LoanTap - Logistic Regression

LoanTap is an online platform committed to delivering customized loan products to millennials. They innovate in an otherwise dull loan segment, to deliver instant, flexible loans on consumer friendly terms to salaried professionals and businessmen. The data science team at LoanTap is building an underwriting layer to determine the creditworthiness of MSMEs as well as individuals.

LoanTap deploys formal credit to salaried individuals and businesses 4 main financial instruments:

- Personal Loan
- EMI Free Loan
- · Personal Overdraft
- · Advance Salary Loan

This case study will focus on the underwriting process behind Personal Loan only

Problem Statement:

Given a set of attributes for an Individual, determine if a credit line should be extended to them. If so, what should the repayment terms be in business recommendations?

Importing Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import model_selection import train_test_split, KFold, cross_val_score # To decide on the best performing model
from sklearn.preprocessing import MinMaxScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor # Multicolinearity?
from imblearn.over_sampling import SMOTE # Oversampling
```

!gdown 1ZPYj7CZCfxntE8p2Lze_4Q04MyE0y6_d

```
→ Downloading...
```

From: https://drive.google.com/uc?id=1ZPYj7CZCfxntE8p2Lze_4004MyE0y6_d To: /content/logistic_regression.csv 100% 100M/100M [00:00<00:00, 247MB/s]

df = pd.read csv('logistic regression.csv')

df.head()

₹	:	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership	annual_inc	verification_status
	0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	RENT	117000.0	Not Verified
	1	8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years	MORTGAGE	65000.0	Not Verified
	2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	RENT	43057.0	Source Verified
	3	7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6 years	RENT	54000.0	Not Verified
	4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	MORTGAGE	55000.0	Verified

df.shape

→ (396030, 27)

df.info()

</pre RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns):

Non-Null Count # Column Dtype loan_amnt 396030 non-null float64 396030 non-null object 1 term int_rate 396030 non-null float64 installment 396030 non-null float64 grade 396030 non-null object 396030 non-null sub_grade object emp_title 373103 non-null emp_length 377729 non-null object home_ownership 396030 non-null object annual_inc 396030 non-null float64 10 verification_status 396030 non-null object 11 issue d 396030 non-null object 12 loan_status 396030 non-null object 13 purpose 396030 non-null object 394274 non-null 14 title object 15 dti 396030 non-null float64 16 earliest_cr_line 396030 non-null object 396030 non-null float64 17 open_acc 396030 non-null 18 pub_rec float64 19 revol_bal 396030 non-null float64 20 revol_util 395754 non-null float64 21 total acc 396030 non-null float64 396030 non-null 22 initial_list_status object 23 application_type 396030 non-null object 358235 non-null float64 24 mort_acc 25 pub_rec_bankruptcies 395495 non-null float64 26 address 396030 non-null object dtypes: float64(12), object(15)

memory usage: 81.6+ MB

df.describe().T

_									
<i></i>	count	mean	std	min	25%	50%	75%	max	. =
loan_amnt	396030.0	14113.888089	8357.441341	500.00	8000.00	12000.00	20000.00	40000.00	ıl.
int_rate	396030.0	13.639400	4.472157	5.32	10.49	13.33	16.49	30.99	
installment	396030.0	431.849698	250.727790	16.08	250.33	375.43	567.30	1533.81	
annual_inc	396030.0	74203.175798	61637.621158	0.00	45000.00	64000.00	90000.00	8706582.00	
dti	396030.0	17.379514	18.019092	0.00	11.28	16.91	22.98	9999.00	
open_acc	396030.0	11.311153	5.137649	0.00	8.00	10.00	14.00	90.00	
pub_rec	396030.0	0.178191	0.530671	0.00	0.00	0.00	0.00	86.00	
revol_bal	396030.0	15844.539853	20591.836109	0.00	6025.00	11181.00	19620.00	1743266.00	
revol_util	395754.0	53.791749	24.452193	0.00	35.80	54.80	72.90	892.30	
total_acc	396030.0	25.414744	11.886991	2.00	17.00	24.00	32.00	151.00	
mort_acc	358235.0	1.813991	2.147930	0.00	0.00	1.00	3.00	34.00	
pub_rec_bankruptcies	395495.0	0.121648	0.356174	0.00	0.00	0.00	0.00	8.00	
1									

df.isna().sum()

application_type

mort_acc

pub_rec_bankruptcies

address

dtuna intel

There are null values in 6 columns in which 3 are numerical and 3 are categorical, categorical columns can be filled with mode and numerical can be filled with mean of their respective columns

df.loan_status.value_counts(normalize=True)*100

numeric_df = df.select_dtypes(include=['number'])

sns.heatmap(numeric_df.corr(method='spearman'), annot=True, cmap='viridis')

0

37795

535 0

```
| Doan_status | Fully Paid | 80.387092 | Charged Off | 19.612908 | Plt.figure(figsize=(12, 8))
```


From the above heat map we can see almost perfect correlation between "loan_amnt" the "installment" feature.

#dropping installment feature
df.drop(columns=['installment'], axis=1, inplace=True)

df.groupby(by='loan_status')['loan_amnt'].describe()

df['home_ownership'].value_counts()

Combining NONE and ANY into OTHER

```
df.loc[(df.home_ownership == 'ANY') | (df.home_ownership == 'NONE'), 'home_ownership'] = 'OTHER'
df.home_ownership.value_counts()
```


df.loc[df['home_ownership']=='OTHER', 'loan_status'].value_counts()

df['title'].value_counts()[:20]

```
df['issue_d'] = pd.to_datetime(df['issue_d'])
df['earliest_cr_line'] = pd.to_datetime(df['earliest_cr_line'])
```


count

title	
Debt consolidation	152472
Credit card refinancing	51487
Home improvement	15264
Other	12930
Debt Consolidation	11608
Major purchase	4769
Consolidation	3852
debt consolidation	3547
Business	2949
Debt Consolidation Loan	2864
Medical expenses	2742
Car financing	2139
Credit Card Consolidation	1775
Vacation	1717
Moving and relocation	1689
consolidation	1595
Personal Loan	1591
Consolidation Loan	1299
Home Improvement	1268
Home buying	1183
dtunas int@1	

df['title'] = df.title.str.lower()

Data Visualization

```
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
sns.countplot(x='term', hue='loan_status', data=df, ax=axes[0,0], palette='mako')
axes[0,0].set_title('Loan Status vs. Term')
axes[0,0].set_xlabel('Term')
axes[0,0].set_ylabel('Count')
sns.countplot(x='home_ownership', hue='loan_status', data=df, ax=axes[0,1], palette='mako')
axes[0,1].set_title('Loan Status vs. Home Ownership')
axes[0,1].set_xlabel('Home Ownership')
axes[0,1].set_ylabel('Count')
sns.countplot(x='grade', hue='loan_status', data=df, ax=axes[1,0], palette='mako')
axes[1,0].set_title('Loan Status vs. Grade')
axes[1,0].set_xlabel('Grade')
axes[1,0].set_ylabel('Count')
sns.countplot (x='verification\_status', \ hue='loan\_status', \ data=df, \ ax=axes[1,1], \ palette='mako')
axes[1,1].set_title('Loan Status vs. verification_status')
axes[1,1].set_xlabel('verification_status')
axes[1,1].set_ylabel('Count')
sns.countplot(x='application_type', hue='loan_status', data=df, ax=axes[2,0], palette='mako')
axes[2,0].set_title('Loan Status vs. Application Type')
axes[2,0].set_xlabel('Application Type')
axes[2,0].set_ylabel('Count')
sns.countplot(x='initial_list_status', hue='loan_status', data=df, ax=axes[2,1], palette='mako')
axes[2,1].set_title('Loan Status vs. Initial list status')
axes[2,1].set_xlabel('Initial list status')
axes[2,1].set_ylabel('Count')
```

plt.tight_layout()
plt.show()

Observations:

- More people take loans for 36 months than for 60 months.
- Most people who take loans have a house under mortgage, followed by those who rent, and then those who own their house. Other
 types are very few.
- The number of people in each verification status group is almost the same.
- Most loan applications are from individuals, not joint applications.
- Grade B has the highest number of people who have fully paid their loans.
- In Grade B, sub-grade B3 has the most people who paid off their loans.
- Very few people fall under Grade G.
- Sub-grade A1 has the least number of defaulters, which means people in this group are more reliable

Data Preprocessing using Feautre Engineering

