CM 005 Álgebra Linear: Prova 1 (EQ)

27 de Setembro de 2016

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Para o sistema linear dado, encontre o conjunto solução em função do parâmetro $\beta \in \mathbb{R}$.

Solution: Usamos o método de eliminação de Gauss, para a matriz aumentada

$$\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 2 & 3 & \beta + 1 & | & 5 \\ 2 & 3 & 2\beta & | & \beta^2 + 4. \end{pmatrix}$$

Assim, depois de uma série de operações elementares sobre as linhas obtemos

$$\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & \alpha - 2 & | & \alpha^2 - 4. \end{pmatrix}$$

O sistema associado à dita matriz é

$$x_1 + x_2 + x_3 = 2$$

 $x_2 + (\beta - 1)x_3 = 1$
 $(\beta - 1)x_3 = \beta^2 - 1$

Da última linha temos que o valor de x_3 vai depender do valor de β . Temos os seguintes casos:

- 1. Se $\beta \neq 1$. Nesse caso, temos que $x_3 = (\beta^2 1)/(\beta 1) = \beta + 1$. Logo, por substitução $x_2 = 1 (\beta^2 1) = 2 \beta^2$ e $x_1 = 2 x_2 x_3 = 2 (2 \beta^2) (\beta + 1) = \beta^2 \beta 1$. Portanto o conjunto solução é $\{\bar{x} := (\beta^2 \beta 1 \ 2 \beta^2 \ \beta + 1)^T\}$, se $\beta \neq 1$.
- 2. Se $\beta=1$. Nesse caso, como $\beta^2-1=0$, qualquer valor para x_3 serve $(x_3$ é variável livre). Por exemplo para $x_3=t\in\mathbb{R}$, temos que $x_2=1$ e $x_1=2-x_2-x_3=2-1-t=1-t$ (com a escolha de $x_3=t$). Assim, temos que o conjunto solução é dado por $\{\bar{x}:=(1-t-1-t)^T:t\in\mathbb{R}\}$, para $\beta=1$.

(a) (20 points) Utilize o método de Gauss-Jordan para calcular a inversa de A.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}$$

Solution: Primeiro montamos o matriz aumentada. Assim temos

$$(A|I) = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 2 & 3 & | & 0 & 1 & 0 \\ 1 & 2 & 2 & | & 0 & 0 & 1 \end{pmatrix}$$

O método de Gauss Jordan é usar operações elementares sobre linhas para a matriz anterior até chegar a uma matriz em forma escada reduzida. Calculando temos que

$$(I|B) = \begin{pmatrix} 1 & 0 & 0 & | & 2 & 0 & -1 \\ 0 & 1 & 0 & | & -1 & -1 & 2 \\ 0 & 0 & 1 & | & 0 & 1 & -1 \end{pmatrix}$$

Logo a inversa de A é a matriz do lado direito de (I|B), i.e.,

$$A^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$

(b) (5 points) Ache $\bar{x} \in \mathbb{R}^3$ tal que $A\bar{x} = \bar{b}$ onde $\bar{b} = (2 \ 0 \ 1)^T$ e A é a matriz do item anterior.

Solution: Como $A\bar{x}=\bar{b}$, temos que $\bar{x}=A^{-1}\bar{b}$. Fazendo a multiplicação, obtemos que

$$\bar{x} = A^{-1}\bar{b} = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -1 & 2 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}.$$

Outra alternativa é usar o método de Gauss, aplicado à matriz $(A|\bar{b})$. Ambos métodos fornecem o mesmo resultado.

Sejam A e B duas matrizes em $M_{n\times n}(\mathbb{R})$.

(a) (20 points) Verifique que o seguinte conjunto é um subespaço vetorial de $M_{n\times n}(\mathbb{R})$,

$$W_1 := \left\{ X \in M_{n \times n}(\mathbb{R}) : AX = XB \right\}.$$

Solution: Para que o conjunto $W_1 \neq \emptyset$ seja um subespaço vetorial devemos verificar que

1. $X + Y \in W_1$ para todo $X \in W_1$ e $Y \in W_1$.

Considere X e Y em W_1 . Vejamos que $X+Y\in W_1$, para isso é suficiente mostrar que $A(X+Y)-(X+Y)B=\bar{0}$.

Assim, calculando

$$A(X + Y) - (X + Y)B = (AX + AY) - (XB + YB) = AX - XB + AY - YB$$

= $(AX - XB) + (AY - YB) = \bar{0} + \bar{0} = \bar{0}$

Na última linha segue de $AX - XB = \bar{0}$ e $AY - YB = \bar{0}$, já que X e Y pertencem a W_1 . Portanto, $A(X+Y) - (X+Y)B = \bar{0}$. Logo, $X+Y \in W_1$.

2. $\lambda X \in W_1$ para todo $X \in W_1$ $e \lambda \in \mathbb{R}$.

Tome $X \in W_1$ e $\lambda \in \mathbb{R}$. Vejamos que $\lambda X \in W_1$. Nessa caso é suficiente verificar que $A(\lambda X) - (\lambda X)B = \bar{0}$.

Calculando temos que $A(\lambda X) - (\lambda X)B = \lambda(AX - XB) = \bar{0}$ onde na última linha usamos que $AX - XB = \bar{0}$. Logo concluímos que $A(\lambda X) - (\lambda X)B = \bar{0}$ e $\lambda X \in W_1$.

(b) (5 points) Mostre que $W_2 := \{X \in M_{n \times n}(\mathbb{R}) : (A - X)(A + X) = A^2 - X^2\}$ é um subespaço vetorial. *Dica*: Use o item anterior.

Solution: Perceba que $(A-X)(A+X) = A^2 + AX - XA - X^2$. Assim, $(A-X)(A+X) = A^2 - X^2$ vale se e somente se AX = XA. Então, W_2 pode ser escrito como

$$W_2 = \{ X \in M_{n \times n}(\mathbb{R}) : AX = XA \}$$

Usando o item anterior, concluímos que W_2 é um subespaço vetorial.

Encontre o núcleo da matriz Aem função do parâmetro $\beta \in \mathbb{R}.$

$$A = \begin{pmatrix} 1 & 2 & \beta \\ 1 & 2\beta & -1 \\ \beta & 2 & 1 \end{pmatrix}$$

Dica: Analise cada caso possível dependendo do valor de β .

Solution: Primeiro perceba que o núcleo da A é igual ao conjunto solução do sistema linear $A\bar{x}=\bar{0}$, i.e. $Nuc(A):=\{x\in\mathbb{R}^3:A\bar{x}=\bar{0}\}$. Assim, usaremos o método de Gauss para resolver $A\bar{x}=\bar{0}$. Fazendo operações elementares temos

$$\begin{pmatrix} 1 & 2 & \beta & |0\\ 0 & 2\beta - 2 & -1 - \beta & |0\\ 0 & 0 & \beta(\beta + 1) & |0 \end{pmatrix}$$

Logo, o sistema associado é

$$x_1 + 2x_2 + \beta x_3 = 0$$

 $(2\beta - 2)x_2 - (1+\beta)x_3 = 0$
 $\beta(\beta + 1)x_3 = 0$

O valor de x_3 vai depender dos valores de β . Dependendo dos valores de β , o sistema terá diferentes conjuntos solução. Temos o seguintes casos, quais dependem se $\beta(\beta+1)$ for igual a zero ou não:

1. Se $\beta \neq 0$ e $\beta \neq -1$. Nesse caso, $x_3 = 0$, logo temos o seguinte sistema associado

$$\begin{array}{cccc} x_1 & + & 2x_2 & = & 0 \\ & & (2\beta - 2)x_2 & = & 0 \end{array}$$

Do sistema anterior vemos que o valor de x_2 vai depender se $(2\beta - 2)$ for zero ou não. Portanto temos os seguintes subcasos

(a) Se $\beta \neq 1$. Nesse caso $x_2 = 0$ e por substitução temos que $x_1 = 0$. Logo para $\beta \notin$ $\{0, -1, 1\}$, o conjunto solução (o conjunto formado por todas as soluções) é

$$\left\{\begin{pmatrix}0\\0\\0\end{pmatrix}\right\}$$

(b) Se $\beta = 1$. Nesse caso, x_2 é variável livre. Assim, para qualquer escolha de x_2 , por exemplo, $x_2 = t$, temos que $x_1 = -2x_2 = -2t$. Como consequência, para o caso $\beta = 1$, o conjunto solução (o conjunto formado por todas as soluções) é

$$\left\{ \begin{pmatrix} -2t \\ t \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}$$

2. Se $\beta = 0$. O sistema associado é

Perceba que x_3 é uma variável livre. Fazendo $x_3 = t$ como parâmetro e substituindo temos que $x_2 = -1/2x_3 = -1/2t$ e $x_1 = -2x_2 = -2(-1/2)t = t$. Assim, o vetor com componentes $x_1 = t, x_2 = -(1/2)t$ e $x_3 = t$ é solução do sistema (no caso $\beta = 0$). Logo, concluímos que o conjunto solução é

$$\left\{ \begin{pmatrix} t \\ -t/2 \\ t \end{pmatrix} : \quad t \in \mathbb{R} \right\}.$$

3. Se $\beta = -1$. O sistema associado é

Substituindo obtemos que $x_1 = x_3$ e $x_2 = 0$ com x_3 como variável livre. Nesse caso, o conjunto solução é

$$\left\{ \begin{pmatrix} t \\ 0 \\ t \end{pmatrix} : \quad t \in \mathbb{R} \right\}.$$

Solution: Temos duas formas

1. Para mostrar que I-A é invertível, será suficiente mostra que a única solução de $(I-A)\bar{x}=\bar{0}$ é o vetor nulo $\bar{x} = \bar{0}$. Seja \bar{x} uma solução de I - A. Assim,

$$\bar{x} - A\bar{x} = (I - A)\bar{x} = \bar{0} \tag{1}$$

Multiplicando a equação (1) por A temos que $A(\bar{x} + A\bar{x}) = \bar{0}$

$$A(\bar{x} - A\bar{x}) = \bar{0}$$

$$A\bar{x} - A^2\bar{x} = \bar{0}$$

$$A\bar{x} + \bar{x} = \bar{0} \text{ (aqui usamos } A^2 = -I\text{)}$$

Assim, temos que $\bar{x} - A\bar{x} = \bar{0}$ e $\bar{x} + A\bar{x} = \bar{0}$. Somando ambas equações, temos que $\bar{x} = \bar{0}$. Portanto, a matriz I - A é invertível.

2. Para mostrar que I-A é invertível, é suficiente achar uma matriz $B \in M_{n \times n}(\mathbb{R})$ tal que (I-A)B=I. Observe que

$$A(I-A) = A - A^2 = A + I$$
 (aqui usamos $-A^2 = I$)

Então, multiplicando (I-A)B=I por A temos que A(I-A)B=A que implica que (A+I)B=A (aqui usamos A(I-A)=A+I). Assim, temos duas equações (A+I)B=A e (I-A)B=I. Somando as equações (I+A)B=A e (I-A)B=I vemos que 2B=(I+A). Assim, B=1/2(I+A). Como consequência (I-A) é invertível cuja inversa é dada por 1/2(I+A).