PSOA RuleML Integration of Relational and Object-Centered Geospatial Data

The 9th International Web Rule Symposium RuleML 2015 Challenge August 2-5, 2015

Gen Zou

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

- Background
- 2 Data Sets
- 3 Rules
- Queries
- Conclusion and Future Work

- Background
- 2 Data Sets
- 3 Rules
- Queries
- Conclusion and Future Work

Backround

- Geospatial data sets have been increasingly available on the Web, e.g. Geonames and LinkedGeoData
- Many real-world applications are built on top of local data sets that contain geospatial information
- Integration of application data with external geospatial data can answer interesting geospatial queries

Backround

- Data can be modeled in different paradigms
 - Relational
 - Widely used for relational DBs and KBs, representing information in classical logic
 - Object-centered
 - Each object is represented by a unique Object IDentifier (OID) typed by a class and described by an unordered collection of slots, each being a pair of a name and a filler
 - Combined
- Integration needs cross-paradigm transformation, which can be expressed in the object-relational rule language PSOA RuleML

PSOA RuleML

- Integrates relational and object-centered modeling
- Generalizes F-logic, RIF-BLD, and POSL
- Uses positional-slotted object-applicative (psoa) terms, permitting a relation application to have an OID – typed by the relation – and, orthogonally, its arguments to be positional or slotted

General case (multi-tuple):

```
o # f([t_{1,1} ... t_{1,n_1}] ... [t_{m,1} ... t_{m,n_m}] p_1 -> v_1 ... p_k -> v_k)
```

Special cases (single-tuple brackets and zero-argument parentheses optional):

```
Combined:  \begin{array}{ll} \text{O\#f}([t_1 \dots t_n] & p_1 -> v_1 \dots p_k -> v_k) \\ \text{Positional:} & \text{O\#f}([t_1 \dots t_n]) \\ \text{Slotted:} & \text{O\#f}( & p_1 -> v_1 \dots p_k -> v_k) \\ \text{Member-only:} & \text{O\#f}() \\ \end{array}
```

- Background
- 2 Data Sets
- 3 Rules
- Queries
- Conclusion and Future Work

Data Sets

- Two relational data sets and one object-centered data set, expressed in PSOA RuleML presentation syntax
- Relational house rental data set

```
ex:HouseRentalInfo(1 "35 Routliffe Lane" "Toronto" "ON" "CA" 3 2500 "False"^^xs:boolean)
ex:HouseRentalInfo(2 "42 Frey Crescent" "Toronto" "ON" "CA" 2 900 "True"^^xs:boolean)
```

Arguments: ref number, street, city, province, country, number of bedrooms, price, furnished

Data Sets

 Relational data set containing addresses and their GPS coordinates (From online geocoding services)

```
gc:Geocode(43.778267 -79.426723

"35 Routliffe Lane" "Toronto" "ON" "CA")
gc:Geocode(43.74242 -79.291529

"42 Frey Crescent" "Toronto" "ON" "CA")
```

Arguments: latitude, longitude, street, city, province, country

 Object-centered data set consisting of geospatial features (From Geonames)

```
<http://sws.geonames.org/9411373/>#gn:Feature(
   gn:name->"The Detour Store"
   gn:featureCode->gn:S.RET
   geo:lat->45.39748
   geo:long->-80.2468)
```

- Background
- 2 Data Sets
- 3 Rules
- Queries
- Conclusion and Future Work

Hierarchy of Geospatial Entities

```
gr:SubwayStation##gr:GeoEntity
gr:Restaurant##gr:GeoEntity
gr:Store##gr:GeoEntity
gr:House##gr:GeoEntity
gr:HouseForRent##gr:House
```

- gr:GeoEntity class denotes all geospatial entities that can be located
- Every gr: GeoEntity-typed object has a slot gr: coord for the precise coordinates of its centroid

 Map house rental data into objects of gr: HouseForRent subclass of gr: GeoEntity and extract address information

```
Forall ?Kev ?Name ?Phone ?Street ?City ?Prov ?Country
       ?Post.Code ?Addr
  Exists ?Addr
    And (gr:HouseRentID (?RefNo) #gr:HouseForRent (
        ?Bedrooms ?Price ?Furnished gr:addr->?Addr)
        ?Addr#gr:Address(gr:street->?Street
                          gr:city->?City
                          gr:prov->?Prov
                          gr:country->?Country))
  :- ex:HouseRentalInfo(?RefNo ?Street ?City ?Prov ?Country
                         ?Bedrooms ?Price ?Furnished)
                                              4 D > 4 P > 4 E > 4 E >
```

 Enrich each GeoEntity with a gr:coord slot, by retrieving the coordinates from gc:Geocode relation using its address

Map objects from the object-centered data set into objects of

Map feature codes in the object-centered data set into corresponding gr: GeoEntity subclass

```
Forall ?0
   ?O#gr:SubwayStation
     :- ?O#gn:Feature(gn:featureCode->gn:S.MTRO)
Forall ?0
   ?O#gr:Restaurant
     :- ?O#qn:Feature(qn:featureCode->qn:S.REST)
Forall 20
   ?O#gr:Store
     :- ?O#gn:Feature(gn:featureCode->gn:S.RET)
                                              4日 > 4周 > 4 至 > 4 至 > 三
```

Geospatial Relationship Inference Rules

Derive a GeoEntity ?O is in an ?Area by composing slot gr: COOrd and gr: RCCProperPartOf relation

Geospatial Relationship Inference Rules

Derive gr:RCCProperPartOf between a point and a box, defined by its minimum latitude, minimum longitude, maximum latitude, and maximum longitude, through arithmetic computation

Geospatial Relationship Inference Rules

Derive the distance (measured in km) of ?01 and ?02 to be less or equal than ?Distance, using external function gr:distanceLessEqual

- Background
- 2 Data Sets
- 3 Rules
- Queries
- 5 Conclusion and Future Work

Queries

Look for certain type of geospatial entities in a region and their addresses

Look for all geospatial entities near specific entities

All stores within 5km of the house with reference number 2:

```
And(?S#gr:Store(gr:name->?Name)
    gr:inDistance(gr:HouseRentID(2) ?S 5))
```

 All houses within 2km of a subway station and the name of the station

- Background
- 2 Data Sets
- 3 Rules
- Queries
- Conclusion and Future Work

Conclusion and Future Work

- Demonstrate the usefulness of PSOA rules for the integration of geospatial data modeled in different paradigms
- Similar approach can be applied to enrich other local data sets containing address information
- Future work
 - Expand KB with required ground facts imported from relational/graph databases
 - Evaluate reasoning performance on expanded KB using PSOATransRun engine