Discrete Mathematics Lecture 13

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 12

r-Combination of Set $A = \{a_1, a_2, ..., a_n\}$

- Without repetition: an *r*-subset of *A*;
- With repetition: an *r*-multiset of the form $\{x_1 \cdot a_1, ..., x_n \cdot a_n\}$

r-Combination of Multiset $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$

an r-subset of A

Binomial Transform:
$$b_n = \sum_{k=s}^n {n \choose k} a_k$$

Inverse Binomial Transform:
$$b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k$$

•
$$a_n = \sum_{k=s}^n \binom{n}{k} b_k \Rightarrow b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k \ (n \ge s)$$

Distributing Objects into Boxes:

Labeled/unlabeled objects + labeled/unlabeled box

$S_2(n,j)$

THEOREM:
$$S_2(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n$$
 when $n \ge j \ge 1$.

- T(n, j): the number of ways of distributing n labeled objects into j labeled boxes such that no box is empty
 - $T(n,j) = j! \cdot S_2(n,j)$
 - T(n,j) = ?
- *X*: the set of ways of distributing *n* labeled objects into *j* labeled boxes.
 - By the product rule, $|X| = j^n$
- $X_i \subseteq X$: the set of ways where exactly *i* boxes are used, i = 1, 2, ..., j
 - $\{X_1, X_2, ..., X_j\}$ is a partition of X and $|X_i| = {j \choose i} T(n, i)$
 - $j^n = |X| = \sum_{i=1}^j |X_i| = \sum_{i=1}^j {j \choose i} T(n, i)$
 - $T(n,j) = \sum_{i=1}^{j} (-1)^{j-i} {j \choose i} i^n = \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n //\text{inversion}$
- $S_2(n,j) = \frac{1}{j!} \cdot T(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n$

Type 4

Problem: distributing n unlabeled objects into k unlabled boxes

EXAMPLE: # of ways of distributing 4 identical books into 3 identical boxes.

- 400
- 310
- 220
- 211

REMARK: The schemes are determined by $\{n_1, ..., n_k\}$

Partitions of Integers

DEFINITION: $n = a_1 + a_2 + \dots + a_j$ is called an *n***-partition** with exactly *j* parts if $a_1 \ge a_2 \ge \dots \ge a_j$ are all positive integers.

- $p_j(n) = |\{(a_1, ..., a_j): a_1 + \cdots + a_j = n, a_1 \ge a_2 \ge \cdots \ge a_j \ge 1 \text{ are integers}\}|$
 - $p_j(n)$: # of ways of writing n as the sum of j positive integers.

EXAMPLE: The integer 4 has four different partitions:

- 4 = 4
- 4 = 3 + 1
- 4 = 2 + 2
- 4 = 2 + 1 + 1

REMARK: solution to the type 4 problem= $\sum_{i=1}^{k} p_i(n)$

Partitions of Integers

THEOREM: For $n \in \mathbb{Z}^+$, $j \in [n]$, $p_j(n+j) = \sum_{k=1}^j p_k(n)$

- $p_1(n) = 1, p_n(n) = 1$
- Let $S_k = \{\text{partitions of } n \text{ into } k \text{ positive integers} \}, k \in [j]$
- Let $S = \bigcup_{k=1}^{j} S_k$.
 - $|S| = |S_1| + \dots + |S_i| = p_1(n) + \dots + p_i(n)$
- Let $T = \{\text{partitions of } n + j \text{ into } j \text{ positive integers} \}$
 - $|T| = p_i(n+j)$
- $f: S \to T$ $(n_1, \dots, n_k) \mapsto (n_1 + 1, \dots, n_k + 1, 1, \dots, 1)$ f is bijective

 - |T| = |S|

EXAMPLE: determine $p_3(6)$ and $p_4(6)$ with the above theorem

- $p_3(6) = p_3(3+3) = p_1(3) + p_2(3) + p_3(3) = 1 + 1 + 1 = 3$
- $p_4(6) = p_4(2+4) = p_1(2) + p_2(2) + p_3(2) + p_4(2) = 1 + 1 + 0 + 0 = 2$

Computing $p_i(n)$ Recursively

Principle of Inclusion-Exclusion

容怀原理

Problem: *S* is a finite set and $A_1, A_2, ..., A_n \subseteq S$.

