

# **Analyzing The Effect of Social Media Activity on The Performance of Cryptocurrencies**

### **Project Group 6**

Rohan Puthran

Inan Ates

Peyman Alipour

**Archit Patil** 

### **Under The Guidance Of**

Prof. Jingyi Sun



### INTRODUCTION

- A cryptocurrency (or "crypto") is a digital currency that can be used to buy goods and services but uses an online ledger with strong cryptography to secure online transactions.
- Cryptocurrencies work using a technology called blockchain.
- Blockchain is a decentralized technology spread across many computers that manages and records transactions.
- Nearly 15,000 different cryptocurrencies are traded publicly, according to CoinMarketCap.com, a market research website.
- In recent times, it is observed that, out of all the factors, social media and internet are the ones which affect the functioning of these cryptocurrencies the most.



# INTRODUCTION

- Particularly, we are interested in analyzing the effect of social media activities on the performance of cryptocurrencies Bitcoin and Ethereum.
- Bitcoin(BTC) is a digital or virtual currency created in 2009 that uses peer-to-peer technology to facilitate instant payments.
- According to a recent survey, more than 2,300 US businesses accept Bitcoin, one of the most popular cryptocurrencies[1].
- Ethereum (ETH) is the second most popular cryptocurrency after Bitcoin(BTC). As the second-largest cryptocurrency by market capitalization (market cap).
- Both of these tokens are decentralized, meaning that they are not issued or regulated by a central bank or other authority.

[1] https://www2.deloitte.com/us/en/pages/audit/articles/corporates-using-crypto.html

# **OBJECTIVES**



By scraping a dataset through Twitter we plan to answer these research questions:

- 1. Does the nature of statement (positive, negative, or neutral) obtained from the social media affect the price trend of cryptocurrency?
  - a. One of our goals in this project is to see whether the tweets related to cryptocurrencies affects the price trends of crypto or not?
  - b. We want to analyze if a positive or negative tweet leads to an increase or decrease respectively in the price of the crypto or not?
- 1. Can we predict future cryptocurrency price trends based on current social media presence?
  - a. Our goal for this question would be to try and predict whether the crypto has an upward or downward trend based on all the previous trends observed for the cryptocurrency.

# **TECHNIQUES USED**



### Web Scraping-

Tweets containing Bitcoin and Ethereum keywords are scraped from twitter using Snscrape.

### • <u>Sentiment Analysis of tweets</u>-

Using sentiment analyzers like VADER, Harvard's General Inquirer and Loughran-McDonald.

### • <u>Time-Series Granularity</u>-

Aggregating time-series of tweet sentiment and crypto price for both Bitcoin and Ethereum.

### Vector Autoregression-

This autoregression is used when there are multiple time-series involved which are interdependent

# **DATA SOURCES & DESCRIPTION**



- Two cryptocurrencies are taken into consideration, 'Bitcoin' and 'Ethereum'.
- Snscrape is used to scrape tweets related to the two currencies using 'Bitcoin' and 'Ethereum' as keywords.
- Bitcoin and Ethereum each have 44,000 tweets scraped covering 89 days from 9/1/2021 to 11/29/2021 with 500 tweets being scrapped for each day.
- Equivalent historic prices for respective cryptocurrencies are also taken from Coindesk.com.

# DATA PREPROCESSING



- Removed Signs- Removing of @, blank space and hashtags (#)
- Removed Punctuations
- Eliminating stop words
- Tokenization- Using nltk.word\_tokenizer()
- Lemmatization- Using WordNetLemmitizer

### SENTIMENT ANALYSIS



Sentiment analysis often relies on lists of words and phrases with positive and negative connotations. In this research, we used 3 different sentiment analysis methods:

### <u>Vader Sentiment Analysis</u>

Vader (Valence Aware Dictionary for Sentiment Reasoning) is a model used for text sentiment analysis that is sensitive to polarity (positive/negative/neutral) and intensity (strength) of emotion.

### o <u>Harvard's General Inquirer</u>

A computer-assisted dictionary based approach for sentiment analysis of textual data. This is a general-purpose dictionary developed by the Harvard University.

### Loughran-McDonald

Dictionary used to determine which tokens (collections of characters) are classified as words. Also includes sentiment word classifications.

