

- Capítulo 8 - Contadores

Prof. Oscar E. Ramos, Ph.D.

(31 de octubre del 2017)

Objetivos

- Comprender y analizar el funcionamiento de los diversos tipos de contadores
- Diseñar aplicaciones basadas en contadores

¿Qué hace el circuito que da origen a este diagrama temporal ?

¿Cómo se relaciona la frecuencia de B con la frecuencia de CLOCK?

Contadores

- Cuenta 4 bits: de 0000 a 1111 (0 a 15)
 - Se denomina módulo 16 (MOD 16)
- ¿Qué hacen A, B, C, D con CLOCK?
 - A divide la frecuencia del reloj entre 2 (MOD 2 = DIV 2)
 - B divide la frecuencia del reloj entre 4 (MOD 4 = DIV 4)
 - D divide la frecuencia del reloj entre 16 (MOD 16 = DIV 16)
- Equivalencia: conteo y división de frecuencia

Contadores

- Los contadores "cuentan"
- Se implementan con flip-flops J-K o D
- Módulo (MOD) de un contador:
 - Es el número de estados del contador (lo que puede "contar")
 - Para n flip-flops: módulo máximo = 2^n
 - Ejemplo
 Se requiere un contador que cuente hasta 1000. ¿Cuántos flip-flops como mínimo se requerirá?

Respuesta: 10

- División de frecuencia: La señal del MSB (último flip-flop) divide la frecuencia del reloj entre el módulo del contador
- Tipos de contadores:
 - Asíncronos: no todos los flip-flops cambian de manera síncrona
 - Síncronos: todos los flip-flops cambian "sincronizadamente"

Contenido

1. Contadores Asíncronos

- 2. Contadores síncronos
- 3. Análisis y diseño de contadores síncronos
- 4. Contadores síncronos Up/Down
- 5. Contadores en cascada
- 6. Aplicaciones

- Asíncrono:
 - Significa que no está sincronizado con el tiempo
- Contador asíncrono:
 - Los flip-flops no tienen un reloj común (no cambian exactamente al mismo tiempo)

Ejemplo: 3 bits (diferentes retardos de propagación)

Implementación: con flip-flops J-K o D.

Contador Asíncrono Binario de 2 bits

• 2 flip-flops J-K en modo toggle

Diagrama de tiempos (inicialmente en cero):

Impulso de reloj	Q_1	Q_0
Inicialmente	0	0
1	0	1
2	1	0
3	1	1
4 (nuevo ciclo)	0	0

Contador Asíncrono Binario de 2 bits

- Otros contadores equivalentes:
 - Usando flip-flops J-K activados por flanco de bajada

- Usando flip-flops D

Contador Asíncrono Binario de 3 bits

Posee 3 flip-flops J-K en modo toggle

Diagrama de tiempos (inicialmente en cero):

CLK		1	2	3	4	5	6	7	8
Q_0 (LSB)	0	1	0	1	0	1	0	1	0
Q_1	0	0	1	1	0	0	1	1	0
Q_2 (MSB)	0	0	0	0	1	1	1	1	0
									Recycle

reloj	Q_2	Q_1	Q_0
Inicialmente	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (nuevo ciclo)	0	0	0

Retardo de Propagación

- Análisis de un contador de 3 bits
 - El reloj (CLK) afecta a Q_0
 - Q_0 funciona como reloj de Q_1
 - Q_1 funciona como reloj de Q_2

Al usar más flip-flops se incrementa más el retardo de propagación

Retardo de Propagación

Ejemplo

Dado el siguiente circuito, dibujar el diagrama temporal sin considerar retardos de propagación (mostrando las salidas Q_i). Luego, determinar el tiempo total de retardo si cada flip-flop tiene un retardo de propagación de 10 ns.

Solución:

 t_{prop} = (4)(10ns) = 40 ns

Retardo de Propagación

Ejemplo

- En el contador de 4 bits anterior, ¿cuál es la máxima frecuencia de reloj que se puede utilizar (cada flip-flop tiene un retardo de 10 ns)?

$$f_{\text{max}} = \frac{1}{t_{p(tot)}} = \frac{1}{40 \text{ ns}} = 25 \text{ MHz}$$

El reloj del contador debe operar con una frecuencia menor para evitar problemas por retardo de propagación

- El contador de 4 bits anterior inicia en el estado 0000 y se aplican pulsos de reloj. Luego de algún tiempo se detiene la señal de reloj, y el contador indica 0011. ¿Cuántos pulsos de reloj han transcurrido?

