Linear regression

Maria Jose Medina

Universidad de Santiago de Chile

Outline

- 💶 Multiple linear regression
 - Introduction
 - Estimating the model coefficients
 - Some important questions
- Other considerations in the Regression model
 - Qualitative predictors
 - Removing additive assumption
 - Potential problems

Table of Contents

- Multiple linear regression
 - Introduction
 - Estimating the model coefficients
 - Some important questions
- Other considerations in the Regression mode
 - Qualitative predictors
 - Removing additive assumption
 - Potential problems

Introduction

• The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .

4/43

Introduction

- The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .
- \bullet It assumes that there is approximately a relationship between x_1,x_2,\cdots,x_p and Y

Introduction

- The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .
- \bullet It assumes that there is approximately a relationship between x_1,x_2,\cdots,x_p and Y

$$Y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \dots + \beta_p x_p$$

• β_i are unknown constants called *model coefficients* or *parameters*.

Introduction

- The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .
- \bullet It assumes that there is approximately a relationship between x_1,x_2,\cdots,x_p and Y

$$Y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \dots + \beta_p x_p$$

- β_i are unknown constants called *model coefficients* or *parameters*.
- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$ be the prediction for Y based on the predictors of x_p .

Introduction

- The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .
- \bullet It assumes that there is approximately a relationship between x_1,x_2,\cdots,x_p and Y

$$Y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \cdots + \beta_p x_p$$

- β_i are unknown constants called *model coefficients* or *parameters*.
- Let $\hat{y_i} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$ be the prediction for Y based on the predictors of x_p . Then

$$e_i = y_i - \hat{y}_i$$

Introduction

- The goal is to predict a quantitative response Y on the basis of p distinct predictors x_p .
- \bullet It assumes that there is approximately a relationship between x_1,x_2,\cdots,x_p and Y

$$Y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_3 + \cdots + \beta_p x_p$$

- β_i are unknown constants called *model coefficients* or *parameters*.
- Let $\hat{y_i} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$ be the prediction for Y based on the predictors of x_p .

Then

$$e_i = y_i - \hat{y}_i$$

represents the ith residual.

Estimating the model coefficients

• Using residuals, we define the residual sum of squares(RSS) as

5/43

Estimating the model coefficients

Using residuals, we define the residual sum of squares(RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \hat{\beta}_p x_{ip})^2$$

5/43

Maria Jose Medina (USACH) Linear regression

Estimating the model coefficients

Using residuals, we define the residual sum of squares(RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \hat{\beta}_p x_{ip})^2$$

 To estimate the coefficients we use the least squares approach, in which we seek to minimize RSS.

4□ > 4□ > 4 = > 4 = > = 90

Estimating the model coefficients

Using residuals, we define the residual sum of squares(RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
$$= \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \hat{\beta}_p x_{ip})^2$$

 To estimate the coefficients we use the least squares approach, in which we seek to minimize RSS.

$$\hat{\beta} = (X'X)^{-1}X'y$$

Union to the second of the se

Some important questions

Now we have to evaluate the model:

lacktriangle Is at least one of the predictors $x_1, x_2, \cdots x_n$ useful in predicting the response?

Some important questions

Now we have to evaluate the model:

- **o** Is at least one of the predictors $x_1, x_2, \cdots x_n$ useful in predicting the response?
- Do all the predictors help to explain Y, or is only a subset of the predictors useful?

Some important questions

Now we have to evaluate the model:

- **o** Is at least one of the predictors $x_1, x_2, \dots x_n$ useful in predicting the response?
- ullet Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?

Some important questions

Now we have to evaluate the model:

- **()** Is at least one of the predictors $x_1, x_2, \dots x_n$ useful in predicting the response?
- Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Some important questions

Now we have to evaluate the model:

lacktriangle Is at least one of the predictors $x_1, x_2, \cdots x_n$ useful in predicting the response?

One: Is There a Relationship Between the Response and Predictors?

• In simple linear regression $(y = \beta_0 + \beta_1 x)$, we simply check whether $\beta_1 = 0$ through hypothesis testing.

Maria Jose Medina (USACH)

One: Is There a Relationship Between the Response and Predictors?

- In simple linear regression $(y = \beta_0 + \beta_1 x)$, we simply check whether $\beta_1 = 0$ through hypothesis testing.
- ullet Here, we extend that idea with p predictors.

4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors?

- In simple linear regression $(y = \beta_0 + \beta_1 x)$, we simply check whether $\beta_1 = 0$ through hypothesis testing.
- ullet Here, we extend that idea with p predictors.
- We need to ask:
 - Are all regression coefficients zero?

One: Is There a Relationship Between the Response and Predictors?

- In simple linear regression $(y = \beta_0 + \beta_1 x)$, we simply check whether $\beta_1 = 0$ through hypothesis testing.
- ullet Here, we extend that idea with p predictors.
- We need to ask:
 - Are all regression coefficients zero?
 - Are only a particular subset of regression coefficients zero?

4□ > 4□ > 4 ≥ > 4 ≥ > □ = 90

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

To know whether all of the regression coefficients are zero, i.e. $\beta_1 = \beta_2 = \cdots = \beta_p = 0$., we test the null hypothesis,

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

versus the alternative

8 / 43

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

To know whether all of the regression coefficients are zero, i.e. $\beta_1 = \beta_2 = \cdots = \beta_p = 0$., we test the null hypothesis,

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

versus the alternative

 H_a : at least one β_j is non-zero.

This hypothesis test is performed by computing the **F-statistic**.

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

Assuming homoscedasticity, the F-statistic is given by,

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

where

<ロ > < /i> < /i> < /i> < /i> < /i> < /i> < /i>

9/43

One: Is There a Relationship Between the Response and Predictors?

- Are all regression coefficients zero?

Assuming homoscedasticity, the F-statistic is given by,

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

where

• $TSS = \sum (y_i - \bar{y})^2$ is the **total sum of squares**. Measures the total variance in the response Y , and can be thought of as the amount of variability inherent in the response before the regression is performed.

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

Assuming homoscedasticity, the F-statistic is given by,

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

where

- $TSS = \sum (y_i \bar{y})^2$ is the **total sum of squares**. Measures the total variance in the response Y , and can be thought of as the amount of variability inherent in the response before the regression is performed.
- $RSS = \sum (y_i \hat{y}_i)^2$ is the **residual sum of squares**. Measures the amount of variability that is left unexplained after performing the regression.

