Strategy for the selection of Streptococcus agalactiae specific amplification primers from tuf sequences. Annex VIII:

ACAAACCTTT ACTTGGAC AACGTTGGTG TTCTTCTTCG TG ACAAACCTTT ACTTGGAC AACGTTGGTG TTCTTCTTCG TG ACAAACCTTT ACTTGGAC AACGTTGGTG TTCTTCTTTCG TG ACAAACCTTT ACTTGGAC AACGTTGGTG TTCTTCTTTCG TG ACAAACCATT GCTTGGAC AACGTTGGTG TTCTTCTTTCG TG ACAAACCATT GCTTaGAt AACGTTGGTG TTCTTCTTTCG TG ACAAACCATT GCTTaGAt AACGTTGGTG TCTTTCTTTCG TG ACAAACCATT GCTTaGAt AACGTTGGTG TCTTTCTTTCG TG ACAAACCATT GCTTaGAt AACGTTGGTG TCTTCTTTCG TG ACAAACCATT GCTTaGAt AACGTTGGTG TCTTCTTTCG TG ACAAACCATT GCTTaGAt AAACGTTGGTG TCTTCTTTCG TG	ACAAGCCATT GCTTGGAC AACGTAGGTG TGCTTCTCCG TGAAAAGCCATT GCTTaGAt AACGTTGGTG TGCTTCTTCG TGACGTGGCGTT TCTTGTTG TGAAAACCTTT CTTGcGAC AACGTAGGTC TGTTGCTTCG TGAAAACCTTT CTTGtGAC AACGTAGGTC TGTTGCTTCG TGAAAACCTTT CTTGtGAC AACGTAGGTC CCTTCTTCG CGAAAACCTTTCTTCG TGAAAACCTTTCTTCG CGAAAAACTTGGTG CCCTTCTTCG CGAAAAACCTTCTTCG CGAAAAACTTGGTG CCCTTCTTCG CGAAAAACTTGGTG CCCTTCTTCG CGAAAAAACCTTCTTCG CGAAAAAAAAAA	ACAAGCCATT CCTCCGAC ACAAGCCTTT CTTAaGAG ACAAGCCATT CTTGtGAG ACAAGCCATT CTTGtGAG ACAAGCCATT CTTGtGAC ACAAACCATT A	SEQ ID NO: 549 CGTGATACTG ACAAACTIT A G AAGAAGAACA.CCAACGTTG	to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO: 209). Nucleotides in capitals are lence or match that sequence. Mismatches are indicated by lower cases. "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for G or T; "W" stands for A or C; "K" stands for G or T; "W" stands for A or C; "C" stands for G or T; "W" stands for A or C; "C" stands for C or G or T. hich is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. erse-complement of the above tuf sequence.
CGTGATACTG CGTGATACTG CGTGATACTG CGTGATACTG CGTGATACTG CGTGATACTG CGTGATACTG CGTGATACTG	CGTGACACTC CGCGATACTG CGCGATACTG CGTGCAGTTG CGCGATGTTG	CGCGACACTG CGTGAGACCG aGaGAAATTG CGTGCGAATG CGCGATCTTG CGTGATTCTG	SEQ I CGTGATAC	Streptococc r match that signate nu for A or C, s a nucleo'
305 S. agalactiae S. agalactiae CCAGAN S. agalactiae CCAGAN S. agalactiae CCAGAN S. anginosus CCAGAN CCAGAN S. bovis CCAGAN CCAGAN S. gordonii CCAGAN CCAGAN S. mutans	S. pneumoniae CCAGAA CS. sanguinis CCAGAA CS. sobrinus CCAGAA CCAGAA B. cepacia CCGGAG B. fragilis CCtccg	subtilis diphtheriae trachomatis coli vaginalis aureus	pecifi	The sequence numbering refers identical to the selected sequence "R" "W" and stands for C or T; "M" s "I" stands for inosine W b This sequence is the rev
5 10	15	20 25 25		30

This sequence is the reverse-complement of the above tuf sequence.

agalactiae-specific hybridization probes from tuf sequences. Strategy for the selection of Streptococcus Annex IX:

sequences	SEQ ID NO: 206 209 -	210 208 211 221 212 213	214 215 217 218 219	220 222 223 224 225	- 226 227 227 228 229 230 231	-
The rat seduce	AAGCAGTTC AAGCAGTTC AAGCAGTTC AAGCAGTTC AAGCAGTTC	A AAGGGTTGT TA A AAGGGGTTGT TA A AAGGGGTTGT TA A AAGGGTTGT TA A AAGGGTTGT TA A AAGGGGTTGT TA	AAGCAGTTGT AAGCAGTTGT AAGCAGTTGT AAGCAGTTGT AAGCAGTTGT	AAGCAGTTGT AAGCAGTTGT AAGCLGTTGT AAGCAGTTGT AAGCAGTTGT	AAGCAGTGT TA AAGCAGTGT TA AAGCAGTTGT TA	AAGCAGTTG
				TATTCGTGG GATATCCAA TATCGAAGAA GAAACCAA TATCCGTGA GACATCCAA TATCAAGAA GAAACCCAA TATCAAAGA GAAATCCAAA		raagaa gatatccaaa aagcagttg SEQ ID NO: 583 ^a
	431 433 AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG	AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG	AATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG	AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG AAATCGTTGG	AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAATGGTTGG AAAAAAAA	CGTTGG TATTAAAGAA
	TaaaGTtAAt GACGAAGTTG TCGTGTCAAC GACGAAGTTG TCGTGTCAAC GACGAAGTTG TCGTGTCAAC GACGAAGTTG TCGTGTCAAC GACGAAGTTG	TaaaGTCAAC GACGAAGTTG TaaaGTCAAC GACGAAGTTG TaaaGTCAAC GACGAAGTTG TaaaGTCAAC GACGAAGTTG TaaaGTCAAC GACGAAGTTG TaaaGTCAAC GACGAAGTTG TCGTGAACTGAACTTG TCGTGAACTGAAC		,	Tasagrchat GacGAATCG Tasagrchat GacGAATCG TGAGGGACTG TASAGRCHAC TASAGRCHAC GACGAATCG TCGTGTCAAC GACGAATCG TCGTGTCAAC GACGAATCG TCGTGTCAAC GACGAATCG TCGTGTCAAC GACGAATCG TCGTGTCAAC GACGAAGTTG TCGTGTTCAAC GACGAAGTTG TCGTGTTCAAC GACGAAGTTG	SEQ ID NO: 582ª TTTCA ACTTCGTCGT TGACACGAAC
	401 GGTACTCF GGTACTCF GGTACTCF GGTACTCF GGTACTCF GGTACTCF GGTACTCF		E. C. S. S. S. S.	GGTAtegr r GGTACTGT r GGTACTGT r GGTACTGT r GGTACTGT r	GGTACTGT GGTACGT GGTACTGT GGTACTGT GGTACTGT GGTACTGT GGTACTGT GGTACTGT	
		5. anginosus 5. anginosus 5. bovis 5. anginosus 5. cricetus 5. cristatus 6. domnosi	S. dysgalactiae S. equi equi S. ferus S. gordonii S. macacae	o. yordonii S. mutans S. oralis S. parasanguinis S. pneumoniae	5. ratti 5. salivarius 5. salivarius 5. sanguinis 7. sobrinus 7. suis 7. uberis 7. vestibularis 8. vestibularis 9. elected sequences 9. selected sequences	Selected species- specific hybridiz- ation probes
	5 10	15	50	25	35 88 88 88 88 88 88 88	Sc 40 sr art

The sequence numbering refers to the *Streptococcus agalactiae tuf* gene fragment (SEQ ID NO: 209). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases. SEQ ID NO: 583^a CAACTG CTTTTTGGAT ATCTTCTTTA ATACCAACG

SEQ ID NO: 626^a TACCACCTTT TAAGTAAGGT GCTAAT

SEQ ID NO: 625^a CGTIG AAGACACGAC CCAAAGIAIC C

SEQ ID NO: 627 ATTGTCTAT AAAAATGGCG ATAAGTC SEQ ID NO: 628 AAAATGGCG ATAAGTCACA AAAAGTA

Selected species-specific primers

3

sednences

sequences

agalactiae-specific amplification primers from atpD sequences. Strategy for the selection of Streptococcus Annex X:

SEQ ID NO:

380 379 381	382 383 - 387 -	- - 247 248	292 293 291 -	366 370
		ct tgregrene annargace nangarane annargement of the contentant grac Cet tertececer incertants graces annargace annargement and graces are graced graces and graces and graces are graces and graces and graces are graces and graces	gr amagange Anogharace gancary of the control of th	E. coli Ta cgargotota gaggototaa Arggotatora Arggotatora Tacatta Craftora Graftora G
BC Aaagtagt7 Aaagtagt7	AAAGTAGT AAAGTAGT AAAGTAGT NAAATGGT	AAAAATGT AAAAATGT AAAAATGT AAGAATGT	GAACETAAC AAAAGTAG AAAAGTAGI	SCHOOLS ACAACTAS TCAATTAS AAAGTA
AATGGCG ATAAGTCACA AAAGTCACA A	NATGGCG ATANGTCACA MATGGCG ATANGTCACA MATGGCG ATANGTCACA GATGGCG ATANGTCTCA GATGGCG ATANGTCTCA GATGGCCA MANGTCTAM GATGGGG ATANGTCTAM GATGGGG	ANTGACG AAAGARAKO GATAGEG ATAAARAGGA AATGACG AAAATAAAAC AATGACG AGAARACCA GATGGCG ACAAGTCCCA	gAzarce gancarycat gAzarce gargeat LATGACE ARAKARAC LAAGGCG AGARARAC LAATGGCG ARGEARACA	Aggigcasa Anggiascyn ysgision T gchyangas caccasciag collic Clhagasg Anggiascyc tchaill Alaniggs Anggiascyc tchaill Alaniggs Analgic Alaniggs Analgic
AT AAAS	CAT AAA CAT AAA CAT AAA CAT AAA	ENC NAM ENT ANA ENT ANA TAT ANA	age Ahe age Ahe iini Ahi iine Ahi	garcetetT gAggtg a taaatetgAT geN ArrGatgtg cetAAa ArceaagtT cetAAa ArrGrCTAT AAAAAT
MITGEC	ATTGTC SATTGTC SATTGTC GGTGGTE	tgreere Garrert tgraere tgraere	akaacag akaacas agiigit Gaicgit agicgit	cgarcot Ta tasa tarros carcos Arror
WE		_	TP TT TT	Ta gT is ca
S. agalactiae	S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis	S. pneumoniae S. pyogenes S. anginosus S. sanguinis S. mutans	B. anthracis B. cereus E. faccium E. gallinarum E. faccalis	E. coli L. monocytoge S. aureus S. epidermid Selected sequences
٧,	10	15	20	25

The sequence numbering refers to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO: 380). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases. Dots indicate gaps. 35

æ

This sequence is the reverse-complement of the above tuf sequence.

albicans/dubliniensis-specific amplification primers, Candida albicansspecific hybridization probe and *Candida dubliniensis*-specific Ann x XI: Strategy for the selection from tuf sequences of ${\it Candida}$ hybridization probe.

S

SEQ ID NO: 624 409 410 407 408 412 414 415	418 421 422 424° 623 426	429 404 - 447 ^a 622	1
491 TAAGACCTTG T	TAGACCTIC T TAAGACCTIA T TAAGACCTIC T TAAGACCTIC T TAAGACCTIC T	TAAGACETTG T TAAGACCOTC A BACCACGCTG C TAABACETTA T	Taagacct Taagacct
AACTTACTGG AACTTACTGG AACTTACTGG AACTTACTGG AACTTACTGG AAGTTACTGG AGTTACTCG AGTTACTCG AGTTACTCG AGTTACTCG AGTTACTCG AGTTACTCG	ccGTcAagGG ttGTTAagGG AgtccACcGG tttccAagGG	AGGITACCGG AGGICACTGG AtGccAgTGG AAGCTAaaGG ACGTCAAAGGG ACGTCAAAGGG	ATCGGTA AGGTTACTGG
GTTACAACCC AAAGACTGCAACATGA TTGAACCATC CACCAACTC AAATCCGGTA AAGTTACTGG TAAGACCTTG GTTACAACCC AAAGACTGCAACATGA TTGAACCTTC CACCAACTC AAATCCGGTA AAGTTACTGG TAAGACCTTG GTTACAACCC AAAGACTGCAACATGA TTGAAGCTTC CACCAACTC AAATCCGGTA AAGTTACTGG TAAGACCTTG GTTACAACCC AAAGACTGCAACATGA TTGAAGCTTC CACCAACTC AAATCCGGTA AGGTTACTGG TAAGACCTTG GTTACAACCC AAAGACTGCAACATGA TTGAAGCTTC CACCAACTC AAATCCGGTA AGGTTACTGG TAAGACCTTG GTTACAACCC AAAGACTGCAACATGA TTGAAGCCTC CACCAACTC AAATCCGGTA AGGTTACTGG TAAGACCTTG GTTACAACCC AAAACTGCAACATGA TTGAAGCCTC CACCAACTC AAATCCGGTA AGGTCATGG TAAGACCTTG GTTACAACCC AAAACTGCAACATGA TTGAAGCCTC CACCAACTC AAATCCGGTA AGGTCATGG TAAGACCTTG GTTACAACCC AAAACTGCAACATGA TTGAAGCCTC CACCAACTC AAATCCGGTA AGGTCATGG TAAGACCTTG GTTACAACCC AAAACTGCAACATGA TTGAAGGCCTTG TAACAACTTG TAACAACTC TAAACAACTTG TAACAACTTG TAACAACTTG TAACAACTTG TAACAACTTG TAACAACTTG TAACAACTTG TAACAACTG TAACAACTTG TAACAACTG TAACAACTTG TAACAACTAACTAACTAACT	TIGAAGCATC CACCAACGC AAGGCEGGTA CCGTAAGGG TIGAAGCATC CACCAACTC AAGGCGGGTG tEGTTAAGGG TIGAGGGTG VACCAACTC AAGTCYGGTA AGTCACGGG TIGAACCATC CACCAAGTC AAGTCYGGTA AGTCACAGGG TIGAAGCATC CACCAAGTC AAGTCYGGTA AGGTTACCGG	TTGAGCCCTC CLCCAACT C AAGGCCGCA AGGTAACCCG TGGAGCCAAG LGCLAACA T AAGGTCGCG ALGCAATGC TTGAACCATC ANCLAACT T AAGGTCGCA ALGCCAATGC TTGAACCATC CACCAACT C AAGCTCGGTG LCGTCAAGGC TTGAAGCTCC CACCAACA C AAGGTCGGTG LCGTCAAGGC	ATCCGGTA 1
428 CACCAACT	CACCHACGc CACCHACTc YACCHACTc CACCHACTc aACCHACTc	CtcCAACTC tgCtAACAT AWCtAACTC CACCAACGC	CACCA
TTGAACCATC		TTGAGCCCTC TGGAGCCAGG TTGAACCATC TTGAAGCTAC TTGAAGCTAC	TTGAACCAIC TTGAAGCITC
GTTACAACCC AAAGACTGCAACATGA GTTACAACCC CAAGACTGCAACATGA GTTACAACCC AAAGACTGCAACATGA GTTACAACCC AAAGACTGCAACATGA GTTACAACCC AAAGACTGCAACATGA GTTACAACCC AAAGACTGCAACATGA	AAAGACTGCAAGATGA tAAGACTGCAAGATGA CAAGGCTGCAAGATGE tAAGGCTGCAAtATGA tAAGGCTGCAAGATGA	CAACATGC CAACATGC TAACATGA CAACATGA .TAACATGA	S. C.
368 C AAAGACTG C AAAGACTG C AAAGACTG	AAAGACTG. CAAGGCTG. CAAGGCTG. CAAGGCTG.	canagece. cgacacae. AdaaActe. Adacacte. canaacte.	
		GCTACATCC CAACAGCGCTACATGGGTACATGGGTACATGC CAACACGC CAACAGCCTTACATGATGGTTACATGATGATGATTACATGATTACATGATGATGGTTACATGATGGTTACATGATGGTTACATGATGGTTACATGATGGTTACATGATGGTTACATGATGGTTACATGATGGTTACATGATGATGGTTACATGATGATGATGATGATGATGATGATGATGATGATGATGA	
CGTC AAGAAGGTTC CGTC AAGAAGGTTG CATC AAGAAGGTGG CATC AAGAAGGTCG CATC AAGAAGCTCG CATC AAGAAGCTCC CATC AAGAACTCC CATC AAGAAC	(A (A (A (A A)		
	CATC CATC CGTC CGTC	0 6 6 0	specific mers ^b , c
C. albicans C. albicans C. albicans C. albicans C. dubliniensis C. dubliniensis C. dubliniensis C. dubliniensis C. gualiniensis C. gralliermondii C. kefyr C. krusei	C. lusitaniae C. neoformans C. parapsilosis C. tropicalis A. fumigatus	human P. anomala S. cerevisiae S. pombe Selected sequences	Selected species-specific amplification primers ^{b, C}
10	20	25	30
	100		

C AAGAAGGIIG GITACAACCC AAAGA

Selected species-specific

hybridization probes:

35

AGGICTTACC AGTAACTITA CCGGAI

CATGA TIGAACCAIC CACCA CATGA TIGAAGCTIC CACCA SEQ ID NO: 578 SEQ ID NO: 577

The sequence numbering refers to the *Candida albicans tuf* gene fragment (SEQ ID NO: 408). Nucleotides in capitals are identical to the selected sequence SEQ ID NO: 577 or match that sequence. Mismatches are indicated by lower cases. Mismatches for SEQ ID 8

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "W" stands for C or G. "I" stands for inosine which is C. albicans primers have been described in previous patent (application WO 98/20157, SEQ ID NO. 11-12) 45

Strategy for the selection of Staphylococcus-specific amplification primers from tuf sequences. Ann x XII:

GAAGGTACTG AAATGGTAAY GC Gaaggtactg aaatggtla	GAAGGIACIG AANISSIIN CO GAAGGIACIG AANIGGITAT GC GAAGGGIAC AANIGGITAT GC GAAGGGIAG AANIGGIAAT GC	CANGGIACTG AAATGGITAT GC CAAGGIACTG AAATGGITAT GC	CANGGRACIG ANAIGGITAT GC	CAAGGIACTG AAATGGIAA! GC	CAAGGTACTG AAATGGTAAT GC	CARGCIACTG AAATGCTAAT GC	GAAGGTACTG AAATGG~~~~ ~~ GAAGGTACTG AAATGGTAAT GC	GARGERALE MANIGETAN CO	GAAGGTACAG AAATGGTTAT	682 SEQ ID NO:
CAAGTTAAAGAca		CAAATCAAAG. CAAATCAAAG. CAAATCACTG.							-	
	CAGGCCGTGT CAGGCCGTGT CAGGCCGTGT CAGGCCGTGT CTGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT CAGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT	CAGGCCGTGT	
E. coli L. monocytogenes Selected sequences	S. sapinguists S. sciuri S. warneri S. warneri B. subtilis									
	30	25			50	-: 0	J, V)	15 5	0, 0	
S. epidermidis S. cpidermidis S. cpidermidis S. cpidermidis S. cpidermidis S. cpidermidis S. chaemolyticus S. haemolyticus S. hominis S. homin	S. epidermidis A. CAGGCCGTGT TGANCGTGGT CAAATCAAAGAACTTACCA GAAGGTACAG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. saprophyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. saprophyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. saprophyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC A. CAGCCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGCCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. saprophyticus A. CAGCCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGCCCGTGT TGAACGTGGT CAAATCAAAGA	S. epidermidis A. CAGGCCOTGT TGANCGTGGT CAPATCAAGGAACTTACCA GAAGGTACAG ANATGGTTAT GC S. haemolyticus A. CAGGCCOTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG ANATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG ANTGGTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG ANTGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG ANTGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG ANTGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG GAAGGTACTG CAPATCGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG GAAGGTACTG CAPATCGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG GAAGGTACTG CAPATCGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG CAPATCGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG CAPATCGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAPATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACTACAACTAACAACAACTAAAATGGTAAT GC A. CAGGCCGTGT TGAACTACAAACAACTTACCAAAGAACT	S. epidermidis A. CAGGCCOTGT TGANCTIGGE CAAATCAAAGAACTINCCA GAAGGTACAG ANATGGTAT GC S. haemolyticus A. CAGGCCOTGT TGAACGTGG CAAATCAAAGAACTINCCA GAAGGTACTG ANATGGTAT GC S. haemolyticus A. CAGGCCOTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG ANATGGTAT GC S. haemolyticus A. CAGGCCOTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG ANATGGTAT GC A. CAGGCCOTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTINCCA GAAGGTACTG AAATGGTAAT GC S. hominis	S. epidermidis A CAGGCCGTGT TGAALGTGGT CAAATCAAAGAACTTAACA GAAGGTACAG AAATGGTTAT GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATCAAATGTAAGAACTTACCA GAAGGTAATCAAATGTAAGAACTTACCA GAAGGTAATCAAATGTAAAGAACTTACCA GAAGGTAATCAAATGTAAAGAACTTACCA GAAGGTAATCAAATGTAAAGAACTTACCA GAAGGTAATCAAATGTAAAGAACTTACCA GAAGGTAATCAAATGTAAAGAACTTAACA GAAGGTAATGTAATGTAAATGTAAAGTAATCAAAGAACTTAACA GAAGGTAATGTAAATGTAAAGTAATGTAAAGTAATGTAAAGTAATGTAAATGTAAAGTAATGTAAATGTAAAGTAATGTAAATGTAAAGAACTTAACA GAAGGTAATGTAAATGTAAATGTAAAGTAATGTAAA	epidermidis A CAGGCCGIGI TGAAGGIGGI CAATICAAGGAACTIACCA GAAGGTACAG AAATGGTATAT GC epidermidis A CAGGCCGTGI TGAAGGIGGG CAAATCAAAGGAACTIACCA GAAGGTACTG AAATGGTATAT GC A CAGGCCGTGI TGAAGGTGGG CAAATCAAAGGAACTIACCA GAAGGTACTG AAATGGAAAT haemolyticus A CAGGCCGTGI TGAAGGTGGI CAAATCAAAGGAACTIACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGI TGAAGGTGGI CAAATCAAAGGAACTIAACA GAAGGTACTACCA CAAATGGTAAT GC	epidermidis A CAGGCCGTGT TGAACGTGGT CAATCAACGAACTTACCA GAAGGTACAG AAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A CAGGCCGTGT TGAACGTGG CAAATCAAAGAACTTACCA GAAGCTACTG AAATGGTAAT A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGCTACTG AAATGGAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGCTACTG AAATGGTAAT GC	epidermidis A CAGGCCGTGT TGAACGTGGT CAATCAAACAAACTTAACA GAAGGTACAG AAATGGTTAT GC epidermidis A CAGGCCGTGT TGAACGTGG CAAATCAAAGAACTTAACA GAAGGTACTAT GC haemolyticus A CAGGCCGTGT TGAACGTGG CAAATCAAAGAACTTAACA GAAGGTACTAT GC	epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACAG AAATGGTTAT GC		aureus A CAGGCCGIGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG GAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGIGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC A CTGGACGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC A CTGGACGTGT TGAAGGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC
S. epidermidis S. haemolyticus S. hominis S.	S. cobnii. S. epidermidis S. epidermidis S. epidermidis S. epidermidis S. epidermidis S. haemolyticus S. haemo	S. cohniis S. epidermidis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACA AAATGGTTAT GC S. epidermidis S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAACAAACTTACCA GAAGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAACAAACTTACCA GAAGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAACAAACTTACCA GAAGGTAAT GC A. CAGGCCGTGT TGAACGTGT CAAATCAAACAAACTTACCA GAAGGTAAT	S. cohniis S. epidermidis S. epidermidis S. epidermidis S. epidermidis S. haemolyticus A CAGGCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACCTAAAC AAATGATAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAG AAATGGTAATCAAAG AAATGGTAATAACGTGGTAAATCAAAG A	S. cobnid. S. epidernidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTTAT GC S. epidernidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAAGAACTTACCA GAAGGTAATCATAATCAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAATCAAAGAACTTACCA GAAGGTAATCAAATCAAATCAAATCAAATC	cohnii A CAGGCGIGT TGAACGTGGT CAATCAAAGAcTTTACCA GAAGGTTAT GC epidernidis A CAGGCGGTGT TGAACGTGGT CAATCAAAGACTTTACCA GAAGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAATCAAAGACTTACCA GAAGGTATT GC A CAGGCCGTGT TGAACGTGGG CAATCAAAGACTTACCA GAAGGTACT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC	cohnii A CAGGCGTGT TGAACGTGGT CAAATCAAAGAcTTTACCA GAAGGTGATATA Epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT Epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTAAT GC	cohnii A CAGGGCGTGT TGAACGTGGT CAAATCAAAGAcTTTACCA GAAGGTACT CAAATCAAAG. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGGTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGGTTAT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACT AACTTACCA GAAGCTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTACTACT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGCTTACTACTACTACTACTACTACTACTACTACTACTACTA	cohnii A CAGGCCGIGI TGAACGIGGI CAAATCAAAG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cohnii	S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATG GC S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAAATCAAAGAACTTACCA GAAGGTAATG GC S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAAATCAAAGAACTTACCA GAAGGTAATG GC S. auricularis
S. capitis S. capitis A Checocord Tenacorde Charthand Ancrtnach Gangerard Gangerand S. cascolyticus S. cohnil S. epidermidis S. epidermidis S. poidermidis S. poidermidis S. haemolyticus S. haemolyticus S. hominis S. hominis S. hominis S. hominis S. hominis S. saprophyticus	S. capitis S. caseolyticus A CAGGEGGTGT TGAAGGTGGT CAATCAAAGActTTACCA GAAGGTACTG AAATGCTAAT GC A CAGGEGGTGT TGAAGGTGGT CAATCAAAGActTTACCA GAAGGTACTG GAATGCTAT GC S. epidermidis S. epidermidis A CAGGCGTGT TGAACGTGGT CAATCAAAGAcTTACCA GAAGGTACTG GAATGCTAT GC A CAGGCGTGT TGAACGTGGT CAATCAAAGAACTTACCA GAAGGTACTG GAATGCTAT GC S. haemolyticus S. haemolyticus A CAGGCGTGT TGAACGTGGT CAATCAAAGAACTTACCA GAAGGTACTG GAATGCTAT GC S. hominis A CAGGCGTGT TGAACGTGGT CAATCAAAGAACTTACCA GAAGGTACTG GAACTTACAG GAAGGTACTG GAA	S. capitis A CAGGGCGTG TGAACGTGG CAAATCAAAGActTACCA GAAGGTACTG AAATGGTAT GC S. caseolyticus S. caseolyticus A CAGGGCGTGT TGAACGTGGT CAAATCAAAGActTACCA GAAGGTACTG AAATGGTAT GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTACCA GAAGGTACTG AAATGGTAT GC S. haemolyticus S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTACAAGAACTAACAAGAACTAACAAG	S. capitis A. Cricacotter Itance and Caractar Caractarical Caractaric	S. capitis A. CAGGGCGTGT TGAGCGTGG CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. caseolyticus A. CAGGGCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG S. epidermidis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTACTG A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTAAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAAT GC S. hominis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTAATGCTAATCAAAGAACTTACCA GAAGGTAATGGTAATGCTAATGGTAATGGTAATGGTAATGCTAATGAATG	S. capitis A. CAGGCOTOT IGAGCOTOR TEANCETANCE CANGETACCA CANGETANT GC S. caseolyticus A. CAGGCOTOT TEANCETGG CANATCANAGAACTTACCA GANGGTATT GC S. cpidermidis A. CAGGCOTOT TEANCETGGT CANATCANAGAACTTACCA GANGGTATT GC A. CAGGCCOTOT TEANCETGGT CANATCANAGAACTTACCA GANGGTATT GC A. CAGGCCOTOT TEANCETGGT CANATCANAGAACTTACCA GANGGTACT GC A. CAGGCCOTOT TEANCETGGT CANATCANAGAACTTACCA GANGGTACT GC S. haemolyticus A. CAGGCCGTGT TEANCETGGT CANATCANAGAACTTACCA GANGGTACT GC A. CAGGCCGTGT TEANCETGGT CANATCANAGAACTTACCA GANGGTACT GC A. CAGGCCGTGT TGAACGTGGT CANATCANAGAACTTACCA GANGGTACT GANGGTACT GC A. CAGGCCGTGT TGAACTACT GC A. CAGGCCGTGT TGAACTACCA GANGGTACT GANGGTACT GANGGTACT GANGGTACT GANGGTACT GANGGTACT CANATCANAGAACTTACCA GANGGTACT GANGGTACT GANGGTACT GANGGTACT CANATCANAGAACTTACCA GANGGTACT GANGGTACT GANGGTACT GANGGTACT CANATCANAGAACTTACCA GANGGTACT CANATCANAGAACTTACCA GANGGTACT	S. capitis A CAGGGCGTGT TGANGGTGG CAAGTLAAAGAACTTACCA GAAGGTAAT GC S. caseolyticus A CAGGGGGTGT TGAAGGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTTAT GC A CAGGCGGTGT TGAAGGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTTAT GC A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAAGGTAT GC S. haemolyticus A CAGGCGGTGT TGAAGGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCGGTGT TGAAGGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCGGTGT TGAAGGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTAAT GC AACTTACCA GAAGGTACTG GAATGGTAAT GC	S. capitis A CAGGCCTOT IGANCSTOR CAATCAAAC AACTIACA GAAGCTACT AATGGTAAT GC S. caseolyticus A CAGGGCGTGT TGAAGGTGGT CAAATCAAAGActTIACCA GAAGGTACTG AAATGGTAT GC S. cohnii A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGActTIACCA GAAGGTACTG AAATGGTTAT GC A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAACTIACCA GAAGGTAAT GC S. epidermidis A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAACTIACCA GAAGGTAAT GC A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAACTIACCA GAAGGTAAT GC S. heemolyticus A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAACTIACCA GAAGGTAATCAAAGAACTIACCA GAAGCTAATCAAAGAACTIACCA GAAGGTAATCAAAGAACTIACCA GAAGCTAACAAACAAACAAAACAAAACAAAACAAA	S. capitis A CAGGGCGTG TARACTERARGAACTIACCA GAAGGTAAT GC S. caseolyticus A CAGGGCGTG TGAAGGTGGT CAAATCAAAGActTTACCA GAAGGTACTG AAATGGTAAT GC S. cohnii A CAGGGCGTGT TGAAGGTGGT CAAATCAAAGAAGTTACCA GAAGGTACTAT GC S. cohnii A CAGGCGTGT TGAAGGTGGT CAAATCAAAGAAGTTAACCA AAATGGTTAT GC A CAGGCCGTGT TGAAGGTGGT CAAATCAAAGAAGTTAACCA GAATGGTTAT GC A CAGGCCGTGT TGAAACGTGGT CAAATCAAAGAAGTTAACCA GAAGGTAAGAAGTTAACAAAGAAGTTAACAAAGAAGTAAAGAAAGAAAGAAAGAAGTAAAAGAAAAGAAAAAAAA	S. capitis A CHGGCGTGT TGAGCGTGG CAAGTLAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. caseolyticus A CAGGGGGTGT TGAAGGTGGT CAAATCAAAGACTTTACCA GAAGGTACTG AAATGGTATT GC S. cohnii	340 652 310 S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GAAGGTAAT GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAAGGTAATGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAAGTGAAATGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAAGTGAAATGCACTTACCA GAAGGTAATG GC A. CAGGCCGTGT TGAAGTGAAATGCACTTACCA GAAGGTAATGCACTTACCA GAAGGTAATGCACTTACACA GAAGGTAATGCACTTACACA GAAGGTAATGCACTTACCA GAAGGTAATGCACTTACACA GAAGGTAATGCACTTACACA GAAGGTAATGCACTTACACA GAAGGTAATGCACTTACACA GAAGGTAATGCACTACACACACACACACACACACACACACACACACA
S. auricularis S. capitis S. capitalis S. capitis S. ca	S. auricularis S. capitis S. capitis S. caseolyticus S. caseol	S. auricularis S. capitis S. capidermidis S. capid	S. capitis S. capitis S. capitis S. capitis S. caseolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. caseolyticus S. caseoly	S. auricularis S. capitis S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC S. cohnii S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC S. haemolyticus S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATCGTAAT CAAACCACGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT GC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAATCAAATGAAACAAGAACTTACCA GAAGGTACTG CAAATGGTAATCAAATGAAACAAGAACTTACCA GAAGGTACTG CAAATGGTAATCAAATGAAATG	S. auricularis S. capitis S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATA GC S. capitis S. caseolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. cohnii S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATA GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTTAAT GC AAATGGTAAT GC AAATGGTAAT GC AAATGGTAAT GC AAATGGTAAT GC AAATGGTAAT GC AAATGAATCAAAGAACTTACCA GAAGGTAAT GC AAATGGTAAT GC AAATGGTAAT GC AAATGAATCAAAGAACTTACCA GAAGGTAAT GC AAATGGTAAT GC AAAATGAATCAAAGAACTTACCA GAAGGTAAT GC AAAATGAATCAAAGAACTTACCA GAAGGTAAT GC AAAATGAATCAAAGAACTTACCA GAAGGTAAT GC AAAATGAAATCAAAGAAATTAACA GAAATGGTAAT GC AAAATGAAATCAAAGAAATTAACA GAAATGGTAAT GC AAAATGAAAAGAAATTAACA GAAATGGTAAT GC AAAATGAAAAGAAATGAAACA AAATGGTAAT GC AAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAATGAAAAGAAAAAAAGAAAAAAGAAAAAAGAAAAAA	S. auricularis S. capitis S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAGGAACTTACCA GAAGGTAAT GC S. caseolyticus A CTGGACGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. cohnii S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTTAT GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC	S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAAT GC S. caseolyticus A CTGGACGTGT TGAACGTGGT CAAATCAAAGACTTAACCA GAAGGTAAT GC S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAAGACTTAACCA GAAGGTAAT GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTAATG GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTAATG GAATGGTTAT GC S. epidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTAATG GAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTAACA GAAGGTAATG GAATGGTTAT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTAACA GAAGGTAATG GAATGGTTAT GC A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTAACA GAAGGTAATG GAAGGTTAT GC	S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. caseolyticus A CAGGGCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTTAT GC S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTTAT GC	S. auricularis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. capitis A CAGGCCGTGT TGAACGTGGG CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. caseolyticus A CTGGACGTGT TGAAGGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGCATAT GC S. cohnii	340 652 310 S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA CAAAGGTMCTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTMCTG AAATGGTAAT GC
S. auricularis S. dispeccerra Transcencer Chartchand CACTTACCA Chargettan Co. S. auricularis S. capitis S. capital S. capitis S. capital S.	S. aureus aureus S. auricularis A CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTAACCA GAAGGTAACAG AAATGGTAAT GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTAACA GAAGGTAACAG AAATGGTAAT GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTAACA GAAGGTAACTA GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTAACA GAAGGTAACTA GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTA GC S. capitis S. haemolyticus A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTA AAATGGTAAT S. haemolyticus A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTA AAATGGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTA GAAGGTAACTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAACTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG S. saprophyticus A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG S. saprophyticus A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG S. saprophyticus A CAGGCCGTGT TGAACGTGGT CANATCAAAGAACTTAACA GAAGGTAATG A CAGGCCGTGT TGAACGTGGT CANATCAAAGAAA	S. aureus S. capitis S	S. auricularis S. capitis S. capidermidis S. capitis S. capidermidis S. capitis S. capidermidis S. capitis S. capidermidis S. capitis S. capiti	S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTTACCA GAAGGTACTG AAATGGTAAT GC S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTTACCA GAAGGTACTG AAATGGTAAT GC S. capitis S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. pidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATC GAAGGTAATC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATC S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATCGTAAT S. hominis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATCGTAAT A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATCGTAAT A CAGGCCGTGT TGAACGTGGT CAAATCAAACAAACAAACAAACAAACAAACAAACAAAC	S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTAAT S. capitis A CTGGACGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG CAAATGGTTAT GC S. cpidermidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. haemolyticus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGT TGAACGTGT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGT TGAACGTACT CAAATCAAAGAACTTACCA GAATGGTAAT GC S. hominis homonis A CAGGCCGTGT TGAACGTGT TGAACGTACT CAAATCAAACA AAATGTAACA AAATGGTAAT GC S. hominis homonis A CAGGCGTGT TGAACGTAATCAAACA AAATGTAACA AAATGGTAAT GC S. hominis homonis A CAGGCGTGT TGAACGTAATCAAACA AAATGTAACA AAATGTAACA AAAATGTAACA	S. auricularis S. auricularis S. capitis S. capidermidis S. capitis S. capidermidis S. capitis S. c	S. auricularis S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTAACA GAAGGTACTG AAATGGTAAT S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTAAT GC S. cabitis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTAAT GC S. cohnii A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTAAT GC S. epidermidis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTTAT GC S. epidermidis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTG GAATGGTTAT GC A. CAGGCCGTGT TGAAACGTGGT CAAATCAAAGAACTTAACA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAAC GAAGGTACTAA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAA GAAGGTACTAAAC GAAGGTACTAAAC GAAGGTACTAAA GAAGGTACTAAA GAAGGTACAA GAAGGTACAA GAAGGTACAAA GAAGGTACAAA GAAGGTACAAA GAAGGTACAAA GAAGAAAAAAAAAA	S. aureus aureus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. capitis A CAGGCCGTGT TGAACGTGG CAAATCAAAGAACTTACCA GAAGGTACTG GAATGGTAAT GC S. caseolyticus A CTGGACGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG CAATGGTTAT GC S. cohnii A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTA GC S. coindernidis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTTAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTAATGGTTAT GC	S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTTACCA GAAGGTACTG AAATGGTAAT S. auricularis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTTACCA GAAGGTACTG GAAGGTACTG S. capitis A CTGGACGTGT TGAACGTGGT CAAATCAAAGAACTTTACCA GAAGGTACTG AAATGGTAAT S. caseolyticus A CTGGACGTGT TGAAGGTGGT CAAATCAAAGAACTTTACCA GAAGGTACTG AAATGGTAAT S. caseolyticus A CAGGGCGTGT TGAAGGTGGT CAAATCAAAGACTTTACCA GAAGGTACTG AAATGGTAAT C CAAAATCAAAAGACTTTACCA GAAGGTACTG CAAATCGTAAT C CAAAATCAAAAGACTTTACCA GAAGGTACTG CAAATCAAAAGACTTTACCA CAAATCGTAATG C COAnii	340 652 310 S. aureus S. aureus S. aureus S. aureus
S. aureus A. CAGGCCGTGT TRANCGTGGT CANATCAAAGCACTTACCA GAAGGTAATG GC S. aureus aureus A. CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. capitis S. capitis A. CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. capitis S. capitis A. CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. cohnii S. capitis A. CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. haemolyticus S. haemolyticus A. CAGGCCGTGT TRANCGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT A. CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT A. CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. hominis A. CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT S. hominis A. CAGGCCGTGT TGAACGTGGT CANATCAAAGACTTACCA GAAGGTACTG ANATGGTAAT A. CAGGCCGTGT TGA	S. aureus S. capitis S. capi	S. aureus S. aureus A CAGCCGTGT TGAACGTGT CAATCAAAGCACTTACCA GAAGGTACT GC S. auricularis S. auricularis S. auricularis S. auricularis S. auricularis S. capitis S.	S. aureus S. aur	S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTTAT GC S. capitis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. capitis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. capidermidis S. capidermidis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG GAA	S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC S. aureus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC S. auricularis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTACCA GAAGGTACTG AAATGGTAAT GC S. capitis S. capitis S. capitis A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAcTTACCA GAAGGTACTG AAATGGTAAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. cohnii A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTATA GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC S. haemolyticus A. CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC A. CAGGCCGTGT TGAACGTGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAT GC A. CAGGCCGTGT TGAACGTGT CAAATCAAAG	S. aureus S. auricularis S. capiditis S.	S. aureus S. capitis S. capit	S. aureus R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAAT GC S. aureus R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAATG GC S. auricularis R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAATG GC S. capitis R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAATG GC S. caseolyticus R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAATG GC R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAATG GC R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAACTAAT GC R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTAACTAAT GC R. CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTAACCA GAATGGTTAT GC R. CAGGCCGTGT TGAACGTGGT CAAATCAAACACTTAACCA AAATGGTTAAT GC R. CAGGCCGTGT TGAACGTGT CAAATCAAACACTTAACCA AAATGGTTAAT GC R. CAGGCCGTGT TGAACGTGT CAAATCAAACACTTAACCA AAATGGTTAAT GC R. CAGGCCGTGT TGAACGTGT CAAATCAAACACTTAACCA AAATGGTTAATCAAACACTTAACCAACAAACACTTA	S. aureus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTAAT GC S. aureus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT GC A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC S. aureus A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC S. capitis A CTGGACGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT GC S. cabolyticus A CTGGACGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT GC S. cohnii	340 652 340 652
S. aureus A. CAGGCCOGTGT TRANCTIOGN C. CANTIANC. S. aureus A. CAGGCCOGTGT TRANCTIOGN C. CANTIANC. S. aureus A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. S. aureus A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. S. aureus A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. S. cappids S. caseolyticus A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. S. capids S. caseolyticus A. CAGGCCOGTGT TRANCTIGGT CANATCANAG. A. CAGGCCOGTGT TRANCTIGGT CANATC	S. aureus S. aureus A CAGGCCGTGT TGAACGTGGT CAATCAAAGCACTTACCA S. aureus S. aureus A CAGGCCGTGT TGAACGTGGT CAATCAAAGCACTTACCA S. aureus S. aureus A CAGGCCGTGT TGAACGTGGT CAATCAAAGCACTTACCA GAAGGTACTG AAATGGTAAT S. aureus S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGACTTACCA GAAGGTACTG AAATGGTAAT S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA GAAGGTACTG AAATGGTAAT S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA AAACTTACCA GAAGGTAAT S. capitis A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA AAACTTACCA AAACTTACCA AAACTTACCA AAACTTACCA AAACTTACCA AAACTTACCA AAACTTACCA AAAACTTACCA AAAACTTACCA AAAACTTACCA AAAAACTTACCA AAAACTTACCA AAAAAAATTACA AAAAAAAA	S. aureus S. capitis	S. aureus S. aurecrary G. aurecrary S. aureus S. aurecrary G. aureurantering S. caseolyticus S. caseolyticus S. aurecrary S. aurecra	S. aureus S. aur	S. aureus S. aurecrera reaacereger caaatcaahgaartracca aaatcerari GC S. capitis	S. aureus S. aur	S. aureus S. capitis S	S. aureus S. capitis S. c	S. aureus S. auricularis S. capitis S. capitis S. capitis S. capitis S. capedyticus S. capitis S. cohnii	

capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases. "~" The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO: 179). Nucleotides in

indicate incomplete sequence data.

This sequence is the reverse-complement of the above tuf sequence.

This sequence is the reverse-complement of the above tuf sequence.

This sequence is the reverse-complement of the positions which are degenerated. "R" stands for A or G; "Y" stands for hor inosine which

T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

Annex XIII: Strategy for the selection of the Staphylococcus genus-specific hybridization probe from tuf sequ nces.

5			
		400	
	S. aureus	G TTGANATCTT CCCTTANATCT 425 SEQ ID	NO:
	S. aureus	G TTCANATCHM COOMS S S	
	S. aureus	G TTGAAATCTT CCCTAAATT	
10	o. uureus	G TTCAAATCEM CCCMAAA	
	S. aureus aureus	C TTCAAATCUM CCCMIII	
	S. auricularis	G TAGAAATGTT CCCMAAAMMA	
	S. capitis capitis	G TAGAAATCTT CCCMAAAMMA	
	S. caseolyticus	(† TAGAAATGTT CCCTAAATT	
15	S. cohnii	G TAGAAATGTT CCCTAAATTT	
	S. epidermidis	G TAGAAATGTT CCCMAAAMMA	
	S. haemolyticus		
	S. haemolyticus	G TAGAAATCTT CCCMAAAMMA	
20	S. haemolyticus	G TAGAAATGTT CCCTAAAMMA	
20	S. haemolyticus	G TAGAAATGTT CCCMAAATT	
	S. hominis	TAGAAATCTT CCCMAAA	
	S. hominis	G TAGAAATGTT CCCMAAAMMA	
	S. hominis hominis	G TAGANATOTT CCCTANAMEN	
25	S. hominis		
25	S. hominis	G TAGAAATCTT CCCMAAATTT	
	S. lugdunensis	(7 TAGAAATGTT CCCMAAAATT	
	S. saprophyticus	G TAGAAATGTT CCCTTAATTT	
	S. saprophyticus	(i 'I'AGAAATGTT CCCMAAAATT	
30	S. saprophyticus	1 'AGAAATCTT CCCMAAATT	
30	S. seiuri sciuri	G TTGAAATCTT CCCMAAAMMA	
	S. warneri	TAGAAATCTT COOMAS	
	S. warneri	G TAGAAATGTT CCGTAAGTTA TURGER	
	S. warneri	G TAGAAATGTT CCGTAAGTTA TURKCA	
35	S. warneri	G IAGAAATGTT CCGTAAGTTA TUACA	
33	B. subtilis	G IIGAAATGTT CCCTAAgame emuca	
		G TIGAAATGTT CCGCAAACTG CTCCA	
	L. monocytogenes	G IAGAAATGTT CCGTAAATTA CTACA	
	Selected sequence	GAAATGTT CCGTAAATTA TT	
40	Selected genus-specific	CEO. 77	
	hybridization probe:	SEQ ID NO: 605	
	<u> </u>	SARATUTI CICILA A A TON MA	

hybridization probe:

GAAATGTT CCGTAAATTA TT

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO: 179). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases.

Annex XIV: Strategy for the selection of Staphylococcus saprophyticus-sp cific and of Staphylococcus haemolyticus-sp cific hybridization prob s from tuf sequ nc s.

5				
			383 SEQ I	
		339 AG TtGGTGAAGA AgTtGAAATC ATCGGTTTAC ATGACACATC	TAA 17	
	S. aureus			-
	S. aureus			
10	S. aureus			-
	S. aureus	X-MECXXXVIII ATCIDELLAC MICES		
	S. aureus aureus			
	S. auricularis		1111	
	S. capitis capitis			_
15	S. caseolyticus		-	
	S. cohnii	TO THE TAXABLE AT CONTACT AT CONTACT ACCURACE TO	1777	
	S. epidermidis	TO THE REPORT OF A PERSON OF THE PROPERTY OF T		86
	s. haemolyticus	TO THE PROPERTY OF THE PROPERT	11111	89
	S. haemolyticus	TO THE PARTY OF A THE CANADATE ATTRECTATED ATGACACTIC	TUU .	90
20	S. haemolyticus	TOTAL ABGASACTIC	11111	88
	S. haemolyticus	THE PARTY OF A THE CANADA ATTRICTATED ADDRESS TO	1121	94
	S. hominis			91
	S. hominis hominis	ACE ACTION APPEARANCE APPROXIMATE ARGRANGE ARCHARGE	1111 -	.93
	S. hominis	company a pre-Chalmet Attracta Magmanus -	- 11	.95 .96
25	S. hominis	TO THE PROPERTY OF THE PROPERT	1122	.9 6 .97
	S. hominis		1 LM 2 -	.98
	S. lugdunensis	TO THE TAXABLE AND TO A TOTAL AND THE ADDRESS OF THE TAXABLE AND THE ADDRESS OF THE TAXABLE AND THE TAXABLE AN	· Chr	200
	S. saprophyticus	TO THE COURT OF A AMERICAN AND A TOTAL AND	. CAA	199
	S. saprophyticus	THE PARTY OF THE P		201
30	S. saprophyticus		· TLAL	201 187
	S. sciuri sciuri			192
	S. warneri			202
	S. warneri	REPERTANTE ATCITUTED ATGRASOLA	J 1101 -	202 203
	S. warneri	TO A TORREST OF A THE CANADA A THE CONTRACT OF THE CANADA A THE CANADA	~ TUU .	203
35	S. warneri		9	- 78
	B. subtilis			-
	E. coli L. monocytogenes	TO THE COME A CONTROL AND CARREST AT COURT AND	a trus	
	Selected sequences	ATTGGTATCC ATGACACII	-	
40	Selected seducinces	CGGTGAAGA AATCGAAATC A		

Selected speciesspecific hybridization probes:

45

SEQ ID NO: 594 ATTGGTATCC ATGACACTTC

SEQ ID NO: 599 CGGTGAAGA AATCGAAATC A

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ 50 ID NO: 179). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases.

Annex XV: Strategy for the sel ction of Staphylococcus aureus-specific and of Staphylococcus epidermidis-specific hybridization probes from tuf sequences.

5. aureus 6. aureus 7ACACCACA TACTGAATTC AMAGCAG. TTCTTCCC 7. TTCTTCCC 7. AACTATCGEC CACAATT 7. TTCT			
10 S. aureus		C	521 547 592 SEQ ID NO
S. aureus S. caseolyticus S. caseolyticus S. haemolyticus S. hominis S. saprophyticus S. saprop	10		TACACCACA TACTGAATTC AAACCAC TECTERS 617
S. aureus S. aureus S. aureus S. aureus aureus S. aureus aureus S. aureus aureus S. auricularis TACACCACA TACTAAATTC AAAGCAG. TTCTTCCCA AACTATCGCC CACAATT 177 TACACCACA TACTAAATTC AAAGCAG. TTCTTCCCA AACTATCGCC CACAATT 180 TACACCACA CACTAAATTC AAAGCAG. TTCTTCAGT AACTACCGCC CACAATT 181 S. capitis capitis TACACCACA CACACCACA CACAAATTC AAAGCAG. TTCTTCAGT AACTACCGCC CACAATT 181 TACACCACA CACAAATTC CACACACT. TTCTTCAGT AACTATCGCC CACAATT 182 CACACCCCA CACAAAATTC CACACACT. TTCTTCACT AACTATCGCC CACAATT 185 CACACCCCA CACAAAATTC CACACACA TTCTTCACA AACTATCGCC CACAATT 186 CACACCCCA CACAAAATTC CACACACACA TTCTTCACA AACTATCGCC CACAATT 189 S. hominis S. hominis S. hominis S. hominis TACACCCCA CACAAAATTC CACACACACACACACACAC	10		
S. aurieus aureus S. aurieus arteus S. aurieus arteus S. aurieus apriis S. capitis capitis S. cohnii TACACCACA CACTAAATTC AAAGCAGTTCTTCAGT AACTACGCC CACAATT 181 TACACCACA CACTAAATTC AAAGCAGTTCTTCAGT AACTACGCC CACAATT 182 TACACCACA CACTAAATTC AAAGCAGTTCTTCAGT AACTACGCC CACAATT 182 TACACCACA CACAAAATTC AAAGCAGTTCTTCAGT AACTACGCC CACAATT 183 TACACCACA CACAAAATTC AAAGCAGTTCTTCAGT AACTACGCC CACAATT 183 TACACCACA CACAAAATTC AAAGCAGTTCTTCAGT AACTATCGCC CACAATT 184 TACACCACA CACAAAATTC AAAGCAGTTCTTCAGT AACTATCGCC CACAATT 185 CACACCCCA CACAAAATTC AAAGCAGTTCTTCACA AACTATCGCC CACAATT 185 S. haemolyticus S. haemolyticus S. haemolyticus S. haemolyticus S. haemolyticus S. hominis TACACCCCA CACAAAATTC AAAGCAGTTCTTCACA AACTATCGCC CACAATT 189 CACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 189 CACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 196 TACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 197 TACACCCCA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 197 TACACCCACA CACAAAATTC AAAGCAGTTCTTCACT AACTATCGCC CACAATT 197 TACACCCACA CACAAAATTC AAAGCAGTTCTTCACT AACTACCGCC CACAATT 197 TACACCCACA CACAAAATTC AAAGCAGTTCTTCACT AACTACCGCC CACAATT 197 TACACCCACA CACAAAATTC AAAGCAGTTCTTCACT AACTACCGCC CACAATT 197 TACACCCACA TACAAAATTC AAAGCAGTTCTTCACT AACTACCGCC CACA			
S. auricularis S. capitis capitis S. casiolyticus S. caseolyticus S. cohnii TACACCACA CACACATT AAAGCGGTCTTCACT AACTACGGC CACAATT 182 TACACCCACA CACACATT AAAGCGGTCTTCACT AACTACGCC CACAATT 182 TACACCCACA CACACATT AAAGCGGTCTTCACT AACTACGCC CACAATT 183 TACACCACA CACACATT AAAGCGGTCTTCACT AACTACGCC CACAATT 184 TACACCACA CACACATT AAAGCGGTCTTCACT AACTACGCC CACAATT 185 CACACCCCCA CACACAATT AAAGCAGTCTTCACT AACTATCGCC CACAATT 185 S. haemolyticus S. hominis TACACCCCA CACACAATT AAAGCAGTCTTCACT AACTATCGCC CACAATT 189 CACACCCCCA CACACAATT AAAGCAGTCTTCACT AACTATCGCC CACAATT 189 CACACCCCA CACCAAATT AAAGCAGTTCTTCACT AACTATCGCC CACAATT 189 CACACCCCA CACCAAATT AAAGCAGTTCTTCACT AACTATCGCC CACAATT 189 CACACCCCA CACCACATT AAAGCAGTTCTTCACT AACTATCGCC CACAATT 189 TACACCCCA CACCACATT AAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCCCA CACCAAATT CAAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCCCA CACCAAATT CAAAGCAGTTCTTCACT AACTATCGCC CACAATT 195 S. saprophyticus TACACCCCA CACCAAATT CAAAGCAGTTCTTCCCT AACTATCGCC CACAATT 193 TACACCCCA CACCACATT AAAGCAGTTCTTCCCT AACTATCGCC CACAATT 193 TACACCCAC TACCAAATTC AAAGCAGTTCTTCACT AACTACCGCC CACAATT 193 TACACCCACA TACCAAATTC AAAGCAGTTCTTC		-	
S. capitis capitis S. caselyticus S. caselyticus S. cohnii TACACCACA CACTAAATTC AMACGGG. TTCTTCATA AACTACGGC CACAATT 182 S. cohnii TACACCACA CACAAACTT AAAGCGG. TTCTTCATA AACTACCGCC CACAATT 183 S. pidermidis S. haemolyticus S. haemolyticus CACACCECA CACGAAATTT AAAGCGG. TTCTTCACA AACTATCGCC CACAATT 186 CACACCECA CACGAAATTT AAAGCAG. TTCTTCACA AACTATCGCC CACAATT 187 S. hominis CACACCECA CACGAAATTC AAAGCAG. TTCTTCACA AACTATCGCC CACAATT 188 CACACCECA CACGAAATTC AAAGCAG. TTCTTCACA AACTATCGCC CACAATT 189 CACACCECA CACGAAATTC AAAGCAG. TTCTTCACT AACTATCGCC CACAATT 188 CACACCECA CACGAAATTC AAAGCAG. TTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCECA CACGAAATTC AAAGCAG. TTCTTCACT AACTATCGCC CACAATT 195 S. hominis TACACCECA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 191 TACACCCCAC CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 191 TACACCCCCA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 191 TACACCCCCA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 192 TACACCCCCA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 193 TACACCCCCA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 193 TACACCCCCA CACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 197 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCCCT AACTATCGCC CACAATT 197 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 197 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 197 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 198 TACACCCCCA CACGAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 198 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 199 TACACCCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 199 TACACCCCA TACGAAATTC AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 19			
S. caseolyticus S. cohnii S. epidermidis S. epidermidis S. haemolyticus S. hominis S. hominis S. hominis S. hominis S. hominis TACACCECA CACABAATT AAAGCAG. TICTTCACA AACTATCGEC CACAATT 189 CACACCECA CACABAATT AAAGCAG. TICTTCACA AACTATCGEC CACAATT 189 CACACCECA CACABAATT AAAGCAG. TICTTCACA AACTATCGEC CACAATT 189 CACACCECA CACABAATTC AAAGCAG. TICTTCACA AACTATCGEC CACAATT 189 CACACCECA CACABAATTC AAAGCAG. TICTTCACA AACTATCGEC CACAATT 189 CACACCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 191 TACACCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 192 S. hominis TACACCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 193 TACACCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 194 TACACCCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 195 S. saprophyticus TACACCCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 196 CACACCECA CACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 197 TACACCCACA TACABAATTC AAAGCAG. TICTTCACT AACTATCGEC CACAATT 198 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTATCGCC CACAATT 198 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCGCC CACAATT 197 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 198 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 198 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 199 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 190 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 191 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 192 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 192 TACACCACA TACABAATTC AAAGCAG. TICTTCACT AACTACCACC CACAATT 1	15		
S. cohnii S. epidermidis S. haemolyticus S. haemolyticus CACACCECA CACABATT AAAGCAG. TICTTCAGT AACTATCGCC CACAATT S. haemolyticus S. hominis TACACCECA CACABAATT AAAGCAG. TICTTCACB AACTATCGEC CACAATT 186 CACACCECA CACABAATT AAAGCAG. TICTTCACB AACTATCGEC CACAATT 187 CACACCECA CACABAATT AAAGCAG. TICTTCACB AACTATCGEC CACAATT 188 CACACCECA CACABAATT CACACCECA CACBAAATT AAAGCAG. TICTTCACB AACTATCGEC CACAATT 189 CACACCECA CACBAAATT CACACCECA CACBAAATT CACACCECA CACBAAATT AAAGCAG. TICTTCACT AACTATCGEC CACAATT 190 CACACCECA CACBAAATT CACACCECA CACBAAATT CACACCECA CACBAAATT CACACBACA TACABAATT CACACCECA CACBAAATT AAAGCAG. TICTTCACT AACTATCGEC CACAATT 191 TACACCCECA CACBAAATT CACACCECA CACBAAATT AAAGCAG. TICTTCACT AACTATCGEC CACAATT 192 CACACCECA CACBAAATT CACACCECA CACBAAATT CACACCECA CACBAAATT AAAGCAG. TICTTCACT AACTATCGEC CACAATT 193 TACACCCCACA TACABAATT CACACCACA TACABATT CACACCACA TA	13	S. capitis capitis	
S. epidermidis S. haemolyticus S. haemolyticus CACACCECA CACACACECA CACCACACECA CACCACACECAC CACCACACECACA CACCACECACACACECACACACA			TACTCCACA TACTAAATTC AAAGCTG TTCTTCACT AACTACCGCC CACAATT 182
S. haemolyticus S. haemolyticu			
S. haemolyticus S. hominis TACACCECA CACABAATTC AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 195 AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 196 AAAGCAG. TTCTTCCCT AACTATCGEC CACAATT 191 TACACCECA CACABATTC S. saprophyticus S. saprophytic		S. epidermidis	
S. haemolyticus S. haemolyticus S. haemolyticus S. haemolyticus S. haemolyticus S. haemolyticus S. hominis CACACCECA CACAAATT AAAGCAG. TTCTTCACA AACTATCGEC CACAATT 190 CACACCECA CACAAATTC AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 191 CACACCECA CACAAATTC AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 195 CACACCECA CACAAATTC AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 196 CACACCECA CACAAATTC AAAGCAG. TTCTTCACT AACTATCGEC CACAATT 197 TACACCECA CACAAAATTC AAAGCAG. TTCTTCECT AACTATCGEC CACAATT 191 TACACCECA CACAAAATTC AAAGCAG. TTCTTCECT AACTATCGEC CACAATT 193 S. hominis S. hominis TACACCECA CACAAAATTC TACACCECA CACAAAATTC AAAGCAG. TTCTTCECT AACTATCGEC CACAATT 193 TACACCACA TACAAAATTC TACACCACA TACAAATTC TACACCAC	20	S. haemolyticus	CACACCECA CACABAATTE ADACCEC TROUTCACT AACTATCGCC CACAATT 185
S. haemolyticus S. hominis S. hominis S. hominis S. hominis S. hominis S. hominis AAAGCAG. TTCTTCACT AACTATCGtC CACAATT 188 AAAGCAG. TTCTTCACT AACTATCGTC CACACATT 195 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 196 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 196 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 196 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 191 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 193 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 193 AAAGCAG. TTCTTCACT AACTATCGTC CACAAATT 194 AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 197 AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 198 AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 199 AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 198 AAAGCAG. TTCTTCACT AACTACCGCC CACAATT 199 AAAGCAG. TTCTTCAC	20	S. haemolyticus	CACACCECA CACABANTE ANACCAC. TTCTTCACA AACTATCGEC CACAATT 186
S. haemolyticus S. hominis S. hominis S. hominis S. hominis S. hominis S. hominis AAAGCAGTTCTTCACT AACTATCGtC CACAATT 188 S. hominis TACACCTCA CACBAATTC AAAGCAGTTCTTCACT AACTATCGTC CACAATT 195 AAAGCAGTTCTTCACT AACTATCGTC CACAATT 196 CACACATT 196 CACACACTCA CACBAATTC AAAGCAGTTCTTCACT AACTATCGTC CACAATT 196 CACACATT 191 AAAGCAGTTCTTCACT AACTATCGTC CACAATT 193 AAAGCAGTTCTTCACT AACTATCGTC CACACATT 193 AAAGCAGTTCTTCACT AACTATCGTC CACACATT 193 AAAGCAGTTCTTCACT AACTATCGTC CACACATT 193 AAAGCAGTTCTTCACT AACTATCGTC CACACATT 194 AAAGCAGTTCTTCACT AACTATCGTC CACACATT 197 AAAGCAGTTCTTCACT AACTACCGCC CACAATT 198 AAAGCAGTTCTTCACT AACTACCGCC CACAATT 199 AAAGCAGTTCTTCACT AACTACCGCC CACAATT 199 AAAGCAGTTCTTCACT AACTACCGCC CACAATT 198 AAAGCAGTTCTTCACT AACTACCGCC CACAATT 199 AAAGCAGTTCTTCACT AACTACCGCC C		S. haemolyticus	CACACCECA CACABARTE ANACAG TCTTCACa AACTATCGEC CACAATT 189
S. hominis TACACCECA CACAAATTC AACCECA CACAAATTC AAAGCAGTTCTTCACT AACTATCGEC CACAATT 196 CACACATT 196 CACACATT S. hominis TACACCECA CACAAATTC AAAGCAGTTCTTCCT AACTATCGEC CACAATT 191 CACACACTC CACACATT S. hominis TACACCECA CACAAATTC AAAGCAGTTCTTCCT AACTATCGEC CACAATT 193 CACACACT CACACACATT CACCACACA TACACACAC		S. haemolyticus	
5. hominis 5. hominis hominis 5. hominis hominis 5. hominis hominis 5. hominis 5. hominis 5. hominis 6. hominis 7. Hacacetca cacaaaattc Aaagcagttetteet Aactategee Cacaatt 191 7. Hacacetca cacaaaatte Aaagcagttetteet Aactategee Cacaatt 191 7. Aaagcagttetteet Aactategee Cacaatt 193 7. Lugdunensis 7. Lugdunensis 7. Lugdunensis 7. Saprophyticus 7. Saprophyt		S. hominis	CACACCECA CACADATTIC ANACCACTCTTCACT AACTATCGEC CACAATT 188
S. hominis hominis S. lugdunensis S. saprophyticus S. sapro			
S. hominis	25	S. hominis hominis	
S. hominis S. lugdunensis S. lugdunensis S. saprophyticus		S. hominis	
S. lugdunensis S. saprophyticus S. sciuri sciuri S. warneri AAAGCGG TTCTTCAGT AACTACGGCC CACAATT 199 AACTACGGCC CACAATT 199 AACTACGGCC CACAATT 199 AAAGCGG TTCTTCAGT AACTACGGCC CACAATT 192 AAAGCGG TTCTTCAGT AAACTACGGCC CACAATT 193 AAAGCGG TTCTTCAGT AAACTACGGCC CACAATT 192 AAAGCGG TTCTTCAGT AAACTACGGCC CACAATT 193 AAAGCGG TTCTTCAGT AAACTACGGCC CACAATT 197 AAAGCGG TTCTTCAGT AAACTACGGCC CACAATT 197 AAAGCGG TTCTTCAGT AA		S. hominis	
S. saprophyticus S. sciuri sciuri S. warneri AAAGCAGA TACaaAATTC AAAGCGGTTCTTCACT AACTACCGCC CACAATT 200 AAAGCGGTTCTTCACT AACTACCGCC CACAATT		S. lugdunensis	TACACCTCA CACTACATT ARAGCAGTTCTTCtCT ARCTATCGtC CACAATT 194
S. saprophyticus S. saprophyticus S. saprophyticus S. saprophyticus S. sciuri sciuri S. warneri S. warneri S. warneri S. warneri ACACCACA TACABANTTC ANAGCGGTTCTTCACT AACTACCGCC CACANTT 200 TACACCACA TACABANTTC ANAGCGGTTCTTCACA AACTACCGCC CACANTT 201 TACACCACA TACABANTTC ANAGCGGTTCTTCACA AACTACCGCC CACANTT 201 TACACCACA TACABANTTC ANAGCGGTTCTTCACA AACTACCGCC CACANTT 192 TACACCACA TACABANTTC ANAGCGGTTCTTCACA AACTACCGCC CACANTT 187 S. warneri S. warneri TACACCACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 202 B. subtilis CACCCACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACACACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACACACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCACACACA TACABANTTC ANAGCGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCCCACACACACA TACABANTTC ANAGCGGGTTCTTCAGT AACTACCGCC CACANTT 203 CACCCCCACACACACACACACACACACACACACACACA			TACACCACA TACCACATT AAAGCTGTTCTTCtCa AACTACCGCC CACAATT 197
S. saprophyticus S. sciuri sciuri S. warneri S. warneri TACACCACA TACABAATTC AAAGCGG. TTCTTCACT AACTACCGCC CACAATT 200 TACACCACA TACABAATTC AAAGCTG. TTCTTCACA AACTACCGCC CACAATT 201 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 192 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 202 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 202 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA CACBATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA CACBATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA TACABAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA CACBAGTTC CACBAGTTC CACBAGTT AACTACCGCC CACAATT 203 TACACCACA TACTGAATTC AAAGCTG. TTCTTCAGT AACTACCGCC CACAATT 203 TACACCACA TACTGAATTC AAACTACCGCC CACAATT 203 TACACCACA TACTGAATTC AAA	30	S. saprophyticus	TACACCACA TACAGATT AAAGCGGTTCTTCACT AACTACCGCC CACAATT 108
S. sciuri sciuri S. warneri S. warneri TACACCACA TACABATTC AAAGCTGTTCTTCACA AACTACCGCC CACAATT 201 TACACCACA TACABATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 192 TACACCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 S. warneri TACACCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 B. subtilis CACCCCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCCACA TACABAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCCACA CACCBAGTTC GAACCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCCACA TACCBACTC GACCBAGTTC GAACCTGCTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA CACCBAGTTC GAACCTGCTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAAACTACCGCC CACAATT 78 TACACCACA TACTGAATTC AAACTACCGCC CACAATT		S. saprophyticus	
S. warneri S. warneri S. warneri TACACCACA TACaBAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 192 TACACCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 AACTACCGCC TACABATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 B. subtilis CACCCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCACA TACABAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCACA CACCAAGTTC GAACTGTTCTTCAGT AACTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC GAACTGTTCTTCAGA GGCTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC GAACTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC GAACTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACA TACCCACA TACCCACA CACCAAGTT 203 CACCCACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACA TACCCACA TACCCACA TACCCACA CACCAAGTT 203 CACCCACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACACACA TACCCACA CACCAAGTTC AAACTACCGCC CACAATT 203 CACCCACACACACACACACACACACACACACACACACA		S. sciuri sciuri	CACACCACA TALABARATTE AAAGCGG TTCTTCACT AACTACCGCC CACAATT 200
S. warneri TACACCACA TACABAATTC ARAGCGGTTCTTCAGT AACTACCGCC CACAATT 187 S. warneri TACACCACA TACABAATTC ARAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 B. subtilis CACTCCACA TACABAATTC ARAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCBAATTC ARAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCBAATTC ARAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CACCBACTT GAATCTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA CACCBACTT AAACCTGTTCTTCAGT AACTACCGCC CACAATT 78 ACCACA TACTGAATTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT 78 Selected species- Sequences SEQ ID NO: 585 SEQ ID NO: 593			
S. warneri S. warneri B. subtilis CACTCCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 AAAGCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCBAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCBAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CACCBAGTTC GAATCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CACCBAGTTC GAATCTGTTCTTCAGT AACTACCGCC CACAATT 78 ACCACA TACTGAATTC AAAGCTGTTCTTCAGA AACTACCGCC CACAATT - TTCACT AACTACCGCC CACAATT - Selected species- specific hybridi- ACCACA TACTGAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT - SEQ ID NO: 585 SEQ ID NO: 593			TACACCACA TACABAATTC AAAGCGG
S. warneri B. subtilis CACTCCACA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT 202 CACTCCACA CAGCAAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCAAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CAGCAAATTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 CACTCCACA CACCAAGTTC GAACTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA CACCAAGTTC AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA TACTCACATT AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA TACTCACATT AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA TACACACATT AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 78 TACACCACA TACTCACATT AAACTACCGCC CACAATT 78 TACACCACACATT AAACTACCGCC CACAATT 78 TACACCACACACTACACACACACACACACACACACACAC	35		
B. subtilis E. coli CACtCCACA CAGCAATT AAAGCTGTTCTTCAGT AACTACCGCC CACAATT 203 E. coli CAAGCCGCA CACCAAGTTC GAACCTGTTCTTCATA GGCTACCGCC CCACAGTT - TACCTCCACA CACCAAGTTC GAACCTGTTCTTCATA GGCTACCGCC CACAATT - Selected Sequences Selected species- specific hybridi- SEQ ID NO: 585 SEQ ID NO: 593			TACALCAGA TACABAATTC AAAGCGGTTCTTCAGT AACTACCGCC CACAATT
E. coli L. monocytogenes 40 Selected Sequences Selected Species- Sepecific hybridi- Specific hybridi- Secoli CAAGCCGCA CACCAAGTTC GAACCTGTCTTCAAA GGCTC CACAAGTT - AAAGCTGTCTTCAAAAGCTG CACAAGTT - AAAGCTGTCTTCAAAAAGCTG CACAAGTT - AAAGCTG AAACTACCGCC CACAAGTT - AAAGCTG AAACTACCGCC CACAAGTT - AAAGCTG AAACTACCGCC CACAAGTT - AAAAGCTG AAACTACCGCC CACAAGTT - AAAAGCTG AAAAGCTG AAAAGCTG CACAAGTT - AAAAGCTG AAAAGCTG AAAAGCTG AAAAGCTG CACAAGTT - AAAAGCTG AAAAGCTG AAAAGCTG CACAAGTT - AAAAGCTG AAAAGCTG AAAAGCTG CACAAGTT - AAAAGCTG AAAAGCTG CACAAGTT - AAAAGCTG AAAAGCTG AAAAGCTG CACAAATT - AAAAGCTG AAAAGCTG AAAAAGCTG CACAAATT - AAAAGCTG AAAAGCTG AAAAGCTG AAAAGCTG CACAAATT - AAAAGCTG AAAAGCTG AAAAGCTG AAAAGCTG CACAAATT - AAAAGCTG AAAAGCTG AAAAGCTG CACAAATT - AAAAGCTG AAAAAGCTG AAAAGCTG AAAAGCTG AAAAGCTG AAAAAGCTG AAAAGCTG AAAAAGCTG AAAAAAAAAA			
L. monocytogenes Selected Sequences TACCACA CACTACTTC AAAGCTGTTCTTCAAC AACTACCGCC CACAATT - Sequences TACCACA TACTGAATTC AAAG TTCACT AACTATCGCC CACA Selected species- specific hybridi- SEQ ID NO: 585 SEQ ID NO: 593			CALEGRACA CAGGAAATTC AAAGCTGTTCTTCtCT AACTAGCGTC CAGGAATT 203
Selected Sequences ACCACA TACTGAATTC AAAG Selected Species- Sequences SEQ ID NO: 585 Specific hybridi- SEQ ID NO: 585 SEQ ID NO: 593			CAAGUCGCA CACCAAGTTC GAAtCTGTTCTTCAAa GGCTACCGtC CCCAGTT
Selected species- SEQ ID NO: 585 Specific hybridi- SEQ ID NO: 585 SEQ ID NO: 593	40	Selected	
Selected species- SEQ ID NO: 585 SEQ ID NO: 593	• •	Seguences	ACCACA TACTGAATTC AAAG TTCACT AACTATCCCC CACAATT
specific hybridi- ACCACA TACTICAL SEQ ID NO: 593		sequences	ANCINICACO CACA
specific hybridi- ACCACA TACTICATION SEQ ID NO: 593		Selected species	070 Day 1
45 zation probes: ACCACA TACTGAATTC AAAG TTCACT AACTATCGCC CACA		specific hybrid:	SEQ ID NO: 585 SEO ID NO: 593
ractor brones:	45	Zation probability	ACCACA TACTGAATTC AAAG TTCACT AACTATCCCC CTC
		racrow brones:	THOUSE CACA

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO: 179). Nucleotides in capitals are identical to the selected sequence or incomplete sequence data.

Ann x XVI: Strategy for the sel ction of the Staphylococcus hominis-sp cific hybridization probe from tuf sequences.

5		383	SEQ ID NO:
-		358 ATC ATCGGTtTac AtGACACaTC TAA	179
	S. aureus	ATC ATCGGTTTAC ACCACACATE TAA	176
	S. aureus	ATC ATCGGTTTAC ACGACACATO TAA	177
	S. aureus	ATC ATCGGTTTAC ATGACACATC TAA	178
10	S. aureus	ATC ATCGGTTTAC AtGACACATC TAA	180
10	S. aureus aureus	ATC ATCGGTTTAC ATGACACATC TAA	181
	s. auricularis	ATC ATCGGTATGA AAGACGGTTC AAA	182
	S. capitis capitis	ATC ATCGGTATCC ACGAAACTTC TAA	183
	S. caseolyticus	ATC ATTGGTTTAA CTGAAgaaCC AAA	184
15	S. cohnii	ATC ATCGGTATGC AAGAAGATTC CAA	185
13	S. epidermidis	ATC ATCGGTATGC ACGAAACTTC TAA	186
	S. haemolyticus	ATC ATTGGTATCC AtGACACTTC TAA	189
	S. haemolyticus	ATC ATTGGTATCC AtGACACTTC TAA	190
	S. haemolyticus	ATC ATTGGTATCC AtGACACTTC TAA	188
20	S. haemolyticus	ATT ATTGGTATCA AAGAAACTTC TAA	196
20	S. hominis	ATT ATTGGTATCA AAGALACTTC TAA	194
	S. hominis	ATT ATTGGTATCA AAGAAACTTC TAA	191
	S. hominis hominis	ATT ATTGGTATCA AAGAAACTTC TAA	193
		ATT ATTGGTATCA AAGAAACTTC TAA	195
0.5	s. hominis	ATT ATTGGTATCA AAGAAACTTC TAA	197
25	S. hominis	ATT ATTGGTATCC ACGATACTAC TAA	198
	S. lugdunensis	ATC ATCGGTATGC AAGAAGAATC CAA	200
	S. saprophyticus	ATC ATCCCTATCC AAGAAGAATC CAA	199
	S. saprophyticus	ATC ATCGGTATGC AAGAAGAATC CAA	
	S. saprophyticus	ATC ATCGGTTTAA CTGAAGAATC TAA	201
30	S. sciuri sciuri	ATC ATCGGTTTAC ATGACACTTC TAA	187
	S. warneri	ATC ATCGCTTTAC AtGACACTTC TAA	192
	S. warneri	ATC ATCGGTTTAC ATGACACTTC TAA	202
	S. warneri	ATC ATCGGTTTAC ATGACACTTC TAA	203
	S. warneri	ATC ATCGGTCTtc AAGAAgagag AAA	-
35	B. subtilis	ATC GTTGGTATCA AAGAGACTCA GAA	78
	E. coli	GTT ATCGGTATCG AAGAAgaaag AAA	_
	L. monocytogenes	ATTGGTATCA AAGAAACTTC	
	Selected sequence		
	dec-erosific	SEQ ID NO: 597	
40	Selected species-specific	ATTGGTATCA AAGAAACTTC	
	hybridization probe:	*** * *********************************	

hybridization probe: ATTGGTATCA AAGAAACTTC

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO: 179). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases.

amplification primers specific for the genus ${\it Enterococcus.}$ Annex XVII: Strategy for the selection from tuf sequences of the

ccus.	SEQ ID NO: - 58	59 60 61	607 608 65	609 67 89	69 70 71	662ª - 16	179 - - 78	22	
	CGTGGACAAG CGTGGACAAG		OCTGGACAAG TA OCGTGGACAAG TT OCGTGGACAAG TA		CGTGGACAAG TA CGTGGACAAG TA CGTGGACAAG TA CGTGGtCAAG TA	CGTGGCCAgG CGTGGECAgG CGTGGCCAgG	CGTGGECAAG TA CGTGGECAAG TT CGTGGECAAG TT CGTGGECAAG TA	=	927p
•	ea agatatccaa ea agacatccaa ea agatatccaa	A AGACATCCAA	TGACGAATAACGTGA AGACATCCAA TGACGAATATCGTGA AGACATCCAA TGACGAATATCGTGA AGACATCCAA	TCACCAATAACGTCA ACACATCCAA TCACCAATAACGTCA ACACATCCAA TCACCAATAACGTCA ACACATCCAA TCACCAATAACCTCA	ACGTCA ACACATCCAATCGTCA ACACATCCAATCGTCA ACACATCCAA	A AGACGITGAG E GGACGITGAG A AGACGITGAG			SEQ ID NO: 657b
298 663		TGACGAATATCGTGA TGACGAATAACGTGA TGACGAATAACGTGA	TCACCAATAACGTG TCACCAATATCGTG	AATAACGIG	TGATGATAACGTGA TGAGGATATCGTGA TGATGACTATCGTGA	MILLGCG <u>cGA</u> MGTACCG <u>Tac</u> GTAGCGTGA		IAA	
			TGGCTGCAGT TGACG TGGCTGCAGT TGACG TGGCTGCAGT TGACG		TGGCTGCtGT TGATG TGGCTGCAGT TGATGI TGGATGCAGT TGATGI			scgt ccatgataa. Scagt Tgayga	NO: 656
0	TAGAATTAA TGGC TGGAATTAA TGGC TAGAATTAA TGGC				TAGAATTAA TGGCI TCGAATTAA TGGCI TGGACTTAA TGGAT TCGACCTCA TGCAG		TCGAATTA TGGaTGCGGT TGGAATTGA TGaacaCAGT TGGAACTGG CTGGCttccT TGGAACTGA TGGaaCCTGT	AATTAA TGGCTGCAGT	SEQ ID
270		TTC	-		icus	AGG TGA TAG	60	} 5	s-specific:
		E. faecalis E. faecium	E. flavescens E. gallinarum E. hizz			v. VaginalisB. cepaciaS. aureusB. subtilis	S. pneumoniae E. coli B. fragilis C. trachomatis	Selected sequences ^a Selected sequences ^a	Selected genus-specific: primer sequences:
٠		10		15	20	;	52	30	o, U,

The sequence numbering refers to the *Enterococcus durans tuf* gene fragment (SEQ ID NO: 61). Nucleotides in capitals are identical to the selected sequence SEQ ID NO: 656 or 657 or match that sequence. Mismatches are indicated by lower cases. Mismatches for SEQ ID NO: 271 are indicated by underlined nucleotides. TTG TCCACGTIGG AIRICTICA

TTG TCCACGTTCG ATRICTTCA

AATTAA TGGCTGCAGT TGAYGA

primer sequences:

35

40

SEQ ID NO: 657b

SEQ ID NO: 271b

stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. ³ "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" This sequence is the reverse-complement of the above tuf sequence.

faecalis- rus faecium- roccus Lfic	SEQ ID NO: 58 59 60 61 62 608	609 67 68 69 70 71 72 . 662	16 179 - - 78 - 22	
the Enterococcus factor the Enterococcus nd of the Enterococcus narum group-specifi equences.	AAAACATCG GTGCLTTGLT ACGTGGT AAAACATCG GTGCATTGCT ACGTGGT AAAACATCG GTGCATTALT ACGTGGT AAAACATTG GTGCATTALT ACGTGGT CAAACATTG GTGCATTALT ACGTGGT CAAACATTG GTGCTTTACT ACGTGGT AAAACATTG GTGCTTTACT ACGTGGT AAAACTTG GTGCTTTACT ACGTGGT AARACATTG GTGCTTTACT ACGTGGT	GTGCATTGCT GTGCATTGCT GTGCGTTTACT GTGCATTACT GTGCATTACT GTGCATTACT GTGCCTTTGCT GTCCTTTGCT	Gretterter Gratecriet Grecerter Gretterer Gretgriet Gattgeret Gattgeret	SEQ ID NO: 620 ATTG GTGCATTGCT ACGT
Strategy for the selection of the Enterococcus faecalis- specific hybridization probe, of the Enterococcus faecium- specific hybridization probe and of the Enterococcus casseliflavus-flavescens-gallinarum group-specific hybridization probe from tuf sequences.	GTATOGCTCA CGAAACTGCT GTATTGCTCA AGAAACTTCT GTATTCGCTGA AGAAACTGCT GTATTCGCGGA AGAAACTGCT GTATTAAACA CGAAACATCT GTATTAAACA AGAAACATCT GTATTAAACA AGAAACATCT	GTATTGCTGA GTATTGCTGA GTATCGCAGA GTATCGCTGA GTATCGCTGA GTATTGCTGA GTATTCCGGA GTATTCCGGA GTATTCCGGA	yegAtACccag A gcogACggtG Ach tGACACATCT SAGA aGAGAACAAG AAGA aGAGACCAAG AA aGAGACCAG ggtGA aGALAaG ggtGA aGALAaG Ag aGALACTAAACATC	SEQ ID NO: 603 G GIATTAAAGACGAAACATC O: 602 GTTG GTATT
Strategy for specific hy specific hy casseliflav hybridizati	423 ACGAAGIT GAAAICGIAG ACGAAGIT GAAAICGIIG ACGAAGIT GAAAIAGIIG ACGAAGIT GAAAICGIAG ACGAAGIT GAAAICGIIG ACGAAGIT GAAAICGIIG	ACGAACT ATGAACTA ACGTEATC ACGAACTT ACGAACTT ACGAACTT ATGAACTT	CCCAGTT AAGAAGTT AAGAAGTT ACGAAGTT ACGAAGTT ACGAAGTT ACGAAGTT ATGAAGTT ATGAAGTT ATGAAGTT ATGAAGTT ATGAAGTT ATGAAGTT ATGAAGTT	SEQ S GTATT SEQ ID NO: 602
Annex XVIII:			C. diphtheriae G. vaginalis B. cepacia S. aureus B. subtilis S. pneumoniae E. coli B. fragilis C. trachomatis Selected sequences	Selected species-sperspecies:
Ś	10	15	30	35

AAGTT GAAGTTGTTG GTATT

6

the Ann x XIX: Strategy for the selection of primers from tuf sequences for identification of platelets contaminants.

	SEQ ID NO:		78	100	153a	209	159	611	168	224	ı	700	235	
	717 T CCGIACAACI GACGIAAC	T CCGTACAACT GACGTAAC T CCGTACAACT GACGTGAC	CCGIACTACT	r ccetacaact gacgtgac F ccetactact gacgtgac	T CCGTACCACK GACGTGAC	CCCIACIACI CACGIAAC	CCGTACTACT CACCTGAC	CCGTACTACT GACGTAAC	COGENCIACE GACGEGAC	CCCTACART CACCITAR	CCGTACAACT CACCTAAC	CCGTACAACT GACGTTAC	CCGTACAACT GAtGTAAC	ILLIAIT CCGTACIACT GACGT
	ACTGGIGIAG AGAIGITCCG LAAACIC AGTICIACII CCGIACAACI GACGIAAC	CCG CAAACTC AGTICTACTI	ACTGGCGTTG AAATGTTCG CAAACTC AGTTCTACTT	ACCECCITE AAAIGITCC CAAACTC AGIICIACII ACCECCITE AAAACTHOO	ACTGGTGTTG AAATGTTCCG CAAACAC AGTTCTACTT	ACTEGEGING AAATGINCG CAAATTC AATTCIATIT	ACTEGRETAG AAATGTTCCG CAAATT C AAATGTTCTACTT	CG CAAACTC AGTTCTACTT	CG tAACAC AATICIACTT	ACTIGGIGATE AND TOTAL CONTROL OF THE TABLET	ACTIONNEL ANATOTICE CAAACAC AGIICIACII	CG TAAACAC AGTICIACTI	CAAACTC AG XAA	
797		TGT ACTGGCGTTG AAATGTTCCG	TGT ACTGGCGTTG AAATGTTC	TGT ACTGGCGTTG AAATGTTC	GTT ACTGGTGTTG AAATGTTC	TGT ACTGGCGTTG AAATGTTC				Gram ACTGGTGTTG AAATGTTC			ACTGGYGTTG AIATGTTCCG	
	B. cereus B. subtilis	E. Coli	K. oxytoca K. oneumonise promissis	P. aeruginosa	s. agalactiae S. aureus	S. choleraesuis	S. marcescene	S. mutans	S. pyogenes	S. salivarius	S. sanguinis	Y. enterocolitica	Selected sequences ^a	
2		-	2		;	2				70				26

The sequence numbering refers to the E. coli tuf gene fragment (SEQ ID NO: 78). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower cases.

ACGTCAGT IGTACGGAAR TAGAA

SEQ ID NO: 637b

SEQ ID NO: 636 ACTGGYGTTG ALATGTTCCG YAA

Selected amplification primers sequences:

25

30

universal amplification Strat gy for the s lection of th primers from atpD sequences. Annex XX:

SEQ ID NO: 291 380 324 366 243 366 243 351 317 357 393	
812 S57 781 S6CCGTANG CCTTCCGCCG TGGGTTACCA GCCAAC CGTCGGANG CCGTCGGCCG TGGGATACCA GCCAAC CGGCGTANG CCTTCAGCCG TTGGTTACCA ACCAAC CGTCGTANG CCTTCAGCCG TTGGTTATCA ACCAAC CGTCGTANG CCTTCTGCCG TTGGTTACCA ACCAAC CGCCGTANG CCTTCTGCCG TAGGTTACCA ACCAAC CGCCGTANG CCTTCTGCCG TAGGTTACCA ACCAAC CGCCGTANG CCTTCTGCCG TAGGTTACCA ACCAAC CGCCGTANG CCTTCTGCCG TAGGTTACCA ACCAAC CGCCGTANG CCTTCAGCGG TAGGTTACCA ACCAAC CGCCGTANG CCTTCAGCGG TAGGTTACCA ACCAAC CGCCGTANG CCTTCAGCGG TAGGTTACCA ACCAAC CGCCGTANG CCTTCAGCGG TAGGTTATCA GCCGAC CGCCGTANG CCTTCAGCGG TAGGTTATCA GCCGAC CGCCGTANG CCTTCAGCGG TAGGTTATCA GCCAAC CGCCGTANG CCTTCAGCGG TAGGTTATCA GCCGAC CGCCGTANG CCTTCAGCGG TAGGTTATCA GCCGAC CGCCGTANG CCATCGCGG TAGGTTATCA GCCGAC CGCCGTANG CCATCGCGG TAGGTTATCA ACCAAC CGCCGTANG CCTTCACGCG TAGGTTATCA ACCAAC CGCCGTANG CCTTCACCGCG TAGGTTATCA ACCAAC CGCCGTANG CCTTCACCGCG TAGGTTATCA ACCAAC CGCCGTANG CCTTCACCGCG TAGGTTATCA ACC	SEQ ID NO: 565 ^a GGY TGRTAICCIA CIGCIGAIGG DAT SEQ ID NO: 563 ^a GGY TGRTAICCIA CIGCIGAIGG CAT
GTGTTCGGC AGATGGACGA GCCACCAGGA GTCCGTATG CGTATTTCGGCA AGATGGACGA ACCACCAGGA GCTCGGATG GTCTTTGGCAC AGATGAACGA ACCACCAGGA GCTCGGATG GTATTTCGGCA AAATGAACGA GCCCCCGGC GCACGTATG GTATTTCGGCA AAATGAACGA GCCCCCGGC GCACGTATG GTATTTCGGCA AAATGAACGA GCCACCAGGT GCACGTATG GTCTATGGCC AAATGAACGA ACCTCCAGGT GCACGTATG GTCTATGGCC AAATGAACGA ACCTCCAGGT GCACGTATG GTTTACGGC AAATGAACGA GCCACCAGGT AACGTATG GTTTACGCC AGATGAACGA GCCACCAGGA AACGTATG GTTTACGCC AGATGAACGA GCCACCAGGA AACGTCTG GTGTTACGCC AGATGAACGA GCCACCAGGA AACGTCTG GTGTTACGCC AGATGAACGA GCCACCAGGA AACGTCTG GTGTTACGCC AGATGAACGA GCCACCAGGT AACGTCTG GTGTTATGGTC AAATGAACGA GCCACCAGGT AACGTCTG GTGTTATGGTC AAATGAACGA GCCACCAGGT AACGTCTG GTGTTATGGTC AAATGAACGA GCCACCAGGT AACGTTTG GTGTTTTATGGTC AAATGAAACGA GCCACCAGGT AACGTTTG GTGTTTTTTTGGTC AAATGAAACGA ACCCCCAGGT AACGTTTTTTTTTT	SEQ ID NO: 562 C ARATGRAYGA RCCICCIGGI GYIMGIATG SEQ ID NO: 564 TAYGGIC ARATGAAYGA RCCICCIGGI AA
C. glutamicum M. tuberculosis E. faecalis S. agalactiae B. subtilis L. monocytogenes S. aureus A. baumannii N. gonorrhoeae C. freundii E. cloacae E. coli S. typhimurium K. pneumoniae S. marcescens M. pneumoniae H. influenzae M. pneumoniae H. pylori B. fragilis Selected sequences ^b Selected sequences ^b	Selected universal primers sequences :
5 10 15 20 25	30
. 131	

capitals are identical to the selected sequence SEQ ID NO: 562 or 565 or match that sequence. Mismatches are indicated by lower cases. Mismatches for SEQ ID NO: 664 and 563 are indicated by lower cases. The sequence numbering refers to the Escherichia coli atpD gene fragment (SEQ ID NO: 669). Nucleotides in 35

A This sequence is the reverse-complement of the above atpD sequence.

b "R" "Y" "M" "K" "W" "S" "D" and "H" designate nucleotide positions which are degenerated. "R" stands for C or "Y" stands for A or C; "K" stands for G or T; "W" stands for A or C; "K" stands for G or T; "W" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A, T or G; "H" stands for A, T or C. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

CA 02283458 1999-09-28

Annex XXI:Specific and ubiquitous primers for DNA amplification (recA sequences)

GD0 75 155		Originating DNA fragment		
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position	
	Universal primers (recA)			
919	5'-GGI CCI GAR TCI TMI GGI AAR AC	918	400	
920°	5'-TCI CCV ATI TCI CCI TCI AIY TC	918	437-459 701-723	
921	5'-TIY RTI GAY GCI GAR CAI GC	918	515-534	
₉₂₂ c	5'-TAR AAY TTI ARI GCI YKI CCI CC	918	872-894	
	Universal primers (rad51)			
935 936	5'-GGI AAR WSI CAR YTI TGY CAY AC 5'-TCI SIY TCI GGI ARR CAI GG	939 93 9	568-590 1126-1145	
	Universal primers (dmc1)			
937 938	5'-ATI ACI GAR GYI TTY GGI GAR TT	940	1039 1060	
938	5'-CYI GTI GYI SWI GCR TGI GC	940	1038-1060 1554-1573	

. . .

SEQUENCE LISTING

5	1)GENERAL INFORMATION: (i) APPLICANTS: BERGERON, Michel G.¹, Quebec City BOISSINOT, Maurice¹, St-Augustin-de-Desmaures HULETSKY, Ann¹, Sillery, MÉNARD, Christian¹, St-Lambert-de-Lévis OUELLETTE, Marc¹, Quebec City PICARD, François J.¹, Cap-Rouge ROY, Paul H.², Loretteville
10	¹:Canadian citizenship ².American citizenship
15	(ii) TITLE OF THE INVENTION: HIGHLY CONSERVED GENES AN THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL PATHOGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS
20	(iii) NUMBER OF SEQUENCES: 940
	(iv) CORRESPONDENCE ADDRESS:
25	(A) ADDRESSEE: (B) STREET: (C) CITY: (D) STATE: (E) COUNTRY: (F) ZIP:
30	(v) COMPUTER READABLE:
35	(A) MEDIUM TYPE: (B) COMPUTER: (C) OPERATING: (D) SOFTWARE:
	(vi) CURRENT APPLICATION DATA:
40	(A) APPLICATION: (B) FILING DATE: (C) CLASSIFICATION:
45	(vii) PRIOR APPLICATION DATA:
42	(A) APPLICATION: (B) FILING DATE:
5 0	(viii) ATTORNEY/AGENT INFORMATION:
50	(A) NAME: (B) REGISTRATION NUMBER:
59	(ix) TELECOMMUNICATION INFORMATION:
5:	(A) TELEPHONE: (B) TELEFAX:

	2) INFORMATION FOR SEQ ID NO: 1	
Ş	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 750 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Acinetobacter baumannii</pre>	
15	(B) STRAIN: ATCC 19606	
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1	
20	GGTGATGACA CTCCAGTAAT CCGTGGTTCA GCTCTTGCAG CGCTTAACGG TGAAGCTGGT CCTTACGGTG AAGAATCACT TCTTGCAG CGCTTAACGG	50 100 150 200
25	ATGCCAATCG AAGACGTATT CTCAATTTCT GGTCGTGGTA CAGTAGTAAC AGGCCGTGTT GAAGCTGGTA TCATCAAAGT TGGTGAAGAA GTAGAGATCG TTGGTATTAA AGATACAGTT AAAACAACTG TAACTGGCGT AGAAATGTTC CGTAAACTTC TTGACGAAGG CCGTGCAGGT CAGAAATGTTC	250 300 350 400 450
30	CAGGTACAAT CAAGCCGCAC ACTAAATTCG ACGCAGAAGT ATACCTAAAC	500 550 600 650 700 750
35	2) INFORMATION FOR SEQ ID NO: 2	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Actinomyces meyeri (B) STRAIN: ATCC 35569	
50	(B) STRAIN: ATCC 35568 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 2	
55	CGGTGCGATC CTCGTGGTCG CCGCGACCGA CGGCCCCATG GCCCAGACCC GCGAGCACGT CCTGCTCGCC CGTCAGGTCG GCGTTCCCAC CATCCTCATC GCCCTCAACA AGTCCGACAT GGTTGACGAC GAGGAAATGA TGGAACTGGT CGAGGAGGAG TGCCGCGACC TGCTGGAGTC CCAGGACTTC GATCGCGATG CCCCGATCGT CCAGGTTTCC GCTCTGAAGG CCCTCGAGGG CGACGCGGAG CACCCCCGAG CGCGATATGC ACAACGCGTT CCTACATCCC	50 100 150 200 250 300
60	CACCCCCGAG CGCGATATGG ACAAGCCCTT CCTCATGCCG ATCGAGGACG TCTTCACGAT CACAGGTCGT GGCACGGTCG TCACGGGGCG TGTTGAGCGT GGCAAGCTGC CGATCAACTC CGAGGTCGAG ATCCTCGGTA TCCGTGATCC	350 400 450

5	CCAGAAGACC ACGGTCACCG GCATCGAGAT GTTCCACAAG TCGATGGACG AGGCATGGGC CGGCGAGAAC TGTGGCCTGC TGCTGCGCGG TACCAAGCGC CATCACCGCC ATCCCCGGCT CCATCACGCC GGTTGTGGCC ATTCCCGGCT CCATCACGCC GCGTCACAA CCCCGTCTCT TCGAACTACC GTCCGCAGTC CCATCACCGC CATCACCCTC CCCGAGGGCA CCGACATGGT CATGCCTGGC GACACCACCG AGATCTCCGT TCAGCTGATC CAGCCCATCG CCATGGAGCC CCGGCGCT TCGCCA	500 550 600 650 700 750 800 826
10		
	2) INFORMATION FOR SEQ ID NO: 3	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Aerococcus viridans	
	(A) ORGANISM: AEFOCOCCUS VIIIGANIS (B) STRAIN: ATCC 11563	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3	50
30	TGGTGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCAATG CCACAAACTC GTGAGCACAT CCTTTTAGCT GGCCAAATCG GTGTTCCTGC ATTCGTAGTA TTCTTAAACA AAGTTGACCA AGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTATCTGA GTACAACTAC CCAGGTGACG ATCTACCTGT AATCGCTGGT TCTGCTTTAT TAGCATTACA AGGCGATGAA GCTCAAGAAG CTAAAATCAT GGAATTAATG GAAGCTGTAG ACTCTTACAT	50 100 150 200 250 300 350
35	TCCAGAACCA GAACGTGACA ACGACAAACC ATTCATCATG TCCAGAACCA GAACGTGACA ACGACAAACC ATTCATCATGA ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGA CGTGGTGAAG TTCGTACAGG TGACGAAGTT TGAAATGTTC CGTAAAAACT	400 450 500 550
٠	TAGACTACGC TCAAGCTGGT GACAACATCG GIGCATTATT ACCORDANCE TAGACTACCTC CTGGTTCAAT	600
40	THE THEORY OF A COUNTY AND A ACTUAL AND A LIBOUR AND A LI	650 700 750 800 835
45		
	2) INFORMATION FOR SEQ ID NO: 4	
50	(A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii)MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Achromobacter xylosoxidans subsp.</pre>	
6	0 denitrificans	

(B) STRAIN: ATCC 15173

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4

5	CCTGGTGGTG	TCGGCCGCTG	ACGGCCCGAT	GCCGCAAACG	CGCGAACACA	۲0
	TCCTGCTGAG	CCGCCAGGTT				50
	AAGGCCGACA	TGGTTGACGA			or recreating	100
	AGTTCGCGAR			CCCGGGCGAC		150
	TCGTGAAGGG				GACACCCCGA	200
10	GGCGAACAGG	CCATCATGGC				250
- 0	GACGCCTGAG			GCGCTGGACT	CGTACATCCC	300
		CGIGCCGIIG	ACGGCGCGTT	CCTGATGCCG	GTTGAAGACG	350
		CTCGGGTCGC		TGACCGGCCG	TATCGAACGC	400
		AGGTCGGCGA		ATCGTCGGTC	TGGTGCCGAC	450
		ACCTGCACGG	GCGTGGAAAT	GTTCCGCAAG	CTGCTGGACC	500
15	AAGGTCAAGC		GTGGGCATCC	TRCTGCGCGG	CACCAAGCGT	550
	GAAGACGTCC	AGCGCGGCCA	GGTTCTGGCC	AAGCCGGGCT	CGATCACCCC	600
			AGGTGTACAT	000000	GAAGAAGGCG	
	GCCGTCACAC	TCCGTTCTTC	CAAGGCTATC	~		650
	ACGACGGACG	TGACGGGCAC	GATCGAGCTG		CTACTTCCGC	700
20	CCTGCCGGGC	GACAACGTGG		CCGGCCGACA	AGGAAATGGT	750
	CCATGGAAGA		CCATGACGGT	CAAGCTGCTG	GCTCCGATCG	800
	COLLECTION	ACCCCIGCGI	TCGCCAC			827

25 2) INFORMATION FOR SEQ ID NO: 5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 823 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Anaerorhabdus furcosus
- (B) STRAIN: ATCC 25662

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5

40	•					
	TGGATCAATC	CTAGTAGTTG	CTGCAACTGA	TGGACCAATG	CCTCAAACTC	5 0
	GTGAACATAT	CTTACTTGCT	CGTCAAGTAG			50
	TTCTTGAACA	AATGCGACAT		GAAGAATTAA	THEOTICIA	100
	TGAAATGGAA	GTTCGTGAAC			10011001101	150
45	ATACACCAGT	TATCCGTGGT	TCTGCATTAA	TTACGGTTTC	GAAGGTGATG	200
-	GATTGGGAAG	CAAAAGTTGC		AATCTCTTGA		250
	TCCAACTCCA			GATGCAGTTG	ACTCTTGGAT	300
		THE CALL OF THE		ATTCTTAATG	GCTGTTGAAG	350
	ATGTATTCAC	AATTACAGGT	CGTGGTACAG	TTGCTACTGG	ACGTGTTGAA	400
	CGTGGACACT	TAAACCTTAA		GAAATCGTTG	GTATTCATGA	450
50		TCAGTTGTTA	CTGGTATCGA	AATGTTCCGT	AAATTATTAG	500
	ACTATGCTGA		AACATTGGTG	CATTATTACG	TGGTGTTTCT	
	CGTGATGAAA	TCGAACGTGG	ACAATGTCTA	~~~~~~·	GATCAGTTAC	550
	TCCACATACA	GCTTTCAAAG	CTCAAGTATA	~~~~~		600
	GTGGACGTCA	TACACCATTC	GTAACTAACT		AAAGAAGAAG	650
55		ACGTAACAGG	AGTTGTTAAA	ACCGTCCTCA		700
	~~~~	GGAGACAACA			GTACTGAAAT	750
	TCGCTGTTGA		TCGAAATGAT	CGTTGAATTA	ATCGCTCCAA	800
	- CCCIOIIGA	ACAAGGAACI	AAG			823

30

2	) INFORMATION FOR SEQ ID NO: 6	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Bacillus anthracis     (B) STRAIN: 4229</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	<b>5</b> 0
20	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACTC GTGAGCACAT CCTTCTTCT CGTCAAGTAG GTGTACCTTA CATCGTTGTA TTCTTAAACA AATGCGACAT GGTAGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT CCCAACTCCA GAACGTGAAA CC TTGCTACTGG TCGTGTTGAG	50 100 150 200 250 300 350
25	ACGTATTCTC TATCACAGGI CGIGGIAGTA GAAATCATCG GTCTTGCTGA CGCGGTATCG TTAAAGTTGG TGACGTAGTA GAAAATCATCG GTCTTGCTGA AGAAAATGCT TCTACAACTG TAACTGGTGT AGAGATGTTC CGTAAACTTC TTGACCAAGC TCAAGCTGGA GACAACATCG GTGCTTATCT TCGTGGGGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA CTTGCAAAAA GCGGTTCTGT GCTCGTGAAG ACATCCAACG TGGACAAGTA CTTGCAAAAA GCGGTTCTGT TCTAAAGAAG	400 450 500 550 600 650
30	AAAAGCTCAC GCTAAATTCA AAGCTGAAGT TITCGTATCACACACACACACACACACACACACACACACACA	700 750 800 825
35		
	2) INFORMATION FOR SEQ ID NO: 7	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Bacillus cereus    (B) STRAIN: ATCC 14579</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7	
55	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACAC GTGAGCACAT CCTTCTTCT CGTCAAGTAG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AATGCGACAT GGTAGATGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT	50 100 150 200 250 300 350 400
60	THE TOTAL TRANSPORT OF THE PROPERTY OF THE PRO	2.5

### CA 02283458 1999-09-28

	CGCGGTATCG TTAAAGTTGG TGACGTAGTA GAAATCATCG GTCTTGCTGA AGAAAATGCT TCTACAACTG TAACTGGTGT AGAGATGTTC CGTAAACTTC TTGACCAAGC TCAAGCTGGA GACAACATCG GTGCTTTACT TCGTGGGGTT	450 500
_	OUT COTOMIC ACAICLANCE TOTAL AND	550
5		600 650
	AAGGTGGACG TCACACTCCA TTCTTCGCTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTATCATC CAATTACCAG AAGGTACTGA	700
	THE COLUMN COLOUT GALA ALATTICA A AT CACOTA TO COMPANS TO THE COLOUT TO	750
1.0	WILL COCIAL COMMONGED ACTIVATATION	800
10		829
	·	
	2) INFORMATION FOR SEQ ID NO: 8	
15	(-) ODZODNOD CHARACIERISTICS:	
•	(A) LENGTH: 818 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
20	(ii) NOT DOWN	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Bacteroides distasonis	
25	(B) STRAIN: ATCC 8503	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8	
	CGGTGCTATC ATCGTAGTTG CTGCTACTGA TGGTCCTATG CCTCAAACTC	
30		50
		100 150
		200
	CAATGGGAAG ATAAAGTAAT GGAGTTGATG GAAGGTTGAA CGGTGATGCT	250
35		300
		350 400
		450
	TGGATCAAGG TGAGGCTGGT GATAACGTTGT TGAGATGTTC CGTAAGTTAT	500
40		550
		600 650
		700
	ATCCGTACAT TGGATGTAAC TGGTGAGATC ACTTTGCCG AAGGAACTGA AATGGTAATG CCGGGTGATA ACGTAACGAT CGAGGTTGAG TTGATCTATC CGGTAGCATG TAGCGTAG	750
45	CGGTAGCATG TAGCGTAG	800
		818
50	2) INFORMATION FOR SEQ ID NO: 9	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 639 bases	
	(B) TYPE: Nucleic acid	
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
- <del>-</del>	Tillear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Enterococcus casseliflavus	
	Enterococcus casseliflavus	

STRAIN: R763 (B)

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9

	GGTCCTATGC		<b>ጥርአ እር</b> እር ልጥር	TTGTTATCAC	GTAACGTTGG	50
5	GGTCCTATGC	CTCAAACACG	IGNACACAT C	NATCCATATG	GTTGATGACG	100
	GGTCCTATGC TGTACCATAC	ATCGTTGTTT	GAAATGGAAG	MAIGOLIAIO	ATTGTCAGAA	150
			CAAATTAAAAT		117 7 0 2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	200
	AAGAATTACT TATGACTTCC	CAGGCGACGA	TGTTCCTGTA	ATCGCTGGTT	CIGCIIIOAA	250
	AGCTCTTGAA		CATACGAAGA	AMMATCHIO	OLDIT TO TO TO	
	CTGCAGTTGA	CCAATACGTT	CCAACTCCAG	AACGTGACAC	TGACAAACCA	300
10		CONTINUE OF THE CONTINUE OF TH	CCTATTCTCA	ATCACTGGAC	GTGGTACTGT	350
	TTCATGATGC	CAGICGAAGA	GTGGACAAGT	TCGCGTTGGT	GACGAAGTTG	400
	TGCTACAGGC	CGTGTTGAAC	GAAACTGCTA	AAACAACTCT	AACTGGTGTT	450
	AAATCGTTGG	TATTGCTGAA	GAAACIGCIA	AMACAMOTOT	ATAACATTGG	500
	GAAATGTTCC		AGACTATGCT	GAAGCAGGG	ALMACKITOO COA CAA CTAT	550
<b>1</b> F			CTCGTGAAGA	CATCCAACGT	GGACAAGTAT	600
15	TOO OTTO A A CC	TCCTACAATC	ACACCTCATA	CAAAATTTAA	AGCTGAAGTT	
	TGGCTAAAGC	CANANCAACA	AGGTGGACGT	CACACACCA		639
	TACGTTTTAA	CHAMAGAAGA	110010			

20

25

### 2) INFORMATION FOR SEQ ID NO: 10

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 692 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

### (ii) MOLECULE TYPE: Genomic DNA

30

### (vi)ORIGINAL SOURCE:

- ORGANISM: Staphylococcus saprophyticus (A)
- STRAIN: CSG 197 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10 35

			$m_{X,X}$ COUTCOT	GTTCCAGCAT	TAGTTGTATT	50
	GAACACATTC		TAACGTIGGI	STICCROCITE AND	GAATTAGTAG	100
	CTTAAACAAA	GTTGACATGG		AGAMITATION	AGGTGACGAT	150
	AAATGGAAGT	TCGTGACTTA	TTAAGCGAAT	MIGNETICES		200
	GTACCTGTAA	TCTCTGGTTC	TGCATTAAAA	667771101	GCGACGCTGA	
40	<b></b>	AAAATCTTAG	ACTTAATGCA	AGCTGTTGAT	GACTTCATTC	250
	CTATGAGCAA			TCATGATGCC	AGTTGAGGAC	300
	CAACACCAGA				GTGTTGAACG	350
	GTATTCTCAA		TGGTACTGTT		ATGCAAGAAG	400
	TGGTCAAATC	AAAGTCGGTG			TAAATTATTA	450
45		AACAACTGTT	ACTGGTGTAG	AAATGTTCCG		500
45	GACTACGCTG		CAACATTGGT	GCATTATTAC		• • •
	<b></b>			AGCTGCTCCT	GGTACTATTA	550
	ACGTGATGAC				TAAAGATGAA	600
	CACCACATAC				AATTCTATTT	650
	GGTGGTCGTC					692
50	CCGTACTACT	GACGTAACTG	GTGTTGTTAA	CTTACCAGAA	33	

### 2) INFORMATION FOR SEQ ID NO: 11

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 808 bases

  - (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double
    (D) TOPOLOGY: Linear
- 60

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Bacteroides vulgatus
- (B) STRAIN: ATCC 8482
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11

10	TTATTGTTTG			TGCCTCAGAC	TCGTGAACAC	50
	ATCCTGTTGG	CTCGTCAGGT	AAACGTACCT	CGTTTGGTTG		100
	CAAGTGTGAT	ATGGTTGATG	ATGAAGAAAT			
	AAATGCGTGA	ATTGCTTTCA	TTCTATGATT	TCGATGGTGA	TAATACTCCT	150
	ATTATTCGTG	GTTCTGCATT	AGGTGCTTTG	AATGGTGTTC	CTCAATGGGA	200
15	AGATAAAGTA	ATGGAGTTGA	TGGATGCAGT	TGATACTTGG		250
	CTCCGCGTGA	TATTGATAAA	CCTTTCTTGA	TGCCTGTTGA	ATTCCATTGC	300
	TCTATCACTG	GTCGTGGTAC	TGTTGCTACA	GGTCGTATCG		350
	TATCCATGTA	GGTGACGAAG	TTGAAATTCT		AAGCTGGTAT	400
	AATCAGTTGT	TACTGGCGTT	GAAATGTTCC	TGGTTTGGGT	GAAGATAAGA	450
20	GAAGCTGGTG	ATAATGTTGG		GTAAATTATT	GGATCAAGGT	500
20	AATCAAACGT		TTTGTTGTTG	CGTGGTATCG	ACAAAAACGA	550
	CTAAGTTCAA	GGTATGATTT	TGTGTAAGCC	GGGTCAGGTT	AAGGCTCACT	600
		AGCTGAGGTT		AGAAAGAAGA	AGGTGGTCGT	650
	CATACTCCGT	TCCATAACAA	GTATCGTCCT	CAGTTCTACT	TGCGTACTAT	700
0.5	GGACTGTACA	GGTGAAATCA	CTTTGCCGGA	AGGAACTGAA	ATGGTAATGC	750 750
25	CTGGTGATAA	CGTAACTATT	ACAGTTGAGT		GGTTGCATTG	800
	AATGTAGG					808
						808

### 30 2) INFORMATION FOR SEQ ID NO: 12

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 838 bases
  - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Bartonella henselae
  - (B) STRAIN: ATCC 49882
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 12

	TGGTGCGATT GTGAGCATAT			TGGTCCGATG		50
		TCTTCTTGCC AGGTTGATCA				100
	TGAGCTTGAA	_			TGGAGCTTGT	150
50	ATATTCCGAT	GTTCGGGAGT			CCAGGAGACG	200
50	AAAAGCATTG				AGATAAAGAT	250
	TTATATACCG	GTGAAGATGC ACGCCTGAAC		TTGATGAGTG	AAGTTGATAA	300
	TTGAAGATGT	TTTTTCGATT		TCAGCCGTTT	TTGATGCCAA	350
	GTTGAGCGTG	GTGTTATTAA		GAACTGTTGT	GACGGGTCGT	400
55	TCGTCCAACT	TCTAAGACAA	GGTTGGTGAA		TTATCGGCAT	450
	TTTTAGATCA	GGGGCAAGCG		GGTTGAAATG	TTCCGCAAGC	500
	ATTGATCGTG	AAGGGATTGA	GGTGATAATA GCGTGGACAA	TTGGAGCGCT	GCTTCGTGGT	550
		CATACGAGAT			AGCCTGCTTC	600
		TCGTCATACT			TTGACGAAAG	650
60					TCCTCAGTTT	700
		JIIIGGGAIGI	MACGGGAATT	GTTACGCTTC	CAGAAGGTAC	750

	AGAGATGGTT ATGCCTGGTG ATAATGTTGC TATGGATGTC TCTCTGATTG TTCCAATTGC CATGGAAGAA AAACTTCGTT TTGCTATC	800 838
5	2) INFORMATION FOR SEQ ID NO: 13	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 839 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
1.5	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Bifidobacterium adolescentis     (B) STRAIN: ATCC 15703</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13	
25	TGGCGCCATC CTTGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTCCCGAA GATCCTCGTC GCTCTGAACA AGTGCGATAT GGTCGACGA GACGAGCTCA TCGAGCTCGT TGAGGAAGAG GTCCGTGACC TCCTCGACGA AAATGGCTTC GATCGCGATT GCCCGGTCAT CCACGTGTCC GCTTACGGC CACTGCACGA TGACGCTCCG GACCACGAGA AGTGGGTTGA GCAGATCATG GGACAAGCCG TTCCTGATGC TGACTACATC CCGACCCCGG TCCACGACCGT GGTGACCGGC	50 100 150 200 250 300 350 400
30	CGATCGAAGA TGTCTTCACC ATCTCCGGCC GIGGCACCGI GOTGATCGTCGG CGTGTCGAGC GTGGTAAGCT CCCGGTCAAC TCCAACGTCG AGATCGTCGG CATCCGTCCG ACCCAGACCA CCACCGTCAC CTCCATCGAG ACCTTCCACA AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC AGCAGATGGA CGAGTGCGAG GCTGGC CAGGTTCTGG CTGCTCCGGG	450 500 550 600
35	GGCATCAACC GTGACCAGGI CGAGCGIGGG CGAAGTCTAC GTGCTGACCA CTCCGTGACC CCGCACACCA AGTTCGAGGG CGAAGTCTAC GTGCTGACCA AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	700 750 800 839
40		
	2) INFORMATION FOR SEQ ID NO: 14	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 839 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Bifidobacterium dentium  (B) STRAIN: ATCC 27534	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14	50
60	TGGCGCTATC CTCGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTGCCGCG TATCCTCGTC GCCCTGAACA AGTGCGATAT GGTCGACGAC GAAGAGCTCA TCGAGCTCGT	100 150

	5	CGTGTCGAGC GTGGTAAGCT CCCGGTCAAC TCCAACGTTG AGATCGTCGG CATCCGTCCG ACCCAGACCA CCACCGTCAC CTCCATCGAG ACCTTCCAGA	200 250 300 350 400 450 500
	10 15	AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC GGCATCAACC GTGACCAGGT CGAGCGTGGC CAGGTTCTGG CTGCTCCGGG CTCCGTGACC CCGCACACCA AGTTCGAGGG CGAAGTCTAC GTGCTGACCA AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	550 600 650 700 750 800 839
		2) INFORMATION FOR SEQ ID NO: 15	
	20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 838 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	25	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
		(wi) ODIGINAL COMPAN	
		<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Brucella abortus</pre>	
:	30	(B) STRAIN: S2308	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15	
3	35	TGGCGCGATC CTGGTGGTTT CGGCTGCTGA CGGCCCGATG CCGCAGACCC GCGAGCACAT CCTGCTTGCC CGTCAGGTTG GCGTTCCGGC GATCGTCGTG TTCCTCAACA AGTGCGACCA GGTTGACGAT GCAGAACTGC TCGAACTGGT TGAACTGGAA GTGCGCGAAC TTCTGTCGAA GTACGAATTC CCCGGCGACG AAATCCCGAT CATCAAGGGC TCGGCTCTTG CTGCTCTGGA AGATTCTTCC	50 100 150 200
		AAGGAACTGG GCGAAGATGC CATCCGCAAC CTGATGGACG CCGTTTGA GA	250 300
4	0	CIACATICCG ACCCCGGAAC GCCCGATCGA CCAGCCGTTC CTCATGGGGG	350
		TCGAAGACGT GTTCTCGATC TCCGGCCGTG GTACGGTTGT GACGGGTCGC GTTGAGCGCG GTATCGTTAA GGTCGGTGAA GAAGTTGAAA TCGTCGGCAT	400
		CAAGGCGACG ACGAAGACCA CGGTTACCGG CGTTGAAATG TTGGGGAAAGG	450
۵	5	TOUTUGACCA GUGUCAGGCT GGCGACAACA TTGGCGCGCGCT GATGCGCGGG	500 550
-1		GTTGGCCGTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC TGTGAAGCCG CACACCAAGT TTAAGGCAGA AGCCTATATT CTGACCAAGG	600
		ACGAAGGIGG CCGTCATACG CCGTTCTTCA CCAACTACCC TCCCCAACTTC	650
		TACTICCGIA CGACGGACGT GACGGGTGTT GTGACGCTTC CCCCTTCC	700 750
5	0	GGAAATGGTC ATGCCTGGCG ATAACGTCGC CATGGACGTT ACCCTGATCG TGCCGATCGC CATGGAAGAG AAGCTTCGCT TCGCTATC	800
		GILOGIATORO IMAGEITEGET TEGETATE	838

### 2) INFORMATION FOR SEQ ID NO: 16

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 771 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

55

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

- ORGANISM: Burkholderia cepacia (A)
- STRAIN: LSPQ 2217 (B)

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16

	(YI) DIGGE			CC3 C3 TC	CTGCTGGCGC	50
- 0	GGCAGCAGAC	GGCCCGATGC	CGCMMICCO		GTGCGACATG	100
10	GTCAGGTTGG	CGTTCCGTAC	ATCATCGIGI		TTCGCGAACT	150
	CTCGACGACG	CCGWG-	CGAGCTGGTC	CACGCCGATC	GTGAAGGGTT	200
	CCTCTCGAAG	TACGACTTCC	CGGGCGACGA	GCGAGCTGGG	CGAAGTGGCG	250
	CCCCCAAGCT	GGCGCTGGAA	GGCGACACGG GCTGGACACG	TACATCCCGA	CGCCGGAGCG	300
15	ATCATGAGCC	TGGCCGACGC	TGATGCCGGT	GGAAGACGTG	TTCTCGATCT	350
13	TGCAGTTGAC	GGCGCGTTCC	ACGGGTCGTG	TCGAGCGCGG	CATCGTGAAG	400
	CGGGCCGCGG	TACGGTGGTG	CGTCGGTATC		TGAAGACGAC	450
	GTCGGCGAAG	AAATCGAAAT	TCCGCAAGCT	CCTGGACCAA	GGTCAAGCAG	500 550
	CTGCACGGGC	GTTGAAATGT		് സമ്യമ്പ് AGCGTGA	AGACGTGGAG	600
20	GCGACAACGT	TGGTATCCTG TTCTGGCGAA		ATCACGCCGC	ACACGCACTT	650
	CGTGGCCAGG	GTGTACGTGC	TGAGCAAGGA	CGAAGGCGGC		700
	CACGGCTGAA			ACTTCCGTAC	GACGGACGTG	750
	CGTTCTTCAA				TGCCGGGCGA	771
	ACGGGCTCGA	acaman				,,_
25	CAACGTGTCG	AICACGOIO.				

### 2) INFORMATION FOR SEQ ID NO: 17

(i) SEQUENCE CHARACTERISTICS: 30

- LENGTH: 829 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D) 35
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- (A) ORGANISM: Cedecea davisae 40
  - STRAIN: ATCC 33431 (B)

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17

	(XI) DIE				CA CA CA CCCC	50
45		IGGIIGI	1000	GGCCCAATGC CGTTCCGTAC	ATCATCGTGT	100
43	TGAGCACATC	CIGCIGGE	GICMOGILLO		GGAACTGGTA	150
	TCCTGAACAA		0110000		CGGGCGACGA	200
	GAAATGGAAG	1100101	TCTGTCCCAG	AGCGCTGGAA	GGCGAAGCAG	250
	TACTCCAATC	GTTCGTGGTT	CTGCTCTGAA	GCTACCTGGA		300
50	AGTGGGAAGC	TAAAATCGTT	GAGCTGGCTG	TTCCTGCTGC	CAATCGAAGA	350
50	CCTGAGCCAG	AGCGTGCTAT	CGATAAGCCG	TGTTACCGGT		400
	CGTATTCTCC	ATCTCCGGCC	GTGGTACCGT	AAATCGTTGG		450
	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	ATGTTCCGCA		500
	ACTGCGAAAT	CTACCTGTAC	CGGCGTTGAA			550
55	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT			600
55	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG			650
	CCACACACCA	AGTTCGAATC				700
	CGGCCGTCAT	ACTCCGTTCT				750
	GTACAACTGA	CGTGACCGGC				800
60	GTAATGCCTG		CAAAATGGTT	GIIACCCIOA		

829

CGCGATGGAT GACGGTCTGC GTTTCGCAA

	5 2) INFORMATION FOR SEQ ID NO: 18	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Cedecea neteri  (B) STRAIN: ATCC 33855	
20		
25	TGGGAAGCTA AAATYGTTGA GCTGGCTGGC TTCCTGGATT CCTACATCCC	50 100 150 200 250 300
30	GGTATCGTTA AAGTGGGCGA AGAAGTAGAA ATCGTTGGTA TCAAAGATAC TGCGAAATCT ACCTGTACCG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA	350 400 450 500 550 600
35	GCACACCAAG TTCGAATCTG AAGTGTACAT CCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCACAGTT CTACTTCCGT ACAACTGACG TGACCGGTAC CATCGAACTG CCAGAAGGCG TAGAGATGGT AAATGCCAGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCG	650 700 750 800 824
40	2) INFORMATION FOR SEQ ID NO: 19	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: <i>Cedecea lapagei</i> (B) STRAIN: ATCC 33432	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19	
60	CGCTATTCTG GTTGTTGCTG CAACTGACGG CCCTATGCCT CAGACCCGTG AGCACATCCT GCTGGGTCGC CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAAT GTGACATGGT TGATGACGAA GAGCTGCTGG AGCTGGTAGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCA GGCGATGATA	50 100 150 200

		250
5	CCCCAATCAT CCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAAGCAGAG TGGGAAGCTA AAATCGTTGA GCTGGCTTG TTCCTGGATT CCTACATCCC AGAACCAGTA CGTGCAATCG ACCTGCCGTT CCTGCTGCA ATCGAAGACG TATTCTCCAT CTCCGGCCGT GGTACCGTTG TKACCGGTCG TGTAGAGCGC GGTATCGTTA AAGTGGGCGA AGAAGTAGAA ATCGTTGGTA TCAAAGATAC TGCGAAATCT ACCTGTACTG GCGTTGCTTC TGCTGCTGG TATCAAACGT	250 300 350 400 450 500 550
	AAGGCCGTGC TGGTGAGAAC GIIGGIGITC AAGCCAGGCT CTATCAAGCC GAAGAAATCG AACGTGGTCA GGTTCTGGCT AAGCCAGAA GACGAAGGCG GCACACCAAG TTCGAATCTG AAGTGTACAT CCTGCACAGTT CTACTTCCGT	600 650 700 750
10	GCCGTCATAC TCCGTTCTTC AARGGCTACC GTCACAGATGGT ACCACTGACG TGACCGGTAC CATCGAACTG CCAGAAGGCG TAGAGATGGT AATGCCAGGT GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCGCAA	800 827
15		
	2) INFORMATION FOR SEQ ID NO: 20	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 831 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Chlamydia pneumoniae</li><li>(B) STRAIN: CLW 029</li></ul>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20	
35	GCGGAGCTAT CCTAGTCGTT TCAGCTACAG ACGGAGCTAT GCCACAAACT AAAGAACATA TCTTGCTAGC TCGCCAGGTT GGAGTTCCTT ATATCGTTGT TTTCTTGAAT AAAGTAGATA TGATCTCTCA AGAAGATGCT GAACTTATTG ACCTTGTTGA GATGGAACTT AGTGAGCTTC TTGAAGAAAA AGGCTACAAA	50 100 150 200 250 300
40	AAATTATATC GAAAAAGTTC GAGAACTTAAT GCCTATCGAA TCCCTACACC AGAAAGAGAA ATTGATAAGC CTTTCTTAAT GCCTATCGAA GACGTATTCT CAATCTCTGG TCGTGGTACT GTGGTTACAG GAAGAATCGA GCGTGGAATC GTTAAAGTTT CTGATAAAGT TCAGCTCGTG GGATTAGGAG GCGTGGAATC GTTAAAGTTT CTGATAAAGT TCAGCTCTAG GAAAGAACTT	350 400 450 500
45	CCTGAAGGTC GTGCAGGAGA AAACGTTGGT TTGTCAGCCT AACAGCGTGA AAAGAACGAT GTTGAAAGAG GTATGGTGGT TTGTCAGCCT AACAGCGTGA AGCCTCATAC GAAATTTAAG TCAGCTGTTT ACGTTCTTCA GAAAGAAGAA GGCGGACGTC ATAAGCCTTT CTTCAGCGGA TACAGACCTC AGTTCTTCTT CCGTACTACA GACGTGACAG GAGTCGTAAC TCTTCCTGAA GGAACTGAAA CCGTACTACA GACGTGACAG GAGTCGTAAC TCTTCCTGAA CATTGGAACA	550 600 650 700 750 800 831
5(	GTTGCTCTTG AAGAAGGAAT GAGATITGCA A	
	2) INFORMATION FOR SEQ ID NO: 21	
5	5 (i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
-	0	

(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia psittaci 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21 TGGAGCGATT CTCGTTGTTT CCGCTACTGA CGGTGCGATG CCTCAGACCA AAGAACATAT TCTTTTGGCG AGACAGGTTG GTGTTCCTTA CATCGTTGTT TTCCTTAACA AAATCGATAT GATTTCTCAA GAAGATGCTG AGCTCGTAGA CTTAGTTGAA ATGGAATTGT CCGAACTTCT AGAAGAAAA GGTTATAAAG GTTGCCCAAT TATCCGTGGT TCTGCTTTGA AAGCCTTAGA AGGTGATGCA AGCTACGTTG AAAAATTCG CGAGTTAATG CAAGCAGTGG ATGATAACAT CCCTACTCCA GAGCGTGAAG TTGATAAGCC TTTCTTAATG CCTATCGAAG ACGTATTCTC TATTTCTGGT CGTGGTACTG TGGTCACAGG ACGTATCGAG CGTGGAATCG TTAAAGTGGG TGATAAAGTA CAGATTGTTG GTTTAAGAGA TACTAGAGAG ACAATTGTTA CCGGTGTGGA AATGTTCAGA AAAGAACTTC CAGAAGGTCA AGCAGGGGAA AACGTTGGTT TGCTCCTCAG AGGTATCGGT AAGAATGACG TTGAACGTGG TATGGTTATC TGCCAACCTA ATAGCGTGAA ATCTCACACA CAATTTAAAG GTGCTGTCTA CATTCTACAA AAAGAAGAGG GTGGACGTCA TAAACCTTTC TTTACCGGAT ACAGACCTCA GTTCTTCTTC CGTACAACAG ATGTTACAGG TGTTGTAACT CTCCCAGAAG GTACAGAGAT 700 GGTTATGCCA GGCGATAACG TTGAATTCGA AGTTCAATTA ATTAGCCCAG 750 TAGCTCTAGA AGAAGGTATG AGATTT 25 2) INFORMATION FOR SEQ ID NO: 22 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 822 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia trachomatis 40 (B) STRAIN: LGV 12 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22 GGGGCTATTC TAGTAGTTTC TGCAACAGAC GGAGCTATGC CTCAAACTAA AGAGCATATT CTTTTGGCAA GACAAGTTGG GGTTCCTTAC ATCGTTGTTT TTCTCAATAA AATTGACATG ATTTCCGAAG AAGACGCTGA ATTGGTCGAC TTGGTTGAGA TGGAGTTGGC TGAGCTTCTT GAAGAGAAAG GATACAAAGG GTGTCCAATC ATCAGAGGTT CTGCTCTGAA AGCTTTGGAA GGGGATGCTG 100 150 200 CATACATAGA GAAAGTTCGA GAGCTAATGC AAGCCGTCGA TGATAATATC 250 CCTACTCCAG AAAGAGAAAT TGACAAGCCT TTCTTAATGC CCATTGAGGA 300 CGTGTTCTCT ATCTCCGGAC GAGGAACTGT AGTAACTGGA CGTATTGAGC 350 GTGGAATTGT TAAAGTTTCC GATAAAGTTC AGTTGGTCGG TCTTAGAGAT 400 ACTAAAGAAA CGATTGTTAC TGGGGTTGAA ATGTTCAGAA AAGAACTCCC

AGAAGGTCGT GCAGGAGAGA ATGTTGGATT GCTCCTCAGA GGTATTGGTA

AGAACGATGT GGAAAGAGGA ATGGTTGTTT GCTTGCCAAA CAGTGTTAAA

CCTCATACAC GGTTTAAGTG TGCTGTTTAC GTTCTGCAAA AAGAAGAAGG

TGGACGACAT AAGCCTTTCT TCACAGGATA TAGACCTCAA TTCTTCTTCC

GTACAACAGA CGTTACAGGT GTGGTAACTC TGCCTGAGGG AGTTGAGATG

GTCATGCCTG GGGATAACGT TGAGTTTGAA GTGCAGTTGA TTAGCCCTGT

60

GGCTTTAGAA GAAGGTATGA GA

450

500

550

600

650

700

	2) INFORMATION FOR SEQ ID NO: 23	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Chryseobacterium meningosepticum     (B) STRAIN: CDC B7681</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23	
	TOTAL CHARGE TOTAL TEGTECANTE CCTCANACTA	50 100
20	GAGAACACAT CCTACTTTGC CGTACATGAT CCAGAATTGT TAGAGCTTGT	150 200
	TGAGCTTGAA CTTAGAGATC TATTATCHAC HACGATTAA CGGTGATGCT ACTCTCCAGT AATTCAAGGT TCTGCTCTTTG GTGCTCTTAA CGGTGATGCT ACTCTCCAGT AATTCAAGGT TCTGCTCTTTG ATACTTGGAT	250 300
25	CGAGCAACCA GTAAGAGATT CTGATAAGCC ATTCCTTATG TAGAATCGAG	350 400
	GCTGGTGTAA TCAACACAGG TGAICCTGT TGAGATGTTT AGAAAAATCC	450 500
30	TAGACAGAGG TGAAGCTGGT GATAACGTAG ATCGCTAAGA AAGATTCAGT	550 600 650
	TAAGCCACAC AAGAAATTCA AAGCTGAAGI AATACCGTCC TCAGTTCTAT	700 750
35	GTAAGAACTA CTGACGTTAC AGGTGAAATC TICTTACCAA TTGTTACAAC	800 835
	<b>u210</b>	
40	2) INFORMATION FOR SEQ ID NO: 24	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 816 bases	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
50	(A) ORGANISM: Citrobacter amalonaticus (B) STRAIN: ATCC 25405	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24	
55	CTGCGACTGA CGGCCCGATG CCGCAGACTC	50 100
	CGGCGCGATC CIGGIIGIIG CIGCGACTAG GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG GTGAGCACAT CCTGCTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG AGAAATGGAA GTTCGTGAAC TTCTGTCTCA AACGCTTGA AGGCGACGCA	150 200
60	ACACCCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGGGTGGA	250
	147	

### CA 02283458 1999-09-28

5	GAGTGGGAAG CGAAAATCAT CGAACTGGCC GGCTTCCTGG ATTCTTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATCAT CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTGCCAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCGGTAGA AACGTTGGTG TTCTGCTGCG TGGTATCAAA	300 350 400 450 500
10	GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCGCA GTTCTACTTC	550 600 650 700 750 800 816
15	2) INFORMATION FOR SEQ ID NO: 25	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Citrobacter braakii (B) STRAIN: ATCC 43162	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25	
35	CGCGATCCTG GTTGTTGCTG CAACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGY CAGGTAGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTAGA AATGGAAGTT CGTGGACTTC TGTCTCAGTA CGATTTCCCG GGCGACGACA CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAWGCAGAG TGGAACCAGAG CGTCGCTGCT CCTGCTCCT ATCGAAGACG	50 100 150 200 250 300
40.	GGTATCATCA AAGTTGGTGA AGAAGTTGAA ATCGTTGGTA TCAARGACAC TGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTGGGGAA	350 400 450 500
45	AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCACA CTGCTGGACG GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AARGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGTAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCGC	550 600 650 700 750 800
50		825
	2) INFORMATION FOR SEQ ID NO: 26	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: ORGANISM: Citrobacter koseri (A) STRAIN: ATCC 27156 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26 5 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC 50 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAGATGGAA GTGCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG 200 ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCT 250 GAGTGGGAAG CGAAATCAT CGAACTGGCT GGCTACCTGG ATTCTTACAT 300 CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG 350 ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG 400 CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATYGTTG GTATCAAAGA 450 15 GACTGCGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GYTCCATCAA 550 600 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATYCTGTCY AAAGATGAAG 650 GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 20 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT 750 GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 800 829 TCGCGAGGAC GACGGTCTGC GTTTCGCAA 25 2) INFORMATION FOR SEQ ID NO: 27 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 827 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 35 (vi)ORIGINAL SOURCE: ORGANISM: Citrobacter farmeri (A)STRAIN: ATCC 51112 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27 CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC 100 CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTAGA 150 GATGGAAGTT CGTGAACTGC TGTCTCAGTA CGATTTCCCG GGCGACGACA 200 CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG 250 TGGGAAGCGA AAATCATCGA ACTGGCAGGC TTCCTGGATT CTTACATCCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG 350 TATTCTCCAT CTCTGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC GGTATCATCA AAGTGGGTGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC 450 TGCCAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG 500 AAGGCCGTGC TGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT 550 GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCW CCATCAAGCC RCACACTATG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT

ACGACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGTG TTGAGATGGT TATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG

CGATGGACGA CGGTCTGCGT TTCGCAA

650 700

	2) INFORMATION FOR SEQ ID NO: 28	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 797 bases (B) TYPE: Nucleic acid	
7	(C) STRANDEDNESS: Double	
1	0 (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
1	ORGANISM: Citrobacter freundii	
	(B) STRAIN: ATCC 8090	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28	
20		
	TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT GCCGCAGACT CGTGAGCACA AAATGCGACA TGGTTGATGA CCAACACCTT ACATCATCGT GTTCCTGAAC	50 100
	AGTTCGTGAA CTTCTGTCTC AGAAGCTG CTGGAACTGG TAGAAATGGA	150
25	TCGTTCGTGG TTCTGCTCTG AAAGCGCTTCCGA AAGGCGAAGC AGAGTGGGAA GCGAAAATCA TCGAACTGCC TGGCTTTCCTG AAGGCGAAGC AGAGTGGGAA	200
25	GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCAGAACC AGAGCGTGCG ATTGACAACC CCTTCCTTCCTT	250 300
	CCATCTCCGG TCGTGCTACC CUTTCTGCT GCCTATCGAA GACGTATTCT	350
	ATCAAAGTTG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTGCTAA	400
30	GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC GTGCTGGTGA GAACGTTGGT GTTCTGGTGG GACGAAGGCC	450 500
	ATCGAACGTG GTCAGGTACT CCCTACGC GTGGTATCAA ACGTGAAGAA	550
	CAAGTTCGAA TCTGAAGTGT ACATTCTGTC CAAAGACGAA GGCGGCCGTC	600
	GACGTGACTG GTACCATCGA AGTGCCGC AGTTCTACTT CCGTACTACT	650 700
35	GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCA ATCGCGA	750
	CALCULA AICGCGA	797
	2) INFORMATION FOR SEQ ID NO: 29	
.40		
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	torologi. Hillear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Citrobacter sedlakii	
	(B) STRAIN: ATCC 51115	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29	
55	CGGCGCGATC CTGGTTGTTG CCGCGACTGA CGGCCCGATG CCGCAGACCC	
	GTGAGCACAT CCTGCTGGGT CGTCAGGTAG CCGCCGATG CCGCAGACCC TTCCTGAACA AATGCGACAT GGTTGATCAG CCCTTCCGTA CATCATCGTG	50
	AGAGATGGAA GTTCGTGAAC TGGTGATGAC GAAGAGCTGC TGGAACTGGT	100 150
<b>C</b> C	ACACGCCGAT CGTTCGTGCT TCA GGTTCTCA GTACGATTTC CCGGGCGACG	200
60	GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT	250
	150	300

	• • • •	
5	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA ACGTAGGTGA AACGTAGGTG TTCTGCTGCC AAACTGCTGG ACGAAGGCCG TGCGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCGAAGCCGG GCACCATCAA GCCGCACACC AAGGTTCGAAT TATTCTGTCC AAAGATGAAG GCCGCACACC AAGGTTCGAAT TATTCTGTCC AAAGATGAAG	350 400 450 500 550 600
10	GCCGCACACC AAGTTCGAAT CTGAAGIGIA IATICIONEGE GCCGCACACCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGCGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCAAG GCGTAGAGAT CGTACAACTG ACCGTCACCCGAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGATGGA CGCCGATGGA CGTTTC	700 750 800 826
15	2) INFORMATION FOR SEQ ID NO: 30	
20	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 823 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter werkmanii     (B) STRAIN: ATCC 51114</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30  GCGATCCTGG TTGTTGCTGC GACTGACGGC CCGATGCCGC AGACTCGTGA GCACATCCTG CTGGGTCGTC AGGTAGGCGT TCCGTACATC ATCGTGTTCC GCACATCCTG CTGGGTCGTC GATGACGAAG AGCTGCTGGA ACTGGTAGAA TGAACAAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA	50 100 150
35	ATGGAAGTTC GTGAACTTCT GTCTCAGTAC GATTTCGAAGGC GAAGCAGAGT TCCGATCGTT CGTGGTTCTG CTCTGAAAGC GCTGGAAGGC GAAGCAGAGT GGGAAGCGAA AATCATCGAA CTGGCTGGTT TCTGGATTC TTACATCCCG GAACCAGAGC GTGCGATTGA CAAGCCGTTC TACCGGTCGT GTAGAGCGCG	200 250 300 350 400
40	GTATCATCAA AGTTGGTGAA GAAGTTGAAA ICGIIGGIAT GCTAAGTCTA CCTGTACCGG CGTTGAAATG TTCCGCAAAC TGCTGGACGA GCTAAGTCTA CCTGTACCGG CGTTGAAATG TTCCGCGAGCT ATCAAACGTG AGGCCGTGCT GGTGAGAACG TTGGTGTTCT AGCCGGGCTC TATCAAGCCG	450 500 550 600 650
45	CACACCAAGT TCGAATCTGA AGTGTACATC CTGTGCAGTTC TACTTCCGTA CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCGCAGTTC TACTTCCGTA CCGTCATACT CCGTTCTTCC ATCGAACTGC CGGAAGGCGT AGAGATGGTA	700 750 800 823
50	2) INFORMATION FOR SEQ ID NO: 31	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Citrobacter youngae
- (B) STRAIN: ATCC 29935
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31

	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCCAMCC	0000 00 00	
	TGAGCACATC			GGCCCGATGC	CGCAGACTCG	50
	TCCTGAACAA				ATCATCGTGT	100
10				AAGAGCTGCT	GGAACTGGTA	150
10	GAAATGGAAG		TCTGTCTCAG	TACGATTTCC	CGGGCGACGA	
	TACGCCGATC	GTTCGTGGTT	CTGCTCTGAA			200
	AGTGGGAAGC	GAAAATCATC			GGCGAAGCAG	250
	CCGGAACCAG				TTCTTACATC	300
	CGTATTCTCC				CAATCGAAGA	350
3 F			GTGGTACCGT	TGTTACTGGT	CGTGTAGAAC	400
15	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	
	ACTGCCAAGT	CTACCTGTAC	TGGCGTTGAA			450
	CGAAGGCCGT	GCTGGTGAGA		ATGTTCCGCA		500
	GTGAAGAAAT	CGAACGTGGT		TCTGCTGCGT	GGTATCAAAC	550
			CAGGTACTGG	CTAAGCCGGG	CTCTATCAAG	600
	CCGCACACCA		TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	•
20	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	~~~~		650
	GTACTACTGA	CGTGACGGGT	ACCATCCAAC	Maa	TTCTACTTCC	700
	GTAATGCCGG				CGTAGAGATG	750
		<b>~~</b> ~~ ~~ · · ·		GTTACCCTGA	TCCACCCAAT	800
	CGCGATGGAT	GACGGTCTGC	GTTTCG			
						826

25

30

40

### 2) INFORMATION FOR SEQ ID NO: 32

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 841 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Clostridium perfringens
- (B) STRAIN: ATCC 13124
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32

45	CGGAGCTATA GAGAGCACAT TTCTTAAACA TGAAATGGAA	CTTATTATCA AAGCAGATAT	TCAAGAGTTG GGTTGACGAC	GAGTTGACCA GAAGAATTAT	TAGAATTAGT	50 100 150
50 55	TAGAGGACGT GTTGAAAGAG AACTGAAGAA AGTTATTAGA GGTATCCAAA AACAATCAAC AAGAAGAAGG TTCTACTTCA AATGGAAATG	GTTAGAGAGT AATCAARGGA CAACAGCTTG ACACCAGAAA ATTCACAATC GAGTTCTACA AGAAGAAAAA TGAAGCACAA GAACTGAYAT CCACACAAAA TGGAAGACAT GAACAACAGA	TATTAAGCGA TCAGCTTTAG TATCAGAGAG GAGCAACAGA ACTGGTAGAG TGTAGGAGAC CTGTTGTAAC GCTGGAGATA CGAAAGAGGT AATTCGTAGG ACTCCATTCT CGTTACAGGA GAGACCACAT	GTACAACTTC TAGCATTAGA TTAATGGATG TAAGCCATTC GAACAGTTGC GAAGTAGAAG AGGAATCGAA ACATCGGAGC CAAGTTTAG TCAAGTATAC TCGATGGATA	CCAGGAGACG AAACCCAACT CTGTAGATAG TTAATGCCAG AACAGGAAGA TAATCGGATT ATGTTCAGAA ATTATTAAGA CTCAAGTTGG GTACTTAAAA CAGACCACAA TACCAGAAGG GTTGAATTAA	200 250 300 350 400 450 500 550 600 650 700 750 800
60					_	841

	2) INFORMATION FOR SEQ ID NO: 33					
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 822 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear					
10	(ii) MOLECULE TYPE: Genomic DNA					
15	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Comamonas acidovorans    (B) STRAIN: ATCC 15668</pre>					
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33					
20	CGGCGCCATC CTGGTGTGCT CGGCCGCTGA CGGCCCCATG CCCCAGACCC GCGAGCACAT CCTGCTGGCC CGTCAGGTGG GCGTGCCCTA CATCATCGTG TTCCTGAACA AGTGCGACAT GGTGGACGAC GAAGAGCTGC TGGAACTGGT CGAAATGGAA GTGCGCGAGC TGCTTGCCAA GTACGACTTC CCCGGCGACG ACACCCCCAT CATCCGCGGC TCGGCCCAAGC TGGCCCTGAAC CACTGGACTC	50 100 150 200 250 300				
25	TCCGACAAGG GCGAACCTGC CATCCTGCGC CTGGCTGAAG CACTGCACTG	350 400 450 500				
30	TGCTGGACCA AGGTCAAGCT GGCGACAACG TGGGTCTGCT GCTGCGGCTC ACCAAGCGTG AAGACGTGGA ACGCGGCCAA GTGCTGTGCA AGCCCGGCTC CATCAAGCCC CACACCCACT TCACGGCTGA GGTGTACGTG CTGTCCAAGG ACGAAGGTGG TCGCCACACT CCGTTCTTCA ACAACTACCG TCCCCAGTTC ACGAAGGTGG TCGCCACACT GACCGGCTCC ATCGAGCTGC CCGCCGACAA	550 600 650 700 750 800				
35	GGAAATGGTG ATGCCTGGCG ACAACGTGTC GATCACCGTC AAGCTGATCG CCCCCATCGC CATGGAAGAA GG	822				
	2) INFORMATION FOR SEQ ID NO: 34					
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 702 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double					
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear					
	(ii) MOLECULE TYPE: Genomic DNA					
50	(B) STRAIN: ATCC 7715					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34					
55	ACATCCTCGT CGCCCTCAAC AAGTGCGACA TGGTCGACGA CGAGGACCTC ATCGAGCTCG TCGAGATGGA GGTCCGTGAG CTCCTCGCCG AGCAGGACTA CGACGAGGAC GCCCCGATCA TCCACATCTC CGCCCTCAAG GCCCTCGAGG CGCACGCCA GTGCACGCAG CGCATCGTCG ACCTCATGAA GGCCTGCGAC	50 100 150 200 250				
60		300				

### CA 02283458 1999-09-28

10	GATCGAGGAC ATCTTCACGA TCACCGGCCG CGGCACCGTC GTCACGGGCC GTGTCGAGCG TGGCATCCTC AACGTCAACG AGGAGGTCGA GATCCTGGGT ATCTGCGAGA ACTCCCAGAA GACGACCGTC ACCTCCATCG AGATGTTCAA CAAGTTCCTC GACACGGCCG AGGCCGGCGA CAACGCCGCC CTGCTGCTCC GTGGCCTGAA GCGCGAGAC GTCGAGCGTG GCCAGATCGT GGCCAAGCCG GGCGCCTACA CGCCGCACAC CGAGTTCGAG GGCTCCGTGT ACATCCTCTC CAAGGACGAG GGTGGCCGCC ACACGCCGTT CTTCGACAAC TACCGTCCGC AGTTCTACTT CCGGACGACC GACGTCACCG GCGTCGTCAA GCTGCCGGAG GG	350 400 450 500 550 600 650 700			
	2) INFORMATION FOR SEQ ID NO: 35				
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 689 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>				
20	(ii) MOLECULE TYPE: Genomic DNA				
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Corynebacterium cervicis  (B) STRAIN: NCTC 10604				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35	•			
30	GGCTCAGACC CGCGAGCACG TTCTGCTTGC TCGCCAGGTT GGCGTTCCGA CGATCCTGGT TGCCCTCAAC AAGGCCGATA TGGTCGACGA TGAGGAAATG CTGGAGCTCG TTGAGGAAGA GTGCCGCGAC CTGCTCGAGT CCCAGGACTT CGATCGTGAC GCCCCGATCA TCCAGGTTTC CCCCCGTGAAC GCCCAGGACT	50 100 150			
35	GTGATCCGCA GTGGGTTGCT AAGGTCGAGG AGCTCATGGA GCTCTCGAAG ACCTTCGTGC CGACTCCTGA GCGCGACATG GACAAGCCGT TCCTCATGCC GATCGAAGAC GTCTTCACCA TCACCGGCCG TGGCACCGTT GTTACCGGTC GTGTTGAGCG TGGCAAGCTC CCGATCAACT CTGAGGTTGA AATCCTCGGT ATCCGCGAAC CGCAGAAGAC CACCGTTACC GGTATCGAGA TGTTCCACAA	200 250 300 350 400			
40	GTCCATGGAT GAAGCATGGG CAGGCGAGAA CTGTGGTCTC CTCCTGCGTG GCACCAAGCG CGATGAGGTT GAGCGCGGTC AGGTCGTTGC CGTTCCCGGT TCGATCACCC CGCACACCAA CTTCACCGGA CAGGTCTACA TCCTCAAGAA GGAAGAAGGC GGTCGTCACA ACCCGTTCTT CTCGAACTAC CGTCCGCAGT TCTACTTCCG CACCACGGAC GTGACCGGCG TCATCACCC	450 500 550 600 650 689			
45					
	2) INFORMATION FOR SEQ ID NO: 36				
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 804 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear				
55	(ii) MOLECULE TYPE: Genomic DNA				
33	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Corynebacterium flavescens   (B) STRAIN: ATCC 10340</pre>				
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36				
	154				

5 10 15	GGTTGTTGCT GCAACCGATG GTCCTATGCC GCAGACCCGC GAGCACGTTC TCTTGGCTCG CCAGGTTGGC GTTCCTTACA TCCTCGTTGC TCTTAACAAG TGCGCGAACTG CTCGCTGAGC AGGACTACGA AGGACTACGA AGGACTACGA ACGAGAAGTG GGTACAGGCC CTGCGAGCC CTGCGATGAC CTGCGATGAC CTGCGATGAC CTGCGATGAC CTGCGATGAC AAGCCCTTCC ACGCCGCGCG TACCGTTGTT ACCGGCCGTG TCTCAACGAC AAGCCCTTCC ACCGCCGCG TACCGTTGTT ACCGGCCGTG TTGAGCGTG CACCGTTACC GGTATCGAAA TGTTCCGCAA AGGACAACTC CTGTGGTCTG CTTCTGCGCAA AGGCCCGCC ACGGCCGCG ACGGTTGTT CAAGCCGGCC AGGTTGTTAC CAAGCCGGCC GTACCACCA AGGCTCGCC CTGCGACAAC CTGTGGTCTG CAAGCCGGCC GCCCACACAAC AGGTTGTTAT CAAGCCGGCC GCCCACACCAA GGTTCTCACC CCCACACCAA GGACAACTAC CGTCCGCAGT TCCTCAAGAA GGAAGAGGCC GCCCACACAA GGACAACTAC CGTCCGCAGT TCTACTCCG ACCGCCCACA CAAGCCGGCC ACCGACAACACAA GGAAGAGGCC GCCCACACAA GCCCGTTCACC CCCACACCAA GCCCGTTCACC CCCACACCAA GCCCGTCCACA CGTCCGCACAC ACCGACGACACACAA GCCCGTCCACAC ACCGACAACACAC ACCGACAACACAC ACCGACAACACAC ACCGACACAA CGCCCGCC	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 804
20		
	2) INFORMATION FOR SEQ ID NO: 37	
25	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 692 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
35	(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium kutscheri (B) STRAIN: ATCC 15677	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37	50
40	TGCCTCAGAC CCGTGAGCAC GTTCTTCTTG CTCGCCAGGT TGGCGTTCCT TACATCCTCG TTGCTCTTAA CAAGTGCGAC ATGGTTGACG ATGAGGAAAT CATCGAGCTC GTTGAGATGG AAGTTCGCGA GCTTCTTGCT GAGCAGGAGT ACGATGAAGA GGCTCCAATC ATCCACATCT CTGCTTTGAA GGCTTCTTGAG GGCGACGAGA AGTGGACTCA GGCCATCATC CACCTCATGC AGGCTTGTGA TGACTCCATC CCAGATCCAG AGCCTGAGAC CGACAAGCCA TTCCTCATGC	50 100 150 200 250 300
45	CTATCGAGGA TATCTTCACC ATCACCGGTC GIGGCACCGT TOTALOGG CGTGTTGAGC GCGGTTCCTT GAAGGTGAAT GAGGACGTCG AGATCATCGG CATCAAGGAG AAGTCCACCA CTACTACCGT TACCGGTATC GAAATGTTCC GTAAGCTTCT TGATTACACC GAAGCTGGCG ATAACTGTGG TCTGCTTCTT CGTGGTATCA AGCGCGAAGA CGTTGAGCGT GGTCAGGTTG TTGTTAAGCC CGTGGTATCA AGCGCGAAGA CGTTGAGCGT GGGCTCTGTT TACGTTCTTT	350 400 450 500 550 600
50	addadddddd Chrift Chi ii ii ii ii ii acac cac cac	650 692

## 55 2) INFORMATION FOR SEQ ID NO: 38

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 797 bases (A)
- (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 60

TOPOLOGY: Linear

(D)

(ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium minutissimum (A) (B) STRAIN: ATCC 23348 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38 10 CCTGGTTGTT GCTGCAACCG ATGGCCCGAT GCCGCAGACC CGCGAGCACG TTCTTCTGGC CCGCCAGGTT GGCGTTCCGT ACATCCTCGT TGCACTGAAC 50 AAGTGTGACA TGGTTGACGA TGAGGAAATC ATCGAGCTCG TTGAGATGGA 100 GATCCGTGAG CTGCTCGCTG AGCAGGACTA CGACGAGGAA GCTCCGATCG 150 TTCACATCTC CGCTCTGAAG GCTCTTGAGG GCGACGAGAA GTGGGCACAG 15 200 TCCATCGTTG ACCTGATGCA GGCTTGCGAT GACTCCATCC CGGATCCGGA 250 GCGCGAGCTG GACAAGCCGT TCCTGATGCC GATCGAGGAC ATCTTCACCA
TTACCGGCCG CGGTACCGTT GTTACCGGCC GTGTTGAGCG TGGCTCCCTG 300 AACGTTAACG AGGACATCGA GATCATCGGT ATCAAGGACA AGTCCATGTC CACCACCGTT ACCGGTATCG AGATGTTCCG CAAGATGATG GACTACACCG 450 20 AGGCTGGCGA CAACTGTGGT CTGCTTCTGC GTGGTACCAA GCGTGAAGAG 500 GTTGAGCGTG GCCAGGTTTG CATCAAGCCG GGCGCTTACA CCCCGCACAC 550 CAAGTTCGAG GGTTCCGTCT ACGTCCTGAA GAAGGAAGAG GGCGGCCGCC 600 ACACCCCGTT CATGGACAAC TACCGTCCGC AGTTCTACTT CCGCACCACC 650 GACGTCACCG GTGTCATCAA GCTGCCGGAG GGCACCGAGA TGGTCATGCC 25 GGGCGACAAC GTTGAGATGT CCGTAGAGCT GATCCAGCCG GTCGCTA 797 30 2) INFORMATION FOR SEQ ID NO: 39 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 bases TYPE: Nucleic acid (B) 35 STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium mycetoides (A) (B) STRAIN: ATCC 21134 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39 45 GCCGCAGACC CGCGAGCACG TTCTTCTGGC CCGCCAGGTC GGCGTCCCCT ACATCCTCGT TGCGCTGAAC AAGTGCGACA TGGTTGATGA TGAGGAGATC 50 ATCGAGCTCG TGGAGATGGA GGTCCGTGAG CTGCTCGGCG AGCAGGACTA 100 CGACGAGGAC GCCCCCATCA TCCACATCTC CGCTCTGAAG GCTCTCGAGG 150 GCGACGAGAA GTGGGTTCAG TCCGTGCTCG ACCTCATGCA GGCGTGCGAC 50 200 GACTCCATCC CGGATCCGGT CCGCGAGACC GACCGCGACT TCCTGATGCC 250 GATCGAGGAC ATCTTCACCA TCTCCGGCCG CGGCACCGTG GTTACCGGTC
GTGTGGAGCG CGGCGTGCTC AACCTCAACG ACGAGGTCGA GATCATCGGC
ATCCGCGACA AGTCCCAGAA GACCACCGTC ACCTCCATCG AGATGTTCAA 300 350 400 CAAGCTGCTC GATACCGCTG AGGCAGGCGA CAACGCGGCT CTGCTGCTCC 55 450

500 550

600

650

700 702

GCGGTCTGAA GCGCGAGGAC GTCGAGCGTG GCCAGGTTGT CATCAAGCCG GGCGCCTACA CCCCGCACAC CAAGTTCGAG GGTTCCGTCT ACGTCCTGTC

CAAGGACGAG GGCGGCCGCC ACACCCCGTT CTTCGACAAC TACCGTCCGC

AGTTCTACTT CCGCACCACC GACGTGACCG GTGTTGTGAA GCTGCCGGAG

	2) INFORMATION FOR SEQ ID NO: 40	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 674 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(C) STRANDEDNESS. Dodd-1 (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Corynebacterium pseudogenitariam	
	(B) STRAIN: ATCC 33038	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40	50
20	GCTCGCCAGG TTGGCGTTCC TTACATCCTC GTTGCGCTGA ACAAGTGCGA CATGGTTGAT GATGAGGAAA TCATCGAGCT CGTTGAGATG GAGATCCGTG	100
		150 200
		250
	TGATCTGATG GAAGCCTGCG ACAACTCCAT CCCGGATCCG GACATCACCGGC	300
25		350 400
		450
	CGAGGACGTT GAGATCATCG GTATCCAGGA GAACACACC CGAGGCTGGC TTACCGGTAT CGAGATGTTC CGCAAGATGA TGGACTACAC CGAGGCTGAGC GACAACTGTG GTCTGCTTCT GCGTGGTACC AACCGTGAGC ACCAAGTTCG	500
20	Amma mona do conciención a la l	550 600
30		650
	AGGGCTCCGT CTACGTCCTG AAGAAGGAAG ACCOCCACA CGGACGTTAC TTCATGAACA ACTACCGTCC GCAGTTCTAC TTCCGTACCA CGGACGTTAC CGGTGTTGTT CACCTGCCAG AGGG	674
	CGGTGTTGTT CACCIGCCAG ACCC	
35		
	2) INFORMATION FOR SEQ ID NO: 41	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 694 bases	
40	(P) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Corynebacterium renale</pre>	
	(A) ORGANISM: Corynebacterium Tenare (B) STRAIN: ATCC 19412	
50	,_,	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41	
	TGCCTCAGAC CCGTGAGCAC GTTCTGCTTG CTCGTCAGGT CGGCGTTCCT	50 100
		150
55		200
	THE TAX AS A SMOOGRAPHY CTICIAN CARLINATION PROCESSORS	250
	ACT CT COCK C TITCLICATION COLOR INCOME.	300 350
-	CTATCGAGGA CATCTTCACC ATTACCGGTC GCGGTACCGT TGTTACCGG	400

5	TATCAAGGAC AAGTCCCAGA AGACCACCGT CACCGGTATC GAGATGTTCC GCAAGATGCT GGACTACACC GAAGCTGGCG ACAACTGTGG TCTGCTGCTC CGCGGCATCG GCCGTGAGGA TGTCGAGCGT GGCCAGGTTA TCATCAAGCC AGGCGCTTAC ACCCCTCACT CTGAGTTCGA GGGCTCTGTC TACGTCCTGT CCAAGGACGA GGGTGGCCGC CACACCCCAT TCTTCGACAA CTACCGTCCA CAGTTCTACT TCCGCACCAC CGACGTGACC GGCGTTGTG ACCT	450 500 550 600 650 694
10	2) INFORMATION FOR SEQ ID NO: 42	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 687 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Corynebacterium ulcerans     (B) STRAIN: NCTC 8665</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42	
30 35	GCCGCAGACC CGCGAGCACG TTCTGCTGGC TCGCCAGGTT GGCGTTCCKT ACATCCTSGT TGCACTGAAC AAGTGCGACA TGGTTGACGA TGAGGARCTC AGCAGGAGAA GCTCCGRTCG GCGACSAGAA GCTCCGRTCG GCGACCAGAC GCGACCAGAC GCGACCAGAC GAGTCCATCC GAGTCCATCC GAGTCCATCC GGGATCCGCA GCCGCAGACC GACTAGCC GATTGAGGAC ATCTTCACCA ATCTTCACCA ACGTSAACG ACCACCGTT ACCGGTCG ACCACACCGTC ACCCCGCACAC GCCAGACC GCCAGACC GCCAGACC CGAGTCCAGA GCCCAGAC CCGCACCACC GCCACCACC GCCCCGCACAC CGAGTTCGAC GCCCCGCACAC CGAGTTCGAC GCCCCGCCC GCCCCCCC GACGTSACC GCCCCGCACAC CGAGTTCGAC GCCCCGCTC CTTCGACAC TACCGCTCC CTTCGACAC TACCGTCCC CTTCGACAC TACCGTCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCC CTTCGACAAC TACCGTCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCC CTTCGACAAC TACCGTCCCCCCC CTTCGACAAC TACCGTCCCCCCCCCC	50 100 150 200 250 300 350 400 450 550 650 687
40		007
45	2) INFORMATION FOR SEQ ID NO: 43  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 778 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
50	(D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Corynebacterium urealyticum  (B) STRAIN: ATCC 43042  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 43	
	CTGGTTGTTG CTGCAACCGA TGGCCCGATC GGGCAGAGAGAG	
60	TCTGCTGGCT CGCCAGGTTG GCGTTCCGTA CATCCTCGTT GCACTGAACA	50 100

5	AGTGCGACAT GGTTGACGAT GAGGAGCTCC TCGAGCTCGT CGAGATGGAG GTCCGCGAGC TTCTGGCTGA GCAGGACTAC GACGAGGAGG CTCCGGTCGT CCCGATCTCC GCACTGGACG CCCTGGACGG CGATCAGAAG TGGGTCGACT CCCGATCTCGA GCTCATGAAG GCTTGCGACG GGTCCATCCC GGACCCGGAG CCGCGAGACCG ACAAGCCGTT TTACCGGCCG TGTTGAGCGT GGCGTCCTGA ACCACCGTCA CGAGGTCGAG GATGTTCAAC AAGCTGCTGG ACCACCGTCA CCTCCATCAA GATGTTCAAC AAGCTGCTGG ACACCGCAGA GCTCGCGACAC TGCTGCTGCG GCGCTTACAC CCCGCACACC	150 200 250 300 350 400 450 500 550 600
10	GGCTGGCGAC AACGCTGCAC TGCTGCTGCG TGGTCTACAC CCCGCACACC TCGAGCGAGG CCAGATCATC GCTAAGCCGG GCGCTTACAC CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTCCTGTCC AAGGACGAGG GCGGCCGTCA ACCCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTACTTC CGTACCACCG ACGTCACCGG TGTCGTTACC CTGCCAGAGG GCACCGACAT GGTCATGCCG GGCGACAACG TTGAGATGAG CGTCAAGC	650 700 750 778
15		
	2) INFORMATION FOR SEQ ID NO: 44	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 703 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium xerosis	
30	(B) STRAIN: ATCC 373	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44	
35	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC CAACGAGAAGT GGGTCGACTC CAACGCCGTCCGA CCATCGACGA CAACGAGAAGA GAGAGAAGT CCGTCGACGA CAACGCCGTCC CTGATGCCCG	50 100 150 200 250 300
40	TCGAGGACAT CTTCACCATC ACCGGCCGCG GAGGTCGAGA TCCTGGGCAT GTGGAGCGC GCACCCTGAA GGTCAACGAC GAGGTCGAGA ATGTTCCGCA CCAGGAGAAG TCCCAGACCA CCACCGTCAC CGGCATCGAG ATGTTCCGC AGCTGCTGGA CTCCGCCGAGA ACTGTGGCCT GCTGCTCCGC AGCTGCTGGA CTCCGCCGAGA ACTGTGGCCT CGAAGCCGGG	350 400 450 500 550 600
45	THE TOTAL OF COCCANALITY AGILLOWGOOD CLOSE TO THE TOTAL OF THE TOTAL O	650 700 703
50		
	2) INFORMATION FOR SEQ ID NO: 45	
5!	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
6	0 (ii) MOLECULE TYPE: Genomic DNA	
	159	

5

35

- (A) ORGANISM: Coxiella burnetii
- (B) STRAIN: Nine Mile phase II

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45

10	GGAGCGATAT GGAACACATT ACTTGAACAA GAAATGGAAG GACGCCGATA	GTATTGGCGA AGCGGACATG TGAGGGATTT	AGCAAGTGGG GTGGATGACA ATTGAACAGT	TGTTCCGAAC AAGAGCTGTT TATGATTTCC	GGAATTAGTG	50 100 150
15 20	GTGAGGTTGG TACTTCCCGC CGAAGATGTG TAGAGCGAGG AAGGACACGA ATTGGATGAA CGAAACGCGA ATCACGCCAC AGAAGGGGGA ATTTCCGCAC ATAGAGATGG	GGAGCCATCG AGCCGGAGCG TTTTCGATAT GATCATCAAA CGAAGACGAC GGTCAAGCGG AGAAGTGGAG ACAAGAAATT CGCCACACAC GACGGACGTG TGATGCCGGG	CAGCGTTAAA ATAATCAAAT AGCGATAGAC CGGGCCGAGG GTGGCCGACG GTGCACGGC GTGACAACGT CGTGGTCAAG TGAGGCGAG CGTTTTTACA ACGGCCAGT	GGCGTTAGAA TAGTGGAAAC AAACCGTTTT GACGGTGGTG AGATAGAGAT GTTGAGATGT AGGAATTTTA TATTGGCGAA ATTTATGTGT AGGCTATCGA TATTGAGTTT	GGTGACAAGA GATGGACACG TAATGCCGAT ACGGGACGCG TGTGGGGATC TTCGCAAATT TTGAGAGGGA ACCGGGATCG TGTCGAAGGA CCGCAATTTT ACCGGAGGG	200 250 300 350 400 450 500 550 600 650 700 750
25	TGCGCCGGTA	GCGATGGATG	AAGGGCTACG	AAAGTGACGG AT	TTGAATTGAT	800 832

## 2) INFORMATION FOR SEQ ID NO: 46

- 30 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 816 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
    - (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Edwardsiella hoshinae
- 40 (B) STRAIN: ATCC 33379
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46

<b>4</b> 5	AGTGGGAAGC CCGGAACCTG CGTATTCTCA GCGGTATCAT ACCACCAAGA CGAAGGCCGT GTGACGAAAT CCGCACACCA CGGCCGTCAT	CTGCTGGGTC GTGCGAACT ATCGCGAACT ATCCGCGGTT GAAGATCATC AGCGTGACAT ATCTCTGGTC CAAGGTAGGC CTACCTGTAC GCTGGTGAGA CGAACGTGGT AGTTCGAATC	GCCAGGTAGG GTTGATGACG GCTGTCTCAG CTGCGCTGAA GAACTGGCTG CGACAAGCCG GTGGTACCGT GACGAAGTTG TGGCGTTGAA ACGTAGGTGT CAGGTACTGG AGAAGTGTAC TCAAAGGTTA	AAGAGCTGCTAC AAGAGCTGCTACAGCGCTGGAA AAACGCTGGA TTCCTGCTGC TGTTACCGGT AAATCGTAGG ATGTTCCGCA TCTGCTGCGT CTAAGCCGGG ATCCTGAGCA CCGTCCGCAG	GGAACTGGTT CGGGCGACGA GGCGAAGCCG CTCCTACATT CGATCGAAGA CGTGTAGAGC TATCAAGCCG AACTGCTGGA GGTACCAAGC CACCATCACT AGGATGAAGG TTCTACTTCC	50 100 150 200 250 300 350 400 450 550 600 650 700
60	GTACCACTGA	ACTCCGTTCT CGTGACTGGC GCGACAACAT	TCAAAGGTTA ACCATCGAAC	CCGTCCGCAG TGCCGGAAGG		650 700 750 800 816

_	2) INFORMATION FOR SEQ ID NO: 47	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 821 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella tarda	
15	(A) ORGANISM: Edwardsiella tarda (B) STRAIN: ATCC 15947	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47	
		50
20	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG TGAGCACATC CTGTTGGGTC GCCAGGTAGG CGTTCCGTAC ATCATCGTGT	100
	TGAGCACATC CTGTTGGGTC GAAGAGCTGCT GGAACTGGTT TCCTGAACAA GTGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA	150 200
	ARCOCCOUNT ATCCCCCCCTT CTCCCCTGAA AGCGCTGGAA GGCGAAGCCG	250
25	AGTGGGAAGC GAAGATCATC GAACTGGCTG AAACTCTGGA CTCCTACATC CCGGAACCTG AGCGTGACAT CGACAAGCCG TTCCTGCTGC CGATCGAAGA	300 350
	COMPARISON ATCTCTCCCC CTCGTACCGT TGTTACCGGT CGTGTAGAGC	400 450
	GCGGTATCAT CAAGGTAGGC GACGAAGTTG AAATCGTTGG TATCAAGCCG	500
30	CONNECCE CONCERNATION ACCUTAGE TOTAL TOTAL TRANSC	550 600
	GTGACGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCACT CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGAGCA AGGATGAAGG	650
	CCGCACACCA AGTICCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG	700 750
35	GTACTACTGA CGTGACTGGT ACCATCGAAC IGCCGGAAGG CGTACACCTGAT GTAATGCCGG GCGACAACAT CAAGATGGTT GTTACCCTGA TCCACCCGAT	800
33	CGCCATGGAC GATGGTCTGC G	821
		•
40	2) INFORMATION FOR SEQ ID NO: 48	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 830 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Eikenella corrodens</pre>	
	(B) STRAIN: ATCC 23834	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48	
55	CGGTGCCATC CTGGTGGTAT CCGCTGCTGA CGGCCCCATG CCTCAGACTC	50
	GCGAACACAT CCTGTTGGCT CGTCAGGTAG GTGTACCCTA CATCCTCGTA TTCATGAACA AATGCGACAT GGTAGATGAT GCCGAGCTGC TTGAGTTGGT	100 150
	TONGATOGAA ATCCCCCACC TGCTCTCCAG CTATGACTIC CCTGGTGACG	200
60	$\sim \sim $	250

10	ACGAAGGTCA GGCCGGTGAC AACGTAGGCG TACTGCTGCG CGGTACCAAA CGTGAAGAAG TTGAGCGTGG TCAAGTATTG GCTAAACCCG GCACCATCAC TCCGCACACC AAGTTCAAAG CCGAAGTATA CGTATTGAGC AAAGAAGAAG GTGGTCGTCA CACCCCGTTC TTTGCCAACT ACCGTCCACA GTTCTACTTG	300 350 400 450 500 550 600 650 700 750 800 830
15	•	
	2) INFORMATION FOR SEQ ID NO: 49	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 808 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
23	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter aerogenes     (B) STRAIN: ATCC 13048</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49	
35	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CGGGCGACGA CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATC CCRGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	50 100 150 200 250 300
40	GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGCGAAAA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGYGT TCTGCTCCCT GGTATGAAAA	350 400 450 500 550
45	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CAGCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCCA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGRTG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGG	600 650 700 750 800 808
50		
	2) INFORMATION FOR SEQ ID NO: 50	

(i) SEQUENCE CHARACTERISTICS:

- (A) (B)
- LENGTH: 828 bases
  TYPE: Nucleic acid
  STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 60

150

200

250

300

350

400

450

500 550

600

650

700

750

828

(vi)ORIGINAL SOURCE: ORGANISM: Enterobacter agglomerans (A) STRAIN: ATCC 27989 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50 5 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG ATACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCW 10 GAGTGGGAAG CGAAAATCAT CGARCTGGCT GGCCACCTGG ATACCTATAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGCGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TYAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA TACYGCGAAA TCAACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG GCGGTCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCSCA GTTCTACTTC 20 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGATGGA CGACGGTCTG CGTTCGCA 25 2) INFORMATION FOR SEQ ID NO: 51 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 825 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Enterobacter amnigenus (A) STRAIN: ATCC 33072 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51

					CCACAGACGC	50
	TGGCGCGATC	CTGGTTGTTG	CTGCAACTGA	TGGCCCTATG		
		<del>-</del>	CGTCAGGTAG	GCGTTCCTTA	CATCATCGTG	100
45	GTGAGCACAT	CCTGCTGGGT		GAAGAGCTGC	TGGAACTGGT	150
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC		CCAGGTGATG	200
	AGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGATTTC	•	
		CATCCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGAAGCA	250
	ACACTCCAAT			GGCTACCTGG	ATTCTTACAT	300
	GAGTGGGAAG	CTAAAATCGT	TGAGCTGGCT		CCAATCGAAG	350
<b>-</b> ^	CCCGGAACCA	GAACGTGCTA	TCGATAAGCC	ATTCCTGCTG		
50	<b>~~~</b>	TATCTCCGGC	CGTGGTACTG	TTGTAACCGG	TCGTGTAGAG	400
	ACGTATTCTC			GAAATCGTTG	GTATCAAAGA	450
	CGCGGTATCG	TTAAAGTTGG	CGAAGAAGTT		AAACTGCTGG	500
	GACTGCTAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC		
	<b></b>	TGCTGGTGAG	AACGTTGGTG	TTCTGCTGCG	TGGTATCAAA	550
	ACGAAGGCCG		TCAGGTACTG	GCTAAGCCAG	GCTCAATCAA	600
55	CGTGAAGAAA	TCGAACGTGG			AAAGATGAAG	650
	GCCGCACACC	AAATTCGAAT	CTGAAGTTTA	TATTCTGTCC		700
			TTCAAAGGCT	ACCGTCCACA	GTTCTACTTC	
	GCGGCCGTCA		CACCATCGAA	CTGCCAGAAG	GCGTAGAGAT	750
	CGTACAACTG		<b></b>			800
	GGTAATGCCA	GGCGACAACA	TTCAGATGGT	TGTTACCCTG	MICCACCCAM	825
	TCGCGATGGA		CGTTT			825
60	TUGUGATGGA	ICACOCICIO	<del></del>			

2) INFORMATION FOR SEQ ID NO: 52	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 822 bases (B) TYPE: Nucleic acid	
(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10 (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA	
(vi)ORIGINAL SOURCE:	
(1) OKOMISH: Effelobacter ashiriae	
(B) STRAIN: ATCC 35953	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52	
20 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACTC	
TO TO THE COLOR HAND COMMENT OF THE PROPERTY O	50
	100 150
	200
ATACTCCAAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA  GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT  CCCAGAACCA GAGCGTCCCA TTTACAT	250
	300
	350 400
CGCGGTATCA TCAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTGCTAAG TCTACCTGTA CTGCGTGTGA AATGTTCCGC AAACTGCTGG  30 ACGAAGGCCG TGCTGCTCAC AAGGTTGA AATGTTCCGC AAACTGCTGG	450
	500
	550
	600 650
	700
CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTTGAGAT  35 GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACTCTG ATCCACCCAA  TCGCGATGGA CGACCGTTTTC	750
TCGCGATGGA CGACGGTCTG CG	800
	822
40 2) INFORMATION FOR SEQ ID NO: 53	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 826 bases (B) TYPE: Nucleic acid	
45 (C) STRANDEDNESS: Double	
(D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA	
50 (vi)ORIGINAL SOURCE:	
(A) ORGANISM: Enterobacter cancerogenus	
(B) STRAIN: ATCC 35317	
•	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 53	
CGGCGCGATC CTGGTTGTTG CTGCGAGTGA	
GTGAGCACAT CCTGCTGGGT CGTCAGGTAG CCGCCCAATG CCTCAGACTC TTCCTGAACA AGTGCGACAT GCTTCATCATC	50
TTCCTGAACA AGTGCGACAT GGTTGATAG GCGTTCCTTA CATCATCGTG AGAAATGGAA GTTCGTGAAC GAAGAGCTGC TGGAACTGGT	1·00 150
AGAAATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCAGGCGACG 60 ACACTCCAAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGAAGCT	200
164	250

	• • • •	
5	GAGTGGGAAG CCAAAAATCAT CCCAGAACCA GAGCGTGCGA ACGTATTCTC CATCTCCGGT CGCGGTATCA TCAAAGTTGG TACTGCKAAA ACGAAGGCCG TGCTGGTGAG ACGTGGTGAG ACGAAGGCCG TGCTGGTGAG ACGTTGGTG TGCTGGTGAG ACGTTGGTG TTCTTCCTGCT TGAAATCGTTG TGAAATCGTTG TGAAATCGTTG TTCTTCCTGC TCGTGTAGAG TCTGCGTTGA AATGTTCCGC AAACTGCTGG TTCTTACAT TGAAAGATGTT TTCTGCTTGC TTCTTACAT TCTGAAGTTTACAT TTCTTCTTCCTGC TCGTGTAGAG TTCTTCTGCTGC TGGTATCAAA TCTACATCAA TCTGAAGTTTC TCTGAAGTTCC TCTGAAGTTCC TTCTCTCCACA TCTTACAT TTCTTACAT TTCTTACAT TTCTTACAT TCTTACAT TTCTTACAT TTCTTACAT TTCTTACAT TCTTACAT TCTTACAT TTCTTACAT TTCTTACAT TTCTTACAT TCTTACAT TTCTTACAT TTCTTCTGCT TCTTTACAT TTCTTACAT TTCTTACCT TTCTTACCT TTCTTACCT TTCTTACCT TTCTTCCTGC TCTTCTACT TTCTTACTT TTCTTACTT TTCTTACTT TTCTTACTT TTCTTACTT TTCTTACCT TTCTTCT TTCTTACCT TTCTTACT TTCTT	300 350 400 450 500 550 600
10	GCCACACAC AAGTTCGAAT CTGAAGTGTA CATCCTACA GTTCTACTTC GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACGCTG ATCCACCCAA TCGCGATGGA CGACGGTCTG CGTTTC	700 750 800 826
15	2) INFORMATION FOR SEQ ID NO: 54	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Enterobacter cloacae  (B) STRAIN: ATCC 13047	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54	50
35	GATCCTGGTA GTAGCTGCGA CTGACGGCCC AATGCCTCAG ACTCGTGAGC ACATCCTGCT GGGTCGTCAG GTAGGCGTTC CTTACATCAT CGTGTTCCTG AACAAATGCG ACATGGTTGA TGACGAAGAG CTGCTGGAAC TGGTAGAGAT GGAAGTTCGT GAACTGCTGT CTCAGTACGA TTTCCCAGGC GACGATACCC CAATCGTTCG TGGTTCTGCT CTGAAAGCGC TGGAAGGCGA CGCAGAGTGG GAAGMGAAAA TCATCGAACT GGCTGCTAC CTGGATTCTT ACATCCCAGA ACCAGAGCGT GCGATTGAYA AGCCATTCCT GCTGCCAATC GAAGACGTAT	100 150 200 250 300 350 400
40	TCTCCATCTC CGGTCGTGGT ACCGTTGTTA CCGGTCGTGT ATCATCAAAG TGGGTGAAGA AGTTGAAATC GTTGGTATCA AAGAGACTGC ATCATCAAAG TGGGTGAAGA AGTTGAAATGTT CCGCAAACTG CTGGACGAAG GAAGTCTACC TGTACTGGCG TTGAAATGTT CCGCAAACTG CTAAACGTGAA GCCGTGCTGG TGAGAACGTT GGTGTTCTGC TGCGTGGTAT CAAACGTGAA GCCGTGCTGG TGAGAACGTT GGTGTTCTGCCAAACGTGAA TCAAGCCACA	450 500 550 600 650
45	CACCAAGTTC GAATCTGAAG TGTACATCCT GTCCATCTACA CTTCCGTACA	700 750 800 806
50		
	2) INFORMATION FOR SEQ ID NO: 55	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60		
	165	

5

- (A) ORGANISM: Enterobacter gergoviae
- (B) STRAIN: ATCC 33028

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55

	CGGCGCGATC	OTTO OTTO OTTO				
				CGGCCCGATG	CCGCAGACCC	50
	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG			
10	TTCCTGAACA	AGTGCGACAT		COCLICCOIA		100
	AGAGATGGAA					150
	ACACCCCGAT				CCGGGCGACG	200
				AAGCGCTGGA	AGGCGACGCA	
	GAGTGGGAAG	CGAAAATCAT	CGAACTGGCT	GGCCACCTGG		250
	CCCGGAACCA	GAGCGTGCGA	TTGACAAGCC		ATACCTAYAT	300
15	ACGTATTCTC	CATTTCCGGT			CCGATCGAAG	350
	CGCGGTATCA		CGTGGTACCG	TTGTTACCGG	TCGTGTAGAG	400
		TCAAGGTTGG	TGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	CACCGCGAAA	ACCACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	
	ACGAAGGCCG	TGCTGGTGAG	AACGTCGGCG			500
	CGTGAAGAAA	TCGAACGTGG		TTCTGCTGCG	TGGTATCAAG	550
20	GCCGCACACC		TCAGGTACTG	GCTAAGCCGG	GCTCCATCAA	600
20		AAGTTCGAAT	CTGAAGTGTA	CATCCTGTCC	AAAGACGAAG	650
	GCGGCCGTCA	CACTCCGTTC	TTCAAAGGCT		GTTCTACTTC	
	CGTACAACTG	ACGTGACTGG	CACCATCGAA	CCC		700
	GGTAATGCCG	GGCGACAACA			GCGTAGAGAT	750
			TCAAGATGGT	TGTTACCCTG	ATCCACCCGA	800
25	TCGCGAIGGA	CGACGGTCTG	CGTTTC			826
<b>4 5</b>						046

## 2) INFORMATION FOR SEQ ID NO: 56

- 30 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 829 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterobacter hormaechei
- 40 (B) STRAIN: ATCC 49162

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56

<b>45</b> 50	TGAGCACATC TCCTGAACAA GAGATGGAAG CACCCCAATC AGTGGGAAGM CCAGAACCAG CGTATTCTCC	TGGTTGTTGC CTGCTGGGTC ATGCGACATG TTCGTGAACT GTTCGTGGTT GAAAATCATC AGCGTGCGAT ATCTCCGGTC	GTCAGGTAGG GTTGATGACG GCTGTCTCAG CCGCGCTGAA GARCTGGCTG TGACAAGCCA GTGGTACCGT	CGTTCCTTAC AAGAGCTGCT TACGATTTCC AGCGCTGGAA GCTTCCTGGA TTCCTGCTGC TGTTACCGGT	ATCATCGTGT GGAACTGGTA	50 100 150 200 250 300 350 400
55 60	ACTGCGAAGT C CGAAGGCCGT G GTGAAGAAAT C CCACACACA A CGGCCGTCAT A GTACAACTGA C GTAATGCCAG G	CGAACGTGGT AGTTCGAATC ACTCCGTTCT CGTGACCGGT ECGACAACAT	TCAAAGGCTA ACCATCGAAC	TCTGCTGCGT CGAAGCCAGG ATTCTGTCCA CCGTCCACAG TGCCAGAAGG	TATCAAAGAG AACTGCTGGA GGTATCAAAC CTCAATCAAG AAGACGAAGG TTCTACTTCC CGTAGAGATG TCCACCCAAT	450 500 550 600 650 700 750 800 829

2) INFORMATION FOR SEQ ID NO: 57

	2) INFORMATION FOR SEQ 12 STA	
5	GUADA GERRICATICS.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
10	(b) 10102001 2200	
	(ii) MOLECULE TYPE: Genomic DNA	
	(ii) MOLECULE TIPE: GENERAL 2744	
	70 P C P	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Enterobacter sakazakii	
	(B) STRAIN: ATCC 29544	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57	
	GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG	50
20		100
	TGAGCACATC CTGCTGGGTC GTCAGGTAGC AAGAGCTGCT GGAACTGGTT	150
	TGAGCACATC CTGCTGGGTC GTCAGGTAGG CATGCTGCT GGAACTGGTT TCCTGAACAA ATGCGACATG GTTGATGACG TACGACTTCC CGGGCGACGA	200
		250
		300
25		350
25		
		400
		450
		500
		550
30	CGAAGGCCGT GCGGGCGAGA ACGTAGGTGT CTAAGCCGGG CTCCATCAAG GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CTCCATCAAG GTGAAGAAAT CGAACGTGGT CAGGTACTGG ATTCTCTCA AAGATGAAGG	600
	GTGAAGAAAT CGAACGTGGT CAGGTACTGG ATTCTCCCA AAGATGAAGG	650
		700
		750
		800
2.5	OWN AUCCOCK GOGACACAT CAAAATGGII GIIACCOIGA ICCIOA	
35	CGCGATGGAC GACGGTCTGC GTTTCGCAAT C	831
	CGCGATGGAC GACCOTOTO	
	2) INFORMATION FOR SEQ ID NO: 58	
40	2) INFORMATION FOR SEQ 12 No. 10	
	CHARACTER CHARACTERICS.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
1-	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(11) MODE 6322 1 1 1 1	
	(vi) ORIGINAL SOURCE:	
50		
	(A) ORGANISM: Enterococcus casselllavas	
	(B) STRAIN: ATCC 25788	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58	
55		E 0
55		50
		100
		150
	TTCTTAAACA AAAIGGAIAI GGIIGATCAGA ATATGACTTC CCAGGCGACG TGAAATGGAA GTTCGTGACT TATTGTCAGA ATATGACTTC CCAGGCGATGCT	200
	TGAAATGGAA GTTCGTGACT TATIGICAGA ATATCACTON AGGCGATGCT  ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCYTGA AGGCGATGCT	250
60	ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCTTGTT	
	167	

10	TAGACTATGC TGAAGCAGGG GATAACATTG TGAAATGTTC CGTAAATTGT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACAAT CACACCTCAT ACAAAATTTA AAGCTGAAGT TTACGTTTTA ACAAAAGAAG AAGGTGGACG TCACACCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC	300 350 400 450 500 550 650 700 750 800 835
15	2) INFORMATION FOR SEQ ID NO: 59	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus cecorum     (B) STRAIN: ATCC 43198</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59	
35	GGTGCTATCT TAGTAGTATC TGCTGCTGAT GGTCCTATGC CACAAACTCG TGAACACATT CTTTTATCAC GTAACGTTGG TGTTCCATAC ATCGTTGTTT TCTTAAACAA AGTTGATATG GTTGACGACG AAGAATTATT AGAATTAGTT GAAATGGAAG TACGTGACTT ATTAACTGAA TACGACTTCC CAGGAGACGA TGTTCCTGTA ATCGCTGGTT CTGCATTAAA AGCTTTAGAA GGCGACCCAT CTTACGAAGA AAAAATCTTA GAATTAATGG CTGCAGTTGA CGAATACATC CCAACTCCAG AACGTGACAA CGATAAACGA	50 100 150 200 250 300
40	GTGGACAAGT ACGTGTTGGT GACGAAGTTG AAATAGTTGG TATCCATGAT GAAATTTCTA AAACAACAGT TACTGGTGTT GAAATGTTCC GTAAATTATT AGATTACGCT GAAGCTGGAG ACAACATGCC TACAATTATT	350 400 450 500
45	CTCGTGAAGA TATCCAACGT GGTCAAGTAT TAGCTAAACC AGGTTCAATC ACTCCACATA CAAAATTCAC TGCTGAAGTG TACGTTTAA CTAAAGAAGA AGGTGGACGT CATACTCCAT TCTTCACTAA CTACCGTCCA CAATTCTACT TCCGTACAAC TGACGTTACA GGTGTAGTTA ACTTACCAGA AGGTACTGAA ATGGTTATGC CTGGTGATAA CGTAACTATG GAAGTTGAAT TAATCCACCC AATCGCTATC GAAGACGGAA CTCGTT	550 600 650 700 750 800 826
50		020
	2) INFORMATION FOR SEQ ID NO: 60	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 835 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus dispar STRAIN: ATCC 51266 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60 5 CGGCGCGATC TTGGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACTC GTGAACACAT CCTATTGTCA CGTAACGTTG GTGTTCCTTA CATCGTCGTT TTCTTGAACA AAATGGACAT GGTTGATGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTGTCAGA ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT TCATATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT CCCAACTCCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATCGCTGA 450 AGAAACTGCT AAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTGT TGGATTACGC TGAAGCTGGC GACAACATTG GTGCATTATT ACGTGGTGTG 550 GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTATCAAAAC CAGGTTCAAT CACTCCACAT ACAAAATTTG CGGCAGAAGT TTACGTTTTA ACTAAAGAAG
AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGCCC ACAATTCTAC TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGTACTGA AATGGTTATG CCTGGCGATA ACGTTACTAT GGACGTTGAA TTAATCCACC 800 835 CAATCGCGAT CGAAGACGGT ACTCGTTTCT CAATC 25 2) INFORMATION FOR SEQ ID NO: 61 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases 30 TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 35 (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus durans STRAIN: ATCC 19432 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61 CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGCCCTATG CCTCAAACTC GTGAACATAT CCTATTATCT CGTCAAGTTG GTGTTCCTTA CATCGTYGTA 100 TTCTTGAACA AAGTAGATAT GGTCGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAACAGA ATACGAATTC CCTGGTGACG ATGTTCCTGT AATCGCTGGT TCAGCTTTGA AAGCTTTAGA AGGCGACGCT TCATACGAAG AAAAAATCCT TGAATTAATG GCTGCAGTTG ACGAATATAT 50 CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ATGTATTCTC RATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA
CGTGGACAAG TTCGCGTTGG TGACGTTGTA GATATCGTTG GTATCGCAGA
AGAACAGCT CAAACAACAG TTACTGGTGT TGAAATGTTC CGTAAATTAT 400 450 TAGRCTACGC TGAAGCTGGA GACAACATTG GTGCTTTACT ACGTGGTGTT 550 55 GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT 600

650

800 835

CACKCCTCAT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACTAAAGAAG

AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTTATG CCTGGCGACA ACGTAACAAT GGAAGTTGAA TTAATCCACC

5	2) INFORMATION FOR SEQ ID NO: 62	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 680 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus faecalis     (B) STRAIN: R610</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 62	
20	AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT TCGTGACTA TTATCAGAAT ACCATTATGA	50 100 150
25	TCGTGACTTA TTATCAGAAT ACGATTACTC AGGCGATGAT GTTCCAGTTA TCGCAGGTTC TGCTTTGAAA GCTTTAGAAG GCGACGAGTC TTATGAAGAA AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA TCACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT CGCGTTGGTG ACGAGTTGAAACCGT TGGTGAAGTT	200 250 300 350
30	CGCGTTGGTG ACGAAGTTG AATCGTTGGT ATTAAAGACG AAACATCTAA AACAACTGTT ACAGGTGTG AAATGTTCCG TAAATTATTA GACTACGCTG AAGCAGGCGA CAACATCGGT GCTTTATTAC GTGGTGTAGC ACGTGAAGAT ATCGAACGTG GACAAGTATT AGCTAAACCA GCTACAATCA CTCCACACAC AAAATTCAAA GCTGAAGTAT ACGTATTATC AAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCACTAAC TACCGTCCTC	400 450 500 550 600 650
35		680
	2) INFORMATION FOR SEQ ID NO: 63	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 680 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus faecalis	
50	(B) STRAIN: R487	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63	
55	AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT TCGTGACTTA TTATCAGAAT ACGATTTCCC AGGCGATGAT GTTCCAGTTA AAAATCTTAG AATTAATGGC TGCAGTTCAG	50 100 150 200
i I	AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA ICACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT	250 300 350 400

5	CGCGTTGGTG ACGAAGTTGA AATCGTTGGT ATTAAAGACG AAACATCTAA AACAACTGTT ACAGGTGTTG AAATGTTCCG TAAATTATTA GACTACGCTG AAGCAGGCGA CAACATCGGT GCTTTATTAC GTGGTGTAGC ACGTGAAGAT ATCGAACGTG GACAAGTATT AGCTAAACCA GCTACAATCA CTCCACACAC AAAATTCAAA GCTGAAGTAT ACGTATATC AAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCACTAAC TACCGTCCTC	450 500 550 600 650 680
10	2) INFORMATION FOR SEQ ID NO: 64	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 685 bases	
	(n) Type, Nucleic acid	
15	(C) STRANDEDNESS: Double	
13	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecium	
-	7400	
	(2)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64	
25	AGTAGTTTCT GCTGCTGACG GCCCAATGCC TCAAACTCGT GAACACATCC	50 100
	AGTAGTTTCT GCTGCTGACG GCCCAATGCC ICAAACTCTT CTTGAACAAA TATTGTCTCG TCAAGTTGGT GTTCCTTACA TCGTTGTATT CTTGAACAAA TATTGTCTCG TCAAGTTGGT ACAATTACTA GAATTAGTTG AAATGGAAGT	150
	GTAGACATGG TTGATGACGA AGAATTAGGG TCCTGACGAT GTTCCTGTAG	200
	TCGTGACCTA TTAACAGAAT ACGAATICA CCCACGCTTC ATACGAAGAA	250
30	TTGCTGGATC AGCTTTGAAA GCTCTAGAAG GCGACGCTTC CAACTCCAGA AAAATTCTTG AATTAATGGC TGCAGTTGAC GAATACATCC CAACTCCAGA	300 350
	AAAATTCTTG AATTAATGGC TGCAGTTGAC GAATACATOA ACGTGACAAC GACAAACCAT TCATGATGCC AGTTGAAGAC GTGTTCTCAA ACGTGACAAC GACAAACCAT TCATGATGCC GTGTTGAACG TGGACAAGTT	400
	ACGTGACAAC GACAAACCAT TCATGATGCC AGTTGAACG TGGACAAGTT TTACTGGACG TGGTACTGTT GCTACAGGTC GTGTTGAACG TGGACAAGTT ACTTCTTGGT ATTGCTGAAG AAACTTCAAA	450 ·
	TTACTGGACG TGGTACTGTT GCTACAGGTC GIGITGAAG AAACTTCAAA CGCGTTGGTG ACGAAGTTGA AGTTGTTGGT ATTGCTGAAG AAACTTCAAA	500
35	AACAACAGTT ACTGGTGTTG AAATTT GTAG CTGGTGTTGC ACGTGAAGAC	550
33	AAGCTGGAGA CAACATTGGT GCTTACATCA CACCTCATAC	600
	ATCCAACGTG GACAAGTTTT AGCTAAACCA GGTACAATCA ATCCAACGTG GACAAGTAT ACGTGTTGAC AAAAGAAGAA GGTGGACGTC AAAATTCTCT GCAGAAGTAT ACGTGTTCAC AATTT	650
	AAAATTCTCT GCAGAAGTAT AACCGTCCTC AATTT	685
40		
40		
	2) INFORMATION FOR SEQ ID NO: 65	
4.5	(i) SEQUENCE CHARACTERISTICS:	
45	(7) I.ENGTH: 825 Dases	
	Middal C 2010	
	(B) TYPE: NUCLEIC deld (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterococcus IIIV	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65	50
6	CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTAYG CCTCAAACAC GTGAACACAT CTTGTTATCA CGTAACGTTG GTGTACCATA CATCGTTGTT	100

10	CACACCTCAT ACADAATTTA AACGTGAAGTA TTAGCTAAAG CTGGTACAAT	150 200 250 300 350 400 450 550 600 650
15	AAGGTGGACG TCACACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTTATG CCTGGTGATA AMGTAACAAT CGACGTTGAA TTGATCCACC CAATCGCTAT CGAAGACGGA ACTCG	700 750 800 825
20	2) INFORMATION FOR SEQ ID NO: 66  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 636 bases	
25	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus gallinarum     (B) STRAIN: R420</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66	
35	TCCTATGCCT CAAACTCGTG AACACATCTT GTTATCACGT AACGTTGGCG TACCATACAT CGTTGTTTTC TTGAACAAAA TGGATATGGT TGATGACGAA GAATTGCTAG AATTAGTTGA AATGGAAGTT CGTGACCTAT TGTCTGAGTA TGACTTCCCA GGCGACGATC TTGCTGTTAT	50 100
40	CTCTTGAAGG AGATCCTTCA TACGAAGAAA AAATCATGGA ATTGATGGCT GCAGTTGACG AATACGTTCC AACTCCAGAA CGTGATACTG ACAAACCATT CATGATGCCA GTCGAAGACG TATTCTCAAT CACTGGACGT GGTACTGTTG CTACAGGCCG TGTTGAACCT	150 200 250 300 350
45	ATCGTTGGTA TTGCTGACGI GGACAAGTTC GCGTTGGTGA TGAAGTAGAA AATGTTCCGT AAATTGTTAG ACTATGCTGA AGCAGGGGAT AACATTGGTG CATTGCTACG TGGGGTTGCT CGTGAAGACA TCCAACGTGG ACAAGTATTG GCTAAAGCTG GTACAATCAC ACCTCATACA AAATTCAAAG CTGAAGTTTA TGTTTTGACA AAAGAAGAAG GTGGACGTCA CACTCC	400 450 500 550 600 636
50	2) INFORMATION FOR SEQ ID NO: 67	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

. . . .

- ORGANISM: Enterococcus hirae
- STRAIN: ATCC 8043 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67 5

J	(31-)				COMONNACTO	50
	CGGAGCTATC	111101110		TGGTCCTATG GTGTTCCATA	CATCGTTGTA	100
	GTGAACATAT	CCTAYTATCT	CGICITIO	GIGITCOLL		150
	TTCTTGAACA	WAGINGUTITE		CHMONNI TITO	CCTGGTGACG	200
10	TGAAATGGAA	GTTCGTGACT	TATTAACAGA	AAGCTTTAGA	AGGCGACGCT	250
10	ATGTTCCTGT	AGTTGCTGGT	YCAGCTTTGA	GCTGCAGTTG	ACGAATATAT	300
	TCATACGAAG	AAAAAATCCT	TGAATTGATG	ATTCATGATG	CCAGTCGAAG	350
	CCCAACTCCA	GAACGTGACA	ACGACAAACC CGTGGTACTG	TTGCTACAGG	TCGTGTTGAA	400
	ACGTATTCTC		TGACGTTGTA		GTATCGCAGA	450
15	CGTGGACAAG	TTCGCGTTGG	TTACTGGTGT		CGTAAATTAT	500
	AGAAACAGCT		GACAACATTG		ACGTGGTGTT	550
	TAGACTACGC					600
	GCACGTGAAG			amamma	ACAAAAGAAG	650
	CACACCTCAT				ACAATTCTAC	700
20	AAGGTGGACG			GAATTACCAG	AAGGAACTGA	750
	TTCCGTACRA				TTAATCCACC	800
	AATGGTTATC		mmor			835
	CAATCGCTAT	CGAAAACGGI	701.22.			

25

30

# 2) INFORMATION FOR SEQ ID NO: 68

- (i) SEQUENCE CHARACTERISTICS:
- LENGTH: 835 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 35
  - (vi)ORIGINAL SOURCE:
    - ORGANISM: Enterococcus mundtii (A)
    - STRAIN: ATCC 43186 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68 40

	(XI) PECOPIACH PERON				
45	CGGAGCAATC TTAGTTGTT GTGAACACAT CCTATTATC TTCTTGAACA AAGTAGATA TGAAATGGAA GTTCGTGAC ATGTTCCTGT AATCGCTGC KCATACGAAG AAAAAATTC	T CGTCAAGIIG T GGTTGATGAC TATTAACAGA T TCAGCTTTAA T TGAATTGATG	GTGTACCATA GAAGAATTAC ATACGAATTC GAGCTTTAGA GCTGCAGTTG	CCTCAAACTC CATCGTTGTA TTGAATTAGT CCTGGTGACG AGGCGACGCT ACGAATATAT CCAGTTGAGG	50 100 150 200 250 300 350
50 55	CCCAACTCCA ACGTATTCTC ACGTGACAAG CGTGGACAAG AGAAACAGCT TAGACTACGC TCACGTGAAG CACACCTCAT AAGGTGGACG TCACGTGAAG CACACCTCAT AAGGTGGACG TCATACTC TTCYGTACGA CCTGGCGA CAATCGCTAT CGAAAATG	ET CGTGGTACTG EG TGACGTTATC IG TAACTGGTGT EC GATAACATTG CG TGGTCAAGTT CT CTGCAGAAGT CA TTCTTCACTA AC TRGTGTTGTY CA ACGTAACAAT	TTGCTACAGG GATATCGTTG TGAAATGTTC GTGCGTTACT TTAGCTAAAC ATACGTGTTG ACTACCGTCC GAATTACCAG GGAAGTTGAA	ACGTGTTGAA GTATCGCAGA CGTAAATTAT ACGTGGTGTT CAGGTACAAT ACTAAAGAAG ACAATTCTAC AAGGAACTGA	400 450 500 550 600 650 700 750 800 835

	2) INFORMATION FOR SEQ ID NO: 69	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 836 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	(2) STRAIN: AICC 49372	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 69	
20	TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT	50 100 150
25	TCATACRAAG AAAAAATCTT AGAATTAATG SCTGCTGTTG ACGAATACAT CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTTGG TGACCAACTT CAAACTGG TCGTGTTTGAA	200 250 300 350 400
30	TAGACTACGC TGAAGCAGGC GATAACATCG TGAAATGTTC CGTAAATTGT GCACGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT CACTCCACAT ACAAAATTCT CTGCAGAAGT TTACGTTTTA ACTAAAGAAG AAGGCGGGCG TCACACTCCC TTCTTCACTT	450 500 550 600 650
35	TTCCGTACAA CTGACGTAAC TGGTGTTGTT GATCTACCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACGTAACTAT GGAAGTTGAA TTAATCCACC CAATCGCGAT CGAAGACGGA ACTCGTTTCT CTATTC	700 750 800 836
40	2) INFORMATION FOR SEQ ID NO: 70	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Enterococcus raffinosus   (B) STRAIN: ATCC 49427</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70	
55	CGGAGCTRTC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACTC GTGAACACAT CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAATGGATAT GGTTGACGAT GAAGAATTAC TAGAATTAGT	50 100 150
60	ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT TCATACGAAG AAAAAATCTT AGAATTAATG GCTGCTGTTG ATGAATACAT	200 250 300
	174	

5	CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGYGGAAG TCGTGTGTGAA ACCTAGTTC TGACGAAGTT TGAAATCGTAG GTATTGCTGA GTATTGCTGA GTATTGCTGA GTATTACAGGTGT TGAAATCGTAT TGAAATGTTC TGAAGCGGGC GACACACATTG GTGCATAATTGT TGGCTGAAAC CACTCCACAT ACAAAATTCT TCGGACAAGT TTCTTCACTA ACGCGGACG TCATACTCCA TCATACTCCA TCGTGAAACT TTCTTCACTA ACTACAGAAG ACTACCGTACA ACGTAACTAC GGAAGTTGAA TTACCGTTCTAC ACGTGACAAACC ATTCATGATG CCAGYGGAAG TCGTGATTGCTGAATTGCTAAACTCTAAACAACTTG GTGCATAAAC CAGCTTCAAT TTCTTCACTA ACTACCGTCC TCAGTTCTAC GAACTTGAACCCC CTGACGTAAC CCTGACGTAAC CCTGACGTAAC CCTGACGTACT TCATACCACC CCTATTCT CCTATT	350 400 450 500 550 600 650 700 750 800 835
10	CAATCGCGAT CGAAGACGGA ACTOOLOG	033
1,5	2) INFORMATION FOR SEQ ID NO: 71	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus saccharolyticus  (B) STRAIN: ATCC 43076	
2.0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71	50
30 35	CGGCGCGATC TTAGTAGTAT  GTGAACACAT CTTGTTATCT CGTAACGTAG GTGTTCCTTA CATCGTTGTA  GTGAACACAT CTTGTTATCT CGTAACGTAG GAAGAATTAT TAGAATTAGT  TTCTTAAACA AAATGGATAT GGTTGATGAC ATACGATTTC CCAGGCGATG  AGAAATGGAA GTTCGTGACT TATTATCAGA AAGCTTTAGA AGGCGATCCA  ACACTCCAGT TATTGCAGGT TCTGCTTTGA ACGAATATAT  GTTTACGAAG AAAAAATCTT CGAATAATC GCTGCAGTG CCAGTTGAGG  GCCAACTCCA GAACGTGATA CTGAAAAACC TTCATGATG CCAGTTGAA	100 150 200 250 300 350 400 450
4	CGTGGACAAG TTCGCGIIGG TAACAGGTGT TGAAATGTTC CGTAAATTAT  AGAAACAGCT CAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTAT  TAGACTACGC TGAAGCAGGC GATAACATCG GTGCTTTATT ACGTGGGGTT  TAGACTACGC TGAAGCAAGTA TTAGCTAAAC CAGGAACAAT  GCTCGTGAAG ACATCCAACG TGGACAAGTA TTACGTTTTA ACTAAAGAAG  GACTCCTCAT ACAAAATTCG TAGCTGAAGT TTACGTTTTA CTAAAGAAG  CACTCCTCAT ACAAAATTCG TAGCTGAAGT TTACGTTTTA CTAATCTAC	500 550 600 650 700
4	CACTCCTCAT ACAAAATTCG TAGCTGAAGT TACGITITAC AAGGTGGACG TCAAATCTCA TTCTTCACTA ACTACCGTCC TCAATTCTAC AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTA GAATTACGCG AAGGTACTGA AATGGTAATG CCTGGTGACA ACGTAACTAT CGACGTTGAA TTAATCCACC CAATCGCTAT CGAAGACGGA ACTCGTTTCT CTATT	750 800 835
5	2) INFORMATION FOR SEQ ID NO: 72	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 823 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	

- ORGANISM: Enterococcus solitarius (A)
- STRAIN: ATCC 49428 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72 5

	CAACTCCTGA GTATTTTCAA CGGGACTATC ACGTTAAAAA GACTACGCTG TCGTGATGAT	TGTTGTCACG ATGGATATGG ACGTGATCTA ATTTCCGGTTC AAAATTATGG ACGTGACCAT TTACAGGCCG AAAGTCGGCG GACAACAGTT AAGCAGGCGA ATCGAACGTG AAGATCTCT ATACTCCATT GATATCACTG AGGTGATAAT	TAATGTAGGT TTGATGACGA TTATCTGAAT AGCTTTGAAA ACTTAATGGA GACAAACCAT TGGTACTGTT ATGAAGTTGA ACTGGTGTAG TAACATTGGT GTCAAGTATT	GTACCTTACA AGAATTACTT ACGACTTCCC GCTTTAGAAG TGCAGTTGAT TCATGATGCC GCTACAGGAC CATTATTGGT AAATGTTCCG ACTTTGTTAC AGCTAAACCA ATGTTTTGAC TATCGTCCTC ATGCCAGAA	GAGTTAGTTG AGGAGATGAT GCGACGAAGA GACTACATTC AATTGAAGAT	50 100 150 200 250 300 350 400 450 550 600 650 700 750 800 823
2 5						J2 J

25

30

40

# 2) INFORMATION FOR SEQ ID NO: 73

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 665 bases
  - TYPE: Nucleic acid (B) STRANDEDNESS: Double (C)
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 35

## (vi)ORIGINAL SOURCE:

- ORGANISM: Enterococcus casseliflavus (A)
- (B) STRAIN: ATCC 25788
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73

45	ATGGAAGTCA TCCTGTGATC	CTTTCTCGTC GGACCTTGTC GAGAATTGCT AAGGGCTCTG	AAGTGGGTGT GATGATGACG GACTGAATAT	CCAATGCCAC GAAACATTTG AGTTGATCGA GATTTTCCTG CTTGGAAGGG	GCGACGACAT	50 100 150 200
50	ACGCCAGAAC	CAGTCGTGAC	CTGATGGATA CAAACCATTG GGACCGTTGC GAAGTAGAAA	CAGTAGATGA TTGTTACCGA TTCTGGTCGG TCGTCGGAAT	ATATATCCCA TCGAAGATGT ATCGATCGCG	250 300 350 400 450 500
55		TGAACGTGGC	Cy y Character -	ATTGTTACGG	GGCATCACCC	550 600 650 665

2) INFORMATION FOR SEQ ID NO: 74 60

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 664 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
. —	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Enterococcus faecium</li><li>(B) STRAIN: ATCC 19434</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74	
15	AATCTTAGTT GTTTCTGCAA CTGACGGTCC GATGCCTCAA ACACGTGAAC ACATTTTATT GTCACGCCAA GTTGGTGTAA AATACCTGAT TGGTAGAAAT	50 100 150 200
20	GGAAGTTCGC GAGTTATTGA GCGAATATOO CTGTGATCAA AGGTTCCGCA TTAAAAGCAT TGCAAGGCGA TCCAGATGCT CTGTGATCAA AGGTTCCGCA TTAAAAAGCAT TGCAAGGCGA TCCAGAC GAAGCTGCTA TTATGGAATT GATGGATACA ATTGCCAGTG GAAGACGTCT ACCAGAACGT GATACAGATA AACCATTACT ATTGCCAGTAT TGATCGTGGT	250 300 350 400 450
25	GCTGTTCGTG TCGGTGATGA GGTAGACHTAGATT  ACAAAAAGCA GTTGTAACAG GTGTAGAAAT GTTCCGTAAA ACGTTAGATT  ACGGGGAAGC TGGGGATAAC GTAGGCGTGT TGTTACGGGG GATCCAACGT  ACGGGGAAGC TGGGGACA AGTACTTGCT AAACCAGGTT CCATTACTCC  ACATACAAAA TTCAAAGCAG AAGTGTACGT GTTGACAAAA GAAGAAGGTG	500 550 600 650 664
30	CACGTCATAC TCCA	
	2) INFORMATION FOR SEQ ID NO: 75	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 666 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
45	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Enterococcus flavescens</li><li>(B) STRAIN: ATCC 49996</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75	50
50	TGAATAAGAC GGACCTTGIC GAIGATAT GATTTTCCTG GCGACGACAT	100 150 200 250 300
59	CTGAAGCAGC GATCTTAACG CIGATGGATA  TTGTTACCGA TCGAAGATGT  ACGCCAGAAC GTGATACTGA CAAACCATTG TTGTTACCGA TCGAAGATGT  TTTTTCGATC ACAGGACGG GGACCGTTGC TTCTGGTCGG ATCGATCGCG  CTTTTCGATC ACAGGACGG GGACCGTTGAA TCGTCGGAAT CAAACCTGAA  GCATGGTAAA AGTCGGGGAT AAGGGTAGAA ATGTTCCGCA AAACGATGGA  ACACAAAAAG CAGTCGTGAC AGGGGTAGAA ATGTTCCGC GGCATCACCC	350 400 450 500 550
6		600

	CCGCATACGA AATTCCAAGC GGAAGTCTAT GTGTTGACAA AAGAAGAAGG CGGTCGCCAT ACCCCA	650 666
	5	
	2) INFORMATION FOR SEQ ID NO: 76	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 667 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii)MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus gallinarum (B) STRAIN: ATCC 49573	
20	WILLY SEQUENCE DESCRIPTION: SEQ ID NO: 76	
25	TTCCTGTTAT CAAAGGTTCG GCATTAAAAG CGTTGGAAGG AGACCCTGAT	50 100 150 200 250
30 35	TCTTTTCGAT TACTGGACGA GGAACAGTT ACTCTTGCCA GTTGAAGATG GGAACAGTTC GGGTAGGCGA TGAAGTAGAA ATCGTCGGACG GATCGATCGG AACCCAAAAA GCTGTAGTGA CAGGCGTCGA AATGTTCCGC AAGACCATGA ACTTTGGGGA AGCCGGTGAC AATGTAGGTG TCTTGCTGAG AGGGATCACT CGTGACGAAA TTGAACGAGG ACAAGTGTTG TCTTGCTGAG AGGGATCACT ACCACATACA AAATTCCAAG CAGAACTGTTG TCTTAACCAG GTTCGATCAC	300 350 400 450 500 550 600
•	TACACCA	667
40	2) INFORMATION FOR SEQ ID NO: 77	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 834 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Ehrlichia canis  (B) STRAIN: Florida	
	Tiorida .	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77  TGCAGCAATA TTAGTAGTGT CTGCAACTGA TGGAGCAATG CCACAAACAA GAGAACATAT ATTATTAGCA AAGCAACTAC CTGTAACTAC CCACAAACAA	50
60	GAGAACATAT ATTATTAGCA AAGCAAGTAG GTGTAAAAGA TATAGTAGTG TGGATGAATA AGTGTGATGT TGTAGATGAT GAAGAAATGT TGTCATTAGT TGAAATGGAA ATAAGGGAAT TGTTATCAAA ATATGGGTAT CCTGGGGATG ATATAGATGT AGTTAGAGGA TCTGCAGTTA AAGCATTAGA AGAAGAAACA GGCTCAGGTG TGTGGAGTGA AAAAATAATG GAATTGATGA ATGCTTTAGA	100 150 200 250 300

5	AAAAATAAGT TTACCAGTAA GAGAAAAAGA TAAGCCATTT TTAATGTCAA TAGAAAGAG GTTTTCAATA CCTGGAAGAG GTACAGTAGT AACAGGAAGA ATAGAAAGAG GAGTAATTAG AGGAGAAGCA AAGATGAGA TATGTACAAG TTTCATAAAG CATTAGATGC AGGAGAAGCA AGGAGGAATAAT GTTAAGAGGG ATACATTCA TATAAGAGAT TATAAGAGAT TATAAGAGAT AAGAAGGAGG AAGACATACT AAGAAGAGG AAGACATACT AACAGGAAT AATAAAAAAG AAGACATACT AACAGGGAAT ATAAAAGTTAC CAAATTACCA GCCGCAATTT TATGTTAGAA AAGACATACT AACAGGGAAT ATAAAAGTTAC CAGAAGGAGT AGGAAATGGTA ATGCCAGGGG ATAATATAAA TATCGAAGTG AGTTTGGATA AGCCTGTTGC TATTGATCAA GGATTGAGAT TTGC	350 400 450 500 550 600 650 700 750 800 834
15	2) INFORMATION FOR SEQ ID NO: 78	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 817 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Escherichia coli</pre>	
	(B) STRAIN: ATCC 23511  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78	
30	CGGCGCGATC CTGGTAGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG GTGAGCACAT CCTGCTGGGT CGTCAGGTAG CAAGACTGC TGGAACTGGT	50 100 150 200
35	TGAAATGGAA GTTCGTGAAC TTCTGCTCTA AAGCGCTGGA AGGCGACGCA ACACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA ATTCTTAYAT GAGTGGGAAG CGAAAATCCT GGAACTGGCT GGTTCCTGCTG CCGATCGAAG TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG TCGTGTAGAA	250 300 350 400
40	CGCGGTATCA TCAAAGTTGG TGAAGAAGTT CANTONIA CGCGGTATCA AACTGCTGG CACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG GACTCAAAA ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TCTTGCTGCG GCACCATCAA	450 500 550 600 650
45	GCCGCACACC AAGTTCGAAT CIGAAGIGIA GCGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC GCGGCCGTCA TACTCCGTCG TACCATCGAA CTGCCGGAAG GCGTAGAGAT	700 750 800 817
5(	) 2) INFORMATION FOR SEQ ID NO: 79	
	(i) SEQUENCE CHARACTERISTICS:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases

- TYPE: Nucleic acid STRANDEDNESS: Double TOPOLOGY: Linear (B) (C)
- (D)
- (ii) MOLECULE TYPE: Genomic DNA

60

- (A) ORGANISM: Escherichia fergusonii
- (B) STRAIN: ATCC 35469
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79

	CGATCCTGGT	' AGTTGCTGCG	ACTGACCCCC	COMMOGGGGG		
	CACATCCTGC	TGGGTCGTCA		CGATGCCGCA	GACTCGTGAG	50
			00111000011		TCGTGTTCCT	100
	GAACAAGTGC			GCTGCTGGAA	CTGGTTGAAA	
10	TGGAAGTTCG	TGAACTTCTG	TCTCAGTACG			150
	CCGATCGTTC	GTGGTTCTGC		-101100000	CGACGACACT	200
	GGAAGCGAAA				ACGCAGAGTG	250
				CCTGGATTCT	TACATTCCGG	300
	AACCAGAGCG	TGCGATTGAC		TGCTGCCGAT	CGAAGACGTG	
	TTCTCCATCT	CCGGTCGTGG	TACCGTTGTT	ACCGGTCGTG		350
15	TATCATCAAA				TAGAACGCGG	400
	AGAAGTCTAC	CTGTACTGGC		CGITGGTATC	AAAGAGACTC	450
	GGCCGTGCTG		GTTGAAATGT	TCCGCAAACT	GCTGGACGAA	500
	·	GTGAGAACGT	AGGTGTTCTG	CTGCGTGGTA	TCAAACGTGA	550
	AGAAATCGAA	CGTGGTCAGG	TACTGGCTAA	GCCGGGCACC	ATCAACCCCC	
	ACACCAAGTT	CGAATCTGAA	GTGTACATTC			600
20	CGTCATACTC	<del></del>	AGGCTACCGT		TGAAGGCGGT	650
	TACTGACGTG			CCGCAGTTCT	ACTTCCGTAC	700
		ACTGGTACCA	TCGAACTGCC	GGAAGGCGTA	GAGATGGTAA	750
	TGCCGGGCGA	CAACATCAAA	ATGGTTGTTA	CCCTGATCCA	CCCGATCCCC	•
	ATGGACGACG	GTCTGCGTTT	CGCAA		CCCGWICGCG	800
						825

25

30

40

## 2) INFORMATION FOR SEQ ID NO: 80

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 829 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Escherichia hermannii
    - (B) STRAIN: ATCC 33650
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80

45	GGCGCGATCC TGAGCACAA TCCTGAACAA GAGATGGAAG CACCCCGATC	ATGCGACATG TTCGCGAACT	GTCAGGTAGG GTTGATGACG GCTGTCCCAG	CGTTCCGTAC AAGAGCTGCT TACGATTTCC	GGAACTGGTT CGGGCGACGA	50 100 150 200
	CGTATTCTCC GCGGTATCAT ACTGCGAAAT CGAAGGCCGT GTGAAGAAAT CCKCACACCA CGGCCGTCAC GTACAACTGA GTAATGCCGG	GAAAATCATC AGCGTGCGAT ATCTCCGGCC CAAAGTGGGT CAACCTGTAC GCGGGCGAGA CGAACGTGGT AGTTCGAATC ACTCCGTTCT CGTGACTGGC	GAACTGGCTG TGACAAGCCG GTGGTACCGT GAAGAAGTTG CGGCGTTGAA ACGTGGGTGT CAGGTACTGG TGAAGTGTAC TCAAAGGCTA ACCATCGAAC CAAAATGGTT	GCTACCTGGA TTCCTGCTGC TGTTACCGGT AAATCGTGGG ATGTTCCGCA TCTGCTGCGT CTAAGCCGGG ATTCTGTCCA CCGTCCGCAG TGCCGGAAGG		250 300 350 400 450 500 550 600 650 700 750 800 829

	2) INFORMATION FOR SEQ ID NO: 81	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 816 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Escherichia vulneris</li><li>(B) STRAIN: ATCC 33821</li></ul>	
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81	
20	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAGATGGAA GTGCGTGAAC TTCTGTCCCA GTACGACTTC CCGGGCGACG ACACCCCGAT CATTCGTGGT TCTGCGCTGA AAGCGCTGGA ATTCCTACAT	50 100 150 200 250 300
25	GAGTGGGAAG AGAAAATCGT TGAGCTGGCT GGTTCCTGCTG CCGATCGAAG CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAARGTKGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA CGCGGGTATCA TCAARGTKGG TGACGTTCA ATCTTCCGC AAACTGCTGG	350 400 450 500
30	ACGAAGGTCG TGCAGGCGAG AACTGCGGCG TCTAAGCCGG GCTCAATCAA CGTGAAGAGA TCCAGCGTGG CCAGGTTCTG GCTAAGCCGG GCTCAATCAA GCCGCACACC AAGTTCGAAT CCGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCATCCGA	600 650 700 750 800 816
35	TCGCGATGGA CGACGG	
	2) INFORMATION FOR SEQ ID NO: 82	
40	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
43	(ii) MOLECULE TYPE: Genomic DNA	
50	(B) STRAIN: ATCC 43055	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82	
55	CGAGCACATC CTGCTCGCCC GTCAGGTCGG CGTGCCTAC AGAGCTCGTC TCCTGAACAA GTGCGACATG GTCGACGACG AGGAGCTCCT CGAGCTCGACGA GAGATGGAAG TTCGCGAGCT GCTCGACTCT TACGAGTTCC CGGGCGACAAAG	50 100 150 200 250
60		300

5	GCGAGGAGAT CGTTCGCGGC CAGGTTCTCT GCAAGCCCGG TAGCGTGACC CCGCACACCG AGTTCGAGGG TCAGGTCTAC ATCCTGACGA AGGAAGAGGG CGGCCGCAC ACGCCGTTCT TCGACGGCTA CCGTCCGCAG TTCTACTTCC GCACGACGGA CGTGACGGT GTTGCCCACC TTCCCGAGGG CACCGAGATC	350 400 450 500 550 600 650 700 750 800 828
15	2) INFORMATION FOR SEQ ID NO: 83	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 835 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Eubacterium nodatum     (B) STRAIN: ATCC 33099</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83	
35 40 45	GGAGCAATTC AGAACATATC CTTTTGTCAA GGCAGGTAGG AGTGCCATAT ATCATCGTAT TCCTGAATAA ATGTGACATG GTGGATGAYG AAGAGCTTCT GGACTTGGTA TACCCCGATA GTAAGAGGGTT CAGCCCTGAA GAACACAGATT CAAAAGAGAAC TACCCGATA ATGTACCCCATA GTAAGAGGGTT CAGCCCTGAA GGCACTGGAA GAACCCAATG GAACACAAGATT GTAGAGCTGA TGGAGGAAGT AGACAAGATT GTAGAGCTGA TGGAGGAAGT AGACACAAA CCGTTCCTGA GGACGTATC CAAAGAGAGA GGACGTATTC CAAAGAGAGA GAAGAGGAAT CCTGAAGGTC GGACGTATC CAAAGAGAGA CCAAAGAGTA TACAACACAA CCGTTCCTGA GGAAGAGAC GGAAGAGAC GGAAGAGAC GGAAGAGAC GGAAGAGAC GGAAGAATCGT GGACCAATG GGACCCAATG AGACCCAATG GGACCCAATG GGACCCAATG AGAAGGAAG AGTAGCGAA AGTAGCGACA GGAAGAATCGT GGGAATGAGC GGGAATGAGC GGAATGAC GGGAATGAC GGGACACACAT CCGAGGCACTG CTGAGAGAC AGAGAGACAC ATCAACCCAC ATCAACCCAC ATCAAAGTT AAGAGGTCAG ACAGAGCAC ACCTGGAACG ACCTGGAACG ACCTGGAACG ACCTGGAACG ACCTGGAACG ACCTGGAACG ACCTGGAACG ACCTGGAACG CCACAGTTCT AAGAAGAGA TGCCGGAGACA CCACAGTTCT TGCCGATTGCT ATAGAAGAGG GWCTGAGATT TGCCA  CTCAGACAAG ACCCCAATG AGACCCAC AGACCACA AGAGGGAAC AGAGAGCAC AGAGACAACAT CGGAGCACTG CTGAGAAGGA CCTGGAACG ACCTGGAACG ACCTGGAACC ACCTGGAACG ACCTGGAACG ACCTGGAACC ACCTGGAACG ACCTGGAACC ACCTGGAACG ACCTGGAACC ACCTGAACC ACCTGGAACC ACCTGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTGAACC ACCTG	50 100 150 200 250 300 350 400 450 500 650 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 84	

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 826 bases
  (B) TYPE: Nucleic acid
  (C) STRANDEDNESS: Double

  - TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

. . . .

- ORGANISM: Ewingella americana (A)
- STRAIN: ATCC 33852 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84

5	(xi) SEQUENCE DESCRIPTION: 5-2	
5	THE TAKE CONTROLLED AGACTOGTGA	50
	CCGATCCTGG TTGTTGCTGC AACTOCTATCATC ATCGTATTCA	100
	TEGGTCGYC AGGTTGGCGT TCCATTGGA ACTCGTAGAA	150
	CCACATGGTT GATGACGAAG AGCIGGAGGACACACACACACACACACACACACACACACA	200
	TOTAL COURT CYCAACTTCT GTCTGCTTAC GATTTCT GA ACCAGACT	250
10	ATGGARGETT ANAGGTTCAG CGCTGAAAGC ACTGGAAGC CTACATCCCA	300
	CCARTAN CATCATCGAG CTGGCTGGCC ACCTGGATAG TCCANGACGT	350
	GOGATOR CONTROL CARGCOATTC CIGCIGCOATTC CTACAGGGGGG	400
	GARCEATTC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GAACCACACT	450
	ATTEMPT AGTTGGCGAA GAAGTTGAAA TCGTTGGAAG	500
15	GIATA CETTA CETTACTAC CGTTGAAATG TTCCGCAAAC AECAACCTG	550
	GITAGGEORY GGTGAGAACG TTGGTGTTCT GCTGCGTGGT ALTCALACCA	600
	AGGCCOTON AGGCCTCAG GTTCTGGCTA AACCAGGTC ATTACAGG	650
	AAGACATOO AGTOTACA AGTOTATATC CTGAGCAAAG ATOTATATC	700
	CACACCACHE COMMONTON AAGGCTACCG TCCACAGITC TACITO	750
20	CCGICALING AND	800
	CAACTGACGI GACCGATCGC ACCCAATCGC	826
	ATGCCAGGIG ACAMETER TOCCCAA	020
	GATGGATGAC GGTCTGCGTT TCGCAA	

25

30

- 2) INFORMATION FOR SEQ ID NO: 85
  - (i) SEQUENCE CHARACTERISTICS:
    - LENGTH: 828 bases (A)
      - TYPE: Nucleic acid (B)
      - STRANDEDNESS: Double (C)
      - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 35
  - (vi)ORIGINAL SOURCE:
    - ORGANISM: Francisella tularensis (A)
    - STRAIN: LVS (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85 40

	(xi) SEQUENCE DESCRI	FIIOIV. DEL			
<b>45 50 55</b>	TGGTGCTATT CTAGTATGT GTGAGCACAT TCTGCTTTC TTCTTAAACA AGTGTGACA TGAGATGGAA GTTCGTGAG ACACTCCAGT TATTATGGG GCTTACGTTG AGAAAATTG GCGGTGTAG TTAACGTTG AACTCAAAAA ACTACAGTA AACTCAAAAA ACTACAGTA AAGAGGGGA AGCTGATGAGAGATGATG GCCACATACT AAGTTTGAA GTGGTAGACA TACTCCATTG GGTTATGCCT GGTGATAAC GGTTATGCCT GGTGATAAC TCGCTAGGAT GAAGGGTTA	CTGCTGCGGA CGTCAAGTTG GGTTGATGAT CTTTTAGATCA TCAGCTCTTA TGAGCTAGTT ACTGAGAAGCC TCGTGGTACTG GTGATGAAGTT ACTGGTGTGGA TAACGTTGGTA CTGAGGATTA CTGAGGGTTTA CTGAGGGTTTA CTGAGGGTTTA CTGAGGGTTTA CTGAGGGTTTA CTGAGGGAT CTTCAAGGGAT CGTTAAGATGACC CGTTAAGATGACC	GTGTACCAAA GAAGAGTTAT GTATGAGTTC GAGCTATTGA CAAGCTATTGT TTGTAACTGG GAAGTTGTTG AATGTTCGT TCCTAGTTCG TGTAAGCCAG TGTATTATCT TGTAACCAGAGCCACAGCCACAG	TGGACTTAAG GTTCAATTAA AAAGAAGAGG ATTCTACTTC GTGTAGAAAT	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 828

	2) INFORMATION FOR SEQ ID NO: 86	
9	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Fusobacterium nucleatum subsp. polymorphi (B) STRAIN: ATCC 10953	ım
	(D) DIMIN. AICC 10955	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86	
20	CGGTGCTATC ATCGTAGKTG CTGCTACTGA TGGTCCGATG CCTCARACTC 50	
	TTCATGAACA AGTGYGACAT GGTAGACGAC GCTGAAATCY TGGAAGTGGT	
	IGAAAIGGAA AIGCGIGAAC IGCTTTCAGC VTACCAATTC CAVCCVCACA	
	ACACTCCKTT CATTCAGGGT TCTGCTCTTG GTGCRTTGAA YGGCGTTGAA 250 AAGTGGGAAG AGAAGGTTAT GGANCTGATG GATGCTTGCG ACACTTGGAT 300	
25	TOUTING COCCURATA TITTAYAAACC CTTCTTCATA COCCUTTOR TO	
	ACCIAIICIC AAICACIGGT CGTGCTACTC TXCCTXCTCX TOCAL FORTS	
	OCTOOLIGITA ICCALGIAGI TGACTAAACTT CXXXTCCTCC CTTTTCCTCC	
	AGACAAGAAG TCTGTTGTAA CTGGTGTTGA AATGTTCCGC AAGTTGCTGG ATCAAGGTGA AGCTGGTGAC AACGTAGGTY TGTTGCTCCG TGGTATCGAC  AGACAAGAAG TCTGTTGTAA CTGGTGTTGA AATGTTCCGC TGGTATCGAC  500	
30	TATOMACCAMA ICAMACCITCA TATCACTORO TOTALA ACCACACIONA DE LA CONTRACTORO DEL CONTRACTORO DE LA CONTRACTORO DEL CONTRACTORO DE LA CONTRACTOR	
	TOUTURE TO ARGITCHARGE CONTOURS OF THE PROPERTY AND ARREST OF THE PROPERTY OF	
	OTOGICA CACILLUTTU TATAAAAA AA AAAAAAAAAAAAAAAAAAAAA	
	CGTACTATGG ACTGTACAGG TGAAATCWCT CTTCCGGAAG GAACTGAAAT GGTAATGCCT GGTGATAACG TAGAAATCAC TGTAGAACTG ATCTACCCGG TAGCATTGAA CGTACCTTTGAA CGTACCTTTGAACTG TGTAGAACTG ATCTACCCGG 800	
35	TAGCATTGAA CGTAGGTTTG CGTTTCGCT 800	
	923	
4.0	2) INFORMATION FOR SEQ ID NO: 87	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 828 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	. ,	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Gemella haemolysans (B) STRAIN: ATCC 10379	
	1126 10379	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87	
55	CTATCTTAGT AATCGCTGCT ACAGATGGAC CAATGGCTCA AACTCGTGAG 50	
	AAACAAATGT GATATGGTTG ATGACGAAGA GTTATTAGAA TTAGTTGAAA TGGAAGTTCG TGAACTATTA TCTGAATACG GATTCGACGG AGATGAACTA CCAGTAATCA AAGGTTCTCC TCTTAAAACG GATTCGACGG AGATGAACTA 200	
60		
00	AGAAAAAGCT ATCATCGAAT TAATGGAAAC AGTTGACGAA TACATCCCAA 300	
	194	

	• • • • •	
5	CTCCAGAACG TGATAACGCT TACAGTTCA ACAGTTCAATCA CAGGTCGTGG TACAGTTGCT TACAGTTGAACA CAGCTTCAAC TACTGTAACA CAGCTTCAAC TACTGTAACA CAGCTTCAAC TACTGTAACA CAGCTTGAAC TACTGTAACA CAGCTTGAAC TACTGTAACA CAGCTTGAAC CAGCGAGATAA CAGCTGGAC TACACACACC CAGAGACTC CACACACCCA CTCCATTCTT CACAAACTAC CACACACTCA TACTACTGAC TACTACTCC TACTCCAAT TCTCCCAATC TACTCCCAATC TACTACTCAA TCTCCCAATC TACTCCCAATC TACTCCCAATC TACACCTCAA TTCTCCCAATC TACTCCCAATC TTCTCCCAATC TTCTCCCAATC TTCTCCCAATC	350 400 450 500 550 600 650 700 750 800 828
15	2) INFORMATION FOR SEQ ID NO: 88  (i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 823 Dases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Gemella morbillorum     (B) STRAIN: ATCC 27824</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88	
30	TCTTAGTAAT CGCTGCTACA GATGGTCCTA TGGCTCAAAC TCGTGAACAC	50 100 150
35	CAAATGTGAT ATGGTTGATG ACGAAGAGT TTGATGGAGA TGAACTACCA AAGTTCGTGA ACTATTATCT GAATACGGAT TTGATGGAGA TGAACTACCA GTAATCAAAG GTTCAGCTCT TAAAGCTCTT GAAGGAGATG CAGATGCTGA AAAAGCTATC ATCGAATTAA TGGAAACAGT TGACGAGTTGA GGACGTGTTC CAGAACGTGA TAACGCTAAA CCATTTATGT GCACGTGTTG AACGTGGACA	200 250 300 350 400 450
40	AGTTAAAGTT GGTGACGTAG TAGAAATGT TCCGTAAATT ATTAGATTAC CTTCAACTAC TGTAACAGGT GTTGAAATGT TCCGTAAATT ATTAGATTAC GCTGAAGCAG GAGATAACAT CGGTGCATTA TTACGTGGTG TTGCTCGTGA GCTGAAGCAG GAGATAACAA TTTTAGCAGC TCCTAAACA ATCACTCCAC AGATATCGAA CGTGGACAAG TTTTAGCAGC TCCTAAACA AGAAGGTGGA	500 550 600 650
45	CGTCACACTC CATTCTTCAC AAACTACCC AGAAGGTACT GAAATGGTAA	700 750 800 823
5	2) INFORMATION FOR SEQ ID NO: 05	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases	
5	(A) LENGTH: 829 DASES  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	

- TYPE: Nucleic acid STRANDEDNESS: Double TOPOLOGY: Linear (B) (C) (D)
- (ii) MOLECULE TYPE: Genomic DNA

- (A) ORGANISM: Haemophilus actinomycetemcomitans
- (B) STRAIN: ATCC 33384
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89

	GCTATCTTAG	TAGTAGCAGC	AACCGACGGT	CCTATGCCAC	AAACTCGTGA	50
	GCACATCTTA	TTAGGTCGCC		TCCTTACATC		100
	TAAACAAATG	CGACATGGTA			ATTAGTTGAA	150
10	ATGGAAGTTC	GTGAACTTCT	TTCTCAATAT	GACTTCCCGG		200
	CCCAATCGTA	CGCGGTTCTG	CATTAAAAGC	GCTTGAAGGC	GATGCCGCAT	250
	GGGAAGAAAA	AATCCTTGAA	TTAGCAAACC	ATTTAGATAC	TTACATCCCG	300
		GTGCTATCGA	CCAACCGTTC	CTTCTTCCAA	TTGAAGATGT	350
	GTTCTCTATC	TCCGGTCGTG	GTACCGTAGT	AACGGGTCGT	GTTGAGCGCG	400
15	GTATCATCCG	TACCGGTGAT	GAAGTTGAAA	TCGTGGGTAT	CAAACCGACT	450
	GCAAAAACCA	CCGTAACCGG	TGTTGAAATG	TTCCGTAAAT	TACTTGACGA	500
	AGGTCGTGCG	GGTGAAAACA	TCGGTGCATT	ATTGCGTGGT	ACTAAACGTG	550
	AAGAAATCGA		GTATTGGCGA	AACCGGGGTC	AATCACCCCG	600
	CACACTGACT			TTGTCCAAAG	AAGAAGGTGG	650
20		CCATTCTTCA	AAGGTTACCG	TCCACAATTC	TATTTCCGTA	700
	CAACTGACGT		ATCGAGTTAC	CTGAAGGCGT	GGAAATGGTT	750
	ATGCCTGGCG	ATAACATCAA	AATGACCGTA	TCCTTAATTC	ACCCAATTGC	800
	GATGGACCAA	GGTTTACGTT	TCGCTATCG			829

25

30

40

#### 2) INFORMATION FOR SEQ ID NO: 90

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 833 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Haemophilus aphrophilus
- (B) STRAIN: ATCC 33389

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90

45 50 55	TGAAATGGAA ATACACCAAT GAATGGGAAG TCCTGAGCCA ACGTGTTCTC CGTGGTATCA	CTTATTAGGT AATGCGACAT GTTCGTGAAC CGTACGTGGT AAAAAATCCT CAACGTGCTA TATCTCCGGT TCCGTACCGG ACTACCGTAA TGCAGGTGAA TGCAGGTGAA TCGAACGTGG GATTTCGAAT TACTCCATTC ACGTAACCGG	CGCCAAGTAG GGTAGATGAC TTCTTTCTCA TCTGCATTAC TGAATTAGCA TCGACCAACC CGTGGTACTG TGATGAAGTT CCGGTGTTGA AACATCGGTG TCAAGTATTG CTGAAGTGTA TTCAAAGGTT TACTATCGAG	GTGTTCCTTA GAAGAGTTAT ATATGACTTC AAGCGTTAAA	TAGAATTAGT CCGGGTGATG CGGCGTTGCA ATACTTACAT CCAATTGAAG TCGTGTTGAG GTATCAAACC AAATTACTTG TGGCACTAAA GCTCAATCAC AAAGAAGAAG ATTCTATTTC GCGTGGAAAT	50 100 150 200 250 350 400 450 550 650 700 750
60	TCGCGATGGA		CGTTTCGCTA	TCG	ATCCACCCAA	800 833

	2) INFORMATION FOR SEQ ID NO: 91					
5	(i)SEQUENCE CHARACTERISTICS:					
	(D) Type, Nucleic acid					
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear					
10	(ii) MOLECULE TYPE: Genomic DNA					
	•					
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus ducreyi					
15	(B) STRAIN: DSM 8925					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91					
	CACCALCTCA TCCTCCTATG CCTCAAACTC	50 100				
20	GTGAACACAT CTTATTAGGC CGCCAAGIIG GAGAATTAT TAGAATTAGT	150				
	TTCTTAAATA AATGCGATAT GGTAGAT GATATGATTTC CCAGGTGACG TGAAATGGAA GTTCGTGAAC TTCTTTCTCA ATATGATTTC CCAGGTGACG	200 250				
	ATACTCCTAT CGTTCGTGGT TCAGCATIAC AACACTTAG ATTCTTATAT	300 350				
25	CCCTGAGCCT GAGCGTGCGA TTGATAAACC TAGTAACCGG TCGTGTTGAG	400				
	ACGTATTCTC AATTTCAGGT CGTGGTACAG TAGTATCGTAG GGATTAAAGA CGTGGTATCA TCAAATCAGG TGAAGAGTT GAAGTCGTAG GGATTAAAGA CGTGGTATCA TCAAATCAGG TGAAGTTTCCGT AAACTATTAG	450 500				
	AACGACAAAA ACAACAGTAA CCGGIGITAG CCTTATTACG TGGTACTAAA	550				
30	CGTGAAGAAA TCGAACGTGG TCAAGTATTA TCTATTATCA AAAGAAGAAG	600 650				
	ACCACACACT GATTTTGAAT CAGAAGITA ATCGTCCTCA GTTCTACTTC GTGGTCGTCA TACTCCATTC TTCAAAGGTT ATCGTCCTCA GTTCTACTTC GTGGTCGTCA TACTCCATTC TTCAAAGGTT ATCCTGAAG ATGTTGAGAT	700 750				
	GTGGTCGTCA TACTCCATTC TTCAAAGGIT ATCGTCGAAG ATGTTGAGAT CGYACAACGG ACGTAACAGG AACGATTGAA TTACCTGAAG ATGTTGAGAT GGTAATGCCT GGTGATAATA TCAAGATGAC AGTAAGCTTA ATTCACCCTA	800				
35		815				
	2) INFORMATION FOR SEQ ID NO: 92					
40	(i) SEQUENCE CHARACTERISTICS:					
	(a) TENGTH: 830 Dases					
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double					
45	monor ody. Tinear					
	(ii) MOLECULE TYPE: Genomic DNA					
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus haemolyticus					
50	(B) STRAIN: ATCC 33390					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92					
55	TGGTGCTATC TTAGTAGTAG CAGCAACTGA TGGTCCAATG CCACAAACTC	50 100				
	TGGTGCTATC TTAGTAGTAG CAGCAAGTAG GTGTTCCATA CATCATCGTA GTGAGCACAT CTTATTAGGT CGCCAAGTAG GTGTTCCATA CATCATCGTA TTCTTAAACA AATGCGACAT GGTAGATGAC AATGACTTC CCAGGTGACG	150 200				
	AGAAATGGAA GTTCGTGAAC TTCTTTCTCA AIATGACTIC GGCGTAGCA	250				
6	O GAATGGGAAG AAAAATCCT TGAGTTAGCA AACCACTTAG	300				
	187					

10	CCCAGAACCA GAGCGTGCAA TTGACCAACC GTTCCTTCTT CCAATCGAAG ATGTGTTCTC AATCTCAGGT CGTGGTACAG TAGTAACTGG TCGTGTAGAA CGGGGTATCA ACTACTGTAA CGGGTGTTGA AATGTTCCGT AAATTACTTG ACGAAGGTCG TGCAGGTGAA AACATCGGTG CATTATTACG TGGTACCAAA CGGAAGCTGG TCAAGTATTA GCGAAACCAG GTTCAATCAC GCCACACACT GACTTCGAAT CAGAAGTTTA TGTATTATCA AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGTT ACCGTCCACA ATTCTATTTC CGTACAACTG ACGTAACTGG TACTATCGAG TTACCAGAAG GCGTAGAAAT GGCGAAACCAG GTTCAATTACC GGTACAACTG ACGTAACTGG TACTATCGAG TTACCAGAAG GCGTAGAAAT GCGTAATGCCA CCAAGGTTTA CGTTTCGCAA ACGTAAGCTTA ATCCACCCAA TCCGCGATGGA CCAAGGTTTA CGTTTCGCAA	350 400 450 500 550 600 650 700 750 800 830
15	2) INFORMATION FOR SEQ ID NO: 93	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Haemophilus parahaemolyticus     (B) STRAIN: ATCC 10014</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93	
35	TCTTAGTAGT AGCAGCAACA GACGGTCCAA TGCCACAAAC TCGTGAGCAC ATCTTATTAG GTCGCCAAGT AGGTGTTCCA TACATCATCG TATTCTTAAA CAAATGCGAT ATGGTTGACG ATGAAGAATT ATTAGAATTA GTTGAAATGG AAGTGCGTGA ACTTCTTTCA CAATATGACT TCCCAGGTGA TGACACGCCA GTAGTACGTG GTTCAGCGTT ACAAGCGTTA AACGGCGTAG CAGAGTGGGA AGAAAAAATT CTTGAATTAG CAAACCACTT AGATACATAC ATCCCAGAGC CAGAGCGTGC GATTGATAAA CCATTCTTAT TACCAATCGA AGACGTATTC	50 100 150 200 250 300 350
40	TCAATCTCAG GTCGTGGTAC AGTAGTAACA GGTCGTGTTG AGCGTGGTAT CATCAAAGCG GGTGAAGAAG TTGAAATCGT AGGTATCAAA GACACTGCGA AAACAACAGT AACTGGCGTG GAAATGTTCC GTAAATTATT AGACGAAGGT CGTGCGGGTG AAAACGTTGG TGCATTATTA CGTGGTACAA AACGTGAAGA AATCGAACGT GGTCAAGTGT TAGCGAAACC AGGTACAATT ACACCACACA	400 450 500 550
45	CAGACTTCGA ATCAGAAGTG TACGTATTAT CAAAAGAAGA AGGTGGTCGT CACACTCCAT TCTTCAAAGG TTACCGTCCA CAATTCTACT TCCGTACAAC TGACGTAACT GGTACTATTG AATTACCAGA AGGCGTAGAA ATGGTAATGC CAGGCGATAA CATCAAAATG ACAGTATCAT TAATCCACCC AATCGCGATG GACGAAGGTT TACGTTTTGC GATT	600 650 700 750 800 824
50	2) INFORMATION FOR SEQ ID NO: 94	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 833 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

188

(ii) MOLECULE TYPE: Genomic DNA

- ORGANISM: Haemophilus parainfluenzae (A)
- STRAIN: ATCC 7901 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94 5

	•-				CONCINE NO COLO	50
	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	100100111	CCACAAACTC	100
	1001007777	CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTG	
	GTGAGCACAT		GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
	TTCTTAAACA	AATGCGACAT	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
10	TGAAATGGAA	GTTCGTGAAC		AAGCGTTAAA	CGGCGTWGCA	250
	ATACACCAAT	CGTACGTGGT	TCTGCATTAC	AGCCACTTAG	ATTCTTACAT	300
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCT		CCAATCGAAG	350
	TCCTGAGCCT	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT		400
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	450
		TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	
15	CGTGGTATCA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	GACTGCGAAA		AACATCGGTG	CATTATTACG	TGGTACYAAA	550
	ACGAAGGTCG	TGCAGGTGAA			GTTCAATCAC	600
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	CGTATTATCC		650
	TCCACACACT	GATTTCGAAT	CTGAAGTGTA			700
20	GTGGTCGTCA		TTCAAAGGTT			750
20	CGTACAACTG		AACTATCGAA	TTACCGGAAG		800
				TGTATCCTTA	ATCCACCCAA	
	GGTTATGCCT			TCG		833
	TCGCGATGGA	CCARGGIIIA				

25

30

# 2) INFORMATION FOR SEQ ID NO: 95

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 824 bases (A)
    - TYPE: Nucleic acid (B)
    - STRANDEDNESS: Double (C)
    - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 35
  - (vi)ORIGINAL SOURCE:
    - ORGANISM: Haemophilus paraphrophilus (A)
    - STRAIN: ATCC 29241 (B)

40

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95

	(33-)					
	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	100100111	CCACAAACTC	50 100
		CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTA	
	GTGAGCACAT		GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
45	TTCTTAAACA	AATGCGACAT	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
	TGAAATGGAA	GTTCGTGAAC		AAGCGTTAAA	CGGCGTTGCA	250
	ATACGCCAAT	CGTACGTGGT	TCTGCATTAC		ATACTTACAT	300
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCA	AACCACTTGG	CCAATCGAAG	350
	TCCTGAGCCA	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT		400
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	450
50		TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	
	CGTGGTATCA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	GACTGCGAAA		AACATCGGTG		TGGTACCAAA	550
	ACGAAGGTCG	TGCAGGTGAA			GTTCAATCAC	600
	CGTGAAGAAA	TCGAACGTGG				650
55	TCCACACACT	GATTTCGAAT	CTGAAGTGTA			700
	GTGGTCGTCA	TACTCCATTC				750
	CGTACAACTG	ACGTAACCGG	TACTATCGAG			800
	GGTAATGCCT		TCAAAATGAC	CGTATCCTTA	ATCCACCCAA	
						824
	TCGCGATGGA	CCARGOTTA				

GACACTCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAG AGTTATTAGA ATTAGTTGAA ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCCAG GTGATGATAC CGACACTCTG CGTGGTTCTG CATTACAAGC GTTAAACGGC GTACCAGAAT GGGACGAAA AATCCTTGAA TTAGGTCCAG CATTACAATCCT GGAACCTGAC GTGCAATCGA CCAACCGTTC CTTCTTCCAA TTACATTCCT GTATCAATC TCTGGTCGTG GTACTGTAGA ACAGGTCGT GTAGAGACGT GTTCTCAATC TCTGGTCGTG GTACTGTAGA ACAGGTCGT GTAGAGACGT GTACTCAATC TCTGGTCGTG GTACTGTAGA ACAGGTCGT GTAGAGACGT GTACTCAATC TCTGGTCGTG GTACTGTAGA ACAGGTCGT GTAGAGCGTG GTACTCAATC TCTGGTCGTG GTACTGTAGA ACAGGTCGT GTAGAGCGTG AGGTCGTGCA GGTGAAACA TCGGTGCATA TTACCTGGTA ACAGACCAACT AGGTCGTGCA GGTGAAACA TCGGTGCATA ATTACCTGGTG ACTAAACCAGT AGGTCGTGCA GGTGAAACA TCGGTGCATA TTACCTGGTG ACTAAACGTG AGGAAAACAA CCGTAACTGA AGTGTACGTA TATTCCTAAAG AAGAAGGTGG TCGTCATACT TCGAATCTGA AGTGTACCG TCCACACTTC TATTTCCGTAA AAGAAATCGA ACCGGTACT ATCGAGTTAC TCCACAATTC TATTTCCGTAA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTCAAATC ACCCAATCGC GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT GGTCGAGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT GGTCGAGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT TCTTGGTCTCAA AAGAGCCTTC CCGGGAACTGGT TCTCGTGAAC TGTCAGACTTC CCGGGACTGGT TCTCGTGAAC TGTCGTGACT TCTCGTCTAA AAGAGCCTTC CCGGGACTGGT TCTCGTCTAA AAGAGCCTTAA AAGAGCCTAA AATGCCTAAC TTCTCTCTCAA AAGAGCCTTC CCGGGACTGGT TCTCGTCTAA AAGAGCCTTC CCGGGACTGGT TCTCGTCTAA AAGAGCCTTAA AAGAGCCTAA AAGAGCCTCAA AAGAGCCTAA AATGCCTAAC TCTCGTCTAA AAGAGCCTTAA AA		2) INFORMATION FOR SEQ ID NO: 96	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Haemophilus segnis  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA ATGGATCT TAAACAATG CGACATGGTA GATGACAATA AATGGATGT TCCTAAACA ATTGGATATCT TAAACAAATG CGACATGGTA GATGACGAGA AGTTAATAGA AATTGGTGAA TCGAATCATC GTGAACATCT TCCAATCAT CGGGGTCATC TTCCAATCAT GAGTACTCC GTAACCAACATCGTGA ATGGAACAACAACAACAACAACAACAACAACAACAACAACAA	5	<ul><li>(A) LENGTH: 818 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus segnis  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC ATACTCGTGA ATGACTATT TTAGGTGGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAG AGTTATTAGA ATTAGTTGAA ATGACAATG GTAAACAATG CGACATGTT TTACAATGA GATTACAATG GTAATAGATAC GTAAACAATG CGACATGTT ATTAGATCAGA CATTACAATG GTAATAGATAC TCCAATCATT CGTGGTCTTG CATTACAATG GTAAACAAATG CGACAATGAT ATTACATTC TCCAATCATT CGTGGTCTTG CATTACAATG GTAAACAACG GTAAGAATAC TCCAATCATT CGTGGTCTTG GTACTCAAG GTAAGATAC TTACAATCT GGAGAGAATA AATCCTTGAA TTACAATCT CTTTCCAAT TTGAAGCGT GTACAACTAG CAACCCGTTC CTTCTCCAA TTGAAGCGT GTACAACCAG GTACAACACT CTTCCAATCAT TTGAAGCGT GTACAACCAG CTACCAACCAG TACCAGACTAC TCCAGACAACT ACCGGTAAACACAG CAACCCGTTC CTTCTCCAA TTGAAGCGT GTACAACCAG GTACAACCAG GTACAACCAG TACCAGACTAACAC TCCAGACAACT AACCGGTCAA ACCGGTGAAAACA TCCGGTCAATA TACCTGGTAA TACCTTGACAC AAGACACTACCAG CACACTGACT TCCAAACCAG TATTAGCAGA AACCGGGTCA AATCACTCCA AAGAAACAA TCCGGTCAAA ACCGGGTTC AATCACTCCA AACACTGAC TCCAACTGACT TCCAAACTACA ACGGTGCAA AACCAGACTT AACCAGACTAC AACCACTGACT TCCAAACTACA ACGGTACAA ACGGTGAAAACAA TCCGGTAAACACT TACCTGCAAACCTACACCAACCTGAC TCCAACATCAC CAACCAGACT TCCAAACTCAA AACGGTACAACCAGACT AACCAGTACA AACGAGTTAC TACCAGACTAC TACCACACCAACCGC AACCACACAC AACCACACCAACCA		(D) TOPOLOGY: Linear	
(A) ORGANISM: Haemophilus segnis  (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAGA GATTAGTTAGA ATTAGTTGAA ATGGAAGTTC GTGAACTCT TCCTAACATC ATCGATGATA CATCGATGAT CATCGATGATA TGGAACTCT TCTAACAACACG GTTAATAGA ATTAGTTGAA ATGGAAGATC CTCAATCATT CGTGGTTCT CATTACAACC GTTAAACGC GTAGACACAT CGGAACAGAA AATCCTTGAA TTACATCCAG GTGAACACAC CCAACCGTTC CTCTTCCAA TTGAAGACCT GGAACACGATC CTCTCTCAA TTGAAGACGT GAACCTCAGC GTATCAATCC TCCGAGAACCAA CCGAACCGTTC CTCTTCCAA TTGAAGACGT GGAAACAA CCGTAACCGT TCTGAATAT TCCGTTACAT TACAGGTCGT GAACCAACCG TGTACAACAA TCCTTGAAAT TCCTTGAAAT TACTTGACAG ACGTCACACCG TGTACAACAA TCCTTGAAAT TCCTTAAACCAACT ACGCTGCAA ACGCTGACCG TGTAAAACAAC TCCGTGCAA ACGCTGCAC GTGAAACAA TCCGTGCAA ACGCTGCAC AACCACCTCAC TCGAAACCAA CTCAACCGATCA ATTACCTGGTA ACCACCTCAA ACTCGAAACAACA ACCACCTCACT TCGAAACCAA ACGGTGCT AACCACTCAC AACGTGACCA AACCACCACTACCT TCGAAACCAA AATGACCTA AACCACACTACAC TCCAAACCAACCA AACCACCACTACCT CCAATCCAC AACCACTCACA TCCAACACACAC	10	(ii) MOLECULE TYPE: Genomic DNA	
(A) ORGANISM: Haemophilus segnis  (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAGA GATTAGTTAGA ATTAGTTGAA ATGGAAGTTC GTGAACTCT TCCTAACATC ATCGATGATA CATCGATGAT CATCGATGATA TGGAACTCT TCTAACAACACG GTTAATAGA ATTAGTTGAA ATGGAAGATC CTCAATCATT CGTGGTTCT CATTACAACC GTTAAACGC GTAGACACAT CGGAACAGAA AATCCTTGAA TTACATCCAG GTGAACACAC CCAACCGTTC CTCTTCCAA TTGAAGACCT GGAACACGATC CTCTCTCAA TTGAAGACGT GAACCTCAGC GTATCAATCC TCCGAGAACCAA CCGAACCGTTC CTCTTCCAA TTGAAGACGT GGAAACAA CCGTAACCGT TCTGAATAT TCCGTTACAT TACAGGTCGT GAACCAACCG TGTACAACAA TCCTTGAAAT TCCTTGAAAT TACTTGACAG ACGTCACACCG TGTACAACAA TCCTTGAAAT TCCTTAAACCAACT ACGCTGCAA ACGCTGACCG TGTAAAACAAC TCCGTGCAA ACGCTGCAC GTGAAACAA TCCGTGCAA ACGCTGCAC AACCACCTCAC TCGAAACCAA CTCAACCGATCA ATTACCTGGTA ACCACCTCAA ACTCGAAACAACA ACCACCTCACT TCGAAACCAA ACGGTGCT AACCACTCAC AACGTGACCA AACCACCACTACCT TCGAAACCAA AATGACCTA AACCACACTACAC TCCAAACCAACCA AACCACCACTACCT CCAATCCAC AACCACTCACA TCCAACACACAC		/ri\ODIGINAL COLDER	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAGA AGTTATTAGA ATTAGTTGAA ATGGAAGTTC GTGAACTTCT TCCAATCATT CGTGGTTCT TCCAATCATT GACTTCCAG GTGAAGGAGA AATCCATTCAT TCCAATCATT CGTGGTTCT TTCTCAATAT GACTTCCAG GTGAAGGACAAA AATCCTTCAA TTGACTCAG GTAAACAGC GTAACAGC GTAACAGCT GAACCATC CATTCCAATCAT CTAGAAGACGT GAACCTAGA TCCAATCCAA			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96  GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACTGTT TCCAATCATT CGTGGTTCTG GGGAAGAAAA AATCCTTCAA TTACAATAT GACTTCCCAG GTGATGATAC GGGAAGAAAA AATCCTTCAA TTAGCTCAAG CGTTAAACCG GTGATGATAC GGGAAGAAAA AATCCTTCAA TTAGCTCAAG CGTTAAACCG GTGACAGATA GGAAATCAAC CGTCCAAACCGAT CTCTCTCCAA TTAGATCCT GTGACGCGTG GTATCATCCG TACCGGTGGT GAACTTGAAA TCCTTGGTAA TTAGATCATCT GCGAAAAAAA CACCGTTAAACCG GTACATGATA TTACATTCCT GAAACCAACT GCGAAAAAAA CACCGTTAAACCG GTATAAGCGT GTAGACCAACT GCGAAAAAAAA CCGTAAACCG TGTAGAATGA TTACCTTGGAA TACCTACGA AGGTCGTGAAACCAACT AGGTCGTGCA GGTGAAAACA TCGGTGCAT ATTACGTGAA TACCTACCA CACACTGACT TCCAATCTTCA AGGTTCATCAACCAACT TACCTGAACCAACT CCACACTGACT TCCAATCTTCA AGGTTACCG TACCACATTCT TACAACCAACT CAACTGACCT AACCGGTACT ATTACGTGAT AACCAACTCCA CACACTGACT ACCAGTTCAT AACGGTCAT TTACTTAAAG AACAACCACT AACCAACTGAC TACCACATCTCA AAGGTTACCG TCCACAATTC TATTTCCGTA TCAACCAACT TCCAACTGAC AACCGGTACT AACCGGTACT TCCACACATTC TATTTCCGTA TCAACCGAC TCCAACTGACC AACCGGTAC TACCAGATTACC TCCACAATTC TATTTCCGTA TCAACCGAC TACCACATGAC AACCGGTAC TACCACATCGC TCCACAATTC TATTTCCGTA TCCAACTGAC AACCGGTAC TACCACATCGC TCCACATTCT AACCGGTAC TACCAGATTAC TCCACAATTC TATTTCCGTA TCAACCGAC TACCACACGGC TCCAAATCGT TCCACACTGC TACCACATCGC TACCACATCGC TCCACATCGC TCCACACTCGC TCCACATCGC TCCACACTCGC TCCACACTCCACACTCCACACTCGC TCCACACTCGC TCCACACTCC TCCACACTC	15		
GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATTGTTGAA ATGAAGTAGT GGCATGGTA GATGAGCAGA AGTTATTAGA ATTAGTTGAA ATGAAGTTC GGGATTCTT TCCTAAATA GACTTCCAG GGATGATAC ATGAAGTTC GGGATTCTG CATTCAAATA GACTTCCAG GTAGATACAC GGAAGAAAA AATCCTTGAA TTAGCTCAAG CATTAGATAC GGAAGAAAAAAAAAAAAAAAAAAAAAAAA	-5	(D) BIRMIN. AICC 33393	
GACACTCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAG AGTTATTAGA ATTAGTTGAA ATGGAAGTTC GTGATCTT TTCTCAATAT GACTTCCCAG GTGATGATAC CGACACTCTG CATTACAAGC GTTAAACGGC GTAGCAGAAT CGTGGATCTTC CATTACAAGC GTTAAACGGC GTAGCAGAAT CGTGGTCTTG CATTACAAGC CATTACAATCCT GGAACAAA AATCCCTTGAA TTAGGTCAAG CATTACAATCCT GTATCAACCAATC CTGGTGTGTG GTACTGTAGA AACAGGTCGT GTAGAGACGT GTATCAACCAACC TACCGGTGAT GAAGTGCAAA TCGTTGGTAT CAAACCAACT GCGAAAACAA CCGTAACCGG TGTTGAAAT TTCCTGAATACAACC AGGTCGTGCA GGTGAAACA TCGGTGCATA ATTACCTGGAT ACCACACTGAC AGGTCGTGCA GGTGAAACA TCGGTGCATA ATTACCTGGT ACTAAACCGTG AAGAAACCA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA AAGAAACAA CCGTAACCGG TGTTGAAATG TTACCTGGAA AACAGGTGC ACCACTGACT TCGAATCTAA AAGGTTACCG TCGCCAAACTCA AACAGACTGAC TCGAATCTAAAACGTG AAGAAATCGA ACGTGGTCAA AATGACCGTA TTATCCTAAAG AAGAAGGTGG TCGTCATACT CCAATCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTAA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC AACTGACCGT AACCGGTACT ATCGAGTTAC CGGAAAGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC CCTCAGACTC GTGAGCACAT CCTGCTGGAC TGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT TCTGTGTCAC GAAGAGCTTC CCTGGAACTGGT TCTCGTGAAC TGTCAGACTTA CATCACTCTA AAGAGCTTC CCTGGAACTGGT TCTGTGTCAC AACAGCCTTC CCTGGAACTGGT TCTGGTCACA CATCCGTGGT TCTGGTCACA TCTCGTGAAC TGTCGGACTTC CCTGGGACTTC CCTGGGACTGA CATCCTGTGAAC TTCTGTCTCA AAGAGCCTTC CCTGGGACTGC CATCAGACTC CCTGGGACTGA CATCCGTGGT TCTGGTCACA TCTCGTCAA AGGCCCTGAA AGGCGCTGA AGGCGCTGA AGGCGCACA CATCCGTGGAC TTCTGTCTCAA AAGAGCCTTC CCTGGGACTGCA CATCCGTGGT TCTGGTCTCAA AAGGCCTGAA AGGCGCTGA AGGCGCACA CATCCGTGGAT TCTGT		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96	
GACACTCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT TAAACAAATG CGACATGGTA GATGACGAG AGTTATTAGA ATTAGTTGAA ATGGAAGTTC GTGATCTT TTCTCAATAT GACTTCCCAG GTGATGATAC CGACACTCTG CATTACAAGC GTTAAACGGC GTAGCAGAAT CGTGGATCTTC CATTACAAGC GTTAAACGGC GTAGCAGAAT CGTGGTCTTG CATTACAAGC CATTACAATCCT GGAACAAA AATCCCTTGAA TTAGGTCAAG CATTACAATCCT GTATCAACCAATC CTGGTGTGTG GTACTGTAGA AACAGGTCGT GTAGAGACGT GTATCAACCAACC TACCGGTGAT GAAGTGCAAA TCGTTGGTAT CAAACCAACT GCGAAAACAA CCGTAACCGG TGTTGAAAT TTCCTGAATACAACC AGGTCGTGCA GGTGAAACA TCGGTGCATA ATTACCTGGAT ACCACACTGAC AGGTCGTGCA GGTGAAACA TCGGTGCATA ATTACCTGGT ACTAAACCGTG AAGAAACCA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA AAGAAACAA CCGTAACCGG TGTTGAAATG TTACCTGGAA AACAGGTGC ACCACTGACT TCGAATCTAA AAGGTTACCG TCGCCAAACTCA AACAGACTGAC TCGAATCTAAAACGTG AAGAAATCGA ACGTGGTCAA AATGACCGTA TTATCCTAAAG AAGAAGGTGG TCGTCATACT CCAATCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTAA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC AACTGACCGT AACCGGTACT ATCGAGTTAC CGGAAAGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC CCTCAGACTC GTGAGCACAT CCTGCTGGAC TGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT TCTGTGTCAC GAAGAGCTTC CCTGGAACTGGT TCTCGTGAAC TGTCAGACTTA CATCACTCTA AAGAGCTTC CCTGGAACTGGT TCTGTGTCAC AACAGCCTTC CCTGGAACTGGT TCTGGTCACA CATCCGTGGT TCTGGTCACA TCTCGTGAAC TGTCGGACTTC CCTGGGACTTC CCTGGGACTGA CATCCTGTGAAC TTCTGTCTCA AAGAGCCTTC CCTGGGACTGC CATCAGACTC CCTGGGACTGA CATCCGTGGT TCTGGTCACA TCTCGTCAA AGGCCCTGAA AGGCGCTGA AGGCGCTGA AGGCGCACA CATCCGTGGAC TTCTGTCTCAA AAGAGCCTTC CCTGGGACTGCA CATCCGTGGT TCTGGTCTCAA AAGGCCTGAA AGGCGCTGA AGGCGCACA CATCCGTGGAT TCTGT		GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA	50
TAAACAATG CACATGGTA GATGACGAAG AGTTATTAGA ATTAGGTGAA ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCAG GTGATGATAC TCCAATCATT CGTGGTTCTG CATTACAGC GTTAAACGGC GTAGCAGAAT GGGAACAAAA AATCCTTGAA TTAGCTCAAG CATTACCATCCT GGGAACAAAA AATCCTTGAA TTAGCTCAAG CATTACAATCCT GGGAACACCTACC CTCTCCTACATCCAACCTTC CTCTCTCCAA TTACATTCCT GTATCATCC TCTGGTCGTG GTACTGAGTA TACATTCCT GCGAAAACAA CCGTAACCGG TGTACAAAT TCCTTGCAACCAACCT GCGAAAACAA CCGTAACCGG TGTTGAAATA TCCTTGAAGACCAACT GCGAAAACAA CCGGTAACCGG TGTTGAAATA TCCTTGAAGTAC AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACCTGGTAA TACTCTGACGA AGGTCGTGCA GGTGAAACA TCGGTGCATT ATTACCTGGTA CACACACTGAC AGGTCATCAC ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAATCTGA AGGTTACCG TCCACAATTC TATTTCCGTA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCACAATTC TATTTCCGTA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGT CGTCAGGTTG GCGTTCCTTW CATCATCCTTT TCCTGAACA AATGCGACT TCTTGGTCTA CGAACAGGT TCCTCAGACTTC CCTGCTGGTT TCTGTTCAAACGATTC CTGGAACTGGT TCTCTGAACACAAATCGAC TCTCGTGAACT TCTTGTCTCAA CAACCACTTC CCTGGAACTGGT TCTCTGTAACAAAATGGAA AATGCGACAT TCTTGTCTCAA AAGAGGCTTC CCTGGAACTGGT TCTCTGTAAACAAAATGGAA TTCTCTGTGAAC TGTGAACTGGT TCTCGTGAAC TCTCGTGAAC TGTGAGCTTC CCTGGTGGT TCTTGTTCTCAAACGATCT CCTGGTGGTT TCTCTGTAAACAAAATGGAAC TCTCGTGTGAAC TTCTGTCTCAA AAGAGGCTTC CCTGGGAACTTGCT CCTGGTGGT TCTTGTTCTCAAAACGAAATGGAACAATCCTAAAAAATGGAAC TCTCGTGTGAT TCTTGTCTCAA AAGAGGCTTC CCTGGGTGGT TCTGGTCTAGAACAAATGGAACAATCCTAAAAAAAAAA	20	GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT	100
ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCCAG GTGATGATAC TCCAATCATT CGTGGTCTG CATTACAAGC GTTAAACGC GTAGCAGAAT GGGAAGAAAA AATCCTTGAA TTAGCTCAAG CATTACAATCC GGAACCTGAGC GTGCAATCGA CCAACCGTTC CTCTTCCCAA TTGAAGACGT GTTCCAATC TCTGGTCGTG GTACTGTAGT AACAGGTCGT GTAGAGCGT GTACATCCG TACCGGTGAT GAAGTTGAAA TCGTTGGTAA TACATGACGACT GCGAAAACAA CACGTGAACGG TGTTGAAATG TTCCGTAAAAT TACTTGACGA AGGTCGTGCA GGTGAAACAA TCGGTGCAT ATTACGTGGT AATCAACCAACT CCGTAACCGG TGTTGAAATG TTCCGTAAAAT TACTTGACGA AGGTCGTGCA GGTGAAACAA TCGGTGCATA TATACGTGGT ACTAAACCGT CACACTGACT TCGAATCTGA AGTGTACGTA TATACGTGGT ACTAAACCGT TCGTCATACT TCGAATCTGA AGGTTACCG TCCACAATTC TAATTCCCGTA ATGCCTGACG ATACACGG TATTAGCGA AACCGAGTTC CAACTGACT TCGAATCTA AACGGTACCG TCCACAATTC TATTTCCCGTA ATGCCTGACG ATACACTCAA AATGACCGTA TCCTTAATCC ACCCAATCGC GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTCTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTTGTT CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTTGTT CTGCGACTGA CGGCCCTATG CCTCAGACTC TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGG TGGAACTGGT ACACACTGAACTCAAA TCCTGTGTTC CTGCGACTGA CGGCCCTATG CCTCAGACTC ACCGGTGGACAA CCTGCTGAGAC TCTCTGTCTCAAAGGCCTG TGGAACTGGT ACACTGACAATCGAACTACCTGAAC TCTCTGTCTCAAACGACTC CTGCAGACTC ACACTGACTACCTGGT TCTCTGTCTCAAACGGCTCGAAGCCTC TGGAACTGGT ACAACTGACAT CATCCTGAAC TCTCTGTCTCAAAAGGCCTGC TGGAACTGGT ACAACTGACAT CATCCTGAAC TCTCTGTCTCAAAAGGCCTGC TGGAACTGGT ACAACTGACTACCTGAAC TCTCTGTCTCAAACACTCCTAAACCCCACCTCCAGACTC CCAGGCCTGAACCTC TAGACCTCCAATCCCTAAACTCCACCTCCAACCCCACCTCCAACCCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCC		TAAACAAATG CGACATGGTA GATGACGAAG AGTTATTAGA ATTAGTTGAA	150
GGGAAGAAAA AATCCTTGAA TTAGCTCAAG CATTAGATAC TTACATTCCT AACCTGAGC GTGCAATCGA CCAACCGTTC CTTCTCCAA  GTTCTCAATC TCTGGTCGTG GTACTGTAGT AACAGGTCGT GTAGAGACGT GTATCATCCG TACCGGTGAT GAAGTTGAAA TCGTTGGTAT TACCGACACCT GCGAAACCAA CCGTAACCGG TGTTGAAAAT TCGTTGGTAT TACCGACACCACT AGGTCGTGCA GGTGAAAACA TCGGTGCATA ATTACGTGAT ACTAAACGTG AAGAAATCGA ACGTGGTCAAA GTATTAGCGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAACTGA GTATTAGCGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAACTGA AAGGGTTACCG TCCACAATTC TATTTCCGTA ATGCCTGGCG ATAACACAC ACGGATTAC CGGAAGGCGT GGAAATGGAT ATGCCTGGCG ATAACACACA AATGACCGTA TCCTTAATCC GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (C) STRANDEDNESS: Double (D) TOFOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCTATG CCTCAGACTC GTGAGCACA CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 10 AGAAATGGAA GTTCGTGAAC TCTGTCTCA GAAGGCTGC TGGAACTGGT AGAAATGGAA CTALGAACT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA CTALGAACTGAT AAACCGCTCAAAAGCGCTGA AGGCGTGGA AGGCGTGA AGCGCTGAACCAACCAACCCAAC		ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCCAG GTGATGATAC	200
GACCTGAGC GTGCAATCGA CCAACCGTTC CTTCTCCAA TTGAAGACGT GTTCTCAATC TCTGGTCGTG GTACTGTAGT GTATCATCC TACCGGTGAT GAACTTGAAA TCGTTGGTGT CAAACCAACT GCGAAAACAA CCGTAACCGG TGTTGAAATG AGGTCGTGCA GGTGAAACA TCGGTGCATT AACAGTGTGTA ACCAGTGTAAT TACTTGACGA AGGTCGTGCA GGTGAAACA TCGGTGCATT AAGAAATCGA ACCTGGTCAA GTATTACCGA AACCAGGTTCA AATTACCTCCA CACACTGACT TCGAATCTGA AGTGTACGTA TTATCTAAAG AAGAAGGTGG TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATCGT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55  CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATGCGACAT GGTTGATGAT GAACACTGC TCGAACTGGT AGAAATGGAA GTTCGTGAAC TCTCGTCTCA GAACGCTTC TCGAACTGGT AGAAATGGAA GTTCGTGAAC TCTCGTCTCA GAACGCTTC CCMGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTAA AAGCGCTGGA AGGYGMACCT  60  GGTGGGAAACAA CAACGGGTTC TCTGCTCTAA AAGCGCTGGA AGGYGMACCT  25  60  GGTGGGGAAC CTAACATCAT CAACCTCTCAACACTCTC CCMGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTAA AAGCGCTGGA AGGYGMACCT  60  GGTGGGGAAC CTAACATCAT AACACTCATCATCATCATCATCATCATCATCATCATCATC		TCCAATCATT CGTGGTTCTG CATTACAAGC GTTAAACGGC GTAGCAGAAT	250
GTTCTCAATC TCTGGTCGTG GTACTGTAGT AACAGGTCGT GTAGAGCGTG GTATCATCCG TACCGGTGAT GAAGTTGAAA TCGTTGGTAT CAAACCAACT GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCGTAAAT TACTTGACGA AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGGT ACTAAACGTG AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACCTCCA CACACTGACT TCGAATCTGA AGGGTTACGTA TTATCTAAAG AAGAAGTGGG TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 45  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55  CGGCGCTATC CTGGTGTTG CTGCGACTGA CGCCCTATG CTCAGACTC GTGAGCACAT CCTGCTGGTG CGTCAGGTTG GCGTTCCTTW CATCAGCTT TTCCTGAACA AATGCGACTA GGTGGACCTGC TGGAACTGGT TTCCTGAACA AATGCGACTA GGTGGCACTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACCACTTC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCTA GAAGACTGC TGGAACTGGT AATACTCCAAT CATCCGTGGT TCTGCTCTA GAAGACTGC TGGAACTGGT AATACTCCAAT CATCCGTGGT TCTGCTCTA GAAGACTGC TGGAACTGGT AATACTCCAAT CATCCGTGGT TCTGCTCTA GAAGACTGC AATACTCCAAT CATCCGTGGT TCTGCTCTA GAAGACTGC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCTA AAGCGCTTGGA AGGYGMACCT  60  GGGTGGGAAG CTAACATCAT AAACACTCAT CATCCATGAACTCCTAACACTCT AATACTCCAAT CATCCGTGGT TCTGCTCTAA AAGCGCTTGA AAGGGGTTGA CATCCGTGGT TCTGCTCTAA AAGCGCTTGA AAGGGGTTGA AAGCGCTTGA AAGGGGTTGA CATCCGTGGT TCTGCTCTAA AAGCGCTTGA AAGGGGTTGA CATCCGTGGT TCTGCTCTAAACACTTC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCTAAACACTTC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCTAAAACGCGTTGA AAGGGCTTGA AAGGGCTTGAACACTCT CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCATAAACGCGTTGA AAGGGCTTGAACACTC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCATAAACGCGTTGAACGCTTC CCWGGYGATG AATACTCCAAT CATCCGTGGT TCTGCTCATAAACGCGTTGAACGCTTCAATCTCTAATCTCAAT TCTGCTCAAT TCTGCTCAATACTCCTAATCTCTAATCTCTAATCTCAATCTAATCTCAATCTAAACACCTTAAACACCTTAAACACCTTAAACACCTTAAACACCTAAACACCTA	25	GGGAAGAAA AATCCTTGAA TTAGCTCAAG CATTAGATAC TTACATTCCT	300
GTATCATCCG TACCGGTCAT GAAGTTGAAA TCGTTGGTAT CAAACCAACT GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCGTAAAT TACTTGACGA AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGGT ACTAAACGTG AAGAAATCGA ACGTGGTCAA GTATTACGGA AACCAGGTTC AATTACCTCA CACACTGACT TCGAATCTGA AGTGTACCGT TTATCTAAAG AACAAGGTGG TCGTCATACT CCATTCTCA AAGGTTACCG TCCACAATTC TATTTCCGTA ATGCCTGACG AACCGGTACT ATCGAGTTAC CGGAAAGCGT GGAAATCGT ATCGCTGACAT TCCACAATTC TATTTCCGTA ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTT TCCTGAACA AATCGCACAT GGTTGAGTAT GAACAGCTGC TAGACACACA CATCGCACAT GGTTGAGACTAC CCTCAGACTC CTGCTGGACACAA CATCGCACAT GGTTGATGAT GAACAGCTGC TGGAACTGCT AGAAATGGAA GTTCGTGAAC TCTCTGTCTCA GAACAGCTGC CGGACTGA CGGCCCTATG CCTCAGACTC AGAAATGGAA GTTCCGTAGAC TCTCTGTCTCA GAACAGCTGC CGGAACTGC CCWGGYGATG AACACCCAAT CATCCGTGGT TCTGTCTCAA GAACAGCTGC CGGACCTGAACACAAT CATCCGTGGT TCTGTCTCAA AAGGCCTGCAAACGCACAA CAATCGCACAT CATCCGTGGT TCTGTCTCAA AAGGCCTGC CCWGGYGATG AACACCCAAT CATCCGTGGT TCTGTCTCAA AAGGCCTGAAACACCCT CCCWGGYGATG AACACCCAAT CATCCGTGGT TCTGCTCTCAA AAGGCCTGC CGGACCTGAACACCAA CAATCCGACTA TCTGTCTCAA AAGGCCTGCAAACACCCAA CAATCCGACAT CATCCGTGGT TCTGCTCTCAAACACCCAAA AAGGCCTGC CAGACCCAA CAACACCCAAT CATCCGTGGT TCTGCTCTCAAAACACCCTC CCWGGYGATG AACACCCAAT CATCCCTGGT TCTGCTCTCAAAACAACACCCTC CCWGGYGATG AACACCCAAT CATCCCTGGT TCTGCTCTCAAAACACCCTC CCWGGYGATG AACACCCAAT CATCCCTGGT TCTGCTCTCAAAACACCCTGAAACACCCT CCCWGGYGATG AACACCCAAT CATCCCTGGT TCTGCTCTCAAAACCCCTGAAACCCCT CCCCGGGAAACCCT CACCCGGAAACACCAA CAAGACCCTC AACACCCAAA AACACCCTCAACACCAAATCCAAT CAACCCCAAACACCAACACCAACACCAACACCAACACCAACAC	25	GAACUTGAGU GTGCAATUGA CCAACCGTTC CTTCTTCCAA TTGAAGACGT	350
GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCGTAAAT TACTTGACGA AGGTCGTCCA GGTGAAAACA TCGGTGCATT ATTACGTGT ACTAAACGTG AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAATCTGA AGGTTACCG TCCACAATTC TATTTCCGTA CACACTGACT ACCGGTACT ATCGAGTTACC TCCACAATTC TATTTCCGTA AACCGGTACT ATCGAGTTACC CGGAAGGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGGAGCACAT CCTGCTGGGT CGTCAGGTTG GGGTTCCTTW CATCATCGTR TCCTGAACAA AATGCGACAT GGTTGAGTAT GAACAGCTCC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TCTCTGTCTCA GAACAGCTC CCWGGYGATG AACCCCAAT CACACTCC ACACCTC ACACTCC AGACTCC AGACAGCTC CCTCAGACTC ACACCTCCAATCGAACAATCGCACAT CATCCGTGT TCTGCTCTCA GAACAGCTCC CCWGGYGATG AACACCCAAT CATCCGTGT TCTGCTCTCA AACACCTCC CCWGGYGATG AACACCCAAT CATCCCATGT TCTGCTCTCA AAGCGCCTGA AAGGYGMACCT  60 GAGTGGGAAC CTALCACTCCTT TCTGCTCTCA AACACCCGAA AAGGYGMACCT  251		GTATCATCCC TACCCCTCAT CAACTTCAAA TCCTTTCTATT CAACTTCTATCCTTATT	400
AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGGT ACTAAACGTG AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAATCTGA AGTGTACGA TTATCTAAAG AAGAAGGTGG TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA 70 CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 133337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTCCTGGGT CGTCAGGTTTG GCGTTCCTTW CATCATCGTR TCCTGAACA AATGCCACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TCTCTGTCTCA GAAGAGCTGC TGGAACTGGT AGAAATGGAA CTCTCTGGTT TCTGTCTCA AAGCGCTGA AGGYGMACCT 256  60 GAGTGGGAAC CATCAGATCTT TCTGCTCTCA AAGCGCTGGA AGGYGMACCT 256		GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCCTAAAT TACTTCACGA	450
AAGAAATCGA ACGTGGTCAA GTATTAGGGA AACCGGGTTC AATCACTCCA CACACTGACT TCGAATCTGA AGTGTACGTA TTATCTAAAA AAGAAGGTGG TCGTCATACT CCATTCTTCA AAGGTTACCT TCAAATTC TATTTCCGTA CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGT CGTCAGGTTTG CCTCTTW CATCATCGTR TCCTGAACA AATGCCACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TCCTCTGTA GAAGAGCTC CCWGGYGATG AACACTCCAAT CATCCTTGGT TCTGCTCTAA AAGCGTGAACT CCTCCGGTTGTT TCTGCTCAAA CATCCTGGT TCTGCTCTGA AAGCGTCTAACACTTC CCWGGYGATG AAACTCCAAT CATCCTGGT TCTGCTCTCAA AAGCGTGAACTC CATCCTGGT TCTGCTCTAAAAATGGAA CATCCTGGT TCTGCTCTCAAACAAACGCTGAACTACAACAACACACAAAAACACAACAACAACAACAACA		AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGCT ACTAAACGC	500
CACACTGACT TCGATACTT TCGAATCTGA AGTGTACGTA TTATCTAAAG AAGAAGGTGG TCGTCATACT CAATCTACT CATTCTTCA AAGGTTACCG TCCACAATTC CAACTGACGT AACCGGTACT ATCGAGGTTAC CGGAAGGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTGGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTTR TTCCTGAACA AATGCGACAT GTTCTGTAGAC TCCGTGGAC TGCAGACTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAC TCTGCTCTA AAGGCCTGGA AGGYGMACCT 256  60 GAGTGGGAAG CTAGAACTCCT ACAACTCC ACAACTCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCCC ACACTCC ACACTCC ACACTCC ACACTCCC ACACTCC ACAC	30	AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA	600
TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA ACCACTGACGT AACCAGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT 75 ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC 80  35 GATGGACCAA GGTTTACG 81  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCCACT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 10: AGAAATGGAA AATGCGACAT GGTTGATGAT GAAGAACTGC TGGAACTGGT 15: AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GAACACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTA AAGGCCTGGA AGGYGMACCT 25: AGACTGCAA CATCCGTGGT TCTGCTCTA AAGACTTC CCWGGYGATG 20: ATACTCCAAT CATCCGTGGT ACCACTCCAACTC ACACTCCACACT CATCCATCCAT		CACACTGACT TCGAATCTGA AGTGTACGTA TTATCTAAAG AAGAAGGTGG	650
CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC  35 GATGGACCAA GGTTTACG  2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TCCTGGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 256		TCGTCATACT CCATTCTTCA AAGGTTACCG TCCACAATTC TATTTCCGTA	700
2) INFORMATION FOR SEQ ID NO: 97  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 250  60 GAGTGGGAAG CTAAGATCCT ACACCTCCTGA AAGCGCTGGA AGGYGMACCT 250		CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT	750
2) INFORMATION FOR SEQ ID NO: 97  40  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 15 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 256  60 GAGTGGGAAG CTAAGATCGT ACACCTCCTGCTTCTTCTCTCTTCTCT	2 =	ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC	800
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 763 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  45 (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Hafnia alvei  (B) STRAIN: ATCC 133377  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 10: TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 15: AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGGCCTGGA AGGYGMACCT 25: GAGTTGGGAAC CTAAGATCGAT TCTGCTCTGA AAGGCCTGGA AGGYGMACCT 25: GAGTTGGGAAC CTAAGATCGAT AGAACTCCAAT AGACTCCAAT AGAC	33	GAIGGACCAA GGIIIACG	818
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 763 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  45 (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Hafnia alvei  (B) STRAIN: ATCC 133377  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 10: TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 15: AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGGCCTGGA AGGYGMACCT 25: GAGTTGGGAAC CTAAGATCGAT TCTGCTCTGA AAGGCCTGGA AGGYGMACCT 25: GAGTTGGGAAC CTAAGATCGAT AGAACTCCAAT AGACTCCAAT AGAC			
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 763 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  45 (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 100 TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTA AAGCGCTGGA AGGYGMACCT 256  60 GAGTGGGAAG CTAAGATCGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 256		2) INFORMATION FOR SEQ ID NO: 97	
(A) LENGTH: 763 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (B) STRAIN: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACTA CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TCCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TCTGCTCTCA GTACGACTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA GAAGCCTGGA AAGGCGTGGA AAGGCGTGA AAGGCGTGGA AAGGCGTGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGGA AAGGCGTGA AAGGCTGA AAGGCGTGA AAGGCTGA AAGGCGTGA AAGGCTGA AAGGCGTGA AAGGCGTGA AAGGCGTGA AAGGCTGA AAGGCGTGA AAGGCGTG	40	(i) CDOUDNOD COND. COND. COND.	
(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE: (B) STRAIN: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 256 60 GAGTGGGAAG CTAAGATCGTT AGAACTCCATA AAGCGCTGGA AGGYGMACCT 256			
(C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (B) STRAIN: Hafnia alvei  (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT  60 GAGTGGGAAG CTAAGATCGT ACAACTCCGT CANAACTGGA AGGYGMACCT  60 GAGTGGGAAG CTAAGATCGT ACAACTCCGT CANAACTGGA AGGYGMACCT  250			
(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 60 GAGTGGGAAG CTTAAGATCGT ACAACTCCGT CANACTCGTA		· · ·	
(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  50 (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 60 GAGTGGGAAG CTAAGATCGT ACAACTCCGT CANACTCGTA AGGYGMACCT 250	45		
(vi)ORIGINAL SOURCE:  (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 60 GAGTGGGAAG CTAAGATCGT ACAACTCCGT CANACTCGTA			
(A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337  (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 1000 TCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 2500 GAGTGGGAAG CTTAAGATCGT ACAACTCCGT CANACTCGAA AGGYGMACCT 2500 GAGTGGGAAG CTTAAGATCGT ACAACTCCGT CANACTCGAA AGGYGMACCT 2500 GAGTGGGAAG CTTAAGATCGT ACAACTCCGT CANACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCGAACTCAACTCGAACTCAACTCGAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCAACTCA		-	
(B) STRAIN: ATCC 13337  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCCTGGA AGGYGMACCT 256	50		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97  55 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 60 GAGTGGGAAG CTAAGATCGT ACAACTCCGT CAAACTGGA AGGYGMACCT 250	70		
CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT GAGTGGGAAG CTAAGATCGT ACAACTCGCT GAAACTGGA AGGYGMACCT  60 GAGTGGGAAG CTAAGATCGT ACAACTCGCT GAAACTGGA AGGYGMACCT		(B) STRAIN: ATCC 13337	
TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 15 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG 20 ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGACCT 25 GAGTGGGAAG CTAAGATCGT ACAACTGCGT GAAACTGGA AGGYGAACCT 25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97	
TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 15 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG 20 ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGACCT 25 GAGTGGGAAG CTAAGATCGT ACAACTGCGT GAAACTGGA AGGYGAACCT 25	55	CGGCGCTATC CTGGTTGTTG CTGCGACTGA CCGCGCTATC CCTGTATC	
AGAAATGGAA GTTCGTGAAC TCTGTCTCA GTACGACTGC TGGAACTGGT 15 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG 20 ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 25 GAGTGGGAAG CTAAGATCGT ACAACTCGCT GAAAGTGCTGA AGGYGMACCT 25		GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTM CATCARGOTD	50
AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 60 GAGTGGGAAG CTAAGATCGT AGAACTCGGT GAAAGTGGGAAG CTAAGATCGT AGAACTCGGT GAAAGTGGAAGTGAAGT		TICCIGAACA AAIGCGACAT GGTTGATGAT GAAGAGCTGC TCGAACTGGT	100
60 GAGTGGGAAG CTAAGATCGT AGAACTGGGT GAAAGTGGGA AGGYGMACCT 25		AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCMCCVCATC	
DU GAGGGGAAG CYCAAGATCGT AGAACTCCCT GAAACTCCCT	60	ATACICCAAT CATCUGIGGT TCTGCTCTGA AAGCGCTCGA ACGVCMACGT	250
	60	GAGIGGGAAG CTAAGATCGT AGAACTGGCT GAAACTCTGG ATTCTTACAT	300

	• • • • • • • • • • • • • • • • • • • •	
5	YCCACARCCA GAACGTGCTA TCGAYAAGCC ATTCCTGCTG CCAATCGAAG ACGTATTCTC TATCTCTGGC CGTGGTACWG TTGTTACCGG TCGTGTAGAG CGCGGTATCG TTAAAGTTGG TGAAGAAGTT GAACTTCTGG ACGAAGGTCG TGCAGGCGAG AACGTTGGT TCTCTGCTG TGGTATCAAG ACGAAGGTCG TGCAGCGAG TCGAGCTTGA AACTGCTGG CGTGAAGACA TCGAACGTGG TCGAGTTCTG GCTAAACCAG GYTCYATCAA GCCACACACC AAGTTCGAAT TATTCTGAGC AAAGATGAAG GCCACACACC TGGACGTGT TCGAGCTTCTC	350 400 450 500 550 600 650 700
10	GCCACACAC AAGTTCGAAT CAGAAGIIIA IAIICIGACA GTCTACTTC GCGGYCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC GCGGYCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACAA GCGTGGAAAT CGTACAACTG ACGTGACCGG TACCATCGAA TTGCCAGAAG GCGTGGAAAT GGTAATGCCA GGC	750 763
	2) INFORMATION FOR SEQ ID NO: 98	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid	
20	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kingella kingae     (B) STRAIN: ATCC 23330</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98	50
30	CGGCGCAATC TTGGTATGTT CAGCAGCTGA CGGTCCTATG CCACAAACTC GCGAACACAT CTTGTTGGCT CGCCAAGTAG GTGTACCTTA TATCATCGTA TTCATGAACA AATGCGACAT GGTCGATGAT GCTGAGTTGT TGGAATTGGT TGAAATGGAA ATCCGTGACT TGTTTAG CTACGATTTT CCAGGCGACG TGAAATGGAA ATCCGTGACT TGTTGTCTAG CYGCATTGGA AGGCGACGCT	100 150 200 250
35	ATTGCCCAAT CGTTCAAGGT TCTGCATIGC GIGCATTGG ATAGCTACAT GCATACAAAG AAAAAATCTT TGAATTGGCT GCTGCTTTGG ATAGCTACAT TCCTACTCCA GAACGTGCTG TTGATAAACC ATTCTTGTTG CCAATCGAAG ATGTATTCTC TATCTCTGGT CGTGGTACAG TAGTTACTGG TCGTGTAGAAGA	300 350 400 450
40	CACGCAAAAA ACCACTTGTA CTGGCGTGGA AATGTCCGC TGGTACGAAG ACGAAGGTCA AGCTGGTGAT AACGTTGGTG TATTATTGCG TGGTACGAAG ACGAAGGTCA AGCTGGTGTTG GCTAAACCAG GTTCTATCAC CGTGAAGACG TTGAACGTGG TCAGGTATTG TGTTGTTGAGC AAAGAAGAAG	500 550 600 650 700
45	GTGGCCGTCA TACGCCATTC TTCGCTAACT ACCGCCATAT  CGTACGACTG ACGTAACTGG TGCAGTTACT TTGTCTGAGG GTGTGGAAAT  CGTACGACTG ACGTAACTGG TGAAAATCAC TGTTGAGTTG ATTGCACCTA	750 800 828
50		
5 !	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

60 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Klebsiella ornithinolytica
- (B) STRAIN: ATCC 31898

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99

5						
	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACTCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG		ATCATCGTGT	
	TCCTGAACAA	ATGCGACATG		AAGAGCTGCT	. –	100
	GAAATGGAAG	TCCGTGAGCT			GGAGCTGGTT	150
10				TACGACTTCC	CGGGCGACGA	200
10	CACGCCGATC	GTTCGTGGTT		AGCGCTGGAA	GGCGAAGCAG	250
	ACTGGGAAGC		GAACTGGCTG	GCTACCTGGA	TTCTTACATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	350
	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	
	GCGGTATCAT	CAAAGTGGGC		AAATCGTTGG		400
15	ACTGCGAAGT	CTACCTGTAC			TATCAAAGAG	450
	CGAAGGCCGT	GCTGGTGAGA	A COMMOGRAM	ATGTTCCGCA		500
			ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CTCTATCAAG	600
	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
20	GTACAACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	
	GTCATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA		750
	CGCGATGGAC	GATGGTCTGC	GTTTCGCA	GIIACCCIGA	TTCACCCGAT	800
		0.11.0010160	GITICGCA			828

25

30

- 2) INFORMATION FOR SEQ ID NO: 100
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 749 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Klebsiella oxytoca
  - (B) STRAIN: ATCC 33496
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100

		ACTCGTGAGC	ACATCCTGCT	GGGTCGTCAG	GTAGGCGTTC	50
	CGTACATCAT	CGTGTTCCTG	AACAAGTGCG		TGACGAAGAG	
	CTGCTGGAAC	TGGTTGAAAT				100
45	TTTCCCGGGC				CTCAGTACGA	150
					CTGAAAGCGC	200
	TGGAAGGCGA				GGCTGGCTTC	250
	CTGGATTCTT		ACCAGAGCGT	GCGATTGACA	AGCCGTTCCT	300
	GCTGCCGATC	GAAGACGTAT	TCTCCATCTC		ACCGTTGTTA	
	CCGGTCGTGT	AGAGCGCGGT				350
50	GTTGGTATVA	AACACACTCC	TICATCAMAG	TTGGCGAAGA	AGTTGAAATY	400
70	CCCCTTTCC	AAGACACTGC			TTGAAATGTT	450
	CCGCAAACTG	CTGGACGAAG	GCCGYGCTGG		GGTGTTCTGC	500
	TGCGTGGTAT	CAAACGTGAA	GAAATCGAAC	GTGGTCAGGT	ACTGGCTAAG	
	CCGGGCTCTA	TCAAGCCGCA	CACCAAGTTC	GAATCTGAAG		550
	GTCCAAAGAC				TTTATATCCT	600
55	CGCAGTTCTA		GTCACACTCC		GGCTACCGTC	650
					CGAACTGCCG	700
	GAAGGCGTAG	AGATGGTTAT	GCCGGGCGAC	AACATCAAAA	TGGTTGTTA	749
						/49

^{60 2)} INFORMATION FOR SEQ ID NO: 101

(i) SEQUENCE CHARACTERISTICS:

(A)

LENGTH: 830 bases

