

Mục đích thí nghiệm

Làm quen với phương pháp phân tích PIXE: Chuẩn năng lượng, xác định các nguyên tố có mặt trên phổ, xác định hàm lượng của mẫu mỏng.

Giới thiệu chung

Phương pháp phân tích nguyên tố dựa vào nguyên lý kích thích phát tia X bằng proton (tên tiếng anh: Particle Induce X-Ray Emission, viết tắt: PIXE) là một trong các phương pháp phân tích không phá hủy mẫu tiên tiến, được ứng dụng rộng rãi trong nhiều lĩnh vực như y học, khảo cổ, môi trường... Các ưu điểm nổi bật của phương pháp này là:

- Có thể phân tích đồng thời nhiều nguyên tố trong dài điện tích nguyên tố Z rộng
- Độ nhạy phân tích cao, cỡ ppm
- Thời gian phân tích ngắn (chỉ cần vài phút)
- Khả năng xác định phân bố trên bề mặt bằng kỹ thuật μPIXE, khả năng phân tích trực tiếp ngoài môi trường chân không

Nguyên lý cơ bản của phương pháp PIXE dựa trên sự tạo thành tia X đặc trưng khi chùm hạt ion bắn vào bia, có năng lượng đặc trưng cho mỗi nguyên tố. Để tạo ra tia X đặc trưng, hạt tích điện (proton) bắn vào bia sẽ ion hóa các nguyên tử bằng tương tác Coulomb. Các proton này sẽ tạo ra các lỗ trống ở các lớp điện tử nằm sâu bên trong nguyên tử. Một hạt electron từ lớp ngoài sẽ nhảy vào để lấp lỗ trống ấy.

Hình 1. a) Minh họa quá trình tạo tia X đặc trưng bằng nguồn kích thích bên ngoài (chùm hạt proton). b) Minh họa quá trình phát electron auger

Bài thực tập số 2 Tìm hiểu về phương pháp phân tích nguyên tố dựa vào nguyên lý kích thích phát tia X bằng proton (PIXE)

Trong khoảng thời gian rất ngắn nguyên tử bị kích thích sẽ khử kích thích để trở về trạng thái cơ bản bằng cách phát ra một photon với năng lượng nhất định hoặc gián tiếp bằng cách truyền năng lượng cho một electron (gọi là electron Auger). Năng lượng của tia X phát ra bằng với hiệu năng lượng liên kết giữa lớp chứa electron trước khi nhảy vào chiếm chỗ và lớp chứa lỗ trống mà electron chiếm chỗ.

Dựa vào cấu trúc các lớp, phân lớp electron trong nguyên tử, người ta quy ước gọi tên các vạch tia X đặc trưng phát ra khi điện tử nhảy đến các lớp K, L, M (lớp trong cùng) của nguyên tử là tên của các lớp tương ứng. Ngoài ra người ta còn phân biệt các vạch phổ tương ứng bằng cách gán thêm chữ cái hy lạp α , β , γ và một chỉ số theo sau đó, những ký hiệu này thường phản ánh cường độ tương đối của mỗi vạch, ví dụ vạch α_1 có cường độ mạnh nhất trong dãy. Ví dụ về cách ký hiệu này: $K\alpha_1$, L β_2

Hình 2. Sơ đồ nguồn gốc các vạch tia X đặc trưng

Năng lượng của các tia X đặc trưng đối với từng nguyên tố có thể tra cứu trong phần phụ lục của tài liệu này.

Hình 3. Phổ PIXE của mẫu địa chất

Phổ PIXE bao gồm 2 thành phần: Các đỉnh tương ứng với tia X đặc trưng nằm trên nền bức xạ hãm liên tục (Như các đỉnh tháp được xây trên sườn đồi).

Mỗi nguyên tố sẽ phát ra các vạch tia X với năng lượng hoàn toàn xác định đặc trưng cho nguyên tố đó. Từ cường độ của các vạch tia X đặc trưng(diện tích đỉnh phổ đã trừ phông), ta có thể xác định được hàm lượng các nguyên tố có trong mẫu.

Xét một trường hợp đơn giản trong phân tích PIXE, khi chùm proton được gia tốc bắn vào bia có độ dày sao cho năng lượng của chùm tia mất mát không đáng kể khi đi qua bia. Đối với mẫu loại này, người ta thường quan tâm đến hàm lượng nguyên tố trên một đơn vị diện tích(còn gọi là mật độ mặt), đơn vị thường là $\mu g/cm^2$ hay số nguyên tử/cm². Đối với một nguyên tố có số hiệu nguyên tử Z trên bia, ta có:

Xác suất ion hóa của chùm proton đối với từng lớp(K,L,M..) đặc trưng bởi tiết diện ion hóa σ (đơn vị barn) phụ thuộc vào năng lượng chùm proton tới E₀, số sự kiện ion hóa được tạo ra bởi N_p hạt proton trên bia có mật đô mặt N_t (số nguyên tử /cm²) là:

$$Y_{ion\ hoa} = N_p \sigma_Z(E_0) N_t$$

Bài thực tập số 2

Tìm hiểu về phương pháp phân tích nguyên tố dựa vào nguyên lý kích thích phát tia X bằng proton (PIXE)

Xét theo đơn vị mật độ mặt $\mu g/cm^2$, công thức trên có thể viết thành

$$Y_{ionization} = N_p \sigma_Z(E_0) \frac{N_{AV} M_A(Z)}{A_Z}$$

- N_{AV} là số Avogadro
- $M_A(Z)$ là khối lượng của nguyên tố trên một đơn vị diện tích $(\mu g/cm^2)$
- A_Z là khối lượng nguyên tử của nguyên tố Z trên mẫu.
- Xác suất để sự kiện ion hóa đó thể gây ra quá trình phát tia X đặc trưng cho từng lớp điện tử (K,L,M) gọi là hiệu suất huỳnh quang ω_Z , số sự kiện dẫn đến phát tia X đặc trưng là:

$$Y_{fluorescense} = Y_{ionization} \cdot \omega_Z$$

- Gọi b_Z là hệ số tỉ lệ về cường độ đặc trưng cho một vạch tia X xác định trên toàn bộ số tia X được phát ra từ một lớp (Ví dụ tỉ lệ giữa số tia X đặc trưng K α phát ra trên tổng số tia X đặc trưng phát ra từ lớp K). Khi đó số tia X đặc trưng phát ra tương ứng với một vạch tia X xác định là:

$$Y_{characteristic} = Y_{fluorescense} \cdot b_Z$$

- Các tia X đặc trưng phát ra được ghi nhận bởi detector đo tia X, thường sử dụng detector Si(Li), detector HpGe hay Silicon drift detector (SDD). Mỗi loại detector có một hiệu suất ghi nội xác định $\varepsilon_{intrinsic}$

$$\varepsilon_{intrinsic} = \frac{S \~o b\'w c x \verb|a| ghi nh \verb|a| n dược}{S \~o b\'w c x \verb|a| tới vùng nh \verb|a| y của detector}$$

Số bức xạ ghi nhận được trên phổ PIXE chính là diện tích đỉnh phổ tia X (đã trừ phông) S

Ngoài ra, tương ứng với mỗi hình học đo xác định một giá trị góc đặc Ω (đơn vị steradian) tương ứng với "góc nhìn" từ điểm phát bức xạ (trong trường hợp khoảng cách xa, có thể coi là nguồn điểm) tới vùng nhạy của detector.

Ở khoảng giữa bia và detector, người ta thường đặt vào đó một tấm foil mỏng để ngăn không cho các hạt proton tán xạ từ bia đi đến detector (vì có thể làm hỏng detector hoặc gây ra nhiễu không mong muốn). Tấm foil mỏng này sẽ gây ra sự suy giảm về cường độ tia X tới detector. Gọi T là hệ số suy giảm. Kết hợp hai điều kiên kể trên:

Số bức xạ tới vùng nhạy của detector =
$$Y_{characteristic} \cdot T \cdot \frac{\Omega}{4\pi}$$

Trong đó $I = I_0 \cdot T$ với I_0 là cường độ tia X trước khi đi qua foil, và I là cường độ tia X sau khi đi qua foil. Đối với tấm foil làm bằng vật liệu Mylar, giá trị T được xác định gần đúng bởi công thức:

$$T = e^{\frac{-470.168x}{E^{2.9897}}}$$

Với E năng lượng của tia X tương ứng (đơn vị KeV); x là bề dày của foil (đơn vị mm).

Kết hợp các công thức trên, ta thu được công thức xác định hàm lượng của một nguyên tố Z trên mẫu mỏng dựa vào diện tích đỉnh phổ tương ứng S như sau:

$$M_A(Z) = \frac{4\pi A_Z SH}{N_p \sigma_Z(E_0) N_{AV} \omega_Z b_Z \varepsilon_{intrinsic} T\Omega}$$
(*)

Ở đây ta thêm vào hệ số hiệu chỉnh H liên quan đến sai số hệ thống của hệ đo.

Bài thực tập số 2

Tìm hiểu về phương pháp phân tích nguyên tố dựa vào nguyên lý kích thích phát tia X bằng proton (PIXE)

Cường độ chùm ion tích điện +q trong hệ máy gia tốc thường được đo bởi bộ đếm điện tích, từ giá trị điện tích Q (Đơn vị C) thu được ở mỗi phép đo, số hạt proton tới bia được tính bởi:

$$N_p = \frac{Q}{eq} \tag{**}$$

Trong đó e=1.60217646 × 10⁻¹⁹ C là giá trị điện tích nguyên tố.

THỰC NGHIỆM 1: Quan sát phổ PIXE trên mẫu chuẩn, thực hiện phép chuẩn năng lượng cho hệ đo.

Dụng cụ thí nghiệm

- Máy gia tốc tĩnh điện Tandem 5SDH-2, cao thế đỉnh cực đại 1.7 MV.
- Hệ đo phổ tia X bao gồm: Detector Silicon Drift (SDD), độ phân giải năng lượng 138 eV tại đỉnh 5.9 KeV của Mn, hệ compact gồm thế nuôi, tiền khuếch đại, khuếch đại, bộ phân tích đa kênh (MCA), máy tính thu thập dữ liêu.
- Detector được đặt ở góc 32.8 độ so với hướng chùm tia
- Bia sử dụng:
- Mẫu chuẩn mỏng chứa CsBr có mật độ mặt 47.7 $\mu g/cm^2$ được cấy trên bề mặt đế Mylar độ dày 3.5 μm
- Mẫu chuẩn dày NIST611, thông tin về các nguyên tố có mặt trong mẫu được gửi kèm tài liệu này.

Hình 4. Sơ đồ bố trí thí nghiệm

Bài thực tập số 2

Tìm hiểu về phương pháp phân tích nguyên tố dựa vào nguyên lý kích thích phát tia X bằng proton (PIXE)

Các bước tiến hành

- 1. Thiết lập hệ đo như hình vẽ, kiểm tra các kết nối.
- 2. Khởi động hệ máy gia tốc, gia tốc chùm tia với các thông số sau:
 - Loai chùm tia: H⁺
 - Năng lượng: 2.5 MeV
 - Cường độ chùm tia: <5 nA đối với mẫu CsBr, ~10-15 nA đối với mẫu NIST
- 3. Điều chỉnh vị trí của detector SDD thích hợp (theo chỉ dẫn của g.v hướng dẫn), ghi lại thông số về góc khối tương ứng với vi trí đó.
- 4. Ghi lại thông số bề dày của foil Mylar (được đặt sẵn)
- 5. Bật nút nguồn của bộ compact của detector SDD lên.
- 6. Đưa mẫu CsBr và NIST611 vào buồng chiếu mẫu (theo chỉ dẫn của g.v hướng dẫn).
- 7. Khởi động chương trình thu thập dữ liệu RC43
 - a. Từ màn hình chính,click chọn chương trình RC43, 2 cửa sổ sẽ xuất hiện sau đó.
 - b. Chọn cửa sổ NEC RC43 ANALYTICAL DATA COLLECTION, vào mục DATA COLLECTION, chọn Collect data.
 - c. Cửa sổ Full Energy Data Collection sẽ xuất hiện, bỏ chọn ở phần MCAs displayed 3 lựa chọn RBG, RBS và NRA.

Thực hiện các thao tác sau đối với 2 mẫu CsBr và NIST.

- 8. Điều chỉnh cường độ chùm tia theo các giá trị yêu cầu tương ứng với mỗi mẫu.
- 9. Sử dụng cửa sổ Manipulator tiến hành điều chỉnh vị trí của mẫu sao cho vị trí chùm tia được đánh dấu trên màn hình nằm trọn mẫu và góc giữa chùm tia và pháp tuyến mặt phẳng mẫu α=0 (theo chỉ dẫn của g.v hướng dẫn).
- 10. Đặt trước giá trị tổng điện tích ghóp của chùm hạt trên cửa sổ Full Energy Data Collection, ở ô charge uC. Đặt tên file dữ liêu tùy ý ở ô Filename.
- 11. Kiểm tra lại một lần nữa các thông số cần thiết để tiến hành thí nghiệm
- 12. Trên cửa sổ Full Energy Data Collection, click vào nút Manual collect để bắt đầu cho chùm proton chiếu vào mẫu. Quan sát phổ PIXE thu được, chỉ ra vùng nền liên tục và các đỉnh tia X đặc trưng.
- 13. Khi giá trị bên phải trong ô Charge uC về 0, phép đo kết thúc, chương trình sẽ tự động lưu lại file có chứa phổ PIXE ở một thư mục nhất định.
- 14. Ghi nhân lai các thông số của thí nghiệm và phổ PIXE thu được.

Bài tâp

- 1. Từ phổ PIXE thu được của mẫu CsBr, thực hiện phép chuẩn năng lượng cho hệ đo sử dụng các vạch phổ $L\beta_1, L\beta_2, L\gamma_1$ của Cs; Vạch $K\beta_1$ của Br. Năng lượng của từng vạch có thể được tra cứu trong bảng gửi kèm tài liệu này.
- 2. Từ giá trị chuẩn năng lượng vừa tìm được, xác định(định tính) các nguyên tố có thể có mặt trên phổ PIXE thu được của mẫu NIST611, ngoài ra xác định các nguyên tố còn lại (contamination) trên phổ PIXE thu được của mẫu CsBr.
- 3. Từ công thức (*) và (**) và các thông số từ điều kiện thí nghiệm và phổ thu được (diện tích đỉnh phổ tương ứng, dòng thu được, góc khối...) xác định hàm lượng (mật độ mặt) của nguyên tố Br trên mẫu mong CsBr. So sánh với giá trị chuẩn. cho trước (Chú ý giá trị H được cho trước bởi g.v hướng dẫn), nhận xét.

Câu hỏi

- 1. Nêu cơ chế phát bức xạ hãm tạo nên nền liên tục trong phố PIXE.
- 2. Trình bày cơ chế suy giảm của tia X và cơ chế hãm của hạt tích điện trong vật liệu (liên quan trực tiếp đến bài toán sử dụng foil Mylar).
- 3. Trình bày các quá trình xảy ra khi sử dụng bia là mẫu dày (Gợi ý: Năng lượng chùm proton khi đi sâu vào trong mẫu sẽ thay đổi).

X-Ray Data Booklet Table 1-2. Photon energies, in electron volts, of principal K-, L-, and M-shell emission lines.

Element	Κ α 1	Κ α ₂	К β 1	L a 1	L a 2	L β 1	L β ₂	Lη	Μ α 1
3 Li	54.3								
4 Be	108.5								
5 B	183.3								
6 C	277								
7 N	392.4								
8 O	524.9								
9 F	676.8								
10 Ne	848.6	848.6							
11 Na	1,040.98	1,040.98	1,071.1						
12 Mg	1,253.60	1,253.60	1,302.2						
13 Al	1,486.70	1,486.27	1,557.45						
14 Si	1,739.98	1,739.38	1,835.94						
15 P	2,013.7	2,012.7	2,139.1						
16 S	2,307.84	2,306.64	2,464.04						
17 Cl	2,622.39	2,620.78	2,815.6						
18 Ar	2,957.70	2,955.63	3,190.5						
19 K	3,313.8	3,311.1	3,589.6						
20 Ca	3,691.68	3,688.09	4,012.7	341.3	341.3	344.9			
21 Sc	4,090.6	4,086.1	4,460.5	395.4	395.4	399.6			

Table 1-2. Energies of x-ray emission lines (continued).

Element	K α 1	Κ α ₂	К β 1	L a 1	L a ₂	L β 1	L β ₂	Lη	$M\alpha_1$
22 Ti	4,510.84	4,504.86	4,931.81	452.2	452.2	458.4			
23 V	4,952.20	4,944.64	5,427.29	511.3	511.3	519.2			
24 Cr	5,414.72	5,405.509	5,946.71	572.8	572.8	582.8			
25 Mn	5,898.75	5,887.65	6,490.45	637.4	637.4	648.8			
26 Fe	6,403.84	6,390.84	7,057.98	705.0	705.0	718.5			
27 Co	6,930.32	6,915.30	7,649.43	776.2	776.2	791.4			
28 Ni	7,478.15	7,460.89	8,264.66	851.5	851.5	868.8			
29 Cu	8,047.78	8,027.83	8,905.29	929.7	929.7	949.8			
30 Zn	8,638.86	8,615.78	9,572.0	1,011.7	1,011.7	1,034.7			
31 Ga	9,251.74	9,224.82	10,264.2	1,097.92	1,097.92	1,124.8			
32 Ge	9,886.42	9,855.32	10,982.1	1,188.00	1,188.00	1,218.5			
33 As	10,543.72	10,507.99	11,726.2	1,282.0	1,282.0	1,317.0			
34 Se	11,222.4	11,181.4	12,495.9	1,379.10	1,379.10	1,419.23			
35 Br	11,924.2	11,877.6	13,291.4	1,480.43	1,480.43	1,525.90			
36 Kr	12,649	12,598	14,112	1,586.0	1,586.0	1,636.6			
37 Rb	13,395.3	13,335.8	14,961.3	1,694.13	1,692.56	1,752.17			
38 Sr	14,165	14,097.9	15,835.7	1,806.56	1,804.74	1,871.72			
39 Y	14,958.4	14,882.9	16,737.8	1,922.56	1,920.47	1,995.84			
40 Zr	15,775.1	15,690.9	17,667.8	2,042.36	2,039.9	2,124.4	2,219.4	2,302.7	

