M

02000CST284062202

Course Code: CST284

Course Name: Mathematics for Machine Learning

Max. Marks: 100 Duration: 3 Hours

PART A

	PARI A				
•	(Answer all questions; each question carries 3 marks)	Marks			
1	Let $V = \{(x, y): x \ge 0, y \ge 0\}$ with standard operations. Is it a vector space?	3			
	Justify your answer.				
2	Let $x = x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $y = \begin{bmatrix} 3 \\ 2 \\ 9 \end{bmatrix}$ and $z = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$. Is the set $\{x, y, z\}$ linearly	3			
	independent?				
3	Let $x = \begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix}$, $u = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$. and $W = \text{span } \{u, v\}$. Note that $u.v = 0$. Find a	3			
	vector a in W and a vector b that is orthogonal to W, such that $x = a + b$				
4	One of the eigen value of the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 0 & 6 \\ 1 & 1 & p \end{bmatrix}$ is three. Find the sum of	3			
	other two eigen value				
5	Find the maximum and minimum values of $f(x) = x^4 - 3x^3 - 1$ on [-2.2].	3			
6	Compute the gradient of the function $f(x,y,z)=x^2e^{yz^2}$	3			
7.	Find the mean and variance of the random variable X whose probability density	3			
	function is $f(x) = \begin{cases} \frac{3}{4}(1-x)(x-3) & 1 \le x \le 3\\ 0 & otherwise \end{cases}$				
8	I roll two dice and observe two numbers X and Y. If Z=X-Y, find the range and PMF of Z.	3			
9		_			
10	Explain the principle of the gradient descent algorithm with a diagram.	3			
- •	An aeroplane can carry a maximum of 250 passengers, A profit of Rs. 1500 is made on				
	each executive class ticket and a profit of Rs. 900 is made on each economy class ticket.				
	The airline reserves at least 30 seats for executive class. However at least 4 times as				

02000CST284062202

many passengers prefer to travel by economy class than by executive class. Formulate LPP in order to maximize the profit for the airline.

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- Consider the matrix $\begin{bmatrix} 1 & 1 \\ -2 & h \end{bmatrix}$ and vector $\mathbf{b} = \begin{pmatrix} k \\ 1 \end{pmatrix}$. Find all possible values of h and k so that the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has: (a) no solution. (b) exactly one solution. (c) infinitely many solutions.
 - b) Find the inverse of $\begin{bmatrix} 4 & 3 \\ 6 & 5 \end{bmatrix}$
- 12 a)
 (i) Define $T: P_2 \to \mathbb{R}^3$ by: $T(p) = \begin{bmatrix} p(-1) \\ p(0) \\ p(1) \end{bmatrix}$. Find the image under T of

$$p(t) = 5 + 3t$$

- b) (ii) Show that T is a linear transformation
- c) For each of the following matrices, find the characteristic equation, the eigenvalues and a basis for each eigenspace

3

4

10

8

$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Module -2

13 a)
For the space \mathbb{R}^4 , let $w_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $w_2 = \begin{bmatrix} 3 \\ 3 \\ -1 \\ -1 \end{bmatrix}$, $y = \begin{bmatrix} 6 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ and let $W = \text{span}\{w_1, w_2\}$.

Find a basis for W consisting of two orthogonal vectors

b) Find bases for the four fundamental subspaces associated with the matrix

$$A = \begin{bmatrix} 1 & -3 & 0 \\ 2 & -6 & 4 \\ -3 & 9 & 1 \end{bmatrix}$$

14 a) Compute the singular value decomposition of

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

02000CST284062202

b) Diagonalize the following matrix. if possible

6

 $\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$

Module -3

- 15 a) Consider the function $f(x,y) = x^3 xy + y^3$. Find local maximum, local minimum of f
 - 8
- b) Compute the Jacobian of the coordinate transformation $x = u^2 u^4$, y = uv16 a) Find the Maclaurin series for $tan^{-1}x^2$
- 6
- b) •Write out the first five terms of the Taylor series for \sqrt{x} centered at x = 1.
- 7

8

Module -4

17 a) An engineering college has made a study of the grade-point averages of graduating engineers, denoted by the random variable Y. It is desired to study these as a function of high school grade-point averages, denoted by the random variable X. The joint probability distribution is shown, where the grade point averages have been combined into live categories for each variable

				X		
		2.0	2.5	3.0	3.5	4.0
	2.0	0.05	0	0	0	0 ,
Y	2.5	0. 10	0.04	0	0.01	0
	3.0	0.02	0.10	0.05	0.10	0.01
	3.5	0	0	0.10	0.20	0.10
	4.0	0	0	0.05	0.02	0.05

Find the marginal distributions for X and Y

b) Find E(X) and E(Y)

4

c) Find $P(X \ge 3, Y \ge 3)$

2

7

- 18 a) The probability that a randomly chosen male has a circulation problem is 0.25.

 Males who have a circulation problem are twice as likely to be smokers as those who do not have a circulation problem. What is the conditional probability that a male has a circulation problem, given that he is a smoker?
 - b) Suppose A, B, and C are mutually independent events with probabilities P(A) = 0.5, P(B) = 0.8, and P(C) = 0.3. Find the probability that at least one of these events occurs

02088CST284062202

Module -5

19	a)	Use Method of Steepest Descent to find the minimum of $f(x, y) = 4x^2 - 4xy +$						
•	* •	$2y^2$ with initial point $x_0 = (2,3)$						
	b)	Find the point on the curve $y^2 = 2x$ which is at a minimum distance from the point (1,4)						
20	a)	Compare and contrast different gradient descent algorithm						
	b)	Define Quadratic programming. Discuss the advantages of quadratic programming	7					