数据寻址2 (偏移寻址)

1

4

王道考研/cskaoyan.com

基址寻址的作用 int a=2,b=3,c=1,y=0; void main(){ 基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, y=a*b+c;而形成操作数的有效地址,即EA=(BR)+A。 低地址 主存 指令 注释 地址 操作码 地址码 000000101 取数a至ACC 000001 1 000100 0000000110 乘b得ab,存于ACC中 000011 0000000111 加c得ab+c,存于ACC中 2 000010 0000001000 将ab+c,存于主存单元 3 000110 0000000000 停机 4 5 原始数据a=2 00000000000000011 原始数据b=3 6 00000000000000001 原始数据c=1 主存 高地址 原始数据y=0 00000000000000000 王道考研/CSKAOYAN.COM

基址寻址 基址寻址:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A, 而形成操作数的有效地址,即EA=(BR)+A。 寻址特征 BR为基址寄存器 寻址特征 主存 R₀为基址寄存器 主存 BR ALU 通用寄存器 操作数 操作数 (b) 采用通用寄存器作为基址寄存器 (a) 采用专用寄存器BR作为基址寄存器 注:基址寄存器是面向操作系统的,其内容由操作系统或管理程序确定。在程序执行 过程中,基址寄存器的内容不变(作为基地址),形式地址可变(作为偏移量)。 当采用通用寄存器作为基址寄存器时,可由<mark>用户决定哪个寄存器作为基址寄存器</mark>, 但其<mark>内容仍由操作系统确定</mark>。 优点: 可扩大寻址范围(基址寄存器的位数大于形式地址A的位数); 用户不必考虑自 己的程序存于主存的哪一空间区域,故<mark>有利于多道程序设计</mark>,以及可用于<mark>编制浮动程序(整个程序在内存里边的浮动)</mark>。 王道考研/CSKAOYAN.COM

Q

变址寻址的作用

注:此处未添加"寻址特征"位,但 实际上每条指令都会指明寻址方式。 此处讲解仅用口头描述

	主存	扌	旨令	>> -₩ ₽
,	地址	操作码	地址码	注释
立即寻址	0	取数到ACC	#0 (立即数)	立即数 0 → ACC
	1	ACC加法	12(a[0]地址)	$(ACC)+a[0] \rightarrow ACC$
接寻址一	2	ACC加法	13(a[1]地址)	$(ACC)+a[1] \rightarrow ACC$
		ACC加法	14	$(ACC)+a[2] \rightarrow ACC$
女寸址	9	•••	👌	
	10	ACC加法	21	$(ACC)+a[9] \rightarrow ACC$
	11	从ACC存数	22	(ACC)→ sum变量
	12	随便	什么值	a[0]
	13	随便	什么值	a[1]
	•••	70		7/5
	21	随便	什么值	a[9]
随	22	初始为0		sum变量

王道考研/CSKAOYAN.COM

直接寻址-

for(int i=0; i<10; i++){

sum += a[i];

ACC

~ <u> </u>		主存 指令		令	N. etre
for(int i=0; i<10; i++){		地址	操作码	地址码	注释
sum += a[i];	÷ #□ ∃ 1-1.	0 =	取数到ACC	#0	立即数 0 → ACC
X	立即寻址	1	取数到IX	#0	立即数 0 → IX
	变址寻址	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
×	立即寻址 ≺ ┣━	3	IX加法	#1	$(IX) + 1 \rightarrow IX$
ACC 0		4	IX比较	#10	比较10-(IX)
	直接寻址	5	条件跳转	2	若结果>0 则PC跳转到2
	百段寸址	6	从ACC存数	17	(ACC)→ sum变量
IX 10	5	7	随便	什么值	a[0]
在数组处理过程中,可设定A为数组的 首地址,不断改变变址寄存器IX的内		8	随便	什么值	a[1]
		9	随便	什么值	a[2]
		(i,,)			···
容, 便可很容易形成数约		16	16 随便什么值		a[9]
的地址,特别 适合编制 7	首	17	初	始为0	sum变量

变址寻址

变址寻址:有效地址EA等于指令字中的形式地址A与<mark>变址寄存器IX</mark>的内容相加之和,即EA=(IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器

注:变址寄存器是**面向用户**的,在程序执行过程中,**变址寄存器的内容可由用户改变** (作为偏移量),形式地址A不变(作为基地址)。

优点:在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器IX的内容,便可很容易形成数组中任一数据的地址,特别<mark>适合编制循环程序</mark>。

