Matematická analýza 2 Vektorové funkce

Martin Bohata

Katedra matematiky FEL ČVUT v Praze martin.bohata@fel.cvut.cz

Vektorová funkce

Zobrazení $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ se nazývá vektorová funkce (n reálných proměnných).

Úmluva

Pokud je funkce zadána předpisem bez explicitního uvedení definičního oboru, budeme pod jejím definičním oborem rozumět největší podmnožinu \mathbb{R}^n , pro kterou má předpis smysl.

- D ... definiční obor funkce f.
- ullet ran $(f):=f(D)=\{f(x)\in\mathbb{R}^m\,|\,x\in D\}$... obor hodnot funkce f.
- $ullet \operatorname{gr}(oldsymbol{f}) := \{(oldsymbol{x}, oldsymbol{f}(oldsymbol{x})) \in \mathbb{R}^{n+m} \, | \, oldsymbol{x} \in D\} \; ... \; \operatorname{\mathsf{graf}} \; \operatorname{\mathsf{funkce}} \; oldsymbol{f}.$
- Je-li m=n, pak se \boldsymbol{f} nazývá vektorové pole.
- ullet Je-li m=1, pak se f nazývá reálná funkce (případně skalární funkce).

Martin Bohata Matematická analýza 2 Vektorové funkce

2/11

Vektorová funkce

• Je-li $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ reálná funkce a $c\in\mathbb{R}$, pak hladina funkce f výšky c (případně vrstevnice funkce f výšky c) je množina

$$\operatorname{lev}(f;c) := f^{-1}(\{c\}) = \{ \boldsymbol{x} \in D \, | \, f(\boldsymbol{x}) = c \} \, .$$

- Je-li $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, potom $f(x) = (f_1(x), \dots, f_m(x))$, kde f_1, \dots, f_m jsou reálné funkce nazývané složky (nebo také komponenty) vektorové funkce f.
- At $f_i: D_i \subseteq \mathbb{R}^n \to \mathbb{R}$, kde $i \in \{1, \dots, m\}$, jsou reálné funkce a $D = \bigcap_{i=1}^m D_i$. Potom předpis $\boldsymbol{f}(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))$ definuje vektorovou funkci $\boldsymbol{f}: D \to \mathbb{R}^m$.

Několik příkladů reálných funkcí

Příklad (charakteristická funkce)

Charakteristická funkce množiny $M\subseteq\mathbb{R}^n$ je funkce

$$\chi_M(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{x} \in M; \\ 0, & \boldsymbol{x} \in \mathbb{R}^n \setminus M. \end{cases}$$

Příklad

- $f(t,x) = \sin(2\pi x)\sin(6t).$
- $p(T,V) = nR_{\overline{V}}^T, (T,V) \in [0,\infty) \times (0,\infty).$

Polynom a racionální funkce

Definice (polynom a racionální funkce)

Polynom (více proměnných) je funkce $f:\mathbb{R}^n\to\mathbb{R}$, která je součtem konečně mnoha funkcí tvaru

$$ax_1^{i_1}\dots x_n^{i_n},$$

kde $a \in \mathbb{R}$, $i_1, \dots, i_n \in \mathbb{N}_0$ a klademe $x_i^0 = 1$.

Jsou-li $p:\mathbb{R}^n \to \mathbb{R}$ a $q:\mathbb{R}^n \to \mathbb{R}$ polynomy a množina $\Omega = \{x \in \mathbb{R}^n \, | \, q(x) \neq 0\}$ je neprázdná. Potom se funkce $f:\Omega \to \mathbb{R}$ definovaná předpisem

$$f(\boldsymbol{x}) = \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})},$$

nazývá racionální funkce.

Příklady polynomů

Příklad (afinní funkce)

Afinní funkce je funkce tvaru

$$f(\boldsymbol{x}) = \boldsymbol{a} \cdot \boldsymbol{x} + b,$$

kde $\boldsymbol{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$.

Pro ilustraci uvažme například f(x,y) = x - y + 1.

Příklady polynomů

Příklad (kvadratická forma)

Ať Q je reálná symetrická $n \times n$ matice se složkami $q_{ij} \in \mathbb{R}$. Kvadratická forma je funkce

$$f(\boldsymbol{x}) = \sum_{i,j=1}^{n} q_{ij} x_i x_j.$$

S využitím sloupcového zápisu vektorů lze psát $f(x) = x^T Q x$. Příkladem kvadratické formy je funkce $f(x,y) = x^2 + y^2$.

Příklad

Obor hodnot vektorové funkce

$$\varphi(t) = (\cos t, \sin t, t).$$

je (nekonečná) spirála.

Příklad

Obor hodnot vektorové funkce

$$\varphi(u,v) = (\cos u \sin v, \sin u \sin v, \cos v), \quad u \in [0,2\pi], v \in [0,\pi].$$

je sféra se středem v počátku a poloměrem 1.

Příklad

$$\mathbf{F}(x,y) = (x^2 - y^2, 2xy).$$

Příklad (polární souřadnice)

At
$$\boldsymbol{p}=(x,y)\in\mathbb{R}^2\setminus\{0\}.$$

Potom můžeme psát

$$x = r\cos\varphi,$$

$$y = r\sin\varphi,$$

kde $r\in(0,\infty)$ a $\varphi\in[0,2\pi)$ jsou jednoznačně určeny. Máme tak definováno prosté zobrazení $\Psi:(0,+\infty)\times[0,2\pi)\to\mathbb{R}^2$ předpisem

$$\Psi(r,\varphi) = (r\cos\varphi, r\sin\varphi).$$