МЕТОД, ИМИТИРУЮЩИЙ ПОВЕДЕНИЕ СТАИ ОКУНЕЙ

1. Постановка задачи

Дана целевая функция $f(x) = f(x_1, x_2, ..., x_n)$, определенная на множестве допустимых решений $D \subset \mathbb{R}^n$.

Требуется найти условный глобальный минимум функции f(x) на множестве D, т.е. такую точку $x^* \in D$, что

$$f(x^*) = \min_{x \in D} f(x), \tag{1}$$

где $x = (x_1, x_2, ..., x_n)^T$, $D = \{x \mid x_i \in [a_i, b_i], i = 1, 2, ..., n\}$.

Задача поиска максимума функции f(x) сводится к задаче поиска минимума путем замены знака перед функцией на противоположный: $f(x^*) = \max_{x \in D} f(x) = -\min_{x \in D} [-f(x)]$. Функция f(x) может быть многоэкстремальной, поэтому искомое решение в общем случае неединственное.

2. Стратегия поиска решения

Метод (Perch School Search – PSS) имитирует поведение стай речного окуня. С целью добывания пищи окуни средних размеров сбиваются в стаи по 5–12 особей. Совсем мелкие окуни образуют стаи, содержащие около 100 особей. Как правило, они берут рыбу, на которую они охотятся, в кольцо (окуневый котел) и из него не выпускают. Окуни атакуют жертв, находящихся ближе к границе котла, постепенно продвигаясь к его центру. Для поиска новых источников пищи окуни используют механизм миграции. Более крупные окуни обычно держатся на глубине, в ямах и омутах и охотятся поодиночке. Они реже, чем мелкие, организуют стаи, но известно, что они объединяются для борьбы с другими хищными рыбами (щуками и судаками). Речной окунь использует весьма агрессивную модель охоты, он активно преследует жертву, иногда выскакивая за ней даже на поверхность воды. Самые крупные окуни, – одиночные, самостоятельные хищники. Это связанно с тем, что крупный окунь уже не нуждается в коллективной охоте и может самостоятельно охотиться на любую, доступную по размеру рыбу. При отсутствии кормовых объектов на постоянном месте обитания, окунь начинает перемещаться в поисках мест, изобилующих мелкой рыбешкой и другим кормом.

При решении задачи поиска глобального условного минимума функции используются конечные наборы $I = \{x^j = (x_1^j, x_2^j, ..., x_n^j)^T, j = 1, 2, ..., NP\} \subset D$ возможных решений, называемые популяциями, где x^j — особь (окунь) с номером j, NP — размер популяции.

В начале процесса метод порождает популяцию окуней с помощью равномерного на множестве допустимых решений распределения. При этом все решения упорядочиваются по возрастанию значения целевой функции. Затем популяция делится на стаи. Порядок формирования стай: наилучшее решение помещается в первую стаю, следующее — во вторую и т.д. M -е в M -ю стаю, (M+1)-е снова в первую стаю, (M+2)-е во вторую стаю и т.д. Описанный процесс

соответствует обмену информацией между стаями с целью эффективного приближения к глобальному экстремуму.

В каждой стае определяется лидер по величине целевой функции. Каждая стая организует окуневый котел, в котором происходит охота. При этом реализуется движение всех окуней стаи к своему лидеру, исследуя границы котла. Во время движения запоминается наилучшее положение (в этом положении охота считается удачной, происходит фаза питания окуней). В результате находятся новые лидеры каждой стаи и новые положения ее членов. Среди лидеров стай находится абсолютный лидер и наименее успешный.

В стае, соответствующей абсолютному лидеру, реализуется окуневый котел, в котором тщательно исследуется вся область, занимаемая стаей. В результате находится новый абсолютный лидер.

Затем среди стай выбирается стая с самым слабым лидером. Она перемещается в другую область множества допустимых решений (водоема). Для этого реализуется движение лидера стаи на основе распределения Леви с проверкой принадлежности множеству допустимых решений. Остальные члены стаи генерируются с помощью равномерного закона распределения на параллелепипедном множестве, размер которого по каждой координате определяется удвоенным расстоянием от лидера до ближайшей границы множества D. В полученной стае реализуется окуневый котел, и находится новый лидер.

Остальные стаи совершают плавание в направлении к текущему абсолютному лидеру всей популяции. При этом локальный лидер стаи двигается по прямой к абсолютному лидеру, а остальные окуни этой стаи двигаются параллельно ему. В этом движении все окуни запоминают свою наилучшую позицию и в ней остаются (питаются).

По окончании миграции всех стай популяции абсолютный лидер помещается в множество *Pool*. Происходит новое деление популяции на стаи, и начинается новая глобальная итерация до достижения заданного их числа.

На заключительном шаге в множестве *Pool* организуется взаимодействие лидеров, выявленных на каждой глобальной итерации алгоритма (охота крупных окуней за более серьезной добычей). Заданное число раз в множестве *Pool* выбирается тройка окуней и реализуется операция перекоммутации (path-relinking) [x], в результате которой множество пополняется еще одним решением.

После окончания процедуры перекоммутации среди элементов множества *Pool* находится наилучшее решение, которое считается приближенным решением поставленной задачи.

Предложенный метод является гибридным, так как содержит идеи, использованные в алгоритме лягушек (деление на стаи), алгоритме кукушек (перелет Леви), миграционном алгоритме (движение к лидеру), алгоритме перекоммутации (поиск в множестве Pool).

Общая схема работы метода изображена на рис. 1.

Рис. 1. Общая схема работы метода, имитирующего поведение стаи окуней

Рис. 2. Охота стаи окуней

Рис. 3. Окуневый котел

3. Алгоритм решения задачи

Шаг 1. Задание параметров метода:

- \bullet контролирующий параметр NStep, определяющий количество шагов до окончания движения;
- количество стай в популяции M;
- количество окуней в стае s;
- число членов популяции $NP = s \cdot M$;
- останавливающий параметр Iter_{\max} , определяющий максимальное количество итераций;
- параметр \(\lambda \) распределения Леви;
- величина шага α;
- максимальное число перекоммутаций PR_{\max} ;
- число шагов в процедуре перекоммутации Δ_{pr} .

Шаг 2. Создание начальной популяции окуней.

Шаг 2.1. Создать популяцию $I = \{x^j = (x_1^j, x_2^j, ..., x_n^j)^T, j = 1, 2, ..., NP\} \subset D$ из NP решений (окуней) со случайно сгенерированными координатами x_i из промежутка $[a_i, b_i]$ с использованием равномерного закона распределения:

$$x_i^j = a_i + rand_i [0,1] \cdot (b_i - a_i), i = 1,...,n; j = 1,...,NP.$$

где $rand_i[0,1]$ – равномерный закон распределения на отрезке [0;1].

Шаг 2.2. Для каждого решения (окуня) в популяции вычислить значения целевой функции.

Положить iter = 1 (счетчик числа глобальных итераций).

Шаг 3. Деление популяции на стаи.

Шаг 3.1. Упорядочить решения в популяции по возрастанию значений целевой функции.

Шаг 3.2. Сформировать M стай по s окуней в каждой: наилучшее (с наименьшим значением целевой функции) решение, поместить в первую стаю, следующее — во вторую и т.д., M -е поместить в M -ю стаю, (M+1)-е снова в первую стаю и т.д. Результатом являются M стай, содержащих по s окуней каждая, так что $NP = M \cdot s$. Первый помещенный в стаю окунь является ее лидером $x^{loc,m}$, m = 1,...,M. Лидер первой стаи одновременно является лидером всей популяции: $x^{loc,1} = x^{glob}$.

Шаг 4. Реализация окуневого котла в каждой стае.

Шаг 4.1. Для каждой стаи m = 1,...,M выполнить следующие действия.

Передвинуть каждого окуня по направлению к лидеру стаи в окрестности ее границы:

$$x^{j,m,k} = x^{j,m} + k \frac{\left(x^{loc,m} - x^{j,m}\right)}{Nstep}, k = 0,1,...,\left[\sigma \cdot Nstep\right]; j = 1,...,s;$$

где $x^{j,m}$ — начальное положение окуня с номером j в стае с номером m; $x^{j,m,k}$ — положение окуня во время движения; $x^{loc,m}$ — положение лидера стаи с номером m; $[\cdot]$ — целая часть числа; значение параметра котла $\sigma \in [0,1;0,5]$ генерируется с помощью равномерного закона распределения на каждой итерации для каждой стаи независимо.