41 Nb	16,615.1	16,521.0	18,622.5	2,165.89	2,163.0	2,257.4	2,367.0	2,461.8	
42 Mo	17,479.34	17,374.3	19,608.3	2,293.16	2,289.85	2,394.81	2,518.3	2,623.5	
43 Tc	18,367.1	18,250.8	20,619	2,424	2,420	2,538	2,674	2,792	
44 Ru	19,279.2	19,150.4	21,656.8	2,558.55	2,554.31	2,683.23	2,836.0	2,964.5	
45 Rh	20,216.1	20,073.7	22,723.6	2,696.74	2,692.05	2,834.41	3,001.3	3,143.8	
46 Pd	21,177.1	21,020.1	23,818.7	2,838.61	2,833.29	2,990.22	3,171.79	3,328.7	
47 Ag	22,162.92	21,990.3	24,942.4	2,984.31	2,978.21	3,150.94	3,347.81	3,519.59	
48 Cd	23,173.6	22,984.1	26,095.5	3,133.73	3,126.91	3,316.57	3,528.12	3,716.86	
49 In	24,209.7	24,002.0	27,275.9	3,286.94	3,279.29	3,487.21	3,713.81	3,920.81	
50 Sn	25,271.3	25,044.0	28,486.0	3,443.98	3,435.42	3,662.80	3,904.86	4,131.12	
51 Sb	26,359.1	26,110.8	29,725.6	3,604.72	3,595.32	3,843.57	4,100.78	4,347.79	
52 Te	27,472.3	27,201.7	30,995.7	3,769.33	3,758.8	4,029.58	4,301.7	4,570.9	
53 I	28,612.0	28,317.2	32,294.7	3,937.65	3,926.04	4,220.72	4,507.5	4,800.9	
54 Xe	29,779	29,458	33,624	4,109.9		_	_		
55 Cs	30,972.8	30,625.1	34,986.9	4,286.5	4,272.2	4,619.8	4,935.9	5,280.4	
56 Ba	32,193.6	31,817.1	36,378.2	4,466.26	4,450.90	4,827.53	5,156.5	5,531.1	
57 La	33,441.8	33,034.1	37,801.0	4,650.97	4,634.23	5,042.1	5,383.5	5,788.5	833
58 Ce	34,719.7	34,278.9	39,257.3	4,840.2	4,823.0	5,262.2	5,613.4	6,052	883
59 Pr	36,026.3	35,550.2	40,748.2	5,033.7	5,013.5	5,488.9	5,850	6,322.1	929
60 Nd	37,361.0	36,847.4	42,271.3	5,230.4	5,207.7	5,721.6	6,089.4	6,602.1	978
61 Pm	38,724.7	38,171.2	43,826	5,432.5	5,407.8	5,961	6,339	6,892	_
62 Sm	40,118.1	39,522.4	45,413	5,636.1	5,609.0	6,205.1	6,586	7,178	1,081

Table 1-2. Energies of x-ray emission lines (continued).

Element	Kα ₁	$K\alpha_2$	Κ β 1	$L\alpha_1$	L α ₂	L β 1	L β ₂	Lη	$M \alpha_1$
63 Eu	41,542.2	40,901.9	47,037.9	5,845.7	5,816.6	6,456.4	6,843.2	7,480.3	1,131
64 Gd	42,996.2	42,308.9	48,697	6,057.2	6,025.0	6,713.2	7,102.8	7,785.8	1,185
65 Tb	44,481.6	43,744.1	50,382	6,272.8	6,238.0	6,978	7,366.7	8,102	1,240
66 Dy	45,998.4	45,207.8	52,119	6,495.2	6,457.7	7,247.7	7,635.7	8,418.8	1,293
67 Ho	47,546.7	46,699.7	53,877	6,719.8	6,679.5	7,525.3	7,911	8,747	1,348
68 Er	49,127.7	48,221.1	55,681	6,948.7	6,905.0	7,810.9	8,189.0	9,089	1,406
69 Tm	50,741.6	49,772.6	57,517	7,179.9	7,133.1	8,101	8,468	9,426	1,462
70 Yb	52,388.9	51,354.0	59,370	7,415.6	7,367.3	8,401.8	8,758.8	9,780.1	1,521.4
71 Lu	54,069.8	52,965.0	61,283	7,655.5	7,604.9	8,709.0	9,048.9	10,143.4	1,581.3
72 Hf	55,790.2	54,611.4	63,234	7,899.0	7,844.6	9,022.7	9,347.3	10,515.8	1,644.6
73 Ta	57,532	56,277	65,223	8,146.1	8,087.9	9,343.1	9,651.8	10,895.2	1,710
74 W	59,318.24	57,981.7	67,244.3	8,397.6	8,335.2	9,672.35	9,961.5	11,285.9	1,775.4
75 Re	61,140.3	59,717.9	69,310	8,652.5	8,586.2	10,010.0	10,275.2	11,685.4	1,842.5
76 Os	63,000.5	61,486.7	71,413	8,911.7	8,841.0	10,355.3	10,598.5	12,095.3	1,910.2
77 Ir	64,895.6	63,286.7	73,560.8	9,175.1	9,099.5	10,708.3	10,920.3	12,512.6	1,979.9
78 Pt	66,832	65,112	75,748	9,442.3	9,361.8	11,070.7	11,250.5	12,942.0	2,050.5
79 Au	68,803.7	66,989.5	77,984	9,713.3	9,628.0	11,442.3	11,584.7	13,381.7	2,122.9
80 Hg	70,819	68,895	80,253	9,988.8	9,897.6	11,822.6	11,924.1	13,830.1	2,195.3
81 Tl	72,871.5	70,831.9	82,576	10,268.5	10,172.8	12,213.3	12,271.5	14,291.5	2,270.6

