

第二章: 命题逻辑的 等值和推理演算

刻世實 shixia@tsinghua.edu.cn

上节课有什么疑问吗?欢迎投稿。

Open Question is only supported on Version 2.0 or newer.

主要内容

- 2.1 等值定理
- 2.2 等值公式
- 2.3 命题公式与真值表的关系
- 2.4 联接词的完备集
- 2.5 对偶式

- 2.6 范式
- 2.7 推理形式
- 2.8 基本的推理公式
- 2.9 推理演算
- 2.10 归结推理法

复习: 常用的等值公式

- 蕴涵等值式 $P \rightarrow Q = \neg P \lor Q$
- 前提合取合并 $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$
- 等价等值式: $P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$
- 假言易位: $P \rightarrow Q = \neg Q \rightarrow \neg P$
- ・ 等价否定等值式: $P \leftrightarrow Q = \neg P \leftrightarrow \neg Q$
- 归谬论: $(P \rightarrow Q) \land (P \rightarrow \neg Q) = \neg P$

复习: 常用的等值公式

- $P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$ 从取真来描述双条件
- $P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$ 从取假来描述双条件
- $P \rightarrow (Q \rightarrow R) = Q \rightarrow (P \rightarrow R)$ 前提交换
- $(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$ 前提析取合并

证明其他等值式

复习:命题公式与真值表的关系

例1: 从取1的行来列写

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$B =$$

$$\begin{vmatrix}
1 \\
1 \\
0 \\
0 \\
1
\end{vmatrix} = \begin{vmatrix}
1 \\
0 \\
0 \\
0
\end{vmatrix} \lor \begin{vmatrix}
0 \\
1 \\
0 \\
0 \\
0
\end{vmatrix}$$

P_{I}	P_2	$P_1 \wedge P_2$	$P_1 \land \neg P_2$	$\neg P_1 \land P_2$	$\neg P_1 \land \neg P_2$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

1	=	1		0
1		0	V	1
0		0		0
0		0		0

P_1	P_2	\boldsymbol{A}	B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	0

复习:命题公式与真值表的关系

1. 从取1的行来列写

考查命题公式 A的真值表中取1的行,若取1的行数共有m行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \ \lor \ Q_2 \ \lor \cdots \ \lor \ Q_m$$

其中 $Qi = (R_1 \land R_2 \land ... \land R_n)$,
 $R_i = P_i$ 或 $\neg P_i \ (i = 1, 2, ..., n)$
若该行的 $P_i = 1$,则 $R_i = P_i$;否则 $R_i = \neg P_i$

P_1	P_2	$P_1 \wedge P_2$	$P_1 \land \neg P_2$	$\neg P_1 \land P_2$	$\neg P_1 \land \neg P_2$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

1		1		0
1		0		1
1	_	0	\ /	1
0	=	0	V	0
0		0		0
0		0		0

复习:从取0的行来列写-实例

$$A = (\neg P_1 \lor P_2)$$

$$B = (\neg P_1 \lor P_2) \land (\neg P_1 \lor \neg P_2)$$

1	=	1		1
1		1		1
0		0	٨	1
0		1		0

P_{I}	P_2	$P_1 \lor P_2$	$P_1 \lor \neg P_2$	$\neg P_1 \lor P_2$	
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

P_{I}	P_2	A	В
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	0

复习: 从取0的行来列写

考查真值表中取0的行,若取0的行数共有k行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \land Q_2 \land \bullet \bullet \land Q_k$$

其中 $Q_i = (R_1 \lor R_2 \lor \bullet \bullet \lor R_n)$,
 $R_i = P_i$ 或 $R_i = \neg P_i$ $(i = 1, 2, ..., n)$

若该行的 $P_i = 1$,则 $R_i = \neg P_i$ 若该行的 $P_i = 0$,则 $R_i = P_i$

P_{I}	P_2	$P_1 \lor P_2$	$P_1 \lor \neg P_2$	$\neg P_1 \lor P_2$	$\neg P_1 \lor \neg P_2$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

复习: 进一步理解

• 从取1的行来列写

• 故从取0的行来列写

$$abla A = (\land)_1 \lor (\land)_2 \lor \dots \lor (\land)_l$$
 从而 $A = (\lor)_1 \land (\lor)_2 \land \dots \land (\lor)_l$ 其中 $(\lor)_1$ 中每一项也相应取反,因此 若该行的 $P_i = 1$,则 $R_i = \neg P_i$ 若该行的 $P_i = 0$,则 $R_i = P_i$

复习: 联接词的完备集

2.4.2 联接词的完备集

C是一个联结词的集合,如果任何n元($n \ge 1$)真值函项都可以由仅含C中的联结词构成的公式表示,则称C是完备的联结词集合,或说C是联结词的完备集。

复习: 联结词的完备集

定理2.4.1

{ ¬, ∨, ∧}是完备的联结词集合。

- 从前面介绍的由真值表列写命题公式的过程可知, 任一公式都可由¬, ∨, ∧表示, 从而{¬, ∨, ∧} 是完备的。
- 一般情形下,该定理的证明应用数学归纳法,施 归纳于联结词的个数来论证。
- 另一证法,因为任何 $n \ge 1$)元真值函数都与唯一的一个主析取范式(后面介绍)等值,而在主析取范式中仅含联结词 \neg , \lor , \land , 所以 $S = \{\neg$, \lor , \land } 是联结词的完备集。

以下哪些联结词集是完备集

$$S_1 = \{\neg, \land\}$$

$$S_2 = \{\neg, V\}$$

$$S_3 = \{\uparrow\}$$

$$D S_4 = \{\Lambda, V\}$$

联结词的完备集

推论: 以下联结词集都是完备集:

$$(1) S_1 = \{\neg, \Lambda\}$$

(2)
$$S_2 = {\neg, V}$$

$$(3) S_3 = \{\neg, \rightarrow\}$$

$$(4) S_4 = \{\uparrow\}$$

$$(5) S_5 = \{\downarrow\}$$

证明{↑}, {↓}都是联结词完备集

已知{¬, ∨, ∧}是完备集,证明其中每个联结词都可以由[↑]来表示

$$\neg P = \neg (P \land P)$$
$$= P \uparrow P$$

$$P \land Q = \neg \neg (P \land Q) = \neg (P \uparrow Q) = (P \uparrow Q) \uparrow (P \uparrow Q)$$
 $P \lor Q = \neg (\neg P \land \neg Q) = \neg P \uparrow \neg Q = (P \uparrow P) \uparrow (Q \uparrow Q)$
证毕

一些重要的全功能联结词集合

- {¬, ∧}, {¬, ∨}可以构成功能联结词集合。使用上述全功能联结词集合表达的命题公式类的系统常称为Boole代数系统。
- {¬,→}也可构成全功能联结词集合。该全功能联结词集合在研究逻辑系统的演绎与推理,以及在程序系统的研究中经常遇到。
- {[↑]}, {[↓]}是全功能联结词集合。在大规模集成电路中有广泛的应用。

2.5 对偶式

8. 同一律:
$$P \vee F = P$$
 $P \wedge T = P$

对偶式

将给定的命题公式 A中出现的V, Λ , T, F 分别以 Λ , V, F, T 代换,得到公式 A^* ,则称 A^* 是公式 A的对偶式,或说 A和 A^* 互为对偶式。

在以下定理2.5.1~定理2.5.6中,记

$$A = A(P_1, P_2, ..., P_n)$$

$$A^- = A(\neg P_1, \neg P_2, \dots, \neg P_n)$$

有关对偶式的定理

• 定理2.5.1

$$\neg (A^*) = (\neg A)^*, \quad \neg (A^-) = (\neg A)^-$$

• 定理2.5.2

$$(A^*)^* = A, \quad (A^-)^- = A$$

• 定理2.5.3

$$\neg A = A^* -$$

2.5 对偶式

证明定理2.5.3: ¬*A* = *A**-

用数学归纳法,施归纳于A中出现的联结词个数n。

基始: 设n = 0, A中无联结词,便有

A = P, 从而 ¬A = ¬P

但 A*-=¬P

::n=0时定理成立。

归纳:设n≤k时定理成立,

往证n = k+1时定理也成立。

:: n = k+1≥1, A 中至少有一个联结词,可分为 三种情形:

 $A = \neg A_1$, $A = A_1 \land A_2$, $A = A_1 \lor A_2$

其中A₁, A₂中联结词个数≤k。

定理**2.5.1**: ¬(A*) = (¬A)*, ¬(A¬) = (¬A)¬ 2.5 対偶式

依归纳法假设,
$$\neg A_1 = A_1^{*-}$$
, $\neg A_2 = A_2^{*-}$
当 $A = \neg A_1$ 时 $\neg A = \neg (\neg A_1)$
 $= \neg (A_1^{*-})$ 归纳法假设
 $= \neg ((A_1^{*})^-)$
 $= (\neg (A_1^{*}))^-$ 定理 2.5.1 (2)
由定理2.5.1 (2)先取逆再取非 = 先取非再取逆
 $= (\neg A_1)^{*-}$
由定理2.5.1 (1)先取对偶再取非 = 先取非再取对偶
 $= A^{*-}$ 由条件 $A = \neg A_1$

$$\neg A = A^* -$$

依归纳法假设, $\neg A_1 = A_1^{*-}, \neg A_2 = A_2^{*-}$

2.5 对偶式

类似可以证明 $A = A_1 \vee A_2$ 的情况该定理实为摩根律的另一种形式。它将-、*、-有机地联系起来。

$$\neg A = A^* -$$

有关对偶式的定理(续)

- 定理2.5.6
 A与A⁻同永真,同可满足; ¬A与A^{*} 同永真,同可满足。

代入规则

• 定理2.5.3

$$\neg A = A^*$$

等价否定等值式: $P \leftrightarrow Q = \neg P \leftrightarrow \neg Q$

2.5 对偶式

定理 2.5.4 若 A = B 必有 A* = B*

证明: 因为 A = B 等价于 $A \leftrightarrow B$ 永真。

从而 ¬A↔¬B 永真。

依定理2.5.3, $\neg A = A^{*-}$, $\neg B = B^{*-}$

于是 A*- ↔ B*- 永真

故 A* = B*

定理2. 5. 6 *A与A*-同永真,同可满足;

请写出下面定理的证明思路

定理2.5.5 若 $A \rightarrow B$ 永真, 必有 $B^* \rightarrow A^*$ 永真

2.5 对偶式

- 定理2.5.5 若 $A \rightarrow B$ 永真,必有 $B^* \rightarrow A^*$ 永真
- 证

$$A \rightarrow B$$

$$=$$
 $\neg B \rightarrow \neg A$

命题与逆否命题等值

$$=$$
 $B^* - \rightarrow A^* -$

定理2.5.3

$$=$$
 $B^* \rightarrow A^*$

代入规则

• 定理2.5.3

$$\neg A = A^* -$$

A为重言式 ⇒ A*必为矛盾式

· 若A为重言式,则A*必为矛盾式.

如果A = T, 由对偶原理可知: $A^* = (T)^* = F$

• 例如,

定理2.5.4 若A = B, 必有 $A^* = B^*$ (对偶原理)

设
$$A = P \lor (\neg P \lor (Q \land \neg Q)),$$
 $M \land A * = P \land (\neg P \land (Q \lor \neg Q))$
 $A \Leftrightarrow P \lor (\neg P \lor 0) \Leftrightarrow P \lor \neg P \Leftrightarrow 1,$
 $A * \Leftrightarrow 0.$

2.6 范式

2.6.1 文字与互补对

命题变项及其否定式(如P与 $\neg P$)统称**文字**。 且P与 $\neg P$ 称为**互补对**。

2.6.2 合取式

由<u>文字</u>的合取所组成的公式称为**合取式**。由有 限个文字构成的合取式称作简单合取式。

2.6.3 析取式

由<u>文字</u>的析取所组成的公式称为**析取式**。由有限个文字构成的析取式称作简单析取式。

补充: 析取式与合取式

- 令A₁,A₂,...,A_s表示s个简单析取式或s个简单合取式。
- 设 A_i 是含n个文字的简单析取式,若 A_i 中既含某个命题变项 P_i ,又含它的否定式 P_i ,即 P_i V_i P_i ,则 A_i 为重言式。
- 反之,若A_i为重言式,则它必同时含某个命题变项和它的否定式,否则,若将A_i中的不带否定符号的命题变项都取0值,带否定号的命题变项都取1值,此赋值为A_i的成假赋值,这与A_i是重言式相矛盾。
- 类似的讨论可知,若A_i是含n个命题变项的简单合取式, 且A_i为矛盾式,则A_i中必同时含某个命题变项及它的否 定式,反之亦然。

补充: 析取式与合取式

定理

(1) 一个简单<mark>析取式</mark>是重言式当且仅当它同时含有某个命题变项及它的否定式(一个互补对)。

$$A = P \lor \neg P \lor Q$$

(2) 一个简单<mark>合取式</mark>是矛盾式当且仅当它同时含有某个命题变项及它的否定式(一个互补对)。

$$A = P \land \neg P \land Q$$

2.6 范式

2. 6. 4 析取范式

析取范式是形如

$$A_1 V A_2 V \dots V A_n$$

的公式,其中 A_i (i = 1, ..., n)为<u>合取式</u>。

2.6.5 合取范式

合取范式是形如

$$A_1 \wedge A_2 \wedge \ldots \wedge A_n$$

的公式,其中 A_i (i = 1, ..., n)为<u>析取式</u>。

求范式举例

• $M_1 \times P \leftrightarrow Q$ 的析取范式与合取范式:

$$P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) ---- 析取范式$$

$$P \leftrightarrow Q \Leftrightarrow (\neg P \lor Q) \land (P \lor \neg Q) - \cdots -$$
合取范式

范式不唯一,例如

$$P \leftrightarrow Q \Leftrightarrow (\neg P \lor Q) \land (Q \lor \neg Q) \land (P \lor \neg Q)$$

例2 求 $(P \rightarrow Q) \leftrightarrow R$ 的析取范式与合取范式

(1) 先求合取范式

$$(P \rightarrow Q) \leftrightarrow R$$

$$\Leftrightarrow (\neg P \lor Q) \leftrightarrow R$$

$$\Leftrightarrow ((\neg P \lor Q) \to R) \land (R \to (\neg P \lor Q))$$
 (消去↔)

$$\Leftrightarrow (\neg(\neg P \lor Q) \lor R) \land (\neg R \lor (\neg P \lor Q))$$
 (消去→)

$$\Leftrightarrow ((P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$$
 (否定符内移)

$$\Leftrightarrow (P \lor R) \land (\neg Q \lor R) \land (\neg P \lor Q \lor \neg R) (\lor 对 \land 的 分配律)$$

(消去→)

例2: 求析取范式

$$(P \rightarrow Q) \leftrightarrow R$$

 $\Leftrightarrow ((P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$

- (消去↔)
- $\Leftrightarrow ((P \land \neg Q) \land (\neg P \lor Q \lor \neg R)) \lor (R \land (\neg P \lor Q \lor \neg R))$
- $\Leftrightarrow \frac{(P \land \neg Q \land \neg P)}{(P \land \neg Q \land Q)} \lor (P \land \neg Q \land \neg R) \lor$

 $(R \land \neg P) \lor (R \land Q) \lor \overline{(R \land \neg R)}$

(人对\的分配律)

 $\Leftrightarrow (P \land \neg Q \land \neg R) \lor (\neg P \land R) \lor (Q \land R)$ (补余律和同一律)

 $P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$ 从取假来描述双条件

2. 6. 6 范式存在定理

任一命题公式都存在与之等值的合取范式和析取范式。但命题公式的合取范式和析取范式并不唯一。

求范式的具体步骤

利用等值公式中的等值式和蕴涵等值式将公式中的→、
 →用联结词¬、∧、∨来取代;

$$P \rightarrow Q = \neg P \lor Q$$

$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

(多用于求析取范式)

$$P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$$

(多用于求合取范式)

- 利用摩根律将否定号¬移到各个命题变元的前端;
- 利用结合律、分配律、吸收律、等幂律、交换律等将 公式化成其等值的析取范式和合取范式。

由于范式一般不唯一,所以有必要进一步研究主范式。

$$(P \rightarrow Q) \leftrightarrow R$$

$$\Leftrightarrow (P \land \neg Q) \lor R) \land (\neg P \lor Q \lor \neg R)$$
 (消去↔)

$$\Leftrightarrow (P \land \neg Q \land \neg R) \lor (\neg P \land R) \lor (Q \land R)$$
 (补余律和同一律)

缺点是什么?

命题变元出现次数无约束 命题变元顺序无约束

例1: 从取1的行来列写

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$\mathbf{B} = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

)	P_{I}	P_2	\boldsymbol{A}	В
	0	0	1	1
	0	1	1	1
	1	0	0	0
	1	1	1	0

每一项都有什么特点?

例2: 从取0的行来列写

$$A = (\neg P_1 \lor P_2)$$

$$\mathbf{B} = (\neg P_1 \lor P_2) \land (\neg P_1 \lor \neg P_2)$$

P_1	P_2	A	В
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	0

主范式——极小项和极大项

2.6.7 极小项

n 个命题变项 P_1 , P_2 ,..., P_n 组成的合取式: $Q_1 \wedge Q_2 \wedge ... \wedge Q_n$

其中 $Q_i = P_i$,或¬ P_i 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称合取式 $Q_1 \land Q_2 \land ... \land Q_n$ 为极小项,并以 m_i 表示。

2.6.8 极大项

n 个命题变项 $P_1, P_2, ..., P_n$ 组成的析取式:

 $Q_1 \vee Q_2 \vee ... \vee Q_n$

其中 $Q_i = P_i$,或¬ P_i 。即每个命题变项与它的否定式不同时出现,但二者之一必出现且仅出现一次。则称析取式 $Q_1 \lor Q_2 \lor ... \lor Q_n$ 为极大项,并以 M_i 表示。

主范式——极小项的性质

- (1) 任一含有n 个命题变项的公式,所有可能的极小项的个数和该公式的解释个数相同,都是 2^n 。
- (2) 排列顺序与 P_1 , P_2 , \cdots , P_n 一致;
- (3) 每个极小项只在一个解释下为真。每种解释对应的一个n位二进制数,转化为十进制数为i,极小项 $Q_1 \wedge Q_2 \wedge ... \wedge Q_n \wr m_i$ 表示
- (4) 极小项两两不等值,并且 $m_i \wedge m_j = F(i \neq j)$ 。
- (5) 任一含有n 个命题变项的公式,都可由k 个($k \leq 2^n$) 极小项的析取来表示。

A是由k个极小项的析取来表示,剩余 2^n -k极小项的析取是 $\neg A$

(6) 恰由2ⁿ个极小项的析取构成的公式必为重言式。即

$$\bigvee_{i=0}^{2^n-1} m_i = \mathsf{T}$$

从取1的行来列写

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$B = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$\begin{vmatrix}
1 & 1 \\
1 & 0 \\
0 & 1
\end{vmatrix} = \begin{vmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{vmatrix} \lor \begin{vmatrix}
0 & 0 \\
0 & 0 \\
0 & 1
\end{vmatrix}$$

P_{1}	P_2	$P_1 \wedge P_2$	$P_1 \land \neg P_2$	$\neg P_1 \land P_2$	$\neg P_1 \land \neg P_2$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

1		1		0
1		0	. ,	1
0	=	0	V	0
0		0		0

P_{1}	P_2	A	В	
0	0	1	1	m_{c}
0	1	1	1	m_1
1	0	0	0	m_2
1	1	1	0	m_3

主范式——极大项的性质

- (1)任一含有n 个命题变项的公式,所有可能的极大项的个数与该公式的解释个数相同,都是 2^n 。
- (2)排列顺序与 $P_1, P_2, ..., P_n$ 一致,极大项 $Q_1 \vee Q_2 \vee ... \vee Q_n \mathcal{U}M_i$ 表示;
- (3) 每个极大项只在一个解释下为假。
- (4) 极大项两两不等值,并且 $M_i \vee M_j = T$ $(i \neq j)$ 。
- (5) 任一含有n个命题变项的公式,都可由k个($k \le 2^n$)极大项的合取来表示。

A是由k个极大项的合取来表示,剩余 2^n -k极大项的合取是 $\neg A$

(6) 恰由 2^n 个极大项的合取构成的公式必为矛盾式。即 $\bigwedge_{i=0}^{2^n-1} M_i = F$

从取0的行来列写

$$A = (\neg P_1 \lor P_2)$$

$$B = (\neg P_1 \lor P_2) \land (\neg P_1 \lor \neg P_2)$$

1		1		1
1		1		1
0	=	0	Λ	1
0		1		0

P_1	P_2	$P_1 \lor P_2$	$P_1 \lor \neg P_2$	$\neg P_1 \lor P_2$	$ \boxed{\neg P_1 \lor \neg P_2} $
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

	P_1	P_2	A	В
M_3	0	0	1	1
M_2	0	1	1	1
M_1	1	0	0	0
M_0	1	1	1	0

主析取范式与主合取范式

主析取范式

设由*n* 个命题变项构成的析取范式中所有的合取式都是极小项,则称该析取范式为主析取范式 (仅由极小项构成的析取范式称为主析取范式)。

主合取范式

设由n个命题变项构成的合取范式中所有的析取 式都是极大项,则称该合取范式为主合取范式 (仅由极大项构成的合取范式称为主合取范式)。

主范式

主析取范式定理

任一含有n个命题变项的公式,都存在唯一的与之等值的且恰仅含这n个命题变项的主析取范式。

主合取范式定理

任一含有n个命题变项的公式,都存在唯一的与之等值的且恰仅含这n个命题变项的主合取范式。

主析取范式与主合取范式的求法

求主析取范式的方法

- 1. 先求析取范式
- 2. 再填满变项

主析取范式与主合取范式的求法

$$1 P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

$$m_3 m_0$$

$$= m_0 \lor m_3 = \lor_{0,3}$$

2.填满命题变项

$$P \rightarrow Q = \neg P \lor Q$$

因为 $\neg P = \neg P \land (Q \lor \neg Q)$
 $= (\neg P \land Q) \lor (\neg P \land \neg Q)$
因为 $Q = Q \land (P \lor \neg P)$
 $= (P \land Q) \lor (\neg P \land Q)$
 $P \rightarrow Q = (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$
 $m_1 \qquad m_0 \qquad m_3$
 $= m_0 \lor m_1 \lor m_3$
 $= \lor_{0.1.3}$

填满变项的简便方法

$$\neg P \lor Q$$

$$= m^{0x} \lor m^{x1}$$

$$= m_0 \lor m_1 \lor m_3$$

极小项和极大项的关系

•
$$\neg m_i = M_{(2^n-1-i)}^n = M_{(i)}$$
 $\neg M_i = m_{(2^n-1-i)}^n = m_{(i)}$

$$\neg M_i = m_{(2^{n-1-i})} = m_{(i)}$$

公式	名称
$\neg P_1 \land \neg P_2$	m_0
$\neg P_1 \land P_2$	m_1
$P_1 \land \neg P_2$	m_2
$P_1 \wedge P_2$	m_3

公式	名称
$\neg P_1 \lor \neg P_2$	M_0
$\neg P_I \lor P_2$	M_1
$P_1 \lor \neg P_2$	M_2
$P_1 \lor P_2$	M_3

P_1	P_2	极小项	名称	极大项	名称
0	0	$\neg P_1 \land \neg P_2$	m_0	$P_1 \lor P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \lor \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_1
1	1	$P_1 \wedge P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_{O}

例1: 从取1的行来列写

$$A = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \lor (P_1 \land P_2)$$

$$\mathbf{B} = (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

P_1	P_2	\boldsymbol{A}	B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	0

例2: 从取0的行来列写

$$A = (\neg P_1 \lor P_2)$$

$$\mathbf{B} = (\neg P_1 \lor P_2) \land (\neg P_1 \lor \neg P_2)$$

	В	A	P_2	P_1
	1	1	0	0
	1	1	1	0
M_1	0	0	0	1
M_{o}	0	1	1	1

 m_0

 m_1

主析取范式与主合取范式转换

• 主范式之间的转换

A是由k个极大项的合取来表示,剩余 2^n -k极大项*的*合取是 $\neg A$

$$\neg m_i = M_{(2^{n-1-i})} = M_{(i)} + \cdots - M_i = m_{(2^{n-1-i})} = m_{(i)} + \cdots$$

主范式的求法与举例

 $(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$ 求主析与主合取范式

原式 =
$$\neg (P \lor \neg Q) \lor ((\neg P \land (Q \land \neg R)) \lor (P \land (\neg Q \lor R)))$$

$$= (\neg P \land Q) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q) \lor (P \land R)$$

$$= m^{01X} \vee m^{010} \vee m^{10X} \vee m^{1XI}$$

::主析范式 =
$$V_{2,3,4,5,7}$$

主合范式 =
$$\Lambda_{(\{0,1,...7\} - \{2,3,4,5,7\} \stackrel{}{\wedge})}$$

$$= \Lambda_{(\{0,1,\ldots,7\} - \{5,4,3,2,0\})}$$

$$=\Lambda_{1,6,7}$$

$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$

列写真值表验算

P.	P.	极小项	夕称	极大质	夕称
		$\neg P_1 \land \neg P_2$		$P_1 \vee P_2$	M_3
0	1	$\neg P_1 \land P_2$	m_1	$P_1 \lor \neg P_2$	M_2
1	0	$P_1 \land \neg P_2$	m_2	$\neg P_1 \lor P_2$	M_{I}
1	1	$P_1 \wedge P_2$	m_3	$\neg P_1 \lor \neg P_2$	M_0

\boldsymbol{P}	Q	R	$P \lor \neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$) 原式	
0	0	0	1	O	0	0	M_7
0	0	1	1	0	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	0	0	1	m_3
1	0	0	1	0	1	1	m_4
1	0	1	1	O	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	O	1	1	m_7

主析范式 = $V_{2,3,4,5,7}$ 主合范式 = $\Lambda_{1,6,7}$

$A = V_{0,1,4,5,7}$,求主合取范式

- $\Lambda_{1,4,5}$

- $\Lambda_{1,3,5}$

主析与主合之间的转换(简化方法)

已知
$$A = \Lambda_{1,4,5}$$

$$= V_{(\{0,1,\ldots,7\}-\{1,4,5\}\red{r}h)}$$

$$= V_{(\{0,1,\ldots,7\}-\{6,3,2\})}$$

$$= V_{0,1,4,5,7}$$

例: 求主范式

$$P \rightarrow Q$$

主合范式
$$= \neg P \lor Q$$

$$M_1$$

$$= \Lambda_1$$

主析范式
$$= V_{(\{0,1,2,3\} - \{1\} \stackrel{.}{\wedge})}$$

$$= V_{(\{0,1,2,3\} - \{2\})}$$

$$= V_{0,1,3}$$

2.6 空公式 (补充)

主析取范式: $P \vee \neg P$

主合取范式: 空公式

结论: 永真式的主合取范式为空公式

矛盾式的主析取范式为空公式

主(析取)范式的用途

• 求公式的成真赋值与成假赋值

• 判断公式的类型

• 判断两个命题公式是否等值

• 解决实际问题

求公式的成真(假)赋值

- 若公式A中含有n个命题变项
 - 若A的主析取范式含s个极小项,则A有s个成真赋值
 - 其余2ⁿ-s个赋值都是成假赋值

$$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$$

P	Q	R	P V $\neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$	原式		
0	0	0	1	0	0	0	M_7	
0	0	1	1	0	0	0	M_6	
0	1	0	0	1	1	1	m_2	
0	1	1	0	0	0	1	m_3	
1	0	0	1	0	1	1	m_4	
1	0	1	1	0	1	1	m_5	
1	1	0	1	1	0	0	M_1	
1	1	1	1	0	1	1	m_7	[

判断公式的类型

- *A*为重言式当且仅当A的主析取范式含全部2ⁿ个极小项
- *A*为矛盾式当且仅当*A*的主析取范式不含任何极小 项
- *A*为可满足式当且仅当*A*的主析取范式中至少含一个极小项