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

Assuming homoscedasticity, the F-statistic is given by,

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

where

- $TSS = \sum (y_i \bar{y})^2$ is the **total sum of squares**. Measures the total variance in the response Y, and can be thought of as the amount of variability inherent in the response before the regression is performed.
- $RSS = \sum (y_i \hat{y}_i)^2$ is the **residual sum of squares**. Measures the amount of variability that is left unexplained after performing the regression.
- $TSS-RSS \rightarrow$ is the amount of variability in the response that is explained (or removed) by performing the regression.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

Assuming homoscedasticity, the F-statistic is given by,

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$

where

- $TSS = \sum (y_i \bar{y})^2$ is the **total sum of squares**. Measures the total variance in the response Y, and can be thought of as the amount of variability inherent in the response before the regression is performed.
- $RSS = \sum (y_i \hat{y}_i)^2$ is the **residual sum of squares**. Measures the amount of variability that is left unexplained after performing the regression.
- $TSS-RSS \rightarrow$ is the amount of variability in the response that is explained (or removed) by performing the regression.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors?

- Are all regression coefficients zero?

• If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$

Maria Jose Medina (USACH)

One: Is There a Relationship Between the Response and Predictors?

- Are all regression coefficients zero?

- If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$
- Assuming that H_0 is true, then $\mathbb{E}\{(TSS RSS)/p\} = \sigma^2$.

Maria Jose Medina (USACH)

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

- If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$
- Assuming that H_0 is true, then $\mathbb{E}\{(TSS RSS)/p\} = \sigma^2$.
- Therefore, if H_0 is true (i.e. there is no relationship between $x_1, \dots x_p$ and Y), F-statistic is closer to 1.

←□▶ ←□▶ ←□▶ ←□▶ ←□
 ←□▶ ←□▶ ←□▶ ←□

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

- If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$
- Assuming that H_0 is true, then $\mathbb{E}\{(TSS RSS)/p\} = \sigma^2$.
- Therefore, if H_0 is true (i.e. there is no relationship between $x_1, \dots x_p$ and Y), F-statistic is closer to 1.
- On other hand, if H_0 is not true, $\mathbb{E}\{(TSS RSS)/p\} > \sigma^2 \Rightarrow F > 1$

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

- If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$
- Assuming that H_0 is true, then $\mathbb{E}\{(TSS RSS)/p\} = \sigma^2$.
- Therefore, if H_0 is true (i.e. there is no relationship between $x_1, \dots x_p$ and Y), F-statistic is closer to 1.
- On other hand, if H_0 is not true, $\mathbb{E}\{(TSS RSS)/p\} > \sigma^2 \Rightarrow F > 1$
- How large does the F-statistic need to be before we can reject H_0 and conclude that there is a relationship?

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

- If we assume homoscedasticity then, $\mathbb{E}\{RSS/(n-p-1)\}=\sigma^2$
- Assuming that H_0 is true, then $\mathbb{E}\{(TSS RSS)/p\} = \sigma^2$.
- Therefore, if H_0 is true (i.e. there is no relationship between $x_1, \dots x_p$ and Y), F-statistic is closer to 1.
- On other hand, if H_0 is not true, $\mathbb{E}\{(TSS RSS)/p\} > \sigma^2 \Rightarrow F > 1$
- How large does the F-statistic need to be before we can reject ${\cal H}_0$ and conclude that there is a relationship?
 - \rightarrow It depends on the values of n and p.

One: Is There a Relationship Between the Response and Predictors?

- Are all regression coefficients zero?

When n is large,

11/43

One: Is There a Relationship Between the Response and Predictors?

- Are all regression coefficients zero?

When n is large,

 F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

11 / 43

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

For any value n and p,

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

For any value n and p,

• Compute the p-value: The p-value indicates how likely it is to observe the results due to chance, assuming H_0 .

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

For any value n and p,

- Compute the p-value: The p-value indicates how likely it is to observe the results due to chance, assuming H_0 .
 - Small p-value: very unlikely that H₀ is true → Reject H₀.

4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

For any value n and p,

- Compute the p-value: The p-value indicates how likely it is to observe the results due to chance, assuming H_0 .
 - Small p-value: very unlikely that H_0 is true \rightarrow Reject H_0 .
 - Large p-value: very likely that H_0 is true \rightarrow Fail to reject H_0 .

One: Is There a Relationship Between the Response and Predictors? - Are all regression coefficients zero?

When n is large,

- F-statistic approximately follows an F-distribution, even if the errors are not normally distributed.
- a F-statistic that is just a little larger than 1 might still provide evidence against H_0 .

When n is small,

• A larger F-statistic is is needed to reject H_0 .

For any value n and p,

- Compute the p-value: The p-value indicates how likely it is to observe the results due to chance, assuming H_0 .
 - Small p-value: very unlikely that H_0 is true \rightarrow Reject H_0 .
 - Large p-value: very likely that H_0 is true \rightarrow Fail to reject H_0 .

Typical p-value cutoffs for rejecting the null hypothesis are 5% or 1%.

4 □ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ ○ 필 · · · 의

11 / 43

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset q of the coefficients are zero,

12 / 43

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset q of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

Maria Jose Medina (USACH)

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset \boldsymbol{q} of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

Maria Jose Medina (USACH)

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset q of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset \boldsymbol{q} of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

To test the hypothesis:

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset q of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

To test the hypothesis:

• Fit a regression model y_0 that uses all variables except q.

4□ > 4□ > 4 = > 4 = > = 90

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset \boldsymbol{q} of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

To test the hypothesis:

- Fit a regression model y_0 that uses all variables except q.
- Calculate the residual sum of squares for that model, RSS_0 .

<□ > < □ > < □ > < Ē > < Ē > Ē 9 < ♡

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset q of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

To test the hypothesis:

- Fit a regression model y_0 that uses all variables except q.
- Calculate the residual sum of squares for that model, RSS_0 .
- Compute the appropiate F-statistic

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}.$$

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

Sometimes we want to test the hypothesis if a particular subset \boldsymbol{q} of the coefficients are zero,

$$H_0: \beta_{p-q+1} = \beta_{p-q+2} = \dots = \beta_p = 0$$

versus the alternative,

 H_a : One or more than q restrictions assuming H_0 does not stand.

To test the hypothesis:

- Fit a regression model y_0 that uses all variables except q.
- Calculate the residual sum of squares for that model, RSS_0 .
- Compute the appropriate F-statistic

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}.$$

Compute p-values.

One: Is There a Relationship Between the Response and Predictors?

- Are only a particular subset of regression coefficients zero?

• The approach of using an F -statistic to test for any association between the predictors and the response works when p is relatively small compared to n.

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

- The approach of using an F -statistic to test for any association between the predictors and the response works when p is relatively small compared to n.
- If p > n then there are more coefficients β_j to estimate than observations from which to estimate them.

One: Is There a Relationship Between the Response and Predictors? - Are only a particular subset of regression coefficients zero?

- The approach of using an F -statistic to test for any association between the predictors and the response works when p is relatively small compared to n.
- If p > n then there are more coefficients β_j to estimate than observations from which to estimate them.
- We cannot even fit the multiple linear regression model using least squares, so the F-statistic cannot be used.

Multiple regression

Some important questions

- Is at least one of the predictors $x_1, x_2, \dots x_n$ useful in predicting the response?
- ullet Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Multiple regression

Some important questions

Do all the predictors help to explain Y, or is only a subset of the predictors useful?

Two: Deciding on Important Variables

Ideally, we would like to perform **variable selection** by trying out a lot of different models, each containing a different subset of the predictors.

Two: Deciding on Important Variables

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

A model containing no variables,

Two: Deciding on Important Variables

- A model containing no variables,
- ullet A model containing x_1 only,

Two: Deciding on Important Variables

- A model containing no variables,
- ② A model containing x_1 only,
- lacktriangledark A model containing x_2 only, and

Two: Deciding on Important Variables

- A model containing no variables,
- \bigcirc A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- \bullet A model containing both x_1 and x_2 .

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

- A model containing no variables,
- lacktriangle A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- \bullet A model containing both x_1 and x_2 .

Then we can use Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted \mathbb{R}^2 to select the best model.

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

- A model containing no variables,
- \bigcirc A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- **1** A model containing both x_1 and x_2 .

Then we can use Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted \mathbb{R}^2 to select the best model.

Unfortunately, there are a total of 2^p models that contain subsets of p variables.

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

- A model containing no variables,
- ② A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- \bullet A model containing both x_1 and x_2 .

Then we can use Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted \mathbb{R}^2 to select the best model.

Unfortunately, there are a total of 2^p models that contain subsets of p variables.

• If if p=2, then there are $2^2=4$ models to consider.

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

- A model containing no variables,
- ② A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- **1** A model containing both x_1 and x_2 .

Then we can use Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted \mathbb{R}^2 to select the best model.

Unfortunately, there are a total of 2^p models that contain subsets of p variables.

- If if p=2, then there are $2^2=4$ models to consider.
- if p = 30, then we must consider $2^{30} = 1.073.741.824$ models!

Two: Deciding on Important Variables

Ideally, we would like to perform variable selection by trying out a lot of different models, each containing a different subset of the predictors. For example, if p=2, then we can consider,

- A model containing no variables,
- ② A model containing x_1 only,
- lacktriangle A model containing x_2 only, and
- **1** A model containing both x_1 and x_2 .

Then we can use Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted \mathbb{R}^2 to select the best model.

Unfortunately, there are a total of 2^p models that contain subsets of p variables.

- If if p=2, then there are $2^2=4$ models to consider.
- if p = 30, then we must consider $2^{30} = 1.073.741.824$ models!
 - \rightarrow This is not practical!

Two: Deciding on Important Variables

So when p is not small, we can consider these automated approaches:

15 / 43

Two: Deciding on Important Variables

So when p is not small, we can consider these automated approaches:

Forward selection

- Forward selection
 - ① We begin with by fitting the *null model* y_0 .

- Forward selection
 - ① We begin with by fitting the *null model* y_0 .
 - Fit p simple linear regressions and compute its RSS.

- Forward selection
 - ① We begin with by fitting the *null model* y_0 .
 - ② Fit p simple linear regressions and compute its RSS.
 - lacksquare Add to the null model the variable that results in the lowest RSS, this create a new model y_1 .

So when p is not small, we can consider these automated approaches:

Forward selection

- ① We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- Add to the null model the variable that results in the lowest RSS, this create a new model y₁.
- **③** Repeat the step 2 and 3 but now with p-1 regressors.

So when p is not small, we can consider these automated approaches:

Forward selection

- ① We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- lacksquare Add to the null model the variable that results in the lowest RSS, this create a new model y_1 .
- **(9)** Repeat the step 2 and 3 but now with p-1 regressors.
- Continue until some stopping rule is satisfied.

- Forward selection
 - ① We begin with by fitting the *null model* y_0 .
 - ② Fit p simple linear regressions and compute its RSS.
 - lacksquare Add to the null model the variable that results in the lowest RSS, this create a new model y_1 .
 - **①** Repeat the step 2 and 3 but now with p-1 regressors.
 - Ontinue until some stopping rule is satisfied.
- Backward selection

So when p is not small, we can consider these automated approaches:

Forward selection

- ① We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- Add to the null model the variable that results in the lowest RSS, this create a new model y₁.
- **(9)** Repeat the step 2 and 3 but now with p-1 regressors.
- Ontinue until some stopping rule is satisfied.

Backward selection

① We start with all the variables in the model y_p .

So when p is not small, we can consider these automated approaches:

Forward selection

- ① We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- lacksquare Add to the null model the variable that results in the lowest RSS, this create a new model y_1 .
- **③** Repeat the step 2 and 3 but now with p-1 regressors.
- Ontinue until some stopping rule is satisfied.

Backward selection

- ① We start with all the variables in the model y_p .
- Remove the variable with the largest p-value.

So when p is not small, we can consider these automated approaches:

Forward selection

- **1** We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- Add to the null model the variable that results in the lowest RSS, this create a new model y₁.
- **③** Repeat the step 2 and 3 but now with p-1 regressors.
- Ontinue until some stopping rule is satisfied.

