

Modèle numérique d'une nef

UE 1.1 - Modélisation des systèmes

Déroulé de l'évaluation

Le travail est à réaliser en binôme.

La première partie du problème a été réalisée en salle d'examen. La réponse à cette partie est donnée en début d'énoncé.

À l'issue de la séance, vous devrez déposer sur Moodle :

- Un fichier .py contenant le code (commenté) permettant de répondre aux questions de cette évaluation.
- un fichier .pdf contenant les réponses aux questions (visuels, valeurs numériques, commentaires, etc.).

Le barème est donné à titre indicatif et pourra être sujet à révision.

Contexte

Située à Montfort dans les Alpes-de-Haute-Provence, la chapelle Saint-Donat de Montfort est une chapelle datant du XI^e siècle, classée Monument Historique en 1959 (Figure 1).

FIGURE 1 – À gauche, vue par drone de la chapelle (Par Mozkart, Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=77135653); à droite, vue du nuage de points tridimensionnel (ENSG, relevé lidar réalisé par les étudiants Géomètre de 2^e année, 2016).

Dans un souci de conservation et de documentation de l'ouvrage, un relevé tridimensionnel intérieur a été réalisé à l'aide d'un lidar terrestre (*light detection and ranging*) ¹ par les étudiants Géomètre de 2^e année de l'École Nationale des Sciences Géographiques. Ce relevé est livré avec une exactitude de l'ordre de 5 mm.

^{1.} https://fr.wikipedia.org/wiki/Lidar#Lidars_télémètres_laser_à_balayage

On s'intéresse ici à la nef principale de l'édifice, dont la forme est proche d'un demi-cylindre de révolution, d'axe (Ox) comme présenté sur la figure 2.

FIGURE 2 – Vue schématique de la nef principale de la chapelle Saint-Donat de Montfort; l'axe de révolution de la nef est parallèle à l'axe (Ox) et passe par le point (y_0, z_0) ; r_0 est le rayon de la nef.

L'objectif de l'exercice est d'ajuster un demi-cylindre à la nef principale et de qualifier les écarts à cette surface.

Formulation du problème

La formulation du problème a été déjà abordée en première partie de l'examen.

Pour rappel, on s'intéresse à l'équation du cylindre donnée par :

$$(y - y_0)^2 + (z - z_0)^2 = r_0^2$$

Où (y_0, z_0) désignent l'ordonnée et la cote de l'axe de révolution du cylindre, r_0 est son rayon.

On dispose de n triplets de valeurs x_i , y_i et z_i correspondant à des points intérieurs de la nef.

Le problème peut être reformulé sous la forme suivante :

$$(y - y_0)^2 + (z - z_0)^2 = r_0^2 \Leftrightarrow y^2 + z^2 - 2yy_0 - 2zz_0 + y_0^2 + z_0^2 - r_0^2 = 0$$
$$\Leftrightarrow y^2 + z^2 = 2yy_0 + 2zz_0 + r_0^2 - y_0^2 - z_0^2$$

On identifie les éléments du problème des moindres-carrés :

$$Y = \begin{pmatrix} y_1^2 + z_1^2 \\ \vdots \\ y_n^2 + z_n^2 \end{pmatrix} \quad A = \begin{pmatrix} 2y_1 & 2z_1 & 1 \\ \vdots & & \\ 2y_n & 2z_n & 1 \end{pmatrix} \quad X = \begin{pmatrix} y_0 \\ z_0 \\ r_0^2 - y_0^2 - z_0^2 \end{pmatrix}$$

On peut alors déterminer y_0, z_0 . r_0 est estimé à partir de \hat{X} :

$$\begin{cases} y_0 &=& \hat{X}_1 \\ z_0 &=& \hat{X}_2 \\ r_0 &=& \sqrt{\hat{X}_3 + y_0^2 + z_0^2} \end{cases}$$

Où \hat{X}_i désigne le i^e élément du vecteur \hat{X} .

Application (14 pts)

Les données sont stockées dans une matrice contenue dans le fichier nef.npy: la première colonne contient les abscisses x_i , la deuxième les ordonnées y_i et la troisième la cote z_i (verticale). Le chargement des données se fait de la manière suivante :

```
Python

data = np.load('nef.npy')

xi = data[:,0:1]

yi = data[:,1:2]

zi = data[:,2:3]
```

1. Ajustement du cylindre d'axe (Ox) (8 pts)

- (a) Visualiser le nuage de points contenu dans le fichier nef.npy.
- (b) Déterminer les paramètres du demi-cylindre (y_0, z_0, r_0) s'ajustant à ce nuage de points.

Voici un ordre de grandeur pour chacun des paramètres : $y_0 \sim 1000~m, z_0 \sim 500~m, r_0 \sim 2.5~m.$

- (c) Visualiser simultanément le nuage de points et le demi-cylindre ajusté; le cylindre sera tracé sous la forme de fils de fer.
- (d) Visualiser les résidus selon l'abscisse x.
- (e) Tracer les statistiques des résidus à l'aide d'une boite à moustaches. Déterminer la valeur minimale, maximale, moyenne ainsi que l'écart-type de ces résidus.

Commentez ces valeurs.

2. Horizontalité de la nef (6 pts)

Nous avons supposé dans la question précédente que le demi-cylindre était orienté selon l'axe (Ox). Cette hypothèse peut-être contrôlée en découpant le nuage de points en n=30 couches de même épaisseur selon l'abscisse x (Figure 3).

Pour chacune des couches on cherche à ajuster un demi-cylindre élémentaire d'axe (y_0^k, z_0^k) et de rayon r_0^k :

$$(y - y_0^k)^2 + (z - z_0^k)^2 = (r_0^k)^2$$

FIGURE 3 – Découpage du demi-cylindre de révolution en n demi-cylindres.

- (a) Formaliser le problème des moindres carrés pour un cercle élémentaire k.
- (b) Déterminer les paramètres $(y_0^k, z_0^k, r_0^k)_{k \in \mathbb{N}_n^*}$ associés à chacun des n cercles élémentaires.

Pour découper le nuage de points selon l'abscisse x, on pourra s'aider de l'exemple suivant :

```
Python
# Génère 100 valeurs aléatoires
A = np.random.random((100))
# Cherche les valeurs générées qui sont comprises entre 0.1 et 0.5
test = (A > 0.1) & (A < 0.5)
# Extrait ces valeurs comprises entre 0.1 et 0.5
# Avec le reshape(-1,1), A_test est de dimension (n,1)
A_test = A[test].reshape(-1, 1)</pre>
```

- (c) Calculer les écarts entre les valeurs $(y_0^k, z_0^k, r_0^k)_{k \in \mathbb{N}_n^*}$ et (y_0, z_0, r_0) calculées à la question précédente.
 - Visualiser ces écarts sous forme de boites à moustaches.
 - Donner l'écart moyen, l'écart-type et les écarts minimal et maximal pour chaque paramètre.
- (d) Visualiser l'évolution du rayon puis de la position du centre des cercles élémentaires en fonction de l'abscisse x.
- (e) Conclure quant à la forme de la nef.