INTELIGÊNCIA ARTIFICIAL

PARTE 4

Buscas em Árvores Mínimas

- Kruskal
- Dijkstra
- Prim

Prof. Dr. Celso Gallão - 2017

Características:

- É um algoritmo de busca, guloso, que se baseia no algoritmo de árvore espalhada de peso mínimo.
- Encontra uma aresta segura para adicionar à floresta crescente encontrando, de todas as arestas que conectam duas árvores quaisquer, uma aresta de peso mínimo.
- Encontra um subconjunto das arestas que forma uma árvore com todos os vértices, onde o peso total, dado pela soma dos pesos das arestas da árvore, é minimizado.

$$w_{T1} = 1$$

$$w_{T1} = 1$$

$$w_{T1} = 1$$

$$W_{T1} = 1$$

$$w_{T1} = 1$$

 $w_{T2} = 2$

$$w_{T1} = 1$$

 $w_{T2} = 2$

$$W_{T2} = 2$$

$$w_{T1} = 1$$

 $w_{T2} = 2$

$$W_{T2} = 2$$

$$W_{T1} = 1 + 5$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5 + 13$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5 + 13$$

$$W_{T2} = 2 + 8$$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$

 $W_{T2} = 2 + 8$ $W_{T1+T2} = 19 + 10 + 14$

$$W_{T1} = 1 + 5 + 13$$
 $W_{T2} = 2 + 8$
 $W_{T1+T2} = 19 + 10 + 14 = 43$

Algoritmo:

```
Kruskal(){
1 A = \emptyset;
2 for cada vértice v ∈ V[G]
       do MakeSet(v);
4
   Ordene as arestas E de forma crescente ao peso w
5
   for cada aresta (u,v) \in E (ordenado)
6
       do if FindSet(u) ≠ FindSet(v)
7
             then A = A \cup \{(u,v)\};
   Union(FindSet(u), FindSet(v));
8
9
   return A;
```

Algoritmo:

```
Kruskal(){
   A = \emptyset;
                                  Inicializa o conjunto A como o conjunto
   for cada vértice v \in V[G]
                                  vazio e criam V árvores, cada uma
3
                                  contendo 1 vértice.
        do MakeSet(v);
   Ordene as arestas E de forma crescente ao peso w
4
5
   for cada aresta (u,v) \in E (ordenado)
6
        do if FindSet(u) ≠ FindSet(v)
              then A = A \cup \{(u,v)\};
7
8
   Union(FindSet(u), FindSet(v));
9
   return A;
```

Algoritmo:

```
Kruskal(){
1 A = \emptyset;
2 for cada vértice v ∈ V[G] As arestas em E são ordenadas em
       do MakeSet(v); sequência crescente por peso.
4
   Ordene as arestas E de forma crescente ao peso w
5
   for cada aresta (u,v) \in E (ordenado)
6
       do if FindSet(u) ≠ FindSet(v)
7
             then A = A \cup \{(u,v)\};
8
   Union(FindSet(u), FindSet(v));
9
   return A;
```

Algoritmo:

```
Kruskal() {
   A = \emptyset;
   for cada vértice v ∈ V[G]
        do MakeSet(v);
4
    Ordene as arestas E de forma crescente ao peso w
5
   for cada aresta (u,v) \in E (ordenado)
6
        do if FindSet(u) ≠ FindSet(v)
7
               then A = A \cup \{(u,v)\};
8
   Union(FindSet(u), FindSet(v));
9
   return A;
                        Verifica, para cada aresta (\mathbf{u}, \mathbf{v}), se os pontos
                        extremos u e v pertencem à mesma árvore. Se sim, a
```

aresta é descartada pois **não é permitido ciclo**. Se não, a

aresta é adicionada em A e os vértices são intercalados.

Características:

- O algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Dijkstra em 1956 e publicado em 1959.
- É um algoritmo de busca, guloso, que resolve o problema de caminhos mais curtos de única origem em um grafo orientado ponderado.
- As arestas não podem ter pesos negativos.

Exemplo:

Inicialmente todos os vértices têm um custo infinito, exceto **s** (a raiz da busca) que tem valor 0:

Vértices	S	u	V	х	У
Estimativas	0	∞	∞	∞	∞
Precedentes	-	-	-	-	-
Fechado	Não	-	-	-	-

Exemplo

Selecione o vértice aberto de estimativa mínima: s

Feche s.

Recalcule as estimativas de u e x.

Vértices	S	u	v	X	У
Estimativas	0	∞	∞	5	∞
Precedentes	-	-	-	S	-
Fechado	Sim	-	-	Não	-

Inteligência Artificial – Parte 4 – Prof. Celso Gallão – Slide 40

Exemplo:

Selecione o vértice aberto de estimativa mínima: s

Feche s.

Recalcule as estimativas de **u** e **x**.

Vértices	S	u	V	X	у
Estimativas	0	10	∞	5	∞
Precedentes	-	S	-	S	-
Fechado	Sim	Não	-	Não	-

Exemplo:

Selecione o vértice aberto de estimativa mínima: x

Feche x.

Recalcule as estimativas de \mathbf{u} , \mathbf{v} e \mathbf{y} .

Vértices	S	u	V	X	У
Estimativas	0	10	∞	5	∞
Precedentes	-	S	-	S	-
Fechado	Sim	Não	-	Sim	-

Exemplo:

Selecione o vértice aberto de estimativa mínima: x

Feche x.

Recalcule as estimativas de \mathbf{u} , \mathbf{v} e \mathbf{y} .

Vértices	S	u	V	х	У
Estimativas	0	10 8	∞	5	∞
Precedentes	-	x	-	S	-
Fechado	Sim	Não	-	Sim	-

Exemplo:

Selecione o vértice aberto de estimativa mínima: x

Feche x.

Recalcule as estimativas de \mathbf{u} , \mathbf{v} e \mathbf{y} .

Vértices	S	u	V	Х	У
Estimativas	0	10 8	14	5	∞
Precedentes	-	х	x	S	-
Fechado	Sim	Não	Não	Sim	-

Inteligência Artificial – Parte 4 – Prof. Celso Gallão – Slide 44

Exemplo:

Selecione o vértice aberto de estimativa mínima: x

Feche x.

Recalcule as estimativas de \mathbf{u} , \mathbf{v} e \mathbf{y} .

Vértices	S	u	V	х	У
Estimativas	0	10 8	14	5	7
Precedentes	-	X	x	S	x
Fechado	Sim	Não	Não	Sim	Não

Exemplo:

Selecione o vértice aberto de estimativa mínima: **y**

Feche y.

Recalcule as estimativas de v.

Vértices	S	u	V	х	У
Estimativas	0	10 8	14	5	7
Precedentes	-	X	X	S	X
Fechado	Sim	Não	Não	Sim	Sim

Exemplo:

Selecione o vértice aberto de estimativa mínima: **y**

Feche y.

Recalcule as estimativas de v.

Vértices	S	u	V	X	У
Estimativas	0	10 8	1 4 13	5	7
Precedentes	-	х	У	S	X
Fechado	Sim	Não	Não	Sim	Sim

Exemplo:

Selecione o vértice aberto de estimativa mínima: **u**

Feche u.

Recalcule as estimativas de v.

Vértices	S	u	V	X	У
Estimativas	0	8	14 13	5	7
Precedentes	-	X	У	S	X
Fechado	Sim	Sim	Não	Sim	Sim

Exemplo:

Selecione o vértice aberto de estimativa mínima: **v**

Feche v.

Vértices	S	u	V	Х	У
Estimativas	0	8	13 9	5	7
Precedentes	-	X	u	S	X
Fechado	Sim	Sim	Não	Sim	Sim

Exemplo:

Selecione o vértice aberto de estimativa mínima: **v**

Feche v.

Vértices	S	u	V	Х	У
Estimativas	0	8	9	5	7
Precedentes	-	X	u	S	X
Fechado	Sim	Sim	Sim	Sim	Sim

Algoritmo:

```
Dijkstra(G,w,s)
1 for cada vertex u \in V
2 d(u) = \infty
3 pai(u) = (NIL)
4 d(s) = 0
5 S \leftarrow \emptyset
6 Q = V[G]
7 while Q \neq \emptyset
8
      do u \leftarrow extractMin(Q)
9
           S \leftarrow S \cup \{u\}
10
             for cada v \in adjacente(u)
11
             Relax(u,v,w)
```

Características:

- O algoritmo de Prim é um algoritmo guloso, utilizado para encontrar uma árvore geradora mínima em um grafo conectado, ponderado, orientado ou não.
- Foi desenvolvido em 1930 pelo matemático Vojtěch Jarník e depois pelo cientista da computação Robert C. Prim em 1957 e redescoberto por Edsger Dijkstra em 1959.
- Deve-se determinar um vértice de origem.
- Fornecerá uma resposta que não necessariamente é a única.

Algoritmo:

```
PRIM(G,w,r)
1 for cada u em V[G] do
2 chave[u] \leftarrow \infty
3
  pai[u] \leftarrow NIL
4 chave[r] \leftarrow 0
5 Q \leftarrow V[G]
6 while Q != {} do
7 u \leftarrow EXTRACT-MIN(Q)
         for cada v em Adj[u] do
9
               if v \in Q \in w(u,v) < chave[v]
10
                       then pai[v] \leftarrow u
                       chave[v] \leftarrow w(u,v)
11
```

Bibliografias

- i. CORMEN, LEISERSON, RIVEST, STEIN, Algoritmos: Teoria e Prática.
 2ª ed. Rio de Janeiro: Campus, 2002: Capítulo 23.
- ii. TONIDANDEL, Flávio, Slides das aulas de Algoritmos Computacionais. FEI, 2011.
- iii. http://www.inf.ufsc.br/grafos/temas/custo-minimo/dijkstra.html
- iv. http://www.ime.usp.br/~pf/algoritmos_para_grafos/aulas/dijkstra.html
- v. http://www.lcad.icmc.usp.br/~nonato/ED/Dijkstra/node84.html
- vi. http://en.wikipedia.org/wiki/Prim%27s_algorithm
- vii. http://www.ic.unicamp.br/~meidanis/courses/mo417/2003s1/aulas/2003-05-16.html
- viii. https://sites.google.com/site/tecprojalgoritmos/problemas/prim-e-kruskal