MINING FREQUENT PATTERNS, ASSOCIATION AND CORRELATION

Motivation (Brick and Mortar)

Motivation (Online)

- Frequently Bought Together
- Customers who bought this item also bought

Frequently Bought Together

Customers Who Bought This Item Also Bought

Mass Market Paperback \$31.55 *Prime*

\$10.72 **Prime**

Mass Market Paperback \$8.09 **Prime**

Mass Market Paperback \$19.18 **Prime**

Paperback \$30,40 **Prime**

Frequent Pattern Analysis

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
 - Motivation: Finding inherent regularities in data
 - What products were often purchased together?
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis, etc.

Basic Concepts or "The Urban Legend of Beer and Diapers"

Ti d	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs,		
CustomMilk			
buys both buys diaper			
Customer buys beer			
buys beer			

- itemset: A set of one or more items
- **k-itemset** $X = \{x_1, ..., x_k\}$
- (absolute) support, or,
 support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a minsup threshold

Association Rules

- - **support**, *s*, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y P(Y| X)

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,

{Beer, Diaper}:3

- Association rules: (many more!)
 - Beer € Diaper (60%, 100%)
 - *Diaper [©] Beer* (60%, 75%)

Mining Association Rules

Two-step process

- Find all frequent itemsets, where itemset frequency is beyond min_sup;
- From list of frequent itemsets, <u>generate association</u> <u>rules</u> satisfying min_sup and confidence

Support & Confidence

Support for association rule A
 B is proportion of transactions in D containing both A and B

support =
$$P(A \cap B) = \frac{\text{number of transactions containing both A and B}}{\text{total number of transactions}}$$

- Determined by percentage of transactions in D containing A, also containing B

confidence
$$=P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\text{number of transactions containing both A and B}}{\text{number of transactions containing A}}$$

The Challenge: Itemset Lattice

Closed Patterns and Max Patterns

- A long pattern contains a combinatorial number of subpatterns
- Solution: Mine closed itemsets and maximal frequent itemsets
 - An itemset X is *closed* if X is *frequent* and there exists *no super-pattern* (Y ⊃ X), *with the same or greater support* than X (proposed by Pasquier, et al. @ ICDT'99)
 - An itemset X is a maximal frequent itemset if X is frequent and there exists no frequent super-pattern (Y ⊃ X) (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Itemset

- Problem with maximal frequent itemsets:
 - Support of their subsets is not known additional DB scans are needed
- An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

 $min_sup = 2$

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	2
{A,B,C,D}	2

Maximal vs. Closed Itemsets

Maximal Frequent Itemsets

Find the maximal frequent itemsets.

Reminder: A maximal frequent itemset is a frequent itemset with no frequent superset

Maximal Frequent Itemsets

Find the maximal frequent itemsets.

Reminder: A maximal frequent itemset is a frequent itemset with no frequent superset

Closed Frequent Itemsets

Find the closed frequent itemsets.

Reminder: A closed frequent itemset is a frequent itemset with superset with the smaller support

Closed Frequent Itemsets

Find the closed frequent itemsets.

Reminder: A closed frequent itemset is a frequent itemset with superset with the smaller support

Frequent Itemsets

Find the frequent itemsets.

Frequent Itemsets

Find the frequent itemsets.

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - Senstive to the min_sup threshold
 - When min_sup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M = # distinct items, and $N = \max$ length of transactions
- The worst case complexity vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10-4
 - The chance to pick up a particular set of 10 products: ~10-40
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-Test Approach

- Improving the Efficiency of Apriori
 - FPGrowth: A Frequent Pattern-Growth Approach
 - ECLAT: Frequent Pattern Mining with Vertical Data Format

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, chips} is frequent, so is {beer, diaper} and {beer, chips}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

Method:

- Initially, scan DB once to get frequent 1-itemset
- Generate length (k+1) candidate itemsets from length k
 frequent itemsets (self join)
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

