A Tutorial for

L_SU,
a graphical user interface
for Seismic Unix (CSM),
under Linux

Louisiana State University Dept. Geology and Geophysics Baton Rouge Juan M. Lorenzo

Version: 0.5.0 (May, 2021)

1 G	enera	l Information	1-3
1.1	Ack	nowledgements	1-3
1.2	Wh	at is L_SU?	1-3
1.3	GU	l Sections	1-5
1	1.3.1	Overview	1-5
1	.3.2	Top Menu	1-5
1	.3.3	Side Menu	1-6
1.4	Wh	at is an example directory structure for a Project?	1-7
1	.4.1	Copying data into the project directory structure from elsewhere in the sys	tem
		1-7	
1	1.4.2	Where are my flows kept?	1-8
1.5	Tex	t conventions in this tutorial and their meaning	1-8
1.6	Glo	ssary	1-8
2 D	emon	stration Projects	. 2-10
2.1	A C	Quick start to preparing a demonstrations	. 2-10
2	2.1.1	Where are my data sets stored?	. 2-10
2	2.1.2	Install example flows and data sets	. 2-10
2	2.1.3	Create a new project, e.g., Servilleta_demos (IRIS demonstration data set).	. 2-10
2	2.1.4	For the IRIS Data set, confirm you are working Project called	
"Ser	villeta	n_demos"	. 2-12
2	2.1.5	For the GPR data sets (from LSBB), confirm you are working Project called	
"LSB	B"	2-14	
	2.1.6	For the remaining Demo Project confirm you are working Project called	
	nos"		
2.2	Op	en a pre-existing project	
2	2.2.1	The following instruction starts the program, and open the pane of the Pro	ject
Sele	ctor w	vindow:	. 2-15
2.3	Rur	nning your first flows	. 2-15
2	2.3.1	1 0 7 =	
_	2.3.2	Access to Documentation	
3 Si	mple	Processing Flow: IRIS Data Set, Socorro New Mexico	. 3-19
3.1	Pro	cessing steps	. 3-19
3.2	STE	P 1. File format conversion	. 3-20
3.3	STE	P 2. Concatenate files	. 3-21
3.4	STE	P 3. Clean headers	. 3-21
3.5	STE	P 4. Window the shotpoint gathers	. 3-22
3.6		P 5. Negative stack	
3.7	STE	P 6. Modify header filesgx,ep,sx Error! Bookmark not def	fined.
3.8	STE	P 7. Modify Header filesoffsets	. 3-23
3.9	STE	P 8. Modify Header filesMake CMP's	. 3-25
3.1		TEP 9. Dip filter	
3.1	1 S	TEP 10. Test Muting of surface waves and refracted waves	. 3-27
3.1	2 S	TEP 11. Test Semblance Analysis	. 3-30

3.13	3 STEP 12. Normal Moveout and Stacking and Migration	3-32
	mple Processing Flow for GPR data	
5 Pe	erl and Shell script flows generated by L_SU	7-34
5.1	IRIS Data Set, Socorro, New Mexico	7-34
5.2	GPR data	7-37
5.3	General tools	7-38
5	5.3.1 How to mute a data set consisting of a range of multiple gathers	7-38

1 General Information

1.1 Acknowledgements

This project is possible only because of the selfless work of others. I have shamelessly copied and modified notes extensively from the Colorado School of Mines website (Stockwell) for S*nix. Over the years, many students have also contributed to these notes: Class of 2008: Erin Walden, Kody Kramer, Erin Elliott, Andrew Harrison, Andrew Sampson, Ana Felix, JohnD'Aquin, Russell Crouch, Michael Massengale, and David Smolkin; Chang Liu (2013), Nevra Bulut (2019).

I will greatly appreciate any and all questions you have regarding installation and running of any of the programs to help us continue developing L_SU. Please send your questions to **gllore@lsu.edu**. Please indicate what your operating system is and whether you have administrative priviliges (preferred).

Thanks,

Juan Lorenzo, BatonRouge, Dec. 5, 2019

1.2 What is L SU?

L_SU, a graphical user interface (GUI), serves to select and build sequences of Perl modules and their parameters. L_SU generates two versions of these instructions in text files. These text files contain a shell and a Perl script version that can be modified and also executed independently of this GUI and from the command line.

Seismic Unix (Stockwell, 1999) is a widely distributed free software package for processing seismic reflection and signal processing. In Seismic Unix, a sequence of independent programs receive modify and generate data files of streams of data that are displayed on the screen. The data file is read in and the generated output data are handled internally by stdin, stdout functions in C while the data exchanges between programs and the linux operating system are managed from the command line via pipes "|" and redirections "> or <" respectively. Traditionally, the instructions on the command line can be assembled and saved as re-usable bash scripts. L_SU assembles these same scripts for the operating system to run with the help of modules written

in Perl. L_SU generates these scripts within the directory of the user and thes scripts can be run independently of L_SU running.

L_SU is written using Perl/Tk which is mature, well-documented Perl module that allows its users to construct graphical user interfaces.

In a classroom environment, shell scripting of SU modules engages students and helps focus on the theoretical limitations and strengths of signal processing. However, complex interactive processing stages, e.g., selection of optimal stacking velocities, killing bad data traces, or spectral analysis requires advanced flows beyond the scope of introductory classes. In a research setting, special functionality from other free seismic processing software such as SioSeis (UCSD-NSF) can be incorporated readily via an object-oriented style to programming.

An object-oriented approach is a first step toward efficient extensible programming of multistep processes, and a simple GUI simplifies parameter selection and decision making. Currently, in L_SU, Perl 5 packages wrap 65 of the most common SU modules that are used in teaching undergraduate and first-year graduate student classes (e.g., filtering, display, velocity analysis and stacking). Perl packages (classes) can advantageously add new functionality around each module and clarify parameter names for easier usage. For example, through the use of methods, packages can isolate the user from repetitive control structures, as well as replace the names of abbreviated parameters with self-describing names. Moose, an extension of the Perl 5 object system, greatly facilitates an object-oriented style. Perl wrappers are self-documenting via Perl programming document markup language.

An automatic directory structure is created for the user in which data and programs are distributed according to a pre-defined hierarchy. All the directories and minimal files needed by L_SU are created whenever a new 'Project' is created within the 'Project Selector' tool. The user can also create new projects within main GUI of L_SU as well as selecting different projects. At all times the user can use linux commands to navigate freely through the directories. Sometimes the user may find it convenient to create new subdirectories within the existing file structure. L SU will not be able to detect these folders and their contents.

1.3 GUI Sections

1.3.1 Overview

The main GUI is divided into 4 areas: Top Menu, Left Side Menu, Parameter Names and their Values, Four flow boxes, and a Message area. The large cross (X) in the top-left corner is used to kill many unwanted graphical process running in the background.

1.3.2 Top Menu

There are more than 400 independent programs are available from Seismic Unix. Currently L_SU implements over 65 of these.

1.3.3 Side Menu

1.3.3.1 Tools

Project: Defines the directory structure for data sets and programs in many languages, e.g. matlab, R, Perl etc.

Sseg2su: Converts SEG-2 formatted data into the su format which is a simplified SEG-Y format.

% Sseg2su

Sucat: Concatenates multiple files of any format into a single file. These files can have names related by a continuous sequence of integers, e.g., Seismic Unix data files: 1000.su, 1001.su, 1002.su. If not, a list of names can be specified. Output files from interactive muting or velocity analysis and that have specific "par" formats can be handled.

% Sucat

1.4 What is an example directory structure for a Project?

1.4.1 Copying data into the project directory structure from elsewhere in the system

If you want to copy seismic data already in su (seismic unix) format copy it with the following instruction, but first move yourself into the directory that receives the data.

Example 1:

% cd PROJECT HOME/seismics/data/site/component/line/username

Example 2:

% cd /home/gllore/seismics/data/Servilleta_demos/H/1/gllore

Example 2:

% cp data /home/refseis18/Aug27_lab1/*.su .

1.4.2 Where are my flows kept?

% cd PROJECT_HOME/seismics/pl/site/component/line/username

1.5 Text conventions in this tutorial and their meaning

Left Mouse click is abbreviated to <MB1> Instruction

Right Mouse click is abbreviated to <MB3> Instruction

Variable names are shown in a large bold-style font.

