenience for the user.
- A typical associative classification system is constructed in two stages:
- 1) discovering the association rules inherent in a database;
- 2) selecting a small set of relevant association rules to construct a classifier.

INTRODUCTION:

- In this paper, we present a fuzzy association rule-based classification method for high-dimensional problems (FARC-HD) to obtain an accurate and compact fuzzy rule-based classifier with a low computational cost.
- This method is based on the following three stages:
- 1) Fuzzy association rule extraction for classification.
- 2) Candidate rule prescreening.
- 3) Genetic rule selection and lateral tuning

• In order to assess the performance of the proposed approach, we have used 26 real-world datasets with a number of variables ranging from 4 to 90 and a number of patterns ranging from 150 to 19,020.

Outline for section 2

- INTRODUCTIONPRELIMINARIES
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
 - FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis
- 5 EXPERIMENTAL RESULTS
 - A.Comparison With Other Genetic Fuzzy Systems
 - B.Comparison With Other Fuzzy Associative Classifiers
 - C.Comparison With Classical Approaches
 - D.Analysis of the Influence of Depth_{max} and the Number of Evaluations
 - E.Analysis of Scalability
- 6 CONCLUDING REMARKS

PRELIMINARIES: A.Fuzzy Rule-Based Classification Systems

- Any classification problem consists of N training patterns, i.e., $x_p = (x_{p1},...,x_{pm})$, p = 1,2,...,N, from S classes, where x_{pi} is the ith attribute value (i = 1,2,...,m) of the pth training pattern.
- In this paper, we use fuzzy rules of the following form for our classifier:

Rule R_j :IF A_{j1} and ...and x_m is A_{jm} THEN Class = C_j with RW_j

PRELIMINARIES: A.Fuzzy Rule-Based Classification Systems

(1)

$$RW_{j} = CF_{j} = \frac{\sum_{x_{p} \in ClassC_{j}} \mu A_{j}(x_{p})}{\sum_{p=1}^{N} \mu A_{j}(x_{p})}$$

(2)

$$V_{Class_h}(x_p) = \sum_{R_j \in RB; R_j = h} \mu A_j(x_p) \bullet CF_j$$

 $h = 1, 2, ..., S, \quad R_i \in RB.$

PRELIMINARIES: B.Fuzzy Association Rules

Fig. 1. Attributes and linguistic terms for the attributes X_1 and X_2 .

PRELIMINARIES: B.Fuzzy Association Rules

(3)

$$Support(A \longrightarrow B) = \frac{\sum_{x_p \in T} \mu AB(x_p)}{|N|}$$

(4)

$$Confidence(A \longrightarrow B) = \frac{\sum_{x_p \in T} \mu AB(x_p)}{\sum_{x_p \in T} \mu A(x_p)}$$

PRELIMINARIES: C.Fuzzy Association Rules for Classification

(5)

$$Support(A \longrightarrow C_j) = \frac{\sum_{x_p \in ClassC_j} \mu A(x_p)}{|N|}$$

(6)

$$Confidence(A \longrightarrow C_j) = \frac{\sum_{x_p \in ClassC_j} \mu A(x_p)}{\sum_{x_p \in T} \mu A(x_p)}$$

Outline for section 3

- INTRODUCTION
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
 - FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis

5 EXPERIMENTAL RESULTS

- A.Comparison With Other Genetic Fuzzy Systems
- B.Comparison With Other Fuzzy Associative Classifiers
- C.Comparison With Classical Approaches
- D.Analysis of the Influence of Depth_{max} and the Number of Evaluations
- E.Analysis of Scalability
- 6 CONCLUDING REMARKS

FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS: Stage 1. Fuzzy Association Rule Extraction for Classification

Fig. 2. Search tree for two quantitative attributes V_1 and V_2 with two linguistic terms L and H.

FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS: Stage 1. Fuzzy Association Rule Extraction for Classification

(7)

$$Support(A) = \frac{\sum_{x_p \in T} \mu A(x_p)}{|N|}$$

(8)

 $MinimumSupport_{C_j} = minSup * f_{C_j}$

(9)

$$wWRAcc'(A \longrightarrow C_j) = \frac{n'(A)}{N'} \bullet (\frac{n'(A \bullet C_j)}{n'(A)} - \frac{n(C_j)}{N})$$

- N´ is the sum of the weights of all patterns.
- n´ (A) is the sum of the weights of all covered patterns .
- ullet n´ (A \cdot C $_j$) is the sum of the weights of all correctly covered patterns.
- $n(C_j)$ is the number of patterns of class C_j .
- N is the number of all patterns.

