A GLANCE AT THE TITS ALTERNATIVE

YUXIANG JIAO

ABSTRACT. Tits alternative asserts that every finitely generated linear group over an arbitrary field contains either a solvable subgroup of finite index or a non-abelian free subgroup. In this essay, we show the idea of the proof for a special case which takes the field to be \mathbb{C} .

CONTENTS

1.	Introduction	1
2.	The way to construct a free group: the Pingpong lemma	2
3.	Reduction to the semisimple case	4
3.1.	Reduction to the semisimple case	4
3.2.	Properties of semisimple groups	4
4.	Constructing a proximal element	5
4.1.	Elements of infinite order	5
4.2.	Choosing an appropriate absolute value	5
4.3.	Proximal elements	6
5.	Proof of the main theorem	7
Ref	erences	8

1. Introduction

In 1972, Tits published his paper *Free subgroups in linear groups* [Tit72] in the Journal of Algebra. In which he showed a new phenomenon, now known as Tits alternative for linear groups. He asserted that every finitely generated linear group over an arbitrary field contains either a solvable subgroup of finite index or a non-abelian free subgroup.

In this essay, we will show the idea of the proof for a special case: the Tits alternative for a linear group over C.

Definition 1.1. Let G be a group. G is said to be *virtually solvable* if there is a solvable subgroup H < G of finite index.

Theorem 1. Let G be a finitely generated subgroup of $GL(n, \mathbb{C})$, then

- (1) either G is virtually solvable,
- (2) or G contains a non-abelian free subgroup.

Remark 1.2. Note that a non-abelian free subgroup does not contain any nontrivial solvable subgroup, this theorem indeed gives a dichotomy.

As a corollary of Theorem 1, it can be shown that the theorem also holds for a non-finitely generated group.

1

Theorem 2. *Let* G *be a subgroup of* $GL(n, \mathbb{C})$ *, then*

- (1) either G is virtually solvable,
- (2) or G contains a non-abelian free subgroup.

Theorem 1 can be generalized to any field k, we refer to [Tit72, Corollary 1].

Theorem 3. Let G be a finitely generated subgroup of $GL(n, \mathbb{k})$ for some field \mathbb{k} , then

- (1) either G is virtually solvable,
- (2) or G contains a non-abelian free subgroup.

Remark 1.3. It is also mentioned in Tits' paper that the theorem fails for a non-finitely generated group G < GL(n, k) for a field of characteristic different from 0.

For the group other than linear groups, we also concern about whether Tits alternative holds. For example, $Homeo(S^1)$, the group of homeomorphisms on S^1 . Unfortunately, Tits alternative fails for such a large group. But Margulis proved a conjecture of Ghys [Mar00], which is an alternative version of Tits alternative in $Homeo(S^1)$.

Theorem 4. Let G be a subgroup of $Homeo(S^1)$, then

- (1) either G preserves a common probability measure on \mathbb{S}^1 ,
- (2) or G contains a non-abelian free subgroup.

Remark 1.4. Note that every virtually solvable group is amenable, then this theorem makes sense since (1) indeed contains the case that *G* is virtually solvable. But two cases of this theorem can happen simultaneously, so this theorem does not give a dichotomy.

2. The way to construct a free group: the Pingpong Lemma

For proving Tits alternative, the aim is to find a general way to construct a free group. The pingpong lemma helps a lot.

Proposition 2.1 (Pingpong Lemma). *Let* G *be a group acting on a set* Ω , *let* H_1 , H_2 *be subgroups of* G. *Assume that there exists two disjoint nonempty sets* Δ_1 , $\Delta_2 \subset \Omega$ *such that*

$$h_i(\Delta_{3-i}) \subset \Delta_i$$
, $\forall h_i \neq e \in H_i$, $\forall i = 1, 2$.

Then the group $\langle H_1, H_2 \rangle$ generated by H_1 and H_2 is a free product $H_1 * H_2$.