```
TYPE: Nucleic acid
            (B)
                  STRANDEDNESS: Double
            (C)
 5
                  TOPOLOGY: Linear
            (D)
       (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
10
            (A) ORGANISM: Klebsiella planticola
                  STRAIN: ATCC 33531
            (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101
15
     TGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC
                                                                        50
     GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG
                                                                       100
     TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT
                                                                       150
    TGAAATGGAA GTTCGTGAGC TGCTGTCTCA GTACGACTGC TGGAACTGGT
TGAAATGGAA GTTCGTGAGC TGCTGTCTCA GTACGACTTC CCGGGCGACG
ACACTCCGAT CGTTCGTGGT TCCGCTCTGA AAGCGCTGGA AGGCGAAGCA
GACTGGGAAG CGAAAATCAT CGAACTGGCT GGCTACCTGG ATTCTTACAT
CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCTATCGAAG
                                                                       200
                                                                       250
20
                                                                        300
                                                                        350
     ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG
                                                                       400
     CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA
                                                                       450
    TACTGCTAAR TCWACCTGTA CYGGCGTTGA AATGTTCCGC AAACTGCTGG
                                                                       500
     ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA
                                                                       550
     CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCTCTATCAA
                                                                       600
     GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGACGAAG
                                                                       650
     GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC
                                                                       700
30 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT
                                                                       750
     GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATTCACCCRA
                                                                        800
                                                                        830
     TCGCGATGGA CGACGGTCTG CGTTTCGCAA
 35
      2) INFORMATION FOR SEQ ID NO: 102
         (i) SEQUENCE CHARACTERISTICS:
                   LENGTH: 806 bases
             (A)
                   TYPE: Nucleic acid
             (B)
 40
                   STRANDEDNESS: Double
             (C)
                   TOPOLOGY: Linear
             (D)
        (ii) MOLECULE TYPE: Genomic DNA
 45
        (vi) ORIGINAL SOURCE:
             (A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae
                   STRAIN: ATCC 11296
             (B)
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102
 50
      CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA
      TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC
                                                                         100
      AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAGATGGA
                                                                         150
      AGTTCGTGAA CTGCTGTCTC AGTACGATTT CCCGGGCGAC GACACCCCGA
                                                                         200
      TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA
                                                                         250
      GCGAAAATCA TCGAACTGGC TGGCCACCTG GATACCTATA TCCCGGAACC
                                                                         300
      AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT
                                                                        350
      CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC
                                                                        400
 60 ATCAAAGTAG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AAACCGCGAA
                                                                         450
```

5	AACCACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC 500 GTGCTGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA 550 ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACCCGCACAC 600 CAAGTTCGAA TCTGAAGTGT ACATCCTGTC CAAAGACGAA GGCGGCCGTC 650 ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT 700 GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC 750 GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG 800 ACGACG
10	
	2) INFORMATION FOR SEQ ID NO: 103
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 743 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
20	(ii) MOLECULE TYPE: Genomic DNA
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella pneumoniae subsp. pneumoniae</pre>
25	(B) STRAIN: ATCC 13883
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 103
30	GCAGACTCGT GAGCACATCC TGCTGGGTCG TCAGGTAGGC GTTCCGTACA  TCATCGTGTT CCTGAACAAA TGCGACATGG TTGATGACGA AGAGCTGCTG  GAACTGGTTG AGATGGAAGT TCGTGAACTG CTGTCTCAGT ACGATTTCCC  GGGCGACGAC ACTCCGATCG TTCGTGGTTC TGCTCTGAAA GCGCTGGAAG  GCGACGCAGA GTGGGAAGCG AAAATCATCG AACTGGCTGG CCACCTGGAT  250
35	ACCTATATCC CGGAACCAGA GCGTGCGATT GACAAGCCGT TCCTGCTGCC 300 GATCGAAGAC GTATTCTCCA TCTCCGGTCG TGGTACCGGTC 350 GTGTAGAGCG CGGTATCATC AAAGTAGGTG AAGAAGTTGA AATCGTTGGT 400 ATCAAAGAAA CCGCGAAAAC CACCTGTACT GGCGTTGAAA TGTTCCGCAA ACTGCTGGAC GAAGGCCGTG CTGGTGAGAA CGTAGGTGTT CTGCTGCGTG
40	GTATCAAACG TGAAGAAATC GAACGTGGTC AGGTACTGGC TAAGCCGGGC 550 ACCATCAACC CGCACACCAA GTTCGAATCT GAAGTGTACA TCCTGTCCAA AGACGAAGGC GGCCGTCACA CTCCGTTCTT CAAAGGCTAC CGTCCGCAGT 650 TCTACTTCCG TACTACTGAC GTGACTGGCA CCATCGAACT GCCGGAAGGC 700 GTAGAGATGG TAATGCCGGG CGACAACATC AAAATGGTTG TTA 743
45	2) INFORMATION FOR SEQ ID NO: 104
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
55	(ii) MOLECULE TYPE: Genomic DNA
55	<ul> <li>(vi)ORIGINAL SOURCE:</li> <li>(A) ORGANISM: Klebsiella pneumoniae subsp. rhinoscleromatis</li> <li>(B) STRAIN: ATCC 13884</li> </ul>
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 104

5	TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAGACTGGTT GAGATGGAAG TTCGTGAACT RCTGTCTCAG TACGATTTCC CGGCGACGA CACCCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCCACCTGGA TACCTATATC CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGTATCATC	50 100 150 200 250 300 350 400
10	ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC CAAAGTAGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAA ACCGCGAAAA CCAACGTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT CACCATCAAC CCGCACACCA	450 500 550 600
15	CGAACGTGGT CAGGTACTGG CTAAGCCGGG CAGCGACGACGACGGGGCGTCAC AGTTCGAATC TGAAGGGTAC ATCCTGTCCA AAGACGAAGG CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCATCCGAT CGCGATGGAC GACGGTCTGC GTTTCGCAA	650 700 750 800 819
20		
	2) INFORMATION FOR SEQ ID NO: 105	
25	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 832 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(2)	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Kluyvera ascorbata	
	(A) ORGANISM: KIUYVEIA ASCOIDACA (B) STRAIN: ATCC 33433	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105	
40	CGGCGCGATC CTGGTTGTTG CTGCGACTGA TGGCCCTATG CCACAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG TTCCTGAACA AATGYGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGATGCA	50 100 150 200 250 300
45	CCCAGAACCA GAACGTGCTA TCGATAAGCC GIICCIGCIG CCAACGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	350 400 450 500
50	ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGCTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAGCCAG GCTCTATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGACGAAG GCGGCCGTCA TACCTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC TCAAAGGCT ACCGTCCAGAAG GCGTTGAGAT	550 600 650 700 750 800
55	GGTAATGCCA GGCGACAACA TCAAGATGGT IGIGACICIG ATCAIGSGAT TCGCGATGGA CGACGGCCTG CGTTTCGCAA CC	832
	2) INFORMATION FOR SEQ ID NO: 106	

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 830 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
3	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Kluyvera cryocrescens</li><li>(B) STRAIN: ATCC 33435</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106	
15	TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT	50 100 150
20	TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG ACACTCCTAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGACGCT GAGTGGGAAG CAAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GAGCGTGCGA TTGATAAGCC GTTCCTGCTG CCAATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA	200 250 300 350 400
25	ACGACGCCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAGCCAG GCTCCATCAA GCCGCACACC AAATTCGAAT CTGAAGTTTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA CTTCTACTTG	450 500 550 600 650 700
30	CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCAA TCGCGATGGA CGACGGTCTG CGTTTCGCAA	750 800 830
35	2) INFORMATION FOR SEQ ID NO: 107  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases	
40	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kluyvera georgiana     (B) STRAIN: ATCC 51603</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107	
50	CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGT CAGGTTGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA	50 100
55	CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCCTGGAAGG CGACGCTGAG TGGGAAGCGA AAATCATCGA ACTGGCGGGC TTCCTGGATT CTTACATCCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG TATTCTCCAT CTCCGGTCGT GGTACCGTTG TTACGGCTGG	150 200 250 300 350 400
60	GGTATCATCA AAGTTGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGACAC CGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT	450 500 550
	7.06	

	• • • • • • • • • • • • • • • • • • • •	
5	GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGTT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG CGAAGGACGA AGGTCTGCGT TTCGCA	600 650 700 750 800 826
10	2) INFORMATION FOR SEQ ID NO: 108	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 803 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Lactobacillus casei subsp. casei</li><li>(B) STRAIN: ATCC 393</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108	50
23	GCTGCTGATG GCCCAATGCC ACAAACTCGT GAACATATCT TACTTTCACG TCAAGTTGGT GTTCCATACA TCGTTGTATT CATGAACAAA TGTGACATGG TTGACGATGA AGAATTACTA GAATTAGTTG AAATGGAAAT TCGTGATCTA TTAACTGAAT ATGAATTCCC TGGCGATGAC ATTCCTGTAA TCAAAGGTTC	100 150 200 250
30	AGCTCTTAAA GCACTTCAAG GTGAAGCTGA CTGGGAAGCT AAAATTCACCTAGTTAATTGAA ACGTGATACT AGTTAATTGAA ACGTGATACT AGCTGATACT TCATGATGCC AGTTGAGGAT GTATTCTCAA TCACTGGTCG GACAAACCAT TCATGATGCC AGTTGAACG TGGACAAGTT AAAGTTGGTG	300 350 400
35	ACGAAGTAGA AGTTATCGGT ATTGAAGAAG AGAGCAAAAA AGTACTAGCAAAAAAAAAA	450 500 550 600
40	GTCAAGTATT AGCTAAACAA TAAAGAAGAA GGTGGACGTC ACACTCCATT GCTGAAACTT ATGTTTTAAC TAAAGAAGAA GGTGGACGTC ACACTCCATT CTTCAACAAC TACCGCCCAC AATTCTATTT CCGTACTACT GACGTAACTG GTATTGTTAC ACTTCCAGAA GGTACTGAAA TGGTAATGCC TGGTGATAAC ATTGAGCTTG CAGTTGANCT AATTGCACCA ATCGCTATCG AAGACGGTAC TAA	650 700 750 800 803
45	2) INFORMATION FOR SEQ ID NO: 109	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Lactococcus lactis subsp. lactis</li><li>(B) STRAIN: ATCC 19435</li></ul>	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 109	

10	CGGTGCAATC CTCGTTGTTG CTGCAACTGA TGGACCAATG CCACAAACTC GTGAACACAT CTTGCTTTCA CGTCAAGTTG GTGTTAAATA CCTTATCGTC TTCCTTAACA AGGCTGACCT TGTTGATGAT GAAGAATTGA TGGAACTCGT TGAAATGGAA GTTCGTGACC TCTTGAGCGA ATACGACTTC CCAGGTGACCG ATATTCCTGT AATCGCTGGT TCAGCACTTG GTGCTTTGAA CGGTGAACCA CAATGGGTTG CTAAAGTTGA AGAATTGATG GACATCGTTG ATGAATACAT CCCAACTCCA GAACGCGACA CTGACAAACC ACTCCTTCTT CCAGTCGAAG ACGTATTCTC TATCACTGGT CGTGGTACAG TTGCTTCAGG ACGTATCGAA CGTGGTACTG TTAAAGTTGG TGACGAAGTT GAAATCGTTG GTATCAAAGA AGAAACTAAA AAAGCTGTTG TTACTGGTAT CGAAATGTTC CGTAAAACAC TTACTGAAGG TCTTGCTGGT GATAACGTCG GTGCACTTCT CCGTGGTATC CAACGTGACG AAATCGAACG TGGTCAAGTT ATTGCTAAAC CAGGTTCAAT	50 100 150 200 250 300 350 400 450 500 550
15	CACTCCACAC AAACTTTTCG AAGGTGAAGT TTACGTATTG AGCAAAGAAG AAGGCGGACG TCACACTCCA TTCTTCGACA ACTACCGTCC TCAATTCTAC TTCCACACAA CTGACGTTAC TGGTTCAGTT AAACTTCCAG AAGGAACTGA AATGGTAATG CCTGGTGACA ACGTGCATAT CGACGTTGAA TTGATCCACC CAGTTGCGAT CGAACAAGGT ACTAC	650 700 750 800 825
20		
	2) INFORMATION FOR SEQ ID NO: 110	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 824 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Leclercia adecarboxylata     (B) STRAIN: ATCC 23216</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110	
40	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCAATGC CTCAGACCCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCTTTC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGTGAACT YCTGTCCCAG TACGACTTCC CGGGCGACGA CACCCCAATC GTTCGTGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCAG AGTGGGAAGA GAAAATCATC GARCTGGCTG GCTACCTGGA TTCCTACATC	50 100 150 200 250
45	CCAGAGCCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CTATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAARGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAGGAC	300 350 400 450
50	ACTGCTAAGT CTACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCCGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTTCTGG CTAAGCCAGG CTCYATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCYA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACKACTGA CGTGACCGGT ACCATCGARC TGCCAGAAGG CGTTGAGATG GTAATGCCAG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCAAT	500 550 600 650 700 750 800
55	CGCAATGGAC GATGGTCTGC GTTC	824

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 838 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Legionella micdadei     (B) STRAIN: ATCC 33218</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111	
15	CGGAGCGATA TTAGTAGTAT CAGCAGCGGA TGGCCCAATG CCTCAAACGA 100 GAGAGCACAT ACTYTTATCC CGSCAGGTAG GTGTTCCCTA TATAGTAGTG 150 TTCTTAAACA AAGCTGACAT GGTGGATGAT GCGAGTTAT TAGAATTAGT 150 TGAAATGGAA GTACGCGAYT TGTTGAGCAG CTATGAATTT CCAGGAGATG 200 AGATCCCGAT TGTAGTTGGT TCAGCATTAA AAGCATTGGA AGGCGATACG 250 AGATCCCGAT TGTAGTTGGT TCAGCATGA TTAGTTGAGA CGATGGATTC 300	
20	AGTGATATAG GTGTACCAGC GATTGAGAACATCGA 350 TTATATACCT GAGCCGGTAA GAAACATCGA TAAAAGTTTC TTGTTACCGA 400 TCGAAGACGT GTTCTCAATA TCTGGACGAG GAACAGTAGT AACAGGACGT 450 ATCGAAAGCG GGATCATCAA AGTTGGTGAG GAAGTCGAGA TTGTTGGTAT 500	
25	TACTTGACGA AGGTCGAGCT GGAGACAAC TACTTAGCTA AGCCGGGAAG ACGAAGCGGG ATGAAGTTGA ACGCGGACAA GTATTAGCTA AGCCGGAAG CATTAAACCG CATACTAAAT TTGAAGCTGA AGTGTATTGT TTGTCAAAAG ATGAAGGTGG ACGTCATACC CCATTCTTTA ACGGATATCG GCCTCAATTT ATGAAGGTGG ACGTCATACC CCATTCTTTA TCTGATTTAC CTGARGGTAT 750	
30	TACTTCAGGA CCACAGACGT AACTGGTTCT IGIGATTATACACT  AGAAATGGTA ATGCCAGGTG ATAACGTCAA GCTGATTGTT AGCTTACACT  AGAAATGGTA ATGCCAGGTG ATAACGTCAA GCTGATTGTT AGCTTACACT  800  838  CACCGATTGC TATGGACGAA GGTTTGCGTT TTGCAATC	
35	2) INFORMATION FOR SEQ ID NO: 112  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 838 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
45	(ii) MOLECULE TIPE: GENERAL STATES OF THE CONTROL OF T	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112	
50	CGGAGCGATA CTGGTTGTAT CAGCAGCTGA TGGTCCTATG CCACAAACGA 100 GGGAACACAT TCTATTGTCT CGCCAGGTAG GTGTTCCATA TATTGTTGTG 150 TTCATGAACA AAGCGGATAT GGTTGATGAC CCTGAGTTAT TAGAGTTAGT 200	
55	ACATACCTAT TGTTGTTGGT TCAGCTITGA TTTGGTTGAAA CAATGGATTC 300 AGTGATATAG GCGTTAAGGC TATTGAGAAA TTGGTTGAAA CAATGGATTC 350 ATACATTCCT GAGCCAGTTA GAAACATAGA CAAGCCATTT TTGTTGCCGA 400 TTGAAGACGT ATTTTCAATT TCTGGACGC GAACAGTGGT AACTGGTCGT 450 GTAGAGAGTG GAATTGTTAA AGTTGGTGAG GAAGTTGAAA TTGTTGGAAT 500	
60	MAN NOCTOCALLY!! INCINALISACE LICENSE	

5	ACGAAGCGAG ATGAAGTGGA GCGTGGACAG GTATTGGCGA AGCCAGGAAC CATCAAGCCA CACACCAAGT TTGAAGCAGA AGTGTATGTA TTATCCAAGG AAGAAGGCGG ACGTCACACT CCATTCTTTA ATGGATACCG TCCACAATTC TGAAATGGTA ATGCCTGGAG ATAATGTGCA ATTAGTTGTT AGCTTGCATG CTCCCGATTGC GATGGATGAA GGTTTAAGAT TCGCAATT	600 650 700 750 800 838
10	2) INFORMATION FOR SEQ ID NO: 113	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Leminorella grimontii     (B) STRAIN: ATCC 33999</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113	
30 35	GTGCAATCCT GGTAGTAGCA GAGCACATCC GAGCACATCC TGCTGGGTCG TCAGGTAGGC GTTCCGTACA TCATCGTATT TCATGGACT TCCTGAACAAG ARATGGAAGT TCGCGAACTG CTGTCTCAGT ACTCCGGTAG TCCGCGAACTG CTGTCTCAGT ACGCCTGAACA GCGTGCAACTG CTGTCTCAGT ACGCCTGAAC GCGCGGTTC AAAATCATCG GCGTGCAAT GCGCAACCG GCCTGAAC GCGCATCATC CAGAACCTGA GCGTGCAAT TCTCCGGCCG GCCACAAGAC CCACCAAGAC CACCTGTACC GAAAGTCGTG GAAAGTCGTC GAAAGTCGTC CACCAAGAC CACCTGTACC GAAACTGAAA GCGCTGAAA TCTCCGGCG TGGTACCGGT TCCTGCTGCC CTGCTGCC CTCCCACACCC GTTCCTGTCC CACCACCCA GTTCCTGTCC CTCCCACCCC GTTCCTGCTC CACCACCCA GTTCCTGTCC CACCACCCA GTTCCTGTCC CACCACCCA GTTCCTGTC CACCACCCA GTTCCTGTCC CACCACCCA GTTCCTGTCC CACCACCCA GTTCCTCTC CACCACCCA GTTCCTCTC CACCACCCA GTTCCTCTC CACCACCCA CCACCACGCC CCACCACACCC CCACCACCCA CCACCACCCC CCACCA	50 100 150 200 250 300 350 400 450 500 550 600 650 700
45	TAATGCCAGG CGACAACATT CAGATGACCG TAAGTCTGAT TGCGCCGATC GCAATGGACG AAGGTCTGCG CTTCGCAA	750 800 828
13	2) INFORMATION FOR SEQ ID NO: 114	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Leminorella richardii  (B) STRAIN: ATCC 33000	
60	(B) STRAIN: ATCC 33998  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114	
	200	

5 10 15	GCTATCCTGG GCACATCCTG GCACATCCTG TGGGTCGCC TGAACAAGTG ATGGAAGTTC GCGGTTGTT GCGGGTTCTC GCGGTTGTT GCGGGTTCAG GACATGGTT GCGGGTTGTT GCGGGTTCAG GACATGGTT GCGGGTTCAG GTGAACTTCT GCGGGTTGTT GCGGGTTCAG GACATGGTT GCGGGTTCAG GTGAACTTCT GCGGGTTCAG GTGAACTTCT GCGGGTTCAG GACTCCCGG GCGACGATAC GCGTGAAAGC CTGGCGGAAT CCTGGCGGAAT CCTGGCGGAAT CCTGGCCGTG GTACTGAAAC GACCGGTCGT GCATCATCAA ACCAAGACCA ACGCGTCAAAC ACGTGGTGAAAT CCTGTGGCAA ACGAAATCGA ACGTGGTCAG CCGTTCAATAC GACCGGTCGT GTACAGCGGT CTGCTGCCTA CCGTTGAAAT CCTGTGGCAA CCTGTACTG CGTTGAAAT CCTGTGGCAA CCTGTCAGA CCTGTCAGAA CCTGTCAGAA CCTGTCAAAC CCTGTACTG CGTTGAAAT CCTGTGGCAA CCTGTCAGAA CCTGTCAGAA CCTGTCAGAAC CCTGTCAGAAA CCTGGCAA CCTGTCAGAA CCTGTCAGAA CCTGTGACGT CCTGCCGCAC CTGCCGGCAC CAAAGACAC CTGAGCAAG CCTGCAAC CCGTTCAAAC CCAAGAAT CCTGGCGAA CCAAGAAC CCTGTCAGAAC CCTGTCAGAAC CCTGTCAGAAC CCTGTCAGAAC CCTGTCAGAAC CCTGTCAGAAC CCTGCCGCAC CACACAGAAT CCGTTCTCA AGGCTACCG CTGAGCAAG ACCACAGAAT CCGTTCTCA AAGGCTACCG CTGAGCAAG ACCACAGAAT CCGTTCTCA AAGGCTACCG CTGAGCAAG ACCACAGAAT CCGTTCTCA AAGGCTACCG CTGAGCAAG ACCACAGAAT CCGTTCTCA AAGGCTACCG CAGAAGCGT CCCCAATCCC CACACAGAAC CCGTTCACC CCGACCAC CACACAGAAC CCGTCCTC CCCAATCCC CCCCAATCCC CCCCCAATCCC CCCCCAATCCC CCCCAATCCC CCCCCAATCCC CCCCCCAATCCC CCCCCCC CCCCCCC CCCCCCC CCCCCCC CCCC	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 826
20		
	2) INFORMATION FOR SEQ ID NO: 115	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 843 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
35	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Leptospira interrogans     (B) STRAIN: ATCC 23581 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 115</pre>	
	(X1) SEQUENCE DESCRIPTION COCACCTATG CCACAAACAA	50
40	CGAAATGGTT GAGATGGACG TICGIGAACT CTGCGGTAAA AGCACTTGAG CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG CAGGAGATAC AACTCTATC GATGCAACT TGATGGAAGC GGCGATGAAT CTGAAATTGG GATGCCTGA ATTCTCAAT TGATGGAAGC GGCGATGAAT CTGAAATTGC	100 150 200 250 300 350 400
4.5	TTATGCCAGT AGAAGACGTT TICTCGATA CTGACGACG AAGTTGAAAT	450
ڊ 5:	TATCGGTATC CGCCCAACAA CAAAAACTT TCAGAAAACT TCTCGATCAA GCGGAAGCTG GCGACAACAT CGGCGCTCTT TCAGAAAACT TCTCGATCAA GAAAATCGAA AGAGGGCAAG TTCTTGCGAA CTTCGTGGAA CTAAAAAAGA AGAAATCGAA TGCCGCTGAG GTGTATGTAT GCCAGGTTCT ATCACTCCTC ACAAAAAGTT TGCCGCTGAA TAACTACCGT	500 550 600 650 700 750
	CCTCAGTTTT ACTTTAGAAC AACTGACGTA TAACGTTTCT TTGACGGTTG	800 843
	AATTGATTAG CCCGATCGCA AIGGACAAGG GIGINII	
5	5	

- 2) INFORMATION FOR SEQ ID NO: 116
- 60 (i) SEQUENCE CHARACTERISTICS:

(A)

LENGTH: 832 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 5 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Megamonas hypermegale (A) 10 (B) STRAIN: ATCC 25560 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116 CGGTGCTATC CTCGTTGTTA GTGCTGCTGA TGGTCCTATG CCTCAGACTC GTGAACACAT CCTTCTCGCT CGTCAGGTTG GTGTTCCAGC TATCGTTGTA 50 TTCCTCAACA AAGCTGACCA GGTTGATGAC CCTGAACTTC TCGAACTTGT 100 TGAAATGGAA GTTCGTGAAC TTCTTTCCAG CTATGACTTC CCAGGCGATG 150 ACGTTCCAGT AATCACTGGT TCCGCTCTTC AGGCTCTCGA AGGCGACGAA GAAGCTAAAA AGAAAATTCT TGAATTAATG GATGCTGTTG ATGATTACAT 200 250 20 CCCAACTCCA ACACGTGACA CTGATAAACC TTTCTTAATG CCAGTTGAAG ACGTATTCAC AATTACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA 300 350 CGTGGCGAAC TTAAACTTGG TGACAGCGTT GAAATCGTTG GTCTTTCCGA 400 TGAAAAGAAA TCCACTACTG TAACTGGTAT CGAAATGTTC CGCAAAATGC TTGATAGCGC TGTTGCTGGT GATAACATCG GTGCACTTCT TCGTGGTATT GACCGTAAAG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CTGGCACAAT 450 500 550 25 TCATCCACAC AAAAAATTCA AAGCTCAGGT TTACGTATTA ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCTCCA ACTATCGTCC ACAGTTCTAT TTCCGTACTA CTGACGTTAC TGGTGTTGTA ACTCTTCCAG AAGGTACTGA 800 30 832 2) INFORMATION FOR SEQ ID NO: 117 35 (i) SEQUENCE CHARACTERISTICS: LENGTH: 820 bases (A) TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double 40 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 45 (A) ORGANISM: Mitsuokella multacida (B) STRAIN: ATCC 27723 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117 TGGTGCTATC CTCGTCGTTT CCGCTGCTGA TGGCCCGATG CCGCAGACGC 50 GTGAGCACAT CCTGCTCGCT CGCCAGGTCG GTGTTCCGGC AATCGTTGTC 50 TTCCTCAACA AGGTTGACCA GGTTGACGAT CCGGAGCTCC TCGAGCTCGT CGAGATGGAA GTTCGCGAGC TGCTCTCCAG CTACGACTTC CCGGGCGATG 100 150 ACATCCCTGT AATCGCTGGT TCCGCTCTGA AGGCCCTCGA AGGCGACGAA GAGCAGAAGA AGAACATCCT CAAGCTCATG GAAGCTGTCG ATGAGTACAT CCCGACGCCG GTCCGCGACA ACGCTAAGCC GTTCCTGATG CCGGTCGAGG ATGTCTTCAC GATCACGGGC CGTGGTACGG TTGCAACGGG CCGCGTTGAG CGTGGTGAGC TCAAGATGAA CGATACGGTT GAGATCGTTG GTCTGCAGGA CGAGCCGCGT CAGACGGTTG TCACGGGCAT CGAGATGTTC CGCAAGATGC

TTGATTTCGC TGAGGCTGGC GATAACATCG GTGCTCTGCT CCGTGGTATC

5	GACCGCAAGG AGATCGAGCG TGGCCAGGTT CTCGCAAAGC CGGGCACGAT TCATCCGCAC ACGAAGTTCA AGGCTCAGGT CTATGTCCTG ACGAAAGAAG AAGGCGGCCG TCATACGCCG TCTCTCACGA ACTATCGCCC GCAGTTCTAC TTCCGCACGA CGGACGTAAC TGGCGTAGTC AAACTGCCGG AAGGCACGGA GATGGTTATG CCTGGCGATA ACGTCGAGAT GGAAGTTGAG CTCATCACCC CGATCGCTAT CGAGAAGGGC	600 650 700 750 800 820
10	2) INFORMATION FOR SEQ ID NO: 118	
15	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	<ul> <li>(ii) MOLECULE TYPE: Genomic DNA</li> <li>(vi) ORIGINAL SOURCE:         <ul> <li>(A) ORGANISM: Mobiluncus curtisii subsp. holmesii</li> <li>(B) STRAIN: ATCC 35242</li> </ul> </li> </ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118	50 100
30	AGGAACACAT CCTGTTGGCT TTCCGATGTG GACGAAGACA TGCTCGAAAT GCTCTGAACA AGTGCGATTC TTCCGATGTG GAAGCAGGGC TTCGATCGTG CGTCGAGGAC GAAATCCGCG ATGACCTGGA AGGCCCTGGA AGGCCGACCCC ACTGCCCCGAT TATCCACGTT TCCGCTCTGA GGAGCGGTCG ATACCTACAT GCTCGACCA AGAAGATTGA AGAGCTCATG GAAGCGGTCG CCTATCGAAG	150 200 250 300 350 400
35	ACGTCTTCAC CATTACTGGT CGCGGCAAGC TACCGTTGAA CGCCGAAGTG GAAATCGTAG GTATTCGTCC CGCGGCAAGC TACCGTTGAA CGCCGGTATCGA AATGTTCCAC AAGTCCATGG TACGCAAAAG ACCACCGTTA CCGGTATCGA TGTTGCTGCG TGGCACCAAG ACGAAGCCTA CGCCGCGAG AACTGTGGTC TGCATTCCTG GCTCCGTGAC CGTGAGGACG TTGAGCGCGG GCAAGGTCTA CATCTTGAAG AAGGACGAAG CGCGCACACC AAGTTCGAGG GCAAGGTCTA CATCTTGAAG GTTCTTCTTC	450 500 550 600 650 700
40	GTGGACGTCA CAAGICGIIC INSTITUTCAC CTGCCCGAAG GCACCGAAAT	750 800 831
4	2) INFORMATION FOR SEQ 1D No. 22	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
!	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Moellerella wisconsensis	
	(B) STRAIN: ATCC 35017  (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 119	
	203	

· !	GGTGCAATTC TGGTTGTTGC TGCAACTGAT GGCCCTATGC CACAGACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG CGTTCCATAC ATCATCGTTT TCCTGAACAA ATGTGACATG GTAGACGACG AAGAGCTGTT AGAACTGGTT GAAATGGAAG TCCGTGAGCT GCTGTCTCAG TACGATTTCC CAGGCGATGA CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCTCTGGAA GGCGAAGCTG AGTGGGAAGC TAAAATCATT GAACTGGCAG AGCACTGGA TTCTTATATC	50 100 150 200 250 300
10	CGTATTCTCA ATTTCAGGCC GTGGTACAGT TGTTACTGGT CGATCGAAGA  GTGGTATCGT TAAAGTCGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAT  ACCGTGAAAA CAACATGTAC TGGCGTTGAA ATGTTCCGTA AACTGCTGGA  CGAAGGCCGT GCTGCTGAGA ACGTTCAGA ATGTTCCGTA AACTGCTGGA	350 400 450 500
15	CCGCATACAA CTTTCGAATC AGAAGTTTAC ATCCTGAGCA AAGATGAAGG TGGCCGTCAT ACTCCATTCT TCAAAGGTTA CCGTCCACAG TTCTACTTCC GTACAACTGA CGTAACCGGT ACTATCGAAC TGCCAGAAGG CGTTGAGATG GTAATGCCAG GTGATAACAT CAAAATGATC GTTACTCTGA TCCACCCAAT TGCAATGGAT GCAGGTCTGC GTTTT	550 600 650 700 750 800 825
20		
	2) INFORMATION FOR SEQ ID NO:120	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Branhamella catarrhalis	
35	(B) STRAIN: ATCC 43628	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120	
40	TGGTGCTATC TTGGTTGTTT CTGCAACTGA TGGTCCTATG CCACAAACTC GTGAGCATAT CCTACTATCT CGTCAGGTTG GTGTACCATA CATCATGGTA TTCATGAACA AGTGCGATAT GGTTGATGAT GAAGAGCTAC TAGAATTGGT	50 100 150
45	GGTAAATATG GCGAGCCTGC AGTTCTAGAA CTGCTAGACA CACTAGACAG CTATATCCCA GAGCCTGAGC GTGATATCGA TAAGTCATTC TTGATGCCAA TTGAAGATGT CTTCTCGATC TCAGGTCGTG GTACAGTTGT GACTGGTCGT GTTGAATCAG GTATTATAA CTGCTCGTG GTACAGTTGT GACTGGTCGT	200 250 300 350 400
50	TGTTAGACGA AGGTCGTGCA GGTGAGAACT GTGTAGACT GTTCCGTAAAC ACTAAGCGTG AAGAAGTTCA ACGCGGTCAA GTACTTGCAA AACCAGGTTC AATCACCCCA CATACTAAGT TTGATGCTGA AGTTTATGTA CTGTCAAAAG AAGAAGGTGG TCGTCACACC CCATCTTAA ATGGCTATCG CCCACAGTTC	450 500 550 600 650 700
	CGAAATGGTT ATGCCTGGTG ACAATGTTGC ATCACTCTAC AAGAAGGTAC	750
55	ACCCAATCGC CAGGATAAAG GTCTACG	800

(i) SEQUENCE CHARACTERISTICS: 60

55

	(A) LENGTH: 806 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Morganella morganii subsp. morganii</li><li>(B) STRAIN: ATCC 25830</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121	50
15	CGGCGCTATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACCC GTGAGCACAT CCTGTTAGGT CGTCAGGTTG GCGTTCCTTA CATCATCGTA TTCCTGAACA AATGTGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TCTGGCGCTGA AAGCACTGGA AGGCGAGCCA ACACGCCAAT CGTTCGCGT TGAACTGGCA GGTTTCCTGG ATTCTTACAT	100 150 200 250
20	ACACGCCAAT CGTTCGCGGT TGAACTGGCA GGTTTCCTGG ATTCTTACAT GAGTGGGAAG CTAARATCGT TGAACTGGCA GTTCCTGCTG CCAATCGAAG CCCTGAGCCA GAGCGTGCAA TTGACAAGCC GTTCCTGCTG CCAATCGAAG ACGTATTCTC AATCTCCGGC CGTGGTACCG TTGTTACCGG TCGTGTTGAG ACGTATCA TCAAGGTTGG TGAGGAAGTT GAAATCGTGG GTATCAAAGA CCCCGTATCA TCAAGGTTGG TGAGGAAGTT GAAATCGTGG AAACTGCTGG	300 350 400 450 500 550
25	ACGAAGGCCG TGCMGGIGAG ARCOACAG GCTAAACCAG GTTCAATCAA CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAACCAG GTTCAATCAA ACCACAYACC AAATTTGAAT CAGAAGGTTA TATTCTGAGC AAAGATGAAG ACCACAYACC AAATTTGAAT TTCAAAAGGYT ACCGTCCACA GTTCTACTTC	600 650 700 750 800
30	CGTACCACAG ACGTAACAGG TACTATCGAA CTGCCGGAAG OCCACAA CGTACCACACAA TCAAAATGAT CGTCACCCTG ATCCACCCAA GGTAATGCCG GGCGACAACA TCAAAATGAT CGTCACCCTG ATCCACCCAA	806
35	2) INFORMATION FOR SEQ ID NO: 122  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
45	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Mycobacterium tuberculosis</li><li>(B) STRAIN: TB 299</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122	50
· 50	CGAGCACGTT CTGCTGGCGC GTCAAGTGCC AGGAGCTGCT CGAACTCGTC CGCTGAACAA GGCCGACGCA GTGGACGACG AGGAGTTCG ACGAGGACGC GAGATGGAGG TCCGCGAGCT GCTGGCTGCC CGTGGCT GACGCGAAGT	100 150 200 250
5	GGGTTGCCTC TGTCGAGGAA CLGATCHTC CTGATGCCGG TCGAGGACGT GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCGG TCGAGGACGCG GACCCGGTCC GCGAGACCGT CACCGGACGT GTGGAGCGCG CTTCACCATT ACCGGCCGC GAACCTTGGA TCGTCGCAT TCGCCCATCG GCGTGATCAA CGTGAACGAG GAAGTTGGAA TCGTCGCA AGCTGCTCGA	300 350 400 450 500 550
6	ACCACCAAGA CCACCGTCAC CGGTGTGGAG ATGTTCCGGAG GGCGTCAAGC  CCAGGGCCAG GCGGGCGACA ACGTTGGTTT GCTGCTGCGG GGCGTCAAGC	

5	GCGAGGACGT CGAGCGTGGC CAGGTTGTCA CCAAGCCCGG CACCACCACG CCGCACACCG AGTTCGAAGG CCAGGTCTAC ATCCTGTCCA AGGACGAGGG CGCCACCACCGA CGTGACCGGT GTGACAACAA CCGTCCGCAG TTCTACTTCC GTGATGCCCG GTGACAACAC CAACATCTCG GTGAAGTTGA TCCAGCCCGT CGCCATGGAC GAAGGTCTGC GTTTCC	600 650 700 750 800 825
10	2) INFORMATION FOR SEQ ID NO: 123	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria cinerea</pre>	
	(B) STRAIN: ATCC 14685	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123	
30 35	CGGTGCGATC GCGAACACAT GCGAACACAT GCGAACACAT TTCATGAACA AATGCGACAT GGTTGACGAT GGTTGACGAT ACTCCCGGAT ACTCCGTGACT ACTCCCGGAT GCTACGACGAT GCTACAAGGT GCTTACGAAG ACTCCGGACCT GAGCGTGCAG GCTTACGAAG ACTCCGAACACCT GAGCGTGCAG CCGAACTC CCCAACACCT GAGCGTGCAG AAAAAATCTT GAAATTGGCT CCCAACACCT ACGTATTCCGGT CGCGGTACAG CCCGGTACAAAA ACCACTTGTA ACCACTTCACTT	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
	TCGCTA TCGCTA ATTGCGCCTA	800 806
45	2) INFORMATION FOR SEQ ID NO: 124	
50	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 822 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria elongata subsp. elongata (B) STRAIN: ATCC 25295	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124	

5 10 15	CGGCGCAATC CCTGTTGGCC GCGAACACAT TTCATGAATA AATGCGACAT TGAAATGGAA ATCCGTGACT GCTTACGAAG ACCGCGAT CCTTACGAAG CCGTACAAGGT CCCGACCT ACGTATCTC CGCGAACTC CGCCAAGTAG CCCGACTGACT CGTACAAGGT CCCGACCT ACGTATCTC CGCGGTACCT ACGCGTACCT ACGCGTACCT ACGCGTACCT ACGCGTACCAC CGTGCCGC ACGCGTACCT ACCCCAAAAA ACCCACTGGC ACCCCAAAAA ACCCACTGAC CCGGGTACCAC CGGGTACCAC CGGGTACCAC CGTGACAGC CGTGCTCGC CGGGTACCAC CCGGGTACCAC CCGACCTGA CCGCCACCAC CGTGGTCCG CCGACCTGA CCGCCACTGA CCGTCGCC CGTGGTCCG CCGACCTGC CGCCACTGA AAAAAATCTT CCGCCACTGA CCGTGGTCACAC CCGTGGTCACAC CCGGTGTCACAC CCGGTGTCACAC CCGTCACACC CGTGAACACC CCGCCAACTC CCGCCACTGA CCGTCCTCG CCCAACTG CCCCACCT CGCCACTGA CCGTCCTCT CCCTCACCC CCGCCACTGA CCGTGCTCG CCCAACTG CCCACCTGC CGTGGTCCAC CCGTGCTCG CCCAACTG CCCACCTGC CCGCCACTGA AAGCCTTGAA CCGTCCACAC CCGTTCCACAC CCGTTCTCACCC CAGCCGCCC CCCACCTGA AAGCCTTGTA CCCTCTCTGTA CCCTCTCTC CCGCACTGC CGTGCACTG CCTACCAC CCTATCGAC CCTATCGAC CCTATCGAC CGTACCAT CCCTCTCACC CCGTTCCACC CCGTTCCACC CCGTTACCAC CCGTTACCAC CCGTACCTAC CCTATCGAC CCTATCGAC CCTATCGAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTACCTAC CCTATCGAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTACCTAC CCTACCTCC CCGCTACCT CCTCACAC CCTACCTCC CCGTTCCACAC CCGTTCCACAC CCGTACCAC CCGTTCCACAC CCGTTCCACAC CCGTACCAC CCGTACCAC CCGTTCCACAC CCGTTCCACAC CCGTACCAC CCGTACCAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTTCCACAC CCGTACCTC CCGCACTTG CCCGACCT CCCCACCT CCGACCTG CCCCACTTG CCCGACCT CCCCACTCAC CCTACCT CCGCACTTG CCTCACAC CCTACCT CCGCTTCACC CCGTTCCACC CCGTTCCACC CCGACCTC CCCACCTTG CCCCACTCAC CCTACCTC CCTACCAC CCTACCT CCCTACCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTTC CCGCACTTC CCGCACTC CCTACCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTC CCTACCT CCGCACCT CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTC CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACTCAC CCTACCT CCGCACAC CCTACCT CCGCACTCC CCGCACTCC CCGCACTCC CCGCACCT CCCGCACCT CCCTACC CCGCACTCC CCGCTCCAC CCGCTCCAC CCGCTCCAC CCGCTCCAC CCGCCACC CCCTCCTCC CCCCCACAC CCCTCCCAC CCCCTCCC CCCCCCC CCCCCCCC	50 100 150 200 250 300 350 400 450 550 600 650 700 750 800 822
20		
	2) INFORMATION FOR SEQ ID NO: 125	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria flavescens	
	(B) STRAIN: ATCC 13120	
35	(xi) SEQUENCE DESCRIPTION: BEQ 12 10	5.0
40	GAAATGGAAA TTCGTGACTT GITGTCACTGAA AGCTTTGGAA GGTGATGCTG CTGCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTGGA CAGCTACATC	50 100 150 200 250 300
45	CCAACACCTG AGCGTGCTGT GGACAACCT  CCAACACCTG AGCGTGCTGT GGACAACCT  CGTATTCTCT ATCTCTGGTC GTGGTACAGT AGTAACCGGT CGCGTAGAGA  GCGGTATCAT CCACGTTGGT GACGAGATCG AAATCGTAGG TCTGAAAGAA  ACTCAAAAAAA CCACTTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA  ACTCAAAAAAA CCACGTGACA ACGTAGGCGT ATTGCTGCGT GGTACTAAAC  CGAAGGTCAA GCAGGTGACA ACGTAGGCGT ATCCATCACT	350 400 450 500 550 600
5	GTGAAGACGT AGAGCGTGGT CAAGTATTGG GTACTGAGCA AAGAAGAGGG	650 700 750 800 820
5	5	

60 (i) SEQUENCE CHARACTERISTICS:

LENGTH: 830 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 5 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria gonorrhoeae 10 (B) STRAIN: ATCC 49226 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126 GGTGCAATCC TGGTATGTTC TGCTGCCGAC GGCCCTATGC CGCAAACCCG CGAACACATC CTGCTGGCCC GTCAAGTAGG CGTACCTTAC ATCATCGTGT TCATGAACAA ATGCGACATG GTCGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TCCGCGACCT GCTGTCCAGC TACGACTTCC CCGGCGACGA CTGCCCGATC GTACAAGGTT CCGCACTGAA AGCCTTGGAA GGCGATGCCG CTTACGAAGA AAAAATCTTC GAACTGGCTA CCGCATTGGA CAGCTACATC 250 20 CCGACTCCCG AGCGTGCCGT GGACAAACCA TTCCTGCTGC CTATCGAAGA 300 CGTGTTCTCC ATTTCCGGCC GCGGTACCGT AGTCACCGGC CGTGTAGAGC GAGGTATCAT CCACGTTGGT GACGAGATTG AAATCGTCGG TCTGAAAGAA ACCCCAAAAAA CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA 350 450 CGAAGGTCAG GCGGGCGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC 500 GTGAAGACGT AGAACGCGGT CAGGTATTGG CCAAACCGGG TACTATCACT 550 CCTCACACCA AGTTCAAAGC AGAAGTGTAC GTATTGAGCA AAGAAGAGGG CGGCCGCCAT ACCCCGTTTT TCGCCAACTA CCGTCCCCAA TTCTACTTCC GTACCACTGA CGTAACCGGC GCGGTTACTT TGGAAAAAGG TGTGGAAATG GTAATGCCGG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT CGCTATGGAA GAAGGTCTGC GCTTTGCGAT 30 800 830 2) INFORMATION FOR SEQ ID NO: 127 35 (i) SEQUENCE CHARACTERISTICS: LENGTH: 816 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 40 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria lactamica (B) STRAIN: ATCC 23970 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127 CGGCGCAATC TTGGTATGTT CCGCCGCCGA CGGCCCTATG CCGCAAACCC 50 GCGAACACAT TCTGTTGGCC CGCCAAGTAG GTGTACCTTA CATCATCGTA TTCATGAACA AATGCGATAT GGTCGACGAT GCCGAGCTGT TGGAACTGGT TGAAATGGAA ATCCGCGACC TGCTGTCAAG CTACGACTTC CCAGGCGACG ACTGCCCAAT CGTACAAGGT TCCGCACTGA AAGCTTTGGA AGGCGATGCC GCTTACGAAG AAAAAATCTT CGAACTGGCT GCCGCATTGG ACAGCTACAT CCCGACTCCC GAGCGTGCCG TGGACAAACC GTTCCTGCTG CCTATCGAAG ACGTATTCTC CATCTCCGGC CGCGGTACGG TAGTAACCGG CCGTGTAGAG CGCGGTGTCA TCCACGTTGG CGACGAGATC GAAATCGTCG GTCTGAAAGA 300 AACCCAAAAA ACCACCTGTA CCGGTGTCGA GATGTTCCGC AAACTGCTGG ACGAAGGTCA GGCAGGCGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA

() ()	CGTGAAGAG TGGAACGCGG TCAGGTATTA GCCAAACCGG GTACCATCAC CCGCACACC AAGTTCAAAG CAGAAGTGTA TGTATTGAGC AAAGAAGAGG CCGCGCTCAC ACCTCCGTTC TCCGCCAACT ACCGTCCGCA ATTCTACTTC CGTACCACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GCGTGGAAAT CGCTATGGA AGAAGG TCGCTATGGA AGAAGG	600 650 700 750 800 816
10	2) INFORMATION FOR SEQ ID NO: 128	
15	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: ATCC 13077	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128	
25	CGGTGCAATC CTGGTATGTT CCGCAGCCGA CGGTCCTATG CCGCAAACCC GCGAACACAT CCTGCTGGCC CGTCAAGTAG GCGTACCTTA CATCATCGTG	50 100 150 200
30	TGAAATGGAA ATCCGCGACC IGCIGICCAS AAGCCTTGGA AGGCGATGCC ACTGCCCGAT CGTACAAGGT TCCGCACTGA AAGCCTTGGA ACAGCTACAT GCTTACGAAG AAAAAATCTT CGAATTGGC GCTGCTTGTTG CCTATCGAAG	250 300 350 400
35	ACGTATTCTC TATTTCCGGT CGIGGIACAC GAAATCGTCG GTCTGAAAGA CGCGGTATCA TCCACGTCGG TGACGAGATC GAAATCGTCG AAACTGCTGG AACTCAAAAA ACCACTTGTA CCGTGTGTGA AATGTTCCGC AAACTGCTGG ACGAAGGTCA AGCAGGCGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA CGTGAAGACG TAGAGCGTGG TCAAGTATTG GCTAAACCGG GTACAATCAC CGTGAAGACG AAGTTCAAAG CAGAAGTATA CGTACTGAGC AAAGAAGAGG TCCTCACACC AAGTTCAAAG CAGAAGTATA CCGTCCCCA ATTCTACTTC	450 500 550 600 650 700
40	TCCTCACACC AAGTTCAAAG CAGAAGTATA CGTACTCACACC ATTCTACTTC GCGGCCGCCA TACCCCGTTC TTCGCCAACT ACCGTCCCCA ATTCTACTTC CGTACCACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GTGTGGAAAT GGTAATGCCG GGCGAGAACG TAACCATCAC CGTAGAACTG ATTGCGCCTA TCGCTATGGA AGAAGGTTTG CGCTTTGCGA T	750 800 831
45	2) INFORMATION FOR SEQ ID NO: 129	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 815 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria mucosa     (B) STRAIN: ATCC 19696</pre>	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 129	
	.u.a	

10	ACTGCCGAT TGTACAAGGT TCTGCACTGA AAGCCTTGGA AGGCGATGCC GCTTACGAAG AAAAAATCTT CCGAACTGCT GCGCACTCCC GAGCGTGCCG ACGCTTCCC GAGCGTGCCG ACGCTTCCC GAGCGTGCCG TAGACAAACC CCTATCCGAAG CCGCGTGTTA TCCACGTTCG TGACGAGATC CCGCGTGTAAACC AACCCAAAAA ACCACATGTA CCGGTGTTGA AACCCAAAAA ACCACATGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG CCGTACCAAA CCGTGAAGAAG CCGTGAAACC CCGTGTAAACC CCGTACTACC CCGTACTACC CCGTACCAAA CCGTACTCC CCTACCAAA CCGTTGTAAACC CCGTTAAACCGG CCGTACCAAA CCGTCCTCA CCGTACTACC CCGTACTAC CCGTCCTC CCTACCTAC CCTACTACC CCTACTACC CCTACTACC CCGTACTACC CCGTACTACC CCTACTACC CCTACTACC CCGTACTACC CCTACCAAA CCGTCCTC CCTACCAAAC CCGTCTCAAACC CCGTACCAAA CCGTCCTCA CCTTGCACTAC CCTACCAAC CCGTGTACAAC CCGTCTCAAACC CCGTACCAAA CCGTACTACC CCGTACTACC CCTATCGAAG CCGTACCAAA CCGTACCAAA CCGTACCAAA CCGTACCAAA CCGTACTAC CCTACCAAACC CCGTACCAAAC CCGTACCAAA CCGTACCAAAC CCGTACCAAA CCGTACCAAA CCGTACCAAAC CCGTACCAAA CCGTACCAAA CCGTACCAAAC CCGTACCAAA CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAAC CCGTACCAAC CCGTCTCAAC CCGTACCAAC CCGTACC	50 100 150 200 250 300 350 400 450 550 600 650 700 750 800
2.0	TYGCTATGGA AGAAG	815
20		
	2) INFORMATION FOR SEQ ID NO: 130	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Neisseria sicca	
	(B) STRAIN: ATCC 9913	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130	
40	GGCGCAATCT TGGTATGTTC CGCTGCTGAC GGTCCTATGC CGCAAACCCG CGAACACATC CTGTTGGCCC GCCAAGTAGG CGTACCTTAC ATCATCGTGT TCATGAACAA ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TCCGTGACTT GCTGTCAAGC TACGACTTCC CTGGTGACGA CTGCCCGATC GTACAAGGTT CTGCACTGAA AGCCTTGGAA GGCGACGCCG	50 100 150 200 250
	OF INCOMMON ANAMALLITIC GARCINGOUTH OFFICIAL MARCON ANAMAL TO THE	300
45	CCGACTCCTG AGCGTGCCGT GGACAAACCG TTCCTGTTGC CTATTGAAGA CGTATTCTCC ATCTCCGGTC GCGGTACCGT AGTAACCGGC CGTGTAGAGC	350
		400 450
	THE CONTRACT CONCLUDIAL LIGHTS IN TAXABLE AND ADDRESS OF THE PROPERTY OF THE P	500
	GTGAAGAAGT GGAACGCGGT CAAGTATTCC CTAAACGCGC GGTACCAAAC	550
50		600 650
		650 700
	GTACTACCGA CGTAACCGGC GCGGTTACTT TGGAAGAAGG TGTAGAAATG GTTATGCCTG GTGAGAACGT AGCCATCACT GTAGAACTGA TTGCACCGAT CGCTATGGAA GAACCTTCC GTGAGAACTGA TTGCACCGAT	750
	CGCTATGGAA GAAGGTCTGC GCTTTGCGA	800
55		829

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 814 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Neisseria subflava   (B) STRAIN: ATCC 14221</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131	
15	CGGCGCGACT TGGTATGTTC CGCAGCTGAT GGTCCTATGC CTCAAACTCG CGAACACATC CTGTTGGCTC GCCAAGTAGG TGTACCTTAC ATCATCGTAT TCATGAACAA ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGT GAAATGGAAA TCCGTGACCT GTTGTCAAGC TACGACTTCC CAGGCGACGA CTGCCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTTGGAA GGTGACGCTG CTGCCCCAATC GTACAAGGTT CTGCACTGAA CTGCTCTGGA CAGCTACATC	50 100 150 200 250 300
20	GTTACGAAGA GAAAATCTTC GAATIGGCTG TTCTTGTTGC CTATCGAAGA CCAACACCTG AGCGTGCTGT GGACAAACCT TTCTTGTTGC CGTGTAGAGC CGTATTCTCT ATCTCTGGCC GTGGTACAGT AGTAACTGGT CGTGTAGAGAA GCGGTATCAT CCACGTTGGT GACGGAGATCG AAATCGTAGG TCTGAAAGAA GCGGTATCAT CCACGTTGGT AACTGCTGGA	350 400 450 500
25	CGAAGGTCAA GCTGGTGACA ACGIAGGCGI TACATTACT GTGAAGACGT AGAGCGTGGT CAAGTATTGG CTAAACCAGG TACCATTACT GTGAAGACGT AGAGCGTGGT CAAGTATAC GTACTGAGCA AAGAAGAGGG CCTCACACCA AATTCAAAGC AGAAGTATAC CCGTCCACAA TTCTACTTCC TGGTCGTCAC ACTCCATTCT TCGCTAACTA TCGAAGAAGG CGTAGAAATG	600 650 700 750 800
30	GTACTACTGA CGTAACTGGT GCAGTTACTT TGGAACTGA TTGCGCCTAT GTAATGCCAG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT CGCTATGGAA GAAG	814
35	2) INFORMATION FOR SEQ ID NO: 132  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 818 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Neisseria weaveri  (B) STRAIN: ATCC 51223	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132	50
50	GCACATCCTG TTGGCTCGTC AAGTAGGIGI ACCCITGGA ATTGGTAGAA TGAACAAATG CGATATGGTT GATGATGCAG AGCTGCTGGA ATTGGTAGAA TGAACAAATG CGATATGGTT GATGATGCAG GATTTCCCTG GCGATGATTG	100 150 200
55	YCCAATCGTG CAAGGTTCTG CTTTGAAAGC ACGAAGAAAA AATCTTTGAA TTAGCTGCTG CATTGGATAG CTATATTCCA ACGAAGAAAA AATCTTTGAA TTAGCTGCTG CATTGGATAG CTATATTCCA ACWCCTGAGC GYGCTGTTGA TAAACCATTC CTGTTGCCGA TTGAAGATGT ATTCTCAATT TCAGGTCGTG GTACAGTAGA TTGTAGGTTT GAAAGARACY GTATTATTCA CGTAGGCGAT GAAATTGAAA TTGTAGGTTT GAAAGARACY GTATTATTCA CGTAGGCGAT GAAATTGAAA TTGCTGGATSA	250 300 350 400 450 500 550
60	TACACA COOR COMONTANCE TACACACTALL GIIGCGIOGI	

5	AAGACGTTGA GCGTGGTCAA GTATTGGCTA AGCCTGGTWC TATTACTCCG CAYACCAAAT TCAAAGCAGA RGTKTATGTW TTGAGYAAGG AAGAAGGCGG TCGTCATACT CCGTTCTTCG CTAACTATCG TCCGCAATTC TATTTCCGTA CTACAGACGT TACCGGTGCK GTRACTTTAG AAGAAGGTGT GGAAATGGTA ATGCCTGGTG AGAAYGTTGC CATTACTGTW GARYTGATYG CTCCGATTGC KATGGAAGAA GGYTGCGT	600 650 700 750 800 818
10	2) INFORMATION FOR SEQ ID NO: 133	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 836 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Ochrobactrum anthropi (B) STRAIN: ATCC 49188	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133	
30 35	CGGCGCAATT CTGGTTGTTT CGGCCGCTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTCGCT CGTCAGGTTG GCGTTCCGGC AATCGTCGTG TTCCTGAACA AGTGCGAAC GGTTGACGAT TCGAACTGGT TCGAACTGGAT AAGTTCCGAA GTTCGCGAAC TTCTGTCGAA ATACGATTTC CCGGGCGACG AAGGAACTGG GCGAAGACGC CGTTCGTTCG CTGCTCTGGA AGATTCTTCG CTACATTCCG ACCCCGGAAC GTCCGATCGA CCAGCCGTTC CTGATGCCGA TCGAAGACGT TTTCTCGATC TCGGGCCGTTC CTGATGCCGA GTTGAGCCGC GTATCGTCAA GGTTGGTGAA GAAGTTGAAA TCGTCGGCAT GTTGGCGAYCA GGGCCAGGCT GGCGACACACA TCGGCGCTCT GATCCGCAAGC GTTGGCCGTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC TCGAACTTCCG GTTACGTCGA CCTGATCGA CCAGCCGTTC CTGATGCCGA TCGTCGAYCA GGCCAAGACA TCGGCGCTCT GATCCGCGCT TTCCGCAAGCT TCAAGGCCAG GTTCTCTGCA AGCCGGGTTC TCGCAACCTCGC CACACCAAGT TCAAGGCAGA AGCCTACATT CTGACCAAGG TCGCAACTGC CCGTCATACG CCGTTCTTTA CGAACTACCG TCCGCAGTTC TCGCCGATCGC TCGCAGCTC CGGAAGGCAC TCGCCGATCC TCGCAGCTC CGGAAGGCAC TCGCCGTTCTTTA CGAACTACCG CGGAAGGCAC TCGCCGATCC TCCGCAGCTC CGGAAGGCAC TCGCCGATCC TCCGCAGCTC CGGAAGGCAC TCGCCGATCC TTGCCCAAGC TCCGCAGCTC CGGAAGGCAC TCCGCAGTTC TTACTCCGCAACC TCCGCAGCTC CGGAAGGCAC TCCGCAGTTC TCCGCAGCTC CGGAAGGCAC TCCGCAGTTC TCCGCAGCTC CGGAAGGCAC TCCGCAGTTC TCCGCAGCTC CGGAAGGCAC TCCGCGATCC TATGGACGTC ACCCTGATCC	50 100 150 200 250 300 350 400 450 500 650 700 750
	TGCCGATCGC CATGGAAGAG AAGCTCCGCT TCGCTA	800 836
45	2) INFORMATION FOR SEQ ID NO: 134	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Pantoea agglomerans     (B) STRAIN: ATCC 27155</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134	
	212	

10	CCTGGTTGTT TCCTGCTGGG TCGTCAGGTT GGCGTTCCTT AAGTGTGACA AGTACGTGAC AGTACGTGAC AGTACGTGAC TCGTTCGTCG TCGTCTGCT TCTGCTCTG AAGTGTGAC AGTACGTGAC TCGTTCGTCG TCGTCTCTC TCGTCCGGG TTCTGCTCT AAGCGCCGA TCGTTCCTCG CCAAAAATCG CCGTGGTAC CCGTGCTC CCGTGGTAC CCGTGCTAC CCGTGGTAC CCGTGGTAC CCGTGGTAC CCGTGGTAC CCGTGGTAC CCGTGGTAC CCGTGGTAC CCGTGCTC CCGTGGTAC CCGTGTTCCTGC CCGTGGTAC CCGTGCTAAACCTG ACCGCGAA ATCCACCGG AAACTGCA CCGTGTTCCTGCT CCCAGCCGA ATCCACCC AAACCCCGA CCCAGCCGA CCCAATCAA ATCCCGGATC CGTTCTGCT CGTCTGCTC CGTTCTGCT CGCCAATCA ATCCTCCGA ATCCTCGCT CGTCTCTGCT CGCCAATCA ATCCTCCGAA ATCCTCCGAA CCGTGTTCCTGC CGTTCTTCCTGCT CGCCAATCA ATCCTCCGAA CCGCTGTTCCT CGTCCAAACC CCGTGTTCCT CGTCCAAAC ATCCACCC AACCCCCGA AAGCCCTCC CCCAGCCGAA CCCCAATCAA ATCCTCCGAA CCCGCAATCA ATCCTCCGAA CCCGCACAC CCGTGTTCCT CGCCAATCAA ATCCTCCGAA CCCCGAACT CCCAGCTTC CCCAGCCTAAC AAGCCGCAAC ATCCACCCC AACCCCCGA AAGCCCTG CCCAATCAA ATCCTGCAAC ACCCCGAAC AACCCCCGA AACCTCGC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTC CCCAATCAA ATCCTCCGAAC AACCTCGC CCCAATCAA ATCCTCCGAA ATCCTCCGC CGTTCTTCCTC CGTTCTCTC CGTTCTCTC CGTCCAAC ACCCCGAAC ATCCACCC AACCCCCGA AACCTCCC CCCAGCTTC CCCAACCCC CGTCCAATCA ATCCACCCC CGTCCAAC AACCTCCC CCCAGCTTC CCCAATCAA ATCCACCCC CGTCCAACC CCCAGCTTC CCCAATCAA ATCCACCC CGTTCTCT CCCGGTTCC CGTTCTCTC CGTTCTCTC CCCTGCT CCCACCCC AACCCCCAAC AACCTCC CGTTCTCTC CCCTGCT CCCACCC AACCCCCAAC ATCCACCC AACCCCC AACCCCC CCCCGCCAATC AACCTCCC CGTTCTCTC CCCTGCT CCCTGCT CCCTGCTC CCCTGCCC CCCTGTTCCT CCCTGCT CCCTGCT CCCTGCT CCCCTCC CCCTCCC CCCCCCC CCCCCC CCCCCC	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 805
20		
	2) INFORMATION FOR SEQ ID NO: 135	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Pantoea dispersa   (B) STRAIN: ATCC 14589</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135	
40	GATGGAAGTT CCCCAATCGT ACGCGGTTCT GCGCTGAAAG CCCCAATCGT TGGGAAGCGA AAGTCGTTGA AAGTCGTTGA ACTCTGCCGT TATTCTCAAT GCCAAGTCT AAGTGGCGA AAGTCGTTGA AAGTGGCGT GGTACCGTT GGTACCGTT GGTACCGTT GGTACCGTT TTACCGGTCG TTACCGGTCG TTACCGGTCG TTACCGGTCG TTACCGGTCG TTACAAGCGA CCTGCTGCCA ATCGAAGACG TTACCGGTCG TTACCGGTCG TTACAAGCGC TGCCAAAGTCG AGGCGAGGAC TGTGGTGTCC TTACCGCAAA CTGCTGGACC TTACAAGCCC TTACAAGCC TTACAAGCCC TTACAAGCCC TTACAAGCCC TTACAAGCCC TTACAAGCCC TTACAAG	100 150 200 250 300 350 400 450 500 650 700 750 800
	CGATGGACCA GGGTCTGCGT TTCGC	825
5	5	

2) INFORMATION FOR SEQ ID NO: 136

(i) SEQUENCE CHARACTERISTICS:

55

	(A) LENGTH: 762 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
•	(vi)ORIGINAL SOURCE:	
1	(A) ORGANISM: Pasteurella multocida 0 (B) STRAIN: NCTC 10322	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136	
1	CACAAACACG TGAGCACATC CTTTTAGGTC GCCAAGTAGG CGTTCCTTAC	50 100
20	CAGGTGATGA TACACCAATC GTACGTGAACT TCTTTCTCAA TATGATTTCC GGYGTAGCTG AGTGGGAAGA GAAAATTCTT GAGTTAGCA ACCACTTAGA TACTTACATT CCAGAGCCAC AACGTGCAAT CGACCAACCG TTCCTTCTTC CGATTGAAGA CGTGTTCTCA ATTTCTGGTC GTGGTACAGT AGTAACAGGT CGTGTTGAGC GTGGTATCAT CCCCTTCTCC GTGGTACAGT AGTAACAGGT	150 200 250 300 350 400
25	AATTATTAGA CGAAGGTCGT GCGGGTGAGA ACGTTGGTG TTTATTACGT GGTACTAARC GTGAAGAAAT CGAACGTGGT CAAGTGTTAG CGAAACCGGG TTCAATYACG CCACACACTG ATTTTGAATC AGAAGTTTAC GTGTTATCAA ACACCATTCT TCAAAGGTTA CCGTCCACAG TGTTGAGATG GTGATGCCTG CTGATAACGT ACAATCGAAT TACCGGAAGG	450 500 550 600 650 700
30	TTCACCCAAT CG	750 762
	2) INFORMATION FOR SEQ ID NO: 137	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 832 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Pentostreptogramme	
45	<ul><li>(A) ORGANISM: Peptostreptococcus anaerobius</li><li>(B) STRAIN: ATCC 27337</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137	
50	TGGAGCTATC TTAGTTGTAT CAGCAGCGGA TGGACCAATG CCACAAACAA GAGAACACAT CTTATTATCA AGACAAGTAG GAGTACCATA TATCGTAGTA AGAAATGGAA GTAAGAGAAT TACTATTATCA AGAAATTAT TAGAATTAGT	50 100
55	AAATTCCAAT CATAACAGGA TCATCCTTAG GAGCATTAAA TGGAGAACAA AAATGGATAG ATCAAATCAT GGCATTGATG AAAGCCGTAG ATGAATATAT TCCAACACCG GAAAGAGCAG TAGATCAACC ATTCTTGATG CCAATCGAAG ACGTATTTAC AATTACAGGA AGAGGAACTG TAGTAACAGG AAGAGTTGAA AGAGGAGTTG TAAAACTWCC AAAGCAGAACTG TAGTAACAGG AAGAGTTGAA	150 200 250 300 350 400
60	ATCAAGGACA AGCAGGAGAT AACATCGGAG CTTTATTRAG AGGAACCAAG AAAGAAGATG TAGAAAGAGG ACAAGTATTG GCAAAACCAG GAACAATTCA	450 500 550 600
	214	

5	TCCTCATACA AACTTCAGTG GAGAAGTATA TGTATTGACA AAAGAAGAAG GAGGAAGACA TACTCCATTC TTCTCAGGAT ACAGACCACA ATTTTACTTT AGAACCACAG ATATTACAGG AGCAGTAACA TTACCAGAAG GAGTAGAAT TCACAATGAC AGTAGAATTG ATTCACCCAA TTGCAATGGA AACAGGATTA CGATTTGCAA TT	650 700 750 800 832
10	2) INFORMATION FOR SEQ ID NO: 138  (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Peptostreptococcus asaccharolyticus</li><li>(B) STRAIN: LSPQ 2639</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138	50
25	TAGTATGTTC AGCAGCAGAY GGTCCAATGC CACAAACAAG AGAACACATT CTACTAGCAA GACAAGTTGG TGTACCAAAG ATAGTAGTAT TCCTAAACAA AGAAGACCAA GTAGACGATC CAGAACTAAT TGAATTAGTA GAGATGGAAA TCAGAGACCT ACTATCAGAA TATGACTTCG AYGGAGACAA CACACCAATC	100 150 200
30	TCAGAGACCT ACTATCAGAA TATGACTTAC GATCCAGACG GAGAATGGGG GTAGTAGGAT CAGCATTAAA AGCCCTAGAC GATCCAGACG GAGAATGGGG AGACAAAATC GTAAAACTAA TGGAAGMAGT AGACGAATAC AGACRTATTC CAGTAAGAGA TACAGAACAC CCATTCCTAA TGCCAATCGA AGACRTATTC TCAATYACAG GAAGAGGAAC AGTAGCAACA GGAAGAGTAG AACAAGGTGT TCAATYACAG GAAGAGGAAC AGTAGCAACA GGAAGAGCA	250 300 350 400 450 500
35	GACAAGTAGT AGTAACAGGT GIAGAACTO CTAAGAGGAG TACAAAGAGA GCAGAAGCMG GAGACAACAT TGGAGCCCTA CTAAGAGGAG TACAAACCAC AGAAATCCAA AGAGGACAAG TACTAGCAGC ACCAGAACA AGAAGGTGGA ACACAAAATT TGAAGCAGAA GTATACGTAC TAACAAAAGA AGAAGGTGGA AGACACACAC CATTCTTTAA CGGATACAGA CCACAATTCT ACTTCAGAAC AGACACACAC CATTCTTTAA CGGATACAGA CCACAATTCT ACTTCAGAAC AGACACACAC CATTCTTTAA CGGATACAGA CCACAATTCT ACTTCAGAAC	550 600 650 700 750
40	AACAGACGTA ACAGGAGACA TCCAACTAGC ACCAATCGCA	800 823
4!		
. 5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	(vi)ORIGINAL SOURCE: (A) ORGANISM: Peptostreptococcus prevotii (B) STRAIN: ATCC 9321	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139	
6	50	

į	CTATCATCGT AGTATCTGCA GCAGACGGTC CAATGCCCAA ACAGAGAGAA CACATCCTAC TAGCAAGACA AGTAGGCGTT CCAAAAATCG CAGTATTCCT AAACAAAGAA GACCAAGTAG ACGATCCAGA ACTAATCGAA TTAGTAGAAA TGGAAATCAG AGACCTACTT TCAGAATACG ACTTCGATGG AGACAACGCT CCCATGGTCA GACAAAATCC TCTAAATCA CTAGAAGAAG GCGGAGAAGG CCCATGGTCA GACAAAATCC TTGACCTAAT GGCACAAGTA GACGACAACG GACGTAATGA CAAAAGAGA ACGACCAAC CATTCCTAAT GCCAGTAGAA AAGAGGAACA CTAAAAGTTG GTGATACAG GAAGATCGTA AAGAGGAACA CTAAAAGTTG GTGATACAG GAAGATCGTA GAAGATACAAA AGAAACAG GTGAAAACGT AAGAGGAACA CTAAAAGTTG GTGATACAGT AGAAATCGTA GGACTAACAG AAGATACAAA AGAAACAGTA GGACTAACAG AAGATACAAA AGAAACAGTA GGACTAACAG	50 100 150 200 250 300 350 400
15	CTAGACCAAG CAGAATCTG AGATAACGTA GAGAATGTT CCACAAATCM AACAAGAGAT CAAATCTCAA GAGGACAAGT ACTAGCAAAA CCAGGWTCAG TAAACCCACA CACAGAATTC GAAGGTCAAG TATACGTACT AACAAAAGAA GAAGGTGGAC GTCACACACC ATTCTTCAGT GCATATACAC	450 500 550 600 650 700 750 800 832
20	2) INFORMATION FOR SEQ ID NO: 140	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 831 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Porphyromonas asaccharolytica     (B) STRAIN: ATCC 25260</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140	
40	CGGTGCTATC ATCGTAGTTG CTGCAACTGA TGGTCCTATG CCTCAGACGC GTGAGCACAT CCTACTAGCA CGTCAGGTCA ACGTACCTCG TCTAGTTGTC TTTATGAACA AGTGCGACCT TGTTGATGAC GAGGAGATGC TCGAGCTCGT AGAGATGGAT ATGCGTGAGC TACTAAGCTT CTATGACTTT GACGGCGACA ACACTCCTGT CATCCGTGGT TCTGCTCTTG GTGCTCTCAA TGGTGAGCCT AAGTGGGTAG AGAAGGTTAT GGAGCTCATG GAGCTCGTAG ACACTTGGAT CCCACTACCT GAGCGCGACA	50 100 150 200 250 300
45	ACGTATTCTC TATCACAGGT CGTGGTACTG TCGCTACTGG TCGTATCGAG ACTGGTGTCG TTAAGGTCAA CGATGAGGTT CAGATCATCG TCGTATCGAG TGAGGGTAAG AAGAGCGTCG TAACTGGCGT GGAAATGTTC CGCAAGATCC TTGATGAGGG TGAAGCTGGT GATAACGTAG GTCTCCTACT CCGTGGTATC	350 400 450 500
50	GACAAGGACG AGATCAAGCG CGGTATGGTC CTAGCACACC CAGGTCAGGT	600 650 700 750 800
55		831

55

60

(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases

	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Porphyromonas gingivalis     (B) STRAIN: ATCC 33277</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141	
15	CGGTGCTATA ATCGTTGTAG CAGCTACAGA CGGTCCTATG CCTCAGACTC GCGAGCACAT CCTTTTGGCT CGCCAGGTAA ACGTTCCTCG TCTGGTTGTT TTCATGAACA AATGTGACAT GGTAGACGAT GAAGAGATGC TGAAATGGAC ATGCGCGAAC TCCTTTCTTT CTACGATTTC GATGGTGACA ATACCCCTAT CATCCGTGGT TCTGCTCTGG GCGCTTTGAA TGGAGAGCCT CAGTGGGAAG ACAAGGTGAT TCCACAAACC GTTCTTGATG CCGGTTGAAG	50 100 150 200 250 300 350
20	TCCCCTGCCT GAGCGCGATA TCGACAGAG TCGCTACAGG ACGTATCGAA ACGTGTTCTC TATCACGGGT CGTGGTACGG TCACATCATCG GCCTCGGTGC ACCGGTATTG TGAAGACCGG TGACGAAGTT CAAATCATCG GCCTCGGTGC AGAAGGAATG AAGTCGGTTG TTACGGGTGT TGAAATGTTC CGTAAGATTC	400 450 500 550
25	TTGACGAAGG TCAGGCTGGT GACAACGIIG GICTCCTCACC CGGGTAAGAT GATAAGGATC AGATCAAGCG TGGTATGGTT ATCTCTCACC CGGGTAAGAT TACTCCTCAC AAGAGATTTA AGGCCGAGGT TTATATCTTG AAGAAAGAAG AAGGTGGTCG CCACACTCCT TTCCACAACA AATATCGTCC GCAGTTCTAC ATCCGTACGC TTGACGTGAC CGGTGAAATC ACTCTTCCCG AAGGAACAGA AATGGTTATG CCCGGTGACA ACGTAACGAT CACTGTAGAA CTCATCTACC CGGTTGCATG TAATGTAG	600 650 700 750 800 818
30	200110000	
35	2) INFORMATION FOR SEQ ID NO: 142  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid	
	(B) TYPE: NUCLEIC ACIU (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Pragia fontium  (B) STRAIN: ATCC 49100	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142	50
50	TTCCTGAACA AGTGTGACAT GGTTGATGAT GTACGATTTC CCAGGTGATG	100 150 200 250
55	ATACTCCAGT TGTTCGTGGT TCTGCGCTGG AYAGCTACAT GAGTGGGAAG CTAAAATCAT TGAATTGGCT GACTCCCTGG AYAGCTACAT TCCACAGCCA GAGCGTGCAA TTGATAAGCC GTTCCTGCTG CCAATCGAAG ACGTTTTCTC AATCTCTGGC CGTGGTACAG TAGAATCGTTG GTATCAAAGA CGCGGTATCG TTAAAGTTGG TGAAGAAGTT AATCTTCCTG AARTTACTGG	300 350 400 450 500
60	ATGAAGGCCG TGCGGGTGAG AACGIIGGIG IICIGGIG GTTCAATCAA	600

5	CCCGCATACT AACTTCGTAT CAGAAGTTTA TATCCTGAGC AAAGATGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTYTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGATAACA TTCAGATGAC TGTAACTCTG ATTGCCCCCAA TCGCGATGGA CGAAGGTTTA CGCTTCGCTA	650 700 750 800 830
10	2) INFORMATION FOR SEQ ID NO: 143	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 821 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Prevotella melaninogenica     (B) STRAIN: ATCC 25845</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143	
25	TGGTGCTATC TTGGTTGTAG CTGCTACTGA TGGTCCTATG CCTCAGACTC	50 100
30	TGAGATGGAG GTTCGTGAGA TCCTCGAGAT GCTGAGATGC TTGACCTCGT CTCCTATTAT TCGTGGTTCT GCACTCGGT CTTTGAACGG TGTTGAGAAG TGGGTAGACT CTGTAATGGA GCTCATGGAT ACTGTTGACA CTTGGATTGA AGAGCCAGAG CGTGAGATTG ACAAGCCATT CTTGATGCCT GTTGAGGACG TATTCTCTAT CACAGGTCGT CCTAGTGCT CTTGATGCCT GTTGAGGACG	150 200 250 300 350
35	CAAGAAGTCT GTTATCACTG GTGTTGAGGT TCGGTGAGGA CAGGTCAGGC TGGTGACAAC GTAGGTCTCC TCCTTCGTG TATCGATAAG GCTGAGGTTA AGCGTGGTAT GGTTGTTGTG CACCCAGGTG CTATTACTCC GTCGTCATAC TCCATTCGGT AACAACTACTATGT ATTGAAGAAG GAAGAGGGTG	400 450 500 550 600 650
40	ACAATGGACT GTACAGGTGA AATCCACCTC CCAGAGGGCG TTGAGATGGT TATGCCAGGT GACAACGTAG AGATTGAAGT TGTATTGATC TATAAGGTTG CTTTGAACGA GGGTCTTCGT T	700 750 800 821
45	2) INFORMATION FOR SEQ ID NO: 144	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Prevotella oralis     (B) STRAIN: ATCC 33269</pre>	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 144	

5	TGGTGCTATT CTTGTAGTAG CTGCTACTGA CGGTCCTATG CCTCAAACTC GTGAACACGT GCTTCTTGCT CGTCAGGTGA ACGTACCTCG TTTGAGCTCGT TTCTTGAACA AGTGCGATAT GGTTGACGAT GAAGAAATGC TTGAGCTCGT AGAAATGGAG CTTCATGAAC TTCTCGAGCA GTATGAATAT GAGGAGGATA TCCTCATTGT TCGTGGTTCG GCACTTGGCG CTCTGAATGG AGTAGAAAAG TGGGTTGACA GCGTGATGAA GTTGATGAT ACCGTTGATG CTTCAGAGCA GGAACCACCG CGTGATCTTG GGAACGGTTG TTACAGGCCG TATTGAAACT TATTTTCTAT TACTGGTCGT GGAACGGTTG CTTCTTGGTC TCGGTGAAGA GGTAAAGGTTA AGGTGGCGA ACCGTTAG CTTCTTGGTC TCGGTGAAGA  CCCTCAAACTC TTGAGCTCGT TTGAGCTCGT TTGAGCTCGT TTACAGGCCG TATTGAAACT TCGGTGAAGA CCTTCTTGGTC TCGGTGAAGA ATTCTTTGACG TTCGTGACA TTCCTTGACC TTTCTTGACC TTTCTTGACC TTTCTTGACC TTCTTGACC TTCTTGACC TTTCTTGACC TTTCTTGACC TTCTTTGACC TTCTTTTTTTTTT	50 100 150 200 250 300 350 400
10	GGTAAGGTTA AGGTGGGCGA IGAAGTTCAGAGA ATTCTTGACG TAAGAAGTCC GTTGTGACAG GCGTTGAGAT GTTCCGTAAG ATTCTTGACG AAGGTGAAGC TGGTGATAAT GTAAGGCTTGC TGCTTCGTGG TATCGATAAG ACGGAAGTAA AGCGTGGTAT GGTTGTCGTA CATCCGGGGG CTATTACTCC ACGGAAGTAA AGCGTGGTAT CAGTTTACGT ATTGAAGAAA GAAGAAGGCG TCACGATCAT TTCAAGGCTT CAGTTTACGT CTATCTTCGT	500 550 600 650 700 750
15	GTCGCCATAC TCCGTTTGGT AMCAAGTATC GTCCACACATGGT ACCATGGACT GTACTGGTGA AATTACTCTT CCGGAAGGAG TTGAGATGGT ACCATGGACT GATAACGTCG AAATTGAAGT TAAGTTGATC TATCCGGTAG CTTTGAACGA GGGACTTCGT TTCGCTA	800 827
20	2) INFORMATION FOR SEQ ID NO: 145	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 833 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Propionibacterium acnes     (B) STRAIN: ATCC 6919</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145	
40	CGGCGCATC CTCGTGGTTG CTGCTACCGA CGGCCCGATG CCTCAGACTC GCGAGCACGT TCTGCTCGCT CGTCAGGTGG GCGTGCCGC CATCGTCGTC GCCCTCAACA AGTGCGACAT GGTTGACCAT GAGGAGCTCA TTGAGCTCGT GCGAGATGGAG GTCCGCGAGC TGCTGACCTC GCAGGAGTTC GACGGCGACA CGAGATGGAG GTCCGCGAGC TGCCGCGTTCC AGGCCCTCCA GGGTGATGAG	50 100 150 200 250
	ACTGCCTGT CGTTCGCATC TCCGCCTCATG GACGCCGTGG ACGAGTACAT  AAGTGGACCC AGTCGATCCT CGACCTCATG GACGCCGTGG ACGAGTACAT  CCCGCAGCCT GAGCGCGATC TCGACAAGCC CTTCCTTATG CCGATCGAGG  CCCGCAGCCT GAGCGCGATC TCGACAAGCC TTGTCACCGG TCGTGTCGAG  ACGTCTTCAC CATCACCGGC CGTGGCACCG GACATCGTCG GTATCCACGA	300 350 400 450 500
45	GAAGACCCAG AAGACCACCG TIACCGGTOT  TCGACGAGGG CCGCGCTGGT GAGAACGTCG GCGTTCTGCT CCGTGGCACC  TCGACGAGGG CCGCCTGGT GAGAACGTCG CTCCCAAGC CTGGTTCCAC  AAGAAGGAGG ATGTCGTTCG CGGCCAGGT CTACGTCCTC AAGAAGGATG  CACCCCCCAC ACCGACTTCG AGGGCCAGGT ACTACAGCC CCAGTTCTAC	550 600 650 700 750
5	AGGGTGGCCG CCACAAGCCG TTCTTCTCCC ACTACAGCCGA TTCCGTACCA CGGACGTGAC TGGCACTGTT GAGCTCCCCG AGGGCACCGA GATGGTCATG CCTGGCGACA ACACCGACAT GACTGTGCAC CTGATTCACC CGGTTGCCAT GGAGGATCAG CTCAAGTTCG CTA	800 833
5	55	

2) INFORMATION FOR SEQ ID NO: 146

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 745 bases

60

50

100

150

200

250

300

400

500

550

600

650

700 745

50

200

250

300

350

450 500 550

600

700

TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis (B) STRAIN: ATCC 35659 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146 CACAAACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC ATCATCGTAT TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGCTGTT AGAATTAGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAA TACGATTTCC CAGGTGATGA CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA GGCGAAGCAG AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA TTCTTATATC CCAGAGCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC CAATCGAAGA TGTATTCTCA ATCTCAGGCC GTGGTACAGT AGTTACTGGT 20 CGTGTAGAGC GTGGTATCAT CAAAGTAGGT GATGAAGTTG AGATTGTTGG TATCAAAGAA ACCGCCAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA AATTACTTGA CGAAGGTCGT GCAGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTACAAAAC GTGAAGAAAT CGAACGTGGA CAAGTACTGG CRAAACCAGG CTCAATCAAC CCACACAACA AATTTGAATC AGAAGTTTAT ATTCTGAGCA 25 AAGATGAAGG TGGTCGTCAC ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG CGTAGAAATG GTAATGCCAG GCGACAACGT GAACATGATC GTTGA 30 2) INFORMATION FOR SEQ ID NO: 147 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases 35 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Proteus penneri (B) STRAIN: ATCC 33519 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147 45 GGAGCTATCC TGGTTGTTGC TGCGACAGAT GGCCCAATGC CACAAACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC ATCATCGTAT TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGTTACT GGAATTAGTM 100 GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC CAGGTGATGA 150

(B)

CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA GGCGAAGCAG

AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA TTCATACATC

CCAGARCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC CAATTGAAGA

CGTATTCTCA ATTTCAGGCC GTGGTACAGT AGTAACAGGT CGTGTTGAGC

55

60

GTGGCGTAAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATTAAACCA

ACAGCGAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA AATTACTTGA CGAAGGTCGT GCAGGTGAGA ACGTAGGTGT TCTTCTGCGT GGTACTAAAC
GTGAAGAAAT CGAACGTGGA CAAGTACTGG CGAAACCAGG TTCAATCAAC

CCACACACTA AATTTGAATC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG

	GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG CGTAGAAATG GTAATGCCAG GTGACAACAT CAACATGATC GTTGAACTGA TTCACCCAAT CGCGATGGAC GACGGTTTAC GTTTCGCTA	750 800 829
5	2) INFORMATION FOR SEQ ID NO: 148	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Proteus vulgaris     (B) STRAIN: ATCC 13315</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148	50
25	CGGAGCTATT CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGT CGCCAGGTTG GTGTACCTTA CATCATCGTA TTCCTGAACA AATGTGACAT GGTTGATGAT GAAGAACTGC TGGAATTAGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTC CCAGGTGATG ACACTCCAGT AATCCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAAGCT GAGTGGGAAG CAAAAATTGT TGAATTAGCA GAAGCACTGG ATTCTTACAT CCCAGAACCA GAGCGTGCAA TTGACAAACC ATTCCTGCTG CCTATCGAAG CCCAGAACCA GAGCGTGCAA TTGACAAACC TAGTAACAGG CCGTGTAGAG	100 150 200 250 300 350 400
30	ACGTATTCTC AATCTCTGGI CGIGGIAGAGAGTT GAGATTGTTG GTATTAAAGA CGTGGTGTTG TTAAAGTTGG TGAAGAAGTT GAGATTGCGT AAATTACTTG CACAGTTAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT TGGTACTAAA ACGAAGGTCG TGCAGGTGAG AACGTAGGTG TTCTTCTGCG TGGTACTAAA	450 500 550 600
35	CGTGAAGAAA TCGAACGTGG ACAAGTTTA TATCCTGAGC AAAGATGAAG	650 700 750 800 824
40		
4	(N) TENGTH: /45 Dases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
. 5	0 (ii) MOLECULE TYPE: Genomic DNA	
9	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Providencia alcalifaciens  (B) STRAIN: ATCC 9886	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149	50
	CACAAACTCG TGAGCACATC CTGTTAGGTC GCCAAGTAGG TGTTCCTTAC  ATCATCGTTT TCCTGAACAA ATGTGACATG GTAGACGACG AAGAACTGTT	100

10	AAGATGAAGG TGGTCGTCAT ACTCCATTOT TGAAGTATAT ATTCTGAGCA	150 200 250 300 350 400 450 500 550
15	CGTAGAGATG GTAATGCCAG GCGACAACAT CAACATGATC GTGAC	650 700 745
	2) INFORMATION FOR SEQ ID NO: 150	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Providencia rettgeri     (B) STRAIN: ATCC 9250</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 150	
35	CGGTGCAATC CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGY CGCCAAGTAG GTGTWCCTTA CATCATCGTT TTCCTGAACA AATGTGACAT GGTAGACGAC GAAGAACTGT TAGAATTAGT TGAAATGGAA GTTCGTGAAC TCTCTCTCA ATACGATTTC CCAGGCGACG GAGTGGGAAG CGAAAATTGT TGAATTAGA AGCGCTGGA AGGCAACCCA	50 100 150 200
40	CCCAGAACCA GAGCGTGCAA TTGACAACC ATTCCTGGT CCAATCGAAG ACGTATTCTC AATCTCTGGT CGTGGTACAG TAGTAACAGG CCGTGTTGAG CGTGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCCAAGA CACGGTTAAA ACAACTTGTA CTACGAGAGTT	250 300 350 400 450
45	CGTGAAGAAA TTCAACGTGG TCAAGTACTG GCAAAACCAG GTTCAATCAA GCCACACACT AAATTCGAAT CAGAAGTCTA TATTCTGAGC AAAGATGAAG GTGGTCGTCA CACTCCATTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC	500 550 600 650 700
50	GGTAATGCCA GGTGATAACA TCAACATGAT CGTTACCCTG ATCCACCCAA TCGCGATGGA CGACGGTTTA CGTTTCGCAA	750 800 830
	2) INFORMATION FOR SEQ ID NO: 151	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid	
60	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

5

- (vi)ORIGINAL SOURCE:
   (A) ORGANISM: Providencia rustigianii
- STRAIN: ATCC 33673 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151

10	GTGAGCACAT CC TTCCTGAACA AA TGAAATGGAA GT ACACTCCAGT TG GAGTGGGAAG CG CCCAGAACCA GA ACGTATTCTC AA CGTGGTATCG TT CACRGTTAAA AC ACGAAGGTCG TC CGTGAAGAAA TT	CGGTTGTTG CTGTTAGGT ATGTGACAT CTCGTGAAC CTTCGYGGT CAAAATTGT AGCGCGCAA ATCTCTGGT CAAAGTTGG CAACTTGTA GCTGGTGAG TCAACGTGG	CGCCAAGTAG GGTTGACGAC TTCTGTCTCA TCAGCACTGA TGAATTAGCC TTGACCGTCC CGTGGTACAG TGAAGAAGTT CTGGCGTTGA AACGTTGGTG TCAAGTACTG CAGAAGTTTA	GTGTTCCTTA GAAGAACTGT GTACGATTTC AAGCGCTGGA GGTTACCTGCTG ATTCCTGCTG TAGTAACAGG GAAATCGTTG AATGTTCCGT TTTTACTGCG GCTAAACCAG TATTCTGAGC	AAAGATGAAG	50 100 150 200 250 350 400 450 550 650 700
20	ACGAAGTCG TC CGTGAAGAAA TT GCCACACACT AC GTGGTCGTCA TA CGTACAACTG AC GGTAATGCCA GC	GCTGGTGAG	AACGTTGGTG TCAAGTACTG CAGAAGTTTA TTCAAAGGCT TACTATCGAA TCAACATGAT	TTTTACTGCG GCTAAACCAG TATTCTGAGC ACCGTCCACA CTGCCAGAAG	GTTCAATCAA AAAGATGAAG GTTCTACTTC GCGTAGAGAT	600 650

# 2) INFORMATION FOR SEQ ID NO: 152

(i) SEQUENCE CHARACTERISTICS: 30

- LENGTH: 830 bases
  - (A) TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear 35
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- (A) ORGANISM: Providencia stuartii 40
  - STRAIN: ATCC 33672 (B)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152

	(22-7				CCACAAACTC	50
	CGGTGCAATC		CCCC	100000	CATCATCGTG	100
45		CCTGTTAGGT	CGTCAGGTTG	GCG1 + CG		150
	GTGAGCACAT	AATGTGACAT	GGTAGACGAC	GAAGAGCTGC	TGGAACTGGT	
	TTCCTGAACA		TTCTGTCTCA	ATACGATTTC	CCAGGTGATG	200
	TGAAATGGAA	GTTCGTGAAC	TCAGCGCTGA	AAGCGTTGGA	AGGCAACCCA	250
	ACACTCCAGT	TATCCGTGGT		GAAGCACTGG	ACAGCTACAT	300
50	GAGTGGGAAG	CGAAAATCGT	TGAACTAGCA	ATTCCTGCTG	CCAATCGAAG	350
20	CCCAGAGCCA	GAGCGTGCAA	TTGACAAGCC		CCGTGTTGAG	400
	ACGTATTCTC	AATCTCAGGT	CGTGGTACAG	TAGTCACAGG	GTATCAAAGA	450
	CGTGGTATCA		TGAAGAAGTT	GAAATCGTAG		500
			CTGGCGTTGA	AATGTTCCGT		550
	GACTGCGAAA				TGGTACTAAG	
55	ACGAAGGCCG				GTTCAATCAA	600
	CGTGAAGAAA	TCGAACGTGG				650
	GCCACACACA	ACTTTCGAAT				700
	GTGGTCGTCA		TTCAAAGGYT		G3 III	750
	CGTACAACTG		TACTATCGAA			800
	GGTAATGCCA			AGTAACTCTG	MIICHCCCAN	
60	GGIANIGCCI			22		

	TCGCGATGGA CGATGGTTTG CGTTTCGCAA	830
	5 2) INFORMATION FOR SEQ ID NO: 153	
1	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	·
	(ii) MOLECULE TYPE: Genomic DNA	
15		
20		
25	CCTGGTTTGC TCGGCTGCCG ACGGCCCCAT GCCGCAGACC CCGCAGGTA GGCGTTCCCT ACATCGTCGT GTTCCTGAAC AGTTCGCGAT CTGCTGAACA CCTACGACTT CCTGCGCTG ATCGCGCTGAACA CCTACGACTT CCCGGGCGAC ATCGCCGTGAACA CCTACGACTT CCCGGGCGAC ATCGCCGCTG ATGGCGCTGC ATGGCGCTGC ATGGCGCTGC ATGGCCCTGC ATGGCCCCAT CCGGAGCAC CCGCGAGCAC CCGCGAGCAC CCGCGAGCAC CCGCGAGCC CCGCGAGCAC CCGCGAGCAC CCGCGAGCAC CCGCGAGCAC CCGCGAGCAC CCGCGAACC CCGCGAGCAC CCCGGGCGAC CCCGGCGAC CCCGGGCGAC CCCGGGCGAC CCCGGGCGAC CCCGGGCGAC CCCGGGCGAC CCCGGCGAC CCCGGGCGAC CCCGGGCAC CCCGGGCGAC CCCGGGCAC CCCGGGCGAC CCCGGGCAC CCCGGGCGAC CCCGGGCAC CCCGGGCAC CCCGGGCAC CCCGGCGAC CCCGGCGAC CCCGGCGAC CCCGGCGCAC CCCGGCGAC CCCGGCGCAC CCCGGCGCAC CCCGGCGCAC CCCGGCGCAC CCCGGCGCC CCCGGCGCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCGCCC CCCGCCCC CCCGCGCCC CCCGCCCC CCCGCCCCC CCCGCCCCC CCCCCC	50 100 150 200 250 300
30	CGCGGCATCA TCAAGGTCCA GGAAGAAGTG GAAATCGTCG GCATCAAGGC GACCACCAAG ACCACCTGCA CCGGCGTTGA AATGTTCCGC AAGCTGCTCG ACGAAGGTCG TGCTGGTGAG AACGTTGGTA TCCTGCTGCG TGGCACCAAG	350 400 450 500 550
35	GCCGCACACC AAGTTCGAGT GCGAAGTCTG GCCAAGCCGG GCACCATCAA GTGGTCGTCA CACCCCGTTC TTCAAGGGCT ACCGTCCGCA GTTCTACTTC GGTAATGCCG GGCGACAACA TCAAGATGGT TGTCACCCTG ATCGCTCCGA TCGCCATGGA AGATGGCTGC GTTCGCG	600 650 700 750 800 827
40	2) INFORMATION FOR SEQ ID NO: 154	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 841 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	•
50	(ii) MOLECULE TYPE: Genomic DNA	
30	(vi)ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas fluorescens (B) STRAIN: ATCC 13525	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154	
60	CGGCGCAATC CTGGTTTGCT CGGCCGCTGA TGGTCCGATG CCACAAACCC GTGAACACAT CCTGCTGTCC CGTCAGGTTG GCGTTCCGTA CATCGTGGTT TACCTGAACA AGGCTGACCT GGTAGACGAC GCTGAGCTGC TGGAACTGGT TGAGATGGAA GTGCGCGATC TGCTGAGCAC TTACGACTTC CCAGGCGACG	50 100 150 200

. . . .

		0.5.0
5	ACACTCCGAT CATCATCGGT TCTGCTCGTA TGGCTCTGGA AGCAAAGAC GACAACGAAA TGGGCACCAC GTCCGTTCGT AAACTGGTTG TCTCTGATGC CAGCTACATC CCAGATCCAG CTTCTCGT ATCTCCGGTC GCGGTACTGT TTCGTGTTAT CGACAGCCG TTCCTGATGC CGTATCGAGC GCGGTATCGT AACTCCGTC TGTGACTGGT ACTCCGTCA ACTCCGTCA CCACCTGCAC CGGTGTTGAA ACGTGCTCGA ACTACCGTCA CCACCTGCAC ACTCCGGTG CAGGTTCTAC TGAGCGTGGC CAGGTTCTAC TCTGCTGCGT TCTGCTGCGT AAATCGTTGG ACTGCTCAAACCAT CCGCACACCA ACTCCGTTCT TCAAAAGCCA CGGTCGTCACAG CGTGCACACAC ACTCCGTTCT TCAAAAGCCA CGGTCGCAAACAT CAAAATGGTT GTTACCCTGA TCAAAACCAT CGCAATGGAA ACTCCGTTCT TCAAAACCAT CGCAATGGAC TGCCGGAAGG TCAAAACCAT CGCAATGGAA GACGGTCTGC GTTTCGCTTAT TCAAAACCAT CGCAATGGAA GACGGTCTGC TTTCCCTTGA TCAAAACCAT CGCAATGGAA GACGGTCTGC GTTTCCCTTAT TCAAAACCAT TCAAAACCAT CGCAATGGAA GACGGTCTGC GTTTCCCTTAT TCAAAACCAT TCAAAAACCAT TCAAAATGGTT GTTACCCTGA	250 300 350 400 450 500 550 600 650 700 750 800 841
15	2) INFORMATION FOR SEQ ID NO: 155	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 841 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas stutzeri     (B) STRAIN: ATCC 17588</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155	50
35	CGGCGCGATC CTGGTCTGCT CGGCTGCTGA CGGCCCCATG CCGCAGACTC GCGAGCACAT CCTGCTGTCC CGTCAGGTTG GTGTTCCGTA TTCCTGAACA AGGCCGACAT GGTTGATGAC GCCGAGCTGC TCGAGCTGGT CGAGATGGAA GTTCGYGACC TGCTGTCGAC CTACGACTTC CCGGGTGAYG ACACTCCGAT CATCATCGGC TCCGCGCTGA TGCCGCTGAA CGGCGAAGAC GACAACGAGC TCGGCACCAC TGCGGTGAAG AAGCTGGTCG AGACCCTGGA CAGCTACATT CCCGAGCCGG TTCCTGATGC CGATCGAAGA CGTGTTCTCG TTCTCTGTGCAT GCGGCACSGT GGTAACCGGT CGATCGAAGA CGTGTTCTCG GAAGAGATCG AGATCGTCGG	50 100 150 200 250 300 350 400
40	CGCGTAGAGC GCGCATCGT CAAGGTTCAC CGGCGTTGAG ATGTTCCGCA TCTGCGTCCG ACCACCAAGA CTACCTGCAC CGGCGTTGAG ATGTTCCGCT AGCTGCTCGA YGARGGTCGT GCTGGCGAGA ACTGCGGYGT GCTGCTGCGT GGCACCAAGC GTGACGAAGT GGAGCGTGGT CAGGTTCTGG CCAAGCCGGG GGCACCAAGC GTGACGAAGT GGAGCGTGGT CGAAGTGTAC GTGCTGTCCA	450 500 550 600 650
45	AND ACC TRACTOR ACCOUNTS IN THE STATE OF THE STATE	700 750 800 841
50		
	2) INFORMATION FOR SEQ ID NO: 156	
5	(B) TYPE: Nucleic actu (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
6	0 (ii) MOLECULE TYPE: Genomic DNA	
	225	

#### (vi)ORIGINAL SOURCE:

5

- (A) ORGANISM: Psychrobacter phenylpyruvicus
- (B) STRAIN: ATCC 23333

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156

GACACAGTTA AAACAACTT GGTGACGAAA TCGAAATCGT TGGTATCAAA 4 AGACGAAGGT CGTGCTGGTG TACTGGTATC GAGATGTTCC GTAAGTTACT 5 AGCGTGAAGA CGTACAACGT GGTCAAGTAC TTGCTAAGCC AGGTTCAATC 6 ACTCCACACA CCAACTTCGA CGCAGAAGTA TACGTACTAT CAAAAGAAGA AGGTGGTCGT CACACTCCAT TCTTAAATGG TTACCGTCCA CAGTTCTACT	00 50 00 50 50 50
AGCGTGAAGA CGTACAACGT GGTCAAGTAC TTGCTAAGCC AGGTTCAATC  ACTCCACACA CCAACTTCGA CGCAGAAGTA TACGTACTAT CAAAGAAGA AGGTGGTCGT CACACTCCAT TCTTAAATGG TTACCCTCCA GAAAGAAGA 69	00
TCCGTACTAC TGACGTAACA GGTGCAATCA CGTTACAAGA AGGTACTGAA ATGGTAATGC CAGGCGATAA CGTTGAGATG AGCGTAGAGC TAATCCACCC AATCGCTAGG ACAAAGGTTT ACGTTTCGCA ATC	00 50 00 33

# 2) INFORMATION FOR SEQ ID NO: 157

- 30 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 825 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Rahnella aquatilis
- 40 (B) STRAIN: ATCC 33071

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157

45	GGCGCTATCC TGAGCACATC TCATGAACAA GAAATGGAAG	CTGCTGGGTC	GCCAGGTTGG GTAGATGACG	CGTTCCATAC AAGAGCTGCT		50 100 150
	CATCCCGGTC CTTGGGAAGC	ATCAAAGGTT GAAAATCATC	CAGCGCTGAA	TACGAATTCC AGCACTGGAA AAGCACTGGA	CAGGCGACGA GGCGATGCTA	200 250
50	CCATTGCCAG CGTATTCTCC GCGGTATCGT	ATCTCCGGTC	CGATAAGCCA GTGGTACAGT	TTCCTGCTGC GGTTACCGGT	CAGCTACATT CAATCGAAGA CGTGTAGAGC	300 350 400
	ACTGTTAAGT CGAAGGCCGT	CTACTTGTAC GCGGGCGAGA	GAAGAAGTTG TGGCGTTGAA ACGTGGGTGT	AAATCGTCGG ATGTTCCGCA TCTGCTGCGT	TATCAAGGAC AACTGCTGGA	450 500
55	GTGAAGACAT CCACACCA TGGTCGTCAC		CAGGTTCTGG CGAAGTGTAC	CTAAACCAGG ATCCTGAGCA	GGTATCAAGC TTCAATCAAA AAGATGAAGG	550 600 650
60	GTACAACTGA GTTATGCCTG	CGTGACCGGT GTGACAACGT	ACTATCGAAC	CCGTCCACAG TGCCAGAAGG	TTCTACTTCC CGTTGAGATG	700 750
80	CGCGATGGAT		GTTTC	===::CCTGA	TCCACCCAAT	800 825

5	2) INFORMATION FOR SEQ ID NO: 158
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases
1.0	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
10	(ii) MOLECULE TYPE: Genomic DNA
	( ) OD TOTAL COURCE:
15	(VI)ORIGINAL SOURCE.  (A) ORGANISM: Salmonella choleraesuis subsp. arizonae  (B) STRAIN: ATCC 13314
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158
20	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC 50 GTGAGCACAT CCTGCTGGGC CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150
	TTCCTGAACA AATGCGACAT GGIIGATGAC GAACACCTTC CCGGGCGACG 200 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG 250 ATACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA ACTCTTACAT 300
25	ATACGCCGAT CGTTCGTGGT TCTGCTCTAA AACCGCTCGGA ACTCTTACAT 300 GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGCTG CCGATCGAAG CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG 400
	CCCGGAACCA GAGCGIGCGA IIGACAAGCC CITGTTACCGG TCGTGTAGAA 400 ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA 450 CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA 450
	CGCGGTATCA TCAAAGIGGG CGAAGAAGIG AATGTTCCGC AAACTGCTGG GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TCTCTGCTGCG TGGTATCAAA 550 ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TCCTCTCCAAA 600
30	ACGAAGGCCG TGCCGGTGAG AACGTACTG GCTAAGCCGG GCACCATCAA 600 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA 650 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG 650.
	GCCGCACACC AAGTICGAAT CIGAAAGGCT ACCGTCCGCA GTTCTACTTC 700 GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 750 CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTGGAGAT 750 R00
35	GGTACTACTG ACGIGACIGG CACAGATGGT TGTTACCCTG ATCCACCCGA  GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA  800  830
	·
40	2) INFORMATION FOR SEQ ID NO: 159
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 832 bases (B) TYPE: Nucleic acid
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
	(ii) MOLECULE TYPE: Genomic DNA
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis</pre>
	serotype <i>choleraesuis</i> (B) STRAIN: ATCC 7001
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159
	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGYCCGATG CCGCAGACCC 50 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150
60	TICCIGARCA ANIGCARA TICTGTCTCA GTACGACTTC CCGGGCGACG 200

	ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGTGACGCA	250
	GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT	300
	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG	350
	ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG	400
5	CGCGGTATCA TCAAAGTGGG YGAAGAAGTT GAAATCGTTG GTATCAAAGA	450
_	GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGTTGG	500
	ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA	550
	CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA	600
	GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG	
10	GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC	650
	CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT	700
	GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA	750
	TCGCAATGGA CGACGGTCTG CGTTTCGCAA TC	800
	research coacesters cerricecan re	832
15		
	2) INFORMATION FOR SEQ ID NO: 160	
	(i)SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 807 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(i) OBIGINAL GOIDGE	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Salmonella choleraeguig guben diari	
		izonae
	(B) STRAIN: ATCC 43973	izonae
30	(B) STRAIN: ATCC 43973	izonae
30		izonae
30	(B) STRAIN: ATCC 43973  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160	
30	(B) STRAIN: ATCC 43973  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA	50
	(B) STRAIN: ATCC 43973  (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC	50 100
30 35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGC TAGAATGCA	50 100 150
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA	50 100 150 200
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA	50 100 150 200 250
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC	50 100 150 200 250 300
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT	50 100 150 200 250 300 350
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGCTATC	50 100 150 200 250 300
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA	50 100 150 200 250 300 350
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC	50 100 150 200 250 300 350 400 450 500
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAAAA	50 100 150 200 250 300 350 400 450 500
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACGTGAAGAA	50 100 150 200 250 300 350 400 450 500
35	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCCGTC	50 100 150 200 250 300 350 400 450 500
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAC ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCGTC ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACCACT	50 100 150 200 250 300 350 400 450 500 550
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACCGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCCACC CAAGTTCGAA TCTGAAGGCT TACCGTCCGC AGTTCTACTT CCGTACCACT GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGCGTC CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACCACT GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGCACT	50 100 150 200 250 300 350 400 450 550 600 650
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGA CTTCTGTCTC AGAACGCCTG ACAGCGCCAA TCGTTCGTGG TCTCTGTCTC AAAGCGCTGG AGGCGACGC AGAGTGGGAA GCGAAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTTGAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCGTC ATACTCCGTT CTTCAAAGGC TACCGTCGCA AGTTCTACTT CCGTACCACT GACGTGACTG ATCAAAATGG TTGTTACCCT GATCCACCC ATCGCGATGG	50 100 150 200 250 300 350 400 450 550 600 650 700
35 40 45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACCGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCCACC CAAGTTCGAA TCTGAAGGCT TACCGTCCGC AGTTCTACTT CCGTACCACT GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGCGTC CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACCACT GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGCACT	50 100 150 200 250 350 400 450 550 650 700 750
35 40	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGA CTTCTGTCTC AGAACGCCTG ACAGCGCCAA TCGTTCGTGG TCTCTGTCTC AAAGCGCTGG AGGCGACGC AGAGTGGGAA GCGAAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTTGAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCGTC ATACTCCGTT CTTCAAAGGC TACCGTCGCA AGTTCTACTT CCGTACCACT GACGTGACTG ATCAAAATGG TTGTTACCCT GATCCACCC ATCGCGATGG	50 100 150 200 250 350 400 450 550 650 700 750 800
35 40 45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGA CTTCTGTCTC AGAACGCCTG ACAGCGCCAA TCGTTCGTGG TCTCTGTCTC AAAGCGCTGG AGGCGACGC AGAGTGGGAA GCGAAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTTGAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCGTC ATACTCCGTT CTTCAAAGGC TACCGTCGCA AGTTCTACTT CCGTACCACT GACGTGACTG ATCAAAATGG TTGTTACCCT GATCCACCC ATCGCGATGG	50 100 150 200 250 350 400 450 550 650 700 750 800
35 40 45	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 160  CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATTATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGA CTTCTGTCTC AGAACGCCTG ACAGCGCCAA TCGTTCGTGG TCTCTGTCTC AAAGCGCTGG AGGCGACGC AGAGTGGGAA GCGAAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTTGAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ATATTCTGTC CAAAGATGAA GGCGCCGTC ATACTCCGTT CTTCAAAGGC TACCGTCGCA AGTTCTACTT CCGTACCACT GACGTGACTG ATCAAAATGG TTGTTACCCT GATCCACCC ATCGCGATGG	50 100 150 200 250 350 400 450 550 650 700 750 800

(i) SEQUENCE CHARACTERISTICS: 55

- LENGTH: 832 bases
- TYPE: Nucleic acid STRANDEDNESS: Double
- (A) (B) (C) (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

5

35

- ORGANISM: Salmonella choleraesuis subsp. choleraesuis (A) serotype heidelberg
- STRAIN: ATCC 8326
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161

	•					50
		CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	
10	CGGCGCGATC	CIGGILGE	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	GTGAGCACAT	CCTGCTGGGT		GAAGAGCTGC	TGGAACTGGT	150
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	<b></b>	CCGGGCGACG	200
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC		250
		CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	
	ACACTCCGAT	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
15	GAGTGGGAAG		TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	CCCGGAACCA	GAGCGTGCGA	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	ACGTATTCTC	CATCTCCGGT		GAAATCGTTG	GTATCAAAGA	450
	CGCGGTATCA	TCAAAGTGGG	CGAAGAAGTT		AAACTGCTGG	500
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC		550
		TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	
20	ACGAAGGCCG	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	CGTGAAGAAA		CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
	GCCGCACACC	AAGTTCGAAT		ACCGTCCGCA	GTTCTACTTC	700
	GCGGCCGTCA	YACTCCGTTC	TTCAAAGGCT			750
	CGTACTACTG		CACCATCGAA	TTGCCGGAAG		800
				TGTTACCCTG	ATCCACCCGA	
25	GGTAATGCCG			TC		832
	TCGCGATGGA	CGACGGICIG	CO111COC14			

#### 2) INFORMATION FOR SEQ ID NO: 162 30

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 807 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE: 40
  - ORGANISM: Salmonella choleraesuis subsp. houtenae (A)
  - STRAIN: ATCC 43974 (B)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162

	(XLL) E					
45		GCTGCGACTG	ACGGCCCGAT	GCCGCAGACC	CGTGAGCACA	50
	CCTGGTTGTT	00100	GGCGTTCCGT	ACATCATCGT	GTTCCTGAAC	100
	TCCTGCTGGG	TCGTCAGGTA	CGAAGAGCTG	CTGGAACTGG	TAGAAATGGA	150
	AAATGCGACA	TGGTTGATGA	AGTACGATTT	CCCGGGCGAC	GACACGCCGA	200
_	AGTTCGTGAA	CTTCTGTCTC		AAGGCGACGC	AGAATGGGAA	250
50	TCGTGCGTGG	TTCTGCTCTG	AAAGCGCTGG	GATTCTTACA		300
	GCGAAAATCA	TCGAACTGGC	TGGCTACCTG	GCCGATCGAA	GACGTATTCT	350
	AGAGCGTGCG	ATTGACAAAC	CGTTCCTGCT			400
	CTATCTCCGG	TCGTGGTACC	GTTGTTACCG	GTCGTGTAGA		450
	ATCAAAGTGG	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG		500
55	GTCGACCTGT	ACTGGCGTTG	AAATGTTCCG	CAAACTGCTG		550
55	GTGCTGGCGA	GAACGTAGGT	GTTCTGCTGC		ACGTGAAGAA	
	ATCGAACGTG	GTCAGGTACT	GGCTAAGCCG	GGCACCATCA		600
	CAAGTTCGAA	TCTGAAGTGT		CAAAGATGAA		650
		CTTCAAAGGC		AATTCTACTT		700
	ATACTCCGTT				TGGTAATGCC	750
60	GACGTGACTG	GCACCAICGA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

	GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG ACGACGG	800 807
5	2) INFORMATION FOR SEQ ID NO: 163	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	<ul> <li>(ii) MOLECULE TYPE: Genomic DNA</li> <li>(vi) ORIGINAL SOURCE:         <ul> <li>(A) ORGANISM: Salmonella choleraesuis subsp. indica</li> <li>(B) STRAIN: ATCC 43976</li> </ul> </li> </ul>	ı
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163	
25	CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACCCGTG AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGTGACGACA CGCCGATCGT GCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG TGGGAAGCGA AAATCATCGA ACTGGCTGCC TTCCTGGATT CTTACATTCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG	50 100 150 200 250 300 350
30	TATTCTCCAT CTCCGGTCGT GGTACYGTTG TTACCGGTCG TGTAGAGCGC GGTATCATCA AAGTGGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC TCAGAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC CGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCA CCATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GATGAAGGCG	400 450 500 550 600
35	GCCGTCATAC TCGATCTG AAGTGTACAT TCTGTCCAAA GATGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TAGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CATCCGATCG CRATGGACGA CGGTCTGCGT TTCGCAA	650 700 750 800 827
40		
45	2) INFORMATION FOR SEQ ID NO: 164  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 807 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. salama     (B) STRAIN: ATCC 43972 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 164</pre>	e
50	CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA	50 100 150

	5	AGTTCGTGAA TCGTGCGTGG GMGAAAATCA AGAGCGTGCG CCATCTCCGG ATCAAAGTGG GTCTACCTGT GTGCCGGTGA ATCGAACGTG CAAGTTCGAA ATACTCCGTT GACGTGACTG GGCGACAAC ACGACGG	TCGAACTGGC ATTGACAAGC TCGTGGTACC GCGAAGAAGT ACTGGCGTTG GAACGTAGGT GTCAGGTACT TCTGAAGTGT CTTCAAAGGC GCACCATCGA	AAAGCGCTGG TGGCTWCCTG CGTTCCTGCT GTTGTTACCG TGAAATCGTT AAATGTTCCG GGCTAAGCCG ACATTCTGTC TACCGTCCGCA	AAGGCGAMGC GATTCTTACA GCCGATCGAA GTCGTGTAGA GGTATCAAAG CAAACTGCTG GTGGTATCAA GGCACCATCA CAAAGATGAA AGTTCTACTT GGCGTGGAGA	TGAGTGGGAA TTCCGGAACC GACGTATTCT GCGCGGTATC AGACTCAGAA GACGAAGGCC ACGTGAAGAA AGCCGCACAC GGCGGCCGTC CCGTACCACT	200 250 300 350 400 450 500 650 700 800 800	
15 CFO ID NO: 165	15			NO. 16	5			

# 2) INFORMATION FOR SEQ ID NO: 165

- (i) SEQUENCE CHARACTERISTICS: 20
  - LENGTH: 832 bases (A)
  - TYPE: Nucleic acid (B) STRANDEDNESS: Double
  - (C)
  - TOPOLOGY: Linear (D)
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:

25

30

- ORGANISM: Salmonella choleraesuis subsp. choleraesuis (A) serotype typhi
- STRAIN: ATCC 10749 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165

	(XI) SEQUENCE DESCRIPTION	
35	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG TGAAATGGAA GTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA	50 100 150 200 250 300
40	GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGCTG CCGATCGAAG CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA ACGTATTCTC CATCTCCGGT CGAAGAAGTT GAAATCGTTG GTATCAAAGA CCCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTCGC AAACTGCTGG	350 400 450 500
45	GACTCAGAAG TCTACCTGTA CTGGGGTTG TTCTGCTGCG TGGTATCAAA ACGAAGGCCG TGCNGGTGAG AACGTAGGTG TCTCTGCCG GCACCATCAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACY AAGTTCGAAT CTGAAGTGTA CCTTCTGCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC GCGGCCGTCA TACTCCGTCCGCA CTGCCGGAAG GCGTAGAGAT	550 600 650 700 750
50	CGTACTACTG ACGTGACTGG CACCATCGAA CIGCCGGAACA CGTACTACTG ACCACCCGA GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA GGTAATGGA CGACGGTCTG CGTTTCGCAA TC	800 832

#### 2) INFORMATION FOR SEQ ID NO: 166 55

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 817 bases (A)
  - TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C) 60

- TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- 5 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Serratia fonticola (B)
  - STRAIN: DSM 4576
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 166 10

	DESCRIPTION: SEC ID	
	CGGCGCTATC CD2-	
	TTCAMES COTGCTGCTT COTGCTGCTT COTGCTGACTGA CGGCCCTTT	
1	AGAAATGGAACA AATGCGACAT CGTCAGGTTG GCGTTCCTTA CATCATCGTA  AGAAATGGAA GTTCGTGAAC TTCTGTCTGC GAAGAGCTGC TGGAACTGGT  GAGTGGGAAG CTAAAATCAT CGACGCTGA AAGCACTGCA CCTGGTGATG  CCCAGAACGA	50 100 150
	ACGTATTCTC CATCTCCGGT CGATCAGCC GTTCCTGCTG ATTCCTACAT	200 250
20	CACCGTTAAG TCTAGGTTGG CGAAGAAGTT CAGTTACCGG TCCTCTCT	300 350
	ACGAAGGCCG TGCTGTTA CTGGCGTTGA AATCGTTG GTATCAAACA	400
	GCCGCACACTTCGAACGTGG TCACGTGGTG TTCTGCTGCG AAACTGCTGG	450 500
25	GTGGTCGTCA TACTICGATT CAGAAGTCTA GCTAAACCAG GTTGGT	550
	GGTAATGCCA ACGTGACCGG TACCATGCT ACCGTCCACA AAAGAAGAAG	600
	TCGCTATCCA GGCGATAACG TGAAGCCGAA CTGCCAGAAG GTTCTACTTC	650 700
	TOTAL CCAAGGC TGAACATGGT TGTTACCCTG ATCCACCCAA	750
30	- CCAA	800
	2) INFORMATION FOR	817

# 2) INFORMATION FOR SEQ ID NO: 167

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 787 bases
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:

35

ŧΟ

- ORGANISM: Serratia liquefaciens (B)
- STRAIN: ATCC 27592
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167 5

GCTGCGACTG ACGGCCCAAT GCCTCAGACC TCGTCAGGCT GGCGTTCCTT TCATCATCGT ATTCATGAAC AAATGCGACA TCCTGCTGGG ACGTTCGTG CTTACGACTG CTTACGACTG CTTACGACTG CTTACGACTG AAAGCACTGG AAAGCACTGG AAAGCACTGG AAAGCACTGG GATTCTTACA GCGTAAAATCA ACCCAGAACC GTTGTTACCG GTGTTACCG GTGGTATCAAAAG AAATGTTCCGG GTGAAAATCGA AAATGTTCCG GTGAAATCGAAAGCACTGG GTGAAATCGAAAGCACTGG GTGAAATCGAAAGCACTGG GTGAAAATCAAAGCACTGG GTGAAATCGAAAGCACTGG GTGAAAACCA GGTAAAAAAGAAAGAA GACGCGAAAGCC GTGCTGGTG GTCAGAAGCA ACACCGTTAAA GTCAGAAGTGT GGCTAAAACCA GGTTCAAATCA AGCCACACAC CAAGTTCGAC GTTCAAAAGCA AGCCACACAC CAAGTTCGAC CAAAGAAGAAAGAA GGTTCTACATC AGCCACACAC CAAGTTCGAC ATACTCCATT GACGTGACCG ATACTCCATT GACGTGACCG ATACTCCATT GACGTGACCG ATACTCCATT GACGTGACCG ATACTCCATT GACGTGACCG ATACTCCATT GACGTGACCG	50 100 150 200 250 350 400 450 500 550 600 650 700
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------

	GTACCATCGA ACTGCCAGAA GGCGTTGAAA TGGTAATGCC AGGTGACAAC GTGAACATGG TTGTTACCCT GATCCACCCA ATCGCGA	750 787
5	2) INFORMATION FOR SEQ ID NO: 168	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 745 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
13	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Serratia marcescens     (B) STRAIN: ATCC 13880</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168	50
25	GCCTCAGACT CGTGAGCACA TCCTGCTGGG TCGTCAGGTT GGCGTTCCTT TCATCATCGT ATTCATGAAC AAATGCGACA TGGTTGATGA TGAAGAGCTG YTGGAACTGG TAGAAATGGA AGTTCGCGAA CTGCTGTCCG CTTACGACTT CCCTGGCGAC GACCTGCCGG TACCACTGC TAATCCGCGG TTCCGCGCTG AAAGCGCTGG AAGGCGAAGC TGAAAATCA TCGAACTGGC CGAAGCCCTG GACAGCTACA TCCCAGAGCC AGAGCGTGCT ATCGACAAGC CGTTCCTGCT GCCAATCGAA GACGTATTCT CCCATCTCCGG TCGTAGAATCATT	100 150 200 250 300 350 400
30	GTCGTGTTGA GCGCGGCATC ATCAAAGITG ACTGGCGTTG AAATGTTCCG GGTATCAAAG ACACCGTTAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC GTGCTGGTGA GAACGTAGGT GTCTGAGCCA GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAAGTTA ACATCCTGAG	450 500 550 600 650
35	GGCTCCATCA AGCCGCACAC CCAGTTCGAA TCTGAAGTGT TACCGTCCAC CAAAGATGAA GGTGGTCGTC ACACKCCATT CTTCAAAGGC TACCGTCCAC CAAAGATGAA GGTGGTCACCT GACGTGACCG GTACCATCGA ACTGCCAGAA AGTTCTACTT CCGTACCACT GACGTGACCG GTGAACATGG TTGTA GGCGTAGAGA TGGTAATGCC AGGCGACAAC GTGAACATGG TTGTA	700 745
40		
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	(A) ORGANISM: Serratia oddilicia (B) STRAIN: ATCC 33077	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169	<b>50</b>
5	GGCGCAATCC TGGTTGTTGC TGCGACTGAC GGCCCTATGC CTCAGACCCG TGAGCACATC CTGCTGGGTC GCCAGGTTGG CGTTCCTTTC ATCATCGTGT TCATGAACAA ATGTGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA GAAATGGAAG TTCGCGAGCT GCTGTCTGCT TACGATTTCC CTGGCGACGA CCTGCCAGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCAG	50 100 150 200 250
6	O CCTGCCAGTA ATCCGCGGTT CIGCGCIGAA ACCOUNT	

10	CGAAGGCCGT GCTGGTGAGA ACGTTGGTGT TCTGCTGCA AACTGCTGGA GTGAAGACAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCTATCAAG CCGCACACCA AATTCGACTC AGAAGTGTAC ATCCTGAGCA AAGAAGAAGG TGGTCGTCAC ACGCCATTCT TCAAAGGCTA CCGTCCACAC TTGTATCAAG	650 700
15	2) INFORMATION FOR SEQ ID NO: 170	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Serratia plymuthica (B) STRAIN: DSM 4540	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170	
35	CGGCGCAATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTT CATCATCGTA TTCATGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TTCTGTCTGC TTACGACTTC CCTGGTGATG ACCTGCCGGT TGTTCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAACCA GAGTGGGAACCA GAGCGTGCTA TCGACAAGCC GTTCCTGCTG CCAATCGAAG	50 100 150 200 250 300
40	CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTGG GTATCAAAGA CACCGTTAAG TCTACCTGTA CCGCCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTCAC AACTGCTGG	350 400 450 500
45	CGCGAAGATA TCGAACGTGG TCAGGTCCTG GCTAAACCAG GTTCAATCAAG GCCACACACC AAGTTTGACT CAGAAGTGTA CATCCTGAGC AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGACAACG TGAACATGGT TGTAACCCTG ATCCACCCAA TCGCGATGGA CGACGGCCTG CGTTTCGCAA	550 600 650 700 750 800
50		830
	2) INFORMATION FOR SEQ ID NO: 171	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi) ORIGINAL SOURCE:

5

25

(A) ORGANISM: Serratia rubidaea

STRAIN: ATCC 27593 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171

	(312) 2			GGCCCAATGC	CTCAGACCCG	50
	GGCGCAATCC	TGGTAGTAGC	Vocorre -	CGTACCTTAC	ATCATCGTAT	100
	TGAGCACATC	CTGCTGGGCC	GCCAGGTAGG		GGAACTGGTA	150
10	TCATGAACAA	MIGCOMO	GTAGATGATG			200
	GAGATGGAAG	11000012	GCTGTCTGCT			250
	CCTGCCGGTA	ATCCGTGGTT	CCGCGCTGAA			300
	AGTGGGAAGC	GAAAATCGTT	GAGCTGGCAG	TTCCTGCTGC	CAATCGAAGA	350
	CCAGAGCCAG	AGCGTGCTGT	AGACAAGCCG	TGTTACCGGT	CGTGTAGAGC	400
15	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT		TATCAAAGAC	450
	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTAG TGGCGTAGAA			500
	ACCGTTAAGT	CTACCTGTAC				550
	CGAAGGCCGT	GCTGGTGAGA	ACGTAGGTGT			600
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG			650
20	CCGCACACCC	AGTTCGAATC				700
	CGGCCGTCAT	ACTCCGTTCT				750
	GTACAACTGA	CGTGACCGGT				800
	GTAATGCCAG	GCGACAACGT		GILACICIAL		829
	CGCAATGGAC	GACGGTCTGC	GITTCGCAA			

2) INFORMATION FOR SEQ ID NO: 172

- (i) SEQUENCE CHARACTERISTICS: 30
  - LENGTH: 826 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

35 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- ORGANISM: Shigella boydii (A)
- STRAIN: ATCC 9207 (B) 40
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172

			CTC3	CGGCCCGATG	CCGCAGACTC	50
	CGGCGCGATC	YTGGTAGTTG	C1000110-01		CATCATCGTG	100
45	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GAAGAGCTGC	TGGAACTGGT	150
40	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GTACGACTTC	CCGGGCGACG	200
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GIACOLIO	AGGCGACGCA	250
	ACACTCCGAT	CGTTCGTGGT	TCTGCTCTGA	TWOCOO = 0	ATTCTTACAT	300
	GAGTGGGAAG	CGAAAATCCT	GGAACTGGCT	GGCTTCCTGG	CCGATCGAAG	350
50	TCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	TCGTGTAGAA	400
50	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	GTATCAAAGA	450
	CGCGGTATCA	TCAAAGTTGG	TGAAGAAGTT	GAAATCGTTG		500
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA		TGGTATCAAA	550
	ACGAAGGCCG		AACGTAGGTG			600
55	CGTGAAGAAA		TCAGGTACTG			650
55	GCCGCACACC		CTGAAGTGTA			700
	GCGGCCGTCA		TTCAAAGGCT			750
	CGTACTACTG		TACCATCGAA			800
	GGTAATGCCG			TGTTACCCTG	MICCACCOURT	826
60			CGTTTC			
60	GGTAATGCCG TCGCGATGGA					826

	2) INFORMATION FOR SEQ ID NO: 173	
1	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 818 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE: (A) ORGANISM: Shigella dysenteriae (B) STRAIN: ATCC 11835	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173	
20	CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AACACGTGGT CCAACAA	50 100
25	GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGAG CACTCCGATC GAAAATCCTG GAACTGGCTG GCTTCCTGGA TTCYTAYATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACGCCC CGATCGAAGA CGTATTCTCC	150 200 250 300 350 400
30	CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTACTGG CGAAGCCRGG CACCATCAAG CCGCACACCA	450 500 550 600
35	ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC GACGGTCTGC GTTTCGCA	650 700 750 800 818
40	2) INFORMATION FOR SEQ ID NO: 174	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Shigella flexneri     (B) STRAIN: ATCC 12022</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174	
JJ	CCTGGTAGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAAATGGA AGTTCGTGAA CTTCTGTCTC ACTAGGACTG	50 100 150
60	AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACTCCGA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA	200 250

5	GCGAAAATCC AGAGCGTGCG ATTGACAAGC CCATCTCCGG TCGTGGTACC ATCAAAGTTG GTGAAGAAGT GTGAAGAAGT GTGAAGAAGT GTGAAGAAGT GTGAAGAAGT GTGAACGTG GTCTGCTGC GTCGTGTACA ACGCGGTATC GAACTCCGG GTCGTGTAGA AGACTCAGAA AGACTCAGAA AGACTCAGAA ACGTGAAGAC GTCGTGTGC GTCGTGTGC GTCGTGCTG GTCGTGTACA AGACTCAGAA AGACTCAGAA ACGTGAAGAC GTCGCTGC GTGGTATCAA ACGTGAAGAC GTCGCTGC GTCGCTGC GTCGCTGC GTCGCTACAA ACGTGAAGAC ACGCGCACAC ACGTGACGA ACGTCCGC AAGATGAA AGCCGCACAC CAAAGATGAA AGCCGCACAC ACGTCCCG AGTTCTACTT CCGTACTACT CCGTACTACT ACCGTCCGC AGTCCACCC GGCGACCAC ACGCGAACC ACGCGAACC ACGCGAACC ACGCGAACC ACGCGAACC ACGCGAACC ACGCGCACAC ACGCGCACCAC CAAAGATGAA AGCCGCACAC ACGCGCACAC ACGCGCACAC ACGCGCACCAC ACGCGCACAC ACGCGCACCAC ACGCGCACAC ACGCCCACCAC ACGCGCACAC ACGCCGCACAC ACGCGCACAC ACGCACACAC ACGCGCACAC A	300 350 400 450 500 550 600 650 700 750 800 806
15	2) INFORMATION FOR SEQ ID NO: 175	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 832 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Shigella sonnei  (B) STRAIN: ATCC 29930	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175	50
35	ACACTCCGAT CGTTCGTGGT TCTGCTGGCT GGCTTCCTGG ATTCTTACAT GAGTGGGAAG CGAAAATCCT GGAACTGGCT GGCTTCCTGCTG CCGATCGAAG TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG TCGTGTAGAA	100 150 200 250 300 350 400
40	CGCGGTATCA TCAAAGTTGG TGAAGAAGT GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG GACTCAGAAG TCTACCTGTA CTGGCGTAGGTG TTCTGCTGCG TGGTATCAAA ACGAAGGCCG TGCTGGTGAG AACGTAGTG GCTAAGCCGG GCACCATCAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG CATTCTGTCC AAAGATGAAG	450 500 550 600 650 700
45		750 800 832
5		
5	2) INFORMATION FOR SEQ ID NO: 176  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 716 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
$\epsilon$	(ii) MOLECULE TYPE: Genomic DNA	

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus aureus
- (B) STRAIN: ATCC 13301

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176

10 15 20	ACGTAACGTT TGGTTGACGA TTATTAAGCG TTCAGCATTA TAGAATTAAT TCTGACAAAC TCGTGGTACT GTGAAGAAGT ACAGGTGTTG CAACATTGGT GTCAAGTATT GCAGAAGTAT CTTCTCAAAC	TGAAGAATTA AATATGACTT AAAGCTTTAG GGAAGCTGTA CATTCATGAT GTTGCTACAG TGAAATCATC AAATGTTCCG GCATTATTAC AGCTGCTCCT ACGTATTATC TATCGTCCAC	CATTAGTAGT TTAGAATTAG CCCAGGTGAC AAGGCGATGC GATACTTACA GCCAGTTGAG GCCGTGTTGA GGTTTACATG TAAATTATTA GTGGTGTTGC GGTTCAATTA	ATTCTTAAAC TAGAAATGGA GATGTACCTG TCAATACGAA TTCCAACTCC GACGTATTCT ACGTGGTCAA ACACATCTAA GACTACGCTG TCGTGAAGAC CACCACATAC GGTGGACGTC	AGAACGTGAT CAATCACTGG ATCAAAGTTG AACAACTGTT AAGCTGGTGA GTACAACGTG	50 100 150 200 250 300 350 400 450 500 550 600 650 700 716
						, 10

25

5

- 2) INFORMATION FOR SEQ ID NO: 177
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 719 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

35

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Staphylococcus aureus
  - (B) STRAIN: ATCC 29247
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177 40

AAGCTGGTGA CAACATTGGT GCATTATTAC GTGGTGTTGC TCGTGAAGAC 500 GTACAACGTG GTCAAGTATT AGCTGCTCCT GGTTCAATTA CACCACATAC 550 TGAATTCAAA GCAGAAGTAT ACGTATTATC AAAAGACGAA GGTGGACGTC 600 ACACTCCATT CTTCTCAAAC TATCGTCCAC AATTCTATTT CCGTACTACT 650 GACGTAACTG GTGTTGTTCA CTTACCAGAA GGTMCTGAAA TGGTAATGCC 700 TGGTGATAAC GTTGAAATG	45 50 55	TGAATTCAAA ACACTCCATT GACGTAACTG	TGGTTGACGA TTATTAAGCG TTCAGCATTA TAGAATTAAT TCTGACAAAC TCGTGGTACT GTGAAGAAGT ACAGGTGTTG CAACATTGGT GTCAAGTATT GCAGAAGTATT GCAGAAGTAT CTTCTCAAAC GTGTTGTTCA	TGAAGAATTA AATATGACTT AAAGCTTTAG GGAAGCTGTA CATTCATGAT GTTGCTACAG TGAAATCATC AAATGTTCCG GCATTATTAC AGCTGCTCCT ACGTATTATC TATCGTCCAC	TTAGAATTAG CCCAGGTGAC AAGGCGATGC GATACTTACA GCCAGTTGAG GCCGTGTTGA GGTTTACATG TAAATTATTA GTGGTGTTGC GGTTCAATTA AAAAGACGAA AATTCTATTT	GATGTACCTG TCAATACGAA TTCCAACTCC GACGTATTCT ACGTGGTCAA ACACATCTAA GACTACGCTG TCGTGAAGAC CACCACATAC GGTGGACGTC CCGTACTACT	500 550 600 650 700
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------	----------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------	---------------------------------

5	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 625 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus aureus     (B) STRAIN: ATCC 33591</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178	
15	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT TTCTTAAACA AAGTTGACAT GGTTGACGAT ATATGACTTC CCAGGTGACG	50 100 150
20	ATGTACCTGT AATCGCTGGT ICAGCATTAATG GAAGCTGTAG ATACTTACAT CAATACGAAG AAAAAATCTT AGAATTAATG GAAGCTGTAG CCAGTTGAGG TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCGTGTTGAA ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CTTTACATGA	200 250 300 350 400
25	CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCACCACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG CACACTGAA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG GTGGACGTCA CACTCCATTC TTCTC	450 500 550 600 625
30		
	2) INFORMATION FOR SEQ ID NO: 179	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 704 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus aureus    (B) STRAIN: ATCC 43300</pre>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179	
50	TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GACGT GATTCTGACA AATGGAAGCT GTAGATACTT ACATTCCAAC TCCAGAACGT GATTCTGACA AATGGAAGCT GTAGATACTT ACATTCAC TGGTCGTGGT	50 100 150 200 250 300
55	AACCATTCAT GATGCCAGIT GAGGACGIAT CAAATCAAAG TTGGTGAAGA ACTGTTGCTA CAGGCCGTGT TGAACGTGGT CAAATCAAAG TTGGTGAAGA AGTTGAAATCA ATCGGTTTAC ATGACACATC TAAAACAACT GTTACAGGTG TGACAACATT TTGAAATGAT TTACACCACA TACTGAATTCA ATCAAAAGAC GAAGGTGGAC GTCACACTCC ATTCTTCAATTCACTGTTATACTCTAATCACTACT TTTCCGTACT ACTGACTTGT	350 400 450 500 550 600 650
60	AACTATCGTC CACAATICIA TITCCOMOT TOTAL	

	TCACTTACCA GAAGGTACTG AAATGGTAAT GCCTGGTGAT AACGTTGAAA TGAC	700 704
5		
	2) INFORMATION FOR SEQ ID NO: 180	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 730 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
13	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus aureus subsp. aureus     (B) STRAIN: ATCC 6538</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180	
25	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGGCT TATTAAGCGA ATATGACTTC CCAGGTGACG AATGTACCTGT AATCGCTGGT TCAACATTAA AAGCTTTAGA AGGCGATGCT TCCAACTCCA GAACATGATT CTGACAAACC ATTCATGATG CCAGTTGAGG CGTGGTCAAA TCAAAGTTGC TCAAACTGT TTGCTACAGG CCGTGTTGAA	50 100 150 200 250 300
30	CACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAACTATTACG TGGTGTTGCT	350 400 450 500
35	CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG GTGGACGTCA CACTCCATTC TTCTCAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTCAC TTACCAGAAG GTACTGAAAT GGTAATGCCT GGTGATAACG TTGAAATGAC	550 600 650 700 730
40	2) INFORMATION FOR SEQ ID NO: 181	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus auricularis     (B) STRAIN: ATCC 33753</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181	
	CGGTGCGATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC	50 100
	AGAAATGGAA GTTCGTGACT TATTAAGCGA ATACGACTAC CCAGGTGACG ATGTACCTGT AATCTCTGGT TCTGCGTTGA AACGATTACA	150 200 250

5 .	GAATACGAAC AAAAAATCTT TCCAACTCCA GAACGTGACT ACGTATTCTC AATCACTGGT CGTGGTCAAA CGGTTCACAA TCAAAGTCGG TAAAACAACAG TAAACAACAG TAAACAACAG TAAACAACAG TACACTGGT TAAACAACAG TAAACAACAG TAAACAACAG TACACGTGAAG TACACGTGAAG TACACCACAC AAGTACAACG TACACACACC AAGTACAACC TCACACTCCA AAGGTGGACG TCACACTCCA AAGGTGGACG TCACACTCCA AAGGTGACG TCACACTCCA AAGGTGACG TCACACTCCA AAGGTGACG TCACACTCCA AAGGTGTTT TCCGTACTA AAGGTGACG CCAGTTAAT CCAGTAAATTAT ACGTGTTATT ACGTGGTATT TTACCTGTTCT TTACCGTATTA TCTAAAGATG ACTACCGTCC ACAATTCTAT ACTTCCCAG AAGGTACAGA TTAATTCTC CAAT CCAATCCCAC CCAGTTGAAG CCGTGTTGAA CGTATAAAC CGTAAATTCT TTACCTGTTT ACTTCCAG AAGGTACAG TTAATTCTC CAAT CCAAT CCAATTCTAT CAAT CCAATCCAC CCAGTTAAAC CCAGTTAAAC CCAGTTAAAC CCAGTTACAT CCAAAATTCT CCAAATTCTAT CAAT CCAATCCCAC CCAGTTGAAC CCGTGTTGAA CCGTTTATT ACGTGTTATT CCGTATTT TTACCTGCTC ACAATTCTAT ACTTTACCAG AAGGTACAGA TTAATTTCTC CAAT CCAAT CCAAT CCAACTCCA CCAGTTAAAAC CCGTGTTTAT CCGTATTAT CCAGTTACAC CCGTGTTTAT CCGTATTAT CCGTACTA CTGCAGAAGT TTACTCCTAAAAT CCAACTCCA CTGCAGAAGT CCAACTCCA CTGCTTTAT CCAACTCCA CTGCAGAAGT CCAACTCCA CTGCAGAAGT CCAACTCCA CTGCTTTCT CAACTCCA CTGCAGAAGT CCAACTCCA CTGCAGAAGT CCAACTCCA CTGCAGAAC CCGTTTATT CCGTATTAT CCGTATTACCAG CCAGTTACAC CCGTGTTATT CCGTATTAT CCGTATTACCAG CCGTGTTCAAT CTGCAGAAGT CCGGTTTATT CCGTATTAT CCGTACT CCGTACTAC CCGTCTCAAATTCT CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTCTCAAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTACTAC CCGTCTCAAC CCGTC	300 350 400 450 500 550 600 650 700 750 800 834
15	2) INFORMATION FOR SEQ ID NO: 182	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<ul> <li>(ii) MOLECULE TYPE: Genomic DNA</li> <li>(vi) ORIGINAL SOURCE:         <ul> <li>(A) ORGANISM: Staphylococcus capitis subsp. capit</li> <li>(B) STRAIN: ATCC 27840</li> </ul> </li> </ul>	tis
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182	
30	(xi) SEQUENCE DESCRIPTION. DEE	50
35	ATGTACCTGT AATCGCTGGT TCAGCATTAA CAAGCAGTTG ATGATTACAT CAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTGATG CCAGTTGAGG	100 150 200 250 300 350 400
40	ACGTATTCTC AATCACTGGT CGIGGIACTG GAAATCATCG GTATCCACGA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTATCCACGA AACTTCTAAA ACAACTGTTA CTGGTGTTAGA AATGTTCCG TGGTGTTGCT	450 500 550 600
45	CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGGTTTATCT AAAGACGAAG ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG ACCACACACT AAATTCAATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC	650 700 750 800 835
5	0	
	2) INFORMATION FOR SEQ ID NO: 183	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 804 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
6	(ii) MOLECULE TYPE: Genomic DNA	
	241	

#### (vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Staphylococcus caseolyticus
- (B) STRAIN: ATCC 13548

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183

	GTATCTTAGT			CAATGCCACA	AACTCGTGAA	50
7.0	CACATCCTTT		CGTTGGTGTA	CCAGCATTAG	TAGTATTCTT	
10	GAACAAAGTT			ATTATTAGAA	TTAGTTGAAA	100
	TGGAAGTTCG		TCTGAATATG	ACTTCCCTGG		150
	CCTGTAATCG	CTGGATCTGC		TTAGAAGGCG	-01100111	200
	CGAAGACAAA	ATCATGGAAT	TAATGGACGC	AGTTGATGAG		250
	CTCCAGAACG		AAACCATTCA		TACATCCCAA	300
15	TTCTCAATCA	CTGGTCGTGG	TARCCATICA		TGAGGACGTA	350
	ACAAGTTAAA	GTTGGTGAAG		ACTGGACGTG	TTGAGCGTGG	400
	CAGCAAAAAC	TACACTURAG	AAGITGAAAT	CATTGGTTTA	ACTGAAGAAC	450
	TACGCTGAAG	TACAGTTACA CTGGAGATAA		TGTTCCGTAA	ATTATTAGAT	500
	TGAAGACGTA				GTGTTTCTCG	550
20	CACAMACMIA		AAGTATTAGC	TAAACCAGGT	TCAATTACTC	600
20	CACATACTAA		GAAGTTTACG	TATTATCTAA		
	GGACGTCATA		CACTAACTAC		TCTACTTCCG	650
		GTAACTGGTG	TAGTTAACTT	1.000		700
	TAATGCCTGG		~~~		ACTGAAATGG	750
	GCGA	_		TIGARITARI	TTCTCCAATC	800
25			•			804

### 2) INFORMATION FOR SEQ ID NO: 184

- 30 (i)SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 832 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus cohnii
- 40 (B) STRAIN: DSM 20260

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184

	ACGTATTCTC CGTGGTCAAA AGATTCAAGC TAGACTACGC GCACGTGAAG TACACCACAC AAGGTGGCCG TTCCGTACTA AATGGTTATG	CCTTTTATCA AAGTTGACAT GTTCGTGACT AATCTCTGGT AAAAAATCTT GAACGTGATT TCAAAGTCGG AAAACAACTG TGAAGCTGGT ACATCCAACG ACATCCAACG ACAAACTTTA TCATACGCCA CTGACGTAAC CCTGGCGACA	CGTAACGTTG GGTTGACGAT TATTAAGCGA TCAGCATTAA AGACTTAATG CTGACAAACC CGTGGTACTG TGAAGAAGTT TTACTGGTGT GACAACATTG TGGTCAAGTT AAGCGGAAGT TTCTTCAGTA AGGTGTTGTT ACGTGTAAGTT ACGTGTAAGTT	GTGTTCCAGC GAAGAATTAT ATATGACTTC AAGCTCTTGA CAAGCTGTTG ATTCATGATG TTGCTACAGG GAAATCATCG AGAAATCATC GTGCGTTATT TTAGCTGCTC TTACGTTTTA ACTATCGCC ACTTTACCAG GGAACTTCA	ATTAGTTGTA TAGAATTAGT	50 100 150 200 250 300 350 450 550 650 700 750 800
60	CAATCGCTAT	CGAAGACGGT	ACACGTTTCT	CT CGAAGTTGAA	CTAATTTCTC	800 832

5	2) INFORMATION FOR SEQ ID NO: 185	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 699 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus epidermidis</li><li>(B) STRAIN: CSG 269</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185	
20	ATCTGCTGCT GACGGTCCAA TGCCACAAAC TCGTGAACAC ATCTTATTAT CACGTAACGT TGGTGTACCA GCATTAGTTG TATTCTTAAA CAAAGTTGAC CACGTAACGT TGGTGTACCA GCATTAGTTG CTTGAAATGG AAGTTCGTGA	50 100 150 200
25	CTTATTAAGC GAATATGACT ICCCAGGIGA CHAAAAAAATC GTTCTGCATT AAAAGCATTA GAAGGCGATG CTGAATACGA ACAAAAAATC GTTCTGCATT AAAAGCATTA GAAGGCGATTAC CAGAACGTGA TTAGACTTAA TGCAAGCAGT TGATGATTAC TCAATCACTG	250 300 350
2.0	GTCGTGGTAC TGTTGCTACA GGCCGTGTG GAAACTTCTA AAACAACTGT GGTGAAGAAG TTGAAATCAT CGGTATGCAC GAAACTTCTA AAACAACTGT	400 450 500 550
30	TACTGGTGTA GAAATGTTCC GTAAATTATT AGACTACAGA CGTACAACGT ACAACATCGG TGCTTTATTA CGTGGTGTTG CACGTGAAGA CGTACAACGT GGTCAAGTAT TAGCTGCTCC TGGTTCTATT ACACCACACA CAAAATTCAA AGCTGAAGTA TACGTATTAT CTAAAGATGA AGGTGGACGT CACACTCCAT TCTTCACTAA CTATCGCCCA CAATTCTATT TCCGTACTAC TGACGTAAC	600 650 699
35	TCTTCACTAA CTATCGCCCA CAATTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTT	
	2) INFORMATION FOR SEQ ID NO: 186	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus haemolyticus</pre>	
50	(B) STRAIN: ATCC 29970	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186	50
59	TTCTTAAATA AAGTTGACAT GGTTGACGAT GAACATTC CCAGGTGACG TGAAATGGAA GTACGTGACT TATTATCTGA AAGCTTTAGA AGGCGATGCT	50 100 150 200 250 300
6	CAATACGAAG AAAAAATCTT AGAATTAATG CAAGGATGATG CCAGTTGAGG	350

ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGGCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATTG GTATCCATGA CACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCAG GTTCAATCAC ACCTCACACA AAATTTAAAG CAGACGTATA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TCACAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC AGTAGAATTA ATCGCTCCTA	400 450 500 550 600 650 700
10 TCGCGATTGA AGACGGTACT CGTTTCTCA	800 829
2) INFORMATION FOR SEQ ID NO: 187 15 (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 705 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 20 (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  25 (A) ORGANISM: Staphylococcus warneri  (B) STRAIN: CSG 123	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187	
CACAAACTCG TGAACACATT CTTTTATCAC GTAACGTTGG TGTACCAGCT TTAGTTGTAT TCTTAAACAA AGTTGATATG GTAGACGACG AAGAATTATT AGAATTAGTA GAAATGGAAG TTCGTGACTT ATTATCTGAA TATGACTTCC	50 100
GGCGACGAAA AATACGAAGA AAAAATCTTA GAATTAATGC AAGCAGTTGA  TGACTACATT CCAACTCCAG AACGTGATC TGACAAACCA TTCATGATGC CAGTTGAGGA CGTATTCTCA ATCACTGGTC GTGGTACTGT TGCTACAGGC CGTGTTGAAC GTGGTCAAAT CAAACTCCTC	150 200 250 300 350 400
AGTTATTAGA CTACGCTGAA GCTGGTGCA ACATCGGTGC TTTATTACGT  40 GGTGTTGCTC GTGAAGACGT ACAACGTGGT CAAGTATTAG CTGCTCCTGG  TTCAATTACA CCACATACAA ACATCCAAGAC GGAAGTTTAC GTTTTATCTA  AAGACGAAGG TGGACGTCAC ACTCCAAGAC GGAAGTTTAC GTTTTATCTA	450 500 550 600 650
	700 705
2) INFORMATION TOTAL	
2) INFORMATION FOR SEQ ID NO: 188	
(A) LENGTH: 678 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA	
(vi)ORIGINAL SOURCE:  (A) ORGANISM: Staphylococcus haemolyticus  (B) STRAIN: CSG 23	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188

	(xi) SEQUENCE DESCRIPTION		50
5	TTTTATCACG TAACGTTGGT GTACCAGCAT TAGTAGTATT (GTTGACATGG TTGACGATGA AGAATTATTA GAATTAGTTG ACGTGACTTA TTATCTGAAT ACGACTTCCC AGGTGACGAC ACGTGACTTC AGCTTTAAAA GCTTTAGAAG GCGATGCTCA AAATCTTAG AATTAATGCA AGCAGTTGAT GATTACATTC	GTACCTGTAA ATACGAAGAA CAACTCCAGA GTATTCTCAA	100 150 200 250 300 350
10	ACGTGACTCT GATACTGTT GCTACAGGTC GTGTTGAACG TCACTGGTCG TGGTACTGTT AATTATTGGT ATCAAAGAAA AAAGTTGGTG AAGAAGTTGA AATTATTAGAC AACTGTTACT GGTGTAGAAA TGTTCCGTAA ATTATTAGAC CTGGTGACAA CATCGGTGCT TCAATTACAC	CTTCTAAAAC TACGCTGAAG TGAAGATGTA CTCACACAAA	400 450 500 550
15	CAACGTGGTC AAGTATTAGC TGCTCCAGGT TCAATTAGC ATTCAAAGCA GACGTATACG TTTTATCAAA AGATGAAGGT CTCCATTCTT CACTAACTAT CGTCCACAAT TCTATTTCCG GTAACTGGTG TTGTTAACTT ACCAGAAG	GGACGICALL	600 650 678

2) INFORMATION FOR SEQ ID NO: 189 20

### (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 668 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

# (ii) MOLECULE TYPE: Genomic DNA

30

25

### (vi)ORIGINAL SOURCE:

- ORGANISM: Staphylococcus haemolyticus (A)
- STRAIN: CSG 33 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189 35

35	(XI) SECOUNCE			CA CCATCA AG	50
40 45	TACAGGCCGT GTTGAACGTG GTTCATTGGTAT CCATGACACT TTCCGTAAAT TATTAGACTA CTTCCAGGTTC AATCACACCT C	TGGAAGTAC CCTGTAATC CGAAGAAA CTCCAGAAC TTCTCAATC TCAAATCAA CCTAAAACAA CGCTGAAGCT AAGACGTACA CACCACAAAAT	GCTGGTTCAG AATCTTAGAA GTGATTCTGA ACTGGTCGTG AGTTGGTGAA CTGTTACTGG GGTGACAACA ACGTGGTCAA TTAAAGCAGA	CATTAAAAGC TTAATGCAAG CAAACCATTC GTACTGTTGC GAAGTTGAAA TGTAGAAATG TCGGTGCATT GTATTAGCTG CGTATTACGTT CAAACTATCG	100 150 200 250 300 350 400 450 500 650 668

# 2) INFORMATION FOR SEQ ID NO: 190

(i) SEQUENCE CHARACTERISTICS: 55

- LENGTH: 593 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D) 60

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:

5

30 .

- ORGANISM: Staphylococcus haemolyticus (A) (B)
  - STRAIN: CSG 8
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190

GAAAAAATCT TAGAATTAAT GCAAGCAGTT GATGATACGAA AGAACGTGAT TCTGACAAAC CATTCATGAT GCCAGTTGAG GACGTATTCT CAATCACTGG TCGTGGTACT GTTGCTACAG GCCGTGTTGA ACGTGGTCAA AACAACTGTT ACTGGTGTAG AAATCATT GGTATCATG ACACTTCTAA AACAACTGTT ACTGGTGTAG AAATGTTCCG TAAATTATTA GACTACGCTG GTACAACGTG GTCAAGTATT AGCTGCTCCA GGTTCAATCA CACCTCAGAC  AAACACGTG GTCAAGTATT AGCTGCTCCA GGTTCAATCA CACCTCAGAC  AAATGTTCCA GGTTCAATCA CACCTCAGAC	50 100 150 200 250 300 350 350
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------

- 2) INFORMATION FOR SEQ ID NO: 191 25
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 828 bases
    - TYPE: Nucleic acid (B)
    - STRANDEDNESS: Double (C)
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:
  - ORGANISM: Staphylococcus hominis subsp. hominis (A) (B)
  - STRAIN: ATCC 27844
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191 40

- 0				
<b>4</b> 5 50	CGTACTG ACGTACTGG GGTAATGCCT GGTGACAACG	CGTAACGTTG GTGTACCAGC GGTTGACGAT GAAGAATTAT TATTATCTGA ATACGACTTC TCAGCTTTAA AAGCTTTAGA AGAATTAATG CAAGCAGTTG CTGATAAACC ATTCATGATG CGTGGTACTG TGCTACAGG TGAAGAAGTT GAAATTATTG CTGGTGTAGA AATGTTCCGT AACATCGGTG CTTTATTACG TCAAGTATTA GCTGCTCCAG CAGACGTATA CGTTTTATCA A	ATTCTATTTC 700	

2) INFORMATION FOR SEQ ID NO: 192 (i) SEQUENCE CHARACTERISTICS: LENGTH: 620 bases (A) TYPE: Nucleic acid (B) 5 STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: ORGANISM: Staphylococcus warneri (A) STRAIN: ATCC 35982 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192 15 50 ATGGTCCAAT GCCACAAACT CGTGAACACA TTCTTTTATC ACGTAACGTT GGTGTACCAG CTTTAGTTGT ATTCTTAAAC AAAGTTGATA TGGTAGACGA 100 CGAAGAATTA TTAGAATTAG TAGAAATGGA AGTTCGTGAC TTATTATCTG 150 AATATGACTT CCCAGGTGAC GACGTACCTG TAATCGCTGG TTCAGCATTA 200 20 AAAGCTTTAG AAGGCGACGA AAAATACGAA GAAAAAATCT TAGAATTAAT 250 GCAAGCAGTT GATGACTACA TTCCAACTCC AGAACGTGAT TCTGACAAAC 300 CATTCATGAT GCCAGTTGAG GACGTATTCT CAATCACTGG TCGTGGTACT 350 400 GTTGCTACAG GCCGTGTTGA ACGTGGTCAA ATCAAAGTTG GTGAAGAAGT TGAAATCATC GGTTTACATG ACACTTCTAA AACAACTGTT ACTGGTGTAG 450 25 AAATGTTCCG TAAGTTATTA GACTACGCTG AAGCTGGTGA CAACATCGGT 500 GCTTTATTAC GTGGTGTTGC TCGTGAAGAC GTACAACGTG GTCAAGTATT 550 AGCTGCTCCT GGTTCAATTA CACCACATAC AAAATTCAAA GCGGAAGTTT 600 620 ACGTTTTATC TAAAGACGAA 30 2) INFORMATION FOR SEQ ID NO: 193 (i) SEQUENCE CHARACTERISTICS: 35 LENGTH: 692 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear 40 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: ORGANISM: Staphylococcus hominis (A) (B) STRAIN: CSG 170 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193 CCAGCATTAG TAGTATTCTT AAACAAAGTT GACATGGTTG ACGATGAAGA 50 ATTATTAGAA TTAGTTGAAA TGGAAGTACG TGACTTATTA TCTGAATACG 100 ACTTCCCAGG TGACGACGTA CCTGTAATCG CTGGTTCAGC TTTAAAAGCT TTAGAAGGCG ATGCTCAATA CGAAGAAAAA ATCTTAGAAT TAATGCAAGC 150 200 AGTTGATGAT TATATTCCAA CTCCAGAACG TGACTCTGAT AAACCATTCA TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACTGTTGCT ACAGGCCGTG TTGAACGTGG TCAAATCAAA GTTGGTGAAG AAGTTGAAAT 350 55 TATTGGTATC AAAGAAACTT CTAAAACAAC TGTTACTGGT GTAGAAATGT 400 TCCGTAAATT ATTAGACTAC GCTGAAGCTG GTGACAACAT CGGTGCTTTA 450 TTACGTGGTG TTGCTCGTGA AGATGTACAA CGTGGTCAAG TATTAGCTGC

TCCAGGTTCA ATTACACCTC ACACAAAATT CAAAGCAGAC GTATACGTTT

TATCAAAAGA TGAAGGTGGA CGTCATACTC CATTCTTCTC TAACTATCGT

500

550

	CCACAATTCT ATTTCCGTAC TACTGACGTA ACTGGTGTTG TTAACTTACC AGAAGGTACT GAAATGGTAA TGCCTGGTGA CAACGTTGAA AT	650 692
5	2) INFORMATION FOR SEQ ID NO: 194	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 684 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus hominis     (B) STRAIN: CSG 36</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194	
25	CATTCTTTA TCACGTAACG TTGGTGTACC AGCATTAGTA GTATTCTTAA ACAAAGTTGA CATGGTTGAC GATGAAGAAT TATTAGAATT AGTTGAAATG GAAGTACGTG ACTTATTATC TGAATACGAC TTCCCAGGTG ACGACGTACC TGTAATCGCT GGTTCAGCTT TAAAAGCTTT AGAAGGCGAT GCTCAATACG AAGAAAAAAT CTTAGAATTA ATGCAAGCAG TTGATGATTA TATTCCAACT CCAGAACGTG ACTCTGATAA ACCATTCATG ATGCCAGTTG AGGACGTATT CTCAACT GGTCGTGGTA CTGTTGCTAC AGGCCGTGTT GAACGTGGTC	50 100 150 200 250 300 350
30	AAATCAAAGT TGGTGAAGAA GTTGAAATTA TTGGTATCAA AGAAACTTCT AAAACAACTG TTACTGGTGT AGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCTGGT GACAACATCG GTGCTTTATT ACGTGGTGTT GCTCGTGAAG ATGTACAACG TGGTCAAGTA TTAGCTGCTC CAGGTTCAAT TACACCTCAC ACAAAATTCA AAGCAGACGT ATACGTTTTA TCAAAAGATG AAGGTGGACG TCATACTCCA TTCTTCTCTA ACTATCGTCC ACAATTCTAT TTCCGTACTA	400 450 500 550 600
35	CTGACGTAAC TGGTGTTGTT AACTTACCAG AAGG	650 684
40	2) INFORMATION FOR SEQ ID NO: 195  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 685 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
50	(A) ORGANISM: Staphylococcus hominis (B) STRAIN: CSG 6	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195	
55	ACCAGCATTA GTAGTATTCT TAAACAAAGT TGACATGGTT GACGATGAAG AATTATTAGA ATTAGTTGAA ATGGAAGTAC GTGACTTATT ATCTGAATAC GACTTCCCAG GTGACGACGT ACCTGTAATC GCTGGTTCAG CTTTAAAAGC TTTAGAAGGC GATGCTCAAT ACGAAGAAAA AATCTTAGAA TTAATGCAAG CAGTTGATGA TTACATTCCA ACTCCAGAAC GTGACTCTGA TAAACCATTC	50 100 150 200
60	ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACTGTTGC	250 300

5	TACAGGCCGT GTTGAACGTG GTCAAATCAA AGTTGGTGAA GAAGTTGAAA TTATTGGTAT CAAAGAAACT TCTAAAACAA CTGTTACTGG TGTAGAAATG TTCCGTAAAT TATTAGACTA CGCTGAAGCT GGTGACAACA TCGGTGCTTT ATTACGTGGT GTTGCTCGTG AAGATGTACA ACGTGGTCAA GTATTAGCTG CTCCAGGTTC AATTACACCT CACACAAAAT TCAAAGCAGA CGTATTACGTT TTATCAAAAG ATGAAGGTGG ACGTCATACT CCATTCTTCA CTAACTATCG TCCACAATTC TATTTCCGTA ATGCCTGACGT AACTGGTGTT GTTAACTTAC CAGAAGGTAC TATTTCCGTA AACTGGTGTA GTTAACTTAC CAGAAGGTAC TGAAATGGTA ATGCCTGGCG ACAAC	350 400 450 500 550 600 650 685
10		
	2) INFORMATION FOR SEQ ID NO: 196	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 611 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Staphylococcus hominis   (B) STRAIN: CSG 62</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196	5.0
30	GACTTATTAT CTGAATACGA CTTCCCAGGT GACGACGTAC CTGTAATCGC TGGTTCAGCT TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GAAGAAAAAA TCTTAGAATT AATGCAAGCA GTTGATGATT ACATTCCAAC TCCAGAACGT GACTCTGATA AACCATTCAT GATGCCAGTT TGAACGTGGT CAAATCAAAG TGGTCGTGGT ACTGTTGCTA ACGCCGTGT TGAACGTGGT CAAATCAAAG TTGGTGAAGA AGTTGAAATT ATTGGTAACTACG CTGAAGCTGG GTTACTGGTG TAGAAATGTT CCCTGAAGTT TGCTCGTGAA GATGTACAAC	50 100 150 200 250 300 350
35	CT CARC CCTCC'I'I'I'AT IACGIGGIGI IGGIGGIGI	400 450 500 550 600 611
40		
45	(i) SEQUENCE CHARACTERISTICS:	
5	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	<pre>(vi)ORIGINAL SOURCE: 5 (A) ORGANISM: Staphylococcus lugdunensis (B) STRAIN: ATCC 43809</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197	50
ε	O CGGCGGTATC TTAGTAGTTT CTGCTGCAGA TGGTCCAATG CCACAAACTC	50

10	CGTGAAGATG TACAACGTGG ACAACGTATTA CGTTATTACG TGGTGTTGCT	100 150 200 250 300 350 400 450 500 550 600
15	GTGGACGTCA TACACCATTC TTCTCAAACT ACCGCCCACA ATTCTATTC CGTACTACAG ACGTAACTGG TGTTGTTAAC TTACGACAAA	650 700 750 800 828
20	2) INFORMATION FOR SEQ ID NO: 198	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 690 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus     (B) STRAIN: ATCC 35552</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198	
40	AGTAGTATCT GCTGCTGATG GCCCAATGCC ACAAACTCGT GAACACATTC TTTTATCACG TAACGTTGGT GTTCCAGCAT TAGTTGTATT CTTAAACAAA GTTGACATGG TTGACGATGA AGAATTATTA GAATTAGTAG AAATGGAAGT TCGTGACTTA TTAAGCGAAT ATGACTTCCC AGGTGACGAT GTACCTGTAA TCTCTGGTTC TGCATTAAAA GCTTTAGAAG GCGACGCTGA CTATGAGCAA AAAATCTTAG ACTTAATGCA AGCTGTTGAT GACTTCATTC CAACACCAGA	50 100 150 200 250
45	TCACTGGTCG TGGTACTGTT GCTACAGGCC AGTTGAGGAC GTATTCTCAA AAAGTCGGTG AAGAAATCGA AATCATCGGT ATGCAAGAAG AATCAAGCAA AACAACTGTT ACTGGTGTAG AAATGTTCCG TAAATTATTA GACTACGCTG AAGCTGGTGA CAACATTGGT GCATTATTAC GTGGTGTTTC ACGTGATGAC	300 350 400 450 500 550
50	AAAATTCAAA GCGGATGTTT ACGTTTTATC TAAAGATGAA GGTGGTCGTC ATACACCATT CTTCACTAAC TACCGCCCAC AATTCTATTT	600 650 690
	2) INFORMATION FOR SEQ ID NO: 199	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 723 bases	

LENGTH: 723 bases
TYPE: Nucleic acid
STRANDEDNESS: Double
TOPOLOGY: Linear

(A) (B) (C) (D)

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- ORGANISM: Staphylococcus saprophyticus (A)
- STRAIN: CSG 83 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199

GCATTAGTTG TATTCTTAAA CAAAGTTGAC ATGGTTGACG ATGAAGAATT  ATTAGAATTA GTAGAAATGG AAGTTCGTGA TTTATTAAGC GAATATGACT  TCCCAGGTGA CGATGTACCT GTAATCTCTG GTTCTGCATT AAAAGCTTTA  GAAGGCGACG CTGACTATGA GCAAAAAAATC TTAGACTTAA TGCAAGCTGT  TGCCAGTTGA ATTCCAACAC CAGAACGTGA TTCTGACAAA CCATTCATGA  TGCCAGTTGA GGACGTATTC TCAATCACTG GTCGTGGTAC TGTTGCTACA  ACGTGGTCA AACGTGGTCA AATCAAAGTC GGTGAAGAAA TCGAAATCAT  TCCGTAAATT ATTAGACTAC GCAAAACAAC TGTTACTGGT GTAGAAATGT  TCCTGGTACT ATTACACCAC ATACAAAATT CAAAGCGGAT GTTTACGTTC  TCCTGGTACT ATTACACCAC ATACAAAATT CAAAGCGGAT GTTTACGTTT  AGAAGGTACT ATTTCCGTAC TACTGACGTA ACTGGTGTTGA ATGGATGTTG  AGAAGGTACT AATTACATCGCT ATTTCCGTAC TACTGACGTA ATGGATGTTG  AATTAATTTC TCCAATCGCT ATT  TCCAATCGCT ATT		(xi)SEQUE	NCE DESCRIT				
TGATGACTTC ATTCCAACAC CAATCACTG GTCGTGGTAC TGTTGCTACA 300 TGCCAGTTGA GGACGTATTC TCAATCACTG GTCGTGGTAC TGTTGCTACA 350 ACGTGGTCA AACGTGGTCA AATCAAAGTC GGTGAAGAAA TCGAAATCAT 400 CGGTATGCAA ATTAGACTAC GCAAAACAAC TGTTACTGGT GTAGAAATGT 450 TCCTGGTACT ATTACACCAC ATACAAAATT CAAAGCGGAT GTTTACGTTC 550 TCCTGGTACT ATTACACCAC ATACAAAATT CAAAGCGGAT GTTTACGTTT 550 TCCTGGTACT ATTACACCAC TGCTATCAC CATTCTTCAC TAACTACCGC 600 TATCTAAAGA TGAAGGTGGT TACCTGACAT TGCTTGAAACTAC CATTCTTCAC TAACTACCGC 650 AGAAGGTACT GAAATGGTTA TGCCTGGCGA TAACGTTGAA ATGGATGTTG 700 TCCTGGTACT ATTTCCGTAC TACCTGCGCA ACTGGTTGAA ATGGATGTTG 723	10	GCATTAGTTG ATTAGAATTA TCCCAGGTGA	TATTCTTAAA GTAGAAATGG CGATGTACCT CTGACTATGA	GTAATCTCTG GCAAAAAATC	GTTCTGCATT TTAGACTTAA	AAAAGCTTTA TGCAAGCTGT	150 200 250
		TGATGACTTC TGCCAGTTGA GGCCGTGTTG CGGTATGCAA TCCGTAAATT TTACGTGGTG TCCTGGTACT TATCTAAAGA CCACAATTCT	GGACGTATTC AACGTGGTCA GAAGAATCAA ATTAGACTAC TTTCACGTGA ATTACACCAC TGAAGGTGGT ATTTCCGTAC GAAATGGTTA	TCAATCACTG AATCAAAGTC GCAAAACAAC GCTGAAGCTG TGACGTACAA ATACAAAATT CGTCATACAC TACTGACGTA TGCCTGGCGA	GTCGTGGTAC GGTGAAGAAA TGTTACTGGT GTGACAACAT CGTGGTCAAG CAAAGCGGAT CATTCTTCAC ACTGGTGTTG	TGTTGCTACA TCGAAATCAT GTAGAAATGT TGGTGCATTA TTTTAGCTGC GTTTACGTTT TAACTACCGC TTAACTTACC	350 400 450 500 550 600 650 700

25

5

# 2) INFORMATION FOR SEQ ID NO: 200

- (i) SEQUENCE CHARACTERISTICS:
- LENGTH: 697 bases (A) 30
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 35
  - (vi)ORIGINAL SOURCE:
    - ORGANISM: Staphylococcus saprophyticus (A)
    - STRAIN: CSsa 18 (B)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200 40

	(XI) SEQUE	MCD DEDCITE				
50	CGTTGGTGTT ACGATGAAGA AGCGAATATG ATTAAAAGCT TAATGCAAGC AAACCATTCA TACTGTTGCT	CCAGCATTAG ATTATTAGAA ACTTCCCAGG TTAGAAGGCG TGTTGATGAC TGATGCCAGT ACAGGCCGTG CATCGGTATG TGTTCCGTAA TTATTACGTG TGCTCCTGGT TTTTATCTAA CGCCCACAAT	TTAGTAGAAA TGACGATGTA ACGCTGACTA TTCATTCCAA TGAGGACGTA TTGAACGTGG CAAGAAGAAT ATTATTAGAC GTGTTTCACG ACTATTACAC AGATGAAGGT	TGGAAGTTCG CCTGTAATCT TGAGCAAAAA CACCAGAACG TTCTCAATCA TCAAATCAAA	TGACTTATTA CTGGTTCTGC ATCTTAGACT TGATTCTGAC CTGGTCGTGG GTCGGTGAAG AACTGTTACT CTGGTGACAA CAACGTGGTC ATTCAAAGCG CACCATTCTT GTAACTGGTG	50 100 150 200 250 300 350 400 450 500 650 697

2) INFORMATION FOR SEQ ID NO: 201 60

	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus sciuri subsp. sciuri (B) STRAIN: ATCC 29060	
15		
20	GCTTACGAAG ACAAAATCAT GGAATTAATG GATGCTGTTG ATACATTCAT	50 100 150 200 250 300
25	CGTGGTCAAA TCACTGTTGG TGAAGAAGTT GAAATCATCG GTTTAACTGA AGAATCTTCT AAAACAACTG TAACTGGTGT TGAAATGTTC CGTAAATTAT TAGACTTCGC TGAAGCTGGA GATAACATCG GTGCATTATT ACGTGGTGTT GCTCGTGAAG ACGTTAACCG TGCTCAACTG	350 400 450 500 550
30	CACACCTCAC ACTAAATTCA AAGCTGAAGTA TTAGCTAAAC CAGGTTCAAT AAGGTGGACG TCATACTCCA TTCTTCACAA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC TGGTGTAGTT AACTTACCAG AAGGTACTGA AATGGTTATG CCTGGCGACA ACGTTGAAAT GGACGTTGAA TTAATTTCAC CAATCGCTAT TGAAGACGGT ATCGTTTCTC AATCA	600 650 700 750 800 835
35	2) INFORMATION FOR SEQ ID NO: 202	
40	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: <i>Staphylococcus warneri</i> (B) STRAIN: ATCC 27836	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202	
55	AGAAATGGAA GTTCGTGACT TATTATCTGA ATATGACTTC CCAGGTGACG ACGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGACGAA AAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT TCCAACTCCA GAACGTGATT CTCACAAAAGCACTTG ATGACTACAT 3	50 .00 .50 .00
60	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCC CTTTACAGG 4	50 00 50

5	CACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAGTTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACACCATACA AAATTCAAAG CGGAAGTTTA CCGTTGTTCTAAAAAAAAAA	500 550 600 650 700 750 800 831
10	•	
	2) INFORMATION FOR SEQ ID NO: 203	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus warneri     (B) STRAIN: CSG 50</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203	50
30	CGGCGGTATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC GTGAACACAT TCTTTATCA CGTAACGTTG GTGTACCAGC TTTAGTTGTA TTCTTAAACA AAGTTGATAT GGTAGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCTGA ATATGACTTC CCAGGTGACG ACGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGACGAA AAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT	50 100 150 200 250 300 350
35	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATAGA ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA ACGTGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA CACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAGTTATTAG CACTTCTAAA ACAACTGTTA CTGGTGTAGTG CTTTATTACG TGGTGTTGCT	400 450 500 550 600
40	CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCTTATCT AAAGACGAAG	650 700 750 800 829
45		
	2) INFORMATION FOR SEQ ID NO: 204	
50	(A) LENGTH: 839 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5!	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Bifidobacterium longum	
6	0 (B) STRAIN: ATCC 15707	

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204

5	TGGCGCTATC GCGAGCACGT	CTCGTTGTGG GCTGCTCGCC		CGGCCCGATG	GCCCAGACTC	50
	GCCCTGAACA CGAAGAAGAG	AGTGCGACAT GTCCGCGACC	GGTCGACGAT		TCGAGCTCGT	100 150
1.0	GCCCGGTCAT GACCACGAGA	AGTGGGTCCA	GCTTACGGTG GTCCGTTAAG	CTCTGCACGA GACCTCATGG	CGACGCTCCG	200 250 300
10	CGACTACATC CGATCGAGGA	CGTCTTCACC	ATCTCCGGCC	GGACAAGCCG GTGGTACCGT	TTCCTGATGC TGTCACCGGT	350 350 400
	TATCCGTCCG	GTGGCCAGCT ACCCAGCAGA CGCCTGCGAG	CCACCGTCAC	CTCCATCGAG	AGATCGTTGG ACCTTCCACA	450 500
15	GGTCTCGGCC		CGAGCGTGGC	CAGGTTGTGG	GCTTCTGCGT CCAAGCCGGG	550 600
	AGGACGAAGG	CGGCCGTCAC	TCGCCGTTCT	TCTCCAACTA	GTGCTGACCA CCGTCCGCAG	650 700
20	CGTCGAGATG		GCGACCACGC	TACCTTCACC	TGCCGGAAGG GTTGAGCTGA	750 800 839

### 2) INFORMATION FOR SEQ ID NO: 205

25

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 754 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

35

- (A) ORGANISM: Stenotrophomonas maltophilia
- (B) STRAIN: CDC F3338

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205

45	GTGAGCACAT TTCCTGAACA CGAGATGGAA ACACCCCGAT AGCGACATCG CTGGATTCCG TGGAAGACGT ATCGAGCGCG CCGTCCGGTG TGCTGGACCA ACCAAGCGTG GATCAAGCCG ACGAGGGCGG TACTTCCGCA	AGGCCGACAT GTGCGCGAAC CATCGCCGGT GCGTGCCGGC GAGCCGGAGC GTTCTCGATC GCGTGATCAA CAGAAGACCA GGGTCAGGCA ATGACGTCGA CACACCAAGT CCGCCACACC	CGCCAGGTCG GGTCGACGAC TGCTGAGCAA TCGGCCCGCC CATCCTGAAG GTGCGATCGA TCGGGCCGCG GGTTGGCGAC CCGTGACCGG GGCGACAACG GCGTGGCCAG TCGAAGGCCAG TCGAAGGCCAG	GCGTGCCGTA GCCGAGCTGC GTACGAGTTC TGGCGCTGGA CTGGTCGACG CAAGCCGTTC GCACCGTGGT GAAATCGAAA CGTTGAAATG CTGGCCTGCT GTGCTGGCCA AGTGTACGTC ACGGCTACCG	TCGAGCTGGT CCGGGCGACG AGGCGACAG CGCTGGACAG CTGATGCCGG GACCGGTCGT TCGTCGGCAAGC GCTGCGCGGC AGCCGGGCAC CTGTCGAAGG TCCGCAAGG	50 100 150 200 250 300 350 400 450 500 650 700
55	TACTTCCGCA CGAA	CCACCGACAT	CACCGGCGCC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CGGAAGGCGT	700 750 754

²⁾ INFORMATION FOR SEQ ID NO: 206

(i) SEQUENCE CHARACTERISTICS: LENGTH: 835 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 5 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus acidominimus 10 STRAIN: ATCC 51726 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206 TGGTGCTATC CTTGTAGTAG CTTCAACTGA CGGACCAATG CCACAAACTC 50 GTGAGCACAT CCTTCTTTCA CGTCAAGTTG GTGTTAAAAA CCTTATCGTT 15 100 TTCATGAACA AAGTTGACCT TGTTGATGAT GAAGAATTGC TTGAATTGGT 150 TGAAATGGAA ATCCGTGACC TTCTTTCAGA ATACGATTTC CCAGGTGATG 200 ATCTTCCAGT TGTTCAAGGT TCAGCTCTTA AAGCGCTTGA AGGTGATTCA 250 GCACAAGAAG ATGTTATCAT GGAATTGATG TCAATCGTTG ACACATACAT 300 TCCAGAACCA GAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAGG 20 350 ATGTATTCTC AATCACTGGA CGTGGTACTG TTGCTTCAGG ACGTATCGAC 400 CGTGGTACTG TTAAAGTTAA TGACGAAGTT GAAATCGTTG GTATCAAAGA 450 CGAAATCTCT AAAGCAGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC 500 TTGACGAAGG TCTTGCTGGA GATAACGTTG GTGTTCTTCT TCGTGGTGTA 550 CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT CAACCCACAC ACTAAATTCA AAGGTGAAGT TTACGTTCTT TCTAAAGAAG 650 AAGGTGGACG TCACACTCCA TTCTTCGATA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTTCAATC AAATTGCCAG AAGGTACTGA 700 750 AATGGTAATG CCTGGTGATA ACGTAACTAT CGAAGTTGAG TTGATCCACC 800 30 835 CAATCGCCGT TGAACAAGGT ACTACTTTCT CTATC 35 2) INFORMATION FOR SEQ ID NO: 207 (i) SEQUENCE CHARACTERISTICS: LENGTH: 819 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) 40 TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 45 (A) ORGANISM: Streptococcus agalactiae STRAIN: ATCC 12403 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207 CTATCCTTGT AGTTGCTTCA ACTGATGGAC CAATGCCACA AACTCGTGAG 50 50 CACATCCTTC TTTCACGTCA AGTTGGTGTT AAACACCTTA TCGTATTCAT 100 GAACAAAGTT GACCTTGTTG ATGATGAAGA ATTGCTTGAA TTGGTTGAAA 150 TGGAAATTCG TGACCTTCTT TCAGAATACG ACTTCCCAGG TGATGACCTT 200 CCAGTTATCC AAGGTTCAGC TCTTAAAGCA CTTGAAGGCG ACGAAAAATA
CGAAGACATC ATCATGGAAT TGATGAGCAC TGTTGATGAG TACATTCCAG
AACCAGAACG TGATACTGAC AAACCTTTAC TTCTTCCAGT TGAAGATGTA
TTCTCAATCA CTGGACGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG 250 400 TACTGTTCGT GTCAACGACG AAGTTGAAAT CGTTGGTATT AAAGAAGATA 450 TCCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC 500 60

5	GAAGGTCTTG CAGGGGACAA CGTTGGTGTT CTTCTTCGTG GTGTTCAACG TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACC CACACACTAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCCAATC GCCGTAGAAC AAGGTACTA	550 600 650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 208	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae     (B) STRAIN: ATCC 12973</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208	
30 35	CTATCCTTGT AGTTGCTTCA ACTGATGGAC CAATGCCACA AACTCGTGAG CACATCCTTC TTTCACGTCA AGTTGGTGTT AAACACCTTA TCGTATTCAT GAACAAAGTT GACCTTCTT ATGATGAAGA ACTCCTGAA ATTGCTTGAA TTGGTATGAAA TTGGAAAATCC CAGATATCC AAGGTTCAGC TCTTAAAGCA CTTGAAGGCG ATGAAAAATA TGATGAACACAGAACG TGATACTGAC AAACCTTTAC TCTCAAACAC CTGGACGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG TCAACAACAC AAGTTGAAA CGTTGTTCAG AAACCTTTAC TCAGAAGACGTA TCGACCGTGG TCCAAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CAGGGGACAA CGTTGGTGTT CTTCTTCGTG GTGTTCAACGC	50 100 150 200 250 300 350 400 450
40	TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACC CACACACTAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCAATC GCCGTAGAAC AAGGTACTA	550 600 650 700 750 800 819
45	•	013
	2) INFORMATION FOR SEQ ID NO: 209	
50	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 822 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae     (B) STRAIN: ATCC 13813</pre>	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209

			CAACTGATGG	ACCAATGCCA	CAAACTCGTG	50
	AGCTATCCTT	GINGITOGIL	CAACTGATGG	TTAAACACCT	TATCGTATTC	100
	AGCACATCCT	TCTTTCACGT	TGATGATGAA	GAATTGCTTG	AATTGGTTGA	150
5	ATGAACAAAG	TTGACCTTGT	TTTCAGAATA	CGACTTCCCA	GGTGATGACC	200
	AATGGAAATT	CGTGACCTTC	GCTCTTAAAG	CACTTGAAGG	CGATGAAAAA	250
	TTCCAGTTAT	CCAAGGTTCA	ATTGATGAGC	ACTGTTGATG	AGTACATTCC	300
	TACGAAGACA	TCATCATGGA	ACAAACCTTT	ACTTCTTCCA	GTCGAAGATG	350
	AGAACCAGAA	CGTGATACTG	GGTACAGTTG	CTTCAGGACG	TATCGACCGT	400
10	TATTCTCAAT	CACTGGACGT	CGAAGTTGAA	ATCGTTGGTA	TTAAAGAAGA	450
	GGTACTGTTC	GTGTCAACGA	CTGGTGTTGA	AATGTTCCGT	AAACAACTTG	500
	TATCCAAAAA	GCAGTTGTTA			TGGTGTTCAA	550
	ACGAAGGTCT	TGCAGGGGAC			GTTCAATCAA	600
	CGTGATGAAA	TCGAACGTGG			AAAGAAGAAG	650
15	CCCACACACT	AAATTTAAAG				700
	GTGGACGTCA	TACTCCATTC				750
	CGTACAACTG			a a mma	ATTCACCCAA	800
	GGTTATGCCT	GGTGATAACG				822
	TCGCCGTAGA	ACAAGGTACT	AC			

20

### 2) INFORMATION FOR SEQ ID NO: 210

- (i) SEQUENCE CHARACTERISTICS: 25
  - LENGTH: 825 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

30

- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus agalactiae
- STRAIN: CDC 1073 (B) 35

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210

	• • • • • • • • • • • • • • • • • • • •					
	and a company	CTTGTAGTTG	CTTCAACTGA	IGGIZCCI	CCACAAACTC	50
	CGGAGCTATC	<b>—</b> — — —	CGTCAAGTTG	GTGTTAAACA	CCTTATCGTA	100
40	GTGAGCACAT	CCIICIII	TGTTGATGAT	GAAGAATTGC	TTGAATTGGT	150
	TTCATGAACA	AAGTTGACCT		ATACGACTTC	CCAGGTGATG	200
	TGAAATGGAA	ATTCGTGACC	TTCTTTCAGA	AAGCACTTGA	AGGCGACGAA	250
	ACCTTCCAGT	TATCCAAGGT	TCAGCTCTTA		ATGAGTACAT	300
	AAATACGAAG	ACATCATCAT	GGAATTGATG	AGCACTGTTG		350
4 =	TCCAGAACCA	GAACGTGATA	CTGACAAACC	TTTACTTCTT	CCAGTTGAAG	400
45	ATGTATTCTC	AATCACTGGA	CGTGGTACAG	TTGCTTCAGG	ACGTATCGAC	
		TTCGTGTCAA	CGACGAAGTT	GAAATCGTTG	GTATTAAAGA	450
	CGTGGTACTG		TTACTGGTGT	TGAAATGTTC	CGTAAACAAC	500
	AGATATCCAA	AAAGCAGTTG	GACAACGTTG		TCGTGGTGTT	550
	TTGACGAAGG	TCTTGCAGGG			CAGGTTCAAT	600
50	CAACGTGATG		TGGTCAAGTT		TCTAAAGAAG	650
	CAACCCACAC	ACTAAATTTA	AAGGTGAAGT			700
	AAGGTGGACG		TTCTTCAACA			750
	TTCCGTACAA		AGGTTCAATC			800
	AATGGTTATG		ACGTTACTAT	CGAAGTTGAA	TTGATTCACC	
						825
55	CAATCGCCGT	AGAACAACOI				

2) INFORMATION FOR SEQ ID NO: 211

5	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus anginosus</li><li>(B) STRAIN: ATCC 33397</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211	
15	GGAGCTATCC TTGTAGTAGC TTCAACTGAC GGACCAATGC CTCAAACTCG TGAACACATC CTTCTTTCAC GCCAAGTAGG TGTTAAATAC CTTATCGTCT TCATGAATAA AGTTGACTTG GTTGACGATG AAGAATTGCT TGAATTGGTT	50 100
20	AAATGGAAA TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA AATCCCAGTT ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GCTGATGAAA	150 200 250 300 350 400
25	GAAATCCAAA AAGCAGTTGT TACTGGTGTT GAAATGTTCC GTAAACAATT GGACGAAGGT CTTGCTGGAG ATAACGTAGG GGTTCTTCTT CGTGGTATCC AACGTGACGA AATCGAACGT GGACAAGTTC TTGCTAAACC AGGTTCAATT CATCCACACA CTAAATTCAA AGGTGAAGTT TACATCCTTA CTAAACAACT	450 500 550 600 650
30	TCCGTACTAC AGACGTTACA GGTTCAACAA CTACCGTCCT CAATTCTACT	700 750 800 826
35	2) INFORMATION FOR SEQ ID NO: 212	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus bovis     (B) STRAIN: ATCC 33317</pre>	
<b>50</b>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212	
50	TGGTGCTATC CTTGTAGTAG CTTCTACAGA TGGTCCAATG CCACAAACAC GTGAACACAT CCTTCTTCA CGTCAAGTTC CTCTTAAACA	50 100
55	TGAAATGGAA ATCCGTGACCI TGTTGATGAC GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TTCTTTCAGA ATATGATTTC CCAGGTGATG AAATCCCTGT AATCCAAGGT TCAGCTCTTA AAGCCCTTGA AGGTGACACT CACTACGAAG ACATCATCAT GGAATTGATG AACACTCTTAC ATGATTACA	150 200 250 300
60	TCCAGAACCA AAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAAG ACGTATTCTC AATCACTGGT CGTGGTACTG TAGCATCAGG ACGTATCGAC CGTGGTACTG TTAAAGTCAA CGACGAAGTT GAAATCGTTG GTATCCGTGA CGACATCCAA AAAGCTGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC	350 400 450 500
	250	

5	TTGATGAAGG TATCGCAGGG GATAACGTTG GTGTTCTTCT TCGTGGTATC 550 CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT 600 CCACCCACAC ACTAAAATTCA AAGGTGAAGT TTACATCCTT ACTAAAGAAG 650 AAGGTGGACG TCACACTCCA TTCTTCAACA ACTACCGTCC TCAATTCTAC 700 TTCCGTACAA CTGACGTTAC AGGTTCAATC GAACTTCCAG CAGGTACTGA 750 AATGGTAATG CCTGGTGATA ACGTTACTAT CGACGTTGAA TTGATTCACC 800 CAATCGCCGT TGAACAAGGT ACTACAT
10	2) INFORMATION FOR SEQ ID NO: 213
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 821 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
20	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Streptococcus anginosus (deposited as
2.5	Streptococcus constellatus) (B) STRAIN: ATCC 27823
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213
30	GCTATCCTCG TAGTAGCTTC AACTGATGA CCAATGCCTC AAACTCGTGA 100 ACATATCCTT CTTTCACGTC AAGTAGGTGT TAAATACCTT ATCGTCTTCA 100 TGAACAAAGT TGACTTGGTT GACGATGAAG AATTGCTTGA ATTGGTTGAA 150 ATGGAAATCC GTGACCTTCT TTCAGAATAC GTGATGAAAAT 200 CCCAGTTATC CAAGGTTCAG CTCTTTAAAGC TCTTTGAAGGT GATGAAAAAT 250 ATGAAGACAT CATCATGAA TTGATGGATA CTGTTGATGA ATACATTCCA 300 ATGAAGACAT CATCATGAAA TTGATGGATA CTGTTTCCAG TCGAAGATGT 350
35	GAACCAGAAC GTGACACTGA CAAACCACTTC  ATTCTCAATC ACTGGACGTG GTACTGTTGC TTCAGGACGT ATCGACCGTG  ATTCTCAATC ACTGGACGTG GTACTGTTGAA TTGTTGGTAT TCGTGACGAA  GTACTGTTAA AGTCAATGAT GAAGTTGAAA ATGTTCCGTA AACAATTGGA  ATCCAAAAAG CAGTTGTTAC TGGTGTTGAA TCTTCTTCGT GGTATCCAAC  500
40	GTGACGAAAT CGAACGTGGA CAAGIICIIG CACCTTACTA AAGAAGAAGG 650 CCACACACTA AATTCAAAGG TGAAGTTTAC ATCCTTACTA AAGAAGAAGG 700 TGGACGTCAT ACTCCATTCT TCAACAACTA CCGTCCTCAA TTCTACTTCC 700 GTACTACAGA CGTTACAGGT TCAATCGAAC TTCCTGCAGG TACTGAAATG 750 GTAATGCCTG GTGATAACGT AACAATTGAT GTTGAGTTGA
45	TGCCGTAGAA CAAGGAACTA C
	2) INFORMATION FOR SEQ ID NO: 214
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 821 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
5	5 (ii) MOLECULE TYPE: Genomic DNA
	(vi)ORIGINAL SOURCE:
	(A) ORGANISM: Streptococcus circetus
6	(B) STRAIN: ATCC 19642 259

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214

	GCTATCCTTG	TAGTAGCTTC	TACAGACGGA	CCAATGCCAC	AAACTCGTGA	
5	ACACATCTTG	CTTTCACGCC	AAGTTGGTGT	TAN ACA COCOMO	AMACICGIGA	50
	TGAACAAGGT			TAAGAGCCTT	ATCGTCTTCA	100
				AATTGCTTGA	ATTGGTTGAA	150
	ATGGAAATCC		TTCAGAATAC	GATTTCCCAG	GTGATGATAT	200
	CCCTGTTGTT	CAAGGTTCAG	CTCTTAAAGC	CCTTGAAGGT	GATACAGCTG	
	CCGAAGACAA	GATCATGGAA	TTGATGGACA			250
10	GAACCAAAAC		Oil Conten		CTACATTCCA	300
					TCGAAGACGT	350
		ACTGGACGTG	GTACTGTTGC	TTCAGGACGT	ATCGACCGTG	400
	GTACTGTTAA	GGTCAATGAC	GAAGTTGAAA	TCGTTGGTAT	CAAGGACGAA	
	ATCCAAAAAG	CGGTTGTTAC		3 - a		450
	TGAAGGTCTT	GCAGGGGATA	A COMMOCHON	AIGIICCGIA		500
15	GTGATGAAAT		ACGTTGGTGT		GGTATCCAAC	550
10			CAAGTATTGG	CTGCACCTGG	TTCAATCCAT	600
		AATTCAAGGG	TGAAGTTTAC	ATCCTTTCTA	AAGATGAAGG	
	TGGACGTCAC	ACTCCATTCT	TCAACAACTA			650
	GTACAACTGA				TTCTACTTCC	700
	<b></b>			TGCCAGCAGG	TACTGAAATG	750
20		GTGATAACGT	TACTATCGAC	GTTGAATTGA	TCCACCCAAT	800
20	CGCTGTTGAA	AAAGGTACTA	C			
						821

#### 2) INFORMATION FOR SEQ ID NO: 215

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 821 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- 35 (A) ORGANISM: Streptococcus cristatus
  - (B) STRAIN: ATCC 51100
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215

40 45 50		TTCACGTCAG ACTTGGTTGA GACCTCTTGT AGGTTCAGCT TCATGGAATT GATACTGACA TGGTCGTGGT TCAACGATGA GTTGTTACTG AGGGGACAAC	GTTGGTGTTA TGACGAAGAA CAGAATACGA CTTAAAGCTC GATGAACACT AACCTCTTCT ACAGTTGCTT AATCGAAATC GTGTTGAAAT	AACACCTTAT TTGCTTGAAT CTTCCCAGGT TTGAAGGTGA GTTGATGAGT TCTTCCAGTC CAGGACGTAT GTTGGTATCA GTTCCGTAAA	ACTCGTGAGC CGTCTTCATG TGGTTGAAAT GACGATCTTC TACTAAGTAC ACATCCCAGA GAAGACGTAT CGACCGTGGT AAGAAGAAAT CAGCTTGACG	50 100 150 200 250 300 350 400 450
55	GATGAAATCG ACACACTAAA GACGTCACAC ACAACTGACG AATGCCTGGT	AACGTGGTCA TTCAAGGGTG TCCATTCTTC TTACAGGTTC GATAACGTAA	AGTTATCGCT AAGTTTACAT AACAACTACC AATCGAACTT	GTCCACAGTT CCAGCAGGTA	TATCCAACGT CAATCAACCC GAAGAAGGTG CTACTTCCGT CTGAAATGGT CACCCAATCG	550 600 650 700 750 800
	CCGTTGAACA	AGGTACTCCT	T			821

^{60 2)} INFORMATION FOR SEQ ID NO: 216

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 792 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus downei     (B) STRAIN: ATCC 33748</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216	
15	AGTAGCTTCT ACTGATGGAC CAATGCCACA AACTCGTGAA CACATCTTGC TTTCACGTCA GGTTGGTGTT AAGAACCTTA TCGTCTTCAT GAACAAGGTT GACTTGGTTG ACGATGAAGA ATTGCTTGAAA TGGAAATCCG GACTTGGTTG ACGATGAAGA ATTGCTCACG TGATGATATC CCTGTTGTTC	50 100 150
20	TGACCTGCTT TCAGAATACG ATTICCCAGG ATACAGCTGC CGAAGACAAG AAGGTTCAGC TCTTAAGGCT CTTGAAGGTG ATACAGCTGC CGAAGACAAACG ATCATGGAAT TGATGGACAT CGTTGATGAC TACATTCCAG AACCAAAACG ATCATGGAAT TGATGGACAT CGCAAGATGTA TTCTCAATCA	200 250 300 350 400
25	CTGGACGTGG TACTGTAGCT TCAGGACGTA TCCACAAAAAGC GTCAACGACG AAGTTGAAAT CGTTGGTATC AAGGACGAAA TCCAAAAAAGC AGTTGTTACC GGAGTTGAAA TGTTCCGTAA ACAATTGGAC GAAGGTCTTG CAGGGGATAA CGTTGGTGTG CTTCTTCGTG GTATCCACC TGATGAAATC CAGGGGATAA CGTTGGTGTG CTTCTCTCGTT TCGATTCACC CACACACTAA	450 500 550 600 650
30	GAACGTGGTC AAGTGTTGGC TGCGCCTGGT TCGATTATAGGT GGACGTCATA GTTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT TAACAACTAC CGTCCACAGT TCTACTTCCG TACAACTGAC GTAACTGGTT CAATCGAATT GCCAGCGGGT ACTGAAATGG TTATGCCTGG TGATAACGTT ACTATCGACG TTGAATTGAT CCACCCAATT GC	700 750 792
35	2) INFORMATION FOR SEQ ID NO: 217	
40	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 795 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus dysgalactiae</li><li>(B) STRAIN: ATCC 43078</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217	
50	GTAGTTGCTT CAACAGACGG ACCAATGCCA CAAACTCGTG AGCACATCCT CCTTTCACGT CAGGTTGGTG TTAAACACCT TATCGTGTTC ATGAACAAAA CCTTTCACGT CAGGTTGGTTG AATTGGTTGA AATTGGAAAATC	. 50 100 150
55	TTGACCTTGT TGACGATGAA GAATIGCTG AGGTGATGACC TTCCAGTTAT CGTGACCTTC TTTCAGAATA CGATTTCCCA GGTGATGACC TTCCAGTTAT CCAAGGTTCA GCTCTTAAAG CTCTTGAAGG CGACACTAAA TTTGAAGACA TCATCATGGA ATTGATGGAT ACTGTTGATT CATACATTCC AGAACCAGAA CGTGACACTG ACAAACCATT GCTTCTTCCA GTCGAAGACG TATTCTCAAT	200 250 300 350 400
60	GTGTCAACGA CGAAATCGAA ATCGTTGGTA AAACAACTTG ACGAAGGTCT	450 500

5	TGCAGGAGAC AACGTAGGTA TCCTTCTTCG TGGTGTTCAA CGTGACGAAA TCGAACGTGG TCAAGTTATT GCTAAACCAG GTTCAATCAA CCCACACACT AAATTCAAAG GTGAAGTATA TATCCTTTCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAACAACT ATCGTCCACA ATTCTACTTC CGTACAACTG ACGTAACAGG TTCAATCGAA CTTCCAGCTG GTACAGAAAT GGTTATGCCT GGTGATAACG TGACAATCAA CGTTGAGTTG ATCCACCCAA TCGCC	600 650
10	2) INFORMATION FOR SEQ ID NO: 218	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus equi subsp. equi</li><li>(B) STRAIN: ATCC 9528</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218	
	CGGAGCTATC CTTGTAGTTG CTTCAACTGA CGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTTCA CGTCAGGTTG GTGTTAAGCA CCTTATCGTG TTCATGAACA AGGTTGACCT TGTTGACGAT GAAGAATTGC TTGAGCTTGT TGAATTGGAA ATTCGTGACC TTCTTTCAGA ATATGATTTC CCAGGTGATG	50 100 150
30	ACCTTCCAGT TATCCAAGGT TCAGCGCTTA AGGCTCTTGA AGGCGACAGC AAATACGAAG ATATCATCAT GGAATTGATG GATACTGTTG ATTCATACAT TCCAGAACCA GAACGTGACA CAGACAAGCC ATTGCTTCTT CCAGTCGAGG ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTTCAGG ACGTATCGAC	200 250 300 350
35	CGCGGTACTG TTCGTGTTAA CGACGAAATC GAAATCGTTG GTATCAGAGA CGAGATCAAA AAAGCAGTTG TTACTGGTGT CGAAATGTTC CGTAAACAGC TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTTCTTCT TCGTGGTGTA CAACGTGATG AATCGAACG TGGTCAAGTT ATTGCTAAGC CAGGTTCTAT	400 450 500 550
40	CAACCCACAC ACTAAATTTA AAGGTGAAGT ATTGCTAAGC CAGGTTCTAT AAGGTGGACG TCACACACA TTCTTCAACA ACTATCGTCC ACAATTCTAC TTCCGTACTA CTGACGTAAC AGGTTCAATC GAGCTTCCAG CAGGTACAGA AATGGTTATG CCTGGTGATA ACGTGACTAT TGACGTTGAG TTGATCCACC CAATCGCCGT AGAACAAGGT ACTACATT	600 650 700 750 800 828
45	2) INFORMATION FOR SEQ ID NO: 219	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Streptococcus ferus  (B) STRAIN: ATCC 33477	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219	

CGGTGCAATC CTTGTAGTAG CTTCTACAGA GTGAGCACAT CCTTCTTCA CGTCAGGTAG TTCATGAACA AAGTTGACTT GGTTGACGAT TGAAATGGAA ATCCGTGACC TGCTTTCAGA ACCTTCCAGT TATCCAAGGT TCAGCTCTTA GCTCAAGAAG ATGTTATCAT GGAATTGATG CCCAGAACCA AATCACAGGT CTGACAAACC CGAGATCACT TAAGAGTCAA CGATGAAGTT TGGACGAAGG TCTTGCTGGT GATAACGTTG CAACCCACAC ACTAAATTTA AAGGTGAAGT TTCCGTACAA CTGACGTAAC TTCTTCAACA AATGGTTATG CCTGGTGATA ACGTGACTAC CAATCGCCGT TGAACAAGGT ACTAC	GTGTTAAACA CCTTATCGTC GAAGAATTGC TTGAATTGGT ATATGATTTC CCAGGTGATG AAGCGCTTGA AGGTGATACT AAAACCGTTG ATGAGTACAT CCAGTCGAAG TAGCTTCAGG ACGTATCGAT GAAATCGTTG GTATCAAAGA TGAAATGTTC CCGTGGTGTG TTGGCTAAAC TTGGCTAAAC TTACATCCTT ACTAAAGAAG ACTACCGTCC ACAGTTCTAC GAATTGCCAG CAGGTACTGA GAATTGCCAG CAGGTACTGA	50 100 150 200 250 300 350 400 450 550 650 750 825
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------

25

# 2) INFORMATION FOR SEQ ID NO: 220

# (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 826 bases (A)
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

#### (ii) MOLECULE TYPE: Genomic DNA 30

## (vi)ORIGINAL SOURCE:

- ORGANISM: Streptococcus gordonii (A)
- STRAIN: ATCC 10558 (B)

35

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220

	(77)0000					
40	CGGAGCTATC GTGAGCACAT TTCATGAACA TGAAATGGAA ATCTTCCAGT AAATATGAAG	CTTGTAGTAG CCTTCTCTA AAGTTGACTT ATCCGTGACC TATCCAAGGT ATATCATCAT	CGCCAAGTTG GGTTGACGAT TCTTGTCAGA TCAGCTCTTA GGAATTGATG	TGGTCCTATG GTGTTAAACA GAAGAATTGC ATACGACTTC AAGCTCTTGA AACACTGTTG ATTGCTTCTT	CCACAAACTC CTTGATCGTG TTGAGTTGGT CCAGGTGACG AGGTGACTCT ATGAGTACAT CCAGTCGAAG	50 100 150 200 250 300 350
45 50	CCCAGAACCA ACGTATTCTC CGTGGTATCG AGAAATCCAA TTGACGAAGG CAACGTGATG CAACCCACAC AAGGTGGACG TTCCGTACAA AATGGTAATG	AAAGCAGTTG TCTTGCAGGG AAATCGAACG ACTAAATTCA TCACACTCCA CTGACGTTAC	AGGTTCAATC ACGTAACTAT	TTGCTTCAGG GAAATCGTTG TGAAATGTTC GTGTGCTTCT ATTGCTAAAC TTATATCCTT ACTACCGTCC GAACTTCCAG	ACGTATCGAC GTATCAAAGA CGTAAACAGC TCGTGGTATC CAGGTTCAAT ACTAAAGAAG ACAGTTCTAC CAGGTACTGA	400 450 500 550 600 650 700 750 800 826
_						

55

60

# 2) INFORMATION FOR SEQ ID NO: 221

## (i) SEQUENCE CHARACTERISTICS:

	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(b) Torollogi. Einear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus anginosus	
10	(A) ORGANISM: Streptococcus anginosus (B) STRAIN: ATCC 27335	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221	
	TGTAGTAGCT TCAACTGACG GACCAATGCC TCAAACTCGT GAACATATCC	5(
15	TTCTTTCACG TCAAGTAGGT GTTAAATACC TTATTGTCTT CATGAACAAA	100
	GTTGACTTGG TTGACGATGA AGAATTGCTT GAATTGGTTG AAATGGAAAT	150
	CCGTGATCTT CTTTCAGAAT ACGATTTCCC AGGTGATGAT ATTCCAGTAA TCCAAGGTTC AGCACTTAAA GCTCTTGAAG GTGATGAAAA ATATGAAGAC	200
	ATCATCATGG AATTGATGAA TACTGTTGAT GAATATATTC CAGAACCAGA	250
20	ACGTGATACT GACAAACCAT TGCTTCTTCC AGTCGAAGAT GTATTCTCAA	300 350
	TCACTGGACG TGGTACTGTT GCTTCAGGAC GTATCGACCG TGGTACTGTT	400
	AAAGTCAACG ATGAAGTTGA AATCGTTGGT ATCCGCGAGG AAATCCAAAA	450
	AGCAGTTGTT ACTGGTGTTG AAATGTTCCG TAAACAATTG GACGAAGGTC	500
25	TTGCTGGAGA TAACGTAGGG GTTCTTCTTC GTGGTATCCA ACGTGACGAA ATTGAACGTG GACAAGTTCT TGCTAAACCA GGTTCAATTC ATCCACACAC	550
	TAAATTCAAA GGTGAAGTTT ACATCCTTAC TAAAGAAGAA GGTGGACGTC	600
	ATACTCCATT CTTCAACAAC TACCGTCCTC AATTCTACTT CCCTACTACA	650 700
	GACGTTACAG GTTCAATCGA ACTTCCTGCA GGTACTGAAA TCGTAATGCC	750
30	TGGTGATAAC GTAACAATTG ATGTTGAGTT GATCCACCCA ATTGCCGTA	799
30		
	2) INFORMATION FOR CHO. TO MA	
	2) INFORMATION FOR SEQ ID NO: 222	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 825 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40	() Toronoor. Erical	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Streptococcus macacae	
45	(B) STRAIN: ATCC 35911	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222	
	TGGTGCTATT CTTGTAGTAG CTTCAACTGA CGGTCCAATG CCTCAAACGC	50
50	GIGAACATAT CCTTCTTTCA CGCCAAGTAG GTGTTAAAAA CCTTATTCTTT	50 100
	IICATGAATA AAGTIGACTT AGTTGATGAT GAAGAATTGC TTGAATTCCT	150
	TGAAATGGAA ATCCGTGATC TTCTTACAGA ATATGATTTC CCAGGCCATC	200
	AACTTCCAGT TATCCAAGGT TCAGCACTTA AAGCTCTTGA AGGTGATACT	250
55	AAGTACGAAG ATATTATCAT GGAATTGTTG GATACTGTAG ATGATTACAT CCCAGAACCA CAACGTGATA CTGACAAGCC ATTGCTTCTT CCAGTCGAAG	300
	AIGITITUTE TATTACTGGA CGTGGTACTG TTGCTTCACC ACCTATTCAC	350
	CGIGGIACIG ITAAGGITAA TGATGAAGTT GAAATCGTTG GTATTGGTGA	400 450
	CGATALICAA AAAGCAGTTG TTACTGGTGT TGAAATGTTC CCTAAACAG	500
60	IIGACGAAGG TCTTGCTGGT GATAACGTCG GTGTCCTTCT TCCTCCTATA	550
30	CAACGTGATG AAATTGAACG CGGTCAAGTT CTTGCTAAAC CAGGATCAAT	600

TCATCCACAT ACTAAATTCA AAGGTGAAGT TTATATTCTT ACTAAAGAAG 650 AAGGTGGACG TCATACTCCA TTCTTTAACA ACTACCGTCC ACAGTTCTAC 700 TTCCGTACAA CTGATGTAAC TGGTTCAATT GATTTGCCAG CAGGTACTGA 750 AATGGTTATG CCTGGTGATA ATGTTACGAT TGATGTTGAA CTGATCCACC 800 825 CAATCGCTGT TGAACAAGGT ACAAC 5 2) INFORMATION FOR SEQ ID NO: 223 10 (i) SEQUENCE CHARACTERISTICS: LENGTH: 822 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 15 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Streptococcus gordonii (deposited as (A) 20 Streptococcus mitis) STRAIN: ATCC 33399 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223 CTATCCTTGT AGTAGCTTCA ACTGACGGAC CAATGCCACA AACTCGTGAG 50 25 CACATCCTTC TTTCACGTCA GGTTGGTGTT AAACACCTTA TCGTCTTCAT 100 GAACAAAGTT GACTTGGTTG ACGACGAAGA ATTGCTTGAA TTGGTTGAAA 150 TGGAAATCCG TGACCTATTG TCAGAATACG ACTTCCCAGG TGACGATCTT
CCAGTTATCC AAGGTTCAGC TCTTAAAGCC CTTGAAGGTG ACACTAAATA
CGAAGACATC GTTATGGAAT TGATGAACAC AGTTGATGAG TACATCCCAG 200 250 300 30 AACCAGAACG TGACACTGAC AAACCATTGC TTCTTCCAGT CGAAGACGTA 350 TTCTCAATCA CTGGTCGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG 400 TATCGTTAAA GTCAACGACG AAATCGAAAT CGTTGGTATC AAAGAAGAAA 450 CTCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CCGGAGATAA TGTAGGTGTC CTTCTTCGTG GTGTTCAACG 500 550 35 TGATGAAATC GAACGTGGAC AAGTTATTGC TAAACCAGGT TCAATCAACC 600 CACACATAA ATTCAAAGGT GAAGTTTACA TCCTTACTAA AGAAGAAGGT 650 GGACGTCACA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACTACTGAC GTTACAGGTT CAATCGAACT TCCAGCAGGT ACTGAAATGG 700 750 TAATGCCTGG TGATAACGTG ACAATCGACG TTGAGTTGAT CCACCCAATC 40 800 822 GCCGTAGAAC AAGGTACTAC AT 45 2) INFORMATION FOR SEQ ID NO: 224 (i) SEQUENCE CHARACTERISTICS: LENGTH: 827 bases (A) TYPE: Nucleic acid (B) 50 STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 55 (vi)ORIGINAL SOURCE: ORGANISM: Streptococcus mutans (A) STRAIN: ATCC 25175 (B)

265

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224

	CCCTGGTGCT ATCCTTGTAG TAGCTTCAAC TGATGGACCA ATGCCACAAA	50
	CTCGTGAACA CATTCTTCTT TCACGTCAAG TTGGTGTTAA ATACCTCATT	100
	GTCTTCATGA ATAAAGTTGA TTTGGTTGAC GATGAAGAAT TGCTTGAATT	150
5	GGTTGAAATG GAAATCCGTG ATCTTCTTTC AGAATATGAT TTCCCAGGTG	200
	ATGATATTCC AGTTATTCAA GGTTCAGCTC TTAAAGCTCT TGAAGGCGAT	250
	ACTGCTCAAG AAGATATCAT CATGGAATTA ATGCATACTG TTGATGACTA	300
	CATTCCAGAT CCAGAACGTG ATACTGACAA GCCGCTCCTT CTTCCAGTCG	350
	AAGATGTTTT CTCAATCACT GGTCGTGGTA CTGTTGCTTC AGGACGTATT	400
10	GATCGTGGTA CTGTTAAAGT TAACGATGAA GTTGAAATCG TTGGTATCCG	450
	TGATGACATT CAAAAAGCTG TTGTTACTGG TGTTGAAATG TTCCGTAAAC	500
	AATTGGATGA AGGTATTGCA GGGGATAATG TTGGTGTTCT CCTTCGTGGT	550
	ATCCAACGTG ATGAAATCGA ACGTGGTCAA GTTCTTGCTA AACCAGGTTC	600
	AATTCACCCA CATACTAAAT TCAAAGGTGA AGTTTATATC CTTACTAAAG	650
15	AGGAAGGTGG ACGTCATACA CCATTCTTCA ATAACTATCG TCCACAATTC	700
	TACTTCCGTA CAACTGACGT AACTGGTTCA ATTGAGTTGC CAGCAGGTAC	750
	TGAAATGGTT ATGCCTGGTG ATAACGTTAC TATTGACGTT GAATTGATCC	800
	ATCCAATCGC TGTTGAACAA GGTACTA	827
		· · ·
20		
	2) INFORMATION FOR SEQ ID NO: 225	
	(i)SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 824 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	( ) ) = = = = = = = = = = = = = = = = =	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Streptococcus parasanguinis	
	(B) STRAIN: ATCC 15912	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225	
	AGCTATCCTT GTAGTAGCTT CAACTGACGG ACCAATGCCA CAAACACGTG	50
	AACACATCCT TCTTTCACGT CAGGTTGGTG TTAAACACTT GATCGTCTTC	100
40	ATGAACAAAG TTGACTTGGT TGATGATGAA GAATTGCTTG AATTGGTTGA	150
	AATGGAAATC CGTGACCTTC TTTCAGAATA CGATTTCCCA GGTGATGACC	200
	TTCCAGTTAT CCAAGGTTCA GCTCTTAAAG CTCTTGAAGG TGACTCTAAA	250
	TATGAAGATA TCATCATGGA ATTGATGGAT ACTGTTGATG AGTACATCCC	300
	AGAACCAGAA CGCGATACTG ACAAACCATT GCTTCTTCCA GTCGAAGACG	350
45	TATTCTCAAT CACTGGACGT GGTACAGTTG CTTCAGGACG TATCGACCGT	400
	GGTGTTGTTC GTGTCAATGA TGAAATCGAA ATCGTTGGTA TCAAAGAAGA	450
	AATCCAAAAA GCAGTTGTTA CTGGTGTTGA AATGTTCCGT AAACAACTTG	500
	ACGAAGGTCT TGCAGGGGAT AACGTTGGTG TGCTTCTTCG TGGTATCCAA	550
E 0	CGTGATGAAA TCGAACGTGG ACAAGTTATC GCTAAACCAG GTTCAATCAA	600
50	CCCACACAT AAATTCAAAG GTGAAGTTTA CATCCTTACT AAAGAAGAAG	650
	GTGGACGTCA TACTCCATTC TTCAACAACT ACCGTCCACA GTTCTACTTC	700
	CGTACAACTG ACGTAACTGG ATCTATCGAA CTTCCACCAG GAACTGAAAT	750
	GGTAATGCCT GGTGATAACG TGACTATCGA CGTTGAGTTG ATCCACCCAA TCGCCGTTGA ACAAGGTACT ACAT	800
55	TCGCCGIIGA ACAAGGTACT ACAT	824
55	TCGCCGIIGA ACAAGGIACT ACAT	824

2) INFORMATION FOR SEQ ID NO: 226

60 (i) SEQUENCE CHARACTERISTICS:

	<ul> <li>(A) LENGTH: 824 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus ratti   (B) STRAIN: ATCC 19645</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226	
15	TGGTGCTATC CTTGTAGTAG CTTCAACTGA TGGACCAATG CCGCAAACTC GTGAACACAT CTTGCTTTCA CGTCAAGTTG GTGTTAAATA CCTTATCGTC TTCATGAACA AGGTTGACTT GGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGATC TTCTTCAGA ATACGATTTC CCAGGTGATG TGAAATGGAA ATCCGTGATC TTCTTCAGA ATACGATTTC AGGTGACACT	50 100 150 200 250
20	GAACAAGAG ATGTTATCAT GGAATGATC ATTGCTTCTT CCAGTCGAAG CCCAGATCCA GAACGCGATA CTGATAAGCC ATTGCTTCTT CCAGTCGAAC ACGTGTTCTC AATCACTGGA CGTGGTACTG TTGCATCAGG ACGTATCGTGA CGTGGTACTG TTAAAGTCAA TGACGAAGTT GAAATCGTTC CGTAAACAGC	300 350 400 450 500 550
25	TTGACGAAGG TCTTGCTGGT GATAACGTTO CAACGTGATG AAATCGAACG CGGTCAAGTT CTTGCTAAAC CAGGTTCAAT CAACGTGATG AAATCGAACG CGGTCAAGTT TTACATCCTT ACTAAAGAAG TCATCCGCAT ACTAAATTTA AAGGTGAACA ACTACCGTCC ACAGTTCTAC AAGGCGGACG TCACACTCCA TTCTTCAACA ACTACCGTCC CAGGTACTGA	600 650 700 750 800
30	TTCCGTACAA CTGACGTAAC TGGTTCAATC GAATTGCCAC AATGGTTATG CCTGGTGATA ACGTGACTAT CGACGTTGAA TTGATCCACC CAATCGCTGT TGAACAAGGT ACTA	824
35	2) INFORMATION FOR SEQ ID NO: 227  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 795 bases  (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(B) STRAIN: ATCC 10556	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227	50
50	TGCTTTCACG TCAGGTTGGT GTTAAACACT GAATTGGTTG AAATTGGAAAT GTTGACTTGG TTGACGATGA AGAATTGCTC AGGTGACGAT CTTCCAGTTA	100 150 200
55	TCCAAGGTTC AGCTCTTAAA GCTCTIGAAG GAGTACATCC CAGAACCAGA ATCATCATGG AATTGATGGA CACTGTTGAT GAGTACATCC CAGAACCAGA ACGCGATACT GACAAGCCAT TGCTTCTTCC AGTCGAAGAC GTATTCTCAA ACGCGATACT GGCTACAGTT GCTTCAGGAC GTATCGACG TGGTATCGTT TCACTGGTCG TGGTACAGTT GACGAAGAC AAATCCAAAA AAAGTCAACG ACGAAATCGA AATCGTTGGC TAACAGCTT GACGAAGGTC	250 300 350 400 450 500
60		320

...__

5	ATCGAACGTG GACAAGTTAT CGCTAAACCA GGTTCAATCA ACCCACACAC TAAATTCAAG GGTGAAGTT ATATCCTTAC TAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTTACAG GTTCAATCGA ACTTCCAGCA GGTACTGAAA TGGTAATGCC TGGTGATAAC GTAACAATCG ACGTTGAGTT GATCCACCCA ATCGC	600 650 700 750 795
10	2) INFORMATION FOR SEQ ID NO: 228	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 795 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus sobrinus    (B) STRAIN: ATCC 33478</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228	
25	TGTAGTAGCT TCTACTGACG GACCAATGCC ACAAACTCGT GAACACATCT TGCTTTCACG CCAAGTTGGT GTTAAGAACC TCATCGTCTT CATGAACAAG GTTGACTTGG TTGATGATGA AGAATTGCTT GAATTGGTTG AAATGGAAAT	50 100 150
30	CCGTGATCTT CTTTCAGAAT ACGATTTCCC AGGTGACGAC ATTCCTGTTG TTCAAGGTTC AGCTCTTAAG GCTCTTGAAG GTGATACAGC TGCCGAAGAC AAGATTATGG AATTGATGGA CATCGTTGAT GATTACATTC CAGAACCAAA ACGCGATACT GATAAGCCAT TGCTTCTCCC AGTCGAAGAC GTATTCTCAA TCACTGGTCG TGGTACTGTT GCTTCAGGAC GTATTGACCG TGGTACTGTT	200 250 300 350 400
35	AAGGTTAACG ACGAAGTTGA AATCGTTGGT ATCCGTGACG ATATCCAAAA AGCAGTTGTT ACTGGAGTTG AAATGTTCCG TAAGCAATTG GACGAAGGTC TTGCTGGAGA TAACGTTGGT GTGCTTCTTC GTGGTATCCA ACGTGATGAA ATTGAACGTG GTCAAGTATT GGCTGCACCT GGTTCAATCC ACCCACACAC TAAGTTCAAG GGTGAAGTTT ACATCCTTTC TAAAGATGAA GGTGGACGTC	450 500 550 600 650
40	ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTAACTG GTTCAATCGA ATTGCCAGCA GGTACTGAAA TGGTTATGCC TGGTGATAAC GTTACTATCG ACGTTGAATT GATCCACCCA ATCGC	700 750 795
	2) INFORMATION FOR SEQ ID NO: 229	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 797 bases  (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus suis (B) STRAIN: ATCC 43765	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229	
60	TGTAGTAGCT TCAACTGACG GTCCAATGCC ACAAACTCGT GAGCACATCC	50
	0.50	- •

5	TTCTTTCACG TCAGGTTGGT GTTAAACACC TTATCGTCTT CATGAACAAA GTTGACTTGG TTGACGATGA AGAATTGCTT GAGTTGATTA CCGTGACCTT CTTTCAGAAT ACGATTTCCC AGGTGATGAT CTTCCAGTTA TCCAAGGTTC AGCTCTTAAA GCTCTTGAAG GTGACTCTAA GTACGAAGAC ATCGTATGG AAATCGAA ACGTGTTGAT GAGTACATTC CATGAACAA CACTGTTGAT GAGTTGAT CTTCCAGTAC AGCTGACGAC TGGTACTGTA ACGAACCAT TGTTGCTTCC AGTACCAGA AGCAGAACCAT TGTTGCTTCC AGTACCACAC AGCAGAACCAT TGTTGCTTCC TTCAAGAAG AAAAATCTAA AGCAGTTGTT AAATGTTCCG TTAAACAACTT GACGAAGGTC ACGAACCTG TAAACTCTTAC GTGTTCTCC GTGTTCTAAACAACTT TAAAGAAGAA GGTGGACGTC TAAATTCAAA GGTGAAGTTAT CTCTAAACCAC ACCTCTCACC TTAAAGAAGAA GGTGGACGTC ACATCCTTAC ACCTCCACAC ACGTGATCAACTT CCGTACAACT	100 150 200 250 300 350 400 450 550 600 650 700
15	TAAATTCAAA GGTGAAGTTT ACATCCTIAC TAAACATTCAAACT ACACTCCATT CTTCGACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTAACTG GTTCAATCAA ATTGCCAGAA GGTACTGAAA TGGTAATGCC TGGTGATAAC GTTACTATCG ACGTTGAATT GATCCACCCA ATCGCCG	750 797
20	2) INFORMATION FOR SEQ ID NO: 230  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 793 bases	
25	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
30	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Streptococcus uberis  (B) STRAIN: ATCC 19436	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230	50
35	TTGTTGTTGC ATCAACTGAT GGACCAATGC CACAAACTCG TGAGCACATC CTTCTTTCAC GCCAAGTTGG TGTTAAACAC CTTATCGTTT TCATGAACAA AATCGACCTT GTTGACGATG AAGAATTGCT TGAATTAGTT GAAATGGAAA TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA CCTACCAGTT	100 150 200
40	ATCCAAGGTT CAGCTCTTAA AGCTCTIGAA GGTATTATT CCAGAACCAG CATCATCATG GAATTGATGA AAACTGTTGA TGAGTATATT CCAGAACCAG AACGTGATAC AGACAAACCA TTACTTCTTC CAGTCGAAGA CGTATTCTCA ATCACAGGTC GTGGTACTGT AGCTTCAGGA CGTATCGATC GTGGTACTGT ATCACAGGTC GTGGTACTGT AACGTTCG TATCALAGAA GAAACTAAAA	250 300 350 400 450
45	AAGCAGTTGT TACTGGTGTT GAAATGTTCC GTGGTGTTC AACGTGACGA CTTGCAGGAG ATAACGTAGG TATCCTTCTT CGTGGTGTTC AACGCACACA AATCGAACGT GGACAAGTTA TTGCTAAACC AGGTTCAATC AACCCACACA CTAAATTCAA AGGTGAAGTT TACATCCTTT CTAAAGATGA AGGTGGACGT CTAAATTCAA AGGTGAAGTT TACATCCTTT CAATCTATT TCCGTACAAC	500 550 600 650 700
50	TGACGTAACA GGTTCAATCG AACTTCCAGC TGGTACTCATC	750 793
55	(i) SEQUENCE CHARACTERISTICS:	
6	(A) LENGTH: 798 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	262	

(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus vestibularis 5 STRAIN: ATCC 49124 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231 10 TTGTAGTAGC ATCTACTGAC GGACCAATGC CACAAACTCG TGAGCACATC CTTCTTTCAC GTCAGGTTGG TGTTAAACAC CTTATCGTCT TCATGAACAA AGTTGACTTG GTTGACGATG AAGAATTGCT TGAATTGGTT GAAATGGAAA 150 TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA TATTCCAGTT 200 ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGTGATTCTA AATACGAAGA 250 CATCATCATG GACTTGATGA ACACTGTTGA CGAATACATT CCAGAACCAG 300 AACGTGACAC TGACAAACCA TTGTTGCTTC CAGTCGAAGA CGTATTCTCA 350 ATCACTGGTC GTGGTACTGT TGCTTCAGGA CGTATCGACC GTGGTGTTGT 400 TCGTGTTAAT GACGAAGTTG AAATCGTTGG TCTTAAAGAA GAAATCCAAA 450 AAGCAGTTGT TACTGGTGTA GAAATGTTCC GTAAACAACT TGACGAAGGT 500 20 ATTGCCGGAG ATAACGTCGG TGTCCTTCTT CGTGGTATCC AACGTGATGA 550 AATTGAACGT GGTCAAGTAT TGGCTGCACC TGGTTCAATC AACCCACACA 600 CTAAATTCAA AGGTGAAGTT TACATCCTTT CTAAAGAAGA AGGTGGACGT CACACTCCAT TCTTCAACAA CTACCGTCCA CAGTTCTACT TCCGTACAAC TGACGTAACA GGTTCAATCG AACTTCCTGC AGGTACTGAA ATGGTTATGC CTGGTGATAA CGTGACTATC GACGTTGAGT TGATCCACCC AATCGCCG 25 798 2) INFORMATION FOR SEQ ID NO: 232 30 (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double 35 TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 40 (A) ORGANISM: Tatumella ptyseos (B) STRAIN: ATCC 33301 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232 GGCGCTATCC TGGTTGTTGC TGCAACTGAC GGCCCTATGC CTCAGACCCG TGAGCACATC CTGCTGGGCC GCCAGGTAGG CGTTCCTTAC ATCATCGTGT 100 TCCTGAACAA ATGTGACATG GTTGATGATG AAGAGCTGCT GGAACTGGTA 150 GAAATGGAAG TCCGTGACCT GCTGTCACAG TACGACTTCC CGGGTGACGA CACGCCAATC GTTCGCGGTT CAGCGCTGAA AGCACTGGAA GGTGAAGGCG 250 50 AGTGGGAAGA GAAGATTCTG GAGCTGGCTG GCTTCCTGGA TTCTTACATC 300 CCTGAGCCAG AGCGTGCTAT CGATCAGCCG TTCCTGCTGC CAATCGAAGA 350 CGTATTCTCA ATCTCCGGTC GTGGTACAGT TGTTACCGGT CGTGTAGAGC 400 GCGGGATCAT CAAAGTCGGT GAAGAAGTTG AGATCGTTGG TATCAAAGAT 450 ACTGCGAAAT CAACCTGTAC CGGTGTTGAA ATGTTCCGTA AACTGCTGGA 500 CCAGGGTCAG GCGGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAGC
GTGAAGAGAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCAATCAAA
CCACACACCC AGTTCGAGTC AGAAGTTTAT ATTCTGTCTA AAGACGAAGG
CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC 550

GTACAACTGA CGTGACCGGA ACCATCGAAC TGCCGGAAGG CGTAGAGATG

GTAATGCCTG GTGACAACAT CAAAATGGTT GTTACCCTGA TCCATCCAAT

60

600 650 700

750

800

- - -----

	CGCGATGGAC GATGGTCTGC GTTTCGCAA	829
5	2) INFORMATION FOR SEQ ID NO: 233	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 Dases	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi) ORIGINAL SOURCE:	
13	(A) ORGANISM: Trabulsiella guamente	
	(B) STRAIN: ATCC 49490	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233	
20	GGCGCAATCC TGGTAGTAGC AGCGACTGAC GGCCCGATGC CGCAGACTCG	50 100
	GGCGCAATCC TGGTAGTAGC AGCGACTGAC GGCCCGTTOO TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TGAGCACATC CTGCTGGGTC GTCAGGTAGC AAGAGCTGCT GGAACTGGTA	150
	TCCTGAACAA ATGCGACATG GTTGATGACG TACGATTTCC CGGGCGATGA	200
	GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTGGAA GGCGACGCAG CACGCCGATC GTACGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG CACGCCGATC GTACGTGGTT CTGCTGGA TTCTTACATT	250 300
25	CACGCCGATC GTACGTGGTT CTGCTCTGAA AGCGCTGGAA TTCTTACATT AGTGGGAAGC GAAAATCATC GAACTGGCAG GTTTCCTGGA TTCTTACATT	350
	CCGGAACCAG AGCGTGCGAT TGACAAGCCT TGTTACCGGT CGTGTAGAGC	400
	CGTATTCTCC ATCTCTGGTC GTGGTACCGT TATCAAAGAG GCGGTATCAT CAAAGTGGGT GAAGAAGTAG AAATCGTTGG TATCAAAGAG GCGGTATCAT CAAAGTGGGT GAAGAAGTAG AAATCGTTGGA AACTGCTGGA	450 500
30	GCGGTATCAT CAAAGTGGGT GAAGAAGIAG AAATCCTGCA AACTGCTGGA ACTGCGAAGT CAACCTGTAC TGGCGTAGAAA ATGTTCCGCA AACTGCTGGA	550
30	CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT CTAAGCCGGG CACCATCAAC	600
	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAACCCA AAGACGAAGG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG CCGCACACCA AGTTCGAATC TGAAGTGTAC CCGTCCGCAG TTCTACTTCC	650
	CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGCAG TTCTACTTCC CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAAGG CGTAGAGATG	700 750
35	CGGCCGTCAC ACTCCGTTCT TCAAAGGCIA CCGTCGGAAGG CGTAGAGATG GTACAACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT	800
	GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTOT TO CONTROL CONTROL CAAAATGGTT GTTACCCTOT TO CONTROL CONTRO	829
	CGCGATGGAC GACGGTCTGC GTTTGG	
40	2) INFORMATION FOR SEQ ID NO: 234	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases	
45		
	(C) STRANDEDNESS: DOUBLE	
•	(D) TOPOLOGI: Dimon-	
- /	(ii) MOLECULE TYPE: Genomic DNA	
5(	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Veillonella parvula	
	(B) STRAIN: ATCC 10790	
5		F.0
	CGGCGCTATC TTGGTTGTAT CCGCAGCTGA CGGCCCTATG CCTCAAACTC	50 100
	GCGAACACAT CTTGTTGGCT CGCCAAGIIG GIGTATTGA TCGAATTGGT	150
_		200
6	O AGAAATGGAA GIICGIGAAC IICIIIOII 271	•

5	AAGTACCTAT CGTTGTAGGT TCCGCGTTGA AAGCTTTGGA AGGCGATGCT CAATATGTAG CTAAAATTGA CGAATTGATG GACGCTGTAG ACTCCTACAT CCCAACACCA GTTCGTGACA CTGATAAACC ATTCTTGATG CCTGTGGAAG ATGTTTTCAC AATCACTGGT CGTGGTACAG TAGCAACTGG CCGTGTTGAA CGTGGTCAAG TAAACGTTGG TGATACTGTT GAAGTAGTAG GCTTGAAAGA AAAAGCTGAA CAATACGTAG TAACAGGTCT TGAAATGTTC CGTAAAGTGT GGATTCTGC AGTAGCAGGT GACAACGTAG GTGCATTGCT TCGTGGTGTT GATCGTAAAG ACATYGAACG TGGTCAAGTA TTGGCTAAAC CAGGTTCCAT CAACCCACAY ACAAAATTCA AAGCAGAAGT ATACGTATTG ACTAAAGAAG AAGGTGGTCG TCATACTCCA TTCTTCTCCA ACTACCGTCC ACAATTCTAC TTCCGTACAA CAGACGTAAC AGGTGTTGTA AACCTTCCTG AAGGTGTAGA AATGTGTATG CCTGGCGATA ACGTAACAAT GGAAATCGAA TTGATTACTC CAATCGCTAT CGAAGAAGGT CTTCG	250 300 350 400 450 550 650 700 750 800 825
15		
	2) INFORMATION FOR SEQ ID NO: 235	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<ul> <li>(vi)ORIGINAL SOURCE:         <ul> <li>(A) ORGANISM: Yersinia enterocolitica</li> <li>(B) STRAIN: ATCC 9610</li> </ul> </li> <li>(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 235</li> </ul>	
35	CGCTATCCTG GTTGTTGCTG CAACTGATGG CCCAATGCCA CAGACTCGTG AGCACATCCT GTTGGGTCGT CAGGTTGGTG TTCCTTACAT CATCGTATTC ATGAACAAAT GTGACATGGT TGACGATGAA GAGCTGCTAG AACTGGTAGA AATGGAAGTG CGCGATCTTC TGTCTACCTA CGATTTCCCA GGCGATGATA CGCCAGTTGT TCGTGGTTCC GCGCTGAAAG CATTGGAAGG CGAACCTGAG TGGGAAGCAA AAATTATCGA ACTGGCTGGC TACCTGGATT CTTACATCCC	50 100 150 200 250
40	AGAACCAGAG CGTGCTATCG ATAAGCCGTT CCTGCTGCCA ATCGAAGACG TATTCTCTAT CTCTGGTCGT GGTACTGTTG TAACGGGTCG TGTAGAGCGC GGTATCGTTA AAGTTGGTGA AGAAGTCGAA ATTGTTGGCC TGAAAGATAC CGTTAAATCT ACTTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGATG AAGGCCGTGC AGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAGCGT	300 350 400 450 500 550
45	GAAGATATCG AACGTGGTCA AGTTCTTGCT AAACCAGGTT CGATTAAACC ACACACCAAA TTTGAATCAG AAGTTTATAT TCTGAGCAAA GATGAAGGTG GTCGCCATAC TCCGTTCTTC AAAGGCTACC GTCCTCAGTT CTACTTCCGT ACAACTGATG TAACCGGTAC TATTGAACTG CCAGAAGGCG TTGAGATGGT	600 650 700 750
 50	GATGCCAGGT GATAACATTC AAATGATTGT TAACCTGATT GCTCCTATCG CAATGGATGA CGGCTTGCGC TTTGC	800 825
	2) INFORMATION FOR SEQ ID NO: 236	
.55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	•

(ii) MOLECULE TYPE: Genomic DN A

### (vi)ORIGINAL SOURCE:

5

40

- ORGANISM: Yersinia frederiksenii (A)
- STRAIN: ATCC 33641 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236

	•					
	GGCGCGATCC	TGGTTGTTGC	TGCCACTGAT	GGCCCGATGC		50
		CTGTTAGGGC	GTCAGGTGGG	TGTTCCTTAC	ATCCTGGTCT	100
10	CGAGCACATT		GTTGACGACG	AAGAGCTGCT	GGAACTGGTA	150
	TCCTGAACAA	ATGTGACATG		TACGATTTCC	CTGGCGACGA	200
	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG		GGCGAAGCTG	250
	CACTCCAGTT	ATCCGTGGTT	CTGCGCTGAA	AGCGCTGGAA	TAGCTATATT	300
	AGTGGGAAGC	AAAAATCATC	GAATTGGCTG	AGGCGCTGGA		350
	CCACAGCCAG	AGCGTGCGAT	TGATAAACCA	TTCCTGCTGC	CAATCGAAGA	
15		ATCTCTGGCC	GTGGTACTGT	TGTCACCGGT	CGTGTAGAGC	400
	CGTATTCTCA		GAAGAAGTCG	AAATCGTTGG	TATCATTGAT	450
	GCGGTATCGT	TAAAGTCGGC	TGGTGTTGAA	ATGTTCCGCA	AATTGCTGGA	500
	ACCATCAAGA	CTACCTGTAC		TCTGCTACGT	GGTACTAAAC	550
	CGAAGGCCGT	GCGGGTGAGA	ACGTTGGTGT		TTCTATCAAG	600
20	GTGATGACGT	ACAACGTGGT	CAGGTATTGG	CAAAACCAGG		650
20	CCACACACCA		AGAAGTTTAT		AAGATGAAGG	700
		- ~=~~~~		TCGTCCTCAG		,
	TGGTCGCCAT				CGTTGAGATG	750
	GTACAACTGA					800
	GTGATGCCAG			0111110010.		828
25	CGCAATGGAT	GACGGTCTGC	GCTTTGCG			
	<del>-</del> · · · · ·					

## 2) INFORMATION FOR SEQ ID NO: 237

30 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 813 bases
- (A) TYPE: Nucleic acid
- (B) STRANDEDNESS: Double
- (C)
- TOPOLOGY: Linear (D) 35

## (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- ORGANISM: Yersinia intermedia (A)
  - STRAIN: ATCC 29909 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237

TCCTGCTAGG TCGTCAGGTG GGTGTTCCTT ACATCCTGGT TTGGAAATGGA	100 150 200
TCCTGCTAGG TCGTCAGGIG GGIGITATTAG TAGAATTGG	200
AAGTGTGACA TGGTTGACGA TGAGGAGTTG COCTGCCCAT GATACTCCTG	
AGTCCGCGAA CTTCTGTCTC AATATGATTT COOLEGE MCA AGCCCAA	250
TTATCCGTGG TTCAGCGCTG AAGGCGTTGG AAGGCGTTGGTTGGTTGAAGGTTGGTTGGTTGAAGGTTGGTT	300
50 GCAAAATTA TCGAATTAGC TGAGGCGCTG CATTAGA GA COMA MIDOR	350
AGAGCGCGCG ATTGATAGAC CATTCTTGCT GCCAATCGAA GCCTCCCATC	400
CTATCTCAGG TCGTGGTACA GTCGTCACTG GTCGTGTAGA GCGTGGGATC	450
CTTANACTTC CCGAAGAAGT TGAAATCGTT GGTATTATCG AITCCAITAG	500
AACAACATGT ACTGGCGTTG AAATGTTCCG CAAATTGCTG GACGAAGGCC	550
CCCCCCCTGA GAACGTTGGT GTTCTACTGC GTGGGACTAA ACGTGATGAC	
CONTROL CTCAGGTATT AGCTAAGCCA GGTTCTATCA AGCCACATAC	600
TARTECCA A TECCA ACTIT ATATTETGAG CAAAGATGAA GGCGGGCGTC	650
TARALICGAR ICCOMPANDED ACTICITACTT CCGTACAACG	700
ACACGCCGII CIICATA AMAGGA CAC GGCGTTGAGA TGGTGATGCC	750
GATGIAACCG GIACIAATCA TECTTAACCT GATTGCACCT ATTGCGATGG	800
60 AGGTGATAAC ATTCAAATGA TTGTTAACCT GATTGGAGGT	

ATGATGGTCT GCG

813 2) INFORMATION FOR SEQ ID NO: 238 (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases (A) TYPE: Nucleic acid (B) 10 (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 15 (vi)ORIGINAL SOURCE: (A) ORGANISM: Yersinia pestis STRAIN: KIM D27 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238 20 GGAGCGATCT TGGTTGTTGC TGCAACCGAT GGCCCTATGC CGCAGACTCG TGAGCATATC CTGCTGGGCC GCCAGGTTGG TGTCCCATAC ATTATTGTCT 100 TCCTGAACAA ATGTGACATG GTTGACGATG AAGAGTTGCT AGAGTTGGTT 150 GAAATGGAGG TTCGTGAGCT TCTGTCTCAA TACGATTTCC CAGGCGACGA 200 CACTCCAGTC ATCCGTGGTT CAGCGTTGAA AGCCCTGGAA GGTGACGCTG 25 250 AGTGGGAAGC TAAAATTATC GAGTTGGCAG AAGCTCTGGA TAGCTATATT CCGCAACCAG AACGCGCTAT TGATAGACCA TTCCTATTGC CAATTGAAGA CGTATTCTCT ATTTCTGGTC GTGGTACTGT AGTTACTGGT CGTGTAGAAC GTGGTATTGT TAAGGTCGGC GAAGAAGTTG AAATCGTTGG TATTATCGAT 450 ACGATTAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGCA AGCTGCTGGA 500 TGAAGGCCGT GCTGGTGAAA ATGTTGGTGT TCTGCTGCGT GGTACTAAGC 550 GTGACGATGT TCAGCGTGGT CAAGTACTGG CGAAACCAGG TTCTATCAAG 600 CCACACGA AGTTTGAGTC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG 650 CGGCCGTCAT ACACCGTTCT TCAAGGGCTA CCGTCCTCAG TTCTACTTCC 700 35 GTACAACTGA CGTGACCGGT ACCATTGAGC TGCCAGAAGG CGTTGAAATG GTCATGCCTG GTGACAACGT AAACATGGTT GTTAACCTAA TTGCTCCTAT 800 CGCAATGGAT GATGGTCTGC GCTTCGCAA 829 40 2) INFORMATION FOR SEQ ID NO: 239 (i) SEQUENCE CHARACTERISTICS: LENGTH: 817 bases (A) 45 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 50 (vi)ORIGINAL SOURCE: ORGANISM: Yersinia pseudotuberculosis (A) STRAIN: ATCC 29833 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239 TGGAGCGATC TTGGTTGTTG CTGCAACCGA TGGCCCTATG CCGCAGACTC GTGAGCATAT CCTGCTGGGC CGCCAGGTTG GTGTCCCATA CATTATTGTC 100 TTCCTGAACA AATGTGACAT GGTTGACGAT GAAGAGTTGC TAGAGTTGGT 150 TGAAATGGAG GTTCGTGAGC TTCTGTCTCA ATACGATTTC CCAGGCGACG 60 200

5	ACACTCCAGT CATCCGTGGT TCAGCGTTGA AAGCCCTGGA AGGTGACGCT GAGTGGGAAG CTAAAATTAT TCCGCAACCA GAACGCGCTA ACGTATTCTC TATTTCTGGT CGTGGTACAACTGAAACTATA CGCGGTATTG TTAAGGTCGG CGAAGAAGTT GAAATCGTTG GTATTATCGA ATGAAGGCCG TGCTGGTGAA AATGTTCCGC AAGCTGCTGG ATGAAGGCCG TGCTGGTGAA AATGTTCCGC AAGCTGCTGG CGTGACGATG TCAGCGTGG TCAAGTACTG GCGAAACCAG GTTCTATCAA GCGCGCCGTCA AAGTTTGAGT CAGAAGTTTA TATTCTGAGC GCGAAACCAG GTTCTATCAA GCGCCGTCA TACACCGTTC TCAAGGGCT ACCGTCCTCA GTTCTACTTC CGTACAACTG GCGTGACAACG TACACTGGT TGTTAACCTA ATTGCTCCTA TCGCAATGGA TGATGGT TGATGGT TGTTAACCTA ATTGCTCCTA	250 300 350 400 450 500 550 600 650 700 750 800 817
15	•	
	2) INFORMATION FOR SEQ ID NO: 240	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Yersinia rohdei (B) STRAIN: ATCC 43380	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240	
35	TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCAATG CCACAGACTC GCGAGCACAT CCTGTTGGGT CGTCAAGTGG GTGTTCCTTA CATCTTAGTC GCGAGCACAT CCTGTTGGGT GGTTGACGAC GAAGAGTTGC TGGAACTGGT TTCCTGAACA AGTGTGACAT GGTTGACGAC GAAGAGTTTC CCTGGCGATG TGAAATGGAA GTTCGTGAGC TTCTGTCTCA ATACGATTTC CCTGGCGATG ACACTCCGGT TATTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGAGGCC	50 100 150 200 250 300
40	TCCACAGCCA GAGCGCGCGA IIGAIAAACAG TTGTTACCGG GCGTGTTGAG ACGTATTCTC TATCTCAGGC CGTGGAACAG TTGTTACCGG GCGTGTTGAG CGCGGTATCG TCAGAGTGGG CGAAGAAGTT GAAATCGTGG GTATCATCGA CGCGGTATCAAA ACCACTTGTA CCGGTGTTGA ATGTTCCGC AAACTGCTGG CACCATTAAA ACCACTTGTA CCGGTGTGTGA TTCTGCTGCG CGGTACTAAA	350 400 450 500 550 600
45	CGCGATGACG TGCAACGTGG TCAAGGTTTA TATTCTGAGC AAAGATGAAG	650 700 750 800 829
50		
	2) INFORMATION FOR SEQ ID NO: 241	
5	5 (i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 804 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
_	· ^	

### (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Yokenella regensburgei
- 5 (B) STRAIN: ATCC 35313

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241

	TGGCGCGATC	CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACTC	50
10	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG		CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC		150
	AGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA		CCGGGCGACG	
	ACACTCCGAT	CATCCGTGGT	TCTGCTCTGA		AGGCGAAGCA	200
	GAGTGGGAAG	CTAAAATCGT	TGAGCTGGCT		ATTCTTACAT	250
15	CCCAGAACCA	GTTCGTGCTA	TCGACCTGCC	GTTCCTGCTG	CCGATCGAAG	300
	ACGTATTCTC	CATCTCCGGT	CGTGGCACCG	TTGTTACCGG	TCGTGTAGAG	350
	CGCGGTATCG	TTAAAGTTGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	400
	GACTGCTAAG	TCTACCTGTA	CCGGCGTTGA			450
	ACGAAGGCCG	TGCTGGTGAG	AACGTTGGTG	TTCTGCTGCG		500
20	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	TGGTATCAAA	550
	GCCGCACACC		CTGAAGTTTA		GTTCCATCAA	600
	GCGGCCGTCA	TACTCCGTTC	TTCAAAGGCT	TATCCTGTCC	AAAGACGAAG	650
	CGTACAACTG	ACGTGACTGG		ACCGTCCGCA	GTTCTACTTC	700
			TACCATCGAA		GCGTAGAGAT	750
25	TCGC	GGCGACAACA	I CAMMATGGT	TGTTACCCTG	ATCCACCCGA	800
ر بے	1000					804

### 2) INFORMATION FOR SEQ ID NO: 242

30

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 849 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- (A) ORGANISM: Achromobacter xylosoxidans subsp.

  denitrificans
  - (B) STRAIN: ATCC 15173

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242

45						
	TCAGTTCCCC	CGCGATCACA	TGCCCAAGAT	CTACGAAGCG	CTTACTCTGG	50
	CCGACGAGGG	TTCCTCGTTC	GCCGAAAAGG	GTCTGACGCT	GGAAGTGCAG	
	CAACAGCTGG	GCGACGCCGT		ATCGCGCTGG	GCTCCAGCGA	100
	CGGCCTGCGC	CGCGGTATGA	AGGTCACCGG	TACGGGCGCG		150
50	TGCCGGTCGG	CACCGGCACG			CCGATCTCGG	200
				TCATGGACGT	GCTGGGTCGT	250
		AAGCCGGCCC	GATCCAGCAC	GAAGAAAAGC	GTGGCATTCA	300
		CCCCGTTTCG	ACGAACTGTC	GCCGTCGGTG	GAACTGCTGG	350
	AAACCGGCAT	CAAGGTTATT	GACCTGGTCT	GCCCGTTCGC	CAAGGGCGGC	
	AAGGTCGGCC	TGTTCGGCGG		GGCAAGACCG		400
55	GGAACTGATC	AACAACATCG	CCAAGCAGCA		TCAACATGAT	450
					TCGGTGTTCG	500
			CGCGAAGGCA		CCACGAAATG	550
		ACGTTCTGGA		ATGGTGTTCG	GTCAGATGAA	600
	CGAACCCCCG	GGCAACCGTC	TGCGCGTGGC	GCTGACCGGC	CTGACCATGG	650
	CCGAGAAGTT		GGCCGCGACA		CGTGGACAAC	
60	ATCTACCGCT					700
	===0000		CGGIACGGAA	GIGICCGCGC	TGCTGGGCCG	750

T. A	ATGCCGTCG GCAGTGGGCT ACCAGCCCAC GCTGGCCGAA GAAATGGGCA GCTGCAAGA GCGCATCACC TCGACCAAGA CCGGCTCGAT CACCTCGAT	800 849
5 2	) INFORMATION FOR SEQ ID NO: 243	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 787 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(D) TOPOLOGI: HINEAL  (ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Acinetobacter baumannii   (B) STRAIN: ATCC 19606</pre>	
. 20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243	
20	TGAAACTACT TTAGAAGTTC AGCAACAACT TGGTGATGGT GTTGTTCGTA  GGATCGCAAT GGGTTCTACA GAAGGTCTTA AACGTGGTCT TACTGTAACT  GGATCGCAAT GGGTTCTACA GAAGGTCTTA CACCAA CTCTTGGCCG	50 100 150 200
25	AGCACAAACG CACCGATCTC GTCCTATCGA TGAAGCAGGT CCTGTTGCGA TATCATGGAC GTTTTAGGTC GTCCTATCGA TGAAGCAGGT CCTGTAACAA CTGAAGAACG TTTGCCGATT CACCGTCAAG CGCCTTCTTA TGCTGAACAA GCAGCTTCTA CTGACCTTTT AGAAACTGGT ATTAAAGTCA TCGACTTACT GCAGCTTCTT GCGAAAGGTG GTAAAGTTGG TTTTATTCGGT GGTGCTGGTG TTTACCACCGTTT CGCGAAAGCA	250 300 350 400 450
30	CACTCAGGTT TATCTGTGTT TO TAACGTTCTT GACAAAGTAG TAATGACTTC TATCACGAAA TGAAAGATTC TAACGTTCTT GACAAAGTAG TAATGACTTC TATCACGAAA TGAAAGACTC CAGGTAACCG TTTACGCGTA CAATGGTCTA CGGTCAGATG AAAAGACGA	500 550 600 650
35	GCGTTAACTG GTTTGACTAT GGCTGAATAC TTCCGTGATG ATCTACCGTT AAACGGTAAA GGTCGTGACG TATTATTATT CGTCGACAAC ATCTACCGTT ATACACTTGC AGGTACTGAA GTATCAGCAT TGTTAGGTCG TATGCCATCT ATACACTTGC AGGTACTAC ACTTGCAGAA GAAATGGGTG TTCTTCAAGA GCGGTAGGTT ACCAACCTAC ACTTGCAGAT CACTTCG GCGTATTACA TCTACTAAAT CTGGTTCGAT CACTTCG	700 750 787
40	2) INFORMATION FOR SEQ ID NO: 244	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Acinetobacter lwoffii  (B) STRAIN: CDCF 3697	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244	50
6(	GTTCCTAAGA TCTATGACGC TCTCCACGTT GATGGCACTG AAACTACATT AGAAGTTCAG CAACAACTTG GTGATGGCGT AGTTCGTACT ATTGCAATGG GTTCTACTGA AGGCCTTAAG CGTGGTTTGA ACGTAACTAA CACTAACGCG CCGATTTCTG TACCAGTAGG TACAGCGACT CTAGGTCGTA TCATGGACGT	100 <b>1</b> 50

10	TCTGTATTCG CTGGTGTTGG TGAGCGTACT CGTGAAGCGCA CTCAGGTTTA TCACGAGATG AAAGACTCAA ACGTTCTAGA CAAAGTAGCA ATGGTCTACG GTCAGATGAA CGAGCCACCG GGTAACCGTT TACGCGTAGC GTTGACTGGT TTGACCATGG CTGAGTACTT CCGTGACGAG AAAGACGAAA ACGCCAAAGG	250 300 350 400 450 500 550 600 650 750 800 825
15		
	2) INFORMATION FOR SEQ ID NO: 245	
20	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 837 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus     (B) STRAIN: CSG-197  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 245</pre>	
35	CAATGAAGTT CCAGAAATTA ACAATGCCTT AGTCGTAGAC GTTGAAAGAG ATGAAGGTAC AGTATCTCTT ACATTAGAAG TGGCATTACA ACTTGGCGAT GATGTCGTAC GTACAATTGC AATGGATTCT ACTGATGGTG TTAAACGTGG TACAGAAGTT CGAGATAGCG GAGATAGCAT CAGTGTTCCA GTTGGTGATG CTACGTTAGG ACGTGTGTT AATGTTCTTG GTCATAGAAGTT	50 100 150 200
40	GAGAAGCTTG ATACTTCTGT CAAACGTGAT CCAATTCATA GAGAAGCACC TGCATTCGAT CAATTATCAA CAAAAGTTGA AATCTTAGAA ACAGGTATTA AAGTAATTGA TTTACTTGCA CCATATATTA AAGGTGGTAA AATCGGTTTA TTCGGTGGCG CTGGTGTAGG TAAAACAGTA TTAATTCAAG AATTAATTAA TAATATAGCT CAAGAACATG GTGGTATTC AGTATTTGCC GGCGTAGGTG	250 300 350 400 450
45	GTTATTAAGA AAACAGCTAT GGTCTTCGGA CAAATGAGT TGATAGTGGT TGCGCGTATG CGTGTTGCTT TATCAGGCTT AACAATGACT GAACACTTCC GTGATGTACA AGGACAAGAT GTTTTACTAT TTATTGATAA CAATTCAGA TTTACGCAAG CTGGTTCAGA AGTATCAGA	500 550 600 650 700 750
50	AGCCGTTGGT TATCAACCTA CCCTTGCTAC TGAAATGGGT CAATTACAAG AACGTATTAC ATCAACAACT AAAGGATCTG TAACGTC	800 837
	2) INFORMATION FOR SEQ ID NO: 246	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

5

35

- ORGANISM: Alcaligenes faecalis (A)
- STRAIN: ATCC 15554 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246

	(XI) SEQUENCE DES			гтса 50
10	TTCCCCCGCG ACAGCATCCC CGAAAGTTCG GCTTTCGCAG AATTGGGTGA CGGTGTAGTT CTGCGCCGCG GTATGGAAGT CGTGGGTGTC GGCACCCTGG TTGACGAAGT CGGTCCTATT	AAAAAGGCCT CGCACCATCG GGCCGGTTCG GTCGCATTAT CAGTCCGACG	GACTTTTGAA GTACAGGCATGGGTTC CAGCGA TCTCCG GGACGTTCTG GGTCGCC CATTCA TCCGTAGAGC TGCTGG	CAAC 100 CGGC 150 FTCC 200 CCTA 250 CCAG 300 AAAC 350
20	CCTGCGCCTA CTTTCGACGA CGGTATTAAA GTGATTGACC TTGGTCTGTT CGGTGGTGCC CTGATCAACA ACATCGCCAA TGTGGGTGAG CGTACCCGTC ATGCTGGCGT TATCCAGATC GTGTTCGGTC AGATGAACGA	TGGTTTGCCC GGTGTGGGCA GGCACACAGC AAGGTAACGA GACAACCTGA ACCTCCAGGC	GTTCGCCAAG GGTGGT AGACCGTGAA CATGCT GGTCTGTCCG TGTTTC CTTCTACCAC GAAATC GCGAGTCCAA AGTGGC AACCGTCTGC GTGTGC TGACGAAGGC CGTGAC	AAGG 400 GGAG 450 GCCGG 500 GCCTG 600 GCATG 650 CATCC 700
25	GTCCGGCCTG ACCATGGCCC TGTTCTTTGT GGACAACAT TCCGCTCTGC TGGGTCGTA GGCCGAGGAA ATGGGTAAG G	TACCGCTACA	CGCTGGCCGG TACAGA GTGGGTTACC AGCCTA	ACGCT 800

#### 2) INFORMATION FOR SEQ ID NO: 247 30

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 846 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
    - TOPOLOGY: Linear (D)

# (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE: 40
  - ORGANISM: Bacillus anthracis (A)
  - STRAIN: 4229 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247

	(X1) SECOPIACE PROCEST -				
45	CAACGAAAAC GGAACIZIOOII	TWWCITWG	GCCCTTACGG ATTTGAAGTT TGTCTTCCAC	TAAAACAGAG GCACTTCATT AGATGGACTT	50 100 150
50	TAGGTGATGA CACAGTTCGT A GTTCGTGGCA CAGAAGTAGA A GTTCGTGGCA ACACTTGGTC G	AGATACTGGT STGTATTTAA	AAAGCAATCT CGTATTAGGT	CTGTACCAGT GATGCAATTG AATTCACCGT	200 250 300
50	ACTTAGATGG TGAGGTTCCT G CAAGCACCTG CATTCGAAGA A	ATTATCTACT	AAAGTAGAAA TTACATTAAG	TTCTTGAAAC GGTGGTAAGA	350 400 450
55	TCGGTCTATT CGGTGGTGCC G	GGTGTAGGTA AGAACACGGT AGGGTAATGA	AAACGGTATT GGTATCTCTG CTTATACCAC	TATTCGCTGG GAAATGAGCG	500 550
	ATTCTGGCGT AATTAAGAAA A	ACTGCGATGG	TATTCGGACA ACAGGTTTAA	AATGAACGAG CAATGGCTGA	600 650 700
60	COMPRESCRIPT GATGAGCAAG	GGTTCTGAAG	ACTTCTGTTC TATCTGCCCT	TCTTGGCCGT	750

	ATGCCATCTG CGGTAGGTTA CCAACCAACA CTTGCAACAG AAATGGGTCA ATTACAAGAG CGTATTACAT CTACAAATAA AGGGTCTATC ACGTCT	800 846
5		
	2) INFORMATION FOR SEQ ID NO: 248	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 810 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Bacillus cereus     (B) STRAIN: ATCC 14579</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248	
25	ACGTGTATTC AACGTATTAG GTGATGCAAT TGACTTAGAT GGTGAACTTC CTGCGGATGT ACACCGTGAT CCAATTCACC GTGAACGTGAACTTC	50 100 150 200 250 300
30	CTTACTTGCT CCTTACATTA AGGGTGGTAA GATCGGCCTA TTCGGTGGTG CCGGCGTAGG TAAAACAGTA TTAATTCAGG AGTTAATCAA TAACATCGCA CAAGAGCACG GTGGTATCTC TGTATTCGCT GGTGTAGGTG AGCGTACTCG TGAGGGTAAT GACTTATACC ACGAATGAC CCATTATTCGCT AGCGTACTCG	350 400 450 500
35	AAACTGCGAT GGTATTCGGA CAAATGAG CGATTCTGGC GTAATCAAGA CGTGTTGCAT TAACAGGTTT AACAATGACG AGCCACCTGG AGCACGTCAA AGGACAAGAC GTACTTCTGT TCATCGATAA CATCTTCCGT TTCACGCAAG CGGGTTCTGA AGTATCTGCC CTTCTTGGTC GTATGCCATC TGCGGTAGGT TACCAACCAA CACTTGCAAC AGAAATGGGT CAATTACAAG AGCGTATTAC ATCTACAAAT	550 600 650 700 750 800
40		810
	2) INFORMATION FOR SEQ ID NO: 249	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 944 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Bacteroides distasonis     (B) STRAIN: ATCC 8503</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 249	
60	CTTTGATTAT GGGACAGAAG AAACAGTAAC CCTCCCCGT ATCCACGACG CCATGGAGAT TTCCCGCCCA AACGGAAAGA TCTTGATCGT CGAAGTTCAG CAACACATCG GGGAAAACAC CGTCCGTACC GTAGCGATGG ATACGACCGA	50 100 150

5	TGCCGACCGG CCTATCGATG TCGTGAGCCT ACACGGGTAT AAGATCGGAC GGAATTGATC CCGGTGTGGG ATCCAATCCG GGCAGGCAAC CGCAGGCTAC	CCTAAATTCG TAAAGTAATC TTTTCGGAGG AACAACATCG TGAACGTACA GTGTCATCCG TGGGACTTGT CTTGGTATTC CCTTATCCGG	AAAGGACGTT GCTTACTAAA AGGATCTGAC GATTTATTGG AGCCGGAGTC CAAAGAAAAA CGTGAAGGAA ATACGGCGAG CGAAGATCGA GGGCAGATGA	TAATGAATGT GACGGGGCTC AACGACCCAA AACCTTACGC GGCAAAACGG CAACGGATTC ATGACCTATT GAGTTTAAGA TTACGATGAA ACGAACCGCC GCCGAATCCT		200 250 300 350 400 450 500 550 600 650 700 750 800
	TCGTCCGTGG AGCCTCTGAG	GGAGAAAGAA	AAGATATATT	ATTCTTCATC	GATAATATCT GGGGCGTATG	850
15	TCCGTTTCAC CCTTCCGCCG GCAAGAGCGT		ACCGACATTO	GCCACGGAAA		900 944

#### 2) INFORMATION FOR SEQ ID NO: 250 20

# (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 939 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE: 30

25

55

- ORGANISM: Bacteroides ovatus (A)
- STRAIN: ATCC 8483 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250

	(XI) PEGOD	1102				
35 40	TTGAGGGTAC	GGATGCAGAA GGCCAAACGG AATACGGTGC CATGAAAGTG AGATTAAAGG	CAAAATACTG GTACCGTAGC TATCCCACCG ACGACTGATG	CTTCTAGAAG	CGACGCACTG TTCAGCAACA ACTGACGGAC CACGATGCCG GTGATTCGAT ATTCATCGCG	50 100 150 200 250 300
40	CGACGGTATG	AAAGGACTCG GTTTGAGGAT	ACCGCAAAGG TTGACTACTG	TGCAAGAGGT	GCTCTTCACA	350
	ACCCCCTAA		GCTCGAACCG	TATGCCAAAG	GTGGTAAAAT	400
	GGTATCAAAG	TGATCGACCT	GTGTAGGAAA	GACTGTATTG	ATTCAGGAAC	450
	. CGGTTTGTTC	GGCGGTGCCG	AAACATAATG	GATTCTCTGT	ATTTGCCGGA	500
45	TTATCAATAA	TATCGCCAAG		TTGCTGCGCG	AAATGATTGA	550
10	GTAGGTGAAC	GTACCCGTGA	AGGTAACGAC	CAAAGAAGGA	ATGGAGAAAG	600
	ATCCGGTGTA	ATCCGTTACG				650
	GTCACTGGGA	TCTTTCGAAA				700
	GTGTCTCTGA	TTTTCGGTCA				750
50	TGTGGCATTG		CGGTGGCGGA		·	800
50	AAGAAGGTGA		ATTCTGTTCT			850
	TTCACGCAAC		AGTGTCCGCC			900
	CGCTGTTGGT	00000	CGTTGGCTAC		GCGWIGCHOO	939
	AACGTATCAC			TCACCTCCG		
	AMCGINICAC	, 0101111				

2) INFORMATION FOR SEQ ID NO: 251

(i) SEQUENCE CHARACTERISTICS: 60

5		
	(ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE:	
10	(A) ORGANISM: Leclercia adecarboxylata (B) STRAIN: ATCC 23216	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251	
15	CGAATTCCCT CAGGATGCCG TACCGCGCGT GTACGATGCT CTTGAGGTTC AGAATGGTAA TGAGAGCCTG GTGCTGGAAG TTCAGCAGCA GCTCGGCGGC GGTATTGTGC GTACCATCGC CATGGGTTCT TCCGACGGTC TGCGTCGTGG TCTGGAAGTT AAAGACCTCG AGCACCCAAT CGAAGTACCA GTAGGTAAAG	50 100 150
20	CAACCCTGGG CCGTATCATG AACGTCCTGG GTCAGCCGAT CGACATGAAA GGCGACATCG GCGAAGAAGA GCGTTGGGCT ATCCACCGTT CAGCACCTTC CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG TTATCGACCT GATGTGTCCG TTCGCGAAGG GCGCTAAAGT TCGTCTTTC	200 250 300 350 400
25	GGCGGTGCGG GTGTAGGTAA AACCGTAAAC ATGATGGAGC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCCGT GTTTGCAGGC GTGGGTGAGC GTACTCGTGA GGGTAACGAC TTCTACCACG AAATGACCGA CTCCAACGTT CTGGACAAAG TATCCCTGGT TTACGGCCAG ATGAACGAC CACCACGAA	450 500 550 600
30	ACGAAGGTCG TGACGTTGA CCGGCCTGAC CATGGCTGAG AAGTTCCGTG ACGAAGGTCG TGACGTACTG CTGTTCGTTG ACAACATCTA CCGTTACACC CTGGCCGGTA CGGAAGTATC CGCACTGCTG GGTCGTATGC CATCAGCAGT AGGCTACCAG CCGACCCTGG CGGAAGAGAT GGGTGTTCTG CACGAACCTA	650 700 750 800
	TCACCTCTAC CAAAACCGGT TCTATCACCT CCG  2) INFORMATION FOR SEQ ID NO: 252	833
35	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
45	<ul><li>(A) ORGANISM: Stenotrophomonas maltophilia</li><li>(B) STRAIN: CDC F3338</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252	
50	GTGTACGACG CACTGAAGGT GGAAAACACC GAGATCACCC TCGAAGTCCA GCAGCAGCTG GGCGACGGCG TGGTGCGTAC CATCGCCCTC GGTTCCACCG ACGGCCTGAA GCGCAACCTG GTTGCCGTCA ACACCGGCCG TGGCATCTCG	50 100 150
55	GTGCCGGTCG GCGCCGGCAC CCTGGGCCG ATCATGGACG TGCTGGGCCG TCCGATCGAC GAAGCCGGCC CGGTCGCTGC CAGCGACAAC TGGGAAATCC ACCGCGCTGC GCCGTCGTAT GAAGACCAGT CCCCGGCCAC CGAGCTGCTG GAAACCGGCA TCAAGGTCAT CGACCTGATG TGCCCGTTCG CCAAGGGCGG CAAGGTCGGC CTGTTCGGCG GCCCGCCGT CGGCAAGACC GTCAACATGA	200 250 300 350
50	TGGAACTGAT CAACAACATC GCCAAGGCGI CGGCAAGACC GTCAACATGA GCCGGCGTGG GTGAGCGTAC CCGTGAGGCG ACAGCGCCT GTCCGTGTTC GCCGGCGTGG GTGAGCGTAC CCGTGAGGCC AACGACTTCT ACCACGAGAT GAAGGACTCC AACGTCCTGG ACAAGGTGGC GATGGTGTAC GGCCAGATGA	400 450 500 550

5	ACGAGCCGCC GGGCAACCGT CTGCGCGTCG CCCTGACCGG CCTGACCATG GCCGAGTACT TCCGCGATGA GAAGGACGAA AACGGCAAGG GCAAGGACGT CCTGCTGTTC GTCGACAACA TCTACCGCTA CACCCTGGCC GGTACCGAAG TGTCGGCAGAG AAATGGGCGT CCTGCAGGAG CGCATCACCT CGACCAAGAA TGGTTCGATC ACCTCGATC	600 650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 253	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 864 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Bartonella henselae   (B) STRAIN: ATCC 49882</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253	
25	AGTTTGAAGG CCCTTTGCCA AATATTCTCA ATGCATTAGA AACAGATAAT TTGGGCAATC GGCTAGTTTT AGAAGTTGCT CAGCATTTGG GTGAAAATAC CGTGCGTACC ATTGCCATGG ATACTACCGA TGGTCTTGTC CGTGGTCAAA	50 100 150 200
30	AAGTTTTTGA TACAGGAACA CAGATCATGAGAG CCGGTTGATA ATGTTGGCCC CTTGGTCGTA TTATGAATGT GATTGGAGAG CCCAGAGAGGCT CCTGAATATG AATTGCTACA AGCAAAACCC GTTCCATTCA CCAAGAGGCT CCTGAATATG TGGAGCAATC AACCGCATCA GAAATCCTTG TGACTGGTT TGTTTGGAGG	250 300 350 400
35	TGCCGGTGTT GGTAAAACCG TICTCATTTG CCGGTGTTGG TGAACGTACA CAAAGGCGCA TGGTGGCTAT TCAGTGTTTG CCGGTGTGAAGCC GTGTGAATGT CGTGAGGGAA ATGATCTTTA TTATGAAATG ATCGAAAAA TGTGCACTCG GAATCCAAAA GACAACAATG GTTCAACAGA AGGATCAAAA TGTGCACTCT	450 500 550 600 650
40	TTTATGGGCA AATGAATGAA CCACCAGGGG GATGAGGGAC AAGATGTTTT TCAGGATTGA CCATTGCAGA AAGTTTCCGT GATGAGGGAC GCTGAAGTGT TCAGGATTGA CATAATATTT TCCGTTTTAC GCAAGCAGGC GCTGAAGTGT	700 750 800 850 864
45		
-	2) INFORMATION FOR SEQ ID NO: 254	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 866 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	5 (ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Bifidobacterium adolescentis</li><li>(B) STRAIN: ATCC 15703</li></ul>	

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254

	TTCCCGGTGG	GCCACCTGCC	CGACATTTAC	AATGCACTTA	CCGTTGAACT	50
	GKCCAACACC	GGYGTCCACG	AASAGGGCGA	GACCACCAAG	AAGATCACCC	100
5	TTGMGGTTGA	ACAGCATCTT	GGCGATTCCA	CCGTGCGTAC	CGTCGCTCTG	150
	AAGCCGACTG	ACGGCCTTGT	GCGTGGCGCC	ACCGTGTATG	ACACCGGCGG	200
	CCCGATCTCT	GTGCCGGTTG	GCGATGTCAC	CAAGGGCCAC	GTATTCGACG	250
	TGTCCGGCAA	CATCCTCAAC	AAGAAGGCCG	ACGAGACCGT	TAAGGTTACC	300
	GAACGTTGGT	CTATCCACCG	TAACCCGCCG	GCATTCGACC	AGCTGGAGTC	350
10	CAAGACCCAG	ATGTTCGAAA	CCGGTATCAA	GGTCATCGAT	TTGCTGACCC	400
	CGTATGTGCA			TCGGCGGCGC	AGGCGTCGGC	450
	AAGACCGTGC	TGATCCAGGA		CGTGTGGCTC	AGAACCACGG	500
	CGGTGTGTCC	GTGTTCGCAG	GCGTCGGCGA	GCGTACCCGT	GAGGGTAACG	550
	ATCTGATCGG	CGAAATGGAC	GAAGCCGGCG	TGCTCGAGAA	GACCGCACTG	600
15		AGATGGATGA	GCAGCCGGGT	ACCCGTCTGC	GCGTGCCGCT	650
	GACCGCACTG	ACCATGGCAG	AGTACTTCCG	TGACGTACAG	AATCAGGACG	700
	TGCTGCTGTT	CATCGATAAC	ATCTTCCGTT	TCACCCAGGC	TGGTTCCGAG	750
	GTGTCCACCC	TGCTCGGCCG		GCAGTGGGCT	ACCAGCCGAA	800
~ ~		GAGATGGGCG	CGCTGCAGGA	GCGAATCACT	TCGACCCGTG	850
20	GACACTCCAT	CACCTC				866

### 2) INFORMATION FOR SEQ ID NO: 255

25

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 842 bases
  - TYPE: Nucleic acid STRANDEDNESS: Double (B)
  - (C)
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Brucella abortus
    - (B) STRAIN: S2308

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255

40 45	GACCAAGGCA	TTCTCGAAGT ATGGACGCAA CGAACCGATC ACGTCATCGG ACCCGCGCCA AGCCGAAATT ACGCCAAGGG ACCGTTCTCA TTATTCCGTG	TGCCCAGCAC CCGAAGGTCT ATGGTGCCGG CGAGCCGGTT TCCACCAGAA CTGGTCACGG CGGCAAGATC TCATGGAACT TTCGCAGGCG	CTCGGCGAAG CGTTCGCGGT TCGGCGTCGA GACGAAGCAG CGCGCCGGAA GCATCAAGGT GGCCTCTTCG CATCAACAAC TCGGTGAGCG	CAGGAAGCAC AACGCTTGGC GCCCCATCAA TATATCGAAC CGTCGACCTT GCGGTGCAGG GTCGCCAAGG TACCCGTGAG	50 100 150 200 250 300 350 400 450 500
55	CGGCGGCGAC CCCCGGGTGC AACTTCCGTG CCGCTTCACG CTTCCGCTGT CAGGAACGCA	GGCTCCAAGG CCGCGCCCGC ACCAGGGCCA CAGGCAGGTT GGGTTATCAG	CGGAAGTGTC CCGACGCTGG	TCGGGCGTGA TTACGGCCAG CCGGTCTGAC TTCTTCGTGG GGCTCTTCTC CAACCGACAT TCGATCACCT		550 600 650 700 750 800 842

²⁾ INFORMATION FOR SEQ ID NO: 256

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 833 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Cedecea davisae</li><li>(B) STRAIN: ATCC 33431</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256	
15	CGAGTTCCCT CAGGACGGCG TACCGCGCGT TKATGATGCG CTTGAAGTAC AAAATAACAG CGAGCAGCTG GTGCTGGAAG TTCAGCAGCATC TGCGTCGTGG	50 100 150
20	TCTGGAAGTT AAAGACCTCG AGCACCTGG GTCAGCCGAT CGACATGAAA CGACCCTTGG CCGTATCATG AACGTGCTGG GTCAGCCGAT CGACATGAAA GGCGATATCG GCGAAGAAGA CCGTTGGGCT ATTCACCGCG CTGCACCTTC GGCGATATCG GCGAAGAAGA CCGCTAAAG CTATGAAGAG CTGTCCAGCACT CTCAGGAACT GCCCTAAAGT AGGTCTGTTC	200 250 300 350 400 450
25	GGTGGTGCGG GCGTGGGTAA AACCGTTCCGT GTTTGCGGGC GTGGGTGAGC CATCGCGATC GAGCACTCCG GCTACTCCGT GTTTGCGGGC GTGGGTGAGC GTACTCGTGA GGGTAACGAC TTCTATCACG AAATGACCGA CACCGGGTAA CTGGACAAAG TTGCCCTGGT TTACGGCCAG ATGACGAGC AAATTCCGTG	500 550 600 650
30	CCGTCTGCGC GTAGCGCTGA CCGGTCTGAC CATCGCGCTACACC ACGAAGGTCG TGACGTTCTG CTGTTCGTTG ATAACATCTA CCGTTACACC CTGGCCGGTA CTGAAGTATC CGCGCTGCTG GGTCGTATGC CTTCTGCGGT AGGTTACCAG CCAACTCTGG CGGAAGAGAT GGGTGTTCTT CAGGAGCGTA TTACCTCCAC CAAGACCGGT TCCATCACCT CCG	750 800 833
35	2) INFORMATION FOR SEQ ID NO: 257	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(	
	(A) ORGANISM: Cedecea Tapager (B) STRAIN: ATCC 33432	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257	50
55	TCTGGGTCGT ATCATGAACG IGCIGGGICA ACCGCGCAGC ACCTTCCTAT ACATCGGCGA AGAAGATCGT TGGGCGATTC ACCGCGCA TCAAAGTTAT	100 150 200 250 300 350 400
6	CGACCTGATT TGTCCGTTCG CTAAGGGCCG TGGAGCTGAT CCGTAACATC	450

5	GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCAGGCGTGG GTGAGCGTAC TCGTGAGGGT AACGACTTCT ACCACGAGAT GACCGACTCC AACGTTCTGG ACAAAGTTGC ACTGGTTTAC GGCCAGATGA ACGAGCCGCC AGGTAACCGT CTGCGCGTAG CGCTGACCGG TCTGACCATC GCGGAGAAT TCCGTGACGA AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG CCGGTACAGA AGTTTCTGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGT TATCAGCCTA CTCTGGCAGA AGAGATGGGT GTTCTTCAGG AGCGTATTAC CTCCACCAAG ACCGGTTCCA TCACTTCCG	500 550 600 650 700 750 800 829
10		
	2) INFORMATION FOR SEQ ID NO: 258	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 830 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Cedecea neteri (B) STRAIN: ATCC 33855	
25		
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 258	
30	TCCCTCAGGA CGGCGTACCG CGCGTTTATG ACGCGCTTGA GGTACAGAAC AACAATGAGA AGCTGGTGCT GGAAGTTCAG CAGCAGCTCG GCGGCGGTAT CGTGCGTACC ATCGCAATGG GTTCTTCCGA CGGTCTGCGT CGTGGTCTGG TAGTAACAGA CCTCGAGCAC CCGATCGAAG TCCCGGTAGG TAAAGCGACC CTTGGCCGTA TCATGAACGT GCTGGGTCAG CCGATCGACA TGAAAGGCGA	50 100 150 200 250
35	CATCGGCGAA GAAGACCGTT GGGCGATTCA CCGCGCAGCA CCTTCCTACG AAGAGCTGTC CAGCTCTCAG GAATTGCTGG AAACCGGCAT CAAAGTTATC GACCTGATTT GTCCGTTCGC TAAGGGCGGT AAAGTAGGTC TGTTCGGTGG TGCGGGCGTA GGTAAAACCG TAAACATGAT GGAGCTGATC CGTAACATTG CGATCGAGCA CTCCGGTTAT TCCGTGTTTG CGGGCGTGGG TGACCCTAGT	300 350 400 450 500
40	TAAAGTAGCA CTGGTTTACG GCCAGAAATG ACCGACTCCA ACGTTCTGGA TAAAGTAGCA CTGGTTTACG GCCAGATGAA CGAGCCACCA GGTAACCGTC TGCGCGTAGC GCTGACCGGT CTGACCATCG CGGAAAAATT CCGTGACGAA GGCCGCGACG TTTTGCTGTT CGTTGATAAC ATCTACCGTT ATACCCTGGC CGGTACCGAA GTATCTGCAC TGCTGGGTCG TATGCCTTCT GCCGTACGTT	550 600 650 700 750
	ATCAGCCAAC TCTGGCAGAA GAGATGGGTG TTCTTCAGGA GCGTATTACC TCCACCAAGA CCGGTTCTAT CACCTCCGTA	800
45		830
	2) INFORMATION FOR SEQ ID NO: 259	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 931 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Chryseobacterium meningosenticum	
00	(B) STRAIN: CDC B7681	
	286	

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259

TTTCAGGAAG TAGAGGAACT ACCAAACATT TATGACGCAC TTGAA	GTTGT 50
TITCAGGARA CACATA TONTOTTAGA AGTTGAACAA CACAT	CGGTG 100
5 CAGAGAAGGC CAGAAAGGTC TGATCTTAGA ACTTAGACAGACGG ACTTC	AAAGA 150
	GGTGA 200
	CGGAC 250
	CACCT 300
TOTAL A CHERNICANC TECTCOTICAL GENERATATA CAGGI	ATCAA 350
	TTTGT 400
TCGGTGGTGC TGGTGTAGGT AAAACAGTAT TGATCCAGGA ATTGA	TTAAT 450
	GGTGA 500
	TGGTA 550
	GATGG 600
	GCTTT 650
	AGCCC 700
	GCGGA 750
	CACACA 800
	GGTAG 850
	GAATT 900
ACTTCAACTA AAAACGGATC TATTACATCT G	931

2) INFORMATION FOR SEQ ID NO:260

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 726 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Citrobacter amalonaticus
- (B) STRAIN: ATCC 25405
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260

	GTATCGTACG	TACCATCGCA	ATGGGTTCTT	CCGACGGTCT	GCGTCGTGGT	50
		AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	TAGGTAAAGC	100
	AACCCTGGGT	CGTATCATGA	ACGTCCTGGG	TCACCCGATC	GACATGAAAG	150
45	GCGATATCGG	TGAAGAAGAG	CGTTGGGCTA	TCCACCGCGC	AGCACCGTCC	200
	TATGAAGAGC	TGTCCAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	250
	TATCGACCTG	ATGTGTCCGT	TCGCGAASGG	CGGTAAAGTG	GGTCTGTTCG	300
	GTGGTGCGGG	TGTAGGTAAA	ACCGTAAACA	TGATGGAGCT	TATCCGTAAC	350
	ATCGCGATCG	AGCACTCCGG	TTACTCCGTG	TTTGCGGGCG	TAGGTGAACG	400
50	TACTCGTGAG	GGTAACGACT	TCTACCACGA	AATGACCGAC	TCCAACGTTC	450
	TGGATAAAGT	ATCCCTGGTA	TATGGCCAGA	TGAACGAGCC	GCCGGGAAAC	500
	CGTCTGCGCG	TTGCACTGAC	CGGTCTGACC	ATGGCAGAGA	AATTCCGTGA	550
	CGAAGGTCGT	GACGTACTGC	TGTTCGTCGA	TAACATCTAT	CGTTACACCC	600
	TGGCCGGTAC	GGAAGTTTCC	GCACTGCTGG	GTCGTATGCC	ATCAGCGGTA	650
55	GGTTACCAGC	CGACCCTGGC	GGAAGAGATG	GGTGTTCTGC	AGGAACGTAT	700
	CACTTCTACC	AAAACCGGTT	CTATCA			726

60 2) INFORMATION FOR SEQ ID NO: 261

5	(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 812 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter braakii     (B) STRAIN: ATCC 43162</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261	
15	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAT CTCGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACTC TGGGTCGTAT	50 100 150 200
20	CATGAACGTC CTGGGTCACC CGATCGACAT GAAAGGCGAT ATCGGTGAAG AAGAGCGTTG GGCTATCCAC CGCGCGGCAC CTTCCTATGA AGAGCTGTCC AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG	250 300 350 400
25	GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAACAC TCCGGTTACT CCGTGTTTGC GGGCGTGGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAAGTATCCC TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCT	450 500 550 600
30	CTGACCGGTC TGACCATGGC AGAGAAGTTC CGTGACGAAG GTCGTGACGT TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACAGAAG TATCCGCTCT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCGACC CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC CGGTTCTATC AC	650 700 750 800 812
35	2) INFORMATION FOR SEQ ID NO: 262	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 811 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Citrobacter koseri (B) STRAIN: ATCC 27156	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262	
55	GCGCGTGTAC GACGCCCTTG AGGTGCAGAA TGGTAATGAA CATCTGGTGC TGGAAGTTCA GCAGCAGCTC GGTGGCGGTA TCGTACGTAC CATCGCCATG GGTTCTTCCG ACGGCCTGCG TCGTGGTCTG GATGTGAAAG ACCTTGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC GCTGGGTCGT ATCATGAACG TACTGGGCGA ACCAGTAGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT TGGGCTATCC ACCGTGCGGC ACCGTCCTAC GAAGAGTTGT CAAACTCTCA	50 100 150 200 250 300
60	GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGCCCGTTCG CGAAGGGCGG TAAAGTGGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAAC ACTCCGGTTA	350 400 450

5	CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CGCTGACCGG CCTGACCATG GCGGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TACCAGCCGA CCCTGGCGGA AGAGATGGGT GTTTTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCGT A	500 550 600 650 700 750 800 811
10		
	2) INFORMATION FOR SEQ ID NO: 263	
	·	
15	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 816 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
20 -	(ii) MOLECULE TYPE: Genomic DNA	
20 .		
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter farmeri</pre>	
	(A) ORGANISM: Citrobacter farmeri (B) STRAIN: ATCC 51112	
25	(=,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263	
30	GATGCCGTAC CGCGCGTGTA CGATGCTCTT GAGGTTATGA ATGGTAAAGA GAGTCTGGTG CTGGAAGTTC AGCAGCAGCT CGGCGGCGGT ATCGTACGTA CCATCGCGAT GGGTTCTTCC GACGGTCTGC GTCGTGGTCT GGAAGTAAAA GACCTCGAAC ACCCGATCGA AGTCCCGGTA GGTAAAGCAA CTCTGGGTCG TATCATGAAC GTCCTGGGTC ACCCGATCGA CATGAAAGGC GATATCGGTG	50 100 150 200 250 300
	AAGAAGAGCG TTGGGCTATC CACCGCGCAG CGCCATCCTA TGAAGAGCTG TCCAGCTCTC AGGAACTGCT GGAAACCGGT ATCAAAGTTA TCGACCTGAT	350
35	GTGTCCGTTT GCGAAGGGCG GTAAAGTCGG TCTGTTCGGT GGTGCGGGTG	400
	TAGGTAAAAC CGTAAACATG ATGGAACTCA TCCGTAACAT CGCGATCGAG CACTCCGGTT ACTCCGTGTT TGCGGGCGTA GGTGAACGTA CTCGTGAGGG	450 500
	TAACGACTIC TACCACGAAA TGACCGATIC CAACGITCIG GATAAAGTAT	550
	CCCTGGTATA TGGCCAGATG AACGAGCCGC CGGGAAACCG TCTGCGCGTT	600
40	GCGCTGACCG GTCTGACCAT GGCAGAGAAA TTCCGTGACG AAGGTCGTGA CGTACTGCTG TTCGTCGATA ACATCTATCG TTACACCCTG GCCGGTACGG	650 700
	AAGTATCCGC ACTGCTGGGC CGTATGCCAT CAGCGGTAGG CTACCAGCCA	750
	ACCCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CTTCTACCAA AACCGGTTCT ATTACC	800
45	AACCGGITCI ATTACC	816
	2) INFORMATION FOR SEQ ID NO: 264	
	2) INFORMATION FOR BEQ ID NO. 204	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
5 <b>5</b>	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(ri) ODICINAL COURCE	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter freundii</pre>	
<b>C</b> O	(P) CEDATAL ANGLOSO	

STRAIN: ATCC 8090

60

(B)

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264

	AGGATGCCGT	ACCGCGCGTG	TACGATGCTC	TTGAGGTTAT	GAATGGTAAA	50
5	GAGAGCCTGG	TGCTGGAAGT	TCAGCAGCAG	CTCGGCGGCG	GTATCGTACG	100
	TACCATCGCC	ATGGGTTCTT	CTGACGGTCT	GCGTCGTGGT	CTGGAAGTTA	150
	AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	TAGGTAAAGC	AACGCTGGGT	200
	CGTATCATGA	ACGTTCTGGG	TCACCCGATC	GACATGAAAG	GCGATATCGG	250
	TGAAGAAGAG	CGTTGGGCTA	TCCACCGTGC	AGCACCTTCC	TACGAAGAGC	300
10	TGTCAAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	TATCGACCTG	350
	ATGTGTCCGT	TCGCTAAGGG	CGGTAAAGTT	GGTCTGTTCG	GTGGTGCGGG	400
	TGTAGGTAAA	ACCGTAAACA	TGATGGAGCT	GATCCGTAAC	ATCGCGATCG	450
	AACACTCCGG	TTACTCCGTG	TTTGCGGGCG	TAGGTGAACG	TACTCGTGAG	500
	GGTAACGACT	TCTACCACGA	AATGACCGAC	TCCAACGTTC	TGGACAAAGT	550
15	ATCCCTGGTA	TATGGCCAGA	TGAACGAGCC	GCCTGGAAAC	CGTCTGCGTG	600
	TTGCGCTGAC	CGGTCTGACC	ATGGCTGAGA	AGTTCCGTGA	CGAAGGTCGT	650
	GACGTTCTGC	TGTTCGTTGA	TAACATCTAT	CGTTACACCC	TGGCCGGTAC	700
	AGAAGTATCT	GCACTGCTGG	GTCGTATGCC	ATCAGCGGTA	GGCTACCAGC	750
	CGACCCTGGC	GGAAGAGATG	GGTGTTCTGC	AGGAACGTAT	CACCTCCACC	800
20	AAAACCGGTT	CTATCACCT				819

### 2) INFORMATION FOR SEQ ID NO: 265

25 .

30

35

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Citrobacter koseri
- (B) STRAIN: ATCC 27028

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265

40	GATGCCGTAC	CGCGCGTGTA	CGACGCCCTT	GAGGTGCAGA	ATGGTAATGA	50
	ACATCTGGTG	CTGGAAGTTC	AGCAGCAGCT	CGGTGGCGGT	ATCGTACGTA	100
	CCATCGCCAT	GGGTTCTTCC	GACGGCCTGC	GTCGTGGTCT	GGATGTGAAA	150
	GACCTTGAGC		AGTCCCGGTA	GGTAAAGCAA	CGCTGGGTCG	200
	TATCATGAAC	GTACTGGGCG	AACCAGTAGA	CATGAAAGGC	GAGATCGGTG	250
45	AAGAAGAGCG	TTGGGCTATC	CACCGTGCGG	CACCGTCCTA	CGAAGAGTTG	300
	TCAAACTCTC	AGGAACTGTT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTGGG	TCTGTTCGGT	GGTGCGGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAA	450
	CACTCCGGTT	ACTCCGTGTT	TGCGGGCGTA	GGTGAACGTA	CTCGTGAGGG	500
50	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC	GACAAAGTAT	550
	CCTTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGCTG	TTCGTCGACA	ACATCTACCG	TTACACCCTG	GCCGGTACGG	700
	AAGTATCCGC	ACTGCTGGGT	CGTATGCCTT	CAGCGGTAGG	TTACCAGCCG	750
55	ACCCTGGCGG	AAGAGATGGG	TGTTTTGCAG	GAACGTATCA	CCTCCACCAA	800
	AACCGGTTCT	ATCACCTCCG	TA			822

60 2) INFORMATION FOR SEQ ID NO:266

	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 820 bases	
5	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter sedlakii</pre>	
	(A) ORGANISM: Citrobacter sedlakii (B) STRAIN: ATCC 51115	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266	
15	GATGCCGTAC CGCGCGTGTA CGACGCCCTT GAGGTACAGA ATGGTAATGA	50
	GCGTCTGGTG CTGGAAGTTC AGCAGCAGCT CGGTGGCGGT ATTGTACGTA CCATCGCCAT GGGTTCTTCC GACGGTCTGC GTCGTGGTCT GGAAGTAAAA	100 150
	GACCTTGAGC ACCCGATCGA AGTCCCGGTA GGTAAAGCAA CGCTGGGTCG	200
20	TATCATGAAC GTACTGGGCG AACCAGTAGA CATGAAAGGC GACATCGGTG AAGAAGAGCG TTGGGCTATC CACCGTGCCG CGCCGTCCTA TGAAGAGTTG	250 300
	TCTAACTCTC AGGAACTGCT GGAAACCGGC ATCAAAGTTA TCGACCTGAT	350
	GTGTCCGTTC GCGAAGGGCG GTAAAGTCGG TCTGTTCGGT GGTGCGGGCG TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG	400 450
25	CACTCCGGTT ACTCTGTGTT TGCGGGCGTG GGTGAACGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGACCGACTC CAACGTTATC GACAAAGTAT	500
	CCCTGGTGTA CGGCCAGATG AACGAGCCGC CTGGAAACCG TCTGCGCGTC	550 600
	GCACTGACCG GTCTGACCAT GGCTGAGAAG TTCCGTGACG AAGGTCGTGA CGTTCTGCTG TTCGTCGATA ACATCTATCG TTACACCCTG GCCGGTACGG	650 700
30	AAGTATCCGC ACTGCTGGGT CGTATGCCTT CAGCGGTAGG TTATCAGCCG	750
	ACTCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CCTCAACCAA AACCGGTTCT ATCACCTCCG	800 820
35	2) INFORMATION FOR SEQ ID NO: 267	
	(i) SEOUENCE CHARACTERISTICS:	
40	(A) LENGTH: 806 bases (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Citrobacter werkmanii (B) STRAIN: ATCC 51114	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267	
	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA	50 100
55	TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACCC TGGGTCGTAT	150
دد	CATGAACGTC CTGGGTCATC CGATCGACAT GAAAGGCGAT ATCGGTGAAG	200 250
	AAGAGCGTTG GGCTATCCAC CGCGCAGCAC CTACCTATGA AGAACTGTCC AGTTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG	300 350
	TCCGTTCGCG AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG	400
60	GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAACAC	450

5	TCCGGTTACT CAGTGTTTGC GGGCGTTGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG CTGACCGGTC TGACCATGCC TGAGAAGTTC CGTGACGAAG GTCGTGACGT TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACTGAAG TATCTGCACT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCAACC CTGGCGGAAG AGATGGGTGT TCTGCAGGAA CGTATCACCT CTACCAAAAC CGGTTC	500 550 600 650 700 750 800 806
10		
	2) INFORMATION FOR SEQ ID NO: 268	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 810 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter youngae     (B) STRAIN: ATCC 29935</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268	
30	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC CTCGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACGC TGGGTCGTAT CATGAACGTT CTGGGTCACC CGATCGACAT GAAAGGCGAT ATCGGAGAAG	50 100 150 200 250
35	AGGREGITG GGCTATTCAC CGCGCAGCAC CTTCCTATGA AGAGCTGTCC AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACCGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGCAC TCCGGTTACT CTGTGTTTGC GGGTGTAGGT CAACGTAGTG	300 350 400 450 500
40	TGGTTTATGG CCAGATGAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG CTGACCGGTC TGACCATGGC TGAGAAATTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC GTCGATAACA TCTATCGTTA TACCCTGGCC GGTACGGAAG TATCCGCACT GCTGGGTCGT ATGCCATCAG CGGTAGGTTA CCAGCCGACC CTGGCGGAAG AGATGGGTGT TCTGCAGGAA CGTATCACTT GTATCACTACCTT	550 600 650 700 750 800
45	CGGTTCTATC	810
	2) INFORMATION FOR SEQ ID NO: 269	
50	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 827 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Clostridium innocuum     (B) STRAIN: ATCC 14501</pre>	
	0.00	

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269

	TTGAGAACGG	AGATTTGCCG	CAGCTATTGA	CCGCTATTGA	AATTCCTCTG	50
5	AAAGACAGTG	AATCTCTGAT	TGTCGAAGTT	GCTCAGCATA	TCGGTGATGA	100
	ACGTGTCCGC	TGTATCGCTA	TGGGCGGTAC	AGATGGTCTG	GTTCGTGGAA	150
	TGGAAGCCAT	TGATACAGGA	TCCGCAATCC	GTGTACCGGT	GGGAAAAGAA	200
	ATTCTGGGAA	GAATGTTCAA	TGTCCTCGGA	CGTGAAATTG	ATGGTCTGGG	250
	ACCTGTAGGA	ACGGATAACA	CACTGCCGAT	CCACAGACAG	GCACCGGGCT	300
10	TTGAGGAGCA	GCAGACATCC	GCAGAAATGC	TGGAAACAGG	AATTAAGGTC	350
	ATTGACCTGT	TATGTCCATA	TTCCAAGGGT	GGTAAGATTG	GTTTGTTTGG	400
	TGGTGCGGGA	GTAGGTAAAA	CCGTACTGAT	TCAGGAGCTG	ATTCATAATA	450
	TCGCCAAGGA	ACATGGTGGA	ATGTCCGTCG	TTACCGGTGT	AGGGGAGAGA	500
	ACCCGTGAAG	GAAACGACAT	GTATCATGAA	ATGAAGGACA	GCGGTGTCCT	550
15	TGATAAGACC	GTACTGGTTT	ACGGACAGAT	GAATGAATCA	CCGGGTGCCA	600
	GAATGCGTGT	CGGTCTGACC	GGGCTGACGA	TGGCGGAATA	TTTCCGTGAT	650
	CACGACCATC	AGGATGTATT	GCTGTTTATT	GATAATATTT	TCCGTTTTAC	700
	CCAGGCGGGA	AGTGAAGTAA	GTGCCCTGCT	GGGACGTATG	CCAAGTGCAG	750
	TAGGCTATCA	GCCGACACTT	GCGACAGAAA	TGGGACAGCT	GCAGGAGCGC	800
20	ATTACATCCA	CGAAGGATGG	TTCCATT			827

#### 2) INFORMATION FOR SEQ ID NO: 270

25

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 829 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Clostridium perfringens
    - (B) STRAIN: ATCC 13124
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270

40	GCAAATGATG	AACTTCCTAA	TATATTTAAT	GCAATACACA	TAAAAATGGA	50
	CGATGGAAAA	ATCTTAGTTT	GTGAGGTAGA	GCAACACGTA	GGAGACGATA	100
	TAGTTAGAAC	TATAGCTATG	GAAGCTACTG	AAGGACTAAG	AAGAGGTGTA	150
	GAAGCTGTTG	ATACAGGAGC	ACCTATATCA	GTACCAGTTG	GTGAATGCGT	200
	ATTAGGAAGA	ATATTTAACG	TATTAGGTAA	ACCACTAGAT	AGTGGAGCTG	250
45	AAGTTAATAA	CGAAGAAAAA	TATCCAATTC	ATAGACCAGC	TCCATCATTT	300
	GAAGAACAAT	CAGTTGTTCC	TCAAATGTTT	GAGACAGGAA	TAAAGGTTAT	350
	CGACCTTTTA	GCACCTTACC	AAAGAGGGGG	AAAAATCGGT	CTATTTGGAG	400
	GTGCAGGTGT	TGGTAAAACA	GTTCTTATCC	AAGAGCTTAT	AAACAACATA	450
	GCTAAAGAGC	ACGGTGGACT	TTCTGTATTC	ACAGGAGTTG	GAGAAAGATC	500
50	AAGAGAAGGT	AATGACCTTT	ACTATGAAAT	GATGGAATCA	GGAGTTATAA	550
	AAAATACAGC	ATTAGTATTT	GGACAAATGA	ACGAACCACC	TGGAGCAAGA	600
	ATGAGAGTTG	CTTTAACAGG	ACTTACTATG	GCTGAGTACT	TCAGAGACCA	650
	AGGTCAAGAC	GTGTTATTAT	TCATAGATAA	CATATTCAGA	TTCTCACAAG	700
	CTGGATCAGA	GGTTTCAGCT	TTATTAGGAA	GAATACCATC	AGCTGTTGGT	750
55	TACCAACCAA	CTCTTGCTAC	AGAGATGGGA	GCTCTTCAAG	AGAGAATCAC	800
	ATCAACTACC	CATGGATCAA	TTACATCAG			829

60 2) INFORMATION FOR SEQ ID NO: 271

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear					
	(ii) MOLECULE TYPE: Genomic DNA					
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271					
	TTGTCCACGT TGGATRTCTT CA					
15	2) INFORMATION FOR SEQ ID NO: 272					
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 818 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear					
25	(ii) MOLECULE TYPE: Genomic DNA					
23	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Corynebacterium diphtheriae    (B) STRAIN: ATCC 27010</pre>					
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272					
35	CCCGCGTGGC GAGCTGCCGG CACTGTACAA CGCGTTGACT GTCGAGGTCA CCCTCGAGGC AGTCGCTAAG ACCATTACCC TTGAGGTTGC CCAGCACTTG GGCGACAACC TCGTTCGCGC CGTGTCCATG GCCCCTACCG ACGGCCTCGT CCGTGGTGCT GTTGTGACCG ACTCGGGCAA GCCAATCTCC GTGCCAGTTG GCGACGTTGT TAAAGGCCAC GTTTTCAACG CACTGGGCGA TTGCTTGGAT GAGCCAGGTC TCGGCCGCA TGGTGAGCAG TGGGGAATTC ACCGCGATCC ACCACCATTC GATCAGCTCG AAGGTAAGAC CCCAAATTCC GATCAGCTCC	50 100 150 200 250 300				
40	CTGTTCGGTG GTGCAGGTGT GGGTAAGACC GTGCTCATCC AGGAGATGAT CACTCGTATT GCTCGCGAGT TCTCCGGTAC CTCCGTCTTC GCTGGCGTTG GTGAGCGTAC CCGTGAGGGC ACCGACCTCT TCCTGGAAAT	350 400 450 500 550				
45	GGCGTTCTTC AGGACACCGC TCTCGTGTTC GGCCAGATT GGAAGAATTG AGGAGTCCGT ATGCGCGTTG CTCTGTCCGG TCTGACCATG GCGGAGTACT TCCGCGATGT TCAGCACCAG GACGTGCTTC TGTTCATCGA TAACATTTTC CGTTTCACCC AGGCCGGTTC CGAGGTTTCG ACCCTTCTTG GTCGTATGCC TTCCGCCGTG GGTTACCAGC CAACCTTGGC TGACGAGATG GGTGTTCTCC AGGAGCGTAT TACCTCTA	600 650 700 750 800 818				
50		018				
	2) INFORMATION FOR SEQ ID NO: 273					
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 833 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear					
60	(ii) MOLECULE TYPE: Genomic DNA					

(vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium pseudodiphtheriticum STRAIN: ATCC 10700 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273 CGATGCCTGC TCTGTACAAC GCGCTGACTG TCGAGGTCAC CCTCGAGGCA 50 GTCGCCAAGA CCATCACGCT TGAGGTTGCA CAGCACCTCG GCGATAACCT 100 GATCCGGACC ATTGCGTTGG CACCTACGGA CGGTCTCGTC CGTGGCGCTG 150 AGGTTATCGA CACTGGTAAG CCAATTACTG TTCCCGTCGG CGATGCCGTC 200 AAAGGACACG TCTTCAATGC GCTCGGTGAG TGTTTGGACG AACCAGGATT GGGCCGCGAC GGCGAACAGT GGGGAATCCA CCGCGATCCG CCACCATTCG 300 ATGCGCTGGA GGGCAAAACC GAGATTCTGG AGACTGGAAT CAAGGTTATC 350 GACCTCCTTA CCCCTTACGT TAAGGGTGGC AAAATTGGTC TGTTCGGTGG 400 CGCCGCCGTC GGCAAGACCG TTCTTATCCA GGAAATGATC ACTCGTATCG 450 CTCGTAACTT CTCCGGTACT TCCGTGTTCG CCGGCGTCGG TGAGCGTACC 500 CGTGAGGGTA CTGACCTGTT CCTGGAAATG GAAGAGATGG GCGTGTTGCA 550 AGACACCGCC CTTGTCTTCG GTCAAATGGA CGAACCACCA GGGGTTCGTA TGCGCGTGGC CTTGTCTGGT CTAACCATGG CTGAATATTT CCGCGACGTT CAAAACCAGG ACGTTTTGTT GTTCATTGAC AACATCTTCC GTTTTACTCA 600 650 20 700 GGCAGGTTCC GAGGTTTCCA CGCTGTTGGG CCGTATGCCT TCCGCCGTGG 750 GTTATCAGCC AACATTGGCT GATGAGATGG GTGTTTTGCA GGAACGGATT 800 ACCTCTACAC GTGGTAAGTC AATTACTTCC CTG 833 25 2) INFORMATION FOR SEQ ID NO: 274 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 417 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: ORGANISM: Corynebacterium ulcerans (A) STRAIN: NCTC 8665 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274 CCGTGCTCAT CCAGGAGATG ATCACCCGTG TGGCCCGCAA CTTCGGCGGC ACCTCTGTGT TCGCCGGCGT CGGCGAGCGC ACCCGTGAGG GCAACGACCT 100 CTGGGTCGAG ATGGACGAGG CCGACGTGCT CAAGGACACC GCCCTGGTGT
TCGGCCAGAT GGACGAGCCG CCGGGAACCC GTCTGCGCGT GGCCCTGTCC
GCGCTGACCA TGGCGGAGTA CTTCCGCGAT GTGCAGAACC AGGACGTGCT 45 150 200 250 GCTGTTCATC GACAACATCT TCCGCTTCTC CCAGGCCGGC TCCGAGGTCT CCACCCTGCT GGGCCGCATG CCCTCCGCGG TGGGCTACCA GCCGAACCTG 300 350 GCGGACGAGA TGGGTGTGCT GCAGGAGCGC ATCACCTCGA CTCGCGGCCA 50 CTCCATCACC TCGATGC 55 2) INFORMATION FOR SEQ ID NO: 275 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases

TYPE: Nucleic acid

(B)

(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium urealyticum (B) STRAIN: ATCC 43042 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275 GGGCAGCAGC CAGCACTATT CAACGCGCTG CACGTCGAGG TTGACCTCGA GGCAGTTGCG AAGACCATTA CCCTGGAGGT CGCACAGCAC CTGGGTGACA ACCTGGTGCG CACCGTCTCC ATGGCCCCGA CCGACGGCCT GGTCCGCGGT GCAGAGGTCA AGGACACCGG TAAGCCGATC TCTGTGCCAG TCGGCGATGT TGTCAAGGGG CACGTCTTCA ACGCCCTGGG CGACTGCCTG GATGAGCCAG 100 150 15 GTCTCGGCCG CGACGGCGAG CAGTGGGGCA TCCACCGCGA GCCACCGGCA TTCGACGAGC TCGAGGGTAA GACCGAGATC CTGGAGACCG GCGTTAAGGT CATCGACCTG CTGACCCCTT ACGTCAAGGG CGGCAAGATT GGCCTCTTCG GTGGTGCAGG TGTGGGTAAG ACCGTCCTGA TTCAGGAGAT GATTACCCGT 20 ATCGCCCGCG AGTTCTCCGG TACCTCCGTG TTCGCCGGCG TCGGCGAGCG TACCCCGTGAG GGTACGGACC TCTTCCTCGA GATGGAGGAG ATGGGCGTGC TCCAGGACAC CGCGCTGTG TTCGGTCAGA TGGATGAGGAG ATGGGCGTGC CGTATGCGC TGGCTCTGTC CGGTCTGACC ATGGCGGAGT ACTTCCGCGA TGTTCAGGGC CAGGACGTGC TGCTGTTCAT CGACAACATC TTCCGTTTCA CCCAGGCAGG TTCTGAGGTC TCCACGCTGC TCGGCCGCAT GCCGTCCGCA GTGGGTTACC AGCCGACCCT GGCTGACGAG ATGGGTGTTC TGCAGGAGGCG 800 CATTACCTCC ACGAAGGGTA AGTCCATTAC CTCCC 30 2) INFORMATION FOR SEQ ID NO: 276 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases 35 TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Coxiella burnetii (B) STRAIN: Nine Mile phase II 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276 CCCGTCACGC TGTCCCGAAA GTGTACGATG CTTTGCAGGT GGATGAAAAT AATTTAACGC TCGAAGTCCA ACAGCAACTC GGGGACGGTG TCGTGCGCAC AATTGCCATG GGCAGCACTG AGGGCTTAAA ACGCGATATC GCCGTAAAAA ATACGGAAAA ACCGATTGAA GTTCCCGTAG GAAAAGAAAC TTTAGGTCGT ATCATGAACG TGCTGGGTGA GCCGATCGAT GAGTTAGGTC CCATTAATTC 50 150 200 AAAAGAAAAA CTCCCTATTC ATCGTCCTGC GCCGAGCTTT ATTGAGCAAT 250 CTGGCGCTAC CGAATTATTA GAAACCGGTA TTAAAGTGGT CGATTTGCTT 300 TGCCCCTTTG CTAAGGGAGG CAAAGTGGGT CTTTTTGGAG GCGCGGGCGT 350 TGGAAAAACG GTTAATATGA TGGAATTAAT CCGTAATATC GCCATTGAAC 400 ACAGCGGTTA TTCTGTTTTT GCGGGTGTGG GAGAAGAAC GCGAGAAGGC
AATGATTTT ATCATGAAT GAAAGAATCC AATGTCTTGG ATAAAGTGGC
GTTGGTGTAC GGACAAATGA ACGAGCCGCC AGGGAACCGC TTGCGGGTGG
GTTTGACGGG GCTTACGCTG GCGGAAGCCT TCCGTGACGA AGGACGCGAC 450 500 550 600 60

5	GTTCTGTTAT TTATCGATAA TATCTTTCGT TACACTTTGG CAGGGGTTGA AGTCTCTGCC CTCCTCGGTC GGATGCCATC GGCTGTGGGT TATCAGCCGA CGTTGGCCGA AGAGATGGGG GCCCTGCAAG AACGCATTAC TTCCACTAAA AAAGGGTCCA TTACGTCG	700 750 800 818			
,					
	2) INFORMATION FOR SEQ ID NO: 277				
10	(i) SEQUENCE CHARACTERISTICS:				
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid				
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear				
15	(ii) MOLECULE TYPE: Genomic DNA				
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella hoshinae				
20	(B) STRAIN: ATCC 33379				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277				
25	TTCCCGCAGG ACGCCGTGCC GAAGGTGTAT AACGCACTGG AAGTAAAAGG CGGTGCCACG AAACTGGTAC TGGAAGTGCA GCAGCAGCTG GGTGGCGGCG CGGTGCCACG AAACTGGTAC GCCTCTTCCG ACGGTCTGCG CCGTGGGCTA	50 100 150			
	The second section of the second seco	200 250			
	GAGGTTGAAG ACCAAGACCA TCCGATCGAC TCCGGTCGAC ATGAAGGGCG TCTGGGCCGT ATCATGAACG TACTGGGTGA TCCGGTCGAC ATGAAGGGCG AGATCGGTGA AGAAGAGCGT TGGGCTATCC ATCGTGCTGC ACCGAGCTAT	300 350			
30	GAAGATCTGT CTAACTCTCA GGAACTGCTG GAGACCGGCA TIAAGGTMT	400			
	CGACCTGATT TGCCCGTTCG CTAAGGCGA TGGAGCTTAT CCGTAACATC GGGCCGGTGT GGGTAAGACC GTTAACATGA TGGAGCTTAT CCGTAACATC GCTATCGAGC ACTCCGGTTA CTCAGTCTTC GCCGGTGTGG GTGAGCGTAC GCTATCGAGC ACCCTATTGG	450 500			
	TO THE PROPERTY OF THE PROPERTY AND A CONTRACT TO THE PROPERTY OF THE PROPERTY	550 600			
35	ATAAAGTTTC TCTGGTGTAT GGTCAGATGA ACGAGCCACC GGGAAAAT TCCGTGATGA	650			
		700 750			
	AGGTCGTGAT GTACIGITGT TCATCGATANT GTATGCCGTC GGCGGTAGGT CCGGTACTGA AGTCTCCGCT CTGCTGGGCC GTATGCCGTC GGCGGTAGGT TATCAGCCGA CTCTGGCGGA GGAAATGGGG GTGCTGCAAG AGCGTATTAC	800			
40	CTCCACTAAG ACCGGGTCCA TCACCTCTG	829			
	2) INFORMATION FOR SEQ ID NO: 278				
45	(i) SEQUENCE CHARACTERISTICS:				
	(A) LENGTH: 809 bases (B) TYPE: Nucleic acid				
	(C) STRANDEDNESS: Double				
50					
	(ii) MOLECULE TYPE: Genomic DNA				
55					
	(2)				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278	. 50			
60		50			
	. 297				

	ACTGGTACTG TCGCGATGGG	GAAGTGCAGC CTCCTCCGAC	AGCAGCTGGG GGTCTGCGCC		GTTCGCTGCA GGTTGAAGAC	100 150
	CAAGACCATC CATGAACGTA	CGATCGAGGT CTGGGTGATC	TCCGGTCGGT CGGTCGACAT	AAGGCGACCC GAAGGGCGAG	TGGGCCGTAT	200
5	AAGAGCGTTG AACTCTCAGG	GGCTATCCAC AGCTGCTGGA	CGCGCGGCGC GACCGGCATC	CGAGCTATGA	AGATCTGTCC	250 300
			AAGTTGGCCT		GCCGGTGTGG	350 400
10	TCCGGTTACT	CCGTATTTGC	GAGCTTATCC CGGTGTAGGC	GTAACATCGC GAGCGTACCC		450 500
10	CGACTTCTAC TGGTATACGG	CACGAGATGA CCAGATGAAT	CCGACTCCAA GAGCCGCCGG	CGTATTGGAT GAAACCGTCT	AAAGTTTCTC GCGTGTGGCG	550 600
	TTGACCGGTC GTTGTTGTTC	TGACCATGGC ATCGATAACA	GGAGAAATTC TTTATCGTTA	CGTGATGAAG TACCTTGGCT	GTCGCGATGT GGTACCGAAG	650 700
15	TTTCTGCTCT CTGGCGGAAG		ATGCCGTCGG GTTGCAAGAG	CGGTAGGTTA	TCAGCCGACC CAACGAAGAC	750 750 800
	GGGCTCTAT					809

### 20 2) INFORMATION FOR SEQ ID NO: 279

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 840 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:

25

35

55

- (A) ORGANISM: Eikenella corrodens
- (B) STRAIN: ATCC 23834
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279

TTTCCGCGTA CCGCCATTCC GCGTGTTTAC GATGCACTCA AACTGGTTGA TACTGATTTG ACGCTGGAAG TACAGCAGCA GCTTGGTGAC GGCGTTGTCC 50 GTACCATTGC GATGGGTAGT ACAGACGGTT TGAAACGTGG CTTGGCTGTG 100 CAAAATACTG GTGCACCGAT TACTGTGCCG GTGGGGAAAG CCACCCTAGG 150 CCGCATCATG GACGTTCTGG GCAACCCCGT GGACGAACAA GGTCCGATCG 200 40 250 GTTCTGACCA AACCCGTGCT ATTCATCAAT TTGCACCTAA GTTCGACGAA CTCTCCAGCA CTACCGAATT GTTGGAAACA GGCATTAAAG TGATCGATTT GCTTTGTCCG TTTGCTAAAG GTGGTAAAGT GGGTCTGTTT GGCGGTGCCG 350 GTGTGGGCAA AACCGTGAAC ATGATGGAGC TGATTAACAA CATTGCCAAA 400 450 GCGCACAGTG GTCTTTCCGT ATTCGCCGGT GTGGGTGAGC GTACTCGTGA 45 500 AGGTAACGAC TTCTACCACG AAATGAAAGA CTCCAACGTG TTGGATAAAG TGGCAATGGT GTATGGCCAG ATGAACGAGC CGCCTGGTAA CCGCTTGCGT 550 600 GTTGCTCTAA CTGGTTTGTC GATGGCTGAA TACTTCCGTG ACGAAAAAGA CGAAAACGGC AAAGGCCGTG ACGTATTATT CTTTGTGGAT AATATCTACC 650 GCTATACTCT GGCGGGTACC GAAGTGTCGG CTCTGCTTGG CCGTATGCCT 700 50 TCTGCTGTGG GTTATCAGCC AACTTTGGCT GAAGAAATGG GTCGTTTGCA 750 800 GGAGCGTATT ACCTCCACCC AAACTGGTTC CATTACCTCT 840

2) INFORMATION FOR SEQ ID NO: 280

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 803 bases
- 60 (B) TYPE: Nucleic acid

STRANDEDNESS: Double (C) TOPOLOGY: Linear . (D) (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Enterobacter agglomerans (A) STRAIN: ATCC 27989 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280 10 GCCGTACCAC GAGTGTACGA TGCACTTGAG GTAAAGAATG GTGAAGAGCG 50 TCTGGTGCTG GAAGTTCAGC AACAGCTCGG CGGTGGCGTT GTACGTACCA 100 TCGCAATGGG TTCTTCTGAT GGTCTGCGTC GTGGTCTGGA AGTAACGGAC 150 CTGGCTCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA CTGGGCGAAC CAGTAGACAT GAAAGGCGAC ATCGGTGAAG 200 250 15 AAGAGCGTTG GGCGATCCAC CGTGCAGCAC CGTCCTACGA AGAGTTGTCA 300 AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG 350 TCCGTTCGCT AAGGGCGGTA AAGTGGGTCT GTTCGGTGGT GCGGGTGTAG 400 GTAAAACCGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGCAC 450 TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA 500 20 CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAC AAAGTATCCC 550 TGGTGTATGG TCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG 600 CTGACCGGTC TGACCATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT 650 ACTGTTGTTC GTTGACAACA TCTACCGTTA CACCCTGGCC GGTACGGAAG
TATCCGCACT GCTGGGCCGT ATGCCTTCTG CGGTAGGTTA TCAGCCGACG 700 750 CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAAAC 800 803 CGG 30 2) INFORMATION FOR SEQ ID NO: 281 (i) SEQUENCE CHARACTERISTICS: LENGTH: 833 bases (A) 35 TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: ORGANISM: Enterobacter amnigenus (A) STRAIN: ATCC 33072 (B) 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281 CGAATTCCCT CAGGATGCCG TACCGCGCGT GTACGATGCT CTTGAGGTAC 50 AGAATGGTAA CGAGAGTCTG GTGCTGGAAG TTCAGCAGCA GCTCGGTGGT 100 GGTATCGTAC GTACTATCGC CATGGGTTCT TCCGACGGTC TGCGTCGTGG TCTGGCTGTT AAAGATCTCG AACACCCGAT CGAAGTCCCG GTAGGTAAAG 50 200 CAACACTGGG TCGTATCATG AACGTTTTGG GTCAACCAAT CGACATGAAA 250 GGCGACATCG GTGAAGAAGA CCGTTGGGCA ATCCACCGTG CAGCACCTTC 300 CTATGAAGAG CTGTCTAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG 350 TTATCGACCT GATGTGTCCG TTCGCTAAGG GCGGTAAAGT TGGTCTGTTC 400 GGCGGTGCGG GCGTGGGTAA AACTGTAAAC ATGATGGAGC TGATCCGTAA 450 CATCGCGATC GAGCACTCCG GTTACTCCGT GTTTGCAGGC GTGGGTGAGC 500 GTACTCGTGA GGGTAACGAC TTCTACCACG AAATGACCGA TTCCAACGTT 550

	ACGAAGGTCG TGACGTACTG CTGTTCGTAG ATAACATCTA CCGTTACACC CTGGCCGGTA CTGAAGTATC TGCGCTGCTG GGCCGTATGC CTTCAGCGGT AGGTTACCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTG CAGGAACGTA TCACTTCTAC CAAAACCGGT TCTATCACCT CCG	700 750 800 833
	2) INFORMATION FOR SEQ ID NO: 282	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 810 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter asburiae     (B) STRAIN: ATCC 35953</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282	
25	TCGCGATGGG TTCTTCCGAC GGTCTCCCTC GTGCGTATC GTGCGTACCA	50 100 150
30	CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA TTGGGTCAAC CAATCGACAT GAAAGCACAC ATCGGTGAAG AAGACGCGTTG GGCTATCCAC CGCGCGGCAC CTTCCTACGA AGACTGTCC AAGCTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG GTAAAACCGT AAACTGATC CAACTGCTCT GTTCGGTGGT GCGGGTGTTG	200 250 300 350
35	GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGCAC TCCGGTTACT CCGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC TGGTTTACGG CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG CTGACCGGTC TGACGATGGC TGAGAAGTTC CGTGATGAAG GCCGTGACGT TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG TATCTGCACT GCTGGTCGT ATGGCTTATCTATCTGCACT GCTGGTGACGT	400 450 500 550 600 650
40	TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTACGGAAG CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC CGGTTCTATC	700 750 800 810
45	2) INFORMATION FOR SEQ ID NO: 283	
50	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 811 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter cancerogenus     (B) STRAIN: ATCC 35317</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283	
60	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTACAGAATG GTAACGAGAG	F.0
	300	50

5	CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACTA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTAAAAGAC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA TTGGGTCAAC CAATCGACAT GAAAGGCGAC ATCGGTGAAG AAGAGCGTTG GGCTATCCAC AACGCCAC CTTCCTACGA AGAGCTGTCC AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG TCCGTTCGCG AAGGCCGGTA AAGTCGGTCT GTTACGATGGCAC GTAAAACCGT AAACATGATG GAGCTGATCC GTTACGACAC GATCGACCAC	100 150 200 250 300 350 400 450
10	TCCGGTTATT CCGTGTTTGC GGGCGTGGGT GAACGTACTC GTGACGTATCCC CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAAGTATCCC TGGTGTACGG CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG CTGACCGGCC TGACCATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT CTGACCGGCC TGACCATGGC TGACCGTTA CACCCTGGCC GGTACCGAAG	500 550 600 650 700 750
15	ACTGCTGTTC GTTGATAACA TCTACCGTTM TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA TCAGCCTACG CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CAACCAAAAC CGGTTCTATC A	800 811
20	2) INFORMATION FOR SEQ ID NO: 284	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 817 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter cloacae     (B) STRAIN: ATCC 13047</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284	F.0
35	GCCGTACCAC GCGTGTACGA CGCGCTTGAG GTACAGAATG GTAACGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA TCGCGATGGG GTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC	50 100 150 200
40	CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC IGGGTCGTAAG CATGAACGTA TTGGGTCAGC CAATCGACAT GAAAGGCGAC ATCGGTGAAG AAGAGCGTTG GGCTATCCAC CGCGCGGCAC CTTCCTACGA AGAGCTGTCC AGCTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG ACCTCTCAGG AACTGCTGGA AACTGCTCT GTTCGGTGGT GCGGGTGTAG	250 300 350 400
45	GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGGTAA TCCGGTTACT CCGTATTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC CGACTTCTAC CCACAATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG	450 500 550 600
50	CTGACTGGTC TGACGATGGC TGAGAAGTTC CGTGACGAAG GCCGTGACGAAG TCTGCTGTTC GTTGATAACA TCTACCGTTA CACCCTGGCC GGTACGAAG TCTGCTGTTC GTTGATAACA TCTACCGTTACAG CCGTAGGTTA TCAGCCTACG	650 700 750 800 817
55	2) INFORMATION FOR SEQ ID NO: 285	
	(i) SEQUENCE CHARACTERISTICS:	

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 766 bases
(B) TYPE: Nucleic acid

	<pre>(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear</pre>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterobacter gergoviae	
	(B) STRAIN: ATCC 33028	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285	
	AATGAGAGCC TGGTGCTGGA AGTTCAGCAG CAGCTCGGCG GCGGTATCGT	5
	GUGTACCATC GCAATGGGTT CTTCTGACGG TCTCCCTCCC CCTCTCCA	100
15	TTAAAGATCT CGAACATCCG ATCGAAGTCC CGGTAGGTAA AGCGACCCTC GGCCGTATTA TGAACGTGCT GGGTCAGCCG GTTGATATGA AAGGCGATAT	150
	CGGCGAAGAA GAGCGTTGGG CGATCCACCG CGCTCCCCCC TGCTTTTTTTTTT	200
	AGCICICAG CICICAGGAA CTGCTGGAAA CCGGTATCAA CCTAATGGAA	250 300
	CIGALLIGUE CGITCGCGAA GGGCCGCTAAA CTCCCCCCCCCCCCCCCCCC	350
20	GGGCGIIGGI AAAACCGTAA ACATGATGGA GCTCATCCCCT AAGATGGGG	400
20	TCGAGCACTC CGGCTACTCC GTGTTTGCGG GCGTGGGTGA ACGTACTCGT GAGGGTAACG ACTTCTACCA CGAAATGACC GACTCCAACG TTATCGACAA	450
	AGIAICCCIG GIGIACGGCC AGATGAACGA GCCGCCCCCA AAGGGGGGGG	500
	GCGIGGCGCI GACCGGTCTG ACCATGGCTG ACAAATTCCCC TICACCA ACCT	550 600
25	CUIGACUIIC IGCTCTTCTTCCTTCCATAACATCATACACCATATA	650
23	TACTGAAGTA TCCGCACTGC TGGGCCGTAT GCCTTCTGCA GTAGGTTACC AGCCGACGCT GGCGGAAGAG ATGGGTGTTC TGCAGGAACG TATCACCTCC	700
	ACCAAAACCG GTTCTA	750
		766
30		
	2) INFORMATION FOR SEQ ID NO: 286	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 805 bases	
35	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40		
	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Enterchaptor hormanch.	
	(A) ORGANISM: Enterobacter hormaechei (B) STRAIN: ATCC 49162	
	13102	
45	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 286	
	GCCGTACCAC GCGTGTACGA CGCGCTTGAG GTACAGAATG GTAACGAGAG	
	TOTOGEOUT CANCELL AND AND CONTRACTOR OF THE CONT	50
50		100 150
50	OF TOROUGHUE CONTURANT TO THE TAXABLE NAME OF THE TOROUGHUE TO THE TOROUGH	200
	AAGAGCGTTG GGCTATCCAC CGCGCGCAC CTTGGTTGAAG	
		300
		350
55		400 450
		500
	CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC TGGTTTACGG CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG CTGACTGGCC TGACGATGCC GCGCGTTGCG	550
<b>.</b>	TO THE TOTAL OF THE PARTY OF TH	600
60	TCTGCTGTTC GTCGATAACA TCTACCGTTA CACCCTGGCC GGTACGGAAG	650 700

	TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA TCAGCCAACG CTTGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CGACCAAAAC CGGTT	750 800 805
5		
	2) INFORMATION FOR SEQ ID NO: 287	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 791 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter sakasakii     (B) STRAIN: ATCC 29544</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287	
25	TACGACGCCC TTGAGGTAAC GAATGGTAAT GAGCGTCTGG TGCTGGAAGT CCAGCAGCAG CTCGGCGGC GTATCGTACG TACCATCGCG ATGGGCTCTT CCGACGGTCT GCGTCGCGGT CTGCCTGTTG CAGACCTTGA GCACCCGATC GAAGTGCCGG TAGGTAAAGC GACGCTGGGT CGTATCATGA ACGTCCTGGG TCAGCCTATC GACATGAAAG GCGACATCGG CGAAGAAGAG CGTTGGGCGA TTCATCGCGC GGCCCGTCC TATGAAGAGC TGTCCAGCTC TCAGGAACTG	50 100 150 200 250 300
30	CTGGAAACCG GCATCAAAGT TATCGACCTG ATGTGTCCGT TCGCGAAGGG CGGTAAAGTC GGTCTGTTCG GTGGTGCAGG TGTAGGTAAA ACCGTAAACA TGATGGAGCT TATTCGTAAC ATCGCGATTG AGCACTCCGG TTACTCCGTG TTTGCGGGCG TGGGCGAACG TACCCGTGAA GGTAACGACT TCTACCACGA AATGACCGAC TCCAACGTAC TGGATAAAGT ATCCCTGGTG TACGGCCAGA	350 400 450 500 550
35	TGAACGAGCC GCCGGGAAAC CGTCTGCGCG TTGCGCTGAC CGGCCTGACC ATGGCTGAGA AATTCCGTGA CGAAGGTCGT GACGTTCTGC TGTTCGTCGA CAACATCTAC CGTTACACCC TGGCCGGTAC TGAAGTATCC GCACTGCTGG GCCGTATGCC TTCAGCGGTA GGTTATCAGC CGACCCTGGC GGAAGAGATG GGTGTTCTGC AGGAGCGTAT CACCTCCACC AAAACCGGTT C	600 650 700 750 791
40		
45	2)INFORMATION FOR SEQ ID NO: 288  (i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 839 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Enterococcus avium    (B) STRAIN: ATCC 14025</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288	
60	TTTCTTTAGA TCAATCCTTA CCAGACATCA ACAATGCGTT GATTGTTTAC AAAAAAGATA AAACAAAAGT TGTTCTTGAA GTTGCTTTGG AACTTGGTGA TGGTGTTATC CGCACAATCG CTATGGAGGC TACTGATGGA TTGCAACGTG	50 100 150

5	GAATGGAAGT TGTCGATACT GGCAAATCAA TCTCCGTTCC TGTAGGTAAA GATACTCTAG GTCGTGTT TAACGTATTA GGTGAAACGA TTGATAAAGA AGCACCTTTT CCAGAAGATG CAGAAAGAAG CGGCATTCAT AAAAAGGCGC CTGCTTTTGA AGACCTTAGT ACAAGTAACG AGATTTTGGA AACAGGGATC AAGGTTATCG ACTTATTAGC CCCTTATTTA AAAGGTGGGA AAGTCGGACT ATTCGGTGGT GCCGGTGTTG GTAAAACCGT TTTGATCCAA GAATTAATTC ATAATATCGC CCAAGAACAC GGTGGTATTT CAGTGTTTAC CGGTGTTGGG GAACGTACTC GTGAAGGGAA CGACCTTTAT TATGAAATGA AAGACTCTGG CGTTATTGAG AAAACAGCCA TGGTGTTCGG ACAAATGAAC GAGCCGCCTG GTGCACGTAT GCGTGTTGCC TTGACTGGTT TGACATTAGC TGAATATTTC CGTGATGAAG AAGGACAAGA TGTGTTGCTA TTTATTGACA ACATCTTCCG CTTTACTCAA GCCGGATCAG AAGTTTCTGC CTTATTAGGA CGTATGCCAT CAGCCGTTGG GTATCAACCAA AAAAGGTTCG ATCACTTCA	200 250 300 350 400 450 550 650 700 750 800 839
15		
20	2) INFORMATION FOR SEQ ID NO: 289  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 847 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus casseliflavus     (B) STRAIN: ATCC 25788  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 289</pre>	
35	TTCTCTCTAG ACCAATCATT ACCAGATATC AACAATGCGT TGATTGTTTA CAAAAAAGAT GAGCAGAAAA CAAAAGTTGT GTTAGAAGCT GCCTTAGAAC TTGGCGACGG CGTTATCCGT ACGATTGCCA TGGAATCAAC AGATGGCTTA CAACGAGGAA TGGAAGTAAT CGATACAGGC GCCTCCATTT CTGTTCCAGT TGGGACAGAA ACCTTAGGAC GGGTGTTTAA TGTCTTAGGG GACACCATCG	50 100 150 200
40	ATTTAGAAGC GCCGTTCCCT GAAGAAGCAC CCCGCAGTGG GATTCACAAA AAAGCACCTG ACTTTGATGA ATTGTCAACA AGTACGGAGA TCCTTGAAAC TGGGATCAAA GTTATCGATT TGTTAGCCCC TTATTTAAAA GGGGGGAAAG TTGGACTTTT CGGTGGTGCC GGTGTTGGTA AAACCGTCTT GATCCAAGAA TTGATCCACA ACATCGCCCA AGAGCATGGT GGGATCTCTG TCTTCACAGG	250 300 350 400 450
45	TGTTGGTGAA CGGACACGTG AAGGAAATGA CCTTTATAAT GAAATGAAAG AATCTGGCGT TATCGAAAAA ACAGCCATGG TGTTTGGACA AATGAACGAA CCACCAGGTG CTCGGATGCG GGTAGCCTTG ACTGGTTTGA CATTAGCCGA GTACTTCCGT GATGTGGAAG GACAAGACGT GCTCTTGTTT ATCGATAATA	500 550 600 650 700 750
50	ATGCCGTCTG CCGTTGGGTA TCAGCCAACA TTAGCAACTG AGATGGGGCA	800 847
55	2) INFORMATION FOR SEQ ID NO: 290  (i) SEQUENCE CHARACTERISTICS:	
60	(A) LENGTH: 845 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

(A) ORGANISM: Enterococcus durans

(B) STRAIN: ATCC 19432

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290

		CCAATCCTTA	CCAGATATCA	ACAACGCTTT	AGTTGTTTAT	50
10	TTTCTTTAGA	AGAAGAAATC	GAAAGTTGTT	CTTGAAACAG	CGCTAGAATT	100
	AAAAATGATG		CAATCGCGAT	GGAATCAACA	GATGGTTTAC	150
	AGGTGACGGT	GTCATCCGTA	GATACAGAAA	AAGCAATTTC	TGTACCAGTG	200
	AACGCGGAAT	GGAAGTCATT	TGTATTCAAT	GTATTAGGAG	ATACGATCGA	250
	GGTAAAGAAA	CGTTAGGTCG	AAGATGCAAA	ACGTAGCGAA	ATCCATAAAA	300
15	TTTATCTGCA	CCTTTCCCAG	TTAAGTACAA	GTACTGAGAT	CCTTGAAACT	350
	AAGCACCAAA	CTTTGATGAG	GCTTGCTCCT	TACTTAAAAG	GTGGGAAAGT	400
	GGGATCAAAG	TTATTGACTT		AACTGTATTG	ATCCAAGAAT	450
	TGGATTATTC	GGTGGTGCCG	GTGTAGGTAA	GTATTTCTGT	ATTTACTGGT	500
	TGATCCATAA	TATCGCTCAA	GAACACGGTG	CTTTATTATG	AAATGAAAGA	550
20	GTTGGTGAAC	GTACACGTGA	AGGTAATGAC	GTTTGGTCAA	ATGAACGAAC	600
	TTCAGGAGTT	ATTGAAAAAA	CAGCCATGGT	CTGGTTTGAC	GATTGCTGAA	650
	CACCAGGTGC	ACGTATGCGT	GTTGCCTTGA		TTGATAATAT	700
	TACTTCCGTG	ATGTTGAAGG	GCAAGACGTG	CTATTGTTTA	TTAGGTCGTA	750
	TTTCCGTTTC	ACTCAAGCCG	GTTCAGAAGT	TTCTGCCCTA		800
25	TGCCTTCTGC	CGTTGGGTAC				845
	TTACAAGAAC	GGATCACTTC	AACGAAAAAA	GGTTCAATCA	CIICA	043

# 30 2) INFORMATION FOR SEQ ID NO: 291

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 840 bases
  - (B) TYPE: Nucleic acid
- 35 (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Enterococcus faecalis
  - (B) STRAIN: ATCC 29212
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291

	• •					
45		CCTT CCCC3	TATTAACAAC	CCTTT ACTCC	TTTATAAAAA	50
	TTAGATCAAT	CCTTACCCGA				100
	TGGCGAAGCA	AAACAAAAAG	TAGTACTTGA	AGTCGCTTTA	GAACTAGGTG	
	ATGGAGTGAT	TCGTTCTATC	GCCATGGAAT	CGACAGATGG	TTTACAACGT	150
	GGAATGGAAG	TTATCGATAC	AGGAAAATCA	ATTTCAGTTC	CTGTTGGTAA	200
50	AGATACATTA	GGTCGTGTGT	TTAACGTTTT	AGGAGACACA	ATTGACTTAG	250
50	AAGCGCCATT	CCCTGCAGAT	GCTGAACGTA	GTGGGATTCA	TAAAAAAGCG	300
	CCAGCATTTG	ATGAATTAAG	TACCAGTAAT	GAAATTTTAG	AAACAGGGAT	350
	TAAAGTTATT	GACTTATTAG	CACCTTATCT	AAAAGGTGGT	AAAGTCGGAC	400
	TTTTCGGTGG	TGCCGGTGTT	GGTAAAACCG	TCTTAATTCA	AGAATTAATT	450
	CATAATATTG	CCCAAGAACA	TGGAGGGATT	TCCGTCTTTA	CTGGTGTTGG	500
55	Q	CGTGAAGGGA	ACGATCTGTA	CTATGAAATG	AAAGATTCAG	550
	TGAACGGACA			GTCAAATGAA	CGAACCGCCA	600
	GCGTTATTGA	AAAAACAGCC	ATGGTTTTTG	<b></b>		650
	GGTGCACGGA	TGCGTGTGGC	CTTAACTGGG	TTAACGATTG	CTGAATATTT	
	CCGTGATGTG	GAAGGACAAG	ACGTGCTATT	ATTTATTGAT	AACATTTTCC	700
			GAAGTTTCTG	CCCTTTTAGG	TCGGATGCCG	750
60	GTTTCACCCA	AGCCGGTTCA	GAAGIIICIG	CCCITITAGO	1000112000	

	TCAGCCGTTG GTTACCAACC AACCTTAGCG ACTGAAATGG GACAATTACA AGAACGGATT ACTTCAACGA AAAAAGGATC AATTACCTCT	800 840
5	2) INFORMATION FOR SEQ ID NO: 292	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus faecium     (B) STRAIN: ATCC 19434</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292	
25	TTTCTTTAGA CCAATCCTTA CCAGATATCA ACAACGCATT AGTTGTTTAT AAAAATGACG AAAATAAATC AAAAGTTGTT CTTGAAGCAG CGTTAGAATT AGGGGACGGA GTGATCCGGA CCATTGCGAT GGAATCAACA GATGGTTTAC AAAGAGGAAT GGAAGTCATT GATACAGGCA AAGCAATCTC TGTTCCTGTA GGTAAAGAAA CATTAGGTCG CGTATTCAAC GTACTAGGAG ATACGATCGA TTTAGAAACA CCTTTCCCAG AAGATCGAA AAGAAGCGAA ATTCATAAAA AAGCACCAGC CTTTGACGAA TTAAGTACAA GTACAGAAAT TTTGGAAACA	50 100 150 200 250 300
30	GGGATCAAAG TTATCGATTT GCTTGCCCCA TATTTAAAAG GTGGGAAAGT CGGACTATTC GGTGGTGCCG GTGTTGGTAA AACCGTACTG ATCCAAGAAC	350 400 450
35	TGATCCATAA TATCGCCCAA GAACATGGTG GTATTTCTGT ATTTACCGGT GTAGGTGAAC GTACTCGTGA AGGTAATGAC TTGTATTATG AAATGAAAGA TTCAGGAGTT ATCGAAAAAA CAGCCATGGT GTTCGGACAA ATGAACGAAC CACCAGGTGC ACGTATGCGT GTTGCTTTGA CTGGTTTGAC GATTGCGGAA TATTTCCGTT ACTCAAGATG TCAAGATGTA CTGTTGTTTA TCGACAACAT TTCCGTTTC ACTCAAGCTG GATCTGAAGT ATCAGCCTTG TTAGGACGGA TGCCTTCTGC GGTTGGTTAT CAACCAACAT TGGCAACAGA AATGGGTCAA TTGCAAGAACAC GTATCACATC TACGAAAAAA G	500 550 600 650 700 750 800 831
40		031
	2) INFORMATION FOR SEQ ID NO: 293	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 826 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus gallinarum     (B) STRAIN: ATCC 49573 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 293</pre>	
60	CCTTACCAGA TATCAACAAT GCGTTGATCG TTTACAAAAA AGACGAGAAA AAAACAAAAG TAGTATTGGA AGCCGCTTTA GAACTAGGGG ATGGTGTGAT CCGCACCATC GCAATGGAAT CTACAGACGG TTTGCAACGA GGAATGGAAG	50 100 150

	• • • •					
	TCATCGATAC	CGGTGCCTCA	ATCTCTGTCC	CTGTAGGAAC	AGATACTCTA	200
	GGCCGAGTAT	TTAATGTACT	AGGCGATACT	ATCGACTTGG	AAGCACCATT	250
	CCCAGAAGAT	GCCAAACGTA	GTGGCATCCA	CAAAAAAGCC	CCAGATTTCG	300
		AACAAGTACA	GAAATCCTTG	AAACTGGGAT	CAAAGTTATC	350
5	GATTTATTAG	CTCCTTACTT	AAAAGGTGGT	AAAGTCGGCT	TGTTCGGTGG	400
	TGCCGGTGTT		TATTGATTCA	AGAATTGATT	CACAATATCG	450
		TGGGGGAATT	TCAGTATTTA	CCGGTGTTGG	CGAACGGACG	500
		ATGACTTGTA		AAAGAATCAG	GCGTTATCGA	550
		ATGGTTTTCG	GTCAAATGAA	TGAACCACCA	GGTGCCCGGA	600
10	TGCGGGTTGC		TTGACCATTG	0101011111		650
	GAAGGACAAG		GTTTATCGAT	AATATTTTCC	GTTTCACACA	700
	AGCGGGTTCT		CCTTGTTAGG		TCAGCCGTTG	750
		AACTCTAGCA		GTCAATTACA	AGAACGAATC	800
	ACTTCTACGA	AAAAAGGATC	TGTAAC			826
15						
	2) INFORMATI	ON FOR SEQ	ID NO: 294			
20	(i)SEOUE	NCE CHARACT	ERISTICS:			
	(A)	LENGTH: 84				
	(B)	TYPE: Nucl	eic acid			
	(C)	פיזיס א אורופירואופ				

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

25

- (A) ORGANISM: Enterococcus saccharolyticus
- 30 (B) STRAIN: ATCC 43076

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294

	TTTCTTTGGA	CCAATCCTTA	CCAGACATCA	ACAATGCGTT	GGTGGTCTAT	50
35	AAAAAGAATG	ATGAAAAAAC	AAAAGTGGTA	CTTGAAACAG	CTTTAGAACT	100
	TGGTGATGGT	GTCGTACGTA	CGATTGCTAT	GTCGTCAACA	GACGGTTTGC	150
	AACGTGGGAT	GGAAGTCATC	GATACAGGAG	CATCAATTTC	TGTTCCTGTT	200
	GGGAAAGAGA	CATTAGGACG	TGTATTTAAC	GTTTTAGGGG	AGACTATCGA	250
	CTTAGATGGT	CCATTCCCAG	AAGAAGTAGC	ACGAGATGGT	ATTCATAAAA	300
40	AGGCACCTGA	TTTTGATGAA	TTAAGTACAA	GTACGGAGAT	TCTTGAAACA	350
	GGGATTAAAG	TAATCGATTT	ATTAGCGCCT	TACTTAAAAG	GTGGGAAAGT	400
	TGGTTTATTC	GGTGGTGCCG	GTGTAGGTAA	AACGGTATTA	ATTCAAGAAT	450
	TGATTAACAA	TATTGCGCAA	GAACATGGTG	GTATTTCAGT	ATTTGCGGGT	500
	GTTGGTGAGC	GTACTCGTGA	AGGAAATGAC	CTTTATTATG	AAATGAAAGA	550
45	GTCGGGCGTT		CAGCGATGGT	TTTTGGACAA	ATGAACGAAC	600
	CACCAGGTGC	ACGTATGCGA	GTTGCTTTAA	CTGGTTTAAC	CATTGCAGAA	650
	TACTTCCGTG	ATGTTGAAGG	ACAAGATGTA	TTACTATTTA	TTGATAACAT	700
	TTTCCGTTTT	ACTCAAGCTG	GTTCAGAAGT	TTCAGCTTTA	TTAGGACGTA	750
	TGCCTTCAGC	GGTAGGGTAT	CAACCGACAT	TAGCAACAGA	AATGGGACAA	800
50	TTACAAGAAC	GTATTACGTC	AACGAAAAA		CATCAA	846

### 2) INFORMATION FOR SEQ ID NO: 295

55 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 803 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

5

35

- ORGANISM: Escherichia fergusonii (A)
- (B) STRAIN: ATCC 35469

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295

10	GCCGTACCGC	GCGTGTACGA	тестеттеле	GTGCAAAATG	CTT A TTC A CCC	
_ 0						50
	TCTGGTGCTG		AGCAGCTCGG	CGGTGGTATC	GTGCGTACCA	100
	TCGCAATGGG	GTCCTCCGAC	GGTCTGCGTC	GCGGTCTGGA	TGTAAAAGAC	150
	CTCGAACACC				TGGGCCGTAT	200
	CATGAACGTA	CTGGGTGAAC	CGGTCGACAT	GAAAGGCGAG	ATCGGTGAAG	250
15	AAGAGCGTTG	GGCGATTCAC	CGCGCAGCAC	CTTCCTACGA	AGAGCTGTCA	300
	AACTCTCAGG		AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
		AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACTGT		GAGCTTATTC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT			GAACGTACTC	GTGAGGGTAA	500
20	CGACTTCTAC	CACGAAATGA	CTGACTCCAA	CGTTATCGAC	AAAGTATCCC	550
	TGGTATATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	TCTGCTGTTC	GTTGACAACA	TCTATCGTTA	CACCCTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGCCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCGACT	750
25	CTGGCGGAAG	AGATGGGCGT	TCTTCAGGAA		CCACCAAAAC	800
	TGG					
						803

### 2) INFORMATION FOR SEQ ID NO: 296

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 822 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Escherichia hermannii
  - STRAIN: ATCC 33650 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296

45						
	GATGCCGTAC	CGCGCGTGTA	CGATGCTCTT	GAGGTGCAAA	ATGGTGATGA	50
	GCGTCTGGTG	CTGGAAGTGC	AGCAGCAGCT	CGGCGGCGGT	ATCGTGCGTA	100
	CCATCGCAAT	GGGTTCTTCC	GACGGTCTGC			150
	GACCTCGAGC	ACCCGATCGA	AGTCCCGGTA			200
50	TATCATGAAC	GTGCTGGGTC	AGCCGATCGA	CATGAAAGGC	GATATCGGTG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGCGCGG		TGAAGAGCTG	300
	TCCAGCTCTC	AGGAACTGCT	GGAAACCGGC	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGCG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
55	CACTCCGGTT	ACTCTGTGTT	TGCGGGCGTG	GGTGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCATGAAA	TGACCGACTC	CAACGTTCTG	GACAAAGTAT	550
	CCCTGGTTTA	CGGCCAGATG	AACGAACCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCACTGACCG			TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGTTG	TTCGTCGACA		TTACACCCTG	GCCGGTACTG	700
60	AAGTATCCGC	ACTGCTGGGC	CGTATGCCTT	CTGCGGTAGG		750

	ACCCTGGCGG AAGAGATGGG CGTTCTGCAG GAGCGTATCA CCTCCACCAA AACCGGTTCT ATCACCTCCG TA	800 822
5	2) INFORMATION FOR SEQ ID NO: 297	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 808 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
13	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Escherichia vulneris     (B) STRAIN: ATCC 33821</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297	
25	CCGAACGTGT ACGACGCCCT CGAAGTGACA AATGGTAATG AGCGTCTGGT GCTGGAAGTT CAGCAGCAGC TCGGCGGCGG TATCGTACGT ACCATCGCTA TGGGTTCTTC CGACGGTCTG CGTCGTGGTC TGGAAGTTCA GGACCTCGAG CACCCGATCG AAGTGCCGGT AGGTAAAGCG ACCCTGGGTC GTATCATGAA CGTACTGGGT CAGCCGATCG ATATGAAAGG CGACATCGGT GAAGAAGAGC GTTGGGCTAT TCACCGTGCA GCACCGTCCT ATGAAGAGCT CTCCAGCTCT CAGGAACTGC TGGAAACCGG CATCAAGGTT ATCGACCTGA TGTGTCCGTT	50 100 150 200 250 300 350 400
30	CGCCAAGGC GGTAAAGTCG GCCTGTTCGG CGGCGCGGGC GTGGGTAAAA CCGCAAGGGC GGTAAAGTCG ATCCGTAACA TCGCGATCGA GCACTCCGGT TACTCCGTGT TTGCAGGCGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT CTACCACGAG ATGACCGACT CCAACGTTCT GGCACAAGGTA TCCCTGGTGT	450 500 550 600
35	ACGGCCAGAT GAACGAGCCG CCGGGAAACC GTCTGCGCGT GGCACTGACC GGCCTGACCA TGGCTGAGAA GTTCCGTGAC GAAGGTCGTG ACGTTCTGCT GTTCGTTGAC AACATCTATC GTTACACCCT GGCCGGTACG GAAGTATCTG CACTGCTGGG CCGTATGCCT TCAGCGGTAG GTTACCAGCC GACGCTGGCG GAAGAGATGG GCGTTCTGCA GGAGCGTATC ACCTCCACCA AAACCGGTTC TATCACCT	650 700 750 800 808
40		
	2) INFORMATION FOR SEQ ID NO: 298	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 843 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Eubacterium lentum     (B) STRAIN: ATCC 43055</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298	
60	TTTCCCCCTG ATCAGCTGCC GGCGATTTAC AACGCGCTGA CGGTTGATGC CAAGACCCTG GCGGGCGACT TGCACCTCGT GCTCGAGGTC GAGACGCACC TGCCGGGCAA CCTTGTCCGC TCGGTGGCCA TGAGCTCGAC GGACGGTCTC	50 100 150

	GTCCGCGGCC TCGAGGTCGT CGACACGGGC AACCCGATCA TGATGCCCGT	200
	GGGTCCCGAG ACCCTGGGTC GCATCTGGAA CGTCATGGGC GAGCCCGTGC	250
	ACGAGAAGCC GATGCCCGAG GTGAAGGGCT ACATGCCCAT CCACCGTCCC	
	GUTUUGGAUT AUGAUGAGET GTCCACCACC ACCGAGATOT TOGACACCG	300
5	CATCAAGGCC ATCGACCTCG TCGAGCCCTT CGTCAAGGGC GGCAAGACCC	350
	GTCTGTTCGG CGGCGCCGGC GTGGGCAAGA CGGTTATCAT CCAGGACCTC	400
	ATCAACAACC TGGCCCAGGA GCACGGCGGC ACGTCGGTGT TCACGGGCGT	450
	GGGCGAGCGT ACCCGCGAGG GTACCGACCT CTACCTGGAG ATGAGCGACT	500
	CGGGCGTCAT CAACAAGACC TGCCTCGTGT ACGGTCAGAT GAACGAGCCT	550
10	CCGGGAGCGC GTCTGCGCGT GGGTCTCGCG GGCCTCACCG AGGCGGAGTA	600
	CTTCCGCGAT CAGGGCCAGG ACGTGCTTCT GTTCGTGGAC AACATCTTCC	650
	GCTTCACGCA GGCCGGCTCC GAGGTGTCCG CTCTGCTGGG CCGCATGCCC	700
	TCTGCCGTGG GTTACCAGCC GACGCTGGCA ACCGAGATGG GCGACCTGCA	750
	GGAGCGCATC ACGTCGACGT CCACCGGCTC CATCACGTCC GTG	800
15	Control Control Cartacolic Gig	843
	2) INFORMATION FOR SEQ ID NO: 299	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
25		
	(ii) MOLECULE TYPE: Genomic DNA	
•	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Ewingella americana	
30	(B) STRAIN: ATCC 33852	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299	
	TCCCTCAGGA TGCAGTACCG AACGTGTACA ATGCTCTTGA GGTAGAAAAC	50
35	GGIGCCICCA AACIGGTICT GGAAGTTCAG CAACACTTAC CCCCCCCC	100
	TOTICUITUI AICGCAATGG GTACCTCAGA CCCCCCTCCCM CCCCCCCCCCCCCCCCCCCCCCCCCC	150
	AAGIGAACAA CCIGGAACAC CCAATTGAAG TTCCCCCTTCC TAAAACAA	200
	CIGGICGIA ICAIGAACGI ATTGGGTGAA CCAATCCACA TCAAACCTCA	250
4.0	AAICGGCGAA GAAGAACGIC GTGCAATTCA CCCTCCACCC CCCCCCCCCCCCCCCC	300
40	PROPOCIOGO IMPOLICOCAM GAATTOOTTOO AAAOOOOTAT OAAAOTTOOTTOO	350
	ONCOLORIGI GICCGIICGC TAAGGGCCCCT AAACTCCCTC TOTTO	400
	TOCOGGIGII GGIAAAACTC TAAACATCATCAT CCACCATCATCA	450
	CGAICGAGCA CICCGGITAC TCACTGTTTC CACCCCCCCC TCACCCC	500
45	YOUNGER ACCALL LIFE CONTRACTOR APPROXIMATELY	550
40	THE PROPERTY OF THE PROPERTY O	600
	TOOCCUTICC ACTUACUGU CTGACTATOR COCATATATA	650
		700
	MOUTACCOMA GIGICCICAC TOTOTOCO TATOCCAMOS COSSES	750
50	THE STREET OF THE GOLDGEAR GAGATGGGGGG COUNTRY TO THE STREET OF THE STRE	800
	TCTACCAAAA GTGGTTCTAT CACCTCCGT	829

# 2) INFORMATION FOR SEQ ID NO: 300

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 805 bases
(B) TYPE: Nucleic acid
(C) STRANDEDNESS: Double

- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

5

35

45

- (A) ORGANISM: Francisella tularensis
- (B) STRAIN: LVS

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300

10	AACACGCCTA	AAGTATATGA	TGCTTTAAAT	GTAGTAGAAG	CTGGTTTAGT	50
	ATTAGAAGTT	CAGCAACAAA	TTGGTGATGG	CGTAGTTCGT	ACAATTGCTA	100
	TGGGATCTAG	TGATGGTCTT	AGACGTGGTA	TGGAAGTTAA	GAACACAAAT	150
	GCGCCTATTT	CTGTTCCAGT	TGGACATGGC	ACACTTGGAC	GTATCATGAA	200
	TGTTTTAGGT	GAACCAATTG	ATGAAGCTGG	TCCAATTGAA	TATACTGAGA	250
15	AAAGATCTAT	CCATCAAGCT	CCTCCTGCAT	ATGATGAGTT	AGCATTAAGT	300
	ACAGAAATAT	TAGAAACAGG	TATCAAAGTA	GTTGACCTTA	TTTGTCCATT	350
	TGCTAAGGGC	GGTAAAGTTG	GTTTATTTGG	CGGTGCAGGT	GTTGGTAAAA	400
	CTGTAACGAT	GATGGAACTT	ATCAACAATA	TTGCAAAAGA	ACATAGTGGC	450
	TACTCTGTAT	TTTCCGGTGT	TGGTGAAAGA	ACTCGTGAAG	GTAATGACTT	500
20	CTACTATGAG	ATGAAATATT	CTAATGTATT	GGATAAAGTA	TCATTAGTAT	550
	ATGGTCAGAT	GAATGAGCCG	CCTGGAAACA	GATTAAGAGT	AGCTCTTAGT	600
	GGCTTAACAA	TAGCAGAAGG	ATTCCGTGAT	GAAAAGCGTG	ATGTTTTGAT	650
	GTTTATCGAT	AACATCTATC	GTTATACATT	AGCAGGTACA	GAGGTATCGG	700
	CGCTACTTGG	TCGTATGCCA	TCTGCTGTGG	GTTATCAGCC	AACGCTTGCA	750
25	GCTGAGATGG	GTGCTTTACA	GGAGCGTATT	ACATCTACTA	AGACAGGATC	800
	TATTA					805

#### 30 2) INFORMATION FOR SEQ ID NO: 301

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 825 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Fusobacterium gonidiaformans
  - (B) STRAIN: ATCC 25563
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301

<b>T</b> J						
	GACGAATTGC	CAAAAATATA	CAATGCATTA	AAGGTGCAAG	TTGGAGAAAA	50
	AGAACTTGTA	TTGGAAGTGC	AACAACATTT	GGGAAATAAT	GTTGTGAGAA	100
	CAGTAGCGAT	GGACTCAACA	GATGGATTGC	TTCGAGGAAT	GGAAGTAATG	150
	GATACCGGAG	CACCGATTAC	TGTTCCAGTA	GGGAAGGCGG	TTTTAGGAAG	200
50	AATATTGAAT	GTTTTGGGAG	AGCCTGTGGA	TCAAAAAGGG	CCTGTGGAAA	250
	CAGAAGAATA	TTTACCTATC	CATAGAGAAG	CACCAAAATT	TGAAGAACAA	300
	GAAACAGTAA	CAGAAATTTT	TGAAACAGGA	ATTAAAGTCA	TAGATTTGTT	350
	AGCCCCTTAT	ATCAAAGGAG	GAAAGACAGG	TCTATTCGGT	GGAGCCGGAG	400
	TAGGGAAAAC	AGTTTTAATT	ATGGAATTAA	TTAATAACAT	TGCAAAGGGC	450
55	CACGGAGGAA	TTTCTGTGTT	TGCAGGAGTT	GGAGAAAGAA	CAAGAGAAGG	500
	AAGAGATTTA	TACAACGAAA	TGACAGAGTC	CGGAGTTTTG	AATAAGACCT	550
	CGTTGGTGTA	TGGTCAAATG	AATGAGCCGC	CCGGAGCAAG	ACTTCGTGTG	600
	GCGTTGACAG	GATTAACGGT	TGCTGAAAAC	TTTAGAGATA	AAGAAGGGCA	650
	AGATGTATTG	TTGTTTATCG	ACAATATCTT	CCGTTTCACA	CAAGCAGGAT	700
60	CAGAAGTATC	GGCTCTATTG	GGAAGAATTC	CATCGGCAGT	AGGATATCAA	750

	CCGAACTTAG CGACAGAAAT GGGAACTTTA CAAGAAAGAA TTACTTCTAC 800 AAAATCAGGA TCTATCACTT CGGTA 825
5	2) INFORMATION FOR SEQ ID NO: 302
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases
15	(ii) MOLECULE TYPE: Genomic DNA
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Fusobacterium necrophorum subsp. necrophorum</li><li>(B) STRAIN: ATCC 25286</li></ul>
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302
25	ACAATGCATT AAAGGTACAG GTGGGAGAAA GGGAACTTGT GTTGGAAGTG 50 CAGCAACATT TAGGAAATAA TGTTGTCAGA ACAGTAGCAA TGGATTCAAC 100 AGACGGATTA CTTCGGGGAA TGGAAGTGAG AGATACAGGA GTTCCCATTA 150 CTGTTCCGGT AGGAAAGGCG GTTTTGGGAA GAATATTAAA TGTCTTAGGG 200
	ACATAGAGAA GCACCGAAAT TTGAAGAACA GGAAACGGTG ACAGAAATTT TTGAAAACAGG AATTAAAGTC ATTGATTTGT TAGCTCCTTA TATTAAACA
30	GGAAAAACAG GCCTATTCGG AGGAGCCGGA GTAGGAAAAA CCGTTTTGAT 400 TATGGAACTG ATCAATAATA TTGCAAAAAGG TCATGGAGGA ATTTCTGTTT 450 TTGCAGGAGT TGGAGAAAGA ACGAGAGAGG GAAGAGATCT ATACAACGAA 500 ATGACAGAGT CCGGAGTTTT GAATAAAACT TCTTTGGTAT ATGGGCAAAT 550
35	GAATGAGCCG CCCGGAGCAA GACTTCGAGT GGCTTTAACC GGACTTACTG TTGCCGAAAA TTTCAGAGAT AAAGAGGGAC AGGATGTCTT ATTGTTCATT GACAATATTT TCCGTTTCAC ACAAGCAGGT TCGGAAGTAT CGGCACTTTT GGGGAGAATT CCTTCTGCAG TGGGATATCA ACCGAACTTG GCGACAGAAA TGGGAAGCTT ACAAGAAAGA ATTACTTCTA CAAAATCCGG TTCTATCACT 800
40	806
	2) INFORMATION FOR SEQ ID NO: 303
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 821 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
50	(ii) MOLECULE TYPE: Genomic DNA
55	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Fusobacterium nucleatum subsp. polymorphum</li><li>(B) STRAIN: ATCC 10953</li></ul>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303
60	GATGAATTGC CTGCAATATA TAATGCTTTA AAAGTAAAAT TAGAAGATAA 50 GGAACTTGTT CTAGAAGTTG AACAACATCT TGGTAACAAT GTTGTAAGAA 100 CTGTTGCTAT GGATTCAACT GATGGATTAA AAAGAGGAAT GGAAGTTATA 150
	310

	GATACAGGTA AACCAATTAC AGTACCAGTT GGTAAAGCTG TTCTTGGTAG	200
	AATATTAAAT GTTTTAGGAG AACCTGTTGA TAATCAAGGT CCTATAAATG	250
	CTGAAACATT TTTACCTATT CATAGAGAAG CACCAGAATT TGATGACTTA	300
	GAAACTGAAA CTGAAATATT TGAAACAGGA ATAAAAGTTA TAGACTTATT	350
5	AGCACCATAT ATTAAAGGTG GAAAAATAGG ATTATTTGGT GGAGCTGGAG	400
	TAGGAAAAAC AGTTTTAATA ATGGAACTTA TCAACAACAT TGCAAAAGGA	450
	CATGGAGGAA TTTCAGTTTT TGCAGGAGTT GGAGAAAGAA CAAGAGAAGG	500
	TAGAGACTTA TATGGTGAAA TGACTGAATC AGGAGTTATC ACAAAAACAG	550
	CTCTTGTTTA TGGACAAATG AATGAGCCAC CTGGAGCAAG ACTTAGAGTT	600
10	GCATTAACAG GGCTTACTGT TGCAGAAAAC TTTAGAGATA AAGATGGGCA	650
	AGATGTTCTT CTATTTATAG ATAATATATT TAGATTTACA CAAGCAGGTT	700
	CAGAAGTTTC AGCTTTACTT GGAAGAATAC CATCAGCTGT TGGATATCAA	750
	CCAAACCTAG CAACTGAAAT GGGTGCTTTA CAAGAAAGAA TAACATCTAC	800
	AAAATCTGGT TCAATTACAT C	821
15		021
	2) INFORMATION FOR SEQ ID NO: 304	
20	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 864 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
25		
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Gardnerella vaginalis	
30	(B) STRAIN: ATCC 49145	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304	
	TTCCCAGTTG GCTATCTTCC AGATATTTAT AATGCTCTCA AGGTTGATAT	50
35	CAACACCGTT GGAAACACGG AGGGAGATAC CGTCCACGAG ATTACATTGG	100
	AAGTTGAGCA GCACCTTGGT GATTCAACTG TGCGAGCAGT GGCACTTAAG	150
	CCTACGGACG GCTTGGTCCG TGGTGCTTTA GTGCGAGATA CTGGTGGCCC	200
	AATTTCTGTG CCTGTTGGAG ATGTTACAAA AGGTCACGTT TTTGACGTAA	250
4.0	CTGGTAACAT TTTAAACGCT AAACCAGGCG AAAACATTGA GGTGACCGAG	300
40	CGCTGGCCAA TCCACCGCAA CCCACCTGCT TTCGATCAGC TTGAGTCTAA	350
	GACTCAAATG TTTGAAACAG GCATTAAGGT TATCGATTTG CTTACGCCTT	400
	ACGTTCAGGG CGGAAAGATT GGTCTGTTCG GTGGTGCAGG CGTTGGTAAA	450
	ACTGTGTTGA TTCAGGAGAT GATTCAGCGC GTTGCACAGA ACCACGGCGG	500
A.E.	TGTGTCTGTG TTTGCTGGCG TTGGCGAACG TACTCGTGAG GGTAACGATT	550
45	TGATTGGCGA AATGGCTGAG GCTGGCGTTT TGGAGAAAAC AGCGCTTGTC	600
	TTTGGTCAGA TGGATGAGCC TCCTGGGACT CGTCTTCGTG TGCCTCTTAC	650
	TGCTTTGACT ATGGCTGAGT ATTTCCGTGA TGTTCAGAAT CAGGATGTGT	700
	TGCTGTTTAT CGACAACATC TTCCGCTTTA CTCAGGCAGG TTCTGAGGTT	750
50.	TCCACGTTGC TTGGTCGTAT GCCTTCTGCA GTTGGTTATC AGCCAAACTT	800
50.	GGCGGATGAA ATGGGTGCGT TGCAGGAGCG CATTACTTCT ACGCGCGGTC ATTCTATTAC GTCG	850.
	ATTEMATINE GILES	864

#### 55 2) INFORMATION FOR SEQ ID NO: 305

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 848 bases
  - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Gemella haemolysans     (B) STRAIN: ATCC 10379</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305	
	TCGAATCAGG GCATATGCCA AATCTATTAA ACGCTTTAGA AGTTTACATA	50
15	GAAAAAGGCG ATGGGAAAAA AGAAAAATTA GTTCTTGAAG TTTCTCTTGA AATTGGTGAT AACGTAGTAA GAACAATCGC TATGTCATCT ACTGATGGAT TAAATAGGGG AGCAGAAGTA GTAGATACAG GAGCACCAAT TACAGTTCCT GTAGGTAACT ACACATTAGG TCGTGTGTTC AACGTATTAG GTGAAGCAGT TGACCACGGT GAAGAAGCAG GAGCAGAAGT TCGTAAAGAT TCAATTCACA AAGAAGCTCC AACATTCGAT GAATTATCAA CTCACGTTGA	100 150 200 250 300 350
20	ACAGGTATTA AAGTTATCGA CTTACTTGCA CCATATATTA AAGGTGGTAA AATCGGTCTT TTCGGTGGTG CGGGAGTTGG TAAAACGGTT CTTATCCAAG AACTTATCAA CAACGTTGCG CAACAACACG GTGGATTATC AGTATTCACA GGTGTAGGTG AGCGTACTCG TGAAGGAAAT GACTTATACT ATGAAATGAA	400 450 500 550 600
25	GAATACTTCC GTGATGAGA AGGACAAGAC GTGCTTCTAT TCATCGATAA CATTTTCCGT TTCACACAAG CAGGTTCTGA GGTTTCTGCG TTATTAGGAC GTATGCCATC AGCCGTTGGT TACCAACCAA CACTTGCTAC AGAGATGGGA CGTTTACAAG AACGTATAAC ATCAACTAAA AAAGGTTCTG TTACATCT	650 700 750 800 848
30	2) INFORMATION FOR SEQ ID NO: 306	
35	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 848 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Gemella morbillorum     (B) STRAIN: ATCC 27824</pre>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306	
50	TCGAATCAGG GCATATGCCT AATCTACTAA ACGCTTTAGA AGTTTATATA GAAAAAGGCG ATGGAAAAAA AGAAAAATTA GTTCTTGAAG TTTCTCTTGA AATCGGGGAT AATGTCGTAA GAACTATTGC GATGTCATCT ACTGATGGAT TAAACAGAGG GGCAGAAGTA GTTGATACTG GAGCGCCAAT TACAGTGCCA GTAGGTAACT ATACATTAGG ACGTGTGTTC AACGTATTAG GTGAAGCAGT TGACCACGGA GAAGAAGCTG GAGCAGAAGT TCAAAAAAGAA TCTATTCATA	50 100 150 200 250
55	AAGAAGCTCC AACTTTCGAA GAATTATCAA CACATGTTGA GGTATTAGAA ACAGGTATTA AAGTTATCGA CCTTCTTGCA CCATATATTA AAGGTGGTAA GATTGGACTA TTCGGTGGTG CTGGAGTTGG GAAAACAGTT CTTATCCAAG AACTTATTAA CAACGTAGCA CAACAACACG GAGGACTTTC AGTATTTACT GGGGTAGGTG AACGTACTCG TGAGGGTAAC GACTTGTACT ATGAAATGAA	300 350 400 450 500 550 600
60	AGCCACCAGG TGCACGTATG CGTGTTGCCT TAACAGGATT AACAATGGCA GAGTACTTCC GTGATGAAGA AGGACAAGAC GTACTATTAT TTATCGATAA	650 700

	TATCTTCCGT TTCACACAAG CAGGGTCTGA GGTATCTGCA TTATTAGGGC GTATGCCTTC AGCCGTTGGA TATCAACCAA CTCTTGCAAC AGAAATGGGA CGTCTTCAAG AACGTATTAC ATCAACTAAA AAAGGATCTG TTACATCT	750 800 848
. 5		
	2) INFORMATION FOR SEQ ID NO: 307	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 813 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Haemophilus ducreyi  (B) STRAIN: DSM 8925	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307	
25	GATGCAGTAC CAAAAGTATA TGATGCTTTA AAAGTTGAAT CAGGTTTAAC CTTAGAAGTT CAACAACAAT TAGGTGGTGG TTTAGTACGT TGTATCGCAT TAGGTACCTC AGATGGTTTA AAGCGTAGCT TAAAGGTTGT AAATACAGGT AACCCTATTC AAGTTCCTGT AGGCACTAAA ACATTAGGCC GTATTATGAA TGTATTAGGC GAACCAATTG ATGAAAAAGG ACCTATTAGC GAAGAAGCTC	50 100 150 200 250
30	GTTGGGATAT TCATCGTGCG GCTCCAAATT ATGAAGAACA GTCAAATAGT ACTGAATTAC TTGAAACCGG TATCAAAGTT ATTGACTTAA TTTGTCCATT TGCAAAAGGT GGTAAAGTCG GCTTATTTGG TGGAGCTGGT GTAGGTAAAA CCGTTAATAT GATGGAATTG ATCCGTAATA TTGCTATTGA GCACTCAGGT TATTCGGTTT TTGCTGGTGT AGGTGAGCGT ACTCGTGAAG GTAATGATTT	300 350 400 450 500
35	TTATCATGAA ATGACGGATT CTAATGTATT AGATAAAGTA TCACTAGTAT ATGGTCAAAT GAATGAACCA CCAGGTAACC GCCTACGTGT TGCGTTAACA GGTTTAACTA TGGCTGAAAA ATTCCGTGAT GAAGGTCGTG ATGTATTATT TTTCGTAGAT AATATTTATC GTTATACTTT AGCCGGTACA GAAGTTTCTG CTTTATTAGG CCGTATGCCA TCAGCGGTAG GTTATCAACC AACCCTTGCA GAAGAAATGG GTGTATTACA AGAACGTATT ACCTCAACTA AAACTGGTTC	550 600 650 700 750 800
4.0	AATCACGGCA GTA	813
40		
	2) INFORMATION FOR SEQ ID NO: 308	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
50	(D) TOPOLOGY: Linear	
-	(ii) MOLECULE TYPE: Genomic DNA	•
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus haemolyticus	
55	(B) STRAIN: ATCC 33390	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308	
60	TGAATTTCCA CAAGATGCAG TGCCAAAAGT TTACGATGCA TTAAAAGTTG AATCAGGTTT AACACTTGAG GTGCAACAAC AATTAGGTGG CGGTGTGGTA	50 100

5	CGTTGTATCG CATTAGGTGC TTCTGACGGT TTAAAACGTG GTTTAAAAGT AGAAAACACG AATGATCCGA TTCAAGTACC GGTAGGCACA AAAACCCTTG GTCGTATCAT GAATGTATTG GGTGAACCAA TTGACGAACA AGGTCCAATC GGTGAAGAAG AGCGTTGGGC TATCCATCGT TCTGCACCAA GCTATGAAGA ACAATCAAAC AGTACGGAAT TATTAGAGAC TGGTATCAAA GTTATCGACT TAATTTGTCC ATTCGCAAAA GGTGGTAAAG TTGGTCTATT CGGTGGTGCG GGTGTAGGTA AAACCGTTAA CATGATGGAA TTAATCCGTA ACATCGCGAT	150 200 250 300 350 400 450
10	CGAGCACTCA GGTTACTCCG TATTTGCGGG TGTAGGTGAA CGTACTCGTG AAGGTAACGA CTTCTATCAT GAAATGAAAG ATTCTAACGT ATTAGATAAA GTATCTTTGG TTTATGGTCA GATGAATGAG CCACCAGGTA ACCGTTTACG TGTTGCGTTA ACTGGTTTAA CCATGGCAGA AAAATTCCGC GATGAAGGTC GTGATGTATT ATTCTTCGTG GATAATATCT ATCGTTATAC CCTTGCTGGT ACGGAAGTAT CTGCGTTATT AGGTCGTATG CCATCTGCGG TAGGTTACCA ACCAACTCTT GCTGAAGAAA TGGGTGTGTT ACAAGAACGT ATCACTTCAA CCAAAACAGG TTCTATTACA TCTGTA	500 550 600 650 700 750 800
1.0	COMMICAGO ITCIMITACA ICIGIA	826
20	2) INFORMATION FOR SEQ ID NO: 309  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 809 bases  (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear	
30	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Haemophilus parahaemolyticus     (B) STRAIN: ATCC 10014 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309</pre>	
35	GATGCAGTAC CAAAAGTATA TGATGCGTTA AAAGTTGAAT CAGGTTTAAC GCTTGAAGTT CAACAACAAT TAGGCGGTGG CTTAGTGCGC TGTATCGCAT TAGGTACGTC TGATGGTTTA AAACGTGGCT TAAAAGTAGA AAATACAGGC AACCCAATTG AAGTGCCAT GGGCACTAAA ACCCTTGGTC GTATTATGAA	50 100 150 200
40	CGTATTGGGT GAGCCGATTG ACGAAAAAGG TCCTATCGGT GAAGAAGCAC GCTGGGCAAT CCACCGTGCA GCACCAAGCT ACGAAGAGCA ATCAAATAGC ACGGAATTAC TCGAAACAGG TATCAAAGTT ATCGACTTAA TCTGCCCATT CGCAAAAGGG GGTAAAGTTG GTTTATTTGG TGGTGCAGGT GTAGGTAAAA CCGTAAATAT GATGGAGTTA ATCCGTAACA TCGCGATCGA ACACTCTGGT	250 300 350 400 450
45	TACTCTGTAT TTGCAGGGGT AGGTGAGCGT ACTCGTGAAG GTAATGACTT CTACCACGAA ATGACAGACT CTAACGTATT AGATAAAGTA TCGTTAGTGT ATGGTCAAAT GAACGAACCA CCAGGTAACC GTTTACGCGT AGCTTTAACA GGCTTAACCA TGGCGGAAAA ATTCCGCGAT GAAGGTCGTG ACGTATTATT CTTCGTCGAT AACATCTACC GTTATACCCT AGCAGGTACG GAAGTGTCAG	500 550 600 650 700
50	CACTTCTCGG TCGTATGCCA TCTGCGGTAG GTTATCAGCC AACCTTAGCA GAAGAAATGG GTGTATTACA AGAGCGTATC ACTTCAACCA AAACTGGTTC TATCACCTC	750 800 809
55	2) INFORMATION FOR SEQ ID NO: 310	

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 824 bases
- (B) (C) TYPE: Nucleic acid STRANDEDNESS: Double 60

TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: 5 (A) ORGANISM: Haemophilus parainfluenzae (B) STRAIN: ATCC 7901 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310 10 CGAATTTCCA CAAGATGCAG TACCAAAAGT TTATGATGCA TTAAAAGTTG 50 AATCGGGTTT AACCCTTGAA GTTCAACAAC AATTAGGTGG TGGTGTGGTA 100 CGTTGTATCG CACTGGGAGC TTCTGACGGT TTAAAACGCA GTTTAAGCGT 150 TGAAAATACC AATAAACCAA TTTCAGTACC GGTTGGTGTA AAAACTCTCG 200 GTCGTATTAT GAACGTATTG GGCGAACCGA TTGATGAAAG AGGTCCTATC 250 GGTGCGGAAG AAGAATGGGC AATTCACCGT TCTACTCCAA GTTATGAAGA 300 ACAGTCCAAC AGTACCGAAT TATTAGAAAC CGGTATCAAA GTTATCGACT TAATTTGTCC ATTCGCGAAG GGTGGTAAAG TTGGTTTATT CGGTGGTGCG 400 GGTGTAGGTA AGACCGTAAA TATGATGGAA TTAATCCGTA ATATTGCGAT 450 500 TGAGCACTCA GGTTACTCCG TATTTGCCGG TGTAGGTGAG CGTACCCGTG 20 AAGGTAACGA CTTCTACCAT GAAATGACAG AATCTAACGT ATTAGACAAA 550 GTATCCCTAG TTTACGGACA AATGAATGAG CCGCCGGGTA ACCGTTTACG 600 TGTTGCTTTA ACCGGTTTAA CCATGGCAGA AAAATTCCGT GACGAAGGTC 650 GTGATGTATT ATTCTTCGTG GATAACATCT ATCGTTATAC CCTTGCAGGG 25 ACTGAAGTAT CGGCACTTTT AGGCCGTATG CCATCAGCGG TAGGTTATCA
GCCGACACTT GCAGAAGAAA TGGGTGTGTT ACAAGAACGT ATTACATCAA 800 824 CCAAAACAGG TTCTATTACT TCTG 30 2) INFORMATION FOR SEQ ID NO: 311 (i) SEQUENCE CHARACTERISTICS: LENGTH: 811 bases TYPE: Nucleic acid (B) 35 STRANDEDNESS: Double (C) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei STRAIN: ATCC 13337 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311 45 GCCGTGCCTA AAGTGTATAA CGCACTTGAG GTGAAAGGCG GTGCCACTAA 50 ACTGGTACTG GAAGTTCAGC AGCAGCTAGG CGGCGGCGTT GTACGCTGTA 100 TCGCTATGGG TACTTCTGAC GGTCTGCGTC GCGGACTGGA CGTTGTTGAC 150 CTGGAGCACC CGATTGAAGT CCCAGTAGGT AAAGCGACCT TAGGCCGCAT 200 TATGAACGTA CTGGGTGAGC CAATTGATAT GAAGGGTGAT ATCGGCGAAG AAGATCGCTG GGCTATTCAC CGTGAAGCTC CAAGCTACGA AGAACTGTCT AACTCGCAAG AACTGCTGGA AACTGGTATC AAGGTAATGG ACCTGATTTG 250 300 TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTTG

600

650

700

GTAAAACAGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGCAC

TCAGGTTACT CTGTATTTGC CGGCGTGGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTATTGGAC AAAGTATCAC TGGTTTATGG CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG

CTGACCGGTC TGACTATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT

ACTGCTGTTC ATCGATAACA TCTACCGTTA TACCTTGGCC GGTACCGAAG

55

	TATCTGCACT GTTGGGTCGT ATGCCTTCTG CGGTAGGTTA TCAGCCAACG CTGGCGGAAG AGATGGGTGT TCTGCAAGAA CGTATCACCT CGACCAAAAC GGGTTCAATC A	750 800 811
5		
	2) INFORMATION FOR SEQ ID NO: 312	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE: (A) ORGANISM: Kingella kingae (B) STRAIN: ATCC 23330	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312	
25	GCGATGCTAT TCCACGCGTT TACGATGCGT TGAAACTGGT TGATGTGGAC TTGACATTAG AAGTGCAACA ACAACTGGGC GATGGCGTAG TGCGTACCAT TGCGATGGGT AGTACCGATG GTTTGAAACG CGGCTTAGCC GTGAACAACA CAGGCGCCCC TATTACAGTG CCTGTTGGTA AAGCAACATT GGGTCGTATT	50 100 150 200
30	CCAAACGCA ATTGCTGAAACCAGCTCC TAAATTTGAT GAACTGTCTA GCGCAACCGA ATTGCTGGAA ACAGGCATCA AAGTGATTGA CTTGCTTTGC CCATTTGCAA AAGGTGGTAA AGTAGGTTTG TTTGCTGTGTG CACGTGTGCG	250 300 350 400
35	CAAAACTGTG AACATGATGG AGTTGATTAA CAACATTGCC AAAGCGCACA GTGGTTTGTC TGTATTTGCA GGCGTGGGTG AACGTACTCG CGAAGGTAAT GACTTCTATC ACGAGATGAA AGATTCTAAC GTGTTGGATA AAGTTGCCAT GGTGTATGGT CAAATGAATG AACCTCCTGG CAACCGTTTG CGCGTTGCAT TGACTGGTTT GTCTATGGCA GAACACTTCC GTGATGAAAA AGACGAAAAT	450 500 550 600
	GGCAAAGGTC GCGATGTATT GTTCTTTGTG GACAACATCT ATCGCTACAC ATTGGCAGGT ACAGAAGTAT CGGCATTGCT GGGTCGTATG CCCTCTGCGG TAGGTTATCA ACCAACATTG GCAGAAGAAA TGGGTCGTTT GCAAGAGCGT ATTACTTCAA CGCAAACAGG TTCGATTACT T	650 700 750 800 831
40	•	03T
	2) INFORMATION FOR SEQ ID NO: 313	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 bases (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae	
55	(B) STRAIN: ATCC 11296	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313	
60		50 100
	210	

	CATCGCCATG	GGTTCTTCTG	ATGGTCTGCG	CCGCGGTCTG	GATGTAAAAG	150
	ACCTCGAGCA			GTAAAGCAAC		200
	ATCATGAACG		ACCGGTTGAC			250
	AGAAGAGCGT	TGGGCTATCC	ACCGCGCGGC	ACCGTCCTAT	GAAGAGCTGT	300
5	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CCAAGGGCGG	TAAAGTTGGT	CTGTTCGGCG	GTGCGGGTGT	400
	AGGTAAAACT	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGATCGAGC	450
	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAGCGTAC	TCGTGAGGGT	500
	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	ATAAAGTATC	550
10	CCTGGTGTAC	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
	CGCTGACCGG	CCTGACCATG	GCTGAGAAAT	TCCGTGACGA	AGGTCGTGAC	650
	GTACTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	CCGGTACTGA	700
	AGTATCCGCG	CTGCTGGGTC	GTATGCCTTC	AGCGGTAGGT	TATCAGCCGA	750
	CCCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	CTCCACCAAA	800
15	ACCGGTTCTA	TC				812

#### 2) INFORMATION FOR SEQ ID NO: 314

20

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 812 bases
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
- 25 TOPOLOGY: Linear (D)
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- 30 (A) ORGANISM: Klebsiella ornithinolytica
  - (B) STRAIN: ATCC 31898
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314

35	ATGCCGTACC	GCGCGTGTAC	GATGCTCTTG	AGGTACAGAA	<b>ТССТА АТСАС</b>	50
-	AGCCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGCGGTGGTA	TCGTACGTGC	
						100
	TATCGCCATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	GAAGTTAAAG	150
	ACCTTGAGCA	CCCGATCGAA	GTCCCGGTTG	GTAAAGCAAC	GCTGGGTCGT	200
	ATCATGAACG	TGCTGGGTCA	GCCAATCGAT	ATGAAAGGCG	ACATCGGCGA	250
40	AGAAGAGCGT	TGGGCTATTC	ACCGTGCAGC	TCCGTCCTAT	GAAGAGCTGT	300
	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CTAAGGGCGG	TAAAGTTGGT	CTGTTCGGTG	GTGCGGGTGT	400
	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGATCGAGC	450
	ACTCCGGTTA	CTCCGTGTTT	GCGGGCGTAG	GTGAACGTAC	TCGTGAGGGT	500
45	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTCTGG	ATAAAGTATC	550
	CCTGGTTTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	CTGCGCGTTG	600
	CTCTGACCGG	CCTGACCATG	GCTGAGAAAT	TCCGTGACGA	AGGTCGTGAC	650
	GTTCTGCTGT	TCGTCGATAA	CATCTATCGT	TATACCCTGG	CCGGTACTGA	700
	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	AGCGGTAGGT	TATCAGCCGA	750
50	CCCTGGCGGA	AGAGATGGGT	GTTCTGCAGG	AACGTATCAC	CTCCACCAAA	800
	ACCGGTTCTA	TC				812

#### 55 2) INFORMATION FOR SEQ ID NO: 315

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 813 bases
  - (B)
- TYPE: Nucleic acid STRANDEDNESS: Double 60 (C)

	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	(vi)ORIGINAL SOURCE: (A) ORGANISM: Klebsiella oxytoca	
	(B) STRAIN: ATCC 33496	
10		
	GTACCGCGC TGTACGAGGC TCTTGAGGTA CAAAATGGTA GTGAGAATCT GGTGCTGGAA GTTCAGCAGC AGCTCGGCGG CGGTATTGTT CGTACCATCG	50
	GAGCATCCGA TCGAAGTCCC GGTAGGTAAA GCAACGCTCC CTCCTATGATT	100 150
15	GAACGTACTG GGCCAACCGG TAGACATGAA AGGCGACATC GGCGAAGAAG AGCGTTGGGC GATTCACCGC GCAGCGCCTT CCTACGAAGA GTTGTCAAAC	200 250
	TOTOMOGRAC IGCIGGAAAC CGGCATCAAA CTTATCCACC TCATCTTCC	300 350
	AAACCGTAAA CATGATGGAG CTGATCCGTA ACATCGCCAT GGAGGAGGGA	400 450
20	CTTCTACCAC GAAATGACCG ACTCCAACGT TATCGATAA GTATGATAA	500
	ACCGGCCTGA CCATGGCTGA GAAGTTCCGT GACGAACGTG GTTGCGCTG	550 600
25	GCIGITCGIC GAIAACATCT ATCGTTACAC CCTGCCCCCT ACTCAACTAT	650 700
	GCGGAAGAGA TGGGCGTTCT GCAGGAACGT ATCACCTCCA CCAAAACGGG TTCTATCACT TCC	750 800
		813
30	2) INFORMATION DOT OF	
	2) INFORMATION FOR SEQ ID NO: 316	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 822 bases	
35	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Klebsiella planticolo	
	(A) ORGANISM: Klebsiella planticola (B) STRAIN: ATCC 33531	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316	
	GATGCCGTAC CGCGCGTGTA CGATGCTCTT GAGGTACAGA ATGGTAATGA	50
<b>5</b> 0	CTATCGCCAT GGGTTCTTCT GACGGTCTGC GTGGTGGTTGT GGGAGGTG	100 150
50	TATCATGAAC GTGCTGGGTC AGCCGATCGA TATGAAAGCAA CGCTGGGTCG	200
	TCCAGTTCTC AGGAACTGCT GGAACCGCC ATGAACGTTA TGAAGAGCTG	250 300
55	GTGTCCGTTC GCTAAGGGCG GTAAAGTAGG TCTGTTCGGT GGTGCGGGCG TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG CACTCCGGTT ACTCCCTGTT TGGGGGCGGAG	350 400
		450 500
	CCCTGGTTTA TGGCCAGATG AACGAGCCGC CCCCAAAGGTAT	550 600
60	GCTCTGACCG GCCTGACCAT GGCTGAGAAA TTCCGTGACG AAGGTCGTGA CGTTCTGCTG TTCGTCGATA ACATCTATCG TTATACCCTG GCCGGTACTG	650 700
	320	700

	AAGTATCCGC ACTGCTGGGT CGTATGCCTT CAGCGGTAGG TTATCAGCCG ACCCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CCTCCACCAA AACCGGTTCT ATCACTTCCG TA	750 800 822
5		
	2) INFORMATION FOR SEQ ID NO: 317	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 785 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae subsp. pneumoni</li><li>(B) STRAIN: ATCC 13883</li></ul>	ae
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317	
25	AGAATGGTAA TGAAGTTCTG GTGCTGGAAG TTCAGCAGCA GCTGGGCGGC GGTATCGTAC GTACCATCGC CATGGGTTCT TCTGATGGTC TGCGCCGCGG TCTGGATGTA AAAGACCTCG AGCACCCGAT CGAAGTCCCG GTAGGTAAAG CAACGCTGGG TCGTATCATG AACGTACTGG GTCAACCGGT TGACATGAAA GGCGACATCG GCGAAGAAGA GCGTTGGGCT ATCCACCGCG CGGCACCGTC	50 100 150 200 250
30	CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG TTATCGACCT GATGTGTCCG TTCGCCAAGG GCGGTAAAGT TGGTCTGTTC GGCGGTGCGG GTGTAGGTAA AACTGTAAAC ATGATGGAGC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCTGT GTTTGCGGGC GTAGGTGAGC GTACTCGTGA GGGTAATGAC TTCTACCACG AAATGACCGA CTCCAACGTT	300 350 400 450 500
35	ATCGATAAAG TATCCCTGGT GTACGGCCAG ATGAACGAGC CGCCGGGAAA CCGTCTGCGC GTTGCGCTGA CCGGCCTGAC CATGGCTGAG AAATTCCGTG ACGAAGGTCG TGACGTACTG CTGTTCGTCG ATAACATCTA TCGTTACACC CTGGCCGGTA CTGAAGTATC CGCACTGCTG GGTCGTATGC CTTCAGCGGT AGGTTATCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTG CAGGAACGTA TCACCTCCAC CAAAACCGGT TCTATCACCT CCGTA	550 600 650 700 750 785
40	·	
	2) INFORMATION FOR SEQ ID NO: 318	
45	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 759 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Kluyvera ascorbata</pre>	
55	(B) STRAIN: ATCC 33433	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318	
60	CTGGTGCTGG AAGTTCAGCA GCAGCTCGGC GGCGGTATCG TACGTWCCAT CGCTATGGGT TCTTCCGACG GTCTGCGTCG CGGTCTGGAT GTTAAAGATC TCGAGCACCC AATCGAAGTT CCGGTMGGTA AAGCAACMCT GGGTCGTATC	50 100 150

5	ATGAACGTAC TGGGTCAKCC AGTMGACATG AAAGGCGACA TCGGTGAAGA AGAGCGTTGG GCTATCCACC GCGCTGCACC TTCCTACGAA GAGCTGTCTA GCTCTCAGGA ATTGCTGGAA ACCGGTATCA AAGTTATCGA CCTGATGTGT CCGTTCGCTA AGGGCGGTAA AGTCGGTCTG TTCGGTGGTG CSGGTGTTGG TAAAACCGTA AACATGATGG AGCTGATCCG TAACATCGCG ATCGAGCACT CCGGTTACTC CGTGTTTGCG GGCGTAGGTG AACGTACTCG TGAGGGTAAC GACTTCTACC ACGAAATGAC CGACTCCAAC GTTATCGATA AAGTATCCCT GGTATATGGC CAGATGAACG AGCCACCGGG AAACCGTCTG CGCGTTGCTC TGACCGGTCT GACCATGGCT GAGAAATTCC GTGACGAAGG TCGTGACGTA CTGCTGTTCG TCGATAACAT CTATCGTTAC ACCCTGGCCG GTACTGAAGT ATCTGCWCTG CTGGGTCGTA TGCCTTCAGC GGTAGGTTAC CAGCCGACCC GGTTCTATC	200 250 300 350 400 450 550 650 750 759
15		
	2) INFORMATION FOR SEQ ID NO: 319	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kluyvera cryocrescens     (B) STRAIN: ATCC 33435  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 319</pre>	
35	TTCCCTCAGG ATGCCGTACC GCGTGTGTAC GAAGCCCTTG AGGTTCAGAA TGGTAATGAA GTGCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA TCGTACGTAC CATCGCTATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG GATGTAAAAG ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC ACTGGGTCGT ATCATGAACG TACTGGGCCA ACCGGTAGAC ATGAAAGGCG	50 100 150 200 250 300
40	ACATCGGTGA AGAAGAACGT TGGGCTATCC ACCGTGCAGC ACCTTCCTAC GAAGAGCTGT CAAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT CGACCTGATG TGTCCGTTTG CGAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT TCGTAACATC GCGATTGAGC ACTCCGGTTA TTCTGTGTTT GCGGGCGTAG GTGAACGTAC	350 400 450 500
.45	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ATAAAGTTTC CCTGGTTTAC GGCCAGATGA ACGAGCCACC AGGAAACCGT CTGCGCGTTG CGCTGACTGG TCTGACTATG GCTGAGAAGT TCCGTGACGA AGGTCGCGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG CCGGTACAGA AGTATCTGCA CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TACCAGCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC	600 650 700 750 800
50	TACCAGCCGA CTCTGGCGGA AGAGATGGGC GITCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCGT A	831
	2) INFORMATION FOR SEQ ID NO: 320	
55	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 810 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

# (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Kluyvera georgiana
- 5 (B) STRAIN: ATCC 51603

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320

	GCCGTACCGC	GCGTGTACGA	AGCCCTTGAG	GTACAGAATG	GTAATGAAGT	50
10	GCTGGTGCTG		AGCAGCTCGG	TGGCGGTATC	GTGCGTACCA	100
10	TCGCCATGGG	TTCCTCCGAC	GGTCTGCGTC	GCGGTCTGGA	AGTTAAAGAT	150
	CTCGAGCACC	CGATCGAAGT	TCCGGTAGGT	AAAGCAACAC	TGGGTCGTAT	200
		CTGGGTCACC	CGGTAGACAT	GAAAGGCGAC	ATCGGTGAAG	250
	CATGAACGTA	GGCTATCCAC	CGCGCTGCGC	CTTCCTACGA	AGAGCTGTCC	300
	AAGAGCGTTG AGCTCTCAGG		AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
15	TCCGTTCGCG			GTTCGGCGGT	GCGGGTGTTG	400
	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
		CACGAAATGA	CCGACTCCAA	CGTTATCGAT	AAAGTATCCC	550
	CGACTTCTAC TGGTGTATGG	CCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCG	600
20		TGACCATGGC	TGAGAAATTC	CGTGACGAAG	GTCGTGACGT	650
	CTGACCGGCC	GTCGATAACA	TCTATCGTTA	CACCCTGGCC	GGTACTGAAG	700
	ACTGCTGTTC	GCTGGGTCGT	ATGCCTTCAG	CGGTAGGTTA	CCAGCCGACT	750
	TATCTGCACT	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAGAC	800
	CTGGCGGAAG	AGMIGGGCGI	ICIGCROOM	C01111 C11001	<del></del>	810
25	CGGTTCTATC					

# 2) INFORMATION FOR SEQ ID NO: 321

30

40

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 834 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Lactobacillus acidophilus
    - (B) STRAIN: ATCC 4356

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321

					•	
45	TCGATAAGAA	TTTACCTGAT	ATTAACAACG	CCTTACGTGT	AATCAAGTCC	50
	GAAGATGAAA	GCATCGTTCT	TGAAGTTACA	CTTGAACTCG	GTGATGGTGT	100
	TTTAAGAACA	ATCGCCATGG	AATCTACCGA	TGGTCTTCGT	CGTGGTATGA	. 150
	AAGTCGAAGA	TACTGGCGCT	CCAATTTCAG	TTCCAGTTGG	AGAAGACACT	200
	TTAGGTCGTG	TGTTTAACGT	TTTAGGACAG	CCTATTGATG	GTGGTCCAGC	250
50	CTTTCCAAAG	GATCACCCAC	GTGAGGGTAT	CCACAAGGAA	GCACCTAAAT	300
50	ATGAAGATTT	AACTACTAGT	CGTGAAATTC	TTGAAACTGG	TATCAAGGTT	350
	ATCGACCTTC	TTGAACCATA	TGTTCGTGGT	GGTAAAGTTG	GTTTGTTTGG	400
		GTTGGTAAAA	CTACTATTAT	TCAAGAATTA	ATTCACAACA	450
	TGGTGCCGGT	ACACGGTGGT	ATTTCCGTAT	TTACTGGTGT	TGGTGAAAGA	500
	TCGCTCAAGA	GTAATGACCT	TTACTTTGAA	ATGAAAGCTT	CAGGCGTTTT	550
55	ACTCGTGAAG		TTGGTCAGAT	GAACGAGCCG	CCTGGTGCCA	600
	AAGTAAGACT	GCCATGGTAT	GGTTTGACAC	TTGCTGAATA	CTTTAGAGAT	650
	GAATGCGTGT	TGCATTAACC			TTAGATTTAC	700
	GTTGAAGGTC	AAGACGTATT	GCTCTTTATT	GACAATATCT		
	TCAGGCTGGT	TCAGAGGTAT	CTGCTTTGCT	TGGTCGTATG	CCAAGTGCCG	750
60	TAGGTTATCA	GCCAACTTTG	GCAACAGAAA	TGGGTCAATT	GCAGGAAAGA	800

# ATTACTTCTA CTAAGAAGGG TTCAATTACT TCAA

5	2) INFORMATION FOR SEQ ID NO: 322	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Legionella pneumophila subsp. pneumoph</li><li>(B) STRAIN: ATCC 33152</li></ul>	nila
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322	
20	ALTICALLICIO I I I I I I I I I I I I I I I I I I	50 100 150
25	AAAATACAGG CCATCCTATT CAAGTGCCAG TAGGTAAGAA AACTTTGGGA CGCATTATGG ATGTTCTTGG GCGTCCTGTA GATGATGCTG GGCCTATCGA TGCTGAAGAG ACTTGGGCTA TTCATCGTAA AGCACCAAGT TATGAAGAGC	200 250 300
	CTTTGCCCTT TTGCCAAGGG AGGTAAAGTT GGTCTATTCG GTGGTGCCGG TGTAGGCAAA ACCGTTAACA TGATGGAATT AATACGAAAC ATTGCAATTG	350 400 450 500
30	GGAAACGACT TCTATCATGA GATGAAAGAC TCTAATGTAT TGGATAAAGT ATCGCTTGTT TATGGTCAGA TGAATGAGCC GCCAGGAAAC CGTTTGCGTG TTGCTCTAAC CGGTTTGACT ATGGCTGAAA AATTCCGGGA TGAAGGGCGA	550 550 600 650
35	GACGTTCTTT TGTTTATCGA TAATATTTAT CGTTATACCT TGGCTGGGGT TGAAGTATCT GCGCTGTTAG GCCGTATGCC TTCTGCAGTA GGATATCAGC CGACATTAGC AGAGGAAATG GGTATGCTGC AAGAGCGCAT TACCTCCACA	700 750 800 824
40	2) INFORMATION FOR SEQ ID NO: 323	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 818 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Leminorella grimontii   (B) STRAIN: ATCC 33999</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323	
60	GACGCCGTAC CGAAAGTGTA CGATGCGCTT GAAGTTCAAA TTGATGCCAA GCTGGTTCTG GAAGTTCAAC AGCAGCTCGG CGGCGGCGTT GTTCGCTGCA TCGCGATGGG TACTTCAGAC GGCTTAAGCC GCGGTCTGGA CGTGCTCGAT CTGGAACACC CGATTGAAGT ACCGGTGGGC AAAGCGACGC TGGGCCGCAT	50 100 150 200

5	CATGAACGTG CTTGGTCACC CTATCGACAT GAAGGGCGAC ATCGGCGAAG AAGAGCGTTG GGCTATTCAC CGCGCAGCGC CGAGCTACGA AGACCTGTCG GGCGCAACCG AGCTGCTGGA GACCGGCATC AAGGTTATCG ACCTGATTTG TCCGTTCGCC AAGGGCGGTA AAGTCGGCCT GTTCGGCGGC GCCGGCGTAG TCCGGTTACT CCGTGTTTGC AGGCGTAGGT GAACGTACCC GTGAGGGTAA CACGAAATGA CACGAAATGA CTGAATCCAA CGTATTGGAC AAGGTGTCGC TGGTATACGG TCAGATGAC GAGCCGCCTG GAAACCGTCT GCGCGTAGCG TTAACGGGCT TCAGATGAC GAGCCGCCTG GAAACCGTCT GCGCGTAGCG TTAACGGGCT TGACCATGGC GGAGAAGTTC CGTGATGAAG GCCGTGACGT TCTGCTGTTT ATCGACAACA TTTACCGCTA TACCCTGGCC GGTACGGAAG TTATCCGCACT GCTGGGCCGT ATGCCTTCAG CCGTAGGCTA CCAGCCGACT CTGGCTGAGG AAATGGGCGT GCTTCAAGAG CGTATTACCT CTACCAAGAC GGGGTCTATC ACCTCCGT	250 300 350 400 450 500 550 600 750 800 818
15		
	2) INFORMATION FOR SEQ ID NO: 324	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 835 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Listeria monocytogenes	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324	
35	GTGGAAACTT ACCTGAAATC TACAATGCCC TAGTTATTGA ATATAAATCT GATGCAGAAG AAGCACCAAC TAGCCAACTT ACTTTAGAAG TAGCCATCCA ATTAGGTGAT GATGTTGTAC GTACAATCGC AATGGCATCA ACAGATGGTG TTCAAAGAGG TATGGAAGTT ATTGATACTG GGAGCCCAAT TACAGTTCCT GTAGGTACAG TAACTCTTGG TCGTGTATTT AATGTATTAG GAAACACCAT CGATTTGGAC GAACCACTTC CAAGCGATAT TAAACGTAAT AAAATTCACC GCGAAGCTCC AACTTTCGAT CAATTAGCAA CGACAACAGA AATTCTTGAA	50 100 150 200 250 300 350
40	ACAGGATTA AAGTAGTTGA CTTGCTAGCT CCTTACTTAA AAGGTGGTAA AATCGGATTG TTCGGTGGTG CCGGTGTTGG TAAAACCGTT CTAATTCAAG AGCTTATCCA TAATATCGCA CAAGAACATG GTGGTATTC TGTGTTCGCT GGCGTTGGAG AACGTACTCG TGAAGGTAAC GACCTTTACT TCGAAATGAA AGATTCAGGC GTTATTGAAA AAACAGCGAT GGTATTCGGT CAAATGAACG	400 450 500 550 600
45	AGATICAGGE GIGATA CGTGTTGCT TAACTGGTCT AACAATTGCT GAATATTTCC GTGATGAAGA ACATCAAGAT GTACTTTAT TCATTGATAA CATTTTCCGT TTCACACAAG CTGGTTCAGA GGTTTCGGCT TTACTAGGTC GTATGCCATC TGCGGTAGGT TACCAACCAA CCCTAGCTAC TGAAATGGGT CAACTACAAG AACGTATTAC ATCTACTAAC GTTGG	650 700 750 800 835
50		
	2) INFORMATION FOR SEQ ID NO: 325  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases	
55	(A) DENGIN: 828 Dases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

#### (vi) ORIGINAL SOURCE: (A) ORGANISM: Micrococcus lylae (B) STRAIN: ATCC 27566 5 (xi) SEOUENCE DESCRIPTION: SEQ ID NO: 325 CCCGCGTGGC GAGTTGCCGG CACTGTTCAA CGCGCTGACT GTCGAGGTCA CCCTCGAAGC AGTCGCTAAA ACCATTACCC TTGAGGTTGC TCAGCACCTC GGCGACAACT TGGTTCGTGC CGTGTCCATG GCACCGACCG ACGGTCTCGT 150 10 CCGTGGCGCT GCTGTGATCG ACAGCGGTAA GCCGATCTCA GTTCCCGTTG GTGACGTAGT CAAGGGACAC GTCTTCAACG CTCTGGGTGA TTGCCTCGAT GAGCCAGGTC TTGGCCGTGA CGGTGAGCAG TGGGGCATCC ACCGCGATCC GCCACCTTTT GACCAGCTTG AGGGTAAGAC CGAGATTCTG GAAACCGGTA 350 TTAAGGTCAT CGACCTGCTG ACCCCGTATG TTAAGGGCGG CAAGATCGGC 15 400 CTGTTCGGTG GTGCTGGTGT GGGTAAGACC GTTCTTATCC AGGAAATGAT 450 CACCCGTATC GCTCGCGAGT TCTCCGGTAC CTCGGTGTTC GCAGGCGTGG 500 GTGAGCGTAC CCGTGAGGGC ACCGACCTCT TCCTGGAAAT GGAAGAGATG 550 GGCGTTCTCC AGGACACCGC TCTTGTGTTC GGCCAGATGG ACGAGCCTCC AGGAGTTCGT ATGCGCGTGG CGCTGTCCGG CCTGACCATG GCGGAGTACT 20 TCCGCGATGT GCAGCACCAG GACGTGCTTC TGTTCATCGA CAACATCTTC 700 CGTTTCACCC AGGCAGGTTC CGAGGTTTCC ACCCTCCTAG GCCGCATGCC 750 TTCTGCCGTG GGTTACCAGC CAACGCTGGC AGACGAGATG GGTGTTCTGC 800 AGGAGCGTAT TACCTCCACA AAGGGTAA 828 25 2) INFORMATION FOR SEQ ID NO: 326 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 822 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Moellerella wisconsensis (B) STRAIN: ATCC 35017 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326 GATGCCGTAC CAAAAGTGTA CGATGCTCTT GAGGTTCTTA ACGGTAAAGA AAAATTGGTG CTGGAAGTTC AGCAACAATT AGGCGGTGGT GTTGTTCGTT 45 GTATCGCAAT GGGTACATCA GATGGTTTAA GCCGCGGTTT AGAAGTTAAA AATACAGATC ATCCGATCGA AGTTCCTGTC GGTGTTAAAA CGCTTGGCCG 200 TATCATGAAC GTGCTGGGTG ACCCAATCGA CATGAAAGGT GATATCGGCG 250 AAGAAGAACG CTGGTCAATT CACCGCGCAG CACCAAGCTA TGAAGATCTG .300 50 GCTAACTCAA CAGAACTTCT AGAAACAGGT ATCAAAGTTA TGGACCTGAT 350 TTGCCCATTC GCTAAAGGG GTAAAGTGGG TCTGTTCGGT GGTGCGGGTG 400 TCGGTAAAAC AGTTAACATG ATGGAGCTTA TTCGTAATAT CGCGATTGAG 450 CACTCAGGTT ATTCTGTATT CGCGGGTGTT GGTGAACGTA CTCGTGAAGG 500 TAACGATTTC TACCATGAAA TGACAGACTC AAACGTTCTG GATAAAGTTT CATTGGTTTA TGGCCAGATG AATGAGCCAC CAGGAAACCG TCTGCGTGTT 600

650

700

822

GCTCTGACTG GTCTGACTAT GGCAGAGAAA TTCCGTGACG AAGGTCGTGA

CGTACTGTTA TTCGTAGATA ATATTTATCG TTATACCTTA GCAGGGACAG AAGTATCTGC ACTGCTGGGT CGTATGCCTT CAGCGGTGGG TTATCAGCCA

ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA CCTCGACTAA

GACCGGCTCT ATCACTTCCG TA

	2) INFORMATION FOR SEQ ID NO: 327	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 854 bases (B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Branhamella catarrhalis (B) STRAIN: ATCC 43628	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327	50
20	CCGTGGCGAT GTCCCCCAAA TCTTTGATGC ACTTCATGTT GATGGTACTG AAACCACCCT TGAAGTCCAA CAACAGTTAG GTGATGGTGT GGTGCGTACC	100
	ATTGCCATGG GTTCTACCGA AGGCTTAAAG CGTGGCTTGC CTGTCTCTAA	150 200
	TTATECATET CCTACGTCGC CCAATCGATG AAGCAGGTCC GGTAAATGCT	250 300
25	GAACAAAAT GGTCCATTCA TCGTGAAGCA CCAAGTTATG ATGAACAGTC AAATAGTACA GAACTTTTAG AAACAGGCAT CAAAGTGATT GATTTGCTTT	350
	CECCATTECC CAAAGGTGGT AAAGTCGGTC TGTTCGGTGG TGCTGGTGT	400 450
	GGTAAGACCG TTAACATGAT GGAGCTTATC AATAATATCG CCCTAAAACA CTCAGGTCTG TCGGTTTTTG CTGGTGTGGG TGAGCGTACT CGTGAGGGTA	500
30	AUGACUTUCTA CCATGAAATG CAAGAAGCAG GCGTTGTTAA TACCGAAGAT	550 600
	TTTACTCAGT CAAAAGTTGC CATGGTTTAT GGTCAGATGA ATGAGCCACC AGGAAACCGT CTGCGTGTTG CCTTAACTGG TTTGACCATG GCAGAGTATT	650
	TOCCTCATCA AAAAGACGAA GCAACGGGCA AAGGCCGTGA TGTTCTGCTG	700 750
35	TTCGTTGATA ATATTTATCG TTACACATTG GCAGGTACTG AGGTATCAGC ACTTTTAGGT CGTATGCCAT CTGCGGTAGG TTATCAGCCG ACTTTGGCCG	800
-	AAGAGATGGG CTTGCTACAA GAGCGTATCA CCTCCACCCA ATCAGGCTCA ATTA	850 854
	Alla	
40		
	2) INFORMATION FOR SEQ ID NO: 328	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases	
45	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Moraxella osloensis	
	(B) STRAIN: ATCC 19976	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328	
	CCGTCAAAGC GTACCAAGAA TTTATGATGC CTTAAAAGTT GAAGGCACAG	50 100
	AAACTACATT AGAAGTACAA CAACAATTGG GTGATGGTAT CGTACGTACT ATTGCCATGG GTTCTACTGA AGGTCTAAAA CGTGGTCTAC CAGTTAGCAA	150
60	CACTGGCGCA CCAATCTCTG TACCTGTGGG TAAAGGTACA CTAGGTCGTA	200

5	TCATGGACGT TTTAGGACAC CCAATCGATG AGGCAGGTCC GGTAGAGCAT AGTAACACTT GGGCGATTCA CCGTGAAGCG CCAAGCTATG ATGAACAATC AAACTCTACT GAACTTTTAG AAACCGGTAT TAAAGTAATT GACTTACTAT GCCCATTTGC TAAAGGTGGT AAAGTCGGTC TGTTCGGTGG CGCGGGTGTT GGTAAAACCG TTAACATGAT GGAACTTATC AATAACATCG CAAAAGCACA CTCAGGTTTA TCGGTATTTG CTGGTGTAGG TGAGCGTACT CGTGAAGGTA ATGACTTCTA CCACGAGATG AAAGACTCAA ACGTACTTGA TAAAGTTGCG ATGGTGTATG GTCAGATGAA TGAGCCACCA GGAAACCGTT TACGTGTTGC CCTGACAGGT TTAACCATGG CAGAATACTT CCGTGACGAA AAAGATGAAA	250 300 350 400 450 550 600
10	ACGGTAAAGG TCGTGACGTA TTATTGTTCG TTGACAATAT TTATCGTTAC ACGCTAGCGG GTACCGAAGT ATCAGCATTA TTAGGTCGTA TGCCATCTGC AGTAGGGTAT CAGCCAACGC TTGCAGAAGA GATGGGTGTA CTACAAGAAC GTATTACTTC AACCCAATCA GGCTCTATTA C	700 750 800 831
15		
	2) INFORMATION FOR SEQ ID NO: 329	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Morganella morganii subsp. morganii    (B) STRAIN: ATCC 25830</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329	
	CGAATTTCCT CAGGATGCAG TACCGAAAGT GTACGATGCG CTTGAGGTAA CAAATGGTAA AGAAAAACTG GTGCTGGAAG TTCAGCAGCA GTTAGGCGGC	50 100
35	GGGGTTGTCC GTTGTATCGC TATGGGTACA TCTGATGGTC TGAGCCGTAA TCTGGAAGTA ACCGATTTAG GCCACCCGAT CGAAGTCCCT GTCGGCGTGA	150 200
	AAACCTTAGG ACGTATCATG AACGTTCTGG GTGATCCGAT CGATATGAAA GGTGACATCG GCGCAGAAGA AAAATGGTCT ATTCACCGTG CTGCACCAAC ATACGAAGAA CTGTCTAACT CCCAGGAACT GCTGGAAACA GGTATCAAAG	250 300 350
40	TAATGGACCT GATCTGCCCG TTCGCGAAGG GTGGTAAAGT CGGTCTGTTC GGTGGTGCGG GTGTGGGTAA AACCGTAAAC ATGATGGAAC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCTGT ATTCGCAGGG GTCGGTGAGC GTACCCGTGA AGGTAACGAC TTCTATCATG AAATGACAGA CTCCAACGTT	400 450 500 550
45	CTGGACAAAG TATCACTCGT GTACGGCCAG ATGAACGAGC CACCGGGAAA CCGTCTGCGC GTTGCTCTGA CCGGTCTGAC CATGGCGGAA AAATTCCGTG ATGAAGGCCG CGATGTACTG CTGTTCGTTG ATAACATCTA CCGTTATACC CTGGCCGGTA CTGAAGTATC CGCGCTGTTA GGCCGTATGC CTTCAGCGGT AGGTTACCAG CCGACACTGG CGGAAGAAAT GGGTGTGCTT CAGGAACGTA TCACATCGAC CAAAACAGGC TCTATCACGT CTGTA	600 650 700 750 800 835
50	ICACATCOAC CHIMICIOCO TOTTICOCO TOTTI	
	2) INFORMATION FOR SEQ ID NO: 330	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 824 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60		

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Pantoea agglomerans
- (B) STRAIN: ATCC 27155

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330

	GACGCGGTAC	CGCAAGTGTA	CAGCGCCCTC	GAGGTTATGA	ATGGTGATGC	50
10	GCGTCTGGTG	CTGGAAGTTC	AGCAGCAGCT	CGGCGGCGGC	GTAGTACGTA	100
	CCATCGCAAT	GGGTACGTCT	GACGGCCTGA	AGCGTGGTCT	GAGCGTCAAC	150
	GACCTGCAGA	AACCGATTCA	GGTACCCGTC	GGTAAAGCGA	CCCTGGGCCG	200
	TATCATGAAC	GTTCTCGGCG	AGCCAATCGA	TATGAAAGGC	GAGCTGAAAG	250
	AAGAAGATGG	CAGCGCAGTA	GAGATCGCCT	CTATTCACCG	CGCAGCCCCT	300
15	TCTTATGAAG	ATCAGTCTAA	CTCGCAGGAA	CTGCTGGAAA	CCGGCATCAA	350
	GGTTATCGAC	CTGATGTGTC	CGTTTGCTAA	AGGCGGTAAA	GTCGGTCTGT	400
	TCGGTGGTGC	GGGTGTAGGT	AAAACCGTCA	ACATGATGGA	ACTGATCCGT	450
	AACATCGCGG	CTGAACACTC	AGGTTACTCA	GTGTTTGCCG	GTGTGGGTGA	500
	GCGTACTCGT	GAGGGTAACG	ACTTCTACCA	CGAAATGACT	GACTCTAACG	550
20	TTATCGATAA	AGTTGCACTG	GTCTATGGCC	AGATGAACGA	GCCGCCGGGT	600
	AACCGTCTGC	GCGTAGCACT	GACCGGTCTG	ACCATGGCGG	AAAAATTCCG	650
	TGATGAAGGT	CGCGACGTTC	TGCTGTTCAT	CGATAACATC	TACCGTTATA	700
	CCCTGGCCGG	TACAGAAGTT	TCTGCACTGC	TGGGTCGTAT	GCCATCTGCG	750
	GTAGGTTACC	AGCCAACGCT	GGCAGAAGAG	ATGGGTGTGT	TGCAGGAGCG	800
25	TATTACCTCC	ACCAAGACCG	GTTC			824

#### 2) INFORMATION FOR SEQ ID NO: 331

30

40

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 808 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Pantoea dispersa
    - (B) STRAIN: ATCC 14589
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331

45	TATACAGCGC	TCTCGAGGTA	AAAAATGGTG	ATGCTCGTCT	GGTGCTGGAA	50
	GTACAGCAGC	AGCTGGGCGG	TGGCGTGGTG	CGTACCATCG	CCATGGGTTC	100
	TTCTGACGGC	CTGAAGCGCG	GTCTGGAAGT	CACCGACCTG	AAAAAACCTA	150
	TCCAGGTTCC	GGTTGGTAAA	GCAACACTCG	GCCGTATCAT	GAACGTGCTG	200
	GGTGAGCCAA	TCGACATGAA	AGGCGACCTG	AAAGAAGAAG	ACGGCAGCGC	250
50	TGTAGAGGTT	TCCTCTATTC	ATCGCGCAGC	GCCTTCTTAT	GAAGATCAGT	300
	CAAACTCGCA	GGAACTGCTG	GAAACCGGCA	TCAAGGTTAT	CGACCTGATG	350
	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	GTGCGGGTGT	400
	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	CCGTAACATC	GCGGCTGAGC	450
	ACTCAGGTTA	TTCGGTCTTT	GCCGGCGTGG	GTGAGCGTAC	TCGTGAGGGT	500
55	AACGACTTCT	ACCACGAAAT	GACGGACTCC	AACGTTATCG	ATAAAGTAGC	550
	GCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGTAACCGT	CTGCGCGTAG	600
	CACTGACCGG	TCTGACCATG	GCGGAAAAAT	TCCGTGATGA	AGGCCGTGAC	650
	GTTCTGCTGT	TCATCGACAA	CATCTACCGT	TACACCCTGG	CCGGTACAGA	700
	GGTTTCTGCA	CTGCTGGGTC	GTATGCCATC	GGCGGTAGGT	TATCAGCCAA	750
60	CGCTGGCTGA	AGAGATGGGT	GTGCTGCAGG	AGCGTATTAC	CTCCACCAAG	800

ACCGGTTC 808 5 2) INFORMATION FOR SEQ ID NO: 332 (i) SEOUENCE CHARACTERISTICS: LENGTH: 805 bases (A) (B) TYPE: Nucleic acid 10 (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 15 (vi)ORIGINAL SOURCE: (A) ORGANISM: Pasteurella multocida (B) STRAIN: NCTC 10322 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 332 20 GATGCAGTAC CAAAAGTATA TGATGCCTTA AATGTTGAAA CAGGTTTAGT ACTTGAAGTT CAACAACAAT TAGGTGGTGG TGTAGTTCGC TGTATCGCAA TGGGATCATC TGATGGATTA AAACGCGGTT TAAGCGTAAC AAATACGAAT 150 AACCCAATTT CTGTTCCAGT GGGAACGAAA ACATTGGGTC GTATCATGAA 200 CGTATTGGGT GAACCAATCG ATGAGCAAGG TGAAATCGGT GCAGAAGAGA ATTGGTCTAT TCACCGTGCG CCACCAAGTT ATGAAGAACA ATCTAACAGT ACTGAACTTT TAGAAACGGG AATTAAAGTT ATCGACTTAG TTTGTCCGTT 250 300 350 TGCGAAAGGG GGTAAAGTAG GTTTATTCGG TGGTGCGGGT GTCGGTAAAA 400 CCGTCAATAT GATGGAATTA ATCCGTAACA TCGCAATTGA GCACTCAGGT 450 TACTCTGTCT TTGCGGGGGT AGGTGAGCGT ACGCGTGAAG GTAACGACTT 3.0 500 CTATCATGAG ATGAAAGACT CTAACGTATT AGATAAAGTG TCTCTTGTTT 550 ATGGTCAAAT GAACGAGCCA CCAGGTAACC GTTTACGTGT GGCATTAACA 600 GGCTTAACTA TGGCGGAAAA ATTCCGTGAT GAAGGTCGTG ATGTCTTATT 650 CTTCGTTGAT AATATTTATC GTTATACTCT TGCTGGTACA GAAGTTTCTG 700 CATTATTAGG TCGTATGCCA TCTGCGGTAG GTTATCAACC AACCCTTGCA 35 750 GAAGAATGG GTGTTCTGCA AGAGCGTATT ACCTCAACCA AAACAGGTTC 800 TATTA 805 40 2) INFORMATION FOR SEQ ID NO: 333 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases 45 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 50 (vi)ORIGINAL SOURCE: (A) ORGANISM: Pragia fontium (B) STRAIN: ATCC 49100 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333 TTTCCTCAAG ACGCCGTACC AAAAGTGTAC GACGCGCTTG AAGTTCAGAA 50 CGATGCCAAG CTGGTGCTGG AAGTTCAACA ACAGCTCGGT GGTGGTGTCG 100

150

200

TTCGTTGTAT CGCAATGGGT ACTTCCGATG GCTTAAGCCG CGGTTTAAAA

GTGCTTGATT TAGAACATCC TATCGAAGTA CCGGTTGGTA CTGCGACGCT

5	GGGCCGTATT ATGAACGTGC TCGGTCAGCC AATCGATATG AAAGGCGATA TTGGTGAAGA AGAGCGTTGG GCTATTCACC GTGAAGCACC AAGTTATGAA GATTTATCTG GCGCCAATGA ACTGCTGGAA ACGGGTATCA AGGTTATCGA CCTGATTTGT CCGTTTGCTA AAGGTGGTAA AGTTGGTCTG TTTGGTGGTG CGGGTGTAGG TAAAACCGTA AACATGATGG AGCTGATTCG TAACATTGCG ACTGAGCACT CAGGTTACTC CGTATTCGCC GGTGTAGGGG AACGTACCCG TGAAGGTAAT GACTTCTACC ACGAAATGAC CGAATCAAAC GTACTGGATA AAGTATCTCT GGTTTATGGC CAGATGAACG AGCCACCAGG AAACCGTCTG CGCGTGGCGT TAACGGGTTT GACCATGGCT GAAAAATTCC GTGATGAAGG TCGTGACGTT CTGTTATTTA TCGATAACAT TTATCGCTAT ACCTTAGCCG GTACCGAAGT ATCAGCACTG TTGGGGCGTA TGCCATCAGC GGTAGGTTAT CAGCCAACGT TAGCAGAAGA GATGGGTGTG TTGCAGGAAC GTATTACTTC AACCAAAACC GGTTCAATCA CTTCTGTA	250 300 350 400 450 500 550 600 650 700 750 800 828
15		
	2) INFORMATION FOR SEQ ID NO: 334	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 807 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis     (B) STRAIN: ATCC 25933 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 334</pre>	
35	GTCCCTAAAG TATACGACGC TCTTGAGGTT ATGAATGGTA AAGAAAAACT GGTGCTGGAA GTTCAGCAAC AGTTAGGCGG TGGTATCGTT CGTTGTATCG CAATGGGTAC ATCAGACGGT TTAAGCCGTG GCTTAAAGGT TGAAGATTTA GGCCACCCAA TTGAAGTACC AGTAGGTAAA GCGACTTTAG GACGTATCAT GAACGTTCTG GGTACACCTA TTGATATGAA AGGTGAGATT GAAACCGAAG AGCGTTGGTC AATCCACCGT GAAGCACCAA CTTACGAAGA GTTATCAAAC	50 100 150 200 250 300
40	TCTCAAGAAC TGCTTGAAAC CGGTATCAAA GTTATGGACT TAATCTGTCC ATTTGCTAAA GGTGGTAAAG TCGGTCTGTT CGGTGGTGCG GGTGTTGGTA AAACAGTTAA CATGATGGAA TTGATCCGTA ATATCGCGAT CGAGCACTCA GGTTACTCTG TATTTGCTGG TGTTGGTGAG CGTACTCGTG AGGGTAACGA CTTCTATCAT GAAATGACAG ATTCTAACGT TCTTGACAAA GTATCGTTAG	350 400 450 500
45	TTTACGGTCA GATGAATGAG CCACCAGGAA ACCGTCTGCG TGTTGCACTG ACTGGTCTGA CTATGGCTGA GAAATTCCGT GATGAAGGCC GTGACGTACT GTTATTCGTC GATAACATCT ATCGTTACAC CTTAGCCGGT ACAGAAGTAT CAGCACTGTT AGGTCGTATG CCATCAGCGG TAGGTTACCA ACCAACATTG GCTGAAGAGA TGGGTGTTCT GCAAGAGCGT ATCACTTCAA CCAAAACAGG	600 650 700 750 800
50	TTCTATC	807
	2) INFORMATION FOR SEQ ID NO: 335	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 811 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

```
(ii) MOLECULE TYPE: Genomic DNA
        (vi)ORIGINAL SOURCE:
             (A)
                  ORGANISM: Proteus vulgaris
  5
             (B)
                   STRAIN: ATCC 13315
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335
      CCCTAAAGTA TACGACGCTC TTGAGGTTAT GAATGGTAAA GAGAAACTGG
     TGCTAGAAGT TCAGCAACAG TTAGGCGGTG GTATCGTTCG TTGTATCGCA
                                                                        100
     ATGGGTACAT CAGACGGTTT AAGCCGTGGC TTAAAAGTTG AAAACTTAGG
CCACCCAATT GAAGTACCAG TAGGTAAAGC AACACTGGGA CGTATCATGA
                                                                        150
                                                                        200
     ACGTTCTGGG TACACCTATC GATATGAAAG GTGATATTGC AACTGAAGAA
CGTTGGTCTA TTCACCGCGA AGCGCCAACC TATGAAGAGT TATCAAGCTC
                                                                        250
                                                                        300
 15
     TCAAGAACTA CTAGAAACCG GTATCAAAGT AATGGACTTA ATCTGTCCGT
                                                                        350
     TTGCTAAAGG TGGTAAAGTA GGTCTCTTCG GTGGTGCGGG TGTTGGTAAA
                                                                        400
     ACAGTTAACA TGATGGAATT GATCCGTAAC ATCGCGATTG AGCACTCAGG
                                                                        450
     TTATTCTGTA TTTGCAGGTG TTGGTGAGCG TACTCGTGAG GGTAACGACT
                                                                        500
     TCTATCATGA AATGACAGAT TCTAACGTTC TTGACAAAGT ATCGTTAGTT
                                                                        550
     TATGGTCAGA TGAATGAGCC ACCAGGAAAC CGTCTACGTG TAGCACTGAC
20
     GGGTTTAACC ATGGCGGAAA AATTCCGTGA TGAAGGCCGT GACGTACTGT
                                                                        650
     TATTCGTCGA TAACATCTAT CGTTACACCT TAGCCGGTAC CGAAGTATCA
                                                                        700
     GCACTGTTAG GCCGTATGCC ATCAGCAGTA GGTTACCAAC CAACATTGGC
TGAAGAGATG GGTGTTCTGC AAGAACGTAT CACTTCAACC AAAACAGGTT
                                                                       750
                                                                       800
25
     CAATCACCTC T
                                                                        811
     2) INFORMATION FOR SEQ ID NO: 336
30
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 806 bases
            (A)
            (B)
                   TYPE: Nucleic acid
                   STRANDEDNESS: Double
            (C)
35
            (D)
                   TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
40
            (A)
                  ORGANISM: Providencia alcalifaciens
            (B)
                  STRAIN: ATCC 9886
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336
     TCAAGATAAC GTACCAAAAG TGTACGATGC TCTTGAGGTT ATTAACGGTA
45
                                                                        50
     AAGAAAAACT GGTGTTGGAA GTTCAACAAC AGTTAGGTGG TGGTGTTGTC
                                                                        100
     CGTTGTATCG CAATGGGTAC ATCAGATGGT CTGAGCCGTG GTTTAGAAGT
                                                                       150
     TGTAAACTTA GAGCACCCAA TCGAAGTACC AGTCGGTAAA GCAACTCTGG
                                                                       200
     GACGTATCAT GAACGTTCTG GGTGAACCAA TCGACATGAA AGGTGATATC
                                                                       250
     GGCGAAGAAG AGCGCTGGTC TATTCACCGT GCTGCACCAA GCTACGAAGA
50
                                                                       300
     ATTAGCTAAC TCAACTGAAC TGCTGGAAAC CGGTATCAAA GTAATGGACT
                                                                       350
     TAATCTGTCC ATTCGCGAAA GGTGGTAAAG TAGGTCTGTT CGGTGGTGCG
                                                                       400
     GGTGTTGGTA AAACCGTAAA CATGATGGAA CTGATCCGTA ACATCGCGAT
                                                                       450
    TGAGCACTCA GGTTACTCAG TGTTCGCTGG TGTTGGTGAG CGTACCCGTG AAGGTAACGA CTTCTATCAT GAAATGACAG ACTCAAACGT TCTGGATAAA
                                                                       500
                                                                       550
    GTATCACTGG TTTATGGCCA GATGAACGAG CCACCAGGAA ACCGTCTGCG
    TGTTGCGCTG ACTGGTCTGA CTATGGCTGA AAAATTCCGT GACGAAGGTC
                                                                       600
```

700 750

800

GTGACGTACT GCTGTTCGTT GACAACATTT ATCGTTATAC ACTGGCAGGT

ACTGAAGTAT CAGCACTGTT AGGTCGTATG CCATCAGCGG TAGGTTACCA

ACCAACGCTG GCGGAAGAGA TGGGTGTTCT TCAAGAACGT ATTACCTCAA

200

CTCAAA

60

2) INFORMATION FOR SEQ ID NO: 337 5 (i) SEQUENCE CHARACTERISTICS: LENGTH: 830 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double 10 (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 15 (A) ORGANISM: Providencia rettgeri STRAIN: ATCC 9250 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337 20 TTCCCTCAAG ATGACGTACC AAAAGTGTAC GACGCTCTTG AGGTTGTTAA 50 CGGTAAAGAA ACACTGGTGC TGGAAGTTCA GCAACAGTTA GGCGGTGGTG 100 TTGTCCGTTG TATCGCAATG GGTACATCAG ATGGCCTGAG CCGTGGTTTA 150 GAAGTTGTAA ACTTAGAGCA CCCAATTGAA GTACCAGTAG GTAAAGCAAC 200 TTTAGGACGT ATCATGAACG TTCTGGGTCA GCCTATTGAT ATGAAAGGTG 250 ATATCGGCGA AGAAGAGCGC TGGTCAATTC ACCGTGCTGC ACCTAGCTAC 300 GAAGAGTTAG CTAACTCAAC AGAGCTGCTG GAAACCGGTA TCAAAGTAAT 350 GGACTTAATC TGTCCATTCG CGAAAGGTGG TAAAGTTGGT CTGTTCGGTG 400 GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAACTGAT CCGTAACATC 450 GCGATTGAGC ACTCAGGTTA CTCAGTATTC GCTGGTGTTG GTGAGCGTAC 30 500 TCGTGAAGGG AACGACTTCT ATCATGAAAT GACTGACTCA AACGTTCTGG ATAAAGTATC ACTGGTTTAT GGCCAGATGA ATGAGCCACC AGGAAACCGT 550 600 CTGCGCGTTG CGTTGACTGG TCTGACTATG GCTGAAAAAT TCCGTGACGA 650 AGGTCGTGAC GTACTACTGT TCGTTGACAA CATCTATCGT TATACACTGG 700 CAGGTACTGA AGTATCAGCA CTGTTAGGTC GTATGCCTTC AGCGGTAGGT 35 750 TATCAGCCAA CGCTGGCGGA AGAGATGGGT GTTCTGCAAG AACGTATTAC 800 CTCAACTCAA ACGGGTTCTA TCACTTCCGT 830 40 2) INFORMATION FOR SEQ ID NO: 338 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 bases 45 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 50 (vi) ORIGINAL SOURCE: (A) ORGANISM: Providencia rustigianii (B) STRAIN: ATCC 33673 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338 AGCGTACCAA AAGTGTACGA TGCTCTTGAG GTTATTAACG GTAAAGAAAA 50 ACTGGTGTTG GAAGTTCAGC AGCAGTTAGG CGGTGGTGTT GTCCGTTGTA 100 TCGCAATGGG TACATCAGAT GGTCTGAGCC GTGGTTTAGA AGTTGTAAAC 150

TTAGAACACC CAATTGAAGT ACCAGTAGGT AAAGCAACTC TGGGACGTAT

5	CATGAACGTT CTGGGTGACC CTATTGATAT GAAAGGTGAT ATCGGCGAAG AAGAGCGCTG GTCTATTCAC CGTTCAGCGC CAAGCTATGA AGAATTAGCT AACTCAACAG AACTGCTAGA AACCGGTATC AAAGTAATGG ACTTAATCTG GTAAAACAGT AAACATGATG GAACTGATCC GTTCGGTGGT GCGGGTGTTG GTAAAACAGT AAACATGATG GAACTGATCC GTAACATCGC GATTGAGCAC TCAGGTTACT CAGTATTCGC TGGTGTTGGT GAGCGTACCC GTGAAGGTAA CGACTTCTAT CATGAAATGA CTGATTCTAA CGTTCTGGAT AAAGTATCAC GCGGTTTGCG CTGACTGGTC TGACAACACA GAAACCGTCT GCGTGTTGCG CTGACTGGTC GTGACAGAAAAATTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC GTTGACAACA TTTATCGTTA TACACTGGCA GGTACTGAAG TTCAGCCAACA TCTACAAGAA CGTATCACTT CTACCAAAAC CGGTTCTATC AC	250 300 350 400 450 500 550 600 700 750 800 812
15		
	2) INFORMATION FOR SEQ ID NO: 339	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Providencia stuartii     (B) STRAIN: ATCC 33672 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 339</pre>	
35	TCAAGATGCA GTACCAAAAG TGTACGATGC GCTTGAGGTT GTTAACGGTA AAGAAAAACT GGTGCTGGAA GTTCAGCAAC AGTTAGGCGG TGGTGTTGTC CGTTGTATCG CAATGGGTAC ATCAGATGGC CTAAGCCGTG GTTTAGAAGT TAAAAATTTA GAACACCCAA TTGAAGTACC AGTAGGTAAA GCAACACTCG GACGTATCAT GAACGTTCTG GGTGACCCTA TTGATATGAA AGGTGATATC GGCGAAGAAG AGCGTTGGTC TATTCACCGC GCTGCACCAA GCTACGAAGA	50 100 150 200 250 300
40	GCTATCGAGC TCAACTGAAC TGCTAGAGAC AGGTATCAAA GTCATGGACT TGATCTGTCC ATTCGCGAAA GGTGGTAAAG TTGGTCTGTT CGGTGGTGCG GGTGTTGGTA AAACGGTAAA CATGATGGAA CTTATCCGTA ACATCGCGAT TGAGCACTCA GGTTACTCAG TATTCGCAGG TGTTGGTGAG CGTACCCGTG AAGGTAACGA CTTCTATCAT GAAATGACAG ATTCAAACGT TCTTGACAAA	350 400 450 500 550
45	GTATCACTGG TTTATGGTCA GATGAATGAG CCACCAGGAA ACCGTCTACG CGTAGCATTG ACTGGTTTGA CTATGGCTGA GAAATTCCGT GACGAAGGCC GTGATGTTCT GTTGTTCGTG GATAACATCT ATCGTTATAC ACTGGCAGGT ACAGAAGTAT CGGCTCTGTT AGGTCGTATG CCATCAGCAG TAGGTTATCA GCCAACATTG GCAGAAGAGA TGGGTGTTCT TCAAGAACGT ATCACTTCTA	600 650 700 750 800
50	CTAAGACAGG TTCTATCAC	819
55	2) INFORMATION FOR SEQ ID NO: 340 (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 907 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60		

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Psychrobacter phenylpyruvicus
- (B) STRAIN: ATCC 23333
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340

	AACCGCACTG	ACGTGCCTCA	AATTTATGAC	GCGTTAGTTG	TAGATGGTAC	50
10	CGAAACCACC	CTAGAAGTTC	AGCAGCAGCT	GGGCGATGGT	GTGGTACGTA	100
	CTATTGCAAT	GGGATCTACT	GAAGGTCTTA	AGCGTGGTTT	ACCAGTAACA	150
	AACACTGGTG	CCCCAATTAC	AGTTCCAGTA	GGTGATGCGA	CTTTAGGTCG	200
	TATTATGGAC	GTTTTAGGTC	GTCCAATTGA	CGAACAAGGT	CCAGTTAATT	250
	CTGAAGACCA	TTGGTCAATC	CACCGTCAAG	CGCCATCATA	TGATGAGCAA	300
15	GCTAACAGTA	CTGACCTATT	AGAGACAGGT	ATTAAAGTAA	TTGACTTACT	350
	TTGTCCGTTC	GCTAAAGGGG	GTAAAGTTGG	TCTGTTCGGT	GGTGCCGGTG	400
	TTGGTAAAAC	CGTAAACATG	ATGGAATTGA	TTAATAACAT	CGCTCTTAAG	450
	CACTCAGGTT	TATCAGTATT	CGCTGGTGTG	GGTGAGCGTA	CTCGTGAAGG	500
	TAACGACTTC	TACCACGAGA	TGCAAGAAGC	GGGTGTTGTT	GACGTTGAAA	550
20	ACTTCACCAA	CTCAAAAGTT	GCGATGGTTT	ATGGTCAGAT	GAATGAGCCA	600
	CCAGGTAACC	GTTTACGTGT	TGCGTTAACC	GGTCTGACTA	TGGCTGAGTA	650
	CTTCCGTGAT	CAAAAAGATG	AAAACGGTAA	AGGTAAAGAC	GTTCTATTAT	700
	TCGTTGATAA	CATCTACCGC	TACACGCTAG	CCGGTACTGA	AGTATCAGCA	750
	CTTCTAGGTC	GTATGCCATC	AGCAGTAGGT	TATCAGCCAA	CACTAGCGGA	800
25	AGAGATGGGT	GTACTACAAG	AGCGTATTAC	TTCAACTCAG	ACTGGTTCTA	850
	TTACTTC					907

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 832 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Rahnella aquatilis
  - (B) STRAIN: DSM 4594
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341

	(35-)					
45						
	GTTCCCTCAG	GATGCAGTAC	CGAACGTGTA	CAATGCTCTT	GAGGTAGAAA	50
	ACGGTACCTC	CAAACTGGTG	CTGGAAGTTC	AGCAACAGTT	AGGCGGCGGC	100
	GTTGTTCGTT	GTATCGCAAT	GGGTACCTCA	GACGGCCTGC	GTCGCGGTCT	150
	GAAAGTGAAC	AACCTGGAAC	ACCCAATTGA	AGTACCGGTA	GGTAAAGCGA	200
50	CTCTGGGTCG	TATCATGAAC	GTATTGGGTG	AACCAATCGA	CATGAAAGGT	250
	GAAATCGGCG	AAGAAGAACG	TCGTGCTATT	CACCGTGCTG	CGCCTTCTTA	300
	TGAAGAGCTG	GCAAACTCCC	AGGAATTGCT	GGAAACCGGT	ATCAAAGTTA	350
	TGGACCTGAT	GTGTCCGTTC	GCTAAGGGCG	GTAAAGTTGG	TCTGTTCGGT	400
	GGTGCGGGTG	TAGGTAAAAC	TGTGAACATG	ATGGAGCTGA	TCCGTAACAT	450
55	TGCGATCGAG	CACTCCGGTT	ATTCTGTGTT	TGCAGGCGTG	GGTGAACGTA	500
	CTCGTGAGGG	TAACGACTTC	TACCACGAAA	TGACTGATTC	CAACGTTATC	550
	GACAAAGTTT	CCCTGGTGTA	TGGCCAGATG	AATGAGCCAC	CAGGTAACCG	600
	TCTGCGCGTT	GCACTGACCG	GCCTGACCAT	GGCGGAAAAA	TTCCGTGATG	650
	AAGGTCGTGA	CGTACTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	700
60	GCCGGTACCG	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	750

	TTATCAGCCA ACGCTGGCGG AAGAGATGGG CGCTCTGCAA GAACGTATCA CCTCGACCAA AAGTGGTTCT ATCACCTCCG TA	800 832
5	2) INFORMATION FOR SEQ ID NO: 342	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 824 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	<ul><li>(ii) MOLECULE TYPE: Genomic DNA</li><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Salmonella choleraesuis subsp. arizon</li><li>(B) STRAIN: ATCC 13314</li></ul>	nae
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342	
25	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCTCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGCGGTA TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTT GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCCAC GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGGCG AGATCGGCGA AGAAGAGCGT TGGGCTATTC ACCGCGCGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TAAAAGTTAT	50 100 150 200 250 300 350
30 ·	CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCT AACGTTATCG ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCACC GGGAAACCGT	400 450 500 550 600
35	CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TATACCCTCG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TAYCASCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCAC	650 700 750 800 824
40		
	2) INFORMATION FOR SEQ ID NO: 343	
<b>4</b> 5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 820 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Salmonella choleraesuis subsp. choles	raesuis
55	serotype <i>choleraesuis</i> (B) STRAIN: ATCC 7001	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343	
60	GATGCCGTAC CACGCGTGTA CGATGCCCTT GAGGTGCAGA ATGGTAATGA GAAGCTGGTG CTGGAAGTTC AGCAGCAGCT TGGCGGCGGT ATCGTGCGTA	50 100

	CCATCGCGAT	GGGGTCTTCT	GACGGTCTGC	GTCGCGGTCT	GGATGTAAAA	150
	GATCTCGAAC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCCA	CGCTGGGTCG	200
	TATCATGAAC	GTCCTGGGCG	AACCGGTCGA	CATGAAAGGC	GAGATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGCGCAG	CACCTTCCTA	CGAAGAGTTG	300
5	TCAAACTCTC	AGGAACTGCT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	GCGAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTTA	TTCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ACTCAGTGTT	TGCGGGCGTA	GGGGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC	GATAAAGTAT	550
10	CCCTGGTGTA	TGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	600
	GCACTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	TGTACTGCTG	TTCGTCGATA	ACATCTATCG	TTACACCCTG	GCCGGTACGG	700
	AAGTATCCGC	ACTGCTGGGC	CGTATGCCTT	CCGCAGTAGG	TTACCAGCCG	750
	ACTCTGGCGG	AAGAGATGGG	CGTTCTGCAG	GAACGTATCA	CCTCCACCAA	800
15	AACCGGTTCT	ATCACCTCCG				820

### 2) INFORMATION FOR SEQ ID NO: 344

20

30

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 831 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Salmonella choleraesuis subsp. diarizonae
      - (B) STRAIN: ATCC 43973

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 344

35	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCTCTTG	AGGTGCAGAA	50
	TGGTAATGAG	AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TCGTGCGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTT	150
	GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	GCTGGGTCGT	ATCATGAACG	TCCTGGGTGA	ACCGGTCGAT	ATGAAAGGCG	250
40	AGATCGGCGA	AGAAGAGCGT	TGGGCGATTC	ACCGCGCGGC	GCCGTCCTAC	300
	GAAGAGTTGT	CAAACTCTCA	GGAAÇTGCTG	GAAACCGGTA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	GCGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT	CCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	GTGAACGTAC	500
45	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCT	AACGTTATCG	550
	ATAAAGTATC	CCTGGTGTAT	GGCCAGATGA	ACGAGCCACC	GGGAAACCGT	600
	CTGCGCGTTG	CATTGACCGG	CCTGACCATG	GCGGAAAAAT	TCCGTGATGA	650
	AGGTCGTGAC	GTTCTGCTGT	TCGTCGACAA	CATCTACCGT	TATACCCTCG	700
	CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
50	TATCAGCCGA	CTCTGGCTGA	AGAAATGGGC'	GTTCTGCAGG	AACGTATCAC	800
	CTCCACCAAA	ACCGGTTCTA	TCACCTCCGT	A		831

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 831 bases
  - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D)

55

60

TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Salmonella choleraesuis subsp. houtenae (A) STRAIN: ATCC 43974 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345 10 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCTCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 100 TCGTACGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC 200 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGGCG 15 AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCTGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC 450 GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG GTGAACGTAC 20 500 TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG 550 ATAAAGTATC CCTGGTGTAT GGTCAGATGA ACGAGCCGCC GGGAAACCGT 600 CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG 650 700 CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TATCAGCCGA CGCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC 25 750 800 CTCCACCAAG ACCGGTTCTA TCACCTCCGT A 831 30 2) INFORMATION FOR SEQ ID NO: 346 (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases (A) 35 (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. indica STRAIN: ATCC 43974 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346 45 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA 50 TGGTAATGAG AAGCTCGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 100 TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCCAC 200 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGGCG 250 AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCGCG GCCGTCCTAT 300 GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT 350

400

450

500

550

600

650

CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG

GTGCGGGCGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC

GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC

TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG

ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT

CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAGAAGT TCCGTGACGA

AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG

CCGGTACGGA AGTTTCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TATCAGCCAA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCG 829	
2) INFORMATION FOR SEQ ID NO: 347  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 817 bases  (B) TYPE: Nucleic acid	
(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA	
<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis     serotype paratyphi A     (B) STRAIN: ATCC 9150</pre>	3
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347	
GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA  GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATC GTGCGTACCA  TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAT  CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCTACGC TGGGTCGTAT  CATGAACGTC CTGGGCGAAC CGGTCGACAT GAAAGGCGAG ATCGGCGAAG  AACACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG  AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG  TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG  GTAAAACCGT AAACATGATG GAGCTTATCC GTAACATCGC GATCGAGCAC  TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA  CGACTTCTAC CATGAAATGA CCGACTCCAA CGTTATCGAT AAAGTATCCC  TGGTGTATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCA  CTGACCGGCC TGACCATGCC GAGCACCCCGG GAAACCGTCT GCGCGTTGCA  ACTGCTGTTC GTCGATAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG  TATCCGCACT GCTGGTCGT ATGCCTTCCG CGGTAGGTTA CCAGCCGACT  TATCCGCACT GCTGGTCGT ATGCCTTCCG CGGTAGGTTA CCAGCCGACT  TATCCGCACT GCTGGGTCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC  CTGGCGGAAG AGATGGCCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC  CTGGCGGAAG AGATGGCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC  CTGGCGGAAG AGATGGCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC  800  CGGTTCTATC ACCTCCG	
2) INFORMATION FOR SEQ ID NO: 348  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
(ii) MOLECULE TYPE: Genomic DNA	
(vi)ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis	3
serotype <i>paratyphi</i> B (B) STRAIN: ATCC 8759	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348

	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA	50
	GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATT GTGCGTACCA	100
	TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAT	150
	CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCCACGC TGGGTCGTAT	200
5	CATGAACGTC CTGGGCGAAC CGGTCGACAT GAAAGGCGAG ATCGGCGAAG	250
_	AAGAGCGTTG GGCGATTCAC CGCGCAGCGC CTTCCTACGA AGAGTTGTCA	300
	AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG	350
	TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTGG	400
	GTAAAACCGT AAACATGATG GAGCTTATCC GTAACATCGC GATCGAGCAC	450
1.0	TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA	500
10	CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAT AAAGTATCCC	550
	TGGTGTATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCA	600
	TTGACCGGTC TGACCATGGC GGAGAAATTC CGTGACGAAG GTCGTGACGT	650
	ACTGCTGTTC GTCGATAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG	700
	TATCCGCACT GCTGGGCCGT ATGCCTTCCG CAGTAGGTTA CCAGCCGACT	750
15	TATCCGCACT GCTGGGCCGT ATGCCTTCCG CAGTAGGTTA CCAGCCGACT	
	CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAAAC	800
	CGGTTC	806
20		
20	2) INFORMATION FOR SEQ ID NO: 349	
	2) INFORMATION FOR SEQ 1D NO. 349	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 831 bases	
25	(B) TYPE: Nucleic acid	
25	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(D) TOPOLOGI. Hillean	
	(ii) MOLECULE TYPE: Genomic DNA	
30		
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Salmonella choleraesuis subsp. salar	nae
	(B) STRAIN: ATCC 43972	
	(5) 51111111 11255 157.2	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349	
	, , , , , , , , , , , , , , , , , , , ,	
	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA	50
	TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA	100
	TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGKGGTCTG	150
40	GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC	200
	GCTGGGCCGT ATCATGAACG TACTGGGCGA ACCGGTCGAC ATGAAAGGCG	250
	AGATTGGTGA AGAAGAGCGT TGGGCTATTC ACCGTGCTGC GCCGTCCTAC	300
	GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT	350
	CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG	400
45	GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT CCGTAACATC	450
	GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG GTGAACGTAC	500
	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG	550
	ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT	600
	CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGACGA	650
50	AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG	700
50	CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT	750
	TATCAGCCGA CGCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC	800
	TATAGECGA COCTOGEGGA AGAGATOGE GITCIGCAGG AACGTATCAC	500

55

2) INFORMATION FOR SEQ ID NO: 350

CTCCACTAAA ACCGGTTCTA TCACCTCCGT A

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 823 bases

TYPE: Nucleic acid

(B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Salmonella choleraesuis subsp. choleraesuis (A) serotype typhi STRAIN: ATCC 10749 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA 50 TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 100 15 TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC 200 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAC ATGAAAGGCG AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC GCCTTCCTAC 20 GAAGAGTTAT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT 350 CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC 450 GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC 500 TCGTGAGGGT AACGACTTCT ACCATGAAAT GACCGACTCC AACGTTATCG 550 ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT 600 CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAGAAAT TCCGTGACGA 650 AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG 700 CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT 750 TACCAGCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC 800 CTCCACCAAG ACCGGTTCTA TCA 30 823 2) INFORMATION FOR SEQ ID NO: 351 35 (i) SEQUENCE CHARACTERISTICS: LENGTH: 831 bases (A) (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 40 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 45 ORGANISM: Salmonella choleraesuis subsp. choleraesuis (A) serotype typhimurium STRAIN: ATCC 14028 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 351 50 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA 50 TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 100 TTGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAC ATGAAAGGCG 55 AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC GCCTTCCTAC 300 GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT 350

400

450

CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG

GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC

GCGATCGAGC ACTCCGGTTA CTCAGTGTTT GCGGGCGTAG GGGAACGTAC

5	ATAAAGTATC CTGCGCGTTG AGGTCGTGAC CCGGTACGGA TACCAGCCGA	AACGACTTCT CCTGGTGTAT CATTGACCGG GTACTGCTGT AGTATCCGCA CTCTGGCGGA ACCGGTTCTA	GGCCAGATGA TCTGACCATG TCGTCGATAA CTGCTGGGCC AGAGATGGGC	ACGAGCCGCC GCGGAGAAAT CATCTATCGT GTATGCCTTC GTTCTGCAGG	GGGAAACCGT TCCGTGACGA TACACCCTGG CGCAGTAGGT	550 600 650 700 750 800 831
10	2) INFORMAT	ION FOR SEQ	ID NO: 352			
15	(A) (B)	ENCE CHARACT LENGTH: 81 TYPE: Nucl STRANDEDNE TOPOLOGY:	0 bases eic acid ESS: Double			
20		CULE TYPE: G				
	(VI) ORIGI	NAL SOURCE: ORGANISM:		choleraesus	is subsp. choles	raesuis
25	sero (B)	otype <i>vircho</i> STRAIN: AI				
	(xi) SEQUE	ENCE DESCRIF	TION: SEQ	D NO: 352		
30	GCTGGTGCTG TCGCGATGGG CTCGAACACC	GCGTGTACGA GAAGTTCAGC GTCTTCTGAC CGATCGAAGT CTGGGCGAAC	AGCAGCTTGG GGTCTGCGTC CCCGGTAGGT	CGGCGGTATC GCGGTCTGGA AAAGCCACGC	TGTAAAAGAT TGGGTCGTAT	50 100 150 200 250
35	AAGAGCGTTG AACTCTCAGG TCCGTTCGCG GTAAAACCGT TCCGGTTACT	GGCGATTCAC AACTGCTGGA AAGGGCGGTA AAACATGATG CTGTGTTTGC	CGCGCAGCAC AACCGGTATC AAGTCGGTCT GAGCTTATTC GGGCGTAGGG	CTTCCTACGA AAAGTTATCG GTTCGGTGGT GTAACATCGC GAACGTACTC	AGAGTTGTCA ACCTGATGTG GCGGGTGTAG GATCGAGCAC GTGAGGGTAA	300 350 400 450 500
40	TGGTGTATGG TTGACCGGTC ACTGCTGTTC TATCCGCACT	CACGAAATGA CCAGATGAAC TGACCATGGC GTCGATAACA GCTGGGCCGT AGATGGGCGT	GAGCCGCCGG GGAGAAATTC TCTATCGTTA ATGCCTTCCG	GAAACCGTCT CGTGACGAAG CACCCTGGCC CAGTAGGTTA	GCGCGTTGCA GTCGTGACGT GGTACGGAAG CCAGCCGACT	550 600 650 700 750 800
45	CGGTTCTATC					810
43						
	2) INFORMATI	ON FOR SEQ	ID NO: 353			
50	(i) SEQUE (A) (B) (C) (D)	NCE CHARACT LENGTH: 82 TYPE: Nuclo STRANDEDNE: TOPOLOGY:	0 bases eic acid SS: Double		•	
55	(ii) MOLEC	ULE TYPE: G	enomic DNA			
		NAL SOURCE:				
60	(A) (B)		Serratia fi	caria		•
	(1)	CIMIN; MI	CC 22102			

	GATGCCGTAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
5	GAAACTGGTG	CTGGAAGTTC	AGCAGCAGCT	GGGCGGTGGC	GTCGTTCGCT	100
_	GTATCGCAAT	GGGGACCTCT	GACGGTCTGC	GTCGCGGTCT	GAAAGTGAAC	150
	AACCTGGAAC	ACCCGATTGA	AGTGCCGGTG	GGTAAAGCTA	CCCTGGGCCG	200
	TATCATGAAC	GTATTGGGCG	AACCAATCGA	CATGAAAGGC	GAGATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGTCCTG	CGCCAAGCTA	CGAAGAGCTG	300
10	TCCAACTCCC	AGGACCTGCT	GGAAACCGGT	ATCAAGGTAA	TGGACCTGAT	350
	TTGTCCGTTC	GCCAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGCG	400
	TGGGCAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCCGTGTT	TGCGGGCGTG	GGCGAGCGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGAACGACTC	CAACGTTCTG	GACAAAGTAT	550
15	CCCTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGTAACCG	TCTGCGCGTT	600
	GCATTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGCCGCGA	650
	CGTTCTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	GCCGGTACCG	700
	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CCGCGGTAGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	800
20	GACCGGTTCC	ATCACCTCCG				820

## 2) INFORMATION FOR SEQ ID NO: 354

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 816 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Serratia fonticola
  - (B) STRAIN: ATCC 29844
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354

40	GATGCCGTAC	CGAAAGTGTA	CAACGCTCTT	GAGGTTGCAA	ACGGCACCGA	50
	GAAATTGGTG	CTGGAAGTTC	AGCAACAGCT	GGGTGGCGGC	GTGGTTCGCT	100
	GTATCGCAAT	GGGGACCTCA	GACGGTCTGC	GTCGTGGTCT	GGCCGTAACC	150
	GACCTGCAGC	ACCCAATTGA	AGTACCGGTA	GGTAAAGCTA	CCCTGGGCCG	200
	TATCATGAAC	GTATTGGGTG	AACCAATCGA	CATGAAGGGC	GACATCGGCG	250
45	AAGAAGAACG	TTGGGCTATT	CACCGCCCTG	CGCCAAGCTA	CGAAGAGCTG	300
	TCCAGCTCCC	AGGATCTGCT	GGAAACCGGT	ATCAAGGTAA	TGGACCTGAT	350
	CTGCCCGTTC	GCCAAGGGTG	GTAAAGTTGG	TCTGTTCGGT	GGTGCTGGTG	400
	TAGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCTGTGTT	TGCGGGCGTG	GGTGAACGTA	CTCGTGAGGG	500
50	TAACGACTTC	TACCACGAAA	TGACCGATTC	CAACGTACTG	GACAAAGTTT	550
	CCCTGGTTTA	CGGCCAGATG	AACGAGCCAC	CAGGTAACCG	TCTGCGCGTT	600
	GCGCTGACCG	GCCTGACCAT	GGCTGAGAAG	TTCCGTGACG	AAGGTCGTGA	650
	CGTACTGCTG	TTCGTCGATA	ACATCTACCG	TTATACCCTG	GCCGGTACCG	700
	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	TTATCAGCCA	750
55	ACGCTGGCGG	AAGAGATGGG	TGTTCTGCAA	GAACGTATCA	CCTCTACCAA	800
	GACTGGTTCA	ATCACC				816

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 822 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Serratia grimesii    (B) STRAIN: ATCC 14460</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355	
13	GATGCCGTAC CAAAAGTGTA CAACGCTCTT GAGGTAGAAA ACGGTGCCAA TAAGCTGGTG CTGGAAGTTC AGCAACAGTT GGGCGGTGGC GTGGTTCGCT GTATCGCAAT GGGGACCTCT GATGGTCTGC GTCGCGGTCT GAAAGTCACA GACCTGGACC ACCCAATTGA AGTACCGGTA GGTAAAGCTA CTCTGGGCCG	50 100 150 200
20	TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAGGGC GATATCGGCG AAGAAGAACG TTGGGCGATT CACCGTCCGG CGCCAAGCTA CGAAGATTTG GCCAACTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTAA TGGACCTGAT CTGCCCGTTC GCCAAGGGTG GTAAAGTCGG TCTGTTCGGT GGTGCGGGTG	250 300 350 400
25	TTGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG CACTCCGGTT ATTCTGTGTT TGCGGGCGTG GGTGAGCGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGAACGACTC CAACGTACTG GACAAAGTAT CCCTGGTTTA CGGCCAGATG AACGAGCCAC CGGGTAACCG TCTGCGCGTT	450 500 550 600
30	GCTCTGACCG GTCTGACCAT GGCTGAGAAA TTCCGTGACG AAGGCCGTGA CGTTCTGCTG TTCGTTGATA ACATCTACCG TTATACCCTG GCCGGTACCG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGG TTATCAGCCA ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA CCTCTACCAA GACTGGTTCA ATCACCTCCG TA	650 700 750 800 822
35	2) INFORMATION FOR SEQ ID NO: 356	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Serratia liquefaciens	
50	(B) STRAIN: ATCC 27592  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 356	
55	ATGCCGTACC AAAAGTGTAC AATGCTCTTG AGGTAGAAAA CGGTACCGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGTTG GGCGGTGGCG TAGTTCGCTG TATCGCGATG GGGACCTCAG ATGGTCTGCG CCGCGGTCTG AAAGTGAACG ATCTGGAACA CCCAATTGAA GTACCGGTAG GTAAAGCTAC CCTGGGCCGT ATCATGAACG TATTGGGTGA ACCAATCGAC ATGAAAGGCG ACATCGGCGA AGAAGAACGT TGGGCGATTC ACCGTCCAGC GCCAAGCTAC GAAGATTTGT	50 100 150 200 250 300
60	CAAACTCCCA GGATCTGCTG GAAACCGGTA TCAAGGTTAT GGACCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCTGGTGT TGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAGC	350 400 450

5	ACTCCGGTTA TTCCGTGTTT GCAGGCGTGG GTGAGCGTAC TCGTGAGGGT  AACGACTTCT ACCACGAAAT GAACGACTCC AACGTACTGG ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCACC GGGTAACCGT CTGCGCGTTG CTCTGACCGG TCTGACCATG GCGGAGAAAT TCCGTGACGA AGGCCGCGAC GTTCTGCTGT TCGTTGATAA CATTTACCGT TATACCCTGG CCGGTACCGA AGTGTCCGCA CTTCTGGGCC GTATGCCATC TGCGGTAGGT TATCAGCCAA CGCTGGCGGA AGAGATGGGC GTTCTGCAAG AACGTATCAC CTCTACCAAG ACCGGTTCTA TCACTTCCG	500 550 600 650 700 750 800 819
10		
	2) INFORMATION FOR SEQ ID NO: 357	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 805 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Serratia marcescens     (B) STRAIN: ATCC 13880</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357	
30	TCAGGATGCC GTACCGAAAG TGTACGACGC CCTTGAGGTA GAAAACGGCA CCGAAAAACT GGTGTTGGAA GTTCAGCAAC AGCTGGGCGG TGGCGTGGTT CGCTGTATCG CAATGGGGAC CTCCGACGGT CTGCGTCGCG GTCTGAAAGT GAACAACCTG GACCACCCGA TTGAAGTGCC GGTGGGTAAA GCTACCCTGG GTCGTATCAT GAACGTATTG GGTCAACCGA TCGACATGAA AGGCGACATC GGCGAAGAAG AGCGTTGGGC GATTCACCGC GCGGCGCCAA GCTACGAAGA	50 100 150 200 250 300
35	GCTGTCAAGC TCTCAGGAAC TGCTGGAAAC CGGTATCAAG GTAATGGACC TGATTTGTCC GTTCGCCAAG GGCGGTAAAG TCGGTCTGTT CGGCGGTGCG GGCGTAGGTA AAACCGTAAA CATGATGGAG CTGATCCGTA ACATCGCGAT CGAGCACTCC GGTTATTCCG TGTTTGCGGG CGTGGGCGAG CGTACTCGTG AGGGTAACGA CTTCTACCAC GAAATGACCG ACTCCAACGT TCTGGACAAA	350 400 450 500 550
40	GTATCCCTGG TTTACGGCCA GATGAACGAG CCACCAGGTA ACCGTCTGCG CGTTGCGCTG ACCGGTCTGA CCATGGCGGA GAAATTCCGT GACGAAGGCC GTGACGTTCT GCTGTTCGTT GACAACATCT ACCGTTACAC CCTGGCCGGT ACCGAAGTGT CCGCACTTCT GGGCCGTATG CCATCCGCGG TAGGTTATCA GCCAACGCTG GCGGAAGAGA TGGGCGTTCT GCAAGAACGT ATCACCTCGA CCAAG	600 650 700 750 800 805
45	CCAAG	803
	2) INFORMATION FOR SEQ ID NO: 358	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 822 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
2	(A) ORGANISM: Serratia odorifera	
60	(B) STRAIN: ATCC 33077	

	GATGCCGTAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
5	AACTCTGGTG	CTGGAAGTTC	AGCAGCAGCT	GGGCGGTGGC	GTGGTTCGTT	100
	GTATCGCTAT	GGGCACCTCC	GACGGTTTGC	GTCGCGGCCT	GAAAGTGAAC	150
	GATCTGCAAC	ACCCAATCGA	AGTCCCGGTT	GGCAAGGCAA	CGCTGGGTCG	200
	TATCATGAAC	GTATTGGGTC	AACCAATCGA	CATGAAAGGC	GACATCGGCG	250
	AAGAAGAGCG	TTGGGCGATT	CACCGCGCGG	CGCCAAGCTA	CGAAGAACTG	300
10	TCCAACTCCC	AGGATCTGCT	GGAAACCGGT	ATCAAGGTTA	TGGACCTGAT	350
	CTGCCCGTTT	GCCAAGGGTG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGTG	400
	TTGGTAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCAGTGTT	TGCGGGCGTG	GGTGAGCGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTACTG	GACAAGGTTT	550
15	CCCTGGTTTA	CGGCCAGATG	AACGAGCCAC	CGGGTAACCG	TCTGCGCGTT	. 600
	GCGCTGACCG	GTCTGACCAT	GGCCGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	GCCGGTACCG	700
	AAGTGTCTGC	ACTTCTGGGC	CGTATGCCAT	CGGCGGTAGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	800
20	GACCGGTTCT	ATCACCTCCG	TA			822

## 2) INFORMATION FOR SEQ ID NO: 359

25

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 805 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Serratia plymuthica
    - (B) STRAIN: ATCC 183
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359

40	GTGTACAACG	CTCTTGAGGT	AGAAAACGGT	GCCAATAAGC	TGGTGCTGGA	50
	AGTTCAGCAA	CAGCTGGGCG	GTGGCGTGGT	TCGCTGTATC	GCGATGGGGA	100
	CCTCTGATGG	TCTGCGTCGC	GGTCTGAAAG	TGATCGACCT	GGATCACCCG	150
	ATTGAAGTAC	CGGTAGGTAA	AGCTACCCTG	GGCCGTATCA	TGAACGTATT	200
	GGGTGAACCA	ATCGACATGA	AAGGCGACAT	CGGCGAAGAA	GAACGTTGGG	250
45	CAATTCACCG	TCCAGCGCCA	AGCTACGAAG	ATTTGGCCAA	CTCCCAGGAT	300
	CTGCTGGAAA	CCGGTATCAA	GGTTATGGAC	CTGATCTGTC	CGTTCGCTAA	350
	GGGCGGTAAA	GTGGGTCTGT	TCGGCGGTGC	GGGCGTGGGT	AAAACCGTAA	400
	ACATGATGGA	GCTGATCCGT	AACATCGCGA	TCGAACACTC	CGGTTATTCC	450
	GTGTTTGCGG	GCGTGGGTGA	GCGTACTCGT	GAGGGTAACG	ACTTCTACCA	500
50	CGAAATGAAC	GACTCCAACG	TACTGGACAA	AGTATCCCTG	GTTTACGGCC	550
	AGATGAACGA	GCCACCGGGT	AACCGTCTGC	GCGTTGCTCT	GACCGGTCTG	600
	ACCATGGCGG	AGAAATTCCG	TGACGAAGGC	CGCGACGTTC	TGCTGTTCGT	650
	TGATAACATC	TACCGTTATA	CCCTGGCCGG	TACCGAAGTG	TCCGCACTTC	700
	TGGGCCGTAT	GCCATCTGCG	GTAGGTTATC	AGCCAACGCT	GGCGGAAGAG	750
55	ATGGGCGTTC	TGCAAGAACG	TATCACCTCT	ACCAAGACCG	GTTCTATCAC	800
	CTCCG					805

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	` '	
10	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Serratia rubidaea	
	(B) STRAIN: ATCC 27593	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 360	
15	(111) 512 511 511 511 511 511 511 511 511 511	
	TTCCCTCAGG ATGCCGTACC AAAAGTGTAC GATGCCCTTG AGGTAGAGAA	50
	CGGTAACGAA AAACTGGTGC TGGAAGTTCA GCAGCAGCTG GGCGGCGGCG	100
	TTGTACGCTG TATCGCCATG GGTACTTCCG ACGGTCTGCG TCGCGGTCTG	150
	AAAGTTAACG ACCTCGAGCA CCCAATCGAA GTGCCAGTTG GTAAAGCAAC	200
20	GCTGGGTCGT ATCATGAACG TATTGGGTCA GCCAATCGAC ATGAAAGGCG	250
	ACATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCGGC GCCAAGCTAC	300
	GAAGAGCTGT CCAGCTCCCA AGAGCTGCTG GAAACCGGTA TCAAGGTAAT	350
	GGACCTGATC TGCCCGTTCG CCAAGGGTGG TAAAGTTGGT CTGTTCGGTG	400
	GTGCGGGCGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC	450
25	GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTGG GTGAGCGTAC	500
	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTACTGG	550 600
	ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCGCC GGGTAACCGT CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA	650
	AGGCCGCGAC GTTCTGCTGT TCGTGGATAA CATCTACCGT TACACCCTGG	700
20	CCGGTACCGA AGTGTCCGCA CTGCTCGGCC GTATGCCATC TGCGGTAGGT	750
30	TATCAGCCAA CGCTGGCGGA AGAGATGGGC GTTCTGCAAG AACGTATCAC	800
	CTCGACCAAG ACCGGTTCAA TCACCTCCGT A	831
	CICGACCAAG ACCODITCAA ICAGCIGGGI A	001
35	2) INFORMATION FOR SEQ ID NO: 361	
	2) INFORMATION FOR SEQ ID NO: 301	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 406 bases	
40	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(II) MODECOED IIII. Committee Dini	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Shewanella putida	
	(B) STRAIN: LCDC D7179	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 361	
50	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 301	
	CCGTAAACAT GATGGAACTG ATCCGTAACA TCGCCATCGA GCACAGCGGT	50
	TATTCCGTGT TCGCCGGTGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT	100
	CTACCACGAG ATGAAGGACT CCAACGTTCT CGACAAGGTA GCGCTGGTCT	150
55	ACGGTCAGAT GAACGAGCCA CCAGGAAACC GTCTGCGCGT AGCGCTGACC	200
	GGCCTGACCA TGGCCGAGAA GTTCCGTGAC GAAGGTAACG ACGTTCTGCT	250
	GTTCGTCGAC AACATCTATC GTTACACCCT GGCCGGTACC GAAGTATCCG CACTGCTGGG CCGTATGCCT TCGGCGGTAG GTTACCAGCC GACCCTGGCT	300
	GAAGAGATGG GCGTTCTGCA AGAACGTATC ACTTCGACCA AGGAAGGTTC	350 400
60	GATCAC	406

	2) INFORMATION FOR SEQ ID NO: 362	
5	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Shigella boydii	
	(B) STRAIN: ATCC 9207	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362	
20	TTCCCTCAGG ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTGCAAAA	50
	TGGTAATGAG CGTCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA	100 150
	TCGTGCGTAC CATCGCAATG GGTTCCTCCG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG ACCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC	200
	TCTGGGCCGT ATCATGAACG TACTGGGTGA ACCGGTCGAC ATGAAAGGCG	250
25	AGATCGGTGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAC	300
	GAAGAGCTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT	350
	CGACCTGATG TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG	400
	GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT TCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC	450 500
30	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG	550
30	ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT	600
	CTGCGCGTTG CTCTGACCGG TCTGACCATG GCTGAGAAAT TCCGTGACGA	650
	AGGTCGTGAC GTTCTGCTGT TCGTTGACAA CATCTATCGT TACACCCTGG	700
	CCGGTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC AGCGGTAGGT TATCAGCCGA CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC	750 800
35	CTCCACCAAA ACTGGTTCTA TCACCTCCGT A	831
4.0	2) INFORMATION FOR SEQ ID NO: 363	
40		•
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 802 bases (B) TYPE: Nucleic acid	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
Ŧ-J	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
-	(A) ORGANISM: Shigella dysenteriae	
	(B) STRAIN: ATCC 11835	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363	
55		
	GCCGTACCGC GCGTGTACGA TGCTCTTGCG GTGCAAAATG GTAATGAGCG TCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA	50 100
	TCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA TCGCAATGGG TTCCTCCGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAC	150
	CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCGACTC TGGGCCGTAT	200
60	CATGAACGTA CTGGGTGAAC CGGTCGACAT GAAAGGCGAG ATCGGTGAAG	250

5	AAGAGCGTTG GGCTATTCAC CGCGCAGCAC CTTCCTACGA AGAGCTGTCA AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACCGT AAACATGATG GAGCTCATTC GTAACATCGC GATCGAGCAC TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAC AAAGTATCCC TGGTGTATGG CCAGAATGAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCT CTGACCGGTC TGACCATGCC TGAGCAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG TATCCGCACT GCTGGGCCGT ATGCCTTCAG CGGTAGGTTA TCAGCCGACC CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAAAC CG	300 350 400 450 500 550 600 650 750 800 802
15	2) INFORMATION FOR SEQ ID NO: 364	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Shigella flexneri (B) STRAIN: ATCC 12022	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 364	
35	ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTGCAAAA TGGTAATGAG CGTCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC CATCGCAATG GGTTCCTCCG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG ACCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC TCTGGGCCGT ATCATGAACG TACTGGGTGA ACCGGTCGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAC GAAGAGCTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG	50 100 150 200 250 300 350
40	TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT TCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ACAAAGTATC	400 450 500 550
45	CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CTCTGACCGG TCTGACCATG GCTGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTTGACAA CATCTATCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC AGCGGTAGGT TATCAGCCGA CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACTGGTTCTA TCACCTCCG	600 650 700 750 800 819
50		
	2) INFORMATION FOR SEQ ID NO: 365	
55	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 802 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	

60 (ii) MOLECULE TYPE: Genomic DNA

## (vi) ORIGINAL SOURCE:

5

25

35

40

- (A) ORGANISM: Shigella sonnei
- (B) STRAIN: ATCC 29930

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365

10	GTACCGCGCG GGTGCTGGAA CAATGGGTTC GAACACCCGA	TGTACGATGC GTTCAGCAGC CTCCGACGGT TCGAAGTCCC	TCTTGAGGTG AGCTCGGCGG CTGCGTCGCG GGTAGGTAAA TCGACATGAA	CAAAATGGTA CGGTATCGTG GTCTGGATGT GCGACTCTGG AGGCGAGATC	ATGAGCGTCT CGTACCATCG AAAAGACCTC GCCGTATCAT GGTGAAGAAG	50 100 150 200 250
	GAACGTACTG AGCGTTGGGC TCTCAGGAAC	GGTGAACCGG GATTCACCGC TGCTGGAAAC	GCAGCACCTT CGGTATCAAA	CCTACGAAGA GTTATCGACC	GCTGTCAAAC TGATGTGTCC	300 350
	GTTCGCTAAG AAACCGTAAA GGTTACTCTG	GGCGGTAAAG CATGATGGAG TGTTTGCGGG	TTGGTCTGTT CTCATTCGTA CGTAGGTGAA	CGGTGGTGCG ACATCGCGAT CGTACTCGTG	GGTGTAGGTA CGAGCACTCC AGGGTAACGA	400 450 500
	CTTCTACCAC TGTATGGCCA	GAAATGACCG GATGAACGAG	ACTCCAACGT CCGCCGGGAA	TATCGACAAA ACCGTCTGCG	GTATCCCTGG CGTTGCTCTG	550 600
20	ACCGGTCTGA GCTGTTCGTT CCGCACTGCT GCGGAAGAGA TT	CCATGGCTGA GACAACATCT GGGCCGTATG TGGGCGTTCT	GAAATTCCGT ATCGTTACAC CCTTCAGCGG GCAGGAACGT	GACGAAGGTC CCTGGCCGGT TAGGTTATCA ATCACCTCCA	GTGACGTTCT ACGGAAGTAT GCCGACCCTG CCAAAACTGG	650 700 750 800 802

2) INFORMATION FOR SEQ ID NO: 366

30 (i)SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 785 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

(A) ORGANISM: Staphylococcus aureus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366

	TAACGCCTTG	GTTATTGATG	TGCCTAAAGA	AGAAGGTACA	ATACAACTAA	50
	CATTAGAAGT	TGCGCTGCAA	TTAGGTGACG	ACGTTGTTCG	TACAATTGCG	100
45	ATGGATTCAA	CTGATGGTGT	CCAAAGAGGC	ATGGATGTAA	AAGATACAGG	150
	CAAAGAAATT	AGTGTACCTG	TTGGTGATGA	AACATTAGGT	CGTGTATTTA	200
٠.	ATGTACTAGG	TGAAACAATT	GACCTTAAAG	AAGAAATTAG	TGATTCTGTT	250
	CGCCGCGATC	CTATCCATCG	TCAAGCACCA	GCATTCGATG	AACTTTCAAC	300
•	AGAAGTTCAA	ATTTTAGAAA	CAGGTATTAA	AGTAGTAGAT	TTACTAGCAC	350
50	CTTATATTAA	AGGTGGTAAA	ATCGGATTGT	TCGGTGGTGC	CGGTGTAGGT	400
-	AAAACAGTAT	TAATCCAAGA	ATTAATTAAC	AACATCGCTC	AAGAGCACGG	450
	TGGTATTTCT	GTATTCGCCG	GTGTAGGTGA	ACGTACTCGT	GAAGGTAACG	500
	ATTTATACTT	CGAAATGAGT	GATAGTGGTG	TAATTAAGAA	AACAGCCATG	550
	GTATTCGGGC	AAATGAATGA	GCCACCTGGT	GCACGTATGC	GTGTTGCATT	600
55	ATCTGGTTTA	ACAATGGCTG	AATATTTCCG	TGACGAACAA	GGTCAAGACG	650
	TATTATTATT	CATCGATAAC	ATTTTCAGAT	TTACACAAGC	TGGTTCTGAG	700
	GTATCTGCAT	TATTAGGTCG	TATGCCTTCT	GCAGTAGGTT	ACCAACCAAC	750
	ACTTGCTACT	GAAATGGGAC	AATTACAAGA	ACGTA		785

	2) INFORMATION FOR SEQ ID NO: 367	
5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 843 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
10	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus auricularis     (B) STRAIN: ATCC 33753</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367	
20	GAACATAACG AAGTGCCTAA TATTAATAAC GCCTTAGTAC TCGATGTTGA AAGAGAAGAC GGAACAGTGT CTTTAACTTT AGAAGTAGCT TTACAATTAG GCGATGACGT TGTTCGTACC ATTGCAATGG ATTCAACTGA TGGTGTTAAA CGTGGTAACG AAGTCAAAGA TACTGGTAAT AGCATTAGCG TACCAGTCGG AGACGAAACT TTAGGACGTG TCTTCAACGT TCTAGGTGAA ACAATTGATT TAGAAGATAA ACTTGATGAT TCTGCGCGAC GTGACCCTAT ACATAGAGAA	50 100 150 200 250 300
25	GCGCCAGCGT TTGATCAATT ATCAACTCAA GTTGAAATTT TAGAAACAGG AATTAAAGTT GTTGACTTAT TAGCACCTTA TATTAAAGGT GGTAAAGTTG GACTCTTCGG TGGTGCCGGT GTTGGTAAAA CCGTTTTAAT CCAAGAATTA ATCAACAACA TCGCTCAAGA ACACGGTGGT ATTTCAGTCT TTGCCGGTGT AGGTGAACGT ACACGTGAAG GTAACGACTT GTACTATGAA ATGAGCGACA	. 350 400 450 500 550
30	GTGGTGTAAT CAAGAAAACA GCCATGGTCT TCGGACAAAT GAACGAACCA CCTGGCGCAC GTATGCGTGT TGCTTTATCT GGTTTAACAA TGGCTGAATA TTTCCGTGAT GAACAAGGAC AAGACGTATT GTTATTCATC GACAATATTT TCCGTTTCAC ACAAGCCGGT TCAGAAGTTT CTGCCTTACT AGGTCGTTTA CCATCAGCCG TTGGTTATCA ACCTACATTA GCAACAGAAA TGGGACAATT	600 650 700 750 800
35	ACAAGAACGT ATTACTTCAA CAACAAAAGG ATCAGTTACT TCA	843
	2) INFORMATION FOR SEQ ID NO: 368	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 849 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus capitis subsp. capiti     (B) STRAIN: ATCC 27840</pre>	s
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368	
55	GCTTTGAACA TAATGAAGTT CCTGATATTA ACAATGCCTT ACACATCGAA GTTCCTAAAG AAGATAGCAC ACTTCATTTA ACTTTAGAAG TTGCACTTCA ATTAGGTGAC GATGTAGTAC GTACAATCGC AATGGACTCA ACTGACGGCG TTCAAAGAGG TATGGAAGTT AAAGATACAG GTAAAGATAT TAGCGTACCT GTTGGTGATG CAACTTTAGG AAGAGTATTT AACGTATTAG GAGAAACAAT	50 100 150 200 250
60	CGATTTAGAT GAAAAGATTG ATGATTCAGT ACGTCGTGAT CCTATTCATA GACAGGCACC TGGCTTCGAT GAATTATCTA CTAAAGTAGA AATCTTAGAA	300

5	ACAGGTATCA AAGTAGTAGA CTTATTAGCA CCTTACATTA AAGGTGGTAA AATTGGATTA TTCGGTGGTG CCGGTGTTGG TAAGACAGTT TTAATCCAAG AACTTATCAA TAATATCGCT CAAGAGCATG GTGGTATTC AGTATTCGCC GGTGTTGGTG AACGTACACG TGAAGGTAAC GACCTTTACT ATGAAATGAG CGATAGTGGT GTAATTAAGA AAACAGCGAT GGTATTCGGT CAGATGAACG AGCCACCTGG TGCTCGTATG CGTGTTGCAT TATCAGGTTT AACAATGGCA GAATATTTCC GTGATGAAGA AGGCCAAGAC GTATTATTAT TCATTGATAA TATCTTCAGA TTCACACAAG CTGGTTCTGA AGTTTCAGCA TTACTTCAGA TTCACACAAG CTGGTTCTGA CACTTGCTAC GTATGCCTTC AGCCGTTGGT TATCAACCAA CACTTGCTAC CAATTACAAG AACGTATTAG TTCAACTAAT AAAGGTTCTG TTACTTCAA	400 450 550 600 650 750 849
15	2) INFORMATION FOR SEQ ID NO: 369  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
25	(ii)MOLECULE TYPE: Genomic DNA  (vi)ORIGINAL SOURCE:  (A) ORGANISM: Staphylococcus cohnii  (B) STRAIN: DSM 20260	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369	
30	GAAGTTCCAG AAATTAATAA TGCCTTAGTT CTCGATATAG AAAGAGAAGA AGGTACTGTT GAATTAACGT TAGAAGTTGC ATTACAACTT GGTGATGACG TAGTACGAAC AATCGCAATG GATTCAACTG ATGGTGTTAA ACGTGGTACA GAAGTTAGAG ATAGCGGAAA TAGTATCAGC GTACCAGTTG GTAATGAAAC	50 100 150 200
35	ATTAGGTAGA GTATTTAATG TATTAGGTGA TACGATAGAT TTAGATGAAG ACATAGATGA CTCAGTGCGT CGTGACCCAA TTCATAGAGA AGCACCTGCA TTTGATCAGT TATCTACTAA AGTTGAAATT TTAGAAACAG GTATCAAAGT CATTGATTTA TTAGCACCAT ATATCAAAGG TGGTAAAGTT GGATTATTCG GTGGTGCCGG TGTTGGTAAA ACTGTATTAA TTCAAGAATT AATCAATAAT	250 300 350 400 450
40	ATCGCTCAAG AGCATGGTGG TATATCCGTA TTTGCTGGTG TAGGTGAGCG TACGCGTGAA GGTAATGACC TATACTTTGA AATGAGTGAT AGTGGTGTTA TTAAAAAGAC AGCTATGGTA TTTGGACAAA TGAACGAACC ACCTGGTGCG CGTATGCGAG TAGCACTTTC TGGTTTAACA ATGGCTGAAT ATTTCCGGGA	500 550 600 650
45	TGAACAAGGA CAAGATGTTC TATTATTCAT AGATAACATC TTTAGATTTA CTCAAGCTGG TTCAGAAGTT TCTGCGTTAT TAGGTCGTAT GCCTTCAGCT GTTGGTTACC AACCAACGTT AGCAACTGAA ATGGGACAAT TACAAGAACG TATTACTTCT ACAACTAAAG GTTCAGTAAC	700 750 800 830
50	2) INFORMATION FOR SEQ ID NO: 370 (i) SEQUENCE CHARACTERISTICS:	

- (A)
- (B) (C) (D)
- LENGTH: 787 bases
  TYPE: Nucleic acid
  STRANDEDNESS: Double
- TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi) ORIGINAL SOURCE:

## (A) ORGANISM: Staphylococcus epidermidis

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370

5	AATAATGCAT	TACACATCGA	AGTTCCTAAA	GAAGATGGAG	CGCTTCAATT	50
	AACATTAGAA	GTTGCACTTC	AACTAGGTGA	CGATGTAGTT	CGTACAATTG	100
	CAATGGACTC	AACTGACGGC	GTTCAAAGAG	GAATGGAAGT	TAAAGATACA	150
	GGTAGAGACA	TAAGTGTACC	TGTCGGTGAC	GTAACTCTAG	GAAGAGTGTT	200
	TAACGTACTA	GGAGAAACTA	TTGACTTAGA	TGAAAAAATT	GATGATTCAG	250
10	TACGACGTGA	CCCTATCCAT	AGACAAGCTC	CAGGATTCGA	CGAATTATCA	300
	ACAAAAGTAG	AAATCTTAGA	AACTGGTATT	AAAGTAGTAG	ACTTATTAGC	350
	ACCTTACATA	AAAGGTGGTA	AAATTGGATT	ATTTGGTGGT	GCCGGTGTAG	400
	GTAAAACCGT	ACTAATCCAA	GAACTTATTA	ATAACATCGC	TCAAGAACAC	450
	GGTGGTATCT	CAGTATTCGC	TGGTGTTGGT	GAACGTACAC	GTGAAGGTAA	500
15	TGATCTTTAC	TATGAAATGA	GTGACAGTGG	TGTTATCAAG	AAAACTGCAA	550
	TGGTCTTTGG	TCAAATGAAT	GAGCCACCTG	GTGCACGTAT	GCGTGTAGCA	600
•	TTATCCGGAT	TAACAATGGC	CGAATATTTC	CGAGATGAAG	AAGGCCAAGA	650
	TGTGTTATTA	TTCATTGATA	ACATTTTCAG	ATTCACTCAA	GCTGGTTCAG	700
	AAGTTTCTGC	GTTATTAGGT	CGTATGCCAT	CAGCTGTTGG	TTATCAACCT	750
20	ACACTTGCTA	CAGAAATGGG	TCAATTACAA	GAACGTA		787

#### 2) INFORMATION FOR SEQ ID NO: 371

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 830 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Staphylococcus haemolyticus
  - (B) STRAIN: ATCC 29970
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371

40	GAAGTACCTG	AAATTAATAA	CGCCTTAATC	ATCGAAGTTC	CCAAAGAAGA	50
	TGGTACTTTT	GAATTAACGC	TTGAAGTTGC	ATTACAACTA	GGTGATGACG	100
	TTGTTCGTAC	AATTGCTATG	GATTCAACAG	ATGGTGTTCA	ACGTGGTATG	150
	GAAGTTCAGA	ACACTGGAAA	AGACATTTCA	GTACCAGTTG	GCGAAGTAAC	200
	TTTAGGACGT	GTATTTAACG	TATTAGGTGA	CACAATTGAT	TTAGAAGATA	250
45	AATTAGATGG	TTCAGTAAGA	CGTGATCCAA	TTCATAGACA	ATCACCTAAC	300
	TTTGACGAAT	TATCTACTGA	AGTAGAAATT	CTTGAAACTG	GAATCAAAGT	350
	TGTAGACTTA	TTAGCACCAT	ACATCAAAGG	TGGTAAAATC	GGTCTATTTG	400
	GTGGTGCCGG	TGTTGGTAAA	ACCGTTTTAA	TCCAAGAATT	GATTAATAAT	450
	ATCGCACAAG	AACATGGTGG	TATCTCAGTA	TTTGCTGGTG	TAGGTGAACG	500
50	TACACGTGAA	GGTAACGACC	TATATTATGA	AATGAGAGAT	AGTGGTGTTA	550
	TTAAGAAAAC	AGCAATGGTA	TTTGGTCAAA	TGAACGAGCC	ACCTGGTGCA	600
	CGTATGCGTG	TGGCACTTTC	TGCATTGACA	ATGGCTGAGT	ATTTCCGTGA	650
	TGAACAAGGA	CAAGACGTTC	TGTTATTCAT	CGATAACATT	TTCAGATTTA	700
	CTCAAGCAGG	TTCAGAAGTA	TCAGCATTAT	TGGGACGTAT	GCCTTCAGCT	750
55	GTAGGTTATC	AACCTACTTT	AGCTACAGAA	ATGGGTCAAT	TACAAGAACG	. 800
	TATTACATCA	ACGAATAAAG	GTTCAGTAAC			830

5	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 846 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus hominis subsp. hominis</li><li>(B) STRAIN: ATCC 27844</li></ul>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372	
13	TCGAACATAA TGAAGTCCCT GAAATTAATA ATGCCCTAAT TATTGAAGTA CCCAAAAATG ATGGCACATT TAAATTAACA TTAGAAGTTG CATTGCAACT AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT GATGGTGTTC	50 100 150
20	AACGTGGTAT GCAAGTTGTG AATACTGGTA AAGATATTAG TGTTCCTGTA GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG AAACAATAGA TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA ATTCATCGTC GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT TCTTGAAACA	200 250 300 350
25	GGTATTAAAG TTGTAGACTT ATTAGCACCT TATATTAAAG GTGGTAAGAT TGGTTTATTC GGTGGTGCCG GCGTAGGTAA AACTGTATTA ATTCAAGAAT TAATCAATAA TATCGCTCAA GAACATGGTG GTATTTCTGT ATTCGCTGGT	400 450 500
	GTAGGTGAAC GTACTCGTGA AGGTAACGAT TTATACTATG AAATGAGCGA TAGTGGCGTT ATCAATAAAA CAGCCATGGT ATTTGGGCAA ATGAATGAGC CGCCAGGTGC GCGTATGCGT GTTGCTTTAT CAGCATTGAC AATGGCTGAA TATTTCCGTG ATGAACAAGG TCAAGATGTA CTTTTATTCA TTGACAATAT	550 600 650 700
30	TTTCCGCTTT ACTCAAGCTG GTTCTGAAGT TTCAGCATTA TTAGGACGTA TGCCTTCAGC TGTAGGTTAT CAACCTACAT TAGCAACTGA AATGGGTCAA TTACAAGAAC GTATTACATC TACTAATAAA GGTTCAGTCA CTTCAA	750 800 846
35	2) INFORMATION FOR SEQ ID NO: 373	
40	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 846 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus hominis (B) STRAIN: CSG 175	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373	
	TCGAACATAA TGAAGTCCCT GAAATTAATA ATGCCCTAAT TATTGAAGTA CCCAAAAATG ATGGCACATT CAAATTAACA TTAGAAGTTG CATTGCAACT AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT GATGGTGTTC	50 100 150
55	AACGTGGTAT GCAAGTTGTG AATACTGGTA AAGATATTAG TGTTCCTGTA GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG AAACAATAGA TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA ATTCATCGTC GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT TCTTGAAACA	200 250 300
60	GGTATTAAAG TTGTAGACTT ATTAGCACCT TATATTAAAG GTGGTAAGAT TGGTTTATTC GGTGGTGCCG GCGTAGGTAA AACTGTATTA ATTCAAGAAT	350 400 450

5	TAATCAATAA TATCGCTCAA GAACATGGTG GTATTTCTGT ATTCGCTGGT GTAGGTGAAC GTACTCGTGA AGGTAACGAT TTATACTATG AAATGAGCGA TAGTGGCGTT ATCAATAAAA CAGCCATGGT ATTTGGGCAA ATGAATGAGC CGCCAGGTGC GCGTATGCGT GTTGCTTTAT CAGCATTGAC AATGGCTGAA TTTCCGGTT ACTCAAGCTG GTTCTGAAGT TTCAGCATTA TTAGGACGTA TGCCTTCAGC TGTAGGTTAT CAACCTACAT TAGCAACTGA AATGGGTCAA TTACAAGAAC GTATTACAAC GGTTCAGTCA CTTCAA	500 550 600 650 700 750 800 846
10		
	2) INFORMATION FOR SEQ ID NO: 374	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Staphylococcus lugdunensis  (B) STRAIN: ATCC 43809	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374	
30	ATAATGAAGT GCCTGAAATA AATAATGCGC TCATTGTTGA AATTCCTAAA AGTGATACAA CAATCAGTTT AACACTTGAA GTTGCTTTGC AATTAGGTGA CGATGTTGTA CGTACTATTG CAATGGATTC AACTGATGGC GTTCAACGTG GTATGGAAGT TCAAAACACA GGTAAAGACA TCAGTGTACC TGTTGGAGAT GAAACATTAG GAAGAGTATT TAACGTTTTA GGAGAATCTA TTGATTTAGA AGAAAAGCTA GATGACTCTG TGCGTAGAGA TCCAATTCAT AGACTAGCAC	50 100 150 200 250 300
35	CTAAATTTGA TGAATTATCT ACAGAAGTAG AAATTCTTGA AACTGGTATT AAAGTTGTTG ATTTATTAGC ACCATATATT AAAGGTGGTA AAGTTGGATT GTTTGGTGGT GCCGGAGTAG GTAAAACGGT ATTAATTCAA GAATTAATCA ACAATATTGC TCAAGAACAT GGTGGTATTT CTGTGTTTGC CGGAGTAGGT GAACGTACAC GTGAAGGTAA TGACTTATAT TATGAAATGA GCGATAGTGG	350 400 450 500 550
40	CGTAATTAAG AAAACAGCGA TGGTATTTGG CCAAATGAAT GAACCACCTG GTGCACGTAT GAGAGTTGCG TTATCTGCCT TAACAATGGC TGAATATTTC CGTGACGAGC AAGGACAAGA CGTATTGCTG TTTATCGATA ATATATTCCG TTTTACACAA GCAGGTTCAG AAGTATCTGC ATTACTTGGA CGTATGCCAT CTGCCGTTGG TTATCAACCA ACATTGGCTA CAGAAATGGG ACAATTGCAA GAAAGAATTA CATCTACAAA TAAAGGTTCT GTAAC	600 650 700 750 800 835
45	GAAAGAATTA CATCIACAAA TAAAGGITCI GIAAC	635
	2) INFORMATION FOR SEQ ID NO: 375	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 842 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
60	(B) STRAIN: ATCC 15305	

355

		GAGCACAATG	AAGTTCCAGA	AATTAACAAT	GCCTTAGTCG	TAGACGTTGA	50
•	5	AAGAGATGAA	GGTACAGTAT	CTCTTACATT	AGAAGTGGCA	TTACAACTTG	100
		GCGATGATGT	CGTACGTACA	ATTGCAATGG	ATTCTACTGA	TGGTGTTAAA	150
		CGTGGTACAG	AAGTTCGAGA	TAGCGGAGAT	AGCATCAGTG	TTCCAGTTGG	200
		TGATGCTACG	TTAGGACGTG	TGTTTAATGT	TCTTGGTGAT	ACAATTGACT	250
		TAGACGAGAA	GCTTGATACT	TCTGTCAAAC	GTGATCCAAT	TCATAGAGAA	300
1	LO	GCACCTGCAT	TCGATCAATT	ATCAACAAAA	GTTGAAATCT	TAGAAACAGG	350
		TATTAAAGTA	ATTGATTTAC	TTGCACCATA	TATTAAAGGT	GGTAAAATCG	400
		GTTTATTCGG	TGGCGCTGGT	GTAGGTAAAA	CAGTATTAAT	TCAAGAATTA	450
		ATTAATAATA	TAGCTCAAGA	ACATGGTGGT	ATTTCAGTAT	TTGCCGGCGT	500
		AGGTGAACGT	ACGCGTGAAG	GTAATGACTT	ATACTACGAA	ATGAGTGATA	550
1	L5	GTGGTGTTAT	TAAGAAAACA	GCTATGGTCT	TCGGACAAAT	GAATGAGCCA	600
		CCTGGTGCGC	GTATGCGTGT	TGCTTTATCA	GGCTTAACAA	TGGCTGAACA	650
		CTTCCGTGAT	GTACAAGGAC	AAGATGTTTT	ACTATTTATT	GATAACATAT	700
		TCAGATTTAC	GCAAGCTGGT	TCAGAAGTAT	CAGCACTATT	AGGTCGTATG	750
		CCATCAGCCG	TTGGTTATCA	ACCTACCCTT	GCTACTGAAA	TGGGTCAATT	800
2	20	ACAAGAACGT	ATTACATCAA	CAACTAAAGG	ATCTGTAACG	TC	842

#### 2) INFORMATION FOR SEQ ID NO: 376

25

30

35

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 842 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus simulans
  - (B) STRAIN: ATCC 27848

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376

40	TGATGAACTG	CCTAAGATTA	ATAACGCATT	AGTGCTAGAT	GTACCTAAGA	50
	AAGATGGCAC	GACTGAATCT	CTTACATTAG	AAGTAGCACT	TGAATTAGGC	100
	GACGACGTAG	TTAGAACTAT	CGCCATGGAC	TCTACAGACG	GAATTAAACG	150
	TGGTGACGAC	GTTAAAGACA	CTGGTCGTCC	AATCAGTGTA	CCTGTCGGTG	200
	AAGATACGTT	AGGAAGAGTA	TTTAACGTTT	TAGGTGATCC	AATCGATAAT	250
45	GATGGACCGA	TTTCTGAATC	AGTTCCACGT	GAACCAATTC	ATAGACAACC	300
	ACCTAAATTT	GATGAATTAT	CAACAAAAGT	TGAACTACTT	GAAACTGGTA	350
	TCAAAGTAGT	AGACTTATTA	GCACCATATA	TCAAAGGTGG	TAAAGTTGGT	400
	TTATTCGGTG	GTGCCGGAGT	AGGTAAAACT	GTATTAATCC	AAGAATTAAT	450
	TAATAACATC	GCTCAAGAAC	ACGGCGGTAT	TTCAGTATTC	GCAGGTGTTG	500
50	GTGAACGTAC	ACGTGAAGGT	AACGACTTGT	ACTTCGAAAT	GAGCGACAGT	550
	GGTGTTATCA	AGAAAACAGC	GATGGTATTC	GGACAAATGA	ACGAACCACC	600
	TGGTGCACGT	ATGCGTGTAG	CTTTATCAGG	TTTAACAATG	GCTGAATACT	650
	TCCGTGATGT	TAAAGGACAA	GACGTTCTTT	TATTCATCGA	TAACATTTTC	700
	CGCTTCACAC	AAGCAGGTTC	TGAGGTATCA	GCATTGCTTG	GCCGTATGCC	750
55	ATCAGCCGTT	GGTTACCAAC	CAACATTGGC	AACAGAAATG	GGTCAATTAC	800
	AAGAACGTAT	CACTTCTACA	ATGAAAGGTT	CTATCACATC	TA	842

60 2) INFORMATION FOR SEQ ID NO: 377

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 841 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus warneri     (B) STRAIN: ATCC 27836</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377	
15	CATAACGAAG TCCCTGATAT TAATAATGCC CTTATTATTG AAGTTCCAAA AGAAGATGGA ACGTTAAACT TAACATTAGA AGTTGCACTA CAATTAGGTG ATGATGTTGT ACGTACAATT GCAATGGATT CAACTGATGG TGTTCAAAGA GGCATGGATG TTAAAGACAC AGGTAAAGAT ATTAGTGTAC CTGTAGGCGA	50 100 150 200
20	TGAAACGCTT GGAAGAGTGT TTAATGTACT AGGTGAAACA ATTGACTTGG AAGAGAAAAT TGATGATTCC GTACGTCGTG ATCCAATCCA	250 300 350 400
25	TATTCGGTGG TGCCGGAGTA GGTAAAACCG TTTTAATCCA AGAATTAATT AACAATATTG CACAAGAACA TGGTGGTATT TCAGTATTCG CGGGTGTAGG TGAACGTACT CGTGAAGGTA ATGATTTATA CTATGAAATG AGTGATAGTG GTGTAATTAA GAAAACAGCG ATGGTATTTG GACAAATGAA TGAACCACCT	450 500 550 600
30	GGCGCACGTA TGCGTGTAGC TTTATCTGGT TTAACTATGG CTGAATACTT CCGTGATGAA CAAGGACAAG ACGTACTTT ATTCATCGAT AATATTTTCA GATTTACACA AGCTGGTTCT GAAGTTTCTG CATTACTTGG TCGTATGCCT TCAGCCGTTG GTTACCAACC AACATTAGCA ACTGAAATGG GTCAATTACA AGAACGAATT ACATCTACAA ATAAAGGTTC TGTAACATCT A	650 700 750 800 841
35	2) INFORMATION FOR SEQ ID NO: 378	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 846 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus acidominimus</pre>	
	(B) STRAIN: ATCC 51726	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378	
55	TTTAACACGA ATGAACCGCT TCCTGAGATA AATAATGCAC TTGTTGTTTA CAAAGACAGT GAGAAAAAAC ATAAAATCGT TCTTGAAGTA GCTCTTGAAC TTGGTGAAGG CCTCGTTCGT ACCATTGCTA TGGAATCAAC TGATGGTTTG ACACGTGGTC TAGAAGTTCT TGATACAGGC CGTGCAATCA GTGTACCAGT TGGTAAAGAA ACGCTTGGAC GTGTCTTCAA CGTTCTTGGT GATGCTATCG ATCTTGAAGA ACCATTTGGA GAAGATGCAG AACGTCACCC CATTCATAAG	50 100 150 200 250 300
60	ACCITGAAGA ACCATITGGA GAAGATGCAG AACGTCACCC CATTCATAAG AGTGCCCCAA CTTTTGATGA ATTATCAACG TCAACAGAAA TCCTTGAAAC AGGGATTAAA GTTATCGACC TACTTGCCCC TTACTTAAAA GGAGGGAAGG TTGGACTTTT CGGTGGTGCC GGAGTTGGTA AGACCGTTCT TATCCAAGAG	350 400 450

5	TTGATTCATA ACATTGCTCA AGAGCATGGT GGTATTTCAG TATTTACCGG AGTTGGTGAA CGTACACGTG AAGGTAATGA CCTCTATTGG GAAATGAAAG AATCAGGCGT TATTGAAAAA ACAGCTATGG TATTTGGTCA GATGAATGAG CCACCTGGTG CACGTATGCG TGTAGCCCTT ACTGGTTTGA CAATCGCTGA ATATTTCCGTT CACACAAGCA GGTTCTGAAG TTTCAGCTCT TCTTGGACGT ATGCCATCAG CCGTTGGTTA TCAACCAACC TTGGCAACTG AAATGGGTCA ATTGCAAGAA CGTATCACGT CAACTAAAAA AGGTTCTGTT ACATCA	500 550 600 650 700 750 800 846
10		
	2) INFORMATION FOR SEQ ID NO: 379	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 846 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae     (B) STRAIN: ATCC 12403  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 379</pre>	
30	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTA CTCTTGAACT TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGAAG ATGCTATTGA CCTTGAAGGC CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA	50 100 150 200 250 300
35	AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACA GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA	350 400 450 500 550
40	ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG TACTTCCGTG ATGTAGAAGG ACAAGATGTG CTTCTCTTCA TTGATAATAT CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA	600 650 700 750 800
45	TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CCTCAA	846
	2) INFORMATION FOR SEQ ID NO: 380	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 846 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus agalactiae    (B) STRAIN: ATCC 13813</pre>	
	250	

	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
5	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GCGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
	TCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
10	AAGCACCATC	GTTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACT	350
	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
15	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAT	CAACCAACAC	TTGCTACAGA	AATGGGACAA	800
20	TTACAAGAGC	GTATCACTTC	AACTAAAAA	GGTTCTGTTA	CCTCAA	846

## 2) INFORMATION FOR SEQ ID NO: 381

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 845 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus agalactiae
  - (B) STRAIN: ATCC 12973

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381

40	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GTGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
45	CCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
	AAGCACCATC	ATTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACA	350
	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
50	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
55	TGCCTTCAGC				AATGGGACAA	800
	TTACAAGAGC	GTATCACTTC	AACTAAAAAA	GGTTCTGTTA	CCTCA	845

^{60 2)} INFORMATION FOR SEQ ID NO: 382

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 845 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus agalactiae    (B) STRAIN: ATCC 27591</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382	
15	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT	50 100 150
	TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT	200 250
20	GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA	300
	AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACT GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT	350 400
25	TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT	450 500
	GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC	550 600
	CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG TACTTCCGTG ATGTAGAAGG ACAAGATGTG CTTCTCTTCA TTGATAATAT	650 700
30	CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA	750 800
	TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CATCA	845
35	2) INFORMATION FOR SEQ ID NO: 383	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 845 bases	
40	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus agalactiae   (B) STRAIN: CDC ss1073</pre>	
50	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 383	
	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT	50
	AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA	100 150
55	CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA	200 250
	CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACT	300
	GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT	350 400
60	TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT	450

5	TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTCGGTCAA ATGAATGAAC AACTACAGAGC ACAAGATGTG CTTCTCTTCA AATAGCTGAG CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA AACCAAACAC TTGCTACAGA AATGGGACAA TTACAAGAGC GTATCACTTC AACCAACAC TTGCTACAGA AATGGGACAA CTTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CATCA	500 550 600 650 700 750 800 845
10		
	2) INFORMATION FOR SEQ ID NO: 384	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 845 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus dysgalactiae     (B) STRAIN: ATCC 43078  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 384</pre>	
		50
30	TTGCTAGTGG GGACAAACTT CCAGAGATTA ATAATGCATT GATTGTTTAT AAAGATAGTG ATAAAAAGCA AAAAATCGTC CTTGAAGTTG CTCTGGAACT TGGTGACGGT ATGGTGCGAA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGGTT AGAAGTTCTT GACACTGGTC GTGCGATTAG TGTACCAGTA GGTAAAGAAA CTTTGGGACG CGTCTTTAAT GTACTTGGAG AAACCATTGA CTTGGAAGAA CCATTTGCAG AAGACGTTGA CCGTCAGCCA ATCCATAAAA	100 150 200 250 300
35	AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT TCTTGAAACT GGTATCAAGG TAATTGACCT TCTTGCCCCT TACCTTAAAG GTGGTAAAGT TGGACTTTTC GGGGGTGCCG GAGTTGGTAA GACTGTCCTT ATCCAAGAAT TAATCCACAA TATCGCCCAA GAACACGGAG GTATTTCAGT ATTTACCGGT GTTGGTGAGC GAACACGTGA AGGAAATGAC CTTTACTGGG AAATGAAAGA	350 400 450 500 550
40	ATCAGGCGTT ATTGAGAAAA CTGCCATGGT TTTTGGTCAG ATGAATGAGC CGCCTGGGGC ACGTATGCGT GTAGCCCTTA CTGGTTTAAC CATTGCTGAG TATTTCCGTG ATGTAGAAGG CCAAGATGTT TTGCTCTTTA TTGATAATAT CTTCCGTTTC ACTCAGGCAG GTTCAGAAGT ATCAGCCCTC TTAGGCCGTA TGCCTTCTGC TGTTGGTTAC CAACCGACCC TTGCTACTGA AATGGGACAA	600 650 700 750 800 845
45	TTGCAAGAAC GTATTACGTC AACTCAAAAA GGATCTGTTA CTTCT	043
	2) INFORMATION FOR SEQ ID NO: 385	
50	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 846 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Streptococcus equi subsp. equi (B) STRAIN: ATCC 9528	

	TTGCGAGTGG	GGACAAACTA	CCAGAGATTA	ATAATGCGTT	GATAGTTTAT	50
5	AAAGATGGCG	ATAAAAAGCA	AAAAATCGTT	CTCGAGGTTG	CCCTAGAGCT	100
	TGGAGACGGT	ATGGTACGTA	CAATTGCTAT	GGAATCAACC	GATGGGCTTA	150
	CACGTGGATT	AGAGGTTCTT	GATACTGGTC	GTGCCATTAG	TGTACCAGTT	200
	GGTAAAGAGA	CTCTAGGTCG	TGTTTTCAAC	GTTCTTGGTG	AAACCATCGA	250
	CCTAGAAGCA	CCATTTGCAG	ATGATGTTAA	TCGTGAACCG	ATCCATAAAA	300
10	AAGCACCAGC	CTTTGATGAA	TTGTCAACAT	CATCAGAAAT	TCTTGAAACA	350
	GGTATCAAGG	TTATTGACCT	GCTTGCCCCT	TACTTAAAGG	GTGGTAAGGT	400
	CGGTCTTTTC	GGTGGTGCCG	GAGTTGGTAA	AACCGTTCTT	ATCCAAGAAT	450
	TAATCCACAA	TATCGCTCAA	GAGCATGGTG	GGATCTCGGT	ATTTACCGGT	500
	GTTGGTGAGC	GTACGCGTGA	AGGAAATGAC		AAATGAAGGA	550
15	ATCAGGCGTT	ATTGAAAAAA	CAGCCATGGT	TTTTGGTCAG	ATGAATGAAC	600
	CACCAGGAGC	CCGTATGCGT	GTTGCCTTGA	CCGGCTTGAC	AATTGCTGAA	650
	TATTTCCGCG	ATGTTGAAGG	CCAAGACGTC	CTGCTCTTCA	TTGACAATAT	700
	TTTCCGCTTT	ACTCAAGCAG	GCTCAGAGGT	ATCAGCCCTT	CTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAC		TTGCCACTGA	AATGGGACAA	800
20	TTGCAAGAGC	GTATCACCTC	AACGAAAAA	GGCTCTGTTA	CCTCTA	846

# 2) INFORMATION FOR SEQ ID NO: 386

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 846 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- 35 (A) ORGANISM: Streptococcus anginosus
  - (B) STRAIN: ATCC 27335
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386

40	TTCCACCTCC	(IIC) (II) > > (IIC)	GG=01			
<del>4</del> 0	TTGCAGCTGG		0010111111	ATAATGCACT	TGTAGTCTAT	50
	AAAAATGACG		AAAAATCGTC	CTTGAAGTAG	CTCTTGAGCT	100
	TGGTGATGGA	GTGGTTCGAA	CTATTGCCAT	GGAATCCACT	GATGGGTTGA	150
	CTCGTGGCAT	GGAAGTTCTA	GATACTGGTC	GACCAATTTC	TGTTCCAGTT	
	GGGAAAGAAA	CACTTGGTCG	CGTCTTTAAC	GTTTTAGGCG		200
45	TTTGGATACT	CCATTCGGCG	AAGATGCAGA		ATACCATTGA	250
	AAGCTCCAAC				ATCCATAAAA	300
		TTTTGATGAG	TTATCTACTT	CATCAGAAAT	CTTAGAAACA	350
	GGAATAAAGG	TTATTGACCT	TTTAGCCCCC	TACCTCAAAG	GTGGGAAAGT	400
	CGGCCTCTTC	GGTGGTGCTG	GCGTTGGGAA	AACTGTCTTG	ATTCAAGAGT	450
	TGATTCATAA	TATCGCCCAA	GAACACGGCG	GGATTTCAGT	CTTTACTGGT	500
50	GTTGGGGAAC		AGGGAATGAC	CTGTACTGGG	AAATGAAAGA	
	ATCTGGTGTT	ATCGAAAAGA	CGGCTATGGT			550
•	CGCCTGGAGC				ATGAATGAAC	600
			GTAGCTTTGA	CTGGGTTAAC	GATTGCAGAG	650
	TATTTCCGTG	ATGTGGAAGG	TCAAGATGTT	CTTTTGTTTA	TTGATAATAT	700
	TTTCCGTTTC	ACTCAAGCTG	GTTCTGAAGT	GTCAGCCCTT	CTTGGTCGTA	750
55	TGCCATCAGC	TGTTGGTTAC	CAACCAACCT	TGGCTACTGA		. – •
	TTACAAGAAC			GGTTCTGTTA	CCTCAA	800
				GGIICIGIIA	CCICAA	846

^{60 2)} INFORMATION FOR SEQ ID NO: 387

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 843 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(A) ORGANISM: Streptococcus salivarius	
	(B) STRAIN: ATCC 7073  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 387	
15	GCAGCTGGTG ATAAACTTCC TGAGATTAAC AATGCATTGG TCGTTTATAC	<b>-</b> -
	TGATGAACAA AAGTCTAAAC GTATCGTGCT CGAAGTAGCT CTTGAACTTG GAGAAGGTGT GGTTCGTACC ATTGCCATGG AATCTACTGA TGGATTGACT CGTGGACTAG AAGTTCTGGA CACTGGTCGT CCAATCAGCG TTCCTGTTGG	100 150
20	TAAAGATACC CTTGGACGTG TCTTTAACGT TCTTGGTGAT ACCATTGACT TGGAAGCACC TTTTGCAGAC GATGCAGAGC GTGAACCAAT TCACAAAAAA	200 250 300
<b>0</b> F	GCACCAACTT TCGATGAATT GTCAACATCT ACTGAAATCC TTGAAACAGG GATTAAAGTT ATCGACTTGC TAGCCCCTTA CCTTAAGGGT GGTAAAGTCG GACTCTTCGG TGGTGCCGGT GTTGGTAAAA CCGTTCTTAT TCAAGAGTTG	350 400 450
25	ATTCACAACA TTGCCCAAGA GCACGGTGGT ATTTCCGTGT TTACAGGTGT TGGTGAACGT ACACGTGAAG GTAATGACCT TTACTGGGAA ATGAAAGAAT CTGGCGTTAT CGAGAAAACA GCCATGGTCT TCGGTCAAAT GAACGAACCA	500 550 600
30	CCTGGAGCAC GTATGCGTGT TGCCCTTACT GGTTTGACAA TTGCGGAATA CTTCCGTGAT GTCGAGGGTC AAGACGTTCT TCTCTTCATC GATAACATCT TCCGTTTCAC TCAAGCAGGT TCTGAGGTTT CTGCCCTTCT TGGTCGTATG	650 700 750
-	CCATCAGCCG TTGGTTACCA ACCTACACTT GCTACTGAAA TGGGTCAATT GCAAGAACGT ATCACATCAA CTAAAAAAGG TTCTGTTACA TCT	800 843
35	2) INFORMATION FOR SEQ ID NO: 388	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 841 bases	
40	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus suis (B) STRAIN: ATCC 43765	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388	
	TTGCAGCAGA AGATAAACTT CCTGAGATTA ACAACGCACT CGTTGTATAT	50
	AAAAATGATG ATTCCAAACA AAAAGTCGTG CTTGAAGTGG CTTTGGAACT TGGTGATGGC GTTGTACGGA CCATTGCCAT GGAATCAACG GATGGATTGA	100 150
55	CACGTGGGAT GGAAGTTCTC GATACAGGTC GTCCCATCTC TGTTCCAGTC	200
	GGTAAAGAAA CGCTGGGTCG TGTCTTCAAT GTGTTGGGAG ATACCATTGA	250
	CCTTGAAGAG TCTTTTCCGG CAGATTTTGA ACGTGAGCCT ATCCATAAGA AAGCGCCGGC TTTTGACGAA TTATCTACTT CAAGCGAAAT TTTGGAAACA	300
	GGGATTAAGG TTATCGACCT CCTAGCACCT TATCTAAAAG GTGGTAAGGT	350 400
50	TGGTCTCTTC GGTGGTGCTG GTGTTGGTAA AACCCTTCTT ATCCAACAAT	450

5	TGATTCACAA TATTGCCCAA GAACACGGTG GTATCTCTGT ATTTACCGGA GTTGGCGAGC GTACCCGTGA AGGGAACGAT CTTTACTGGG AAATGAAAGA ATCAGGTGTT ATTGAAAAAA CGGCCATGGT ATTTGGTCAG ATGAATGAGC CACCAGGAGC CCGTATGCGT GTTGCTCTTA CTGGTTTGAC TATTGCGGAA TACTTCCGTG ATGTGGAAGG GCAGGATGTT CTTCTGTTCA TCGATAATAT CTTCCGTTTC ACACAGGCTG GTTCAGAAGT GTCTGCCCTC TTGGGTCGTA TGCCATCAGC CGTTGGTTAT CAGCCAACAC TTGCGACGGA GATGGGACAA TTGCAGGAGC GTATTACCTC AACCAAGAAG GGTTCTGTTA C	500 550 600 650 700 750 800 841
10		
	2) INFORMATION FOR SEQ ID NO: 389	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 844 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus uberis   (B) STRAIN: ATCC 19436</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 389	
30	GCAAACGGTG AAAAATTACC AGAGATTAAT AATGCATTGA TAGTTTATAA AGGTAGCGAT AAAAAACAAA AGATTGTTCT TGAAGTTGCT TTGGAACTTG GGGACGGAAT GGTTCGTACA ATCGCTATGG AATCAACTGA TGGGCTTACA CGTGGATTAG AAGTTTTAGA TACTGGCCGT GCCATTAGTG TACCAGTCGG AAAAGAAACT TTGGGTCGTG TTTTCAATGT GCTTGGTGAA ACCATTGATT	50 100 150 200 250
35	TGGATGAACC ATTTGCCGCT GATGCTGCAA GAGAACCCAT CCATAAAAAA GCCCCAGCAT TTGATGAACT ATCAACGTCT TCAGAAATTC TTGAAACCGG AATAAAAGTT ATTGACTTAT TAGCCCCTTA TCTCAAAGGT GGTAAAGTTG GTTATTTGG TGGTGCCGGA GTAGGTAAAA CGGTTTTAAT TCAAGAATTA ATTCATAATA TTGCACAAGA ACATGGTGGT ATTTCAGTAT TTACCGGTGT	300 350 400 450 500
40	TGGTGAAAGA ACTCGTGAAG GTAATGACCT TTATTGGGAA ATGAAAGAAT CTGGCGTTAT TGAAAAAACA GCCATGGTAT TTGGACAAAT GAACGAACCA CCAGGAGCAC GTATGCGCGT TGCTTTAACA GGTTTAACCA TTGCTGAATA TTTCCGGGAT GTTGAAGGTC AAGATGTTTT GCTCTTTATT GACAACATTT TCCGTTTCAC GCAAGCTGGT TCAGAAGTTT CAGCCCTATT GGGTCGTATG CCTTCAGCGG TAGGATACCA ACCAACACTT GCTACCGAAA TGGGACAATT	550 600 650 700 750 800
45	GCAAGAAGA ATTACCTCAA CTAACAAGGG ATCTGTTACT TCTA	844
	2) INFORMATION FOR SEQ ID NO: 390	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 896 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
55	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
60	(vi)ORIGINAL SOURCE: (A) ORGANISM: Tatumella ptyseos (B) STRAIN: ATCC 33301	
	364	

	TTCCCTCAGG	ACGCTGTACC	ACAGGTGTAC	AACGCTCTTG	AGGTTGAAAA	50
5	TGGTGATACC	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTG	GGCGGTGGTG	100
	TCGTTCGTAC	GATTGCAATG	GGAACCTCTG	ACGGCCTGAA	ACGTGGCCTT	150
	AAGGTGACCG	ATCTGCAAAA	ACCGATTCAG	GTACCGGTCG	GTAAAGCGAC	200
	GCTGGGCCGT	ATCATGAACG	TACTGGGTCA	GCCAATCGAT	ATGAAAGGCG	250
	ACCTGAAGAA	CGAAGATGGT	AGCAATGTTG	AGGTGAACTC	TATTCACCGT	300
10	GCAGCGCCAA	GCTACGAAGA	ACTGGCTAAC	TCTACTGAGC	TGCTGGAAAC	350
	GGGTATCAAG	GTTATCGACC	TGATCTGTCC	GTTTGCAAAA	GGCGGTAAAG	400
	TGGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	AGACCGTCAA	CATGATGGAA	450
	CTGATCCGTA	ACATCGCTAT	CGAGCACTCT	GGTTACTCTG	TATTTGCAGG	500
	GGTGGGTGAG	CGTACCCGTG	AAGGTAACGA	CTTCTACCAC	GAAATGACCG	550
15	AGTCTAACGT	TCTGGATAAA	GTTGCTCTGG	TTTATGGCCA	GATGAACGAG	600
	CCACCAGGAA	ACCGTCTGCG	CGTTGCGCTG	ACCGGTCTGA	CTATGGCTGA	650
	AAAATTCCGT	GACGAAGGCC	GTGACGTACT	GCTGTTCGTT	GATAACATCT	700
	ATCGTTATAC	CCTGGCCGGT	ACTGAAGTTT	CAGCACTGCT	GGGTCGTATG	750
	CCTTCTGCGG	TAGGTTATCA	GCCAACACTG	GCCGAAGAAA	TGGGTGTTCT	800
20	TCAGGAACGT	ATCACGTCAA	CCAAAACCGG	TTCAATCACT	TCCGTA	896

### 2) INFORMATION FOR SEQ ID NO: 391

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 829 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Trabulsiella guamensis
  - (B) STRAIN: ATCC 49490
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391

40	TTCCCTCAGG	ATGCCGTACC	GCGCGTGTAC	GATGCTCTTG	AGGTTATGAA	50
	TGGTAGTGAG	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGTGGTGGTA	100
	TCGTACGTAC	TATCGCCATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	150
	GATGTAAAAG	ATCTCGAGCA	TCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	GCTGGGTCGT	ATCATGAACG	TGCTGGGTCA	GCCGATCGAT	ATGAAAGGCG	250
45	ACATCGGCGA	AGAAGAGCGT	TGGGCTATCC	ACCGCGCAGC	ACCGTCCTAC	300
	GAAGAGCTGT	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	GTGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	TCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTGG	GTGAACGTAC	500
50	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTCTGG	550
	ACAAAGTATC	CCTGGTGTAT	GGACAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CACTGACCGG	TCTGACCATG	GCTGAGAAGT	TCCGTGACGA	650
	AGGTCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTACCGT	TACACCCTGG	700
	CGGGTACTGA	AGTATCTGCA	CTGCTGGGCC	GTATGCCTTC	AGCGGTAGGT	750
55	TACCAGCCGA	CCCTGGCGGA	AGAGATGGGT	GTTCTTCAGG	AACGTATCAC	800
	CTCAACCAAA	ACCGGTTCTA	TCACCTCCG			829

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 835 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Yersinia bercovieri     (B) STRAIN: ATCC 43970</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392	
15	CGAATTCCCC CAAGACGCTG TACCAAAAGT GTACAACGCC CTTGAGGTTG AAGGCACAGC TCAGAAGCTG GTGCTGGAAG TTCAGCAACA GCTGGGCGGT GGTGTTGTTC GTTGTATCGC AATGGGCTCT TCCGATGGTC TGAGCCGCGG GTTGAAAGTC ATCAACCTGG AACACCCAAT TGAAGTGCCG GTGGGTAAAT	50 100 150
20	CAACTCTGGG CCGTATCATG AACACCCAAT TGAAGTGCCG GTGGGTAAAT CAACTCTGGG CCGTATCATG AACGTATTGG GTGACCCAAT CGACATGAAA GGTCCTATCG GTGAAGAAGA GCGTTGGGCA ATCCACCGCG AAGCGCCTTC TTACGAAGAG CTTGCCAGCT CGCAAGATCT GTTAGAAACC GGTATCAAGG TAATGGATCT GATTTGTCCG TTCGCTAAGG GCGGTAAAGT CGGTCTGTTC	200 250 300 350
25	GGTGGTGCG GTGTGGGTAA AACAGTCAAC ATGATGGAGC TGATTCGTAA TATTGCGATT GAGCACTCAG GTTATTCTGT ATTTGCCGGT GTGGGTGAGC GTACTCGTGA GGGTAACGAC TTCTACCACG AGATGACTGA CTCCAACGTT CTGGACAAAG TATCCTTGGT TTATGGCCAG ATGAATGAGC CACCAGGTAA	400 450 500 550
30	CCGTCTGCGC GTTGCACTGA CCGGCTTGAC CATGGCGGAG AAATTCCGTG ATGAAGGTCG TGATGTACTG TTATTCATCG ATAACATCTA TCGTTATACC CTGGCCGGTA CAGAGGTATC TGCACTGCTA GGTCGTATGC CATCAGCGGT AGGCTATCAG CCAACGCTGG CAGAAGAGAT GGGTGTGTTG CAGGAACGTA TCACTTCCAC CAAGACGGGT TCAATCACCT CCGTA	600 650 700 750 800 835
35	2) INFORMATION FOR SEQ ID NO: 393	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 812 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	<ul><li>(A) ORGANISM: Yersinia enterocolitica</li><li>(B) STRAIN: ATCC 9610</li></ul>	
50	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 393	
55	GCTGTACCAA AAGTGTACAA CGCCCTTGAG GTTGAAGGCG CAGCTGAGAA GCTGGTGCTG GAAGTTCAGC AACAGCTGGG CGGTGGTGTT GTTCGTTGTA TCGCAATGGG CTCTTCCGAT GGTCTGAGCC GTGGGTTGAA AGTCATCAAC CTGGAACACC CAATTGAAGT GCCTGTGGGC AAGTCAACTC TGGGCCGTAT CATGAACGTA TTGGGTGACC CAATCGACAT GAAAGGTCCT ATCGGCGAAG AAGAGCGTTG GGCAATCCAT CGTGAAGCGC CTTCTTACGA AGATCTTGCC	50 100 150 200 250 300
50	AGCTCGCAAG ACTTGTTAGA AACCGGTATC AAGGTAATGG ACTTGATTTG TCCGTTCGCT AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACGGT AAACATGATG GAGCTTATTC GTAACATTGC GATTGAGCAC	350 400 450

5	CGACTTCTAC TGGTTTATGG CTGACCGGCT ATTGCTGTTC TTTCCGCACT	CCGTATTTGC TO CACGAGATGA CT CCAAATGAAT GA TGACCATGGC GO ATCGATAACA TO GCTGGGTCGT AT AGATGGGTGT GT AC	IGACTCCAA AGCCACCAG BAGAAATTC CTATCGCTA IGCCATCTG	CGTTCTGGAC GTAACCGTCT CGTGATGAAG TACCTTAGCC CCGTAGGTTA	AAAGTATCCT GCGCGTTGCA GTCGTGACGT GGTACGGAAG CCAGCCAACG	500 550 600 650 700 750 800 812
10						
	2) INFORMATI	ON FOR SEQ II	D NO: 394			
15	(i)SEQUE (A) (B) (C) (D)	NCE CHARACTER LENGTH: 802 TYPE: Nuclei STRANDEDNESS TOPOLOGY: Li	bases ic acid S: Double			
20	(ii) MOLEC	ULE TYPE: Ger	nomic DNA			
25	(A) (B)	NAL SOURCE: ORGANISM: Ye STRAIN: ATCO	33641			
30	GGAAGTTCAG GCTCTTCCGA CCAATTGAAG ATTGGGTGAC	ACGCCCTTGA GO CAACAGCTGG GO TGGTTTGAGC CO TACCGGTTGG TX CCAATCGACA TO CCGCGAAGCG CO	CGGTGGTGT GCGGGTTGA AAATCAACT GAAAGGTCC	TGCTCGTTGT AAGTTGTCAA CTGGGCCGTA TATCGGTGAA	ATCGCCATGG CCTGGAACAC TCATGAACGT GAAGAGCGTT	50 100 150 200 250 300
35	TAAAGGCGGT TAAACATGAT TCCGTATTTG CCACGAGATG	AAACCGGTAT CZ AAAGTCGGTC TC GGAGCTGATC CC CGGGTGTTGG TC ACTGACTCCA AC	GTTCGGTGG GTAATATCG GAACGTACC CGTTCTGGA	TGCGGGTGTA CGATCGAGCA CGTGAGGGTA CAAAGTATCC	GGTAAAACGG CTCAGGTTAT ACGACTTCTA TTGGTTTATG	350 400 450 500 550
40	CTGACCATGG CATCGATAAC TGCTGGGTCG	TGAGCCACCA GO CGGAGAAATT CO ATCTATCGTT AT TATGCCATCT GO TGTTGCAGGA AO	CGTGATGAA FACCTTGGC CGGTAGGCT	GGTCGTGACG CGGTACGGAA ATCAGCCAAC	TATTGCTGTT GTATCCGCAC GCTGGCAGAA	600 650 700 750 800 802
45	<b></b>					002
	2) INFORMATT	ON FOR SEO II	) NO - 395			
50	•	NCE CHARACTER LENGTH: 806 TYPE: Nuclei STRANDEDNESS TOPOLOGY: Li	RISTICS: bases ic acid S: Double			
55	(ii) MOLEC	ULE TYPE: Ger	nomic DNA			
		NAL SOURCE:				
60	(A) (B)	ORGANISM: YE STRAIN: ATCO		termedia		

	GCTGTACCAA	GAGTGTACAA	CGCCCTTGAG	GTTGAAGGCA	CTGCTGAGAA	50
5	GCTGGTGCTG	GAAGTTCAGC	AACAGCTAGG	CGGTGGTGTT	GTTCGTTGTA	100
	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GCGGGTTGAA	AGTCATCAAC	150
	CTGGAACACC	CAATTGAAGT	GCCGGTTGGT	AAATCAACTC	TGGGCCGTAT	200
	CATGAACGTA	TTGGGTGACC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
	AAGAGCGTTG	GGCAATCCAC	CGCGAAGCGC	CTTCTTACGA	AGAGCTTGCC	300
10	AGCTCACAAG	ATTTGTTAGA	AACCGGTATC	AAAGTAATGG	ACTTGATTTG	350
	CCCGTTCGCT	AAGGGCGGTA	AAGTGGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACAGT	AAACATGATG	GAGCTTATTC	GTAACATCGC	GATTGAGCAC	450
	TCAGGTTATT	CTGTATTTGC	TGGTGTGGGT	GAGCGTACTC	GTGAGGGTAA	500
	CGACTTCTAC	CACGAGATGA	CTGACTCCAA	CGTTCTGGAC	AAAGTATCCT	550
15	TGGTGTATGG	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	GCGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ACTGTTGTTC	ATCGATAACA	TCTATCGCTA	TACCTTGGCC	GGTACGGAAG	700
	TATCCGCACT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGCTA	CCAGCCAACG	750
	CTGGCAGAAG	AGATGGGTGT	GTTGCAGGAA	CGTATTACGT	CCACCAAGAC	800
20	GGGTTC					806

#### 2) INFORMATION FOR SEQ ID NO: 396

25

35

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 806 bases (A)
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear 30 (D)
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - ORGANISM: Yersinia pseudotuberculosis (A)
    - (B) STRAIN: ATCC 29833
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396

40	GCTGTACCAA	AAGTGTACAA	CGCCCTTGAG	GTAGAAGGCA	CAACTGAAAA	50
	GTTAGTGCTG	GAAGTTCAGC	AACAGTTGGG	CGGTGGTGTT	GTTCGTTGTA	100
	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GTGGGTTGAA	AGTAACCAAC	150
	CTGGAACACC	CGATCGAAGT	ACCGGTTGGT	AAAGCGACCC	TTGGCCGTAT	200
	CATGAACGTA	TTGGGTGAAC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
45	AAGAGCGTTG	GGCAATCCAT	CGCGAAGCGC	CTTCTTATGA	AGAGCTTGCT	300
	AGCTCACAAG	ATCTGTTAGA	AACCGGTATC	AAGGTTATGG	ACCTGATTTG	350
	TCCGTTTGCT	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
	GTAAAACAGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	TCTGGGTATT	CTGTATTTGC	CGGTGTAGGT	GAGCGTACCC	GTGAGGGTAA	500
50	TGACTTCTAC	CATGAAATGA	CTGACTCCAA	CGTTTTGGAC	AAAGTATCCT	550
	TGGTTTACGG	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	ACGCGTTGCA	600
	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ACTGCTGTTC	ATCGATAATA	TCTATCGTTA	TACCCTAGCT	GGTACGGAAG	700
	TATCCGCATT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGTTA	TCAGCCAACA	750
55	CTGGCTGAAG	AGATGGGTGT	GTTGCAGGAA	CGTATTACTT	CCACTAAGAC	800
	GGGTTC					806

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 829 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Yersinia rohdei   (B) STRAIN: ATCC 43380</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397	
15	TTCCCCCAAG ACGCTGTACC AAAAGTGTAC AACGCCCTTG AGGTTGAAGG TGCAGCTGAG AAGCTTGTGC TGGAAGTTCA GCAGCAGCTG GGCGGTGGTG TTGTTCGTTG TATCGCAATG GGCTCTTCCG ATGGTTTGAG CCGTGGGTTG	50 100 150
20	AAAGTTATCA ACCTGGAACA CCCAATTGAA GTGCCAGTTG GTAAATCAAC TCTGGGCCGT ATCATGAACG TATTGGGTGA CCCAATCGAC ATGAAAGGCC CTATCGGTGA AGAAGAGCGT TGGGCAATCC ACCGTGAAGC GCCTTCTTAC GAAGAGCTTG CCAGCTCGCA AGATCTGTTA GAAACCGGTA TCAAGGTAAT	200 250 300 350
25	GGATCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAGCTTAT TCGTAACATC GCGATTGAGC ACTCAGGTTA TTCTGTATTT GCCGGGGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAGAT GACTGACTCC AACGTTCTGG	400 450 500 550
30	ACAAAGTATC CTTGGTTTAT GGCCAGATGA ATGAGCCACC AGGTAACCGT CTGCGCGTTG CACTGACCGG CTTGACCATG GCGGAAAAAT TCCGTGATGA AGGCCGTGAC GTATTGCTGT TCATCGATAA CATTTATCGT TATACCCTAG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGC	600 650 700 750
	TATCAGCCAA CACTGGCAGA AGAGATGGGT GTGTTGCAGG AACGTATTAC TTCCACTAAG ACGGGTTCAA TCACCTCCG	800 829
35	2) INFORMATION FOR SEQ ID NO: 398	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases	
40	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Yokenella regensburgei     (B) STRAIN: ATCC 35313</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398	
	ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTACAAAA TGGTAACGAG AAACTGGTGC TGGAAGCTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC	50 100
55	TATCGCCATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG GAAGTTAAAG ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC CCTGGGCCGT ATCATGAACG TCCTGGGTCA GCCGATCGAC ATGAAAGGCG ACATCGGTGA	150 200
	AGAAGAGCGT TGGGCTATCC ACCGCGCAGC ACCTTCCTAT GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTAAT GGATCTGATC	250 300 350
60	TGCCCGTTCG CTAAGGGTGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACT GTAAACATGA TGGAGCTTAT CCGTAACATC GCGATTGAGC	400 450

5	ACTCCGGTTA CTCTGTGTTT GCAGGCGTGG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTACTGG ATAAAGTATC CCTGGTGTAC GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CGCTGACCGG CCTGACCATG GCTGAGAAAT TCCGTGACGA AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTACCGT TATACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC TGCGGTAGGT TATCAGCCAA CTCTGGCGGA AGAGATGGGT GTTCTTCAGG AACGTATCAC CTCTACCAAA ACCGGTTCTA TCACCTCCG	500 550 600 650 700 750 800 819
10		
	2) INFORMATION FOR SEQ ID NO: 399	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1097 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Yarrowia lipolytica</pre>	
	(B) STRAIN: ATCC 38295	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399	
30	AAGCTTAAGG CTGAGCGAGA GCGAGGTATC ACCATTGATA TCGCTCTCTG GAAGTTCCAG ACCCCTAAGT ACTACGTCAC CGTTATTGAT GCTCCCGGTC ACCGAGATTT CATCAAGAAC ATGATTACCG GTACTTCCCA GGCTGACTGC GCCATCCTCA TCATTGCTGG TGGTGTTGGT GAGTTCGAGG CTGGTATCTC CAAGGATGGT CAGACCCGAG AGCACGCCCT GCTCGCTTTC ACCCTCGGTG	50 100 150 200 250
35	TTAAGCAGCT CATTGTTGCT ATCAACAAGA TGGACTCCGT CAAGTGGTCT CAGGATCGAT ACCTCGAGAT TTGCAAGGAG ACTGCCAACT TCGTCAAGAA GGTCGGTTAC AACCCCAAGG CTGTCCCCTT CGTCCCCATT TCCGGATGGA ACGGTGACAA CATGATCGAG CCCTCTACCA ACTGTGACTG GTACAAGGGA TGGACCAAGG AGACCAAGGC CGGCGAGATC AAGGGTAAGA CCCTCCTCGA	300 350 400 450 500
40	GGCCATTGAT GCCATTGAGC CCCCCGTGCG ACCCCACGAC AAGCCCCTCC GACTTCCCCT CCAGGATGTC TACAAGATCG GTGGTATCGG CACAGTGCCC GTTGGCCGAG TCGAGACCGG TGTTATCAAG GCCGGTATGG KTGTTACCTT CGCTCCCGCC AACGTGACCA CTGAGGTCAA GTCTGTCGAG ATGCACCACG AGATCCTCCC CGATGGAGGT TTCCCCGGTG ACAACGTCGG TTTCAACGTC	550 600 650 700 750
45	AAGAACGTTT CCGTCAAGGA TATCCGACGA GGTAACGTTG CTGGTGACTC CAAGAACGAC CCCCCCAAGG GCTGCGACTC TTTCAACGCT CAGGTCATTG TTCTTAACCA CCCCGGTCAG ATCGGTGCTG GTTACGCTCC CGTCCTTGAT TGCCACACTG CCCACATTGC TTGCAAGTTC GACACCCTGA TCGAGAAGAT CGACCGACGA ACCGGTAAGA AGATGGAGGA CTCCCCCAAG TTCATCAAGT	800 850 900 950 1000
<b>50</b>	CTGGTGATGC TGCCATTGTC AAGATGGTTC CCTCCAAGCC CATGTGTGTC GAGGCCTTCA CTGAGTACCC CCCTCTTGGT CGATTCGCCG TCCGAGA	1050 1097
50		
	2) INFORMATION FOR SEQ ID NO: 400	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1233 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

### (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Absidia corymbifera
- (B) STRAIN: ATCC 46775

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 400

	CAAGCTTAAG	GCTGAACGTG	AGCGTGGTAT	CACCATCGAT	ATCGCTCTCT	50
10	GGAAGTTCGA	GACTCCCAAG	TACCACGTTA	CCGTCATTGA	TGCCCCTGGC	100
	CATCGTGATT	TCATCAAGAA	CATGATTACT	GGTACTTCCC	AAGCTGACTG	150
	CGGTATCTTG	ATTATTGCTG	CTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
	CCAAGGATGG	TCAAACCCGT	GAACACGCTT	TGCTTGCTTT	CACCCTTGGT	250
	GTCCGTCAAT	TGATTGTCGC	TATCAACAAG	ATGGATTCCA	CCAAGTACTC	300
15	TGAGGCCCGT	TACAACGAAA	TTGTCAAGGA	AGTCTCCACC	TTCATCAAGA	350
	AGATTGGTTT	CAACCCCAAG	TCCGTTCCTT	TCGTCCCTAT	CTCTGGCTGG	400
	AACGGTGACA	ACATGTTGGA	GGARTCCACC	AACATGCCTT	GGTTCAAGGG	450
	ATGGAACAAG	GAGACTAAGG	CTGGTGCCAA	GACYGGCAAG	ACCCTTCTTG	500
	AAGCCATTGA	CAACATTGAT	CCCCCTGTTC	GTCCTTCCGA	CAAGCCCCTT	550
20	CGTCTTCCCC	TTCAAGATGT	CTACAAGATC	GGTGGTATTG	GTACAGTTCC	600
	TGTCGGTCGT	GTTGAGACTG	GTGTCATCAA	GCCTGGTATG	GTTGTCACCT	650
	TCGCTCCCGC	TAACGTCACC	ACTGAAGTCA	AGTCCGTYGA	AATGCACCAC	700
	GAGCAACTTG	CTGAAGGTGT	TCCCGGTGAC	AACGTCGGTT	TCAACGTCAA	750
	GAACGTTTCC	GTCAAGGATA	TCCGCCGTGG	TAACGTYTGC	TCTGACTCCA	800
25	AGAACGACCC	CGCCAAGGAA	TCCGCTTCCT	TCACCGCTCA	AGTTATTGTC	850
	TTGAACCACC	CTGGTCARAT	TGGTGCTGGT	TACTCTCCTG	TCTTGGATTG	900
	CCACACTGCT	CACATTGCAT	GCAAGTTCTY	TKAGCTTCTT	KAGAAGATCG	950
	ATYGTCGTTC	CGGTAAGTAA	ATANTTTGGT	TTRGGATATG	GGTATTGGGC	1000
	TTAATCTYTG	GATTTTGCCT	CAATTGCTCC	TTCCTTGATC	TTTCTCGATT	1050
30	ACTTTTTGAT	CATTTGCTAA	TCCAAACCCT	TTCCATTTYA	TTGAAAACAG	1100
	GTAAGAAGTT	GGAAGACTCC	CCCAAGTTCG	TCAAGWSYGG	TGACTCTGCY	1150
	ATCGTCAAGA	TGGTTCCTTC	CAAGCCCATG	TGCGTTGAAG	CCTACACTGA	1200
	ATATCCTCCT	CTTGGTCGTT	TCGCTGTCCG	TGA		1233

35

40

50

5

### 2) INFORMATION FOR SEQ ID NO: 401

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1151 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Alternaria alternata
    - (B) STRAIN: ATCC 62099

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 401

	CAAGTTGAAG	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAC	ATTGCTCTCT	50
	GGAAGTTCGA	GACTCCCAAG	GTTAGTACCC	CTCTGCCTAC	TACATCAAGT	100
5 <b>5</b>	TCTTTACAAT	GCTAACATGT	TGTACTCAGT	ACTATGTCAC	CGTCATTGAC	150
	GCCCCCGGTC	ACCGTGATTT	CATCAAGAAC	ATGATCACTG	GTACCTCCCA	200
	GGCCGACTGC	GCTATTCTCA	TCATTGCCGC	CGGTACTGGT	GAGTTCGAGG	250
	CTGGTATCTC	CAAGGATGGC	CAGACTCGTG	AGCACGCTCT	CCTCGCTTAC	300
	ACCCTCGGTG	TCAAGCAGCT	CATCGTTGCC	ATCAACAAGA	TGGACACCAC	350
60	CAAGTGGTCC	GAGGAGCGTT	ACCAGGAGAT	CATCAAGGAG	ACCTCCAACT	400

	TCATCAAGAA	GGTCGGCTAC	AACCCCAAGC	ACGTTCCCTT	CGTCCCCATC	450
	TCCGGTTTCA	ACGGTGACAA	CATGATTGAG	GCCTCATCCA	ACTGCCCCTG	500
	GTACAAGGGT	TGGGAGAAGG	AGACCAAGGC	CAAGGCCACT	GGTAAGACCC	550
	TCCTCGAGGC				CACCGACAAG	600
5	CCCCTCCGTC	TTCCCCTYCA			GTATTGGCAC	650
	GGTGCCCGTC	GGTCGTGTCG		CATCAAGGCC	GGTATGGTCG	700
		CCCCGCTGGT		AAGTCAAGTC	CGTCGAGATG	750
		AGCTCACCGA	GGGTGTCCCC	GGTGACAACG	TCGGCTTCAA	800
			AGGAGATCCG	TCGTGGTAAC	GTTGCCGGTG	850
10			AAGGGTGCCG	AGTCCTTCAA	CGCCCAGGTC	900
	ATCGTCCTCA		TCAGGTCGGT	GCTGGTTACG	CCCCAGTCCT	950
	CGACTGCCAC		TTGCTTGCAA	GTTCTCTGAG	CTCCTCGAGA	1000
	AGATTGACCG	CCGTACCGGA		AGAACTCTCC	CAAGTTCATC	1050
			CGTCAAGATG	GTTCCCTCCA	AGCCCATGTG	1100
15	CGTTGAGGCT	TTCACTGACT	ACCCTCCTCT	CGGTCGTTTC	GCTGTCCGTG	1150
	A					1151

## 20 2) INFORMATION FOR SEQ ID NO: 402

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1283 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

30 (vi)ORIGINAL SOURCE:

25

- (A) ORGANISM: Aspergillus flavus
- (B) STRAIN: ATCC 26947

# (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 402

	CAAGCTCAAG		AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	50
	GGAAGTTCCA	GACCTCCAAG	TATGAGGTCA	CCGTCATTGG	TAAGCATTTG	100
	AGTTCCAACC	TACGTTGCCC	AACATTTACA	GTCATCTAAC	AAAGTTCAAT	150
	AGATGCCCCC	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACTT	200
40	CCCAGGCTGA	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAATTC	250
	GAGGCTGGTA	TCTCCAAGGA	TGGTCAGACC	CGTGAGCACG	CTCTGCTCGC	300
	TTTCACCCTC	GGTGTCCGTC	AGCTCATCGT	TGCCCTCAAC	AAGATGGACA	350
	CCTGCAAGTG	GTCTCAGGAT	CGTTACAACG	AAATCGTTAA	GGAGACTTCC	400
	AACTTCATCA	AGAAGGTCGG	ATACAACCCC	AAGAGCGTTC	CTTTCGTCCC	450
45	CATCTCCGGT	TTCAACGGTG	ACAACATGAT	TGAGGCCTCC	ACCAACTGCC	
	CCTGGTACAA	GGGTTGGGAG	AAGGAGACCA	AGGCTGGCAA	GTCCACCGGT	500
	AAGACCCTTC	TCGAGGCCAT	CGATGCCATC	GAGCCCCCCG	TCCGTCCCAC	550
	CGACAAGCCT	CTCCGTCTTC	CCCTYCAGGA	TGTCTACAAG	ATCTCTGGTA	600
	TCGGTACTGT	GCCCGTCGGT	CGTGTCGAGA	CTGGTGTCAT	CAAGCCTGGT	650
50	ATGGTCGTTA	CTTTCGCTCC	TGCCAACGTG	ACCACTGAAG	TCAAGTCCGT	700
	TGAAATGCAC	CACCAGCAGC	TCCAGGCCGG	TAACCCCGGT	GACAACGTTG	750
	GTTTCAACGT	CAAGAACGTC	TCCGTCAAGG	AAGTCCGCCG		800
	GCCGGTGACT	CCAAGAACGA	CCCCCTGCT	GGCTGCGATT	TGGTAACGTT	850
	CCAGGTCATC	GTCCTTAACC	ACCCCGGTCA	GGTCGGCAAC	CCTTCAACGC	900
55	CCGTCCTGGA	CTGCCACACC	GCTCACATTG	CTTGCAAGTT	GGTTACGCTC	950
	CTTGAGAAGA	TTGACCGCCG	TACCGGTAAA		CGCTGAGCTC	1000
	GTTCATCAAG	TCTGGTGATG	CTGCCATCGT	TCTGTTGAGG	ACAAGCCCAA	1050
	CCATGTGTGT		ACTGACTTCC	CAAGATGATT	CCCTCCAAGC	1100
	GTCCGTGACG	TAAGTTTTTC	CCTCTTGACT	CCCCTCTTGG	TCGTTTCGCT	1150
60	ATTTTCACGC	CTCGTCCCAC		ATCTTCACAA	TTTTTCACAT	1200
		CICGICCCAC	TCTTTTTCCT	CCCTTCCTCT	TTGGTTCCCC	1250

5	2)	INFORMATION	FOR	SEQ	ID	NO:	403
---	----	-------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 1103 bases (A)
  - TYPE: Nucleic acid (B)
  - (C) STRANDEDNESS: Double
  - TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Aspergillus fumigatus
  - (B) STRAIN: DAL95
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403

20 TCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT GGAAGTTCCA 50 GACTCCCAAG TATGAGGTCA CTGTCATCGG TAAGCTCGAC TCGCCCCGAT 100 ATGTTTTGGT GCTGTAGCTA ACACGATCTG AAGATGCCCC CGGTCACCGT GACTTCATCA AGAACATGAT CACTGGTACC TCCCAGGCTG ACTGCGCTAT CCTCATCATT GCCTCCGGTA CTGGTGAGTT CGAGGCTGGT ATCTCCAAGG 150 200 25 250 ATGGCCAGAC CCGTGAGCAC GCTCTGCTGG CTTTCACCCT CGGTGTCAAG 300 CAGCTCATCG TCGCCCTCAA CAAGATGGAC ACCTGCAAGT GGTCCGAGGA 350 TCGTTACAAC GAAATTGTCA AGGAAACCTC CAACTTCATC AAGAAGGTCG 400 GCTACAACCC CAAGGCCGTT CCCTTCGTCC CCATCTCTGG CTTCAACGGT GACAACATGC TTGAGCCCTC CTCCAACTGC CCCTGGTACA AGGGATGGGA 30 GAAGGAGACC AAGGCCGGCA AGGTCACTGG TAAGACCCTC ATCGAGGCCA 550 TCGACGCCAT TGAGCCCCCT GTCCGTCCCT CCAACAAGCC CCTCCGTCTT 600 CCCCTCCAGG ATGTCTACAA GATCTCTGGT ATCGGAACGG TCCCTGTCGG 650 CCGTGTCGAG ACCGGTATCA TCAAGCCCGG CATGGTCGTC ACCTTCGCCC 700 CCGCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACCAGCAG 35 CTCCAGGAGG GTGTCCCCGG TGACAACGTC GGTTTCAACG TCAAGAACGT TTCCGTCAAG GAAGTCCGCC GTGGTAACGT CTGCGGTGAC TCCAAGAACG ATCCCCTCA GGGTGCTGCC TCCTTCAACG CCCAGGTCAT CGTCCTCAAC CACCCCGGTC AGGTCGCGC TGGTTACGCC CCCGTCCTCG ACTGCCACAC TGCCCACATT GCTTGCAAGT TCTCTGAGCT GCTTGAGAAG ATTGACCGCC 900 40 1000 GTACCGGCAA GTCTGTTGAG AACAACCCCA AGTTCATCAA GTCCGGTGAT GCCGCCATCG TGAAGATGGT TCCTTCCAAG CCCATGTGTG TCGAGTCCTT 1050

45

50

CAC

10

- 2) INFORMATION FOR SEO ID NO: 404
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1149 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 55
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Aspergillus fumigatus
    - (B) STRAIN: WSA-172

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404

	AAGCTCAAGT	CCGAGCGTGA	GCGTGGTATC	ACCATCGACA	TTGCCCTCTG	50
	GAAGTTCCAG	ACTCCCAAGT	ATGAGGTCAC	TGTCATCGGT		100
5	CGCCCCGATA	TGTTTTGGTG	CTGTAGCTAA	CACGATCTGA		150
	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACCT		200
	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAGTTC	GAGGCTGGTA	250
	TCTCCAAGGA	TGGCCAGACC	CGTGAGCACG	CTCTGCTGGC	TTTCACCCTC	300
	GGTGTCAAGC	AGCTCATCGT	CGCCCTCAAC	AAGATGGACA		350
10	GTCCGAGGAT	CGTTACAACG	AAATTGTCAA	GGAAACCTCC	AACTTCATCA	400
	AGAAGGTCGG	CTACAACCCC	AAGGCCGTTC	CCTTCGTCCC	CATCTCTGGC	450
	TTCAACGGTG	ACAACATGCT	TGAGCCCTCC	TCCAACTGCC	CCTGGTACAA	500
	GGGATGGGAG	AAGGAGACCA	AGGCCGGCAA	GGTCACTGGT	AAGACCCTCA	550
	TCGAGGCCAT	CGACGCCATT	GAGCCCCCTG	TCCGTCCCTC	CAACAAGCCC	600
15	CTCCGTCTTC	CCCTCCAGGA	TGTCTACAAG	ATCTCTGGTA	TCGGAACGGT	650
	CCCTGTCGGC	CGTGTCGAGA	CCGGTATCAT	CAAGCCCGGC	ATGGTCGTCA	700
	CCTTCGCCCC	CGCCAACGTC	ACCACTGAAG	TCAAGTCCGT	CGAGATGCAC	750
	CACCAGCAGC	TCCAGGAGGG	TGTCCCCGGT	GACAACGTCG	GTTTCAACGT	800
	CAAGAACGTT	TCCGTCAAGG	AAGTCCGCCG	TGGTAACGTC	TGCGGTGACT	850
20	CCAAGAACGA	TCCCCCTCAG	GGTGCTGCCT	CCTTCAACGC	CCAGGTCATC	900
	GTCCTCAACC	ACCCCGGTCA	GGTCGGCGCT	GGTTACGCCC	CCGTCCTCGA	950
	CTGCCACACT	GCCCACATTG	CTTGCAAGTT	CTCTGAGCTG	CTTGAGAAGA	1000
	TTGACCGCCG	TACCGGCAAG	TCTGTTGAGA	ACAACCCCAA	GTTCATCAAG	1050
	TCCGGTGATG	CCGCCATCGT	GAAGATGGTT	CCTTCCAAGC	CCATGTGTGT	1100
25	CGAGTCCTTC	ACTGACTACC	CCCCTCTGGG		GTCCGTGAC	1149

# 2) INFORMATION FOR SEQ ID NO: 405

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1151 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Aspergillus niger
    - (B) STRAIN: ATCC 9508
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405

<b>4</b> 5	CAAGCTCAAG GGAAGTTCCA CAGAGTTCTC CCCGGTCACC TGACTGCGCT GTATCTCCAA CTCGGTGTCC GTGGTCCGAG TCAAGAAGGT GGTTTCAACG CAAGGGTTGG TCCTTGAGGC CCCCTCCGTC TGTTCCCGTC	GACTGGCAAG TTTTCATCAA GTGACTTCATCA ATCCTCATCA GGATGGCCAG GCCAGCTCAT GACCGTTACA CGGATACAAC GTGACAACAT GAGAAGGAGA CATCGACGCC TTCCCCTCCA	TATGAGGTCA AGCAATATAC CAAGAACATG TTGCCTCCGG ACTCGTGAGC CGTTGCCTC ACGAAATCGT CCCAAGGGTG GCTCGAGCCC CCAAGGCCGG ATCGAGCCCC GGATGTCTAC	CCGTCATTGG TAACGTCCAT ATCACTGGTA TACTGGTGAG ACGCTCTGCT AACAAGATGG TAAGGAGACC TTCCTTTCGT TCCCCCAACT CAAGGTCACC CCGTCCGTCC AAGATCTCCG	CCCCATCTCC GCCCCTGGTA GGTAAGACCC CTCCAACAAG GTATTGGAAC	50 100 150 200 250 300 350 400 450 550 600 650
60	TGACCTTCGC		AGACCGGTAT GTCACCACTG	CATTGCCCCT	GGTATGGTCG CGTTGAGATG TTGGTTTCAA	700 750 800

5	CGTCAAGAAC GTTTCCGTCA AGGAGGTTCG CCGTGGTAAC GTTGCCGGTG ACTCCAAGAA CGACCCCCT CTTGGCTGTG AGAGCTTCAC CGCCCAGGTC ATCGTCCTCA ACCACCCCGG TCAGGTCGGC GCTGGTTACG CTCCCGTCCT GGACTGCCAC ACTGCTCACA TTGCTTGCAA GTTCGCTGAG CTCCTTGAGA AGATTGACCG CCGTACCGGA AAGTCTGTTG AATCTTCCCC CAAGTTCATC AAGTCCGGTG ACGCTGCCAT CGTCAAGATG ATTCCCTCCA AGCCCATGTG TGTTGAGGCT TTCACTGACT ACCCCCCTCT TGGTCGTTTC GCCGTCCGCG A	850 900 950 1000 1050 1100 1150
10		
	2) INFORMATION FOR SEQ ID NO: 406	•
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1093 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Blastoschizomyces capitatus     (B) STRAIN: ATCC 10663</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406	
30	GCTTAAAGCT GAACGTGAAC GTGGTATCAC CATTGATATC GCTCTCTGGA AGTTCGAAAC TCCTAAGTAC TACGTTACTG TTATTGATGC TCCAGGTCAC CGTGATTCA TCAAGAACAT GATTACTGGT ACTTCCCAAG CCGATTGCGC CATTCTTATC ATTGCTGCCG GTGTCGGTGA ATTCGAAGCT GGTATCTCCA AGGAAGGTCA AACCAGAGAA CACGCTCTTC TCGCTTTCAC CCTTGGTGTC	50 100 150 200 250
35	AGACAACTTA TCATTGCCAT CAACAAGATG GACTCTGTCA AGTGGGACCA AAAGAGATAC GAAGAAATCG TCAAGGAGGC TTCCAACTTC GTCAAGAAGG TTGGTTACAA CCCCAAGTCT GTTCCATTCG TTCCTATCTC TGGTTGGAAC GGTGACAACA TGTTGGAACC TACCACCAAC GCCCCATGGT ACAAGGGATG GACCAAGGAA ACCAAGGCTG GTGCCACTAA GGGTATGACT CTTATTGAAG	300 350 400 450 500
40	CCATTGACGC CATTGAACCA CCAGTAAGAC CATCCGACAA GCCACTCCGT CTCCCACTC AAGATGTTA CAAGATTGGT GGTATCGGAA CTGTGCCAGT CGGCCGTGTC GAAACCGGTA TCATCAAGGC CGGTATGGTC GTTACCTTTG CTCCACCAAT GGTCACAACT GAAGTTAAGT CCGTTGAAAT GCACCACGAA CAACTTGCTC AAGGTAACCC AGGTGACAAC GTTGGTTTCA ACGTCAAGAA	550 600 650 700 750
45	CGTTTCCGTT AAGGAAATCA GACGTGGTAA CGTCTGTGGT GACTCCAAGA ACGATCCACC AAAGGGCTGC GAATCTTTCA ACGCTCAAGT TATCGTCTTG AACCACCCTG GTCAAATCTC TGCTGGTTAC TCTCCAGTTC TCGATTGCCA CACTGCCCAC ATTGCCTGCA GATTCGACGA ACTCCTTGAA AAGATCGACC GTCGTTCTGG TAAGAAGATT GAAGACTCTC CAAAGTTTGT CAAGTCTGGT GATGCCGCTA TCGTCAAGAT GATCCCAACC AAGCCAATGT GCGTTGAAAC	800 850 900 950 1000 1050
50	CTTCACTGAA TACCCACCAC TTGGTCGTTT CGCCGTCCGT GAT	1093
50		
	2) INFORMATION FOR SEQ ID NO: 407	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1101 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida albicans
- 5 (B) STRAIN: ATCC 10231D

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 407

	CTTGGACAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
10	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAATATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
15	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTYGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
20	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
	TTACTTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
25	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
·30	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	A					1101

### 35 2) INFORMATION FOR SEQ ID NO: 408

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1089 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi)ORIGINAL SOURCE:

40

- (A) ORGANISM: Candida albicans
- (B) STRAIN: ATCC 18804

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408

50	(, 5296)	DIOCKI.	LIION. DEQ	ID NO: 408		
50	G3.3.GGGEGG3.3					
	GAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	TGATATCGCT	TTGTGGAAAT	50
	TCGAAACTCC	AAAATACCAC	GTTACCGTCA	TTGATGCTCC	AGGTCACAGA	100
	GATTTCATCA	AGAATATGAT	CACTGGTACT	TCTCAAGCTG	ATTGTGCTAT	150
	TTTGATTATT	GCTGGTGGTA	CTGGTGAATT	CGAAGCCGGT	ATTTCTAAGG	200
55	ATGGTCAAAC	CAGAGAACAC	GCTTTGTTGG	CTTACACTTT	GGGTGTCAAA	250
	CAATTGATTG	TTGCTGTCAA	CAAGATGGAC	TCTGTCAAAT	GGGACAAAAA	300
	CAGATTTGAA	GAAATCATCA	AGGAAACCTC	CAACTTCGTC	AAGAAGGTTG	350
	GTTACAACCC	AAAGACTGTT	CCATTCGTTC	CAATCTCTGG	TTGGAATGGT	400
	GACAACATGA	TTGAACCATC	CACCAACTGT	CCATGGTACA	AGGGTTGGGA	450
60	AAAGGAAACC	AAATCCGGTA	AAGTTACTGG	TAAGACCTTG	TTAGAAGCTA	430 500

	TTGACGCTAT TGAACCACCA	ACCAGACCAA	CCGACAAACC	ልጥፐርልርልጥፐር	550
	CCATTGCAAG ATGTTTACAA	TATCGGTGGT	ATTCCTACTC	TGCCAGTCGG	600
	TAGAGTTGAA ACTGGTATCA	TCA A A GCCGG	TATECTTCTT	ACTTTCCCCC	650
	CAGCTGGTGT TACCACTGAA	TCAAAGCCGG	TTCADATCCA	TCACGAACAA	700
_	TTGGCTGAAG GTGTTCCAGG	TCACAATCCG	CCTTTCAACC	TCACGAACAA	750
5	TTCCGTTAAA GAAATTAGAA	CACAAIGII	TTCTCCTCAC	TCCAAGAACG	800
	ATCCACCAAA GGGTTGTGAC	TOTTTO A A TO	CCCNACTCAT	TCTAGAACG	850
	CATCCACCAAA GGGIIGIGAC .	TCTTTCAATG	CCCAAGICAI	אידיפיראראכ	900
	TGCCACATT GCTTGTAAAT	TCCACACTCI	CCAGICIIGG	ATTGICACAC	950
10	GAACTGGTAA GAAATTGGAA	TOGACACIII	AATTCCTCAA	ATTORCAGAA	1000
10	GCTGCTATCG TCAAGATGGT		CCAATGTGTG	TTCAACCTTT	1050
	CACTGACTAC CCACCATTAG	TTACATTCCC	TCTCAGAGA	110/1100111	1089
	CACIGACIAC CCACCATIAG	JINGALICGC	IGICAGAGA		1005
15					
	2) INFORMATION FOR SEQ	ID NO: 409			
	(i)SEQUENCE CHARACTE	ERISTICS:			
	(A) LENGTH: 110				
20	(B) TYPE: Nucle				
	(C) STRANDEDNES				
	(D) TOPOLOGY: I	Linear			
	(ii) MOLECULE TYPE: Ge	enomic DNA			
25					
	<pre>(vi)ORIGINAL SOURCE:</pre>				
	(A) ORGANISM: (	Candida alk	oicans		
	(B) STRAIN: ATO	CC 56884			
30	(xi) SEQUENCE DESCRIPT	rion: SEQ I	D NO: 409		
	-				
	COORCANAN COCANC :	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTGGACAAA TTGAAGGCTG				
	CTTTGTGGAA ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT (	CCAAAATACC CAAGAATATG	ACGTTACCGT ATCACTGGTA	CATTGATGCT CTTCTCAAGC	100 150
35	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT (TGATTGTGCT ATTTTGATTA (TGATTGTTGATTA (TGATTGTTGTTGATTA (TGATTGTTGTTGATTA (TGATTGTTGTTGATTA (TGATTGTTGTTGTTGATTA (TGATTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGT	CCAAAATACC CAAGAATATG TTGCTGGTGG	ACGTTACCGT ATCACTGGTA TACTGGTGAA	CATTGATGCT CTTCTCAAGC TTCGAAGCCG	100 150 200
35	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT (TGATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT	100 150 200 250
35	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA	100 150 200 250 300
35	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT ( ATGGGACAAA AACAGATTTG (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG	100 150 200 250 300 350
	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT ( ATGGGACAAA AACAGATTTG ( TCAAGAAGGT TGGTTACAAC (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT	100 150 200 250 300 350 400
35 40	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT ( ATGGGACAAA AACAGATTTG ( TCAAGAAGGT TGGTTACAAC ( GGTTGGAATG GTGACAACAT (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA	100 150 200 250 300 350 400 450
	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT ( ATGGGACAAA AACAGATTTG ( TCAAGAAGGT TGGTTACAAC ( GGTTGGAATG GTGACAACAT ( CAAGGGTTGG GAAAAGGAAA (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT	100 150 200 250 300 350 400 450 500
	CTTTGTGGAA ATTCGAAACT ( CCAGGTCACA GAGATTTCAT ( TGATTGTGCT ATTTTGATTA ( GTATTTCTAA GGATGGTCAA ( TTGGGTGTCA AACAATTGAT ( ATGGGACAAA AACAGATTTG ( TCAAGAAGGT TGGTTACAAC ( GGTTGGAATG GTGACAACAT ( CAAGGGTTGG GAAAAGGAAA ( TGTTAGAAGC TATTGACGCT (	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCA	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA	100 150 200 250 300 350 400 450 500
	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ATTGGGTGTCAA AACAATTGAT TCAAGAAGGT TGGTTACAAC GGTTGGAATG GTGACAACAT GAGGGTTGG GAAAAGGAAA GTGTTAGAAGC TATTGACGCT ACCATTGAGAT TGCCATTGACA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCA AGATGTTTAC	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC	100 150 200 250 300 350 400 450 500 550
40	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ATTGGGGACAAA AACAATTGAT TCAAGAAGGT TGGTTACAAC GGTTGGAATG GTGACAACAT GAGGGTTGG GAAAAGGAAA GTGTTAGAAGC TATTGACGCT ATTGACGCT ATTGACGCT ATTGACGCT ATTGCAGATTGCA ATTGTGCCAGTC GGTAGAGTTG	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCA AGATGTTTAC AAACTGGTAT	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTAC	100 150 200 250 300 350 400 450 500 550 600
	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ACAATTGAT TTGGGACAAAA AACAGATTTG ATCAAGAAGGT TGGTTACAAC GGTTGGAATG GTGACAACAT GAGGGTTGG GAAAAGGAAA GCAATGAGATTGG GAAAAGGAAA CCATTGAAGAT TGCCATTGACAC TGTGCCAGTC GGTAGAGTTG ATTGCCAGTTGCA ATTGCCAGTTGCA ATTGCCAGTTGCA ATTGCCAGTTGCA ATTGCCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCAGTTCGCCCAGCTGGTC	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCA AGATGTTTAC AAACTGGTAT GTTACCACTG	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGATCGAACC AAGTCAAAGCC AAGTCAAATC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTAC GGTATGGTTG CGTTGAAATG	100 150 200 250 300 350 400 450 500 550 600 650 700
40	CTTTGTGGAA ATTCGAAACT (CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ACAATTGAT ATGGGACAAA AACAATTGAT TCAAGAAGGT TGGTTACAACA GGTTGGAAACAT GAGGGTTGG GAAAAGGAAA GCAATTGAC CCATTGAGAT TGCCATTGACAT GATTGCAGAT TGCCATTGCA ATTGCCAGTC GGTAGAGTTG ATTACTTTCGC CCCAGCTGGT CATCACGAAC AATTGGCTGA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCA AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA	ACGTTACCGT ATCACTGGTAA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATG	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTCAA	100 150 200 250 300 350 400 450 500 550 600 650 700
40	CTTTGTGGAA ATTCGAAACT CCAGGTCACA GAGATTTCAT GTGATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ACAATTGAT TCAAGAAGGT TGGTTACAAC GGTTGGAAACG GTTACAACA TGGTTAGAACG TATTGACGCT ACAGGGTTGG GAAAAGGAAA GCAATTGACGCT ACATGACAC GGTAGAACTTGCA GTTACATTCGC CCATTGACAT GGTAGAGTTG ACATCACGAAC AATTGGCTGA ACATCACGAAC GTTTCCGTTA ACCGTTAAGAAC GTTTCCGTTA ACCGTTAAGAAC GTTTCCGTTA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCAC AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA AGGTGTTCCA	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATG AAGAGGTAAC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTTCAA	100 150 200 250 300 350 400 450 500 550 600 700 750 800
40	CTTTGTGGAA ATTCGAAACT CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ACAATTGAT ATGGGACAAA AACAATTGAT TCAAGAAGGT TGGTTACAACA GGTTGGAAACAT GAAAAGGAAAA GAAAAGGAAAA GAAAAGGAAAA GAAAAGGAAAA GAAAAGGAAAA GAAAAGGAAA TGTTAGAAGA TATTGACGCT ATGTGCCAGTC GGTAGAGTTG ATTACTTTCGC CCCAGCTGGT CATCACGAAC AATTGGCTGA ACTCCAAGAA CGATCCACCA ACTCCAAGAA CGATCCACCA AACAACCA AATTGCCTTA ACTCCAAGAA CGATCCACCA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCAC AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA AAGAAATTAG AAGGGTTTGG	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATC GGTGACAATG AAGAGGTAAC ACTCTTTCAA	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTTCAA GTTTGTTGTG	100 150 200 250 300 350 400 450 550 600 650 700 750 800 850
40	CTTTGTGGAA ATTCGAAACT CCAGGTCACA GAGATTTCAT GTATTTCTAA GGATGGTCAA ATTGGGACAACA TTGGGACAACA ATGGGACAACAACAACAACAACAACAACAACAACAACAACAA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCAC AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA AAGAAATTAG AAGGGTTTGTG AAGGGTTTGTG AAGGGTTTGTG AAGGGTTTGTG AAGGGTTTGTG AAGGGTTTGTG AAGGGTTTGTG	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATC GGTGACAATG AAGAGGTAAC ACTCTTTCAA GCTGGTTACT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTTCAA GTTTGTGGTG TGCCCAAGTC CTCCAGTCTT	100 150 200 250 300 350 400 450 550 600 650 700 750 800 850 900
40	CTTTGTGGAA ATTCGAAACT CCAGGTCACA GAGATTTCAT GATTGTGCT ATTTTGATTA GTATTTCTAA GGATGGTCAA ACAATTGAT ATGGGACAAA AACAATTGAT GATGGGACAAA AACAATTGAT GATGGGACAAA AACAGATTTG GATGGGACAACAT GAGAGGTTGG GAAAAGGAAA GAAAGGAAA GAAAGGAAA GAAAGGAAA GATTGACAGATTGCA GATGACAGT GATGACAGAAC AATTGGCTGA ACTCCAAGAA CGATCCAAGA GATTGTTTAA ACCATCCAAGA GATTCCACA ATTGTTTCAC ACTGCACA ACTGCCCACA GATTGTCACA GATTGTCACA ACTGCTCACA ACTGCCCACA GATTGCCACA GATTGCCCACA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCAC AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA AAGAAATTAG AAGGGTTTGTG AAGGGTTTGTGTTGCTTGCTTGTAA	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATC GGTGACAATC ACTCTTTCAA GCTGGTTACT ATTCGACACT	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTGGTG TGCCCAAGTC CTCCAGTCTT	100 150 200 250 300 350 400 450 550 600 650 700 750 800 850
40	CTTTGTGGAA ATTCGAAACT CCAGGTCACA GAGATTTCAT GTATTTCTAA GGATGGTCAA ATTGGGACAACA TTGGGACAACA ATGGGACAACAACAACAACAACAACAACAACAACAACAACAA	CCAAAATACC CAAGAATATG TTGCTGGTGG ACCAGAGAAC TGTTGCTGTC AAGAAATCAT CCAAAGACTG GATTGAACCA CCAAATCCGG ATTGAACCAC AGATGTTTAC AAACTGGTAT GTTACCACTG AGGTGTTCCA AAGAAATTAG AAGGGTTGTGT TCAAATCTCT TTGCTTGTAA AAGAAATTGG	ACGTTACCGT ATCACTGGTA TACTGGTGAA ACGCTTTGTT AACAAGATGG CAAGGAAACC TTCCATTCGT TCCACCAACT TAAAGTTACT CAACCAGACC AAGATCGGTG CATCAAAGCC AAGTCAAATC GGTGACAATC GGTGACAATC ACTCTTTCAA GCTGGTTACT ATTCGACACT AAGAAAATCC	CATTGATGCT CTTCTCAAGC TTCGAAGCCG GGCTTACACT ACTCTGTCAA TCCAACTTCG TCCAATCTCT GTCCATGGTA GGTAAGACCT AACCGACAAA GTATTGGTAC GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTGGTG TGCCCAAGTC CTCCAGTCTT TTGGTTGAAA AAAATTCGTC	100 150 200 250 300 350 400 450 550 600 650 700 750 800 850 900

### 2) INFORMATION FOR SEQ ID NO: 410

(i) SEQUENCE CHARACTERISTICS:

Α

55

60

TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG

	(A) LENGTH: 1102 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Candida albicans	
10	(B) STRAIN: ATCC 60193	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 410	
	CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG	50
15	CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT	100
	CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG	150
	GTATTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT	200
	TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA	250 300
20	ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCCAACTTCG	350
	TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT	400
	GGTTGGAATG GTGACAACAT GATTGAACCA TCCACCAACT GTCCATGGTA	450
	CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAAGTTACT GGTAAGACCT	500
	TGTTAGAAGC TATTGACGCT ATTGAACCAC CAACCAGACC AACCGACAAA	550
25	CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC	600
	TGTGCCAGTC GGTAGAGTTG AAACTGGTAT CATCAAAGCC GGTATGGTTG	650
	TTACTTTCGC CCCAGCTGGT GTTACCACTG AAGTCAAATC CGTTGAAATG	700
	CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA CGTTAAGAAC GTTTCCGTTA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG	750
30	ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC	800
50	ATTGTTTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT	850 900
	GGATTGTCAC ACTGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA	950
	AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC	1000
	AAATCCGGTG ATGCTGCTAT CGTCAAGATG GTCCCAACCA AACCAATGTG	1050
35	TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG	1100
	AT	1102
40	2) INFORMATION FOR SEQ ID NO: 411	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1102 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Candida albicans	
	(B) STRAIN: ATCC 90028	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411	
55	COMPOSITION AND COMPOSITION OF THE PROPERTY OF	
	CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT	50
	CCAGGTCACA GAGATTTCAT CAAGAATACC ACGTTACCGT CATTGATGCT CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC	100
	TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG	150 200
60	GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT	250

	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
5	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
	TTACTTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
10	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
15	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	AT					1102

25

### 2) INFORMATION FOR SEQ ID NO: 412

### (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1101 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA 30

### (vi)ORIGINAL SOURCE:

- ORGANISM: Candida dubliniensis (A)
- (B) STRAIN: NCPF 3108

35

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 412

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
40	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
•	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
45	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
50	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
55	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ACGCTGCTAT	YGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
60	A					1101