82 Pb	74,969.4	72,804.2	84,936	10,551.5	10,449.5	12,613.7	12,622.6	14,764.4	2,345.5
83 Bi	77,107.9	74,814.8	87,343	10,838.8	10,730.91	13,023.5	12,979.9	15,247.7	2,422.6
84 Po	79,290	76,862	89,800	11,130.8	11,015.8	13,447	13,340.4	15,744	
85 At	81,520	78,950	92,300	11,426.8	11,304.8	13,876	_	16,251	
86 Rn	83,780	81,070	94,870	11,727.0	11,597.9	14,316	_	16,770	
87 Fr	86,100	83,230	97,470	12,031.3	11,895.0	14,770	14,450	17,303	
88 Ra	88,470	85,430	100,130	12,339.7	12,196.2	15,235.8	14,841.4	17,849	
89 Ac	90,884	87,670	102,850	12,652.0	12,500.8	15,713		18,408	
90 Th	93,350	89,953	105,609	12,968.7	12,809.6	16,202.2	15,623.7	18,982.5	2,996.1
91 Pa	95,868	92,287	108,427	13,290.7	13,122.2	16,702	16,024	19,568	3,082.3
92 U	98,439	94,665	111,300	13,614.7	13,438.8	17,220.0	16,428.3	20,167.1	3,170.8
93 Np				13,944.1	13,759.7	17,750.2	16,840.0	20,784.8	
94 Pu			_	14,278.6	14,084.2	18,293.7	17,255.3	21,417.3	
95 Am		_	_	14,617.2	14,411.9	18,852.0	17,676.5	22,065.2	

TABLE 2. K-shell x-ray production by protons in target elements from beryllium to uranium^{a,b}—Continued

E_1	σ^{Exper}	σ^{Exper}	E_1	σ^{Exper}	σ ^{Exper}	E_1	σ^{Exper}	σ^{Exper}	
(MeV)	(barn)	$\sigma^{ ext{ECPSSR}}$	(MeV)	(barn)	σ^{ECPSSR}	(MeV)	(barn)	σ ^{ECPSSR}	Ref.
1.00+0	2.00+0	1.11+0	2.00+0	1.50+1	1.11+0				39
	7.16-2			2.91-1		8.0	0-1 8.49	-1 9.97-1	61
	1.86+0			2.81+0		1.4	0+0 4.41	HO 8.68-1	
	6.54+0		1.80+0	8.57+0	8.37-1	2.0	0+0 1.15	F1 8.54 - 1	
3.00+0	3.42+1	9.92-1							94
	2.26+2			L 2.74+2	1.24+0	1.4	0+1 2.80-	F2 1.16+0	
	2.98+2			1 3.22+2	1.22+0	2.0	0+1 3.28	F2 1.21+0	
2.20+1	3.10+2	1.12+0							
5.00-1	3.19-1	1.06+0	8.00-	8.28-1	9.72-1			+0 9.93 - 1	113
	3.18+0			4.89+0	9.62-1	1.6	0+0 7.21	⊦0 9.70 - 1	
80+0	1.04+1	1.02+0	2.00+0	1.34+1	9.95-1	2.2	0+0 1.62	F1 9.52-1	
2.40+0	1.90+1	9.04-1							
.00+0	1.50+2	1.10+0							114
2.00-1	2.08-3	1.19+0	2.50-1	l 6.20-3	9.97-1	3.0	0-1 1.44	-2 9.16-1	115
.50-1	3.59-2	1.11+0	4.00-	5.86-2	1.00+0			-2 9.48-1	110
.00-1	1.52-1	1.03+0	6.00-3	3.06-1	1.02+0	7.0	0-1 5.46	-1 1.03+0	
.00-1	8.70-1	1.02+0	9.00-3	1.28+0	1.01+0			HO 9.93-1	
1.10+0	2.39+0	9.78-1	1.20+0	3.15+0	9.83-1	1.3	0+0 4.02	FO 9.84 - 1	
1.40+0	5.05+0	9.94-1	1.50+0	5.88+0	9.48-1	1.6	0+0 7.39+	⊦0 9.94 - 1	
L.70+0	8.46+0	9.63-1	1.80+0	9.83+0	9.60-1	1.9	0+0 1.13	⊦1 9.57 - 1	
2.00+0	1.28+1	9.51-1							
.00+0	1.54+2	1.13+0							125
55 B1	romine		Fluoresce	ence yie	1d = 0.6	15			
5.00-1	3.34-1	1.50+0	8.00-1	l 7.93-1	1.24+0	1.0	0+0 1.56+	HO 1.14+0	61
1.20+0	2.71+0	1.10+0	1.40+0	4.47+0	1.13+0			1.04+0	
.80+0	8.31+0	1.03+0	2.00+0	1.04+1	9.75-1				
.50+0	4.00+0	8.29-1	2.00+0	9.95+0	9.33-1	2.2	5+0 1 29+	F1 9.00-1	143
.50+0	1.74+1	9.37-1	2.75+0			3.0	0+0 2.95+	1 1.05+0	143
6 Kı	rypton		Fluoresce	ence yie	ld = 0.6	43			
.50+0	5.90+0	1.56+0	2.00+0	1.30+1	1.54+0	2.50	0+0 2.10+	+1 1.41 + 0	40
	4.30+1				1.48+0			1.50+0	40
.50+0	7.70+1	1.50+0							
.50+0	6.23+0	1.65+0	2.00+0	1.32+1	1.56+0	2.50	0+0 2.25+	+1 1.51+0	48
			3.50+0	4.74+1	1.49+0	4.00		1.55+0	
.50+0	7.92+1	1.55+0	3.50+0 5.00+0	1.02+2	1.67+0				
.00+0	3.15+1	1.38+0							65
00-1	7 10-2	0 001	8.16-1	E 00 1	0 07 1	Λ 41	- 1 - 00	1 0 00 1	
	1.00+0		0.10-1	1 3.2U-1	y.y/-1 0 20-1	9.13	3TU \ 30.	·1 8.99-1 ·0 8.95-1	68
	6.80+0			2.20+0	J. 2U-1	1.0	TU 4.301	TU 0.93-1	
. 00 00	J. 00TU	0.05-1							