После всех выполненных шагов для каждого окуня найти наилучший шаг (такой шаг, на котором значение целевой функции было наименьшим), а окуню занять эту наилучшую позицию $x^{j,m,new}$:

$$x^{j,m,new} = \underset{k=0,1,...,[\sigma \cdot Nstep]}{\operatorname{argmin}} f(x^{j,m,k}), j = 1,...,s.$$

Шаг 4.2. В каждой стае определить нового лидера $x^{loc,m,new}, m=1,...,M$.

Шаг 4.3. Упорядочить стаи по возрастанию значений целевой функции. Первой стае соответствует абсолютный лидер $x^{loc,1}=x^{glob}$, в остальных стаях находится локальный лидер $x^{loc,m}, m=2,...,M$; стае с номером M соответствует наибольшее значение целевой функции среди лидеров.

Шаг 5. Плавание стаи с абсолютным лидером.

Шаг 5.1. Передвинуть каждого окуня по направлению к абсолютному лидеру стаи, двигаясь вдоль соединяющей их прямой (приближаясь, а затем удаляясь в том же направлении):

$$x^{j,1,k} = x^{j,1} + k \frac{\left(x^{glob} - x^{j,1}\right)}{Nstep}, k = 0,1,...,\left[\sigma_1 \cdot Nstep\right]; j = 1,...,s;$$

где значение параметра котла $\sigma_1 \in [1;1,5]$ генерируется с помощью равномерного закона распределения на каждой итерации.

Шаг 5.2. После всех выполненных шагов для каждого окуня стаи найти наилучший шаг (такой шаг, на котором значение целевой функции было наименьшим), а окуню занять эту наилучшую позицию $x^{j,1,new}$:

$$x^{j,1,new} = \underset{k=0,1,...[\sigma_1 \cdot Nstep]}{\operatorname{argmin}} f(x^{j,1,k}), j=1,...,s.$$

Шаг 5.3. В стае определить нового лидера $x^{loc,1,new} = x^{glob,new}$.

Шаг 6. Плавание стаи с наихудиим лидером.

Шаг 6.1. Плавание лидера. Новое положение лидера генерируется случайным образом с помощью распределения Леви:

$$x_i^{loc,M,new} = x_i^{loc,M} + \frac{\alpha}{iter} \cdot Levy_i(\lambda), \quad i = 1,...,n,$$

где $x_i^{loc,M}$ — координата положения лидера стаи на текущей итерации, α — величина шага, $\lambda \in (1;3]$, а для генерации случайной величины согласно распределению Леви требуется:

- для каждой координаты x_i с помощью равномерного закона распределения на множестве $[\varepsilon; b_i a_i]$, где $\varepsilon = 10^{-7}$ константа различимости, сгенерировать число R_i , i=1,...,n:
 - найти числа $\theta_i = R_i \cdot 2\pi$ и $L_i = R_i^{-\frac{1}{\lambda}}, i = 1,...,n$, где λ параметр распределения;
 - вычислить значения координат по формулам:

$$x_i = L_i \sin \theta_i, \ i = 1, ..., \left[\frac{n}{2} \right]; \ x_i = L_i \cos \theta_i, \ i = \left[\frac{n}{2} \right] + 1, ..., n.$$

Если полученное значение координаты x_i не принадлежит множеству допустимых решений, т.е. $x_i \notin [a_i;b_i]$, то процесс его генерации повторяется.

Шаг 6.2. Генерировать новые позиции членов стаи $x^{j,M}$ с помощью равномерного распределения на параллелепипеде, образованном прямым произведением отрезков $[x_i^{loc,M} - \hat{x}_i, x_i^{loc,M} + \hat{x}_i]$, где $\hat{x}_i = \min\{(x_i^{loc,M} - a_i), (b_i - x_i^{loc,M})\}$.