```
2) INFORMATION FOR SEQ ID NO: 413
 5
        (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 1098 bases
            (A)
                   TYPE: Nucleic acid
            (B)
                   STRANDEDNESS: Double
            (C)
                   TOPOLOGY: Linear
            (D)
10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Candida catenulata
           (A)
15
                   STRAIN: ATCC 10565
            (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 413
     GGACAAGCTT AAGGCTGAGC GTGAGAGAGG TATCACCATT GACATTGCCT
                                                                         100
     TGTGGAAGTT CGAGACTCCC AAGTACCACG TCACTGTCAT TGACGCCCCC
     GGTCACAGAG ATTTCATCAA GAACATGATC ACTGGTACCT CGCAGGCTGA
                                                                         150
     CTGTGCTATC TTGATCATTG CTTCCGGTGT CGGTGAGTTC GAGGCTGGTA
TCTCCAAGGA CGGTCAGACC CGTGAGCACG CCTTGTTGGC CTACACCTTG
                                                                         200
                                                                         250
     GGTGTCAAGC AGTTGATCGT TGCCATCAAC AAGATGGACT CCGTCAAGTG
GGACAAGAAC AGATTCGAGG AGATTGTCAA GGAGACCACC AACTTCGTCA
                                                                         300
25
                                                                         350
     AGAAGGTTGG TTACAACCCC AAGGCTGTCC CCTTCGTCCC CATCTCTGGC
                                                                         400
     TGGAACGGTG ACAACATGAT TGAGGCCTCC ACCAACTGCC CCTGGTACAA
                                                                         450
     GGGCTGGGAG AAGGAGACCA AGGCCGGTAA GTCTACCGGT AAGACCTTGT
                                                                         500
     TGGAGGCCAT TGACGCCATT GAGCCCCCTA CCAGACCCAC CGACAAGCCC
                                                                         550
     TTGAGATTGC CCTTGCAGGA TGTCTACAAG ATCGGTGGTA TTGGTACGGT
                                                                         600
     GCCCGTCGGC CGTGTCGAGA CCGGTGTCAT CAAGCCCGGT ATGGTCGTCA
                                                                         650
     CCTTCGCCCC CGCTGGTGTC ACCACTGAAG TCAAGTCCGT CGAGATGCAC
                                                                         700
     CACGAGCAGT TGTCCGAGGG TGTCCCCGGT GACAACGTTG GTTTCAACGT
                                                                         750
     CAAGAACGTC TCTGTTAAGG AGATCAGACG TGGTAACGTC TGCGGTGACT
                                                                         800
35
     CCAAGAACGA CCCCCCATG GGTTGCTCTT CTTTCAACGC CCAGGTTATC
                                                                         850
     GTGTTGAACC ACCCCGGTCA GATCTCTGCC GGTTACTCTC CCGTCTTGGA
CTGCCACACC GCCCACATTG CTTGCAAGTT CGCCGAGTTG ATCGAGAAGA
TTGACAGACG TACCGGTAAG TCCATGGAGG CTAACCCCAA GTTCGTCAAG
                                                                         900
                                                                         950
                                                                        1000
     TCTGGTGACG CCGCCATCGT CAAGATGGAG CCCACTAAGC CCATGTGTGT
40
                                                                        1050
     TGAGGCCTTC ACTGACTTCC CTCCTTTGGG TAGATTCGCC GTCAGAGA
                                                                        1098
     2) INFORMATION FOR SEQ ID NO: 414
45
         (i) SEQUENCE CHARACTERISTICS:
            (A)
                 LENGTH: 1102 bases
            (B)
                   TYPE: Nucleic acid
50
            (C)
                   STRANDEDNESS: Double
                   TOPOLOGY: Linear
            (D)
       (ii) MOLECULE TYPE: Genomic DNA
55
       (vi)ORIGINAL SOURCE:
            (A)
                 ORGANISM: Candida dubliniensis
            (B)
                  STRAIN: NCPF 3949
       (xi) SEQUENCE DESCRIPTION: SEO ID NO: 414
```

		TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTGGATAAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CTTTGTGGAA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
	CCAGGTCACA	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
_	TGATTGTGCT GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
5	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTCG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
10	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
10	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
15	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
10	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA		850
	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTAYT		900
	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA		TTGGTTGAAA	950
20	AGATTGACAG	AAGAACTGGT	AAGAAATTGG			1000
20	AAATCCGGTG	ACGCTGCTAT	YGTCAAGATG			1050
	TGTTGAAGCT		ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	AT					1102

30

# 2) INFORMATION FOR SEQ ID NO: 415

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1102 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida dubliniensis
    - (B) STRAIN: CBS 7987

40

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
45	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
43	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTYG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
50	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
50	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
55	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
60	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTAYT	CTCCAGTCTT	900
55 60	TGTGCCAGTC TCACTTTTGC CATCACGAAC CGTTAAGAAT ACTCCAAGAA	GGTAGAGTTG CCCAGCTGGT AATTGGTTGA GTTTCTGTCA CGATCCACCA	AAACTGGTGT GTTACCACTG AGGTGTTCCA AAGAAATTAG AAGGGTTGTG	CATTAAAGCC AAGTCAAATC GGTGACAATG AAGAGGTAAC ACTCTTTCAA	GGTATGGTTG CGTTGAAATG TTGGTTTCAA GTTTGTGGTG TGCCCAAGTC	

. _____

AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AATTTGACAG AAGCAATGTG 1 AAATCCGGTG ACGCTGCTAT YGTCAAGATG GTCCCAACCA AACCAATGTG 1 TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG 1	000 050 100 102
5 A1	

2) INFORMATION FOR SEQ ID NO: 416

10

20

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1094 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida famata
    - (B) STRAIN: ATCC 62894
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 416

25	AATTGAAGGC	TGAAAGAGAA	AGAGGTATCA	CCATTGATAT	CGCTTTATGG	50
23	AAATTCGAAA	CTCCAAAATA	CCACGTTACC	GTTATTGATG	CTCCAGGTCA	100
	CAGAGATTTC	ATCAAGAACA	TGATTACTGG	TACTTCTCAA	GCTGATTGTG	150
	CTATTTTRAT	TATTGCTGGT	GGTGTCGGTG	AATTCGAAGC	CGGTATCTCT	200
	AAGGATGGTC	AAACCAGAGA	ACACGCTTTA	TTGGCTTACA	CCTTAGGTGT	250
30	TAGACAATTG	ATTGTTGCCG	TCAACAAGAT	GGACTCTGTT	AAATGGGACA	300
	AGGCTAGATT	CGAAGAAATC	ATCAAGGAAA	CCTCTAACTT	CGTCAAGAAG	. 350
	GTTGGTTACA	ACCCTAAGAC	TGTTCCTTTC	GTYCCAATTT	CTGGATGGAA	400
	CGGTGACAAC	ATGATTGAAG	CCTCCACCAA	CTGTCCATGG	TACAAGGGTT	450
	GGGAAAAGGA	AACCAAGGCT	GGTAAATCTA	CTGGTAAGAC	TTTGTTAGAA	500
35	GCCATTGATG	CCATTGAACC	ACCAACCAGA	CCAACCGAAA	AGCCATTGAG	550
	ATTACCATTA	CAAGATGTCT	ACAAGATCGG	TGGTATTGGT	ACTGTGCCAG	600
	TCGGTAGAGT	TGAAACCGGT	GTTATCAAGG	GTGGTATGGT	TGTTACCTTT	650
•	GCCCCAGCCG	GTGTCACTAC	CGAAGTCAAA	TCCGTTGAAA	TGCACCACGA	700
	ACAATTAGCT	GAAGGTGTTC	CAGGTGACAA	TGTTGGTTTC	AACGTCAAGA	750
40	ACGTTTCCGT	TAAGGAAATC	AGAAGAGGTA	ACGTTTGTGG	TGACTCCAAG	800
	AACGACCCAC	CAAAGGGTGC	TGAATCTTTC	ACCGCTCAAG	TTATTGTCTT	850
	GAACCACCCA	GGTCARATCT	CTGCTGGTTA	CTCTCCAGTC	TTAGATTGTC	900
	ACACCGCCCA	CATTGCTTGT	AAATTCGATG	CTTTACTCGA	AAAGATTGAC	950
	AGAAGATCCG	GTAAGAAATT	AGAAGACGAA	CCAAAATTCG	TCAAGTCCGG	1000
45	TGATGCTGCT	ATCGTCAAGA	TGGTCCCAAC	CAAACCAATG	TGTGTTGAAG	1050
	CTTTCACTGA	ATACCCACCA	TTAGGTAGAT	TCGCTGTTAG	AGAT	1094

- 50 2) INFORMATION FOR SEQ ID NO: 417
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1101 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Candida glabrata

(B) STRAIN: ATCC 66032

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417

5		mman a coort	AAAGAGAAAG	AGGTATCACT	ATCGATATCG	50
	TTTGGACAAG	TTGAAGGCTG	CCAAAGTACC	ACGTYACCGT	TATCGATGCY	100
	CTTTGTGGAA	GTTCGAAACT	CAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
	CCAGGTCACA	GAGATTTCAT	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCYG	200
	TGACTGTGCT	ATCTTGATTA	ACCAGAGAAC	ACGCTCTATT	GGCTTTCACC	250
10	GTATCTCCAA	GGATGGTCAA	TGTYGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	CTAGGTGTTA	GACAATTGAT	CTGAAATCGT	TAAGGAAACC	TCCAACTTCA	350
	GTGGGATGAA	TCCAGATTCG	CCAAAGACTG	TTCCATTCGT	CCCAATCTCT	400
	TCAAGAAGGT	CGGTTACAAC		ACCACCAACG	CTTCCTGGTA	450
	GGTTGGAACG	GTGACAACAT	GATTGAAGCC	TGTCGTCAAG	GGTAAGACCT	500
15	CAAGGGTTGG	GAAAAGGAAA	CCAAGGCTGG	CAACCAGACC	AACTGACAAG	550
	TGTTGGAAGC	CATTGACGCT	ATCGAACCAC	AAGATCGGTG	GTATCGGTAC	600
	CCATTGAGAT	TGCCATTGCA	AGATGTCTAC	CATCAAGCCA	GGTATGGTTG	650
	GGTGCCAGTC	GGTAGAGTCG	AAACCGGTGT	AAGTCAAGCCA	CGTTGAAATG	700
	TTACCTTCGC	CCCAGCTGGT	GTTACCACTG		TTGGTTTCAA	750
20	CACCACGAAC	AATTGACTGA	AGGTTTGCCA	_	GTCTGTGGTG	800
	CGTTAAGAAC	GTTTCCGTTA	AGGAAATCAG	AAGAGGTAAT	CGCTACCGTC	850
	ACTCCAAGAA		AAGGCTGCTG	CTTCTTTCAA	CTCCAGTTTT	900
	ATTGTCTTGA	ACCACCCAGG	TCAAATCTCT	GCTGGTTACT		950
	GGACTGTCAC					
25	AGAACGACAG	AAGATCCGGT	AAGAAGTTGG			1000
	AAGTCCGGTG	ACGCTGCTTT	GGTTAAGTTC	GTTCCATCCA		1050
	TGTCGAAGCT	TTCTCCGACT	ACCCACCATT	GGGTAGATTC	GCTGTCAGAG	1100
	A					1101

2) INFORMATION FOR SEQ ID NO: 418

30

35

45

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1080 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 40 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida guilliermondii
    - (B) STRAIN: ATCC 6260
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418

		AGAGAAAGAG	GTATCACCAT	TGACATTGCT	TTGTGGAAAT	TCGAGACTCC	50
		AAAGTACCAC	GTTACYGTCA	TTGATGCCCC	AGGTCACAGA	GATTTCATCA	100
	50	AGAACATGAT	CACTGGTACT	TCTCAAGCTG	ACTGTGCTAT	TTTGATTATT	150
•		GCTGGTGGTA	CCGGTGAATT	CGAAGCTGGT	ATCTCTAAGG	ATGGTCAAAC	200
		CAGAGAGCAC	GCTTTGTTGG	CTTACACCTT	GGGTGTTAGA	CAATTGATTG	250
		TTGCTGTCAA	CAAGATGGAC	TCCGTCAART	GGGACAAGAA	CAGATTYGAG	300
			AGGAAACCTC			GTTACAACCC	350
	55	TAAGACTGTG	CCATTCGTTC	CTATCTCTGG	ATGGAAYGGT	GACAACATGA	400
		TTGAGGCTTC	TACCAACTGT	CCTTGGTACA	AGGGATGGGA	GAAGGAGACC	450
		AAGGCTGGTA	AGTCCACCGG	TAAGACTTTG	TTGGAGGCCA	TTGACGCCAT	500
		TGAGCCACCT	CAAAGACCAA	CCGACAAGCC	ATTGAGATTG	CCATTGCAAG	550
		ATGTYTACAA	GATTGGTGGT	ATTGGAACGG	TGCCAGTCGG	TAGAGTTGAA	600
	60	ACCGGTATCA	TYAAGGCCGG	TATGGTTGTT	ACCTTTGCCC	CAGCTGGTGT	650

5	YACCACTGAA GTCAAGT GTGTTCCAGG TGACAAT GAAATTAGAA GAGGTAA GGGTTGTGAC TCTTTCA AAATCTCTGC TGGTTAC GCTTGTAAAT TCGACAC GAAGATGGAG GACAACC TCAAGATGGT GCCATCC CCACCATTGG GAAGATT	GTT GGTTTCAACG CGT TTGTGGTGAC CCG CTCAAGTTAT TCT CCAGTTTTGG CTT GTTGGAGAAG CCA AGTTTGTCAA AAG CCAATGTGTG	TTAAGAACGT TCCAAGAACG TGTGTTGAAC ACTGTCACAC ATTGACAGAA GTCCGGTGAC TTGAGGCTTT	TTCCGTTAAG ACCCACAAA CACCCTGGTC CGCCCACATT GAACCGGTAA GCTTCTATCG	700 750 800 850 900 950 1000 1050
	2) INFORMATION FOR	SEQ ID NO: 419			
15	(B) TYPE: (C) STRAND	RACTERISTICS: : 751 bases Nucleic acid EDNESS: Double GY: Linear			
20	(ii) MOLECULE TYP				
25	(vi)ORIGINAL SOU (A) ORGANI (B) STRAIN	SM: Candida ha	emulonii		
	(xi) SEQUENCE DES	CRIPTION: SEQ	ID NO: 419		
30.	TCTGTCAAGT GGGACAA TAACTTCGTC AAGAAGG CAATCTCTGG TTGGAAC GACTGGTACA AGGGTTG TAAGACCTTG TTGGAGG	TTG GTTACAACCC GGT GACAACATGA GGA GAAGGAGACC	TAAGACTGTT TTGAGGCTTC AAGTCTGGTA	CCATTCGTCC TACCAACTGT AGTCCACCGG	50 100 150 200 250
35	CCGACAAGCC ATTGAGA ATCGGAACTG TGCCAGT TATGGTTGTC ACCTTCG TCGAGATGCA CCACGAG GGTTTCAACG TCAAGAA	CGG CAGAGTTGAG CCC CAGCTGGTGT CAG TTGCCAGAGG CGT TTCCGTTAAG	ACCGGTGTTA CACCACTGAA GTGTCCCAGG GAAATCAGAA	TCAAGGCCGG GTCAAGTCTG TGACAACGTT GAGGTAACGT	300 350 400 450 500
40	CTGTGGTGAC TCCAAGC CTCAGGTTAT TGTGTTG CCAGTTTTGG ACTGTCA GGTTGAGAAG ATCGACA AGTTCATCAA GTCCGGT	AAC CACCCAGGTC CAC TGCCCACATT GAA GAACCGGTAA	AGATCTCTTC GCTTGTAAGT GAAGTTGGAA	TGGTTACTCT TCGACACCTT GATGAGCCAA	550 600 650 700 750
45			•	,	751
	2) INFORMATION FOR	SEQ ID NO: 420			•
50	(i)SEQUENCE CHA (A) LENGTH (B) TYPE: I (C) STRANDI				
55	(ii) MOLECULE TYP	E: Genomic DNA			
	(vi)ORIGINAL SOU (A) ORGANIS	RCE: SM: <i>Candida</i> ind	roneni cua		
60		: ATCC 16783	onspicua		

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420

	mamman an n.a.	TTAAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATTGATATTG	50
_	TCTTGACAAG	ATTCGAAACT	CCAAAGTATC	ACGTTACCGT	CATTGATGCT	100
5	CTTTATGGAA	GAGATTTCAT	TAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
	CCAGGTCACA AGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
		GGATGGTCAA	ACTAGAGAAC	ACGCTTTATT	AGCATTCACC	250
	GTATTTCCAA TTAGGTGTTA	AGCAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCTGTTAA	300
	GTGGGATGAA	AAGAGATTTG	AAGAAATTGT	CAAGGAAACC	CAAAACTTCA	350
10	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATTTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCTTCTAACT	GTCCATGGTA	450
	CAAGGGTTGG	ACTAAGGAAA	CCAAGGCAGG	TGTTGTCAAG	GGTAAGACCT	500
	TATTAGAAGC	TATTGATGCT	ATTGAACCAC	CTGTCAGACC	AACTGATAAG	550
3.5	CCATTAAGAT	TACCATTACA	AGATGTTTAC	AAGATTGGTG	GTATTGGTAC	600
15	TGTGCCAGTC	GGTAGAGTTG	AAACCGGTAT	TATTAAGCCA	GGTATGGTTG	650
	TTGTTTTCGC		GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
	CACCATGAAC	AATTAGAAGA	AGGTGTCCCA	GGTGACAATG	TTGGTTTCAA	750
	CACCATGAAC	GTCTCTGTTA	AGGATATCAA	GAGAGGTAAC	GTTTGTGGTG	800
20	ACTCCAAGAA	TGACCCACCA	CAAGGTTGTG	CTTCCTTCAA	TGCTCAAGTC	850
20	ATTGTCTTGA	ACCACCCTGG	TCAAATTTCT	GCTGGTTACT	CTCCAGTTTT	900
	AGATTGTCAC		TTGCATGTAA	ATTCGATGAA	TTAATTGAAA	950
	AGATTGACAG		AAGTCCGTTG	AAGACCATCC	AAAGTCTGTT	1000
	AAGTCTGGTG		CGTTAAGATG	GTTCCAACCA	AGCCAATGTG	1050
25	TGTTGAAGCT		ACCCACCATT		GCAGTCAGAG	1100
25	AT					1102
	A-					

# 30 2) INFORMATION FOR SEQ ID NO: 421

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1099 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida kefyr
- (B) STRAIN: ATCC 28838
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 421

45						
	TGGACAAGTT	AAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	CGATATCGCT	50
•	TTGTGGAAGT	TCGAAACTCC	AAAGTACCAA	GTTACCGTTA	TCGATGCTCC	100
	AGGTCACAGA	GATTTCATCA	AGAACATGAT	TACTGGTACT	TCTCAAGCTG	150
	ACTGTGCTAT	CTTGATTATT	GCTGGTGGTG	TCGGTGAATT	CGAAGCCGGT	200
50	ATCTCCAAGG	ATGGTCAAAC	CAGAGAACAC	GCTTTGTTGG	CTTACACCTT	250
_	GGGTGTTAGA	CAATTGATTG	TTGCTATCAA	CAAGATGGAC	TCTGTTAAGT	300
	GGGATGAATC	TCGTTACCAA	GAAATTGTTA	AGGAAACCTC	CAACTTCATC	350
	AAGAAGGTCG	GTTACAACCC	AAAGAATGTT	CCATTCGTCC	CAATCTCTGG	400
	TTGGAACGGT	GACAACATGA	TTGAAGCCAC	CACCAACGCT	CCATGGTACA	450
55	AGGGTTGGGA	AAAGGAAACC	AAGGCTGGTA	CCGTCAAGGG	TAAGACCTTG	500
	TTGGAAGCTA	TTGACGCTAT	CGAACCACCA	ACCAGACCAA	CTGACAAGCC	550
	ATTGAGATTG	CCATTGCAAG	ATGTCTACAA	GATCGGTGGT	ATTGGTACTG	600
	TGCCAGTCGG	TAGAGTCGAA	ACCGGTGTCA	TCAAGCCAGG	TATGGTTGTT	650
	ACCTTCGCCC	CAGCCGGTGT	CACTACCGAA	GTTAAGTCCG	TCGAAATGCA	700
60	CCACGAACAA	TTGGAAGAAG	GTCTACCAGG	TGACAACGTC	GGTTTCAACG	750

5	TCAAGAACGT TTCCGTTAAG GAAATCAGAA GAGGTAACGT CTGTGGTGAC TCCAAGAACG ATCCACCAAA GGCTGCTGCT TCTTTCAACG CCACTGTTAT CGTCTTGAAC CACCCAGGTC AAATCTCTGC TGGTTACTCT CCAGTTTTGG ATTGTCACAC TGCTCACATT GCTTGTAAGT TCGACGAATT GTTGGAAAAG AACGACAGAA GATCCGGTAA GAAGTTGGAA GACTCTCCAA AGTTCTTGAA GTCTGGTGAC GCTGCTTTGG TTAAGTTCGT TCCATCTAAG CCAATGTGTG TTGAAGCATT CTCTGACTAC CCACCATTGG GTAGATTCGC TGTCAGAGA	800 850 900 950 1000 1050
10	2) INFORMATION FOR SEQ ID NO: 422	,
15	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 1095 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
20	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:    (A) ORGANISM: Candida krusei    (B) STRAIN: ATCC 34135</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422	
30	AAGTTAAAGG CAGAAAGAGA AAGAGGTATC ACTATTGATA TTGCTTTATG GAAGTTYGAA ACTCCAAART ACCACGTTAC CGTTATTGAT GCTCCAGGTC ACAGAGATTT CATCAAGAAC ATGATTACCG GTACTTCTCA AGCTGATTGT GCTATTTTGA TTATTGCTGG TGGTGTCGGT GAATTCGAAG CTGGTATCTC CAAGGATGGT CAAACTAGAG AACACGCTCT ATTGGCTTTC ACCTTAGGTG TTAGACAATT GATTGTTGCT ATCAACAAGA TGGATTCCGT TAARTGGGAT GAAAACAGAT TTGAAGAAAT TGTCAAGGAA ACCCAAAACT TCATCAAGAA	50 100 150 200 250 300 350
35	GGTTGGTTAC AACCCAAAGA CTGTTCCATT CGTTCCAATY TCTGGTTGGA ATGGTGACAA CATGATTGAA GCATCCACCA ACTGTCCATG GTACAAGGGT TGGACTAAGG AAACCAAGGC AGGTGTTGTT AAGGGTAAGA CCTTATTAGA AGCAATCGAT GCTATTGAAC CACCTGTCAG ACCAACCGAA AAGCCATTAA GATTACCATT ACAAGATGTT TACAAGATTG GTGGTATTGG TACTGTGCCA	400 450 500 550 600
40	GTCGGTAGAG TCGAAACCGG TGTCATTAAG CCAGGTATGG TTGTCACTTT TGCTCCAGCA GGTGTCACCA CCGAAGTCAA GTCCGTTGAA ATGCACCATG AACAATTAGA ACAAGGTGTT CCAGGTGATA ACGTTGGTTT CAACGTTAAG AACGTTTCTG TCAAGGATAT CAAGAGAGGT AACGTTTGTG GTGACTCCAA GAACGACCCA CCAATGGGTG CAGCTTCCTT CAATGCTCAA GTCATTGTCT	650 700 750 800 850
45	TGAACCACCC TGGTCAAATT TCCGCTGGTT ACTCTCAGT CTTGGATTGT CACACTGCCC ACATTGCATG TAAGTTCGAC GAATTAATCG AAAAGATTGA CAGAAGAACT GGTAAGTCTG TTGAAGACCA TCCAAAGTCY GTCAAGTCTG GTGATGCAGC TATCGTCAAG ATGGTCCCAA CCAAGCCAAT GTGTGTTGAA GCTTTCACTG AATAYCCACC ATTAGGTAGA TTCGCAGTCA GAGAT	900 950 1000 1050 1095
50		
55	2) INFORMATION FOR SEQ ID NO: 423  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1104 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

# (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida lambica
- (B) STRAIN: ATCC 24750

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423

	cmmcca ca a c	CTTAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTGGACAAG	GTTCGAAACT	CCAAAGTACC	ACGTTACCGT	CATTGACGCT	100
	CTTTATGGAA	GAGATTTCAT	CAAGAACATG	ATTACTGGTA	CCTCTCAAGC	150
10	CCAGGTCACA	ATTTTRATYA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
	AGATTGTGCT	GGATGGTCAA	ACCAGAGAAC	ACGCTCTTCT	TGCATTCACT	250
	GTATCTCTAA	GACAATTGAT	TGTTGCTATC	AACAAGATGG	ACTCTGTCAA	300
	CTTGGTGTTA	TCCAGATTCG	ATGAAATTTG	TAAGGAAACC	GCWAACTTCA	350
	GTGGGACGAA	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	CCCAATCTCT	400
15	TCAAGAAGGT	GTGACAACAT	GATTGAACCA	TCTGCTAACT	GTCCATGGTA	450
	GGTTGGAACG	ACTAAGGAAA	CCAAGGCTTC	CGGTGTCGTC	AAGGGTAAGA	500
	CAAGGGATGG	ACTAAGGAAA	GCTATTGAGC	CACCTGTCAG	ACCAACTGAC	550
	CCCTTCTTGA	GATTGCCATT	RCAAGATGTC	TACAAGATTG	GTGGTATTGG	600
	AAGGCTTTGA	GTCGGTAGAG	TTGAAACCGG	TATCATCAAG	CCAGGTATGA	650
20	TACTGTGCCA	CGCTCCAACC	GGTGTTACTA	CTGAAGTTAA	GTCCGTTGAA	700
	TTGTCGTTTT		AGAAGGTGTC	CCAGGTGACA	ATGTTGGTTT	750
	ATGCACCATG	AACAATTAGA	TTAAGGATAT	TAAGAGAGGT	AACGTCTGTG	800
	CAACGTCAAG	AACGTCTCTG	CCAATGGGTT	GTGCTTCCTT	CAATGCTCAA	850
	GTGACTCCAA	GAACGACCCA TTAACCACCC	AGGTCAAATT	TCTGCTGGTT	ACTCACCAGT	900
25	GTCATTGTTC		ACATTGCATG		GAATTACTCG	950
	TCTTGACTGT	CACACTGCCC CAGAAGAACC	GGTAAGGCTA			1000
	AAAAGATTGA		TATCGTCAAG			1050
	GTCAAGTCTG					1100
	GTGTGTYGAA	GCTTTCACTG	ACIACCCACC			1104
30	GAGA					

# 2) INFORMATION FOR SEQ ID NO: 424

35

45

. . .

5

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1098 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 40 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida lusitaniae
    - (B) STRAIN: ATCC 66035
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424

50	GCACAAGTTG	AAGGCTGAGA	GAGAAAGAGG	TATCACCATC	GATATCGCTT	50
50	TGTGGAAGTT	CGAGACTCCA	<b>AAGTACCACG</b>	TTACCGTCAT	TGACGCTCCA	100
	GGTCACAGAG	ATTTCATCAA	GAACATGATC	ACTGGTACTT	CCCAAGCTGA	150
	CTGTGCTATC	TTGATTATCG	CTGGTGGTGT	CGGTGAGTTC	GAAGCCGGTA	200
	TCTCTAAGGA	CGGTCAAACC	AGAGAGCACG	CTTTGTTGGC	TTACACCTTG	250
55	GGTGTCAAGC	AGTTGATTGT	TGCTGTCAAC	AAGATGGACT	CCGTCAAGTG	300
	GGACCAATCT	AGATTCGAGG	AAATCATCAA	GGAAACCTCT	AACTTCGTCA	350
		TTACAACCCT				400
	TGGAACGGTG	ACAACATGAT	TGAGCCATCY	ACCAACTGCC	CATGGTACAA	450
	GGGTTGGGAG	AAGGAGACCA	AGTCYGGTAA	GTCCACCGGT	AAGACCTTGT	500
60	TGGAGGCCAT	TGACGCCATT	GAGCCACCTT	CGAGACCAAC	CGACAAGCCA	550

	GCCAGTCGGT	CATTGCAAGA AGAGTTGAGA AGCTGGTGTC	CCGGTGTCAT ACCACTGAAG	CAAGGCCGGT TCAAGTCCGT	ATGGTTGTCA GGAAATGCAC	600 650 700 750
5	CAAGAACGTT	TGGCTGAGGG TCCGTCAAGG CCCACCAAAG ACCCAGGTCA	AAATCAGAAG GCTGCTGCTT	AGGTAACGTC CYTTCACTGC	TGTGGTGACT TCAAGTYATY	800 850 900
10	CTGTCACACT TCGACAGAAG TCYGGTGACG	GCYCACATTG AACYGGTAAG	CTTGTAAGTT AAGTTGGAAG CAAGATGGTC	CGACACCTTG AAGAGCCAAA CCAACCAAGC	ATTGAGAAGA GTTCATCAAG CAATGTGYGT	950 1000 1050 1098

## 15 2) INFORMATION FOR SEQ ID NO: 425

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1101 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi)ORIGINAL SOURCE:

20

55

- (A) ORGANISM: Candida norvegensis
- (B) STRAIN: ATCC 22977
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 425

	(,	<del></del> · ·				
30						
	TCTTGACAAG	TTAAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATTGATATTG	50
	CTTTATGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	TATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	TAAGAACATG	ATTACTGGTA	CTTCCCAAGC	150
	TGATTGTGCT	ATCTTAATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
35	GTATCTCCAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTATT	AGCATTCACC	250
	TTAGGTGTTA	AGCAATTAAT	TGTTGCTATC	AACAAGATGG	ACTCTGTTAA	300
	GTGGGATGAA	AAGAGATTTG	AAGAAATTGT	CAAGGAAACC	CAAAACTTCA	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATTTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCTACTAACT	GTCCATGGTA	450
40	CAAGGGTTGG	ACTAAGGAAA	CCAAGGCAGG	TGTTGTTAAG	GGTAAGACCT	500
	TATTAGAAGC	TATTGATGCT	ATTGAACCAC	CTGTCAGACC	AACTGACAAG	550
	CCATTAAGAT	TACCATTACA	AGATGTTTAC	AAGATTGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACCGGTGT	TATTAAGCCA	GGTATGGTTG	650
	TTGTTTTCGC	ACCATCTGGT	GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
45	CACCATGAAC	AATTAGAACA	AGGTGTCCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTCAAGAAC	GTCTCTGTTA	AGGATATTAA	GAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGACCCACCA	CAAGGTTGTG	CTTCCTTCAA	TGCTCAAGTC	850
	ATTGTCTTGA	ACCACCCTGG	TCAAATTTCT	GCAGGTTACT	CTCCAGTTTT	900
	AGATTGTCAC	ACTGCCCACA	TTGCATGTAA	GTTCGATGAA	TTAATCGAAA	950
50	AGATTGACAG	AAGAACTGGT	AAGTCCGTTG	AAGACCATCC	AAAGTCTGTT	1000
	AAGTCTGGTG	ATGCAGCTAT	CGTTAAGATG	GTTCCAACCA	AGCCAATGTG	1050
	TGTTGAAGCT	TTCACTGAAT	ACCCACCATT	AGGTAGATTC	GCAGTCAGAG	1100
	A					1101

2) INFORMATION FOR SEQ ID NO: 426

- (i) SEQUENCE CHARACTERISTICS:
- 60 (A) LENGTH: 1095 bases

TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Candida parapsilosis STRAIN: ATCC 90018 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426 CAAATTGAAG GCTGAAAGAG AAAGAGGTAT CACCATTGAT ATCGCTTTGT 50 GGAAATTCGA AACTCCAAAA TACCATGTTA CTGTTATTGA TGCTCCAGGT 100 CACAGAGATT TCATCAAGAA TATGATTACT GGTACTTCTC AAGCTGATTG 150 15 TGCTATTTTG ATTATTGCTG GTGGTACTGG TGAATTCGAA GCTGGTATCT CTAAGGATGG TCAAACCAGA GAACACGCTT TGTTGGCTTA CACCTTGGGT 200 250 GTTAAGCAAT TGATTGTTGC CATCAACAAG ATGGACTCAG TCAAATGGGA CAAGAACAGA TACGAAGAAA TTGTCAAGGA AACTTCCAAC TTCGTCAAGA AGGTTGGTTA CAACCCTAAA GCTGTCCCAT TCGTCCCAAT CTCTGGTTGG AACGGTGACA ATATGATTGA ACCATCAACC AACTGTCCAT GGTACAAGGG TTGGGAAAAG GAAACTAAAG CTGGTAAGGT TACCGGTAAG ACCTTGTTGG 20 450 500 AAGCTATCGA TGCTATCGAA CCACCAACCA GACCAACTGA CAAGCCATTG 550 AGATTGCCAT TGCAAGATGT CTACAAGATT GGTGGTATTG GAACTGTGCC 600 AGTTGGTAGA GTTGAAACCG GTATCATCAA GGCTGGTATG GTTGTTACTT 650 TTGCCCCAGC TGGTGTTACC ACTGAAGTCA AGTCCGTTGA AATGCACCAC 700 GAACAATTGA CTGAAGGTGT CCCAGGTGAC AATGTTGGTT TCAACGTCAA 750 GAACGTTTCA GTTAAGGAAA TCAGAAGAGG TAACGTTTGT GGTGACTCCA 800 AGAACGATCC ACCAAAGGGA TGTGAYTCCT TCAATGCTCA AGTTATTGTC TTGAACCACC CAGGTCAAAT CTCTGCTGGT TACTCACCAG TCTTGGATTG TCACACTGCC CACATTGCTT GTAAATTCGA CACTTTGATT GAAAAGATTG 850 900 3.0 950 ACAGAAGAAC CGGTAAGAAA TTGGAAGATG AACCAAAATT CATCAAGTCC 1000 GGTGATGCTG CYATCGTCAA GATGGTCCCA ACCAAGCCAA TGTGTGTTGA 1050 AGCTTTCACT GACTACCCAC CATTGGGAAG ATTCGCTGTT AGAGA 1095 35 2) INFORMATION FOR SEQ ID NO: 427 (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 752 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida rugosa STRAIN: ATCC 96275 50 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427 CTCCGTCAAG TGGTCTCAGT CTCGTTTCGA GGAGATCGTC AAGGAGGTTT 50 CCAACTTCAT CAAGAAGGTT GGTTACAAGC CCGATGAGGT TCCTTTCGTC 100 CCCATCTCTG GCTGGAACGG CGACAACATG CTTGAGCCCT CCACCAACTG 150 CCCTGGTAC AAGGGATGGA CCAAGAAGAC CAAGAAGGGT GAGGTCAAGG GTAAGACTCT TCTCGAGGCC ATTGACGCCA TCGAGCCCCC CTCCCGTCCT ACCGACAAGC CCCTCCGCTT GCCTCTTCAG GATGTCTACA AGATCGGCGG 200 250 300

TATCGGTACG GTACCTGTCG GCCGTGTCGA GACCGGTATC ATCAAGCCCG 350

5	GCATGGTCGT CACTTTCGCC CCCGCTGGTG TCACCACTGA AGTGAAGTCC GTCGAGATGC ACCACGAGCA GATCCCCGAG GGTCTCCCCG GTGACAACGT CGGTTTCAAC GTCAAGAACG TTACCGTCAA GGATATCCGC CGTGGTAACG TCTGCGGTGA CTCCAAGAAC GACCCCCCCA AGGGCTGCTC TTCCTTCACT GCCCAGGTCA TCGTTTTCAA CCACCCCGGT CAGATCTCCA ACGGTTACTC CCCCGTTTTG GACTGCCACA CCGCCCACAT TGCCTGCCGC TTCGACGAGA TCCAGTCCAA GATGGACCGT CGTACTGGTA AGACCCTTGA GGAGAACCCC AAGTTCATCA AGGCTGGTGA CTCCGCTATC GTCAAGATGG TTCCCTCCAA GC	400 450 500 550 600 650 700 750 752
	2) INFORMATION FOR SEQ ID NO: 428	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1093 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Candida sphaerica     (B) STRAIN: ATCC 2504 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 428</pre>	
30	AGTTAAAGGC TGAAAGAGAA AGAGGTATCA CCATCGATAT CGCTTTGTGG AAGTTCGAAA CTCCAAAGTA CCAAGTTACC GTTATCGATG CTCCAGGTCA CAGAGATTC ATCAAGAACA TGATTACTGG TACTTCTCAA GCTGACTGTG CTATCTTGAT TATTGCTGGT GGTGTCGGTG AATTCGAAGC CGGTATCTCC	.100
35	AAGGATGGTC AAACCAGAGA ACACGCTTTG TTGGCTTTCA CCTTGGGTGT TAGACAATTG ATTGTTGCTG TTAACAAGAT GGATTCCGTT AAGTGGGATG AATCTCGTTT CCAAGAAATT GTCAAGGAAA CCTCTAACTT CATCAAGAAG GTCGGTTACA ACCCAAAGAC TGTTCCATTC GTCCCAATCT CTGGTTGGAA CGGTGACAAC ATGATTGAAG CCACCACAA TGCTTCATGG TACAAGGGTT GGGAAAAGGA AACCAAGTCC GGTGTCGTCA AGGGTAAGAC CTTGTTGGAA	250 300 350 400 450 500
40	GCTATTGACG CTATCGAACC ACCATCCAGA CCAACTGACA AGCCATTGAG ATTGCCATTG CAAGATGTCT ACAAGATTGG TGGTATCGGA ACTGTGCCAG TCGGTAGAGT CGAAACCGGT GTTATCAAGC CAGGTATGAT TGTTACCTTT GCCCCAGCCG GTGTTACTAC TGAAGTTAAG TCCGTCGAAA TGCACCACGA	550 600 650 700
45	ACAATTGGAA GAAGGTCTAC CAGGTGACAA CGTCGGTTTC AACGTCAAGA ACGTTTCCGT TAAGGAAATC AGAAGAGGTA ACGTCTGTGG TGACTCCAAG AACGATCCAC CAAAGGCTGC TGCTTCTTTC AACGCCACTG TTATCGTCTT GAACCATCCA GGTCAAATCT CTGCTGGTTA CTCTCCAGTT TTGGATTGTC ACACTGCTCA CATTGCTTGT AAGTTCGACG AATTGTTGGA AAAGAACGAT AGAAGATCCG GTAAGAAGTT GGAAGACTCT CCAAAGTTCT TGAAGTCCGG	750 800 850 900 950 1000
50	TGATGCTGCT TTGGTTAAGT TCGTTCCATC TAAGCCAATG TGTGTTGAAG CCTTCTCTGA CTACCCACCT CTAGGTAGAT TCGCTGTCAG AGA	1050 1050 1093
55	2) INFORMATION FOR SEQ ID NO: 429 (i) SEQUENCE CHARACTERISTICS:	
60	(A) LENGTH: 1094 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(2) Toronour Himar	

### (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

5

40

- (A) ORGANISM: Candida tropicalis
- (B) STRAIN: ATCC 13803
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429

10	AAATTGAAGG	CTGAAAGAGA	AAGAGGTATC	ACCATTGATA	TCGCTTTGTG	50
	GAAATTCGAA	ACTCCAAAAT	ACCACGTTAC	CGTTATTGAT	GCTCCAGGTC	100
	ACAGAGATTT	CATCAAGAAC	ATGATTACTG	GTACTTCCCA	AGCTGATTGT	150
	GCTATTTTGA	TTATTGCTGG	TGGTACTGGT	GAATTCGAAG	CTGGTATTTC	200
	TAAAGATGGT	CAAACCAGAG	AACACGCTTT	GTTGGCTTAC	ACCTTGGGTG	250
15	TCAAACAATT	GATTGTTGCT	GTCAACAAGA	TGGACTCTGT	TAAATGGGAC	300
	AAAAACAGAT	TTGAAGAAAT	TATCAAGGAA	ACTTCTAACT	TCGTCAAGAA	350
	GGTTGGTTAC	AACCCTAAGG	CTGTTCCATT	CGTTCCAATC	TCTGGTTGGA	400
	ATGGTGACAA	CATGATTGAA	GCTTCTACCA	ACTGTCCATG	GTACAAGGGT	450
	TGGGAAAAAG	AAACCAAGGC	TGGTAAGGTT	ACCGGTAAGA	CTTTGTTGGA	500
20	AGCCATTGAT	GCTATTGAAC	CACCTTCAAG	ACCAACTGAC	AAGCCATTGA	550
	GATTGCCATT	GCAAGATGTT	TACAAGATTG	GTGGTATTGG	TACTGTGCCA	600
	GTCGGTAGAG	TTGAAACTGG	TGTCATCAAA	GCCGGTATGG	TTGTTACTTT	650
	CGCCCCAGCT	GGTGTTACCA	CTGAAGTCAA	ATCCGTCGAA	ATGCACCACG	700
	AACAATTGGC	TGAAGGTGTC	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
25	AACGTTTCTG	TTAAAGAAAT	TAGAAGAGGT	AACGTTTGTG	GTGACTCCAA	800
	GAACGATCCA	CCAAAGGGTT	GTGACTCTTT	CAACGCTCAA	GTTATTGTCT	850
	TGAACCACCC	AGGTCAAATC	TCTGCTGGTT	ACTCTCCAGT	CTTGGATTGT	900
	CACACTGCTC	ATATTGCTTG	TAAATTCGAC	ACCTTGGTTG	AAAAGATTGA	950
	CAGAAGAACT	GGTAAGAAAT	TGGAAGAAAA	TCCAAAATTC	GTCAAATCCG	1000
30	GTGATGCTGC	TATTGTCAAG	ATGGTTCCAA	CCAAACCAAT	GTGTGTTGAA	1050
	GCTTTCACTG	ACTACCCACC	ATTAGGTAGA	TTCGCTGTCA	GAGA	1094

### 35 2) INFORMATION FOR SEQ ID NO: 430

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1095 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Candida utilis
  - (B) STRAIN: Csp 388
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430

	,					
50						
	CAAGCTTAAA	GCTGAGAGAG	AGAGAGGTAT	CACTATCGAC	ATTGCTCTCT	50
	GGAAGTTCGA	GACTCCAAAG	TACCACGTTA	CTGTCATTGA	TGCCCCAGGT	100
	CACAGAGATT	TCATCAAGAA	CATGATTACT	GGTACCTCCC	AGGCTGACTG	150
	TGCTATTCTT	ATCATTGCCG	GTGGTGTTGG	TGAGTTCGAG	GCTGGTATCT	200
55	CTAAGGATGG	TCAGACCAGA	GAGCACGCTT	TGCTCGCTTT	CACCCTTGGT	250
	GTTAGACAGA	TGATTGTTGC	TATCAACAAG	ATGGACTCTG	TCAAGTGGGA	300
	CGAGAAGAGA	TTCGAGGAGA	TCGTTAAGGA	GACCTCTAAC	TTCATCAAGA	350
	AGGTTGGTTA	CAACCCAAAG	ACTGTTCCAT	TTGTCCCAAT	TTCYGGTTGG	400
	AACGGTGACA	ACATGATTGA	GGCCTCTACC	AACTGTCCAT	GGTACAAGGG	450
60	TTGGGAGAAG	GAGACCAAGG	CTGGTGTTGT	CAAGGGTAAG	ACCTTGCTCG	500

5	ATGCCATTGA CGCCATTGAG CCACCAACAA GACCAACTGA CAAGCCATTG AGATTGCCAC TCCAGGATGT CTACAAGATT GGTGGTATCG GAACTGTTCC AGTCGGTAGA GTCGAGACCG GTGTCATCAA GCCAGGTATG GTTGTTACCT TTGCCCCATC CGGTGTCACC ACTGAGGTTA AGTCCGTCGA GATGCACCAC GAGCAGCTTG CTGAGGGTAT CCCAGGTGAC AACGTTGGTT TCAACGTTAA GAACGTCTCT GTTAAGGAGA TCAGAAGAGG TAACGTTGCC GGTGACTCCA AGAACGACCC ACCACAGGGT GCTGAGTCCT TCAACGCTCA GGTCATTGTC TTGAACCACC CAGGTCAGAT CTCTGCTGGT TACTCTCCAG TTTTGGACTG TCACACCGCC CACATTGCTT GTAAGTTCTC TGAGCTTTTTG GAGAAGATTG ACAGAAGATC CGGTAAGTCC CTTGAGGCCT CTCCAAAGTT CGTCAAGTCT GGTGATGCCG CTATCGTCAA GATGGTTCCA TCCAAGCCAT TGTGTGTTGA GGCCTTCACT GACTACCCAC CACTCGGTAG ATTCGCTGTC AGAGA	
15	2) INFORMATION FOR SEQ ID NO: 431	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1085 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Candida viswanathii (B) STRAIN: ATCC 28269	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 431	
35 40 45	GCTGAAAGAG AAAGAGGTAT CACCATCGAT ATCGCTTTGT GGAAATTCGA AACTCCAAAR TACCACGTTA CCGTCATTGA YGCTCCAGGT CACAGAGATT TCATCAAGAA CATGATYACT GGTACTTCTC AAGCTGATTG TGCTATYTTG ATTATCGCTG GTGGTACTGG TGAATTCGAA GCTGGTATYT CTAAGGATGG TCAAACCAGA GAACACGCTT TGTTGGCCTA CACCTTGGGT GTCAAGCAAT TGATTGTTGC TGTCAACAAG ATGGACTCTG TCAAATGGGA CAAGAACAGA TTCGAAGAAA TCATCAAGGA AACCTCCAAC TTCGTCAAGA AGGTTGGTTA CAACCCAAAG ACTGTTCCAT TCGTCCCAAT CTCTGGTTGG AACGGTGACA ACATGATTGA AGCCTCCACC AACTGCCCAT GGTACAAGGG TTGGGAAAAG GAAACCAAGG CTGGTAAGGT TACCGGTAAG ACTTTGTTGG AAGCCATTGA CGCTATCGAA CCACCAACCA GACCAACTGA CAAGCCATTG AGATTGCCAT TGCAAGATGT CTACAAGATT GGTGGTATCG GAACTGTGCC AGTCGGTAGA GTTGAAACTG GTGTCATCAA GGCCGGTATG GTTGTCACTT TYGCCCCAGC TGGTGTTACC ACTGAAGTCA AGTCCGTTGA AATGCACCA GAACAATTGG CTGAAGGTGT CCCAGGTGAC AACGTTGGTT TCAACGTCAA GAACGTTTCC GTCAAGGAAA TCAGAAGAGG TAACGTCTGT GGTGACTCCA AGAACGACCC	50 100 150 200 250 300 350 400 450 500 650 700 750
50	ACCAAAGGT TGTGASTCTT TCAACGCTCA AGTCATTGTC TTGAACCACC CAGGTCAAAT CTCTGCTGGT TACTCTCCAG TCTTGGATTG TCACACTGCC CACATTGCTT GTAAGTTTGA CACCTTGGTT GAAAAGATTG ACAGAAGAAC CGGTAAGAAG TTGGAAGAAA ACCCAAAGTT TGTCAAGTCC GGTGACGCTG CTATCGTCAA GATGGTCCA ACCAAGCCAA TGTGTGTTGA AGCYTTCACT GACTACCCAC CATTGGGTAG ATTCGCTGTC AGAGA	800 850 900 950 1000 1050 1085

2) INFORMATION FOR SEQ ID NO: 432

60

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1072 bases

TYPE: Nucleic acid

(B)

(C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 5 (vi) ORIGINAL SOURCE: ORGANISM: Candida zeylanoides (A) STRAIN: ATCC 7351 (B) 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 432 AGGTATTACC ATTGACATTG CCTTGTGGAA GTTCGAGACC CCCAAGTACC AGGTCACCGT CATTGACGCT CCTGGCCACA GAGATTTCAT TAAGAACATG 100 ATCACTGGTA CCTCCCAGGC TGACTGTGCC ATCTTGATCA TTGCTGGTGG 150 15 TGTTGGTGAG TTCGAGGCTG GTATCTCCAA GGATGGCCAG ACCAGAGAGC 200 ACGCCTTGCT TGCCTACACC TTGGGTGTCA AGCAATTGAT TGTTGCTGTC AACAAGATGG ACTCCGTCAA GTGGGACAAG AACAGATTCG AGGAGATTGT CAAGGAGACC TCCAACTTCG TCAAGAAGGT TGGCTACAAC CCCAAGACTG TCCCCTTCGT TCCCATCTCC GGTTGGAACG GTGACAACAT GATTGAGGCC 20 TCCACCAACT GCCCTTGGTA CAAGGGTTGG GAGAAGGAGA CCAAGGCCGG TAAGGTCACT GGTAAGACCT TGTTGGAGGC TATTGACGCC ATTGAGCCCC 500 CCACCAGACC CACCGACAAG CCCTTGAGAT TGCCCTTGCA GGATGTCTAC 550 AAGATTGGTG GTATTGGAAC GGTGCCCGTT GGCAGAGTTG AGACCGGCAT 600 CATCAAGGCC GGTATGGTTG TCACCTTTGC CCCCGCTGGT GTCACTACTG 650 25 AAGTGAAGTC TGTCGAGATG CACCACGAGC AATTGGCTGA GGGTGTCCCA 700 GGTGACAATG TTGGTTTCAA CGTGAAGAAC GTTTCCGTTA AGGAGATCAG 750 AAGAGGTAAC GTTTGCGGTG ACTCCAAGAA CGACCCCCC AAGGCTGCTG 800 CTTCTTTCAA CGCCCAGGTT ATCGTCTTAA ACCACCCCGG TCAAATCTCT 850 GCTGGTTACT CTCCGGTTTT GGATTGCCAC ACTGCCCACA TTGCTTGCAG 900 30 ATTCGACCAG TTGATTGAGA AGATCGACAG AAGAACCGGT AAGAAGATGG AGGACGACCC TAAGTTCATC AAGTCCGGTG ACGCTGCCAT CGTCAAGATG GTTCCTTCCA AGCCCATGTG TGTTGAGGCC TTCACTGACT ACCCTCCCTT 1000 1050 1072 GGGTCGTTTC GCTGTCAGAG AC 35 2) INFORMATION FOR SEO ID NO: 433 (i) SEQUENCE CHARACTERISTICS: 40 LENGTH: 751 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 45 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Coccidioides immitis STRAIN: Silveira (B) 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 433 AGCACCAACT GGTCCGAGCC TCGTTTCAAC GAAATCGTCA AGGAAGTCTC CAACTTCATC AAGAAGGTCG GATACAACCC CAAGGCTGTT CCATTCGTCC 100 55 CCATCTCTGG TTTCGAAGGT GACAACATGA TTCAACCCTC CACCAACGCT 150 CCTTGGTACA AGGGCTGGAA CAAGGAGACC GCCTCTGGCA AGCACACTGG 200 CAAGACCCTC CTCGACGCCA TTGATGCCAT CGACCCCCCA ACCCGCCCCA 250 CCGAGAAGCC CCTCCGTCTC CCACTTCAGG ATGTGTACAA GATCTCTGGT 300 ATCGGAACAG TCCCAGTCGG CCGTGTCGAA ACCGGTGTTA TCAAGCCTGG 60

5	TATGGTTGTG ACCTTCGCTC CTTCCAACGT CACCACTGAA GTCAAGTCCG TCGAAATGCA CCACCAGCAG CTCACCCAGG GTAACCCTGG TGACAACGTT GGCTTCAACG TCAAGAACGT CTCTGTCAAG GAAGTCCGCC GCGGTAACGT CGCTGGTGAC TCCAAGAACG ACCCACCAAA GGGCTGCGAC TCCTTCAACG CCCAGGTCAT CGTCCTCAAC CACCCTGGTC AAGTCGGTGC TGGTTATGCC CCAGTCCTTG ACTGCCACAC TGCCCACATT GCTTGCAAGT TCTCCGAGCT CCTCGAGAAG ATCGACCGCC GTACCGGTAA ATCCGTTGAG AACAACCCCA AGTTCATCAA GTCTGGTGAT GCCGCTATCG TCAAGATGGT TCCATCCAAG C	400 450 500 550 600 650 700 750
	2) INFORMATION FOR SEQ ID NO: 434	
15	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1146 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE: (A) ORGANISM: Cryptococcus albidus (B) STRAIN: ATCC 66030 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 434	
30	AAGCTCAAGG CCGAGCGAGA GCGAGGTATC ACCATCGACA TCGCCTTGTG GAAGTTCGAG ACCCCCAAGT ACAATGTCAC CGTCATTGAC GCCCCCGGTC ACCGAGACTT CATCAAGAAC ATGATCACCG GTACCTCGCA GGCCGACTGT GCCATCCTCA TCATCGCCTC CGGTATCGGA GAGTTCGAGG CTGGTATCTC CAAGGACGGT CAGACCCGAG AGCACGCCCT TTTGGCCTTC ACCCTCGGTG	50 100 150 200 250
35	TCCGACAGCT CATCATTGCC ATCAACAAGA TGGACACCTG CAAGGTTAGT TCGCAGGTCC TGGTCTCTGT ACGAATCTTG CTGACCCCTT TTACAGTGGT CCGAAGACCG ATACAACGAA ATCGTCAAGG AGGCTTCCGG TTTCATCAAG AAGGTCGGAT ACAACCCCAA GACCGTTCCC TTCGTCCCCA TCTCCGGATG GCACGGAGAC AACATGTTGG AGGAGTCCAC CAACATGCCC TGGTACAAGG	300 350 400 450 500
40	GATGGCACAA GGAGTCCAAG GCCGGTGTTG TCAAGGGAAA GACCTTGCTC GAGGCCATCG ACGCCATCGA GCCCCCTACC CGACCTTCCG ACAAGCCCTT GCGATTGCCC CTCCAGGATG TCTACAAGAT CGGTGGTATC GGTACGGTGC CCGTCGGTCG AGTCGAGACC GGTGTCATCA AGGCTGGTAT GGTCGTCACC TTCGCCCCTG CCAACGTCAC CACCGAAGTC AAGTCCGTCG AAATGCACCA	550 600 650 700 750
45	CGAACAGCTC GCTGAGGGTG TTCCCGGTGA CAACGTCGGT TTCAACGTCA AGAACGTTTC CGTCAAGGAC ATCCGACGAG GAAACGTCTG CTCCGACTCG AAGAACGACC CCGCTATGGA GTCTGCTTCC TTCAACGCTC AGGTCATTGT CTTGAACCAC CCGGGTCAGA TCGGTGCCGG CTACTCCCCC GTTTTGGACT GCCACACCGC TCACATTGCC TGCAAGTTCG CTGAGCTCGT TGAGAAGATC	800 850 900 950 1000
50	GACCGACGAA CCGGTAAGGT CATGGAGGCC GCCCCCAAGT TCGTCAAGTC CGGTGACGCC GCCATCGTCA AGTTGATCCC GTCCAAGCCC ATGTGTGTCG AGTCCTACTC CGAGTACCCC CCCTTGGGTC GATTCGCCGT CCGAGA	1050 1100 1146
55	2) INFORMATION FOR SEQ ID NO: 435	
60	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1095 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
0.0	(c) Ditambibibili Double	

- (D) . TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 5 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Exophiala jeanselmei
  - (B) STRAIN: ATCC 64755
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435

10						
10	CAAGCTGAAG	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCTTGT	50
	GGAAGTTCGA	GACTCCCAAG	TACTATGTCA	CTGTCATCGA	CGCCCCTGGT	100
	CATCGTGACT	TTATCAAGAA	CATGATCACT	GGTACTTCCC	AGGCTGACTG	150
	CGCCATTCTC	ATCATTGCCG	CCGGTACTGG	TGAATTCGAA	GCCGGTATCT	200
15	CCAAGGATGG	TCAGACTCGT	GAGCACGCTC	TGCTCGCCTA	CACCCTGGGT	250
	GTCAAGCAGC	TCATTGTCGC	CATCAACAAG	ATGGACACCA	CCAAGTGGTC	300
	CGAGGATCGT	TTCAACGAAA	TCATCAAGGA	GACTTCCAGC	TTCATCAAGA	350
	AGGTCGGCTA	CAACCCCAAG	TCCGTTCCTT	TCGTCCCCAT	CTCCGGCTTC	400
	AACGGTGACA	ACATGATCGA	TGTCTCCACC	AACTGCCCCT	GGTACAAGGG	450
20	CTGGGAGAAG	GAGACCAAGG	CTGGCAAGGC	CTCTGGCAAG	ACTCTCCTCG	500
	AGGCCATCGA	CGCCATCGAC	CCCCCCACTC	GTCCCACCGA	CAAGCCTCTC	550
	CGTCTTCCTC	TCCAGGATGT	CTACAAGATC	TCTGGTATCG	GAACGGTGCC	600
	CGTCGGTCGT	GTTGAGACTG	GTGTCATCAA	GGCCGGTATG	GTCGTTACCT	650
	TCGCTCCTGC	CAACGTCACC	ACTGAAGTCA	AGTCCGTCGA	AATGCACCAC	700
25	GAACAACTCG	CCGAGGGTGT	TCCAGGTGAC	AACGTTGGTT	TCAACGTCAA	750
	GAACGTCTCC	GTCAAGGAGG	TTCGTCGTGG	AAACGTCTGC	GGTGACTCCA	800
	AGAACGACCC	ACCCAAGGGT	GCTGATTCCT	TCAACGCCCA	GGTCATCGTC	850
	TTGAACCACC	CTGGTCAAGT	CGGTGCTGGC	TACGCCCCAG	TGTTGGATTG	900
	CCACACTGCC	CACATTGCTT	GCAAGTTCTC	TGAGCTTCTC	GAGAAGATTG	950
30	ACCGCCGTAC	CGGTAAATCC	ATCGAAAACA	ACCCCAAGTT	CATCAAGTCT	1000
	GGTGACGCTG	CCATCGTCAA	GATGGTTCCC	AGCAAGCCCA	TGTGTGTTGA	1050
	GGCCTTCACT	GACTACCCAC	CTCTTGGTCG	TTTCGCCGTC	CGTGA	1095

2) INFORMATION FOR SEQ ID NO: 436

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1113 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 45 (vi)ORIGINAL SOURCE:

35

- (A) ORGANISM: Fusarium oxysporum
- (B) STRAIN: WSA-212
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436

	AAGCTCAAGG	CCGAGCGTGA	GCGTGGTATC	ACCATCGATA	TTGCTCTCTG	50
	GAAGTTCGAG	ACTCCTCGCT	ACTATGTCAC	CGTCATTGGT	ATGTTGTCGC	100
	TCATGCTTCA	TTCTACTTCT	CTTCGTACTA	ACACATCACT	CAGACGCTCC	150
55	CGGTCACCGT	GATTTCATCA	AGAACATGAT	CACTGGTACT	TCCCAGGCCG	200
	ATTGCGCCAT	TCTCATCATT	GCCGCCGGTA	CTGGTGAGTT	CGAGGCTGGT	250
	ATCTCCAAGG	ATGGCCAGAC	CCGTGAGCAC	GCTCTTCTTG	CCTACACCCT	300
	TGGTGTCAAG	AACCTCATCG	TCGCCATCAA	CAAGATGGAC	ACCACCAAGT	350
	GGTCTGAGGC	CCGTTACCAG	GAGATCATCA	AGGAGACCTC	CTCTTTCATC	400
60	AAGAAGGTCG	GCTACAACCC	CAAGGCTGTC	GCTTTCGTCC	CCATCTCCGG	450

5 10	TTTCAACGGT GACAACATGC TTACCCCCTC CACCAACTGC CCCTGGTACA AGGGTTGGGA GCGTGAGATC AAGTCCGGCA AGCTCACTGG CAAGACCCTC CTCGAGGCCA TTGACTCCAT CGAGCCCCCC AAGCGTCCCG TTGACAAGCC CCTTCGTCTT CCCCTTCAGG ATGTCTACAA GATCGGTGGT ATTGGAACGG TTCCCGTCGG CCGTATCGAG ACTGGTGTCA TCAAGCCCGG TATGGTCGTT ACCTTCGCTC CTTCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACGAGCAA CTCACTGAGG GCCAGCCCGG TGACAACGTT GGTTTCAACG TGAAGAACGT CTCCGTCAAG GACATCCGAC GTGGTAACGT CGCTGGTGAC TCCAAGAACG ACCCCCCTAT GGGTGCCGCT TCTTTCACCG CCCAGGTCAT CGTCCTCAAC CACCCCGGTC AGGTCGGTGC TGGTTACGCT CCCGTCCTCG ATTGTCACAC TGCCCACATT GCCTGCAAGT TCGCCGAGAT CCAGGAGAAG ATCGACCGCC GAACCGGTAA GGCTACTGAG GCCGCCCCCA AGTTCATCAA GTCTGGTGAC TCCGCCATCG TCAAGATGGT TCCCTCCAAG CCCATGTGTG TTGAGGCTTT CAC	500 550 600 650 700 750 800 850 900 950 1000 1100 1113
	2) INFORMATION FOR SEQ ID NO: 437	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 726 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
30	<ul><li>(A) ORGANISM: Geotrichum spp.</li><li>(B) STRAIN: LEV-4</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437	
35	GGTCCGAGGA CAGATTCAAC GAGATTGTCA AGGAGACTTC CAACTTCATC AAGAAGGTTG GTTAYAACCC CAAGACTGTT GCTTTCGTCC CCATCTCTGG TTGGAACGGT GACAACATGA TTGAGCCCTC CACCAACTGC CCCTGGTACA	50 100 150
	AGGGATGGCA GAAGGAGACC AAGGCTGGTG TCACTAAGGG TAAGACCCTC CTTGAGGCCA TCGATGCCAT TGAGCCCCCT GTCAGACCTT CCGACAAGCC	200 250
40	CCTCCGTCTT CCCCTCCAGG ATGTCTACAA GATCGGTGGT ATCGGAACTG TGCCCGTCGG CCGTGTCGAA ACCGGTGTCA TCAAGGCCGG TATGGTCGTC ACCTTCGCCC CCGCTGGTGT CACCACTGAA GTCAAGTCCG TCGAGATGCA	300 350
	CCACGAGCTC CTCACTGAGG GTCTCCCCGG TGACAACGTT GGTTTCAACG TCAAGAACGT CTCCGTTAAG GATATCAGAC GTGGTAACGT CTGCGGTGAC	400 450
45	TCCAAGAACG ATCCCCCCAA GGCTTGCGCT TCTTTCAACG CCCAGGTCAT TATCTTCAAC CACCCTGGTC AGATCTCTGC TGGATACTCT CCCGTCCTTG	500 550 600
	ATTGCCACAC CGCCCATATT GCTTGCAAGT TCGACACTTT GATCGAGAAG ATTGACCGTC GTACTGGTAA GAAGACTGAG GACTCCCCCA AGTTCGTCAA GGCCGGTGAT GCTGCTATCG TCAAGA	650 700 726
50		
	2) INFORMATION FOR SEQ ID NO: 438	
- <b>-</b>	(i) SEQUENCE CHARACTERISTICS:	
55	<ul><li>(A) LENGTH: 754 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	

60 (ii) MOLECULE TYPE: Genomic DNA

#### (vi) ORIGINAL SOURCE: (A) ORGANISM: Histoplasma capsulatum STRAIN: G186A5 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438 CACCACCAAG TGGTCCGAGT CCCGTTTCAA CGAAATCATC AAGGAGGTTT CCAACTTCAT CAAGAAGGTC GGATATAACC CCAAGGCTGT TCCCTTCGTG CCAATCTCTG GTTTCGAGGG TGACAACATG ATTGAACCCT CCCCCAACTG 100 150 10 CACATGGTAC AAGGGCTGGA ACAAGGAGAC TGCCTCTGGC AAGTCTTCTG GTAAAACCCT TCTCGATGCC ATTGACCCC TGAACCCCC AACCCGTCCT ACCGATAAGC CCCTCCGTCT TCCCCTCCAG GATGTGTACA AAATCTCTGG TATTGGCACT GTTCCCGTCG GACGTGTTGA GACTGGTGTC ATCAAGCCCG 350 GTATGGTCGT GACTTTCGCT CCCTCCAACG TCACCACTGA AGTCAAGTCC 400 GTCGAAATGC ACCACCAACA ACTCCAGGCT GGTTACCCTG GCGACAACGT CGGCTTCAAC GTCAAGAACG TTTCAGTCAA GGAAGTCCGC CGTGGCAACG 500 TTGCTGGCGA CTCCAAAAAT GATCCCCCTA AGGGCTGCGA ATCCTTCAAT 550 GCCCAGGTCA TCGTCCTTAA CCACCCCGGC CAGGTTGGCG CTGGTTATGC 600 CCCAGTCCTC GACTGCCACA CTGCCCACAT TGCTTGCAAG TTCTCTGAGC 650 20 TTATTGAGAA GATCGACCGC CGTACCGGAA AGTCTGTTGA GAACAACCCC 700 750 AAGTTCATCA AGTCTGGTGA TGCTGCTATC GTCAAGATGG TTCCCTCCAA 754 GCCC 25 2) INFORMATION FOR SEQ ID NO: 439 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 743 bases 30 TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Issatchenkia orientalis kudrjanzev STRAIN: ATCC 6258 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439 TGGGATGAAA ACAGATTTGA AGAAATTGTC AAGGAAACCC AAAACTTCAT 50 CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT CCAATCTCTG 100 GTTGGAATGG TGACAACATG ATTGAAGCAT CCACCAACTG TCCATGGTAC 45 AAGGGTTGGA CTAAGGAAAC CAAGGCAGGT GTTGTTAAGG GTAAGACCTT ATTAGAAGCA ATCGATGCTA TTGAACCACC TGTCAGACCA ACCGAAAAGC 250 CATTAAGATT ACCATTACAA GATGTTTACA AGATTGGTGG TATTGGTACT GTGCCAGTCG GTAGAGTCGA AACCGGTGTC ATTAAGCCAG GTATGGTTGT CACTTTTGCT CCAGCAGGTG TCACCACCGA AGTCAARTCC GTTGAAATGC 50 ACCATGACA ATTAGAACAA GGTGTTCAG GTGATAACGT TGGTTTCAAC GTTAAGAACG TCTCTGTCAA GGATATCAAG AGAGGTAACG TTTGTGGTGA CTCCAAGAAC GACCCACCAA TGGGTGCAGC TTCYTTCAAT GCTCAAGTCA TTGTCTTGAA CCACCCTGGT CAAATTTCCG CTGGTTACTC TCCAGTCTTG GATTGTCACA CTGCCCACAT TGCATGTAAG TTCGACGAAT TAATCGAAAA GATTGACAGA AGAACTGGTA AGTCTGTTGA AGACCATCCA AAGTCYGTCA

AGTCTGGTGA TGCAGCTATC GTCAAGATGG TCCCAACCAA GCC

550

650 700

2) INFORMATION FOR SEQ ID NO: 440

	2) INFORMATION FOR SEQ ID NO: 440	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1091 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
10	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Malassezia furfur</pre>	
	(B) STRAIN: ATCC 42132	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440	
20	CAAGCTCAAG GCTGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCTCTGT GGAAGTTCGA GACCCCTAAG TACCACGTTA CCGTCATTGA CGCTCCTGGT CACCGTGACT TCATCAAGAA CATGATTACG GGTACCTCGC AGGCTGACTG CGCTATCCTC ATCATTGCCG GTGGTACCGG TGAGTTCGAG GCTGGTATCT CGAAGGACGG TCAGACCCGT GAGCACGCTC TGCTCGCTTT CACCCTGGGT GTGCGTCAGC TCATTGTGGC CGTCAACAAG ATGGACACCA CCAAGTACTC GGAGGACCGC TTCAACGAGA TTGTCCGCGA AGTGTCGAAC TTCATCAAGA	50 100 150 200 250 300 350
25	AGGTCGGTTT CAACCCCAAG ACTGTTGCCT TCGTCCCCAT CTCGGGCTGG CACGGTGACA ACATGATCGA GGCCACCACC AACATGCCTT GGTACAAGGG CTGGGAGAAG GAGACCAAGT CGGGCAAGGT CACTGGTAAG ACTCTGCTGG ACGCCATCGA CGCCATCGAG CCCCCGACCC GCCCCACTGA CAAGCCCCTG	400 450 500 550
30	CGTCTCCCTC TGCAGGATGT GTACAAGATC GGTGGTATCG GTACTGTCCC TGTCGGTCGT GTTGAGACCG GTGTGATCAA GCCCGGTATG GTTGTGACCT TCGCTCCCTC GAACGTCACC ACTGAAGTTA AGTCGGTTGA GATGCACCAC GAGTCGCTCC CTGAGGGTCT CCCCGGTGAC AACGTTGGTT TCAACGTGAA GAACGTCTCG GTTAAGGACA TTCGCCGTGG TAACGTTGCC TCGGACTCGA AGAACGACCC CGCTCAGGAG GCTGCTTCGT TCAACGCGCA GGTCATTGTC	600 650 700 750 800 850
35	ATGAACCACC CTGGTCAGAT CAGCAACGGT TACTCGCCCG TGCTTGACTG CCACACTGCG CACATTGCCT GCCGCTTCAA CAACATCCTC CAGAAGATCG ACCGTCGCTC GGGTAAGGTG CTTGAGGAGA ACCCCAAGTT CATCAAGTCG GGTGACGCTG CCATGGTGGA GATGATCCCC ACCAAGCCCA TGTGTGTGGA GTCGTTCAAC GAGTACCCCC CTCTGGGTCG TTTCGCTGTG C	900 950
40		
	2) INFORMATION FOR SEQ ID NO: 441	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 749 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Malassezia pachydermatis     (B) STRAIN: ATCC 42756  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 441</pre>	
60	ACCACCAAGT ACTCGGAGGA CCGCTTCAAC GAGATTATTC GCGAGACTTC GAACTTCATC AAGAAGGTCG GTTACAACCC GAAGACTGTT GCCTTCGTCC CGATCTCGGG CTGGCACGGT GACAACATGA TTGAGGCGAC CACCAACATG	50 100 150

	CCGTGGTACA AGGGCTGGGA GAAGGAGACC AAGTCGGGCA AGGCCACTGG	200
	TAAGACCCTT CTGGACGCTA TTGACGCCAT TGAGCCGCCG ACGCGCCCGA	250
	TAAGACCCTT CTGGACGCTA TIGACGCCAI IGAGCCGCCG ACGCGCCGA CCGACAAGCC TCTCCGTCTT CCTCTCCAGG ATGTGTACAA GATCGGTGGT	300
	CCGACAAGCC TCTCCGTCTT CCTCCAGG AGGGGTACAA GATCGGTGGT	350
	ATCGGTACYG TCCCGGTCGG CCGTGTTGAG ACCGGTGTTA TCAAGCCCGG	400
5	TATGGTTGTG ACCTTCGCTC CGTCGAACGT CACSACTGAA GTTAAGTCGG	450
	TCGAGATGCA CCACGAGCAG ATCCCTGAGG GTCTTCCGGG TGACAACGTT	500
	GGTTTCAACG TGAAGAACGT GTCGGTCAAG GACATTCGCC GTGGTAACGT	550
	CGCCTCGGAC TCGAAGAACG ACCCGGCTCA GGAGGCTGCC TCGTTCAATG	
	CTCAGGTCAT TGTGATGAAC CACCCTGGTC AGATCAGCAA CGGTTACTCG	600
10	CCRGTGCTCG ACTGCCACAC TGCTCACATT GCCTGCCGCT TCAACAACAT	650 700
	CCTCCAGAAG ATCGACCGTC GTTCGGGTAA GGTTCTYGAA GAGAACCCCA	749
	AGTTCATCAA GTCGGGTGAC GCTGCCATGG TTGAGATGAT CCCGACCAA	749
15	ON THE PROPERTY HOP GEO ID NO. 442	
	2) INFORMATION FOR SEQ ID NO: 442	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1150 bases	
20	(B) TYPE: Nucleic acid	
20	( <del>-</del> )	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(D) 10F0H0G1: Hilled1	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(11) Modboobs 11121 Continue and	
23	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Malbranchea filamentosa	
	(B) STRAIN: ATCC 48174	
	(D) Dildiin. Mico lor.	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442	
	ACTGAAGGCC GAGCGTGAGC GTGGTATCAC CATCGATATC GCCCTCTGGA	50
	AGTTCGAGAC CCCCAAGTAC CATGTCACCG TCATTGGTAC GTTCGACATG	100
	TTCGACCTTT TGCCTAGTGT CCCCTTCTAA CCACAGTTTA TAGACGCCCC	150
35	TGGCCATCGT GATTTCGTCA AGAACATGAT CACTGGTACT TCCCAGGCTG	200
	ATTGCGCTAT CCTCATCATT GCTTCCGGCA CTGGTGAATT CGAGGCTGGT	250
	ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTGCTTT CCTTCACCCT	300
	CGGTGTTAGG CAGCTCATTG TCGCCCTCAA CAAGATGGAC ACTGTCAACT	350
	TCGCTGAGGC CCGTTACAAC GAGATTGTCA AGGAAGTCTC CAACTTCATC	400
40	AAGAAGGTCG GCTACAACCC CAAGGCCGTT CCTTTCGTCC CCATCTCCGG	450
	TTTCGAGGGT GACAACATGA TCGAGGCCTC CACCCGCATT CCTTGGTACA	500
	AGGGCTGGAA CAAGGAGACC GCCAGTGGCA AGAGCACCGG CAAGACCCTY	550
	CTCGAGGCCA TTGATGCCAT CGAACCCCCG GTCCGTCCCA CCGACAAGCC	600
	CCTYCGTCTC CCTCTTCAGG ATGTGTACAA GATCTCCGGT ATTGGCACTG	
45	TTCCTGTCGG TCGTGTTGAG ACTGGTGTCA TCAAGCCTGG TATGGTCGTT	700
	ACTTTCGCCC CCGCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA	750
	CCACCAGCAG CTCCAGGCCG GTAACCCCGG TGACAACGTC GGCTTCAACG	800
	TCAAGAACGT TTCCGTCAAG GAAGTCCGCC GTGGCAACGT TGCCTCCGAC	850
	TCCAAGAACG ACCCCGCCAA GGGCTGCGAC TCCTTCAACG CCCAGGTCAT	900
50	CGTCCTTAAC CACCCCGGTC AGGTCGGTGC TGGATACGCT CCCGTCCTCG	950
	ATTGCCACAC TGCCCACATT GCTTGCAAGT TCTCTGAGCT TCTTGAGAAG	1000
	ATCGATCGCC GTACCGGTAA ATCCGTTGAG GACCACCCCA AGTTCATCAA	1050
	GTCTGGTGAT GCCGCTATCG TCAAGATGGT TCCCTCCAAG CCTATGTGCG	1100
	TTGAGGCTTT CACTGACTAC CCTCCCCTTG GTCGTTTCGC CGTCCGTGAC	1150
55		

2) INFORMATION FOR SEQ ID NO: 443

55

60

(i) SEQUENCE CHARACTERISTICS:

	<ul><li>(A) LENGTH: 1099 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Metschnikowia pulcherrima    (B) STRAIN: DSM 70336</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443	
15	GGACAAGTTG AAGGCTGAGA GAGAGAGAG TATCACCATC GACATTGCCT TGTGGAAGTT CGAGACTCCT AAGTACCACG TCACCGTYAT TGACGCCCCA GGTCACAGAG ATTTCATCAA GAACATGATC ACTGGTACTT CCCAGGCTGA CTGTGCYATC TTGATTATCG CYGGTGGTGT TGGTGAGTCC WARGCAGGTTG	50 100 150 200 250
20	TCTCCAAGGA TGGCCAGACC AGAGAGCACG CTTTGTTGGC YTACACCTTG GGTGTTAGAC ARTTGATTGT TGCCGTCAAC AAGATGGACT CTGTCAAGTG GGACAAGAAC AGATTTGAGG AGATCATCAA GGAGACCTCT AACTTCGTCA AGAAGGTTGG TTACAACCCT AAGACYGTGC CATTCGTGCC AATYTCTGGT TGGAACGGTG ACAACATGAT TGAGGCYTCC ACTAACTGCC CATGGTACAA	300 350 400 450
25	GGGTTGGGAG AAGGAGACCA AGGCCGGTAA GTCTWCCGGT AAGACCTTGT TGGAGGCCAT TGACGCCATT GAGCCACCAA CCAGACCTAC CGACAAGGCC TTGAGATTGC CTTTGCAGGA TGTCTACAAG ATCGGTGGTA TCGGAACGGT GCCAGTCGGC CGTGTCGAGA CCGGTGTCAT TAAGGCCGGT ATGGTTGTYA CCTTYGCCCC AGCTGGTGTC ACCACTGAGG TCAAGTCCGT CGAGATGCAC	500 550 600 650 700
30	CACGAGCAGT TGGTCGAGGG TCTTCCAGGT GACAAYGTTG GTTTCAACGT CAAGAACGTC TCCGTTAAGG AGATCAGAAG AGGTAACGTC TGTGGTGACT CCAAGCAGGA CCCACCAAAG GGTGCCGCTT CTTTCACCGC YCAGGTTATT GTGTTGAACC ACCCTGGTCA GATCTCCTCT GGTTACTCTC CAGTGTTGGA CTGYCACACC GCCCACATTG CCTGTAARTT CGACACCTTG TTGGAGAAGA	750 800 850 900 950
35	TTGACAGAAG AACTGGTAAG TCCTTGGAGT CYGAGCCTAA GTTCGTCAAG TCYGGTGACG CCGCCATTGT CAAGATGGTG CCAACCAAGC CAATGTGTGT TGAGGCTTTC ACCGACTACC CACCTTTGGG TAGATTCGCC GTCAGAGAC	1000 1050 1099
	2) INFORMATION FOR SEQ ID NO: 444	
40	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1153 bases (B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Paecilomyces lilacinus     (B) STRAIN: ATCC 42570</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444	
55	CAAGCTCAAG GCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT GGAAGTTCGA GACTCCCAAG TACTATGTCA CCGTCATTGG TACGTCGACT CGCGCGAGAC TGGTCGCAAT TTCCACGTCG CTAACGTGCT TGAACAGACG CTCCCGGCCA CCGTGACTTC ATCAAGACA TGATCACTGG TACCTCCCAG	50 100 150 200
60	GCTGACTGCG CTATCCTCAT TATCGCTGCC GGCACTGGTG AGTTCGAGGC TGGTATCTCC AAGGATGGCC AGACCCGTGA GCACGCTCTG CTCGCCTACA	250 300

5 10 15	CCCTCGGTGT AAGTGGTCTG CATCAAGAAG CTGGTTTCCA TACAAGGGCT CCTCCTTGAG AGCCCCTCCG ACAGTCCCTG CGTGACCTTC TGCACCACGA AACGTCAAGA TGACTCCAAG TCATCGTCCT CTCGACTGCC GAAGATCGCC GAAGATCGAC TCAAGTCTGG TCAAGTCTGG TCAAGTCTGG TCAAGTCTGG	TAAGCAGCTC AGGCCCGTTT GTCGGCTACA CGGCGACAAC GGGAGAAGGA GCCATCGACT TCGGCCGTAT GCTCCTTCCA GCAGCTCTCC ACGTCTCCGT AACGACCCCC CAACCACCCC ACACCGCCCA CGCCGTACCG CGACTCTGCC CGACTCTGCC CTTTCACCGA	ATCGTCAAGA	TCAACAAGAT ATCAAGGAGA CGTCGCTTTC CCTCCACCAA GGCAAGTCCA CCCCAAGCGC ACAAGATCGG GTCATCAAGC CGAAGTCAAG CCGGTGACAA CGTCGTGGCA CGCTTCTTTC GTGCTGGCTA AAGTTCGCCG CGAGTCCGCC TGATTCCCTC CTGGGCCCT	GATGCCCAGG CGCCCCGTC AGATCAAGGA CCCAAGTTCA CAAGCCCATG	350 400 450 500 550 600 650 700 750 800 950 1000 1150 1153
20						

# 2) INFORMATION FOR SEQ ID NO: 445

(i) SEQUENCE CHARACTERISTICS:

LENGTH: 763 bases (A)

- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 30
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Paracoccidioides brasiliensis
    - STRAIN: ATCC 32071 (B)

35

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 445

	TACCACTAAG	TGGTCCGAGA	CCCGATTCAA	TGAAATTATC	AAGGAAGTCA	50
	CCAATTTCAT	TAAGAAGGTC	GGATATAACC	CCAAGACTGT	TCCTTTCGTT	100
40	CCCATTTCTG	GTTTCGAGGG	TGACAACATG	ATCGAGCCCT	CTGCCAACTG	150
40	CCCATGGTAC	AAGGGCTGGT	CCAAGGAGAC	TGCTCAGGGC	<b>AAGTACTCTG</b>	200
	GCAAGACCCT	TCTTGAGGCC	ATCGACGCCA	TTGAGCCCCC	CACCCGTCCT	250
	ACCGATAAAC	CTCTCCGTCT	TCCCCTCCAG	GATGTCTACA	AGATCTCCGG	300
	TATTGGCACT	GTTCCTGTCG	GACGTGTTGA	GACTGGAGTC	ATCAAGCCCG	350
45	GTATGGTCGT	GACCTTCGCT	CCCGCCAACG	TCACCACTGA	AGTCAAGTCC	400
40	GTCGAAATGC	ACCACCAGCA	GCTTACCGCC	GGTAACCCCG	GTGACAACGT	450
	CGGCTTCAAC	GTCAAGAATG	TTTCCGTCAA	AGAAGTCCGC	CGTGGTAACG	500
	TTGCCGGTGA	CTCTAAGAAT	GATCCCCCAA	AGGGCTGCGA	TTCCTTCAAT	550
	GCCCAGGTCA	TCGTCCTCAA	CCACCCTGGT	CAGGTTGGCG	CTGGTTATGC	600
. 50	CCCAGTCCTC	GACTGCCATA	CTGCCCACAT	TGCCTGCAAA	TTCGCTGAGC	650
50	TCCTTGAGAA	GATTGATCGA	CGAACCGGAA	AGTCTGTTGA	GAACAACCCC	700
	AAGTTCATCA				TTCCTTCCAA	750
	GCCCATGTGC	GTC	10010011110	J. J		763
	GCCCAIGIGC	GIC				

55

60

### 2) INFORMATION FOR SEQ ID NO: 446

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 1346 bases

	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Penicillium marneffei	
	(B) STRAIN: ATCC 64101	
10	ν=,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446	
	AAGCTCAAGG CTGAGCGTGA GCGTGGTATC ACCATCGATA TTGCTCTCTG	50
	GAAGTTCCAG ACTGCCAAGT ACGAGGTTAC CGTCATTGAC GCCCCCGGTC	100
15	ACCCTGATTT CATCAAGAAC ATGATCACTG GTACCTCCCA GGCCGATTGC	150
	GCTATTCTCA TCATTGCCTC TGGTACTGGT GAATTCGAGG CTGGTATCTC	200
	CAAGGATGGC CAGACTCGTG AGCACGCTCT TTTGGCTTTC ACCCTCGGTG	250
	TCCGTCAGCT CATTGTTGCC CTCAACAAGA TGGACACTTG CAAGTGGTCT	300
	CAGGGTGAGT ACTCGTACCT GCGTTTGGCC TTGAATATCT TACTAATGCA	350
20	CCATAGATCG TTACAACGAA ATTGTCAAGG AGACTTCCAA CTTCATCAAG	400
20	AAGGTCGGAT ACAACCCCAA GAACGTTCCT TTCGTTCCTA TCTCCGGTTT	450
	CAACGGTGAC AACATGCTTG AGCCCTCCCC CAACTGCCCC TGGTACAAGG	500
	GTTGGGAGAA GGAGACCAAG GCCGGTAAGG TCACTGGTAA GACCCTCCTC	550
	GAGGCCATCG ACGCCATTGA GCCCCCTACC CGTCCCGCCA ACAAGGTTAG	600
	TCCCTCCTCG ACTACTCAAA CCCTCCTCAT AAGTTCAGAT TACTGACTCG	650
25	TCCCTCCTCG ACTACTCAAA CCCTCCTCAT AAGTTCAGAT TACTGACTCC TTCACAGCCC CTCCGTCTTC CCCTCCAGRA TGTCTACAAG ATCGGTGGTA	700
	TTCACAGCCC CICCGTCTTC CCCTCCAGRA IGICIACAAG AICGGTGCTA TTGGAACGGT TCCCGTCGGT CGTGTTGAGA CTGGTACCAT CGTTCCTGGT	750
	ATGGTTGTCA CCTTGTAAGT CACTCTCCTC GCTTATCCTA CCTGAAATCA	800
	TCATGTGCTA ACTTGACACT CAGCGCTCCC GCCAACGTCA CCACTGAAGT	850
	TCATGTGCTA ACTTGACACT CAGCGCTCCC GCCAAGCCA CCACTGAGG	900
30	CAAGAGTGTT GAAATGCACC ACCAGCAGCT CACTGCCGGT CAGCCCGGTG	
	ACAACGTTGG TTTCAACGTG AAGAACGTCT CCGTCAAGGA AATCCGTCGT	950
	GGTAACGTTG CTGGTGACAG CAAGAACGAC CCCCCTGCCG GTGCTGCCTC	1000
	CTTCAACGCC CAGGTCATCG TCCTCAACCA CCCCGGTCAG GTCGGTGCTG	1050
	GTTACGCCCC AGTCCTCGAT TGCCACACTG CCCACATTGC TTGCAAGTTC	1100
35	GCTGAGCTCC TCGAGAAGAT TGACCGTCGT ACCGGAAAGT CTGTTGAGGA	1150
	CCACCCAAG TTCATCAAGT CCGGTGACGC TGCCATCGTC AAGATGATTC	1200
	CTTCCAAGCC CATGTGTGTT GAGGCTTTCA CCGAGTACCC TCCTCTCGGT	1250
	CGTTTCGCCG TTCGCGAGTA AGTTTTATCT CCGTTGTCTA TTTTCCATCC	1300
	TTCCCTTCTC CTCCGTCTTC CATATATACT TTTTCAGTTA TATGTG	1346
40		
	a)	
	2) INFORMATION FOR SEQ ID NO: 447	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1094 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
50	(2)	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Pichia anomala	
55	(B) STRAIN: ATCC 18205	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447	
	AAGTTAAAAG CTGAACGTGA AAGAGGTATC ACTATTGATA TTGCTTTATG	50
60	GAAATTCGAA ACTCCAAAAT ACCATGTTAC CGTTATTGAT GCTCCAGGTC	100

		~~ m~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ATGATTACTG	GTACTTCCCA	AGCTGATTGT	150
	ACAGAGATTT	C111	TGGTATTGGT	GAATTCGAAG	CTGGTATCTC	200
	GCTATYTTAA	TTATTGCCGG	AACACGCTTT	NTTAGCTTAC	ACCTTAGGTG	250
	AAAAGATGGT	CAAACCAGAG	ATCAACAAGA	TGGATTCCGT	TAAATGGGAT	300
	TTAAACAATT	GATTGTTGCT	TGTCAAGGAA	ACYTCAAACT	TTATCAAGAA	350
5	GAATCTCGTT	TCGAAGAAAT	CTGTTCCATT	CGTTCCAATC	TCAGGTTGGA	400
	AGTTGGTTAC	AACCCAAAAA	CCATCAWCTA	ACTGTCCATG	GTACAAAGGT	450
	ATGGTGATAA	CATGATTGAA	TGGTGAAGCT	AAAGGTAAAA	CTTTATTAGA	500
	TGGAAAAAAG	AAACCAAAGC	CACCATCAAG	ACCAACTGAT	AAACCATTAC	550
	AGCCATTGAT	GCTATTGACC	TACAARATTG	GTGGTATTGG	TACTGTGCCA	600
10	GTTTACCATT	ACAAGATGTT	TGTTATCAAA	CCAGGTATGG	TTGTTACCTT	650
	GTCGGTAGAG	TTGAAACCGG	CTGAAGTCAA	ATCTGTTGAA	ATGCATCATG	700
	TGCCCCAGCT	GGTGTTACCA	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
	AACAATTGAC	TGAAGGTTTA	CCAGGIGACA	AACGTCTGTG	GTGACTCTAA	800
	AATGTTTCTG	TTAAAGAAAT	CTGAATCATT	CAATGCTCAA	GTTATTGTCT	850
15	AAACGATCCA	CCAAAAGCTG	TCTGCTGGTT		TTTAGATTGT	900
	TAAACCATCC		TAAATTTGAC	ACTTTAATTG		950
	CACACTGCTC	ACATTGCTTG	TAGAAGAAGC			1000
	CAGACGTACT	GGTAAGAAAT	TAGAAGAAGC	CAAAACCATT		1050
	GTGATGCTGC					1094
20	GCTTTCACTG	ACTACCCACC	ATTAGGTCGT	TICGCIGICA		

# 2) INFORMATION FOR SEQ ID NO: 448

25

35

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1100 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear

# (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Pichia anomala
- (B) STRAIN: ATCC 2149

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 448

40	CTTAGATAAG	TTAAAAGCTG	AACGTGAAAG	AGGTATCACT	ATTGATATTG	50
40	CTTTATGGAA	ATTCGAAACT	CCAAAATACC	ATGTTACCGT	TATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAAAATATG	ATTACTGGTA	CTTCCCAAGC	150
	TGATTGTGCT	ATMTTAATTA	TTGCCGGTGG	TATTGGTGAA	TTCGAAGCTG	200
	GTATCTCAAA	AGATGGTCAA	ACCAGAGAAC	ACGCTTTRTT	AGCTTACACC	250
45	TTAGGTGTTA	AACAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCCGTTAA	300
47	ATGGGATGAA	TCTCGTTTCG	AAGAAATTGT	CAAGGAAACY	TCAAACTTTA	350
	TCAAGAAAGT	TGGTACAACC	CAAAAACTGT	TCCATTCGTT	CCAATCTCAG	400
	GTTGGAATGG	TGATAACATG	ATTGAACCAT	CAACTAACTG	TCCATGGTAC	450
	AAAGGTTGGA	AAAAAGAAAC	CAAAGCTGGT	GAAGCTAAAG	GTAAAACTTT	500
50	ATTAGAAGCC	ATTGATGCTA	TTGATCCACC	ATCAAGACCA	ACTGATAAAC	550
30	CATTACGTTT	ACCATTACAA	GATGTTTACA	ARATTGGTGG	TATTGGTACT	600
	GTGCCAGTCG	GTAGAGTTGA	AACCGGTGTT	ATCAAACCAG	GTATGGTTGT	650
	TACCTTTGCC	CCAGCTGGTG	TTACCACTGA	AGTCAAATCT	GTTGAAATGC	700
	ATCATGAACA	ATTGACTGAA	GGTTTACCAG	GTGACAATGT	TGGTTTCAAC	750
55	GTTAAGAATG	TTTCTGTTAA	AGAAATCCGT	CGTGGTAACG	TCTGTGGTGA	800
-	CTCTAAAAAC	GATCCACCAA	AAGCTGCTGA	ATCATTCAAT	GCTCAAGTTA	850
	TTGTCTTAAA	CCATCCAGGT	CAAATCTCTG	CTGGTTACTC	TCCAGTTTTA	900
	GATTGTCACA	CTGCTCACAT	TGCTTGTAAA	TTTGACACTT	TAATTGAAAA	950
	AATTGACAGA	CGTACTGGTA	AGAAATTAGA	AGAAGCTCCA	AAATTCATCA	1000
60	AATCAGGTGA	TGCTGCTATT	GTTAAATTTG	TTCCATCAAA	ACCATTATCA	1050

## GTTGAAGCTT TCACTGACTA CCCACCATTA GGTCGTTTCG CTGTCAGAGA 1100

- 5 2) INFORMATION FOR SEQ ID NO: 449
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1201 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi) ORIGINAL SOURCE:

10

50

- (A) ORGANISM: Pseudallescheria boydii
- (B) STRAIN: ATCC 44331
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 449

\/X		_			
CAAGCTCAAG	GCCGAGCGTG				50
GGAAGTTCGA	GACCCCCAAG	TACCAGGTCA			100
TGCTTTTTGT	GCTTTTTGTG	CCTGTGCCTC	GCACAATTCC	AGCCCTCGAT	150
AATTATGAAC	CTCGTACTAA	TATGTCGTTC	TCCCACTACC	CACAGACGCC	200
CCCGGCCATC	GTGATTTCAT	CAAGAACATG	ATTACTGGTA	CCTCCCAGGC	250
TGATTGCGCC	ATTCTCATCA	TTGCCTCCGG	TACTGGTGAG	TTCGAGGCTG	300
GCATCTCCAA	GGATGGCCAG	ACCCGTGAGC	ACGCTCTTCT	CGCCTTCACC	350
CTCGGTGTCA	AGAACCTCAT	TGTTGCCATC	AACAAGATGG	ACACCAACAA	400
CTGGTCCGAG	GACCGATACA	AGGAGATCAT	CAAGGAGACC	TCCAACTTCA	450
TCAAGAAGGT	CGGCTACAAC	CCCAAGGCCG	TTCCTTTCGT	CCCCATCTCC	500
GGTTTCCACG	GAGACAACAT	GCTTACCCCC	TCCACCAACT	GCCCCTGGTA	550
CAAGGGTTGG	GTCCGTGAGG	TCAAGGGTAA	CACCCTTACC	GGCAAGACCC	600
TTCTCGAGGC	CATCGACTYC	ATCGAGCCCC	CCAAGCGTCC	CACCGAGAAG	650
CCCCTCCGTC	TTCCCCTTCA	GGACGTCTAC	AAGATCGGTG	GTATTGGCAC	700
TGTGCCCGTC	GGCCGTATCG	AGACCGGTAT	CCTCAAGCCC	GGTATGGTCG	750
TCACCTTCGC	TCCCTCCAAC	GTCACCACTG	AAGTCAAGTC	CGTCGAGATG	800
CACCACGAGC	AGCTTACCGA	GGGTGTCCCC	GGTGACAACG	TTGGTTTCAA	850
CGTGAAGAAC	GTCTCCGTCA	AGGATATCCG	CCGTGGCAAC	GTCTGCGGTG	900
ACTCCAAGAA	CGACCCCCCC	GCTGCTGCCG	CCTCTTTCCA	GGCCCAGGTC	950
ATTGTCCTCA	ACCACCCGG	CCAGATCGGT	GCTGGTTACG	CTCCCGTTCT	1000
TGACTGCCAC	ACTGCCCACA	TTGCTTGCAA	GTTCGCCGAG	CTCCTTGAGA	1050
AGATCGACCG	CCGTACCGGT	AAGTCGGTCG	AGAACAACCC	CAAGTTCGTC	1100
AAGTCTGGTG	ATGCCGCCAT	CGTCAAGATG	GTTCCCTCCA	AGCCCATGTG	1150
TGTTGAGTCC	TTCACCGAGT	ACCCCCTCT	CGGTCGTTTC	GCCGTCCGTG	1200
A					1201
	GGAAGTTCGA TGCTTTTTGT AATTATGAAC CCCGGCCATC TGATTGCGCC GCATCTCCAA CTCGGTGTCA CTGGTCCGAG TCAAGAAGGT GGTTTCCACG CAAGGGTTGG CCCCTCCGTC TGTGCCCGTC TCACCTTCGC CACCACGAGC CGTGAAGAAC ACTCCAAGAA ATTGTCCTCA TGACTGCCAC AGATCGACCG AAGTCTGGTG TGTTGACCCCCC AGATCGACCC AGATCGACCC AAGTCTGCCC AAGTCTGCCC AAGTCTGCCC AAGTCTGCCC AAGTCTGCCC AAGTCTGACCC AAGTCTGACCC AAGTCTGACCC AAGTCTGACCC AAGTCTGACCC	GGAAGTTCGA GACCCCAAG TGCTTTTTGT GCTTTTTGTG AATTATGAAC CTCGTACTAA CCCGGCCATC GTGATTTCAT TGATTGCGCC ATTCTCATCA GCATCTCCAA GGATGGCCAG CTCGGTGTCA AGAACCTCAT CTGGTCCGAG GACCGATACA TCAAGAAGGT CGGCTACAAC GGTTTCCACG GAGACAACAT CAAGGGTTGG GTCCGTGAGG TTCTCGAGGC CATCGACTYC CCCCTCCGTC TTCCCCTTCA TGTGCCCGTC GGCCGTATCG CACCACGAGC AGCTTACCGA CGTGAAGAAC GTCTCCCCCC ATTGTCCTCA ACCACCCCG TGACTGCCAC ACTGCCCCCC ATTGTCCTCA ACCACCCCG TGACTGCCAC ACTGCCCACA AGATCGACCG CCGTACCGGT AAGTCTGGTG ATGCCGCCAT TGTTGAGTCC TTCACCGAGT	GGAAGTTCGA GACCCCCAAG TACCAGGTCA TGCTTTTTGT GCTTTTTGTG CCTGTGCCTC AATTATGAAC CTCGTACTAA TATGTCGTTC CCCGGCCATC GTGATTTCAT CAAGAACATG TGATTGCGCC ATTCTCATCA TTGCCTCCGG GCATCTCCAA GGATGGCCAG ACCCGTGAGC CTCGGTGTCA AGAACCTCAT TGTTGCCATC CTGGTCCGAG GACCGATACA AGGAGATCAT TCAAGAAGGT CGGCTACAAC CCCAAGGCCG CAAGGGTTGG GTCCGTGAGG TCAAGGGTAA TTCTCGAGGC CATCGACTYC ATCGAGCCCC CCCCTCCGTC TTCCCCTTCA GGACGTCTAC TGTGCCCGTC GGCCGTATCG AGACCGGTAT TCACCTTCGC TCCCTCCAAC GTCACCACTG CACCACGAGC AGCTTACCGA GGGTGTCCCC CGTGAAGAAC GTCTCCGTCA AGGATATCCG ACTCCAAGAA CGACCCCCC GCTGCTGCCG ATTGTCCTCA ACCACCCCC GCTGCTGCCG ATTGTCCTCA ACCACCCCCG CCAGATCGGT TGACTGCCAC ACTGCCCACA TTGCTTGCAA AGATCGACCG CCGTACCGGT AAGTCGGTCG AAGTCTGGTG ATGCCGCAT CGTCAAGATG TGTTGAGTCC TTCACCGAGT ACCCCCCTCT AGGTCTGCTC ATGCCCCCTC AGGTCGTCG AAGTCGGTCG CCGTACCGGT AAGTCGGTCG AAGTCTGGTG ATGCCCCCAT CGTCAAGATG TGTTGAGTCC TTCACCGAGT ACCCCCCTCT	GGAAGTTCGA GACCCCCAAG TACCAGGTCA CCGTCATTGG TGCTTTTTGT GCTTTTTGTG CCTGTGCCTC GCACAATTCC AATTATGAAC CTCGTACTAA TATGTCGTTC TCCCACTACC CCCGGCCATC GTGATTTCAT CAAGAACATG ATTACTGGTA TGATTGCGCC ATTCTCATCA TTGCCTCCGG TACTGGTGAG GCATCTCCAA GGATGGCCAG ACCCGTGAGC ACGCTCTTCT CTCGGTGTCA AGAACCTCAT TGTTGCCATC AACAAGATGG CTGGTCCGAG GACCGATACA AGGAGATCAT CAAGGAGACC TCAAGAAGGT CGGCTACAAC CCCAAGGCCG TTCCTTTCGT GGTTTCCACG GAGACAACAT GCTTACCCCC TCCACCAACT CAAGGGTTGG GTCCGTGAGG TCAAGGGTAA CACCCTTACC CCCCTCCGTC TTCCCCTTCA GGACGTCTAC AAGATCGGTG TGTGCCCGTC GGCCGTATCG AGACCGCTAT CCTCAAGCCC CACCACGAC AGCTTACCAAC GTCACCACTG AAGATCAGTC CACCACGAGC AGCTTACCGA GGGTGTCCC GGTGACAACG CGTGAAGAAC GTCTCCGTCA AGGATATCCG CCGTGGCAAC ACTCCAAGAA CGACCCCCC GCTGCTGCCG CCTCTTTCCA ATTGTCCTCA ACCACCCCG CCAGATCGGT GCTGGTTACG TGACTGCCAC ACTGCCCACA TTGCTTGCAA GTTCCCCAGA AGATCGACCG CCGTACCGAC ACTGCACACG AGATCGACCG CCGTACCGAC ACTGCCCACA AGTTCGCCAC ACTGCCCACA TTGCTTGCAA GTTCCCCAGA AGATCGACCG CCGTACCGAC ACTGCCCACA ACTGCCCACA AGATCGACCG CCGTACCGAC ACTGCTCCAACCCCACA AGATCGACCC CCGTACCGAC ACTGCTCCAACCCCACA AGATCGACCC CCGTACCGAC ACTGCTCCAACCCCACA AGATCGACCC CCGTACCGGT AAGTCGGTCG AGAACAACCC AAGTCTGGTG ATGCCCCACA TTGCTTGCAA GTTCCCCTCCA AGATCGACCC CCGTACCGGT AAGTCGGTCG AGAACAACCC AAGTCTGGTG ATGCCCCACA TTGCTTACAA GTTCCCCTCCA AGATCGACCC CCGTACCGGT AAGTCGGTCG AGAACAACCC AAGTCTGGTG ATGCCCCACA TTGCTTACAA GTTCCCCTCCA AGATCGACCC CCGTACCGGT AAGTCGGTC AGAACAACCC AAGTCTGGTG ATGCCCCACA TTGCTTACAA GTTCCCCTCCA AGTTCGACTAC CTCCACAT CCGTCAAGATC GTTCCCTCCA AGTTCGACTCC CCGTACCGGT AAGTCCGCTCT CGGTCGTTTC	GGAAGTTCGA GACCCCCAAG TACCAGGTCA CCGTCATTG TGCTTTTTGT GCTTTTTGTG CCTGTGCCTC GCACAATTCC AGCCCTCGAT AATTATGAAC CTCGTACTAA TATGTCGTTC TCCCACTACC CCGGCCATC GTGATTTCAT CAAGAACATG TTCCCAGGT TGATTGCGCC ATTCTCATCA TTGCCTCCGG TACTGGTGAG GCATCTCCAA GGATGGCCAG ACCCGTGAGC CTCGGTGTCA AGAACCTCAT TGTTGCCATC CTGGTGTCA AGAACCTCAT TGTTGCCATC CTGGTCCAG GACCGATACA CCCAAGGAGCC CTCGGTGTCA AGAACCTCAT TGTTGCCATC CAAGAAGAC CTCGAGGCAG CCCAAGGACC CTCGTTCCAC CTCGGTGTCA AGAACCTCAT TGTTGCCATC CAAGAAGAC CTCGATCCAA CCCAAGGCCG CCCAAGCACA CCCAAGGCCG TCCACCAACT CCCACCAACT CCAAGAACC CCCAAGGCCG CCCAAGCGTC CCCACCAACT CCCACCAACT CCCACCAACT CCCACCAACT CCCCTCCGTC TTCCCCTCCAC CCCACCCCC CCAAGCGTCC CACCGAGAAC CCCCCCCCC CCAAGCGTCC CCCCCCCCC CCAAGCGTC CACCGAGAC CCCCCCCC CCAAGCGTC CCCCCCCC CCCACCACC CCCCCCCC CCCAAGCCCC CCCAAGCCCC CCCAAGCCCC CCCCCCCC

- 2) INFORMATION FOR SEQ ID NO: 450
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1095 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 55 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
- 60 (A) ORGANISM: Rhizopus oryzae

## (B) STRAIN: ATCC 56015

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 450

_	CARCOTTARC	GCTGAACGTG	AACGTGGTAT	CACCATCGAT	ATTGCTCTCT	50
5	CAAGCTTAAG	AACCCCCAAG	TACCAAATTA	CCGTTATTGA	TGCTCCCGGT	100
	GGAAGTTCGA	TCATCAAGAA	CATGATTACC	GGTACTTCTC	AAGCCGATTG	150
	CACCGTGATT	ATCATTGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
	TGCTATTCTT	TCAAACCCGT	GAACACGCCC	TTTTGGCTTT	CACTCTCGGT	250
	CCAAGGATGG	TGATTGTTGC	TGTCAACAAG	ATGGATACCA	CCAAGTGGTC	300
10	GTCCGTCAAT	TTCAACGAAA	TYGTCAAGGA	AGTTTCTTCC	TTCATCAAGA	350
	CGAAGCTCGT	CAACCCCAAG	TCTGTTCCCT	TCGTCCCCAT	CTCTGGTTGG	400
	AGATTGGTTA	ACATGTTGGA	AGAATCTACC	AACATGCCCT	GGTACAAGGG	450
	CACGGTGACA	GAAACCAAGG	CTGGTGCCAA	GTCTGGTAAG	ACCCTCTTGG	500
	ATGGAACAAG	CAACATTGAC	CCTCCTACCC	GTCCTGTTGA	CAAGCCTCTC	550
15	ATGCCATTGA	TTCAAGATGT	TTACAAGATT	GGTGGTATCG	GTACTGTCCC	600
	CGTCTTCCTC	GTCGAAACTG	GTGTCATCAA	GGCTGGTATG	GTTGTCACCT	650
	CGTCGGTCGT	TGCTGTCACC	ACTGAAGTTA	AGTCCGTCGA	AATGCACCAC	700
	TCGCTCCTGC	CTGAAGGTCT		AACGTCGGTT	TCAACGTCAA	750
	GAAACCCTCA	GTCAAGGATA	TCCGTCGTGG	TAACGTCTGT	TCTGACTCCA	800
20	GAACGTCTCC		GCCGGTTCCT	TCACCGCTCA	AGTCATTATC	850
	AGAACGACCC		TGGTGCTGGT	TACGCTCCYG	TTTTGGATTG	900
	TTGAACCACC		GTAAGTTCGC		GAAAAGATTG	950
	TCACACTGCT					1000
	ACAGACGTTC					1050
25	GGTGACTCTG					1095
	AGCTTACACT	GACIACCCIC	CICICOGICO	1110001011		

# 30 2) INFORMATION FOR SEQ ID NO: 451

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1092 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Rhodotorula minuta
- (B) STRAIN: ATCC 10658
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 451

					= 0
GCTGAAGGCC	GAGCGAGAGC	GTGGTATCAC	CATCGATATC	GCTCTATGGA	50
AGTTCGAGAC	CCCCAAGTAC	AACGTCACCG	TCATTGACGC	TCCAGGACAT	100
	TCAAGAGTGA	GTTAACCATA	ACATCAAACA	GTGTTGCAAA	150
	TGCATGTTAT	GCGTCCAGAC	ATGATTACTG	GTACTTCCCA	200
GGCCGATTGC	GCTATTCTCA	TCATCGCCAC	CGGTGTTGGT	GAGTTCGAGG	250
CTGGTATCTC	CAAGGATGGC	CAGACCCGAG	AGCACGCCCT	TCTCGCCTTC	300
•	TCAGACAGCT	CATCGTTGCC	TTGAACAAGA	TGGACTCGGT	350
	TAACTTCACA	ACGTCGGCTT	CCCATCATTC	ATTCACTTAC	400
CTGTCTTGTC	TTCCACCCTC	CAGTTCTCCG	AGTCCCGATA	CGATGAAATC	450
GTCAAGGAGA	CATCCGGTTT	CATCAAGAAG	GTCGGATTCG	ACCCCAAGGG	500
TGTTCCCTTC	GTCCCCATCT	CAGGATGGCA	CGGAGACAAC	ATGATCGAGG	550
	CATGCCTTGG	TACAAGGGAT	GGAAGAAGAC	CACCAAGACC	600
	AGGGAAAGAC	CCTGCTCGAG	GCCATCGACT	CCATCGAGCC	650
CCCCACCCGT	CCTACCGACA	AGCCTCTCCG	ACTTCCCCTC	CAGGATGTCT	700
ACAAGATTGG	TGGTATCGGA	ACAGTGCCAG	TCGGACGAGT	CGAGACTGGT	750
	AGTTCGAGAC CGTGATTTCA CATCAGCTAA GGCCGATTGC CTGGTATCTC ACCCTCGGTG CAAGGTAGGC CTGTCTTGTC GTCAAGGAGA TGTTCCCTTC AGTCCACCAA GGCGAGTACA CCCCACCCGT	AGTTCGAGAC CCCCAAGTAC CGTGATTTCA TCAAGAGTGA CATCAGCTAA TGCATGTTAT GGCCGATTGC GCTATTCTCA CTGGTATCTC CAAGGATGGC ACCCTCGGTG TCAGACAGCT CAAGGTAGGC TAACTTCACA CTGTCTTGTC TTCCACCCTC GTCAAGGAGA CATCCGGTTT TGTTCCCTTC GTCCCATCT AGTCCACCAA CATGCCTTGG GGCGAGTACA AGGGAAAGAC CCCCACCCGT CCTACCGACA	AGTTCGAGAC CCCCAAGTAC AACGTCACCG CGTGATTTCA TCAAGAGTGA GTTAACCATA CATCAGCTAA TGCATGTTAT GCGTCCAGAC GGCCGATTGC GCTATTCTCA TCATCGCCAC CTGGTATCTC CAAGGATGGC CAGACCCGAG ACCCTCGGTG TCAGACAGCT CATCGTTGCC CAAGGTAGGC TAACTTCACA ACGTCGGCTT CTGTCTTGTC TTCCACCCTC CAGTTCTCCG GTCAAGGAGA CATCCGGTTT CATCAAGAAG TGTTCCCTTC GTCCCCATCT CAGGATGGCA AGTCCACCAA CATGCCTTGG TACAAGGGAT GGCGAGTACA AGGGAAAGAC CCTGCTCGAG CCCCACCCGT CCTACCGACA AGCCTCTCCG	AGTTCGAGGC CCCCAAGTAC AACGTCACCG TCATTGACGC CGTGATTTCA TCAAGAGTGA GTTAACCATA ACATCAAACA CATCAGCTAA TGCATGTTAT GCGTCCAGAC ATGATTACTG GGCCGATTGC GCTATTCTCA TCATCGCCAC CGGTGTTGGT CAGGCAGCT CAGCCCGAG AGCACGCCCT ACCCTCGGTG TCAGACAGCT CATCGTTGCC TTGAACAAGA CAGGTAGGC TAACTTCACA ACGTCGGCTT CCCATCATTC CTGTCTTGTC TTCCACCCTC CAGTTCTCCG AGTCCCGATA GTCAAGGAGA CATCCGGTTT CATCAAGAAG GTCGGATTCG TGTTCCCTTC GTCCCCATCT CAGGATGGCA CGGAGACAAC AGTCCACAA CATGCCTTGG TACAAGGAGT GGAAGAAGAC CCCCACCCGT CCTACCGACA AGCCTCCCG ACTTCCCCTC	AGTTCGAGAC CCCCAAGTAC AACGTCACCG TCATTGACGC TCCAGGACAT CGTGATTTCA TCAAGAGTGA GTTAACCATA ACATCAAACA GTGTTGCAAA CATCAGCTAA TGCATGTTAT GCGTCCAGAC ATGATTACTG GTACTTCCCA GGCCGATTGC CAAGGATGGC CAGACCCGAG AGCACGCCCT TCTCGCCTTC ACCCTCGGTG TCAGACAGCT CATCGTTGCC TTGAACAAGA TGGACTCGGT CAAGGTAGGC TAACTTCACA ACGTCGGCTT CCCATCATTC ATTCACTTAC CAGGTAGGC CATCGTTCTC CAGTCTCTCC CAGTCTCTCC CAGTCCTCC CAGTCCTCC CAGTCCTCC CAGTCCTCC CAGTCCTCC AGTCCCGATA CGATGAAATC CATCAAGAAG GTCGGATTCG ACCCCAAGGG AGTCCCAAC ATGATCGAGG AGTCCCAAC CATCCGTTT CAGAAGAGA GTCGGATAC ACCCCAAGGG AGTCCACAA CATGCCTTGG TACAAGGGAT GGAAGAAGAC CACCAAGACC CCCCACCCGT CCTACCGACA AGCCTCTCCG ACTTCCCCTC CAGGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATGTCT CAGATAAAAAAAAAA

	ACCATCAAGG	CTGGTATGGT	CGTCACCTTC	GCTCCTTCAG	CTGTCACCAC	800
	CCAACTCAAG	TCTGTTGAGA	TGCACCACGA	GCAGCTCGAG	GCTGGTCTTC	850
	CAGGTGACAA	CGTCGGATTC	AACATCAAGA	ACGTTTCAGT	CAAGGATATC	900
	CCAAGAGGAA	ACGTCTGCGG	TGACTCCAAG	AACGATCCCC	CCAAGGAGGC	950
5	TECTTCCTTC	ACCGCCCAGG	TCATTGTCCT	CAACCACCCC	GGTCAAATCG	1000
,	GTAACGGATA	CTCTCCAGTT	CTCGATTGCC	ACACTGGTGA	GTCATTCTTC	1050
	CATATTAGTT	TGAACTCTTT	TGAACAATAC	TAACGTGAAT	CATTATACTT	1100
	TTCAGCCCAC	ATTGCATGCA	AGTTCGACAC	CCTCCTAGAG	AAGATTGACC	1150
	GACGATCCGG	AAAGTCCATC	GAAGATACCC	CCAAGTTCGT	CAAGTCTGGT	1200
10	GACGCCGCCA	TCGTCAAGAT	GGTCCCCACC	AAGCCAATGT	GCGTTGAGGC	1250
	TTTCACCGAC	TACCCACCTC	TTGGACGATT	CGCCGTCCGT	GA	1292

# 15 2) INFORMATION FOR SEQ ID NO: 452

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1289 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi)ORIGINAL SOURCE:

20

- (A) ORGANISM: Sporobolomyces salmonicolor
- (B) STRAIN: ATCC 32311
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452

	(2017) 01001					
30 .	AAGCTCAAGG	CCGAGCGTGA	CCCTCCTATC	ACCATCGATA	TCGCTCTCTG	50
	GAAGTTCGAG	ACCCCCAAGG	TGCGTTCTCA	CCCCGGCTGA	GGAGCACGCA	100
		CACGCTGCGC	CTCTTACAGT	ACATGATCAC	CGTCATCGAC	150
	CGCGAGGGCT	ACCGTGACTT	CATCAAGAAC	ATGATCACCG	GTACCTCGCA	200
	GCCCCGGGTC	GCCATCCTCA	TCATCGCCGC	CGGTACCGGT	GAGTTCGAGG	250
35	GGCCGACTGC		CAGACCCGCG	AGCACGCCCT	CCTCGCCTTC	300
	CTGGTATCTC	GAAGGACGGC	•••••		TGGACACGAC	350 350
	ACCCTCGGTG	TCCGTCAGCT	CATCGTCGCC	ATCAACAAGA		
	CAAGTACTCG	GAGGCCCGTT	TCGAGGAGAT	CATCAAGGAG	ACCTCCAACT	400
	TCATCAAGAA	GGTCGGCTTC	AACCCCAAGA	ACGTCCCCTT	CGTCCCCATC	450
40	TCGGGATGGC	ACGGTGACAA	CATGATTGAG	GAGACCGCCA	ACATGCCCTG	500
	GTACAAGGGA	TGGAAGAAGG	AGACCAAGGC	CGGTGAGGTC	AAGGGCAAGA	550
	CCCTCCTCGA	CGCCATCGAC	GCGATCGAGC	CCCCTTCGCG	CCCTACCGAC	600
	AAGCCCCTCC	GTCTTCCCCT	CCAGGTTCGT	TTCCCTGCTC	GCGGTTTACG	650
	CTGCTACTTC	GAGCTGACCC	GCGAGCTCTG	CCCGAACAGG	ATGTCTACAA	700
45	GATCGGTGGT	ATCGGCACAG		CCGTGTCGAG	ACCGGCACGA	750
	TCAAGGCCGG	TATGGTCGTC	GTCTTCGCCC	CGGCCAACGT	CACCACTGAG	800
	GTCAAGTCGG	TCGAGATGCA	CCACGAGCAG	CTCGAGGCTG	GTCTCCCGGG	850
	AGACAACGTC	GGCTTCAAGT	GCGTCTCATC	ATGTTTTTGC	TTCGCTCGGC	900
	CATTTTTTCA	GTCCTGACCC	CGTTTTGCCC	CTCGACAGCG	TCAAGAACGT	950
50	TTCCGTTAAG	GACATCCGTC	GCGGTAACGT	CTGCGGTGAC	TCGAAGAACG	1000
	ACCCCCCAA	GGAGGCCGCT	TCCTTCAAGG	CCCAGGTCAT	CGTCATGAAC	1050
	CACCCCGGTC	AGATCGGCAA	CGGTTACGCT	CCCGTTCTCG	ACTGCCACAC	1100
	CGCCCACATT	GCCTGCAAGT	TCGACACCCT	CCTCGAGAAG	ATCGACCGTC	1150
	GCTCGGGCAA	GTCGATTGAG	GACCTCCCCA	AGTTCGTCAA	GTCGGGTGAC	1200
55	GCCGCCATCG	TCAAGATGGT.	TCCCTCCAAG	CCGATGTGTG	TCGAGTCGTT	1250
	CGCCGAGTAC	CCCCCTCTCG	GACGTTTCGC	CGTCCGTGA		1289

60 2) INFORMATION FOR SEQ ID NO: 453

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1070 bases	
	(B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
_	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Sporothrix schenckii	
	(B) STRAIN: WSA-148	
	TD NO. 452	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 453	
15	THE TAX THE COME TO THE CONTRACT CONTRACT CONTRACTOR	50
	GTGAGCGCGG TATCACCATC GATATTGCTC TGTGGAAGTT CGAGACCCCC	100
	AAGTACTACG TCACCGTCAT TGACGCCCCC GGTCATCGCG ATTTCATCAA	150
	GAACATGATC ACTGGTACCT CGCAGGCCGA CTGCGCCATT CTCATCATTG	200
	CCGCTGGTAC TGGTGAGTTC GAGGCTGGTA TCTCCAAGGA TGGCCAGACT CGTGAGCACG CTCTGCTCGC CTACACCCTG GGTGTGCGGC AGCTGATCGT	250
20	CGTGAGCACG CTCTGCTCGC CTACACCCTG GGTGTGCGGCT ACCTTACCAGG CGCCATCAAC AAGATGGACA CGGCCAAGTG GGCTGAGGCT CGTTACCAGG	300
	CGCCATCAAC AAGATGGACA CGGCCAAGTG GGCTAGAGCGCC CTACAACCCC AGATCATCAA GGAGACCTCC AACTTCATCA AGAAGGTCGG CTACAACCCC	350
	AGATCATCAA GGAGACCICC AACITCATCA ATTCCACGGCG ACAACATGCT AAGACTGTTG CCTTCGTCCC CATCTCGGGC TTCCACGGCG ACAACATGCT	400
	TACTCCCTCG ACCAACTGCC CCTGGTACAA GGGCTGGGAG AAGGAGGGCA	450
	AGAGCGGCAA GGTTACCGGT AAGACTCTGC TGGACGCCAT TGACGCCGTC	500
25	ARCCCCCA ACCCCCCAC GGACAAGCCC CTGCGTCTGC CCCTCCAGGA	550
	TOTAL AND ATCHCCCCTA TOGGCACTGT CCCTGTCGGC CGTATCGAGA	600
	CECCECTCCT CAACCCCGC ATGGTCGTCA CCTTTGCCCC GTCCAACGTC	650
	ACCACTCAAC TCAACTCCGT CGAGATGCAC CACGAGCAGC TTGTTGAGGG	700
30	TOTTCCCCCC CACAACGTCG GCTTCAACGT CAAGAACGTC TCCGTCAAGG	750
30	ACARCCCTCC TCCCAACGTT GCCGGTGACT CCAAGAACGA CCCCCCCCCC	800
	CCCCCCCCA CCTTCAACGC CCAGGTCATT GTCCTGAACC ACCCCGGCCA	850
	CCTCCCCAAC CCCTACCCCC CGGTTCTGGA CTGCCACACC GCCCACATTG	900
	CCTCCAACTT CACCGAGATC CTTGAGAAGA TCGACCGCCG TACCGGCAAG	950
35	TOCOTTON ON ACANCOCCAN GITCATCANG TCGGGTGACG CCGCCATIGI	1000
	CAAGCTGACG CCCTCGAAGC CCATGTGCGT TGAGGCCTTC ACTGACTACC	1050
	CCCCTCTGGG CCGTTTCGCC	1070
40	TO THE TOTAL TON THE STORY AND	
	2) INFORMATION FOR SEQ ID NO: 454	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1092 bases	
4.5	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(b) 10102001. 22042	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(22/110220011 - 1 - 1 - 1	
30	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Stephanoascus ciferrii	
	(B) STRAIN: ATCC 52550	
	· ·	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 454	
	CTTAAGTCTG AGCGTGAGAG AGGTATCACC ATCGATATTG CTCTCTGGAA	50
	ATTCGAGACT CCTAAGTACA ACGTTACCGT CATTGATGCT CCAGGTCACA	100
	GAGATTTCAT CAAGAACATG ATTACTGGTA CCTCCCAGGC CGATCTTGCC	150 200
60	ATCCTTATCA TTGCTGGTGG TGTCGGTGAG TTCGAGGCTG GTATCTCCAA	200

	GGACGGTCAG	ACCAGAGAGC	ACGCTCTTCT	TTCTTTCACC	CTTGGTGTCA	250
	GAAACATGAT	TGTTGCTGTC	AACAAGATGG	ACTCCGTCAA	GTGGTCTGAG	300
	GATCGTTTCA	ACGAAATTGT	CAAGGAGACC	TCCAACTTCG	TCAAGAAGGT	350
	TGGTTACAAC	CCTAAGAATA	TTGCTTTCGT	TCCTATCTCC	GGTTGGAACG	400
5	GTGACAATAT	GATTGAGCCA	TCCACCAACT	GCCCATGGTA	CAAGGGTTGG	450
_	GAGCGTGAGA	CCAAGAACGG	TACTGCCAAG	GGTAAGACCA	TCTTGGAGGC	500
	CATTGACTCT	ATGGAGCCAC	CTTCCAGACC	AGTTGACAAG	CCTCTCCGTC	550
	TTCCTCTTCA	GGACGTTTAC	AAGATTGGTG	GTATTGGTAC	GGTGCCAGTT	600
	GGTCGTGTTG	AGACTGGTGT	TATCAAGCCA	GGTATGGTTG	TTACCTTTGC	650
10	CCCAGCTGGT	GTCACCACTG	AAGTCAAGTC	TGTCGAGATG	CACCACGAAC	700
	AGATCCCAGA	AGGTACCCCA	GGTGACAACG	TTGGTTTCAA	CGTCAAGAAC	750
	GTCTCCGTCA	AGGAAATCAG	ACGTGGTAAC	GTTACTGGTG	ACTCCAAGAA	800
	CGACCCACCA	AAGGGCTGCG	ACTCTTTCAA	CGCTCAGGTC	ATCATCTTCA	850
	ACCACCCTGG	TCAGATCTCT	GCTGGTTACG	CTCCAGTTTT	GGACTGCCAC	900
15	ACTGCTCACA	TTGCTTGCAA	GTTTGAGGAG	CTCATTGAGA	AGATTGACAG	950
	ACGTTCCGGT	AAGAAGGTCG	AAGACTCTCC	TAAGTTCGTC	AAGGCCGGTG	1000
	ATGCCGCCAT	TGTCAAGATG	GTTCCATCCA	AGCCAATGTG	TGTTGAAACC	1050
	TTCACTGAGT	ACCCACCTCT	TGGTCGTTTC	GCCGTCCGTG	AC	1092
20						
20						
	2) INFORMAT	ION FOR SEQ	ID NO: 455			
	(i)SEQUE	ENCE CHARACT	TERISTICS:			

- (A) LENGTH: 1149 bases
- (B) TYPE: Nucleic acid
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 30
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Trichophyton mentagrophytes
    - (B) STRAIN: WSA-225

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 455

	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	GGAAGTTCGA	50
	GACCCCCAAG	TACAATGTCA	CCGTCATTGG	TATGTTTTCT	CTTTACCTTT	100
40	CCCCTCCATC	GTCTTGCTGT	GCCATAACTA	ACGAGAGTAG	ACGCCCCCGG	150
	TCACCGTGAC	TTCATCAAGA	ACATGATCAC	TGGTACCTCC	CAGGCCGACT	200
	GTGCTATTCT	CATCATTGCT	GCCGGTACTG	GTGAGTTCGA	GGCTGGTATC	250
	TCCAAGGATG	GCCAGACCCG	TGAGCACGCT	CTGCTCGCCT	TCACCCTTGG	300
	TGTCAAGCAG	CTCATCGTTG	CCATCAACAA	GATGGACACC	ACCAACTGGT	350
45	CCGAGGACCG	TTTCAAGGAA	ATCATCAAGG	AAGTCACCAA	CTTCATCAAG	400
	AAGGTTGGCT	ACGACCCCAA	GGGTGTTCCA	TTCGTTCCAA	TCTCTGGTTT	450
	CAACGGTGAC	AACATGATTG	AGGCCTCCAC	CAACTGCCCA	TGGTACAAGG	500
	GATGGAACAA	GGAGACTAAG	GCCGGTGGTG	CCAAGACTGG	CAAGACCCTC	550
	CTCGAGGCCA	TCGATGCCAT	CGACATGCCA	ACCCGTCCTA	CCGACAAGCC	600
50	CCTCCGTCTC	CCACTCCAGG	ATGTCTACAA	GATCTCTGGT	ATCGGAACTG	650
	TACCAGTCGG	TCGTGTTGAG	ACCGGTATCA	TCAAGCCCGG	TATGGTCGTC	700
	ACCTTCGCCC	CTGCCAACGT	CACCACTGAA	GTCAAGTCCG	TCGAAATGCA	750 750
	CCACCAGCAG	CTTCAGCAGG	GTGTCCCCGG	TGACAACGTC	GGCTTCAACG	800
	TCAAGAACGT	TTCCGTCAAG	GAAGTCCGCC	GTGGTAACGT	TGCCGGTGAC	850
55	TCCAAGAACG	ACCCACCATC	CGGCTGTGCC	TCCTTCAACG	CCCAGGTCAT	900
<b>J</b> J	CGTCCTCAAC	CACCCCGGCC	AGATCGGTGC	TGGTTACGCC	CCAGTCCTCG	950 950
	ACTGCCACAC	TGCTCACATT	GCTTGCAAGT	TCGCTGAGCT	CCTCGAGAAG	1000
	ATTGACCGCC	GTACCGGTAA	ATCCGTCGAA	GCCAACCCCA	AGTTCGTCAA	
	GTCTGGTGAT	GCCGCTATCG	CCAAGATGGT	TCCCTCCAAG	CCTATGTGCG	1050
60	TTGAGGCTTT	CACTGACTAC	CCCCCACTTG			1100
30	TIGMOGCITI	CACIGACIAC	CCCCCHCTTG	GTCGTTTCGC	CGTCCGTGA	1149

	2) INFORMATION FOR SEQ ID NO: 456	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1101 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(-)	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Trichosporon cutaneum	
15	(A) ORGANISM: Trichospoton cutaneum (B) STRAIN: ATCC 62965	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 456	
20	TOTAL CARG CETARAGETG AACGTGAACG TGGTATCACC ATTGATATCG	50
20	THE PROPERTY AND THE PR	100 150
	CTCTCTGGAA GIICGAAACI CCIAAGAACATG ATTACTGGTA CTTCCCAAGC CCAGGTCACC GTGATTTCAT CAAGAACATG ATTACTGGTA TTCGAAGCTG CGACTGCGCC ATTCTTATCA TTGCTGCCGG TGTCGGTGAA TTCGAAGCTG	200
		250
25		300
20	THE CONTRACT TO A CARRY TO A CARRY TO A A CARRY TO CARRY	350 400
	TO A COR TOCTTACAAC CCCAAGTCTG TTCCATTCG1 ICCIAICICI	450
	GGTTGGAACG GTGACAACAT GTTGGAACCT ACCACCAACG CCCCATGGTA CAAGGGATGG ACCAAGGAAA CCAAGGCTGG TGCCACTAAG GGTATGACTC	.500
20	MEN MEGA ACC CATTCACCCC ATTGAACCAC CAGTAAGACC ATCCGACAAG	550
30	CONCECCE TECCNETCEN AGATETTAC AAGATTGGTG GTATEGGAAC	600
	MCMCCCACTC CCCCCTCTCG AAACCGGTAT CATCAAGGCC GGTAIGGICG	650 700
	TCACCTTTGC TCCACCAATG GTCACAACTG AAGTTAAGTC CGTTGAAATG	750 750
	CACCACGAAC AACTTGCTCA AGGTAACCCA GGTGACAACG TTGGTTTCAA CGTCAAGAAC GTTTCCGTTA AGGAAATCAG ACGTGGTAAC GTCTGTGGTG	800
35	ACTION ACAN CONTICACON ANGIGETTECA ACTUALITY	850
	AMOGREGATION ACCACCCTEG TCAAATCTCT GCTGGTTACT CTCCAGIICI	900
	CONTROCCOR C ACTGCCCACA TTGCCTGCAG ATTCGACGAA CTCCTIGAAA	950
	ACATICACCE TESTTEEST AAGAAGATTG AAGACTETEE AAAGTTTGTE	1000 1050
40	AGATCGACCO TOTAL CONTRACTOR ATCCCAACCA AGCCAATGTG AGGTCTGGTG ATGCCGCTAT CGTCAAGATG ATCCCAACCA AGCCAATGTG CGTTGAAACC TTCACTGAAT ACCCACCACT TGGTCGTTTC GCCGTCCGTG	1100
	A	1101
45		
	2) INFORMATION FOR SEQ ID NO: 457	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1085 bases	
50	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	/	
- <del>-</del>	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Wangiella dermatitidis	
	(B) STRAIN: WSA-229	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 457	
υo	(XI) SEQUENCE DESCRIPTION. DOG 10 100	

	GTTGAAGGCC	GAGCGTGAGC	GTGGTATCAC	CATCGATATC	GCCCTCTGGA	50
	AGTTCGAGAC	CCCCAAGTAC	TATGTCACCG	TCATCGACGC	CCCGGGTCAT	100
	CGTGACTTTA	TCAAGAACAT	GATCACTGGT	ACCTCGCAGG	CCGACTGCGC	150
5	CATCTTGATC	ATTGCCGCCG	GTACCGGTGA	ATTCGAAGCC	GGTATCTCCA	200
	AGGATGGTCA	GACCCGTGAG	CACGCTCTGC	TCGCCTACAC	CTTGGGTGTC	250
	AAGCAGCTCA	TCGTCGCCAT	CAACAAGATG	GACACCACCA	AGTGGTCCGA	300
	GGAGCGTTTC	AACGAAATCA	TCAAGGAGAC	TTCCAACTTC	ATCAAGAAGG	350
	TCGGCTACAA	CCCCAAGGCC	GTTCCTTTCG	TCCCCATCTC	CGGCTTCAAC	400
10	GGTGACAACA	TGATTGAGGT	CTCCACCAAC	TGCCCGTGGT	ACAAGGGATG	450
	GGAGAAGGAG	TCCAAGGCTG	GCAAGGCCAC	CGGCAAGACC	CTCCTCGAGG	500
	CCATTGACGC	CATCGACCCA	CCCACCCGTC	CCACCGACAA	GCCTCTCCGT	550
	CTCCCTCTCC	AGGATGTCTA	CAAGATCTCT	GGTATCGGAA	CGGTTCCTGT	600
	CGGTCGTGTC	GAGACCGGTA	CCATCAAGGC	CGGTATGGTC	GTCACCTTCG	650
15	CTCCGGCCAA	CGTCACCACT	GAAGTCAAGT	CCGTCGAAAT	GCACCACGAG	700
	CAGCTCGCCG	AGGGTCTGCC	AGGTGACAAC	GTTGGCTTCA	ACGTCAAGAA	750
	CGTCTCCGTC	AAGGAGGTTC	GTCGTGGTAA	CGTTGCCGGT	GACTCCAAGA	800
	ACGACCCGCC	CAAGGGTGCC	GAGTCCTTCA	ACGCCCAGGT	CATTGTCCTC	850
	AACCACCCTG	GTCAGATCGG	TGCCGGCTAC	GCTCCAGTCT	TGGATTGCCA	900
20	CACTGCCCAC	ATTGCTTGCA	AGTTCGCCGA	GTTGCTCGAG	AAGATCGACC	950
	GTCGTACCGG	AAAGTCCATC	GAGAACAACC	CCAAGTTCAT	CAAGTCTGGT	1000
	GATGCTGCCA	TCGTCAAGAT	GATTCCCAGC	AAGCCCATGT	GTGTCGAGGC	1050
	TTTCACCGAC	TATCCTCCTC	TGGGTCGTTT	CGCTG		1085
25						

30

## 2) INFORMATION FOR SEQ ID NO: 458

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 492 bases
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 35

#### (vi)ORIGINAL SOURCE:

- ORGANISM: Aspergillus fumigatus (A)
- (B) STRAIN: DAL-95

40

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 458

	TGTCTTCATC	CGGAATTGAT	TGTGAGTCGT	TCCACATGCT	CACCTAGTTT	50
	TCGCTCGATC	TTTTCACTAA	CGCAAACCAT	GTAGAACAAC	ATTGCCAAGG	100
45	CCCACGGTGG	TTACTCCGTC	TTCACTGGTG	TTGGTGAGCG	TACTCGTGAG	150
	GGTAACGATC	TGTACCACGA	AATGCAGGAG	ACTGGTGTCA	TTCAGCTCGA	200
	GGGTGAATCC	AAGGTCGCAC	TGGTGTTCGG	ACAGATGAAC	GAGCCCCCG	250
	GTGCCCGTGC	CCGTGTCGCC	CTTACCGGTC	TGACCATTGC	CGAGTACTTC	300
		AGGGTCAGGA				350
50	TTTCACCCAG	GCCGGTTCTG	AGGTGTCTGC	CCTTCTCGGT	CGTATCCCCT	400
	CTGCCGTCGG	TTACCAGCCC	ACCCTGGCCG	TCGACATGGG	TGGTATGCAG	450
	GAGCGTATCA	CCACCACCAA	GAAGGGTTCT	ATTACCTCCG	TC	492

55

# 2) INFORMATION FOR SEQ ID NO: 459

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1154 bases
- 60 (B) TYPE: Nucleic acid

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Blastoschizomyces capitatus
  - (B) STRAIN: ATCC 10663
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 459

	GTCCGTGGTC	AAGAAGTTAT	TGACACTGGT	GCCCCAATTA	CCATTCCTGT	50
	TGGTCGTGGT	ACTCTTGGTA	GAATTATCAA	CGTCATTGGT	GAACCAATTG	100
	ACGAACGTGG	TCCTATCAAG	GCTTCTAAGT	ATGCTCCTAT	CCATACTGAA	150
15	CCACCAACCT	TTGCTGAACA	ATCTACTTCT	GCTGAAGTTC	TTGAAACTGG	200
	TATCAAGGTT	GTCGATCTTC	TTGCTCCTTA	CGCCCGTGGT	GGTAAGATTG	250
	GTCTTTTCGG	TGGTGCTGGT	GTCGGTAAGA	CTGTCTTCAT	TCAAGAACTT	300
	ATTAACAACA	TTGCCAAGGC	TCACGGTGGT	TTCTCTGTCT	TCACTGGTGT	350
	CGGTGAAAGA	ACCCGTGAAG	GTAACGATCT	TTACCGTGAA	ATGAAGGAAA	400
20	CTGGTGTCAT	CAACCTCGAA	GGTGACTCCA	AGGTCGCTCT	CGTTTTCGGT	450
	CAAATGAACG	AACCTCCAGG	TGCCCGTGCC	CGTGTCGCTT	TGACTGGTCT	500
	TACCATTGCC	GAATACTTCC	GTGATGAAGA	AGGACAAGAT	GTCTTGCTTT	550
	TCGTTGACAA	CATTTTCAGA	TTCACCCAAG	CCGGTTCTGA	AGTCTCTGCT	600
	CTTTTGGGTC	GTATTCCATC	TGCCGTCGGT	TACCAACCTA	CCCTTGCTAC	650
25	CGATATGGGT	GCCCTCCAAG	AACGTATTAC	CACCACCCAA	AAGGGTTCCG	700
	TCACATCTGT	CCAAGCCGTC	TATGTCCCAG	CAGACGATTT	GACTGATCCT	750
	GCCCCAGCCA	CCACTTTCGC	TCACTTGGAC	GCCACCACTG	TCTTGTCTCG	800
	TTCCATTTCC	GAATTGGGTA	TCTACCCAGC	TGTCGATCCT	CTCGATTCCA	850
	AGTCTCGTCT	TTTGGATCCT	GAAGTTATTG	GACACGAACA	CTACGAAGTT	900
30	GCCACTCAAG	TTCAACAAAC	CCTCCAAGCT	TACAAGTCTC	TCCAAGATAT	950
	CATTGCCATT	TTGGGTATGG	ATGAATTGTC	TGAAGCTGAT	AAGCTTACTG	1000
	TCGAACGTGC	CCGTAAGATC	CAAAGATTCC	TTTCCCAACC	ATTCGCTGTT	1050
	GCCGAAGTTT	TCACTGGTAT	CGAAGGTCGT	CTCGTTCCAT	TGAAGGAAAC	1100
	CGTCAGATCT	TTCAAGGAAA	TCCTTGAAGG	TAAGTACGAT	CACCTTCCAG	1150
35	AAGC					1154

### 2) INFORMATION FOR SEQ ID NO: 460

40

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1295 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 45 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida albicans
    - (B) STRAIN: ATCC 18804
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 460

55	CCAATTCGAC	GAAGGAAACT	TGCCAGCTAT	TTTGAATGCT	TTGACTTTGA	50
	AGAACGGTGA	CCAAGACTTG	GTCTTGGAAG	TTGCTCAACA	TTTGGGTGAA	100
	AACACCGTCA	GAGCTATTGC	TATGGATGGT	ACTGAAGGTT	TAGTCAGAGG	150
	TACCGAAGTC	AACGATACCG	GTGCCCCAAT	CTCCGTCCCA	GTCGGTAGAG	200
	GTACTTTAGG	TAGAATCATC	AATGTTGTTG	GTGAACCAAT	TGATGACAGA	250
60	CCTCCAATTC	AATGTAAGGA	AAAGAAACCA	ATTCACGCTG	AACCACCATC	. 300

	ATTCGTTGAA	CAATCCACTG	CTGCCGARAT	TTTGGAAACC	GGTATCAAGG	350
	TTGTCGACTT	GTTGGCCCCA	TACGCCAGAG	GTGGTAARAT	TGGTTTATTC	400
	GGTGGTGCTG	GTGTCGGTAA	GACCGTCTTT	ATCCAAGAAT	TGATTAACAA	450
	CATTGCCAAA	GCCCATGGTG	GTTTCTCTGT	CTTTACCGGT	GTYGGTGAAA	500
5	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAAGA	AACCGGTGTC	550
_	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCT	TTGGTCTTCG	GTCAAATGAA	600
	CGAACCACCA	GGTGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650
	CTGAATACTT	CAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	GTTCATTGAT	700
	AACATTTTCA	GATTCACCCA	AGCTGGTTCC	GAAGTGTCTG	CTTTGTTAGG	750
10	TCGTATTCCA	TCTGCTGTCG	GTTATCAACC	AACCTTAGCC	ACTGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACCACCA	AGAAAGGTTC	CGTCACCTCT	850
	GTCCAAGCTG	TCTATGTCCC	AGCTGATGAT	TTGACCGATC	CTGCTCCAGC	900
	CACTACATTC	GCCCATTTGG	ATGCCACTAC	TGTCTTGTCT	AGAGGTATTT	950
	CTGAATTGGG	TATCTACCCA	GCTGTCGATC	CATTGGATTC	CAAATCCAGA	1000
15	TTATTGGACG	CTTCTGTTGT	TGGTCAAGAA	CATTACGATG	TCGCTACTGG	1050
	TGTTCAACAA	ACTTTACAAG	CTTACAAATC	CTTACAAGAT	ATCATTGCTA	. 1100
	TTTTGGGTAT	GGATGAATTG	TCTGAAGCTG	ATAAATTGAC	TGTCGAAAGA	1150
	GCCCGTAAGA	TCCAAAGATT	CTTGTCTCAA	CCATTCGCTG	TTGCTGAAGT	1200
	TTTCACTGGT	ATCCCAGGTA	GATTAGTCAG	ATTGCAAGAC	ACTGTCAAAT	1250
20	CATTCAAGGA	TGTTTTGGAA	GGTAAATACG	ATAACTTGCC	AGAAA	1295

## 2) INFORMATION FOR SEQ ID NO: 461

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1277 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear

## (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

35

- (A) ORGANISM: Candida dubliniensis
- (B) STRAIN: NCPF 3949

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 461

40	TAACTTGCCA	GCTATTTTGA	ATGCTTTGAC	TTTGAAGAAC	GGTGACCAAG	50
	ATTTAGTTTT	GGAAGTTGCT	CAACATTTGG	GTGAAAACAC	CGTCAGAGCT	100
	ATTGCTATGG	ATGGTACTGA	AGGTTTAGTC	AGAGGTACTG	AAGTCAACGA	150
	TACCGGTGCC	CCAATCTCCG	TTCCAGTCGG	TAGAGGTACC	TTAGGTAGAA	200
	TCATCAATGT	TGTTGGTGAA	CCAATTGATG	ACAGAGGTCC	AATTGAATGT	250
45	AAGGAAAAGA	AACCAATTCA	TGCAGAACCA	CCATCCTTCG	TTGAGCAATC	300
	CACTGCTGCC	GAAATTTTGG	AAACCGGTAT	CAAGGTTGTC	GACTTATTGG	350
	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	TGCTGGTGTC	400
	GGTAAGACCG	TCTTTATCCA	AGAATTGATT	AACAACATTG	CTAAAGCCCA	450
	TGGTGGTTTC	TCCGTCTTTA	CCGGTGTCGG	TGAAAGAACC	AGAGAAGGTA	500
50	ACGATTTGTA	CCGTGAAATG	AAAGAAACCG	GTGTCATCAA	CTTAGAAGGT	550
	GACTCCAAGG	TCGCTTTGGT	CTTTGGACAA	ATGAACGAAC	CACCAGGTGC	600
	TAGAGCTAGĄ	GTTGCTTTGA	CTGGTTTGAC	TATTGCTGAA	TACTTCAGAG	650
	ATGAAGAAGG	TCAAGATGTC	TTGTTGTTCA	TCGATAACAT	TTTCAGATTC	700
	ACCCAAGCTG	GTTCCGAAGT	GTCTGCTTTG	TTAGGTCGTA	TTCCATCTGC	750
55	CGTCGGTTAT	CAACCAACCT	TAGCTACTGA	TATGGGTCTT	TTGCAAGAAC	800
	GTATTACCAC	CACCAAGAAA	GGTTCCGTCA	CCTCTGTCCA	AGCTGTCTAT	850
	GTCCCAGCTG	ATGATTTGAC	CGATCCTGCT	CCAGCCACCA	CATTCGCCCA	900
	TTTGGATGCC	ACTACTGTCT	TGTCTAGAGG	TATTTCTGAA	TTGGGTATTT	950
	ACCCAGCTGT	CGATCCATTG	GATTCCAAAT	CCAGATTATT	GGACGCTGCC	1000
60	GTTGTTGGTC	AAGAACATTA	TGATGTCGCT	ACTGGTGTTC	AACAAACTTT	1050

5	GCAAGCTTAC AAATCCTTAC AAGATATCAT TGCTATTTTG GGTATGGATG AATTGTCTGA AGCTGATAAA TTGACTGTCG AAAGAGCCCG TAAGATTCAA AGATTCTTGT CTCAACCATT CGCCGTTGCT GAAGTTTTCA CTGGTATTCC AGGTAGATTA GTCAGATTGC AAGACACTGT CAAATCATTC AAGGATGTTT TGGAAGGTAA ATACGATCAC TTGCCAG	1100 1150 1200 1250 1277
10	2) INFORMATION FOR SEQ ID NO: 462  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1278 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Candida famata    (B) STRAIN: ATCC 62894</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 462	
25	GTAACTTGCC AGCTATTTTG AACGCTTTGA CCTTGAAGAA CGGTGAAAAC GACTTAGTTT TAGAAGTTGC CCAACATTTG GGTGAAAACA CCGTCAGAGC TATTGCTATG GATGGTACTG AAGGTTTAGT TAGAGGTACT CCAGTTACCG	50 100 150
30	ATTCTGGTGC TCCAATTTCT GTCCCAGTCG GTAGAGGTAC TTTAGGTAGA ATCTTGAACG TTATTGGTGA ACCAATTGAT GAACAAGGTC CAGTTGATGC CAAGGAAACC AGACCAATTC ACCAAGACCC ACCAGCATTC GTTGATCAAT CCACCAAGGC TGAAGTTTTG GAAACTGGTA TCAAGGTTGT CGATTTATTA GCCCCTTACG CTAGAGGTGG TAAGATTGGT TTATTCGGTG GTGCCGGTGT	200 250 300 350 400
35	CGGTAAGACC GTCTTTATCC AAGAATTGAT TAACAACATT GCCAAGGCCC ATGGTGGTTT CTCTGTTTTC ACTGGTGTCG GTGAAAGAAC CAGAGAAGGT AACGATTTAT ATAGAGAAAT GAAGGAAACT GGTGTCATTA ACTTGGAAGG TGACTCCAAG GTCGCCTTGG TTTTCGGTCA AATGAACGAA CCACCAGGTG CTAGAGCTAG AGTTGCTTTA ACCGGTTTAA CCATTGCCGA ATACTTCAGA	450 500 550 600 650
40	GACGAAGAAG GTCAAGATGT GTTATTGTTC GTCGATAACA TTTTTAGATT CACCCAAGCC GGTTCCGAAG TGTCTGCTTT GTTAGGTCGT ATTCCATCGG CTGTCGGTTA TCAACCAACC TTAGCCACTG ATATGGGTCT TTTACAAGAA AGAATTACCA CCACCAAC GGGTTCCGTT ACTTCTGTCC AAGCTGTCTA CGTCCCAGCC GATGATTTAA CCGATCCTGC TCCAGCTACC ACTTTCGCCC	700 750 800 850 900
45	ACTTGGATGC TACCACTGTG TTGTCTCGTG GTATCTCTGA ATTGGGTATT TACCCAGCTG TCGATCCATT GGATTCCAAA TCCAGATTGT TAGATGCTGA TATCGTTGGT AAAGAACACT ACGAAGTTGC CACTGGTGTC CAACAAACCT TACAAGCTTA CAAATCTTTA CAAGATATCA TTGCTATTTT AGGTATGGAT GAATTGTCTG AAGCCGATAA ATTGACTGTC GAAAGAGCCA GAAAGATCCA	950 1000 1050 1100 1150
50	AAGATTCTTG TCTCAACCAT TCGCCGTTGC CGAAGTTTTC ACCGGTATCC CAGGTAGATT AGTTAGATTG CAAGACACTG TTAAATCTTT CAAGGAAGTC TTAGAAGGTA AATATGATCA CTTACCAG	1200 1250 1278
55	2) INFORMATION FOR SEQ ID NO: 463	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1154 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida glabrata
- (B) STRAIN: ATCC 66032

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 463

10	TCTGGTCAGA	GGCGAGAAGG	TCGTCGACAC	AGGTGCCCCA	ATCTCCGTCC	50
	CTGTCGGCAG	AGAGACCCTG	GGCAGAATCA	TCAACGTTAT	CGGTGAACCT	100
	ATCGACGAGC	GTGGCCCAAT	CAACTCAAAG	TTGAGAAAGC	CTATCCACGC	150
	CGACCCTCCT	TCCTTCGCAG	AACAGTCCAC	CGCCGCCGAA	GTCCTGGAAA	200
	CAGGTATCAA	GGTCGTCGAC	TTGCTGGCCC	CTTACGCCAG	AGGTGGTAAG	250
15	ATCGGTCTGT	TCGGTGGTGC	CGGTGTCGGT	AAGACCGTGT	TCATCCAAGA	300
	ACTGATCAAC	AACATCGCAA	AGGCTCACGG	TGGTTTCTCC	GTGTTCACAG	350
	GTGTCGGTGA	AAGAACCAGA	GAAGGTAACG	ATTTGTACAG	AGAAATGAAG	400
	GAAACCGGTG	TCATCAACTT	GGAAGGTGAC	TCTAAGGTCG	CCTTGGTCTT	450
	CGGCCAAATG	AACGAACCAC	CAGGAGCCAG	AGCCAGAGTC	GCCTTGACCG	500
20	GTTTGACCAT	CGCAGAATAC	TTCAGAGATG	AAGAAGGTCA	AGATGTCCTG	550
	CTGTTCGTCG	ACAACATTTT	CAGATTCACC	CAAGCCGGTT	CAGAAGTCTC	600
	CGCTTTGCTA	GGTCGTATCC	CATCCGCCGT	CGGTTATCAA	CCAACCTTGG	650
	CCACCGATAT	GGGTCTGTTG	CAAGAAAGAA	TTACCACCAC	AAAGAAGGGT	700
	TCCGTCACTT	CCGTCCAAGC	CGTCTACGTG	CCTGCAGATG	ATTTAACAGA	750
25	TCCTGCCCCT	GCCACTACTT	TCGCGCACTT	GGACGCCACC	ACCGTCTTGT	800
	CCAGAAGTAT	CTCAGAATTG	GGTATCTACC	CAGCTGTCGA	CCCATTGGAC	850
	TCCAAGTCTA	GATTGCTAGA	CGCTGCCGTT	GTCGGTGAAG	AGCATTACAA	900
	CGTCGCCACA	AAGGTCCAAG	AAACTTTACA	AACTTACAAG	TCTCTGCAAG	950
	ATATCATCGC	CATTTTGGGT	ATGGATGAAT	TGTCCGAACA	AGATAAGCTA	1000
30	ACIGICGAAA		GATCCAAAGA	TTCTTGTCCC	AACCATTCGC	1050
	TGTCGCTGAA	GTTTTCACCG	GTATCGAAGG	TAAGCTGGTC	AGATTGAAGG	1100
	ACACCATCTC	CTCTTTCAAG	GCTGTCTTGG	AAGGTAAGTA	CGATGATCTT	1150
	CCAG					1154

35

40

5

#### 2) INFORMATION FOR SEQ ID NO: 464

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1293 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida guilliermondii
    - (B) STRAIN: ATCC 6260

50

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 464

	CCACTACGAG	GACGGTAACC	TTCCTGCTAT	TTTCAACGCC	TTGACTCTTA	50
	AGAACGGTGA	CCAAAACTTG	GTTTTGGAAG	TTGCCCAGCA	TTTGGGTGAA	100
55	AACACCGTCA	GAACCATTGC	TATGGATGGT	ACTGAAGGTT	TGGTTAGAGG	150
	TGCCAGCGTC	ACTGACACTG	GTGCTCCTAT	CTCTGTGCCT	GTTGGTCGTG	200
	GTACTTTGGG	TCGTATCATC	AACGTTATTG	GTGAGCCAAT	TGACGAGCGT	250
	GGACCAATCG	AGTCCAAGCA	AAAGAAGCCC	ATTCACGCTG	AACCACCATC	300
	GTTCGTCGAA	CAATCCACTT	CTGCCGAGGT	TTTGGAAACC	GGTATCAAGG	350
60	TTGTCGACTT	GTTGGCTCCA	TACGCCAGAG	GTGGTAAGAT	TGGATTGTTC	400

	GGTGGTGCCG	GTGTCGGTAA	GACTGTGTTT	ATCCAAGAGT	TGATTAACAA	450
	CATTGCCAAG	GCTCACGGTG	GTTTCTCCGT	GTTCACCGGT	GTCGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACTGGTGTC	550
	ATCAACTTGG	AAGGTGAATC	CAAGGTGGCC	TTGGTGTTCG	GTCAAATGAA	600
5	CGAACCTCCA	GGAGCTAGAG	CCAGAGTTGC	CCTTACCGGT	TTGACCATCG	650
	CTGAATACTT	CAGAGATGAG	GAGGGTCAAG	ATGTGTTGTT	GTTCGTCGAC	700
	AACATTTTCA	GATTCACTCA	AGCTGGTTCT	GAAGTGTCGG	CTTTGTTGGG	750
	TCGTATTCCT	TCGGCTGTCG	GTTACCAACC	TACTTTGGCC		800
	GTTTGTTGCA	AGAGCGTATT	ACCACCACCA	AGAAGGGTTC	CGTCACCTCT	850
10	GTCCAAGCTG	TCTATGTGCC	AGCCGATGAT	TTGACCGATC	CTGCTCCTGC	900
	TACTACTTTT	GCTCACTTGG	ATGCTACCAC	TGTGTTGTCT	AGAGGTATCT	950
	CCGAGTTGGG	TATTTACCCA	GCTGTCGATC	CTTTGGATTC	CAAGTCGAGA	1000
	TTGTTGGATG	CCTCTGTTGT	CGGTGAGGAG	CACTACTCGG	TTGCTTCTAA	1050
	CGTTCAACAA	ACCTTGCAAG	CTTACAAGTC	TTTGCAAGAT	ATCATTGCCA	1100
15	TTTTGGGTAT	GGACGAATTG	TCGGAAGCTG	ACAAGTTGAC	CGTCGAGAGA	1150
	GCCCGTAAGA	TCGAGAGATT	CTTGTCTCAA	CCATTTGCTG	TTGCCGAAGT	1200
	TTTCACTGGT	ATCAGTGGTA	AGTTGGTCAG	ATTGGAGGAC	ACTATCAGAT	1250
	CTTTCAAGGA	AGTCTTGGAA	GGTAAGTACG	ATCACTTGCC	AGA	1293

25

# 2) INFORMATION FOR SEQ ID NO: 465

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1293 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Candida haemulonii
    - (B) STRAIN: ATCC 22991

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465

	CACTTTGACG	ATGGTAACTT	GCCAGCCATT	TTCAACGCCT	TGAAGTTGAA	50
	GAACGGTGAC	CAGGACTTGG	TCTTGGAGGT	CGCCCAGCAC	TTGGGTGAGA	100
40	ACACCGTCAG	AACCATTGCC	ATGGACGGTA	CCGATGGTTT	GGTCAGAGGC	150
	GAGGCTGTCA	CTGACACTGG	TGCTCCAATC	TCCGTGCCTG	TTGGTCGTGA	200
	GACTTTGGGT	CGTATCATCA	ACGTTATTGG	TGAGCCAATT	GACGAGAGAG	250
	GACCAATCAA	GTCCAAGAAG	AGAAACCCAA	TCCACACTGA	CCCACCAACC	300
	TTCGTTGAGC	AGTCTACTTC	TGCTGAGGTT	TTGGAGACTG	GTATTAAGGT	350
45	TGTCGACTTG	TTGGCCCCTT	ACGCCAGAGG	TGGTAAGATT	GGTTTGTTCG	400
40	GTGGTGCCGG	TGTCGGTAAG	ACCGTCTTTA	TCCAAGAGTT	GATTAACAAC	450
	ATTGCCAAGG	CCCACGTGG	TTTCTCTGTC	TTTACCGGTG	TCGGTGAGAG	500
	AACCAGAGAA	GGTAACGATT	TGTACCGTGA	AATGCAGGAG	ACCGGTGTCA	550
	TCAACTTCGA	GGGTGACTCC	AAGGTCGCCT	TGGTCTTCGG	TCAGATGAAC	600
50	GAGCCACCAG	GAGCTAGAGC	TAGAGTTGCT	TTGACCGGTT	TGACCATTGC	650
30	CGAATACTTC	AGAGATGAAG	AAGGTCAGGA	TGTGTTGTTG	TTCGTTGACA	700
	ACATTTTCAG	ATTCACTCAG	GCTGGTTCCG	AGGTGTCCGC	CTTGTTGGGT	750
	CGTATTCCAT	CTGCTGTCGG	TTACCAGCCA	ACCTTGGCCA	CCGATATGGG	800
	TACCTTGCAA	GAAAGAATTA	CCACCACCAA	GAAGGGTTCC	GTCACCTCTG	850
55	TCCAGGCCGT	TTACGTGCCA	GCTGATGATT	TGACCGATCC	TGCCCCAGCT	900
-	ACCACTTTCG	CTCACTTGGA	TGCTACCACT	GTGTTGTCTA	GAGGTATTTC	950
	CGAGTTGGGT	ATCTACCCAG	CTGTCGACCC	ATTGGACTCC	AAGTCTAGAT	1000
	TGTTGGATGC	CTCTGTTGTC	GGTAAGGAGC	ACTACGATGT	TGCTACCAAC	1050
	GTCCAGCAGA	CCTTGCAGGC	CTACAAGTCC	TTGCAGGATA	TCATTGCCAT	1100
60	TTTGGGTATG	GATGAATTGT	CCGAAGCCGA	CAAGTTGACT	GTCGAGAGAG	1150
					= ====	=

	CTAGAAAGAT TCAGAGATTC TTGTCCCAGC TTCACTGGTA TCGAGGGTAA GTTGGTCAGA TTTCAAGGAG GTCTTGGATG GTAAGTACGA	TTGGAGGAGA	CCGTCAAGTC	1200 1250 1293
5				
	2) INFORMATION FOR SEQ ID NO: 466			
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1111 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear			
15	(ii) MOLECULE TYPE: Genomic DNA			
20	(vi)ORIGINAL SOURCE: (A) ORGANISM: Candida in (B) STRAIN: ATCC 16783	conspicua		
20	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 466		
25	AACGGTGGAT CTAAGTTAGT CTTAGAAGTT CACTGTCAGA ACCATTGCTA TGGATGGTAC AACCAGTTAA TGATACTGGT GCTCCAATCT	TGAAGGTTTA CTGTCCCAGT	GTTAGAGGTC CGGTAGAGGT	50 100 150
	ACTTTAGGTA GAATCTTAAA CGTTATTGGT TCCAATTGAT TGTAAGGAAA GAAAACCAAT TCGTTGAACA ATCTACTGAA GCTGAAGTTT GTTGATTTAT TAGCTCCTTA CGCTAGAGGT	TCATCAAGAT TAGAAACCGG	CCTCCTGCTT TATTAAGGTT	200 250 300 350
30	TGGTGCTGGT GTCGGTAAAA CCGTTTTCAT TTGCAAAGGC TCATGGTGGT TTCTCAGTTT ACCAGAGAAG GTAATGATTT ATACAGAGAA TAACTTAGAA GGTGAATCTA AGGTCGCCTT	TCAAGAATTA TCACTGGTGT ATGAAGGAAA	ATTAACAATG CGGTGAAAGA CTGGTGTTAT	400 450 500 550
35	AACCACCAGG AGCAAGAGCA AGAGTTGCTT GAATACTTCA GAGATGAAGA AGGTCAAGAT CATTTTCAGA TTTACTCAAG CAGGTTCTGA GAATTCCATC CGCTGTCGGT TATCAACCAA	TAACCGGTTT GTCTTGTTAT AGTTTCTGCA	AACTATTGCT TCATTGATAA TTGTTAGGTA	600 650 700 750
40	CTTTTACAAG AAAGAATTAC AACTACTAAG CCAAGCAGTT TATGTCCCAG CAGATGATTT CTACTTTCGC CCACTTAGAT GCAACTACTG GAATTAGGTA TTTACCCAGC TGTCGATCCA	AAAGGTTCCG AACTGATCCT TCTTATCTAG	TTACTTCTGT GCTCCAGCAA AGGTATTTCC	800 850 900 950
45	ATTAGATGTT GCTGTTGTTG GTCAAGAACA TTCAAGAAAC TTTACAAGCA TACAAATCTT TTAGGTATGG ATGAATTATC TGAACAAGAT AAGAAAGATT C	TTATGATGTT TACAAGATAT	GCAACTCAAG TATTGCTATT	1000 1050 1100 1111
43	ANOMANGATI C			***
50	2) INFORMATION FOR SEQ ID NO: 467			
- <del>-</del>	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1283 bases  (B) TYPE: Nucleic acid			
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear			
	(ii) MOLECULE TYPE: Genomic DNA			
60	(vi)ORIGINAL SOURCE: (A) ORGANISM: Candida ke	fyr		

# (B) STRAIN: ATCC 28838

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 467

_	maan n an n ac	TCAATTGCCA	GAAATTTTGA	ACGCTTTGGA	GATTGAWACT	50
5	TCGAACAAGG	AGTTGGTTTT	GGAAGTTGCC	CAACATTTGG	GTGAAAACAC	100
	CCTCAAGGTA	ATTGCTATGG	ACGGTACCGA	AGGTTTGGTC	CGTGGTGAGA	150
	CGTCAGAACC	CACTGGTGCT	CCAATTTCCG	TCCCAGTCGG	TAGAGAAACT	200
	AGGTTTTGGA	TCATCAACGT	TATTGGTGAG	CCAATTGACG	AAAGAGGCCC	250
	TTGGGTAGAA	AAGATGAGAA	AGCCAATTCA	CGCTGACCCT	CCATCCTTTG	300
10	AATCAAGTCC	CACTGCTGCT	GAAGTTTTGG	AAACCGGTAT	CAAGGTTGTC	350
	TTGAACAATC	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
	GACTTGTTGG	GGTAAGACCG	TTTTCATCCA	AGAGTTGATT	AACAACATTG	450
	TGCCGGTGTC	TGGTGGTTTC	TCCGTCTTCA	CCGGTGTCGG	TGAAAGAACC	500
	CCAAGGCCCA	ACGATTTGTA	CCGTGAAATG	AAGGAAACCG	GTGTCATCAA	550
15	AGAGAAGGTA	GACTCCAAGG	TCGCCTTGGT	CTTCGGTCAA	ATGAACGAAC	600
	CTTGGAAGGT	TAGAGCCAGA	GTTGCCTTGA	CCGGTTTGAC	TATCGCTGAA	650
	CACCTGGAGC	ATGAAGAAGG	TCAAGATGTG	TTGTTGTTTA	TCGACAACAT	700
	TACTTCAGAG	ACACAAGCCG	GTTCCGAAGT	GTCCGCTTTG	TTGGGTCGTA	750
	TTTCAGATTC	TGTCGGTTAC	CAACCTACTT	TGGCCACCGA	TATGGGTTTG	800
20	TTCCATCCGC	GAATTACCAC	TACCAAGAAG	GGTTCCGTTA	CCTCCGTCCA	850
	TTGCAAGAAA	GTCCCTGCTG	ATGATTTGAC	TGATCCTGCT	CCAGCTACYA	900
	AGCTGTCTAC	TTTGGACGCC	ACCACCGTGT	TGTCCAGAGG	TATCTCCGAA	950
	CTTTCGCCCA	ACCCAGCTGT	CGATCCATTG	GATTCCAAGT	CTAGATTGTT	1000
	TTGGGTATCT	GTTGTCGGTC	AAGAACATTA	CGACGTCGCT	ACTCAAGTTC	1050
25	GGACGCTGCC	GCAAGCTTAC	AAGTCTTTGC	AAGATATCAT		1100
	AACAAACTTT	AATTGTCTGA	ACAAGACAAG	TTGACTGTCG		1150
	GGTATGGATG	AGATTCTTGT	CTCAACCATT	CGCCGTCGCC		1200
	AAAGATCCAA	AGGTAGATTG	GTCAGATTAA			1250
	CTGGTATCCC	TGGAAGGTAA		TTG		1283
30	AAGGCTGTTT	TGGWWGGTWW	GINCONICAC	110		

# 2) INFORMATION FOR SEQ ID NO: 468

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1287 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 40 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Candida krusei
- (B) STRAIN: ATCC 34135
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 468

50	CTTCGAACAA	GGCCAATTAC	CACAAATTTT	AAACGCTTTA	GTTATGGATA	50
	ATGGTGGTAA	CAAGTTAGTT	TTAGAAGTTG	CTCAACATTT	AGGTGAAAAC	100
	ACTGTCAGAA	CCATTGCTAT	GGATGGTACT	GAAGGTTTAG	TTAGAGGTCA	150
	AACCGTTAAC	GATACCGGTG	CTCCAATCTC	TGTCCCAGTT	GGTAGAGGTA	200
		AATCTTGAAC				250
55	CCAGTTGACT	GTAAGGAAAG	AAAGCCAATT	CACGCTGATC	CTCCAGCTTT	300
		TCCACTGAAG				350
	TCGATTTATT	AGCACCTTAC	GCAAGAGGTG	GTAAGATTGG	TTTATTCGGT	400
		TTGGTAAGAC				450
		CATGGTGGTT				500
60	CCAGAGAAGG	TAACGATTTA	TACAGAGAAA	TGAAGGAAAC	TGGTGTTATT	550

			GGTCGCCTTA	GTTTTCGGTC	AAATGAACGA	600
	AACTTGGAAG	010.2.		AACTGGTTTG	ACCATTGCAG	650
	ACCACCAGGA	GCTAGAGCAA	GAGTTGCTTT	TCTTGTTATT	CATTGATAAC	700
	AATATTTCAG	AGATGAAGAA	GGTCAAGATG		TATTAGGTAG	750
	ATTTTCAGAT	TCACCCAAGC	AGGTTCTGAA	GTCTCTGCAT	GATATGGGTC	800
5	AATTCCATCT	GCTGTCGGTT	ATCAACCAAC	TTTAGCAACC		850
5	TTTTACAAGA	AAGAATTACC	ACCACCAAGA	AGGGTTCCGT	TACTTCTGTC	900
	CAAGCTGTTT	ATGTCCCAGC	CGATGATTTA	ACCGATCCTG	CTCCAGCTAC	
	CAAGCIGIII	CACTTGGATG	CAACCACTGT	CTTGTCYAGA	GGTATTTCCG	950
		CTACCCAGCT	GTCGATCCAT	TAGATTCTAA	GTCTAGATTA	1000
	AATTAGGTAT		TCAAGAACAT	TATGAAGTTG	CAACTCAAGT	1050
10	TTAGATGTTG	CAGTTGTTGG	ACAAGTCTTT	ACAAGATATT	ATTGCTATTT	1100
	CCAAGAAACT	TTACAAGCTT				1150
	TGGGTATGGA	TGAATTATCT	GAACAAGATA			1200
	AGAAAGATCC	AAAGATTCTT				1250
	CACTGGTATT	CCAGGTAAGT	TAGTCAGATT		WICHWOICII	1287
15	TCAGGGATGT		AAGTACGATC	ACTTACC		1201
10	TCMCOOTTLG					

# 2) INFORMATION FOR SEQ ID NO: 469

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1283 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida lambica
- (B) STRAIN: ATCC 24750
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 469

	•					
35	TCGAACAAGG GATGGTCAAA CGTCAGAACC	TCAATTACCA AGTTAGTTTT ATTGCTATGG	CCAATTCTTA GGAAGTTGCT ACGGTACCGA	ACGCTTTGGT CAACATTTGG AGGTTTAGTT	CATGGAAAAC GTGAAAACAC AGAGGTCAAC	50 100 150
40	CTGTTAACGA CTTGGTAGAA TGTCGAMTGT TTGACCAATC GATTTATTAG TGCTGGTGTC	CACTGGTGCT TCTTGAACGT AAGGAGAGAA CACTGAAGCT CACCTTACGC GGTAAGACCG	CCAATCTCTG CACTGGTGAC GACCAATTCA GAAGTTTTGG TAGAGGTGGT TTTTCATCCA	TCCCAGTTGG CCAGTYGATG CCAAGACCCA AAACCGGTAT AAGATTGGTT AGAATTGATT	TAGAGGTACT AAAGAGGTCC CCTGCTTTCG TAAGGTTGTC TGTTCGGTGG AACAATGTTG	200 250 300 350 400 450 500
45	CTAAGGCCCA AGAGAAGGTA CCTTGAAGGT CACCAGGAGC	CGGTGGTTTC ACGATTTATA GAATCTAAGG AAGAGCTAGA ATGAAGAAGG	TCCGTTTTCA CAGAGAAATG TCGCCCTCGT GTTGCTCTTA TCAAGATGTC	CTGGTGTCGG AAGGAAACCG TTTCGGTCAA CTGGTTTGAC TTGCTTTTCA	TGAAAGAACC GTGTTATTAA ATGAACGAAC CATTGCTGAA TTGACAACAT	550 600 650 700
50	TACTTCAGAG TTTCAGATTC TTCCWTCTGC TTACAAGAAA AGCTGTTTAC	ACCCAAGCAG CGTTGGTTAC GAATTACCAC GTCCCAGCTG	GTTCCGAAGT CAACCAACCT CACCAAGAAG ATGATTTRAC	GTCTGCTTTG TAGCAACCGA GGTTCCGTCA TGACCCTGCA TGTCTAGAGG	TTAGGTAGAA TATGGGTTTG CCTCCGTCCA CCAGCAACCA TATTTCCGAA	750 800 850 900 950
55	CTTTCGCCCA TTAGGTATTT GGATGTCGCT AAGAAACTTT GGTATGGACG AAAGATCCAA CTGGTATCCC	AGATTCCTTT AGGTAAGCTT	ACAAGATAAG CCCAACCTTT GTCAGATTAG	GATTCTAAGT TACCGTTGCA AAGATATCAT CTTACTGTTG CTCCGTCGCA AAGAAACCAT	CTAGATTATT ACYCAAGTCC TGCTATTTTG AAAGAGCAAG GAAGTTTTCA	1000 1050 1100 1150 1200 1250
60	AGAGATGTCC	TCGATGGTAA	GIACGACCAC			