Now we consider a baby case that $G < GL(n, \mathbb{C})$ contains an element g such that there is an eigenvalue λ of g which has a unique maximal absolute value. Let

$$A_g = \ker(g - \lambda \mathrm{Id})$$

and A'_g be the unique g-invariant space such that $\mathbb{C}^n = A_g \oplus A'_g$. Let a_g be the corresponding point of A_g in \mathbb{P}^{n-1} , and a'_g be the hyperplane in \mathbb{P}^{n-1} corresponding to A_g . Then for every open neighborhood $U \ni a_g$ and compact set $K \subset \mathbb{P}^{n-1} \setminus a'_g$, there exists N > 0 such that

$$g^n(K) \subset U, \quad \forall n \geqslant N.$$

We also assume that g^{-1} has the same property, write $r_g = a_{g^{-1}}$ and $r_g' = a_{g^{-1}}'$. Then for every open neighborhood $U \ni r_g$ and compact set $K \subset \mathbb{P}^{n-1} \setminus r_g'$, there exists N > 0 such that

$$g^{-n}(K) \subset U, \quad \forall n \geqslant N.$$

If there exists another element $h \in G$ satisfying the same condition such that

$$a_g, r_g \notin a'_h \cup r'_h, \quad a_h, r_h \notin a'_g \cup r'_g,$$

then we can choose Δ_1 be a neighborhood of $\{a_g, r_g\}$ and Δ_2 be a neighborhood of $\{a_h, r_h\}$. For some m large enough, we have

$$g^m \Delta_2 \subset \Delta_1$$
, $g^{-m} \Delta_2 \subset \Delta_1$, $h^m \Delta_1 \subset \Delta_2$, $h^{-m} \Delta_1 \subset \Delta_2$.

Hence g^m and h^m generates a non-abelian free group.

The general idea of the proof is to generalize the argument above. But there are some problems need to solve. For example, G is a compact (under the Euclidean topology in $GL(n, \mathbb{C})$) semisimple group which is obvious not virtually solvable. But we may not find an element possess a unique maximal eigenvalue. Hence we need to consider G acting on some different spaces and more general argument.

Definition 2.2. Let \mathbb{k} be a field. An *absolute value* on \mathbb{k} is a function $|\cdot|: \mathbb{k} \to \mathbb{R}_+$ such that

- (i) |x| = 0 iff x = 0.
- (ii) |xy| = |x||y| for every $x, y \in \mathbb{k}$.
- (iii) $|x + y| \le |x| + |y|$.

A field equipped with an absolute value $(\mathbb{k}, |\cdot|)$ is naturally a metric space by setting d(x, y) = |x - y| for every $x, y \in \mathbb{k}$.

Definition 2.3. (\mathbb{k} , $|\cdot|$) is said to be *locally compact* if it is locally compact as a metric space.

Consider G acts linearly on a vector space $V = \mathbb{k}^n$ where \mathbb{k} is a locally compact field. For every $g \in G$, denote by \overline{g} to be the representative in GL(V).

Definition 2.4. For $g \in G$, if \overline{g} admits a maximal eigenvalue λ , that is, $|\lambda|$ takes the unique maximum value. Let $A_g = \ker(\overline{g} - \lambda)$ and $a_g = \mathbb{P}(A_g) \in \mathbb{P}(V)$. Then a_g is called an *attractor* of g. If g^{-1} has an attractor $a_{g^{-1}}$, we call $r_g = a_{g^{-1}}$ a *repellor* of g.

Lemma 2.5. Let $G < GL(n, \mathbb{k})$ be a linear group over a locally compact field \mathbb{k} . Assume that the Zariski closure of G is Zariski connected in $GL(n, \mathbb{k})$ and the action of G on \mathbb{k}^n is irreducible. Assume that G possesses a diagonalizable element g with an attractor and a repellor. Then G has a non-abelian free group.

