ACM-ICPC 代码模板

Andeviking(422563809@qq.com) $2023 \ \mbox{\mbox{\ensuremath{\Xi}}}\ \ 2\ \mbox{\ensuremath{\Xi}}\ \ \mbox{\ensuremath{\Xi}}\ \ \mbox{\ensuremath{\Xi}}\ \ \mbox{\ensuremath{\Xi}}\ \mbox{\ensuremath{\Xi}\ \mbox{\ensuremath{\Xi}}\ \mbox{\ensur$

The real voyage of algorithm consists, not in seeking new landscapes, but in having new eyes.

3.38 遠域托記野 1				
9.女件 1 3.38 連集托展开 1 1 3.39 生成素数 1 1 2 表文件 (登 1 1 1 1 2 表文件 (要 1 1 1 2 表文件 (要 1 1 1 2 3 3 2 (成素数 1 3 3 3 2 (成素数 1 3 3 3 3 2 (成素数 1 3 3 3 3 3 3 3 3 3	\boldsymbol{c}	lontents		3.37 康托展开
1				
1.1 大文件 (全)	1	头文件	1	
2 財産		1.1 头文件 (全)	1	3000 IMBM
1		1.2 头文件 (赛)	1 4	4 数据结构 18
2.1 建図				4.1 并查集
2.2 SPFA 算法 2 4.4 种体放射 2.3 Director 對法 2 4.5 类段树 2.4 Floyd 算法 2 4.5 类段树 2.5 Kruscal 最小性成材 2 4.7 主席榜 2 4.7 生席榜 2 4.8 远远时 2.5 Kruscal 重构材 3 4.9 线皮材分裂与合并 4.8 远恋开瓜或良材 2.9 虚材 4 4.11 Splay 2.10 倍增求材上 6 4.12 AC 自动机 2.11 树链例分 6 4.13 分块 2.12 有间强强适应分量 6 4.13 分块 2.12 有间强强适应分量 6 4.13 分块 2.12 有间强强适应分量 7 4.15 点分治 2.12 有间强强适应分量 7 4.15 点分治 2.13 2-SAT 7 4.15 点分治 2.14 无间积及性通分量 7 4.15 点分治 2.15 预升排序 7 4.15 点分治 2.15 预升排序 7 4.15 元份榜 2.17 一分服量大权医底 (KM 算法) 7 4.18 无偏树 2.17 一分服量大权医底 (KM 算法) 7 4.19 他人李 2.18 Dinic 最大流 7 4.20 哈希 2.20 尿症对侧贲用液 9 4.22 扩膜 KNP 模法 2.21 朱刘祥法 10 4.25 可持久化 Tric 树 3.3 数字 10 4.25 可持久化 Tric 树 3.3 Eratosthenes 筛法 10 4.25 可持久化 Tric 树 3.3 Eratosthenes 筛法 10 4.25 可持久化 Tric 树 3.3 Eratosthenes 筛法 11 4.20 byndon 分解 3.1 处性筛 11 4.20 byndon 分解 11 4.20	2			4.2 并查集跳跃 18
2.3 Dijestra 第法		· - · · · · · · · · · · · · · · · · · ·		4.3 可持久化并查集
2.4 Floyd 第法				1.7.1.221
2.5 Kruscal 量内性成射 2 4.7 主席材 2.6 Kruscal 重构材 3 4.8 改善元点线段材 2.7 树哈希 3 4.9 线段椅分契与合并 2.8 AUH 材间构算法 3 4.10 平衡材 2.9 虚材 4 4.11 Splay 2.10 倍增求材上 lca 5 4.12 AC 自动机 2.11 材控剂分 6 4.13 交換 2.12 有向图级连通分量 6 4.14 克阶 2.13 2-SAT 7 4.16 CDQ 分治 2.14 无向图双连通分量 7 4.16 CDQ 分治 2.15 指外排序 7 4.16 CDQ 分治 2.16 如对解查 7 4.18 CMQ 2.17 二分图最大权匹配(KM 算法) 7 4.19 伽人季 2.18 Dinic 最大流 8 4.21 KMP 模式电配 2.19 成分期保费开流 9 4.22 KMP 模式电配 2.20 原体对偶要用流 9 4.22 KMP 模式电配 2.21 朱刘算法 10 4.23 manacher 算法 2.21 朱刘算法 10 4.25 后缀复动机 3.2 整除分身 10 4.26 后缀复动机 3.3 Eratosthenes 維法 11 4.29 巨对向的介分份 3.4 线性筛 11 4.30 笛下水樽 3.5 质因数分身 11 4.30 笛下水樽 3.6 Pollard's Rho 质团数			_	
2.6 Kruscal 東林樹 3 4.8 动态开点线眼梢 4.17 Splay 4.10 保育者 3 4.0 线眼梢分裂与合并 4.11 Splay 4.12 Splay 4.12 Splay 4.12 Splay 4.12 Splay 4.13 Splay			_	
2.7 村中希 2.8 AUH 村同村幹法 3 4.10 半億村 4.11 50 50 50 50 50 50 50				
2.8 AUH 村同科尊法 3 4.10 平衡材 4 4.11 Splay 2.10 倍增求树上 lca 5 4.12 AC 自动机 2.11 树能到分 6 4.13 分块 2.12 石向阳驱连通分量 6 4.14 奏队 2.13 2-SAT 7 4.15 点分治 2.14 无向阳驱连通分量 7 4.15 点分治 2.14 无向阳双连通分量 7 4.16 CDQ 分治 2.15 拓扑排序 7 4.17 动态树 2.16 匈牙利尊法 7 4.18 左偏树 2.17 二分即最大权配置 (KM 算法) 7 4.19 位人掌 2.18 Dinic 最大流 7 4.20 哈希 2.21 反为用最大流 8 4.21 KMP 模式匹配 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.21 未刘算法 10 4.23 manacher 辩法 4.24 Trie 材 4.25 可持久化 Trie 材 4.25 可持久化 Trie 材 4.25 可持久化 Trie 材 4.26 同或数分解 11 4.28 国文自动机 3.3 Eratosthenes 筛法 11 4.28 国文自动机 3.4 线性筛 11 4.29 lyndon 分解 3.5 反因数分解 11 4.29 lyndon 分解 1.3 高。 Pollard's Rho 成员数分解 11 4.30 笛卡尔柯 3.3 医院结函数 12 4.29 lyndon 分解 1.3 Dance Links 植确覆盖 3.3 形式的数集合 12 3.3 Box Links 重复覆盖 3.3 Eratosthenes 筛法 12 3.3 Dance Links 重复覆盖 3.3 Eratostage 13 5.2 完全背包 3.3 Se直背包 3.3 Se直转包 3.3 Se直转包 5.5 py 条环优化 DP 3.3 Sep			_	
2.0 虚材 4 4.11 Splay 2.10 倍増水材上 lca 5 4.12 AC 自动机 2.11 材能剖分 6 4.13 分块 2.12 有向图强连通分量 7 4.15 点分台 2.14 无向图风连通分量 7 4.16 CDQ 分台 2.15 折扑排序 7 4.17 动态椅 2.16 匈牙利穿法 7 4.18 左偏椅 2.17 二分图最大板匹配 (KM 算法) 7 4.19 仙人掌 2.18 Dinic 最大流 8 4.21 KMP 模式匹配 2.19 最小费用最大流 8 4.21 KMP 模式压配 2.20 原始对侧费用流 9 4.22 扩液 KMP 算法 2.21 未知算法 10 4.23 manacher 算法 2.21 未知算法 10 4.23 manacher 算法 3 数学 10 4.25 可持久化 Trio 树 3.1 快速幂 10 4.26 后缀数组 3.2 整除分块 10 4.26 后缀数组 3.3 Eratosthenes 筛法 11 4.29 lyndon 分解 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.31 Dance Links 精确覆盖 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 LN 正约数集合 12 3.8 胶过函数 3.8 胶过函数会 12 3.20 本产有包			-	
2.10 倍増求材上 lea 5 4.12 AC 自动机 2.11 树能到分 6 4.13 分块 2.12 有内图强连通分量 6 4.14 英N 2.13 2-SAT 7 4.15 点分治 2.14 无向图双连通分量 7 4.16 CDQ 分治 2.15 拓扑排序 7 4.18 左偏椅 2.16 何牙利算法 7 4.19 個人掌 2.18 Dinic 最大流 8 4.21 KMP 模式匹配 2.20 原放利健费大流 8 4.21 KMP 模式匹配 2.20 原放利健费开流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 2.21 朱刘算法 10 4.23 manacher 算法 3.2 整除分块 10 4.26 后級数组 3.2 整除分块 10 4.26 后級数组 3.3 Eratosthenes 缔法 11 4.28 回文自动机 3.4 线性缔 10 4.27 后缀自动机 3.5 应因数分解 11 4.30 固定 Links 精确覆盖 3.6 Pollard's Rho 原因数分解 11 4.31 Dance Links 精确覆盖 3.7 I-N 正约数数 12 4.32 Dance Links 精确覆盖 3.8 改述函数 12 4.32 Dance Links 精确覆盖 3.10 扩展的几里得該 12 5.0 产业专业 3.11 多区直接 13 5.3 交遣管包				1 0414
2.11 特権部分 6 4.13 分块 2.12 有向图强连通分量 6 4.14 吳队 2.13 2-84T 7 4.15 点分音 2.14 无向图双连通分量 7 4.16 CDQ 分音 2.15 有計制字 7 4.18 左偏椅 2.16 匈牙利算法 7 4.18 左偏椅 2.17 二分图最大权匹配 (KM 算法) 7 4.20 哈希 2.18 Dinc 最大流 8 4.21 KMP 模式匹配 2.19 成功付開費用流 9 4.22 扩展 KMP 算法 2.20 原政的付開費用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 3 数学 10 4.23 manacher 算法 3.1 快速等 10 4.25 可持久化 Trie 村 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 同文自动机 3.4 线性筛 11 4.28 同文自动机 3.5 质因数分解 11 4.30 管示付 3.6 内区数分解 11 4.30 Tance Links 精确覆盖 3.7 1 Nr. 正约数集合 12 3 3.8 胶衣函数 12 3 3.10 扩展的几里转流 12 3 3.11 扩展的工程等 13 5.2 完全背包 3.12 车际运算 13 5.3 支重			=	* · · · · · · · · · · · · · · · · · · ·
2.12 有向图强连通分量 6 4.14 桌似 2.13 2-SAT 7 4.15 点分治 2.14 无向图双连通分量 7 4.16 CDQ 分治 2.15 拓扑排序 7 4.17 动态树 2.16 何牙利算法 7 4.19 個人率 2.17 二分图最大权匹配 (KM 算法) 7 4.19 個人率 2.18 Dinic 最大流 7 4.20 哈希 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.21 未划算法 10 4.23 manacher 算法 4.24 Trie 树 4.27 Trie 树 3.2 整除分块 10 4.26 后缀数组 3.2 整除分块 10 4.26 同复自动机 3.3 Eratosthenes 筛法 11 4.28 同立自动机 3.4 发性筛 11 4.28 同立自动机 3.5 原因数分解 11 4.30 管卡尔树 3.6 Pollard's Rho 质因数分解 11 4.30 管下不树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 In 正约数聚合 12 4.32 Dance Links 重复覆盖 3.8 改述函数 12 4.32 Dance Links 重复覆盖 3.10 扩展欧儿里得注 12 5 办总规划 3.11 发性定算 13 5.3 多重增 3.12			-	47.44
2.13 2-SAT 7 4.15 点分治 2.14 无向限双连通分量 7 4.16 CDQ 分治 2.15 拓扑排序 7 4.18 左偏树 2.17 二分配最大权匹配 (KM 算法) 7 4.19 伽人掌 2.18 Dinic 最大流 8 4.21 KMP 模式匹配 2.19 最小费用最大流 8 4.21 KMP 模式匹配 2.20 原始对侧费用流 9 4.22 扩展 KMP 算法 2.21 朱刘孳法 10 4.23 manacher 算法 2.21 朱刘孳法 10 4.25 可持久化 Tric 树 3.2 整除分块 10 4.26 后缀数组 3.3 Eratosthenes 筛法 11 4.28 同文自动机 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 首卡尔树 3.6 Pollard's Rho 质因数分解 11 4.30 Dance Links 輔确覆盖 3.7 IN 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.20 Dance Links 重复覆盖 3.10 扩展防几里得算法 12 5.7 必规划 3.11 SOSO 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 自身证确 14 5.6 换根 DP 3.14 线性基 13 5.6 换根 DP 3.15 Lucas 定理 14 5.6 换根 DP			6	The state of the s
2.14 元向图双连通分量 7 4.16 CDQ 分治 2.15 拓扑排序 7 4.17 动态树 2.16 匈牙利算法 7 4.19 仙人掌 2.18 Dinic 最大流 7 4.20 哈希 2.19 泉分數用最大流 8 4.21 KMP 模式匹配 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 424 Trie 树 4 4.24 Trie 树 3 数学 10 4.25 可持久化 Trie 树 3.1 快速幂 10 4.26 后缀数组 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 回文自动机 3.4 线性筛 11 4.28 回文自动机 3.5 质因数分解 11 4.30 笛卡木树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 LN 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 胶抗函数 12 3.2 放现数里得算法 12 3.9 2N 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.12 矩阵正算 13 5.2 完全背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 <tr< td=""><td></td><td></td><td>7</td><td></td></tr<>			7	
2.16 匈牙利算法 7 4.18 左偏树 2.17 二分图最大权匹配(KM 算法) 7 4.19 仙人章 2.18 Dinic 最大流 8 4.21 KMP 模式匹配 2.19 最小费用最大流 8 4.21 KMP 模式匹配 2.20 原始对隔费用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 3 数学 10 4.25 可持久化 Trie 树 3.1 快速幂 10 4.27 后缀自动机 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 回文自动机 3.4 线性爺 11 4.29 lyndod 3.5 质因数分解 11 4.30 简卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 精确覆盖 3.8 欧拉函数 12 5 为态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 医尿氏几里得算法 12 5.1 0/1 背包 3.12 矩阵过算 13 5.2 完全背包 3.13 高斯消元 13 5.3 多重背包 3.14 线性基 13 5.5 回退背包 3.16 莫比乌斯应策 14 5.6 换程 3.17 支比乌斯应策 14 5.6 换程			7	
2.17 二分图最大权匹配 (KM 算法) 7 4.19 仙人零 2.18 Dinic 最大流 7 4.20 哈希 2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 3 数学 4.24 Trie 树 4.25 可持久化 Trie 树 3.2 整於分块 10 4.26 后缀数组 3.2 整於分块 10 4.27 后缀自动机 3.3 Bratosthenes 筛法 11 4.29 lyndon 分解 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 4.32 Dance Links 重复覆盖 3.10 扩展欧几里得算法 12 5.0 扩展欧儿 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.12 矩阵运算 13 5.2 完全背包 3.13 高斯消元 13 5.4 分组肯包 3.14 线性基 13 5.5 回退市包 3.15 Lucas 定理 14 5.6 换根 DP 3.17 莫比乌斯函数 14 5.8 四边形不等式优化 DP 3.18 SG 函数 15 3.20 容乐原理 15 3.22 Min25 筛 <t< td=""><td></td><td>2.15 拓扑排序</td><td>7</td><td>4.17 动态树</td></t<>		2.15 拓扑排序	7	4.17 动态树
2.18 Dinic 最大流 7 4.20 哈希 2.19 最小労相表元流 8 4.21 KMP 模式匹配 2.20 原始对偶费用流 9 4.23 manacher 算法 2.21 朱刘算法 10 4.23 manacher 算法 3.2 整保分束 10 4.26 后缀数组 3.2 整除分束 10 4.26 后缀数组 3.3 Eratosthenes 締法 11 4.28 回文自动机 3.4 线性筛 11 4.29 回文自动机 3.5 原因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.30 笛卡尔树 3.7 1-N 正约数集合 12 4.32 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.10 扩展欧人里餐算法 12 5 动态规划 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.5 回退背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.17 莫比乌斯函数 14 5.8 四边形不等式优化 DP 3.18 SG 函数 15 3.19 SG 函数 15 3.20 容床原理 15 3.21 多項式及療 15 3.22 Min/25 筛		2.16 匈牙利算法	7	4.18 左偏树
2.19 最小费用最大流 8 4.21 KMP 模式匹配 2.20 原始对傳费用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 4.24 Trie 树 4.25 可持久化 Trie 树 3.1 快速幂 10 4.26 后缀数组 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 回文自动机 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 lbr·不树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 L·N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 胶拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.13 高斯消元 13 5.2 完全背包 3.33 含重背包 3.13 高斯消元 13 5.4 分组背包 3.15 Lucas 定理 14 3.16 莫比乌斯函数 14 5.6 收租 DP 4.56 收租 DP 3.17 英比乌斯反演 14 5.8 四边形不完式优化 DP 5.9 斜率优化 DP 3.19 SG 函数 15 5.9 斜率优化 DP 5.9 斜率优化 DP 3.20 松顶的多 15 6.1 基础操作 3.22 松顶的多 <td></td> <td>2.17 二分图最大权匹配 (KM 算法)</td> <td>7</td> <td>4.19 仙人掌</td>		2.17 二分图最大权匹配 (KM 算法)	7	4.19 仙人掌
2.20 原始对偶费用流 9 4.22 扩展 KMP 算法 2.21 朱刘算法 10 4.23 manacher 算法 4.25 可持久化 Trie 树 3.1 快速幂 10 4.26 后缀数组 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.29 london 分解 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 I-N 正约数集合 12 4.32 Dance Links 看确覆盖 3.8 欧拉函数 12 3.20 pance Links 重复覆盖 3.8 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 直退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.9 身本优化 DP 3.19 SG 函数 15 5.9 以来承优化 DP 3.19 SG 函数 15 6.1 基础操作 3.22 Mm25 筛 15 6.1 基础操作 3.23 比邻新 <t< td=""><td></td><td>2.18 Dinic 最大流</td><td>7</td><td>4.20 哈希</td></t<>		2.18 Dinic 最大流	7	4.20 哈希
2.21 朱刘算法 10 4.23 manacher 算法 3 数学 10 4.24 Trie 树 3.1 快速幂 10 4.26 后缀数组 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 回文自动机 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.8 欧拉函数 12 3.9 2-N 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 医SGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.4 分组背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.8 四边形不等式优化 DP 3.19 交比乌斯瓦滨 15 5.9 刺率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 6 3.22 Mm25 筛 15 3.23 性物筛 16 17 29 政外 3.23 性物筛 16 17 29 政外			_	
3 数学				
3 数学 10 4.25 可持久化 Trie 树 3.1 快速幂 10 4.26 信線数组 3.2 整除分块 10 4.27 后缀自动机 3.3 Eratosthenes 筛法 11 4.28 回文自动机 3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 I-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.20 产金背包 3.10 对展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 少组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯瓦演 14 5.8 四边形不等式优 DP 3.18 971 及減 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 5.9 斜率优化 DP 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 缔 15 7 22 Min25 缔 3.23 杜教筛 16 7 2		2.21 朱刘算法	10	
3.1 快速幂 10 4.26 后缀数组 13.2 整除分块 10 4.27 后缀自动机 4.27 后缀自动机 4.28 回文自动机 4.28 回文自动机 4.29 lyndon 分解 11 4.29 lyndon 分解 4.30 笛卡尔树 4.30 笛卡尔树 4.30 笛卡尔树 4.30 百年尔树 4.30 百年不 4.30 百月 4.30 百	3	粉學	10	
3.2 整除分块	J			
3.3 Eratosthenes 筛法		1.1. 		
3.4 线性筛 11 4.29 lyndon 分解 3.5 质因数分解 11 4.30 笛卡尔树 3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.9 2-N 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16				75 27 27 27 27 27 27 27 27 27 27 27 27 27
3.5 质因数分解				
3.6 Pollard's Rho 质因数分解 11 4.31 Dance Links 精确覆盖 3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.9 2-N 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16				•
3.7 1-N 正约数集合 12 4.32 Dance Links 重复覆盖 3.8 欧拉函数 12 3.9 2-N 欧拉函数 12 5 动态规划 3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16			11	
3.8 欧拉函数 12 3.9 2-N 欧拉函数 12 3.10 扩展欧几里得算法 12 3.11 BSGS 算法 13 3.12 矩阵运算 13 3.13 高斯消元 13 3.14 线性基 13 3.15 Lucas 定理 14 3.16 莫比乌斯函数 14 3.17 莫比乌斯反演 14 3.18 0/1 分数规划 15 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 7 3.23 杜教筛 16		3.7 1-N 正约数集合	12	
3.10 扩展欧几里得算法 12 5.1 0/1 背包 3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 5.9 斜率优化 DP 3.20 容斥原理 15 6.1 基础操作 3.22 Min25 筛 15 6.1 基础操作 3.23 杜教筛 16 7 杂项算法 7.1 京教女 2.2 数数		3.8 欧拉函数	12	
3.11 BSGS 算法 13 5.2 完全背包 3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 6 3.20 容斥原理 15 6.1 基础操作 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 杂项算法 3.23 杜教筛 16 7 杂项算法 7.1 离散化 20		3.9 2-N 欧拉函数	12	
3.12 矩阵运算 13 5.3 多重背包 3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 6 3.20 容斥原理 15 6.1 基础操作 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 次项算法 3.23 杜教筛 16 7 次项算法 7.1 室勒化		3.10 扩展欧几里得算法	12	
3.13 高斯消元 13 5.4 分组背包 3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 6 3.20 容斥原理 15 6 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 杂项算法 3.23 杜教筛 16 7 杂项算法 7.1 离射化			_	
3.14 线性基 13 5.5 回退背包 3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 6 3.20 容斥原理 15 6.1 基础操作 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 杂项算法 3.23 杜教筛 16 7 杂项算法 7.1 喜歡化 20 20 20 7.1 喜歡化 20 20 20			_	
3.15 Lucas 定理 14 5.6 换根 DP 3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 6 3.20 容斥原理 15 6.1 基础操作 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 3.23 杜教筛 16 7		,	_	
3.16 莫比乌斯函数 14 5.7 状压 DP 3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16 5.7 状压 DP 5.8 四边形不等式优化 DP 6 计算几何 6.1 基础操作 7 杂项算法 7.1 喜歡化			_	· · · · · · · · · · · · · · · · · · ·
3.17 莫比乌斯反演 14 5.8 四边形不等式优化 DP 3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16 5.8 四边形不等式优化 DP 5.9 斜率优化 DP 6 计算几何 6.1 基础操作 7 杂项算法 7 杂项算法 7 東東 化				
3.18 0/1 分数规划 15 5.9 斜率优化 DP 3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16 5.9 斜率优化 DP 6 计算几何 6.1 基础操作 7 杂项算法 71 离射化				•
3.19 SG 函数 15 3.20 容斥原理 15 3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16 7 杂项算法 7 杂项算法 7 杂项算法 7 杂项算法 7 杂项算法 7 表型算法				
3.20 容斥原理 15 6 计算儿何 3.21 多项式反演 15 6.1 基础操作 3.22 Min25 筛 15 7 杂项算法 3.23 杜教筛 16 7 杂项算法			-	0.0 MT平 NI NI DI
3.21 多项式反演 15 3.22 Min25 筛 15 3.23 杜教筛 16 6.1 基础操作 6.2 基础操作 7 杂项算法 7 杂录 2 杂录				6 计算几何 26
3.22 Min25 筛			10	
3.23 杜教筛			15	- Lordina
3.7/1 Powerful Number 催		3.24 Powerful Number 筛		• • • • • •

