

generated from ShibumiKat/ShibumiKatTemplate

Code Issues Pull requests Actions Projects Security Insights Settings

Portfolio_CyberSecurityMonashBootcamp / 24-Final-Project / _PieterBooysen-DefensiveReport.md

Blue Team: Summary of Operations

Table of Contents

- Network Topology
- Description of Targets
- Monitoring the Targets
- Patterns of Traffic & Behavior
- Suggestions for Going Further

Network Topology

ali (RED TEAM: ATTACKER) Azure Labs Windows OS &Version: Kall GNU/Linux 2020.1 (kall-rolling) Kernel Version: 5.4.0-kall0-amd64 IP 192.168.1.90 | 255.255.255.0 HOST: Kall Ports 22/tcp ssh OpenSSH 8.1p1 Debian 5 Hyper-V Manager OS: Microsoft Windows 10 PRO OS Version: 10.0.19044 Build 19044 Virtual Machine Virtuar Machine X64 Desktop IP 192.168.1.1 | 255.255.255.0 | MAC: 00-15-5D-00-04-0D IP 10.0.0.42 | 255.255.240.0 | MAC: 00-22-48-69-36-2E HOST: ML-RefVm-684427 Ports KALI Linux arget 1 (BLUE TEAM: TARGET 1) OS & Version: Debian GNU/Linux 8 (jessle) Kernel Version: 3.16.0-6-amd64 IP 192.168.1.110 [255.255.25.0 MAC: 00:15:5D:00:04:10 HOST TARGET1 Ports 22/tcp ssh OpenSSH 6.7p1 Debian 5-ELK Server ibana (Running on ELK Server) Version 7.6.1 OS & Version: Ubuntu 18 04.1 LTS (Bionic Beaver) Kernel Version: 4.15.0-108-generic IP 192.168.1 105.1265.255.255.0 MAC: 00.15.50.00 04.0F HOST: Capstone (Feeding ELK Server with Data) s illebat! s metricbeat rnet 2 (BLUE TEAM: TARGET 2) OS & Version: Debian GNU/Linux 8 (jessie) Kernel Version: 3.16.0-6-amd64 IP 192.166.1.115 [255.255.255.0 MAC: 00.15.5D.00.04.11 HOST: TARGET1 Parts orts • 22/tcp ssh 7.6p1 • 80/tcp http Apache httpd 2.4.29

Azure Lab (Final Project): Red vs Blue Network Architecture

Notes:

- For the details of, and methodology to retrieve the information in this topology, refer to the Readme.md
- The topology is also provided in .jpg and .pdf files for easy reference while reading the analyses documents.

The following table is a summary of the machines that were identified on the network (for more detail i.e. **OS** and **OS** Versions, see the Topology above):

VM	IP Address	Description
Kali	192.168.1.90	A standard Kali install that will be used to attack other machines.
Capstone	192.168.1.105	The vulnerable target VM that students can use to test alerts. Filebeat and Metricbeat will forward logs to the ELK machine.
ELK	192.168.1.100	The same ELK setup that you created in Project 1. It holds the Kibana dashboards that you will use in Day 2.
Target 1	192.168.1.110	Exposes a vulnerable WordPress server. Sends logs to ELK.
Target 2	192.168.1.115	A more difficult WordPress target. Should be ignored unless all other portions of the project are completed. Sends logs to ELK.

Description of Targets

The target of this attack was: Target 1 (192.168.1.110) and Target 2 (192.168.1.115).

Target 1 & 2 are Apache web servers and has SSH enabled, so ports 80 and 22 are possible ports of entry for attackers. As such, the following alerts have been implemented:

Monitoring the Targets

Traffic to these services should be carefully monitored. To this end, we have implemented the alerts below:

Method to Create Alerts

- 1. Access Kibana at 192.168.1.100:5601
- 2. Click on **Management** > **License Management** and enable the Kibana Premium Free Trial.
- 3. Click Management > Watcher > Create Alert > Create Threshold Alert
- 4. Implement three the alerts.

Alert 1: Excessive HTTP Errors (Responce Codes)

Note: the value 400 below does not relate to the HTTP Response Code 400, but it is a threshold of 400! It applies to the count of traffic at a rate of > 400 responses every 5 minutes, which will trigger this Alert. For example, 500 GETs of / at the server will fire the alert even though the only response code is 200

- Metric: Packetbeat: http.response.status_code > 400
- Threshold: grouped http response status codes COUNT above 400 every 5 minutes
 - When count() GROUPED OVER top5 'http.response.status_code' is above 400 for the last 5 minutes
- Vulnerability Mitigated:
 - Denial of Service
 - Brute Force Attacks
 - Suspicious activity
- **Reliability**: This alert will not generate an excessive amount of false positives identifying brute force attacks. **Medium**

Alert 2: HTTP Request Size Monitor

- Metric: Packetbeat: http.request.bytes
- Threshold: The sum of the requested bytes is over 3500 in 1 minute
 - When sum() of http.request.bytes OVER all documents is ABOVE 3500 for the LAST 1 minute
- Vulnerability Mitigated: By controlling the number of http request sizes through a filter, protection is enabled to detect or prevent DDOS attacks for IPS/IDS.
- Reliability: No, this alert doesn't generate an excessive amount of false positives because DDOS attacks submit requests within seconds, not within minutes.
 Medium

Alert 3: CPU Usage Monitor

- Metric: Metricbeat: system.process.cpu.total.pct
- Threshold: The maximum cpu total percentage is over .5 in 5 minutes
 - WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE
 0.5 FOR THE LAST 5 minutes
- Vulnerability Mitigated: Controlling the CPU usage percentage at 50%, it will trigger a memory alert only if the CPU remains at or above 50% consistently for 5 minutes. Virus or Malware
- Reliability: Yes, this alert can generate a lot of false positives due to CPU spikes occurring when specific integrations are initiated at the start of processing. High

Viewing Logs Messages

There are a few way to to view these log messages and their associated data options.

• First, you can see when alerts are firing directly from the Watcher screen. All 3 Alerts are implemented, and functioning as expected as can be seen from the Watcher Statistics

- To view network traffic associated with these messages, we need to create a new Index Pattern:
- Click on Management > Index Patterns and click on the button for Create Index
- Make sure to turn on the toggle button labeled Include System Indices on the top right corner.
- Create the pattern .watcher-history-*.

- After you have this new index pattern, you can search through it using the Discovery page.
- Enter result.condition.met in as search filter to see all the traffic from your alerts.

Suggestions for Going Further (Optional)

- Each alert above pertains to a specific vulnerability/exploit. Recall that alerts only
 detect malicious behavior, but do not stop it. For each vulnerability/exploit
 identified by the alerts above, the following patches should mitigate against the
 exploits.
- Vulnerability 1: Weak Passwords
 - Patch: Enforce password policy (complexity, MFA, expiry, etc.)
 - Why It Works: Brute force attacks in this exercise would be next to impossible.
- Vulnerability 2: Python Privelege Escalation
 - Patch: Kibana can be configured to monitor for this attack and Steven's privileges can be revoked.
 - Why It Works: Attacks can be detected and Steven must enter a password before obtaining sudo privileges.
- Vulnerability 3: SQL Data Breaches
 - Patch: Restrict Access to certain key tables
 - Why It Works: Key tables will be inaccessible when users with dodgy security practices are compromised.
- Vulnerability 4: Alert 1: DoS Denial of Service/Brute Force Attacks
 - o Patch: Block IP addresses, and install firewall
 - Why It Works: IP addresses are blocked so they cannot bruteforce or DoS you and a firewall will further harden the network
- Vulnerability 5: Alert 2: DoS Denial of Service/Brute Force Attacks
 - Patch: Block IP addresses, and install firewall
 - Why It Works: IP addresses are blocked so they cannot bruteforce or DoS you and a firewall will further harden the network
- Vulnerability 6: Alert 3: Malware on System/Suspicious activity i.e. extraction of large amount of data or deleting / encrypting system
 - o Patch: Patch software and antivirus
 - Why It Works: Patched systems and software limits attack vectors. Antivirus stops an attack by quarantining malware/stopping it from operating