结论:永真式的主合取范式为空公式 矛盾式的主析取范式为空公式

判断公式的类型-例1

$$\neg (P \rightarrow Q) \land Q$$

$$= \neg (\neg P \lor Q) \land Q$$

$$= (P \land \neg Q) \land Q$$

$$= F$$

矛盾式

判断公式的类型-例2

$$P \rightarrow (PVQ)$$

$$= \neg P \ \mathsf{V}(P \ \mathsf{V} \ Q)$$

$$= (\neg P \land (\neg Q \lor Q)) \lor (P \land (\neg Q \lor Q)) \land$$
$$(Q \land (\neg P \lor P))$$

$$= (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land \neg Q) \lor$$
$$(P \land Q) \lor (\neg P \land Q) \lor (P \land Q)$$

$$= \bigvee_{0, 1, 2, 3}$$

重言式

判断公式的类型: $(PVQ) \rightarrow R$

- A 矛盾式
- B 重言式
- 可满足
- 都不是

判断公式的类型-例3

$$(PVQ) \rightarrow R$$

$= \neg (P \lor Q) \lor R$	000
	001
$= (\neg P \land \neg Q) \lor R$	001
$= m^{00x} \vee m^{xy1}$	011
	101
$=\bigvee_{0,1,3,5,7}$	111

可满足

判断两个命题是否等值

• $(P \rightarrow Q) \rightarrow R = (P \land Q) \rightarrow R$

$$(P \rightarrow Q) \rightarrow R = \bigvee_{1, 3, 4, 5, 7}$$

 $(P \land Q) \rightarrow R = \bigvee_{0, 1, 2, 3, 4, 5, 7}$
 $(P \rightarrow Q) \rightarrow R \neq (P \land Q) \rightarrow R$

解决实际问题:例1

范式在逻辑设计方面有广泛的应用.

- 例1. 某科研所要从3名科研骨干A, B, C中挑选1~2名出国进修。由于工作需要,选派是要满足以下条件.
 - (1) 若A去,则C同去。
 - (2) 若B去,则C不能去。
 - (3) 若C不去,则A或B可以去。

解: $\Diamond P \setminus Q \setminus R$ 分别表示派A、B、或C去.

由已知条件可得公式

$$(P \rightarrow R) \land (Q \rightarrow \neg R) \land (\neg R \rightarrow (P \lor Q))$$

• $(P \rightarrow R) \land (Q \rightarrow \neg R) \land (\neg R \rightarrow (P \lor Q))$

该公式的成真赋值就是可行的选派方案

$$(P \rightarrow R) \land (Q \rightarrow \neg R) \land (\neg R \rightarrow (P \lor Q))$$

$$= (\neg PVR) \land (\neg Q \lor \neg R) \land (RVP \lor Q))$$

$$= (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor$$

$$(P \land \neg Q \land R)$$

 $=V_{1,2,5}$ 因而有3种选派方案

- (1) C去, A, B都不去
- (1) B去, A, C都不去
- (1) A, C同去, B不去

解决实际问题:例2

范式在逻辑设计方面有广泛的应用.

例2. 安排课表,教语言课的教师希望将课程安排在第一或第三节;教数学课的教师希望将课程安排在第二或第三节;教原理课的教师希望将课程安排在第一或第二节.如何安排课表,使得三位教师都满意.

解:令 l_1 、 l_2 、 l_3 分别表示语言课排在第一、第二、第三节. m_1 、 m_2 、 m_3 分别表示数学课排在第一、第二、第三节. p_1 、 p_2 、 p_3 分别表示原理课排在第一、第二、第三节.

三位教师都满意的条件是:

 $(l_1 \lor l_3) \land (m_2 \lor m_3) \land (p_1 \lor p_2)$ 为真.

三位教师都满意的条件是:

 $(l_1 \lor l_3) \land (m_2 \lor m_3) \land (p_1 \lor p_2)$ 为真.

将上式写成析取范式(用分配律)得:

 $((l_1 \land m_2) \lor (l_1 \land m_3) \lor (l_3 \land m_2) \lor (l_3 \land m_3)) \land (p_1 \lor p_2)$

 $\Leftrightarrow (l_1 \land m_2 \land p_1) \lor (l_1 \land m_3 \land p_1) \lor -$

 $(l_3 \land m_2 \land p_1) \lor (l_3 \land m_3 \land p_1) \lor$

 $(l_1 \land m_2 \land p_2) \lor (l_1 \land m_3 \land p_2) \lor$

 $(l_3 \wedge m_2 \wedge p_2) \vee (l_3 \wedge m_3 \wedge p_2)$

 $\Leftrightarrow (l_3 \land m_2 \land p_1) \lor (l_1 \land m_3 \land p_2)$

可以取 $(l_3 \land m_2 \land p_1)$ 、 $(l_1 \land m_3 \land p_2)$ 为1,得到两种排法.

课后练习题 (程序设计)

- 任给一命题公式,由命题公式列出真值表(通过键盘输入公式并进行适当的语法检查,然后根据公式列出(显示)相应的真值表。
 - 2. 由已知的真值表列写命题公式。
 - 3. 任给一命题公式, 计算命题公式的主析取范式 和主合取范式

2.7 推理形式

主要内容:

- 介绍推理形式的结构以及重言蕴涵的概念;
- 给出基本推理公式以及证明推理公式的几种不同方法 和途径;

2.7 推理形式

推理形式:

将以自然语句描述的推理关系引入符号,抽象化并以条件式的形式表示出来得到推理形式,推理形式由<mark>前</mark>提和结论部分组成。

前提真,结论必真的推理形式为正确的推理形式。

重言蕴含:

给定两个公式 A、B,如果当A取值为真时,B 就必取值为真,便称 A重言(永真)蕴涵B,或称B 是A的逻辑推论。并用符号 $A \Rightarrow B$ 表示。

2.7 推理形式

2.7.1 重言蕴含:

需注意重言蕴含⇒与普通蕴含→的区别

A重言蕴含B记作, $A \Rightarrow B$

注意: "⇒"不是逻辑联接词

 $A \Rightarrow B$ 当然也不同于A→B!

