Data Audit Report

In []:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In []:

```
# Load datasets
dataset1 = pd.read_excel("datasets/dataset1.xlsm")
dataset2 = pd.read_excel("datasets/dataset2.xlsm")
```

Dataset 1

In [117]:

```
dataset1.head()
```

Out[117]:

	Patient_Number	Blood_Pressure_Abnormality	Level_of_Hemoglobin	Genetic_Pedigree_Coefficient	Age	ВМІ	Sex	Pregnanc
0	1	1	11.28	0.90	34	23	1	1.
1	2	0	9.75	0.23	54	33	1	Na
2	3	1	10.79	0.9	70	49	0	Na
3	4	0	11.00	0.43	71	50	0	Na
4	5	1	14.17	0.83	52	19	0	Na
4								<u> </u>

Basic info

In [79]:

```
dataset1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	Patient_Number	2000 non-null	int64
1	Blood_Pressure_Abnormality	2000 non-null	int64
2	Level_of_Hemoglobin	2000 non-null	float64
3	Genetic_Pedigree_Coefficient	1908 non-null	float64
4	Age	2000 non-null	int64
5	BMI	2000 non-null	int64
6	Sex	2000 non-null	int64

```
7
                                                     float64
     Pregnancy
                                     442 non-null
 8
                                                     int64
     Smoking
                                     2000 non-null
 9
                                                     int64
     salt_content_in_the_diet
                                    2000 non-null
 10 alcohol_consumption_per_day
                                                     float64
                                    1758 non-null
 11 Level of Stress
                                    2000 non-null
                                                     int64
                                    2000 non-null
 12 Chronic kidney disease
                                                     int64
 13 Adrenal and thyroid disorders
                                    2000 non-null
                                                     int64
dtypes: float64(4), int64(10)
memory usage: 218.9 KB
```

Number of missing data

In [110]:

dataset1.isnull().sum()

Out[110]:

Patient_Number	0
Blood Pressure Abnormality	0
Level of Hemoglobin	0
Genetic Pedigree Coefficient	92
Age	0
BMI	0
Sex	0
Pregnancy	1558
Smoking	0
salt_content_in_the_diet	0
alcohol_consumption_per_day	242
Level_of_Stress	0
Chronic kidney disease	0
Adrenal_and_thyroid_disorders	0
dtype: int64	

Missing data heatmap

In [104]:

```
plt.figure(figsize=(12, 6))
sns.heatmap(dataset1.isnull(), cbar=False, cmap="viridis")
plt.title("Missing Data Map for dataset1")
plt.show()
```


Conclusions:

- Since all the data in the dataset are numerical, it's important to clarify in the prompt the meaning of some categorical variables so that the model can interpret them correctly. For example: 0 represents "male" and 1 represents "female" for the gender variable.
- A lot of missing data in "pregnancy" variable.
- For missing data, I suggest filling in the values as follows:
 - For the "pregnancy" variable fill with 0.
 - For the "Genetic_Pedigree_Coefficient" variable, use the median value of the existing data, as this will minimize the impact of outliers while providing a reasonable estimate.
 - For the "alcohol_consumption_per_day" variable, use the median value as well, as it reflects the central tendency and can fill in missing values without introducing bias.

Feature Engineering:

- Add age group column for grouping by the following categories: -> "0-18", "19-25", "26-35", "36-45", "46-55", "56-65", "66-75", "76-100"
- Add BMI category column for grouping by the following categories: -> "Underweight", "Normal",
 "Overweight", "Obese"

Statistics

In [81]:

dataset1.describe()

Out[81]:

	Patient_Number	Blood_Pressure_Abnormality	Level_of_Hemoglobin	Genetic_Pedigree_Coefficient	Age	
count	2000.000000	2000.000000	2000.000000	1908.000000	2000.000000	2000.00
mean	1000.500000	0.493500	11.710035	0.494817	46.558500	30.08
std	577.494589	0.500083	2.186701	0.291736	17.107832	11.76
min	1.000000	0.000000	8.100000	0.000000	18.000000	10.00
25%	500.750000	0.000000	10.147500	0.240000	32.000000	20.00
50%	1000.500000	0.000000	11.330000	0.490000	46.000000	30.00
75%	1500.250000	1.000000	12.945000	0.740000	62.000000	40.00
max	2000.000000	1.000000	17.560000	1.000000	75.000000	50.00
4						Þ

Distribution analysis for some key variables

```
In [88]:

fig, axes = plt.subplots(2, 2, figsize=(14, 10))

sns.histplot(dataset1["Level_of_Hemoglobin"], kde=True, ax=axes[0, 0])
axes[0, 0].set_title("Distribution of Hemoglobin Level")

sns.histplot(dataset1["Age"], kde=True, ax=axes[0, 1])
axes[0, 1].set_title("Distribution of Age")

sns.histplot(dataset1["BMI"], kde=True, ax=axes[1, 0])
axes[1, 0].set_title("Distribution of BMI")

sns.histplot(dataset1["Level_of_Stress"], kde=True, ax=axes[1, 1])
axes[1, 1].set_title("Distribution of Stress Level")
```


Variable Distributions:

plt.tight layout()

- A lot of patients have extreme bmi values (check the correctness of this values)
- Uniform distribution of stress levels and age.

Correlations Between Variables::

Potential correlations may exist between:

- Blood_Pressure_Abnormality and BMI or salt_content_in_the_diet.
- Level_of_Stress, Alcohol_consumption_per_day and Smoking

Dataset 2

In [118]:

```
dataset2.head()
```

Out[118]:

	Patient_Number	Day_Number	Physical_activity
0	1	1	23590.0
1	1	2	10411.0
2	1	3	7815.0
3	1	4	12366.0
4	1	5	NaN

Basic info

In [80]:

```
dataset2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000 entries, 0 to 19999
Data columns (total 3 columns):
```

```
# Column Non-Null Count Dtype
--- 0 Patient_Number 20000 non-null int64
1 Day_Number 20000 non-null int64
2 Physical_activity 16159 non-null float64
dtypes: float64(1), int64(2)
```

memory usage: 468.9 KB

Missing data

Number of missing data

```
In [111]:
```

```
dataset2.isnull().sum()
```

Out[111]:

```
Patient_Number 0
Day_Number 0
Physical_activity 3841
dtype: int64
```

Missing data heatmap

```
In [113]:
```

```
plt.figure(figsize=(12, 6))
```

sns.heatmap(dataset2.isnull(), cbar=False, cmap="viridis")
plt.title("Missing Data Map for dataset2")
plt.show()

Conclusions:

- We can join dataset1 and dataset2 using the Patient_Number.
- Due to significant missing data, I suggest replacing the "Physical_activity" column with a column containing the median value for each patient. This will help reduce the data and standardize the datasets.

Feature Engineering:

• Add 'activity_level' column for grouping by the following categories: -> "sedentary", "lightly_active", "moderately_active", "very_active"

Statistics

In [82]:

dataset2.describe()

Out[82]:

	Patient_Number	Day_Number	Physical_activity
count	20000.000000	20000.000000	16159.000000
mean	1000.500000	5.500000	25353.499969
std	577.364631	2.872353	9885.999907
min	1.000000	1.000000	628.000000
25%	500.750000	3.000000	18564.000000
50%	1000.500000	5.500000	25488.000000
75%	1500.250000	8.000000	32080.000000
mav	2000 000000	10 000000	40080 000000

______ 10.000000 Patient Number Dav Number Physical activity

Distribution analysis for Physical Activity

In [99]:

```
plt.figure(figsize=(10, 6))
sns.histplot(dataset2["Physical activity"], kde=True)
plt.title("Distribution of Physical Activity in dataset2")
plt.show()
```


Variable Distributions:

• Physical_activity shows a sharp peak in the range of about 20,000-30,000, but there are also extreme values.

Correlations Between Variables::

Potential correlations may exist between:

'Physical_activity' with 'BMI', 'age' and 'alcohol_consumption_per_day'