Diffpy-CMI,

Rob Koch Brookhaven Lab

Outline

- Python? No silly walks here...
- Diffpy-CMI
- Beating a dead horse: fitting Nickel
- Dead horse reprise: Nanocrystals
- Some physics: the case of SrFe₂As₂

Python? No silly walks here...

- Why use python?
 - It's free!
 - It's easy!
 - It's open source!
 - It's fast!*
- *if you do things properly
- How can I use python?
- First, install it:
 - https://www.anaconda.com/distribution/ (Windows)
 - https://docs.conda.io/en/latest/miniconda.html (Unix)
- Next, apply it to your problems:
 - Read, plot your data (run away from MS Excel...)
 - Manipulate your data
 - Google

https://youtu.be/BlvezCVcsYs

Rank	Language	Monthly Active Users	Trend
1	JavaScript	22.63%	
2	Python	14.75%	
3	Java	14.01%	
4	C++	8.45%	
5	С	6.03%	

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

Diffpy-CMI

- Why would I use it?
 - PDFgui will only get you so far
 - A prerequisite of all advanced modelling is initial basic understanding
 - Python can streamline the handling and post processing of many datasets
- Where can I get it? https://www.diffpy.org/products/diffpycmi/
- What if I need help?
 https://groups.google.com/forum/#!forum/diffpy-users
- What if I want to help? https://github.com/diffpy/

- What if I still need help? <u>rkoch@bnl.gov</u>
 - I can offer advice
 - I can help with minor debugging
 - I cannot reduce your data
 - I cannot write your code
 - I cannot give you CPU cycles

Juhas, P., Farrow, C., Yang, X., Knox, K. & Billinge, S. (2015). *Acta Cryst. A71*, 562-568. https://doi.org/10.1107/S2053273315014473

Let's do some practical examples

- You can have the source code: https://github.com/rjkoch/2019 ORNL total scattering
- You can follow along: https://mybinder.org/v2/gh/rjkoch/2019 ORNL total scattering/master

Beating a dead horse: fitting Nickel

- Let's look at our prototype easy example
 - Fit PDF of nickel standard to get instrument parameters

Dead horse reprise: Nanocrystals

- Let's fit a nanocrystalline platinum system
 - We use our instrument parameters we refined in example 1

Some physics: the case of SrFe₂As₂

- Iron-based superconductor
- Phase transition (tetragonal to orthorhombic) at about 200 K
- Some distortions persist....