TABLE I FIVE PATTERNS IN THIS EXAMPLE

\overline{ID}	X_1	X_2	Class	Weight
ID1	0.0	10.0	C_1	1.0
ID2	2.5	4.0	C_2	1.0
ID3	3.2	1.0	C_2	0.0
ID4	9.0	5.0	C_2	1.0
ID5	2.5	10	C_1	0.5

i.e

$$R = \textit{IF} \ X_1 \ \textit{is} \ [0.0, 5.0[\ \textit{and} \ X_2 \ \textit{is} \ [5.0, 10.0] {\longrightarrow} \textit{C}_1$$

$$wWRAcc'(R) = \frac{1.0 + 0.5}{1.0 + 1.0 + 0.0 + 1.0 + 0.5} \bullet (\frac{1.0 + 0.5}{1.0 + 0.5} - \frac{2}{5})$$
$$= 0.257.$$

(10)

$$wWRAcc''(A \longrightarrow C_j) = \frac{n''(A \bullet C_j)}{n'(C_j)} \bullet (\frac{n''(A \bullet C_j)}{n''(A)} - \frac{n(C_j)}{N})$$

- n"(A) is the sum of the products of the weights of all covered patterns by their matching degrees with the antecedent part of the rule.
- $n''(A \cdot C_j)$ is the sum of the products of the weights of all correctly covered patterns by their matching degrees with the antecedent part of the rules.
- n´ (C_j) is the sum of the weights of patterns of class C_j .
- Moreover, the first term in the definition of wWRAcc´ has been replaced by $\frac{n''(A \bullet C_j)}{n'(C_j)}$ to reward rules that cover uneliminated patterns of class C_j .

i.e

$$wWRAcc"(R) = \frac{1.0*1.0+0.5*0.5}{1.0+0.5} \bullet \left(\frac{1.0*1.0+0.5*0.5}{1.0*1.0+0.5*0.5} - \frac{2}{5}\right)$$
$$= 0.5.$$

- This measure can obtain positive or negative values in the interval [-1.0, 1.0].
- A rule with a wWRAcc" value near to 1 may be more useful for the classification.

• Fig. 3. of the involved MF. (a) Simbolic translation of a linguistic term. (b) Lateral displacement of an MF.

Classic Rule:

IF X_1 is Low and X_2 is Middle THEN Class is C_1

Two-Tuple Representation:

IF X_1 is (Low, 0.1) and X_2 is (Middle, -0.3) THEN Class is C_1 .

the main characteristics of the genetic approach that combines rule selection and lateral tuning are presented:

- genetic model
- codification
- initial gene pool
- chromosome evaluation
- crossover operator
- restarting approach
- 1) CHC Genetic Model
- 2) Codification and Initial Gene Pool
- 3) Chromosome Evaluation
- 4) Crossover Operator

Fig. 4. Scheme of the CHC algorithm.

FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS: Flowchart

Fig. 5. Scheme of the FARC-HD method.

FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS: Flowchart

Outline for section 4

- INTRODUCTION
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
- FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

4 EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis
- EXPERIMENTAL RESULTS
 - A.Comparison With Other Genetic Fuzzy Systems
 - B.Comparison With Other Fuzzy Associative Classifiers
 - C.Comparison With Classical Approaches
 - D.Analysis of the Influence of Depth_{max} and the Number of Evaluations
 - E.Analysis of Scalability
- 6 CONCLUDING REMARKS

EXPERIMENTAL SETUP:

Several experiments have been carried out in this paper to evaluate the usefulness of our proposal.

- we describe the real-world databases that are used in these experiments.
- we introduce a brief description of the methods considered for comparison.
- we show the configuration of the methods (determining all the parameters used).
- we describe the statistical analysis that is adopted in this study.

EXPERIMENTAL SETUP: A.Datasetst

TABLE II
DATASETS CONSIDERED FOR THE EXPERIMENTAL STUDY

Name	Attributes (R/I/N)	Patterns	Classes	Name	Attributes (R/I/N)	Patterns	Classes
Iris	4 (4/0/0)	150	3	Vowel	13 (10/3/0)	990	11
Phoneme	5 (5/0/0)	5404	2	Crx	15 (3/3/9)	653(690)	2
Monks	6 (0/6/0)	432	2	Pen-based	16 (0/16/0)	10992	10
Appendicitis	7 (7/0/0)	106	2	German	20 (0/7/13)	1000	2
Ecoli	7 (7/0/0)	336	8	Twonorm	20 (20/0/0)	7400	2
Pima	8 (8/0/0)	768	2	Ringnorm	20 (20/0/0)	7400	2
Yeast	8 (8/0/0)	1484	10	Wdbc	30 (30/0/0)	569	2
Glass	9 (9/0/0)	214	7	SatImage	36 (0/36/0)	6435	6
Page-blocks	10 (4/6/0)	5472	5	Texture	40 (40/0/0)	5500	11
Magic	10 (10/0/0)	19020	2	Spectfheart	44 (0/44/0)	267	2
Wine	13 (13/0/0)	178	3	Spambase	57 (57/0/0)	4597	2
Heart	13 (1/12/0)	270	2	Sonar	60 (60/0/0)	208	2
Cleveland	13 (13/0/0)	297(303)	5	Movementlibra	s 90 (90/0/0)	360	15

Available at http://sci2s.ugr.es/keel/datasets.php

EXPERIMENTAL SETUP: B.Methods Considered for Comparison

In these experiments, we compare the proposed approach with other ten methods, which are available in the Knowledge Extraction based on Evolutionary Learning (KEEL) software tool [61].

- C4.5 [39]
- Classification based on associations (CBA) [12]
- CBA2 [13]
- Classification based on multiple association rules (CMAR) [14]
- Structural learning algorithm on vague environment (2SLAVE) [64]
- Learning algorithm to discover fuzzy association rules for classification (LAFAR)
 [24]
- Classification based on predictive association rules (CPAR) [15]
- Fuzzy hybrid genetic-based machine learning algo- rithm (FH-GBML) [66]
- Steady-state GA for extracting fuzzy classification rules from data (SGERD) [67]
- Classification with fuzzy association rules (CFAR) [27]

EXPERIMENTAL SETUP: C.Parameters of the Methods

TABLE III
PARAMETERS CONSIDERED FOR COMPARISON

Method	Parameters
C4.5	Pruned = yes, Confidence = 0.25, InstancesPerLeaf = 2
CBA	Minsup=0.01,Minconf=0.5,Pruned=yes,RuleLimit=80,000
CBA2	Minsup=0.01,Minconf=0.5,Pruned=yes,RuleLimit=80,000
CMAR	$Minsup = 0.01, Minconf = 0.5, \delta = 4, Difference Threshold = 20\%$
2SLAVE	$Pop = 100, Iter_{change} = 500, P_c = 0.6, P_m = 0.01, \kappa_1 = 0, \kappa_2 = 1, Op_{or} = 0.1,$
	$Op_{and} = 0.1, P_{gen} = 0.1, P_{rot} = 0.1, \alpha = 0.15$
LAFAR	$t_{max} = 50, N_{pop} = 30, s = c = 10, W_{CAR} = 10, W_{V} = 1, P_{c} = 1.0, P_{m} = 0.01,$
	$J_{max} = 100, \eta_1 = 0.001, \eta_2 = 0.1$
CPAR	$\delta = 0.05, min_gain = 0.7, \alpha = 0.66, k = 5$
FH-GBML	$N_{rules} = 20, F_{sets} = 200, Gen = 1000, P_c = 0.9, P_{dcare} = \{0.5, 0.8, 0.95\},$
	$P_{michigan} = 0.5$
SGERD	Q=heuristics
CFAR	$Minpsup = \{0.05, 0.1\}, Minpconf = 0.85, MS = 0.15$
FARC-HD	$Minsup = 0.05, Maxconf = 0.8, Depth_{max} = 3, k_t = 2,$
	$Pop=50,Evaluations=15,000,BITSGENE=30,\delta=0.2$

EXPERIMENTAL SETUP: D.Statistical Analysis

- We use $\alpha = 0.05$ as the level of confidence in all cases.
- A wider description of these tests, together with software for their use, can also be found at: http://sci2s.ugr.es/sicidm/

```
The web is organized according to the following SUMMARY:
     1. Introduction to Inferential Statistics
           nditions for the safe use of Nonparametric Tests
           3.2. Multiple Comparisons with a control method
          3.4. Adjusted p-values
3.5. Multiple Comparisons among all methods
                           nd Recommendations on the use of Nonparametric tests
                                  omparisons with a control method
                           ndations on the use of Nonparametric tests
                          tiple Comparisons with a control method
                      Multiple Comparisons among all methods 
alysis of Convergence Performance of Evolutionary Algorithms 
round to the Analysis of Convergence in Evolutionary Algorithms
                              Page Test for Convergence Analysis
                 Case Study Analyzing some Differential Evolution Approaches
                 equent Asked Questions
               nt Journal Papers with Data Mining and Computational Intelligence Case Studies
           evant books on Non-parametric tests
          oftware and User's Guide
```

Outline for section 5

- INTRODUCTION
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
 - 3 FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis
- 5 EXPERIMENTAL RESULTS
 - A.Comparison With Other Genetic Fuzzy Systems
 - B.Comparison With Other Fuzzy Associative Classifiers
 - C.Comparison With Classical Approaches
 - D.Analysis of the Influence of Depthmax and the Number of Evaluations
 - E.Analysis of Scalability
 - 6 CONCLUDING REMARKS