O.O. CDEA 体注	0 4	9 刊
2.2 SPFA 算法	$\frac{2}{2}$ 4.	1,40,594
2.3 Dijestra 算法	2 4.	
2.4 Floyd 算法	2 4.	6 李超线段树 19
2.5 Kruscal 最小生成树	2 4.	
2.6 Kruscal 重构树	3 4.	at a management of
2.7 树哈希	$\frac{3}{2}$ 4.	
2.8 AUH 树同构算法	3 4.	10 平衡树
2.9 虚树	4 4.	11 Splay
2.10 倍增求树上 lca		12 AC 自动机
2.11 树链剖分		13 分块
		7. 7.
2.12 有向图强连通分量		14 莫队
2.13 2-SAT	7 4.	15 点分治
2.14 无向图双连通分量	7 4.	16 CDQ 分治
2.15 拓扑排序	7 4.	17 动态树
2.16 匈牙利算法		18 左偏树
2.17 二分图最大权匹配 (KM 算法)		* * * *
2.18 Dinic 最大流		20 哈希 22
2.19 最小费用最大流	8 4.	21 KMP 模式匹配
2.20 原始对偶费用流	9 4.	22 扩展 KMP 算法
2.21 朱刘算法		23 manacher 算法
2.21 /N/13/14 · · · · · · · · · · · · · · · · · · ·		24 Trie 树
数学		. 14
		25 可持久化 Trie 树
3.1 快速幂		26 后缀数组
3.2 整除分块	10 4.	27 后缀自动机
3.3 Eratosthenes 筛法	11 4.	28 回文自动机
3.4 线性筛		29 lyndon 分解
3.5 质因数分解		30 笛卡尔树
and the state of t		- · · · · · · · ·
		31 Dance Links 精确覆盖
3.7 1-N 正约数集合		
		32 Dance Links 重复覆盖 24
3.8 欧拉函数	12 4. 12	32 Dance Links 里复覆盖
	12	32 Dance Links 里复覆盖
3.8 欧拉函数	12 12 5 武	态规划 25
3.8 欧拉函数	12 12 5 就 12 5.	応规划 25 1 0/1 背包
3.8 欧拉函数	12 12 5 克 12 5. 13 5.	応規划 25 1 0/1 背包
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算	12	応规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元	12 12 5 成 12 5. 13 5. 13 5.	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算	12	成志規划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元	12 12 5 成 12 5. 13 5. 13 5.	j态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理	12	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包265 回退背包266 换根 DP26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数	12	j态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演	12	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包265 回退背包266 换根 DP267 状压 DP268 四边形不等式优化 DP26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 3.9 2 3.18 0/1	12 12 12 13 13 13 13 13 14 14 14 15 15 16 17 18 18 18 19 19 19 19 19 19 19 19 19 19	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包265 回退背包266 换根 DP267 状压 DP268 四边形不等式优化 DP26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数	12	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包265 回退背包266 换根 DP267 状压 DP268 四边形不等式优化 DP269 斜率优化 DP26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 3.9 2 3.18 0/1	12 12 12 13 13 13 13 13 14 14 14 15 15 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算几何 26
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 14 14 15 15 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19	j态规划251 0/1 背包252 完全背包263 多重背包264 分组背包265 回退背包266 换根 DP267 状压 DP268 四边形不等式优化 DP269 斜率优化 DP26
3.8 欧拉函数	12	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算几何 26 1 基础操作 26
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 15 14 15 15 15 16 17 28 28 38 48 58 58 58 58 58 58 58 58 58 5	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算几何 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 3.23 杜教筛	12 12 13 13 13 13 13 13 14 15 14 15 15 15 15 16 7	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算几何 26 1 基础操作 26
3.8 欧拉函数	12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 7	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算几何 26 採项算法 26 1 离散化 26
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 3.23 杜教筛	12 12 12 13 13 13 13 13 14 15 14 15 15 15 16 16 7 7 7 16	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 红算法 26 红算法 26 红算法 26 红算法 26 红算法 26 红質社 26 红質法 26 红質法 26 红質法 26 红質社 26 红質法 26 红質素 2
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 7 7 16	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 京項算法 26 1 离散化 26 2 二分 26 3 三分 27
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 15 14 15 15 15 16 16 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 東頂法 26 1 喜融操作 26 2 二分 26 3 三分 27 4 倍增 27
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式	12 12 12 13 13 13 13 13 14 15 14 15 15 15 16 16 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 東頂法 26 1 喜散化 26 2 二分 26 3 三分 27 4 倍增 27 5 ST 表 27
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想	12 12 12 13 13 13 13 13 14 14 15 14 15 15 15 15 16 16 17 16 17 17 7	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 读算法 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理	12 12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 17 16 17 17 17 17 17 7	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 東頂法 26 1 喜散化 26 2 二分 26 3 三分 27 4 倍增 27 5 ST 表 27
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理 3.30 最小二乘法	12	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 算儿何 26 读算法 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理	12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 算儿何 26 菜項算法 26 1 离散化 26 2 二分 26 3 三分 27 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理 3.30 最小二乘法	12	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 算儿何 26 其 磁操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 4 信增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速沃尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理 3.30 最小二乘法 3.31 数相关结论 3.32 卡特兰数	12 12 13 13 13 13 13 14 15 14 15 15 15 16 16 17 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 1 基础操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28 10 高精度乘法 28
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速大尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理 3.30 最小二乘法 3.31 数相关结论 3.32 卡特兰数 3.33 斯特林数	12 12 13 13 13 13 13 14 15 14 15 15 15 16 17 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 1 基础操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28 10 高精度乘法 28 11 高精度除法 28
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 14 15 15 15 16 16 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 1 基础操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28 10 高精度乘法 28
3.8 欧拉函数 3.9 2-N 欧拉函数 3.10 扩展欧几里得算法 3.11 BSGS 算法 3.12 矩阵运算 3.13 高斯消元 3.14 线性基 3.15 Lucas 定理 3.16 莫比乌斯函数 3.17 莫比乌斯反演 3.18 0/1 分数规划 3.19 SG 函数 3.20 容斥原理 3.21 多项式反演 3.22 Min25 筛 3.23 杜教筛 3.24 Powerful Number 筛 3.25 快速数论变换 (NTT) 3.26 快速状尔什变换 (FWT) 3.27 常用组合公式 3.28 Bertrand 猜想 3.29 威尔逊定理 3.30 最小二乘法 3.31 数相关结论 3.32 卡特兰数 3.33 斯特林数 3.34 第二类斯特林数 3.35 欧拉数	12 12 13 13 13 13 13 14 14 15 15 15 16 16 17 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 1 基础操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28 10 高精度乘法 28 11 高精度除法 28
3.8 欧拉函数	12 12 12 13 13 13 13 13 14 14 15 15 15 16 16 16 17 17 17 17 17 17 17 17 17 17	J态规划 25 1 0/1 背包 25 2 完全背包 26 3 多重背包 26 4 分组背包 26 5 回退背包 26 6 换根 DP 26 7 状压 DP 26 8 四边形不等式优化 DP 26 9 斜率优化 DP 26 算儿何 26 1 基础操作 26 2 二分 26 3 三分 26 4 倍增 27 5 ST 表 27 4 倍增 27 5 ST 表 27 6 启发式合并 27 7 dsu on tree 27 8 高精度加法 28 9 高精度減法 28 10 高精度乘法 28 11 高精度除法 28

