Feature Engineering for Battery OCV Analysis

Practical Applications on A123 Battery Low Current Open Circuit Voltage Data

Introduction

This document demonstrates comprehensive feature engineering techniques applied to A123 battery low current Open Circuit Voltage (OCV) data collected at different temperatures (-10°C to 50°C). We'll apply the fundamental concepts from machine learning feature engineering to transform raw battery testing data into meaningful features for analysis and modeling.

The dataset contains approximately 30,000-32,000 data points per temperature, with 18-19 features including voltage, current, capacity, energy, and temperature measurements across multiple test cycles.

1. Categorical Features

1.1 Temperature as Categorical Variable

The most obvious categorical feature in our dataset is temperature, which represents discrete test conditions rather than continuous thermal measurements.

Raw Data Representation:

```
python

temperatures = [-10, 0, 10, 20, 25, 30, 40, 50] # Celsius
```

Problem with Direct Numerical Encoding: Using direct numerical mapping (e.g., -10° C = 1, 0° C = 2, etc.) would incorrectly imply:

- Mathematical relationships: 50°C (-10°C) = 40°C has meaning in arithmetic
- Ordinal assumptions: The model might assume equal "distance" between temperature steps

One-Hot Encoding Solution:

1.2 Step Index and Cycle Index as Categories

Step Index Categories:

- Step 1: Initial setup
- Step 2: Current application
- Step 3: OCV measurement
- Steps 5-8: Various test phases

Cycle Index Categories:

- Represents different test cycles within the same temperature condition
- Should be treated categorically as each cycle may have different characteristics

1.3 Practical Implementation

```
python
```

```
# Temperature color mapping for visualization consistency
temp_colors = {
    '-10': '#0033A0', # Deep blue
    '0': '#0066CC',
                    # Blue
    '10': '#3399FF', # Light blue
    '20': '#66CC00',
                    # Green
    '25': '#FFCC00', # Yellow (room temperature)
    '30': '#FF9900', # Orange
    '40': '#FF6600', # Dark orange
    '50': '#CC0000'
                    # Red
}-
# One-hot encoding for temperature
temperature_encoded = pd.get_dummies(combined_data['temperature'], prefix='temp')
# Results in: temp_-10, temp_10, temp_20, temp_25, temp_30, temp_40, temp_50
```

2. Derived Features

2.1 Time-Based Features

Battery performance is highly dependent on time-related patterns. We can extract meaningful temporal features:

Polynomial Time Features:

```
from sklearn.preprocessing import PolynomialFeatures

# Create polynomial features from test time
poly = PolynomialFeatures(degree=3, include_bias=False)
time_features = poly.fit_transform(data[['Test_Time(s)']])

# Results in: [time, time², time³]
# Captures non-linear aging effects over test duration
```

Derived Temporal Features:

```
# Time-based feature engineering
data['Test_Hours'] = data['Test_Time(s)'] / 3600
data['Test_Days'] = data['Test_Time(s)'] / (3600 * 24)
data['Time_Since_Cycle_Start'] = data.groupby('Cycle_Index')['Test_Time(s)'].transform(
    lambda x: x - x.min()
```

2.2 Electrical Performance Features

Power and Energy Derivatives:

```
# Power calculations
data['Instantaneous_Power'] = data['Voltage(V)'] * data['Current(A)']

# Energy efficiency features
data['Charge_Efficiency'] = (
    data['Discharge_Energy(Wh)'] / data['Charge_Energy(Wh)']
).fillna(0)

# Capacity utilization
data['Capacity_Utilization'] = (
    data['Discharge_Capacity(Ah)'] / data['Charge_Capacity(Ah)']
).fillna(0)
```

Polynomial Features for Voltage-Current Relationships:

```
# Capture non-linear V-I characteristics
voltage_current_poly = PolynomialFeatures(degree=2, include_bias=False)
vi_features = voltage_current_poly.fit_transform(
    data[['Voltage(V)', 'Current(A)']]
)

# Results in: [V, I, V², V*I, I²]
# Captures battery impedance characteristics and non-linearities
```

2.3 Temperature-Dependent Features

Temperature Interaction Features:

```
python
```

```
# Create features that capture temperature effects
data['Voltage_per_Temp'] = data['Voltage(V)'] / (data['Temperature(C)_1'] + 273.15)
data['Resistance_Temp_Factor'] = (
    data['Internal_Resistance(Ohm)'] * (data['Temperature(C)_1'] + 273.15)
)

# Arrhenius-like features for battery kinetics
data['Temp_Reciprocal'] = 1 / (data['Temperature(C)_1'] + 273.15)
```

2.4 Rate-Based Features

Voltage and Current Rate Features:

3. Text Features (Metadata Processing)

While our dataset is primarily numerical, we can apply text processing concepts to categorical metadata:

3.1 Test Phase Description Encoding

```
# Simulated test phase descriptions based on Step_Index
step_descriptions = {
   1: "initial setup phase",
   2: "current application phase",
   3: "ocv measurement phase",
   5: "charge cycle phase",
   7: "discharge cycle phase",
   8: "final measurement phase"
}-
# Convert to text corpus
phase_texts = [step_descriptions.get(step, "unknown phase")
               for step in data['Step_Index']]
# Apply TF-IDF vectorization
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer()
phase_features = tfidf.fit_transform(phase_texts)
# Results in features like: 'initial', 'setup', 'phase', 'current', etc.
```

4. Imputation of Missing Data

4.1 Handling Missing Temperature Data

Some datasets might have missing temperature readings:

```
python
```

```
from sklearn.impute import SimpleImputer
import numpy as np

# Simulate missing data scenario
data_with_missing = data.copy()
missing_mask = np.random.random(len(data)) < 0.05  # 5% missing
data_with_missing.loc[missing_mask, 'Temperature(C)_1'] = np.nan

# Simple imputation strategies
mean_imputer = SimpleImputer(strategy='mean')
median_imputer = SimpleImputer(strategy='median')

# For temperature, median might be more robust
temp_imputed = median_imputer.fit_transform(
    data_with_missing[['Temperature(C)_1']].values
)</pre>
```

4.2 Advanced Imputation for Battery Data

5. Feature Pipelines

5.1 Complete Battery Analysis Pipeline

```
python
```

```
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
# Define feature groups
numerical features = [
    'Voltage(V)', 'Current(A)', 'Test_Time(s)',
    'Internal_Resistance(Ohm)', 'Temperature(C)_1'
1
categorical_features = ['Step_Index', 'Cycle_Index']
# Create preprocessing pipeline
preprocessing_pipeline = ColumnTransformer([
    # Numerical features: impute, polynomial, scale
    ('num', Pipeline([
        ('imputer', SimpleImputer(strategy='median')),
        ('poly', PolynomialFeatures(degree=2, include_bias=False)),
        ('scaler', StandardScaler())
    ]), numerical_features),
    # Categorical features: one-hot encode
    ('cat', Pipeline([
        ('imputer', SimpleImputer(strategy='constant', fill_value='unknown')),
        ('onehot', OneHotEncoder(drop='first', sparse=False))
    ]), categorical_features)
1)
# Complete pipeline with model
complete_pipeline = Pipeline([
    ('preprocessor', preprocessing_pipeline),
    ('regressor', LinearRegression()) # Example: predicting voltage degradation
])
```

5.2 Temperature-Specific Feature Pipeline

```
# Specialized pipeline for temperature analysis
temp_analysis_pipeline = make_pipeline(
    # Step 1: Handle missing values
    SimpleImputer(strategy='mean'),

# Step 2: Create polynomial features for non-linear temperature effects
PolynomialFeatures(degree=3, interaction_only=True),

# Step 3: Scale features
StandardScaler(),

# Step 4: Model (example: temperature effect on capacity)
LinearRegression()
)

# Usage example
X = data[['Temperature(C)_1', 'Voltage(V)', 'Current(A)']]
y = data['Discharge_Capacity(Ah)']

temp_analysis_pipeline.fit(X, y)
predictions = temp_analysis_pipeline.predict(X)
```

6. Advanced Feature Engineering for Battery Applications

6.1 State of Health (SOH) Features

6.2 Thermal Management Features

```
python
```

```
# Temperature differential features
data['Temp_Gradient'] = data['Temperature(C)_1'] - data['Temperature(C)_2']
data['Temp_Stability'] = data.groupby('Cycle_Index')['Temperature(C)_1'].std()
# Thermal resistance features
data['Thermal_Resistance'] = (
    (data['Temperature(C)_1'] - 25) / data['Instantaneous_Power']
).replace([np.inf, -np.inf], np.nan)
```

7. Feature Selection and Validation

7.1 Feature Importance Analysis

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectKBest, f_regression

# Random Forest for feature importance
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_processed, y)

feature_importance = pd.DataFrame({
    'feature': feature_names,
    'importance': rf.feature_importances_
}).sort_values('importance', ascending=False)

# Statistical feature selection
selector = SelectKBest(score_func=f_regression, k=10)
X_selected = selector.fit_transform(X_processed, y)
```

7.2 Cross-Temperature Validation

```
python
```

```
# Validate features across different temperatures
from sklearn.model_selection import GroupKFold