EXPERIMENTAL RESULTS: A.Comparison With Other Genetic Fuzzy Systems

TABLE IV RESULTS OBTAINED BY THE ANALYZED METHODS

	2SLAVE				FH-GBML			SGERD			FARC-HD					
Dataset	#R	#C	Tra	Tst	#R	#C	Tra	Tst	#R	#C	Tra	Tst	#R	#C	Tra	Tst
Iris	4.0	3.2	94.32	94.44	14.9	3.3	98.89	94.00	3.4	2.0	95.14	94.89	4.0	1.1	98.59	96.00
Phoneme	11.5	24.2	77.52	76.41	17.4	4.5	79.57	79.66	3.6	1.9	75.74	75.55	17.8	2.2	83.52	82.14
Monks	3.0	1.3	97.22	97.26	14.7	2.1	98.36	98.18	2.2	1.4	80.56	80.65	14.2	2.0	99.92	99.77
Appendicitis	4.4	7.5	91.20	82.91	13.8	7.0	93.19	86.00	2.5	2.0	87.88	84.48	6.8	1.8	93.82	84.18
Ecoli	12.6	9.6	89.51	84.53	10.3	4.2	75.83	69.38	9.4	1.6	76.53	74.05	33.8	2.4	92.33	82.19
Pima	7.8	8.8	76.35	73.71	10.6	6.0	77.18	75.26	3.1	2.0	74.01	73.37	22.7	2.4	82.90	75.66
Yeast	23.6	9.8	55.54	51.27	7.5	5.9	52.31	51.42	11.3	1.5	39.83	38.77	35.2	2.6	63.81	58.50
Glass	15.1	9.3	74.25	58.05	9.4	5.0	64.85	57.99	6.9	2.0	61.31	58.49	22.7	2.5	81.10	70.24
Page-blocks	7.5	10.3	91.39	91.39	7.4	8.1	94.37	94.21	6.5	2.0	90.83	90.72	19.1	2.3	95.62	95.01
Magic	4.1	10.5	73.97	73.96	9.9	8.2	81.23	81.30	3.1	2.0	72.17	72.06	43.3	2.5	85.36	84.51
Wine	5.5	10.3	92.52	89.47	9.2	4.7	95.51	92.61	4.2	2.0	93.67	91.88	8.7	1.6	99.94	94.35
Heart	4.3	10.7	75.35	71.36	12.7	3.2	84.65	75.93	2.7	1.9	74.83	73.21	27.0	2.6	93.91	84.44
Cleveland	11.9	12.8	54.24	48.82	6.9	4.5	58.29	53.51	6.4	2.0	56.55	51.59	61.3	2.9	88.18	55.24
Vowel	63.1	15.6	82.06	71.11	9.2	13.0	67.41	67.07	18.0	1.9	72.99	65.83	72.3	2.9	80.48	71.82
Crx	2.4	6.7	74.36	74.06	11.6	6.2	86.32	86.60	2.1	1.9	85.04	85.03	25.4	2.6	91.17	86.03
Pen-based	40.0	18.9	81.32	81.16	18.4	8.0	50.69	50.45	15.9	2.0	68.17	67.93	152.8	2.8	97.04	96.04
German	6.5	8.4	72.44	70.53	5.1	4.0	87.11	87.01	3.4	2.0	68.54	67.97	85.7	2.8	86.81	72.80
Twonorm	26.5	15.5	87.45	86.99	12.0	7.6	86.26	85.97	3.1	2.0	74.49	73.98	60.9	2.6	96.64	95.28
Ringnorm	4.6	23.7	80.12	79.63	6.9	11.3	87.34	86.92	6.8	2.0	73.21	72.63	24.0	1.9	95.13	94.08
Wdbc	5.2	8.1	92.43	92.33	7.2	4.9	95.12	92.26	3.7	2.0	91.79	90.68	10.4	1.7	98.57	95.25
SatImage	57.9	25.1	84.03	81.69	16.5	36.0	74.90	74.72	12.2	2.0	77.15	77.10	76.1	2.7	88.68	87.32
Texture	34.9	23.9	82.87	81.57	14.6	40.0	69.91	70.15	18.6	2.0	72.12	71.66	54.5	2.7	93.71	92.89
Spectfheart	6.1	21.7	80.71	79.17	10.8	44.0	79.28	72.36	2.1	1.9	79.05	78.16	12.9	1.8	91.43	79.83
Spambase	7.9	11.4	69.87	70.14	3.9	18.5	77.86	77.22	3.7	2.0	72.90	72.98	29.8	2.4	92.37	91.93
Sonar	9.6	17.5	77.92	71.42	10.3	4.7	80.56	68.24	3.2	2.0	74.22	71.90	18.0	2.3	98.77	80.19
Movementlibras	47.4	26.5	90.13	67.04	12.1	90.0	77.87	68.89	22.9	2.0	72.37	68.09	83.1	2.9	95.52	76.67
Mean	16.4	13.5	80.73	76.94	10.9	13.6	79.80	76.82	6.9	1.9	75.43	73.99	39.3	2.3	90.97	83.94

EXPERIMENTAL RESULTS: A.Comparison With Other Genetic Fuzzy Systems

TABLE V RESULTS OF THE FRIEDMAN AND IMAN–DAVENPORT TESTS ($\alpha=0.05$)

Friedman Test							
Statistic (\mathcal{X}_F^2)	p value						
40.823	7.814	< 0.0001					
ImanDavenport Test							
Statistic (\mathcal{F}_F)	Critical Value	p value					
27.452	2.7386	< 0.0001					

EXPERIMENTAL RESULTS: A.Comparison With Other Genetic Fuzzy Systems

TABLE VI AVERAGE RANKINGS OF THE METHODS

Method	Ranking
SGERD	3.2884
2SLAVE	2.9808
FH-GBML	2.5577
FARC-HD	1.1731

EXPERIMENTAL RESULTS: A.Comparison With Other Genetic Fuzzy Systems

 $\label{eq:table VII} \mbox{Holm's Table for the Selection Methods With } \alpha = 0.05$

i	Method	z	p	α/i	Hypothesis
3	SGERD	5.01	3.46E-9	0.0166	Rejected
2	2SLAVE	5.05	4.45E-7	0.0125	Rejected
1	FH-GBML	3.87	1.10E-4	0.05	Rejected

EXPERIMENTAL RESULTS: B.Comparison With Other Fuzzy Associative Classifiers

TABLE VIII
RESULTS OBTAINED BY THE ANALYZED METHODS

	LAFAR				CFAR				FARC-HD				
Dataset	#R	#C	Tra	Tst	#R	#C	Tra	Tst	#R	#C	Tra	Tst	
Iris	17.4	1.0	98.74	92.67	9.1	1.5	91.33	90.67	4.0	1.1	98.59	96.00	
Phoneme	16.9	1.1	78.49	77.87	2.0	1.0	70.65	70.65	17.8	2.2	83.52	82.14	
Monks	126.4	3.9	94.64	93.36	12.1	1.8	100.00	99.55	14.2	2.0	99.92	99.77	
Appendicitis	39.1	1.1	95.91	86.00	14.8	1.4	88.47	87.82	6.8	1.8	93.82	84.18	
Ecoli	68.4	2.1	81.58	72.36	4.0	3.1	48.45	47.61	33.8	2.4	92.33	82.19	
Pima	32.3	1.1	77.36	75.40	2.0	1.9	65.10	65.11	22.7	2.4	82.90	75.66	
Yeast	40.2	2.0	54.53	50.90	3.0	1.0	36.44	36.44	35.2	2.6	63.81	58.50	
Glass	36.0	2.5	68.59	52.17	3.4	2.1	44.19	44.66	22.7	2.5	81.10	70.24	
Page-blocks					2.0	1.0	89.78	89.78	19.1	2.3	95.62	95.01	
Magic					2.0	1.5	64.84	64.84	43.3	2.5	85.36	84.51	
Wine					115.7	3.0	99.63	93.24	8.7	1.6	99.94	94.35	
Heart					45.3	3.3	86.01	82.22	27.0	2.6	93.91	84.44	
Cleveland					2.0	2.1	53.87	53.88	61.3	2.9	88.18	55.24	
Crx					89.9	5.1	89.45	86.79	25.4	2.6	91.17	86.03	
Pen-based					6.9	2.9	36.54	36.43	152.8	2.8	97.04	96.04	
German					2.0	2.7	70.00	70.00	85.7	2.8	86.81	72.80	
Twonorm					498.7	3.7	91.96	91.66	60.9	2.6	96.64	95.28	
Sonar					37.3	3.0	83.01	72.48	18.0	2.3	98.77	80.19	
Mean	47.1	1.8	81.23	75.09	47.3	2.3	72.76	71.32	36.6	2.3	90.52	82.92	

EXPERIMENTAL RESULTS: B.Comparison With Other Fuzzy Associative Classifiers

- The results obtained by these methods are shown in Table VIII.
- Notice that we show less datasets; this is due to scalability problems in the LAFAR and CFAR algorithms, which cannot run in all datasets.
- On the other hand, the results presented in Table VIII show that our approach obtains an average number of rules lower than the LAFAR and CFAR algorithms.
- However, the CFAR algorithm obtains less rules than our approach in 11 of the 18 datasets.

EXPERIMENTAL RESULTS: B.Comparison With Other Fuzzy Associative Classifiers

TABLE IX WILCOXON'S TEST ($\alpha=0.05$)

Comparison	R^+	R^-	Hypothesis	p-value
FARC-HD vs. CFAR	161	10	Rejected	0.001
FARC-HD vs. LAFAR	34	2	Rejected	0.025
LAFAR vs. CFAR	32	4	Rejected	0.05

In order to compare the two algorithms, we use a Wilcoxon test, which is shown in Table IX.

