Contents

- Aquisição e identificação multivar:
- Etapa 1: Sinal de entrada do modelo
- Etapa 2): Conexão entre MATLAB, arduino e a planta
- Visualisação do Datalog
- Etapa 3) Ajuste do datalog
- Etapa 4) Identificação do modelo
- Etapa 4.2) Modelo Arx
- Etapa 4.2) Minimos quadrados SS
- Etapa 4.3) Subespaço n4sid
- Etapa 5) Avaliação das respostas do modelo_1 e modelo_2 identificados
- Etapa 5.2 validação do modelo 1
- Etapa 5.1 validação do modelo 2
- Etapa 5.2 validação do modelo 3

Aquisição e identificação multivar:

Tutorial para a aquisição de datalog e identificação de modelo em Espaço de estados ME.ENG.Bruno Gomes Dutra

```
clear all; close all; clc;
```

Etapa 1: Sinal de entrada do modelo

Vetor de entrada do modelo, pode ser um sinal quadrado, uma entrada ao degrau ou até mesmo um impulso. Obs: è interessante também adicionar um sinal PRBS.

```
% Esse sinal é utilizado para acionar os atuadores com o objetivo de medir
% posteriormente o sinal de saída
u1(1:25)=0; u1(26:200)=2; u1(201:410)=4; u1(411:620)=0;
% Para o caso de um sistema Multivar, com várias entradas e saídas
% Podemos atribuir mais entradas, ex: u2, u3, u4 ... uN
nit = length(u1); % numero de interações com base no tamanho de u.
u_prbs=create_prbs(0,0.2,0,9, 1, nit,1);
u1=u1+u_prbs;
% Para um braço robótico com 6 servos tem-se:
u2=u1; u3=u1; u4=u1; u5=u1; u6=u1;
% Tempo de amostragem utilizado para aquisição e pro controle
Ts = 0.05; % 0.05 segundos é recomendável para uma comunicação estável entre arduino e o matlab
```

Etapa 2): Conexão entre MATLAB, arduino e a planta

```
delete(instrfindall); % função para limpar comunicações serias existentes
daqduino start('COM13',9600); % Inicia a comunicação pela porta COM(N).
%Obs: excolher a porta certa de acordo com o arduino
for i=1:3
daqduino write Mimo(0,0,0,0,0,Ts);
dagduino read;
daqduino_write_Mimo(0,0,0,0,0,Ts);
end
for k=1:nit,
  Y(k,:) = daqduino read; % Leitura dos sinais de saída dos servos[ de 1 a 6]
  %%plota o sinal de saída em tempo real(Descomentar caso queira acompanhar o sinal)
   %plot(1:k,Y(:,1),'r',1:k,Y(:,2),'b',1:k,Y(:,3),'m',1:k,Y(:,4),'c',1:k,Y(:,4),'y',1:k,Y(:,6),'k');
   %drawnow
  daqduino write Mimo(u1(k),u2(k),0,0,0,0,Ts); %Manda o sinal de entrada para o arduino atuar nos atuadores
end
% Y(1:10,:)=0;
daqduino end; % End the connection to the DaqDuino device.
```

```
DaqDuino started! Connection is open on port COM13
Available functions: daqduino_end(), daqduino_read(),
daqduino_write(u(k),Ts).

DAQ-Duino, 2013-2019.
Laboratory of Control and Systems (LACOS, ufpa.br).
Author:Bruno Gomes Dutra (brunodutra@ufpa.br).

DaqDuino ended.

DAQ-Duino, 2013-2015.
Laboratory of Control and Systems (LACOS, ufpa.br).
Group of Control and Systems (GCS, udesc.br).
Author: Prof. Antonio Silveira (asilveira@ufpa.br).
```

```
y1= Y(:,1); % sinal de saída 1 (primeiro servo)
y2= Y(:,2); % Leitura do sinal de saída 2 (segundo servo)
y3= Y(:,3); % Leitura do sinal de saída 3 (terceiro servo)
y4= Y(:,4); % Leitura do sinal de saída 4 ...
y5= Y(:,5); % Leitura do sinal de saída 5 ...
y6= Y(:,6); % Leitura do sinal de saída 6 ...
t=0:Ts:nit*Ts-Ts; % Vetor de tempo com base em Ts
figure('units','normalized','outerposition',[.4 .05 0.559 0.925])
subplot(211)
    plot(t,y1,'r','linewidth',2.2); hold
    plot(t,y2,'b','linewidth',2.2);
    plot(t,y3,'m','linewidth',2.2);
    plot(t,y4,'c','linewidth',2.2);
    plot(t,y5,'y','linewidth',2.2);
    plot(t,y6,'k','linewidth',2.2);
    legend({'Posição angular 1','Posição angular 2','Posição angular 3','Posição angular 4','Posição angular 6'});
    xlabel('Tempo(s)')
    ylabel('Tensão(V)')
    % legend('Ref_{força}','Força');
    title('Datalog dos servos')
    set(gca,'fontsize',10);
    set(gca,'linewidth',1);
subplot(212)
    plot(t,u1,':r','linewidth',2.5); hold on;
plot(t,u2,':b','linewidth',2.4);
plot(t,u3,':m','linewidth',2.3);
plot(t,u4,':c','linewidth',2.2);
    plot(t,u5,' :y','linewidth',2.1);
plot(t,u6,' :k','linewidth',2.0);
legend({'Servo 1','Servo 2','Servo 3','Servo 4','Servo 5','Servo 6'});
    title('Atuadores')
    ylabel('Tensão(V)');
    xlabel('Tempo(s)');
    set(gca,'fontsize',10);
    set(gca,'linewidth',1);
    save("datalog.mat")
```

