

ÉCOLE MAROCAINE DES SCENCES DE l'INGÉNIEUR

FILIERE GENIE INDUSTRIEL DEPARTEMENT MECANIQUE

Projet de Fin d'Études pour l'Obtention du Diplôme d'Ingénieur

Amélioration de la Maintenance des Chaudières et Développement d'une Solution Intelligente pour l'Automatisation de l'AMDEC et des Gammes de Maintenance au sein de TAQA Morocco

Soutenu le 0*/07/2025 à **h**mn par:

ANGUI hamza

Devant le jury composé de:

Président	(EMSI)	Pr. ******
Rapporteur	(EMSI)	Pr. ******
Examinateur	(EMSI)	Pr. *******
Encadrant	(EMSI)	Pr. GHASAN ayad
Encadrant	(TAQA)	Mr. HAREK amine

Groupe TAQA:

Crée en 2005.

Organisme d'accueil

Problématique et objectifs du projet

Plus grande centrale thermique de la région MENA

Mission:

Production de l'énergie électrique

Secteur d'activité:

Industrie énergitique

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Organisme d'accueil

Problématique et objectifs du projet

TAQA utilise majoritairement le charbon (source critique de CO₂) Les chaudières ont des pannes fréquentes AMDEC manuelle et lente Nécessité d'une solution IΑ

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Organisme d'accueil

Problématique et objectifs du projet

Présentation technique de la chaudière et ses sous-composants

chaudière des unités 5 & 6

La chaudière est un équipement thermique destiné à transformer l'énergie thermique du charbon en vapeur surchauffée à haute pression.

Cette vapeur alimente ensuite la turbine pour produire de l'électricité.

Elle est composée de plusieurs zones : économiseur, réchauffeur, surchauffeur... toutes exposées à de fortes contraintes thermiques et mécaniques.

Composants principaux:

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Extrait des principales causes de percement :

Caustic attack

Attaque caustique

<u>Symptômes</u>: Perte de matière localisée à la surface du diamètre interne (DI)

<u>Causes</u>: L'attaque caustique se produit lorsqu'il y a un dépôt excessif sur les surfaces du DI du tube.

Oxygen pitting

Piqûres par l'oxygène:

<u>Symptômes</u>: Corrosion agressive localisée près de l'entrée d'eau de l'économiseur sur les chaudières

<u>Causes</u>: Excès d'oxygène dans l'eau de chaudière, provoqué par l'air entrant par les pompes Hydrogen damage

Dommages par <u>l'hydrogène</u>

Symptômes:

Microfissuration intergranulaire, perte de ductilité

<u>Causes</u>: Principalement liés à des dépôts excessifs sur les surfaces internes des tubes Acid attack

Attaque par l'acide

<u>Symptômes</u>: Attaque corrosive des surfaces métalliques internes des tubes,

<u>Causes</u>: L'attaque acide est le plus souvent associée à un contrôle insuffisant du processus lors des nettoyages Stress corrosion cracking (SCC)

Fissuration sous contrainte corrosive (SCC)

<u>Symptômes</u>: Fissures épaisses et cassantes dans la paroi du tube,

<u>Causes</u>: Généralement associée à des matériaux de surchauffe austénitiques (acier inoxydable

Demo de l'interface web

Analyse AMDEC

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Le périmètre de l'etude

AMDEC de Chaudière

Constitution du groupe de travail

Pour une analyse AMDEC efficace, il est crucial de former un groupe de travail diversifié. Le groupe doit comprendre des experts de différents domaines pour bénéficier de diverses compétences et perspectives.

