

Network Layer: IPv4 Addressing

Lecture 9 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- Anatomy of IPv4 Address
 - Subnet/Prefix Mask
- Types of Address
 - Network
 - Host
 - Broadcast
- Specific Address
 - Unicast
 - Multicast
 - Broadcast
- Classful IP Addressing

Anatomy of IPv4

Anatomy of an IPv4 Address

- Each device on a network must be uniquely identified at the Network layer.
- For IPv4, a 32 bit source and destination address is contained in each packet.

IPv4 Addressing Structure

eneral		I see you have assigned me
onordi		an IP address
	ed automatically if your network supports need to ask your network administrator for	11000000.1010
he appropriate IP settings.	isod to daik your network during states for	1000.00000010
		00000101
Obtain an IP address auto	•	Now other
— Use the following IP addr		
IP address:	192 . 168 . 1 . 5	hosts can find
Subnet mask:		me!
Default gateway:		
C Obtain DNS server addre	ss automatically	
Output See The Following DNS seems 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Preferred DNS server:		
Alternate DNS server:		
Alfelliate DIA2 Servet;		
	Advanced	
	OK Cancel	

Anatomy of an IPv4 Address

The computer using this IP address is on network 192.168.10.0.

- BRAC UNIVERSITY

 Inspiring Excellence
- To identify a path or "route" through a network, the address must be composed of two parts:
 - Network portion
 - Host portion

Network Portion

- Network Portion:
 - Some portion of the high-order bits
 - A network can be defined as a group of hosts that have identical bit patterns in the network address portion of their addresses.

IP Address	192.	168.	1.	2
Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Network Portion

• Host Portion:

- A variable number of least significant bits that are called the host portion of the address.
- The **number of bits** used in this **host portion** determines the **number of hosts** that we can have within the network.

IP Address	192.	168.	1.	2
Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Prefix Mask

- How do we or devices identify the network part or the host part?
- Answer: Using the "Prefix Mask".
- **192.168.10.2**/24
 - Means that the first 24 bits are the network portion.
 - The last 8 bits are the host portion.
- Subnet Mask; the other form of "Prefix Mask".
 - Prefix length of /24 means a subnet mask of 255.255.255.0

Subnet Mask

- The Prefix Mask and the Subnet Mask are different ways of representing the same information.
- Examples:
 - Prefix Mask of /24 or a subnet mask of 255.255.25.0
 - Prefix Mask of /16 or a subnet mask of 255.255.0.0
 - Prefix Mask of /8 or a subnet mask of 255.0.0.0
- Conversion:
 - Subnet mask has the same format as an IP address. Hence, it has 32 bits divided into 8 bits (octets)
 - Prefix mask of /24 means, the first (MSB) 24 bits of subnet mask would be 1
 - Binary: 11111111.11111111.1111111.00000000

Decimal: 255 . 255 . 0

Exercise

• What's the subnet mask of the following?

• IP Address: 10.24.36.2 / 4 240.0.0.0

IP Address: 10.24.36.2 / 12 255.240.0.0

• IP Address: 10.24.36.2 / 16 255.255.0.0

• IP Address: 10.24.36.2 / 23 255.255.248

• What's the prefix mask of the following?

• IP Address: 10.24.36.2; Subnet Mask: 255.255.224.0 /19

• IP Address: 10.24.36.2; Subnet Mask: 255.255.255.192 /26

P IP Address: 10.24.36.2; Subnet Mask: 255.255.255.252 /30

• IP Address: 10.24.36.2; Subnet Mask: 255.254.0.0 /15

• IP Address: 10.24.36.2; Subnet Mask: 255.255.240.0

ANDing the Binaries

- Inside data network devices, digital logic is applied for their interpretation of the addresses.
- AND is used in determining the network address.
 - o AND o = o
 - 1 AND o = o
 - 1 AND 1 = 1
 - o AND 1 = o

	Decimal	Binary		
IP Address	135.15.2.1	10000111 00001111 00000010 00000001		
Subnet Mask	255.255.0.0	1111111 1111111 00000000 00000000		
Network Address	135.15.0.0			

But Why AND?

- Routers use the ANDing process to determine the route a packet will take.
- The network number of the destination address is used to find the network in the routing table.
- The router then determines the best path for the frame.

Types of Addresses

Types of address

- Every network has
 - **Network Address** The first IP in the range
 - Broadcast Address The second-IP in the range Last IP
 - Host Addresses Everything in between

The Addresses

- Network Address
 - All hosts in the network will have the same network bits.
 - Cannot be assigned to a device.
 - Each host bit in this address will be o.
- Broadcast Address
 - Cannot be assigned to a device.
 - Each host bit in this address will be 1.
- Host Address
 - The unique address assigned to each device on the network.
 - For a network of 192.168.10.0/24
 - Addresses 192.168.10.1 through 192.168.10.254 are all host addresses

The Addresses at a Glance

Say, you have a random IP address 192.168.10.193/24

Network Prefix

BRAC UNIVERSITY

Inspiring Excellence

• The network prefix is not always /24.

	Using Different Prefixes for the 172.16.4.0 Network				
Network	Network address	Host range	Broadcast address		
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255		
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127		
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63		
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31		
SAME NETWORK ADDRESS ALL PREFIXES DIFFERENT BROADCAST ADDRESS EACH PREFIX					

Special Addresses

Special Addresses

Unicast

A message addressed to one host

Broadcast

- A message addressed to all hosts on a network.
- Uses network's broadcast address or 255.255.255.255 locally

Multicast

- A message addressed to a group of hosts.
- Uses an IP address starting with 224 239

Unicast

Broadcast Address

Limited Broadcast

Directed Broadcast

• For a host outside of the network to communicate with the hosts within the 172.16.4.0 /24 network, the destination address of the packet would be 172.16.4.255.

Multicast

- Examples of Multicast Application
 - Video and audio broadcasts
 - Routing information exchange by routing protocols
 - Distribution of software
 - News feeds

Classful Addressing

Class	High Order Bits	Start	End
Class A	0	0.0.0.0	127.255.255.255
Class B	10	128.0.0.0	191.255.255.255
Class C	110	192.0.0.0	223.255.255.255
Multicast	1110	224.0.0.0	239.255.255.255
Experimental	1111	240.0.0.0	255.255.255.255

Class and Subnet Mask

	Octet 1	Octet 2	Octet 3	Octet 4	Subnet mask
Class A	Network	Host	Host	Host	255.0.0.0 or /8
Class B	Network	Network	Host	Host	255.255.0.0 or /16
Class C	Network	Network	Network	Host	255.255.255.0 or /24

Classful Networks: Range

Address class	First octet range	Number of networks	Hosts per network
Class A	o to 127	128 (less o and 127)	16,777,214
Class B	128 to 191	16,384	65,534
Class C	192 to 224	2,097,152	254

The End