Raydium ^瑞 鼎 科 技 股 份 有 限 公 司 Raydium Semiconductor Corporation

RM690B0 Data Sheet

Single Chip Driver with 16.7M color for 480RGBx600 OLED driver

Revision : 0.3

Date : Jan, 5 2021

Revision History

Version No.	Date	Description	Page	Modified By	Checked By
0.1	2020/09/15	First Release		SH.Chen	SP.Hung
0.2	2020/11/04	Revise register 0x6700/0xFE00, and power-on sequence	P.95/109 P.126/127	SH.Chen	SP.Hung
0.3	2021/01/05	Add RGB565_swap Description Add 7.4.2 Section Revise QSPI AC Timing Notation/Table	P.99 P.114 P. 120	SH.Chen	SP.Hung

TABLE OF CONTENTS

IAB	LE OF	CONTENTS	
1.		General Description	6
2.		Features	7
3.		Block Diagram	10
4.		Pin Description	
	4.1 P	Power Supply Pins	11
	4.2 Iı	nterface Pins	12
	4.3 N	MIPI Interface Pins	13
		nterface Logic Pins	
	4.5 D	Oriver Output Pins (Pins for Panel)	
	4.6 D	DC/DC Convert Pins	16
	4.7 T	Test Pins	17
5		Function Description	18
	5.1	Interface Type Selection	18
	5.2	MCU Interface	
		5.2.1 Write Cycle and Sequence	
		5.2.2 Read Cycle and Sequence	
	5.3	SPI/DUAL-SPI Interface	
		5.3.1 3-wire / 4-wire SPI/DUAL-SPI Write Cycle and Sequence	
		5.3.2 3-wire / 4-wire SPI Read Cycle and Sequence	
	5.4	QUAD-SPI protocol	
		5.4.1 QUAD-SPI command format	
		5.4.2 QUAD-SPI pixel writing format	
		5.4.3 QUAD-SPI pixel writing color format	
		5.4.4 QUAD-SPI Read Cycle and Sequence	
	5.5	Break and Pause Sequence	
	5.6	Display Serial Interface (DSI)	
	5.7	DSI Protocol	
	5.8	Processor to Peripheral Transactions	
	5.9	Peripheral-to-Processor LP Transmission	
	5.10	•	
	5.11	Peripheral-to-Processor Transaction – Detail Format Description	
	5.12		
	5.12		
	5.13		
	5.14		
	3.13	5.15.1 Tearing Effect Line Mode	
_		5.15.2 Tearing Effect Line Timing	
6.	(10	Command List	
	6.2 C	Command Description	
		NOP (0000h)	
		SWRESET(0100h): Software Reset	
		RDDID(0400h~0402h): Read Display ID	
		RDNUMED(0500h): Read Number of Errors on DSI	
		RDDPM (0A00h): Read Display Power Mode	
		RDDMADCTR (0B00h): Read Display MADCTR	
		RDDCOLMOD (0C00h): Read Display Pixel Format	
		RDDIM (0D00h): Read Display Image Mode	
		RDDSM (0E00h): Read Display Signal Mode	
		RDDSDR (0F00h): Read Display Self-Diagnostic Result	
		SLPIN (1000h): Sleep In	
		SLPOUT (1100h): Sleep Out	
		PTLON (1200h): Partial Display Mode On	
		NORON (1300h): Normal Display Mode On	66

Raydium

7.

	VOFF (2000H): Display Inversion Off	
INV	VON (2100H): Display Inversion On	68
ALI	LPOFF (2200H): All Pixel Off	69
ALI	LPON (2300H): All Pixel On	70
DIS	SPOFF (2800h): Display Off	71
DIS	SPON (2900h): Display On	72
CAS	SET(2A00h~2A03h): Set Column Start Address	73
RAS	SET(2B00h~2B03h): Set Row Start Address	74
	MWR (2C00h): Memory Write	
	LAR (3000h): Partial Area	
	LAR (3100h): Vertical Partial Area	
	OFF (3400h): Tearing Effect Line OFF	
	ON (3500h): Tearing Effect Line ON	
	ADCTR (3600h): Scan Direction Control	
	MOFF (3800h): Idle Mode Off	
	MON (3900h): Enter_idle_mode	
	LMOD (3A00h): Interface Pixel Format	
	MWRC (3C00h): Memory Continuous Write	
	ESL(4400h): Set_Tear_Scanline	
	L (4500h): Get_Scanline	
	TBON (4F00h): Deep Standby Mode On	
	RDISBV (5100h): Write Display Brightness	
	DISBV (5200h): Read Display Brightness	
	RCTRLD (5300h): Write Display Control	
RDe	CTRLD (5400h): Read Display Control	92
	RRADACL (5500h): RAD_ACL Control	
	LORTEMP (5500h): Color Temperature Selection	
	RDISBV (6300h): Write HBM Display Brightness	
	DISBV (6400h): Read HBM Display Brightness	
	M_Mode (6600h): Set_HBM_Mode	
	_LEVEL (6700h): Frame Rate Level Control	
	LSET (7000~7F00h): Interface Pixel Format Set	
	LOPT (8000h): Interface Pixel Format Option	
	DDBS(A100h): Read_DDB_Start	
	DDBC(A800h): Read DDB Continous	
	FCS(AA00h): Read First Checksum	
	CCS(AF00h): Read Continue Checksum.	
	DISPMode (C200h) : set_DISP Mode	
	SPIMode (C400h): set_SPI Mode	
	ID1 (DA00h): ID1 Code	
	ID2 (DB00h): ID2 Code	
	ID3 (DC00h): ID3 Code	
	E00h): CMD Mode Switch	
	700h): Read CMD Status	
,	ctrical Characteristics	
7.1	Absolute Maximum Ratings	
7.2	ESD Protection Level	
7.3	Latch-Up Protection Level	
7.4	DC Characteristics	
7.4.1	Basic Characteristics	
7.4.2	Operation Current	
7.4.2	MIPI Characteristics.	
7.5.		
7.5. 7.5.		
7.5. 7.5.		
7.5. 7.5.	· · · · · · · · · · · · · · · · · · ·	
7.5. 7.6	AC Characteristics	
7.0 7.6.		
7.0.	1 ST TOTAL-ST I CHARACTERIUS	115

Raydium

	7.6.2	QUAD-SPI Characteristics	120
	7.6.3	DSI Timing Characteristics	121
	7.6.4	Reset Timing	124
8.	Power (Generation	125
	8.1 Two Supp	ply Power (VDDI/VDD)	
		Converter Circuit	
	8.3 External C	Components	127
		/off sequence and timing	
	8.5 Power Le	evel Modes	130
	8.6 Maximum	n Series Resistance	131
9.		agram and Coordination	

1. General Description

The RM690B0 device is a single-chip solution for LTPS AMOLED with resolution up to 480RGBx600. It includes a internal memory, a timing controller with glass interface level-shifters and a glass power supply circuit.

The RM690B0 supports MIPI Interface, 8-bit system interfaces, serial peripheral interfaces (SPI), dual serial peripheral interfaces (DUAL-SPI) and quad serial peripheral interfaces (QUAD-SPI). The specified window area can be updated selectively, so that moving pictures can be displayed simultaneously independent of the still picture area.

The RM690B0 is also able to make gamma correction settings separately for RGB dots to allow benign adjustments to panel characteristics, resulting in higher display qualities. The IC support 16.77M-color images up to 480RGBx600 and a deep standby mode for lower power consumption.

This LSI is suitable for wearable device applications, including watch and smart band.

2. Features

- Single chip AMOLED controller/driver with display RAM
- Display resolution option
 - > 480RGB x 600
 - > 480RGB x 480
 - > 400RGB x 400
 - > 360RGB x 480
 - 320RGB x 320
 - 320RGB x 480
 - > 272RGB x 480
 - 240RGB x 240
 - 240RGB x 320
 - > 180RGB x 360
 - > 180RGB x 540
 - > 128RGB x 432

■ Display mode (Color mode)

- Normal mode: 16.7M-colors, 4096-colors, 8-colors
- ldle mode: 16.7M-colors, 4096-colors, 8-colors

■ Interface

- 8-bits 80-series MPU interface
- Serial peripheral interface (SPI)
- Dual serial peripheral interface (DUAL-SPI)
- Quad serial peripheral interface (QUAD-SPI)
- MIPI Display Serial Interface (1 clock and 2 data lane pairs)
 - Support 1lane/2lane (1lane maximum: 550Mbps)
 - Maximum total bit rate(sum of 2 data lanes) is 550Mbps in 24-bit data format, 396Mbps in 18-bit data format, and 352Mbps in 16-bit data format

■ Interface pixel format

- > MIPI: RGB888/ RGB666/ RGB565
- SPI: RGB888/ RGB666/ RGB565/ RGB332/ RGB111/ Gray 256.

Abundant color display and drawing functions

- Programmable γ-correction function for 16.7 million color display
- Individual gamma correction setting for RGB dots
- Partial display function
- Support Low Frame Rate
- High Brightness Mode
- Color Gamut Mapping
- Build-in panel crack detection
- Self-Clock function for AOD mode
- Support Status Active Reporting function

Control power IC by one-wire interface

On chip

- VREFP5/VREFN5 voltage generator for panel voltage
- VGHR/VGLR voltage for gate control signal
- Internal oscillator for display clock
- Source output MUX 1-6 with 240ch source output pins
- Supports gate control signals to gate driver in the panel
- Built-in OTP function to adjust panel setting
- Logic / interface power supply voltage VDDI = 1.65V ~ 3.3V
- Analog power supply voltage VDD = 2.7V ~ 3.6V
- Output voltage levels
 - Positive gate driver voltage range for VGHR: 3 ~ 12V (Max<=VGH-0.3v)</p>
 - Negative gate driver voltage range for VGLR: -2V ~ -12V (Min>=VGL+0.3v)
 - VREFP5 panel voltage range : 0.5 ~ 5V (Max<=AVDD-0.3v)</p>
 - VREFN5 panel voltage range : -0.5 ~ -4.5V (Min>=VCL+0.3v)
 - Step-up 1,2 output voltage range for AVDD: 4.5 ~ 6.5V, VCL: -3.5 ~ -5.0V
 - Gamma high/low voltage range for VGMP: 2.0V ~ 6.3V (Max<=AVDD-0.2v) , VGSP: 0V, 0.2125V ~ 4.5V
 - OVDD_INT/OVSS_INT voltage range for idle mode application:

OVDD_INT : 2.0V ~ 6.0V (Max<=AVDD-0.3V)

OVSS_INT : 0V, -0.4V ~ -4.7V (Min>=VCL+0.3V)

■ Package: COF/COG

Chip size evaluation: 8080um x 1186um (including scribe line)

■ Power Supply Specifications

No.	Item		Description
1	Source Driver		240 pins (480 x RGB)
2	gate control timing Le	vel shift	VGHR-VGLR
3	Input Voltage	VDDI	1.65 ~ 3.3V
		VCC	Connect to VDDI or VDD(VCI)
		VDD (VDDA/VDDB/VDDR)	2.70 ~ 3.60V
4	OLED drive voltages	AVDD	4.5V ~ 6.5V
		VGHR	3V ~ 12V (Max<=VGH-0.3v)
		VGLR	-2V ~ -12V (Min>=VGL+0.3v)
		VREFP5	0V, 0.5V ~ 5V (Max<=AVDD-0.3v)
		VREFN5	-0.5V ~ -4.5V (Min>=VCL+0.3v)
		OVDD_INT	2.0~6.0v (Max<=AVDD-0.3v)
		OVSS_INT	-0.4 ~ -4.7V (Min>=VCL+0.3v)
5	Internal step-up circuits	AVDD	VCI x2.0(dual), x3.0(single)
	Circuits	VCL	VCI x -1.0(dual), x-2.0(single)
		VGH	VCI x2, x3, x4
		VGL	VCI x-2, x-3, x-4

3. Block Diagram

Interface

The RM690B0 supports MIPI DSI interface. MIPI DSI can access both internal command and display data.

Grayscale Voltage Generating Circuit

Grayscale voltage generating circuit generates a drive voltage, which corresponds to grayscale level set in the v correction register. The RM690B0 displays 16.7M colors at the maximum.

Power Supply Circuit

The power supply circuit generates supply voltages to OLED panel, VGH, VGL.

Timing Generating

The timing controller generates timing signals for internal circuits such as the display timing.

Oscillator

The RM690B0 incorporates RC oscillator circuit. The frame frequency is changeable by command settings.

Panel Driver Circuit

The OLED display driver circuit consists of 240 source drivers (S1~S240). The gate signal consists of VSR_R/L[14:1] and outputs either VGHR or VGLR level.

4. Pin Description

4.1 Power Supply Pins

4.1 Power Su	ppiy	1 1113		
Signal	I/O	D Function		
VDDB Power supply for DC/DC converter VDDB, VDDA and VDDR should be the same input voltage level				
VDDA	VDDA P Power supply for analog system. VDDB, VDDA and VDDR should be the same input voltage level			
VDDR	Р	Power supply for regulator system VDDB, VDDA and VDDR should be the same input voltage level		
VDDI	Р	Power supply for interface system except MIPI interface.		
VCC	Р	Power supply for DVDD regulator		
VSSB	Р	System ground for DC/DC converter		
VSSA	Р	System ground for analog system		
VSSR	Р	System ground for regulator system		
VSSAM	Р	System ground for internal MIPI analog system		
VSSI	Р	System ground for interface system except MIPI interface		
DVSS	Р	System ground for internal digital system		
AVSS	Р	System ground for source OP system.		
MTP_PWR	Р	MTP programming power supply pin (6.0V typical) Must be left open or connected to DVSS in normal condition.		

4.2 Interface Pins

Signal	I/O	Function		
CSX	I	Chip select input pin ("Low" enable) in 80-series MPU I/F and SPI I/F. If not used, please connect to VDDI.		
WRX_SCL	I	WRX: Writes strobe signal to write data when WRX is "Low" in 80-series MPU I/F. SCL: A synchronous clock signal in SPI I/F. If not used, please connect to VSSI.		
D/CX	Display data / command selection in 80-series MPU I/F and 4-wire SPI I/F. D/CX = "0" : Command D/CX = "1" : Display data or Parameter			
		If not used, please connect to VSSI.		
SDI_RDX I/O		SDI: Serial input signal in SPI I/F. The data is input on the rising edge of the SCL signal. RDX: Reads strobe signal to write data when RDX is "Low" in 80-series MPU interface. If not used, please leave it Open.		
SDO O If the		Serial output signal in SPI I/F. The data is output on the rising/falling edge of the SCL signal. If the host places the SDI line into high-impedance state during the read interval, the SDI and SDO can be tied together. If not used, please open this pin.		
D[7:0] I/O 8-bit bi-directional data bus for 80-series MPU I/F and 8-bit input data bus for RGB I/F. These pins are not used for SPI, MIPI, please leave it Open.		· ·		

4.3 MIPI Interface Pins

Signal	I/O	Function															
HSSI_CLK_P HSSI_CLK_N	I	-These pins are DSI-CLK+/- differential clock signals if MIPI interface is usedIf not used, please connect these pins to VSSAM.															
HSSI_D0_P HSSI_D0_N	I/O		-These pins are DSI-D0+/- differential data signals if MIPI interface is usedIf not used, please connect these pins to VSSAM.														
HSSI_D1_P HSSI_D1_N	I/O	-These pins are DSI-D1+/- differential data signals if MIPI interface is usedIf not used, please connect these pins to VSSAM.															
		Input pin to se	lect HSSI_D()/D1 data lan	e sequence	and polarity i	n high speed	interface only.									
	I	Pin Name	HSSI_D0_P	HSSI_D0_N	HSSI_CLK_ P	HSSI_CLK_ N	HSSI_D1_P	HSSI_D1_N									
		DSWAP=0	DSI	DSI	DSI	DSI	DSI	DSI									
			PSWAP=0	D0+	D0-	CLK+	CLK-	D1+	D1-								
DSWAP		1	1	DSWAP=0	DSI	DSI	DSI	DSI	DSI	DSI							
PSWAP					•	•	'	•	•	•		PSWAP=1	D0-	D0+	CLK-	CLK+	D1-
			DSWAP=1	DSI	DSI	DSI	DSI	DSI	DSI								
				PSWAP=0	D1+	D1-	CLK+	CLK-	D0+	D0-							
		DSWAP=1	DSI	DSI	DSI	DSI	DSI	DSI									
		PSWAP=1	D1-	D1+	CLK-	CLK+	D0-	D0+									
		If not used, ple	ease connect	to VSSI.													

NOTE: "1" = VDDI level, "0" = VSSI level.

4.4 Interface Logic Pins

Signal	I/O	Function				
RESX	I	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.				
IM[1:0]	I	Interface type selection. The connections of IM[1:0] w IM[1:0] Display Data	hich not shown in table are invalid. Command MIPI / 3-wire SPI MIPI / 4-wire SPI MIPI / QUAD-SPI MCU 8-bit			
TE	0	Tearing effect output pin to synchronize MCU to frame writing, activated by S/W command. When this pin is not activated, this pin is output low. If not used, please open this pin.				
TE1	0	Tearing effect output pin to synchronize MCU to frame writing, activated by S/W command. (Same as TE) IC Status active reporting pin.				
SWIRE	0	Swire protocol setting pin of Power IC, If not used, please open this pin.				
WATCH_ OSC_IN	I	The oscillator input of self-clock function for AOD mode. (crystal oscillator= 32.768kHz) If not used, please connect to VSSI.				
ERR	0	Output pin used to monitor display driver state and error status If not used, please open this pin.				

NOTE: "1" = VDDI level, "0" = VSSI level.

4.5 Driver Output Pins (Pins for Panel)

Signal	I/O	Function
S1 ~ S240	0	Pixel electrode driving output.
DMY[1] ~ DMY[12]	0	Dummy Source, leave it Open.
VSR_L[14:1] VSR_R[14:1]	0	VSR control signals, Level shift output, (VGHR-VGLR)

4.6 DC/DC Convert Pins

Signal	I/O	Function	
AVDD	0	Output voltage from step-up circuit 1, generated from VDDB. Connect a capacitor for stabilization.	
VCL	0	Output voltage from step-up circuit 3, generated from VDDB. Connect a capacitor for stabilization.	
VGH	0	Output voltage from step-up circuit 4. Connect a capacitor for stabilization.	
VGL	0	Output voltage from step-up circuit 5. Connect a capacitor for stabilization.	
C11P, C11N C12P, C12N	Ю	Capacitor connection pins for the step-up circuit which generate AVDD. Connect capacitor as requirement. When not in used, please open these pins.	
C31P, C31N C32P, C32N	Ю	Capacitor connection pins for the step-up circuit which generate VCL. Connect capacitor as requirement.	
C41P, C41N	Ю	Capacitor connection pins for the step-up circuit which generate VGH. Connect capacitor as requirement.	
C51P, C51N	Ю	Capacitor connection pins for the step-up circuit which generate VGL. Connect capacitor as requirement.	
OVDD_INT	0	Positive output voltage generated from AVDD. LDO output used for OLED panel display. Connect a capacitor for stabilization. When not in use, please open this pin.	
OVSS_INT	0	Negative output voltage generated from VCL. LDO output used for OLED panel display Connect a capacitor for stabilization. When not in use, please open this pin.	
VGHR	0	Output voltage generated from VGH. LDO output used for panel voltage. Connect a capacitor for stabilization. When not in use, please open this pin.	
VGLR	0	Output voltage generated from VGL. LDO output used for panel voltage. Connect a capacitor for stabilization. When not in use, please open this pin.	
VGMP	0	Output voltage generated from AVDD. LDO output for positive gamma high voltage generator.	
VGSP	0	Output voltage generated from AVDD. LDO output for positive gamma low voltage generator.	
VREF	0	Regulator output for internal reference voltage. Connect capacitor for stabilization.	
DVDD	0	Regulator output for logic system power. Connect a capacitor for stabilization.	
VREFP5	0	Regulator output for VREFP(0.5~5V)	
VREFN5	0	Regulator output for VREFN(-0.5~-4.5V)	

4.7 Test Pins

Signal	I/O	Function		
ANALOG_TEST 1~2	0	Test pin, not accessible to user. Must be left open.		
TEST1~3	Ю	Test pin, not accessible to user. Must be left open.		
TESTEN	I	Test pin, not accessible to user. Must be left open., Internal pull low		
EXTCLK I		Test pin, not accessible to user. Must be left open.		
PCD_L_AVSS	ı	Input pins used for panel crack detection		
PCD_R_AVDD		Please connect PCD_R_AVDD and PCD_L_AVSS together by a routing trace on the panel when utilizing PCD		
DUMMY_R1~R4		The same pad name short together internally Please leave them open when not utilizing		

5 Function Description

5.1 Interface Type Selection

Interface type selection. The connections of IM[1:0] which not shown in table are invalid.

IM[1:0]	Display Data	Command
00	MIPI / 3-wire SPI	MIPI / 3-wire SPI
01	MIPI / 4-wire SPI	MIPI / 4-wire SPI
10	MIPI / QUAD-SPI	MIPI / QUAD-SPI
11	MCU 8-bit	MCU 8-bit

5.2 MCU Interface

5.2.1 Write Cycle and Sequence

During a write cycle the host processor the parallel data to the display module via the interface. The MCU interface utilize CSX, DCX, RDX(SDA), SCL and D[7:0] signals. SCL is driven from high to low then pulled back to high during the write cycle. The host processor provides information during the write cycle while the display module reads the host processor information on the rising edge of SCL.

During the write sequence the host processor writes one or more bytes of information to the display module via the interface. The write sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high.

The basic command format and IFPF (0x3A00, interface pixel format) is equal to 5:

with RGB565_swap=1 function:

The basic command format and IFPF (0x3A00, interface pixel format) is equal to 6:

The basic command format and IFPF (0x3A00, interface pixel format) is equal to 7:

5.2.2 Read Cycle and Sequence

D[1] D[0]

The command read format:

MCU Command Read

CSX
DCX
SCL
RDX (SDA)

D[7]

D[6]

D[6]

D[5]

D[4]

D[4]

D[3]

MDHD CMDLD D5

D5

D5

D6

D[2]

Parameter Content

1 Dummy

5.3 SPI/DUAL-SPI Interface

5.3.1 3-wire / 4-wire SPI/DUAL-SPI Write Cycle and Sequence

During a write cycle the host processor sends a single bit of data to the display module via the interface. The 3-wire/4-wire SPI interface utilizes CSX, SCL and SDA signals. SCL is driven from high to low then pulled back to high during the write cycle. The host processor provides information during the write cycle while the display module reads the host processor information on the rising edge of SCL.

During the write sequence the host processor writes one or more bytes of information to the display module via the interface. The write sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high. The 3-wire serial data contains DCX bit and a transmission byte. DCX bit is driven low while command information is on the interface and is pulled high when data is present.

The 3-wire/4-wire SPI interface write command sequences are described in the following figure.

4-wire SPI

The 3-wire/4-wire SPI interface write display data sequences are described in the following figure.

When DSPI_en =0, the host sends data by SDA only.

When DSPI_en =1(DUAL-SPI), the host sends data by SDA and DCX.

5.3.2 3-wire / 4-wire SPI Read Cycle and Sequence

During a read cycle the host processor reads a single bit of data from the display module via the interface. The 3-wire/4-wire SPI interface utilizes CSX, SCL and SDA signals. SCL is driven from high to low then pulled back to high during the read cycle. The display module provides information during the read cycle while the host processor reads the display module information on the rising edge of SCL.

During the read sequence the host processor reads one or more bytes of information from the display module via the interface. The read sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high. The 3-wire serial data contains DCX bit and a transmission byte. DCX is driven low while command information is on the interface and is pulled high when data is present.

The 3-wire/4-wire SPI interface read command sequences are described in the following figure.

3-wire SPI (0Ah/0B/0Ch/0Dh/0Eh/0Fh/DAh/DBh/DCh) for 8 bit read

4-wire SPI (0Ah/0B/0Ch/0Dh/0Eh/0Fh/DAh/DBh/DCh) for 8 bit read

5.4 QUAD-SPI protocol

QUAD-SPI provides 1-wire for writing / reading command, and 4-wire for writing pixel data. CSX is the chip selection and it is low active property. SCL is driven from high to low then pulled back to high during the write cycle for clock input. SDI_SDA is for 1-wire command writing (PI=02h), 1-wire command reading (PI=03h) and 4-wire pixel data transmission (PI=12h or 32h). DCX and D[1:0] are for 4-wire mode pixel data transmission.

5.4.1 QUAD-SPI command format

The QUAD-SPI interface write command sequences are described in the following figure. AD[23:0] is the command address and its contend is {8'h00, CMD[7:0], 8'h00}. PAM*[7:0] is the command parameter, and PI[7:0] is the packet instruction for QUAD-SPI protocol format decoding.

For example: SLPOUT and memory column setting (multi parameters)

5.4.2 QUAD-SPI pixel writing format

The QUAD-SPI interface write pixel data sequences are described in the following figure. AD[23:0] is the driver IC command address, 0x002C00 or 0x003C00. Data*[7:0]: the pixel data

Two kinds of ADDR format which is distinguished by the preceding packet (32h or 12h). ADDR is 24bits: ADDR is made up 002C00 or 003C00

ADDR is 8bits: ADDR is 2C or 3C

5.4.3 QUAD-SPI pixel writing color format

The QUAD-SPI interface supported RGB888, RGB666, RGB565, RGB332, RGB111, Gray256 for the following formats.

RGB888:

AD is 2Ch or 3Ch

RGB666:

0 X AD7 X AD3 X 0 AD is 2Ch or 3Ch

RGB565 with RGB565_swap=1 function:

5.4.4 QUAD-SPI Read Cycle and Sequence

During a read cycle the host processor reads a single bit of data from the display module via the interface. The QUAD-SPI interface utilizes CSX, SCL and SDI_SDA signals. SCL is driven from high to low then pulled back to high during the read cycle. The display module provides information during the read cycle while the host processor reads the display module information on the rising edge of SCL.

During the read sequence the host processor reads one or more bytes of information from the display module via the interface. The read sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high.

QUAD-SPI read format:

AD is made up {8'h00, CMD[7:0], 8'h00}

5.5 Break and Pause Sequence

The host processor can break a read or write sequence by pulling the CSX signal high during a command or data byte. The display module shall reset its interface so it will be ready to receive the same byte when CSX is again driven low.

The host processor can pause a read or write sequence by pulling the CSX signal high between command or data bytes. The display module shall wait for the host processor to drive CSX low before continuing the read or write sequence at the point where the sequence was paused.

Break can be e.g. another command or noise pulse.

5.6 Display Serial Interface (DSI)

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

RM690B0 is capable of both Command Mode operation and Video Mode operation. Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a display module that incorporates a display controller. The display controller may include local registers and a frame buffer. Systems using Command Mode write to, and read from, the registers and frame buffer memory. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller.

The host processor can also read display module status information or the contents of the frame memory. Command Mode operation requires a bidirectional interface. Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode.

RM690B0 Video Mode architectures also include a simple timing controller and partial frame buffer, used to maintain a partial-screen or lower-resolution image in standby or Low Power Mode. This permits the interface to reduce power consumption.

RM690B0 Configuration:

Lane Pair	MCU(Host) RM690B0(Client)		
Clock Lane	Unidirectional Lane		
	Clock only		
Data Lane 0	Bi-directional Lane		
	Forward High-speed		
	Bi-directional Escape Mode		
	Bi-directional LPDT		
Data Lane 1	Unidirectional Lane		
	Forward High-Speed		
	Escape Mode		
	No LPDT		

5.7 DSI Protocol

On the transmitter side of a DSI Link, parallel data, signal events, and commands are converted to packets. These packets are sent across the serial Link. The receiver side of a DSI Link performs the converse of the transmitter side, decomposing the packet into parallel data, signal events and commands.

There are two kinds of packets, short packet and long packet.

Short packet structure: LP-11: low power mode SoT: start of transmission DI: data identification Data 0, Data1: packet data

ECC: error correction code EoT: End of Transmission

DI structure:

Virtual Channel: these two bits identify the data as directed to one of four virtual channels

Data Type: It specifies the packet structure and packet format

ſ	Virtual Ch	annel (VC)	Data Type (DT)							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

Long packet structure: LP-11: low power mode SoT: start of transmission DI: data identification

Word Count: the number of data bytes of packet data

ECC: error correction code

Checksum: The 16-bit CRC generator to check packet data. If the calculated checksum of receiver are equal to the packet data, the packet data is correct. If the calculated checksum of receiver are not equal, the packet data are not correct.

EoT: end of transmission

5.8 Processor to Peripheral Transactions

Processor to Peripheral Direction Packet Data Types

Data Type	Data Type binary	Description	Packet Size
01h	00 0001	Sync Event, V Sync Start	Short
11h	01 0001	Sync Event, V Sync End	Short
21h	10 0001	Sync Event, H Sync Start	Short
31h	11 0001	Sync Event, H Sync End	Short
08h	00 1000	End of Transmission packet (EoTp)	Short
02h	00 0010	reserved	Short
12h	01 0010	reserved	Short
22h	10 0010	reserved	Short
32h	11 0010	reserved	Short
03h	00 0011	reserved	Short
13h	01 0011	Generic Short WRITE, 1 parameter	Short
23h	10 0011	Generic Short WRITE, 2 parameters	Short
04h	00 0100	reserved	Short
14h	01 0100	Generic READ, 1 parameter	Short
24h	10 0100	reserved	Short
05h	00 0101	DCS Short WRITE, no parameters	Short
15h	01 0101	DCS Short WRITE, 1 parameter	Short
06h	00 0110	DCS READ, no parameters	Short
37h	11 0111	Set Maximum Return Packet Size	Short
09h	00 1001	Null Packet, no data	Long
19h	01 1001	Blanking Packet, no data	Long
29h	10 1001	Generic Long Write	Long
39h	11 1001	DCS Long Write/write_LUT Command Packet	Long
0Eh	00 1110	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
1Eh	01 1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
2Eh	10 1110	reserved	Long
3Eh	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long

Sync Event, Data Type = xx 0001

Sync Events are all short packets and time-accurately. They can perform like the start and end of sync pulses. To represent timing information as accurately as possible, a V Sync Start event represents the start of the VSA and also implies an H Sync Start event for the first line of the VSA. Hence, a V Sync End event implies an H Sync Start event for the last line of the VSA. Sync events may be concatenated with blanking packets to convey inter-line timing accurately and avoid the overhead of switching between LPS and HS for every event. Note there is a power penalty for keeping the data line in HS mode.

EoT packet

This short packet is used to indicate the end of a high speed (HS) transmission. This packet will enhance overall syntem reliability. Although the main objective of the EoTp is to enhance robustness during HS transmission mode, RM690B0 can detect and interpret arriving EoTps regardless of transmission mode (HS or LP modes)

Generic short write / read packet

Generic Short WRITE command is a Short packet type for sending generic data to the peripheral. Generic READ request is a Short packet requesting data from the peripheral.

DCS commands

DCS short write command

DCS short write command is used to write a single data byte command to display module. If there is a valid parameter byte, data type bit 4 shall be set to 1. If there is no valid parameter byte, data type bit 4 shall be set to 0 and the parameter byte shall be 00h.

DCS read commands

The commands are used to request data from s display module.

DCS Long Write / write LUT command

The commands are used to send larger blocks of data to a display module.

Maximum return packet size

This command specifies the maximum size of the payload in a long packet transmission from a display module to host processor.

Null Packet

This is a mechanism for keeping the data lane(s) in high speed mode while sending dummy data.

Blanking Packet

A Blanking packet is used to convey blanking timing information in a Long packet. The packet represents a period between active scan lines of a Video Mode display, where traditional display timing is provided from the host processor to the display module. The blanking period may have Sync Event packets interspersed between blanking segments. Blanking packets may contain arbitrary data as payload.

Generic Long Write

This is used to transmit arbitrary blocks of data from a host processor to a peripheral.

Packed Pixel Stream, 16-bit Format, Data Type: 00 1110

The pixel format is five bits red, six bits green and five bits blue. The green component is split across two bytes. Within a color component, the LSB is sent first, the MSB last.

Packet pixel stream, 18-bit format, Data Type: 01 1110

The pixel format is six bits red, six bits green and six bits blue. Within a color component, the LSB is sent first, the MSB last.

Packet pixel stream, 24-bit format, Data Type: 11 1110

The pixel format is eight bits red, eight bits green and eight bits blue.

5.9 Peripheral-to-Processor LP Transmission

All Command Mode systems require bidirectional capability for returning READ data, acknowledge, or error information to the host processor. Multi-Lane systems shall use Lane 0 for all peripheral-to-processor transmissions. Reverse-direction signaling shall only use low power mode transmission.

Packet structure for peripheral-to-processor transaction is the same as for the processor-to-peripheral direction. For the processor-to-peripheral direction, two basic packet formats are the same as the peripheral-to-processor direction: Short and Long packet structure. BTA shall take place after every peripheral-to-processor transaction. This returns bus control to the host processor following the completion of the LP transmission from the peripheral.

There are four basic types of peripheral-to-processor transactions.

Tearing Effect: It is a Trigger message sent to convey display timing information to the host processor. Acknowledge: It is a Trigger Message sent when the current transmission, as well as all preceding transmissions since the last peripheral to host communication.

Acknowledge and Error Report: It is a Short packet sent if any errors were detected in preceding transmissions from the host processor.

Response to Read Request: It may be a Short or Long packet that returns data requested by the preceding READ command from the processor.

Interpretation of processor-to-peripheral transactions with BTA asserted, and the expected responses, are as follows:

Following a non-Read command: If no errors were detected, the peripheral shall respond with Acknowledge.

Following a Read request: The peripheral shall send the requested READ data if no errors were detected and stored since the last peripheral to host communication.

Following a Read request: If only a single-bit ECC error was detected and corrected, the peripheral shall send the requested READ data in a Long or Short packet and a 4-byte Acknowledge and Error Report packet in the same LP transmission.

Following a non-Read command: If only a single-bit ECC error was detected and corrected, the peripheral shall respond to BTA by sending a 4-byte Acknowledge and Error Report packet.

Following a Read request: If multi-bit ECC errors were detected and not corrected, the peripheral shall send a 4-byte Acknowledge and Error Report packet without sending Read data.

Following a non-Read command: If multi-bit ECC errors were detected and not corrected, the peripheral shall not execute the command, and shall send a 4-byte Acknowledge and Error Report packet.

Following any command: If SoT Error, SoT Sync Error, the VC of DSI or the ID of DSI Invalid or DSI protocol violation was detected, or the DSI command was not recognized, the peripheral shall send a 4-byte Acknowledge and Error Report response.

Following any command: If EoT Sync Error or LP Transmit Sync Error is detected, or a checksum error is detected in the payload, the peripheral shall send a 4-byte Acknowledge and Error Report packet.

5.10 Error Report Format

The following table shows the bit assignment for all error report.

Bit	Description
0	SoT Error
1	SoT Sync Error
2	EoT Sync Error
3	Escape Mode Entry Command Error
4	Low-Power Transmit Sync Error
5	HS Receive Timeout Error
6	False Control Error
7	Reserved
8	ECC Error, single-bit (detected and corrected)
9	ECC Error, multi-bit (detected, not corrected)
10	Checksum Error (Long packet only)
11	DSI Data Type Not Recognized
12	DSI VC ID Invalid
13	reserved
14	reserved
15	reserved

5.11 Peripheral-to-Processor Transaction – Detail Format Description

The following list is the complete set of peripheral-to-processor data types.

Data type, hex	Data type binary	Description	Packet size
02h	00 0010	Acknowledge and error report	short
08h	00 1000	reserved	short
11h	01 0001	GEN short read response, 1byte returned	short
12h	01 0010	GEN short read response, 2bytes returned	short
1Ah	01 1010	Generic long read response	long
1Ch	01 1100	DCS long read response	long
21h	10 0001	DCS short read response, 1byte returned	short
22h	10 0010	DCS short read response, 2bytes returned	short

Acknowledge and error report: It is sent with BTA asserted when a reportable error is detected in the preceding, or earlier, transmission from the host processor.

Generic Short Read Response: This is the short-packet response to Generic READ Request. Packet composition is the Data Identifier (DI) byte, two bytes of payload data and an ECC byte. If the command itself is possibly corrupt, due to an uncorrectable ECC error, SoT or SoT Sync error, the requested READ data packet shall not be sent and only the Acknowledge and Error Report packet shall be sent.

Generic long read response: This is the long-packet response to Generic READ Request. Packet composition is DI followed by a two-byte Word Count, an ECC byte, N bytes of payload, and a two-byte Checksum. If the command itself is possibly corrupt, due to an uncorrectable ECC error, SoT or SoT Sync error, the requested READ data packet shall not be sent and only the Acknowledge and Error Report packet shall be sent.

DCS long read response: This is a Long packet response to DCS Read Request. Packet composition is DI followed by a two-byte Word Count, an ECC byte, N bytes of payload, and a two-byte Checksum. If the DCS command itself is possibly corrupt, due to uncorrectable ECC error, SoT or SoT Sync error, the requested READ data packet shall not be sent and only the Acknowledge and Error Report packet shall be sent.

DCS short read response: This is the short-packet response to DCS Read Request. Packet composition is DI, two bytes of payload data and an ECC byte. If the command itself is possibly corrupt, due to an uncorrectable ECC error, SoT or SoT Sync error, the requested READ data packet shall not be sent and only the Acknowledge and Error Report packet shall be sent.

5.12 DSI Video Mode Interface Timing

5.13 Error Correction Code (ECC)

ECC shall always be generated and appended in the Packet Header from the host processor. Peripherals with Bidirectional Links shall also generate and send ECC.

The number of parity or error check bits required is given by the Hamming rule, which uses parity to correct a single-bit error or detect a two-bit error, but are not capable of doing both simultaneously. DSI uses Hamming-modified codes where an extra parity bit is used to support both single error correction as well as two-bit error detection.

Since Packet Headers are fixed at four bytes (twenty-four data bits and eight ECC bits), P6 and P7 of the ECC byte are unused and shall be set to zero by the transmitter. The receiver shall ignore P6 and P7 and set both bits to zero before processing ECC.

The parity bits of ECC are defined as below:

P7 = 0

P6 = 0

P5 = D10^D11^D12^D13^D14^D15^D16^D17^D18^D19^D21^D22^D23

P4 = D4^D5^D6^D7^D8^D9^D16^D17^D18^D19^D20^D22^D23

P3 = D1^D2^D3^D7^D8^D9^D13^D14^D15^D19^D20^D21^D23

P2 = D0^D2^D3^D5^D6^D9^D11^D12^D15^D18^D20^D21^D22

P1 = D0^D1^D3^D4^D6^D8^D10^D12^D14^D17^D20^D21^D22^D23

P0 = D0^D1^D2^D4^D5^D7^D10^D11^D13^D16^D20^D21^D22^D23

The table below shows a compact way to specify the encoding of parity and decoding of syndromes.

ECC Parity Generation Rules:

Data Bit	P7	P6	P5	P4	P3	P2	P1	P0	Hex
0	0	0	0	0	0	1	1	1	0x07
1	0	0	0	0	1	0	1	1	0x0B
2	0	0	0	0	1	1	0	1	0x0D
3	0	0	0	0	1	1	1	0	0x0E
4	0	0	0	1	0	0	1	1	0x13
5	0	0	0	1	0	1	0	1	0x15
6	0	0	0	1	0	1	1	0	0x16
7	0	0	0	1	1	0	0	1	0x19
8	0	0	0	1	1	0	1	0	0x1A
9	0	0	0	1	1	1	0	0	0x1C
10	0	0	1	0	0	0	1	1	0x23
11	0	0	1	0	0	1	0	1	0x25
12	0	0	1	0	0	1	1	0	0x26
13	0	0	1	0	1	0	0	1	0x29
14	0	0	1	0	1	0	1	0	0x2A
15	0	0	1	0	1	1	0	0	0x2C
16	0	0	1	1	0	0	0	1	0x31
17	0	0	1	1	0	0	1	0	0x32
18	0	0	1	1	0	1	0	0	0x34
19	0	0	1	1	1	0	0	0	0x38
20	0	0	0	1	1	1	1	1	0x1F
21	0	0	1	0	1	1	1	1	0x2F
22	0	0	1	1	0	1	1	1	0x37
23	0	0	1	1	1	0	1	1	0x3B

5.14 Notice

- 1. We recommend users to stay in STOP state for 500ns when switching from LPDT to HSDT.
- 2. We recommend users to adopt EoTp to enhance overall robustness of the system during HSDT.

5.15 Tearing Effect Output

The tearing effect output line supplies to the HOST a panel synchronization signal. This signal can be enabled or disabled by the set_tear_off (34h) and set_tear_on (35h) commands. The mode of the tearing effect signal is defined by the parameter of the set_tear_on (35h) and set_tear_scanline(44h) commands. The signal can be used by the HOST to synchronize internal VSYNC when displaying video images.

5.15.1 Tearing Effect Line Mode

Mode 1, the tearing effect output signal consist of V-sync information only:

tvdh = The display is not updated from the frame memory. tvdl = The display is updated from the frame memory.

Mode 2, the tearing effect output signal consist of V-sync and H-sync information:

hdh = The display is not updated from the frame memory.

thdl = The display is updated from the frame memory.

Mode 3, this mode turn on the tearing effect output signal when vertical scanning reaches line N.

N = The N-th scanning line which set by register N[15:0] of command STESL(44h).

Note. During Sleep In mode, the tearing effect output signal is active low.

5.15.2Tearing Effect Line Timing

The tearing effect signal is described as below:

AC characteristics of Tearing Effect Signal (Frame Rate = 60Hz)

Symbol	Parameter	Min.	Max.	Unit	Description
tvdl	Vertical timing low duration	TBD	TBD	ms	It depends on the vertical timing setting.
tvdh	Vertical timing high duration	TBD	TBD	us	It depends on the vertical timing setting.
thdl	Horizontal timing low duration	TBD	TBD	us	It depends on the horizontal timing setting.
thdh	Horizontal timing high duration	1.8	TBD	us	

Notes:

The signal's rise and fall times (tf, tr) are stipulated to be equal to or less than 15ns.

The Tearing Effect Output Line is fed back to the HOST and should be used as shown below to avoid tearing effect:

The Tearing Effect output line supplies to the HOST a panel synchronization signal. This signal can be enabled or disabled by the set_tear_off(34h), set_tear_on(35h) commands. The mode of the Tearing Effect Signal is defined by the Parameter of the Tearing Effect Line On command. The signal can be used by the HOST to synchronize internal VSYNC when displaying video images.

