Les 9 pictogramme SGH : dangers...

Physico chimique (5)	Pour la santé (4)	Environnement
Comburant, explosif, gaz	Corrosif, toxicité aigu,	Environnement
sous pression, inflammable,	nocif ou irritant, CMR	
corrosif		

Matériel de chimie

Objectif	Matériels	
Contenir des liquides et réaliser des	Becher, erlenmeyer	
mélanges.		
Stocker un volume exact	Fiole jaugée	
Mesurer un volume grossier	Éprouvette	
Prélever une quantité d'une solution	Pipette, pipette	
(*régler la quantité à prélever)	automatique	

Utilisation de la pipette automatique : Elle s'utilise entre 10% et 100% de sa capacité.

Mesurer le pH (potentiel Hydrogène)

 $pH = -\log(concentation\ en\ mol\ H_3O^+)$

Dilution

2.10.0.0.		
Facteur de dilution X	Dilution X fois ⇔ 1 de solution et	
	X-1 de diluant.	
Pourcentage massique	Une solution à 30% ⇔ 30g/ 100mL	
	⇔ 300g/1L	

Degré d'acidité 7° ⇔ 7g/100L.

La dilution D est l'inverse du facteur de dilution soit : $\frac{1}{F}$

Exemple: Facteur 10 = 1/10 dilution = 9 diluant + 1 solution

Méthode pour réaliser une dilution en série (ou en cascade) :

• Construire le tableau suivant :

N° du tube	Facteur cumulé ($\frac{c_i}{F^n}$)	Vol solution	Vol diluant
	V Diluant		

Le facteur de dilution $F_i = \frac{V \, Diluant}{V \, m \`{
m e} r e}$

- Étiqueter les tubes
- Mettre le volume de diluant
- Ajouter le volume de solvant en homogénéisant la solution pour chaque tube.

Remarque : on parfois besoin d'obtenir un volume final identique dans chacun des tubes, par exemple ; pour réaliser une spectrométrie.

Pour calculer le volume de diluant dans les tubes avant l'ajout de la solution sera de $\frac{v_f}{1-\frac{1}{F}}$

Ce calcul n'est pas valable pour le tube final. Pour celui ce sera vol à obtenir — vol mère

Spectrométrie

La spectrométrie permet de :

- Déterminer la concentration d'une molécule
- Suivre la cinétique de formation d'un produit lors d'une réaction enzymatique
- Suivre l'élution de molécules lors de la séparation d'un mélange par chromatographie
- Analyser le degré de pureté d'une molécule

Élution séparation de deux substances. Le produit utilisé comme solvant est appelé éluant.

Loi de Beer-	<i>e</i> : Coeff d'extinction molaire, spécifique de la
Lambert	substance absorbante (en M-1 cm-1).
$A = \log\left(\frac{I_0}{I}\right) = e. l. c$	/: épaisseur de la cuve (en cm). c: Concentration de la substance absorbante (en mole/L).
	A absorbance ou densité optique (sans unité).

Choix du contenant

Longueur d'ondes	Cuve
190-400 nm	Quartz
400-800 nm	Plastique, verre

Les étapes pour réaliser une spectrométrie :

- 1. Réglé l'absorbance avec l'échantillon de solvant pur.
- 2. Réaliser les mesures. Elles ne sont valables que pour 0,1<A<1.

Remarque: A chaque fois que l'on modifie la longueur d'onde, il faut régler l'absorbance pour le solvant pur ou utiliser un spectrophotomètre bifaisceau.

Couleur d'un objet

La couleur d'un objet est celle de toutes les longueurs d'ondes non absorbées.

Exemple : les carottes absorbent la partie de lumière entre le violet et le vert. Elles apparaissent donc orangées.