6. TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2072 Ashwin

Exam.	Regular		
Level	BE	Full Marks	80
Programme	BCE, BGE, BME	Pass Marks	32
Year / Part	1/11	Time	3 hrs.

Subject: - Applied Mechanics (CE451)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. What is mechanics? Mention scope of applied mechanics in engineering.

[3]

2. Define Free body diagram with example. Explain about the principle of transmissibility. Determine the force couple system at origin of given system. Take $F_1 = 100$ KN $F_2 = 300$ KN and $F_3 = 200$ KN.

Determine the reaction at all contact points. Assume all contact surfaces are smooth. Take weight of sphere A = 200 KN, weight of sphere B = 400 KN, Radius of sphere A = 120 mm, Radius of sphere B = 250 mm.

[8]

4. a) Locate the centroid of the plane area as shown in figure below by the method of integration.

[6]

[13]

b) Determine the moment of inertia of the given section about it's centroidal axes?

5. Draw AFD, SFD and BMD of the given frame and indicate salient features, if any:

6. Determine the member forces of BC, BK, CD, MD, and DJ of the given truss.

- Explain the laws of static friction. Also define the limiting friction and angle of friction with suitable example. [2+1+1]
- 8. a) What is uniformly accelerated rectilinear motion?

b) The acceleration of a particle is given by a relation $a = v^3$. It is known that at time t = 0, position is -2m and velocity is 1m/sec. Find the displacement, position velocity and acceleration at instant of $\frac{1}{4}$ sec.

[2]

[8]

[8]

b) Prove that rate of change of angular momentum about any point is equal to moment of the force about the same point.

[2]