```
2) INFORMATION FOR SEQ ID NO: 470
5
        (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 1140 bases
           (A)
                  TYPE: Nucleic acid
            (B)
                  STRANDEDNESS: Double
            (C)
                  TOPOLOGY: Linear
            (D)
10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                ORGANISM: Candida lusitaniae
            (A)
15
                  STRAIN: ATCC 66035
            (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470
     AGGTGCCTCT GTCACTGACA CTGGTTCTCC AATCTCTGTC CCTGTTGGTC
                                                                         50
     GTGAAACCTT GGGTAGAATT ATCAACGTTG TTGGTGAGCC AATTGACGAG
                                                                        100
20
     AGAGGCCCAA TCAACTCCAA GAAGAGAAAC CCAATTCACA CTGAGCCACC
                                                                        150
     ATCGTTTGTT GAACAATCCA CTTCTGCTGA AGTTTTGGAG ACTGGTATCA
                                                                        200
     AGGTTGTCGA CTTGTTGGCC CCTTACGCCA GAGGTGGTAA GATTGGTTTG
                                                                        250
     TTCGGTGGTG CCGGTGTCGG TAAGACCGTT TTCATCCAAG AGTTGATTAA
                                                                        300
     CAACATTGCC AAGGCCCACG GTGGTTTCTC TGTTTTCACT GGTGTCGGTG
                                                                        350
25
     AAAGAACCAG AGAAGGTAAC GATTTGTACC GTGAAATGCA AGAGACCGGT
                                                                        400
     GTCATCAACT TCGAGGGTGA CTCCAAGGTC GCCTTGGTCT TCGGTCAAAT
                                                                        450
     GAACGAACCA CCAGGAGCCA GAGCTAGAGT TGCTTTGACC GGTTTGACTA
TTGCCGAGTA CTTCAGAGAC GAAGAGGGCC AAGATGTCTT GTTGTTCGTT
                                                                        500
                                                                        550
      TIGCCGAGIA CIICAGAGAC GAAGAGCGGT TCTGAAGTGT CTGCTTTGTT
GACAACATTT TCAGATTCAC CCAGGCCGGT TCTGAAGTGT CTGCTTTGTT
 30
                                                                        600
      GGGTCGTATT CCATCCGCTG TCGGTTACCA ACCAACCTTG GCCACCGATA
                                                                        650
      TGGGTGCTTT GCAAGAGAGA ATTACCACCA CCAAGAAGGG TTCCGTCACC
                                                                        700
      TCTGTCCAAG CCGTTTATGT TCCAGCTGAT GACTTGACTG ACCCTGCTCC
                                                                        750
      AGCCACCACC TTCGCCCACT TGGACGCCAC CACTGTGTTG TCCAGAGGTA
                                                                        800
      TCTCTGAATT GGGTATCTAC CCAGCTGTCG ACCCATTGGA CTCCAAGTCT
 35
                                                                        850
      AGATTGTTGG ACGCTTCTAT TGTTGGTAAG GAGCACTACG AAGTTGCTTC TAACGTTCAA CAAACTTTGC AAGCTTACAA GTCTTTGCAA GATATCATTG
                                                                         900
                                                                         950
      CCATTTTGGG TATGGATGAA TTGTCTGAGG CTGACAAGTT GACCGTTGAG
                                                                       1000
      AGAGCCAGAA AGATCCAAAG ATTCTTGTCT CAACCATTCG CTGTTGCCGA
                                                                       1050
      GGTTTTCACT GGTATCCCAG GTAGATTGGT CAGATTGGAG GACACTGTCA
 40
                                                                        1100
      GATCCTTCAA GGAAGTTTTG GACGGTAAGT ACGACCACTT
                                                                        1140
 45
      2) INFORMATION FOR SEQ ID NO: 471
          (i) SEQUENCE CHARACTERISTICS:
                    LENGTH: 1296 bases
             (A)
                    TYPE: Nucleic acid
             (B)
  50
                    STRANDEDNESS: Double
              (C)
                    TOPOLOGY: Linear
              (D)
         (ii) MOLECULE TYPE: Genomic DNA
  55
         (vi) ORIGINAL SOURCE:
                   ORGANISM: Candida norvegensis
              (A)
                    STRAIN: ATCC 22977
              (B)
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 471
  60
                                          419
```

		<b>50</b>
	TCAATTCGAA CAAGGTCAAT TACCACCAAT TTTAAACGCT TTAGTCATGG	50 100
		150
		200
5		250
5		300
	COTTON ATTO ATTOTANGGA AAGAAAACCA ATTOATCA ATTOTANG	350
		400
		450
1.0		500
10		550
		600
	AUTHA ATTTAC AAGGTGATTC TAAGGTCGCA TIAGTTTCC CTC	650
		700
15		750
13	ACCACCTTCT GAAGTTTCCG CITIGITAGG	800
		850
	SANDART NOTAL TO ALBARDOLLO ICITALIO	900
		950
20		1000
20	The same of manners come control (Allacatio in the same of the sam	1050
	mmaaaammam maaaaa aa aa aa aa aa aa aa	1100
	TO THE REPORT OF THE PROPERTY	1150
	TOTAL ATTACK COLUMN TOTAL TOTA	1200
25		1250
23	THE PROCESS AND CONCORD ACCOUNTS ACCOUN	1296
	TTTCACTGGT ATCCCAGGTA ACCTTACCAGAAAA CATTCAGAGA TGTCTTAGCA GGTAAGTACG ATCACTTACC AGAAAA	1290
30		
_	2) INFORMATION FOR SEQ ID NO: 472	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1297 bases	
35	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(ii) MOLECULE TYPE: GENOMIC DAY	
40	(vi) ORIGINAL SOURCE:	
	(B) STRAIN: ATCC 90018	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 472	
45	(X1) SEQUENCE DESCRIPTION. DESCRIPTION.	
	ACACTTCGAA GAAGGAAACT TGCCAGCTAT TTTGAACGCT TTGACCTTGA	50
	ARARCCOTAR ACARCACTTC CTCTTCGAAG TTGCCCAACA TIIGGGIGAA	100
	AAAACGGTAA ACAAGACTTG GTCTGAAGGTT TAGTTAGAGG AACACCGTCA GAGCAATTGC TATGGATGGT ACTGAAGGTT TAGTTAGAGG	. 150
		200
50	GTACTTTGGG TAGAATCATC AATGTTACTG GTGACCCAAT TGATGAAAGA	250
	COMOGNATIC AATCTAAGAA GAGAAACCCA ATCCACGCTG AACCACCIIC	300
	ACTION TITES A CANTICIAL TO CTECTE CARGE TITEGGAACC GGIATIAAGG	350
	TACCCTAGAG GTGGTAAGAT TGGTTTGTTC	400
	COMCOMOCOCO CTCTCCCTAA AACCGTGTTT ATCCAAGAAT IGATCAACAA	450
55	CARTICCOARG GCACATGGTG GTTTCTCGGT TTTCACTGGT GTTGGTGAAA	500
	CARCORCACA ACCTARCOAT TTCTACCGTG AAATGAAGGA AACTGGIGII	550
	AUCANCUTCG ANGETCACTC CANGGTCGCT TTGGTTTTCG GTCAAATGAA	600
	CONNECT CONCETTAGE CTAGESTICS TTTGACTGGT TTGACCALLG	650
60		700
60	Cloud.i.o.	

5	AACATTTTCA GATTCACCCA TCGTATTCCA TCCGCTGTCC GTCCAAGCCG TTTACGTGCC TACCACTTTC GCTCACTTGC TTGTTGGATG TATTTACACCA TCTTGGGTAT GGATGAATTC GCTCGTAAGA TTCACTGGT CATTCAAGGA AGTCTTGGAT	GTTATCAACC ACCACTACCA AGCTGATGAT ATGCCACCAC GCTGTCGATC TGGTCAAGAA CTTACAAGTC TCCGAACAAG CTTGTCTCAA AATTGGTTAG	AACCTTGGCC AAAAGGGTTC TTAACCGATC TGTGTTGTCT CATTGGATTC CATTACGACG CTTGCAAGAT ATAAATTGAC CCATTTGCTG ATTGTCTGAA	ACCGATATGG AGTTACTTCA CTGCTCCAGC AGAGGTATTT CAAATCCAGA TTGCCACTGG ATCATTGCTA TGTCGAAAGA TCGCTGAAAGT ACTGTCAAGT	750 800 850 900 950 1000 1050 1100 1250 1297
15	2) INFORMATION FOR SE	Q ID NO: 473			
	( ) GROWENCE CHARA	CTERISTICS:			

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1285 bases
- TYPE: Nucleic acid STRANDEDNESS: Double (B)
- (C) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

25 (vi)ORIGINAL SOURCE:

(D)

- (A) ORGANISM: Candida rugosa
- STRAIN: ATCC 96275 (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 473 30

		- 2 GG2 GGEGG	CTGCCATTTT	GAACGCCCTC	ACTCTTCAGC	50
	CO110	AACGACCTCC	GTTCTTGAGG	TTGCCCAGCA	TCTCGGTGAG	100
	GTGAAGACGG	TAACAAGCTT	TATGGACGGT	ACCGAGGGTT	TGGTGCGTGG	150
	AACACCGTCC	GTACCATTGC CACGACACCG	GACACCCCAT	CATGACTCCC	GTCGGTGACG	200
35	CACTGGTGTC	ACGTATTCTT	AACGTCACCG	GTGACCCTGT	AGACGAGCGT	250
	GTACCCTGGG	AGACTGACAA	GTTCCGCCCC	ATCCACGCCG	AGGCCCCTGC	300
	GGTCCCGTCA	CAGGCTACCA	GTGCCGAGGT	TCTTGAGACC	GGTATCAAGG	350
	CTTCGATGAG	GCTCGCTCCT	TACGCCAAGG	GTGGTAAGAT	TGGTTTGTTC	400
	TTGTCGACTT GGTGGTGCCG	GTGTCGGCAA	GACCGTCTTC	ATCCAGGAGC	TGATTAACAA	450
40	CATCGCCAAG	GCCCACGGTG	GTTACTCCGT	GTTCACTGGT	GTCGGTGAGC	500
	GTACTCGTGA	GGGTAACGAT	TTGTACAAGG	AAATGATCGA	GTCCGGTGTC	550
	ATCAACCTCG	ATGGTGAGTC	CAAGGTCGCC	TTGGTGTTCG	GTCAGATGAA	600
	CGAGCCCCCT	GGAGCCCGTG	CCCGTGTCGC	CCTTACCGGT	CTTACCATCG	650
45	CTGAGTATTT	CCGTGATGAG	GAGGGTAAGG	ATGTCTTGTT	GTTCGTTGAC	700
40	AACATTTTCC	GCTTCACTCA	GGCCGGTTCT	GAGGTGTCCG	CCTTGCTTGG	750
	TCGTATTCCT	TCCGCTGTCG	GTTACCAGCC	TACCCTGGCC	ACCGATATGG	800
	GTGCCCTTCA	GGAGCGTATC	ACCACCACCA	AGAAGGGTTC	CGTTACATCC	850
	GTCCAGGCCG	TCTACGTCCC	TGCCGATGAT	TTGACTGATC	CCGCCCCTGC	900
50	CACCACCTTC	GCCCATTTGG		TGTCTTGTCT	CGTGCCATCT	950
50	CTGAGTTGGG	TATCTACCCC	GCTGTCGACC	CTCTCGACTC	CAAGTCCCGT	1000
	CTTCTTGACG	CCGCTGTCGT		CACTACGATA		1050
	CGTTCAGCAG	ACTTTGCAGG	CTTACAAGTC	TTTGCAGGAT		1100
	TTCTTGGTAT	GGATGAGTTG				1150
55	GCTCGTAAGA	TCCAGCGTTT	CCTCTCCCAG			1200
	CTTCACTGGT	ATTCAGGGCC			ACTGTCCGCT	1250
	CCTTCAAGGA	GATTCTCGAA	GGTAAGTACG	ATGCT		1285

# 2) INFORMATION FOR SEQ ID NO: 474

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1283 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 10 (vi)ORIGINAL SOURCE:

5

45

50

- (A) ORGANISM: Candida sphaerica
- (B) STRAIN: ATCC 2504
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 474

TTGAACAAGG	TCAATTGCCA	GCTATTTTGA	ACGCTTTGGA	•	50
	AGTTGGTTTT	GGAAGTCGCT	CAACATTTGG		100
••	ATTGCTATGG	ATGGTACTGA	AGGTTTAGTC		150
	CACTGGTGCT	CCAATTTCCG	TCCCAGTTGG	TAGAGAAACC	200
	TTATCAACGT	TATTGGTGAG	CCAATTGACG	AAAGAGGTCC	250
	AAGATGAGAA	AGCCAATTCA	TGCTGATCCT	CCATTATTCG	300
	CACTGCTGCT	GAAGTTTTGG	AAACTGGTAT	CAAGGTTGTC	350
110.110.	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
TGCCGGTGTC	GGTAAGACCG	TTTTCATCCA	AGAATTGATT	AACAACATTG	450
CCAAGGCTCA	TGGTGGTTTC	TCTGTCTTCA	CTGGTGTCGG	TGAAAGAACC	500
AGAGAAGGTA	ACGATTTGTA	CCGTGAAATG	AAGGAAACTG	GTGTTATCAA	550
CTTGGAAGGT	GATTCTAAGG	TCGCGTTGGT	TTTCGGTCAA	ATGAACGAAC	600
CTCCTGGAGC	TAGAGCTAGA	GTCGCCTTGA	CTGGTTTGAC	CATCGCTGAA	650
TACTTCAGAG	ATGAAGAAGG	TCAAGATGTC	TTGTTGTTTA	TCGACAACAT	700
TTTCAGATTC	ACACAAGCCG	GTTCCGAAGT	GTCCGCTTTG	TTGGGTCGTA	750
TTCCATCCGC	TGTCGGTTAT	CAACCAACTT	TGGCCACCGA	TATGGGTTTG	800
TTGCAAGAAA	GAATTACTAC	CACCAAGAAG	GGTTCCGTCA	CTTCTGTCCA	850
AGCCGTTTAC	GTGCCAGCTG	ATGATTTGAC	TGATCCTGCT	CCAGCTACCA	900
CTTTCGCGCA	TTTGGATGCC	ACCACTGTGT	TGTCCAGAGG	TATCTCTGAA	950
TTGGGTATCT	ACCCAGCTGT	CGATCCTTTG	GATTCCAAAT	CTAGATTGTT	1000
GGATGCTGCC	GTCGTTGGTC	AAGAACATTA	CGATGTCGCT	ACTCAAGTTC	1050
AACAAACTTT	GCAAGCTTAC	AAGTCTTTGC	AAGATATCAT	TGCCATTTTG	1100
GGTATGGATG	AATTGTCCGA	ACAAGATAAG	TTGACCGTCG		1150
AAAGATTCAA	AGATTCTTGT	CTCAACCTTT	CGCTGTCGCT	GAAGTCTTCA	1200
CTGGTATCCC	AGGTAGATTG	GTCAGATTAA	AGGACACCAT	CTCTTCTTTC	1250
AAGGCTGTCT	TGGACGGTAA	GTACGATCAC	TTG		1283
	CCAAGGCTCA AGAGAAGGTA CTTGGAAGGT CTCCTGGAGC TACTTCAGAG TTTCAGATTC TTCCATCCGC TTGCAAGAAA AGCCGTTTAC CTTTCGCGCA TTGGGTATCT GGATGCTGCC AACAAACTTT GGTATGGATG AAAGATTCAA CTGGTATCCC	CCAGAAGGAA AGTTGGTTTT TGTCAGAACC ATTGCTATGG ACGTTTCTGA CACTGGTGCT TTGGGTAGAA TTATCAACGT AATCAACTCC AAGATGAGAA TTGAACAATC CACTGCTGCT GACTTGTTGG CCCCATACGC TGCCGGTGTC GGTAAGACCG CCAAGGCTCA TGGTGGTTTC AGAGAAGGTA ACGATTTGTA CTTGGAAGGT GATTCTAAGG CTCCTGGAGC TAGAGCTAGA TACTTCAGAG ATGAAGAAGG TTTCAGATTC ACACAAGCCG TTCCATCCGC TGTCGGTTAT TTGCAAGAAA GAATTACTAC AGCCGTTTAC GTGCCAGCTG CTTTCGCGCA TTTGGATGCC TTGGGTATCT ACCCAGCTGT GGATGCTGCC GTCGTTGGTC AACAAACTTT GCAAGCTTAC GGTATGGATG AATTGTCCGA AAAGATTCAA AGATTCTTGT CTGGTATCCC AGGTAGATTG	CCAGAAGGAA AGTTGGTTTT GGAAGTCGCT TGTCAGAACC ATTGCTATGG ATGGTACTGA ACGTTTCTGA CACTGGTGCT CCAATTTCCG TTGGGTAGAA TTATCAACGT TATTGGTGAG AATCAACTCC AAGATGAGAA AGCCAATTCA TTGAACAATC CACTGCTGCT GAAGTTTTGG GACTTGTTGG CCCCATACGC CAGAGGTGGT TGCCGGTGTC GGTAAGACCG TTTTCATCCA CCAAGGCTCA TGGTGGTTTC TCTGTCTTCA AGAGAAGGTA ACGATTTGTA CCGTGAAATG CTTGGAAGGT GATTCTAAGG TCGCGTTGGT CTCCTGGAGC TAGAGCTAGA GTCGCCTTGA TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTCCATCCGC TGTCGGTTAT CAACCAACTT TTGCAAGAAA GAATTACTAC CACCAAGAAG AGCCGTTTAC GTGCCAGCTG ATGATTTGAC CTTTCGCGCA TTTGGATGCC ACCACAGAAG AGCCGTTTAC GTGCCAGCTG ATGATTTGAC CTTTCGCGCA TTTGGATGCC ACCACTGTGT TTGGATGCC GTCGTTGGTC AAGAACATTA ACAAACTTT GCAAGCTTAC AAGAACATTA GAAGATTCAA AGATTCTTGC AACAAGATTAC AAGAATTCAA AGATTCTTGT CTCAACCTTT CTGGTATCCC AGGTAGATTG CTCAACCTTT	CCAGAAGGAA AGTTGGTTTTT GGAAGTCGCT CAACATTTGG TGTCAGAACC ATTGCTATGG ATGGTACTGA AGGTTTAGTC ACGTTTCTGA CACTGGTGCT CCAATTTCCG TCCCAGTTGG TTGGGTAGAA TTATCAACGT TATTGGTGAG CCAATTGACG AATCAACTCC AAGATGAGAA AGCCAATTCA TGCTGATCCT TTGAACAATC CACTGCTGCT GAAGTTTTGG AAACTGGTAT GACTTGTTGG CCCCATACGC CAGAGGTGGT AAGATTGATT CCAAGGCTCA TGGTGGTTC TCTGTCTTCA AGAATTGATT CCAAGGCTCA TGGTGGTTC TCTGTCTTCA CTGGTGTCGG AGAGAAGGT ACGATTTGTA CCGTGAAATG CTTCGGAAGGT GATTCTAAGG TCGCGTTGGT TTTCGGTCAA CTTCTGGAAGGT AAGACTGA TCGCGTTGGT TTTCGGTCAA CTCCTGGAAGC TAGAGCTAGA GTCGCCTTGA CTGGTTTGAC TTCCATCCGC TGTCGGTTAT CAACAAGTTC TTGTTGTTTA TTCAGATTC ACACAAGCCG GTTCCGAAGT GTCCGCTTTG TTGCAAGAAA GAATTACTAC CACCAAGAAG GGTTCCGTCA AGCCGTTTAC GTGCCAGCTG ATGATTTGAC TTGGGTATCT ACCCAGCTG ATGATTTGAC TTGGGTATCT ACCCAGCTG ATGATTTGAC TTGGGTATCT ACCCAGCTG ACCACTGTT TGTCCAGAGG TTGGGTATCT ACCCAGCTG ACCACTGTT TGTCCAAAT GGATGCTGCC GTCGTTGGT AAGAACATTA CGATGCCGT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGCT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGT AACAAACTTT GCAAGCTTAC AAGACATTA CGATGTCGCT AACAAACTTT GCAAGCTTAC AAGACCTTT CGCTGCTCGCT AAAGATTCAA AGATTCTTGT CTCAACCTTT CGCTGTCGCT CTGGTATCCC AGGTAGATTAA AGGACACCAT	CCAGAAGGAA AGTTGGTTTT GGAAGTCGCT CAACATTTGG GTGAAAACAC TGTCAGAACC ATTGCTATGG ATGGTACTGA AGGTTTAGTC CGTGGTGAAA ACGTTTCTGA CACTGGTGCT CCAATTTCCG TCCCAGTTGG TAGAGAAACC TTGGGTAGAA TTATCAACGT TATTGGTGAG CCAATTGACG AAAGAGGTCC AATCAACTCC AAGATGAGAA AGCCAATTCA TGCTGATCCT CAATTATCG GACTTGTTGG CCCCATACGC CAGAGGTGGT AACAACTTGT GGCGGTGTC GGTAAGACCG TTTTCATCCA AGAATTGAT TGTTCGGTGG TGCCGGTGTC GGTAAGACCG TTTTCATCCA AGAATTGAT TGTTCGGTGG CCAAGGCTCA TGGTGGTTTCA CTGGTGTTCA ACAACATTG ACGAGAAGGTA ACGATTGTA CCGTGAAATG AAGAAACTG GTGTTATCAA CTTGGAAGGA GTCACTTGAC CTGGTTTGAC CTGGTTTACAA TTCCTGGAGG TAGAAGAAGG TCCACTTGA CTGGTTTTA TCGACAACAT TTCCATCCGC TAGAAGAAGG TCCACAACAT TTGGTTTAACA TTCCATCCGC TGTCGGTTAT CAACCAACTT TGGCCACCGA TATGGGTTTG TTGCAAGAAA GAATTACTAC CACCAAGAAG GGTTCCGCTTTT TTGGGTCGTA AGCCGTTTAC GTGCCAGCTG ATGATTTGAC TGATCCAACAT TTGGGTATCA ACCCACCTGT TGTCCGCAACT TGCCCACCAACAT TTGGGTATCT CACCACTTTT GGTTCCAACAT TGCAACTTCCAACAT TTGGGTATCT CGCGTTGCT TGTCCAACATTC TGCACAACAT TTGGGTATCT CGACCTGT ACCACCACTT TGCCACAACT TTGGGTATCT CGAAGCTG ACCACTTTTG GATCCTGCA CTTCTCTCAA AGCAAACTTT GCAAGCTTAC AAGAACATTA CGATGTCCT ACTCAAGTTC AACAAACTT GCAAGCTTAC AAGAACATTA CGATGTCCT ACTCAAGTTC AACAAACTT AACACAACTT TGCCATTTTG AACACATTCTTCAACCTT TGCCAACTT TGCCATTTTG AACAACTT TGCCAATTAC AAGAACATTA CGATGTCCT ACTCAAGTTC AACAAACTT AAGAACATTA CGATGTCCT ACTCAAGTTC AACAAACTT AAGAACATTA CGATGTCCT ACTCAAGTTC AACAAACTT AACAACATTA CGATGTCCT AACACATTC AACAACATTC AAGAACATTA CGATGTCCT ACTCAAGTTC AACAACATTC AAGAACATTA CGATGTCCT AACACATTTCCAACTTTC AACAACATTCAA AAGAACATTA AAGAACATTA CGATGTCCT AACACATTTCCAACTTTC AACAACATTCAA AAGAACATTA AAGAACATTA CGATGTCCT AACACAT

2) INFORMATION FOR SEQ ID NO: 475

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1290 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Candida tropicalis
  - (B) STRAIN: ATCC 13803
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 475

	CGACGAAGGT	አ አ ርጥጥርርር <mark>ጋ</mark> ር	CTATTTTGAA	TGCTTTGACT	TTGAAGAACG	50
	GTGACCAAGA GTGACCAAGA	CTTCCTTTC	GAAGTTGCTC	AACATTTGGG	TGAAAACACC	100
	GTCAGGGCTA		TGGTACCGAA	GGTTTAGTCA	GAGGTACTGC	150
_	TGTCACTGAT	N CCCCCCCCCCC	CAATTTCTCT	CCCAGTTGGT	AGAGGTACCT	200
5	TGTCACTGAT . TGGGTAGAAT	MANUCAL ACCUL	CTTCCTCAAC	CAATTGATGA	CAGAGGTCCA	250
	TGGGTAGAAT ATTGAATGTA	TATCAACGII	GIIGGIGAAC	CCTCAACCAC	CTTCATTCGT	300
	TGAACAATCT	AGGAAAGAAA	SCCMMIICAC	A A CCCCCTATT	AAGGTTGTCG	350
	TGAACAATCT	ACTGCTGCCG	AAATTTTGGA	AACCGGIAII	CTTCGGTGGT	400
	ATTTGTTGGC	TCCTTACGCT	AGAGGTGGTA	AGAIIGGIII	ACAACATTCC	450
10	GCTGGTGTCG	GTAAAACCGT	CTTCATCCAA	GAATTGATTA	ACAACATIGC	500
	CAAAGCTCAT	GGTGGTTTCT	CTGTCTTTAC	CGGTGTCGGT	GAAAGAACCA	550 550
	GAGAAGGTAA	CGATTTGTAC	CGTGAAATGA	AAGAAACTGG	TGTCATCAAC	
	TOTAL A COTTO	ACTCCAAGGT	CGCCTTGGTC	TTCGGTCAAA	TGAACGAACC	600
	$\mathbf{x}$ COTOCTOT	ACACCTAGAG	TTGCTTTGAC	TGGTTTGACC	ATTGCTGAAT	650
15	አርጥጥርአርአርል	TCAACAAGGT	CAAGATGTCT	TGTTGTTCAT	TGACAACATT	700
15	ምምር እ ር እ ምምር <u>እ</u>	CCCAAGCTGG	TTCCGAAGTG	TCTGCTTTGT	TGGGTCGTAT	750
	<b>ጥ</b> ረረ እጥርጥርረጥ	GTCGGTTATC	AACCAACCTT	GGCCACTGAT	ATGGGTCTTT	800
	TGCAAGAACG	TATTACCACC	ACCAAGAAAG	GTTCTGTTAC	TTCTGTCCAA	850
	GCTGTTTATG	TCCCACCCGA	TGATTTAACC	GATCCAGCTC	CAGCTACCAC	900
	CTTCGCTCAC	TCCCAGCCGA	CTACTCTCTT	GTCTAGAGGT	ATTTCTGAAT	950
20	CTTCGCTCAC	TIGGATGCCA	GATCCATTGG	ΔΤΤΟΤΔΔΔΤΟ	CAGATTATTG	1000
	TGGGTATTTA GATGCTACTG	CCCAGCTGTC	BAICCALIGG	CATCTTCCCA	СТССТСТТСА	1050
	GATGCTACTG	TIGITIGGICA	AGAACATTAT	ACATATICCCA	CCTATTTCC	1100
	ACAAACTTTA	CAAGCTTACA	AGTCCTTGCA	MCACTCTCCA	AACACCTCCT	1150
	GTATGGATGA	ATTGTCCGAA	GCCGATAAAT	TGACTGTCGA	AAGAGCICGI	1200
25	AAGATTCAAA	GATTCTTGTC	CCAACCATTC	GCTGTTGCCG	AAGIIIICAC	1250
	TGGTATCCCA	GGTAGATTGG	TTAGATTACA	AGATACTGTT	AAATCTTTCA	
	AAGATGTCTT	GGAAGGTAAA	TACGATCACT	TGCCAGAAAA		1290
30	•	ENCE CHARAC	ID NO: 476	,		
	(A)	LENGTH: 1	267 bases			
35	(B)	TYPE: Nuc	leic acid			
33	(C)	STRANDEDN	ESS: Double			
	(D)	TOPOLOGY:	Linear			
	. (-,					
	(ii) MOLEC	TULE TYPE:	Genomic DNA			
40	(11,110111	<b></b>				
40	(sei ) ORTGI	NAL SOURCE	•			
	(VI) ORIGI	ORGANISM	Candida ut	ilis		
	• •					
	(B)	STRAIN: C	sp 388			
			DET 011 050	TD NO. 476		
45	(xi) SEQUE	ENCE DESCRI	PTION: SEQ	1D NO: 4/6		
		ammas as mas	2022002		mmccmccmcc	50
	TTTGAACGCC	CTTGAGATCA	AGAACCACGA	GTCTGGAAGA	TTGGTCCTCG	. 50
	AGGTTGCCCA	GCACTTGGGT	GAGAACACTG	TCAGAACTAT	TGCCATGGAT	100
	GGTACCGAAG	GTCTCGTCCG	TGGTGAGTCT	GTTGTTGACA	CCGGTTCTCC	150
50	AATTACTGTC	CCAGTTGGTC	: GTGAGACCTT	GGGTCGTATC	ATCAACGTTA	. 200
	TTGGTGAGCC	AATTGATGAG	CGTGGTCCAA	TCAACACCAA	GCACAGAAAC	250
	CCAATTCACG	CTGAGCCACC	: ATCCTTCGCT	GAGCAGTCTA	CTGCTGCTGA	300
	GGTTTTGGAG	ACTGGTATCA	AGGTTGTCGA	CCTTCTCGCC	CCATACGCCA	350
	GAGGTGGTAA	GATTGGTCTC	TTTGGTGGTG	CCGGTGTCGG	TAAGACCGTT	400
55	TTCATCCAGG	AGTTGATTAA	CAACATTGCC	AAGGCCCACG	GTGGTTTCTC	450
			AGAGAACCAG			500

550

600

650

700

TGTTTTCACC GGTGTCGGTG AGAGAACCAG AGAGGGTAAC GATTTGTACC

GTGAGATGAA GGAGACTGGT GTCATCAATC TCGAGGGTGA GTCCAAGGTT

GCTCTCGTCT TCGGTCAGAT GAACGAGCCA CCAGGTGCCC GTGCCCGTGT

CGCTTTGACC GGTTTGACCA TTGCTGAGTA CTTCAGAGAT GAGGAGGGTC

60 AGGATGTCTT GTTGTTTATT GACAACATTT TCAGATTCAC CCAGGCCGGT

	TCCGAGGTGT GCCAACTTTG CCCAGAAGGG	GCCACCGATA	TGGGTTTGTT	CCATCCGCTG GCAGGAGAGA CCGTTTACGT		750 800 850
		ATCCTGCTCC		TTCGCCCACT		900
5	CACTGTGTTG	TCCCGTGGTA	TCTCTGAGTT	GGGTATTTAC	CCAGCTGTCG	950
	ACCCATTGGA	CTCCAAGTCC	AGATTGTTGG	ACGCTGCCGT	TGTTGGTGAC	1000
		ACACCGCCAC	CGATGTCCAG	CAGACCCTTC	AGGCTTACAA	1050
	GTCTCTCCAG	GATATCATTG		TATGGATGAG	TTGTCTGAGG	1100
	CTGACAAGTT	GACTGTCGAG	AGAGCCAGAA	AGATTCAGCG	TTTCCTTTCC	1150
10	CAGCCATTCG	CTGTCGCTGA	GGTTTTCACC	GGTATCCCAG	GTAGATTGGT	1200
10	TAGACTTCAG	GACACCATCA	AGTCCTTCAG	AGAGGTTTTG	GACGGTAAGT	1250
						1267

15

- 2) INFORMATION FOR SEQ ID NO: 477
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1296 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

25

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Candida viswanathii
  - (B) STRAIN: ATCC 28269
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 477

	CCAATTCGAC	GAAGGTAGCT	TGCCAGCTAT	CTTGAACGCC	TTGACCTTGA	50
	AGAACGGTGA	CCAAGACTTG	GTCTTGGAAG	TTGCCCAACA	CTTGGGTGAA	100
	AACACTGTCA	GAGCTATTGC	TATGGATGGT	ACCGAAGGTT	TGGTCAGAGG	150
35	TACTGCTGTC	ACTGACACCG	GTGCTCCAAT	CTCCGTCCCA	GTCGGTAGAG	200
	GTACCTTGGG	TAGAATCATC	AACGTTGTTG	GTGAACCAAT	TGACGACAGA	250
	GGTCCAATTG	AATGTAAGGA	AAGAAAGCCA	ATTCACGCTG	AACCACCTTC	300
	TTTCGTTGAA	CAATCCACTG	CTGCCGAAAT	TTTGGAAACC	GGTATCAAGG	350
	TTGTCGACTT	GTTGGCCCCA	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
40	GGTGGTGCCG	GTGTCGGTAA	GACTGTCTTT	ATCCAAGAGT	TGATTAACAA	450
	CATTGCCAAG	GCCCATGGTG	GTTTCTCTGT	CTTCACTGGT	GTCGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACCGGTGTC	550
	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCC	TTGGTTTTCG	GTCAAATGAA	600
	CGAACCACCT	GGTGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650
45	CCGAATACTT	CAGAGACGAA	GAAGGTCAAG	ATGTCTTGTT	GTTTATTGAC	700
	AACATTTTCA	GATTCACCCA	AGCCGGTTCC	GAAGTGTCTG	CTTTGTTGGG	750
	TCGTATTCCA	TCTGCCGTCG	GTTATCAACC	AACCTTGGCC	ACCGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACCACCA	AGAAGGGTTC	CGTCACCTCT	850
	GTCCAAGCTG	TCTATGTCCC	AGCCGATGAT	TTGACCGATC	CTGCTCCAGC	900
50	CACCACCTTC	GCTCACTTGG	ATGCCACTAC	TGTCTTGTCT	AGAGGTATTT	950
	CCGAATTGGG	TATCTACCCA	GCTGTCGATC	CATTGGACTC	CAAGTCCAGA	1000
	TTGTTGGATG	CTGCTGTTGT	TGGTCAAGAA	CATTACGATG	TTGCCACTGG	1050
	TGTCCAACAA	ACCTTGCAAG	CTTACAAGTC	TTTGCAAGAT	ATCATTGCCA	1100
	TTTTGGGTAT	GGATGAATTG	TCTGAATCCG	ATAAGTTGAC	TGTCGAAAGA	1150
55	GCTCGTAAGA	TCCAAAGATT	CTTGTCGCAA	CCATTTGCTG	TTGCCGAAGT	1200
	TTTCACTGGT	ATCCCAGGTA	GATTAGTTAG	ATTGCTGGAA	ACCGTCCAAT	1250
	CTTTCAAAGA	CGTCTTGGCT	GGTAAATACG	ATCACTTGCC	AGAAAA	1296

# 2) INFORMATION FOR SEQ ID NO: 478

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1295 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

10

5

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Candida zeylanoides
  - (B) STRAIN: ATCC 7351
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478

	TCAATTCGAG	CAAGGCAACC	TCCCTGCCAT	CTTGAACGCT	CTCACCTTGA	50
	AGAATGGTGA	CAACGACTTG	GTTTTGGAAG	TTGCCCAGCA	CTTGGGTGAG	100
	AACACCGTCA	GAGCCATTGC	CATGGATGGT	ACCGAGGGTT	TGGTTAGAGG	150
20	TGCGTCCGTC	AAGGACACTG	GCGCCCCTAT	CTCGGTCCCC	GTTGGCCGCG	200
20	GGACTTTGGG	TCGTATCATC	AACGTCACCG	GTGACCCCAT	TGACGAGAGA	250
	GGTCCCATCG	AGCTGACCCA	GAGAAACCCT	ATCCACGCCG	ACCCCCCTC	300
	GTTCGTTGAG	CAGTCCACCA	ACGCTGAGGT	TTTGGAGACT	GGTATCAAGG	350
	TTGTCGATTT	GTTGGCTCCC	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
25	GGTGGTGCCG	GTGTCGGTAA	GACCGTCTTC	ATTCAGGAGT	TGATCAACAA	450
23	CATCGCCAAG	GCCCACGGTG	GGTTCTCGGT	CTTCACTGGT	GTCGGTGAGA	500
	GAACTAGAGA	GGGTAACGAC	TTGTACCGTG	AGATGAAGGA	GACCGGTGTC	550
	ATCAACTTGG	AGGGTGACTC	CAAGGTGGCC	TTGGTGTTCG	GTCAGATGAA	600
	CGAGCCCCCT	GGAGCCAGAG	CCAGAGTCGC	CTTGACCGGG	TTGACCATTG	650
30	CCGAATACTT	TAGAGACGAG	GAGGGTCAGG	ATGTGTTGTT	GTTCGTCGAC	700
30	AACATCTTCA	GATTCACCCA	AGCTGGTTCG	GAGGTGTCGG	CCTTGTTGGG	750
	TCGTATTCCC	TCTGCCGTCG	GTTACCAGCC	CACCTTGGCA	ACTGATATGG	800
	GATTGTTGCA	GGAGCGTATC	ACCACGACCA	AGAAGGGTTC	CGTCACCTCA	850
	GTGCAGGCCG	TCTACGTCCC	CGCTGATGAC	TTGACTGACC	CTGCTCCCGC	900
35	CACCACCTTT	GCCCACTTGG	ACGCCACCAC	CGTGTTGTCC	AGAGGTATCT	950
	CTGAGTTGGG	TATCTACCCC	GCCGTCGACC	CCTTGGACTC	CAAATCGAGA	1000
	TTGTTGGACG	CTGCCGTGGT	CGGTCAGGAG	CACTACGATG	TTGCCTCGAA	1050
	CGTCCAGCAG	ACCTTGCAGG	CCTACAAGTC	CTTGCAGGAT	ATCATTGCCA	1100
	TTTTGGGTAT	GGATGAGTTG	TCCGAGGCTG	ACAAGTTGAC	CGTTGAGAGA	1150
40	GCCAGAAAGA	TCCAGAGATT	CTTGTCGCAG	CCCTTCGCTG	TTGCCGAGGT	1200
- <del>-</del>	TTTCACTGGT	ATCAAGGGTA	GATTGGTCAG	ATTGGAGGAC	ACCGTCAGAT	1250
	CTTTCAAGGA	GGTTTTGGAG	GGTAAGTACG	ACCACTTGCC	CGAGA	1295

45

- 2) INFORMATION FOR SEQ ID NO: 479
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 534 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

55

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Coccidioides immitis
  - (B) STRAIN: Silveira
- 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479

5	TTCAGGAATT GATTGTAAGT TCTGTTATCA ACTAAAGCCG ACAGCGGTTG CTGATATGCT CTAGAACAAC ATTGCTAAGG CTCACGGTGG TTACTCCGTG TTCACTGGTG TCGGTGAGCG TACCCGTGAG GGTAACGATT TGTACCATGA AATGCAAGAG ACCCGTGTCA TTCAACTCGA CGGAGAGTCC AAGGTCGCTC CTTACCGGTT TGACCATTGC TGAATACTTC CGTGACGAGG AAGGCCAAGA CGGTAGGCTT CATGCTTCTA TCGCTAGGGG CGTGTGATAC AGGAGGCTAA TCGCTTTTCT AGTGCTTCTC TTTATTGACA ACATTTTCCG TTTCACTCAA GCTGGTTCTG AAGTGTCTGC CTTGCTCGGT CGTATTCCT CCGCTGTCGG TTACCAACCT ACTCTCGCCG TCGACATGG TGTTATGCAG GAACGTATCA CCACCACCAC CAAGGGATCC ATTACTTCAG TGCA	50 100 150 200 250 300 350 400 450 500 534
15	2) INFORMATION FOR SEQ ID NO: 480	
20	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 494 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	<ul><li>(ii) MOLECULE TYPE: Genomic DNA</li><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Cryptococcus albidus</li><li>(B) STRAIN: ATCC 66030</li></ul>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480	
35 40	CGTCTTGATT CAAGAATTGA TCAACAACAT CGCCAAGGCC CACGGTGGTT ACTCGGTCTT CACCGGTGTC GGTGAGCGAA CTCGAGAGGG TAACGATCTG TACCACGAAG TGAGTTGCGC CGTCCGAGTG TTTCCCGGGG AATCGCAAGA CTGATGTTGT CCCTTCTTCT CAGATGAGGG AAACCGGTGT CATCAACCTC GGGGGTGACT CCAAGGTCGC CTTGGTCTTC GGTCAGATGA ACGAGCCCCC TGGAGCCCGA GCCCGAGTCG CCTTGACCGG TTTGACCATT GCCGAATACT TCCGAGACGA GGAGGGTCAG GATGTCTTGT TGTTCATTGA CAACATTTTC CGATTCACCC AAGCCGGTTC CGAAGTGTCC GCCTTGTTGG GTCGTATCCC CTCCGCCGTC GGTTACCACC CCACTCTGTC CACCGACATG GGTACCATGC AGGAGCGAAT TACCACCACC AAGAAGGGTT CCATCACTTC CGTC	50 100 150 200 250 300 350 400 450 494
45	2) INFORMATION FOR SEQ ID NO: 481	
50	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 415 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Fusarium oxysporum     (B) STRAIN: WSA-212</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481	

5	TTCAGGAGCT TATCAACAAC ATCGCCAAGG CCCACGGTGG TTACTCCGTC TTCACTGGTG TCGGTGAGCG AACTCGTGAG GGTAACGATC TGTACCACGA AATGCAGGAG ACTTCCGTCA TTCAGCTTGA TGGCGAGTCC AAGGTCGCCC TGGTCTTCGG TCAGATGAAC GAGCCCCCTG GAGCTCGTGC CCGTGTCGCC CTTACCGGTC TTACTGTAGC TGAATACTTC AGAGATGAGG AGGGTCAGGA CGTGCTGCTC TTCATTGACA ACATTTTCCG ATTCACTCAG GCCGGTTCCG AGGTGTCTGC CCTTCTCGGT CGTATCCCCT CTGCCGTCGG TTACCAGCCC ACCCTCGCCG TCGACATGGG TGGTATGCAA GAGCGTATTA CCACCACCAC CAAGGGTTCC ATTAC	50 100 150 200 250 300 350 400 415
10		
	2) INFORMATION FOR SEQ ID NO: 482	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1281 bases (B) TYPE: Nucleic acid	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Geotrichum spp.</pre>	
25	(B) STRAIN: Lev-4	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482	
30	AGGACAACCT CCCCGCTATT CTTAACGCTC TTGAGCTTAA GAGAGATAAC GGTGAGAAGC TCGTTCTCGA GGTTGCCCAG CATCTGGGTG AGAACACTGT CCGTACTATT GCTATGGACG GTACTGAGGG TCTCGTCCGT GGTCAGCCCG TTGTTGACAC CGGTGCCCCC ATTACCATTC CCGTTGGTCG TGGTACTCTT	50 100 150 200 250
35	GGTAGAATTA TCAACGTCAT TGGTGAGCCC ATCGATGAGC GTGGACCCAT TGAGGCTACC AAGTACCTCC CCATCCACAC CGAGCCCCCC ACCTTCGCTG AGCAGTCTAC CTCCGCTGAG GTTCTTGAGA CTGGTATCAA GGTTGTCGAT CTCCTTGCCC CCTACGCCCG TGGTGGTAAG ATTGGTCTCT TCGGTGGTGC CGGTGTCGGT AAGACCGTTT TCATTCAGGA GCTGATTAAC AACATTGCCA	300 350 400 450
40	AGGCCCATGG TGGTTTCTCC GTTTTCACCG GTGTCGGTGA GAGAACCCGT GAGGGTAACG ATTTGTACCG TGAGATGAAG GAGACCGGTG TCATCAACCT CGAGGGTGAG TCTAAGGTCG CTCTCGTTTT CGGTCAGATG AACGAGCCCC CTGGAGCCCG TGCCCGTGTT GCTCTTACTG GTCTTACCAT TGCTGAGTAC TTCCGTGATG AGGAGGGTCA GGATGTGTTG CTCTTCGTTG ACAACATTTT	500 550 600 650 700
45	CCGTTTCACT CAGGCCGGTT CCGAGGTGTC TGCCCTTTTG GGTCGTATTC CCTCCGCTGT CGGTTACCAG CCCACCCTTG CCACTGATAT GGGTGCCCTG CAAGAGCGTA TTACCACCAC CCAGAAGGGT TCCGTCACTT CCGTCCAGGC CGTCTACGTC CCTGCCGATG ATTTGACCGA TCCTGCCCCT GCTACCACCT TCGCCCATTT GGATGCCACC ACCGTCTTGT CGCGTTCCAT TTCTGAGTTG	750 800 850 900 950
50	GGTATCTACC CCGCTGTCGA TCCCCTTGAT TCCAAGTCTC GTCTTTTGGA TATCACCGTC GTTGGCCAGG AGCACTACGA TGTTGCTACC CAGGTCCAGC AGACCCTCCA GTCCTACAAG TCTCTTCAGG ATATCATTGC CATTTTGGGT ATGGATGAGT TGTCTGAGGC TGATAAGCTT ACTGTCGAGC GTGCCCGTAA GATCCAGAGA TTCCTTTCCC AGCCCTTCAC TGTCGCTGAG GTTTTCACTG	1000 1050 1100 1150 1200
	GTATCGAGGG CCGTCTCGTT CCTTTGAAGG ACACTGTTCG CTCTTTCAAG	1250 1281
55	GAGATCCTTG AGGGCAAGTA CGACCACCTC C	1201

# 2) INFORMATION FOR SEQ ID NO: 483

(i) SEQUENCE CHARACTERISTICS:

_	<ul><li>(A) LENGTH: 586 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE: (A) ORGANISM: Histoplasma capsulatum (B) STRAIN: G185A5	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483	
15	ATTCAAGAAT TGATCGTACG TTCCTCCGCC CCACACACGA TCAATGGAGA AAGAAACAAA TTTTTTGGGA GTGGTCATTT TTTCTAATAA TTCGAATAGA ACAACATTGC CAAAGCCCAC GGTGGTTACT CCGTGTTCAC TGGTGTCGGC GAGCGGACCC GTGAAGGAAA TGACTTGTAC CACGAAATGC AGGAAACCCG	50 100 150 200
20	TGTTATCCAG CTCGATGGAG AGTCCAAGGT CGCCCTCGTT TTCGGTCAGA TGAACGAGCC TCCCGGAGCC CGTGCCCGTG TTGCCCTCAC TGGTCTGACC GTTGCCGAGT ACTTCCGTGA CGAGGAAGGC CAAGACGGTA TGTATAAGTA TACACCGTAG CAAATCAACA CAGAGCTTCA CTCACGCTCG GATTTAGTGC	250 300 350 400
25	TTCTCTTCAT CGACAACATT TTCCGCTTCA CTCAGGCCGG TTCCGAAGTG TCTGCCCTGC TCGGCCGTAT TCCCTCCGCC GTCGGTTACC AACCCACCCT CGCCGTGGAC ATGGGTGGTA TGCAGGAACG TATCACCACT ACCACCAAGG GCTCCATCAC CTCTGTGCAR GCCGTCTACG TCCCCG	450 500 550 586
30	2) INFORMATION FOR SEQ ID NO: 484	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1145 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Malassezia furfur     (B) STRAIN: ATCC 42132</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 484	
45	GCGTGGCCAG AAGGTCATTG ACACTGGTGC TCCCATCACC ATCCCCGTCG GTGGTGCCAC ACTGGGTCGT ATTCTGAACG TCACGGGTGA CCCTATTGAC GAGCGTGGCC CCGTTAAGAC TGACGTTTTC CGCCCCATTC ACCGTGACCC CCCTGCCTTT GTCGAGCAGT CGACTGATGC CGAGATTCTC GAGACTGGTA	50 100 150 200
50	TCAAAGTCGT TGACCTGATT GCCCCTTACG CCCGTGGTGG TAAGATTGGT CTGTTCGGTG GTGCCGGTGT CGGTAAGACC GTGCTTATCC AGGAGCTCAT CAACAACATC GCCAAGGCCC ACGGTGGTTT CTCCGTGTTC ACTGGTGTCG GTGAGCGTAC TCGTGAGGGT AACGATTTGT ACCACGAGAT GATTGAAACC	250 300 350 400
55	GGTGTCATTA ACCTCGAGGG TGACTCGAAG GTGGCTCTGG TGTTCGGTCA GATGAACGAG CCCCCGGGTG CCCGTGCGCG TGTCGCTCTT ACTGGTCTGA CTGTGGCCGA GTACTTCCGT GACGACGAGG GCCAGGATGT GCTGCTGTTC ATTGACAACA TTTTCCGTTT CACCCAGGCC GGTTCGGAGA CTTCGGCTCT GCTGGGTCGT ATCCCTTCGT CGGTCGGTTA CCAGCCCACT TTGTCGACCG	450 500 550 600
60	ATATGGTGC CATGCAGAG CGTATCACCA CCACCAAGAA GGGTTCGATT ACGTCGGTGC AGGCCGTCTA CGTGCCCGCC GATGATGTCA CTGACCCTGC CCCTGCCACT ACCTTCGCCC ACCTTGACGC TACCACTGTG CTTGACCGTT	650 700 750 800

5	CGATCGCTGA GCTGGGTATC TACCCCGCTG TTGACCCGTT GAACTCGAACTCGCGTATGC TTGACCCCGC TATTGTGGGT CAGGAGCACT ACGACGTGGCCTCTCTGGCGTG CAGAAGCTGC TCCAGGACTA CAAGTCGCTT CAAGATATCATTGCCATTCT GGGTATGGAT GAGCTTTCTG AGGAGGACAA GCTCACTGTCGCAGGTCTTT ACTGGTATCG AAGGTCGTCT TCGCTGTCGCCCAGGTCTTT ACTGGTATCG AAGGTCGTCT TGTTGCCCTG AAGGACACGATCAAGGCCTG CAAGGAGATC CTGTCGGGCA AGCACGACAA CCTCC	900 950 1000 1050
10	2) INFORMATION FOR SEQ ID NO: 485	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1261 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Malassezia pachydermatis</pre>	
25	(B) STRAIN: ATCC 42756  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 485	
30	TCCCGCCATC TTCAACGCCC TGGAGGTCCA GGACATGAAG AACGGTGGCCGCCTTGTTCT GGAGGTTGCC CAGCACCTTG GTGAGAACAC TGTTCGTTGCCACTGGTATGG ACGGTACCGA GGGTCTTGTC CGTGGTCAGA AGGTCCTTGACCGTGGTGCC CCGATCACTA TCCCTGTCGG TAACGGTACC TTGGGCCGYATCCTGAACGT CACTGGTGAG CCTGTGGATG AGCGTGGTCC GGTTAAGACTGACGTTACC GTCCAATCCA CCGTGAGCCC CCGGCGTTCG TTGAGCAGTCGACTGGATGCT GAGATTCTTG AGACTGGTAT CAAGGTGGTC GACCTGCTCC	100 150 200 250 300
35	CCCCATACGC TCGTGGTGGT AAGATTGGTC TWTTCGGTGG TGCYGGTGTY GGTAAGACCG TGCTGATTCA GGAGCTTATC AACAACATTG CCAAGGCCCA CGGTGGTTTC TCGGTGTTCA CTGGTGTCGG TGAGCGTACT CGTGAGGGTA ACGATCTGTA CCATGAAATG ATTGAGACTG GTGTCATCAA CGTTGACGGT	400 450 500
40	GACTCGAAGG TCGCTCTCGT GTTCGGTCAG ATGAACGAGC CCCCGGGTGCCCGTGCCCGT GTCGCCCTGA CYGGTCTGAC CATCGCCGAG TACTTCCGTCACGACGAGGG TCAGGATGTG CTGCTCTTCA TTGACAACAT TTTCCGTTTCACTCAGGCTG GTTCGGAGAC TTCGGCTCTG CTGGGTCGTA TCCCGTCGGCTGTCTCGGTTAC CAGCCKACCC TTGCCACGGA TATGGGTGCC ATGCAGGARC	600 650 700 750
45	GTATYACCAC CACCAAGAAG GGTTCGATTA CCTCGGTGCA GGCYGTTTACGTTCCGGCCG ACGATGTGAC TGACCCTGCC CCGGCCACGA CCTTCGCCCACTTGGACGCC ACCACGGTGT TGGACCGTTC GATTGCYGAG CTGGGTATCTACCCGGCCGT CGACCCGCTG AACTCGAAGT CGCGTATGCT TGACCCGTCAATTGTCGGTG TGGAGCACTA CAACGTTGCT TCGGGTGTCC AGAAGCTTCT	900 950 1000 1050
50	YCAGGACTAC AAGTCGCTCC AAGATATCAT TGCCATTCTG GGTATGGATC AGTTGTCGGA GGAGGACAAG CTCACTGTCG AGCGTGCCCG TAAGATGCAC CGTTTCCTGT CGCAGCCTTT CGCTGTGGCC CAGGTCTTCA CTGGTATCGA GGGTCGTCTT GTGTCGCTCA AGGACACCAT CAACGCCTGC AAGGAGATTC TGTCCGGTAA G	1150 1200
55	2) INFORMATION FOR SEQ ID NO: 486	

(i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Metschnikowia pulcherrima (A) STRAIN: DSM 70336 (B) 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 486 AGGAGGCAA CTTGCCAGCT ATCTTCAACG CTTTGACGTT GAAGAACGGC 50 GACCAGAAGT TGGTCTTGGA GGTGGCCCAG CACTTGGGTG AGAACACCGT 100 CAGAACCATT GCCATGGACG GTACCGAGGG TTTGGTCAGA GGCGCCTCTG 150 TCACCGACAC YGGTGCCCCT ATCTCCGTGC CTGTCGGCCG TGAGACCTTG 200 GGTCGTATTA TCAATGTTGT TGGTGAGCCA ATCGACGAGA GAGGCCCAAT CAACACCAAG AAGAGAAACC CTATTCACAC CGACCCACCT TCGTTTGTCC AGCAATCCAC TTCCGCCGAG GTCTTGGAGA CTGGTATCAA GGTTGTCGAC TTGTTGGCCC CTTACGCCAG AGGTGGTAAG ATTGGTTTGT TCGGTGGTGC 20 CGGTGTCGGT AAGACCGTGT TCATCCAGGA GTTGATTAAC AACATTGCCA AGGCCCACGG TGGTTTCTCC GTTTTCACCG GTGTCGGTGA GAGAACCAGA GAGGGTAACG ATTTGTACCG TGAAATGCAG GAGACTGGTG TCATCAACTT
CGAGGGTGAC TCCAAGGTCG CCTTGGTTTT CGGTCAGATG AACGAGCCTC
CAGGAGCTAG AGCYAGAGTT GCCTTGACCG GTTTGACCAT CGCCGAGTAC
TTCAGAGACG AGGAGGGTCA GGATGTGTTG TTGTTCGTCG ACAACATTTT
CAGATTCACC CAAGCCGGTT CTGAGGTGTC TGCCTTGTTG GGTCGTATTC 25 CATCCGCTGT CGGATACCAG CCAACCTTGG CCACCGATAT GGGTGCCTTG CAGGAGAGAA TTACCACCAC CAAGAAGGGT TCCGTCACCT CCGTCCAGGC CGTCTACGTG CCAGCCGATG ACTTGACTGA CCCTGCGCCA GCCACCACTT TCGCCCACTT GGACGCCACC ACTGTGTTGT CCAGAGGTAT CTCTGAGTTG 900 30 950 GGTATCTACC CCGCTGTCGA CCCCTTGGAC TCCAACTCCA GATTGTTGGA 1000 CGCCACCGTT GTTGGCCAGG AGCACTACGA CGTCGCCACC AACGTCCAGC 1050 AAACTTTACA AGCTTACAAG TCCTTGCAGG ATATCATTGC CATTTTGGGT
ATGGATGAGT TGTCCGAGAC CCGACAAGTT GACCCGTCGA GAGAGCCAGA
AAGATCCAGA AGTTCTTGTC CCAGCCATTT GCCGTCGCCG AGGTTTTCAC
CGGTATTGAG GGTAGATTGG TTAGATTGGA GGACACCGTT AGATCCTTTA 1100 35 AGGAGGTTTT GGAAGGTAAG TACGACCACT TG 1282 40 2) INFORMATION FOR SEQ ID NO: 487 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 482 bases 45 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 50 (vi)ORIGINAL SOURCE: (A) ORGANISM: Penicillium marneffei (B) STRAIN: WSA-214 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 487 55 TGTCTTTATC CAGGAGTTGA TTGTACGTCT TTACCTTTCT GCCTGACTGT

150

TTACGACAAC TAACGAAAGC GTAGAACAAC ATTGCCAAGG CTCACGGTGG
TTACTCTGTC TTCACTGGTG TCGGTGAACG TACTCGTGAG GGTAACGATT

60 TGTACCACGA AATGCAGGAA ACTGGTGTCA TTCAGCTCGA GGGTGAATCC

5	CCGTGTCGCT AAGGTCAGGA GCCGGTTCTG TTACCAGCCC	TCGTGTTCGG CTTACTGGTT CGTGCTTCTC AGGTGTCTGC ACCCTTGCCG CAAGGGTTCC	TGACCATTGC TTCATTGACA CCTTCTGGGT TCGACATGGG	CGAGTACTTC ACATTTTCCG CGTATCCCCT TATCATGCAG	CGTGACGAGG TTTCACTCAG CTGCCGTCGG	250 300 350 400 450 482
10	2) INFORMAT	ON FOR SEQ	ID NO: 488			

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1290 bases
  - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 20 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Pichia anomala
- (B) STRAIN: ATCC 18205
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 488

20						
	TCGAACAAGG	TAACTTACCA	GCTATCTTGA	ATGCTTTAGA	AATCAAAACC	50
	CCAAGTGGTA	CTCCATTAGT	TTTAGAAGTT	GCTCAACATT	TAGGTGAAAA	100
	CACTGTCAGA	ACTATTGCTA	TGGATGGTAC	TGAAGGTTTA	GTTCGTGGTG	150
	AACAAGTTAC	TGATACTGGT	TCTCCAATCA	CTGTCCCAGT	TGGTCGTGAA	200
30	ACTTTAGGTC	GTATTATCAA	CGTTGTTGGT	GAACCAATTG	ATGAACGTGG	250
	TCCAATTAAC	ACCAAACAAA	GAAACCCAAT	TCACGCTGAA	CCACCTTCAT	300
	TCAGTGAACA	ATCAACTGCT	GCTGAAGTTT	TAGAAACTGG	TATCAAAGTT	350
	GTYGATTTAT	TAGCTCCATA	CGCTAGAGGT	GGTAAAATTG	GTTTATTCGG	400
	TGGTGCCGGT	GTCGGTAAAA	CTGTCTTTAT	CCAAGAATTG	ATTAACAACA	450
35	TTGCTAAAGC	TCATGGTGGT	TTCTCAGTTT	TCACCGGTGT	TGGTGAAAGA	500
	ACCAGAGAAG	GTAACGATTT	ATACCGTGAA	ATGAAAGAAA	CTGGTGTTAT	550
	TAACTTGGAA	GGTGATTCTA	AGGTCGCTTT	AGTTTTCGGT	CAAATGAATG	600
	AACCACCAGG	TGCTAGAGCT	CGTGTTGCTT	TAACTGGTTT	GACCATTGCT	650
	GAATACTTCA	GAGATGAAGA	AGGTCAAGAT	GTCTTGTTAT	TCGTTGATAA	700
40	CATTTTCAGA	TTCACCCAAG	CCGGTTCAGA	AGTTTCTGCC	TTATTAGGTC	750
	GTATTCCATC	TGCTGTCGGT	TATCAACCAA	CTTTAGCAAC	TGATATGGGT	800
	TTGTTACAAG	AACGTATTAC	CACCACACAA	AAAGGTTCAG	TTACTTCTGT	850
	CCAAGCTGTT	TATGTCCCAG	CTGATGATTT	AACAGATCCT	GCTCCAGCTA	900
	CCACTTTCGC	CCATTTGGAT	GCTACTACTG	TCTTGTCTCG	TGGTATTTCA	950
45	GAATTAGGTA	TTTACCCAGC	TGTCGATCCA	TTAGATTCTA	AATCAAGATT	1000
	ATTAGATGCT	TCAGTTGTTG	GTCAAGAACA	TTATGATGTT	GCTACCAACG	1050
	TTCAACAAAC	TTTACAAGCT	TACAAATCTT	TACAAGATAT	TATTGCTATT	1100
	TTAGGTATGG	ATGAATTGTC	TGAACAAGAT	AAATTGACTG	TCGAAAGAGC	1150
	AAGAAAAATC	CAAAGATTCT	TATCTCAACC	ATTTGCTGTT	GCCGAAGTTT	1200
50	TCACTGGTAT	YCCAGGTAGA	TTGGTTAGAT	TAAAAGACAC	TATCAAATCA	1250
	TTCAAAGATG	TTTTGGAAGG	TAAATATGAT	CACTTACCAG		1290

- 55 2) INFORMATION FOR SEQ ID NO: 489
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1291 bases
  - (B) TYPE: Nucleic acid
- 60 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

## 5 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Pichia anomala
- (B) STRAIN: ATCC 2149

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 489

	(, = = -					
10						
	CCAATTCGAA	CAAGGTAACT	TACCAGCTAT	CTTGAATGCT	TTAGAAATCA	50
	AAACCCCAAG	TGGTACTCCA	TTAGTTTTAG	AAGTTGCTCA	ACATTTAGGT	100
	GAAAACACTG	TCAGAACTAT	TGCTATGGAT	GGTACTGAAG	GTTTAGTCCG	150
	TGGTGAACAA	GTTACTGATA	CTGGTTCTCC	AATCACTGTC	CCAGTTGGTC	200
15	GTGAAACTTT	AGGTCGTATT	ATCAACGTTG	TTGGTGAACC	AATTGATGAA	250
	CGTGGTCCAA	TTAACACCAA	ACAAAGAAAC	CCAATTCACG	CTGAACCACC	300
	TTCATTCAGT	GAACAATCAA	CTGCTGCTGA	AGTTTTAGAA	ACTGGAATCA	350
	AAGTTGTTGA	TTTATTAGCT	CCATACGCTA	GAGGTGGTAA	AATTGGTTTA	400
	TTCGGTGGTG	CCGGTGTCGG	TAAAACTGTC	TTTATCCAAG	AATTGATTAA	450
20	CAACATTGCT	AAAGCTCATG	GTGGTTTCTC	AGTTTTCACC	GGTGTTGGTG	500
	AAAGAACCAG	AGAAGGTAAC	GATTTATACC	GTGAAATGAA	AGAAACTGGT	550
	GTTATTAACT	TGGAAGGTGA	TTCTAAGGTC	GCTTTAGTTT	TCGGTCAAAT	600
	GAATGAACCA	CCAGGTGCTA	GAGCTCGTGT	TGCTTTAACT	GGTTTGACCA	650
	TTGCTGAATA	CTTCAGAGAT	GAAGAAGGTC	AAGATGTCTT	GTTATTCGTT	700
25	GATAACATTT	TCAGATTCAC	CCAAGCCGGT	TCAGAAGTTT	CTGCCTTATT	750
	AGGTCGTATT	CCATCTGCTG	TCGGTTATCA	ACCAACTTTA	GCAACTGATA	800
	TGGGTTTGTT	ACAAGAACGT	ATTACCACCA	CACAAAAAGG	TTCAGTTACT	850
	TCTGTCCAAG	CTGTTTATGT	CCCAGCTGAT	GATTTAACAG	ATCCTGCTCC	900
	AGCTACCACT	TTCGCCCATT	TGGATGCTAC	TACTGTCTTG	TCTCGTGGTA	950
30	TTTCAGAATT	AGGTATTTAC	CCAGCTGTCG	ATCCATTAGA	TTCTAAATCA	1000
	AGATTATTAG	ATGCTTCAGT	TGTTGGTCAA	GAACATTATG	ATGTTGCTAC	1050
	CAACGTTCAA	CAAACTTTAC	AAGCTTACAA	ATCTTTACAA	GATATTATTG	1100
	CTATTTTAGG	TATGGATGAA	TTGTCTGAAC	AAGATAAATT	GACTGTCGAA	1150
	AGAGCAAGAA	AAATCCAAAG	ATTCTTATCT	CAACCATTTG	CTGTTGCCGA	1200
35	AGTTTTCACT	GGTATCCCAG	GTAGATTGGT	TAGATTAAAA	GACACTATCA	1250
	AATCATTCAA	AGATGTTTTG	GAAGGTAAAT	ATGATCACTT	A	1291

### 40 2) INFORMATION FOR SEQ ID NO: 490

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 508 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

## (ii) MOLECULE TYPE: Genomic DNA

50 (vi)ORIGINAL SOURCE:

45

- (A) ORGANISM: Rhodotorula minuta
- (B) STRAIN: ATCC 10658

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 490

55	(1117) 512 611	MICH PHOCKII	TION. BEQ.	ID NO: 430		
	CGTATTGATT	CGTGAGTGGC	CGTTCCCTTA	CAGCAAGCTT	ATAAAGGAGC	50
					ACTCATCAAC	
	AACGTCGCCA	ACCOMPANDO	TCCTTAIGIGCT	ATACAGAGGA	ACTUATURAC	100
	CCCNNCNCCCM	AGGCICAIGG	TGGTTACTCT	GTCTTCACCG	GTGTCGGAGA	150
<b>~</b> 0	GCGAACACGT	GAAGGTAACG	ATCTCTACCA	CGAAATGATT	GAAACCGGTG	200
60	TCATTCAGCT	CAAGAACGAC	AAGTCCAAGG	CCGCTCTGGT	CTTCGGACAG	250

5	CATCGCCGAGC CCCCCGGAGC TCGTGCCCGT GTCGCTCTGA CCGGTCTCAC CATCGCCGAG TACTTCCGTG ACGTCGAAGG ACAGGATGTG CTACTCTTCA TCGACAACAT TTTCCGATTC ACCCAGGCCG GTTCAGAGGT ATCTGCCCTG CTCGGACGTA TCCCATCTGC TGTCGGATAC CAGCCCACAC TCTCAACCGA TATGGGTGGT ATGCAAGAGC GAATCACAAC CACCAAGAAG GGTTCGATTA CCTCCGTC	300 350 400 450 500
	· ·	508
10	2) INFORMATION FOR SEQ ID NO: 491	
15	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 686 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	·
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Rhodotorula mucilaginosa     (B) STRAIN: ATCC 66034</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 491	
30	TGTCCTCATT CAGGAGCTCA TCAACAACAT CGCCAAGGCC CACGGTGGTT ACTCGGTCTT CACCGGTGTC GGCGAGCGTA CCCGTGAGG TAACGGTGAG TCTCCCCCTT CAAACTTTTG GCCGGCTAGT TGGCGCAGCG CAAACTGACG CGCGCGCCCT GTCCAGACTT GTACCACGAG ATGATCGAGA CTGGTGTCAT CCAGCTCGAG AACGACAACT CGAAGTGCGC TCTCGTGTTC GGCCAGATGA ACGAGCCCCC TGGTGCCCGT GCCCGTGTCG CTCTCACTGG GTTCGTCCTT TCTCTCTCTC GAGCGTCCTG GCTTGATACG GAACGCTGAC ACGTCACGCA GTCTCACTAT TGCTGAGTAC TTCCGTGACG AGGAGGGCCA GGACGTGCTC	50 100 150 200 250 300 350 400
35	CTCTTCATCG ACAACATCTT CCGTTTCACC CAGGGTGAGC CGCCTCCGCG GGCATTCTCC CGTTTCTTC GCGCTGACGT CTGTCCCGTA TAGCCGGTTC GGAGGTGTCT GCCCTTCTCG GACGTATCCC GTCCGCTGTC GGATACCAGC CGACTCTCTC GACCGACATG GGTCAGATGC AGGAGCGTAT CACGTAAGTT TGGCCGCAGC TCCGTCCGCG GCGCCCTTTG TGTCTGACCG TGTTCCACCG CTCAGCACCA CCAAGAAGGG CTCGATCACC TGTGTC	450 500 550 600 650 686
40		000
	2) INFORMATION FOR SEQ ID NO: 492	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 625 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	× .
50	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Sporobolomyces salmonicolor</pre>	
55	(B) STRAIN: ATCC 32311	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 492	
60	TGTCTTGATT CAGGAGCTCA TCAACAACGT CGCCAAGGCG CACGGTGGTT	50

5	ACCTCGAACA TCGACAACGA CCCCCTGGCG GTACTTCCGT TCTTCCGTTT TCGTGGTGAC	A GATCTCTACO A CAAGTCGAAG G CCCGTGCCCG C GACGACGAGG C CACCCAGGGT C TGACAACCTG	ACGAGATGAT ACTGCTCTCG TGTCGCTCTT GCCAGGACGT ACGTTCGATCG TTGCGCGTGC	TCTTCGGCCA ACTGGTCTCA GCTTCTCTTC CCGCCCGTCC AGCCGGTTCG	GTCATTCAGC GATGAACGAG CCATCGCGGA ATCGACAACA AACACGAATG GAGGTGTCTG	150 200 250 300 350 400 450
10	ACCGACATGO TCTCTCGTTT	GTGGCATGCA	GGAGCGTATC CGCTCACGCA	GATACCAGCC ACGTACGCCC TGTTCGCCCG		500 550 600 625
15	2) INFORMAT	ION FOR SEQ	ID NO: 493			
20	(i)SEQU (A) (B) (C) (D)	STRANDEDN	211 bases leic acid ESS: Double			
25			: Sporothrix			
30	(xi)SEQU	ENCE DESCRI	PTION: SEQ	ID NO: 493		
	CCGTCGGCCC	CGGTACCCTC	GGTCGCATCA	TGAACGTCAC	ATTACCATCC CGGTGACCCG	50 100
35	TGAGGCTCCC CTGGTATCAA ATTGGTCTGT	GAGTTCGTTG GGTCGTCGAT TTGGCGGTGC	ACCAGTCGAC CTGCTTGCTC CGGTGTTGGC	AAGTTCCGTC CACCGCTGAG CCTACGCCCG AAGACCGTGT TGGTTACTCC	GTTCTCGTGA TGGTGGTAAG TCATCCAGGA	150 200 250 300
40	GTGTCGGCGA GAGACCTCTG CGGTCAGATG	GCGTACCCGT TCATTCAGCT AACGAGCCCC	GAGGGTAACG TGACGGTGAC CTGGTGCTCG	ATCTGTACCA TCCAAGGTCG	CGAAATGCAG CCCTGGTGTT GCCTTGACCG	350 400 450 500 550
45	TTTTGAATTA TGTCAGTGCT TCTGAGGTGT GCCCACGCTC	TTTCCTTGTC TCTCTTCATC CTGCCCTTCT GCCGTGGACA	GTACAGTTCC GACAACATTT GGGTCGTATT TGGGTCTGAT	AAATCGAAGA TCCGCTTCAC CCCTCCGCTG GCAGGAGCGT	ATTACTAACT CCAGGCCGGT TCGGTTACCA ATTACCACCA	600 650 700 750
50	GATCTGACGG CACTGTGCTG ACCCCCTCGA	ATCCCGCCCC TCCCGAGGTA CTCCAAGTCG	CGCCACCACC TCTCTGAGCT CGTATGCTGG	CCGTCTACGT TTCGCCCATC GGGTATCTAC ACCCCGTAT	TGGACGCCAC CCCGCTGTCG TGTCGGTGAC	800 850 900 950
	GTCGCTGCAG CCGACAAGCT CAGCCGTTCA	GACATCATCG TACAGTCGAG CGGTCGCGCA	CCATTCTGGG CGTGCTCGTA GGTCTTCACT	CAGATCCTCC TATGGACGAG AGATCCAGCG GGTATCGAAG	CTGTCTGAGG TTTCCTGAGC GCCAGCTGGT	1000 1050 1100 1150
55	CGATCTGAAG GTGACAGCCT	GACACTATCG	CTTCGTTCAA	GGCTATCCTG	AGCGGTGAGG	1200

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 1133 bases (B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
	(b) lorologi: lillear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Stephanoascus ciferrii	
	(B) STRAIN: ATCC 52550	
	(b) blidin. Arec 32330	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 494	
15	(MI) DESCRIPTION: DESCRIPTION AND ADDRESS OF	
13	TCTTGTTAGA GGCACCCCAG TCAAGGACAC TGGTGCTCCA ATTACCATTC	50
	CAGTTGGTAA CGGCACTTTG GGCCGTATCG TCAACGTTCT CGGTGAGCCA	100
	ATTGATGAGC GTGGACCAGT CAAGGCTGAC AAGTTCAGAC CTATTCACGC	150
	TGAGCCACCA ACCTTCGCTG ACCAGTCCAC CTCTGCCGAG GTTCTTGAGA	200
20	CCGGTATTAA GGTTGTCGAC TTGCTTGCCC CTTATGCCAG AGGTGGTAAG	250
20	ATTGGTCTTT TCGGTGGTGC CGGTGTCGGT AAGACTGTGT TCATTCAGGA	300
	GCTTATTAAC AACATTGCTA AGGCCCACGG TGGTTACTCT GTCTTCACTG	350
	GTGTCGGTGA GCGAACTCGT GAAGGTAACG ATTTGTACCA CGAAATGATG	400
	GAGACCGGTG TCATCAACCT TGAGGGTGAC TCCAAGGTGT CTCTTGTGTT	450
25	CGGTCAGATG AACGAGCCTC CAGGAGCCCG TGCCCGTGTT GCCTTGACCG	500
23	GTTTGACCAT TGCCGAGTAC TTCAGAGATG AGGAGGGCCA GGATGTCTTG	550
	TTGTTCATTG ACAACATTTT CCGATTCACC CAGGCCGGTT CTGAGGTCTC	600
	TGCCTTGTTG GGTCGTATCC CATCTGCCGT CGGTTACCAA CCAACCTTGG	650
	CTACTGATAT GGGTGGTCTT CAAGAACGTA TTACCACCAC TCAAAAGGGT	700
30	TCCGTCACCT CTGTCCAGGC TGTCTACGTC CCAGCTGACG ATTTGACTGA	750
<b>J</b>	TCCTGCCCCA GCTACCACCT TCGCCCATTT GGACGCCACC ACCGAATTGT	800
	CCCGATCTAT CTCTGAGTTG GGTATCTACC CAGCTGTCGA CCCTCTTGGT	850
	TCCAAGTCCC GTCTTTTGGA TGCCTCCGTC GTCGGCCAAG AGCACTACGA	900
	CGTTGCCGCC AACGTCCAAC AGACCTTGCA GGCCTACAAG TCTCTCCAGG	950
35	ATATCATTGC CATTTTGGGT ATGGACGAAT TGTCTGAGGC TGATAAGCTC	1000
-	ACTGTCGAGC GTGCTCGTAA GATGCAGAGA TTCCTTTCTC AGCCATTCAC	1050
	CGTCGCTGAG GTCTTCACTG GTCTCGAGGG TAGACTCGTT TCTTTGAAGG	1100
	ACACCATCCG ATCCTTCAAG GAGATCCTTG ACG	1133
		1133
40		
	2) INFORMATION FOR SEQ ID NO: 495	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 608 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Trichophyton mentagrophytes	
	(B) STRAIN: WSA-225	
55	(D) SIRRIN: WSA-225	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 495	
	GGAGTTGATT GTAAGTCATT TGAAACCCAG CCCCAAGAAA CAGAAGCTAG	50
	GCGAAAATTG GACAATTGAG CAATTTAGCC ATTGGAGAAA AGAAATTTCG	100
50	AGTATTAATT GTTTTTATAG AACAACATTG CCAAGGCTCA CGGTGGTTAC	150

5	TCTGTCTTCA CTGGTGTCGG AGAGCGTACC CGTGAAGGAA ACGATCTCTA CCATGAAATG CAGGAGACCC GTGTCATTCA GCTTGATGGC GAGTCCAAGG TCGCCCTGGT CTTCGGCCAG ATGAACGAGC CCCCAGGTGC CCGTGCCCGT GTTGCTCTTA CTGGTTTGAC CATTGCTGAG TACTTCCGTG ATGAGGAAGG TCAAGACGGT GAGTTTCTTA TGGATAAAAA AAAATTTTTT TTTTTTTTTT	200 250 300 350 400 450 500 550 600
15	2) INFORMATION FOR SEQ ID NO: 496 (i) SEQUENCE CHARACTERISTICS:	
20	<ul> <li>(A) LENGTH: 794 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Wangiella dermatitidis     (B) STRAIN: WSA-229</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 496	
30	GTTTATTCAA GAACTCATTG TGGGTGGCAT TCTCATAATG TTTCGGCCAC AATTACTGAT TGAAAATAGA ACAACATTGC AAAGGCTCAT GGTGGTTACT CCGTGTTCAC TGGTGTCGGC GAGCGAACTC GTGAGGGTAA CGACTTGTAC	50 100 150
35	CACGAAATGC AGGAGACCTC TGTCATTCAG CTCGATGGCG AGTCCAAGGT CGCGCTGGTG TTTGGTCAAA TGAACGAACC TCCTGGTGCT CGTGCTCGTG TTGCTCTGAC TGGGTAAGTT GTTCCTTCGC TTCTTGCGCG TATCCACATC CCCATCTTGA GAATACGTCT GCCACCATGT CATGTGATGT TGGGCTGGTT CTGGTTTTTG GGAGGCCCTC AAGTTCAATT TTTGGATGAC AGCACCAGCT	200 250 300 350
40	TTACAAGATT ATGCTAACTT AATGGAGTCT TACGGTGGCT GAGTTCTTCA GGGATGAGGA GGGACAGGAT GGTAAGTTTG ATAACAATCT CGTCGGTGTC AATATCGACG GCGTACTCTT CGCATCAAAA AACCAAAGAG GTGGTTTGGT GTGAGAAGTG CGCCGGAAAT AATGGCAACC ACGTGACAAT GACCACGTGT GGGGCTCCCG TGCTAACACG TGACAGTCTT GCTCTTCATC GACAACATTT	400 450 500 550 600
45	TCCGATTCAC TCAASCCGGT TCTGARGTGT CTGCCTTGCT TGGTCGTATT CCATCTGCCG TCGGTTACCA ACCCACACTC GCCGTCGACA TGGGTCTCAT GCAGGAACGT ATCACCACCA CCCGGAAGGG ATCCATCACA TCTG	650 700 750 794
•		
50	2) INFORMATION FOR SEQ ID NO: 497	
,	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1148 bases (B) TYPE: Nucleic acid	
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

60

(vi)ORIGINAL SOURCE:
 (A) ORGANISM: Yarrowia lipolytica

## (B) STRAIN: ATCC 38295

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497

5	TCTTGTCCGA	GGCACCGCCG	TCGCTGACAC	CGGTGCTCCC	ATCACTATCC	50
	CCGTCGGCCG	AGGTACCCTT	GGTCGAATCA	TCAACGTCTG	TGGTGAGCCC	100
	ATTGACGAGC	GAGGACCCAT	CGAGGCTTCC	AAGTACCTCC	CCATCCACGC	150
	TGACCCCCCT	ACCTTCGCTG	AGCAGTCTAC	CTCCGCTGAG	GTTCTCGAGA	200
	CCGGTATTAA	GGTCGTCGAC	CTCCTCGCCC	CTTACGCCCG	AGGTGGTAAG	250
1.0	ATTGGTCTCT	TCGGTGGTGC	CGGTGTCGGT	AAGACTGTCT	TCATCCAGGA	300
10					1011100110011	
	GCTGATTAAC	AACATTGCCA	AGGCCCATGG	TGGTTTCTCC	GTTTTCTGCG	350
	GTGTCGGTGA	GCGAACCCGA	GAGGGTAACG	ATCTTTACCG	AGAGATGAAG	400
	GAGACTGGTG	TCATCAACCT	CGAGGGTGAG	TCTAAGGTCA	CCCTCGTCTT	450
	CGGTCAGATG	AACGAGCCTC	CCGGAGCCCG	TGCCCGAGTC	GCCCTTACTG	500
15	GTCTGACCAT	TGCCGAGTAC	TTCCGAGACG	AGGAGGGTCA	GGATGTGTTG	550
	CTCTTCGTTG	ACAACATTTT	CCGATTCACC	CAGGCCGGTT	CCGAGGTGTC	600
	CGCTCTGCTT	GGTCGAATTC	CCTCCGCTGT	CGGTTACCAG	CCCACTCTGG	650
	CCACCGATAT	GGGTGCCCTC	CAGGAGCGAA	TTACCACCAC	CCAGAAGGGT	700
	TCCGTCACTT	CCGTCCAGGC	CGTCTACGTG	CCTGCCGATG	ATTTGACCGA	750
20	TCCTGCTCCC	GCCACCACCT	TCGCCCATCT	TGACGCCACC	ACCGTCCTGT	800
	CCCGAGGTAT	TTCCGAGCTG	GGTATCTACC	CCGCTGTCGA	TCCCCTTGAT	850
	TCCAAGTCTC	GACTTCTGGA	TATCGATGTT	GTCGGAAAGG	AGCACTACGA	900
	TGTTGCTTCC	AACGTCCAGC	AGACCCTCCA	GGCTTACAAG	TCTCTCCAGG	950
	ATATCATTGC	CATTCTTGGT	ATGGATGAGC	TGTCCGAGCA	GGACAAGCTG	1000
25	ACCGTCGAGC	GAGCTCGAAA	GATCCAGCGA	TTCCTGTCTC	AGCCCTTCAC	1050
	CGTCGCCGAG	GTTTTCACCG	GTATTGAGGG	ACGACTTGTC	TCTCTCAAGG	1100
	ACACTGTCCG	ATCCTTCAAG	GAGATCCTTG	ACGGTAAGCA	CGATGCTC	1148

30

### 2) INFORMATION FOR SEQ ID NO: 498

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 966 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

40

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Aspergillus fumigatus
  - (B) STRAIN: WSA-172
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 498

	GCGCTATTGT	CGTTGTTGCT	GCCTCCGACG	GTCAGATGTA	GGTGGAACAT	50
	CTTGGGAAAT	ACGTCGTAAA	ACACGTCGCT	TACGTTTTCG	CGAATAGGCC	100
	CCAGACTCGT	GAGCATTTGC	TGCTCGCCCG	CCAGGTTGGT	GTCCAGAAGA	150
50	TCGTTGTCTT	CGTCAACAAA	ATCGATGCTA	TTGATGATCC	GGAGATGCTG	200
	GAACTGGTCG	AACTCGAGAT	GCGTGAGCTG	CTGAACAGCT	ACGGTTTCGA	250
	GGGTGAAGAG	ACTCCGATCA	TTTTCGGTTC	CGCTCTCTGT	GCTCTCGAAG	300
			AAAGACAGAA			350
			TCCTCAGCGT			400
55	GATGTCTGTC	GAGGAAGTGT	TCTCTATCGC	CGGCCGTGGT	ACCGTGGCTT	450
			ATCTTGAAGA			500
			CAAGAAGACC			550
			AATCGCGTGC			600
	TCCTGCGTGG	TATCCGACGT	GAAGACGTCA	AGCGTGGTAT	GGTCATTGCT	650
60	GTTCCCGGCA	GCACCAAGGC	TCACGACAAG	TTCCTCGTCT	CCATGTACGT	700

5	CCTGACCGAG GCGGAGGGTG GTCGTCGTAC TGGCTTCGGT GCCAACTACC GTCCCCAAGT CTTCATCCGT ACTGCAGGTA AGTTCCCGCA CACCGTGTCC AGATCTTCCG AGAGATTAGC GATATATGCT AATGATTCAT CAGACGAGGC TGCTGACCTC AGCTTCCCTG ACGGCGACCA ATCTCGCAGA GTTATGCCTG GTGACAACGT CGAGATGATC CTGAAGACCC ACCACCCTGT TGCTGCTGAG GCTGGTCAAC GCTTCA	750 800 850 900 950 966
10	2) INFORMATION FOR SEQ ID NO: 499	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 846 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
	<ul><li>(A) ORGANISM: Blastoschizomyces capitatus</li><li>(B) STRAIN: ATCC 10663</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 499	
	TGGTGCTATT ATTGTTGTTG CTGCTTCTGA TGGTCAAATG CCCCAAACCC GTGAGCACTT GCTTCTTGCT CGTCAAGTTG GTGTTAAGCA CATTGTTGTT TTCGTTAACA AGATTGATAC TATTGATGAT CCTGAAATGT TGGAACTTGT CGAAATGGAA ATGAGAGAAC TTCTTTCTTC TTACGGTTTT GATGGCGATA	50 100 150 200
30	ACACCCCTGT CATTATGGGT TCTGCTCTCT GTGCTCTTGA AGGTCGTGAA CCAGAAATTG GTGAACAAAG AATCAACCAA CTCCTTGATG CTATCGATGA ATACATTCCT ACCCCAGTTC GTGATATGGA CCAACCTTTC TTGATGCCAC	250 300 350
35	TTGAAGGTGT TTTCTCTATT CCAGGTCGTG GTACTGTTGC CACTGGACGT GTCTATCGTG GTACTTTGAA GAGAGGTGAA GAAGTTGAAG TTGTTGGCTA CAATGATGCT CCAATCAAGA CCACCGTTAC TGGTATTGAA ATGTTCAAGA AGGAACTTGA TCAAGCTCAA GCTGGTGACA ACGCTGGTAT TCTTTTGAGA GGTGTTAAGC GTGAAGACCT TAAGCGTGGT ATGGTTGTTG CTAAACCAGG	400 450 500 550
40	TACCGTTAAG CCACACACA AGTTCCTTGC CTCCATCTAT GTTTTGACTA AGGAAGAAGG TGGCAGACAC TCTGGCTTTG GTCTTAACTA CAGACCTCAA CTTTTCCTTG GTTCTGCTGA TGTTACCACT GTCTTGACCT TCCCAGAGGG TGTTGACCAA AGCACTCAAG TCATGCCAGG TGACAACACT GAAATGGTTT GCGAACTTGT TCACCCAGTT GCTGTCGAAC AAGGCCAACG TTTCAA	600 650 700 750 800 846
<b>4</b> 5	2) INFORMATION FOR SEQ ID NO: 500	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 846 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ·ORGANISM: <i>Candida rugosa</i> (B) STRAIN: ATCC 96275	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 500	

	GGTGCCATTA	TTGTTGTTGC	TGCCTCTGAT	GGACAGATGC	CCCAGACCCG	50
	TGAGCATCTT	TTGCTTGCCC	GCCAAGTCGG	TATGCAAAAG	GTCGTTGTGT	100
	TTGTTAACAA	GATTGATACC	ATTGATGACC	CTGAAATGCT	TGATCTTGTC	150
5	GAGATGGAGA	TGCGTGAACT	GTTGAATGAA	TATGACTTCG	ATGGAGATAA	200
	CTCTCCTGTC	ATTATGGGCT	CTGCTCTTGC	TGCTCTTGAG	GACAAGAACC	250
	CCGAGATTGG	TAAGGACCGT	ATCATGCAGC	TCTTGGACGC	TGTTGATGAA	300
	TGGATCCCTA	CCCCCGAGCG	TGACCTTGAC	AAGCCTTTCA	TGATGCCTAT	350
	TGAGGCCTCT	TTCTCCATTT	CTGGTCGTGG	TACTGTTGCC	ACTGGCCGTG	400
10	TCGAGCGTGG	TATTCTCAAG	AAGGGTGAGG	AAGTCGAGAT	CGTTGGTTTC	450
	AACAAGCAGC	CCCTGAAATC	TGTTGTTACT	GGTATTGAAA	TGTTCAAGAA	500
	GGAACTTGAT	CAGGCCCAGG	GCGGTGATAA	TGCTGGTATC	TTGCTTCGTG	550
	GTATTCGTCG	TGAGGACTTG	CAGCGTGGTA	TGGTTTTGGC	CAAGCCTGGA	600
	ACTGTTAAGG	CTCACACCAA	GTTCCTTTCC	TCCATCTACG	TTCTCTCCAA	650
15	GGAAGAGGGC	GGCCGTCACT	CTCCTTTCGG	TATGAACTAT	CGTCCCCAGA	700
	TGTTCGTTTC	TGCAGCTGAT	GTCACCGTTA	CTCTTACTTT	CCCTGAGGGT	750
	GTTGAACAGC	ACACTCAGGT	CTTCCCTGGT	GAGAACACCG	AGATGGTTGG	800
	CGAGCTCGTT	CACCCTACTG	CTATTGAGGT	TGGTCAACGC	TTCAAC	846
20						
	a) TNEODMACH	ON FOR SEO	TD NO. 501			
	2) INFORMALI	On FOR SEQ	TD NO: 501			
	/ ! ) =====					

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 944 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 30
  - (vi)ORIGINAL SOURCE:

35

- (A) ORGANISM: Coccidioides immitis
- (B) STRAIN: Silveira
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501

	AGTTGTCGTC	GTTGCTGCTT	CAGACGGTCA	AATGTATGCA	ACCGAGAGCA	50
	CTCCCGGATC	TTGGTTTAAA	TGGCACTAAT	ATAAGACAGG	CCTCAAACTC	100
40	GAGAGCATTT	ACTTCTCGCC	CGTCAGATCG	GTATCCAAAA	AATCGTCGTC	150
	TTCGTGAACA	AGGTTGATGC	CATCGAGGAC	AAAGAGATGT	TGGAGCTTGT	200
	TGAATTGGAG	ATGCGTGAAC	TCCTAACCAG	CTACGGTTTC	GAGGGTGAAG	250
	AAACTCCCAT	CATTTTTGGC	TCTGCTCTCT	GTGCCCTCGA	AGGAAGACAA	300
	CCCGAGATCG	GTGTTACCAA	GATTGATGAG	CTCTTGCAGG	CCGTCGACAC	350
45	CTGGATTCCC	ACTCCTCAGC	GTGAGACTGA	CAAGCCCTTC	TTGATGTCCA	400
	TTGAGGAAGT	GTTCTCTATT	TCCGGACGAG	GAACCGTTGT	CTCCGGCCGT	450
	GTGGAGCGTG	GTATCCTCAA	GAAGGACTCC	GAAGTTGAAA	TTGTCGGCGG	500
	TTCGCCCGAG	CCAATCAAAA	CCAAGGTTAC	CGATATCGAA	ACCTTTAAGA	550
	AGTCTTGCGA	CGAGTCTCGC	GCTGGTGATA	ACTCCGGCTT	GCTCCTACGA	600
50	GGCGTTAAGC	GTGAAGATAT	TAGCCGTGGC	ATGGTCGTCG	CTGTACCAGG	650
	AAGTGTCAAG	GCCCATACTG	AATTCTTAGT	TTCGCTTTAC	GTCCTCACCG	700
	AAGCTGAGGG	TGGGCGCAAA	TCTGGATTCA	GCAGCAAGTA	CCGCCCACAG	7:50
	ATGTTCATTC	GCACTGCCGG	TATGTAATAC	TGTĠATAATT	TCGTTGACAT	800
	GGTACTGATT	GAATTCTATA	GACGAAGCGG	CTCAGCTCAG	CTGGCCCGGA	850
55	GAAGATCAAG	ACAAGATGGC	TATGCCAGGA	GACAATATCG	AAATGATTTG	900
	CACCACCTTG	CACCCAGTTG	CCGCCGAGGC	TGGCCAGCGA	TTCA	944

2) INFORMATION FOR SEQ ID NO: 502 60

5	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 849 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Fusarium oxysporum     (B) STRAIN: WSA-212</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502	
20	GCTATCATCG TCGTTGCTGC CTCCGATGGA CAGATGCCCC AGACCCGTGA ACACTTGCTC CTCGCTCGTC AGGTCGGTGT CCAGCGAATT GTCGTCTTCG TCAACAAGGT CGATGCCATT GATGACCCCG AGATGCTTGA GCTCGTCGAG ATGGAGATGC GCGAGCTTCT TAACACCTAC GGCTTCGAAG GCGACGACAC TCCCGTCATC ATGGGCTCTG CTCTTATGTC TCTCCAGAAC CAGCGCCCCG	50 100 150 200
	AGATTGGCAC CGAGAAGATC GATGAGCTCC TTGCTGCCGT CGACGAGTGG ATCCCAACCC CCGAGCGTGA CCTTGACAAG CCCTTCCTTA TGTCCGTCGA GGATGTCTTC TCCATTGCCG GCCGTGGTAC CGTCGTGTCT GGCCGTGTGG AGCGTGGTAT TCTGAAGCGT GATCAGGAGA TCGAGCTTGT CGGAAAGGGG	250 300 350 400 450
25	CAGGAGGTTA TCAAGACCAA GGTTACCGAC ATTGAGACCT TCAAGAAGTC TTGTGAGCAG TCCCAGGCTG GTGACAACTC TGGTCTCCTC ATCCGAGGTG TTCGCCGTGA GGATGTCCGC CGTGGTATGG TTGTCTGCGC TCCTGGCACC GTCAAGTCTC ATACCCAGTT TCTCGCTTCC CTCTACGTCC TCACCAAGGA GGAGGGTGGC CGACACACCG GTTTCCAGGA GCACTACCGA CCCCAGCTCT	500 550 600 650 700
30	ATCTCCGAAC TGCAGATGAG TCCATTGACC TGACTTTCCC CGAGGGTACT GAGGATGCT CCAGTAAGAT GGTCATGCCT GGTGACAACA CCGAGATGGT TGTCACCATG GGTCACCCCA ATGCCATCGA GGTTGGTCAG CGATTCAAC	750 800 849
35	2) INFORMATION FOR SEQ ID NO: 503	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1064 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	<ul><li>(ii)MOLECULE TYPE: Genomic DNA</li><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Histoplasma capsulatum</li><li>(B) STRAIN: G186A5</li></ul>	
50	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 503	
55	TGGTGCTATT GTCGTTGTTG CTGCTGCTGA CGGCCAAATG TAAGACGCCG CGAGGGACTG CTGAGGGTTT TATGCTTTTT AGGCCCCCTT GTTTCTGAGA GCATGATGAT ACTAATATTC GGAAACGTAT CTATTAGGCC TCAAACACGT GAGCATTTGC TCCTTGCCCG ACAGGTCGGT GTCCAAAAGA TCGTCGTTTT CGTGAACAAA GTCGACGCCC TTGAGGACAA GGAGATGTTG GAGCTTGTCG AGTTAGAAAT GAGAGAGCTC TTAAACACCT ACGGCTTCGA GGGTGAAGAG ACACCCATCA TCTTTGGTTC TGCCCTTTGC GCCATGGAAG GCCGTGAGCC	50 100 150 200 250 300
60	TGAGTTGGGA GAAAAGAAAA TTGATGAATT GCTGGAGGCT GTTGATACTT GGATCCCCAC ACCACAACGT GATACCGAAA AACCTTTCTT GATGTCCGTT	350 400 450

5	GAGGAAGTAT TCTCTATCTC CGGCCGTGGA ACCGTTGCCT CCGGTCGTGT TGAGCGCGGT GTCCTCAAGA AGGATTCAGA AGTCGAGCTA ATTGGGGGCG GCTCCACCCC CATCAGGACG AAGGTAACTG ATATCGAAAC TTTCAAGAAA TCCTGTGACG AGTCTAGAGC TGGGGACAAC TCCGGTCTTT TATTGCGTGG TATCAAGCGT GAAGATATCC GCCGTGGTAT GGTAGTTGCC GTTCCTGGCA GCGTCAAGGC CCACGACAAG TTCTTGGTGT CGATGTATGT CCTGACCGAA GCTGAGGGTG GTCGCCGAAC CGGATTCGGC CAGAACTATC GTCCTCAAAT GTTCATCCGC ACAGCTGGTA TGTCAAAATG GGACCCCTTT TCATAATCCT TTCTTTTTTT CCTTTTCCTC TCTATCTCTC TTTCTGTTTC CTTTCAACTC GCCTGATTCA CGAAATTAAC TAACCCGTTT GATTATAGAC GAAGCCGCCC ATCTCAGCTT CCCTAGTGGA GCAGACACAC CGCCCCGTGG CTGCTGAGGC CGGCCAGCGA TTCA	500 550 600 650 700 750 800 850 900 950 1000 1050
15		
	2) INFORMATION FOR SEQ ID NO: 504	
20	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 982 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:         (A) ORGANISM: Paracoccidioides brasiliensis         (B) STRAIN: ATCC 32071  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 504</pre>	
35	TGGTGCTATC GTCGTTGTTG CTGCCTCTGA CGGCCAAATG TAGGGATTTT GCAAGACTGG TGAAAAAATC TAAAGAAAAT AGAAAAGATT GTGCTGATGT TTGGTATCAG GCCCCAAACA CGCGAGCATC TGCTTCTTGC CAGACAAGTC GGTGTTCAGA AAATCGTTGT TTTCGTCAAC AAGGTCGATG CTGTAGAGGA TAAGGAGATG TTGGAGCTTG TCGAATTGGA GATGAGAGAG CTCTTGACCA CCTATGGGTT CGAGGTGAG AAGACACCTA TCATCTTTGG TTCTGCGCTC	50 100 150 200 250 300
40	TGTGCTATGG AGGGCCGTCA GCCCGAGTTG GGAGAGCAGA AAATTGATGA ATTACTCGAG GCTGTGGATA CTTGGATCCC TACGCCACAG CGTGATACTG ACAAGCCCTT CCTGATGTCC ATTGAGGAGG TGTTCTCTAT CTCTGGACGA GGAACCGTTG CCTCCGGCCG CGTTGAGCGT GGTATCCTCA AGAAGGACTC CGAAGTTGAA ATTATTGGCG GCGGTGTTCC CACAATCCTG ACCAAGGTGA	350 400 450 500 550
45	CTGATATCGA AACCTTCAAG AAGTCTTGCG ACGAGTCCAG AGCCGGGGAC AACTCCGGCC TCTTGTTGCG CGGTGTCAAG CGTGAGGATA TCCGCCGTGG TATGGTCGTT GCAGTTCCCG GAAGCGTCAA AGCACATGAC AGATTCTTGG TGTCGATGTA CGTTCTGACC GAGGCTGAGG GTGGTCGCCG CACTGGCTTC GGTCAGAACT ATCGTCCTCA AATGTTCATC CGCACAGCTG GTACGTTCAT	600 650 700 750 800
50	TCTTTCACTA TATTCCTATA TGCATAGCCC GATCCTCCCA TTAACTAATT GACACAGACG AGGCTGCTGA ACTCAGCTGG CCTGATGGAG ACGACGAAGC CAAAATGGTC ATGCCCGGTG ACAATGTTGA AATGGTCCTG AAGTCACACC	850 900 950

2) INFORMATION FOR SEQ ID NO: 505

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 931 bases
- (A) (B) TYPE: Nucleic acid 60

	<pre>(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear</pre>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Penicillium marneffei	
	(B) STRAIN: ATCC 58950	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505	
	CGCTGTTGTT GTCGTCGCTG CTTCTGATGG TCAAATGTAA CATATCCACG	50
	AGCTGCCAAT TATGGACACT GCTGATAAGA ATAGGCCCCA AACCCGTGAG	100
	CACTTGCTCC TCGCCCGTCA GGTCGGTGTT CAAAAGATCG TCGTCTTCGT	150
15	CAACAAGGTT GATGCCGTCG AGGACCCCGA GATGTTGGAA CTTGTCGAAT	200
	TGGAAATGCG TGAACTCTTG ACCACCTACG GTTTCGAGGG TGAAGAGACC	250
	CCTATCATTT TCGGATCCGC TCTTTGCGCC TTGGAAGGCC GCAAGCCCGA	300
	GATTGGCGAA CAGAAGATTG ACGAGCTCAT GAACGCCGTT GATACCTGGA	350
	TCCCCACCC CCAGCGTGAC CTTGACAAGC CCTTCTTGAT GTCCGTTGAG	400
20	GAAGTTTTCT CCATCTCTGG TCGTGGTACC GTTGCATCTG GTCGTGTTGA	450
	GCGTGGTATT TTGCGCAAGG ATTCTGAGGT TGAGATTATC GGATACCAGA	500
	AGAACCCTAT CAAGACCAAG GTTACCGACA TTGAGACCTT CAAGAAGTCT	550
	TGCGATGAAT CTCGTGCTGG TGACAACTCT GGCTTGCTTC TCCGTGGTAT	600
25	CAAGCGTGAG GACATTCGTC GTGGTATGGT TATCGCTGCT CCTGGAACCA CCAAGGCTCA TGACAACTTC TTGGTCTCCA TGTATGTCTT GACTGAGGCT	650
25	GAAGGTGGTC GTCGTACTGC ATTCGGCGCC AACTACCGTC CTCAAGCTTT	700 750
	CATCCGTACT GCCGGTATGT TCCCTTTCAA AGTCAATTAA TGAGCGATTT	800
	GCTAACGAGT TATAGATGAG GCTGCTACTC TCAGCTTCCC CGGTGACGAT	850
	CAGTCCAAGC AGGTCATGCC CGGTGACAAC GTTGAGATGA TCTTGAAGAC	900
30	ACACCGTCCC GTTGCCGCCG AAGCTGGTCA G	931
		•
35	2) INFORMATION FOR SEQ ID NO: 506	
,,	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 846 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Pichia anomala	
	(B) STRAIN: ATCC 18205	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 506	
50	TGGTGCTATT ATTGTTGTTG CTGCTTCTGA TGGTCAAATG CCTCAAACCA	<b>5</b> 0
	GAGAACATTT RTTATTGGCT AGACAAGTTG GTGTTCAACA CATTGTTGTC	50
	TTTGTTAACA AAGTTGATAC TATTGATGAC CCAGAAATGT TGGAATTAGT	100 150
	TGAAATGGAA ATGAGAGAAT TGTTAAGTAC TTATGGTTTT GATGGTGATA	200
	ACGTCCCAGT TGTTATGGGT TCTGCTTTAT GTGCCTTGGA AGGTCGTGAA	250
55	GAAGAAATTG GTGTCAAAGC TATTGATAAA TTATTAGCTG CTGTTGATGA	300
	ATATATCCCA ACCCCACAAA GAGATTTAGA AAAACCATTC TTGATGGGTG	350
	TTGAAGATGT CTTYTCAATC TCAGGTAGAG GTACCGTTGT TACTGGTCGT	400
	GTTGAACGTG GTAACTTGAA GAAAGGTGAT GAAGTTGAAA TTGTTGGTTT	450
60	AAACAAAACT CCATTGAAAA CTACTGTYAC NGGTATTGAA ATGTTCAAAA	500
0	AAGAATTGGA CCAAGCTATG GCTGGTGATA ACTGTGGTAT CTTATTACGT	550

5	GGTATCAAAA GAGATGACAT YAAAAGAGGT ATGGTTATTG CTAAAACCGG TACCATCTCW GCTCACACTA AATTCTTAGC CTCAATGTAT ATTTTGACTA AAGAAGAAGG TGGTCGTCAC TCAGGTTTTG GTGAACATTA CAGACCTCAA TTATTCATCA GAACTGGTGA TGTTACCGTT GTTTTAACCT TYCCAGAAGG TGGTGATTCA TCTCAACAAA TCTTACCAGG TGACAATGTC GAAATGGTTT GTGAATTGGT TCACCCAACT GCTTTAGAAG CTGGTCAAAG ATTCAA	600 650 700 750 800 846
10	2) INFORMATION FOR SEQ ID NO: 507	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 964 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Trichophyton mentagrophytes     (B) STRAIN: WSA-225</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 507	
23	GGAGCTGTTG TCGTTGTCGC AGCTTCTGAC GGTCAAATGT AATTGAATGC CCGCCCAGAC GGATGAAAGG ATTTGACGTT TCTAACATCA GTCTAGGCCT CAGACCAGAG AACATTTGCT CCTTGCCCGC CAGGTCGGTG TCCAGAAGCT	50 100 150
30	GGTCGTTTTC GTTAACAAGG TCGATGCCGT TGAGGACCCA GAGATGTTGG AGCTTGTCGA ACTTGAAATG CGTGAACTCC TCAGCCACTA CAGTTTTGAG GGTGAGGAGA CCCCCATCAT TTTTGGCTCT GCTCTCTGTG CCCTCGAGTC CCGTCGACCT GAGCTTGGTG TCGAGAAGAT TGACGAGCTA TTGAACGCCG TCGACACCTG GATCCCCACC CCCGAGCGCG CCACTGATAA GCCTTTCCTC	200 250 300 350 400
35	ATGTCCATTG AGGAAGTGTT CTCTATCTCT GGTCGTGGTA CCGTCGTCTC CGGTCGTGTT GAGCGTGGTA TCCTCAAGAA GGATTCCGAC GTCGAAATTG TTGGTGGCTC TACCACCCCT ATCAAGACCA AGGTCACAGA TATCGAAACC TTCAAGAAGT CCTGCGATGA ATCTCGAGCT GGTGACAACT CTGGTCTCCT	450 500 550 600
40	TCTCCGAGGT ATCAAGCGTG AGGACTTGAA GCGTGGAATG GTTGTTGCTG CCCCCGGATC CACCAAGGCT CACACCGACT TCATGGTCTC CCTCTACGTC CTGACTGAGG CTGAGGGTGG TCGTTCCAAC GGCTTCACCC ACAAGTACCG CCCTCAAATG TTCATCCGTA CTGCTGGTAT GTAACCAAAG TTTCCGCTAT TTACTAAGTA GATCATTGCT AACTTGTATT CCCTTCCGTA GACGAAGCCG CATCTTTCAG CTGGCCTGGA GAAGACCAAG ACAAGAAGGC TATGCCTGGT	650 700 750 800 850 900
45	GACAACGTCG AGATGATTTG CAAAACCCTC CACCCCATTG CTGCCGAGGC TGGCCAACGA TTCA	950 964
	2) INFORMATION FOR CHO ID NO. 500	
50	2) INFORMATION FOR SEQ ID NO: 508  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 844 bases  (B) TYPE: Nucleic acid	
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	

443

(vi)ORIGINAL SOURCE:
 (A) ORGANISM: Yarrowia lipolytica

#### (B) STRAIN: ATCC 38295

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508

5	GGTGCTATCA	TTGTCGTTGC	TGCTGGAGAC	GGTTCCAAGC	CCCAGACCCG	50
	AGAGCATCTG	CTGCTTGCTC	GACAGGTCGG	TGTCCAGAAC	CTGGTTGTGT	100
	TTGTTAACAA	GGTTGATCAG	ATTGATGATA	AGGAGATTCT	TGAGCTCGTT	150
	GACATGGAGA	TGCGAGATCT	GCTGACCCAG	TACGGTTTTG	ATGGTGACAA	200
	CACCCCCGTT	GTCATGGGCT	CTGCTCTGTG	CGCTCTTGAG	GGCAAGCAGA	250
10	AGGATATTGG	AGAGGACGCC	ATCATGGCCC	TTATGGATGC	CGTTGATGAG	300
	CACATCCCTA	CCCCTAACCG	TGACCTTGAG	AAGCCCTTCC	TGATGCCCGT	350
	TGAGGACGTT	TTCTCCATCT	CTGGCCGAGG	AACTGTTGTT	ACTGGCCGAG	400
	TCGAGCGAGG	AAACCTGAAG	AAGGGTGAGG	AAATCGAGAT	TGTTGGCTAC	450
	AACAACAAGC	CCATCAAGGC	TGTTGTTACC	GGTATTGAGA	TGTTCAAGAA	500
15	GGAGCTCGAG	TCCGCCATGG	CCGGTGACAA	CGCCGGTATC	CTGCTCCGAG	550
	GTATCAAGCG	AGACGAGATC	AAGCGAGGTA	TGGTCATGTG	CAAGCCTGGC	600
	ACCGTCAACG	CCCACACCAA	GTTCCTTGCT	TCTCTTTACA	TCATCCCCAC	650
	CGAGGAGGGT	GGTCGAACCA	GCTCTTTCGG	CGCCAACTAC	CGACCCCAGA	700
	TGTTCATCCG	AACTTCTTCC	GTCACCGCCA	CTCTCACCTT	CCCCGAGGGT	750
20	ACCGACGAGT	CCCAGACCGT	CAACCCCGGT	GACAACACTG	AGATGGTTCT	800
	CGAGCTTGTT	CACCCTACCG	CCATTGAGGT	CAACCAGCGA	TTCA	844

#### 25 2) INFORMATION FOR SEQ ID NO: 509

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1067 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

35 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Babesia bigemina
- (B) STRAIN: Suarez-2
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509

	CTTGGACAAG	CTGAAGAGCG	AGCGTGAGCG	TGGTATCACC	ATTGACATTA	50
	CCCTGTGGAA	GTTCGAAACT	GGCAAGTACT	ACTACACCGT	CATTGACGCC	100
	CCCGGTCACC	GTGACTTCAT	TAAGAACATG	ATTACGGGTA	CCTCCCAGGC	150
	CGATGTTGCT	ATGCTTGTCG	TGCCCGCCGA	GGCTGGTGGT	TTCGAAGCTG	200
45	CCTTCTCTAA	GGAAGGTCAG	ACCCGTGAGC	ACGCTCTTTT	GGCCTTCACC	250
	CTTGGTGTCA	AGCAGATCAT	TTGCGCCATC	AACAAGATGG	ACAAGTGCGA	300
	CTACAAGGAG	GACCGTTACA	GCGAAATCCA	GAAGGAAGTT	CAGGGTTACC	350
	TGAAGAAGGT	CGGTTACAAC	ATCGAGAAGG	TGCCTTTCGT	CGCCATCTCC	400
	GGTTTCATGG	GTGACAACAT	GGTTGAGCGC	TCCACCAACA	TGCCGTGGTA	450
50	CAAGGGCAAG	ACCTTGGTCG	AGGCCCTCGA	CATGATGGAG	CCCCGAAGA	500
	GGCCCGTCGA	CAAGCCCCTG	CGTCTTCCCC	TCCAGGGTGT	GTACAAGATC	550
	GGTGGTATCG	GTACCGTCCC	TGTCGGTCGT	GTGGAGACTG	GTCAGCTCAA	600
	GGCCGGTATG	GTCCTCACCT	TCGCCCCCAA	CCCGATCACT	ACTGAGTGCA	650
	AATCCGTCGA	AATGCACCAC	GAAGTTATCG	ATGTTGCCAG	CCCTGGTGAC	700
55	AACGTTGGTT	TCAACGTGAA	GAACGTGTCC	ACCTCTGACA	TCCGCACTGG	750
	TCACGTCGCT	TCTGACTCCA	AGAACGACCC	CGCCAAGGCC	GCCGTGTCCT	800
	TCACCGCCCA	GGTCATCATC	TTGAACCACC	CTGGTACCAT	CAAGGCCGGT	850
	TACTCCCCTG	TGGTTGACTG	CCACACTGCC	CACATCTCGT	GCAAATTCGA	900
	CGAGATCACC	AGCCGTATGG	ACAAGCGTAC	CGGTAAGGCC	CTTGAGGAGA	950
60	ACCCCAAGAC	CATCAAGAAC	GGCGACGCCG	CTATGGTCGT	CCTGAAGCCG	1000

	TGCAAGCCCA TGGTCGTCGA GGCCTTCACT GAATACGCTC CCCTTGGTCG TTTCGCCGTG CGTGACG	1050 1067
5	2) INFORMATION FOR SEQ ID NO: 510	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1049 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Babesia bovis     (B) STRAIN: Suarez-3</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510	
25	GTGAACGTGA ACGTGGTATT ACTATTGATA TTACCTTATG GAAGTTCGAG ACCACCAAGT ACTACTACAC CGTCATTGAT GCCCCTGGTC ACCGTGACTT CATCAAGAAC ATGATTACGG GTACTTCTCA AGCCGATGTT GCTATGCTTG TTGTACCAGC TGAGGCTGGT GGTTTCGAGG CCGCTTTCTC CAAGGAAGGA CAGACCCGTG AGCACGCTCT TTTGGCTTTC ACCCTTGGTG TCAAACAGAT CATCTGTGCC ATTAACAAGA TGGACAAGTG CGACTACAAG GAGGACCGTT	50 100 150 200 250 300
30	ACAGTGAAAT CCAGAAGGAA GTCCAGGGTT ACCTCAAGAA GGTCGGTTAC AATATTGAGA AGGTGCCCTT CGTTGCCATC TCCGGTTTCA TGGGAGACAA CATGGTTGAG CGTTCCACCA ACATGCCCTG GTATAAGGGA AAGACATTGG TCGAGGCCCT TGATCAGATG GAACCCCCAA AGAGGCCCGT TGACAAGCCA CTTCGTCTTC CCCTCCAGGG TGTCTACAAG ATCGGTGGTA TCGGTACCGT CCCCGTCGGT CGTGTTGAAA CTGGTATGTT GAAGGCTGGT ATGATTCTAA	350 400 450 500 550 600
35	CCTTTGCTCC TAACCCAATC ACCACTGAAT GCAAATCCGT TGAAATGCAC CACGAAACCG TTGAGGTTGC TTACCCCGGT GACAACGTCG GTTTCAACGT AAAGAACGTT TCTACTTCTG ACATTCGCAG TGGTCACGTT GCCTCTGATT CTAAGAACGA CCCTGCCAAG GCTGCTGTTT CCTTCACTGC CCAGGTCATT GTGCTCAACC ACCCTGGTAC CATTAAGGCC GGTTACTGCC CCGTCGTCGA	650 700 750 800 850
40	TTGCCACACC GCTCACATTT CATGTAAATT CGAAGAGATC ACCAGCCGTA TGGACAAGCG TACCGGTAAA TCTCTTGAGG AAAACCCCAA GACCATCAAG AACGGTGACG CTGCCATGGT TGTGCTCAAG CCAATGAAGC CCATGGTTGT CGAATCCTTC ACTGAGTATG CTCCTCTTGG TCGTTTCGCT GTTCGTGAC	900 950 1000 1049
45	2) INFORMATION FOR SEQ ID NO: 511	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1070 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Crithidia fasciculata   (B) STRAIN: ATCC 11745</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511	

	TGGACAAGCT	GAAGGCGGAG	CGCGAGCGCG	GTATCACGAT	CGATATTGCC	50
	CTGTGGAAGT	TCGAGTCGCC	CAAGTCCGTG	TTCACGATCA	TCGATGCCCC	100
	CGGCCACCGC	GACTTCATCA	AGAACATGAT	CACCGGCACC	TCCCAGGCCG	150
5	ATGCCGCCAT	TCTGATGATT	GACTCGACCC	AGGGTGGCTT	CGAGGCTGGC	200
	ATCTCCAAGG	ACGGCCAGAC	CCGCGAGCAC	GCCCTGCTTG	CCTTCACGCT	250
	GGGCGTGAAG	CAGATGGTTG	TGTGCTGCAA	CAAGATGGAC	GACAAGACGG	300
	TGCAGTACGC	CCAGGCCCGC	TACGAGGAGA	TCAGCAAGGA	GGTCGGCGCG	350
	TACCTGAAGC	GCGTGGGCTA	CAACCCGGAG	AAGGTGCGCT	TCATCCCGAT	400
10	CTCGGGCTGG	CAGGGCGACA	ACATGATCGA	GAAGTCCGAC	AACATGTCGT	450
	GGTACAAGGG	TCCCACGCTG	CTGGAGGCGC	TCGACCTGCT	GGAGGCCCCC	500
	GTGCGTCCGG	TGGACAAGCC	GCTGCGCCTG	CCCCTGCAGG	ACGTGTACAA	550
	GATCGGCGGT	ATCGGCACTG	TGCCCGTGGG	CCGTGTGGAG	ACCGGCGTGA	600
	TGAAGCCGGG	CGACGTTGTG	GTGTTCGCGC	CTGCCAACGT	GACGACCGAG	650
15	GTGAAGTCGA	TCGAGATGCA	CCACGAGCAG	CTGGCTGAGG	CCGTGCCCGG	700
	CGACAACGTG	GGCTTCAACG	TGAAGAACGT	GTCCGTGAAG	GATATCCGCC	750
	GTGGTAACGT	GTGCGGCAAC	ACGAAGAGCG	ACCCCCGAA	GGAGGCGGCC	800
	GACTTCACTG	CCCAGGTGAT	CGTGCTGAAC	CACCCGGCC	AGATCAGCAA	850
	CGGCTACGCG	CCGGTGCTGG	ACTGCCACAC	GAGCCACATC	GCGTGCAAGT	900
20	TCGCGGACAT	CGAGTCCAAG	ATCGACCGCC	GCTCTGGCAA	GGAGCTGGAG	950
	AAGAGCCCGA	AGGCCATCAA	GTCCGGCGAT	GCGGCCATCG	TGAAGATGAT	1000
	CCCGCAGAAG	CCGATGTGCG	TGGAGGTGTT	CAACGACTAC	CCGCCGCTGG	1050
	GCCGCTTCGC	TGTCCGCGAT				1070
25						
	2 \ TNEODMAGT	ON HOR GHO	TD NO 510			

(i) SEQUENCE CHARACTERISTICS:

30 LENGTH: 1052 bases

(A) (B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

35 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

40

(A) ORGANISM: Entamoeba histolytica

(B) STRAIN: HM1-IMMS

	GCTGAAAGAG	AAAGAGGAAT	TACTATTGAT	ATTTCATTAT	GGAAATTCGA	50
	AACATCTAAA	TACTACTTCA	CTATTATTGA	TGCCCCAGGT	CAYAGAGATT	100
45	TCATTAAGAA	CATGATTACT	GGAACTTCAC	AAGCTGATGT		150
. :	ATTGTTGCTG	CTGGTACTGG	WGAATTTGAA	GCTGGTATTT	CAAAGAATGG	200
	ACAAACCAGA	GAACAYATTC	TTCTTTCATA	CACTCTTGGA	GTTAAACAAA	250
	TGATTGTTGG	WGTTAACAAG	ATGGATGCTA	TTCAATATAA		300
	TATGAAGAAA	TTAAGAAAGA	AATTAGTGCA			350
50	TAATCCAGAC	AAGATTCCAT	TTGTCCCAAT	TTCAGGATTC		400
	ATATGATTGA	ACCATCAACC	AACATGCCAT	GGTACAAAGG	ACCAACATTA	450
	ATTGGAGCAC	TTGATTCAGT	CACACCACCA	GAAAGACCAG		500
	ACTTAGACTT	CCACTTCAAG	ATGTTTAYAA		ATTGGAACTG	550
	TACCATGTGG	AAGAGTTGAA	ACTGGAGTTC	TTAGACCAGG	AACTATTGTT	600
55	CAATTTGCAC	CATCAGGAGT	TTCATCTGAA	TGTAAATCAG	TTGAAATGCA	650
	TCACACAGCA	CTTGCTCAAG	CTATTCCAGG	TGATAATGTT	GGATTCAATG	700
	TTAGAAAYTT	AACAGTTAAA	GATATTAAGA	GAGGAAATGT	AGCATCAGAT	750 750
	GCTAAGAATC	AACCAGCTGT	TGGATGTGAA	GATTTCACTG	CTCAAGTCAT	. – -
	TGTCATGAAC	CATCCAGGAC	AAATTAGAAA	GGGATATACA		800
60	ATTGCCATAC		GCATGTAAAT		ATTAAGCAAG	850
				T C C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DAMJUMILA	900

5	ATTGATAGAA GAACAGGTAA ATCCATGGAA GGAGGAGAAC CAGAATATAT TAAGAATGGA GATTCAGCAC TTGTTAAGAT TGTTCCAACT AAACCACTTT GTGTTGAAGA ATTTGCTAAA TTCCCACCAT TGGGAAGATT TGCTGTTAGA GA	1000
	2) INFORMATION FOR SEQ ID NO: 513	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1082 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Giardia lamblia  (B) STRAIN: Faubert-1	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513  GACGAGCGC AGCGCGGGAT CACGATCAAC ATCGCGCTCT GGAAGTTCGA GACGAAGAAG TACATCGTCA CGATCATCGA CGCCCCGGGC CACCGCGACT TCATCAAGAA CATGATCACG GGGACGTCCC AGGCCGACGT CGCGATCCTC	100
30	GTCGTCGCGG CGGGCCAGGG CGAGTTCGAG GCCGGGATCT CGAAGGACGG CCAGACGCGC GAGCACGCGA CCCTTGCGAA CACGCTCGGG ATCAAGACGA TGATCATCTG CGTCAACAAG ATGGACGACG GCCAGGTCAA GTACTCGAAG GAGCGCTACG ACGAGATCAA GGGCGAGATG ATGAAGCAGC TCAAGAACAT CGGCTGGAAG AAGGCCGAGG AGTTCGACTA CATCCCGACG TCCGGCTGGA	200 250 300 350 400
35	CCGGGGACAA CATCATGGAG AAGTCCGACA AGATGCCCTG GTACGAGGGC CCGTGCCTGA TCGACGCGAT CGACGGGCTC AAGGCCCCGA AGCGCCCGAC CGACAAGCCC CTCCGCCTCC CGATCCAGGA CGTCTACAAG ATCTCGGGCG TCGGGACCGT CCCCGCGGGC CGCGTCGAGA CGGGCGAGCT CGCGCCCGGG ATGAAGGTCG TCTTCGCCCC GACGTCCCAG GTCTCGGAGG TCAAGTCCGT CGAGATGCAC CACGAGGAGC TCAAGAAGGC CGGGCCCGGG GACAACGTCG	500 550 600 650 700
40	GCTTCAACGT CCGCGGGCTC GCCGTCAAGG ACCTCAAGAA GGGCTACGTC GTCGGGGACG TGACGAACGA CCCGCCCGTC GGCTGCAAGA GCTTCACCGC CCAGGTCATC GTCATGAACC ACCCGAAGAA GATCCAGCCC GGCTACACGC CCGTCATCGA CTGCCACACC GCGCACATCG CGTGCCAGTT CCAGCTCTTC CTCCAGAAGC TCGACAAGCG CACGCTCAAG CCCGAGATGG AGAACCCGCC CGACGCAGGC CGCGGCGATT GCATCATCGT CAAGATGGTC CCCCAGAAGC	800 850 900 950
45	CCCTGTGCTG CGAGACGTTC AACGACTACG CGCCCTCGG CCGCTTCGCC GTCCGCGACA TGCGCCAAAC CGTTGCCGTC GG	
	2) INFORMATION FOR SEQ ID NO: 514	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1098 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
55	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Leishmania tropica</pre>	

#### (B) STRAIN: ATCC 30816

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514

5	ACGCGTGGGT	GCTCGACAAG	CTGAAGGCGG	AGCGCGAGCG	CGGCATCACG	50
	ATCGACATTG	CGCTGTGGAA	GTTCGAGTCG	CCCAAGTCCG	TGTTCACGAT	100
	CATCGATGCG	CCCGGCCACC	GCGACTTCAT	CAAGAACATG	ATCACGGGCA	150
	CGTCGCAGGC	GGACGCCGCC	ATCCTGATGA	TCGACTCGAC	GCATGGTGGC	200
	TTCGAGGCTG	GCATCTCGAA	GGACGGCCAG	ACCCGCGAGC	ACGCGCTGCT	250
10	TGCCTTCACT	CTTGGCGTGA	AGCAGATGGT	GGTGTGCTGC	AACAAGATGG	300
	ACGACAAGAC	GGTGACGTAC	GCGCAGTCGC	GCTACGATGA	GATCAGCAAG	350
	GAGGTGGGCG	CGTACCTGAA	GCGCGTGGGC	TACAACCCGG	AGAAGGTGCG	400
	CTTCATCCCG	ATCTCGGGCT	GGCAGGGCGA	CAACATGATC	GAGAAGTCGG	450
	ACAACATGCC	GTGGTACAAG	GGTCCCACGC	TGCTGGACGC	GCTCGACATG	500
15	CTGGAGCCGC	CGGTGCGCCC	GGTGGACAAG	CCGCTGCGCC	TGCCCCTGCA	550
	GGACGTGTAC	AAGATCGGCG	GTATCGGGAC	GGTGCCCGTG	GGGCGCGTGG	600
	AGACCGGCAT	CATGAAGCCG	GGCGACGTGG	TGACGTTCGC	GCCCGCCAAC	650
	GTGACGACTG	AGGTGAAGTC	GATCGAGATG	CACCACGAGC	AGCTGGCGGA	700
	GGCGCAGCCC	GGCGACAACG	TCGGCTTCAA	CGTGAAGAAC	GTGTCGGTGA	750
20	AGGACATCCG	CCGTGGTAAC	GTGTGCGGCA	ACTCGAAGAA	CGACCCGCCG	800
	AAGGAGGCGG	CCGACTTCAC	GGCGCAGGTG	ATCGTGCTGA	ACCACCCCGG	850
	CCAGATCAGC	AACGGCTACG	CGCCGGTGCT	GGACTGCCAC	ACGAGCCACA	900
	TTGCGTGCCG	CTTCGCGGAA	ATCGAGTCCA	AGATCGACCG	CCGCTCCGGC	950
	AAGGAGCTGG	AGAAGAACCC	CAAGGCGATC	AAGTCTGGCG	ATGCCGCGAT	1000
25	CGTGAAGATG	GTGCCGCAGA	AGCCGATGTG	CGTGGAGGTG	TTCAACGACT	1050
	ACGCGCCGCT	GGGCCGCTTT	GCCGTGCGCG	ACATGCGCCA	AACCGTTG	1098

#### 30 2) INFORMATION FOR SEQ ID NO: 515

# (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1104 bases

- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

40 (vi)ORIGINAL SOURCE:

35

- (A) ORGANISM: Leishmania aethiopica
- STRAIN: ATCC 50119

	\/ ~_ <b>2</b> ~			TD NO: SIS		
45			_			
	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
50	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CGGTGACGTA	CGCGCAGTCG	CGCTACGAGG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	450
55	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550 550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
60	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750

5	AAGGACATCC GCCGTGGCAA GAAGGAGGCG GCCGACTTCA GCCAGATCAG CAACGGCTAC GCTGCGGGA ATTGCGTGACGC GAGAAGAACC GTGCGGAGAGAAGACC GTGCGCGCAG ATACGCGCCGC TGGGCCGCTT TACGCGCCGC TGGGCCGCTT TGGTCAGAGACCCCGTC	CGGCGCAGGT GCGCCGGTGC AATCGAGTCC CCAAGGCGAT AAGCCGATGT	GATCGTGCTG TGGACTGCCA AAGATCGACC CAAGTCTGGC GCGTGGAGGT	AACCACCCG CACGAGCCAC GCCGCTCCGG GATGCCGCGA GTTCAACGAC	800 850 900 950 1000 1050 1100
10					
	2) INFORMATION FOR SEQ	ID NO: 516			
15	(i) SEQUENCE CHARACTE (A) LENGTH: 110 (B) TYPE: Nucle (C) STRANDEDNES (D) TOPOLOGY: I	ERISTICS: 06 bases eic acid SS: Double			
20	(ii) MOLECULE TYPE: Ge	enomic DNA			
25	(vi)ORIGINAL SOURCE: (A) ORGANISM: I (B) STRAIN: ATO	CC 30815	_		
•	(xi) SEQUENCE DESCRIPT	TION: SEQ I	D NO: 516		
30	TACGCGTGGG TGCTCGACAA ( GATCGACATT GCGCTGTGGA A TCATCGATGC GCCCGGCCAC ( ACGTCGCAGG CGGACGCCGC ( CTTCGAGGCT GGCATCTCGA A TTGCCTTCAC KCTTGGCGTG A	AGTTCGAGTC CGCGACTTCA CATCCTGATG AGGACGGCCA	GCCCAAGTCC TCAAGAACAT ATCGACTCGA GACCCGCGAG	GTGTTCACGA GATCACGGGC CGCATGGTGG CACGCGCTGC	50 100 150 200 250 300
35	GACGACAAGA CGGTGACGTA CGGAGGTGGGC GCGTACCTGA AGCTTCATCCC GATCTCGGGC GACAACATGC CGTGGTACAA GGCTGGAGCCG CCGGTGCGCC C	CGCGCAGTCG AGCGCGTGGG TGGCAGGGCG GGGTCCCACG	CGCTACGATG CTACAACCCG ACAACATGAT CTGCTGGACG	AGATCAGCAA GAGAAGTGC CGAGAAGTCG CGCTCGACAT	350 400 450 500 550
40	AGGACGTGTA CAAGATCGGC (GAGACCGGCA TCATGAAGCC (GTGACGACT GAGGTGAAGT (AGGCGCACACC CGGCGACAAC (AAGGACATCC GCCGTGGTAA (GAGGACATCC GAGACATCC GCCGTGGTAA (GAGGACATCC GCCGTGGTAA (GAGGACATCC GCCGTGGTAA (GAGGACATCC GCCGTGGTAA (GAGGACATCC GCCGTGGTAA (GAGACATCC GAGACATCC GCCGTGGTAA (GAGACATCC GCCGTAA (GAGACATCC GCCGACATCATCATCATCATCATCATCATCATCATCATCATCAT	GGTATCGGGA GGGCGACGTG CGATCGAGAT GTCGGCTTCA	CGGTGCCCGT GTGACGTTCG GCACCACGAG ACGTGAAGAA	GGGGCGCGTG CGCCCGCCAA CAGCTGGCGG CGTGTCGGTG	600 650 700 750 800
45	GAAGGAGGCG GCCGACTTCA (GCCAGATCAG CAACGGCTAC (ATTGCGTGCC GCTTCGCGGA ACAGGAGCTG GAGAAGAACC (ATGTGAAGAT GGTGCCGCAG A	GCGCCGGTGC AATCGAGTCC CCAAGGCGAT AAGCCGATGT	TGGACTGCCA AAGATCGACC CAAGTCTGGC GCGTGGAGGT	CACGAGCCAC GCCGCTCCGG GATGCCGCGA GTTCAACGAC	850 900 950 1000 1050
50	TACGCGCCGC TGGGCCGCTT T	TGCCGTGCGC	GACATGCGCC	AAACCGTTGC	1100 · 1106
55	2) INFORMATION FOR SEQ I  (i) SEQUENCE CHARACTE (A) LENGTH: 109 (B) TYPE: Nucle (C) STRANDEDNES (D) TOPOLOGY: L	ERISTICS: 99 bases eic acid SS: Double			1100
	,,				

. 60

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

5

40

50

- (A) ORGANISM: Leishmania donovani subsp. donovani
- (B) STRAIN: ATCC 50212

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 517

10	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCCGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
15	TTGCCTTCAC	GCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CCGTGACGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAGGTCG	450
	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
20	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CTGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
25	AAGGACATCC	GCCGTGGCAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
	ATTGCGTGCC	GCTTCGCGGA	AATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GATGCCGCGA	1000
30	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTG	1099

### 35 2) INFORMATION FOR SEQ ID NO: 518

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1098 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

- 45 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Leishmania donovani subsp. infantum
  - (B) STRAIN: MOU

	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
		CGGACGCCGC				200
55	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
	TTGCCTTCAC	GCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CCGTGACGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAGGTCG	450
60	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500

5	AGGCGCAGCC AAGGACATCC GAAGGAGGCG GCCAGATCAG ATTGCGTGCC CAAGGAGCTG TCGTGAAGAT	CAAGATCGGC TCATGAAGCC GAGGTGAAGT CGGCGACAAC GCCGTGGCAA GCCGACTTCA CAACGGCTAC GCTTCGCGGA	GGTATCGGGA GGGCGACGTG CGATCGAGAT GTCGGCTTCA CGTGTGCGGC CGGCGCAGGT GCGCCGGTGC AATCGAGTCC CCAAGGCGAT AAGCCGATGT	CTGTGCCCGT GTGACGTTCG GCACCACGAG ACGTGAAGAA AACTCGAAGA GATCGTGCTG TGGACTGCCA AAGATCGACC CAAGTCTGGC GCGTGGAGGT	GGGCCGCGTG CGCCCGCCAA CAGCTGGCGG CGTGTCGGTG ACGACCCCGC CACGAGCCAC GCCGCTCCGG GATGCCGCGA GTTCAACGAC	550 600 650 700 750 800 850 900 950 1000 1050
15	2) INFORMATI	ON FOR SEQ	ID NO: 519			
20	(i) SEQUE (A) (B) (C) (D)	ENCE CHARACT LENGTH: 10 TYPE: Nucl STRANDEDNE TOPOLOGY:	71 bases leic acid ESS: Double			
25	(vi)ORIGI (A)	CULE TYPE: C NAL SOURCE: ORGANISM: STRAIN: AT	: Leishmania	enriettii		
30	(xi) SEQUE	ENCE DESCRIE	PTION: SEQ	ID NO: 519		
35	GCTGTGGAAG CCGGCCACCG GACGCCGCCA CATCTCGAAG TTGGTGTGAA GTGCAGTACT	TTCGAGTCGC CGACTTCATC TCCTGATGAT GACGGCCAGA GCAGATGGTG CGCAGGCGCG	CCAAGTCTGT AAGAACATGA CGACTCGACC CCCGCGAGCA GTGTGCTGCA CTACGAGGAG	GTTCACGATC TCACCGGCAC CAGGGCGGCT CGCGCTGCTC ACAAGATGGA ATCAGCAAGG	GTCGCAGGCC TCGAGGCTGG GCCTTCACGC CGACAAGACG AGGTGGGCGC	100 150 200 250 300 350
40	TCTCGGGCTG TGGTACAAGG GGTGCGCCCG		AACATGATCG GCTGGACGCG CGCTGCGCCT	ACAAGTCGGA CTCGACATGC GCCCCTGCAG	GACGTGTACA	400 450 500 550 600
45	ATGAAGCCTG GGTGAAGTCG GCGACAACGT CGTGGTAACG	GCGACGTGGT ATCGAGATGC CGGCTTCAAC TGTGCGGCAA GCGCAGGTGA	GACGTTTGCG ACCACGAGCA GTGAAGAACG CTCGAAGAAC	CCCGCCAACG GCTGGCGGAG TGTCGGTGAA GACCCGCCGA	TGACGACGGA GCGGTGCCCG GGACATCCGC AGGAGGCGGC	650 700 750 800 850
50	ACGGCTACGC TTCGCGGATA GAAGAACCCC TGCCGCAGAA	GCCGGTGCTG TCGAGTCCAA	GACTGCACA GATCGACCGC AGTCCGGCGA GTGGAGGTGT	CGAGCCACAT CGCTCTGGCA TGCGGCCATC	CGCGTGCCGC AGGAGCTGGA GTGAAGATGG	900 950 1000 1050

55

60

(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1071 bases

(B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: (A) ORGANISM: Leishmania gerbilli (B) STRAIN: ATCC 50121 10 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 520 CTCGACAAGC TGAAGGCGGA GCGCGAGCGC GGCATCACGA TCGACATTGC GCTGTGGAAG TTCGAGTCGC CCAAGTCCGT GTTCACGATC ATCGATGCGC 100 CCGGCCACCG CGACTTCATC AAGAACATGA TCACGGGCAC GTCGCAGGCG 15 150 GACGCCGCCA TCCTGATGAT CGACTCGACG CATGGTGGCT TCGAGGCTGG 200 CATCTCGAAG GACGGCCAGA CCCGCGAGCA CGCGCTGCTT GCCTTCACTC TTGGCGTGAA GCAGATGGTG GTGTGCTGCA ACAAGATGGA CGACAAGACG 300 GTGACGTACG CGCAGTCGCG CTACGATGAG ATCAGCAAGG AGGTGGGCGC GTACCTGAAG CGCGTGGGCT ACAACCCGGA GAAGGTGCGC TTCATCCCGA TCTCGGGCTG GCAGGGCGAC AACATGATCG AGAAGTCGGA CAACATGCCG TGGTACAAGG GTCCCACGCT GCTGGACGCG CTCGACATGC TGGAGCCGCC GGTGCGCCCG GTGGACAAGC CGCTGCGCCT GCCCCTGCAG GACGTGTACA AGATCGGCGG TATCGGGACG GTGCCCGTGG GCCGCGTGGA GACCGGCATC ATGAAGCCGG GCGACGTGGT GACGTTCGCG CCCGCCAACG TGACGACTGA 25 GGTGAAGTCG ATCGAGATGC ACCACGAGCA GCTGGCGGAG GCGCAGCCCG GCGACAACGT CGGCTTCAAC GTGAAGAACG TGTCGGTGAA GGACATCCGC CGTGGTAACG TGTGCGGCAA CTCGAAGAAC GACCCGCCGA AGGAGGCGGC CGACTTCACG GCGCAGGTGA TCGTGCTGAA CCACCCCGGC CAGATCAGCA
30 ACGGCTATGC GCCGGTGCTG GACTGCCACA CGAGCCACAT TGCGTGCCGC 850 TTCGCGGAAA TCGAGTCCAA GATCGACCGC CGCTCCGGCA AGGAGCTGGA 950 GAAGAACCCC AAGGCGATCA AGTCTGGCGA TGCCGCGATC GTGAAGATGG 1000 TGCCGCAGAA GCCGATGTGC GTGGAGGTGT TCAACGACTA CGCGCCGCTG GGCCGCTTTG CCGTGCGCGA C 1071 35 2) INFORMATION FOR SEQ ID NO: 521 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 1114 bases (A) TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Leishmania hertigi subsp. hertigi 50 STRAIN: ATCC 50125 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521 TCGTTCAAGT ACGCGTGGGT GCTCGACAAG CTGAAGGCGG AGCGCGAGCG CGGTATCACG ATCGACATTG CGCTGTGGAA GTTCGAGTCG CCCAAGTCGG TGTTCACGAT CATCGATGCG CCCGGCCACC GCGACTTCAT CAAGAACATG ATCACCGGCA CGTCGCAGGC GGATGCTGCC ATTCTGATGA TCGATTCGAC GCAGGGTGGC TTCGAGGCTG GCATCTCGAA GGACGCCAG ACGCGCGAGC ACGCGCTGCT GGCCTTCACG CTGGGCGTGA AGCAGATGGT TGTGTGCTGC

AACAAGATGG ACGACAAGAC GGTGCAGTAC GCGCAGGCGC GCTACGAGGA

5	GATCAGCAAG AGAAGGTGCG GAGAAGTCCG GCTGGACATG TGCCCCTGCA GGCCGTGTGG GCCGCCAAC AGCTGCAGGA GTGTCGGTGA CGACCCGCCG ACCACCCCGG ACCACCCCGG	GAGGTGGGCG CTTCATCCCG ACAACATGTC CTGGAGGCGC GGACGTGTAC AGACCGGCAT GTGACGACGG GGCTGTGCCC AGGACATCCG AAGGAGGCGG CCAGATCAGC TCGCGTGCCG		GGCGCAGGTG CGCCGGTGCT ATCGAGTCGA	TACAACCCGG CAACATGATC TGCTGGAGGC CCGCTGCGCC GGTGCCGGTG TGACGTTCGC CACCACGAGC CGTGAAGAAC ACTCGAAGAA ATCGTGCTGA AGATCGACG	400 450 500 550 600 650 700 750 800 900
	CCGCTCCGGC	AAGGAGCTGG CGTGAAGATG	AGAAGAACCC GTGCCGCAGA	CAAGTCCATC	AAGTCCGGCG CGTGGAGGTG	1000 1050
15	TTCAACGACT AACCGTTGCC	ACCCGCCGCT GTCG	GGGCCGCTTT			1100 1114

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1106 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Leishmania major
  - (B) STRAIN: ATCC 50122
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522

TACGCGTGGG TGCTCGACAA GCTGAAGGCG GAGCGCAGC GCGCATCAC GATCGACATT GCGCTGGA AGTTCGAGTC GCCCAAGTCC GTGTTCACGA TCATCGATGC GCCCGGCCAC CGCGACTTCA TCAAGAACAT GATCACGGGC 150 ACGTCGCAGG CGCGCCGC CATTCTGATG ATCGACTCGA CGCATGGCGG 200  40 CTTCGAGGCT GGCATCTCA AGGACGCCG GACCCCGCAG CACCCGCGAG CACCGCGTGC 250 TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG 300 GACGACAAGAA CGGTGACGTA CGCGCAGTCR CGCTACGATG AGATCAGCAA 350 GGAGGTGGGC GCGTACCTGA AGCCGCGTGG CTACAACCCG GAGAAGGTGC 400 GCTTCATCCC GATCTCGGGC TGGCAGGCG ACACACTGAT CGAGAAGTCG 450 GCTGGAGCCG CCGTGTACAA GGGTCCCACG CTGCTCGACAT 500 GCTGGAGCCG CCGGTGCC CGGTGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACGTGTA CAAGATCGGC GGTATCGGAC CGGTGCCCGT GGGCCGCTGC CGGTGACGAT CCAGAGACGTG CGGTGACGACA CGGTGACGACA GCCGCTCCGC CTGCCCCTGC 550 GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGCGG 700 AGGCGCAGCC CGGCGACAC GTCGGCTCA ACGTGAGAA CGTCTCGCCG 750 AAGGACATCC CGGCGACACA CGTCGCCCAA ACGCCCCGC AACCCCCG 850 AAGGACATCC CGCCGCTAA CGTCTGCGC AACTCGAAGA ACGACCCCC 850 GAAGGAGGCG GCCGACTTC CGGCCGAGGT GATCGGCA CACGACCAC 950 ATTGCGTGCC CAACAGACCAC CCAAGGCCAC CACGAGCCAC 950 ATTGCGTGCC CAACAGACCC CCAAGGCCAT CAAGACCACC GCCGCCCCAA AACCCCCG GACAACACCCC 950 TCGTGAAGAT GGGCCGCCT TGCCCGCA AAGCCCGCC AAACCCCCG GATCGCGCA AACCCCCG GACAACACCCCG GACAACACCCC GACAACACCCC GACAACACCCC GACAACACCCC GACAACACCCC AACTCGAAGAC CAACACCCC GACAACACCCC GACAACACCCC GACAACACCCC AACCCCCC AACCCCCC AACCCCCC AACCCCCC	35	(XI) DIQUI	nice percent				
TCATCGATGC GCCCGGCCAC CGCGACTTCA TCAAGAACAT GATCACGGGC ACGTCGCAGG CGGACGCCGC CATTCTGATG ATCGACTCGA CGCATGGCGG 200  TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG GACGACAAGA CGGTGACGAA AGCACGATGC CGCTACAACCAG GACGACAAGA GACACACAGA GAGAAGATGC 400  GCTTCATCCC GATCTCGGGC TGGCAGGGC ACAACATGAT CGAGAAGTCG 450  GCTGAACAATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT 500  GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC 550  GAGACCGTGA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCTG 600  GAGACCGGCA TCATGAAGCC GGGCGACACA GCCGCTGCGC CTGCCCCTGC 550  AGGCCGCGCA TCATGAAGCC GGGCGACAGT GCACCACGAG CAGCTGGCG 700  SO AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGT 750  AAGGACATCC GCCGTGTAA CGTCGCGC AACTCGAGA ACGACCCGC 850  GAAGAGAGCG CCGCGGTAA CGTCGCGC AACTCGAAGA ACGACCCCC 800  GAAGAGAGCC CCGCGGACAAC GTCGCCGCC AACTCGACA AACCACCCG 850  GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900  ATTGCGTGCC GAGAAGAACC CCAAGGCGAT CAAGTCTGCC GATGCCAC 900  TCGTGAAGAT GGGCCGCAG AATCGAGTC AAGATCGAC GCCGCTCCGG 950  TCGTGAAGAT GGGCCGCAG AAGCCGATT CAAGGCCAC GATGCCCA AACCACCCG 850  TCGTGAAGAT GGGCCGCAG AAGCCGATT CAAGGCCAC GATGCCCA AACCACCCG 950  TCGTGAAGAT GGGCCGCAG AAGCCGATT CAAGGCCAC GATGCCACACGAG CACGAGCCAC 900  TCGTGAAGAT GGGCCGCAG AAGCCGATT CAAGGCCAC GATGCCCAC AACGAGCCAC 900  TCGTGAAGAT GGGCCGCAG AAGCCGATT CAAGGCCAC GATGCCCCAC AACCACGAG CACGAGCAC 1000	3.3	TACGCGTGGG	TGCTCGACAA	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	50
ACGTCGCAGG CGGACGCCGC CATTCTGATG ATCGACTCGA CGCATGGCGG 200 CTTCGAGGCT GGCATCTCGA AGGACGGCCA GACCCGCGAG CACGCGCTGC 250 TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG 300 GACGACAAGA CGGTGACCTGA AGCAGGTCR CGCTACGATG AGATCAGCAA 350 GGAGGTGGGC GCGTACCTGA AGCCGCTGGG CTACAACCCG GAGAAGGTGC 400 GCTTCATCCC GATCTCGGGC TGGCAGGCG ACAACATGAT CGAGAAGTCG 450 GCTGGAGCCG CGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC CTGCTGACAT 500 GCTGGAGCCG CCGGTGCGC CGGTGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACCGGCA TCATGAAGCC GGGTATCGGGA CGGTGCCCGT GGGCCGCTG 600 GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCG 700 AGGCCAGCC CGGCGACAAC GTCGGCTCA ACGTGAAGAA CGGTGCGCC 700 GAAGGACATCC GCCGTGGTAA CGTGTGCGC AACTCGAAGA ACGACCCCCC 800 GAAGGACGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACGACCCCC 850 GAAGGAGCCG GCCGACTTCA CGGCGCAGGT GATCGTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGA AATCGAGTC AAGATCGACC GCCGCCCAC 950 TCGTGAAGAT GGGCCGCCA AACCGCCCC GATCCCCCC GCCCCCCCCCC		GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCCAAGTCC	GTGTTCACGA	100
40 CTTCGAGGCT GGCATCTCGA AGGACGCCA GACCCGCGAG CACGCGCTGC TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG GACGACAAGA CGGTGACGTA CGCGCAGTCR CGCTACGATG AGATCAGCAA GGAGGTGGGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC GCTTCATCCC GATCTCGGGC TGGCAGGGCG ACAACATGAT CGAGAAGTCG GCTGACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT GCTGGAGCCG CCGGTGCGC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC AGGACCGGCA CAAGATCGGC GGTATCGGGA CGGTGCCCT GGGCCGCTGC GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA CGTGACCGCA TCATGAAGCC GGCGACGTG GTGACGTTCG CGCCCGCCAA CGTGACCACC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTCTGCGGG AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA CGTGTCGGTG AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC GAAGGAGGCG GCCGACATC CGGCCGAGGT GATCGTGCTG AACCACCCCG GCAGATCAG CAACGGCTAT GCGCCGAGGT GATCGTGCCA CACGAGCCAC ATTGCGTGCC GCTTCGCGGA AATCGAGTC AAGATCGACC GCCGCCCAC ATTGCGTGCC GCTTCGCGA AATCGAGTC AAGATCGACC GCCGCCAC TCGTGAAGAT GGGCCGCTT TGCCGCT CAAGATCGACC GCCGCCCAC TCGTGAAGAT GGGCCGCTT TGCCGCC AAGATCGACC GCCGCCCAC TCGTGAAGAT GGGCCGCTT TGCCGCC AAGATCGACC GCCGCCCAC TCGTGAAGAT GGGCCGCGTG CAAGATCGACC GCCGCCCAC TCGTGAAGAT GGGCCGCCAC AAGATCGACC GCCGCTCCGG TCGTGAAGAT GGGCCGCCAC AAGATCGACC GCCGCTCCGG TCGTGAAGAT GGGCCGCCAC AAGATCGACC GCCGCCCACACCCCCCCCCC		TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG GACGACAAGA CGGTGACGTA CGCGCAGTCR CGCTACGATG AGATCAGCAA GGAGGTGGGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC 400 GCTTCATCCC GATCTCGGGC TGGCAGGGCG ACAACATGAT CGAGAAGTCG 450 GCTGGAGCCG CGGTGCGCC CGGTGGACAA GCCGCTGGACAT 500 GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACCGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCTGC GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CCGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCCCC 800 GAAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCCCC 850 GCCAGATCAG CAACGGCTAT GCGCCGAGGT GATCGTGCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 TCGTGAAGAT GGTGCCGCA AACCGATGT CAAGATCGACC GCCGCTCCGG 950 TCGTGAAGAT GGTGCCGCA AACCGATGT CAAGATCGACC GCCGCCAA 1000 TCGTGAAGAT GGTGCCGCAG AACCGATGT CAAGATCGACC GCTGCCGA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT CAAGTCTGGC GATGCCGCA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT CAAGTCTGGC GATGCCGCA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050		ACGTCGCAGG	CGGACGCCGC	CATTCTGATG	ATCGACTCGA	CGCATGGCGG	200
GACGACAAGA CGGTGACGTA CGCGCAGTCR CGCTACGATG AGATCAGCAA GGAGGTGGGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC 400 GCTTCATCCC GATCTCGGGC TGGCAGGGCG ACAACATGAT CGAGAAGTCG 450 GCTGGAGCCG CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT 500 GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG 600 GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTC AAGATCGACC GCCGCTCCGG 950 TCGTGAAGAT GGTGCCGCA AAGCCGCCC AAGATCGCC GATGCCGCC 1000 TCGTGAAGAT GGTGCCGCA AAGCCGATGT GCGTGAGGT GTTCAACGAC 1050 TCGTGAAGAT GGTGCCGCA AAGCCGATGT GCGTGAGGT GTTCAACGAC 1050 TCGTGAAGAT GGTGCCGCA AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCCC GACATGCGC AAACCGTTGC 1100	40	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
GGAGGTGGGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC GCTTCATCCC GATCTCGGGC TGGCAGGGCG ACAACATGAT CGAGAAGTCG 45 GACAACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC ATTGCGTGCC GCTTCGCGGA AATCGAGTC AAGATCGACC GCCGCTCCGG 50 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGATCGACC GCCGCCCCA ATTGCGTGCC GCTTCGCGGA AATCGAGTC CAAGATCGACC GCCGCCCA TCGTGAAGAT GCGCCGCAT CAAGATCGACC GCCGCTCCGG TCGTGAAGAT GCGCCGCAT CAAGATCGACC GCCGCCCCA TCGTGAAGAT GCGCCGCAT CAAGATCGACC GCCGCTCCGG TCGTGAAGAT GCTCCCCAAGGCGAT CAAGATCGACC GCCGCCCAACCCCCCCCCC		TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
GCTTCATCCC GATCTCGGGC TGGCAGGGCG ACAACATGAT CGAGAAGTCG 450 GACAACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT 500 GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG 600 GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCCCGC 950 TCGTGAAGAT GGTGCCGCAG AAGCCGATT CAAGTCTGCC GATGCCGCA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCCC GACATGCCC AAACCGTTGC 1100		GACGACAAGA	CGGTGACGTA	CGCGCAGTCR	CGCTACGATG	AGATCAGCAA	350
GACAACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCTTG GGGCCGCGTG GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG AGGCGACACC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGATCGACC GCCGCTCCGG TCGTGAAGAT GGTGCCGCA AAGCCGATGT GCGTGAGGT GTTCAACGAC TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC TACGCGCCGC TGGGCCGCTT TGCCGTGCCC GACATGCCC AAACCGTTGC 1100		GGAGGTGGGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 TCGTGAAGAT GGTGCCGCAG AAGCCGATT GCGTGAGGT GTTCAACGAC 1050 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCCG GACATGCCCC AAACCGTTGC 1100		GCTTCATCCC	GATCTCGGGC	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	450
AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 TCGTGAAGAT GGTGCCGCAG AAGCCGATT CAAGTCTGCC GATGCCGCA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCCC GACATGCCC AAACCGTTGC 1100	45	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
GAGACCGGCA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCAA 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700 50 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGCC GATGCCGCA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCCC GACATGCCC AAACCGTTGC 1100		GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG 700  50 AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750  AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800  GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850  GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900  ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950  TCGTGAAGAT GGTGCCGCAG AAGCCGATT GCGTGGAGGT GTTCAACGAC 1050  TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGCCGCGTG	600
AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCAA TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		GAGACCGGCA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCGA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100	•	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCGA TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100	50	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
GCCAGATCAG CAACGGCTAT GCGCCGGTGC TGGACTGCCA CACGAGCCAC 900 ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCGA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		AAGGACATCC	GCCGTGGTAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
ATTGCGTGCC GCTTCGCGGA AATCGAGTCC AAGATCGACC GCCGCTCCGG 950  55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCGA 1000  TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050  TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
55 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GATGCCGCGA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		GCCAGATCAG	CAACGGCTAT	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100		ATTGCGTGCC					950
TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100	55	CAAGGAGCTG				GATGCCGCGA	1000
							1050
CGTCGG 1106			TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTTGC	1100
		CGTCGG					1106

#### (i) SEQUENCE CHARACTERISTICS: LENGTH: 1105 bases 5 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Leishmania amazonensis STRAIN: ATCC 50131 (B) 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523 TACGCGTGGG TGCTCGACAA GCTGAAGGCG GAGCGCGAGC GCGGCATCAC 50 GATCGACATT GCGCTGTGGA AGTTCGAGTC GCCGAAGTCC GTGTTCACGA 100 TCATCGATGC GCCCGGCCAC CGCGACTTCA TCAAGAACAT GATCACGGGC 150 20 ACGTCGCAGG CGGACGCGGC CATCCTGATG ATCGACTCGA CGCATGGTGG 200 CTTCGAGGCT GGCATCTCGA AGGACGGCCA GACCCGCGAG CACGCGCTGC 250 TTGCCTTCAC TCTTGGCGTG AAGCAGATGG TGGTGTGCTG CAACAAGATG GACGACAAGA CGGTGATGTA CGCGCAGTCG CGCTACGATG AGATCAGCAA 350 GGAGGTGAGC GCGTACCTGA AGCGCGTGGG CTACAACCCG GAGAAGGTGC 400 25 GCTTCATCCC GATCTCGGGG TGGCAGGGCG ACAACATGAT CGACAAGTCG 450 GACAACATGC CGTGGTACAA GGGTCCCACG CTGCTGGACG CGCTCGACAT 500 GCTGGAGCCG CCGGTGCGCC CGGTGGACAA GCCGCTGCGC CTGCCCCTGC 550 AGGACGTGTA CAAGATCGGC GGTATCGGGA CGGTGCCCGT GGGCCGCGTG 600 GAGACCGGGA TCATGAAGCC GGGCGACGTG GTGACGTTCG CGCCCGCCAA 30 650 CGTGACGACT GAGGTGAAGT CGATCGAGAT GCACCACGAG CAGCTGGCGG AGGCGCAGCC CGGCGACAAC GTCGGCTTCA ACGTGAAGAA CGTGTCGGTG 750 AAGGACATCC GCCGTGGTAA CGTGTGCGGC AACTCGAAGA ACGACCCGCC 800 GAAGGAGGCG GCCGACTTCA CGGCGCAGGT GATCGTGCTG AACCACCCCG 850 GCCAGATCAG CAACGGCTAC GCGCCGGTGC TGGACTGCCA CACGAGCCAC 35 900 ATCGCGTGCC GCTTCGCGGA GATCGAGTCC AAGATCGACC GCCGCTCCGG 950 CAAGGAGCTG GAGAAGAACC CCAAGGCGAT CAAGTCTGGC GACGCCGCGA 1000 TCGTGAAGAT GGTGCCGCAG AAGCCGATGT GCGTGGAGGT GTTCAACGAC 1050 TACGCGCCGC TGGGCCGCTT TGCCGTGCGC GACATGCGCC AAACCGTTGC 1100 40 CGTCG 1105 2) INFORMATION FOR SEQ ID NO: 524 45 (i) SEQUENCE CHARACTERISTICS: LENGTH: 1098 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) 50 TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 55 (A) ORGANISM: Leishmania mexicana (B) STRAIN: ATCC 50156 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524 60 TACGCGTGGG TGCTCGACAA GCTGAAGGCG GAGCGCGAGC GCGGCATCAC 50

	GATCGACATT	GCGCTGTGGA	AGTTCGAGTC	GCCGAAGTCC	GTGTTCACGA	100
	TCATCGATGC	GCCCGGCCAC	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	150
	ACGTCGCAGG	CGGACGCGGC	CATCCTGATG	ATCGACTCGA	CGCATGGTGG	200
	CTTCGAGGCT	GGCATCTCGA	AGGACGGCCA	GACCCGCGAG	CACGCGCTGC	250
5	TTGCCTTCAC	TCTTGGCGTG	AAGCAGATGG	TGGTGTGCTG	CAACAAGATG	300
	GACGACAAGA	CGGTGATGTA	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	350
	GGAGGTGAGC	GCGTACCTGA	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	400
	GCTTCATCCC	GATCTCGGGG	TGGCAGGGCG	ACAACATGAT	CGACAAGTCG	450
	GACAACATGC	CGTGGTACAA	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	500
10	GCTGGAGCCG	CCGGTGCGCC	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	550
	AGGACGTGTA	CAAGATCGGC	GGTATCGGGA	CGGTGCCCGT	GGGCCGCGTG	600
	GAGACCGGGA	TCATGAAGCC	GGGCGACGTG	GTGACGTTCG	CGCCCGCCAA	650
	CGTGACGACT	GAGGTGAAGT	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	700
	AGGCGCAGCC	CGGCGACAAC	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	750
15	AAGGACATCC	GCCGTGGTAA	CGTGTGCGGC	AACTCGAAGA	ACGACCCGCC	800
	GAAGGAGGCG	GCCGACTTCA	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	850
	GCCAGATCAG	CAACGGCTAC	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	900
	ATCGCGTGCC	GCTTCGCGGA	GATCGAGTCC	AAGATCGACC	GCCGCTCCGG	950
	CAAGGAGCTG	GAGAAGAACC	CCAAGGCGAT	CAAGTCTGGC	GACGCCGCGA	1000
20	TCGTGAAGAT	GGTGCCGCAG	AAGCCGATGT	GCGTGGAGGT	GTTCAACGAC	1050
	TACGCGCCGC	TGGGCCGCTT	TGCCGTGCGC	GACATGCGCC	AAACCGTT	1098

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1081 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double
  - (C) STRANDEDNESS: Dou (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE: 35

30

- (A) ORGANISM: Leishmania tarentolae
- STRAIN: II WT (B)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525

	GCTGAAGGCG	GAGCGCGAGC	GCGGCATCAC	GATCGACATT	GCGCTGTGGA	50
	AGTTCGAGTC	GCCCAAGTCG	GTGTTCACGA	TCATCGATGC	GCCCGGCCAC	100
	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	ACGTCGCAGG	CGGACGCGGC	150
	CATCCTGATG	ATCGACTCGA	CGCACGGTGG	GTTCGAGGCT	GGCATCTCGA	200
45	AGGACGGGCA	GACGCGCGAG	CACGCGCTGC	TTGCCTTCAC	TCTTGGCGTG	250
	AAGCAGATGG	TTGTGTGCTG	CAACAAGATG	GACGACAAGA	CGGTGATGTA	300
	CGCGCAGTCG	CGCTACGATG	AGATCAGCAA	GGAGGTGGGC	GCGTACCTGA	350
	AGCGCGTGGG	CTACAACCCG	GAGAAGGTGC	GCTTCATCCC	GATCTCGGGC	400
	TGGCAGGGCG	ACAACATGAT	CGAGAAGTCG	GACAACATGC	CGTGGTACAA	450
50	GGGTCCCACG	CTGCTGGACG	CGCTCGACAT	GCTGGAGGCG	CCGGTGCGCC	500
	CGGTGGACAA	GCCGCTGCGC	CTGCCCCTGC	AGGACGTGTA	CAAGATCGGC	550
	GGCATCGGCA	CGGTGCCCGT	GGGCCGCGTG	GAGACCGGCA	TCATGAAGCC	600
	GGGCGACGTG	GTGACGTTCG	CGCCCGCGAA	CGTGACGACG	GAGGTGAAGT	650
	CGATCGAGAT	GCACCACGAG	CAGCTGGCGG	AGGCGCAGCC	CGGCGACAAC	700
55	GTCGGCTTCA	ACGTGAAGAA	CGTGTCGGTG	AAGGACATCC	GCCGTGGGAA	750
	CGTGTGCGGT	AACTCGAAGA	ACGACCCGCC	GAAGGAGGCC	GCCGACTTCA	800
	CGGCGCAGGT	GATCGTGCTG	AACCACCCCG	GCCAGATCAG	CAACGGCTAC	850
	GCGCCGGTGC	TGGACTGCCA	CACGAGCCAC	ATCGCGTGCC	GGTTCGCGGA	900
	CATCGAGTCC	AAGATTGACC	GCCGCTCCGG	CAAGGAGCTG	GAGAAGAACC	950
60	CCAAGGCGAT	CAAGTCCGGC	GATGCCGCGA	TCGTGAAGAT	GGTGCCGCAG	1000

	AAGCCGATGT TGCTGTGCGC	GCGTGGAGAT GACATGCGCC	GTTCAACGAC AAACCGTTGC	TACGCGCCGC C	TTGGCCGCTT	1050 1081
5	2) INFORMAT	ON FOR SEQ	ID NO: 526			
10	(i) SEQUE (A) (B) (C) (D)		02 bases Leic acid ESS: Double			
15	(vi)ORIGI		: Leishmania	tropica		
20	(B) (xi) SEQUI	STRAIN: AT ENCE DESCRIE		ID NO: 526		
25	CACGATCGAC CGATCATCGA GGCACGTCGC TGGCTTCGAG TGCTTGCCTT ATGGACGACA CAAGGAGGTG	GGGTGCTCGA ATTGCGCTGT TGCGCCCGGC AGGCGGACGC GCTGGCATCT CACKCTTGGC AGACGGTGAC GGCGCGTACC	GGAAGTTCGA CACCGCGACT CGCCATCCTG CGAAGGACGG GTGAAGCAGA GTACGCGCAG TGAAGCGCGT	GTCGCCCAAG TCATCAAGAA ATGATCGACT CCAGACCCGC TGGTGGTGTG TCGCGCTACG GGGCTACAAC	TCCGTGTTCA CATGATCACG CGACGCATGG GAGCACGCGC CTGCAACAAG ATGAGATCAG CCGGAGAAGG	50 100 150 200 250 300 350 400
30 35	TCGGACAACA CATGCTGGAG TGCAGGACGT GTGGAGACCG	CCCGATCTCG TGCCGTGGTA CCGCCGGTGC GTACAAGATC GCATCATGAA ACTGAGGTGA	CAAGGGTCCC GCCCGGTGGA GGCGGTATCG GCCGGGCGAC	ACGCTGCTGG CAAGCCGCTG GGACGGTGCC GTGGTGACGT	ACGCGCTCGA CGCCTGCCCC CGTGGGGCGC TCGCGCCCGC	450 500 550 600 650 700
40	GTGAAGGACA GCCGAAGGAG CCGGCCAGAT CACATTGCGT CGGCAAGGAG	GCCCGCGAC TCCGCCGTGG GCGGCCGACT CAGCAACGGC GCCGCTTCGC CTGGAGAAGA GATGGTGCCG	TAACGTGTGC TCACGGCGCA TACGCGCCGG GGAAATCGAG ACCCCAAGGC	GGCAACTCGA GGTGATCGTG TGCTGGACTG TCCAAGATCG GATCAAGTCT	AGAACGACCC CTGAACCACC CCACACGAGC ACCGCCGCTC GGCGATGCCG	750 800 850 900 950 1000
45		CGCTGGGCCG				1050 1100 1102
	2) INFORMATI	ON FOR SEQ	ID NO: 527			
50	(i)SEQUE (A) (B) (C) (D)	ENCE CHARACT LENGTH: 11 TYPE: Nucl STRANDEDNE TOPOLOGY:	05 bases eic acid SS: Double			
55	(ii) MOLEC	CULE TYPE: G	Genomic DNA			
60	(vi)ORIGI (A) (B)	NAL SOURCE: ORGANISM: STRAIN: Su	Neospora ca	ninum		
	(2)	Du				

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 527

	GGACRAACTT	AAAGCTGAAC	GTGAGCGTGG	TATCACCATT	GATATCTCCC	50
5	TGTGGAAATT	TGAGACCAGC	AAGTACTATG	TTACCATCAT	TGATGCCCCA	100
	GGACACAGAG	ACTTCATCAA	AAACATGATT	ACAGGCACAT	CCCAGGCTGA	150
	CTGTGCTGTC	CTGATTGTTG	CTGCTGGTGT	TGGTGAATTT	GAAGCCGGTA	200
	TCTCCAAGAA	CGGGCAGACC	CGTGAGCATG	CCCTTNTGGC	TTACACCCTG	250
	GGTGTGAAAC	AACTAATTGT	TGGCGTTAAC	AAAAKGGATT	CCACTGAGCC	300
10	ACCCTATAGC	CARAAGAGAT	ACGARGAAAT	TGTTAAGGAA	GTCAGCMCCT	350
10	AYNTTAAAAA	AATTGGYTAC	AACCCCGACA	CAGTANCATT	TGKGCCAATT	400
	TNTGGCTGGA	ATGGTGACAA	CATGCTGGAN	CCAAGTGCTA	ATATGCCATG	450
	GTTCAAGGGA	TGGAAAGTCM	CCCGTAAGGA	CGGCAATGCC	AGKGGAACCM	500
	CCCTGCTTGA	AGCTYTGGAT	TGCATTYTGC	CACCAAYTTG	CCCAACTGAC	550
15	AAACCCTTGC	GTTTGCCTYT	CCAGGATGTC	TATAAAATTG	GKGGTATTGG	600
10	TACTGTCCCT	GTGGGTCGTG	TGGAGACTGG	TGTTCTCAAA	CCTGGCATGG	650
•	TGGTCACCTT	TGCTCCAGTC	AATGTAACAA	CTGAAGTGAA	GTCTGTAGAA	700
	ATGCACCATG	AAGCATTGAG	TGAAGCCCTT	CCTGGGGACA	ATGTGGGCTT	750
	CAATGTCAAG	AACGTGTCTG	TCAAAGATGT	CCGTCGTGGC	AATGTGGCTG	800
20	GTGACAGCAA	AAATGATCCA	CCCATGGAAG	CTGCTGGCTT	CACAGCTCAG	850
20	GTGATTATTT	TGAACCATCC	AGGCCAAATC	AGTGCTGGAT	ATGCACCTGT	900
	GCTGGATTGT	CACACAGCTC	ACATTGCTTG	CAAGTTTGCT	GAGCTGAAGG	950
	AGAAGATTGA	TCGTCGTTCT	GGGAAAAAGC	TGGAAGATGG	CCCTAAATTC	1000
	TTGAAATCTG	GTGACGCTGC	CATCGTTGAT	ATGGTTCCTG	GCAAGCCCAT	1050
25	GTGTGTCGAG	AGCTTCTCTG	ATTATCCTCC	CCTGGGCCGT	TTTGCTGTGC	1100
	GTGAC					1105

### 30 2) INFORMATION FOR SEQ ID NO: 528

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 935 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Trichomonas vaginalis
- (B) STRAIN: ATCC 30001
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 528

	,					
45						
	GCACATCCCA	GGCTGATGCT	GCTATCCTTG	TCATCGACTC	CACACTCGGT	50
•	GGYTTCGAAG	CCGGTATCGC	TGAACAAGGC	CAGACACGTG	AACACGCTCT	100
	TCTTGCCTTC	ACACTCGGCA	TCAAGCAGGT	CATTGTCGCC	GTCAACAAGA	150
	TGGATGACAA	GACAGTCAAC	TACAACAAGG	CYCGTTTCGA	CGAAATCACA	200
50	GCCGAAATGA	CACGCATCCT	TACAGGCATC	GGCTACAAGC	CAGAAATGTT	250
	CCGCTTCGTC	CCAATCTCCG	GCTGGGCTGG	CGACAACATG	ACAGAGAAGT	300
•	CTCCAAACAT	GCCATGGTAC	AATGGCCCAT	ACCTTCTTGA	AGCCCTCGAT	350
	TCCCTTCAGC	CACCAAAGCG	CCCATTCGAC	AAGCCACTCC	GTCTTCCACT	400
	CCAGGATGTC	TACAAGATCA	ACGGTATCGG	TACAGTTCCA	GTCGGCCGTG	450
55	TCGAATCCGG	CACAATGAAG	CCAGGCATGA	TCGTTAACTT	CGCCCCATCC	500
	ACAGTTACAG	CTGAAGTTAA	GTCCATCGAA	ATGCACCACG	AATCCCTTCC	550
	AGAGGCTCTT	CCAGGTGACA	ACATCGGCTT	CAACGTCAAG	AACGTTTCCA	600
	CAGCTGATGT	CAAGCGTGGC	TACGTCGTTG	GTGATACAAA	GCGTGACCCA	650
	CCAGTCGAAT	GCGCTTCCTT	CACAGCTCAR	ATGATCATCT	CCAACCACCC	700
60	AGGCAAGATC	CACGCCGGCT	ACCAGCCAGT	TTTCGACTGC	CACACAGCTC	750

5	ACATCGCCTG CAAGTTCGAC AAGCTCATCC AGCGTATCGA TCGTCGCCAC GGCAAGAAGG CTACAGAGAA CCCAGAATAC ATTCAGAAGG ATGATGCCGC TATCGTCGAG GTTGTCCCAT CCAAGCCACT CGTCGTCGAG TCCTTCCAGG AGTACCCACC ACTCGGCCGT TTCGCCATCC GTGAT	800 850 900 935
	2) INFORMATION FOR SEQ ID NO: 529	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1065 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Trypanosoma brucei subsp. brucei	
20	(B) STRAIN: EATRO795	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 529	
25	AAGCTGAAGG CTGAGCGCGA ACGTGGTATC ACGATCGACA TTGCACTGTG GAAATTCGAG TCACCCAAGT CTGTCTTCAC TATTATTGAT GCTCCTGGGC	50 100
	ACCGTGACTT CATCAAGAAC ATGATCACCG GCACATCGCA AGCCGACGCA GCCATCCTCA TCATTGCCTC TGCGCAGGGT GAGTTCGAGG CTGGTATCTC	150 200
	CAAGGATGGA CAGACCCGCG AGCACGCGTT GCTGGCCTTC ACTTTGGGTG TGAAGCAGAT GGTTGTGTGC TGCAACAAGA TGGACGACAA GACTGTGAAC	250 300
30	TACGGACAGG AGCGGTATGA CGAGATTGTG AAGGAGGTGT CTGCTTACAT CAAGAAGGTT GGGTACAACG TGGAGAAGGT GCGCTTCGTC CCCATCTCCG	350 400
	GATGGCAGGG CGACAACATG ATTGAGAAAT CCGAGAAGAT GCCATGGTAC AAGGGTCCAA CGCTCCTGGA GGCACTAGAC ATGCTGGAGC CACCAGTGCG	450 500
35	TCCGAGCGAC AAGCCCCTGC GTCTGCCACT GCAGGACGTG TACAAGATCG GTGGTATTGG CACCGTGCCC GTTGGTCGTG TGGAGACCGG CGTGATGAAG	550 600
33	CCTGGTGATG TGGTGACGTT TGCCCCCGCC AACGTGACGA CCGAGGTGAA ATCGATCGAG ATGCACCACG AGCAGCTCGC TGAGGCGACC CCCGGTGACA	650
	ACGTCGGCTT TAACGTGAAG AACGTTTCTG TAAAGGACAT CCGCCGTGGC	700 750
40	AACGTCTGCG GTAACACCAA GAACGACCCC CCAAAGGAGG CCGCCGACTT CACGGCACAG GTGATCATCC TGAACCACCC CGGACAGATT GGAAACGGTT	800 850
	ATGCGCCCGT GCTGGACTGC CACACATCGC ACATTGCCTG CAAGTTCGCG GAGATCGAGT CGAAGATCGA CCGTCGCTCT GGCAAGGAGC TGGAGAAGGC	900 950
	TCCCAAGTCG ATCAAGTCTG GCGACGCCGC GATCGTGCGC ATGGTGCCGC AGAAGCCTAT GTGCGTGGAG GTCTTCAACG ACTACGCGCC ACTCGGCCGC	1000 1050
45	TTTGCCGTGC GTGAC	1065
50	2) INFORMATION FOR SEQ ID NO: 530	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1297 bases	
	(B) TYPE: Nucleic acid	
55	<ul><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
66	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Crithidia fasciculata	

### (B) STRAIN: ATCC 11745

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530

5	TTCGCGGAGG	GCGTGCCGCC	GGTGCTGACG	GCGCTGGACG	TGACGGAGGA	50
ر	CCTCGGCCGC	GACGAGCCGC	TGACGCTGGA	GATTGTGCAG	CACTTGGACG	100
	CGAACACCGG	CCGCTGCATT	GCCATGCAGA	CGACGGATCT	GCTGAAGCTG	150
	AAGTCGAAGG	TTGTGTCGAC	GGGCGGCAAC	ATCTCCGTGC	CGGTTGGCCG	200
	CGAGACGCTG	GGCCGCATCT	TCAACGTGCT	CGGCGACGCG	ATCGACCAGC	250
1.0	GCGGTGTGGT	GGGCGAGAAG	ATGCGCATGC	CGATCCACGC	CGAGGCGCCG	300
10	AAGCTGGCGG	ACCAGGCCGC	GGAGGACGCG	ATTCTGACGA	CCGGCATCAA	350
	GGTGATCGAC	CTGATTCTGC	CGTACTGCAA	GGGTGGCAAG	ATCGGGCTGT	400
	TCGGCGGTGC	TGGTGTGGGC	AAGACTGTGA	TCATCATGGA	GCTGATCAAC	450
	AACGTGGCCA	AGGGCCACGG	TGGTTTCTCC	GTGTTCGCCG	GCGTTGGCGA	500
	GCGCACCCGC	GAGGGCACGG	ATCTGTACCT	GGAGATGATG	CAGTCGAAGG	550
15	TCATTGACCT	GAAGGGCGAG	TCGAAGTGCG	TGCTGGTGTA	CGGCCAGATG	600
	AACGAGCCCC	CGGGTGCGCG	TGCGCGTGTT	GCGCAGTCTG	CGCTGACGAT	650
	GGCGGAGTAC	TTCCGTGACG	TGGAGGGCCA	GAACGTGCTG	CTGTTCATCG	700
	ACAACATCTT	CCGCTTCACC	CAGGCCAACT	CCGAGGTGTC	CGCCCTGCTG	750
20	GGCCGCATTC	CCGCCGCCGT	GGGCTACCAG	CCGACGCTTG	CCGAGGATCT	800
20	TGGTATGCTG	CAGGAGCGCA	TTACGTCGAC	GACGAAGGGC	TCGATTACGT	850
	CTGTGCAGGC	CGTGTACGTG	CCGGCCGATG	ATATCACGGA	TCCGGCGCCG	900
	GCGACGACCT	TCTCGCACCT	GGATGCGACG	ACGGTGCTGG	ACCGCGCGGT	950
	TGCCGAGTCT	GGCATCTACC	CCGCCGTGAA	CCCGCTGGAG	TGCGCGTCGC	1000
25	GTATCATGGA	CCCCGATGTG	ATCGACGTGG	ACCACTACAA	CGTTGCGCAG	1050
25	GATATCGTGC	AGATGCTGAC	CAAGTACAAG	GAGCTGCAGG	ATATCATTGC	1100
	CGTGCTGGGT	ATCGACGAGC	TGAGCGAGGA	GGACAAGCTT	GTGGTGGACC	1150
	GCGCTCGCAA	GGTGACGCGC	TTCCTGTCGC	AGCCGTTCCA	GGTGGCCGAG	1200
	GTGTTCACCG	GCATGACGGG	CCACTACGTG	CAGCTGGAGG		1250
30	GTCGTTCTCT	GGCCTGCTGA		CGACCAGATC	CCGGAGA	1297
30	GICGIICICI					

### 2) INFORMATION FOR SEQ ID NO: 531

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1298 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 40 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:

45

- (A) ORGANISM: Leishmania tropica
- (B) STRAIN: ATCC 30816

50	CTTCTCGGAG	GGCGTGCCGC	CCGTGCTGAC	GGCGCTGGAT	GTGACGGAGG	50
-	ACCTTGGCCG	CGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAC	100
	GCGAACACGG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
			CCGGCGGCAA			200
	GTGAGACGCT	GGGCCGCATC	TTCAAYGTTC	TGGGCGACGC	GATCGACCAG	250
55			GATGCGCATG			300
			CGGAGGACAC			350
	AGGTGATCGA	CCTGATTCTG	CCCTACTGCA	AGGGTGGCAA	GATCGGCCTG	400
			CAAGACTGTG			450
	CAACGTCGCG	AAGGGCCACG	GCGGTTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
60	AGCGCACGCG	CGAGGGCACG	GACCTGTACC	TGGAGATGAT	GCAGTCGAAG	550

	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGY	GTGCTTGTGT	ATGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
5	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACGTCGA	CAACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCAGCGGAT	GATATCACGG	ATCCCGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGCGCGG	950
	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
10	CGTATCATGG	ACCCTGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AAGACAAGGT	TGTTGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGTC	GACACGGTGG	1250
15	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAGA	1298

20

30.

### (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1297 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- 25 (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Leishmania aethiopica
- (B) STRAIN: ATCC 50119

CGCTGGA GATCGTGCAG CACTTGGACG 100 ATGCAGA CGACGGACCT GCTGAAGCTG 150 CGGCAAC ATCTCTGTGC CGGTGGGCCG 200 ACGTTCT GGGCGACGCG ATCGACCAGC 250
CGGCAAC ATCTCTGTGC CGGTGGGCCG 200
200
ACGTTCT GGGCGACGCG ATCGACCAGC 250
CGCATGG CGATCCACGC CGAGGCCCCA 300
GGACACG ATCCTGACGA CCGGCATCAA 350
ACTGCAA GGGTGGCAAG ATCGGCCTGT 400
ACTGTGA TCATCATGGA GCTGATCAAC 450
TTTCTCC GTGTTTGCCG GCGTTGGCGA 500
CGTACCT GGAGATGATG CAGTCGAAGG 550
AGTGCG TGCTTGTGTA CGGGCAGATG 600
SCGCGTT GCGCAGTCTG CGCTGACGAT 650
GGGCCA GAACGTGCTG CTGTTCATCG 700
CGAACT CCGAGGTGTC TGCGCTGCTG 750
TACCAG CCGACGCTTG CGGAGGATCT 800
GTCGAC AACGAAGGGG TCGATCACGT 850
CGGATG ATATCACGGA TCCCGCGCCC 900
GCGACG ACTGTGCTGG ACCGCGCGGT 950
CGTGAA CCCGCTGGAG TGCGCGTCGC 1000
ATGTGG ACCACTACAA CGTTGCGCAG 1050
TACAAG GAGCTGCAGG ATATCATTGC 1100
CGAGGA AGACAAGGTT GTTGTGGACC 1150
TGTCGC AGCCGTTCCA GGTTGCGGAG 1200
TACGTG CAGCTGGTCG ACACGGTGGA 1250
GTCGTA CGACCAGATC CCGGAGA 1207