```
def pub_rec(number):
    if number == 0.0:
        return 0
    else:
        return 1 # Whether someone has public derogatory records or not (flag)

def mort_acc(number):
    if number == 0.0:
        return 0
    else:
        return 1

def pub_rec_bankruptcies(number):
    if number == 0.0:
        return 0
    else:
        return 1
```

```
df['pub_rec'] = df.pub_rec.apply(pub_rec)
df['mort_acc'] = df.mort_acc.apply(mort_acc)
df['pub_rec_bankruptcies'] = df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)

plt.figure(figsize=(12, 30))

plt.subplot(6, 2, 1)
sns.countplot(x='pub_rec', data=df, hue='loan_status')

plt.subplot(6, 2, 2)
sns.countplot(x='initial_list_status', data=df, hue='loan_status')

plt.subplot(6, 2, 3)
sns.countplot(x='application_type', data=df, hue='loan_status')

plt.subplot(6, 2, 4)
sns.countplot(x='mort_acc', data=df, hue='loan_status')

plt.subplot(6, 2, 5)
sns.countplot(x='pub_rec_bankruptcies', data=df, hue='loan_status')

plt.show()
```



```
df['loan_status'] = df.loan_status.map({'Fully Paid':0, 'Charged Off':1})
numeric_df.drop(columns=['installment'], axis=1, inplace=True)
numeric_df=numeric_df.groupby(by='total_acc').mean()
```

numeric_df.head()

```
<del>_</del>__
                   loan_amnt int_rate
                                          annual_inc
                                                            dti open_acc pub_rec
                                                                                     revol_bal revol_util mort_acc pub_rec_bankruptcies
      total_acc
         2.0
                 6672.22222
                              15.801111 64277.777778
                                                       2.279444
                                                                 1.611111 0.000000 2860.166667
                                                                                                   53.527778 0.000000
                                                                                                                                     0.000000
         3.0
                 6042.966361
                              15.615566 41270.753884
                                                        6.502813
                                                                 2.611621 0.045872 3382.807339
                                                                                                   49.991022
                                                                                                              0.052023
                                                                                                                                     0.015480
                                                                                                                                     0.022951
         4.0
                 7587.399031
                              15.069491 42426.565969
                                                        8.411963
                                                                 3.324717 0.041195 4874.231826
                                                                                                    58.477400
                                                                                                              0.066743
         5.0
                 7845.734714 14.917564 44394.098003 10.118328
                                                                  3.921598 0.071499 5475.253452
                                                                                                    56.890311
                                                                                                              0.103289
                                                                                                                                     0.041171
         6.0
                 8529.019843 14.651752 48470.001156 11.222542
                                                                  4.511119 0.104003 6546.374957
                                                                                                    57.812483 0.151293
                                                                                                                                     0.055077
 Next steps: Generate code with numeric_df
                                            View recommended plots
                                                                          New interactive sheet
total_acc_avg = numeric_df.groupby(by='total_acc').mean().mort_acc
def fill_mort_acc(total_acc, mort_acc):
    if np.isnan(mort_acc):
        return total_acc_avg[total_acc].round()
    else:
        return mort_acc
\label{eq:df-mort_acc'} $$ df' = df.apply(lambda x: fill_mort_acc(x['total_acc'], x['mort_acc']), axis=1) $$
df.isnull().sum()
```

•	_
7	
	è

```
loan_amnt
        term
                            0
       int_rate
                            0
        grade
                            0
      sub_grade
                            0
      emp_title
                        22927
     emp_length
                        18301
  home_ownership
                            0
      annual_inc
                            0
  verification_status
                            0
       issue_d
                            0
     loan_status
                            0
                            0
       purpose
         title
                         1756
          dti
                            0
    earliest_cr_line
                            0
      open_acc
                            0
       pub_rec
                            0
      revol_bal
                            0
      revol_util
                          276
      total_acc
                            0
   initial_list_status
                            0
   application_type
                            0
      mort_acc
                            0
pub_rec_bankruptcies
                            0
                            0
       address
dtunas int@4
```

df.shape

