

Carine Souveyet

Manuele Kirsch Pinheiro

03/03/15

2

Contenu prévisionnel

- Piles et files
- Listes
- Récursivité
 - Récursivité dans le calcul
 - Récursivité structurelle
- Arbres binaires
 - · Parcours en profondeur et en largeur
- Généralisation de la notion d'arbre
 - Insertion et suppression de nœuds
- Arbre de recherche
 - Rééquilibrage
- Graphes

ARBRES

3/03/15 Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-pari

_

Arbres Définitions et terminologie

- Un arbre est une structure de données caractérisée par son structure hiérarchique.
- Un arbre est formé par un ensemble de sommets (ou nœuds), reliés par des arcs et organisés de manière hiérarchique.

- Dans un arbre, il existe un nœud particulier, appelé racine, qui est à l'origine de l'arborescence
- Chaque nœud possède 0 ou plusieurs nœuds fils directement connectés à lui par un arc
- Chaque nœud, à l'exception de la racine, possède un parent (ou nœud père) <u>unique</u>

03/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

6

Définitions et terminologie

- Tout nœud n est accessible par un chemin unique qui part de la racine et passe par un ensemble de nœuds appelés ascendants de n
- Tous les nœuds accessibles par un chemin à partir de n sont des descendants de ce nœud

- Un arbre peut être ainsi défini comme l'ensemble formé d'un nœud racine et d'une suite éventuellement vide de sous-arbres S₁, ..., S_m m≥0
- L'arbre ci-dessous peut être définie comme la racine
 n1 et les sous-arbres n2 et n3

03/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

8

Définitions et terminologie

- Chaque nœud dans un arbre contient
 - une information spécifique à l'application (on parle alors d'arbre étiquetée)
 - des pointeurs vers d'autres sous-arbres
- Le degré d'un nœud est le nombre de fils de ce nœud
- Les nœuds qui ne possèdent pas de sous-arbre (c.a.d. pas de fils ou de descendant) sont appelés nœuds externes ou feuilles
- Les nœuds possédant au moins un sous-arbre (c.a.d. degré ≥ 1) sont appelés nœuds internes

- Une branche est un chemin entre la racine et une feuille. Un arbre a autant de branches que de feuilles.
- La longueur d'un chemin entre deux nœuds appartenant à une même branche est égale au nombre d'arcs qui les séparent
- L'hauteur (depth) d'un nœud n est la longueur du chemin entre la racine et lui
- Un niveau (level) de l'arbre est formé de tous les nœuds placés à une même hauteur
- La profondeur (height) de l'arbre correspond à son hauteur maximale, ou le plus long chemin entre la racine et une feuille

/03/15 Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-

10

Définitions et terminologie

On appelle une forêt une suite disjointe d'arbres

Opérations abstraites

cons: Nœud x Forêt → Arbre construction d'un arbre

racine : Arbre → Nœud

racine de l'arbre

forêt : Arbre → Forêt

fils (sous-arbres)

valeur : Nœud → e

valeur d'un nœud

• ièmeArbre : Forêt x entier -> Arbre ième sous-arbre

ajouterArbre : Forêt x entier x Arbre → Forêt

supprimerArbre : Forêt x entier → Forêt

ajouter / supprimer un fils

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

12

ARBRE BINAIRE

Arbre binaire

 Un arbre binaire est un arbre ordonné dont le degré des nœuds ne dépasse pas 2

Chaque nœud possède au plus 2 fils

Ordonné car l'ordre des sous-arbres est significatif

On distingue alors le fils gauche du fils droit

UNIVERSITÉ PARIS 1
PANTHÉON SORBONNE

03/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

14

Arbres binaires

Quelques formes caractéristiques

arbre binaire forme quelconque

arbre binaire

complet

les nœuds internes (pas les feuilles) possèdent toujours 2 fils (degré 2)

chaque niveau ne possède qu'un nœud. Tous les nœuds appartiennent à une même branche

Arbre binaire

Représentation « chaînée »

03/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

16

Parcours

Parcours arbre binaire

- Un algorithme de parcours d'arbre est un algorithme permettant d'accéder à chaque nœud de l'arbre afin d'y effectuer un traitement (test, affichage, modification, comptage...)
- Les algorithmes de parcours sont indépendants de ce traitement (qu'on appelle communément « visite »)
- On distingue deux catégories de parcours
 - parcours en profondeur
 - parcours en largeur

Parcours

Parcours en profondeur

on explore l'arbre branche par branche

Parcours en largeur

on explore l'arbre niveau par niveau

03/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

18

Parcours en profondeur

Parcours en profondeur

 Selon le moment où le nœud courant est traité, on distingue trois type (ou méthodes) : préfixe, infixe et postfixe

Parcours Préfixe

 On va d'abord traiter le nœud courant, puis explorer les sousarbres gauche et droite

Parcours infixe

 On va visiter le nœud courant après avoir exploré la sous-arbre gauche et avant d'explorer la sous-arbre droite

· Parcours Préfixe

 On va d'abord explorer les sous-arbres gauche et droite avant de visiter le nœud

Parcours en profondeur

Parcours préfixe

- 1 visiter le nœud
- 2 explorer sous-arbre gauche
- 3 explorer sous-arbre droit

```
prefixe (racine)
Entrée:
Nœud racine
Si racine!= null
alors
visite (racine)
prefixe ( gauche (racine) )
prefixe ( droit (racine) )
fin si
fin
```


04/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

20

Parcours en profondeur

Parcours infixe

- 1 explorer sous-arbre gauche
- 2 visiter le nœud
- 3 explorer sous-arbre droit

```
infixe (racine)
  Entrée :
     Nœud racine
  Si racine != null
  alors
     infixe ( gauche (racine) )
     visite (racine)
     infixe ( droit (racine) )
  fin si
fin
```


$$a + b * c - d - e$$

Parcours en profondeur

Parcours postfixe

- 1 explorer sous-arbre gauche
- 2 explorer sous-arbre droit
- 3 visiter le nœud

```
postfixe (racine)
Entrée:
Nœud racine
Si racine!= null
alors
postfixe (gauche (racine))
postfixe (droit (racine))
visite (racine)
fin si
fin
```


$$ab + cd - *e -$$

04/03/15

Manuele Kirsch Pinheiro - CRI/UP1 - mkirschpin@univ-paris1.fr

22

Parcours en largeur

Parcours en largeur

- On explore l'arbre niveau par niveau
- On utilise une file d'attente pour conserver les nœuds à traiter dans chaque niveau

7 5 10 3 6 9 12 1 4

A chaque nœud visité, ses fils sont mis dans la file d'attente

7 5 10 3

Parcours en largeur

```
Largeur (racine)
  Entrée:
     Nœud racine
  Si racine != null
  alors
     File f = nouvelle File
     enfiler (f, racine)
     Tant que! EstVide (f)
     faire
        Nœud n = defiler (f)
        visite (n)
        Si gauche (n)!= null
        alors enfiler (f, gauche (n))
        fin si
        Si droit (n)!= null
        alors enfiler (f, droit(n))
        fin si
     fin tant
  fin si
fin
```

