CIIC5018 / ICOM5018 Network Security and Cryptography

Project 4 - GF(28) operations for AES

Overview

In this project, you will design and implement python codes to illustrate different aspects of AES, including the basic operations on GF(2⁸) and the generation of S-Box and Inverse S-Box.

Design Requirements

- You must implement all functions by using pure Python. That is, you cannot use GF operations and AES functions defined in existing packages.
- In the GF(2^8) for AES, the polynomial modulo is m(x)= $x^8+x^4+x^3+x+1$.

Document requirements

To work on the project, you will need to prepare **three** documents following the guidelines below.

- 1. A design document
 - a. Cover page
 - i. It shall include the title of the document, student name, student ID, department and university information, etc.
 - b. Table of content
 - c. Section 1: The design of operations on GF(28)
 - i. Addition of two numbers
 - 1. Input: two 8-bit integers
 - 2. Return: one 8-bit integers
 - ii. Multiplication of two numbers
 - 1. Input: two 8-bit integers
 - 2. Return: one 8-bit integers
 - iii. Inverse of a number
 - 1. Input: one 8-bit integers
 - 2. Return: one 8-bit integers
 - iv. Tester for demonstration
 - d. Section 2: The Generation of S-Box and InvS-Box
 - i. A function to generate S-Box
 - ii. A function to generate InvS-Box
 - e. References
 - i. Cite at least 5 references
 - ii. Including a link to your YouTube video.
- 2. A Python notebook
 - a. Implements of all functions mentioned above

- b. Some testing procedures
 - i. Testing the GF(2⁸) operations
 - 1. Adding every number and itself shall be 0
 - 2. Multiplying every number and its inverse shall be 1
 - 3. The inverse's inverse of every non-zero number shall be itself
 - ii. Testing the S-Box and InvS-Box generation
 - 1. Your code must generate the same boxes on page 13 and page 14 in the slides
- 3. A YouTube video
 - a. You shall record a video and upload it to YouTube
 - i. Set the video to private
 - ii. Share the video to me at Kejie.lu@upr.edu
 - b. In the video, you shall explain all functions you implemented and verify the correctness of your code.

Submission

Submit a single zip file that includes:

- 1. the design document
- 2. the Jupyter notebook

Evaluation

- 1. Rubrics are used in the evaluation.
- 2. You must carefully review all rubrics before preparing for the documents.