Current plot held

Etapa 3) Ajuste do datalog

```
U=[u1; u2; u3; u4; u5; u6]'; % vetor com todas as entradas
datalog = iddata(Y,U,Ts); % variável com os dados de entada e saída
```

```
ordem=2; % escolha do projetista. O tamanho das matrizes(Ordem) vai interfirir na eficácia do modelo
 numero_estados=6*ordem;
 inputs=6
 output=6
 inputs =
      6
 output =
      6
Etapa 4.2) Modelo Arx
 %identifica um modelo arx para cada realação de entrada e saída
 % e suas respectivas relações de acoplamento
 % após isso encontra-se o seu equivalente em Espado de Estados (SS)
 d=size(datalog);
 output=1;
 inputs=1;
 for i= 1:d(2)
      sys(:,:,i) = armax(datalog(:,i,i),[ordem*ones(output,inputs), ordem*ones(output,inputs), zeros(output,inputs)]; \\
 end
 for i=1:d(2)
        Gz(i,i) = tf(tf(sys(:,:,i)));
 end
 Gzmin=ss(Gz,'min');% Para criar o modelo no espaço de estados
 [Ap,Bp,Cp,Dp,Ts]=ssdata(Gzmin);% Para obter as matrizes A B C
 SS model1=ss(Ap,Bp,Cp,Dp,Ts)
 [Y1,X1]=lsim(SS model1,U,t,zeros(size(Ap,1),1));
 Warning: In the assignment "SYS(indices) = RHS," ignoring the input
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the output
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the input
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the output
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the input
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the output
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the input
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the output
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the input
 names of RHS because of name conflicts with SYS.
 Warning: In the assignment "SYS(indices) = RHS," ignoring the output
 names of RHS because of name conflicts with SYS.
 SS_{model1} =
   A =
             \times 1
                     ×2
                              ×3
                                      \times 4
                                              x5
                                                       ×6
                                                                       ×8
    x1
         0.7906
                 0.3438
                              0
                                               0
                                                                        0
    x2
            0.5
                      0
                              0
                                       0
                                               0
                                                       0
                                                                        0
    x3
              0
                      0
                         0.8066
                                   0.358
                                               0
                                                       0
                                                               0
                                                                        0
    \times 4
              0
                      0
                             0.5
                                       0
                                               0
                                                       0
                                                               0
                                                                        0
    x5
              0
                      0
                               0
                                       0
                                          0.8146
                                                  0.3488
                                                               0
                                                                        0
    ×6
              0
                      0
                               0
                                       0
                                             0.5
                                                       0
                                                                        0
    \times 7
              0
                      0
                               0
                                       0
                                               0
                                                       0
                                                            0.665 0.2787
    x8
              0
                      0
                               0
                                       0
                                               0
                                                       0
                                                              0.5
                                                                        0
    x9
              0
                      0
                               0
                                       0
                                               0
                                                       0
                                                                        0
    x10
              0
                      0
                               0
                                       0
                                               0
                                                       0
                                                                0
                                                                        0
    \times 11
              0
                      0
                               0
                                       0
                                               0
                                                       0
                                                               0
                                                                        0
                                                       0
    x12
              0
                      0
                               0
                                       0
                                               0
                                                                0
                                                                        0
             x9
                    x10
                             x11
                                     x12
    \times 1
              0
                      0
                               0
    x2
              0
                      0
                                       0
    x3
              0
                      0
                               0
                                       0
              0
    \times 4
                      0
                               0
                                       0
              0
                      0
                                       0
    x5
                               0
              0
                               0
                                       0
    x6
                      0
    x7
                               0
              0
                      0
                                       0
    x8
              0
                               0
                                       0
                       0
         0.6907
    x9
                 0.2631
                                       0
    x10
                               0
            0.5
                      0
                                       0
                         0.8055
                                 0.3491
    x11
              0
                       0
              0
    x12
                      0
                            0.5
                                       0
   в =
```

u2

u1

u3

u4

u5

u6

VI	0.123	0	0	0	,)		
x2	0	0	0	0	(0		
x3	0	0.125	0	0	(0		
$\times 4$	0	0	0	0	(0		
x5	0	0	0.125	0	(0		
x6	0	0	0	0	() 0		
x7	0	0	0	0.25	(0		
×8	0	0	0	0	(0		
x9	0	0	0	0	0.25	5 0		
x10	0	0	0	0	(0		
x11	0	0	0	0	(0.125		
x12	0	0	0	0	() 0		
C =								
	2	κ1	x2	2	c3	x4	×5	x6
y1	0.170	7 -0	.02112		0	0	0	0
y2		0	0	0.102	22	-0.03445	0	0
У3		0	0		0	0	0.09002	-0.03491
у4		0	0		0	0	0	0
у5		0	0		0	0	0	0
У6		0	0		0	0	0	0
		۲2	x8	2	د9	x10	x11	x12
у1		0	0		0	0	0	0
y2		0	0	0		0	0	0
У3		0	0	0		0	0	0
у4	0.267		007942		0	0	0	0
у5		0	0	0.2126		-0.001918	0	0
У6		0	0		0	0	0.1269	-0.04365
D =								
		11	u2	υ		u4	u5	ш6
у1	-0.00767		0			0	0	0
y2			.01203		0	0	0	0
у3		0	0	-0.0125		0	0	0
у4		0	0		0	0.007124		0
у5		0	0		0	0	-0.001823	0
У6		0	0		0	0	0	-0.01563

Sample time: 0.05 seconds
Discrete-time state-space model.

x1 0.125

0

0

0

0

Etapa 4.2) Minimos quadrados SS

Utiliza-se a técnica de minimos quadrados recursivo (Recursive Least Square) para encontrar as matrizes A B e C do modelo

```
[A,B,C,GAMA,W,V,AIC,fit,R2_,emq_]=ident_MQR_SS_master(Y,U,Ts,ordem)
SS_model2=ss(A,B,C,0,Ts); % Modelo discreto
% [Y2,X2]=dlsim(A,B,C,0,U,[ones(numero_estados,1)*Y(1,1)]);
[Y2,X2]=lsim(SS_model2,U,t,zeros(numero_estados,1));
```

```
Ruido de medida v(k): media=0.66809
                                       0.67095
                                                  0.67317
                                                              0.66939
                                                                           0.6692
                                                                                      0.67299; variancia=0.3196
                                                                                                                     0.3194
                                                                                                                                0.31952
     0.3196
              0.31948
                          0.31927
A =
 Columns 1 through 7
   0.1508
             0.0136
                      0.1517
                               -0.0559
                                          0.1500
                                                    0.0040
                                                              0.1265
                               -1.0396
  -0.4388
                      -0.0520
                                                     0.1396
                                                             -1.0189
             0.1951
                                           0.1004
   0.1375
             0.0141
                      0.2957
                                -0.0579
                                           0.3568
                                                     0.0015
                                                             -0.0429
                      -0.0637
  -0.3408
             0.3413
                                -1.3103
                                           0.0872
                                                     0.1651
                                                             -1.0454
                                -0.0597
                                                             -0.1100
   0.1331
             0.0152
                      0.3531
                                           0.4394
                                                    0.0015
             0.3290
                      -0.0076
                                -1.1996
                                          0.0316
                                                    -0.0175
                                                             -1.0590
  -0.2616
   0.1656
                      0.0083
                                -0.0575
                                                              0.2960
             0.0135
                                          -0.0571
                                                    0.0067
  -0.2201
             0.2905
                      -0.0009
                                -1.2532
                                          0.0385
                                                     0.1981
                                                             -1.1027
   0.1711
                      -0.0491
                                -0.0559
                                          -0.1397
             0.0128
                                                     0.0084
                                                              0.3634
   -0.1953
                       0.0175
                                -1.2542
                                          0.0552
                                                    0.1970
                                                             -1.0440
             0.2920
                                           0.2735
   0.1450
             0.0149
                       0.2385
                                -0.0595
                                                    0.0043
                                                              0.0253
                                           0.0764
  -0.1616
             0.3216
                       0.0448
                                -1.2756
                                                    0.1265
                                                             -1.0424
 Columns 8 through 12
                      -0.0151
                                 0.1572
   0.0208
             0.1322
                                           0.0436
   0.3333
            -0.9900
                      -0.1490
                                 0.0941
                                           0.7747
            -0.1000
                      -0.0134
                                 0.2390
                                           0.0429
   0.0248
            -1.0216
                      -0.2359
   0.4529
                                 0.0608
                                           0.8328
   0.0279
            -0.1925
                      -0.0145
                                 0.2713
                                           0.0425
            -1.0399
                      -0.3433
                                           0.8711
   0.6020
                                 0.0200
   0.0251
             0.3636
                      -0.0248
                                0.0749
                                           0.0474
            -1.0409
                      -0.3640
                                -0.0227
   0.4594
                                           0.8984
   0.0243
             0.4557
                      -0.0287
                                0.0416
                                           0.0490
   0.5618
            -1.1055
                      -0.5938
                                -0.0992
                                           1.0186
   0.0276
            -0.0077
                      -0.0210
                                0.2053
                                           0.0462
   0.5710
            -1.1119
                      -0.3932
                                -0.1879
                                           0.8642
```

0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	0.0074 0.1303 0.0065 0.1312 0.0061 0.1307 0.0083 0.1324 0.0087 0.1336 0.0068	
C =						
Columns 1	through 7					
1.0000 -0.0000 -0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000 0.0000 -0.0000	-0.0000 1.0000 0.0000 -0.0000 -0.0000	0.0000 -0.0000 -0.0000 -0.0000 0.0000	-0.0000 -0.0000 1.0000 0.0000 0.0000	-0.0000 0.0000 0.0000 -0.0000 -0.0000	0.0000 0.0000 0.0000 1.0000 0.0000
Columns 8	through 12					
-0.0000 -0.0000 -0.0000 -0.0000 0.0000	-0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000	0.0000 0.0000 -0.0000 0.0000 -0.0000	0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000	-0.0000 -0.0000 0.0000 -0.0000 -0.0000		
GAMA =						
Columns 1	through 7					
0.0567 -0.4254 0.0565 -0.2941 0.0566 -0.2531 0.0614 -0.1809 0.0609 -0.1952 0.0588 -0.1555 Columns 8	-0.0239 -0.9270 -0.0265 -0.4872 -0.0273 -0.3154 -0.0242 -0.2550 -0.0238 -0.2842 -0.3170 through 12	0.0753 0.0278 0.0780 0.0437 0.0782 0.0643 0.0754 0.1003 0.0736 0.0831 0.0773 0.1165	0.0075 0.1015 0.0040 -0.1016 0.0020 0.2489 0.0117 0.3303 0.0125 0.3597 0.0059 0.3999	0.0870 0.3196 0.0916 0.3200 0.0927 0.2481 0.0840 0.2814 0.0816 0.2687 0.0896 0.2980	0.0178 0.5060 0.0158 0.4460 0.0141 0.0936 0.0224 0.4484 0.0249 0.5769 0.0167 0.6682	0.0171 -1.0599 0.0141 -1.0154 0.0131 -1.0469 0.0240 -1.0423 0.0240 -1.0336 0.0161 -1.0088
-0.0749 -0.0052 -0.0032 -0.0019 -0.1371 -0.0102 -0.5608 -0.0140 -0.0805 -0.0034 0.0424	0.0058 -1.1333 0.0039 -1.1682 0.0179 -1.1243 0.0183 -1.2218 0.0075	-0.3886 -0.0313 -0.4955 -0.0345 -0.6231 -0.0443 -0.6946 -0.0452 -1.0704 -0.0406 -0.8791	0.0719 0.0358 0.0719 -0.0209 0.0694 -0.0260 0.0673 -0.1203 0.0708	-0.0057 0.1136 -0.0026 0.1804 -0.0020 0.1731 -0.0001 -0.0443 -0.0004		
₩ =						
	through 7	0.0010	1 (57)	0.0045	1 6005	0.0045
0.0042 Columns 8	1.6236 through 12		1.6579	u.UU45	1.0827	0.0045
	0.0046		0.0044	1.7019		
V = 0.3196	0.3194	0.3195	0.3196	0.3195	0.3193	
AIC =						
1.5799						
fit =						
34.3514 -20.4141						

```
-42.3760

83.9921

81.5779

1.4928

R2_ =

66.9974 -10.9629 -55.1894 98.0377 97.4021 25.7685

emq_ =

1.5748
```

Etapa 4.3) Subespaço n4sid

Técnica n4sid de identificação multivar

```
[SYS3, X0]=n4sid(datalog,numero_estados); % Identificação do modelo em Espaço de estados
SS_model3=ss(SYS3.A,SYS3.B,SYS3.C,SYS3.D,Ts); % Modelo discreto
% [Y3,X3]=lsim(SYS3.A,SYS3.B,SYS3.C,SYS3.D,U,t,zeros(numero_estados,1));
[Y3,X3]=lsim(SS_model3,U,t,zeros(numero_estados,1));
```

