CE 388 – FUNDAMENTALS OF STEEL DESIGN

CHAPTER 3B: BUILT-UP COLUMNS

Types of Built-up Columns

- For heavy loads where common rolled shapes are not available, it becomes necessary to use built-up sections
- Types of built-up columns:
 - □ Solid wall section built-up columns
 - Open section built-up columns

Types of Built-up Columns

- Solid wall section built-up columns:
 - □ These columns are made up by welding several rolled shapes together
 - □ Such columns are analyzed as single structural shapes

Solid wall section built-up columns

Types of Built-up Columns

- Open section built-up columns (latticed columns):
 - These columns are made up such that rolled shapes are connected together by laces (diagonals) and battens (horizontal ties) across their open side

Open section built-up columns

Types of Built-up Columns

Examples of open section built-up columns

Types of Built-up Columns

□ The types of open section built-up columns:

Laced columns

Battened columns

Columns with perforated cover plates

Types of Built-up Columns

Columns with perforated cover plates

Theoretical Aspects

- When buckling occurs, there will be shearing forces (Q) acting on the cross-section of the column
- If shear forces are included in the analysis, the critical buckling load:

Buckled column with shear forces

Theoretical Aspects

$$P_{cr} = \frac{P_e \cdot 1}{1 + \frac{nP_e}{AG}} = P_e \cdot r$$

- The presence of shear reduces the critical load in the ratio "r"
 - For solid columns:
 - $rac{1}{2} = 1.0$ ($P_{cr} \cong P_{e'}$ the effect of shearing forces can be neglected)
 - For open built-up sections:
 - ✓ r < 1.0 ($P_{cr} < P_{e'}$ it is necessary to consider the effect of shear in the buckling analysis)

Theoretical Aspects

■ Laced Columns:

Theoretical Aspects

Battened Columns:

Theoretical Aspects

- Results derived from the expressions:
 - Laces and battens show their effects in the form of an expression in the denominator of the critical load formula
 - Laces are assumed to work as axially loaded bars with stiffness A_dE

 - Infinitely stiff laces and battens imply that the built-up column will work as a solid column

Failure Modes of Built-up Columns

- Failure Modes of a Built-up Column:
 - (a) Buckling of the column as a whole under axial load
 - (b) Buckling or yielding of individual segments of the column
 - (c) Failure of a lattice member
 - (d) Distortion of the cross-section

- The use of theoretical equations derived previously is impractical for engineers
- The codes use an approximate approach, where the effect of shear is taken into account by increasing the slenderness ratio (λ) of a built-up column
- Depending on the open direction of the column, slenderness ratio is increased in that particular direction

■ The notation used in the analysis:

Built-up section

Single segment

	Built-up section	Single segment
Principal axes	x-x, y-y	1-1 (minimum)
Cross-sectional area	F	F ₁
Moment of inertia	I_x , I_y	I ₁

- $\begin{tabular}{ll} \square & $\lambda_{\rm x}$: slenderness ratio of the built-up column \\ & about x-axis, $$\lambda_{\rm x} = K_{\rm x} L I_{\rm i_x}$ \end{tabular}$
- $\begin{tabular}{ll} \square & λ_y : slenderness ratio of the built-up column \\ & about y-axis, $$\lambda_y = K_y L/I_y$ \\ \end{tabular}$

- $\mbox{ } \mbox{ } \mbox{ } \lambda_{xi}$: increased slenderness ratio of the built-up column about x-axis
- $\mbox{\ \ a} \ \ \, \lambda_{yi}$: increased slenderness ratio of the $\mbox{\ \ built-up}$ column about y-axis

- m: the number of main segments in x-direction (connected by cross-ties to form a built-up section)
- m': the number of main segments in y-direction (connected by cross-ties to form a built-up section)

Built-up Column Analysis According to TS648

n : the number of spans into which the built-up column is divided by battens

- e : distance between centroidal axis of the main segments
- s₁: maximum spacing between battens
- d : length of lacing (diagonal)

 ${\sf F}_{\sf D}$: the cross-sectional area of a single diagonal (single lacing). It is summation of the cross sectional areas of two diagonals (double lacing).

 $F_D = A_1$ Single lacing

 $F_D = A_1 + A_2$ Double lacing

z : the number of paralel planes with cross-ties

Built-up Column Analysis According to TS648

 $\boldsymbol{\lambda}_1$: auxiliary value

 $\lambda_1 = \frac{S_1}{i_1}$

Battened column

$$\lambda_1 = \pi \sqrt{\frac{F d^3}{z F_D s_1 e^2}}$$

For columns with battens and laces

- For design and analysis, the built-up columns are divided into three groups:
 - □ Group 1 Built-up Columns
 - □ Group 2 Built-up Columns
 - □ Group 3 Built-up Columns

- Group 1:
 - x-x axis intersects all the segments (x-x is the material axis
 - Column is a close section normal to x-axis, an open section normal to y-axis