Illustration of Apriori Principle

Illustration of Apriori Principle

Illustration of Apriori Principle

Apriori Principle Itemset Example

Item	Count
Bread	4
Cola	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Minimum Support = 3

Itemset	Count	Pairs (2-itemsets)
{Bread,Milk}	3	1
{Bread,Beer}	2	No need to generate
{Bread,Diaper}	3	candidates involving Cola
{Milk,Beer}		or Eggs)
{Milk,Diaper}	3	
{Beer Dianer}	3	

Triplets (3-itemsets)

If every subset is considered,			
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$			
With support-based pruning,			
6 + 6 + 1 = 13			

Itemset	Count
{Bread,Milk,Diaper}	3

The Apriori Algorithm

 C_k : Candidate itemset of size k

```
L_k: frequent itemset of size k
L_1 = {frequent items};
for (k = 1; L_k != \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
   increment the count of all candidates in C_{k+1} that are contained
   in t
  L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_{k} L_{k};
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - *C*₄ = {*abcd*}

The Apriori Algorithm Illustration

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 $p_{min} = 2 | ltemset | sup | {A} | 2 | {B} | 3 | {C} | 3 | {C} | 3 | {E} | {E$

	Itemset	sup
L_{I}	{A}	2
	{B}	3
	{C}	3
	{E}	3

Self Join

7 1		
$ L_2 $	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
,	{C, E}	2

C_2	Itemset	sup
2		
Self	{A, C}	2
Join	{A, E}	1
←	{B, C}	2
	{B, E}	3
	{C, E}	2

{A, B} {A, C} {A, E} {B, C} {B, E} {C, E}

6	
	\

C_3	Itemset				
5	{B, C, E}				

3 rd	scan	L_3

Itemset	sup	
{B, C, E}	2	

 $2^{nd} \; scan$

The Apriori Algorithm (Exercise)

- Demonstrate the Apriori algorithm on the following dataset to find frequent itemsets
- Absolute Min_sup = 3

Transaction ID	Items Bought
T1	{M, O, N, K, E, Y }
T2	{D, O, N, K, E, Y}
Т3	{M, A, K, E}
T4	{M, U, C, K, Y}
T5	{C, O, O, K, I, E}

Bottlenecks of Apriori

- Candidate generation can result in huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \sim 10^{30}$ candidates.

- Multiple scans of database:
 - Needs (n +1) scans, n is the length of the longest pattern

How to Count Supports of Candidates

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - √ Hash Table
 - Remove buckets that are below the support threshold

	T	1	r
	Г	1	2
7		_	7

bucket address	0	1	2	3	4	5	6
bucket count	2	2	4	2	2	4	4
bucket contents	{I1, I4}	{I1, I5}	{I2, I3}	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
	{I3, I5}	{I1, I5}	{I2, I3}	$\{I2, I4\}$	{I2, I5}	{I1, I2}	{I1, I3}
			{I2, I3}			{I1, I2}	{I1, I3}
			{I2, I3}			{I1, I2}	{I1, I3}

How to Count Supports of Candidates

- Transaction Reduction
 - A transaction that does not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets
 - Such a transaction can be removed from further consideration
- Partitioning
 - Partition transactions into non-overlapping partitions

- Sampling
- Dynamic Itemset Counting (adds itemsets to frequent itemset count dynamically)

Apriori: Alternative Search Methods

- Traversal of Itemset Lattice
 - General-to-specific vs Specific-to-general

Apriori: Alternative Search Methods

- Traversal of Itemset Lattice
 - Breadth-first vs Depth-first

(a) Breadth first

(b) Depth first

FP-growth

 Use a compressed representation of the database using an FP-tree (FP = Frequent Pattern)

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

FP-Tree Construction

	N2
TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

After reading TID=1:

After reading TID=2:

FP-Tree Construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

Transaction Database

Pointers are used to assist frequent itemset generation

Build conditional pattern base for E:

Recursively apply FP-growth on P

Conditional tree for E:

Conditional Pattern base for E:

P = {(A:1,C:1,D:1,E:1), (A:1,D:1,E:1), (B:1,C:1,E:1)}

Count for E is 3: {E} is frequent itemset

Recursively apply FP-growth on P

Conditional tree for D within conditional tree for E:

Conditional pattern base for D within conditional base for E:

$$P = \{(A:1,C:1,D:1), (A:1,D:1)\}$$

Count for D is 2: {D,E} is frequent itemset

Recursively apply FP-growth on P

Conditional tree for C within D within E:

Conditional pattern base for C within D within E: P = {(A:1,C:1)}

Count for C is 1: {C,D,E} is NOT frequent itemset

Conditional tree for A within D within E:

Count for A is 2: {A,D,E} is frequent itemset

Next step:

Construct conditional tree
C within conditional tree
E

Continue until exploring conditional tree for A (which has only node A)

Benefits of the FP-Tree Structure

- Performance study shows
 - FP-growth is an order of magnitude faster than Apriori
- Reasoning
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

ECLAT: Another Method for Frequent Itemset Generation

ECLAT: for each item, store a list of transaction ids (tids);
 vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
	1	2	2	1
1 4 5 6 7 8 9	2	23489	2 4 5 9	3 6
5	2 5 7	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				
. ↓				

ECLAT: Another Method for Frequent Itemset Generation

 Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

Â		В		AB
1		1		1
4		2		5
5		5	\rightarrow	7
6	• •	7		8
7		8		
8		10		
9				

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Complexity of Association Rule Mining

- Choice of minimum support threshold
 - Lowering support threshold results in more frequent itemsets
 - This may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of each item
 - If number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - Transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Mining Association Rules

Two-step process

- Find all frequent itemsets, where itemset frequency is beyond min_sup; done!
- 2. From list of frequent itemsets, generate association rules satisfying min_sup and confidence

Rule Generation

 Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement

- If {O,K,E} is a frequent itemset, candidate rules:
 {O,K} →{E}, {O,E} →{K}, {K,E} →{O}, {K} → {O,E}, {E} → {O,K},
 {O} → {K,E}, {O} → {K}, {O} → {E}, {K} → {O}, {K} → {E},
 {E} → {O}, {E} → {K}
- If |L| = k, then there are 2^k 2 candidates association rules (ignoring L → Ø and Ø → L)

Confidence and Association Rules

IF Body then Consequent Body ==> Consequent [Support , Confidence]

Confidence $(A ==> B) = P(B|A) = support count(A \cup B)/support count(A)$

Transaction ID	Items Bought
T1	{M, O, N, K, E, Y }
T2	{D, O, N, K, E, Y }
Т3	{M, A, K, E}
T4	{M, U, C, K, Y}
T5	{C, O, O, K, I, E}

Evaluate the following rules based on confidence:

$$\{O,K\} \rightarrow \{E\}$$
 $\{O,E\} \rightarrow \{K\}$

$$\{O,E\} \rightarrow \{K\}$$

$$\{K,E\} \rightarrow \{O\}$$

$$\{K\} \rightarrow \{O,E\} \qquad \qquad \{E\} \rightarrow \{O,K\}$$

$$\{E\} \rightarrow \{O,K\}$$

$$\{O\} \rightarrow \{K,E\}$$

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property (downward closure)
 - $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - But confidence of rules generated <u>from the same</u> itemset has an anti-monotone property
 - e.g., $L = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation

- Association rules well-suited to using Boolean and categorical attributes
- However, how are <u>numeric</u> attributes handled?
- Apriori not equipped to handle numeric inputs
- One possible solution discretizes numeric variables during preprocessing
- For example, income discretized to "low", "medium", and "high"
- Discretizing variables often leads to loss of information
- Generalized Rule Induction (GRI) offers alternate method for mining association rules
- GRI works with Boolean, categorical, and numeric input

- GRI introduced by Smyth and Goodman in 1992
- Method does not use frequent itemsets
- Instead, GRI applies <u>information-theoretic</u> approach
- Method measures "interestingness" of candidate rules
- J-Measure
 - GRI applies J-Measure:

$$J = p(x) \left[p(y|x) \ln \frac{p(y|x)}{p(y)} + [1 - p(y|x)] \ln \frac{1 - p(y|x)}{1 - p(y)} \right]$$

- p(x) represents probability of the observed value of x
- Measures prevalence of observed value for antecedent
- Where rules have more than one antecedent, p(x) is conjunction of variable values in antecedent

$$J = p(x) \left[p(y|x) \ln \frac{p(y|x)}{p(y)} + [1 - p(y|x)] \ln \frac{1 - p(y|x)}{1 - p(y)} \right]$$

- p(y) represents prior probability of the observed value of y
- Measures prevalence of observed value for consequent
- p(y|x) equals conditional probability (posterior confidence) of y, given x has occurred
- Measures probability of the observed value of y, given value of x has occurred
- Measured directly by confidence of rule
- In is natural logarithm (log to the base e)

- As before, analyst specifies <u>minimum confidence</u> and <u>support levels</u>
- Using GRI, number of association rules to report also specified
- Number of rules defines size of <u>Rule Table</u>, referenced internally by algorithm
- First, GRI generates single-antecedent rules
- For each rule, the value for J (the J-Measure) is computed
- If value of J exceeds current minimum J in rule table, new rule inserted in rule table, displacing rule associated with current minimum J
- In this way, rule table remains at constant size
- Next, rules with multiple antecedents are considered

- Behavior of *J-Measure* described:
- Higher values of J are associated with higher values of p(x)
- Rules favored whose antecedent value more prevalent
- Reflects higher coverage in data set
- J tends toward higher values when p(y) and p(y|x) near 0 or 1
- That is, rules favored where p(y) or p(y|x) more extreme

- Also, J-Measure favors rules with either very high or very low confidence
- Why would rules with very low confidence be mined?
- For example, rule R = "If buy beer, then buy fingernail polish", with confidence p(y|x) = 0.01%
- By definition, *J-Measure* favors rule *R* (extremely low confidence)
- Alternately, consider negative form of R = "If buy beer, then NOT buy fingernail polish" with confidence = 99.99%
- Although negative rules sometimes interesting, results often not directly actionable

Interestingness/usefulness

- Not all strong rules are interesting
 - Confidence can be deceiving
 - Does not measure strength (or lack of strength) of correlation in a rule
- Measures of correlation can be used in combination with support and confidence
- Correlation rules:
 - A=>B[support, confidence, correlation]
- Interestingness of the rule is measured based on support,
 confidence, and correlation

Correlation Measures

- $^{\bullet}$ χ^2

 - actual value: negatively correlated
 - If expected value is less than actual value: positively correlated
- Lift
 - If the occurrence of A is independent from the occurrence of B, lift = 1
 - Lift < 1 negative correlation
 - Lift > 1 positive correlation

•
$$\chi^2$$
 >1 then correlated
• If expected value is greater than $\chi^2 = \sum \frac{(\text{observed - expected})^2}{\text{expected}}$

$$lift = \frac{\sup(A \cup B)}{\sup(A) * \sup(B)}$$

Interestingness Measure: Correlations (Lift and

 χ^2)

$$\chi^{2} = \sum \frac{\text{(observed - expected)}^{2}}{\text{expected}} = \frac{(2000 - 2250)^{2}}{2250} + \frac{(1750 - 1500)^{2}}{1500} + \frac{(1000 - 750)^{2}}{750} + \frac{(250 - 500)^{2}}{500} = 277.78$$

$$lift = \frac{\sup(A \cup B)}{P(A) * P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

	Basketbal I	Not basketba II	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

- Negative correlation between playing basketball and eating cereal as shown by chisquare and lift values
- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more interesting, although with lower support and confidence

