SSAB

A715.77

Tar Sands Field Test Santa Cruz

Volume 1 Text and Tables

FIELD TEST OF THE LINS METHOD FOR THE RECOVERY OF OIL FROM TAR SAND

Volume 1

Text and Tables

SANTA CRUZ, CALIFORNIA

FIELD TEST OF THE LINS METHOD FOR RECOVERY OF OIL FROM TAR SAND

Ъу

R. E. Helander and B. Persson

Santa Cruz Thermal Recovery Experiment Santa Cruz, California

June 30, 1959

TABLE OF CONTENTS

		Page
SUMMARY		1
INTRODUCTION		2
DESCRIPTION OF TEST FACILITIES		3
Tar Sand Deposit		3
Burner-Gas Wells		3
Burners		4
Separate Gas Wells		4
Temperature Wells		4
Water Wells		5
Fuel Gas System		['] 5
Production Handling and Storage		5
OPERATION OF TEST		6
Heat Inputs and Burner Positions		6
Sand Losses		7
Materials of Construction		8
Burner Down Time	j	10
Burner Casing Temperatures		10
Tar Sand Formation Temperatures		11
Heat Balance Over Test Area		12
Safety Hazards		12
PRODUCTION OF FLUIDS		14
Summary of Test Production		14
Analyses of Products		14
Post Heating Core Analyses		15
Factors Affecting Recovery		18
Production From Separate Gas Wells		18
Production Tests at Individual Wells and Production Lines		20
Production of Tar and Emulsions		50
Formation of Coke in Gas Casings		22
Overburden Leaks and Losses to Surroundings		22
Production From Water Wells		23
CONCILISIONS AND RECOMMENDATIONS		2).

TABLES

	No.
ORIGINAL TAR ANALYSES IN L9	1
DESCRIPTION OF L9 BURNER-GAS WELLS	2
DESCRIPTION OF L9 SEPARATE GAS WELLS AND TEMPERATURE WELLS	3
DESCRIPTION OF L9 WATER WELLS	7
ANALYSES OF L9 FLUE GAS	5
CUMULATIVE HEAT INPUT IN L9 FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	6
METALLURGICAL ANALYSIS OF L9 BURNER CASINGS GIVEN BY THE BABCOCK & WILCOX COMPANY, BEAVER FALLS, PA.	7
DESCRIPTION OF BURNER FAILURES	8
BURNED OFF BURNER PARTS IN L9	9
BURNER INSPECTIONS	10
TOTAL NUMBER OF HOURS L9 BURNERS WERE OFF FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	11
SUMMARY OF BURNER OFF-TIME IN L9	12
L9 SHUT-DOWNS	13
NUMBER OF HOURS 19 BURNERS WERE OFF FOR UNKNOWN REASONS FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	14
NUMBER OF HOURS L9 BURNERS WERE OFF FOR BURNER FAILURES (BURNED OFF CASINGS, SUPPLY TUBES, COMES AND LIGHTING DIFFICULTIES) FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	15
NUMBER OF HOURS L9 BURNERS WERE OFF TO UNPLUG CONCENTRIC GAS CASINGS FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	1Ġ
NUMBER OF HOURS L9 BURNERS WERE OFF TO REPAIR GROUND LEAKS AND TANKBUSHING LEAKS FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	17
NUMBER OF HOURS L9 BURNERS WERE OFF FOR MAINTENANCE WORK ON BURNERS (INSPECTING BURNERS, REPLACING COUPLINGS AND WEAR RINGS, CHANGING BURNER POSITION, CLEANING ORIFICE PLATES, BURNED OFF HOSES, MISC. WORK ON F-LINE) FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959	18

	No.
TEMPERATURE OF EXHAUST GAS IN L9 MEASURED INSIDE THE BURNER CASINGS AT GROUND LEVEL	19
HEAT BALANCE FOR TEST L9	20
TOTAL L9 PRODUCTION DATA	21
COMPOSITE ANALYSIS OF L9 PRODUCED GAS	22
ANALYSES OF L9 PRODUCED GAS, JULY, 1958	23
ANALYSES OF L9 PRODUCED GAS, AUGUST, 1958	24
ANALYSES OF L9 PRODUCED GAS, SEPTEMBER, 1958	25
ANALYSES OF L9 PRODUCED GAS, OCTOBER, 1958	2 6 _.
ANALYSES OF L9 PRODUCED GAS, NOVEMBER, 1958	27
ANALYSES OF L9 PRODUCED GAS, DECEMBER, 1958	28
ANALYSES OF L9 PRODUCED GAS, JANUARY, 1959	29
ANALYSES OF L9 PRODUCED GAS, FEBRUARY, 1959	30
ANALYSES OF L9 PRODUCED OIL	31
ANALYSES OF L9 PRODUCED OIL	32
ANALYSIS AND CALCULATED PROPERTIES OF COMPOSITE OIL	33
POST-HEATING CORE DATA - FISCHER ASSAYS OF EXTRACTED, COKED SAND	34
L9 POST-HEATING CORE ANALYSES - CORE HOLE Cl	35
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C2	36
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C3	37
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C4	38
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C5	39
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C6	40
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C7	41
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C8	42
LO POST-HEATING CORE ANALYSIS - CORE HOLE CO	43

									•		No
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	ClO				44
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	Cll				45
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C12				46
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C13				47
L9	POST-HEATING	CORE	ANALYSIS	_	CORE	HOLE	Cl4				48
L9	POST-HEATING	CORE	ANALYSIS	CM	CORE	HOLE	C15.				 49
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C 16				.50
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C17				51
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C 18				52
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C 19				53
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C20				54
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C21		1		55
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C22		,		56
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C23				57
L9	POST-HEATING	CORE	ANALYSIS	•	CORE	HOLE	C24				58
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C 26				59
L9	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C27				60
L	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C28				61
L	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C 29				62
LŞ	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	c 30				63
L	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C31	•			64
L	POST-HEATING	CORE	ANALYSIS	. -	CORE	HOLE	c 32				65
L	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C33		•		66
L	POST-HEATING	CORE	ANALYSIS		CORE	HOLE	C34				67
L	POST-HEATING	CORE	ANALYSIS	-	CORE	HOLE	C35			•	68
P	RODUCTION TEST	'S - W	TET.T. 1853								60

•	No.
PRODUCTION TESTS, OCTOBER 1958	70
L9 PRODUCTION TESTS, NOVEMBER, 1958	71
L9 PRODUCTION TESTS, DECEMBER 1958	72
L9 PRODUCTION TESTS, JANUARY 1959	73
OIL INJECTION AND TAR PRODUCTION IN L9 (Rows 1 and 2)	.74
OIL INJECTION AND TAR PRODUCTION IN L9 (Rows 3 and 4)	75
OIL INJECTION AND TAR PRODUCTION IN L9 (Rows 5 and 6)	76
OIL INJECTION AND TAR PRODUCTION IN L9 (Rows 7 and 8)	77
OIL INJECTION AND TAR PRODUCTION IN L9 (Rows 9 and 10)	78
GROUND WATER PUMPED UP FROM L9	79
PRESSURES IN L9 P-LINES	80
DOCE-WEATING GODE DATA DECISIONION FROM INCIDE APEAS	81

-

FIGURES

	No.
TAR CONTENTS	1
WELL LOG. 121 W/40 N. (B2-5)	2
WELL LOG. 129 W/5 N. (B3-2)	3
WELL LOG. 129 W/75 N. (B3-9)	4
WELL LOG. 138 W/40 N. (B4-5)	5
WELL LOG. 147 W/45 N. (B5-6)	6
WEIL LOG. 162 W/O. (T61)	7
WELL LOG. 155 W/10 N. (B6-2)	8
WELL LOG. 155 W/80 N. (B6-9)	9
WELL LOG. 173 W/40 N. (B8-5)	10
WELL LOG. 173 W/50 N. (B8-6)	11
WELL LOG. 181 W/5 N. (B9-2)	12
WELL LOG. 181 W/75 N. (B9-9)	13
ORIGINAL TAR CONTENT BETWEEN 15 AND 45 FEET	14
ORIGINAL TAR CONTENT BETWEEN O TO 10 FEET	15
ORIGINAL TAR CONTENT BETWEEN 10 TO 15 FEET	16
ORIGINAL TAR CONTENT BETWEEN 15 TO 20 FEET	17
ORIGINAL TAR CONTENT BETWEEN 20 TO 25 FEET	18
ORIGINAL TAR CONTENT BETWEEN 25 TO 30 FEET	19
ORIGINAL TAR CONTENT BETWEEN 30 TO 35 FEET	20
ORIGINAL TAR CONTENT BETWEEN 35 TO 40 FEET	21
ORIGINAL TAR CONTENT BETWEEN 40 TO 45 FEET	. 22
ORIGINAL TAR CONTENT BETWEEN 45 TO 55 FEET	23
HOLE PATTERN OF TEST L9	5/4
LINS-BURNER TYPE C FOR L9	25

	No.
DIAGRAM FOR L9 WELLS	26
WATER WELLS AND TEMPERATURE WELLS OUTSIDE L9	27
F-, P- AND R-LINES OF TEST L9	28
FUEL STATION FOR L9	29
PRODUCT STATION FOR 18A	30
L9 HEAT INPUT DATA	31
CUMULATIVE HEAT INPUT AND AVERAGE FORMATION TEMPERATURE.	32
SAND LOSS IN L9 BURNERS	3 3
TEMPERATURE IN 19, T35, AT 12, 28 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	34
TEMPERATURE IN 19, T38, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	35
TEMPERATURE IN L9, T55, AT 12, 28, 44 FEET AND AVERAGE \ TEMP. BETWEEN 14 AND 42 FEET	36
TEMPERATURE INSIDE B5-2 BURNER CASING AT DIFFERENT SAND HEIGHTS. CONE AT 33 FEET	37
TEMPERATURE INSIDE B5-4 BURNER CASING AT DIFFERENT SAND HEIGHTS. CONE AT 33 FEET	38
TEMPERATURE OUTSIDE (T35) AND INSIDE BURNER CASING B3-5	39
TEMPERATURE OUTSIDE (T38) AND INSIDE BURNER CASING B3-8	40
TEMPERATURE OUTSIDE (T55) AND INSIDE BURNER CASING B5-5	41
TEMPERATURE INSIDE BURNER CASING B3-1	42
TEMPERATURE INSIDE BURNER CASING B3-10	43
TEMPERATURE INSIDE BURNER CASING B7-3	44
TEMPERATURE INSIDE BURNER CASING B7-8	45
TEMPERATURE INSIDE BURNER CASING B10-5	46
TEMPERATURE IN L9, T17 AT SELECTED TIME INTERVALS	47
TEMPERATURE IN 19, T22 AT SELECTED TIME INTERVALS	48

•	No.
TEMPERATURE IN 19, T24 AT SELECTED TIME INTERVALS	49
TEMPERATURE IN L9, T28 AT SELECTED TIME INTERVALS	50
TEMPERATURE IN L9, T42 AT SELECTED TIME INTERVALS	51
TEMPERATURE IN L9, T44 AT SELECTED TIME INTERVALS	52
TEMPERATURE IN 19, T48 AT SELECTED TIME INTERVALS	53
TEMPERATURE IN 19, T49A AT SELECTED TIME INTERVALS	54
TEMPERATURE IN L9, T49B AT SELECTED TIME INTERVALS	55
TEMPERATURE IN L9, T61 AT SELECTED TIME INTERVALS	56
TEMPERATURE IN L9, T62 AT SELECTED TIME INTERVALS	57
TEMPERATURE IN L9, T64 AT SELECTED TIME INTERVALS	58
TEMPERATURE IN 19, T68 AT SELECTED TIME INTERVALS	59
TEMPERATURE IN L9, T71 AT SELECTED TIME INTERVALS	60
TEMPERATURE IN 19, T710A AT SELECTED TIME INTERVALS	61
TEMPERATURE IN 19, T710B AT SELECTED TIME INTERVALS	62
TEMPERATURE IN 19, T710C AT SELECTED TIME INTERVALS	63
TEMPERATURE IN 19, T82 AT SELECTED TIME INTERVALS	64
TEMPERATURE IN L9, T88 AT SELECTED TIME INTERVALS	65
TEMPERATURE IN L9, Tlo2 AT SELECTED TIME INTERVALS	66
TEMPERATURE IN 19, T106 AT SELECTED TIME INTERVALS	67
TEMPERATURE IN 19, T108 AT SELECTED TIME INTERVALS	68
TEMPERATURE IN L9, T22 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	69
TEMPERATURE IN L9, T24 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	70
TEMPERATURE IN 19, T28 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	71
TEMPERATURE IN 19, T42 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	72

	No.
TEMPERATURE IN L9, T44 AT 12, 28, 44 FEET, AVERAGE TEMP. BETWEEN 14 AND 42 FEET	73
TEMPERATURE IN L9, T48 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	. 74
TEMPERATURE IN 19, T49A AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	75
TEMPERATURE IN L9, T49B AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	76
TEMPERATURE IN 19, T61 AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	77
TEMPERATURE IN L9, T62, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	78
TEMPERATURE IN L9, T64, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	79
TEMPERATURE IN L9, T68, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	80
TEMPERATURE IN L9, T71, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	81
TEMPERATURE IN L9, T710A, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	82
TEMPERATURE IN 19, T710B, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	83
TEMPERATURE IN L9, T82, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	84
TEMPERATURE IN L9, T88, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	85
TEMPERATURE IN L9, T102, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	86
TEMPERATURE IN L9, T108, AT 12, 28, 44 FEET AND AVERAGE TEMP. BETWEEN 14 AND 42 FEET	87
AVERAGE TEMPERATURE AT 28 FEET AND 14 TO 42 FEET IN "INSIDE" TEMPERATURE WELLS	88
TEMPERATURE INSIDE B1-4, B1-5, B2-4, B3-3 BURNER CASINGS AT 11-15 HOURS AFTER SHUT OFF	89

	No.
TEMPERATURE INSIDE B4-2 BURNER CASING AT 16 AND 26 HOURS AFTER SHUT OFF	90
TEMPERATURE INSIDE 84-3 BURNER CASING AT 17 AND 28 HOURS AFTER SHUT OFF	91
TEMPERATURE INSIDE B5-6 BURNER CASING AT 19 AND 29 HOURS AFTER SHUT OFF	92 -
TEMPERATURE INSIDE B4-5, B4-6, B6-2, B6-3 BURNER CASINGS AT 18-52 HOURS AFTER SHUT OFF	93
TEMPERATURE INSIDE B6-6, B7-6, B7-7 BURNER CASINGS AT 32-50 HOURS AFTER SHUT OFF	94
TEMPERATURE INSIDE B7-1, B7-2, B7-9, B7-10 BURNER CASINGS AT 53-57 HOURS AFTER SHUT OFF	95
TEMPERATURE INSIDE B9-5, B10-4, B10-5 BURNER CASINGS AT 58-78 HOURS FROM SHUT OFF	96
L9 HEAT BALANCE	97
CUMULATIVE OIL, GAS AND WATER PRODUCTION FROM L9	98
DAILY L9 PRODUCTION	99
L9 PRODUCTION RATES VS. FORMATION TEMPERATURES	100
GAS/OIL AND WATER/OIL RATIOS OF L9 PRODUCTION	101
HEAT OF COMBUSTION OF L9 PRODUCED GAS.	
SPECIFIC GRAVITY OF L9 PRODUCED GAS. GRAVITY OF L9 PRODUCED OIL	102
SPECIFIC GRAVITY OF L9 PRODUCED OIL	103
HEAT OF COMBUSTION AND SPECIFIC GRAVITY OF L9 PRODUCED GAS	104
COMPOSITION OF L9 PRODUCED GAS-H2	105
COMPOSITION OF L9 PRODUCED GAS-CO+N2, CO2, H2S	106
COMPOSITION OF L9 PRODUCED GAS-CH4, C2H6	107
COMPOSITION OF L9 PRODUCED GAS-C3H8, iC4H10, nC4H10, iC5H12,nC5H12	108
COMPOSITION OF L9 PRODUCED GAS-C2H4, C3H6, C4H8, C5H10, C3H4,	109
ChH6, AV C6	110

												No.
TAR S	SAND.	analyses	C CINA	TEMPERATURE	IN C	ORE H	OLE C	1				111
TAR S	SAND.	ANALYSES	IN CO	ORE HOLE C2			•					112
TAR S	SAND.	ANALYSES	IN C	ORE HOLE C3								113
TAR S	SAND.	ANALYSES	IN C	ORE HOLE C4								114
TAR S	SAND.	analyses	IN C	ORE HOLE C5	· · · · -	1						 115
TAR	SAND	ANALYSES	IN C	ORE HOLE C6								116
TAR S	SAND	analyses	AND ?	TEMPERATURES	IN	CORE	HOLE	C7				117
TAR :	SAND	analyses	AND :	TEMPERATURES	II.	CORE	HOLE	c 8				118
TAR :	SAND	analyses	AND ?	TEMPERATURES	IN	CORE	HOLE	c 9				119
TAR	SAND	ANALYSES	AND !	TEMPERATURES	IN	CORE	HOLE	C 10				120
TAR	SAND	ANALYSES	AND '	TEMPERATURES	IN	CORE	HOLE	CII				121
TAR	SAND	analyses	AND !	TEMPERATURES	IN	CORE	HOLE	C12	•	\	•	122
TAR	SAND	analyses	AND !	TEMPERATURES	IM	CORE	HOLE	C13		•		123
TAR	SAND	analyses	AND	TEMPERATURES	IN	CORE	HOLE	C14				124
TAR	SAND	ANALYSES	AND	TEMPERATURES	IN	CORE	HOLE	C15				125
TAR	SAND	analyses	AND	TEMPERATURES	IN	CORE	HOLE	C16				126
TAR	SAND	ANALYSES	AND	TEMPERATURES	IN	CORE	HOLE	C17				127
TAR	SAND	ANALYSES	AND	TEMPERATURES	IN	CORE	HOLE	C18				128
TAR	SAND	ANALYSES	AND	TEMPERATURES	IN	CORE	HOLE	C 19				129
TAR	SAND	ANALYSES	AND	TEMPERATURES	IN	CORE	HOLE	C20				130
TAR	SAND	ANALYSES	AND	TEMPERATURES	S IN	CORE	HOLE	C51				131
TAR	SAND	ANALYSES	AND	TEMPERATURES	S IIN	CORE	HOLE	C22				132
TAR	SAND	ANALYSES	AND	TEMPERATURES	Z IN	CORE	HOLE	C23				-133
TAR	SAND	ANALYSES	AND	TEMPERATURES	5 17	CORE	HOLE	C5#				134
TAR	SAND	ANALYSES	AND	TEMPERATURE	3 11	I CORE	HOLE	c26				135
TAR	SAND	ANALYSES	AND	TEMPERATURE	s II	CORE	HOLE	c27			•	136

į

	No.
TAR SAND ANALYSES AND TEMPERATURES IN CORE HOLE C28	137
TAR SAND ANALYSES AND TEMPERATURES IN CORE HOLE C29	138
TAR SAND ANALYSES IN CORE HOLE C30	139
TAR SAND ANALYSES AND TEMPERATURES IN CORE HOLE C31	140
TAR SAND ANALYSES AND TEMPERATURES IN CORE HOLE C32	141
TAR SAND ANALYSES AND TEMPERATURES IN CORE HOLE C33	142
TAR SAND ANALYSES IN CORE HOLE C34	143
TAR SAND ANALYSES IN CORE HOLE C35	144
AVERAGE TAR SAND ANALYSES IN AREA NO. 1	145
AVERAGE TAR SAND ANALYSES IN AREA NO. 2	146
AVERAGE TAR SAND ANALYSES IN AREA NO. 3	147
POST-HEATING CORE DATA-AVERAGE HYDROCARBON RECOVERY	148
POST-HEATING CORE DATA-AVERAGE RESIDUAL HYDROCARBON CONTENT	149
SEPARATE GAS WELL TEST IN B8-3	150
TEMPERATURES IN B8-3 BURNER CASING DURING SEPARATE GAS WELL TEST	151
PRODUCTION TEST DATA	152
NUMBER OF PLUGGED BURNER WELL - GAS CASINGS AND PRESSURE IN PRODUCTION LINES	153
PLUGGED GAS CASINGS	154.
MAJOR OVERBURIEN LEAKS	155
GROUND WATER LEVEL IN L9 BEFORE START	156

SUMMARY

From February, 1958, until January, 1959, a 100-well test of the LINS method, for the recovery of oil from tar sands, was conducted near Santa Cruz, California. This test covered an area of 1/6 of an acre, to a depth of 50 feet, using a 10-foot well spacing. After operating for eleven months, with an average heat input of 26,000 BTU/burner-hour, the average temperature of the heated volume was 730°F. The total oil production was 2665 bbl. with an average gravity of 27°API, and an average gas-oil ratio of 1695 scf/bbl. Over 9000 bbl. of water were produced because of the large amount of water flowing through the deposit. The overall hydrocarbon yields inside the heated volume varied from 56 to 69% by weight. About 75% of this was produced as oil. There was considerable movement of tar, at temperatures below that required for pyrolysis, however, this, and the high recoveries, may have been aided by the large amount of water in the formation, and the resultant steam flooding of the sand.

INTRODUCTION

Since 1943, a commercial process has been in operation in Sweden to recover oil and gas from oil shale. This is done by heating the deposit to about 725°F with electrical heaters, set in wells through the formation and arranged in a hexagonal pattern with a 7.2-foot spacing. The process is called the Ljungstrom In-Situ (LINS) method.

In 1955, a test program was initiated at Santa Cruz, California, by Husky Oil Company and Svenska Skifferolje Aktiebolaget, with the purpose of adapting the LINS method to tar sand deposits. Gas burners were to be used instead of electrical heaters.

Several burner designs were studied and information was obtained on heat transfer and on the flow of produced fluids in the formation. The results of these tests have been reported previously.

Since October 1, 1957, the research work has been continued by Husky Oil Company, Union Oil Company of California and Svenska Skifferolje Aktiebolaget. Burner design, construction materials and oil and gas recoveries from the tar sand have been studied.

This report concerns one phase of this research work, a 100-burner field test of the LINS method, called "Test L9". The principle objective of this test was to obtain information on oil and gas recovery.

Persson, B., "Oil Recovery from Tar Sand with the LINS Method -Report of Field Tests at Santa Cruz, California, 1955-1957", September 12, 1958.

DESCRIPTION OF TEST FACILITIES

Tar Sand Deposit

A suitable test area was found on Husky Oil Company's T. E. Majors Lease, about six miles west of Santa Cruz, in the same area as the previous tests. Core drilling, which was done at a number of locations, showed that a fairly uniform tar sand layer existed between 10 and 45 feet depth. The surface was flat but slightly sloping towards the southeast.

A test area of 78 feet x 95 feet, 0.17 acre, was chosen and a more extensive coring program was carried out. The locations of these wells are shown on Figure 1. The well logs are shown on Figures 2 through 13 and summarized in Figure 14 and Table 1. Figures 15 through 23 show tar contents in various depth intervals.

The average tar content between 15 and 45 feet was 11.5 lbs/cu ft of tar sand with a decreasing tar content towards the northwest corner.

The tar sand appeared to be black and hard. There were minor streaks of limestone and soft coarse tar sand and a 5-foot layer of non-bituminous shale between 40 and 50 feet.

The following analyses were made on the extracted tar: \

Gravity	4.0° API
Viscosity	36,830 SSU at 275°F
Nitrogen	1.52% (wt)
Carbon Residue	25.8%
Sulfur	2.86%

Burner-Gas Wells

The burner-gas wells were of two types. In 97 of them a 52-foot long, 2-1/2-inch burner casing was inside a 4-inch gas casing, which extended from the surface to a depth of 13 feet. The well fluids were produced through the annulus between the casings. In three of the burner wells a 13-foot long, 1-1/2-inch gas casing was placed alongside the burner casing. These latter wells also contained a 52-foot long, 1-inch pipe welded to the burner casing to serve as a temperature well. The burner wells were placed in a triangular pattern with a 10-foot spacing. They were arranged in 10 rows with 10 burner wells in each row as shown in Figure 24. The rows were numbered from 1 to 10 and the burner wells in each ran from 1 to 10 starting from the southeast corner. Each burner was therefore given two numbers with the letter B for burner. Thus B3-4 means the fourth burner in the third row.

The burner casings were made of 5% chromium and 1.5% silicon alloy steel and the gas casings of carbon steel.

Burners

The burner consisted of a supply tube made of 1/2-inch and 1/4-inch pipe, a 1/4-inch x 1-inch conical enlargement (burner cone) and a 20-foot burner tube made of 1-inch tubing. The 1/2-inch supply tube was carbon steel and the other burner parts were made of various types of stainless steel.

Through the supply tube the fuel-air mixture entered the come, which acted as a flame-holder. The burner tube conducted the exhaust gas to the bottom of the burner casing, from where it ascended through a fluidized sand bed in the annulus between the burner and the burner casing. The exhaust gas was released to the atmosphere at the well-head. The fluidized sand acted as a heat-transfer medium to provide uniform heat distribution along the burner casing.

A nominal 8-12 mesh commercial grade sea sand was used. The settled sand bed was 12 to 14 feet high in the annulus and expanded when fluidized to a height of 30 to 35 feet.

Schematic drawings and detailed descriptions of the burner wells are shown on Figures 25 and 26 and Table 2.

Separate Gas Wells

Besides the burner-gas wells, twenty three separate gas wells were drilled, fourteen to a depth of 20 feet and nine to 50 feet. The latter ones were refilled to 15 feet with coarse gravel. All were equipped with 15 feet of 1-1/2-inch casing. Schematic drawings of the wells are shown on Figure 26 and detailed descriptions on Table 3.

The locations of the separate gas wells are shown on Figure 24, marked with a letter G and a number, corresponding to the nearest burner well number. Fifteen of the wells were drilled at the point midway between three burner wells and the other eight were drilled 2 feet from a burner well.

Temperature Wells

Besides the three temperature wells along burner casings, there were twenty two temperature wells with casings of 2-1/2-inch carbon steel pipe to a depth of 52 feet. These temperature wells are shown on Figures 24 and 27, marked with a T and a number, corresponding to the nearest burner well number. There were fourteen wells placed at the midpoint between three burner wells, three wells located 3 feet from a burner, one well 4 feet from a burner, and four wells located 10 feet outside the test area.

The temperature was measured with a thermometer placed in a 1-foot long holder made of two concentric pipes welded together on top and bottom. By means of a cable and a reel the thermometer holder could be placed at any depth. Because of the heat capacity of the holder the formation temperature could be read with sufficient accuracy when the holder was brought up to the surface.

Water Wells

To remove ground water before and during the test, fourteen water wells were drilled to depths between 55 and 75 feet and equipped with air powered piston pumps. Five of these wells were located inside the test area, as shown on Figure 24, and nine were 12 to 20 feet outside the test area, as shown on Figure 27. All are marked with W and a number, corresponding to the nearest burner well number.

A schematic drawing and a detailed description of the water wells are shown on Figure 26 and Table 4.

Fuel Gas System

The propane-air mixture was distributed to the burners at a pressure of about 28 psig. The fuel distribution lines are shown on Figure 28. Orifices at the top of each burner supply pipe regulated the rate of flow, thus maintaining a uniform supply of fuel gas around the field. The air was compressed to 33 psig by a Fuller rotary compressor (Type C-100), with a 90°F aftercooler. This compressor has a capacity of 450 cfm. Three reciprocating compressors were used for utilities air supply and as stand-by capacity. The propane rate was controlled by a Honeywell ratio controller at the stoichiometric ratio of 24:1. The propane storage was kept at about 60 psig by two pressure controlled vaporizors. The above equipment, which is shown on Figure 29, was located about 100 feet from the test area.

Production Handling and Storage

The produced fluids were collected in a system of lines (shown on Figure 28) leading to the condensing and separating equipment (Figure 30). This was of conventional type and included a primary separator, treater, condenser, secondary separator, and a gas sweetener.

The oil was gauged every day in the oil tanks. The water was measured with a dump type meter until 4,150 hours from start, and thereafter the water was collected and gauged in a tank. The gas was measured with a recording orifice meter and then flared.

OPERATION OF TEST

Heat Inputs and Burner Positions

The heat input was calculated daily from the air and propane flow rates, which were measured three times daily. In addition, the ratio controller recorded these rates continuously on a weekly chart. The heat input data in this test were based on the gross heat of combustion of propane of 2,512 Btu/scf, or 105.5 Btu/scf of air. The combustion efficiency was determined by a weekly Orsat analysis of the exhaust gas. Two mass spectrometer analyses of exhaust gas are shown on Table 5.

