PQR5 Assembler

Instruction Manual

June 2024

Contents

1.	General Info	3
	Registers	
	Instructions	
	Binary/Hex file format	
┰.	Diliary/ rick file tottilat	

1. General Info

pqr5asm is an assembler which translates RISC-V assembly to binary/hex code.

Compliance	RV32I (User-Level ISA v2.2) - 37 base instructions + pseudo/custom instructions	
Input	Assembly program (sample.s)	
Output	Binary/Hex code in ASCII text, .bin formats (sample.bin, sample_bin.txt, sample_hex.txt)	
Syntax Rules	One instruction per line, semicolon at the end of statement is optional.	
	2) Base address of the program (address to which instructions should be stored i the instruction memory) can be defined using assembler directive in the first line of program. Binary file generated with this base address for programming.	
	For eg: .ORIGIN 0x400	
	If not provided, overridden to 0x0000000	
	Supports <space>, <comma>, and ebreak> as delimiters for eg:</comma></space>	
	LUI x5 255 < linebreak > or LUI x5, 255 < linebreak >	
	Use '#' for inline/newline comments for eg:	
	LUI x5, 255 # This is a sample comment	
	5) Supports 32-bit signed/unsigned integer, 0x hex literals for immediate.	
	For eg: 255, 0xFF, -255	
	Immediate supports parenthesis format for ALU-I instructions:	
	addi x1, x0, 2 <=> addi x1, 2(x0)	
	Immediate gets truncated to 20-bit or 12-bit based on instruction.	
	6) Register ABI names are case-insensitive.	
	7) Supports labels for jump/branch instructions:	
	✓ Label is recommended to be of max. 8 ASCII characters	
	✓ Label should be stand-alone in new line for eg: FIBONACC:	
	mvi x1, 1	
✓ Label is case-sensitive.		
	✓ Pre-processor will assign pc-relative address to label.	
	8) Supports ASCII characters in the immediate values for instructions like MVI, LI.	
	For eg: MVI $x0$, 'A' # This is equivalent to MVI $x0$, $0x41$ Supports all 7-bit ASCII characters from 0x20 to 0x7E, '\n', '\r'.	
Invoking Assembler	r5asm.py <assembly file="" path="" source=""></assembly>	

2. Registers

Following registers are supported by the ISA and Assembler ABI.

Register Name	ABI Name	Description
х0	х0	Hard-wired Zero
x1	ra	Return Address
x2	sp	Stack Pointer
x3	gp	Global Pointer
x4	tp	Thread Pointer
x5-x7	t0-t2	Temporary Registers
x8	s0/fp	Saved Register/Frame Pointer
х9	s1	Saved Register
x10-x11	a0-a1	Function Arg/Return Val Registers
x12-x17	a2-a7	Function Arg Registers
x18-x27	s2-s11	Saved Registers
x28-x31	t3-t6	Temporary Registers

Table 2.1: Registers with ABI acronyms

3. Instructions

LUI rd, imm LUI r	32-bit into the er 12-bit C, then outines.
1. LUI LUI rd, imm imm[19:0] into the upper 20-bit of rd. the lower 12-bit of rd with eg: LUI x1, 0xFFF Add Upper Immediate PC Builds PC-relative addresses. Forms offset from 20-bit imm[19:0] by loading upper 20-bit of rd, and loading the lower with zeroes. Adds this offset to the PC places the result in rd. Control Transfer Instructions Jump And Link Unconditional jump. Used to call subro	32-bit into the er 12-bit C, then
Builds PC-relative addresses. Forms offset from 20-bit imm [19:0] by loading upper 20-bit of rd, and loading the lowe with zeroes. Adds this offset to the Poplaces the result in rd. Control Transfer Instructions Jump And Link Unconditional jump. Used to call subro	into the r 12-bit C, then butines.
Builds PC-relative addresses. Forms offset from 20-bit imm [19:0] by loading upper 20-bit of rd, and loading the lowe with zeroes. Adds this offset to the Poplaces the result in rd. Control Transfer Instructions Jump And Link Unconditional jump. Used to call subro	into the r 12-bit C, then butines.
Jump And Link Unconditional jump. Used to call subro	
Unconditional jump. Used to call subro	
return from subroutine.	
JAL rd, label OR JAL rd, imm 20-bit imm[19:0] encodes signed of multiples of 2 bytes, and is added to the pc to get the target address.	
target address =	
<pre>pc + 32'(signed'({offset[20:1] 1'b0}))</pre>	,
The unconditional jump range = ±1 MB.	
Jump And Link Register	
Unconditional Indirect jump. Used subroutines. Stores next instruction a pc+4 in rd for return from subroutine.	
4. JALR rd, rs1, offset 12-bit imm[11:0] encodes signed offset added to rs1, and clear 0th bit of resul the target address.	
target address =	
{(rs1 + 32'(signed'(offset))) [31:1], 1'b0}	
The unconditional jump range = ±2 kB. (- to +2047)	2048
Branch Equal	
Takes the branch if rs1 == rs2	
5. BEQ rs1, rs2, label OR BEQ rs1, rs2, imm 12-bit imm[11:0] encodes signed of multiples of 2 bytes, and is added to the pc to get the target address.	
target address =	

