# Modelowanie matematyczne i symulacje komputerowe

Projekt 1



## CZĘŚĆ II

Mapy chaotyczne to podtypy nieliniowych układów dynamicznych o charakterze deterministycznym, których rozwiązania mają zachowanie podobne do sygnału szumu. Wysoka wrażliwość mapy chaotycznej na wartość początkową jest jedną z jej najważniejszych cech - efekt motyla. Efekt motyla oznacza, że dokonanie niewielkiej zmiany w wartości początkowej, skutkuje gwałtowną zmianą w wyniku. Własność ta daje wysoką skuteczność i nieprzewidywalność mapy chaotycznej w zastosowaniach, między innymi, z punktu widzenia bezpieczeństwa w sieci internetowej. Mapy chaotyczne są szeroko stosowane do kodowania informacji przesyłanych przez sieć, np. kodowania obrazów, czym się Państwo zajmą w drugiej części projektu pierwszego.

Kodowania obrazów z wykorzystaniem map chaotycznych można dokonywać na wiele różnych sposobów. To zagadnienie wciąż intensywnie się rozwija i coraz więcej znajdujemy w literaturze proponowanych algorytmów kodowania, które uzyskują coraz lepsze wyniki w przeprowadzanych testach.

W projekcie wykorzystają Państwo mapę chaotyczną do zakodowania obrazka papugi\_res.png (dostępny na stronie kursu w materiałach do projektu) poprzez tasowanie pozycji intensywności kolorów. Każdy kolorowy obraz to  $N\cdot M\cdot 3$  pikseli, czyli wysokość·szerokość·kanały, obraz jest przechowywany jako tablica wymiaru  $N\times M\times 3$ . Oznacza to, że każdy piksel przechowuje własne intensywności RGB. W opisie zadania podane są wskazówki wykonania projektu w R.

Algorytm postępowania można znaleźć w artykule [1].

### Kodowanie i dekodowanie obrazów:

1. Zapisujemy i ładujemy obrazek (można wykorzystać funkcję readImage() z pakietu OpenImageR, np. img = readImage("papugi\_res.png")).



- 2. Wyodrębniamy trzy macierze  $\{R, G, B\}$  (np. przy wykorzystaniu readImage() macierz intensywności koloru czerwonego dla każdego piksela dostajemy za pomocą img[,,1]). Każdą macierz  $\{R, G, B\}$  zapisujemy w postaci wektora o długości  $N \cdot M$ , co daje  $\{Rw, Gw, Bw\}$ .
- 3. Dla każdego koloru oryginalnego obrazka możemy zobrazować intensywność (w formie słupkowej, przykład dla wszystkich kolorów) oraz przedstawić histogramy (przykład dla koloru czerwonego).







#### Histogram of Rw



4. Wykorzystując mapę logistyczną

$$x_{n+1} = rx_n(1 - x_n), \quad n = 0, \dots, K,$$

dla wybranego  $r \in [3.6, 4]$  i  $x_0 \in (0, 1)$  konstruujemy wektor wartości o długości  $K = 3 \cdot N \cdot M$ . Otrzymany wektor dzielimy na trzy podwektory  $\{x_R, x_G, x_B\}$ . Klucz kodowania składa się z dwóch informacji

$$(x_0, r)$$
.

- 5. Sortujemy (malejąco lub rosnąco) osobno wektory  $\{x_R, x_G, x_B\}$  otrzymując  $\{x_R^s, x_G^s, x_B^s\}$ . Następnie tworzymy trzy wektory pozycji  $\{P_R, P_G, P_B\}$ , które przechowują numery pozycji elementów z  $\{x_R^s, x_G^s, x_B^s\}$  w wektorach  $\{x_R, x_G, x_B\}$ .
- 7. (Kodowanie) Dokonujemy tasowania wartości wektorów  $\{Rw, Gw, Bw\}$  za pomocą wektorów pozycji  $\{P_R, P_G, P_B\}$ , tzn. tworzymy nowe wektory  $\{T_R, T_G, T_B\}$ , do których wstawiamy wartości z  $\{Rw, Gw, Bw\}$  w następujący sposób: bierzemy element z i—tej pozycji wektora Rw, czyli Rw[i], szukamy na jakiej pozycji stoi i w wektorze  $P_R$  (załóżmy, że na j), wówczas na pozycji j wektora  $T_R$ , czyli  $T_R[j]$  wstawiamy Rw[i].

8. Łączymy wektory kolorów  $\{T_R, T_G, T_B\}$  w tablicę (funkcja array()) o wymiarze  $N \times M \times 3$ . Zakodowany obrazek wygląda tak:



9. Wykreślamy intensywność każdego koloru zakodowanego obrazka



10. (Dekodowanie) Odbiorca mając klucz kodowania  $(x_0, r)$  może stworzyć wektory pozycji  $\{P_R, P_G, P_B\}$ , które pozwolą poustawiać w nowych wektorach (odkodowane kolory)  $\{D_R, D_G, D_B\}$  wartości z  $\{T_R, T_G, T_B\}$ . Następnie łączymy  $\{D_R, D_G, D_B\}$  w tablicę uzyskując odkodowany obraz:



11. Wyznaczamy współczynnik korelacji między poszczególnymi kolorami oryginalnego obrazu a kolorami zakodowanego obrazu, np. dla koloru czerwonego mamy

$$cor_{R} = \frac{\sum_{i=1}^{N \cdot M} \left(Rw_{i} - \overline{Rw}\right) \left((T_{R})_{i} - \overline{T_{R}}\right)}{\sqrt{\sum_{i=1}^{N \cdot M} \left(Rw_{i} - \overline{Rw}\right)^{2}} \sqrt{\sum_{i=1}^{N \cdot M} \left((T_{R})_{i} - \overline{T_{R}}\right)^{2}}}$$

12. Sprawdzamy wrażliwość kodowania względem doboru klucza, przykładowo dokonujemy kodowania obrazka przy kluczu ( $x_0 = 0.1, r = 3.8$ ), następnie próbujemy odkodować obrazek przy użyciu klucza ( $x_0 = 0.1000000001, r = 3.8$ ) oraz ( $x_0 = 0.1, r = 3.800000001$ ).

## Literatura

[1] M. Prasad, K.L. Sudha, *Chaos Image Encryption using Pixel shuffling* (artykuł umieszczony na stronie kursu w materiałach do projektu).