Particle-Induced X-Ray Emission Data

Table A16.8. K- and L-subshell fluorescence yields and Coster–Kronig probabilities. The K fluorescence yields are from a semiempirical fit by W. Bambyneks to selected experimental data reported in Hubbell, J. H., Trehan, P. N., Singh, N., Chand, B., Mehta, D., Garg, M. L., Garg, R. R., Singh, S., and Puri, S. (1994), *J. Phys. Chem. Ref. Data* 23, 339. The **bold** L-shell quantities are from Krause, M. O. (1979), *J. Phys. Chem. Ref. Data* 8, 307. The remainder of the L-shell quantities are from Campbell, J. L. (2003), *At. Data Nucl. Data Tables* 85, 291 and Campbell, J. L. (2009) *At. Data Nucl. Data Tables* 95, 115.

\mathbf{Z}	ω_{K}	$\omega_{\mathrm{L}1}$	ω_{L2}	ω_{L3}	\mathbf{f}_{12}	f_{13}	f ₂₃
3	0.000293						
4	0.000693						
5	0.00141						
6	0.00258						
7	0.00435						
8	0.00691						
9	0.0104						
10	0.0152						
11	0.0213						
12	0.0291						
13	0.0387						
14	0.0504						
15	0.0642						
16	0.0804						
17	0.0989						
18	0.1199						
19	0.1432						
20	0.1687						
21	0.1962						
22	0.2256						
23	0.2564						
24	0.2885						
25	0.3213	0.00084	0.005	0.005	0.3	0.58	
26	0.3546	0.001	0.0063	0.0063	0.3	0.57	
27	0.3880	0.0012	0.0077	0.0077	0.3	0.56	
28	0.4212	0.0014	0.0086	0.0093	0.3	0.55	0.028
29	0.4538	0.0016	0.01	0.011	0.3	0.54	0.028
30	0.4857	0.0018	0.011	0.012	0.29	0.54	0.026
31	0.5166	0.021	0.012	0.013	0.29	0.53	0.032
32	0.5464	0.0024	0.013	0.015	0.28	0.53	0.05
33	0.5748	0.0028	0.014	0.016	0.28	0.53	0.063
34	0.6019	0.0032	0.016	0.018	0.28	0.52	0.076
35	0.6275	0.0036	0.018	0.02	0.28	0.52	0.088
36	0.6517	0.0041	0.02	0.022	0.27	0.52	0.073
37	0.6744	0.0046	0.022	0.024	0.27	0.52	0.08
38	0.6956	0.0051	0.024	0.026	0.27	0.52	0.087
39	0.7155	0.0059	0.026	0.028	0.26	0.52	0.094
40	0.7340	0.0068	0.028	0.031	0.26	0.52	0.1

Appendix 16

Table A16.8. K- and L-subshell fluorescence yields and Coster–Kronig probabilities. The K fluorescence yields are from a semiempirical fit by W. Bambyneks to selected experimental data reported in Hubbell, J. H., Trehan, P. N., Singh, N., Chand, B., Mehta, D., Garg, M. L., Garg, R. R., Singh, S., and Puri, S. (1994), *J. Phys. Chem. Ref. Data* 23, 339. The **bold** L-shell quantities are from Krause, M. O. (1979), *J. Phys. Chem. Ref. Data* 8, 307. The remainder of the L-shell quantities are from Campbell, J. L. (2003), *At. Data Nucl. Data Tables* 85, 291 and Campbell, J. L. (2009) *At. Data Nucl. Data Tables* 95, 115 (continued).

