Étapes pour réaliser un projet de Machine Learning

<u> </u>	i. Collecte des	• •
}	données	
Si fichier csv : df = pd.read_csv()		

2. Pré-traitement
des données
Comprendre et évaluer la qualité des données, sans encore les
modifier.
Objectif : Identifier les problèmes à corriger lors de l'étape
<u>suivante.</u>
Examiner les informations et statistiques du dataframe.
df.head(), df.tail(), df.sample(), df.shape, df.columns, df.info(),
df.dtypes, df.describe()
Vérifier les doublons et les valeurs manquantes.
df.isna().sum()
df.duplicated().sum()
Analyser les distributions avec des histogrammes ou des
 graphiques.
df.boxplot() → outliers
df.corr(numeric_only = True)
Repérer les corrélations avec des heatmaps.
sns.heatmap(df.corr(numeric_only = True)) → plt.show()

3. Traitement des		
données		
But : Modifier les données pour qu'elles soient prêtes à être		
<u>utilisées.</u>		
Gérer les valeurs manquantes : les remplir (imputation) ou les		
supprimer.		
df.fillna(), df.dropna(inplace = True)		
all mid (), all all opina (in place in de)		
Le client choisit comment gérer les valeurs manquantes (par exemple		
remplir ou supprimer une colonne) ou les outliers car il connaît les valeurs		
importantes, le data scientist ne connaît pas les valeurs métiers		
<u> </u>		
Supprimer les doublons.		
df.drop_duplicates(keep = 'first')		
Transformer les variables catégoriques en numériques		
pd.get_dummies(df, columns=["nom_de_la_colonne"])		
pd.factorize()		
4. Feature Engineering		
(Création et sélection de		
∑ variables)		
But : Identifier ou créer les variables explicatives les plus utiles pour le modèle.		
<u>= ===================================</u>		
Combiner des colonnes, créer des colonnes.		

Supprimer les colonnes inutiles ou peu corrélées au problème. df.drop(columns = ['nom_colonne_à_drop'], inplace = True)

Réduire les dimensions si nécessaire (ex. : PCA).

Définir les variables explicatives

var_exp = ['col1','col2','col3']

var_y = ['col4']
X = df[var_exp]
y = df[var_y]

5. Définir le jeu d'entraînement et de test But : Diviser les données pour évaluer la performance du modèle. La stratégie du train_test_split() n'est pas obligatoire. Pas de train_test_split() quand il y a une série temporelle.

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.75, random_state = 42)

Normaliser ou standardiser si nécessaire

scaler = StandardScaler().fit(X_train) → on initialise le scaler et il apprend les paramètres des données d'entraînement

X_train_scaled = scaler.transform(X_train) → on applique les paramètres appris (avec fit) pour transformer les données en les standardisant.

X_test_scaled = scaler.transform(X_test)

6. Choisir l'algorithme ML (les étapes 5 et 6 sont interchangeables)

• **But :** Identifier quel type de modèle est adapté au problème (régression, classification, clustering)

Pour une régression, les variables doivent être quantitatives.

Algorithmes de régression : Régression linéaire simple, régression linéaire multivariée, decision tree

inditivance, decision tree

Algorithmes de classification : KNN, Régression logistique, decision tree

• But: Apprendre au modèle à trouver des motifs dans les données.
model = LinearRegression() → on initialise le modèle
model.fit(X,, y) → on entraîne le modèle
ou en cas de division et/ou de scaling :
si train_test_split a été utilisé :
model.fit(X_train, y_train)
Si un scaler a été utilisé :
model.fit(X_train_scaled, y_train)
>
8. Évaluer le modèle
<u> </u>
• But : Vérifier si le modèle fonctionne bien.
• But : Vérifier si le modèle fonctionne bien. Vérifier le score de test
Vérifier le score de test
Vérifier le score de test test_score = model.score(X_test_scaled, y_test)
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting,
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse)
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train)
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting Si les deux scores sont proches et suffisamment élevés → Modèle robuste.
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting Si les deux scores sont proches et suffisamment élevés → Modèle robuste. Utiliser des métriques d'évaluation
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting Si les deux scores sont proches et suffisamment élevés → Modèle robuste. Utiliser des métriques d'évaluation y_pred = model.predict(X_test_scaled) → on fait des prédictions sur le jeu de test
Vérifier le score de test test_score = model.score(X_test_scaled, y_test) Comparer le score de test avec le score d'entraînement (évaluer overfitting, underfiting ou robustesse) train_score = model.score(X_train_scaled, y_train) test_score = model.score(X_test_scaled, y_test) Si le score d'entraînement est très élevé et le score de test est faible → Overfitting Si les deux scores sont faibles → Underfitting Si les deux scores sont proches et suffisamment élevés → Modèle robuste. Utiliser des métriques d'évaluation y_pred = model.predict(X_test_scaled) → on fait des prédictions sur le jeu de test accuracy = accuracy_score(y_test, y_pred)

9. Amélioration du modèle (Fine-tuning)

But: Améliorer les performances du modèle.

- Techniques possibles:
 - Ajuster les hyperparamètres (ex.: nombre d'arbres dans un Random Forest).
 - Essayer d'autres algorithmes.
 - Ajouter ou retirer des variables.
 - Appliquer des méthodes comme la validation croisée pour affiner l'entraînement.

10. Prédictions

<u>Une fois le modèle satisfaisant, on peut l'utiliser pour faire</u> <u>des prédictions sur de nouvelles données!</u>

LIBRAIRIES:

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

<u>from sklearn.model_selection import train_test_split</u> <u>from sklearn.preprocessing import StandardScaler</u>

from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor

<u>from sklearn.metrics import accuracy_score, precision_score, recall_score,</u>
<u>fl_score</u>

<u>from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score</u>

<u>from sklearn.metrics import confusion_matrix</u>

<u>from sklearn.model_selection import cross_val_score, GridSearchCV</u>

from sklearn.decomposition import PCA

<u>Pour étendre le nombre de lignes complètes à afficher ou le nombre de</u> colonnes :

pd. set_option('display.min_rows', nbre de lignes)
pd.set_option('display.max_columns', nbre de colonnes)