Interpretability of Deep Learning

(draft)

Bingbing Hu January 3, 2019

SIST, ShanghaiTech

Outline

1. Motivation

2. Interpretability

Model Transparency

Model Functionality

3. Information Bottleneck

Motivation

Motivation

Motivation

- Deep Learning (DL) is hot but quite a blackbox
- Interpretability is demanding self-driving car, healthcare, criminal justice ...
- Why shall we trust it

We should understand & be able to reason about model output.

Notion of Interpretability

- Model transparency
 - simulatability
 - ▶ decomposability
 - ▶ algorithm transparency
- Model functionality
 - ▶ textual description
 - ▶ visualization
 - ▶ local explanation

Interpretability

¹Visualizing the response of individual units in unsupervised deep belief networks [EBCV09].

- analyze units in any layer
- ²extended by [ZF14] to supervised CNN for higher-layer analysis
- visualize to guide modifications

¹Erhan et al., University of Montreal, 2009

²Zeiler et al., ECCV, 2014

¹Investigate information in different layer [MV15].

- investigate image representation at different CNN layers
- reval deeper layers learn more abstract representation of a image

¹Mahendran et al., Proceedings of CVPR, 2015

¹Generate model-preferred inputs [SVZ13].

- generate images by maxmizing output score
- qualitatively demonstrate the features most representation each class

¹Simonyan et al., arXiv preprint, 2013

¹Generate perferred images to particular neurons in CNN [NYC16].

- use Deep Generator Network to generate images
- producing very realistic images
- try to understand what the network has learned

¹Nguyen et al., arXiv preprint, 2016

¹How a model's predictions would differ if a data point were altered, or not seen during training [KL17]?

- use statistical influence functions to approximate the disturb of data points without retrain the model
- · assess the importance of particular training point
- generate adversarial examples to attack the trained model

¹Koh et al., arXiv preprint, 2017

¹Analyze deep networks using information theory [SZT17].

- calculate how info. is preserved on each layer's in/out-puts
- learn how SGD optimizes the network
- the depth of the network is consistent with IB optimality

¹Shwartz-Ziv et al., arXiv preprint, 2017

Model Functionality

Model functionality can be explained by post-hoc interpretations of what the model has done.

- Using t-SNE to visualize model output
-

Information Bottleneck

Deep Learning and the Information Bottleneck Principle (Naftali Tlshby & Noga Zaslavsky)

 $X: \mathsf{input}, \mathsf{low}\mathsf{-level}$ representation of data

Y: desired output, lower dimension

The most entropy of X is not very informative about Y.

IB Principle

Given input $X \in \mathcal{X}$, output $Y \in \mathcal{Y}$, we want to compress X while preserve the information about Y.

IB Principle

Given input $X \in \mathcal{X}$, output $Y \in \mathcal{Y}$, we want to compress X while preserve the information about Y.

An optimial representation will compress X by dismissing the irrelevant parts which give no info. about Y.

IB Principle

Given input $X \in \mathcal{X}$, output $Y \in \mathcal{Y}$, we want to compress X while preserve the information about Y.

An optimial representation will compress X by dismissing the irrelevant parts which give no info. about Y.

Summary

Namely, find the relevant parts \hat{X} inside X w.r.t. Y to minimize

$$\mathcal{L}[p(\hat{x}|x)] = I\left(X; \hat{X}\right) - \beta I\left(\hat{X}; Y\right)$$

IB vs. Rate-Distortion

Rate distortion: $X \in \mathcal{X}$, find a representation \hat{X} of X Goal: minimize the "distance between" X and \hat{X}

IB vs. Rate-Distortion

Rate distortion: $X \in \mathcal{X}$, find a representation \hat{X} of X Goal: minimize the "distance between" X and \hat{X} Need a distance measure: $d_{IB}(x,\hat{x}) = D_{KL}[p(y|x)||p(y|\hat{x})]$ $\implies D_{IB} = \mathbb{E}[d_{IB}(x,\hat{x})] = I(X;Y|\hat{X})$