Measures of Interestingness

symbol	measure	range	formula
ϕ	ϕ -coefficient	-11	$\frac{P(A,B)-P(A)P(B)}{P(A)P(B)P(A)P(B)P(A)P(B)P(B)}$
Q	Yule's Q	-1 1	$ \sqrt{P(A)P(B)(1-P(A))(1-P(B))} \underline{P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)} \underline{P(A,B)P(\overline{A},\overline{B}) + P(A,\overline{B})P(\overline{A},B)} $
Y	Yule's Y	-1 1	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
k	Cohen's	-1 1	$\frac{P(A,B) + P(\overline{A}, \overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.250.25	P(A,B) - P(A)P(B)
F	Certainty factor	-1 1	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
AV	added value	-0.51	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	01	$\frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
M	Mutual Information	01	$\frac{\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i) P(B_J)}}{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	01	$\max(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(B A)}{P(\overline{B})}))$
			$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$
s	support	$0 \dots 1$	P(A,B)
c	confidence	$0 \dots 1$	max(P(B A), P(A B))
L	Laplace	$0 \dots 1$	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	0 1	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
α	all_confidence	$0 \dots 1$	$\frac{P(A,B)}{\max(P(A),P(B))}$
0	odds ratio	$0\ldots\infty$	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	$0 \dots \infty$	$\frac{P(A,B)}{P(A)P(B)}$
S	Collective strength	$0 \dots \infty$	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$ $\sum_{i} \frac{(P(A_{i})-E_{i})^{2}}{E_{i}}$
χ^2	χ^2	$0 \dots \infty$	$\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$

Lift, χ^2 and Null Transactions

- Null transactions are transactions that contain none of the items in the rule.
- Null transactions can outweigh the number of individual associations because many transactions may not have any of the items of interest
- Lift and χ^2 are both sensitive to null transactions
 - They can't distinguish interesting pattern association relationships because they are both strongly influenced by null transactions
- Both measures are sensitive to n
- It is desirable to have a measure that removes the influence of null transactions
- Null-invariant measures

Null-Invariant Measures

Table 6: Properties of interestingness measures. Note that none of the measures satisfies all the properties.

Symbol	Measure	Range	P1	P2	P3	01	O2	O3	O3'	O4
ϕ	ϕ -coefficient	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Goodman-Kruskal's	$0\cdots 1$	Yes	No	No	Yes	No	No*	Yes	No
α	odds ratio	$0\cdots 1\cdots \infty$	Yes*	Yes	Yes	Yes	Yes	Yes^*	Yes	No
Q	Yule's Q	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Y	Yule's Y	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	$-1\cdots 0\cdots 1$	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	$0\cdots 1$	Yes	Yes	Yes	No**	No	No*	Yes	No
J	J-Measure	$0\cdots 1$	Yes	No	No	No**	No	No	No	No
G	Gini index	$0\cdots 1$	Yes	No	No	No**	No	No*	Yes	No
s	Support	$0\cdots 1$	No	Yes	No	Yes	No	No	No	No
c	Confidence	$0\cdots 1$	No	Yes	No	No**	No	No	No	Yes
L	Laplace	$0\cdots 1$	No	Yes	No	No**	No	No	No	No
V	Conviction	$0.5\cdots 1\cdots \infty$	No	Yes	No	No**	No	No	Yes	No
I	Interest	$0\cdots 1\cdots \infty$	Yes*	Yes	Yes	Yes	No	No	No	No
IS	Cosine	$0 \cdots \sqrt{P(A,B)} \cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	$-0.25\cdots0\cdots0.25$	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	$-1 \cdots 0 \cdots 1$	Yes	Yes	Yes	No**	No	No	Yes	No
AV	Added value	$-0.5\cdots 0\cdots 1$	Yes	Yes	Yes	No**	No	No	No	No
S	Collective strength	$0\cdots 1\cdots \infty$	No	Yes	Yes	Yes	No	Yes^*	Yes	No
ζ	Jaccard	$0\cdots 1$	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$(\frac{2}{\sqrt{3}}-1)^{1/2}[2-\sqrt{3}-\frac{1}{\sqrt{3}}]\cdots 0\cdots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No**	No	No	No	No