Group 1 built-up columns

- □ Buckling about x-axis (solid section):
 - No increase in slenderness ratio $(\lambda_{xi} = \lambda_x)$
 - Calculate λ_x ,

$$\lambda_{x} = \frac{K_{x}L}{i_{x}}$$

• Find buckling coefficient w_x for λ_x from the table

- Buckling about y-axis (open section):
 - Increase in slenderness ratio $(\lambda_{yi} > \lambda_y)$
 - Calculate λ_{yi} ,

$$\lambda_{yi} = \sqrt{\lambda_y^2 + \frac{m}{2} \lambda_1^2}$$

$$\lambda_{y} = \frac{K_{y}L}{i_{y}}$$

- Find buckling coefficient w_{yi} for λ_{yi} from the table

Built-up Column Analysis According to TS648

- Determine buckling strength:
 - · Determine critical buckling coefficient,

$$w_{cri} = \text{larger of}(w_x, w_{yi})$$

- Calculate $\sigma_{\text{bem'}}$

$$\sigma_{bem} = \frac{\sigma_{cem}}{w_{cri}}$$

Calculate P_{all},

□ For buildings, we have the following restriction:

$$\lambda_{1} \leq \frac{1}{2} \lambda_{y} \left(4 - \frac{3w_{yi}P}{F\sigma_{cem}}\right)$$
If $\lambda_{x}/2 \leq 50$

If, the following conditions are satisfied,

- n ≥ 3
- batten spacings are equal
- battens are connected to main segments by at least two fasteners and comparable welding

then $\lambda_x/2 = 50$

- Group 2:
 - They are made up of two angles whose corners are arranged back to back
 - For these columns, no matter the segments are equal or unequal leg angles, buckling about x-x is more critical

Group 2 built-up column

- Buckling about x-axis (solid section):
 - No increase in slenderness ratio ($\lambda_{xi} = \lambda_x$)
 - Calculate λ_{x} , $\lambda_{x} = \frac{K_{x}L}{i_{x}}$

$$K_x = \frac{1}{2} \left(K_{plane} + K_{out \, of \, plane} \right)$$

plane and out of plane for calculation of effective length factor

 $=i_{\xi}$ $i_{x}=\frac{1}{2}$

Equal leg Unequal leg

Built-up Column Analysis According to TS648

- □ Determine buckling strength:
 - Find buckling coefficient w_x for λ_x from the table
 - Calculate $\sigma_{\text{bem'}}$

$$\sigma_{bem} = \frac{\sigma_{cem}}{w_{x}}$$

Additional restriction:

$$\lambda_1 \le 50$$

- Group 3:
 - They are built-up columns with no material axis
 - Column is an open section both normal to x and y-axes

Group 3 built-up columns

Built-up Column Analysis According to TS648

- Buckling about x-axis (open section):
 - Increase in slenderness ratio $(\lambda_{xi} > \lambda_x)$
 - Calculate λ_{xi}

$$\lambda_{xi} = \sqrt{\lambda_x^2 + \frac{m'}{2} \lambda_{1x}^2}$$

$$\lambda_{x} = \frac{K_{x}L}{i_{x}}$$

- Find buckling coefficient w_{xi} for λ_{xi} from the table

- Buckling about y-axis (open section):
 - Increase in slenderness ratio $(\lambda_{vi} > \lambda_v)$
 - Calculate λ_{vi} ,

$$\lambda_{yi} = \sqrt{\lambda_y^2 + \frac{m}{2} \lambda_{1y}^2}$$

$$\lambda_{y} = \frac{K_{y}L}{i_{y}}$$

- Find buckling coefficient w_{yi} for λ_{yi} from the table

- □ Determine buckling strength:
 - · Determine critical buckling coefficient,

$$w_{cri} = \text{larger of } (w_x, w_{yi})$$

• Calculate σ_{bem} ,

$$\sigma_{bem} = \frac{\sigma_{cem}}{w_{cri}}$$

□ For buildings we have the restriction:

$$\lambda_{1x} \le 50$$
 and $\lambda_{1y} \le 50$

Design of Battens/Diagonals

- Battens and lacings are designed based on an assumed shearing force Q_i:
 - For laced columns

$$Q_i = \frac{F\sigma_{\varsigma em}}{80}$$

For columns with battens only

$$Q_{i} = \begin{cases} \frac{F\sigma_{cem}}{80} & \text{if } e \leq 20i_{1} \\ \frac{F\sigma_{cem}}{80} \left\{ 1 + \frac{5}{100} \left(\frac{e}{i_{1}} - 20 \right) \right\} & \text{if } e > 20i_{1} \end{cases}$$

Design of Battens/Diagonals

In case of laced columns, the axial force in the diagonals can be found assuming that the whole system behaves as a truss.

Design of Battens/Diagonals

- In case of battened columns, each member acts as a beam member
- The forces in battens are obtained by estimating points of inflection points and writing moment equilibriums.

Design of Battens/Diagonals

 \Box For sections with m=3:

$$T = \frac{0.5Q_i s_1}{z_h e}$$

 \Box For sections with m=4:

$$T' = \frac{0.40Q_i s_1}{z_b e} \qquad T'' = \frac{0.30Q_i s_1}{z_b e}$$

Design of Built-up Columns

Example Problems