

B.TECH SECOND YEAR

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS-III

COURSE CODE : MA 2101

LECTURE SERIES NO: 34 (THIRTY FOUR)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. VIVEK SINGH

EMAIL-ID : vivek.singh@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: 19 OCTOBER 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,
Team Work, Execution with Passion, Humane Touch

SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF ODE AND THEIR APPLICATIONS AND SOLVE THE PROBLEM"

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

ASSESSMENT CRITERIA'S

Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Subgroups

Group

- Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be abelian (or commutative) if

a * b = b * a for all a, b in G.

Algebraic systems

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \Rightarrow b = c (left cancellation law)

a * c = b * c \Rightarrow a = b (Right cancellation law)
```

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.

Theorem

- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

Ex. Show that, the set of all integers is a group with respect to addition.

- Solution: Let Z = set of all integers.
 Let a, b, c are any three elements of Z.
- 1. Closure property: We know that, Sum of two integers is again an integer. i.e., $a + b \in Z$ for all $a,b \in Z$
- 2. Associativity: We know that addition of integers is associative. i.e., (a+b)+c=a+(b+c) for all $a,b,c\in Z$.

- 3. <u>Identity</u>: We have $0 \in \mathbb{Z}$ and a + 0 = a for all $a \in \mathbb{Z}$. \therefore Identity element exists, and '0' is the identity element.
- 4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that a + (-a) = 0

Each element in Z has an inverse.

5. Commutativity: We know that addition of integers is commutative.

i.e., a + b = b + a for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

Ex. Show that set of all non zero real numbers is a group with respect to multiplication.

- Solution: Let R^* = set of all nonzero real numbers. Let a, b, c are any three elements of R^* .
- 1. Closure property: We know that, product of two nonzero real numbers is again a nonzero real number.

i.e., $a.b \in R^*$ for all $a,b \in R^*$.

2. <u>Associativity</u>: We know that multiplication of real numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c $\in \mathbb{R}^*$.

- 3. <u>Identity</u>: We have $1 \in R^*$ and $a \cdot 1 = a$ for all $a \in R^*$.
 - :. Identity element exists, and '1' is the identity element.
- **4.** <u>Inverse</u>: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

5. Commutativity: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
Hence, (R^*, .) is an abelian group.
```

- **Ex:** Show that set of all real number's 'R' is not a group with respect to multiplication.
- **Solution:** We have $0 \in \mathbb{R}$. The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example

Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m).

Show that (Z, *) is a semi group.

Is (Z, *) a monoid ?. Justify your answer.

Solution: Let a, b and c are any three integers.

Closure property: Now, $a * b = maximum of (a, b) \in Z$ for all $a, b \in Z$

Example (Contd.)

Associativity: $(a * b) * c = maximum of {a, b, c} = a * (b * c)$ $\therefore (Z, *) is a semi group.$

<u>Identity</u>: There is no integer x such that a * x = maximum of (a, x) = a for all a ∈ Z∴ Identity element does not exist. Hence, (Z, *) is not a monoid.

Example

Ex. Show that the set of all strings 'S' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation 'concatenation of strings' by +. Let s_1 , s_2 , s_3 are three arbitrary strings in S.

Closure property: Concatenation of two strings is again a string.

i.e.,
$$s_1 + s_2 \in S$$

Associativity: Concatenation of strings is associative.

$$(s_1 + s_2) + s_3 = s_1 + (s_2 + s_3)$$

- Identity: We have null string, $\lambda \in S$ such that $s_1 + \lambda = S$.
- ∴ S is a monoid.

 Note: S is not a group, because the inverse of a nonempty string does not exist under concatenation of strings.

Example

■ Ex. Let S be a finite set and let F(S) be the collection of all functions $f: S \to S$ under the operation of composition of functions, then show that F(S) is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let f_1 , f_2 , f_3 are three arbitrary functions on S.

Closure property: Composition of two functions on S is again a function on S.

i.e.,
$$f_1 \circ f_2 \in F(S)$$

Associativity: Composition of functions is associative.

i.e.,
$$(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$$

- Identity: We have identity function $I: S \rightarrow S$ such that $f_1 \circ I = f_1$.
 - \therefore F(S) is a monoid.

Note: F(S) is not a group, because the inverse of a non bijective function on S does not exist.

Example

Ex. If M is set of all non-singular matrices of order 'n x n'. Then show that M is a group w.r.t. matrix multiplication.

Is (M, *) an abelian group?. Justify your answer.

- Solution: Let $A,B,C \in M$.
- 1. Closure property: Product of two non-singular matrices is again a non-singular matrix, because

 $|AB| = |A| \cdot |B| \neq 0$ (Since, A and B are nonsingular) i.e., $AB \in M$ for all $A,B \in M$.

2. Associativity: Matrix multiplication is associative.

i.e., (AB)C = A(BC) for all $A,B,C \in M$.

- 3. <u>Identity</u>: We have $I_n \in M$ and $AI_n = A$ for all $A \in M$.
 - :. Identity element exists, and 'In' is the identity element.

4. <u>Inverse</u>: To each $A \in M$, we have $A^{-1} \in M$ such that $A A^{-1} = I_n$ i.e., Each element in M has an inverse.

∴ M is a group w.r.t. matrix multiplication.
 We know that, matrix multiplication is not commutative.
 Hence, M is not an abelian group.

Example

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by

$$a * b = (ab)/2$$
.

- Solution: Let A = set of all positive rational numbers. Let a,b,c be any three elements of A.
- 1. Closure property: We know that, Product of two positive rational numbers is again a rational number.

i.e., $a * b \in A$ for all $a,b \in A$.

2. Associativity: (a*b)*c = (ab/2)*c = (abc) / 4a*(b*c) = a*(bc/2) = (abc) / 4

Contd.,

3. <u>Identity</u>: Let e be the identity element. We have a*e = (a e)/2 ...(1)

By the definition of * again, $a^*e = a \dots (2)$

Since e is the identity.

From (1) and (2), (a e)/2 = a \Rightarrow e = 2 and 2 \in A.

.: Identity element exists, and '2' is the identity element in A.

4. Inverse: Let a ∈ A
let us suppose b is inverse of a.
Now, a * b = (a b)/2(1) (By definition of inverse)
Again, a * b = e = 2(2) (By definition of inverse)
From (1) and (2), it follows that
(a b)/2 = 2
⇒ b = (4 / a) ∈ A
∴ (A ,*) is a group.

Commutativity: a * b = (ab/2) = (ba/2) = b * a
Hence, (A,*) is an abelian group.

14-Aug-20

In a group (G, *), Prove that the identity element is unique.

Proof:

a) Let e_1 and e_2 are two identity elements in G.

```
Now, e_1 * e_2 = e_1 ...(1) (since e_2 is the identity)
Again, e_1 * e_2 = e_2 ...(2) (since e_1 is the identity)
From (1) and (2), we have
e_1 = e_2
```

:. Identity element in a group is unique.

In a group (G, *), Prove that the inverse of any element is unique. Proof:

- Let $a, b, c \in G$ and e is the identity in G.
- Let us suppose, Both b and c are inverse elements of a.
- Now, a * b = e ...(1) (Since, b is inverse of a)
- Again, $a * c = e \dots (2)$ (Since, c is also inverse of a)
- From (1) and (2), we have
- a*b=a*c
- \Rightarrow b = c (By left cancellation law)
- In a group, the inverse of any element is unique.

In a group (G, *), Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a,b \in G$.

Proof: Consider,

```
(a * b) * (b<sup>-1</sup> * a<sup>-1</sup>)
```

$$= (a * (b * b^{-1}) * a^{-1})$$
 (By associative property)

 $= (a * e * a^{-1})$

$$= (a * a^{-1})$$

(By inverse property)

Since, e is identity

(By inverse property)

- Similarly, we can show that
- $(b^{-1} * a^{-1}) * (a * b) = e$
- Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$.

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

```
Proof: Given that, a * a = a
```

- \Rightarrow a * a = a * e (Since, e is identity in G)
- \Rightarrow a = e (By left cancellation law)
- Hence, the result follows.

Ex. If every element of a group is its own inverse, then show that the group must be abelian .

Proof: Let (G, *) be a group.

- Let a and b are any two elements of G.
- Consider the identity,
- $(a * b)^{-1} = b^{-1} * a^{-1}$
- (a * b) = b * a (Since each element of G is its own inverse)
- Hence, G is abelian.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

Ex. In a group (G, *), if $(a * b)^2 = a^2 * b^2 \forall a, b \in G$ then show that G is abelian group.

Proof: Given that $(a * b)^2 = a^2 * b^2$

- \Rightarrow (a * b) * (a * b) = (a * a)* (b * b)
- \Rightarrow a *(b * a)* b = a * (a * b) * b (By associative law)
- \Rightarrow (b * a)* b = (a * b) * b (By left cancellation law)
- \Rightarrow (b * a) = (a * b) (By right cancellation law)
- Hence, G is abelian group.

Finite groups

Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.

Solution: The composition table of G is

- 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1 and – 1 are 1 and – 1 respectively.

Hence, G is a group w.r.t multiplication.

5. <u>Commutativity:</u> The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, \omega, \omega^2\}$ is an abelian group under multiplication. Where $1, \omega, \omega^2$ are cube roots of unity.

Solution: The composition table of G is

•	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	W

- 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.

14-Aug-20

- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, ω , ω^2 are 1, ω^2 , ω respectively.
- Hence, G is a group w.r.t multiplication.
- 5. <u>Commutativity:</u> The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.
- Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

•	1	– 1	i	- i
1	1	-1	i	- i
-1	-1	1	- i	i
i	i	- i	-1	1
- i	 - i	i	1	-1

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.

- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements
 of 1-1, i, -i are 1, -1, -i, i respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo Systems

Addition modulo m + m

- let m is a positive integer. For any two positive integers a and b
- a $+_m$ b = r if a + b \geq m where r is the remainder obtained by dividing (a+b) with m.

<u>Multiplication modulo p</u> (\times_p)

- let p is a positive integer. For any two positive integers a and b
- $a \times_p b = r$ if $ab \ge p$ where r is the remainder obtained by dividing (ab) with p.
- \blacksquare Ex. 3 \times_5 4 = 2, 5 \times_5 4 = 0, 2 \times_5 2 = 4

Ex. The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

•	+6	0	1	2	3	4	5
•		0					
•	1	1	2	3	4	5	0
•	2	2	3	4	5	0	1
•	3	3	4	5	0	1	2
•	4	4	5	0	1	2	3
•	5	5	0	1	2	3	4

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under +₆.

Contd.,

2. <u>Associativity</u>: The binary operation +₆ is associative in G.

for ex.
$$(2 +_6 3) +_6 4 = 5 +_6 4 = 3$$
 and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 0 is the identity element.
- **4.** <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.
- **5. Commutativity:** The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.
- Hence, (G, +₆) is an abelian group.

Ex. The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

•	× ₇	1	2	3	4	5	6
	1	1	2	3	4	5	6
		2					
	3	3	6	2	5	1	4
	4	4	1	5	2	6	3
	5	5	3	1	6	4	2
•	6	6	5	4	3	2	1

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

Contd.,

2. Associativity: The binary operation \times_7 is associative in G.

for ex.
$$(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$$
 and $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$

- 3. Identity: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 1 is the identity element.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 5, 6 respectively.
- **5. Commutativity:** The corresponding rows and columns of the table are identical. Therefore the binary operation x_7 is commutative.
- Hence, (G, \times_7) is an abelian group.

More on finite groups

- In a group with 2 elements, each element is its own inverse.
- In a group of even order there will be at least one element (other than identity element) which is its own inverse.
- The set $G = \{0,1,2,3,4,....m-1\}$ is a group with respect to addition modulo m.
- The set $G = \{1,2,3,4,....p-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.
- Order of an element of a group:
- Let (G, *) be a group. Let 'a' be an element of G. The smallest integer n such that an = e is called order of 'a'. If no such number exists then the order is infinite.

Examples

Ex.
$$G = \{1, -1, i, -i\}$$
 is a group w.r.t multiplication. The order $-i$ is a) 2 b) 3 c) 4 d) 1

- Ex. Which of the following is not true.
- a) The order of every element of a finite group is finite and is a divisor of the order of the group.
 - b) The order of an element of a group is same as that of its inverse.
- c) In the additive group of integers the order of every element except 0 is infinite
- d) In the infinite multiplicative group of nonzero rational numbers the order of every element except 1 is infinite.
- Ans. d DR VIVEK SINGH

THANK YOU

18

MUJ | DR. VIVEK SINGH 14-Aug-20

MUJ | DR. VIVEK SINGH 14-Aug-20