MATH 308 D200, Fall 2019

15. Primal Dual relationship (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

1. We have maximum Tucker tableau.

		(iv's)		-1	
	a ₁₁		a_{1n}	<i>b</i> ₁	
	:	· .	:	•	=-(dv's)
l	a_{m1}		a _{mn}	b _m	
ĺ	C ₁		Cn	d	= f

- **2.** If $b_1, b_2, ..., b_m \ge 0$, go to **Step 6.**
- **3.** Choose $b_i < 0$ such that i is maximal.
- **4.** If $a_{i1}, a_{i2}, \dots, a_{in} \ge 0 \Longrightarrow STOP$; the minimization problem is infeasible.
- 5. If i = m, choose $a_{mj} < 0$, pivot on a_{mj} , and go to **Step 1**. If i < m, choose $a_{ij} < 0$, compute

$$\alpha = \min(\{b_i/a_{ij}\} \cup \{b_k/a_{kj}: k > i, a_{kj} > 0\}),$$
 and choose any p with $b_p/a_{pj} = \alpha$. Pivot

on a_{pj} and go to **Step 1**. **6.** Apply the SA for MBFT. 1. We have minimum Tucker tableau.

	a ₁₁		a_{1n}	b_1
(iv's)	:	4.	:	:
	a _{m1}		a _{mn}	b _m
-1	<i>c</i> ₁		Cn	d
	= (dv's)			= g

- 2. If $c_1, c_2, ..., c_n \le 0$, go to **Step 6**.
- **3.** Choose $c_i > 0$ such that j is maximal.
- **4.** If $a_{1j}, a_{2j}, \ldots, a_{mj} \leq 0 \Longrightarrow \mathsf{STOP}$; the minimization problem is infeasible.
- **5.** If j = n, choose $a_{in} > 0$, pivot on a_{in} , and go to **Step 1**. If j < n, choose $a_{ij} > 0$, compute

$$\alpha = \min(\{c_i/a_{ii}\} \cup \{c_k/a_{ik} : k > j, a_{ik} < 0\}),$$

and choose any p with $c_p/a_{ip}=\alpha$. Pivot on a_{ip} and go to **Step 1**.

6. Apply the DSA for MBFT.

SA for maximum TT versus

DSA for minimum TT (phase 2)

6. The current tableau is maximum BFT $(b_1, b_2, \dots, b_m \ge 0)$

- **7.** If $c_1, c_2, \dots, c_n \leq 0 \Longrightarrow \mathsf{STOP}$; the current basic feasible solution is optimal.
- **8.** Choose any j with $c_i > 0$
- **9.** If $a_{1j}, a_{2j}, \dots, a_{mj} \leq 0 \Longrightarrow \mathsf{STOP}$; the maximization problem is unbounded.
- 10. Compute

$$\alpha = \min_{1 \le i \le m} \{b_i/a_{ij} : a_{ij} > 0\}$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to the **Step 6**.

6. The current tableau is minimum BFT $(c_1, c_2, \dots, c_n \leq 0)$

(iv's)
$$\begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \\ c_1 & \dots & c_n & d \end{bmatrix}$$
$$= (dv's) = g$$

- 7. If $b_1, b_2, \dots, b_m \geqslant 0 \Longrightarrow \mathsf{STOP}$; the current basic feasible solution is optimal.
- **8.** Choose any *i* with $b_i < 0$
- **9.** If $a_{i1}, a_{i2}, \dots, a_{in} \geqslant 0 \Longrightarrow \mathsf{STOP}$; the minimization problem is unbounded.
- 10. Compute

$$\alpha = \min_{1 \le i \le n} \{c_j/a_{ij} : a_{ij} < 0\}$$

and choose any p with $c_p/a_{ip}=\alpha$. Pivot on a_{ip} and go to the **Step 6**.

Primal-Dual Relationship

Consider primal LP problem...

