

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 3. RECIPIENT'S CATALOG NUMBER 2. GOVT ACCE 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Phase ! Inspection Report Phase I Inspection Report National Dam Safety Program Nanticoke Creek Watershed Project Site 8 6. PERFORMING ORG. REPORT NUMBER Susquehanna River Basin, Broome County, New York Inventory No. N.Y. 573 8. CONTRACT OR GRANT NUMBER(4) 7. AUTHOR(a) George Koch, P.E. DACW-51-79-C-0001 10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 17 April 1979 New York State Department of Environmental Con-13. NUMBER OF PAGES servation/ 50 Wolf Road Albany, New York 12233

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Department of the Army UNCLASSIFIED 26 Federal Plaza/ New York District, CofE 15. DECLASSIFICATION/DOWNGRADING SCHEDULE New York, New York 10007 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Nanticoke Creek Watershed Project Dam Safety Broome County National Dam Safety Program Susquehanna River Basin Visual Inspection Nanticoke Creek Hydrology, Structural Stability 29 ABSTRACT (Continue on reverse side if necessary and identity by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. Nanticoke Creek Watershed Protection Project Dam Site No. 8 was found to have no conditions which would render the dam unsafe. Minor maintenance

actions were recommended.

Nanticoke Creek Watershed Project Site Number 8 (Inventory Number NY-573). Susquehanna River Basin. Broome County, New York. Phase 1 Inspection Report.

SUSOUEHANNA RIVER BASIN NANTICOKE CREEK WATERSHED PROTECTION PROJECT SITE No. 8 I.D. No. NY-573 (# 85D-3645) PHASE 1 INSPECTION REPORT

TABLE OF CONTENTS

				PAGE NO.
-		ASSESSMENT		
-		OVERVIEW PHOTOGRAPH		
1		PROJECT INFORMATION		1
	1.1	GENERAL		1
	1.2	DESCRIPTION OF PROJECT		1
	1.3	PERTINENT DATA		2
2		ENGINEERING DATA		4
	2.1	DESIGN		4
	2.2	CONSTRUCTION RECORDS		4
	2.3	OPERATION RECORD		4
	2.4	EVALUATION OF DATA		4
3		VISUAL INSPECTION		5
	3.1	FINDINGS		5
	3.2	EVALUATION OF OBSERVATIONS		6
4		OPERATION AND MAINTENANCE PROC	CEDURES	7
	4.1	PROCEDURE		7
	4.2	MAINTENANCE OF DAM	Accession For	7
	4.3	WARNING SYSTEM IN EFFECT	DEC TAB Unconnounced	7
	4.4	EVALUATION	Justification	7
			Distribution/	
			Dist special	

		PAGE NO.
5	HYDROLOGIC/HYDRAULIC	8
5.1	DRAINAGE AREA CHARACTERISTICS	8
5.2	ANALYSIS CRITERIA	8
5.3	SPILLWAY CAPACITY	8
5.4	RESERVOIR CAPACITY	8
5.5	FLOODS OF RECORD	8
5.6	OVERTOPPING POTENTIAL	9
5.7	EVALUATION	9
6	STRUCTURAL STABILITY	10
6.1	EVALUATION OF STRUCTURAL STABILITY	10
7	ASSESSMENT/RECOMMENDATIONS	11
7.1	ASSESSMENT	11
7.2	RECOMMENDED MEASURES	11
APPEND	DIX	
A.	PHOTOGRAPHS	
в.	ENGINEERING DATA CHECKLIST	
c.	VISUAL INSPECTION CHECKLIST	
D.	HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS	
E.	STABILITY ANALYSES	
F.	REFERENCES	

DRAWINGS

G.

PHASE 1 REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:

Nanticoke Creek Watershed

Protection Project Dam Site No. 8

I.D. No. NY-573 (#85D-3645)

State Located:

New York

County Located:

Broome

Watershed: Stream: Susquehanna River Basin Unnamed tributary of Nanticoke Creek

Date of Inspection:

November 8, 1978

ASSESSMENT

The Nanticoke Creek Watershed Protection Project Dam Site No. 8 is a floodwat retarding structure. Examination of available documents and a visual inspection of the dam did not reveal conditions which are considered to be unsafe.

The total discharge capability of the spillways is adequate for the Probable Maximum Flood (PMF).

To assure the continued satisfactory performance of this structure, a schedule of periodic maintenance should be established. Included in this schedule should be items such as mowing the grass on the embankment slopes and periodic operation and lubrication of the slide gate mechanism.

George Koch

Chief, Dam Safety Section
New York State Department
of Environmental Conservation

NY License No. 45937

Approved By:

Col. Clark H. Benn

New York District Engineer

Date:

NANTICOKE CREEK SITE No. 8 OVERVIEW NORTHERN END OF UPSTREAM FACE AND EMERGENCY SPILLWAY

OVERVIEW
SOUTHERN END OF UPSTREAM FACE

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
NANTICOKE CREEK WATERSHED PROTECTION PROJECT
DAM SITE No. 8
I.D. No. NY 573
(#85D-3645)
SUSQUEHANNA RIVER BASIN
BROOME COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase 1 Inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection

This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of the Dam and Appurtenant Structures

The Nanticoke Creek Watershed Protection Project Dam No. 8 consists of an earth dam with a principle spillway pipe passing through the embankment and an emergency spillway on the northern end of the dam.

The dam consists of a compacted earth embankment which is 41 feet high, has a crest length of 460 feet and a crest width of 16 feet. The upstream slope is 1 vertical on 3 horizontal and the downstream slope is 1 vertical on21/2horizontal. The crest and exposed slopes are grass covered. An earth cutoff trench of varying depth and width keys the embankment into the foundation soils.

The principle spillway consists of a two stage reinforced concrete drop inlet structure, a 24 inch diameter reinforced concrete water pipe with anti-seepage collars, and a plunge pool to dissipate energy at the outlet end of the conduit. A reservoir drain consisting of a 12 inch cast iron pipe extends from the upstream toe of the embankment to the base of the principle spillway riser. A vertical slide gate mechanism mounted along the inside of the riser controls the flow through the reservoir drain. The emergency spillway is a grass lined channel, 180 feet wide, located in an earth cut on the northern end of the dam.