TEON (35h)	TELOM (35h, 1 st bit)	TE signal Output
0	*	GND
1	0	TE (Mode 1)
1	1	TE (Mode 2)

6. Command

6.1 Command List

			IIIa	na List								1		
	mman		W/R	Function	D7	D6	D5	D4	D3	D2	D1	D0	Default (hex)	MTP
Page	Add.	Para.												
CMD1	00h	-	W	NOP				No Ar	gument				-	-
CMD1	01h	-	W	Software reset				No Ar	gument				-	-
CMD1	04h	1st		5 1 11 1 11 11 11	ID1[7:0]								00h	-
CMD1	04h	2nd	R	Read display identification information	ID2[7:0]								80h	-
CMD1	04h	3rd						ID3	[7:0]				00h	-
CMD1	05h	-	R	Read number of the errors on DSI				P[7:0]				00h	-
CMD1	0Ah	1st	R	Read display power mode	BSTON	IDMON	PTLON	SLPOUT	NORON	DISPON	-	-	08h	-
CMD1	0Bh	1st	R	Read display MADCTR	-	MX	-	-	RGB	-	-	-	00h	-
CMD1	0Ch	1st	R	Read display pixel format	SPI_IFPF_ SEL	VIPF2	VIPF1	VIPF0	-	IFPF2	IFPF1	IFPF0	77h	-
CMD1	0Dh	1st	R	Read display image mode	0	0	INVON	ALLPON	ALLPOFF	0	0	0	00h	-
CMD1	0Eh	1st	R	Read display signal mode	TEON	М	0	0	0	0	0	ERR	00h	-
CMD1	0Fh	1st	R	Read display self-diagnostic	0	0	0	0	0	0	0	checksum	00h	-
CMD1	10h		w	result Sleep-in				No Ar	lument			_comp	_	_
CMD1	11h		w	Sleep-out		No Argument No Argument								_
CMD1	12h		w	Partial display mode on					gument				-	_
		-											-	-
CMD1	13h		W	Normal display mode on					gument					
CMD1	20h		W	Display inversion off					gument				-	-
CMD1	21h		W	Display inversion on					gument				•	-
CMD1	22h	-	W	All pixel off				$\overline{}$	gument				-	-
CMD1	23h	•	W	All pixel on					gument				-	-
CMD1	28h	-	W	Display off		No Argument						-	-	
CMD1	29h	-	W	Display on	No Argument							- 00h	-	
CMD1		1st	W		SC[9:8]									-
CMD1	2Ah	2nd	W	Set column start address	saddress SC[7:0]									
CMD1		3rd	W		EC[9:8]									-
CMD1		4th	W					EC	[7:0]				8Fh	-
CMD1		1st	W					SP	[9:8]				00h	-
CMD1	2Bh	2nd	W	Set row start address				SP	[7:0]				00h	-
CMD1		3rd	W	551.511.5141.655	EP[9:8]									-
CMD1		4th	W					EP	[7:0]				8Fh	-
CMD1	2Ch	-	W	Memory write				No Ar	gument				-	-
CMD1		1st	W					SR	[9:8]				00h	-
CMD1	30h	2nd	W	Partial area				SR	[7:0]				00h	-
CMD1	3011	3rd	W	raitiai aiea				ER	[9:8]				01h	-
CMD1		4th	w					ER	[7:0]				8Fh	-
CMD1		1st	W					PSC	[9:8]				00h	-
CMD1	244	2nd	w	Vertical partial area				PSC	[7:0]				00h	-
CMD1	31h	3rd	w	Vertical partial area				PEC	[9:8]				01h	-
CMD1		4th	W		PEC[7:0]							8Fh	-	
CMD1	34h		w	Tearing effect line off	No Argument							-	-	
CMD1	35h	-	W	Tearing effect line on								00h	-	
CMD1	36h		w	Scan direction control				MADO	TR[7:0]				00h	-
CMD1	38h		w	Idle mode off				No Ar	gument				-	-
CMD1	39h		w	Enter idle mode				No Ar	gument				-	-
CMD1	3Ah	-	w	Interface Pixel Format	SPI_IFPF_ SEL	VIPF2	VIPF1	VIPF0	0	IFPF[2]	IFPF[1]	IFPF[0]	77h	-
CMD1	3Ch	-	w	Memory Continuous Write			•	No Ar	gument		•	•	-	-
CMD1	4.00	1st	w					STS	[15:8]				00h	-
CMD1	44h	2nd	w	Set tear scan-line				STS	[7:0]				00h	-
CMD1	45h	1st	R	Get scan line	GTS[15:8]							00h	-	
				l .	GTS[15:8]								1	

CMD1		2nd	R	Ι				GTS	5[7:0]				00h	l ₋ I
CMD1	4Fh	-	w	Deep standby	0	0	0	0	0	0	0	DSTB	00h	-
CMD1	51h	-	w	Write display brightness	-	Ū	U		[5315	00h	-
CMD1	52h	-	R										00h	-
				Read display brightness	•	•	DCTDI		[7:0]	1 0	Ι.		28h	
CMD1	53h	-	w	Write CTRL display	0									-
CMD1	54h	-	R	Read CTRL display	0	0	BCTRL	0	DD	0	0	0	28h	-
CMD1	55h	-	w	Write RAD_ACL function	0	0	0	0	0	0		ACL[1:0]	00h	
CMD1	56h	-	R	Read RAD_ACL function	0	0	0	0	0	0	RAD_A	ACL[1:0]	00h	
CMD1	63h	-	W	Write HBM display brightness					BM[7:0]				00h	
CMD1	64h	-	R	Read HBM display brightness		1	_	DBV_H	BM[7:0]		1	1	00h	
CMD1	66h		W	HBM enable	-	-	-	-	-	-	HBM_en	-	00h	
CMD1	67h		W	Frame Level Control	0	0	LEVEL	_A[1:0]	0	0	0	0	00h	
CMD1		1st	W	COLSET				R_000	00[7:0]		_		00h	
CMD1	70h	2nd	W	COLSET				G_000	00[7:0]				00h	
CMD1		3rd	W	COLSET				B_000	00[7:0]	_			00h	
CMD1		1st	W	COLSET				R_000	01[7:0]				00h	
CMD1	71h	2nd	W	COLSET				G_000	01[7:0]				00h	
CMD1		3rd	W	COLSET				B_000	01[7:0]				FFh	
CMD1		1st	W	COLSET				R_001	10[7:0]				00h	
CMD1	72h	2nd	W	COLSET				G_00°	10[7:0]				FFh	
CMD1		3rd	W	COLSET				B_00 ²	10[7:0]				00h	
CMD1		1st	W	COLSET				R_00°	11[7:0]				00h	
CMD1	73h	2nd	W	COLSET				G_00	11[7:0]				FFh	
CMD1		3rd	W	COLSET				B_00°	11[7:0]				FFh	
CMD1		1st	w	COLSET				R_010	00[7:0]				FFh	
CMD1	74h	2nd	w	COLSET					00[7:0]				00h	
CMD1		3rd	w	COLSET					00[7:0]				00h	
CMD1		1st	w	COLSET					01[7:0]				FFh	
CMD1	75h	2nd	w	COLSET					01[7:0]				00h	
CMD1		3rd	w	COLSET					01[7:0]				FFh	
CMD1		1st	w	COLSET					10[7:0]				FFh	
CMD1	76h	2nd	w	COLSET					10[7:0]				FFh	
CMD1	70	3rd	w	COLSET					10[7:0]				00h	
CMD1		1st	w	COLSET			,						FFh	
CMD1	77h	2nd	w	COLSET					11[7:0]				FFh	
CMD1	//11	3rd			_				11[7:0]				FFh	
			w	COLSET					11[7:0]					
CMD1	701	1st	w	COLSET				2 10	00[7:0]				00h	
CMD1	/8n			COLSET					00[7:0]				00h	
CMD1		3rd	W	COLSET					00[7:0]				00h	
CMD1		1st	_	COLSET					01[7:0]				00h	
CMD1	79h	2nd	W	COLSET					01[7:0]				00h	
CMD1		3rd	W	COLSET					01[7:0]				FFh	
CMD1		1st	W	COLSET					10[7:0]				00h	
CMD1	7Ah	2nd	W	COLSET				G_10 ⁻	10[7:0]				FFh	
CMD1		3rd	W	COLSET				B_10 ²	10[7:0]				00h	
CMD1		1st	W	COLSET				R_101	11[7:0]				00h	
CMD1	7Bh	2nd	W	COLSET				G_10 ⁻	11[7:0]				FFh	
CMD1		3rd	W	COLSET				B_10 ²	11[7:0]				FFh	
CMD1		1st	W	COLSET				R_110	00[7:0]				FFh	
CMD1	7Ch	2nd	W	COLSET	G_1100[7:0]								00h	
CMD1		3rd	W	COLSET	B_1100[7:0]								00h	
CMD1		1st	W	COLSET	R_1101[7:0]								FFh	
CMD1	7Dh	2nd	W	COLSET				G_110	01[7:0]				00h	
CMD1		3rd	w	COLSET				B_110	01[7:0]				FFh	
CMD1		1st	w	COLSET					10[7:0]				FFh	
CMD1	7Eh	2nd	W	COLSET					10[7:0]				FFh	
CMD1		3rd	w	COLSET					10[7:0]				00h	
<u> </u>	I													

CMD1		1st	W	COLSET				R_111	1[7:0]				FFh	
CMD1	7Fh	2nd	w	COLSET		G_1111[7:0]							FFh	
CMD1		3rd	w	COLSET				B_111	1[7:0]				FFh	
CMD1	80h	1st	w	COLOPT	-	RGB111_o pt	-	RGB565_ swap	RGB4bit_ en	gray256_co or[2]	ol gray256_ olor[1]	c gray256_ color[0]	07h	
CMD1		1st	R					SID[[7:0]				D0h	-
CMD1		2nd	R					SID[15:8]				01h	-
CMD1	A1h	3rd	R	Read DDB				MID	[7:0]				80h	-
CMD1		4th	R					MID[15:8]				90h	-
CMD1		5th	R		1	1	1	1	1	1	1	1	FFh	-
CMD1		1st	R					SID[[7:0]	•	•	•	D0h	-
CMD1		2nd	R					SID[15:8]				01h	-
CMD1	A8h	3rd	R	Read DDB Continuous				MID	[7:0]				80h	-
CMD1		4th	R					MID[15:8]				90h	-
CMD1		5th	R		1	1	1	1	1	1	1	1	FFh	-
CMD1	AAh	-	R	Read first checksum				FCS	[7:0]	_			00h	-
CMD1	AFh	-	R	Read continuous checksum				ccs	[7:0]				00h	-
CMD1	C2h			Set_DSIP Mode	0	0	0	0	0	0	DM1	DM0	00h	-
CMD1	C4h			Set_DSPI Mode	SPI_WRA M	0	DSPI_CFG 1	DSPI_CFG 0	0	0	0	DSPI_EN	00h	-
CMD1	DAh		R	Read display identification				ID1[7:0]				00h	-
CMD1	DBh		R	information				ID2[[7:0]				80h	-
CMD1	DCh		R	(the same as 04h)	ID3[7:0]								00h	-
CMD1	FEh	-	w	Write CMD mode page	CMD_Page[7:0]								00h	-
CMD1	FFh	-	R	Read CMD page Status				CMD_Sta	atus[7:0]				00h	-

6.2 Command Description

NOP (0000h)

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	0000h				No Arg	jument				

Description	This command is an empty command; it does not have any effect on the display module. X = Don't care.
Restriction	None

SWRESET(0100h): Software Reset

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	0100h		No Argument								

D	escription	When the Software Reset command is written, it causes software reset. It resets the commands and parameters to their S/W Reset default values. (See default tables in each command description.)
R	estriction	Software Reset Command cannot be sent during Sleep Out sequence. Any new command cannot be sent for 10-frame period until the RM690B0 enters Sleep-In mode. Do not send any command.

RDDID(0400h~0402h): Read Display ID

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	0400h	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	00
R	0401h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	80
	0402h	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	00

Description	The 1 st parameter (ID1): the Module's manufacture ID The 2 nd parameter (ID2): the Module/driver version ID The 3 rd parameter (ID3): the Module/driver ID Note: Commands RDID1/2/3 (DAh/DBh/DCh) read data correspond to the parameter 1, 2, 3 of command 04h, respectively.
Restriction	

RDNUMED(0500h): Read Number of Errors on DSI

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0500h	D7	D6	D5	D4	D3	D2	D1	D0	00

Description	The first parameter is telling a number of the parity errors on DSI. The more detailed description of the bits is below. D[60] bits are telling a number of the parity errors. D[7] is set to "1" if there is overflow with D[60] bits. D[70] bits are set to "0"s (as well as RDDSM(0Eh)'s D0 are set "0" at the same time) after there is sent the first parameter information (= The read function is completed). This command is used for MIPI DSI only. It is no function for others interface operation.
Restriction	

RDDPM (0A00h): Read Display Power Mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0A00h	D7	D6	D5	D4	D3	D2	D1	D0	08

Th	is comi	mand indica	ites the current status of th	e display as described in the table below:							
	Bit	Symbol	Description	Comment							
	D7	BSTON	Booster Voltage Status	'1'=Booster on, '0'=Booster off							
	D6 IDMON		Idle Mode On/Off	'1' = Idle Mode On, '0' = Idle Mode Off							
Description	D5	PTLON	Partial Mode On/Off	'1' = Partial Mode On, '0' = Partial Mode Off							
	D4	SLPON	Sleep In/Out	'1' = Sleep Out, '0' = Sleep In							
	D3	NORON	Display Normal Mode On/Off	'1' = Normal Display, '0' = Partial Display							
	D2 DISON		Display On/Off	'1' = Display On, '0' = Display Off							
	D1	Reserved		0							
	D0	Reserved		0							

RDDMADCTR (0B00h): Read Display MADCTR

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0B00h	D7	D6	D5	D4	D3	D2	D1	D0	00

This c	om	mand indicates	s the current status of th	ne display as described in the table below:
В	it	Symbol	Description	Comment
D	6	MX	Column Address	0: Increasing in horizontal

Description

RDDCOLMOD (0C00h): Read Display Pixel Format

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0C00h	SPI_IFPF _SEL	VIPF[2]	VIPF[1]	VIPF[0]	0	IFPF[2]	IFPF[1]	IFPF[0]	77

To return the status of 0x3A00.

This command sets the pixel format for the RGB image data used by the interface.

If SPI_IFPF_SEL(3Ah-D7) = 1:

The SPI/QSPI interface will use VIPF[2:0] as pixel format setting specifically, and the other interface will use IFPF[2:0].

If $SPI_IFPF_SEL(3Ah-D7) = 0$:

All interface will use IFPF[2:0] as pixel format setting

Description

Control Interface Color Format	IFPF[2]	IFPF[1]	IFPF[0]
SPI 8 bit/pixel (256 colors); SPI 256 Gray (Support IF: SPI3/SPI4)	0	0	1
SPI 8 bit/pixel (256 colors); SPI 3-3-2 (Support IF: SPI3/SPI4)	0	1	0
SPI 3 bit/pixel (8 colors); SPI 1-1-1 (Support IF: SPI3/SPI4)	0	1	1
16bit/pixel (65,536 colors)	1	0	1
18bit/pixel (262,144 colors)	1	1	0
24bit/pixel (16.7M colors)	1	1	1

RDDIM (0D00h): Read Display Image Mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0D00h	D7	D6	D5	D4	D3	D2	D1	D0	00

The display module returns the display image mode status.

Description

Bit	Symbol	Description	Comment				
D7	Reserved		·0·				
D6	Reserved		'0'				
D5	INVON	Inversion On/Off	"1" = Inversion is On, "0" = Inversion is Off				
D4	ALLON	All Pixel On	'0' = Normal display '1' = White display				
D3	ALLOFF	All Pixel Off	'0' = Normal display '1' = Black display				
D2~ D0	Reserved		'000'				

RDDSM (0E00h): Read Display Signal Mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0E00h	D7	D6	D5	D4	D3	D2	D1	D0	00

	The displ		rns the Display Signal	Mode.
	Bit	Symbol	Description	Comment
	D7	TEON	Tearing Effect Line On/Off	"1" = On, "0" = Off
	D6	TELOM	Tearing effect line	"0" = mode1,
	D6	TELOW	mode	"1" = mode2
Description	D5 Reserved D4 Reserved			'0'
Description				'0'
	D3	Reserved		'0'
	D2	Reserved		,0,
	D1	Reserved		,0,
	D0	Error on DSI Error on DSI		'0' = No Error '1' = Error
			1	1 110

RDDSDR (0F00h): Read Display Self-Diagnostic Result

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	0F00h	0	0	0	0	0	0	0	checksu m_comp	00

The display module returns the self-diagnostic results following a Sleep Out command.

