UMBB - Département de Mathématiques - MSS Calcul Stochastique et Applications - ETCD - 2021 2022

Exercice 1

Soit $(\mathcal{F}_n)_{0 \leq n}$ une filtration et $(X_n)_{0 \leq n}$ un processus tel que X_n est \mathcal{F}_n -mesurable pour tout $n \geq 0$ (on dit alors que le processus est adapté). Montrer que (X_n) est une martingale <u>ssi</u>

$$E\left(\Delta X_n / \mathcal{F}_{n-1}\right) = 0$$

où
$$\Delta X_n = X_n - X_{n-1}$$

Solution

Comme X_{n-1} est \mathcal{F}_{n-1} -mesurable, on a aussi $X_{n-1} = E\left(X_{n-1}/\mathcal{F}_{n-1}\right)$ (Propriété de l'espérance conditionnelle). On en déduit que X_n est une martingale $\underline{ssi}\ E\left(\Delta X_n/\mathcal{F}_{n-1}\right) = 0$ $E\left(X_n - X_{n-1}/\mathcal{F}_{n-1}\right) = E\left(X_n/\mathcal{F}_{n-1}\right) - E\left(X_{n-1}/\mathcal{F}_{n-1}\right) \iff X_n - X_{n-1} = 0$ $E\left(X_n - X_{n-1}/\mathcal{F}_n\right) = 0 = 0$

Exercice 2

Soit $(B_t)_{t>0}$ un mouvement brownien standard.

On pose $\bar{U}_t = e^{-t}B_{e^{2t}}$ avec t > 0 et $V_t = B_t - tB_1$ avec 0 < t < 1. Calculer $E(U_tU_s)$ et $E(V_tV_s)$

Solution

Pour s < t,

(i) $E(U_tU_s) = E(e^{-t}B_{e^{2t}}e^{-s}B_{e^{2s}}) = e^{-(t+s)}E(B_{e^{2t}}B_{e^{2s}}) = e^{-(t+s)}\min(e^{2t}, e^{2s})$. Et donc $E(U_tU_s) = e^{-(t+s)}e^{2s} = e^{-t+s}$

(ii)
$$E(V_tV_s) = E[(B_t - tB_1)(B_s - sB_1)]$$

= $E[B_tB_s - sB_tB_1 - tB_sB_1 + stB_1B_1]$
= $s - st - st + st = s(1 - t)$

Exercice 3

Ecrire les processus suivants comme des processus d'Itô: (i) $X_t = e^t \sin B_t$ et (ii) $Y_t = e^{B_t} e^{-\frac{t}{2}}$ Solution

- (i) En posant $f(t,x) = e^t \sin x$ et l'application de la formule d'Itô donne $dX_t = \frac{1}{2}e^t \sin B_t dt + e^t \cos B_t dB_t$
- (ii) En posant $f(t,x) = e^x e^{-\frac{t}{2}}$ et l'application de la formule d'Itô donne $dY_t = \left(-\frac{1}{2}Y_t + \frac{1}{2}Y_t\right)dt + Y_t dB_t = Y_t dB_t$

Exercice 4

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard. Calculer la différentielle dX_t de $X_t = \sin B_t \int_0^t \cos s dB_s$

Solution

On pose $U_t = \int_0^t \cos s dB_s$ et $V_t = \sin B_t$. L'application de la formule d'IPP $d(UV)_t = V_t dU_t + U_t dV_t + d \langle U, V \rangle_t$ avec

 $dU_t = \cos t dB_t$, $dV_t = -\frac{1}{2}\sin B_t dt + \cos B_t dB_t$ et $d\langle U, V \rangle_t = \cos t \cos B_t dt$ donne

$$d(U_t V_t) = \left[-\frac{1}{2} U_t \sin B_t + \cos t \cos B_t \right] dt + \left[\cos t \sin B_t + U_t \cos B_t \right] dB_t$$