### 역운동학의 구현과 응용 Implementation of Inverse Kinematics and Application

서울대학교 전기공학부 휴먼애니메이션연구단 최광진 kjchoi@graphics.snu.ac.kr

#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application: Motion Retargetting

### What is Inverse Kinematics?

Forward Kinematics



$$\vec{\mathbf{x}} = \mathbf{f}(\vec{\mathbf{\theta}})$$

#### What is Inverse Kinematics?

Inverse Kinematics



$$\vec{\theta} = \mathbf{f}^{-1}(\vec{\mathbf{x}})$$

# What does $f(\vec{\theta})$ looks like?



$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_2) + l_3 \cos(\theta_3)$$
$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_2) + l_3 \sin(\theta_3)$$

#### Solution to

$$\vec{\theta} = f^{-1}(\vec{x})$$

Our example

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_2) + l_3 \cos(\theta_3)$$

$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_2) + l_3 \sin(\theta_3)$$

Number of equation: 2

Unknown variables: 3



Infinite number of solutions!

### Redundancy

System DOF > End Effector DOF

Our example

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_2) + l_3 \cos(\theta_3)$$

$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_2) + l_3 \sin(\theta_3)$$

- System DOF = 3
- ■End Effector DOF = 2

# Redundancy

A redundant system has infinite number of solutions

- Human skeleton has 70 DOF
  - Ultra-super redundant

How to solve highly redundant system?

#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application : Motion Retargetting

#### What is NLP?

- Non Linear Programming
- Method to optimize a nonlinear function
  - Example

    minimize  $x^2(y+1) + \sin(x+y)$ subject to  $x \ge 0$ ,  $y \ge 0$
  - Objective function
  - Constraint
  - Iterative algorithm

#### NLP-based Method

- Inverse Kinematics problem as nonlinear optimization problem
  - Minimization of Goal Potential Function
- Zhao and Badler, 1994, ACMTOG

#### Goal Potential Function

"Distance" from the end effector to the goal

■ Function of joint angles :  $G(\theta)$ 

# Our Example



#### Goal Potential Function

**Position Goal** 

$$\left\|\mathbf{p_g} - \mathbf{p_e}\right\|^2$$

**Orientation Goal** 

$$\left\|\mathbf{r}_{\mathbf{x}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{x}}^{\mathbf{e}}\right\|^{2} + \left\|\mathbf{r}_{\mathbf{y}}^{\mathbf{g}} - \mathbf{r}_{\mathbf{y}}^{\mathbf{e}}\right\|^{2}$$

Position/Orientation Goal

$$\left\|\mathbf{p}_{\mathbf{g}}-\mathbf{p}_{\mathbf{e}}\right\|^{2}+(1-\omega)c(\left\|\mathbf{r}_{\mathbf{x}}^{\mathbf{g}}-\mathbf{r}_{\mathbf{x}}^{\mathbf{e}}\right\|^{2}+\left\|\mathbf{r}_{\mathbf{y}}^{\mathbf{g}}-\mathbf{r}_{\mathbf{y}}^{\mathbf{e}}\right\|^{2})$$

# Our Example

$$x = l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3$$
$$y = l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3$$

Goal Potential Function

$$G(\mathbf{\theta}) = (x_g - x)^2 + (y_g - y)^2$$

$$= (x_g - (l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3))^2$$

$$+ (y_g - (l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3))^2$$

# Nonlinear Optimization

Recasted Constrained Optimization Problem

minimize 
$$G(\theta)$$
subject to 
$$\begin{cases} \mathbf{a}^{T} \mathbf{\theta} = \mathbf{b}_{1} \\ \mathbf{a}^{T} \mathbf{\theta} \leq \mathbf{b}_{2} \end{cases}$$

### Nonlinear Optimization

- Available NLP Packages
  - LANCELOT
  - DONLP2
  - MATLAB
  - Etc...

