תרגיל בית 9

שאלה 1: (10 נק')

תהי $X\subseteq \mathbb{R}$ תת קבוצה של \mathbb{R} , בעלת התכונה הבאה: לכל שתי נקודות ב־X מתקיים כי הקטע הסגור הנקבע על ידן מוכל ב־X. הוכיחו כי X היא בהכרח בעלת אחת מן הצורות הבאות:

- $(\inf X, \sup X)$.1
- $[\inf X, \sup X]$.2
- $(\inf X, \sup X]$.3
- $[\inf X, \sup X)$.4

(אם לפחות אחד מבין X או X או X אינסופי, אז הנקודה המתאימה כמובן אינה שייכת לקבוצה X).

שאלה 2: (10 נק')

הוכיחו כי קבוצה דלילה ב־ $\mathbb R$ היא קשירה (ביחס לטופולוגיה האוקלידית) אם ורק אם היא יחידון (כלומר בעלת איבר אחד ויחיד).

שאלה 3: (10 נק')

יהי V מרחב וקטורי מעל \mathbb{R} , עם הנורמה $\| \, \|$. הוכיחו כי כל כדור פתוח וכל כדור סגור במרחב זה הן קבוצות קמורות. הסיקו מכך שהן קבוצות קשירות מסילתית ולכן קשירות.

שאלה 4: (15 נק')

תהי X קבוצה של כל האיברים במרחב טופולוגי אוקלידי \mathbb{R}^n , בעלי קואורדינטה רציונלית אחת לפחות. מצאו את כל רכיבי הקשירות של X. הוכיחו כי הקבוצות שמצאתם אכן מהוות רכיבי הקשירות של

שאלה 5: (30 נק')

. התאמה \mathbb{R}^2 ו־ \mathbb{R}^1 בהתאמה T_2 יהיו T_1 ו־ T_2 טופולוגיות אוקלידיות על

- אינם הומיאומורפיים. ($\mathbb{R}^1,\,T_1$) ו־ ($\mathbb{R}^1,\,T_2$) אינם הומיאומורפיים. (15 נק') א. הוכיחו כי המרחבים הטופולוגיים
- $(a,b)\in\mathbb{R}$ אינם הומיאומורפיים, כאשר ($(a,b],T_1|_{[a,b]}$) וי ($(a,b],T_1|_{[a,b]}$) אינם הומיאומורפיים, כאשר ב. הוכיחו כי המרחבים הטופולוגיים S^1 , הוא מעגל היחידה ב- \mathbb{R}^2 (15 נקי)

שאלה 6: (25 נק')

יהי (X,T) מרחב טופולוגי קשיר. נניח כי כל נקודה $x\in X$ היא בעלת סביבה פתוחה קשירה מסילתית. הוכיחו כי (X,T) הוא מרחב טופולוגי קשיר מסילתית.

בהצלחה!