I užduotis (Dirbtinis neuronas)

Užduoties tikslas – išanalizuoti dirbtinio neurono modelio veikimo principus.

Dirbtinio neurono schema pateikta 1 pav. Čia $w_0 = b$ yra poslinkis (bias). Į neuroną turės būti paduodamos įėjimų (input) reikšmės, nurodoma aktyvacijos funkcija (turės būti realizuota slenkstinė ir sigmoidinė). Neuronas turės paskaičiuoti išėjimo reikšmę (output), sprendžiant duomenų klasifikavimo uždavinį.

1 pav. Dirbtinio neurono schema

Bus naudojami duomenys pateikti 1 lentelėje. Požymių x_1 ir x_2 reikšmės bus pateikiami į neurono įėjimus. Naudojamuose duomenyse yra tik du požymiai x_1 ir x_2 , todėl pateiktoje schemoje (1 pav.) turėtų būti tik du įėjimai ir poslinkis.

Duomenys		Klasė
x_1	x_2	t
-0,2	0,5	0
0,2	-0,7	0
0,8	-0,8	1
0,8	1	1

1 lentelė. Duomenys klasifikavimui

Užduoties punktai:

- 1. Parašykite programą (*programavimo kalbą pasirinkite patys*), kurioje būtų realizuotas dirbtinis neuronas. Šioje programoje turi būti realizuota galimybė pasirinkti aktyvacijos funkciją (slenkstinę arba sigmoidinę).
 - a. Naudodami **slenkstinę** aktyvacijos funkciją, suraskite tokias svorių (w_1, w_2) ir poslinkio (bias) (w_0) reikšmes, kad 1-oje lentelėje pateikti duomenys būtų tinkamai klasifikuoti, t. y. priskirti klasei 0 arba 1. Neurono <u>mokymo taikyti nereikia</u>. Svorius ir poslinkį reikia rasti dviem būdais: (1) pasirinktame intervale tam tikru žingsniu perrinkti svorių ir poslinkio reikšmes (w_0, w_1, w_2) ieškant tinkamos kombinacijos; (2) atsitiktinai generuoti svorių ir poslinkių reikšmes (w_0, w_1, w_2) iš tam tikro intervalo ieškant tinkamos kombinacijos. Kiekvienu būdu turi būti gautos tokios trys reikšmės (w_0, w_1, w_2) , kad "tiktų" visoms keturioms eilutėms. Poslinkis w_0 gali būti interpretuojamas, kaip vienas iš svorių.

- b. Naudodami **sigmoidinę** (žinomą kaip logistinę) aktyvacijos funkciją, suraskite tokias svorių (w_1, w_2) ir poslinkio (bias) (w_0) reikšmes, kad 1-oje lentelėje pateikti duomenys būtų tinkamai klasifikuoti, t. y. priskirti klasei 0 arba 1. Neurono <u>mokymo taikyti nereikia</u>. Svorius ir poslinkį reikia rasti taikant minėtus du būdus.
 - Kiekvienu būdu turi būti gautos tokios trys reikšmės (w_0, w_1, w_2) , kad "tiktų" visoms keturioms eilutėms. Žinoma, kad sigmoidinės funkcijos reikšmės yra intervale (0; 1), todėl norint nustatyti klasę, gautas sigmoidinės funkcijos reikšmes reikia apvalinti iki artimiausio sveiko skaičiaus (0 arba 1).
- 2. Užrašykite, kokią nelygybių sistemą reikia spręsti, norint teisingai parinkti svorių ir poslinkio reikšmes, kai aktyvacijos funkcija yra **slenkstinė**. Išspręskite šią sistemą grafiniu būdu (papildomai galima pateikti ir analitinio sprendimo rezultatus).

Patarimas: Norint supaprastinti sistemos sprendimą, galima vieną kintamąjį pasirinkti kaip konstantą. Sistemą galima spręsti grafiniu būdu, pasitelkti kokią nors kompiuterinę matematinę sistemą, pavyzdžiui Matlab/Octave arba https://www.wolframalpha.com/

3. Nubraižę grafiką, patikrinkite, ar grafiniu būdu gauti sprendiniai yra nelygybių sistemos sprendiniai. Tą reikia atlikti tokiu būdu: paimti tašką, kuris priklausytų grafiniu būdu gautų sprendinių aibei, įstatykite jį į nelygybių sistemą, įsitikinkite, kad jis yra nelygybių sistemos sprendinys.

Užduoties ataskaitoje:

- 1. Aprašyti užduoties tikslą.
- 2. Pateikti nurodytą lentelę (klasifikavimo duomenis ir klasę).
- 3. Pateikti programos koda su išsamiais komentarais.
- 4. Aprašyti būdus, kaip buvo ieškoma svorių ir poslinkio.
- 5. Pateikti po kelis svorių ir poslinkio reikšmių rinkinius (kiekvienu būdu mažiausiai po 5 rinkinius), kad 1-oje lentelėje pateikti duomenys būtų tinkamai klasifikuoti, naudojant slenkstinę aktyvacijos funkcijas.
- 6. Pateikti po kelis svorių ir poslinkio reikšmių rinkinius (kiekvienu būdu mažiausiai po 5 rinkinius), kad 1-oje lentelėje pateikti duomenys būtų tinkamai klasifikuoti, naudojant sigmoidine aktyvacijos funkcijas.
- 7. Pateikti nelygybių sistemą, kurią reikia spręsti, norint teisingai parinkti svorių ir poslinkio reikšmes, kai aktyvacijos funkcija yra slenkstinė (**būtina** laikytis matematinių žymėjimų rašymo tvarkos).
- 8. Pateikti šios nelygybių sistemos sprendimą grafiniu būdu (papildomai galima pateikti ir analitinio sprendimo rezultatus). Pateikti komentarus apie grafiniu būdu gautus nelygybių sprendinius.
- 9. Aprašyti patikrinimo rezultatus, kad grafiniu būdu gauti sprendiniai yra nelygybių sistemos sprendiniai.
- 10. Pateikti išvadas (nemažiau 3–5 sakiniai).
- **P. S.** Ataskaitoje turi būti aprašytas kiekvienas atliekamas veiksmas, pateikti žymėjimų aprašymai ir kita, jūsų manymu, svarbi informacija.