DM-IMECC-UNICAMP-Pós-graduação em Matemática Exame de Qualificação de Mestrado - Análise no \mathbb{R}^n 25/7/2016

- Cada questão vale 2 pontos.
- **1.** Sejam $f: \mathbb{R}^2 \to \mathbb{R}^3$ e $g: \mathbb{R}^3 \to \mathbb{R}^2$ dadas por $f(\mathbf{x}) = (e^{2x_1+x_2}, 3x_2-\cos x_1, x_1^2+x_2+2), \qquad g(\mathbf{y}) = (3y_1+2y_2+y_3^2, y_1^2-y_3+1),$ e $F = g \circ f$. Mostre que F é invertível numa vizinhança de $\mathbf{0}$ e calcule a matriz jacobiana $(JF^{-1})(F(\mathbf{0}))$. $(\mathbf{x} = (x_1, x_2), \ \mathbf{y} = (y_1, y_2, y_3), \ \mathbf{0} = (0, 0).)$
- **2.** Seja $f: U \to \mathbb{R}^m$ de classe C^1 em um aberto U do \mathbb{R}^n . Mostre que se Df(a) = 0, $a \in U$, então existe um $\varepsilon > 0$ tal que $|f(x) f(y)| \le |x y|$ para todo $x, y \in B_{\varepsilon}(a)$.
- **3.** Sejam f,g funções de classe C^1 em um aberto do \mathbb{R}^n . Mostre que se $g^{-1}(c) \neq \emptyset$ onde $c \in \mathbb{R}$ é um valor regular de g ($\nabla g(x) \neq 0$ para todo $x \in g^{-1}(c)$) e $a \in g^{-1}(c)$ é um ponto de mínimo de $f|g^{-1}(c)$ (f restrita a $g^{-1}(c)$) então $\nabla f(a) = \lambda \nabla g(a)$ para algum $\lambda \in \mathbb{R}$.
- **4.** Seja M uma n-variedade em \mathbb{R}^{n+k} . Mostre que se existem k campos de vetores v_1, \dots, v_k em \mathbb{R}^{n+k} contínuos normais a M ($v_j(p) \perp T_pM$ para todo $p \in M$, $j = 1, \dots, k$) que são lineamente independentes em todo ponto de M então M é orientável.
- **5.** (a) (1 pt). Sejam M uma (k+l+1)-variedade compacta orientada em \mathbb{R}^n , com o ∂M com a orientação induzida, se $\partial M \neq \emptyset$, e, ω e η formas de classe C^1 de ordem k e l, respectivamente, definidas numa vizinhança de M, e com o suporte de uma delas contido no interior de M $(M \partial M)$. Mostre que $\int_M d\omega \wedge \eta = -(-1)^k \int_M \omega \wedge d\eta$.
- (b) (1 pt). Sejam M uma 3-variedade em \mathbb{R}^3 compacta e orientada, com ∂M não vazio e tendo a orientação induzida, e, X e Y campos vetoriais de classe C^1 definidos numa vizinhança de M. Mostre que

$$\int_{\mathrm{Int}M} \langle \mathrm{rot}X, Y \rangle = \int_{\partial M} \langle X \times Y, \nu \rangle dV + \int_{\mathrm{Int}M} \langle X, \mathrm{rot}Y \rangle,$$

onde ν é o campo unitário normal a ∂M e apontando para fora de M.

Bom Exame!