AMDEC de Chaudière

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Définition du besoin

AMDEC de Chaudière

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Cotations des Critères d'Évaluation

AMDEC de Chaudière

Détectabilité:

AMDEC de Chaudière

Cotation	Signification	Détectabilité	
1	Affichage dans la salle de contrôle ou inspection visuelle	Facilement détectable	
2	Utilisation d'instruments d'inspection	Moyennement détectable	
3	Analyse vibratoire	Difficilement détectable	
4	Non-détection	Non détectable	

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Fréquence:

AMDEC de Chaudière

Cotation	Signification	Fréquence	
1	Faiblement fréquent	Une fois par ans ou plus	
2	Moyennement fréquent	Une fois par mois	
3	Très fréquent	Une fois par semaine	
4	Extrêmement fréquent	Deux fois par semaine	

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Gravité:

AMDEC de Chaudière

Cotation	Signification	Gravité
1	Peu grave	Affecte partiellement la fonctionnalité, mais le système reste utilisable
2	Moyennement grave	Affecte significativement la fonctionnalité, mais le système reste utilisable avec des limitations
3	Très grave	Affecte sévèrement la fonctionnalité, rendant le système inutilisable sans réparation
4	Extrêmement grave	Affecte complètement la fonctionnalité, rendant le système totalement inutilisable
5	Gravité catastrophique	 Arrêt de fonction supérieur à 12 heures Intervention lourde nécessitant des moyens couteux

Niveaux de Maintenance

AMDEC de Chaudière

Niveaux deCriticité	Criticité (C)	Actions
1≤C≤12	Criticité négligeable	Aucune modification de conception Maintenance corrective
12 ≤ C≤16	Criticité moyenne	Améliorations des performances de l'élément Maintenance préventive systématique
16 ≤ C≤20	Criticité élevée	Révision de la conception du sous-ensemble et du choix des éléments Surveillance particulière, maintenance préventive conditionnelle / prévisionnelle
20 ≤ C≤30	Criticité très élevée	Révision de conception et amélioration
30≤ C≤80	Criticité interdite	Changement total de conception (opérations de grande importance, nécessite une expertise spécifique)

Extrait des tableaux AMDEC

AMDEC de Chaudière

Composantes	Sous- Composantes	Modes de Défaillance	Causes	Effets	Criticité : C	Action Corrective
Economiseur HT	Collecteur entrée	Érosion	Cendres >14%	Amincissement accéléré	24	Nettoyage pneumatique mensuel
Economiseur BT	Collecteur sortie	Caustic attack	Dépôts + pH élevé	Perte matière interne	45	Rinçage chimique trimestriel + contrôle pH +Inspection boroscopique semestrielle + revêtement passivant interne.
Rechauffeur BT	Collecteur entrée	Hydrogen damage	Dépôts + pH bas	Microfissures	30	Contrôle chimie eau
Réchauffeur HT	Branches sortie	Acid attack	Nettoyage chimique agressif	Surface "fromage suisse"	24	Procédures nettoyage contrôlé
Surchauffeur BT	Épingle	Short-term overheat	Blocage flux vapeur	Rupture ductile	40	Mise en place d'un système automatique de détection de surchauffe couplé à un by-pass de sécurité + inspection thermographique régulière

Élaboration et Application des Gammes de Maintenance Préventive

Des recommandations à l'action : les gammes de maintenance

Synthèse des gammes appliquées

Résultats de gamme de maintenance

- Issue de l'AMDEC →

- Objectif:

Gamme =

élaboration de gammes ciblées

ntervenir sur composants C ≥ 40

plan détaillé : tâches, outils, pièces, durée

Une structure rigoureuse pour une exécution maîtrisée

Synthèse des gammes appliquées

- Ordre des opérations : séquencement clair
- **Description** détaillée des tâches
- **Temps alloué** par opération
- Matériel et fournitures nécessaires
- Observations pratiques (photos, remarques)

Une démarche participative et terrain

Synthèse des gammes appliquées

- 1. Relevé des défaillances critiques
- 2. Analyse des pratiques actuelles
- 3. Formalisation des tâches
- 4. Validation terrain
- 5. Intégration du retour d'expérience (REX)

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Focus sur les composants à criticité élevée

Synthèse des gammes appliquées

Composant Sous-composant		Criticité (C)	Remarque
Composant	Jous composant	Criticite (C)	Remarque
ECO BT	Collecteur sortie	45	Intervention prioritaire
SUR BT Épingle		40	Criticité interdite (C ≥ 40)

Gamme N°1 - Intervention sur collecteur ECO BT

Consignes de securité :

EPI obligatoires, consignation mécanique/électrique, signalisation zone d'intervention.