ACM-ICPC 代码模板 第 1 页

1 头文件

1.1 头文件(全)

```
#include<bits/stdc++.h>
   using namespace std;
   typedef long long 11;
    typedef pair<int, int> pii;
   #define iofast ios::sync_with_stdio(false),cin.tie(0)
        ,cout.tie(0)
   #define lowbit(x) (x&(-x))
    #define inv(x) qpow(x,mod-2)
   #define ctz(x) __builtin_ctz(x) //末尾0个数
#define clz(x) __builtin_clz(x) //前导0个数
   #define popcount(x) __builtin_popcount(x) //1的个数
    #define ffs(x) __builtin_ffs(x) //最后一个1的位置
   #define int128 __int128_t
   const int iINF = 0x3f3f3f3f;
   const 11 11INF = 0x3f3f3f3f3f3f3f3f3f;
    template<typename T>
   void read(T& x)
16
   {
17
       x = 0;
       int flag = 1;
19
       char c = getchar();
       while(!isdigit(c)){
          if (c == '-')
22
              flag = -1;
23
           c = getchar();
24
25
       while(isdigit(c)){
          x = (x << 3) + (x << 1) + (c ^ 48);
           c = getchar();
28
29
       x *= flag;
30
   }
31
    template<typename T,typename ...Arg>
    void read(T& x,Arg& ...args)
34
35
    {
       read(x);
36
       read(args...);
37
38
    const 11 mod = 998244353;
   11 qpow(ll a,ll b)
41
    {
       ll ans = 1;
42
       a %= mod;
43
       for (; b;b>>=1){
           if(b&1)
              ans = ans * a \% mod;
           a = a * a % mod;
48
       return ans % mod;
49
   }
50
51
    template<typename T>
52
    void write(T x, char c = '\0') {
       if (x < 0) {
54
          x = -x;
55
          putchar('-');
56
57
       if (x > 9)
          write(x / 10);
       putchar(x \% 10 + '0');
```

```
if (c != '\0')
61
         putchar(c);
62
      */
   void solve()
66
67
68
72
   int main()
73
74
      iofast;
75
      int t = 1;
      cin >> t;
      while (t--)
79
         solve();
80
      return 0;
81
82
```

1.2 头文件 (赛)

```
#include<bits/stdc++.h>
   using namespace std;
   #define 11 long long
   #define int ll
   #define endl '\n'
    const int mod=998244353;
   void solve()
11
   }
12
   signed main ()
14
15
       ios::sync_with_stdio(0);cin.tie(0);
16
       int t=1;
17
18
       while(t--){
19
           solve();
20
21
       return 0;
22
```

2 图论

请注意,图论算法后续省略建图过程,默认链式前向星存图

2.1 建图

```
const int N = 100005;
const int M = 200005;

int head[N], ver[M], Next[M], edge[M];
int tot;
void add(int x,int y,int z)
{
```

ACM-ICPC 代码模板 第 2 页

2.2 SPFA 算法

```
/*寻找负环时添加cnt数组,并将队列替换为栈*/
   /*注意队列操作与栈操作的替换*/
   /*计算差分约束时
   如果求的是最小值,则应该求最长路,如果求的是最大值,则应该求
   负环即无解
6
   把每个x[i] \le x[j] + C[k]不等式转化为一条从x[j]走到x[i]长
       度为C[k]的边
   从0号点向x[i]<=C[k]的i点连边
   */
9
   //int cnt[N];
10
   //stack<int>st;
11
   int d[N];
12
   bool v[N];
   queue<int>q;
15
   void spfa(int s)
16
17
      memset(d,0x3f,sizeof d);
      memset(v,0,sizeof v);
      //memset(cnt,0,sizeof cnt); 负环cnt数组初始化
      d[s]=0;
21
      v[s]=1;
      q.push(s);
23
      while(!q.empty()){
24
         int x=q.front();
25
         q.pop();
         v[x]=0;
         for(int i=head[x];i;i=Next[i]){
            int y=ver[i];
            int z=edge[i];
30
            if(d[y]>d[x]+z){
               d[y]=d[x]+z;
               /*负环操作
34
35
               cnt[y]=cnt[x]+1;
               if(cnt[y]>=n+1)
36
                  return true;
37
38
               if(!v[y]){
                  q.push(y);
                  v[y]=1;
               }
            }
         }
49
      return;
```

```
int d[N];
   bool v[N];
   typedef pair<int,int> pii;
   priority_queue<pii,vector<pii>,greater<pii>>q;
   void dij(int s)
       //初始化
       memset(d,0x3f,sizeof d);
       memset(v,0,sizeof v);
       while(!q.empty())
          q.pop();
12
13
       q.push({0,s});
14
       d[s]=0;
15
       while(!q.empty()){
          auto [dist,x]=q.top();
          q.pop();
18
          if(v[x])
19
              continue;
20
          v[x]=1;
21
22
          for(int i=head[x];i;i=Next[i]){
              int y=ver[i];
              int z=edge[i];
              if(d[y]>dist+z){
                 d[y]=dist+z;
                  q.push({d[y],y});
              }
          }
       }
33
       return;
34
35
```

2.4 Floyd 算法

```
int d[305][305];
   for(int i=1;i<=m;i++){</pre>
       int x,y,z;
       cin>>x>>y>>z;
       d[x][y]=min(d[x][y],z);
       /*传递闭包
       d[x][y]=d[y][x]=1;
8
9
10
    for(int k=1;k<=n;k++)</pre>
       for(int i=1;i<=n;i++)</pre>
           for(int j=1;j<=n;j++){</pre>
14
              d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
15
               /*传递闭包
              d[i][j]|=d[i][k]&d[k][j];
19
           }
```

ACM-ICPC 代码模板 第 3 页

```
/*----并查集代码省略----*/
   typedef pair<int,pair<int,int>> e;
   priority_queue<e,vector<e>,greater<e>>q;
   int kruscal()
       int ans=0;
       while(!q.empty()){
          int x=q.top().second.first;
          int y=q.top().second.second;
          int z=q.top().first;
          q.pop();
          //get()与merge()均为并查集操作
13
          if(get(x)==get(y))
             continue;
          ans+=z;
          merge(x,y);
18
19
       }
20
21
22
       return ans;
   int main()
25
26
       /*---初始化并查集省略----*/
27
       for(int i=1;i<=k;i++){</pre>
          int x,y,z;
          cin>>x>>y>>z;
31
          add(x,y,z);
32
          add(y,x,z);
33
          q.push({z,{x,y}});
34
35
       int ans=Kruscal();
       return 0;
   }
39
```

2.6 Kruscal 重构树

2.7 树哈希

```
//hah中保存以该点为子树的哈希值
   //map不要清空
   int id;
   int hah[N];
   map<vector<int>, int>mp;
   void dfs(int x, int fa)
6
      vector<int>temp;
      for (int i = head[x];i;i = Next[i]) {
          int y = ver[i];
          if (y == fa)
             continue;
          dfs(y, x);
13
         temp.push_back(hah[y]);
14
15
      sort(range(temp));
```

2.8 AUH 树同构算法

```
//摘抄自OI WIKI,判断两棵树是否同构的确定性算法
   // Tree Isomorphism, O(nlogn)
   // replace quick sort with radix sort ==> O(n)
   // Author: _Backl1ght
   #include <bits/stdc++.h>
   using namespace std;
   typedef long long 11;
   const int N = 1e5 + 5;
   const int maxn = N << 1;</pre>
   int n;
12
   struct Edge {
13
      int v, nxt;
   } e[maxn << 1];
   int head[maxn], sz[maxn], f[maxn], maxv[maxn], tag[
       maxn], tot, Max;
   vector<int> center[2], L[maxn], subtree_tags[maxn];
18
   void addedge(int u, int v)
   { // 建图
21
       e[tot].v = v;
       e[tot].nxt = head[u];
       head[u] = tot++;
       e[tot].v = u;
       e[tot].nxt = head[v];
26
      head[v] = tot++;
27
28
   void dfs_size(int u, int fa)
   { // 找到 size 值
       sz[u] = 1;
32
       maxv[u] = 0;
33
       for (int i = head[u]; i; i = e[i].nxt) {
34
          int v = e[i].v;
          if (v == fa)
             continue;
          dfs_size(v, u);
38
          sz[u] += sz[v];
39
          maxv[u] = max(maxv[u], sz[v]);
40
       }
41
   void dfs_center(int rt, int u, int fa, int id)
44
45
       maxv[u] = max(maxv[u], sz[rt] - sz[u]);
46
       if (Max > maxv[u]) {
47
          center[id].clear();
          Max = maxv[u];
       if (Max == maxv[u])
51
          center[id].push_back(u); // 如果相等就
52
              push_back
       for (int i = head[u]; i; i = e[i].nxt) {
53
          int v = e[i].v;
          if (v == fa)
```

ACM-ICPC 代码模板 第 4 页

```
continue;
56
           dfs_center(rt, v, u, id);
57
       }
    }
    int dfs_height(int u, int fa, int depth)
61
    { // 递归查找 height
62
       L[depth].push_back(u);
       f[u] = fa;
       int h = 0;
        for (int i = head[u]; i; i = e[i].nxt) {
66
           int v = e[i].v;
67
           if (v == fa)
68
               continue;
69
           h = max(h, dfs_height(v, u, depth + 1));
70
       return h + 1;
    }
73
    void init(int n)
75
    { // 一开始的处理
       for (int i = 1; i <= 2 * n; i++)
           head[i] = 0;
       tot = 1;
       center[0].clear();
80
       center[1].clear();
81
82
       int u, v;
       for (int i = 1; i <= n - 1; i++) {
           scanf("%d %d", &u, &v);
           addedge(u, v);
       dfs_size(1, -1);
       Max = n;
       dfs_center(1, 1, -1, 0);
        for (int i = 1; i <= n - 1; i++) {
92
           scanf("%d %d", &u, &v);
93
           addedge(u + n, v + n);
94
95
       dfs_size(1 + n, -1);
96
       Max = n;
97
       dfs_center(1 + n, 1 + n, -1, 1);
100
    bool cmp(int u, int v) { return subtree_tags[u] <</pre>
101
        subtree_tags[v]; }
102
    bool rootedTreeIsomorphism(int rt1, int rt2)
103
104
        for (int i = 0; i <= 2 * n + 1; i++)
105
           L[i].clear(), subtree_tags[i].clear();
106
       int h1 = dfs_height(rt1, -1, 0);
107
       int h2 = dfs_height(rt2, -1, 0);
108
        if (h1 != h2)
           return false;
       int h = h1 - 1;
113
       for (int j = 0; j < (int)L[h].size(); j++)</pre>
114
           tag[L[h][j]] = 0;
115
       for (int i = h - 1; i >= 0; i--) {
116
           for (int j = 0; j < (int)L[i + 1].size(); j++)</pre>
               int v = L[i + 1][j];
118
```

```
subtree_tags[f[v]].push_back(tag[v]);
119
           }
120
           sort(L[i].begin(), L[i].end(), cmp);
123
           for (int j = 0, cnt = 0; j < (int)L[i].size();</pre>
124
                 j++) {
               if (j && subtree_tags[L[i][j]] !=
125
                   subtree_tags[L[i][j - 1]])
                   ++cnt;
126
               tag[L[i][j]] = cnt;
127
128
129
        return subtree_tags[rt1] == subtree_tags[rt2];
130
131
    bool treeIsomorphism()
134
        if (center[0].size() == center[1].size()) {
135
           if (rootedTreeIsomorphism(center[0][0], center
136
                [1][0]))
137
               return true;
           if (center[0].size() > 1)
               return rootedTreeIsomorphism(center[0][0],
139
                    center[1][1]);
140
        return false;
141
142
    int main() {
        int T;
        scanf("%d", &T);
146
        while (T--) {
147
           scanf("%d", &n);
148
149
           init(n);
           puts(treeIsomorphism() ? "YES" : "NO");
150
151
        return 0;
152
153
```

2.9 虚树

```
//建立的虚树中只含有询问点以及他们的LCA
   //在解决询问点的总数不大且只需要用到LCA和被询问点时使用
   const int N = 100005;
   const int M = 2 * N;
   int head[N], ver[M], Next[M];
   int tot;
   int low[N], dfn[N];
   void add(int x,int y)
10
      ver[++tot] = y;
11
      Next[tot] = head[x];
12
      head[x] = tot;
13
   /*----求LCA过程省略,请自行补充----*/
   vector<int> v;
   stack<int> st;
19
   int s:
20
   bool cmp(int a,int b)
21
   {
22
```

ACM-ICPC 代码模板 第 5 页

```
return dfn[a] < dfn[b];</pre>
23
   }
24
25
   void build()
       sort(v.begin(), v.end(),cmp);
27
       int sz = v.size();
28
       for (int i = sz - 2; ~i;i--)
29
          v.emplace_back(lca(v[i], v[i + 1]));
30
       sort(v.begin(), v.end(),cmp);
32
       v.erase(unique(v.begin(), v.end()), v.end());
33
34
       s = v[0];
35
       while(!st.empty())
36
           st.pop();
37
       sz = v.size();
       for (int i = 0; i < sz;i++){
           int u = v[i];
40
          while(!st.empty()&&low[st.top()]<dfn[u])</pre>
              st.pop();
           if(!st.empty()){
              add(u, st.top());
              add(st.top(), u);
47
           st.push(u);
48
49
50
51
       return;
   }
52
    //标记是否是被询问的节点
54
   map<int, int> mp;
55
    void clr()
56
57
       mp.clear();
       for(auto c:v)
59
           head[c] = 0;
60
       tot = 0;
61
       v.clear();
62
   }
63
64
    //求dfs序以及low数组
    //low数组中存储点x的子树内的 最大 dfs序
    int tim;
67
    void dfs(int x,int fa)
68
69
       dfn[x] = ++tim;
70
       low[x] = dfn[x];
       for (int i = head[x]; i;i=Next[i]){
           int y = ver[i];
73
          if(y==fa)
74
              continue;
75
76
          dfs(y, x);
77
           low[x] = max(low[x], low[y]);
80
       return;
   }
82
   int dp(int x,int fa)
       //树形dp部分
86
   }
87
```

```
void solve()
88
89
        int n;
90
        cin >> n;
92
        for (int i = 1; i < n; i++){
93
            int u, v;
94
95
            cin >> u >> v;
            add(u, v);
            add(v, u);
98
99
100
        dfs(1, 0);
101
102
        bfs(1);
        memset(head, 0, sizeof head);
        tot = 0;
105
        int q;
106
        cin >> q;
107
        while(q--){
108
            clr();
109
110
            int k;
            cin >> k;
111
112
            //一次询问k个点
113
            for (int i = 1; i <= k; i++){
114
115
                int x;
                cin >> x;
                v.emplace_back(x);
117
                mp[x] = 1;
            }
119
120
            build();
121
122
            //树形dp
123
            cout << dp(s, 0) << '\n';
124
        }
125
126
```

2.10 倍增求树上 lca

```
/*---注意修改循环中k的大小---*/
   const int N=500005;
   queue<int>q;
   int d[N];
   int f[N][20];
   //x指根节点编号
   void bfs(int x)
       d[x]=1;
10
       q.push(x);
11
       while(!q.empty()){
12
          int u=q.front();
13
          q.pop();
          for(int i=head[u];i;i=Next[i]){
              int y=ver[i];
              if(d[y])
                 continue;
              d[y]=d[u]+1;
19
             q.push(y);
20
              f[y][0]=u;
21
             for(int k=1;k<=15;k++){</pre>
```

ACM-ICPC 代码模板 第 6 页

```
f[y][k]=f[f[y][k-1]][k-1];
23
               }
24
           }
       }
       return;
27
    }
28
29
    int lca(int x,int y)
30
       if(d[x]<d[y])
32
           swap(x,y);
33
34
        for(int k=15;k>=0;k--)
35
           if(d[f[x][k]]>=d[y])
36
               x=f[x][k];
37
        if(x==y)
           return x;
40
41
        for(int k=15;k>=0;k--)
42
           if(f[x][k]!=f[y][k])
               x=f[x][k],y=f[y][k];
        return f[x][0];
47
48
49
```

2.11 树链剖分

```
const int N=100005;
   int sz[N],son[N],dep[N],fa[N];
   void dfs1(int x)
4
       sz[x]=1;
       for(int i=head[x];i;i=Next[i]){
           int y=ver[i];
          if(y==fa[x])
              continue;
10
          dep[y]=dep[x]+1;
11
          fa[y]=x;
          dfs1(y);
           sz[x]+=sz[y];
           if(sz[y]>sz[son[x]])
              son[x]=y;
       }
       return;
22
   int dfn[N],top[N],a[N],w[N];
23
   int tim;
24
   void dfs2(int x,int t)
25
26
       dfn[x]=++tim;
       top[x]=t;
       a[tim]=w[x];
       if(son[x])
30
          dfs2(son[x],t);
       for(int i=head[x];i;i=Next[i]){
           int y=ver[i];
```

```
35
          if(y=fa[x]||y=son[x])
36
37
             continue;
          dfs2(y,y);
39
40
41
       return;
42
43
   //询问与修改大致相同,仅需将区间操作改为区间询问即可
   void change path(int u,int v,int x)
46
47
48
       while(top[u]!=top[v]){
49
          if(dep[top[u]]<dep[top[v]])</pre>
              swap(u,v);
52
          //区间操作[dfn[top[u]],dfn[u]];
          change(1,dfn[top[u]],dfn[u],x);
54
          u=fa[top[u]];
       }
       if(dep[u]>dep[v])
          swap(u,v);
59
60
       //区间操作[dfn[u],dfn[v]];
61
       change(1,dfn[u],dfn[v],x);
       return;
   int main()
66
67
       //树链剖分操作
68
       dep[1]=1;
69
       dfs1(1);
       dfs2(1,1);
71
72
```

2.12 有向图强连通分量

```
const int N=100005;
   int dfn[N],low[N];
   int tim;
   stack<int>st;
   int sz[N], cnt; //强连通分量的数目以及大小
   bool v[N];
   int id[N]; //每个点所属的强连通分量编号
   void tarjan(int x)
10
      dfn[x]=low[x]=++tim;
11
      st.push(x),v[x]=1;
12
      for(int i=head[x];i;i=Next[i]){
13
          int y=ver[i];
14
          if(!dfn[y]){
             tarjan(y);
             low[x]=min(low[y],low[x]);
19
          else if(v[y])
20
             low[x]=min(low[x],dfn[y]);
21
      }
22
```

ACM-ICPC 代码模板 第 7 页

```
if(low[x]==dfn[x]){
24
           ++cnt;
25
           int y;
           do{
               y=st.top();
28
               st.pop();
29
30
               v[y]=0;
31
               id[y]=cnt;
               sz[cnt]++;
34
            }while(y!=x);
35
       return;
36
    }
37
38
    int main()
    {
        //使用方法
41
        for(int i=1;i<=n;i++)</pre>
42
           if(!dfn[i])
43
               tarjan(i);
44
45
```

2.13 2-SAT

```
连边方式:

a \cup b \Rightarrow !a \rightarrow b = 5!b \rightarrow a

a \cap b \Rightarrow !a \rightarrow a = 5!b \rightarrow b

a \text{ if } b \Rightarrow b \rightarrow a = 5!a \rightarrow 1b
```

若 a 与!a 位于同一个强连通分量,则无解 否则一定有解,且 a 的值取 0 和 1 中拓扑序靠后的值 (tarjan 算法求出的强连通分量编号为拓扑序逆序)

2.14 无向图双连通分量

2.15 拓扑排序

```
//使用前注意预处理出个点的入度
   //答案存放在a数组中,共有cnt个点
   //若 cnt<n 则说明图中有环
   const int N=100005;
   const int M=200005;
   int n;
   int a[N],cnt;
   queue<int>q;
   int deg[N]; //存储入度
   void topsort()
10
   {
11
      for(int i=1;i<=n;i++)</pre>
12
         if(deg[i]==0)
13
             q.push(i);
14
      while(!q.empty()){
16
         int x=q.front();
17
         q.pop();
18
         a[++cnt]=x;
19
         for(int i=head[x];i;i=Next[i]){
20
             int y=ver[i];
             deg[y]--;
```

2.16 匈牙利算法

```
//时间复杂度 O(NM)
   //正确性:当一个节点成为匹配点后,至多因为找到增广路而更换匹
       配对象,并不会变为非匹配点
   const int N=10005;
   bool v[N];
   int match[N];
   bool dfs(int x)
      for(int i=head[x];i;i=Next[i]){
8
          int y=ver[i];
9
          if(v[y])
10
             continue;
11
12
          v[y]=1;
          if(!match[y]||dfs(match[y])){
             match[y]=x;
             return true;
16
          }
17
18
19
      }
      return false;
22
23
   int main()
24
25
      int ans=0;
26
      for(int i=1;i<=n;i++){</pre>
          memset(v,0,sizeof v); //注意清空
          if(dfs(i))
29
             ans++;
30
      }
31
32
```

2.17 二分图最大权匹配 (KM 算法)

2.18 Dinic 最大流

```
//最大流==最小割
//无向边的反边不为零,边权与正边相同
const int N=100;
const int M=25010;
const int INF=0x7fffffff;
int s,t;

int head[N],cur[N],d[N],ver[M],edge[M],Next[M];
int tot=-1;

void add(int x,int y,int z)
{
```

ACM-ICPC 代码模板 第 8 页

```
ver[++tot]=y;
13
       Next[tot]=head[x];
14
        edge[tot]=z;
       head[x]=tot;
17
       ver[++tot]=x;
18
       Next[tot]=head[y];
19
       edge[tot]=0;
20
       head[y]=tot;
       return;
23
    }
24
25
    queue<int>q;
26
    bool bfs()
27
28
       memset(d,-1,sizeof d);
       while(!q.empty())
30
           q.pop();
31
32
       d[s]=0;
33
34
       q.push(s);
       cur[s]=head[s];
36
       while(!q.empty()){
37
           int x=q.front();
38
           q.pop();
39
40
           for(int i=head[x];~i;i=Next[i]){
41
               int y=ver[i];
               int z=edge[i];
               if(d[y]!=-1||!z)
45
                  continue;
46
               d[y]=d[x]+1;
               cur[y]=head[y];
49
               if(y==t)
50
                  return true;
51
52
               q.push(y);
53
           }
54
       return false;
57
    }
58
59
    int dfs(int u,int limit)
60
61
       if(u==t)
           return limit;
63
       int flow=0;
64
        for(int i=cur[u];~i&&flow<limit;i=Next[i]){</pre>
65
           int y=ver[i];
66
           int z=edge[i];
67
           if(d[y]!=d[u]+1||!z)
               continue;
70
           int use=dfs(y,min(z,limit-flow));
72
           if(!use)
               d[y]=0;
           edge[i]-=use;
           edge[i^1]+=use;
76
           flow+=use;
77
```

```
78
       }
79
       return flow;
82
    int dinic()
83
84
       int ans=0,flow;
85
       while(bfs())
           while(flow=dfs(s,INF))
               ans+=flow;
88
89
       return ans;
90
91
    int main()
92
       //注意初始化head为-1
       memset(head,-1,sizeof head);
95
       t=n+1; //点数 +1
       /*---加边---*/
       int ans=dinic();
101
```

2.19 最小费用最大流

```
//注意与最大流的区别
   const int N=5005;
   const int M=100005;
   const int INF=0x3f3f3f3f;
   int head[N], ver[M], Next[M], edge[M];
   int w[M];
   int tot=-1;
   void add(int x,int y,int z,int d)
       ver[++tot]=y;
       edge[tot]=z;
12
       w[tot]=d;
13
       Next[tot]=head[x];
14
       head[x]=tot;
       ver[++tot]=x;
       edge[tot]=0;
       w[tot]=-d;
       Next[tot]=head[y];
       head[y]=tot;
20
   }
21
   int s,t;
   int incf[N];
   int d[N],pre[N];
   bool v[N];
26
   queue<int>q;
27
   bool spfa()
28
29
       memset(d,0x3f,sizeof d);
       memset(incf,0,sizeof incf);
31
       while(!q.empty())
32
          v[q.front()]=0,q.pop();
33
34
       d[s]=0;
35
       incf[s]=INF;
36
       q.push(s);
```

ACM-ICPC 代码模板 第 9 页

```
v[s]=1;
38
       while(!q.empty()){
39
           int x=q.front();
           q.pop();
           v[x]=0;
42
           for(int i=head[x];~i;i=Next[i]){
43
              int y=ver[i];
              int z=edge[i];
              int d1=w[i];
              if(z\&d[y]>d[x]+d1){
48
                  d[y]=d[x]+d1;
49
                  pre[y]=i;
50
                  incf[y]=min(z,incf[x]);
51
                  if(!v[y]){
                      q.push(y);
                      v[y]=1;
                  }
55
              }
56
           }
57
       return incf[t]>0;
62
    void SFPA(int& flow,int& cost)
63
64
65
       flow=cost=0;
       while(spfa()){
           int now=incf[t];
           flow+=now;
           cost+=now*d[t];
69
           for(int i=t;i!=s;i=ver[pre[i]^1]){
70
              edge[pre[i]]-=now;
71
              edge[pre[i]^1]+=now;
73
       return;
75
76
    int main()
77
78
       memset(head,-1,sizeof head);
79
       int n,m;
       cin>>n>>m>>s>>t;
       for(int i=1;i<=m;i++){</pre>
83
           int u,v,c,w;
           cin>>u>>v>>c>>w;
           add(u,v,c,w);
       int flow,cost;
       SFPA(flow,cost);
89
       cout<<flow<<' '<<cost<<'\n';
90
       return 0;
91
   }
```

2.20 原始对偶费用流

```
//费用流卡常专用,亲测好用
const int N = 5005;
const int M = 100005;

int head[N], ver[M], Next[M];
fll edge[M], w[M];
```

```
int tot = -1;
   void add(int x, int y, int z, int d)
9
       ver[++tot] = y;
10
       edge[tot] = z;
11
       w[tot] = d;
12
       Next[tot] = head[x];
13
       head[x] = tot;
14
       ver[++tot] = x;
       edge[tot] = 0;
16
17
       w[tot] = -d;
       Next[tot] = head[y];
18
       head[y] = tot;
19
20
21
   int s, t;
   11 delta;
   11 dist[N];
   void Reduce()
24
25
       for (int i = 0;i <= tot;++i) {</pre>
26
          int x = ver[i ^ 1], y = ver[i];
27
          w[i] += dist[y] - dist[x];
28
       delta += dist[s];
31
32
33
   bool vis[N];
   bool BellmanFord()
35
       queue<int>q;
       memset(dist, 0x3f, sizeof dist);
38
       dist[t] = 0;
39
40
       q.push(t);
41
       vis[t] = 1;
       while (!q.empty()) {
          int x = q.front();
          q.pop();
44
          vis[x] = 0;
45
          for (int i = head[x];~i;i = Next[i]) {
46
              int y = ver[i];
47
              11 z = w[i ^ 1];
              if (edge[i ^ 1] && dist[y] > dist[x] + z) {
                  dist[y] = dist[x] + z;
                  if (!vis[y]) {
                     vis[y] = 1;
                     q.push(y);
                  }
54
              }
          }
57
       return dist[s] != llINF;
58
59
   priority_queue<pair<ll, ll>, vector<pair<ll, ll>>,
        greater<pair<ll, ll>>>q;
   bool Dijkstra()
62
63
       memset(dist, 0x3f, sizeof dist);
64
       memset(vis, 0, sizeof vis);
65
       dist[t] = 0;
66
       q.push({ dist[t],t });
67
       while (!q.empty()) {
69
          auto [dis, x] = q.top();
70
```

