Homework

Exercise 2

Data: The series are of various lengths but all end in 1988. The data set contains the following series: consumer price index, industrial production, nominal GNP, velocity, employment, interest rate, nominal wages, GNP deflator, money stock, real GNP, stock prices (S&P500), GNP per capita, realwages, unemployment.

We look only at the GNP per capita, nominal GNP and the real GNP.

Source: C. R. Nelson and C. I. Plosser (1982), Trends and Random Walks in Macroeconomic Time Series. Journal of Monetary Economics, 10, 139–162. doi: 10.1016/03043932(82)900125. Formerly in the Journal of Business and Economic Statistics data archive, currently athttp://korora.econ.yale.edu/phillips/data/np&enp.dat.

1.

Stationarity

First we read the data and do some preprocessing.

```
data(NelPlo)
gnp <- cbind(1,2,gnp.capita, gnp.nom, gnp.real)
n <- dim(gnp)[1]</pre>
```

We will look at 3 different versions of the data: Original, log-transformation, series of differences of the log-transformation.

```
Y_orig <- gnp[,3:5]
Y_log=log(gnp[,3:5])
Y_rate <- Y_log[2:n,] - Y_log[1:(n-1),]
Y_rate <- 100*Y_rate</pre>
```

Original:

```
par(mfrow=c(2,3))
plot(Y_orig[,1],type="l",xlab="",ylab="Log",main="GNP per Capita")
plot(Y_orig[,2],type="l",xlab="",ylab="Log",main="Nominal GNP")
plot(Y_orig[,3],type="l",xlab="",ylab="Log",main="Real GNP")
acf(Y_orig[,1],main="")
acf(Y_orig[,2],main="")
acf(Y_orig[,3],main="")
```


-0.2

0

5

10

Lag

We see that the original data is not stationary.

15

10

Lag

 $Log\hbox{-} Transformation:$

0

5

-0.2

```
par(mfrow=c(2,3))
plot(Y_log[,1],type="l",xlab="",ylab="Log",main="GNP per Capita")
plot(Y_log[,2],type="l",xlab="",ylab="Log",main="Nominal GNP")
plot(Y_log[,3],type="l",xlab="",ylab="Log",main="Real GNP")
acf(Y_log[,1],main="")
acf(Y_log[,2],main="")
acf(Y_log[,3],main="")
```

15

-0.2

5

10

Lag

15

Same goes for the log-transformation.

 $Log\mbox{-} Transformation \ rates:$

```
par(mfrow=c(2,3))
plot(Y_rate[,1],type="l",xlab="",ylab="GNP per Capita")
plot(Y_rate[,2],type="l",xlab="",ylab="Nominal GNP")
plot(Y_rate[,3],type="l",xlab="",ylab="Real GNP")
acf(Y_rate[,1],main="")
acf(Y_rate[,2],main="")
acf(Y_rate[,3],main="")
```


For the rates we can find stationary for all three GNP series. For all three the autocorrelation vanhishes with a lag of 3 which results in q = 2 for the MA.

Looking at the partial autocorrelation we find the following:

```
par(mfrow=c(1,3))
pacf(Y_rate[,1], main="GNP per Capita")
pacf(Y_rate[,2], main="Nominal GNP")
pacf(Y_rate[,3], main="Real GNP")
```


The GNP partial autocorrelation vanishes after a lag of 2, which results in p=1 for the AR part.

ARMA

We can create an ARMA model for each series individually.

 $GNP\ per\ Capita:$

```
arma.1 \leftarrow arma(Y_rate[,1], order = c(1, 2))
summary(arma.1)
##
## Call:
## arma(x = Y_rate[, 1], order = c(1, 2))
## Model:
## ARMA(1,2)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    ЗQ
                                             Max
## -2.08533 -0.40616 0.07057 0.40935 2.05279
##
## Coefficient(s):
##
              Estimate Std. Error t value Pr(>|t|)
## ar1
                                     -0.632
               -0.5169
                            0.8175
                                               0.527
                                      1.082
                                               0.279
## ma1
               0.8642
                            0.7989
## ma2
                0.2704
                            0.2269
                                      1.192
                                               0.233
                            0.2444
                                      1.384
## intercept
                0.3384
                                               0.166
##
## Fit:
## sigma^2 estimated as 0.5651, Conditional Sum-of-Squares = 42.95, AIC = 187.11
Nominal GNP:
arma.2 \leftarrow arma(Y_rate[,2], order = c(1, 2))
summary(arma.2)
##
## Call:
## arma(x = Y_rate[, 2], order = c(1, 2))
## Model:
## ARMA(1,2)
##
## Residuals:
                     Median
                                             Max
       Min
                  1Q
                                    3Q
## -3.01390 -0.22814 0.06308 0.26984 1.48959
##
## Coefficient(s):
##
              Estimate Std. Error t value Pr(>|t|)
## ar1
               0.08394
                           0.45566
                                      0.184
                                               0.8538
## ma1
               0.40260
                           0.44142
                                      0.912
                                               0.3617
## ma2
               0.10387
                           0.18602
                                      0.558
                                               0.5766
               0.46341
                           0.26048
                                      1.779
                                              0.0752 .
## intercept
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Fit:
## sigma^2 estimated as 0.4739, Conditional Sum-of-Squares = 36.02, AIC = 173.21
Real GNP:
```

```
arma.3 \leftarrow arma(Y_rate[,3], order = c(1, 2))
summary(arma.3)
##
## Call:
## arma(x = Y_rate[, 3], order = c(1, 2))
## Model:
## ARMA(1,2)
##
## Residuals:
##
        Min
                  1Q Median
                                     3Q
                                              Max
## -3.61164 -0.46023 -0.05682 0.27586 2.66355
##
## Coefficient(s):
              Estimate Std. Error t value Pr(>|t|)
##
## ar1
               0.80636
                                 NA
                                          NA
## ma1
              -0.62229
                                 NA
                                          NA
                                                    NA
## ma2
              -0.58908
                                 NA
                                          NA
                                                    NA
## intercept
               0.06485
                                 NA
                                          NA
                                                    NA
##
## Fit:
## sigma^2 estimated as 0.8679, Conditional Sum-of-Squares = 67.64, AIC = 221
```

We see that for each ARMA model the fit is not perfect. Especially the model for the Real GNP shows flaws.

2.

VAR(1) model

mod=VAR(Y_rate,1)

```
## Constant term:
## Estimates: 0.1857775 0.3354287 0.3012857
## Std.Error: 0.2122837 0.1959048 0.2912996
## AR coefficient matrix
## AR( 1 )-matrix
          [,1]
                 [,2]
                        [,3]
## [1,] 0.303 -0.187 0.117
## [2,] 0.362 0.365 -0.197
## [3,] -0.651 -0.273 0.945
## standard error
        [,1]
             [,2]
                   [,3]
## [1,] 1.22 0.184 0.887
## [2,] 1.13 0.170 0.819
## [3,] 1.67 0.252 1.218
## Residuals cov-mtx:
                       [,2]
                                 [,3]
##
             [,1]
```

```
## [1,] 0.5515589 0.4168790 0.7556839
## [2,] 0.4168790 0.4697305 0.5773254
## [3,] 0.7556839 0.5773254 1.0385766
##
det(SSE) = 0.0002539885
## AIC = -8.050373
## BIC = -7.780436
## HQ = -7.942228
```

res=mod\$residuals

Checking the WN assumption:

```
mq(res,adj=1*3^2)
```

p-values of Ljung-Box statistics


```
par(mfrow=c(1,3))
acf(res[,1], main="")
acf(res[,2], main="")
acf(res[,3], main="")
```



```
VARorder(Y_rate) # Selected order is 1
mod2=refVAR(mod,thres=1.96) #remove non significant coefficients using t stats
mod$aic
mod2$aic
```

Considering the AIC and BIC the reduced model performs better.

```
pred1 <- VARpred(mod,1)
pred2 <- VARpred(mod2,1)
rmse <- rbind(mod1=pred1$rmse, mod2=pred2$rmse)
rownames(rmse) <- c("model1", "model2")

## [,1] [,2] [,3]
## model1 0.7612397 0.7025057 1.044587
## model2 0.7804935 0.7043776 1.054106</pre>
```

We can see that the prediction is better for the full model (mod1). But the difference is rather small. It might make sense to consider the simpler model (mod2) then.

3. VAR with LASSO

```
mod_lasso=fitVAR(Y_rate,p=1,penalty="ENET",method="cv")
```

When we look at the coefficients we see that only the coefficients for the real GNP are of a considerable amplitude.

```
coef=mod_lasso$A;A1lasso=coef[[1]]
plotMatrix(A1lasso)
```


Checking the WN assumption

```
res_lasso=mod_lasso$residuals
mq(res_lasso,adj=1*3^2)
```

p-values of Ljung-Box statistics


```
par(mfrow=c(1,3))
acf(res_lasso[,1], main="")
acf(res_lasso[,2], main="")
acf(res_lasso[,3], main="")
```


We see that the White Noise assumption does hold for all three series.

Comparison with the simple VAR

mod_lasso\$A

I don't know :(

```
## [[1]]
## gnp.capita gnp.nom gnp.real
## gnp.capita 0 0.00000000 0.17736052
## gnp.nom 0 0.2356755 0.08253805
## gnp.real 0 0.0000000 0.26785532
```