No se sabe: podrían ser 3, 19, 35, 51, etc.

Contadores Truncados

- Se "truncan" en algún número m: llamados DIV m o MOD m
 - No cuentan hasta el módulo máximo
 - Implementación: el máximo valor deseado "resetea" el contador
- Ejemplo: contador de décadas (módulo 10) Cuenta de 0000 a 1001 (código BCD)

CLEAR (RESET) cuando llega a 1010₂ (10₁₀)

Contadores Truncados

- Ejemplo: contador de décadas (módulo 10)
 - Diagrama de tiempos

"glitches" debido a que el contador permanece en 1010 durante algunos ns

• Ejercicio:

Diseñar un contador de módulo 12

• Ejemplo de CI: 74XX93

- Si solo J_0 : divisor de 2
- Si solo J_1 , J_2 , J_3 : contador MOD 8

- ¿Cómo conectar para que funcione como MOD 16? ¿y como MOD 10?

Contenido

- 1. Contadores Asíncronos
- 2. Contadores síncronos
- 3. Análisis y diseño de contadores síncronos
- 4. Contadores síncronos Up/Down
- 5. Contadores en cascada
- 6. Aplicaciones

- Síncrono: "sincronizado" con el reloj
- Contador síncrono:

Todos los flip-flops cambian al mismo tiempo (con la misma señal de reloj)

Ventaja:

Menos retardo de propagación (comparado con contadores asíncronos)

• Implementación:

Con flip-flops J-K o flip-flops D

Contador Síncrono Binario de 2 bits

• Usa 2 flip-flops

Solo el primer flip-flop en "toggle" permanente

- Análisis del circuito

Estado	Actual		Entrada	Estado Siguiente			
Q_1	Q_0	J_1	<i>K</i> ₁	J_0	K_0	Q_1^*	${oldsymbol{Q}_0}^*$
0	0	0	0	1	1	0	1
0	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0
0	0						

Contador Síncrono Binario de 2 bits

Usa 2 flip-flops

Diagrama temporal: considerando retardos

Contador Síncrono Binario de 3 bits

• Se desea:

Impulso de reloj	Q_2	Q_1	Q_0
Inicialmente	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (nuevo ciclo)	0	0	0

• Implementación: con flip-flops J-K activos por flanco de subida

	Outputs			At t	At the Next Clock Pulse				<i>J-K</i> I	nputs		
Clock Pulse	Q_2	Q_1	Q_0	FF2	FF1	FF0	J_2	K_2	J_1	K_1	J_0	K_0
Initially	0	0	0	NC*	NC	Toggle	0	0	0	0	1	1
1	0	0	1	NC	Toggle	Toggle	0	0	1	1	1	1
2	0	1	0	NC	NC	Toggle	0	0	0	0	1	1
3	0	1	1	Toggle	Toggle	Toggle	1	1	1	1	1	1
4	1	0	0	NC	NC	Toggle	0	0	0	0	1	1
5	1	0	1	NC	Toggle	Toggle	0	0	1	1	1	1
6	1	1	0	NC	NC	Toggle	0	0	0	0	1	1
7	1	1	1	Toggle	Toggle	Toggle	1	1	1	1	1	1
				Counter re	Counter recycles back to 000.							