```
2) INFORMATION FOR SEQ ID NO: 533
5
       (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 1298 bases
          (A)
                TYPE: Nucleic acid
          (B)
                STRANDEDNESS: Double
          (C)
                TOPOLOGY: Linear
          (D)
10
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
              ORGANISM: Leishmania donovani subsp. donovani
          (A)
15
                STRAIN: ATCC 50212
           (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 533
    CTTCTCGGAG GGCGTGCCGC CCGTACTGAC GGCGCTGGAT GTGACGGAGG
                                                                 50
20
    ACCTTGGCCG CGATGAGCCG CTGACGCTGG AGATCGTGCA GCACTTGGAT
                                                                100
    GCGAACACCG GCCGCTGCAT TGCGATGCAG ACGACGGACC TGCTGAAGCT
                                                                150
    GAAGTCGAAG GTTGTGTCGA CCGGCGGCAA CATCTCTGTG CCGGTGGGCC
                                                                200
    GTGAGACGCT GGGCCGCATC TTCAACGTTC TGGGCGACGC GATCGACCAG
                                                                250
    CGCGGCCCG TGGGCGAGAA GATGCGCATG GCGATCCACG CCGAGGCCCC
                                                                300
25
    GAAGCTGGCG GACCAGGCCG CGGAGGACAC GATCCTGACG ACCGGCATCA
                                                                350
    AGGTGATCGA CCTCATTCTG CCCTACTGCA AGGGCGGCAA GATCGGCCTG
                                                                400
    TTCGGCGGTG CCGGTGTGGG CAAGACTGTG ATCATCATGG AGCTGATCAA
                                                                450
    CAACGTCGCG AAGGGCCACG GTGGCTTCTC CGTGTTTGCC GGCGTTGGCG
                                                                500
    AGCGCACGCG CGAGGGCACG GACCTATACC TGGAGATGAT GCAGTCGAAG
                                                                550
30
    GTGATTGACC TGAAGGGCGA GTCGAAGTGC GTGCTTGTGT ACGGGCAGAT
                                                                600
    GAACGAGCCC CCGGGTGCGC GCGCGCGCGT TGCGCAGTCT GCGCTGACGA
                                                                650
    TGGCGGAGTA CTTCCGCGAC GTGGAGGGCC AGAACGTGCT GCTGTTCATC
                                                                700
    GACAACATCT TCCGCTTCAC GCAGGCGAAC TCCGAGGTGT CTGCGCTGCT
                                                                750
    GGGCCGCATT CCGGCCGCCG TGGGCTACCA GCCGACGCTT GCCGAGGATC
    TTGGTATGCT GCAGGAGCGC ATCACATCGA CGACGAAGGG GTCGATCACG
                                                                850
    TCCGTGCAGG CCGTGTACGT GCCGGCGGAT GATATCACGG ATCCCGCGCC
                                                                900
    CGCGACGACG TTCTCGCACC TGGACGCGAC GACTGTGCTG GACCGCGCGG
                                                                950
    TGGCGGAGTC GGGCATCTAC CCTGCCGTGA ACCCGCTGGA GTGCGCGTCG
                                                               1000
    CGTATCATGG ACCCCGATGT GATCGATGTG GACCACTACA ACGTTGCGCA
                                                               1050
40
     GGATATCGTG CAGATGCTGA CCAAGTACAA GGAGCTGCAG GATATCATTG
                                                                1100
     CGGTGCTTGG CATCGACGAG CTGAGCGAGG AGGACAAGGT TGTGGTGGAC
                                                                1150
     CGCGCGCGCA AGGTGACCCG GTTCCTGTCG CAGCCGTTCC AGGTTGCGGA
                                                                1200
    GGTGTTCACG GGCATGACGG GCCACTACGT GCAGCTGGCC GACACGGTGG
                                                                1250
    AGTCGTTCTC TGGCCTGCTG ATGGGGTCGT ACGACCAGAT CCCGGAGA
45
     2) INFORMATION FOR SEQ ID NO: 534
50
        (i) SEQUENCE CHARACTERISTICS:
           (A)
                 LENGTH: 1298 bases
                 TYPE: Nucleic acid
           (B)
                 STRANDEDNESS: Double
           (C)
                 TOPOLOGY: Linear
55
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
           (A) ORGANISM: Leishmania donovani subsp. infantum
 60
```

### (B) STRAIN: MOU

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 534

5	CTTCTCGGAG	GGCGTGCCGC	CCGTACTGAC	GGCGCTGGAT	GTGACGGAGG	50
_	ACCTTGGCCG	CGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAT	100
	GCGAACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
	GAAGTCGAAG	GTTGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
	GTGAGACGCT	GGGCCGCATC	TTCAACGTTC	TGGGCGACGC	GATCGACCAG	250
10	CCCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
10	AAAGCTGGCG	GACCAGGCCG	CGGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CCTCATTCTG	CCCTACTGCA	AGGGCGGCAA	GATCGGCCTG	400
	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
	CAACGTCGCG	AAGGGCCACG	GTGGCTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
	AGCGCACGCG	CGAGGGCACG	GACCTATACC	TGGAGATGAT	GCAGTCGAAG	550
15	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGC	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCCGAGGATC	800
20	TTGGTATGCT	GCAGGAGCGC	ATCACATCGA	CGACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCGGCGGAT	GATATCACTG	ATCCCGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGCGCGG	950
		GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	TGGCGGAGTC	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
25	CGTATCATGG		CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	GGATATCGTG		CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
	CGGTGCTTGG		GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
	CGCGCGCGCA		GCCACTACGT	GCAGCTGGCC	GACACGGTGG	1250
	GGTGTTCACG		ATGGGGTCGT	ACGACCAGAT		1298
30	AGTCGTTCTC	TGGCCTGCTG	WIGGGGICGI	ACCACCACAT	00000	

### 2) INFORMATION FOR SEQ ID NO: 535

35 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1301 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D) 40
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:

45

- (A) ORGANISM: Leishmania gerbilli
- STRAIN: ATCC 50121 (B)

50	GCACTTCTCG	GAGGGCGTGC	CGCCCGTGCT	GACGGCGCTG	GATGTGACGG	50
	AGGACCTTGG	<u> </u>	CCGCTGACGC	TGGAGATCGT	GCAGCACTTG	100
•		CCGGCCGCTG	CATTGCGATG	CAGACGACGG	ACCTGCTGAA	150
		AAGGTTGTGT				200
	GCCGTGAGAC	GCTGGGCCGC	ATCTTCAACG	TTCTGGGCGA	TGCGATCGAC	250
55	CAGCGCGGCC	CCGTGGGCGA	GAAGATGCGC	ATGGCGATCC	ACGCCGAGGC	300
	CCCGAAGCTG	GCGGATCAGG	CCGCGGAGGA	CACGATCCTG	ACGACCGGCA	350
	TCAAGGTGAT	CGACCTGATT	CTGCCCTACT	GCAAGGGTGG	CAAGATCGGY	400
						450
	CAACAACGTC	GCGAAGGGCC	ACGGTGGTTT	CTCCGTGTTT	GCCGGCGTTG	500
60	GCGAGCGCAC	GCGCGAGGGC	ACGGACCTGT	ACCTGGAGAT	GATGCAGTCG	550

	AAGGTGATTG	ACCTGAAGGG	CGAGTCGAAG	TGCGTGCTTG	TGTACGGGCA	600
	GATGAACGAG	CCCCGGGTG	CGCGCGCGCG	CGTTGCGCAG	TCTGCGCTGA	650
	CGATGGCGGA	GTACTTCCGC	GACGTGGAGG	GCCAGAACGT	GCTGCTGTTC	700
	ATCGACAACA	TCTTCCGCTT	CACGCAGGCG	AACTCCGAGG	TGTCCGCGCT	750
5	GCTGGGCCGC	ATTCCGGCCG	CCGTGGGCTA	CCAGCCGACG	CTTGCGGAGG	800
J	ATCTTGGTAT	GCTGCAGGAG	CGCATCACGT	CGACAACGAA	GGGGTCGATC	850
	ACGTCCGTGC	AGGCCGTGTA	CGTGCCAGCG	GATGATATCA	CGGATCCCGC	900
	GCCCGCGACG	ACGTTCTCGC	ACCTTGACGC	GACGACTGTG	CTGGACCGCG	950
	CGGTGGCGGA	GTCGGGCATC	TACCCTGCCG	TGAACCCGCT	GGAGTGCGCG	1000
10	TCGCGTATCA	TGGACCCCGA	TGTGATCGAT	GTGGACCACT	ACAACGTTGC	1050
10	GCAGGATATC	GTGCAGATGC	TGACCAAGTA	CAAGGAGCTG	CAGGACATCA	1100
	TTGCGGTGCT	TGGCATCGAC	GAGCTGAGCG	AGGAAGACAA	GGTTGTGGTG	1150
	GACCGCGCGC	GCAAGGTGAC	CCGGTTCCTG	TCGCAGCCGT	TCCAGGTTGC	1200
	GGAGGTGTTC	ACGGGCATGA	CGGGCCACTA	CGTGCAGCTG	GTCGACACGG	1250
15	TGGAGTCGTT	CTCTGGCTTG	CTGATGGGGT	CGTACGACCA	GATCCCGGAG	1300
	A					1301

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1298 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:

25

- (A) ORGANISM: Leishmania hertigi subsp. hertigi
- (B) STRAIN: ATCC 50125
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536

	CTTCGCGGAG	GGCGTGCCGC	CGGTGCTGAC	GTCGCTGGAT	GTGACGGAGA	50
	ACCTCGGCCG	CGATGAGCCG	CTGACGCTGG-	AGATTGTGCA	GCACTTGGAC	100
	GCGAACACCG	GTCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
•	GAAGTCGAAG	GTCGTGTCGA	CCGGTGGCAA	CATCTCTGTG	CCTGTTGGCC	200
40 .	GCGAGACGCT	GGGTCGCATC	TTCAACGTGC	TTGGCGATGC	GATTGACCAG	250
10	CGCGGCCCTG	TGGGTGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCGCC	300
	GAAGCTGGCG	GATCAGGCGG	CAGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	TCTTATTCTG	CCGTACTGCA	AGGGTGGTAA	GATCGGTCTG	400
	TTCGGTGGTG	CCGGTGTAGG	CAAGACTGTG	ATTATTATGG	AGCTGATCAA	450
45	TAACGTGGCG	AAGGGCCACG	GTGGGTTTTC	CGTGTTTGCT	GGCGTGGGCG	500
	AGCGCACGCG	CGAGGGCACT	GACCTGTACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	ATCAAAGTGC	GTGCTTGTGT	ACGGACAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GTGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCCGAGTA	CTTCCGCGAT	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATT	700
50	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CTGCGCTGCT	750
	GGGTCGCATT	CCTGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TGGGCATGCT	GCAGGAGCGC	ATTACGTCGA	CGACGAAGGG	CTCGATTACG	850
	TCTGTGCAGG	CCGTGTACGT	GCCTGCGGAT	GATATCACGG	ACCCGGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGACGCGAC	GACTGTGCTG	GACCGTGCGG	950
55	TGGCAGAGTC	GGGCATTTAC	CCTGCGGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GATATCATTG	1100
	CCGTGCTTGG	TATCGACGAG	CTGAGCGAGG	AGGACAAGGT	TGTGGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
60	GGTGTTCACT	GGCATGACGG	GTCACTACGT	TCAGCTGGAG	GACACGGTGG	1250

### AGTCGTTCTC TGGCCTACTG ATGGGGTCAT ACGACCAGAT CCCGGAGA 1298

- 5 2) INFORMATION FOR SEQ ID NO: 537
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1297 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 15 (vi) ORIGINAL SOURCE:

10

20

- (A) ORGANISM: Leishmania major
- (B) STRAIN: ATCC 50122
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537

	CTTCTCGGAG	GGCGTGCCGC	CCGTGCTGAC	GGCGCTGGAT	GTGACGGAGG	50
	ACCTTGGCCG	TGATGAGCCG	CTGACGCTGG	AGATCGTGCA	GCACTTGGAC	100
	GCGAACACCG	GCCGCTGCAT	TGCGATGCAG	ACGACGGACC	TGCTGAAGCT	150
	GAAGTCGAAG	GTTGTGTCGA	CCGGCGGCAA	CATCTCTGTG	CCGGTGGGCC	200
25	GTGAGACGCT	GGGCCGCATC	TTCAACGTTC	TGGGCGATGC	GATCGACCAG	250
23	CGCGGCCCCG	TGGGCGAGAA	GATGCGCATG	GCGATCCACG	CCGAGGCCCC	300
	GAAGCTGGCG	GATCAGGCCG	CAGAGGACAC	GATCCTGACG	ACCGGCATCA	350
	AGGTGATCGA	CTTGATCCTG	CCCTACTGCA	AGGGTGGCAA	GATCGGCCTG	400
	TTCGGCGGTG	CCGGTGTGGG	CAAGACTGTG	ATCATCATGG	AGCTGATCAA	450
30	CAATGTCGCG	AAGGGCCACG	GTGGTTTCTC	CGTGTTTGCC	GGCGTTGGCG	500
30	AGCGCACGCG	CGAGGGCACG	GACCTGTACC	TGGAGATGAT	GCAGTCGAAG	550
	GTGATTGACC	TGAAGGGCGA	GTCGAAGTGC	GTGCTTGTGT	ACGGGCAGAT	600
	GAACGAGCCC	CCGGGTGCGC	GCGCGCGCGT	TGCGCAGTCT	GCGCTGACGA	650
	TGGCGGAGTA	CTTCCGCGAC	GTGGAGGGCC	AGAACGTGCT	GCTGTTCATC	700
35	GACAACATCT	TCCGCTTCAC	GCAGGCGAAC	TCCGAGGTGT	CCGCGCTGCT	750
	GGGCCGCATT	CCGGCCGCCG	TGGGCTACCA	GCCGACGCTT	GCGGAGGATC	800
	TTGGTATGCT	GCAGGAGCGC	ATCACGTCGA	CAACGAAGGG	GTCGATCACG	850
	TCCGTGCAGG	CCGTGTACGT	GCCAGCGGAT	GATATCACGG	ATCCCGCGCC	900
	CGCGACGACG	TTCTCGCACC	TGGATGCGAC	GACTGTGCTG	GACCGCGCGG	950
40	TGGCGGAGTC	GGGCATCTAC	CCTGCCGTGA	ACCCGCTGGA	GTGCGCGTCG	1000
	CGTATCATGG	ACCCCGATGT	GATCGATGTG	GACCACTACA	ACGTTGCGCA	1050
	GGATATCGTG	CAGATGCTGA	CCAAGTACAA	GGAGCTGCAG	GACATCATTG	1100
	CGGTGCTTGG	CATCGACGAG	CTGAGCGAGG	AAGACAAGGT	TGTGGTGGAC	1150
	CGCGCGCGCA	AGGTGACCCG	GTTCCTGTCG	CAGCCGTTCC	AGGTTGCGGA	1200
45	GGTGTTCACG	GGCATGACGG	GCCACTACGT	GCAGCTGGTC	GACACGGTGG	1250
	AGTCGTTCTC	TGGCCTGCTG	ATGGGGTCGT	ACGACCAGAT	CCCGGAG	1297

- 50 2) INFORMATION FOR SEQ ID NO: 538
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1297 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

```
(A) ORGANISM: Leishmania amazonensis
```

(B) STRAIN: ATCC 50131

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538

5						
_	TTCTCGGAGG	GCGTGCCGCC	CGTGCTGACG	GCGCTGGATG	TGACGGAGGA	50
	CCTTGGCCGC	GATGAGCCGC	TGACGCTGGA	GATCGTGCAG	CACCTGGACG	100
	CGAACACCGG	CCGCTGCATT	GCGATGCAGA	CGACGGACCT	GTTGAAGCTG	150
	AAGTCGAAGG	TTGTGTCGAC	CGGCGGCAAC	ATCTCTGTGC	CGGTGGGCCG	200
10	TGAGACGCTG	GGCCGCATCT	TCAACGTGCT	GGGCGACGCG	ATCGACCAGC	250
	GCGGCCCCGT	GGGTGAGAAG	ATGCGCATGG	CGATCCACGC	CGAGGCCCCG	300
	AAGCTGGCGG	ATCAGGCCGC	GGAGGACACG	ATCCTGACGA	CCGGCATCAA	350
	GGTGATCGAC	CTGATTCTGC	CCTACTGCAA	GGGTGGCAAG	ATCGGCCTGT	400
	TTGGTGGCGC	CGGTGTGGGC	AAGACCGTGA	TCATCATGGA	GTTGATTAAC	450
15	AACGTCGCGA	AGGGCCACGG	TGGTTTCTCG	GTGTTTGCCG	GCGTTGGCGA	500
	GCGCACGCGC	GAGGGCACGG	ACCTGTACCT	GGAGATGATG	CAGTCGAAGG	550
	TGATTGACCT	GAAGGGCGAG	TCGAAGTGCG	TGCTTGTGTA	CGGGCAGATG	600
	AACGAGCCCC	CGGGTGCGCG	CGCGCGCGTT	GCGCAGTCTG	CGCTGACGAT	650
	GGCGGAGTAC	TTCCGAGACG	TGGAGGCCA	GAATGTGCTG	CTGTTCATCG	700
20	ACAACATCTT	CCGCTTCACG	CAGGCGAACT	CCGAGGTGTC	TGCGCTGCTG	750
	GGCCGCATTC	CGGCCGCCGT	GGGCTACCAG	CCGACGCTTG	CGGAGGATCT	800
	TGGTATGCTG	CAGGAGCGCA	TCACGTCGAC	GACGAAGGGG	TCGATCACGT	850
	CCGTGCAGGC	CGTGTACGTG	CCTGCGGATG	ATATCACGGA	TCCGGCGCCC	900
	GCGACGACGT	TCTCGCACCT	GGACGCGACG	ACTGTGCTGG	ACCGCGCGGT	950
25	GGCGGAGTCG	GGGATCTACC	CTGCCGTGAA	CCCGCTGGAG	TGCGCGTCGC	1000
	GTATCATGGA	CCCCGATGTG	ATCGACGTGG	ACCACTACAA	CGTTGCGCAG	1050
	GATATCGTGC	AGATGCTGAC	CAAGTACAAG	GAGCTGCAGG	ATATCATTGC	1100
	GGTGCTTGGT	ATCGACGAGC	TGAGCGAGGA	GGACAAGGTC	GTGGTGGACC	1150
	GCGCGCGCAA	GGTGACCCGG	TTCCTGTCGC	AGCCGTTCCA	GGTTGCGGAG	1200
30	GTGTTCACGG	GCATGACGGG	CCACTACGTG	CAGCTGGCCG	ACACGGTGGA	1250
	GTCGTTCTCT	GGGCTGCTGA	TGGGGTCGTA	CGACCAGATC	CCGGAGA	1297

### 35 2) INFORMATION FOR SEQ ID NO: 539

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 27 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Single
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539

CCITACATCC TBGTYGCICT IAACAAG

27

2) INFORMATION FOR SEQ ID NO: 540

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 23 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Single
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA

60

55

50

### CA 02283458 1999-09-28

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 540	
	GGDGCITCYT CRTCGWAITC CTG	23
5		
	2) INFORMATION FOR SEQ ID NO: 541	
10	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 541	
20	GTKGAAATGT TCCGCAAGCT GCT	23
	2) INFORMATION FOR SEQ ID NO: 542	
25	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 542	
35	CGGAARTAGA ACTGSGGACG GTAG	24
40	2) INFORMATION FOR SEQ ID NO: 543  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single	
45	(C) STRANDEDNESS: SINGLE (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 543	
30	ATCTTAGTAG TTTCTGCTGC TGA	23
. 55	2) INFORMATION FOR SEQ ID NO: 544	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid	
60	(C) STRANDEDNESS: Single	

	(:	D) TOPOLOGY: Linear	
	(ii) M	OLECULE TYPE: DNA	
5	(xi) S	EQUENCE DESCRIPTION: SEQ ID NO: 544	
	AYGTTGTC	GC CMGGCATTMC CAT	23
		•	
10		ATION FOR SEQ ID NO: 545	
15	(	EQUENCE CHARACTERISTICS:  A) LENGTH: 26 bases  B) TYPE: Nucleic acid  C) STRANDEDNESS: Single  D) TOPOLOGY: Linear	
	(ii) M	OLECULE TYPE: DNA	
20	(xi) S	EQUENCE DESCRIPTION: SEQ ID NO: 545	
	TACATCCI	BG TYGCICTIAA CAAGTG	26
25			
	2) INFORM	ATION FOR SEQ ID NO: 546	
30	(	EQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
35	(ii) M	OLECULE TYPE: DNA	
	(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 546	
40	CCRCGICG	CGG TRATGGTGAA GAT	23
	2) INFORM	MATION FOR SEQ ID NO: 547	
45	(i) S	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
50		MOLECULE TYPE: DNA	
		SEQUENCE DESCRIPTION: SEQ ID NO: 547	
55		rgc ttcaggacgt atc	23
60	2) INFOR	MATION FOR SEQ ID NO: 548	

5	(1)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 548	
10	ACGTTC	CGATT TCATCACGTT G	21
15	2) INFO	RMATION FOR SEQ ID NO: 549	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 549	
30	GAACGT	GATA CTGACAAACC TTTA	24
35	·	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
45	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 550	•
50	GAAGAAC	GAAC ACCAACGTTG	20
	2) INFOR	RMATION FOR SEQ ID NO: 551	
55 60	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	

	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Neisseria gonorrhoeae	
5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 551	
	GAAGAA	AAAA TCTTCGAACT GGCTA	25
10			
	2) INFO	RMATION FOR SEQ ID NO: 552	
15	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
20	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Neisseria gonorrhoeae	
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 552	
	TACACG	GCCG GTGACTACG	19
30	-2) <b>IN</b> FO	RMATION FOR SEQ ID NO: 553	
35	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
40	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 553	
	GGCCGT	GTTG AACGTGGTCA AATCA	25
45			
	2) INFO	RMATION FOR SEQ ID NO: 554	
50	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
55	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Chlamydia trachomatis	
60	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 554 469	

	GTTCCT	TACA	TCGTTGTTTT TCTC				24
5							
	2) INFO	RMATI	ON FOR SEQ ID NO: 555				
10	(i)	(A) (B) (C)	ENCE CHARACTERISTICS: LENGTH: 24 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear				
15	(ii)	MOLE	CULE TYPE: DNA				
	(vi)	ORIG (A)	INAL SOURCE: ORGANISM: Chlamydia tr	rachoma	tis		
20	(xi)	SEQU	ENCE DESCRIPTION: SEQ I	D NO:	555		
	TCTCGAA	ACTT	TCTCTATGTA TGCA				24
25	2) INFO	RMATI	ON FOR SEQ ID NO: 556	. !			
30	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 21 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear				
a ==	(ii)	MOLE	CULE TYPE: DNA				
35	(xi)	SEQU	ENCE DESCRIPTION: SEQ I	D NO:	556		
	CGGCGCN	IATC	YTSGTTGTTG C				21
40							
	2) INFOR	ITAMS	ON FOR SEQ ID NO: 557				
45	**	(A)	ENCE CHARACTERISTICS: LENGTH: 22 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear			·	
50	(ii)	MOLE	ULE TYPE: DNA	,			
	(xi)	SEQUI	ENCE DESCRIPTION: SEQ I	D NO:	557		
55	CCMAGGC	ATR	ACCATCTCGG TG				22
	2) INFOR	MATIO	N FOR SEQ ID NO: 558				
60	(i)	SEOU	NCE CHARACTERISTICS.				

		(A) (B) (C) (D)	LENGTH: 20 bas TYPE: Nucleic STRANDEDNESS: TOPOLOGY: Line	acid Single			
5	(ii)	MOLE	CULE TYPE: DNA				
	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID NO:	558	
10	TCITTY.	AART	AYGCITGGGT				20
	2) INFO	RMATI	ON FOR SEQ ID	NO: 559			
15	(i)	(A) (B)	ENCE CHARACTER: LENGTH: 23 bas TYPE: Nucleic STRANDEDNESS:	ses acid			
20		(D)	TOPOLOGY: Line				
	(ii)	MOLE	CULE TYPE: DNA				
25	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID NO:	559	
	CCGACR	GCRA	YIGTYTGICK CA	AT			23
30	2) INFO	RMATI	ON FOR SEQ ID	NO: 560			
35	(i)	(A) (B) (C)	ENCE CHARACTER LENGTH: 23 bas TYPE: Nucleic STRANDEDNESS: TOPOLOGY: Line	ses acid Single			
	(ii)	MOLE	CULE TYPE: DNA				
40	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID NO:	560	
	GAYTTC	ATYA	ARAAYATGAT YA	AC .			23
45	2) INFO	RMATI	ON FOR SEQ ID	NO: 561			
50	(i)	(A) (B) (C)	ENCE CHARACTER LENGTH: 23 bad TYPE: Nucleic STRANDEDNESS: TOPOLOGY: Lind	ses acid Single			
55	(ii)	MOLE	CULE TYPE: DNA				
23	(xi)	SEQU	ENCE DESCRIPTION	ON: SEQ	ID NO:	561	
	ACIGTI	CGGC	CRCCCTCACG GA	ΑT			.23
60							

	2) INFO	RMATION FOR SEQ ID NO: 562	
5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
10	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 562	
15	CARATG	RAYG ARCCICCIGG IGYIMGIATG	30
	2) INFO	RMATION FOR SEQ ID NO: 563	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
25	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 563	
30	GGYTGR	TAIC CIACIGCIGA IGGCAT	26
35	2) INFO (i)	(A) LENGTH: 29 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
40	(ii)	(D) TOPOLOGY: Linear  MOLECULE TYPE: DNA	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 564  CARA TGAAYGARCC ICCIGGIAA	29
50	2) INFO	RMATION FOR SEQ ID NO: 565	
55	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
60	(vi)	SECUTENCE DESCRIPTION, SEC ID NO. 565	

	GGYTGR'	TAIC	CIACIGCIGA	IGGDAT				26
5	2) INFO	RMATI	ON FOR SEQ I	D NO: 566				
10	(i)	(A) (B) (C)	ENCE CHARACT LENGTH: 26 TYPE: Nucle STRANDEDNES TOPOLOGY: L	bases ic acid S: Single				
	(ii)	MOLE	CULE TYPE: D	ANO				
15	(xi)	SEQU	ENCE DESCRIF	TION: SEQ	ID NO:	566		
	TTYGGI	GGIG	CIGGIGTIGG	IAARAC				26
20								
	2) INFO	RMATI	ON FOR SEQ I	D NO: 567				
25	(i)	(A) (B) (C)	ENCE CHARACT LENGTH: 26 TYPE: Nucle STRANDEDNES TOPOLOGY: L	bases ic acid S: Single				
30	(ii)	MOLE	CULE TYPE: I	NA				
	(xi)	SEQU	ENCE DESCRIE	TION: SEQ	ID NO:	567	•	
35	TCRTCI	GCIG	GIACRTAIAY	IGCYTG				26
	2) INFO	RMATI	ON FOR SEQ 1	D NO: 568				
40	(i)	(A) (B) (C)	ENCE CHARACT LENGTH: 23 TYPE: Nucle STRANDEDNES TOPOLOGY: I	bases eic acid SS: Single				
45	. (ii)	MOLE	CULE TYPE: I	ANC				
	(xi)	SEQU	ENCE DESCRIE	PTION: SEQ	ID NO:	568		
50	RTIATI	GGIG	CIGTIRTIGA	YGT				23
		÷						
55	2) INFO	RMATI	ON FOR SEQ	ID NO: 569				
22	(i)	(A) (B)	ENCE CHARACT LENGTH: 23 TYPE: Nucle	bases ic acid				
60			STRANDEDNES TOPOLOGY: I					

	(ii)	MOLECULE TYPE: DNA	
_	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 569	
5	RTIRTI	GGIS CIGTIRTIGA TAT	23
10	2) INFO	RMATION FOR SEQ ID NO: 570	
15	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 570	
	RTIRYI	GGIC CIGTIRTIGA YGT	23
25	2) INFO	RMATION FOR SEQ ID NO: 571	
30	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
2.5	(ii)	MOLECULE TYPE: DNA	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 571	
	RTIRTI	GGIC CIGTIRTIGA TGT	23
40			
	2) INFO	DRMATION FOR SEQ ID NO: 572	
45	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
50	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 572	
55	RTIRTI	GGIS CIGTIRTIGA	20
	2) INFO	DRMATION FOR SEQ ID NO: 573	
60	(i)	SEQUENCE CHARACTERISTICS:	

		(B) (C)	LENGTH: 20 bases TYPE: Nucleic aci STRANDEDNESS: Sin TOPOLOGY: Linear				
5	(ii)	MOLEC	CULE TYPE: DNA				
	(xi)	SEQUE	ENCE DESCRIPTION:	SEQ :	ID NO:	573	
10	CCICCI.	ACCA	TRTARAAIGC				20
	2) INFO	RMATIO	ON FOR SEQ ID NO:	574			
15	(i)	(A) (B) (C)		ld .			
20	/++\		CULE TYPE: DNA				
			ENCE DESCRIPTION:	SEO	ID NO:	574	
25			AYGGIACIGA RGG				23
30	2) INFO	RMATI	ON FOR SEQ ID NO:	575			
35	. (i)	(A) (B)	ENCE CHARACTERIST: LENGTH: 25 bases TYPE: Nucleic act STRANDEDNESS: Sir TOPOLOGY: Linear	id			
	(ii)	MOLE	CULE TYPE: DNA				
40	(xi)	SEQUI	ENCE DESCRIPTION:	SEQ	ID NO:	575	
	TIACCA	TTTC	AGTACCTTCT GGTA	A.			25
45	2) INFO	RMATI	ON FOR SEQ ID NO:	576			
50	(i)	(A) (B)	ENCE CHARACTERIST: LENGTH: 26 bases TYPE: Nucleic ac: STRANDEDNESS: Sin TOPOLOGY: Linear	id			
55	(ii)	MOLE	CULE TYPE: DNA				
,,	(xi)	SEQUI	ENCE DESCRIPTION:	SEQ	ID NO:	576	
	AACTTC	RTCA	AGAAGGTYGG TTACA	<b>LA</b>			26
60							

	2) INFO	RMATION FOR SEQ ID NO: 577	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
10	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Candida albicans	
15	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 577	
	CATGAT	TGAA CCATCCACCA	20
20	2) INFO	RMATION FOR SEQ ID NO: 578	
25	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
30	(ii)	MOLECULE TYPE: DNA	
30	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Candida dubliniensis	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 578	
	CATGAT	TGAA GCTTCCACCA	20
40	2) INFO	RMATION FOR SEQ ID NO: 579	
45	( <b>i</b> )	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
50	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 579	
55	GAAGGC	CGTG CTGGTGAGAA	20
60	2) INFO	RMATION FOR SEQ ID NO: 580	

5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 580	
15	GCTAAA	CCAG CTACAATCAC TCCAC	25
	2) INFO	RMATION FOR SEQ ID NO: 581	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
25	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Haemophilus influenzae	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 581	
	ACATCG	GTGC ATTATTACGT GG	22
35			
	2) INFO	RMATION FOR SEQ ID NO: 582	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 28 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
45	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 582	
	TTTCAA	CTTC GTCGTTGACA CGAACAGT	28
55	2) INFO	RMATION FOR SEQ ID NO: 583	
	•	SEQUENCE CHARACTERISTICS:	
60	\- <i>\</i>	(A) LENGTH: 35 bases (B) TYPE: Nucleic acid	

### CA 02283458 1999-09-28

		(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
_	(ii)	MOLECULE TYPE: DNA	
5	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 583	
10	CAACTG	CTTT TTGGATATCT TCTTTAATAC CAACG	. 35
15	2) INFO	RMATION FOR SEQ ID NO: 584	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 584	
30	ACATGA	CACA TCTAAAACAA	20
35	2) INFO	RMATION FOR SEQ ID NO: 585	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
45	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 585	
50	ACCACAT	FACT GAATTCAAAG	20
	2) INFOR	RMATION FOR SEQ ID NO: 586	
55 50	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	

	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus	
5	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 586	
	CAGAAG	TATA CGTATTATCA	20
10		•	
	2) INFO	RMATION FOR SEQ ID NO: 587	
15	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
20	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus	
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 587	
	CGTATT.	ATCA AAAGACGAAG	20
30			
<b>J</b> 0	2) INFO	RMATION FOR SEQ ID NO: 588	
35	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
40	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 588	
	TCTTCT	CAAA CTATCGTCCA	20
50	2) INFO	RMATION FOR SEQ ID NO: 589	
55	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
60	(vi)	ORIGINAL SOURCE:	

		(A) ORGANISM: Staphylococccus epidermidis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 589	
5	GCACGA	AAACT TCTAAAACAA	20
10	2) INFO	ORMATION FOR SEQ ID NO: 590	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases	
		(B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
15		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
20	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 590	
		GTATT ATCTAAAGAT	20
25	INIACO		20
	2) INFO	DRMATION FOR SEQ ID NO: 591	
30	·	SEQUENCE CHARACTERISTICS:	
	,_,	(A) LENGTH: 20 bases (B) TYPE: Nucleic acid	
		(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
35	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE:	
40		(A) ORGANISM: Staphylococcus epidermidis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 591	
	TCCTGG	STTCT ATTACACCAC	20
45			
		ORMATION FOR SEQ ID NO: 592	
50	(i)	(A) LENGTH: 20 bases	
		(B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
	(22)	(D) TOPOLOGY: Linear	
55		MOLECULE TYPE: DNA	
	( \( <b>1</b> \)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
60	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 592	
		480	

	CAAAGCTG	GAA GTATACGTAT	20
5	2) INFORM	MATION FOR SEQ ID NO: 593	
10	(	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii) M	MOLECULE TYPE: DNA	
15		ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermidis	
	(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 593	
20	TTCACTAA	ACT ATCGCCCACA	20
25	2) INFORM	MATION FOR SEQ ID NO: 594	
30	(	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii) M	MOLECULE TYPE: DNA	
35		ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus haemolyticus	
	(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 594	
40	ATTGGTAT	TCC ATGACACTTC	20
45	2) INFORM	MATION FOR SEQ ID NO: 595	
		SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
50	(	(D) TOPOLOGY: Linear	
	(ii) M	MOLECULE TYPE: DNA	
<b>5</b> 5		ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus haemolyticus	
	(xi) S	SEQUENCE DESCRIPTION: SEQ ID NO: 595	•
60	TTAAAGCA	AGA CGTATACGTT	20

	2) INFORM	ATION FOR SEQ ID NO: 596	
5	( <i>I</i> (E	EQUENCE CHARACTERISTICS: A) LENGTH: 20 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Single D) TOPOLOGY: Linear	
10	(ii) MC	DLECULE TYPE: DNA	
15	• •	RIGINAL SOURCE: A) ORGANISM: Staphylococcus hominis	
13	(xi) SE	EQUENCE DESCRIPTION: SEQ ID NO: 596	
	GAAATTATT	TG GTATCAAAGA	20
20			
	2) INFORMA	ATION FOR SEQ ID NO: 597	
25	( <i>P</i>	EQUENCE CHARACTERISTICS: A) LENGTH: 20 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Single D) TOPOLOGY: Linear	
30	(ii) MC	DLECULE TYPE: DNA	
		RIGINAL SOURCE: A) ORGANISM: Staphylococcus hominis	
35	(xi) SE	EQUENCE DESCRIPTION: SEQ ID NO: 597	,
	ATTGGTATO	CA AAGAAACTIC	20
40	2) INFORMA	ATION FOR SEQ ID NO: 598	
45	(A (B (C		
50	(ii) MO	DLECULE TYPE: DNA	
50		IGINAL SOURCE:  ORGANISM: Staphylococcus hominis	
55	(xi) SE	QUENCE DESCRIPTION: SEQ ID NO: 598	
<i></i>	AATTACACC	T CACACAAAAT	20
60	2) INFORMA	TION FOR SEQ ID NO: 599	

5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 599	
15	CGGTGA	AGAA ATCGAAATCA	20
20	2) INFO	RMATION FOR SEQ ID NO: 600	
25	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
30	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 600	
35	ATGCAA	AGAAG AATCAAGCAA	20
	2) INFO	DRMATION FOR SEQ ID NO: 601	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
45	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 601	
	GTTTC	ACGTG ATGATGTACA	20
55			
	2) INFO	DRMATION FOR SEQ ID NO: 602	
60	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases	

		(B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
5	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecium	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 602	
	AAGTTG.	AAGT TGTTGGTATT	20
15	2) INFO	RMATION FOR SEQ ID NO: 603	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 603	
30	GGTATT	AAAG ACGAAACATC	20
35	2) INFO	RMATION FOR SEQ ID NO: 604	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
45	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Enterococcus gallinarum	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 604	
50	GGTGAT	GAAG TAGAAATCGT	20
	2)INFO	RMATION FOR SEQ ID NO:605	
55	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single	
60		(D) TOPOLOGY: Linear	

	(ii) MOLECULE TYPE: DNA	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605	
5	GAAATGTTCC GTAAATTATT	20
	, , , , , , , , , , , , , , , , , , ,	
10	2) INFORMATION FOR SEQ ID NO:606	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606	
	ATTAGACTAC GCTGAAGCTG	20
25	2) INFORMATION FOR SEQ ID NO: 607	
	(i) SEQUENCE CHARACTERISTICS:	
30	<ul> <li>(A) LENGTH: 821 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
35	(ii) MOLECULE TYPE: Genomic DNA	
,,	<pre>(vi) ORIGINAL SOURCE:   (A) ORGANISM: Enterococcus faecalis</pre>	
	(A) ORGANISM: Enterococcus faecalis (B) STRAIN: ATCC 29212	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607	
	CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGTCCTATG CCTCAAACAC 50 GTGAACATAT CTTATTATCA CGTAACGTTG GTGTACCATA CATCGTTGTA 100 TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAT TAGAATTAGT 150	
45	AGAAATGGAA GTTCGTGACT TATTATCAGA ATACGATTTC CCAGGCGATG 200 ATGTTCCAGT TATCGCAGGT TCTGCTTTGA AAGCTTTAGA AGGCGACGAG 250	
	TCTTATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT 300 CCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG 350	
	ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTACAGG ACGTGTTGAA 400	
50	CGTGGTGAAG TTCGCGTTGG TGACGAAGTT GAAATCGTTG GTATTAAAGA 450 CGAAACATCT AAAACAACTG TTACAGGTGT TGAAATGTTC CGTAAATTAT 500	
	TAGACTACGC TGAAGCAGGC GACAACTTCG GTGCTTTATT ACGTGGTGTA 550	
	GCACGTGAAG ATATCGAACG TGGACAAGTA TTAGCTAAAC CAGCTACAAT 600 CACTCCACAC ACAAAATTCA AAGCTGAAGT ATACGTATTA TCAAAAGAAG 650	
55	AAGGCGGACG TCACACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC 700	
	TTCCGTACAA CAGACGTTAC TGGTGTTGTA GAATTGCCAG AAGGTACTGA 750 AATGGTAATG CCTGGTGATA ACGTTGCTAT GGACGTTGAA TTAATTCACC 800	
	CAATCGCTAT CGAAGACGGA A 821	

	2) INFORMATION FOR SEQ ID NO: 608	
5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 751 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
10	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE:   (A) ORGANISM: Enterococcus faecium   (B) STRAIN: ATCC 19434</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608	
20	CGGAGCTATC TTGGTAGTTT CTGCTGCTGA CGGCCCAATG CCTCAAACTC GTGAACACAT CCTATTGTCT CGTCAAGTTG GTGTTCCTTA CATCGTTGTA TTCTTGAACA AAGTAGACAT GGTTGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTAACAGA ATACRAATTC CCTGGTGRCG ATGTTCCTGT AGTTGCTGGA TCAGCTTTGA AAGCTCTAGA AGGCGACGCT	50 100 150 200 250
25	TCATACGAAG AAAAAATTCT TGAATTAATG GCTGCAGTTG ACGAATACAT CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ACGTGTTCTC AATTACTGGA CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAGTTGTTG GTATTGCTGA AGAAACTTCA AAAACAACAG TTACTGGTGT TGAAATGTTC CGTAAATTGT	300 350 400 450 500
30	TAGACYACGC TGAAGCTGGA GACRACATTG GTGCTTTACT ACGTGGTGTT GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT CACACCTCRT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACAAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGAACTGA A	550 600 650 700 750 751
35		
	2) INFORMATION FOR SEQ ID NO: 609	
40	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 751 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus gallinarum     (B) STRAIN: ATCC 49573</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609	
55	CGGTGCGATC TTAGTAGTAT CTGCTGCTGA CGGTCCTATG CCTCAAACTC GTGAACACAT CTTGTTATCA CGTAACGTTG GCGWACCATA CATCGTTGTT TTCTTGAACA AAATGGATAT GGTTGAYGAC GAAGAATTGC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTGTCTGA ATATGACTTC CCAGGCGACG ATGTTCCTGT AATCGCCGGT TCTGCTTTGA AAGCTCTTGA AGGAGATCCT TCATACGAAG AAAAAATCAT GGAATTGATG GCTGCAGTTG ACGAATACGT	50 100 150 200 250 300
60	TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG	350 400

5	CGTGGACAAG TTCGCGTTGG TGATGAAGTA GAAATCGTTG GTATTGCTGA CGAAACTGCT AAAACAACTG TAACAGGTGT TGAAATGTTC CGTAAATTGT TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT ACGTGGGGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACRAT CACACCTCAT ACAAAATTCA AAGCTGAAGT TTATGTTTTG ACAAAAGAAG AAGGTGGRCG TCACACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTT GAATTACCAG AAGGAACTGA A	450 500 550 600 650 700 750
10		
	2) INFORMATION FOR SEQ ID NO: 610	
15	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 891 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Haemophilus influenzae    (B) STRAIN: Rd    (C) ACCESSION NUMBER: extracted from U32848</pre>	
23		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 610	
30	AATATGATTA CTGGTGCGGC ACAAATGGAT GGTGCTATTT TAGTAGTAGC AGCAACAGAT GGTCCTATGC CACAAACTCG TGAACACATC TTATTAGGTC GCCAAGTAGG TGTTCCATAC ATCATCGTAT TCTTAAACAA ATGCGACATG GTAGATGACG AAGAGTTATT AGAATTAGTC GAAATGGAAG TTCGTGAACT TCTATCTCAA TATGACTTCC CAGGTGACGA TACACCAATC GTACGTGGTT CAGCATTACA AGCGTTAAAC GGCGTAGCAG AATGGGAAGA AAAAATCCTT	50 100 150 200 250 300
35	GAGTTAGCAA ACCACTTAGA TACTTACATC CCAGAACCAG AACGTGCGAT TGACCAACCG TTCCTTCTC CAATCGAAGA TGTGTTCTCA ATCTCAGGTC GTGGTACTGT AGTAACAGGT CGTGTAGAAC GAGGTATTAT CCGTACAGGT GATGAAGTAG AAATCGTCGG TATCAAAGAT ACAGCGAAAA CTACTGTAAC GGGTGTTGAA ATGTTCCGTA AATTACTTGA CGAAGGTCGT GCAGGTGAAA	350 400 450 500 550
40	ACATCGGTGC ATTATTACGT GGTACCAAAC GTGAAGAAAT CGAACGTGGT CAAGTATTAG CGAAACCAGG TTCAATCACA CCACACACTG ACTTCGAATC AGAAGTGTAC GTATTATCAA AAGATGAAGG TGGTCGTCAT ACTCCATTCT TCAAAGGTTA CCGTCCACAA TTCTATTTCC GTACAACAGA CGTGACTGGT	600 650 700 750
45	ACAATCGAAT TACCAGAAGG CGTGGAAATG GTAATGCCAG GCGATAACAT CAAGATGACA GTAAGCTTAA TCCACCCAAT TGCGATGGAT CAAGGTTTAC GTTTCGCAAT CCGTGAAGGT GGCCGTACAG TAGGTGCAGG C	800 850 891
50	2) INFORMATION FOR SEQ ID NO: 611	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 818 bases</li><li>(B) TYPE: Nucleic acid</li></ul>	
55	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- ORGANISM: Staphylococcus epidermidis (A)
- (B) STRAIN: ATCC 14990
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611

J						
	CGGCGGTATC	TTAGTTGTAT	CTGCTGCTGA	CGGTCCAATG	CCACAAACTC	50
	GTGAACACAT	CTTATTATCA	CGTAACGTTG	GTGTACCAGC	ATTAGTTGTA	100
	TTCTTAAACA	AAGTTGACAT	GGTAGACGAC	GAAGAATTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGACT	TATTAAGCGA	ATATGACTTC	CCAGGTGACG	200
10	ATGTACCTGT	AATCGCTGGT	TCTGCATTAA	AAGCATTAGA	AGGCGATGCT	250
	GAATACGAAC	AAAAAATCTT	AGACTTAATG	CAAGCAGTTG	ATGATTACAT	300
	TCCAACTCCA	GAACGTGATT	CTGACAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGTCAAA	TCAAAGTTGG	TGAAGAAGTT	GAAATCATCG	GTATGCACGA	450
15	AACTTCTAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAATTATTAG	500
	ACTACGCTGA	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	TGGTGTTGCA	550
	CGTGAAGACG	TACAACGTGG	TCAAGTATTA	GCTGCTCCTG	GTTCTATTAC	600
	ACCACACACA	AAATTCAAAG	CTGAAGTATA	CGTATTATCT	AAAGATGAAG	650
	GTGGACGTCA	CACTCCATTC	TTCACTAACT	ATCGCCCACA	ATTCTATTTC	700
20	CGTACTACTG	ACGTAACTGG	TGTTGTAAAC	TTACCAGAAG	GTACAGAAAT	750
	GGTTATGCCT	GGCGACAACG	TTGAAATGAC	AGTTGAATTA	ATCGCTCCAA	800
	TCGCTATCGA	AGACGGAA				818

30

- 2) INFORMATION FOR SEQ ID NO: 612
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 825 bases

    - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 35 (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype parathyphi A
  - (B) STRAIN: ATCC 9150
- 40
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612

	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACCCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
45	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	150
	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG	TACGACTTCC	CGGGCGACGA	200
	CACGCCGATC	GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGACGCAG	250
	AGTGGGAAGC	GAAAATCATC	GAACTGGCTG	GCTTCCTGGA	TTCTTACATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	350
50	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAAC	400
	GCGGTATCAT	CAAAGTGGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	450
	ACTCAGAAGT	CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCCGGTGAGA	ACGTAGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CACCATCAAG	600
55	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGATGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
	GTACTACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
	GTAATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCGAT	800
	CGCAATGGAC	GACGGTCTGC	GTTTC			825
60						7.0

	2) INFORMATION FOR SEQ ID NO: 613	
5 10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 778 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
10	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Serratia ficaria</pre>	
15	(B) STRAIN: ATCC 33105	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613	
20	GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCAATGC CTCAGACCCG TGAGCACATC CTGCTGGGTC GYCAGGTTGG CGTTCCTTTC ATCATCGTRT TCATGAACAA ATGCGACATG GTTGATGATG AAGAGCTGCT GGAACTGGTA GAAATGGAAG TTCGCGAACT GCTGTCCGCT TACGACTTCC CTGGCGATGA CCTGCCGGTG ATTCGCGGTT CCGCGCTGAA AGCGCTGGAA GGCGAAGCCG	50 100 150 200 250
25	AGTGGGAAGC TAAAATCATC GAGCTGGCTG AMCMSCTGGA TACTTACATC CCAGAACCAG AGCGCGCTAT CGACAAGCCG TTCCTGCTGC CAATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT GGTTACCGGT CGTGTTGAGC GCGGTATCAT CAAAGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGTCAAGT CTACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA	300 350 400 450 500
30	CGAAGGCCGT GCCGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAGC GTGAAGACAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCCATCAAG CCGCACACCC AGTTCGATTC AGAAGTGTAC ATCCTGAGCA AAGAAGAAGG TGGTCGTCAC ACKCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACTACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTTGAGATG GTAATGCCTG GCGACAACGT GAACATGA	550 600 650 700 750 778
35	GIANICE CONGRECOT GRANICATION	,,,
	2) INFORMATION FOR SEQ ID NO: 614	
40	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 653 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi) ORIGINAL SOURCE:   (A) ORGANISM: Enterococcus malodoratus   (B) STRAIN: ATCC 43197</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614	
		_
55	GTGCGATCTT AGTAGTATCA GCTACTGATG GTCCAATGCC TCAAACTCGT GAACACATTT TGTTATCACG TCAAGTTGGT GTTAAGCACT TGATCGTTTT CTTGAACAAA GTAGATTTAG TTGATGACGA AGAATTGATC GACTTAGTTG AAATGGAAGT ACGTGAATTA CTTTCTGAAT ATGGTTTCCC AGGTGATGAT ATTCCAGTGC TTAAAGGTTC TGCTTTGAAA GCATTAGAAG GCGATCCAGA	50 100 150 200
60	ACAGACAA GTTATTCTTG ATTTGATGA TACCGTTGAT GAATATATCC	250 300

5	GTTTTCTCGA TCACAGGACG TGGTACTGTA GCTTCTGGTC GTATCGACCG TGGCGAAGTT AAAGTCGGCG ATGAAATTGA AATCATCGGG ATCAAACCTG AAGTTCAAAA AGCAATCGTT ACTGGACTTG AAATGTTCCG TAAAACATTG GATTATGGTG AAGCTGGCGA TAACGTTGGG GTTCTATTAC GTGGGATTAC ACGTGATGAA ATCGAACGTG GCCAAGTATT AGCTAAACCA GGTTCAATCA CACCACATAC TAAGTTCAAA GCCGAAGTAT ATGTGTTGAC GAAAGAAGAA GGT	400 450 500 550 600 650
10	2) INFORMATION FOR SEQ ID NO: 615	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 669 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Enterococcus durans</li><li>(B) STRAIN: ATCC 19432</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615	
30 35	GGAGCCATTC TAGTTGTATC TGCAACAGAT GGACCAATGC CACAAACACG TGAACATATT TTATTGTCAC GTCAAGTAGG TGTTAAATAT TTGATCGTCT TCTTGAACAA AATCGACTTA GTAGATGATG AAGAATTGAT TGATCTTGTC GAAATGGAAG TTCGTGAATT ATTAAGCGAA TATGGTTTCC CAGGTGACGA TACACCAGTC ATCAAAGGTT CAGCATTAAA AGCTTTACAA GGAGATCCTG ATGCAGAAGC AGCTATCATG GAATTGATGG ATACTGTTGA TGAATATATC CCAACACCAG AACGTGATAC AGACAAACCA TTATTGTTAC CAGTGGAAGA TGTCTTCTCA ATCACAGGTC GTGGGACTGT TGCTTCAGGT CGTATCGATC GTGGTGCAGT TCGTGTAGGT GATGAAATCG AAATCGTCGG TATCAAACCT GAAACACAAA AAGCTGTTGT AACTGGGGTC GAAATGTTCC GCAAGACATT AGACTATGGT GAAGCAGGAG ATAACGTTGG GGTATTGTTA CGTGGTATCC AACGTGAAGA TATCGAACGT GGACAAGTAA TCGCAAAACC AGGTTCAATC ACACCACATA CAAAATTCAA AGCAGAAGTG TACGTATTGA CAAAAGAAGA AGGTGGACGT CATACACCA	50 100 150 200 250 300 350 400 450 550 600 650 669
45	2) INFORMATION FOR SEQ ID NO: 616  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 669 bases  (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b>5</b> 5	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Enterococcus pseudoavium</li><li>(B) STRAIN: ATCC 49372</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616	
60	GGTGCAATTT TAGTAGTATC TGCTACTGAT GGCCCAATGC CACAAACACG	50

5	TGAACATATC TTGTTATCAC GTCAAGTAGG GGTTAAACAC TTAATCGTCT TCTTGAACAA AGTTGATTTA GTTGATGATG AAGAATTGAT CGATTTAGTT GAAATGGAAG TTCGGGAATT GCTTTCTGAA TATGGTTTCC CAGGCGATGA TATTCCAGTA CTTAAAGGTT CTGCTTTGAA AGCTTTAGAA GGCGATCCTG AACAAGAACA AGTAATCCTT GACTTGATG ATACGGTTGA TGAATACATC CCAACGCCTG AACGTGATAC TGACAAACCA TTCTTGTTAC CAGTCGAAGA TGTCTTCTCA ATCACAGGAC GTGGTACGGT TGCATCTGGT CGTATCGATC GTGGGGAAGT TAAAGTCGGT GATGAAGTTG AAATCATCGG GATCAAACCT GAAGTGCAAA AAGCTGTCGT AACTGGACTA GAAATGTTCC GTAAGACATT GGATTACGGT GAAGCTGGCG ATAACGTTGG GGTTCTATTA CGTGGGATTA CTCGTGATGA AATCGAACGT GGACAAGTAT TAGCTAAACC AGGTTCAATC ACTCCACATA CGAAATTCAG TGCAGAAGTT TATGTATTGA CGAAAGAAGA AGGTGGCCGT CATACGCCA	100 150 200 250 300 350 400 450 500 650 669
15		
	2) INFORMATION FOR SEQ ID NO: 617	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 668 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<ul> <li>(vi) ORIGINAL SOURCE:</li> <li>(A) ORGANISM: Enterococcus dispar</li> <li>(B) STRAIN: ATCC 51266</li> <li>(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617</li> </ul>	
35	GGGGCAATTT TAGTTGTATC TGCAACTGAT GGCCCAATGC CACAAACACG TGAACACATT TTGTTAGCTC GTCAAGTAGG GGTTAAATAT TTAATCGTCT TCTTGAACAA AACAGATTTA GTTGATGATG AAGAATTATT GGAACTAGTT GAAATGGAAG TTCGTGAATT ATTAAATGAA TACAATTTCC CTGGCGATGA TATTCCTGTT ATTCGCGGAT CTGCTTTAAA AGCATTAGAA GGCGATCCAG AACAAGAAGA AACATGATAT AACTTGATGG ATACTGTGGA TGAATCATC	50 100 150 200 250 300 350
40	CCAACTCCAG AACGTGACAA TGATAAACCA TTCTTGTTAC CAGTGGAAGA TGTCTTCACA ATTACTGGTC GTGGTACTGT TGCTTCAGGT CGTATCGACC GTGGTAAAGT CAACGTTGGT GATGAAATTG AAATTATCGG AATTAAACCA GAAACACAAA AAGCTGTTGT AACCGGTTTG GAAATGTTCC GTAAAACTTT GGATTATGGT GAAGCTGGTG ATAACGTTGG GGTCTTATTA CGTGGGATTA CTCGTGATGA AGTAGAACGT GGTCAAGTAT TAGCAAAACC AGGTTCCATT	400 450 500 550 600
45	ACACCGCATA CCAAATTTAA AGGTGAAGTT TATATCTTAA CAAAAGAAGA AGGTGGACGT CATACTCC	650 668
50	2) INFORMATION FOR SEQ ID NO: 618	
55	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 673 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
60	(vi) ORIGINAL SOURCE:	

- (A) ORGANISM: Enterococcus avium
- (B) STRAIN: ATCC 14025

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 618

	GGTGCAATCC	TAGTAGTATC	AGCTACTGAT	GGTCCAATGC	CGCAAACACG	50
	TGAACATATT	TTGCTATCAC	GGCAAGTGGG	TGTTAAACAC	TTAATCGTAT	100
	TTTTAAACAA	AGTTGATTTA	GTCGATGATG	AAGAATTGAT	CGATCTAGTT	150
	GAAATGGAAG	TCCGTGAATT	ACTTTCTGAA	TATGGTTTCC	CAGGTGACGA	200
10	TATTCCAGTT	CTCAAAGGTT	CAGCTTTGAA	AGCATTAGAA	GGCGATCCTG	250
	AACAAGAACA	AGTAATCCTT	GATTTAATGG	ATACAGTTGA	CGAATATATC	300
	CCAACTCCAG	AACGTGACAC	TGACAAGCCA	TTCTTGTTAC	CAGTCGAAGA	350
	TGTATTTTCT	ATCACTGGTC	GTGGGACTGT	AGCGTCTGGA	CGGATTGATC	400
	GTGGTGAAGT	TAAAGTCGGC	GATGAAGTTG	AAATCATCGG	GATCAAACCT	450
15	GAAATTCAAA	AAGCAGTCGT	AACTGGACTT	GAAATGTTCC	GTAAAACTTT	500
	AGATTATGGT	GAAGCTGGCG	ATAACGTTGG	GGTTCTATTA	CGTGGGATTA	550
	CACGTGATGA	AATCGAACGT	GGTCAAGTCT	TAGCTAAACC	AGGTTCAATC	600
	ACACCACATA	CAAAATTCAG	TGCAGAAGTT	TACGTATTGA	CGAAAGAAGA	650
	AGGTGGACGT	CATACACCAT	CTT			673

### 2) INFORMATION FOR SEQ ID NO: 619

25 (i) SEQUENCE CHARACTERISTICS:

20

- (A) LENGTH: 1713 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Saccharomyces cerevisiae
- 35 (C) ACCESSION NUMBER: K00428
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619

	TTTCATATTT	TTAAGGATTT	TGTTTTAGCA	CCCATCCGAC	CTCAGTCAAT	50
40	ATATCCTTTC	GCGACCAGGC	TTTCCTCCCT	TTTGCTGCTA	ACTGGTTACA	100
	GATTTTCCTA	TTTTTGGTCA	TTTTTATCTT	TGAAACTGAT	TAAGCTGAAA	150
	AAATTTGAGC	TTCTTTGTTG	TAAACTATTT	TGTGCTTTCA	GTTTTATTCT	200
	AGCTCGACAA	AGGTAACAGA	CAAAAATGTC	AGCTTTATTA	CCAAGATTAC	250
	TCACAAGAAC	AGCTTTTAAA	GCTTCTGGGA	AACTTCTGAG	GCTCTCTTCA	300
45	GTAATTTCTA	GGACCTTTTC	TCAAACTACT	ACTTCCTATG	CAGCTGCTTT	350
	TGATCGTTCC	AAACCGCATG	TAAATATAGG	TACGATCGGC	CATGTTGATC	400
	ATGGGAAGAC	AACTTTAACC	GCAGCCATTA	CGAAAACGTT	AGCCGCAAAA	450
	GGTGGTGCCA	ACTTCTTGGA	CTATGCTGCC	ATCGATAAGG	CTCCGGAAGA	500
	AAGAGCTCGT	GGTATTACAA	TTTCTACTGC	ACACGTGGAA	TACGAAACGG	550
50	CCAAGAGACA	TTATTCTCAC	GTCGACTGTC	CAGGCCACGC	TGATTACATC	600
	AAGAATATGA	TTACCGGTGC	TGCTCAAATG	GATGGTGCTA	TCATTGTTGT	650
	AGCTGCTACC	GATGGACAAA	TGCCCCAAAC	TAGAGAACAT	TTACTTTTGG	700
	CCAGACAAGT	TGGTGTCCAA	CATATTGTCG	TTTTTGTTAA	CAAGGTTGAT	750
	ACCATTGATG	ATCCAGAAAT	GTTAGAGTTA	GTCGAAATGG	AAATGAGAGA	800
55	ACTTTTAAAC	GAATATGGGT	TTGACGGTGA	TAATGCTCCA	ATTATCATGG	850
	GTTCTGCCCT	TTGCGCTTTG	GAAGGTCGCC	AACCTGAAAT	TGGGGAGCAG	900
	GCCATCATGA	AACTTTTGGA	TGCAGTGGAT	GAGTATATTC	CTACACCTGA	950
	AAGAGATTTG	AACAAGCCTT	TCTTGATGCC	CGTTGAAGAT	ATCTTCTCTA	1000
	TCTCCGGTAG	AGGTACTGTG	GTCACTGGTC	GTGTGGAAAG	GGGTAATTTA	1050
60	AAGAAAGGTG	AGGAATTGGA	AATTGTTGGT	CACAACTCCA	CCCCATTGAA	1100

5	GATGTTACAG TTGTGATGAG ATTTCCTAAG GAGG GCAAGTTATG CCAGGTGACA ATGTTGAAAT GGAA CTACCCCATT AGAAGTTGGT CAACGTTTCA ATAT ACTGTTGGTA CCGGTCTAAT CACACGTATT ATTG	TATCAG GAGAGATCAA 1200 CCGTTA AAGCCCATAC 1250 GAGGAA GGTGGTAGAC 1300 GTTTAT AAGAACAGCT 1350 TTGAAG ATCATTCTAT 1400 TGTGAT TTGATCCATC 1450 CAGAGA GGGTGGAAGA 1500 AATAGA CTTATTGATG 1550 TCCCCT CTCATAATAT 1600 AAAGTG CCATAAATTT 1650	
15			
	2) INFORMATION FOR SEQ ID NO: 620		
20	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear		
25	(ii) MOLECULE TYPE: DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO	: 620	
30	ATTGGTGCAT TGCTACGT		18
•			
•	2) INFORMATION FOR SEQ ID NO: 621		
35	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 751 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>		
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 751 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>		
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus fac	ecium	
40	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus fac		
40	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus fac  (B) STRAIN: ATCC 19434  (xi) SEQUENCE DESCRIPTION: SEQ ID No  TGGTGCAATC TTAGTTGTTT CTGCAACTGA CGGT  GTGAACACAT TTTATTGTCA CGCCAAGTTG GTGT.  TTCTTGAACA AAGTTGATTT AGTCGATGAT GAAG. AGAAATGGAA GTTCGCGAGT TATTGAGCGA ATATACACTCCTGT GATCAAAGGT TCCGCATTAA AAGC.	O: 621  CCGATG CCTCAAACAC 50 AAAATA CCTGATTGTT 100 AATTGA TCGATTTGGT 150 GGTTTC CCAGGCGATG 200 ATTGCA AGGCGATCCA 250	
40	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Enterococcus factors  (B) STRAIN: ATCC 19434  (xi) SEQUENCE DESCRIPTION: SEQ ID Not accorded to the company of	O: 621  CCGATG CCTCAAACAC 50 AAAATA CCTGATTGTT 100 AATTGA TCGATTTGGT 150 GGTTTC CCAGGCGATG 200 ATTGCA AGGCGATCCA 250 CAGTAG ATGAATATAT 300 CTATTG CCAGTGGAAG 350 CCTCAGG TCGTATTGAT 400 TCGTAG GGATCAAACC 450 ATGTTC CGTAAAACGT 500	

5	TACTCCACAT ACAAAATTCA AAGCAGAAGT GTACGTGTTG ACAAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCAACA ACTATCGTCC ACAGTTCTAC TTCCGCACAA CTGATGTTAC AGGAACAATC ACATTGCCAG AAGATACAGA A	650 700 750 751
	2) INFORMATION FOR SEQ ID NO: 622	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 750 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Saccharomyces cerevisiae</pre>	
20	(B) STRAIN: ATCC 13264	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622	
25	GTCAAATGGG ACGAATCCAG ATTCCAAGAA ATTGTCAAGG AAACCTCCAA CTTTATCAAG AAGGTTGGTT ACAACCCAAA GACTGTTCCA TTCGTCCCAA TCTCTGGTTG GAACGGTGAC AACATGATTG AAGCTACCAC CAACGCTCCA TGGTACAAGG GTTGGGAAAA GGAAACCAAG GCCGGTGTCG TCAAGGGTAA	50 100 150 200
30	GACTTTGTTG GAAGCCATTG ACGCCATTGA ACAACCATCT AGACCAACTG ACAAGCCATT GAGATTGCCA TTGCAAGATG TTTACAAGAT TGGTGGTATT GGTACTGTGC CAGTCGGTAG AGTTGAAACC GGTGTCATCA AGCCAGGTAT GGTTGTTACT TTCGCCCCAG CTGGTGTTAC CACTGAAGTC AAGTCCGTTG AAATGCATCA CGAACAATTG GAACAAGGTG TTCCAGGTGA CAACGTTGGT	250 300 350 400 450
35	TTCAACGTCA AGAACGTTTC CGTTAAGGAA ATCAGAAGAG GTAACGTCTG TGGTGACGCT AAGAACGATC CACCAAAGGG TTGCGCTTCT TTCAACGCTA CCGTCATTGT TTTGAACCAT CCAGGTCAAA TCTCTGCTGG TTACTCTCCA GTTTTGGATT GTCACACTGC TCACATTGCT TGTAGATTCG ACGAATTGTT GGAAAAGAAC GACAGAAGAT CTGGTAAGAA GTTGGAAGAC CATCCAAAGT TCTTGAAGTC CGGTGACGCT GCTTTGGTCA AGTTCGTTCC ATCTAAGCCA	500 550 600 650 700 750
40		
	2) INFORMATION FOR SEQ ID NO:623	
45	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1269 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	,
	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Cryptococcus neoformans</li><li>(B) STRAIN: ATCC 44104</li></ul>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623	
60	TCTTGAAAGC TTAAGGCCGA GCGAGAGCGA GGTATCACCA TCGACATTGC TCTTTGGAAG TTCGAGACCC CCAGGTACCA GGTCACCGTC ATTGACGCCC CCGGTCACCG AGACTTCATC AAGAACATGA TCACCGGTAC CTCCCAGGCT	50 100 150

	GACTGTGCCA	TCCTCATCAT	TGCCACCGGT	ATCGGTGAGT	TCGAGGCCGG	200
	TATCTCCAAG	GACGGTCAGA	CCCGAGAGCA	CGCCCTCCTC	GCCTTCACCC	250
	TCGGTGTCAG	GCAGCTCATT	GTTGCTTGCA	ACAAGATGGA	CACCTGCAAG	300
	TGGTCCGAGG	ACCGATTCAA	CGAAATCGTC	AAGGAGACCA	ACGGTTTCAT	350
5	CAAGAAGGTT	GGTTACAACC	CCAAGGCTGT	CCCCTTCGTC	CCCATCTCTG	400
	GTTGGCACGG	TGACAACATG	TTGGAGGAGA	CCACCAAGTC	AGTGAATCCG	450
	CTTCTACGTG	ATGAGATGTT	TTTCTGACTT	TCCGTGCAGC	ATGCCCTGGT	500
	ACAAGGGATG	GACCAAGGAG	ACCAAGTCTG	GTGTTTCCAA	GGGTAAGACC	550
	CTCCTCGAGG	CCATCGACGC	CATCGAGCCC	CCTACCCGAC	CCACCGACAA	600
10	GCCCCTCCGT	CTCCCTCTCC	AGGACGTCTA	CAAGATCGGT	GGTATCGGCA	650
	CAGTCCCTGT	CGGCCGAGTC	GAGACCGGTG	TCATCAAGGC	CGGTATGTTG	700
	TCTCATCTCT	CTTGTCTCGT	AACATGCGTC	TCGTAACATG	CGCTTACTTC	750
	ATTTTCAGGT	<b>ATGGTCGTCA</b>	AGTTCGCCCC	CACCAACGTC	ACCACTGAAG	800
	TCAAGTCCGT	TGAGATGCAC	CACGAGCAGA	TCCCCGAGGG	TCTTCCCGGA	850
15	GACAACGTTG	GTTTCAACGT	CAAGAACGTT	TCCATCAAGG	ACATCCGACG	900
	AGGTAACGTC	TGTGGTGACT	CCAAGAACGA	CCCCCTATG	GAGGCTGCTT	950
	CTTTCAACGC	CCAGGTTATC	GTCCTTAACC	ACCCTGGTCA	GATCGGTGCC	1000
	GGTTACACCC	CCGTTCTCGA	CTGTCACACT	GCCCGTAAGC	CTGACCCAAT	1050
	ACCTCCAACA	TACCTTTGAA	GCTGACCCTT	TCTAGACATT	GCCTGCAAGT	1100
20	TTGCTGAGTT	GATCGAGAAG	ATTGACCGAC	GAACCGGTAA	GGTCATGGAG	1150
	GCCGCCCCCA	AGTTCGTCAA	GTCTGGTGAC	GCCGCCATTG	TCAAGCTTGT	1200
	TGCCCAGAAG	CCCCTCTGTG	TTGAGACCTA	CGCCGACTAC	CCCCCTCTTG	1250
	GTCGATTCGC	CGTCCGAGA				1269
25						
		•				

# 2) INFORMATION FOR SEQ ID NO: 624

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 753
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Candida albicans
    - (B) STRAIN: ATCC 36801

40

30

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624

45	TCTGTCAAAT CAACTTCGTC CAATCTCTGG CCATGGTACA	AAGAAGGTTG TTGGAATGGT	CAGATTTGAA GTTACAACCC GACAACATGA AAAGGAAACC	AAAGACTGTT TTGAACCATC	CCATTCGTTC CACCAACTGT	50 100 150 200
	TAAGACCTTG	TTAGAAGCTA	TTGACGCTAT	TGAACCACCA		250
	CCGACAAACC	ATTGAGATTG TGCCAGTCGG	TAGAGTTGAA	ATGTTTACAA ACTGGTATCA		300 350
50	TATGGTTGTT		CAGCTGGTGT	TACCACTGAA	GTCAAATCCG	400
	TTGAAATGCA		TTGGCTGAAG		TGACAATGTT	450
	GGTTTCAACG		TTCCGTTAAA		GAGGTAACGT	500
	TTGTGGTGAC	TCCAAGAACG	ATCCACCAAA	GGGTTGTGAC	TCTTTCAATG	550
	CCCAAGTCAT	TGTTTTGAAC	CATCCAGGTC	AAATCTCTGC	TGGTTACTCT	600
55	CCAGTCTTGG	ATTGTCACCC	TGCCCACATT	GCTTGTAAAT	TCGACACTTT	650
	GGTTGAAAAG	ATTGACAGAA	GAACTGGTAA	GAAATTGGAA	GAAAATCCAA	700
	AATTCGTCAA	ATCCGGTGAT	GCTGCTATCG	TCAAGATGGT	CCCAACCAAA	750
	CCA					753

	2) INFORMATION FOR SEQ ID NO: 625	
5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
10	(ii) MOLECULE TYPE: DNA	
	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus agalactiae</li></ul>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625	
	CGTTGAAGAC ACGACCCAAA GTATCC	26
20	2) INFORMATION FOR SEQ ID NO: 626	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	(ii) MOLECULE TYPE: DNA	
30	<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 626	
,,,	TACCACCTTT TAAGTAAGGT GCTAAT	26
40	2) INFORMATION FOR SEQ ID NO: 627	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: DNA	
50	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus agalactiae</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 627	
55	ATTGTCTATA AAAATGGCGA TAAGTC	. 26
60	2) INFORMATION FOR SEQ ID NO: 628	

5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 628	
15	AAAATG	GCGA TAAGTCACAA AAAGTA	26
	2) INFO	RMATION FOR SEQ ID NO: 629	
20	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
25	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Chlamydia pneumoniae	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 629	
	AAGTTC	CATC TCAACAAGGT CAATA	25
35			
	2) INFO	RMATION FOR SEQ ID NO: 630	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
45	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Chlamydia pneumoniae	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 630	
	CGGAGC	TATC CTAGTCGTTT CA	22
55	2) INFO	RMATION FOR SEQ ID NO: 631	
60	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid	

		(C) (D)	STRANDEDNE TOPOLOGY:	SS: Sin Linear	gle				
_	(ii)	MOLE	CULE TYPE:	DNA					•
5	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID NO:	631		
	CAGACC	AACY	GAIAARCCAT	TRAGA	Т				26
10									
	2) INFO	RMATI	ON FOR SEQ	ID NO:	632				
15	(i)	(A) (B) (C)	ENCE CHARAC' LENGTH: 23 TYPE: Nucle STRANDEDNES TOPOLOGY: I	bases eic acie SS: Sin	d				
20	(ii)	MOLE	CULE TYPE: I	ONA					
	(xi)	SEQUI	ENCE DESCRI	PTION:	SEQ :	ID NO:	632		
25	CCCTTTC	GGTG	GRTCSTKCTT	GGA					23
	2) INFOR	ITAMS	ON FOR SEQ	D NO:	633				
30	(i)	(A) (B)	ENCE CHARACT LENGTH: 26 TYPE: Nucle STRANDEDNES TOPOLOGY: I	bases ic acid S: Sing	i				
35	(ii)	MOLEC	ULE TYPE: D	NA					
	(xi)	SEQUE	NCE DESCRIF	TION:	SEQ 1	ID NO:	633		
40	CAGACCA	ACY	GAIAARCCIT	TRAGAT	:				26
		ue *							
45	2) INFOR	MATIC	N FOR SEQ I	D NO:	634				
50	(i)	(A) (B) (C)	NCE CHARACT LENGTH: 26 TYPE: Nucle STRANDEDNES TOPOLOGY: L	bases ic acid S: Sing	ì				
	(ii)	MOLEC	ULE TYPE: D	NA					
55	(xi)	SEQUE	NCE DESCRIP	TION: S	SEQ I	D NO:	634		
	AACACYG	TCA	GRRCIATTGC	YATGGA	•				26
50	2) TMEOD	Mልሞተ스	N POP CEO T	D NO. 6					

5	(i)	(A) (B) (C)	NCE CHARACTE LENGTH: 26 b TYPE: Nuclei STRANDEDNESS TOPOLOGY: Li	ases c acid	i					
	(ii)	MOLEC	CULE TYPE: DN	IA						
10	(xi)	SEQUE	NCE DESCRIPT	CION: S	SEQ	ID	NO:	635		
	AAACCR	GTIA	RRGCRACTCT	IGCTCT	ŗ					26
15	2) INFO	RMATIO	ON FOR SEQ II	O NO:	636					
20	(i)	(A) (B) (C)	ENCE CHARACTE LENGTH: 23 b TYPE: Nuclei STRANDEDNESS TOPOLOGY: Li	ases c acio s: Sing	i					
25	(ii)	MOLEC	CULE TYPE: DN	IA.						
25	(xi)	SEQUI	NCE DESCRIPT	rion:	SEQ	ID	NO:	636		
	ACTGGY	GTTG	AIATGTTCCG	YAA						23
30										
	2) INFO	RMATI	ON FOR SEQ II	NO:	637					
35	(i)	(A) (B)	ENCE CHARACTE LENGTH: 23 h TYPE: Nuclei STRANDEDNESS TOPOLOGY: Li	ases ic acio S: Sing	d					
40	(ii)	MOLE	CULE TYPE: Di	ΝA						
	(xi)	SEQUI	ENCE DESCRIPT	rion:	SEQ	ID	NO:	637		
45	ACGTCA	GTIG	TACGGAARTA	GAA						23
	2) INFO	RMATI	ON FOR SEQ II	NO:	638					
50	(i)	(A) (B)	ENCE CHARACTI LENGTH: 26 L TYPE: Nucles STRANDEDNESS TOPOLOGY: Li	pases ic aci S: Sin	d					
55	(ii)	MOLE	CULE TYPE: Di	AI						
	(xi)	SEQUI	ENCE DESCRIPT	rion:	SEQ	ID	NO:	638		
60	CCAATG	CCAC	AAACICGTGA	RCACA:	Г					26

_	2) INFO	RMATI	ON FOR SEQ	ID NO:	639					
5 10	(i)	(A) (B)	ENCE CHARAC LENGTH: 28 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sin	.d					
	(ii)		CULE TYPE:							
	, ,		ENCE DESCRI		SEO	TD NO.	639			
15			ATTTCWACAC			10 110.	000,			28
	ITIACG	GAAC	ATTICHACAC	CWGII	ACA					20
20	2) INFO	RMATI(	ON FOR SEQ	ID NO:	640					
25	(i)	(A) (B)	ENCE CHARAC LENGTH: 23 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sin	d					
	(ii)	MOLE	CULE TYPE:	DNA						
30	(xi)	SEQUI	ENCE DESCRI	PTION:	SEQ	ID NO:	640			
	TCCATG	GTIT	WYGGICARAT	GAA					·	23
35	2) INFO	RMATIO	ON FOR SEQ	ID NO:	641					
40	(i)	(A) (B)	ENCE CHARAC LENGTH: 26 TYPE: Nucle STRANDEDNE TOPOLOGY: 1	bases eic aci SS: Sin	d					
4.5	(ii)	MOLEC	CULE TYPE:	DNA						
45	(xi)	SEQUE	ENCE DESCRI	PTION:	SEQ :	ID NO:	641			
	TGATAA	CCWA	CIGCIGAIGG	CATAC	3					26
50										
	2) INFO	RMATIC	ON FOR SEQ	ID NO:	642					
55	(i)	(A) (B) (C)	ENCE CHARACT LENGTH: 23 TYPE: Nucle STRANDEDNES TOPOLOGY: I	bases eic acio SS: Sing	d					
60	(ii)	MOLEC	ULE TYPE: I	DNA						

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 642	
5	GGCGTIG	GGIG ARCGIACICG TGA	23
	2) INFOR	RMATION FOR SEQ ID NO: 643	
10	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
15	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 643	
20	ACTGGIG	GTIG ARATGTTCCG YAA	23
2.5	2) INFOR	RMATION FOR SEQ ID NO: 644	
25	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single	
30		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 644	
33	ACGTCIO	GTIG TICKGAARTA GAA	23
40	2) INFOR	RMATION FOR SEQ ID NO: 645	
45	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 645	
	ACGTCIO	GTIG TICKGAARTA RAA	23
55	2) INFOR	RMATION FOR SEQ ID NO: 646	
60	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid	

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
_	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 646	
	ATCGACAAGC CITTCYTIAT GSC	23
10		
	2) INFORMATION FOR SEQ ID NO: 647	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 647	
25	ACGTCCGTSG TRCGGAAGTA GAACTG	26
	2) INFORMATION FOR SEQ ID NO: 648	
30	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
35	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 648	
40	ACGTCSGTSG TRCGGAAGTA GAACTG	26
4.5	2) INFORMATION FOR SEQ ID NO: 649	
45	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 26 bases</li><li>(B) TYPE: Nucleic acid</li></ul>	
50	<ul><li>(C) STRANDEDNESS: Single</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 649	
- <b>-</b>	GTCCTATGCC TCARACWCGI GAGCAC	26
50	2) INFORMATION FOR SEC ID NO. 650	

5	(i)	(A) (B) (C)	ENCE CHARACTERISTICS: LENGTH: 23 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear		
	(ii)	MOLE	CULE TYPE: DNA		
10	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO:	650	
	TTACGG.	AACA	TYTCAACACC IGT		23
15					
13	2) INFO	RMATI	ON FOR SEQ ID NO: 651		
20	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 25 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear		
25	(ii)	MOLE	CULE TYPE: DNA		
25	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO:	651	
	TGACGA	CCAC	CITCYTCYTT YTTCA		25
30					
	2) INFO	RMATI	ON FOR SEQ ID NO: 652		
35	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 27 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear		
40	(ii)	MOLE	CULE TYPE: DNA		
	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO:	652	
45	CCWAYA	GTIY	KICCICCYTC YCTIATA		27
	2) INFO	RMATI	ON FOR SEQ ID NO: 653		•
50	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 20 bases TYPE: Nucleic acid		
		(D)	STRANDEDNESS: Single TOPOLOGY: Linear		
55	(ii)	MOLE	CULE TYPE: DNA		
	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO:	653	
60	GAYTTC	ATIA	ARAAYATGAT		20

5	2) INFO	ORMATION FOR SEQ ID NO: 654	
10	(i)	) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	) MOLECULE TYPE: DNA	
15	(xi)	) SEQUENCE DESCRIPTION: SEQ ID NO: 654	
	TACAAR	RATYK GIGGTATYGG	20
20	2) INFO	ORMATION FOR SEQ ID NO: 655	
25	(i)	) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	) MOLECULE TYPE: DNA	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 655	
	CCRATA	ACCIC MRATYTTGTA	20
35	2) INFO	ORMATION FOR SEQ ID NO: 656	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
45	(ii)	MOLECULE TYPE: DNA	
13	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 656	
	AATTAA'	ATGGC TGCAGTTGAY GA	22
50			
	2) INFO	ORMATION FOR SEQ ID NO: 657	
55	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
60	(ii)	MOLECULE TYPE: DNA	

	(xi)	SEQUEN	CE DESCRI	PTION:	SEQ	ID	NO:	657			
5	TTGTCC	ACGT T	'CGATRTCTT	CA						,	22
	2) INFO	RMATION	FOR SEQ	ID NO:	658						
10	(i)	(A) L (B) T (C) S	ICE CHARAC' LENGTH: 23 LYPE: Nucle TRANDEDNES COPOLOGY: 1	bases eic aci SS: Sir	d						
15	(ii)	MOLECU	TLE TYPE: 1	DNA							
	(xi)	SEQUEN	CE DESCRI	PTION:	SEQ	ID	NO:	658			
20	GATYTA	GTCG A	TGATGAAGA	ATT							23
	2) INFO	RMATION	FOR SEQ	ID NO:	659						
25	(i)	(A) L (B) T (C) S	ICE CHARAC' ENGTH: 23 YPE: Nucle	bases eic aci SS: Sir	id						
30		(D) I	OPOLOGY: 1	Linear							
	(ii)	MOLECU	LE TYPE: 1	DNA							
35	(xi)	SEQUEN	CE DESCRI	PTION:	SEQ	ID	NO:	659			
	GCTTTT	TGIG T	TTCWGGTTT	RAT	1						23
40	2) INFO	RMATION	N FOR SEQ	ID NO:	660						
45	(i)	(A) I (B) I (C) S	ICE CHARAC' LENGTH: 23 LYPE: Nucle STRANDEDNES COPOLOGY: 1	bases eic aci SS: Sir	ld						
	(ii)	MOLECU	JLE TYPE:	DNA							
50	(xi)	SEQUEN	CE DESCRI	PTION:	SEQ	ID	NO:	660			
	GTAGAA	TTGA G	GACGGTAGT	TAG							23
55	•		N FOR SEQ								
60	(i)	(A) I	ICE CHARAC' LENGTH: 23 LYPE: Nucle	bases							

	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
_	(ii) MOLECULE TYPE: DNA
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 661
	GTAGAAYTGT GGWCGATART TRT
10	
	2) INFORMATION FOR SEQ ID NO: 662
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 832 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>
20	(ii) MOLECULE TYPE: Genomic DNA
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium diphtheriae
25	(B) STRAIN: ATCC 27010
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 662
30	CGGCGCAATC CTCGTTGTTG CTGCCACCGA CGGCCCAATG CCTCAGACCC GTGAGCACGT TCTGCTCGCT CGCCAGGTCG GCGTTCCTTA CATCCTCGTT 100 GCTCTGAACA AGTGCGACAT GGTTGATGAT GAGGAAATCA TCGAGCTCGT 150 CGAGATGGAG ATCCRTGAGC TGCTCGCTGA GCAGGATTAC GACGAAGAGG 200 CTCCAATCAT CCACATCTCC GCACTGAAGG CTCTTGAGGG CGACGAGAAG 250 TGGACCCAGT CCATCATCGA CCTCATGCAG GCTTGCKATG ATTCCATCCC 300
35	AGACCCAGAG CGTGAGACCG ACAAGCCATT CCTCATGCCT ATCGAGGACA TCTTCACCAT CACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCTCCCTGA AGGTCAACGA GGACGTCGAG ATCATCGGTA TCCGCGAGAA KGCTACCACC ACCACCGTTA CCGGTATCGA GATGTTCCGT AAGCTTCTCG ACTACACCGA GGCTGGCGAC AACTGTGGTC TGCTTCTCCG TGGCGTTAAG 500
40	CGCGAAGACG TTGAGCGTGG CCAGGTTGTT GTTAAGCCAG GCGCTTACAC CCCTCACACC GAGTTCGAGG GCTCTGTCTA CGTTCTGTCC AAGGACGAGG GTGGCCGCCA CACCCCATTC TTCGACAACT ACCGCCCACA GTTCTACTTC CGCACCACCG ACGTTACCGG TGTTGTGAAG CTTCCTGAGG GCACCGAGAT GGTCATGCCT GGCGACACG TCGACATGTC CGTCACCCTG ATCCAGCCTG 800
45	TCGCTATGGA TGAGGGCCTG CGCTTCGCTA TC 832
	2) INFORMATION FOR SEQ ID NO: 663
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1192 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>
55	(ii) MOLECULE TYPE: Genomic DNA
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Candida catenulata
60	(B) STRAIN: ATCC 10565

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 663 AACGGCGAGC AAGACTTGGT GTTGGAGGTT TCTCAGCACT TGGGTGAGAA 50 CACCGTGCGT ACCATTGCCA TGGACGGTAC CGAGGGTTTG GTGAGAGGTA 100 CCGCTGTCAC TGACACCGGT GCTCCCATCT CGGTCCCCGT TGGTCAGGGT 150 ACCTTGGGCC GGATCATCAA CGTTGTCGGT GAGCCCATCG ACGAGCGTGG TCCCATCCAG TGCAAGCAGA GAAACCCCAT TCACGCCGAG CCCCCGTCTT TCACCGAGCA GTCCGTCGAG GCTGAGGTGT TGGAGACCGG TATCAAGGTT GTCGACTTGT TGGCTCCCTA CGCCCGTGGT GGTAAGATTG GTCTTTTCGG 200 10 TGGTGCCGGT GTCGGTAAGA CCGTGTTCAT CCAGGAGTTG ATTAACAACA 400 TTGCCAAGGC CCACGGTGGT TTCTCCGTGT TCACTGGTGT CGGTGAGCGT ACTCGTGAGG GTAACGACTT GTACCGTGAA ATGAAGGAGA CCGGTGTCAT 450 500 CAACTTGGAG GGCGACTCCA AGGTGGCCTT GGTGTTCGGT CAGATGAACG AGCCCCCGGG GGCTCGTGCC CGTGTCGCCT TGACCGGTTT GACCATTGCC GAGTACTTCC GTGACGAGGA AGGCCAGGAC GTGTTGTTGT TCGTTGACAA 550 600 15 650 CATTTCAGA TTCACCCAGG CCGGTTCCGA GGTGTCGGCG TTGTTGGGTC 700 GTATCCCCTC CGCCGTCGGT TACCAGCCCA CTTTGGCCAC CGACATGGGT TTGTTGCAGG AGAGAATTAC CACCACCAAG AAGGGTTCCG TCACCTCTGT GCAGGCCGTG TACGTCCCTG CCGATGACTT GACTGACCCT GCCCCGCCA 20 CCACTTTCGC TCACTTGGAC GCCACCACCG TGTTGTCGCG TGGTATCTCC GAGTTGGGTA TCTACCCCGC CGTCGACCCC TTGGACTCCA AGTCGAGATT GTTGGACGTC GAGGTTGTTG GCCAGGAGCA CTACGACGTC GCCACCGGTG TCCAGGAGTG CTTGCAGGCC TACAAGTCGT TGCAGGACAT CATTGCCATT TTGGGTATGG ACGAGTTGTC CGAGCAGGAC AAGTTGACCG TCGAGAGAGC 1100 25 CCGTAAGATC CAGCGTTTCT TGTCGCAGCC CTTCGCTGTC GCCGAGGTTT 1150 TCACTGGTAT CCCCGGTAGA TTGGTGAGAT TGCAGGACAC CG 1192 30 2) INFORMATION FOR SEQ ID NO: 664 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 bases 35 (B) TYPE: Nucleic acid STRANDEDNESS: Single (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: DNA 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 664 AAYATGATIA CIGGIGCIGC ICARATGGA 29 45 2) INFORMATION FOR SEQ ID NO: 665 (i) SEQUENCE CHARACTERISTICS: 50 (A) LENGTH: 1377 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 55 (vi) ORIGINAL SOURCE: (A) ORGANISM: Saccharomyces cerevisiae (C) ACCESSION NUMBER: extracted from X00779

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 665

	ATGGGTAAAG	A CA A CTICTO	CATTAACGTT	CTCCTTT TO	OTON TOTOO	F 0
		AGAAGTCTCA		GTCGTTATCG	GTCATGTCGA	50
_	TTCTGGTAAG	TCTACCACTA	CCGGTCATTT	GATTTACAAG	TGTGGTGGTA	100
5	TTGACAAGAG	AACCATCGAA	AAGTTCGAAA	AGGAAGCCGC	TGAATTAGGT	150
	AAGGGTTCTT	TCAAGTACGC	TTGGGTTTTG	GACAAGTTAA	AGGCTGAAAG	200
	AGAAAGAGGT	ATCACTATCG	ATATTGCTTT	GTGGAAGTTC	GAAACTCCAA	250
	AGTACCAAGT	TACCGTTATT	GATGCTCCAG	GTCACAGAGA	TTTCATCAAG	300
	AACATGATTA	CTGGTACTTC	TCAAGCTGAC	TGTGCTATCT	TGATTATTGC	350
10	TGGTGGTGTC	GGTGAATTCG	AAGCCGGTAT	CTCTAAGGAT	GGTCAAACCA	400
	GAGAACACGC	TTTGTTGGCT	TTCACCTTGG	GTGTTAGACA	ATTGATTGTT	450
	GCTGTCAACA	AGATGGACTC	CGTCAAATGG	GACGAATCCA	GATTCCAAGA	500
	AATTGTCAAG	GAAACCTCCA	ACTTTATCAA	GAAGGTTGGT	TACAACCCAA	550
	AGACTGTTCC	ATTCGTCCCA	ATCTCTGGTT	GGAACGGTGA	CAACATGATT	600
15	GAAGCTACCA	CCAACGCTCC	ATGGTACAAG	GGTTGGGAAA	AGGAAACCAA	650
	GGCCGGTGTC	GTCAAGGGTA	AGACTTTGTT	GGAAGCCATT	GACGCCATTG	700
	AACAACCATC	TAGACCAACT	GACAAGCCAT	TGAGATTGCC	ATTGCAAGAT	750
	GTTTACAAGA	TTGGTGGTAT	TGGTACTGTG	CCAGTCGGTA	GAGTTGAAAC	800
	CGGTGTCATC	AAGCCAGGTA	TGGTTGTTAC	TTTTGCCCCA	GCTGGTGTTA	850
20	CCACTGAAGT	CAAGTCCGTT	GAAATGCATC	ACGAACAATT	GGAACAAGGT	900
	GTTCCAGGTG	ACAACGTTGG	TTTCAACGTC	AAGAACGTTT	CCGTTAAGGA	950
	AATCAGAAGA	GGTAACGTCT	GTGGTGACGC	TAAGAACGAT	CCACCAAAGG	1000
	GTTGCGCTTC	TTTCAACGCT	ACCGTCATTG	TTTTGAACCA	TCCAGGTCAA	1050
	ATCTCTGCTG	GTTACTCTCC	AGTTTTGGAT	TGTCACACTG	CTCACATTGC	1100
25	TTGTAGATTC	GACGAATTGT	TGGAAAAGAA	CGACAGAAGA	TCTGGTAAGA	1150
	AGTTGGAAGA	CCATCCAAAG	TTCTTGAAGT	CCGGTGACGC	TGCTTTGGTC	1200
	AAGTTCGTTC	CATCTAAGCC	AATGTGTGTT	GAAGCTTTCA	GTGAATACCC	1250
	ACCATTAGGT	AGATTCGCTG	TCAGAGACAT	GAGACAAACT	GTCGCTGTCG	1300
	GTGTTATCAA	GTCTGTTGAC	AAGACTGAAA	AGGCCGCTAA	GGTTACCAAG	1350
30	GCTGCTCAAA		GAAATAA			1377
						13//

# 2) INFORMATION FOR SEQ ID NO: 666

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1536 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
- 45 (A) ORGANISM: Saccharomyces cerevisiae
  - (C) ACCESSION NUMBER: extracted from M12082
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 666

5
5
$\epsilon$
$\epsilon$

	GTAAGATTGG	TCTTTTCGGT	GGTGCAGGTG	TCGGTAAGAC	TGTGTTCATT	600
	CAAGAATTGA	TTAACAATAT	CGCCAAGGCC	CATGGTGGTT	TTTCCGTTTT	650
	CGCCGGTGTT	GGTGAAAGGA	CCAGAGAGGG	TAATGACTTG	TACCGTGAAA	700
	TGAAGGAAAC	TGGAGTCATT	AACTTGGAAG	GTGAATCCAA	GGTCGCCTTA	750
5	GTTTTCGGTC	AAATGAACGA	ACCTCCAGGA	GCCAGAGCCA	GAGTCGCTTT	800
_	AACTGGTTTG	ACGATCGCTG	AATATTTCAG	AGATGAAGAA	GGTCAAGACG	850
	TCTTGTTGTT	TATCGACAAT	ATCTTTAGAT	TTACTCAAGC	TGGTTCAGAA	900
	GTCTCTGCCC	TTTTGGGTCG	TATTCCATCT	GCCGTCGGTT	ATCAACCAAC	950
	TTTGGCCACT	GATATGGGTC	TCTTACAAGA	AAGAATTACC	ACCACAAAGA	1000
10	AGGGTTCTGT	CACTTCTGTG	CAAGCCGTTT	ATGTTCCAGC	CGATGATTTA	1050
	ACAGATCCGT	CTCCGTCCAC	ATCTTTTGCC	CATTTGGACG	CATCATCCGT	1100
	CTTGTCAAGA	GGTATTTCAG	AATTAGGTAT	TTACCCTGCA	GTGGATCCAT	1150
	TGGATTCTAA	ATCAAGGTTA	TTGGATGCCG	CCGTTGTCGG	TCAAGAACAT	1200
	TATGACGTCG	CCTCCAAGGT	TCAAGAAACT	TTACAGACCT	ATAAATCTTT	1250
15	ACAAGATATC	ATTGCTATTT	TGGGTATGGA	TGAATTGTCC	GAACAAGATA	1300
	AACTAACTGT	CGAAAGGGCA	AGAAAGATTC	AAAGATTCTT	ATCTCAACCA	1350
	TTTGCTGTCG	CCGAAGTCTT	TACTGGTATC	CCAGGTAAAT	TAGTGAGATT	1400
	AAAGGACACC	GTTGCCTCGT	TCAAAGCCGT	TTTGGAAGGT	AAATACGATA	1450
	ATATACCAGA	ACATGCTTTC	TATATGGTTG	GTGGTATTGA	AGATGTTGTT	1500
20	CGTAAAGCTG	AAAAGTTAGC	CCGTGAAGCC	AACTAG		1536

# 2) INFORMATION FOR SEQ ID NO: 667

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1293 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Trypanosoma cruzi
- (B) STRAIN: Y

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 667

40	CGGAAGGCGT	GCCGCCGGTG	TTAACTGCTT	TGGATGTGGT	GGAAAAACTT	50
	GGCCGTGACG	AGCCCTTGAC	ACTTGAAATT	GTACAGCACT	TGGACGCCCA	100
	CACCGGCCGT	TGCATTGCGA	TGCAGACGAC	AGATCTGCTT	AAGCTGAAAT	150
	CGAAGGTAGT	CTCGAGTGGC	GGGAACATTT	CTGTGCCTGT	GGGTCGGGAG	200
	ACACTTGGCA	GAATCTTCAA	TGTGCTGGGC	GATGCCATTG	ACCAGCGCGG	250
45	CCATGTTGGA	GAGAAGCAAC	GCATGCCTAT	TCACGCTGTG	GCACCAAAGT	300
	TGGCGGATCA	GGCGGCAGAG	GACACCATTC	TCACAACGGG	TATCAAGGTG	350
	ATTGATCTGA	TTTTGCCCTA	CTGCAAGGGT	GGGAAGATTG	GTCTTTTTGG	400
	TGGTGCTGGC	GTGGGCAAGA	CGGTTATTAT	CATGGAACTT	ATTAACAACG	450
	TTGCCAAGGG	CCATGGTGGG	TTCTCCGTCT	TTGCGGGTGT	TGGTGAACGC	500
50	ACGCGTGAGG	GGACGGATCT	TTACCTGGAG	ATGATGCAAT	CCAAAGTTAT	550
	TGACCTGAAG	GGTGACTCGA	AGTGTGTGTT	GGTGTATGGT	CAGATGAACG	600
	AGCCTCCGGG	TGCCCGTGCT	CGTGTGGCGC	AGTCTGCCTT	GACAATGGCC	650
	GAGTACTTCC	GTGATGTGGA	AGGGCAAGAC	GTGTTGCTTT	TTATCGACAA	700
	CATTTTCCGC	TTTACGCAGG	CAAACTCTGA	GGTGTCAGCG	CTGTTGGGTC	750
55	GTATTCCCGC	TGCCGTCGGC	TACCAGCCTA	CCCTTGCTGA	GGATCTTGGG	800
	CAGTTGCAGG	AGCGCATTAC	GTCCACGACA	AAAGGTTCCA	TTACCTCTGT	850
	GCAGGCTGTG	TACGTGCCAG	CCGATGATAT	TACCGACCCT	GCGCCAGCAA	900
	CGACCTTTTC	CCACCTCGAT	GCCACGACGG	TGCTGGACCG	TGCCGTTGCC	950
	GAATCCGGCA	TTTACCCCGC	TGTCAACCCA	CTGGAGTGTG	CCTCGCGTAT	1000
60	CATGGACCCG	GATGTAATCA	GCGTTGACCA	CTACAACGTG	GCGCAGGATG	1050

5	TGGTGCAGAT GCTTACCAAG TACAAGGAGC TGCAGGATAT CATTGCGGTG CTTGGCATTG ATGAGCTCAG TGAGGAGGAT AAACTTATCG TGGACCGTGC GCGTAAGGTG ACAAAGTTTC TCTCCCAGCC TTTCCAGGTG GCGGAGGTGT TTACTGGCAT GACAGGCCAC TACGTGCAGC TGGAGGAGAC CATTGAGTCT TTTTCCGGCC TGTTGATGGG CACATATGAT CAGGTGCCGG AGA	1100 1150 1200 1250 1293
10	2) INFORMATION FOR SEQ ID NO: 668  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1191 bases	
15	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Corynebacterium glutamicum</li><li>(C) ACCESSION NUMBER: X77034</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 668	
25	GTGGCAAAGG CGAAGTTCGA GCGTACCAAG CCCCACGTAA ACATCGGCAC CATCGGTCAC GTTGACCACG GTAAGACCAC CACCACCGCG GCTATCACCA AGGTTCTGGC TGACACTTAC CCTGAGCTCA ACGAGGCTTT CGCCTTCGAC	100 150
30	TCCATCGATA AGGCTCCTGA GGAGAAGGAG CGTGGCATCA CGATCAACAT CTCCCACGTT GAGTACCAGA CTGAAAAGCG CCACTACGCA CACGTTGACG CTCCAGGCCA CGCCGACTAC ATCAAGAACA TGATTACCGG CGCTGCTCAG ATGGACGGCG CAATCCTCGT TGTTGCTGCT ACCGACGGCC CAATGCCTCA GACCCGTGAG CACGTTCTTC TTGCTCGCCA GGTTGGCGTT CCTTACATCC	200 250 300 350 400
35	TCGTTGCTCT TAACAAGTGC GACATGGTTG AGGATGAGGA AATCATCGAG CTCGTCGAGA TGGAAGTTCG TGAACTTCTT GCTGAGCAGG ACTACGACGA AGAGGCTCCA ATTGTTCACA TCTCCGCTCT GAAGGCTCTT GAGGGCGACG AGAAGTGGGG CAAGCAGATC CTTGAGCTCA TGCAGGCTTG CGATGACAAC	450 500 550 600
40	ATCCCTGACC CAGTTCGTGA GACCGACAAG CCATTCCTCA TGCCTATCGA GGACATCTTC ACCATCACCG GTCGTGGCAC CGTTGTTACC GGTCGTGTTG AGCGCGGTAC CCTGAACGTG AACGATGATG TTGACATCAT CGGCATCAAG GAGAAGTCCA CCTCCACCAC CGTTACCGGT ATCGAGATGT TCCGTAAGCT TCTTGACTCC GCTGAGGCTG GCGACAACTG TGGTCTGCTT CTCCGTGGTA TCAAGCGCGA AGATGTTGAG CGTGGCCAGG TTATCGTTAA GCCAGGCGCT	700 750 800 850
45	TACACCCCTC ACACCGAGTT CGAGGGCTCT GTCTACGTTC TGTCCAAGGA TGAAGGTGGC CGCCACACCC CATTCTTCGA CAACTACCGT CCTCAGTTCT ACTTCCGCAC CACCGACGTT ACCGGTGTTG TGAAGCTTCC AGAGGGCACC GAGATGGTCA TGCCTGGCGA CAACGTCGAC ATGTCCGTCA CCCTGATCCA GCCTGTCGCT ATGGACGAGG GCCTGCGTTT CGCTATCCGC GAAGGCTCCC GCACCGTTGG CGCTGGTCGT GTCACCAAGA TCATCAAGTA A	900 950 1000 1050 1100 1150
50		
55	2) INFORMATION FOR SEQ ID NO: 669  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1383 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

510

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:					
	(A) ORGANISM: Escherichia coli				
_	(C) ACCESSION NUMBER: extracted from V	00267			
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 669				
	ATGGCTACTG GAAAGATTGT CCAGGTAATC GGCGCCGTAG TT	GACGTCGA 50			
	ATTCCCTCAG GATGCCGTAC CGCGCGTGTA CGATGCTCTT GA				
10	ATGGTAATGA GCGTCTGGTG CTGGAAGTTC AGCAGCAGCT CG	GCGGCGGT 150			
	ATCGTACGTA CCATCGCAAT GGGTTCCTCC GACGGTCTGC GT				
	GGATGTAAAA GACCTCGAAC ACCCGATTGA AGTCCCGGTA GG				
	CTCTGGGCCG TATCATGAAC GTACTGGGTG AACCGGTCGA CA				
	GAGATCGGTG AAGAAGAGCG TTGGGCGATT CACCGCGCAG CA CGAAGAGCTG TCAAACTCTC AGGAACTGCT GGAAACCGGT AT				
15	TCGACCTGAT GTGTCCGTTC GCTAAGGCCG GTAAAGTTGG TC				
	GGTGCGGGTG TAGGTAAAAC CGTAAACATG ATGGAGCTCA TT				
	CGCGATCGAG CACTCCGGTT ACTCTGTGTT TGCGGGCGTA GG				
	CTCGTGAGGG TAACGACTTC TACCACGAAA TGACCGACTC CA				
20	GACAAAGTAT CCCTGGTGTA TGGCCAGATG AACGAGCCGC CG				
	TCTGCGCGTT GCTCTGACCG GTCTGACCAT GGCTGAGAAA TT				
	AAGGTCGTGA CGTTCTGCTG TTCGTTGACA ACATCTATCG TT				
	GCCGGTACGG AAGTATCCGC ACTGCTGGGC CGTATGCCTT CA				
	TTATCAGCCG ACCCTGGCGG AAGAGATGGG CGTTCTGCAG GA				
25	CCTCCACCAA AACTGGTTCT ATCACCTCCG TACAGGCAGT AT				
	GCGGATGACT TGACTGACCC GTCTCCGGCA ACCACCTTTG CG CGCAACCGTG GTACTGAGCC GTCAGATCGC GTCTCTGGGT AT				
	CCGTTGACCC GCTGGACTCC ACCAGCCGTC AGCTGGACCC GC				
	GGTCAGGAAC ACTACGACAC CGCGCGTGGC GTTCAGTCCA TC				
30	TTATCAGGAA CTGAAAGACA TCATCGCCAT CCTGGGTATG GA				
	CTGAAGAAGA CAAACTGGTG GTAGCGCGTG CTCGTAAGAT CC	AGCGCTTC 1200			
	CTGTCCCAGC CGTTCTTCGT GGCAGAAGTA TTCACCGGTT CT				
	ATACGTCTCC CTGAAAGACA CCATCCGTGG CTTTAAAGGC AT				
	GCGAATACGA TCACCTGCCG GAGCAGGCGT TCTACATGGT CG				
35	GAAGAAGCTG TGGAAAAAGC CAAAAAACTT TAA	1383			
	2) INFORMATION FOR SEQ ID NO: 670				
40					
	(i) SEQUENCE CHARACTERISTICS:				
	(A) LENGTH: 1410 bases	•			
	(B) TYPE: Nucleic acid				
4 5	(C) STRANDEDNESS: Double				
45	(D) TOPOLOGY: Linear				
	(ii) MOLECULE TYPE: Genomic DNA				
	(vi) ORIGINAL SOURCE:				
50	(A) ORGANISM: Helicobacter pylori				
	(B) STRAIN: NCTC 11638				
	(C) ACCESSION NUMBER: extracted from A	F004014			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 670				
55	ATGAAAGCGA TGGAAGGTAA AATCATTCAG GTTTTAGGCC CG	CTCCTACA			
	TGTGGAGTTT GAATCCTATC TGCCGGCGAT TTTTGAAGCA CT				
	ATTTTGAAGT TAATGGCGTT CAAAAATCTT TAGTTTTAGA GG				
	CATTTGGGTG GTAATCGGGT GCGAGCGATT GCTATGGATA TG	ACAGAAGG 200			
60	CTTAGTGCGT AACCAAGCCG TCAAAGCTCG TGGCAAAATG AT	TGAAGTGC 250			

	CTGTGGGCGA	AGAAGTGTTA	GGGCGTATTT	TTAATGTTGT	GGGCGAGAGC	300
	ATTGATAATT	TAGAGCCGCT	TAAGCCGTCC	TTAACTTGGC	CCATTCACAG	350
	AAAAGCCCCT	AGTTTTGAGC	AGCAAAGCAC	TAAAACAGAA	ATGTTTGAAA	400
	CCGGTATTAA	AGTCATTGAC	TTGCTCGCGC	CTTATTCTAA	GGGCGGTAAA	450
5	GTAGGCTTGT	TTGGTGGGGC	TGGCGTAGGC	AAAACGGTGA	TCATTATGGA	500
	GCTTATCCAC	AATGTGGCTT	ATAAGCATAA	CGGGTATTCG	GTGTTTGCAG	550
	GTGTGGGGGA	GCGCACCAGA	GAAGGGAACG	ATCTGTATTT	TGAGATGAAA	600
	GAAGGGGGCG	TTTTAGACAA	AGTTGCGTTG	TGCTATGGGC	AAATGAATGA	650
	GCCACCAGGT	GCAAGGAATC	GCATCGCATT	CACCGGCTTG	ACGATGGCGG	700
10	AGTATTTCCG	TGATGAAAAG	GGCTTAGATG	TGTTGATGTT	TATTGATAAC	750
	ATCTTTAGAT	ACGCTCAAAG	CGGTGCGGAA	ATGAGCGCGC	TATTAGGCCG	800
	TATCCCTTCA	GCGGTGGGGT	ATCAGCCCAC	GCTAGCCGGG	GAAATGGGGA	850
	AACTTCAAGA	GCGTATCGCT	TCCACTAAAA	ATGGCTCTAT	CACTTCGGTT	900
	CAAGCGGTGT	ATGTGCCAGC	AGACGACTTG	ACTGACCCAG	CCCCTGCTTC	950
15	GGTGTTTGCG	CATTTAGATG	CGACTACGGT	GTTGAATAGA	AAGATCGCTG	1000
	AAAAAGGGAT	TTATCCGGCG	GTGGATCCTT	TGGATTCCAC	TTCAAGGATT	1050
	TTAAGCCCTC	AAATGATTGG	CGAGAAGCAC	TATGAAATCG	CCACCGGTAT	1100
	CCAGCAAGTT	TTGCAAAAAT	ACAAGGATTT	GCAAGATATT	ATTGCGATTT	1150
	TGGGATTGGA	CGAATTGAGC	GAAGAGGATA	AAAAAACGGT	TGAAAGGGCC	1200
20	AGAAAAATTG	AGAAGTTTTT	ATCCCAGCCG	TTTTTTGTGG	CTGAAGTGTT	1250
	TACAGGAAGT	CCCGGTAAGT	ATGTGACTCT	CCAAGAGACT	TTAGAGGGCT	1300
	TTGGAGGGAT	TTTAGAGGGC	AAATACGATC	ACATTCCTGA	AAACGCGTTT	1350
	TACATGGTGG	GCAGCATTCA	AGAGGTTTTA	GAAAAAGCTA	AAAACATGAA	1400
	AAATTCCTAA					1410
25						

# 2) INFORMATION FOR SEQ ID NO: 671

- 30 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1401 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Clostridium acetobutylicum
- 40 (B) STRAIN: DSM 792

- (C) ACCESSION NUMBER: extracted from AF101055
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 671

45	ATGCCAGAAC	ATGTAGGTAA	AATTGTTCAG	GTAATAGGAC	CTGTTGTGGA	50
	TATTAAATTT	GATGCAGAGA	ACCTTCCTGA	CATCTATAAT	TCCATAGAAA	100
	TAGATATGGG	AGATAATAAA	AAACTCATTG	CTGAAGTTGA	ACAACATGTA	150
	GGAGATGACA	TAGTAAGAAC	AATAGCAATG	GAAGGTACTG	ACGGATTAAA	200
	AAGAGGAATG	GAAGCAGTTA	ACACTGGTAA	ACCAATATCT	GTACCAGTTG	250
50	GAGAAAATGT	TTTAGGACGT	CTTTTTAATG	TTTTAGGTCA	GACAATAGAT	300
	GAAGCAGGAG	ACATGAATGC	TGATAAGTAT	TATCCAATTC	ATAGACCAGC	350
	TCCAACCTTT	GAAGAACAAT	CAGTTCAACC	AGAAATGTTT	GAAACAGGTA	400
	TTAAGGTTAT	AGATTTACTT	GCTCCATATC	AAAAGGGTGG	AAAAATCGGT	450
	TTGTTCGGTG	GTGCCGGTGT	TGGTAAAACA	GTTCTTATTC	AGGAACTTAT	500
55	AAATAATATA	GCAAAAGAAC	ACGGTGGATT	ATCAGTATTC	ACAGGTGTTG	550
	GAGAAAGAAC	AAGAGAAGGT	AATGACCTTT	ATTATGAAAT	GAAAGATTCA	600
	GGAGTTATAA	ATAAAACAGC	TCTAGTATTT	GGTCAGATGA	ATGAACCACC	650
	TGGCGCTAGA	ATGAGAGTTG	CTTTAACAGG	ACTTACAATG	GCTGAATATT	700
		AGGTCAAGAT	GTGCTTCTAT	TTATAGATAA	TATATTCAGA	750
60	TTTACACAAG	CTGGTTCAGA	GGTTTCAGCT	TTACTTGGTA	GAATACCTAG	800

	TGCCGTTGGT	TATCAGCCAA	CACTTGCAAA	TGAAATGGGT	GCTCTTCAAG	850
	AGAGAATAAC	ATCAACAAAA	CAGGGTTCAA	TCACATCCGT	TCAGGCTGTA	900
	TATGTTCCTG	CTGATGACCT	TACAGACCCA	GCTCCAGCAA	CAACATTTAC	950
	GCATCTTGAT	GCAACAACAG	TTCTTTCAAG	AGAAATATCA	AACTTAGGAA	1000
5	TATATCCTGC	AGTTAGTCCT	CTTGAATCAA	CTTCAAGAAT	ACTTGATCCA	1050
-	AGAATTGTTG	GAGAAGAGCA	TTATGAAGTT	GCTAACAAGG	TTAAACATAT	1100
	ACTTGAAAGA	TATCAAGAAC	TTCAAGATAT	CATAGCTATA	CTTGGTGTTG	1150
	ATGAACTTTC	AGATGAGGAT	AGATTGTTAG	TTGGAAGAGC	AAGAAGAGTA	1200
	CAGAGATTCT		TTTTAGTGTT	GCTGAACAAT	TTACAGGAAT	1250
10	GAAAGGTCAG	TTTGTACCTG	TAAAAGATAC	TATAAGAAGT	TTTAAAGAAA	1300
	TATTAGATGG	TAAGTGTGAT	GATCTTCCAG	AAGCTGCATT	TTTATTTGCA	1350
	GGAACAATAG	AAGATGTAAA	AGAAAAAGCT	AAAAAAATGA	TGGAAAGCTA	1400
	A					1401

20

- 2) INFORMATION FOR SEQ ID NO: 672
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1509 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Cytophaga lytica
    - (B) STRAIN: DSM 2039
    - (C) ACCESSION NUMBER: M22535
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 672

	ATGTCTAAAG	TTACAGGTAA	AGTTTCCCAA	ATTATTGGCC	CAGTTATAGA	50
35	TGTGGAGTTC	CAAGCAGGGG	TAGATCTTCC	AAAAATTTAT	GATTCATTAG	100
	AAATTAAAA	AGCAGATGGA	TCAATTTTGG	TTTTGGAAGT	ACAATCACAC	150
	ATTGGTGAGA	ACACAGTAAG	AACTATATCT	ATGGATTCTT	CTGATGGTTT	200
	AAGTCGTGGA	GCAGAGGTTA	ATGCAACAGG	AAGCGCTATA	CAAATGCCAG	250
	TTGGAGATGA	CGTTTACGGA	CGTTTATTTA	ACGTAATTGG	AGACGCTATT	300
40	GATGGTCTTG	GGAATTTACC	AAAATCTGGT	AAAGATGGTT	TGCCAATACA	350
	CAGAGAGGCA	CCAAAATTTG	AAGACTTATC	TACTTCTACA	GAAGTATTAT	400
	TTACAGGTAT	TAAAGTAATT	GACCTTATTG	AGCCTTATGC	AAAAGGTGGT	450
	AAGATTGGTT	TATTTGGAGG	TGCCGGAGTA	GGTAAAACAG	TATTAATTCA	500
	GGAATTAATT	AACAACATTG	CAAAAGGTCA	CGGTGGACTT	TCTGTATTTG	550
45	CTGGTGTAGG	TGAGCGTACT	CGTGAGGGTA	ACGATTTACT	ACGTGAGATG	600
	TTAGAGTCTG	GTATTATTAA	ATACGGAGAT	GACTTTATGC	ACTCTATGGA	650
	AGAAGGTGGT	TGGGATTTAT	CTAAAGTTGA	TAAATCTGTA	ATGAAAGATT	700
	CTAAAGCAAC	CTTTGTATTT	GGACAAATGA	ATGAGCCACC	AGGAGCACGT	750
	GCACGTGTTG	CATTATCTGG	TTTAACTATT	GCAGAATATT	TCCGTGATGG	800
50	AGCAGGTGAA	GGTCAAGGTA	AAGATGTACT	TTTCTTTGTG	GATAACATTT	850
	TCCGTTTTAC	ACAAGCTGGT	TCTGAGGTAT	CTGCATTACT	TGGTCGTATG	900
	CCATCTGCGG	TAGGTTACCA	ACCAACATTA	GCAACAGAAA	TGGGTGCTAT	950
	GCAAGAGCGT	ATTACATCAA	CAAAAAGAGG	TTCTATTACA	TCTGTACAGG	1000
	CGGTTTACGT	ACCTGCGGAT	GATTTAACGG	ATCCAGCACC	GGCAACTACC	1050
55	TTTGCTCACT	TAGATGCAAC	AACGGTATTG	TCTCGTAAAA	TTGCAGAGTT	1100
	AGGTATTTAC	CCAGCGGTAG	ATCCATTAGA	TTCTACTTCT	AGAATCTTAG	1150
	CTCCAGAAAT	TTTAGGAAAA	GATCACTACT	CTTGTGCACA	ACGTGTAAAA	1200
	GAGTTGTTAC	AACGTTATAA	AGAATTACAA	GATATTATTG	CTATCCTTGG	. 1250
	TATGGAAGAA	TTATCTGAGG	AAGATAAAAT	GGCAGTTGGT	AGAGCAAGAC	1300
60	GTGTACAACG	TTTCTTATCT	CAGCCTTTCC	ACGTAGCAGA	GCAATTTACA	1350

5	GGTCTTAAAG GTGTTTTAGT AGATATCAAG GATACTATTA AAGGATTTAA TATGATTATG GATGGTGAAT TAGATCACTT ACCAGAATCT GCATTTAACC TTAAAGGTAC TATTGAAGAA GCTATAGAAG CAGGAGAAAA AATGCTTGCT GAAGCATAA	1450
	2) INFORMATION FOR SEQ ID NO: 673	
LO	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 819 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Ehrlichia risticii     (B) STRAIN: HRC-IL</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 673	
25	CCTAAAATAT ATGATGCATT ATATGTAAAA CTAGATAATG AAAATTTGTG TTTAGAAGTT TCACAAATTA TTGGAGATAA TGTTGTTAGA TGTATTGCAA TGGGAGCTAC TTATGGATTA AATCGTGGTT TAGAAGTAGT TTGTTCAGGA AATCCAATTC AGGTTCCTGT AGGTGAACAA GTTTTAGGTA GAATGTTTAA TGTTGTTGGT AAAACAATTG ACAATCTTGA ATCTTTAGAT GATAAAAATA	100 150 200 250
30	TAAAAATGAT GCCAATTCAT CGAAATCCAC CATCATTTGA AGAGCAATCC AATGAAATTG AAATTTTTGA AACAGGCATT AAAGTTATTG ATTTATTAAT TCCATATGCT AAAGGTGGTA AGATTGGATT ATTTGGTGGA GCAGGGGTTG GGAAAACGGT TCTTGTTCAA GAATTAATTC ACAATATCGC AAAAGGTCAT GGTGGTCTAT CTGTTTTTGC TGGAGGTTGGT GAAAGAACTC GTGAAGGTAA	350 400 450 500
35	TGACTTGTAT TATGAAATGA TTGAAGGTGG AGTTATAGAT AAAACAGCCT TAGTGTTTGG GCAAATGAAT GAACCTCCTG GCGCAAGAAT GCGCGTAGCA TTAACTGCTT TAACAATGGC TGAATATTTC CGTGATGTTC AAAACCAAGA TGTTTTGTTA TTTATTGATA ATATCTTTAG ATTTACACAA GCTGGTAGTG AAGTTTCAGC ATTATTAGGA AGAATGCCAT CTGCTGTTGG TTATCAACCA ACTTTGGCAT ATGAAATGGG ATTGTTACAA GAAAGAATCA CTTCCACTAA	600 650 700 750
40	AAGTGGTTCT ATAACATCT	819
45	2) INFORMATION FOR SEQ ID NO: 674  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 840 bases  (B) TYPE: Nucleic acid	
50	<ul><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Vibrio cholerae     (B) STRAIN: ATCC 25870</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 674	
60	AGAGCGAAGT ACCAAGTGTT TACGATGCTC TGAATGTTGT GGATTCCAAA	50

	GAACGTCTGG	TTCTGGAAGT	TCAACAGCAG	CTAGGCGGTG	GCGTGATTCG	100
	CGCTATCGTT	ATGGGTAGCT	CGGATGGTTT	ACGTCGTGGA	ATGACAGTAC	150
	AAAACACTGG	CGCTCCAATT	TCAGTACCAG	TAGGTACTAA	AACCCTAGGT	200
	CGTATCATGA	ACGTGCTTGG	TGATGCGATT	GACGAACGTG	GCGACATTGG	250
5	CGCAGAAGAG	GTGTACTCGA	TTCACCGTCC	TGCTCCAAGC	TACGAAGAAC	300
3	AGTCTAGTGC	AACTGAACTT	TTGGAAACGG	GTGTTAAGGT	TATCGACCTG	350
	ATCTGTCCGT	TTGCGAAAGG	CGGTAAAATC	GGTCTGTTCG	GTGGTGCGGG	400
	TGTAGGTAAG	ACCGTTAACA	TGATGGAACT	TATCAACAAC	ATCGCGCTAC	450
	AGCACTCAGG	TTTGTCAGTA	TTTGCTGGGG	TAGGTGAGCG	TACTCGTGAG	500
10	GGTAACGACT	TCTACCACGA	AATGCAGGAA	GCGGGCGTTG	TAAACGTTGA	550
10	ACAACCAGAA	CTGTCGAAAG	TAGCGATGGT	TTACGGTCAG	ATGAACGAGC	600
	CACCAGGCAA	CCGTCTGCGT	GTAGCACTGA	CTGGTCTGAC	TATGGCGGAA	650
	AAGTTCCGTG	ATGAAGGCCG	TGACGTACTG	CTGTTTATCG	ACAACATCTA	700
	CCGTTACACC	CTAGCGGGAA	CGGAAGTATC	TGCTCTGCTT	GGCCGTATGC	750
15	CTTCAGCGGT	AGGTTACCAA	CCAACACTGG	CTGAAGAGAT	GGGTGTTCTG	800
10	CAAGAACGTA		CAAAAAAGGT	TCTATCACCT		840
	CARGAACGIA	1 CACCI CAIC				0.10

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 828 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Vibrio cholerae
  - (B) STRAIN: ATCC 25870
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 675

35 CGGCGGTATC CTAGTTGTAG CGGCAACTGA CGGTCCAATG CCACAAACTC 50 GTGAGCACAT CCTGCTGGGT CGCCAAGTAG GTATTCCTTA CATCATCGTA 100 TTCATGAACA AGTGTGACAT GGTTGACGAT GAAGAGCTTC TAGAGCTGGT 150 AGAGATGGAA GTTCGTGAGC TGCTGTCTGA GTACGATTTC CCAGGTGATG 200 ACCTGCCAGT AATCCAAGGT TCAGCACTAG GCGCGCTAAA CGGCGAAGCA 40 250 CAGTGGGAAG CGAAGATTGT TGAGCTAGCA GAAGCACTGG ATACTTAYAT TCCAGAGCCA GAGCGTGCAG TAGACATGGC ATTCCTGATG CCAATCGAAG 350 ACGTATTCTC AATCCAAGGT CGTGGTACAG TAGTAACTGG CCGTATCGAG 400 CGCGGCATCC TGAAAGTGGG TGACGAAGTA GCGATCGTTG GTATCAAAGA 450 GACAGTAAAA ACGACCTGTA CAGGTGTAGA GATGTTCCGT AAGCTGCTTG 500 45 ACGAAGGTCG TGCAGGTGAG AACGTAGGTG CACTRCTACG TGGTACTAAG 550 CGTGAAGAAG TAGAGCGTGG TCAAGTACTG GCGAAGCCAG GTTCAATCAC 600 ACCACACAT AAGTTCGAAT CAGAAGTATA CGTACTGTCA AAAGATGAAG GTGGCCGTCA TACTCCATTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC 650 700 CGTACAACTG ACGTAACAGG CAGCATTGAG CTACCAGARG GCGTAGAAAT 50 750 GGTAATGCCA GGCGACAACG TGAAGATGGT TGTAGACCTG ATTGCACCAA 800 TCGCGATGGA CGAAGGTCTA CGCTTCGC 828

55

60

- 2) INFORMATION FOR SEQ ID NO: 676
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1298 bases
- (B) TYPE: Nucleic acid

```
STRANDEDNESS: Double
            (C)
            (D) TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
5
      (vi) ORIGINAL SOURCE:
            (A) ORGANISM: Leishmania enriettii
                 STRAIN: ATCC 50120
            (B)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 676
10
    CTTCTCGGAT GGCGTGCCGC CGGTGCTGAC GGCGCTGGAC GTGACGGAGG
    AACTCGGGCG CGACGAGCCG CTGACGCTAG AGATCGTGCA ACACTTGGAC
                                                                 100
    GCGCACACCG GCCGCTGCAT TGCGATGCAG ACGACGGACC TACTGAAGCT
    GAAGTCGAAG GTCGTGTCGA CCGGCGGGAA CATCTCTGTG CCTGTGGGCC
    GCGAGACGCT TGGCCGCATC TTCAACGTAC TGGGCGACGC GATTGACCAG
    CGCGGCCCG TGGGCGAGAA GATGCGCATG GCGATCCACG CGGAGGCGCC
    GAAGCTGGCG GACCAGGCGG CGGAGGACAC GATCCTGACG ACCGGCATCA
                                                                 350
    AAGTGATCGA TCTGATCCTG CCGTACTGCA AGGGCGGCAA GATCGGTCTG
                                                                 400
    TTCGGCGGTG CCGGTGTGGG GAAGACTGTG ATCATCATGG AGCTGATCAA
CAACGTCGCG AAGGGCCACG GTGGCTTCTC CGTGTTCGCC GGCGTTGGGG
                                                                 450
20
                                                                 500
    AGCGCACCCG CGAGGGGACG GATCTGTACC TGGAGATGAT GCAATCGAAG
                                                                 550
    GTGATCGACC TGAAAGGTGA GTCGAAGTGT GTGCTTGTGT ACGGGCAGAT
                                                                 600
    650
                                                                 700
25
                                                                 750
                                                                 800
                                                                 850
                                                                 900
                                                                 950
     TGGCGGAGTC TGGCATCTAC CCCGCGGTCA ACCCACTGGA GTGCGCGTCG
                                                                 1000
     CGTATCATGG ACCCTGATGT GATCGACGTG GATCACTACA ACGTTGCGCA
     GGACATTGTT CAGATGCTGA CCAAGTACAA GGAGCTGCAG GATATCATTG
                                                                 1100
     CGGTGCTTGG TATCGACGAG CTGAGCGAGG AGGACAAGGT TGTGGTGGAC CGTGCGCGCA AGGTGACCCG GTTCCTGTCA CAGCCGTTCC AGGTTGCGGA
35
     GGTGTTTACT GGCATGACAG GCCATTACGT ACAGCTGAGC GACACGGTGG
                                                                1250
     AGTCGTTCTC CGGTTTGCTG ATGGGGTCGT ACGACCAGAT TCCGGAGA
                                                                 1298
40
     2) INFORMATION FOR SEQ ID NO: 677
        (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 1083 bases
                 TYPE: Nucleic acid
             (B)
 45
                 STRANDEDNESS: Double
             (C)
                 TOPOLOGY: Linear
             (D)
       (ii) MOLECULE TYPE: Genomic DNA
 50
        (vi) ORIGINAL SOURCE:
             (A) ORGANISM: Babesia microtti
             (B) STRAIN: Persing-1
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 677
 55
     CAAGCTCAAG TCTGAGCGTG AGAGAGGTAT TACTATTGAC ATTACTCTCT
```

200

GGAAATTTGA GACCCAGAAA TACGAGTACA CTGTCATAGA CGCACCTGGT CATCGTGACT TTATCAAAAA TATGATTACT GGGACTTCAC AAGCCGACGT

TGCTATGCTT GTCGTTCCTG CTGAATCTGG CGGATTCGAG GCTGCTTTTT

	CCAAAGAAGG	TCAGACCCGT	GAACACGCCT	TACTAGCCTT	CACACTTGGC	250
	GTCAAACAGA	TGATTGTTGC	TATTAACAAA	ATGGATTCTT	GTCAGTACAA	300
	GGAGGATCGT	TATATGGAAA	TTTTCAAGGA	AGTACAGCAG	TACTTGAAGA	350
	AGGTGGGTTA	CAAAGTTGAA	AGCGTGCCGT	TTGTTGCTAT	TTCAGGATTC	400
5	CACGGTGACA	ACATGGTTGA	AAAATCTACT	AACATGCCTT	GGTATAAGGG	450
	TAAGACCCTC	GTAGAGGCAC	TTGATCAAAT	GGAGCCTCCA	AAACGTCCGG	500
	TCGAAAAACC	TCTTAGATTG	CCCCTGCAGT	CAGTCTATAA	AATTGGAGGT	550
	ATTGGTACGG	TACCAGTCGG	AAGGGTCGAA	ACAGGACAAC	TGAAAGCAGG	600
	AATGATCATT	ACTTTTGCCC	CCACTGGTTT	GACCACTGAA	TGTAAATCTG	650
10	TTGAAATGCA	TCACGAGGTT	GTGGAAGTGG	CTAGCCCCGG	TGATAACGTT	700
	GGATTTAATG	TCAAGAATGT	GTCTGTTAAG	GATATTAAGA	GAGGAAATGT	750
	GGCTTCGGAT	TCGAAAAATG	ACCCAGCCAA	GGAAGCTACC	TCTTTCTCTG	800
	CACAAGTCAT	TGTACTCAAT	CACCCTGGTA	CCATCAAGGC	CGGTTACTCA	850
	CCTGTGGTTG	ATTGCCATAC	TGCCCACATT	GCTTGCAAAT	TCGAATCTCT	900
15	AGACACTAGG	ATTGACAAGC	GTACTGGCAA	GACTTTGGAA	GAAAATCCTA	950
	AGACTATTAA	GAATGGTGAC	GCTGCCATGG	TGACTATGAA		1000
	CCCATGGTTG	TGGAAACTTT	CACCGACTAC	GCCCCGTTGG	GCCGGTTCGC	1050
	CGTGCGTGAT	ATGCGCCAAA	CCGTTGCCGT	CGG		1083
20						
	2) INFORMAT	ON FOR SEQ	ID NO: 678			
25	(i) SEQU (A)	JENCE CHARAC LENGTH: 55	CTERISTICS:			

- LENGTH: 551 bases (A)
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 30
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Cryptococcus neoformans
    - (B) STRAIN: Lev-12
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 678

	TGTGCTCATT	CAGGAGCTCA	TTAACAACAT	TGCCAAGGCT	CACGGTGGTT	50
	ACTCTGTCTT	CACTGGTGTC	GGTGAGCGAA	CTCGTGAGGG	TAACGACTTG	100
40	TACCACGAAA	TGAGGGAGAC	TGGTGTTATC	AACCTTGAGG	GTGACTCCAA	150
	GGTCGCTCTT	GGTGAGTTCT	TTTTTTTCTT	CAGGCTAATT	AGTCGATGAC	200
	GTGGGCCCTG	ACTAAAACTG	TTTCTTCCAG	TCTTCGGTCA	GATGAACGAG	250
	CCCCCTGGAG	CCCGTGCCCG	AGTTGCCCTT	ACTGGTTTGA	CCATTGCCGA	300
	GTACTTCCGT	GACGAGGAAG	GCCAGGATGT	GTTGCTTTTC	ATTGACAACA	350
45	TTTTCCGATT	CACCCAGGCC	GGTTCCGAGG	TGTCTGCCTT	GCTCGGTCGT	400
	ATCCCCTCTG	CCGTCGGTTA	CCAGCCCACT	CTTTCCACCG	ACATGGGTGG	450
	TATGCAGGAG	CGAATGTAGG	TTGCATTCTC	TGTGATTTTA	CGGCAAGCCT	500
	TGACTTTTTT	TTTCTAGTAC	CACCACCAAG	AAGGGTTCCA	TTACCTCCGT	550
	C					551
50						

- 55 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 552 bases
  - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double

  - (D) TOPOLOGY: Linear

60

(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Cryptococcus neoformans (B) STRAIN: ATCC 44104 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 679 TGTGCTCATT CAGGAGCTCA TTAACAACAT TGCCAAGGCC CACGGTGGTT ACTCCGTCTT CACCGGTGTC GGTGAGCGAA CTCGTGAGGG TAACGACTTG 100 TACCACGAAA TGAGGGAGAC TGGTGTTATC AACCTTGAGG GTGACTCCAA 150 TACCACGAAA TGAGGGAGAC TGGTGTTATC AACCTTGAGG GTGACTCCAA
GGTCGCTCTT GGTGAGTTCT TTTTTTTGGG AGCTAATTAG TCGATGACGT
GGGCCCTGAC CAAAACCGTT TCTTTCAGTC TTCGGTCAGA TGAACGAGCC
CCCTGGAGCC CGTGCCCGAG TTGCTCTTAC TGGTTTGACC ATTGCCGAGT
TTCCGATTCA CCCAGGCCGG TTCCCGAGGTG TCTCCCTTGC TCGGTCGTAT
CCCCTCTGCC GTCGGTTACC AGCCCACCAA GAACGCTTCC
TGCAAGAGCG AATGTAAGTT GCAACGACCAA GAACGCTTCC ATTACCTCCC 15 ACTTACATTT TTTTCTAGCA CCACCACCAA GAAGGGTTCC ATTACCTCCG TC 20 2) INFORMATION FOR SEQ ID NO: 680 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1018 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 30 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Cunninghamella bertholletiae 35 (B) STRAIN: ATCC 42115 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 680 TCTCCCTGCT ATTTTAAACG CTCTTGAAGT TAAGGATCAT GCTGGTGGTC GTCTTGTTCT TGAAGTTGCT CAACACTTGG GTGAAAACAC TGTACGTACT ATTGCTATGG ATGGTACTGA AGGTAAGTTT ATTTTTAGAT GATCATAAAT AATTGATCAT AATGATAAAA AAAAAAGAAG AAGAAGAACA GGATGTATAT AATGGTTAAT AAATAATATT TTCATATTGK ATATAACTAT TTAATCTGTT
TTTTTTTTTTCTT CATGATTATA TATATATATG TMCTAATATC TAATATGAAC
CTTTTTTATA AAATTAATCA GGTCTTGTCC GTGGTCAAAA GGTTGTTGAT 250 300 45 350 ACTGGTGCTC CTATTACCAT TCCTGTTGGT AAGGAAGTTC TTGGTCGTAT

CATCAACGTT ATTGGTGAAC CCATTGATGA ACGTGGTCCT ATTAAGGCCA

AGTCTCACCG TGCTATTCAC GCTGAAGCTC CAGAATTCGT TGATCAATCT

CCTACTCCCG AAATTCTTGA AACTGGTATT AAGGTTGTCG ATTTATTAGC

TCCTTATGCT CGTGGTGGTA AGATTGGTCT TTTCGGTGGT GCTGGTGTAG

GTAAAACTGT CTTGATTCAA GAACTTATTA ACAACATTGC TAAAGCCCAT 400 450 GTAAAACTGT CTTGATTCAA GAACTTATTA ACAACATTGC TAAAGCCCAT
GGTGGTTACT CTATTTTCTG TGGTGTTGGT GAACGTACTC GTGAAGGTAA
CGATTTATAC CACGAAATGA TGGAAACTGG TGTCATTAAA CTTGAAGGTG
ACTCCAAGTG TGCTCTTGTA TTCGGTCAAA TGAACGAACC TCCTGGTGCT
CGTGCCCGTG TTGCTTTAAC TGGTTTAACC ATTGCTGAAT ACTTCCGTGA
TGAAGAAGGT CAAGATGTGT TACTTTTCAT TGATAACATT TTCCGTTTCA
CTCAAGCTGG TTCTGAAGTA TCTGCCCTTT TAGGTCGTAT TCCATCTGCT
CTCAAGCTGG TACCACCTTT ATCGCTCGTA TCCAACGACC

GTAGGTTACC AACCCACTTT ATCTACTGAT ATGGGTGGTA TGCAAGAACG 1000

TATTACTACT ACCAAGAA

60

_	2) INFO	RMATION FOR SEQ ID NO: 681	
5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
10	(44)	MOLECULE TYPE: DNA	
		SEQUENCE DESCRIPTION: SEQ ID NO: 681	
15		TTYG GIISIGGIAA RAC	23
	GGISSI	TIIG GIISIGGIAA KAC	
20	2) INFO	ORMATION FOR SEQ ID NO: 682	
25	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 682	
	GTIACI	GGYT CYTCRAARTT ICCICC	26
35	2) INFO	ORMATION FOR SEQ ID NO: 683	
40	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 683	
	GTIACI	GGIT CISWIAWRTC ICCICC	26
50			
	2) INFO	DRMATION FOR SEQ ID NO: 684	
55	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 3267 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii)	MOLECULE TYPE: Genomic DNA	

## (vi) ORIGINAL SOURCE:

5

- (A) ORGANISM: Candida tropicalis
- (C) ACCESSION NUMBER: M64984

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 684

		CTTTAGAAAA	~~~~~~~	מממדדממממ	GTCTTTCATT	50
	ATGGCTGGTG	CTTTAGAAAA	CGCAAGAAAA	አ አ ጥርጥ አጥጥርጥ	GTTTCCGGTC	100
	AGATGACACC	AATGAATCCC	AATAIGGICA	CTCCCATCTA	CGAATTGGTT	150
10	CGGTTGTTAT	TGCCGAAAAC	ATGATIGGAL	COUNTACTION	ጥጥልልጥርርጥርል	200
	AAAGTTGGTC	ATGATAATTT	AGTTGGGGAA	TOTALLAGAA	A CTCTTCCTC	250
	TAAAGCAACC	ATTCAAGTTT	ATGAAGAAAC	I GCAGGGGTC	ACCUTCUTGGT	300
	ATCCAGTTTT	AAGAACTGGT	AAACCATTAT	CIGIIGAAII	AUGICCIGGI	350
	TTAATGGAAA	CTATTTATGA	TGGTATTCAA	AGACCTTTAA	AMGCCATIAM	400
15	AGATGAATCC	CAATCTATTT	ATATCCCAAG	AGGTATTGAT	GIICCIGCII	450
	TATCAAGAAC	TGTTCAATAT	GATTTCACTC	CAGGTCAATT	SAAAGI IGGI	500
	CAMCAMAMC)	CTCCTCCCCCA	$C\Delta$ TTTTTGGT	TCTATTTATG	AAAACICIII	550
	ATTGGATGAC	<u> </u>	TGTTACCTCC	AAGAGCAAGA	GGTACTALIA	600
		TCAAGCCCGGT	TCTTATAATG	TTGAAGAACC	AGIIIIGGAA	
20	GTTGAATTTG	ATGGTAAGAA	ACATAAATAC	TCTATGATGC	ATACATGGCC	650
	지 어때까지 어지 어때까	CCAAGACCAG	TTGCTGAAAA	ATTGACTGCT	GATCATCCAT	700
	TGTTGACCGG	<b>ጥሮልልልርልርፕሮ</b>	TTGGATTCTT	TATTCCCATG	TGTTCAAGGT	750
	GGTACTACTT	CTATCCCAGG	GGCTTTTTGGT	TGTGGTAAAA	CTGTTATTTC	800
	$m \subset N$ $M$ $C$ $M$	ጥርርል ል ልጥጥርጥ	CCAACTCTGA	TGTTATTATC	TATGTTGGTT	850
25		አርርጥአርጥር እ	GTCATGATGG	CTGATGGTGC	CGACAAATCT	900
25	አመመሮ እ አሞሮጥ እ	TTCDACTTCC	TGACAAAGTC	ATGGGTAAAG	ATGGTATGCC	950
	አአ <i>ርአርአአ</i> ርጥጥ	CTTCCCTTT	CAAGAGGTTA	TGATGATATG	TACAAGGTTC	1000
	ርጥርን እርጥጥጥር	TACTACTAGA	CGTAATGCTA	AATCCGAAGG	CTTGATGGAT	1050
	መጥረ እ ርጥር ጥጥጥ	CTCCTCATCA	TAAACTTATC	TTGAAAACTA	AACAAGATGT	1100
2.0	$C$ $\lambda$ $\lambda$ $C$ $\lambda$ $T$ $T$ $C$ $C$ $T$	<b>ΣΓΣΡΟΤΑΙΑΙ</b>	TTGGTGGCAA	CACCTATACT	GGTGTTACTT	1150
30	CAAGAIIGCI	CCAAAAGACT	AAGACTGGTA	TTGAATTAGT	TAAAGCCAAG	1200
	ACTAAAGTTT		TATCCATGGT	CAAAATGGCG	CTGAAGAAAA	1250
	AGCTGCTACT		GCATTGACTC	TAAAGAATAC	ATTGATTGGA	1300
	maxmmaxxaca	<b>ም</b> አርአርአጥ <b>ተ</b> እጥ	GTACAAGTTG	ATGAAATTGT	CAAGACCAGC	1350
25	TCATIGAAGC	TGATCAACCC	ACTTCATTTT	GAATCTGGTA	AACTCGGTAA	1400
35	ACCACTCAAA	GAACACAAGC	AAAACAAATC	ACTTGCTCCA	CAATTGGGTT	1450
			CCTATTCGAA	ATGTTAAATC	TTCTGCTTTC	1500
	ACTTGTTGGG	CCAAAGATGA	TCTTAAATTA	GCTACAAGAA	TTATGAACTA	1550
	ACCATGAACT	TTCCCCCATCA		TACTGAATCC	GGTGAACTCA	1600
	CTCTTCAAAA	AAACGAAGAA	CAATTTTTCA	ATAACCTTGG	TGCTGAAAAG	1650
40	ATGTCGCTGA		TTTTCATCAA	TTTACCGATG	CTATGGATGA	1700
	GATGAAGCIG	AATCTTCAC	GTGCAGCTGC	AAGCAAGAAG	AACAATTTGT	1750
	ATTGACTATC	MAIGIICAIG	CTTCGTTTCA	GAGCCAAGTC	TACTGATATT	1800
	TGTGGAATGC	TIIGAAAICI	ጥአጥጥርርጥርጥጥ	GATGATATTG	TTGTCAGAGA	1850
	GTCAAGAGTA	COCCETTEL	THITGOIGE	ТССТААТСТТ	GAAACCAAAT	1900
45			CTTCTTACAA		ACATGTCGCT	1950
	CCAATGGTTC	TATIGAAGCI	TO THOM	CITCITICAL	CATCTATTAA	2000
	AGAGGTCTTG	TCAAGATIGC	TCATICITIC	TOTTLOGA	GAATTTGCTT	2050
			AIGCIGCIGG	CTGGTGTTCT	TTCTAAATGT	2100
	GTATTGTCAA	TTTGACTGGT	GCICCACIIC	, VYAGIGIICI	GAGACCCAGT	2150
50	GCACTTGCAA	GAAACCAAAC	TCCAGIIGIC	. AMMILIACCA	TATTATGGTA	2200
	TTTGTTCAAC	TTTGATTTGA	TCAAAICIGC	⋰ <del>य़य़य़य़</del> ॖय़य़ॼय़य़य़ढ़ ॱ॓॓॔॔॓॓ऀऀऀढ़ॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣॣ	CAACATGGCC	2250
	TTACTTTGGC	TGAAGAAACT	GATCATCAAT	CACATCCCTC	CAACATGGCC	2300
	TTGGTGCACA	ACTGTGGTGA	ACGIGGIAAI	. GAGALGGCIG	AAGTTTTGAT	2350
	GGAATTCCCA	GAATTGTTTA	CIGAAATIIC	. IGGIAGAAAA	GAACCAATTA	2400
55	TGAAACGTAC	CACTTTGGTT	GCCAATACTT	CIWWIWIGC	AGTCGCTGCC	2450
	AGAGAAGCTT	CTATTTATAC	TGGTATTACA	TIGGCIGAAI	ATTTCAGAGA	2500
	TCAAGGTAAG	AATGTTTCTA	TGATTGCTGA	A TICITOTICA	CGTTGGGCTG	2550
	AAGCTTTGAG	AGAAATTTCT	GGTAGATTGG	GIGAAAIGCC	TGCTGATCAA	2600
	GGTTTCCCAG	CTTATTTGGG	TGCTAAATTC	CCTTCTTTCT	ATGAGCGTGC	2650
60	CGGTAAAGCC	: ACTGCTTTGG	GTTCACCAGE	1 INCHCIICG	TCAGTTTCTA	2000

20

30

#### 2) INFORMATION FOR SEQ ID NO: 685

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1782 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 25 (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Enterococcus hirae
    - (B) STRAIN: ATCC 9790
    - (C) ACCESSION NUMBER: D17462
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 685

	TTGCAAATTG	GAAAAATCAT	AAAAGTCTCC	GGTCCTCTCG	TTATGGCAGA	50
35	AAATATGTCA	GAAGCAAGTA	TTCAAGACAT	GTGTTTAGTG	GGAGATTTAG	100
	GAGTCATCGG	CGAAATCATT	GAGATGCGTC	AAGATGTGGC	GTCTATTCAA	150
	GTATATGAAG	AAACTTCAGG	AATTGGTCCC	GGAGAACCTG	TTCGTTCCAC	200
	TGGGGAAGCA	CTATCTGTTG	AGCTAGGACC	AGGAATCATT	TCACAAATGT	250
	TTGACGGGAT	TCAAAGACCA	CTGGATACAT	TTATGGAAGT	GACTCAAAGT	300
40	AACTTCTTAG	GACGTGGGGT	CCAATTACCA	GCTTTAGATC	ATGAGAAACA	350
	ATGGTGGTTT	GAAGCGACAA	TCGAAGAAGG	AACAGAAGTA	AGTGCTGGAG	400
	ACATCATTGG	GTACGTGGAT	GAAACGAAGA	TCATTCAGCA	CAAAATCATG	450
	GTCCCTAATG	GTATCAAAGG	AACTGTACAA	AAAATTGAAT	CTGGATCATT	500
	TACGATCGAT	GATCCGATTT	GTGTGATCGA	AACGGAACAA	GGCTTAAAAG	550
45	AGCTGACGAT	GATGCAAAAA	TGGCCAGTAC	GTCGTGGTCG	ACCAATCAAA	600
	CAAAAATTAA	ATCCAGATGT	ACCGATGATC	ACCGGTCAAA	GGGTCATTGA	650
	CACGTTTTTC	CCAGTAACTA	AAGGAGGAGC	GGCAGCCGTT	CCAGGTCCGT	700
	TTGGTGCAGG	GAAGACAGTT	GTGCAACACC	AGATTGCTAA	GTGGTCGGAC	750
	GTAGATCTAG	TGGTTTACGT	TGGTTGTGGG	GAACGAGGAA	ATGAAATGAC	800
50	GGATGTCGTC	AATGAATTTC	CTGAACTGAT	CGATCCAAAT	ACAGGCGAGT	850
	CTTTGATGGA	ACGAACTGTG	TTGATCGCTA	ATACATCGAA	CATGCCAGTA	900
	GCTGCTCGAG	AAGCTTCTAT	TTATACGGGA	ATCACGATTG	CCGAGTACTT	950
	CCGTGACATG	GGGTATGATG	TAGCAATCAT	GGCAGATTCC	ACTTCTCGTT	1000
	GGGCAGAAGC	ACTGCGTGAA	ATGAGCGGAC	GTTTAGAAGA	AATGCCTGGT	1050
55	GATGAAGGTT	ATCCCGCTTA	TCTGGGCTCT	CGTCTAGCTG	AATACTATGA	1100
	ACGTTCAGGA	CGTGTCATTG	CTCTAGGCTC	TGACCAACGT	GAGGGCAGTA	1150
	TCACTGCCAT	CAGTGCGGTT	TCTCCTTCTG	GTGGAGATAT	CTCTGAACCA	1200
	GTGACTCAAA	ATACCTTACG	TGTGGTGAAG	GTTTTCTGGG	GATTAGATTC	1250
	TAGTCTTGCT	CAAAAAAGAC	ATTTTCCATC	GATTAACTGG	ATCCAAAGTT	1300
60	ACTCATTATA	TTCAACAGAA	GTTGGCAGAT	ATATGGATCA	AATCTTACAA	1350

5	CAGGATTGGT CTGATATGGT AACTGAAGGC ATGCGGATCT TGCAAGAAGA AGAACAATTA AATGAAATCG TGCGCTTGGT AGGGATCGAT TCGCTTTCTG ATAACGATCG CTTGACCCTT GAAGTAGCAA AATCGATTCG AGAAGACTAT TTACAACAAA ATGCTTTTGA TGATGTAGAT ACGTTTACTT CAAGAGAAAA ACAATTCAAC ATGTTGAAAG TTATTTTGAC TTTTTGGGAAA GAAGCTCGAA AAGCCTTATC GTTGGGAGCG TACTTCAATG AAATCATGGA AGGTACAGTA AGCCAAAATT AGTAGTATAA ATGAAGAAAT CAAAGAAACG ATCCAATTGA TTGTTTCAGA AGGAGGATG ACCGATGATT AA	1400 1450 1500 1550 1600 1650 1700 1750 1782
	2) INFORMATION FOR SEQ ID NO: 686	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1781 bases	
	(A) LENGTH: 1781 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
20	Conomic DNA	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Chlamydia pneumoniae	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 686	
	CAGGGACATG TTATAGAAGC TTATGGAAAC TTGTTACGTG TACGCTTTGA	50
	COCAMARCET AGACAAGGTG AAGTTGCATA TGTCAACGTA GATAATACCT	100
30	COMPANANCE AGARCEGATE GAAGTTGCTG ATCAAGAAGT CAAGGIICAG	150
30	CONTROLLAR ATACACAACC CCCGTGTCGA GGAGCTCTTG TTACGTTTTC	200
	ACCACATION TEACAACCCG ACTTAGGGCC TGGCTTGCTT CAGGGCATII	250 300
	TCGATGGACT TCAAAATCGT CTTGAGGTGC TAGCTGAAGA TAGTTCTTTC	350
	TTGATGGACT TCAAATTCTTTTTTGATCATA ATTTATGGAA TTGCAGAGAG GCAAGCATGT TAATGCTATT TCTGATCATA ATTTATGGAA TTATACTCCC GTAGCTTCTG TTGGGGATAC TTTAAGACGA GGAGATCTTC	400
35	TTATACTCCC GTAGCTICIG TIGGGGATAC TITALACTCAT GGTTCCTTTT TAGGAACAGT ACCTGAAGGA CGATTTACTC ATAAGATTAT GGTTCCTTTT	450
	TOTTO A A CACCTTAC CCTGACTTGG GTAATTTCTG AAGGAACCIA	500
	TARROCTION ACTICTECTIC CANAGETEG AGATGETEAG GGTAAAGAAT	550
	ORGOGERTA C TATGGTGCAA AGATGGCCGA TCAAACAAGC TTTTATTGAA	600 650
40	GGAGAGAAGA TCCCTGCGCA TAAGATTATG GATGTGGGTT TGCGAATCTT	700
	AGATACGCAA ATTCCAGTAT TGAAGGGGGG AACTTTCTGT ACCCCAGGAC CTTTTGGTGC AGGGAAAACA GTCTTACAAC ACCATCTTTC TAAGTACGCT	750
	CTTTTGGTGC AGGGAAACA GICITACAAC ACCATGGTGAAGT GCTGTAGATA TTGTGATTTT GTGTGCGTGC GGAGAGCGTG CTGGTGAAGT	800
	TOTTON COTA TTACAACAGT TCCCTCATCT TATCGACCCC CATACCGGAA	850
45	ACTOTOTOTO AT COACAACA TGTATTATTT GTAACACATC ATCCATGCCT	900
	CTCCCTCCCC GAGAGTCTTC GATCTATTTA GGAGTGACGA TIGCAGAATA	950 1000
	CTATCGCCAG ATGGGACTAG ATATTCTGCT TTTAGCTGAT TCTACATCCC GATGGGCACA AGCCCTTAGA GAGATTTCGG GACGTCTTGA AGAAATCCCT	1050
	GATGGGCACA AGCCCTTAGA GAGATITCGG GACGTCTTAGA GGAGAGGAAG CATTTCCTGC ATACCTGTCT TCTAGAATAG CTGCTTTTTA	1100
50	TCACCGAGGA GGAGCTATCA CCACGAAAGA TGGTTCTGAA GGATCTTTAA	1150
50	CTATATGTCC TCCCCTCTCT CCTCCAGGAG GAAACTTTGA AGAACCAGTC	1200
	ACTCAATCTA CATTAGCTGT AGTCGGAGCG TTCTGTGGTC TTTCAAAAGC	1250 1300
	ACCARACTA CACAGGE ATCCTTCAAT AGACCCTTTG ATTTCTTGGT ACGAGATATTT GAACCAGGTA GGACAAATTT TAGAAGAGAA GGTTTCAGGC	1350
	TCCCCTCCTC CTCTGAAAA AGCAGCACAG TTTCTAGAGA AAGGTTCAGA	1400
55	AATICICIAAG CCTATGGAAG TTGTCAGTGA AGAAGGGGTT TCTATGGAAG	1450
	ACATECAAAT CTACTTAAAG GCAGAACTTT ATGATTTTTG TKATCTCCAG	1500
	CAGAACGCAT TCGATCCTGT GGACTGTTAT TGTCCTTTTG AGAGACAGAT	1550
	AGAGTTATT TCATTAATCA GTCGTATTT TGATGCTAAA TTTGTTTTTG	1600 1650
60	ATAGTCCTGA TGATGCAAGA AGCTTTTTCC TTGAGCTGCA GAGCAAGATT	1000

	AGAGGTCATA	GTTAGACTGT	TGGAAAAAAC	AATGGTACAA	ATGAGAGTAA ATGGCGTAAG	1750
	GATATGCAAA	CAATCTACAC	AAAAATAACT	G		1781
_						
5						
	2) INFORMAT	ION FOR SEQ	TD NO: 687			
	2/1141 Old 211	1011 1011 J-R				
	(i) SEQU	JENCE CHARA	CTERISTICS:			
10	(A)	LENGTH: 17				
		TYPE: Nucl				
		STRANDEDNE				
	(D)	TOPOLOGY:	Linear			
15	(ii) MOLJ	ECULE TYPE:	Genomic DNA	4		
7.5	(II) MODI	JCODE III .	Genomic Dia	•		
	(vi) ORIO	SINAL SOURCE				
	(A)	ORGANISM:	Halobacter	ium salinaru	ım	
	(C)	ACCESSION	NUMBER: S56	356		
20				TD 110 605		
	(XI) SEQU	JENCE DESCRI	IPTION: SEQ	ID NO: 681		
	ATGAGTCAAG	СТСААССААТ	CACTGACACC	GGCGAAATCG	AGAGCGTGAG	50
					AACGACGTCG	
25		CGACGAGGGT				150
		CCATCCAGGT				200
		GACAACACGG				250
		CTCCATCTAC				300
		TGGGGGCGTT				350
30		CGGCGATGTC			GCGGGCGACG	400 450
		TTCTGGTGCC				500
		GGCACGTTCA				550
		GATCCAGATG				600
35		ACAAGCAGAC				650
		GGCCTGTTCC				700
					CCTCGCGAAG	
					AGCGCGGCAA	800
4.0		GAAGTCATCG				850
40		GCTGATGGCC CCGGGCGTGA				900 950
		CGCGACATGG				1000
		GGCGGAGGCC				1050
•		AGGAGGGGTA				1100
45	GTTCTACGAG	CGCGCCGGCT	ACTTCGAGAA	CTTCAACGGG	ACCGAGGGCT	1150
		CATCGGTGCG				1200
		AGAACACGCT				1250
		GCCGAGCGCC				1300
50		CTACAAGGAC GGGCCGAGCA				1350
50		CTCGAAGAGA				1400 1450
		GCAGCTCACG				1500
		AGAACGCGCT				1550
	GAAGACGTAC	GCCATCCTCT	CCGGCATCAA	GACGCTTCAC	GAGGAGTCCT	1600
55	TTGAGGCGTT	GGACGCCGGT	GTGCCAGTCG	ACCACATCAC	CTCCATCCAC	1650

**TCTACTGA** 

TTGAGGCGTT GGACGCCGGT GTGCCAGTCG AGGAGATCAC GTCGATCGAC

GCCGCGCCGC GCCTGAATCG TCTCGGCACG ACGCCCGACG ACGAGCACGA

GGCGGAGGTC GCGGAGATCA AACAGCAGAT TACCGAGCAG CTTCGGGAGC

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3118 bases

  - (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double
    (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 10
  - (vi) ORIGINAL SOURCE:

5

- (A) ORGANISM: Human
- (C) ACCESSION NUMBER: L09234
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 688

			mammama mm	CCCCTCCTCC	CCTCATAAAA	50
		AGCTGACTAG	TCTTGTGATI	A COMCCCATC	ACCACCCCCA	100
	TCATTCCAAA		ATTGATAAAG	TGGACCTGTG	GTGACAGCTG	150
20	GTCCAAATTC		TTGCCGTATC	TGGTGCGTGT	CGGTTATTAT	200
	AACGAATGGC		ATGTACGAAC		CAACAATCCA	250
	GAACTGGTCG	GAGAGATCAT	CCGGTTGGAG	GGTGACATGG		300
		GACACCTCAG	GTGTGACAGT	AGGCGATCCC	GIGCIGCGCA	350
	CAGGCAAGCC	GCTGTCCGTG	GAACTGGGAC	CCGGAATCAT	GGGCAGCATC	400
25	TTCGACGGTA	TCCAGCGACC	GCTGAAGGAT		TGTCAAATAG	450
	TATCTACATC	CCGAAAGGTG	TCAATGTGCC		CGCACTGCAC	500
	AGTGGGACTT	CAGTCCCGTC	AGTGTCAAGG	TTGGAAGCCA	CATTACTGGT	500 550
	GGTGACCTGT	ACGGTTTGGT		ACTCTGGTGA		
	GCTGCTGCCG	CCCCGTGCCA	AGGGAACTGT		GCAGAACCTG	600
30	GAAACTACAC	AGTTGATGAT	GTTGTCCTGG	AGACAGAATT	TGACGGCGAG	650
	CGATCAAAGT	TCACCATGCT	GCAAGTGTGG		AGCCCAGGCC	700
	TGTTACAGAA	AAGTTGCCAG	CTAACTACCC		GGCCAGCGTG	750
	TGCTCGACTC	CCTATTCCCG	TGTGTCCAGG		AGCTATTCCT	800
	GGGGCCTTCG	GATGTGGCAA	GACTGTAATA	TCACAGTCTT	TGTCAAAATA	850
35	CTCAAACTCC	GATGTAATTA	TCTATGTAGG	TTGTGGTGAG	CGAGGTAATG	900
	AAATGTCAGA	AGTACTCAGG		AGTTGTCGTT	GGAGATTGAT	950
	GGTGTGACTG	AATCAATCAT	GAAGAGAACA	GCCCTGGTCG	CAAACACATC	1000
	AAACATGCCT	GTGGCTGCTC	GAGAAGCATC	TATCTACACA		1050
	TGTCAGAATA	CTTCAGGGAC	ATGGGTTACA		GATGGCTGAC	1100
40	TCAACTTCAC			GAAATCTCAG	GTCGATTGGC	1150
	TGAAATGCCT		GTTATCCCGC	CTACCTAGGT	GCACGACTTG	1200
	CCAGTTTCTA	CGAGCGTGCC		AGTGCTTGGG	TAACCCAGAC	1250
	AGGGAGGGCT		AGTGGGCGCC	GTGTCGCCGC	CCGGTGGAGA	1300
	CTTCTCAGAT		CGGCCACACT	AGGTATCGTC	CAGGTGTTCT	1350
45	GGGGTCTCGA			AGCACTTCCC	ATCCATCAAC	1400
,	TGGCTCATCT	CGTACAGTAA	ATACATGCGT	GCTCTGGATG		1450.
	CAAGAATTTC					1500
	TGCAGGAGGA	AGAAGACCTG	TCTGAAATTG			1550
	TCATTGGCAG	AAACTGACAA	GATCACACTT		AACTATTAAA	1600
50	GGATGATTTC	CTGCAACAGA				1650
	CATTCTACAA	GACAGTAGGA	ATGCTGAAAA	ATATGATTGC		1700
	ATGTCTCGGC		ATCTACTGCT	CAGAGCGAGA	ACAAGATCAC	1750
	TTGGAATGTT	ATTAGAGATT	CTATGGGCAA			1800
	CCATGAAATT	CAAGGATCCA			GATCAAGGCA	1850
55	GACTTTGAGC	AGCTTCATGA	AGACATTCAG			1900
	GGATTAAAGT	GGTAGCTGCC	AGTGGTTCTC			1950
	GGCAAGCTCT					2000
	TTCCTTTGCC	ACATAAAGAC				2050
	CTGGTTCCAT		ATTATGTTGT			2100
60	TTCCAACAGA	GGAATTTACT	TCCAGTTTTC	TTCCATTTTC	CTCCTCATTT	2150

	TAAGTGTCGG	TACAGAGGCA	ATAATCTGAT	AACTCTGTAC	CGTCACTTAC	2200
	AAGCAGGGAG	AATTTGTAAT	TATTACAAAT	CCCATTATCT	CTGTGCACCA	2250
	CAGCCTTGTA	AATTCATTTG	TCCCAGGACT	CCCTCTTGTG	TGTACGTGAG	2300
	ATTGCCGTCT	GTATGTATGT	ACACACCGTA	CTGCAGTATT	TGAAGTCAGT	2350
5	CAGAAGGTGA	ATTACACCAC	TTACTCATTG	TGTCACGTAG	CAAGTGTGCA	2400
	AACTGCCATC	CATTGTCCTA	TTTATTCACA	TAACTAGTTT	TCTTTGCATT	2450
	TCCAGTGTTG	CAAATTGTGT	TTAGAAAATT	ATGCCATCGA	GACTGGTCGA	2500
	ACCTCACATT	GTAACTCAGT	ATTTACACAC	ACGTTTACTT	GCTACAGAAA	2550
	TGTAGAAAAA	ATAATTGTTG	TATATTGAAA	GTACAAGTGA	CAAAGTTGCA	2600
10	TTTAAAATGG	TGAATGTATT	TTATATTTCT	TTTGTAGACA	CAAGAGTTAA	2650
	TGCATTTTGC	TTAATGGAGA	TGTATGTAAA	CCTAAAATAG	CAGTTTGTGC	2700
	ACAAATTATG	TATATGTGAA	ATGGAGATGG	TTTCTAATTT	GCTGATTGAT	2750
	TGCCAGTATT	AATTTAAACA	ACTGTAGTTG	TGGGATGTAG	TGGGAAGATT	2800
	TTTTTTTCC	TATAAAATTG	GTGGATGTAT	GTGTCGGAGA	TTTTGATTGT	2850
15	ATGTGTAAAA	TAGTGATCCC	AGTAACTGTA	AAGCTTTAGA	ATACAGTTAC	2900
	TGACTGTATA	GTTGTACAGG	TGTTGTTACT	TTTAAGAATT	TATTGACACA	2950
	AAGGTGAAAG	TCTATTATTG	TATTGTAATG	TTTAAAGCAT	TTAAGGTTTA	3000
	AAAATCCTAC	TTCTGTGTAT	AAATGTTACC	ATTCCTCATA	TAACATAACT	3050
	GTGTAGAAAT	ACAGTCAACT	TCATGTTCAT	TAGCATTTCA	CTGTTGTCAC	3100
20	ATAAATTATG	CCCGGAAT				3118

25

30

35

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 1836 bases (A)
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - ORGANISM: Plasmodium falciparum (A)
    - (B) STRAIN: 3D7
    - (C) ACCESSION NUMBER: L08200
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 689

	ATGACAAAAG	TTGCTGTTGA	AAAAGAGGAA	CCAGGAGTTG	TTTATAAGGT	50
	GGCTGGTTCA	TTAGTTATTG	CTGAGAATAT	GAGTGGAACT	CGTATGTACG	100
	AGTTAGCTAA	AGTAGGATGG	AATAAATTGG	TTGGAGAAAT	TATTAGATTA	150
	GAAGGGAATT	ATGCATATAT	ACAAGTTTAT	GAAGATACTT	CAGGTTTATC	200
45	TGTAGGAGAC	CCTGTTATAA	AAACAGGAAA	TGCTTTATCA	GTCGAATTGG	250
	GTCCTGGTAT	TTTAGATAAT	ATTTATGATG	GTATTCAAAG	ACCATTAGAA	300
	AGAATAGCAA	ATGTGTGTGG	TGATGTATAT	ATATATAAAG	GTATTGATAT	350
	GACATCTTTA	GATCATGATA	AACAATGGCA	ATTTTATGCT	GATAAGAAAT	400
	TAAAATTAAA	TGATATTGTT	ACTGGTGGAG	ATATCTTTGG	ATTTGTTGAT	450
50	GAAAATAAAT	TATTTAAAGA	ACACAAAATT	ATGGCTCCAC	CTAATGCTAA	500
	AGGGAGGCTT	ACATATATTG	CTCCAGATGG	ATCATATACT	TTAAAAGATA	550
	AAATATTTGA	ATTAGAATAT	CAAGGAAAAA	AATATACATA	TGGTTTATCT	600
	CATTTATGGC	CTGTTCGTGA	TCCTAGACCT	GTTTTAGAAA	AGGTAACAGG	650
	GGATACTTTA	TTATTAACAG	GGCAAAGAGT	TTTAGATTCG	TTATTTCCAA	700
55	CAGTTCAAGG	AGGTACTTGT	GCTATTCCTG	GTGCATTTGG	TTGTGGAAAA	750
	ACTTGTGTTT	CTCAGGCCTT	ATCAAAATAT	TCTAATAGTG	AAGTTATTAT	800
	ATATGTAGGA	TGTGGTGAAA	GAGGTAATGA	AATGGCTGAA	ATTTTATCCG	850
	ACTTTCCTGA	ATTAACTACT	AAAGTAGATA	ATGAAGATGT	AGGTATTATG	900
	CAAAGAACGT	GTTTAGTTGC	TAATACTTCT	AACATGCCTG	TCGCTGCAAG	950
60	AGAAGCTAGT	ATTTATACAG	GTATTACTTT	ATGTGAATAT	TTCCGTGATA	1000

	TGGGTTATAA		א שכי כי ביים א די א	СТАСААСТАС	ATGGGCAGAA	1050
	TGGGTTATAA C	TGCTACCAIG	AIGGCIGAIA	CAAATCCCTC	CAGATAGTGG	1100
	GCCTTAAGAG	AAATTTCAGG	ACGTTTAGCT	GAAAIGCCIG	CAGAIAGIGG	1150
	TTATCCAGCT	TATTTAGGTG	CTAGATTAGC	TTCCTTTTAT	CAMCGIGCAG	1200
	GAAAAGTCAA	ATGTATTGGT	TCTCCATCTC	GTATAGGATC	CATTACAATT	1250
5	CTCCCTCCTC '	TGTCTCCACC	AGGTGGTGAT	TTCTCTGACC	CTGTAACTAC	
_	ACCAACCATG '	ጥርጥልጥጥርጥጥር	AAGCATTTTG	GGGGTTAGAT	AAAAAACTAG	1300
	CTCDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	<b>ልሮልጥጥጥሮሮሮጥ</b>	TCTGTTAATT	GGTCTACATC	CTTTTCAAAG	1350
	TATGTCAGAC	AATTAGAACA	ATACTTTGAT	AATTTTGATC	AAGATTTCTT	1400
	ATCTTTAAGA	MAIIAGAACA.	CTCATATTT	ACAACAAGAA	AGTGACTTGA	1450
	ATCTTTAAGA (	CAAAAAAIIA	CCANACCATT	CATTATCAGA	AGACCAAAAA	1500
10	ATGATATIGT	TCAACTAGIA	GGAAAGGAII	CATIATOROA	TTCNNCNNA	1550
	GTTGTTATGG	AAGTAGCCAA	AATTATTAGA	CAAGAIIIIC	I I CAACAAAA	1600
	TGCATTTAGC	GATTATGATT	ATATGTGCCC	ATTACAAAA	ACAGTIGGIA	
	TGATGAGAAT	TATTTGCCAC	TTTTATGCTC	AATGCTTAAG	AACATTACAA	1650
	GAATATGACT	CAAGAGAAAG	AAAAATTGGT	TGGGGATCTA	TATATAATAC	1700
15	ATTAAGACCA	ACTATAAATA	AAATTACACA	TATGAAATTT	GAAAACCCAA	1750
13	AAAATTCAGA	TGAATATTTC	AAAAAGTATT	TTAAGGCACT	TGAAGAAGAA	1800
	ATAACAGTAG	CTTTAACAAA	CTTGATGGAA	AAATGA		1836
	AIAACAGIAG	OTTIPHOLDE.	0110111001			
						_
20	- \	ON TOP 000	TD NO. 600			
	2) INFORMATI	ON FOR SEQ	1D NO: 690			
		ENCE CHARAC	CTERISTICS:			
	(A)	LENGTH: 32	216 bases			
25	(B)	TYPE: Nucl	leic acid			
	(C)	STRANDEDNE	ESS: Double			
	(D)	TOPOLOGY:				
	(-,					
	(ii) MOLE	CULE TYPE:	Genomic DNA	<i>4</i>		
30	(11) 110111					
. 30	/i\ ORIG	INAL SOURCE	₹.	-	•	• •
	. (VI) ORIG	OPCANTEM.	Saccharomy	es cerevis	iae	
	(A)	ORGANISM:	Baccharomy	CB CCICVID.		
		STRAIN: X	5180-1V			
	(C)	ACCESSION	NUMBER: JOS	409		
35						
	(xi) SEQU	ENCE DESCR	IPTION: SEQ	ID NO: 690		
	ATGGCTGGTG	CAATTGAAAA	CGCTCGTAAG	GAAATAAAAA	GAATCTCATT	50
	AGAAGACCAT	GCTGAATCTG	AATATGGTGC	CATCTATTCT	GTCTCTGGTC	100
40	CGGTCGTCAT	TGCTGAAAAT	ATGATTGGTT	GTGCCATGTA	CGAATTGGTC	150
40	AACCTCCCTC	ACGATAACCT	GGTGGGTGAA	GTCATTAGAA	TTGACGGTGA	200
	CAACCCCACC	ATCCAAGTTT	ACGAAGAAAC	TGCAGGCCTT	ACGGTCGGTG	250
	A CCCTCCTCTTTT	CACAACACCT	AAGCCTCTGT	CGGTAGAATT	GGGTCCTGGT	300
	ACCCIGIIII	CCATTTACCA	TCCTATTCAA	AGACCTTTGA	AAGCCATTAA	350
	CTGATGGAAA	CCATTIACGA	AMAMCCCAAC	ACCUPATTERC	ACTCCAGCTT	400
45	GGAAGAATCG	CAATCGATII	AIAICCCAAG	AGGIAIIGAC	TONDETCEC	450
	TGGATAGGAC	TATCAAGTGG	CAATTTACTC	CGGGAAAG11	TCAAGTCGGC	500
	GATCATATTT	CCGGTGGTGA	TATTTACGGT	TCCGTTTTTG	AGAATTCGCT	
	AATTTCAAGC	CATAAGATTC	TTTTGCCACC	AAGATCAAGA	GGTACAATCA	550
	CTTGGATTGC	TCCAGCTGGT	GAGTACACTT	TGGATGAGAA	GATTTTGGAA	600
50	GTTGAATTTG	ATGGCAAGAA	GTCTGATTTC	ACTCTTTACC	ATACTTGGCC	650
	TGTTCGTGTT	CCAAGACCAG	TTACTGAAAA	GTTATCTGCT	GACTATCCTT	700
	TGTTAACAGG	TCAAAGAGTT	TTGGATGCTT	TGTTTCCTTG	TGTTCAAGGT	750
		CTATTCCACC	TGCTTTTGGT	TGTGGTAAGA	CCGTTATCTC	800
	(3(3)PA(C(4A(C)A(1)					
	GGTACGACAT TCAATCTTTC	TCCAACTACT	CCAATTCTGA	CGCCATTATC	TATGTCGGGT	850
	TCAATCTTTG	TCCAAGTACT	CCAATTCTGA	CGCCATTATC	TATGTCGGGT	
55	TCAATCTTTG GCTTTGCCAA	TCCAAGTACT GGGTACCAAT	CCAATTCTGA GTTTTAATGG	CGCCATTATC CGGATGGGTC	TATGTCGGGT TATTGAATGT	900
55	TCAATCTTTG GCTTTGCCAA ATTGAAAACA	TCCAAGTACT GGGTACCAAT TTGAGGTTGG	CCAATTCTGA GTTTTAATGG TAATAAGGTC	CGCCATTATC CGGATGGGTC ATGGGTAAAG	TATGTCGGGT	

1050 1100

1150

TCGTGAGGTA ATTAAATTGC CCAGAGGAAG AGAAACTATG TACAGCGTCG

TGCAGAAAAG TCAGCACAGA GCCCACAAAA GTGACTCAAG TCGTGAAGTG CCAGAATTAC TCAAGTTTAC GTGTAATGCG ACCCATGAGT TGGTTGTTAG

AACACCTCGT AGTGTCCGCC GTTTGTCTCG TACCATTAAG GGTGTCGAAT

	ATTTTGAAGT	<b>ጥጥጥጥጋልጥጥጥ</b>	GAGATGGGCC	AAAAGAAAGC	CCCCGACGGT	1200
	AGAATTGTTG			AAGAGCTACC	CAATATCTGA	1250
	GGGGCCTGAG	AGAGCCAACG	AATTAGTAGA	ATCCTATAGA	AAGGCTTCAA	1300
	ATAAAGCTTA		ACTATTGAGG	CCAGAGATCT	TTCTCTGTTG	1350
5	GGTTCCCATG	TTCGTAAAGC		ACTTACGCTC	CAATTCTTTA	1400
5	TGAGAATGAC			AAAAAGTAAG	TTTCATCTCA	1450
	CCATTGAAGG	TCCAAAAGTA	CTTGCTTATT	TACTTGGTTT	ATGGATTGGT	1500
	GATGGATTGT	CTGACAGGGC	AACTTTTTCG	GTTGATTCCA	GAGATACTTC	1550
	TTTGATGGAA	CGTGTTACTG	AATATGCTGA	AAAGTTGAAT	TTGTGCGCCG	1600
10		CAGAAAAGAA	CCACAAGTTG	CCAAAACTGT	TAATTTGTAC	1650
10	TCTAAAGTTG	TCAGAGGTAA	TGGTATTCGC	AATAATCTTA	ATACTGAGAA	1700
	TCCATTATGG	GACGCTATTG	TTGGCTTAGG	ATTCTTGAAG	GACGGTGTCA	1750
	AAAATATTCC	TTCTTTCTTG	TCTACGGACA	ATATCGGTAC	TCGTGAAACA	1800
	TTTCTTGCTG	GTCTAATTGA	TTCTGATGGC	TATGTTACTG	ATGAGCATGG	1850
15		ACAATAAAGA	CAATTCATAC	TTCTGTCAGA	GATGGTTTGG	1900
	TTTCCCTTGC	TCGTTCTTTA	GGCTTAGTAG	TCTCGGTTAA	CGCAGAACCT	1950
		ACATGAATGG	CACCAAACAT	AAAATTAGTT	ATGCTATTTA	2000
	TATGTCTGGT	GGAGATGTTT	TGCTTAACGT	TCTTTCGAAG	TGTGCCGGCT	2050
	CTAAAAAATT	CAGGCCTGCT	CCCGCCGCTG	CTTTTGCACG	TGAGTGCCGC	2100
20	GGATTTTATT	TCGAGTTACA	AGAATTGAAG	GAAGACGATT	ATTATGGGAT	2150
	TACTTTATCT	GATGATTCTG	ATCATCAGTT		AACCAGGTTG	2200
	TCGTCCATAA	TTGCGGAGAA	AGAGGTAATG	AAATGGCAGA		2250
	GAATTCCCAG	AGTTATATAC	TGAAATGAGC		AACCAATTAT	2300
	GAAGCGTACT	ACTTTGGTCG	CTAATACATC	TAACATGCCG	GTTGCAGCCA	2350
25	GAGAAGCTTC	TATTTACACT	GGTATCACTC	TTGCAGAATA	CTTCAGAGAT	2400
	CAAGGTAAAA	ATGTTTCTAT	GATTGCAGAC	TCTTCTTCAA		2450
	AGCTTTGAGA	GAAATTTCTG	GTCGTTTGGG	TGAGATGCCT	GCTGATCAAG	2500
	GTTTCCCAGC	TTATTTGGGT	GCTAAGTTGG	CCTCCTTTTA		2550
	GGTAAAGCTG	TTGCTTTAGG	TTCCCCAGAT	CGTACTGGTT	CCGTTTCCAT	2600
30	CGTTGCTGCC	GTTTCGCCAG	CCGGTGGTGA		CCTGTTACTA	2650
	CTGCTACATT	GGGTATCACT	CAAGTCTTTT	GGGGTTTAGA		2700
	GCTCAAAGAA	AGCATTTCCC	ATCTATCAAC	ACATCTGTTT	CTTACTCCAA	2750
	ATACACTAAT	GTCTTGAACA		TTCCAATTAC	CCTGAATTTC	2800
	CTGTTTTAAG	AGATCGTATG	AAGGAAATTC	TATCAAACGC	TGAAGAATTA	2850
35	GAACAAGTTG	TTCAATTAGT	TGGTAAATCG		ATAGTGATAA	2900
	GATTACTTTG	GATGTTGCCA			TTGCAACAAA	2950
	ATGGTTACTC	CACTTATGAT	GCTTTCTGTC	CAATTTGGAA		3000
	ATGATGAGAG	CCTTCATCTC	GTATCATGAC	GAAGCTCAAA		3050
		AACTGGTCAA			GACGTTAAGC	3100
40	ATGCCGTTTC	TTCATCTAAA			TGAAAAGGAA	3150
			ATTGTTGAGC	ACTATGCAAG	AAAGATTTGC	3200
	TGAATCTACC	GATTAA				3216

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1860 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Schizosaccharomyces pombe
  - (B) STRAIN: 972 h-
  - (C) ACCESSION NUMBER: S47814

60

45

50

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 691

		GAATTGAACT	GGCCAAGAAG	GCTATCAGGA	GCCTCAAAAA	50
	1170000		GATATGGATC	TATTTTCAGC	GTTTCTGGTC	100
	TTACGACGAG		ATGCTTGGAT	GTTCGATGTA	CGAACTCGTT	150
5	CTGTCGTTGT	100	AGTTGGTGAA	GTAATTCGTA	TCCATCAAGA	200
	CGCGTTGGTC		ACGAAGAGAC	GTCCGGTCTC	ACTGTTGGTG	250
	TAAATGTACT	ACGCACTGGA	AAGCCATTAT	CTGTTGAATT	AGGTCCTGGT	300
	ATCCTGTCCA	CTATTTATGA	TGGTATCCAA		AGCAAATTTT	350
	TTAGCTGAGA	CAAAGTATTT	ATATTCCTAG	AGGTATTAAT	ACAGAATCAC	400
10	CGACAAATCT		GATTTCACAC	CAAATAAGGA	TTTACGCATT	450
	TTAATCGTGA	TATCCGGTGG	TGATGTTTTC	GGTTCTGTAT	TTGAAAACTC	500
	GGCGATCATG	GATCATAAAA	TTATGTTACC	CCCTAGAGCC	CGTGGTACCG	550
	TCTTTTCAAT	TGCTGAAGCT	GGATCATACC		AAAACTTCTT	600
	TCACATATAT	TTAATGGCAA	GAAACATTCT	TTTAGTATGT	TGCATACTTG	650
15	GAAGTCGAGT	GCTGCTCGTC	CAGTTGCGGA	CAACTTAACT	GCTAATCAAC	700
	GCCTGTCCGT	TGGTCAACGT	GTTTTGGATG	CGTTATACCC	CTGTGTTCAA	750
	CTTTATTGAC	CTGCTATCCC	CGGTGCCTTT	GGTTGTGGTA		800
	GGTGGCACTA	CTTTCTAAGT	ACTCTAATTC	TGATTTGATT	GTTTACGTCG	850
	TTCACAATCT		GAAATGGCAG	AAGTGTTAAT	GGATTTCCCA	900
20	GTTGTGGTGA		TGGTAAACCA	GAGCCCATTA	TGAAGCGTAC	950
	GAACTAACAA		CTAACATGCC	TGTCGCTGCT	CGTGAAGCTT	1000
	TACATTGGTA		CTTGCTGAAT	ATTATCGTGA	TCAAGGTAAG	1050
	CCATTTATAC	-	TTCTACATCT	CGTTGGGCTG	AAGCTTTGCG	1100
	AACGTTTCAA		CTGAGATGCC	TGCCGATTCT	GGTTATCCCG	1150
25	TGAAATTTCT		GCTTCTTTTT	ACGAACGTGC	TGGTCGTGCT	1200
	CTTATTTGGG		CCGTGAAGGA			1250
	CGTTGCTTGG TGTTTCTCCT		ATTTTTCTGA			1300
	TGGGAATTGT		TGGGGTTTGG			1350
	AAACACTTTC					1400
30	TGCTTTGCAA				AATACTCTTC	1450
	GTGATCAAAT				GTTGGAAATT	1500
	ATTCAGTTGG					1550
	GGACATAGCC				AACGGTTATT	1600
a =	CTGATTACGA					1650
35	AACATGATTG				AAACTGGTAG	1700
	CGTTCCTTGG		AAGAAAGTAC	TTCAGATATC		1750
	TAACCTCGAT		AACCCTAATG	AAGGCGAGAA		1800
	CAACACTAGA	AAACTCTGCA	CAAGAAGATT	GAGGACAAGT	TTCACACTCT	1850
40	GACTGAGTAA					1860
40	GWCIGHOIAN	•				

### 2) INFORMATION FOR SEQ ID NO: 692

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1833 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Trypanosoma congolense
  - (B) STRAIN: IL3000
  - (C) ACCESSION NUMBER: Z25814
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 692

45

50

	ATGACGAGCG	ATAAAAACCC	TTACAAAACA	GAGCAGCGCA	TGGGGGCCGT	50
	CAACCCCCTC	TCCGGGCCAG	TTGTCATTGC	TGAAAACATG	GGCGGTAGCG	100
	CTATCTATCA	GCTTGTGCAG	GTAGGTTCCT	TCCGGTTAGT	GGGCGAGATC	150
	ATTOURING	AGGGCGATAC	CCCCACTATT	CAGGTCTATG	AGGAAACAGG	200
-	MUCCOUNCACT	GTCGGAGACC	CGGTGTACTG	TACGGGTAAG	CCTCTTTCGC	250
5	TGGCCTCACT	ACCTGGAATC	ATCTCTCAAA	TATTTGACGG	TATCCAGCGG	300
	TIGAGCIIGG	CCATCTACCG	CATCCTCCAA	AACGTGTTTA	TCCCCAGGGG	350
	CCTCTTGACA	AAGTCACTCA	CHIGGIGGAA	ACCOLOTER	TTTDDGCCDT	400
	CGTTCAGGTG	AAGTCACTCA	ATGACCAGAA	ACAGIGGGAC	TCCCTCACTC	450
	GCCTGAAGGT	TGGAGATCTT	GIGICIGGIG	DIGATATOA	CCCCCAACC	
10	GTGGAGAACT	CTCTCATGTA	CAATCACAGC	ATTATGATIC	ACCUCAAIGI	500
	GCGGGGCCGT	GTTACTTCCA	TTGTTCCTTC	AGGAAATTAC	ACCUTCCAAG	550
	ATGACATTAT	TGAATTGGAA	TATAATGGGA	CAGTGAAATC	ACTAAAACTT	600
	ATGCATCGCT	GGCCAGTACG	GACCCCGCGT	CCTGTGGCGT	CAAAAGAATC	650
	CGGCAATCAT	CCGCTTCTCA	CCGGACAGCG	TGTGCTCGAT	GCTCTCTTTC	700
15		GGGTGGAACA			TGGATGCGGA	750
	AAGACGGTTA	TCAGTCAGGC	TCTTTCGAAG	TTCTCCAACA		800
	TATCTATGTC	GGCTGCGGCG	AGCGTGGGAA	TGAGATGGCA	GAGGTGCTCA	850
	TGGACTTCCC	CACACTCACC	ACCGTTATTG	ATGGTCGTGA	GGAGTCCATC	900
	ATGAAGCGTA	CCTGCCTGGT	GGCAAACACC	TCAAATATGC	CTGTCGCTGC	950
20	TCGTGAGGCG	TCTATTTACA	CTGGCATCAC	TTTAGCTGAG	TATTATCGTG	1000
20	ATATGGGCAA	GCACATTGCT	ATGATGGCCG	ACTCTACCTC	TCGATGGGCT	1050
	GAGGCTCTCC	GTGAGATCTC	TGGGCGTCTC	GCTGAAATGC	CCGCTGATGG	1100
	TCCTTACCCT	GCGTACCTCA	GTGCGCGTCT	TGCTTCCTTC	TACGAGCGTG	1150
	CCCCCCCCC	GACATGCATC	GGTGGGCCAA	AACGCGAGGG	CTCAGTAACC	1200
25	ATCGTTGGTG	CCGTTTCTCC	TCCTGGAGGT	GACTTTTCTG	ACCCAGTGAC	1250
25	CTCCCCTACC	CTTGGTATTG	TCCAACTCTT	TTGGGGTCTT	GAGAAGCGTC	1300
	TTCCCCANCC	TAAACACTTT	CCTTCTCTT	ATTGGCTCAT	TTCCTATTCA	1350
	A A TO COCARCO	ATGCTTTGGA	CCCCTTCTTC	AACACGCTTG	ACCCTGACTA	1400
	CATTCCCCCC	CGGTCAGTTG	CTCCCCACAT	CCTTCAGCGT	GAGGAAGAGT	1450
2.0	CAIGCGCCIG	TGTTCAACTT	CTCCCCTAACC	አርጥር አርጥጥጥር	CCACTCTCAC	1500
30		TAGAAACGGC				1550
	AAAATTATTC	ACGCCGTACG	IMAGGIIAII	CGIGAAGAGI	ANCACCECCE	1600
	GGATGCTACG	TAACATTGTC	GCGTTCTACG	AGGAGAGCCA	GCGCGIIGIA	1650
	GCTGAGTCCG	CTGGGGAACT	TAAGATTACG	TGGAACTACA	TTCGTGAAAT	1700
35	GATTCCTCAT	ATTTACACGG	GTTTAACTGA	GATGAAGTTC	CGTGATCCTC	1750
		GGAGGCCAAC			AAATGAGGAA	1800
	ATTGTCAGCG	CATTCGCCTC	GCTGCTGCAA	TAA		1833
40						
	2) INFORMAT	ION FOR SEQ	ID NO: 693			
	(i) SEQ	UENCE CHARAG	CTERISTICS:			
	(A)	LENGTH: 17	758 bases			
45	(B)	TYPE: Nucl	leic acid			
	(C)	STRANDEDNE	ESS: Double		•	
	(D)	TOPOLOGY:	Linear			
	•					
	(ii) MOL	ECULE TYPE:	Genomic DN	A		
50	(,					
	(vi) ORIO	GINAL SOURCE	3:			
•		ORGANISM:		ermophilus		
		STRAIN: H		•		
			NUMBER: D6	700		
ce	(C)	ACCESSION	HOMBER: DO.			
55	(***) OFFO	UENCE DESCR	IDTION. CEO	TD NO. 603		
	(XI) SEQ	CENCE DESCK.	reiton: SEO	TD NO: 033		
	3 m C 3 m C C 3 3 C		C3 3 C3 TCCCC	cececece	ጥር እጥር ር ር ር ር እ እ	50
					TGATCGCCAA	
					GGCGAAGAGG	
60	GCCTCGTGGG	CGAGATCATC	CGCCTGGACG	GGGACACGGC	CTTCGTCCAG	150

	GTCTACGAGG ACACCTCGGG CCTAAAGGTG GGGGAGCCCG TGGTCTCCAC	200	
		250	
	GGGCCTTCCC TTGGCGGTGG AGCTCGGCGCA TCCGGGAGAA GACGGGGATC ACGACGGCAT CCAGCGCCCC CTGGACCGCA CTGGACCGCG AGAAGAAGTG	300	
		350	
	TACATCACCC GGGGCGTGGT GGCCCGGGGA CGAGGTGCGG GGGGGTATGG GGCCTGGACG CCCATGGTCA AGCCCGGGGA CGAGATGCCC	400	
5	GGCCTGGACG CCCATGGTCA AGCCCGGGGA CGCACAGAT CCTGGTACCC	450	
	GGCCTGGACG CCCATGGTCA AGCCCGGCGACAAGAT CCTGGTACCC TCCTGGGCAC GGTGCCCGAG TTCGGCTTCA CCCACAAGAT CCTGGTACAC	500	
	TCCTGGGCAC GGTGCCCGAG IICGGCTGCA AAGCCCGCCG GGGAGTACAC CCGGACGTGC GGGGCCGGGT CAAGGAGGTG AAGCCCGCCG GCGAGTACAC	550	
		600	
		650	
10		700	
		750	
	THE TANK AND	800	
		850	
		900	
15		950	
10		1000	
	TACTURE ACCOMMENDE COMMENT OF THE CONTRACT OF	1050	
		1100	
20		1150	
20	acadadadana hijiri ilaki lilifikuluk dicuist	1200	
	The second of th	1250	
		1300	
		1350	
0.5		1400	
25	The same anadadadad Arcirration and the control of	1450	
		1500	
	The second of th	1550	
	AAAMMAMAAA AAAAAAAAAAAAAAAAAAAAA	1600	
		1650	
30		1700	
	GCCCGCTACG TGAGCGAGGA GGAGTTCCCC CCTAAAGGGG GAGAGATGGA GAAGGAGATC CAGGGGGCCT TCAAGGCTGG CCTAAAGGGG GAGAGATGGA	1750	
		1758	
	CCTTCTGA		
2.5			
35			
	2) INFORMATION FOR SEQ ID NO: 694		
	•		
	(i) SEQUENCE CHARACTERISTICS:		
40	(A) LENGTH: 21 bases		
40	(R) TYPE: Nucleic acid		
	(C) STRANDEDNESS: Single		
	(D) TOPOLOGY: Linear		
	(2)		
45	(ii) MOLECULE TYPE: DNA		
43			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 694		
			21
	CGGCGCIATC YTSGTTGTTG C		21
50			
50			
	2) INFORMATION FOR SEQ ID NO: 695		

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 bases
(B) TYPE: Nucleic acid
(C) STRANDEDNESS: Single
(D) TOPOLOGY: Linear

	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 695	
5	GTTTCACGTG ATGACGTACA	20
10	2) INFORMATION FOR SEQ ID NO: 696	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 26 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 696	
20	ATIGGICAYR TIGAYCAYGG IAARAC	26
	a)	
25	2) INFORMATION FOR SEQ ID NO: 697	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 bases	
30	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Single</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 697	
	CCIACIGTIC KICCRCCYTC RCG	23
40		
	2) INFORMATION FOR SEQ ID NO: 698	
<b>45</b>	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1185 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Escherichia coli</li><li>(C) ACCESSION NUMBER: extracted from J01690</li></ul>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 698	
60	GTGTCTAAAG AAAAATTTGA ACGTACAAAA CCGCACGTTA ACGTTGGTAC 50 TATCGGCCAC GTTGACCACG GTAAAACTAC TCTGACCGCT GCAATCACCA 100 CCGTACTGGC TAAAACCTAC GGCGGTGCTG CTCGTGCATT CGACCAGATC 150 GATAACGCGC CGGAAGAAAA AGCTCGTGGT ATCACCATCA ACACTTCTCA 200	

### CA 02283458 1999-09-28

5 10 15	CGTTGAATAC GGCACGCCGA CTATGTTAAA AACATGATCA GGCACGCCGA CTATGTTAAA AACATGATCA CGGGCGCGATCC TGGTGGGTC TGGTAGCTCC TGGTGGGTC TCCTGAACAA ATGCGACATC GAAATGGAAG CACTCCGATC AGTCGGACT CACTCCGATC AGTGGGACC CCGGAACCAG CGGAAATCCTG CCGGAACCAG CGGAACCAG CGGAAAATCCTG CAAAGTTGGT CAAAGTTGGT CGAAGGCCGT CGAACCAC CGAACCAC CGCGACCAC CGAACCAC CGAACCAC CGCGACCAC CGCGACCAC CGAACCAC CGCGACCAC CGAACCAC CGCGACCAC CGAACCAC CGCGACCAC CGAACCAC CGCGCGCG	
20		
25	2) INFORMATION FOR SEQ ID NO: 699  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid	
30	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 699	
35	GTIACIGGYT CYTYRARRTT ICCICC	26
40		
. 45	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 700	
	TIRTIGAYGT CGARTTCCCT CARG	24
5!	2) INFORMATION FOR SEQ ID NO: 701	
6	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 bases  (B) TYPE: Nucleic acid	
	522	

		(C) (D)	STRANDEDNE TOPOLOGY:	SS: Sir Linear	ngle					
	(ii)	MOLE	CULE TYPE:	DNA						
5	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID	NO:	701		
	GTGTTC.	ACGA	TCATCGATGC	: G						21
10										
	2) INFO	RMATI	ON FOR SEQ	ID NO:	702					
15	(i)	(A) (B) (C)	ENCE CHARAC LENGTH: 20 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic ac: SS: Si	id					
20	(ii)	MOLE	CULE TYPE:	DNA						
	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID	NO:	702		
25	CTCTCG	TATA	CCGCGAAGCG	3						20
	2) INFO	RMATI	ON FOR SEQ	ID NO:	703					
30	(i)	(A) (B)	ENCE CHARAC LENGTH: 20 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases leic ac ESS: Si	id ngle					·
35	(ii)	MOLE	CULE TYPE:	DNA						
	(xi)	SEQU	ENCE DESCR	PTION:	SEQ	ID	NO:	703		
40	TATGGA	AATT	CGAAACATC	ŗ						20
45	2) INFO	RMATI	ON FOR SEQ	ID NO:	704					
10	(i)	(A) (B)	ENCE CHARAC LENGTH: 20 TYPE: Nucl STRANDEDNE	) bases leic ac	id					
50		(D)	TOPOLOGY:							
	(ii)	MOLE	CULE TYPE:	DNA						
55	(xi)	SEQU	ENCE DESCR	IPTION:	SEQ	ID	NO:	704		
	AGTGCT	CCAA	TTAATGTTG	3						20
60	2) INFO	RMATI	ON FOR SEQ	ID NO:	705					

5	(i)	SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
10	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 705	
	GTACAG	GTTCC AATACCTGAA	20
15	2) INFO	ORMATION FOR SEQ ID NO: 706	
20	(i)	CONTRACTOR OF THE CONTRACTOR O	
	(ii)	) MOLECULE TYPE: DNA	
25	(xi)	) SEQUENCE DESCRIPTION: SEQ ID NO: 706	
	TGAAAT	TCTTC ACATCCAACA	20
30			
		ORMATION FOR SEQ ID NO: 707	
35	(i)	) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii	) MOLECULE TYPE: DNA	
	(xi	) SEQUENCE DESCRIPTION: SEQ ID NO: 707	
4 5		CATTTC AGTACCTTCT GGTAA	25
45			
		FORMATION FOR SEQ ID NO: 708	
50	(i	i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear	
55	(ii	i) MOLECULE TYPE: DNA	
	(xi	i) SEQUENCE DESCRIPTION: SEQ ID NO: 708	
60	TCRTC	CCATIC CIARIATIGC IATIAT	26

	2) INFORMATI	ON FOR SEQ	ID NO: 709			
5	2) 1141 Old 2111					
,	(i) SEOU	JENCE CHARAC	TERISTICS:			
	(1) (A)	LENGTH: 16	56 bases			
	(B)	TYPE: Nucl	eic acid.			
	(C)	STRANDEDNE	SS: Double			
10	(D)	TOPOLOGY:				
	(ii) MOLE	ECULE TYPE:	Genomic DNA	7		
			-			
		INAL SOURCE ORGANISM:		radorfori		
15					NEO0203	
	(C)	ACCESSION	NUMBER: ext	racted from	AE00/83	
	/:::\	JENCE DESCRI	DTTON. SEO	TD NO. 709		
	(XI) SEQU	JENCE DESCRI	eriion. Dbg	1B NO. 705		
20	ATGAATGAAG	TTTTATTTGT	AAAGACTGCT	GGTAGGAATT	TAAAAGCAGA	50
20	AGTAATTCGT	ATTAGGGGCA	ATGAAGTTGA	TGCACAGGTT	TTTGAATTGA	100
	CAAAAGGGAT	ATCTGTTGGA	GACCTAGTTG	AATTTACAGA	CAAACTTTTA	150
	A CA COPPCA A C	TCCCACCACC	CCTTTTTAACT	CAACTATATC	<b>ATCCCCTTCA</b>	200
	AAATCCTTTG	CCTGAATTGG	CTATTCAATG	TGGATTTTTT	TTAGAAAGGG	250
25	GAGTATATTT	AAGGCCCTTG	AATAAAGATA	AAAAGTGGAA	AAAAATTTT	300
	ACCTCCAAAG	TTGGAGATAT	CGTTATTGCA	GGAGATTTTT	TAGGTTTTGT	350
	AATTGAGGGA	ACTGTTCACC	ATCAAATAAT	GATTCCATTT	TATAAAAGGG	400
					TTCGATTGAT	
	GAGCAAATTG	CTGTAATTGA	AGATGATTCT	GGTATGAGGC	ATAATATTAC	
30	AATGTCTTTT	CATTGGCCTG	TTAAAGTTCC	TATTACTAAT	TATAAGGAAC	550
	GCCTTATTCC	TAGTGAACCT	ATGTTGACTC	AAACTAGAAT	TATAGATACA.	. 600
	TTTTTCCCAG	TTGCCAAAGG	TGGAACTTTT	TGCATTCCGG	GTCCTTTTGG	650
	AGCAGGAAAA	ACGGTTCTTC	AGCAGGTTAC	AAGTCGAAAT	GCTGATGTTG	700
	ATGTAGTGAT	TATTGCAGCT	TGTGGTGAGC	GAGCAGGAGA	AGTGGTAGAA	750
35	ACTCTTAAAG	AATTTCCCGA	ATTAATGGAT	CCAAAAACCG	GCAAATCTTT	800
	AATGGACAGG	ACTTGTATTA	TTTGTAATAC	ATCTTCAATG	CCAGTTGCAG	850
	CTAGAGAAGC	TTCTGTTTAT	ACTGCTATTA	CTATTGGTGA	GTATTACAGG	900
	CAAATGGGCC	TTGATATTCT	TCTTTTGGCA	GATTCAACTT	CAAGATGGGC	950 1000
	TCAAGCAATG	AGAGAAATGT	CIGGACGCCI	TGAGGAAATT	CCTGGCGAGG TTATGAAAGG	1050
40	AGGCTTTTCC	GGCATATCTT	GAGICIGIIA MAATCCCCAT	ATTCCATCTC	TAACAGTTGG	1100
					GTTACTCAAG	
					AGAAAGGTCT	
					GGAGTAAATA	
45					TCTTTTTTGG	
73		TGAAATTAAT				1350
						1400

ATAAGTAACG ATGATTTTTT AATTTATTTA AAATCCGAGC TACTTGATTC

GTGCTATTTG CAGCAAAATT CATTTGATTC TATTGATGCT GCTGTTAGTT

CAGAGCGTCA AAATTATATG TTTGATATAG TTTATAACAT TCTTAAAACT

AACTTTGAGT TTTCTGATAA ACTTCAAGCA AGAGATTTTA TAAATGAGTT

AAGGCAAAAT CTTTTAGACA TGAATCTTTC TTCTTTTAAG GATCATAAGT

TTAATAAATT GGAGCATGCT TTGGGTGAAT TGATAAATTT TAAAAAGGTA

55

**ATTTAG** 

50

- 2) INFORMATION FOR SEQ ID NO: 710
- (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 1818 bases

1400

1450

1500

1550

1600

1650

- (B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 5
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Treponema pallidum
    - STRAIN: Nichols (B)
- (C) ACCESSION NUMBER: extracted from AE000520 10
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 710

	(332)					
	amaa maa a a C	ACGATGTGGT	TACAGGCCGT	GTAGTGAGGG	TGTCTGGTCC	50
- <b>-</b>	010.11		TCTCTGCGTG	CAGCGTATAC	GATGTTGTCG	100
15	CATTGTGTAT	000011000	ATCGGAGAAA	TTATCCGGTT	GGATGAGAGC	150
	ACGTAGGGGA		CGAGGATGAC	ACAGGTATGC	GAGTCGGGGA	200
	AAGGCGGTCG		GACCACTCTC	AGTCCGCTTA	GGGCCTGGAT	250
	GAAGGTGACA TAATCGGCAC		GGTATTCAGC	GCCCACTTGA	GCGCCTCTTC	300
	CAAGAAGACG	GCGCCTTCTT	GCGTCCTGGT	GCGCGTTCAC	AACCGCTTGA	350
20	TGGCTCCGTA	CGCTGGGATT	TTCGTCCTCA	TTGTAACGAG	CGCGGTGAGG	400
	CCCTGTGCGC	GGGGATTCCG	ATTGCACCTG	GGTCAGTGTT	AGGGACCGTG	450
	CAGGAGACTC	CTTCTGTTGT	GCACACTATC	ATGGTTCCTC	CTGACATCCG	500
	GGGGAGCGTG	CTATCTTCGT	TCAAGGGCGC	AGGTGCTTAC	ACAATAGATG	550
	AAGAAATTGG	ACGCACTGAT	CTTGGTGAGC	CGCTTTTTCT	ATCCCAGTAC	600
25	TGGCCAGTGC	GTCGTGCGCG	TCCTTTCAGC	AAAAAACTTG	CAGTGTGTGA	650
	GCCACTAGTT	ACTGGACAGC	GGGCGATTGA	TGTTTTCTTC	CCCCTATCAA	700
	AGGGAGGAAC	GGCGGCTATT	CCAGGGGGAT	TTGGAACTGG	GAAGACAATG	750
	ACGCAGCATG	CCGTTGCCAA	GTGGTGTGAT	GCAGATATTA	TCGTGTACAT	800
2.0	CGGCTGCGGA	GAGCGGGGCA	ACGAGATGAC	AGACGTGCTC	TCTGAATTTC	850
30	CCAAACTCAT	CGATCCGCGC	ACAGGACGCT	CTCTTATGGA	GCGGACGATT	900
	TTGATCGCAA		TATGCCTGTG	TCCGCACGCG	AGGTGTCGCT	950
	GTATTCAGGG	ATTACCCTTG	CGGAATACTA	CCGTGATATG	GGTATGCATG	1000
	TGGCCATCAT	GGCTGATTCT	ACCAGCCGCT	GGGCGGAGGC	GCTGCGTGAA	1050
35	TTGTCTGGGC	GCATGGAAGA	AATGCCTGCG	GAGGAGGGAT	TCCCTGCGTA	1100
30	CCTTCCGACG		AATTTTATGA	GCGCGCAGGA		1150
	CCTGTGTGGC		TCTGTGAGCA	TCATTGGTGC	TGTTTCTCCC	1200
	CTGGGTGGAG		GCCGGTGACG			1250
	CCGTTGCTTT					1300
40	CTGCCATTGG		TCATACTCTG			1350
40	GCATGGTGGA		CCCGCGCGCA		GCGCCGCAGC	1400
	CTTGGATTTG		AACAGCGGTT			1450
	TCGGTCCTGA		GGAGAAGATC			1500
	GAAATGATCA		TCTGCAGCAG	AACGCTTTTC		1550
45	TGTGTTCTCC		AGCAGGTGCA			1600
10	ATTTTCACGA		GTGCTGCTGC			1650
	GCGCTGTCCC		CCGGGAGCTC			1700
	GTACGGGAAT	· · · · · · · · · · · · · · · · · · ·	ACAAGATGCA			1750
	GCACTGAGTT		AGTGTGTGT	CTGCCGCGCG	CACACAAGGG	1800 1818
50	GGGGAGAAAC					1918
_						

- 2) INFORMATION FOR SEQ ID NO: 711
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1779 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear 60

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Chlamydia trachomatis
  - (B) STRAIN: MoPn
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 711

10	CAGGGCTATG	TCGTAGAAGC	TTACGGAAAT	TTATTGCGGG	TGCATTTTGA	50
	TGGGCATGTG	CGTCAAGGAG	AAGTGGCCTA	TGTCAGCGTG	GATGATACTT	100
	GGTTGAAAGC	GGAAATTATA	GAAGTTGTGG	GAGATGAGGT	TAAAGTCCAA	150
	GTTTTTGAGG	AAACTCAAGG	AATTTCTCGA	GGCGCTTTGG	TAACTTTTTC	200
	CGGGCATTTA	TTAGAAGCGG	AACTTGGGCC	CGGTCTATTG	CAAGGTATTT	250
15	TTGACGGACT	TCAGAATCGC	TTAGAGGTAT	TGGCAGATAC	AAGCTTGTTC	300
	TTGAAAAGAG	GGGAGTATGT	TAATGCCATT	TGTCGGGAAA	CTGTATGGGC	350
	TTATACGCAA		TCGGGGATGT	TCTATCTCGG	GGAGATGTGC	400
		AAAGGAAGGG	CGGTTTGATC	ATAAAATCAT	GGTTCCTTTC	450
	TCTTGTTTTG	AGGAAGTGAC	TATCACTTGG	GTCATTTCTT	CAGGAGATTA	500
20		ACCGTTATTG	CTAAAGGACG	TACTGCTTCA	GGAGCCGAGC	550
		AATGGTTCAG	AAATGGCCCA	TTAAACAGGC	TTTTTTAGAA	600
	GGGGAAAAGG	TACCGTCTCA	TGAAATTATG	GATGTTGGGT	TACGAGTATT	650
		ATCCCCGTCT	TAAAGGGAGG	AACTTTTTGT	ACTCCAGGGC	700
		AGGAAAGACC	GTTTTACAGC	ACCATTTATC	TAAGTATGCA	750
25	GCTGTAGATA	TCGTAGTTTT	GTGTGCTTGT	GGAGAGCGAG	CTGGAGAGGT	800
	TGTAGAAATT	CTTCAGGAGT	TCCCGCATTT	GACAGATCCT	CATACGGGGC	850
	AGTCTTTGAT	GCATAGGACC	TGTATTATTT	GTAATACATC	TTCCATGCCT	900
	GTAGCAGCTA	GAGAGTCCTC	CATTTATTTG	GGTATTACTA	TAGCAGAATA	950
	TTACCGTCAA	ATGGGGTTGC	ATGTTTTGTT	ATTGGCTGAC	TCGACATCTA	1000
30	GATGGGCTCA	AGCTTTAAGG	GAAATTTCAG		AGAAATCCCT	1050
-	GGAGAAGAAG	CTTTCCCAGC	CTATTTGGCG	TCTCGAATAG	CAGCTTTTTA	1100
	TGAGCGAGGC	GGGGCTGTGA	AAATGAAAGA	TGGATCGGAA		1150
	CTATCTGTGG	AGCGGTTTCT	CCCGCAGGAG		AGAGCCTGTT	1200
	ACACAAGCAA	CTTTATCTGT	TGTTGGGGCT	TTCTGTGGGC	TTTCTAAGGC	1250
35	TAGAGCAGAT	GCTAGACGGT	ATCCTTCTAT	TGATCCGATG	ATTTCATGGT	1300
	CTAAGTACTT	GGATTCTGTG	GCGGAGATTT		AGTTCCAGGA	1350
	TGGGGAGATT	CCGTTAAAAA	AGCTTCTCGT		AAGGAGCAGA	1400
	AATTGGTAAG	CGAATAGAAG	TTGTTGGGGA	AGAAGGGATT		1450
	ATATAGAAAT	CTTTTTGAAA	TCAGAGTTGT	ATGATTTCTG	TTACTTACAG	1500
40	CAAAACGCTT	TCGATGCAGA	GGACTGTTAT		ATCGTCAAAT	1550
	AGAGCTTTTT	TCTTTAATGA	GTCATATTTT	TAGCTCTAGA		1600
	ATTGTCCAGA	TAATGCTCGG	AGTTTCTTTT		AAGTAAAATT	1650
	AAAACGCTGA	ATGGTCAAAA	ATTCCTTTCT		AGAAGGGGCT	1700
	AGAAGTGATC	TATAAACTAT		AATGGTGCAG	ACGGCGTAGG	1750
45	TATGCAAACA	ATATATACAA	GAATTACGG			1779

50

55

60

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 965 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)
  - (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Enterococcus faecalis

### (B) STRAIN: V583

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 712

	(					
5	GTGCAAATTG AAACATGTCA GCGTTATCGG	GAAAAATTGT GATGCTAGTA AGAGATTATT	CAAAGTTTCA TCCAAGACAT GAAATGCGAG		TTTTAGCTGA GGAGATTTAG TTCGATTCAA TTATTTCAAC	50 100 150 200
10	GTATATGAAG AGGAGAACCA TTGATGGTAT AACTTTTAG ATGGACGTTT ACATCGTCGG GTGCCTTTCG TGCCATTGAT	AAACAACAGG TTATCTGTTG TCAACGACCA GCCGTGGCGT GAACCAACTG TGTGGTTCAA GCGTTTCAGG GAAACAGTTT	CATTGGACCA AATTAGCCCC TTGGATACAT TAAAATTGAT TGGCAGTTGG GAAACACCGA AACGATTGCC ACTCAGTGGA	AGGTTTAATT TTCAAGAAGT GCGTTAGATC TGAAGAAGTG TTATTCAACA GAAATTAAAG AACGGCTAAA	GCCGAAATGT AACCCACAGT GTGAGAAAAA TCGGCAGGTG TAAAATTATG CAGGTGACTT GGAACGGAAA	250 300 350 400 450 500
15	GTTTTAGCAT GAAAAACTAA TACCTTTTTC TTGGCGCTGG	GATGCAAAAA GTCCCAAAGT CCAATTACGA AAAAACAGTC	TGGCCCGTTC ACCGATGGTG AAGGCGGAGC GTTCAGCACC		TCCCATTTA GCGTAATTGA CCAGGACCAT GTGGGCCGAT ATGAAATGAC	600 650 700 750 800
20	GTCGACTTAG AGATGTTTTA CTTTGATGAA GCGGCACGGG CCGTGATATG	AATGAATTTC TCGGACGATT AAGCCTCGAT	TGGTTGTGGG CAGAATTAAT TTAATTGCGA TTATACAGGG	TGACCCAACA ATACGTCAAA	ACTGGTGAGT TATGCCGGTA	850 900 950 965

# 2) INFORMATION FOR SEQ ID NO: 713

(i) SEQUENCE CHARACTERISTICS: 30

- (A) LENGTH: 1737 bases
  (B) TYPE: Nucleic acid
  (C) STRANDEDNESS: Double
  (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Methanosarcina barkeri
- (C) ACCESSION NUMBER: J04836 40
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 713

	GTACTGTTCT	TATCGCTAAC	ACTTCAAACA	TGCCTGTGGC	CGCAAGAGAA	900
	GCATCTGTGT	ATACCGGAAT	CACCATTGCA	GAATACTACC	GTGACATGGG	950
	ATTAGATGTA	TCCCTTATGG	CAGACTCCAC	CTCAAGGTGG	GCAGAAGCCA	1000
	TGAGAGAAAT	CTCTTCCCGT	CTGGAAGAAA	TGCCTGGTGA	AGAAGGTTAC	1050
5	CCAGCATACC	TGTCTGCAAG	ACTGGCCGAA	TTCTACGAGC	GTGCCGGGGT	1100
٦	TGCGGAGAGT	CTTTGCGGCG	AAACAGGTTC	CATTACTGTT	ATTGGAGCAG	1150
	TATCTCCACC	TGGCGGTGAC	TTCTCAGAGC	CTGTTACACA	GAATACCCTG	1200
	CGTATCGTAA	AAGTGTTCTG	GGCTCTCGAT	GCCAAACTAT	CTCAGAGGCG	1250
	TCACTTCCCG	GCCATCAACT	GGCTGAACAG	TTACAGTCTG	TATAAGGACA	1300
10	GTCTTAATGA	CTGGTTTGCA	GATAATGTGG	CTCCTGATTA	TGTGCCTTTG	1350
	AGGGAAAGAG	CAATGGAAAT	GCTCCAGACA	GAATCTGAAC	TGCAGGAAAT	1400
	CGTGCAGCTT	GTAGGTTCCG	ATGCTCTGCC	AGACGACCAG	CAGCTTCTGC	1450
	TTGAAATCAC	CCGTATGCTT	AGGGAAATTT	TCCTGCAGCA	GAATGCATTC	1500
	CACCCAGTAG	ATGCATACAG	CCCGTTCGAT	CAGCAGTACA	AGATCCTTAA	1550
15	GGCAATCATG	AAATGGGGAG	ACGCTGCGAT	GGATGCCTTG	AAATCAGGTG	1600
	TTCCCGTAAC	TGAAATTATC	AAGCTTGAAT	CCAAAAATGT	GCTTGCTAAG	1650
	GTCAAGTACG	AAGAGAAGTT	TGATGAGTCT	ATGAATGCTG	TCCTGGCACA	1700
	GATGGATAAA	GAGTTTGCAT	CCCTGAGAGG	TAGGTAA		1737

25

#### 2) INFORMATION FOR SEQ ID NO: 714

- (i) SEQUENCE CHARACTERISTICS:
- LENGTH: 1785 bases (A)
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA 30
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Methanosarcina jannaschii
    - ACCESSION NUMBER: U67477 (C)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 714

	ATGAAAAGAG	AGGTTGAGAA	TATGCCAGTT	GTTGGTAAGA	TAAAAAT	50
	CGCAGGGCCT	GTTGTAGTTG	CAGAGGGAAT	GAAAGGAGCT	CAGATGTATG	100
40	AGGTCGTTAA	AGTAGGAGAA	GAGAAATTGA	CTGGAGAAAT	CATTCAGTTG	150
10	CACGATGATA	AAGCAGTTAT	TCAGGTTTAT	GAAGAAACAT	CTGGAATTAA	200
	ACCAGGAGAG	CCAGTTGTTG	GTACTGGAGC	TCCATTGTCT	GTTGAATTAG	250
	GGCCAGGGAT	GTTAAGAGCT	ATGTATGATG	GTATTCAGAG	GCCTTTAACA	300
	GCAATTGAAG	AGAAAACAGG	TTCAATCTTT	ATCCCAAGAG	GAGTTGATGT	350
45	CCCTGCATTA	CCAAGAGATA	TAAAATGGGA	ATTTAAACCA	GTGGTAAATG	400
	AAGGAGATTA	TGTTGAAGAA	GGAGACATAA	TTGGAACTGT	TGATGAAACT	450
	CCTTCAATAG	TTCATAAAAT	CTTAGTTCCA	ATTGGTGTTA	AAGGAAAAAT	500
	TGTTGAAATA	AAAGAGGGTA	AATTTACAGT	TGAAGAGACA	GTTGCAGTTG	550
	TAGAAACAGA	AAATGGAGAA	AGGAAAGAAA	TTACAATGAT	GCAAAAATGG	600
50	CCAGTAAGAA	AACCAAGACC	ATATAAAGAG	AAACTACCTC	CAGAAATTCC	650
	ATTAATTACA	GGGCAAAGAG	TTGAAGACAC	TTTCTTTACA	TTAGCAAAAG	700
	GAGGAACAGC	AGCAATTCCA	GGTCCATTCG	GTTCAGGAAA	AACGGTTACT	750
	CAGCATCAGT	TGGCAAAGTG	GTCTGACGCT	GATGTCGTTG	TTTATATCGG	800
	ATGTGGAGAA	AGAGGAAACG	AGATGACAGA	GGTTATTGAA	GAGTTCCCAC	850
55	ACTTAGAAGA	TATTAGAACT	GGAAACAAAT	TAATGGATAG	AACTGTATTA	900
	ATAGCCAACA	CATCAAACAT	GCCTGTCGCT	GCAAGGGAAG	CATCTGTCTA	950
	TACAGGAATT	ACAATTGCAG	AGTACTTCAG	AGATATGGGT	TATGGAGTTT	1000
	TATTAACAGC	AGATTCAACA	TCAAGATGGG	CAGAGGCAAT	GAGAGAAATT	1050
	TCAGGTAGAT	TGGAAGAAAT	GCCAGGGGAA	GAAGGGTATC	CAGCATACTT	1100
60	AGCTTCAAGA	TTGGCTCAGT	TCTATGAAAG	AGCTGGAAGA	GTTATAACCT	1150

5	TAGGGAAAGA TAACAGACAA GGATTCGTTT GTATCGTTGA AGCTGTTTCA CCACCAGGAG GGGACTTCTC AGAACCAGTT ACATCAAACA CACTAAGGAT ACTTAAGGTA TTCTGGGCGT TAGATGCAAA CTTGGCAAGA AGAAGACACT TCCCAGCTAT CAACTGGTTG CAGAGTTATT CATTATACAT TGATGATGTT ACAGAGTGGT GGAACACAAA TACTGGTCCA GATTGGAGAC AATTAAGAGA AGAAAAAGAGGC AGAGTTGCAA GAGATTGTTC AGTTAGTTGG GCCTGATGCA TTGCCAGATA GGGAGAGGT TATTTTAGAA GGTAGATACC TACTGTCCTC CAATGAAACA GTACTTAATG TTAAAGATAA GCTAGATACC CTACCAAGAA GCATTGAAGG CAGTTGAAAG AGGAGTTGAA	1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
10	TTATGACATT CTACCAAGAA GCATIGAAGG CAAGATATTG CAAGAATGAA CCAGCTAAGA TTTTAGGAGT TTCAGTTAAG CAAGATATTG CAAGAATGAA ATACATCCCA CACGATGAGT TTATAAATGT TAAATCAAAA GAAATAATGG AGAAAATTAA GAATGAATTA GGTTCATTAA ACTAA	1700 1750 1785
15		
	2) INFORMATION FOR SEQ ID NO: 715	
20	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1354 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(VI) ORIGINAL SOURCE:  (A) ORGANISM: Porphyromonas gingivalis  (B) STRAIN: W83	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 715	
	·	50
	TGAGCGAGGT GATCAAGGTG ATCGGCAAAA ATGCTTATGT GCAGGTTTTC	100
	TGAGCGAGGT GATCAAGGIG ATCGGGAGAT GAGGCAGAGT TTACCGGCAG GAAAGTACTC GCGGTATGCA CGTAGGAGAT GCTTTCGAAG AACTACGACG TATGCTTGAG GTAACGCTCG GCCCCGGTAT GCTTTCCT CAAACGACG	150
35		200
		250 300
	GATTATACTC CCGCTCTCGA TGACGACAAC GGCCAATGTG AACGACAATG TGATCGCAGG CTCATGGCTC GGAGAGGTGA GGCCAATGTG AACGACAACGCAC AAGATCATGG TACCTTTCGT TTTCGAAGGC CGGAAAATTT CCAACCGCAC AAGATCATGG CCTTCCTACA AACTGAACGA	350
		400
40		450 500
	TGTGATCGCT GTGGTAACGG ATCAGGACGG CARTACTORY TGGTGCAGAA ATGGCCGGTG AAACGTGCTA TCACTTGCTA TCGCGAGAAG CCGCGTCCTT TCAAACTGCT CGAAACGGGT ATCCGTATCA TCGACACTTT TAAACTGCT CGAAACGGGT TATCCCCGGT CCTTTCGGTA	550
		600
45		650 700
		750
	ATCGTGATCA TIGCAGGCIG IGGGCAGGCCC CCACACGGGA CGTAAATTGA CTTTGCGGAA TTCCCCCACC TGAATGACCC CCACACGGGA CGTAAATTGA TGGAACGTAC CATTATTATT GCTAATACGT CGAATATGCC TGTGGCTTCG TGGAACGTAC CATTATTATT GCTAATACGC ATACGCTCCTC	800
	THE PROPERTY OF THE PROPERTY O	850
50		900 950
	CATGGGCCTT CGCGTGCTGA TGATGGCACTGG AAGAGCTTCC CGGACCGGAT AGGCTCTGCG TGAGATGTCT AACCGTCTGG AAGAGCTTCT ACGCTCGTGC GCTTTCCCGA TGGACTTGTC AGCTATCGTA GCCAACTTCT ACGCTCGTGC	1000
	comm my comedy year a vectorial (life) (life) I collect a record	1050
		1100 1150
55	ALLES A MODOMOCOMO CONTO CONTO I LIGITALICADO ALCOLOGOS	1200
		1250
	- mma ma mmox a caca a consciour con constituir de la con	1300
	CTGGACTACT AAGGTGAATG AGCTGAAGAT GCGCTTGCAT CAGGGTAAAG	1350 1354
60		T J J T

60 AAAT

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1788 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 10 (D) TOPOLOGY: Linear

5

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus pneumoniae
  - (B) STRAIN: Type 4
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 716

20	TTTGACTCAA	GGGAAGATTA	TAAAAGTATC	GGGACCTCTA	GTTATTGCAT	50
20	CAGGTATGCA	GGAGGCTAAT	ATTCAAGATA	TTTGCCGTGT	AGGTAAGCTA	100
	GGGTTAATCG	GTGAAATTAT	TGAAATGAGA	AGAGATCAGG	CATCTATCCA	150
	AGTCTATGAA	GAAACATCTG	GTCTTGGTCC	GGGAGAACCT	GTTGTTACAA	200
	CTGGAGAACC	TCTCTCGGTT	GAATTAGGGC	CAGGATTGAT	TTCTCAAATG	250
25	TTTGATGGCA	TACAACGCCC	ATTAGATCGA	TTTAAATTGG	CTACTCATAA	300
22	TGATTTTCTA	GTTCGTGGGG	TAGAAGTTCC	AAGTTTGGAT	AGAGATATTA	350
	AGTGGCATTT	TGATTCCACT	ATAGCAATTG	GTCAAAAAGT	GAGTACGGGT	400
	GATATTCTTG	GAACTGTCAA	GGAAACCGAG	GTAGTTAATC	TATAAAATTA	450
	GGTTCCTTAT	GGAGTATCTG	GAGAAGTCGT	TTCTATTGCA	TCTGGCGATT	500
30	TTACAATTGA	TGAAGTTGTA	TATGAAATAA	AAAAATTGGA	CGGTAGTTTC	550
50	TATAAAGGAA	CGCTTATGCA	AAAATGGCCT	GTCCGCAAGG	CGCGTCCTGT	600
	TTCTAAACGT	TTAATTCCAG	AAGAACCATT	AATCACAGGT	CAACGAGTTA	650
	TTGATGCATT	CTTTCCAGTA	ACCAAAGGGG	GAGCTGCAGC	AGTTCCTGGA	700
	CCGTTTGGAG	CAGGAAAGAC	AGTTGTACAA	CACCAAGTAG	CTAAATTTGC	750
35	CAATGTTGAT	ATTGTTATTT	ATGTCGGTTG	TGGAGAACGT	GGAAATGAAA	800
-	TGACGGATGT	ACTGAATGAG	TTTCCTGAGT	TGATTGACCC	TAATACCGGA	850
	CAATCAATTA	TGCAACGGAC	AGTTCTGATT	GCTAATACTT	CAAATATGCC	900
	TGTTGCTGCT	CGTGAGGCTT	CAATTTATAC	AGGAATTACC	ATGGCTGAGT	950
	ATTTTCGTGA	TATGGGCTAC	TCTGTCGCCA	TTATGGCTGA	TTCAACTTCA	1000
40	CGTTGGGCAG	AAGCGCTACG	TGAAATGTCA	GGACGTCTAG	AAGAAATGCC	1050
	TGGTGATGAG	GGTTATCCTG	CTTATCTGGG	AAGTCGTATC	GCTGAATATT	1100
	ATGAAAGAGC	AGGACGTTCT	CAGGTTCTAG	GGCTTCCAGA	*	1150
	ACGATTACTG	CTATTGGAGC	TGTATCGCCA	CCTGGTGGAG	ATATTTCAGA	1200
	ACCAGTTACT	CAAAACACTT	TACGGATTGT	GAAAGTTTTT	TGGGGGCTTG	1250
45	ATGCTCCGTT	GGCACAGCGA	CGTCATTTTC	CTGCAATTAA	•	1300
	TCTTATTCAC	TATATAAAGA	CAGTGTGGGC	ACTTATATAG	ATGGTAAAGA	1350
	GAAGACAGAT	TGGAATAGTA	AAATAACTCG	TGCGATGAAC	TACTTACAAC	1400
	GGGAATCTAG	TTTAGAGGAA	ATTGTTCGTC	TTGTTGGAAT	TGATTCTCTG	1450
	TCTGATAATG	AACGACTAAC	GATGGAAATT	GCTAAACAAA	TTCGAGAAGA	1500
50	TTATTTGCAA	CAGAACGCTT	TTGATTCGGT	AGATACATTC	ACTTCGTTTG	1550
	CAAAACAAGA	AGCAATGCTA	AGTAATATTC	TCACTTTTGC	TGATCAGGCA	1600
	AATCATGCTT	TAGAGTTGGG	TTCTTACTTT	ACAGAGATTA		1650
	CGTGGCAGTT	CGAGACCGTA	TGGCGAGAAG	TAAATATGTT	TCAGAAGATA	1700
	GATTAGATGA	AATCAAAATT	ATATCAAATG		TCAAATTCAT	1750
55	TTGATATTAG	AAACAGGAGG	TCTATAAATG	AGTGTTAT		1788

²⁾ INFORMATION FOR SEQ ID NO: 717

(i) SEQUENCE CHARACTERISTICS: LENGTH: 823 bases (A) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear 5 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Burkholderia mallei 10 STRAIN: GB8 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 717 CGATCCTGGT GTGCTCGGCC GCTGACGGCC CGATGCCGCA AACGCGTGAG CACATCCTGC TGGCGCGTCA GGTCGGTGTG CCGTACATCA TCGTGTTCCT 100 GAACAAGTGC GACATGGTGG ACGACGCGGA GCTGCTCGAG CTGGTCGAAA TGGAAGTGCG CGAACTGCTG TCGAAGTACG ACTTCCCGGG CGACGACACG 150 200 CCGATCATCA AGGGTTCGGC GAAGCTGGCG CTGGAAGGCG ACAAGGGCGA GCTGGGCGAA GTGGCGATCA TGAACCTGGC CGACGCGCTG GACACGTACA TCCCGACGCC GGAGCGTGCG GTCGACGGCG CGTTCCTGAT GCCGGTGGAA 20 GACGTGTTCT CGATCTCGGG CCGTGGTACG GTGGTGACGG GTCGTGTCGA GCGCGGCGTG ATCAAGGTTG GCGAGGAAAT CGAAATCGTC GGTATCAAGG 450 CGACGGCGAA GACGACCTGC ACGGGCGTGG AAATGTTCCG CAAGCTGCTG 500 550 700 750 800 823 30 ATCGCGATGG AAGAAGGTCT GCG 2) INFORMATION FOR SEQ ID NO: 718 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) 40 TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Burkholderia pseudomallei 45 (B) STRAIN: 1026B (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 718 GCGATCCTGG TGTGCTCGGC CGCTGACGGC CCGATGCCGC AAACGCGTGA 50 GCACATCCTG CTGGCGCGTC AGGTCGGTGT GCCGTACATC ATCGTGTTCC TGAACAAGTG CGACATGGTG GACGACGCGG AGCTGCTCGA GCTGGTCGAA 150 ATGGAAGTGC GCGAACTGCT GTCGAAGTAC GACTTCCCGG GCGACGACAC 200 55 GCCGATCATC AAGGGTTCGG CGAAGCTGGC GCTGGAAGGC GACAAGGGCG AGCTGGGCGA AGTGGCGATC ATGAACCTGG CCGACGCGCT GGACACGTAC ATCCCGACGC CGGAGCGTGC GGTCGATGGC GCGTTCCTGA TGCCGGTGGA AGACGTGTTC TCGATCTCGG GCCGTGGTAC GGTGGTGACG GGTCGTGTCG AGCGCGGCGT GATCAAGGTT GGCGAGGAAA TCGAAATCGT CGGTATCAAG 450 GCGACGGCGA AGACGACCTG CACGGGCGTG GAAATGTTCC GCAAGCTGCT 500 60

5	GGATCAGGGT CAGGCGGGCG ACAACGTCGG TATCCTGCTG CGCGGCACGA AGCGTGAAGA CGTGGAGCGC GGCCAGGTTC TGGCGAAGCC GGGTTCGATC ACGCCGCACA CGCACTTCAC GGCTGAAGTG TACGTGCTGA GCAAGGACGA AGGCGGCCGC CACACGCCGT TCTTCAACAA CTACCGTCCG CAGTTCTACT TCCGTACGAC GGACGTGACG GGCTCGATCG AGCTGCCGAA GGACAAGGAA ATGGTGATGC CGGGCGACAA CGTGTCGATC ACGGTGAAGC TGATCGCGCC GATCGCGATG GAAGAAGGTC TGCG	550 600 650 700 750 800 824
10	2) INFORMATION FOR SEQ ID NO: 719	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 800 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	<ul><li>(ii) MOLECULE TYPE: Genomic DNA</li><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Clostridium beijerincki (deposited a</li></ul>	s
25	Clostridium butyricum) (B) STRAIN: ATCC 8260 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 719	
30	TGTATCAGCA GCAGATGGTC CAATGCCACA AACAAGAGAA CATATACTAC TAGGATCAAG AGTTGGTATC CAATATATCG TAGTATTCTT AAATAAAGCA GATATGGTAG ACGATCCAGA ATTATTAGAA TTAGTAGAAA TGGAAGTAAG AGAATTATTA AGCGAATATG ACTTCCCAGG AGACGATATT CCAGTAATAA CAGGATCAGC ATTAAAAGCA TTAGAAAATC CAACAGATGA AGAAGCAATT	50 100 150 200
35	AAGCCAATCA TGGATTTAAT GGAAGCAGTA GATAGCTATA TCCCAACTCC AGAAAGAGCA ACAGATAAGC CATTCTTAAT GCCAATCGAA GATGTATTCA CAATTACAGG AAGAGGAACA GTTGCAACAG GAAGAGTTGA AGCTGGAGTA CTTCATGTAG GAGATGAAGT AGAAATCGTT GGATTAACAG AAGAAAAGAA	300 350 400 450 500 550
40	GATATTGAAA GAGGTCAAGT TTTATCAAAA CCAAATTCAG TACACCCTCA CACTAAATTT GTAGGTCAAG TATACGTACT TAAAAAAGAA GAAGGTGGAA GACATACTCC ATTCTTTGAT GGATACAGAC CACAATTCTA TTTCAGAACA ACAGACGTTA CAGGRTCAAT CAAGTTACCA GATGGAATGG AAATGGTAAT GCCTGGAGAT CACATTGATA TGAATGTTGA ATTAATCACT CCAATCGCAA	600 650 700 750 800
45		
-	2) INFORMATION FOR SEQ ID NO: 720	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 799 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Clostridium innocuum</pre>	

(B) STRAIN: ATCC 14501

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 720

	~~~~~~~~~~	TGGTTGTTGC	TGCATCTGAT	GGTCCTATGC	CTCAGACTCG	50
	00100111	CTGCTTGCTC	GTCAGGTAGG		ATCGTTGTAT	100
	TGAGCACATC			AAGAACTGAT	CGACCTTGTT	150
5	TCCTGAACAA	ATGCGACATG	0110	TACGGATTCG	ACGGAGATAA	200
	GAAATGGAAG	TACGTGAGCT	GTTAAGCGAG		GGTGACGACA	250
	CGCTCCGGTT	ATCCGTGGTT	CTGCACTGAA	GGCTCTGGAA	TGAATTCATC	300
	AATACGTTGG	CGCTATCAAA	GAACTGATGG	ATGCAGTTGA		350
	CCAGATCCAA	CTCGTGAAAC	TGACAAACCA	TTCCTGATGT	CTGTAGAAGA	
4.0	CGTTATGACA	ATCACAGGAC	GTGGTACAGT	TGCTACAGGA	CGTGTTGAGC	400
10	CO =	AAAACTGGGA	GAAGAAGTTG	AAATCGTTGG	TATCAAGGAT	450
	GTGGGGTAGT	CTGTTGTTAC	CGGACTGGAA	ATGTTCCGTA	AGCAGCTGGA	500
	ACTCAGAAAA		ACATCGGTGC	TCTGCTGCGT	GGTATCAACC	550
	CTTCGCAGAA	TCCGGAGACA		CTAAACCAGG	ATCCGTACAT	600
	GTGACCAGAT	TCAGCGTGGA	CAGGTTCTTG		AAGAAGAAGG	650
15	CCACACACAA	AGTTCAAGGC	TCAGGTTTAT	GTATTAACAA	TTCTACTTCC	700
	TGGACGTCAC	ACTCCATTCG	TTTCTAACTA			750
	GTACAACTGA	CGTAACTGGT	GTTATTACAT	TACCGGAAGG		
	GTTATGCCTG		TGAAATGAAC	GTTGAGCTGA	TTGCTCCAA	799
	GITATGCCTC	Q = Q == 3 • = = = =				

20

25

2) INFORMATION FOR SEQ ID NO: 721

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 30 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Clostridium novyi
 - (B) STRAIN: ATCC 19402

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 721

40	TTGTATCAGC TTAGCATCAA AGACCAAGTA GAGAATTATT GTAGGATCAG	AGCAGATGGT GAGTAGGAGT GATGATCCAG AAGCGAATAC CATTAAAAGC	CCAATGCCAC TAACCACATA AATTACTAGA GGATTTGACG AATCGAAGAA	GTAGTATTCT ATTAGTAGAA GAGACGAATG GGGGATGACC	TAAACAAAGC ATGGAAGTAA TCCAGTAGTA AATGCATCCT	50 100 150 200 250 300
45	AGACTTAATG CAGATCAACC AGAGGAACAG AGATGAAGTA	AAAGCTGTAG ATTCTTAATG TTGCAACAGG CAAATCGTAG	ATGAATATAT CCTGTAGAAG AAGAGTTGAA GAATGAAAGA AGAAAGATGT	CCCAACTCCA ATGTATTTAC AGAGGAGTAC AGAAATCGGA TAGATGAAGC	GAAAGAGCAA AATTACAGGA TACACGTAGG AAGACAACAA AATGGCTGGA	350 400 450 500
50	TCACAGGAGT GATAACATCG AGGTCAAGTA TAGGTCAAGT TTCTTTAACG AGGATCAATC ATATAGACAT		AAGAGGAGTA CAGGTTCAGT AAGAAAGAAG ACAATTCTAC AAGGAGTAGA	CAAAGAGACG AACACCTCAC AAGGTGGAAG TTCAGAACAA AATGGTAATG	AAATCGAAAG AAAAAATTCG ACACACTCCA CAGACGTAAC	550 600 650 700 750 789

55

- 2) INFORMATION FOR SEQ ID NO: 722
- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 798 bases

	(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium septicum (B) STRAIN: ATCC 12464</pre>	
10	(B) SIRAIN: AICC 12404	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 722	
15	GTTCAGCAGC AGACGGTCCA ATGCCACAAA CAAGAGAACA TATACTACTA GCATCAAGAG TTGGTGTTGA CTATATCGTA GTATTCTTAA ACAAGGCAGA TATGGTAGAT GACGAAGAAT TATTAGAATT AGTAGAAATG GAAGTTAGAG AATTATTATC AGAATACAAC TTCCCAGGAG ATGATATTCC AGTAATCAAG GGATCAGCTT TAGTAGCATT AGAAAACCCA ACAGATGAAA AATCAATCGC	50 100 150 200 250
20	TCCAATCTTA GAATTAATGG AAGCAGTAGA TAGCTACATT CCAACACCAG AAAGAGCAAC AGATAAGCCA TTCTTAATGC CAGTAGAAGA TGTATTCACA ATAACTGGTA GAGGAACAGT TGCAACAGGA AGAGTTGAAA GAGGAGTTCT TCATGTAGGA GACGAAGTAG AAATCGTTGG ATTATCAGAA GAAAGCAGAA AAGTAGTAGT AACAGGAATA GAAATGTTCA GAAAGTTACT AGACGAAGCA	300 350 400 450 500
25	CAAGCTGGAG ATAATGTTGG AGTACTTTTA AGAGGTGTTC AAAGAACAGA TATCGAAAGA GGTCAAGTAT TAGCAAAGAC TGGATCAGTT AAGCCACACA GCAAGTTCGT AGGTCAAGTA TACGTACTTA AGAAAGAAGA AGGTGGAAGA CATACTCCAT TCTTCGATGG ATACAGACCA CAATTCTACT TCAGAACAAC AGACGTTACT GGATCAATCA AATTACCAGA CGGAATGGAA ATGGTTATGC CAGGAGACCA CATTGATATG AACGTTGAAT TAATCACTCA AGTAGCAA	550 600 650 700 750 798
30		
	2) INFORMATION FOR SEQ ID NO: 723	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
40	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium tertium (B) STRAIN: ATCC 14573</pre>	
45		
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 723	
50	GTTCAGCAGC AGATGGTCCA ATGCCTCAAA CAAGAGAACA CATACTACTA GCTTCAAGAG TTGGTGTTGA CTACATAGTT GTTTTCTTAA ACAAGGCAGA TATGGTAGAT GACGAAGAAT TATTAGAATT AGTTGAAATG GAAGTAAGAG AATTATTATC AGAATACAAC TTCCCAGGAG ATGATATTCC AGTAATAAAG	50 100 150 200
	GGTTCAGCTT TACAAGCATT AGAAAACCCA ACAGATGAAA AAGCAATCGC TCCAATCCTT GAGTTAATGG AAGCTGTAGA TAGCTACATT CCAACTCCAG AAAGAGCAAC AGATAAGCCA TTCTTAATGC CAGTAGAAGA TGTATTCACA	250 300 350
55	ATCACTGGTA GAGGAACAGT TGCTACAGGA AGAGTTGAAA GAGGAGTTCT TCACGTAGGA GACGAAGTAG AAATCGTTGG ATTATCAGAA GACAGCAGAA AAGTAGTAGT AACAGGAATA GAAATGTTCA GAAAGTTACT AGACGAAGCG CAAGCTGGAG ACAACGTAGG AGTTCTTTTA AGAGGAGTTC AAAGAACTGA	400 450 500 550
60	CATCGAAAGA GGTCAAGTTT TAGCAAAAGT TGGATCAGTT ÁAGCCACACA AGAAATTTGT AGGTCAAGTA TACGTACTTA AAAAAGAAGA AGGTGGAAGA	600 650

	CATACTCCAT TCTTCGATGG ATACAGACCA CAATTCTACT TCAGAACAAC AGAYGTTACT GGTTCAATCA AGTTACCAGA TGGAATGGAA ATGGTTATGC CAGGAGACCA CATTGATATG AACGTTGAAT TAATCACTCA AGTAGCTAT	700 750 799
5		
	2) INFORMATION FOR SEQ ID NO: 724	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 801 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium tetani(B) STRAIN: ATCC 19406	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 724	·
25	TAGTAAGTGC AGCAGATGGT CCAATGCCAC AAACAAGAGA ACACATACTA TTAGCATCCA GAGTTGGAGT TGAGCACATA GTAGTATTCT TAAATAAAGC AGACCAAGTA GATGACGCAG AGTTAATCGA ATTAGTAGAA ATGGAAGTAA GGGAATTAAT GAACGAATAC GGATTCCCAG GAGATGACGC ACCAGTAGTA GTAGGATCCG CATTAAAAGC ATTAGAAAAT CCAGAAGATG ATGCAGCAAC	50 100 150 200 250
30	ACAATGCATA ATGGACTTAA TGGCAGCAGT AGATGAATAT ATACCAACAC CAGAAAGAGC AACAGATAAG CCATTCTTAA TGCCAGTAGA AGATATCTTC ACAATCACAG GAAGAGGAAC AGTTGCAACA GGAAGAGTAG AAAGAGGAAT TCTAAAAGTA GGAGACGAAA TAGAAATCGT AGGATTAAGT GATGAAAGCA	300 350 400 450 500
35	GCACAAGCAG GAGATAACAT CGGAGCATTA TTAAGAGGTG TTCAAAGAGA TGAAATCCAA AGAGGTCAAG TATTAGCAGC AACAGGATCA GTAAAACCAC ATAAGAGTT TACAGGTCAA GTATATGTAT TAAAGAAAGA AGAAGGAGGA AGACACACTC CATTCTTTAA CGGATACAGA CCACAATTCT ACTTTAGAAC AACAGACGTA ACAGGTTCAA TCGCACTACC AGAAGGAGTA GAAATGGTAA TGCCAGGAGA CCACATAGAC ATGAAGGTAG AATTAATAAC AAGAGTAGCA	550 600 650 700 750 800 801
40	A	301
	2) INFORMATION FOR SEQ ID NO: 725	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 633 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double 	
50	(D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus malodoratus(B) STRAIN: ATCC 43197	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 725	
60	TATGCCTCAA ACTCGTGAAC ACATCTTGTT ATCTCGTAAC GTTGGTGTTC CTTACATCGT TGTATTCTTA AACAAAATGG ATATGGTTGA TGATGAAGAA	50 100

5	TTACTAGAAT TAGTTGAAAT GGAAGTTCGT GACTTATTGT CAGAATACGA CTTCCCAGGC GACGACACTC CAGTTATCGC TGGTTCAGCT TTGAAAGCTT TAGAAGGCGA TGCTTCATAC GAAGAAAAAA TCTTAGAATT AATGGCTGCT GTTGATGAAT ATATCCCAAC ACCAGTTCGT GATACTGACA AACCATTCAT GATGCCAGTC GAAGATGTAT TCTCAATCAC TGGTCGTGGA ACTGTTGCAA CTGGTCGTGT TGAACGTGGA CAAGTTCGCG TTGGTGACGA AGTTGAAATC GTTGGTATTG CTGAAGCAAC TGCTAAAACA ACTGTTACAG GTGTTGAAAT GTTCCGTAAA TTGTTAGATT ACGCTGAAGC AGGCGATAAC ATTGGTGCAT TGTTACGTGG TGTTGCACGT GAAGACATCC AACGTGGACA AGTATTGGCT AAACCAGCTT CAATCACTCC ACATACAAAA TTCTCTGCAG AAGTTTACGT TTTAACTAAA GAAGAAGGCG GACGTCATAC TCC	150 200 250 300 350 400 450 500 633
15	2) INFORMATION FOR SEQ ID NO: 726	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 623 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus sulfureus(B) STRAIN: ATCC 49903	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 726	
30	CACGTGAACA CATCTTGTTA TCTCGTAACG TAGGTGTTCC TTACATCGTT	50
	GTATTCTTAA ACAAAATGGA TATGGTTGAT GACGAAGAAT TATTAGAATT	100
	AGTAGAAATG GAAGTTCGTG ACTTATTATC AGAATACGAT TTCCCAGGCG	150
35	ATGACACTCC AGTTGTTGCA GGTTCTGCTT TGAAAGCTTT AGAAGGCGAC GCTTCTTACG AAGAAAAAAT CATGGAATTA ATGGCTGCAG TTGACGAGTA	200 250
22	CATCCCAACT CCAACTCGTG ACACTGACAA ACCATTCATG ATGCCAGTTG	300
	AGGATGTATT CTCAATCACT GGACGTGGTA CTGTTGCTAC AGGTCGTGTT	350
	GAACGTGGAC AAGTTCGCGT TGGTGACGTT GTAGATATCG TTGGTATCGC	400
	TGACGAAACT GCTCAAACAA CTGTAACAGG TGTTGAAATG TTCCGTAAAT	450
40	TATTAGACTA CGCTGAAGCA GGCGATAACA TCGGTGCTTT ATTACGTGGT GTTGCTCGTG AAGACATCCA ACGTGGACAA GTTTTAGCTA AACCAGCTTC	500 550
	AATCACTCCA CATACAAAAT TCTCTGCTGA AGTATACGTA TTAAGCAAAG	600
	AAGAAGGTGG ACGTCATACT CCA	623
45		
	2) INFORMATION FOR SEQ ID NO: 727	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 646 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Lactococcus garvieae	
	(B) STRAIN: ATCC 49156	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 727

	CGGTCCTATG	CCTCAAACTC	GTGAACACAT	CTTGTTATCA	CGTAACGTTG	50
	GCGTACCATA			AAATGGATAT	GGTTGATGAC	100
5			TGAAATGGAA			150
5	ATATGACTTC	CCAGGCGACG	ATGTTCCTGT		TCTGCTTTGA	200
	AAGCTCTTGA					250
	GCTGCAGTTG				CTGACAAACC	300
	ATTCATGATG		ACGTATTCTC		CGTGGTACTG	350
10	TTGCTACAGG	CCGTGTTGAA		TTCGCGTTGG	TGATGAAGTA	400
10	GAAATCGTTG			AAAACAACTG	TAACAGGTGT	450
	TGAAATGTTC				GATAACATTG	500
					TGGACAAGTA	550
	0100111100-	CTCCTACAAT	CACACCTCAT			600
	TTGGCTAAAG TTATGTTTTG				TTCTTC	646
15	TIAIGITIIG	WCWWWQWWQ	MUCCIOCHEO			

2) INFORMATION FOR SEQ ID NO: 728

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 823 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:

25

30

55

- (A) ORGANISM: Mycoplasma pirum
- (B) STRAIN: ATCC 25960D
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 728

	GAGCAATTTT	AGTTGTTTCT	GCAACTGATG	GTCCAATGCC	TCAAACTCGT	50
35	GAACATATCT	TATTAGCACG	CCAAGTTGGT	GTTCCTAAAA	TGGTTGTTTT	100
55	CTTAAACAAA	TGTGATGTTG	CTTCTGATCC	AGAAATGCAA	GAATTAGTTG	150
	CTGAAGAAGT	AAAAGACTTA	TTAAAATCTT	ATGGTTTTGA	TGGTGACAAT	200
	ACTCCAATTA	TTCGTGGTTC	AGCATTAGAA	GCATTAAATG	GTAAACCTGA	250
	ATGAGAAGAA	AAAATTAAAG	AATTAATGAA	GGCAGTGGAT	GACACTATTC	300
40	CTGATCCAGT	TCGTGATACT	GAAAAGCCAT	TCTTGTTACC	AATTGAAGAC	350
10	GTAATGACAA	TTACAGGTCG	TGGTACTGTT	GTTACAGGTC	GTGTAGAACG	400
	TGGTACTCTA	AAATTAAATG	ATGAAGTTGA	AATTGTTGGT	TTAGGTGAAA	450
	CATTTAAATC	TGTTGTAACA	GGTATTGAAA	TGTTCCGTAA	AGAATTAGAT	500
	GAAGCTCGTG	CTGGTGACAA	TGCTGGTATT	TTACTTCGTG	GTGTTGACCG	550
45	TGGTCAAGTA	CAACGTGGTC	AAGTTCTTGC	TAAACCAGGT	TCTATTACTC	600
	CTCATACTAA	ATTTAAAGCT	GAAATTTATG	CTTTGAAAAA	AGAAGAAGGT	650
	GGTCGTCATA	CTGCTTTCTT	AAACGGTTAT	CGTCCTCAAT	TCTATTTCAG	700
	AACAACTGAT	GTTACAGGTT	CTATTAAATT	AAAAGATGGA	ACTGAAATGG	750
	TTATGCCTGG	TGACAATACT	GAAATCACTG	TAGAATTAAT	TTCACCAATT	800
50	GCTTGTAAAA	AGGAAGTAAG	TTT		,	823

2) INFORMATION FOR SEQ ID NO: 729

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 826 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:

35

- (A) ORGANISM: Mycoplasma salivarium
- (B) STRAIN: ATCC 23064
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 729

10	GGAGCAATCT	TAGTTGTTGC	TGCAACTGAT	GGTGCGATGC	CTCAAACTCG	50
	TGAACACGTT	TTACTTGCAA	AACAAGTTGG	TGTTCCTAAA	ATCGTTGTTT	100
	TCTTAAACAA	AATCGATATG	TTCAAGCCAG	AAGAAAGAGC	CGAAATGGTT	150
	GAAATGGTTG	AAATGGACAT	TCGTGACTTA	TTAAACAAAT	ACGACTTTGA	200
	TGGTGACAAT	ACTCCTATTA	TTGCTGGTTC	AGCATTAAAA	GCATTACAAG	250
15	GTGATCCAGA	ATATGAAAAG	AATATTCTAG	AACTTATGGA	TGCAGTAGAC	300
	ACATACATTG	ATGAACCTAC	TCGTGATAAA	GATAAACCAT	TCTTAATGGC	350
	TGTAGAAGAC	GTATTTACAA	TTACTGGTCG	TGGAACTGTT	GCTACTGGTA	400
	GAGTAGAACG	TGGTACATTA	CATCTAAATG	ATGAAGTTGA	AATCGTTGGT	450
	CTACGTCCAA	CAATTAAAAC	TGTTGTTACT	GGAATTGAAA	TGTTCCGTAA	500
20	AAATTTAAAA	GAAGCTCAAG	CTGGAGATAA	TGCAGGACTT	TTACTACGTG	550
	GAATTGATAG	AGATCAAGTA	GAACGTGGAC	AAGTTTTGGC	CAAACCAAAA	600
	AGTATTATTC	CTCACACAGA	ATTTGAAGCT	GCTGTGTATG	TTCTAAAAGC	650
	TGAAGAAGGT	GGACGTCACA	CTCCATTCTT	TGAACACTAT	AAACCACAAT	700
	TTTACTTTCG	TACAACCGAC	GTTACTGGTG	GAATTAAATT	CAAACCTGGA	750
25	CGTGAAATGG	TTATGCCTGG	CGAAAATGTT	GAATTTACAG	TTACTTTAAT	800
	TGCTCCTATT	GCAGTTGAAG	AAGGAA			826

- 30 2) INFORMATION FOR SEQ ID NO: 730
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 810 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Neisseria polysaccharea
 - (B) STRAIN: ATCC 43768
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 730

	TGGTATGTTC	CGCAGCYGAY	GGYCCTATGC	CTCAAACTCG	CGAACACATC	50
	CTGYTGGCTC	GCCAAGTAGG	YGTACCTTAC	ATCATCGTRT	TCATGAACAA	100
	ATGCGACATG	GTTGACGATG	CCGAGCTGTT	GGAACTGGTT	GAAATGGAAA	150
	TCCGYGACCT	GYTGTCMAGC	TACGACTTCC	CMGGCGACGA	CTGCCCAATC	200
50	GTACAAGGTT	CTGCACTGAA	AGCTTTGGAA	GGYGAYGCTG	GTTACGAAGA	250
	GAAAATCTTC	GAAYTGGCTG	CTGCTTTGGA	CAGCTACATC	CCAACTCCTG	300
	AGCGTGCTGT	GGACAAACCK	TTCYTGYTGC	CTATCGAAGA	CGTRTTCTCT	350
	ATCTCTGGYC	GYGGTACMGT	AGTAACYGGY	CGTGTAGAGC	GCGGTRTCAT	400
	CCACGTTGGT	GACGAGATYG	AAATCGTAGG	TCTGAAAGAA	ACCCAAAAAA	450
55	CCACTTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	CGAAGGTCAA	500
	GCWGGTGACA	ACGTAGGCGT	ATTGYTGCGT	GGTACCAARC	GTGAAGACGT	550
		CAAGTATTGG		YACCATYACT	CCSCACACCA	600
	AATTCAAAGC	AGAAGTATAC	GTACTGAGCA	AAGAAGAGGG	TGGTCGYCAC	650
	ACTCCATTCT	TCGCYAACTA			GTACYACTGA	700
60	CGTAACYGGT	GCAGTTACTT	TGGAAGAAGG	TGTAGAAATG	GTAATGCCAG	750

	GTGAGAACG AAGGTCTGC	r aaccattacy G	GTAGAACTGA	TTGCGCCTAT	CGCTAGGAAG	800 810
5	2) INFORMA	TION FOR SEQ	ID NO: 731			
10	(A)) TYPE: Nucl) STRANDEDNE	3 bases eic acid SS: Double			
15	•	LECULE TYPE:		.		
	(A	IGINAL SOURCE) ORGANISM: rotype <i>enteri</i>	Salmonella	choleraesu	is subsp. <i>cho</i>	leraesuis
20	(B		CC 13076	ID NO: 731		
25	CTGGTTGTT CCTGCTGGG	G CTGCGACTGA T CGTCAGGTAG T GGTTGATGAC	CGGCCCGATG GCGTTCCGTA GAAGAGCTGC	CCGCAGACCC CATCATCGTG TGGAACTGGT	TTCCTGAACA TGAAATGGAA	50 100 150
	GTTCGYGAA CGTTCGTGG CGAAAATCA	C TGCTGTCTCA T TCTGCTCTGA T CGAACTGGCT A TTGACAAGCC	GTACGACTTC AAGCGCTGGA GGCTTCCTGG	CCGGGCGACG AGGCGACGCA ATTCTTACAT	ACACTCCGAT GAGTGGGAAG CCCGGAACCA	200 250 300 350
30	CATCTCCGG TCAAAGTGG TCTACCTGT	T CGTGGTACCG G CGAAGAAGTT A CTGGCGTTGA G AACGTAGGTG	TTGTTACCGG GAAATCGTTG AATGTTCCGC	TCGTGTAGAA GTATCAAAGA AAACTGCTGG	CGCGGTATCA GACTCAGAAG ACGAAGGCCG	400 450 500 550
35	TCGAACGTG AAGTTCGAA CACTCCGTT ACGTGACTG GGCGACAAC	G TCAGGTACTG T CTGAAGTGTA T TTCAAAGGCT G CACCATCGAA T TCAAAATGGT	GCTAAGCCGG CATTCTGTCC ACCGTCCGCA CTGCCGGAAG	GCACCATCAA AAAGATGAAG GTTCTACTTC GCGTAGAGAT	GCCGCACACC GCGGCCGTCA CGTACTACTG GGTAATGCCG	600 650 700 750 800 813
40	CGACGGTCT	G CG1				013
	2) INFORMA	TION FOR SEQ	ID NO: 732			
45	(A (B) TYPE: Nuc.	12 bases leic acid ESS: Double			
50	•	LECULE TYPE:		A .		
55	(A se	LIGINAL SOURCE ORGANISM: Protype galling ORGANISM: AND	Salmonella narum	choleraesu	is subsp. cho	oleraesuis
		QUENCE DESCR		ID NO: 732		
60	ርጥርርናጥርናጥ	G CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	GTGAGCACAT	50

	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	TTCCTGAACA	100
	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	TGAAATGGAA	150
	GTTCGYGAAC	TGCTGTCTCA	GTACGACTTC	CCGGGCGACG	ACACTCCGAT	200
	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	GAGTGGGAAG	250
5	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	CCCGGAACCA	300
	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	ACGTATTCTC	350
	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	CGCGGTATCA	400
		CGAAGAAGTT				450
	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	ACGAAGGCCG	500
10	TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	CGTGAAGAAA	550
	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	GCCGCACACC	600
	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	GCGGCCGTCA	650
	CACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	CGTACTACTG	700
	ACGTGACTGG	CACCATCGAA	CTGCCGGAAG	GCGTAGAGAT	GGTAATGCCG	750
15	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	TCGCAATGGA	800
	CGACGGTCTG	CG				812

- 20 2) INFORMATION FOR SEQ ID NO: 733
 - (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 814 bases (A)
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 30 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype paratyphi B
 - (B) STRAIN: ATCC 8759
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 733

TGGTTGTTGC	TGCGACTGAC	GGYCCGATGC	CGCAGACCCG	TGAGCACATC	50
CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	TCCTGAACAA	100
ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	GAAATGGAAG	150
TTCGYGAACT	GCTGTCTCAG	TACGACTTCC	CGGGCGACGA	CACTCCGATC	200
GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGACGCAG	AGTGGGAAGC	250
GAAAATCATC	GAACTGGCTG	GCTTCCTGGA	TTCTTACATT	CCGGAACCAG	300
AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	CGTATTCTCC	350
ATCTCTGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAAC	GCGGTATCAT	400
CAAAGTGGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	ACTCAGAAGT	450
CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	CGAAGGCCGT	500
GCYGGTGAGA	ACGTAGGTGT	TCTGCTGCGT	GGTATCAAAC	GTGAAGAAAT	550
CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CACCATCAAG	CCGCACACCA	600
AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGATGAAGG	CGGCCGTCAT	650
ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	GTACTACTGA	700
CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	GTAATGCCGG	750
GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCGAT	CGCAATGGAC	800
GACGGTCTGC	GTTT				814
	CTGCTGGGTC ATGCGACATG TTCGYGAACT GTTCGTGGTT GAAAATCATC AGCGTGCGAT ATCTCTGGTC CAAAGTGGGC CTACCTGTAC GCYGGTGAGA CGAACGTGGT AGTTCGAATC ACTCCGTTCT CGTGACTGGC GCGACACAT	CTGCTGGGTC GTCAGGTAGG ATGCGACATG GTTGATGACG TTCGYGAACT GCTGTCTCAG GTTCGTGGTT CTGCTCTGAA GAAAATCATC GAACTGGCTG AGCGTGCGAT TGACAAGCCG ATCTCTGGTC GTGGTACCGT CAAAGTGGGC GAAGAAGTTG CTACCTGTAC TGGCGTTGAA GCYGGTGAGA ACGTAGGTGT CGAACGTGGT CAGGTACTGG AGTTCGAATC TGAAGTGTAC ACTCCGTTCT TCAAAGGCTA CGTGACTGGC ACCATCGAAC GCGACAACAT CAAAATGGTT	CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATGCGACATG GTTGATGACG AAGAGCTGCT TTCGYGAACT GCTGTCTCAG TACGACTTCC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GAAAATCATC GAACTGGCTG GCTTCCTGGA AGCGTGCGAT TGACAAGCCG TTCCTGCTGC ATCTCTGGTC GTGGTACCGT TGTTACCGGT CAAAGTGGGC GAAGAAGTTG AAATCGTTGG CTACCTGTAC TGGCGTTGAA ATGTTCCGCA GCYGGTGAGA ACGTAGGTGT TCTGCTGCGT CGAACGTGGT CAGGTACTGG CTAAGCCGGG AGTTCGAATC TGAAGTGTAC ATTCTGTCCA ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG CGTGACTGGC ACCATCGAAC TGCCGGAAGG GCGACAACAT CAAAATGGTT GTTACCCTGA	CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT TTCGYGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATT AGCGTGCGAT TGACAAGCCG TTCCTGCTG CGATCGAAGA ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC CAAAGTGGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAG GCYGGTGAGA ACGTAGGTGT TCTGCTGCA AACTGCTGGA GCYGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAG AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC CGTGACTGGC ACCATCGAAC TGCAGAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT	CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAAATGGAAG TTCGYGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC GCGGTATCAT CAAAGTGGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAG ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCYGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTACTAG CTAAGCCGG CACCATCAAG CCGCACCACA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGC ACCATCGAAC CGCACCACCA CGTGACTGCC ACCATCGAAC CGCACCACCA CGTGACTGCC ACCATCGAAC CGCACCACCA CGTGACTGCC ACCATCGAAC TCAAAATGGTT GTTACCCTGA TCCACCCGAT CGCAATGGAC CGCACACCA CGTGACCAC ACCATCGAC ACCATCGAAC TCCACCGGACGC CGCACACCA CGTGACCACCA CGTGACTGCC ACCATCGAAC TCCACCGGACGC CGCACACCA CGTGACCACCA CGTGACTGCC ACCATCGAAC TCCACCGGACACCA CGCACCACCA CGTGACTGCC ACCATCGAAC TCCACCCGAT CGCAATGGAC CGCACACCA CCAACCAC ACCATCGAAC TCCACCCGAT CGCAATGGAC CGCACACCA CCAACCAC ACCATCGAAC TCCACCCGAT CGCAATGGAC CGCACACCA CCAACCAC ACCATCGAAC TCCACCCGAT CGCAATGGAC CGCACACCA CCAACACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCAATGGAC CGCACACCA CCAACACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCAATGGAC CCAACACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCAATGGAC

60

- 2) INFORMATION FOR SEQ ID NO: 734
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 bases

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 5 (vi) ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype *virchow* (B) STRAIN: ATCC 51955 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 734 GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT 15 TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA 200 CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATT 350 CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA 20 CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC GCGGTATCAT CAAAGTGGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAG ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA 500 CGAAGGCCGT GCCGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC

25 GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAG

CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG

CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC

GTACTACTGA CGTGACTGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG

GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT

800 30 CGCAATGGAC GACGGTCTGC GTTTCGCA 2) INFORMATION FOR SEQ ID NO: 735 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 40 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Serratia grimesii 45 (B) STRAIN: ATCC 14460 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 735 50 GGCGCTATCC TGGTTGTTGC TGCGACTGAT GGCCCAATGC CACAGACCCG TGAGCACATC CTGCTGGGTC GTCAGGTTGG CGTTCCTTTC ATCATCGTAT 100 TCATGAACAA ATGCGACATG GTTGATGATG AAGAGCTGCT GGAACTGGTA GAAATGGAAG TTCGTGAACT TCTGTCTGCT TATGACTTCC CTGGTGATGA 200 250 CCTGCCAGTT GTTCGTGGTT CAGCGCTGAA AGCACTGGAA GGCGAAGCTG 55 AGTGGGAAGC TAAAATCATC GAACTGGCTG GCTACCTGGA TTCTTACATC CCAGAACCAG AGCGTGCTAT CGACAAGCCG TTCCTGCTGC CAATCGAAGA
CGTATTCTCC ATCTCCGGYC GTGGTACYGT AGTTACCGGT CGTGTAGAGC
GCGGTATCGT TAAAGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAC
ACCGTTAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA
CGAAGGCCGT CCTGGTGAGA ACCTACGTCT TCCTCCCCT CCTACATCGACA

60 CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAGC 550

5	GTGAAGACAT CGAACGTGGT CAGGTACTGG CTAAACCAGG TTCAATCAAG CCACACACA AATTCGACTC AGAAGTTTAC ATCCTGAGCA AAGAAGAAGG TGGTCGTCAC ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACAACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG GTAATGCCAG GCGATAACGT GAACATGGTT GTAACCCTGA TTCACCCAAT CGCGATGGAC GACGGTCTGC GTTTC	600 650 700 750 800 825
10	2) INFORMATION FOR SEQ ID NO: 736	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 798 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Clostridium difficile (B) STRAIN: ATCC 9689	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 736	
	TATTAGTTTG TTCAGCAACA GATGGACCAA TGCCACAAAC AAGAGAGCAT	50
	ATACTATTAT CAAGACAAGT TGGAGTACCA TATATAGTAG TATTCTTAAA	100
	CAAATGTGAC ATGGTAGATG ATGAAGAGTT ATTAGAGTTA GTAGAGATGG	150
20	AAGTAAGAGA TTTATTAACA GAATATGATT TCCCAGGAGA TGACACTCCA ATAGTAAGAG GTTCAGCATT AATGGCATTA GAAGATCCAA AGAGYGAGTG	200 250
30	GGGAGATAAG ATAGTAGAAT TATTCGAGCA AATAGATGAG TATATACCAG	300
	CTCCAGAGAG AGATACAGAT AAACCATTCT TAATGCCAGT AGAGGACGTA	350
	TTCTCAATCA CAGGAAGAGG AACAGTTGCA ACAGGAAGAG TGGAAAGAGG	400
	AGTACTAAAA GTACAAGACG AAGTAGAKTT AGTAGGATTA ACAGAAGCAC	450
35	CAAGAAAAGT AGTAGTAACA GGAGTAGAGA TGTTCAGAAA ATTATTAGAC	500
J	CAAGCACAAG CAGGGGATAA TATAGGAGCA TTATTAAGAG GAGTACAAAG	550
	AAACGAGATA GAAAGAGGAC AAGTACTAGC AAAGACTGGA TCAGTAAAGG	600
	CACACAAA GTTTACAGCA GAAGTATATG TACTTAAAAA AGAAGARGGT	650
	GGAAGACATA CACCATTCTT TGATGGATAT AGACCACAAT TCTATTTCAG	700
40	AACAACAGAC GTAACAGGAG CTTGTAAGTT ACCAGAAGGA ATAGAGATGG	750
	TAATGCCTGG AGATAACGTA ACAATGGAAG TAGACTTAAT AAACTCAA	798
45	2) INFORMATION FOR SEQ ID NO: 737	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 411 bases	
	(B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(wi) ORIGINAL COURCE.	
ېدر	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Burkholderia pseudomallei</pre>	
	(B) STRAIN: 1026B	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 737	