王道考研/CSKAOYAN.COM

		寻址的作员	17	
	主存		台令	注释
for(int i=0; i<10; i++){	地址	操作码	地址码	往神
sum += a[i];	0 -	取数到ACC	#0	立即数 0 → ACC
}	1	取数到IX	#0	立即数 0 → IX
问题: 随着代码越写越多,	2	ACC加法	7(数组始址)	$(ACC)+(7+(IX)) \rightarrow ACC$
你想挪动for循环的位置 for循环主体一	3	IX加法	#1	(IX) + 1 → IX
TOT個外主件	4	IX比较	#10	比较10-(IX)
注: 站在 直接寻址	_ 5	条件跳转	2	若结果>0则PC跳转到2
汇编语言 程序员的	6	从ACC存数	17	(ACC)→ sum变量
角度思考	7	随便什么值 随便什么值 随便什么值		a[0]
	8			a[1]
	9			a[2]
	()		4	··· (
	16	随便什么值		a[9]
		初始为0		sum变量

		寻址的作月 			
	主存	指令		注释	
for(int i=0; i<10; i++){	地址	操作码	地址码	江作	
sum += a[i];	0	取数到ACC	#0	立即数 0 → ACC	
}	1	取数到IX	#0	立即数 0 → IX	
问题: 随着代码越写越多,	2	② ···	•••	其他代码	
你想挪动for循环的位置	3	• • • • • • • • • • • • • • • • • • • •		其他代码	
	4		💥	其他代码	
注: 站在	5	•••	•••	其他代码	
汇编语言 程序员的			•••	其他代码	
角度思考	M	ACC加法 7	7(数组始址)	(ACC)+(<mark>7+(IX)</mark>)→ ACC	
for循环	计 体 M+1	IX加法	#1	(IX) + 1 → IX	
采用直接导	3/1/2	IX比较	#10	比较10-(IX)	
会出现错误		条件跳转	2	若结果>0则PC跳转到2	
PC M+4	M+4	/		X	

相对寻址

相对寻址:把程序计数器PC的内容加上指令格式中的形式地址A而形成操作数的有效地址,即EA=(PC)+A,其中A是相对于PC所指地址的位移量,可正可负,补码表示。

优点:操作数的地址不是固定的,它随着PC值的变化而变化,并且与指令地址之间总是相差一个固定值,因此便于程序浮动(一段代码在程序内部的浮动)。 相对寻址广泛应**用于转移指令**。

王道考研/CSKAOYAN.COM

本节回顾

寻址方式	有效地址	访 存 次 数(指令执行期间)	
隐含寻址	程序指定		
立即寻址	A即是操作数	0	
直接寻址	EA=A	1	
一次间接寻址	EA=(A)	2	
寄存器寻址	EA=R _i	0	
寄存器间接一次寻址	EA=(R _i)	1	
转移指令 相对寻址	EA=(PC)+A	01	
多道程序 基址寻址	EA=(BR)+A	1	
循环程序 变址寻址 数组问题	EA=(IX)+A	1	
VVV	VVV	· VVV	

偏移寻址

注意:取出当前指令后, PC会指向下一条指令,相对寻址是相对于下一条指令的偏移

王道考研/CSKAOYAN.COM

19

高级语言视角: if (a>b){

硬件如何实现数的"比较"

注:无条件转移指令 jmp 2,就不会管PSW的各种标志位

转到2

硬件视角:

· 通过"<mark>cmp指令</mark>"比较 a 和 b(如 cmp a, b),实质上是用 a-b

相减的结果信息会记录在程序 状态字寄存器中(PSW)

• 根据PSW的某几个标志位进行 条件判断,来决定是否转移 有的机器把 PSW称为"标 志寄存器"

PSW中有几个比特位记录上次运算的结果

- 进位/借位标志 CF: 最高位有进位/借位时CF=1
- 零标志 ZF: 运算结果为0则 ZF=1, 否则ZF=0
- 符号标志 SF: 运算结果为负, SF=1, 否则为0
- 溢出标志 OF: 运算结果有溢出OF=1否则为0

主存	1	旨令	<i>}</i> -1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-
地址	操作码	地址码	注释
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX	#0	立即数0→IX
2	ACC加法	7(数组始址)	(ACC)+(7+(IX))→ ACC
3	IX加法	#1	(IX) + 1 → IX
4	IX比较	#10	比较10-(IX)
5	条件跳转	2	若结果>0 则PC跳转到2
6	从ACC存数	17	(ACC)→ sum变量
7	随便	什么值	a[0]
8	随便	什么值	a[1]
9	随便	什么值	a[2]
197		\\	
16	随便	什么值	a[9]
17	初	始为0	sum变量
		22.	王道老研/CSKAOVAN COM

王道考研/CSKAOYAN.COM

@王道论坛

@王道计算机考研备考 @王道咸鱼老师-计算机考研 @王道楼楼老师-计算机考研

@王道计算机考研

知乎

※ 微信视频号

@王道计算机考研

@王道计算机考研

@王道在线