# Achieving Counterfactual Fairness in Reinforcement Learning

Jitao Wang $^{\! 1}$ , Chengchun  ${\rm Shi}^2$  and Zhenke  ${\rm Wu}^1$ 

 $^1$ University of Michigan, Ann Arbor  $^2$  London School of Economics and Political Science

#### Contents

- Background and Motivation
- 2 Preliminary
- 3 Achieving Counterfactual Fairness in S-MDP
- Optimality in S-MDP with Counterfactual Fairness
- Simulation

Background and Motivation

## Fairness in Decision Making

The growing use of machine learning for automated decision-making has raised concerns about the potential for unfairness in learning algorithms and models.

University admissions







Hiring











## Motivated Data Example

- Prescription Opioid Wellness and Engagement Research in the emergency department (PowerED) study
- Study Population: patients with pain discharged from the emergency department who reported any opioid analgesic (OA) misuse in the past 3 months.
- Treatment options:
  - a brief interactive voice response (IVR) call (< 5 mins)</li>
  - a longer motivational IVR call (5 10 mins)
  - 3 a live call from a counselor (20 mins).
- Treatment assignment: Online reinforcement learning (RL) algorithm.
- The goal: minimize OA risk, defined as Current Opioid Misuse Measure (COMM) score
- However, the naive RL algorithm may lead to unfair treatment assignment.

## Motivated Data Example

The naive RL algorithm may lead to **unfair** treatment assignment.



The algorithm always assigns the treatment to those who benefits most, which leads to unfairness.

## Single-stage fairness

- Individual fairness: similar individuals should have similar decisions.
- Equal opportunity: equally qualified individuals should have the same decisions.
- Counterfactual fairness: an individual should have the same decisons even if he/she belongs to other groups.

Consider university admission example



## Single-stage fairness



- Individual fairness: Black (white) students with similar SAT scores should have similar probability of admission.
- Equal opportunity: Students with similar SAT scores should have similar probability of admission, regardless of their race.
- **Counterfactual fairness**: Students with similar talent should have similar probability of admission, regardless of their race and SAT scores.

#### Contributions

#### In this work, we

- extend the definition of counterfactual fairness to RL problems;
- propose algorithms to achieve counterfactual fairness in RL;
- demostrate the conditions under which the proposed algorithms can achieve optimal value.

Preliminary

# Basics of Reinforcement Learning (RL)

- A Markov Decision Process (MDP) consists of:
  - ▶ **State**  $s \in S$ , information about the environment;
  - ▶ **Action**  $a \in A$ , the action the agent chooses to take;
  - **Reward** *r* the immediate reward the agent received from the environment;
  - **Dynamics** of the environment  $p_t(s', r|s, a)$ , representing the probability of transitioning to state s' and receiving reward r from state s by taking action a at time t.
  - ▶ **Policy**  $\pi_t(a|s)$ , representing the probability of taking action a in state s at time t.



# Basics of Reinforcement Learning (RL)

ullet The goal of RL is to find a policy  $\pi$  that maximizes the sum of discounted rewards:

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t r_t 
ight]$$

where  $\gamma \in [0,1)$  is the discount factor.

Value function is defined as

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s 
ight].$$

• Bellman Optimality Equation:

$$V^{\pi^*}(s) = \max_{a} \mathbb{E}_{s',r|s,a} \left[ r + \gamma V^{\pi^*}(s') \right]$$

• Optimal policy  $\pi^*$  can be retrived through optimal value function  $V^{\pi^*}$ :

$$\pi^*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_a \mathbb{E}_{s',r|s,a} \left[ r + \gamma V^{\pi^*}(s') \right] \\ 0 & \text{otherwise} \end{cases}$$

4□ > 4□ > 4 = > 4 = > = 90

#### Basics of Counterfactual Fairness

- Counterfactual fairness was originally proposed in [1].
- Consider a causal graph



## Definition 1 (Single-stage counterfactual fairness).

Decision Y is counterfactually fair if under any pair of attributes  $(x^*, z^*)$ ,

$$Y_{z'}(U)|\{X=x^*,Z=z^*\} \stackrel{d}{=} Y_{z^*}(U)|\{X=x^*,Z=z^*\}$$

for any value z'.

4 D > 4 D > 4 E > 4 E > E = 900

Jitao Wang

### MDP with sensitive attributes

We consider counterfactual fairness in the context of MDP with time invariant sensitive attributes (S-MDP).



### Counterfactual Fairness in S-MDP

Define  $\bar{x}_t=\{x_0,\ldots,x_t\}, \bar{a}_t=\{a_0,\ldots,a_t\}, \bar{u}X_t=\{u_{X_0},\ldots,u_{X_t}\}$ , then we have

## Definition 2 (Counterfactual fairness for policy in S-MDP).

A policy  $\pi$  is counterfactually fair if it satisfies the following condition:

$$A^{\pi}_{t, \mathbf{Z'}, \bar{s}^*_{t-1}}(\bar{U}_{X_t})|\{\bar{X}_t = \bar{x}^*_t, \bar{A}_{t-1} = \bar{s}^*_{t-1}, Z = \mathbf{z^*}\}$$

$$\stackrel{d}{=} A^{\pi}_{t, \mathbf{Z^*}, \bar{s}^*_{t-1}}(\bar{U}_{X_t})|\{\bar{X}_t = \bar{x}^*_t, \bar{A}_{t-1} = \bar{s}^*_{t-1}, Z = \mathbf{z^*}\} \quad \text{for } t = 1, \dots, T.$$

for any z'.