Further, we compared the results for these methods and took the best result to train our VAR model.





| sentiment | Cleantext | lemmatized |
|-----------|-----------|------------|
|           |           |            |

| 1 | Neutral  | 25030 |
|---|----------|-------|
| 2 | Positive | 13435 |
| 0 | Negative | 5535  |

**BITCOIN RESULTS** 

sentiment Cleantext\_lemmatized

| 1 | Neutral  | 26872 |
|---|----------|-------|
| 2 | Positive | 12475 |
| 0 | Negative | 4653  |

ETHEREUM RESULTS

As you can see the results above, for both Bitcoin and Ethereum tweets, the results were similar, more number of tweets were neutral and a similar distribution for positive and negative tweets.

Further, other methods showed similar sentiment analysis results, we used these results and moved to the next part of our project

# **GRANULARITY/ TIME-SERIES**



### • Granularity-

For our analysis, we have decided to aggregate our time-series per day i.e. the granularity is day.

### • <u>Bitcoin and Ethereum price</u>-

We downloaded historic crypto price with per day granularity. Along with closing price, volume and return is also present in data.

### • Twitter data-

Tweets retrieved were spread across the entire day. After sentiment analysis is performed, the resultant time-series is aggregate per day by using resampling.





- This is the final time-series we obtained after aggregating data for Bitcoin
- This includes date, score, closing price, returns and volume for each day.
- We then loaded this time series into the VAR model to get our results.
- A similar time-series with same variables was made for Ethereum as well.

|    | Date       | score   | Close       | Bit_retrrn | Volume       |
|----|------------|---------|-------------|------------|--------------|
| 0  | 9/1/2021   | 0.3612  | 48847.02734 | 0.035006   | 3.913940e+10 |
| 1  | 9/2/2021   | 0.0000  | 49327.72266 | 0.009793   | 3.950807e+10 |
| 2  | 9/3/2021   | 0.0000  | 50025.37500 | 0.014044   | 4.320618e+10 |
| 3  | 9/4/2021   | -0.6249 | 49944.62500 | -0.001615  | 3.747133e+10 |
| 4  | 9/5/2021   | 0.0000  | 51753.41016 | 0.035575   | 3.032268e+10 |
|    |            |         |             |            |              |
| 83 | 11/25/2021 | -0.1280 | 57274.67969 | 0.017512   | 3.428402e+10 |
| 84 | 11/26/2021 | 0.8316  | 53569.76563 | -0.066874  | 4.181075e+10 |
| 85 | 11/27/2021 | 0.1027  | 54815.07813 | 0.022980   | 3.056086e+10 |
| 86 | 11/28/2021 | 0.0000  | 57248.45703 | 0.043435   | 2.811689e+10 |
| 87 | 11/29/2021 | 0.1027  | 57806.56641 | 0.009702   | 3.237084e+10 |

# **VECTOR AUTOREGRESSION(VAR)**



• Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities (Time Series) as they change over time. VAR is a type of stochastic process model.

• VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series.

• Like the autoregressive model, each variable has an equation, modelling its evolution over time. This equation includes the variable's lagged (past) values, the lagged values of the other variables in the model, and an error term.

$$y_{1,t} = c_1 + a_{1,1}y_{1,t-1} + a_{1,2}y_{2,t-1} + e_{1,t}$$

$$y_{2,t} = c_2 + a_{2,1}y_{1,t-1} + a_{2,2}y_{2,t-1} + e_{2,t}$$

# STATIONARITY AND DIFFERENCING



- Using non-stationary time series data in financial models produces unreliable and spurious results and leads to poor understanding and forecasting.
- A stationary time series is one whose properties do not depend on the time at which the series is observed.

• The **Dickey-Fuller** test is a way to determine whether a stochastic process has a unit root. If it has a unit root means it is non-stationary. The Augmented Dickey Fuller (ADF) test can handle more complex models than the Dickey-Fuller test, and it is more powerful.

• one way to make a non-stationary time series stationary is to compute the differences between consecutive observations. This is known as differencing.