Sketch of Proof. The idea is to choose g' has the form hgh^{-1} for some $h \in G$, such that g^m and $(g')^m$ generates a non-abelian free group. Note that

$$a_{g'} = ha_g, \quad a'_{g'} = ha'_g, \quad r_{g'} = hr_g, \quad r'_{g'} = hr_g,$$

it suffices to find h to move away those subspaces. This can achieve because G do not preserves any non trivial subspace, hence the map

$$\varphi_{x,y^*}: h \mapsto y^*(hx)$$

is not identically zero for every $x \neq 0 \in V$, $y^* \neq 0 \in V^*$. Then $\{h : \varphi_{x,y^*} \neq 0\}$ is Zariski open and non empty. Since the closure of G is Zariski connected, we can always find $h \in G$ such that $\varphi_{x,y^*}(h) \neq 0$ for finitely many φ_{x,y^*} simultaneously. \square

3. REDUCTION TO THE SEMISIMPLE CASE

3.1. Reduction to the semisimple case.

Let G be a subgroup of GL(V) for some vector space V. Denote G to be the Zariski closure of G which is an algebraic group. Let G^0 be the identity component of G. In this section, we will reduce Theorem 1 to the case that the algebraic closure of G is semisimple.

Lemma 3.1. *Let G be an algebraic group, then G possesses a unique largest normal solvable subgroup, which is closed.*

Definition 3.2. The *radical* of an algebraic group \mathbb{G} is the identity component of the largest normal solvable subgroup.

Definition 3.3. A connected algebraic group with a trivial radical is said to be *semisimple*.

Theorem 5. Let $G < GL(n, \mathbb{C})$ be a finitely generated, non trivial subgroup such that the Zariski closure \mathbb{G} is semisimple. Then G contains a non-abelian free subgroup.

Lemma 3.4. Theorem 1 follows by Theorem 5.

Proof. Let G be the Zariski closure of G in GL(V), let $G^0 = G \cap G^0$. Note that $[G:G^0] < \infty$, hence $[G:G^0] < \infty$. If G is not virtually solvable, then G^0 is not solvable and hence G^0 is also not solvable. Let J be the radical of G^0 , which is a proper subgroup. Since G^0 is connected, G^0/J is a nontrivial semisimple algebraic group.

Note that G^0 is a finite index subgroup of a finitely generated group, hence G^0 is finitely generated. Hence $G^0/(G^0 \cap \mathbb{J})$ is finitely generated and is dense in \mathbb{G}^0/\mathbb{J} . By Theorem 5, $G^0/(G^0 \cap \mathbb{J})$ contains a non-abelian free subgroup. And hence G also contains a non-abelian free subgroup.

3.2. Properties of semisimple groups.

Definition 3.5. An algebraic group is called *simple* if it is connected, non-abelian and it has no nontrivial closed connected proper normal subgroup.

Proposition 3.6. *Let* \mathbb{G} *be a semisimple algebraic group and let* \mathbb{G}_i ($i \in I$) *be the simple subgroups of* \mathbb{G} . *Then*

- 1. *I* is finite and $\mathbb{G} = \prod_{i \in I} \mathbb{G}_i$.
- 2. For each i, $\mathbb{G}_i \cap (\prod_{j \neq i} \mathbb{G}_j)$ is finite.
- 3. The commutator $[G_i, G_i] = e$ for every $i \neq j$.
- 4. Any closed connected normal subgroup of \mathbb{G} is a the product of some \mathbb{G}_i .

Definition 3.7. A group *G* is said to be *perfect* if [G, G] = G.

Corollary 3.8. A semisimple algebraic group is perfect.

Corollary 3.9. *If* $\mathbb{G} < \operatorname{GL}(n, \mathbb{k})$ *is a semisimple algebraic group, then* $\mathbb{G} < \operatorname{SL}(n, \mathbb{k})$.

Let k be a field and let K be the algebraic closure of k. Recall that a linear endomorphism over k is called semisimple if it is diagonalizable over K. The following proposition allows us to find large diagonalizable elements in a semisimple algebraic group.

Proposition 3.10. *Let* G *be a semisimple algebraic group. Then the set of semisimple elements in* G *contains a (Zariski) dense open subset of* G.

4. Constructing a proximal element

4.1. Elements of infinite order.

For constructing a free subgroup in G, it is necessary to find some elements of infinite order. For example, if we want to find a free group in a compact semisimple group. The first step will be finding an element g with infinite order. And then, we construct a representation such that g admits an attractor and a repellor.

