

TLS 10³ OFIGOROV JACEE ▼ MGU Tien-Shan Tibet07 Akeno CASA-MIA HEGRA ★ Fly's Eye Kascade Kascade

"The Cosmic Ray Connection"

production of astrophysical neutrinos

TeV – PeV neutrinos from decays of charged mesons (pions)

$$p+p
ightarrow N \left[\pi^0 + \pi^+ + \pi^-
ight] + X$$
 $p+\gamma
ightarrow \Delta^+
ightarrow \left\{egin{array}{l} n+\pi^+ & rac{1}{3} \ of \ all \ cases \ p+\pi^0 & rac{2}{3} \ of \ all \ cases \ \end{array}
ight.$
 $\pi^+
ightarrow \mu^+ +
u_\mu
ightarrow \left(e^+ +
u_e + ar{
u}_\mu
ight) +
u_\mu$

two guaranteed contributions

neutrino-production at high energy sources neutrino-production during cosmic ray propagation

(more exotic scenarios possible)

"diffuse neutrino-flux

= sum neutrino-flux from all sources"

many sources, large extra-galactic distances

diffuse neutrino-flux approximately isotropic equal contributions from all neutrino-flavors

at high energies:

AGNs?

- neutrino production during acceleration of protons
- diffusive shock acceleration (Fermi)
- naively predicts powerlaw spectrum
- spectral index of ~2

Designed to detect **Cherenkov Light**

Infer neutrino properties from photon **arrival time distributions** in each optical module (DOM)

Dominant Neutrino Interaction in IceCube: Deep Inelastic Neutrino – Nucleon Scattering (DIS)

cascades

CC: $n_e(n_t) + N \longrightarrow e(t) + hadrons$

NC: $n_e(n_m, n_t) + N \longrightarrow n_e(n_m, n_t) + hadrons$

point-like light emission angular resolution >10°

good energy resolution

~15% if contained

through-going tracks

 $n_m + N - \rightarrow m + hadrons (CC)$

pointing resolution <1°

m energy resolution ~ factor of 2

starting tracks

(cascade + track)

$$n_m + N \longrightarrow m + hadrons (CC)$$

double cascades/bangs

$$n_t$$
 + N --> t + hadrons (CC) n_t + hadrons

(and more ...)

conventional n decay of p/K mesons

 n_m dominates n_e suppressed

behaves as ~E-3.7 flux largest at horizon

prompt n

decay of heavier mesons (charm) (not identified yet)

 $n_m : n_e \sim (1:1)$

behaves as ~E-2.7 flux isotropic

analysis method

study excess of high energy events over atmospheric expectation

Log10(energy)

single powerlaw f X **E**^{-g} (2 parameters) + isotropy assumption + 1:1:1 flavor ratio

this analysis used standard maximum likelihood methods

modeling of IceCube observables non-trivial

requires extensive Monte Carlo simulations of the detector response to neutrino interactions

plan for today

- understand this type of analysis
- use a simplified MC generation code to predict observables (discussed next)
- implement a MC based maximum likelihood analysis
- "discover" the tail of high energy neutrinos in a pseudo dataset