Отчёт по лабораторной работе №6 Простейший вариант

Метвалли Ахмед Фарг Набеех

Содержание

- 1 Цельработы
- 2 Теоретическоевведение
- 3 Ответынавопросыпопрограмме
- 4 Выполнениесамостоятельнойработы
- 5 Выводы

Списоклитературы

Ошибка! Закладка не определена

Список иллюстраций

- 2.1 Создание каталога, переход в него, создание файла и его открытие
- 2.2 Ввод программы
- 2.3 Компиляция исходного файла и текста, передача файла компонов щику
- 2.4 Редактрирование программы
- 2.5 Компиляция файла и передача файла компоновщику
- 2.6 Создание файла
- 2.7 Ввод программы
- 2.8 Создание файла, ввод программы, ввод студенческого
- 2.9 Вариант 17
- 4.1 C/p
- 4.2 Проверка

Список таблиц

1. Цель работы

Цель данной лабораторной работы - освоение арифметических инструкций языка ассемблера NASM.

2. Теоретическое введение

Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес операнда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. Регистровая адресация – операнды хранятся в регистрах и в команде используются имена этих регистров, например: mov ах, bx.- Непосредственная адресация – значение операнда задается непосредственно в команде, Например: mov ax,2. - Адресация памяти – операнд задает адрес в памяти. В команде указывается символическое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию. Ввод информации с клавиатуры и вывод её на экран осуществляется в символь- ном виде. Кодирование этой информации производится согласно кодовой табли- це символов ASCII. ASCII – сокращение от American Standard Code for Information Interchange (Американский стандартный код для обмена информацией). Соглас- но стандарту ASCII каждый символ кодируется одним байтом. Среди инструкций NASM неттакой, которая выводит числа (не в символьном виде). Поэтому, на- пример, чтобы вывести число, надо предварительно преобразовать его цифры в ASCII-коды этих цифр и выводить на экран эти коды, а не само число. Если же выводить число на экран непосредственно, то экран воспримет его не как число, а как последовательность ASCIIсимволов – каждый байт числа будет воспринят как один ASCII-символ – и выведет на экран эти символы. Аналогичная ситу- ация происходит и при вводе данных с клавиатуры. Введенные данные будут представлять собой символы, что сделает невозможным получение корректного результата при выполнении над ними арифметических операций. Для решения этой проблемы необходимо проводить преобразование ASCII символов в числа и обратно. # Выполнение лабораторной работы Создал каталог lab06 перешел в него и создал файл lab6-1.asm и открыл его (рис. 2.1).

```
~$ mkdir ~/work/arch-pc/lab06
~$ cd ~/work/arch-pc/lab06
~/work/arch-pc/lab06$ touch lab6-1.asm
~/work/arch-pc/lab06$
```

Рис. 2.1: Создание каталога, переход в него, создание файла и его открытие Ввел

программу в файл (рис. 2.2).

```
%include 'in_out.asm' ; подключение внешнего файла
              data
               Результат: ',0
             'Остаток от деления: ',0
66 Демидова А. В.
Архитектура ЭВМ
           _start
  ---- Вычисление выражения
 nov eax,5 ;
                         X=5
 nov ebx,2 ;
                         (=Z
mul ebx ; EAX=EAX*
add eax,3 ; EAX=EA
xor edx,edx ; обнуляем EDX для корректной работы div
nov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3,
div ebx ;
                                        Х=остаток от деления
otv edx ; кахаках/з, кохаостаток от деления
nov edi,eax ; запись результата вычисления в 'edi'
rov ear,ear, запачев результата на экран
nov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
nov eax,edi; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
nov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Остаток от пеление: '
 all sprint ; сообщения 'Остаток от деления: '
mov eax.edx ; вызов подпрограммы печати значения
call tprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 2.2: Ввод программы

Скомпилировал исходный файл передал файл компоновщику (рис. 2.3).

```
ahmad-farg@ahmadfarg-VirtualBox:~$ mkdir ~/work/arch-pc/lab06
ahmad-farg@ahmadfarg-VirtualBox:~$ cd ~/work/arch-pc/lab06
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ touch lab6-
1.asm
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 2.3: Компиляция исходного файла и текста, передача файла компоновщику

Редактировал программу в файле lab6-1.asm (рис. 2.4).

```
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 2.4: Редактирование программы

Скомпилировал исходный файл передал файл компоновщику (рис. 2.5

Рис. 2.5: Компиляция файла и передача файла компоновщику

Создание файла lab6-2 в том же каталоге (рис. 2.6).

```
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ./lab6-4
Введите *:
2
Результат: 16
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ./lab6-4
Введите *:
8
Результат: 100
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 2.6: Создание файла

Ввел программу в файл lab6-2.asm (рис. 2.7).

```
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i
386 -o lab6-2 lab6-2.o
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
10
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ []
```

```
mc [ahmad-farg@ahmadfarg-VirtualBox]:~...
 Left
           File
                    Command
                                 Options |
<- ~/work/arch-pc/lab06 -.[^]><sub>7</sub>
                                 r<- ~/work/a
             Size Modify time
                                  .n Name
             P--DIR ek 21 16:53
                                  /...
%include 'in_out.asm'
           .bss
              80
    TION .text
   .OBAL _start
mov eax,'6'
moc ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ touch lab6-2.asm
```

Рис. 2.7: Ввод программы

Создал файл variant.asm в том же каталоге ввел программу, затем ввел номер смоего студенческого билета и узнал свой вариант-17. (рис. 2.8)

```
GNU nano 6.2 /home/ahmac
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 2.8: Создание файла, ввод программы, ввод студенческого

Узнал номер своего варианта (рис. 2.9).

```
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ touch lab6-3.asm
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ touch lab6-4.asm
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ touch veriant
```

Рис. 2.9: Вариант 4

- 3.Ответы на вопросы по программе
- 1. За вывод сообщения "Ваш вариант" отвечают строки кода: mov eax,rem call sprint
- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки x в регистр ecx mov edx,80-запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры

- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 4. За вычисления варианта отвечают строки: xor edx,edx; обнуление edx для корректной работы div mov ebx,20; ebx = 20 div ebx; eax = eax/20, edx остаток от деления inc edx; edx = edx + 1
- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки: mov eax,edx call iprintLF
- 4.Выполнение самостоятельной работы

```
%include 'in_out.asm'
        .data
         'Введите № студенческого билета: ',0
         'Ваш вариант: ',0
        .bss
        80
        .text
       _start
mov eax, msg
call sprintLF
nov ecx, x
nov edx, 80
nov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII
                  кода в число, `еах=х`
68 Демидова А. В.
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

В файле variant.asm очистил предыдущую программу и написал новую программу для выполнения самостоятельной работы (рис. 4.1).

Рис. 4.1: С/р

Проверил правильность программы(рис. 4.2).

Рис. 4.2: Проверка

```
ahmad-farg@ahmadfarg-VirtualBox:~/work/arch-pc/lab06$ ./veriant
Введите № студенческого билета:
1032234146
Ваш вариант: 7
```

4.Выводы

Освоил арифметические инструкции языка ассемблера NASM