Contador Síncrono Binario de 3 bits

- Implementación:
 - Con flip-flops J-K activos por flanco de subida

- Solo el primer flip-flop en "toggle" permanente
- Los otros flip-flops están configurados para "cambiar" en el momento adecuado (según la tabla de diseño)

Contador Síncrono Binario de 4 bits

• Se desea:

• Implementación:

Contador de Décadas Síncrono de 4 bits

Usando 4 flip-flops J-K:

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = Q_0 \overline{Q}_3$$

$$J_2 = K_2 = Q_0 Q_1$$

$$J_3 = K_3 = Q_0 Q_1 Q_2$$

$$+ Q_0 Q_3$$

Diagrama de tiempos:

Impulso de reloj	Q_3	Q_2	Q_1	Q_0
Inicialmente	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (nuevo ciclo)	0	0	0	0

• Ejemplo de CI: 74XX163 (binario de 4 bits)

- Al activar LOAD, se inicia el conteo con $D_3D_2D_1D_0$

- Habilitación: ENT, ENP

 RCO (Ripple Clock Output): 1 al terminar el conteo (15)

• Ejemplo de CI: 74XX162

(de décadas BCD)

 Al activar PE, se inicia el conteo con D₃D₂D₁D₀

- Habilitación: CEP, CET

- Reset (clear): SR

- TC (Terminal Count): 1 al terminar el conteo (9)

• Ejercicio

¿Cuál es el módulo del siguiente circuito?

Respuesta: MOD 6

• Ejercicio

¿Cuál es el módulo del siguiente circuito?

Respuesta: MOD 14

Contenido

- 1. Contadores asíncronos
- 2. Contadores síncronos
- 3. Análisis y Diseño de Contadores Síncronos
- 4. Contadores síncronos up/down
- 5. Contadores en cascada
- 6. Aplicaciones

• Ejemplo 1: Analizar el siguiente circuito con flip-flops J-K

- Tabla de estado presente/futuro

PRESENT State				Control Inputs						EXT St	ate
С	В	Α	J _C	Kc	J _B	K _B	J_A	KA	С	В	Α
0	0	0	0	0	0	0	1	1	0	0	1
0	0	1	0	0	1	1	1	1	0	1	0
0	1	0	0	0	0	0	1	1	0	1	1
0	1	1	1	0	1	1	1	1	1	0	0
1	0	0	0	1	0	0	0	0	0	0	0

$$J_C = A \cdot B$$

$$K_C = C$$

$$J_B = K_B = A$$

$$J_A = K_A = \overline{C}$$

• Ejemplo 1:

¿Qué pasa si la condición inicial es un valor no utilizado (101, 110, 111)?

PRE	PRESENT State			Control Inputs					NE	XT St	ate
С	В	A	J _C	Kc	J _B	K _B	J_A	K _A	С	В	A
1	0	1	0	1	1	1	0	0	0	1	1
1	1	0	0	1	0	0	0	0	0	1	0
1	1	1	1	1	1	1	0	0	0	0	1

$$J_C = A \cdot B$$

$$K_C = C$$

$$J_B = K_B = A$$

$$J_A = K_A = \overline{C}$$

Se regresa a la secuencia normal de conteo (contador autocorregible)

• Ejemplo 2: Analizar el siguiente circuito con flip-flops D

- Expresiones D para cada flip-flop:

$$D_C = C\overline{B} + C\overline{A} + \overline{C}BA$$
 $D_B = \overline{B}A + B\overline{A}$
 $D_A = \overline{A}$

• Ejemplo 2:

$$D_C = C\overline{B} + C\overline{A} + \overline{C}BA$$

 $D_B = \overline{B}A + B\overline{A}$
 $D_A = \overline{A}$

- Tabla de estado actual/siguiente

PRES	SENT S	State	Con	Control Inputs		NE	NEXT Stat	
C	В	A	D _C	D_B	D_A	C	В	A
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

- Conclusión: contador MOD 8

Diseño de Contadores Síncronos

- Objetivo:
 - Implementar contadores con cualquier módulo o características "arbitrarias"
- Pasos para el diseño:
 - 1. Diagrama de estados
 - 2. Tabla de estado actual/siguiente
 - 3. Tabla de transición de flip-flop
 - 4. Mapas de Karnaugh
 - 5. Expresión Booleana para las entradas a los flip-flops
 - 6. Implementación del contador

Diseño de Contadores Síncronos

- Ejemplo 1: Diseñar un contador de Código Gray de 3 bits
 - Diagrama de estados

- Tabla de estado actual/siguiente

	Present St	ate	Next State			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	
1	1	1	1	0	1	
1	0	1	1	0	0	
1	0	0	0	0	0	

