Лабораторная работа 1.1.4

Условие:

Измерение интенсивности радиационного фона

Цель работы:

Применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

Оборудование:

Счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

Решение:

1-8)Запустим счетчик и компьютер. Начнем производить замеры. После окончания измерений запишем выходные данные в таблицы.

Данные для $\tau = 20 \text{ c}$

№опыта	1	2	3	4	5	6	7	8	9	10
0	30	12	31	22	20	27	28	31	26	14
10	16	23	24	16	16	23	27	25	29	16
20	24	23	38	27	30	27	26	30	22	26
30	27	29	35	27	18	32	24	17	22	22
40	31	19	29	24	27	19	28	36	24	22
50	28	41	27	28	26	23	31	39	32	27
60	18	30	32	17	36	19	34	23	24	20
70	19	25	23	22	21	22	27	24	33	24
80	23	26	18	13	22	36	26	25	23	17
90	28	31	24	28	19	19	32	16	21	13
100	24	19	21	19	13	18	20	30	22	26
110	28	26	24	36	22	30	20	26	27	22
120	22	30	25	28	23	24	16	21	24	23
130	17	26	26	25	34	25	23	21	20	18
140	34	29	18	32	18	17	22	24	22	26
150	35	26	18	26	18	25	22	25	29	20
160	32	26	16	24	24	15	30	31	32	31
170	21	16	23	19	25	22	26	16	24	23
180	27	26	29	18	26	25	26	25	27	27
190	36	21	27	26	34	29	35	22	23	22

Пересчитанные данные для $\tau = 40 \ \mathrm{c}$

№опыта	1	2	3	4	5	6	7	8	9	10
0	42	53	47	59	40	39	40	39	52	45
10	47	65	57	56	48	56	62	50	41	44
20	50	53	46	64	46	69	55	49	70	59
30	48	49	55	57	44	44	45	43	51	57
40	49	31	58	51	40	59	52	38	48	34
50	43	40	31	50	48	54	60	52	46	49
60	52	53	47	37	47	43	51	59	44	38
70	63	50	35	46	48	61	44	43	47	49
80	58	40	39	61	63	37	42	47	42	47
90	53	47	51	51	54	57	53	63	57	45

Данные для гистограммы $\tau=10~{
m c}$

Число импульсов	Число случаев	Доля случаев
3	3	0.0075
4	1	0.0025
5	6	0.015
6	13	0.0325
7	14	0.035
8	26	0.065
9	36	0.09
10	35	0.0875
11	40	0.1
12	38	0.095
13	46	0.115
14	32	0.08
15	30	0.075
16	20	0.05
17	19	0.0475
18	20	0.05
19	8	0.02
20	3	0.0075
21	1	0.0025
22	4	0.01
23	3	0.0075
24	1	0.0025
25	1	0.0025

Пересчитанные данные для гистограммы $au=20~\mathrm{c}$

Число импульсов	Число случаев	Доля случаев
12	1	0.005
13	3	0.015
14	1	0.005
15	1	0.005
16	9	0.045
17	5	0.025
18	10	0.05
19	9	0.045
20	6	0.03
21	7	0.035
22	18	0.09
23	14	0.07
24	17	0.085
25	11	0.055
26	20	0.1
27	15	0.075
28	8	0.04
29	7	0.035
30	8	0.04
31	7	0.035
32	7	0.035
33	1	0.005
34	4	0.02
35	3	0.015
36	5	0.025
37	0	0
38	1	0.005
39	1	0.005
40	0	0
41	1	0.005

Пересчитанные данные для гистограммы $\tau = 40~\mathrm{c}$

Число импульсов	Число случаев	Доля случаев
31	2	0.02
32	0	0
33	0	0
34	1	0.01
35	1	0.01
36	0	0
37	2	0.02
38	2	0.02
39	3	0.03
40	5	0.05
41	1	0.01
42	3	0.03
43	4	0.04
44	5	0.05
45	3	0.03
46	4	0.04
47	8	0.08
48	5	0.05
49	5	0.05
50	4	0.04
51	5	0.05
52	4	0.04
53	5	0.05
54	2	0.02
55	2	0.02
56	2	0.02
57	5	0.05
58	2	0.02
59	4	0.04
60	1	0.01
61	2	0.02
62	1	0.01
63	3	0.03
64	1	0.01
65	1	0.01
66	0	0
67	0	0
68	0	0
69	1	0.01
70	, 1	0.01

Гистограмма $W_n = f(n)$ для $\tau = 10$ с

Гистограммы $W_n = f(n)$ для $\tau = 20$ и 40с.

Краткое пояснение по принципам расчета и постоения

Для совпадания центров необходимо увеличить значения количества частиц в $\frac{40s}{20s} = 2$ раза у данных для 20 с.

Данные для гистограмм с $\tau = 20$ и 40 с рассчитаю из соответствующих таблиц простым подсчетом числа тех или иных случаев.

Таблицу для $\tau = 40$ с получу попарным сложением элементов таблицы с $\tau = 20$ с.

11) Произведу расчеты. \overline{n} рассчитаю для $\tau=20~\mathrm{c}$

$$\overline{n} = \sum_{i=1}^{N} n_i = 24.7$$

Среднеквадратичная ошибка соответственно

$$\sigma_{\text{ОТД}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2} = 5.5$$

12) Убедимся в справедливости формулы (5):

$$\sigma_{\text{OTM}} = 5.5 \approx \sqrt{\overline{n}} = 5.0$$

Значения близки в рамках одного порядка, а значит формула справедлива 13) Сделаю это для $\tau=20$ с.

Из теории

$$\begin{cases} \eta_{\sigma 1} = 68.3\% \\ \eta_{\sigma 2} = 95.4\% \end{cases}$$

На практике же(рассматривая случаи 24.7 ± 5.0 и 24.7 ± 10.0)

$$\begin{cases} \eta_{r1} = \frac{131}{200} \cdot 100\% = 65.5\% \\ \eta_{r2} = \frac{187}{200} \cdot 100\% = 93.5\% \end{cases}$$

Расхождение наблюдается, но оно в рамках несовпадения 2-х ранее полученных значений ошибки.

16)Среднеквадрадратичные ошибки связаны с количеством зарегестрированных частиц за измерение по формуле

$$\sigma = \sqrt{n}$$

Для сравнения надо использовать среднее значение $n - \overline{n}$.

Тогда ошибки измерений соотносятся как

$$\sigma_{10}:\sigma_{20}:\sigma_{40}=1:\sqrt{2}:2$$

Полуширина связана с ошибкой по формуле

$$FWMH \approx \sqrt{2 \ln 2} \cdot \sigma$$

Итого

сек	σ	FWMH
10	3.5	4.2
20	5.0	5.9
40	7.1	8.3

17) Использую формулу для стандартной ошибки

$$\sigma_{\overline{n}} = \frac{\sigma_{\text{ОТД}}}{\sqrt{N}}$$

Составлю итоговую таблицу

сек	$\sigma_{\overline{n}}$	$E_{\overline{n}}$	ИТОГ
10	0.18	1.42%	(12.35 ± 0.18)
20	0.35	1.42%	(24.7 ± 0.4)
40	0.71	1.42%	(49.4 ± 0.7)

18**)Построим график по 3-м точкам

Как видно, это прямая, что очевидно из статистики

**Программа не выдавала данные, указанные в п8, поэтому я просто взял 3 полученные в процессе решения точки

Вывод

Считаю, что методы обработки статистических данных были успешно применены и цель работы выполнена