EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 5: Spectrum Analysis

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

	Date	Topics
	24-Jan	Course introduction and ADC architectures
	29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction
	31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT
	5-Feb	ADC & DAC static performance metrics, INL and DNL
	7-Feb	OPAMP and bias circuits review
	12-Feb	SC circuits review
	14-Feb	Sample and Hold Amplifier - Reading materials
	19-Feb	Flash ADC and Comparator Regenerative atch
No c	2	Co n ar tors: arch e p tamp, but ero
	zo-reb	Finish Hash AdC
	28-Feb	DAC Architectures - Resistor, R-2R
	5-Mar	DAC Architectures - Current steering, Segmented
	7-Mar	DAC Architectures - Capacitor-based
	12-Mar	SAR ADC with bottom plate sampling
	14-Mar	SAR ADC with top plate sampling
	19-Mar	Midterm Review
	21-Mar	Midterm exam
	26-Mar	Spring break
	28-Mar	Spring break
	2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain
	4-Apr	Pipelined ADC bit sync and alignment using Full adders
	9-Apr	Pipelined ADC 1.5bit vs multi-bit structures
	11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB
	16-Apr	Single-slope ADC
	18-Apr	Oversampling & Delta-Sigma ADCs
	23-Apr	Second- and higher-order Delta-Sigma Modulator.
	25-Apr	Hybrid ADC - Pipelined SAR
	30-Apr	Hybrid ADC - Time-Interleaving
	2-May	ADC testing and FoM
	7-May	Project presentation 1
	8-May	Project presentation 2
	14-May	Final Review
	20-May	Project Report Due by 6 PM

Spectrum Analysis Using MATLAB

ext Wed.

*Midterm Exam dates are approximate and subject to change with reasonable notice.

FFT MATLAB Example 1

```
clear all; close all; clc;
N = 100:
                                 % FFT size
fs = 1000:
                                 % Sampling rate
                                % Input signal tone
fx = 100;
                                % Full Scale (actually half)
FS = 1:
t = 0:N-1;
x = FS*cos(2*pi*fx/fs*t);
s = abs(fft(x));
                                % FFT and take absolute
                                % remove redundant half of spectrum
s = s(1:end/2);
s = 20*log10(2*s/N/FS);
                                % dB relative to full-scale
                                % frequency vector
f = [0:N/2-1]/N;
plot(f, s, 'linewidth', 2);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
title(strcat(num2str(N),' points FFT'));
```


fft_p51.m

grid on;

FFT MATLAB Example 2

```
clear all; close all; clc;
N = 100;
                                % FFT size
fs = 1000:
                                % Sampling rate
                                % Input signal tone
fx = 101:
                                % Full Scale (actually half)
FS = 1:
t = 0:N-1:
x = FS*cos(2*pi*fx/fs*t);
s = abs(fft(x));
                               % FFT and take absolute
s = s(1:end/2);
                               % remove redundant half of spectrum
s = 20*log10(2*s/N/FS);
                                % dB relative to full-scale
f = [0:N/2-1]/N;
                                % frequency vector
plot(f, s, 'linewidth', 2);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
title(strcat(num2str(N), 'points FFT'));
```


fft_p51.m

grid on;

Spectral Leakage

- DFT implicitly assumes that data repeats every N samples
- A sequence that contains a noninteger number of sine wave cycles has discontinuities in its periodic repetition
 - Discontinuity looks like a high frequency signal component
 - Power spreads across spectrum
- Two ways to deal with this
 - Ensure integer number of periods
 - Windowing

Integer Number of Cycles for N-point FFT

Integer Number of Cycles: Coherent Sampling

```
clear all; close all; clc;
N = 100;
                                % FFT size
                                % Signal tone
cycles = 11;
fs = 1000;
                                % Sampling rate
fx = cycles*fs/N;
                                % Input signal tone
FS = 1;
                                % Full Scale (actually half)
                                % Time vector
t = 0:N-1;
x = FS*cos(2*pi*fx/fs*t);
                                % Cosine signal
figure; plot(x);
s = abs(fft(x));
                                % FFT and take absolute
s = s(1:end/2);
                                % remove redundant half of spectrum
                                % dB relative to full-scale
s = 20*log10(2*s/N/FS);
f = [0:N/2-1]/N;
                                % frequency vector
figure; plot(f, s, 'linewidth', 2);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
title(strcat(num2str(N), ' points FFT'));
grid on;
```


fft_p52.m

Windowing

- Spectral leakage can be attenuated by windowing the time samples prior to the DFT
- Windows taper smoothly down to zero at the beginning and the end of the observation window
- Time domain samples are multiplied by window coefficients on a sample-by-sample basis
 - Means convolution in frequency
 - Sine wave tone and other spectral components smear out over several bins
- Lots of window functions to chose from
 - Tradeoff: attenuation versus smearing
- Example: Hann Window

Windowing

```
clear all; clc; close all;
N = 100:
fs = 1000:
fx = 101;
A=1:
x = A*cos(2*pi*fx/fs*[0:N-1]);
s = abs(fft(x));
s = 20*log10(2*s/N/A); % dB relative to full-scale
s = s(1:end/2);
f = [0:N/2-1]/N; % frequency vector
plot(f, s, 'r', 'linewidth', 2);
grid on; hold on;
w = hann(length(x));
x1 = x'.*w;
sl = abs(fft(xl));
sl = 20*log10(2*s1/N/A); % dB relative to full-scale
sl = sl(1:end/2);
plot(f, sl, 'g', 'linewidth', 2);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
title(strcat(num2str(N), 'points FFT'));
```


fft_p54.m

HW#1 MATLAB Code

```
% i 10bit ADC tbl simulation
clear all; clc; close all;
signal = load('64pt datal.txt'); % load the data samples
N = length(signal);
                                    % N-point FFT
fs = 100e6;
                                    % Sampling frequency
fx = fs*(cycles/N)
cvcles = 31;
                                    % Signal tone bin
FS = 1
                                    % Full scale range
% prettyFFT(signal);
s = abs(fft(signal));
s = s/N*2;
                                    % full frequency vector
f = [0:N-1];
sighin = cycles + 1;
noise = [s(2:sigbin-1), s(sigbin+1:end/2)]; % remove DC component
s = s(1:end/2);
                                    % remove redundant half of spectrum
f = [0:N/2-1];
                                    % frequency vector
noise = [s(2:sigbin-1), s(sigbin+1:end)]; % remove DC component
snr = 10*log10(s(sigbin)^2/sum(noise.^2));
                                    % dB relative to full-scale
s = 20*log10(s/FS);
figure; plot(f, s, 'linewidth', 2);
% xlabel('Frequency [f/fs]');
xlabel('Frequency [bin]');
ylabel('DFT Magnitude [dBFS]');
grid on;
axis tight;
title(strcat('Ideal 10-bit ADC, SNR=',num2str(snr,4),' dB'))
```