Lecture Notes on Alternating Series

Harmonic Series and p-Series

Example 1 (Harmonic Series). The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Proof (Method 1 - Integral Test):

$$\sum_{n=1}^{N} \frac{1}{n} > \int_{1}^{N+1} \frac{1}{x} dx = \log x \Big|_{1}^{N+1} = \log(N+1)$$

As $N \to \infty$, $\log(N+1) \to +\infty$, so $\sum \frac{1}{n} = +\infty$. Proof (Method 2 - Grouping Terms):

$$\sum \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$

$$\geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

Theorem 1 (p-Series Convergence). The series $\sum \frac{1}{n^p}$:

- Converges if p > 1
- Diverges if 0

Proof for p > 1:

$$\sum_{k=1}^{n} \frac{1}{k^{p}} \le 1 + \int_{1}^{n} \frac{1}{x^{p}} dx = 1 + \frac{1}{p-1} \left(1 - \frac{1}{n^{p-1}} \right) \le 1 + \frac{1}{p-1}$$

So the partial sums are bounded above. **Proof for** $0 : Since <math>\frac{1}{n^p} \ge \frac{1}{n}$ for $0 and <math>\sum \frac{1}{n}$ diverges, $\sum \frac{1}{n^p}$ also diverges by comparison.

Alternating Series

Theorem 2 (Alternating Series Test). If $a_n > 0$ for all n, (a_n) is decreasing, and $\lim_{n\to\infty} a_n = 0$, then the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

Example 2. The alternating harmonic series $\sum \frac{(-1)^n}{n}$ converges.

Proof of Alternating Series Test: Let $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$. For m > 1

$$|S_m - S_n| = \left| \sum_{k=n+1}^m (-1)^k a_k \right| = |a_{n+1} - a_{n+2} + a_{n+3} - \dots \pm a_m|$$

Consider two cases:

Case 1: The sum has an even number of terms

$$|S_m - S_n| = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots + (a_{m-1} - a_m) \le a_{n+1}$$

Case 2: The sum has an odd number of terms

$$|S_m - S_n| = a_{n+1} - (a_{n+2} - a_{n+3}) - \dots - (a_{m-1} - a_m) \le a_{n+1}$$

In both cases, $|S_m - S_n| \le a_{n+1}$. Since $\lim_{n\to\infty} a_n = 0$, the sequence (S_n) is Cauchy and therefore converges.