Z	ω_{K}	$\omega_{\mathrm{L}1}$	ω_{L2}	ω_{L3}	$\mathbf{f_{12}}$	f_{13}	\mathbf{f}_{23}
41	0.7512	0.0094	0.031	0.034	0.1	0.61	0.106
42	0.7672	0.01	0.034	0.037	0.1	0.61	0.112
43	0.7821	0.011	0.037	0.04	0.1	0.61	0.118
44	0.7958	0.012	0.04	0.043	0.1	0.61	0.124
45	0.8086	0.013	0.043	0.046	0.1	0.6	0.13
46	0.8204	0.014	0.047	0.049	0.1	0.6	0.138
47	0.8313	0.016	0.051	0.052	0.1	0.59	0.141
48	0.8415	0.018	0.056	0.056	0.1	0.59	0.143
49	0.8508	0.02	0.061	0.06	0.1	0.59	0.146
50	0.8595	0.037	0.065	0.064	0.17	0.59	0.148
51	0.8676	0.039	0.069	0.069	0.17	0.27	0.151
52	0.8750	0.041	0.074	0.074	0.18	0.28	0.153
53	0.8819	0.044	0.079	0.079	0.18	0.28	0.156
54	0.8883	0.046	0.083	0.085	0.19	0.28	0.159
55	0.8942	0.049	0.09	0.091	0.19	0.28	0.159
56	0.8997	0.052	0.096	0.097	0.19	0.28	0.159
57	0.9049	0.055	0.103	0.104	0.19	0.29	0.159
58	0.9096	0.058	0.11	0.111	0.19	0.29	0.158
59	0.9140	0.061	0.117	0.118	0.19	0.29	0.158
60	0.9181	0.064	0.136	0.134	0.19	0.3	0.158
61	0.9220	0.066	0.145	0.142	0.19	0.3	0.156
62	0.9255	0.071	0.155	0.15	0.19	0.3	0.154
63	0.9289	0.075	0.164	0.158	0.19	0.3	0.152
64	0.9320	0.102	0.175	0.167	0.19	0.279	0.150
65	0.9349	0.107	0.186	0.175	0.182	0.285	0.148
66	0.9376	0.111	0.197	0.184	0.174	0.29	0.146
67	0.9401	0.116	0.208	0.193	0.166	0.296	0.144
68	0.9425	0.121	0.219	0.203	0.158	0.301	0.143
69	0.9447	0.131	0.231	0.212	0.15	0.306	0.141
70	0.9467	0.134	0.243	0.222	0.142	0.312	0.140
71	0.9487	0.138	0.256	0.231	0.134	0.317	0.138
72	0.9505	0.141	0.268	0.241	0.126	0.322	0.136
73	0.9522	0.144	0.28	0.251	0.118	0.328	0.134
74	0.9538	0.148	0.291	0.261	0.11	0.333	0.132
75	0.9553		0.304	0.271		0.482	0.131
76	0.9567		0.318	0.282		0.482	0.130
77	0.9580	0.145	0.331	0.292	0.076	0.482	0.128
78	0.9592	0.114	0.344	0.303	0.075	0.545	0.126
79	0.9604	0.117	0.358	0.313	0.074	0.615	0.125
80	0.9615	0.121	0.37	0.322	0.072	0.615	0.123

Particle-Induced X-Ray Emission Data

Table A16.8. K- and L-subshell fluorescence yields and Coster–Kronig probabilities. The K fluorescence yields are from a semiempirical fit by W. Bambyneks to selected experimental data reported in Hubbell, J. H., Trehan, P. N., Singh, N., Chand, B., Mehta, D., Garg, M. L., Garg, R. R., Singh, S., and Puri, S. (1994), *J. Phys. Chem. Ref. Data* 23, 339. The **bold** L-shell quantities are from Krause, M. O. (1979), *J. Phys. Chem. Ref. Data* 8, 307. The remainder of the L-shell quantities are from Campbell, J. L. (2003), *At. Data Nucl. Data Tables* 85, 291 and Campbell, J. L. (2009) *At. Data Nucl. Data Tables* 95, 115 (continued).

\mathbf{Z}	ω_{K}	$\omega_{\rm L1}$	ω_{L2}	ω_{L3}	$\mathbf{f_{12}}$	\mathbf{f}_{13}	\mathbf{f}_{23}
81	0.9625	0.124	0.384	0.332	0.069	0.615	0.121
82	0.9634	0.128	0.397	0.343	0.066	0.62	0.119
83	0.9643	0.132	0.411	0.353	0.063	0.62	0.117
84	0.9652	0.135	0.424	0.363	0.06	0.62	0.115
85	0.9659	0.138	0.438	0.374	0.057	0.62	0.113
86	0.9667	0.142	0.451	0.384	0.053	0.62	0.111
87	0.9674	0.146	0.464	0.394	0.05	0.62	0.109
88	0.9680	0.15	0.476	0.404	0.047	0.62	0.107
89	0.9686	0.154	0.49	0.414	0.044	0.62	0.105
90	0.9691	0.159	0.503	0.424	0.04	0.62	0.103
91	0.9696	0.164	0.495	0.434	0.038	0.62	0.141
92	0.9701	0.168	0.506	0.444	0.035	0.62	0.140

Table A16.9. Cross sections (barns) for K-shell ionization by protons as a function of atomic number Z and energy (MeV). From Chen, M.-H., and Crasemann, B. (1985), *At. Data Nucl. Data Tables* **33**, 217, and Chen, M.-H., and Crasemann, B. (1989), *At. Data Nucl. Data Tables* **41**, 257.

E (MeV)	22	26	29	30	32
0.10	4.440E-02	2.953E-03	3.884E-04	1.928E-04	4.598E-05
0.20	1.960E+00	1.416E-01	3.234E-02	1.990E-02	7.614E-03
0.30	5.771E+00	8.120E-01	2.149E-01	1.392E-01	6.018E-02
0.40	1.577+01	2.440E+00	6.944E-01	4.631E-01	2.107E-01
0.50	3.258E+01	5.392E+00	1.604E+00	1.088E+00	5.114E-01
0.60	5.671E+01	9.905E+00	3.063E+00	2.095E+00	1.012E+00
0.70	8.852E+01	1.614E+01	5.141E+00	3.561E+00	1.746E+00
0.80	1.273E+02	2.426E+01	7.900E+00	5.517E+00	2.747E+00
0.90	1.731E+02	3.416E+01	1.141E+01	7.999E+00	4.037E+00
1.00	2.245E+02	4.597E+01	1.563E+01	1.106E+01	5.648E+00
1.25	3.742E+02	8.254E+01	2.945E+01	2.106E+01	1.104E+01
1.50	5.445E+02	1.283E+02	4.746E+01	3.445E+01	1.845E+01
1.75	7.252E+02	1.811E+02	6.935E+01	5.072E+01	2.769E+01
2.00	9.068E+02	2.383E+02	9.434E+01	6.967E+01	3.870E+01
2.25	1.088E+03	2.993E+02	1.215E+02	9.048E+01	5.106E+01
2.50	1.260E+03	3.612E+02	1.504E+02	1.132E+02	6.478E+01
2.75	1.427E+03	4.244E+02	1.809E+02	1.367E+02	7.932E+01
3.00	1.580E+03	4.862E+02	2.117E+02	1.615E+02	
3.25	1.731E+03	5.484E+02	2.434E+02	1.864E+02	1.107E+02
3.50	1.864E+03	6.076E+02	2.746E+02	2.114E+02	1.270E+02
3.75	1.992E+03	6.645E+02	3.054E+02	2.370E+02	1.438E+02
4.00	2.105E+03	7.208E+02	3.366E+02	2.619E+02	1.604E+02
4.25	2.208E+03	7.732E+02	3.664E+02	2.864E+02	1.769E+02
4.50	2.307E+03	8.230E+02	3.954E+02	3.112E+02	1.934E+02
4.75	2.393E+03	8.723E+02	4.246E+02	3.347E+02	2.102E+02
5.00	2.471E+03	9.171E+02	4.519E+02	3.576E+02	2.262E+02

