Facial Emotion Recognition Using Shallow CNN

Sachin Saj T K, G Seshu Babu, Vamsi Reddy, Gopika, Sowmya V, Soman K P **Amrita School of Engineering,** Coimbatore, Tamil Nadu, India

Agenda

Objective
Introduction
Flow Chart
Dataset - JAFFE
Proposed CNN Architecture
Results Confusion Matrix Classification Report Comparison of existing approaches
Conclusion
Reference

Objective

To Propose a model which can do Facial Emotion Recognition with reduced computational complexity as well as gives better performance.

Introduction

- Emotion recognition is a technique that allows reading the emotions on a human face using advanced image processing.
- Emotions are divided into six types: Happiness, Anger, Sadness, Fear, Disgust, and Surprise.

Applications

- During healthcare, determining patients feeling and comfort level about the treatment
- Security Systems
- Interactive Computer Simulations/designs
- Driver Fatigue Monitoring
- Psychology and Computer Vision

Flow Chart - For our Proposed Approach

Figure 1: Flowchart for Proposed Approach

Dataset Description

- The dataset which is used for Facial Emotion Recognition is JAFFE dataset.
- It consisted of 213 images of 10 different
 Japanese female posing for 7 different
 emotions: Happiness, Sadness, Surprise,
 Anger, Disgust, Neutral and Fear
- Data Split **70:30**
- **Feature Based** Dataset[2]

Neutral (NE)

Happiness (HA)

Sadness (SA)

Surprise (SU)

Anger (AN) Disgust (DI)

Fear (FE)

Figure 2 : Different Emotions in JAFFE Dataset

Proposed Work (**Initial Phase**)

Data	CNN	Epochs	Test Accuracy
Raw Input	1 Layer	1000	22.27%
Feature Based Data	1 Layer	1000	62.39%
Augmented Data(Raw)	1 Layer	1000	50.32%

Table 1: Test Accuracy For different Dataset input

Proposed Shallow CNN Architecture

- **Input Shape:** 100x100
- **1st Convolution Layer:** Kernel Size: 3x3, No of Filter: 128
- 2nd Convolution Layer: Kernel Size: 3x3, No of Filters: 64
- **Max Pooling:** 2x2
- 3rd Convolution Layer: Kernel Size: 3x3, No of Filter: 64
- **Max Pooling:** 2x2
- Fully Connected Layer: 512
- Output: 7 Classes

Figure 3: Proposed CNN Architecture

Results

Hyper- parameter Tuning

Layer	Epoch	Batchsize	Test accuracy
2	1000	20	75.09%
3	1000	20	85.5%
4	1000	20	71.52%
5	1000	20	70.09%

Table 2: Hyper Parameter Tuning

Results

Hyper- Parameter tuning (Continued)

No of Layers	No of Filters (Each Layer)	Batch Size	Epochs	Test Accuracy(%)
3	128:64:64	20	3000	91.93
3	128:64:64	20	2000	90.30
3	64:32:32	20	2000	87.09
3	256:128:128	20	2000	88.70
3	512:256:256	20	2000	88.70
4	128:128:64:64	20	2000	87.09

 Table 3: Hyper Parameter Tuning (Continued)

Results: Comparison

Confusion Matrix

Figure 4: Proposed Architecture Confusion Matrix

Figure 5: Benchmark Paper Architecture Confusion Matrix

Classification Report

Class	Precision	Recall	F1-Score
0	0.89	1.00	0.94
1	1.00	0.90	0.95
2	0.67	1.00	0.80
3	1.00	1.00	1.00
4	0.88	1.00	0.93
5	1.00	0.69	0.82
6	1.00	1.00	1.00

 Table 4: Classification Report

Comparison with existing approaches

Existing Approaches	Testing Accuracy(%)
Aly <i>et al</i> [3]	87.32
Rivera et al [4]	88.75
Zhang <i>et al</i> [5]	91.48
Yang <i>et al</i> [1]	92.21
Prudhvi <i>et al</i> [2]	86.38
Proposed Architecture	91.93

Approaches	Learnable Parameters
Yang et al [1]	18,556,203
Prudhvi et al [2]	79,195
Proposed Architecture	163,687

Table 5 :Comparison of Our proposed approach with Existing Approaches

Table 6: No of Learnable Parameter compared with proposed architecture and existing architecture

Conclusion

- Our proposed architecture was able to achieved state of art accuracy of 91.93% which is comparable with benchmark accuracy of 92.21% and better than base paper 86.38%.
- Our proposed architecture was able to reduce the computational complexity compared to benchmark paper by reducing the number of convolution layer and learnable parameter still gives comparable performance with the existing approaches for Facial Emotion Recognition.

Reference

- Biao Yank, Jinmeng, Rongrong Ni, YuYu Zhang "Facial Expression Recognition using Weighted Mixture Deep Neural Network based on Double-Channel Facial Images", IEEE Access, 2018.
- Prudhvi Raj, "Facial Emotion Detection using Convolutional Neural Networks and Representation Autoencoders Units", IEEE,2017
- Sherin Aly, A. Lynn Abbott, Marwan Torki "A Multi-modal Feature Fusion Framework for Kinect-Based Facial Expression Recognition using Dual Kernel Discriminant Analysis", IEEE, 2014
- Adin Ramierz Rivera, "Local Directional Number Pattern for Face Analysis:Face and Expression Recognition", IEEE, 2015
- Wel Zhang, Youmei Zhang, Lin Ma "Multimodal learning for facial expression recognition", Elsevier, 2015.