```
→ (396030, 26)
```

df.dropna(inplace=True)

df.shape

```
→ (371125, 26)
```

```
numerical_data = df.select_dtypes(include='number')
num_cols = numerical_data.columns
len(num_cols)
```

→ 12

```
fig = plt.figure(figsize=(20,18))
for i,col in enumerate(num_cols):
    plt.subplot(int(len(num_cols)/2 +1), 2, i+1)
    plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.3, hspace=0.6)
    sns.boxplot(x=df[col])
    plt.xlabel(col,fontsize =15, color = 'blue')
    #plt.ylabel("count of bikes", fontsize = 15, color = 'blue')
fig.suptitle("Outliers in Numerical cols ", fontsize= 20, color = 'blue')
plt.show()
```


Outliers in Numerical cols


```
for col in num_cols:
   mean = df[col].mean()
   std = df[col].std()
   upper_limit = mean+3*std
   lower_limit = mean-3*std
   df = df[(df[col]<upper_limit) & (df[col]>lower_limit)]
df.shape
→ (355004, 26)
df['term']=df['term'].str.strip()
map = {'36 months':36,'60 months':60}
df['term']=df['term'].map(map)
df['initial list status'].unique()
⇒ array(['w', 'f'], dtype=object)
list_status = {'w': 0, 'f': 1}
df['initial_list_status'] = df.initial_list_status.map(list_status)
df['zip_code']=df['address'].apply(lambda x:x[-5:])
df['zip_code'].value_counts(normalize=True)*100
<del>_</del>_
               proportion
     zip_code
       70466
                14.378711
       30723
                14.282656
       22690
                14.269135
       48052
                14.125193
       00813
                11.611982
       29597
                11.537053
       05113
                11.517053
       93700
                 2.773772
       11650
                 2.771236
       86630
                 2.733209
     dtunas flooted
#dropping unnecessary columns
axis=1, inplace=True)
Encoding
dummies = ['purpose', 'zip_code', 'grade', 'verification_status', 'application_type', 'home_ownership']
df = pd.get_dummies(df, columns=dummies, drop_first=True)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
df.head()
```


1	8000.0	36	11.99	65000.0	0	22.05	17.0	0	20131.0	53.3	27.0	1
2	15600.0	36	10.49	43057.0	0	12.79	13.0	0	11987.0	92.2	26.0	1
3	7200.0	36	6.49	54000.0	0	2.60	6.0	0	5472.0	21.5	13.0	1
4	24375.0	60	17.27	55000.0	1	33.95	13.0	0	24584.0	69.8	43.0	1

df.shape

→ (355004, 49)

Splitting the data into train and test

```
X = df.drop(columns=['loan_status'])
y = df['loan_status']
X.shape
→ (355004, 48)
y.shape
→▼ (355004,)
X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_{size=0.30, stratify=y}, random_{state=42})
```

print(X_train.shape) print(X_test.shape)

(248502, 48)(106502, 48)

from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

Logistic Regression

logreg = LogisticRegression(max_iter=1000) $logreg.fit(X_train, y_train)$

y_pred = logreg.predict(X_test) print('Accuracy of Logistic Regression Classifier on test set: {:.3f}'.format(logreg.score(X_test, y_test)))

Accuracy of Logistic Regression Classifier on test set: 0.891

confusion_matrix = confusion_matrix(y_test, y_pred) print(confusion_matrix)

[[85434 576] [11071 9421]]

The accuracy of our first model is 89.11%, which looks good. But since our dataset is imbalanced, accuracy alone might not give the full picture. In such cases, accuracy can be misleading. So, we will look at some other evaluation metrics to better understand how well our model is performing.

0

from sklearn.metrics import classification_report, roc_auc_score, precision_recall_curve, auc, roc_curve,confusion_matrix

```
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

 *	Classificatio	on Report: precision	recall	f1-score support			
	0 1	0.89 0.94	0.99 0.46	0.94 0.62	86010 20492		
	accuracy macro avg weighted avg	0.91 0.90	0.73 0.89	0.89 0.78 0.87	106502 106502 106502		

ROC Curve

```
logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test)) # Actual Values and predicted categories
fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1]) # Actual values and the probability values
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('Log_ROC')
plt.show()
```