An internal drainage system consisting of a gravel and sand filter with perforated 8 inch diameter bituminous coated, corrugated metal collector pipes is located at the base of the embankment near the downstream toe. Seepage is collected and conducted through this drain and outleted into the plunge pool.

b. Location

Dam No. 8 of the Nanticoke Creek Project is located on an unnamed tributary of the Nanticoke Creek, approximately 7.5 miles north of the Village of Maine. The site is off Howland Hill Road in the Town of Nanticoke, New York.

c. Size Classification

This dam is 41 feet high and is classified as an "intermediate" size dam (between 40 and 100 feet high).

d. Hazard Classification

The dam is classified in the "high" hazard category because of the presence of several homes downstream of the dam.

e. Ownership

This dam is owned by the County of Broome, New York.

f. Purpose of Dam

This dam is a floodwater retarding structure.

g. Design and Construction History

This dam was designed by the U.S. Department of Agriculture, Soil Conservation Service (SCS). Construction of the dam was completed in 1970. The SCS Office for Broome County, located at the Broome County Airport, has a design folder containing hydrologic, hydraulic, and structural design information, and the as-built plans and documents. Since the only modification made during construction was a minor one resulting from the rock surface under the spillway being deeper than anticipated, the plans included in Appendix F are essentially the same as the as-built drawings.

h. Normal Operating Procedures

Normal flows are discharged through the principle spillway. This structure has sufficient capacity to discharge a 100 year flood without flow occuring in the emergency spillway. For storms greater than the 100 year flood, flow will discharge through the emergency spillway.

1.3 PERTINENT DATA

a.	Drainage Area (acres)	1382
ъ.	Discharge at Dam (cfs)	
	Principle Spillway W.S. at top of dam	70
	Principle Spillway at Emergency Spillway Crest Elevation	66
	Reservoir Drain at Principle Spillway Crest El.	18
	Maximum Known Flood	61
c.	Emergency spillway W.S. at top of dam Elevation (USGS datum)	8280
٠.	Top of Dam	1258.2
	Emergency Spillway Crest (Auxiliary Spillway)	1252.5
	Principle Spillway Crest (Service Spillway)	1239.5
	Invert of Reservoir Drain Inlet	1218.0

d.	Reservoir (acres)	
	Surface area at Top of Dam	46.2
	Surface area at Crest of Emergency Spillway	
	Surface area at Crest of Principle Spillway	33.0
	burrace area at crest of Frinciple Spillway	13.8
۵.	Storage Capacity (acre-feet)	
٠.	Top of Dam	
		608
	Emergency Spillway Crest	380
	Principle Spillway Crest	88.6
£	Dam	
1.		
	Embankment Type: Compacted earth fill with	
	an earth keyed cutoff trench	
	Embankment length (ft.)	460
		cal on 3 horizontal
	Downstream 1 verti	cal on 2.5 horizontal
	Crest elevation (USGS datum)	1258.2
	Crest Width (ft)	16
g.		
	Principle Spillway (Service)	
	Type: Uncontrolled, reinforced concrete, two	stage
	drop inlet (2 x 6 ft.) rising 24.5	
	feet; 24 inch diameter reinforced concr	ete
	pressure conduit 248 feet long;	
	riprapped plunge pool.	
	Length (ft.): Weir	12
	Emergency Spillway (Auxiliary)	
	Type: Grass-lined channel having trapezoidal	
	cross-section	
	Bottom Width (ft.)	180
	Side Slopes (V : H)	1 on 3
	Length of level section (in profile)(ft.)	50
	Exit Slope (ft/ft)	
	mure oroke (ICLIC)	0.29

h. Low Level Outlet

Reservoir Drain:

Type: 12 inch diameter cast iron pipe with a reinforced concrete inlet.

Control: Mechanically operated vertical slide gate mounted along the inside of the principle spillway riser.

SECTION 2: ENGINEERING DATA

2.1 DESIGN

Ξ

a. Geology

The Nanticoke Creek Watershed Project Dam No. 8 is located in the "Glaciated Allegheny Plateau" physiographic province of New York State. Bedrock underlying the site is mapped as Cashaqua Shale of the Upper Devonian Age. This rock was formed approximately 400 million years ago.

Glacial ice was instrumental in smoothing the topography of the area. The present surficial deposits have resulted primarily from glaciations during the Cenozoic Era, the last of which was the Wisconson glaciation, approximately 11,000 years ago. Glacial deposits such as outwash plains and eskers are major features of the landscape in parts of this region.

b. Subsurface Investigations

A subsurface investigation program was conducted by the Soil Conservation Service in 1966. This program consisted of 23 test pits and 13 drill holes. The maximum depth of the explorations was 34 feet. Applicable subsurface information is included in Appendix G.

In general, the surficial soils at the project site consist of a thin layer of topsoil underlain by glacial till on both abutments and by assorted alluvium and reworked till in the floodplain. A gravelly material with moderate to rapid permiability was encountered from 8 to 12 feet in Test Pit No. 1 on the northern abutment. This material was found only in this one test pit. Shale bedrock underlies these soil deposits.

c. Embankment and Appurtenant Structures

The dam was designed by the Soil Conservation Service who prepared a design report. Seventeen drawings, several of which have been included in Appendix G. were prepared for the construction of the dam.

Hydraulically, the dam was designed to retard the floodwaters resulting from a 100 year frequency storm, without a discharge occurring in the emergency spillway.

2.2 CONSTRUCTION RECORDS

Complete as-built contract plans and documents are available from the SCS Office in Broome County. No major construction changes were made on this job. The as-built plans were included in the appendix of this report.

2.3 OPERATION RECORD

Since the dam is an ungated, floodwater retarding structure, no operating records are maintained regarding water levels. However, during periods of heavy rainfall, SCS personnel do monitor reservoir levels.

2.4 EVALUATION OF DATA

The data presented in this report has been compiled from information obtained from the Soil Conservation Service as well as the New York State Department of Environmental Conservation files. It appears to be adequate and reliable for the purpose of the Phase 1 Inspection.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of Dam Site No. 8 was conducted on November 8, 1978. The weather was clear and the temperature was around 50°F. The water surface was several inches above the invert of the low stage inlet on the riser. There was a small flow from the principle spillway pipe spilling into the plunge pool.

b. Embankment

The earth embankment showed no signs of distress. The vertical and horizontal alignment of the crest appears to be as it was constructed, with no visible surface cracks appearing on the crest or embankment slopes. There were no areas of serious sloughing or subsidence noted. Some minor sloughing was observed on the upstream slope in the range of fluctuation of the water surface level.

Inspection of the downstream face did not reveal any signs of seepage. There was a slight discharge from the 8 inch collection pipe of the internal drainage system on the southern side of the principle spillway pipe. The collection pipe to the north of the principle spillway was dry.