IB vs. Rate-Distortion

Rate distortion: $X \in \mathcal{X}$, find a representation \hat{X} of X Goal: minimize the "distance between" X and \hat{X} Need a distance measure: $d_{IB}(x,\hat{x}) = D_{KL}[p(y|x)||p(y|\hat{x})]$ $\implies D_{IB} = \mathbb{E}[d_{IB}(x,\hat{x})] = I(X;Y|\hat{X})$

To minimize

$$\tilde{\mathcal{L}}[p(\hat{x}|x)] = I\left(X;\hat{X}\right) + \beta I\left(X;Y|\hat{X}\right)$$

Note: $I(X;Y|\hat{X})$ can be viewed as the relevant information not captured by \hat{X} .

$$I(Y;X) \ge I(Y;\boldsymbol{h}_{i-1}) \ge I(Y;\boldsymbol{h}_i) \ge I(Y;\hat{Y})$$

$$I(Y;X) \ge I(Y;\boldsymbol{h}_{i-1}) \ge I(Y;\boldsymbol{h}_i) \ge I(Y;\hat{Y})$$

At each layer,

- maximize $I(Y; h_i)$: view h_i as \hat{X}
- minimize $I(\boldsymbol{h}_{i-1};\boldsymbol{h}_i)$: view \boldsymbol{h}_{i-1} as X

From $I(X;\hat{X})+\beta I(X;Y|\hat{X})$, by defining $\pmb{h}_0=X$ and $\pmb{h}_{m+1}=\hat{Y}$ we get

$$I(\boldsymbol{h}_{i-1};\boldsymbol{h}_i) + \beta I(Y;\boldsymbol{h}_{i-1}|\boldsymbol{h}_i),$$

which gives a optimal rule for training.

However, the joint distribution p(X,Y) is unknown in general!

- ullet representational complexity $K=|\hat{\mathcal{X}}|$
- finite sample distribution $\hat{p}(x,y)$
- ullet empirical mutual info. $\hat{I}(X,Y)$

[SST10] gives

$$I\left(\hat{X};Y\right) \leq \hat{I}\left(\hat{X};Y\right) + O\left(\frac{K|\mathcal{Y}|}{\sqrt{n}}\right)$$
$$I\left(\hat{X};X\right) \leq \hat{I}\left(\hat{X};X\right) + O\left(\frac{K}{\sqrt{n}}\right)$$

Some insight:

- input layer has a bad generalization since it's complexity
- hidden layer compressed the input for a better generalization

References i

- [EBCV09] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent, Visualizing higher-layer features of a deep network, University of Montreal 1341 (2009), no. 3, 1.
- [KL17] Pang Wei Koh and Percy Liang, *Understanding black-box predictions via influence functions*, arXiv preprint arXiv:1703.04730 (2017).
- [MV15] Aravindh Mahendran and Andrea Vedaldi,

 Understanding deep image representations by inverting
 them, Proceedings of the IEEE conference on computer
 vision and pattern recognition, 2015, pp. 5188–5196.

References ii

- [NYC16] Anh Nguyen, Jason Yosinski, and Jeff Clune,

 Multifaceted feature visualization: Uncovering the

 different types of features learned by each neuron in

 deep neural networks, arXiv preprint arXiv:1602.03616

 (2016).
- [SST10] Ohad Shamir, Sivan Sabato, and Naftali Tishby,

 Learning and generalization with the information

 bottleneck, Theoretical Computer Science 411 (2010),
 no. 29-30, 2696–2711.

References iii

- [SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, Deep inside convolutional networks:

 Visualising image classification models and saliency maps, arXiv preprint arXiv:1312.6034 (2013).
- [SZT17] Ravid Shwartz-Ziv and Naftali Tishby, *Opening the black box of deep neural networks via information*, arXiv preprint arXiv:1703.00810 (2017).
- [ZF14] Matthew D Zeiler and Rob Fergus, Visualizing and understanding convolutional networks, European conference on computer vision, Springer, 2014, pp. 818–833.

Thank you!