# Teorie grafů

19. přednáška z LGR

### Obsah

- Orientované grafy
  - Silně souvislé grafy
  - Prohledávání grafu do hloubky a do šířky
  - Hledání silně souvislých komponent

#### **Definice**

Orientovaný graf je *silně souvislý*, pokud pro každé dva jeho vrcholy *u*, *v* existuje orientovaná cesta z *u* do *v* (a tudíž i zpět).

#### Tvrzení

Orientovaný graf je silně souvislý, právě když je souvislý a každá jeho hrana leží v nějakém cyklu.

#### **Definice**

Každý maximální podgraf grafu G, který je silně souvislý, se nazývá komponenta silné souvislosti grafu G (nebo také silně souvislá komponenta).

#### Poznámka

Komponenta silné souvislosti je jednoznačně určena množinou svých vrcholů, je to podgraf indukovaný danou množinou vrcholů. Budeme se silně souvislými komponentami pracovat podle potřeby jako s množinami vrcholů nebo jako s podgrafy.

#### **Definice**

Nechť G = (V, E) je orientovaný graf. Kondenzace grafu G je orientovaný graf  $G_{kon} = (V_{kon}, E_{kon})$ , kde

- $\bullet$   $V_{kon}$  je množina všech silně souvislých komponent grafu G,
- pro  $K_1 \neq K_2$  je  $(K_1, K_2) \in E_{kon}$  právě tehdy, když existují vrcholy  $u, v \in V$ ,  $u \in K_1$ ,  $v \in K_2$  a  $(u, v) \in E$ .

#### Tvrzení

Kondenzace grafu je vždy acyklický graf.

#### Poznámka

Zdrojová komponenta orientovaného grafu G je komponenta, která je v kondenzaci  $G_{kon}$  zdrojem  $(d_{in}(K)=0)$  a výlevková komponenta je v kondenzaci  $G_{kon}$  výlevkou  $(d_{out}(K')=0)$ . Každý orientovaný graf má zdrojovou i výlevkovou komponentu.

Vsuvka: Jak najít komponenty souvislosti neorientovaného grafu?

Pro hledání komponent souvislosti grafu můžeme použít prohledávání grafu do hloubky nebo do šířky.

- Prohledávání grafu do hloubky (DFS = depth first search)
  z vrcholu r jde po větvi co nejdále, pak se vrací a hledá odbočky, navštívené vrcholy dává do zásobníku;
- Prohledávání grafu do šířky (BFS = breadth first search)
  z vrcholu r najde nejdříve všechny sousedy vrcholu r, pak
  sousedy sousedů atd., navštívené vrcholy dává do fronty;

Strom prohledávání z vrcholu *r* je tvořen všemi nalezenými vrcholy spolu s hranami, které byly použity k jejich prvnímu nalezení.



## Pozorování

Pro prohledávání grafu do hloubky nebo do šířky platí:

- Strom prohledávání s kořenem r obsahuje všechny vrcholy dostupné z vrcholu r. Vrcholy stromu prohledávání s kořenem r tvoří komponentu souvislosti grafu obsahující vrchol r.
- Pokud prohledávání opakujeme z dosud nenavštíveného vrcholu r', bude strom prohledávání opět obsahovat všechny vrcholy dostupné z vrcholu r', tedy komponentu souvislosti obsahující vrchol r'.
- Opakovaným prohledáváním nalezneme postupně všechny komponenty souvislosti.



### Prohledání grafu do hloubky či do šířky z vrcholu r

Vstup: Neorientovaný graf G = (V, E), vrchol  $r \in V$ . Výstup: Strom  $T_r = (V_r, E_r)$  cest z vrcholu r do všech

dostupných vrcholů.

Datové struktury: Pole N délky n=|V|, kde N(v)=true, pokud byl vrchol v již navštíven. Pole P délky m=|E|, kde P(e)=true, pokud byla hrana e již použita. Zásobník S (pro DFS) či fronta Q (pro BFS).