No undesirable vegetative growth or animal penetrations into the slopes were observed. However, on the date of the inspection, the grass on the upstream and downstream slope had not been mowed.

c. Principle Spillway

The principle spillway consists of the vertical drop inlet structure, a reinforced concrete pressure pipe through the embankment, a plunge pool and an outlet channel. All of these components were in satisfactory condition. The only minor deficiency noted concerned the plunge pool. The downstream toe of the dam, the bottom of the stream channel and the stream banks were lined with riprap, but there was no riprap in the center of the stream to check the velocity of water coming through the spillway pipe.

d. Emergency Spillway

A grass lined emergency spillway in an earth cut section is located beyond the northern end of the embankment. The spillway had been mowed and appeared to be in satisfactory condition.

e. Drain

The reservoir drain conduit and slide gate may be used to lower the reservoir when the pool level is below the principle spillway crest. The slide gate is located within a pipe sleeve which extends to the top of the riser.

f. Downstream Channel

The outlet channel beyond the end of the plunge pool was heavily overgrown with weeds and brush. However, no severe side-slope erosion or debris obstructions were in evidence.

g. Reservoir

There were no signs of soil instability in the reservoir area.

3.2

EVALUATION OF OBSERVATIONS

Visual observations did not reveal any problems which would adversely affect the safety of the dam.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

The normal water surface elevation is approximately at the low stage inlet elevation. Downstream flows are limited by the capacity of the 24 inch diameter reinforced concrete pipe. The reservoir provides 374 acre feet of storage between the normal water level and the crest of the emergency spillway.

4.2 MAINTENANCE OF DAM

The dam is maintained by the owner and is in satisfactory condition. Normal maintenance consists of mowing the crest of the embankment and the bottom of the emergency spillway channel.

4.3 WARNING SYSTEM IN EFFECT

No apparent warning system is present.

4.4 EVALUATION

The dam and appurtenant structures are satisfactorily maintained.

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the watershed draining into the reservoir pool area was made using the USGS 7.5 minute quadrangle for Lisle, N.Y. The watershed consists of woodlands and lightly forested area situated in a rural section. Relief ranges from moderate to steep with the steeper slopes occuring on the western side of the watershed. The slopes on the western side range from 15 to 20%, and on the eastern side they range from 5 to 10%. The rectangularly shaped drainage area is about 1382 acres.

5.2 ANALYSIS CRITERIA

The analysis of the spillway capacity of the dam was performed using the Corps of Engineer's HEC-1 computer program, incorporating the "Snyder Synthetic Unit Hydrograph" method and the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the PMF in accordance with recommended guidelines of the U.S. Army Corps of Engineers.

5.3 SPILLWAY CAPACITY

The principal and emergency spillways are uncontrolled structures. The principal spillway operates under weir or orifice flow conditions depending upon the floodwater inflow to the reservoir pool. During orifice flow operation, pressure flow develops in the 24 inch conduit. The emergency spillway was analyzed as a broad-crested weir having a discharge coefficient (C) of 3.087.

The spillways have sufficient capacity for discharging the peak outflow from the PMF. Due to the limited storage capacity, there will be little attenuation of the storm flows. For this storm, the peak inflow and the peak outflow are both 3640 cfs. When the spillways are discharging the peak outflow, the water surface will be 2.4 feet below the top of the dam.

5.4 RESERVOIR CAPACITY

Normal flood control storage capacity of the reservoir between the principal and emergency spillways is 291 acre-feet which is equivalent to a runoff depth of 2.5 inches over the drainage area. Surcharge storage capacity to the maximum high water elevation is an additional 228 acre-feet; equivalent to a runoff depth over the drainage area of 2.0 inches. Total storage capacity of the dam is 608 acre-feet; equivalent to 5.3 inches of direct runoff.

5.5 FLOODS OF RECORD

The maximum known flood occured during Huricane Eloise during September, 1975. The pool level at this time was reported to be about 7 feet above the principal spillway crest. The calculated discharge for this flood is as follows:

Elevation (ft.) Discharge (cfs)

61

1246.4

- 5.6 OVERTOPPING POTENTIAL

 Analysis indicates the total discharge capability is sufficient to prevent overtopping from the PMF.
- 5.7 EVALUATION

 This dam has sufficient capability to impound and adequately discharge floodwaters expected to result from the PMF.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
No signs of major distress of the dam were observed during the inspection.

b. Design and Construction Data

Design data was obtained from the Soil Conservation Service Office in Binghamton. Stability analyses were performed by SCS using a modification of the Swedish Circle Method. Various conditions were analyzed during the design process. The conditions applicable to the dam as it was constructed are as follows:

	MINIMUM FA	CTUR OF SAFETT
CONDITION	UPSTREAM SLOPE	DOWNSTREAM SLOPE
Full Drawdown	1.69	
Long Term Steady State Seepage from Emergency Spillway Crest		1.60

The calculated factors of safety for this dam are in excess of the minimum factors in the Corps of Engineers recommended guidelines. The dam is therefore considered to have an adequate factor of safety for stability.

A summary of the analyses and sections showing the failure arcs are included in Appendix E.

Based on discussions with SCS representatives, the dam was built essentially according to the plans. The only significant difference was that the rock surface was somewhat deeper than expected.

c. Post Construction Changes
The SCS representatives were not aware of any changes which have been made on the dam.

d. Seismic Stability
This dam is located in Seismic Zone No. 1. Therefore, a seismic stability analysis is not warranted.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

The Phase 1 Inspection of the Nanticoke Creek Dam No. 8 did not reveal conditions which constitute a hazard to human life or property. The earth embankment is considered to be stable, structurally, and capable of safely retarding floodwaters resulting from the PMF.

The design of this dam includes an internal drainage system to control the phreatic surface and to provide a safe outlet for foundation seepage.

b. Adequacy of Information

Information concerning the design and performance of this dam is considered adequate for the purposes required for Phase 1 Inspection Reports.

c. Need for Additional Investigations
No additional investigations are necessary at this time.

7.2 RECOMMENDED MEASURES

The following tasks should be undertaken by maintenance forces:

- a. Periodic operation and lubrication of the mechanically operated slide gate mechanism to insure the ease of operation of the reservoir drain conduit.
- b. A schedule for periodic maintenance should be established which would include items such as mowing the grass on the embankment slopes.

