Modelos de IA: LLaMA 3

Daniel Canessa Valverde Stephanie Delgado Brenes

Agenda

- 1. Introducción a los LLMs
- 2. Definir LLaMA 3
- 3. Arquitectura y capacidades técnicas
- 4. Rendimiento y benchmarks
- 5. Aplicaciones y casos de uso
- 6. Ecosistema
- 7. Limitaciones y desafíos
- 8. Tendencias y futuro
- 9. Conclusiones

Introducción al contexto de LLMs

Evolución de los modelos de lenguaje

Modelo	Arquitectura	Calidad y selección de datos	Acceso al modelo	Licencia	Comunidad
GPT	Transformer estándar	Grandes cantidades pero opacos.	Cerrado, solo vía API	Propieta	rikimitada por restricciones
LLaMA	Transformer optimizado	Datos filtrados y de alta calidad	Descargable	Abierta	Activa, con proyectos derivados

Nota: La transición de GPT a LLaMA representa un cambio clave: - De modelos cerrados, costosos y centralizados - A modelos eficientes, abiertos y adaptables

¿Qué es LLaMA 3?

- Es un modelo de lenguaje grande (LLM) lanzado por Meta en abril de 2024.
- Diseñado para tareas avanzadas de procesamiento de lenguaje natural (como comprensión, generación y razonamiento sobre texto).
- Es open source: pesos y documentación públicos, promoviendo el acceso comunitario (el modelo se puede descargar, modificar y usar).
- LLaMA 3 fue entrenado con más de 15 billones de tokens basados datasets de: common crawl, wikipedia, libros de dominio público, papers científicos y repositorios open source.

Versiones de LLaMA

Modelo	Año	Parámetros (máx.)	Tokens (contexto)	Licencia	Enfoque
LLaMA	2023	65B	2,048	Investigación	Democratización inicial
LLaMA	2023	70B	4,096	Open source (comercial)	Comunidad, uso comercial
LLaMA 3	2024	8B, 70B	8,192	Open source	Acceso abierto, competitividad
LLaMA 3.1	2024	8B, 70B, 405B	128,000	Open source	Máxima capacidad, contexto largo

Nota:

- 128K tokens es similar a 90000 palabras, mientras que 8192 a 6000 palabras.
- Se estima que GPT4 tiene 1.7 trillones de parámetros (aproximadamente 4 veces más que LLaMA 3.1).

Objetivos y filosofía

- Acceso abierto y documentación pública.
- Democratización de la IA.
- Transparencia y ética en el desarrollo de inteligencia artificial.

Arquitectura y capacidades técnicas

Parámetros y tamaños de modelo

LLaMA 3 se lanzó inicialmente en dos variantes: - LLaMA 3 8B - Eficiencia en hardware limitado - 8 mil millones de parámetros - Utiliza un tamaño aproximado de 16 GB

• LLaMA 3 70B

- Máximo rendimientos y capacidad
- 70 mil millones de parámetros
- $-\,$ Utiliza un tamaño aproximado de 140 GB

Proceso de entrenamiento

• Datos de entrenamiento

 LLaMA 3 fue entrenado con un dataset de aproximadamente 15 billones (15T) de tokens.

• Cómputo

 El entrenamiento se realizó usando clusters de GPU de alto rendimiento, incluyendo NVIDIA H100 en infraestructura interna de Meta.

• Alineamiento

- El modelo Instruct (chat) es más útil para tareas conversacionales y muestra avances en seguridad y control.
- Se aplican técnicas de alignment tuning

Rendimiento y benchmarks

Métricas utilizadas para comparar LLMs:

- MMLU (Massive Multitask Language Understanding)
 - Evalúa razonamiento multitarea (ciencias, humanidades, matemáticas, etc.).
 - Estándar para comparar LLMs.
- GPQA (General Knowledge Questions Advanced)
 - Mide la habilidad del modelo para responder correctamente preguntas avanzadas de conocimiento general.

HumanEval

- Benchmark de referencia para tareas de programación y generación automática de código.
- MGSM (Multilingual Grade School Math)
 - Mide competencia matemática básica y habilidades multilingües.

Benchmark sobre distintos LLMs

Benchmark	LLaMA 3.1 400B	GPT-4o	Claude 3 Opus	Gemini Pro 1.5
MMLU (%)	83.7	88.7	86.8	81.9
GPQA (%)	24.6	53.6	50.4	35.7
HumanEval (%)	84.1	90.2	84.9	67.0
MGSM (%)	79.0	90.5	88.5	74.5

Fuentes: Meta AI Blog, OpenAI Hello GPT-40, Anthropic Claude 3, Google Gemini Pro, Hugging Face Leaderboard - Julio 2024.