### Prohledání grafu do hloubky z vrcholu r

(inicializace)

- for all  $v \in V$  do  $N(v) \leftarrow false$  enddo
- for all  $e \in E$  do  $P(e) \leftarrow false$  enddo
- S ← ∅

(procedura) DFS(r)

- vlož r do zásobníku S,  $N(r) \leftarrow true$
- $V_r \leftarrow \{r\}, E_r \leftarrow \emptyset$

- while  $S \neq \emptyset$  do
  - $v \leftarrow top(S)$  (to nezmění S!)
  - if existuje nepoužitá hrana  $e = \{v, w\}$  then
    - vyber hranu  $e = \{v, w\}$ , pro níž je P(e) = false
    - $P(e) \leftarrow true$
    - if N(w) = false then
      - vlož w do zásobníku S,  $N(w) \leftarrow true$
      - $V_r \leftarrow V_r \cup \{w\}, E_r \leftarrow E_r \cup \{e = \{v, w\}\}$  endif
  - else odstraň v = top(S) ze zásobníku S endif
  - enddo
- output  $T_r = (V_r, E_r)$



#### Prohledání grafu do šířky z vrcholu r

Procedura BFS(r) vypadá stejně, pouze navštívené vrcholy dává do fronty Q.

Strom prohledávání do šířky z vrcholu r obsahuje nejkratší cesty z r do dostupných vrcholů, co do počtu hran.

#### Poznámka

Pro orientované grafy vypadají procedury DFS(r) a BFS(r) stejně, pouze hrany jsou orientované e = (v, w).

#### Hledání komponent souvislosti

Vstup: Neorientovaný graf G = (V, E).

Výstup: Komponenty souvislosti, resp. množiny jejich vrcholů.

(inicializace)

- for all  $v \in V$  do  $N(v) \leftarrow false$  enddo
- for all  $e \in E$  do  $P(e) \leftarrow false$  enddo
- $i \leftarrow 0$ ,  $S \leftarrow \emptyset$  (resp.  $Q \leftarrow \emptyset$ )

(hledání komponent souvislosti)

- while 'existuje nenavštívený vrchol' do
  - $r \leftarrow v$ , kde N(v) = false
  - DFS(r) (resp. BFS(r))
  - $i \leftarrow i + 1$ ,  $K_i \leftarrow V_r$  enddo
- output  $K_1, \ldots, K_i$



#### Časová náročnost

Označme opět m počet hran, n počet vrcholů grafu.

Prohledávání grafu do hloubky nebo do šířky z vrcholu r trvá čas O(m), po každé hraně stromu prohledávání projdeme jednou směrem vpřed (a pomyslně podruhé při návratu u DFS).

Prohledání celého grafu, tudíž i nalezení komponent souvislosti vyžaduje čas O(m+n).

Jak najít komponenty silné souvislosti orientovaného grafu?

#### Pozorování

Pro hledání silně souvislých komponent orientovaného grafu použijeme také prohledávání do hloubky nebo do šířky, ale situace bude komplikovanější.

- Strom prohledávání s kořenem r obsahuje všechny vrcholy orientovaně dostupné z vrcholu r, nemusí z nich však existovat orientované cesty zpět do r. Strom prohledávání se může rozpadnout na více silně souvislých komponent.
- Silně souvislá komponenta obsahující vrchol r je podmnožinou množiny vrcholů stromu prohledávání s kořenem r.



#### Pozorování

- Pokud prohledávání opakujeme z dosud nenavštíveného vrcholu r', nemusíme získat strom všech vrcholů orientovaně dostupných z vrcholu r' (některé už mohly být navštíveny z vrcholu r). Strom prohledávání bude obsahovat pouze vrcholy orientovaně dostupné z vrcholu r' v podgrafu ještě nenavštívených vrcholů.
- Silně souvislá komponenta obsahující vrchol r' je podmnožinou množiny vrcholů stromu prohledávání s kořenem r'.

#### Tvrzení

Pokud vrchol r patří do výlevkové komponenty orientovaného grafu, pak strom prohledávání do hloubky nebo do šířky obsahuje vrcholy jediné silně souvislé komponenty (té, v níž leží vrchol r).