例1. 如果今天是周五,那么我来上课。 今天是周五, 所以我来上课。

设 P: 今天是周五, Q: 今天我来上课 $(P \rightarrow Q) \land P \Rightarrow Q$

前提真,结论也为真,是正确的推理。

重言蕴含举例

例2. 如果今天是五,那么我来上课

今天不是周五

所以我不来上课

$$(P \rightarrow Q) \land \neg P \Rightarrow \neg Q$$

P	Q	$P \rightarrow Q$	$\neg P$	$\neg Q$
0	0	1	1	1
0	1	1	1	0
1	0	0	0	1
0 0 1 1	1	1	0	0

前提真,结论假!

不是正确的推理!

2.7.3 重言蕴含几个结果

- (1) 如果 $A \Rightarrow B$ 成立,若A为重言式,则B也是重言式。
- (2) 若 $A \Rightarrow B \perp B \Rightarrow A$ 同时成立,必有A = B;反之亦然。
- (4) 若 $A \Rightarrow B \perp A \Rightarrow C$ 同时成立,则 $A \Rightarrow B \land C \ (A \Rightarrow B \lor C?)$

• $(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$ 前提析取合并

重言蕴含的充要条件

定理2.8.1

 $A \Rightarrow B$ 成立的充分必要条件是 $A \rightarrow B$ 为重言式。

定理2.8.2

 $A \Rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式。

定理2.8.2

 $A \Rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式。

证明:

由定理2.8.1和命题公式等值式

 $A \rightarrow B = \neg A \lor B = \neg (A \land \neg B)$, 因此,

" $A \rightarrow B$ 是重言式"即等价于" $A \land \neg B$ 是矛盾式"

注意: *A* ⇒ *B* 中 *A*自身不能必假! 若*A*永假, 则*A*→ *B* 肯定永真, 虽然*A*⇒*B* 也成立, 但已失去意义!

2.8 基本的推理公式

证明 $A \Rightarrow B$ 的几种方法:

- 1. 证 $A \rightarrow B$ 是重言式
- 2. 证 $A \land \neg B$ 为矛盾式
- 3. 真值表法
- 4. 证 $\neg B \Rightarrow \neg A$ 即反证法
- 5. 解释法
- 6.

基本推理公式

1.
$$P \land Q \Rightarrow P$$
, $\not \square P \lor Q \neq P$

2.
$$\neg (P \rightarrow Q) \Rightarrow P$$

1式的直接推论 $P \land \neg Q => P$

$$3. \neg (P \rightarrow Q) \Rightarrow \neg Q$$

 $3. \neg (P \rightarrow Q) \Rightarrow \neg Q$ 1式的直接推论 $P \land \neg Q => \neg Q$

4. $P \Rightarrow P \lor Q$

5.
$$\neg P \Rightarrow P \rightarrow Q$$

2式的逆否,4式的推论。

6. $Q \Rightarrow P \rightarrow Q$

3式的逆否,4式的推论。

 $7. \neg P \land (P \lor Q) \Rightarrow Q$ 非 P,而P \lor Q 又成立,只有Q成立

8. $P \land (P \rightarrow Q) \Rightarrow Q$ *假言推理,分离规则,7式的变形

$$9. \neg Q \land (P \rightarrow Q) \Rightarrow \neg P 7$$
式的变形

$$\frac{P}{Q}$$
 $\frac{Q}{\neg P}$

基本推理公式

10.
$$(P \rightarrow Q) \land (Q \rightarrow R) => P \rightarrow R$$

*三段论

11.
$$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow P \leftrightarrow R$$

类似10式

12.
$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) => R$$

10式的推论

13.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) \Rightarrow Q \lor S$$

10式的推论

14.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S) \Rightarrow \neg P \lor \neg R$$

10式的推论

15.
$$(Q \rightarrow R) => ((P \lor Q) \rightarrow (P \lor R))$$

P=F时左=右,

16.
$$(Q \rightarrow R) => ((P \rightarrow Q) \rightarrow (P \rightarrow R))$$

P=T时右=T

证明:
$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) =$$

$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q)$$
 前提析取合并

$$=((P \lor Q) \rightarrow R)) \land (P \lor Q)$$
 分离规则

$$=>R$$

•
$$(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$$
 前提析取合并

证明:
$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) \Rightarrow Q$$

$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R)$$

$$= (P \rightarrow Q) \land (R \rightarrow S) \land (\neg P \rightarrow R)$$

$$=> (P \rightarrow Q) \land (\neg P \rightarrow S)$$

$$= (\neg Q \rightarrow \neg P) \land (\neg P \rightarrow S)$$

$$\Rightarrow \neg Q \rightarrow S$$

$$= QVS$$

证明:
$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S) => \neg P$$

$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S)$$

$$= (P \rightarrow Q) \land (R \rightarrow S) \land (S \rightarrow \neg Q)$$

$$= > (P \rightarrow Q) \land (R \rightarrow \neg Q)$$

$$= (\neg Q \rightarrow \neg P) \land (R \rightarrow \neg Q)$$

$$\Rightarrow R \rightarrow \neg P$$

$$= \neg P \lor \neg R$$

例: 判断下列推理是否正确。

若一个数是实数,则它是复数;若一个数是虚数,则它也是复数;一个数既不是实数,又不是虚数, 所以它不是复数。

P: 一个数是实数

R: 一个数是虚数

Q: 一个数是复数

则原题可符号化为:

 $P \rightarrow Q$, $R \rightarrow Q$, $\neg P \land \neg R \Rightarrow \neg Q$

$P \rightarrow Q$, $R \rightarrow Q$, $\neg P \land \neg R \Longrightarrow \neg Q$

证明:令

$$S=(P\rightarrow Q)\land (R\rightarrow Q)\land (\neg P\land \neg R)\rightarrow \neg Q$$