# LAG LENGTH SELECTION USING INFORMATION CRITERIA

- The selection of lag lengths in AR models can sometimes be challenging. Too many lags inflate the standard errors of coefficient estimates and thus imply an increase in the forecast error while omitting lags that should be included in the model may result in an estimation bias.
- There are statistical methods that are helpful to determine how many lags should be included as regressors.
- To circumvent the issue of producing too large models, one may choose the lag order (p) that minimizes the Akaike information criterion (AIC):

$$AIC(p) = \log \left( rac{SSR(p)}{T} 
ight) + (p+1)rac{2}{T}$$

# **Check Stationarity for BTC-Harvard Time Series**



#### Bitcoin return time series

Augmented Dickey-Fuller Test: ADF test statistic -7.966448e+00 p-value 2.856477e-12 # lags used 1.000000e+00 # observations 8.600000e+01 critical value (1%) -3.508783e+00 critical value (5%) -2.895784e+00 critical value (10%) -2.585038e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin Harvard Negative time series**

| ADF test statistic    | -9.354055e+00          |
|-----------------------|------------------------|
| p-value               | 8.149060e-16           |
| # lags used           | 0.000000e+00           |
| # observations        | 8.700000e+01           |
| critical value (1%)   | -3.507853e+00          |
| critical value (5%)   | -2.895382e+00          |
| critical value (10%)  | -2.584824e+00          |
| Strong evidence again | st the null hypothesis |
| Reject the null hypot | hesis                  |
| Data has no unit root | and is stationary      |
|                       |                        |

#### Bitcoin volume time series

Augmented Dickey-Fuller Test: ADF test statistic -5.357471 p-value 0.000004 # lags used 3.000000 # observations 84.000000 critical value (1%) -3.510712 critical value (5%) -2.896616 critical value (10%) -2.585482 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin Harvard Polarity time series**

Augmented Dickey-Fuller Test: ADF test statistic -6.855801e+00 p-value 1.649723e-09 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Bitcoin Harvard Positive time series**

Augmented Dickey-Fuller Test: ADF test statistic -9.071912e+00 p-value 4.279510e-15 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Bitcoin Harvard Subjectivity time series**

Augmented Dickey-Fuller Test: ADF test statistic -8.681716e+00 p-value 4.268366e-14 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

# **Check Stationarity for BTC-LM Time Series**



#### Bitcoin return time series

Augmented Dickey-Fuller Test: ADF test statistic -7.966448e+00 p-value 2.856477e-12 # lags used 1.000000e+00 # observations 8.600000e+01 critical value (1%) -3.508783e+00 critical value (5%) -2.895784e+00 critical value (10%) -2.585038e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin LM Negative time series**

ADF test statistic -9.354055e+00 p-value 8.149060e-16 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3,507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### Bitcoin volume time series

Augmented Dickey-Fuller Test: ADF test statistic -5.357471 p-value 0.000004 # lags used 3,000000 # observations 84.000000 critical value (1%) -3.510712 critical value (5%) -2.896616 critical value (10%) -2.585482 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin LM Polarity time series**

Augmented Dickey-Fuller Test: ADF test statistic -6.855801e+00 p-value 1.649723e-09 # lags used 0.0000000+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Bitcoin LM Positive time series**

Augmented Dickey-Fuller Test: ADE test statistic -9.071912e+00 p-value 4.279510e-15 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Bitcoin LM Subjectivity time series**

Augmented Dickey-Fuller Test: ADF test statistic -8.681716e+00 p-value 4.268366e-14 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

# **Check Stationarity for Eth-Harvard Time Series**



#### **Ethereum return time series**

Augmented Dickey-Fuller Test: ADF test statistic -7.966448e+00 p-value 2.856477e-12 # lags used 1.000000e+00 # observations 8.600000e+01 critical value (1%) -3.508783e+00 critical value (5%) -2.895784e+00 critical value (10%) -2.585038e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Ethereum Harvard Negative time series**

Augmented Dickey-Fuller Test: ADF test statistic -2.590939 p-value 0.094884 # lags used 4.000000 # observations 83.000000 critical value (1%) -3.511712 critical value (5%) -2.897048 critical value (10%) -2.585713 Weak evidence against the null hypothesis Fail to reject the null hypothesis Data has a unit root and is non-stationary

