Example 1

Calculate the dot product of \vec{a} = (2,3,5) and \vec{b} = (4,1,-2). Do the vectors form an acute angle, right angle, or obtuse angle?

Example 2

Calculate the dot product of \vec{c} = (6,-5) and \vec{d} = (8,2).

Do the vectors form an acute angle, right angle, or obtuse angle?

Example 3

If \vec{a} = (2,-1,9), for what value of c is the vector \vec{b} = (1,c,-3) perpendicular to \vec{a} ?

Example 4

If $\vec{a} = (8,-11,3)$, for what value of c is the vector $\vec{b} = (0,c,4)$ perpendicular to \vec{a} ?

Example 5

Calculate the dot product of c = (8,-4) and d = (3,1).

Do the vectors form an acute angle, right angle, or obtuse angle?

Answer 1

Using the component formula for the dot product of three-dimensional vectors,

 $\vec{a} \cdot \vec{b}$ = a1b1+a2b2+a3b3, we calculate the dot product to be

$$\vec{a} \cdot \vec{b} = 2 \cdot 4 + 3 \cdot 1 + 5 \cdot (-2) = 8 + 3 - 10 = 1.$$

Since $\vec{a} \cdot \vec{b}$ is positive, we can infer from the geometric definition, that the vectors form an acute angle.

Answer 2

Using the component formula for the dot product of two-dimensional vectors, $\vec{a} \cdot \vec{b}$ =a1b1+a2b2, we calculate the dot product to be $\vec{c} \cdot \vec{d}$ = 6 · 8 + (-5) · 2 = 48 – 10 = 38

Since $\vec{c} \cdot \vec{d}$ is negative, we can infer from the geometric definition, that the vectors form an acute angle.

Answer 3

For \vec{a} and \vec{b} to be perpendicular, we need their dot product to be zero. Since

$$\vec{a} \cdot \vec{b} = 2 \cdot 1 + (-11) \cdot c + 9 \cdot (-3) = 2 - c - 27$$
, the number c must satisfy -25 -c=0, or c = -25

You can double-check that the vector $\mathbf{b} = (1, -25, -3)$ is indeed perpendicular to a by verifying that $\vec{a} \cdot \vec{b} = 2 \cdot 1 + (-1) \cdot (-25) + 9 \cdot (-3) = 2 + 25 - 27 = 0$.

Answer 4

For \vec{a} and \vec{b} to be perpendicular, we need their dot product to be zero. Since

$$\vec{a} \cdot \vec{b} = 8 \cdot 0 + (-1) \cdot \vec{c} + 4 \cdot 3 = 0 - 11\vec{c} + 12$$
, the number c must satisfy 12 - 11c=0, or c = 12/11.

Answer 5

Using the component formula for the dot product of two-dimensional vectors, $\vec{a} \cdot \vec{b}$ =a1b1+a2b2, we calculate the dot product to be $\vec{c} \cdot \vec{d}$ = 3 · 8 + (-4) · 1 = 24 – 4 = 20.

Since $\vec{c}\cdot\vec{d}$ is negative, we can infer from the geometric definition, that the vectors form an acute angle.