SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.; Yusuke NAKAMURA

<120> New Protein and its DNA

<130> 2619WOOP

<150> JP 11-181131

<151> 1999-06-28

<150> JP 11-192391

<151> 1999-07-06

<150> JP 2000-017770

<151> 2000-01-21

<160> 14

<210> 1

<211> 351

<212> PRT

<213> Homo sapiens

<220>

<223>

<400> 1

Met Gly Asp Pro Glu Arg Pro Glu Ala Ala Gly Leu Asp Gln Asp Glu

1 5 10 15

Arg Ser Ser Ser Asp Thr Asn Glu Ser Glu Ile Lys Ser Asn Glu Glu

20

25

30

Pro Leu Leu Arg Lys Ser Ser Arg Arg Phe Val Ile Phe Pro Ile Gin

		35					40					45			
Tyr	Pro	Asp	He	Trp	Lys	Met	Tyr	Lys	Gln	Ala	Gln	Ala	Ser	Phe	Trp
	50					55	•	*. :			60				
Thr	Ala	Glu	Glu	Val	Asp	Leu	Ser	Lys	Asp	Leu	Pro	His	Trp	Asn	Lys
65					70					75				٠	80
Leu	Lys	Ala	Asp	Glu'	Lys	Tyr	Phe	Ile	Ser	His	Ile	Leu	Ala	Phe	Phe
				85					90					95	
Ala	Ala	Ser	Asp	Gly	He	Val	Asn	Glu	Asn	Leu	,Va l	Glu	Arg	Phe	Ser
			100					105		•			110		
Gln	Glu	Val	Gln	Val	Pro	Glu	Ala	Arg	Cys	Phe	Tyr	Gly	Phe	Gln	He
		115					120					125			
Leu	Ile	Glu	Asn	Val	His	Ser	Glu	Met	Tyr	Ser	Leu	Leu	Ile	Asp	Thr
	130					135					140				
Tyr	He	Arg	Asp	Pro	Lys	Lys	Arg	Glu	Phe	Leu	Phe	Asn	Ala	He	Glu
145					150					155					160
Thr	Met	Pro	Tyr	Val	Lys	Lys	Lys	Ala	Asp	Trp	Ala	Leu	Arg	Trp	Ile
				165					170					175	
Ala	Asp	Arg	Lys	Ser	Thr	Phe	Gly	Glu	Arg	Val	Val	Ala	Phe	Ala	Ala
			180			•		185					190		
Val	Glu	Gly	Val	Phe	Phe	Ser	Gly	Ser	Phe	Ala	Ala	Ile	Phe	Trp	Leu
		195					200					205			
Lys	Lys	Arg	Gly	Leu	Met	Pro	Gly	Leu	Thr	Phe	Ser	Asn	Glu	Leu	Ile
	210					215			-		220				

Ser	Arg	Äsp	Glu	Gly	Leu	His	Cys	Asp	Phe	Ala	Cys	Leu	Met	Phe	Gln
225					230					235					240
Tyr	Leu	Val	Asn	Lys	Pro	Ser	Glu	Glu	Arg	Val	Arg	Glu	Ile	Ile	Va 1
				245					250					255	
Asp	Ala	Val	Lys	Ile	Glu	Gln	Glu	Phe	Leu	Thr	Glu	Ala	Leu	Pro	Val
			260		`			265				•	270		
Gly	Leu	Ile	Gly	Met	Asn	Cys	He	Leu	Met	Lys	Gln	Tyr	Ile	Glu	Phe
		275					280				÷	285			
Val	Ala	Asp	Arg	Leu	Leu	Val	Glu	Leu	Gly	Phe	Ser	Lys	Val	Phe	Gln
	290					295					300				
Ala	Glu	Asn	Pro	Phe	Asp	Phe	Met	Glu	Asn	Ile	Ser	Leu	Glu	Gly	Lys
305					310					315					320
Thr	Asn	Phe	Phe	Glu	Lys	Arg	Val	Ser	Glů	Tyr	Gln	Arg	Phe	Ala	Val
				325					330					335	
Met	Ala	Glu	Thr	Thr	Asp	Asn	Val	Phe	Thr	Leu	Asp	Ala	Asp	Phe	
			340					345					350		
<210	> 2														:
<211	> 10	53													
<212	> DN	A													
(213)	> Ho	mo s	apie	ns											
(220)	>														
(223)	>														