#### Ethereum volume time series

Augmented Dickey-Fuller Test: ADF test statistic -5.357471 p-value 0.000004 # lags used 3,000000 # observations 84.000000 critical value (1%) -3.510712 critical value (5%) -2.896616 critical value (10%) -2.585482 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Ethereum Harvard Polarity time series**

Augmented Dickey-Fuller Test: ADF test statistic -1.927852 p-value 0.319074 # lags used 7.000000 # observations 80,000000 critical value (1%) -3.514869 critical value (5%) -2.898409 critical value (10%) -2.586439 Weak evidence against the null hypothesis Fail to reject the null hypothesis Data has a unit root and is non-stationary

#### **Ethereum Harvard Positive time series**

Augmented Dickey-Fuller Test: ADF test statistic -9.071912e+00 p-value 4.279510e-15 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Ethereum Harvard Subjectivity time series**

Augmented Dickey-Fuller Test: ADF test statistic -2.133462 p-value 0.231274 # lags used 4.000000 # observations 83.000000 critical value (1%) -3.511712 critical value (5%) -2.897048 critical value (10%) -2.585713 Weak evidence against the null hypothesis Fail to reject the null hypothesis Data has a unit root and is non-stationary

# **Check Stationarity for Eth-LM Time Series**



#### Bitcoin return time series

Augmented Dickey-Fuller Test: ADF test statistic -7.966448e+00 p-value 2.856477e-12 # lags used 1.000000e+00 8.600000e+01 # observations critical value (1%) -3.508783e+00 critical value (5%) -2.895784e+00 critical value (10%) -2.585038e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin Harvard Negative time series**

| ADF test statistic    | -9.354055e+00          |
|-----------------------|------------------------|
| p-value               | 8.149060e-16           |
| # lags used           | 0.000000e+00           |
| # observations        | 8.700000e+01           |
| critical value (1%)   | -3.507853e+00          |
| critical value (5%)   | -2.895382e+00          |
| critical value (10%)  | -2.584824e+00          |
| Strong evidence again | st the null hypothesis |
| Reject the null hypot | hesis                  |
| Data has no unit root | and is stationary      |
|                       |                        |

#### Bitcoin volume time series

Augmented Dickey-Fuller Test: ADF test statistic -5.357471 p-value 0.000004 # lags used 3.000000 # observations 84.000000 critical value (1%) -3.510712 critical value (5%) -2.896616 critical value (10%) -2.585482 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

### **Bitcoin Harvard Polarity time series**

| Augmented Dickey-Full | er Test:               |
|-----------------------|------------------------|
| ADF test statistic    | -6.855801e+00          |
| p-value               | 1.649723e-09           |
| # lags used           | 0.000000e+00           |
| # observations        | 8.700000e+01           |
| critical value (1%)   | -3.507853e+00          |
| critical value (5%)   | -2.895382e+00          |
| critical value (10%)  | -2.584824e+00          |
| Strong evidence again | st the null hypothesis |
| Reject the null hypot | hesis                  |
| Data has no unit root | and is stationary      |

#### **Bitcoin Harvard Positive time series**

Augmented Dickey-Fuller Test: ADF test statistic -9.071912e+00 p-value 4.279510e-15 # lags used 0.000000e+00 # observations 8.700000e+01 critical value (1%) -3.507853e+00 critical value (5%) -2.895382e+00 critical value (10%) -2.584824e+00 Strong evidence against the null hypothesis Reject the null hypothesis Data has no unit root and is stationary

#### **Bitcoin Harvard Subjectivity time series**

| Augmented Dickey-Fulle | r Test:               |
|------------------------|-----------------------|
| ADF test statistic     | -8.681716e+00         |
| p-value                | 4.268366e-14          |
| # lags used            | 0.000000e+00          |
| # observations         | 8.700000e+01          |
| critical value (1%)    | -3.507853e+00         |
| critical value (5%)    | -2.895382e+00         |
| critical value (10%)   | -2.584824e+00         |
| Strong evidence agains | t the null hypothesis |
| Reject the null hypoth | esis                  |
| Data has no unit root  | and is stationary     |
|                        |                       |

# Choosing the order of Vector Autoregression



| Bitco        | in Haı | rvard |
|--------------|--------|-------|
| $\mathbf{D}$ |        | TALA  |

