

Diena Rauda Ramdania, S.T., M.Kom., M.eng

SUMBER MATERI

- > Discrete Mathematics and Its Applications (Bab 1), Edisi 7, 2012
 - K. H.Rosen (acuan utama).
- > Discrete Mathematics with Applications (Bab 2), Edisi 4, 2010
 - S. S.Epp.
- > Logic in Computer Science: Modelling and Reasoning about Systems(Bab1), Edisi 2, 2004
 - M. Huth dan M. Ryan.
- > Mathematical Logic for Computer Science(Bab 2, 3, 4), Edisi 2, 2000
 - M. Ben-Ari.
- > Slide kuliah Matematika Diskret 1(2012) di Fasilkom UI
 - B. H. Widjaja.
- > Slide kuliah Logika Matematika di Telkom University
 - A. Rakhmatsyah, B. Purnama.

DAFTAR ISI

- Pendahuluan
- Pengertian Proposisi
- Contoh Proposisi
- Operator Logika & Operasi Majemuk
- Presedens Operator Logika
- Formula Logika Proposisi
- Pohon Urai / Parse Tree

PENDAHULUAN

Mengapa perlu belajar Logika Proposisi?

Logika proposisi merupakan salah satu dasar ilmu yang diperlukan dalam Computer Science dan Software Engineering.

Masalah Konsistensi Spesifikasi Sistem

Seorang software engineer diminta oleh manajernya untuk membuat suatu sistem informasi dengan spesifikasi berikut :

- Ketika sistem software di-upgrade, user tidak dapat mengakses file sistem.
- Jika user dapat mengakses file sistem, maka user dapat menyimpan file baru
- Jika user tidak dapat menyimpan file baru, maka sistem software tidak sedang di-upgrade.

Apakah sistem informasi dengan spesifikasi di atas dapat dibuat ? Dengan kata lain, apakah spesifikasi sistem di atas merupakan spesifikasi yang konsisten ?

Masalah konsistensi spesifikasi sistem merupakan salah satu masalah yang dapat dipecahkan dengan Logika Proposisi yang akan dipelajari di slide kuliah ini.

PENGERTIAN PROPOSISI

Definisi Proposisi

Proposisi merupakan kalimat deklaratif atau pernyataan yang memiliki nilai kebenaran benar atau salah, tetapi tidak keduanya.

Logika Proposisi : Suatu sistem logika yang didasarkan atas proposisi. Logikaproposisi juga diistilahkan dengan kalkulus proposisi (*propositional calculus*).

Proposisi sederhana biasanya ditulis dengan huruf **p, q, r, s... p1, p2... q1, q2...** Nilai kebenaran yang mungkin untuk suatu proposisi :

- benar, dapat pula ditulis : B, T, true, ⊤, 1
- salah, dapat pula ditulis : S, F, false, ⊥ ,0

CONTOH PROPOSISI

• Ini suatu Pernyataan? Ya

2³ < 3² • Ini suatu Proposisi? Ya

Nilai Kebenarannya? Benar

 $3^4 - 4^3 < 10$

Ini suatu Pernyataan? Ya

• Ini suatu Proposisi? Ya

Nilai Kebenarannya? Salah

$$x + 3 > = 2020$$

- Ini suatu Pernyataan? Ya
- Ini suatu Proposisi? Bukan, Karena nilai kebenarannya bergantung pada nilai x. (true untuk $x \ge 2017$ dan false untuk nilai x yang lain).
- Pernyataan seperti ini dinamakan sebagai kalimat terbuka.

"Pelajari materi kuliah Logika Matematika dengan baik!"

- Ini suatu Pernyataan? Bukan, ini adalah kalimat perintah.
- Ini suatu Proposisi? Bukan, Hanya pernyataan yang dapat menjadi proposisi.

Contoh proposisi sederhana seperti ini disebut juga dengan proposisi atom.

OPERATOR LOGIKA & PROPOSISI MAJEMUK

Ketika kita diberikan beberapa proposisi atom, kita dapat membentuk proposisi baru dengan menggunakan operator (penghubung) logika. Proposisi yang dihasilkanselanjutnya disebut sebagai proposisi majemuk (compound proposition).

Jenis-jenis operator logika dasar, yaitu :

- Operator **uner (unary)**: hanya memerlukan satu operand: negasi (─ atau ~).
- Operator biner (binary): memerlukan dua operand: konjungsi (∧), disjungsi(∨), disjungsi eksklusif /
 exclusive-or (⊕0008_), imlipkasi (), biimplikasi ().

OPERATOR LOGIKA & PROPOSISI MAJEMUK

- Negasi / Negation (— / ~)

- Apabila **p** merupakan suatu proposisi, maka : ~**p** juga merupakan proposisi yang dinamakan sebagai negasi dari **p**. Yang dibaca **tidak p** atau *not* **p**.
- p bernilai benar (T) tepat ketika p bernilai salah (F).