#### První myšlenka algoritmu

Prohledat orientovaný graf z vrcholu ve výlevkové komponentě, najdeme tím právě tuto silně souvislou komponentu. Když ji z grafu vyhodíme, bude mít vzniklý podgraf opět výlevkovou komponentu, najdeme ji prohledáním z libovolného vrcholu v ní. Postup můžeme opakovat, dokud nenajdeme všechny silně souvislé komponenty.

Ovšem jak najít vrchol ve výlevkové komponentě???



#### Tvrzení

Pokud vrchol r patří do výlevkové komponenty orientovaného grafu, pak strom prohledávání do hloubky nebo do šířky obsahuje vrcholy jediné silně souvislé komponenty (té, v níž leží vrchol r).

#### První myšlenka algoritmu

Prohledat orientovaný graf z vrcholu ve výlevkové komponentě, najdeme tím právě tuto silně souvislou komponentu. Když ji z grafu vyhodíme, bude mít vzniklý podgraf opět výlevkovou komponentu, najdeme ji prohledáním z libovolného vrcholu v ní. Postup můžeme opakovat, dokud nenajdeme všechny silně souvislé komponenty.

Ovšem jak najít vrchol ve výlevkové komponentě???



#### Obohacené prohledávání do hloubky

Lze efektivně najít vrchol ve zdrojové komponentě pomocí DFS:

- Při prohledání celého orientovaného grafu do hloubky je kořen posledního stromu prohledávání ve zdrojové komponentě.
- Kořen posledního stromu je vrchol, který jsme zpracovali, opustili jako poslední. Obohatíme prohledávání do hloubky o číslování vrcholů ve chvíli, kdy je opouštíme, tj. když už z nich nevede nepoužitá hrana. První zpracovaný vrchol má nejnižší číslo, poslední zpracovaný vrchol má nejvyšší číslo. Případně můžeme vrcholy při opouštění vkládat do jiného zásobníku Z.

#### Tvrzení

Při prohledávání orientovaného grafu do hloubky s číslováním opouštěných vrcholů vedou všechny mezikomponentové hrany z vrcholu s vyšším číslem opouštění do vrcholu s nižším číslem opouštění (aneb v zásobníku Z směrem od vrcholu ke dnu).

#### Tvrzení

Při prohledávání orientovaného grafu do hloubky s číslováním opouštěných vrcholů vedou všechny mezikomponentové hrany z vrcholu s vyšším číslem opouštění do vrcholu s nižším číslem opouštění (aneb v zásobníku Z směrem od vrcholu ke dnu).

#### Poznámka

Pro acyklický graf tak získáme inverzní očíslování k topologickému očíslování vrcholů.

#### Tvrzení

Nechť G = (V, E) je orientovaný graf. Vytvořme orientovaný graf  $G^{op} = (V, E^{op})$ , který má opačně orientované hrany.

- G a G<sup>op</sup> mají stejné komponenty silné souvislosti.
- Zdrojová komponenta v G je výlevkovou komponentou v G<sup>op</sup> a naopak.

Aneb silně souvislé komponenty můžeme místo v G hledat v  $G^{op}$ . Vrcholy výlevkových komponent grafy  $G^{op}$  budou vrcholy zdrojových komponent grafu G a najdeme je přes obohacené DFS

#### Tvrzení

Nechť G = (V, E) je orientovaný graf. Vytvořme orientovaný graf  $G^{op} = (V, E^{op})$ , který má opačně orientované hrany.

- G a G<sup>op</sup> mají stejné komponenty silné souvislosti.
- Zdrojová komponenta v G je výlevkovou komponentou v G<sup>op</sup> a naopak.

Aneb silně souvislé komponenty můžeme místo v G hledat v  $G^{op}$ . Vrcholy výlevkových komponent grafy  $G^{op}$  budou vrcholy zdrojových komponent grafu G a najdeme je přes obohacené DFS.

### Kosarajův - Sharirův algoritmus

Vstup: Orientovaný graf G.

Výstup: Silně souvislé komponenty grafu G.

