

Registri e Contatori

Reti Logiche AA 2020-2021

(Update 14 Ottobre 2020)
Docente:

prof. William FORNACIARI

william.fornaciari@polimi.it

Introduzione

- Circuiti sequenziali speciali
 - Esiste una classe di circuiti sequenziali la cui progettazione potrebbe seguire il processo "classico" di sintesi ma che è più conveniente analizzare in altro modo
 - La regolarità della struttura facilità la progettazione
 - A questa classe appartengono:
 - Registri
 - Memorizzano una definita quantità di informazione
 - Possono operare sul contenuto una o più semplici trasformazioni.
 - » Shift destro/sinistro
 - » Caricamento parallelo/seriale
 - Contatori
 - Attraversano ripetutamente un numero definito di stati
 - » Contatori sincoroni
 - » Contatori asincorni
 - Gestori di Code
 - FIFO, LIFO

- Un registro è un elemento di memoria in grado di conservare un insieme di bit, denominato parola, su cui può eventualmente operare una o più semplici trasformazioni
 - Benché si possa utilizzare un qualunque tipo di bistabile, per realizzare i registri si preferisce utilizzare FF D (master-slave o edge-triggered)
- I registri si distinguono sulla base dei seguenti aspetti:
 - Modalità di caricamento dati
 - Parallelo
 - Seriale
 - Modalità di lettura dati
 - Parallelo
 - Seriale
 - Operazioni di scorrimento sui dati:
 - a destra e/o a sinistra (aritmetico o non aritmetico) e circolare

- Registro parallelo-parallelo
 - ▶ Esempio di registro a 4 bit

- Registro serie-serie (Shift Register Registro a Scorrimento)
 - ▶ Esempio di registro a 4 bit

- Registro serie-parallelo
 - ▶ Esempio di registro a 4 bit

- Registro parallelo-serie
 - ▶ Esempio a 4 bit con shift-aritmetico (Shift Destro)
 - In fase di traslazione, ricopia il bit più significativo nella posizione più significativa (estensione del segno)

- Registro circolare a 4 bit
 - Esempio a 4 bit con rotazione a destra
 - In fase di traslazione, trasferisce il bit meno significativo al posto di quello più significativo, spostando i rimanenti di una posizione a destra.

- Un contatore è una rete sequenziale che, solitamente, riceve in ingresso solamente un evento di conteggio che sposta la posizione corrente in avanti - upwards - (o indietro - downwards) di una unità.
 - Il valore raggiunto è associato allo stato presente.
 - Possono esistere altri ingressi di *controllo* per la realizzazione di contatori bidirezionali; il metodo di progetto cambia di poco.
- Il contatore appartiene ad una famiglia di reti sequenziali "omogenee" caratterizzate da:
 - Specifiche di funzionamento analoghe per l'intera famiglia;
 - Ripetitività e località della struttura (in molto casi).
 - Metodologia di specifica semplificata rispetto alla generica tabella degli stati e metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali;

- Un contatore può anche essere visto come una generica rete sequenziale dove, a meno di particolari specifiche, il valore d'uscita coincide con il valore di stato.
 - ▶ A meno di casi particolari, non sono presenti reti di transcodifica
 - Si utilizzano Flip-flop (master slave o a commutazione sul fronte)

- In pratica, adottare le tecniche generali di progetto delle reti sequenziali risulta eccessivamente oneroso; si ricorre a tecniche specifiche, più semplici, secondo criteri tipici della classe di circuiti.
 - consentono buona ottimizzazione.

- Un contatore si distingue per:
 - ▶ Il modulo M
 - Il contatore conterà da 0 a M-1 e, al successivo impulso, torna a 0;
 - ▶ Il codice
 - Il contatore presenta all'esterno il valore del conteggio secondo un codice stabilito.
 - A numero minimo di bit: Il numero di tali bistabili è \[log₂ M\]. (es: Gray, Binario Naturale)
 - Altri codici: se il codice è su k bit, converrà usare k bistabili anche qualora fosse $k > \lceil \log_2 M \rceil$, per evitare di inserire una rete di transcodifica fra i bistabili e l'uscita del contatore. (es: 1-hot, parità)
 - ▶ La *codifica*
 - Definisce la successione degli M valori associati allo stato attraverso cui il contatore evolve.
 - Nota: la codifica dello stato è definita a priori
 - Es: M=4 codice Gray(codice a numero minimo di bit) codifica: S0=00 S1=01 S2=11 S3=10
 - Es: M=4 codice Parità Pari (codice a numero non minimo di bit): codifica: S0=000 S1=011 S2=101 S3=110