% Command-line instructions are shown with pink background

1.6 Glossary

Term	Explanation and Example	Brief
HOME	Full linux directory path to the user's home directory, e.g. /home/xavier45	home directory path
PROJECT_HOME	Located inside HOME directory can be a soft link	project directory path
Projectname	e.g., Servilleta a National Wildlife Refuge in New Mexico, U.S.A.	name of the project
spare_dir	can be left empty	a bonus directory
date	053018	Of field work
component	Z stands for vertical and and H can be horizontal but any name is possible	Geophone particle displacement component
line	1	used to identify a profile
user	e.g., xavier45	login name

subUser	must be set to the user's login name, e.g.,also xavier45	Allows groups to share Project space
flow	Data_in, sugain, suximage	Sequence of programs to execute
geomaps	Directories will be created when working withmaps	Directories for third- party software (if in- stalled and accessi- ble)
sqlite	Databases	Directories for third- party software (if in- stalled and accessi- ble)
gmt	GMT	Directories for third- party software (if in- stalled and accessi- ble)
grass	GRASS GIS	Directories for third- party software (if in- stalled and accessi- ble)

Table 1: Definitions of terms used when creating working projects

2 Demonstration Projects

When either creating a new project or accessing a preexisting project instances, always start by running the following instruction:

% L_SU

2.1 A Quick start to preparing a demonstrations

2.1.1 Where are my data sets stored?

Before starting a new project you should understand the file structure in which programs and data sets are stored. The main directories are shown above for the example of Servilleta_demos in Section 1.4.

2.1.2 Install example flows and data sets

Several example projects that contain data and examples flows can help you become acquainted with the Seismic Unix Tools. For example:

- Servilleta_demos contains files from the 2018 IRIS internship orientation program
- LSBB contains files from Pau University in France, courtesy of Dominique
 Dominique Rousset and Guy Sénéchal, both extensive contributors to the improvement of Seismic Unix.
- Demos contains general demonstrations of tools not included in the previous tutorials

The following is explained the L_SU Installation manual (Section 1.3.6) but is repeated here for convenience of the user. Once you completely instal L_SU on your system, you can move or copy any of the accompanying demonstration folders to the home directory of the user, where /home/user is the complete path to the location of the user (="gllore").

```
% cp -R $installation_directory_for_L_SU/L_SU/demo_projects/Servilleta_demos
    /home/gllore/
% cp -R $installation_directory_for_L_SU/L_SU/ demo_projects/LSBB /home/gllore/
% cp -R $installation_directory_for_L_SU/L_SU/ demo_projects/demos /home/gllore/
```

2.1.3 Create a new project, e.g., Servilleta_demos (IRIS demonstration data set)

The following instruction starts the program:

% L SU

If you do not have any projects created previously, then:

<MB1> Create New

Otherwise, go to next section 2.1.5: Open a pre-exisitng project

After clicking on Create New, a default set of parameter names (e.g., **HOME**) and their values (e.g. **/home/gllore**) appears:

Figure 1: Screen capture of Project Selector Pane with parameters and their values

The Project Selector pane displays several default options that work with the test data set that is included for this tutorial. The old variables are defaulted from prior projects and serve as an example to guide your input. The home directory of the user is required to follow the standard linux file structure naming system.

These options should be <u>updated</u> with an actual <u>user</u> name, for example:

Parameter name	Default values	User's new values
HOME	/home/gllore	home/user

PROJECT_HOME	/home/gllore/Ser- villeta_demos	/home/ user /Servilleta_demos	
Site spare_dir	Servilleta ""	loma-blanca	
date	053018	053018	
component	Z	Н	
line	2	1	
subUser	gllore	user	
geomaps	no	no	
sqlite*	no	no	
gmt*	no	no	
grass*	no	no	

Table 1: Suggested changes to parameter vlaues

Finally, select: <MB1> OK

2.1.4 For the IRIS Data set, confirm you are working Project called "Servilleta_demos"

^{*} if set to 'yes' only the directories will come to be created although the accompanying programs are not yet available in this version (Nov. 2019)

In the top left menu, select <MB1> Tools->Project

In the main window of the L_SU GUI you should see the previous changes you made to the same parameter values. It they are incorrect (the figure above show an inconsistent use of the user name) you can modify them again and, whothout exiting this window you can then select:

In the top left menu: <MB1> Save->Run

2.1.5 For the GPR data sets (from LSBB), confirm you are working Project called "LSBB"

2.1.6 For the remaining Demo Project confirm you are working Project called "demos"

2.2 Open a pre-existing project

2.2.1 The following instruction starts the program, and open the pane of the Project Selector window:

If the project of interest (in this case Servilleta demos) is selected (button is green):

Select: <MB1> on OK

2.3 Running your first flows

Assemble a sequence of modules to carry out a processing procedure. Choose one of four differently colored flow windows (grey, pink, green and blue) in which to place your sequence. The colored window appear on the right-hand side of the main window.

A module, with a specific functionality, is selected by clicking on its name from within the list on the left-hand side of the main window.

The module name must be <u>transferred</u> to the list on the right by clicking one of <u>the four different colored</u> flow arrows, just to the right of the word "Flow".

A final assembled flow must first be saved to a file before it is executed (**File->SaveAs**). Thereafter all executions require that the flow be first saved before running.

In a simple sequence of modules, data are usually read in first, the data is modified and the result is placed into another file or displayed using an imaging module (e.g., suximage, suxwigb)

1. Select the following named modules: *data_in*, *supswig*, *and data_out*. Click on each names inside list on the left side of the window. When you do that, the words in the row immediately above will become activated. You will then be able to click on the words inside the grey box:

Flow-+->

You should be able to see the name of the program that you just selected move over to a colored box on the right-hand side of the window.

Select each of the three program names: data_in, supswigp, and data_out

2. You are required to select a **Value** for **base_file_name** (= "file name").

To do so, move your cursor into the corresponding row to the right of **base_file_name**.

A click of the right-mouse-button will automatically open a second window from which you can select a file, e.g. "103.su".

Before you can run the program you have built, it must be saved:

For L_SU GUI

<MB 1> File/SaveAs

Save the resultant perl script file as, e.g.,

"pswigp out.pl"

Then, click on

Tool: <MB 1> Run

Postscript plot viewed using the GUI

Tool: <MB1> Run

2.3.1 Perl and Shell script flows generated by L SU

GUI-generated perl script: plot_ps.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl plot_ps.pl

To run the bash script from the command line that is generated by plot ps.pl:

% evince /home/gllore/Servilleta_demos/seismics/images/ps/loma blanca//053018/H/1/gllore/junk.ps &

(Note that pswigp_out.pl is run first and and plot_ps.pl second.

2.3.2 Access to Documentation

Select **<MB3>** over the name of the program:

Conventional Seismic Unix documentation for the modul: suwind

3 Simple Processing Flow: IRIS Data Set, Socorro New Mexico

Each year Incorporated Research Institutions for Seismology (IRIS) hold an orientation week for undergraduate research interns in the town of Socorro, New Mexico. As part of a week of training, the on May 30 of 2018, the students collected an active-source seismic data set, which we process using Seismic Unix.

3.1 Processing steps

The following outline is taken from a called notes.pl. This files exists in the perl flow directory (1.4.3) of the Servilelta_demos project. To get there change to the following directory:

% cd /home/user/seismics/pl/site/component/line/user

To see the marked-up contenst of the perl file:

%peridoc notes.pl

LOMA BLANCA

IRIS 2018 survey May 30 2018 on S bank of Rio Salado along same line as pseudo-walkaway taken on 032618 shoot-through

Acquisition paramters

Date 053018
SI 1000 S/s
delrt -11 ms
rec. length 2 s
num tracr 64
Live channels 1-64

Channel 1 closest to recorder-- toward SE

Channel 64 farthest from recorder-- toward NW geophones: Geospace 28 Hz L-4 3 component

geophone spacing: 1 m

line orientation: NW-SE later shots more toward NW

Number of Geophones 60

Shotpoint Spacing 1 m

GPS is available (etrex garmin 10 m)

	(sx-m) NOMINAL offset-m		ACTUAL (m)
Raw SP 1	0	1-60	0.5 - 59.5
Raw SP 2	1	0-59	-0.5 - 58.5
Raw SP 3	2	-1-58	-1.5 - 57.5
Raw SP 4	3	-2-57	-2.5 - 56.5
Raw SP 60	59	-58-1	-58.5 - 0.5

Striker plate I-beam

Hammer 10 lb sledge

No. blows 3 per side

Noise sources: 5 - 10 mph from SE

I-25 to E

Acquisition parameters taken from the file notes.pl

3.2 STEP 1. File format conversion

Tool: Seg2su (from GUI)

Purpose: Convert Seg2 to Seismic Unix format

Input: 1 to 120.dat Output: 1 to 120.su

3.3 STEP 2. Concatenate files

Tool: **Sucat** (from GUI)

Purpose: cat all files Input: 1.su to 120.su Output: 1 120.su

Uses: /home/gllore/Servilleta_demos/seismics/pl/loma_blanca/053018/Sucat.config

L_SU Gui:

3.4 STEP 3. Clean headers

Flow name: **Suclean_geom.pl** (from GUI)

Purpose: Modify the geometry headers for shoot-through survey

by wiping certain headers and populating new ones

Input: 1_120.su

Output: 1_120_clean_geom.su

3.5 STEP 4. Window the shotpoint gathers (from GUI)

Flow name: **Suwind.pl** (from GUI)

Purpose: Allow ONLY traces

traces 1-60

data: time 0 s to 1 s

Input: 1_120_clean_geom.su

Output: All.su

To view the data as an image: view All.pl (Select and run Flow in GUI)

3.6 STEP 5. Separate shear-wave shots from alternate directions

Flow name: % perl Sudiff.pl (from command line, and in the "pl" directory)

Input: All.su

Output: L28HzHit fromNE.su and L28HzHit fromSW.su

Extract and group 'from-NE_shotgathers' from 'from-SW-gathers'

3.7 STEP 6. Negative stack

Flow name: suop2.pl (from GUI)

Input: L28HzHit fromNE.su and L28HzHit fromSW.su

Output: L28Hz Ibeam.su

Subtract 'from-NE shotgathers' from 'from-SW-gathers'

To view the data: view L28Hz Ibeam.pl (from GUI)

3.8 STEP 7. Add values for headers--gx,ep,sx

Flow name: **SuGeom2.pl** (from GUI)

Purpose: populate headers with meaningful values;

header names are: sx, gx, ep (explosion point), tracl, tracf, fldr

Input: L28Hz_Ibeam

Output: L28Hz_Ibeam_geom2

tracl now counts the sequential increase of traces for the whole line tracf and fldr are now removed completely ep signifies the shotpoint number sx is the x location (m) of the shotpoint gx is the x location (m) of the geophone

To verify new header parameters: **SuPlotHeader.pl** (from GUI)

To view new header parameter numerical values: **suxedit**If you want to directly view the data change to the current data directory (2.4.1):

4 % cd /home/gllore/Servilleta demos/seimics/data/loma blanca//053018/H/1/su/user

And then when you are in the correct data directory:

5 % **suxedit** L28Hz Ibeam geom2

(at trace number = 181):

>

tracl=181 tracr=1 ep=4 sx=3 gx=1 ns=1001 dt=1000

5.1 STEP 8. Modify Header files--offsets

make offsets.pl

(from GUI)

Purpose: Calculate offsets from the headers

Input: L28Hz_lbeam_geom2 Output: L28Hz_lbeam_geom3

Confirm the result by examing the numerical values for offset:

% cd /home/gllore/Servilleta demos/seimics/data/loma blanca//053018/H/1/su/user

And then when you are in the correct data directory:

% suxedit L28Hz Ibeam geom3

(at trace number = 181):

> tracl=181 tracr=1 ep=4 offset=-2 sx=3 gx=1 ns=1001 dt=1000

Graphically, verify new header parameters using SuPlot_offsets.pl (from GUI)

Plotted header values of sx versus offset display a regular geometric pattern that reflects the regular acquisition geometry of sources versus offest used in the experiment.

Verify the new header parameter values using suxedit

Convention: Positive offets are when geophones lie N of shot. Negative offsets are when shot lies N geophone

% cd /home/gllore/Servilleta_demos/seimics/data/loma blanca//053018/H/1/su/user

And then when you are in the correct data directory:

% suxedit L28Hz Ibeam geom3.su

5.2 STEP 8. Modify Header files--Make CMP's make_cmp.pl (from GUI)

Purpose: Put cdp values in the "cdp" headers

Input: L28Hz_Ibeam_geom3

Output: All cmp

Numerically verify new header parameters using **suxedit** Convention: The range of cdp varies systematically

% cd /home/gllore/Servilleta_demos/seimics/data/loma_blanca//053018/H/1/su/user

And then when you are in the correct data directory:

% perl suxedit All cmp.su

Records 59 through 61 are as follows:

59

tracl=59 tracr=59 ep=1 cdp=29 offset=59 gx=59

```
ns=1001 dt=1000

> 60

tracl=60 tracr=60 ep=1 cdp=30 offset=60 gx=60

ns=1001 dt=1000

> 61

tracl=61 tracr=1 ep=2 cdp=1 sx=1 gx=1

ns=1001 dt=1000
```

