Stat 102

Introduction to Business Statistics Class 7

Richard P. Waterman

Wharton

Table of contents I

- Today's module
- 2 Last time
- The residuals
 - JMPs residuals plots
- $oldsymbol{Q}$ R^2 and the quality of fit
- **5** Summary
- 6 Next time

Today's module

Topics to be covered in this module:

- Last time
- The residual definition
- RMSE (s_e)
- Various residual plots
- R² and the quality of fit
- ullet The relationship between R^2 and RMSE
- Summary
- Next time

Last time

Main points:

- Global and local approaches to prediction
- Line definition
- The least squares fit to data
- The residuals
- Interpreting the slope and intercept of a regression

The residuals

- Every point has its own residual.
- It is the vertical distance from the point to the least squares line.
- Always look at a plot of the residuals, e, against x: the residual plot.
- The residuals should have no structure at all.
- They should look like a random swarm of points .

The residual plot

Not a disaster, but increasing variance is not ideal.

Facts about the residuals

- There are two key numerical summaries of data. The mean and standard deviation.
 - Fact: the sample mean of the residuals is always exactly zero.
 - The sample standard deviation of the residuals:

$$s_{e} = \sqrt{\frac{e_{1}^{2} + e_{2}^{2} + \dots + e_{n}^{2}}{n - 2}}.$$

- The (n 2) in the denominator is there because we have estimated 2 parameters in the regression, the slope and intercept.
- s_e is a measure of the variation in y that is not explained by knowing x. That is, s_e measures the unexplained variation in y.
- Low values of s_e are good, and if you are choosing between models with the same outcome variable, then prefer models with the lower s_e .
- s_e is also known as **Root Mean Squared Error** (RMSE).

The residuals and the NQP

The numerical summaries of the residuals

Summary Statistics

Mean	3.486e-15
Std Dev	7.2652969
Std Err Mean	0.9979653
Upper 95% Mea	2.0025638
Lower 95% Mean	-2.002564
N	53

Note that the sample mean is 0. It has to be as a by-product of the least squares methodology.

JMPs residual plots

JMP produces 5 residual plots in simple regression:

- Residuals against predicted
- Actual by predicted
- Residuals against row
- Residuals against x
- Normal quantile plot of the residuals

Plot: e_i v. \hat{y}_i .

- Hoping to see no structure.
- Useful in multiple regression, where \hat{y} can be thought of as a *blend* of all the x's in the model.

Plot: y_i v. \hat{y}_i .

- Hoping to see points tightly clustered about the 45° line.
- A way of visualizing R^2 (works in multiple regression too). R^2 is the square of the correlation in this plot.
- More sophisticated: a *calibration* plot. If you see systematic departures from the 45^o line, then for some predicted values you are getting a biased estimate of E(y), and you might want to fix this up.

Plot: e_i v. i (the row number).

- Only useful is there is a concept of adjacency between rows. This will be true for time-series.
- Look for systematic structure, particularly a tracking in the residuals which may indicate a lack of independence between neighboring residuals.

Plot: e_i v. x_i .

- The most natural residual plot.
- Equivalent in simple regression to plot #1.
- This is because \hat{y} is a linear transform of x: $\hat{y}_i = b_0 + b_1 x_i$.
- If b_1 is negative then the orientation in the horizontal direction switches around between plots #1 and #4, but from the point of view of looking for *structure*, it is identical to #1.

Plot: Normal Quantile Plot of the residuals.

• When we start checking assumptions, this is the one to assess normality of the error terms.

R^2 and the quality of fit

- As the residuals are defined as $e = y \hat{y}$, then so $y = \hat{y} + e$.
- The representation:

$$y = \hat{y} + e$$
,

shows that the model splits the observed data y into two parts: a systematic part \hat{y} , and a random component e.

This is the

$$Data = Signal + Noise,$$

paradigm.

Summarizing the fit

- Define R^2 as $(r)^2$, that is the sample correlation squared.
- It is sometimes called the Coefficient of Determination, but R^2 is more common.
- Interpretation: the proportion of variability in y explained by the regression model.
- Facts about R²:
 - **1** $0 \le R^2 \le 1$.
 - ② An R^2 of 1 means perfect linear association.
 - **3** An R^2 of zero means no linear association.
 - \bigcirc R^2 has no measurements units.
- All other things being equal, we prefer models with a higher R^2 .

Visualizing R^2

- Plot a histogram of y and measure its variance, s_y^2 .
- Plot a histogram of the residuals (e) and measure their variance s_e^2 .
- Compare the two variances: if the variance of the residuals is small compared to the variance of the raw data y, then that is good, we have explained a lot of variation in y by using the model.
- In fact:

$$R^2 pprox 1 - rac{s_e^2}{s_y^2}.$$

Visualizing R^2

Look at the variation in the raw data and compare it to the variation in the residuals.

Notice that there is less variation in the residuals, 19.20 v. 7.27.

Verifying the approximation

• The approximation to R^2 :

$$1 - \frac{7.27^2}{19.20^2} = 0.86.$$

• The exact answer from JMP:

Summary of Fit		
RSquare	0.857	
RSquare Adj	0.854	
Root Mean Square Error	7.336	
Mean of Response	33.906	
Observations (or Sum Wgts)	53.000	

• You don't ever have to use the approximation in practice, but it is helpful in understanding exactly what R^2 is measuring.

Things to think about when running regressions

- Think about lurking variables and be careful with your conclusions. Regression only identifies association and not causation.
- The association might be spurious because it may be driven by an omitted variable.
- Check that the association is approximately linear, otherwise the line doesn't make much sense.
- Inspect the residuals and hope to find no structure.

Module summary

- The residual definition
- \bigcirc RMSE (s_e)
- Various residual plots
- \odot The relationship between R^2 and RMSE

Next time

Dealing with curvature