- $|\bigcup_{i=1}^n A_i| =?$
- $|\bigcap_{i=1}^n A_i| =? \longrightarrow \bigcup$

EXAMPLE: Let S be the set of permutations of [n]. Find |A| for

$$A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, ..., n$
 - $\bullet \quad A = S \bigcup_{i=1}^{n} A_i$
 - |S| = n!
 - $|\bigcup_{i=1}^n A_i| = ?$

Principle of IE (Two Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 be subsets of S. Then

•
$$|S - A_1| = |S| - |A_1|$$
; $|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$

•
$$S = A_1 \cup (S - A_1), A_1 \cap (S - A_1) = \emptyset;$$

•
$$\{A_1, S - A_1\}$$
 is a partition of S

•
$$|S| = |A_1| + |S - A_1|$$

•
$$|S - A_1| = |S| - |A_1|$$

•
$$A_1 - A_2 = A_1 - A_1 \cap A_2$$

•
$$|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$$

•
$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

•
$$A_1 \cup A_2 = (A_1 - A_2) \cup A_2, (A_1 - A_2) \cap A_2 = \emptyset;$$

•
$$|A_1 \cup A_2| = |A_1 - A_2| + |A_2| = |A_1| - |A_1 \cap A_2| + |A_2|$$

• $|A_1 \cap A_2| = |A_1| + |A_2| - |A_1 \cup A_2|$

Principle of IE (Three Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 , A_3 be subsets of S.

Then
$$\left| \bigcup_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} |A_{i_1} \cap \dots \cap A_{i_t}|$$

•
$$\left|\bigcup_{i=1}^{3} A_i\right| = \left|(A_1 \cup A_2) \cup A_3\right| = \left|A_1 \cup A_2\right| + \left|A_3\right| - \left|(A_1 \cup A_2) \cap A_3\right|$$

•
$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

•
$$|(A_1 \cup A_2) \cap A_3| = |(A_1 \cap A_3) \cup (A_2 \cap A_3)|$$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |(A_1 \cap A_3) \cap (A_2 \cap A_3)|$$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|$$

•
$$|\bigcup_{i=1}^{3} A_i| = |A_1| + |A_2| - |A_1 \cap A_2| + |A_3|$$

= $|(A_1 \cup A_2) \cup A_3| - |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|)$

•
$$\left| \bigcap_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} \left| A_{i_1} \cup \dots \cup A_{i_t} \right|$$

Principle of IE (n Sets)

THEOREM: Let S be a finite set. Let $A_1, A_2, ..., A_n$ be subsets of S.

Then
$$|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|$$

• $n = 1: |A_1| = |A_1|$

- 七组合
- $n = 2: |A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
- n = 3: $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| |A_1 \cap A_2| |A_1 \cap A_3|$ $-|A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$

- **Induction hypothesis**: the identity holds for $n \le k$ ($k \ge 3$)
- Need to show the identity for n = k + 1
- $|A_1 \cup \dots \cup A_{k+1}| = |A_1 \cup \dots \cup A_k| + |A_{k+1}| |(A_1 \cup \dots \cup A_k) \cap A_{k+1}|$ $= \left| \bigcup_{i=1}^k A_i \right| + |A_{k+1}| - \left| \bigcup_{i=1}^k (A_i \cap A_{k+1}) \right|$

Principle of IE (n Sets)

•
$$\left| \bigcup_{i=1}^k A_i \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |A_{i_1} \cap \dots \cap A_{i_t}|$$

•
$$\left| \bigcup_{i=1}^k (A_i \cap A_{k+1}) \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} \left| (A_{i_1} \cap A_{k+1}) \cap \dots \cap (A_{i_t} \cap A_{k+1}) \right|$$

•
$$\left| \bigcup_{i=1}^{k+1} A_i \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |A_{i_1} \cap \dots \cap A_{i_t}| + |A_{k+1}| - \|A_{i_1} \cap \dots \cap A_{i_t}\|$$

$$\sum_{t=1}^{k} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |(A_{i_1} \cap A_{k+1}) \cap \dots \cap (A_{i_t} \cap A_{k+1})|$$

$$= \sum_{t=1}^{k+1} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k+1} |A_{i_1} \cap \dots \cap A_{i_t}|$$

THEOREM: Let S be a finite set. Let $A_1, A_2, ..., A_n$ be subsets of S.

Then
$$|\bigcap_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cup \dots \cup A_{i_t}|$$

Principle of Inclusion-Exclusion

结为建定

EXAMPLE: Let S be the set of permutations of [n]. Find |A| for

$$A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, \dots, n$
 - $\bullet \quad A = S \bigcup_{i=1}^{n} A_i$
 - |S| = n!
 - $|\bigcup_{i=1}^{n} A_i| = ?$
- $|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|$
 - $|A_{i_1} \cap \dots \cap A_{i_t}| = (n-t)!$ for $t = 1, 2, \dots, n$
- $|A| = |S| |\bigcup_{i=1}^{n} A_i|$ = $n! - \left(\binom{n}{1} * (n-1)! - \binom{n}{2} * (n-2)! + \dots + (-1)^{n-1} * \binom{n}{n} * 1\right)$ = $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^t \frac{1}{t!} + \dots + (-1)^n \frac{1}{n!}\right)$

Pigeonhole Principle

鸽巢原理

EXAMPLE: Connect 15 workstations $W_1, ..., W_{15}$ to 10 servers $S_1, ..., S_{10}$ such that any ≥ 10 workstations have access to all servers. How many cables are needed?

- **Solution 1**: Connecting every workstation directly to every server. 150
- **Solution 2**: S_i is connected to W_i for every $i \in [10]$; and each of $W_{11}, W_{12}, W_{13}, W_{14}, W_{15}$ is connected to all servers.
 - This solution requires 60 lines.
 - Is this solution optimal?

Cover

DEFINITION: A **cover** of a finite set *A* is a family $\{A_1, A_2, ..., A_n\}$ of subsets of *A* such that $\bigcup_{i=1}^n A_i = A$.

LEMMA: Let $\{A_1, A_2, ..., A_n\}$ be a cover of a finite set A. Then $|A| \leq \sum_{i=1}^{n} |A_i|$.

- $n = 1: |A| = |A_1|$
- n = 2: $|A| = |A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2| \le |A_1| + |A_2|$
- Suppose true when $n \le k \ (k \ge 2)$.
- When n = k + 1, $|A| = \left| \bigcup_{i=1}^{k} A_i \cup A_{k+1} \right|$ $\leq \left| \bigcup_{i=1}^{k} A_i \right| + \left| A_{k+1} \right|$ $\leq \sum_{i=1}^{k} |A_i| + \left| A_{k+1} \right|$ $= \sum_{i=1}^{k+1} |A_i|$

Pigeonhole Principle

- **THEOREM:** (simple form) Let A be a set with $\geq n+1$ elements. Let $\{A_1, A_2, ..., A_n\}$ be a cover of A. Then $\exists k \in [n], |A_k| \geq 2$.
 - Suppose that $|A_i| \le 1$ for every $i \in [n]$. Then $n + 1 \le |A| \le \sum_{i=1}^n |A_i| \le n$.
 - If $\geq n+1$ objects are distributed into n boxes, then there is at least one box containing ≥ 2 objects.
- **THEOREM:** (general form) Let A be a set with $\geq N$ elements.
 - Let $\{A_1, A_2, ..., A_n\}$ be a cover of A. Then $\exists k \in [n], |A_k| \ge \lceil N/n \rceil$.
 - If $|A_i| < \lceil N/n \rceil$ for all $i \in [n]$, then $N \le |A| \le \sum_{i=1}^n |A_i| < n \cdot N/n = N$
 - If we distribute $\geq N$ objects into n boxes, then there is at least one box that contains $\geq \lceil N/n \rceil$ objects.

Pigeonhole Principle

- **EXAMPLE**: Connect 15 workstations $W_1, ..., W_{15}$ to 10 servers $S_1, ..., S_{10}$ such that any ≥ 10 workstations have access to all servers. How many cables are needed?
 - Solution 2: S_i is connected to W_i for every $i \in [10]$; and each of $W_{11}, W_{12}, W_{13}, W_{14}, W_{15}$ is connected to all servers. // 60 lines, optimal?
 - Consider an optimal scheme Π. たんな業
 - Let $A = \{(W_i, S_j) : i \in [15], j \in [10], W_i \text{ is not connected to } S_j\} \text{ in } \Pi$
 - $A_t = \{(W_i, S_j) \in A: j = t\} \text{ for } t = 1, 2, ..., 10$
 - $\{A_1, A_2, ..., A_{10}\}$ is a cover of A
 - If there are < 60 lines in Π , then |A| > 150 60 = 90.
 - $\exists k \in [10] \text{ such that } |A_k| \ge [91/10] = 10$
 - There are 10 workstations not connected to S_k