Nota: LLaMA 3.1 supera a modelos open source previos y queda cerca de los modelos comerciales, pero todavía detrás de GPT-40 y Claude 3 en varias pruebas.

Aplicaciones y casos de uso

- Asistencia conversacional
- Genera textos coherentes
- Generación de código

Integraciones en productos reales

Producto	Descripción
Hugging Face	Inferencia directa.
Ollama y LM Studio:	Correr LLMs sin conexión a la nube.
LangChain y	Integraciones para agentes y apps conversacionales.
${f LlamaIndex}$	
Meta AI	Experiencias sociales y plataformas como WhatsApp, Instagram
	y Messenger.

Ecosistema

• Versatilidad de despliegue:

 LLaMA puede ejecutarse en una amplia variedad de plataformas, desde laptops y servidores hasta dispositivos edge y cloud pública.

• Local:

- PC, Mac, servidores (con o sin GPU).
- Raspberry Pi y dispositivos ARM.
- Móviles Android (experimental).

• Cloud y servicios gestionados:

- AWS SageMaker
- Google Vertex AI
- Azure Machine Learning

• Contenedores y MLOps:

- Fácil integración en pipelines de CI/CD mediante Docker y Kubernetes.

• Frameworks de soporte:

- LLaMA.cpp: inferencia eficiente en CPU/edge/móvil
- vLLM: inferencia ultra-rápida en GPU
- OLLaMA: despliegue y manejo fácil de modelos en local

Limitaciones y desafíos

Ética y seguridad

Los LLMs tienen un gran poder de generación y automatización, pero no tienen conciencia, intención ni comprensión moral.

• Riesgos éticos

- Reproducción de sesgos sociales
- Desinformación
- Falta de transparencia
- Supresión o amplificación ideológica

• Seguridad

- Alucinaciones
- Manipulación
- Generación de contenido dañino
- Fugas de datos

Tendencias y futuro

Tendencias actuales de LLaMA

- LLaMA 3.1 (2024):
 - Modelos de hasta 405B parámetros, ventana de contexto de 128k tokens.
 - Solo texto. Enfoque en rendimiento, multilingüismo y open source.
- LLaMA 3.2 (2024):
 - Modelos de 1B, 3B, 11B, 90B parámetros. Ventana de contexto de 128k tokens.
 - Primera versión multimodal: modelos especializados en texto y modelos con capacidades de visión (texto + imagen).
 - Incluye variantes ligeras para dispositivos edge (1B, 3B) y modelos grandes para cloud (11B, 90B).
- LLaMA 3.3 (2024):
 - Modelo de 70B parámetros, 128k tokens.
 - Enfoque instruccional: mejoras en razonamiento, tareas de programación y multilingüismo.
 - No es multimodal, pero optimizado para rendimiento en tareas complejas.
- LLaMA 4 (2025):
 - Modelos "Scout" y "Maverick": 17B parámetros activos, hasta 400B totales (Mixture-of-Experts).
 - Ventana de contexto de hasta 10 millones de tokens.
 - Multimodal nativo: arquitectura optimizada para fusionar modalidades.

Futuro:

- Modelos aún más grandes y eficientes (por ejemplo, LLaMA 4 Behemoth en desarrollo).
- Multimodalidad avanzada: integración de audio, video y otras modalidades junto a texto e imagen.

- Ventanas de contexto ultra-largas: millones de tokens, memoria dinámica y mejores técnicas de manejo de contexto relevante.
- Personalización y fine-tuning local: métodos más fáciles y económicos para adaptar los modelos a tareas o dominios específicos.

Conclusiones

- LLaMA 3 es señal del futuro
- Reflexión ética profunda
- Soberanía tecnológica
- Impulsa el crecimiento digital

Fuentes

- Meta AI Blog
- Number of Parameters in GPT-4
- OpenAI Hello GPT-40
- Anthropic Claude 3.5 Sonnet
- Google Gemini AI
- Hugging Face Open LLM Leaderboard
- OpenAI GPT-4 Technical Report
- Mistral AI Mixtral of Experts
- Exploding Topics GPT Parameters
- UNESCO Ethics of Artificial Intelligence