Labor Market Polarization

ECON 499: Economics of Inquality

Winter 2018

So far:

- Top incomes have diverged rapidly since the 1980s
 - True in the cross section and life-cycle (for men and women)
 - Top incomes largely determined by market forces ("talent")
 - How do people acquire talents?
 - Why are "talents" more valued today than in the past?

Changes in inequality

- Measure inequality with the 90/10 quantile ratio
- Since top 10% income share increasing (Piketty and Saez), expect 90/10 ratio to grow
- Similar to quantile ratio, compare relative wages of college educated vs non college educated

Table 1.—Changes in Real, Composition-Adjusted Log Weekly wages for Full-Time, Full-Year Workers, 1963–2005. $(100 \times \text{change in mean log real weekly wages})$

	1963–1971	1971–1979	1979–1987	1987–1995	1995–2005	1963–2005
All	19.5	0.6	-0.8	-4.8	7.6	22.2
Sex						
Men	21.1	0.1	-4.9	-7.8	6.7	15.3
Women	17.3	1.4	4.9	-0.7	9.0	31.8
Education (years of schooling)						
0–11	17.0	1.8	-8.4	-10.3	2.5	2.6
12	17.6	3.2	-3.2	-6.6	5.8	16.8
13–15	18.6	0.6	1.2	-5.3	9.5	24.6
16+	25.4	-4.2	6.8	2.8	12.5	43.3
16–17	22.9	-4.9	5.6	1.0	11.9	36.5
18+	31.3	-2.6	9.5	6.8	14.0	59.0
Experience (males)						
5 years	20.0	-3.6	-8.5	-7.6	9.0	9.3
25–35 years	21.6	3.4	-1.6	-8.1	3.8	19.2
Education and experience (males)						
Education 12						
Experience 5	19.4	0.7	-16.1	-10.3	7.1	0.7
Experience 25–35	17.0	6.3	-2.5	-7.6	0.3	13.6
Education 16+						
Experience 5	23.1	-11.0	9.3	-1.9	10.0	29.5
Experience 25–35	35.0	1.7	2.6	-2.2	13.8	50.9

Skilled workers

- The supply of skilled workers has been increasing steadily
- 10% of workforce had college education in 1960
- 30% in 2005
- We would expect wages for skilled workers to decline

The skill premium

- The skill premium is the "reward" to education in the form of increased wages
- The wage premium has been increasing steadily
- Supply also increasing
- This means demand for skilled labor must be increasing at a faster rate

Why Are There Still So Many Jobs? (Autor, 2015)

- Technology and "automation" have increased rapidly, yet unemployment doesn't seem to have changed
- Why hasn't automation created unemployment?
- What are the implications of this technological change?

Automation

- Technology replacing jobs is not a new phenomenon
- Many agricultural jobs have been automated
- 41% of all workers in 1900, 2% today

Complements and substitutes

Complements:

- Factors that are used together in the production process
- Example: Programmers and computers

Substitutes:

- Factors that can replace one another
- Example: Farm worker, combine harvester

Technology as a complement

- Some tasks are complemented by technological innovation
- Faster computers make programmers (and economists!) more productive
- ATMs allow bank tellers to do other work, e.g. customer service, sales, etc
- Workers have historically moved to technology-complementary industries as jobs are automated
- Increase in technology-complementary jobs offsets losses in substituted jobs

Jobs that aren't substituted by technology

- 1. "Abstract" jobs: Problem solving, intuition, creativity. Professional, technical, managerial jobs.
- 2. "Manual" jobs: Adaptability, language recognition, human interaction. Food prep, service, healthcare jobs.

Skills and jobs

- Abstract jobs usually require training and education
- Manual jobs can be learned "on the job", not as much education needed
- Jobs in the middle of the skill distribution are "hollowed out"

Figure 2 Change in Employment by Major Occupational Category, 1979–2012 (the y-axis plots 100 times log changes in employment, which is nearly equivalent to percentage points for small changes) 40 $100 \times \log$ Change in Employment 30 10 -10-202007-2012 1979-1989 1989-1999 1999-2007

Technology complements

- Not all jobs benefit the same from technology
- Computer programmers might benefit more from faster computers than bank tellers from ATMs
- Differences in productivities will be reflected in wages
- Which workers are complemented by technological innovations?

Skill-biased technological change (SBTC)

- Technological advances have complemented high-skilled workers more than low-skilled workers
- Computers allow doctors to diagnose better, lawyers to find laws better, financial analysts to model asset prices better, etc
- We say that technological change has been biased toward skilled workers
- Skilled workers receive more benefits from technology than other workers

Figure 4 Changes in Mean Wages by Occupational Skill Percentile among Full-Time, Full-Year (FTFY) Workers, 1979-2012 (the y-axis plots 100 times log changes in employment, which is nearly equivalent to percentage points for small changes) 20 $100\times Log$ Change in Mean FTFY Wage 15 10 5 -5100 20 60 40 80 Skill percentile (ranked by occupation's 1979 mean log wage)

1989-1999

1999-2007

2007-2012

1979-1989

Middle-skill jobs

Break up "abstract" and "manual" jobs into routine and nonroutine categories:

- 1. Nonroutine abstract: Management and professionals
- 2. Nonroutine manual: Service, care providers
- 3. Routine abstract: Sales, support, office
- 4. Routine manual: Construction, manufacturing, mining

Trade and polarization

- Routine jobs are easily outsourced as well as easily automated
- Educated workers oversees compete against domestic workers for routine jobs
- Growth of India and China has greatly increased the supply of foreign workers who can perform routine jobs

Global vs local inequality

- The rise of China and India has vastly reduced global income inequality
- With growth comes new workers that can compete in global market
- This hollows out middle skill, routine tasks
- Makes inequality increase in developed countries

Returns to education

- If returns to education are so high, why doesn't everyone get advanced degrees?
- Returns to education high enough to make student debt "worth it"

Credit constraints

- High-income students might have better access to credit markets
- More students are dependent on private student loans in addition to Government loans
- Private loans are often not available to low-income students

Increasing value of leisure time (speculative)

- "The Free-Time Paradox in America", Atlantic Magazine, September 2016
- Low skill, young men work much less today than in the past
- 3/4 of additional leisure time is spent playing video games
- "Life satisfaction" surveys indicate they are just as happy

Consumer surplus and leisure

- Entertainment goods are much cheaper today than in the past
- People are willing to pay high amounts for entertainment, but prices are low
- Internet based goods are very low cost (Wikipedia, Netflix, Facebook)
- The same level of income can buy more utility (satisfaction)
- Some people might be less willing to work hard to become rich (marginal utility of income is lower)

Summary

- Automation and trade replace jobs that require some skill
- High skill and low skill jobs not replaced by automation or trade
- Technology is "biased" toward high-skilled jobs, increasing wages
- High skilled and low skilled workers are pulled apart
- Some low skilled workers might be content to not acquire skills (speculative!)