- Konjungsi / Conjunction (∧)

- Apabila **p dan q** merupakan suatu proposisi, maka : **p ∧ q** juga merupakan proposisi yang dinamakan sebagai konjungsi dari **p** dan **q**. Yang dibaca **p dan q** atau **p** *and* **q**.
- p∧q bernilai benar (T) tepat ketika p dan q keduanya bernilai benar. selain dari itu bernilai salah(F).

- Disjungsi / Disjunction (∨)

- Apabila \mathbf{p} dan \mathbf{q} merupakan suatu proposisi, maka : $\mathbf{p} \vee \mathbf{q}$ juga merupakan proposisi yang dinamakan sebagai disjungsi dari \mathbf{p} dan \mathbf{q} . Yang dibaca \mathbf{p} atau \mathbf{q} atau \mathbf{p} or \mathbf{q} .
- p ∨ q bernilai salah (F) tepat ketika p dan q keduanya bernilai salah. selain dari itu bernilai benar (T).

OPERATOR LOGIKA & PROPOSISI MAJEMUK

- Disjungsi Eksklusif (⊕/ xor)

- Apabila \mathbf{p} dan \mathbf{q} merupakan suatu proposisi, maka : $\mathbf{p} \oplus \mathbf{q}$ juga merupakan proposisi yang dinamakan sebagai disjungsi eksklusif dari \mathbf{p} dan \mathbf{q} . Yang dibaca \mathbf{p} xor \mathbf{q} .
- p⊕q bernilai benar (T) tepat ketika p dan q memiliki nilai kebenaran yang berbeda.

- Implikasi (→)

- Apabila \mathbf{p} dan \mathbf{q} merupakan suatu proposisi, maka : $\mathbf{p} \rightarrow \mathbf{q}$ juga merupakan proposisi yang dinamakan sebagai implikasi dari \mathbf{p} dan \mathbf{q} , \mathbf{p} (hipotesis/anteseden/premis) dan \mathbf{q} (konklusi/konsekuensi). yang dibaca jika \mathbf{p} maka \mathbf{q} .
- $p \rightarrow q$ bernilai salah (F) apabila p bernilai benar (T) tetapi q salah (F). Selain dari itu bernilai benar (T).

- Biimplikasi (↔)

- Apabila \mathbf{p} dan \mathbf{q} merupakan suatu proposisi, maka : $\mathbf{p} \leftrightarrow \mathbf{q}$ juga merupakan proposisi yang dinamakan sebagai biimplikasi dari \mathbf{p} dan \mathbf{q} . Yang dibaca \mathbf{p} jika dan hanya jika \mathbf{q} .
- $p \leftrightarrow q$ bernilai benar (T) tepat ketika p dan q memiliki nilai kebernaran yang sama.
- $p \leftrightarrow q$ bernilai benar (T) tepat ketika $p \rightarrow q$ dan $q \rightarrow p$ kedua-duanya bernilai benar (T).

PRESEDENS OPERATOR LOGIKA

Presedens Operator Logika memberikan suatu aturan operator mana yang harus lebih dahulu dioperasikan (dikenakan pada suatu operand).

Tabel urutan pengerjaan (presedens) operator logika:

Operator	Urutan
	1`
^	2
V	3
\oplus	4
\rightarrow	5
\leftrightarrow	6

Sebagaimana aritmetika bilangan bulat, kita dapat menggunakan tanda kurung " (" dan ") " untuk memperjelas operasi yang harus didahulukan.

FORMULA LOGIKA PROPOSISI

Formula (atau kalimat) logika proposisi dibentuk dari :

- Konstanta proposisi: benar (T) dan salah (F).
- Variabel posisi atom: p, p1, p2... / q, q1, q2... / r, r1, r2...
- Operator logika proposisi: \neg , \wedge , \vee , \oplus , \rightarrow , \leftrightarrow

Dengan aturan sebagai berikut :

- Setiap proposisi (atom) merupakan formula logika proposisi.
- Apabila **p** dan **q** adalah dua formula logika proposisi, maka: $\neg p$, $p \land q$, $p \lor q$, $p \oplus q$, $p \to q$, $p \leftrightarrow q$ masing-masing juga merupakan formula logika proposisi.

Contoh:

- p \(\) q adalah formula logika proposisi.
- pq\ adalah bukan formula logika proposisi.

POHON URAI (PARSE TREE)

Pohon Urai (*Parse Tree*) dapat digunakan untuk menggambarkan struktur suatu formula logika proposisi.

Sebagai contoh, pohon urai untuk formula: $(\neg p \land q) \rightarrow (p \land (q \lor \neg r))$ adalah:

