1 Динамика СВП

Исходная система уравнений, описывающая динамику СВП:

$$m\frac{d^{2}H}{dt^{2}} = pS - mg$$

$$\frac{dp}{dt} = \frac{np_{a}}{W} \left(Q_{in} - Q_{out} - \frac{dW}{dt} \right)$$

$$I_{z}\frac{d^{2}\varphi}{dt^{2}} = pS \cdot l_{AC}$$

$$(1.1)$$

2 Расходно напорная характеристика

Таблица 1: Исходные параметры центробежного нагнетателя, округленные до целой части. Точные параметры можно найти в *initials.xlsx*

\overline{p} , Πa	2809	2965	2902	2715	2497	2325	2060	1280	593
$Q, \frac{\mathrm{M}^3}{\mathrm{c}}$	0	6	11	17	22	25	28	34	38

Рис. 1: Расходно напорная характеристика $p(Q_{in})$. Аппроксимация МНК квадратичной функцией $f(x)=-2.756x^2+48.46x+2771$.

Для выполнения условия устойчивости судна в предположении отсутсвия волнения, необходимо:

$$\frac{1}{2}Q_0 - \frac{\partial Q}{\partial p}\Big|_0 p_0 > 0$$
, где (Q_0, p_0) точка на нисходящей ветви РНХ (2.1)

Преобразуем $p(Q_{in})$ для получения функции $Q_{in}(p)$, решив уравнение f(x) = p и выбрав решения на нисходящей ветке. Получим:

$$Q_{in}(p) = \frac{-B - \sqrt{B^2 - 4A(C - p)}}{2A}$$
, где A, B, C из $f(x)$ (2.2)

Объмный расход воздуха Q_{out} , вытекающего из зоны ВП, может быть вычислено слующим образом:

$$Q_{out} = Q_{out}(p, S_{gap}) = \chi \sqrt{\frac{2p}{\rho}} S_{gap}$$
 (2.3)

Объмный расход воздуха Q_{in} , нагнетаемого вентиляторами в зону ВП, вычисляется с помощью РНХ вентилятора:

$$Q_{in} = Q_{in}(p) (2.4)$$

3 Симуляция

Преобразуем 1.1, заменив дифференциальные уравнения второго порядка уравнениями первого порядка. Также, допишем уравнение, описывающее изменение объема ВП:

$$\frac{dV}{dt} = \frac{pS - mg}{m}$$

$$\frac{dH}{dt} = V$$

$$\frac{dW}{dt} = S\frac{dH}{dt} + S \cdot l_{AC}\frac{d\varphi}{dt}$$

$$\frac{dp}{dt} = \frac{np_a}{W} \left(Q_{in} - Q_{out} - \frac{dW}{dt}\right)$$

$$\frac{dV_{\varphi}}{dt} = \frac{pS \cdot l_{AC}}{I_z}$$

$$\frac{d\varphi}{dt} = V_{\varphi}$$
(3.1)

3.1 Шаг симуляции

В качестве метода численного интегрирования выбран метод Рунге-Кутты четвертого порядка в следующей формулировке:

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений первого порядка (далееий первого порядка (далее $\mathbf{y}, \mathbf{f}, \mathbf{k}_i \in \mathcal{R}^n, x, h \in \mathcal{R}^1$)

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}(x_0) = \mathbf{y}_0 \tag{3.1.1}$$

Тогда приближенное значение в последующих точдках вычисляется по итерационной формуле:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$
 (3.1.2)

Вычисление нового значения происходит в четыре стадии:

$$\mathbf{k}_{1} = \mathbf{f}(x_{n}, \mathbf{y}_{n})$$

$$\mathbf{k}_{2} = \mathbf{f}(x_{n} + \frac{h}{2}, \mathbf{y}_{n} + \frac{h}{2}\mathbf{k}_{1})$$

$$\mathbf{k}_{3} = \mathbf{f}(x_{n} + \frac{h}{2}, \mathbf{y}_{n} + \frac{h}{2}\mathbf{k}_{2})$$

$$\mathbf{k}_{4} = \mathbf{f}(x_{n} + h, \mathbf{y}_{n} + h\mathbf{k}_{3})$$

$$(3.1.3)$$

3.2 Начальные условия

В симуляции используются следующие начальные условия:

Таблица 2: Значения физических величин до первого шага симуляции

обозначение	величина	значение	СИ
\overline{A}	коэффициент $f(x)$	-2.756	_
\overline{B}	коэффициент $f(x)$	48.46	_
\overline{C}	коэффициент $f(x)$	2771	-
\overline{a}	длина ВП	15	M
\overline{b}	ширина ВП	6	M
\overline{S}	площадь ВП	ab = 90	M^2
\overline{d}	клиренс ВП	0.7	M
\overline{W}	объем ВП	Sd = 63	M^3
$\overline{I_z}$	момент инерции	$2.5 \cdot 10^5$	κ г· M^2
$\overline{S_{gap}}$	площадь истечения	0.012	2
\overline{g}	ускорение св. падения	9.8	M/c^2
\overline{n}	показатель политропы	1.4	-
$\overline{\chi}$	коэффициент истечения	1	-
$\overline{p_a}$	атмосферное давление	10^{5}	Па
$\overline{\rho}$	плотность воздуха	1.269	$K\Gamma/M^3$