FMI, Info, Anul I

Logică matematică și computațională

Seminar 2

(S2.1) Arătați, pe rând, următoarele:

- (i) \mathbb{N}^* este numărabilă.
- (ii) Z este numărabilă.
- (iii) $\mathbb{N} \times \mathbb{N}$ este numărabilă.

Demonstrație:

(i) Definim

$$f: \mathbb{N} \to \mathbb{N}^*, \quad f(n) = n+1.$$

Se demonstrează imediat că f este bijecție, inversa sa fiind

$$f^{-1}: \mathbb{N}^* \to \mathbb{N}, \quad f^{-1}(n) = n - 1.$$

(ii) Enumerăm elementele lui \mathbb{Z} astfel:

$$0, -1, 1, -2, 2, -3, 3, \dots$$

Funcția $f:\mathbb{N} \to \mathbb{Z}$ corespunzătoare acestei enumerări este următoarea:

$$f(n) = \begin{cases} \frac{n}{2} & \text{dacă } n \text{ e par} \\ -\frac{n+1}{2} & \text{dacă } n \text{ e impar.} \end{cases}$$

E clar că f e bijectivă și că $h: \mathbb{Z} \to \mathbb{N}$ definită prin:

$$h(s) = \begin{cases} 2s & \text{dacă } s \ge 0\\ -2s - 1 & \text{dacă } s < 0 \end{cases}$$

este inversa lui f.

(iii) Ordonăm elementele lui $\mathbb{N} \times \mathbb{N}$ după suma coordonatelor și în cadrul elementelor cu aceeași sumă după prima componentă în ordine crescătoare:

linia 0
$$(0,0)$$
,
linia 1 $(0,1), (1,0)$,
linia 2 $(0,2), (1,1), (2,0)$,
linia 3 $(0,3), (1,2), (2,1), (3,0)$,
 \vdots
linia k $(0,k), (1,k-1), \dots, (k-1,1), (k,0)$,
 \vdots

Prin urmare, pentru fiecare $k \in \mathbb{N}$, pe linia k sunt k+1 perechi $(i,k-i), i=0,\ldots,k$. Definim $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ astfel: $f(0,0)=0, \ f(0,1)=1, \ f(1,0)=2, \ldots$ În general, f(i,j) se definește ca fiind numărul perechilor situate înaintea lui (i,j). Deoarece (i,j) este al (i+1)-lea element pe linia i+j, rezultă că înaintea sa sunt $1+2+3+\ldots+(i+j)+i=\frac{(i+j)(i+j+1)}{2}+i$ elemente. Așadar, bijecția va fi funcția

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad f(i,j) = \frac{(i+j)(i+j+1)}{2} + i.$$

Această funcție se numește și funcția numărare diagonală a lui Cantor (în engleză, Cantor pairing function).

(S2.2) Demonstrați că orice mulțime infinită are o submulțime numărabilă.

Demonstrație: Fie A acea mulțime. Definim inductiv șirul $(a_n)_{n\in\mathbb{N}}$ din A cu proprietatea că $a_i \neq a_j$ pentru orice $i, j \in \mathbb{N}, i \neq j$.

Deoarece A este nevidă, există $a_0 \in A$. Cum A este infinită, $A - \{a_0\}$ este nevidă, deci există $a_1 \in A$ a.î. $a_1 \neq a_0$.

Cum A este infinită, $A - \{a_0, a_1\}$ este nevidă, deci există $a_2 \in A$ a.î. $a_2 \neq a_0$ şi $a_2 \neq a_1$. În general, presupunem că am definit $a_0, \ldots, a_n \in A$ distincte două câte două. Cum A este infinită, $A - \{a_0, \ldots, a_n\}$ este nevidă, deci există $a_{n+1} \in A$ diferit de toţi a_0, \ldots, a_n .

Definim funcția $f: \mathbb{N} \to A$ prin $f(n) = a_n$ pentru orice $n \in \mathbb{N}$. Se observă imediat că f este injectivă, prin urmare avem că $f(\mathbb{N}) \sim \mathbb{N}$. Rezultă că $f(\mathbb{N})$ este o submulțime numărabilă a lui A.

(S2.3) Demonstrați că orice submulțime infinită a unei mulțimi numărabile este numărabilă.

Demonstrație: Fie A, B mulțimi a.î. $A \subseteq B$, A este infinită și B este numărabilă.

Deoarece $A \subseteq B$, funcția incluziune $f: A \to B$, f(a) = a este injectivă.

Deoarece A este infinită, putem aplica (S2.2) pentru a obține o submulțime numărabilă C a lui A. Prin urmare, există o funcție bijectivă $h: B \to C$. Compunând h cu funcția incluziune a lui C în A obținem funcția $g: B \to A$, g(b) = h(b), care este injectivă.

Am obținut funcțiile injective $f:A\to B,\ g:B\to A$. Putem aplica Teorema Cantor-Schröder-Bernstein pentru a concluziona că $A\sim B$, deci că A este numărabilă.

