Formale Grundlagen der Informatik I

Abgabe der Hausaufgaben Übungsgruppe 24 am 11. Juni 2015

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Philipp Quach 6706421 4quach@informatik.uni-hamburg.de

11. Juni 2015

Aufgabe 8.3

[/4]

Geben Sie für jede der folgenden Formeln jeweils an, ob diese erfüllbar ist, falsifizierbar, kontingent, allgemeingültig oder unerfüllbar.

- 1. $((A \Rightarrow B) \Rightarrow A)$
- 2. $((A \land B) \Leftrightarrow (\neg A \lor \neg B))$
- 3. $(((((A \land B) \land C) \land D) \land E) \Rightarrow (\neg A \lor E))$
- 4. $(((C \Rightarrow B) \lor A) \land (A \lor \neg B))$

1.

A	B	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow A$
0	0	1	0
0	1	1	0
1	0	0	1
0	1	1	1

Die Formel ist erfüllbar und falsifizierbar, aber insbesondere kontingent.

2.

A	B	$(A \wedge B)$	$(\neg A \vee \neg B)$	$(A \land B) \Leftrightarrow (\neg A \lor \neg B)$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	0

Die Formel ist falsifizierbar und insbesondere unerfüllbar (Kontradiktion).

3.

Wie hier zu sehen ist, ist der als F definierte Ausdruck genau dann wahr, wenn [A-E] wahr ist. Da in diesem Fall auch der Ausdruck $(\neg A \lor E)$ wahr ist, ist die Implikation ebenfalls wahr. Wird nun eines der Literale [A-E] falsch, so wird auch F falsch; und da $0 \Rightarrow *$ immer wahr ist, ist somit auch der untersuchte Ausdruck $[F] \Rightarrow (\neg A \lor E)$ wahr für alle [A-E], die unwahr sind. Der Zustand von $(\neg A \lor E)$ interessiert dann nicht weiter. Ebenso ist der Zustand der einzelnen Literale uninteressant: Sobald ein einzelnes Literal unwahr ist, ist der gesamte Ausdruck F falsch, folglich die don't cares.

Somit ergibt sich: Die Formel ist erfüllbar und insbesondere allgemeingültig (Tautologie).

4.

Die Formel ist erfüllbar und falsifizierbar und insbesondere kontingent.

Aufgabe 8.4

[/5]

Seien *T,K,F,G* und *H* aussagenlogiche Formeln, die keine Aussagensymbole gemein haben. Sei ferner *T* eine Tautologie, *K* eine Kontradiktion und *F,G* und *H* kontingente Formeln. Zu welcher semantischen Kategorie (tautologisch, kontradiktorisch, kontinget) gehören dann die folgenden Formeln? Begründen Sie dabei stets Ihre Aussage!

- 1. $(F \vee \neg G)$
- 2. $(K \Rightarrow (F \vee \neg G))$
- 3. $((F \Rightarrow G) \Rightarrow (F \lor G))$
- 4. $((T \Leftrightarrow \neg K) \Rightarrow F)$
- 5. $((T \Leftrightarrow K) \Rightarrow (((F \vee \neg G) \wedge T) \Leftrightarrow ((\neg F \vee G) \wedge)G)))$

1.

F ist kontingent.

G ist kontingent $\Rightarrow \neg G$ ist auch kontingent.

 $\Rightarrow F \vee \neg G$ ist auch kontingent, weil beide Teilbedingungen kontingent sind.

2.

Die Formel ist eine Tautologie, da K immer 0 ist und $0 \Rightarrow *$ immer wahr ist.

3.

F kontingent und G kontingent \Rightarrow $(F \lor G)$ auch kontingent.

F kontingent und G kontingent \Rightarrow $(F \Rightarrow G)$ auch kontingent.

Der Ausdruck Kontingent impliziert Kontingent ist ebenfalls kontingent.

4.

K ist immer falsch, woraus folgt, dass $\neg K$ immer wahr ist.

T ist immer wahr, woraus folgt, dass $T \Leftrightarrow \neg K$ immer wahr ist.

wahr bedeutet, dass ein Ausdruck kontingent ist, da $wahr \Rightarrow wahr$ immer wahr zurückgibt, $wahr \Rightarrow falsch$ jedoch falsch.

5.

 $(T \Leftrightarrow K)$ ist immer falsch, da K immer falsch ist und $falsch \Rightarrow *$ immer wahr ist. Daraus folgt, dass diese Formel allgemeingültig ist (tautologisch).

Aufgabe 8.5

[/3]

Gegeben sei eine kontextfreie Grammatik mit den folgenden Produktionen

$$\begin{array}{ccc} S & \to & \neg S|(S \vee S)|(S \wedge S)|(S \Rightarrow S)|(S \Leftrightarrow S)|T \\ T & \to & A|B|C|D|E \end{array}$$

Dabei sollen $A, B, C, D, D, (,), \neg, \lor, l, \Rightarrow, \Leftrightarrow$ Terminale und S und T Nonterminale sein.

Diese Grammatik erzeugt alle aussagenlogischen Formeln, die nur die atomaren Formeln A,B,C,D und E enthalten.

Beweisen Sie mittels struktureller Induktion eine Richtung dieser Behauptung, nämlich dass jede aussagenlogische Formel, die nur die atomaren Formeln A,B,C,D und E enthält, von der Grammatik generiert werden kann.

Induktionsanfang: B:G gilt für jede atomare Formel:

$$S \to T$$

$$T \to A|B|C|D|E$$

 \Rightarrow G gilt für jede atomare Formel aus \mathbb{D} (\mathbb{D} :=Definitionsbereich)

 $\underline{\text{Induktionsannahme:}}\ B(M) \wedge B(N) \ \text{gilt für zwei Formeln}\ M, N\ (B(X) := \text{Behauptung für}\ X).$

Induktionsschritt: $B(\neg M \text{ ist}: S \to \neg S \text{ und danach } S \to M.$ Dies geht, da B(M) gilt, also möglich ist.

 $B(M \circ N)$ ist: $S \to S \circ S$, wonach das erste S zu $S \to M$ und das zweite S zu $S \to N$ wird. $S \to M$ geht, da B(M) gilt; und $S \to N$ geht, da B(N) gilt. $\circ \in \{\lor, 1, \Rightarrow, \Leftrightarrow\}$