则

$$S = \neg((\neg P \lor Q) \land (\neg R \lor Q) \land (\neg P \land \neg R)) \lor \neg Q$$

$$=(P \land \neg Q) \lor (R \land \neg Q) \lor P \lor R \lor \neg Q$$

= PVRV - Q 吸收律 $AV(A \wedge B) = A$

当Q取T, P、R取F时, S为F, 即S不是重言式,

所以,推理不成立。

少了一个条件:一个复数不是实数就是虚数

两个重要的定理引出两种推论方法

定理2.8.1

 $A \Rightarrow B$ 成立的充分必要条件是 $A \rightarrow B$ 为重言式(直接推导)。

定理2.8.2

 $A \Rightarrow B$ 成立的充分必要条件是 $A \land \neg B$ 为矛盾式(反证法)。

2.9 推理演算

出发点:

直观地看出由前提A到结论B 的推演过程,且便于在谓词逻辑中使用。

方法

- (1) 引入几条推理规则
- (2) 利用基本推理公式

从前提 A_1 , A_2 , ..., A_n 出发,配合使用推理规则和基本推理公式,逐步推演出结论B。

2.9 推理演算

主要的推理规则:

- (1) 前提引入规则;推理过程中可随时引入前提
- (2) 结论引入规则;中间结论可作为后续推理的前提
- (3) 代入规则;仅限于重言式中的命题变项
- (4) 置换规则;利用等值公式对部分公式进行置换
- (5) 分离规则; 由 $AQA \rightarrow B$ 成立, 可将B分离出来
- (6) 条件证明规则。 $A_1 \wedge A_2 \Rightarrow B = A_1 \Rightarrow A_2 \rightarrow B$ 等价 $P \rightarrow (Q \rightarrow R) = (P \wedge Q) \rightarrow R$

条件证明规则。 $A_1 \land A_2 \Rightarrow B = A_1 \Rightarrow A_2 \rightarrow B$ 等价

例1 证明 $P \rightarrow R \neq P \rightarrow Q$, $Q \rightarrow R$ 的逻辑推论。

证明:

- 1. P→Q 前提引入
- 2. P 附加前提引入(条件证明规则)
- 3. Q 1、2分离
- 4. Q→R 前提引入
- 5. R 3、4分离

注:此题可直接使用推理公式10(三段论),以简化证明步骤。

 $(P \rightarrow Q) \land (Q \rightarrow R) = > P \rightarrow$

教材 例3: 证明 $(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$

证明:

1. PVQ 前提引入

2. ¬P→Q 1 置换

3. Q→S 前提引入

4. ¬P→S 2、3 三段论

5. ¬S→P 4置换

6. P→R 前提引入

7. ¬S→R 5、6三段论

8. SVR 7置换

由该例可见,将P∨Q置换成¬P→Q更便于推理

推理演算举例:

$$(\neg(P \rightarrow Q) \rightarrow \neg(R \lor S)) \land ((Q \rightarrow P) \lor \neg R) \land R \Rightarrow (P \leftrightarrow Q)$$

1.
$$(Q \rightarrow P)V \neg R$$

2.
$$R \rightarrow (Q \rightarrow P)$$

4.
$$Q \rightarrow P$$

5.
$$\neg (P \rightarrow Q) \rightarrow \neg (RVS)$$

6.
$$(RVS) \rightarrow (P \rightarrow Q)$$

7. RVS

8. $P \rightarrow Q$

9. $P \leftrightarrow Q$

前提引入

1置换

前提引入

2、3分离

前提引入

5置换

3 + <u>基本公式4</u>

6、7**分离**

4, 8

(注:教材中的证明用了15个步骤, 这里用一种更为简洁的方法)

推理演算举例:条件证明规则

例题6: $P \rightarrow (Q \rightarrow S), \neg R \lor P, Q \Rightarrow R \rightarrow S$

证明 (1) R

$$(2) \neg RVP = R \rightarrow P$$

(3) P

$$(4) P \rightarrow (Q \rightarrow S)$$

 $(5) Q \rightarrow S$

(6) Q

(7) S

 $(8) R \rightarrow S$

附加前提引入

前提引入

(1)(2)分离规则

前提引入

(3)(4)分离规则

前提引入

(5)(6)分离规则

条件证明规则

例3: 请根据下面事实, 找出凶手;

- 1. 清洁工或者秘书谋害了经理。
- 2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。
- 3. 如果秘书的证词是正确的,则谋害发生在午夜前。
- 4. 如果秘书的证词不正确,则午夜时屋里灯光未灭。
- 5. 如果清洁工富裕,则他不会谋害经理。
- 6. 经理有钱且清洁工不富裕。
- 7. 午夜时屋里灯灭了。

令 A:清洁工谋害了经理。

B:秘书谋害了经理。

C:谋害发生在午夜前。

D:秘书的证词是正确的.

E:午夜时屋里灯光灭了。H:清洁工富裕.

G:经理有钱.

命题符号为:

AVB, A $\rightarrow \neg$ C, D \rightarrow C, \neg D $\rightarrow \neg$ E, H $\rightarrow \neg$ A, G $\land \neg$ H, E \Rightarrow ?

 $AVB,A \rightarrow \neg C,B \rightarrow C, D \rightarrow C \neg D \rightarrow \neg E,H \rightarrow \neg A,G \land \neg H,E \rightarrow ?$

解: (1)E

前提引入

 $(2) \neg D \rightarrow \neg E$

前提引入

(3) D

(2) 逆否之后和(1) 分离

 $(4) D \rightarrow C$

前提引入

(5) C

(3)(4)分离

 $(6) A \rightarrow \neg C$

前提引入

 $(7) \neg A$

(6) 逆否之后和(5) 分离

 $(8) \text{ AVB } (\neg A \rightarrow B)$

前提引入

(9) B

(7)(8)分离

结果是秘书谋害了经理