TABLE X
RESULTS OBTAINED BY THE ANALYZED METHODS

		CB	A		CBA	2		CMA	R		CPA	R		C4:	5	FA	RC-	HD
Data	#R	Tra	Tst	#R	Tra	Tst	#R	Tra	Tst	#R	Tra	Tst	#R	Tra	Tst	#R	Tra	Tst
Iris	4	96.7	93.3	4	96.7	93.3	41	96.4	94.0	34	96.4	96.0	5	98.0	96.0	4	98.6	96.0
Phoneme	81	81.4	80.5	116	82.2	81.2	358	79.3	78.6	1109	84.0	81.9	129	91.9	86.8	18	83.5	82.1
Monks	11	100.0	100.0	11	100.0	100.0	126	100.0	100.0	79	100.0	100.0	5	100.0	100.0	14	99.9	99.8
Appendicitis	6	91.5	89.6	6	91.5	89.6	42	90.8	89.7	25	89.5	87.8	3	91.0	83.3	7	93.8	84.2
Ecoli	29	87.3	78.0	35	89.2	77.1	178	82.5	77.7	158	82.6	76.2	20	91.7	79.5	34	92.3	82.2
Pima	42	79.6	72.7	44	79.9	72.5	237	79.4	75.1	166	79.1	74.5	18	83.2	74.0	23	82.9	75.7
Yeast	48	59.4	54.7	67	61.8	55.9	262	57.2	53.6	427	59.4	56.3	169	81.5	55.6	35	63.8	58.5
Glass	25	82.3	70.8	28	83.1	71.3	174	78.9	70.3	121	77.2	68.9	26	93.7	67.4	23	81.1	70.2
Page-blocks	172	94.6	94.0	256	98.2	95.9	1348	94.7	94.4	464	97.4	96.1	43	98.5	97.1	19	95.6	95.0
Magic	728	82.7	81.5	1015	84.8	83.7	4200	79.3	78.8	5422	87.9	84.9	321	90.9	85.1	43	85.4	84.5
Wine	9	99.9	93.8	9	99.9	93.8	73	99.9	96.7	44	99.7	95.6	5	98.9	93.3	9	99.9	94.3
Heart	40	93.8	83.0	40	94.2	81.5	306	91.5	82.2	93	90.1	80.7	17	91.7	78.5	27	93.9	84.4
Cleveland	30	64.3	56.9	47	70.0	54.9	230	54.1	53.9	107	61.8	54.9	40	83.1	54.5	61	88.2	55.2
Vowel	130	77.8	63.6	215	92.6	74.9	945	71.2	60.4	888	76.1	63.0	95	97.1	81.5	72	80.5	71.8
Crx	97	95.2	83.6	97	94.9	85.0	728	92.0	85.0	204	91.1	87.3	21	90.8	85.3	25	91.2	86.0
Pen-based	653	85.3	83.1	592	90.3	88.1	4328	72.0	71.7	2536	97.9	93.1	191	99.3	96.5	153	97.0	96.0
German	177	94.5	75.3	227	92.9	73.7	1984	84.4	71.9	666	88.1	73.3	83	84.9	72.5	86	86.8	72.8
Twonorm	708	97.7	91.6	724	97.0	91.7	2163	97.7	95.5	1646	99.0	89.4	286	98.7	84.5	61	96.6	95.3
Ringnorm	295	96.3	94.1	184	97.2	93.7	2788	87.2	83.7	1209	99.1	92.2	203	98.7	90.2	24	95.1	94.1
Wdbc	50	100.0	94.7	51	99.9	95.1	309	99.9	94.9	66	99.0	95.1	12	99.1	95.2	10	98.6	95.3
SatImage	722	88.5	85.2	587	87.6	83.6	7083	86.6	84.9	2032	97.3	85.8	287	97.7	85.8	76	88.7	87.3
Texture	377	88.3	84.5	50	53.5	52.5	5616	76.3	73.8	1492	98.5	90.7	152	99.0	92.6	55	93.7	92.9
Spectfheart	31	92.0	79.8	33	91.8	79.8	305	85.5	79.4	87	87.3	78.3	19	98.3	76.5	13	91.4	79.8
Spambase	278	95.0	93.2	302	95.2	93.0	2317	92.9	92.0	686	97.9	93.5	109	97.4	92.7	30	92.4	91.9
Sonar	27	92.3	75.4	39	97.7	77.9	234	98.3	78.8	92	95.8	75.0	14	97.7	70.5	18	98.8	80.2
Movementlibras	41	54.8	36.1	4	11.6	7.2	510	51.7	39.2	636	85.3	63.6	47	94.4	69.4	83	95.5	76.7
Mean	185	87.4	80.3	184	85.9	78.7	1419	83.8	79.1	788	89.1	82.1	89	94.1	82.5	39	91.0	83.9