- A person with action trajectory  $\bar{a}_{t-1}^*$  will receive the same action  $A_t$ , regardless the value of z.
- This is equavalent to say, any person with same action trajectory  $\bar{a}_{t-1}^*$  and  $\bar{u}_{X_t}^*$  will receive the same action  $A_t$ , regardless the value of z.

4□ > 4個 > 4 = > 4 = > = 9 < 0</p>

# Intuition & Challenge

#### Intuition

- Can we remove the information of Z from the state variable  $X_t$  so that the value of Z is independent of  $X_t$ ?
- The modified state variable  $\tilde{X}_t$  should only be a function of  $\bar{U}_{X_{t-1}}$  and  $\bar{A}_{t-1}$ .
- ullet Then we can learn the policy that only depends on  $ilde{X}_t$  to achieve counterfactual fairness.

#### Challenge

- Z not only affects the value  $X_t$  directly, but also affects the value of  $X_{t-1}$  indirectly through  $A_{t-1}, X_{t-1}$ .
- $\bar{U}_{X_t}$  is not observable.
- $\{\tilde{X}_t, A_t, R_t\}$  may form a high-order MDP, leading to suboptimal policy if common RL algorithms are adopted.

16 / 30

Jitao Wang Counterfactual Fairness in RL

Achieving Counterfactual Fairness in S-MDP

#### General Theorem

## Theorem 3 (Achieving Counterfactual Fairness In S-MDP).

Suppose the gradient  $\nabla_{\bar{u}_{X_t}} f_{X_t}(z, x_{t-1}, a_{t-1})$  does not involve z for t = 1, ..., T, then by applying the following procedure  $\mathcal{P}$  on  $x_t$ ,

$$\widetilde{x}_t = \mathcal{P}(x_t, z, \overline{a}_{t-1}) = \sum_{z'} \widehat{x}_t(z', \overline{a}_{t-1}) \mathbb{P}(Z = z')$$

where  $\widehat{x}_t(z', \bar{a}_{t-1}) = x_t(z, \bar{a}_{t-1}) - \mathbb{E}_n(X_t|Z=z, \bar{A}_{t-1}=\bar{a}_{t-1}) + \mathbb{E}_n(X_t|Z=z', \bar{A}_{t-1}=\bar{a}_{t-1})$ , the policy learning algorithms that use the preprocessed experience tuples  $\{\widetilde{x}_t, a_t, r_t\}$  will be counterfactually fair. Here  $x_t \equiv f_{X_t}(z, x_{t-1}, a_{t-1})$ .

Key point is that under the condition of Theorem 3, the information of z can be removed through  $x_t(z, \bar{a}_{t-1}) - \mathbb{E}_n(X_t|Z=z, \bar{A}_{t-1}=\bar{a}_{t-1}) + \mathbb{E}_n(X_t|Z=z', \bar{A}_{t-1}=\bar{a}_{t-1})$ .

Pratical issue: when t is large, some combinations of  $\{z, \bar{a}_{t-1}\}$  may not be observed. We call this procedure **model-free preprocessing** since there is not assumption on models.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

18 / 30

Jitao Wang Counterfactual Fairness in RL

#### S-MDP with Linear model

### Corollary 4 (S-MDP with linear model).

A S-MDP with linear model satisfies Theorem 3 if and only if there is no interaction terms  $(z, x_{t-1})$ ,  $(z, u_{X_t})$  and  $(x_{t-1}, u_{X_t})$  in  $f_{X_t}(z, x_{t-1}, a_{t-1})$ 

The resulting linear model looks like

$$X_{t} = \gamma_{0} + \gamma_{1}Z + \gamma_{2}X_{t-1} + \gamma_{3}A_{t-1} + \gamma_{4}ZA_{t-1} + \gamma_{5}X_{t-1}A_{t-1} + \gamma_{6}A_{t-1}U_{X_{t}} + U_{X_{t}}$$

Given Z and  $\bar{a}_{t-1}$ ,  $X_t$  has the following form

$$X_t = b_0^{(t)} + b_1^{(t)} Z + g(\bar{U}_{X_t})$$

where  $b_1^t$  can recursively calculated using estimated model parameters  $\{\widehat{\gamma}_0,\ldots,\widehat{\gamma}_5\}$ . So we can apply the modifed procedure  $\mathcal P$  on  $x_t$ ,

$$\widetilde{x}_t = x_t - \widehat{b}_1^{(t)} z + \widehat{b}_1^{(t)} \mathbb{E}(Z)$$

We call this procedure **model-based preprocessing** since it assumes the model is correct.