```
where: P1: O(\mathbf{M}) = 0 if det(\mathbf{M}) = 0, i.e., whenever A and B are statistically independent.
```

- P2: $O(M_2) > O(M_1)$ if $M_2 = M_1 + [k k; -k k]$.
- P3: $O(\mathbf{M_2}) < O(\mathbf{M_1})$ if $\mathbf{M_2} = \mathbf{M_1} + [0 \ k; \ 0 \ -k]$ or $\mathbf{M_2} = \mathbf{M_1} + [0 \ 0; \ k \ -k]$.
- O1: Property 1: Symmetry under variable permutation.
- O2: Property 2: Row and Column scaling invariance.
- O3: Property 3: Antisymmetry under row or column permutation.
- O3': Property 4: Inversion invariance.
- O4: Property 5: Null invariance.
- Yes*: Yes if measure is normalized.
- No*: Symmetry under row or column permutation.
- No^{**}: No unless the measure is symmetrized by taking max(M(A, B), M(B, A)).

Comparison of Interestingness Measures

Null-(transaction) invariance is crucial for correlation analysis

•	Lift	and	χ^2	are	not	null-	inva	ariant	
---	------	-----	----------	-----	-----	-------	------	--------	--

5 null-invariant measures

	Milk	No Milk	Sum (row)
Coffee	m, c	~m, c	С
No Coffee	m, ~c	~m, ~c	~c
Sum(col.) Null-1	m ransact	~m tions	Σ Kulcz
VV.1.	t. III all		Theas

	•			
Measure	Definition	Range	Null-Invaria	n
$\chi^2(a,b)$	$\sum_{i,j=0,1} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0,\infty]$	No	
Lift(a, b)	$\frac{P(ab)}{P(a)P(b)}$	$[0,\infty]$	No	
AllConf(a, b)	$\frac{sup(ab)}{max\{sup(a), sup(b)\}}$	[0, 1]	Yes	
Coherence(a,b)	$\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$	[0, 1]	Yes	
Cosine(a,b)	$\frac{sup(ab)}{\sqrt{sup(a)sup(b)}}$	[0, 1]	Yes	
Kulc(a,b)	$\frac{sup(ab)}{2}(\frac{1}{sup(a)} + \frac{1}{sup(b)})$	[0, 1]	Yes	
MaxConf(a,b)	$max\{\frac{sup(ab)}{sup(a)}, \frac{sup(ab)}{sup(b)}\}$	[0, 1]	Yes	
TC-1-1- 9	T-4			

Interestingness measure definitions.

ynski

ure (1927)

Null-invariant

Data set	mc	$\overline{m}c$	$m\tilde{c}$	\overline{mc}	χ^2	Lift	AllConf	Coherence	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	90557	9.26	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0	1	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	670	8.44	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	24740	25.75	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	8173	9.18	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	965	1.97	0.01	0.01	0.10	0.5	0.99

Table 2. Example data sets. Subtle: They disagree

Which Null Invariant Measure is Better?

 IR (Imbalance Ratio): measures the imbalance of two itemsets A and B in rule implications

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is balanced & neutral
 - D₅ is imbalanced & neutral

D_c is very imbalanced & neutral

Data	mc	$\overline{m}c$	$m\overline{c}$	\overline{mc}	$all_conf.$	$max_conf.$	Kulc.	cosine	$_{ m IR}$
$\overline{D_1}$	10,000	1,000	1,000	100,000	0.91	0.91	0.91	0.91	0.0
D_2	10,000	1,000	1,000	100	0.91	0.91	0.91	0.91	0.0
D_3	100	1,000	1,000	100,000	0.09	0.09	0.09	0.09	0.0
D_4	1,000	1,000	1,000	100,000	0.5	0.5	0.5	0.5	0.0
D_5	1,000	100	10,000	100,000	0.09	0.91	0.5	0.29	0.89
D_{6}	1.000	10	100,000	100,000	0.01	0.99	0.5	0.10	0.99