

(All rights reserved)

BSc. INFORMATION TECHNOLOGY, SECOND SEMESTER EXAMINATIONS 2016/2017

CSIT 102: INTRODUCTION TO I.T PROBLEM SOLVING (3 CREDIT)

TIME ALLOWED:

TWO AND HALF (2½) HOURS

INSTRUCTIONS:

Section A: Answer ALL Questions on the Question Paper and Attach to your Answer Booklet.

Section B: Answer ALL Questions in the Answer Booklet.

Section C: Answer ONE (1) Question Only in Your Answer Booklets.

SECTION A (40 Marks)

Answer all questions on the Question Paper and Attach to your Answer Booklet.

A1. A sequential search

- a. Starts with the first element of an array and searches each element until the correct one is found.
- b. Starts with the last element of an array and searches upward until the correct one is found.
- c. Starts with the middle element of an array and searches each direction until the correct one is found.
 - d. Does not have to have the array in order.
- A2. Use the selection exchange method to show the first pass of the following array:

Element	Values
1	15
2	23
3	17
4	12
5	65

a. 12, 17, 23, 15, 65

- b. 12, 23, 17, 15, 65
- c. 15, 17, 12, 23, 65
- d. 17, 15, 12, 23, 65
- A2. The binary search
- a. Starts with the first element of an array and searches each element until the correct one is found.
- b. Starts with the middle element and tests to see if the number is larger or smaller than that element and continues in the same manner until the element is found.
 - c. Does not have to have the array in order.
 - d. Is another name for a sequential search.
 - A3. The pointer technique:
 - a. Points to the correct value in an array by supplying the element number.
- b. Uses the value of an element in one array as the element number in another array.
 - c. Finds the last element in an array with a value other than zero.
- d. Allows the developer to point to any element in any array given the element number.
 - A4. Numerical data includes all integer numbers and all real numbers.
 - a. True
 - b. False
 - A5. A final step in problem solving is to evaluate the solution. This means:
 - a. To check if the knowledge base for errors.
- b. To check if the set of step by step instructions developed in step 5, list instructions that enable you to solve the problem, solve the problem identified in step 1.
 - c. To check is the solution solves a problem.
 - d. To test for understanding of the identified problem.
 - A6. Character data includes all numerical data.
 - a. True
 - b. False
 - A7. Use the bubble sort method to show the first pass of the following array:

Element	Values
1	15
2	23
3	17
4	12
5	65

- a. 12, 17, 23, 15, 65
- b. 12, 23, 17, 15, 65
- c. 15, 17, 12, 23, 65
- d. 17, 15, 12, 23, 65
- A2. True (T, y, or yes) and False (F, n, or no) are the only values in the logical data set.
 - a. True
 - b. False
 - A3. An equation and an expression are the same thing.

- a. True
- b. False
- A4. A function is a set of instructions to input data into the computer.
 - a. True
 - b. False
- A5. A parallelogram in a flowchart represents:
 - a. The start or end of the solution.
 - b. A process.
 - c. Input or Output.
 - d. A decision.
- A6. Which of the following is correct? When a module is processed:
- a. The computer jumps to the module, executes the instructions in the module, and then quits.
- b. The computer jumps to the module, executes the instructions in the module, and then returns to the next executable instruction.
- c. The computer jumps to the module, executes the instructions in the module, and then jumps to another module according to the structure chart.
- d. The computer ignores the module and returns later to execute the instructions.
 - A7. Cohesion is the ability of a module to be independent from other modules.
 - a. True
 - b. False
 - A8. Modules are not necessary to use when programming.
 - a. True
 - b. False
 - A9. Modules should have a designated function.
 - a. True
 - b. False
- A10. A heuristic and an algorithmic solution require the same type of problem solving approach to develop a step by step solution to a problem.
 - a. True
 - b. False
 - A11. Identifying the problem is the first step in problem solving.
 - a. True
 - b. False
 - A12. Defining the knowledge base is part of understanding the problem.
 - a. True
 - b. False
 - A13. To identify alternative ways to solve a problem means:
 - a. To define the knowledge base of all participants.
 - b. To write a list of pros and cons for each solution.
 - c. To identify as many solutions as possible to the problem.
 - d. To identify a few solutions to the problem.
 - A14. Coupling allows:
 - a. Data to be passed from one module to all other modules.
 - b. Data to be passes from one module to another module.
 - c. Data to be unavailable to other modules.
 - d. Instructions to be available to other modules.
 - A15. The algorithm of a module always starts with:

- a. A flattened ellipse.
- b. The module name and number.
- c. The name of the program.
- d. The name of the developer.
- A16. Data can be made available to other modules through the use of:
 - a. Parameters.
 - b. Global variables.
 - c. Return values.
 - d. All of the above.
- A17. The problem analysis chart, the IPO chart, the structure chart, the algorithms, and the flowchart are all tools to be used in the development of a solution to a problem.
 - a. True
 - b. False
 - A18. The flattened ellipse in a flowchart indicates:
 - a. A process.
 - b. An input or output instruction.
 - c. A decision.
 - d. The start or stop of the module.
 - A19. The rectangle in a flowchart indicates:
 - a. A process.
 - b. An input or output instruction.
 - c. A decision.
 - d. A module to be processed.
 - A20. The algorithm and the flowchart are the same thing.
 - a. True
 - b. False
 - A21. The interactivity (structure) chart is developed by:
 - a. Using the similar types of modules for all programs.
 - b. Breaking the total solution into functional parts called modules.
- c. Placing the names and numbers of the modules in rectangles which are then placed on the chart in a hierarchical fashion to show which modules process which other ones.
 - d. All of the above.
 - A22. Arrays are used:
- a. When multiple values of a variable need to be saved in the computer's memory to be used later in the processing.
 - b. When a variable has more than one value.
 - c. Anytime when a set of numbers needs to be summed.
- d. When the user does not know the number of values needed for a variable.
- A23. Given a stack, what would the final value of the stack pointer be after the following instructions were executed:
- PUSH 23, PUSH 35, PUSH 42, POP X, PUSH 20, POP X, POP X, PUSH 30
 - a. 1.
 - b. 2.
 - c. 3.

- d. 4.
- e. 5.
- A2. The top of a binary tree is a branch.
 - a. True
 - b. False
- A3. A node on a binary tree may be a leaf.
 - a. True
 - b. False
- A4. A binary tree is the same as a linked list.
 - a. True
 - b. False
- A5. A node at a higher level is called parent.
 - a. True
 - b. False
- A6. The bottom position of the tree is called a root
 - a. True
 - b. False
- A7. Stacks are used to process a binary tree.
 - a. True
 - b. False
- A8. Algorithms:
- a. Are the finished sets of programming instructions as written in a specific computer language
- b. Are the set of step by step instructions divided into the specific parts, or modules.
 - c. Are the words written inside the flowchart.
 - d. Are the modules outlined in a data flow pattern
 - A9. The IPO chart:
 - a. Shows the input, the processing, the output, and the module numbers.
 - b. Information is from the structure chart and the program analysis chart.
 - c. Shows which module each processing step is found.
 - d. All of the above.
 - A10. The Problem Analysis Chart:
- a. Has three parts: the given data, the required results, and the processing required.
- b. Has four parts: the given data, the required results, the processing required, and the solution alternatives.
 - c. Helps to delete the words from a problem.
 - d. All of the above.
 - e. A and C.
 - A11. There are two branches from every node.
 - a. True
 - b. False

SECTION B (30 Marks)

Answer ALL Questions in the Answer Booklet.

B1. Explain the following terms:				
a) Program.	[2 Marks]			
b) Coupling Diagram.	[2 Marks]			
c) Syntax.	[2 Marks]			
d) Module.	[2 Marks]			
e) Pseudocode.	[2 Marks]			
B2.				
a) Define the data types of the f	ollowing data items			
I. Sum of money	[2 Marks]			
II. Quantity of shoes	[2 Marks]			
III. Account number	[2 Marks]			
B3. Define a variable name for each of	[4 Marks]			
B4.				
a) Why is problem analysis important [*]	? [2 Marks]			
b) What is the difference between inte	rnal and external documentati	ion?		
[2 Marks]				
c) Why is it important to test a solution	before coding the solution?	[2 Marks]		
d) How do the problem-solving tools h	nelp in leading to a solution?	[4 Marks]		
SECTION C (30 Marks)				
Answer ONE (1) Question On	ly in Your Answer Booklets.	ı		

C1. Bob would like to know what percentage of his income his rent is. Write a

solution that would calculate and print this percentage. (Hint: Percentage = Number/ Total * 100)

- I. Draw the problem analysis chart for the problem stated above. [6 Marks]
- II. Construct the Input-Processing-Output (I.P.O.) Chart for the chosen solution.

[6 Marks]

- III. Design an algorithm for the chosen solution. [4 Marks]
- IV. Draw the flowchart for the chosen solution. [4 Marks]
- C1. Complete the data file table below for the left and right pointers and draw the

corresponding binary tree [20 Marks]

corresponding binary tree.		ry tree.	[20 Marks]	
RECORD	KEY	LEFT POINTER	RIGHT POINTER	
1	Α			
2	В			
3	С			
4	D			
5	E			
6	F			
7	G			
8	Н			
9	I			
10	J			
11	K			
12	L			
13	M			

a) Write out the resulting traversals to your binary tree above for

I. Preorder, [3 Marks]

II. Postorder and [3 Marks]

III. Inorder [4 Marks]

- C1. Identify a problem in your locality which a computer solution can be developed for and answer the questions below:
 - a) Write down the six problem-solving steps you will use to solve this problem.

[10 Marks]

b) Write an algorithm for the chosen solution. [5 Marks]

c) Draw a flowchart for the chosen solution. [7 Marks]

d) Write a code (pseudocode) for the chosen solution. [8 Marks]