Order = 1

AIC: 11.213565069590262

Order = 2

AIC: 11.483064822910013

Order = 3

AIC: 12.085883071223611

Order = 4

AIC: 12.470018792093143

Order = 5

AIC: 12.623249894047625

#### **Bitcoin LM**

Order = 1

AIC: 12.623249894047625

Order = 2

AIC: 12.623249894047625

Order = 3

AIC: 12.623249894047625

Order = 4

AIC: 12.623249894047625

Order = 5

AIC: 12.623249894047625

#### **Ethereum Harvard**

Order = 1

AIC: 11.213565069590262

Order = 2

AIC: 11.483064822910013

Order = 3

AIC: 12.085883071223611

Order = 4

AIC: 12.470018792093143

Order = 5

AIC: 12.623249894047625

#### **Ethereum LM**

Order = 1

AIC: 12.623249894047625

Order = 2

AIC: 12.623249894047625

Order = 3

AIC: 12.623249894047625

Order = 4

AIC: 12.623249894047625

Order = 5

AIC: 12.623249894047625

# Result of VAR for Bit - Harvard



#### Results for equation Bit\_return

|                         | coefficient | std. error | t-stat | prob  |  |
|-------------------------|-------------|------------|--------|-------|--|
| const                   | -0.043227   | 0.063916   | -0.676 | 0.499 |  |
| L1.Bit_return           | 0.041814    | 0.111980   | 0.373  | 0.709 |  |
| L1.Volume               | 0.000000    | 0.000000   | 0.039  | 0.969 |  |
| L1.Positive_Har_Bit     | -0.007480   | 0.089287   | -0.084 | 0.933 |  |
| L1.Negative_Har_Bit     | 0.166998    | 0.131043   | 1.274  | 0.203 |  |
| L1.Polarity_Har_Bit     | 0.002034    | 0.202470   | 0.010  | 0.992 |  |
| L1.Subjectivity_Har_Bit | -0.224355   | 0.548918   | -0.409 | 0.683 |  |
|                         |             |            |        |       |  |

#### Results for equation Volume

|                         | coefficient         | std. error         | t-stat | prob  |
|-------------------------|---------------------|--------------------|--------|-------|
| const                   | 25658946329.289799  | 11084613575.477999 | 2.315  | 0.021 |
| L1.Bit_return           | -12273988075.592810 | 19420098317.677277 | -0.632 | 0.527 |
| L1.Volume               | 0.312121            | 0.107900           | 2.893  | 0.004 |
| L1.Positive_Har_Bit     | -6784151231.178294  | 15484530712.315434 | -0.438 | 0.661 |
| L1.Negative_Har_Bit     | -27094355080.761982 | 22726013684.923401 | -1.192 | 0.233 |
| L1.Polarity_Har_Bit     | 3695099344.851302   | 35113240914.591949 | 0.105  | 0.916 |
| L1.Subjectivity_Har_Bit | 132313720287.804535 | 95195830056.517563 | 1.390  | 0.165 |
|                         |                     |                    |        |       |

#### Results for equation Positive\_Har\_Bit

| ======================================= | ============ | ============== | =========== |       |
|-----------------------------------------|--------------|----------------|-------------|-------|
|                                         | coefficient  | std. error     | t-stat      | prob  |
| const                                   | 0.824123     | 0.177942       | 4.631       | 0.000 |
|                                         | 0.070643     | 0.311752       | 0.227       | 0.821 |
| L1.Volume                               | 0.000000     | 0.000000       | 2.037       | 0.042 |
| L1.Positive Har Bit                     | 0.043443     | 0.248574       | 0.175       | 0.861 |
| L1.Negative_Har_Bit                     | -0.298666    | 0.364822       | -0.819      | 0.413 |
| L1.Polarity Har Bit                     | -0.067724    | 0.563674       | -0.120      | 0.904 |
| L1.Subjectivity_Har_Bit                 | 1.862921     | 1.528183       | 1.219       | 0.223 |
|                                         |              |                |             |       |

