IN THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently Amended) A method for forming a micro pattern, comprising the steps of:
- (a) providing a semiconductor substrate in which a lower film formed <u>using TiN</u>, SiQN, Si₃N₄₇ <u>organic anti-reflection coating of amorphous carbon series or an inorganic anti-reflection coating</u>;
 - (b) coating a first photoresist film on the lower film;
- (c) depositing a second photoresist film having a higher glass transition temperature than the first photoresist film on the first photoresist film;
- (d) pattering the second photoresist film and the first photoresist film by an exposure process and a wet development process so that first and second photoresist film pattern having a first contact hole are formed;
- (e) implementing RFP to cause the first and second photoresist film pattern to flow so that the first contact hole changes to a second contact hole having a critical dimension lower than a critical dimension of the first contact hole; and
- (f) implementing an etch process using the second photoresist film pattern as an etch mask for the lower film to pattern the lower film.

2. (Canceled)

3. (Original) The method as claimed in claim 1, wherein the difference in a glass transition temperature between the first photoresist film and the second photoresist film is 1 ~ 10 °C.

Application No. <u>10/614,182</u> Amendment dated August 12, 2005 Page 3

- 4. (Original) The method as claimed in claim 1, wherein the first photoresist film and the second photoresist film have the same physical properties other than the glass transition temperature.
- 5. (Original) The method as claimed in claim 1, wherein the first photoresist film is coated in thickness of $0.1\mu\text{m}$
- 6. (Original) The method as claimed in claim 1, wherein the second photoresist film is coated in thickness of $0.5\mu\text{m}$
- 7. (Original) The method as claimed in claim 1, wherein the exposure process employs I-line, KrF, ArF, EUV, E-beam or X-ray as a photoresist.
- 8. (Original) The method as claimed in claim 1, wherein during the RFP, a heating time is $50 \sim 200$ seconds.
- 9. (Original) The method as claimed in claim 1, wherein the RFP is implemented at a temperature of 132°C for 90 seconds.
- 10. (Original) The method as claimed in claim 1, wherein the critical dimension of the first photoresist film pattern is 0.20µm
- 11. (Original) The method as claimed in claim 1, wherein the critical dimension of the second photoresist film pattern is 0.13 μ m