The Learning algorithm:

L fits a hypothesis (from H) to the training set by choosing r1 to be the distance between the origin (the center of the circle), and the closest data point in D that is positive (i.e., that the point belongs to the concept c), and choosing r2 to be the distance between the origin, and the furthest data point in D that is positive (i.e., that the point belongs to the concept c).

It's also clear that the time complexity is polynomial in terms of the number of samples: finding a maximum distance and a minimum distance is linear in the number of points.

Correctness:

To show correctness of L, we must show that L is a consistent learner (consistent with the concept it's trying to learn, (c). We show that for all points in the training data, p, and for L(D) = h, h(p) = c(p).

Let $\epsilon > 0, \delta > 0$. Consider $c \in C$, and denote the inner radius of c by r_{c_1} and the outer radius by r_{c_2} . By the definition of c, all the interior points (inside the annulus) p_{in} are positive, and all the exterior points, p_{out} are negative. Let p_1^* be the closest point to the origin in c, and let p_2^* be the furthest point to the origin in c, i.e. p_1^* and p_2^* are positive, and denote r_1 as the distance of p_1^* from the origin, and r_2 as the distance of p_2^* from the origin.

Recall that then L(D) = h^* is the annulus with inner radius r_1 and outer radius r_2 . Therefore, for all interior points of c given in the training data, p_{in} , $h^*(p_{in})$ is positive and for all exterior points of c given in the training data, p_{out} , $h^*(p_{out})$ is negative.

 \Rightarrow h* is consistent with c

Sample Complexity:

Given the desired parameters ϵ and δ , the number of training samples m that is required to guarantee the desired error and confidence, is polynomial in $\frac{1}{\epsilon} > 0$, $\frac{1}{\delta} > 0$.

Let $\epsilon>0, \delta>0$. Consider $c\in \mathcal{C}$, and denote the inner radius of c by $r_{\mathcal{C}_1}$ and the outer radius by $r_{\mathcal{C}_2}$.

Now consider the annulus $c^{(\epsilon)}$ for which the inner radius of $c^{(\epsilon)}$, denoted by $r_{c_1^{(\epsilon)}}$ where $r_{c_1^{(\epsilon)}} > r_{c_1}$, and the outer radius of $c^{(\epsilon)}$, denoted by $r_{c_2^{(\epsilon)}}$, where $r_{c_2^{(\epsilon)}} < r_{c_2}$. This annulus $c^{(\epsilon)}$ creates the annulus A_ϵ , with outer radius of $r_{c_1^{(\epsilon)}}$ and inner radius of r_{c_1} that satisfies $\pi(A_\epsilon) = \frac{\epsilon}{2}$, and creates the annulus B_ϵ , with outer radius of r_{c_2} and inner radius of $r_{c_2^{(\epsilon)}}$ that satisfies $\pi(B_\epsilon) = \frac{\epsilon}{2}$. More formally:

For $s_1 > r_{c_1}$ define the annulus $A_s = \{(x_1, x_2) | r_{c_1} \le d((x_1, x_2), (0,0)) \le s_1\}$, and for $s_2 < r_{c_2}$, define the annulus $B_s = \{(x_1, x_2) | s_2 \le d((x_1, x_2), (0,0)) \le r_{c_2}\}$.

$$r_{c_1^{(\epsilon)}} = \inf\{s_1 \mid \pi(A_s) \leq \frac{\epsilon}{2}\} \text{ and } r_{c_2^{(\epsilon)}} = \inf\{s_2 \mid \pi(B_s) \leq \frac{\epsilon}{2}\}$$

Now consider training data $D^{(m)}$, where $|D^m| = m$. We have 2 cases:

(1) The "bad" case: No points in the training data falls in the two annuluses that we created.

- $\Rightarrow \ \, \text{Happens with probability } 2\left(1-\frac{\epsilon}{2}\right)^m \leq 2e^{-\frac{m\epsilon}{2}}, \text{ since for a single point } d \in D^m \\ \text{, we have } \pi(d \notin A_\epsilon) = 1-\frac{\epsilon}{2} \text{ and } \pi(d \notin B_\epsilon) = 1-\frac{\epsilon}{2} \text{ and the points are independent.}$
- (2) The "good" case: There exists a point in the training set that falls in the two annuluses that we created.
- \Rightarrow Happens with probability $1 2\left(1 \frac{\epsilon}{2}\right)^m$.

Consider the good case, that is there exists a point in at least one of the annuluses. So the error is as follows:

 $err(L(D^m),c)=\pi(h(D^m)\Delta c)$ by error definition from the general set up.

Note that, $\pi(h(D^m)\Delta c) \leq \pi(A_\epsilon \cup B_\epsilon) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ as A_ϵ and B_ϵ are disjoint. This implies that $err(L(D^m),c) \leq \epsilon$.

Finally, assume we can tune m to be so that in the bad case:

$$\Rightarrow \pi(D^m \text{ will yield the bad case}) < \delta$$

Therefore:

$$\pi(err(L(D^m),c) \leq \epsilon) \geq \pi(D^m \text{ will yield the good case}) = 1 - \pi(D^m \text{ will yield the bad case}) > 1 - \delta.$$

To see what m needs to be in order for $\pi(D^m \ will \ yield \ the \ bad \ case) < \delta$ to hold:

$$\Rightarrow \pi(D^{m} \text{ will yield the bad case}) \leq 2e^{-\frac{m\epsilon}{2}} < \delta$$

$$\Rightarrow \ln 2 - \frac{m\epsilon}{2} < \ln \delta$$

$$\Rightarrow 2\ln 2 - m\epsilon < 2\ln \delta$$

$$\Rightarrow -m\epsilon < 2\ln \delta - 2\ln 2$$

$$\Rightarrow -m\epsilon < 2(\ln \delta - \ln 2) > -2\ln\left(\frac{\delta}{2}\right)$$

$$\Rightarrow m > \frac{2}{\epsilon}\ln\left(\frac{2}{\delta}\right)$$

$$QED$$

c. 95% confidence $\rightarrow 1-\delta=0.95 \rightarrow \delta=0.05$ and 5% error $\rightarrow \epsilon=0.05.$

$$\Rightarrow m > \frac{2}{0.05} \ln \left(\frac{2}{0.05} \right) \approx 147.56 = 148 \text{ samples}$$

$$\Rightarrow m \ge \frac{1}{0.05} \left(4 \log_2 \left(\frac{2}{0.05} \right) + 8 * 2 * \log_2 \left(\frac{13}{0.05} \right) \approx 2992.91 = 2993 \text{ samples}$$

Even though the hypothesis space may be infinite, the fact that we found a finite VC dimension allows for a more precise estimation of the sample complexity, leading to a lower bound compared to the one assuming an infinite hypothesis space.

Type equation here.