Dofini zio de

have
$$(\mu_m)_{m\geq 1}$$
 e μ wisure finite su $(R, \Theta(R))$
si dice du ea successione $(\mu_m)_{m\geq 1}$ converge debetuente
alla misure μ e si indice $\mu_m \longrightarrow \mu$ $(\mu_m \stackrel{u}{\rightarrow} \mu)$
se $\forall f \in G(R)$ $(f consuma e limitala)$

Defini som

France $(X_m)_{m\geq 1}$, $e \times v.a$, definite dispervamente $(D_m)_{m\geq 1}$, $e \times (D_m)_{m\geq 1}$, $e \times (D_m)_{$

ouvers & fe (b(R)

$$\Leftrightarrow \int f(\times_m) dP_m \longrightarrow \int f(\times) dP$$

$$= \mathbb{E}_{\mathbb{R}}[f(x_{\mathbb{R}})] \to \mathbb{E}[f(x)]$$

le le v.e. sous définite tuire svers siens sparis, allara la conserpense in legre à la più debele:

PROPOSI FLONE

$$\times_{m} \stackrel{P}{\sim} \times \Rightarrow \times_{m} \stackrel{L}{\rightarrow} \times \left[(\times_{m})_{m \geqslant 1}, e \times \text{ definite} \right]$$
Ture on $(\Omega, \mathcal{L}, \mathcal{L}, P)$

due

$$f$$
 courium $\Rightarrow f(x_m) \xrightarrow{P} f(x)$ (res. di courium)
 f cuintata $\Rightarrow |f(x_m)| \leq ||f||_{\infty} \quad \forall m \geq 1$

$$\Rightarrow \quad f(x^{m}) \xrightarrow{l_{b}} f(x) \quad \forall \ b \ge 1$$

$$[(x)^{\frac{1}{2}}] \exists \leftarrow [(mx)^{\frac{1}{2}}] \Leftarrow (x) + [(mx)^{\frac{1}{2}} \Rightarrow \text{responsed in } \leftarrow (x)$$

Nou vale 16 vices crea:

Courseseupo

$$\Delta x = \{0,1\}$$
 $\Delta x = \{0,0\}$ $\Delta x = \{0,0\}$

Poes vou c'è converpense in probabilité: 100:

$$P(1\times_{m}-\times1>E) = P(1 w \in S2: |\times_{m}(w)-\times(w)|>E(1)=1 \neq 0$$

$$= 1 \times_{m} \xrightarrow{P} \times$$

Peopo & some

$$e i \approx \times = e q.o.$$

du

Couri desi au

$$\mathbb{E}\left[\frac{1\times_{m-2}}{1\times_{m-2}+1}\right]$$

$$\frac{200}{400} = \frac{1}{1} \frac{1}{1$$

$$\Rightarrow$$
 $\times_{\mathfrak{n}} \xrightarrow{\mathfrak{p}} \times$

DEHNIZONE ACTEMANA

TEORE HA

hous $(\times_m)_{m\geq 1}$, \times v.a. e hous $(f_{\times_m})_{m\geq 1}$ e f_{\times} le fuertoui di riparitone.

$$\times_m \xrightarrow{L} \times (=)$$
 Quie $F_{\times_m}(x) = F(x)$
 $\times_m \xrightarrow{L} \times (=)$ Quie $F_{\times_m}(x) = F(x)$

4.

Dei pues ai discousiueité di Fx pla uou enerci la compensor:

escupio:

40 (2, 4, P)

$$X^{\omega} = \frac{\omega}{4} \quad \forall \omega \in \mathcal{F}$$

$$X^{\omega} = \frac{\omega}{4} \quad \forall \omega \in \mathcal{F}$$

$$X^{\omega} = \frac{\omega}{4} \quad \forall \omega \in \mathcal{F}$$

 $\times_m \to \times_o \quad q.o., L^p, R, in expre.$

$$F_{\times m}(x) = \begin{cases} 0 & \text{se } x \in \frac{\pi}{4} \\ 1 & \text{se } x \neq \frac{\pi}{4} \end{cases}$$

From
$$G(x) = G(x) + G(x)$$

$$= \begin{cases} 0 & \text{de } x \leq 0 \\ 1 & \text{de } x \geq 0 \end{cases}$$

=) Pieu
$$F_{xm}(x) = f_{x}(x)$$
 Fourse the pet $x = 0$

purb ai dissortiuilly di f_{x}

OSSERVAZIONE

مس هذ

$$\times_{m} \xrightarrow{L} \times (=) P_{\times_{m}} \xrightarrow{} P_{\times}$$
 $\forall A \in \mathcal{B}(R) P_{\times_{m}}(A) \xrightarrow{} P_{\times}(A)$

Cowerpoise for delle left.

(Se ho counserpoise force =)
$$fx \in \mathbb{N}$$

 $P_{\times_m}((-\infty, x]) \rightarrow P_{\times}((-\infty, x])$
over $f_{\times_m}(x) \rightarrow f_{\times}(x)$
e puend $\times_m \xrightarrow{L} \times$

- 2 TEOREMA
 - (a) Se $(\times_n)_{n\geq 1}$ e \times Sour v.c. disuble a valoritin N $\times_m \xrightarrow{L} \times (=) \quad P_{\times_m}(k) = |P(\times_m = k)| \rightarrow |P(\times = k) = P_{\times}(k)$ Then N
 - b) Se $(X_m)_{m\geq 1}$ e X some y.a. assolutamente consume e $f_{X_m} \rightarrow f_X$ q.c. \Rightarrow $X_m \rightarrow X$
- 3 TEOREMA DI PAUL LÉVY

house $(\times_m)_{m\geq 1}$ v.e. con f with our constraint $(\Phi_{\times_m})_{m\geq 1}$

- 1) Se $\times_m \xrightarrow{L} \times$ dove \times v.a. con fundament where Φ_{\times} alone Φ_{\times} (t) Φ_{\times} alone Φ_{\times} (t) Φ_{\times} alone Φ_{\times} (t) Φ_{\times} alone Φ_{\times} (t) Φ_{\times} (t) Φ_{\times} (t) Φ_{\times}
- 2) Se lui $\Phi_{\times_m}(t) = \psi(t)$ $\forall t \in \mathbb{R}$ e Ψ e courium in Φ allowe Φ use Ψ a. Φ .

 t.c. $\Psi = \Phi_{\times}$ e Ψ Φ Ψ

NOTA: Se y nou è consinue ni $0 \Rightarrow y$ non può enere nere frensione aparteristica $\Rightarrow \times_m$ non converge in legge.

Se uforti fosse $\times_m \xrightarrow{i} \times \Rightarrow$ si onsebbe $\forall t \in \mathbb{R}$. $\Phi_{\times_m}(t) \xrightarrow{} y(t)$ A convida

PROPRIETA' DE LLA CONVERGENZA IN LEGGE

4) CONTINUTA).

Teorema di continuità: $\frac{1}{2}$ \frac

deer

4:0 ge (1/2)

E[g(Ym)] = E[g(t(xm))] = E[got(xm)]

1 = [9.4 (x)] = E[g(x))] = E[g(y)]

<u>aw</u>

· Xm ZX