During the test, the heat input varied from 17,000 to 30,000 Btu/burner-hour, with an average of 26,120 Btu/burner-hour. Figure 31 shows the heat inputs and number of burners in operation each day during the test. The cummulative heat input is shown on Figure 32. Table 6 shows the total heat input for each burner during the test. These heat inputs varied from 150 to 210 million Btu/burner, the average being 196 million Btu.

The first four rows of burners were started on February 25, 1958. Rows 5 to 8 were started 506 hours later on March 18, and the last two rows on March 26, at 698 hours. The burners were originally started at 28,000 Btu/burner-hour with the cone at a depth of 28 feet and the burner tube extending to 48 feet. When the last two rows of burners were started at 698 hours, the heat input dropped to 25,500 Btu/burner-hour because of a lack of sufficient compressor capacity. At about 1,800 hours, a second compressor was added and the heat input increased to 30,000 Btu/burner-hour. The heat input varied at this time from 28,000 to 30,000 Btu/burner-hour because of variations in the air-propane mixture and variations in the temperature at the compressor inlet.

At about 2,400 hours, early in June, the heat input was decreased to about 28,000 Btu/burner-hour. This was done because the sand losses appeared to increase erratically at inputs above 29,000 Btu/burner-hour. A week later, at about 2,550 hours, the sand level was also decreased to 9 feet of burner casing, which in turn caused the height of the fluidized sand bed to decrease by about 3 feet. The overburden, which was composed mostly of tar sand, was being overheated and the resultant softening had caused gas leaks to develop. During the period from June to September (2,500 to 5,000 hours) the burners were operated at the above conditions, i.e., 28,000 Btu/hour and 9 feet of sand. In September it again became apparent that the overburden was being overheated, and in addition, coke was forming in the gas casings. In order to lower the heated interval, the burner tubes were shortened from 20 to 17 feet in length and the cones were placed at a depth of 33 feet. The same sand level, 9 feet of burner casing, was maintained. Under these conditions the heated interval extended from 18 to 50 feet from the surface. On September 27, at 5,140 hours, the heat input was decreased to 25,000

Btu/burner-hour. The safe operating temperature for the casing was 1,200°F, and this temperature had been reached in several of the burners. The temperature continued to increase, but at a slower rate, and on November 3, at about 6,000 hours, the heat input was decreased even further to 23,000 Btu/burner-hour, and the sand level was decreased to δ feet of burner casing. Because of edge heat losses, the flow of formation water, and the original start-up schedule, the hottest burners were the inside burners in Rows 3 to 5, i.e., B3-2 to 9, B4-2 to 9, and B5-2 to 9. Therefore, on November 24, at 6,550 hours, smaller orifices were placed on these burners and their heat inputs were changed to 21,000 Btu/burner-hour. The remaining burners were operated at 26,000 Btu/burner-hour, and the sand level in all burners was changed back to 9 feet of burner casing. The inside burners were not only run at a lower heat input but, because of the reduced expansion of the sand bed, the heat was concentrated mainly in the lower half of the formation. On December 9, at 6,900 hours, new orifices were put in the inside burners and their heat inputs were lowered further to 17,500 Btu/burner-hour. The burners operated under these conditions, 26,000 and 17,500 Btu/burner-hour and 9 feet of sand, until they were shut off on January 27, 1959, at 8,057 hours.

Sand Losses

The amount of sand in the burner casings was checked every three to five days, and the original sand level was restored by adding sand of the same type as that originally used. The sand level was measured by pulling the burner out of the sand, allowing the sand bed to settle in the bottom of the casing, and setting the bottom of the burner on the top of the sand bed. This measured height was referred to as the sand level in "feet of burner casing".

Sand losses during the test are shown on Figure 33. As shown on this figure, the burners were started with 10 feet of sand. At about 1,800 hours, when the heat input was increased from 25,500 to 30,000 Btu/burnerhour, the sand losses began to increase and at about 2,400 hours were averaging 0.4 feet/day. There was considerable variation in these data with some wells losing as much as 1 foot/day. With high sand losses there was a possibility of the sand bed being too small to cover the burner cone and thus causing the cone to become overheated. Therefore at 2,400 hours the heat input was decreased to 28,000 Btu/hour and the sand losses then decreased to about 0.35 feet/day. Figures 34 to 36 show that at this time the temperature at 12 feet was from 500 to 550°F and increasing at a fairly constant rate. In order to avoid overheating the overburden, an attempt was made to lower the heated interval, by decreasing the sand level from 10 to 9 feet, on June 10, at about 2,525 hours. The burners were run at this level until September, at about 5,140 hours, when the burners were lowered and the heat input decreased to 25,000 Btu/hour. During this period, from June to September, the sand losses continued to increase, reaching a peak value of 0.65 feet/day. Although the purpose of this test was to obtain production data, some work was done to reduce sand losses. It was concluded at this time that the sand losses were due mainly to the slugging of the sand bed, and because there was insufficient

disengaging space above the bed, little could be done to decrease the losses. Baffles were placed on the supply pipes in the first row and part of the second row to break up the slugs, but they appeared to have an insignificant effect on losses.

In September, between 4,440 and 4,850 hours, the burner cones were lowered 5 feet and the burner tube shortened by 3 feet. This lowered the sand level by 2 feet but the sand loss remained constant at about 0.6 ft/day. When the heat input was decreased to 25,000 Btu/burner-hour on September 27, at 5,140 hours, the sand loss dropped to 0.4 feet/day.

Because the gas casings and the overburden were still being overheated, some tests were made, at about 5,500 hours, by running two burners with reduced sand levels to see if the sand height could be decreased. Figures 37 and 38 show the temperatures taken in these burner casings with sand heights of from 5.7 to 9 feet of burner casing. From these data it was apparent that the burner would operate satisfactorily with as little as 6 feet of sand. Therefore, it was felt that a normal sand level of 8 feet should be maintained, allowing 2 feet for sand losses. On November 3, at 6,000 hours, the sand level was decreased to 8 feet and the heat input was decreased to 23,000 Btu/burner-hour. This caused the sand loss to drop as low as 0.3 feet/day. In the last two months of the test, when the burners were run at two heat inputs, the sand level was again maintained at 9 feet and the sand losses were 0.65 feet/day and 0.1 feet/day at 26,000 and 17,500 Btu/burner-hour, respectively.

There was no particular relationship between heat input and sand loss except that higher heat inputs resulted in higher sand losses. However, sand losses also appeared to increase with time, probably due to the wearing of the sand grains and the increasing temperature of the exhaust gases. As the gas became hotter, its viscosity increased and this may have resulted in more pronounced slugging of the sand bed. The sand loss problems in this test were probably more severe than those which would normally be encountered because of the short disengaging space above the sand bed.

Materials of Construction

The main purpose of this test was to obtain recovery data, rather than information on burner operation and materials of construction. Therefore, the materials of construction were selected to give trouble-free operation and were not necessarily the most economical or practical choices.

All of the casings were made of carbon steel except the burner casings. The burner casings were 2-1/2-inch, schedule 40 pipe made of a 5% chromium, 1.5% silicon, 0.5% molybdenum alloy which is described in more detail on Table 7. The suggested maximum operating temperature for this material was 1,400°F. Six of the casings, B4-9, B5-4, B7-3, B8-6, B9-8, and B10-2, failed. In each case except B4-9 this

was caused by a burner failure and these should not be considered as casing failures. The casing in B4-9 failed shortly after the burner was shut off (8015 hr.), probably because of the thermal stress when the casing cooled. This was the only case of a failure under these conditions and it is likely that the casing had previously been weakened by some unknown factor. After the conclusion of the test, attempts were made to recover 14 of the burner casings. Only seven of these could be pulled and these required from 2 to 6 hours each. Most of the time and difficulty was caused by the "make-shift" equipment which was used. With proper equipment, the casings could probably have been pulled in one-half hour. The equipment consisted of two 50-ton hydraulic jacks, a spider, and slips. An extension pipe was welded on the casing so that it extended about 3 feet above the ground surface. Six of the seven casings which could not be pulled broke off at this weld and one broke at the weld 20 feet from the surface. The casings had a yield point of 90,000 lbs and an ultimate strength of 140,000 lbs, however the weakest point was usually the weld at the surface extension pipe. Some of the casings which were pulled were measured, and they showed no reduction in wall thickness or diameter, although there were several layers of scale on the outside surfaces.

The materials used in the burners, as well as the casings, are shown on Table 2. The burner failures are described on Tables 8 and 9. The four 1/4-inch supply pipe failures can be attributed to ignition of the gas in the supply pipe when the flow rate became too low to keep the flame in the cone. This was generally caused by the supply pipe or orifice becoming partially plugged with dirt. The cause of two of the cone failures is not known. However, the failure of the cone in B10-2 was caused by overheating during a period when the sand didn't cover the cone. The burner and casing in B7-3 were overheated when air was injected in the gas casing at an excessive rate, when burning out the coke in the annulus.

The burners were inspected occasionally to check on wear and prevent failures. These inspections are described on Table 10. Usually there was a considerable amount of wear on the supply pipe, couplings, and the centralizers. Six of the supply pipes broke off during the test because of erosion. After the first burner inspection, wear rings were placed on all couplings and above the weld between the supply pipe and the burner cone. The wear at these points, as well as the centralizers, was much more severe on the top than on the bottom of the part. Several couplings had to be replaced and after 4,500 hours most of the top centralizers and many of the middle centralizers were eroded off. These centralizers were originally 2 inches long, however, the replacements were made 6 inches long to give a longer service life. The burners were inspected again after the end of the test and the upper centralizers had been worn down about two inches. Thus they lost about one inch of metal for every 2,000 hours of operation. There was also some evidence of corrosion or erosion on the portion of the burner tube which was within two inches of the cone. This material was 25-20 stainless steel.

Burner Down-Time

The heating time lost, when the burners were off, amounted to 22,781 burner-hours, or 2.95% of the total heating time. The entire field was shut down 1.08% of the time because of power failures, maintenance and repairs on the fuel gas system, and one fuel line explosion. The remaining 1.87% was the time that individual burners were off for repairs, maintenance and unknown reasons. These data are summarized on Tables 11 and 12, and presented in detail on Tables 13 through 18. Figure 31 also shows the number of burners in operation each day. Included in the 22,781 hours that the burners were off was 8,771 hours, or 39%, which could be considered as specific to this test, i.e., because of power failures, an explosion, ground leaks, bushing leaks, and plugged gas wells. This time was lost because of the low overburden and other factors which should be eliminated in future tests.

The burners were off for unknown reasons 0.2% of the time. Apparently this was caused by water in the fuel lines. The water apparently collected in the lines until a small quantity would be carried with the fuel gas into a burner. The flow rate to each burner was regulated by a 0.1-inch orifice, which became momentarily blocked when the water reached it. If this didn't extinguish the flame, then the increased vapor velocity, when the water was vaporized, did. In the later stages of the test, when the burners were at temperatures above 1,000°F, they usually relit themselves when the fuel gas resumed flowing. A relatively small amount of heating time was lost because of the burners going out, however, a large amount of the operator's time was involved in checking to see if burners had gone out and in relighting them.

Burner Casing Temperatures

As has been mentioned previously, three of the temperature wells in this test were actually temperature casings welded alongside the burner casings in B3-5, B3-8, and B5-5. Temperature data were taken in these casings on the same schedule as the other temperature wells, usually twice each week. These data are shown on Figures 34 through 41. Also presented on these figures, and on Figures 42 to 46, are temperatures which were taken occasionally inside the burner casings.

The recommended maximum temperature in the casing was 1,400°F, although usually the casings were at 1,200°F or lower to provide an allowance for malfunction of the burner. As can be seen on Figures 39 to 41, this temperature had been reached by 4,000 hours. Subsequent adjustments in heat input and sand level were intended to maintain temperatures no higher than 1,200°F. Temperatures taken in the temperature wells outside the burner casings were 150 to 300°F lower than those in the burner casings.

The gas casings extended to a depth of 13 feet from the surface, and to avoid thermal cracking in the casing, it was desirable to keep these temperatures below 700°F. As can be seen from Curve No. 2 on Figures 34

to 36, the temperature at a depth of 12 feet was never greater than 700°F. The data on Figures 37 and 38 show that a slight adjustment in the length of the heated interval could be made by changing the sand level in the burner casing.

The temperature of the exhaust gas escaping to the atmosphere was about 300°F, as shown on Table 19. At a depth of 14 feet the exhaust gas temperature was usually about 800°F. Below this point, the heat transferred to the casing was considered as heat to the formation, while above 14 feet it was considered as heat to the overburden. Thus, 13% of the heat was lost to the atmosphere, 11% was transferred to the overburden, and 76% was transferred to the tar sand formation. The average heat inputs for this test, when distributed according to the above percentages, are 205 Btu/ft-hr from 0 to 14 feet, and 580 Btu/ft-hr below 14 feet. All the calculations presented above are based on the gross heat of combustion of propane at 65°F.

Tar Sand Formation Temperatures

Temperatures were usually measured in all the temperature wells twice each week. These data are summarized in Figures 47 through 87. The locations of these wells are given on Figures 24 and 27.

In several wells, the temperature data show that water was present in the lower part of the interval. This is indicated by temperature plateaus at the boiling point of water, particularly in the data taken after the burners were shut off, in Figures 48 through 68. In Figures 69 through 87, there is a period of constant temperature at various depths, usually between 1,000 and 4,000 hours. The data taken after the burners were shut off show that water was present in all parts of the field, while the data taken during the heating period show more evidence of water around the edges of the test area, particularly on the north side. Thus it is likely that the water was flowing up from underlying sands, instead of in a horizontal direction through the test interval.

On Figure 80, there is a sharp drop in temperature in well T68 at 4,500 hours. At this time there were surface leaks in this area, and apparently reservoir fluids, particularly water, were flowing up in the annulus between the well and the temperature casing. (This annulus was packed with sand when the casing was set.) When the flow stopped, the temperature rose abruptly to the previous value, indicating that only the temperature well had been cooled down while the formation remained at about 500°F.

Average formation temperatures at 28 feet and between 14 and 42 feet are shown on Figure 88. Also on this figure is the calculated temperature for a field where the burners are assumed to be a large number of infinite line sources, emitting 500 Btu/ft-hr. These temperatures were all measured, or calculated, at a point midway between three burner wells, and do not include the temperature wells along the

edges of the field. The average formation temperature was about 20° higher than the temperature at the midpoint. During the period from 2,000 to 4,500 hours, the temperature rise at 28 feet appears to be equivalent to that which would result from a 500 Btu/ft-hr source. The apparent drop in heat input at 1,500 to 2,000 hours is probably due to the water in the formation being vaporized at this time. After 5,000 hours, edge losses and the decreases in heat input resulted in a decreased slope in the temperature curve. If the final 14 to 42-foot temperatures are compared with the 500 Btu/ft-hr line, it can be seen that these temperatures would have resulted from a heat input of 230 Btu/ft-hr, if there had been no losses and no vaporization of water in the formation. However, the actual heat input, through the burner casings, was 580 Btu/ft-hr. This leaves 350 Btu/ft-hr which can be attributed to losses and vaporization of water. About 1/3 of this was required to vaporize the produced water.

When the burners were shut off, at 8,057 hours, the average temperature in the interval from 14 to 42 feet, in the temperature wells, was 710°F. The average formation temperature was about 730°F with peak temperatures, in the temperature wells, of 815°F.

Heat Balance Over Test Area

A heat balance for the test is shown on Table 20 and Figure 97. In this balance, the heated formation is considered to be the volume between a depth of 14 and 42 feet and enclosed by the second row of wells from the outside of the area. The heat content of the tar sand between the first and second rows of wells, as well as areas outside the field, is considered as lost through the sides of the heated formation. This heat balance shows that only 13% of the heat input remained as sensible heat in the heated area, 44% was lost by conduction, 17% was produced in the oil, gas, and water, 13% was lost in the exhaust gases, and 13% was not accounted for. These losses were unusually high because of the small size of the test area.

Eliminating all losses, 13% of the heat input actually was used to pyrolyze and produce the oil. Assuming 60 to 80% of the oil was produced in the heated formation, as defined above, then the heat used per barrel of oil produced was between 1.2 and 1.6 million Btu/bbl. With an average gas-oil ratio of 1,695 scf/bbl, and an average net heating value of 910 Btu/scf, the heat of combustion of the gas produced with each barrel of oil is 1.54 million Btu/bbl. Therefore, if there were no losses, this test would have produced enough gas to supply the necessary heat during the test.

Safety Hazards

The usual safety hazards, common to any oil production operation, were present in this test. In addition, there were a few which may be unique or of special interest. The propane and air for the burners were mixed in the stoichiometric ratio at the edge of the field, and

the mixture was distributed, through a system of headers and fuel lines, to the burners. Although the ignition point of this mixture is 898°F, there was an explosion on November 17, 1958, at 6,359 hours. The only damage was the breaking of 6 of the 7 rupture discs. This explosion was apparently caused by the oxidation of lube oil, which had accumulated in the fuel lines. At this time the weather was dry and no water was condensing in the fuel lines, and thus the temperature could have built up slowly over a long period of time.

The second major safety hazard was the accumulation of hydrogen-sulfide vapors around the test site. The produced gas contained as much as 14% H_2S , and because of the ground leaks, the H_2S concentration occasionally was high enough to cause nausea and dizziness.

Among other hazards was the possibility of burns while handling hot burners, and the danger of being burned by hot sand which occasionally was blown out of the wells in small slugs. All of these hazards could be overcome by taking normal safety precautions.

PRODUCTION OF FLUIDS

Summary of Test Production

The total production for the 100-hole test was 2,665 barrels of oil, 4,520 mcf of gas, and 8,232 barrels of water. The average gas-oil ratio was 1,695 scf/bbl. These data are summarized on Table 21. The cumulative production is shown on Figure 98 and the production rates on Figure 99. These graphs show that the oil production was not significant until July, 1958 (3,000 hours) and reached a peak of almost 20 bbl/day during October (5,500 hours). Oil production then declined at a rate of 1 bbl/day each week until the end of the test. The burners were shut off on January 27, 1959, (8,057 hours) however, the oil production continued to decline at the same rate for another 1,000 hours.

Gas production increased with oil production, reaching a peak of about 34 mcf/day. The gas-oil ratio reached a peak of 2,500 scf/bbl in December (7,000 hours), and then declined until the test was shut off. These data are also shown on Figure 100, plotted against the average temperature between 14 and 42 feet in the interior temperature wells. It can be seen from this figure that the peak oil and gas production rates occurred when the temperature was at 575 to 625°F. The maximum gas-oil ratio was at 675°F. These curves are not necessarily typical of production inside a large field because of the influence of the edge wells in this test. These edge wells were slower in being heated, because of losses, and therefore they tend to shift the curves to the right, particularly at temperatures above 600°F. The line showing oil production would probably have descended more rapidly, had these edge wells been heated at the same rate as the interior wells. Gas production was affected to a lesser extent because the gas production in the edge wells was never as high as it had been inside the field.

Water production was relatively constant during the test, varying from 20 to 40 bbl/day. Gas-oil ratios and water-oil ratios are shown on Figure 101.

Analyses of Products

The average properties of the gas and oil produced during the test were as follows:

Oil Gravity 27.4°API
Gas Gravity 0.650 (air = 1.0)
Heat of Comb. of Gas 990 Btu/scf (gross)
910 Btu/scf (net)

The composite gas analysis is shown on Table 22. This table shows that the gas contained about 40% hydrogen, 43% saturated hydrocarbons, 5% unsaturated hydrocarbons, and 9% hydrogen sulfide. Figure 102 shows

the variations in gas density, heat of combustion, and oil gravity (°API) during the test. All of these properties reached their peak values at about 4,500 hours, about 1,000 hours before the peak production rates were attained, and then slowly declined. When plotted against cumulative production, as in Figures 103 and 104, it is seen that the early periods of low gravity and low heat of combustion contributed little to the average values of these properties.

During the period of high gas production, samples were taken, for mass spectrometer analyses, about every two weeks. These analyses are shown on Tables 23 through 30 and Figures 105 through 109. These figures show that the hydrogen increased during the latter part of the test from around 37% to 50%, while methane increased from 26% to 34%, and then decreased rapidly back to 26%. These increases were offset by a decrease in hydrogen sulfide from 13% to 6%, and smaller decreases in the amounts of heavier hydrocarbons. These changes in gas composition generally reflect the increased amount of cracking during the latter stages of the test.

As mentioned above, the oil gravity during the test is shown on Figures 102 and 103. The heavier oil, during the first 3,000 hours, was the result of tar production and the small degree of cracking at this time. Most of the oil was between 24 and 30°API gravity.

Tables 31 and 32 list the analyses of the oil samples. Sulfur content varied from 2 to 2-1/2%, and nitrogen, from 0.30 to 0.44%. The distillations show that the oil had an end point of 910°F in the early part of the test, however, it dropped to 750°F at 6,400 hours. The latter figure is probably more typical of the oil as this sample was taken during the period when oil production was high. The high end point with the earlier sample may have been caused by tar which had been produced and dissolved in the oil. Table 33 shows calculated properties and the analyses of the composite oil.

Post-Heating Core Analyses Coring Program

The L9 coring program was carried out essentially as originally proposed. Thirty-five core holes were drilled, of which 15 were inside the field, l1 were along the edges, and 9 were outside the field. These locations are shown on Figure 110. Cores were taken to depths of 55 feet.

There were two methods by which the recovery of hydrocarbons could be estimated. One method was to compare the total production of oil and gas from L9 to the volume of tar sand which had been heated. Because of the small size of the test area and the large amount of water present, the temperature profiles were quite complex and therefore it would have been difficult to determine the volume of sand actually heated. In addition, the tar appeared to be moved and pyrolyzed over a wide range

Helander, R. E. & Persson, B., Proposed Post-Heating Program for Test L9", Santa Cruz Thermal Recovery Experiment, Memo to M. F. Westfall, December 23, 1958.

of temperatures, thus making it difficult to determine the temperature at which tar sand could be considered "heated".

The second method, which was used to calculate recoveries in this test, was to make material balances on small areas inside the field. Three triangular areas were chosen in such a way that there should have been no flow of fluids or heat across their boundaries. Thus each area could be considered as a separate production unit.

Core holes were also drilled along the edges of the field to obtain recovery data at lower temperatures, and to check the possibility of tar movement into or out of the test area. In addition, 6 samples of the overburden were taken to a depth of 5 feet. These were taken in the locations, shown on Figure 110 for core holes Ol through O6, where the leaks were particularly severe.

Core Analyses

The core analyses are shown on Tables 35 through 68 and Figures 111 through 144. The cores were examined visually and broken into 5-foot intervals, each of which was then crushed and mixed. In addition a few inches of each interval were kept intact for bulk density measurements.

The tar and water contents were obtained by extraction in trichloroethylene. Experimental work (see "Studies of Thermal Decomposition of
Tar in Tarsand" in the Appendix) was performed which showed that the
hydrocarbons which were not dissolved in trichloroethylene consisted
mostly of coke. In addition seven samples of coked sand which had been
extracted with trichloroethylene were subjected to Fischer Assays. The
results of these assays, which are tabulated on Table 34, showed no oil
and only very small amounts of gas and water. If the extracted sand
appeared to contain coke, then a sample of the unextracted sand was
analyzed for total combustible material by a dry ash analysis. In
addition the coked sand was analyzed for carbonate, by evolution, to
correct for the loss in weight, in the dry ash analysis due to the
decomposition of carbonates. The difference between the combustion
loss and extractable matter was assumed to be coke.

Recoveries From Inside Areas

Three triangular areas inside the field were cored with five holes each. The average tar contents for each area are shown on Figures 145 through 147. Table 81 shows that the weight percent of the total hydrocarbons produced varied from 56 to 69%, and the volume percent produced as oil varied from 51 to 62%.

The amounts of produced hydrocarbons were obtained by the difference between original and final saturations. The interval from 15 to 45 feet was considered in order to eliminate the soil overburden and the shales which occur

above 15 and from 45 to 50 feet, respectively. The use of this interval also eliminates the fringe areas where the temperatures are lower because of heat losses. These areas contributed relatively little to the overall production.

The production in Area No. 1 may have been affected when the concentric gas casing in well B6-3 was plugged during the month of September, 1958. The average temperature in T62 at this time was from 500 to 580°F. At the time it was not felt that this plugging would affect the ultimate recovery significantly. Subsequent data have shown that there is considerable movement of tar at these temperatures and therefore the recovery may have been reduced by the plugging. This area has the lowest overall recovery (56%). The gas casing was unplugged in October and remained open thereafter.

Area No. 2, near B4-5, was located between two wells which were plugged during the last six months of the test. The recovery data in this area could have been decreased because of the coke formed from tar which flowed into the area. Conversely, the flow of oil from these surrounding areas would tend to dilute and sweep out the tar before it was coked. There were also several serious overburden leaks near this area.

There were no plugged casings or leaks in the vicinity of Area No. 3 (near B7-6).

All of these recovery data were probably affected to the same degree by the steam sweeping tar towards the production casings.

Losses or Gains From Surrounding Areas

Seven holes (C1 through C7) were cored outside the field on the north and south. These core analyses are shown on Figures 111 through 117 and Tables 35 through 41.

Two of the holes on the north side, C2 and C3, showed a slight gain in tar content and two on the south side (C5 and C6) lost a small amount. These changes of less than 1 lb/cu ft are less than the accuracy of the original tar contents. Because of the lack of original cores along the edges of the field, these original tar contents are less reliable and could possibly be in error by 2 lb/cu ft.

Core hole C7 reached a temperature of 420°F and thus the loss of 3.9 lb/cu ft could be explained by flow towards the production well. The other six core holes were at temperatures of 250 to 360°F.

The areas where the material balances were made were inside the field and probably were not affected by tar movement around the edges. Hydrocarbons which were produced through the overburden leaks probably would have been produced in the gas casing in an area where the overburden was tight. Thus it is unlikely that the losses from the test area had a significant effect on the material balances.

Factors Affecting Recovery

Figure 148 shows recovery versus temperature and distance from a burner-production well. These data were taken from Figures 111 through 144. The cores taken in the center of the field were generally at temperatures above 700°F. Therefore, the data were taken from cores along the edges of the field, where the temperatures were lower.

The most significant observation from these data is the high recovery at temperatures as low as 400°F, especially in the upper part of the formation. Laboratory data¹, shown for comparison, show practically no recovery below 500°F. These high recoveries could be due to the lower heating rates or the large amount of steam flowing in the formation. Steam flooding and steam distillation probably contributed greatly to the movement of tar towards the hotter zones near the wells.

The lower recovery in the lower part of the formation is probably due to gravity flow of fluids in the formation and subsequent lay-down of coke. However, the core analyses (Figures 111 through 144) show that generally the original tar content was higher in the lower part of the formation. Figure 149 shows the amount of residual hydrocarbons left in the sand as well as the amount of coke. The difference in the shapes of the coke curves in the upper and lower intervals suggests the gravity flow is an important factor. In the upper interval the amount of coke varies linearly with temperature and distance. In the lower interval, the same type of curve would be expected if there were no gravity flow. However, the lower coke curves show a much sharper coke-temperature relationship, especially close to the well where gravity flow would be the greatest.

The effects of radial distance from the well appear to be quite significant. In the upper interval, the areas removed from the well have the same type of recovery-temperature behavior as a laboratory retort except that recoveries are much higher. As the well is approached the relationship appears to reverse itself. Close to the well, the higher temperature areas actually had lower recoveries due to the increased coke lay-down by fluids flowing toward the gas casing. At low temperatures, the high recoveries near the well could be due to dilution, steam distillation, or steam flooding.

In the lower interval, recovery appears to be proportional to temperature and distance. The lower recovery as the well is approached is probably due to increased gravity flow, as mentioned previously.

Production From Separate Gas Wells

Because of the severe coking in the hot sand near the burner wells, it may be advantageous to use separate gas wells, located away from the

¹ Stegemeier, R. J. and Smith, D. F., "Laboratory Studies on Underground Retorting of Bituminous Oil Sands", Union Oil Co. of Calif., Research Dept. Report No. 59-3, January 16, 1959.

burners, instead of concentric burner-gas wells. For this reason, 23 separate gas wells were completed in the test area. For detailed descriptions of these wells see page 4 and Figures 24 and 26.