Description

SLPIN (1000h): Sleep In

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX				
W	1000h				No Arg	No Argument								

	This command causes the display module to enter the minimum power consumption mode. In this mode the DC/DC converter is stopped, Internal display oscillator is stopped, and panel scanning is stopped. The control Interface such as registers is still working and keeps its values.
Restriction	This command has no effect when the display module is already in Sleep mode. Sleep In Mode can only be exit by the Sleep Out Command (11h). It must wait 5msec before sending next command for the supply voltages and clock circuits to stabilize. It must wait 120msec after sending Sleep Out command (when in Sleep In Mode) before Sleep In command can be sent.

SLPOUT (1100h): Sleep Out

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	1100h		No Argument								

Description	This command causes the display module to exit Sleep mode.
Restriction	This command shall not cause any visible effect on the display device when the display module is not in Sleep mode. The host processor must wait five milliseconds after sending this command before sending another command. This delay allows the supply voltages and clock circuits to stabilize. The host processor must wait 60 milliseconds after sending a Sleep Out command before sending a Sleep-In command. The display module loads the display module's default values to the registers when exiting the Sleep mode. There shall not be any abnormal visual effect on the display device when loading the registers if the factory default and register values are the same or when the display module is not in Sleep mode. The display module runs the self-diagnostic functions after this command is received.

PTLON (1200h): Partial Display Mode On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
W	1200h		No Argument									

Description	This command causes the display module to enter the Partial Display Mode. The Partial Display Mode window is described by the Partial Area (30h) command. To leave Partial Display Mode, the Normal Display Mode On (13h) command should be written.
Restriction	This command has no effect when Partial Display Mode is already active.

NORON (1300h): Normal Display Mode On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	1300h				No Arg	gument				

	This command causes the display module to enter the Normal mode. Normal Mode is defined as Partial Display mode.
Restriction	This command has no effect when Normal Display mode is already active.

INVOFF (2000H): Display Inversion Off

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	2000h		No Argument								

INVON (2100H): Display Inversion On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	2100h				No Arg	gument				

ALLPOFF (2200H): All Pixel Off

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
W	2200h		No Argument									

ALLPON (2300H): All Pixel On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
W	2300h		No Argument									

DISPOFF (2800h): Display Off

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	2800h		No Argument								

DISPON (2900h): Display On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
W	2900h		No Argument									

CASET(2A00h~2A03h): Set Column Start Address

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	2A00h	1	ı	ı	1	•	1	SC9	SC8	00
W	2A01h	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	00
VV	2A02h	1	1	ı	1	-		EC9	EC8	01
-	2A03h	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	DF

This command defines the column extent of the frame memory accessed by the host processor with the read memory continue and write memory continue commands.

This command makes no change on the other driver status. The values of SC[9:0] and EC[9:0] are referred when RAMWR command comes. Each value represents one column line in the Frame Memory.

Restriction

Description

(1) SC[9:0] always must be equal to or less than EC[9:0].

(2) The SC[9:0] and EC[9:0]-SC[9:0]+1 must can be divisible by 2.

RASET(2B00h~2B03h): Set Row Start Address

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	2B00h	I	I	1	1	1	-	SP9	SP8	00
W	2B01h	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	00
VV	2B02h	-	-	-	-	-	-	EP9	EP8	01
	2B03h	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	DF

This command defines the page extent of the frame memory accessed by the host processor with the write_memory_continue and read_memory_continue command.

This command makes no change on theother driver status. The values of SP[9:0] and EP[9:0] are referred when RAMWR command comes. Each value represents one Page line in the Frame Memory.

(1) SP[9:0] always must be equal to or less than EP[9:0]

Restriction

(2) The SP[9:0] and EP[9:0]-SP[9:0]+1 must can be divisible by 2.

RAMWR (2C00h): Memory Write

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	2C00h	0	0	1	0	1	1	0	0	2C
	1 st Pixel	D ₁ 7	D₁6	D₁5	D ₁ 4	D ₁ 3	D ₁ 2	D ₁ 1	D ₁ 0	
	:	:	:	:	:	:	:	:	:	
	N th Pixel	D _N 7	D _N 6	D _N 5	D _N 4	D _N 3	D _N 2	D _N 1	D _N 0	

•	This command transfers image data from the host processor to the display module's frame memory starting at the pixel location specified by preceding CASET (2Ah) and RASET (2Bh) commands.
	A Memory Write should follow a CASET(2Ah), RASET(2Bh) or MADCTR(36h) to define the write location. Otherwise, data written with RAMWR(2Ch) and any following RAMWRC(3Ch) commands is written to undefined locations.

PTLAR (3000h): Partial Area

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	3000h	ı	•	1	-	-	-	SR9	SR8	00
14/	3001h	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	00
W	3002h	-	-	-	-	-	-	ER9	ER8	01
	3003h	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	DF

PTLAR (3100h): Vertical Partial Area

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	3100h	-	-	-	-	-	-	-	SC8	00
14/	3101h	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	00
W	3102h	-	-	-	-	-	-	-	EC8	01
	3103h	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	DF

TEOFF (3400h): Tearing Effect Line OFF

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	3400h		No Argument								

	This command turns off the display module's Tearing Effect output signal on the TE signal line.
Restriction	This command has no effect when the Tearing Effect output is already off.

TEON (3500h): Tearing Effect Line ON

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	3500h	0	0	0	0	0	0	TE_M	TELOM	00

	Bit	Symbol	Description	Comment							
	D1	TE_M	Output mode of TE signal set	1: Refresh frame active <note> TE output active at refresh frame to avoid tearing effect, command can be set: 1. 0x3500=00.or 2. 0x3500=02.</note>							
	D0	TELOM	Output mode of TE signal	0:only V-blanking 1:V-blanking +H-blanking							
Description	The Tea mode. If TELOM The Teari	This command turns on the tearing Effect output signal on the TE signal line. The Tearing Effect Line On has one parameter that describes the Tearing Effect Output Line mode. If TELOM = 0: The Tearing Effect Output line consists of V-Blanking information only. tvdl Vertical Time Scale									
	If TELOM = 1: The Tearing Effect Output Line consists of both V-Blanking and H-Blanking information.										
	The Tearing Effect Output Line consists of both V-Blanking and H-Blanking information. V-Sync Invisible Line The Tearing Effect Output line shall be active low when the display module is in Sleep mode.										
Restriction	This con	nmand has no	effect when Tearing Effect outpu	ut is already ON.							

MADCTR (3600h): Scan Direction Control

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
W	3600h	D7	D6	D5	D4	D3	D2	D1	D0	00	

This command defines the scan direction of Source and Gate Driver. This command makes no change on the other driver status. Symbol Bit Description Comment D7 Reserved 0: Increasing in horizontal D6 MX Column Address Increment 1: Decreasing in horizontal D3 RGB RGB/BGR Order '1' =BGR, "0"=RGB Reserved D2 D1 Reserved D0 Reserved Display Panel MX Image In Frame Memory Input Image F Description 0 1 F D3=0 Input Image Display Panel Sent RGB G B G B D3=1 **Input Image** Display Panel Sent BGR G B B G R Restriction

IDMOFF (3800h): Idle Mode Off

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	3800h		No Argument							

Description	This command causes the display module to exit Idle mode.
Restriction	This command has no effect when the display module is not in Idle mode.

IDMON (3900h): Enter_idle_mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	3900h		D7 D6 D5 D4 D3 D2 D1 D0 H No Argument							

Description	This command causes the display module to enter Idle Mode.	
Restriction	This command has no effect when module is already in idle on mode.	

COLMOD (3A00h): Interface Pixel Format

R	W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
'	W	3A00h	SPI_IFPF_SEL	VIPF[2]	VIPF[1]	VIPF[0]	0	IFPF[2]	IFPF[1]	IFPF[0]	77

This command sets the pixel format for the RGB image data used by the interface.

If $SPI_IFPF_SEL(3Ah-D7) = 1$:

The SPI/QSPI interface will use VIPF[2:0] as pixel format setting individually, and the other interface will use IFPF[2:0].

If $SPI_IFPF_SEL(3Ah-D7) = 0$:

All interface use IFPF[2:0] as pixel format setting

Desc	cript	tion	

Control Interface Color Format	IFPF[2]	IFPF[1]	IFPF[0]
SPI 8 bit/pixel (256 colors); SPI 256 Gray (Support IF: SPI3/SPI4)	0	0	1
SPI 8 bit/pixel (256 colors); SPI 3-3-2 (Support IF: SPI3/SPI4)	0	1	0
SPI 3 bit/pixel (8 colors); SPI 1-1-1 (Support IF: SPI3/SPI4)	0	1	1
16bit/pixel (65,536 colors)	1	0	1
18bit/pixel (262,144 colors)	1	1	0
24bit/pixel (16.7M colors)	1	1	1

Restriction

RAMWRC (3C00h): Memory Continuous Write

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	3C00h	0	0	1	1	1	1	0	0	3C
14/	1 st Pixel	D ₁ 7	D₁6	D₁5	D ₁ 4	D ₁ 3	D ₁ 2	D ₁ 1	D ₁ 0	
W	:	:	:	:	:	:	:	:	:	
	N th Pixel	D _N 7	D _N 6	D _N 5	D _N 4	D _N 3	D _N 2	D _N 1	D _N 0	

Description	This command transfers image data from the host processor to the display module's frame memory continuing from the pixel location following the previous write_memory_continue or write_memory_start command.
Restriction	A Memory Write should follow a CASET(2Ah), RASET(2Bh) or MADCTR(36h) to define the write location. Otherwise, data written with RAMWR(2Ch) and any following RAMWRC(3Ch) commands is written to undefined locations.

STESL(4400h): Set_Tear_Scanline

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
10/	4400h	STS[15]	STS[14]	STS[13]	STS[12]	STS[11]	STS[10]	STS[9]	STS[8]	00
W	4401h	STS[7]	STS[6]	STS[5]	STS[4]	STS[3]	STS[2]	STS[1]	STS[0]	00

GSL (4500h): Get_Scanline

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	4500h	GTS[15]	GTS[14]	GTS[13]	GTS[12]	GTS[11]	GTS[10]	GTS[9]	GTS[8]	0x
R	4501h	GTS[7]	GTS[6]	GTS[5]	GTS[4]	GTS[3]	GTS[2]	GTS[1]	GTS[0]	XX

Description	The display returns the current scan line, N, used to update the display device. The total number of scan lines on a display device is defined as VSYNC + VBP + VACT + VFP. The first scan line is defined as the first line of V-Sync and is denoted as Line 0. When in Sleep Mode, the value returned by get scanline is undefined.
Restriction	

DSTBON (4F00h): Deep Standby Mode On

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	4F00h	0	0	0	0	0	0	0	DSTB	00

Description	This command is used to enter deep standby mode. DSTB="1", enter deep standby mode. Notes: 1. To exit Deep Standby Mode, input low pulse more than 3 msec to pin RESX. 2. For MIPI IF, if deep standby mode is used, please pull HSSI_CLK_P/N & HSSI_D0~D1_P/N to GND after executing deep standby command.
Restriction	

WRDISBV (5100h): Write Display Brightness

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	5100h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	00

Description	This command is used to adjust brightness value. In principle relationship is that 00h value means the lowest brightness and FFh value means the highest brightness.
Restriction	The display supplier cannot use this command for tuning

RDDISBV (5200h): Read Display Brightness

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	5200h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	00

Description	This command returns brightness value. In principle relationship is that 00h value means the lowest brightness and FFh value means the highest brightness.
Restriction	

WRCTRLD (5300h): Write Display Control

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	5300h	0	0	BCTRL	0	DD	0	0	0	28

Description	BCTRL: Brightness control ,1=enable DD: Display dimming control ,1=enable
Restriction	The display supplier cannot use this command for tuning

RDCTRLD (5400h): Read Display Control

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	5400h	0	0	BCTRL	0	DD	0	0	0	28

Description	BCTRL: Brightness control ,1=enable DD: Display dimming control ,1=enable
Restriction	

WRRADACL (5500h): RAD_ACL Control

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	5500h	0	0	0	0	0	0	RAD_ACL[1:0]		00

Description	This command is used to control Raydium specific function for ACL (Auto Current Limit) RAD_ACL[1:0]=11, Enable Raydium ACL function. RAD_ACL[1:0]=00, Disable Raydium ACL function.
Restriction	

COLORTEMP (5500h): Color Temperature Selection

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	5500h	0	0	0	0	color_ tem	p_sel[1:0]	0	0	00

Description	This command is used to select color temperature setting color_ temp_sel = 0 : Choose color temperature 1 configuration color_ temp_sel = 1 : Choose color temperature 2 configuration color_ temp_sel = 2 : Choose color temperature 3 configuration
Restriction	

WRDISBV (6300h): Write HBM Display Brightness

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	6300h				DBV_H	BM[7:0]				00

Description	This command is used to adjust brightness value in HBM mode if hbm_gidx_type=1.
Restriction	DBV_HBM[7:0] setting value must be greater than G_ratio_HBM_swap value.

RDDISBV (6400h): Read HBM Display Brightness

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	6400h				DBV_H	BM[7:0]		,		00

Description	This command returns brightness value in HBM mode.
Restriction	

HBM_Mode (6600h): Set_HBM_Mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	6600h	0	0	0	0	0	0	HBM_en	0	00

Descrip	otion	HBM_en = 1, This command causes the display module to enter HBM mode (exit normal, idle) HBM_en = 0, This command causes the display module to exit HBM mode (to normal mode)
Restric		under display area

FR_LEVEL (6700h): Frame Rate Level Control

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R/W	6700h	0	0	Normal_I	_evel[1:0]	0	0	Idle_le	vel[1:0]	00

	This command is used to select Raydium specific display scenario in normal mode and IDLE mode (ex: frame-rate).									
	Bit	Description	Data							
Description	Normal_level[1:0]	Normal mode display scenario setting	0: Normal mode 1: Normal mode level 1 2: Normal mode level 2 3: Normal mode level 3 Others: Reserved							
	Idle_level[1:0]	IDLE mode display scenario setting	0: IDLE mode 1: IDLE mode level 1 2: IDLE mode level 2 Others: Reserved							
Restriction	under display area									

COLSET (7000~7F00h): Interface Pixel Format Set

	(/UUU~/FU									
R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	7000h				R_00	00[7:0]				00
W	7001h				G_00	00[7:0]				00
	7002h				B_00	00[7:0]				00
	7100h				R_00	01[7:0]				00
W	7101h				G_00	01[7:0]				00
	7102h				B_00	01[7:0]				FF
	7200h				R_00	10[7:0]				00
W	7201h		G_0010[7:0]							
	7202h				B_00	10[7:0]				00
	7300h				R_00	11[7:0]				00
W	7301h		G_0011[7:0]							FF
	7302h		B_0011[7:0]							
	7400h				R_01	00[7:0]				FF
W	7401h				G_01	00[7:0]		Ť		00
	7402h				B_01	00[7:0]				00
	7500h				R_01	01[7:0]				FF
W	7501h				G_01	01[7:0]				00
	7502h		B_0101[7:0]							FF
	7600h				R_01	10[7:0]				FF
W	7601h		G_0110[7:0]							FF
	7602h				B_01	10[7:0]				00
	7700h				R_01	0111[7:0]				
W	7701h				G_01	11[7:0]				FF
	7702h				B_01	11[7:0]				FF
	7800h				R_10	00[7:0]				00
W	7801h				G_10	00[7:0]				00
	7802h				B_10	00[7:0]				00
	7900h				R_10	01[7:0]				00
W	7901h				G_10	01[7:0]				00
	7902h				B_10	01[7:0]				FF
	7A00h				R_10	10[7:0]				00
W	7A01h				G_10	10[7:0]				FF
	7A02h				B_10	10[7:0]				00
	7B00h				R_10	11[7:0]				00
W	7B01h				G_10	11[7:0]				FF
	7B02h				B_10	11[7:0]				FF
	7C00h					00[7:0]				FF
W	7C01h					00[7:0]				00
	7C02h					00[7:0]				00
	7D00h				R_11	01[7:0]				FF
W	7D01h				G_11	01[7:0]				00
	7D02h				B_11	01[7:0]				FF
W	7E00h				R_11	10[7:0]				FF

	7E01h	G_1110[7:0]	FF
	7E02h	B_1110[7:0]	00
	7F00h	R_1111[7:0]	FF
W	7F01h	G_1111[7:0]	FF
	7F02h	B_1111[7:0]	FF

This command set the 1-1-1 color format map directly to 24 bits by CMD 7000h-7F00h

RGB111 color mapping	R[7:0]	G[7:0]	B[7:0]
0000 (70h)	R_0000[7:0]	G_0000[7:0]	B_0000[7:0]
0001 (71h)	R_0001[7:0]	G_0001[7:0]	B_0001[7:0]
0010 (72h)	R_0010[7:0]	G_0010[7:0]	B_0010[7:0]
0011 (73h)	R_0011[7:0]	G_0011[7:0]	B_0011[7:0]
0100 (74h)	R_0100[7:0]	G_0100[7:0]	B_0100[7:0]
0101 (75h)	R_0101[7:0]	G_0101[7:0]	B_0101[7:0]
0110 (76h)	R_0110[7:0]	G_0110[7:0]	B_0110[7:0]
0111 (77h)	R_0111[7:0]	G_0111[7:0]	B_0111[7:0]
1000 (78h)	R_1000[7:0]	G_1000[7:0]	B_1000[7:0]
1001 (79h)	R_1001[7:0]	G_1001[7:0]	B_1001[7:0]
1010 (7Ah)	R_1010[7:0]	G_1010[7:0]	B_1010[7:0]
1011 (7Bh)	R_1011[7:0]	G_1011[7:0]	B_1011[7:0]
1100 (7Ch)	R_1100[7:0]	G_1100[7:0]	B_1100[7:0]
1101 (7Dh)	R_1101[7:0]	G_1101[7:0]	B_1101[7:0]
1110 (7Eh)	R_1110[7:0]	G_1110[7:0]	B_1110[7:0]
1111 (7Fh)	R_1111[7:0]	G_1111[7:0]	B_1111[7:0]

Restriction

Description

COLOPT (8000h): Interface Pixel Format Option

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	8000h	х	RGB111_opt	Х	RGB565 _swap	RGB4bit_en	gray256_col or[2]	gray256_col or[1]	gray256_col or[0]	07

This command sets the 1-1-1/256 gray color format option used by SPI interface.

RGB111_opt = 0 (80h-B6):

Supporting in IFPF[2:0]=011 case setting by 3A00h (interface pixel format is SPI 1-1-1).

RGB 1-1-1 Bit	DCX	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Note
CMDWR	0	0	0	0	0	0	0	0	0	0x2C for GRAM Write
1st RAM Data Write	1	Х	х	R1[0]	G1[0]	B1[0]	R2[0]	G2[0]	B2[0]	1,2 pixel Data Write
2nd RAM Data Write	1	х	x	R3[0]	G3[0]	B3[0]	R4[0]	G4[0]	B4[0]	3,4 pixel Data Write
3rd RAM Data Write	1	х	x	R5[0]	G5[0]	B5[0]	R6[0]	G6[0]	B6[0]	5,6 pixel Data Write
So on										

 $RGB111_opt = 1 (80h-B6)$:

Supporting in IFPF[2:0]=011 case setting by 3A00h (interface pixel format is SPI 1-1-1).

RGB 1-1-1 Bit	DCX	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Note
CMDWR	0	0	0	0	0	0	0	0	0	0x2C for GRAM Write
1st RAM Data Write	1	x	R1[0]	G1[0]	B1[0]	X	R2[0]	G2[0]	B2[0]	1,2 Pixel Data Write
2nd RAM Data Write	1	X	R3[0]	G3[0]	B3[0]	X	R4[0]	G4[0]	B4[0]	3,4 Pixel Data Write
3rd RAM Data Write	1	x	R5[0]	G5[0]	B5[0]	X	R6[0]	G6[0]	B6[0]	5,6 Pixel Data Write
So on										

Description

 $RGB565_swap = 0 (80h-B4)$:

The input order is R[4:0], G[5:0], B[4:0].

 $RGB565_swap = 1 (80h-B4)$:

The input order is G[2:0], B[4:0], R[4:0], G[5:3].

RGB4bit_en = 0 (80h-B3):

Supporting in IFPF[2:0]=011 case setting by 3A00h (interface pixel format is SPI 1-1-1).

Three bits per pixel formats map directly to 24bits by CMD 7000h-7700h

RGB 1-1-1 Bit	DCX	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Note
CMDWR	0	0	0	0	0	0	0	0	0	0x2C for GRAM Write
1st RAM Data Write	1	x	x	P1[2]	P1[1]	P1[0]	P2[2]	P2[1]	P2[0]	1,2 Pixel Data Write
2nd RAM Data Write	1	x	x	P3[2]	P3[1]	P3[0]	P4[2]	P4[1]	P4[0]	3,4 Pixel Data Write
3rd RAM Data Write	1	x	x	P5[2]	P5[1]	P5[0]	P6[2]	P6[1]	P6[0]	5,6 Pixel Data Write

RGB4bit_en = 1(80h-B3):

Supporting in IFPF[2:0]=011 case setting by 3A00h (interface pixel format is SPI 1-1-1).

Four bits per pixel formats map directly to 24bits by CMD 7000h-7F00h

ar bite per pixer termate map arreatly to 2 libite by SWID 100011 11 0011										
RGB 1-1-1 Bit	DCX	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Note
CMDWR	0	0	0	0	0	0	0	0	0	0x2C for GRAM Write
1st RAM Data Write	1	P1[3]	P1[2]	P1[1]	P1[0]	P2[3]	P2[2]	P2[1]	P2[0]	1,2 Pixel Data Write
2nd RAM Data Write	1	P3[3]	P3[2]	P3[1]	P3[0]	P4[3]	P4[2]	P4[1]	P4[0]	3,4 Pixel Data Write
3rd RAM Data Write	1	P5[3]	P5[2]	P5[1]	P5[0]	P6[3]	P6[2]	P6[1]	P6[0]	5,6 Pixel Data Write
So on										

Example:

P1[3:0] = 4'b1101 = { R_1101[7:0], G_1101[7:0], B_1101[7:0] }

CMD 7D00h-7D02h

gray256_color(80h-B[2:0]):

Supporting in IFPF[2:0]=001 case setting by 3A00h (interface pixel format is SPI 256 Gray). This command sets the valid red, green and blue 256 grayscale

Description

gray256_color[2:0]	Red grayscale	Green grayscale	Blue grayscale
000	00000000	00000000	00000000
001	00000000	00000000	P[7:0]
010	00000000	P[7:0]	00000000
011	00000000	P[7:0]	P[7:0]
100	P[7:0]	00000000	00000000
101	P[7:0]	00000000	P[7:0]
110	P[7:0]	P[7:0]	00000000
111	P[7:0]	P[7:0]	P[7:0]

Restriction

RDDDBS(A100h): Read_DDB_Start

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	A100h	SID[7]	SID [6]	SID [5]	SID [4]	SID [3]	SID [2]	SID [1]	SID [0]	D0
	A101h	SID[15]	SID[14]	SID[13]	SID[12]	SID[11]	SID[10]	SID[9]	SID[8]	01
R	A102h	MID[7]	MID[6]	MID[5]	MID[4]	MID[3]	MID[2]	MID[1]	MID[0]	80
	A103h	MID[15]	MID[14]	MID[13]	MID[12]	MID[11]	MID[10]	MID[9]	MID[8]	90
	A104h	1	1	1	1	1	1	1	1	FF

Description	1 st 2 nd 3 rd 4 th 5 th	parameter: Supplier ID code parameter: Supplier ID code parameter: Module ID parameter: Module ID Exit code (FFh).	
Restriction			

RDDDBC(A800h): Read DDB Continous

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	A800h	SID[7]	SID [6]	SID [5]	SID [4]	SID [3]	SID [2]	SID [1]	SID [0]	D0
	A801h	SID[15]	SID[14]	SID[13]	SID[12]	SID[11]	SID[10]	SID[9]	SID[8]	01
R	A802h	MID[7]	MID[6]	MID[5]	MID[4]	MID[3]	MID[2]	MID[1]	MID[0]	80
	A803h	MID[15]	MID[14]	MID[13]	MID[12]	MID[11]	MID[10]	MID[9]	MID[8]	90
	A804h	1	1	1	1	1	1	1	1	FF

Description	This command returns the supplier identification and display module mode/revision information from the point where RDDDBS command was interrupted by an other command. Note: Parameter 0xFF is an "Exit Code", this means that there is no more data in the DDB block. Note: For use example, 1. Set maximum return packet size=3 2. Read 0xA1, return 3 bytes SID[7:0], SID[15:8], MID[7:0] 3. Read 0xA8, return 2 bytes MID[15:8], and 0xFF
Restriction	A Read DDB Start command (RDDDBS) should be executed at least once before a Read DDB Continue command (RDDDBC) to define the read location. Otherwise, data read with a Read DDB Continue c ommnd is undefined.

RDFCS(AA00h): Read First Checksum

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	AA00h	FCS7	FCS6	FCS5	FCS4	FCS3	FCS2	FCS1	FCS0	00

Description	This command returns the first checksum what has been calculated from "User Command Set" area registers (not include "Manufacture Command Set) and the frame memory after the write access to those registers and/or frame memory has been done.
Restriction	It will be necessary to wait 150ms after there is the last write access on "User Command Set" area registers before there can read this checksum value.

RDCCS(AF00h): Read Continue Checksum

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	AF00h	CCS7	CCS6	CCS5	CCS4	CCS3	CCS2	CCS1	CCS0	00

Description	This command returns the continue checksum what has been calculated continuously after the first checksum has been calculated from "User Command Set" area registers and the frame memory after the write access to those registers and/or frame memory has been done.
	It will be necessary to wait 300ms after there is the last write access on "User Command Set" area registers before there can read this checksum value in the first time.

SetDISPMode (C200h): set_DISP Mode

F	R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
	W	C200h	0	0	0	0	0	0	DM1	DM0	00

	Bit	Description	Value		
Description	DM[1:0]	Display timing mode selection	2'b00: internal timing 2'b01: reserved 2'b10: reserved 2'b11: external timing (VSYNC + HSYNC align mode)		
Restriction	(2) System video driver IC V-to	e, need to set DM[1:0] = 2'b11. mode parameter V-total and H-total and H-total and H-total setting. mode parameter settings sugges	tal setting has restriction, it must match		

SetSPIMode (C400h): set_SPI Mode

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	C400h	SPI_WRAM	0	DSPI_CFG 1	DSPI_CFG 0	0	0	0	DSPI_EN	00

	-1:		
	Bit	Description	Value
	DSPI_EN	DAUL SPI MODE Enable	0: disable 1: enable
	DSPI_CFG[1:0]	DAUL SPI MODE Selection	00: 1P1T for 1 wire 10: 1P1T for 2 wire 11: 2P3T for 2 wire 01: reserved
Description	SPI_WRAM	This command is used in SPI/SPINK interfaces. Making sure to set SPI_WRAM=1 before host writes SRAM via SPI/SPINK interfaces.	0: disable 1: SPI interface write RAM enable
Restriction			

RDID1 (DA00h): ID1 Code

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	DA00h				ID1	[7:0]				00h

	This	command is for N	Module Manufacture Number		
Description		Bit	Description	Data	
Doddingtion		ID1[7:0]	Module Manufactor Number		
Restriction					

RDID2 (DB00h): ID2 Code

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	DB00h				ID2	[7:0]				80h

	Thi	s command is for	Module/Driver Version Number		
Description	Bit Description		Description	Data	
	ID2[7:0] Module/Driver Version Number		Module/Driver Version Number		
Restriction					

RDID3 (DC00h): ID3 Code

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	DC00h				ID3	[7:0]				00h

	This	command is for N	Module / Driver ID		
Description	Bit ID3[7:0]		Description	Data	
Boompalon			Module /Driver ID		
Restriction					

(FE00h): CMD Mode Switch

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
W	FE00h				CMD_P	age[7:0]				00

	This command is used to Commands sets.	to switch the Manufacture Command Pages and User
	CMD_Page[7	:0] Description
	00h (default	User Command Set (UCS = CMD1)
	10h	Manufacture Command Set Page Panel ID
	12h	Manufacture Command Set Page SID
	20h	Manufacture Command Set Page Panel
	40h	Manufacture Command Set Page ABH Mode
	82h	Manufacture Command Set Page Power
	92h	Manufacture Command Set Page SD timing
Description	50h	Manufacture Command Set Page Gamma1
Description	60h	Manufacture Command Set Page Gamma2
	30h	Manufacture Command Set Page Gamma3
	52h	Manufacture Command Set Page Gamma4
	70h	Manufacture Command Set Page GOA Timing 1
	F0h	Manufacture Command Set Page GOA Timing 2
	42h	Manufacture Command Set Page DBV
	22h	Manufacture Command Set Page SES
	90h	Manufacture Command Set Page ACL
	62h	Manufacture Command Set Page CGM
	C2h	Manufacture Command Set Page CGM LUT

(FF00h): Read CMD Status

R/W	Address	D7	D6	D5	D4	D3	D2	D1	D0	HEX
R	FF00h				CMD_St	atus[7:0]				00

Description	This command is used to show the FE00h Manufacture Command Pages status.
Restriction	-

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

The absolute maximum rating is listed on following table. When RM690B0 is used out of the absolute maximum ratings, the RM690B0 may be permanently damaged. To use the RM690B0 within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the RM690B0 will malfunction and cause poor reliability.

Symbol	Value	Unit
VDDI	-0.3 ~ + 5.5	V
VDD (VDDA, VDDB, VDDR)	-0.3 ~ + 5.5	V
AVDD- AVSS	-0.3 ~ + 6.6	V
AVSS- VCL	-0.3 ~ + 5.0	V
VGH- VGLX	-0.3 ~ + 33	V
VIN	-0.3 ~ VDDI+ 0.3	V
VO	-0.3 ~ VDDI+ 0.3	V
Topr	-40 ~ + 85	°C
Tstg	-55 ~ + 125	°C
	VDDI VDD (VDDA, VDDB, VDDR) AVDD- AVSS AVSS- VCL VGH- VGLX VIN VO Topr	VDDI -0.3 ~ + 5.5 VDD (VDDA, VDDB, VDDR) -0.3 ~ + 5.5 AVDD- AVSS -0.3 ~ + 6.6 AVSS- VCL -0.3 ~ + 5.0 VGH- VGLX -0.3 ~ + 33 VIN -0.3 ~ VDDI+ 0.3 VO -0.3 ~ VDDI+ 0.3 Topr -40 ~ + 85

Notes

If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded. Absolute maximum limitation. Therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the recommend range.

7.2 ESD Protection Level

Model	Test Condition	Level
Human Body Mode	R = 1.5 kohm / C = 100 pF	Pass 3KV
Machine Mode	R = 0 ohm / C = 200 pF	Pass 300V

7.3 Latch-Up Protection Level

The device will not latch up at trigger current levels less than ±200 mA.

7.4 DC Characteristics

7.4.1 Basic Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Related Pins
Analog Power Supply Voltage	VDD	Operation Voltage	2.7	2.8	3.6	V	Note 1
I/O pin Power Supply Voltage	VDDI	I/O supply voltage	1.65	1.8	3.3	V	Note 1,2
Logic High level input voltage	VIH	VDDI = 1.65V ~ 3.3V	0.8* VDDI	-	VDDI	V	Note 3
Logic Low level input voltage	VIL	VDDI = 1.65V ~ 3.3V	0.0	-	0.2* VDDI	V	Note 3
Logic High level Output voltage	VOH	lout = -1 mA	0.8* VDDI	-	VDDI	V	Note 3
_ogic Low level Output voltage	VOL	lout = +1 mA	0.0	-	0.2* VDDI	V	Note 3
Logic High level input current (Except MIPI)	IIHD	Vin=0~VDDI			1	uA	Note 3
Logic Low level input current (Except MIPI)	IILD	Vin=0~VDDI	-1			uA	Note 3
Logic High level input current (MIPI)	IIHD	Vin=0~VDDI			1	uA	Note 3
Logic Low level input current (MIPI)	IILD	Vin=0~VDDI	-1			uA	Note 3
AVDD booster voltage	AVDD		4.5		6.5	V	Note 3
VCL booster voltage	VCL		-3.5		-5	V	Note 3
/GH booster voltage	VGH		AVDD		2AVDD	V	Note 3
√GL booster voltage	VGL		VCL		VCL -AVDD	V	Note 3
Voltage difference between VGH and VGL	VGHL	VGH-VGL			30	V	Note 3
Gamma reference voltage	VGMP		2.0		6.3	V	Note 3,4
Gamma reference voltage	VGSP		0.0		4.5	V	Note 3
OSC	Fosc		22.08	24	25.92	MHz	
Channel deviation voltage	V_{DEV}	Sout ≥ AVDD-1.0V, and 0V < Sout ≤ 1.0V				mV	TBD
Channel deviation voltage	V_{DEV}	1.0V < Sout < AVDD-1.0V				mV	TBD

Notes:

- 1. VDD means VDDA, VDDR, VDDB. And VSS means VSSA, VSSR, VSSB, AVSS, VSSAM. VDDB, VDDA and VDDR should be the same input voltage level and larger than VDDI voltage.
- 2. Recommend VDDI=1.8V for power saving.
- 3. Ta(ambient temperature) ranges from -30 $^{\circ}$ C to 85 $^{\circ}$ C.
- 4. $VGMP \le AVDD 0.2V$

7.4.2 Operation Current

VCI=2.8V and VDDI=1.8V

Parameter	Symbol	Condition	Max.	Unit
Clean in Mada	I_SLP_VCI	VDDI=VCC=1.8V VCI=VDDA=VDDB=VDDR=2.8V	50	uA
Sleep In Mode	I_SLP_VDDI	HSSI_D0P/N=HSSI_D1P/N=HSSI_CKP/N=LP-11 Ta = 25deg		uA
Doon Standby Made	I_DSTB_VCI	VDDI=VCC=1.8V VCI=VDDA=VDDB=VDDR=2.8V	4	uA
Deep Standby Mode	I_DSTB_VDDI	HSSI_D0P/N=HSSI_D1P/N=HSSI_CKP/N=0 Ta = 25deg	1	uA

7.5 MIPI Characteristics

7.5.1 High-Speed Receiver Specification

DC Specifications

High Speed Receiver

Parameter	Description	Min	Nom	Max	Units	Note
VCMRX(DC)	Common-mode voltage HS receive mode	70		330	mV	1,2
VIDTH	Differential input high threshold			70	mV	
VIDTL	Differential input low threshold	-70			mV	
VIHHS	Single-ended input high voltage			460	mV	1
VILHS	Single-ended input low voltage	-40			mV	1
ZID	Differential input impedance	80	100	125	Ω	

Notes:

- 1. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.
- 2. This table value includes a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz

7.5.2 Forward high speed transmissions

DDR Clock Definition

Clock Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous	UI _{INST}	1.818		12.5	ns	1,2

Notes:

- 1. This value corresponds to a minimum 80 Mbps data rate.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

Data-Clock Timing Specifications

Parameter	Symbol	Min	Тур	Max	Units	Notes
Data to Clock Skew [measured at transmitter]		-0.15		0.15	UI _{INST}	1
Data to Clock Setup Time [receiver]	T _{SETUP[RX]}	0.15			UI _{INST}	2
Clock to Data Hold Time [receiver]	$T_{HOLD[RX]}$	0.15			UI _{INST}	2

Notes:

- 1. Total silicon and package delay budget of 0.3*UI_{INST}
- 2. Total setup and hold window for receiver of 0.3*UIINST

7.5.3 Data to Clock Timing Definitions

7.5.4 Low power transceiver specifications

Parameters	Symbol	Condition	Min	Тур	Max	Unit
Logic high level input voltage	VIHCD	Contention Detection (Lane_D0)	450		1350	mV
Logic low level input voltage	VILCD	Contention Detection (Lane_D0)	0		200	mV
Logic high level input voltage	VIH-LPRX	LP-Rx (Lane_CK, Lane_D0, Lane_D1)	880	-	1350	mV
Logic low level input voltage	VIL-LPRX	LP-Rx (Lane_CK, Lane_D0, Lane_D1	0		550	mV
Logic low level input voltage	VIL-ULPS	LP-Rx ULPS (Lane_CK, Lane_D0, Lane_D1)	0		300	mV
Logic high level input voltage	VOH-LPTX	Contention Detection (Lane_D0)	1.1	1.2	1.3	V
Logic low level input voltage	VOL-LPTX	Contention Detection (Lane_D0)	-50	0	50	mV
eSPIKE ^(1.2.3)	Fig. 2	Input pulse rejection			300	V.ps

Notes:

Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 State. An impulse less than this will not change the receiver state.

In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers. Input Glitch Rejection of Low Power Receivers as follow.

7.6 AC Characteristics

7.6.1 SPI/DUAL-SPI Characteristics

3/4-wire SPI

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock evolo	4	Write	20			ns
Clock cycle	t _{SCYC}	Read	300			ns
Clock high pulse width	t _{SCH}	Write	6.5			ns
Clock high pulse width	t _{SCH}	Read	140			ns
Clock low pulse width	t _{SCL}	Write	6.5			ns
Clock low pulse width	t _{SCL}	Read	140			ns
Clock rise time	t _{SCR}	0.2*VDDI -> 0.8*VDDI			3.5	ns
Clock fall time	t _{SCF}	0.8*VDDI -> 0.2*VDDI			3.5	ns
Chip select setup time	t _{CSU}		10			ns
Chip select hold time	t _{CH}		10			ns
Data input setup time	t _{SISU}	To V _{IL} of SCL's rising edge	5			ns
Data input hold time	t _{SIH}		5			ns
Access time of output data	t _{SOD}	From V _{IL} of SCL's falling edge			120	ns
Hold time of output data	t _{SOH}	From V _{IH} of SCL's rising edge	5			ns
Transition time from Write cycle to Read cycle	t _{CHWR}	From V _{IH} of SCL's rising edge	150			ns

Notes:

- (1) Logic high and low levels are specified as 80% and 20% of VDDI for Input signals.
- (2) For the 4-wire SPI, the DCX's timing is the same as input data.
- (3) Ta = -30°C to 70°C, VDDI=1.65V to 3.3V, VDD=2.7V to 3.6V, and VSS=0V

7.6.2 QUAD-SPI Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock avala	4	Write	20			ns
Clock cycle	t _{SCYC}	Read	150			ns
Clock high pulse width	t _{SCH}	Write	6.5			ns
Clock High pulse width	t _{SCH}	Read	70			ns
Clock low pulse width	t _{SCL}	Write	6.5			ns
Clock low pulse width	t _{SCL}	Read	70			ns
Clock rise time	t _{SCR}	0.2*VDDI -> 0.8*VDDI			3.5	ns
Clock fall time	t _{SCF}	0.8*VDDI -> 0.2*VDDI			3.5	ns
Chip select setup time	t _{CSU}		20			ns
Chip select hold time	t _{CH}		20			ns
Data input setup time	t _{SISU}	To V _{IL} of SCL's rising edge	4			ns
Data input hold time	t _{SIH}		4			ns
Access time of output data	t _{SOD}	From V _{IL} of SCL's falling edge			70	ns
Hold time of output data	t _{SOH}	From V _{IH} of SCL's rising edge	5			ns
Transition time from Write cycle to Read cycle	t _{CHWR}	From V _{IH} of SCL's rising edge	150			ns

Note: The max SCL frequency for each pixel data format is specified as the below table. Note: Logic high and low levels are specified as 20% and 80% of VDDI for Input signals.

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VDD=2.7V to 3.6V, GND=0V

7.6.3 DSI Timing Characteristics

HS Data Transmission Burst

HS clock transmission

Timing Parameters:

Parameter	Description	Min	Тур	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of	60ns + 52*UI	71		ns
_	T _{HS-TRAIL} to the beginning of T _{CLK-TRAIL} .				
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	300			ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} .	Time for Dn to reach V _{TERM-EN}		38	ns
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock.	300			ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} .	Time for Dn to reach V _{TERM-EN}		35 ns +4*UI	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40ns + 4*UI		85 ns + 6*UI	ns
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145ns + 10*UI			ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	60ns + 4*UI			ns

Turnaround Procedure

Bus turnaround (BAT) from MPU to display module timing

Bus turnaround (BAT) from display module to MPU timing

Low Power Mode:

LOW I OWCI II	node:					
Parameter	Description	Min	Тур	Max	Unit	Notes
$T_{LPX(M)}$	Transmitted length of any Low-Power state period of MCU to display module	50		150	ns	1,2
$T_{TA\text{-}SURE(M)}$	Time that the display module waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX(M)}		2*T _{LPX(M)}	ns	2
$T_{LPX(D)}$	Transmitted length of any Low-Power state period of display module to MCU	50		150	ns	1,2
$T_{TA\text{-}GET(D)}$	Time that the display module drives the Bridge state (LP-00) after accepting control during a Link Turnaround.		5*T _{LPX(D)}		ns	2
$T_{TA\text{-}GO(D)}$	Time that the display module drives the Bridge state (LP-00) before releasing control during a Link Turnaround.		4*T _{LPX(D)}		ns	2
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX(D)}		2*T _{LPX(D)}	ns	2

NOTE:

2. Transmitter-specific parameter

^{1.} T_{LPX} is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

7.6.4 Reset Timing

Reset input timing:

VDDI=1.65 to 3.3V. VDD=2.7 to 3.6V. AGND=DGND=0V. Ta=-40 to 85℃

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	30	-	-	-	μS
t0) D	*2) Poset complete time	-	-	-	20	When reset applied during Sleep in mode	ms
^L REST	*2) Reset complete time	-		-	120	When reset applied during Sleep out mode	ms

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 30μs	Reset
Between 5µs and 30µs	Reset starts (It depends on voltage and temperature condition.)

Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.

Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 20ms after a rising edge of RESX. Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 20msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

8. Power Generation

8.1 Two Supply Power (VDDI/VDD)

8.2 DC/DC Converter Circuit

8.3 External Components

No.	Signal name	Values	Max ability
1	VDDA, VDDR, VDDB	Cap , 2.2uF	6.3V
2	VDDI, VCC	Cap , 2.2uF	6.3V
3	VREF	Cap , 22nF	6.3V
4	DVDD	Cap , 1.0uF	6.3V
5	VREFN/VREFP	Cap , 1.0uF	10V
6	VGHR	Cap , 2.2uF	16V
7	VGLR	Cap , 2.2uF	16V
8	OVDD_INT	Cap , 2.2uF	10V
9	OVSS_INT	Cap , 2.2uF	10V
10	C11P/C11N	Cap , 1.0uF	6.3V
11	C12P/C12N	Cap , 1.0uF	6.3V
12	AVDD	Cap , 2.2uF	10V
13	C31P/C31N	Cap , 1.0uF	6.3V
14	C32P/C32N	Cap , 1.0uF	6.3V
15	VCL	Cap , 2.2uF	10V
16	C41P/C41N	Cap , 1.0uF	16V
17	VGH	Cap , 2.2uF	16V
18	C51P/C51N	Cap , 1.0uF	16V
19	VGL	Cap , 2.2uF	16V
20	VGL (VGL-GND)	Schottky Diode	

8.4 Power on/off sequence and timing

Power On sequence Initial setting Reset Display on Power on IC state & sleepout **VDDI VDD VBAT** RESX Image SLPOUT I P11 DISPO MIPI I/F >10m T-ini >1ms >10ms >50ms-Frame **SWIRE** IEnable Power IC ELVSS, ELVSS **Power Off sequence** Display off Power down Display on IC state & sleep in **VDDI VDD VBAT RESX** DISPOFF SLPIN MIPI I/F > 5 frame >0 >10ms >83 ms @ 60hz **SWIRE** Disable Power IC ELVSS, ELVSS

8.5 Power Level Modes

Normal display mode on = NORON Partial mode on = PTLON Idle mode off = IDMOFF Idle mode on = IDMON Sleep out = SLPOUT Sleep in = SLPIN Deep standby mode = DSTBON

Definition example:

1. Normal Mode On (full display), Idle Mode Off, Sleep Out.

In this mode, the display is able to show maximum 16.7M colors.

