An introduction to PCA

Weekly AI pills

Fabio Brau.

2020-10-16

SSSA, Emerging Digital Technologies, Pisa.

Summary

- · Geometrical Introduction
- · Classical Derivation
- · Dimensionality Reduction
- · Statistical Point of View
- · Non Linear PCA

Geometrical Introduction

Geometrical Introduction

Let $X \in \mathbb{R}^{N \times n}$ be a dataset of N observation within n variables.

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} = \begin{bmatrix} x^{(1)} & | & \dots & | & x^{(n)} \end{bmatrix}$$
 (1)

Notations:

- $x_i \in \mathbb{R}^n$ represents a single observation, i.e a sample in the feature space.
- $x^{(i)} \in \mathbb{R}^N$ represents the single variable, i.e a column of the dataset.
- The object $\mathbb{1}_n \in \mathbb{R}^n$ is the unitary columnar vector of length n $\mathbb{1}_n = [1, \dots, 1]^T$.
- X is centered if $X^T \mathbb{1}_N = 0$

- Scalar product measures the projection of x_j along the direction w.
- 2. We are only interested on module
- Summation over samples to get the global projection's contribute.
- **4.** Searching for *w* which maximizes projection.
- 5. Adding constraint to avoid $w \to \infty$ solution.

- Scalar product measures the projection of x_j along the direction w.
- 2. We are only interested on module.
- Summation over samples to get the global projection's contribute.
- **4.** Searching for w which maximizes projection.
- 5. Adding constraint to avoid $w \to \infty$ solution.

- Scalar product measures the projection of x_j along the direction w.
- 2. We are only interested on module.
- Summation over samples to get the global projection's contribute.
- **4.** Searching for *w* which maximizes projection.
- 5. Adding constraint to avoid $w \to \infty$ solution.

$$w_1 \in \underset{\|w\|_{1}=1}{\operatorname{argmax}} \sum_{j=1}^{N} (w \cdot x_j)^2$$

- Scalar product measures the projection of x_j along the direction w.
- 2. We are only interested on module.
- Summation over samples to get the global projection's contribute.
- 4. Searching for w which maximizes projection.
- 5. Adding constraint to avoid $w \to \infty$ solution.

$$w_1 \in \operatorname*{argmax}_{\|w\|_2 = 1} \sum_{j=1}^{N} \left(w \cdot x_j \right)^2$$

- Scalar product measures the projection of x_j along the direction w.
- 2. We are only interested on module.
- Summation over samples to get the global projection's contribute.
- 4. Searching for w which maximizes projection.
- 5. Adding constraint to avoid $w \to \infty$ solution.

$$w_1 \in \operatorname*{argmax}_{\|\boldsymbol{w}\|_2 = 1} \sum_{j=1}^{N} \; \left(\boldsymbol{w} \cdot \boldsymbol{x}_j \right)^2$$

Geometrical Introduction: Finding other directions

We search for other orthogonal directions which maximize projections.

$$\begin{split} w_1 &\in \operatorname*{argmax}_{\|w\|_2 = 1} \sum_{j = 1}^N (w \cdot x)^2 \\ w_2 &\in \operatorname*{argmax}_{\|w\|_2 = 1} \sum_{j = 1}^N (w \cdot x)^2 \quad \text{and} \quad w_2 \perp w_1 \\ &\vdots \\ w_n &\in \operatorname*{argmax}_{\|w\|_2 = 1} \sum_{j = 1}^N (w \cdot x)^2 \quad \text{and} \quad w_n \perp \{w_1, \dots, w_{n - 1}\} \end{split}$$

Example

$$V(w) = \sum_{i} (w \cdot x_{i})^{2}$$
 momentum along w

If w_1 , w_2 , w_3 orthogonal that maximizes V in the 3D example, then

1.
$$V(w_1) = 3181.20$$

$$\approx$$
82.5%

2.
$$V(w_2) = 646.25$$

 \approx 17.0%

3.
$$V(W_3) = 19.23$$

 $\approx 0.5 \%$

What if we forget the last direction?

