Rank-192 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 + X_0^2 X_2 + X_0 X_1^2 = 0$$

(0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(4) is 6770

General information

Number of lines	5
Number of points	21
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	20
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$5, 1^{20}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{25}$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{41} = \mathbf{Pl}(0,0,0,1,1,0)_{53}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{104} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{104} = \mathbf{Pl}(0,1,0,0,1,0)_{29}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \mathbf{Pl}(0,1,0,1,1,0)_{57}$$

Rank of lines: (20, 340, 41, 104, 125)

Rank of points on Klein quadric: (25, 9, 53, 29, 57)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 20 single points: The single points on the surface are:

0: $P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_1 = (0,1,0,0)$ lies on line ℓ_1 2: $P_4 = (1,1,1,1)$ lies on line ℓ_4 3: $P_5 = (1,1,0,0)$ lies on line ℓ_2 4: $P_8 = (1,0,1,0)$ lies on line ℓ_3 5: $P_{12} = (1,1,1,0)$ lies on line ℓ_4 6: $P_{23} = (1,0,0,1)$ lies on line ℓ_0 7: $P_{24} = (2,0,0,1)$ lies on line ℓ_0 8: $P_{25} = (3,0,0,1)$ lies on line ℓ_0 9: $P_{26} = (0,1,0,1)$ lies on line ℓ_1 10: $P_{27} = (1,1,0,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are: $\begin{array}{l} 11: \ P_{30} = (0,2,0,1) \ \text{lies on line} \ \ell_1 \\ 12: \ P_{32} = (2,2,0,1) \ \text{lies on line} \ \ell_2 \\ 13: \ P_{34} = (0,3,0,1) \ \text{lies on line} \ \ell_1 \\ 14: \ P_{37} = (3,3,0,1) \ \text{lies on line} \ \ell_2 \\ 15: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_3 \\ 16: \ P_{55} = (2,0,2,1) \ \text{lies on line} \ \ell_3 \\ 17: \ P_{63} = (2,2,2,1) \ \text{lies on line} \ \ell_4 \\ 18: \ P_{72} = (3,0,3,1) \ \text{lies on line} \ \ell_3 \\ 19: \ P_{84} = (3,3,3,1) \ \text{lies on line} \ \ell_4 \end{array}$

Line Intersection Graph

$ \begin{array}{c} \hline 0\\1\\2\\3\\4 \end{array} $	0	1	2	3	4
0	0	1	1	1	1
1	1	0	1	1	1
2	1	1	0	1	1
3	1	1	1	0	1
4	1	1	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3	P_3

 $\begin{array}{c} (1,0,1,1) \\ (2,0,2,1) \\ (2,2,2,1) \\ (3,0,3,1) \\ (3,3,3,1) \end{array}$

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$8: P_{24} = (2,0,0,1)$	$16: P_{39} =$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{25} = (3,0,0,1)$	$17: P_{55} =$
$2: P_3 = (0,0,0,1)$	$10: P_{26} = (0, 1, 0, 1)$	$18: P_{63} =$
$3: P_4 = (1, 1, 1, 1)$	$11: P_{27} = (1, 1, 0, 1)$	$19: P_{72} =$
$4: P_5 = (1, 1, 0, 0)$	$12: P_{30} = (0, 2, 0, 1)$	$20: P_{84} =$
$5: P_8 = (1,0,1,0)$	13: $P_{32} = (2, 2, 0, 1)$	
$6: P_{12} = (1, 1, 1, 0)$	14: $P_{34} = (0, 3, 0, 1)$	
$7: P_{23} = (1, 0, 0, 1)$	$15: P_{37} = (3, 3, 0, 1)$	