2. Partial Mode On, Idle Mode Off, Sleep Out

In this mode, part of the display is used with maximum 16.7M colors.

3. Normal Mode On (full display), Idle Mode On, Sleep Out.

In this mode, the full display is used with 8 or 16.7M colors.

4. Partial Mode On, Idle Mode On, Sleep Out

In this mode, part of the display is used with 8 or 16.7M colors.

5. Sleep In Mode.

In this mode, the DC/DC converter, internal oscillator and panel driver circuit are stopped. Only the MPU interface and registers are working with VDDI power supply. Contents of the frame memory can be safe or random.

6. Deep Standby Mode.

In this mode, the DC/DC converter, internal oscillator and panel driver circuit are stopped. The MPU interface and registers are not working. Contents of the frame memory are random.

7. Power Off Mode

In this mode, VDDI and VDDA/VDDR/VDDB are removed.

NOTE: Transition between mode 1~5 is controllable by MPU commands. Mode 6 is entered for power saving with both power supplies for I/O and analog circuits and can be exited by hardware reset only (RESX=L). Mode 7 is entered only when both power supplies for I/O and analog circuits are removed.

8.6 Maximum Series Resistance

Pin Name	Туре	Max Resistance	Unit
VDDA, VDDB, VDDR, VDDI, VCC,	Power Supply	5	Ω
AVSS, VSSAM, DVSS, VSSI, VSSA, VSSR, VSSB	Power Supply	5	Ω
AVDD	Power Input/Output	5	Ω
DVDD	Power Output	5	Ω
VCL	Power Output	5	Ω
VGH, VGL	Power Output	10	Ω
C11P/N~C12P/N	Capacitor Connection	5	Ω
C31P/N~C32P/N	Capacitor Connection	5	Ω
C41P/N	Capacitor Connection	5	Ω
C51P/N	Capacitor Connection	5	Ω
HSSI_CLK_P/N, HSSI_DATA0_P/N, HSSI_DATA1_P/N,	MIPI Interface I/O	5	Ω
TE, TE1, SWIRE, ERR	Digital Output I/O	20	Ω
RESX, CSX, D/CX, SCL, SDI_RDX, SDO,D[0]~D[7], WATCH_OSC_IN	Digital Interface I/O	20	Ω
IM[1:0], DSWAP, PSWAP	Input I/O	100	Ω
MTP_PWR	Power Supply	5	Ω
S[1]~S[240]	Source output	20	Ω
VSR_L[1]~ VSR_L[14], VSR_R[1]~ VSR_R[14]	GOA,SWoutput	20	Ω

9. Pad Diagram and Coordination

◆ Chip size: 8080um x 1186um (Include sealing and scribe line)

Chip thickness: 200/300 umPAD coordinates: PAD center

◆ PAD coordinates origin: Chip center

Au bump size

❖ COF:

16um/18um x 35um: Source:S1~S24016um/18um x 35um: gate control signal

• 25um x 38um: Input Pads

❖ COG:

17um x 100um: Source:S1~S24017um x 100um: gate control signal

• 25um x 130um: Input Pads

Au bump pitch: See PAD coordinates table

◆ Au bump height: 12±2 um (typ.)

◆ No. in the figure corresponds to No. in the PAD coordinates table

Alignment mark

Alignment mark shape	Х	Υ
left	-3910.15	453.2
right	3910.15	453.2

◆ Pad Coordinate (Unit: um)

•	rad Coordinate (t	Jint. dili)	
NO	PAD NAME		
1	DUMMY_R1	51	D[4]
2	DUMMY_R1	52	D[5]
3	ANALOG_TEST[1]	53	VSSI
4	VGLR	54	D[6]
5	VGLR	55	D[7]
6	VGHR	56	TEST[1]
7	VGHR	57	EXTCLK
8	VREFP5	58	TEST[2]
9	VREFP5	59	VSSI
10	VREFN5	60	TEST[3]
11	VREFN5	61	IM[1]
12	OVDD_INT	62	IM[0]
13	OVDD_INT	63	DSWAP
14	OVSS_INT	64	TESTEN
15	OVSS_INT	65	PSWAP
16	VCL	66	VDDI
17	VCL	67	VDDI
18	AVDD	68	VDDI
19	AVDD	69	VCC
20	VREF	70	VCC
21	VGSP	71	VCC
22	VGMP	72	DVDD
23	ANALOG_TEST[2]	73	DVDD
24	VDDR	74	DVDD
25	VDDR	75	DVDD
26	VDDA	76	DVSS
27	VDDA	77	DVSS
28	AVSS	78	DVSS
29	AVSS	79	DVSS
30	VSSA	80	HSSI_D1_P
31	VSSA	81	HSSI D1 P
32	VSSR	82	HSSI D1 N
33	VSSR	83	HSSI_D1_N
34	WATCH_OSC_IN	84	VSSAM
35	ERR	85	HSSI_CLK_P
36	TE1	86	HSSI_CLK_P
37	SWIRE	87	HSSI_CLK_N
38	TE	88	HSSI_CLK_N
39	RESX	89	VSSAM
40	SDO	90	HSSI_D0_P
41	VSSI	91	HSSI_D0_P
42	SDI_RDX	92	HSSI_D0_N
43	DCX	93	HSSI_D0_N
44	WRX_SCL	94	VSSR
45	CSX	95	VSSR
46	D[0]	96	VSSR
47	VSSI	97	VSSA
48	D[1]	98	VSSA
49	D[2]	99	VSSA
50		100	AVSS
50	D[3]	100	AVSS

101	AVSS
102	AVSS
103	VSSB
104	VSSB
105	VSSB
106	VSSB
107	VSSB
108	C11P
109	C11P
110	C11P
111	C11N
112	C11N
113	C11N
114	C12P
115	C12P
116	C12P
117	C12N
118	C12N
119	C12N
120	VDDB
121	VDDB
122	VDDB
123	VDDB
123	VDDB
	VDDR
125	
126	VDDR
127	VDDR
128	VDDR
129	AVDD
130	AVDD
131	AVDD
132	C31P
133	C31P
134	C31P
135	C31N
136	C31N
137	C31N
138	VCL
139	VCL
140	VCL
141	C32P
142	C32P
143	C32P
144	C32N
145	C32N
146	C32N
147	C41P
148	C41P
149	C41N
150	C41N

454	0541
151	C51N
152	C51N
153	C51P
154	C51P
155	VGH
156	VGH
157	VGH
158	VGHR
159	VGHR
160	VGHR
161	VGLR
162	VGLR
163	VGLR
164	VGL
165	VGL
166	VGL
167	AVSS
168	AVSS
169	MTP_PWR
170	MTP_PWR
171	MTP_PWR
172	MTP_PWR
173	DUMMY_R2
174	DUMMY_R2
475	
1/5	DUMMY_R3
175 176	DUMMY_R3 DUMMY_R3
176	DUMMY_R3
176 177	
176 177 178	DUMMY_R3 PCD_L_AVSS VGLR
176 177 178 179	DUMMY_R3 PCD_L_AVSS VGLR VGHR
176 177 178	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5
176 177 178 179 180	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5
176 177 178 179 180 181 182	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1]
176 177 178 179 180 181 182 183	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14]
176 177 178 179 180 181 182 183 184	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13]
176 177 178 179 180 181 182 183	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12]
176 177 178 179 180 181 182 183 184	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[11]
176 177 178 179 180 181 182 183 184 185 186	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[11] VSR_L[10]
176 177 178 179 180 181 182 183 184 185 186 187	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[11] VSR_L[10] VSR_L[9]
176 177 178 179 180 181 182 183 184 185 186 187 188	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[11] VSR_L[10] VSR_L[9] VSR_L[8]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[7]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[11] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[6]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[9] VSR_L[6] VSR_L[6]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[6] VSR_L[6] VSR_L[6] VSR_L[4]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[6] VSR_L[6] VSR_L[6] VSR_L[5] VSR_L[4] VSR_L[4]
176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 194	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[10] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[6] VSR_L[6] VSR_L[4] VSR_L[4] VSR_L[3]
176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 194 195	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[10] VSR_L[10] VSR_L[9] VSR_L[8] VSR_L[6] VSR_L[6] VSR_L[3] VSR_L[3] VSR_L[3] VSR_L[3]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[6] VSR_L[6] VSR_L[6] VSR_L[3] VSR_L[3] VSR_L[3] VSR_L[1]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[13] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[6] VSR_L[6] VSR_L[5] VSR_L[4] VSR_L[3] VSR_L[4] SR_L[1] VSR_L[3] VSR_L[1]
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	DUMMY_R3 PCD_L_AVSS VGLR VGHR VREFP5 VREFN5 DMY[1] VSR_L[14] VSR_L[12] VSR_L[10] VSR_L[10] VSR_L[6] VSR_L[6] VSR_L[6] VSR_L[3] VSR_L[3] VSR_L[3] VSR_L[1]

201	S[238]
202	S[237]
203	S[236]
204	S[235]
205	S[234]
206	S[233]
207	S[232]
208	S[231]
209	S[230]
210	S[229]
211	S[228]
212	S[227]
213	S[226]
214	S[225]
215	S[224]
216	S[223]
217	S[222]
218	S[221]
219	S[220]
220	S[219]
221	S[218]
222	S[217]
223	S[216]
224	S[215]
225	S[214]
226	S[213]
227	S[212]
228	S[211]
229	S[210]
230	S[209]
231	S[208]
232	S[207]
233	S[206]
234	S[205]
235	S[204]
236	S[203]
237	S[202]
238	S[201]
239	S[200]
240	S[199]
241	S[198]
242	S[197]
243	S[196]
244	S[195]
245	S[194]
246	S[193]
247	S[192]
248	S[191]
249	S[190]
250	S[189]
-	

251	S[188]
252	S[187]
253	S[186]
254	S[185]
255	S[184]
256	S[183]
257	S[182]
258	S[181]
259	S[180]
260	S[179]
261	S[178]
262	S[177]
263	S[176]
264	S[175]
265	S[174]
266	S[173]
267	S[172]
268	S[171]
269	S[170]
270	S[169]
271	S[168]
272	S[167]
273	S[166]
274	S[165]
275	S[164]
276	S[163]
277	S[162]
278	S[161]
279	S[160]
280	S[159]
281	S[158]
282	S[157]
283	S[156]
284	S[155]
285	S[154]
286	S[153]
287	S[152]
288	S[151]
289	S[150]
290	S[149]
291	S[148]
292	S[147]
293	S[146]
294	S[145]
295	S[143] S[144]
296	S[144] S[143]
297	S[143] S[142]
298	S[142] S[141]
299	S[141] S[140]
300	S[140] S[139]
300	ુ (૧૭૪)

301	S[138]
302	S[137]
303	S[136]
304	S[135]
305	S[134]
306	S[133]
307	S[132]
308	S[131]
309	S[130]
310	S[129]
311	S[128]
312	S[127]
313	S[126]
314	S[125]
315	S[124]
316	S[123]
317	S[122]
318	S[121]
319	VGHR
320	VGLR
321	VREFN5
322	VSR_L[1]
323	VSR_L[2]
324	VSR_L[3]
325	VSR_L[4]
326	VSR_L[5]
327	VSR_L[6]
328	VSR_L[7]
329	VSR_L[8]
330	VSR_L[9]
331	VSR_L[10]
332	DMY[3]
333	DMY[4]
334	DMY[5]
335	DMY[6]
336	DMY[7]
337	DMY[8]
338	DMY[9]
339	DMY[10]
340	VSR_R[9]
341	VSR_R[10]
342	VSR_R[7]
343	VSR_R[8]
344	VSR_R[5]
345	VSR_R[6]
346	VSR_R[3]
347	VSR_R[4]
348	VSR_R[1]
349	VSR_R[2]
350	VREFP5

351	VGLR
352	VGHR
353	S[120]
354	S[119]
355	S[118]
356	S[117]
357	S[116]
358	S[115]
359	S[114]
360	S[113]
361	S[112]
362	S[111]
363	S[110]
364	S[109]
365	S[108]
366	S[107]
367	S[106]
368	S[105]
369	S[104]
370	S[103]
371	S[102]
372	S[101]
373	S[100]
374	S[99]
375	S[98]
376	S[97]
377	S[96]
378	S[95]
379	S[94]
380	S[93]
381	S[92]
382	S[91]
383	S[90]
384	S[89]
385	S[88]
386	S[87]
387	S[86]
388	S[85]
389	S[84]
390	S[83]
391	S[82]
392	S[81]
393	S[80]
394	S[79]
395	S[78]
396	S[77]
397	S[76]
398	S[75]
399	S[74]
400	S[73]

401	S[72]
402	S[71]
403	S[70]
404	S[69]
405	S[68]
406	S[67]
407	S[66]
408	S[65]
409	S[64]
410	S[63]
411	S[62]
412	S[61]
413	S[60]
414	S[59]
415	S[58]
416	S[57]
417	S[56]
418	S[55]
419	S[54]
420	S[53]
421	S[52]
422	S[51]
423	S[50]
424	S[49]
425	S[48]
426	S[47]
427	S[46]
428	S[45]
429	S[44]
430	S[43]
431	S[42]
432	S[41]
433	S[40]
434	S[39]
435	S[38]
436	S[37]
437	S[36]
438	S[35]
439	S[34]
440	S[33]
441	S[32]
442	S[31]
443	S[30]
444	S[29]
445	S[28]
446	S[27]
447	S[26]
448	S[25]
449	S[24]
450	S[23]

451	S[22]	
452	S[21]	
453	S[20]	
454	S[19]	
455	S[18]	
456	S[17]	
457	S[16]	
458	S[15]	
459	S[14]	
460	S[13]	
461	S[12]	
462	S[11]	
463	S[10]	
464	S[9]	
465	S[8]	
466	S[7]	
467	S[6]	
468	S[5]	
469	S[4]	
470	S[3]	
471	S[2]	
472	S[1]	
473	DMY[11]	
474	VSR_R[1]	
475	VSR_R[2]	4
476	VSR_R[3]	
477	VSR_R[4]	
478	VSR_R[5]	
479	VSR_R[6]	
480	VSR_R[7]	
481	VSR_R[8]	
482	VSR_R[9]	
483	VSR_R[10]	
484	VSR_R[11]	
485	VSR_R[12]	
486	VSR_R[13]	
487	VSR_R[14]	
488	DMY[12]	
489	VREFN5	
490	VREFP5	
491	VGHR	
492	VGLR	
493	PCD_R_AVDD	
494	DUMMY_R4	
495	DUMMY_R4	

ſ	
ŀ	
ŀ	
Ī	
ŀ	
Ī	
ŀ	
ŀ	
ŀ	
ŀ	
ļ	
ŀ	
ļ	
Ī	
ŀ	
ļ	
L	
Ī	
ŀ	
L	
\blacksquare	
ŀ	
ŀ	
L	