			pc + 32'(signed'({offset[12:1],	
			1'b0}))	
			The conditional branch range = ±4 KB.	
	BNE	BNE rs1, rs2, label	Branch Not Equal	
6.	DINE	OR BNE rs1, rs2, imm	Takes the branch if rs1 != rs2	
			Branch Less Than	
7.	BLT	BLT rs1, rs2, label OR	Takes the branch if	
		BLT rs1, rs2, imm	signed'(rs1) < signed'(rs2)	
			Branch Greater Than or Equal	
8.	BGE	BGE rs1, rs2, label OR	Takes the branch if	
		BGE rs1, rs2, imm	signed'(rs1) >= signed'(rs2)	
			Branch Less Than Unsigned	
9.	BLTU	BLTU rs1, rs2, label OR	Takes the branch if	
		BLTU rs1, rs2, imm	rs1 < rs2	
			Branch Greater Than or Equal Unsigned	
10.	BGEU	BGEU rs1, rs2, label OR	Takes the branch if	
		BGEU rs1, rs2, imm	rs1 >= rs2	
Load Store Instructions				
			Load Byte	
	LB		Loads 8-bit data from memory, sign-extends to 32-bit, put into ${\tt rd}$.	
11.	LB	LB rd, rs1, offset	load address =	
			32'rs1 + 32'(signed'(offset)) // expected to be 8-bit aligned	
			Load Half-word	
12.	LH	LH rd, rs1, offset	Loads 16-bit data from memory, sign-extends to 32-bit, put into rd.	
	LW		Load Word	
13.	LVV	LW rd, rs1, offset	Loads 32-bit data from memory, put into rd.	
			Load Byte Unsigned	
14.	LBU	LBU rd, rs1, offset	Loads 8-bit data from memory, zero-extends to 32-bit, put into rd.	
			Load Half-word Unsigned	
15.	LHU	LHU rd, rs1, offset	Loads 16-bit data from memory, sign-extends to 32-bit, put into rd.	
			Store Byte	
16.	SB	SB rs2, rs1, offset	Stores lower 8-bit of rs2 in memory.	
			store address =	

			32'rs1 + 32'(signed'(offset)) // expected to be 8-bit aligned
			Store Half-word
17.	SH	SH rs2, rs1, offset	Stores lower 16-bit of rs2 in memory.
	0)4/		Store Word
18.	sw	SW rs2, rs1, offset	Stores rs2 in memory.
		Integer Computation Inst	ructions (ALU-I)
			Add Immediate
19.	ADDI	ADDI rd, rs1, imm	<pre>rd = rs1 + 32'(signed'(imm)) // overflow ignored</pre>
			Set Less Than Immediate
	CI TI		rd = 1,
20.	SLTI	SLTI rd, rs1, imm	<pre>if signed'(rs1) < 32'(signed'(imm)), else 0</pre>
			Set Less Than Immediate Unsigned
04	SLTIU	OTETTI and and 1	rd = 1,
21.	02110	SLTIU rd, rs1, imm	if rs1 < 32'(signed'(imm)), else 0
			-
22.	XORI	XORI rd, rs1, imm	XOR Immediate
		, , ,	rd = rs1 XOR 32'(signed'(imm))
22	ORI	ODT and mod imm	OR Immediate
23.		ORI rd, rs1, imm	rd = rs1 OR 32'(signed'(imm))
	ANDI		AND Immediate
24.		ANDI rd, rs1, imm	rd = rs1 AND 32'(signed'(imm))
0.5	SLLI	SLLI rd, rs1, shamnt	Logical Left Shift Immediate
25.			rd = rs1 << shamnt[4:0]
	SRLI	SRLI rd, rs1, shamnt	Logical Right Shift Immediate
26.			rd = rs1 >> shamnt[4:0]
			Arithmetic Right Shift Immediate
27.	SRAI	SRAI rd, rs1, shmant	rd = signed' (rs1) >>> shamnt[4:0]
		Integer Computation Instr	
00	ADD	ADD and mod	Add
28.	7.55	ADD rd, rs1, rs2	rd = rs1 + rs2 // overflow ignored
	OUD		Subtract
29.	SUB	SUB rd, rs1, rs2	rd = rs1 - rs2 // underflow ignored
25	SLL		Logical Left Shift
30.	JLL	SLL rd, rs1, rs2	rd = rs1 << rs2[4:0]
	SLT	SLT rd, rs1, rs2	Set Less Than
31.			rd = 1,

