Elementos de Sistema - Prova "11"

Nome completo:					
Pontos de:	HW	SW			
Fullos de.	1144	J V V			
/ 20 + 10		/ 50 + 10			

Instruções:

- 1. A avaliação tem duração total de 120 minutos.
- 2. Você não pode consultar a internet, apenas seu repositório LOCAL
- 3. Você deve editar esse documento.
- 4. Assim como nos projetos, os códigos fontes estão em: IsrcIrtII srcInasm e o arquivo de configuração dos testes em Itest/config.txt

Revisão 1) (20 HW) Revisão HW

~		
OHESTÃO	DISCURSIVA 5	

Um processo monitora três parâmetros para controle de qualidade: A, B, C. Cada parâmetro possui um valor na decisão final da qualidade. A existência do parâmetro A pesa 30% na decisão final, enquanto os parâmetros B e C pesam 30% e 40%, respectivamente. O grau de aprovação do processo é dado pela soma dos percentuais desses três parâmetros. O produto gerado pelo processo é considerado aprovado, caso o grau de qualidade seja superior ou igual a 60%, e reprovado, se o grau de qualidade for inferior ou igual a 30%. Caso o grau de qualidade esteja entre 30% e 60%, a decisão de aprovação ou reprovação é indiferente. Por exemplo, se um produto apresentar os parâmetros A e B, terá grau de qualidade de 30%+30% = 60%, levando à sua aprovação.

Com base na situação descrita, projete um circuito lógico com o menor número possível de portas lógicas, para determinar a aprovação ou não do produto de acordo com a presença de seus parâmetros. As entradas do circuito serão os sinais A, B, C, e a saída será um sinal Z. Para atingir esse objetivo, faça o que se pede nos itens a seguir.

- a) Monte uma tabela verdade do sistema com a formação ABC. (valor: 4,0 pontos)
- b) Desenhe o circuito final otimizado utilizando portas lógicas. (valor: 6,0 pontos)

Revisão 2) (10 HW) Simplificação

Simplifique os mapas a seguir:

NO PAPEL

	ĊĎ	ĈD	CD	CD
ĀĒ	1	1	1	1
ĀB	1	1	0	0
АВ	0	0	0	1
ΑĒ	0	0	1	1
,		(a	1)*	

	ĒĒ	ĒD	CD	CD
ĀĒ	1	0	1	1
ĀB	1	0	0	1
AB	0	0	0	0
ΑĒ	1	0	1	1
,		(t)	

12	Ē	С
ĀĒ	1	1
ĀB	0	0
AB	1	0
AB	1	х
	(c)

Revisão 3) (10 SW) VectorMax

Arquivo	Projetos/F-Assem	Projetos/F-Assembly/src/nasm/p3VectorMax.nasm		
Teste	Simulação	./testeAssembly.py	p3VectorMax.nasm 2 1000	

Buscar pelo valor máximo de um vetor e atualizar a RAM 2 com o valor encontrado

Assuma que:

- O endereço 0 da RAM indica a posição inicial de um vetor
- O endereço 1 da RAM indica o tamanho do vetor
- O vetor é uma região contínua da RAM

Considere o exemplo na qual um vetor de tamanho 5 está armazenado na memória RAM começando no endereço 4.

Vector = [15, 11, 15, 20, 12]

- Para testar: descomentar a linha do /F-Assembly/tests/config.txt
 - p3VectorMax.nasm 2 1000

Teste 0 (0 pts)	O teste 0 é o exemplo mostrado a seguir (vetor começa em 4 e tem 5 termos)		
Teste 1 (10 pts)	O teste 1 é genérico, você deve ler os valores em RAM[0] e RAM[1]		

1) (5 HW / 5 SW) Conceitos

linguagem baseada em pilha?	NO PAPE		

2) (0 HW, 15 SW) matemática

Arquivo	/I-VM/src/vm/pseudo/			
Teste	Simulação	./I-VM/testeVM.py	pseudo 2 4000	

Transcreva a equação a seguir para ser executada em linguagem VM (precisa executar em VM).

