A Pruning-Based Deep Learning Approach For Information Retrieval

Master of Science in Engineering in Computer Science

Deep Learning

Speakers

Luca Zanchetta 1848878
Pasquale Mocerino 1919964
Simone Scaccia 2045976

Task Description

Neural Inverted Index: a unified model replicating the behavior of a conventional index and performing enhanced retrieval by leveraging the power of neural networks.

 \rightarrow Our **focus** is on **optimizing a DSI model**, denoted as f, which takes a query q as input and produces a ranked list of document IDs.

Dataset

- We used the MS MARCO dataset through the Pyserini toolkit:
 - Select the most relevant K document IDs for each query of the dataset, and use this data for training the model.
 - Select the most relevant 1000 document IDs only for the Recall@1000 metric computation (see later).
- We used the T5 tokenizer for tokenizing both the queries and the document IDs.

Evaluation Metrics

We assessed our model using the following metrics:

- MAP (Mean Average Precision): the mean of the average precision scores from a set of queries.
- **Recall@1000:** the proportion of relevant document IDs found in the top-1000 results.

Baseline

- We used a pre-trained T5 model from Hugging Face, embedded in a Pytorch Lightning module.
- We have fine-tuned all the layers of the pre-trained T5 model on our task, so that the model was able to predict a ranked list of document IDs, given an input query.
- We have considered three versions of the Hugging Face T5 model, having different sizes:
 - T5-large
 - T5-base
 - T5-small

Innovation

- → Our approach: employ the Train-Prune-Recovery strategy on the proposed baseline in order to let the model work in a resource-constrained environment.
- In particular, the pruning:
 - One-shot
 - Unstructured
 - Magnitude-based (L1 norm)
- We have conducted several experiments on the pruning rate, in order to find the model with the best metrics performance (see later).

Workflow (1/6)

Goal: comparing different versions of T5 model with their pruned counterparts.

➤ T5-large: Google Colab limitations (GPU RAM)

Workflow (2/6)

> T5-base:

Table 1: Baseline t5-base

K	Batch size	Epochs	Learning rate	Patience	Test loss	MAP	Recall@1000
25	16	30	0.001	5	3.514	0.00100	0.0
20	16	30	0.001	5	4.628	0.00135	4.00E-05
5	8	20	0.001	∞	8.323	0.00352	5.00E-05
5	8	23	0.001	∞	8.604	0.00563	0.00011

Figure 1: Plots of the best baseline *t5-base* result.

Workflow (3/6)

- > T5-base observations:
 - We could train for fewer epochs with a large K.
 - Performance on metrics increases as the number of training epochs increases: epoch-wise double descent?
 - Due to Colab limitations, we couldn't apply the Train-Prune-Recovery strategy.

Workflow (4/6)

➤ T5-small:

Table 2: Baseline t5-small

K	Batch size	Epochs	Learning rate	Patience	Test loss	MAP	Recall@1000
25	8	20	0.001	∞	8.558	0.0	0.0
10	8	50	0.001	∞	11.197	0.00100	0.0
5	8	25	0.001	∞	9.339	0.00119	2.00E-05

Figure 2: Plots of the best baseline *t5-small* result.

Workflow (5/6)

> T5-small pruned:

Table 3: Pruned t5-small

K	Batch size	Epochs (total)	Learning rate	Patience	Pruning rate	Test loss	MAP	Recall@1000
5	8	25	0.001	∞	0.1	9.596	0.00057	2.00E-05
5	8	25	0.001	∞	0.15	9.710	0.00071	1.00E-05
5	8	25	0.001	∞	0.2	9.901	0.00214	2.00E-05
5	8	25	0.001	∞	0.25	10.207	0.00062	1.00E-05
5	8	25	0.001	∞	0.3	10.352	0.00211	2.00E-05
5	8	25	0.001	∞	0.4	10.464	0.00071	1.00E-05
5	8	25	0.001	∞	0.5	10.768	0.00167	1.00E-05

Workflow (6/6)

> T5-small pruned:

Non-pruned baseline

Pruned baseline

Conclusions

The pruned T5-small outperforms on both metrics the T5-small baseline when the pruning rate is 0.2 or 0.3:

Table 2: Baseline t5-small

K	Batch size	Epochs	Learning rate	Patience	Test loss	MAP	Recall@1000
25	8	20	0.001	∞	8.558	0.0	0.0
10	8	50	0.001	∞	11.197	0.00100	0.0
5	8	25	0.001	∞	9.339	0.00119	2.00E-05

Table 3: Pruned t5-small

K	Batch size	Epochs (total)	Learning rate	Patience	Pruning rate	Test loss	MAP	Recall@1000
5	8	25	0.001	∞	0.1	9.596	0.00057	2.00E-05
5	8	25	0.001	∞	0.15	9.710	0.00071	1.00E-05
5	8	25	0.001	∞	0.2	9.901	0.00214	2.00E-05
5	8	25	0.001	∞	0.25	10.207	0.00062	1.00E-05
5	8	25	0.001	∞	0.3	10.352	0.00211	2.00E-05
5	8	25	0.001	∞	0.4	10.464	0.00071	1.00E-05
5	8	25	0.001	∞	0.5	10.768	0.00167	1.00E-05

A Pruning-Based Deep Learning Approach For Information Retrieval

Thanks for your interest!

Speakers

Luca Zanchetta 1848878
Pasquale Mocerino 1919964
Simone Scaccia 2045976