ACM-ICPC 代码模板 第 10 页

```
q.pop();
71
            if (vis[x])
72
               continue;
           vis[x] = 1;
75
           for (int i = head[x];~i;i = Next[i]) {
76
               int y = ver[i];
               ll z = w[i ^1];
               if (edge[i ^ 1] \&\& dist[y] > dist[x] + z) {
                   dist[y] = dist[x] + z;
80
                   q.push({ dist[y],y });
81
82
            }
83
84
        return dist[s] != llINF;
85
    }
86
    11 dfs(int x, 11 flow)
88
89
        if (x == t || !flow)
90
           return flow;
91
        vis[x] = 1;
92
        11 res = flow;
        for (int i = head[x];~i;i = Next[i]) {
            int y = ver[i];
95
           11 z = w[i];
96
           if (!vis[y] && edge[i] && !z) {
97
               11 temp = dfs(y, min(res, edge[i]));
98
               edge[i] -= temp;
               edge[i ^ 1] += temp;
               res -= temp;
101
102
103
        return flow - res;
104
105
    void Augment(11& flow,11& cost)
107
108
        11 \text{ cur} = 0;
109
        while (memset(vis, 0, sizeof vis),cur = dfs(s,
110
            11INF)) {
           flow += cur;
111
            cost += delta * cur;
        return;
114
    }
115
116
    void PrimalDual(11& flow,11& cost)
117
118
        flow = 0, cost = 0;
        if (!BellmanFord())
120
           return;
121
        Reduce();
122
        Augment(flow, cost);
123
        while (Dijkstra()) {
           Reduce();
           Augment(flow, cost);
        }
127
    }
128
129
    void init()
130
131
        memset(head, -1, sizeof head);
132
        tot = -1;
133
        delta = 0;
```

134

```
135
    void solve()
136
137
        init();
138
        int n, m;
139
        cin >> n >> m >> s >> t;
140
141
        for (int i = 1;i <= m;i++) {
142
143
            int x, y;
            11 z, d;
144
145
            cin >> x >> y >> z >> d;
            add(x, y, z, d);
146
147
        11 flow, cost;
148
        PrimalDual(flow, cost);
149
        cout << flow << ' ' << cost << '\n';</pre>
150
        return:
152
```

朱刘算法 2.21

$\mathbf{3}$ 数学

快速幂 3.1

```
//多项式快速幂与之类似,将a当作多项式做NTT即可
   const 11 mod = 998244353;
   11 qpow(11 a,11 b)
3
      ll ans = 1;
      a %= mod;
      for (; b;b>>=1){
         if(b&1)
            ans = ans * a % mod;
         a = a * a % mod;
10
11
      return ans % mod;
12
13
```

3.2整除分块

```
for(int l = 1, r; l <= n; l = r + 1)
2
       r = n / (n / 1);
       /*---操作----*/
   for(int l = 1, r; l <= n; l = r + 1)
9
10
11
       r = ((n+l-1)/l==1? n:(n-1)/((n+l-1)/l-1));
12
       /*---操作----*/
13
   }
14
```

ACM-ICPC 代码模板 第 11 页

6

7

11

12

13

14

15

16

18

19

20

21

22

26

27

28

29

31

32

33

34

35

37

38

39

40

41

42

44

45

46

47

48

53

54

55

3.3 Eratosthenes 筛法

```
//筛出1-n之间的质数
   const int N=100005;
   bool v[N];
   vector<int>prime;
   void primes(int n)
6
       memset(v,0,sizeof v);
       for(int i=2;i<=n;i++){</pre>
           if(v[i])
              continue;
10
           prime.emplace back(i);
11
           for(int j=1;j<=n/i;j++)</pre>
12
              v[i*j]=1;
13
       }
14
       return;
   }
16
```

线性筛 3.4

```
const int N=500005;
    int v[N],prime[N];
   int cnt;
   void primes(int n)
4
       memset(v,0,sizeof v);
       cnt=0;
       for(int i=2;i<=n;i++){</pre>
           if(!v[i]){
               v[i]=i;
10
               prime[++cnt]=i;
           for(int j=1;j<=cnt;j++){</pre>
13
               if(prime[j]>v[i]||prime[j]>n/i)
14
                   break:
15
               v[i*prime[j]]=prime[j];
16
           }
17
18
       return;
   }
20
```

质因数分解

```
//时间复杂度O(sqrt(n))
   //p中存质因数,c中存幂次
   int cnt;
   int p[N],c[N];
   void divide(int n)
6
       cnt=0;
       for(int i=2;i<=sqrt(n);i++)</pre>
          if(n%i==0){
9
              p[++cnt]=i;
10
              c[cnt]=0;
              while(n%i==0){
                 n/=i;
13
                 c[cnt]++;
14
              }
15
          }
16
       if(n>1)
```

```
p[++cnt]=n,c[cnt]=1;
19
20
21
        return;
   }
```

Pollard's Rho 质因数分解

```
//要重写qpow函数
#define int128 int128 t
const int128 tag = 1;
int prime[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
    31, 37};
11 qpow(11 a,11 b,11 mod)
{
   11 \text{ ans} = 1;
   a %= mod;
   for (; b;b>>=1){
      if(b&1)
          ans = (tag * ans * a) % mod;
      a = (tag * a * a) % mod;
   }
   return ans % mod;
//判断是否是素数
bool check(ll a,ll p)
   11 d = p - 1;
   11 get = qpow(a, d, p);
   if(get!=1)
      return 1;
   while((d&1)^1){
      d >>= 1;
      if((get=qpow(a,d,p))==p-1)
          return 0;
      else if(get!=1)
          return 1;
   }
   return 0;
bool Miller_Rabin(ll x)
   if(x>40){
      for (int i = 0; i < 12; i++)
          if(check(prime[i],x))
             return 0;
      return 1;
   }
   for (int i = 0; i < 12; i++)
      if(x==prime[i])
          return 1;
   return 0;
//结果存在factor中
//key为底数,val为指数
map<ll, int> factor;
11 pollard_rho(ll n,ll c)
   if(n==4)
      return 2;
```

ACM-ICPC 代码模板 第 12 页

```
11 x = rand() % (n - 1) + 1;
        11 y = x;
58
        x = (tag * x * x + c) % n;
        y = (tag * y * y + c) % n;
        y = (tag * y * y + c) % n;
61
        for (int lim = 1; x != y; lim=min(lim<<1,128)){</pre>
62
            ll cnt = 1;
63
           for (int i = 0; i < lim;i++){</pre>
64
               cnt = tag * cnt * abs(x - y) % n;
               if(!cnt)
67
                   break;
               x = (tag * x * x + c) % n;
68
               y = (tag * y * y + c) % n;
69
               y = (tag * y * y + c) % n;
70
71
           11 d = \underline{gcd(cnt, n)};
            if(d!=1)
               return d;
74
        }
75
76
77
        return n;
    }
    void findFac(ll n)
80
81
        if(Miller_Rabin(n)){
82
           factor[n]++;
83
           return;
84
        11 p = n;
        while(p>=n)
           p = pollard_rho(p, rand() % (n - 1) + 1);
88
        findFac(p);
89
        findFac(n / p);
90
91
    void solve()
        factor.clear();
94
        11 x;
95
96
        //使用前先判断是否是素数
97
        //注意1的问题
        if(Miller_Rabin(x)){
            cout << "Prime\n";</pre>
            return;
101
        }
102
103
        findFac(x);
104
    }
105
```

3.7 1-N 正约数集合

```
//时间复杂度O(nlogn)
const int N=500005;
vector<int>factor[N];
int main()

for(int i=1;i<=n;i++)
for(int j=1;j<=n/i;j++)
factor[i*j].emplace_back(i);
}
```

3.8 欧拉函数

```
int phi(int n)
       int ans=n;
       for(int i=2;i<=sprt(n);i++)</pre>
           if(n%i==0){
               ans=(ans/i)*(i-1);
              while(n%i==0)
                  n/=i;
           }
10
       if(n>1)
11
           ans=(ans/n)*(n-1);
12
       return ans;
13
   }
```

3.9 2-N 欧拉函数

```
//时间复杂度O(nlogn)
   const int N=200005;
   int phi[N];
   void euler(int n)
       for(int i=2;i<=n;i++)</pre>
6
           phi[i]=i;
       for(int i=2;i<=n;i++)</pre>
8
           if(phi[i]==i)
               for(int j=i;j<=n;j+=i)</pre>
10
                  phi[j]=(phi[j]/i)*(i-1);
11
12
       return;
   }
14
```

3.10 扩展欧几里得算法

```
计算 ax + by = \gcd(a, b) 的通解
方程 ax + by = c 的通解可表示为:
x = \frac{c}{a}x_0 + k\frac{b}{a}, y = \frac{c}{a}y_0 - k\frac{a}{a} \ (k \in \mathbb{Z})
```

```
//返回a与b的gcd,并将通解通过引用传出
   int exgcd(int a,int b,int& x,int& y)
2
3
      if(!b){
          x=1,y=0;
          return a;
      int d=exgcd(b,a%b,x,y);
      int z=x;
      x=y;
10
      y=z-y*(a/b);
11
      /*若求最小正整数解x
13
      x=x\%b;
14
      if(x<0)
15
          x+=b;
16
17
      return d;
   }
```

ACM-ICPC 代码模板 第 13 页

3.11 BSGS 算法

3.12 矩阵运算

```
//注意构造函数传参
    struct matrix {
       vector<vector<11>>m;
3
       int r, c;
       matrix(int _r, int _c)
6
           r = _r;
           c = _c;
          m.resize(r);
           for (auto& cc : m)
10
              cc.resize(c);
11
       }
12
   };
13
15
   matrix operator*(const matrix& a, const matrix& b)
16
       matrix c(a.r, b.c);
17
       for (int i = 0;i < a.r;++i)</pre>
18
          for (int j = 0; j < b.c; ++ j)</pre>
19
              for (int k = 0; k < a.c; ++k)
                  (c.m[i][j] += a.m[i][k] * b.m[k][j] %
                      mod) \% = mod;
       return c;
22
   }
23
   matrix matrix_pow(matrix a,ll b)
25
26
       matrix ans(a.r, a.c);
28
       for (int i = 0;i < a.r;i++)
           ans.m[i][i] = 1;
29
30
       for (; b;b >>= 1) {
31
           if (b & 1)
32
              ans = ans * a;
           a = a * a;
35
       }
       return ans;
36
   }
```

3.13 高斯消元

```
//0(n^3)
   int c[N][N],b[N];
   void Gauss(int n)
       for (int i = 1; i <= n; i++){
5
          for (int j = i; j <= n; j++){
6
              //找非零元
              if(c[j][i]){
                 for (int k = 1; k <= n; k++)
10
                     swap(c[i][k], c[j][k]);
                 swap(b[i], b[j]);
12
                 break;
13
              }
14
          }
```

```
for (int j = 1; j <= n; j++){
17
              if(i==j)
18
                  continue;
              auto rate = c[j][i] / c[i][i];
21
              for (int k = i; k \le n; k++)
22
                  c[j][k] -= c[i][k] * rate;
23
24
              b[j] -= b[i] * rate;
25
           }
26
       }
27
28
       //b[i]中存储的即为答案
29
       for(int i = 1; i <= n;i++)</pre>
30
           b[i]/=c[i][i];
31
```

3.14 线性基

```
//每次使用记得清空
   //区间线性基需要保存以位置 i 为右端点的前缀线性基,此外,
        还要记录每个向量的位置, 更新时尽可能靠右
   11 p[64];
   bool flag;
   void insert(ll x)
6
       ll use = 111 << 62;
       for (int i = 62; i >= 0; i--) {
          if (use & x) {
9
              if (p[i])
                 x ^= p[i];
              else {
12
                 p[i] = x;
13
                 return;
14
              }
15
          }
16
          use >>= 1;
18
       flag = 1;
19
       return;
20
21
22
   11 ask_max()
23
       11 \text{ ans} = 0;
25
       for (int i = 62; i >= 0; i--)
26
          if ((ans ^ p[i]) > ans)
27
              ans ^= p[i];
28
       return ans;
29
   }
31
   11 ask_min()
32
   {
33
       if (flag)
34
          return 0;
35
       for (int i = 0;i <= 62;i++)
36
          if (p[i])
              return p[i];
38
       return -1;
39
40
   bool ask_check(11 x)
^{42}
43
   {
       if (!x)
```

ACM-ICPC 代码模板 第 14 页

```
return flag;
45
46
47
        ll use = 1ll << 62;
        for (int i = 62;i >= 0;i--) {
           if (x & use) {
49
               if (!p[i])
50
                  return false;
51
52
               else
                  x ^= p[i];
54
           use >>= 1;
55
56
        return true;
57
58
59
    ll ask_kth(ll k)
    {
        if (flag)
62
           k--;
63
        if (!k)
64
           return 0;
65
        11 \text{ ans} = 0;
       ll use = 1ll << 62;
        int cnt = 0;
69
        for (int i = 62;i >= 0;i--)
70
           cnt += bool(p[i]);
71
72
        if ((111 << cnt) - 1 < k)</pre>
73
           return -1;
        ll now = 1ll << (cnt - 1);
76
        for (int i = 62; i >= 0; i--) {
           if (p[i]) {
               if (bool(ans & use) != bool(k & now))
                  ans ^= p[i];
               now >>= 1;
82
           use >>= 1;
83
84
85
       return ans;
    }
    /*-----区间线性基*-----*/
    pii tag[2 * N][32];
    void insert(int p, int x)
91
92
        int pos = p;
93
        for (int i = 30;~i;--i) {
           int use = (1 << i);
95
           if (!(x & use)) {
96
               tag[p][i] = tag[p - 1][i];
97
               continue;
98
           }
           if (!tag[p - 1][i].first) {
               tag[p][i].first = x;
102
               tag[p][i].second = pos;
103
           else if (pos > tag[p - 1][i].second) {
               tag[p][i].first = x;
107
               tag[p][i].second = pos;
108
               pos = tag[p - 1][i].second;
109
```

```
}
110
            else
111
                tag[p][i] = tag[p - 1][i];
            x = x ^ tag[p - 1][i].first;
114
115
    11 ask(int 1, int r)
116
117
118
        11 \text{ ans} = 0;
        for (int i = 30; \sim i; --i) {
119
120
            if (tag[r][i].second < 1)</pre>
                continue;
121
            if ((ans ^ tag[r][i].first) > ans)
122
                ans ^= tag[r][i].first;
123
124
        return ans;
```

3.15 Lucas 定理

```
O(p*log<sub>p</sub>n)

//C代表组合数,求取过程省略
ll lucas(ll n,ll m)//递归lucas函数

(if(m==0)
return lll;
return lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
```

3.16 莫比乌斯函数

```
const int N = 50005;
   bool vis[N];
   int prime[N], mo[N];
   void get_mo()
       int cnt = 0;
       vis[1] = 1;
       mo[1] = 1;
       for (int i = 2;i <= 50000;i++) {
          if (!vis[i]) {
              prime[++cnt] = i;
12
              mo[i] = -1;
13
          for (int j = 1; j <= cnt && 1ll * i * prime[j]</pre>
14
               <= 50000; j++) {
              vis[i * prime[j]] = 1;
15
              mo[i * prime[j]] = (i % prime[j] ? -mo[i] :
                   0);
              if (i % prime[j] == 0)
                  break;
          }
       }
20
21
```

3.17 莫比乌斯反演

```
第一种形式: 如果有 F(n) = \sum_{d|n} f(d),则 f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) 第二种形式:
```

ACM-ICPC 代码模板 第 15 页

如果有 $F(n) = \sum_{n|d} f(d)$, 则 $f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)$ 套路与难点: 构造适当的 f(n) 与 F(n), 从而套用整除分块等技巧

3.18 0/1 分数规划

0/1 分数规划模型是指, 给定整数 a_1, a_2, \cdots, a_n 以及 b_1, b_2, \cdots, b_n 求一组解 $x_i(1 \le i \le n, x_i = 0$ 或 1), 使下式最大化:

$$\frac{\sum_{i=1}^{n} a_i * x_i}{\sum_{i=1}^{n} b_i * x_i}$$

即从给定的 n 对整数 a_i, b_i 中选出若干对, 使得选出的数对 的 a 之和与 b 之和的商最大

二分答案, 当二分的值为 mid 时, 我们就计算 $\sum_{i=1}^{n} (a_i - mid * b_i) * x_i$ 的最大值若非负,则令 l=mid,否则令 r=mid 最大值显然为 $a_i - mid * b_i$ 中所有正数的和

3.19 SG 函数

3.20 容斥原理

集合 S 不具有性质 P_1, P_2, \cdots, P_m 的物体个数:

$$\left| \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_m} \right| = |S| - \sum_{i=1}^m |A_i| + \sum_{i,j:i < j} |A_i \cap A_j| - \sum_{i,j,k:i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^m |A_1 \cap A_2 \cap \dots \cap A_m|$$

推论: 至少具有性质
$$P_1, P_2, \cdots, P_m$$
 之一的物体个数:
$$|A_1 \cup A_2 \cup \cdots \cup A_m| = \sum_{i=1}^m |A_i| - \sum_{i,j:i < j} |A_i \cap A_j| +$$

$$\sum_{i,j,k:i< j< k} |A_i \cap A_j \cap A_k| + \dots + (-1)^{m+1} |A_1 \cap A_2 \cap \dots \cap A_m|$$

其中 A_i 表示 S 中具有性质 P_i 的集合, $\overline{A_i}$ 表示 A_i 在 S 中 的补集

3.21 多项式反演

3.22 Min25 筛

对于 Min25 筛, 其要求求和的函数满足以下性质:

- 1. 积性函数, 即对于任意的 gcd(x,y) = 1, 都有 f(x)f(y) = f(xy)
- 2. $f(p),p ∈ \mathbb{P}$ 能被表示为项数比较小的多项式
- 3. $f(p^c), p \in \mathbb{P}$ 能够快速求值

Min25 筛基本步骤:

- 1. 将待求函数在质数情况下的表达式转化成 $\sum i^k$ 的形式
- 2. 线性筛出 $1 \sim \sqrt{n}$ 之间的质数, 并求出其 k 次方前缀和
- 3. 对于形如 $\lfloor \frac{n}{x} \rfloor$ 的数, 算出 $g(\lfloor \frac{n}{x} \rfloor, 0)$, 注意去掉 1^k
- 4. 套递归式计算 g(n,j), 这里 g 可以用滚动数组
- 5. 递归计算 S(n,x), 无需记忆化, 答案即为 S(n,0)+1

该模板以 $\sum_{i=1}^{n} f(i)$, 其中 $f(p^k) = p^k$ 为例

```
//当题目有高次项时,仅需在标记位置做出添加或修改即可
//sp数组为质数高次前缀和
//具体方式为添加新的g和Sp数组,当作新的项处理,原式结果即为
  项的线性组合
```

```
//g数组中存储的为 1^m + 2^m +... 的前tn项和,在该模板中给
        出的是m=1的情况
   //其他部位模仿模板添加即可
   const int N = 1000005;
   const 11 inv2 = 500000004;
   const 11 mod = 1000000007;
   int cnt;
   int v[N], prime[N];
   void primes(int n)
       for (int i = 2; i <= n; i++){
          if(!v[i]){
14
             v[i] = i;
15
             prime[++cnt] = i;
          for (int j = 1; j <= cnt;j++){</pre>
             if(prime[j]>v[i]||prime[j]>n/i)
20
             v[i * prime[j]] = prime[j];
21
       }
       return;
   //题目的f(x)函数,其中x代指 p^k
   11 f(11 x)
       return x % mod;
   11 sp[N], g[N];
   11 w[N];
   int idx1[N], idx2[N];
   11 n;
   int sqrn;
   11 S(11 x, 11 y)
       if(prime[y]>=x)
          return 0;
41
       int k;
42
       if(x<=sqrn)</pre>
          k = idx1[x];
          k = idx2[n / x];
       ll ans = g[k] - sp[y] + mod; //记得修改
       ans %= mod;
       for (int i = y + 1; i <= cnt;i++){</pre>
          if(1ll*prime[i]*prime[i]>x)
             break;
          11 pe = prime[i];
          for (int e = 1; pe <= x;e++,pe*=prime[i]){</pre>
             11 nx = pe \% mod;
             ans = (ans + f(nx) * (S(x / pe, i) + (e !=
                 1)) % mod) % mod;
       return ans;
61
   }
62
   void solve()
       read(n);
```

ACM-ICPC 代码模板 第 16 页

```
sqrn = sqrt(n);
       primes(sqrn);
       //注意可能的添加
71
       for (int i = 1; i <= cnt;i++)
           sp[i] = (sp[i - 1] + prime[i]) % mod;
       int tot = 0;
       for (11 1 = 1, r, tn; 1 \le n; l = r+1){
76
           r = n / (n / 1);
77
          w[++tot] = n / l; //注意不要取模
78
          tn = w[tot] \% mod;
79
80
          //注意可能的添加
           g[tot] = tn * (tn + 1) % mod * inv2 % mod - 1;
           if(w[tot]<=sqrn)</pre>
              idx1[w[tot]] = tot;
              idx2[n / w[tot]] = tot;
       }
       for (int i = 1; i <= cnt;i++)
           for (int j = 1; j <= tot; j++){
              if (1ll * prime[i] * prime[i] > w[j])
91
                  break;
92
              int k;
              if(w[j]/prime[i]<=sqrn)</pre>
                 k = idx1[w[j] / prime[i]];
                 k = idx2[n / (w[j] / prime[i])];
              //注意可能的添加
              (g[j] -= 111 * prime[i] * (g[k] - sp[i - 1]
                    + mod) % mod) %= mod;
              (g[j] += mod) \%= mod;
102
           }
103
104
       11 ans = S(n, 0) + 1; \\计算答案
105
       ans %= mod;
106
```

3.23 杜教筛

3.24 Powerful Number 筛

3.25 快速数论变换 (NTT)

```
const int N=300005;
int n,m; //项数分别为n和m
int rev[N],tot,bit;
ll a[N],b[N]; //多项式 a ,b 大小为最高幂次的二倍
const ll g=3;
const ll mod = 998244353;
void ntt(ll a[],int flag)
{
for(int i=0;i<tot;i++)
if(i<rev[i])
```

```
swap(a[i],a[rev[i]]);
11
       for(int mid=1;mid<tot;mid<<=1){</pre>
12
           11 len=mid*2;
           11 g1=qpow(g,(mod-1)/len)%mod;
           if(flag==-1)
15
              g1=qpow(g1,mod-2);
           for(int i=0;i<tot;i+=len){</pre>
              ll gk=1;
              for(int j=0;j<mid;j++,gk=gk*g1%mod){</pre>
                  int x=a[i+j],y=a[i+j+mid]*gk%mod;
                  a[i+j]=(x+y)\%mod;
                  a[i+j+mid]=(x-y+mod)%mod;
22
              }
23
           }
       if(flag==-1){
           11 inv=qpow(tot,mod-2);
           for(int i=0;i<tot;i++)</pre>
28
              a[i]=1ll*a[i]*inv%mod;
29
       }
30
31
   }
   void poly_mul(ll a[],ll b[])
       ntt(a,1),ntt(b,1);
35
       for(int i=0;i<tot;i++)</pre>
36
           a[i]=a[i]*b[i]%mod;
       ntt(a,-1);
   void poly_init()
42
       while((1<<bit)<n+m+1)</pre>
43
           bit++;
       tot=(1<<bit);
45
       for(int i=0;i<tot;i++)</pre>
           rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
48
   int main()
49
50
       /****使用方式****/
51
       poly_init(); //初始化蝴蝶变换数组
       poly_mul(a,b); //多项式a,b相乘,结果保存在a中
       return 0;
55
```

3.26 快速沃尔什变换 (FWT)

```
//NTT可以处理下标相加,而FWT主要是处理下标的其他逻辑运算
   //用法与NTT相同
   //记得初始化bit与tot
   int bit,tot;
   void fwt_or(int a[],int op)
       for(int mid=1;mid<tot;mid<<=1){</pre>
          int len=mid<<1;</pre>
          for(int i=0;i<tot;i+=len)</pre>
             for(int j=0;j<mid;j++)</pre>
10
                 (a[mid+i+j]+=a[i+j]*op+mod)%=mod;
12
      return;
13
14
15
   void fwt_and(int a[],int op)
```

ACM-ICPC 代码模板 第 17 页

```
17
        for(int mid=1;mid<tot;mid<<=1){</pre>
           int len=mid<<1;</pre>
           for(int i=0;i<tot;i+=len)</pre>
               for(int j=0;j<mid;j++)</pre>
21
                   (a[i+j]+=a[i+j+mid]*op+mod)%=mod;
22
23
       return;
24
    }
25
    void fwt_xor(int a[],int op)
28
       if(op==-1)
29
           op=qpow(2,mod-2);
30
        for(int mid=1;mid<tot;mid<<=1){</pre>
31
           int len=mid<<1;</pre>
           for(int i=0;i<tot;i+=len)</pre>
               for(int j=0;j<mid;j++){</pre>
                   int x=a[i+j],y=a[mid+i+j];
                   a[i+j]=(x+y)\%mod;
                   a[mid+i+j]=(x-y+mod)%mod;
                   a[i+j]=op*a[i+j]%mod;
                   a[mid+i+j]=a[mid+i+j]*op%mod;
41
42
       return;
43
    }
```

3.27 常用组合公式

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$
错排(排列中所有的元素都在不正确的位置上的排列种数)公式:
$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right) = (n-1)(D_{n-2} - D_{n-1})$$

3.28 Bertrand 猜想

对任意 n > 3, 都存在 n , 其中 <math>p 为质数

3.29 威尔逊定理

$$(p-1)! \equiv -1 (mod \quad p)$$

3.30 最小二乘法

$$k = \frac{\sum_{i=1}^{n} x_i y_i - n \cdot \overline{xy}}{\sum_{i=1}^{n} x_i^2 - n \cdot (\overline{x})^2}, b = \overline{y} - k\overline{x}$$

3.31 数相关结论

 10^9 内所有数的最多因子个数为 1344 个 10^{18} 内最多有 103680 个 10^7 内所有数的因子大小的和最大约为 5×10^7

3.32 卡特兰数

3.33 斯特林数

表示将 n 个不同元素构成 m 个圆排列的数目

3.34 第二类斯特林数

表示将 n 个不同元素分成 m 个集合的方案数 $S(n,m) = \frac{1}{m!} \sum_{k=0}^m (-1)^k \binom{m}{k} (m-k)^n$

3.35 欧拉数

3.36 复数操作

3.37 康托展开

```
//O(nlogn)
//add与ask函数为树状数组操作
int n;
11 cantor()
   11 \text{ ans} = 0;
   for (int i = 1; i <= n;i++){
       ans = (ans + (ask(a[i]) - 1) * fac[n - i] %
           mod) % mod;
       add(a[i], -1);
   return ans;
void solve()
   cin >> n;
   fac[0]=1;
   for(int i=1;i<n;++i)</pre>
       fac[i] = fac[i - 1] * i % mod;
   for (int i = 1; i <= n;++i)</pre>
       add(i, 1);
   for (int i = 1; i <= n;++i)</pre>
       cin >> a[i];
```

ACM-ICPC 代码模板 第 18 页


```
//排名为x的排列
   vector<int> incantor(int x,int n){
      x--:
      vector<int> res;
      int cnt;
      for(int i = 0; i < n; ++i){
         cnt = x / fact[n - i - 1];
         x %= fact[n - i - 1];
         /*----寻找第cnt+1大数的大小,记作ans-----*/
10
         /*----可使用权值线段树二分或者树状数组倍增----*/
11
         res.emplace_back(ans);
12
13
14
      return res;
15
```

3.39 生成函数

指数型生成函数适用于解决多重集选择排列问题。 常用替换式:

$$\sum_{i\geq 0} \frac{x^n}{n!} = e^x$$

$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \frac{e^x + e^{-x}}{2}$$

 $\frac{x^m}{m!}$ 前的系数即为选 m 个元素排列的值

4 数据结构

4.1 并查集

```
int fa[N];
   int get(int x)
2
       if(x==fa[x])
           return x;
       return fa[x]=get(fa[x]);
   }
   void merge(int x,int y)
10
       int a=get(x);
11
       int b=get(y);
       if(a==b)
13
           return;
14
       fa[b]=a;
15
       return;
16
   }
17
   //初始化
   for(int i=1;i<=n;i++)</pre>
       fa[i]=i;
```

4.2 并查集跳跃

```
//当每个元素的操作次数有上限时,此方法可以保证不重复操作
for (int i = 1;i <= n + 1;i++)
    fa[i] = i;
    if(EQUAL)
    fa[i] = get(i + 1);
    for (int i = get(1);i <= r;i = get(i + 1)) {
        /*操作*/
        if (EQUAL)
        fa[i] = get(i + 1);
    }
```

4.3 可持久化并查集

4.4 树状数组

```
//树状数组主要是用来处理前缀和
   //除前缀和外,所有前缀性质都可以维护
   //如前缀最值等操作
   #define lowbit(x) (x&(-x))
   const int N=200005;
   int c[N];
   void add(int p,int x)
      for(int i=p;i<=N;i+=lowbit(i))</pre>
         c[i]+=x; //或其他操作
10
      return;
11
   }
12
   int ask(int p)
14
15
      int ans=0;
16
      for(int i=p;i;i-=lowbit(i))
17
         ans+=c[i]; //或其他操作
18
19
      return ans;
20
```

4.5 线段树

```
//以区间和为例
   const int N=100010;
   typedef long long 11;
   int a[N];
   struct{
       int 1,r;
       11 add, sum;
   }tr[N*4];
   void pushup(int p)
       tr[p].sum=tr[p<<1].sum+tr[p<<1|1].sum;
12
       return;
13
14
   void build(int p,int l,int r)
15
16
       if(l==r){
          tr[p].l=tr[p].r=l;
```

ACM-ICPC 代码模板 第 19 页

```
tr[p].sum=a[1];
19
           return;
20
       }
21
       int mid=(l+r)>>1;
23
       tr[p].l=1;
24
       tr[p].r=r;
25
       build(p<<1,1,mid);</pre>
26
       build(p<<1|1,mid+1,r);
       pushup(p);
       return;
30
   void pushdown(int p)
31
32
   {
       if(tr[p].l==tr[p].r)
33
           return;
34
       tr[p<<1].add+=tr[p].add;</pre>
       tr[p<<1|1].add+=tr[p].add;
36
37
       tr[p<<1].sum+=111*(tr[p<<1].r-tr[p<<1].l+1)*tr[p].
38
            add:
       tr[p<<1|1].sum+=111*(tr[p<<1|1].r-tr[p<<1|1].l+1)*
            tr[p].add;
       tr[p].add=0;
       return;
41
42
   void change(int p,int l,int r,int x)
43
44
       pushdown(p);
45
       if(l<=tr[p].1&&r>=tr[p].r){
           //打标记,计算该线段修改后的值
           tr[p].add+=x;
48
           tr[p].sum+=1ll*x*(tr[p].r-tr[p].l+1);
49
50
           return:
51
52
       int mid=(tr[p].r+tr[p].1)>>1;
53
       if(l<=mid)</pre>
54
           change(p<<1,1,r,x);
55
       if(r>mid)
56
           change(p<<1|1,1,r,x);
57
58
       pushup(p);
       return;
   }
61
62
   11 ask(int p,int l,int r)
63
64
       pushdown(p);
       11 sum=0;
       if(1<=tr[p].1&&r>=tr[p].r)
67
           return tr[p].sum;
68
69
       int mid=(tr[p].l+tr[p].r)>>1;
70
       if(1<=mid)</pre>
71
           sum+=ask(p<<1,1,r);
       if(r>mid)
           sum+=ask(p<<1|1,1,r);
74
75
       return sum;
76
77
   }
```

4.6 李超线段树

```
//支持添加线性函数,询问每个横坐标中值最大的函数编号
   //注意精度, 能用 int 尽量用
   //本题以编号最小为例,使用时仅需要add线段
   const int N = 100005;
   const double eps = 1e-9;
   struct node {
       int 1, r, id;
   }tr[N << 2];</pre>
   int cmp(double x,double y)
11
       if (x - y > eps)
12
          return 1;
13
       if (y - x > eps)
14
          return -1;
15
       return 0;
   int cnt;
   struct line {
       double k, b;
   }seg[N];
22
   double f(int id, int x)
       return seg[id].k * x + seg[id].b;
25
26
27
   void build(int p, int l, int r)
28
29
       if (1 == r) {
          tr[p].l = tr[p].r = 1;
31
          return:
32
33
       tr[p].l = 1;
34
       tr[p].r = r;
35
       int mid = (1 + r) >> 1;
       build(p << 1, 1, mid);
       build(p << 1 | 1, mid + 1, r);
38
       return;
39
40
41
   void update(int p, int id)
       int  v = tr[p].id;
44
       int u = id;
45
       int mid = (tr[p].l + tr[p].r) >> 1;
46
       if (cmp(f(u, mid), f(v, mid)) == 1)
          swap(u, v);
       int tagl = cmp(f(u, tr[p].1), f(v, tr[p].1));
       int tagr = cmp(f(u, tr[p].r), f(v, tr[p].r));
51
       //其中 u < v 含义为保留标号最小
52
       if (tagl == 1 || (!tagl && u < v))</pre>
53
          update(p << 1, u);
54
       if (tagr == 1 || (!tagr && u < v))</pre>
55
          update(p << 1 | 1, u);
       return;
57
   }
58
   void change(int p, int l, int r, int u)
60
61
       if (1 <= tr[p].1 && r >= tr[p].r) {
62
          update(p, u);
63
```

ACM-ICPC 代码模板 第 20 页

```
return;
65
       int mid = (tr[p].l + tr[p].r) >> 1;
       if (1 <= mid)
           change(p << 1, 1, r, u);
       if (r > mid)
69
           change(p << 1 \mid 1, l, r, u);
70
71
    void add(int x0, int y0, int x1, int y1)
73
       cnt++;
74
       if (x0 == x1) {
75
           seg[cnt].k = 0;
76
           seg[cnt].b = max(y0, y1);
77
       }
       else {
           seg[cnt].k = 1. * (y1 - y0) / (x1 - x0);
           seg[cnt].b = y0 - seg[cnt].k * x0;
       change(1, x0, x1, cnt);
    //ask 时会遍历所有区间,可以进行标号最小操作等询问
    //以标号最小为例
    typedef pair<double, int> pdi;
    pdi get_max(pdi a, pdi b)
89
90
       if (cmp(a.first, b.first) == 1)
91
           return a;
       if (cmp(a.first, b.first) == -1)
          return b;
       if (a.second > b.second)
          return b;
97
       else
          return a;
    pdi ask(int p, int x)
100
101
102
       pdi now = \{ f(tr[p].id, x), tr[p].id \};
103
       if (tr[p].1 == tr[p].r)
104
           return now;
       int mid = (tr[p].l + tr[p].r) >> 1;
       if (x \le mid \&\& x > = tr[p].1)
           return get_max(now, ask(p << 1, x));</pre>
110
           return get_max(now, ask(p << 1 | 1, x));
111
```

4.7 主席树

```
//以区间第K大数为例
//idx根节点编号,每次修改都会建立一个新的根节点
const int N=100005;
int idx ,root[N];
struct{
    int l,r,cnt;
}tr[N*4+N*17];
int a[N];

int build(int l,int r)
{
    int p=++idx;
```

```
if(1==r)
13
          return p;
14
       int mid=(l+r)>>1;
       tr[p].l=build(l,mid);
17
       tr[p].r=build(mid+1,r);
       return p;
23
   int change(int p,int l,int r,int x)
24
       int q=++idx;
25
       tr[q]=tr[p];
26
       if(l==r){
          tr[q].cnt++;
          return q;
       int mid=(l+r)>>1;
       if(x<=mid)</pre>
          tr[q].l=change(tr[p].l,l,mid,x);
       else
          tr[q].r=change(tr[p].r,mid+1,r,x);
       tr[q].cnt=tr[tr[q].1].cnt+tr[tr[q].r].cnt;
38
39
       return q;
40
41
   int ask(int p,int q,int l,int r,int k)
44
       if(l==r)
45
          return 1;
       int cnt=tr[tr[q].1].cnt-tr[tr[p].1].cnt;
       int mid=(l+r)>>1;
       if(cnt>=k)
51
          return ask(tr[p].1,tr[q].1,1,mid,k);
52
          return ask(tr[p].r,tr[q].r,mid+1,r,k-cnt);
   int main()
57
58
       /*---主席树操作---*/
       root[0]=build(0,num.size()-1);
       //在第i-1代树上添加a[i],得到第i代树
       for(int i=1;i<=n;i++)</pre>
          root[i]=change(root[i-1],0,num.size()-1,a[i]);
       ans=ask(root[l-1],root[r],0,num.size()-1,k);
66
       return 0;
67
```

4.8 动态开点线段树

4.9 线段树分裂与合并

ACM-ICPC 代码模板 第 21 页

26

27

30

31 32

33

38

39

40

41

43

44

45

46

47

50

51

52

57

58

59

60

63

64

65

70

4.10 平衡树

4.11 Splay

4.12 AC 自动机

4.13 分块

```
//分块中的预处理
   //区间处理时,可以先特判做右端点在同一块中,后从pos[L]+1
       到pos[R]-1处理,最后再处理两端的小段
   int st[N], ed[N];
   int pos[N];
   int block, cnt;
   void init(int n)
      block = sqrt(n);
      cnt = n / block + bool(n % block);
10
      for (int i = 1;i <= cnt;i++) {</pre>
11
         st[i] = (i - 1) * block + 1;
12
         ed[i] = i * block;
13
15
      ed[cnt] = n;
16
      for (int i = 1;i <= n;i++)
17
         pos[i] = (i - 1) / block + 1;
18
   }
19
```

4.14 莫队

```
//程序基本上只需要添加辅助数组以及编写add与del函数即可
   const int N=50000;
   int a[N],belong[N];
   struct query{
      int l,r,id;
   }q[N];
   int cmp(const query& a,const query& b)
      if(belong[a.1]^belong[b.1])
10
          return belong[a.1]<belong[b.1];</pre>
      else if(belong[a.1]&1)
          return a.r<b.r;</pre>
13
      else
14
          return a.r>b.r;
15
   }
16
17
   int now; //记录当前答案
   void add(int pos)
19
   {
20
      //添加第pos位后的答案
21
      //操作省略
22
   }
23
   void del(int pos)
```

```
//删除第pos位的答案
   //操作省略
int main()
   int n,m; //n为数据个数, m为询问数
   read(n,m);
   int sz=sqrt(n);
   int bnum=ceil(1.*n/sz);
   for(int i=1;i<=bnum;i++)</pre>
       for(int j=(i-1)*sz+1;j<=i*sz;j++)</pre>
          belong[j]=i;
   //读入原始数据
   for(int i=1;i<=n;i++)</pre>
       read(a[i]);
   for(int i=1;i<=m;i++){</pre>
       read(q[i].1,q[i].r);
       q[i].id=i;
   }
   sort(q+1,q+m+1,cmp);
   int l=1,r=0;
   for(int i=1;i<=m;i++){</pre>
       int ql=q[i].l,qr=q[i].r;
       while(l<ql)</pre>
          del(1++);
       while(1>q1)
          add(--1);
       while(r<qr)</pre>
          add(++r);
       while(r>qr)
          del(r--);
       ans[q[i].id]= now;
   }
   for(int i=1;i<=m;i++)</pre>
       cout<<ans[i]<<'\n';</pre>
   return 0;
```

4.15 点分治

4.16 CDQ 分治

4.17 动态树

4.18 左偏树

ACM-ICPC 代码模板 第 22 页

4.19 仙人掌

4.20 哈希

4.21 KMP 模式匹配

```
//f[i]表示B中以i结尾的子串与A的前缀能够匹配的最长长度
   //Next[i]表示A中以i结尾的非前缀子串与A的前缀能够匹配的最
       长长度
   //下标从1开始
   //[f[i]==n] 时即为B在A中第一次出现
   const int N=100005;
   string a,b;
   int Next[N],f[N];
   void pre()
9
10
      Next[1]=0;
      for(int i=2,j=0;i<=n;i++){</pre>
11
         while(j>0&&a[i]!=a[j+1])
12
             j=Next[j];
13
         if(a[i]==a[j+1])
14
             j++;
15
         Next[i]=j;
      }
18
      for(int i=1,j=0;i<=m;i++){</pre>
19
         while(j>0&&(j==n||b[i]!=a[j+1]))
20
             j=Next[j];
21
         if(b[i]==a[j+1])
            j++;
         f[i]=j;
      }
25
```

4.22 扩展 KMP 算法

4.23 manacher 算法

```
//N的大小为字符串二倍
   //p[i]中存的是以i为中心字符的回文串半径(中心字符不算)
   //p[i]-1即为回文串长度
   const int N=20000005;
   int p[N];
   void manacher(string& s)
6
   {
      int l=0, r=0;
      int n=s.size();
      string use="|";
       for(int i=0;i<n;i++)</pre>
         use+="#",use+=s[i];
      use+="#^";
13
14
      for(int i=1;i<use.size();i++){</pre>
15
         if(i<=r)</pre>
16
             p[i]=min(p[l+r-i],r-i+1);
         while(use[i+p[i]]==use[i-p[i]])
```

4.24 Trie 树

```
//以字符串出现次数为例
   int tr[100005][30];
   int cnt[100005];
   int tot;
   void insert(const string& s)
       int p=0;
       for(auto c:s){
          if(!tr[p][c-'a'])
              tr[p][c-'a']=++tot,p=tot;
10
11
              p=tr[p][c-'a'];
12
       }
13
14
       cnt[p]++;
15
16
17
   int ask(const string& s)
18
19
       int p=0;
       for(auto c:s){
          if(!tr[p][c-'a'])
              return 0;
23
24
              p=tr[p][c-'a'];
25
       }
26
27
       return cnt[p];
```

4.25 可持久化 Trie 树

4.26 后缀数组

定义编号为 i 的后缀与编号为 j 的后缀的最长前缀长度为 LCP(i,j) $LCP(i,j) = min_{i+1 \leq p \leq j} height[p]$

字符串中不同子串的数目为每一个后缀的长度减去其 height 之和

判断子串:

跑出 sa, 然后从最小的后缀开始,一个个往后枚举,记录下当前匹配到的位置,如果匹配不上就下一个后缀,否则位置向后移一位。如果枚举完了后缀还没有完全匹配则不是原串子串。

两串的最长公共子串: 将两串拼接, 求出 sa 和 height。枚举 sa, 对于每个串找到其后第一个"起点在后一个串上的后缀", 求出 LCP 后取最大

```
const int N = 1000010;
int n, m;
```

ACM-ICPC 代码模板 第 23 页

```
//rk数组存放编号为i的后缀的排名
   //sa数组存放排名为i的后缀的编号
   //height数组存放排名为i的后缀与排名为i-1的后缀的最长相同
       前缀长度
   int sa[N], x[N], y[N], c[N], rk[N], height[N];
   void get sa(const string& s)
10
      for (int i = 1; i <= n; i ++ )
          c[x[i] = s[i]] ++;
12
      for (int i = 2; i <= m; i ++ )
13
         c[i] += c[i - 1];
14
      for (int i = n; i; i -- )
15
          sa[c[x[i]] -- ] = i;
16
17
      for (int k = 1; k <= n; k <<= 1){
          int num = 0;
          for (int i = n - k + 1; i <= n; ++i)
             y[ ++ num] = i;
          for (int i = 1; i <= n; ++i )
             if (sa[i] > k)
                y[ ++ num] = sa[i] - k;
         for (int i = 1; i <= m; ++i )
             c[i] = 0;
         for (int i = 1; i <= n; ++i )
             ++c[x[i]];
28
         for (int i = 2; i <= m; ++i )
29
             c[i] += c[i - 1];
         for (int i = n; i; --i){
             sa[c[x[y[i]]] -- ] = y[i];
             y[i] = 0;
          }
          swap(x, y);
         x[sa[1]] = 1;
         num = 1;
          for (int i = 2; i <= n; ++i )
             x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[
                 sa[i] + k] == y[sa[i - 1] + k]) ? num :
          if (num == n)
41
             break;
          m = num;
      return;
46
   }
   void get_height(const string& s)
      for (int i = 1; i <= n; i ++ )
51
          rk[sa[i]] = i;
52
      for (int i = 1, k = 0; i <= n; i ++ ){
53
         if (rk[i] == 1)
             continue;
          if (k)
             k -- ;
          int j = sa[rk[i] - 1];
         while (i + k \le n \&\& j + k \le n \&\& s[i + k] ==
               s[j + k]
             k ++ ;
          height[rk[i]] = k;
63
```

```
return;
65
   }
66
   int main()
69
       string s;
70
       cin>>s;
       n = s.size();
       //m为字符元素的最大值
       m = 122;
75
76
       s.insert(s.begin(),'&');
       get_sa(s);
78
       get_height(s);
```

4.27 后缀自动机

```
//注意修改 insert 中的标识字符
   //tot 和 last 的初始值为 1
   //np 代表的是前缀所在的等价类
   //若计算每个节点处出现的次数,则将取消注释处的注释后dfs
   const int N = 100005;
   struct node {
      int ch[26];
      int len, fa;
   }sam[N << 1];
   int tot = 1, last = 1;
   //int f[N << 1];
   void insert(char cc)
   {
13
      int c = cc - 'A';
14
      int p = last;
15
      int np = last = ++tot;
   // f[np] = 1;
17
      sam[np].len = sam[p].len + 1;
      memset(sam[np].ch, 0, sizeof sam[np].ch);
      for (;p && !sam[p].ch[c];p = sam[p].fa)
20
          sam[p].ch[c] = np;
21
      if (!p)
22
          sam[np].fa = 1;
      else {
          int q = sam[p].ch[c];
          if (sam[q].len == sam[p].len + 1)
             sam[np].fa = q;
          else {
             int nq = ++tot;
             sam[nq] = sam[q];
             sam[nq].len = sam[p].len + 1;
             sam[q].fa = sam[np].fa = nq;
             for (;p && sam[p].ch[c] == q;p = sam[p].fa)
33
                sam[p].ch[c] = nq;
34
          }
35
      }
   void solve()
      int n, m;
      cin >> n >> m;
      string s;
42
      cin >> s;
43
      memset(sam[1].ch, 0, sizeof sam[1].ch);
44
      tot = last = 1;
```

ACM-ICPC 代码模板 第 24 页

4.28 回文自动机

4.29 lyndon 分解

4.30 笛卡尔树

4.31 Dance Links 精确覆盖

```
//选法作为行,限制作为列
   //精确覆盖是指从中选取一些行,使得每一列有且仅有一个1
   //注意,只能解决限制为1的问题
   //与网络流较为类似,关键在于如何构建矩阵
   //ans中存选哪些行
   const int N = 5510;
   int n, m;
   int 1[N], r[N], u[N], d[N], s[N], row[N], col[N], idx
   int ans[N], top;
   void init()
      for (int i = 0; i <= m; i ++ )</pre>
         l[i] = i - 1, r[i] = i + 1;
16
         u[i] = d[i] = i;
17
18
      1[0] = m, r[m] = 0;
19
      idx = m + 1;
20
21
   }
   void add(int& hh, int& tt, int x, int y)
23
      row[idx] = x, col[idx] = y, s[y] ++;
25
      u[idx] = y, d[idx] = d[y], u[d[y]] = idx, d[y] =
      r[hh] = l[tt] = idx, r[idx] = tt, l[idx] = hh;
      tt = idx ++;
29
30
   void remove(int p)
31
32
      r[1[p]] = r[p], 1[r[p]] = 1[p];
      for (int i = d[p]; i != p; i = d[i])
         for (int j = r[i]; j != i; j = r[j]){
             s[col[j]] --;
             u[d[j]] = u[j], d[u[j]] = d[j];
         }
   void resume(int p)
```

```
42
        for (int i = u[p]; i != p; i = u[i])
43
44
           for (int j = l[i]; j != i; j = l[j]){
               u[d[j]] = j, d[u[j]] = j;
               s[col[j]] ++ ;
46
47
        r[1[p]] = p, 1[r[p]] = p;
48
49
    bool dfs()
51
52
        if (!r[0])
53
           return true;
54
        int p = r[0];
55
        for (int i = r[0]; i; i = r[i])
           if (s[i] < s[p])
               p = i;
        remove(p);
59
        for (int i = d[p]; i != p; i = d[i]){
           ans[ ++ top] = row[i];
           for (int j = r[i]; j != i; j = r[j])
               remove(col[j]);
           if (dfs())
               return true;
66
           for (int j = 1[i]; j != i; j = 1[j])
67
              resume(col[j]);
           top -- ;
        resume(p);
        return false;
    }
    void solve()
75
76
        cin >> n >> m;
        init();
78
        for (int i = 1; i <= n; i++){
79
80
           //每次插入新行时都需要执行
81
           int hh = idx, tt = idx;
           for (int j = 1; j <= m; j++){}
               int x;
               cin >> x;
               //只有1需要插入
               if(x)
                  add(hh, tt, i, j);
           }
        }
        if(dfs()){
93
           for (int i = 1; i <= top;i++)</pre>
94
               cout << ans[i] << " \n"[i == top];</pre>
        else
           cout << "No Solution!\n";</pre>
        return ;
100
101
```

4.32 Dance Links 重复覆盖

//重复覆盖解决的是选出行的数量最小问题,并且可以重复覆盖

ACM-ICPC 代码模板 第 25 页

```
//需保证答案较小,因为基于IDA*算法
   const int N = 10010;
   int n, m;
   int 1[N], r[N], u[N], d[N], col[N], row[N], s[N], idx
   int ans[N];
   bool st[110];
   void init()
10
11
       for (int i = 0; i <= m; i ++ ){
12
          l[i] = i - 1, r[i] = i + 1;
13
          col[i] = u[i] = d[i] = i;
14
          s[i] = 0;
15
       1[0] = m, r[m] = 0;
       idx = m + 1;
18
   }
19
   void add(int& hh, int& tt, int x, int y)
21
22
       row[idx] = x, col[idx] = y, s[y] ++ ;
       u[idx] = y, d[idx] = d[y], u[d[y]] = idx, d[y] =
           idx;
       r[hh] = l[tt] = idx, r[idx] = tt, l[idx] = hh;
25
       tt = idx ++;
26
27
   }
   int h()
       int cnt = 0;
31
       memset(st, 0, sizeof st);
32
       for (int i = r[0]; i; i = r[i]){
          if (st[col[i]])
              continue;
          cnt ++ ;
36
          st[col[i]] = true;
37
          for (int j = d[i]; j != i; j = d[j])
38
              for (int k = r[j]; k != j; k = r[k])
39
                 st[col[k]] = true;
40
41
       return cnt;
   }
   void remove(int p)
45
46
       for (int i = d[p]; i != p; i = d[i]){
47
          r[l[i]] = r[i];
          l[r[i]] = l[i];
       }
50
51
52
   void resume(int p)
53
54
       for (int i = u[p]; i != p; i = u[i]){
          r[l[i]] = i;
          l[r[i]] = i;
57
   }
59
   bool dfs(int k, int depth)
61
       if (k + h() > depth)
63
          return false;
64
```

```
if (!r[0])
65
           return true;
66
        int p = r[0];
67
        for (int i = r[0]; i; i = r[i])
           if (s[p] > s[i])
               p = i;
71
        for (int i = d[p]; i != p; i = d[i]){
72
           ans[k] = row[i];
           remove(i);
           for (int j = r[i]; j != i; j = r[j])
75
               remove(j);
76
           if (dfs(k + 1, depth))
77
               return true;
           for (int j = l[i]; j != i; j = l[j])
               resume(j);
           resume(i);
        return false;
    void solve()
        cin >> n >> m;
        init();
        for (int i = 1; i <= n; i ++ ){
           int hh = idx, tt = idx;
91
           for (int j = 1; j <= m; j ++ ){
               int x;
               cin >> x;
               if (x)
                   add(hh, tt, i, j);
           }
        }
98
        int depth = 0;
        while (!dfs(0, depth))
101
           depth ++;
102
        cout << depth << '\n';</pre>
103
        for (int i = 0; i < depth; i ++ )</pre>
104
105
           cout << ans[i] << '\n';
        return;
106
```

5 动态规划

5.1 0/1 背包

```
const int N=105;
const int M=100005;
int f[M];
int v[N],w[N];
int main()

memset(f,0,sizeof f);
//memset(f,0xcf,sizeof f);
f[0]=0;
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
```

ACM-ICPC 代码模板 第 26 页

5.2 完全背包

```
const int N=105;
const int M=100005;
int f[M];
int v[N],w[N];
int main()

memset(f,0,sizeof f);
//memset(f,0xcf,sizeof f);
f[0]=0;
for(int i=1;i<=n;i++)
for(int j=v[i];j<=m;j++)
f[j]=max(f[j],f[j-v[i]]+w[i]);
}</pre>
```

5.3 多重背包

5.4 分组背包

5.5 回退背包

```
//适用于计算方案数问题
//退去第 x 个物品后满足总价值为 i 的方案数
//01背包
for(int i = w[x];i <= m;++i)
dp[i] -= dp[i - w[x]];

//多重背包
for(int i = m;i >= w[x];--i)
dp[i] -= dp[i - w[x]];
```

5.6 换根 DP

5.7 状压 DP

```
//取出x的第i位
y=(x>>(i-1))&1;
//将x第i位取反
x^=1<<(i-1);
//将x第i位变为1
x|=1<<(i-1);
//将x第i位变为0
x\&= \sim (1 << (i-1));
//将x最靠右的1变成0
x=x&(x-1);
//取出x最靠右的1
y=x&(\sim x);
//把最靠右的0变成1
x = (x+1);
//判断是否有两个连续的1, n个连续的1与之类似
if(x&(x<<1))
   cout<<"YES\n";</pre>
//枚举子集
```

```
for(int i=sta;i;i=((i-1)&sta)){
    //i即为子集
}
```

5.8 四边形不等式优化 DP

5.9 斜率优化 DP

6 计算几何

6.1 基础操作

7 杂项算法

7.1 离散化

7.2 二分

```
//>= x的数中最小的一个
   while(l<r){</pre>
       int mid=(l+r)>>1;
       if(a[mid]>=x)
          r=mid;
       else
6
          l=mid+1;
   }
   //<= x的数中最大的一个
   while(l<r){</pre>
       int mid=(l+r+1)>>1;
       if(a[mid]<=x)</pre>
13
          1=mid;
14
       else
15
          r=mid-1;
16
17
   //结果储存在1中
19
```

ACM-ICPC 代码模板 第 27 页

17

27

30

37

38

7.3 三分

```
//整数三分
   int l = 1, r = 100;
   while(l < r) {
       int lmid = 1 + (r - 1) / 3;
       int rmid = r - (r - 1) / 3;
       lans = f(lmid),rans = f(rmid);
       // 求凹函数的极小值
       if(lans <= rans)</pre>
          r = rmid - 1;
       else
10
          l = lmid + 1;
11
       // 求凸函数的极大值
       if(lans >= rans)
          l = lmid + 1;
       else
15
          r = rmid - 1;
16
   }
17
   // 求凹函数的极小值
   cout << min(lans,rans) << endl;</pre>
   // 求凸函数的极大值
   cout << max(lans,rans) << endl;</pre>
22
23
   //浮点三分
24
   const double EPS = 1e-9;
25
   while(r - 1 > EPS) {
       double lmid = 1 + (r - 1) / 3;
       double rmid = r - (r - 1) / 3;
28
       lans = f(lmid),rans = f(rmid);
29
       // 求凹函数的极小值
30
       if(lans <= rans)</pre>
          r = rmid;
       else
34
          1 = lmid;
       // 求凸函数的极大值
35
       if(lans >= rans)
36
          1 = lmid;
37
38
       else
          r = rmid;
   // 输出 1 或 r 都可
   cout << 1 << endl;</pre>
```

倍增 7.4

7.5 ST 表

```
//解决可重复问题
   const int N=100005;
   int f[N][20];
   void pre()
       for(int i=1;i<=n;i++)</pre>
           f[i][0]=a[i];
       int t = \log(n)/\log(2) + 1;
       for(int j=1;j<t;j++)</pre>
10
           for(int i=1;i<=n-(1<<j)+1;i++)</pre>
11
               f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1])
```

```
13
14
    int ask(int l,int r)
        int k=\log(r-1+1)/\log(2);
17
        return max(f[1][k],f[r-(1<<k)+1][k]);</pre>
18
   }
19
```

7.6 启发式合并

每次合并均将小集合合并至大集合中 时间复杂度 O(nlogn)

7.7dsu on tree

```
const int N=100005;
   const int M=200005;
   /*---建树操作省略---*/
   int sz[N],son[N];
   11 sum,cnt[N];
   int mx=0;
   bool v[N];
   void dfs_son(int x)
      v[x]=1;
10
       sz[x]=1;
11
       for(int i=head[x];i;i=Next[i]){
12
          int y=ver[i];
          if(v[y])
             continue;
          dfs son(y);
16
          sz[x]+=sz[y];
          if(sz[y]>sz[son[x]])
18
             son[x]=y;
19
       }
20
       return;
23
24
   11 ans[N];
25
   void update(int x,int father,int flag,int pson)
26
       /*维护并统计答案
       此处以出现次数最多元素编号之和为例
       int color=c[x];
       cnt[color]+=flag;
       if(cnt[color]>mx)
          mx=cnt[color],sum=color;
       else if(cnt[color]==mx)
          sum+=color;
36
       for(int i=head[x];i;i=Next[i]){
          int y=ver[i];
          if(y==father||y==pson)
39
             continue;
40
          update(y,x,flag,pson);
42
43
       return;
44
   }
45
   void dfs(int x,int father,int op)
```

ACM-ICPC 代码模板 第 28 页

```
for(int i=head[x];i;i=Next[i]){
49
          int y=ver[i];
50
          if(y==father||y==son[x])
51
              continue;
53
          dfs(y,x,0);
54
       }
55
56
       if(son[x])
57
          dfs(son[x],x,1);
58
       update(x,father,1,son[x]);
59
60
       ans[x]=sum;
61
       if(!op)
62
          update(x,father,-1,0),sum=mx=0;
63
64
       return;
66
67
   }
   int main()
68
69
       //主要操作过程在dfs()中实现
70
       //dfs_son()仅为预处理
71
       dfs_son(1);
       dfs(1,0,1);
73
   }
74
```

7.8 高精度加法

7.9 高精度减法

7.10 高精度乘法

7.11 高精度除法

7.12 NTT 优化高精度乘法