Binary Classification with Convolutional Neural Network Algorithm



### (1) Business Understanding

Proyek ini menggunakan data BPJS Hackathon (Fraud Detection) untuk melakukan prediksi dengan data yang telah kita miliki pendekatan yang digunakan yaitu metode Binary Classification with Convolutional Neural Network Algorithm.



# 2 Data Understanding

### Collecting data

Collecting data merupakan proses pengumpulan, pengukuran serta analisis data yang digunakan dalam penelitian.

#### Describe data

potensi terjadinya *fraud* pada klaim pelayanan Rumah Sakit maka set data yang digunakan dengan menggunakan algoritma *Convolutional Neural Network* (CNN) adalah *fraud\_detection\_train dataset. Dataset* ini terdiri dari 53 *variable* dengan total 200217

observasi.

| No. | Nama atribut  | Tipe    | Deskripsi                          |
|-----|---------------|---------|------------------------------------|
|     | (variabel)    | atribut |                                    |
| 1.  | visit_id      | Nominal | ID kunjungan                       |
| 2.  | kdkc          | Nominal | Kode wilayah kantor cabang BPJS    |
|     |               |         | Kesehatan                          |
| 3.  | dati2         | Nominal | Kode kabupaten/kota                |
| 4.  | typeppk       | Nominal | Kode tipe Rumah Sakit              |
| 5.  | jkpst         | Binary  | Jenis kelamin peserta JKN-KIS      |
| 6.  | umur          | Nominal | Umur peserta saat mendapatkan      |
|     |               |         | pelayanan rumah sakit              |
| 7.  | jnspelsep     | Binary  | Kode tingkat pelayanan             |
|     |               |         | 1 : rawat inap                     |
|     |               |         | 2 : rawat jalan                    |
| 8.  | los           | Numerik | Lama pasien dirawat di rumah sakit |
| 9.  | cmg           | Numerik | Klasifikasi CMG (Case Mix Group)   |
| 10. | severitylevel | Numerik | Tingkat urgensi                    |
| 11. | diagprimer    | Nominal | Diagnosa primer                    |
| 12. | dx2           | Numerik | Diagnosa sekunder                  |
| 13. | proc          | Nominal | Kode kelompok procedure            |
| 14. | label         | Binary  | Flag Fraud                         |
|     |               |         | 1 : fraud                          |
|     |               |         | 0: tidak fraud.                    |

#### Validation Data

Pada subbab ini berisi tahapan evaluasi, kelengkapan data dan kualitas data yang digunakan dalam mengerjakan proyek. Terjadinya missing value maupun noise pada data diakibatkan karena terjadinya kesalahan maupun error pada saat melakukan penginputan data.



Pada tahapan data preparation berikut akan dijabarkan proses menyiapkan data, pemilahan variabel yang akan dianalisis, serta pembersihan data.

#### Data Selection

Data selection atau feature selection digunakan untuk memilih beberapa feature untuk membangun model klasifikasi. Proses seleksi dilakukan dengan melakukan penggabungan terhadap feature yang terkait menjadi satu selanjutnya memilih feature yang akan digunakan sebagai input feature

| 1 (   | df_drop  | na['di | lagprime   | r'] =  | df_dr  | opna['dx2              | _a00 | а_699 | ] + df_dropna[     | 'dx2_c    | 0_d48'] + df_dropna['dx2_d50_d89'] + df_dropna[  | 'dx2_e |
|-------|----------|--------|------------|--------|--------|------------------------|------|-------|--------------------|-----------|--------------------------------------------------|--------|
|       | 4        |        |            |        |        |                        |      |       |                    |           |                                                  | -      |
| Code  | diatas d | igunak | an untuk r | menyat | ukan v | alue dari ko           | olom | diagp | rimer yang sumbe   | r dari ma | sing masing tabel value tersebut                 |        |
| 2 (   |          | na.dro |            |        |        | b99', 'dx<br>=True, ax |      |       | 8', 'dx2_d50_d8    | 9', 'd    | 2_e00_e90', 'dx2_f00_f99', 'dx2_g00_g99', 'dx2_l | h00_h5 |
|       | 4        |        |            |        |        |                        |      |       |                    |           |                                                  | -      |
|       | kdkc     | dati2  | typeppk    | jkpst  | umur   | jnspelsep              | los  | cmg   | severitylevel diag | primer    | abel                                             |        |
|       | 0 1107   | 150    | SB         | 1      | 64     | 2                      | 0    | F     | 0                  | 0         | 1                                                |        |
|       | 1 1303   | 200    | С          | 0      | 45     | 1                      | 9    | E     | 3                  | 5         | 1                                                |        |
|       | 2 1114   | 172    | В          | 1      | 34     | 2                      | 0    | Q     | 0                  | 0         | 1                                                |        |
|       | 3 601    | 90     | SC         | 0      | 34     | 2                      | 0    | Q     | 0                  | 0         | 1                                                |        |
|       | 4 1006   | 130    | В          | 0      | 27     | 2                      | 0    | F     | 0                  | 0         | 1                                                |        |
|       |          | ***    | ***        | ***    | ***    | ***                    |      |       |                    | ***       | No.                                              |        |
| 20021 | 12 2102  | 353    | В          | 1      | 48     | 2                      | 0    | z     | 0                  | 0         | 0                                                |        |
| 20021 | 13 1308  | 212    | SD         | 0      | 1      | 2                      | 0    | Q     | 0                  | 0         | 0                                                |        |
|       | 14 201   | 38     | SB         | 1      | 3      | 2                      | 0    | Q     | 0                  | 0         | 0                                                |        |
| 20021 |          | 400    | В          | 1      | 52     | 1                      | 1    | J     | 1                  | 0         | 0                                                |        |
|       | 15 1008  | 128    |            |        |        |                        |      |       |                    |           |                                                  |        |

#### Data Cleaning

Data Cleaning merupakan proses persiapan data dengan cara menghapus atau memodifikasi data yang salah, tidak akurat, tidak terformat maupun duplikat. Data yang rusak tentunya akan

berpengaruh pada kinerja pada sistem.

```
1 df_dropna = df.dropna()
2 print(df_dropna.shape)

(200217, 53)

df_dropna.duplicated().sum()
```

```
df dropna.isna().sum()
[19]: visit_id
      typeppk
      jkpst
      jnspelsep
      severitylevel
      diagprimer
      dx2_a00_b99
      dx2 c00 d48
      dx2 d50 d89
      dx2 e00 e90
      dx2 f00 f99
      dx2_g00_g99
      dx2_h00_h59
      dx2_h60_h95
      dx2 i00 i99
      dx2_j00_j99
      dx2_koo_k93
      dx2_100_199
      dx2_m00 m99
      dx2 n00 n99
      dx2_o00_o99
      dx2 p00 p96
      dx2 q00 q99
      dx2_r00_r99
      dx2_s00_t98
      dx2_u00_u99
      dx2 v01 y98
      dx2_z00_z99
      proc00_13
```

#### Data Construct

200217 rows × 55 columns

Mengkonstruksi data merupakan bagian dari Data transformasi yang terdiri dari representasi fitur, menentukan korelasi dan mengintegrasikan data. representasi fitur digunakan untuk mengurangi kompleksitas, meningkatkan akurasi dan memilih fitur optimal.

```
1 df dropna['jkpst'].replace(to replace=['L','P'], value = [0,1], inplace = True)
Kode diatas digunakan untuk mengubah value kategorikal dari jenis kelamin berupa L dan P menjadi Binary
                 1 import numpy as np
                  2 # Numeric data type
                  3 data_num = df_dropna.select_dtypes(include=[np.number])
                  5 # Category data type
                  6 data_cat = df_dropna.select_dtypes(exclude=[np.number])
                  8 # Get dummies (data transformation)
                  9 transform_cat = pd.get_dummies(data_cat, prefix_sep='_', drop_first=True)
                  1 from numpy.core.defchararray import add
                  2 data_cat = transform_cat.assign(new=add('', np.arange(1, len(data_cat) + 1).astype(str)))
                  3 data_num = data_num.assign(new=add('', np.arange(1, len(data_num) + 1).astype(str)))
                 4 df_dropna = pd.concat([data_cat, data_num], axis=1)
                 5 df_dropna.drop(['new'], axis=1, inplace=True)
                Kode diatas digunakan untuk transformasi data pada semua data kategorikal sehingga semua fitur memiliki nilai numerik.
                 1 df_dropna
                 200212
                 200213
                 200214
                 200215
```

#### Labelling Data

Pada kasus Fraud Detection (Binary Classification) data dibagi menjadi data training dan data validation yang berbeda

```
1 X = df_dropna.drop('label', axis = 1)
2 y = df_dropna['label']
```

Kode diatas merupakan Feature Selection utk menentukan Input maupun Target Features

#### Data Integration

Pada tahap mengintegrasi data dilakukan concatenation. Concatenation dapat dianggap sebagai sebuah pendekatan untuk menambahkan baris atau kolom ke data. Pendekatan ini dimungkinkan jika data terbagi menjadi beberapa bagian atau jika dilakukan perhitungan yang ingin ditambahkan ke set data yang sudah tersedia.

|       |         |           |           | version. Us<br>d, ignore_i | e pandas. <mark>co</mark><br>ndex = True |            |            |            |            |            |       |       |      |       |
|-------|---------|-----------|-----------|----------------------------|------------------------------------------|------------|------------|------------|------------|------------|-------|-------|------|-------|
| typ   | peppk_B | typeppk_C | typeppk_D | typeppk_GD                 | typeppk_HD                               | typeppk_I1 | typeppk_l2 | typeppk_I3 | typeppk_I4 | typeppk_KB |       | cmg_Z | kdkc | dati2 |
| 0     | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          | - 200 | 0     | 1107 | 150   |
| 1     | 0       | 1         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          | -     | 0     | 1303 | 200   |
| 2     | 1       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          | ***   | 0     | 1114 | 172   |
| 3     | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          |       | 0     | 601  | 90    |
| 4     | 1       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          |       | 0     | 1006 | 130   |
| ***   |         |           | 440       |                            | ***                                      |            | ***        |            | 444        |            | 100   |       |      |       |
| 00505 | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          |       | 0     | 1112 | 169   |
| 00506 | 1       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          | 100   | 0     | 105  | 3     |
| 00507 | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          |       | 0     | 2102 | 354   |
| 00508 | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 0          | 0          |       | 0     | 1112 | 168   |
| 00509 | 0       | 0         | 0         | 0                          | 0                                        | 0          | 0          | 0          | 1          | 0          |       | 0     | 701  | 97    |



Pada bab ini dijelaskan mengenai pemilihan teknik modeling, menghasilkan test design, membangun model atau membuat pemodelan, dan menilai model yang telah dibangun. Model yang digunakan adalah Binary Classification with Convolutional Neural Network Algorithm

#### Modelling

#### **Building Test Scenario**

Teknik pemodelan yang dilakukan pada penelitian melibatkan penerapan cnn dalam melakukan prediksi jumlah kasus dan unit cost pada sebuah daerah akibat penambahan Rumah Sakit dari 200217 observasi dan 53 variable. Adapun feature yang digunakan pada dataframe terdiri atas kdkc, dati2, typeppk, jkpst, umur, jnspelsep, los, cmg, severitylevel diagprimer untuk input feature serta label yang menjadi target feature.

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
 2 X train.shape, X test.shape
 1 # Buat objek scaler
 2 scaler = StandardScaler()
 3 # Sesuaikan scaler dengan data
 4 X_train = scaler.fit_transform(X_train)
 5 # Mengubah data train dan test
 6 X test = scaler.transform(X test)
 7 y_train = y_train.to_numpy()
 8 y test = y test.to numpy()
Scaling standardisasi berfokus pada mengubah data mentah menjadi informasi yang dapat digunakan sebelum dianalisis.
 1 X train.shape
(180459, 54)
 1 X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
 2 X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
```

#### Modelling

#### **Build Model**

Mendefenisikan model Convolutional Neural Network

```
model = Sequential()
model.add(Conv1D(32, 2, activation='relu', input_shape = (54, 1)))
model.add(BatchNormalization())
model.add(Dropout(0.1))

model.add(Conv1D(64, 2, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.4))

model.add(Dense(1, activation='sigmoid'))
model.summary()
```

Berikut kode untuk melakukan compile model dan fit model cnn

```
1 model.compile(optimizer='adam', loss = 'binary_crossentropy', metrics=['accuracy'])
1 history = model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test), verbose=1)
```

Hasil akhir compile model dan fit model



Pada bab ini dilakukan tahap Evaluation (Evaluasi) dengan tujuan untuk memprediksi seberapa baik model akhir akan bekerja nantinya sehingga diketahui apakah model tersebut layak digunakan atau tidak dan untuk membantu menemukan model yang paling mewakili pelatihan data

#### Evaluation

#### Berikut ditampilkan hasil evaluasi terhadap model yang dikembangkan



```
print(classification_report(y_test, y_pred_cnn))
print('precision_score:',precision_score(y_test,y_pred_cnn))
print('accuracy_score:',accuracy_score(y_test,y_pred_cnn))
print('recall_score:',recall_score(y_test,y_pred_cnn))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.64      | 0.58   | 0.61     | 10059   |
| 1            | 0.61      | 0.67   | 0.64     | 9992    |
| accuracy     |           |        | 0.62     | 20051   |
| macro avg    | 0.62      | 0.62   | 0.62     | 20051   |
| weighted avg | 0.62      | 0.62   | 0.62     | 20051   |

precision\_score: 0.6109589041095891 accuracy\_score: 0.6228617026582215 recall\_score: 0.6695356285028022

## © Deployment

Pada babi ini akan dijelaskan mengenai perencanaan fase penyebaran atau penggunaan model yang sudah dihasilkan, perencanaan pemantauan dan pemeliharaan

### Deployment

- Membuat rencana deployment model
- Melakukan deployment model
- Melakukan rencana pemeliharaan
- Melakukan Pemeliharaan



nant you