Twenty of these wells were opened to the production lines at 3,700 hours (July 29, 1958). At this time the average temperature in these wells was 375°F. The remaining three wells were plugged and were never produced. Prior to this time the separate gas wells were opened to the atmosphere occasionally, but they had never shown any signs of producing.

With the exception of the separate gas wells in Row 2 (G22, 24, 26, and 28), the production from these wells was never significant compared to the concentric gas wells. This was probably caused by the lower temperatures and higher saturations of tar and liquids around these wells, i.e., the lower mobility around the separate gas wells would tend to resist the fluid flow towards these wells. The production data are included in Tables 69 through 73.

The wells in Row 2 produced as much as the corresponding concentric burner-gas wells. These wells were located two feet from the burners and were therefore in an area where the mobility of the fluids was high. The wells in Row 9 were also located two feet from the burners; however, these wells never did produce oil at a significant rate.

Four of the water wells (W22, 39, 82, and 99) had concentric gas casings, which were also opened to production at 3,700 hours. Except for W99, the wells had not produced water since 1,000 hours, because the tubings had become plugged with tar. These wells were the best producers in the field. W22, on one occasion, produced oil at a rate of 1.1 bbl/day. The water wells had 50 feet of 1-1/2-inch tubing inside the 15-foot long, 4-1/2-inch diameter gas casing. Otherwise they were similar to the separate gas wells.

The production in water wells probably came through the annulus between the 5-5/8-inch well and the 1-1/2-inch tubing. Temperatures taken in the W22 tubing, from 10 to 45 feet at 6,550 hours, varied between 520 and 580°F. Figure 72 shows that the temperature in T42 varied from 490 to 720°F at this time. This uniform temperature in W22 indicates that there was flow along the tubing at this time.

Two attempts were made to produce a concentric burner-gas well as a separate gas well, by turning off the burner and shutting in the gas casings in the surrounding wells. The first of these was at 5,425 hours (October 9, 1958) in well B5-3. The production declined steadily until a week later when there was only a small amount of gas produced (see Table 69). At this time the burner was restarted and run at a reduced heat input of 12,000 Btu/hr to vaporize liquids which may have condensed in the sand and the gas casing. Four days later the well was completely plugged. The gas casing was later unplugged with compressed air.

Later, at 5,700 hours (October 20), B8-3 was converted to a separate gas well in the same way. As shown on Figure 150, the production increased for 3 days. On the seventh day the production had begun to drop so the burner was started at 12,000 Btu/hr. The production continued to decline until 5 days later when there was none. The gas casing was reopened with compressed air and a week later a 3/4-inch by 8-foot burner was placed in the burner casing with the cone at 9-1/2 feet. This burner was operated at 3,000 Btu/hr to keep the gas casing hot but below the coking temperature of about 650°F. Three days later there was still no production and the gas casing was again opened up with air and the burner was raised to a cone level of 5 feet. In this way the gas casing was heated to temperatures from 500 to 700°F, but there was still no production. Later the 1-inch burner was put back in the well and B8-3 was returned to normal operation at 23,000 Btu/hr. A few days later the well again began to produce. Temperature data taken during this test are shown on Figure 151.

Production Tests at Individual Wells and Production Lines

During the period of declining production rates in November and December, 1958, (6,000 to 7,500 hours) samples were taken occasionally from individual wells and lines. These data are tabulated on Tables 70 through 73. The reason for taking these data was mainly to assist in the operation of the test. They showed also that the water production rates were high around the edges of the field and lower in the center. The data taken in the interior wells is shown on Figure 152 plotted against the average temperature in the temperature wells located in that row. The temperatures in these temperature wells were about 20 degrees below the average formation temperature.

Production of Tar and Emulsions

Because of experiences in previous tests, difficulties were anticipated with the production of tar and heavy emulsions during the early stages of the test. Tar, produced in this state without being pyrolyzed, plugged the 1/2-inch production lines to individual wells, as well as the main lines and the treating and separating equipment. Therefore, before the heating was started, 23°API crude oil from previous tests was injected in each gas casing in the burner-gas wells along with Tretolite and anti-foam agents.

In spite of the above measures, considerable amounts of tar were produced during the first 2,000 hours of the test. In order to dissolve the tar which solidified in the production lines, crude oil, sometimes diluted with diesel oil, was circulated through some of these lines continuously for the first 360 hours. Occasionally these lines became plugged and oil was forced into the gas casings at pressures as high as 25 psig. Therefore continuous circulation was stopped and oil was circulated through the lines 2 to 4 times a day for periods of from 10 minutes to an hour, with the gas wells shut in. There were still many tar plugs and occasionally even the heat

exchangers, separators, and the treater became plugged. A detailed description of these plugs and the oil circulation is given on Tables 7^4 through 78. Figure 153 shows the number of 1/2-inch production lines plugged with tar.

The tar production occurred mainly in the first four rows while the last two rows had almost no tar production. The main differences in these two areas were the tar contents of 13% and 9%, respectively and the apparently higher water flow in the last two rows. A summary of the tar production data is given below:

	AVG. TAR NO. OF PLUGGED		INJECTION			
ROW	(LB/CU FT)	PROD. 1/2-INCH	2-INCH	OIL (BBL.)	ADDITIVES	HOURS BEFORE GIL CIRCULATION WAS STOPPED
1 & 2	13.5	96	6	34.8	200 ML ANTIFOAM 200	. 2190
3 & 4	13	7 2	7	23.3	450 ML ANTIFOAM 200	2190
5 & 6	11.5	28	2	25.5·	800 ML TRETOLITE	1800
7 & 8	10	57	0	24.8	240 ML ANTIFOAM A	1800
9	9	10	0	5.8	NONE	1800
10	9	4	0	Ö	NONE	1800

From these data it is not apparent whether the oil injection helped or not. Another attempt to prevent tar production was made by increasing the pressure on the production lines. Because of the low thickness of the overburden the pressure was allowed to increase only to 8 psig. As shown on Figure 153, this pressure was reached in production line P2 at 1,775 hours and maintained for 10 days. Thereafter the pressure slowly decreased to 1.6 psig at 3,500 hours. Although the tar production decreased considerably at about 2,000 hours it may have been due to the temperatures in the formation, rather than the increase in pressure. At this time the temperatures at the outside of the burner casings were 500 to 600°F, while temperatures at the gas casings were from 450 to 500°F.

For the first 2,950 hours, the treated oil contained as much as 7% water. Tretolite was added continuously and the treater temperature was kept at 150 to 180°F. The retention time in the treater was about one day. At 2,500 hours the treater was cleaned out and although the excelsior appeared to be clean, it was replaced. After 3,100 hours when the oil gravity was about 23°API the emulsion could be treated satisfactorily and there was no significant amount of water in the treated oil. Toward the end of the test at 6,700 hours an emulsion problem arose again. Water contents in the treated oil were again as high as 7%. The oil at this time was light, 25 to 28°API, and non-viscous, however it appeared to contain about 1% of fine silt or coke particles which apparently held the water in suspension. This oil was finally dried by recirculating tank oil through the treater.

Formation of Coke in Gas Casings

Because of the high temperatures along the burner casings, the annuli between the gas casings and burner casings occasionally became plugged with coke and tar. Curve No. 2 on Figure 153 shows the number of plugged casings, beginning at 4,500 hours, and Figure 154 is a map showing which gas casings were plugged. The casings began plugging at about 4,000 hours, when the temperature at the bottom of the gas casings was in the range of 600 to 650°F. After this time, there were usually about 15 casings plugged at any particular time.

A method was developed whereby the casings were unplugged by burning off the coke with compressed air. Air was injected into the gas casings at rates not higher than 2 cu ft/min until the casing was open. The casing was then shut in and the burner was turned off for a few hours, until the gas casing was cooled down. The casing was then opened to production and the burner relit. This method was successful in most of the casings although there were a few which would become replugged again in a few days. There was also evidence that a few casings were plugged with liquid instead of coke. Four of the gas casings, B3-5, 4-4, 4-6, and 5-6, were probably plugged with cement when attempts were made to seal surface leaks in these areas. The coke plugs indicated that the gas casings should not be heated above 600°F for extended periods of time. This can be avoided either by terminating the gas casing at a shallower depth or by producing through separate gas wells.

Overburden Leaks and Losses to Surroundings

About 2,400 hours after the start of the test, leaks began to appear in the ground surface near a few of the wells. As the test progressed, these leaks became more severe and numerous. The major leaks are shown on Figure 155. Attempts were made to seal these leaks by injecting cement, digging out a hole 3 to 5 feet deep and pouring a concrete plug, compacting the overburden with a pneumatic tamper, and, in one case, by pouring a concrete slab over a group of surface leaks. The most successful method was compacting the overburden, but even this was only a temporary solution. At about 5,500 hours an attempt was made to decrease the losses by decreasing the pressure, however there was no apparent change in the number or severity of the leaks.

These leaks were apparently caused by the softening of the tar sand when it became heated in the overburden, coupled with the damage which was done when excessive pressure was applied to the formation on a few occasions.

It would be impossible to estimate the amount of production lost through these leaks although it was apparently mostly gas and steam. As much as one-fourth of the gas production may have been lost. Samples of the overburden were taken at six locations, shown on Figure 110 and denoted as 01 through 06. These samples were taken in areas where the leaks were most serious, however they contained no extractable tar, but only iron-sulfide. The iron-sulfide was probably formed by the hydrogen-sulfide in the gas and the iron in the soil. The hydrocarbons which entered the overburden were probably stripped, allowing only the gas, water, and lightest liquids to reach the surface.

Production From Water Wells

During the drilling of the burner wells, it was found that the ground water level varied from 20 to 35 feet. A piston pump was placed in B5-6 and 500 barrels of water were pumped out in 4 days. Figure 156 shows the water levels before and after B5-6 was pumped. This curve shows that the permeability of the deposit to water was fairly uniform.

Because of the high heat of vaporization of water it was desirable to heat as little water as possible. Therefore, five water wells were drilled, at the locations shown on Figure 24, and about 5,000 barrels of water were pumped off before the test was started. As shown on Table 81, these five water wells became plugged with tar during April and May, and were replaced by four more wells, W15, W510, W51, and W105, one on each side of the field, as shown on Figure 27. These four wells, in turn, began to become plugged with tar, particularly on the south and east sides. From the temperature data inside the test area, and because the wells on the south and east sides were producing tar and hot water, it was felt that the water was flowing from the north and west sides. Therefore five more wells, W110, W210, W810, W1010, and W107 were drilled on these sides. production histories of these wells is given on Table 81. The total production from water wells was estimated at over 20.000 barrels, over twice the amount of water produced with the oil and gas.

CONCLUSIONS AND RECOMMENDATIONS

Many of the results of this test may not be typical of the LINS process, in general. The high water production, overburden leaks, and high heat losses, all tend to make this test somewhat unique. The large amount of water present, while requiring large amounts of heat for its vaporization, also probably aided in recovering hydrocarbons from the deposit, by steam flooding the sand. In addition, many of these results apply only to LINS fields where concentric gas wells are used.

Some of the conclusions from this test are as follows:

- 1. From 56 to 69%, by weight, of the tar in inside areas of the test pattern, was produced as gas and oil. For a test with concentric gas wells, this is probably the upper limit, because the large amount of water and steam present aided in sweeping the sand free of the tar and oil. About 75% of the recovered hydrocarbons was produced as oil.
- 2. Recoveries were much higher than those from laboratory retorts, particularly at temperatures below 500°F. This may be due partly to the longer heating time and the flow of oil and gas in the formation, but the high steam flow rates in this test are probably the principal factor.
- There is gravity segregation in the tar sand deposit, especially in the immediate vicinity of the burners. Therefore, recoveries are higher in the upper portion of the interval being heated.
- 4. Because of the high temperatures, there is severe coking near the burner, and in the concentric gas casings. At temperatures above 550°F., recoveries are higher in areas removed from the burner wells.
- 5. Coke is formed at temperatures as low as 500°F.
- 6. At temperatures above 700°F., there is practically no tar or oil, only coke.
- 7. The original tar is upgraded considerably, e.g. in this test, μ API tar was produced as 27 API oil, accompanied by gas having a gross heat of combustion of 990 BTU/scf.
- 8. The maximum production rates occur at an average formation temperature of about 600°F. Above 700°F., there is very little production.
- 9. Tar may be produced at gas casing temperatures below 450°F., and coke may be formed in the casings above 600°F. Tar production may be aggravated by high steam rates in the gas casings.

- 10. The injection of oil and additives into the gas casings has little, if any, effect on the production of tar and emulsions.
- 11. Coke can be burned off safely in gas casings, by injecting compressed air.
- 12. Gas casings may become blocked with liquid, but this is not a serious or lasting problem.
- 13. The emulsions formed in the produced oil can usually be treated by conventional methods.
- 14. Separate gas wells are not suitable in areas where concentric gas wells are also present, unless they are open to the bottom of the interval. Because of the lower temperatures in separate gas wells, they become blocked with fluids easily.
- 15. Large amounts of gas and water can be lost through overburden leaks, however, oil losses are less serious.
- 16. There was no immediate effect on production rates when the burners were shut off, at the end of the test.
- 17. Extraction in trichloroethylene is a satisfactory test to distinguish between coke and other hydrocarbons, in tar sand samples.
- 18. Fischer assays of coke yield no oil and very little gas.
- 19. If all losses are disregarded, the produced gas will supply the energy necessary to heat the tar sand.
- 20. Although the average heat input was 580 BTU/ft-hr, the average, in a dry formation, may be as low as 230 BTU/ft-hr, depending on losses, casing temperatures, and the final formation temperatures.
- 21. Normal maintenance and repair causes the burners to be off about 2% of the total heating time.
- 22. The one-inch burners, in $2\frac{1}{2}$ -inch casings, can be operated at heat inputs ranging from 17,000 to 30,000 BTU/burner-hour, over long periods of time, without large changes in the size of the heated interval.
- 23. Sand losses, which were due mainly to slugging in this test, increased with time and increasing flow rates.
- 24. Most of the wear on the burner parts was on the top of each part. There was little wear, except where there were projections, such as couplings and centralizers. There was no evidence of serious corrosion.

- 25. The flat plate centralizers at the cone had the most wear, eroding from the top, at a rate of 1 inch per 2000 hours. These centralizers were made of 18-8 stainless steel.
- 26. Small amounts of water in the fuel gas can extinguish the flame, either by blocking the orifice, or by blowing out the flame.
- 27. After the burners reach a temperature of about 1000°F., they will relight themselves, if they go out.
- 28. The principal safety hazards are hydrogen sulfide poisoning, fuel gas explosions, and burns.
- 29. If the fuel gas flow rate becomes restricted, the flame may move into the supply tube and cause it to be burned off.
- 30. The 5% chromium, $1\frac{1}{2}$ % silicon, $\frac{1}{2}$ % molybdenum alloy burner casings are satisfactory, having shown no signs of erosion or corrosion.
- 31. It may not be possible to recover casings in thicker formations, because of the tight bond between the tar sand and the casing.
- 32. There was no casing damage because of movement or expansion of the tar sand.

From the foregoing conclusions, the following recommendations can be made:

- 1. The use of separate gas wells, in a LINS field, should be investigated, particularly with regard to refluxing and cracking in the casings.
- 2. Separate gas wells should not be used in the same area with concentric gas wells, unless they are open to the bottom of the formation. This allows liquids to drain to the bottom without blocking the flow of gas.
- 3. Artificial methods of lifting liquids in separate gas wells should be investigated.
- 4. The injection of water in the formation, or gas casings, and its effects on recovery, should be investigated.
- 5. The maximum temperature of the gas casings should be kept between 450 and 600°F. This can be done by placing the bottom of the gas casing at the proper depth, or by manipulating the operating conditions of the burners.
- 6. The gas casings should be shut in until the maximum temperature in the casings reaches 450°F.

7. The fuel gas should be clean and dry. The Bureau of Mines recommends that the temperature be kept below 150°F.

8. The burner supply tube should be made of flush joint pipe to prevent turbulence and erosion.

- 9. The use of carbon steel, or cheaper alloys, for burner parts should be investigated, particularly for burner tubes.
- 10. Methods of lighting burners and checking sand levels, without lifting the burners, should be developed.
- ll. Well spacings larger than 10 feet should be tested.

ميد و المعالم المالية المالية

- 12. The tar sand formation should be heated no higher than an average temperature of 700 °F.
- 13. An improved method of recovering casings should be developed, either by changing the completion methods, or by treating the surface of the casing to weaken the bond between it and the coked sand.
- 14. Particular attention should be given to the overburden to ensure a gas-tight seal, it should not be damaged by excessive temperature or pressure.
- 15. To avoid production losses due to excessive cracking, it may be advisable to shut off some of the burners, after the gas casings reach a temperature of 450°F., and use these wells as production wells. The gas casings would be shut in, in the wells where burners are operating.

This work was carried out by W. J. Shirley, M. O. Eurenius, J. H. Duir, and the authors.

R. E. Helander

W. E. HeTsuder

B. Persson

APPENDIX

STUDIES OF THERMAL DECOMPOSITION OF TAR IN TARSAND.

Summary.

Heating of tarsand in a retort to different temperatures maintained for 2 hours showed that the rate of the decomposition of tar to oil, gas, water and coke is to low below 700°F. Fischer assays run on the residues showed that the coke formed at lower temperatures, decomposes further at higher temperatures yielding gas and water but not a significant amount of oil.

Purpose.

As part of the 100-hole test (19) it was necessary to analyze partially and completely pyrolyzed tar and samples. Because the currently used analytical methods had been used mainly on unpyrolyzed tar sand, these tests were performed to investigate the use of these methods on pyrolyzed tar sand. It was also desirable to know if "coke" formed at low temperatures was the same as high-temperature coke, or if it contained a significant amount of oil, either chemically or as a mixture.

The test program included heating of tar sand samples in a Fisher retort for 2 hours at 500, 600, 700, 800,850°F respectively. The amounts of oil, gas and water, recovered during the heating were to be measured and thereafter determinations of tar content and ignition loss and Fisher assays should be run on each sample.

Equipment and procedure.

The tar sand sample, used for all tests, was obtained through grinding, blending and screening of about 4 lbs of tar sand cores, obtained about a year earlier from the L9 test area. About 2 lbs of the 10 - 30 mesh fraction was used for these tests. It showed the following characteristics:

tar content (through extraction with trichlorethylene) = 12.56 = 0.06% b.w. on dry sampl.

ignition loss (tar + inorganic CO₂) = 15.64 % b.w. on dry sample.

Fisher assay test (all figures based on dry sample).

oil yield; 8.44 ± 0.02 % b.w. = 22.25 ± GeDFegaThems/ton (duplicate tests).

gas yield: 0.79 ± 0.01 -"- = 267 ± 4st cu ft/ton.

water yield: 0.10 ± 0.05 -"- = 0.23 ± 0.11 gallons/ton.

residue 90.57 ± 0.02 -"
loss 0.10 ± 0.04 -"-

100.00

The retort, used for heating, was a standard Fisher assay retort and the products were retrected and measured as in the Fisher assay test (see below). The retort was heated at a rate of 14.3 F//minute to the predetermined temperature level and kept there for 2 hours. Thereafter the retort was cooled down and weighed and samples for the various analyses were taken.

The Fisher assays were run according to the modified method, described in B.o.M. Report of Investigations 4477, June 1949, with the exception that no glass beads were used in the glass adopter between the retort and the condenser. Further, the condenser and the water bath, in which the liquid collection tube was immersed, were kept at about 70°F instead of 32 ± 9°F. The uncondensable gas was measured over 70°F water and corrected to standard temperature and pressure conditions. In the material balance calculations it was assumed that the specific gravity of the gas was 0.95 (air = 1.00) and that the density of the oil was 0.90 grams/cm³.

The amount of water produced was determined through distillation of the condensed liquids with white gasoline according to ASTM method D95-40.

Results:

The results are given as a number of material balance tables below. All figures refer to 100 grams of dry, original tar sand sample.

Table 1. Recovered products in the heating tests.

Test No.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 2	1 1	l 5	
		2		4	 	
Preheated at	F	500	600	700	800	850
Produced oil gr	rams	0.00	0.32	1.71	7.50	8.25
gas	11	0.01	0.01	0.23	0.62	0.75
water	17	0.00	0.00	0.00	0.08	0.23
residue	17	99.17	99.61	97.52	91.95	90.69
loss(-) or gain(+)	n n	(-) 0.82	(1) 0.06	(-) 0.54	(+) 0.15	(-) 0.08
Total		100.00	100.00	100.00	100.00	100,00

Table 2. Yields from Fisher assays of residues from heating. (Based on 100 gm. of original tar sand)

				······································			
	Oil grams		8.00	8.11	6.13	0.70	0.00
	Gas "		0.82	0.85	0.77	0.39	0.25
	Water "		0.23	0.13	0.00	0.00	0.04
	Fisher coke and sand		90.03	90.51	90.67	91.13	90.49
or	Loss(-) gain(+)	(-)	0.09	(-) 0.01	(+) 0.05	(+) 0.27	(+) 0.09
	Total		99.17	99.61	97.52	91.95	90.69

Table 3. Overall yields from heating + Fisher assays.

Test No.		2	3	4	5	6
Preheated at	°F	500	600	700	800	850_
Oil	grams	8.00	8.43	7.84	8.20	8.25
Gas	π 	0.83	0.86	1.00	1.01	1.00
Water	Ħ	0.23	0.13	0.00	0.08	0.27
Fisher coke and sand	٠. ٣	90.03	90.51	90.67	91.13	90.49
Loss (-) or (+) gain	(-)0.91	(-) 0.07	(-) 0.49(+	0.42	(+) 0.01
Total		100.00	100.00	100.00	100.00	100,00

Table 4. Ignition losses and tar contents of residues from heating, compared to Fisher assay products.

Ash content regrams	(no determ	m.)86.73	85.93	85.87	86.0
'Ignition loss { tar + coke + CO ₂ }	-	12.88	11.59	6.08	4.68
Total weight of residue "	99.17	99.61	97.52	91.95	90.69
Tar content " (extr.w.tri) (Coke + CO2	11.40	11.68	8.80	0.64	0.00
(by differ.)	•	1.20	2.79	5.44	4,68
Fisher assay:oil gra (see Table 2)gas water	0.82	8.11 0.85 0.13	6.13 0.77 0.00	0.70 0.39 0.00	0.00 0.25 0.04
Total volotiles, gra	1m 9.05	9.09	6.90	1.09	0.29

Fig.1 shows the material balance of the tar versus heating temperature.

Conclusions. Within the limits of experimental error it was found that.

- 1. The decomposition of tar is show below 700°F at this conditions. After 2 hours heating at: 600°F 700°F, 800°F, 850°F there remains~93 %, ~70 % ~5% resp. 0 % of the original tar.
- 2. The coke residue from the tar decomposition decomposes further at higher temperatures, yielding gas (and water), but no significant amount of oil.
- 3. Heating of tar sand for 2 hours at temperature levels between 500°F and 850°F before the Fisher assay test does not affect the overall yield of oil considerably. The overall yield of gas appears to increase to some extent after preheating to 700°F or higher.
- 4. In view of the low yields from unextractable sand, this organic material can be considered to be mostly coke.

MILLIME

Y S. J. P. GILNER

HEAT TRANSFER BY CONDUCTION IN A LINS FIELD

During the coring program for L9, it was necessary to calculate the temperatures in the formation, particularly at the locations of the core holes. The following is a brief description of the methods and equations used in these calculations.

If heat is transferred radially from a long thin source, which we assume to be an infinite line source, the following is the solution to the heat conduction equation:

$$T - T_0 = \frac{H}{4\pi k} \not O \left(\frac{r^2}{4 \propto r} \right) \tag{1}$$

where:

T = temperature

 T_{O} = initial temperature at T = 0 H = heat input per unit of time and length

k = thermal conductivity

r = radial distance from source

≺ = thermal diffusivity

$$\phi(\eta) = \int_{-\infty}^{\infty} \frac{e^{-x}}{x} dx$$
 (2)

and

$$\eta = \frac{r^2}{4a\pi}$$

Values of the function, \emptyset , have been tabulated by Ingersoll,

In a field where there are a number of line sources, the temperature increment created by any given source can be calculated, using equation (1). The total temperature difference is the sum of these increments:

$$T-T_{o} = \sum_{i} \Delta T_{i} = \frac{1}{4\pi k} \sum_{i} P_{i} \phi \left(\frac{r_{i}^{2}}{4\pi \tau_{i}}\right)$$
 (3)

where ΔT_i is equal to T - T_0 for the i-th source.

Ingersoll, Zobel, and Ingersoll, "Heat Conduction", McGraw-Hill, New York, 1948, pg. 253-54.

In equation (3), \mathcal{T}_i is the time since the i-th source first began to emit heat. If the heat input of the n-th source was changed, at time \mathcal{T}_a ; to a new heat input, Pa, then another term must be added to equation (3), where \mathcal{T}_a is the time since the change was made:

$$T-T_0 = \frac{1}{4\pi k} \left[\sum_{\ell} P_{\ell} \phi \left(\frac{v_{\ell}^{\tau}}{4 \times \tau_{\ell}} \right) + \left(P_{\alpha} - P_{n} \right) \phi \left(\frac{v_{n}^{\tau}}{4 \times \tau_{\alpha}} \right) \right]$$
 (4)

If the n-th burner were shut off, then Pa = 0. If all the sources had the same initial heat input, P, then equation (4) becomes:

$$T - T_0 = \frac{P}{4\pi k} \left[\sum_{i} \phi \left(\frac{v_i^2}{4 \times \tau_i} \right) + \left(\frac{P_a}{P} - 1^2 \right) \phi \left(\frac{v_n^2}{4 \times \tau_a} \right) \right]$$
 (5)

In this test, the vertical losses were very significant and equation (5) does not apply to the entire interval. However, this equation was used to calculate the maximum temperatures in the wells with the assumption that these temperatures are all affected to the same degree by the vertical losses. By comparing this calculated temperature with the curves measured in the temperature wells, the complete temperature curve, at any point in the test area, could be drawn. The constant, $P/4\pi$ k, was evaluated from the temperatures in the nearest temperature wells.

Table 1 .

ORIGINAL TAR ANALYSES IN L9.

(in lb/ft³)

Well No.	0-10	10-15	15-20	20-25		h, Feet 30-35		40-45	45-55	15-45
								e e e		er in e
B2-5	4.2(7)	12.8	11.3	10.8	12.5	15.1	16.4	14.4	3.7(5)13.4
B3-2	6.3(5)	13.7	12.1	11.0	11.9	15.4	16.7	14.1	4.5(4)13.5
B3-9	7.3(5)	15.6	11.0	11.1	13.4	15.2	15.9	9.5(2)	6.0(4)12.7(2)
B4-5	6.8(5)	10.6	11.0	11.4	11.9	15.6	16.0	16.1	3.3(4)13.7
B5-6	6.2(5)	11.2	9.7	9.4	14.7	14.9	16.0	4.5(3	}) -	11.5(31/2)
T 61	2.5(8)	11.4	8.1	11.9	13.9	16.2	17.2	11.6(1	1) -	$13.2(1\frac{1}{2})$
B6-2	3.6(7)	11.2	10.8	6.6	10.7	13.3	16.6	16.7	5.4(6	5)12.5
B6-9	6.7(5)	12.8	11.3	10.8	14.0	16.5	11.8(1	.) - (5) 4.3(1	1)10.7(6)
B8-5	- (7)	-	6.5	8.7	15.1	13.5	8.5(2	2) 4.2(1	1)7.3	$9.4(3\frac{1}{2})$
B8-6	4.2(6)	10.5	6.9	8.4	11.9	12.7	15.3	- (5	7.0	9.2(5)
B9-2	- (10)	-	-	6.9	13.3	14.5	15.0	- (5) 4.5(3) –
B9-9	- (5)	_	6.7	6.8	10.7	16.1	13.0()	L) – (5) 5.8	8.9(6)

Figures in parenthesis show amount of shale in interval.

DESCRIPTION OF L9 BURNER-GAS WELLS.

Hole size: 55 feet deep drilled with a 5 5/8" bit through the top 15 feet and with a 4 3/4" bit through the bottom 40 feet.

Gas casing: $+\frac{1}{2}$ feet to 13 feet $4\frac{1}{2}$ " sch 10 carbon steel. In B3-5,3-5 and 5-5 13.5 feet of $1\frac{1}{2}$ " sch 40 pipe of carbon steel was used, placed along the burner casing.

Burner casing:+1 feet to 52 feet $2\frac{1}{2}$ " sch 40 ASTN A213 55T grade T5B (see analytical description L9-510). The top of the burner casing was sealed off from the top of the gas casing by a $2\frac{1}{2}$ " tankbushing as shown on Fig. L9-100.

