Übungsblatt 12

Aufgabe 1: Partielle Ableitungen I

Bestimmen Sie die folgenden partiellen Ableitungen:

(a)
$$f(x,t) = x^5 - 2x^4 + t$$
, $\frac{\partial f}{\partial x} =$

(b)
$$f(x,t) = x^5 - 2x^4 + t$$
, $\frac{\partial f}{\partial t} =$

(c)
$$f(x,t) = x^5 - 2x^4 + t$$
, $\frac{\partial f}{\partial z} =$

(d)
$$f(x,y,z) = zy \sqrt{1 + x^2}$$
, $\frac{\partial f}{\partial x} =$

(e)
$$f(x,y,z) = zy \sqrt{1 + x^2}$$
, $\frac{\partial f}{\partial y} =$

(f)
$$f(x,y,z) = zy \sqrt{1 + x^2}$$
, $\frac{\partial f}{\partial z} =$

(g)
$$f(\theta,y) = y\sin(b\theta + c)$$
, $\frac{\partial f}{\partial \theta} =$

(h)
$$f(\theta,y) = y\sin(b\theta + c)$$
, $\frac{\partial f}{\partial y} =$

Aufgabe 2: Partielle Ableitungen II

Gegeben sei das Skalarfeld $f(x,y,z) = ze^{ax} - y^2xz$, a = const. Berechnen Sie

(a)
$$\frac{\partial f}{\partial x} =$$

Übungsblatt 12

(b)
$$\frac{\partial f}{\partial y} =$$

(c)
$$\frac{\partial f}{\partial z} =$$

(d)
$$\frac{\partial^2 f}{\partial x \partial y} =$$

(e)
$$\frac{\partial f}{\partial t} =$$

(f)
$$\frac{\partial f}{\partial y \partial x} =$$

(g)
$$\frac{\partial^2}{\partial y^2} f =$$

(h) Bonus: Mit
$$n>1$$
, $\frac{\partial^{(n)}}{\partial x^{(n)}}f=$

(i) Bonus:
$$df =$$

Aufgabe 3: Gradient

Gegeben sei das Skalarfeld $f(x,y,z) = x^2z^3 + \frac{1}{y}$.

Berechnen Sie den sogenannten Gradienten (-vektor)

$$gradf = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

Übungsblatt 12

Wie kann man diesen Vektor interpretieren?

Aufgabe 4: Kritische Punkte

Bestimmen Sie alle kritischen Punkte der folgenden Funktion und bestimmen Sie, ob es sich um Hochpunkte, Tiefpunkte oder Sattelpunkte handelt.

$$f(x,y) = x(x^2 + y^2 - 3)$$