ZhMaR documentation: Library for Variational inference

Anton Zhevnerchuk, Sergey Makarychev, Aleksandr Rozhnov

1	Introduction	2
2	Notation	2
3	class SVI: 3.1 check_methods	
	3.1.1 Example of usage	3
	3.3 bb1_loss	4
	3.5 entropy_form_loss	6
4	class HistoryCollector 4.1 collect_history:	6
5		7

1 Introduction

In this section we will discuss our model and approaches that we implemented.

We have a probabilistic model $p_{\theta}(x, z)$, where x is a vector of observed values, z - latent variables of this model, θ - vector of parameters. Using Bayes formula, we can calculate the posterior over the latent variable z as

$$p(z|x) = \frac{p(x,z)}{\int p(x,z)dz}. (1)$$

Unfortunately, the denominator of this previous expression is the (usually intractable) evidence. Thus, the task is to approximate a posterior distribution p(z|x). The first simplification of the model is to search for approximation of posterior distribution in a "good" family of functions. Let us denote by $q(z|\psi)$ such an approximation.

Consider the following evident equations:

$$\log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log \frac{p_{\theta}(x,z)q_{\phi}(z|x)}{q_{\phi}(z|x)p_{\theta}(z|x)} = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} + KL(q_{\phi}(z|x)||p_{\theta}(z|x))$$

$$\log p_{\theta}(x) \geqslant \mathbb{E}_{z \sim q_{\phi}(z|x)} \log \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z) - KL(q_{\phi}(z|x)||p(z)) = L(x;\phi,\theta) \to \max_{\phi,\theta} p_{\theta}(x|x)$$

The last low bound for $\log p_{\theta}(x)$ is called ELBO. It has several equivalent forms, such as:

$$L_{KL}(x; \phi, \theta) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z) - KL(q_{\phi}(z|x)||p(z))$$
$$L_{ent}(x; \phi, \theta) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x, z) + H(q_{\phi}(z)),$$

called ELBO in KL and Entropy form.

We use Variational Inference (VI) for solving this optimization task. Ideas, behind this method, are well studied and described in the article ([RR13]).

2 Notation

In this documentation we will be supported by the following notation.

- beta: global latent variable
- z_i : local latent variable
- \bullet x_i : observed values

The following methods for prior distribution will denote:

- $\log_{\text{likelihood}} \log_{\text{global}}(\text{beta})$: $\log p(\beta)$
- log_likelihood_local(z, beta): $\log p(z|\beta)$
- log likelihood joint(x, z, beta) : $\log p(x, z | \beta)$

The following methods for variational distribution will denote:

- log_likelihood_global(beta): $\log q(\beta)$
- $\log_{\text{likelihood}} \log_{\text{local}}(\mathbf{z}, \mathbf{beta})$: $\log q(z|\beta)$
- $\log_{\text{likelihood_joint}}(\mathbf{x}, \mathbf{z}, \mathbf{beta}) : \log q(x, z | \beta)$

3 class SVI:

3.1 check methods

Check if provided model supports input loss. For now we support losses in the form 'bb1', 'bb2, 'kl', and 'entropy'.

- Args:
 - loss: string, name of loss
- Returns:
 - flag: boolean, if model supports loss
 - message: string, error source if model does not support loss
 - methods_to_implement: dict, methods to implement if model does not support loss

3.1.1 Example of usage

```
from BBSVI import SVI
import torch
import test_models

prior = test_models.ToyPrior()
var = test_models.ToyVariationalDistribution()

loss = 'entropy'

opt = torch.optim.Adam(var.parameters, lr=1e-3)
BBSVI.SVI(data, prior, var, opt)

svi.check_methods(loss)
>>> (True, 'OK', defaultdict(list, {}))
```

3.2 make_inference

This function performs SVI inference.

- Args:
 - num_steps: int, maximum number of epoches
 - tol: required tolerance
 - num_samples: int, number of samples used for ELBO approximation
 - batch_size: int, size of one batch
 - loss: string, loss function
 - discounter_schedule: used only for 'entropy' loss, None or torch tensor of size num_steps, discounter_schedule[i] is a discounter for an analytically-computed term at step i
 - kl: None or callable, compute KL divergency between variational and prior distributions, required only for 'kl' loss
 - shuffle: boolean, if batch is shuffled every epoch or not
 - **print_progress:** boolean, if True then progress bar is printed
 - callback: None or callable, if not None, applied to loss after every iteration
 - retain_graph: boolean, passed to loss.backward()

3.2.1 Example of usage

```
from BBSVI import SVI
import torch
import test_models

prior = test_models.ToyPrior()
var = test_models.ToyVariationalDistribution()

loss = 'entropy'

opt = torch.optim.Adam(var.parameters, lr=1e-3)
svi = BBSVI.SVI(data, prior, var, opt)

svi.make_inference(loss)
```

$3.3 \quad bb1_loss_$

This function performs bb1 loss. This is private method, not needed to be called explicitly. bb1_loss_(self, num_samples, batch_indices)

- Args:
 - num_samples: int, number of samples used for approximation
 - batch_indices: array, indices of batch.
- Returns:
 - loss: float, Black Box loss function; computed loss for model

The following methods are required to be implemented by user:

- Prior_distr required methods:
 - log_likelihood_global(beta)
 - log_likelihood_local(z, beta)
 - log_likelihood_joint(x, z, beta)
- Var_distr required methods:
 - log_likelihood_global(beta)
 - log_likelihood_local(z, idx)
 - sample_global()
 - sample_local(beta, idx)

$3.4 \quad bb2 \quad loss$

Computing loss of BB SVI 2, which has lower variance compare to BB SVI 1 bb2_loss_(self, num_samples, batch_indices)

- Args:
 - num_samples: int, number of samples used for approximation
 - batch_indices: array, indices of batch.
- Returns:
 - loss: float, Black Box loss function; computed loss for model

The following methods are required to be implemented by user:

- \bullet Prior_distr required methods:
 - log_likelihood_global(beta)
 - log_likelihood_local(z, beta)
 - log_likelihood_joint(x, z, beta)
- Var_distr required methods:
 - log_likelihood_global(beta)
 - log_likelihood_local(z, idx)
 - sample_global()
 - sample_local(beta, idx)

The following attributes are required to be assigned by user:

- Var_distr required attributes:
 - **global_parameters**: list of global parameters
 - local_parameters: list of local parameters, i-th entry corresponds to i-th latent variable

3.5 entropy form loss

Computing ELBO estimator in entropy form entropy_form_loss_(self, num_samples, batch_indices, discounter=1)

- Args:
 - num_samples: int, number of samples used for approximation
 - batch_indices: array, indices of batch.
 - **discounter:** coefficient of entropy term
- Returns:
 - loss: float, ELBO in entropy form estimator

The following methods are required to be implemented by user:

- Prior_distr required methods:
 - log_likelihood_global(beta)
 - log_likelihood_joint(x, z, beta):
- Var_distr required methods:
 - entropy(batch_indices)
 - sample_global()
 - sample_local(beta, idx)

$3.6 \quad kl_form_loss_$

Computing ELBO estimator in Kullback-Leibler divergence form kl_form_loss_(self, num_samples, batch_indices, kl, discounter=1)

- Args:
 - num_samples: int, number of samples used for approximation
 - batch_indices: array, indices of batch.
 - kl: callable, function which computes KL divergence between variational and prior based on based indices
 - **discounter:** coefficient of entropy term
- Returns:
 - loss: float, ELBO in KL form estimator

The following methods are required to be implemented by user:

- Prior_distr required methods:
 - log_likelihood_cond(x, z, beta):
- Var_distr required methods:
 - sample_global()
 - sample_local(beta, idx)

$3.7 \quad handle_nones$

Replace all Nones with torch tensors containing one zero handle_nones(container)

- Args:
 - container: tuple
- Returns:
 - handled_container: container with torch tensor containing one zero instead of Nones.

$4 \quad class \ History Collector$

A simple class which is helpful to collect loss history of SVI

- Args:
 - data_size: int, number of data points
 - batch_size: : int, batch_size for SVI

Methods:

$4.1 \quad collect_history:$

collect_history(self, loss)

Saving loss, can be passed as callback arg to SVI.make inference

- Args:
 - **loss**: : torch.tensor, loss

5 References