Wavelength Detection through Michelson Interferometry

Henry Shackleton

March 14, 2017

Outline

- Introduction and Theory
- 2 Experimental Setup
- Oata Analysis
- 4 Conclusion

What is Michelson Interferometry?

What is Michelson Interferometry?

Use detector measurements to determine wavelength of light source.

Light travels as waves

Superposition of waves work as addition

$$E_T(t) = E_1 e^{i(\phi_1 - \omega t)} + E_2 e^{i(\phi_2 - \omega t)}$$

4 / 16

Henry Shackleton Michelson Interferometry March 14, 2017

Superposition of waves work as addition

$$E_T(t) = E_1 e^{i(\phi_1 - \omega t)} + E_2 e^{i(\phi_2 - \omega t)}$$

Form of the superposition dependent on relative phase, $\phi_1-\phi_2$

4 / 16

Henry Shackleton Michelson Interferometry March 14, 2017

Constructive interference: $\phi_1 - \phi_2 = 2\pi n$, n = 1, 2, 3, ...

Constructive interference: $\phi_1 - \phi_2 = 2\pi n$, n = 1, 2, 3, ...

$$E(t) = (E_1 + E_2)e^{i\omega t}$$

Constructive interference: $\phi_1 - \phi_2 = 2\pi n$, n = 1, 2, 3, ...

$$E(t) = (E_1 + E_2)e^{i\omega t}$$

Destructive interference: $\phi_1 - \phi_2 = (2n+1)\pi$, n = 1, 2, 3, ...

Constructive interference: $\phi_1 - \phi_2 = 2\pi n$, n = 1, 2, 3, ...

$$E(t) = (E_1 + E_2)e^{i\omega t}$$

Destructive interference: $\phi_1 - \phi_2 = (2n+1)\pi$, n = 1, 2, 3, ...

$$E(t) = (E_1 - E_2)e^{i\omega t}$$

Constructive interference through relative phase difference

Destructive interference through relative phase difference

From complex waves to observables

- What photodetectors observe is the *intensity* of a wave.
- $I \propto \langle E_T^* E_T \rangle = E_1^2 + E_2^2 + 2E_1E_2\cos(\phi_1 \phi_2)$
- Interference affects intensity too!

Relative length traveled to relative phase

• One wave travels a length $2l_1$, and one wave travels a length $2l_2$. What is the relative phase offset of the two?

$$\phi_1 - \phi_2 = \frac{4\pi}{\lambda} (I_2 - I_1)$$

$$I \propto E^2 + E^2 \cos \left(\frac{4\pi}{\lambda} (I_2 - I_1) \right)$$

Overview of experimental setup

PZT converts voltage to displacement

- PZT changes relative length difference from $2(l_2 l_1)$ to $2(l_2 l_1 \Delta V)$.
- Relative length difference causes a phase difference proportional to the wavelength.
- $I \propto E^2(1 + \cos(C(\lambda)V))$

Oscilliscope display of interference patterns

Distribution of measured voltage differences

Sources of error:

ullet Measured voltage difference ± 0.14 V from measurement

- Measured voltage difference ± 0.14 V from measurement
- Measured voltage difference ± 0.02 V from distribution

- Measured voltage difference ± 0.14 V from measurement
- Measured voltage difference ± 0.02 V from distribution
- ullet Average voltage difference 6.96 \pm .16 V

- Measured voltage difference ± 0.14 V from measurement
- Measured voltage difference ± 0.02 V from distribution
- ullet Average voltage difference $6.96\pm.16~V$
- ullet PZT voltage to length conversion 44.6 \pm 2.6 nm/V

- Measured voltage difference ± 0.14 V from measurement
- Measured voltage difference ± 0.02 V from distribution
- ullet Average voltage difference 6.96 \pm .16 V
- ullet PZT voltage to length conversion 44.6 \pm 2.6 nm/V
- $\lambda = 620 \pm 38 \text{ nm}$

Predicted wavelength agrees with independent calculations

- Standard wavelength of orange light: 590-620 nm.
- ullet Predicted wavelength of 620 \pm 38 nm mostly falls within this range.
- Michelson interferometry can be used to accurately calculate wavelengths.

 Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.
- Error propegation is largely controlled by the PZT.

- Michelson interferometers produce interference patterns dependent on the light wavelength and the relative length difference between the two arms.
- By controlling this length with a PZT, we can accurately determine the wavelength of the light source.
- Error propegation is largely controlled by the PZT.
- The aether probably doesn't exist.