Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

PATIENT	
Identifier: 王子菁	Patient ID: 49185311
Date of Birth: Aug 31, 1988	Gender: Female
Diagnosis: Pancreatic cancer	
ORDERING PHYSICIAN	
Name: 姜乃榕醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11270259A Collection site: Liver	Type: FFPE tissue
Date received: Mar 01, 2023 Lab ID: AA-23-01189	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other		
Alterations/Biomarkers	Sensitive	Cancer Types		
Not detected				

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KRAS G12D	-	Cetuximab, Panitumumab
SMAD4 R361H	-	Cetuximab
SMAD4 Heterozygous deletion	-	Cetuximab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 26

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KRAS	G12D	23.6%
SMAD4	R361H	15.5%
TP53	C238F	20.1%

- Copy Number Alterations

Chromosome Gene		Variation	Copy Number
Chr11	ATM, MRE11	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 45% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **2** of **26**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3A		
KRAS G12D	Cetuximab, Panitumumab	resistant
Level 4		
SMAD4 R361H	Cetuximab	resistant
SMAD4 Heterozygous deletion	Cetuximab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page 3 of 26

AG4-QP4001-02(07)

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
SMAD4				
R361H	Fluorouracil	Resistant	Clinical	Colorectal cancer
Heterozygous deletion				

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing guidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告、檢測結果之臨床解釋及相關醫療處置、請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page 4 of 26

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

VARIANT INTERPRETATION

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[1]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[1][2]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[3][4]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)^{[1][5]}, colon carcinomas (40-50%)^{[6][7]}, and lung carcinomas (30-50%)^{[8][9]}, but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[2].

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies[10][11][12].

Therapeutic and prognostic relevance

Cetuximab and panitumumab are FDA-approved for treating KRAS wild-type metastatic colorectal cancer. The NCCN for CRC recommends cetuximab and panitumumab use only if both KRAS and NRAS genes are normal.

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

KRAS mutations are associated with a lack of efficacy of EGFR TKIs^{[13][14][15]}. Some case reports suggest that MEK inhibitors may benefit patients with KRAS mutations, as shown in cervical and ovarian cancer cases (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143)^{[16][17]}. However, a randomized Phase II study did not find trametinib to be superior to docetaxel in KRAS-mutant non-small cell lung cancer patients^[18]. MEK inhibitors as a monotherapy have limited response^[19].

Combining MEK and mTOR inhibitors is being evaluated as a potential strategy in RAS-mutant CRC^{[20][21]}. The combination of trametinib and palbociclib has resulted in objective responses in KRAS mutant models^[22].

Sorafenib has been shown to be beneficial in KRAS-mutant CRC/NSCLC, and KRAS-amplified melanoma^{[23][24][25]}. KRAS mutations in exon 2 (codon 12 or 13) and codon 61 have been associated with poor prognosis in CRC^[26].

Patients with KRAS or BRAF mutations in low-grade serous carcinoma of the ovary or peritoneum had better overall survival than those with wild-type genes^[27]. In ovarian serous borderline tumor, KRAS G12V mutation was linked to shorter survival time^[28].

SMAD4 R361H, Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[29]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[30]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[31][32][33][34]}. Somatic mutations of SMAD4 are commonly observed in pancreatic

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **5** of **26**

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

cancer^[35], colorectal cancer (CRC)^{[33][36][37]}, and less frequently seen in other cancers such as lung adenocarcinoma^[38], head and neck cancer^{[39][40]}, and cutaneous squamous cell carcinoma^[41].

R361H is a hotspot mutation occurred within the MH2 domain of the SMAD4 protein (UniProtKB). This mutation was predicted to confer a loss of function on SMAD4 due to loss of heterocomplex formation^[42]. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[43]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[44].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[45][46]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[47].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[48][49][50][51][52][53][54][55]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[56].

TP53 C238F

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[57]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[58].