<400> 2

AT	GGGCGACC	CGGAAAGGCC	GGAAGCGGCC	GGGCTGGATC	AGGATGAGAG	ATCATCTTCA	60
GA	CACCAACG	AAAGTGAAAT	AAAGTCAAAT	GAAGAGCCAC	TCCTAAGAAA	GAGTTCTCGC	120
CG	GTTTGTCA	TCTTTCCAAT	CCAGTACCCT.	GATATTTGGA	AAATGTATAA	ACAGGCACAG	180
GC	ттссттст	GGACAGCAGA	AGAGGTCGAC	TTATCAAAGG	ATCTCCCTCA	CTGGAACAAG	240
CT	TAAAGCAG	ATGAGAAGTA	CTTCATCTCT	CACATCTTAG	CCTTTTTTGC	AGCCAGTGAT	300
GG	AATTGTAA	ATGAAAATTT	GGTGGAGCGC	TTTAGTCAGG	AGGTGCAGGT	TCCAGAGGCT	360
CG	стсттст	ATGGCTTTCA	AATTCTCATC	GAGAATGTTC	ACTCAGAGAT	GTACAGTTTG	420
ĊТ	GATAGACA	CTTACATCAG	AGATCCCAAG	AAAAGGGAAT	,TTTTATTTAA	TGCAATTGAA	480
AC	CATGCCCT	ATGTTAAGAA	AAAAGCAGAT	TGGGCCTTGC	GATGGATAGC	AGATAGAAAA	540
TC	TACTTTTG	GGGAAAGAGT	GGTGGCCTTT	GCTGCTGTAG	AAGGAGTTTT	CTTCTCAGGA	600
TC	TTTTGCTG	CTATATTCTG	GCTAAAGAAG	AGAGGTCTTA	TGCCAGGACT	CACTTTTTCC	660
AA	TGAACTCA	TCAGCAGAGA	TGAAGGACTT	CACTGTGACT	TTGCTTGCCT	GATGTTCCAA	720
TA	CTTAGTAA	ATAAGCCTTC	AGAAGAAAGG	GTCAGGGAGA	TCATTGTTGA	TGCTGTCAAA	780
ΑT	TGAGCAGG	AGTTTTTAAC	AGAAGCCTTG	CCAGTTGGCC	TCATTGGAAT	GAATTGCATT	840
TT	GATGAAAC	AGTACATTGA	GTTTGTAGCT	GACAGATTAC	TTGTGGAACT	TGGATTCTCA	900
AA	GGTTTTTC	AGGCAGAAAA	TCCTTTTGAT	TTTATGGAAA	ACATTTCTTT	AGAAGGAAAA	960
AC.	AAATTTCT	TTGAGAAACG	AGTTTCAGAG	TATCAGCGTT	TTGCAGTTAT	GGCAGAAACC	1020
AC.	AGATAACG	TCTTCACCTT	GGATGCAGAT	TTT			1053

<210> 3

<211> 4955

<212> DNA

<213> Homo sapiens

<220>

<223>

<400> 3

60 120 GTCCCTAGAG CTGGGGGCGG GGCGGACCCA GCGGACCAGC GGACCACCTG GGTGCTGTCG 180 TAGTTGGAGG TGGCCTGAGG AGCTCAGTTC CCTCAGCGCC CGTAGCTTCG GCGGAGTCTG 240 CGCGATGGGC GACCCGGAAA GGCCGGAAGC GGCCGGGCTG GATCAGGATG AGAGATCATC 300 TTCAGACACC AACGAAAGTG AAATAAAGTC AAATGAAGAG CCACTCCTAA GAAAGAGTTC 360 TCGCCGGTTT GTCATCTTTC CAATCCAGTA CCCTGATATT TGGAAAATGT ATAAACAGGC 420 ACAGGETTCC TTCTGGACAG CAGAAGAGGT CGACTTATCA AAGGATCTCC CTCACTGGAA 480 CAAGCTTAAA GCAGATGAGA AGTACTTCAT CTCTCACATC TTAGCCTTTT TTGCAGCCAG 540 TGATGGAATT GTAAATGAAA ATTTGGTGGA GCGCTTTAGT CAGGAGGTGC AGGTTCCAGA 600 GGCTCGCTGT TTCTATGGCT TTCAAATTCT CATCGAGAAT GTTCACTCAG AGATGTACAG 660 TTTGCTGATA GACACTTACA TCAGAGATCC CAAGAAAAGG GAATTTTTAT TTAATGCAAT 720 TGAAACCATG CCCTATGTTA AGAAAAAAGC AGATTGGGCC TTGCGATGGA TAGCAGATAG 780 AAAATCTACT TTTGGGGAAA GAGTGGTGGC CTTTGCTGCT GTAGAAGGAG TTTTCTTCTC 840 AGGATCTTTT GCTGCTATAT TCTGGCTAAA GAAGAGAGGT CTTATGCCAG GACTCACTTT 900 TTCCAATGAA CTCATCAGCA GAGATGAAGG ACTTCACTGT GACTTTGCTT GCCTGATGTT 960 CCAATACTTA GTAAATAAGC CTTCAGAAGA AAGGGTCAGG GAGATCATTG TTGATGCTGT 1020 CAAAATTGAG CAGGAGTTTT TAACAGAAGC CTTGCCAGTT GGCCTCATTG GAATGAATTG 1080 CATTTTGATG AAACAGTACA TTGAGTTTGT AGCTGACAGA TTACTTGTGG AACTTGGATT 1140 CTCAAAGGTT TTTCAGGCAG AAAATCCTTT TGATTTTATG GAAAACATTT CTTTAGAAGG 1200 AAAAACAAAT TTCTTTGAGA AACGAGTTTC AGAGTATCAG CGTTTTGCAG TTATGGCAGA 1260

AACCACAGAT AACGTCTTCA CCTTGGATGC AGATTTTTAA AAAACCTCTC GTTTTAAAAC 1320 TCTATAAACT TGTCATTGGT AAATAGTAGT CTATTTTCCT CTGCTTAAAA AAAATTTTAA 1380 GTATATCCTT TAAAGGACTG GGGGTTTGCT: CAAAAGGAAA TCCAAAACCT ATTCTAAACA 1440 ATTTGCATTT ATATAATTTT CCTGTTTAAC AACAAGAGTG TGACCTAAAT GCTTTTGTCT 1500 TGTCACTGAA ATAAAAGATG GCATTATGTG GTTAAGAGCA TGGGGCGAGG GGTCAGACAT 1560 GAGTCTAAGG TTCTGCCCTT ACTCCAGTGT GTGACCCTTG GCAAGTCAGT TAATCTTGGT 1620 AAACCTCGGT GTACTTATCT TTAAAATGGG AGTAATAGTA GGTCCTAAAT TCATAGAGTG 1680 GATATTAGGA TTAGGATGCA AAAATAAATG CTTAACCAAC ACTACTACTG TTAGCACCAC 1740 TACTAATTAT CATTCATTGA TAATATTAAT TGCAATGATG TTGTAATAAA ATACTCTCAT 1800 TTCCTTAAAA TAATTGTGAT TCTAGGTCCT AGGATCTAGA ATTAGATCTT TGTATTTTTA 1860 ATGCTTAGGG GAAGAATATA AGTATCTCCT TAAAAAGAAC ATAATTCTCA TTCACGCAAG 1920 AATAAGTTCT TTGAATTCCT TAGTATGTAG TGAAGAAAAT TTAGTTGTTA GTTGCTTTGG 1980 GAAGCCTACT TATGGAGTGG AAACCAGGAG GTTATCATGG TAGTTGACCT TGTAAGAAAA 2040 ATGATTCTTC TTCAGAAATT AAAAACATAA CTATTGCCAG ATTTAGCTCT GGAATGTTTA 2100 GAATCAGGCT AGAATAGCAT TTTCCAAAGA ATATTCTAAG AGCTATTAGC TCCTCTAGAT 2160 ATTTTGTTGG GGGAAAAAGG GGATTCTGTG GTCAGATGAG TTTGGGAAAT GCTGAACACT 2220 TCATTCTTCT TTAGCAAGTA CAGTCAGTAC ATCAAAGACT GAGCAGTTCA GTGGTACATA 2280 AATTTATCTC GCCCTGCATA TTCCCAACAT ACTTAACACA GATGTTTTTT ACCTGTTAAC 2340 ATETCACCCA GCTAGTGTTC CTCAGAACAA AGATTGGAAA AAGCTGGCCG AGAACCATTT 2400 ATACATAGAG GAAGGGCTTA CGGACTGAGA AAGGGAGAAC ATGGTAGGGA TTATTGAATC 2460 ATTTCAAATT TATACCAAGC CTGAATAGTG TACCAGCAAT TGACTTAGGC TGTGTTTCTT 2520 TATGGTTTTA AAACTCTTGA GCTGTTATAA GAGATAGTTC TTTTAATGTG ACTATGCAAC 2580 ATGATAGCCA ATGGTGAGGG AAAAGGAGGT TTCTCTAGAA GAGTCTGATG AAAGGCCGGG 2640