...and its dual LP problem

Maximize
$$f(x) = c^{\mathsf{T}}x - d$$

subject to $\mathbf{A}x \leqslant \mathbf{b}$
 $x \geqslant \mathbf{0}$

Minimize
$$g(x) = b^{\mathsf{T}}y - d$$

subject to $A^{\mathsf{T}}y \geqslant c$
 $y \geqslant 0$

	x_1	x_2		× _n	-1	
<i>y</i> 1	a ₁₁	a ₁₂		a _{1n}	<i>b</i> ₁	$=-t_{1}$
<i>y</i> ₂	a ₂₁	a ₂₂		a_{2n}	<i>b</i> ₂	$=-t_2$
:	:	:	4.	:	:	
Уm	a _{m1}	a_{m2}		a _{mn}	bm	$=-t_m$
-1	<i>c</i> ₁	c ₂		Cn	d	= f
	$= s_1$	$= s_2$		$= s_n$	= g	

(P) Maximize
$$f(x_1, x_2, \dots, x_n) = \sum_{j=1}^n c_j x_j - d$$

subject to $\sum_{j=1}^n a_{ij} x_j \leqslant b_i, \ i = 1, 2, \dots, m$
 $x_1, x_2, \dots, x_n \geqslant 0$

(D) Minimize
$$g(y_1, y_2, \dots, y_m) = \sum_{i=1}^m b_i y_i - d$$

subject to $\sum_{i=1}^m a_{ij} y_i \geqslant c_j, \ j = 1, 2, \dots, n$
 $y_1, y_2, \dots, y_m \geqslant 0$

Theorem (Weak Duality)

For every primal feasible solution $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ of (P) and every dual feasible solution $\mathbf{y}^* = (y_1^*, y_2^*, \dots, y_n^*)$ of (D) we have $f(\mathbf{x}^*) \leq g(\mathbf{y}^*)$.

Proof.

Here is a proof using sum-notation. Assume x^* is (P)-feasible and that y^* is (D)-feasible.

$$\begin{split} f(\boldsymbol{x}^*) + d &= \sum_{j=1}^n c_j x_j^* \\ &\leq \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^* \quad (\text{since } \sum_{i=1}^m a_{ij} y_i^* \geq c_j \text{ and } x_j^* \geq 0) \\ &= \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j^*\right) y_i^* \quad (\text{change order of summation}) \\ &\leq \sum_{i=1}^m b_i y_i^* \qquad (\text{since } \sum_{j=1}^n a_{ij} x_j^* \geq c_j \text{ and } y_i^* \geq 0) \\ &= g(\boldsymbol{y}^*) + d. \end{split}$$

Corollary

If x^* is (P)-feasible and y^* is (D)-feasible and $f(x^*) = g(y^*)$, then both solutions are optimal.

Proof.

Here is a proof using matrix-notation. We use the easy fact

(1) If vectors u, v and w satisfy $u \le v$ and $w \ge 0$, then $u^{\mathsf{T}}w \le u^{\mathsf{T}}w$ and $w^{\mathsf{T}}u \le w^{\mathsf{T}}v$

Assume x is (P)-feasible and that y is (D)-feasible, and write the LP's in matrix form:

(P)
$$\max f = c^{\mathsf{T}}x - d$$
 (D) $\min g = y^{\mathsf{T}}b - d$

$$Ax \le b \qquad y^{\mathsf{T}}A \ge c^{\mathsf{T}}$$

$$x \ge 0 \qquad y \ge 0$$

Then

$$f(\mathbf{x}^*) + d = \mathbf{c}^\mathsf{T} \mathbf{x}$$

$$\leq (\mathbf{y}^\mathsf{T} A) \mathbf{x} \qquad \text{(by (1))}$$

$$= \mathbf{y}^\mathsf{T} (A\mathbf{x})$$

$$\leq \mathbf{y}^\mathsf{T} \mathbf{b} \qquad \text{(by (1))}$$

$$= g(\mathbf{y}^*) + d$$

Corollary

If x^* is (P)-feasible and y^* is (D)-feasible and $f(x^*) = g(y^*)$, then both solutions are optimal.

Theorem

Let (P) and (D) be dual LPs. Then:

- 1	
М	 -

orimal

		opt.	unb.	inf.
5	opt.			
<u> </u>	unb.			
2	inf.			

Theorem

Let (P) and (D) be dual LPs. Then:

- (P) has an optimal solution if and only if (D) has an optimal solution.

		dual
	4	

		opt.	unb.	inf.
ē	opt.	Y	N	N
prımal	unb.	N		
<u>α</u>	inf.	N		

Theorem

Let (P) and (D) be dual LPs. Then:

- (P) has an optimal solution if and only if (D) has an optimal solution.
- If (P) is unbounded, then (D) is infeasible.

dua

rimal

			auui	
		opt.	unb.	inf.
-	opt.	Y	N	N
primai	unb.	N	N	Υ
۵.	inf.	N		

Theorem

Let (P) and (D) be dual LPs. Then:

- (P) has an optimal solution if and only if (D) has an optimal solution.
- If (P) is unbounded, then (D) is infeasible.
- If (D) is unbounded, then (P) is infeasible.