Altă demonstrație: Cu A, B ca mai devreme, fie $g: \mathbb{N} \to B$ o bijecție. Vom defini inductiv un şir $(a_n)_{n\in\mathbb{N}}$ din A, ca în (S2.2), cu diferența că nu vom mai face alegeri arbitrare, ele fiind acum unic determinate la fiecare pas.

Deoarece A este nevidă, iar g este surjectivă, există $m \in \mathbb{N}$ a.î. $g(m) \in A$. Alegem m minim cu această proprietate și punem $a_0 := g(m)$.

Cum A este infinită, $A - \{a_0\}$ este nevidă, deci din nou putem alege m minim cu proprietatea că $g(m) \in A - \{a_0\}$ și punem $a_1 := g(m)$.

În general, presupunem că am definit $a_0, \ldots, a_n \in A$. Cum A este infinită, $A - \{a_0, \ldots, a_n\}$ este nevidă, deci alegem m minim cu proprietatea că $g(m) \in A - \{a_0, \ldots, a_n\}$ și punem $a_{n+1} := g(m)$.

Atunci funcția $f: \mathbb{N} \to A$, definită, pentru orice $n \in \mathbb{N}$, prin $f(n) = a_n$, va fi bijecția dorită.

(S2.4) Demonstrați că o mulțime A este cel mult numărabilă dacă și numai dacă există o funcție injectivă de la A la o mulțime numărabilă (pe care o putem lua ca fiind \mathbb{N}).

Demonstraţie: \Rightarrow Deoarece A este numărabilă, există o bijecţie $f: A \rightarrow \mathbb{N}$. Dacă A este finită, avem două cazuri:

- (i) $A = \emptyset$. Atunci funcția vidă este injecție de la \emptyset în \mathbb{N} .
- (ii) $A = \{a_1, \ldots, a_n\}$ pentru un $n \geq 1$. Atunci $f : A \to \mathbb{N}$, $f(a_i) = i$ pentru orice $i = 1, \ldots, n$ este injecție.

 \Leftarrow Dacă A este finită, concluzia este evidentă. Presupunem că A este infinită. Fie B o mulțime numărabilă și $f:A\to B$ o injecție. Atunci $A\sim f(A)\subseteq B$. Din (S2.3), rezultă că f(A) este numărabilă. Prin urmare, A este numărabilă.

(S2.5) Demonstraţi următoarele:

- (i) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (ii) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

Demonstrație: Fie A_1 şi A_2 două mulțimi cel mult numărabile. Dacă una din mulțimile A_1 , A_2 este vidă, concluzia este imediată, deoarece $C \times \emptyset = \emptyset \times C = \emptyset$ şi $C \cup \emptyset = \emptyset \cup C = C$

pentru orice mulţime C. Presupunem, aşadar, că A_1 şi A_2 sunt nevide. Conform (S2.4), există funcţiile injective $f_1:A_1\to\mathbb{N},\,f_2:A_2\to\mathbb{N}.$

(i) Definim

$$f: A_1 \times A_2 \to \mathbb{N} \times \mathbb{N}, \quad f(a,b) = (f_1(a), f_2(b)).$$

Rezultă uşor că f este injectivă: Fie $(a_1, b_1), (a_2, b_2) \in A_1 \times A_2$. Atunci $f(a_1, b_1) = f(a_2, b_2)$ ddacă $(f_1(a_1), f_2(b_1)) = (f_1(a_2), f_2(b_2))$ ddacă $f_1(a_1) = f_1(a_2)$ şi $f_2(b_1) = f_2(b_2)$ ddacă $a_1 = a_2$ şi $b_1 = b_2$ (deoarece f_1, f_2 sunt injective) ddacă $(a_1, b_1) = (a_2, b_2)$.

Deoarece $\mathbb{N} \times \mathbb{N}$ este numărabilă, conform (S2.1), aplicăm din nou (S2.4) pentru a concluziona că $A_1 \times A_2$ este cel mult numărabilă.

(ii) Definim $f: A_1 \cup A_2 \to \mathbb{N} \times \mathbb{N}$ astfel:

dacă $a \in A_1 \cup A_2$, alegem $i_a \in \{1, 2\}$ cu $a \in A_{i_a}$ și definim $f(a) = (f_{i_a}(a), i_a)$.

Rezultă ușor că f este injectivă: dacă $a, b \in A_1 \cup A_2$ sunt a.î. $(f_{i_a}(a), i_a) = (f_{i_b}(b), i_b)$, atunci $i_a = i_b$ și $f_{i_a}(a) = f_{i_a}(b)$, deci a = b, deoarece f_{i_a} este injectivă.

Deoarece $\mathbb{N} \times \mathbb{N}$ este numărabilă, conform (S2.1), aplicăm din nou (S2.4) pentru a concluziona că $A_1 \cup A_2$ este cel mult numărabilă.