Burner tube: 4 feet of 1" sch 40 25/20 stainless steel.

16 " " 1" sch 40 18/8 " "

(After 4440 to 4850 hours 13 feet of 1" 18/8 stainless steel was used).

Cone: Cast 25/12 stainless steel, 6" long with conical shape of 0.30" inside diameter increasing to 1.32" inside diameter with a thickness of 0.25".

Supply tube: Counted from cone:

3 feet of 1/4" sch 80 18/8 stainless steel.

7 " " 1/4" sch 40 18/8 " "

19 " " ½" sch 40 carbon steel

(After 4440 to 4850 hours 8.5 feet of ½" pipe

was replaced by 13.5 feet of 1/4" sch 40 carbon

steel).

Centralizers:3 1/8" plates 2" long of 18/8 stainless steel
were welded symmetrically on supply tube 1 foot
above cone and on burner tube 5 and 19 feet
below cone. Later the plates above cone and
some of the plates at 5 feet below cone were
replaced by 6" long 1/8" plates of 18/8 stainless
steel.

Wear rings: Half of a $\frac{1}{2}$ " coupling of carbon steel were welded on each side of the 1/4" couplings and on the top of the cone.

Packing: A burlap packer was set around the gas casing at 12 feet. Five feet of c ment was injected abov this and the remainder of the hole fill d with sand.

DESCRIPTION OF L9 SEPARATE GAS WELLS AND TEMPERATURE WELLS.

Separate gas well, type I.

Hole size: 20 feet deep drilled with 3 3/4" bit.

Casing: 15 feet $1\frac{1}{2}$ sch 40 carbon steel. Packing: The same as for Burner-Gas well.

Separate gas well, type II.

Same as type I except drilled to 50 feet and filled with gravel from 15 to bottom.

Temperature wells inside the test area.

Hole size: 55 feet deep drilled with 3 3/4" bit.

Casing: 52 feet 2" sch 40 carbon steel.

In T35, T38 and T55 52 feet 1" sch 40 carbon steel was used, placed along the burner casing.

Packing: Filled with sand to 15 feet then with about

5 feet cement and finally sand up to the surface.

Temperature wells T17.T71.T710C.T106.

Hole size: 65 feet deep drilled with 3 3/4" bit.

Casing: 63 2" sch 40 carbon steel.

Packing: The same as for the other temperature wells.

Table 4

DESCRIPTION OF L9 WATER WELLS.

Water wells W22,39,82,99.

Hole size: 55 feet deep drilled with 5 5/8" hole.

Casing: 15 feet 4" sch 10 carbon steel connected to

P-line.

Tubing: 50 feet $1\frac{1}{2}$ " sch 40 carbon steel.

Pump: Air driven piston pump with 1/4" rod.

Packing: The same as for Burner - Gas well.

Water well W56.

Hole sixe: 75 feet deep drilled with 5 5/8" bit.

Casing: 10 feet 4" ach 40 carbon steel followed by

40 feet $3\frac{1}{2}$ sch 40 carbon steel.

Tubing: 63 feet $1\frac{1}{2}$ " sch 40 carbon steel.

Pump: Air driven piston pump with 1/4" rod.

Packing: The same as for Burner - Gas well.

Water wells outside the L9 field.

Hole size: 60 feet deep drilled with 5 5/8" bit.

Casing: 15 feet 4" sch 40 carbon steel.

Tubing: 55 feet $1\frac{1}{2}$ n sch 40 carbon steel.

Pump: Air driven piston pump with 1/4" rod.

Packing: The same as for Burner - Gas well.

Table 5

ANALYSES OF L9 FLUE GAS
OCTOBER 13, 1958.

(Mass spectrometer)

Component		Сомров	sition (vol.%)	
	Sample	before		sampling pump
H ₂	0.2		0.2	
CH ₄	6		0	
C2H6	0.1		0.1	
² 3 ⁶ 6	0		0	
. CO	0.3		0.4	
^{CO} 2	14.1		13.7	
N ₂	84.2		84.5	
Argon	.0.9		0.9	
02	0.2		0,2	
•	100.0		100.0	

CUMULATIVE HEAT INPUT IN L9 FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959.

Aver.BTU b-hr.		26,510	26,510	25,450	25,410	25,400	26,410	26,400	26,330	26,430	26,350	26,120
Total 10 ⁶ BTU for	X	 2083	2081	2012	1954	1839	1961	1939	1914	1857	1904	19,550
	10	210	210	210	210	197	198	197	197	192	192	1
	6	210	210	200	199	187	198	197	197	192	192	
· · · · · · · · · · · · · · · · · · ·	1 0	210	208	200	200	187	197	197	198	171	192	an i te selection de 2 mars
- d	2	209	210	200	198	181	161.	197	197	192	192	
ler	9 .	209	209	199	183	186	196	197	167	189	192	
Burner	<i>'</i>	203	208	199	190	184	195	188	196	191	192	
***)	4	210	208	197	176	153	961	193	197	192	192	
e de la proprieta de la propri	m	209	209	199	189	181	961	181	183	168	192	
The second secon	~	206	207	199	199	186	197	197	197	193	176	:
hrs	<u> </u>	207	202	209	210	197	197	195	185	177	192	
Number of hrs in oper. for	Av.bur.	7857	7853	7902	2692	7248	7448	7346	7260	7030	7233	
	Row	7937	=	*	*	2490	=	=	E	7305	E	
	MON	ri	2	8	4	2	9	7	₩	6	10	1-10

Table 7

METALLURGICAL ANALYSIS OF L9 BURNER CASINGS
GIVEN BY THE BABCOCK & WILCOX COMPANY, BEAVER FALLS, Pa.

Specification: ASTM A213 55T GRADE T5E

Ultimate strength: 79000 - 82000 psi

Yield point:

53000 - 55600 psi

% Elong in 2":

50 - 53

Hardness:

BHN 148 - 161

Chemical analyses

wt % of C 0.10

Mn 0.42 - 0.44

s 0.010 - 0.013

P 0.018

Si 1.39 - 1.49

Cr 4.68 - 4.72

Mo 0.45 - 0.54

Dimension Sch 40 (OD 2. 875#, wall 0.203")

Table 8

<u>DESCRIPTION OF BURNER FAILURES.</u>

Burner No.	Date	Hours from start	
B5-5	3.24.1958	655	2 feet of the bottom part of the burner tube burned off, because the flame moved down out of the cone.
B10-2	4.8	1013	Cone and burner casing burned off.after 7.7°10 ⁶ BTU had been supplied. There was a lot of water condensing in the top of the burner casing which might have clogged the sand together so it stuck to the casing and thus left too little sand to cover the cone.
B8- 9	6.8	2470	Broken supply tube.
B7-2	7.7	3173	Cone burned off.
B8-2	8.16	4135	F-gas burned in 1" supply tube.
B5-1	8.28	4418	_n
B3-4	9.16	4875	1/4" supply tube 10 feet above cone burned off. A restriction of carbon and metal 3 feet above the cone lowered the gas supply so the gas was ignited in the supply tube.
B9-5	10.27	5854	The supply tube broke off 4 feet above the cone when the sand was checked. The tube had been damaged when a wear ring was welded on earlier.
B5-4	11.13	6280	Burner casing and 1/4" supply tube burned off 10 feet above cone. 2 holes were burned in the casing.

Table 8 (cont)

Burner No.	Date	Hours f	
B8-7	12.3	6743	A hole in the supply tube 3 f et above cone and just above the wear ring was cereded out by the sand.
B8-6	12.8	6876	Cone and burner casing burned off. Cone burned off 3 inches from its top.
B 1-9	12.10	6908	A hole was eroded out by the sand in the supply tube just above the 1/4" coupling, 10 feet above the cone.
B9-3	12.18	7104	1/4" supply tube 10 feet above cone burned off. The burner was stuck and could not be pulled.
B 9-8	12.22	7198	1/4" supply tube and burner casing 3 feet above cone burned off.
B7-3	12.29	7389	Burner casing and 1/4" supply tube burned off at 13 feet from ground surface. This was caused by an excessive air injection rate when burning coke out of the gas casing
B4-9	1.24.1959	8021	Burner casing burned off after the burner had been off 6 hours during a power failure.
Bl-1	19	Ħ	Supply tube broke off at $1/4$ " x $\frac{1}{2}$ " reducer because of worn threads.
B2-8	н	19	<u>.</u>

Table 9

BURNED OFF BURNER PARTS IN L9.

) !	drained of the purification		• 011 6 101117	
Hours	Burner		Supply tube	eqn	
start	Casing	Cone	1/4"	1140	Reagon
1013	B10-2	B10-2			Too little sand
3173		B7-2			
4875		***************************************	B3-4		Fuel gas ignited in supply tube when gas supply was restricted by rust and oil.
6280	B5-4		B5-4	or germanus into a f	1 = 1
9289	B8-6	B8-6			
7104			B9-3		Fuel gas ignited in supply tube when gas supply was restricted by rust and oil.
7198	B9-8		B9-8		t E
7389	B7-3			B7-3	Too much air was injected in gas casing to burn its coke for unplugging the well.
8021	B4-9				During a shut down

Table 10

BURNER INSPECTIONS.

4.23	1370	Row 2 inspected. Weak spot on B2-7 cone was welded.
. 6 . 2	2330	Row 4 inspected.
6.26		Row 10 inspected. 3 wear rings 3 ft above cone replaced.
7.8	3190	Row 7 inspected. Replaced several wear rings.
7.9	3215	Row 8 inspected. OK
7.10	3240	Row 9 inspected. OK
8.5	3860	Row 1 inspected. OK
8.6	3890	Row 2 inspected. OK
8.29-9.15	4440 - 4850	All rows inspected. All top and most middle centralizers in rows 1 - 4 were worn out. Usually one of the top and one of the middle centralizers in rows 5 - 8 were worn and in rows 9,10 only a few top cent. were damaged. All top centralizers were replaced by 6" plates and damaged middle centralizers by 2" plates.
11.10	6190	B3-3, 5, 7 inspected. Only a worn 1/4" collar in B3-7.
12.11	6940	B1-1 to 8 inspected. The 1/4" couplings 11 feet above the cone were badly damaged by the sand and replaced. Wear rings also installed. 2 wear rings 3 feet above the cone replaced.

Table 10 (cont)

12.12	6960	B1-10 and row 2 inspected. Couplings 10 feet above cone replaced and wear rings installed.
12.13	6990	Rows 6,7,8 and B9-7 to 10 inspected. Replaced 1/4" couplings 10 feet above cone.
12.16	7060	B9-1 to 6 inspected. Replaced 1/4" couplings 10 feet above cone.
12.17	7080	BlO-1 to 5 inspected. Replaced 1/4" couplings 10 feet above cone.
12.18	7104	BlO-6 to MO inspected. 1/4" couplings 10 feet above cone replaced.
12.30	7400	Row 3 inspected. 1/4" couplings 10 feet above cone replaced.
12.31	7420	Row 4 inspected. 1/4" couplings 10 feet above cone replaced.
1.2.1959	7470	Row 5 inspected. 1/4" couplings 10 feet above cone replaced.

In many cases where the 1/4" couplings had to be replaced also about 2" of the supply tube above these couplings were badly damaged by the sand and had to be cut off.

Table 11

TOTAL NUMBER OF HOURS L9 BURNERS WERE OFF FROM

START FEBRUARY 25, 1958 TO SEUT OFF JANUARY 26, 1959.

	/. · · · · · · · · · · · · · · · · · · ·		-tur, ra 7 <u>1</u> 0 <u>71</u> 0 me tu <u>ra</u> .	В	urner						Tot	a 1-
Row	1	2	3	4	5	6	7	8	9	10	Hours	- 1
									•			, ,
1	269	275	160	138	385	166	163	147	148	147	1998	2.48
2	395	246	179	192	200	169	153	205	149	147	2035	2.52
3	158	153	168	233	147	167	130	134	128	128	1546	1.92
4	137	139	507	965	587	706	167	124	164	124	3620	4.50
5	84	100	264	1838	170	91	264	76	64	82	3033	4.01
6	72	100	142	122	171	113	80	104	65	63	1032	1.37
7	111	146	729	234	385	91	113	86	77	77	2049	2.71
8	500	82	540	66	145	1270	104	66	67	74	2914	3.8 6
9	653	88	1031	105	135	194	. 60	911	58	58	3293	4.47
10	64	665	64	64	60	62	82	64	67	69	1261	1.71
1-10											22781	2.95

Table 12
SUMMARY OF BURNER OFF-TIME IN L9.

	Burner hours	% of total time
Test shut down.		
Power failures Maintenance etc. on fuel system Instrument failures	3720 2160 2040	0.49 0.28 0.26
Explosion in fuel lines	400	0.05
Total	8320	1.08
Individual burner off-time.		
Burner failures	6413	0.83
Repair of ground leaks Burner maintenance Unknown reasons	3842 1825 1572	0.50 0.24
Repair of tankbushing leaks Unplugging of concentric gas wells	471 338	0.20 0.06 0.04
Total	14461	1.87
Total	22781	2.95

Table 13 L 9 SHUT - DOWNS.

Date 1958	Hours from start	Off hours	Reason
3.2	118	1	Proportioner failed. Only rows 1-4 on.
	128	3	и и _и_
3.3	140	4	и и _и_
	147	28	n 11n_
3.6	218	3:	Power failure -"-
3.7	239	7	Proportioner failed -"-
3.17	477	6	Proportioner adjusted -"-
3.18	499	7	Another propane vaporizer and an
	1		empty tank in propane line installed,
		`	between vaporizer and F-gas mixing.
			Only rows 1 to 4 on.
3.25	675	1	Proportioner failed. Only rows 1-8 cm
3.26	692	6	Water drains installed in F-lines.
			Only rows 1-8 on.
4.1	837	7	Capacity of blower checked.
}		'	Maintenance work on F-station.
4.4	909	3	Power failure.
5.8	1744	6	н
5.14	1887	4	ท ที
5.23	2088	2	и и
5.24	2111	2	n n
7.27	3684	4	n n
8.10	3997	7	Propane vaporizer failed.
9.6	4630	i	Circuit breaker on compressor op ned.
10.29	5911	6	Power failure.
11.17	6359	4	Explosion in F-lines.
12.10	6922	2	Power failure.
1959			
1			
1.24	8015	6	11 11

Summary

```
Rows 1 - 4 off 120 hrs each = 4800 burner hrs=1.49% of tot.time f.res=1-4
<sup>#</sup> 5 - 8 *
            61 " " = 2440 " " =0.81% " " "
                                                           * 5-8
   9 -10 "
             54 "
                        =_1080
                                    " =0.73% "
                                                           9_10
                         8320
  1 -10
                                    " =1.08% "
```

L9 on 8057 hrs

Rows 1 - 4 on 7937 hrs

" 5 - 8 on 7490 " 9 -10 on 7305 "

Table 14

NUMBER OF HOURS L9 BURNERS WERE OFF FOR

UNKNOWN REASONS FROM START FEBRUARY 25, 1958

TO SHUT OFF JANUARY 26, 1959.

					Burne	r					To	tal
Row	1	2	3	4	5	6	7	8	9	10	Hours	% of total time for con.
1	105	121	3 3	, 10	10	2	2	_	· 	` 	283	0.35
2	28	8	54	62	39	28	8	18	4	2 ,	251	0.31
3	26	10	14	28	14	36	4	2	2	2	138	0.17
4	12	4	-	10	65	8	4	~	4	•	107	0.13
- 5	2	26	14	8	88	24	10	6	~	18	196	0.26
6	8	36	66	40	90	20	12	-	2	-	274	0.36
7	35	39	4	12	94	19	17	4	-	÷	224	0.30
8	2	4		-	4	14	2	-	-	-	26	0.03
9	6	4	-	21	2	2	2	-	-	-	37	0.05
10	4	<u>8</u>	4	4			4_	2	44	6	36	0.05
1-10	228	260	189	195	406	153	65	32	16	28	1572	0.20

NUMBER OF HOURS L9 BURNERS WERE OFF FOR BURNER

FAILURES (BURNED OFF CASINGS, SUPPLY TUBES, CONES

AND DIGHTING DIFFICULTIES) FROM START FEBRUARY 25, 1958

TO SHUT OFF JANUARY 26, 1959.

					Burn	er					Tot	al
Row	1	2	3	4	5	6	7	8 !l	9	10	Hours	% of total time for cor
	ι		I	1				. !				
1	36	16					15		2	\	69	0.09
2								36		•	36	0.04
3				71				•		- \	71	0.09
4					`		28		36	1)	64	0.08
5	18			1765	18						1801	2.38
6					15						15	0.02
7		42	660 ¹)							702	0.93
8		13				11721)	24				1209	1.60
9			947		49			85 3	L)		1849	2.51
10	<u> </u>	597	2)					~			597	0.81
1-10											6413	0.83

¹⁾ Burner casings failures.

After 1806 hours the burner was off 390 hours because it was stuck in th casing.

^{2) &}quot; failure. Burner was off 207 hours.

New casing was set 1 ft from the original one.

Table 16

NUMBER OF HOURS L9 BURNERS WERE OFF TO UNFLUC

CONCENTRIC GAS CASINGS FROM START FEBRUARY 25, 1958

TO SHUT OFF JANUARY 26, 1959.

		to a magazine the time the conse	e merce in immerce.	* * **********************************	В	urner	To refer to the section of the sec		- 		Total		
Row	1	2	3	4	5	6 	7	8	9	10	Hours	% of total time for cor.row.	
						,	·			1			
1					3	17				÷	20	0.02	
2				5	6	15		6		j	32	0.04	
3		11	21			5		5			42	0.05	
. 4		8	. 20				11				39	0.48	
5		10	23			3		6			42	0.06	
6			5	18		3		40			66	0.09	
7	11			4	14	•		17	. 12	12.	70	0.09	
8							12				12	0.02	
9						12					12	0.02	
10					·		3				3	0	
1-10	*		سروان المحمدة الماسات المحمدة المحمدة				-				338	0.04	

Table 17

NUMBER OF HOURS L9 BURNERS WERE OFF TO REPAIR

GROUND LEAKS AND TANKBUSHING LEAKS FROM START

FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959.

			per for je sin a was .	** ** *** ***	Bur	ner	terr man i sapanan ranga				To	tal
Row	1	2	3	4	5	6	7	8	9	10	Hours	% of total time for cor.row
1 2 3	242	11	·		244 ¹	·					255 3 5 9	0.32 0.45
4 5			358	829	342	570	190			·	2099 190	2.60
7 8	433 416 ¹	.)		152 ¹	.) ₂₁₂ 75 ¹	.)					364 508 538	0.48 0.67 0.71
1-10											4313	0.56

¹⁾ Tankbushing leaks.

Table 18

NUMBER OF HOURS L9 BURNERS WERE OFF FOR MAINTENANCE
WORK ON BURNERS (INSPECTING BURNERS, REPLACING COUPLINGS
AND WEAR RINGS, CHANGING BURNER POSITION, CLEANING
ORIFICE PLATES, BURNED OFF HOSES, MISC. WORK ON F- LINE)
FROM START FEBRUARY 25, 1958 TO SHUT OFF JANUARY 26, 1959.

					1	Burner	•			(Total		
Row	1	2	3	4	5	6	7	8	9	10	Hours	% of total time for c	
			`	,	1			1	1				
1	8	7	7	8 .	8	27	26	27	26	27	171	0.21	
2	5	1	5	5	35	6	25	25	25	25	157	0.20	
3	12	12	13	14	13	6	6	7	6	∖ 6	95	0.12	
4	5	7	9	6	60	8	4	4	4	[\] 4	111	0.14	
5	3	3	1661)	4	3	3	3	3	3	3	194	0.26	
6	3	3	10	3	. 5	29	7	3	2	2	67	0.09	
7	4	4	4	5	4	11	35	4	4	4	79	0.10	
8	4	4	479 ²⁾	5	5	23	5	5	6	13	549	0.73	
9	1773)	30	30	30	30	4	4	4	4	4	317	0.43	
10	6	6	6	6	6	8	21	8	9	9	85	0.12	
1-10	1										1825	0.24	

Burner was shut off for 163 hours from 5450 hours from start to test its concentric gas well as a separate gaswell. For 73 hours from 5613 hours from start the burner was run at a heat input of 12,000 BTU/h.

Burner was shut off for 170 hours and 217 hours from 5690 and 6093 hours from start, resp. For 227 hours after 5860 hours from start the burner was run at a heat input of 12,000 BTU/h. The purpose was to test its conc. gas well as a sep. gas well.

The burner was shut off for 146 hours from 1053 hours from start when a new hole was drilled for B10-2.

Table 19

TEMPERATURE OF EXHAUST GAS IN L9 MEASURED

INSIDE THE BURNER CASINGS AT GROUND LEVEL.

•	Row					D	- *				
	No.	1	2	3 .	4 5	Burne 6					·
5600			a sta	rt.	October	_	7 <u>16,</u>	8 <u>1958</u> .	.9	10	Averag
	3 4 5 6 7 8 9	324 4 300 2 316 2 425 3 304 3 284 3 258 2	25 10 290 00 490 42 28 <i>0</i>	286 320 344 345 380 382 390 345	270 284 312 294 320 520 326 364 274 232	298 300 310 300 290 480 484 348 280 262	330 324 346 330 270 524 530 366 218 278	430 432 332 300 320 330 344 390 310 256	380 446 264 370 480 302 320 254 236 260	260 242 414 275 315 278 288 252 242 250	316 339 308 310 343 372 375 328 264
6300	hours	from	m star	t. K	lovember	13 -	- 16,	1958	•		Average 322
i i	1 2 3 2 3 4 2 5 6 3 7 1 8 9 2		80 336 60 358 60 310 28 285 05 290 10 380 95 230 96 225	250 350 310 328 240 320 295 272	318 280 290 295 295 475 295 210 335	334 186 295 300 280 540 372 325 275 250	305 315 285 275 420 530 320 305 270 255	415 380 280 250 475 300 330 278 370 265	360 365 280 305 405 356 350 280 280 238	250 310 362 235 370 300 260 190 258 250	309 331 286 288 337 389 300 259 284 258 Average 304

Table 20
HEAT BALANCE FOR TEST L9

Total Heat Input	Millions of Btu	<u>#</u>
	19,550	100
Heat Content of Exhaust Gas (300°F)	2,560	13
Sensible Heat of Produced Fluids (300°F)		
011	120	
Gas	30	
Water	3,150	
	3,300	17
Heat Through Casing to Overburden (205 Btu/ft-hr from 0 to 14 ft)	2,160	'n
Heat Content of Formation* (from 14 to 42 ft, 460 Btu/ft-hr)	2,560	13
Vertical Heat Losses from Heated Formation*	1,040	5
Side Heat Losses from Heated Formation*	2,760	15
Heat Through Casing to Internal Below 42 ft	2,620	13
Losses Which are not Accounted For	2,550	<u> 13</u>
TOTAL	19,550	100

^{*}The heated formation includes only the volume inside the second row of wells from the edge, between depth of 14 and 42 feet.

Table 21

TOTAL 19 PRODUCTION DATA.

	•
Oil, bbls	2,665
tons	415
Gas, 103 S cu ft	4,520
tons	112
Water, bbls	9,232
tons	1,615
Gas/Oil ratio, S cu ft/bbl	1,700
lb/1b	0.27
Water/Oil ratio bbl/bbl	3.46
16/16	3.89
Gross heat of combustion, gr	ross 10 ⁶ BTU
Oil	15,880
Gas	4,470
Oil + Gas	20,350

19,550

800

Input

Table 22

COMPOSITE ANALYSIS OF L9 PRODUCED GAS.

Component	omposition, vol % 1)
H ₂	39.6
H ₂ S	9.2) 12.2
CO ²	2.3
N ₂ +co	0.7
cH ₄	28.6
C2H6	6.7
с ₃ н ₈	3.9
1C4H10	1.2 \ 42.9
nC ₄ H ₁₀	1.3
iC ₅ H ₁₂	0.3
nC_H ₁₂	0.9
°2 ^H 4	0.9)
^c 3 ^H 6	0.6 } 4.4
^C 4 ^H 8	1.7
^C 5 ^H 10	1.2
^C 3 ^H 4	0.1 } 0.2
^C 4 ^H 6	0.1
Av.C ₆	0.7
_ 3)	100.0
Heat of Combustion ²)	990; Btu/scf Gross 910 Btu/scf Net
Spec.gravity ²)	910 Btu/scf Net
Air = 1.0 kg/m ³ at 32°F	0.650
kg/m² at 32°F lbs/S cu ft	0.840
True spec.heat ²)	0.0496
BTU/S cu ft, F at 65°F	0.0242
" " 300 ° F	0.0286

¹⁾ Calculated from Diagrams L9-508-1 through 5.

²⁾ Calculated from the above gas analyses.

Table 23

ANALYSES OF L9 PRODUCED GAS.

(Mass. Spectrometer)

Luly 26, 1958.

H ₂ H ₂ S	38.0 13.4)	Rows 7 and	on (vol.%) 8 Row 10	Total L9	
		40.3			
			40.1	70.0	
2	± / 1 T 1	12.5)	7.8	38.2	
CO2	5.5/20.0	4.2 18.0	100 5	13.6	19.
N ₂ +CO	1.2	1	10.9	4.77	-3.8
CH ₄	_	1.3)	2.6)	1.6)	
	24.4	24.9	26.5	23.0	
C ₂ H ₆	6.4	6.3	5.8	6.4	
C ₃ H ₈	3.8	3.5 7 37.2	2.6 36.2	3.7	36.5
1C4 ^H 10	o.å /	0.8	0.3	1.1	,,,,
C4 ^H 10	1.2	1.0	0.7	1.3	
- ^C 5 ^H 12	0.1	0.3	0.1	0.1	
1C5H12	0.6)	0.4)	0.2)	0.9	
C2 ^H 4	1.0	1.0)	0.6	0.9 7	
3 ^H 6	1.3 4.1	1.2 } 4.2	0.9 2.6	0.9	
² 4 ^H 8	1.2	1.4	0.8	1.7	4.6
5 ^H 10	0.6	0.6	0.3	1.1	
^{73±} 4	0.1 0.1	0.1 } 0.1	0.17	0.1 7	
^E 4 ^E 6	0.0	0.0 }	0.0 0.1	0.1	0.2
Av.C ₆	0.4	0.2	0.1	0.6	
	10010	100.0	100.0	100.0	
leat of			,	100.0	
comb.gross GTU/ft3	888.O	873.1	775 0	33. A	
Spec.grav. Air= 1.0	0.679	0.641	735.8 0.627	934.7 0.701	

(Mass.Spectrometer)

Component Composition (vol.%) August 9 Rows 7 and 8 Row 10 Total L9 Total L9					·	
August 9 Row 1 Row 7 and 8 Rov 10 Total L9 Total L9 August 25 Total L9 Row 1 Row 7 and 8 Rov 10 Row 1 Row 7 and 8 Rov 10 Total L9 T	Component	C	Composition	(vol.%)	· 1	
H ₂ H ₂ H ₂ H ₂ H ₃ CO ₂ H ₂ +CO CO ₄ CO ₄ CO ₄ CO ₄ CO ₄ CO ₅ CO ₅ CO ₅ CO ₆ CO ₇ CO ₇ CO ₈ CO		Para	Augus	t 9	t	August 23
H ₂ H ₂ H ₂ H ₂ H ₃ CO ₂ R ₂ +CO CO ₃ CO ₄ CO ₄ CO ₄ CO ₅ CO ₆ CO ₇ CO ₈ CO		HOM I	Rows 7 and	8 Row 10	Total L9	•
H26	H	36.0	39.0	45.7	75 0	4
CO2 N2+CO CH4 CCH4 CCH6 CCH4 CCH6 CCH4 CCH6 CCH6		13.3)		1 _		35.6
N ₂ +co		}			1 1 .	12.2
CH 4 26.3 7.3 7.3 7.0 25.7 7.0 26.0 7.5		(1 . 1	4.0 \ 17.3	2.8 7 15.7
C2H6 C3H8 iC4H10 1.3 iC4H10 1.3 iC5H12 0.6 0.5 0.7 C3H4 0.4 1.1 C3H6 1.4 C3H6 1.5 1.7 C3H6 1.7 C3H6 1.3 C4H8 1.3 C4H8 1.3 C4H8 1.3 C4H8 1.3 C4H6 Av.C6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	2700		0.6	1.8	0.3	0.7
C2H6 C3H8 1C4H10 1.1 1.1 1.1 1.2 1.2 1.3 1.4 1.4 1.5 1.4 1.4 1.5 1.4 1.4 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		}	25.7	26.1	25.9	26.0)
C3H8 1.1 41.0 0.9 39.7 0.3 54.0 1.2 41.5 1.4 42.3 1.4 5.5 1.4 42.3 1.4 5.5 1.4 42.3 1.4 5.5 1.	^C 2 ^H 6	7.3	7.0	4.7	7.3	1 1
1C ₄ H ₁₀ 1C ₄ H ₁₀ 1C ₅ H ₁₂ 1C ₅ H ₁₂ 1C ₃ H ₆ 1C ₄ H ₈ 1C ₄ H ₆ 1C	^C 3 ^H 8	4.3	4.1	2.1	1 '	}
1.2 0.5 1.4 0.4 0.4 0.4 0.5	ic_H	1.1 \41.0	0.9 39.7	! \	1	! { ;
iC ₅ H ₁₂ 0.1 0.3 0.0 0.4 0.4 iC ₅ H ₁₂ 0.6 0.5 0.5 0.0 0.3 0.0 0.4 0.4 C ₂ H ₄ 1.1 1.0 0.7 0.7 0.9 1.0 1.5 1.5 C ₃ H ₆ 1.3 4.5 1.7 5.0 0.8 2.7 2.0 5.3 1.9 5.7 C ₃ H ₆ 0.0 0.0 0.0 0.0 0.3 1.0 0.1 0.1 0.1 0.1 C ₃ H ₆ 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 C ₃ H ₆ 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 C ₄ H ₆ 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.2 0.5 0.5 Av. C ₆ 0.4 0.690 0.660 0.660 0.45 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.0 <td< td=""><td></td><td>/</td><td></td><td>i /</td><td></td><td>1.4 742.3</td></td<>		/		i /		1.4 742.3
nC ₅ H ₁₂ 0.6 0.5 0.3 0.8 0.8 C ₂ H ₄ 1.1 1.0 0.7 0.7 1.0 1.5 C ₃ H ₆ 1.4 1.6 0.9 1.3 1.3 1.5 C ₄ H ₈ 1.3 4.5 1.7 5.0 0.8 2.7 2.0 5.3 1.9 5.7 C ₄ H ₆ 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 Av. C ₆ 0.4 0.0 0.3 0.2 0.5 0.5 0.5 100.0 100.0 100.0 100.0 100.0 100.0			- (1.4
C2H4 C3H6 C4H8 C4H8 COOO C34G C4H8 COOO C34G C4H8 COOO C34G COOO C3AG COO C3AG C	5 12 d		1	0.0	0.4	0.4
C ₃ H ₆ C ₄ H ₈ C ₄ H ₈ C ₀ C ₃ H ₆ C ₄ H ₈				0.3	0.8	0.8
C3H6 C4H8 C4H8 COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		i	1.0	0.7	1.0)	1.5)
C ₄ H ₈ C O C O C O C O C O C O C O O O O O O	1	1.4	1.6	0.9	1.3	1 1
C 0 0.7 0.7 0.7 0.3 1.0 1.0 1.0 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.5 100.0 100.	C ₄ H ₈	1.3 \ 4.5	1.7 >5.0	0.8 2.7	1	1 (
C3 4 C4 ^H 6 Av.C6 Av.C6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	c .	0.7	0.7)		
Av. C ₆ Av. C ₆ O.4 O.3 O.2 O.5 O.5 O.5 O.5 O.5 O.5 O.5	03.4	0.0)	·	_	الجيد ا	1
Av. C ₆ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	CH	0.0 \ 0.0		> 0 0		
Heat of 100.0 100.	AV.C.	J	J	0.0	0.1)	0.1 \ 0.2
Heat of comb.gross 3TU/ft ³ 963 953 723 1013 1033	ť			_0,2	0.5	0,5
Teat of comb.gross 3TU/ft ³ 963 953 723 1013 1033	1	100.0	100.0	100.0	100.0	100.0
3TU/ft ³ 963 953 723 1013 1033	t					
3pec.grav. 0.690 0.660 1013 1033	3TU/1t3	963	953	707		
MIF=1.U 0.00U 0.455 0.704	Spec.grav.		1	j		1033
The samples did not contain any C W C W	A1F=1.0	-	1	0.455	0.724	0.714

The samples did not contain any C2H2, C4H2, C4H4, Benzene or NH3.

Table 25

ANALYSES OF L9 PRODUCED GAS.

Composition (vol. %)

Component	Sept.5	Sept. 19.
H ₂	34.4	36.9
H ₂ S	12.4)	13.5)
co ₂	2.5 > 15.3	2.3 / 16.6
N2+C0	0.4	0.8
CH ₄	25.6	24.2
c ⁵ H ⁶	7.6	7.2
C3H8	4.6	4.4
104 ^H 10	1.4 \ 42.0	1.5 \ 40.2
n ^C 4 ^E 10	1.5	1.6 (\
10 H 5 12	0.2	0.1
nC5H12	1.1)	1.2
^C 2 ^H 4	1.7	0.9
^C 3 ^R 6	1.4 > 7.1	0.5 5.1
C4E8	2.5	2.1
^C 5 ^H 10	1.5)	116)
^C 3 ^H 4	0.2 } 0.3	0.2 \ 0.2
^C 4 ^H 6	0.1	0 }
AvC ₆	0.8	1.0
Benzene	0.1	0
Heat of Combustion	1096	1055
Gross BTU/S, c		2077
Spec.gravity	0.745	0.729
Air = 1.0		

Table 26

ANALYSES OF L9 PRODUCED GAS (MASS SPECTROMETER)

Component	, c	omposition vol. %
	October 3	October 17
H ₂	37.6	37.5
H ₂ s	13.27	11.2
co ₂	2.0 715.9	1.9 } 13.7
N ₂ +CO	0.7	0.6
CH ₄	24.8	26.2
^c 2 ^H 6	7.2	7.7
c ₃ H ₈	4.9	4.4
1 C4H10	1.7 \ 41.6	1.5 \ 42.9
n C ₄ H ₁₀	1.6	1.7
i C ₅ H ₁₂	0.4	0.2
^{n C} 5 ^H 12	1.0 /	1.2)
^C 2 ^H 4	0.8	0.9
^C 3 ^H 6	0.3 7 4.1	0.4 } 4.8
C ₄ H ₈	1.8	2.0
^C 5 ^H 10	1.2]	1.5 /
C ₃ H ₄	0.1 0.1	0.2
^C 4 ^H 6	ک ہ	ر ه
AV.C	0.7	0.9
Heat of comb.gas BTU/S cu.ft	1035	1062
Spec.grav.	0.706	0.703

Air=1.0

ANALYSES OF L9 PRODUCED GAS.

(Mass Spectrometer)

Component	Composition vol.%			
	Nov. 19x)	Nov.28		
H ₂ H ₂ s	36.2	40.0	•	
c0 ₂	1.5	9.1 7.0 3	19.2 9.2	
N ₂ +00	0.9	ر ئيـ 0.1		
CH.	26.8	31.8		
^C 2 ^H 6	6.7	6.7		
^C 3 ^H 8	3.0	3.6		
1 C H 10	- >	44.7	45 .3	
nc ₄ H ₁₀	2.1	1.2		
1C ₅ H ₁₂	-	0.1		
nC ₅ H ₁₂	6.1	\ o.a \		
^C 2 ^H 4	0.2	1.0		
^C 3 ^H 6	4.7	0.6		
C ₄ H ₈	- >	5.7	4.5	
^C 5 ^H 10	0.8	1.3	7.7	
^C 2 ^H 2	0.2	-)		
C ₃ H ₄	- }	0.6 0.1	0.2	
C ₄ H ₆	0.2	0.1	0.2	
^C 4 ^H 2	0.2			
c ₆ +	3.5	0.8		
Benzene	0.2	-		
Heat of comb.gas, BTU/S cu ft	1283	-		
Spec.grav. Air = 1.0		996		
-\	0.806	0.623		

x) May be errors in olefin, c_3 and c_{4+} portions of analysing.

Table 28 ANALYSES OF L9 PRODUCED GAS (Mass Spectrometer)

Component	Dec. 12	Dec.29
	Composition, vol.	
H ₂	42.1	44.0
H ₂ s	7.1 \ 9.0	5.9 8.1
CO+N ₂	1.3	2.2
CH ₄	0.6	0)
C2H6	31.6 6.5	32.8
с ₃ н ₈	3.4 44.4	5.7
iC ₄ H _{lo}	0.8	2.9 > 43.9
nC ₄ H ₁₀	1.2	0.8 1.0
^{1C} 5 ^H 12	0.1	0.1
^{nC} 5 ^H 12	0.8	0.6
^C 2 ^H 4	0.8)	0.8
^C 3 ^H 6	0.7 > 3.7	0.6 \ 3.4
^C 4 ^H 8 ^C 5 ^H 10	1.3	1.2
5-10 C ₃ H ₄	0.9)	0.8
C ₄ H ₆	0.1 0.2	0.1 } 0.1
Av.C ₆	0.1 <i>J</i> 0.6	0 \(\)
,	0.0	0.5
Heat of Combustion		100.0
Gross BTU/S cu ft	945	895
Spec.gravity Air = 1.0	0.583	0.549

Table 31

ANALYSES OF L9 PRODUCED LIQUIDS.

3620 hours from start.

Row 1 Rows 7 & 8 Row 10 Total L9

T. 4	~ 1°	4 6	l D		d 11	ct
ד יג	てし	1 1 (ı r	ru	a u	CT

Vol.Rec.

Diquid Iloudet				
Gravity, API Sulfur, wt.% Nitrogen, wt.%	27.5 2.24 0.440	23.7 2.49 0.367	21.4 2.20 0.309	25.8 2.38 0.378
Distillation, D-1160	OT, Mod., OF			
IBP	118	136	223	101
5 vol % 0.H	250	260	355	270
10	320	345	425	320
20	415	450	500	400
30	465	515	550	470
40	500	565	585	520
50	540	605	630	570
60	590	650 `	1680	615
70	645	705	750	670
80	720	775	835	740
90	815	855	930	840
95	900	920	-	_
Max.:	915	970	965	910

95.5

96.0

92.0

94.0

Table 30

ANALYSES OF L9 PRODUCED GAS.

(Mass Spectrometer)
February 6, 1959

Component

Composition, vol.%

н ₂	49.1	
H ₂ S	7.6	13.8
CO ₂	3.7	47.0
CO+N ₂	2.5	
CH ₄	28.5\	
^C 2 ^H 6	3.7	
C ₃ H ₈	1.6	
ic ₄ H ₁₀	0.5	35.2
^{nC} 4 ^H 10	0.5	
^{1C} 5 ^H 12	0.1	
n ^C 5 ^H 12	0.3	
C ₂ H ₄	0.2)	
^C 3 ^H 6	0.0	
C ₄ H ₈	0.7	1.4
C ₅ H ₁₀	0.5)	
C ₃ H ₄	0.2	*
C4 ^H 6	0.0 }	0.2
Av. C 6	0.3	
_	100.0	
Heat of Combustion Gross BTU/S cu ft	723	
Spec.gravity		
Air = 1.0	0.495	

ANALYSES OF L9 PRODUCED GAS.

(Mass Sp ctrometer)

Component	January 9 Co	January 23 mposition, vol. %.	January 23 Sweet gas
H ₂	43.2	44.5	43.2
H ₂ S	6.0	5.7 (0)
co ₂	2.9 } 9.2	3.1 8.9	3.5 7.4
C O+N 2	0.3	0.1)	3.9
CH ₄	34.6	33.8	33.3
C2H6	5.1	5.0	4.8
C ₃ H ₈	2.5	2.4	2.6
1 C 4 H 10	0.7 \ 44.6	0.6 43.1	0.8 > 43.7
nC ₄ H ₁₀	0.7	0.8	1.0
10 ₅ H12	0.9	0.1	0
nC ₅ H ₁₂	0.1	0.4	1.2
2 ^H 4	0.6	0.7	1.0
C ₃ H ₆	0.6	0.6	0.6
C ₄ H ₈	1.2 (3.0	1.0 } 3.0	1.5 > 4.4
C ₅ H ₁₀	0.6	0.7 J	1.3
C ₃ H ₄	0 7	0.1)	0.2
C ₄ H ₆	0	0 } 0.1	0.1 0.3
Av. C ₆	0	0.4	1.0
•	100.0	100.0	100.0
Heat of Combus	stion853	843	922
Gross BTU/Scui	ft		
Spec.grav. Air = 1.0	0.536	0.528	0.578

Table 32

ANALYSES OF 19 OIL.

6410 hours from start.

Sample taken from treater November 19, 1958.

Gravity, OAPI 27.9
Distillation, D-1160T, Mod., F

7.	
1BP -	149
5 vol %	240
10	2 90
20	385
30	460
40	515
50	560
60	600
70	635
80	680
90	735
Max.	755
Vol.Rec.	93.5

Sulphur, % by weight 2.55
Nitrogen, % by weight 0.423

TABLE 33

ANALYSIS AND CALCULATED PROPERTIES OF COMPOSITE OIL SAMPLE

Gravity		27.8°A	ΡΊ	•
Sulfur	·	2.15%		
Nitrogen		0.38%		a de la companya de La companya de la co
Carbon Res	•	0.11%	in die der Friede	· 斯特斯為 特
Disti	llation, D-11	60T Mod.	· 安宁 。 [1] [1]	
IBP	:	122 ° F		J. 20% c
5% (Vol.)		262		128
10%		295	41.45	146
20%		367	1.15	186
30%	·	445	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	229
40%		515	A mag M	268
50%		570	b 32	199
60%	:	610	C(31)	32/
70%		640	· •} • }	338
80%		680	71 N.T.	760
90%	:	735		39/
95%		765		407
Max.		865		463
Vol. Rec.	•	98.5%		
	_		7	(1) 1 ⁴

Gross Heat of Combustion : 5.96 x 10 BTU/bol.

True Specific Heat of liquid (60°F.): 0.43 BTU/lb - °F.

(300°F.): 0.56 BTU/lb - °F.

True Specific Heat of Vapor (60°F.): 0.35 BTU/lb - °F.

(300°F.): 0.45 BTU/lb - °F.

Heat of Vaporization (1 atm.): 110 ETU/1b.

^{1.} Calculated from: W. L. Nelson, "Petroleum Refinery Engineering".

Table 34

POST - HEATING CORE DATA

FISCHER ASSAYS OF EXTRACTED, COKED SAND.

	Well	Depth	Max.temp.	Coke (1b/ft3)	011 (wt %)	Water (wt.%)	Residue (wt %)	Gas + Loss (wt %)
(1							
	C9	20-25	630-680	3.9	0	0.05	99:10	0.85
	C11	30-35	680-700	3.3	0	0.05	99.75	0.20
	C13	25-30	680-700	3.4	0	0.05	99.75	0.20
	C13	30-35	640-690	5.2	0	0.10	99.55	0.35
	C13	35-40	570-640	7.1	0	0.50	99.35	0.15
	C14	15-20	580-660	2.3	0	0.05	99.54	0.41
	C14	30-35	510-580	1.3	0	0.15	99.54	0.31

Table 35 L9 POST-HEATING CORE ANALYSES - CORE HOLE Cl.

1	be	1	-23	9 1	84-	50	77	1 10]	947	6	m	13	. 58	8	0	
Loss	1b/ft ³	-0-1	-2.8	8.0-	-3 -3	2.1	1.5	8.0-	1.3	4.0	0.2	* 0 * 0	1.7	-0-5	0.0	
Original	1b/ft3	ı	12.2	13.0	8.0	10.5	12.9	17.0	2.8	4.5	0.9	0.9	0.9	0.9	8.1	
Extr.	Tar 1b/ft ³	90.	14.95	13.82	11.75	8.45	11.40	17.77	1.47	4.08	5.79	5.16	4.28	24.9	8.1	same as "Tar"
Density	16/ft ³	(115)	117.1	128.8	141.4	145.5	124.9	123.3	102.4	146.8	105.9	110.3	107.5	112.4		Total H-C -
Description		Sofl	TS	E	E	ŧ	ŧ	Ė	Shale 36-41	Shale & TS	E	TS	t.	E		- none. Tot
Recovery	B	96	96	100	100	100	95	100	100	100	50	95	85	85		Cok
Depth	ود ا	0- 5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	70-45	45-50	50-55	25-60	60-65		4 V K •

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C2. Table 36

Depth	Depth Recovery	r Description	Density	Extr.	Original	Loss	
ft	ьe		1b/ft ³	lar 1b/ft3	$1b/ft^3$	1b/ft ³	24
2-0	09	Soil	(120)	87.0	ı	- 0.5	ı
7-10	95	TS	122.8	16.97	13.0	- 4.0	-31
10-15	100	E	117.2	15.06	14.0	1.1	1 0
15-20	£	E	133.9	12.57	8.5	- 4.1	84-
20-25	Ė	E	128.3	10.93	11.0	0.1	Н
25-30	E	F	125.5	11.33	13.0	1.7	13
30-35	ŧ	E	112.4	15.14	17.0	1.9	11
35-39	E	(lost.circ.)	122.6	16.23	14.5	-1.7	-12
39-45	O k i	Shale	ı	0	•	1	,
45-50	30	TS	113.7	5.88	3.5	-2.4	69-
50-55	100	E	113.8	4-39	5.0	9.0	12
Avg.				10.6	8.3	2.0-	1 0
	ยั	Coke: None. 1	Total H-C:	Same as "Tar".			

Table 37

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C3.

Loss ft3 &	•	-17	o	-23	7	' C	-19	17	t	-120	-22	37	7	
Los 1b/ft3	-0.8	-2.3	0.0	-2.0	-1.6	9.0	-2.9	-2.0	ι	-3.6	-1.0	2.6	6.0-	
Original Tar 1b/ft3		13.5	14.0	8.6	11.2	12.0	15.0	17.5	1	3.0	4.5	7.0	4.9	as "Tar".
Extr. Tar 1b/ft3	(0.77)	15.78	14.02	10.63	12.79	11.37	17.93	(19.45)	0	6.55	5.52	04.4	8.82	Total H-C: Same
Density lb/ft ³	(115)	128.2	129.3	132.2	127.8	129.5	124.5	(125)	t	129.2	115.0	110.		Tota
Description	So11	TS	=	r	¥	(lost circ.)	TS	·	Shale	TS	=	r	·	Coke: Non
Recovery %	100	E	=	ŧ	F	70	06	r	100	.	ŧ	E		
- Depth - ft	0-5	5-10	10-15	15-20	20-23	23-28	28-313	312-332	332-40	54-04	45-50	50-55	AVG	

Table 38

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C4.

Depth	Recovery	Description	Density	Extr.	Original	Loss	1
t T			1b/ft ³	Tar 1b/ft3	rar 1b/ft3	1b/ft3	80
0-5	100	Soil	(115)	0.78	1	₽•0 <u>-</u>	1
5-10	202	TS.	(130)	13.77	14.6	9.0	5
10-15	95	.	130.4	15.64	17.0	1.4	100
15-20	100	E	139.1	12.16	10.6	-1.6	-15
20-25	E	E	131;2	10.18	12.0	1.8	15
25-30	E	Ė	124.0	10.45	13.0	2.6	20
30-35	=	*	115.9	11.71	16.5	8.4	. 58
35-37	E	E	119.3	16.7	15.0	-1.7	-11
– ∤α	r	Coarset 73	(118,2)	9.5	15.0	5.5	37
23	£	TS	118,2	15.85	15.6	£.0-	2
72	E	Shale	i	1	1	t	. •
473-50	E	13	(115)	10.0	8.0	-2.0	-25
50-55	80	E	(115)	69.6	3.0	-6.7	-223
				10,26	10.3	0.0	0
	Coke	Coke: Non	rotal H-C	Total H-C: Same as "Tar",		***	

Table 39

19 POST-HEATING CORE ANALYSIS - CORE HOLE C5.

Depth	Recovery	Description	Density 1b/ft ³	Extr. Tar 1b/ft3	Original Tar 1b/ft3	Loss 1b/ft3	BE
0-10	7.00	Soil	1	1	i	1	,
10-15	E	TS	138.0	8.43	11.5	3.1	27
15-20	E	E	143.3	92.9	10.5	3.7	35
20-25	E	.	148.6	29.9	0*9	L-0-7	-12
25-30	09	(lost circ.)104.7	.)104.7	67.8	12.3	3.8	31
30-35	100	TS	122.4	15.14	15.2	0.1	ri
35-40\$	E	=	117.3	15.31	16.5	1.2	2
84-404	95	Shale	i		ı		1
-55	100	TS	114.7	7.89	5.7	-2.2	-39
AVE.				29.9	7.4	2.0	6

Total H-C: Same as "Tar".

Coke: None.

Table 40 L9 POST-HEATING CORE ANALYSIS - CORE HORE C6.

- Depth	Depth Recovery	Description	Density	Extr.	Original	To	Loss	1
f			1b/ft3	Tar 1b/ft3	Tar 1b/ft3	1b/ft3	80	1
₹ ∠ -0	700	Soil	1	l	ı	ŧ.		
73-10	E	TS	(130)	12.52	12.0	-0.5	7-	-
10-15	=	E	133.2	11.95	12.0	0.1	H	
15-20	E	E	124.9	10.74	11.5	8.0	7	
20-25	E	E	133.0	7.26	0.9	-1.3	-22	
25-30	65	E	128.9	10,25	10.0	-0.3	ا ج	
30-35	70	. £	116.9	11.51	16.0	4.5	28	
35-40	95	Ė	120.2	16.55	16.5	1.0-	r 1	
94-04	100	E	119,1	14.78	17.0	2.3	77	
46-52}	=	Shale	ı	ı	1	ì	1	
523-562	ŧ	TS	114.9	6.50	7.5	1.0	13	•
				8,62	9.5	6.0	6	

Total H-C: Same as "Tar"

Coke: None

Table 41 L9 POST-HEATING CORE ANALYSIS - CORE HOLE C7.

Depth	Depth Recovery	Description	Density	Extr.	Original	Loss	388
ft			1b/ft3	Tar 1b/ft3	Tar 1b/ft3	1b/ft3	3
L-0	100	Soil		1	1	1	ě
7-12	20	TS	96.5	29.6	11,8	2.1	18
12-18	100	æ	127.6	13.40	14.2	8.0	9
18-20	09	E	(130)	07.6	12,2	2.8	23
20-25	65	t	131.8	70.4	10.0	0.9	09
25-30	85	E	(110.3)	7.49	11.8	4.3	36
30-35	06	E	(110.7)	12.85	16.0	3.2	20
35-40	100	E	128.9	20.37	17.0	-3.4	-20
40-45	E		122.0	13.42	14.0	9.0	4
45-47	E	E	124.7	96*6	12.0	2.0	17
47-51	E	Shale	1	1	1	•	1
51-55	80	TS	143.7	5.26	3.5	-1.8	-51
AVB.				8.71	10.0	1.3	13
Avg (15-45)	.5)			11.6	13.7	2.1	15

Total H-C: Same as "Tar".

Coke: Non .

Table 42
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C8.

Coke Total +3 0.7 1.8 0.7 1.8 2.9 1.3 6.4 4.2 7.3 7.3 7.3 7.3 7.3 7.3 1.4,5 (76) 1.4,5 1.4,5 1.4,5 1.4,5		1		:						
1b/ft ³ i ^{nt} ft ³ i ^{nt} ft ³ H-c 7 100 Soil (115) 0.71 - 0.7 10 90 TS 117.4 7.23 - 7.2 5 50 " 124.5 5.50 - 5.55 0 70 TS & Coke 130.3 2.97 0.7 3.7 5 30 " (115) 1.13 1.8 2.9 0 30 " 114.9 5.10 1.3 6.4 5 50 " 114.9 7.26 - 7.3 5 50 " 130.6 8.76 - 7.3 5 7.3 5 8 8 8 5 100 Shale - 7.3 5 8 7 6 - 7.3 5 15-45(10¢) 1.3¢ 1.4 5 15-45(10¢) 1.5¢ 1.4 5 10¢	_ Depth	Recovery	Description	Density	Extr.	Coke	Total	Original	Loss	m
7 100 5011 (115) 0.71 - 0.7 10 90 TS 117.4 7.23 - 7.2 5 50 " 124.5 5.50 - 5.5 5 30 " (115) 1.13 1.8 2.9 6 30 " (115) 1.13 6.4 2.9 5 50 " 121.1 1.25 4.2 5.4 0 90 " 119.7 7.26 - 7.3 54 95 " 130.6 6.76 - 7.3 50 100 Shale - 7.3 - 7.3 5 " 130.6 6.76 - - 7.3 5 " 130.6 6.76 - 7.3 5 " 130.6 - - 7.4 5 " 153.2 2.42 - 2.4 <th>ft</th> <th></th> <th></th> <th>1b/ft³</th> <th>lar 1b/ft3</th> <th></th> <th>D H</th> <th>Tar 1b/ft3</th> <th>1b/ft3</th> <th>88</th>	ft			1b/ft ³	lar 1b/ft3		D H	Tar 1b/ft3	1b/ft3	88
10 90 TS 117.44 7.23 - 7.2 5 70 TS & Coke 130.3 2.97 0.7 3.7 5 30 " (115) 1.13 1.8 2.9 0 30 " (114.9 5.10 1.3 6.4 5 50 " 121.1 1.25 42 5.4 0 90 " 119.7 7.26 - 7.3 54 95 " 130.6 8.76 - 8.8 50 100 Shale - - - - 5 " TS 153.2 3.42 - - - 5 " TS 153.2 3.42 - - - 5 " TS 153.2 3.42 - - - 5 " " 153.2 3.42 - - -	2-0	100	Soil	(115)	0.71	ŧ	2.0	8	-0.7	1
5 n 124.5 5.50 - 5.5 6 70 TS & Coke 130.3 2.97 0.7 3.7 5 30 n (115) 1.13 1.8 2.9 0 30 n 114.9 5.10 1.3 6.4 5 50 n 121.1 1.25 4.2 5.4 0 90 n 119.7 7.26 - 7.3 50 100 Shale - - 8.8 50 n TS 153.2 3.42 - - 3.44 5 n TS 153.2 3.42 - - 3.4 615-45(4.5 10.0% 4.5 10.0% 5.8 1	7-10	90	TS	117.4	7.23	ı	7.2	12.6	5.4	43
6 70 TS & Coke 130.3 2.97 0.7 3.7 5 30 " (115) 1.13 1.8 2.9 0 30 " 114.9 5.10 1.3 6.4 5 50 " 121.1 1.25 4.2 5.4 6 90 " 119.7 7.26 - 7.3 50 100 Shale - - 8.8 5 " TS 153.2 3.42 - 3.44 5 " TS 153.2 3.42 - - - 5 " TS 153.6 (7%) 4.5 - 5 " TS 153.6 7.8 - - - 5 " TS 153.6 7.3 - - - - - 5 " TS 153.6 7.3 - - - <t< td=""><td>10-15</td><td>50</td><td>E</td><td>124.5</td><td>5.50</td><td>ı</td><td>5.5</td><td>14.0</td><td>8.5</td><td>19</td></t<>	10-15	50	E	124.5	5.50	ı	5.5	14.0	8.5	19
5 30 " (115) 1.13 1.8 2.9 0 30 " 114.9 5.10 1.3 6.4 5 50 " 121.1 1.25 4.2 5.4 0 90 " 119.7 7.26 - 7.3 54 95 " 130.6 8.76 - 8.8 50 100 Shale - 3.42 5 " TS 153.2 3.42 - 3.4 (15-45(103)) (103) (103) 5.8	15-20	70	TS & Coke	130.3	2.97	2.0	3.7	12.3	8.6	70
0 30	20-25	30	E	(115)	1.13	1.8	2.9	10.2	7.3	72
5 50 " 121.1 1.25 4.2 5.4 0 90 " 119.7 7.26 - 7.3 54 95 " 130.6 8.76 - 8.8 50 100 Shale - 8.8 5 " TS 153.2 3.42 - 3.4 (15-45(78)	25-30	30	ŧ	114.9	5.10	1.3	4.9	11.9	5.5	94
0 90 " 119.7 7.26 - 7.3 54 95 " 130.6 8.76 - 8.8 50 100 Shale - 8.8 5 " TS 153.2 3.42 - 3.4 3.78 (72) 4.5 (15-45(100)) 11.4 5.8	30-35	50	E	121.1	1.25	4.2	2.4	15.6	10.2	65
54 95 " 130.6 8.76 - 8.8 50 100 Shale - 3.42 5 " TS 153.2 3.42 - 3.4 6 (39%) (7%) 4.5 6 (39%) (10%) 5.8	35-40	06	t	119.7	7.26	,	. 7.3	16.8	9.5	57
50 100 Shale 3.42 5 " TS 153.2 3.42 - 3.44 3.78 (7%) 4.5 (15-45(10%) 5.8	40-45	95	Þ	130.6	8.76	ı	\$0	14.1	5.3	38
5 " TS 153.2 3.42 $=$ 3.4 $=$ 3.4 (7.5) (3.9%) (7.5) (4.5) $(15-4.5)$ $(15-4.5)$ (10.4) (10.4) (10.4) (10.4)	453-50	100	Shale			1	,	1	ŧ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50-55	E	TS	153.2	3.42		3.4	4.3	0.9	21
(33%) $(10%)$ 5.8	AVE.				3.78 (39%)	(3%)	4.5	9.6	5.3	475
	AVB. (15-				4.4 (33%)	10%)	\$. \$	13.5	7.7	57

Table 43

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C9.

D pth	Recovery	D pth Recovery Description	Density	Extr.	Coke	Total	Original	Loss	
22			Fa/ft3	1b/ft3		H-C	1b/ft3	lb/ft	82
79-0	100	Soll	112.4	0.75	1	0.8	i	0.8	ı
62-112	=	TS	(120)	4.50	ı	4.5	12.9	4.8	65
113-14	E	E	(120)	3.04	ŧ	3.0	13.7	10.7	78
14-20	ŧ	TS & Coke	122,8	1.63	2.0	3.6	12.4	8.8	7.1
20-25	£	£	131.9	0	3.9	3.9	11.0	7.1	65
25-30	Ė	F	112.0	0	8.4	4.8	11.9	7.1	9
30-35	E	ŧ	125.2	0	8.9	8.9	15.4	8.6	55
35-40	E	E	125.0	0	2.6	1.6	16.7	7.0	7175
494-04	E	Ė	9.911	7.92	6.0	8.8	14.1	5.3	38
464-514	E	Shale	1	0	1	1	.	1	-1
514-55	ŧ	TS	152,1	3.27	•	3.3	4.3	1.0	23
Avg.				1.96	2.6	9.4	10.1	5.5	715
				(19%)	(26%)		- · · ·		
Avg.(15-45)	45)			1.59	4.7	. 6.3	13.6	7.3	54
				(12%)	(35%)				

Table 44

L9 POST-HEATING CORE ANALYSIS - CORE HOLE GIO.

						•	13
D pth	D pth Recovery	Description	Density	Extr.	Original Ter	1088	
£			1b/ft3	lar lb/ft3	$1b/ft^3$	1b/ft3	88
0-7	100	Sofl	(115)	0.30	t	-0-3	
7-10	65	TS	122.5	11.18	11.7	0.5	4
10-15	95	=	127.7	11.34	14.5	3.2	22
15-164	98	E	118.0	6.65	12.7	3.1	77
164-174	.08	r	127.8	49.4	12.0	7.4	62
17\$-20	100	Þ	128.2	4.28	11.3	7.0	62
20-25	100	E	119.5	3.44	10.0	9.9	99
25-30	=	t	118.9	3.83	12.5	8.7	2
30-35	ŧ	t	112.0	7.46	15.5	φ. 0°8	55
35-40	*	t	119.3	11.12	16.5	5.4	. 33
454-04	£	E	119.3	10,31	14.5	4.2	59
454-51	=	Shale	ı	0		1	į
51-55	ŧ	TS	140.2	4.68	4.7	0.0	0
AVB.				5.94	9.8	3.9	0,1
AVE (15-452)	152)			7.07	7.57	†)

Table 45
L9 POST-HEATING CORE ANALYSIS - CORE HOLE CAN.

1	। ४१	i	36	52	83	99	92	29	34	56	1	38	58		11	
	1b/ft	7.0-	8.47	6.7	8.3	8.3	11.5	11.0	210	3.6	1	1.7	5.6		10.5	
Original	lb/ft		13.5	13.0	10.0	12.5	15.1	16.5	14.5	12.6	1	4.5	2.6		13.6	·.
Total	H-C	7.0	8.7	6.3	1.7	7.4	3.6	5.5	5.0	0.6		2,8	4.1		8.4	
Coke		•	1	1	1.2	3.8	3.3	9.0	1.5	1	1		6.0	(%)	1.7	(13%)
, e) <u>-</u>				_					/						
Extr. Tar.	lb/ft	.37	8.71	6.27	0.49	0.39	0.34	4.95	8.03	8.95	i	2.77	3.20	(33%)	3.08	(23%)
Density	1b/ft	(115)	107.9	(110)	123.7	111.5	106.9	104.3	114.9	(115)	1	119.5	÷			
Description		Soil	TS	coarse TS	TS & Coke	£	t	=	ŧ	E :	Shale	TS				
Recovery		100	E	<i>R</i> V.	85	50	75	95	100	E	ŧ	E	·		-45)	
Depth	14 14	0-8	8-10	10-20	20-25	25-30	30-35	35-40	40-45	494-54	462-52	52-55	Avg.		AVK. (15-45)	

Table 46
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C12.

- 0.3 0.3 - 9.5 13.9 4.4 1.8 (4.6) 11.5 6.9 3.1 3.3 10.8 7.5 2.8 2.8 12.5 9.7 6.9 7.0 15.1 8.1 13.8 13.9 16.5 2.6 0.1 6.3 14.5 8.2 - 3.0 4.4 1.4 2.6 4.9 9.8 4.9 (27%) 4.7 6.3 13.5 7.2 (35%)	Depth		Recovery Description	Density	Extr.	Coke	Total	Original	Losa	1
100 Soil (120) .32				1b/ft ³	Tar 1b/ft3		9-H	Tar 1b/ft3	1b/ft	80
70 TS 111.1 9.46 - 9.5 13.9 4.4 85 " 120.8 7.05	2-0	100	Soil	(120)	.32	t	0.3	1	-0.3	ı
85 " 120.8 7.05 — 7.1 13.2 6.1 95 " 129.6 2.79 1.8 (4.6) 11.5 6.9 95 " 129.8 .21 3.1 3.3 10.8 6.9 35 " 112.6 - 2.8 2.8 12.5 9.7 100 " 119.9 .06 6.9 7.0 15.1 8.1 " " (120) .12 13.8 13.9 16.5 2.6 " Shale - - - - - - - " TS 151.9 2.95 - - - - - " TS 151.9 2.95 - - - - - (23%) (27%) 4.7 6.3 13.5 7.2 (4.5) (23%) (27%) 13.5 7.2 (25%) (25%) 4.7 6.3 13.5 7.2 (25%) (25%) (27%)	7-10	20	TS	111.1	84.6	t	6.5	13.9	4.4	32
95 " 129.6 2.79 1.8 (4.6) 11.5 6.9 95 " 129.8 .21 3.1 3.3 10.8 7.5 35 " 112.6 - 2.8 2.8 12.5 9.7 100 " 119.9 .06 6.9 7.0 15.1 8.1 "	10-15	85	E	120.8	7.05	ı	7.1	13.2	6.1	94
95 " 129.8 .21 3.1 3.3 10.8 7.5 36 " 112.6 - 2.8 2.8 12.5 9.7 100 " 119.9 .06 6.9 7.0 15.1 8.1 "	15-20	95	E	129.6	2.79	1.8	(9.4)	11.5	6.9	09
112.6 - 2.8 2.8 12.5 9.7 100	20-25	98	£	129.8	.21	3.1	3.3	10,8	7.5	69
100 " 119.9 .06 6.9 7.0 15.1 8.1 " " (120) .12 13.8 13.9 16.5 2.6 " " 118.6 6.23 0.1 6.3 14.5 8.2 " Shale 3.0 4.4 1.4 TS 151.9 2.95 - 3.0 4.4 1.4 2.30 2.6 4.9 9.8 4.9 (23%) (27%) (12%) (35%) (35%)	25-30	35	2	112.6	ŧ	2.8	2.8	12.5	6.7	78
	30435	100	E	119.9	90.	6.9	7.0	15.1	8.1	54
" shale 3.0 6.3 14.5 8.2 " TS 151.9 2.95 - 3.0 4.4 1.4 2.30 2.6 4.9 9.8 4.9 (23%) (27%) (12%) (35%) (35%)	35-40	E	E	(120)	,12	13.8	13.9	16.5	5.6	16
" Shale 3.0 4.4 1.4 1.4 1.4 1.57 (23%) (27%) (27%) (27%) (35%) (35%)	94-04	E	ŧ	118.6	6.23	0.1	6.3	14.5	8,2	57
 TS 151.9 2.95 - 3.0 4.44 1.44 1.44 1.44 1.44 1.49 2.30 2.6 4.9 9.8 4.9 4.9 (27%) (27%) (27%) 4.7 6.3 13.5 7.2 (12%) (35%) 	46-523	E	· Shale	ı	\ •	1	1		t	1
2.30 2.6 4.9 9.8 4.9 (27%) (27%) 1.57 4.7 6.3 13.5 7.2 (12%)	523-55	Þ	TS	151.9	2.95		3.0	4.4	1.4	32
(23%) (27%) 1.57 4.7 6.3 13.5 7.2 (12%) (35%)	AVE.				2,30	2.6	6.4	9.6	6.4	50
1.57 4.7 6.3 13.5 7.2 (12%) (35%)			,		(23%)	(27%)				
	AVB (15.	-45)			1.57	4.7	6.3	13.5	7.2	53
					(12%)	(35%)				

Table 47

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C13.

tt 2000 t tt 3000 t tt 300	
	H 00 1 1 2 1 2 2
Tar 1b/ft3 34 9.10 6.69 .06 .06 .06 1.85 2.44 15.26 -08 9.08 9.08 3.48 3.74) 2.85	
2.0 3.5 3.4 5.2 7.1 - - - (21%) 3.6	
	Total H-C 0.3 9.1 6.7 2.5 3.5 7.0 9.5 15.3 - 5.5 5.5 5.5
H-C 0.3 9.1 6.7 2.5 3.5 7.0 9.5 15.3 - 6.4	

Table 48

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C14.

tt 1b/ft ³ 1b/ft ³ 1b/ft ³	Depth R	ecovery	Recovery Description	Density	Extr.	Coke	Total	Ariginal	Loss	1
100 Soil (120) 1.44 - 1.4 - 1.6 90 TS & coke 116.2 4.92 - 4.9 12.0 30	_ ft			$1b/ft^3$	1b/ft3		H-C	1b/ft3	lb/ft3	<i>₽</i> ୧
90 TS & coke 116.2 4.92 - 4.9 12.0 30 " 117.1 5.88 - 5.9 12.5 95 " 123.3 1.80 2.3 4.1 7.9 100 " 128.6 0 2.7 2.7 10.1 30x) " 110.5 .06 1.6 1.7 13.2 30x) " 105.5 .56 1.3 1.9 16.5 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 100 Shale - 0 - 19.0 13.3 100 Shale - 0 - 19.0 13.3 100 Shale - 0 - 19.0 13.3 117.6 9.23 - 19.0 13.3 117.6 9.23 - 19.0 13.3 117.6 9.23 - 19.0 13.3 12.7	063	100	Soil	(120)	11.14	1	1.4	1	-1.4	1
30 " 117.1 5.86 - 5.9 12.5 95 " 123.3 1.80 2.3 4.1 7.9 100 " 128.6 0 2.7 2.7 10.1 30x* " 110.5 .06 1.6 1.7 10.1 30x* " 105.5 .56 1.3 11.2 13.2 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 - - - 70 TS (120) 19.00 - - - " Shale - 0 - - - - " Shale - 0 - 16.0 13.3 13.6 " Shale - 0 - - - - " Shale - 3.6 3.8 8.9 " -	63-10	90	TS & coke	116.2	4.92	1	6.4	12.0	7.1	65
95 " 123.3 1.80 2.3 4.1 7.9 100 " 128.6 0 2.7 2.7 10.1 30 ^x) " 110.5 .06 1.6 1.7 13.2 30 ^x) " 105.5 .56 1.3 1.9 16.5 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 100 Shale - 0 100 Shale - 0 15.95 - 16.0 13.0 " \$3.01 0.8 3.8 8.9 (34%) (9%)	10-15	30	t	117.1	5.88	1	6.5	12.5	9•9	53
100 " 128.6 0 2.7 2.7 10.1 30x) " 110.5 .06 1.6 1.7 13.2 30x) " 105.5 .56 1.3 1.9 16.5 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 100 Shale - 0 - 19.0 13.3 1	15-20	95	E	123.3	1.80	2.3	4.1	7.9	3.8	84
30x) " 110.5 .06 1.6 1.7 13.2 30x) " 105.5 .56 1.3 1.9 16.5 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 100 Shale - 0 - 19.0 13.3 100 Shale - 0 - 19.0 13.3 " Shale - 0 " 5hale - 0 16.0 13.0 " \$130 15.95 - 16.0 13.0 " \$134\$ (130) 15.95 - 16.0 13.0 " \$134\$ (130) (134\$ 3.8 8.9	20-25	100	Ė	128.6	0	2.7	2.7	10.1	7.4	3
30x " 105.5 .56 1.3 1.9 16.5 80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 - - - 100 Shale - 0 - - - " TS (130) 15.95 - 16.0 13.0 " Shale - 16.0 13.0 " Shale - 6.38 3.8 8.9 (34%) (9%) 3.8 12.2 x)5% core+25% cuttings. (18%) (13%) (13%) 112.2	25-30	30x)	Ħ	110.5	90•	1.6	1.7	13.2	11.5	87
80 TS 117.6 9.23 - 9.2 13.3 100 Shale - 0 19.0 100 Shale - 0 - 19.0 13.3 10 Shale - 0	30-35	30x)	r	105.5	• 56	1.3	1.9	16.5	14.6	88
100 Shale - 0 19.00 13.3	35-393	80	TIS	117.6	9.23	1	9.2	13.3	4.1	31
70 TS (120) 19.00 - 19.0 13.3 100 Shale - 0	393-403	100	Shale	ı	0 .	ı	1	1	1	ŧ
100 Shale - 0 16.0 13.0 " Shale - 3.01 0.8 3.8 8.9 (34%) (9%) x)5% core+25% cuttings. (18%) (13%) 3.8 12.2	403-413	20	TS	(120)	19.00	1	19.0	13.3	-5.7	-43
" Shale - 16.0 13.0 3.01 0.8 3.8 8.9 (34%) (9%) x)5% core+25% cuttings. (18%) (13%)	413-44	100	Shale	1	•	1		1	1	ŧ
" Shale - 3.01 0.8 3.8 (34%) (9%) (9%) x)5% core+25% cuttings. (18%) (13%) (13%)	44-45	=	TS	(130)	15.95	1	16.0	13.0	-3.0	-23
3.01 0.8 3.8 (34%) (9%) x)5% core+25% cuttings. (18%) (13%) 3.8	45-48	E	Shale	1				•		
(34%) (9%) x)5% core+25% cuttings. (18%) (13%) 3.8	Avg.				3.01	8.0	3.8	6.8	5.1	57
x)5% core+25% cuttings. (18%) (13%) 3.8					(34%)	(%6)				
	Avg.(15-39½)		ore+25% cuttin	• 67	2.2 (18%)	1.6 (13%)	3.8	12.2	4.8	69

Table 49
L9 POST-HEATING CORE ANALYSIS - CORE HOLE C15.

Hecovery Description Density Extr. Goke 100 Soil 115.1 1.06 - " TS & coke 112.8 0 4.2 80 " 123.6 0 5.8 80 " 121.2 0.12 3.9 90 " 115.8 0 8.9 85 " 115.8 0 8.9 85 " 117.8 0 6.9 100 TS 107.3 1.35 9.1 1 100 TS 108.1 4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.28 - 1.4.34 1.35 (9.8) (4.3%) 1.59 (4.8%)	ı								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Depth		Description	Density	Extr.	Coke	Total	Original	Loss
115.1 1.06 - 1.11 - - - - - - - - -	ft			1b/ft ³	1b/ft3		H-C	1af	
TS & coke 112.8 0 4.2 4.2 12.2 8.0 8.0 8.0 8.0 9.6 9.6 9.6 9.6 8.0 9.5	6-0	100	Soil	115.1	1.06	•	1.1	•	
" 123.6 0 5.8 5.8 7.8 3.0 80 " 3.2 3.2 9.6 6.4 80 " 126.8 0 3.2 3.2 9.6 6.4 80 " 121.2 0.12 3.9 4.0 13.5 9.5 95 " 115.0 0 8.9 8.9 15.0 10.3 85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.8 - -1.8 00 TS 108.1 4.28 - 4.3 5.1 0.8 90 0.80 4.0 4.8 9.2 4.2 1.2 90,2 6.2 6.4 12.9 6.5 9 9 12,5 (4,8%) 4.0 4.2 4.2 4.2 4.2 12,5 (9,6) (4,3%) 4.6 4.2 <	9-15	F	TS & coke	112.8	0	4.2	4.2	12.2	
80 " 126.8 0 3.2 3.2 9.6 6.4 80 " 121.2 0.12 3.9 4.0 13.5 9.5 90 " 115.0 0 5.7 5.7 16.0 10.3 95 " 112.8 0 8.9 8.9 15.7 6.8 85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.8 - 1.8 90 TS 108.1 4.28 - 4.3 5.1 0.8 90.80 4.0 4.8 9.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4	15-20	E.	E	123.6	0	5.8	5.8	7.8	
80 " 121.2 0.12 3.9 4.0 13.5 9.5 90 " 115.0 0 5.7 5.7 16.0 10.3 95 " 112.8 0 8.9 8.9 15.7 6.8 85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.8 - 1.8 10.80 4.0 4.0 4.8 9.2 4.2 (9%) (43%) (43%) (48%)	20-25	. 80	=	126.8	0	3.2	3.2	9.6	
90 " 115.0 0 5.7 5.7 16.0 10.3 95 " 112.8 0 8.9 8.9 15.7 6.8 85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.81.8 90 TS 108.1 4.28 - 4.3 5.1 0.8 90.80 4.0 4.8 9.2 4.2 96, (43%) 90.25 6.2 6.4 12.9 6.5	25-30	βO	E	121.2	0.12	3.9	7.0	13.5	
95 " 112.8 0 8.9 8.9 15.7 6.8 85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.81.8 100 TS 108.1 4.28 - 44.3 5.1 0.8 0.80 4.0 4.8 9.2 4.2 (9%) (43%) (43%) (2%) (48%)	30-35	90	E	115.0	0	5.7	5.7	16.0	
85 " 107.3 1.35 9.1 10.5 15.0 4.5 80 Soft shale (110) 1.79 - 1.81.8 0.80 4.0 4.0 4.8 9.2 4.2 (9%) (43%) 0.25 6.2 6.4 12.9 6.5 (2%) (48%)	35-40	95	E	112.8	0	8.9	8.9	15.7	
80 Soft shale (110) 1.79 - 1.81.8 -00 TS 108.1	¥97-07	85	E	107.3	1.35	9,1	10.5	15.0	
.00 TS 108.1 4.28 - 4.3 5.1 0.8 0.80 4.0 4.8 9.2 4.2 (9%) (43%) 0.25 6.2 6.4 12.9 6.5 (2%) (48%)	463-51	80	Soft shale	(110)	1.79	1	1.8	•	
0.80 4.0 4.8 9.2 4.2 (9%) (4.3%) 6.2 6.4 12.9 6.5 (2%) (4.8%)	51-55	100	TS	108.1		8	4.3	5.1	
(9%) (43%) 0.25 6.2 6.4 12.9 6.5 (2%) (48%)	AVE.				0.80	0.4	8.4	9.2	•
0.25 6.2 6.4 12.9 6.5 (2%) (4.8%)					(%6)	(43%)			
	AVB. (15-	-45)			0.25	6.2	4.9	12.9	
					(2%)	(%87)			

Table 50

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C16.

						1040	F 0 = 1 = 0	\ \ \ \ \ \	1
Depth	Recovery	Recovery Description	Density	Extr	COKe	Total	-1	LOSS	
ft			1b/ft3	lb/ft3		H-C	1b/ft ³	1b/ft ³	82
8-0	100	Soil	(120)	0.17	1	0.2	1	-0.2	1
8-10	96	TS	124.6	5.92	1	5.9	12.4	6.5	. 52
10-15	96	TS & coke	128.0	1.05	2.4	3.5	11.0	7.5	89
15-20	100	E	137.5	60.0	9.9	6.7	10.2	3.5	34
20325	ŧ	E	134.8	70.0	6.2	6.2	8.3	2.1	25
25-30	E	r	118.6	0.03	5.6	5.6	11.9	6.3	53
30-35	E	£	122.8	0.02	13.9	13.9	13.3	- 9.0-	5
35-40	, E	2	113.8	70.0	15.2	15,2	16.0	0.8	5
40-42	¥	Ė	124.3	0,11	14.3	14.4	16.0	1.6	10
42-493	65	Shale	110.0	09.0	ŧ	9*0	l	9.0-	ı
493-55	04	TS	112.5	6.26	•	6.3	9.8	3.5	36
AVG.				1.07	5.0	6.1	8.4	2.3	27
				(13%)	(%09)		•		
AVG. (15-42)	42)			0.05	8.6	6.6	12.2	2.3	19

Table 51

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C17.

Depth	Recovery	Depth Recovery Description Density	Density	Extr. Tar	Coke	Total	Original	Loss	
110			1b/ft3	1b/ft ³		Ð - H	1b/ft3	1b/ft3	₽€
0-5	100	Soll	(120)	0.38	0	7.0	ı	4.0-	
5-11	=	E	(120)	ı	0	0	į.		ı
11-113	E	TS - coke	141.7	ı	2.8	2.8	11.1	8	. 75
112-13	E	Soil	(120)	1	0	0	ì	ı	1
13-15	70	TS - coke	141.7	ŧ	2.8	2.8	11.1	8.3	75
15-20	95	£	146.8		1.3	1.3	10.3	0.6	87
20-25	95	ŧ	156.6	1	2.8	2.8	7.9	5.1	65
25-30	50	Ė	137.8	1	9.9	9*9	11.7	5.1	17-17
32-35	100	2	121.1	* /	12.2	12.2	13.3	1.1	to
35-42	ŧ	E	114.7	1	12.3	12.3	16.2	3.9	777
47-24	E	Shale & TS	116.9	ì	0	0	4.0	0.4	100
84-44	E	Shale		ı	0	•	ı	t	t
48-50	30	TS	(120)	9.38	0	4.6	14.5	5.1	35.1
50-55	85	TS&Sand	113.9	1.50	0	1.5	7.0	5.5	79
Avg.				0.51	3.08	4.3	7.8	3.5	4.5
AVB.(15-45)	2)			0	(60)	6.7	11.2	4.5	047
				•					

Table 52

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C18.

Depth	Recovery	Description	Density	Extr.	Coke	Total	Original	Loss	
ft			ib/ft3	lar lb/ft ³		H-C	lb/ft3	1b/ft3	₩ 86
0-10	100	Soil	(120)	0.42	0	4.0	1	4.0-	0
10-15	95	TS coke	128.1	0.38	4.0	8.0	11,2	10.4	93
15-20	95	=	136.7	0	4.1	4.1	10.3	6.2	9
20-25	95	=	132.5	0	4.4	4.4	7.7	3.3	43
25-30	50	#	125.5	0	3.3	3.3	11.6	8.3	72
30-35	04	lost circ.	123.5	0	8.3	8.3	13.3	5.0	38
35-40	35	E	113.8	0	4.8	4.8	16.2	7.8	148
54-04	15	E	(115)	1.02	0.9	7.0	14.0	7.0	50
45-50	100	Shalb		.0	0	0	i	3	ı
50-55	80	TS & Shale	119.4	7.33	0	7.3	11.6	4.3	37
AVE.				0.87	3.2	0.4	8.7	1.4	54
				(10%)	(378)		,		
Avg.(15-45)	5)			0.17	5.8	6.9	12,2	6.3	52
				(1%)	(%87)	·			

AND THE SECTION OF THE SECOND CONTRACT OF THE

Table 53
L9 POST-HEATING CORE ANALYSIS -CORE HOLE C19.

Depth	Recovery	Recovery Description	Density	Extr.	Coke	Total	Original	Говв	18
ft			1b/ft3	Tar 1b/ft ³		H+C	Tar 1b/ft3	,	25
0-5	100	Soil	(120)	3.8	0	3.8	0	-3.8	1
5-10	=	E	(120)	90*0	0	90.0	0	-0.1	ı
13-14	-								
10-13	\ 06	TS	148.2	1.73	0	1.7	11.1	4.6	85
14-15	100								
15-20	95	TS & coke	135.4	0	2.4	2.4	10.4	8.0	77
20-25	100	E	140.6	0	2.1	2.1	7.5	5.4	72
25-30		Ė	119.8	0	2.4	2.4	11.6	9.2	42
30-35	Ė	E	114.9	0	5.3	5.3	13.3	0.8	09
35-40	E	E	106.2	0	5.9	6.5	16.0	10.1	63
44-04	E	E	113.2	2.61	4.3	6.9	15.0	8,1	24
64-44	ŧ	Shale	 I	0	t	0	.)	ŧ	ı
49-51	t	TS	(115)	0.13	0	0.1	15.2	15.1	66
51-55	E	Shale&Sand	1 (115)	7.0	0	7.0		0.4 -	1
Avg.				0.96	1.96	2.9	0.8	5.1	1 79
Avg. (1546)				(3%)	3.6	3.9	11.8	7.9	29

Table S4

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C20.

Depth	Recovery	Description	Density	Extr.	Coke	Total	Original	Гозв	
ft			1b/ft3	rar 1b/ft3		H-C	Tar 1b/ft3		88
6-0 \$	700	Soil	1	0	1	0		t	
94-124	=	TS	131.7	0.24	ı	0.24	12.0	11.8	98
124-15	=	Soil	1	0		0	ı		1
15-19	£	TS-coke	142.4	0	3.7	3.7	10.7	7.0	65
19-20	£	Soil-coke	(120)	1.49	2.2	3.7	10.7	7.0	65
20-25	95	TS-coke	129.6	0	6.4	6.4	7.4	2.5	34
25-30	=	E	152.1	0	5.3	5.3	11.7	4.9	55
30-35	90	E	134.8	0	5.8	5.8	13.3	7.5	56
35-40	80	E	(125)	0	5.5	5.5	16.6	11.1	29
40-47	80	=	(125)	0	3.4	3.4	15.0	11.6	77
47-50g	100	Shale		0	ı	1	1		: ,
50 1 -52	09	TS	122.9	14.16	ı	14.2	15.0	8.0	к/
52-55	06	TS & Shale	112.5	4.47	1	4.5	5.6	,	20
AVG.				0.67	2.7	3.4	8.7		61
AVE (15-45)	(0.04	(38%)	8.4	12.5	7.7	29

Table 55

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C21.

100	Soil " TS & coke	1b/ft ³ (120) (120) 121.2 122.2 125.3	Tar 1b/ft3 1.55 .43 2.18	ŧ	H-C	1b/ft3	1b/ft	E2
100	ooil r rs s & coke	(120) (120) 121.2 122.2 125.3	1.55 .43 2.18	· ·	1.6	-	•	
1000 1	TS S& coke	(120) 121.2 122.2 125.3	2.18			1	-1.6	1
1000	TS & coke	121.2 122.2 125.3	2.18	t	7° 0	1 -	ħ•0-	ŧ
100	S & coke	122.2	٠ د	ı	2.2	12.4	10,2	82
-	E 5	125.3	T•00	2.4	7.4	12.5	8.3	99
=	\$		į	3.3	3.3	11.6	8.3	22
	-	126.1		3.4	3.4	11.2	7.8	70
		122 .4	90°0	6.5	9*9	11.4	4.8	24
	ŧ	125.1	.31	8.6	10.1	14.7	9.4	31
35-40 "	=	128.6	, ,	13.5	13.5	16.5	3.0	18
" 24-04	=	127.1	2.44	4.6	11.8	14.0	2.2	16
ŧ	Shale	117	4	i	t .	.	1	1
ŧ	TS	147.6	8.83	2	8.8	T.4-	-4-7	-115
AVE			1.36	9.4	0.9	6.3	3.3	35
Avg.(15-46)			(17.8) (4.47) (4.47)	(47%) (58%)	β. 1.	13.2	5.1	39

Table 56

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C22.

7	i to coon	אַסדאַלּד יספספ	for a second		9400	Total	0riginal	Loss	83
ft			1b/ft3	lar 1b/ft3		H-C	Tar 1b/ft3	. ~	£3
2-0	100	Soil	(120)	86.0	ł	1.0		•	1
7-10	E	TS	127.4	8.73	1	8.7	13.5	8.4	36
10-12	E	Sand	124.5	0.27	ı	0.3	11.2	10.9	26
12-15	ŧ	TS & coke	135.8	2,30	0	2.30	11.2	8.9	62
15-20	E	E	135.5	0.14	10.7	10.8	10.4	7.0-	4 -
20-23\$	E	=	131.4	•	2.2	2.2	10.5	8.3	79
233-30	80		(120)	1.31	2.9	4.2	12.8	8.6	29
30-35	100	=	(120)	0.71	6.0	1.6	15.6	14.0	06
35-40	90	E	106.9	26.0	4.9	7.4	16.1	8.7	54
40-423	100	E	117.4	8.05	1	8.1	13.0	6.4	38
423-473	=	Shale	i		ī	1	1	ı	
473-513	=	TS	145.0	6.55	ı	9.9	6.7	0.1	ч
513-55	=	TS & Shale	113.1	3.19	•	3.2	+1	+0.3	6
AVE.				2.10 (23%)	2.1 (23%)	4.22	9.1	6.4	75
Avg.(15-45)	(5)			1.26	w.	15.1	12.1	7,0	58
I(x	ost circul	x)Lost circulation at 241, core	fro	212 to 25	fe t was re	recovered as	cuttings.		

Table 57

19 POST-HEATING CORE ANALYSIS - CORE HOLE C23.

I to		***************************************	foremen	Extr.	Coke	Total	$\overline{}$	Loss	1
4			1b/ft ³	lb/ft3		H	Tar 1b/ft3	14/643	
C C	100	Soil	122.0	0.41	1	7.0		7.0-	
5-12	E	E	120.7	0.31	,	0.3	1	-0-3	
12-15	E	TS&coke	124.7	09.0	1.0	1.6	11.0	7.6	
15-20	=	=	141.1	ı	г . ц	1.1	8.0	6.9	
20-25	Ė	t	114.2	1	0.8	9.0	9.1	8.3	
25-30	1	E	(115)	1	1.4	1.4	15.0	13.6	
30-35	90	t	115.2	1	12.1	12.1	13.7	1.6	
35-40	100	E	116.3	ŧ	2.8	2.8	15.5	12.7	
40-42	06	Shale	104.6	0.10	6.5	9•9	.	9-9-	
42-45	06	E		\	•	1	1	ı	
Avg. (To 451)				0.14	2.4 (32%)	2.5	7.5	5.0	
A vg. (15–45)	5)			0	3.5	3.5	10.2	2.9	

Table 58

L9- POST-HEATING CORE ANALYSIS - CORE HOLE C24.

Depth	Recovery	Depth Recovery Description Density	Density	Extr.	Coke	L + 4 P	7		
		,	12/003	Tar Tar		IOCAL	Original Tar	Loss	
1			10/10	TD/IC_		9 H	Tb/ft3	1b/ft3	ઝર
6-0	100	Soil	128.0	t	1	ł	t 	1	
9-15	E	TS	(125)	1.79	ŧ	1.8	10,2	8.4	82
15-20	=	TS & coke	127.8	1.67	1.3	3.8	6.3	3.3	52
20-25	96	E	133.6	1	2.7	2.7	7.7	5.0	. 69
25-31	100	E	111.0	0.11	2.7	2.8		12.3	81
31-37	=	E	117.5	86.6	ŧ	10.0		3.9	28
37-38	E	TS	114.9	76.7	. •	6.4	14.1	9.2	65
38-403	E	Shale	i	t	ı	•	. !	ı	\ 1
403-43	E	Shale & TS	132.0	90.05	ı	. 0.9	-	0.0	0
43-50	럺	TS	126.0	2.00	1	5.0		1.9	28
50-55	%	E	129.2	6.85	1	6.8	- '	ı	-13
AVB.				3.07	(%6)	3.8	7.5	3.7	64
Avg. (9-38)				2.9 (26%)	1.4 (13%)	4.3	11.0	6.7	19
,							4		

Table 59

L9 POST - HEATING CORE ANALYSIS - CORE HOLE C26.

1b/ft3 1par3 1par3 1par4 1par4 1par6 1pa	Depth	Recovery	Depth Recovery Description	Density	Extr.	Coke	Total	Original	1.038	
TS	ft			1b/ft ³	rar_{1b/ft^3}		H-C	Tar 1b/ft3		1
TS	0-10	100	Sofl	126.8	ı	1		1	1	1
TS coke	10-12	E	TS	112.2	7.67	,	7.7	10.5	2.0	27
TS coke 141.1 1.75 2.0 3.8 6.5 2.7 "	12-17½	E	TScrush-col	ke(125)	1.32	7.7	2.4	8.7	6.3	72
	173-20	=	TS coke	141.1	1.75	2.0	3.8	6.5	2.7	77
" " 120.9 - 2.3 2.3 15.1 12.8 " " 119.8 - 5.0 5.0 13.5 8.5 " Shale 121.5	20-25	=	E	146.0	ı	6.0	6.0	8.2	7.3	89
	25-30	E	=	120.9	ι	2.3	2.3	15.1	12.8	85
" Shale 121.5	30-35	E	E	119.8		5.0	5.0	13.5	8.5	63
TS 128.8 4.95	35-383	=	=	115.4	ı	5.3	5.3	15.1	8.6	65
" TS 128.8 4.95 - 0.20.2 TS 128.8 4.95 - 5.0 6.8 1.8 Shale & TS 116.5 4.94 - 4.9 5.0 0.1 (25%) (18%) (22%) 3.4 11.3 7.9	383-403	E	Shale	121.5	1	i	ı	1	ŧ	1
TS 128.8 4.95 - 5.0 6.8 1.8 TS 127.8 8.18 - 8.2 7.0 -1.2 Shale & TS 116.5 4.94 - 4.9 5.0 0.1 (25%) (18%) 2.5 3.4 11.3 7.9 (8%) (22%) 3.4 11.3 7.9	64-404	E	=	104.6	0.16	t	0.2		-0.2	i
75 127.8 8.18 - 8.2 7.0 -1.2 - 8.0 5.0 0.1	43-48	E	TS	128.8	4.95	1	5.0		1.8	26
io Shale & TS 116.5 4.94 4.9 5.0 0.1 1.81 1.3 3.1 7.3 4.2 (25%) (22%) 3.4 11.3 7.9	48-52	E	TS	127.8	8.18	ı	8.2	7.0	-1.2	-17
$\begin{pmatrix} 1.81 & 1.3 & 3.1 & 7.3 & 4.2 \\ (25\%) & (18\%) & 2.5 & 3.4 & 11.3 & 7.9 \\ (8\%) & (22\%) & 3.4 & 11.3 & 7.9 \end{pmatrix}$	52-55	50	Shale & TS	116.5	4.94	t j	4.9	5.0	0.1	~
$\begin{pmatrix} 0.9 & 2.5 \\ (8\%) & (22\%) \end{pmatrix}$ 3.4 11.3 7.9	Avg.				1,81 (25%)	1.3	3.1	7.3	4.2	58
	Avg.(10-3	82)			6.0	2.5 (22%)	3.4	11.3	7.9	70

Table 60

L9 POST - HEATING CORE ANALYSIS - CORE HOLE C27;

Depth	Recovery	Description	Density	Extr.	Coke	Total	Origina]	Loss	
Į.			1b/ft3	1b/ft3		H-C	$1b/ft^3$	1b/ft3	85
8-0	100	Soil	130.1	1.89	ı	1,89	ŧ.	-1.9	ı
8-10	=	TS	120.9	10,22	ŧ	10,22		2.8	22
10-12}	=	TS-carushed (120)	(120)	1.87	i	1.87	11.0	9.1	දි
123-133	5	TS	123,2	2.97	ŧ	2.97	11.0	8.0	73
132-14	E	TS-chrushed	(120)	1.87	ı	1387	11.0	9.1	83
14-15	E	TS	123.2	2.97	ı	2.97		8.0	23
15-20	06	TS & coke	127.8		1.7	1.7		8.7	78
20-25	100	E	119.2	1	2.4	2.4		7.7	7/6
25-30	=	=	116.9	1	3.3	3.3		6.6	75
30-35	E	=	118.5	ı	5.0	2.0		10.2	29
35-40	E	E	112.5	1.18	3.6	8.4		11.4	70
40-43}	06	E	131.0	9.24	1.0	10,2		5.3	34
433-48	100	Shale	ı	3	t	1		ı	ı
48-483	=	Sand		1	1	1		ı	1
483-53	E	TS 1	128.4	3.69	1	3.7		2.3	38
AVE.				7000	(782)	3.5		6.5	65
Avg (15-45)	~		}	1.57 (10%)	248 (229	5) 14.1		8.6	89

Table 61 L9 POST - HEATING CORE ANALYSIS - CORE HOLE C28.

	Depth	Recovery	Description	Density	Extr.	Coke	Total	Original	Loss	
100 Soil 117.1 0.80 - 0.80	ft			1b/ft3	Tar 1b/ft ³	:	H-C	Tar 1b/ft3		Be
" TS 131.1 6.10 - 6.1 13.5 7.4 " TS & coke 130.2 7.16 - 7.2 10.9 3.7 " TS & coke 130.2 0.72 2.5 3.3 10.8 7.5 95 " 125.3 - 2.4 11.0 8.6 100 " 122.2 - 2.5 2.5 9.6 100 " 122.2 - 2.6 2.5 15.4 12.8 9.6 " " 122.2 - 2.6 5.6 15.4 12.8 9.5 9.6 " " 117.5 - 6.6 6.6 6.6 16.1 9.5 9.6 75 Shale &TS 119.8 1.35 - 1.4 - -1.4 - -1.4 100 Shale T 14.48 - 4.5 5.5 1.0 1 100 Shale - - - - - - - - - - - - </td <td>2-0</td> <td>100</td> <td>Soil</td> <td>117.1</td> <td>0,80</td> <td>1</td> <td>0.8</td> <td></td> <td>8.0-</td> <td>1</td>	2-0	100	Soil	117.1	0,80	1	0.8		8.0-	1
TS & coke 130.8 7.16 - 7.2 10.9 3.7 TS & coke 130.2 0.72 2.5 3.3 10.8 7.5 95	7-10	E	TS	131.1	01.9	1	6.1	13.5	7.4	55
" TS & coke 130.2 0.72 2.5 3.3 10.8 7.5 95 " 125.3 - 2.4 11.0 8.6 95 " 122.9 - 2.9 2.9 12.5 9.6 100 " 122.2 - 2.6 6.6 15.4 12.8 9.6 " " 117.5 - 6.6 6.6 15.4 12.8 9.5 " " 117.5 - 6.6 16.1 9.5 9.5 " " 1.78 2.6 7.4 16.1 9.5 1.0 1 100 TS 142.1 4.48 - 4.5 5.5 1.0 1 100 Shale -	10-15	E .	TS	132.8	7.16	i	7.2	10.9	3.7	34
" 125.3 - 2.4 11.0 8.6 95 " 122.9 - 2.9 2.9 11.0 8.6 100 " 122.2 - 2.6 2.6 15.4 12.8 " " 117.5 - 6.6 6.6 15.4 12.8 " " 117.5 - 6.6 6.6 15.1 9.5 " " 120.0 4.78 2.6 7.4 16.1 8.7 75 Shale &TS 119.8 1.35 - 1.4 - -1.4 100 Shale - 4.46 - - -1.4 100 Shale - - 4.5 5.5 1.0 1 100 Shale - - - - - - - - 100 Shale - - - - - - - - - - - - - - - - - - - <th< td=""><td>15-20</td><td>E</td><td>TS & coke</td><td></td><td>0.72</td><td>2.5</td><td>3.3</td><td>10,8</td><td>7.5</td><td>69</td></th<>	15-20	E	TS & coke		0.72	2.5	3.3	10,8	7.5	69
95 " 122.9 - 2.9 2.9 12.5 9.6 100 " 122.2 - 2.6 2.6 15.4 12.8 " " 117.5 - 6.6 6.6 16.1 9.5 " " 120.0 4.78 2.6 7.4 16.1 8.7 75 Shale &TS 119.8 1.35 - 1.4 100 TS 114.1 4.48 - 4.5 5.5 1.0 100 Shale	20-25	æ	E	125.3	ı	2.4	2.4	11.0	8.6	78
100 " 122.2 - 2.6 2.6 15.4 12.8 " 17.5 - 6.6 6.6 16.1 9.5 75 Shale &TS 119.8 1.35 - 1.4 100 TS 14.48 - 4.5 5.5 1.0 100 Shale 1.4 2.14 1.9 4.0 9.9 5.9 6 (22%) (19%) (7%) (24%)	25-30	96	=	122.9	t	2.9	2.9	12.5	9.6	H
" " 117.5 - 6.6 6.6 16.1 9.5 " " 120.0 4.78 2.6 7.4 16.1 8.7 75 Shale &TS 119.8 1.35 - 1.4 100 TS 14.48 - 4.5 5.5 1.0 100 Shale	30-35	100	E	122;2	t	2.6	2.6	15.4	12.8	\$
" " 120.0 4.78 2.6 7.4 16.1 8.7 75 Shale &TS 119.8 1.35 - 1.41.4 100 TS 142.1 4.48 - 4.5 5.5 1.0 100 Shale - 2.14 1.9 4.0 9.9 5.9 (22%) (19%) (22%) (19%) 4.2 13.7 9.5 (7%)	35-40	E	, E	117.5	•	9.9	9.9	16.1	9.5	59
75 Shale &TS 119.8 1.35 - 1.441.44 100 TS 142.1 4.48 - 4.5 5.5 1.0 1 100 Shale	94-04	E	r	120.0	4.78	5.6	7.4	16.1	8.7	54
100 TS 142.1 4.48 - 4.5 5.5 1.0 100 Shale	76-50	75	Shale &TS		1,35	· ·	1.4		- 1.4	ı
2.14 1.9 4.0 9.9 5.9 (22%) (19%) 4.2 13.7 9.5 (7%) (24%)	\$0-24\$	100	TS	142.1	84.4	ı	4.5	5.5	1.0	18
2.14 1.9 4.0 9.9 5.9 (22%) (19%) 4.2 13.7 9.5 (7%) (24%)	543-55	100	Shale	,	3	1	1	1	1	
(22%) (19%) 0.92 3.3 4.2 13.7 9.5 (7%) (24%)	Avg.				2.14	1.9	0.4	6.6	5.9	09
0.92 3.3 4.2 13.7 9.5 (7%) (24%)				_	(22%)	(19%)				
	Avg. (15-	45)			0.92	3.3	7.4	13.7	9.5	69
			•		(%)	(%72)				

Table 62

L9 POST - HEATING CORE ANALYSIS - CORE HOLE C29.

100 Soil 117.2 0.57 - 0.6 1 " TS & coke 136.8 1.95 3.6 5.5 " " TS & coke 132.0 - 3.0 3.0 " " " 125.0 - 3.0 3.0 " " " 125.3 3.57 5.2 8.8 " " Shale 4.81 4.8 " TS	Depth	Kecovery	Depth Recovery Description Den	Density	Extr. Tar 3	Coke	Total	Original Tar	Loss	
100 Soil 117.2 0.57 - 0.6 0.6	t,			Ib/ft/	1b/ft		9 H	1b/ft ²	$1b/ft^3$	82
TS 127.8 9.42 - 9.44 13.5 4.1 TS & coke 136.8 1.95 3.6 5.5 11.0 5.5 TS & coke 136.8 1.95 3.6 5.5 11.0 5.5 TS & coke 136.8 1.95 3.6 5.5 11.0 5.5 TS 120.5 - 3.0 3.0 12.0 9.0 TS 120.5 - 3.0 3.0 12.0 9.0 TS 147.2 4.81 - 4.8 5.5 0.7 TS 147.2 4.81 - 4.8 5.8 0.9 0.0 TS 147.2 4.81 - 4.8 0.9 0.0 TS 147.2 4.81 0.9 0.0 0.0 TS 147.2 4.81 0.9 0.0 0.0 TS 147.2 4.81 0.9 0.0 0.0 TS 147.2 147.2 0.9 0.0 0.0 0.0 TS 147.2 147.2 147.2 0.9 0.0 0.0 TS 147.2 147.2 147.2 0.9 0.0 0.0 TS 147.2 147.2 147.2 0.9 0.0 0.0 0.0 TS 147.2 147.2 147.2 0	0-62	100	Soll	117.2	0.57	1	9.0	· · · · · · · · · · · · · · · · · · ·	9.0-	1
TS & coke 136.8 6.54 0.1 6.6 10.6 4.0 TS & coke 136.8 1.95 3.6 5.5 11.0 5.5 TS & coke 136.8 1.95 3.6 5.5 11.0 5.5 TS & coke 136.8 1.95 3.0 11.3 8.3 TS TS TS TS TS TS TS	63-10	=	TS	127.8	24.6	ı	7.6	13.5	4.1	30
TS & coke 136.8 1.95 3.6 5.5 11.0 5.5	10-15	E	TS	134.8	45.9	1.0	9.9	10.6	0.4	38
	15-20	E	тз & сокв	136.8	1.95	3.6	5.5	11.0	5.5	50
	20-25	E	±	132.0	ŧ	3.0	3.0	11.3	8.3	73
	25-30	ŧ	=	125.0	ı	3.0	3.0	12.0	0.6	75
## 116.3 - 8.8 8.8 16.3 7.5 ### 125.3 3.57 5.2 8.8 16.1 7.3 ### 5.5 6.0 14.7.2 4.81	30-35	ŧ	E	120.5	ŧ	3.3	3.3	15.6	12.3	62
" Shale	35-40		=	116.3	ì	8.8	8.8	16.3	7.5	94
TS 147.2 4.81 - 4.8 5.5 0.7 (22%) (17%) 3.9 9.9 6.0 (7%) (7%) (7%) (33%) 5.4 13.7 8.3	454-04	E	E	125.3	3.57	5.2	8,8	16.1	7.3	45
" TS $\frac{4.81}{(22\%)}$ - $\frac{-}{1.7}$ $\frac{4.8}{3.9}$ $\frac{5.5}{9.9}$ $\frac{0.7}{6.0}$ $\frac{2.19}{(22\%)}$ $\frac{1.7}{(17\%)}$ $\frac{3.9}{(17\%)}$ $\frac{0.92}{(7\%)}$ $\frac{4.5}{(7\%)}$ $\frac{4.8}{(17\%)}$ $\frac{13.7}{(33\%)}$ 8.3	453-503	E	Shale		t	•	t	! .	1	ı
	50 1 -55	E .	TS	147.2	4.81	ı	4.8	5.5	0.7	13
0.92 4.5 5.4 13.7 8.3 (78) (33%)	AVE.				2.19 (22%)	1.7 (17%)	3.9	6.6	0.9	19
	A vg. (15-1	(5)			0.92	(33%)	5.4	13.7	8.3	61

Table 63

L9 POST - HEATING CORE ANALYSIS - CORE HOLE C30.

Denth	HACOVATV	Denth Recovery Description	Density	Extr	Coke	Total	Original	1,058	
l t			1b/ft3	Tar 1b/ft3		S-H	Tar 1b/ft3	1b/ft3	ا مح ا
0-7	100	Soil	126.0	0.33	t	0.3	ŧ	-0.3	1
7-10	=	TS	134.7	10.75	ŧ	10.7	13.5	2.8	21
10-15	=	TS & coke	135.1	5.04	1.2	6.2	10.6	4.4	747
15-20	E	Ħ	129.0	•	3.2	3.2	11.0	7.8	な
20-25	95	ŧ	131.9	ı	2.8	2.8	11.4	8.6	75
25-30	100	E	129,2	ı	6.5	9.5	11.9	2.7	23
30-35	is:	Ë	127.9	ı	12.2	12,2	15.6	3.4	22
35-40	E	E	124.1	:	16.5	16.5	16.0	-0.5	6 -
464-04	E	E	132.9	ı	10.9	10.9	16.1	5.2	32
433-45	t	Shale	7. 66		1		1	ı	1
45-483	=	E	1	ı	t	ı	ŧ	ŧ	ŧ
483-54	E	TS	148.6	4.83	1	8.4	5.5	1.0	13
54-55 AVE•	E .	TS & Shale	124.8	3.18	200	3.2	5:5	3.3	325
AVE.(15-45)				(1 <u>/</u>)	(51%) 8.6 (67%)	8.6	12.9	4.3	33

Table 64

19 POST-HEATING CORE ANALYSIS - CORE HOLE C31.

Depth	Recovery	Depth Recovery Description	Density		Coke	Total	Origina	Lose	8
£;			1b/ft3	1ar 1b/fr3	A STATE OF THE STA	9 -H	1b/ft3		28
2-0	100	Soil	108,3	ſ	1	1	.	1	ŧ
7-10	ŧ	Sand & TS	(120)	0.50	ŧ	0.5	11,0	10.5	95
10-15	E	E	(120)	09.0	1	9.0	10.8	10.2	76
15-20	95	TS & coke	133.2	ı	2.0	2.0	7.7	5.7	74
20-25	95	=	136.5	20.	4.1	4.2	0.6	4.8	53
25-30	700	=	(135)	.13	2.9	3.0	14.3	11.3	8
30-35	90	E	122.0	ı	6.2	6.2	13.5	7.3	475
35-38	100	=	107.7	1	5.2	5.5	15.5	10.3	99
38-40	ŧ	Shale	112.3	1.54		1.5	1	-1.5	ı
40-50	65	Shale, sand	108,1	88.	2.2	3.1	1	-3.1	ı
50-55	30	& coke Shale & TS	(011)	3.26	1.9	5.2	5.6	4.0	7
AVG.				0.61	233	2.9	7.0	4.1	59
Avg.(15-46)	(9)			0.28	3.4	3.7	0.6	5.3	59
							_		

Table 65

19 POST-HEATING CORE ANALYSIS - CORE HOLE C32.

Depth	Depth Recovery	Description	Density	Extr.	Coke	Total	Original	Loss	
Ę,			1b/ft ³	Tar Ib/ft3	e, is the second	H-C	1b/ft	• • •	25
0-5	100	Soil	117.7	0	t	1	.	ı	1
5-9	E	Soil & coke	(118)	0.92	2.9	3.8		-3.8	1
9-15	85	TS & coke	134.4	0	2.2	2	10.7	8.5	42
15-20	100	E	143.7	0	0.1	0.1	7.9	7.8	66
20-25	=	E	133.8	0	3.2	3.2	0.6	5.8	79
25-30	=	=	120.8	0	3.3	3.3	15.1	11.8	78
30-35	=	=	119.7	0	3.2	3.2	13.5	10.3	9/
35-392	2	E	116.3	0	3.9	3.9	15.5	9.11	75
394-50	09	Shale	114.4	29.0	1	2.0	1	L. 0.7	
50-55	85	n & TS	119.4	5.99	1	0.9	5.0	- 1.0	-20
AVE.				47.0	2.4	3.1	7.0	3.9	99
				(11%)	(34%)				
AVG.(15-45)	(5)			0.12	2.2	2.3	6.6	7.6	11
				(1%)	(22%)				

Table 66

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C33.

100 Soil 19/ft 19/ft	Depth	Depth Recovery	Description	Density	Extr.	Coke	Total	Original	Loss	3
100 Soil 93.5 0 0 0 0 0 0	2	the part of the Agent States of Education States and Themselves.	And the second s	1b/ft3	m/rt3	والتعادية والتعادية والمتالية والمتالية والمتالية والمتالية والمتالية والمتالية والمتالية والمتالية والمتالية	H-C	Tar 1b/ft		5%
TSychrushed (120) 3.19	₹7-0	100	Soil	93.5	0		0			t
## " (120) 0.53 1.7 2.2 10.7 8.5 ## TS & coke	43-6	=	TS, chrushed		3.19	t	3.2		7.4	70
TS & coke 124.2 0 3.1 3.1 10.6 7.5	6-11	=	# # 0	(120)	0.53	1.7	2.2		8.5	89
	11-15	THE STATE OF THE S	w coke TS & coke	124.2	0	3.1	3.1		7.5	77
	15-20	=	E	146.0	0	0	ſ		7.8	100
" " 119.4 0 3.4 3.4 15.1 11.7 " " (119) 0 4.8 4.8 13.5 8.7 " Shale & TS 106.5 2.36 - 2.4 6.0 3.6 " Shale & cokel23.5 0.68 1.3 2.0 - -0.7 " Shale & TS 119.9 5.65 - 5.7 6.0 0.3 " 0.90 1.9 2.5 - 5.0 (12%) (24%) 2.8 9.5 6.7	20-25	=	E	9:071	0	1.6	1.6		7.4	82
	25-30	=	E	119.4	0	3.4	3.4		11.7	77
n Shale & TS 106.5 2.36 - 2.4 6.0 3.6 n Shale & cokel23.5 0.68 1.3 2.00.7 n Shale & TS 119.9 5.65 - 5.7 6.0 0.3 (12%) (24%) 2.8 7.8 5.0 (3%) (26%) 2.5 2.8 9.5 6.7	30-35	E	E	(1119)	0	8 7	8.4		8.7	4 79
# Shale & TS 106.5 2.36	35-38	£	E	118.3	, O	6.3	6.3		9.2	59
" Shale & cokel23.5 0.68 1.3 2.00.7 " Shale & TS 119.9 5.65 - 5.7 6.0 0.3 (12%) (24%) 2.8 7.8 5.0 (3%) (26%) 2.8 9.5 6.7	38-40	ŧ		106.5	2.36	1	2.4		3.6	9
n Shale & TS 119.9 5.65 - 5.7 6.0 0.3 0.90 1.9 2.8 7.8 5.0 (12%) (24%) 2.8 9.5 6.7 (3%) (26%) 2.8 9.5 6.7	₹6 7- 0 7	E		a 123.5	99.0	1.3	2.0		-0.7	i
0.90 1.9 2.8 7.8 5.0 (12%) (24%) 2.5 2.8 9.5 6.7 (3%) (26%) 2.6 9.5 6.7	493-55	Ė		119.9	5.65	,	5.7	,	0.3	5
$\begin{pmatrix} 0.27 & 2.5 & 2.8 & 9.5 & 6.7 \\ (3\%) & (26\%) & & & & & & & & & & & & & & & & & & &$	IVE.				0.90	1.9	2 8		5.0	79
	.Vg. (15-	(54			0.27	2.5 (26%)	2.8	5.6	6.7	7.1

Table 67

19 POST-HEATING CORE ANALYSIS - CORE HOLE C34.

Depth	Recovery	Depth Recovery Description D	Density	Extr.	Coke	Total	Original	Говв	1
بې دړ .	• •	A STATE OF THE STA	1b/ft3	Tar 1b/ft3	رادانها فالموادات سيدول وراه در 10 فا الاوادات	2-H	Tar 1b/ft3	1b/ft ³	50
0-5	07	Soil	121.1	69*0	ı	0.7	.	-0.7	
5-10	100	E	(120)	94.0	ı	0.8	,	8.0-	•
10-15	=	TS & coke	120.7	0.32	3.1	3.4	10.5	7.1	89
15-20	E	E	138.9	0	1.8	1.8	7.8	0.9	200
20-25	95	E	139.3	0	2.6	2.6	8.9	6.3	77
25-30	E	=	123.8	0	0.9	0.9	15.1	1.6	09
30-35	100	E	125.0	0	10.1	10.1	13.5	3.4	25
35-40x)	E	=	114.1	0	8.0	8.0	15.5	7.5	84
40-423	£	E	113.1	0	9.5	8.6	14.1	6.4	35
423-45	06	Shale & cokel02.7	oke102.7	0.88	0.4	6.4	1	6-4-	1
45-50	100	Sand		0	1	ì	1	t	1
50-55	50	Shale & TS	5 109.5	2.52	1	2.5	5.5	3.0	55
Avg.				0.43	3.5	3.9	7.6	3.7	64
Avg.(15-45)	(5)			0.07	5.8 (51%)	5.9	11.3	2.4	847
rī	x) crushed 3	crushed 35' - 37'.							

Table 68

L9 POST-HEATING CORE ANALYSIS - CORE HOLE C35.

				والمريد والمارا والماران والمتحد والمارا ويواقها والمارا			. •
Depth	Recovery	Description	Density	Tar 14/41	Ortginal	Loss	
ft	de de la composición	And the second section is a second section of the second section of the second section	1b/ft ³	10/10	$1b/ft^3$	$1b/ft^3$	80
0-7	100	Soil	116.6	0.36	1	7.0-	1
7-10	E	ŢS	(120)	8.14	11.7	3.6	31
10-15	E	E	143.1	11.83	15.0	3.2	21
15-20	96	r	128.1	7.12	12.0	6.4	41
20-25	95	E	138.3	2.00	10.0	3.0	30
25-30	100	E	137.8	3.43	12.5	9.1	73
30-35	E	TS	(120)	2.30	15.5	13.2	84
35-40	=		116.6	11.92	16.5	9.4	28
40-45	=	, E	120.6	13.82	14.4	9.0	4
45-47	Ė	=	141.0	10,01	13.0	3.0	23
47-50	E	Shale		ı	i	ť	í
50-55	E	Shale & TS	3,641	3.77	4.9	1.1	22
AVE.				6.42	10.3	3.9	38
Avg. (15-45)	-45)			09°2	13.5	5.9	7.
	No other	Grand D. C. Gomes	F + 1 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3				

No coke. Total H-C: Same as "tar".

Table 69

PRODUCTION TESTS - WELL B5-3.

Date	10.9	10.13	10.16	10.20
Pressure (mm Hg)	76"	63	60	58
Gas (scf/day)	205	124	51	28
Oil (bbl/day)	0.032	0.020	0 .	0
Water "	0.103	0.072	0	0
Gas/Oil (Sef/bbl)	6400	6100	•	_
Water/Oil	3.2	3.5	-	_
Gravity (API)	39	42	-	_

On October 9, after the above production test, the six wells surrounding B5-3 were shut in with the burners operating. The burner in B5-3 was shut off. Production steadily declined until October 21, when the well was completely plugged. This well was unplugged on October 30 by injecting air into the gas casing.

Between October 17 and 21 the burner was started with 12,000 BTU/h.

The pressure in the shut off wells was about 100 mm Hg.

Table 70
PRODUCTION TESTS.

Well	B7-3	B4-10	B8-10	B1-10,2-9,10.
Date	10.8	10.16	10.16	10.24
Pressure (mm Hg)	75	59	59	42
Gas (scf/d)	440	83.3	10.3	560
0il (b/d)	0.265	0.039	0.004	0.616
Water "	0.177	0.188	0.136	0.110
Gas/oil (Scf/b)	1660	2130	2520	910
Water/Oil	0.67	4.8	34	0.179
Gravity (OAPI)	31.3	26.7	_	28.6
Well	B9-6 to 10	B10-1 to 10	B6-7 to 10	B5-6 to 10
Date	9-19	9-19	9-30	10-3
Oil (b/d)	0.0141	0.00075	0.215	0.247
Water "	0.443	0.074	0.143	0.031
Water/Oil	31.4	99	0.67	0.13

[able 7]

L9 PRODUCTION TESTS.

Wells	Date	Press (mmHg)	0 <u>11</u> (b/w _F d)	Water (b/w-d)	Gas (scf/w-d)	GOR (scf/b)	WOR	Grav. OAPI
1-1.	્રાન	39	7	23	206	ಹು	9	
B1-2,2-2,3,4	$\vec{-}$	04	2	6	229	8	~	\sim
1-4,	1-1	04	۲.	9	202	8	رش	. С
OWB 1.	ä	41	Ö	90.	65	3	4	$\mathbf{\circ}$
2-3,5,7,9	Ä	94	٦	11.	342	ౙ	9	W
22,24,26	ä	45	2	860.0	456	1755	0.38	26.9
,	Ä,	‡	٦.	80.	343	*	3	ಹು
1-1(2	745	Ó	1.	560	2	ᅼ	$\boldsymbol{\omega}$
2-7,8,9	1-2	0 † 7	Ñ	0.	445	2	7	\sim
3-1,6,7,8	7	2 6	ह्य		measure)		-	S
3-9,10,4	I	56	નું		226	1950	æ	\sim
41.43.49	1-2	45	긤		296	1950		S
5-1,6-2,		56	ž		305	1050	9	
5-5,6-4,5	7	56	3		321	1350	4	S
9,10,6-9,	コ	56	ij		193	1260	-	~
51,63,65,	15	58	2		149	3160	6	
=	1-2	51	ğ		70	9550	3	\sim
1,8	7	62	2		83	7300	7.	^
3,87	12	53	Ö,		168	5090	7	<u>:</u>
-2,3,10-1,2	7	50	ਰ੍ਹ		0	0	Š	~
-5,6,7,1	-2	1	17		148	1055	•	
-10,10-9,10	3	t	δ		144	2040	_	
2,94,96,9	-2		ğ		3	5000	3	
, (2	-2		ĭ		-\$	1330	C	•
W28	7		4		15	2440	Ó	•
WB2	11-25	99	0.092	0.310	180	1960	3.37	27.7
,	11-2		4		. زر	1900	-	•
sampled at 63 mm	ng.						- 8	

Table 72

L9 PRODUCTION TESTS, DECEMBER 1958.

Wells	Date	Press (mmHg)	011 (b/w-d)	Water (b/w-d)	Gas (scf/w-d)	GOR (scf/b)	WOR	(Grav.) oAPI
							ō -	
7	8	745	Ò	Ċ,		8	~	2
Z+1-	7	745	<u>ب</u>	'n	$\overline{}$	6	~	29.1
-3,5,7,	~	745	Ò	2	· ·	ó	• •	, , ,
-10,2-10	?	745	Ċ,	3	~	9		6-
2,24,26,2	~	45	õ	Ö,	(V	2	7	S
B3-1,2,4-1,2	(m)	4.5	0,080	0.083	147	1840	1,10	31.2
1,04,0-	~(4 0 0	<u> </u>	Ĵ.		~ \ [٠,	<u>_</u>
B3-10,4-1	٧ ر	7 (ري د	3,5	-T-T	7.0	• • •	• ໝ 1
17-101-19	√ u	ر د د	, Č	ž Č	או א	ວັດ	٠ <u>,</u> ٧	ب د
1,47,14 1,61	\ - 4	2.2	Ö	3 6	., ^	70	<i>-</i> ا	0.0
B5-4,5,6-5,	+-4	27,	7	8)	52	10	• •
B5-9,10,6-8,9,	-4	52	S,	17	- ~ ~	3	- (7	• •
061,63,65,67	m	52	2	0	. 10	7		. ~
B7-1	τ.	50	3	7	~	7	9	
B7-6,7,8-4	5	50	E,	55	$\overline{}$	2	سّ	27.1
B7-9,10,	4	56	4	20	_	*	Ω.	~·
G83,87	4	54	<u>ධ්</u> ද	\mathcal{O}_{i}	10	~ ~	Q	•
B9-1, 3, 10-1, 2	۰	7.7	ည့်	ς,	73	رب در ب	₹.	· •
BO 0 10 10 8	Λư	74	٤رُڌ	10	Q Y	85	4.	26
01. 06. 08	\ v	50	5	35	してい) (c	-1	27
\ (\ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \	77	54	2,6	54	700	- 15	
W28	9	39+	72	7,48	1733	8	10	28.6
W82	~	54	ıte	low to a	1 e			
66M	2	54	13	0,702	7	1305	5.24	25.7
* Sampled at	t 54 1	mm Hg		+ Sampled	at 52 mm Hg		1.2 %	

L9 PRODUCTION TESTS.

Grav.	22 22 22 22 22 22 22 22 22 22 22 22 22
WOR	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
GOR (scf/b)	11650 1720 1342 1342 1342 1360 1360 14210 14680 14680 14680 1720 1720 1720 1720 1720 1720 1720 172
Gas (scf/d)	557 520 520 520 315 171 170 182 183 192 192 192 193 193 193 193 193 193 193 193
Water (b/d)	0.602 0.463 0.082 0.0829 0.0829 0.0867 0.0955 0.0955 0.0955 0.0955 0.000 0.208 0.200 0.200 0.242 0.260 0.242 0.242 0.242 0.260 0.260 0.260 0.260 0.274 0.260 0.260 0.260 0.274 0.260 0.260 0.274 0.274 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.274 0.274 0.260 0.260 0.260 0.274 0.2774 0.27
Press. 011 (mm) (b/d)	50 0.338 50 0.378 50 0.378 53 0.152 59 0.0286 59 0.0286 60 0.0273 58 0.0372 68 0.0372 58 0.0366 68 0.0372 58 0.0369 68 0.0372 57 0.0550 66 0.0252 57 0.0739 66 0.0256 67 0.0739 68 0.0372 68 0.0372 68 0.0372 68 0.0372 68 0.0372 68 0.0372 69 0.0372 60 0.0372
Date	
WellB	B1-3 B1-5,2-5 B1-8,10 G22,24,26,28 B3-1,2,3,4-1 B3-10,4-10 G41,43,49 B5-1,6-1 B5-1,6-1 B5-1,6-1 B5-1,6-1 B7-1,8-1 B7-1,8-1 B7-1,8-1 B7-5,6-8-5 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B7-5,6-8-7,8,9,10 B9-1,2,10-4,5,6 B9-1,2,10-4,5,6 B9-2,10-1,2,3 B9-1,10-1,2,3 B9-2,10-4,5,6 B9-4,96,98 W39 W82

x) Sampled at 75 mm Hg.

Remarks	o 23 API oil at 25psig. A f w gallons came up around Bl-6.	Water production started.	·	011 production started.	· ·		The burners had been off 6 hrs after 477-483 hrs.		Injected during oil circulation	
P-lines Main P-line	23 8a	M	·	Ö			Pl That		I	
Plugged Number of ½" P-lines							15	ı	·	
Oil Circulation in Main P-line			l gall/min.heated to 1500F.		0.5 gall/min.not heated.	Shut off.	1.5 gall/min.	3 - "" -	3 times a day, 10 min. each with gas wells shut off.	4 times a day, 15 min. each with gas wells shut off.
Oil injected Total Bbls	10.5								8• +	·
Hours from start	0	15	25	04	140	360	485	550	715	820
Date	2.25	<u> </u>	2.26		3.3	3.12	3.17	3.20	3.27	3.31

Table 74 (cont)

	Remarks	VlO plugged by tar	VIO plugged by tar. Press. increased to 13 psig why P-line was opened to atn for 2 hours.	Also 20 ml Antifoam 200.	Inj. during oil circ.			Treater and oil line to oil tanks plugged.	-			
	P-lines Main P-line		Pl				PI		. PI		Pl	
	Plugged Number of		to + 1				4		11	160	11	
	Oil Circulation in Main P-line	Shut off.		3 gall/min.		2 times a day, 30 min. each with gas wells shut off.	2 times a day, lhr each with gas wells shut off.	Continous circ.				
	Oil injected Total Bbls			2.5	. 7.5							1.5
1	Hours from Date start	4.1 840	4.11 1080	1085	1090	4.15 1180	4.17 1220	4.18 1250	4.25 1420	4.26 1440	4,29 1510	4.30 1540

Table 74 (cont)

1						
Date	Hours from start	Oil injected Total Bbls	Oil Circulation in Main P-line	Plugged Number of ½" P-lines	P-lines Main P-line	Remarks
5.2	1580			н		
5.3	1610	1.0		13	Pl	Some of the tar production walled to $VL\mu$.
5.7	1700			Е		
5.8	1730	7.0				Accidentally injected when ga condensor became plugged.
5.9	1750			74		
5.10	1775			4		
5.11	1800		Oil too heavy to circ. Diesel oil circulated.	4		V10 plugged. Production to su
5.13	1850			2		
5.14	1874			73		Production to treater.
5.15	1900			74		2
5.16	1900			8		- *
5.17	1940			·		Gas condensor plugged. Product to sump.

Table 74 (cont)

1	Hours	Oil injected	Oil Circulation	Plugged Number of	P-lines Main	- α-	E	۲- م	14 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Dat	start	t Bbls	Main P-line	An P-lines	P-line		.	4	4
1									
5.19	1990			8					
5.21	2012					Production to treater	to	cre	ater
5.27	2190		Diesel oil circ.	-					
5.28	2210		• • • • • • • • • • • • • • • • • • • •	٦					

Table 75

Rows 3 and 4.

i						
Date	Hours from start	Oil injected Total Bbls	Oil Circulation in Main P-line	Plugged Number of ½" P-lines	P-lines Main P-line	Remarks
1 (c	u C				0 41so 400 ml Antifosm 4 23 4P
, , , , , , , , , , , , , , , , , , ,	D .	6.6				oil at 25 psig. A pint of oil came up through W39, thus at 50 ft. A few gallons oil cam up around B3-7,4-6.
≺., re	15					Water production started.
2.26	25		l gall/min.heated to 1500F.			
	04			ı		Oil production started.
3.3	140		0.5 gall/min.not heated.	.		
3.12	360		Shut off.			
3.17	485		1.5 gall/min.	15	P2	The burners had been off 6 hc after 477-483 hours.
3.20	550		t = t			,
3.27	715	80 ° - 1	3 times a day, 10 min. each with gas wells. shut off.			Accidentally inj. during oil
3.31	820		4 times a day, 15 mln. each with gas wells shut off.			

Table 75 (cont)

Rows 3 and 4.

Plugged Number of ½" P-lines 6 4 1

Table 75 (cont)

Rows 3 and 4.

Remarks	Accidentally injected when gas condensor became plugge	V10 plugged. Production to 8	Production to treater.		. 10. 24	Gas condensor plugged.Prod. to sump.	Production to treater.					
P-lines Main P-line												
Plugged Number of ½" P-lines	H-\$	3 C	7	H	Н	· .		Ħ	Н	Н	£. 2	Н
Oil Circulation in Main P-line		Oil too heavy to circ. Diesel oil circulated.									Diesel oil circ.shut off	
Oil injected rotal Bbls	9											
Hours from Date start	5.8 1730 5.9 1750 5.10 1780	5.11 1800 5.13 1850	5.14 1875	5.15 1900	5.16 1920	0,461 71.8	5.21 2042	5.23 2080	5.25 2140	5.26 2160	5.27 2190	5.28 2210

Ofl INJECTION AND TAR PRODUCTION IN 19. Rows 5 and 6.

Remarks	Also 800 ml tretolite M29.23 oil at 25 psig. 1 bbl oil cam up through W56.	Accidentally injected.P3 was off at the down stream end who ill circulation was started.	Accidentally injected during circulation of oil.					Accidentally injected when garecondensor became plugged.				
P-lines Main P-line							•	P3			F.	
Plugged Number of ½" P-lines					· \		2		2	٠,	2	4
Oil Circulation in Main P-line		3 gall/min.	3 times a day, 10 min. each with gas wells shut off.	<pre>4 times a day, 15 min. each with gas wells shut off.</pre>	Shut off.	5 min. each day.					Shut off.	
Oil injected Total Bbls	6.5	5.2	8.4	7 9 9	03	5		0.9			co.	
Hours from start	909	525	715	820	096	1200	1700	1730	1750	1780	1,600	1850
Date	3.18	3.19	3.27	3.31	9.4	4.16	5.7	5.8	5.9	5.10	5.11	5.13

Rows 5 and 6.

, ,	Hours	Hours Oil injected from Total	Oil Circulation in	Plugged P-lines Number of Main	P-lines Main	
ายก	Staff		MAIN F-11116	z ratines	r-11ne	
5.14	5.14 1875			9		
5.15	5.15 1900		-	2		
5.23	5,23 2090			7		

Rows 7 and 8.

Remarks	Also 240 ml Antifoam A23°API oil at 25 psig. 4 bbls oil came up through W99 and 0.5 bbl through W82.	Accidentally injected. P4 washut off at the down streamend when oil circulation was started.	Accidentally injected during circulation of oil.					Accidentally injected when groundensor became plugged.				
P-lines Main P-line												
Plugged Number of ½" P-lines					į		8		٧.	9	6:	9
Oil Circulation in Main P-line		3 gall/min.	3 times a day, 10 min. each with gas wells shut off.	4 times a day, 15 min. each with gas wells shut off.	Shut off.	5 min. each day.				Shut off.		
Oil injected Total Bbls	80 80	5.2	88 - 47	8 7	, T	wr)		0.9		Ø		
Hours from start	909	525	715	820	096	1195	1700	1730	1780	1800	1850	1875
 	3.18	3.19	3.27	3.31	9•4	4.16	5.7	5.8	5.10	5.11	5.13	5.14

Rows 7 and 8.

Date	Hours from start	Oil injected Total Bbls	Hours Oil Injected Oil Circulation from Total in Date start Bbls Main P-line	Plugged Number of ½" P-lines	P-lines Main P-line	
5.15	5.15 1900			6		
5,16	1920			W		
5.23	2090			I C		
5.25	5,25 2140			9		
5.26	5,26 2160			w		
5.27	5.27 2190			*0		
ac y	OTCC AC 3			ri		

Rows 9 and 10.

Remarks	o 22 API oil at 25 psig.								4
,	22 AP								
P-lines Main P-line							(0	10,1)	
Plugged Number of ½" P-lines					2	2	1(Row 10)	2(1Row 10,1)	m
Oil Circulation in Main P-line		4 times a day, 15 min. each with gas wells shut off.	Shut off.	5 min. each day.		Shut off			
Oil injected Total:Gallons BblalsPer Gas	5.8(Row 9) 24					·-			
Hours from start	240	820	096	1195	1780	1800	1850	1875 1900 1990	2140
Date	3.28	3.31	9.4	4.16	5.10	5.11	5.13	5.14	5.25

Table 79

GROUND WATER PUMPED UP FROM L9.

Date	Wells	Water Bbls/day	Cum.	Remarks
1.8-1.13	B5-6	100	500	A piston pump was placed in the burner hole B5-6 before the casing was set. The lowering of the water level is shown on Figure 1569 722.
1.20-2.24	W22,39 W56,82 W99	110	4500	
2.25-4.10	-"-	60	7000	W22,39,82 plugged by tar.
4.11-5.14	W56,99 W510	30	8000	W56 plugged by tar.
5.15-5.30	W99,510	15	8200	W89 plugged by tar.
6.1-6.20	W15,51 W510	25	8700	Top progest by tar.
6.21-7.27	W15,51 W105,510	30	9800	W51 plugged by tar. W105 dry most of the time.
7.28-9.22	W15,110 W210,510	7 5	14000	W15 plugged by tar. W1010 dry most of the time. 70 % of the water came from W110,210
	W810,1010			Temp. of water: 100°, 75°, \85°, 80°, 100°, 150°F in W15,110,210,510,810, 1010 resp.
9.23-10.31	W110,210	90	17400	W107 dry most of the time. 75 % from W110,210 and 15 % of the
	W510,810 W107			water from W510. Temp. of water: 85°, 125°, 100°, 115°, 150°F resp.
11.1-11.30	W110,210 W510,810 W107	47	18800	W810 plugged by tar. W107 dry most of the time.
12.1-12.31 1959	W110,210	39	20000	
1.1-1.18	W110,210 W510	17	20300	W110,210 plugged by tar Oil in W510.

Table 80 PRESSURES IN L9 P-LINES.

		:					Press	Pressure in Psig at	Ps1g	it.	A ST PROPERTY OF THE STATE OF T	المارية ما معارة في				
Date	31	EJ	V10	Pl	B2-8	P6	P7	. P2	B4-10	33	B6-8	P4	B8-10	P5	B10-7	
8,22.				1.26	\$			1.60		1.66		1,70		1.72		F
9.27				1,26	2			1,61		1.67		1.70		1.72		**************************************
9.30	0.70		1.34													ميسر ومسور د
10.1				124	Flare mov	oved.		,								· Proposition of the Control of the
10.2	0.14	0.14 1.07		1.08	~			1.37		1.49		1.51		1.55		
10.5	0.12	0.74	0.12 0.74 1.05 1.10	1,10			1.37	1.37		1.47		1.49		1,49		
10.6				1.31		1.37							- , -			
10.9	0.11	0.87	0.11 0.87 1.12 1.30	1.30		1,33	1.37	1.37 1.39		1.43		1.45		1.45		- , , .
10.10				S	ondens	Condensors El		coupled parallel,	allel.	,			4			· 149 y
		94.0	0.48 0.99				9									···
10,13		0.37	0.77	0.79	1.04	1,00	1.08	0.16 0.37 0.77 0.79 1.04 1.00 1.08 1.10 1.23	1.23	1,16 1,23	1.23	1.23	1.23 1.27	1.23	1.29	
				3	-way w	alve be	tween	3-way walve between V10 and El bypassed.	nd El 1	oypass	• pe					<u></u>
10.14		0.43	0.43 0.70													
10,20	0.18	0.35	0.18 0.35 0.62 0.89	0.89				1.05		1.14		1.14		1.16		. ~
10.25	0.16	0.37	0,16 0,37 0,62 0,89 0,91	0.89	0.91		26.0	1.01	1.04	1.04	1,06	1.10	1,12	1,11	1.14	
10.27				0.91				1.04		1.08		1.12		1.16		
									Contract of the Contract of th							1

Table 81

POST-HEATING CORE DATA PRODUCTION FROM INSIDE AREAS (15-45' Interval)

	1	2 :	3
Located near	B6-3	B4-5	B76
Core holes	c16, 17, 18 19, 20	c22, 27, 28 29,30	c23, 31, 32 33,34
Original tar	2,560 lbs 11.8 lb/ft ³ 7.02 bbl	2,886 lbs 13.3 lb/ft ³ 7.91 bbl	2,120 lbs 9.8 lb/ft ³ 5.81 bbl
Residual hydrocarbon	1123 lbs	984 lbs	658 lbs
Produced hydrocarbon	1437 1bs	1902 lbs	1462 lbs
Wt. % Produced	56 \$	66%	69\$
Oil Produced (Wt. %) " (Yt. API)2	1105 lbs 43% 3.55 bbl	1465 lbs 51 % 4.72 bbl	1125 lbs 53 % 3.62 bbl
Volume \$ Produced as Oil	L 51 %	60≴	62\$

¹ Assumed gas/oil ratio of 0.3 by weight.
2 The average oil gravity during the test was 27.4° API.

Union Oil Company of California

RESEARCH DEPARTMENT
BRAIA, CALATORNIA

JOHN E. SHERBORNE
MANAGER
PRODUCTION RESEARCH DIVISION

July 9, 1959

JES-100

Mr. M. F. Westfall Rusky 011 Company P. O. Box 580 Cody, Wyoming

Dear Wes:

FINAL REPORT - H-S-U EXPERIMENT

In accordance with discussions between Bob Helander, Bill Shirley and Bengt Persson, I am forwarding one copy of each of the two volumes of the final report on H-S-U Santa Cruz experiment to you, to Bill Shirley and to Bengt Persson. The remaining copies will be sent out within a few days when we have had a chance to assemble them. It is our understanding that Bengt and Bill were in need of copies as soon as they could possibly be provided.

Very truly yours,

ORIGINAL SIGNED BY JOHN E. SHERBORNE

JES: vb

cc/w W. J. Shirley
Bengt Person CARBON COPY

Komplement till rapporten

"Field test of the LIMS method for the recovery of oil from tar sand Santa Cruz, California".

Värmebalans av 19 samt producerad gasmängd och erforderlig värmemängd för tjärsand av olika tjärhalter.

På sid. 12, tabell 20 och figur 97 visas den totala värmehalansen för 100-håls försöket L 9, beräknat på kalorimetriska värmevärden. Härav framgår att endast 13 % av värmet användes för upphettning av det till pyrolystemperatur uppvärmda området och ått de vertikala värmeförlusterna utgjordes av 42 %. Återstoden 45 % ütgjordes av produktionens fysikaliska värme framför allt vattenånga och förluster till fältets sidor.

Av stort intresse är hur värmebalansen blir i ett stort fält och framför allt om den producerade okondenserbara gasens värmeinnehåll är tillräcklig för pyrolysens genomförande, eller med andra ord om metoden kan bli terminkt självförsorjande med olja som enda slutprodukt.

För att få en uppfattning om de verkliga olje-och gasutbytena i inuti L 9 borrades och analyserades tjärsanden och tjärsandskoksen inom tre områden, som beskrives på sid. 15-17, figur 110, 145-147 och tabell 81. Ur dessa data samt ur gasanalysen, tabell 22 har nedanstående värmebalanser uträknats, varvid följande effektiva värmevärden användes för tjäran, oljan och restgasen (rågas erkl. gasbensin och svavelväte): 17.100 ETU/lb, 18.200 ETU/lb resp. 826 BTU/Scu.ft.

Område	1	2		
10 ⁶	BIU	io6 bru 5	10 ⁶ BTU	
Tjärsandens v.v. 43	1. 25. 40. 36. 2007 和第三部的线线	- 49.5 10	to the state of th	100
Prodekternes "				
01ja 20	,1 46,0	26,7 54	,0 20.5	56,6
Gasbensin 0	,2	m 0,3 = 0	The result of the same of the	0,6
H ₂ S i rāgas 0		0,5		ii
Restgas 5	12.6	7,3 - 14	产。1965年1967年1963年1963年1963年1963年1963年1963年1963年1963	15.5
Koka 17	<u>,6</u> 40,1	14,7 29	2011年1月2日 - 1987年1月2日 - 1987年1月1日 - 1987年	26,2
45	,8 100	49.5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7100

medelvärdet	27	desse tre	område	n ger	följa	nde vä	rmebals	ns fo	ir L 9:
Olja			52 , 2 %						
Gasbensin	٠.		σ,6						
H ₂ S i rågas	1. 11.		1,0						
Restgas			14,5						
Keks			<u> 51,9</u>						
		2. 计算程序	00 0						

Gasbensinen och svavelvätet i rågasen har redovisats för sig, då gasbensinen bör avlägsnæs och svavelvätet måsts avlägsnæs för att restgasen skall kunna användas i brännarna. För att ett tjärsand in-situ fält skall vara självförsörjande på gas till brännarna, får alltså ej mer gas användas, än att dess totala effektiva värmevärde motsvarar 14,3% av tjärsandens effektiva värmevärde. Detta kommer då att bero på tjärhalten i tjärsanden. Därför har följande beräkningar av erforderlig värmemängd utförts med utgång från 1/171 1b tjära, som har ett värmevärde av 100 BTU. Det antages att tjärsandens vättenhalt är 1% och att värmeförlusterna är 40% av det totalt tillförda värmet.

Tjärhelt, vikts %	8	. 10	-12	14	\ 16
Tjärsend, 1b		0,0585		0,0419	0,0366
Spec.varme, BTU/1b, or		0,255	0,260	0,266	0,073
Erforderligt varme for					
pyrolys, STU	12,7	10,5	8.9	7.8	6,95
Varmeförluster, BIU	8,5	7,0	5,9	5,2	4,65
Totalt erforderligt					
värmė, RIU	21,2	17.5	14,8	13,0	11,6
Tillkommer el.energi för luftkompressorer och					
	2,1	1,8	1,5	4 3	1,2
Termisk nettoverknings					
grad - värmevärdet av olja + gasbensin +					
+ restgas minus till-					
satt gasbrënsle + el.					
energi	43,8	47,8	50,8	52,8	54,3

I diagram 1 har dessa data sammanförts som funktion av tjärhalten i tjärsand. Dessutom har angivits det procentuella effektiva värmevärdet av produkterna råolja, gasbensin och restgas (= rågas erkl. gasbensin och svavelväte), som erhölls från värmebälansen i L 9. Denna är oberoende av tjärhalten, om det antages att tjärans kvalitet ej ändras med tjärhalten. Svavelvätets värmevärde har ej medtagits, då en framställning av ex. svavel troligen ej är av ekonomiskt intresse.

Av diagrammet framgår bl.a. att LINS-metoden med antagna varmeförluster blir självförsörjande på gasbransle vid en tjärhalt av 12,5 % då den termiska nettoverkningsgraden är 51,4 %. Stora delar av tjärsandsfyndigheten i Athabasca, Canada innehåller denna tjärmängd.

Närkes Kvarntorp den 27.10.59.

Dengt Seiston

	FÖRSÖKET LO I SANTA CRUZ CALIF 18.0
70	FORSOKET L9 SANTA CRUZ CALIF. 33.0
	GAS BRANSIE FOR PYROLYS
2 60 FRESTS	AS TO THE TOTAL TOTAL TO THE TH
	EÖR TÄCKÄVÖL
G/12/38EV	SIN AV VÄRMETÖN USTEN
50 7	
	VETTOVERKNINGSERAD
Z ▼	VETTOUTBY E AV JARSANDEUS FEERTIVA VARMEVARDE
A A A	
9 /	
30	INCLUSION IN THE PROPERTY OF T
	THE TOTAL OF THE PARTY OF THE P

Ē