5	GTCAACATGA TGGAGCTCAT CAACAACATC GCGAAGGAGC ACGGCGGTTA CTCCGTGTTC GCGGGCGTGG GCGAGCGTAC CCGTGAAGGG AACGACTTCT ACCACGAAAT GAAGGACTCG AACGTTCTCG ACAAGGTCGC GCTGGTGTAC GGCCAGATGA ACGACCGCC GGGCAACCGT CTGCGCGTGG CGCTGACGGG CCTCACGATG GCCGAGCACT TCCGTGACGA AGGCCTCGAC GTGCTGTTCT TCGTCGACAA CATCTACCGT TTCACGCTGG CCGGTACCGA AGTGTCGGCG CTGCTCGGCC GTATGCCGTC GGCAGTGGGC TATCAGCCGA CGCTGGCTGA AGAAATGGGC AAGCTGCAAG AGCGCATCAC GTCGACGAAG AAGGGCTCGA TCACGTCGGT T	50 100 150 200 250 300 350 400 411
10		
	2) INFORMATION FOR SEQ ID NO: 738	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 394 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium bifermentans(B) STRAIN: ATCC 638	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 738	
30	TACAAGAGCT TATTAACAAT ATAGCTACTC AACACGGTGG TATATCAGTA TTCGCAGGTG TTGGAGAGAG AACAAGAGAA GGTAACGACT TATTCCATGA GATGAGCGAT ACAGGAGTTA TAAATAAAAC AGCTCTAGTA TTCGGACAAA TGAATGAGCC ACCTGGAGCA AGAATGAGAG TTGCTTTAAC TGGTCTTACA ATGGCTGAAT ACTTCAGAGA TCAACAAGGG CAAGACGTTT TATTATTCGT	50 100 150 200 250
35	AGATAATATA TTCCGTTTCA CTCAAGCAGG ATCTGAGGTT TCTGCACTTC TTGGACGTAC TCCATCAGCA GTTGGATACC AACCAACATT AGCAACAGAG ATGGGTAGAT TACAAGAGAG AATAACATCT ACAAATAAAG GGTC	300 350 394
40	2) INFORMATION FOR SEQ ID NO: 739	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 394 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
50	 (vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium beijerincki (deposited a Clostridium butyricum) (B) STRAIN: ATCC 8260 	as
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 739	
60	TTAATAAACA ACATAGCTAA ACAACATGGT GGTTTATCAG TATTTACTGG AGTTGGTGAA AGATCAAGAG AAGGTAATGA CTTATATCAT GAAATGAGAG AGTCAGGAGT TATTGATAAG ACAGCATTAG TATTTGGACA AATGAATGAG CCACCGGGTG CCAGAATGAG AGTTGCATTA ACAGGTCTTA CTATGGCAGA	50 100 150 200

5	TCAGATATAC TCAAGCAGGT TCAGAGGTTT CAGCATTACT TGGAAGAACA CCTTCAGCGG TTGGATATCA GCCAACACTT GCAACTGAAA TGGGTGCACT TCAGGAAAGA ATTACATCAA CAGTTAATGG TTCTATTACG TCAG	350 350 394
	2) INFORMATION FOR SEQ ID NO: 740	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 393 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium difficile(B) STRAIN: ATCC 9689	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 740	
25	TTATAAACAA TATTGCTAAG CAACATGGTG GTATTTCTGT ATTTTCAGGA GTAGGAGAAA GAACAAGAGA AGGTAACGAC CTTTATGGCG AAATGAGTGA GTCTGGAGTT ATAAATAAAA CAGCTCTAGT ATTTGGTCAA ATGAATGAAC CACCTGGAGC GAGAATGAGA GTTGCTTTAA CTGGACTTAC AATGGCAGAA	50 100 150 200
30	CATTTTAGAG ATGAGCAAGG ACAAGACGTT TTACTTTTCG TTGATAATAT ATTCCGTTTC ACACAAGCTG GTTCAGAAGT TTCAGCACTT CTAGGACGTA TGCCATCAGC TGTTGGTTAT CAGCCAACAT TAGCTACTGA AATGGGTGCA CTTCAAGAGA GAATAACATC AACTAAGAAA GGTTCAATAA CAT	250 300 350 393
35	2) INFORMATION FOR SEQ ID NO: 741	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 398 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium ramosum (B) STRAIN: ATCC 25582</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 741	
50	TTGATTCAAG AATTCATTAA TAACATTGCT ACAGAACATG GTGGTTTATC AGTTTTTGCT GGAGTTGGTG AACGTAGCCG TGAAGGTAAT GATTTATATT ATGAAATGAA GGAAAGTGGT GTTTTATCTA AAACAACACT AGTATTTGGA CAGATGAATG AACCCCCAGG AGCTCGTTTA AGAGTTGCTT TAACGGGTCT	50 100 150 200
55	TACTATGGCA GAAGAATTCC GTGATGAACA AGGTCAGGAT GTCTTATTAT TCATCGATAA TATTTTCCGT TTTACTCAAG CTGGATCTGA AGTATCTGCC TTACTTGGAC GGGTACCATC ACAAGCTGGG TATCAGCCAA CTTTAGCAAC CGAAATGGGT GCTTTACAAG AACGGATTAC ATCAACTAAA AAAGGATC	250 300 350 398

	2) INFORMATION FOR SEQ ID NO. 742	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
LO	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium septicum (B) STRAIN: ATCC 12964</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 742	
20	TAGCTAAGGA ACACGGTGGA CTTTCAGTAT TCACAGGTGT TGGAGAAAGA TCAAGAGAAG GTAATGATTT ATATTACGAA ATGAAAGAAT CAGGAGTTAT AGACAAGACA GCTCTAGTGT TTGGACAAAT GAATGAATCT CCAGGAGCTA GAATGAGAGT ATCTTTAACA GGATTAACTA TGGCTGAATA TTTCAGAGAT CAAGGTCAAG ATGTCTTTT ATTCATAGAT AACATATTTA GATTTACTCA AGCTGGATCA GAAGGTTCGG CTTTACTTGG AAGAATACCA TCAGCAGTTG	50 100 150 200 250 300
25	GTTATCAACC AACACTAGCA ACTGAAATGG GTGCACTTCA AGAAAGAATT ACTTCAACTA AAAATGGATC AATAACTTCA	350 380
30	2) INFORMATION FOR SEQ ID NO: 743 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 389 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
35	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
40	(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium tertium (B) STRAIN: ATCC 14573	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 743	
45	TTAATAAATA ATATAGCAAA AGAGCATGGT GGTCTTTCTG TATTTACAGG AGTTGGAGAA AGGTCAAGAG AAGGTAACGA CTTATATTAT GAAATGAAAG AGTCAGGGGT TATAGATAAG ACAGCTTTAG TATTTGGACA AATGAATGAA TCACCAGGAG CAAGAATGAG AGTTTCATTA ACTGGATTAA CTATGGCTGA	50 100 150 200
50	ATATTTAGA GATCAAGGTC AAGACGTTCT TTTATTTATA GATAATATAT TTAGATTTAC TCAAGCGGGA TCAGAAGTTT CTGCGTTATT AGGAAGAATT CCTTCAGCAG TTGGATATCA ACCAACTCTT GCAACTGAAA TGGGAGCACT TCAAGAAAGA ATAACATCAA CAAAGAATGG ATCAATCAC	250 300 350 389
55	2) INFORMATION FOR SEQ ID NO: 744	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 843 bases	
60	(B) TYPE: Nucleic acid	

	<pre>(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear</pre>			
5	(ii) MOLECULE TYPE: Genomic DNA	A		
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Comamonas a (B) STRAIN: ATCC 15668	acidovorans		
10	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 744		
15	TTCCCCCGCA CGCATGCCCA AGGTGTTCGA CGGCCCTGAC GCTGGAAGTG CAGCAACTGC ACCATCGCCC TGGGTTCGTC CGACGGTCTG CAACACCGGC AACCCCATCA CCGTGCCCGT GCATCATGGA CGTGCTGGGC AATCCCATCG CAGGCGCTGA CGGCTCCCAT CCACCGCAAG GTCGCCTTCG CAGGAACTGC TGGAAACCGG	TGGGTGACGG CGTCGCGGCC GGGCAAGGCG ACGAACGTGG GCACCGGCTT CATCAAGGTG	CGTTGTGCGT TGATGGTGTC ACGCTGGGTC TCCCGTGGAT ATGACGAGCT ATCGACCTGA	150 200 250 300 350
20	TCTCGCCCTT CGCCAAGGGC GGCAAGGTGG GTGGGCAAGA CCGTGAACAT GATGGAACTC CCACGGTGGT CTGTCGGTGT TCGCCGGTGT GCAATGACTT CTATCACGAA ATGTCGGACG	ATCAACAACA GGGTGAACGT CCGGCGTGGT	TCGCCAAGGG ACCCGCGAAG CAACCAGGAG	400 450 500 550
25	TCGCTGAACG ACTCCAAGGT GGCCATGGTC CCCGGGCAAC CGTCTGCGCG TGGCGCTGAC CCTTCCGTGA CGAAGGCAAG GACGTGCTGT CGCTACACGC TGGCCGGTAC CGAAGTGTCC TTCCGCCGTG GGCTACCAGC CCACGCTGGC AAGAGCGCAT CACCTCGACC AAGGTCGGTT	CGGCCTGACC TCTTCGTGGA GCTCTGCTGG CGAGGAAATG	ATGGCCGAAG CAACATCTAC GTCGCATGCC GGCCGCCTGC	600 650 700 750 800 843
30				
	2) INFORMATION FOR SEQ ID NO: 745			
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear			
40	(ii) MOLECULE TYPE: Genomic DNA	A		
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella rhinoscleromatis</pre>	pneumoniae	subsp.	
45	(B) STRAIN: ATCC 13884			
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 745		
50	GCCGTACCAC GCGTGTACGA AGCCCTTGAG TCTGGTGCTG GAAGTTCAGC AGCAGCTGGG TCGCCATGGG TTCTTCTGAT GGTCTGCGCC CTCGAGCACC CGATCGAAGT CCCGGTAGGT CATGAACGTA CTGGGTCAAC CGGTTGACAT	CGGCGGTATC GCGGTCTGGA AAAGCAACGC GAAAGGCGAC	GTACGTACCA TGTAAAAGAC TGGGTCGTAT ATCGGCGAAG	50 100 150 200 250
55	AAGAGCGTTG GGCTATCCAC CGCGCGCAC AGCTCTCAGG AACTGCTGGA AACCGGCATC TCCGTTCGCC AAGGGCGGTA AAGTTGGTCT GTAAAACTGT AAACATGATG GAGCTGATCC TCCGGTTACT CTGTGTTTGC GGGCGTAGGT CGACTTCTAC CACGAAATGA CCGACTCCAA	AAAGTTATCG GTTCGGCGGT GTAACATCGC GAGCGTACTC	ACCTGATGTG GCGGGTGTAG GATCGAGCAC GTGAGGGTAA	300 350 400 450 500
60	TGGTGTACGG CCAGATGAAC GAGCCGCCGG			550 600

5	CTGACCGGCC TGACCATGGC TGAGAAATTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC GTCGATAACA TCTATCGTTA CACCCTGGCC GGTACTGAAG TATCCGCGCT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA TCAGCCGACC CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAAAC CGGTTCTATC ACCTCCGTA	650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 746 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid	
15	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria canis (B) STRAIN: ATCC 14687</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 746	
25	GCGATTCTAT TCCGCGCGTA TATGATGCTC TTAAACTAGT GGATAGAGAA CTGACGCTTG AAGTACAACA ACAGTTGGGT GATGGTGTCG TTCGTACTAT TGCGATGGGT AGTTCCGACG GCCTCAAACG AGGTTTGGCG GTAGTTAACA CCGGTGCTCC AATTACAGTG CCTGTGGGCA AAGCAACATT AGGCCGTATT	50 100 150 200 250
30	ATGGACGTAT TAGGTAATCC GGTTGATGAA GCTGGTCCGA TTGGCTCCGA GCAAACCCGA GCAATCCACC AACCTGCTCC TAAGTTCGAC GAGCTTTCTA GCGCCACAGA GATTTTGGAA ACAGGTATTA AAGTAATTGA TTTGCTTTGC	300 350 400 450
35	GCGGTTTGTC TGTATTTGCC GGTGTGGGTG AACGGACGCG TGAAGGTAAT GACTTTTATC ATGAGATGAA AGATTCCAAT GTATTAGATA AAGTAGCCAT GCGTTTTACGGT CAGATGAACG AGCCTCCCGG TAACCGTTTG CGCGTTGCGC	500 550 600
	TAACTGGCTT GTCTATGGCC GAATTCTTCC GTGACGAGAA AGATGAAAAC GGTAAAGGCC GTGATGTATT GTTCTTTGTA GACAATATTT ACCGCTATAC GCTACCCGT ACAGAAGTAT CTGCATTGCT TGGCCGTATG CCTTCGGCAG	650 700 750
40	TAGGTTATCA GCCGACGTTG GCAGAGGAAA TGGGCCGCTT GCAAGAGCGT ATTACYTCAM CCCAAACAGG CTCT	800 824
45	2) INFORMATION FOR SEQ ID NO: 747	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria cinerea(B) STRAIN: ATCC 14685	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 747	

	CGCGACGCTA TCCCGCATGT TTACGATGCC CT	TGAAATTGG ACGAGAACGG GACGGCGTT GTCCGTACTA	50 100
	TTGCAATGGG TAGTTCAGAC GGCCTTAAAC GC	CGGTATGTC TGTAAGCAAT	150
	ACTGGTGCGC CAATCACTGT GCCGGTAGGT AA	AAGGTACAT TGGGTCGTAT	200
5	TGTCGACGTA TTGGGTACGC CTGTTGATGA AC	GCAGGTCCG ATCGATACCG	250
	ACAAAAGCCG TGCCATTCAC CAAACTGCTC CC	GAAATTCGA CGAGTTGTCT	300
	TCAGCTACCG AATTGTTGGA AACCGGTATT AA		350
	TCCGTTTGCT AAAGGCGGTA AAGTAGGTCT G GCAAAACCGT GAACATGATG GAATTGATCA AG	CARCATCEC CARRECECAC	400 450
10	AGCGGTCTGT CCGTGTTCGC AGGTGTGGGT G		500
10	CGACTTCTAC CACGAGATGA AAGATTCCAA CO	STATTGGAT AAAGTAGCCA	550
	TGGTGTATGG CCAAATGAAC GAACCTCCGG GG	CAACCGTCT GCGCGTTGCT	600
	TTGACCGGTT TGACTATGGC CGAATACTTC CC	GTGACGAAA AAGACGAAAA	650
	CGGTAAAGGC CGCGACGTAT TGTTCTTCGT TO	GACAACATC TACCGTTACA	700
15	CTTTGGCCGG TACTGAAGTA TCTGCACTGT TC	GGCCGTAT GCCTTCTGCA	750
	GTGGGTTACC AACCGACATT GGCTGAAGAA AT	rgggregrr rgcaagageg	800
	TATTACCTCT ACCCAAACCG GTTCCATTAC T		831
20			
20	2) INFORMATION FOR SEQ ID NO: 748		
	2, 2112 012 012 012 012 012 012 012 012 01		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 862 bases		
25	(B) TYPE: Nucleic acid		
	<pre>(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear</pre>		
	(D) TOPOLOGY: Linear		
	(ii) MOLECULE TYPE: Genomic DNA		
30	, ==,		
	(vi) ORIGINAL SOURCE:	•	-
	(A) ORGANISM: Neisseria cur	niculi	
	(B) STRAIN: ATCC 14688		
35	(xi) SEQUENCE DESCRIPTION: SEQ II	NO: 748	
	CCGTGGCCAA GTACCACAAA TTTATGACGC AC		
	AAACAACCTT GGAAGTTCAA CAGCAGTTGG G		100
4.0	ATTGCGATGG GTTCAACCGA AGGCTTGAAG CCCCTCTGGTGCA CCGATTTCTG TGCCAGTGGG TG		150 200
40	TTATGGATGT GTTGGGTCGT CCAATCGACG AC		250
	CAAGAAAAAT GGTCAATTCA CCGTGAAGCA CO		300
	AAACTCAACT GAGCTGCTAG AAACAGGCAT CA		350
	GCCCATTTGC TAAAGGTGGT AAAGTTGGCT TO	STTCGGTGG TGCAGGTGTG	400
45	GGTAAAACCG TGAATATGAT GGAGCTGATT AA		450
	TTCAGGTCTT TCTGTTTTTG CAGGTGTTGG TC		500
	ACGATTTTA TCACGAAATG CAAGAAGCAG GO		550
	TTCACCAAGT CAAAAGTAGC GATGGTTTAT GC AGGAAACCGT TTGCGTGTTG CATTGACAGG CT		600
50	TCCGTGACGA AAAAGATGAA GCAACAGGCA AA		650 700
50	TTCGTTGATA ACATCTATCG TTACACACTG GO		750
	ACTTCTAGGT CGTATGCCAT CAGCAGTAGG T		800
	AAGAAATGGG TGCGTTGCAA GAGCGTATTA CO		850
	ATCACTTCCC CC		963

2) INFORMATION FOR SEQ ID NO: 749

ATCACTTCGG GG

55

60

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 844 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria elongata subsp. elongata(B) STRAIN: ATCC 25295	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 749	
15	GGAACTCCCA CGTGACGCTA TCCCGCATGT TTTTGATGCA TTAAAATTAG TTGAAAATGA CCTAACCTTA GAAGTTCAAC AACTTTTGGG GGATGGTGTA GTGCGTACCA TTGCGATGGG TAGTTCAGAT GGATTAAAGC GTGGTATGGC TGTGAATAAT ACCGGAGCTC CGATTACTGT TCCTGTTGGC CGTGAAACTT TGGGTCGTAT CATGGATGTA TTGGGTAATC CGGTTGGA	50 100 150 200 250
20	GTAAATGCAT CCAATACACG TGCGATCCAT CAAGAGGCTC CTAAGTITGA TGAGCTTTCT TCAACAACGG AATTATTAGA AACTGGCATT AAGGTTATCG ACTTGTTATG TCCGTTTGCC AAAGGTGGTA AAGTAGGTCT GTTTGGTGGT GCGGGTGTAG GTAAAACCGT AAATATGATG GAGTTAATTA ACAACATTGC GAACGACAT AGCGGTTTGT CTGTGTTTGC AGGCGTGGGT GAACGTACTC	300 350 400 450 500 550
25	GTGAAGGTAA TGACTTCTAT CACGAGATGA AAGATTCCAA CGTATTGGAC AAAGTGGCAA TGGTTTACGG TCAGATGAAC GAACCTCCAG GCAACCGTCT GCGCGTTGCT TTGACCGGTT TGACTATGGC CGAATACTTC CGTGACGAAA AAGACGAAAA CGGTAAAGGT CGCGACGTAT TGTTCTTCGT GGACAACATT TACCGTTACA CTTTGGCCGG TACGGAAGTA TCCGCATTGC TGGGTCGTAT GCCTTCAGCA GTAGGTTACC AACCGACATT GGCTGAAGAA ATGGGTCGTT	600 650 700 750 800
30	GCCTTCAGCA GTAGGITACC AACCGACAII GGCIGAAGAA AIGGGITACC TGCAAGAGCG TATTACCTCT ACCCAGACAG GCTCTATTAC TTCC	844
35	2) INFORMATION FOR SEQ ID NO: 750 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria flavescens(B) STRAIN: ATCC 13120	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 750	
50	CGCGACGCTA TTCCGCATGT TTACGATGCC CTGAAATTGG ACGAGAACGG TCTGACTCTG GAAGTTCAAC AGCTTCTGGG TGACGGCGTT GTCCGTACTA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GCGGCATGTC TGTAAGCAAT	50 100 150
55	ACCGGTGCGC CAATCACTGT GCCGGTAGGT AAAGGTACAT TGGGCCGTAT TGTCGACGTA TTGGGTACGC CTGTTGATGA AGCAGGTCCG ATCGATACCG ACAAGAGCCG TGCCATTCAC CAAACTGCTC CGAAATTCGA TGAGTTGTCT TCAACTACCG AATTGTTGGA AACCGGTATT AAAGTGATCG ACTTGCTGTG TCCGTTTGCT AAGGGCGGTA AAGTAGGTCT GTTCGGTGGT GCCGGTGTGG GCAAAACCGT GAACATGATG GAATTGATCA ACAACATCGC CAAAGCGCAC	200 250 300 350 400 450 500
60	AGCGGCCTGT CCGTGTTCGC AGGTGTGGGT GAACGTACCC GTGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTATTGGAT AAAGTAGCCA	550

5	TGGTGTATGG TCAAATGAAC GAACCTCCAG GCAACCGTCT GCGCGTTGCT TTGACCGGTT TGACTATGGC CGAATACTTC CGTGACGAAA AAGATGAAAA CGGTAAAGGT CGCGACGTAT TGTTCTTCGT TGACAACATC TACCGTTACA CTCTGGCCGG TACCGAAGTA TCCGCACTGT TGGGTCGTAT GCCTTCTGCA GTGGGTTACC AACCGACATT GGCTGAAGAA ATGGGTCGTT TGCAGGAGCG TATTACTTCT ACGCAAACCG GTTCCATTAC TTCC	600 650 700 750 800 834
10	2) INFORMATION FOR SEQ ID NO: 751	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	·
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria gonorrhoeae(B) STRAIN: ATCC 31426	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 751	
25	CGCGACATGA TTCCGCGCGT TTACGACGCT TTGAAATTAG ACGAAAACGG TCTGACTTTG GAAGTCCAAC AGCTTTTGGG TGATGGCGTA GTCCGTACCA TCGCTATGGG CAGCTCGGAC GGTTTGAAAC GCGGCATGAC TGTGAGCAAT	50 100 150
30	ACTGGTTCGC CCATTACTGT GCCGGTAGGT AAAGGTACGT TGGGACGCAT TGTCGATGTA TTGGGAACTC CTGTTGACGA GGCAGGTCCA ATTGATACCG ACAAGAGTCG TGCCATCCAC CAAGCCGCTC CTAAGTTTGA CGAACTGTCT TCCACAACCG AATTGCTCGA AACGGGCATT AAAGTGATTG ACTTGCTGTG TCCGTTTGCC AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG	200 250 300 350 400
35	GTAAAACCGT GAACATGATG GAATTGATCA ACAACATCGC CAAAGCGCAC AGCGGCTTGT CCGTGTTCTC AGGCGTGGGT GAGCGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTATTGGAT AAAGTAGCCA TGGTGTATGG CCAAATGAAC GAACCTCCAG GCAACCGTCT GCGCGTTGCT TTGACCGGTT TGACTATGGC TGAATACTTC CGTGACGAAA AAGACGAAAA	450 500 550 600 650
40	CGGTAAAGGT CGTGACGTAT TGTTCTTCGT TGACAACATC TACCGTTACA CTCTGGCCGG TACCGAAGTA TCCGCACTGT TGGGCCGTAT GCCTTCTGCA GTGGGTTACC AACCGACATT GGCTGAAGAA ATGGGTCGTT TGCAAGAGCG TATTACCTCT ACCCAAACCG GTTCCATTAC TTCC	700 750 800 834
45	2) INFORMATION FOR SEQ ID NO: 752	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
55	(ii) MOLECULE TYPE: Genomic DNA	
J	(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria gonorrhoeae(B) STRAIN: ATCC 27628	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 752	

5	ACATGATTCC GCGCGTTTAC GACGCTTTGA AATTAGACGA AAACGGTCTG ACTTTGGAAG TCCAACAGCT TTTGGGTGAT GGCGTAGTCC GTACCATCGC TATGGGCAGC TCGGACGGTT TGAAACGCGG CATGACTGTG ACCAATACTG GATGTATTGG GAACGCCTGT TGACGAGGCA GGTCCAATTG ATACCGACAA GAGTCGTGCC ATCCACCAAG CCGCTCCTAA GTTTGACGAA CTGTCTCCA CAACCGAATT GCTCGAAACG GGCATTAAAG TGATTGACTT GCTGTGTCCG TTTGCCAAAG ATGATGGAAT TGATCAACAA CATCGCCAAA GCGCACAGCG GCTTGTCCGT GTTCTCAGGC GTAGGTGAC GTACCCGCGA AGGTAACGAC TTCTACCACG AGATGAAAGA TTCCAACGTA TTGGATAAAG TAGCCATGGT TTCTACCACG AGATGAAAGA TTCCAACGTA TTGGATAAAG TAGCCATGGT	50 100 150 200 250 300 350 400 450 550 600
15	GTATGGCAA ATGAACGAAC CTCCAGGCAA CCGTCTGCGC GTTGCTTTGA CCGGTTTGAC TATGGCTGAA TACTTCCGTG ACGAAAAAGA CGAAAACGGT AAAGGTCGTG ACGTATTGTT CTTCGTTGAC AACATCTACC GTTACACTCT GGCCGGTACC GAAGTATCCG CACTGTTGGG CCGTATGCCT TCTGCAGTGG GTTACCAACC GACATTGGCT GAAGAAATGG GTCGTTTGCA AGAGCGTATT ACCTCTACCC AAACCGGTTC CATTA	650 700 750 800 825
20		
	2) INFORMATION FOR SEQ ID NO: 753	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
35	(vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria lactamica (B) STRAIN: ATCC 23970	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 753	
40	GATGCGATTC CGCATGTTTA CGATGCCCTG AAATTGGACG AGAACGGTCT GACCCTGGAA GTCCAACAGC TTTTGGGTGA CGCCGTTGTC CGTACTATTG CAATGGGTAG TTCAGACGGC CTGAAACGCG GCATGTCTGT CAGCAATACC GGTGCGCCAA TCACTGTGCC GGTAGGTAAA GGTACGTTGG GCCGTATTGT CGACGTATTG GGTACACCTG TTGACGAAGC AGGTCCGACC GATACCGACA AGAGCCGCGC CATCCACCAA ACCGCCCCGA AATTCGGACGA GTTGTCTTCA	50 100 150 200 250 300
45	ACTACCGAAT TGTTGGAAAC CGGCATTAAA GTGATCGATT TGCTGTGTCC GTTTGCTAAG GGCGGTAAAG TAGGTCTGTT CGGTGGTGCC GGTGTGGGCA AAACCGTGAA CATGATGGAA TTGATCAACA ACATCGCCAA AGCGCACAGC GGTCTGTCCG TGTTTGCAGG CGTGGGCGAG CGTACCCGCG AAGGTAACGA GGTCTTACAC GAGATGAAAG ATTCCAACGT ATTGGATAAA GTAGCCATGG	350 400 450 500 550
50	TGTATGGTCA GATGAACGAA CCTCCGGGCA ACCGTCTGCG CGIIGCIIIG ACCGGTTTGA CGATGGCCGA ATACTTCCGC GACGAAAAAG ACGAAAACGG CAAAGGCCGC GACGTATTGT TCTTCGTGGA CAACATCTAC CGTTACACCC TGGCCGGTAC CGAAGTATCC GCACTGTTGG GCCGTATGCC TTCCGCAGTG GGTTACCAAC CGACATTGGC TGAAGAAATG GGTCGTTTGC AAGAGCGTAT	600 650 700 750 800 831
	TACCTCTACC CAAACCGGTT CCATTACTTC C	001

- 2) INFORMATION FOR SEQ ID NO: 754
- 60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 836 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi) ORIGINAL SOURCE: (A) ORGANISM: <i>Neisseria me</i> (B) STRAIN: 2241C	eningitidis
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 754
15	CCACGCGACA TGATTCCGCG CGTTTACGAC (CGGTCTGACT TTGGAAGTCC AACAGCTTTT (CCATTGCGAT GGGCAGCTCG GACGGTTTGA AATACCGGTG CGCCCATTAC TGTGCCGGTA (CATTGTCGAT GTATTGGGAA CGCCTGTTGA (CATTGTCGAT GTATTGGGAA (CATTGTCGAT GTATTGGGAA (CATTGTCGAT GTATTGGGAA (CATTGTCGAT GTATTGGGAA (CATTGTCGAT GTATTGTCGAT GTATTGTCAT GTATTGTCGAT GTATTGTCGAT GTATTGTCGAT GTATTGTCGAT GTATTGTCGAT GTATTGTCAT GTATTGTTTTTTTTTT	GGGCGACGGC GTAGTCCGTA 100 AACGCGGCAT GACTGTGAGC 150 GGTAAAGGTA CGTTGGGACG 200
20 .	CCGACAAGAG CCGTGCCATC CACCAAGCCG	CTCCTAAGTT TGACGAACTG 300 ATTAAAGTGA TTGACTTGCT 350 TCTGTTCGGC GGTGCCGGTG 400
25	CACAGCGGCT TGTCCGTGTT CGCAGGCGTG (TAACGACTTC TACCACGAGA TGAAAGATTC (CAATGGTTTA CGGTCAGATG AACGAACCTC (GCATTGACCG GTTTGACCAT GGCGGAATAC C AAACGGCAAA GGCCGCGACG TATTGTTCTT (CAACGTATTG GATAAAGTGG 550 CGGGCAACCG TTTGCGCGTC 600 TTCCGTGACG AAAAAGACGA 650 CGTGGACAAC ATCTACCGTT 700
30	ACACTCTAGC TGGTACCGAA GTATCCGCAT CGCAGTGGGCT ACCAACCGAC ATTGGCAGAA CGGTATTACC TCTACCCAAA CCGGTTCTAT	GAAATGGGTC GTTTGCAGGA 800
35	2) INFORMATION FOR SEQ ID NO: 755 (i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 837 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria mu (B) STRAIN: ATCC 19696	ucosa
	(xi) SEQUENCE DESCRIPTION: SEQ 1	ID NO: 755
50	CCGCGTGATG CCATTCCGCG TGTTTACGAC (CGGCCTGACT TTGGAAGTGC AACAGCTTCT CTATTGCAAT GGGTAGTTCG GATGGTTTGA AATACAGGTG CGCCGATTAC AGTACCGGTA CTATTGTCGAT GTATTGGGTA CGCCTGTTGA	GGGTGACGGC GTAGTTCGTA 100 AACGCGGCAT GACTGTAAGC 150 GGTAAAGGTA CTTTGGGACG 200
55	CCGACAAACA CCGTGCCATC CATCAGACAG (TCTGCGACTA CTGAGCTGCT GGAAACCGGC A GTGTCCGTTT GCCAAAGGCG GTAAAGTAGG T TAGGCAAAAC CGTCAACATG ATGGAATTAA	CTCCGAAATT TGATGAACTG 300 ATTAAAGTGA TTGACTTGCT 350 ICTGTTCGGT GGTGCCGGTG 400 ITAACAACAT CGCCAAAGCA 450
60	CATAGCGGTT TGTCCGTGTT TGCAGGTGTG (TAATGACTTC TACCACGAGA TGAAAGATTC (GGTGAGCGTA CCCGTGAAGG 500 CAACGTATTG GACAAAGTGG 550

5	CGATGGTTTA CGGTCAGATG AACGAACCTC CGGGTAACCG TCTGCGTGTA GCCTTGACCG GTTTGACGAT GGCCGAATAC TTCCGTGATG AAAAAGACGA AAGCGGCAAA GGCCGTGACG TATTGTTCTT CGTGGACAAT ATCTACCGTT ACACCCTGGC CGGTACCGAA GTATCCGCAT TGTTGGGTCG TATGCCTTCA GCAGTAGGTT ACCAACCGAC ATTGGCTGAA GAAATGGGTC GTTTGCAAGA GCGTATTACC TCTACCCAAA CAGGCTCCAT TACCTCC	600 650 700 750 800 837
10	2) INFORMATION FOR SEQ ID NO: 756	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Neisseria subilava (B) STRAIN: ATCC 14221	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 756 CGCGACGCTA TCCCGCATGT TTACGATGCC CTGAAATTGG ACGAGAACGG	50
	CGCGACGCTA TCCCGCATGT TIACGATGCC CTGAAATTGG ACGACAACCG TCTGACTCTG GAAGTTCAAC AGCTTCTGGG TGACGGCGTT GTCCGTACTA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GCGGCATGTC TGTAAGCAAT ACTGGTGCGC CAATCACTGT GCCGGTAGGT AAAGGTACAT TGGGTCGTAT	100 150 200
. 30	TGTCGACGTA TTGGGTACGC CTGTTGATGA AGCAGGTCCG ATCGATACCG ACAAGAGCCG TGCCATTCAC CAAACTGCTC CGAAATTCGA CGAGTTGTCT TCAACTACCG AATTGCTGGA AACCGGTATT AAAGTGATCG ACTTGCTGTG TCCGTTTGCT AAGGGCCGTA AAGTAGGTCT GTTCGGTGGT GCCGGTGTGG	250 300 350 400
35	GCAAAACCGT GAACATGATG GAATTGATCA ACAACATCGC CAAAGCGCAC AGCGGTCTGT CCGTGTTCGC AGGTGTGGGT GAACGTACCC GTGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTATTGGAT AAAGTAGCCA	450 500 550 600
•	TGGTGTATGG CCAAATGAAC GAACCTCCGG GCAACCGTCT GCGCGTTGCT TTGACCGGTT TGACTATGGC CGAATACTTC CGTGACGAAA AAGACGAAAA CGGTAAAGGT CGCGACGTAT TGTTCTTCGT TGACAACATC TACCGTTACA	650 700
40	CTCTGGCCGG TACCGAAGTA TCTGCACTGT TGGGCCGTAT GCCTTCTGCA GTGGGTTACC AACCGACATT GGCTGAAGAA ATGGGTCGTT TGCAAGAGCG TATTACCTCT ACCCAAACTG GTTCCATTAC TTCC	750 800 834
45	2) INFORMATION FOR SEQ ID NO: 757	
. 50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 833 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
55	(ii) MOLECULE TYPE: Genomic DNA	
33	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria weaveri (B) STRAIN: ATCC 51223</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 757	

	CCCGTGATGC TATTCCCATG TATACGATGC CCTGAAATTG GTAGATAACG ATCTGACCCT GGAAGTGCAA CAACTTTTAG GTGATGGTGT GGTTCGTACC	50 100
	ATTGCAATGG GTAGTTCAGA CGGCCTAAAA CGTGGTATGG CTGTTAACAA	150
5	TACCGGCGCT CCGATTACTG TTCCGGTGGG GAAAGCCACC TTGGGACGTA	200
3	TTATGGATGT GTTGGGTAAT CCGGTTGATG AAGCAGGTCC TGTTGTATCA	250
	GAAGAAACTC GCGCTATTCA TCAAGCTGCC CCTAAATTTG ACGAACTGTC	300
	TTCAGCAACT GAGTTGTTGG AAACAGGCAT TAAAGTAATT GACTTGCTGT	350
	GCCCGTTTGC CAAAGGTGGT AAAGTAGGTT TGTTTGGTGG TGCCGGCGTG	400
10	GGTAAAACCG TAAATATGAT GGAGTTGATC AACAACATCG CGAAGGCACA	450
	TAGTGGTTTG TCTGTATTCG CCGGTGTAGG TGAGCGTACC CGTGAAGGTA	500
	ACGACTTCTA CCATGAAATG AAAGACTCTA ACGTATTGGA TAAAGTAGCC	550
	ATGGTTTATG GCCAGATGAA TGAACCTCCG GGTAACCGTT TGCGCGTTGC	600
	TTTGACTGGT TTGACTATGG CCGAATATTT CCGTGACGAG AAAGATGAAA	650
15	ACGGCAAAGG TCGTGACGTC TTGTTCTTTG TGGATAATAT CTATCGCTAT	700
	ACTCTGGCCG GTACTGAAGT GTCTGCACTG TTAGGTCGTA TGCCGTCTGC	750
	AGTAGGTTAT CAGCCTACAT TGGCAGAAGA AATGGGTCGC TTGCAGGAGC GTATTACTTC TACTCAAACA GGTTCGATTA CTT	800
	GIATIACTIC TACTCAAACA GGTTCGATTA CTT	833
20		
20		
	2) INFORMATION FOR SEQ ID NO: 758	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 833 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
30	(11) MODECODE 117B. Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Neisseria animalis	
	(B) STRAIN: ATCC 19573	
35	(5)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 758	
	CGCGATGCCA TTCCTCACGT TTACGATGCC CTGAAATTGG ACGACACCGG	
		50
	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA	100
40	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT	100 150
40	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT	100 150 200
40	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG	100 150 200 250
40	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA	100 150 200 250 300
	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG	100 150 200 250 300 350
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG	100 150 200 250 300 350 400
	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC	100 150 200 250 300 350 400 450
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA	100 150 200 250 300 350 400 450
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA	100 150 200 250 300 350 400 450 500
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA TGGTGTACGG TCAGATGAAT GAGCCGCCGG GCAACCGCTT GCGCGTGGCT	100 150 200 250 300 350 400 450 500 550 600
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA	100 150 200 250 300 350 400 450 500
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA TGGTGTACGG TCAGATGAAT GAGCCGCCGG GCAACCGCTT GCGCGTGGCT TTGACCGGCC TGACTATGGC CGAATACTTC GTGACGAAAA AGACGAAAAC	100 150 200 250 300 350 400 450 500 600 650
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA TGGTGTACGG TCAGATGAAT GAGCCGCCGG GCAACCGCTT GCGCGTGGCT TTGACCGGCC TGACTATGGC CGAATACTTC GTGACGAAAA AGACGAAAAC GGCAAAGGTC GTGACGTATT GTTCTTCGTG GACAACATTT ACCGCTACAC ACTGGCCGGT ACCGAAGTAT CAGCATTGTT GGGCCGTATG CCGTCTGCAG TAGGTTATCA GCCGACATTG GCAGAGGAAA TGGGTCGCTT GCAAGAGCGT	100 150 200 250 300 350 400 450 500 650 700 750 800
4 5	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA TGGTGTACGG TCAGATGAAT GAGCCGCCGG GCAACCGCTT GCGCGTGGCT TTGACCGGCC TGACTATTGC CGAATACTTC GTGACGAAAA AGACGAAAAC GGCAAAGGTC GTGACGTATT GTTCTTCGTG GACAACATTT ACCGCTACAC ACTGGCCGGT ACCGAAGTAT CAGCATTGTT GGGCCGTATG CCGTCTGCAG	100 150 200 250 300 350 400 450 500 650 700 750
45	TCTGACTTTG GAAGTACAAC AACTTCTGGG CGACGGTGTG GTACGTACCA TTGCAATGGG TAGTTCAGAC GGCCTGAAAC GGGGTTTGTC TGTGAGCAAT ACCGGTTCTC CGATTGCCGT TCCTGTCGGT AAAGCGACTT TGGGTCGTAT TATGGACGTA TTGGGCAATC CGGTTGATGA AGCCGGTCCG GTTGCTACCG AAGAGAAACG TGCTATTCAC CAAGCCGCAC CGAAGTTTGA TGAATTGTCA TCAGCTACCG AGTTGTTGGA AACCGGTATT AAAGTAATCG ACTTGCTGTG TCCGTTTGCA AAAGGCGGTA AAGTAGGTCT GTTCGGCGGT GCCGGTGTGG GCAAAACCGT AAACATGATG GAATTGATCA ACAACATCGC CAAAGCACAC AGCGGTCTGT CTGTGTTTGC CGGTGTAGGT GAACGTACCC GCGAAGGTAA CGACTTCTAC CACGAGATGA AAGATTCCAA CGTGTTGGAT AAAGTAGCCA TGGTGTACGG TCAGATGAAT GAGCCGCCGG GCAACCGCTT GCGCGTGGCT TTGACCGGCC TGACTATGGC CGAATACTTC GTGACGAAAA AGACGAAAAC GGCAAAGGTC GTGACGTATT GTTCTTCGTG GACAACATTT ACCGCTACAC ACTGGCCGGT ACCGAAGTAT CAGCATTGTT GGGCCGTATG CCGTCTGCAG TAGGTTATCA GCCGACATTG GCAGAGGAAA TGGGTCGCTT GCAAGAGCGT	100 150 200 250 300 350 400 450 500 650 700 750 800

2) INFORMATION FOR SEQ ID NO: 759

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 819 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Proteus penneri	
10	(B) STRAIN: ATCC 33519	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 759	
15	AGCGTCCCTA AAGTATACGA CGCTCTTGAG GTTATGAATG GTAAAGAAAA ACTGGTGCTG GAAGTTCAGC AACAGTTAGG CGGTGGTATC GTTCGTTGTA TCGCAATGGG TACATCAGAC GGTTTAAAGCC GTGGCTTAAA AGTTGAAGAT	50 100 150 200
20	TTAGGCCACC CAATTGAAGT ACCAGTAGGT AAAGCAACAC TGGGACGTAT CATGAACGTT CTGGGTACAC CTATTGATAT GAAAGGTGAT ATTGCAACTG AAGAACGTTG GTCTATTCAC CGTGAAGCAC CAACCTACGA AGAGTTATCA AACTCACAAG AACTGCTTGA AACCGGTATC AAAGTAATGG ACTTAATCTG	250 300 350
20	TCCGTTTGCT AAAGGTGGTA AAGTAGGTCT GTTCGGTGGT GCGGGTGTGG GTAAAACAGT TAACATGATG GAATTGATCC GTAATATCGC GATCGAGCAC TCAGGTTACT CTGTATTTGC TGGTGTTGGT GAGCGTACTC GTGAGGGTAA CGACTTCTAT CATGAAATGA CAGATTCTAA CGTTCTTGAC AAAGTATCGT	400 450 500 550
25	TAGTTTATGG TCAGATGAAT GAGCCACCAG GAAACCGTCT GCGTGTAGCA CTGACTGGTC TGACTATGGC TGAAAAATTC CGTGATGAAG GCCGTGACGT AGTGTTATTC GTCGATAACA TTTATCGTTA CACCTTAGCC GGTACAGAAG	600 650 700
30	TATCAGCACT GTTAGGTCGT ATGCCATCAG CGGTAGGTTA CCAGCCAACA TTGGCTGAAG AGATGGGTGT TCTGCAAGAA CGTATCACTT CAACCAAAAC AGGTTCAATC ACCTCTGTA	750 800 819
	2) INFORMATION FOR SEQ ID NO: 760	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 819 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. chole</pre>	eraesui
40	serotype enteritidis (B) STRAIN: ATCC 13076	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 760	
50	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA	50
	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTACTATATACAA GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATC GTGCGTACCA TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAT CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCCACGC TGGGTCGTAT	100 150 200
55	CATGAACGTC CTGGGCGAAC CGGTCGACAT GAAAGGCGAG ATCGGCGAAG	250
~ ~	AAGAGCGTTG GGCGATTCAC CGCGCAGCAC CTTCCTACGA AGAGTTGTCA	300 350
	AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG	400
	GTAAAACCGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGCAC	450
60	TCCGGTTACT CAGTGTTTGC GGGCGTAGGG GAACGTACTC GTGAGGGTAA	500

5	TGGTGTATG CTGACCGGC ACTGCTGTT TATCCGCAC CTGGCGGAA	C CACGAAATGA C CCAGATGAAC C TGACCATGGC C GTCGATAACA CT GCTGGGCCGT C AGATGGCCGT C ACCTCCGTA	GAGCCGCCGG GGAGAAATTC TCTATCGTTA ATGCCTTCCG	GAAACCGTCT CGTGACGAAG CACCCTGGCC CAGTAGGTTA	GCGCGTTGCA GTCGTGACGT GGTACGGAAG CCAGCCGACT	550 600 650 700 750 800 819
10	2) INFORMA	TION FOR SEQ	ID NO: 761			
15	(A (B) TYPE: Nucl) STRANDEDNE	.2 bases .eic acid ESS: Double			
20	(vi) OR	•	E: Yersinia pe			
25	(xi) SE	QUENCE DESCRI	PTION: SEQ	ID NO: 761		
30 35 40	TGCTGGAAG ATGGGCTCT ACACCCGAT ACGTATTGG CGTTGGGCA ACAAGATCT TTGCTAAGG ACAGTAAAC GTATTCTGT TCTACCATG TACGGCCAG CGGCCTGAC TGTTTATCG GCATTGCTG	G TACAACGCCC T TCAGCAACAG T CCGATGGTCT C GAAGTACCGG G TGAACCAATC A TCCATCGCGA C TTAGAAACCG C CGGTAAAGTC A TGATGGAGCT A TTTGCCGGTG A AATGACTGAC A TGAATGACC C ATGGCGGAGA A TAATATCTAT C GTCGTATGCC C GGTGTGTTGCC C TG	TTGGGCGGTG GAGCCGTGAAAG TTGGTAAAG AGCGCCTTCT GTATCAAGGT GGTCTGTTCG GATCCGTAAC TAGGTGAGCG TCCAACGTTT ACCAGGTAAC AATTCCGTGA CGTTATACCC ATCAGCGTA	GTGTTGTTCG TTGAAAGTAA GACCCTTGGC GTCCTATCGG TATGAAGAGC TATGGACCTG GTGGTGCGGG ATCGCGATCG TACCCGTGAG TGGACAAAGT CGTCTACGCG TGAAGGTCGT TAGCTGGTAC GGTTATCAGC	TTGTATCGCA CCAACCTAGA CGTATCATGA TGAAGAAGAG TTGCTAGCTC ATTTGTCCGT TGTAGGTAAA AGCACTCTGG GGTAATGACT ATCCTTGGTT TTGCACTGAC GACGTACTGC GGAAGTATCC CAACACTGGC	50 100 150 200 250 300 350 400 450 550 600 750 800 812
45	CHITCHCCI	C 10				012
	2) INFORMA	TION FOR SEQ	ID NO: 762			
50	(A (B) TYPE: Nucl) STRANDEDNE	8 bases eic acid SS: Double			
55	(ii) MO	LECULE TYPE:	Genomic DNA			
		IGINAL SOURCE		a mallei		

(B) STRAIN: GB8

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 762	
5	CGACGTGATC GAGCCCTTCT TCGTCGACGT GATGCGCTCT TGCAGCTTGC CCATTTCTTC AGCCAGCGTC GGCTGATAGC CCACTGCCGA CGGCATACGG CCGAGCAGCG CCGACACTTC GGTACCGGCC AGCGTGAAAC GGTAGATGTT GTCGTGAGGCC CGTCAGCGCC ACGCGCAGAC GGTTGCCCGG CGGCTCGTTC ATCTGGCCGT ACACCAGCGC GACCTTGTCG AGACGTTCG AGCCCTGCGA TTCGTGGTAG AAGTCGTTCC CTTCACGGCT TCGTCGCCC ACGCCCGCGA TCGTGGTAG GAGCCTTCT TGCAGCGT TGCAGCTTCTTCAT TCGTGGTAG AAGTCGTTCC CTTCACGGCT TCGTTCATTCATTCATTCATTCATTCATTCATTCATTCAT	50 100 150 200 250 300 350 400
10	ACACGGAGTA ACCGCCGTGC TCCTTCGCGA TGTTGTTGAT GAGCTCCATC ATGTTGAC	408
15	2) INFORMATION FOR SEQ ID NO: 763	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium sordellii(B) STRAIN: ATCC 9714	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 763	
30	GAACTTATAA ACAACATAGC TACTCAACAT GGTGGTATAT CAGTATTCGC AGGTGTTGGA GAGAGAACAA GAGAAGGTAA CGACCTTTAC GGAGAAATGA GTGAGTCTGG AGTTATAAAC AAGACAGCTC TAGTATTCGG ACAAATGAAT GAGCCACCTG GAGCAAGAAT GAGAGTTGCT TTAACTGGTC TTACAATGGC	50 100 150 200
35	TGAGTATTTC AGAGATCAAG AAGGACAAGA CGTTTTATTA TTCGTAGATA ATATATTCCG TTTCACTCAA GCAGGATCTG AGGTTTCTGC ACTTCTTGGA CGTACTCCAT CAGCAGTTGG ATACCAACCA ACATTAGCTA CAGAGATGGG TAGATTACAA GAGAGAATAA CATCTACAAA TAAAGGGTCT ATAACATCAG	250 300 350 400
40		
	2) INFORMATION FOR SEQ ID NO: 764 (i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 405 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium novyi(B) STRAIN: ATCC 19402	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 764	
60	TTAATTCAAG AATTAATCAA CAATATAGCG AAGGAACACG GTGGATTATC TGTATTTACA GGAGTTGGAG AAAGAACAAG AGAAGGTAAT GACCTTTACT ATGAAATGAA AGAATCTGGT GTTATAAATA AAACAGCACT AGTATTTGGT	50 100 150

5	CAAATGAATG AGCCACCTGG AGCAAGAATG AGAGTTGCTC TTACAGGACT TACTATGGCA GAATATTTCA GGGATCAAGG ACAAAACGTA CTTTTATTCA TAGACAACAT ATTTAGATTC ACTCAAGCAG GTTCAGAGGT GTCAGCTTTA CTTGGAAGAA TACCTAGTGC CGTTGGATAC CAACCAACAC TAGCAACAGA AATGGGTGCG CTTCAAGAAA GAATAACATC TACAAAGCAT GGTTCTATAA CATCA	200 250 300 350 400 405
10	2) INFORMATION FOR SEQ ID NO: 765	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 393 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium botulinum(B) STRAIN: 20:3.1	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 765	
25	AATTAATAAA TAACATAGCT AAAGAACATG GTGGATTATC AGTGTTTACT GGAGTTGGAG AAAGATCTAG AGAAGGTAAT GATCTTTATC ATGAAATGAG AGAATCAGGC GTTATAGATA AAACCGCATT AGTATTTGGT CAAATGAATG	50 100 150
30	AGCCACCTGG TGCTAGAATG AGAGTTGCAT TAACAGGGTT AACTATGGCT GAATATTTA GAGATAAAGG TCAAGATGTA TTACTATTTA TAGATAATAT ATTTAGATTT ACTCAAGCTG GATCAGAAGT TTCAGCATTA CTTGGAAGAA TACCATCAGC AGTTGGTTAC CAACCAACTT TAGCAACTGA AATGGGTGCA CTTCAAGAGA GAATTACATC AACTAAGAAT GGTTCTATAA CAT	200 250 300 350 393
35		
	2) INFORMATION FOR SEQ ID NO: 766	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 399 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium histolyticum(B) STRAIN: ATCC 19401	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 766	
55	AGGAACTTAT AAATAATATT GCAAAACAAT ATGGAGGTCT ATCTGTATTT ACAGGTGTTG GTGAAAGAAC AAGAGAAGGT AATGACCTAT ATAATGAAAT GAAAGATTCT GGGGTTATAG AGAAAACTGC ACTAGTATTT GGACAGATGA ATGAACCACC AGGAGCGAGA ATGAGAGTAG CATTGACAGG ACTTACTATG GCAGAATATT TTAGAGATCA AGGGCAAGAT GTACTTTTAT TTATAGATAA TATATTTAGA TTTACGCAGG CTGGTTCTGA AGTTTCTGCA TTGTTAGGAA	50 100 150 200 250 300
60	GAATTCCAAG TGCAGTTGGA TATCAACCAA CCCTTGCAAC TGAAATGGGT GCATTACAAG AAAGAATAAC ATCCACAAAA AATGGATCAA TTACTTCAG	350 399

	2) INFORMATION FOR SEQ ID NO: 767	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 390 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi) ORIGINAL SOURCE:(A) ORGANISM: Peptostreptococcus prevotii(B) STRAIN: ATCC 9321	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 767	
20	CATGATGGAA CTGATCCGTA ACATCGCCAT CGAGCACAGC GGTTATTCCG TGTTCGCCGG TGTGGGTGAG CGTACTCGTG AGGGTAACGA CTTCTACCAC GAGATGAAGG ACTCCAACGT TCTGGACAAA GTGGCACTGG TCTACGGTCA GATGAACGAG CCGCCGGGTA ACCGTCTGCG CGTAGCACTG ACTGGCCTGA	50 100 150 200
25	CCATGGCCGA GAAGTTCCGT GACGAAGGTA ACGACGTTCT GTTGTTCGTC GACAACATCT ACCGTTACAC CCTGGCCGGT ACTGAAGTAT CCGCACTGCT GGGCCGTATG CCTTCGGCAG TAGGTTACCA GCCGACCCTG GCTGAAGAGA TGGGCGTTCT GCAAGAACGT ATCACTTCGA CCAAGGAAGG	250 300 350 390
30	2) INFORMATION FOR SEQ ID NO: 768	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 953 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(A) LENGTH: 953 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double	
35 40	(A) LENGTH: 953 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	 (A) LENGTH: 953 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Absidia corymbifera 	
40	(A) LENGTH: 953 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Absidia corymbifera (B) STRAIN: ATCC 46775 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 768 AGGTCTTGTT CGTGGCAAAA GGTCATTGAC ACTGGTGCTC CTATCACCAT TCCTGTTGGT AACGAAGTCC TTGGTCGTAT CATTAACGTC ATTGGTGAGC CCATTGATGA GCGTGGTCCY ATCAAGTCCA AGGCCACTCG TGCTATCCAC GCTGATGCT CCGAGTTCGT TGATCAATCC CCCACTCCCG AGATTCTCGA GACTGGTATC AAGGTTGTCG ATTTGCTTGC TCCCTATGCT CGTGGTGGTA AGGTTGGTTCG ATTTGCTTGC TCCCTATGCT CGTGGTGGTA AGGTTGGTT TTTCGGTGGT GCCGGTGTCG GCAAGACTGT CTTGATTCAA	50 100 150 200 250 300 350
40	(A) LENGTH: 953 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Absidia corymbifera (B) STRAIN: ATCC 46775 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 768 AGGTCTTGTT CGTGGCAAAA GGTCATTGAC ACTGGTGCTC CTATCACCAT TCCTGTTGGT AACGAAGTCC TTGGTCGTAT CATTAACGTC ATTGGTGAGC CCATTGATGA GCGTGGTCCY ATCAAGTCCA AGGCCACTCG TGCTATCCAC GCTGATGCT CCGAGTTCGT TGATCAATCC CCCACTCCCG AGATTCTCGA GACTGGTATC AAGGTTGTCG ATTTGCTTGCT CGTGGTGGTA	100 150 200 250

5	GATCCTGCTC GTCTCGTTCC ACTCCAAGTC	CCGTATCTTG	TTTTGCTCAC TGGGTATCTA GATCCCCGTA	TTGGACGCCA CCCTGCTGTC TCGTTGGTGA		750 800 850 900 950 953
10	2) INFORMAT	ION FOR SEQ	ID NO: 769			
15	(A) (B)	JENCE CHARAG LENGTH: 13 TYPE: Nucl STRANDEDNE TOPOLOGY:	843 bases leic acid ESS: Double			
	(ii) MOLE	ECULE TYPE:	Genomic DNA	7		
20	(vi) ORIG (A) (B)		Alternaria	alternata		
25	(xi) SEQU	JENCE DESCRI	PTION: SEQ	ID NO: 769		
25	TCACGGTACC AGCGTGGTCC	CTTGGTCGTA CATCAAGGCC	TCATGAACGT ACCAAGTACG	CACTGGTGAC CTCCCATCCA	TTCCCGTTGG CCCATTGACG CGCCGACCCC	100 150
30	CAAGGTTGTC TCTTCGGAGG GTAAGGAGAC	CCGAGCAATC GACCTGTTGG TGCTGGTGTC ACACTGTCTA	CTCCTTACGC GGAAAGACTG CTGGCTGAGC	TCGTGGTGGA TCTTCATTCA ATTAGCTAAC	AAGATTGGTC GGAGCTGATT GGCAGGCAGA	200 250 300 350
35	GAGCGTACCC CGTCATTCAG TGAACGAGCC	GTGAGGGTAA CTTGACGGTG CCCGGGTGCC	CGATCTGTAC ACTCCAAGGT CGTGCCCGTG	CACGAGATGC CGCCCTCGTC TCGCTCTTAC	TGGTCTTACT	400 450 500 550
40	GGAAAAAGA TCGACAGTAA GCAATAGACA	GTGCTTGTAC TTTTCCGTTT	ACGAAGAGGG GAACTGCCTG CACCCAGGCC	ACAGGATGTG TGAGACATAC GGTTCCGAGG	GTGGCTAATG CTTCTCTTCA ACTGACTTCG TGTCCGCTCT CTCGCCATTG	700 750
	ACATGGGTGT ACCTCCGTCC CCCCGCCACC	CATGCAGGAG AGGCCGTCTA ACCTTCGCCC	CGTATTACCA CGTGCCCGCT ATTTGGACGC	CCACCACCAA GACGATTTGA CACCACTGTC	GGGTTCCATC CTGACCCTGC TTGTCCCGTG	850 900 950
45	TCCCGTATGT CACCCGCGTT	GTTGGGTATC TGGACCCCCG CAGCAGATTC CGGTATGGAC	TGTCATTGGT TCCAGGAGTA	CAGGACCACT CAAGTCGCTC	ACGACACCGC CAGGATATCA	1000 1050 1100 1150
50	GAGCGTGCCC CCAGGTCTTC TCCGATCATT	GTAAGATCCA ACTGGTATTG CAAGGCTATC GACTATCTCC	GCGTTTCTTG AGGGCAAGCT TTGACTGGTG	AGCCAGCCTT TGTCGACCTC AGGGTGACGA	TCGCTGTCGC AAGGACACCA CCTTCCCGAG	1200 1250 1300 1343

2) INFORMATION FOR SEQ ID NO: 770

55

60

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 480 bases (B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 5 (vi) ORIGINAL SOURCE: (A) ORGANISM: Aspergillus flavus (B) STRAIN: ATCC 26947 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 770 10 TTCAGGAGTT GATTGTATGT TCACCTGCAA CATAAGACTT CCCATTCTCC ACTCTTTCT AACTCTTCAC AGAACAACAT TGCCAAGGCT CACGGTGGTT ACTCTGTCTT CACTGGTGTC GGTGAGCGTA CCCGTGAGGG TAACGATCTG TACCACGAAA TGCAGGAGAC TGGTGTCATT CAGCTCGAGG GTGAATCTAA GGTCGCCCTT GTCTTCGGTC AGATGAACGA GCCCCCAGGT GCCCGTGCCC GTGTCGCCCT TACCGGTCTG ACCATCGCCG AGTACTTCCG TGACGAGGAA GGTCAGGATG TGCTGCTCTT CATTGACAAC ATTTTCCGTT TCACCCAGGC CGGTTCTGAG GTGTCTGCCC TTCTTGGTCG TATCCCCTCC GCTGTCGGTT ACCAGCCCAC TCTGGCCGTC GACATGGGTG GTATGCAGGA GCGTATTACC ACCACCACCA AGGGTTCCAT TACCTCCGTC 2) INFORMATION FOR SEQ ID NO: 771 25 (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 1174 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double 30 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: 35 (A) ORGANISM: Mucor circinelloides (B) STRAIN: ATCC 38592 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 771 CTCGAACAAG AYAACTTGCC YGCCATTTTG AACGCCCTTG AAGTCAAGGA
YCACTCTGGT GGACGTCTCG TYCTCGAAGT CTCTCAACAT TTGGGTGAGA
ACACTGTCCG TACTATTGCT ATGGATGGTA CTGAAGGTAA GTTATGTYCA
TGCCAARACGT TACTATTGCT TACGATGGTA TACGATGTACA
TACGATGGTA TACGATGTAT TACGATGTACA
TACGATGTACATTGCT TACGATGTAT TACGATGTACA TCCCANNGGA TACAGTCARA CAGMAATGTC TAGTGGTTAT AGCAGYAGCA
GATGATTGAC CAATATGTTA GGTCTTGTCC GGTGGTCAAA AGGTTGTTGA
CACTGGTGCT CCCATTACCA TCCCCGTTGG TAAGGAAGTC CTTGGTCGTA
TCATCAACGT TATTGGTGAA CCCATTGATG AACGTGGTCC CATTGACGCC 45 AAGACTCACC GTCCTATTCA CGCTGAAGCT CCCGAATTCG TTGATCAATC CCCCACTCCC GAAATCCTCG AGACTGGTAT CAAGGTYGTC GATTTGTTGG CTCCTTATGC TCGTGGTGGT AAGATTGGTC TCTTCGGTGG TGCTGGTGTC GGTAAGACTG TCTTGATTCA AGAATTGATT AACAACATYG CCAAGGCTCA CGGTGGTTAC TCTATCTTCT GTGGTGTCGG TGAACGTACT CGTGAGGGTA ACGATTTGTA CCATGAAATG ATTGAAACCG GTGTCATTCA ATTGGAAGGC

GTCCCTGCTG ATGATTTGAC CGATCCTGCT CCTGCCACCA CTTTTGCTCA 1000

GAGTCCAAGT GTGCTCTCGT CTTTGGTCAA ATGAACGAAC CCCCAGGTGC

TCGTGCCCGT GTCGCTTTGA CTGGTTTGAC TATTGCTGAA TACTTCCGTG
ATGATGAGGG TCAAGATGTC TTGCTTTTCA TTGATAACAT TTTCAGATTC
ACTCAAGCTG GTTCTGAGGT ATCTGCCCTT TTGGGTCGTA TTCCTTCCGC
TGTCGGTTAC CAACCCACTC TTTCCACYGA TATGGGTGGT ATGCAAGAGC

5	CTTGGATGCC ACCACTGTCT TGTCTCGTTC CATCGCTGAA TTGGGTATCT AYCCCGCTGT CGATCCTCTT GATTCCAAGT CTCGTATCCT CGATCCCCGT ATTGTCGGTG ATGAGCACTA CAAGGTTGCC ACTGAAGTTC AACAAATCCT CCAAAACTAC AAGTCTCTCC AAGA	1050 1100 1150 1174
	2) INFORMATION FOR SEQ ID NO: 772	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 467 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Piedraia hortai (B) STRAIN: ATCC 24292</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 772	
25	AGGAGCTTAT CAACAACATC GCCAAGGCTC ACGGTGGTTA CTCCGTCTTC ACTGGTGTCG GTGAGCGTAC TCGTGAGGGT AACGATTTGT ACCACGAGAT GCAAGAGACT TCCGTCATTC AGCTTGACSG CGAGTCCAAG GTCGCTCTCG TGTTCGGTCA GATGAACGAG CCCCCGGGTG CCCGTGCCCG TGTTGCCCTG	50 100 150 200
30	ACTGGTCTTA CCATCGCTGA GTACTTCCGT GATGCCGAGG GTCAGGATGG TAAGTTCTAT AACTCTTGTC GCAAAGGTTT CATTCTGGTC GCTAACTTGC TCAGTGCTCC TGTTCATCGA CAACATTTTC CGTTTCACCC AGGCTGGTAT GGAGGTGTCT GCCCTCCTCG GTCGTATTCC TTCTGCCGTC GGTTACCAAC CTACTCTCGC CGTCGACATG GGTGGTATGC AAGAGCGTAT TACCACTACC AAGAAGGGAT CCATTAC	250 300 350 400 450 467
35		
	2) INFORMATION FOR SEQ ID NO: 773	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 578 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
45	(ii) MOLECULE TYPE: Genomic DNA	
5.0	(vi) ORIGINAL SOURCE:(A) ORGANISM: Pseudallescheria boydii(B) STRAIN: ATCC 44331	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 773	
55 ·	AGCCCCTGG TGCCCGTGCT CGTGTCGCTC TTACTGGTCT TACCGTTGCC GAGTACTTCC GTGATGAGGA GGGTCAGGAT GGTAAGTTAT ATCGTTTTTA TTATCTTCTT TGCCACCACC CCTCTACGAA TCCATGCCTC CGTTGGTGAA	50 100 150 200 250 300
60	GGCATCGTTT GTAGGGCGGG TCGGAGTTTG CGGCAATTTC TGCCGTCGGC TTGAAGCCGC GGATGCCCGA TGTTTGACGC GTATCGATGC TAACAACAAT	350 400

5	GACAACAGTG CTTCTCTTCA TTGACAACAT TTTCCGATTC ACCCAGGCCG GTTCCGAGGT GTCTGCCCTT CTCGGTCGTA TTCCCTCTGC CGTCGGTTAC CAGCCCACTC TTGCCGTAGA CATGGGTGCC ATGCAGGAAC GTATTACCAC CACCAAGAAG GGTTCGATTA CCTCCGTC	450 500 550 578
	2) INFORMATION FOR SEQ ID NO: 774	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1123 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Rhizopus oryzae</pre>	
20	(B) STRAIN: ATCC 56015	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 774	
25	AACTTACCYG CTATCTTGAA CGCTCTCGAA GTCCAAGATC ACTCTGGTGG ACGTCTTGTC CTTGAAGTTC GCTCAACACT TGGGTGAAAA TACTGTCCGT ACTATTGCTA TGGATGGTAC TGAAGGTAAG CTATACTATA	100 150
30	CCGAGTATGA TATTAACTTG AAAAAAGGTC TCGTYCGTGG TCAAAAGGTT ATTGACACTG GTGCTCCCAT TACCATTCCT GYTGGTAAGG AAGTTCTCGG TCGTATCATT AACGTCATTG GTGAACCCAT CGATGAACGT GGTCCTATCA ACGCCAAGAG CCAACGTCCC ATTCACGCCG AAGCTCCCGA ATTCGTTGAC CAATCTCCTA CTCCCGAAAT TCTTGAAACT GGTATCAAGG TTGTCGACTT GTTGGCTCCT TATGCTCGTG GTGGTAAGAT TGGTCTTTTC GGTGGTGCTG	200 250 300 350 400 450
35	GTGTCGGTAA GACTGTGTG ATTCAAGAAT TGATTAACAA CATCGCCAAG GCTCACGGTG GTTACTCTAT TTTCTGTGGT GTCGGTGAAC GTACTCGTGA AGGTAACGAT CTTTACCACG AAATGATTGA AACTGGTGTC ATCAAGCTCG ATGGTGACTC CAAGTGTGCT CTTGTCTTTG GTCAAATGAA CGAACCCCCA GGAGCTCGTG CCCGTGTTGC CTTGACTGGT TTGACCATTG CTGAATACTT	500 550 600 650 700
40	CCGTGATGAT GAAGGTCAAG ATGTGTTGCT TTTCATTGAT AACATTTTCC GTTTCACCCA AGCTGGTTCW GAAGTATCTG CCCTTTTGGG TCGTATTCCC TCCGCTGTCG GTTACCAACC CACTCTTTCT ACTGATATGG GTGGTATGCA AGAACGTATT ACAACCACCA AGAACGGTTC CATTACATCC GTCCAAGCTG TCTACGTCCC TGCTGATGAT TTGACCGATC CTGCTCCCGC CACCACTTTT	750 800 850
45	GCTCACTTGG ATGCCACCAC TGTCTTGTCT CGTTCCATTG CCGAATTGGG TATTTACCCT GCCGTCGATC CTCTTGAYTC CAAGTCTCGT ATCTTGGATC CTCGTATCGT TGGTGACGAA CACTACAAGG TCGCTACCGA AGTTCAACAA ATCCTTCAAA ACTACAAGTC TCT	1050 1050 1100 1123
50	2) INFORMATION FOR SEQ ID NO: 775	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 477 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	

60 (vi) ORIGINAL SOURCE:

	(A) ORGANISM: Scopulariopsis koningii(B) STRAIN: ATCC 38745	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 775	•
J	ATTCAGGAGC TCATCAACAA CATTGCCAAG GCTCACGGTG GTTACTCTGT GTTCACTGGT GTCGGTGAGC GTACCCGTGA GGGTAACGAT CTGTACCACG	50 100
10	AAATGCAGGA GACTTCGGTC ATTCAGCTCG AGGGCGAGTC CAAGGTCGCG CTTGTGTTCG GTCAGATGAA CGAGCCCCCC GGTGCCCGTG CCCGTGTCGC CCTTACCGGT CTGACCGTTG CCGAGTACTT CCGTGACGAG GAGGGCCAGG	150 200 250
	ATGGTGAGTA ACCGACGAAG TCTGAGATCT TGTCGGGCAT TATTCTAACG ACAACTAGTG CTTCTCTTCA TCGACAACAT TTTCCGCTTC ACCCAGGCCG GTTCCGAGGT GTCCGCGCTT CTCGGCCGTA TCCCCTCTGC CGTCGGTTAC	300 350 400
15	CAGCCCACCC TGGCCGTCGA CATGGGAGGT ATGCAGGAGC GTATTACCAC GACTCAGAAG GGCTCGATTA CCTCGGT	450 477
	2) INFORMATION FOR SEQ ID NO: 776	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 610 bases (B) TYPE: Nucleic acid	
25	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(vi) ORIGINAL SOURCE:(A) ORGANISM: Trichophyton mentagrophytes(B) STRAIN: ATCC 8125	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 776	
35	TCCGGAGTTG ATTGTAAGTC ATTTGAAACC CAGCCCCAAG AAACAGAAGC TAGGCGAAAA TTGGACAATT GAGCAATTTA GCCATTGGAG AAAAGAAATT TCGAGTATTA ATTGTTTTTA TAGAACAACA TTGCCAAGGC TCACGGTGGT	50 100 150
40	TACTCTGTCT TCACTGGTGT CGGAGAGCGT ACCCGTGAAG GAAACGATCT CTACCATGAA ATGCAGGAGA CCCGTGTCAT TCAGCTTGAT GGCGAGTCCA AGGTCGCCCT GGTCTTCGGC CAGATGAACG AGCCCCCAGG TGCCCGTGCC	200 250 300
	CGTGTTGCTC TTACTGGTTT GACCATTGCT GAGTACTTCC GTGATGAGGA AGGTCAAGAC GGTGAGTTTY TTATGGATAA AARATTTTTT TTTTTTTT TTTTTTMAAR AAATTCATGT TCTAACAAAG TATATCCTAG TGCTTCTCTT	350 400 450
45	CATCGACAAC ATTTTCCGTT TCACTCAGGC TGGTTCCGAA GTGTCTGCCC TGCTTGGTCG TATCCCATCT GCCGTCGGTT ACCAACCCAC TCTTGCCGTC GACATGGGTG GTATGCAGGA ACGTATTACC ACCACCAAGA AGGGATCCAT TACCTCCGTC	500 550 600 610
50	2) INFORMATION FOR SEQ ID NO: 777	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 593 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

	(vi) ORIGINAL SOURCE:(A) ORGANISM: Trichophyton tonsurans(B) STRAIN: ATCC 56185	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 777	
10	GGAGTTGATT GTAAGTCATT TGAAACCCAG CCCCAAGAAA CAGAAGCTAG GTGAAAATTG GACAATTGAA CAATTTAGCC CTTGGAGAAA AGAAATTTCG AGTATTAATT ATTTTATAG AACAACATTG CCAAGGCTCA CGGTGGTTAC TCTGTCTTCA CTGGTGTCGG AGAGCGTACC CGTGAAGGAA ACGATCTCTA CCATGAAATG CAGGAGACCC GTGTCATTCA GCTTGATGGC GAGTCCAAGG TCGCCCTGGT CTTCGGCCAG ATGAACGAGC CCCCAGGTGC CCGTGCCCGT GTTGCTCTTA CTGGTTTGAC CATTGCTGAG TACTTCCTTG ATGAGAAAAT TCAAGACGGT GAGTTTCTTA TGGATGAAAG ATTTTTTTTTT	50 100 150 200 250 300 350 400
15	TCAAGACGGI GAGIITCIA TTCTAGTGCT TCTCTTCATC GACAACATTT TCATGTTCTA ACAAAGTGTA TTCTAGTGCT TCTCTTCATC GACAACATTT TCCGTTTCAC TCAGGCTGGT TCCGAAGTGT CTGCCCTGCT TGGTCGTATC CCATCTGCCG TCGGTTACCA ACCCACTCTT GCCGTCGACA TGGGTGGTAT GCAGGAACGT ATTACCACCA CCAAGAAGGG ATCCATTACC TCC	450 500 550 593
20		
	2) INFORMATION FOR SEQ ID NO: 778	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1141 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Trichosporon cutaneum	
35	(B) STRAIN: ATCC 62965	
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 778	
40	CCGTGGTCAA GAAGTTATTG ACACTGGTGC CCCAATTACC ATTCCTGTTG GTCGTGGTAC TCTTGGTAGA ATTATCAACG TCATTGGTGA ACCAATTGAC GAACGTGGCC CTATCAAGGC TTCTAAGTAT GCTCCTATCC ATACTGAACC ACCAACCTTT GCTGAACAAT CTACTTCTGC TGAAGTTCTT GAAACCGGTA TCAAGGTTGT CGATCTTCTT GCTCCTTACG CCCGTGGTGG TAAGATTGGT CTTTTCGGTG GTGCTGGTGT CGGTAAGACT GTCTTCATTC AAGAACCTTAT	50 100 150 200 250 300
45	TAACAACATT GCCAAGGCTC ACGGTGGTTT CTCTGTCTTC ACTGGTGTCG GTGAAAGAAC CCGTGAAGGT AACGATCTTT ACCGTGAAAT GAAGGAAACT GGTGTCATCA ACCTCGAAGG TGACTCCAAG GTCGCTCTCG TTTTCCGTCA AATGAACGAA CCTCCAGGTG CCCGTGCCCG TGTCGCTTTG ACTGGTCTTA CCATTCCCCA ATACTTCCGT GATGAAGAAG GACAAGATGT CTTGCTTTTC	350 400 450 500 550
50	GTTGACAACA TTTTCAGATT CACCCAAGCC GGTTCTGAAG TCTCTGCTCT TTTGGGTCGT ATTCCATCTG CCGTCGGTTA CCAACCTACC CTTGCTACCG ATATGGGTGC CCTCCAAGAA CGTATTACCA CCACCCAAAA GGGTTCCGTC ACATCTGTCC AAGCCGTCTA TGTCCCAGCA GACGATTTGA CTGATCCTGC CCCAGCCACC ACTTTCGCTC ACTTGGACGC CACCACTGTC TTGTCTCGTT CCATTTCCGA ATTGGGTATC TACCCAGCTG TCGATCCTCT CGATTCCAAG	600 650 700 750 800 850
55	TCTCGTCTTT TGGATCCTGA AGTTATTGGA CACGAACACT ACGAAGTTGC CACTCAAGTT CAACAAACCC TCCAAGCTTA CAAGTCTCTC CAAGATATCA TTGCCATTTT GGGTATGGAT GAATTGTCTG AAGCTGATAA GCTTACTGTC GAACGTGCCC GTAAGATCCA AAGATTCCTT TCCCAACCAT TCGCTGTTGC CGAAGTTTTC ACTGGTATCG AAGGTCGTCT CGTTCCATTG AAGGAAACCG	900 950 1000 1050 1100
60	TCAGATCTTT CAAGGAAATC CTTGAAGGTA AGTACGATCA C	1141

	2) INFORMATION FOR SEQ ID NO: 779	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1093 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Cladophialophora carrionii (B) STRAIN: ATCC 22864	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 779	
20	GCTGAAGGCC GAACGTGAGC GTGGTATCAC CATCGATATC GCGCTCTGGA AGTTCGAGAC TCCCAAGTAC TTCGTCACCG TCATCGATGC CCCTGGTCAT	50 100
	CGTGACTTCA TCAAGAACAT GATCACTGGT ACCTCCCAGG CTGATTGTGC	150
	TATTCTCATC ATTGCCGCTG GTACTGGTGA GTTCGAGGCC GGTATCTCCA AGGATGGCCA GACCCGTGAG CATGCTCTGC TCGCCTACAC CCTGGGCGTG	200 250
25	AAGCAGCTTA TCGTCGCCAT CAACAAGATG GACACCACCA AATGGTCTGA	300
	GGATCGTTTC AACGAAATCA TCAAGGAGAC TTCCAACTTC ATCAAGAAGG	350
	TCGGATACAA CCCCAAGTCC GTTCCATTCG TGCCCATCTC CGGCTTCAAC GGTGACAACA TGATCGACGT CTCCACCAAT GCCCCCTGGT ACAAGGGCTG	400 450
	GGAAAAGGAG TCCAAGGCTG GCAAGGCCAC CGGCAAGACC CTCCTTGAGG	500
30	CTATCGACTC CATCGACCCT CCTGCTCGTC CCACCGACAA GCCTCTCCGT	550
•	CTCCCACTCC AGGATGTCTA CAAGATTTCT GGTATCGGCA CGGTGCCCGT	600
	CGGTCGTGTT GAGACTGGTA CCATCAAGGC CGGTATGGTC GTCACCTTTG CCCCCGCCAA CGTCACCACT GAAGTCAAGT CCGTCGAAAT GCACCACGAA	650 700
	CAGCTCGCCG AGGGCGTTCC GGGTGACAAC GTCGGCTTCA ACGTCAAGAA	750
35	CGTCTCCGTG AAGGAGGTTC GTCGTGGAAA CGTTGCTGGT GACTCCAAGA	800
	ACGACCCCC CAAGGGTGCC GACTCCTTCA ACGCCCAGGT CATCGTCCTC AACCACCCTG GTCAGGTCGG TGCTGGCTAC GCCCCGGTCT TGGATTGCCA	850
	CACTGCCCAC ATTGCCTGCA AGTTCTCTGA GCTCCTCGAG AAGATCGATC	900 950
	GTCGTACCGG CAAGTCCATG GAAAACAACC CCAAGTTCAT CAAGTCTGGT	1000
40	GATGCTGCCA TCGTGAAGAT GGTTCCCAGC AAGCCTATGT GCGTTGAGGC	1050
	TTTCACCGAC TACCCTCCTC TTGGTCGTTT CGCCGTCCGT GAC	1093
4.5	2) INDODMATION FOR SEC ID NO. 200	
45	2) INFORMATION FOR SEQ ID NO: 780	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 752 bases (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Cunninghamella bertholletiae	
	(B) STRAIN: ATCC 42115	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 780	
60		

	TACTTGTAAA	TGGTCTCAAG	ATCGTTACAA	CGAAATTGTT	AAGGAAGTTT	50
	CTTCCTTCAT	CAAGAAGATT	GGTTACAATC	CTAAATCCGT	TCCTTTCGTY	100
	CCTATCTCTG	GTTGGCACGG	TGATAACATG	TTGGAAGCTT	CTACCAACAT	150
	GCCTTGGTAC	AAGGGATGGA	CCAAGGAAAC	TAAAGCTGGT	TCTTCCACTG	200
5	GTAAGACTCT	CTTAGAAGCC	ATTGACAGCA	TTGAACCTCC	TACCCGTCCT	250
_	TCTGACAAGC	CTTTACGTCT	TCCTTTACAA	GATGTTTACA	AGATTGGTGG	300
	TATTGGTACT	GTCCCTGTTG	GTCGTGTTGA	AACTGGTGTC	ATCAAGGCTG	350
	GTATGGTTGT	TACYTTCGCT	CCCGCTAACG	TCACCACTGA	AGTTAAGTCC	400
	GTTGAAATGC	ATCACGAACA	ATTAGAACAA	GGTGTTCCTG	GTGACAACGT	450
10	TGGTTTCAAC	GTCAAGAACG	TTTCCGTTAA	GGATATCCGT	CGTGGTAACG	500
	TCTGTTCCGA	CTCCAAGAAC	GACCCCGCTA	AGGAATCTGC	TTCCTTCAAC	550
	GCTCAAGTTA	TCGTCTTGAA	CCACCCTGGT	CAAATTGGTG	CTGGTTATGC	600
	CCCAGTTCTT	GACTGTCACA	CTGCTCACAT	TGCTTGTAAG	TTCGCTGAAT	650
	TATTAGAAAA	GATCGATCGT	CGTTCCGGTA	AGAAACTCGA	AGATGCTCCT	700
15	AAATTCGTTA	AATCTGGTGA	CTCTGCTATC	GTTAAGATGG	TTCCTTCCAA	750
	GC					752

20 2) INFORMATION FOR SEQ ID NO: 781

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 728 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- .30 (vi) ORIGINAL SOURCE:

25

55

- (A) ORGANISM: Curvularia lunata
 - (B) STRAIN: ATCC 26425
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 781

	(311)					
35					·	
	CAAGTGGTCT	GAGGACCGTT	ACCAGGAAAT	CATCAAGGAG	ACCTCCAACT	50
	TCATCAAGAA	GGTCGGCTAC	AACCCCAAGC	ACGTTCCCTT	CGTCCCCATC	100
	TCCGGTTTCA	ACGGAGACAA	CATGATTGAG	GCCTCCACCA	ACTGCCCCTG	150
	GTACAAGGGT	TGGGAGAAGG	AGACCAAGGC	CAAGGCCACT	GGTAAGACCC	200
40	TCCTTGAGGC	CATCGACGCC	ATCGACCCTC	CTGTCCGTCC	TACCGACAAG	250
- 0	CCCCTCCGCC	TTCCCCTCCA	GGATGTTTAC	AAGATTGGTG	GTATTGGCAC	300
	GGTCCCCGTC	GGTCGTGTCG	AGACCGGTAT	CATCAAGCCC	GGTATGGTCG	350
	TCACCTTCGC	CCCCGCTGGT	GTCACCACCG	AAGTCAAGTC	CGTCGAGATG	400
	CACCACGAGC	AGCTTACTGA	GGGTGTCCCC	GGTGACAACG	TCGGCTTCAA	450
45	CGTCAAGAAC	GTCTCCGTCA	AGGAGATCCG	TCGTGGTAAC	GTTGCCGGTG	500
	ACTCCAAGAA	CGACCCCCC	AAGGGTTGCG	AGTCCTTCAA	CGCCCAGGTC	550
	ATCGTCCTCA	ACCACCCTGG	TCAGGTCGGT	GCCGGTTACG	CCCCAGTCCT	600
	TGACTGCCAC	ACTGCCCACA	TTGCCTGCAA	GTTCTCCGAG	CTCCTCGAGA	650
	AGATCGACCG	CCGTACCGGA	AAGTCTGTTG	AGAACTCCCC	CAAGTTCATC	700
50	AAGTCCGGTG	ACGCCGCCAT				728
50	1270100010					

2) INFORMATION FOR SEQ ID NO: 782

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1145 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Fonsecaea pedrosoi
- (B) STRAIN: ATCC 18831
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 782

10	TGAAGTCCGA	GCGTGAGCGT	GGTATCACCA	TCGATATCGC	CCTCTGGAAG	50
	TTCGAGACTC	CCAAGTAAGG	CTCAACAGAC	ACAACAAGCA	AATGCATACT	100
	CGCTAACCTA	TTCACCCACC	ACAGGTACAA	CGTCACCGTC	ATTGACGCCC	150
	CCGGTCACCG	TGATTTCATC	AAGAACATGA	TCACTGGTAC	CTCCCAGGCT	200
	GACTGCGCCA	TTCTCATCAT	TGCCGCCGGT	ACTGGTGAGT	TCGAGGCCGG	250
15	TATCTCCAAG	GACGGTCAGA	CCCGTGAGCA	CGCTCTTCTC	GCCTACACCC	300
	TTGGTGTCAA	GCAGCTCATC	GTTGCCATCA	ACAAGATGGA	CACCACCAAG	350
	TGGTCTGAGG	CCCGTTACCA	GGAGATCATC	AAGGAGACCT	CCGGTTTCAT	400
	CAAGAAGGTC	GGCTTCAACC	CCAAGCACGT	TCCCTTCGTG	CCCATCTCCG	450
	GTTTCAACGG	TGACAACATG	ATCGACGTCT	CCACCAACTG	CCCCTGGTAC	500
20	AAGGGTTGGG	AGAAGGAGAC	CAAGGCCAAG	GCCACCGGCA	AGACCCTCCT	550
	CGAGGCCATT	GACGCCATCG	ACCCCCCAC	TCGTCCCACC	GACAAGCCCC	600
	TCCGTCTTCC	CCTYCAGGAT	GTCTACAAGA	TCGGTGGTAT	TGGCACGGTT	650
	CCCGTCGGTC	GTGTCGAGAC	CGGTACCATC	AAGGCCGGCA	TGGTCGTCAC	700
	CTTCGCCCCC	GCTGGTGTCA	CCACTGAGGT	CAAGTCCGTC	GAGATGCACC	750
25	ACGAGCAGCT	TCCCGAGGGT	CTCCCCGGTG	ACAACGTCGG	CTTCAACGTC	800
	AAGAACGTCT	CCGTCAAGGA	GATCCGTCGT	GGCAACGTCG	CCGGTGACTC	850
	CAAGAACGAC	CCCCCCAAGG	GCTGCGACAG	CTTCAACGCC	CAGGTCATCG	900
	TCCTCAACCA	CCCCGGTCAG	GTCGGCGCCG	GCTACGCGCC	CGTCCTCGAC	950
	TGCCACACTG	CTCACATTGC	TTGCAAGTTC	TCTGAGCTCC	TCGAGAAGAT	1000
30	CGACCGCCGT	ACCGGCAAGT	CCATTGAGGC	CAGCCCCAAG	TTCATCAAGT	1050
	CTGGTGACGC	CGCCATCGTC	AAGATGGTTC	CCTCCAAGCC	TATGTGCGTT	1100
	GAGGCCTTCA	CCGACTACCC	CCCTCTTGGA	CGTTTCGCCG	TCCGT	1145

35

40

5

- 2) INFORMATION FOR SEQ ID NO: 783
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1151 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Microsporum audouinii
 - (B) STRAIN: ATCC 11347
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 783

	GCTCAAGGCT	GAGCGTGAGC	GTGGTATCAC	CATTGACATC	GCCCTCTGGA	50
	AGTTCGAGAC	CCCCAAGTAC	ATGGTCACCG	TCATCGGTAT	GCTTTATCTG	100
	TTTCCCATTT	ATAGTTGCGA	CAAGTAACTA	ATAAAAAGTA	GATGCCCCCG	150
55	GACACCGTGA	CTTCATCAAG	AACATGATTA	CTGGTACCTC	CCAGGCCGAC	200
	TGCGCTATTC	TCATCATTGC	TGCCGGTACT	GGTGAGTTCG	AGGCTGGTAT	250
	CTCCAAGGAT	GGCCAGACTC	GTGAGCACGC	CCTGCTCGCT	TTCACCCTCG	300
	GTGTCAAGCA	GCTCATCGTT	GCCATCAACA	AGATGGACAC	CACCAACTGG	350
	TCTGAGTCCC	GTTTCGGTGA	AATCATCAAG	GAAGTCACCA	ACTTCATCAA	400
60	GAAGGTCGGC	TACGACCCCA	AGGGTGTCCC	ATTCGTCCCA	ATCTCTGGCT	450

5	TCAACGGTGA GGATGGAACA CCTTGAGGCC CTCTCCGTCT GTACCAGTCG CACTTTCGCC ACCACCAGCA GTCAAGAACG TTCCAAGAAC TCGTCCTCAA GACTGCCACA GATTGACCGC AGTCTGGTGA	CAACATGATT AGGAGACCAA ATCGATGCCA CCCACTCCAG GTCGTGTTGA CCCGCCAACG GCTCGTTCAG TCTCTGTCAA GACCCACCAT CCACCCCGGC CTGCCCACAT CGTACTGGTA TGCCGCTATT TCACTGACTA	GAGCCCTCCA GGCCGGTGGC TTGACATGCC GATGTCTACA GACTGGTATC TCACCACTGA GGTGTTCCCG GGAAGTCCGC CTGGCTGCGC CAGATCGGTG TGCTTGCAAG AATCCGTCGA GCCACCATGG CCCACCACTT	CCAACTGCCC AAATCCTCTG CACTCGTCCC AGATCTCTGG ATCAAGCCTG AGTCAAGTCC GTGACAACGT CGTGGTAACG CTCTTTCAAG CTGGTTACGC TTCTCTGAGC AACCAGCCCT TTCCATCCAA GGTCGTTTCG	ATGGTACAAG GTAAGACCCT ACCGACAAGC TATCGGAACA GTATGGTTGT GTCGAAATGC TGGCTTCAAC TTGCCGGTGA GCCCAGGTCA CCCAGTCCTC TTCTTGAGAA AAGTTCGTCA GCCCATGTGC CCGTCCA	500 550 600 650 700 750 800 850 900 950 1000 1050 1100
15	C	201102		•		1151
			TD NO. 704			

2) INFORMATION FOR SEQ ID NO: 784

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 979 bases

- TYPE: Nucleic acid STRANDEDNESS: Double (B)
- (C) TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:

25

- (A) ORGANISM: Mucor circinelloides
 - (B) STRAIN: ATCC 38592
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 784

2.5	CCAAGTGGTC	TCAAGATCGT	TACAACGAAA	TTGTCAAGGA	AGTTTCCGGT	50
35	TTCATCAAGA	AGATCGGTTT	CAACCCCAAG	TCCGTTCCTT	TCGTTCCCAT	100
	TTCTGGCTGG	CACGGTGATA	ACATGTTGGA	TGAATCCACC	AACATGCCCT	150
	GGTTCAAGGG	ATGGAACAAG	GAGACCAAGG	CCGGTTCCAA	GACTGGTAAG	200
	ACTCTCCTCG	AAGCCATCGA	TGCCATTGAG	CCCCCTGTCC	GTCCTTCTGA	250
40	CAAGCCTCTC	CGTCTTCCTC	TTCAAGATGT	CTACAAGATT	GGTGGTATTG	300
. 40	GTACAGTTCC	CGTCGGTCGT	GTTGAAACTG	GTACTATCAA	GGCTGGTATG	350
•	GTTGTCAACT	TCGCTCCCGC	TGCTGTCACC	ACTGAAGTTA	AGTCCGTTGA	400
	AATGCATCAC	GAAACCCTCT	CTGAAGGTCT	CCCCGGTGAC	AACGTTGGTT	450
	TCAACGTCAA	GAACGTCTCC	GTCAAGGATA	TCCGTCGTGG	TAACGTCTGT	500
. 45	TCCGACTCCA	AGAACGATCC	CGCTAAGGAA	TCTGCCTCTT	TCACTGCTCA	550
	AGTTATTATC	TTGAACCATC	CCGGTCAAAT	CTCTGCTGGT	TACGCACCAG	600
	TTCTCGATTG	TCACACTGCT	CACATCGCCT	GTAAGTTCTC	TGAACTCATT	650
	GAGAAGATTG	ATCGTCGTTC	CGGTAAGTAC	CTGCATCTGT	CAGAATTGAA	700
	GGTCCGCCGT	TATAGCAAAG	GCTGGGTTTA	AATGTTGGGG	TTTGTCTGAT	750
50	CTATAATGAT	GATTGCTCCT	TCAATTTTTG	ACATAATTTG	ATGATCTGAA	800
	TTGTGTTGCT	AACGTCGCAT	TTGCTTCTTT	TGCTTCTTTT	GCATGTAGGT	850
•	AAGAAGATGG	AAGATGCTCC	CAAAGTAAGT	ATTACGATTG	ATGGACAATT	900
	AAAATAGAAT	ACTAACAATT	ATTGTTTATA	GTTCGTCAAG	TCTGGTGACT	950
	CTGCTATCGT	CAAGATGGTT	CCCTCCAAG			979

- 2) INFORMATION FOR SEQ ID NO: 785
- (i) SEQUENCE CHARACTERISTICS: 60

	(A) LENGTH: 1099 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Phialaphora verrucosa</pre>	
10	(B) STRAIN: ATCC 38561	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 785	
15	GGACAAGCTG AAGGCCGAAC GTGAGCGTGG TATCACCATC GATATCGCGC TCTGGAAGTT CGAGACTCCC AAATACTTCG TCACCGTCAT TGATGCCCCT GGTCATCGTG ACTTCATCAA GAACATGATC ACTGGTACCT CCCAGGCTGA TTGTGCCATC CTCATCATTG CCGCCGGTAC CGGTGAGTTC GAAGCCGGTA	50 100 150 200
20	TCTCCAAGGA TGGCCAGACC CGTGAGCACG CTCTCCTCGC CTACACCCTA GGTGTGAAGC AGCTTATCGT CGCCATCAAC AAGATGGACA CCGCCAAATG GTCCGAGGAT CGGTTCAACG AAATCATCAA GGAGACTTCC AACTTCATCA AGAAGGTCGG ATACAACCCC AAGTCCGTCC CGTTCGTGCC CATCTCCGGT	250 300 350 400
25	TTCAACGGTG ACAACATGAT CGACGTCTC TCCAACGCCC CCTGGTACAA GGGTTGGGAG AAGGAGACCA AGGCCGGCAA GGCCACTGGC AAGACCCTCC TCGAGGCCAT CGACGCGATT GACCCTCCTA CTCGTCCCAC CGACAAGCCC CTCCGTCTCC CTCTCCAGGA TGTCTACAAG ATCTCTGGTA TCGGCACGGT GCCCGTTGGT CGTGTTGAGA CCGGTACCAT CAAAGCCGGT ATGGTCGTCA CCTTCGCTCC CGCCAACGTC ACCACTGAAG TCAAGTCCGT CGAAATGCAC	450 500 550 600 650 700
30	CACGAACAGC TCGCCGAAGG TGTTCCAGGT GACAATGTCG GCTTCAACGT CAAGAACGTC TCCGTCAAGG AGGTTCGTCG TGGAAACGTT GCCGGTGACT CCAAGAATGA CCCCCCCAAG GGTGCCGACT CCTTCAACGC TCAGGTCATC GTCCTCAACC ACCCTGGTCA GGTCGGTGCC GGCTACGCCC CGGTCTTGGA TTGCCACACT GCCCACATTG CTTGCAAGTT CTCTGAGCTC CTCGAGAAGA	750 800 850 900 950
35	TCGATCGTCG TACCGGCAAG TCCATGGAAA ACAACCCCAA GTTTATCAAG TCTGGTGATG CTGCCATCGT GAAGATGGTT CCCAGCAAGC CTATGTGCGT TGAGGCCTTC ACCGACTATC CTCCTCTTGG TCGTTTCGCC GTCCGTGAC	1050
40	2) INFORMATION FOR SEQ ID NO: 786 (i) SEQUENCE CHARACTERISTICS:	
4.5	(A) LENGTH: 750 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
50	(vi) ORIGINAL SOURCE: (A) ORGANISM: Saksenaea vasiformis (B) STRAIN: ATCC 60625	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 786	•
55	ACCACCAAGT GGTCTGAGGC CCGTTACCAG GAGATCATCA AGGAGACCTC CGGYTTCATC AAGAAGGTCG GCTTCAACCC CAAGCACGTT CCCTTCGTGC CCGTCCCGG TTTCAACGGT GACAACATGA TCGACGTCTC CACCAACTGC	50 100 150
60	CCCTGGTACA AGGGTTGGGA GAAGGAGACC AAGGCCAAGG CCACCGGCAA GACCMTCCTC GAGGCCATTG ACGCCATCGA CCCCCCYAGY CGTCCCACCG ACAAGCCCCT YCGTCTTCCC CTMCAGGATG TYTACAAGAT TGGCGGTATT	200 250 300

5	GGCACGGTTC CCGTCGGTCG TGTYGAGACC GGTRCCATCA AGGGTGGCAT GGTCGTCACC TTCCCCCCG CTGGTGTCAC CACTGAGGTC AAGTCCGTCG AGATGCACCA CGAGCAGCTC CCCCAAGGAG ATCCGTCGTG GCAACGTTGC CGGTGACTCC AAGAACGACC CCCCCAAGGG CTGCGACAGC TTCAACGCCC AGGTCATCGT CCTCAACCAC CCCGGTCAGG TCGCACAGTC CTACGCGCCG GTCCTSGACT GCCACACTGC TCACATTGC TGCAAGTTCT CTGAGCTCCT CGAGAAGATC GACCGCCGTT CCGGCAAGTC CATCGAGTCC GGCCCCAAGT TCATCAAGTC TGGTGACGCC GCCATCGTCA AGATGGTTCC CTCCAAGCCC	350 400 450 500 550 600 650 700 750
	2) INFORMATION FOR SEQ ID NO: 787	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1084 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE: (A) ORGANISM: Syncephalastrum racemosum (B) STRAIN: ATCC 32330	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 878	5.0
30	GCTCAAGGCC GAGCGTGAGC GTGGTATCAC CATCGATATC GCTCTCTGGA AGTTCGAGAC CCCCAAGTAC CACGTCACCG TCATTGATGC CCCCGGCCAT CGTGATTTCA TCAAGAACAT GATCACTGGT ACCTCGCAGG CTGACTGCGG TATCCTCATC ATTGCCGCCG GTACTGGTGA GTTCGAGGCT GGTATCTCCA AGGATGGCCA GACCCGTGAG CACGCTCTGC TTGCCTTCAC CCTCGGTGTC	50 100 150 200 250
35	CGTCAGCTGA TCGTCGCCAT CAACAAGATG GACTCGACCA AGTACTCTGA GGCCCGTTAC AACGAAATCG TCAAGGAGGT CTCCACCTTC ATCAAGAAGA TCGGTTTCAA CCCCAAGTCC GTTCCCTTCG TCCCCATCTC TGGCTGGAAC GGTGACAACA TGTTGGAGGA GTCCTCCAAC ATGCCCTGGT TCAAGGGCTG GAAGAAGGA ACCAAGGCTG GCGAGAAGTC CGGCAAGACC CTCCTTGAGG	300 350 400 450 500
40	CATTGACAA CATTGACCCC CCGGTCCGTC CCTCGGACAA GCCCCTCCGT CTTCCCCTCC AGGATGTCTA CAAGATCGGT GGTATCGGCA CAGTCCCCGT CGGTCGTGTC GAGACTGGTG TCATCAAGGC TGGTATGGTC GTGACCTTCG CCCCCGCCAA CGTCACCACT GAAGTCAAGT CCGTCGAGAT GCACCACGAGA CAGCTCGTCG AGGGTGTCCC CGGTGACAAC GTCGGTTTCA ACGTCAAGAA	550 600 650 700 750
45	CGTTTCCGTC AAGGATATCC GCCGTGGTAA CGTCTGCTCT GACTCCAAGA ACGACCCGC CAAGGAGTCT GCCTCGTTCA CCGCCCAGGT CATCGTCCTG AACCACCCCG GTCAGATCGG TGCCGGTTAC GCCCCGGTTC TTGACTGCCA CACCGCTCAC ATTGCCTGCA AGTTCGCTGA GCTCCTCGAG AAGATCGACC CCCCTTCCCC YAAGAAGCTC GAAGAGTCCC CCAAGTTCGT CAAGTCGGGT	800 850 900 950 1000
50	GACTCCGCCA TCGTCAAGAT GGTTCCCTCC AAGCCCATGT GCGTTGAGGC CTACACTGAG TACCCCCCTC TTGGCCGTTT CGCC	1050 1084
55	2) INFORMATION FOR SEQ ID NO: 788 (i) SEQUENCE CHARACTERISTICS:	
60	(A) LENGTH: 1155 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Trichophyton tonsurans
 - (B) STRAIN: ATCC 56185
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 788

10	GCTCAAGGCC	GAGCGTGAGC	GTGGTATCAC	CATCGATATC	GCCCTCTGGA	50
	AGTTCGAGAC	CCCCAAGTAC	AATGTCACCG	TCATTGGTAT	GTTTTTCTTT	100
	ACCTTTCCCC	TCCATCGTCT	TGCTGTGCCA	TAACTAACGA	GAGTAGACGC	150
	CCCCGGTCAC	CGTGACTTCA	TCAAGAACAT	GATCACTGGT	ACCTCCCAGG	200
	CTGACTGTGC	TATTCTCATC	ATTGCTGCCG	GTACTGGTGA	GTTCGAGGCT	250
15	GGTATCTCCA	AGGATGGCCA	GACCCGTGAG	CACGCTCTGC	TCGCCTTCAC	300
	CCTTGGTGTC	AAGCAGCTCA	TCGTTGCCAT	CAACAAGATG	GACACCACCA	350
	ACTGGTCCGA	GGACCGTTTC	AAGGAAATCA	TCAAGGAAGT	CACCAACTTC	400
	ATCAAGAAGG	TTGGCTACGA	CCCCAAGGGT	GTTCCATTCG	TTCCAATCTC	450
	TGGTTTCAAC	GGTGACAACA	TGATTGAGGC	CTCCAGCAAC	TGCCCATGGT	500
20	ACAAGGGATG	GAACAAGGAG	ACCAAGGCCG	GTGGTGCCAA	GACTGGCAAG	550
	ACCCTYCTCG	AGGCCATCGA	TGCCATCGAC	ATGCCAACCC	GTCCTACCGA	600
	CAAGCCCCTY	CGTCTCCCAC	TCCAGGATGT	CTACAAGATC	TCTGGTATCG	650
	GAACTGTACC	AGTCGGTCGT	GTTGAGACCG	GTATCATCAA	GCCTGGTATG	700
	GTCGTCACCT	TCGCCCCTGC	CAACGTCACC	ACTGAAGTCA	AGTCCGTCGA	750
25	AATGCACCAC	CAGCAGCTTC	AGCAGGGTGT	CCCCGGTGAC	AACGTCGGCT	800
	TCAACGTCAA	GAACGTTTCC	GTCAAGGAAG	TCCGCCGTGG	TAACGTTGCC	850
	GGTGACTCCA	AGAACGACCC	ACCATCCGGC	TGTGCCTCCT	TCAACGCCCA	900
	GGTCATCGTC	CTCAACCACC	CCGGCCAGAT	CGGTGCTGGT	TACGCCCCAG	950
	TCCTCGACTG	CCACACTGCT	CACATTGCTT	GCAAGTTCGC	TGAGCTCCTC	1000
30	GAGAAGATTG	ACCGCCGTAC	CGGTAAATCC	GTCGAAGCCA	ACCCCAAGTT	1050
• .	CGTCAAGTCT	GGTGATGCCG	CTATCGCCAA	GATGGTTCCC	TCCAAGCCCA	1100
	TGTGCGTTGA	GGCTTTCACT	GACTACCCCC	CACTTGGTCG	TTTCGCCGTC	1150
	CGTGA					1155

40

5

- 2) INFORMATION FOR SEQ ID NO: 789
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1138 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Trichophyton mentagrophytes
 - (B) STRAIN: ATCC 8125

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 789

	TCAAGGCCGA	GCGTGAGCGT	GGTATCACCA	TCGATATCGC	CCTCTGGAAG	50
	TTCGAGACCC	CCAAGTACAA	TGTCACCGTC	ATTGGTATGT	TTCTCTTTAC	100
55					GTAGACGCCC	150
					CTCCCAGGCT	200
		TTCTCATCAT				250
					GCCTTCACCC	300
	TTGGTGTCAA	GCAGCTCATC	GTTGCCATCA	ACAAGATGGA	CACCACCAAC	350
60	TGGTCCGAGG	ACCGTTTCAA	GGAAATCATC	AAGGAAGTCA	CCAACTTCAT	400

5 10 15	CAAGAAGGTT GTTTCAACGG AAGGGATGAA CCTCCTCGAG AGCCCCTCCG ACTGTACCAG CGTCACCTTC TGCACCACCA AACGTCAAGA TGACTCCAAG TCATCGTCCT CTCGACTGCC GAAGATTGAC TCAAGTCTGGC TCAAGTCTGGC TCAAGTCTGGG TCAAGTCTGGG	GGCTACGACC TGACAACATG ACAAGGAGAC GCCATCGATG TCTCCCACTC TCGGTCGTGT GCCCCTGCCA GCAGCTTCAG ACGTTTCCGT AACGACCCAC CAACCACCCC ACACTGCTCA CGCCGTACCG TGATGCCGCT CTTTCACTGA	CCAAGGGTGT ATTGAGGCCT CAAGGCCGGT CCATCGACAT CAGGATGTCT TGAGACCGGT ACGTCACCAC CAGGGTGTCC CAAGGAAGTC CATCCGGCTG GGCCAGATCG CATTGCTTGC GTAAATCCGT ATCGCCAAGA CTACCCCCCA	TCCATTCGTT CCACCAACTG GGTGCCAAGA GCCAACCCGT ACAAGATCTC ATCATCAAGC TGAAGTCAAG CCGGTGACAA CGCCGTGGTA TGCCTCCTTC GTGCTGCTTA AAGTTCGCTG CGAAGCCAAC TGGTTCCATC CTTGGTCG CTTGGTCG	CCAATCTCTG CCCATGGTAC CTGGCAAGAC CCTACCGACA TGGTATCGGA CCGGTATGGT TCCGTCGAAA CGTCGGCTTC ACGTTGCCGG AACGCCCAGG CGCCCAGTC AGCTCCTCGA CCCAAGTTCG CAAGCCTATG	450 500 550 600 650 700 750 850 900 950 1000 1100 1138
10	ACTGTACCAG CGTCACCTTC TGCACCACCA AACGTCAAGA TGACTCCAAG TCATCGTCCT CTCGACTGCC GAAGATTGAC TCAAGTCTGG	TCGGTCGTGT GCCCCTGCCA GCAGCTTCAG ACGTTTCCGT AACGACCCAC CAACCACCCC ACACTGCTCA CGCCGTACCG TGATGCCGCT	TGAGACCGGT ACGTCACCAC CAGGGTGTCC CAAGGAAGTC CATCCGGCTG GGCCAGATCG CATTGCTTGC GTAAATCCGT ATCGCCAAGA	ATCATCAAGC TGAAGTCAAG CCGGTGACAA CGCCGTGGTA TGCCTCCTTC GTGCTGGTTA AAGTTCGCTG CGAAGCCAAC TGGTTCCATC	CCGGTATGGT TCCGTCGAAA CGTCGGCTTC ACGTTGCCGG AACGCCCAGG CGCCCCAGTC AGCTCCTCGA CCCAAGTTCG	700 750 800 850 900 950 1000 1050

2) INFORMATION FOR SEQ ID NO: 790

20

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 748 bases
 - TYPE: Nucleic acid (B)
 - STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D) 25
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bipolaris hawaiiensis
 - STRAIN: ATCC 26067 (B)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 790

35	CACCACCAAG	TGGTCTGAGG	AGCGTTACCA	GGAAATCATC	AAGGAGACCT	50
35	CCAACTTCAT	CAAGAAGGTC	GGCTACAACC	CCAAGCACGT	TCCCTTCGTC	100
	CCCATCTCTG	GTTTCAACGG	AGACAACATG	ATTGAGGCTT	CCACCAACTG	150
	CCCCTGGTAC		AGAAGGAGAC	CAAGGCCAAG	GCCACTGGTA	200
	AGACCCTTCT	CGAGGCCATC	GACGCCATCG	ACCCCCTGT	CCGTCCTACC	250
4.0	GACAAGCCCC	TCCGCCTTCC	CCTCCAGGAT	GTGTACAAGA	TTGGTGGTAT	300
40	TGGCACGGTT	CCCGTCGGTC	GTGTCGAGAC	CGGTATCATC	AAGCCCGGTA	350
	TGGCACGGII	CTTCGCCCCC	GCTGGTGTCA	CCACTGAAGT	CAAGTCCGTC	400
		ACGAGCAGCT	TGCCGAGGGT	GTCCCCGGTG	ACAACGTCGG	450
	GAGATGCACC	AAGAACGTCT	CCGTCAAGGA	GATCCGTCGT	GGTAACGTTG	500
	CTTCAACGTC	CAAGAACGAC	CCCCCCAAGG	GTTGCGAGTC	CTTCAACGCC	550
45	CCGGTGACTC	TCCTCAACCA	CCCCGGTCAG	GTCGGTGCCG	GTTACGCACC	600
	CAGGTCATCG	TGCCACACTG	CCCACATTGC	TTGCAAGTTC	TCCGAGCTCC	650
	AGTCCTTGAC		ACCGGAAAGT		CTCCCCCAAG	700
	TCGAGAAGAT	TGACCGCCGT			0.000	748
	TTCATCAAGT	CCGGTGACGC	CGCCAICGIC	MAGAIGGIIC	CCICCIAIC	

2) INFORMATION FOR SEQ ID NO: 791

- (i) SEQUENCE CHARACTERISTICS: 55
 - LENGTH: 958 bases (A)
 - (B)
 - TYPE: Nucleic acid STRANDEDNESS: Double (C)
 - TOPOLOGY: Linear

60

```
(ii) MOLECULE TYPE: Genomic DNA
       (vi) ORIGINAL SOURCE:
             (A) ORGANISM: Aspergillus fumigatus
 5
             (B) STRAIN: ATCC 14110
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 791
    CGCTATTGTC GTTGTTGCTG CCTCCGACGG TCAGATGTAG GTGGAACATC
    TTGGGAAATA CGTCGTAAAA CACGGCGCTT ACGTTTTCGC GAATAGGCCC
10
                                                                    100
     CAGACTCGTG AGCATTTGCT GCTCGCCCGC CAGGTTGGTG TCCAGAAGAT
                                                                    150
    CGTTGTCTTC GTCAACAAAA TCGATGCTAT TGATGATCCG GAGATGCTGG
                                                                    200
    AACTGGTCGA ACTCGAGATG CGTGAGCTGC TGAACAGCTA CGGTTTCGAG
                                                                    250
    GGTGAAGAGA CTCCGATCAT TTTCGGTTCC GCTCTCTGTG CTCTCGAAGG
                                                                    300
    ACGCCGTGAC GACATCGGTA AAGACAGAAT TGAGCAGCTT ATGAACGCTG
15
                                                                    350
    TCGACACCTG GATCCCCACT CCTCAGCGTG ACCTCGACAA ACCTTTCTTG ATGTCTGTCG AGGAAGTGTT CTCTATCGCC GGCCGTGGTA CCGTGGCTTC TGGTCGTGTC GAGCGTGGTA TCTTGAAGAA GGACTCTGAG GTTGAGATTG
                                                                     450
    TTGGAGGCTC CTTCGAACCC AAGAAGACCA AAGTCACCGA CATTGAAACC
                                                                     550
20
    TTCAAGAAGA GCTGTGATGA ATCGCGTGCT GGTGACAACT CTGGTCTCCT
                                                                    600
    CCTGCGTGGT ATCCGACGTG AAGACGTCAA GCGTGGTATG GTCATTGCTG
    TTCCCGGCAG CACCAAAGCT CACGACAAGT TCCTCGTCTC CATGTACGTC
CTGACCGAGG CGGAGGGTGG TCGTCGTACT GGCTTCGGTG CCAACTACCG
                                                                   750
800
    TCCCCAAGTC TTCATCCGTA CTGCAGGTAA GTTCCCGCAC ACCGTGTCCA
    GATCTTCCGA GAGATTAGCG ATATATGCTA ATGATTCATC AGACGAGGCT
25
    GCTGACCTCA GCTTCCCTGA CGGCGACCAA TCTCGCAGAG TTATGCCTGG
                                                                    900
    TGACAACGTC GAGATGATCC TGAAGACCCA CCACCCTGTT GCTGCTGAGG
                                                                   950
    CTGGTCAA
                                                                     958
30
    2) INFORMATION FOR SEQ ID NO: 792
        (i) SEQUENCE CHARACTERISTICS:
35
            (A)
                LENGTH: 936 bases
                 TYPE: Nucleic acid
            (B)
                 STRANDEDNESS: Double
             (C)
                 TOPOLOGY: Linear
             (D)
      (ii) MOLECULE TYPE: Genomic DNA
40
       (vi) ORIGINAL SOURCE:
            (A) ORGANISM: Trichophyton mentagrophytes
                 STRAIN: ATCC 8125
            (B)
45
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 792
    CGTTGTCGCA GCTTCTGACG GTCAAATGTA ATTGAATGCC CGCCCAGACG
    GATGAAAGGA TTTGACGTTT CTAACATCAT TCTAGGCCTC AGACCAGAGA
                                                                     100
    ACATTTGCTC CTTGCCCGCC AGGTCGGTGT CCAGAAGCTG GTCGTTTTCG
                                                                     150
    TTAACAAGGT CGATGCCGTT GAGGACCCAG AGATGTTGGA GCTTGTCGAA
                                                                    200
    CTTGAAATGC GTGAACTCCT CAGCCACTAC GGTTTCGAGG GTGAGGAGAC
                                                                    250
    CCCCATCATT TTTGGCTCTG CTCTCTGTGC CCTCGAGTCC CGTCGACCTG
                                                                    300
    AGCTTGGTGT CGAGAAGATT GACGAGCTAT TGAACGCCGT CGACACCTGG
```

ATCCCCACCC CCGAGCGCGC CACTGATAAG CCTTTCCTCA TGTCCATTGA

GGAAGTGTTC TCTATCTCTG GTCGTGGTAC CGTCGTCTCC GGTCGTGTTG

AGCGTGGTAT CCTCAAGAAG GATTCCGACG TCGAAATTGT TGGTGGCTCT 500
ACCACCCCTA TCAAGACCAA GGTCACAGAT ATCGAAACCT TCAAGAAGTC 550
CTGCGATGAA TCTCGAGCTG GTGACAACTC TGGTCTCCTT CTCCGAGGTA 600
TCAAGCGTGA GGACTTGAAG CGTGGAATGG TTGTTGCTGC CCCCGGATCC 650

5	ACCAAGGCTC ACACCGACTT CATGGTCTCC CTCTACGTCC TGACTGAGGC 700 TGAGGGTGGT CGTTCCAACG GCTTCACCCA CAAGTACCGC CCCCAAATGT 750 TCATCCGTAC TGCTGGTATG TAACCCAAGT TTCCGCTATT TACTAAGTAG 800 ATCATTGCTA ACTTGTATTT CCTTCCGTAG ACGAAGCCGC ATCTTTCAGC 850 TGGCCTGGAG AAGACCAAGA CAAGAAGGCT ATGCCTGGTG ACAACGTCGA 900 GATGATTTGC AAGACCCTCC ACCCCATTGC TGCCGA 936				
10	2) INFORMATION FOR SEQ ID NO: 793				
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 				
	(ii) MOLECULE TYPE: DNA				
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 793				
	TTATTGTTGC TGCTGGTACT	20			
25	2) INFORMATION FOR SEQ ID NO: 794				
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear				
35	(ii) MOLECULE TYPE: DNA				
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma cruzi</pre>				
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 794				
	GACGACAAGT CGGTGAACTT	20			
45	2) INFORMATION FOR SEQ ID NO: 795				
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 				
	(ii) MOLECULE TYPE: DNA				
55	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma cruzi</pre>				
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 795				
60	ACTTGCACGC GATGTGGCAG	20			

_	2) INFO	RMATI	ON FOR SEQ ID NO: 796	
5 10	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 21 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
	(ii)	MOLE	CULE TYPE: DNA	
	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO: 796	
15	GGTCCA	ATGC	CWCAAACWAG A	21
20	2) INFO	RMATI	ON FOR SEQ ID NO: 797	
25	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 27 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
	(ii)	MOLE	CULE TYPE: DNA	
30	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO: 797	
	CATTAA	GAAT	GGYTTATCTG- TSKCTCT	27
35	2) INFO	RMATI	ON FOR SEQ ID NO: 798	
40	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 22 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear	
4.5	(ii)	MOLE	CULE TYPE: DNA	
45			INAL SOURCE: ORGANISM: Cryptosporidium parvum	
50	(xi)	SEQU	ENCE DESCRIPTION: SEQ ID NO: 798	
30	TGGTTG	TCCC	AGCCGATCGT TT	22
55	2) INFO	RMATI	ON FOR SEQ ID NO: 799	
60	(i)	(A) (B)	ENCE CHARACTERISTICS: LENGTH: 21 bases TYPE: Nucleic acid STRANDEDNESS: Double	

		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: Genomic DNA	
5	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 799	
10	ACCTGT	GAAT ACAAGCAATC T	21
. .	2) INFO	RMATION FOR SEQ ID NO: 800	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: single	
20		(D) TOPOLOGY: Linear	
		MOLECULE TYPE: DNA	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 800	
30	GATGAA	AATCT TCAACGAAGT TGAT	24
	2) INFO	ORMATION FOR SEQ ID NO: 801	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)	MOLECULE TYPE: DNA	
4.5	(vi)) ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
45	(xi)) SEQUENCE DESCRIPTION: SEQ ID NO: 801	
	ACAACA	ACCGA GAAGATCCCA	20
50	2) INF	ORMATION FOR SEQ ID NO: 802	
55	(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
60	(ii)) MOLECULE TYPE: DNA	

	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
_	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 802	
5	TTGCCA'	TTTC TGGTTTCGTT	20
10	2) INFO	RMATION FOR SEQ ID NO: 803	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
20	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 803	
25	ACTTCA	GTGG TAACACCAGC	20
30	2) INFO	RMATION FOR SEQ ID NO: 804	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
40	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 804	
45	CCTGGG	ACGG CCTCTGGCAT	20
	2) INFO	RMATION FOR SEQ ID NO: 805	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
55	(ii)	MOLECULE TYPE: DNA	
		ORIGINAL SOURCE:	
60		(A) ORGANISM: Cryptosporidium parvum	

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 805	
	CTCTTG'	TCCA TCTTAGCAGT	20
5			
	2) INFO	RMATION FOR SEQ ID NO: 806	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
15	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 806	
•	AGCATC	PACCA GACTTGATAA G	21
25	2) INFO	DRMATION FOR SEQ ID NO: 807	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum	
4.0	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 807	
40	AAAGTG	GGCTT CAAAGGTTGC	20
45	2) INFO	DRMATION FOR SEQ ID NO: 808	
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
55	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 808	
	GCITTA	AIWRG CATTAGAARA YCCA	24

	2) INFO	RMATI	ON FOR SEQ	ID NO:	809					
5	(i)	(A) (B)	ENCE CHARAC LENGTH: 24 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sir	ld					
10			CULE TYPE: ENCE DESCRI		SEO	חז	NO.	809		
					220	12	1.0.			
15	Terree	TGTW	GCAACTGTTC	CICI						24
	2) INFO	RMATI	ON FOR SEQ	ID NO:	810					
20	(i)	(A) (B)	ENCE CHARAC LENGTH: 24 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sin	.d					
25	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID	NO:	810		
	AGAGMW	ACAG	ATAARSCATT	CTTA						24
30	2) INFO	RMATI	ON FOR SEQ	ID NO:	811					
35	(i)	(A) (B)	ENCE CHARAC LENGTH: 25 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sin	.d					
	(ii)	MOLE	CULE TYPE:	DNA						
40	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID	NO:	811		
	TRAART	AGAA	TTGTGGTCTR	TATCC						25
45										
	2) INFO	RMATI	ON FOR SEQ	ID NO:	812					
			ENCE CHARAC							
50	(1)	(A) (B) (C)	LENGTH: 26	bases eic aci SS: Sin	.d					
55	(ii)	MOLE	CULE TYPE:	DNA						
	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID	NO:	812		
60	GTIACIO	GGIT	CYTYRARRTT	ICCIC	С					26

	2) INFO	RMATION FOR SEQ ID NO: 813	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
10	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 813	
15	AATCYG	CTYGA AATGCAYCAC GA	22
20	•	ORMATION FOR SEQ ID NO: 814 SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases	
25		(A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
30	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 814	
30	GCIGGC	CACGT ACACIGCCTG	20
35	2) INFO	ORMATION FOR SEQ ID NO: 815	
40	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 815	
	TGGTGC	CATYT CKACRGACTT	20
50	2) INFO	ORMATION FOR SEQ ID NO: 816	
55	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
60	(ii)	MOLECULE TYPE: DNA	

.

	(xi)	SEQU	ENCE DESCR	PTION:	SEQ	ID 1	: 07	816		
	GCTACG	ACGA	GATCAAGGG	2						20
5										
	2) INFO	RMATI	ON FOR SEQ	ID NO:	817					
10	(i)	(A) (B)	ENCE CHARAC LENGTH: 20 TYPE: Nucl STRANDEDNI TOPOLOGY:) bases .eic aci ESS: Sir	id					
15	(ii)	MOLE	CULE TYPE:	DNA						
	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID I	: OV	817		
20	TGGAAG	AAGG	CCGAGGAGTT	?						20
	2) INFO	RMATI	ON FOR SEQ	ID NO:	818					
25	(i)	(A) (B)	ENCE CHARAC LENGTH: 20 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sir	ld					
30	(ii)	MOLE	CULE TYPE:	DNA						
	(xi)	SEQU	ENCE DESCRI	PTION:	SEQ	ID 1	: 07	818		
35	AGCCGG	GCTG	GATCTTCTTC	2						20
	2) INFO	RMATI	ON FOR SEQ	ID NO:	819					
40	(i)	(A) (B)	ENCE CHARAG LENGTH: 20 TYPE: Nucl STRANDEDNE TOPOLOGY:	bases eic aci SS: Sin	id					
45	/ / / / \	•								
			CULE TYPE:		050	.		010		
50			ENCE DESCRI		SEQ	1D I	NO:	819		
	TCGAGC	TTCT	GGAGGAAGAG	}						20
55	2) INFO	RMATI	ON FOR SEQ	ID NO:	820					
60	(i)	(A) (B)	ENCE CHARAC LENGTH: 21 TYPE: Nucl	bases eic aci	.d					

		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
5	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma brucei	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 820	
10	GAAGGA	AGGTG TCTGCTTACA C	21
	2) INFO	DRMATION FOR SEQ ID NO: 821	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
20		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma brucei	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 821	
30	GGCGCA	AAACG TCACCACATC A	21
	2) INFO	ORMATION FOR SEQ ID NO: 822	
35	(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
40	(ii)) MOLECULE TYPE: DNA	
	(vi)) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma brucei	
45	(xi)) SEQUENCE DESCRIPTION: SEQ ID NO: 822	
	CGGCG	GATGT CCTTAACAGA A	21
50		·	
		ORMATION FOR SEQ ID NO: 823	
55	(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: DNA	

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 823	
5	GAGCGG	TATG AYGAGATTGT	20
	2) INFO	RMATION FOR SEQ ID NO: 824	
10	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
15	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 824	
20	GGCTTC	TGCG GCACCATGCG	20
0.5	2) INFO	RMATION FOR SEQ ID NO: 825	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single	
30		(D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 825	
J J	ATGAGC.	ARCG SAACCATCGT TCAGTG	26
40	2) INFO	RMATION FOR SEQ ID NO: 826	
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear	
	(ii)	MOLECULE TYPE: DNA	
50	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 826	
	TCGATC	GTGC CGACCATGTA GAACGC	26
55	2) INFO	RMATION FOR SEQ ID NO: 827	
60	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 446 bases (B) TYPE: Nucleic acid	

	(C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium novyi(B) STRAIN: ATCC 19402	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 827	
15 20	CACCAACTTG CTAAATGGGG AGATGCCCAG ATTGTTGTAT ATATAGGCTG TGGAGAACGT GGAAATGAAA TGACAGATGT TCTTAATGAG TTTCCAGAAC TTAAAGATCC TAAGACTGGC AAATCAATAA TGGAAAGAAC AGTTTTAATA GCAAATACTT CTAATATGCC AGTTGCAGCC CGTGAAGCTT GTATATATAC AGGAATCACA ATAGCAGAAT ATTTTAGAGA TATGGGATAT TCAGTAGCAC TTATGGCGGA TTCCACTTCA CGTTGGGCAG AGGCATTAAG AGAAATGTCT GGAAGACTTG AAGAAATGCC TGGTGATGAA GGTTACCCAG CTTATTTAGG ATCAAGACTT GCTGATTTCT ATGAAAGAGC TGGAAAAGTT GTGTGTTTAG GAGACGATGA AAGAGAAGGT GCCATTACTG CAATAGGTGC TGTATC	50 100 150 200 250 300 350 400 446
25	2) INFORMATION FOR SEQ ID NO: 828	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 445 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
35	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium difficile(B) STRAIN: 9689	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 828	
40	CAGCATCAGC TTGCTAAATG GGCAGATGCA GATATAGTTG TATATATAGG CTGTGGCGAG CGTGGAAATG AAATGACAGA TGTTCTTCTT GAATTTCCTG AATTAAAAGA CCCAAGAACA GGCGAGTCAC TTATGCAAAG AACTGTGCTT ATAGCAAATA CATCAGATAT GCCGGTTGCT GCACGTGAAG CTTCTATATA	100 150 200
45	CACTGGTATT ACAATAGCTG AATATTTTAG AGATATGGGA TATAGTGTTG CACTTATGGC AGACTCTACA TCAAGATGGG CTGAGGCTCT TAGAGAGATG AGTGGTCGTT TAGAGGAGAT GCCTGGTGAA GAAGGTTATC CTGCATACTT AGGTTCACGT CTTGCTCAAT TCTATGAGAG AGCAGGAAAG GTAAATTGTC TAGGTATGGA TGAAAGAGAA GGAACACTTA CAGCAATTGG TGCAG	250 300 350 400 445
50		
•	2) INFORMATION FOR SEQ ID NO: 829	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 445 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
60	(ii) MOLECULE TYPE: Genomic DNA	

	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Clostridium septicum</pre>	
	(B) STRAIN: ATCC 12464	
5	· ·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 829	
	ATGCTATAGC TAAATGGGGA GACAGCGAAA TAGTTGTTTA CGTTGGATGT	
	GGAGAACGTG GTAACGAAAT GACAGACGTT CTTAACGAAT TCCCAGAACT	100
10	TATTGACCCA AAAACTGGGG AAAGTTTAAT GAAGAGAACA GTACTTATAG	150
	CTAATACTTC AAACATGCCA GTTGCTGCTA GAGAAGCTTG CATATACACA	200
	GGTATTACAA TAGCTGAATA CTTCAGAGAT ATGGGATACT CAGTATCTAT AATGGCTGAT TCAACTTCAA GATGGGCAGA AGCATTAAGA GAAATGTCAG	250
	GTAGACTTGA AGAAATGCCA GGTGATGAAG GATATCCAGC GTACTTAGGA	300 350
15	TCAAGACTTG CTGATTATTA CGAAAGAGCA GGTAAGGTTG TTTGTCTAGG	400
13	TAAAGATGGT AGAGAAGGTG CTGTAACAGC AATTGGAGCT GTATC	445
20	2) INFORMATION FOR SEQ ID NO: 830	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 444 bases	
~ -	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
25	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Clostridium botulinum	
	(B) STRAIN: 20:3.1	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 830	
35	TCAAATTGCT AAATGGGGAG ATGCAGAAAT CGTTGTTTAC GTTGGATGCG	50
	GAGAACGTGG TAACGAAATG ACAGACGTTG TTAATGAGTT CCCAGAACTT	100
	ATTGACCCTA AGACTGGCGA AAGCTTAATG AAGAGAACAG TTCTTATAGC	150
	TAATACTTCA AACATGCCAG TTGCAGCGAG AGAAGCTTCA ATATATACAG	200
40	GTATCACAAT AGCTGAATAT TTCAGAGATA TGGGATATGC AGTATCAATA	250
	ATGGCTGACT CAACTTCAAG ATGGGCTGAG GCATTAAGAG AAATGTCTGG	300
	TAGACTTGAA GAAATGCCTG GTGATGAAGG ATATCCAGCT TACCTTGGAT	350
	CAAGACTTGC TGATTACTAT GAAAGAGCTG GTAAGGTTGA ATGTTTAGGT	400
45	AATGATGGAA GAATTGGTTC TATAACAGCA ATCGGTGCGG TATC	444
40		
	2) INFORMATION FOR SEQ ID NO: 831	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 456 bases	٠
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Clostridium perfringens	
	(B) STRAIN: ATCC 13124	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 831	
5	TAGTTCAGCA CCAAGTTGCT AAATGGGGAG ATACTGAGAT AGTTGTTTAC GTTGGATGTG GAGAACGTGG TAACGAGATG ACAGACGTTC TTAACGAATT CCCAGAACTT AAAGACCCTA AAACTGGGGA AAGCTTAATG TTCTTATTGC TAATACATCT AACATGCCAG TTGCTGCCAG AGAAGCATCA ATATATACTG GTATAACAAT AGCAGAGTAT TTCAGAGATA TGGGATACTC AGTATCAATC ATGGCTGACT CAACTTCACG TTGGGCAGAG GCTTTAAGAG	50 100 150 200 250 300
10	AGTATCAATC ATGGCTGAA GAAATGCCAG GAGACGAAGG TTACCCAGCA AAATGTCAGG AAGACTTGAA GAAATGCCAG GAGACGAAGG TTACCCAGCA TACTTAGGAT CAAGACTTGC TGATTACTAT GAAAGAGCTG GTAAAGTTGT AGCTTTAGGT AAAGATGGAA GAGAAGGAGC TGTTACAGCT ATCGGAGCAG TATCCC	350 400 450 456
15	2) INFORMATION FOR SEQ ID NO: 832	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 444 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE:(A) ORGANISM: Clostridium tetani(B) STRAIN: ATCC 19406	
2.0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 832	
30	CCAACTTGCA AAATGGGCTG ATGCTCAAAT AGTTGTGTAC ATAGGATGTG GAGAACGTGG AAATGAAATG ACAGACGTTT TAAATGAGTT CCCAGAATTA AAGGATCCTA AAACCGGGGA ATCTTTAATG AAAAGAACTG TGTTAATAGC	50 100 150
35	AAGGATCCTA AAACCGGGGA TTGCAGCTAG AGAAGCATCT ATATATACTG AAATACATCT AATATGCCTG TTGCAGCTAG AGAAGCATCT ATATATACTG GTATAACAAT AGGGGAATAT TTTAGAGATA TGGGATATTC AATAGCACTA ATGGCAGATT CGACTTCTAG ATGGGCAGAG GCTCTAAGAG AAATGTCTGG AAGACTAGAG GAGATGCCAG GTGAAGAAGG TTATCCAGCT TATTTAGGAT CTAGATTAGC AGAGTTCTAT GAAAGAGCAG GTAATGTTAT ATGTTTAGGT CAGGATGGAA GAGAAGGAGC ATTAACAGCT ATAGGAGCAG TTTC	200 250 300 350 400 444
40	CAGGATGGAA GAGAAGGAGC ATTACCAGCT ATACCAGCTC 1110	
	2) INFORMATION FOR SEQ ID NO: 833	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1786 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes</pre>	
55 ·	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 833	
60	TGAACCAAGG AAAAATAATA ACCGTTTCGG GACCTCTTGT TGTGGCTTCT GGGATGCAAG AAGCTAATAT TCAAGATATT TGTCGTGTGG GACATCTTGG CTTAGTCGGA GAAATTATTG AAATGCGTCG CGATCAAGCG TCTATTCAGG	50 100 150

	TTTATGAGGA	AACATCAGGG	ATCGGTCCAG	GAGAACCAGT	AGTGACTACT	200
		TGTCGGTCGA				250
		CAGCGACCGC				300
		CCGTGGTGTG				350
5		TTCCCAAGCT				400
		ACTGTGCAAG				450
		AGTTTCAGGG				500
	ACAGTAACAG	ATACAGTTTA	TGAAATTAAG	CAGGAAGACG	GTTCCATTTA	550
	CCAAGGTAGC	CTCATGCAGA	CTTGGCCAGT	TCGTCAAAGT	CGCCCTGTTG	600
10	CTCAAAAGCT	TATCCCAGTC	GAACCTTTGG	TTACAGGTCA	ACGGGTTATT	650
	GACACCTTTT	TCCCTGTTAC	AAAAGGTGGT	GCCGCTGCCG	TTCCTGGACC	700
	ATTTGGGGCA	GGAAAAACAG	TTGTGCAGCA	TCAAATAGCT	AAATTTGCCA	750
		TGTTATTTAT				800
		TGAATGAGTT				850
15		GAGCGCACGG				900
		TGAAGCGTCG				950
		TGGGCTATTC				1000
		GCTCTGCGCG				1050
		CTACCCGGCT				1100
20		GTCGTGTTCG				1150
		ATCGGCGCGG				1200
		AAACACCCTT				1250
		CGCAACGGCG				1300
		TATCAAGATG				1350
25		GTCCAACAAG				1400
2.5		TAGAAGAAAT				1450
		CGTTTGACCA				1500
		AAATGCCTTT				1550
		CCATGCTAAC				1600
30		TCTTTGGGAG				1650
30		CGATCGCATC				1700
1		TTAAAGGGCT				1750
		AAGGGAGGAA			NONTICACCA	1786
	CGITITAGCA	AAGGAGGAA	TITADATOAG	COLICI		1780
35						
J J						•
	2) INFORMAT	ON FOR SEQ	ID NO: 834			
	_,					
	(i) SEQU	JENCE CHARAC	TERISTICS:			
40	(A)	LENGTH: 49				
	(B)	TYPE: Nucl				
	(C)		SS: Double			
	(D)	TOPOLOGY:				
	(2)	10102001				
45	(ii) MOLE	CULE TYPE:	Genomic DNA	1		
	(22, 3322			-		
	(vi) ORIO	SINAL SOURCE	B:			
	(A)	ORGANISM:	Babesia boy	ris		
		STRAIN: Su				
50	(1)	DIIMIN. DC	alez-J			
30	(xi) SEOI	JENCE DESCRI	PTION SEO	TD NO. 834		
	/WT/ DEG(LATOUR PROCES		TO 140. 034		
	ጥልጥርጥርል ርርጥ	ልልር ጥጥጥጥ ርር	сссссстта сссссстта	ጥልጥልጥሮልሮጥሮ	CAGGCCCTGG	50
		TAATACTGAC				100
55					TGAAGACCAA	
					TTGGTGGCCA	
		CATGCCAGTG				250
		GTGAATACTT				300
		ACCAGTCGTT				300

GGCGGATTCC ACCAGTCGTT GGGCTGAGGC TTTGCGTGAG ATATCAGGTC

60 GTTTAGCTGA GATGCCTGCT GATTCAGGTT ATCCCGCCTA CCTTGCTTCT

350

	ACCOMMUNICAL CALLACTER CALCALLACT REPORT CALLACTER	150 199
5	2) INFORMATION FOR SEQ ID NO: 835	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 464 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
13	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Cryptosporidium parvum</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 835	
20	GGTTGTGGAG AAAGAGGAAA IGAAAIGGCA GAAGIICIIII GICAAAGAA	50 100 150 200
25	CTTGTTTAGT AGCTAATACA TCAAATATGC CTGTCGCTGC TAGAGAAGCT TCCATCTACA CTGGTATTAC ACTTTCTGAA TACTTTAGAG ATATGGGATG TAATGTTTCT ATGATGGCAG ATTCAACTTC TCGTTGGGCT GAAGCTCTTA	250 300
	TAATGTTTCT ATGATGGCAG ATTCAACTIC TCGTTGCGCT GATTACCCA GAGAAATTTC TGGTAGATTA GCTGAAATGC CTGCAGATTC GGGTTACCCA GCATATTTAG GCGCCAGACT TGCTTCATTC TATGAAAGAT CAGGAAGAGT	350 400
30	TAAATGTATG GGTTCCCCAG ATAGAGAAGG TACAGTAACA ATTGTTGGTG CAGTTTCTCC ACCT	450 464
30	CAGIII-01-00 II-01	
35	2) INFORMATION FOR SEQ ID NO: 836	
,,,	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 446 bases (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi) ORIGINAL SOURCE:(A) ORGANISM: Leishmania donovani subsp. infantum(B) STRAIN: MOU .	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 836	
50	GCCCTCTCCA AGTACTCCAA CTCCGATTGC GTCATCTATG TCGGCTGCGG CGAGCGCGGT AATGAGATGG CCGAGGTGCT CATGGAGTTC CCGACCCTGA CGACCGTGAT CGATGGCCGC GAGGAGTCGA TCATGAAGCG CACCTGCCTC	50 100 150 200
	GTGGCGAACA CCTCGAACAT GCCAGTCGCA GCCCGTGAGG CCTCTATTTA CACCGGCATC ACCCTGGCCG AGTACTACCG TGATATGGGC AAGCATATCG	250 300
55	CCATGATGGC TGACTCGACG TCTCGCTGGG CCGAGGCGCT TCGTGAGATT TCGGGTCGTC TGGCGGAGAT GCCGGCGGAT GGTGGCTACC CCGCCTACCT CAGCGCTCGT CTCGCCTCCT TCTACGAGCG CGCCGGCCTC GTCACCTGCA TCGGCGGGCC GAAGCGCCAG GGCTCCGTCA CGATCGTCGG TGCCGT	350 400 446

	2) INFORM	MATION FOR SEQ ID NO: 837	
5	() (1 ()	EQUENCE CHARACTERISTICS: A) LENGTH: 456 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Double D) TOPOLOGY: Linear	
10	(ii) M	OLECULE TYPE: Genomic DNA	
15	(1	RIGINAL SOURCE: A) ORGANISM: Leishmania major B) STRAIN: ATCC 50122 EQUENCE DESCRIPTION: SEQ ID NO: 837	
20	TTAGTCAGGGGCTGCGGCAACTCTGCCTCCTGCCTCCTGCTTA	GGC CCTCTCCAAG TACTCCAACT CCGACTGCGT CATCTATGTC GCG AGCGCGGTAA TGAGATGGCT GAGGTGCTCA TGGATTTCCC ACG ACCGTGATCG ATGGTCGCGA GGAGTCCATC ATGAAGCGCA GGT GGCAAACACT TCGAACATGC CAGTCGCAGC CCGCGAGGCC ACA CCGGCATCAC CCTGGCCGAG TACTACCGTG ATATGGGCAA	50 100 150 200 250
25	GTGAGATT'	CC ATGATGGCCG ACTCGACATC TCGCTGGGCC GAGGCGCTTC TC CGGTCGTCTG GCGGAGATGC CAGCCGATGG TGGCTACCCT TCA GCGCTCGTCT CGCCTCCTTC TACGAGCGCG CCGGCCTCGT TC GGCGGGCCGA AGCGCCAGGG CTCCGTCACG ATCGTCGGTG	300 350 400 450 456
30	2) INFORM	NATION FOR SEQ ID NO: 838	
35	(1 (1 (0	EQUENCE CHARACTERISTICS: A) LENGTH: 450 bases B) TYPE: Nucleic acid C) STRANDEDNESS: Double D) TOPOLOGY: Linear	
40	(ii) M	OLECULE TYPE: Genomic DNA	
	, ,	RIGINAL SOURCE:	
	•	A) ORGANISM: <i>Leishmania tarentolae</i> B) STRAIN: MOU-2	
45	(I	•	
4 5	(xi) SI AGGCCCTCT GGCGAGCGG GACGACTGT TCGTGGCCZ TACACTGGT CGCCATGAT	B) STRAIN: MOU-2	50 100 150 200 250 300 350

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 437 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma brucei (B) STRAIN: EATRO 795</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 839	
15	GCACTCTCGA AGTACTCGAA CAGTGACGCT GTTATTTACG TGGGTTGTGG TGAGCGTGGC AATGAGATGG CGGAGGTGCT CATGGACTTT CCCACCCTCA CCACCATTAT TGATGGACGT GAGGAGTCTA TCATGAAGCG CACATGCCTG	50 100 150
20	GTGGCAAATA CTTCCAATAT GCCTGTTGCT GCTCGTGAGG CATCTATTTA CACTGGTATC ACCTTAGCTG AGTATTATCG GGATATGGGA AAACACATCG CCATGATGGC CGATTCAACC TCCCGCTGGG CTGAGGCTTT GCGTGAGATT TCCGGTCGTC TTGCTGAAAT GCCTGCAGAT GGAGGTTATC CCGCGTACCT CAGCGCCCCGT TTGGCCTCCT TCTACGAGCG TGCTGGCCGT GTGACATGCA TCGGTGGGCC GAAGCGTGAA GGGTCTGTAA CAATTGT	200 250 300 350 400 437
25		
	2) INFORMATION FOR SEQ ID NO: 840	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1052 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
35	(ii) MOLECULE TYPE: Genomic DNA	
40	(vi) ORIGINAL SOURCE:(A) ORGANISM: Trypanosoma cruzi(B) STRAIN: MM3	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 840	
45	TGAAGGCTGA GCGCGAGCGC GGCATCACGA TCGACATCGC GCTCTGGAAG TTCGAGTCGC CCAAGTCTGT GTTCACGATC ATCGACGCCC CCGGCCACCG CGACTTCATC AAGAACATGA TCACGGGCAC GTCTCAGGCG GACGCCGCCG TCCTTGTCAT TGCGTCATCG CAGGGTGAGT TTGAGGCGGG CATCTCGAAG GACGGCCAGA CACGCGAGCA CGCGCTGCTC GCCTTCACGC TCGGCGTGAA	50 100 150 200 250
50	GCAGATGGTT GTGTGCTGCA ACAAGATGGA CGACAAGTCG GTGAACTTCG CCCAGGAGCG CTACGATGAG ATTGTGAAGG AGGTGTCGGC GTACCTGAAG AAGGTTGGGT ACAACGTGGA GAAGGTGCGC TTCATCCCCA TCTCCGGCTG GCAGGGCGAC AACATGATTG ACAAGTCGGA AAATATGCCG TGGTACAAGG GCCCCACGCT GCTGGAGGCA CTCGACATGC TGGAGCCCCC GGTGCGCCCC AGCGACAAGC CGCTGCGCCT GCCGCTGCAG GACGTGTACA AGATCGGCGG	300 350 400 450 500
55	TATCGGCACC GTGCCGGTCG GTCGCGTGGA GACGGGCACG ATGAAGCCCG GCGACGTGGT GACGTTTGCG CCCGCCAACG TGACGACGGA GGTGAAGTCG ATTGAGATGC ACCACGAGCA GCTGGCCGAG GCCACGCCCG GCGACAACGT CGGCTTCAAC GTGAAGAACG TGTCCGTGAA GGACATCCGC CGTGGCAACG TGTGCGGCAA CTCGAAGAAC GACCCCCCAA AGGAGGCGGC CGACTTCACG	600 650 700 750 800
60	GCGCAGGTGA TCATCCTGAA CCACCCCGGC CAGATCGGCA ACGGCTATGC GCCGGTGCTC GACTGCCACA CCTGCCACAT CGCGTGCAAG TTCGCCGAGA	850 900

5	TCGAGTCCAA GATCGACCGC CGCTCCGGCA AGGAGCTTGA GAAGAACCCC AAGTCGATCA AGTCCGGTGA CGCCGCCATG GTGCGCATGG TGCCGCAGAA GCCCATGTGC GTGGAGGTGT TCAACGACTA CGCTCCTCTT GGCCGCTTTG CC	950 1000 1050 1052
	2) INFORMATION FOR SEQ ID NO: 841	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1061 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:(A) ORGANISM: Trypanosoma cruzi(B) STRAIN: CGL-1	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 841	
25	TGAAGGCTGA GCGCGAGCGC GGCATCACGA TCGACATCGC GCTCTGGAAG TTCGAGTCGC CCAAGTCTGT GTTCACGATC ATCGACGCCC CCGGCCACCG CGACTTCATC AAGAACATGA TCACGGGCAC GTCTCAGGCG GATGCCGCCG TCCTTGTCAT TGCGTCATCG CAGGGTGAGT TTGAGGCGGG CATCTCGAAG	50 100 150 200
30	GACGGCCAGA CACGCGAGCA CGCGCTGCTC GCCTTCACGC TCGGCGTGAA GCAGATGGTT GTGTGCTGCA ACAAGATGGA CGACAAGTCG GTGAACTTTG CCCAGGAGCG CTACGATGAG ATTGTGAAGG AGGTGTCGGC GTACCTGAAG AAGGTTGGGT ACAACGTGGA GAAGGTGCGC TTCATCCCCA TCTCCGGCTG GCAGGGCGAC AACATGATTG ACAAGTCGGA AAATATGCCG TGGTACAAGG	250 300 350 400 450
35	GCCCCACGCT GCTGGAGGCA CTCGACATGC TGGAGCCCCC GGTGCGCCCC AGCGACAAGC CGCTGCGCCT GCCGCTGCAG GATGTGTACA AGATCGGCGG TATCGGCACC GTGCCGGTCG GTCGCGTGGA GACGGCACG ATGAAGCCCG GCGACGTGGT GACGTTTGCG CCCGCCAACG TGACGACGGA GGTGAAGTCG ATTGAGATGC ACCACGAGCA GCTGGCCGAG GCCACGCCCG GCGACAACGT	500 550 600 650 700
40	CGGCTTCAAC GTGAAGAACG TGTCCGTGAA GGACATCCGC CGTGGCAACG TGTGCGGCAA CTCGAAGAAC GATCCCCCAA AGGAGGCGGC CGACTTCACG GCGCAGGTGA TCATCCTGAA CCACCCCGGC CAGATCGGCA ACGGCTATGC GCCGGTGCTT GACTGCCACA CCTGCCACAT CGCGTGCAAG TTCGCCGAGA TCGAGTCCAA GATCGACCGC CGCTCCGGCA AGGAGCTTGA GAAGAACCCC AAGTCGATCA AGTCCGGTGA CGCCGCCATG GTGCGCATGG TGCCGCAGAA	750 800 850 900 950 1000
45	GCCATGTGC GTGGAGGTGT TCAACGACTA CGCTCCTCTT GGCCGCTTTG CCGTGCGTGA C	1050 1061
50	2) INFORMATION FOR SEQ ID NO: 842	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1062 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double	
55	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma cruzi</pre>	

(B) STRAIN: PCU-1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 842

_	GCTGAAGGCT	GAGCGCGAGC	GCGGCATCAC	GATCGACATC	GCGCTCTGGA	50
5	AGTTCGAGTC	GCCCAAGTCT	GTGTTCACGA	TCATCGACGC	CCCCGGCCAC	100
	CGCGACTTCA	TCAAGAACAT	GATCACGGGC	ACGTCTCAGG	CGGACGCCGC	150
	•••	ATTGCGTCAT	CGCAGGGTGA	GTTTGAGGCG	GGCATCTCGA	200
	CGTCCTTGTC AGGACGGCCA	GACACGCGAG	CACGCGCTGC	TCGCCTTCAC	GCTCGGCGTG	250
1.0	AAGCAGATGG	TTGTGTGCTG	CAACAAGATG	GACGACAAGT	CGGTGAACTT	300
10	CGCCCAGGAG	CGCTACGATG	AGATTGTGAA	GGAGGTGTCG	GCGTACCTGA	350
	AGAAGGTTGG	GTACAACGTG	GAGAAGGTGC	GCTTCATCCC	CATCTCCGGC	400
		ACAACATGAT	TGACAAGTCG	GAAAATATGC	CGTGGTACAA	450
	TGGCAGGGCG GGGCCCCACG	CTGCTGGAGG	CACTCGACAT	GCTGGAGCCC	CCGGTGCGCC	500
- m	CCAGCGACAA	GCCGCTGCGC	CTGCCGCTGC	AGGACGTGTA	CAAGATCGGC	550
15	GGTATCGGCA	CCGTGCCGGT	CGGTCGCGTG	GAGACGGGCA	CGATGAAGCC	600
	CGGCGACGTG	GTGACGTTTG	CGCCCGCCAA	CGTGACGACG	GAGGTGAAGT	650
	CGGCGACGIG	GCACCACGAG	CAGCTGGCCG	AGGCCACGCC	CGGCGACAAC	700
	GTCGGCTTCA	ACGTGAAGAA	CGTGTCCGTG	AAGGACATCC	GCCGTGGCAA	750
20	CGTGTGCGGC	AACTCGAAGA	ACGACCCCC	AAAGGAGGCG	GCCGACTTCA	800
20	CGGCGCAGGT	GATCATCCTG	AACCACCCCG	GCCAGATCGG	CAACGGCTAT	850
	GCGCCGGTGC		CACCTGCCAC		AGTTCGCCGA	900
	GATCGAGTCC				GAGAAGAACC	950
	CCAAGTCGAT	CAAGTCCGGT	GACGCCGCCA		GGTGCCGCAG	1000
2.5	AAGCCCATGT		GTTCAACGAC		TTGGCCGCTT	1050
25	TGCCGTGCGT					1062
	1900919091	U-1				

30 2) INFORMATION FOR SEQ ID NO: 843

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1057 bases
 - (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Babesia bovis
- (B) STRAIN: Suarez-3
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 843

45	TACATTGACA	GCTGCATTGA	CCAAGGTCTG	TTCGATGGGT	GGTCATGGCG	50
	AGTACACTCC	TTATGAAGCA	ATTGACCGTG	CTCCTGAGGA	GCGTAAACGT	100
	GGTATTACTA	TAAATTCGAC	ACATGTTGAA	TATGAGACTA	AGAACCGTCA	150
	TTACGGTCAC	GTGGACTGTC	CAGGTCACTC	TGATTATGTG	AAGAACATGA	200
50	TATCTGGCGC	TGCTCAGATG	GATGGTGCCA	TATTGGTTGT	TTCTTGTGTT	250
50	GACGGTCCCA	TGCCTCAGAC	TAAGGAGCAC	GTGTTGCTTG	CTAAGCAGAT	300
	TGGTGTACCT	CGTTTAGTTG	TGTTTTTGAA	CAAGCTTGAC	ATGTTAGAGG	350
	ACTCTGAGCT	ATTGGAGTTG	GTGGAGTTAG	AGGTTCGTGA	GTTATTGAGT	400
	GAGTTTGGTT	ACGACGGTGA	CAACACGCCT	ATCGTTCGTG	GCAGTGCTAT	450
55	AAAGGCATTG	AACAGTAGTT	CCGAGGCTGA	CATTAAGCCA	ATTCAGGATT	500
33	TATTGGATGC	GTGTGATGCC	TTTTTACTGA	CTCCAGAACG	TAAGGATGAC	550
	ATGCCGCTCT	TGGTTGCTAT	TGACGATGTT	CTTGCCATTC	CTGGCAAGGG	600
	TACTGTTGTA	ACCGGTAGGA	TAGAGCAGGG	CAAGATTCGT	TGTGGTGACC	650
	CTATTGAGGT	TTGCGCCGGT	CCGAAGTCCG	GCAAGAAGAC	TGTGTGTGTT	700
60	GGTCTTRARA	TGTTCCGCAA	GAGTCTCAGT	RAGGGTATTG	CTGGTGACCA	750

5	GATTGGTGTT TTGCTCAAGG GTGTGAAGCG CGACRAGGTA GAGCGCGGGT TTGTATTGAT TCAACCCGGA AGTTACAAAT GTCACGGTGA ATTTGATGCT GACTTGTACG TGTTGACTAC GRAGGAAGGT GGGCGCAAGC ATCCGTTTGT GTCTAACTAC CGTCCTCAGG CGTTTATACG TACTGGAGAC GTTTGCTGCT CAGTTCATTT GGATRAGGGT GTTGAGATGG CAGCTCCTGG TGACAACGTG CGTTGCAAGA TCAAGTTACT TTATCCCATG CCTGTCCATG AAGGTTTACG ATTTGCG	800 850 900 950 1000 1050
10	2) INFORMATION FOR SEQ ID NO: 844	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 943 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Leishmania aethiopica (B) STRAIN: ATCC 50119 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 844	
30	CGGTGGCATC ATTGTGGTGG CGGCCACCGA CGGCGTCATG CCGCAGACAC GCGAGCACCT CCTGATCTGC TCGCAGATTG GGCTTCCGGC GCTCGTAGGG TTCATCAACA AAGTGGATAT GACGGACGAG GACACGTGCG ACCTGGTGGA CATGGAGGTG CGCGAGCAGC TGGAGAAATA CAAGTTTCCG GCGGAGGAGA CACCAATCGT GCGCGGCTCG GCCCTCAAGG CCGTCGAGGG CGACGCGAAG TACGAGGAGA ACATCCTCGA ACTGGTGCGG AAGTGCGACG AGTGGATCCC CGACCCGCCG CGCAACACAG ACAAGCCTTT CCTTATGGCC ATCGAGCACG TTTACGAGAT CGGCAAGGAC AAGAAGAGCG TCATCGTGAC CGGCCGCGTC	50 100 150 200 250 300 350 400
35	GATCAGGGC TGCTGAAGCT CAACACAGAC GCCGAGCTGG CCGGCTTCAG CGCCAAGAAG TCGACGGTGA GGGTGACGGG CATCGAGATG TACCACAAGA CGCTGAGCGA GTGCATGCCC GGTGACTCCG TCGGCGTCAG CATTGTCGGC ACCGGCGACA CAACCAGTCT GTCCAAGGAC AACGTGGAAC GCGCATGGT AATGGCGGCG ACGGGTAGCA CGAACCTGTA CAACAAGGTG AAGGCGCAGG	450 500 550 600 650
40	TGTACGTGCT GACGAAGGAT GAGGGCGGCC GCCACACCGG CTTCAGCCCC CACTACCGCC CGCAGCTCTT CTTCCATTGC GCTGACGTGA CAGCGGACAT GAGCTTCCCG GAGGCGGAGA AGCACCGGGA GGAGCTGAAC AAGAAATTCG GCCGCGGCCC CGAGGAGGAC AAGAAGAAAG AGGCGGAGAT GAAGGAGTTC GAGAGCAAGC TCGTCTGCAT GCCGGGCGAT AACCGCGAGC TGATCCTGAC	700 750 800 850 900
45	GCTCGCGTAC CCGATGCCCA TTGAAAAGGG CCTGAAGTTC ACC	943
50	2) INFORMATION FOR SEQ ID NO: 845 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 939 bases	
55	(A) BENGIN: 939 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Leishmania amazonensis

(B) STRAIN: ATCC 50131

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 845

5	CGGTGGCATC	ATTGTGGTGG	CGGCCACCGA	CGGCGTCATG	CCGCAGACAC	50
Þ	GCGAGCATCT	CTTGATCTGC	TCGCAGATTG	GGCTTCCGGC	GCTCGTAGGG	100
	TTCATCAACA	AAGTGGACAT	GACGGACGAG	GACACGTGCG	ACCTGGTGGA	150
		CGTGAGCAGC	TGGAGAAATA	CAAGTTTCCG	GCGGAAGAGA	200
	CATGGAGGTG	GCGCGGCTCG	GCCCTCAAAG	CCGTCGAGGG	CGACGCGAAG	250
	CGCCCATCGT	ACATCCTCGA	ACTGGTGCGG	AAGTGCGACG	AATGGATCCC	300
10	TACGAGGAGA	CGCAACACAG	ACAAGCCTTT	CCTTATGGCC	ATTGAGCACG	350
	CGACCCGCCG		AAGAAGAGCG	TCATCGTGAC	CGGCCGCGTC	400
	TTTACGAGAT	CGGCAAGGAC	CAACACAGAC	GCCGAGCTGG	CCGGCTTCAG	450
	GATCAGGGCG	TGCTGAAGCT		CATCGAGATG	TACCACAAGA	500
	CGCCAAGAAG	TCGACGGTGA	GGGTGACGGG	TCGGCGTCAG	CATTGTCGGC	550
15	CGCTGAGTGA	GTGCATGCCC	GGTGACTCCG		GCGGCATGGT	600
	ACCGGCGACA	CGATCAGTCT	CTCCAAGGAC	AACGTTGAAC		650
	AATGGCGGCA	ACGGGTAGCA	CGAACCTGTA	CAACAAGGTG	AAGGCGCAGG	
	TGTACGTGCT	GACGAAGGAT	GAGGGCGGCC	GCCACACTGG	CTTCAGCCCC	700
	CACTACCGCC	CGCAGCTCTT	CTTCCATTGT	GCTGACGTGA	CGGCGGACAT	750
20	GAGCTTCCCG	GAGGCGGAGA	AGCACCGCGA	GGAGCTCAAC	AAGAAATTCG	800
20	GCCGCGGCCC	CGAGGAGGAC	AAGCAGAAGG	AGGCGGAGAT	GAAAGAGTTC	850
	GAGAGCAAGC	TCGTCTGCAT	GCCGGGCGAC	AACCGCGAGC	TGATCCTGAC	900
	GCTGGCGTAC	CCGATGCCCA	TTGACAAGGG	TCTGAAGTT		939
	GCIGGCGIMC					

25

30

2) INFORMATION FOR SEQ ID NO: 846

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 945 bases
- (B)
 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 35
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania donovani subsp. donovani
 - (B) STRAIN: ATCC 50212
- 40
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 846

	CATTGTGGTG	GCGGCCACCG	ACGGCGTCAT	GCCGCAGACA	CGCGAGCACC	50
	TCCTGATCTG	CTCGCAGATC	GGGCTTCCGG	CGCTCGTAGG	GTTCATCAAC	100
45	AAGGTGGACA	TGACGGACGA	GGACACGTGC	GACCTGGTGG	ACATGGAGCT	150
40	GCGCGAGCAG	CTGGAGAAAT	ACAAGTTTCC	GGCGGAGGAG	ACGCCAATCG	200
	TGCGCGGCTC	AGCCCTCAAA	GCCGTCGAGG	GCGATGCGAA	GTACGAGGAG	250
	AACATTCTCG	AACTGGTGCG	GAAGTGTGAC	GAGTGGATCC	CTGACCCGCC	300
	GCGCAACACA	GACAAGCCTT	TCCTTATGGC	CATCGAGCAC	GTTTACGAGA	350
50	TCGGCAAGGA	CAAGAAGAGC	GTTGTCGTGA	CCGGCCGCGT	CGATCAGGGC	400
50	ATTCTGAAGC	TCAACACAGA	CGCCGAGCTG	GCCGGCTTCA	GCTCCAAGAA	450
	GTCGACGGTG	AGGGTGACGG	GCATCGAGAT	GTACCACAAG	ACGCTGAGCG	500
	AGTGCATGCC	TGGTGACTCC	GTCGGCGTCA	GCATTGTCGG	GACCGGCGAC	550
	ACGACCAGTC	TATCCAAGGG	CAACGTGGAA	CGCGGCATGG	TGATGGCGGC	600
55	GACGGGTAGC	ACGAACCTGT	ACAACAAGGT	GAAGGCGCAG	GTGTACGTGC	650
	TGACGAAGGA	TGAGGGCGGC	CGCCACACTG	GCTTTAGTCC	TCACTACCGC	700
	CCGCAGCTCT	TCTTCCATTG	TGCTGACGTG	ACGGCGGACA	TGAGCTTCCC	750
	GGAGGCGGAG	AAGCACCGCG	AAGAGCTCAA	CAAGAAATTC	GGCCGCGGCC	800
	CCGAGGAGGA	CAAGAAGAAA	GAGGCAGCGA	TGAAGGAGTT	CGAGAGCAAG	850
60	CTCGTCTGCA	TGCCGGGCGA	TAACCGCGAG	CTGATCCTGA	CGCTGGCGTA	900

	CCCGATGCCC ATTGAAAAGG GTCTGAAGT	CACCATCCGT GAGGG	945
5	2) INFORMATION FOR SEQ ID NO: 84	7	
	(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 939 bases		
	(B) TYPE: Nucleic acid		
10	(C) STRANDEDNESS: Double	:	
	(D) TOPOLOGY: Linear		
	(ii) MOLECULE TYPE: Genomic DI	A	
15	(vi) ORIGINAL SOURCE:		
	(A) ORGANISM: Leishmania	donovani subsp. infantum	
	(B) STRAIN: MOU		
20	(xi) SEQUENCE DESCRIPTION: SEC) ID NO: 847	
20	GGCATCATTG TGGTGGCGGC CACCGACGG	GTCATGCCGC AGACACGCGA	50
	GCACCTCCTG ATCTGCTCGC AGATCGGGC	TCCGGCGCTC GTAGGGTTCA	100
	TCAACAAGGT GGACATGACG GACGAGGAC	A CGTGCGACCT GGTGGACATG	150
	GAGCTGCGCG AGCAGCTGGA GAAATACAA	TTTCCGGCGG AGGAGACGCC	200
25	AATCGTGCGC GGCTCAGCCC TCAAAGCCG	CGAGGGCGAT GCGAAGTACG	250 300
	AGGAGAACAT TCTCGAACTG GTGCGGAAG CCGCCGCGCA ACACAGACAA GCCTTTCCT	P ATCCCCATCC ACCACCTTA	350
	CGAGATCGGC AAGGACAAGA AGAGCGTTG	CGTGACCGGC CGCGTCGATC	400
	AGGGCGTTCT GAAGCTCAAC ACAGACGCC	AGCTGGCCGG CTTCAGCTCC	450
30	AAGAAGTCGA CGGTGAGGGT GACGGGCAT	C GAGATGTACC ACAAGACGCT	500
	GAGCGAGTGC ATGCCTGGTG ACTCCGTCG	G CGTCAGCATT GTCGGCACCG	550
	GCGACACGAC CAGTCTATCC AAGGGCAAC	G TGGAACGCGG CATGGTGATG	600
	GCGGCGACGG GTAGCACGAA CCTGTACAA		650
	CGTGCTGACG AAGGATGAGG GCGGCCGCC		700
35	ACCGCCGCA GCTCTTCTTC CATTGTGCT TTCCCGGAGG CGGAGAAGCA CCGCGAAGA		750 800
	CGGCCCGAG GAGGACAAGA AGAAAGAGG		850
	GCAAGCTCGT CTGCATGCCG GGCGATAAC		900
	GCGTACCCGA TGCCCATTGA AAAGGGTCT		939
40			
	2) INFORMATION FOR SEQ ID NO: 84	3	
45	(i) SEQUENCE CHARACTERISTICS	:	
	(A) LENGTH: 933 bases		
	(B) TYPE: Nucleic acid		
	(C) STRANDEDNESS: Double	•	
	(D) TOPOLOGY: Linear		

- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Leishmania enriettii
- 55 (B) STRAIN: ATCC 50120
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 848

	CACCGACGGC	GTCATGCCGC	AGACACGGGA	GCACCTGCTC	ATCTGCTCGC	50
60	AGATCGGGCT	GCCGGCGCTT	GTAGGGTTCA	TCAATAAAGT	TGACATGACG	100

5 10	GACGAGGATA CGTGCGACCT CGTGGAGAGAGTACAAG TTTCCGGCCG AGGAGAGATCAAGGCCT CGAGGGGGAT GCGCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	ACGCC CATCGTACGT GGCTCGGCCC ATACG AGGGGAGTAT TCTCGAGCTG CCGAC CCGCCGCGCA ACACCGAAAA ETTTA CGAGCTCGGC AAAGACAAGA CGATC AAGGTGTGCT GAAGCTCAAC CGCC AAGAAGGCGA CAGTCAAAGT ACACT CAATGAGTGC ATGCCCGGCG TACCG GTGACACGAC CAGCTTATCC TAATG GCGGCAACGG GTAGCACGAA ETTTA CGTGCTGACA AAGGAGGAGG CCACT ACCGCCCGCA GCTCTTCTTC TGAGC TTCCCGGAGG CGGAGAAGTA EGCCG TGGCCCTGAG GAGGACAAGA CGAAA GCAAACTTGT CTGCATGCCA	150 200 250 300 350 400 450 500 550 650 700 750 850 900 933
20	2) INFORMATION FOR SEQ ID NO		
25	(i) SEQUENCE CHARACTERIST (A) LENGTH: 943 base (B) TYPE: Nucleic ac (C) STRANDEDNESS: Do (D) TOPOLOGY: Linear	TICS: es cid ouble	
30	<pre>(ii) MOLECULE TYPE: Genom (vi) ORIGINAL SOURCE:</pre>	ic DNA mania gerbilli	
	• •	121	
35	• •		
35 40	(B) STRAIN: ATCC 50. (xi) SEQUENCE DESCRIPTION CGGTGGCATC ATTGTGGTGG CGGCC GCGAGCACCT CCTGATCTGC TCGCA TTCATCAACA AAGTGGACAT GACGG CATGGAGGTG CGCGAGCAGC TGGAG CACCAATCGT GCGCGGCTCG GCCCT TACGAGGAGA ACATCCTCGA ACTGG	: SEQ ID NO: 849 ACCGA CGGCGTCATG CCGCAGACAC GATTG GGCTTCCGGC GCTCGTAGGG ACGAG GACACGTGCG ACCTGGTGGA AAATA CAAGTTTCCG GCGGAGGAGA CAAGG CCGTCGAGGG CGACGCGAAG TGCGG AAGTGCGACG AGTGGATCCC	50 100 150 200 250 300
	(B) STRAIN: ATCC 50. (xi) SEQUENCE DESCRIPTION CGGTGGCATC ATTGTGGTGG CGGCC GCGAGCACCT CCTGATCTGC TCGCA TTCATCAACA AAGTGGACAT GACGG CATGGAGGTG CGCGAGCAGC TGGAG CACCAATCGT GCGCGGCTCG GCCCT TACGAGGAGA ACATCCTCGA ACTGG CGACCCGCCG CGCAACACAG ACAAG TTTACGAGAT CGGCAAGGAC AAGAA GATCAGGGCG TGCTGAAGCT CAACA CGCCAAGAAG TCGACGGTGA GGGTG CGCTGAGCAG GTGCATGCCC GGTGA ACCGGCGACACACAC GGTGA	: SEQ ID NO: 849 ACCGA CGGCGTCATG CCGCAGACAC GATTG GGCTTCCGGC GCTCGTAGGG ACGAG GACACGTGCG ACCTGGTGGA AAATA CAAGTTTCCG GCGGAGGAGA CAAGG CCGTCGAGGG CGACGCGAAG TGCGG AAGTGCGACG AGTGGATCCC CCTTT CCTTATGGCC ATCGAGCACG GAGCG TCATCGTGAC CGGCCGCGTC CGGAC GCCGAGCTGG CCGGCTTCAG ACGGG CATTGAGATG TACCACAAGA CTCCG TCGGCGTCAG CATTGTCGGC AGGAC AACGTGGAAC GCGGCATGGT	100 150 200 250 300 350 400 450 500 550 600
40	(B) STRAIN: ATCC 50. (xi) SEQUENCE DESCRIPTION CGGTGGCATC ATTGTGGTGG CGGCC GCGAGCACCT CCTGATCTGC TCGCA TTCATCAACA AAGTGGACAT GACGG CATGGAGGTG CGCGAGCAGC TGGAG CACCAATCGT GCGCGGCTCG GCCCT TACGAGGAGA ACATCCTCGA ACTGG CGACCCGCCG CGCAACACAG ACAAG TTTACGAGAT CGGCAAGGAC AAGAA GATCAGGGCG TGCTGAAGCT CAACA GATCAGGGCG TGCTGAAGCT CAACA CGCCAAGAAG TCGACGGTGA GGGTG ACCGCGAACACAG ACACA CGCTGAGCGA GTGCATGCC GGTGA ACCGCGGACA CGACCAGTCT GTCCA AATGGCGGCG ACGGTAGCA CGAAC TGTACGTGCT GACGAAGGAT GAGGG GAGCTTCCCG GAGGCGGAGA AGCAC GCCGCGGCCC CGAGGCGAGA AGCAC GCCGCGGCCC CGAGGAGGAC AAGAA	E SEQ ID NO: 849 ACCGA CGGCGTCATG CCGCAGACAC GATTG GGCTTCCGGC GCTCGTAGGG ACGAG GACACGTGCG ACCTGGTGGA AAATA CAAGTTTCCG GCGGAGGAGA CAAGG CCGTCGAGGG CGACGCGAAG TGCGG AAGTGCGACG AGTGGATCCC CCTTT CCTTATGGCC ATCGAGCACG GAGCG TCATCGTGAC CGGCCGCGTC CGGAC GCCGAGCTGG CCGGCTTCAG ACGGG CATTGAGATG TACCACAAGA CTCCG TCGGCGTCAG CATTGTCGGC AGGAC AACGTGGAAC GCGGCATGGT CTGTA CAACAAGGTG AAGGCGCAGG CTGTA CAACAAGGTG AAGGCGCAGG CGGCC GCCACACTGG CTTCAGCCCC ATTGC GCTGACGTGA CAGCGGACAT CGCGA GGAGCTCAAC AAGAAATTCG GAAAG AGGCGGAGAT GCGCAT AACCGCGAGC TGATCCTGAC	100 150 200 250 300 350 400 450 500

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 918 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Leishmania major (B) STRAIN: ATCC 50122</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 850	
15	GGCATCATTG TGGTGGCGGC CACCGACGGC GTCATGCCGC AGACACGCGA ACACCTCCTG ATCTGCTCGC AAATTGGCCT TCCGGCGCTC GTAGGGTTCA TCAACAAAGT GGACATGACG GACGAGGACA CGTGTGACCT GGTGGACATG GAGGTGCGCG AGCAGCTGGA GAAATACAAG TTTCCGGCGG AGGAGACACC	50 100 150 200
20	AATCGTGCGC GGCTCGGCCC TCAAGGCCGT CGAGGGCGAC GCGAAGTACG AGGAGAACAT CCTCGAACTG GTGCGGAAGT GCGACGAGTG GATCCCCGAC CCGCCGCGCA ACACAGACAA GCCTTTCCTT ATGGCCATCG AGCACGTTTA CGAGATCGGC AAGGACAAGA AGAGCGTCAT CGTGACCGGC CGCGTCGATC AGGGCGTGCT GAAGCTCAAC ACAGACGCCG AGCTGGCCGG CTTCAGCGCC	250 300 350 400 450
25	AGGGCGTGCT GAAGCTCAAC ACAGACGCCG AGCTGGCCGG CTTCAGCGCC AAGAAGTCGA CGGTGAGGGT GACGGGCATT GAAATGTACC ACAAGACGCT GAGCGAGTGC ATGCCCGGTG ACTCCGTCGG CGTCAGCATT GTCGGCACCG GCGACACGAC CAGTCTGTCC AAGGACAACG TGGAGCGCGG CATGGTAATG GCGGCGACGG GTAGCACGAA CCTGTACAAC AAGGTGAAGG CGCAGGTGTA	500 550 600 650
30	CGTGCTGACG AAGGATGAGG GCGGCCGCA CACTGGCTTC AGCCCCACT ACCGCCCGCA GCTCTTCTTC CATTGCGCTG ACGTGACAGC GGACATGAGC TTCCCGGAGG CGGAGAAGCA CCGCGAGGAG CTCAACAAGA AATTCGGCCG CGGCCCCGAG GAGGACAAGA AGAAAGAGGC GGAGATGAAG GAGTTCGAGA GCAAGCTCGT CTGCATGCCG GGCGATAACC GCGAGCTGAT CCTGACGCTG GCGTACCCGA TGCCCATT	700 750 800 850 900 918
35		
	2) INFORMATION FOR SEQ ID NO: 851	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 939 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Leishmania mexicana (B) STRAIN: ATCC 50156</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 851	
55	CGGTGGCATC ATTGTGGTGG CGGCCACCGA CGGCGTCATG CCGCAGACAC GCGAGCATCT CCTGATCTGC TCGCAGATTG GGCTTCCGGC GCTCGTAGGG TTCATCAACA AAGTGGACAT GACGGACGAG GACACGTGCG ACCTGGTGGA CATGGAGGTG CGTGAGCAGC TGGAGAAATA CAAGTTTCCG GCGGAAGAGA CGCCCATCGT GCGCGCTCG GCCCTCAAGG CCGTCGAGGG CGACGCGAAG	50 100 150 200 250
60	TACGAGGAGA ACATCCTCGA ACTGGTGCGG AAGTGCGACG AATGGATCCC CGACCCGCCG CGCAACACAG ACAAGCCTTT CCTTATGGCC ATTGAGCACG TTTACGAGAT CGGCAAGGAC AAGAAGAGCG TCATCGTGAC CGGCCGCGTC	300 350 400

5	GATCAGGGCG CGTCAAGAGC CGTCAAGAAG CGCTGAGTGA CGCTGAGTCT CTCCAAGGAC CACTGAGTCA CGCGCGCA ACGGGTAGCA CGAACCTGTA CAACAAGGTG AAGGCGCAGG CGCACCTGT CACTACCGCC CGCAGCTCTT CTTCCATTGT CCCACTGC CACTTCCCG CGCGGCCC CGAGCTCTT CTTCCATTGT CCTGACGTGA CGGCGGACA CGGCGACAC CGAGCTCTC CTTCCATTGT CTTCCATTGT CTTCCATTGT CTTCCATTGT CTTCCATTGA CGCGCGGACA AAGAAATTCG CCCCCGCGCCC CCGAGCAGCA AACCCCCCA CGCGGCCC CCGAGCAGCA CCGCGGCCC CCGAGCAGCA CCGCGAGCA CCCCCGAGCAC CCGCGGCCC CCGAGCACCC CCGAGCACC CCGCACCCC CCGAGCACC CCGAGCCC CCGAGCACC CCGAGCCC CCGAGCACC CCGAGCACC CCGAGCACC CCGAGCACC CCGAGCCC CCGAGCACC CCGAGCCC CCGAGCACC CCGAGCCC CCGAGCCC CCGAGCCC CCGAGCCC CCGAGCCC CCGAGCACC CCGAGCCC CCACACCC CCGCACCC CCCACCC CCCACCC CCCACCC CCCACCC CCCCC CCCCC CCCCCC	450 500 550 600 650 700 750 800 850 900 939
15	2) INFORMATION FOR SEQ ID NO: 852	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 912 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi) ORIGINAL SOURCE:(A) ORGANISM: Leishmania tarentolae(B) STRAIN: MOU-2	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 852	s.
	TCATTGTGGT GGCCGCCACC GACGGCGTCA TGCCGCAAAC ACGGGAGCAC CTTTTGATCT GCTCGCAGAT CGGGCTGCCG GCGCTCGTAG GGTTCATCAA CAAAGTGGAC ATGACAGACG AAGACACGTG CGACCTGGTA GACCTGGAGG TGCGTGAGCA GCTGGAGAAG TACAAGTTTC CGGCAGAGGA AACACCAATC	100 150 200
35	GTGCGTGGCT CGGCCCTCAA GGCCGTTGAG GGCGATGCAA AGTACGAGGA GAACATCCTC GAACTGGTGC GGAAGTGCGA CGAGTGGATC CCAGACCCGC CACGCAATAC GGACAAGCCT TTCCTTATGG CCATTGAACA CGTGTACGAG ATCGGCAAGG ATAGGAAAAG CGTCATCGTA ACCGGCCGCG TCGATCAAGG TGTGCTGAAG CTGAACACAG ACGCCGAGCT GGCCGGCTTC AGCGCCAAGA	250 300 350 400 450
40	AGTCGACGGT GAAAGTGACG GGCATTGAGA TGTACCACAA GACACTGACA GAGTGCATGC CCGGCGACTC TGTCGGCGTC AGCATTGTGG GCACTGGYGA CACGACCAGC CTCTCTAAGG ACAATGTTGA GCGTGGCATG GTACTGGCCG	500
45	CTACGGGTAG CACGAACCTG TACAACAAAG TAAAGGCGCA GGTGTATGTA CTCACGAAGG ATGAGGGCGG CCGCCACACC GGCTTCAGCC CCCACTACCG TCCGCAGCTC TTCTTCCACT GCGCTGACGT AACGGCGGAC ATGAGCTTCC CGGAGGCGGA GAAGCACCGC GAGGAACTCA ATAAGAAATT CGGCCGCGGC CCCGAGGAGG ACAAGAAAAA GGAGGCGGAG ATGAAGGAGT TCGAGAGCAA GCTGGTCTGC ATGCCAGGCG ATAACCGCGA GCTGATCCTG ACATTGGCGT	700 750 800 850 900
50	ACCCGATGCC TA	912

- (i) SEQUENCE CHARACTERISTICS: 55
 - (A) LENGTH: 936 bases

 - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

55

(vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma cruzi STRAIN: MM3 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 853 ATTCTTGTGG TGGCAGCTAA CGACGGATGC ATGCCGCAGA CGCGTGAGCA CCTGCTTATT TGTTCGCAGA TTGGCCTTCC TGCTCTTGTA TGCTTTATCA 10 ATAAGTGTGA CATGATGCAA GGGCAGGAGG AAATGATTGA ACTTGTTGAA 150 ATGGAGGTAC GTGAACTTTT GGAGAAGTAC AAGTTCCCTG CGGAGGAGAC 200 GCCATTTGTG CGGGGGTCTG CGGTGAAGGC ATTGGAGGGT GATGCTGAAA ATGAAGGAAA GATTTTGGAG CTTGTAAAAA AATGTGATGA ATGGATTCCC GACCCACCGC GTGCCATTGA AAAACCGTTC CTTATGGCCA TTGAGCACGT TTTTGAGGTT GGAAAGGATA AGAAGGCCGT TGTTGTGAGC GGGCGTGTGG ACCAGGGGCA GTTGAAGGTC GGCGCAGATG CAGAACTTTC CGGGTTTAGC 450 GCAAAGAAGC TGACGGTGAA GGTTGCTAGC ATCGAAATGT ACCATAAAAT 500 TCTGGAGGAT TGCATGCCTG GTGACTCTGT TGGCGCGAAG ATCGTTGGCA 600 GCGGTGAAAC AGTGAACCTG TCGAAGGAAA ATGTGGAACG CGGCATGGTA 20 650 CTCTCCGCAC CAGGTGCAAC GACACTGTTC AACAAGGTCC GCGCGCAGGT 700 GTACGTGTTG ACAAAGGAAG AAGGCGGTCG TCACACAGCC TTTAGTCCTC ACTATCGTCC GCAGCTTTTC TTCCACTGTG CTGATGTCAC GGCAGATATT 750 800 AACTTCCCGG AAAGCGAGAA GCTTGCAGGG GAGCTGAACA AAAAGTATGG CCGTGATGCG GCGGAACAGA AGAAGAAGGA GGCAGAACTG AAAGAGTTTG AAAAGACGCT TGTCTGCATG CCTGGTGATA ACCGCGAACT CCTGCTCACC CTTGCCTATC CAATGCCAAT GGAAAAGGGA CTCAAG 936 30 2) INFORMATION FOR SEQ ID NO: 854 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 934 bases TYPE: Nucleic acid 35 (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 40 (vi) ORIGINAL SOURCE: (A) ORGANISM: Trypanosoma cruzi STRAIN: PCU-1 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 854 45 CGGCATTCTT GTGGTGGCAG CTAACGACGG ATGCATGCCG CAGACGCGTG AGCACCTGCT TATTTGTTCG CAGATTGGCC TTCCTGCTCT TGTATGCTTT 100 ATCAATAAGT GTGACATGAT GCAAGGGCAG GAGGAAATGA TTGAGCTTGT TGAAATGGAG GTACGTGAAC TTTTGGAGAA GTACAAGTTC CCTGCGGAGG 50 AGACGCCATT TGTGCGGGGG TCTGCGGTGA AGGCATTGGA GGGTGATGCT GAAAATGAAG GAAAGATTTT GGAGCTTGTA AAAAAATGTG ATGAATGGAT TCCCGACCCA CCGCGTGCCA TTGAAAAACC GTTCCTTATG GCCATTGAGC 350 ACGTTTTTGA GGTTGGAAAG GATAAGAAGG CCGTTGTTGT GAGCGGGCGT 400 GTGGACCAGG GGCAGTTGAA GGTCGGCGCA GATGCAGAAC TTTCCGGGTT 450

500

550

600

700

TAGTGCAAAG AAGCTGACGG TGAAGGTTGC TAGCATCGAA ATGTACCATA

AAATTCTGGA GGATTGCATG CCTGGTGACT CTATTGGCGC GAAGATCGTT

GGCAGCGGTG AAACAGTGAA CCTGTCGAAG GAAAATGTGG AACGCGGCAT

GGTACTCTCC GCACCAGGTG CAACGACACT GTTCAACAGG GTCCGCGCGC AGGTGTACGT GTTGACAAAG GAAGAAGGCG GTCGTCACAC AGCCTTTAGT

CA 02283458 1999-09-28

. 5	CCTCACTATC GTCCGCAGCT TTTCTTCCAC TGTGCTGATG TCACGGCGGA TATTAACTTC CCGGAAAGCG AGAAGCTTGC AGGGGAGCTG AACAAAAAGT ATGGCCGTGA CGCGGCGAA CAGAAGAAGA AGGAGGCAGA ACTGAAAGAG TTTGAAAAGA CGCTTGTCTG CATGCCTGGT GATAACCGCG AACTCCTGCT CACCCTTGCC TATCCAATGC CAATGGAAAA GGGA	750 800 850 900 934
10	2) INFORMATION FOR SEQ ID NO: 855 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 937 bases (B) TYPE: Nucleic acid	
15	(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi) ORIGINAL SOURCE:(A) ORGANISM: Trypanosoma cruzi(B) STRAIN: CGL-1	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 855	
25	TGGCGGCATT CTTGTGGTGG CAGCTAACGA CGGATGCATG CCGCAGACGC GTGAGCACCT GCTTATTTGT TCGCAGATTG GCCTTCCTGC TCTTGTATGC TTTATCAATA AGTGTGACAT GATGCAAGGG CAGGAGGAAA TGATTGAACT TGTTGAAATG GAGGTACGTG AACTTTTGGA GAAGTACAAG TTCCCTGCGG	100
30	AGGAGACGCC ATTTGTGCGG GGGTCTGCGG TGAAGGCATT GGAGGGTGAT GCTGAAAATG AAGGAAAGAT TTTGGAGCTT GTAAAAAAAT GTGATGAATG GATTCCCGAC CCACCGCGTG CCATTGAAAA ACCGTTCCTT ATGGCCATTG AGCACGTTTT TGAGGTTGGA AAGGATAAGA AGGCCGTTGT TGTGAGCGGG CCTGTCGACC AGGGCCAGTT GAAGGTCGGC GCAGATGCAG AACTTTCCGG	250 300 350 400 450
35	GTTTAGCGCA AAGAAGCTGA CGGTGAAGGT TGCTAGCATC GAAATGTACC ATAAAATTCT GGAGGATTGC ATGCCTGGTG ACTCTGTTGG CGCGAAGATC GTTGGCAGCG GTGAAACAGT GAACCTGTCG AAGGAAAATG TGGAACGCGG CATGGTACTC TCCGCACCAG GTGCAACGAC ACTGTTCAAC AAGGTCCGCG CCCAGGTGTA CGTGTTGACA AAGGAAGAAG GCGGTCGTCA CACAGCCTTT	500 550 600 650 700
40	AGTCCTCACT ATCGTCCGCA GCTTTTCTTC CACTGTGCTG ATGTCACGGC AGATATTAAC TTCCCGGAAA GCGAGAAGCT TGCAGGGGAG CTGAACAAAA AGTATGGCCG TGATGCGGCG GAACAGAAGA AGAAGGAGGC AGAACTGAAA GAGTTTGAAA AGACGCTTGT CTGCATGCCT GGTGATAACC GCGAACTCCT GCTCACCCTT GCCTATCCAA TGCCAATGGA AAAGGGA	750 800 850 900 937
45		
	2) INFORMATION FOR SEQ ID NO: 856	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 888 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Babesia bigemina (B) STRAIN: Suarez-2</pre>	
60		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 856

	CTTATTATGG	AGCTGATCAA	CAACGTCGCG	AAGAAGCACG	GTGGTTTCTC	50
	CGTGTTCGCC	GGCGTCGGCG	AGCGCACCAG	GGAGGGCAAC	GAGCTGTACC	100
5	ACGAGATGAT	GGAGACCGGC	GTCATCAAGC	GCCGCCAGCT	GGATGACGGC	150
	ACGTTCGACT	TCTCCGGCTC	CAAGGCCGCG	CTGGTGTACG	GCCAGATGAA	200
	CGAGCCGCCA	GGTGCCAGGG	CGCGTGTTGC	CCTCACTGGC	CTGACGGTGG	250
•	CCGAGTACTT	CCGTGATGAG	GACGGCCAGG	ACGTGCTGCT	CTTCATCGAC	300
	AACATCTACC	GTTTCACCCA	GGCTGGTTCT	GAGGTGAGTG	CCCTTTTGGG	350
10	GCGCATCCCG	TCCGCCGTCG	GTTACCAGCC	GACCCTCGCC	ACCGACCTTG	400
	GCGCGCTGCA	GGAGCGTATC	ACGACGACCA	ACAAGGGCTC	CATCACCTCC	450
	GTGCAGGCCG	TCTACGTGCC	GGCCGACGAT	ATCACCGACC	CGGCGCCTGC	500
	GACCACCTTC	ACCCATCTGG	ACGCGACCAC	TGTGCTCTCC	CGTTCCATCG	550
	CCGAGCTGGG	TATCTACCCC	GCCGTCGACC	CGCTCGACTC	CACCTCGCGT	600
15	ATGCTGTCCG	CGAACATCGT	CGGCGAGGAG	CAGTACAACG	TGGCGCGTGG	650
	CGTGCAGAAA	ATACTGCAGG	ACTACAAATC	GCTGCAGGAT	ATCATCGCCA	700
	TCCTGGGTAT	GGACGAGCTG	TCTGAGCAGG	ACAAGTTCGT	CGTCGCGCGT	750
	GCGCGCAAGG	TTCAGCGTTT	CCTATCCCAG	CCCTTCCAGG	TGGCTGAGGT	800
	ATTCACCGGC	AAGCCCGGAC	GTTTCGTCGA	GCTGCAGGAC	ACCATCAGCG	850
20	GCGTCAAGGA	GATTTTGGAC	GGCGAGTGCG	ACGACATG		888

2) INFORMATION FOR SEQ ID NO: 857

25

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 884 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Babesia bovis
 - (B) STRAIN: Suarez-3
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 857

40	TGATTATGGA	ATTGATCAAC	AATGTCGCCA	AGAAACACGG	TGGGTTCTCC	50
	GTGTTCGCTG	GTGTTGGTGA	ACGTACGAGG	GAAGGTAACG	AACTGTACCA	100
	TGAAATGATG	GAAACGGGTG	TCATCAAGCG	CCGTCAACTG	GAAGACGGAA	150
	CATTTGACTT	CTCGGGCTCT	AAAGCTGCTT	TGGTGTACGG	ACAAATGAAC	200
	GAACCACCAG	GTGCTAGAGC	CCGTGTTGCA	CTCACGGGAT	TGACCGTTGC	250
45	CGAGTATTTC	CGTGATGAAG	AGGGGCAGGA	TGTGCTACTC	TTCATCGATA	300
	ACATCTACCG	TTTCACCCAG	GCCGGTTCCG	AAGTGAGTGC	GCTGTTAGGA	350
	AGAATTCCAT	CCGCCGTGGG	TTATCAACCT	ACATTGGCCA	CTGATCTCGG	400
	AGCACTCCAG	GAACGCATTA	CTACAACCAA	CAAGGGTTCG	ATTACATCAG	450
	TCCAGGCAGT	ATACGTCCCA	GCCGATGATA	TCACTGATCC	CGCTCCAGCT	500
50	ACCACTTTCT	CGCACTTGGA	TGCCACTACA	GTGCTTTCTC	GTTCAATTGC	550
	GGAGTTGGGT	ATTTACCCTG	CGGTCGACCC	GCTTGACTCA	ACGTCACGTA	600
•	TGCTGTCGGC	CAACATTGTA	GGACAGGAAC	AGTACGATGC	CGCACGTGGT	650
	GTACAGAAAA	TTTTACAGGA	CTACAAATCA	CTGCAGGATA	TCATTGCCAT	700
	TCTGGGTATG	GACGAGCTGT	CTGAGCAGGA	CAAGTTCGTT	GTAGCACGCG	750
55	CCCGTAAGGT	ACAGCGTTTC	CTGTCTCAGC	CGTTCCAAGT	GGCTGAGGTG	800
	TTCACCGGCA	AGCCTGGGAG	GTTCGTTGAA	CTACAGGATA	CCATCAGCGG	850
	TGTCAAGGAA	ATCTGGAAGG	TGAGTGTGAC	GATA		884

2) INFORMATION FOR SEQ ID NO: 858 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 871 bases TYPE: Nucleic acid 5 (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi) ORIGINAL SOURCE: (A) ORGANISM: Babesia microtti (B) STRAIN: Persing-1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 858 15 TGGAACTGAT TAATAATGTG GCCAAAAAGC ATGGCGGTTA CTCTGTTTTT 50 GCAGGTGTAG GTGAAAGGAC GAGGGAGGGT AATGAATTGT ACCATGAAAT 100 GATGGAGACA GGTGTTATAA AGAAAAAGGC ACTAGGTGGT GGGAAGTTTG 150 ATTTCAGTGG ATCTAAAGCA GCGCTGGTCT ATGGACAAAT GAACGAGCCA 20 CCTGGGGCCC GTGCTAGAGT GGCACTAACT GGATTAACAG TCGCAGAATA TTTCCGTGAC GAACAAGGAC AAGACGTGTT GTTGTTTATT GATAATATTT ACCGATTTAC TCAGGCAGGG TCTGAGGTTT CAGCCTTGCT AGGCCGTATA CCTTCAGCTG TGGGATACCA GCCTACATTG GCAACAGATC TTGGCTGTTT ACAAGAACGA ATTACTACGA CCAAATCTGG TTCAATCACC AGTGTACAAG CTGTGTATGT GCCAGCAGAT GATATTACTG ATCCAGCGCC TGCCACAACT TTTACTCACT TGGACGCTAC TACTGTACTT AGCAGGCCAA TTGCTGAACT CGGTATTTAT CCAGCGGTAG ACCCGTTGGA TTCAACAAGC CGTATGCTAA 450 500 550 600 GCGCGAACAT TGTGGGAAAT GAACACTATA GTGTAGCCCG TTCCGTGCAG 650 AAGATACTGC AAGATTACAA ATCGCTTCAG GACATTATTG CCATTTTGGG 700 3.0 TATGGATGAA CTGTCGGAAC AAGACAAAAA TATAGTAGCC CGAGCAAGGA 750 AGATGCAAAG GTTCTTATCA CAGCCATTCC AAGTGGCGGA AGTTTTTACT GGTAAACCGG GAAGATTTGT GGAATTGGAA GATACAATTG CCGGGGCACG 850 AGATATAATT GCGGGTAATT G 871 35 2) INFORMATION FOR SEQ ID NO: 859 (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 1286 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) 45 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Leishmania guyanensis STRAIN: ATCC 50126 (B) 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 859 TCTCGGAGGG CGTCCCGCCC GTGCTGACGG CGCTGGATGT GACGGAGGAC CTTGGCCGCG ATGAGCCGCT GACGCTGGAG ATCGTGCAGC ACCTGGACGC 100 55 GAACACCGGC CGCTGCATTG CGATGCAGAC GACGGACCTG CTGAAGCTGA AGTCGAAGGT TGTGTCGACC GGCGGCAACA TCTCTGTGCC GGTGGGCCGT GAGACGCTGG GCCGCATCTT CAACGTGCTG GGCGACGCGA TCGACCAGCG

300

CGGCCCCGTG GGTGAGAAGA TGCGCATGGC GATCCACGCC GAGGCCCCGA

60 AGCTGGCGGA TCAGGCCGCG GAGGACACGA TCCTGACGAC CGGCATCAAG

	GTGATCGACC	TGATTCTGCC	CTACTGCAAG	GGTGGCAAGA	TCGGCCTGTT	400
	TGGCGGCGCC	GGTGTGGGCA	AGACCGTGAT	CATCATGGAG	CTGATTAACA	450
	ACGTCGCGAA	GGGCCACGGT	GGTTTCTCGG	TGTTTGCCGG	CGTTGGCGAG	500
	CGCACGCGCG	AGGGCACGGA	CCTGTACCTG	GAGATGATGC	AGTCGAAGGT	550
5	GATTGACCTG	AAGGGCGAGT	CGAAGTGCGT	GCTTGTGTAC	GGGCAGATGA	600
	ACGAGCCCCC	GGGTGCGCGC	GCGCGCGTTG	CGCAGTCTGC	GCTGACGATG	650
	GCGGAGTACT	TCCGAGACGT	GGAGGGCCAG	AATGTGCTGC	TGTTCATCGA	700
	CAACATCTTC	CGCTTCACGC	AGGCGAACTC	CGAGGTCTCT	GCGCTGCTGG	750
	GCCGCATTCC	GGCCGCCGTG	GGCTACCAGC	CGACGCTTGC	GGAGGATCTT	800
10	GGTATGCTGC	AGGAGCGCAT	CACGTCGACG	ACGAAGGGGT	CGATCACGTC	850
	CGTGCAGGCC	GTGTACGTGC	CTGCGGATGA	TATCACGGAT	CCGGCGCCCG	900
	CGACGACGTT	CTCGCACCTG	GACGCGACGA	CTGTGCTGGA	CCGCGCGGTG	950
	GCGGAGTCGG	GGATCTACCC	TGCCGTGAAC	CCGCTGGAGT	GCGCGTCGCG	1000
	TATCATGGAC	CCCGATGTGA	TCGACGTGGA	CCACTACAAC	GTTGCGCAGG	1050
15	ATATCGTGCA	GATGCTGACC	AAGTACAAGG	AGCTGCAGGA	TATCATTGCG	1100
	GTGCTTGGTA	TCGACGAGCT	GAGCGAGGAG	GACAAGGTCG	TGGTGGACCG	1150
	CGCGCGCAAG	GTGACCCGGT	TCCTGTCGCA	GCCGTTCCAG	GTTGCGGAGG	1200
	TGTTCACGGG	CATGACGGGC	CACTACGTGC	AGCTGGCCGA	CACGGTGGAG	1250
	TCGTTCTCTG	GGCTGCTGAT	GGGGTCGTAC	GACCAG		1286
20						

- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1222 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Leishmania mexicana
- 35 (B) STRAIN: ATCC 50156
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 860

	CTCGGAGGGC	GTCCCGCCCG	TGCTGACGGC	GCTGGATGTG	ACGGAGGACC	50
40	TTGGCCGCGA	TGAGCCGCTG	ACGCTGGAGA	TCGTGCAGCA	CCTGGACGCG	100
	AACACCGGCC	GCTGCATTGC	GATGCAGACG	ACGGACCTGC	TGAAGCTGAA	150
	GTCGAAGGTT	GTGTCGACCG	GCGGCAACAT	CTCTGTGCCG	GTGGGCCGTG	200
	AGACGCTGGG	CCGCATCTTC	AACGTGCTGG	GCGACGCGAT	CGACCAGCGC	250
	GGCCCCGTGG	GTGAGAAGAT	GCGCATGGCG	ATCCACGCCG	AGGCCCCGAA	300
45	GCTGGCGGAT	CAGGCCGCGG	AGGACACGAT	CCTGACGACC	GGCATCAAGG	350
	TGATCGACCT	GATTCTGCCC	TACTGCAAGG	GTGGCAAGAT	CGGCCTGTTT	400
	GGCGGCGCCG	GTGTGGGCAA	GACCGTGATC	ATCATGGAGC	TGATTAACAA	450
	CGTCGCGAAG	GGCCACGGTG	GTTTCTCGGT	GTTTGCCGGC	GTTGGCGAGC	500
	GCACGCGCGA	GGGCACGGAC	CTGTACCTGG	AGATGATGCA	GTCGAAGGTG	550
50	ATTGACCTGA	AGGGCGAGTC	GAAGTGCGTG	CTTGTGTACG	GGCAGATGAA	600
	CGAGCCCCCG	GGTGCGCGCG	CGCGCGTTGC	GCAGTCTGCG	CTGACGATGG	650
	CGGAGTACTT	CCGAGACGTG	GAGGGCCAGA	ATGTGCTGCT	GTTCATCGAC	700
	AACATCTTCC	GCTTCACGCA	GGCGAACTCC	GAGGTCTCTG	CGCTGCTGGG	750
	CCGCATTCCG	GCCGCCGTGG	GCTACCAGCC	GACGCTTGCG	GAGGATCTTG	800
55	GTATGCTGCA	GGAGCGCATC	ACGTCGACGA	CGAAGGGGTC	GATCACGTCC	850
	GTGCAGGCCG	TGTACGTGCC	TGCGGATGAT	ATCACGGATC	CGGCGCCCGC	900
	GACGACGTTC	TCGCACCTGG	ACGCGACGAC	TGTGCTGGAC	CGCGCGGTGG	950
	CGGAGTCGGG	GATCTACCCT	GCCGTGAACC	CGCTGGAGTG	CGCGTCGCGT	1000
	ATCATGGACC	CCGATGTGAT	CGACGTGGAC	CACTACAACG	TTGCGCAGGA	1050
60	TATCGTGCAG	ATGCTGACCA	AGTACAAGGA	GCTGCAGGAT	ATCATTGCGG	1100

	TGCTTGGTAT CGACGAGCTG AGCGAGGAGG ACAAGGTCGT GGTGGACCGC GCGCGCAAGG TGACCCGGTT CCTGTCGCAG CCGTTCCAGG TTGCGGAGGT GTTCACGGCC ATGACGGGCC AC	1150 1200 1222
5	· ·	
	2) INFORMATION FOR SEQ ID NO: 861	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1246 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Leishmania tropica(B) STRAIN: ATCC 50129	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 861	
25	CCGTGCTGAC GGCGCTGGAT GTGACGGAGG ACCTTGGCCG CGATGAGCCG CTGACGCTGG AGATCGTGCA GCACTTGGAC GCGAACACCG GCCGCTGCAT TGCGATGCAG ACGACGGACC TGCTGAAGCT GAAGTCGAAG GTTGTGTCGA CCGGCGGCAA CATCTCTGTG CCGGTGGGCC GTGAGACGCT GGGCCGCATC TTCAACGTTC TGGGCGACGC GATCGACCAG CGCGGCCCCG GATGCGCATG GCGATCCACG CCGAGGCCCC GAAGCTTGCCG	50 100 150 200 250 300
30	CGGAGGACAC GATCCTGACG ACCGGCATCA AGGTGATCGA CCTGATTCTG CCCTACTGCA AGGGTGGCAA GATCGGCCTG TTCGGCGGTG CCGGTGTGGG CAAGACTGTG ATCATCATGG AGCTGATCAA CAACGTCGCG AAGGGCCACG GTGGTTTCTC CGTGTTTGCC GGCGTTGGCG AGCGCACGC CGAGGGCACG CACCTCTACC TGGAGATGAT GCAGTCGAAG GTGATTGACC TGAAGGGCGA	350 400 450 500 550
35	GACCIGIACC GACACATOR GACCIGIACC GTGCAGAGTCT GTGGGCAGAT GACGAGGCC GCGCGCGCGT GCGCAGTCT GCGCTGACGA GTGGAGGGCC GTGGAGGGCC AGAACGTGCT GCTGTTCATC GCAGGCGAAC TCCGAGGTGT CTGCGCTGCT GGGCCGCATT CCGGCCGCCG TGGGCTACCA GCCGACGCTT GCGGAGGATC TTGGTATGCT GCAGGAGCGCC	600 650 700 750 800
40	ATCACGTCGA CAACGAAGGG GTCGATCACG TCCGTGCAGG CCGTGTACGT GCCAGCGGAT GATATCACGG ATCCCGCGCC CGCGACGACG TTCTCGCACC TGGACGCGAC GACTGTGCTG GACCGCGCGG TGGCGGAGTC GGGCATCTAC CCTGCCGTGA ACCCGCTGGA GTGCGCGTCG CGTATCATGG ACCCCGATGT CATCCATGTG GACCACTACA ACGTTGCGCA GGATATCGTG CAGATGCTGA	850 900 950 1000 1050
45	CCAAGTACAA GGAGCTGCAG GATATCATTG CGGTGCTTGG CATCGACGAG CTGAGCGAGG AAGACAAGGT TGTTGTGGAC CGCGCGCGCA AGGTGACCCG GTTCCTGTCG CAGCCGTTCC AGGTTGCGGA GGTGTTCACG GGCATGACGG GCCACTACGT GCAGCTGGTC GACACGGTGG AGTCGTTCTC TGGCCT	1100 1150 1200 1246
50	2) INFORMATION FOR SEQ ID NO: 862	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1265 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	

(ii) MOLECULE TYPE: Genomic DNA

```
(vi) ORIGINAL SOURCE:
               (A) ORGANISM: Leishmania tropica
                      STRAIN: ATCC 30815
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 862
      GGCGTGCCGC CCGTGCTGAC GGCGCTGGAT GTGACGGAGG ACCTTGGCCG
      CGATGAGCCG CTGACGCTGG AGATCGTGCA GCACTTGGAC GCGAACACGG
                                                                                      100
      GCCGCTGCAT TGCGATGCAG ACGACGGACC TGCTGAAGCT GAAGTCGAAG
                                                                                      150
      GTCGTGTCGA CCGGCGGCAA CATCTCTGTG CCGGTGGGCC GTGAGACGCT
                                                                                      200
      GGGCCGCATC TTCAAYGTTC TGGGCGACGC GATCGACCAG CGCGGCCCCG
                                                                                      250
      TGGGCGAGAA GATGCGCATG GCGATCCACG CCGAGGCCCC GAAGCTGGCG
                                                                                      300
      GATCAGGCCG CGGAGGACAC GATCCTGACG ACCGGCATCA AGGTGATCGA
                                                                                      350
      CCTGATTCTG CCCTACTGCA AGGGTGGCAA GATCGGCCTG TTCGGCGGTG
                                                                                     400
     CCGGTGTGGG CAAGACTGTG ATCATCATGG AGCTGATCAA CAACGTCGCG
                                                                                     450
      AAGGGCCACG GCGTTTCTC CGTGTTTGCC GGCGTTGGCG AGCGCACGCG CGAGGGCACG GACCTGTACC TGGAGATGAT GCAGTCGAAG GTGATTGACC
                                                                                     500
                                                                                     550
      TGAAGGGCGA GTCGAAGTGY GTGCTTGTGT ATGGGCAGAT GAACGAGCCC
                                                                                     600
      CCGGGTGCGC GCGCGCGT TGCGCAGTCT GCGCTGACGA TGGCGGAGTA
                                                                                     650
    CTTCCGCGAC GTGGAGGGCC AGAACGTGCT GCTGTTCATC GACAACATCT
                                                                                      700
20
      TCCGCTTCAC GCAGGCGAAC TCCGAGGTGT CTGCGCTGCT GGGCCGCATT
                                                                                      750
      CCGCCCCC TGGCTACCA GCCGACGCTT GCGGAGGATC TTGGTATGCT
      GCAGGAGCGC ATCACGTCGA CAACGAAGGG GTCGATCACG TCCGTGCAGG
                                                                                     850
GCAGGAGCGC ATCACGTCGA CAACGAAGGG GTCGATCACG TCCGTGCAGG
CCGTGTACGT GCCAGCGGAT GATATCACGG ATCCCGCGCC CGCGACGACG

TTCTCGCACC TGGACGCGAC GACTGTGCTG GACCGCGCGG TGGCGGAGTC
GGGCATCTAC CCTGCCGTGA ACCCGCTGGA GTGCGCGTCG CGTATCATGG
ACCCTGATGT GATCGATGTG GACCACTACA ACGTTGCGCA GGATATCATGG
CAGATGCTGA CCAAGTACAA GGAGCTGCAG GATATCATTG CGGTGCTTGG
CATCGACGAG CTGAGCGAGG AAGACAAGGT TGTTGTGGAC CGCGCGCCA

30 AGGTGACCG GTTCCTGTCG CAGCCGTTCC AGGTTGCGGA GGTGTTCACG
GGCATGACGG GCCACTACGT GCAGCCGTCC AGGTTGCGGA GGTGTTCACG
1250
TGCCCGCCCC ATCCGC
TCCGTGCTCC ATCCGC
TCCGTGCACGA GCACCGTTCC AGGTTGCGGA AGTCGTTCTC
1250
TGCCCGCCCCC ATCCGC GCACCACGCG GACACGGTGG AGTCGTTCTC
1265
                                                                                     1265
      TGGCCTGCTG ATGGG
35
      2) INFORMATION FOR SEQ ID NO: 863
           (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 1191 bases
                (B) TYPE: Nucleic acid
(C) STRANDEDNESS: Doub
40
                      STRANDEDNESS: Double
                (D) TOPOLOGY: Linear
         (ii) MOLECULE TYPE: Genomic DNA
 45
         (vi) ORIGINAL SOURCE:
                (A) ORGANISM: Bordetella pertussis
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 863
 50
       ATGGCAAAAG GCAAGTTTGA ACGTACCAAG CCGCACGTGA ACGTGGGTAC
                                                                                       50
       GATTGGTCAC GTTGACCACG GCAAAACGAC GTTGACGGCG GCGATCACGA
                                                                                       100
       CGGTGCTGTC GAACAAGTTC GGCGGCGAGG CTCGCGGCTA CGACCAGATT
                                                                                     150
                                                                                      200
      GACGCGGCGC CGGAAGAGAA GGCGCGTGGG ATCACGATCA ACACCTCGCA
      CGTTGAGTAC GAGACGGAGA CGCGTCACTA CGCGCACGTT GATTGCCCGG
 55
      GTCACGCTGA CTACGTGAAG AACATGATCA CGGGTGCTGC GCAGATGGAC
```

```
CACGCCGATC GTGAATGGTG CGGCCAAGCT GGCGCTGGAA AGCGACAACG
                                                               550
    GCGACCTGGG CGAGCAGGCG ATTCTGTCGC TGGCGCAAGC GCTGGACACG
                                                                600
    TACATTCCGA CGCCGGAGCG CGCGGTCGAC GGTGCGTTCC TGATGCCGGT
                                                                650
    GGAAGACGTG TTCTCGATCT CGGGCCGTGG CACGGTGGTG ACTGGCCGTA
                                                                700
    TCGAGCGCGG CGTGGTGAAG GTTGGCGAGG AAATCGAAAT CGTGGGCATC
                                                                750
    AAGCCGACGG TGAAGACGAC CTGCACGGGC GTGGAGATGT TCCGCAAGCT
                                                                800
    GCTGGACCAG GGCCAGGCGG GCGACAACGT GGGTATCTTG CTGCGCGGCA
                                                                850
    CCAAGCGTGA AGACGTCGAG CGTGGCCAGG TGCTGGCCAA GCCGGGTTCG
                                                               900
    ATCAACCCGC ACACGGACTT CACGGCCGAG GTGTACATTC TGTCCAAGGA
                                                               950
    AGAGGGTGGC CGTCACACGC CGTTCTTCAA CGGCTATCGT CCGCAGTTCT
10
                                                               1000
    ACTTCCGCAC GACGGACGTG ACCGGCACGA TCGACCTGCC GGCGGACAAG
                                                               1050
    GAAATGGTGC TGCCGGGCGA CAACGTGTCG ATGACCGTCA AGCTGCTGGC
                                                               1100
    CCCGATCGCC ATGGAAGAAG GTCTGCGTTT CGCCATCCGT GAAGGCGGTC
                                                               1150
    GTACCGTCGG TGCCGGCGTC GTCGCCAAGA TCATCAAGTA A
                                                               1191
15
    2) INFORMATION FOR SEQ ID NO: 864
20
       (i) SEQUENCE CHARACTERISTICS:
            (A)
                LENGTH: 1350 bases
            (B)
                TYPE: Nucleic acid
```

- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 25
 - (ii) MOLECULE TYPE: Genomic DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Trypanosoma brucei
- 30 (B) STRAIN: LVH/75/USAMRU-K/18
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 864

	ATGGGAAAGG	AAAAGGTGCA	CATGAATCTT	GTGGTGGTGG	GCCACGTCGA	50
35	TGCCGGTAAA	TCCACTGCAA	CGGGTCACTT	GATCTACAAG	TGCGGTGGTA	100
	TTGACAAACG	TACGATCGAG	AAGTTCGAGA	AAGAAGCTGC	CGACATTGGT	150
	AAGGCCTCAT	TCAAGTACGC	ATGGGTGCTG	GACAAGCTGA	AGGCTGAGCG	200
	CGAACGTGGT	ATCACGATCG	ACATTGCACT	GTGGAAATTC	GAGTCACCCA	250
	AGTCTGTCTT	CACTATTATT	GATGCTCCTG	GGCACCGTGA	CTTCATCAAG	300
40	AACATGATCA	CCGGCACATC	GCAAGCCGAC	GCAGCCATCC	TCATCATTGC	350
	CTCTGCGCAG	GGTGAGTTCG	AGGCTGGTAT	CTCCAAGGAT	GGACAGACCC	400
	GCGAGCACGC	GTTGCTGGCC	TTCACTTTGG	GTGTGAAGCA	GATGGTTGTG	450
	TGCTGCAACA	AAATGGACGA	CAAGACTGTG	AACTACGGAC	AGGAGCGGTA	500
	TGACGAGATT	GTGAAGGAGG	TGTCTGCTTA	CATCAAGAAG	GTTGGGTACA	550
45	ACGTGGAGAA	GGTGCGCTTC	GTCCCCATCT	CCGGATGGCA	GGGCGACAAC	600
	ATGATTGAGA	AATCCGAGAA	GATGCCATGG	TACAAGGGTC	CAACGCTCCT	650
	GGAGGCACTA	GACATGCTGG	AGCCACCAGT	GCGTCCGAGC	GACAAGCCCC	700
	TGCGTCTGCC	ACTGCAGACG	TGTACAAAGA	TCGGTGGTAT	TGGCACCGTG	750
	CCCGTTGGTC	GTGTGGAGAC	CGGCGTGATG	AAGCCTGGTG	ATGTGGTGAC	800
50	GTTTGCCCCC	GCCAACGTGA	CGACCGAGGT	GAAATCGATC	GAGATGCACC	850
	ACGAGCAGCT	CGCTGAGGCG	ACCCCCGGTG	ACAACGTCGG	CTTTAACGTG	900
	AAGAACGTTT	CTGTAAAGGA	CATCCGCCGT	GGCAACGTCT	GCGGTAACAC	950
	CAAGAACGAC	CCCCCAAAGG	AGGCCGCCGA	CTTCACGGCA	CAGGTGATCA	1000
	TCCTGAACCA	CCCCGGACAG	ATTGGAAACG	GTTATGCGCC	CGTGCTGGAC	1050
55	TGCCACACAT	CGCACATTGC	CTGCAAGTTC	GCGGAGATCG	AGTCGAAGAT	1100
	CGACCGTCGC	TCTGGCAAGG	AGCTGGAGAA	GGCTCCCAAG	TCGATCAAGT	1150
	CTGGCGACGC	CGCGATCGTG	CGCATGGTGC	CGCAGAAGCC	TATGTGCGTG	1200
	GAGGTCTTCA	ACGACTACGC	GCCACTCGGC	CGCTTTGCCG	TGCGTGACAT	1250
	GCGCCAGACC	GTCGCTGTCG	GTATCATCAA	GGCCGTGACC	AAGAAGGACG	1300
60	GTTCTGGTGG	TAAGGTGACG	AAGGCTGCGG	TGAAGGCTTC	GAAGAAATAA	1350