#### General S-MDP

### Corollary 5 (General S-MDP).

A general S-MDP satisfies Theorem 3 if and only if there is no interaction terms  $(z, x_{t-1})$ ,  $(z, u_{X_t})$  and  $(x_{t-1}, u_{X_t})$  in  $f_{X_t}(z, x_{t-1}, a_{t-1})$ .

The resulting model looks like

$$f_{X_t}(z, x_{t-1}, a_{t-1}) = g_1(z, a_{t-1}) + g_2(x_{t-1}, a_{t-1}) + g_3(u_{X_t}, a_{t-1}),$$

where  $g_i$ , i = 1, 2, 3 are continuous functions.

Without linearity assumption, we will need to calculate  $\mathbb{E}_n(X_t|Z=z, \bar{A}_{t-1}=\bar{a}_{t-1})$  for any t. It is okay for small t, but it will be infeasible for large t.

Possible solutions: 1. use lag-K approximation, or 2. use regression to approximate the conditional expectation.

Jitao Wang

Optimality in S-MDP with Counterfactual Fairness

#### General Theorem

## Theorem 6 (Optimality in general S-MDP).

For a S-MDP  $\{S, A, R, Z\}$ , if the following conditions are satisfied,

$$P(S_{t+1}, R_t | \bar{S}_t, \bar{A}_t, Z) = P(S_{t+1}, R_t | S_t, A_t, Z)$$
 for any  $t = 1, ..., T$ , (1)

$$P(S_{t+1}|S_t, A_t, Z) = P(S_{t+1}|S_t, A_t)$$
 for any  $t = 1, ..., T$ , (2)

$$P(S_0|Z) = P(S_0) \tag{3}$$

Then there exists some  $\pi^{opt}: \mathcal{S} \to \mathcal{A}$  that belong to stationary policies, such that  $V(\pi^{opt}, s) = \sup_{\pi \in HR} V(\pi, s)$  for any  $s \in \mathcal{S}$  where HR stands for history-dependent policies.

This is a general result for any S-MDP. (1) is the Markov property conditioning on Z. (2) together with (3) require that  $S_t \perp Z$  for any  $t = 1, \ldots, T$ . The processed  $\tilde{X}_t$  naturally satisfies the conditions (2) and (3), therefore we can apply this theorem to our setting.

The central point here is that although  $\tilde{X}_t$  is Markovian, reward  $R_t$  can depend on previous actions  $\bar{a}_{t-1}$ , making it non-Markovian. Then the optimal policy will not be stationary policy, instead it will be history-dependent.

4□▶ 4□▶ 4□▶ 4□▶ 1□ 9000

## Optimality in S-MDP with Counterfactual Fairness

### Corollary 7 (Optimality in S-MDP with linear model).

The optimal policy trained using the preprocessed experience tuples  $\{(\tilde{x}_{it}, a_{it}, r_{it}) : i = 1, ..., N; t = 1, ..., T\}$  from a S-MDP with linear model is stationary if and only if there is no interaction terms  $(z, a_{t-1})$  and  $(x_{t-1}, a_{t-1})$  in  $f_{X_t}(z, x_{t-1}, a_{t-1})$ .

The following linear model satisfies the condition of Corollary 7:

$$X_{t} = \gamma_{0} + \gamma_{1}Z + \gamma_{2}X_{t-1} + \gamma_{3}A_{t-1} + \gamma_{6}A_{t-1}U_{X_{t}} + U_{X_{t}}$$

$$R_{t} = \lambda_{0} + \lambda_{1}X_{t} + \lambda_{2}Z + \lambda_{3}A_{t} + \lambda_{4}X_{t}Z + \lambda_{5}X_{t}A_{t} + \lambda_{6}ZA_{t}$$

Still working on general S-MDP.

## Simulation

## Simulation setup

Data generating process:

$$egin{aligned} U_{X_t} &\sim \mathcal{N}(0,1) \ U_{A_t} &\sim \mathcal{U}(0,1) \ A_t &= I\{U_{A_t} \leq -0.5 + 0.5Z\} \ Z &\sim \mathrm{Bernoulli}(0.5) \ X_0 &= -0.7 + 0.8Z + U_{X_0} \ X_t &= -0.7 + 0.8Z + 0.5X_{t-1} + 0.4A_{t-1} + U_{X_t} \ R_t &= -0.2 + 0.3X_t + 0.8Z + 0.8A_t - 0.6X_tZ - 0.7X_tA_t - 1.6ZA_t \end{aligned}$$

- N = 1000, 2000, 3000, 4000, 5000
- T = 5
- Use actor critic as policy learning algorithm
- Policies: random, behavior, vanilla actor critic, actor critic with fairness through unawareness, actor critic with model-based preprocessing, actor critic with model-free preprocessing

# Simulation results (1)



# Simulation results (2)



# Simulation results (3)



#### method

- Behavior
- Model-based fair AC
- Model-free fair AC
- Random
- Unaware AC
- Vanilla AC

# Thank you

[1] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. *Advances in neural information processing systems*, 30, 2017.