- Prohledáme graf G do hloubky a zapamatujeme si pořadí, ve kterém jsme je opouštěli. Např. je dáváme při opouštění do zásobníku Z, výstupem první části je zásobník Z.
- 2 V grafu G obrátíme hrany, dostaneme graf  $G^{op}$ .
- 1 Prohledáme graf  $G^{op}$  do hloubky (nebo do šířky) a za kořeny stromů prohledávání bereme vždy nenavštívený vrchol z topu zásobníku Z (od nejvyššího čísla opouštění).
- Vrcholy stromů druhého prohledávání jsou pak vrcholy jednotlivých silně souvislých komponent.

### Korektnost algoritmu

- Terminace prohledávání do hloubky (či do šířky) skončí
- Parciální korektnost při druhém prohledávání platí invariant:
  "Kořen každého stromu prohledávání je ve výlevkové komponentě podgrafu grafu G<sup>op</sup> indukovaného dosud nenavštívenými vrcholy."
  - Tudíž vrcholy stromu prohledávání tvoří silně souvislou komponentu grafu *G*. (Důkaz plyne z předchozích tvrzení.)

### Kosarajův - Sharirův algoritmus

Vstup: Orientovaný graf G = (V, E), kde pro každý vrchol v je zadán seznam A(v) hran s počátečním vrcholem v.

Výstup: Komponenty silné souvislosti, resp. množiny jejich vrcholů.

Datové struktury: Pole N délky n=|V|, kde N(v)=true, pokud byl vrchol v již navštíven. Pole P délky m=|E|, kde P(e)=true, pokud byla hrana e již použita. Zásobník S (pro DFS) či fronta Q (pro BFS), zásobník Z.

#### Kosarajův - Sharirův algoritmus

(Prohledej G do hloubky a zapamatuj si časy opouštění vrcholů.)

- for all  $v \in V$  do  $N(v) \leftarrow \textit{false}$  enddo
- for all  $e \in E$  do  $P(e) \leftarrow false$  enddo
- $S \leftarrow \emptyset$ ,  $Z \leftarrow \emptyset$
- while existuje nenavštívený vrchol do
  - $r \leftarrow v$ , kde N(v) = false
  - DFS(r), který je v else-větvi (tj. když už neexistuje nepoužitá hrana z vrcholu v) obohacený o příkaz "vlož vrchol v do zásobníku Z"
  - enddo (výstupem této části je zásobník Z)

(Otoč hrany grafu G a vytvoř tak  $G^{op}$ , zadaný seznamy B(v).)

• for all  $e = (v, w) \in E$  do  $B(w) \leftarrow B(w) \cup \{e' = (w, v)\}$  enddo



(Prohledej  $G^{op} = (V, E^{op})$  do hloubky, resp. do šířky, přitom kořeny stromů ber z topu zásobníku Z.)

- for all  $v \in V$  do  $N(v) \leftarrow false$  enddo
- for all  $e \in E^{op}$  do  $P(e) \leftarrow false$  enddo
- $i \leftarrow 0$ ,  $S \leftarrow \emptyset$  (resp.  $Q \leftarrow \emptyset$ )
- while  $Z \neq \emptyset$  do
  - if N(top(Z)) = false then
    - $r \leftarrow top(Z)$
    - DFS(r) (resp. BFS(r))
    - $i \leftarrow i + 1$ ,  $K_i \leftarrow V_r$  endif
  - ullet odstraň top(Z) ze zásobníku Z enddo

(Vrcholy stromů prohledávání jsou silně souvislé komponenty.)

• output  $K_1, \ldots, K_i$ 



#### Časová náročnost

Kosarajův - Sharirův algoritmus na hledání silně souvislých komponent v podstatě udělá dvakrát prohledávání grafu (poprvé nutně do hloubky). Potřebný čas je O(m+n), kde m je počet hran, n je počet vrcholů grafu.

### Orientované grafy

#### Literatura

- J. Demel: Grafy a jejich aplikace, Academia, 2015.
- J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum, 2000.
- M. Dostál: Cvičení k přednášce LGR (najdete v nich důkazy některých tvrzení z přednášky a mnoho dalších příkladů).