IF
$$(TEMP[0] * TEMP[1]) > 6$$
:
 $TEMP[3] = -3$
ELSE:
 $RAM[3] = - TEMP[0]$

- Para testar descomentar linha a seguir do arquivo: *I-VM/tests/config.txt*
 - o pseudo 2 4000
- E execute:
 - ./I-VM/testeVm.py

Teste 0 (7.5 pts)	ELSE
Teste 1 (7.5 pts)	IF

3) (0 HW, 10 SW) Fibonacci

Arquivo	Projetos/I-VM/src/vm/Q2-Simulado-factorial/factorial.vm		
Teste	Simulação	./I-VM/testeVM.py	fibonacci 4 20000

Implemente uma função em VM que retorna o valor do ultimo termo do Fibonacci, dado um valor N de interações.

	F(0)	F(1)	F(2)	F(3)	F(4)	F(5)	F(6)
F(n) =	0	1	1	2	3	5	8

Exemplo, se passado o valor 6 como argumento, a função deve retornar 8.

Você deve editar apenas a função *fibonacci.vm*, não precisa mexer no *main.vm*. A função fibonacci, recebe um argumento, e deve retornar o último valor da série, em N interações.

- Para testar descomente a linha a seguir do arquivo: *I-VM/tests/config.txt*
 - o fibonacci.vm 4 10000
- E execute:
 - ./I-VM/testeVm.py

Teste 0 (1 pts)	F(0)
Teste 1 (1.5 pts)	F(1)
Teste 2 (2.5 pts)	F(2)
Teste 3 (10 pts)	F(n), n > 2

4) (10 SW) Novo comando VM

Arquivo:	J-VMTranslator/VMtranslator/src/main/java/vmtranslator/Code.java	
Teste:	SIM, simulação	

Vamos implementar um novo comando em vm, chamado de **add3**, que adiciona três elementos da pilha, e retorna o valor no primeiro termo, como no exemplo a seguir

A implementação deve ser feita dentro do método classe :

- Para testar descomentar linha a seguir do arquivo: I-VM/tests/config.txt
 - o add3 1 1000
- E execute:
 - ./J-VMTranslator/testeVMtranslator.py

Teste 0 (10 pts)	add3
------------------	------

5) (10 SW) Stack

NO PAPEL

Faça a evolução da Stack:

0x0010	0 : SP	0	0		0
0x000F	1 : LCL	1	1		1
0x0008	2 : ARG	2	2	!	2
0x0012	3 : THIS	3	3	1	3
0x0000	4 : THAT	4	4	.	4
0x0000	5	5	5	;	5
0x0105	6	6	6	;	6
0x1105	7	7	7	,	7
0x0001	8	8	8		8
0x0025	9	9	9)	9
0xF005	10	10	10	0	10
0x0C05	11	11	1	1	11
0x00D5	12	12	1:	2	12
0x0001	13	13	1	3	13
0x0006	14	14	1-	4	14
0x0002	15	15	1:	5	15
0x0114	16	16	10	6	16
0x0505	17	17	1	7	17
0x1005	18	18	18	8	18
0x2005	19	19	1	9	19
		0		,	0
		0	0 1		ø 1
		1	1	!	1
		1 2	1 2	:	1 2
		1 2 3	1 2 3		1 2 3
		1 2 3 4	1 2 3 4		1 2 3 4
		1 2 3 4 5	1 2 3 4 5		1 2 3 4 5
		1 2 3 4 5	1 2 3 3 4 5 5 6		1 2 3 4 5
		1 2 3 4 5 6 7 8 9	1 2 3 3 4 5 5 6 6 7 7		1 2 3 4 5 6 7 8 9 9
		1 2 3 4 5 6 7 8	1 2 3 3 4 5 5 6 6 7 7 8		1 2 3 4 5 6 7 8 9 10
		1 2 3 4 5 6 7 8 9 10	1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 1 1 1 1	2	1 2 3 4 5 6 7 8 9 10 11
		1 2 3 4 5 6 7 8 9 10 11	1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 1 1 1 1		1 2 3 4 5 6 7 8 9 10 11 12
		1 2 3 4 5 6 7 8 9 10 11 12 13	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 3 9 1 1 2 3	1 2 3 4 5 6 6 7 8 9 10 11 12 13
		1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 6 9 1 2 3	1 2 3 4 5 6 7 8 9 10 11 12 13 14
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 3 4 4 5 5 6 6 7 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
		1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18
		1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18
	add	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18