- Oltre che per modulo, codice e codifica, i contatori si distinguono in sincroni e asincroni:
 - Contatore sincrono:
 - Tutti i bistabili ricevono simultaneamente in ingresso l'evento di conteggio;
 - Clock oppure Gated Clock (clock attraversa una rete combinatoria).
 - Le eventuali commutazioni sono tutte simultanee (sincrone), a parte modeste variazioni dovute alla propagazione attraverso le reti di eccitazione dei bistabili;
 - Contatore asincrono:
 - Almeno un bistabile non riceve in ingresso il segnale di conteggio
 - La sua eventuale commutazione è comandata da quella degli altri bistabili e avverrà con un ritardo dovuto alla propagazione attraverso tali bistabili (oltre che alle reti combinatorie eventualmente presenti);
- Nel seguito si tratterà in dettaglio il progetto dei contatori sincroni

- Modulo: 2ⁿ; Codice: A numero minimo bit; Codifica: Binaria Naturale
- Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 2¹

$$\begin{array}{c|ccccc}
Q_0 & Q_0^* & Q_0 & T_0 \\
\hline
0 & 1 & & \\
1 & 0 & & \\
\end{array}$$

Tabella delle transizioni e delle eccitazioni per M= 2²

Tabella delle transizioni e delle eccitazioni per M= 2³

POLITECNICO MILANO 1863

Q_2	Q_1	Q_0	Q_2	$^{\star}Q_{1}$	$^{\star}Q_{0}$	o *	Q_2	Q_1	Q_0	T_2	T_1	Γ_0
0	0	0	0	0	1		0	0	0	0	0	1
0	0	1	0	1	0		0	0	1	0	1	1
0	1	0	0	1	1		0	1	0	0	0	1
0	1	1	1	0	0	-/	0	1	1	1	1	1
1	0	0	1	0	1		1	0	0	0	0	1
1	0	1	1	1	0		1	0	1	0	1	1
1	1	0	1	1	1		1	1	0	0	0	1
1	1	1	0	0	0		1	1	1	1	1	1
				,								

 L'analisi delle tabelle delle eccitazioni evidenzia la seguente regolarità (M=2⁴):

Q_3	Q_2	Q_1	Q_0	T_3	T_2	T_1	Γ_0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1
0 0 0 0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0 0 1 1 1 1 1 1 1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	1	1
		П	_	1			

Q_3	Q_2	Q_1	20	T3	T_2	T_1	Γ_0		
0	0	0	0	0	0	0	1		
0	0	0	1	0	0	1	1		
0	0	1	0	0	0	0	1		
0	0	1	1	0	1	1	1		
0	1	0	0	0	0	0	1		
0	1	0	1	0	0	1	1		
0	1	1	0	0	0	0	1		
0	1	1	1	1	1	1	1		
1	0	0	0	0	0	0	1		
1	0	0	1	0	0	1	1		
1	0	1	0	0	0	0	1		
1	0	1	1	0	1	1	1		
1	1	0	0	0	0	0	1		
1	1	0	1	0	0	1	1		
<u>1</u>	1	1	0	0	0	0	1		
1 1 1 1 1 1 1									
$T_1 = Q_0$									

$Q_3Q_2Q_1Q_0$ $T_3T_2T_1T_0$									
0	0	0	0	0	0	0	1		
0	0	0	1	0	0	1	1		
0	0	1	0	0	0	0	1		
0	0	1	1	0	1	1	1		
0	1	0	0	0	0	0	1		
0	1	0	1	0	0	1	1		
0	1	1	0	0	0	0	1		
0	1	1	1	1	1	1	1		
1	0	0	0	0	0	0	1		
1	0	0	1	0	0	1	1		
1	0	1	0	0	0	0	1		
1	0	1	1	0	1	1	1		
1	1	0	0	0	0	0	1		
1	1	0	1	0	0	1	1		
1	1	1	0	0	0	0	1		
1	1	1	1	1	1	1	1		
$T_2 = Q_1 * Q_0 = Q_1 * T_1$									

Q_3	Q_2	Q_1	Q_0	T_3	Γ_2	T_1	Γ_0			
0	0	0	0	0	0	0	1			
0	0	0	1	0	0	1	1			
0	0	1	0	0	0	0	1			
0	0	1	1	0	1	1	1			
0	1	0	0	0	0	0	1			
0	1	0	1	0	0	1	1			
0	1	1	0	0	0	0	1			
0	1	1	1	1	1	1	1			
1	0	0	0	0	0	0	1			
1	0	0	1	0	0	1	1			
1	0	1	0	0	0	0	1			
1	0	1	1	0	1	1	1			
1	1	0	0	0	0	0	1			
1	1	0	1	0	0	1	1			
1	1	1	0	0	0	0	1			
1	1	1	1	1	1	1	1			
$T_3 = Q_2 * Q_1 * Q_0 = Q_2 * T_2$										

MILANO 1863

- ► Contatore serie: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*T_{n-1}$
 - Tutti gli stadi, ad esclusione dei primi due, risultano perfettamente identici.
 - La regolarità della struttura è "pagata" con un maggior ritardo di propagazione (limita la frequenza di funzionamento).
 - Nota: la frequenza di funzionamento si riduce linearmente con la dimensione del contatore poiché T_i diventa stabile solo dopo che lo è diventato T_{i-1} .
- ▶ Contatore parallelo: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*Q_{n-2}*Q_{n-3}...*Q_0$
 - Schema molto semplice e regolare.
 - Minor ritardo di propagazione rispetto al caso precedente (frequenza di funzionamento maggiore rispetto al caso precedente).
 - Nota: la frequenza di funzionamento si riduce all'aumentare delle dimensioni del contatore a causa dell'aumento del numero degli ingressi alle porte AND.
- In generale, la regolarità deriva dal ciclo di conteggio: cambiando tipo di bistabile (es: FFD) le funzioni di eccitazione cambiano, ma la regolarità resta
- Un contatore binario può fungere da divisore di frequenza

POLITECNICO MILANO 1863

Contatore binario (modulo 2ⁿ) serie:

Contatore binario (modulo 2ⁿ) parallelo:

Reti logiche - 16 - (c) 2016 William Fornaciari

- Modulo: 2ⁿ; Codice: A numero minimo bit; Codifica: Binaria Naturale
- Bistabile utilizzato: D

Tabella delle eccitazioni per M= 2¹

$$\begin{array}{c|cc}
Q_0 & D_0 \\
\hline
0 & 1 \\
\hline
1 & 0
\end{array}$$

Tabella delle eccitazioni per M= 2²

$$\begin{array}{c|cccc} Q_1Q_0 & D_1D_0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 0 \\ \end{array}$$

Tabella delle eccitazioni per M= 2³

MILANO 1863

Q_2	Q_1	Q_0	D_2	D_1I	D_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

L'analisi delle tabelle delle eccitazioni evidenzia la seguente regolarità (M=2⁴):

Q_3	Q_2	Q_1	Q_0	D ₃	D_2	D_1I	0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0 0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
<u>1</u> <u>1</u>	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0

Q_3	Q_2	Q_1	Q_0	D_3	D_2	D_1	Po
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0
	Ι) ₁ =	=Q ₁	\bigoplus	Q_0		

Q ₃	Q_2	Q_1	Q_0	D_3	D_2	p_1I	O ₀
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0 0 0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0
	D :	_	\cap	\mathbb{H}		*(<u> </u>

Q_3	Q_2	Q_1	20	D_3	\mathbb{D}_2	D_1I	0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0 0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
U	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1 1 1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
	0	1	1	1	1	0	0
1	1	0	0	1	1	0	1
1 1 1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0
\ _	\cap	\oplus	()	*(,	*	١

MILANO 1863

Parallelo: $D_0 = \overline{Q}_0 \oplus 1 = \overline{Q}_0$

Serie: $D_0 = Q_0 \oplus 1 = Q_0'$

 $D_1 = Q_1 \oplus Q_0$

 $D_2 = Q_2 \oplus (\overline{Q_1} * Q_0) \qquad D_3 = Q_3 \oplus (Q_2 * \overline{Q_1} * Q_0)$ $D_2 = Q_2 \oplus (Q_1 * Q_0) = Q_2 \oplus (Q_1 * K_0) \qquad D_3 = Q_3 \oplus (Q_2 * K_1)$

$$D_3 = Q_3 \oplus (Q_2 * K_1)$$

- Due casi diversi:
 - Progetto di contatori con modulo libero (2ⁿ o diverso da 2ⁿ), codice a numero non minimo bit e codifica non binaria naturale
 - Struttura regolare
 - Contatori ad anello (codice one-hot)
 - Contatore ad anello incrociato
 - A struttura non regolare
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali
 - Progetto di contatori con modulo diverso da 2ⁿ, codice a numero minimo bit e codifica binaria naturale
 - A struttura non regolare
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali

- Contatore "ad anello"
 - ▶ Modulo: n; Codice: *One hot*; Codifica: 2^k
 - Bistabile utilizzato: D
 - Codice one-hot:
 - In ogni codifica valida uno e un solo bit assume valore 1, tutti gli altri valgono 0
 - Per codificare n informazioni diverse occorrono n bit
 - il codice non è a numero minimo di bit
 - Esempio: i numeri da 0 a 3 sono codificati come:
 - $-0 = 0001 (2^0)$
 - $-1 = 0010 (2^1)$
 - $-2 = 0100(2^2)$
 - $-3 = 1000 (2^3)$
 - esiste una corrispondenza 1-a-1 fra l'entità codificata e la posizione dell'unico 1 nella codifica

- Contatore "ad anello" (ring counter) modulo n:
 - ▶ È un registro a scorrimento con riporto tra stadio iniziale e finale

▶ Il valore del FFD0 viene posto a 1 prima dell'inzio del conteggio; i rimanenti FFD vengono posti a 0.

- Il contatore "ad anello" ha una struttura ad alto costo ma molto semplice, compatta e veloce
 - il numero di bistabili è molto più elevato del minimo e cresce linearmente.
- Viene utilizzato in applicazioni nelle quali si deve abilitare uno e un solo sottosistema; il contatore svolge il ruolo di unità di controllo.
 - ▶ Lo stato di ogni bistabile del contatore costituisce immediatamente il segnale di controllo e non occorre alcuna rete di transcodifica.
 - Se gli stati del contatore sono n, le linee di segnale che si inviano ai sottosistemi controllati sono ancora n.
 - Nota: l'uso di un contatore con un codice a numero minimo bit es., binario naturale richiede una rete di *transcodifica* che per ogni stato del contatore generi un valore attivo su una sola delle n linee di segnale in uscita (rete combinatoria con $k = \lceil \log n \rceil$ ingressi e n uscite); la rete di transcodifica, al crescere di n, ha costi crescenti e introduce crescenti ritardi di propagazione

- Contatore "ad anello incrociato" o "Johnson"
 - Modulo: 2*n (nota: sempre pari)
 - Codice e Codifica (esempio)

						Q_2	Q_1	Q_0	Q_2	*Ç
	\bigcirc	\bigcirc	\bigcirc	* *	0	0	0	0	0	(
\cap	Q_1	_ _ _	Q_1	$\frac{^{*}Q_{0}^{*}}{1}$	1	0	0	1	0	1
1	0	1	1	1	2	0	1	1	1	1
1	0_1		1	<u> </u>	3	$\overline{1}$	1	1	1	1
2				0	4	1	1	0	1	(
3	1	U	U	U	5	1	0	0	0	(

	Q_3	Q_2	Q_1	Q_0	Q ₃ *	Q_2^*	Q_1	*Q0
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	1
2	0	0	1	1	0	1	1	1
3	0	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	0
5	1	1	1	0	1	1	0	0
6	1	1	0	0	1	0	0	0
7	1	0	0	0	0	0	0	0

Riconosce					
Q' ₃	Q' ₀				
Q ′ 1	Q_0				
Q' ₂	Q_1				
Q' ₃	Q_2				
Q_3	Q_0				
Q_1	Q' ₀				
Q_2	Q' ₁				
Q_3	Q' ₂				

Bistabile utilizzato: D

- ▶ Per codificare 2*n informazioni diverse occorrono n bit
 - Il codice non è a numero minimo di bit
- Svantaggi principali: modulo sempre pari, codice e codifica senza particolare campo di applicabilità
- Vantaggio principale: distanza di Hamming unitaria, prestazioni elevate, meno elementi di memoria rispetto al contatore ad anello
- Rete di decodifica dello stato con porte NAND a soli 2 ingressi

Contatore "ad anello incrociato" modulo 2*n:

▶ Il valore dei FFD viene posto a 0 all'inizio (quindi Q'₀ vale 0)

- Contatore modulo diverso da 2ⁿ: Esempio1
 - Modulo: 6; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 6

Q_2	Q_1	Q_0	Q_2	$^{\star}Q_{1}$	*Q_0	0 *
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	

$$T_2 = Q_1 * Q_0 + Q_2 * Q_0$$

 $T_1 = Q_2' * Q_0$
 $T_0 = 1$

Nota: le equazioni derivano dalla sintesi delle tre funzioni combinatorie T_0 , T_1 e T_2

- Contatore modulo diverso da 2ⁿ: Esempio2
 - ► Modulo: 10; Codice: A numero minimo bit; Codifica: Binaria Naturale (Contatore *BCD* o *Decadico*)
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 10

Q_3	Q_2	Q_1	Q_0	Q_3^*	Q_2^*	Q_1	$^{\star}Q_{0}^{\prime}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

 $Q_3Q_2Q_1Q_0$ $T_3T_2T_1T_0$

$$T_{3}=Q_{3}*Q_{0}+Q_{2}*Q_{1}*Q_{0}$$

$$T_{2}=Q_{1}*Q_{0}$$

$$T_{1}=Q_{3}'*Q_{0}$$

$$T_{0}=1$$

Nota: In modo analogo si potrebbe ottenere la realizzazione mediante FFD.

$$D_{0}=Q_{0}'$$

$$D_{1}=Q_{3}'*Q_{1}'*Q_{0}+Q_{3}'*Q_{1}*Q_{0}'$$

$$D_{2}=Q_{3}'*Q_{2}'*Q_{1}*Q_{0}+Q_{2}*Q_{0}'+Q_{2}*Q_{1}'$$

$$D_{3}=Q_{3}*Q_{1}'+Q_{2}*Q_{1}*Q_{0}$$

Contatori sincroni: Composizione di contatori

- É possibile realizzare contatori per moduli elevati partendo da contatori più semplici
 - ► Esempio: realizzare un contatore a k cifre decimali utilizzando K blocchi del contatore decadico (Mod-10 ([0..9]));
- Ogni sotto-contatore genera un segnale di traboccamento (carry) che, quando raggiunge valore 1, consente al clock di attivare il sotto-contatore collegato ad esso in cascata.
- La condizione di traboccamento è quella indicata dalla ultima configurazione di stato presente prodotta dal contatore a valle.
 - ► Esempio: nel contatore BCD, la condizione di traboccamento è 1001 che corrisponde a $f(Q_3, Q_2, Q_1, Q_0) = Q_3 * Q_2' * Q_1' * Q_0$
- Il modulo del contatore complesso è il prodotto dei moduli.
 - ► Esempio: Due contatori Mod-2 e Mod-5 possono produrre un contatore decadico.

Contatori sincroni: Composizione di contatori

POLITECNICO MILANO 1863

Esempio: contatore BCD a 3 Cifre (Mod-1000)

Esempio: contatore Mod-12 mediante composizione di un contatore Mod-2 e un contatore Mod-6 (la versione a destra è più costosa e lenta)

Reti logiche - 28 - (c) 2016 William Fornaciari

Contatori asincroni: Generalità

- Contatore asincrono:
 - Almeno un bistabile non riceve in ingresso il segnale di conteggio ne in modo diretto ne in modo indiretto
 - Indiretto: clock in AND con una funzione logica che ha, come supporto, alcune/tutte le variabili di stato (gated clock)
 - La sua commutazione dei bistabili che non sono collegati al clock è comandata da quella degli altri bistabili e avverrà con un ritardo dovuto alla propagazione attraverso tali FF (oltre che alle eventuali reti combinatorie);
 - La commutazione è generata dall'opportuno fronte di commutazione sull'uscita di almeno uno degli altri bistabili coinvolti
- Modulo, codice e codifica possono anche essere specificati arbitrariamente; purtrppo, può accadere che un contatore asincrono con queste caratteristiche non sia realizzabile
- Ipotesi: uso di bistabili T che commutano sul fronte ed in cui T viene posto ad 1

- Contatore binario (modulo 2ⁿ) Ripple Counter
 - Modulo: 2ⁿ; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T
 - Il contatore è ottenuto collegando in cascata i bistabili
 - Con FFT che commutano sul fronte di salita il contatore conta indietro.