APPENDIX A

PHOTOGRAPHS

VIEW LOOKING EAST ALONG DAM CREST

EMERGENCY SPILLWAY LOOKING DOWNSTREAM

RISER - PRINCIPAL SPILLWAY INLET

PRINCIPAL SPILLWAY OUTLET PIPE AND PLUNGE POOL (LOOKING UPSTREAM)

PRINCIPAL SPILLWAY OUTLET PIPE AND PLUNGE POOL (LOOKING DOWNSTREAM)

OUTLET OF INTERNAL DRAINAGE SYSTEM COLLECTION PIPE

APPENDIX B

ENGINEERING DATA CHECKLIST

Check List Engineering Data Design Construction Operation

NAMTICOKE CREEK
Name of Dam SITE 8

1.D. # N P.573 (850-3645)

Item		Remarks	
	Plans	Details	Typical Sections
Dem	res s	765	Yes
Spillway(s)	Yes	Yes	76.5
Outlet(s)	رد ه ه	. Yes	/ss
Design Reports	Yes		
Design Computations	16 s		
Discharge Rating Curves			
Dam Stability	-C		
Seepage Studies	Yes		
Subsurface and Materials Investigations	Yes		

Remarks	
Item	
٠	

Construction History

ONLY INFORMATION AVAILABLE OBTAINED
THROUGH DISCUSSIONS WITH PROJECT
INSPECTOR

Surveys, Modifications, Post-Construction Engineering Studies and Reports

NONE REPORTED

Accidents or Failure of Dam Description, Reports

NONE REPORTED

Operation and Maintenance Records Operation Manual

NONE

APPENDIX C

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

. 7	4		-
	a.	Ganaral	<u>-</u> j
		Hamerof Dam NANTICONE CREEK SITE 8	
		1.D. # N.Y. 573 (#850-3645	
		Location: Town NANTICOKE County BROOME	
		Stream Name UNNAMED	
		Tributary of NANTICOKE CREEK	
		Longitude (W), Latitude (N) W076° 4.8' N42° 16.5'	
		Hazard Category C	
		Date(s) of Inspection 11/8/78	
		Weather Conditions SUNNY 45°-50°	
	b.	Inspection Personnel R. WARRENDER : W. LYNICK	_
	c.	Persons Contacted H. HIRTH SCS STRACUSE	
		G. PAGE & D. KOLESAR SES BROOME Co.	_
	d.	History:	
		Date Constructed 1970	
		OWNER BROOME COUNTY	
		Designer SCS	
		Constructed by C.D. MURRAY	
21	т.,	chnical Data	0
2)			4
		pe of Dam <u>EARTH</u>	
		ainage Area (382 Acres	
	He	ight 41 ft. Length 460 ft	
	Un	stream Slope on 3 Downstream Slope on 2.5	

2)	Technical 'cra (Cont'd.)
	External Drains: on Bownstream Face @ Downstream Toe RIPRAP
	Internal Components:
	Tmpervious Core
	Drains 8" CMP DRAIN PIPE IN SAND & GRAVEL DRAIN
	Cutoff Type Compacted EARTH FILL
	Grout Curtain

Ent.	nfment
	EARTH FILL WITH GOOD VEGETATIVE COVER
	Crest
	(1) Vertical Alignment OKAY
	(2) Horizontal Alignment OKA/
	(3) Surface Cracks None
	(4) Miscellaneous CREST WAS ONLY PART OF EMBANKMENT
.	Slopes
	(1) Undesirable Growth or Debris, Animal Burrows Scopes HAD Not
	(2) Sloughing, Subsidence or Depressions MINGR' SLOUGHING ON UPS
	SLOPE AT WATER SURFACE ELEVATION (WITHIN RANGE OF
	(3) Slope Protection UNMONES GRASS AND CROWNVETCH
	(4) Surface Cracks or Movement at Toe None
	(5) Seepage None
	(6) Condition Around Outlet Structure SATISFACTORY

(1)	Erosion at Embankment and Abutment Contact None
(2)	Seepage along Contact of Embankment and Abutment None
(3)	Seepage at toe or along downstream face Name
Dowi	nstream Area - below embankment
(1)	Subsidence Depressions etc. Nove
(1)	Subsidence, Depressions, etc. None
	Subsidence, Depressions, etc. None Seepage, unusual growth None
(2)	
(2) (3)	Seepage, unusual growth None

		1.	SLOW (LESS	

	rumantarion.
(:)	Honumentation/Surveys N/A
(2)	Observation Malls N/A
(3)	Weirs N/A
(4)	Piezometers <u>N/A</u>
	·
(5)	Other
	Slopes TREES AND GRASS UP TO EDGE OF RESERVOIR
ъ.	Sedimentation NoNE

.

.

a.	General RISER OUTLET PIPE & PLUNGE POOL IN
	SATISFACTORY CONDITION
b.	Principle Spillway 24.5' HIGH RECTANGULAR RC DROP INCE
	POOL AT OUTLET
	Emergency or Auxiliary Spillway GRASS LINED TRAPEZOLDA
: .	Emergency or Auxiliary Spillway GRASS LINED TRAPEZOIDA OPEN CHANNEL IN EARTH CUT
:•	
	Emergency or Auxiliary Spillway GRASS LINED TRAPEZOIDAL OPEN CHANNEL IN EARTH CUT Condition of Tail race channel RIPRAP ON SIDES OF CHANA
	OPEN CHANNEL IN EARTH CUT
	Condition of Tail rece channel RIP RAP ON SIDES OF CHANA
	Condition of Tail race channel RIPRAP ON SIDES OF CHANA FORMED PLUNGE POOL - NO RIPRAP ACROSS CENTER O
1.	CONDITION OF THE TORE CHANNEL IN EARTH CUT Condition of The Trace channel RIPRAP ON SIDES OF CHANNEL FORMED PLUNGE POOL - NO RIPRAP ACROSS CENTER OF CHANNEL TO CHECK VELOCITY OF FLOWS EXITING FROM

ε.	Condition (debris, etc.) TREES AND BRUSH LINING STREA
	BANKS
٥.	Sicpes ON - NOT RIPRAPPED ALTHOUGH SOME STONE
	PRESENT.
:.	Approximate number of homes VILLAGE OF MAINE PLUS 3 H
	NEAR THE POINT WHERE THE STREAM PASSES UNDER
	THE COUNTY HIGHWAY
	cellaneous

	Concrete Surfaces SATISFACTORY
	·
	Structural Cracking None
	Movement - Horizontal & Vertical Alignment (Settlement) None
	Junctions with Abutments or Embankments N/A
•	
i	Drains - Foundation, Joint, Face N/A
1	Water passages, conduits, states SATISFACTORY
-	
-	
*	Seepage or Leakage None
•	

Joints -	Construction, s	ets			3	
	n			3		3
						7
Control 0	ates <u>Reser</u>	VOIR DRAIN	u HAS	SLIDE G	ATE	
Approach	& Outlet Channe	els				
·						
	ssipators (<u>plur</u> T:SFACTARY					
Intake St	ructures					
·						
Stability						
Missellar	eous					
115CETTAL						