5.3

5.4 STEP 9. Dip filter

Tool: ifk (interactive velocity filtering)

Purpose: Useful for separation of reflections from surface waves Uses: /home/gllore/Servilleta_demos/seismics/pl/loma_blanca/053018/Sucat.config

L_SU Gui

Before (left) and after (right) f-k filtering

5.5 STEP 10. Test Muting of surface waves and refracted waves

Tool: iBottomMute Interactive Top Bottom Mute,SP 1

Testing- not used in this flow

Input:

Output:

Uses: Uses: /home/gllore/Servilleta_demos/seismics/pl/loma_blanca/053018/Sucat.config

(Left) Before and after (Right) images of cdp=30 gather generated during application of interactive top-muting Tool.

5.6 STEP 11. Test Semblance Analysis

Tool iVA: Interactive velocity analysis

Uses: Uses: /home/gllore/Servilleta_demos/seismics/pl/loma_blanca/053018/iVA.config

L_SU Gui

Velocity-time picks interpreted from the semblance plot (far left)

(Left) Velocity verusus time and semblance image (left) and two selected points connected by a line. (Right) CDP/CMP gather analyzed in the adjoining semblance image. Data are NMO-corrected with the two velocity-time values selected in the semblance image.

5.7 STEP 12. Normal Moveout and Stacking

Uses two velocity-time pairs from the iVA above.

STEP 12: L_SU Gui:

STEP 12: Output image of field data

6 Simple Processing Flow for GPR data

L_SU GUI:

Output image of GPR data

7 Perl and Shell script flows generated by L_SU

7.1 IRIS Data Set, Socorro, New Mexico

Project Name: Servilleta_demos

STEP 2: GUI Tool Name: Sucat

Uses: /home/gllore/Servilleta demos/seismics/pl/loma blanca/053018/Sucat.config

To run from the command line in the directory where the perl flows are kept (see 1.4.3)

% Sucat

STEP 5: GUI-generated perl script: suop2.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl suop2.pl

To run the bash script from the command line that is generated by suop2.pl:

% suop2 \/home\/gllore\/Servilleta_demos\/seis-mics\/data\/loma_blanca\/\/053018\/H\/1\/su\/gllore\/L28HzHit_fromNE\.su

\home\\gllore\\Servilleta_demos\\seis-mics\\data\\loma_blanca\\\\053018\\H\\1\\su\\gllore\\L28HzHit_fromSW\.su op=diff > \home\\gllore\Servilleta_demos\\seis-mics\\data\loma blanca\\\\053018\\H\\1\\su\\gllore\L28Hz lbeam.su &

STEP 5: GUI-generated perl script: view L28Hz lbeam.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl view L28Hz Ibeam.pl

To run the bash script from the command line that is generated by view_L28Hz_lbeam.pl:

% sufilter f=3\,6\,50\,80 verbose=0 < /home/gllore/Servilleta_demos/seis-mics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_lbeam.su | sugain agc=1 wagc=0\.1 | suximage clip=1 cmap=hsv0 d2=1 f1=0 gridcolor=blue labelcolor=blue labelfont=Erg14 legend=1 legendfont=times_roman10 lwidth=16 lx=3 mpicks=\/dev\/tty n1tic=1 n2tic=1 perc=100 plot-file=plotfile\.ps style=seismic title=suximage titlecolor=red titlefont=Rom22 tmpdir=\.\/units=unit verbose=1 windowtitle=suximage wperc=100 xbox=500 ybox=500 wbox=550 hbox=550 &

STEP6: GUI-generated perl script: SuGeom2.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl SuGeom2.pl

To run the bash script from the command line that is generated by SuGeom2.pl:

% sushw a=0\,1\,1 j=60\,60\,60 key=sx\,gx\,ep b=0\,1\,0 c=1\,0\,1 < /home/gllore/Servilleta_demos/seismics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_Ibeam.su > /home/gllore/Servilleta_demos/seismics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_Ibeam_geom2.su &

STEP 7: GUI-generated perl script: SuGeom3.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl SuGeom3.pl

To run the bash script from the command line that is generated by SuGeom3.pl:

% suchw a=0 b=1 c=\-1 d=1 e=1 f=1 key1=offset key2=gx key3=sx < /home/gllore/Servilleta_de-mos/seismics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_Ibeam_geom2.su > /home/gllore/Servilleta_demos/seis-mics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_Ibeam_geom3.su &

STEP 7: GUI-generated perl script: plot_traclVsoffset.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl plot traclVsoffset.pl

To run the bash script from the command line that is generated by plot_traclVsoffset.pl:

% sugethw key=tracl\,ep output=binary < /home/gllore/Servilleta_demos/seis-mics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_lbeam_geom3.su | xgraph grid1=dot grid2=dot gridColor=4 linewidth=0 marksize=1 n=15000 reverse=0 style=normal title=blue windowtitle=windowtitle x1beg=0 x1end=120 x2beg=0 x2end=100 label2=ep label1=tracl -geometry 400x600+0+0 &

STEP 8: GUI-generated perl script: make_cmp.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl make cmp.pl

To run the bash script from the command line that is generated by plot_traclVsoffset.pl:

suchw a=0 b=1 c=1 d=2 e=1 f=1 key1=cdp key2=gx key3=sx < /home/gllore/Servilleta_de-mos/seismics/data/loma_blanca//053018/H/1/su/gllore/L28Hz_lbeam_geom3.su > /home/gllore/Servilleta_demos/seismics/data/loma_blanca//053018/H/1/su/gllore/All_cmp.su &

STEP 12: GUI-generated perl script: sunmo_stack.pl

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl sunmo_stack.pl

To run the bash script from the command line that is generated by sunmo_stack.pl:

% cdp offset < /home/gllore/Servilleta_demos/seis-mics/data/loma_blanca//053018/H/1/su/gllore/All_cmp.su | sufilter f=10\,20\,70\,80 verbose=0 | sunmo invert=0 lmute=25 smute=1\.5 sscale=1 tnmo=0\,1 upward=0 vnmo=100\,600 | sustack key=cdp normpow=0 nrepeat=1 repeat=0 verbose=0 | sugain agc=1 wagc=0\.2 tmp-dir=\/tmp | suximage clip=2 cmap=hsv0 d2=1 f1=0 gridcolor=blue labelcolor=blue labelfont=Erg14 legend=1 legendfont=times_roman10 lwidth=16 lx=3 mpicks=\/dev\/tty n1tic=1 n2tic=1 perc=100 plotfile=plotfile\.ps style=seismic title=suximage titlecolor=red title-font=Rom22 tmpdir=\.\/ units=unit verbose=1 windowtitle=suximage wperc=100 xbox=500 ybox=500 wbox=550 hbox=550 &

7.2 GPR data

Collected in Low-Noise Underground Gallery (LSBB) in southern France forming by Dominique Rousset of the Université de Pau et des Pays de l'Adour (UPPA) Institut Pluridisciplianire de Recherche Appliqué

Project Name: LSBB

To run the bash script from the command line that is generated by view_LSBB-1.pl:

To run from the command line in the directory where the perl flows are kept (see 1.4.3):

% perl view LSBB-1.pl

In the case immediately above, the location of the perl flow is in the following directory: /home/gllore/LSBB/seismics/data/surface2tunnel/gpr/052011/shielded_antenna/250MHz/su/gllore/. In this example "gllore" is the name of the user and should be changed in your particular case.

To run the bash script from the command line that is generated by .pl:

% sushw a=9\,1 key=tstat\,cdp b=0\,1 < /home/gllore/LSBB/seismics/data/surface2tun-nel/gpr/052011/shielded_antenna/250MHz/su/gllore/LSBB1\-1.su | sustatic hdrs=1 | sugain mbal=1 tmpdir=\/tmp | sufilter f=0\,30\,400\,500 verbose=0 | suximage clip=2 cmap=hsv0 d2=1 f1=0 gridcolor=blue labelcolor=blue labelfont=Erg14 legend=1 legendfont=times_ro-man10 lwidth=16 lx=3 mpicks=\/dev\/tty n1tic=1 n2tic=1 perc=100 plotfile=plotfile\.ps style=seismic title=suximage titlecolor=red titlefont=Rom22 tmpdir=\.\/ units=unit verbose=1 windowtitle=LSBB\ \ GPR\ \(D\.\\ Roussett\ UPPA\) wperc=100 xbox=500 ybox=500 wbox=550 hbox=550 &

7.3 General tools

7.3.1 How to mute a data set consisting of a range of multiple gathers

Data set: