2016-2017 学年第二学期第一层次微积分 II 试卷 A 参考答案 2017.7.4

- 一、计算下列各题(每小题6分,共5题,计30分)
- 1. 求函数 $f(x,y) = (1+e^y)\cos x ye^y$ 的极值,并讨论是极大还是极小.
- 2.讨论广义积分 $\int_{1}^{+\infty} \frac{\ln(1+\frac{1}{x})}{\sqrt[3]{x}} dx$ 的敛散性 .
- 3. 讨论数项级数 $\sum_{n=2}^{\infty} (\sqrt{n+1} \sqrt{n})^p \ln \frac{n+2}{n+1} (p \in R)$ 的收敛性.
- 4. 求微分方程 $(x^2y^3+xy)\frac{dy}{dx}=1$ 的通积分.
- 5. 求微分方程 y"=1+(y')2 的通解.
- 二、(本题 10 分) 计算 $I_1 = \oint_C \frac{ydx xdy}{x^2 + y^2}$, 其中 C 取逆时针方向,分别取以下两种

路径: (1) 圆周 $x^2 + y^2 = 2x + 2y - 1$; (2) 闭曲线|x| + |y| = 1.

三. (本題 10 分) 计算
$$I_2 = \oint_C \frac{y^2}{2} dx - xz dy + \frac{y^2}{2} dz$$
, 其中 C 是
$$\begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y = R. \end{cases}$$
 若从 y

轴的正向看去是依顺时针方向.

四、(本題 10 分) 计算曲面积分 $\iint_{\Sigma} x dy dz + (z+1)^2 dx dy$, 其中有向曲面 Σ 为下半球面 $z = -\sqrt{1-x^2-y^2}$ 取下侧.

五、(本題 10 分) (1) 证明 $\frac{(2n-1)!!}{(2n)!!} < \frac{1}{\sqrt{2n+1}}$; (2) 讨论数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!}$

的收敛性,指明其是绝对收敛还是条件收敛并说明理由.

六、(本题 10 分) 求数项级数 $\sum_{n=0}^{\infty} \frac{2^n(n+1)}{n!}$ 的和.

七、(本题 10 分) 将函数 $f(x) = x \sin x$ 在 $(-\pi, \pi)$ 内展开成傅里叶级数.

八、 (本题 10 分) (1) (非商学院的学生选做) 设 f(x) 二阶连续可微, g(x) 一阶连续可

导,且满足: $f'(x) = g(x), g'(x) = 2e^x - f(x)$,且 f(0) = 0, g(0) = 2,计算

$$I_4 = \int_0^{\pi} \left(\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right) dx$$
.

(2) (商学院的学生选做)设 $f(x) = x^3 + 1 - x \int_0^x f(t) dt + \int_0^x t f(t) dt$,求 f(x)满足的微分方程并求 f(x).

参考答案

一、1. 驻点为: $P_1(2k\pi,0), P_2((2k-1)\pi,-2), k \in \mathbb{Z}$. P_1 是极大值点, 极大值为 $f(P_1)=2$.

 P_2 不是极值点. 2. 解: 收敛. 3. p>0时原级数收敛, $p\leq 0$ 时原级数发散.

4. 通积分为: $x(e^{-\frac{y^2}{2}}C-y^2+2)=1$. 5. 通解为: $y=-\ln|\cos(x+C_1|+C_2)$.

二、(1) 0, (2) -2π .. 三. $-\sqrt{2}\pi R^3/4$. 四、 $\frac{\pi}{2}$. 五、条件收敛. 六、 $3e^2$.

七、 f(x) 的傅里叶级数为: $1-\frac{1}{2}\cos x+2\sum_{n=2}^{\infty}\frac{(-1)^{n+1}}{n^2-1}\cos nx=x\sin x\ (-\pi < x < \pi).$

 $I_4 = \frac{1 + e^{\pi}}{1 + \pi}$. (2) $f(x) = \cos x - 6\sin x + 6x$.