•
$$x_j = \alpha_{1j} w_1 + \alpha_{2j} w_2 + \alpha_{3j} w_3$$
 (where $\alpha_{ij} = w_i \cdot x_j$)

$$\tilde{X}_i = \alpha_{1i} W_1 + \alpha_{2i} W_2$$

$$\frac{1}{N} \sum_{i} \|x_i - \tilde{x}_i\|^2 = \frac{V(w_3)}{N} \approx 4.8 \, 10^{-3}$$

$$V(w) = \sum_{i} (w \cdot x_{i})^{2}$$
 momentum along w

If w_1 , w_2 , w_3 orthogonal that maximizes V in the 3D example, then

1.
$$V(w_1) = 3181.20$$

$$\approx 82.5\%$$

2.
$$V(w_2) = 646.25$$

$$\approx$$
17.0%

3.
$$V(W_3) = 19.23$$

$$\approx$$
0.5 %

What if we forget the last direction?

•
$$x_j = \alpha_{1j} w_1 + \alpha_{2j} w_2 + \alpha_{3j} w_3$$
 (where $\alpha_{ij} = w_i \cdot x_j$).

$$\tilde{X}_i = \alpha_{1i} W_1 + \alpha_{2i} W_2$$

$$\frac{1}{N} \sum \|x_j - \tilde{x}_j\|^2 = \frac{V(w_3)}{N} \approx 4.8 \, 10^{-3}$$

$$V(w) = \sum_{i} (w \cdot x_{i})^{2}$$
 momentum along w

If w_1 , w_2 , w_3 orthogonal that maximizes V in the 3D example, then

1.
$$V(w_1) = 3181.20$$
 $\approx 82.5\%$

2.
$$V(w_2) = 646.25$$
 $\approx 17.0\%$

3. $V(w_3) = 19.23$ $\approx 0.5 \%$

What if we forget the last direction?

•
$$x_j = \alpha_{1j} w_1 + \alpha_{2j} w_2 + \alpha_{3j} w_3$$
 (where $\alpha_{ij} = w_i \cdot x_j$).

$$\tilde{X}_j = \alpha_{1j} W_1 + \alpha_{2j} W_2.$$

$$\frac{1}{N} \sum_{i} \|x_j - \tilde{x}_j\|^2 = \frac{V(w_3)}{N} \approx 4.8 \, 10^{-3}$$

$$V(w) = \sum_{i} (w \cdot x_{i})^{2}$$
 momentum along w

If w_1 , w_2 , w_3 orthogonal that maximizes V in the 3D example, then

1.
$$V(w_1) = 3181.20$$

2.
$$V(w_2) = 646.25$$
 $\approx 17.0\%$

3.
$$V(W_3) = 19.23$$
 $\approx 0.5 \%$

What if we forget the last direction?

Observation

•
$$x_j = \alpha_{1j} w_1 + \alpha_{2j} w_2 + \alpha_{3j} w_3$$
 (where $\alpha_{ij} = w_i \cdot x_j$).

$$\tilde{X}_j = \alpha_{1j} W_1 + \alpha_{2j} W_2.$$

$$\frac{1}{N} \sum_{i} ||x_j - \tilde{x}_j||^2 = \frac{V(w_3)}{N} \approx 4.8 \, 10^{-3}$$

 \approx 82.5%

$$V(w) = \sum_{i} (w \cdot x_{i})^{2}$$
 momentum along w

If w_1 , w_2 , w_3 orthogonal that maximizes V in the 3D example, then

1.
$$V(w_1) = 3181.20$$

2.
$$V(W_2) = 646.25$$

3.
$$V(w_3) = 19.23$$

What if we forget the last direction?

•
$$X_j = \alpha_{1j}W_1 + \alpha_{2j}W_2 + \alpha_{3j}W_3$$
 (where $\alpha_{ij} = W_i \cdot X_j$).

$$\cdot \ \tilde{\mathbf{X}}_{j} = \alpha_{1j} \mathbf{W}_{1} + \alpha_{2j} \mathbf{W}_{2}.$$

$$\frac{1}{N} \sum_{i} \|x_j - \tilde{x}_j\|^2 = \frac{V(w_3)}{N} \approx 4.8 \, 10^{-3}$$

Geometrical Introduction: Conclusion

- Given a set of data $X \in \mathbb{R}^{N \times n}$
- We can find w_1, \dots, w_n principal (orthonormal) directions the maximize their momentum.
- $V(W_1) > V(W_2) > \cdots > V(W_n)$
- Approximating X with \tilde{X} by taking only the first k directions we are getting an error that is $V(w_{k+1})/N$

$$\max_{w \in \mathbb{R}^n} \sum_{j=1}^{N} (w \cdot x_j)^2$$
s.t $w_i \cdot w = 0, \forall i < k$

$$w \cdot w = 1$$
(MP)

Geometrical Introduction: Conclusion

- Given a set of data $X \in \mathbb{R}^{N \times n}$
- We can find w_1, \dots, w_n principal (orthonormal) directions the maximize their momentum.
- $V(W_1) > V(W_2) > \cdots > V(W_n)$
- Approximating X with \tilde{X} by taking only the first k directions we are getting an error that is $V(w_{k+1})/N$

What's the catch?

$$\max_{w \in \mathbb{R}^n} \sum_{j=1}^{N} (w \cdot x_j)^2$$
s.t $w_i \cdot w = 0, \forall i < k$

$$w \cdot w = 1$$
(MP)

Geometrical Introduction: Conclusion

- Given a set of data $X \in \mathbb{R}^{N \times n}$
- We can find w_1, \dots, w_n principal (orthonormal) directions the maximize their momentum.
- $V(W_1) > V(W_2) > \cdots > V(W_n)$
- Approximating X with \tilde{X} by taking only the first k directions we are getting an error that is $V(w_{k+1})/N$

What's the catch?

$$\max_{w \in \mathbb{R}^n} \sum_{j=1}^{N} (w \cdot x_j)^2$$
s.t $w_i \cdot w = 0, \forall i < k$

$$w \cdot w = 1$$
(MP)

Classical Derivation

$$\max_{\|w\|=1} V(w) = \max_{\|w\|=1} \sum_{j} (w^{\mathsf{T}} x_{j})^{2} = \max_{w^{\mathsf{T}} w = 1} w^{\mathsf{T}} (X^{\mathsf{T}} X) w$$
 (MP)

$$\mathcal{L}(w,\lambda) = V(w) - \lambda(w^{\mathsf{T}}w - 1), \quad \forall w \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$$

$$\nabla \mathcal{L}(w^*, \lambda^*) = 0$$
, i.e $(X^T X) w^* - \lambda^* w^* = 0$

$$\max_{\|w\|=1} V(w) = \max_{\|w\|=1} \sum_{j} (w^{\mathsf{T}} x_j)^2 = \max_{w^{\mathsf{T}} w = 1} w^{\mathsf{T}} (X^{\mathsf{T}} X) w$$
 (MP)

Lagrange Multipliers Technique

Let consider the Lagrangian Function of MP

$$\mathcal{L}(w,\lambda) = V(w) - \lambda(w^{\mathsf{T}}w - 1), \quad \forall w \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$$

Claim

If w^* is a solution of MP then there exists λ^* such that

$$\nabla \mathcal{L}(\mathbf{w}^*, \lambda^*) = 0$$
, i.e $(\mathbf{X}^T \mathbf{X}) \mathbf{w}^* - \lambda^* \mathbf{w}^* = 0$ (2)

$$\max_{\|w\|=1} V(w) = \max_{\|w\|=1} \sum_{j} (w^{\mathsf{T}} x_{j})^{2} = \max_{w^{\mathsf{T}} w=1} w^{\mathsf{T}} (X^{\mathsf{T}} X) w$$
 (MP)

Lagrange Multipliers Technique

Let consider the Lagrangian Function of MP

$$\mathcal{L}(w,\lambda) = V(w) - \lambda(w^{\mathsf{T}}w - 1), \quad \forall w \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$$

Claim

If w^* is a solution of MP then there exists λ^* such that

$$\nabla \mathcal{L}(\mathbf{w}^*, \lambda^*) = 0$$
, i.e $(\mathbf{X}^\mathsf{T} \mathbf{X}) \mathbf{w}^* - \lambda^* \mathbf{w}^* = 0$

(2)

Why switching to an eigen-pair problem?¹

$$X^TX$$
 + \longrightarrow w_1, \dots, w_n eigenvectors $w_i^TX^TXw_i = V(w_i)$ eigenvalues $V(w_1) > \dots > V(w_n) \geq 0$

¹Appendix for further details.

Why switching to an eigen-pair problem?¹

$$X^TX$$
 + $MATLAB$ \longrightarrow

- w_1, \cdots, w_n eigenvectors
- $w_i^T X^T X w_i = V(w_i)$ eigenvalues
- $V(w_1) > \cdots > V(w_n) \geq 0$

¹Appendix for further details.

Dimensionality Reduction

Dimensionality Reduction

The matrix $W = [w_1 | \cdots | w_n]$ can be used to reduce the dimensionality

$$F = \begin{bmatrix} f^{(1)} & |\cdots| & f^{(n)} \end{bmatrix} = XW$$
 (factors scores)

Frequency of the control of the cont

Factor scores restricted to the first two principal directions.

Feature space

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1|\cdots|w_{n-k}]\tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1|\cdots|w_{n-k}]\tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1|\cdots|w_{n-k}]\tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1|\cdots|w_{n-k}]\tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1| \cdots | w_{n-k}] \tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1| \cdots | w_{n-k}] \tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

- 1. $x \in \mathbb{R}^n$ original sample.
- 2. $f = W^T x \in \mathbb{R}^n$ coordinates in factor-scores space.
- 3. $\tilde{f} = [f_1, \dots, f_{n-k}] \in \mathbb{R}^{n-k}$ dropping last k coordinates.
- 4. $\tilde{x} = [w_1| \cdots | w_{n-k}] \tilde{f} \in \mathbb{R}^n$, approximation of x.

$$\|x - \tilde{x}\| \approx \frac{1}{\sqrt{N}} \|X - X_k\| = \frac{1}{\sqrt{N}} \sqrt{V(n - k + 1) + \dots + V(n)}$$
 (EB)

Where is statistic?

Statistical Point of View: Notations

${\mathcal V}$ random variable, $V=(v_1,\dots,v_N)$ N observations of the variable.

Expected Value

$$\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} V_j$$

Variance

$$Var(\mathcal{V}) = \mathbb{E}[(\mathcal{V} - \mathbb{E}[\mathcal{V}])^2]$$

Covariance

$$Cov(\mathcal{U}, \mathcal{V}) = \mathbb{E}[(\mathcal{U} - \mathbb{E}[\mathcal{U}])(\mathcal{V} - \mathbb{E}[\mathcal{V}])]$$

• If $\mathcal{U} = (\mathcal{U}_1, \cdots, \mathcal{U}_m)$, then

$$\mathsf{Cov}(\mathcal{U}) = \begin{bmatrix} \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

Observations

Under the assumption $\mathbb{E}[\mathcal{U}] = \mathbb{E}[\mathcal{V}] = 0$

1.
$$Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$$

2.
$$Cov(\mathcal{U}, \mathcal{V}) = \frac{1}{N} \sum_{j=1}^{N} u_j v_j$$

3. If
$$\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$$
, then

Statistical Point of View: Notations

 $\mathcal V$ random variable, $V=(v_1,\ldots,v_N)$ N observations of the variable.