AACCAAGGTT TTTGAGAAGT CTGCCCCTAT TTATTTTTAG TAAGTATCAA GAGGTAGCCT 2700 GAGCCTAGTT AGAGTTAGAC CTGTCTTTGG ATGAAGAAGT CTTAATACTG AAATACTGAA 2760 TTTTTAATAC ATTATTATTT GGTATTCTGT ATACCCCTTC AAGCAGTTGT TTCCCATTCC 2820 CAACAAACTG TACTTTATAC AATTCTGGAT GCTAAAACTT AGAGATTTTC TCTTTGCATA 2880 AATTTTGGCT CCATTCTTTC CATAACAATC TAATCAAAAC TGGGAGTTCT CAAGTGAATG 2940 CAAAAGGAGC AGGCCATAAC TTTATTTGTT AGAGACACTG TCAGAAACTT GAGATCTTTT 3000 GGCCTATGAT AATACCATTA ATTTTTGCAT TGCTTCAGTT TGCCAAGTGT TTTTACATCA 3060 TCTCATTTGA TCTCAAAACA GCTTGACAGA GCAACTGTTA TTGAAATATT ACAGATGGAA 3120 AGAATGAGGC TCAGGGAAGT TAAATGACTT GGCCAAGATC TGCTCATCGT CACTGTCTGT 3180 ACAGTATTTT TTTTTAGAGG TTGTAATGTC TCAGATTTAG TCCTTTACCA TCTATGTTGA 3240 TTTGCTTTTG TCTATTTCCT CATTAATTGA ATATACTTTA AATATATAT TTAAAGTATC 3300 AAAATATAGA GAGACATTTG AACTGTATTC AGGTAATATG TTTAAAGATA TTTATATATT 3360 GCCATACAAA AACTTAACAT TTAAAACTGA TAATATCTGT AATGACATCA GAATGAAAGA 3420 AAAAAAATTG TACAGTGTAT ATTCCTTTGT TTTGAATCCA AATCTTTTTC ATAGGTAATG 3480 ACAGATGCCT TAATGTGAAG CTTATTTATA ATAGCAATAA ACCTAACTGG ATTTGGATGA 3540 AGAAGTCTTA ATACTGACAT ACTGGATTTT TAATGCACTG GTTTGTTATT TGGTATTCTA 3600 TCTCTTTTTC CAGGCCTCCA GGTTGCACAT TTATTTATTA TGTTCAATAC TTTGGTTCTT 3660 AGTTCTTAAA GAATCAAGAA GTTGTGTAAT CTTTTAAAAA TATTATCTTG CAGATAAAGA 3720 AAAAAATTAA GAGTGTGTTT ACAACTGTTT TCTCTTTTTT ACAGTACATG TATTTAAATC 3780 ATTGCTATAA TAAAGTTAAG TTCATTAGGA ATATAAAAAC TTGCAGTTCT ATGATAGATT 3840 GCATTTATTA AAAATGTTTC ATTGTATCAC ATAGAAATAT GGCCAGGAAG GACTTGAGAA 3900 GACAGTTTGA TCCATTGCTT TTAGACAGGA CTGGGTTTTG CTGTCCAATT ATATACAATA 3960 ATAGTTTTTC TTACAACTAA GCTGGCCCCA GCCTTGTCTT GATATTAATA CATGAAATTT 4020

TTATAATTGT CTCATTGTCT CATTTAGAAA CATCCATATT TTTCTGCTTT TTCTATTGCC 4080 ATTITITATI TGTGCATGAA TTGATTATTG AGAAAATGTA GCAGTTTGCA TATTTAAAAA 4140 TTAATCATTT TGCATTTTAC ATTTAAATAT GCTAACATCG CTGTCATAGA ATTCCCAAAT 4200 TTCATTTGTA GATACTGAAC TAAGGGCTAA TGTCAGGAGC TGATTTTTAA TGATAAAGCT 4260 GCAGATGGGC TAAATAAAAG CCAAATTAAT CCTACAATCA GGTATTATGT TTTTAAACCA 4320 AGTTGAGTGA ATTGGTAGTG GACTTGGGAA ATCTTCCCCA GCAGAATCTG GATGAATGGC 4380 ACAGAATTGA AATCTCTTTG TTTCCCACCA TTTCCCTTTA AGTGCTCTGC TCCTTTGTAA 4440 AAAGTTAAAG ATTTGAAAGA GAATCTCATA TTCCCGAGGC ATTAGGAAGA AAGGATTTAA 4500 TCCCTTCAAT TTGGGGCTTA ATCTTGTTTA AAAAAATGTA AGTGAAGATG GAAGGCTGGA 4560 GAGAATGATT GCTTTTTGTA CAGTTAAATA AGGTCACAAT ATTCTTACAT ACTTTGTTTT 4620 ACAACTGTGT TTTCATTTTT TCAAATGTCT GGCCATTTAG CAAAGTTATT TACTATTTAC 4680 TGTGTACATA GAAAGGTTTA TTATGTGTGG TGTATCTAAA TTTTTTTTTG CTGAAATACA 4740 TTATGGTCAA TCAAGCCAAG CCTGCATGTA CAGAATTTGT TTTTTTTCA AATAAATTAG 4800 TTGTTTTCTT ATTTTTTTGG CTTAGTATGT TGAAATAAAC TATGGTATCT TCATCATTTT 4860 GTACATTTCC TTTTTGAGGA AGGTTTCTTT ATAAGTGCAA GGGCTACCCT AATAAAGGAA 4920 TGTATATACT TACAAAAAA AAAAAAAAA AAAAA 4955

<210> 4

<211> 1081

<212> DNA

<213 Homo sapiens

<220>

<223>

<400> 4

GAATTCCAGA	CCGTGCATCA	TGGGCGACCC	GGAAAGGCCG	GAAGCGGCCG	GGCTGGATCA	60
GGATGAGAGA	TCATCTTCAG	ACACCAACGA	AAGTGAAATA	AAGTCAAATG	AAGAGCCACT	120
CCTAAGAAAG	AGTTCTCGCC	GGTTTGTCAT	CTTTCCAATC	CAGTACCCTG	ATATTTGGAA	180
AATGTATAAA	CAGGCACAGG	сттссттст	GACAGCAGAA	GAGGTTGACT	TATCAAAGGA	240
TCTCCCTCAC	TGGAACAAGC	TTAAAGCAGA	TGAGAAGTAC	TTCATCTCTC	ACATCTTAGC	300
CTTTTTTGCA	GCCAGTGATG	GAATTGTAAA	TGAAAATTTG	GTGGAGCGCT	TTAGTCAGGA	360
GGTGCAGGTT	CCAGAGGCTC	GCTGTTTCTA	TGGCTTTCAA	ATTCTCATCG	AGAATGTTCA	420
CTCAGAGATG	TACAGTTTGC	TGATAGACAC	TTACATCAGA	GATCCCAAGA	AAAGGGAATT	480
TTTATTTAAT	GCAATTGAAA	CCATGCCCTA	TGTTAAGAAA	AAAGCAGATT	GGGCCTTGCG	540
ATGGATAGCA	GATAGAAAAT	CTACTTTTGG	GGAAAGAGTG	GTGGCCTTTG	CTGCTGTAGA	600
AGGAGTTTTC	TTCTCAGGAT	CTTTTGCTGC	TATATTCTGG	CTAAAGAAGA	GAGGTCTTAT	660
GCCAGGACTC	ACTTTTTCCA	ATGAACTCAT	CAGCAGAGAT	GAAGGACTTC	ACTGTGACTT	720
TGCTTGCCTG	ATGTTCCAAT	ACTTAGTAAA	TAAGCCTTCA	GAAGAAAGGG	TCAGGGAGAT	780
CATTGTTGAT	GCTGTCAAAA	TTGAGCAGGA	GTTTTTAACA	GAAGCCTTGC	CAGTTGGCCT	840
CATTGGAATG	AATTGCATTT	TGATGAAACA	GTACATTGAG	TTTGTAGCTG	ACAGATTACT	900
TGTGGAACTT	GGATTCTCAA	AGGTTTTTCA	GGCAGAAAAT	CCTTTTGATT	TTATGGAAAA	960
CATTTCTTTA	GAAGGAAAAA	CAAATTTCTT	TGAGAAACGA	GTTTCAGAGT	ATCAGCGTTT	1020
TGCAGTTATG	GCAGAAACCA	CAGATAACGT	CTTCACCTTG	GATGCAGATT	TTTAACTCGA	1080
G						1081

