Arquitecturas Clúster

3er. Curso, Optativa Común 6 créditos

Ficha descriptiva

Dept. Arquitectura de Computadores Universidad de Málaga

Curso 2015/16

Motivación

- Clúster: Sistemas con muchos computadores, interconectados por redes de interconexión redundantes de alta velocidad que permiten:
 - Alta productividad
 - Balanceo de la carga (LB)
 - Alta disponibilidad (HA): tolerancia a fallos
- Grid: integración de sistemas distribuidos de distintas empresas
- Ejemplos:
 - Clúster de computación para aplicaciones que requieren alta productividad.
 - » Ejemplo: Edificio de BioComputación de la UMA
 - Clúster de servidores web: LB and HA
 - Clúster de base de datos: LB and HA
- Muchas empresas disponen hoy en día de estos sistemas

Competencias específicas

- Capacidad de conocer, comprender y evaluar las arquitecturas de computadores distribuidas escalables, específicamente clusters y grids, así como los componentes básicos que las conforman.
 - Conocer los distintos elementos y prestaciones de un sistema informático complejo compuesto por:
 - » Distintas arquitecturas de computación: CMP, SMP y distribuidas
 - » Sistemas de almacenamiento en red (SAN)
 - » Elementos de interconexión avanzados: Gibabit Ethernet, Infiniband, FibreChannel
 - Ser capaz de diseñar y dimensionar un clúster comercial a partir de unas especificaciones determinadas
 - Conocer el papel del middleware en las arquitecturas clúster y grid y conceptos como alta disponibilidad y balanceo de carga.
 - Conocer herramientas de programación de aplicaciones en entornos de clúster y grid.

Temario

- Tema 1. Introducción
 - Arquitecturas de computador distribuidas
 - Escalabilidad de sistemas de computación
 - Introducción a la arquitectura de los clusters
- Tema 2. Configuración de clusters
 - Servidores
 - Redes de interconexión
 - Almacenamiento: NAS y SAN
- Tema 3. Middleware en clusters
 - Single System Image (SSI)
 - Alta disponibilidad y balanceo de carga

Temario

- Tema 4. Programación de aplicaciones en clusters
 - Modelos de programación paralela
 - Pase de mensajes (MPI)
 - Depuración
- Tema5. Computación Grid
 - Componentes y capacidad de la computación grid
 - Tipos de recursos
 - Componentes software
 - Entornos grid estándares

Conocimientos previos

- Estructura de computadores
 - Arquitecturas del procesador, interrupciones, E/S
- Redes y sistemas distribuidos
 - Torre protocolos TCP/IP, Ethernet
- Sistemas Operativos
 - Gestión de procesos y E/S
- Programación de Sistemas y Concurrencia
 - Sincronización: hebras y pase de mensajes
- Arquitecturas de almacenamiento
 - Interfaz SCSI, Arquitectura SAN
- Arquitectura de Computadores
 - ILP, Arquitecturas CMPs, Paralelismo de bucles

Prácticas

- Practicas clúster de almacenamiento
 - Clúster de almacenamiento:
 - » Configuración de una red de almacenamiento (SAN) con multipath (tolerancia a fallos).
 - » Configuración de un sistemas de archivos en clúster (OCFS2)
- Prácticas clúster de computación
 - Clúster de computación
 - » Despliegue de un clúster de computación basado en colas SLURM
 - » Integración de clústeres de computación y almacenamiento
- Aplicación:
 - HA en un clúster de base de datos
 - » Despliegue de MySql en un clúster activo/pasivo

Evaluación

Evaluación continua:

- Realización de exámenes parciales de teoría y práctica después de cada tema.
 - » Notal final será la media de la calificación alcanzada en los exámenes parciales.
- Entrega de informe de prácticas
 - » Sólo se tendrá en cuenta para matizar la calificación de los exámenes parciales de las prácticas.
- Examen final de teoría y práctica para los alumnos con media final por debajo de 5