Lemma 4.1. Let $G < GL(n, \mathbb{C})$ be a finitely generated group acting irreducible on \mathbb{C}^n . Then there exists a basis $\{e_1, \dots, e_{n^2}\}$ of $M_n(\mathbb{C})$ such that

$$G \subset \left\{\sum_{i=1}^{n^2} t_i e_i : t_i \in \operatorname{tr}(G)\right\}.$$

Proof. By the classification of semisimple algebra over algebraic closed field, we know that G linearly spans $M_n(\mathbb{C})$. We can choose g_1, \dots, g_{n^2} in G which forms a basis of $M_n(\mathbb{C})$. Consider a non-degenerated bilinear form $M_n(\mathbb{C}) \times M_n(\mathbb{C}) \to \mathbb{C}$ given by $(x,y) \mapsto \operatorname{tr}(xy)$. Let $\{e_i\}$ be a dual basis to $\{g_i\}$ with respect to this bilinear form, then $\{e_i\}$ is satisfied.

Lemma 4.2. Let $G < GL(n,\mathbb{C})$ be a finitely generated group and let F be the set of elements of finite order in G. Then tr(F) is finite.

Proof. Let k be the finite extension of \mathbb{Q} contains all entries in G. Then every eigenvalue of an element in G is a root of a polynomial over k of degree n. Let ζ be a root of unity satisfying a polynomial over k of degree less than n. Let T be a transcendence basis of k/\mathbb{Q} and k_a be the algebraic closure in $k(\zeta)$. Then

$$[\mathbb{Q}(\xi):\mathbb{Q}] \leqslant [\mathbb{k}_a:\mathbb{Q}] = [\mathbb{k}_a(T):\mathbb{Q}(T)] \leqslant [\mathbb{k}(\xi):\mathbb{Q}(T)] \leqslant n[\mathbb{k}:\mathbb{Q}(T)] < \infty.$$

Hence there are only finite possible values of ξ . The trace of a finite order element in G is a sum of n such roots of unity, hence tr(F) is finite.

Proposition 4.3. Let $G < GL(n, \mathbb{C})$ be a finitely generated group acting irreducible on \mathbb{C}^n . Let F be the set of elements of finite order in G. If F is Zariski dense in G, then G is finite.

Proof. Since tr(F) is finite hence Zariski closed in \mathbb{C} , then $tr^{-1}(tr(F))$ is Zariski closed. By assumption, F is Zariski dense in G, thus $G = tr^{-1}(tr(F))$. Which follows that tr(G) is finite. By Lemma 4.1, G is finite.

4.2. Choosing an appropriate absolute value.

We have found an element of infinite order *g*, but the eigenvalues of *g* might fall on the unit circle. In such case, we need to choose an appropriate absolute value such that this the absolute value of some eigenvalue of *g* is not 1.

For every prime number p, let $|\cdot|_p$ be the p-adic absolute value and \mathbb{Q}_p be the completion of $(\mathbb{Q}, |\cdot|_p)$. Besides, we use $|\cdot|_\infty$ to denote the archimedean absolute value over \mathbb{Q} . The following proposition shows that for each algebraic element λ over \mathbb{Q} which is not a root of unity, there always exists a p-adic absolute value such that $|\lambda|_p \neq 1$.

Proposition 4.4. Let \mathbb{k} be a finite algebraic extension of \mathbb{Q} , let $x \in \mathbb{k}^{\times}$. Then $|x|_p = 1$ for every p if and only if x is a root of unity.

Lemma 4.5. Let $\mathbb{k} \subset \mathbb{C}$ be a finite field extension of \mathbb{Q} and let $\lambda \in \mathbb{k}^{\times}$ be an element of infinite order. Then there exists an extension of \mathbb{k} to a locally-compact field \mathbb{k}' endowed with an absolute value $|\cdot|$ such that $|\lambda| \neq 1$.