Backward selection

- ① We start with all the variables in the model y_p .
- Remove the variable with the largest p-value.
- lacksquare The new (p-1)-variable model is fit, and the variable with the largest p-value is removed.

So when p is not small, we can consider these automated approaches:

Forward selection

- We begin with by fitting the *null model* y_0 .
- ② Fit p simple linear regressions and compute its RSS.
- lacksquare Add to the null model the variable that results in the lowest RSS, this create a new model y_1 .
- **③** Repeat the step 2 and 3 but now with p-1 regressors.
- Ontinue until some stopping rule is satisfied.

Backward selection

- ① We start with all the variables in the model y_p .
- Remove the variable with the largest p-value.
- lacksquare The new (p-1)-variable model is fit, and the variable with the largest p-value is removed.
- Continue until some stopping rule is satisfied.

4 D > 4 P > 4 E > 4 E > E 990

• Mixed selection: a combination of forward and backward selection.

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.
 - We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

16 / 43

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.
 - We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Important notes:

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.
 - We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Important notes:

• Backward selection cannot be used if p > n.

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.
 - We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Important notes:

- Backward selection cannot be used if p > n.
- Forward selection can always be used but might include variables early that later become redundant.

- Mixed selection: a combination of forward and backward selection.
 - We start with the null model and then we successively add the variables that provides the best fit (lowest RSS).
 - If at any point the p-value for one of the variables in the model rises above a certain threshold, remove that variable.
 - We continue to perform these forward and backward steps until all variables in the model have a sufficiently low p-value, and all variables outside the model would have a large p-value if added to the model.

Important notes:

- Backward selection cannot be used if p > n.
- Forward selection can always be used but might include variables early that later become redundant.
- Mixed selection can remedy redundant variables.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めなべ

Multiple regression

Some important questions

- **①** Is at least one of the predictors $x_1, x_2, \dots x_n$ useful in predicting the response?
- ullet Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Multiple regression

Some important questions

• How well does the model fit the data?

Three: Model fit

The quality of a linear regression fit is typically assessed using two related quantities:

Three: Model fit

The quality of a linear regression fit is typically assessed using two related quantities:

Residual standard error (RSE)

Three: Model fit

The quality of a linear regression fit is typically assessed using two related quantities:

- Residual standard error (RSE)

Three: Model fit - Residual standard error (RSE)

 \bullet Recall that from every model, there is some error term ϵ associated with each observation.

Three: Model fit - Residual standard error (RSE)

- \bullet Recall that from every model, there is some error term ϵ associated with each observation.
- The RSE is an estimate of the standard deviation of ϵ .

Three: Model fit - Residual standard error (RSE)

- \bullet Recall that from every model, there is some error term ϵ associated with each observation.
- The RSE is an estimate of the standard deviation of ϵ .
- Roughly speaking, it is the average amount that the response will deviate from the true regression line.

Three: Model fit - Residual standard error (RSE)

- \bullet Recall that from every model, there is some error term ϵ associated with each observation.
- The RSE is an estimate of the standard deviation of ϵ .
- Roughly speaking, it is the average amount that the response will deviate from the true regression line.

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

Maria Jose Medina (USACH)

Three: Model fit - Residual standard error (RSE)

- ullet Recall that from every model, there is some error term ϵ associated with each observation.
- The RSE is an estimate of the standard deviation of ϵ .
- Roughly speaking, it is the average amount that the response will deviate from the true regression line.

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

• If $\hat{y}_i \approx y_i \, \forall i \in n$, then RSE is small. \rightarrow The model fits the data well.

Three: Model fit - Residual standard error (RSE)

- ullet Recall that from every model, there is some error term ϵ associated with each observation.
- The RSE is an estimate of the standard deviation of ϵ .
- Roughly speaking, it is the average amount that the response will deviate from the true regression line.

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

- If $\hat{y}_i \approx y_i \, \forall i \in n$, then RSE is small. \rightarrow The model fits the data well.
- If \hat{y}_i is very far from y_i for one or more observations, then RSE may be quite large. \rightarrow The model doesn't fit the data well.

- (ロ) (個) (注) (注) (注) のQで

Three: Model fit - \mathbb{R}^2 statistic

• The \mathbb{R}^2 it's the proportion of variance explained.

Three: Model fit - \mathbb{R}^2 statistic

- ullet The \mathbb{R}^2 it's the proportion of variance explained.
- It always takes on a value between 0 and 1, and is independent of the scale of Y.

Three: Model fit - R^2 statistic

- ullet The \mathbb{R}^2 it's the proportion of variance explained.
- ullet It always takes on a value between 0 and 1, and is independent of the scale of Y.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

TSS measures the total variance in Y

Three: Model fit - R^2 statistic

- The R^2 it's the proportion of variance explained.
- ullet It always takes on a value between 0 and 1, and is independent of the scale of Y.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- TSS measures the total variance in Y
- RSS measures the variability that is left unexplained after performing the regression.

Three: Model fit - R^2 statistic

- The R^2 it's the proportion of variance explained.
- ullet It always takes on a value between 0 and 1, and is independent of the scale of Y.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- TSS measures the total variance in Y
- RSS measures the variability that is left unexplained after performing the regression.
- ullet TSS RSS is the amount of variability in Y that is explained (or removed) by performing the regression.

4□ > 4□ > 4 = > 4 = > = 90

Three: Model fit - R^2 statistic

- The R^2 it's the proportion of variance explained.
- ullet It always takes on a value between 0 and 1, and is independent of the scale of Y.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- TSS measures the total variance in Y
- RSS measures the variability that is left unexplained after performing the regression.
- TSS RSS is the amount of variability in Y that is explained (or removed) by performing the regression.
- ullet R^2 measures the proportion of variability in Y that can be explained using X.

Three: Model fit - R^2 statistic

- The R^2 it's the proportion of variance explained.
- ullet It always takes on a value between 0 and 1, and is independent of the scale of Y.

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- TSS measures the total variance in Y
- RSS measures the variability that is left unexplained after performing the regression.
- TSS RSS is the amount of variability in Y that is explained (or removed) by performing the regression.
- ullet R^2 measures the proportion of variability in Y that can be explained using X.

Multiple regression

Some important questions

- **1** Is at least one of the predictors $x_1, x_2, \dots x_n$ useful in predicting the response?
- ullet Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Multiple regression

Some important questions

• Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Four: Predictions

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).
- Model bias

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).
- Model bias
 - \rightarrow Assuming a linear model for f(X) is an approximation of reality.

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).
- Model bias
 - ightarrow Assuming a linear model for f(X) is an approximation of reality.
- The irreducible error.

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).
- Model bias
 - ightarrow Assuming a linear model for f(X) is an approximation of reality.
- The irreducible error.
 - ightarrow We use prediction intervals to answer how much will \hat{Y} vary from Y.

Four: Predictions

- The reducible error
 - \rightarrow Related to the inaccuracy in the coefficient estimates.
 - \to We compute a confidence interval in order to determine how close \hat{Y} will be to f(X).
- Model bias
 - \rightarrow Assuming a linear model for f(X) is an approximation of reality.
- The irreducible error.
 - ightarrow We use prediction intervals to answer how much will \hat{Y} vary from Y.
 - \rightarrow Prediction intervals are always wider than confidence intervals.

Table of Contents

- Multiple linear regression
 - Introduction
 - Estimating the model coefficients
 - Some important questions
- Other considerations in the Regression model
 - Qualitative predictors
 - Removing additive assumption
 - Potential problems

Qualitative predictors: Predictors with only two levels

• Suppose that we wish to investigate differences in credit card balance between people who own a house vs those who don't.

Qualitative predictors: Predictors with only two levels

- Suppose that we wish to investigate differences in credit card balance between people who own a house vs those who don't.
- We can adding the qualitative predictor to the regression as a dummy variable.

Qualitative predictors: Predictors with only two levels

- Suppose that we wish to investigate differences in credit card balance between people who own a house vs those who don't.
- We can adding the qualitative predictor to the regression as a dummy variable.

$$x_i = \begin{cases} 1 & \text{ if } i \text{th person owns a house,} \\ 0 & \text{if } i \text{th person does not own a house,} \end{cases}$$

This results in the model,

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

ullet eta_0 is the average credit card balance among those who do not own a house.

←□ → ←□ → ← □ → ← □ → ← ○

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

- ullet eta_0 is the average credit card balance among those who do not own a house.
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house.

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

- ullet eta_0 is the average credit card balance among those who do not own a house.
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house.
- β_1 is the average difference in credit card balance between owners and non-owners.

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

- ullet eta_0 is the average credit card balance among those who do not own a house.
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house.
- β₁ is the average difference in credit card balance between owners and non-owners.
- To test significance, we test $H_0: \beta_1 = 0$

Maria Jose Medina (USACH)

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

- \bullet β_0 is the average credit card balance among those who do not own a house.
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house.
- β₁ is the average difference in credit card balance between owners and non-owners.
- To test significance, we test $H_0: \beta_1 = 0$

Note

 \rightarrow The decision to code owners as 1 and non-owners as 0 is arbitrary, and has no effect on the regression fit.

(□) (□) (□) (□)

23 / 43

Qualitative predictors

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person owns a house,} \\ \beta_0 + \epsilon_i & \text{if ith person does not.} \end{cases}$$

- ullet eta_0 is the average credit card balance among those who do not own a house.
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house.
- β₁ is the average difference in credit card balance between owners and non-owners.
- To test significance, we test $H_0: \beta_1 = 0$

Note

- \rightarrow The decision to code owners as 1 and non-owners as 0 is arbitrary, and has no effect on the regression fit.
- \rightarrow That decision only alter the interpretation of the coefficients.

〈ロト〈母ト〈言ト〈言ト〉言 ぐ)へぐ Maria Jose Medina(USACH) Linear regression September 2022 23/43

Qualitative predictors: Predictors with More that Two Levels

• Suppose now that we want to investigate differences in credit card balance between people who lives in one of these **regions**: South, West, East.

24 / 43

Qualitative predictors: Predictors with More that Two Levels

- Suppose now that we want to investigate differences in credit card balance between people who lives in one of these **regions**: South, West, East.
- Single dummy variable cannot represent all possible values, so we create additional ones.

Maria Jose Medina (USACH)

Qualitative predictors: Predictors with More that Two Levels

- Suppose now that we want to investigate differences in credit card balance between people who lives in one of these regions: South, West, East.
- Single dummy variable cannot represent all possible values, so we create additional ones.

$$x_{i1} = \begin{cases} 1 & \text{if ith person is from the South,} \\ 0 & \text{if ith person is not from the South,} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is from the West,} \\ 0 & \text{if } i \text{th person is not from the West,} \end{cases}$$

This results in the model,

Maria Jose Medina (USACH)

Qualitative predictors: Predictors with More that Two Levels

- Suppose now that we want to investigate differences in credit card balance between people who lives in one of these regions: South, West, East.
- Single dummy variable cannot represent all possible values, so we create additional ones.

$$x_{i1} = \begin{cases} 1 & \text{if ith person is from the South,} \\ 0 & \text{if ith person is not from the South,} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is from the West,} \\ 0 & \text{if } i \text{th person is not from the West,} \end{cases}$$

This results in the model,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

イロト (個)ト (意)ト (意)ト

24 / 43

ria lose Medina (USACH) Linear regression September 2022

Qualitative predictors: Predictors with More that Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

• β_0 is the average credit card balance for individuals from the East.

←□▶←□▶←□▶←□▶←□▼○○○○

25 / 43

Qualitative predictors: Predictors with More that Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

- ullet eta_0 is the average credit card balance for individuals from the East.
- β_1 is the difference in the average balance between people from the South versus the Fast.

↓□▶ ◀圖▶ ◀불▶ ◀불▶ 출 ∽)

Qualitative predictors: Predictors with More that Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

- β_0 is the average credit card balance for individuals from the East.
- β_1 is the difference in the average balance between people from the South versus the Fast
- β_2 is the difference in the average balance between those from the West versus the East.

Notes

ightarrow The level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice.

Qualitative predictors: Predictors with More that Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

- ullet eta_0 is the average credit card balance for individuals from the East.
- β_1 is the difference in the average balance between people from the South versus the East.
- β_2 is the difference in the average balance between those from the West versus the East.

Notes

- ightarrow The level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice.
- \rightarrow The coefficients and their p-values $\mbox{\bf do depend}$ on the choice of dummy variable coding.

