Market Mix Modelling For ElecKart

Approach Document

Team Members:

Arun NR

Sunil Saggar

Prazna Teja

Nilesh Singh

Steps Involved

- 1. Data Sourcing
- 2. Data Cleaning
- 3. EDA
- 4. Deriving KPIs
- 5. Generating Weekly Data.
 - a. Sales
 - b. Media and other Information.
- 6. Basic Linear Regression Model.
- 7. Multiplicative Model
- 8. Koyck Model
- 9. Distributed Lag Model
- 10. Combo of Distributed Lag and Multiplicative Model
- 11. Results.

Data Sourcing

- ConsumerElectronics.csv
 - o Contains SKU level transaction details.
- Media data and other information.xlsx
 - Contains 3 tabs
 - Media Investment: Contains investment from different sources of media.
 - Special Sale: Contains dates during when special sale was conducted.
 - Monthly NPS
 - o For ease of reading, each of these tabs are manually converted to R readable csv format.

Data Cleaning

- Gmv, product_mrp, product_procurement_sla had null values which was removed.
- Product_procurement_sla had negative values, and was removed.
- Sla and product_procurement_sla had outliers, and was capped accordingly.
- Several rows in gmv & cust_id having NAs were omitted.
- Order date is converted to proper date format.
- Considered only data between 01-Jul-2015 to 30-Jun-2016 as defined in the problem statement.
- Filtered data relevant to only 3 Product_analytic_sub_category as defined in the problem statement.
 - Camera Accessory
 - Audio Accessory
 - o Home Audio

LEGEND:

Completed So Far Work in Progress

EDA

Some of the key EDA Graphs

Insights:

- We can see that GMV peaks are observed where there is significant investment is certain category showing the current effect.
- Also in some cases we can see the lag effect of marketing on gmv.
- On Special Days, the advertisement spends are more and so is the gmv/sales.

Co-relation Matrix

Can Observe lot of co-relation between the following:

- Total number of units, no of orders, gmv
- average unit price, average product mrp

- Digital and SEM
- SEM and Content Marketing

This will be useful consideration while eliminating variables during regression.

Deriving other Factors from Data

The following additional factors were derived from the data

- Week Number: Which will be used to aggregate later on.
- Discount Offered: Calculated based on GMV and MRP values.
- Unit Price: Will be the price per unit after discount. Derived from GMV and 'no. of units'.
- No_of_orders: No of orders registered during that particular week.

Generating Weekly Data

Weekly Sales Data

- Weekly sales data is derived from the week numbers associated with each sales record.
- All the information is aggregated by grouping at
 - o 'week number'
 - 'product analytic sub category'
- The rest of the data is aggregated and summarized as follows:
 - Count(number of orders)
 - Sum(gmv)
 - Sum(units)
 - Sum(payment_type)
 - Mean(sla)
 - Mean(mrp)
 - Mean(sla)
 - Mean(discount)
 - Mean(unitPrice)

Weekly Media Investment Data

- As input, monthly wise media investment data was received.
- From monthly wise data, we derived weekly wise media investment data.
- Same weekly data will be used for all three product analytic sub category, as marketing is done, irrespective of sub-category.

Weekly Special Sale

- Days during which the special sale happens was provided.
- Special days was mapped to week numbers.
- No. of special days within each week was calculated.

- Same special sale weekly data is used for all three product analytic sub category.

Weekly NPS Data:

- Monthly NPS score was provided.
- From monthly wise data, we derived weekly wise NPS score.
- Same weekly data will be used for all three product analytic sub category

Merging of weekly data:

The following information was merged to form one master table.

- Weekly sales information
- Weekly media spends across different segments
- Weekly wise number of sale days
- Weekly NPS Data.

Resulting in table below:

```
data.frame':
                 152 obs. of
                               24 variables:
                                    $ week_num
$ product_analytic_sub_category:
                                      num 12340 15731 106756 269180 4375483 ...
$ total_gmv
                                   : int 2 26 38 99 3400 2459 88 3194 2423 107 ...
: int 2 26 38 95 3252 2434 87 3097 2403 107 ...
: num 0 0 1 63 2171 ...
$ total_units
$ no_of_orders
$ total_payment_cod
$ total_payment_prepaid
$ avg_sla
                                   : num 2 26 37 32 1081 ...
: num 9 2.23 2.79 8.69 7.2
                                      num 10568 1412 4642 3667 2412 ...
num 2.5 2.88 3.61 2.68 2.81 ...
$ avg_product_mrp
$ avg_product_procurement_sla :
                                      num 42.2 49.9 35.6 31 43.8 ...
$ avg_discount
                                    : num 6170 605 2809 2802 1328 ...
: num 3.86 3.86 3.86 3.86 3.86 ...
$ avg_unitPrice
$ Total.Investment
$ TV
$ Digital
                                      num 0.0452 0.0452 0.0452 0.0452 0.0452 ...
                                      num 0.565 0.565 0.565 0.565 0.565 ...
num 1.67 1.67 1.67 1.67 1.67 ...
$ Sponsorship
                                      num 0 0 0 0 0 0 0 0 0 0 0 ...
num 0.294 0.294 0.294 0.294 ...
$ Content.Marketing
$ Online.marketing
$ Affiliates
                                      num 0.113 0.113 0.113 0.113 0.113 ...
                                            1.13 1.13 1.13 1.13 1.13 ...
 SEM
                                      num
                                      num 00000000000...
$ Radio
                                      num 00000000000...
$ other
  spl_days
                                      num
                                            0000001110
```

Linear Regression Model Building

- Separate Linear model was built for each product analytic sub category.
- Variable elimination method was followed to identify the key factors in each case.
- Used STEP-AIC function to gain the initial model, then on continued with variable elimination based on VIF and p-values.

Camera Accessory

Final Model:

```
Coefficients:
             Estimate Std. Error t value
                                                        Pr(>|t|)
                           240147 20.950 < 0.00000000000000000 ***
(Intercept)
             5031182
              -745888
                           364282 -2.048
                                                        0.046215 *
                                    4.782
                                                       0.0000175 ***
Sponsorship 2035885
                           425742
                                                        0.000161 ***
                           332808
Affiliates
              1365160
                                    4.102
SEM
              -955318
                           386603 -2.471
                                                        0.017153 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1732000 on 47 degrees of freedom
Multiple R-squared: 0.5447, Adjusted R-squared: 0.5059
F-statistic: 14.06 on 4 and 47 DF, p-value: 0.000000129
  sort(vif(model_6))
 Affiliates
                                   SEM Sponsorship
                       TV
  1.883650
                2.256774
                             2.541811
                                         3.082527
```

Testing:

Adjusted R2 of model6 = 0.5059

R2 from prediction = 0.5446743

Difference is 0.0387743

Conclusion: Influencing Factors

- TV
- Sponsorship
- Affiliates
- SEM

Audio Accessory

Final Model

```
Coefficients:
           Estimate Std. Error t value
                                                  Pr(>|t|)
(Intercept)
                         18614 18.168 < 0.0000000000000000 ***
             338171
Sponsorship
                         29440 2.814
                                                   0.00717 **
              82853
                               2.844
Affiliates
                         20072
                                                   0.00663 **
              57079
SEM
             -73730
                         29237 -2.522
                                                   0.01520 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 131600 on 46 degrees of freedom
Multiple R-squared: 0.2932, Adjusted R-squared: 0.2471
F-statistic: 6.36 on 3 and 46 DF, p-value: 0.001068
 sort(vif(model_6))
Affiliates
                   SEM Sponsorship
  1.139544
                          2.451451
              2.417876
```

Testing

Adjusted R2 of model6 = 0.2471

R2 from prediction = 0.2931744

Difference is 0.046

Conclusion: Influencing Factors

- Sponsorship
- Affiliates
- SEM

Home Audio

Final Model

```
Coefficients:
             Estimate Std. Error t value
                                                     Pr(>|t|)
                                 16.903 < 0.00000000000000000
(Intercept)
              5029974
                          297577
avg_discount 1220087
                          315360
                                   3.869
                                                     0.000343 ***
                                   4.134
                                                     0.000149 ***
Sponsorship
              1284111
                          310612
spl_days
               539935
                          317001
                                   1.703
                                                     0.095268 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2104000 on 46 degrees of freedom
Multiple R-squared: 0.4868,
                                Adjusted R-squared: 0.4534
F-statistic: 14.55 on 3 and 46 DF, p-value: 0.0000008499
  sort(vif(model_8))
 Sponsorship avg_discount
                              spl_days
    1.067734
                 1.100627
                              1.112109
```

Testing

Adjusted R2 of model6 = 0.4534

R2 from prediction = 0.4868225

Difference is 0.033

Conclusion: Influencing Factors

- AverageDiscount
- Sponsorship
- spl days

Future Roadmap.

With linear model, we were able to model the current effect of advertising. We will implement the following models to determine other effects of marketing on revenue.

- 1. Multiplicative Model
- 2. Koyck Model
- 3. Distributed Lag Model
- 4. Combo of Distributed Lag and Multiplicative Model
- 5. Results.