Proof. Let \mathbb{k}_a be the algebraic closure of \mathbb{Q} in \mathbb{k} . If λ is transcendental over \mathbb{Q} , choose a transcendence basis T of \mathbb{k}/\mathbb{Q} such that $\lambda \in T$. Let $\tau : \mathbb{k} \hookrightarrow \mathbb{C}$ be an embedding fix \mathbb{k}_a and $|\tau(\lambda)|_{\infty} \neq 1$. Setting $\mathbb{k}' = \mathbb{C}$ is satisfied.

If λ is algebraic over \mathbb{Q} , there exits p such that $|\lambda|_p$. Let \mathbb{k}_p be the completion of \mathbb{k}_a with respect to $|\cdot|_p$. Since the transcendental degree of $\mathbb{k}_p/\mathbb{k}_a$ is infinite, there exists an embedding $\mathbb{k}_a(T) \hookrightarrow \mathbb{k}_p$ fix \mathbb{k}_a where T is a finite transcendence basis. Since \mathbb{k} is a finite algebraic extension of $\mathbb{k}_a(T)$, then there exist a finite extension \mathbb{k}'/\mathbb{k}_p such that \mathbb{k} can be regard as a subfield of \mathbb{k} and $|\lambda| \neq 1$.

4.3. Proximal elements.

Definition 4.6. Let \mathbb{G} be an algebraic group. A *rational representation* of G is a morphism between algebraic groups $\rho : \mathbb{G} \to GL(n, \mathbb{k})$ for some field \mathbb{k} .

We call a rational representation is *irreducible* if there is no proper nontrivial invariant subspace of \mathbb{k}^n invariant under the action. Let \mathbb{K} be the algebraic closure of \mathbb{k} , the representation is called *absolutely irreducible* if $\rho(\mathbb{G})$ is irreducible on \mathbb{K}^n .

Lemma 4.7. *Let* \mathbb{G} *be a perfect algebraic group with a nontrivial rational representation* $\rho : \mathbb{G} \to GL(n, \mathbb{k})$. Then \mathbb{G} possesses a nontrivial irreducible rational representation.

Proof. WLOG, assume ρ is the nontrivial rational representation with a lowest degree. Assume that ρ is reducible, then there is a nontrivial $\rho(\mathbb{G})$ invariant subspace $W \neq \mathbb{k}^n$. Note that W is dimensional 1 and $\rho|_W$ is trivial. Then $\rho(\mathbb{G})$ has the form

$$\begin{bmatrix} 1 & * \\ 0 & \rho_{\mathbb{k}^n/W} \end{bmatrix}.$$

Besides, the representation $\rho_{\mathbb{R}^n/W}$ is also trivial. Then $\rho(\mathbb{G})$ has the form of upper triangular matrices. It follows that $\rho(\mathbb{G})$ is solvable, contradicts with \mathbb{G} is perfect. \square

Lemma 4.8. Let $\rho: \mathbb{G} \to GL(n, \mathbb{k})$ be a rational representation of an algebraic group over $(\mathbb{k}, |\cdot|)$. Let $g \in G$ be an element such that

- (i) $\rho(g)$ is diagonalizable,
- (ii) the number of eigenvalues of $\rho(g)$ with the maximal absolute is less than n.

Then there exists an absolutely irreducible representation ρ' of \mathbb{G} such that $\rho'(g)$ is diagonalizable and g has an attractor.

Proof. Let d < n be the number of eigenvalues of $\rho(g)$ with the maximal absolute. Consider the action $\bigwedge^d \rho$, then g has an attractor. A similar argument as the previous lemma shows that there exists an absolutely irreducible representation ρ' such that $\rho'(g)$ is diagonalizable and g has an attractor.

Proposition 4.9. Let k be a locally compact field and let G be a Zariski connected subgroup of GL(n,k) acting irreducibly on k^n . Assume that there exists a diagonalizable element in G with an attractor, then the set

$$X = \{g \in \mathbb{G} : g \text{ has an attractor and a repellor}\}$$

is Zariski dense in G.

