

Partial Adversarial Domain Adaptation

Zhangjie Cao, Lijia Ma, Mingsheng Long and Jianmin Wang KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China

Summary

- Partial domain adaptation: Deep learning across domains with different label spaces $C_s \supset C_t$
- ► Two main challenges:
 - ▶ Positive transfer across domains in shared label space $P_{C_t} \neq Q_{C_t}$
 - Negative transfer across domains in outlier label space $P_{\mathcal{C}_s \setminus \mathcal{C}_t} \neq Q_{\mathcal{C}_t}$
- State-of-the-art results on partial domain adaptation datasets.
- Main contributions:
 - Propose a class-wise weight driven from the prediction of target data by the source classifier;
 - Apply the proposed weighting mechanism to both the source classifier and the domain adversarial network to avoid negative transfer.
- ► Code available @ https://github.com/thuml/PADA

Partial Domain Adaptation

- Deep learning across domains with different label spaces $\mathcal{C}_s\supset \mathcal{C}_t$
- Positive transfer across domains in shared label space $P_{\mathcal{C}_t} \neq Q_{\mathcal{C}_t}$
- Negative transfer across domains in outlier label space $P_{\mathcal{C}_s \setminus \mathcal{C}_t}
 eq Q_{\mathcal{C}_t}$

Partial Domain Adaptation: How?

Partial Adversarial Domain Adaptation

- $\mathbf{f} = G_f(\mathbf{x})$: feature extractor
- $ightharpoonup \gamma$: class weight averaged on the label predictions of target data
- ► GRL: gradient reversal layer
- $ightharpoonup G_v$, L_v , $\hat{\mathbf{y}}$: label predictor, loss and predicted class label
- $ightharpoonup G_d$, L_d , **d**: domain discriminator, loss and predicted domain label

Weighting Mechanism and Loss

Weighting mechanism

$$\gamma = \frac{1}{n_t} \sum_{i=1}^{n_t} \hat{\mathbf{y}}_i,$$
 (1)

where n_t is #target data and $\hat{\mathbf{y}}_i$ is the label prediction of target data *i*.

Overall loss

$$C(\theta_{f}, \theta_{y}, \theta_{d}) = \frac{1}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} \gamma_{y_{i}} L_{y}(G_{y}(G_{f}(\mathbf{x}_{i})), y_{i})$$

$$-\frac{\lambda}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} \gamma_{y_{i}} L_{d}(G_{d}(G_{f}(\mathbf{x}_{i})), d_{i})$$

$$-\frac{\lambda}{n_{t}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{t}} L_{d}(G_{d}(G_{f}(\mathbf{x}_{i})), d_{i})$$

$$(2)$$

where n_s is #source data, C_s is the source domain and C_t is the target domain.

Optimization in a domain adversarial learning framework

$$(\hat{\theta}_f, \hat{\theta}_y) = \underset{\theta_f, \theta_y}{\operatorname{arg min}} C (\theta_f, \theta_y, \theta_d),$$

$$(\hat{\theta}_d) = \underset{\theta_d}{\operatorname{arg max}} C (\theta_f, \theta_y, \theta_d).$$

$$(3)$$

where θ_f , θ_v and θ_d are parameters of G_f , G_v and G_d . $\hat{\theta}_f$, $\hat{\theta}_v$ and $\hat{\theta}_d$ are the corresponding optimal parameters.

Experimental Results

Table: Accuracy of partial domain adaptation tasks on Office-Home, Office-31, ImageNet-Caltech and VisDA2017 (ResNet-50)

Method	Office-Home												
	Ar → CI	$Ar \rightarrow Pr$	$Ar \rightarrow Rw$	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	$Pr \rightarrow Rw$	$Rw \rightarrow Ar$	$Rw \rightarrow CI$	$Rw \rightarrow Pr$	Avg
ResNet	38.57	60.78	75.21	39.94	48.12	52.90	49.68	30.91	70.79	65.38	41.79	70.42	53.71
DAN	44.36	61.79	74.49	41.78	45.21	54.11	46.92	38.14	68.42	64.37	45.37	68.85	54.48
DANN	44.89	54.06	68.97	36.27	34.34	45.22	44.08	38.03	68.69	52.98	34.68	46.50	47.39
RTN	49.37	64.33	76.19	47.56	51.74	57.67	50.38	41.45	75.53	70.17	51.82	74.78	59.25
PADA	51.95	67	78.74	52.16	53.78	59.03	52.61	43.22	78.79	73.73	56.6	77.09	62.06

Method	Office-31								
Method	$A \to W$	$D\toW$	$W \to D$	$A\toD$	$D\toA$	$W \to A$	Avg		
ResNet	54.52	94.57	94.27	65.61	73.17	71.71	75.64		
DAN	46.44	53.56	58.60	42.68	65.66	65.34	55.38		
DANN	41.35	46.78	38.85	41.36	41.34	44.68	42.39		
ADDA	43.65	46.48	40.12	43.66	42.76	45.95	43.77		
RTN	75.25	97.12	98.32	66.88	85.59	85.70	84.81		
JAN	43.39	53.56	41.40	35.67	51.04	51.57	46.11		
LEL	73.22	93.90	96.82	76.43	83.62	84.76	84.79		
PADA-classifier	83.12	99.32	100	80.16	90.13	92.34	90.85		
PADA-adversarial	65.76	97.29	97.45	77.07	87.27	87.37	85.37		
PADA	86.54	99.32	100	82.17	92.69	95.41	92.69		

Method	lmag	geNet-Caltech	VisDA2017				
	$ImageNet \to Caltech$	Caltech o ImageNet	Avg	$Real \to Synthetic$	$Synthetic \to Real$	Avg	
ResNet	71.65	66.14	68.90	64.28	45.26	54.77	
DAN	71.57	66.48	69.03	68.35	47.60	57.98	
DANN	68.67	52.97	60.82	73.84	51.01	62.43	
RTN	72.24	68.33	70.29	72.93	50.04	61.49	
PADA	75.03	70.48	72.76	76.50	53.53	65.01	

(a) DANN: Office

(b) PADA: Office

(c) DANN: ImageNet (d) PADA: ImageNet Figure: Histograms of class weights learned by PADA and DANN.

Figure: The t-SNE visualization of DAN, RevGrad, RTN, and SAN.