# Use temperature as grouping variable for validation
groups = data['Temperature_Group'].map({
    temp: i for i, temp in enumerate(sorted(data['Temperature_Group'].unique()))
})

cv = GroupKFold(n_splits=5)
scores = cross_val_score(complete_pipeline, X, y, cv=cv, groups=groups)
```

8. Practical Implementation Example

8.1 Complete Feature Engineering Workflow

```
def engineer_battery_features(data):
   Complete feature engineering pipeline for battery OCV data
    engineered_data = data.copy()
    # 1. Categorical encoding
    temp_dummies = pd.get_dummies(engineered_data['Temperature_Group'],
                                  prefix='temp')
    step_dummies = pd.get_dummies(engineered_data['Step_Index'],
                                  prefix='step')
    # 2. Derived features
    engineered_data['Power'] = (engineered_data['Voltage(V)'] *
                               engineered_data['Current(A)'])
    engineered_data['Energy_Efficiency'] = (
        engineered_data['Discharge_Energy(Wh)'] /
        engineered_data['Charge_Energy(Wh)']
    ).fillna(∅)
    # 3. Polynomial features for key relationships
    poly_features = ['Voltage(V)', 'Current(A)', 'Test_Time(s)']
    poly = PolynomialFeatures(degree=2, include_bias=False)
    poly_array = poly.fit_transform(engineered_data[poly_features])
    poly_df = pd.DataFrame(poly_array,
                          columns=poly.get_feature_names_out(poly_features))
   # 4. Time-based features
    engineered_data['Test_Hours'] = engineered_data['Test_Time(s)'] / 3600
    engineered_data['Cycle_Duration'] = engineered_data.groupby('Cycle_Index')\
                                                      ['Test_Time(s)']\
                                                       .transform('max')
    # 5. Combine all features
   final_features = pd.concat([
        engineered_data,
       temp_dummies,
        step_dummies,
        poly_df
    ], axis=1)
    return final_features
# Apply to all temperature datasets
engineered_datasets = {}
for temp, dataset in temp_datasets.items():
```

```
dataset['Temperature_Group'] = temp
engineered_datasets[temp] = engineer_battery_features(dataset)
```

9. Visualization and Analysis

9.1 Feature Correlation Analysis

```
import matplotlib.pyplot as plt
import seaborn as sns

# Correlation heatmap of engineered features
key_features = [
    'Voltage(V)', 'Current(A)', 'Power', 'Energy_Efficiency',
     'Test_Hours', 'Internal_Resistance(Ohm)', 'Temperature(C)_1'
]

correlation_matrix = engineered_data[key_features].corr()

plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Feature Correlation Matrix - Battery OCV Analysis')
plt.tight_layout()
```

9.2 Temperature Effect Visualization

```
# Visualize temperature effects on key features
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
features_to_plot = ['Voltage(V)', 'Internal_Resistance(Ohm)',
                   'Energy_Efficiency', 'Discharge_Capacity(Ah)']
for i, feature in enumerate(features_to_plot):
    ax = axes[i//2, i%2]
    for temp, color in temp_colors.items():
        temp_data = engineered_datasets[f'{int(temp)}°C']
        ax.scatter(temp_data['Test_Hours'], temp_data[feature],
                  c=color, label=f'{temp}°C', alpha=0.6, s=1)
    ax.set_xlabel('Test Hours')
    ax.set_ylabel(feature)
    ax.set_title(f'{feature} vs Temperature')
    ax.legend()
plt.tight_layout()
plt.suptitle('Temperature Effects on Battery Performance Features',
             fontsize=16, y=1.02)
```

10. Conclusion

This comprehensive feature engineering demonstration shows how to transform raw battery OCV data into meaningful features for machine learning analysis. Key takeaways:

- 1. **Categorical Features**: Temperature and test phases should be one-hot encoded rather than treated as numerical values
- 2. **Derived Features**: Polynomial features capture non-linear battery behavior, while time-based features reveal aging effects
- 3. **Domain Knowledge**: Battery-specific features like power, efficiency, and thermal effects provide crucial insights
- 4. Pipelines: Systematic preprocessing ensures consistent and reproducible feature engineering
- 5. Validation: Cross-temperature validation ensures features generalize across operating conditions

The engineered features enable:

- **Predictive Modeling**: Battery lifetime and performance prediction
- Anomaly Detection: Identifying unusual battery behavior

- Optimization: Understanding optimal operating conditions
- Quality Control: Monitoring battery manufacturing consistency

This approach can be extended to other battery datasets and adapted for different battery chemistries and applications.

References

- Scikit-Learn Documentation: Feature Engineering and Preprocessing
- Battery Testing Standards: IEC 61960, IEEE 1625
- A123 Systems Battery Technology Documentation
- Machine Learning for Battery Applications: State-of-the-Art Review