Precision-Recall Curve

```
def precision_recall_curve_plot(y_test, pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test, pred_proba_c1)

    threshold_boundary = thresholds.shape[0]
# plot precision
    plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', label='precision')
# plot recall
    plt.plot(thresholds, recalls[0:threshold_boundary], label='recalls')

start, end = plt.xlim()
    plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value'); plt.ylabel('Precision and Recall Value')
    plt.legend(); plt.grid()
```

```
plt.show()
```

```
precision_recall_curve_plot(y_test, logreg.predict_proba(X_test)[:,1])
```



```
X = scaler.fit_transform(X)
kfold = KFold(n_splits=5)
accuracy = np.mean(cross_val_score(logreg, X, y, cv=kfold, scoring='accuracy', n_jobs=-1))
print("Cross Validation accuracy: {:.3f}".format(accuracy))
→ Cross Validation accuracy: 0.891
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_train_res, y_train_res = sm.fit_resample(X_train, y_train.ravel())
print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape))
print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.shape))
print("After OverSampling, counts of label '1': {}".format(sum(y_train_res == 1)))
print("After OverSampling, counts of label '0': {}".format(sum(y_train_res == 0)))
→ After OverSampling, the shape of train_X: (401374, 48)
     After OverSampling, the shape of train_y: (401374,)
     After OverSampling, counts of label '1': 200687
     After OverSampling, counts of label '0': 200687
lr1 = LogisticRegression(max_iter=1000)
lr1.fit(X_train_res, y_train_res)
predictions = lr1.predict(X_test)
print(classification_report(y_test, predictions))
→
                   precision
                                recall f1-score
                                                    support
                0
                        0.94
                                  0.80
                                             0.87
                                                      86010
                        0.49
                                  0.80
                                             0.61
                                                     20492
                                                     106502
                                             0.80
         accuracy
        macro avg
                        0.72
                                  0.80
                                             0.74
                                                     106502
                                             0.82
                                                     106502
     weighted avg
                        0.86
                                  0.80
def precision_recall_curve_plot(y_test, pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test, pred_proba_c1)
```

threshold_boundary = thresholds.shape[0]

start, end = plt.xlim()

plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', label='precision')

plt.plot(thresholds, recalls[0:threshold_boundary], label='recalls')

```
plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value'); plt.ylabel('Precision and Recall Value')
plt.legend(); plt.grid()
plt.show()
precision_recall_curve_plot(y_test, lr1.predict_proba(X_test)[:,1])
```


Insights

- More people prefer 36-month loans over 60-month loans.
- · Loan distribution based on homeownership follows the order: Mortgage > Rent > Own, with fewer borrowers in other categories.
- · Verification status remains balanced across different customer groups.
- · Individual loan applications are the most common.
- Most borrowers in Grade B have successfully repaid their loans, with sub-grade B3 having the highest repayment rate.
- Only a small number of borrowers fall under Grade G.
- The lowest default rate is observed in sub-grade A1, indicating reliable borrowers.
- Precision for predicting debtors (class 0) is high.
- Precision for identifying defaulters (class 1) is also strong, with a 94% chance that predicted defaulters are indeed defaulters.
- Sensitivity for debtors is high, but sensitivity for defaulters is lower, leading to more false negatives, as confirmed by the confusion
 matrix.
- Teachers, managers, nurses, and supervisors are among the most frequent loan applicants.

Recommendations

- · Implement strict monitoring for high-interest loans, as they have a 40% default risk.
- Promote low-interest loans, as their probability of repayment exceeds 90%.
- Encourage joint loans, as they have the highest likelihood of full repayment.
- Offer flexible loan terms to help customers align payments with their income levels.
- Target high-earning job roles for loan distribution, as repayment expectations are stronger.
- Maintain rigorous approval processes for loans related to education, medical needs, and other essential purposes to build customer
- · Use alternative credit assessment methods like utility payment history and spending behavior to minimize defaults.
- · Strengthen partnerships with credit bureaus to improve borrower evaluations and reduce risk.
- · Regularly update loan policies to ensure compliance with regulatory standards and enhance loan disbursement strategies.

```
Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.
```