Diseño de Contadores Síncronos

- Ejemplo 1: Diseñar un contador de Código Gray de 3 bits
 - Tabla de transición para flip-flops J-K

<u>_</u>	K	Q_{i+1}
0	0	Q_i
0	1	0
1	0	1
1	1	\overline{Q}_i

		Entradas				
Q_i	Q_{i+1}	J	K			
0	0	0	×			
0	1	1	X			
1	0	Х	1			
1	1	Х	0			

- Mapas de Karnaugh

pulso	Estados			Entradas					
clock	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1°	0	0	0	0	Х	0	Х	1	Х
2°	0	0	1	0	Х	1	Х	Х	0
3°	0	1	1	0	X	Х	0	Х	1
4º	0	1	0	1	Х	Х	0	0	Х
5°	1	1	0	Х	0	Х	0	1	Х
6°	1	1	1	Х	0	Х	1	Х	0
7°	1	0	1	Х	0	0	Х	Х	1
8°	1	0	0	Х	1	0	Х	0	Х

Diseño de Contadores Síncronos

- Ejemplo 1: Diseñar un contador de Código Gray de 3 bits
 - Mapas de Karnaugh

Diseño de Contadores Síncronos

- Ejemplo 1: Diseñar un contador de Código Gray de 3 bits
 - Expresiones lógicas para las entradas a los flip-flops

$$J_{0} = Q_{2}Q_{1} + \overline{Q}_{2}\overline{Q}_{1} = \overline{Q_{2} \oplus Q_{1}}$$

$$K_{0} = Q_{2}\overline{Q}_{1} + \overline{Q}_{2}Q_{1} = Q_{2} \oplus Q_{1}$$

$$J_{1} = \overline{Q}_{2}Q_{0}$$

$$K_{1} = Q_{2}Q_{0}$$

$$J_{2} = Q_{1}\overline{Q}_{0}$$

$$K_{2} = \overline{Q}_{1}\overline{Q}_{0}$$

- Implementación:

Diseño de Contadores Síncronos

• Ejercicio:

Diseñar un contador con la siguiente secuencia usando flip-flops D

Solución:

Contenido

- 1. Contadores asíncronos
- 2. Contadores síncronos
- 3. Análisis y diseño de contadores síncronos
- 4. Contadores Síncronos Up/Down
- 5. Contadores en cascada
- 6. Aplicaciones

• Cuentan en cualquier dirección: ascendente o descendente

También llamados: contadores bidireccionales

Contador de 3 Bits

Secuencia de conteo:

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	1 (0	0	0)
1	(0	0	1	5
2	(0	1	0	5
3	Ç	0	1	1	5
4	(1	0	0	5
5	(1	0	1	5
6	(1	1	0	5
7	\	1	1	1	5 ₺

- Diseño del contador (condiciones para que Qi cambie):
 - Q_0 cambia siempre: $J_0 = K_0 = 1$
 - Q_1 en modo UP cambia cuando Q_0 =1, en modo DOWN cuando Q_0 =0

$$J_1 = K_1 = (Q_0 \cdot \text{UP}) + (\overline{Q}_0 \cdot \text{DOWN})$$

- Q_2 en modo UP cambia cuando Q_0 = Q_1 =1, en modo DOWN cuando Q_0 = Q_1 =0

$$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot \text{UP}) + (\overline{Q}_0 \cdot \overline{Q}_1 \cdot \text{DOWN})$$

Contador de 3 Bits

Circuito resultante:

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = (Q_0 \cdot \text{UP}) + (\overline{Q}_0 \cdot \text{DOWN})$$

$$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot \text{UP}) + (\overline{Q}_0 \cdot \overline{Q}_1 \cdot \text{DOWN})$$

• Ejemplo de CI: 74XX190

(contador de décadas bidireccional)

- Dirección: D/U
- LOAD: inicia el contador con $D_0D_1D_2D_3$

- CTEN: habilitador
- RCO (Ripple Clock Output): activo cuando el conteo es 9

Contenido

- 1. Contadores Asíncronos
- 2. Contadores síncronos
- 3. Análisis y diseño de circuitos síncronos
- 4. Contadores síncronos Up/Down
- 5. Contadores en Cascada
- 6. Aplicaciones

