## Inferring transmission with the Structured Coalescent

Nicola De Maio



























**OXFORD** MARTIN

**SCHOO** 

#### Objectives:

Reconstruct transmission between patients (transmission trees)



Reconstruct transmission between groups (locations, farms, communities.)



## Reconstructing transmission between hosts



## Epidemiological examples

Epidemiological and Viral Genomic Sequence Analysis of the 2014 Ebola Outbreak Reveals Clustered Transmission



Scarpino et al 2014 Clinical Infectious Diseases

Complications



### Comparison with other methods

| Method                             | Allows multiple<br>samples from<br>same host | Uses exposure<br>data | Uses sampling<br>times | Uses phylogenetic structure | Accounts for tree uncertainty | Allows non-<br>observed hosts | Allows host<br>distance data | Models within-<br>host evolution | Allows mixed infections | Models partial<br>transmission<br>bottlenecks | Allows<br>compartmentaliza<br>tion model | Infers infection<br>times |
|------------------------------------|----------------------------------------------|-----------------------|------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------------|-------------------------|-----------------------------------------------|------------------------------------------|---------------------------|
| Cottam et al 2008                  | X                                            | 1                     | 1                      | 1                           | X                             | X                             | X                            | X                                | X                       | X                                             | X                                        | 1                         |
| Aldrin et al 2011                  | X                                            | 1                     | X                      | X                           | -                             | X                             | 1                            | X                                | X                       | X                                             | X                                        | /                         |
| Ypma et al 2011                    | X                                            | 1                     | X                      | X                           | -                             | X                             | 1                            | X                                | X                       | X                                             | X                                        | 1                         |
| Jombart et al 2011 (SeqTrack)      | X                                            | X                     | 1                      | X                           | -                             | 1                             | 1                            | X                                | X                       | X                                             | X                                        | X                         |
| Morelli et al 2012                 | X                                            | 1                     | 1                      | X                           | -                             | X                             | 1                            | X                                | X                       | X                                             | X                                        | 1                         |
| Ypma et al 2013                    | X                                            | 1                     | 1                      | 1                           | 1                             | X                             | X                            | 1                                | X                       | X                                             | X                                        | <b>\</b>                  |
| Jombart et al 2014<br>(Outbreaker) | X                                            | X                     | 1                      | X                           | -                             | 1                             | 1                            | X                                | X                       | X                                             | X                                        | /                         |
| Didelot et al 2014                 | X                                            | 1                     | 1                      | 1                           | X                             | X                             | X                            | 1                                | X                       | X                                             | 1                                        |                           |
| Mollentze et al 2014               | X                                            | 1                     | 1                      | X                           | -                             | 1                             | 1                            | X                                | X                       | X                                             | X                                        | 1                         |
| SCOTTI                             | 1                                            | 1                     | 1                      | 1                           | 1                             | 1                             | X                            | 1                                | 1                       | X                                             | X                                        | X                         |

#### SCOTTI



SCOTTI: Efficient Reconstruction of Transmission within Outbreaks with the Structured Coalescent

Nicola De Maio<sup>1,2</sup>\*, Chieh-Hsi Wu<sup>2</sup>, Daniel J Wilson<sup>1,2,3</sup>

De Maio et al 2016



#### Models used



#### **Simulations**





#### **Simulations**



## Simulations – Running time



#### **FMDV**



#### K. Pneumoniae outbreak in Nepal



#### K. Pneumoniae





#### Summary

Accounting for complexities is important.

SCOTTI can infer transmission tree from genetic and epi data in many scenarios, accounting for within-host evolution and non-sampled hosts.





## Thanks for listening!



**Daniel J Wilson** 



Chieh-Hsi Wu

Nicole Stoesser, Hang Phan, Derrick Crook group (NDM Microbiology)



















Inferring transmission from deep sequencing





# Inferring transmission from deep sequencing



PoMo

De Maio et al 2015

3) Transmission tree = phylogenetic tree

samples.