Expected Value

$$\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} \mathsf{V}_{j}$$

Variance

$$Var(V) = \mathbb{E}[(V - \mathbb{E}[V])^2]$$

Covariance

$$Cov(\mathcal{U}, \mathcal{V}) = \mathbb{E}[(\mathcal{U} - \mathbb{E}[\mathcal{U}])(\mathcal{V} - \mathbb{E}[\mathcal{V}])]$$

• If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

$$\mathsf{Cov}(\mathcal{U}) = \begin{bmatrix} \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

Observations

Under the assumption $\mathbb{E}[\mathcal{U}] = \mathbb{E}[\mathcal{V}] = 0$

1.
$$Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$$

2.
$$Cov(\mathcal{U}, \mathcal{V}) = \frac{1}{N} \sum_{j=1}^{N} u_j v_j$$

3. If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

$$(\mathbf{v} \cdot \mathcal{U}) = \mathbf{w}^{\mathsf{T}} \mathcal{U} \mathbf{w}$$

 \mathcal{V} random variable, $V = (v_1, \dots, v_N)$ N observations of the variable.

· Expected Value

$$\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} V_j$$

Variance

$$Var(\mathcal{V}) = \mathbb{E}[(\mathcal{V} - \mathbb{E}[\mathcal{V}])^2]$$

Covariance

Covariance
$$Cov(\mathcal{U}, \mathcal{V}) = \mathbb{E}[(\mathcal{U} - \mathbb{E}[\mathcal{U}])(\mathcal{V} - \mathbb{E}[\mathcal{V}])]$$

• If $\mathcal{U} = (\mathcal{U}_1, \cdots, \mathcal{U}_m)$, then

$$\mathsf{Cov}(\mathcal{U}) = \begin{bmatrix} \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

1.
$$Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$$

2.
$$Cov(\mathcal{U}, \mathcal{V}) = \frac{1}{N} \sum_{j=1}^{N} u_j v_j$$

3. If
$$\mathcal{U} = (\mathcal{U}_1, \cdots, \mathcal{U}_m)$$
, then

 \mathcal{V} random variable, $V=(v_1,\ldots,v_N)$ N observations of the variable.

$$\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} V_j$$

· Variance

$$Var(\mathcal{V}) = \mathbb{E}[(\mathcal{V} - \mathbb{E}[\mathcal{V}])^2]$$

Covariance

$$Cov(\mathcal{U}, \mathcal{V}) = \mathbb{E}[(\mathcal{U} - \mathbb{E}[\mathcal{U}])(\mathcal{V} - \mathbb{E}[\mathcal{V}])]$$

• If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

$$Cov(\mathcal{U}) = \begin{bmatrix} Cov(\mathcal{U}_1, \mathcal{U}_1) & \cdots & Cov(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ Cov(\mathcal{U}_m, \mathcal{U}_1) & \cdots & Cov(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

Observations

Under the assumption $\mathbb{E}[\mathcal{U}] = \mathbb{E}[\mathcal{V}] = 0$

1.
$$Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$$

2.
$$Cov(\mathcal{U}, \mathcal{V}) = \frac{1}{N} \sum_{j=1}^{N} u_j v_j$$

3. If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

$$(\mathbf{w} \cdot \mathcal{U}) = \mathbf{w}^{\mathsf{T}} \mathcal{U} \mathbf{w}$$

 $\mathcal V$ random variable, $V=(v_1,\ldots,v_N)$ N observations of the variable.

• Expected Value
$$\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} V_{j}$$
• Variance
$$Var(\mathcal{V}) = \mathbb{E}[(\mathcal{V} - \mathbb{E}[\mathcal{V}])^{2}]$$
• Convergence
$$Var(\mathcal{V}) = \mathbb{E}[A(\mathcal{V}) \times \mathbb{E}[A(\mathcal{V})] \times \mathbb{E}[A(\mathcal{V})]$$

• Covariance $\mathit{Cov}(\mathcal{U},\mathcal{V}) = \mathbb{E}[(\mathcal{U} - \mathbb{E}[\mathcal{U}])(\mathcal{V} - \mathbb{E}[\mathcal{V}])]$

· If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

$$\mathsf{Cov}(\mathcal{U}) = \begin{bmatrix} \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

Observations

Under the assumption $\mathbb{E}[\mathcal{U}] = \mathbb{E}[\mathcal{V}] = 0$

1.
$$Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$$

2.
$$Cov(\mathcal{U}, \mathcal{V}) = \frac{1}{N} \sum_{j=1}^{N} u_j v_j$$

3. If
$$\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$$
, then

$$\operatorname{ar}(w \cdot \mathcal{U}) = w^{\mathsf{T}} \mathcal{U} w$$

V random variable, $V = (v_1, \dots, v_N)$ N observations of the variable.