#### Results for equation Negative\_Har\_Bit

|                                         | coefficient | std. error | t-stat      | prob  |
|-----------------------------------------|-------------|------------|-------------|-------|
| const                                   | 0.559559    | 0.106139   | 5.272       | 0.000 |
| L1.Bit_return                           | -0.121823   | 0.185954   | -0.655      | 0.512 |
| L1.Volume                               | 0.000000    | 0.000000   | 1.178       | 0.239 |
| L1.Positive_Har_Bit                     | -0.051436   | 0.148270   | -0.347      | 0.729 |
| L1.Negative_Har_Bit                     | 0.083989    | 0.217609   | 0.386       | 0.700 |
| L1.Polarity Har Bit                     | -0.062034   | 0.336221   | -0.185      | 0.854 |
| L1.Subjectivity_Har_Bit                 | -0.376766   | 0.911532   | -0.413      | 0.679 |
| ======================================= |             |            | =========== |       |

#### Results for equation Polarity\_Har\_Bit

|                         | coefficient | std. error | t-stat | prob  |
|-------------------------|-------------|------------|--------|-------|
| const                   | 0.073355    | 0.073054   | 1.004  | 0.315 |
| L1.Bit_return           | 0.018648    | 0.127989   | 0.146  | 0.884 |
| L1.Volume               | 0.000000    | 0.000000   | 1.218  | 0.223 |
| L1.Positive_Har_Bit     | 0.003470    | 0.102051   | 0.034  | 0.973 |
| L1.Negative_Har_Bit     | -0.149331   | 0.149777   | -0.997 | 0.319 |
| L1.Polarity_Har_Bit     | 0.198534    | 0.231415   | 0.858  | 0.391 |
| L1.Subjectivity_Har_Bit | 1.002855    | 0.627392   | 1.598  | 0.110 |
|                         |             |            |        |       |

#### Results for equation Subjectivity\_Har\_Bit

|                         | coefficient      | std. error | t-stat | prob  |
|-------------------------|------------------|------------|--------|-------|
| const                   | 0.132599         | 0.018575   | 7.139  | 0.000 |
| L1.Bit_return           | -0.026123        | 0.032543   | -0.803 | 0.422 |
| L1.Volume               | 0.000000         | 0.000000   | 1.721  | 0.085 |
| L1.Positive_Har_Bit     | 0.001375         | 0.025948   | 0.053  | 0.958 |
| L1.Negative_Har_Bit     | -0.001267        | 0.038083   | -0.033 | 0.973 |
| L1.Polarity_Har_Bit     | -0.008382        | 0.058841   | -0.142 | 0.887 |
| L1.Subjectivity_Har_Bit | 0.059720         | 0.159525   | 0.374  | 0.708 |
|                         | ================ |            |        |       |

