Handout 7: Language Models

- 1. Simple generative model of text
 - **a.** Choose a random token to start. (Why choose from tokens rather than types?)

b. Choose a random bigram with that word on the left

```
>>> w = random.choice([r for (1,r) in bigrams(emma) if 1 == w])
>>> w
u'like'
```

c. Repeat

```
>>> w = random.choice([r for (1,r) in bigrams(emma) if l == w])
>>> w
u'to'
```

- **d.** Write a function called **brute_generate** to generate a random string of length *n*. It should return a generator.
- e. brute_generate is very slow! Can we do better?
- 2. Sampling from a frequency distribution
 - a. Consider a simple case:

b. Choose a target in range(len(tokens)).

c. Compute that from ud. Is tgt in the "a" range?

```
False
        >>> runningtotal += ud['b']
        >>> runningtotal
        >>> tgt < runningtotal
9
        True
10
\mathbf{d}. So:
        def fdchoose (fd):
             tgt = random.randrange(fd.N())
2
             rtot = 0
3
             for key in fd:
                 rtot += fd[key]
                 if tgt < rtot:</pre>
6
                      return key
```

3. A language model

- **a.** Example:
- >>> lm = (FreqDist(emma), ConditionalFreqDist(bigrams(emma)))
- **b.** Define generate to use the language model. After the first word, we want to sample from the distribution of words following w. How do we do that?
- c. Usage:

```
>>> ' '.join(generate(model, 10))
u'for beauty happened which was pained by a regard to her'
```

- 4. A language model defines a probability distribution over texts
 - a. Suppose we train (estimate) a language model from our running example text abbdabdbbd. Model M_1 :

	a	b	d
ud	0.2	0.5	0.3
\overline{a}	0	1	0
b	0	0.4	0.6
d	0.667	0.333	0

- **b.** What is the probability that we choose "b" as the first word?
- c. What is the probability that we choose "b" as the next word?
- **d.** So what is the probability of starting "b b"?
- e. What is the probability of generating the text "b b d a"?

5. Comparing language models

a. An alternative language model, M_2 :

	a	b	d
ud	0.2	0.5	0.3
\overline{a}	0.2	0.5	0.3
b	0.2	0.5	0.3
d	0.2	0.5	0.3

- **b.** What is the probability of M_2 generating "b b d a"?
- c. Which model is more likely, given the observation "b b d a"?

6. Bayes' Rule

- **a.** Def. of cond. prob.: p(M|D) = p(M,D)/p(D)
- **b.** Chain rule: p(M, D) = p(M) p(D|M)
- c. Hence:

$$\overbrace{p(M|D)}^{\text{posterior}} = \overbrace{\frac{p(M)}{p(M)} \cdot \underbrace{p(D|M)}_{p(D)}}^{\text{prior}}$$

- **d.** Likelihood is probability of data given model.
- **e.** If models have equal prior probability, highest-likelihood model is the same as highest-posterior model

7. A technical issue

a. Computing language-model likelihoods involves multiplying small numbers together. We may run into problems of **underflow**.

 ${f b.}$ The fix: use logarithms

$$p = 10^{\log p}$$

$$pq = 10^{\log p} 10^{\log q} = 10^{\log p + \log q}$$

$$\log pq = \log p + \log q$$

$$\log p_1 q_1 > \log p_2 q_2 \quad \text{if and only if} \quad p_1 q_1 > p_2 q_2$$

c. Example

8. Log probability as cost

True

6

a. We can think of $(-\log p(y|x))$ as the cost that the model pays if the bigram (x,y) occurs in testing.

b. For test data "b b d a":

-1.8239087409443187

>>> lp1 > lp2

c. The total cost is called the **cross entropy** of the model with the testing data

9. Overfitting

- **a.** Model M_1 fits the training data better: it extracts more information, assigns higher probabilities to the training examples
- **b.** It never saw ac in training, so it assumes that ac is <u>impossible</u>. What if that assumption is wrong?
- **c.** What is the cost for a bet p(x) = 0, if x actually occurs in testing?

d. What are the model likelihoods and cross entropies if the **test data** is "b b a d"?

		b	b	a	d	
M_1	p	.5	.4	0	0	0
	$-\log p$.30	.40	∞	∞	∞
$\overline{M_2}$	p	.5	.5	.2	.3	.015
	$-\log p$.30	.30	.70	.52	1.82

- 10. Fit and simplicity
 - **a.** Model M_1 overfits the training data: it bets too heavily that the future will look exactly like the past.
 - **b.** Model M_2 underfits the training data: it throws away too much information.
 - **c.** There is a trade-off between **fit** and **simplicity**. Recording less information makes for a smaller model, but it also fits the training data less well.
- 11. Smoothing: finding a better trade-off
 - **a.** We could beat M_2 on both test sets if we model bigram probabilities (like M_1), but hedge our bets
 - **b.** Pretend every bigram occurs ϵ more often than it actually occurs. Smoothed counts for training abbdabdbbd:

$$\begin{array}{c|ccccc} & a & b & d & \mathrm{Sum} \\ \hline a & \epsilon & 2+\epsilon & \epsilon & 2+3\epsilon \\ b & \epsilon & 2+\epsilon & 3+\epsilon & 5+3\epsilon \\ d & 2+\epsilon & 1+\epsilon & \epsilon & 3+3\epsilon \\ \end{array}$$

 \mathbf{c} . General formula. Let n be the number of different types.

$$\tilde{p}(y|x) = \frac{c(x,y) + \epsilon}{c(x) + n\epsilon}$$
 $\tilde{p}(x) = \frac{c(x) + n\epsilon}{N + n^2\epsilon}$

- **12.** For our example, with $\epsilon = .5$:
 - **a.** Model M_3 , probabilities and costs:

	a	b	d			a	b	d
ud	3.5/14.5	6.5/14.5	4.5/14.5	-	ud	.62	.35	.51
\overline{a}	.5/3.5	2.5/3.5	.5/3.5		a	.85	.15	.85
b	.5/6.5	2.5/6.5	3.5/6.5		b	1.11	.41	.27
d	2.5/4.5	1.5/4.5	.5/4.5		d	.26	.48	.95

b. Costs on test sets:

$$\begin{array}{c|cccc} & & & M_3 & M_1 & M_2 \\ \hline bbda & .35 + .41 + .27 + .26 = & 1.29 & 1.10 & 1.82 \\ bbad & .35 + .41 + 1.11 + .85 = & 2.72 & \infty & 1.82 \\ \end{array}$$

Classes

```
13. Defining LangModel as a class
```

```
class LangModel (object):

def __init__ (self, text):
    self.unigram = FreqDist(text)
    self.bigram = ConditionalFreqDist(bigrams(text))
```

14. Creating an **instance**:

15. Defining a method:

16. Calling it: