Trabajo práctico N° 1

Sistemas de numeración y unidades de información

FECHA DE FINALIZACIÓN: 31 DE MARZO

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: Comprender el sistema de numeración posicional, conversión entre sistemas de distintas bases, y las unidades de información.

Recursos bibliográfico:

- Wikipedia: Prefijo binario. http://es.wikipedia.org/wiki/Prefijo_binario
- Wikipedia: Prefijos del sistema internacional. https://es.wikipedia.org/wiki/Prefijos_del_Sistema_Internacional

Lectura obligatoria:

Apuntes de cátedra. Capitulo 1: Sistemas de Numeración, y Capitulo 2: Unidades de Información. Disponible en PEDCO: https://pedco.uncoma.edu.ar/mod/url/view.p hp?id=203642

1. Sistema de numeración no posicional

El sistema de numeración egipcio es **aditivo**, es decir, cada número se calcula sumando el valor de los símbolos. A continuación se muestran los símbolos y sus valores:

	El dios <i>Heh</i>	Renacuajo	Dedo	Flor de loto	Cuerda enrollada	Grillete	Trazo
	Ĭ			$\boxed{\hspace{0.1cm}}$	9		
\vdash	1 000 000	100 000	10 000	1 000	100	10	1

Por ejemplo, el número 13745 se podría escribir así:

1. Escribir los números que representen los siguientes símbolos egipcios:

- 2. Escribir en el sistema de numeración egipcio los siguientes números:
 - a) 3421
- b) 1896
- c) 120 218

3. La distancia promedio entre la tierra y el sol es de aproximadamente 149 597 870 700 metros¹; Puede expresar esta distancia utilizando el sistema de numeración Egipcio?

2. Sistema de numeración posicional

1. Descomponer los siguientes números en sumas de potencias de la base y calcular el resultados de:

a) 7249_{10}

b) 10111_2 c) 127_8 d) $23.9E_{16}$ e) 10.111_3 f) 10.111_9

2. Tras descomponer los números en sumas de potencias de la base ¿en qué base queda expresado el resultado?

2.1. Conversión entre sistemas de numeración posicional

1. Complete la tabla de conversiones 1 de la página 5.

Para convertir de decimal a otra base utilice el procedimiento de división; para convertir de otra base a decimal utilizar la descomposición en sumas de potencias de la base.

a) Una vez completada la tabla: ¿Encuentra algún patrón que permita una conversión rápida entre los sistemas binario, octal y hexadecimal?

A continuación, para convertir de decimal a otra base utilizar el procedimiento de división; para convertir de otra base a decimal utilizar la descomposición en sumas de potencias de la base, y para convertir entre binario y octal/hexadecimal utilizar la tabla completada en el ejercicio 1.

2. Convertir de decimal a binario, octal y hexadecimal:

a) 132_{10}

b) 500_{10} c) 27025_{10}

3. Convertir de binario y hexadecimal a decimal:

a) $00\,0011_2$

b) $10\,1010_2$ c) $10\,1111_2$

d) $F4_{16}$ e) $D3E_{16}$ f) $EBAC_{16}$

4. Convertir de hexadecimal a binario:

a) FF_{16}

b) $B4_{16}$ c) $1 FC_{16}$ d) $1 A1_{16}$ e) $23 9E_{16}$ f) $5 F FF_{16}$

5. Convertir de binario a hexadecimal y octal:

a) 1001 0001 1100 1001₂

b) 0110 1110 1011 1100₂

6. En el siguiente número se desconoce un dígito representado con X. ¿Qué valores puede tomar ese dígito desconocido?

a) $621X43_{10}$

b) $11X01_2$ c) $43X21_8$

7. En el siguiente número se desconoce la base representada con Y. ¿Cuál es el menor valor que puede tomar Y?

a) 6350_{Y}

b) 2031_Y

c) 348_{V}

¹Esta distancia es conocida como unidad astronómica.

3. Unidades de información

1.	Utilice la tabla 2 con prefijos del Sistema Internacional	(SI)) de la pa	ágina (6 para	expresar
	la distancia de 300 Megámetros (Mm) en:					

- a) Kilómetros (km) b) Metros (m) c) Milímetros (mm) d) Micrómetros (μm) e) Nanómetros (nm)
- 2. Exprese el tiempo de un año (considerando que un año tiene 365 días) en:
 - a) Horas b) Minutos c) Segundos d) Milisegundos e) Microsegundos f) Nanosegundos
- 3. Grafique la relación entre bytes y bits.
- 4. Las siguientes cantidades son dadas en **prefijos binarios**(http://es.wikipedia.org/wiki/Prefijo_binario), exprese su cantidad equivalente en bytes y bits (Utilice la tabla 3 de la página 6).
 - $a)\ 64KiB \qquad b)\ 15MiB \qquad c)\ 4GiB \qquad d)\ 2TiB \qquad e)\ 9PiB \qquad f)\ 3EiB$
- 5. Las siguientes cantidades son dadas en **prefijos decimales**(https://es.wikipedia.o rg/wiki/Prefijos_del_Sistema_Internacional), exprese su cantidad equivalente en bytes y bits (Utilice la tabla 3 de la página 6).
 - $a)\ 64KB \qquad b)\ 15MB \qquad c)\ 4GB \qquad d)\ 10\,TB \qquad e)\ 9PB \qquad f)\ 3EB$

3.1. Unidades de información: resolver

- 1. Al comprar un dispositivo o medio de almacenamiento secundario (disco rígido, pendrive, DVD) normalmente encontramos que el fabricante especifica la capacidad empleando prefijos decimales (KB, MB, TB, etc.). Sin embargo, generalmente, un explorador de archivos muestra este dato utilizando prefijos binarios (KiB, MiB, TiB, etc.). Indique la capacidad que mostraría el explorador de archivos para dispositivos o medios de:
 - $a) \; 3MB \qquad b) \; 4.7GB \qquad c) \; 5TB \qquad d) \; 8.5GB \qquad e) \; 2PB$
- 2. Necesito comprar un pendrive para guardar 1990 fotos de 2 MiB cada una.
 - a) ¿Cuántos GiB de almacenamiento se necesitan?
 - b) En un comercio hay pendrives disponibles de $2\,GB$, $4\,GB$, $8\,GB$ y $16\,GB$, ¿cuál debería elegir de tal manera que pueda guardar todas las fotos y sobre el menor espacio posible?
- 3. Aunque ambas nomenclaturas están estandarizadas, es normal que se utilice únicamente la de prefijos decimales, y debamos interpretar si se refiere a prefijo decimal o binario según el contexto. Supongamos que alguien envió un email diciendo: "He comprado un pendrive de 1GB y le he copiado una foto de 5MB".
 - a) ¿Cuántos bytes de capacidad tiene el pendrive?
 - b) ¿Cuántos bytes tiene la foto?

4. Integración

1. Elabore un texto que compare los sistemas de numeración no posicional y posicional, tratados en este trabajo práctico.

Para este ejercicio tenga en cuenta que:

- El texto descriptivo-comparativo tiene por objeto comparar las características de dos o más seres, destacando las semejanzas y las diferencias que hay entre ellos.
- ¿Cómo se redacta un texto Descriptivo-Comparativo? Cuando se comparan dos seres o dos objetos, sólo se deben contrastar variables análogas, es decir, rasgos que pertenecen a la misma clase. Podremos, por ejemplo, comparar el tamaño (grande, pequeño), la forma (cuadrado, rectangular), la materia (de vidrio, de metal).
- Un texto descriptivo-comparativo se puede esquematizar mediante conectores que resalten los rasgos comunes y los rasgos diferenciales, o bien mediante conectores que contrasten los distintos rasgos de las realidades que se comparan.
- Los textos que tienen estructura de comparación-contraste utilizan conectores que manifiestan semejanzas, es decir, paralelismo (igualmente, del mismo modo, también, de la misma manera, asimismo...) o diferencias, es decir, contraste (en cambio, sin embargo, por el contrario, a diferencia de...).

Fuente: Lengua y Literatura, 2do de Bachillerato, 2do Grado 1er Ciclo. Educación Media, Serie Ambar, Santillana. Pág. 149, MANUEL GARCÍA-CARTAGENA (Dominicano).

Tabla 1: Tabla de conversiones

Decimal	<u>Tabla 1: Tabla de</u> Binario	Octal	Hexadecimal
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
234			EA
_	1010 1110		
		35	
	0010 1011		
	0010 1011	70	
			F0
	0001 0100		
	00101000		
128	00101000		
35		1	
245			
210		42	
	010 100	72	
	010 100		42
	0010 0100		42
255	0010 0100		
200			

Tabla 2: Prefijos del Sistema Internacional

Tabla 2. I Tenjos del bistema internacional				
Prefijo	Símbolo	Equivalencia a la unidad		
T	tera	$10^{12} = 1000^4$		
G	giga	$10^9 = 1000^3$		
M	mega	$10^6 = 1000^2$		
K	kilo	$10^3 = 1000^1$		
sin prefijo		$10^0 = 1000^0 = 1$		
m	mili	$10^{-3} = 1000^{-1}$		
μ	micro	$10^{-6} = 1000^{-2}$		
n	nano	$10^{-9} = 1000^{-3}$		

Ejemplo:

- Un kilogramo son 10^3 gramos.
- Un nanolitro son 10^{-9} litros.

Tabla 3: Prefiios decimales y binarios

1 abia 5: Frenjos decimales y binarios				
Prefijos decimales	prefijos binarios			
$kilobyte(KB) = 10^3 bytes = 1000^1 bytes$	$kibibyte(KiB) = 2^{10}bytes = 1024^{1}bytes$			
$megabyte(MB) = 10^6 bytes = 1000^2 bytes$	$mebibyte(MiB) = 2^{20}bytes = 1024^2bytes$			
$gigabyte(GB) = 10^9 bytes = 1000^3 bytes$	$gibibyte(GiB) = 2^{30} = 1024^3 bytes$			
$terabyte(TB) = 10^{12bytes} = 1000^4 bytes$	$tebibyte(TiB) = 2^{40}bytes = 1024^4bytes$			
$petabyte(PB) = 10^{15}bytes = 1000^5bytes$	$pebibyte(PiB) = 2^{50}bytes = 1024^5bytes$			
$exabyte(EB) = 10^{18}bytes = 1000^6bytes$	$exbibyte(EiB) = 2^{60}bytes = 1024^{6}bytes$			
$zettabyte(ZB) = 10^{21}bytes = 1000^7bytes$	$zebibyte(ZiB) = 2^{70}bytes = 1024^7bytes$			
$yottabyte(YB) = 10^{24}bytes = 1000^8bytes$	$yobibyte(YiB) = 2^{80}bytes = 1024^8bytes$			

Ejemplo:

- \bullet Un kilo byte son $1\,000^1$ bytes.
- Un mebibyte son 2^{20} bytes.