# Result of VAR for Eth - Harvard



| Results for equation Eth                | _                    |                    |            |        |       | Results for equation Negat              | ive_Har_Eth      |                     |                    |           |
|-----------------------------------------|----------------------|--------------------|------------|--------|-------|-----------------------------------------|------------------|---------------------|--------------------|-----------|
|                                         | coefficient          | std. error         | t-stat     | prob   |       | ======================================= | coefficient      | std. error          | t-stat             | prob      |
| const                                   | -0.008239            | 0.060822           | -0.135     | 0.892  |       | const                                   | 0.419701         | 0.077527            | 5.414              | 0.000     |
| L1.Eth_return                           | -0.003011            | 0.111437           | -0.027     | 0.978  |       | L1.Eth_return                           | -0.164569        | 0.142044            | -1.159             | 0.247     |
| L1.Volume                               | 0.000000             | 0.000000           | 0.968      | 0.333  |       | L1.Volume                               | 0.000000         | 0.000000            | 0.518              | 0.604     |
| L1.Positive_Har_Eth                     | -0.006218            | 0.115608           | -0.054     | 0.957  |       | L1.Positive_Har_Eth                     | -0.004084        | 0.147360            | -0.028             | 0.978     |
| L1.Negative_Har_Eth                     | 0.098315             | 0.154575           | 0.636      | 0.525  |       | L1.Negative_Har_Eth                     | 0.156152         | 0.197031            | 0.793              | 0.428     |
| L1.Polarity_Har_Eth                     | -0.028208            | 0.219211           | -0.129     | 0.898  |       | L1.Polarity Har Eth                     | 0.149943         | 0.279420            | 0.537              | 0.592     |
| L1.Subjectivity_Har_Eth                 | -0.390807<br>======= | 0.742856<br>       | -0.526<br> | 0.599  |       | L1.Subjectivity_Har_Eth                 | -0.354265        | 0.946889<br>======= | -0.374<br>======== | 0.708<br> |
| Results for equation Vol                | ume                  |                    |            |        |       | Results for equation Polar              |                  |                     |                    |           |
|                                         | coefficient          | std. error         | t-stat     |        | prob  | ======================================= | coefficient      | std. error          | t-stat             | prob      |
| const                                   | 11394114401.450384   | 5609189623.554939  | 2.031      |        | 0.042 | const                                   | 0.173040         | 0.064709            | 2.674              | 0.007     |
| L1.Eth_return                           | -5507457108.226655   | 10277044908.254744 | -0.536     |        | 0.592 | L1.Eth_return                           | -0.087170        | 0.118558            | -0.735             | 0.462     |
| L1.Volume                               | 0.391412             | 0.106145           | 3.688      |        | 0.000 | L1.Volume                               | 0.000000         | 0.000000            | 0.797              | 0.425     |
| L1.Positive_Har_Eth                     | 5981064239.300002    | 10661705141.460880 | 0.561      |        | 0.575 | L1.Positive_Har_Eth                     | 0.100063         | 0.122995            | 0.814              | 0.416     |
| L1.Negative_Har_Eth                     | -7402437011.808105   | 14255412457.761545 | -0.519     |        | 0.604 | L1.Negative_Har_Eth                     | -0.283962        | 0.164453            | -1.727             | 0.084     |
| L1.Polarity_Har_Eth                     | -20899689805.725441  | 20216389999.574188 | -1.034     |        | 0.301 | L1.Polarity_Har_Eth                     | -0.282768        | 0.233220            | -1.212             | 0.225     |
| L1.Subjectivity_Har_Eth                 | 18281784517.799839   | 68508558390.861389 | 0.267      | ====== | 0.790 | L1.Subjectivity_Har_Eth                 | 0.779168<br>     | 0.790326<br>======= | 0.986<br>          | 0.324<br> |
| Results for equation Pos                | itive_Har_Eth        |                    |            |        |       | Results for equation Subje              | ectivity_Har_Eth |                     |                    |           |
| ======================================= | coefficient          | std. error         | t-stat     | prob   |       |                                         | coefficient      | std. error          | t-stat             | prob      |
| const                                   | 0.822305             | 0.133225           | 6.172      | 0.000  |       | const                                   | 0.105505         | 0.014220            | 7.419              | 0.000     |
| L1.Eth return                           | -0.128668            | 0.244091           | -0.527     | 0.598  |       | L1.Eth_return                           | -0.024761        | 0.026054            | -0.950             | 0.342     |
| L1.Volume                               | 0.000000             | 0.000000           | 0.855      | 0.392  |       | L1.Volume                               | 0.000000         | 0.000000            | 2.512              | 0.012     |
| L1.Positive Har Eth                     | 0.327810             | 0.253228           | 1.295      | 0.195  |       | L1.Positive_Har_Eth                     | 0.006359         | 0.027029            | 0.235              | 0.814     |
| L1.Negative_Har_Eth                     | -0.357503            | 0.338582           | -1.056     | 0.291  |       | L1.Negative_Har_Eth                     | -0.065392        | 0.036139            | -1.809             | 0.070     |
| L1.Polarity_Har_Eth                     | -0.601828            | 0.480162           | -1.253     | 0.210  |       | L1.Polarity_Har_Eth                     | -0.073611        | 0.051251            | -1.436             | 0.151     |
| L1.Subjectivity Har Eth                 | 0.772632             | 1.627156           | 0.475      | 0.635  |       | L1.Subjectivity_Har_Eth                 | 0.368487         | 0.173679            | 2.122              | 0.034     |

# **CONCLUSION**



- Our results showed that there is no significant relation between Bitcoin price and sentiment analysis result.
- Our results showed that there is no significant relation between volume of trade of Bitcoin and sentiment analysis result.
- Our results showed that there is no significant relation between ethereum price and sentiment analysis result.
- Our results showed that there is no significant relation between volume of trade of ethereum and sentiment analysis result.



# stevens.edu

# THANK YOU