Importing Libraries

```
In [491]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
```

Importing Datasets

Out[492]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN	2
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	2
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2	2
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN	2
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN	2
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN	2
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN	2
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN	2
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN	2
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN	2

209928 rows × 14 columns

Data Cleaning and Data Preprocessing

```
In [493]: df=df.dropna()
In [494]: df.columns
Out[494]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM2
          5',
                 'SO_2', 'TCH', 'TOL', 'station'],
                dtype='object')
In [495]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 16460 entries, 1 to 209910
          Data columns (total 14 columns):
               Column
                        Non-Null Count Dtype
           0
               date
                        16460 non-null object
               BEN
                        16460 non-null float64
           1
           2
               CO
                        16460 non-null float64
           3
               EBE
                        16460 non-null float64
           4
               NMHC
                        16460 non-null float64
           5
               NO
                        16460 non-null float64
           6
               NO 2
                        16460 non-null float64
           7
               0_3
                        16460 non-null float64
           8
               PM10
                        16460 non-null float64
           9
                        16460 non-null float64
               PM25
           10 SO 2
                        16460 non-null float64
           11 TCH
                        16460 non-null float64
           12
               TOL
                        16460 non-null float64
           13 station
                        16460 non-null int64
          dtypes: float64(12), int64(1), object(1)
          memory usage: 1.9+ MB
```

```
In [496]: data=df[['CO' ,'station']]
  data
```

Out[496]:

	СО	station
1	0.4	28079008
6	0.3	28079024
25	0.3	28079008
30	0.4	28079024
49	0.2	28079008
209862	0.1	28079024
209881	0.1	28079008
209886	0.1	28079024
209905	0.1	28079008
209910	0.1	28079024

16460 rows × 2 columns

Line chart

```
In [497]: data.plot.line(subplots=True)
```

Out[497]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [498]: data.plot.line()
```

Out[498]: <AxesSubplot:>

Bar chart

```
In [499]: b=data[0:50]
In [500]: b.plot.bar()
Out[500]: <AxesSubplot:>
```


Histogram

```
In [501]: data.plot.hist()
```

Out[501]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [502]: data.plot.area()
```

Out[502]: <AxesSubplot:>

Box chart

```
In [503]: data.plot.box()
```

Out[503]: <AxesSubplot:>

Pie chart

```
In [504]: b.plot.pie(y='station')
```

Out[504]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [505]: data.plot.scatter(x='CO' ,y='station')
```

```
Out[505]: <AxesSubplot:xlabel='CO', ylabel='station'>
```



```
In [506]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16460 entries, 1 to 209910
Data columns (total 14 columns):
```

```
Column
 #
              Non-Null Count Dtype
 0
     date
              16460 non-null
                               object
 1
     BEN
              16460 non-null
                               float64
 2
     CO
              16460 non-null
                              float64
 3
     EBE
              16460 non-null float64
 4
     NMHC
              16460 non-null
                              float64
 5
     NO
              16460 non-null
                               float64
 6
     NO_2
              16460 non-null
                               float64
 7
     0 3
              16460 non-null
                              float64
 8
                               float64
     PM10
              16460 non-null
 9
                              float64
     PM25
              16460 non-null
 10
     SO_2
              16460 non-null
                               float64
 11
     TCH
              16460 non-null
                               float64
 12
     TOL
              16460 non-null
                               float64
              16460 non-null
 13
     station
                               int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.9+ MB
```

localhost:8888/notebooks/ madrid 2002.ipynb

In [507]: df.describe()

Out[507]:

	BEN	СО	EBE	NMHC	NO	NO_2	
count	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	1640
mean	0.900680	0.277758	1.471871	0.167043	23.671810	44.583961	4
std	0.768892	0.206143	1.051004	0.075068	44.362859	31.569185	
min	0.100000	0.100000	0.200000	0.010000	1.000000	1.000000	
25%	0.500000	0.200000	0.800000	0.120000	2.000000	19.000000	
50%	0.700000	0.200000	1.200000	0.160000	7.000000	40.000000	;
75%	1.100000	0.300000	1.700000	0.200000	25.000000	63.000000	(
max	9.500000	3.200000	12.800000	0.840000	615.000000	289.000000	1!
4							•

In [508]: | df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',

```
'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
KeyError
                                          Traceback (most recent call last)
<ipython-input-508-9c3e63dc22cd> in <module>
----> 1 df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
3',
        'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py in getitem
_(self, key)
   3028
                    if is_iterator(key):
                        key = list(key)
   3029
-> 3030
                    indexer = self.loc._get_listlike_indexer(key, axis=1, rai
se missing=True)[1]
   3031
   3032
                # take() does not accept boolean indexers
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in get li
stlike_indexer(self, key, axis, raise_missing)
   1264
                    keyarr, indexer, new indexer = ax. reindex non unique(key
arr)
   1265
-> 1266
                self._validate_read_indexer(keyarr, indexer, axis, raise_miss
ing=raise missing)
   1267
                return keyarr, indexer
   1268
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in valida
te_read_indexer(self, key, indexer, axis, raise_missing)
   1314
                    if raise missing:
   1315
                        not_found = list(set(key) - set(ax))
-> 1316
                        raise KeyError(f"{not found} not in index")
   1317
   1318
                    not found = key[missing mask]
KeyError: "['MXY', 'NOx', 'PXY', 'OXY'] not in index"
```

EDA AND VISUALIZATION

```
In [ ]: sns.pairplot(df1[0:50])
In [ ]: sns.distplot(df1['station'])
In [ ]: sns.heatmap(df1.corr())
```

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

ACCURACY

```
In [ ]: lr.score(x_test,y_test)
In [ ]: lr.score(x_train,y_train)
```

Ridge and Lasso

```
In [ ]: from sklearn.linear_model import Ridge,Lasso
In [ ]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Accuracy(Ridge)

```
In [ ]: rr.score(x_test,y_test)
In [ ]: rr.score(x_train,y_train)
In [ ]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
In [ ]: la.score(x_train,y_train)
```

Accuracy(Lasso)

Evaluation Metrics

```
In [ ]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

Logistic Regression

```
In [ ]: | from sklearn.linear_model import LogisticRegression
  In [ ]: feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
           'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
          target_vector=df[ 'station']
  In [ ]: feature_matrix.shape
  In [ ]: | target vector.shape
  In [ ]: | from sklearn.preprocessing import StandardScaler
  In [ ]: fs=StandardScaler().fit transform(feature matrix)
  In [ ]:
          logr=LogisticRegression(max iter=10000)
          logr.fit(fs,target_vector)
  In [ ]: | observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [509]:
          prediction=logr.predict(observation)
          print(prediction)
          [28079099]
In [510]: logr.classes_
Out[510]: array([28079006, 28079024, 28079099], dtype=int64)
In [511]: logr.score(fs,target_vector)
Out[511]: 0.8951733624630821
```

```
In [512]: logr.predict_proba(observation)[0][0]
Out[512]: 5.447205522232353e-13
In [513]: logr.predict_proba(observation)
Out[513]: array([[5.44720552e-13, 8.28692830e-44, 1.00000000e+00]])
```

Random Forest

```
In [514]: from sklearn.ensemble import RandomForestClassifier
In [515]: rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
Out[515]: RandomForestClassifier()
In [516]: parameters={'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n estimators':[10,20,30,40,50]
In [517]: from sklearn.model selection import GridSearchCV
          grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
          grid_search.fit(x_train,y_train)
Out[517]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [518]: |grid_search.best_score_
Out[518]: 0.8990805901018493
In [519]: rfc_best=grid_search.best_estimator_
```

```
In [520]: from sklearn.tree import plot tree
          plt.figure(figsize=(80,40))
          plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b'.
          31, 18]\nclass = a'),
           Text(418.5, 543.599999999999, 'TCH <= 1.435\ngini = 0.424\nsamples = 929
          \nvalue = [1061, 416, 25]\nclass = a'),
           Text(348.75, 181.199999999999, 'gini = 0.368\nsamples = 831\nvalue = [10
          29, 291, 25]\nclass = a'),
           Text(488.25, 181.199999999999, 'gini = 0.325\nsamples = 98\nvalue = [32,
          125, 0]\nclass = b'),
           Text(837.0, 906.0, 'TOL <= 0.795\ngini = 0.582\nsamples = 3312\nvalue = [4
          98, 2350, 2369]\nclass = c'),
           Text(697.5, 543.599999999999, 'BEN <= 0.345\ngini = 0.245\nsamples = 761
          \nvalue = [0, 1043, 174]\nclass = b'),
           Text(627.75, 181.1999999999999, 'gini = 0.479\nsamples = 187\nvalue = [0,
          179, 118]\nclass = b'),
           Text(767.25, 181.199999999999, 'gini = 0.114\nsamples = 574\nvalue = [0,
          864, 56]\nclass = b'),
           Text(976.5, 543.599999999999, 'TCH <= 1.325\ngini = 0.577\nsamples = 2551
          \nvalue = [498, 1307, 2195]\nclass = c'),
           Text(906.75, 181.1999999999982, 'gini = 0.371\nsamples = 522\nvalue = [4]
          9, 646, 141]\nclass = b'),
           Text(1046.25.181.19999999999992. 'gini = 0.515\nsamnles = 2029\nvalue =
```

Conclusion

Accuracy

Linear Regression: 0.440285701113897

Ridge Regression: 0.17862590308954918

Lasso Regression: 0.4106663168409096

ElasticNet Regression: 0.2308125912534129

Logistic Regression: 0.8660366036603661

Random Forest: 0.9273467638234033

From the above data, we can conclude that random forest regression is preferrable to other regression types

In []: