2015 Winter Camp Warm-Up Set

December 22, 2014

1 Algebra

1. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for all real x, y we have the identity

$$f(x^3) + f(y^3) = (x+y) \left(f(x^2) + f(y^2) - f(xy) \right).$$

2. Let a, b, c be positive real numbers with a + b + c = 3. Prove that

$$\frac{a^2}{a + \sqrt[3]{bc}} + \frac{b^2}{b + \sqrt[3]{ac}} + \frac{c^2}{c + \sqrt[3]{ab}} \ge \frac{3}{2}$$

and determine the ases of equality.

3. Let \mathbb{R}^+ denote the set of positive reals. Find all functions $f:\mathbb{R}^+\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}^+$ we have

$$f(x) + f(y) \le \frac{f(x+y)}{2}, \frac{f(x)}{x} + \frac{f(y)}{y} \ge \frac{f(x+y)}{x+y}$$

4. \mathbb{Q} is the set of rational numbers. Find all functions $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ such that for all $x, y, z \in \mathbb{Z}$ we have

$$f(x,y) + f(y,z) + f(z,x) = f(0,x+y+z).$$

2 Combinatorics

- 1. There are 100 cards with numbers from 1 to 100 on the table. Joan and Jill took the same number of cards in a way such that the following condition holds: If Joan has a card with a number n then Jill has a card with a number 2n + 2. What is the maximal number of cards that could be taken by the two girls?
- 2. There is an integer in each cell of a $2m \times 2n$ table. The following operation is allowed: Choose three cells forming an L-tromino (a 2×2 subsquare with one coroner removed) and add 1 to each integer in the three chosen cells. For which m, n is it always possible to perform a finite number of such operations such that afterwards all the integers are the same?
- 3. There are n intersecting convex k-gons on the plane. Any of them can be transferred to any other by a homothety with a positive coefficient. Prove that there is a point in a plane belonging to at least $1 + \frac{n-1}{2k}$ of these k-gons.
- 4. Jacob and David play a game. There are N gummy bears in a bag of candy. Jacob goes first, and takes k gummy bears, where k must be between 1 and N-1 from the bag. For each subsequent move, if r gummy bears were removed the previous move, then on this move any number l of gummy bears can be removed, so long as $1 \le l \le 2r$. So for instance, if Jacob takes 1 gummy bear to begin with, and then David takes 2 gummy bears, Jacob must now take between 1 and 4 gummy bears.

The play who takes the last gummy bear win. Find all N such that Jacob has a winning strategy.

3 Geometry

1. Let ABC be a triangle where $AC \neq BC$. Let P be the foot of the altitude taken from C to AB; and let H be the orthocentre, O the circumcentre of ABC, and D the point of intersection between the radius OC and the side AB. The midpoint of CD is E. In what ratio does the segment EP divide the segment OH?

- 2. Let M be the midpoint of the side BC of acute triangle ABC and H be the orthocenter of ABC. Prove that if D is the base of the perpendicular dropped from the vertex A to the line HM, then the intersection point of the bisectors of the angles DBH and DCH lie on the line HM.
- 3. A straight needle with length 2015 is placed in a vertical position in a co-ordinate grid, not passing through any lattice point. It is then rotated 90° around some point in the plane, such that the needle ends up in a horizontal position. What is the smallest possible number of lattice points the needle could have passed through?
- 4. Acute triangle ABC is inscribed in a circle ω_1 , and the incircle of ABC touch side BC at N. Let ω_2 be a circle tangent to BC at N, and tangent to ω_1 such that ω_2 is on the same side of BC as A. Let O be the center of ω_2 and J be the center of the excircle ABC opposite angle $\angle BAC$. Prove that AO and JN are parallel.

4 Number Theory

- 1. Find all primes p such that p+2 and p^2+2p-8 are also primes.
- 2. For even positive integer n we put all numbers $1, 2, ..., n^2$ into the squares of an $n \times n$ chessboard (each number appears once and only once). Let S_B be the sum of the numbers put in the black squares and S_W be the sum of the numbers put in the white squares. Find all n such that we can achieve

$$\frac{S_W}{S_B} = \frac{39}{64}.$$

3. For each natural number n, define the set S_n as

$$S_n = \left\{ \binom{n}{n}, \binom{2n}{n}, \dots, \binom{n^2}{n} \right\}$$

- (a) Prove there are infinitely many composite (not prime) numbers n such that S_n is a complete residue system mod n.
- (b) Prove there are infinitely many composite numbers n such that S_n is **not** a complete residue system mod n.
- 4. Let P(x) be a degree n polynomial all of whose coefficients are equal to ± 1 , and divisible by $(x-1)^m$. Prove that if $m \ge 2^k, k \ge 2$, then $n \ge 2^{k+1} 1$.