Module 6: Minor Losses (CIVL 318)

$$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7(D/\epsilon)} + \frac{5.74}{N_{\rm R}^{0.9}}\right)\right]^2}$$

$$h_L = K \cdot \frac{v^2}{2g}$$

Flow through valves:

$$h_L = f_T \cdot \frac{L_e}{D} \cdot \frac{v^2}{2g}$$

K-values for Sudden Contraction

				Vel	ocity, v				
D_1/D_2	$0.6\mathrm{m/s}$	$1.2\mathrm{m/s}$	$1.8\mathrm{m/s}$	2.4 m/s	$3\mathrm{m/s}$	$4.5\mathrm{m/s}$	$6\mathrm{m/s}$	$9\mathrm{m/s}$	$12\mathrm{m/s}$
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.1	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.06
1.2	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.10	0.11
1.4	0.17	0.17	0.17	0.17	0.18	0.18	0.18	0.19	0.20
1.6	0.26	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.24
1.8	0.34	0.34	0.34	0.33	0.33	0.32	0.31	0.29	0.27
2.0	0.38	0.37	0.37	0.36	0.36	0.34	0.33	0.31	0.29
2.2	0.40	0.40	0.39	0.39	0.38	0.37	0.35	0.33	0.30
2.5	0.42	0.42	0.41	0.40	0.40	0.38	0.38	0.34	0.31
3.0	0.44	0.44	0.43	0.42	0.42	0.40	0.39	0.36	0.33
4.0	0.47	0.46	0.45	0.45	0.44	0.42	0.41	0.37	0.34
5.0	0.48	0.47	0.47	0.46	0.45	0.44	0.42	0.38	0.35
10.0	0.49	0.48	0.48	0.47	0.46	0.45	0.43	0.40	0.36
	0.49	0.48	0.48	0.47	0.47	0.45	0.44	0.41	0.38

K-values for Gradual Contraction

$$K = \begin{cases} 0.5\sqrt{\sin\frac{\theta}{2}}\left(1 - \left(\frac{D_2}{D_1}\right)^2\right), & 45^\circ < \theta \le 180^\circ \\ 0.8\sin\frac{\theta}{2}\left(1 - \left(\frac{D_2}{D_1}\right)^2\right), & 15^\circ < \theta \le 45^\circ \end{cases}$$

where D_2 is the smaller (downstream) diameter of the pipe after the contraction and D_1 is the diameter of the larger (upstream) pipe and the head loss is based on the velocity of the smaller pipe.

K-values for Sudden Enlargement:

	Velocity, v						
D_2/D_1	$0.6\mathrm{m/s}$	$1.2\mathrm{m/s}$	$3\mathrm{m/s}$	$4.5\mathrm{m/s}$	$6\mathrm{m/s}$	$9\mathrm{m/s}$	$12\mathrm{m/s}$
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.2	0.11	0.10	0.09	0.09	0.09	0.09	0.08
1.4	0.26	0.25	0.23	0.22	0.22	0.21	0.20
1.6	0.40	0.38	0.35	0.34	0.33	0.32	0.32
1.8	0.51	0.48	0.45	0.43	0.42	0.41	0.40
2.0	0.60	0.56	0.52	0.51	0.50	0.48	0.47
2.5	0.74	0.70	0.65	0.63	0.62	0.60	0.58
3.0	0.83	0.78	0.73	0.70	0.69	0.67	0.65
4.0	0.92	0.87	0.80	0.78	0.76	0.74	0.72
5.0	0.96	0.91	0.84	0.82	0.80	0.77	0.75
10.0	1.00	0.96	0.89	0.86	0.84	0.82	0.80
	1.00	0.98	0.91	0.88	0.86	0.83	0.81

K-values for Gradual Enlargement

D_2/D_1	2°	6°	10°	15°	20°	25°	30°	35°	40°	45°	50°	60°
1.1	0.01	0.01	0.03	0.05	0.10	0.13	0.16	0.81	0.19	0.20	0.21	0.23
1.2	0.02	0.02	0.04	0.09	0.16	0.21	0.25	0.29	0.31	0.33	0.35	0.37
1.4	0.02	0.03	0.06	0.12	0.23	0.30	0.36	0.41	0.44	0.47	0.50	0.53
1.6	0.03	0.04	0.07	0.14	0.26	0.35	0.42	0.47	0.51	0.54	0.57	0.61
1.8	0.03	0.04	0.07	0.15	0.28	0.37	0.44	0.50	0.54	0.58	0.61	0.65
2.0	0.03	0.04	0.07	0.16	0.29	0.38	0.46	0.52	0.56	0.60	0.63	0.68
2.5	0.03	0.04	0.08	0.16	0.30	0.39	0.48	0.54	0.58	0.62	0.65	0.70
3	0.03	0.04	0.08	0.16	0.31	0.40	0.48	0.55	0.59	0.63	0.66	0.71
∞	0.03	0.05	0.08	0.16	0.31	0.40	0.49	0.56	0.60	0.64	0.67	0.72

K-values for Entrance Losses

Inward-projecting: K = 0.78 - 1.0

Square-edged inlet: K = 0.5

Chamfered Inlet: K = 0.25

	r/D	K
Rounded inlet:	0 0.02 0.04 0.06 0.10	0.5 0.28 0.24 0.15 0.09
	≥ 0.15	0.04

Exit Loss (i.e. exiting a pipe into a tank where all velocity is lost):

$$K = 1 \Rightarrow h_L = \frac{v^2}{2g}$$

Friction Factor, f_T in the zone of complete turbulence for new clean commercial **steel** pipe:

Nominal Size (in)	f_T	Nominal Size (in)	f_T
$\frac{1}{2}$	0.027	$3\frac{1}{2}$, 4	0.017
$\frac{3}{4}$	0.025	5	0.016
1	0.023	6	0.015
$1\frac{1}{4}$	0.022	8 – 10	0.014
$1\frac{1}{2}$	0.021	12 – 16	0.013
2	0.019	18 - 24	0.012
$2\frac{1}{2}$, 3	0.018		

Equivalent-length ratios for valves:

Туре	L_e/D
Globe valve — fully open	340
Angle valve — fully open	150
Gate valve — fully open	8
-3/4 open	35
-1/2 open	160
-1/4 open	900
Check valve — swing type	100
Check valve — ball type	150
Butterfly valve — fully open	45
Foot valve — poppet disc type	420
Foot valve — hinged disc type	75

Table of Equivalent-Length Ratios for Fittings

Туре	L _e /D
90° standard elbow	30
90° long radius elbow	20
90° street elbow	50
45° standard elbow	16
45° street elbow	26
Close return bend	50
Standard tee — flow through run	20
Standard tee — flow through branch	60

Example 1:

Determine the head loss that occurs when $100~{\rm L/min}$ of fluid flows from 3-in Type K copper tube $(D=73.84\,{\rm mm})$ into 1-in Type K copper tube $(D=25.27\,{\rm mm})$ through a sudden contraction.

Solution:

Example 2:

Determine the head loss for a gradual contraction from 4-in Schedule 80 pipe $(D=97.2\,\mathrm{mm})$ to a $1\frac{1}{2}\text{-in}$ Schedule 80 pipe $(D=38.1\,\mathrm{mm})$ with a cone angle of $76^\circ.$

The flow is 450 L/min.

Example 3:

Determine the head loss that occurs when $100~{\rm L/min}$ flows from 1-in Type K copper tube $(D=25.27~{\rm mm})$ into 3-in Type K copper tube $(D=73.48~{\rm mm})$ through a sudden enlargement.

Solution:

Example 4:

Compare the headlosses between an inward-projecting entrance and rounded entrance with a radius of 25 mm for water entering 6-in Schedule 40 steel pipe ($D=154.1\,\mathrm{mm}$) with a flow of 75L/s. (Use K=0.78.)

Example 5:

Find the pressure drop across a fully open globe valve ($L_e/D=340$) in 4-in Shedule 40 steel pipe ($D=102.3\,\mathrm{mm}$) carrying $1600\,\mathrm{L/min}$.

Example 6:

Calculate the headloss across a ball-type check valve placed in a $1\frac{1}{4}$ -in copper tubing $(D=31.62\,\mathrm{mm})$ if water is flowing through the tubing with a velocity of $2.35\,\mathrm{m/s}.$

Solution:

Example 7:

Find the pressure drop across a 90° standard elbow in a $2\frac{1}{2}\text{-in}$ Schedule 40 steel pipe $(D=62.7\,\mathrm{mm})$ if water is flowing at the rate of $800~\mathrm{L/min}.$