1. (k points) How big is the parabolic segment between the parabola $f(x) = x^2$ and the line g(x) = 8 - 2x?

Sketch a graph to visualize the desired area.

Solution: The functions intersect at $P_1(-4,16)^T$ and at $P_2(2,4)^T$. Thus, the area is

$$A = \int_{-4}^{2} g(x) - f(x) dx = \int_{-4}^{2} 8 - 2x - x^{2} dx = \left[\frac{1}{3} x (24 - 3x - x^{2}) \right]_{-4}^{2} = -16 + 12x - x^{3}$$

2. (k points) Given the function

$$f(x) = -x^2 + 10x^3$$

- (a) Sketch f, f' and f'' in one coordinate system.
- (b) Identify all of the minimum and maximum points and find its inflection points.

(a) First, calculate the derivatives

$$f(x) = -x^{2} + 10x^{3}$$
$$f'(x) = -2x + 30x^{2}$$
$$f''(x) = -2 + 60x$$

(b) The function f has zeros at $x_1 = \frac{1}{10}$ and at $x_2 = 0$. The function f' has zeros at $x_3 = \frac{1}{15}$ and at $x_4 = 0$. The function f has a minimum at $(\frac{1}{15}, 2.0)$ because $f''(x_3) > 0$ and a maximum at (0, -2) because $f''(x_4) < 0$.