<210> 5

<211> 389

<211> PRT

<213> Homo sapiens

<220	0>	•													
<223	3> .														
<400	0> 5							٠.							
Met	Leu	Ser	Leu	Arg	Val	Pro	Leu	Ala	Pro	He	Thr	Asp	Pro	Gln	Gln
1				5					10					15	
Leu	Gln	Leu	Ser	Pro	Leu	Lys	Gly	Leu	Ser	Leu	Val	Asp	Lys	Glu	Asn
			20					25					30		
Thr	Pro	Pro	Ala	Leu	Ser	Gly	Thr	Arg	Val	Leu	Ala	Ser	Lys	Thr	Ala
		35					40					45			
Arg	Arg	Ile	Phe	Gln	Glu	Pro	Thr	Glu	Pro	Lys	Thr	Lys	Ala	Ala	Ala
	50					55					60				
Pro	Gly	Val	Glu	Asp	Glu	Pro	Leu	Leu	Arg	Glu	Asn	Pro	Arg	Arg	Phe
65				•	70					75					80
Val	He	Phe	Pro	Ile	Glu	Tyr	His	Asp	Ile	Trp	Gln	Met	Tyr	Lys	Lys
				85					90					95	
Ala	Glu	Ala	Ser	Phe	Trp	Thr	Ala	Glu	Glu	Val	Asp.	Leu	Ser	Lys	Asp
•			100					105					110		
He	Gln	His	Trp	Glu	Ser	Leu	Lys	Pro	Glu	Glu	Arg	Tyr	Phe	Ile	Ser
		115					120					125			
His	Val	Leu	Ala	Phe	Phe	Ala	Ala	Ser	Asp	Gly	Ile	Val	Asn	Glu	Asn
	130					135					140				
Leu	Val	Glu	Arg	Phe	Ser	Gln	Glu	Val	Gln	Ile	Thr	Glu	Ala	Arg	Cys
145					150					155					160

Phe	Tyr	Gly	Phe	Gln	Ile	Ala	Met	Glu	Asn	Ile	His	Sei	Glu	Met	Ty
				165					170)				175	•
Ser	Leu	Leu	Ile	Asp	Thr	Tyr	Ile	Ŀys	Asp	Pro	Lys	Glu	Arg	Glu	Phe
			180					185					190	١	
Leu	Phe	Asn	Ala	Ile	Glu	Thr	Met	Рго	Cys	Val	Lys	Lys	Lys	Ala	Asp
		195			1		200					205			
Trp	Ala	Leu	Arg	Trp	He	Gly	Asp	Lys	Glu	Ala	Thr	Tyr	Gly	Glu	Arg
	210					215					220	.•			
Val	Val	Ala	Phe	Ala	Ala	Val	Glu	Gly	Ile	Phe	Phe	Ser	Gly	Ser	Phe
225					230					235					240
Ala	Ser	Ile	Phe	Trp	Leu	Lys	Lys	Arg	Gly	Leu	Me t	Pro	Gly	Leu	Thr
				245					250					255	
Phe	Ser	Asn	Glu	Leu	Ile	Ser	Arg	Asp	Glu	Gly	Leu	His	Cys	Asp	Phe
			260					265					270		
Ala	Cys	Leu	Met	Phe	Lys	His	Leu	Val	His	Lys	Pro	Ser	Glu	Glu	Arg
		275					280	,				285			
Val	Arg	Glu	He	Ile	He	Asn	Ala	Val	Arg	Ile	Glu	Ġln	Glu	Phe	Leu
	290		٠			295		•			300				
[hr	Glu	Ala	Leu	Pro	Val	Lys	Leu	Ile	Gly	Met	Asn	Cys	Thr	Leu	Met
305					310	-				315					320
уs	Gln	Tyr	Ile	Glu	Phe	Val	Ala	Asp	Arg	Leu	Met	Leu	Glu	Leu	Gly
				325					330					335	
he	Ser	Ive	Va 1	Dho	Ara	Va I	Cln	Acn	Dro	Dhe	A a =	Dhe	No.+	Clas	A

340

345

350

Ile Ser Leu Glu Gly Lys Thr Asn Phe Phe Glu Lys Arg Val Gly Glu

355

360

365

Tyr Gln Arg Met Gly Val Met Ser Ser Pro Thr Glu Asn Ser Phe Thr

370

375

380

Leu Asp Ala Asp Phe'

385

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223>

⟨400⟩ 6

TGAACTCATC AGCAGAGATG A 21

<210> 7

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 7

CCTAATCCTA ATATCCACTC TA 22

```
⟨210⟩ 8
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223>
<400> 8
TTCCCCAAAA GTAGATTTTC TATCTG 26
<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223>
<400> 9
GCAAACTGTA CATCTCTGAG TGAAC
                              25
<210> 10
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223>
```

<400> 10

CCGGAATTCC AGACCGTGCA TCATGGGCGA CCCGGAAAGG CCG 43	
<210> 11	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223>	
<400> 11	
CCGCTCGAGT TAAAAATCTG CATCCAAGGT GAAGAC 36	
<210> 12	
<211> 1053	
<212> DNA	
<213> Homo sapiens	
<220>	
₹223>	
<400> 12	
ATGGGCGACC CGGAAAGGCC GGAAGCGGCC GGGCTGGATC AGGATGAGAG ATG	CATCTTCA 60
GACACCAACG AAAGTGAAAT AAAGTCAAAT GAAGAGCCAC TCCTAAGAAA GAC	GTTCTCGC 120
CGGTTTGTCA TCTTTCCAAT CCAGTACCCT GATATTTGGA AAATGTATAA ACA	AGGCACAG 180
GCTTCCTTCT GGACAGCAGA AGAGGTTGAC TTATCAAAGG ATCTCCCTCA CTC	GGAACAAG 240
CTTAAACCAC ATCACAACTA CTTCATCTCT CACATCTTAC CCTTTTTTCC ACC	CEACTEAT 300

GGAATTGTAA ATGAAAATTT GGTGGAGCGC TTTAGTCAGG AGGTGCAGGT TCCAGAGGCT

CGCTGTTTCT ATGGCTTTCA AATTCTCATC GAGAATGTTC ACTCAGAGAT GTACAGTTTG

360

420

CTGATAGA	CA	CTTACATCAG	AGATCCCAAG	AAAAGGGAAT	TTTTATTTAA	TGCAATTGAA	480
ACCATGCC	CT	ATGTTAAGAA	AAAAGCAGAT	TGGGCCTTGC	GATGGATAGC	AGATAGAAAA	540
TCTACTTT	TG	GGGAAAGAGT	GGTGGCCTTT	GCTGCTGTAG	AAGGAGTTTT	CTTCTCAGGA	600
TCTTTTGC	TG	CTATATTCTG	GCTAAAGAAG	AGAGGTCTTA	TGCCAGGACT	CACTTTTTCC	660
AATGAACT	CA	TCAGCAGAGA	TGAAGGACTT	CACTGTGACT	TTGCTTGCCT	GATGTTCCAA	720
TACTTAGT	AA	ATAAGCCTTC	AGAAGAAAGG	GTCAGGGAGA	TCATTGTTGA	TGCTGTCAAA	780
ATTGAGCA	GG	AGTTTTTAAC	AGAAGCCTTG	CCAGTTGGCC	TCATTGGAAT	GAATTGCATT	840
TTGATGAA	AC	AGTACATTGA	GTTTGTAGCT	GACAGATTAC	TTGTGGAACT	TGGATTCTCA	900
AAGGTTTT	TC	AGGCAGAAAA	TCCTTTTGAT	TTTATGGAAA	ACATTTCTTT	AGAAGGAAAA	960
ACAAATTT	CT	TTGAGAAACG	AGTTTCAGAG	TATCAGCGTT	TTGCAGTTAT	GGCAGAAACC	1020
ACAGATAA	CG	TCTTCACCTT	GGATGCAGAT	TTT			1053

<210> 13

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 13

CGCGTCCTGG CCAGCAA

17

<210> 14

⟨211⟩ 20

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 14

CCAAGTAAGG GCACATCTTC 20