 Es una forma de conexión para incrementar el módulo del contador (el máximo valor de conteo)

- Cascada:
 - El último estado de un contador activa el contador siguiente
 - El módulo resultante es el producto de los módulos
- Tipos: asíncronos y síncronos

Asíncronos

Se obtienen conectando contadores asíncronos en serie

- Diagrama de tiempos

Síncronos

Notación:

- Entrada habilitadora: CTEN (G, EN) ← habilita el contador
- Conteo terminal: TC (RCO) ← se activa con el último "valor"

Conexión en cascada:

- Pin TC (salida) con CTEN (entrada) del contador siguiente
- Ejemplo: ¿Cuál es el módulo?

Módulo (10)(10) = MOD 100 Conteo: 0, 1, 2, ..., 98, 99

Síncronos

- Otra interpretación: divisor de frecuencia
 - A veces llamados "cadenas de división" (countdown chains)
 - Ejemplo:

 Uso: obtención de señales de baja frecuencia a partir de señales de alta frecuencia

Síncronos

• Ejemplo:

Determinar el módulo de los siguientes contadores conectados en cascada

- a) MOD 1536
- b) MOD 1400

Con Secuencias Truncadas

- Objetivo: obtener módulo menor al máximo posible
- Ejemplo:

Usando 4 contadores MOD 16 en cascada implementar un divisor por 40 000 (MOD 40 000)

- Notar que 4 contadores MOD 16 en serie cuentan hasta: 16⁴ = 65 536
- Método: inicializar los contadores a 65 536 40 000 = 25 536

Contenido

- 1. Contadores asíncronos
- 2. Contadores síncronos

- 3. Análisis y diseño de contadores síncronos
- 4. Contadores síncronos Up/Down
- 5. Contadores en cascada
- 6. Aplicaciones

Reloj Digital

Objetivo: mostrar horas, minutos y segundos

Reloj Digital

- Para minutos y segundos:
 - Se usa contador MOD 60 (a partir de 2 contadores de décadas)

Reloj Digital

- Para horas: contador 1 12
 - Usando 1 contador de décadas + 1 flip-flop J-K

- Inicialmente: RESET,
 NANDS en 1
- En 9: FF SET (1) y CTR se "recicla" (0)
- En 12: FF RESET (0) y CTR se precarga con 1

Reloj Digital

• Nota: Schmitt-trigger ()

- Posee histéresis: previene cambios "erráticos" cuando la señal es lenta
- Ejemplo: compuerta NOT

Sin Schmitt trigger

Control de Parqueo de Autos

• Objetivo:

Dado un estacionamiento para 100 autos, se desea monitorear los espacios disponibles: al no haber espacios se activa una señal de aviso (de "completo") y se baja una barrera a la entrada.

Sensores:

- 2 sensores optoelectrónicos (a la entrada y salida)
- 1 contador up/down y su circuitería asociada
- 1 circuito (de interface) que usa la salida del contador para encender/apagar la señal de aviso luz y subir/bajar la barrera de entrada

Control de Parqueo de Autos

- Diagrama del contador bidireccional
 - Contador up/down MOD 100: usando 2 contadores up/down de décadas en cascada

- Inicialmente ambos contadores en 0
- El latch S-R establece el modo de conteo
- ¿Por qué usar NOR y no OR?

Resumen

- Los contadores asíncronos no comparten la misma señal de reloj
- Los contadores síncronos comparten la misma señal de reloj
- Los contadores síncronos tienen menos retardo de propagación
- Se puede modificar los circuitos contadores para lograr cualquier módulo de conteo
- Los contadores bidireccionales (up/down) permiten contar de manera ascendente o descendente (según el pin U/D)
- Para obtener un módulo mayor, los contadores se pueden conectar en cascada

Referencias

- T.L. Floyd, *Digital Fundamentals*, 11th ed, Edinburgh Gate, England: Pearson Education Limited, 2015 (*Capítulo 9*)
- R.J. Tocci, N.S. Widmer and G.L. Moss, Sistemas digitales: Principios y aplicaciones, 10a ed, Mexico D.F.: Pearson Education, 2007 (*Capítulo 7*)