Weekly Puzzle Calculus

TW-C

02/11/2024 - 08/12/2024

Limits:

- 1. (a) We wish to show for each positive real ϵ , there exists is a positive real δ such that for all x satisfying $0 < |x-6| < \delta$, then $|f(x)-25| < \epsilon$, but as f(x) = 3x+7, then we need to show $|3x+7-25| < \epsilon$ which is the same as $|3x-18| < \epsilon$. But we also have $|x-6| < \delta$, so we can choose $\delta = \frac{\epsilon}{3}$, so our proof is complete.
 - (b) We wish to show for each positive real ϵ , there exists is a positive real δ such that for all x satisfying $0 < |x-2| < \delta$, then $|f(x)-4| < \epsilon$, but as $f(x) = x^2$, then we need to show $|x^2-4| < \epsilon$ which is the same as $|x+2| \times |x-2| < \epsilon$.

We can now do some work to derive an answer, and then prove it to ensure it is correct. Suppose $\delta < 1$, then |x-2| < 1, so 1 < x < 3, so 3 < x+2 < 5. Therefore, as |x+2| < 5 and $|x-2| < \delta$. So $|x^2-4| < 5\delta = \epsilon$. So as we have both $\delta < 1$ and $\delta = \frac{\epsilon}{5}$. So, let $\delta = min\{1, \frac{\epsilon}{5}\}$.

Proof:

We shall have 2 cases, $\delta < 1$ or $\delta < \frac{\epsilon}{5}$. (If $\epsilon = 5$, then use the case $\delta < 1$.)

1: If $\delta < 1$, then as $0 < |x-2| < \delta$, so $0 < |x^2-4| < |x+2|\delta$. As |x+2| < 5, and $\delta < 1$, then $|x^2-4| < 5$. But, as $\delta < 1$, then we know that $\frac{\epsilon}{5} \ge 1$ from the *min* function, so $\epsilon \ge 5$, so $|x^2-4| < \epsilon$.

- 2: If $\delta < \frac{\epsilon}{5}$, then $\frac{\epsilon}{5} < 1$, from the min function. So, then $\delta < 1$, so follow the first case.
- (c) We know that for every $\epsilon_1 > 0$, there exists a $\delta_1 > 0$ such that for all x in $0 < |x a| < \delta_1$, then $|f(x) m| < \epsilon_1$. We also know that for every $\epsilon_2 > 0$, there exists a $\delta_2 > 0$ such that for all x in $0 < |x a| < \delta_2$, then $|g(x) n| < \epsilon_2$.

If we take both ϵ_1 and ϵ_2 as $\frac{\epsilon}{2}$.

Let $\delta = \min\{\delta_1, \delta_2\}$. So if $0 < |x - a| < \delta$, then $|f(x) - m| < \frac{\epsilon}{2}$ and $|g(x) - n| < \frac{\epsilon}{2}$. So $|f(x) - m| + |g(x) - n| < \epsilon$. Using the triangle inequality, which says $|A + B| \le |A| + |B|$, we have $|(f(x) + g(x)) - (m + n)| < \epsilon$.

So if $0 < |x-a| < \delta$, we have $|(f(x)+g(x))-(m+n)| < \epsilon$. This is the definition of $\lim_{x \to a} (f(x)+g(x)) = m+n$, so we are done.

(d) We have that for every $\epsilon_1 > 0$, there exists a $\delta > 0$ such that for all x in $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon_1$. Let $\epsilon_1 = \frac{\epsilon}{c}$.

So
$$|f(x) - L| < \frac{\epsilon}{c}$$
, so $|cf(x) - cL| < \epsilon$, so $\lim_{x \to a} (cf(x)) = cL$.

Differentiation:

2. (a)
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x$$
.

- (b) Any correct answer, such as x^b , where b is any negative real.
- (c) Let the function be f. Then $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$. So $\lim_{h \to 0} (h \times f'(a)) = \lim_{h \to 0} (f(a+h) f(a)) = \lim_{x \to a} (f(x) f(a))$ So $\lim_{x \to a} (f(x) f(a)) = f'(a) \times \lim_{h \to 0} h = 0$, so $\lim_{x \to a} f(x) = f(a)$, so f is continuous at a. As this can be applied to all a in the domain of f, then if f is differentiable, it is therefore continuous.

$$\begin{split} &(\mathrm{d}) \ \, \frac{du}{dx} = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} \ \, \text{and} \ \, \frac{dv}{dx} = \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}. \\ &\frac{d(uv)}{dx} = \lim_{h \to 0} \frac{u(x+h) \times v(x+h) - u(x) \times v(x)}{h} = \lim_{h \to 0} \frac{u(x+h) \times v(x+h) - u(x) \times v(x+h) - u(x) \times v(x+h)}{h} \\ &= \lim_{h \to 0} \frac{u(x+h) \times v(x+h) - u(x) \times v(x+h)}{h} + \lim_{h \to 0} \frac{u(x+h) \times v(x+h) - u(x) \times v(x)}{h} \\ &= \left(\lim_{h \to 0} v(x+h)\right) \times \left(\lim_{h \to 0} \frac{u(x+h) - u(x)}{h}\right) + u(x) \times \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}. \end{split}$$

From the previous part, we have shown that as v is differentiable, it is continuous.

So
$$\frac{d(uv)}{dx} = v(x)\frac{du}{dx} + u(x)\frac{dv}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$
.

(e) y = arcsin(x), so x = sin(y), so as $\frac{dx}{dy} = cos(y)$, so $\frac{dy}{dx} = \frac{1}{cos(y)}$. As $-\frac{\pi}{2} < y \le \frac{\pi}{2}$ (from the range of the arcsin function), then $cos(y) \ge 0$, so $cos(y) = \sqrt{1 - x^2}$. Therefore, $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$.

Integration:

- 3. (a) $\frac{x^3}{3} + C$.
 - (b) Let $h = \frac{b-a}{n}$. We shall also take $\Delta x = h$ and so $x_i = a + ih$. So $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x = \lim_{h \to 0} \sum_{i=0}^{\frac{b-a}{h}-1} f(a+ih)h$. As $f(x) = \frac{dF}{dx} = \lim_{h \to 0} \frac{F(x+h)-F(x)}{h}$, then $\int_a^b f(x) dx = \lim_{h \to 0} \sum_{i=0}^{\frac{b-a}{h}-1} (\frac{F(a+ih+h)-F(a+ih)}{h} \times h)$ $= \lim_{h \to 0} \sum_{i=0}^{\frac{b-a}{h}-1} (F(a+ih+h)-F(a+ih)) = F(a+(\frac{b-a}{h}-1)h+h) - F(a) = F(b) - F(a)$.
 - (c) As $\frac{x^3}{3} + 3x$ differentiates to give $x^2 + 3$, then the answer is $\frac{4^3}{3} + 3 \times 4 \frac{2^3}{3} 3 \times 2 = \frac{74}{3}$.
 - (d) As ln(x) differentiates to give $\frac{1}{x}$, then the answer is ln(5) ln(1) = ln(5).