Sketch of Proof. For $g \in GL(n, \mathbb{k})$ acting on $\mathbb{P}(\mathbb{k}^n)$, if there exists a compact set $K \subset \mathbb{P}(\mathbb{k}^n)$ such that $gK \subset K^\circ$, one can show that g has an attractor in K. Note that this is an open property. Hence there is a nonempty Zariski open (and hence dense) set in G satisfying an appropriate condition (just move away the invariant subspaces). Let g_0 be the element with an attractor, then we compose those elements with g_0^m for some m large enough. We can see a compact set K such that $gK \subset K^\circ$. But here are something subtle is that m may depend on the element in this (Zariski) open set. This can be solved by an algebraic trick, see [Tit72, Proposition 3.1].

Remark 4.10. In a view of dynamical system, Margulis and Goldsheid showed that if a finitely generated subgroup $G < SL(n, \mathbb{C})$ is Zariski dense in $SL(n, \mathbb{C})$, then G contains lots of proximal elements [GM89]. Indeed, they showed that the top Lyapunov exponent of random walk on G tends to infinity if G is Zariski dense in $SL(n, \mathbb{C})$. For a more general result, in Xu's master thesis [XS12], they generalized this result to the case that Zariski closure of G is a semisimple algebraic group over G. But this is not enough to deduce Tits alternative in the case that the Zariski closure of G is a compact semisimple group.

5. Proof of the main theorem

By lemma 3.4, it suffices to show Theorem 5. We restate the theorem here for the convenience of reading.

Theorem. Let $G < GL(n, \mathbb{C})$ be a finitely generated, non trivial subgroup such that the Zariski closure \mathbb{G} is semisimple. Then G contains a non-abelian free subgroup.

Proof. By lemma 4.7, WLOG, we can assume that G acts irreducibly on \mathbb{C}^n . By proposition 4.3, the elements of finite order is not dense in G. Since G is dense in G and semisimple elements is dense in G by proposition 3.10, there exists a semisimple element of infinite order in G.

Let g be a such element and λ be an eigenvalue of g which is not a root of unity. Since G is finitely generated, then $G < \operatorname{GL}(n, \mathbb{k})$ for some field \mathbb{k} which is a finite extension of \mathbb{Q} . Note that this does not change the Zariski topology on G. By lemma 4.5, there exists an extension of \mathbb{k} to a locally-compact field \mathbb{k}' such that $|\lambda| \neq 1$.

By corollary 3.9, $g \in \mathbb{G} \subset \mathrm{SL}(n,\mathbb{C})$. Then $\det g = 1$ implies that the number of eigenvalues with a maximal absolute value of g is less than n. By lemma 4.8, we can assume that G acts absolutely irreducibly on \mathbb{k}'^n and g has an attractor. By proposition 4.9, the elements with an attractor and a repellor is dense in G. It allows us to take such an element $h \in G$. Then there exists a finite extension of \mathbb{k}' such that h is diagonalizable and G still acts irreducibly. By lemma 2.5, G contains a non-abelian free subgroup.

REFERENCES

- [GM89] I. Y. Gol'dsheid and G. A. Margulis. "Lyapunov indices of a product of random matrices". In: *Russian Mathematical Surveys* 44.5 (Oct. 1989), pp. 11–71. DOI: 10.1070/RM1989v044n05ABEH002214.
- [**Mar00**] G. A. Margulis. "Free subgroups of the homeomorphism group of the circle". In: *Academie des Sciences Paris Comptes Rendus Serie Sciences Mathematiques* 331.9 (Nov. 2000), pp. 669–674. DOI: 10.1016/S0764-()4442(00) 01694-()3.
- [**Spr98**] T. A. Springer. *Linear Algebraic Groups*. 1998. DOI: 10.1007/978-()0-()8176-()4840-()4.
- [**Tit72**] J. Tits. "Free subgroups in linear groups". In: *Journal of Algebra* 20 (2 1972). ISSN: 1090266X. DOI: 10.1016/0021-()8693(72)90058-()0.
- [**Wei74**] A. Weil. *Basic Number Theory*. 1974. DOI: 10.1007/978-()3-()642-()61945-()8.
- [XS12] D. Xu and E. N. Supérieure. "Forced Multiplicities of Lyapunov Spectrum". In: *Master Thesis* (Aug. 2012).