### Quiz

- Will  $G(\theta)$  be always zero?
  - No: Unreachable Workspace
- Will the solution be always found?
  - No: Local Minima/Singular Configuration
- Will the solution be always unique?
  - No: Redundancy

# Handling Singularity

# Singular Configuration

Causes infinite joint velocity

Occurs when any  $\dot{\theta}$  cannot achieve given  $\dot{x}$ 

- Example
  - Fully stretched limbs

### Remedy

- For Jacobian-based method
  - Damped pseudo inverse

$$\mathbf{J}^{+} = \mathbf{J}^{\mathrm{T}} (\mathbf{J} \mathbf{J}^{\mathrm{T}} + \lambda^{2} \mathbf{I})^{-1}$$

- lacksquare Dexterity measure  $\delta_{
  m max}/\delta_{
  m min}$
- Clamping
- For nonlinear optimization method
  - Try again with another initial value

### Parametric Singularity

- Gimbal Lock in Euler angle representation
  - When a degree of freedom is lost, the gimbals is said to "lock"
  - Consider a y-roll of 90 degrees which aligns the x and z axis

$$R(\theta_x, 90, \theta_z) = \begin{bmatrix} 0 & 0 & -1 \\ \sin(\theta_x - \theta_z) & \cos(\theta_x - \theta_z) & 0 \\ \cos(\theta_x - \theta_z) & \sin(\theta_x - \theta_z) & 0 \end{bmatrix}$$

Remedy : Quaternion

#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application: Motion Retargetting

#### Differential Kinematics

$$\mathbf{x} = f(\mathbf{\theta}) \qquad \dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{\theta}} \qquad \mathbf{J} \equiv \frac{\partial f}{\partial \mathbf{\theta}}$$

$$\dot{\mathbf{\theta}} = \mathbf{J}^{-1}\dot{\mathbf{x}}$$

- J: Jacobian Matrix
  - Linearly relates end-effector change to joint angle change

#### Differential Kinematics

Our Example

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f_1(\mathbf{\theta}) \\ f_2(\mathbf{\theta}) \end{bmatrix} = \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta \\ l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3 \end{bmatrix} \quad \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \mathbf{J} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_1} & \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_2} & \frac{\partial f_1(\mathbf{\theta})}{\partial \theta_3} \\ \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_1} & \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_2} & \frac{\partial f_2(\mathbf{\theta})}{\partial \theta_3} \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 & -l_2 \sin \theta & -l_3 \sin \theta_3 \\ l_1 \cos \theta_1 & l_2 \cos \theta & l_3 \cos \theta \end{bmatrix}$$

#### Differential Kinematics

- Is J always invertible? No!
  - Remedy : Pseudo Inverse

$$\mathbf{J}^{+} = \mathbf{J}^{\mathrm{T}} (\mathbf{J} \mathbf{J}^{\mathrm{T}})^{-1}$$

$$\dot{\mathbf{\theta}} = \mathbf{J}^{+}\dot{\mathbf{x}}$$
 (minimal norm solution)

$$\dot{\theta} = J^{\dagger}\dot{x} + (I - J^{\dagger}J)\dot{\phi}$$
 (general solution)

# Null space

$$\dot{\boldsymbol{\theta}} = \mathbf{J}^{\dagger}\dot{\mathbf{x}} + (\mathbf{I} - \mathbf{J}^{\dagger}\mathbf{J})\dot{\boldsymbol{\phi}}$$
 (general solution)

The null space of J is the set of vectors which have no influence on the constraints

$$\theta \in nullspace(J) \Leftrightarrow J\theta = 0$$

The pseudoinverse provides an operator which projects any vector to the null space of

$$J\Delta\theta = \Delta x$$
  

$$\Delta\theta = J^{+}\Delta x + (I - J^{+}J)z$$

# Utility of Null Space

The null space can be used to reach secondary goals  $\Delta \theta = J^+ \Delta x + (I - J^+ J)z$ 

$$\min_{z} f(\theta)$$

Or to find comfortable positions

$$f(\theta) = \sum_{i} (\theta_{comfort}(i) - \theta(i))^{2}$$

# Null Space

$$\dot{\theta} = (J^{+}J - I)z$$

$$V = J\dot{\theta}$$

$$V = J(J^{+}J - I)z$$

$$V = (JJ^{+}J - J)z$$

$$V = (J - J)z$$

$$V = 0 \cdot z$$

$$V = 0$$

# Calculating Pseudo Inverse

Gaussian Elimination

$$\mathbf{J}^{+} = \mathbf{J}^{\mathrm{T}} (\mathbf{J} \mathbf{J}^{\mathrm{T}})^{-1}$$

Singular Value Decomposition

$$\mathbf{J} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$$
$$\mathbf{J}^{+} = \mathbf{V}\mathbf{S}^{-1}\mathbf{U}^{\mathrm{T}}$$

# How Can We Get $\theta(t)$ From $\mathbf{x}(t)$ ?

$$\mathbf{\theta}(t) = \int_{t} \dot{\mathbf{\theta}}(t) = \int_{t} \mathbf{J}^{+}(t) \dot{\mathbf{x}}(t)$$

### Integrating

$$\dot{\mathbf{\theta}}(t) = \mathbf{J}^+ \dot{\mathbf{x}}(t)$$

- Problems
  - Initial tracking error
  - Numerical drift
- Remedy
  - Error feedback

$$\dot{\mathbf{\theta}}(t) = \mathbf{J}^{+}(\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{e}(t))$$
$$\mathbf{e}(t) = \mathbf{x}(t) - f(\mathbf{\theta}(t))$$

#### Discretization

$$\dot{\mathbf{\theta}}(t) = \mathbf{J}^{+}(\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{e}(t))$$

$$\dot{\mathbf{\theta}}_{n} = \mathbf{J}^{+}(\dot{\mathbf{x}}_{n} + \mathbf{K}\mathbf{e}_{n})$$

$$\frac{\mathbf{\theta}_{n} - \mathbf{\theta}_{n-1}}{h} = \mathbf{J}^{+}(\frac{\mathbf{x}_{n} - \mathbf{x}_{n-1}}{h} + \mathbf{K}\mathbf{e}_{n})$$

$$\boldsymbol{\theta}_n - \boldsymbol{\theta}_{n-1} = \mathbf{J}^+(\mathbf{x}_n - f(\boldsymbol{\theta}_{n-1}))$$

#### Open-loop vs. Closed-loop scheme



#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application: Motion Retargetting

# Redundancy Is Evil

- Multiple choices for one goal
  - What happens if we pick any of them?

# Redundancy Is Good

We can exploit redundancy

- Additional objective
  - Minimal Change
  - Similarity to Given Example
  - Naturalness

# Minimal Change

- Pseudo Inverse Solution
  - Minimal velocity norm solution

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{\theta}} \rightarrow \dot{\mathbf{\theta}} = \mathbf{J}^{+}\dot{\mathbf{x}}$$

Minimal acceleration norm solution

$$\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{\theta}} + \dot{\mathbf{J}}\dot{\mathbf{\theta}} \rightarrow \ddot{\mathbf{\theta}} = \mathbf{J}^{+}(\ddot{\mathbf{x}} - \dot{\mathbf{J}}\dot{\mathbf{\theta}})$$

Penalty Term in Goal Potential Function

$$G_{new}(\boldsymbol{\theta}) = G(\boldsymbol{\theta}) + \boldsymbol{\theta}^T \mathbf{M}_P \boldsymbol{\theta} + \dot{\boldsymbol{\theta}}^T \mathbf{M}_V \dot{\boldsymbol{\theta}} + \ddot{\boldsymbol{\theta}}^T \mathbf{M}_A \ddot{\boldsymbol{\theta}}$$

# Similarity to Given Example

 Adding homogeneous solution term to the pseudo inverse solution

$$\dot{\boldsymbol{\theta}} = \mathbf{J}^{+}\dot{\mathbf{x}} + (\mathbf{I} - \mathbf{J}^{+}\mathbf{J})\mathbf{K}(\boldsymbol{\theta}_{e} - \boldsymbol{\theta})$$

New Goal Potential Function

$$G_{new}(\mathbf{\theta}) = G(\mathbf{\theta}) + k \|\mathbf{\theta}_e - \mathbf{\theta}\|^2$$

#### Naturalness

- Based on observation of natural human posture
- Neurophysiological experiments
- Example
  - Pointing task with pen stylus
    - Linear mapping between shoulder joint and pen stylus in spherical coordinate system
    - Analytic solution for human arm
  - endgame.mov

#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application: Motion Retargetting

# Multiple Goals











# Handling Multiple Goals

Weighted sum of each goal potential function

$$G^{all}(\mathbf{\theta}) = \sum_{i=1}^{m} \omega_i G_i(\mathbf{\theta})$$

- Jacobian-based method
  - Same formulation  $\dot{\theta}(t) = \mathbf{J}^+ \dot{\mathbf{x}}(t)$
  - No weighting

#### Content

- What is Inverse Kinematics?
- Redundancy
- Basic Method
  - NLP-based method
  - Jacobian-based method
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Application: Motion Retargetting

## Summary

- Inverse Kinematics
- Solver
  - NLP-based Solver
  - Jacobian-based Solver
- Issues
  - Resolving Redundancy
  - Multiple Goals
- Motion Retargetting

# Thank You