dual

opt. unb. inf.
opt. Y N N
unb. N N Y
inf. N Y

Theorem

Let (P) and (D) be dual LPs. Then:

- (P) has an optimal solution if and only if (D) has an optimal solution.
- If (P) is unbounded, then (D) is infeasible.
- If (D) is unbounded, then (P) is infeasible.

dual

unb. inf. opt. Υ Ν N opt. primal Υ unb. Ν Ν inf. Ν Υ

Theorem

- Let (P) and (D) be dual LPs. Then:
- (P) has an optimal solution if and only if (D) has an optimal solution.
- If (P) is unbounded, then (D) is infeasible.
- If (D) is unbounded, then (P) is infeasible.

		dual				
		opt.	unb.	inf.		
a	opt.	Y	N	N		
Ε	unh	N	N	Υ		

N

Theorem (The duality theorem)

Let (P) and (D) be dual LPs. Exactly one of the following is true:

- (i) Both (P) and (D) have an optimal solution, in which case f = g.
- (ii) (P) is unbounded, and (D) is infeasible.
- (iii) (D) is unbounded, and (P) is infeasible..
- (iv) Both (P) and (D) are infeasible.

Final Tableau:

p

inf.

DSA for Maximum Tableaux

	(ind	var's)		-1	
a ₁₁	a ₁₂		a _{1n}	<i>b</i> ₁	
a ₂₁	a 22		a_{2n}	<i>b</i> ₂	
:	:	٠.,	:	:	=-(dep var's)
a _{m1}	a_{m2}		a _{mn}	b _m	
<i>c</i> ₁	c ₂		Cn	d	= f

- 1. We have maximum Tucker tableau.
- ${\bf 2. \ \, Take \ the \ negative \ transposition \ of \ the \ tableaux \ to \ obtain \ a \ minimum \ tableau.}$
- 3. Apply the dual simplex algorithm for minimum tableaux.
- **4.** $\max f = -\min(-f)$.

SFU department of mathematics

Show all four methods to solve the following dual tableau.

	x_1	<i>X</i> 2	-1	
y_1	1	2	20	$=-t_1$
<i>y</i> ₂	2	2	30	$=-t_2$
<i>y</i> 3	2	1	25	$=-t_3$
-1	4	3	0	= f
	_ c ₁	— co	- σ	

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 \ge 0$

Using: Max simplex

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x₁)
 $2y_1 + 2y_2 \ge 6$ (x₂)
 $y_1, y_2 \ge 0$

Using: Max simplex

Using: Max simplex

Phase 1 complete

-8

(P)
$$\max f = 2x_1 + 6x_2$$
 (D) $\min g = 8y_1 - 4y_2$
$$x_1 + 2x_2 \le 8 \quad (y_1) \qquad \qquad y_1 - y_2 \ge 2 \quad (x_1)$$
$$-x_1 + 2x_2 \le -4 \quad (y_2) \qquad \qquad 2y_1 + 2y_2 \ge 6 \quad (x_2)$$
$$x_1, x_2 \ge 0 \qquad \qquad y_1, y_2 \ge 0$$

Using: Max simplex

Phase 1 complete

Phase 2 complete (optimal)

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y1)
 $-x_1 + 2x_2 \le -4$ (y2)
 $x_1, x_2 \ge 0$

(D) min $g = 8y_1 - 4y_2$

$$y_1 - y_2 \geq 2 \quad (x_1)$$

$$2y_1 + 2y_2 \ge 6$$
 (x_2)

$$y_1, y_2 \ge 0$$

Using: DUAL Max simplex

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

$$y_1 - y_2 \geq 2 \quad (x_1)$$

$$2y_1 + 2y_2 \ge 6 \quad (x_2)$$
$$y_1, \ y_2 \ge 0$$

Using: DUAL Max simplex

	x_1	t_1	-1	
s ₂	1/2	1/2	4	$=-x_{2}$
<i>y</i> ₂	-2*	-1	-12	$=-t_{2}$
-1	-1	-3	-24	= f
$=s_1 = y_1 = g$				

Dual phase 1 complete

(P)
$$\max f = 2x_1 + 6x_2$$
 (D) $\min g = 8y_1 - 4y_2$
$$x_1 + 2x_2 \le 8 \quad (y_1) \qquad \qquad y_1 - y_2 \ge 2 \quad (x_1)$$
$$-x_1 + 2x_2 \le -4 \quad (y_2) \qquad \qquad 2y_1 + 2y_2 \ge 6 \quad (x_2)$$
$$x_1, x_2 \ge 0 \qquad \qquad y_1, y_2 \ge 0$$

 -2^* -1 -12

 $= s_1 = y_1 = g$

-24

 $= -x_1$

Using: DUAL Max simplex

Dual phase 2 complete (optimal)

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 \ge 0$

At Optimality:

$$(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$$

$$(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$$

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 \ge 0$

At Optimality: $(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$

$$(1, t_2) = (6, 1, 0, 0)$$

$$(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$$

The dual sol'n proves f^* is maximal

$$5/2 \cdot (x_1 + 2x_2 \leq 8)$$

$$1/2 \cdot (-x_1 + 2x_2 \le -4)$$

$$0\cdot (-x_1 \leq 0)$$

$$0\cdot (\qquad -x_2\leq 0)$$

$$2x_1 + 6x_2 \le 18$$

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 > 0$

 $(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$

At Optimality: $(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$

$$(t_1, t_2) = (6, 1, 0, 0)$$

$$\begin{array}{c|ccccc} & t_1 & t_2 & -1 \\ s_2 & 1/4 & 1/4 & 1 \\ s_1 & 1/2 & -1/2 & 6 & = -x_1 \end{array}$$

The dual sol'n proves f^* is maximal

$$5/2 \cdot (x_1 + 2x_2 \leq 8)$$

$$1/2 \cdot (-x_1 + 2x_2 \le -4)$$

$$0\cdot(-x_1 \leq 0)$$

$$0\cdot (\qquad -x_2\leq 0)$$

$$f = 2x_1 + 6x_2 \le 18 = f^*$$

(P)
$$\max f = 2x_1 + 6x_2$$
 (D) $\min g = 8y_1 - 4y_2$
$$x_1 + 2x_2 \le 8 \quad (y_1)$$

$$-x_1 + 2x_2 \le -4 \quad (y_2)$$

$$x_1, x_2 \ge 0$$

$$y_1, y_2 \ge 0$$

At Optimality:

The dual sol'n proves f^* is maximal and expresses c as a positive linear combination of constraint vectors.

 $(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$

 $(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 > 0$

 $(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$

At Optimality:
$$(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$$

$$\begin{array}{c|ccccc} & t_1 & t_2 & -1 \\ s_2 & 1/4 & 1/4 & 1 \\ s_1 & 1/2 & -1/2 & 6 \\ -1 & -5/2 & -1/2 & -18 \\ & = y_1 & = y_2 & = g^* \end{array} = f^*$$

The primal sol'n proves g^* is minimal

$$(y_1 - y_2 \ge 2) \cdot 6$$

$$(2y_1 + 2y_2 \ge 6) \cdot 1$$

$$(y_1 \ge 0) \cdot 0$$

$$(y_2 \ge 0) \cdot 0$$

$$g = 8y_1 - 4y_2 > 18 = g^*$$

(P)
$$\max f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 \ge 0$

At Optimality:
$$(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$$

$$(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$$

The primal sol'n proves g^* is minimal and expresses \mathbf{b} as a positive linear comb. of dual constraint vectors. $\begin{bmatrix} 1,-1 \end{bmatrix} \cdot \mathbf{6}$

(P) max
$$f = 2x_1 + 6x_2$$

 $x_1 + 2x_2 \le 8$ (y₁)
 $-x_1 + 2x_2 \le -4$ (y₂)
 $x_1, x_2 \ge 0$

(D) min
$$g = 8y_1 - 4y_2$$

 $y_1 - y_2 \ge 2$ (x_1)
 $2y_1 + 2y_2 \ge 6$ (x_2)
 $y_1, y_2 \ge 0$

 $(y_1, y_2, s_1, s_2) = (5/2, 1/2, 0, 0)$

At Optimality:

$$(x_1, x_2, t_1, t_2) = (6, 1, 0, 0)$$

$$\begin{array}{c|ccccc} & t_1 & t_2 & -1 \\ s_2 & 1/4 & 1/4 & 1 \\ s_1 & 1/2 & -1/2 & 6 \\ -1 & -5/2 & -1/2 & -18 \\ & = y_1 & = y_2 & = g^* \end{array}$$

Complementary slackness:

$$[x_1, x_2, t_1, t_2] = [6, 1, 0, 0]$$

$$[s_1, s_2, y_1, y_2] = [0, 0, \frac{5}{2}, \frac{1}{2}]$$

$$g^* - f^* = 0 + 0 + \frac{0}{1} + \frac{1}{2}$$

