CS200 - Computer Organization Logic Design 02

Aravind Mohan

Allegheny College

November 29, 2022

Types of Circuits

- Combinational Circuits: The output of the circuit is based on the current inputs.
- Sequential Circuits: The output of the circuit is based on the current inputs and past outputs. A memory unit is needed.

Adders

- At the digital logic level, addition is performed in binary.
- Addition operations are carried out by special circuits called adders.
- There are two types of adders:
 - Half adder
 - Full adder

Half Adder

- Recall that 1 PLUS 1 = 10 in base two.
- In other words: 0 with a carry of 1

Inputs		Outputs		
Α	В	Carry	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

So how to design a Half Adder?

- We need One Exclusive Or and One And Gate.
- Two Inputs and Two Outputs

Full Adder

 A circuit is called a full adder if it takes the carry-in value into account.

Inputs			Outputs	
Α	В	Carry In	Carry- Out	Sum
0	0	0	0	0
0	0	1	0	1
О	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

So how to design a Full Adder?

- We need Two Exclusive Or and Two And, and One Or Gate.
- Three Inputs and Two Outputs

4 bit Adder

 Can we combine 4 full adders to make a Four-bit Adder Circuit?

MUX - Multiplexer

 It is a device that selects one out of the several input lines and forward it to a single output line.

Application of MUX

- Telephone Network: Integrating multiple audio signals to a single line.
- Computer Memory: Reduce the cables connecting Memory to other parts of computer.

Sequential Circuit

- The output of a sequential circuit depends both on the current input and the past output.
- Latch A 1-bit memory element. Saves one bit that can be used later.
- Register A set of m latches that can be used to store a m-bit word.
- Flip Flop A controlled latch, changes state when the control signal goes high to low or low to high.

Latch Design using Gates

So can we do the same using NAND Gates?

Latch Characteristics Table

What is the difference between Characteristics
 Table and Truth Table?

Inputs		Output	Description
R	S	Q⁺	
0	0	Q	No Change
0	1	1	Set Output to 1
1	0	0	Reset Output to 0
1	1	Х	Invalid Input

Flip Flop

 Clock is the control signal that goes high to low or low to high.

Let us apply these to an Application

Counter

Reading Assignment

- Principles of computer hardware by Alan Clements -Chapter 02 - 2.6;
- Computer Organization and Design by Patterson and Hennesssy - Appendices Section B - B.3;

Do you have any questions from this class discussion?