Etapa 5) Avaliação das respostas do modelo_1 e modelo_2 identificados

Etapa 5.2 validação do modelo 1

```
figure('units','normalized','outerposition',[0 0 0.8 1])
title("Validação do modelo2")
subplot(211),
   plot(t,y1,'r','linewidth',2); hold
   plot(t,Y1(:,1),'--r','linewidth',2.2);
   plot(t,y2,'b','linewidth',2);
   plot(t,Y1(:,2),'--b','linewidth',2.2);
   plot(t,y3,'m','linewidth',2);
   plot(t,Y1(:,3),'--m','linewidth',2.2);
   plot(t,y4,'c','linewidth',2);
   plot(t,Y1(:,4),'--c','linewidth',2.2);
   plot(t,y5,'y','linewidth',2);
   plot(t,Y1(:,5),'--y','linewidth',2.2);
   plot(t,y6,'k','linewidth',2);
   plot(t,Y1(:,6),'--k','linewidth',2.2);
   \textbf{legend(\{'Y(1)_{real\}','Ys(1)_{simulado\}','Y(2)_{real}','Ys(2)_{simulado\}','Y(3)_{real\}','Ys(3)_{simulado\}'}}}...
        ,'Y(4)_{real}','Ys(4)_{simulado}','Y(5)_{real}','Ys(5)_{simulado}','Y(6)_{real}','Ys(6)_{simulado}' });
   ylabel('saída real y(t)');
subplot(212),
   plot(t,U,'linewidth',2);
   {\tt ylabel('entradas~U(t)');~xlabel('Tempo~(s)');}
```

Current plot held

Etapa 5.1 validação do modelo 2

```
figure('units','normalized','outerposition',[0 0 0.8 1])
title("Validação do modelo1")
subplot(211),
    plot(t,y1,'r','linewidth',2); hold
    plot(t, Y2(:,1),'--r','linewidth',2.2);
    plot(t,y2,'b','linewidth',2);
    plot(t,Y2(:,2),'--b','linewidth',2.2);
    plot(t,y3,'m','linewidth',2);
    plot(t, Y2(:,3),'--m','linewidth',2.2);
    plot(t,y4,'c','linewidth',2);
    plot(t, Y2(:,4),'--c','linewidth',2.2);
    plot(t,y5,'y','linewidth',2);
    plot(t,Y2(:,5),'--y','linewidth',2.2);
    plot(t,y6,'k','linewidth',2);
    plot(t, Y2(:,6),'--k','linewidth',2.2);
    \label{legend({'Y(1)_{real}', 'Ys(1)_{simulado}', 'Y(2)_{real}', 'Ys(2)_{simulado}', 'Y(3)_{real}', 'Ys(3)_{simulado}'} ... \\
       ','Y(4)_{real}','Ys(4)_{simulado}','Y(5)_{real}','Ys(5)_{simulado}','Y(6)_{real}','Ys(6)_{simulado}',');
    ylabel('saída real y(t)');
subplot(212),
    plot(t,U,'linewidth',2);
    ylabel('entradas U(t)'); xlabel('Tempo (s)');
```

Current plot held

Etapa 5.2 validação do modelo 3

```
figure('units','normalized','outerposition',[0 0 0.8 1])
title("Validação do modelo2")
subplot(211),
    plot(t,y1,'r','linewidth',2); hold
    plot(t, Y3(:,1),'--r','linewidth',2.2);
    plot(t,y2,'b','linewidth',2);
    plot(t, Y3(:,2),'--b','linewidth',2.2);
    plot(t,y3,'m','linewidth',2);
    plot(t, Y3(:,3),'--m','linewidth',2.2);
    plot(t,y4,'c','linewidth',2);
    plot(t, Y3(:,4),'--c','linewidth',2.2);
    plot(t,y5,'y','linewidth',2);
    plot(t, Y3(:,5),'--y','linewidth',2.2);
    plot(t,y6,'k','linewidth',2);
    plot(t, Y3(:,6),'--k','linewidth',2.2);
    \label{legend({'Y(1)_{real}', 'Ys(1)_{simulado}', 'Y(2)_{real}', 'Ys(2)_{simulado}', 'Y(3)_{real}', 'Ys(3)_{simulado}'} ... \\
       ','Y(4)_{real}','Ys(4)_{simulado}','Y(5)_{real}','Ys(5)_{simulado}','Y(6)_{real}','Ys(6)_{simulado}',');
    ylabel('saida real y(t)');
subplot(212),
    plot(t,U,'linewidth',2);
    ylabel('entradas U(t)'); xlabel('Tempo (s)');
```

Current plot held

Published with MATLAB® R2018a