•

APPENDIX D

HYDROLOGIC/HYDRAULIC

ENGINEERING DATA AND COMPUTATIONS

CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

A TEA - CAPACITY DATA:

		Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1)	Top of Dam	1258.2	46.2	608
2)	Design High Water (Max. Design Pool)	1255.2	39.0	476
3)	Auxiliary Spillway Crest	1252.5	33.0	380
4)	Pool Level with Flashboards	N/A		
5)	Service Spillway Crest	1239.5	13.8	88.6

DISCHARGES

		Volume (cfs)
1)	Average Daily	N/A
2)	Spillway @ Maximum High Water	70.1
3)	Spillway @ Design High Water	67.8
4)	Spillway @ Auxiliary Spillway Crest Elevation	65.6
5)	Low Level Outlet	18.7
6)	Total (of all facilities) @ Maximum High Water	8350.2
7)	Maximum Known Flood	V. = 1246.4

CREST:		ELE	VATION:	1258.2
Type: LEVEL; GRASSED	EARTH			
Width: 16 ft.	Le	ingth:	460 f	<u> </u>
Spillover N/A				
Location				
SPILLWAY:				
PRINCIPAL			EMERGE	ICY
1239.5	Elevation	12	52.5	
C DROP INLET W/TRASH RACE	k Type	TRAP	FEOIDAL	CHANNEL
ZAX 6Ft	Width			
<u> </u>	ype of Control			
/	Uncontrolled			
	Controlled:			
N/A	Туре		N/A	
	shboards; gate			
N/A	Number		N/A	
N/A	Size/Length		V/A	
In	vert Material	Mowa	O GRAS	S
Ant of o	icipated Lengt perating servi	ch <	PER	100 YRS
4" DIA RC CONDUIT - 248'LONG	Chara Length	6	00 ft.	
SHARP CRESTED Height	Between Spillu	ay Crest	N/A	
6 App	roach Channel (Weir Flow)	Invert	BROAD	CRESTED
WEIR LENGTH = 12'				

C UTLET STRUCTURE S/EHERGENCY DRAMBOWN- FACIL	ITIES: -RESERVOIR DRAIN
Type: Gate 🗸 Siulce	Conduit V Penstock
Shape : GATE- FLAT CIRCULAR	
Size:	
Elevations: Entrance invert	5
Exit Invert	
Tailrace Channel: Elevation 1208.5	5
HYDROMETEROLOGICAL GAGES:	
Type : NonE	
Location:	
Records:	
Date -	
Max. Reading -	
FLOOD WATER CONTROL SYSTEM:	
Warning System: NoNE	
Method of Controlled Releases (mechanism	
NONE EXCEPT FOR MANUAL	LLY OPERATED KESERVOR
DRAIN SLIDE GATE	

Length of Shoreline (@ Spillway Crest) N/A (Miles)

D.A. = Drainage area in square miles L = River mileage from the given station to the upstream limits of the drainage area LCA = River mileage from the station to the center of gravity of the drainage area PMP = Probable Maximum Precipitation in inches to = Lag time from mid-point of unit rainfall deration, tr, to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to to to in hours. Ct = Coefficient depending upon units and drainage basin characteristics te = unit rainfall duration other than standard unit;
L = River mileage from the given station to the upstream limits of the drainage area LCA = River mileage from the station to the center of gravity of the drainage area PMP = Probable Maximum Precipitation in inches tp = Lag time from mid-point of unit rainfall dayation, to, to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to to to in hours. Ct = Coefficient depending upon units and drainage basin characleristics
Lea = River mileage from the station to the center of gravity of the drainage area PMP = Probable Maximum Precipitation in inches to = Lag time from mid-point of unit rainfall daration, tr., to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to to to in hours. Ct = Coefficient depending upon units and drainage basin characteristics
Lea = River mileage from the station to the center of growity of the dramage area PMP = Probable Maximum Precipitation in inches to = Lag time from mid-point of unit rainfall duration, to, to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to to to in hours. Ct = Coefficient depending upon units and drainage basin characteristics
pmp = Probable Maximum Precipitation in inches to = Lag time from mid-point of unit rainfall daration, to, to peak of unit hydrograph, in hours. to = Unit rainfall duration, equal to
PMP = Probable Marinum Precipitation in inches to = Lag time from mid-point of unit rainfall duration, to, to peak of unit hydrograph, in hours. to = Unit rainfall duration, equal to
to = hag time from mid-point of unit rainfall deration, tr, to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to to to in hours. Ct = Coefficient depending upon units and drainage basin characteristics
deration, tr., to peak of unit hydrograph, in hours. tr = Unit rainfall duration, equal to tp, in hours. Ct = Coefficient depending upon units and drainage basin characteristics
tr = Unit rainfall duration, equal to tp, in hours. Ct = Coefficient depending upon units and drainage basin characteristics
Ct = Coefficient depending upon units and dramage basin chancleistics
<u>basin</u> chanacteristics
tr. adopted in specific study, in home.
tope = leg time for mid-point of unit rainfall duration,
be, to peak of unit hydrograph, in hours
D. A = 2.16 square miles, L = 3.33 miles, Lea = 1.32 miles
Pmp = 20,5 inches Ce=2.0
Cp = 0.625 from average 640 Cp = 400
tp=Ct(L. Lca)0.3 = 2.0[(33)(632)].3 = 3.12 home
Ep = Ct (L. Lca) = 2.0(2.33)(632) = 3.12 hours
tr= 60 - 3,12 - 57 hours (use 1 hv. hydrograph)
L L (+ +) (> (=) + >5/1- 57) 3.23.
EPR = tp +0:25 (te - tr) = (3,12)+ .25(157) _ 3.23 hrs.
From HMR 33 - Figure Z , Depth - Area - Duraham Zona / Price = 20,5"
6 hour % 111 = 22.55, 12 hour 1/13=27.26
2 A hour 1/ 122 = 25.01 , 48 hour 1/1/2 = 29.11

PROJECT GRID

PRINCIPAL SPILLWAY CAPACITY WATER SURFACE AT DESIGN HIGH WATER Q= A\ \tag{2.522\(49.7)}{1+5+45+(.0165)(278)} = 67.77cfs WATER SURFACE AT TOP OF DAM WATER SURFACE AT TOP OF DAM Q= 3.14\ \tag{2.522\(49.7)}{1+5+45+(.0165)(278)} = 70.06 efs WATER SURFACE AT TOP OF DAM Q= 3.14\ \tag{2.6322\(49.7)}{1+5+45+(.0165)(278)} = 70.06 efs WATER SURFACE AT TOP OF DAM Q= 3.14\ \tag{2.6322\(49.7)}{1+5+45+(.0165)(278)} = 8280.1 cfs ENERGEMENT SPIRLWAY CAPACITY WATER SURFACE AT TOP OF DAM Q= CLHYE = (3.087)(1971)(5.7) = 8280.1 cfs L= 180+(2.95)(3)(2)=187.1 RESERVOR DRAW CAPACITY WATER SURFACE AT PRINCIPAL SAMEWAY CREST VATER SURFACE AT PRINCIPAL SAMEWAY CREST Q= 180\(-14.55\) Q= 18.68 cfs	NATURE CREEK SITE 8	SHEET NO.	CHECKED BY	DATE
PRINCIPAL SPILLWAY CAPACITY WATER SURFACE AT AUXILIARY SPILLWAY CREST Q= AV	UBJECT		COMPUTED BY	DATE
PRINCIPAL SPILLWAY CAPACITY WATER SURFACE AT AUXILIARY SPILLWAY CREST Q= A\\ \frac{1}{1} \text{ZqH} = 3.14 \ \frac{1}{2} \(\frac{1}{2} \) \ \frac{1}{1} \(\frac{1}{2} \) \ \frac{1}{2} \(\frac{1} \) \ \frac{1}{2} \(\frac{1}{2} \) \ \frac{1}{2} \(\frac{1}	HUNDARD & HUNDANIC COMPUT	-1-10.10		
PRINCIPAL SPIZLWAY CAPACITY WATER SURFACE AT AUXILIARY SPIZLWAY CREST Q= A\	HARROTORA & WATERWORLE COMEN	H 110.112	1 17 500	1 1/3 4/
WATER SURFACE AT AUXILIARY SPILLWAY CREST Q= A \				
WATER SURFACE AT AUXILIARY SPILLWAY CREST Q= A \				
WATER SURFACE AT AUXILIARY SPILLWAY CREST Q = A \				
Q = A \	PRINCIPAL DRIZLWAY CAPACITY			
Q = A \				
Q = A \	1.4 C C AT AT AUXIL IDON CO.	LA COST		11111
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \	WATER SURFACE ITT NO XILINAT SPI	LLWAY CRES		
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \				
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \				
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \	708	See	+	+++++
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \	9= My = 3,14 2(32.2	3(4/)	1 1 1 1 1	
WATER SURFACE AT DESIGN HIGH WATER Q = 3.14 \	VI+K+ KL+ KAL VI+K+	5 4 (0165 (248)	1=65.6	CTS
Q = 3.14 \ \ \ \frac{2(32.2)(43.7)}{1+.5+.45+(0005)(248)} = 67.77cfs WATER SURFACE AT TOP OF DAM Q = 3.14 \ \ \frac{2(32.2)(46.7)}{(4.5+.45+0005)(248)} = 70.06 efs Energency Spieldary Capacity Water Surface At Tap of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE AT PRINCIPAL SPIELWAY CREST WATER SURFACE AT PRINCIPAL SPIELWAY CREST		7	1-1-1-1-1	11111
Q = 3.14 \ \ \ \frac{2(32.2)(49.7)}{1+.5+.45+(085)(248)} = 67.77cfs WATER SURFACE At TOP OF DAM Q = 3.14 \ \ \ \frac{2(32.2)(46.7)}{(+.5+.45+)(065)(248)} = 70.06 efs Energency Spillular Capacity Water Surface At Top of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE At PRINCIPAL SPILLULAY CREST ### ATTER SURFACE AT PRINCIPAL SPILLULAY CREST ### ATTER SURFACE AT PRINCIPAL SPILLULAY CREST ### ATTER SURFACE AT PRINCIPAL SPILLULAY CREST				
Q = 3.14 \ \ \ \frac{2(32.2)(43.7)}{1+.5+.45+(0005)(248)} = 67.77cfs WATER SURFACE AT TOP OF DAM Q = 3.14 \ \ \frac{2(32.2)(46.7)}{(4.5+.45+0005)(248)} = 70.06 efs Energency Spieldary Capacity Water Surface At Tap of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE AT PRINCIPAL SPIELWAY CREST WATER SURFACE AT PRINCIPAL SPIELWAY CREST				
Q = 3.14 \ \ \ \frac{2(32.2)(43.7)}{1+.5+.45+(0005)(248)} = 67.77cfs WATER SURFACE AT TOP OF DAM Q = 3.14 \ \ \frac{2(32.2)(46.7)}{(4.5+.45+0005)(248)} = 70.06 efs Energency Spieldary Capacity Water Surface At Tap of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE AT PRINCIPAL SPIELWAY CREST WATER SURFACE AT PRINCIPAL SPIELWAY CREST				
Q = 3.14 \ \ \ \frac{2(32.2)(43.7)}{1+.5+.45+(0005)(248)} = 67.77cfs WATER SURFACE AT TOP OF DAM Q = 3.14 \ \ \frac{2(32.2)(46.7)}{(4.5+.45+0005)(248)} = 70.06 efs Energency Spieldary Capacity Water Surface At Tap of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE AT PRINCIPAL SPIELWAY CREST WATER SURFACE AT PRINCIPAL SPIELWAY CREST		+-1/-	1-1-1-1	+
Q = 3.14 \ \ \ \frac{2(32.2)(43.7)}{1+.5+.45+(0005)(248)} = 67.77cfs WATER SURFACE AT TOP OF DAM Q = 3.14 \ \ \frac{2(32.2)(46.7)}{(4.5+.45+0005)(248)} = 70.06 efs Energency Spieldary Capacity Water Surface At Tap of Dam Q = C L H = (3.087)(1971)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOR DRAIM CAPACITY WATER SURFACE AT PRINCIPAL SPIELWAY CREST WATER SURFACE AT PRINCIPAL SPIELWAY CREST	WATER SURFACE AT LESIGN HIS	SH WATER		
WATER SURFACE AT TOP OF DAM Q = 3. [4]				
WATER SURFACE AT TOP OF DAM Q = 3. [4]		++++++	1-1-1-1-	
WATER SURFACE AT TOP OF DAM Q = 3. [4]	2(3271)/427			+
WATER SURFACE AT TOP QE DAM Q = 3, (4)		777 5		
WATER SURFACE AT TOP OF DAM q = 3.14 \(\frac{2(32.2)(46.7)}{(4.5+.45+1.0165)(248)} = 70.06 \(\text{efs} \) ENERGEMCY SPILLWAY CAPACITY WATER SURFACE AT TOP OF DAM q = CLH ³ 2 = (3.087)(197.1)(5.7) ³ = 8280.1 cfs L = 180+(2.95)(3)(2) = 197.1 RESERVOR ORAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 \(\frac{2632.2(24.5)}{2632.2(24.5)} = 10 \(CQ \) cfs	1842) (5365) (548)	1-1 CTS		
Q = 3, 14 2(32.2)(46.7) = 70.06 efs ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = C L H = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR ORAIN CAPACITY WATER SURFACE AT PRINCIPAL SPIZEWAY CREST 9 = 781 26322(24.5) = 12 C9 cfs	+		1-1-1-	
Q = 3, 14 2(32.2)(46.7) = 70.06 efs ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = C L H = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR ORAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 26322(24.5) = 12 C9 cfs		1-1111		
Q = 3, 14 2(32.2)(46.7) = 70.06 efs ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = C L H = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR ORAIN CAPACITY WATER SURFACE AT PRINCIPAL SPIZEWAY CREST 9 = 781 26322(24.5) = 12 C9 cfs				
Q = 3, [4]	┖	+++++		+++++
Q = 3, [4]				
Q = 3, [4]	WATER CHOSECT AT TOP OF NAM			
ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = CLH ^{3/2} = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST Q = .781 2(32.2(24.5)) = 10 CQ cfs	WALER SORPACE IN ST. C. SAIN	+ + + + + + + + + + + + + + + + + + + +		
ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = CLH ^{3/2} = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST Q = .781 2(32.2(24.5)) = 10 CQ cfs		4-4-4-4-		++-++
ENERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q = CLH ^{3/2} = (3.087)(197.1)(5.7) = 8280.1 cfs L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST Q = .781 2(32.2(24.5)) = 10 CQ cfs	3 (-0 3 (11/2 5)			
EMERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q= CLH = (3.087)(1971)(5.7) = 8280.1 cfg L= 1804 (2.85)(3)(2)=187.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST Q= 781 (2.85,25245) = 10 CD cfg	0 = 3 (4) (= (36.6)(40.1)	70 - 1		
EMERGENCY SPIALWAY CAPACITY WATER SURFACE AT TOP OF DAM Q= CLH = (3.087)(1971)(5.7) = 8280.1 cfg L= 1804 (2.85)(3)(2)=187.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST Q= 781 (2.35.25245) = 10 CD cfg	9 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.06 c +5		
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$	V (+,5+,45+,0165)(248)			
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$				
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$	+++++++++++++++++++++++++++++++++++++	+++++	1	
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$				
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$				11111
WATER SURFACE AT TOP OF DAM $q = c L N^{3/2} = (3.087)(1971)(5.7)^{3/2} = 8280.1 cfs$ $L = 180 + (2.95)(3)(2) = 197.1$ RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST $q = 781 \left(\frac{2(32.2824.5)}{2(32.2824.5)} \right) = 12 CQ cfs$	C - CENCY SPULLING CARACTU			
q=cLH ³ 2 = (3.087)(197.1)(5.7) ³ = 8280.1 cfs L=180+(2.95)(3)(2)=197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9=.781 2(32.2824.5) = 10 CQ cfs	EMERGIEMEN DETALLUMP ICHPINGTIT	+++++	+++++	+
q=cLH ³ 2 = (3.087)(197.1)(5.7) ³ = 8280.1 cfs L=180+(2.95)(3)(2)=197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9=.781 2(32.2824.5) = 10 CQ cfs				
q=cLH ³ 2 = (3.087)(197.1)(5.7) ³ = 8280.1 cfs L=180+(2.95)(3)(2)=197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9=.781 2(32.2824.5) = 10 CQ cfs	WATER SUBSACE AT TARRET NOW			
L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9 = .781 2(32.28/24.5) = 10 CQ cf c	THE PARTY OF THE PARTY	4-1-1-1-1	11111	++++
L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9 = .781 2(32.28/24.5) = 10 CQ cf c				
L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPREWAY CREST 9 = .781 2(32.2824.5) = 10 CQ cfs				
L = 180+ (2.95)(3)(2) = 197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY GREST 9 = .781 2(32.28/24.5) = 10 CQ cf c	1 472 = B 1071/1971/18 +1 ==	82801-4		
L= 180+ (2.95)(3)(2)=197.1 RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SAMEWAY GREST 9=.781 2(32.21/24.5) = 10 CQ CFS	4-6-40 100000	0-00.101	3	++++
RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 2(32.2(24.5) = 10 CQ cfs				
RESERVOIR DRAIN CAPACITY WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 2(32.2(24.5) = 10 CQ cfs	1 = 1844 (2.85) (21/2) = 1971			
WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 2(32.2(24.5)) = 10 CQ cfs	+ + + +	+ + + + + +	1-1-1-1	1-1-1-1
WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 2(32.2(24.5) = 10 CQ cfs				
WATER SURFACE AT PRINCIPAL SPILLWAY CREST 9 = .781 2(32.2(24.5) = 10 CQ cfs	RESERVOIR DRAW CARRETT			
9 = 781 2 (38.2 (24.5) = 10 CQ cfs	THE SERVICE CHARACTER			1
9 = .781 = 10 CQ cfs				1
9 = .781 = 10 CQ cfs	WATER SURFACE AT PRINCIPAL	SPRIWAY	CREST	
9 = 1/81/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+7	737	1
9 = 1/81/				
9 = 1/81/				
10 11 5 + 0 + . CH17(30)				
V 17 - 5 7 9 7 - CH17 (30)	0 = 70. 2(36.6) 24.5)	0 00 -1-		
	9 = ./8/	8.68 cts	++++	
	9 = ./8/	8.68 = 45		