- Expected Value $\mathbb{E}[\mathcal{V}] = \frac{1}{N} \sum_{j=1}^{N} V_j$
- Variance $\mathit{Var}(\mathcal{V}) = \mathbb{E}[(\mathcal{V} \mathbb{E}[\mathcal{V}])^2]$
- $\text{Covariance} \qquad \qquad \text{Cov}(\mathcal{U},\mathcal{V}) = \mathbb{E}[(\mathcal{U} \mathbb{E}[\mathcal{U}])(\mathcal{V} \mathbb{E}[\mathcal{V}])]$
- If $\mathcal{U} = (\mathcal{U}_1, \cdots, \mathcal{U}_m)$, then

$$\mathsf{Cov}(\mathcal{U}) = \begin{bmatrix} \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_1, \mathcal{U}_m) \\ \vdots & \ddots & \vdots \\ \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_1) & \cdots & \mathsf{Cov}(\mathcal{U}_m, \mathcal{U}_m) \end{bmatrix}$$

Observations

Under the assumption $\mathbb{E}[\mathcal{U}] = \mathbb{E}[\mathcal{V}] = 0$

- 1. $Var(V) = \frac{1}{N} \sum_{j=1}^{N} v_j^2$ 2. $Cov(U, V) = \frac{1}{N} \sum_{i=1}^{N} u_i v_i$
- 3 If $1/ (1/2 \dots 1/4)$ the
- 3. If $\mathcal{U}=(\mathcal{U}_1,\cdots,\mathcal{U}_m)$, then

Geometrical

- $\cdot X^T \mathbb{1}_N = 0$
- X^TX
- $V(w) = \sum_{j} (w \cdot x_{j})^{2}$ momentum along w

- $\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$
- N Cov(X)
- $N \operatorname{Var}(w \cdot X)$

Geometrical

- $\cdot X^T \mathbb{1}_N = 0$
- X^TX
- $V(w) = \sum_{j} (w \cdot x_{j})^{2}$ momentum along w

- $\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$
- N Cov(X)
- $N \operatorname{Var}(w \cdot X)$

Geometrical

- $\cdot X^T \mathbb{1}_N = 0$
- $\cdot X^T X$
- $V(w) = \sum_{j} (w \cdot x_{j})^{2}$ momentum along w

- $\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$
- N Cov(X)
- $N \operatorname{Var}(w \cdot X)$

Geometrical

- $\cdot X^T \mathbb{1}_N = 0$
- $\cdot X^T X$
- $V(w) = \sum_{j} (w \cdot x_{j})^{2}$ momentum along w.

- $\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$
- N Cov(X)
- $N \operatorname{Var}(w \cdot X)$

Geometrical

- $\cdot X^T \mathbb{1}_N = 0$
- $\cdot X^T X$
- $V(w) = \sum_{j} (w \cdot x_{j})^{2}$ momentum along w.

- $\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$
- $N \operatorname{Cov}(X)$
- $N \operatorname{Var}(w \cdot X)$

Geometrical

$$\cdot X^T \mathbb{1}_N = 0$$

$$\cdot X^T X$$

•
$$V(w) = \sum_{j} (w \cdot x_{j})^{2}$$

momentum along w.

Statistical

•
$$\mathbb{E}[X^{(1)}], \cdots, \mathbb{E}[X^{(n)}] = 0.$$

N Cov(X)

• $N \operatorname{Var}(w \cdot X)$

Compression Error Estimation

$$\|x_j - \tilde{x}_j\| \approx \sqrt{\mathbb{E}[\|x_j - \tilde{x}_j\|^2]} = \sqrt{Var(w_{k+1} \cdot X) + \dots + Var(w_n \cdot X)}$$

a.k.a

$$w_1, \dots, w_k$$
 explain $100 * \left(\frac{\sum_{i=1}^k \text{Var}(w_i \cdot X)}{\sum_i \text{Var}(w_i \cdot X)}\right) \%$ of the variance.

Non Linear PCA

Non Linear PCA: Kernel PCA

$$V_{\kappa}(w) = \sum_{j} \kappa(w, x_{j})^{2}$$
 where
$$\kappa(v, w) = \Phi(v) \cdot \Phi(w)$$

Learning with kernels - Bernhard Schölkopf, Alexander J. Smola

Non Linear PCA: Kernel PCA

$$V_{\kappa}(w) = \sum_{j} \kappa(w, x_{j})^{2}$$
 where
$$\kappa(v, w) = \Phi(v) \cdot \Phi(w)$$

Learning with kernels - Bernhard Schölkopf, Alexander J. Smola

Non Linear PCA: Autoencoders

Autoencoders Training

$$\min_{\theta} \frac{1}{N} \sum_{j} \|f_{\theta}(x_{j}) - x_{j}\|^{2} \quad \text{(mP)}$$

Non Linear PCA: Autoencoders

Autoencoders Training

$$\min_{\theta} \frac{1}{N} \sum_{j} \|f_{\theta}(x_j) - x_j\|^2 \quad \text{(mP)}$$

Claim²

- $f_{\theta}(x) = U V x$ is a 1-depth autoencoder with hidden space of dimension k.
- If $W = [w_1 | \cdots | w_n]$ principal components of $X \in \mathbb{R}^{N \times n}$
- $V^* = [w_1 | \cdots | w_k]$ and $U^* = (V^*)^T$ solves mP

²From Principal Subspaces to Principal Components with Linear Autoencoders

appendix

Eigen-pairs of Simmetric def.positive matrices

A matrix $A \in M(n)$ is symmetric and def.positive if respectively

$$A^{\mathsf{T}}A = AA^{\mathsf{T}}, \quad \mathbf{v}^{\mathsf{T}}A\mathbf{v} > 0 \,\forall \mathbf{v} \in \mathbb{R}^n \tag{3}$$

From spectral theorem it's exists an isometry $V = [v_1|\cdots|v_n]$ such that

$$V^{\mathsf{T}}AV = D$$

where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix. Because of $V^T V = Id$ then

$$AV = \begin{bmatrix} Av_1 & |\cdots| & Av_n \end{bmatrix} = VD = \begin{bmatrix} \lambda_1 v_1 & |\cdots| & \lambda_n v_n \end{bmatrix}$$
(4)

This shows that there exists an orthonormal bases of eigenvectors for A. Because of A is def.positive then

$$\lambda_i = \mathsf{v}_i^\mathsf{T} \mathsf{A} \mathsf{v}_i > 0$$

and so A has only positive eigenvalues.

Approximation Error

For each $j=1,\cdots,N$ we can write $x_j=f_{j1}v_i+\cdots+f_{jn}v_n$ where $f_{ij}=w_i\cdot x_j$. The approximated samples can be written as $\tilde{x}_j=f_{j1}v_i+\cdots+f_{j,n-k}v_{n-k}$. The main idea is to write the **expected value of the square euclidean distance** between the two samples (i.e. original end compressed).

$$\|X - \tilde{X}\|^{2} \approx \frac{1}{N} \sum_{j=1}^{N} \|f_{j,n-k+1} V_{n-k+1} + \dots + f_{n} V_{n}\|^{2}$$

$$= \frac{1}{N} \sum_{j=1}^{N} f_{j,n-k+1}^{2} + \dots + f_{j,n}^{2}$$

$$= \frac{1}{N} (V(W_{1}) + \dots + V(W_{n}))$$
(5)

By taking the root we obtain the approximation in EB. Moreover we can compute also the Variance of the squared euclidean distance to increase the accuracy of the error approximation.