MILANO 1863

- » conta avanti con FF che commutano sul fronte di discesa.
- Funzionamento: il fronte di salita del clock modifica lo stato di FF_T₀ che passa da 0 ad 1; questo fronte di salita modifica lo stato di FF_T₁ che, a sua volta, genera un fronte di salita che modifica modifica lo stato di FF_T₂;
 - » 000...00, 111...11, 111..10, ...

Appunti da aggiungere su contatori draft 14 dicembre 2016

Riduzione del ciclo di conteggio
Composizione di contatori
Contatori realizzando mediante shift register
Generazione di forme d'onda usando contatori J e contatori+mux
Contatori con enable
Contatori realizzati mediante ROM
Contatori up/down

Ingressi ausiliari: reset, enable, preset (load)

Reset

- Asincrono: effetto immediate di azzeramento delle uscite
- Sincrono: azzeramento sincronizzato con il clock

Enable

- ▶ E=1, contatore abilitato (somma 1 ad ogni ck o evento)
- ► E=0, il contatore non opera (valore congelato)
- ▶ Utile per la composizione modulare di contatori

Preset

- Valore che può essere caricato nei FF interni al contatore, forza ad iniziare il conteggio da un certo stato
- Utile per modificare il ciclo di conteggio

Modifica del ciclo di conteggio

- Estendo progettando una FSM la cui uscita diviene il pilotaggio dell'enable di un contatore
- Riduco
 - Resettando il contatore quando si raggiunge un certo valore inferiore al modulo del contatore di partenza, ovvero tagliando la coda del conteggio
 - Precaricando un valore di partenza, ovvero tagliano l'inizio del conteggio
- Potrebbe essere necessaria una rete di decodifica per fornire un nuovo significato allo stato del sistema (valori delle uscite dei FF)

Riduzione della base di conteggio

- Allo stato S0 il contatore si resetta
- Reset Sincrono
 - Raggiunto S0, R forza 0 al ciclo di clock successivo
 - ▶ La base di conteggio è S0+1
- Reset Asincrono
 - Raggiunto S0, R azzera immediatamente
 - Base di conteggio è S0
 - Rischio se un FF si resetta molto prima degli altri, di arrivare in uno stato differente dal reset globale
 - Potrebbe esserci un valore non valido per poco tempo
 - ▶ Si può mettere un D in "serie" a S0, però il ciclo è S0+2

Esempio

- Dato un contatore per 16 ridurre la base di conteggio a
 11
 - Reset sincrono
 - S0=10 (dieci), base di conteggio 10+1=11
 - Rete è un AND che riconosce 1010 (Q₃ Q'₂Q₁Q'₀)
 - Se voglio un costo minimo posso usare anche solo Q3 Q1

Uso del commando di caricamento LOAD

- Posso combinare il LOAD con il reset
 - Load sincrono
 - Base di conteggio S0-SI+1
 - Load asincrono
 - Base di conteggio SO-SI

- Se programmo la base di conteggio con il riporto che pilota il caricamento di un valore iniziale
 - Base conteggio = N-SI

Esempio: contatore BCD usando parallel load

FIGURE 6-15

Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

4 bit counter with parallel load and enable

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Count next binary state
1	1	0	0	No change

Contatori bidirezionali (up/down)

- Uso un segnale U, se U=1 down, se U=0 up
- Esempio con FF JK

Binario up/down

Contatore UP binario

Cella base modulare

Contatore a ritroso

Lo stato successivo e' espresso da:

 $(y3y2y1y0)^{n+1}$

$$(yi)^{n+1}$$
 = $(yi)^n \underline{Pi}$ se non vi e' propagazione di prestito (Pi=0)
= $(\underline{yi})^n \underline{Pi}$ se vi e' propagazione di prestito (Pi=1)

Quindi:
$$(yi)^{n+1} = (yi)^n \underline{Pi} + (\underline{yi})^n \underline{Pi} = (yi)^n xor \underline{Pi}$$

con: Pi =
$$\underline{yi-1}$$
. Pi-1

cioe':
$$P0 = 1$$
 ... $Pi = yi-1 yi-2 ... y1 y0$

Contatore binario a ritroso e up/down

La equazione caratteristica del: **FF-T** $(yi)^{n+1} = (Ti xor yi)^n$ FF-JK $(yi)^{n+1} = (Ji.\underline{yi} + \underline{Ki}.yi)^n$

coincide con (yi)ⁿ⁺¹ se poniamo: Ti=Pi