			<pre>if signed'(rs1) < signed'(rs2),</pre>
			else 0
			Set Less Than Unsigned
32.	SLTU	SLTIU rd, rs1, rs2	rd = 1,
			if rs1 < rs2, else 0
	XOR		XOR
33.	XOK	XOR rd, rs1, rs2	rd = rs1 XOR rs2
0.4	SRL) 1 0	Logical Right Shift
34. SRL	SRL rd, rs1, rs2	rd = rs1 >> rs2[4:0]	
0.5	SRA		Arithmetic Right Shift
35.	ORA	SRA rd, rs1, rs2	rd = signed'(rs1) >>> rs2[4:0]
00	OR		OR
36.		OR rd, rs1, rs2	rd = rs1 OR rs2
	AND		AND
37.	AND	AND rd, rs1, rs2	rd = rs1 AND rs2
	1	Pseudo/Custom	
38.	MV	MV rd, rs1	Move
30.		= ADDI rd, rs1, 0	rd = rs1
	MVI	MVI rd, imm	Move Immediate (12-bit immediate)
39.		= ADDI rd, x0, imm	rd = imm
40.	NOP	NOP = ADDI $x0$, $x0$, 0	No Operation
4.4	J	J label	Plain Jump
41.	J	= JAL x0, label	Jump to label
42.	NOT	NOT rd, rs1	NOT
42.	1.01	= XORI rd, rs1, -1	rd = NOT rs1
	INV	INV rd	Invert
43.		= XORI rd, rd, -1	rd = NOT rd
			Set Equal to Zero
44.	SEQZ	SEQZ rd, rs1 = SLTIU rd, rs1, 1	rd = 1,
		- SLITO 10, 1SI, 1	if rs1 == 0, else 0
			Set Not Equal to Zero
45.	SNEZ	SNEZ rd, rs2	rd = 1,
		= SLTU rd, x0, rs2	if rs1 != 0, else 0
			Branch Equal to Zero
46.	BEQZ	BEQZ rs1, label	Jump to label,
		= BEQ rs1, x0, label	if rs1 == 0, else 0
47.	BNEZ	BNEZ rs1, label = BNE rs1, x0, label	Branch Not Equal to Zero
L	ı		

			Jump to label,
			if rs1 != 0, else 0
1.0	LI	LI rd, imm **	Load Immediate (32-bit immediate)
48.		= LUI rd, U + ADDI rd, L	rd = imm
1.0	LA	LA rd, label **	Load Address (32-bit immediate)
49.		= LUI rd, U + ADDI rd, L	rd = address(label)
	JR	JR rs1	Jump Register Address
50.		= JALR x0, rs1, 0	Jump to address = rs1

Table 3.1: Instructions supported by Assembler

Conventions used:

rd = Destination register

rs1 = Source register-1

rs1 = Source register-2

imm = 12/20-bit immediate

^{**} ${\it U}$ and ${\it L}$ are Upper 20-bit and Lower 12-bit values derived from ${\it imm}$

4. Binary/Hex file format

Input to the assembler is assembly program in **.s** file format. On successful compilation, three files are generated:

- 1. Binary code file in .bin format, which may be decoded and directly loaded to CPU for execution.
- 2. Binary/Hex code files in ASCII .txt format. This is human readable.

The **.bin** file contains the instructions to be executed as sequence of bytes in binary format. The following example shows how a **.bin** file is encoded and formatted by the assembler. Big Endian format is used in the binary file.

```
<0xF0><0xF0><0xF0><0xF0><0xF0>
# Pre-amble marks the beginning
<0x00><0x00><0x00><0x28> # Program size = (no. of instructions, N x 4) bytes
<br/>
```

PQR5 Assembler

An open-source RISC-V Assembler for RV32I ISA

Developer : Mitu Raj

Vendor : **Chip**munk **Logic**[™], *chip@chipmunklogic.com*

Website : chipmunklogic.com