TP53 C238F located within the DNA-binding domain (DBD) of the p53 protein. C238F was classified as one of the high-risk mutations which increased invasiveness and tumorigenicity when overexpressed in cells^[59]. Besides, this mutation confers a loss of function to the p53 protein as demonstrated by strongly upregulated FOXM1 protein expression, inhibition of AMPK activation induced by metabolic stress, and decreased expression of tp53 target genes^[60].

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[61].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[62]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[63].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[64][65][66]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[67]. TP53 mutations were correlated with poor

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **6** of **26**

Project ID: C23-M001-00602 Report No.: AA-23-01189 ONC

Date Reported: Mar 14, 2023

survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[68][69]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53[70].

ATM Heterozygous deletion

Biological Impact

The ataxia-telangiectasia mutated protein kinase (ATM) gene encodes a PI3K-related serine/threonine protein kinase involved in genomic integrity maintenance and plays central roles in DNA double-strand break (DSB) repair, which can be induced by ionizing radiation, chemotherapy drugs, or oxidative stress[71]. ATM is a well-characterized tumor suppressor gene, hereditary mutations and haploinsufficiency of ATM result in markedly increased susceptibility to a variety of cancer types^{[72][73][74][75][76]}. Results from a case-cohort study of colorectal cancer and cancer-free control individuals suggested that germline pathogenic mutations in ATM and PALB2 should be added to established CRC risk genes as part of standard tumor genetic testing panels[77]. ATM is among the most commonly aberrant genes in sporadic cancers. Somatic ATM aberrations are frequently observed in hematologic malignancies[78][79][80][81] and a board range of tumors such as prostate cancer^[82], head and neck squamous cell carcinoma (HNSCC)^[83], pancreatic cancer^[84], lung adenocarcinoma^[85], breast cancer^[86], and ovarian cancer^[73].

Therapeutic and prognostic relevance

Olaparib is FDA-approved for treeating mCRPC patients harboring mutations in homologous recombination repair (HRR) genes, including ATM.

ATM mutation has been determined as an inclusion criterion for the trials evaluating olaparib, rucaparib, niraparib, and talazoparib efficacies in various types of solid tumors (NCT03297606, NCT01968213, NCT02952534, NCT03553004, NCT03840967).

Clinical trials have shown that olaparib treatment resulted in response rates in metastatic prostate cancer patients with ATM mutations in TOPARP-A and TOPARP-B trials[87][88], but no response was observed in metastatic breast cancer patients with ATM mutations in the TBCRC 048 trial[89]. In a randomized phase II trial in Asian patients with metastatic gastric cancer, olaparib addition to paclitaxel improved overall survival in patients with low or undetectable ATM protein expression[90], but the subsequent phase III trial did not show significant improvement[89]. In a phase II trial, rucaparib treatment had limited response in mCRPC patients with ATM alteration[91].

In preclinical studies, transformed cells harboing ATM mutation were sensitive to olaparib, niraparib, and talazoparib treatment in vitro and in vivo[92][93][94][95].

Also, a prospective study in muscle-invasive bladder cancer patients suggested that genomic alternations in the DNA repair genes ATMs, RB1 and FANCC could be recognized as biomarkers predictive of response to cisplatin-based neoadjuvant chemotherapy[96]. However, loss-of-function of the ATM-CHEK2-TP53 cascade is associated with resistance to anthracycline/mitomycin-containing chemotherapy in patients with breast cancer^[97].

A retrospective study of VICTOR trial demonstrated that ATM loss was associated with worse prognosis in colorectal cancer[98].

MRE11 Heterozygous deletion

Biological Impact

The MRE11 gene encodes a protein that forms the MRE11-RAD50-NBS (MRN) complex involved in sensing and repairing DNA double-strand breaks via homologous recombination and non-homologous end joining[99][100]. MRE11

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[99]. The carrier of MRE11 mutation may confer elevated risks for numerous types of cancers including breast cancer, ovarian cancer, endometrial cancer, colorectal cancer, and lymphoid cancer^{[99][100][101][102][103][104][105]}.

Therapeutic and prognostic relevance

In a Phase II clinical trial (n=50), one castration-resistant prostate cancer patient harboring an MRE11 inactivating mutation responded to olaparib^[87]. Preclinically, loss of MRE11 also predicted sensitivity to PARP inhibitor talazoparib and ABT-888 in endometrial cancer^[106] and microsatellite unstable colorectal cancer (CRC) cell lines^[107]. MRE11 has been selected as an inclusion criterion for the trial examining olaparib in metastatic biliary tract cancer (NCT04042831), and talazoparib in HER2-negative breast cancer (NCT02401347) and prostate cancer (NCT03148795).

CRC patients with tumor deficient of MRE11 showed initially reduced disease-free survival (DFS) and overall survival (OS) but improved long-term DFS and OS compared with patients with an intact MRE11^[108].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 26

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
NCT02655016	
NC102000010	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA ^[109]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

Ol! A	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	HER2-/gBRCA mutation					
NC102032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
DDOS 1 [110]	Prostate cancer (Approved on 2020/05/19)					
PROfound ^[110]	HRR genes mutation					
NCT02987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
DAGLA 4[111]	Ovarian cancer (Approved on 2020/05/08)					
PAOLA-1 ^[111] NCT02477644	HRD+					
NC102477044	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
POLO ^[112]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
NCT02184195	gBRCA mutation					
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
SOLO-1 ^[113]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
NCT01844986	gBRCA mutation or sBRCA mutation					
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Ol : A D[114]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[114] NCT02000622	HER2-/gBRCA mutation					
NC102000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
001 0 0/FN00T 0: 04 ^[115]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
SOLO-2/ENGOT-Ov21 ^[115] NCT01874353	gBRCA mutation					
NC101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					
C4dd O[116]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
Study19 ^[116]	-					
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 26

ACTOnco® + Report

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONS	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation
NC102952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3[117]	
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[118]	Breast cancer (Approved on 2018/10/16)
NCT01945775	HER2-/gBRCA mutation
NC101945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 26

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene Amino Acid		Exon	cDNA	Accession	COSMIC ID	Allele	Coverage
KRAS	Change G12D	2	Change c.35G>A	Number NM_004985	COSM521	Frequency 23.6%	2707
SMAD4	R361H	9	c.1082G>A	NM_005359	COSM14122	15.5%	1256
TP53	C238F	7	c.713G>T	NM_000546	COSM43778	20.1%	1206

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 26

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Gene Amino Acid Exon		cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ATM	M1321I	26	c.3963G>A	NM_000051	COSM6506626	58.5%	482
CSF1R	G504A	11	c.1511G>C	NM_005211	-	49.4%	759
FANCA	Splice region	-	c.2981+4dup	NM_000135	-	47.6%	982
FOXP1	Splice region	-	c.1652+4C>T	NM_032682	COSM6666477	44.7%	909
HSPA4	K437T	11	c.1310A>C	NM_002154	-	51.6%	1619
IRS1	S685_S686del	1	c.2054_2059del	NM_005544	-	50.7%	623
MUC16	T1822N	1	c.5465C>A	NM_024690	-	52.8%	1379
MUC16	V1851M	1	c.5551G>A	NM_024690	-	50.0%	2103
NOTCH4	Splice region	-	c.451+3A>G	NM_004557	-	54.6%	877
NTRK1	D109G	3	c.326A>G	NM_002529	-	53.0%	1154
POLD1	D644E	16	c.1932C>G	NM_001256849	-	49.9%	696
SYNE1	R6676Q	108	c.20027G>A	NM_182961	-	39.8%	493
SYNE1	C1599F	37	c.4796G>T	NM_182961	COSM7342806	16.8%	915
TAF1	S1079L	22	c.3236C>T	NM_138923	-	14.8%	813

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 26

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Feb 01, 2023 Facility retrieved: 臺北榮總

H&E-stained section No.: S11270259A

Collection site: Liver

- Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 20%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 45%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

Mean Depth: 884x

Target Base Coverage at 100x: 94%

RNA test

- Average unique RNA Start Sites per control GSP2: 180

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **26**

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC

Date Reported: Mar 14, 2023

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic.
 Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage \geq 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **26**

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫藥資訊研究員 楊杭哲 博士 Hang-Che Yang Ph.D. hay

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 yehr_

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 16 of 26

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	ЕРНА7	ЕРНВ1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	мис6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

	BRAF	ECED	FGFR1	FGFR2	ECED2	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
					FGFR3							

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 26

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
ATM	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
MRE11	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14. 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 19 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189 ONC

Date Reported: Mar 14, 2023

ACTOnco® + Report

REFERENCE

- PMID: 2453289; 1988, Cell;53(4):549-54 1. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960 Clinical relevance of KRAS in human cancers.
- PMID: 21993244: 2011. Nat Rev Cancer:11(11):761-74 4. RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44 7 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24 Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet; 38(3): 331-6 10. Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35 11. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8 13. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to
- PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21 KRAS mutation: should we test for it, and does it matter?
- PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7 15. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- 16. PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- 18. PMID: 25722381; 2015, Ann Oncol;26(5):894-901 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced nonsmall-cell lung cancer (NSCLC)†.
- PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.

- PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 21. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.
- PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- 23. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54
 Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.
- 24. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51
 A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.
- 25. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 28. PMID: 24549645; 2013, J Pathol;231(4):449-56
 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- PMID: 19014666; 2008, Pathogenetics;1(1):2
 Smad4 haploinsufficiency: a matter of dosage.
- PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36
 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- 32. PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18g21.1.
- PMID: 8673134; 1996, Nat Genet;13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers
- 34. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- 35. PMID: 9135016; 1997, Cancer Res;57(9):1731-4 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- 38. PMID: 25890228; 2015, World J Surg Oncol;13():128

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 21 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.

PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.

40. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7

Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.

41. PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
Genomic analysis of metastatic cutaneous squamous cell carcinoma.

PMID: 21763698; 2011, J Mol Biol;413(2):495-512
 Structural and functional impact of cancer-related missense somatic mutations.

43. PMID: 29703253; 2018, BMC Cancer;18(1):479

SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.

44. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175

SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.

PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.

46. PMID: 24384683; 2014, Br J Cancer;110(4):946-57

Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

47. PMID: 12237773; 2002, Br J Cancer;87(6):630-4

SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.

48. PMID: 25749173; 2015, Transl Oncol;8(1):18-24

A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.

49. PMID: 19478385; 2009, Cell Oncol;31(3):169-78

Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.

50. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5

Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.

51. PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47

Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.

52. PMID: 26947875; 2016, Transl Oncol;9(1):1-7

Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.

53. PMID: 25760429; 2015, Pancreas;44(4):660-4

SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.

54. PMID: 22504380; 2012, Pancreas;41(4):541-6

SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.

55. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9

SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.

56. PMID: 18425078; 2008, Mod Pathol;21(7):866-75

Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.

57. PMID: 24739573; 2014, Nat Rev Cancer; 14(5):359-70

Unravelling mechanisms of p53-mediated tumour suppression.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

- 58. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 59. PMID: 25634208; 2015, Cancer Res;75(7):1527-36 Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer.
- 60. PMID: 29269868; 2018, Oncogene;37(10):1279-1292
 Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1.
- 61. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 62. PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 63. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- 64. PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 65. PMID: 23670029; 2013, Oncotarget;4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- 66. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 67. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 22079189; 2012, Trends Biochem Sci;37(1):15-22
 The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
- 72. PMID: 1548942; 1992, Leukemia;6 Suppl 1():8-13 Cancer susceptibility in ataxia-telangiectasia.
- PMID: 12810666; 2003, Cancer Res;63(12):3325-33
 Contributions of ATM mutations to familial breast and ovarian cancer.
- PMID: 1961222; 1991, N Engl J Med;325(26):1831-6
 Incidence of cancer in 161 families affected by ataxia-telangiectasia.
- 75. PMID: 28779002; 2017, J Med Genet;54(11):732-741

 Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

- PMID: 16400190; 2006, Carcinogenesis;27(4):848-55
 Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.
- PMID: 29478780; 2018, Am J Hum Genet; 102(3):401-414
 Inherited DNA-Repair Defects in Colorectal Cancer.
- PMID: 9488043; 1998, Oncogene;16(6):789-96
 ATM is usually rearranged in T-cell prolymphocytic leukaemia.
- PMID: 11429421; 2001, J Clin Pathol;54(7):512-6
 Ataxia telangiectasia gene mutations in leukaemia and lymphoma.
- 80. PMID: 11756177; 2002, Blood;99(1):238-44
 ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances.
- 81. PMID: 21993670; 2012, Haematologica;97(1):47-55
 ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression.
- 82. PMID: 22981675; 2013, Eur Urol;63(5):920-6
 Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
- 83. PMID: 22410096; 2012, Oral Oncol;48(8):698-702
 Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.
- PMID: 23103869; 2012, Nature;491(7424):399-405
 Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
- PMID: 18948947; 2008, Nature;455(7216):1069-75
 Somatic mutations affect key pathways in lung adenocarcinoma.
- PMID: 30537493; 2019, Hum Pathol;86():85-92
 Molecular characterization of metaplastic breast carcinoma via next-generation sequencing.
- PMID: 26510020; 2015, N Engl J Med;373(18):1697-708
 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 88. PMID: 31806540; 2020, Lancet Oncol;21(1):162-174
 Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial.
- 89. PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282
 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.
- 90. PMID: 26282658; 2015, J Clin Oncol;33(33):3858-65 Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.
- 91. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496

 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate

 Cancer: Analysis From the Phase II TRITON2 Study.
- PMID: 20739657; 2010, Blood;116(22):4578-87
 The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo.
- PMID: 31699977; 2019, Nat Commun;10(1):5065
 AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity.
- PMID: 34503215; 2021, Cancers (Basel);13(17):
 Niraparib Suppresses Cholangiocarcinoma Tumor Growth by Inducing Oxidative and Replication Stress.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 24 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

- 95. PMID: 23881923; 2013, Clin Cancer Res;19(18):5003-15
 BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.
- 96. PMID: 26238431; 2015, Eur Urol;68(6):959-67
 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 97. PMID: 22420423; 2012, Breast Cancer Res;14(2):R47
 Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
- 98. PMID: 23154512; 2012, Oncotarget;3(11):1348-55
 Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN.
- PMID: 19910469; 2010, J Biol Chem;285(2):1097-104
 MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX.
- 100. PMID: 20655309; 2010, FEBS Lett;584(17):3682-95
 The MRN complex in double-strand break repair and telomere maintenance.
- 101. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58
 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
- 102. PMID: 23755103; 2014, PLoS One;8(6):e63313
 Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A.
- PMID: 11196167; 2001, Cancer Res;61(1):23-6
 Alterations of the double-strand break repair gene MRE11 in cancer.
- 104. PMID: 11850399; 2002, EMBO Rep;3(3):248-54 Human MRE11 is inactivated in mismatch repair-deficient cancers.
- 105. PMID: 16959974; 2006, Science;314(5797):268-74 The consensus coding sequences of human breast and colorectal cancers.
- 106. PMID: 24927325; 2014, PLoS One;9(6):e100041 Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro.
- 107. PMID: 21300766; 2011, Cancer Res;71(7):2632-42
 MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.
- 108. PMID: 25310185; 2014, PLoS One;9(10):e108483

 MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- 113. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 26

Project ID: C23-M001-00602 Report No.: AA-23-01189_ONC Date Reported: Mar 14, 2023

ACTOnco® + Report

Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.

- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 115. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 116. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 117. PMID: 28916367; 2017, Lancet; 390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 118. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 26