Manual del código de MATLAB/Octave de Calculo Matricial de Estructuras de NUdos Rígidos (CMENUR)

Jacob David Rodríguez Bordón

Marzo 2022

Este código de MATLAB/Octave permite analizar en régimen estático estructuras barras de nudos rígidos bidimensionales, esto es, cálculo de desplazamientos, giros, esfuerzos axiles, esfuerzos cortantes y momentos flectores. La implementación del mismo tiene un objetivo educativo, y no profesional.

Para la definición del modelo se debe escribir un fichero de entrada de texto plano con el siguiente formato:

```
<numero de materiales>
<identificador> <módulo de elasticidad longitudinal>
...

<numero de secciones>
<identificador> <a href="mailto:dentificador">dentificador> dentificador> de
```

donde la selección del tipo de apoyo y los [valores adicionales] están definidos en la Tabla 1. Tómense los casos ej1.dat y ej2.dat en la carpeta examples/ como ejemplos.

Para realizar el análisis, basta con situar la carpeta de trabajo en la raíz del programa, y luego ejecutar la función **cmenur** con un único argumento de entrada indicando la ruta hacia el fichero de entrada, por ejemplo (ruta al archivo para sistemas Linux):

```
> modelo_analizado = cmenur('examples/ej1.dat');
```

Tipo de apoyo	Descripción	Representación gráfica	Valores adicionales
1	Apoyo rígido fijo		>
2	Apoyo rígido carro horizontal		>
3	Apoyo rígido carro vertical		>
4	Apoyo rígido carro inclinado	α	<a>>
5	Apoyo tipo fijo empotrado	7777	>
6	Apoyo tipo carro horizontal empotrado	71711	>
7	Apoyo tipo carro vertical empotrado		>
8	Apoyo tipo carro inclinado empotrado	<i>Α</i> ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	<a>
9	Apoyo elástico	K, G, X,	<kx> <ky> <kr> <bx> <by></by></bx></kr></ky></kx>

Cuadro 1: Valores adicionales para definir los apoyos. Nota: $\langle a \rangle$ es el ángulo α de giro de los apoyos inclinados, $\langle b \rangle$ es el ángulo β usado para girar la representacion gráfica mostrada, los ángulos han de introducirse en grados)

La función devuelve una variable (una estructura de datos), llamada en este caso modelo_analizado, que contiene no sólo los datos del modelo sino los resultados del análisis. Una descripción de esta variable puede verse en leer_datos.m. Además, se generan tres archivos de salida, en este caso de ejemplo: ej1.dat.u.txt, ej1.dat.F.txt y ej1.dat.R.txt; en donde es escriben los resultados de desplazamientos y giros, esfuerzos en las barras, y reacciones sobre los apoyos (no las reacciones de los apoyos sobre la estructura).