Decision Trees

Introduction

What is Segmentation?

What is Segmentation?

- •Imagine a scenario where we want to run a SMS marketing campaign to attract more customers in the next quarter
 - Some customers like to see high discount
 - Some customers want to see a large collection of items
 - Some customers are fans of particular brands
 - Some customers are Male some are Female
- Divide them based on their demographics, buying patterns and profile related attributes

What is Segmentation?

- One size doesn't fit all
- Divide the population in such a way that
 - Customers inside a group are homogeneous
 - Customers across groups are heterogeneous
- Is there any statistical way of dividing them correctly based on the data

Segmentation Business Problem

The Business Problem

Old Data

Gender	Marital Status	Ordered the product
M	Married	No
F	Unmarried	Yes
M	Married	No
F	Unmarried	Yes
M	Unmarried	Yes
F	Married	No
M	Married	No
F	Married	No
M	Unmarried	No
F	Married	No
F	Unmarried	Yes

	New Data	
Gender	Marital Status	Product order
М	Married	??
F	Unmarried	??

The Business Problem

Old Data

Sr No	Gender	Marital Status	Ordered the product
1	M	Married	No
2	F	Unmarried	Yes
3	M	Married	No
4	M	Married	No
5	M	Married	No
6	M	Married	No
7	F	Unmarried	Yes
8	M	Unmarried	Yes
9	F	Married	No
10	M	Married	No
11	F	Married	No
12	M	Unmarried	No
13	F	Married	No
14	F	Unmarried	Yes statinfer.com

	New Data	
Gender	Marital Status	Product order
M	Married	??
F	Unmarried	??

The Decision Tree Philosophy

The Data

Old Data

Sr No	Gender	Marital Status	Ordered the product
1	M	Married	No
2	F	Unmarried	Yes
3	M	Married	No
4	M	Married	No
5	M	Married	No
6	M	Married	No
7	F	Unmarried	Yes
8	M	Unmarried	Yes
9	F	Married	No
10	M	Married	No
11	F	Married	No
12	M	Unmarried	No
13	F	Married	No
14	F	Unmarried	Yes statinfer.com

	New Data	
Gender	Marital Status	Product order
M	Married	??
F	Unmarried	??

Re-Arranging the data

Re-Arranging the data

The Decision Tree Approach

The Decision Tree Approach

- The aim is to decide the whole population or the data set into segments
- The segmentation need to be useful for business decision making.
- If one class is really dominating in a segments
 - Then it will be easy for us to classify the unknown items
 - Then its very easy for applying business strategy
- •For example:
 - It takes no great skill to say that the customers have 50% chance to buy and 50% chance to not buy.
 - A good splitting criterion segments the customers with 90% -10% buying probability, say Gender="Female" customers have 5% buying probability and 95% not buying

Example Sales Segmentation Based on Age

Example Sales Segmentation Based on Gender

Main questions

- •Ok we are looking for pure segments
- Dataset has many attributes
- •Which is the right attribute for pure segmentation?
- •Can we start with any attribute?
- Which attribute to start? The best separating attribute
- •Customer Age can impact the sales, gender can impact sales, customer place and demographics can impact the sales. How to identify the best attribute and the split?

The Splitting Criterion

The Splitting Criterion

- The best split is
 - The split does the best job of separating the data into groups
 - Where a single class(either 0 or 1) predominates in each group

Example Sales Segmentation Based on Age

Example Sales Segmentation Based on Gender

Impurity (Diversity) Measures:

 We are looking for a impurity or diversity measure that will give high score for this Age variable(high impurity while segmenting), Low score for Gender variable(Low impurity while segmenting)

Impurity (Diversity) Measures:

- Entropy: Characterizes the impurity/diversity of segment
- Measure of uncertainty/Impurity
- Entropy measures the information amount in a message
- S is a segment of training examples, p_{+} is the proportion of positive examples, p_{-} is the proportion of negative examples
- •Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
 - Where p₊ is the probabailty of positive class and p₋ is the probabailty of negative class
- Entropy is highest when the split has p of 0.5.
- Entropy is least when the split is pure .ie p of 1

Entropy is highest when the split has p of 0.5

- •S is a segment of training examples, p₊ is the proportion of positive examples, p_. is the proportion of negative examples
- •Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
- Entropy is highest when the split has p of 0.5
- 50-50 class ratio in a segment is really impure, hence entro
 - Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
 - Entropy(S) = $-0.5*log_2(0.5) 0.5*log_2(0.5)$
 - Entropy(S) = 1

Entropy is least when the split is pure .ie p of 1

- •S is a segment of training examples, p₁ is the proportion of positive examples, p₁ is the proportion of negative examples
- •Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
 - Entropy is least when the split is pure .ie p of 1
 - 100-0 class ratio in a segment is really pure, hence entropy is low
 - Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
 - Entropy(S) = $-1*log_2(1) 0*log_2(0)$
 - Entropy(S) = 0

The less the entropy, the better the split

- The less the entropy, the better the split
- Entropy is formulated in such a way that, its value will be high for impure segments

Entropy Calculation - Example

Entropy Calculation

- Entropy at root
- Total population at root 100 [50+,50-]
- Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
- $-0.5 \log_2 (0.5) 0.5 \log_2 (0.5)$
- · -(0.5)*(-1) (0.5)*(-1)
- •
- 100% Impurity at root

Entropy(S) = -p + log2 p + - p - log2 p -

Entropy Calculation

- Gender Splits the population into two segments
- Segment-1 : Age="Young"
- Segment-2: Age="Old"
- Entropy at segment-1
- Age="Young" segment has 60 records [31+,29-]
- Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
- -31/60 log₂ 31/60 29/60 log₂ 29/60
- (-31/60)*log(31/60,2)-(29/60)*log(29/60,2)
- 0.9991984 (99% Impurity in this segment)

Entropy(S) = -p + log2 p + - p - log2 p -

Entropy Calculation

- Gender Splits the population into two segments
- Segment-1 : Age="Young"
- Segment-2: Age="Old"
- Entropy at segment-2
- Age="Old" segment has 40 records [19+,21-]
- Entropy(S) = $-p_+ \log_2 p_+ p_- \log_2 p_-$
- -19/40 log₂ 19/40 21/40 log₂ 21/40
- (-19/40)*log(19/40,2)-(21/40)*log(21/40,2)
- 0.9981959(99% Impurity in this segment too)

Entropy(S) = -p + log2 p + - p - log2 p -

LAB: Decision Tree Building

LAB: Decision Tree Building

- Data: Ecom_Cust_Relationship_Management/Ecom_Cust_Survey.csv
- •How many customers have participated in the survey?
- Overall most of the customers are satisfied or dis-satisfied?
- •Can you segment the data and find the concentrated satisfied and dissatisfied customer segments?
- •What are the major characteristics of satisfied customers?
- •What are the major characteristics of dis-satisfied customers?

LAB: Entropy Calculation - use calculator or Excel

LAB Entropy Calculation

- Calculate entropy at the root for the given population
- Calculate the entropy for the two distinct gender segments

Code- Entropy Calculation

- Entropy at root 100%
- Male Segment: (-48/60)*log(48/60,2)-(12/60)*log(12/60,2)
 - 0.7219281
- FemaleSegment : (-2/40)*log(2/40,2)-(38/40)*log(38/40,2)
 - 0.286397

Thank you