Шаг 6.3. Реализовать окуневый котел в полученной стае.

Передвинуть каждого окуня по направлению к лидеру стаи в окрестности ее границы:

$$x^{j,M,k} = x^{j,M} + k \frac{\left(x^{loc,M,new} - x^{j,M}\right)}{Nstep}, k = 0,1,...,\left[\sigma_3 \cdot Nstep\right]; j = 1,...,s;$$

где значение параметра котла $\sigma_3 \in [0,1;0,5]$ генерируется с помощью равномерного закона распределения на каждой итерации.

После всех выполненных шагов для каждого окуня найти наилучший шаг (такой шаг, на котором значение целевой функции было наименьшим), а окуню занять эту наилучшую позицию $x^{j,M,new}$:

$$x^{j,M,new} = \underset{k=0,1,...,[\sigma_3:Nstep]}{\operatorname{argmin}} f(x^{j,M,k}), j=1,...,s.$$

Шаг 6.4. Определить нового лидера стаи $x^{loc,M}$.

Шаг 7. Плавание остальных стай.

Для всех стай с номерами $m \in \{2,...,M-1\}$ выполнить следующие действия.

Шаг 7.1. Передвинуть лидера стаи по направлению к абсолютному текущему лидеру:

$$x^{loc,m,k} = x^{loc,m} + k \frac{\left(x^{glob,new} - x^{loc,m}\right)}{Nstep}, k = 0,1,..., \left[\sigma_2 \cdot Nstep\right];$$

где значение параметра $\sigma_2 \in [0,6;0,8]$ генерируется с помощью равномерного закона распределения на каждой итерации для каждой стаи независимо.

Шаг 7.2. Организовать движение остальных членов стаи параллельно лидеру:

$$x^{j,m,k} = x^{j,m} + k \frac{\left(x^{glob,new} - x^{loc,m}\right)}{Nstep}, k = 0,1,...,\left[\sigma_2 \cdot Nstep\right]; j = 1,...,s.$$

После всех выполненных шагов для каждого окуня найти наилучший шаг (такой шаг, на котором значение целевой функции было наименьшим), а окуню занять эту наилучшую позицию $x^{j,m,new}$:

$$x^{j,m,new} = \underset{k=0,1,...,[\sigma_2 \cdot Nstep]}{\operatorname{argmin}} f(x^{j,m,k}), j = 1,...,s.$$

Шаг 7.3. Каждому из членов стаи занять наилучшую позицию, достигнутую в процессе плавания. Найти нового лидера стаи $x^{loc,m}, m \in \{2,...,M-1\}$.

Шаг 8. *Нахождение нового абсолютного лидера популяции среди лидеров стай.* Среди решений, соответствующих лидерам стай, выбрать наилучшее и поместить его в множество *Pool* .

Шаг 9. Проверка условий завершения поиска.

Если $iter = Iter_{\max}$, то перейти к шагу 10. Иначе положить iter = iter + 1 и перейти к шагу 3.

Шаг 10. Интенсивный поиск в множестве Pool.

Шаг 10.1. Положить pr = 1.

Шаг 10.2. Выбрать три различных случайных решения $x_{pool}^p, x_{pool}^q, x_{pool}^r$ из множества Pool .

Шаг 10.3. Найти решение

$$x_{pool}^{pq} = \arg\min_{j=1,\dots,\Delta_{pr}-1} f\left(x_{pool}^{p} + j\left(x_{pool}^{q} - x_{pool}^{p}\right) / \Delta_{pr}\right)$$

Шаг 10.4. Добавить решение

$$x^{new} = \arg\min_{j=1,\dots,\Delta_{pr}-1} f\left(x_{pool}^{pq} + j\left(x_{pool}^{r} - x_{pool}^{pq}\right) / \Delta_{pr}\right)$$

в множество Pool. Положить pr = pr + 1.

Шаг 10.5. Если $pr > PR_{\text{max}}$, то перейти к шагу 11. Иначе — к шагу 10.2.

Шаг 11. *Выбор наилучшего решения*. Среди решений в множестве *Pool* выбрать наилучшее. Считать его приближенным решением поставленной задачи.