Appendix 16

Table A16.1. K X-ray energies and relative intensities for elements $6 \le Z \le 60$. If a label does not appear in the leftmost column, then that transition does not occur for any of the elements in that block; if no energy is listed for a transition, then that transition does not occur for that specific element. The column headers contain the atomic symbol and the atomic mass (g/mol) of the elements. The two columns of data for each element contain the energy of the transition line in keV and the relative intensity of each line, respectively. The intensities sum to 1.0. Doublets having very small energy separations are combined. The radiative Auger satellites are also included where pertinent (continued).

Line	Ga	59.72	Ge 7	2.59	As 7	4.92	Se 7	8.96	Br 7	9.91
$KL_2(K\alpha_2)$	9.225	0.2971	9.855	0.2957	10.508	0.2946	11.182	0.2933	11.878	0.2926
KL_3 ($K\alpha_1$)	9.252	0.5775	9.886	0.5743	10.544	0.5717	11.222	0.5683	11.924	0.5647
K_{LM}	9.094	0.0012	9.706	0.0012	10.340	0.0011	10.990	0.0011	11.667	0.0011
$KM_2(K\beta_3)$	10.260	0.0414	10.975	0.0421	11.720	0.0429	12.490	0.0437	13.284	0.0443
$KM_3 (K\beta_1)$	10.264	0.0810	10.982	0.0825	11.726	0.0839	12.496	0.0855	13.292	0.0865
$KM_4 (K\beta_5^{II})$	10.346	0.0002	11.074	0.0001		0.0		0.0		0.0
$KM_5 (K\beta_5^I)$ K_{MM}	10.351 10.072	0.0003 0.0013	11.075 10.769	0.0002 0.0012	11.523	0.0011	12.264	0.0 0.0010	13.036	0.0010
$KN_2 (K\beta_2^{II})$	10.072	0.0	11.101	0.0009	11.864	0.0011	12.652	0.0024	13.469	0.0034
$KN_3 (K\beta_2^I)$		0.0	11.101	0.0009	11.864	0.0010	12.652	0.0024	13.469	0.0054
3 (F2)										
Line		33.80		35.47		57.62		8.90	Z r 9	
$KL_2(K\alpha_2)$	12.598	0.2916	13.336	0.2907	14.098	0.2899	14.883	0.2893	15.691	0.2884
$KL_3(K\alpha_1)$	12.651	0.5628	13.395	0.5598	14.165	0.5569	14.958	0.5544	15.775	0.5520
K_{LM}	12.359	0.0010	13.073	0.0010	13.807	0.0009	14.565	0.0009	15.345	0.0009
$KM_2 (K\beta_3)$	14.103	0.0442	14.952	0.0448	15.825	0.0453	16.726	0.0459	17.653	0.0465
$KM_3 (K\beta_1)$	14.111	0.0865 0.0	14.961	0.0876 0.0	15.835	0.0886 0.0	16.738	0.0898 0.0	17.667 17.815	0.0909 0.0002
$KM_4 (K\beta_5^{II})$ $KM_5 (K\beta_5^{I})$		0.0		0.0		0.0		0.0	17.813	0.0002
K _{MM}	13.819	0.0010	14.639	0.0010	15.478	0.0011	16.345	0.0012	17.237	0.0003
$KN_2 (K\beta_2^{II})$	14.311	0.0044	15.185	0.0052	16.084	0.0058	17.013	0.0063	17.968	0.0067
$KN_3 (K\beta_2^{I})$	14.312	0.0085	15.186	0.0100	16.085	0.0114	17.016	0.0122	17.972	0.0130
т :	NII. (02.01	Μ- 4	05.04	Tr - 0	7.00	D 1	01.07	Dl. 1	02.00
Line KL ₂ (Kα ₂)	16.521	9 2.91 0.2880	17.374	95.94 0.2874	18.251	7.00 0.2868	19.150	01.07 0.2863	20.074	02.90 0.2861
KL_2 $(K\alpha_2)$ KL_3 $(K\alpha_1)$	16.615	0.5499	17.479	0.5480	18.367	0.5463	19.279	0.5444	20.216	0.5428
K_{LM}	16.147	0.0008	16.975	0.0008	17.823	0.0008	18.694	0.0007	19.589	0.0007
$KM_2(K\beta_3)$	18.607	0.0471	19.590	0.0476	20.599	0.0481	21.634	0.0485	22.699	0.0490
KM_3 ($K\beta_1$)	18.623	0.0919	19.607	0.0929	20.619	0.0937	21.657	0.0947	22.724	0.0953
$KM_4 (K\beta_5^{II})$	18.778	0.0002	19.769	0.0002	20.788	0.0002	21.834	0.0003	22.908	0.0003
$KM_5 (K\beta_5^I)$	18.781	0.0003	19.773	0.0003	20.791	0.0003	21.838	0.0004	22.913	0.0004
K_{MM}	18.154	0.0015	19.103	0.0016	20.075	0.0018	21.072	0.0019	22.097	0.0018
$KN_2 (K\beta_2^{II})$	18.950	0.0069	19.961	0.0072	21.001	0.0075	22.070	0.0078	23.168	0.0080
$KN_3 (K\beta_2^{I})$	18.956	0.0135	19.967	0.0140	21.007	0.0146	22.076	0.0151	23.174	0.0156