Maria Jose Medina(USACH) Linear regression September 2022

25/43

Qualitative predictors: Predictors with More that Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is from the South,} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is from the West,} \\ \beta_0 + \epsilon_i & \text{if ith is from the East.} \end{cases}$$

- β_0 is the average credit card balance for individuals from the East.
- β_1 is the difference in the average balance between people from the South versus the East.
- β_2 is the difference in the average balance between those from the West versus the East.

Notes

- \rightarrow The level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice.
- \rightarrow The coefficients and their p-values $\mbox{\bf do depend}$ on the choice of dummy variable coding.
- \rightarrow To test significance, we can use F-test on $H_0: \beta_1 = \beta_0 = 0$. This does not depend on the coding.

Maria Jose Medina (USACH) Linear regression September 2022 25/43

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

4□ > 4□ > 4 = > 4 = > = 99

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

• A one-unit increase in X_1 is associated with an average increase in Y of β_1 units.

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

- A one-unit increase in X_1 is associated with an average increase in Y of β_1 units.
- Notice that the presence of X_2 does not alter this statement.

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

- A one-unit increase in X_1 is associated with an average increase in Y of β_1 units.
- Notice that the presence of X_2 does not alter this statement.
- We can extend this model to include an **interaction term** with X_1 and X_2 .

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

- A one-unit increase in X_1 is associated with an average increase in Y of β_1 units.
- Notice that the presence of X_2 does not alter this statement.
- We can extend this model to include an **interaction term** with X_1 and X_2 .

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$$

Removing the Additive Assumption

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 + \epsilon$$

According to this,

- A one-unit increase in X_1 is associated with an average increase in Y of β_1 units.
- Notice that the presence of X_2 does not alter this statement.
- We can extend this model to include an **interaction term** with X_1 and X_2 .

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$$

Now Y can be rewritten as,

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

• Since $\tilde{\beta_1}$ is now a function of X_1 , the association between X_1 and Y is no longer constant.

27 / 43

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

- Since $\tilde{\beta_1}$ is now a function of X_1 , the association between X_1 and Y is no longer constant.
- ullet A change in the value of X_2 will change the association between X_1 and Y.

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

- \bullet Since $\tilde{\beta_1}$ is now a function of X_1 , the association between X_1 and Y is no longer constant.
- ullet A change in the value of X_2 will change the association between X_1 and Y.
- \bullet Similarly, a change in the value of X_1 changes the association between X_2 and Y.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 釣 へ ②

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

- \bullet Since $\tilde{\beta_1}$ is now a function of X_1 , the association between X_1 and Y is no longer constant.
- ullet A change in the value of X_2 will change the association between X_1 and Y.
- \bullet Similarly, a change in the value of X_1 changes the association between X_2 and Y.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 釣 へ ②

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

The hierarchical principle

If we include an **interaction** in a model, we should also include the **main effects**, even if the p-values associated with principle their coefficients are not significant.

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta}_1 &= \beta_1 + \beta_3 X_2. \end{split}$$

The hierarchical principle

If we include an **interaction** in a model, we should also include the **main effects**, even if the p-values associated with principle their coefficients are not significant.

Why?

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

The hierarchical principle

If we include an **interaction** in a model, we should also include the **main effects**, even if the p-values associated with principle their coefficients are not significant.

Why?

• If $X_1 \times X_2$ is related to the response, then whether or not the coefficients of X_1 or X_2 are exactly zero is of little interest.

- (ロ) (回) (注) (注) (注) 注 り(()

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

The hierarchical principle

If we include an **interaction** in a model, we should also include the **main effects**, even if the p-values associated with principle their coefficients are not significant.

Why?

- If $X_1 \times X_2$ is related to the response, then whether or not the coefficients of X_1 or X_2 are exactly zero is of little interest.
- $X_1 \times X_2$ is typically correlated with X_1 and X_2 , and so leaving them out tends to alter the meaning of the interaction.

28 / 43

Removing the Additive Assumption

$$\begin{split} Y &= \beta_0 + (\beta_1 X_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon \\ Y &= \beta_0 + \tilde{\beta_1} X_1 + \beta_2 X_2 + \epsilon \\ \text{with } \tilde{\beta_1} &= \beta_1 + \beta_3 X_2. \end{split}$$

The hierarchical principle

If we include an **interaction** in a model, we should also include the **main effects**, even if the p-values associated with principle their coefficients are not significant.

Why?

- If $X_1 \times X_2$ is related to the response, then whether or not the coefficients of X_1 or X_2 are exactly zero is of little interest.
- $X_1 \times X_2$ is typically correlated with X_1 and X_2 , and so leaving them out tends to alter the meaning of the interaction.

28 / 43

When we fit a linear regression model to a particular data set, many problems may occur. Most common among these are the following:

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

When we fit a linear regression model to a particular data set, many problems may occur. Most common among these are the following:

Non-linearity of the response-predictor relationships.

Non-linearity of the Data

• The linear regression model assumes that there is a straight-line relationship between the predictors and the response.

Non-linearity of the Data

- The linear regression model assumes that there is a straight-line relationship between the predictors and the response.
- If the true relationship is far from linear, then virtually all of the conclusions that we draw from the fit are suspect.

Non-linearity of the Data

- The linear regression model assumes that there is a straight-line relationship between the predictors and the response.
- If the true relationship is far from linear, then virtually all of the conclusions that we draw from the fit are suspect.
- Residual plots are a useful graphical tool for identifying non-linearity.
- In the case of a multiple regression model, we plot the residuals versus the predicted (or fitted) values \hat{y}_i .

Non-linearity of the Data

• Ideally, the residual plot will show no fitted discernible pattern.

Non-linearity of the Data

- Ideally, the residual plot will show no fitted discernible pattern.
- The presence of a pattern may indicate a problem with some aspect of the linear model.

Non-linearity of the Data

- Ideally, the residual plot will show no fitted discernible pattern.
- The presence of a pattern may indicate a problem with some aspect of the linear model.

Non-linearity of the Data

- Ideally, the residual plot will show no fitted discernible pattern.
- The presence of a pattern may indicate a problem with some aspect of the linear model.

Note

If the residual plot indicates that there are non-linear associations in the data, then a simple approach is to use **non-linear transformations** of the predictors, such as $\log X$ and \sqrt{X} , in the regression model.

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

Correlation of Error Terms

• An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.

Correlation of Error Terms

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - ightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .

Correlation of Error Terms

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - ightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .
- Is there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors.

Correlation of Error Terms

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - \rightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .
- Is there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors.
- As a result, confidence and prediction intervals will be narrower than they should be.

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - \rightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .
- Is there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors.
- As a result, confidence and prediction intervals will be narrower than they should be.
- In addition, p-values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically significant.

Correlation of Error Terms

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - \rightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .
- Is there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors.
- As a result, confidence and prediction intervals will be narrower than they should be.
- In addition, p-values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically significant.
- Why might correlations among the error terms occur?

Correlation of Error Terms

- An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$, are uncorrelated.
 - ightarrow i.e. the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} .
- Is there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors.
- As a result, confidence and prediction intervals will be narrower than they should be.
- In addition, p-values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically significant.
- Why might correlations among the error terms occur?
 - \rightarrow Such correlations frequently occur in the context of **time series data**.

<□> ◆□> ◆圈> ◆필> ◆필> · 필 · 约<<

32 / 43

Correlation of Error Terms

• In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.

33 / 43

- In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.
- If the errors are uncorrelated, then there should be no discernible pattern.

- In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.
- If the errors are uncorrelated, then there should be no discernible pattern.
- If the error terms are positively correlated, then we may see tracking in the residuals.

- In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.
- If the errors are uncorrelated, then there should be no discernible pattern.
- If the error terms are positively correlated, then we may see tracking in the residuals. → adjacent residuals may have similar values.

- In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.
- If the errors are uncorrelated, then there should be no discernible pattern.
- ullet If the error terms are positively correlated, then we may see tracking in the residuals. ullet adjacent residuals may have similar values.

Correlation of Error Terms

- In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time.
- If the errors are uncorrelated, then there should be no discernible pattern.
- If the error terms are positively correlated, then we may see tracking in the residuals. → adjacent residuals may have similar values.

 Good experimental design is crucial in order to mitigate the risk of such correlations.

Maria Jose Medina (USACH) Linear regression September 2022 33 / 43

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

Non-constant variance of error terms.

Non-constant Variance of Error Terms

• Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$

Non-constant Variance of Error Terms

- Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$
- One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot.

Non-constant Variance of Error Terms

- Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$
- One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot.
- When faced with this problem, one possible solution is to transform the response Y using a **concave** function such as log(Y) or \sqrt{Y} .

Non-constant Variance of Error Terms

- Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$
- One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot.
- When faced with this problem, one possible solution is to transform the response Y using a **concave** function such as log(Y) or \sqrt{Y} .
- Such a transformation results in a greater amount of shrinkage of the larger responses, leading to a reduction in heteroscedasticity.

Non-constant Variance of Error Terms

- Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$
- One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot.
- When faced with this problem, one possible solution is to transform the response Y using a **concave** function such as log(Y) or \sqrt{Y} .
- Such a transformation results in a greater amount of shrinkage of the larger responses, leading to a reduction in heteroscedasticity.

Non-constant Variance of Error Terms

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

Outliers

• An outlier is a point for which yi is far from the value predicted by the outlier model.

- An outlier is a point for which yi is far from the value predicted by the outlier model.
- Include outliers in the regression fit can cause alterations on the RSE values, which are further used to compute confidence intervals and p-values.

- An outlier is a point for which yi is far from the value predicted by the outlier model.
- Include outliers in the regression fit can cause alterations on the RSE values, which are further used to compute confidence intervals and p-values.
- A single data point can have implications for the interpretation of the fit.

- An outlier is a point for which yi is far from the value predicted by the outlier model.
- Include outliers in the regression fit can cause alterations on the RSE values, which are further used to compute confidence intervals and p-values.
- A single data point can have implications for the interpretation of the fit.
- To identify outliers, we can compute the **studentized residuals** by dividing each residual e_i by its estimated standard error.

- An outlier is a point for which yi is far from the value predicted by the outlier model.
- Include outliers in the regression fit can cause alterations on the RSE values, which are further used to compute confidence intervals and p-values.
- A single data point can have implications for the interpretation of the fit.
- To identify outliers, we can compute the **studentized residuals** by dividing each residual e_i by its estimated standard error.
- Observations whose studentized residuals are greater than 3 in absolute value are possible outliers.

- An outlier is a point for which yi is far from the value predicted by the outlier model.
- Include outliers in the regression fit can cause alterations on the RSE values, which are further used to compute confidence intervals and p-values.
- A single data point can have implications for the interpretation of the fit.
- To identify outliers, we can compute the **studentized residuals** by dividing each residual e_i by its estimated standard error.
- Observations whose studentized residuals are greater than 3 in absolute value are possible outliers.

Outliers

Notes

 If we believe that an outlier has occurred due to an error in data collection or recording, then one solution is to simply remove the observation.

Outliers

Notes

• If we believe that an outlier has occurred due to an error in data collection or recording, then one solution is to simply remove the observation.

37 / 43

However, care should be taken, since an outlier may instead indicate a

Trower, care should be taken, since an outrier may instead make

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

High-leverage points.

Outliers

• We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .

- We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .
- In contrast, observations with high leverage have an unusual value for x_i .

- We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .
- ullet In contrast, observations with **high leverage** have an **unusual value for** x_i .
- High leverage observations tend to have a sizable impact on the estimated regression line.

- We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .
- In contrast, observations with high leverage have an unusual value for x_i .
- High leverage observations tend to have a sizable impact on the estimated regression line.
- In order to quantify an observation's leverage, we compute the leverage statistic:

Outliers

- We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .
- In contrast, observations with high leverage have an unusual value for x_i .
- High leverage observations tend to have a sizable impact on the estimated regression line.
- In order to quantify an observation's leverage, we compute the leverage statistic:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

Outliers

- We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i .
- In contrast, observations with high leverage have an unusual value for x_i .
- High leverage observations tend to have a sizable impact on the estimated regression line.
- In order to quantify an observation's leverage, we compute the leverage statistic:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

Outliers

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

Outliers

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

• A large value of this statistic indicates an observation with high leverage.

Notes

 $\rightarrow h_i$ increases with the distance of x_i from \bar{x} .

Outliers

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

• A large value of this statistic indicates an observation with high leverage.

Notes

- $\rightarrow h_i$ increases with the distance of x_i from \bar{x} .
- \rightarrow The average leverage for all the observations is always equal to (p+1)/n.

Outliers

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_i' - \bar{x})^2}$$

A large value of this statistic indicates an observation with high leverage.

Notes

- $\rightarrow h_i$ increases with the distance of x_i from \bar{x} .
- ightarrow The average leverage for all the observations is always equal to (p+1)/n.
- \rightarrow If a given observation has a leverage statistic that greatly exceeds (p+1)/n, then we may suspect that the corresponding point has high leverage.

- Non-linearity of the response-predictor relationships.
- Correlation of error terms.
- Non-constant variance of error terms.
- Outliers.
- High-leverage points.
- Collinearity.

Collinearity.

Collinearity

 Collinearity refers to the situation in which two or more predictor variables collinearity are closely related to one another.

Collinearity

- Collinearity refers to the situation in which two or more predictor variables collinearity are closely related to one another.
- The presence of collinearity can pose problems in the regression context, since
 it can be difficult to separate out the individual effects of collinear variables on
 the response.

Collinearity

- Collinearity refers to the situation in which two or more predictor variables collinearity are closely related to one another.
- The presence of collinearity can pose problems in the regression context, since
 it can be difficult to separate out the individual effects of collinear variables on
 the response.
- Collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_i$ to grow.

Collinearity

- Collinearity refers to the situation in which two or more predictor variables collinearity are closely related to one another.
- The presence of collinearity can pose problems in the regression context, since
 it can be difficult to separate out the individual effects of collinear variables on
 the response.
- Collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_i$ to grow.
- Recall that the *t-statistic* for each predictor is calculated by dividing $\hat{\beta}_j$ by its standard error.

Collinearity

- Collinearity refers to the situation in which two or more predictor variables collinearity are closely related to one another.
- The presence of collinearity can pose problems in the regression context, since
 it can be difficult to separate out the individual effects of collinear variables on
 the response.
- Collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_i$ to grow.
- Recall that the *t-statistic* for each predictor is calculated by dividing $\hat{\beta}_j$ by its standard error.
- Consequently, collinearity results in a decline in the t-statistic. As a result, in the presence of collinearity, we may fail to reject $H_0: \beta_i = 0$.

4□ > 4□ > 4 = > 4 = > = 90

Collinearity

How to detect collinearity (or multicollinearity):

Look at the correlation matrix of the predictors.

Collinearity

- Look at the correlation matrix of the predictors.
 - ightarrow An element of this matrix that is large in absolute value indicates a pair of highly correlated variables.

Collinearity

- Look at the correlation matrix of the predictors.
 - ightarrow An element of this matrix that is large in absolute value indicates a pair of highly correlated variables.
- Compute the variance inflation factor (VIF).

Collinearity

- Look at the correlation matrix of the predictors.
 - ightarrow An element of this matrix that is large in absolute value indicates a pair of highly correlated variables.
- Compute the variance inflation factor (VIF).
 - \rightarrow The VIF is the ratio of the variance of $\hat{\beta}_j$ when fitting the *full model* divided by the variance of $\hat{\beta}_i$ if fit on *its own*.

Collinearity

- Look at the correlation matrix of the predictors.
 - \rightarrow An element of this matrix that is large in absolute value indicates a pair of highly correlated variables.
- Compute the variance inflation factor (VIF).
 - \rightarrow The VIF is the ratio of the variance of $\hat{\beta}_j$ when fitting the *full model* divided by the variance of $\hat{\beta}_j$ if fit on *its own*.

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

Collinearity

How to detect collinearity (or multicollinearity):

- Look at the correlation matrix of the predictors.
 - \rightarrow An element of this matrix that is large in absolute value indicates a pair of highly correlated variables.
- Compute the variance inflation factor (VIF).
 - \rightarrow The VIF is the ratio of the variance of $\hat{\beta}_j$ when fitting the *full model* divided by the variance of $\hat{\beta}_i$ if fit on *its own*.

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

where $R^2_{Xj\mid X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors.

- **← □ ▶ ← □ ▶ ← 亘 ▶ ← 亘 ・ 釣 へ ⊙**

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R^2_{X_j|X_{-i}}$ is the R^2 from a regression of X_j onto all of the other predictors.

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R^2_{Xj\mid X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors.

ullet If $VIF \simeq 1
ightarrow {
m complete}$ absence of collinearity.

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R_{X_j|X_{-i}}^2$ is the R^2 from a regression of X_j onto all of the other predictors.

- ullet If $VIF \simeq 1
 ightarrow {
 m complete}$ absence of collinearity.
- If $1 < VIF < 5 \rightarrow$ moderate collinearity.

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R^2_{X_j|X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors.

- ullet If $VIF \simeq 1
 ightarrow {
 m complete}$ absence of collinearity.
- If $1 < VIF < 5 \rightarrow$ moderate collinearity.
- If $VIF > 5 \rightarrow$ high collinearity.

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R^2_{X_j|X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors.

- ullet If $VIF \simeq 1
 ightarrow {
 m complete}$ absence of collinearity.
- If $1 < VIF < 5 \rightarrow$ moderate collinearity.
- If $VIF > 5 \rightarrow$ high collinearity.

Solutions:

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R^2_{X_j|X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors.

- ullet If $VIF \simeq 1
 ightarrow {
 m complete}$ absence of collinearity.
- If $1 < VIF < 5 \rightarrow$ moderate collinearity.
- If $VIF > 5 \rightarrow$ high collinearity.

Solutions:

Orop one of the problematic variables from the regression.

4□ > 4□ > 4 = > 4 = > = 90

Collinearity

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{Xj|X_{-j}}^2},$$

where $R_{X_j|X_{-i}}^2$ is the R^2 from a regression of X_j onto all of the other predictors.

- ullet If $VIF \simeq 1
 ightarrow {
 m complete}$ absence of collinearity.
- If $1 < VIF < 5 \rightarrow$ moderate collinearity.
- If $VIF > 5 \rightarrow \text{high collinearity}$.

Solutions:

- Orop one of the problematic variables from the regression.
- ② Combine the collinear variables together into a single predictor.

Thank you!

Any question?