

IEEE Custom Integrated Circuits Conference

MAGICAL 1.0: An Open-Source Fully-Automated AMS Layout Synthesis Framework Verified With a 40-nm 1GS/s $\Delta\Sigma$ ADC

Hao Chen*, Mingjie Liu*, Xiyuan Tang*, Keren Zhu*, Abhishek Mukherjee, Nan Sun, and **David Z. Pan** (*: Equal contribution)

The University of Texas at Austin

Analog IC Design and Layout

- High demand of analog/mixed-signal IC in emerging applications
 - Internet of Things (IoT), autonomous vehicles, 5G, wearable, sensors, ...
 - X However, still mostly manually designed → 20% or less analog in SOC may take 80% design time!

MAGICAL: <u>MA</u>chine <u>Generated IC Analog Layout</u>

MAGICAL 1.0: Hierarchical Framework

Hierarchical layout synthesis framework

MAGICAL 1.0: Constraint Generation

- Pattern detection for building block symmetry [Xu+, ICCAD'19]
- Graph similarity for system symmetry constraint [Liu+, ASPDAC'20]
- Customizable signal-flow constraints

System-level constraints

Building block symmetry

MAGICAL 1.0: Placer

- Nonlinear programming-based global placement
- Linear programming-based detailed placement
- Using system signal flow to guide placement for mixed-signal placement
- [Zhu+, ICCAD'20]

MAGICAL 1.0: Placer

- Consider regularity of system signal flow in placement
- Improved numerical optimization kernel
- Better post-layout simulation performance and placement metrics

MAGICAL 1.0: Router

- Grid-based routing kernel w/ DRC handling
- New symmetry routing patterns
- Special power/ground routing
- [Chen+, ICCAD'20]

MAGICAL 1.0: Router

- Multiple vias and various wire widths for voltage drop consideration
- Symmetry constraint allocation
 - Maximize the overall potential routing symmetry (Weighted graph matching)
- Pin access assignment

Simulation in the Loop

- Simulation-in-loop: use simulation results on building block level circuits as the feedback to the MAGICAL P&R
- Intelligent performance prediction will reduce #simulations
- [Liu+, DAC'20]

MAGICAL 1.0: 3rd-order CTDSM Demo

- 1GS/s 3rd-order high-performance continuous time $\Delta\Sigma$ modulator
- State-of-the-art performance, originally published in IEEE SSC-L'20
- Include various sub-block types

MAGICAL 1.0: 3rd-order CTDSM Demo

*For demo purpose, simulation in the loop not included.

MAGICAL 1.0: Fully Synthesized ADC Core

- After ~90 seconds....
- Core area: 22,000 um²
- Tape-out with manually designed peripherals (buffer, driver, PADs)

CTDSM ADC chip under TSMC40 technology

PCB board

Chip micrograph of the synthesized CTDSM

Fs: 1GHz

BW: 5MHz

SNDR: 67.4dB

SFDR: 80.8dB

Stable performance across 8 samples.

DR: 68.5dB

Comparison with SOTA CTDSM ADCs

- Only require signal flow information
- Comparable layout with manual design [SSCL '20 Mukherjee]

Comparison with SOTA CTDSM ADCs

Fully-synthesized layout

	JSSC-16	SSCL-20	CICC-19	This
	Weng	Mukherjee ¹	Li	work ¹
Architecture	CTΔΣΜ	CTΔΣΜ	VCO-CΤΔΣΜ	CTΔΣM
Layout synthesized	×	×	✓	✓
Universal synthesis	NI/A	NI / A	X	
framework	N/A	N/A	^	•
Hierarchical flow	N/A	N/A	×	✓
Constraint	N1 / A	N1 / A	~	. 🌶
generation	N/A	N/A	X	~

¹: same schematic

Comparison with SOTA CTDSM ADCs

Comparable results with other SOTA CTDSM ADCs

	JSSC-16	SSCL-20	CICC-19	This
	Weng	Mukherjee ¹	Li	work ¹
Architecture	CTΔΣΜ	CTΔΣΜ	νςο-ςτδεμ	CTΔΣM
Order	4th	3rd	1st	3rd
Area [mm²]	0.1	0.034	0.01	0.033
Fs [MHz]	320	1024	600	1024
Power [mW]	4.2	0.79	1.08	0.77
BW [MHz]	10	5	4	5
SNDR [dB]	74.4	65.6	68.8	67.4
FoMw [fJ/c-s]	49.3	51	60	40.2
FoMs [dB]	174.5	163.6	164.3	165.5

MAGICAL 1.0: Other Circuits

Comparator

Inverter-Based Feed-Forward OTA

2nd-Order CTDSM

MAGICAL 1.0: Public Release

- Open-sourced MAGICAL 1.0 (under BSD-3 license), https://github.com/magical-eda/MAGICAL with key updates:
 - Push-button, no-human-in-the-loop (can take user constraints too)
 - End-to-end analog layout generation from netlist to GDSII
 - New placement and routing engines
 - DRC clean, LVS clean
- Real-world circuit examples (PDK-stripped)
 - https://github.com/magical-eda/MAGICAL-CIRCUITS
- Open-sourced UT-AnLay dataset and ML model for analog post-layout performance prediction https://github.com/magical-eda/UT-AnLay

Acknowledgments

 The authors thank DARPA and NSF for supporting this project and TSMC for university shuttle program.

> Thank you! Q & A