 ${\bf TABLE~XI} \\ {\bf Results~of~the~Friedman~and~Iman-Davenport~Tests~} (\alpha=0.05)$

Friedman Test										
Statistic (\mathcal{X}_F^2)	Critical Value	p value								
15.84	11.0705	< 0.01								
Iman	Davenport Test									
Statistic (\mathcal{F}_F)	Critical Value	p value								
3.4703	2.2885	< 0.01								

TABLE XII
AVERAGE RANKINGS OF THE METHODS

Method	Ranking
CBA	3.807
CMAR	3.775
CBA2	3.730
C45	3.576
CPAR	3.346
FARC-HD	2.307

TABLE XIII HOLM'S TABLE FOR THE SELECTION METHODS WITH $\alpha=0.05$

i	Method	z	p	α/i	Hypothesis
5	CMAR	3.71	2.1035E-4	0.01	Rejected
4	CBA	2.89	0.0038	0.0125	Rejected
3	CBA2	2.74	0.0060	0.0166	Rejected
2	C45	2.45	0.0144	0.025	Rejected
1	CPAR	2.01	0.0453	0.05	Rejected

EXPERIMENTAL RESULTS: D.Analysis of the Influence of $Depth_{max}$ and the Number of Evaluations

ANALYSIS OF THE PERFORMANCE DEPENDING ON Depthmax

	$Depth_{max} = 2$
Data	#R1 #R2 #R3 Tra Tst Time
Yeast	96.9 38.9 27.9 62.2 57.7 0:00:51
Vowel	211.9 48.3 35.2 60.4 52.3 0:00:58
Ringnorm	1460.4 36.7 25.9 94.8 93.8 0:05:44
Spectfheart	2870.0 37.6 13.8 91.3 79.1 0:00:19
	$Depth_{max} = 3$
Data	#R1 #R2 #R3 Tra Tst Time
Yeast	373.2 56.3 35.2 63.8 58.5 0:01:00
Vowel	1482.3 97.5 72.3 80.4 71.8 0:02:16
Ringnorm	9927.7 41.4 24.0 95.1 94.1 0:07:28
Spectfheart	45508.1 34.7 12.9 91.4 79.8 0:01:59
	$Depth_{max} = 4$
Data	#R1 #R2 #R3 Tra Tst Time
Yeast	845.5 68.1 43.7 64.6 57.6 0:02:03
Vowel	6423 111.1 90.5 89.8 78.4 0:07:10
Ringnorm	35201.1 45.4 28.0 95.9 94.6 0:19:42
Spectfheart	389983 32.8 15.4 92.6 77.5 1:10:21

EXPERIMENTAL RESULTS: D.Analysis of the Influence of $Depth_{max}$ and the Number of Evaluations

Fig. 6. Accuracy obtained over the training data with different numbers of evaluations in the genetic process with $\operatorname{Depth}_{\max} = 4$.

EXPERIMENTAL RESULTS: E.Analysis of Scalability

TABLE XV AVERAGE RUNTIME OF THE ANALYZED METHODS (HH:MM:SS)

