Closed-Form Optimal Two-View Triangulation Based on Angular Errors

unizar

Seong Hun Lee and Javier Civera (I3A, University of Zaragoza, Spain)

1. Two-View Triangulation

Locating the 3D point given its projections in two views of known calibration and pose.

2. Optimal Method

Correct the rays (f_0 and f_1) to make them intersect with a minimal image/angular reprojection cost, e.g.,

- L₁ norm: $d_0 + d_1$ [1] or $\theta_0 + \theta_1$ [ours]
- L_2 norm: $d_0^2 + d_1^2$ [1,4] or $\sin^2(\theta_0) + \sin^2(\theta_1)$ [3, ours]
- L_{∞} norm: max(d_0 , d_1) [2] or $\max(\theta_0, \theta_1)$ [ours]

L₁ angle minimization

If
$$\|R\widehat{f_0} \times t\| \le \|\widehat{f_1} \times t\|$$
, then
$$Rf_0' = Rf_0 - (Rf_0 \cdot \widehat{n_1}) \widehat{n_1} \text{ with } n_1 = f_1 \times t$$

$$f_1' = f_1$$

Else

$$Rf'_0 = Rf_0,$$

$$f'_1 = f_1 - (f_1 \cdot \widehat{n_0}) \, \widehat{n_0} \text{ with } n_0 = Rf_0 \times t$$

L₂ sine of angle minimization

$$Rf'_0 = Rf_0 - (Rf_0 \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

$$f'_1 = f_1 - (f_1 \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

where \hat{n} is the 2nd column of matrix V from

$$USV^{T} = SVD([R\hat{f_0} \quad \hat{f_1}]^{T} (I - \hat{t} \hat{t}^{T}))$$

5. L_{∞} angle minimization

$$Rf'_0 = Rf_0 - (Rf_0 \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

$$f'_1 = f_1 - (f_1 \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$$

where

$$\mathbf{n} = \begin{cases} \mathbf{n}_a & \text{if } \|\mathbf{n}_a\| \ge \|\mathbf{n}_b\| \\ \mathbf{n}_b & \text{otherwise} \end{cases}$$

with

$$n_{a} = (R\widehat{f_{0}} + \widehat{f_{1}}) \times t$$

$$n_{b} = (R\widehat{f_{0}} - \widehat{f_{1}}) \times t$$

- [1] R. Hartley and P. Sturm. *Triangulation*. CVIU. 1997
- [2] D. Níster. Automatic Dense Reconstruction from Uncalibrated Video Sequences. PhD thesis. 2001
- [3] J. Oliensis. Exact Two-Image Structure from Motion. TPAMI. 2002
- [4] P. Lindstrom. *Triangulation made easy*. CVPR. 2010
- [5] S. Lee and J. Civera. Triangulation: Why Optimize?. BMVC. 2019

Qualitative results of the proposed L₁ method (median)

Percentage of the total experiments (>5,5M) for which each method yields the lowest error in given criterion

		Midpoint [1]	$L_1 \ \mathrm{img}$ [1]	$L_2 \ { m img}$ [1]	L_2 img 5 it. [4]	L_{∞} img [2]	L_1 ang	L_2 ang	L_{∞} ang
Error Criterion	$\theta_0 + \theta_1$	_	_	_	_	_	100 %	_	-
	$\theta_0^2 + \theta_1^2$	-	_	7e-5 %	5e-5 %	_	-	99.9999 %	-
	$\sin^2(\theta_0) + \sin^2(\theta_1)$	_	_	_	_	_	_	100 %	-
	$\max(\theta_0, \theta_1)$	-	-	-	_	-	-	_	100 %
	$d_0 + d_1$	_	70.84%	0.002%	0.002%	_	29.16 %	_	_
	$d_0^2 + d_1^2$	_	_	23.14 %	76.86 %	_	_	_	-
	$\max(d_0, d_1)$	_	-	-	-	100 %	-	_	-

Triangulation speed 8.

	Midpoint [1]	L_1 img	L_2 img	L_{∞} img	L_2 img	L_2 img	I. and	I a and	I and
	[1]	[1]	[1]	[2]	2 it. [4]	5 it. [4]	L_1 ang	L ₂ ang	L_{∞} ang
Points/sec	42 M	65 K	92 K	270 K	1.4 M	520 K	29 M	670 K	14 M
Relative Speed	1.0	0.0016	0.0022	0.0064	0.033	0.013	0.71	0.016	0.33

Conclusions

- In this work, we derived the exact L_1 , L_2 and L_{∞} optimal solutions to two-view triangulation based on angular reprojection errors.
- Our methods are extremely simple and fast, and they guarantee global optimality under respective cost functions.