Synthèse des gammes appliquées

Opération	Durée	Matériel à employe	Observations
Inspection visuelle	20mn	Lampe torche, appareil-photo	
Mesure d'épaisseur (US)	25mn	Appareil de mesure à ultrasons	
Test d'étanchéité	30mn	Kit de test sous pression	
Nettoyage & anticorrosion	50mn	Brosse métallique, produit nettoyant	
Traitement anticorrosion	30mn	Pinceau, rouleau	

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes
de
Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Gamme N°2 – Intervention sur épingle SUR BT

Consignes de securité :

Utiliser protection respiratoire contre poussières, EPI complets, consignation électrique stricte

Synthèse des gammes appliquées

Opération	Durée	Matériel à employe	Observations
Inspection visuelle (érosion, fissures)	15mn	Lampe, caméra endoscopique	
Contrôle épaisseur par ultrasons	20mn	Appareil ultrasons	
Nettoyage des surfaces internes (cendres, suies)	25mn	Tige flexible, brosse métallique	
Réparation ponctuelle fissures	40mn	Poste à souder	

Application de l'IA à la maintenance industrielle : vers une maintenance 4.0

Environnement technique du projet

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME

Développement sous VS Code / Python / Flask Architecture en modules

**D LangChain

**S OpenAI Pandas

**CSV

**CS

Intégration de : Pandas, LangChain docx, openpyxl Interface utilisateur

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME

Architecture fonctionnelle & GitHub

- 1. Lecture du fichier historique Excel
- 3. Création des gammes préventives (format Word)
- 2. Génération automatique de l'analyse AMDEC
- 4. Téléchargement depuis l'interface web
- **❖** Projet versionné et documenté sur GitHub

Format Excel structuré : date, composant, sous-composant, cause, durée

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Extrait AMDEC générée automatiquement

Génération automatique des gammes.

Démonstration du fonctionnement

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME_IA

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Extrait AMDEC générée automatiquement

Génération automatique des gammes.

Démonstration du fonctionnement

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME_IA

II. Présentation chaudière

III. Analyse AMDEC

IV. Gammes de Maintenance

V. Application de l'IA

VI. Conclusion & perspectives

Extrait AMDEC générée automatiquement

Génération automatique des gammes.

Démonstration du fonctionnement

Environnement technique du projet

Architecture fonctionnelle & GitHub

Fichier d'entrée : historique des arrêts

Résultat AMDEC & GAMME_IA

Conclusion et perspectives

- ✓ Automatisation de l'analyse AMDEC à partir d'un historique Excel structuré.
- ✓ Génération intelligente des gammes de maintenance en format Word, prête à l'emploi pour les équipes terrain.
- ✓ Développement d'un assistant IA fonctionnel, modulaire et documenté sur GitHub.
- ✓ Passage concret d'une maintenance manuelle à une maintenance digitalisée et proactive.
- ✓ Solution testée et validée sur les unités 5 & 6, transférable à d'autres centrales du groupe TAQA.

Merci de votre attention

ÉCOLE MAROCAINE DES SCENCES DE l'INGÉNIEUR

FILIERE GENIE INDUSTRIEL
DEPARTEMENT MECANIQUE

Projet de Fin d'Études pour l'Obtention du Diplôme d'Ingénieur

Amélioration de la Maintenance des Chaudières et Développement d'une Solution Intelligente pour l'Automatisation de l'AMDEC et des Gammes de Maintenance au sein de TAQA Morocco

Soutenu le 0*/07/2025 à **h**mn par:

ANGUI hamza

Devant le jury composé de:

Président	(EMSI)	Pr. ******
Rapporteur	(EMSI)	Pr. ******
Examinateur	(EMSI)	Pr. *******
Encadrant	(EMSI)	Pr. GHASAN ayad
Encadrant	(TAQA)	Mr. HAREK amine