1. Sea la siguiente gramática libre de contexto GLC1=({a, b, c}, {S, A, B, C, D, E}, S, P), donde P consta de las siguientes producciones:

$$\begin{split} S &\rightarrow aBC \\ A &\rightarrow Aa|B|BC|C|\lambda \\ B &\rightarrow b|AA \\ C &\rightarrow A \\ D &\rightarrow EAD|CD|E \\ E &\rightarrow cAD|AD \end{split}$$

Entonces, los símbolos anulables son:

- a. A
- b. AyC
- * c. A, B y C
- d. Ninguna de las anteriores
- 2. Sea la gramática libre de contexto GLC1, tras aplicar el algoritmo visto en clase que permite eliminar las λ -producciones, ¿cuál de las siguientes opciones sería correcta?
 - a. Las producciones para el símbolo B serían: $B \rightarrow b|AA$
 - * b. Las producciones para el símbolo B serían: $B \rightarrow b|AA|A$
 - c. Las producciones para el símbolo B serían: $B \rightarrow b|AA|A|\lambda$
 - d. Ninguna de las anteriores
- **3.** Sea la gramática libre de contexto (GLC1) tras aplicar el algoritmo visto en clase que permite eliminar las producciones unidad, ¿cuál de las siguientes opciones sería correcta?
 - * a. Las producciones para el símbolo C serían: $C \to Aa|b|AA|BC|\lambda$
 - b. Las producciones para el símbolo C serían: $C \to Aa|B|BC|C|\lambda$
 - c. Las producciones para el símbolo C serían: $C \to Aa|b|AA|BC|C|\lambda$
 - d. Ninguna de las anteriores
- 4. Sea la gramática libre de contexto GLC1, los símbolos muertos de esta gramática son
 - * a. D y E
 - b. C
 - c. A
 - d. Ninguna de las anteriores
- 5. Sea la gramática libre de contexto GLC1, los símbolos inaccesibles de esta gramática son
 - a. D
 - b. DyE
 - * c. E, c y D
 - d. Ninguna de las anteriores
- **6.** Sea la siguiente gramática libre de contexto GLC2=({S, A, B}, {0, 1}, P, S), donde P consta de las siguientes producciones:

$$\begin{split} S &\rightarrow AAB|111 \\ A &\rightarrow 0A|0 \\ B &\rightarrow 0B|1B|0|1 \end{split}$$

si aplicamos el algoritmo visto en clase para obtener una GLC equivalente en FNC GLC2'=(V', T, P', S), ¿cuál de las siguientes opciones sería correcta?

- a. V' tendrá 3 variables y P' 11 producciones
- * b. Las producciones comunes a P y P' serán

$$A \to 0$$
$$B \to 0|1$$

c. S tendrá 4 producciones

- d. Ninguna de las anteriores
- 7. Tenemos un autómata con pila que verifica $f(q, a, A) = \{(p, B), (q, AA)\}$. Entonces se cumple
 - * a. $(q, aaa, A) \vdash (q, aa, AA) \vdash (p, a, BA)$
 - b. $(q, aaa, A) \vdash (q, aa, A) \vdash (p, a, BA)$
 - c. $(q, aaa, A) \vdash (q, aa, AA) \vdash (p, a, BAA)$
 - d. Ninguna de las anteriores
- **8.** Aplicamos el algoritmo CYK a una cierta gramática cuyo axioma es S y a la cadena aabaab y obtenemos que $V_{1,6} = \emptyset$. Entonces, podemos asegurar que:
 - a. la cadena aabaab es generada por la gramática
 - b. la cadena *aabaab* NO es generada por la gramática, pero lo sería si el axioma fuera A
 - c. la cadena aabaab NO es generada por la gramática, pero lo sería si el axioma fuera B
 - * d. Ninguna de las anteriores
- 9. Si una gramática es ambigua entonces:
 - * a. alguna de las palabras generada por ella tiene más de una derivación más a la derecha
 - b. todas las palabras generadas por ella tienen más de una derivación más a la derecha
 - c. ninguna palabra generada por ella tiene más de una derivación más a la derecha
 - d. Ninguna de las anteriores
- 10. El lenguaje generado por la GLC4 = $(\{S, A, B\}, \{0, 1\}, P, S)$, donde P consta de las siguientes producciones:

$$S \rightarrow SS \\ A \rightarrow BB|0 \\ B \rightarrow 1$$

- * a. Es vacío
 - b. Es finito
 - c. Es infinito
 - d. Ninguna de las anteriores