Dataset	Var	Patt	2SLAVE	FH-GBML	SGERD	CFAR	LAFAR	CBA	CBA2	CMAR	CPAR	C4.5	FARC-HD
Iris	4	150	00:00:05	00:12:57	00:00:00	00:00:00	00:09:39	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:01
Phoneme	5	5404	00:03:01	01:39:48	00:00:01	00:00:05	01:08:27	00:00:01	00:00:01	00:00:01	00:00:05	00:00:00	00:01:44
Monks	6	432	00:00:07	00:10:57	00:00:00	00:00:01	07:39:18	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:09
Appendicitis	7	106	00:00:03	00:02:05	00:00:00	00:00:05	01:00:44	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:02
Ecoli	7	336	00:00:50	00:11:05	00:00:00	00:00:01	01:20:10	00:00:00	00:00:00	00:00:00	00:00:01	00:00:00	00:00:15
Pima	8	768	00:00:41	00:23:31	00:00:00	00:00:06	04:18:18	00:00:00	00:00:00	00:00:00	00:00:01	00:00:00	00:00:22
Yeast	8	1484	00:07:04	00:48:51	00:00:00	00:00:01	15:27:38	00:00:00	00:00:00	00:00:00	00:00:01	00:00:01	00:01:00
Glass	9	214	00:00:38	00:08:05	00:00:00	00:00:04	07:58:01	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:18
Page-blocks	10	5472	00:09:59	03:09:10	00:00:02	00:01:08	-	00:00:06	00:01:09	00:00:10	00:00:04	00:00:07	00:02:15
Magic	10	19020	01:03:25	13:04:02	00:00:21	00:16:30	-	00:00:28	00:00:50	00:01:18	00:01:20	00:00:52	00:17:52
Wine	13	178	00:00:12	00:10:16	00:00:00	00:00:45	-	00:04:45	00:43:04	00:15:58	00:00:00	00:00:00	00:00:09
Heart	13	270	00:00:15	00:12:51	00:00:00	00:00:12	-	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:14
Cleveland	13	303	00:01:29	00:14:36	00:00:00	00:00:09	-	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:37
Vowel	13	990	00:13:20	00:13:40	00:00:00	00:00:10	-	00:01:12	00:02:13	00:00:05	00:00:03	00:00:00	00:02:16
Crx	15	690	00:00:35	00:35:37	00:00:00	00:02:02	-	00:02:06	00:00:18	00:06:19	00:00:01	00:00:00	00:00:27
Pen-based	16	10992	02:32:58	10:29:28	00:00:13	00:00:07	-	00:00:29	00:00:52	00:01:24	00:00:36	00:00:27	00:45:08
German	20	1000	00:02:26	01:03:06	00:00:00	00:02:17	-	00:01:16	00:00:15	00:04:46	00:00:03	00:00:00	00:02:20
Twonorm	20	7400	00:39:37	09:29:46	00:00:07	05:03:33	-	00:00:49	00:00:39	00:00:13	00:00:14	00:00:10	00:15:46
Ringnorm	20	7400	00:08:04	10:05:13	00:00:07	-	-	00:02:12	00:01:14	00:13:33	00:00:16	00:00:31	00:07:28
Wdbc	30	569	00:00:30	00:50:01	00:00:00	-	-	00:00:09	00:00:05	01:01:00	00:00:01	00:00:01	00:00:51
SatImage	36	6435	01:57:23	04:07:42	00:00:13	-	-	00:00:43	00:00:24	00:04:50	00:00:54	00:00:18	00:35:08
Texture	40	5500	01:29:43	03:40:14	00:00:12	-	-	00:00:28	00:00:15	00:03:50	00:00:40	00:00:15	00:36:42
Spectfheart	44	267	00:00:31	00:14:30	00:00:00	-	-	00:00:09	00:00:05	00:02:39	00:00:00	00:00:10	00:01:59
Spambase	57	4597	00:42:58	13:01:47	00:00:10	-	-	00:00:15	00:00:12	00:24:55	00:00:13	00:00:27	00:14:36
Sonar	60	208	00:01:04	00:21:02	00:00:01	00:00:20	-	00:00:03	00:00:08	00:10:26	00:00:01	00:00:00	00:17:27
Movementlibras	90	360	00:10:45	05:17:58	00:00:01	-	-	00:00:01	00:00:01	00:00:01	00:00:06	00:00:27	01:20:10

EXPERIMENTAL RESULTS: E.Analysis of Scalability

By the analysis of the results presented in Table XV, we can draw the following conclusions.

- The SGERD algorithm presents a very low average runtime in all datasets.
- The 2SLAVE,FH-GBML,LAFAR ,and CFAR algorithms expend a large amount of time .
 (Notice that the CFAR and LAFAR cannot run in 7 and 18 of the 26
 - datasets, respectively.)
- our proposal obtains the best ranking in Fried- man's test.
- Notice that the CBA and CBA2 algorithms present similar runtimes to the CMAR and CPAR algorithms.
- The FARC-HD approach presents a good computational cost in all datasets.

Outline for section 6

- INTRODUCTION
 - PRELIMINARIES
 - A.Fuzzy Rule-Based Classification Systems
 - B.Fuzzy Association Rules
 - C.Fuzzy Association Rules for Classification
 - FUZZY ASSOCIATION RULE-BASED CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS
 - Stage 1. Fuzzy Association Rule Extraction for Classification
 - Stage 2. Candidate Rule Prescreening
 - Stage 3. Rule Selection and Lateral Tuning
 - Flowchart

EXPERIMENTAL SETUP

- A.Datasetst
- B.Methods Considered for Comparison
- C.Parameters of the Methods
- D.Statistical Analysis
- EXPERIMENTAL RESULTS
 - A.Comparison With Other Genetic Fuzzy Systems
 - B.Comparison With Other Fuzzy Associative Classifiers
 - C.Comparison With Classical Approaches
 - D.Analysis of the Influence of Depthmax and the Number of Evaluations
 - E.Analysis of Scalability
- O CONCLUDING REMARKS

CONCLUDING REMARKS:

- In this paper, we have proposed a new fuzzy associative classification method for high-dimensional datasets, named FARC- HD.
- Our aim was to obtain accurate and compact fuzzy asso- ciative classifiers with a low computational cost.
- Finally, the limit in the depth of the trees, along with candidate rule prescreening using the fuzzy measure wWRACC", allows us to reduce the search space considerably.

Thank you for your attention