ÁLGEBRA LINEAL - Clase 14/07

Para hacer en clase:

Ejercicio 1. (Ej: 21 (vi)) Calcular el polinomio minimal de

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 \\ 3 & 4 & 0 & -1 \end{pmatrix}.$$

Ejercicio 2. (Ej: 25 (v)) Para todo $n \in \mathbb{N}$ calcular

$$\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}^n$$
.

Ejercicio 3. (Ej: 28 (i)) Hallar una matriz $A \in \mathbb{C}^{3\times 3}$ tal que $m_A(X) = X^3 - 5X^2 + 6X + 8$. Decidir si A es diagonalizable.

Ejercicio 4. (Ej: 33)

- (i) Sea V un K-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal diagonalizable. Si S es un subespacio de V que es f-invariante, probar que $f|_S:S\to S$ es diagonalizable.
- (ii) Sean $A, B \in K^{n \times n}$ tales que AB = BA y sea $E_{\lambda}(A) = \{x \in K^n / Ax = \lambda x\}$. Probar que $E_{\lambda}(A)$ es B-invariante.
- (iii) Sean $A, B \in K^{n \times n}$ dos matrices diagonalizables tales que A.B = B.A. Probar que existe $C \in GL(n,K)$ tal que $C^{-1}AC$ y $C^{-1}BC$ son diagonales. (Es decir, A y B se pueden diagonalizar simultáneamente.)

Ejercicios de la guía relacionados: 21 a 33.