PROJECT GRID

NAM	- <	ine	- (e R		H		5,7	- :	8					ET N					D B			DATE			
HYAR																					ay J		Z		17	7
			-			-		-	-				-			-	+	-		-		-	-	+	+	-
DEPTH	ØF	F	ow		14		En	næ s	206	1/4	- 4		SA	14	LW	AY	٥	VR	14	G	91	MA	-		+	-
	0-	cL	43	= =	>	H	3/2	#	9		3	57	7	-	- 6	.13	3	1	=	3.	3.	51		#		+
				1 1	1	1	i				3,4	0 /)	10	_				上						\pm	1	+
		Q-	- 36	EVE	- 6	66	= 3	35	77	-			-		-	-	-	+	-	-			+	+	+	1
		L.	- 18	0 -	-0	.5)	(3)	(Z) :	=1	89						1		丰					1	丰	ļ	1
						+			\perp									+					\exists	1	+	
							-		-									F					\dashv		-	
																		士							+	
	-	++	-		-		+	+	+				-	-		-	-	+	-	-			-	-		
		井					1											上						1	1	
	\vdash	++	+			+	+	+	+	-				-		+	-	+		-			+	+	+	
						1	1	\mp	T								1	丰							I	
	++	++	+		\vdash	+	+		+	-						-		+					+	-	-	
		\Box	+			1	-		F							-	-	F					4	1	+	
							1	士	士									士					1	1	\pm	
		++	+			+	+	+	+			H		_			+	+	-	-			+	+	+	
		##																1							+	_
	-	++	+		-	+	+	+	+	-	-		-	_		+	+	+	-	-			+	-	+	
			1						1	-								1						1	+	
			+		\vdash	-	-		+	-								+	-	-			+	+	-	
		-	-				-	T	F	F						-		F	F	F					T	_
						1			1									1						1	1	_
		+-	+		H	-	-	+	+	-				-			+	+	-	-					-	
		$\dagger \dagger$	1				1	#	#								#	1						1	#	_
	-	++	+			+	+	+	+	-				-			+	+	-	-			+	+	+	
			#					+	1								1	1	F						1	
+++	+	++	+	+	H	-+	+	+	+	+	-		-	-	H	-	+	+	+	+	-		+	+	+	

UNIT HYDRJGRAPH 15 END-OF-PERIOD ORDINATES, LAG. 2,98 HOURS, CP. 0.63 VOL. 1.00 . 153. 269. 283. 215. 142. 93. 62. 41. 12. 8. 5. 3. RATIO ISNOW ISAME LOCAL APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SHYDER CP AND TP ARE TC= 3,71 AND R= 2.44 INTERVALS JOB SPECIFICATION

NHR HMIN IDAY 14R IMIN METRC IPLT IPRT NSTAN

1 0 0 0 0 0 0 0

1 JOPER NWT

5 0 JPRT INAME ******* ERAIN STRKS RTIOK STRTL CNSTL NULTI-PLAN ANALYSES TO BE PERFORMED NPLAN 1 NRTIN 2 LRTIO 1 TP# 3.00 CP 10.63 NTA# 0 SPFE PHS R6 R12 R24 R48
0. 20.50 111.00 122.00 142.00
TRSFC CUMPUTED BY THE PROGRAM IS 0.738 COMP O SUE-AREA RUNNEF COMPUTATION ISTAQ ICOMP IRCON ITAPE JPLT 1 0 0 0 0 0 0 0 END-OF-PENIOD FLOW HYDRIGRAPH DATA TRSUA TRSPC 2.16 0. MAUTICOKE CREEK WATELSHED PROJECT SITE NO 8 PMF 41TH KAT105 DATE **** 0.00 I HG TAREA SHAP TIME 30 *** STRKR DLTKR RTIGL 0. 1.00 0.50 RTIUS. **计可以非常有非常的特殊的特殊的特殊的特殊的特殊的特殊的特殊的** HEC-1 VERSIUN DATED JAN 1973 ****

27.

ALSMX RTIMP

110 0.022 0.011 0.011 0.001 0.023 0.013 0.023 0.013 0.001 0.000 0.023 0.011 0.001 0.023 0.011 0.001 0.023 0.011 0.001 0.023 0.013 0.023 0.013 0.023 0.013 0.001 0.

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	11 00 00 00 00 00 00 00 00 00 00 00 00 0	
			÷,	0000 0000 0000 0000 0000 0000 0000 0000 0000	
	VOLUME 25084. 18.00 2074.	90 40 40 40 40 40 40	12542. 19542. 1937.	7000 2000 2000 2000 2000	VOLUME 25084.
	TOTAL			200 200 200 200 200 200 200 200 200 200	TOTAL
25 00 00 00 00 00 00 00 00 00 00 00 00 00	72-HUUR 347. 17.92 2065.	PLAN 12 22 22 22 22 22 22 22 22 22 22 22 22	2-HDUR 173. 8,96 1032. N 1, RT	020 010 010 010 010 010 010 010 010 010	72-HOUR
7	24-HNUR 1024. 17.64 2032.	1 FOR 2	24-HUUR 512. 8.82 1016.	323. 323. 44. 10.	24-HDLR 1024.
NUN NUMBER NO. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	6-HNUK 2845. 12.25 1411.	22. 22. 22. 22. 1	6-HGUR 1422. 6-13 706. PH AT STA	111. 67. 7. 7. 7.	6-HIJUR 2845.
	PEAK 3640.	HYDROGRAPH 2. 7. 7. 20. 54. 3	PEAK 1820. HYDROGKAPH		PFAK 3640.
	CFS INCHES AC-FT	4 5 5 1	CFS INCHES AC-FT	4 LL 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CFS
	=,	172 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	= ;	35.03. 35.03. 167.	
		, 2	;	27.25. 27.25. 27.35. 25.31. 25.34.	

### PROPORAPH ROUTING ###################################																				
### HYD-DGARPH ROUTING ROUTED HYDNUGARPH AT DAIL RISTAGE AND TECHN ITAPE JPLT JPNT INAME RISTAGE AND TECHN ITAPE JPT JPNT JPT JPT JPNT JPNT JPNT JPNT JP																				
### HYDEOGRAPH RDUTING ###################################	**					•••	<i>::</i>	350		29.	606		386	279	218.		-144	419. 600.	### ###	•
### PROTREM HAUVING APP ADMIN AND AND AND AND AND AND AND AND AND AN	******					•	6.1	800	000	ONV	66	96.		312.	220.		~°°4	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	122	
### PPP PROGRAPH ROUTING RAPE JPKT JPKT LOAD LOAD	:		INAME			•••	÷-	130	51.	90	600	97.	390	316.	223.			860° 860° 88°	4 W W 4 W S	
#YDDGGRAPH RQUTING RQUTED HYDRNGRAPH AT DAII RQUTED HYDRNGRAPH AT DAII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	******			S	TSK .		0-	202	NN	* ~ ~	• 06	97.	395.	282	225.		044	257	NON	
######################################		ING	JPLT 0	A			36-	250	mm.	 1	.06	97.	404.	32.5	228.	72-H0U 152 7.8	30-4	•	966	
ROUTED HYDRINGRAPH AT DAII ROUTED HYDRINGRAPH AT DAII 1	******	TAPH ROUT	1TAPE	AVG O.	AMSKK 0.	•••	3	200		98°.						24-HDUR 392. 6.76	2		-0m	
ROUTED HYDRINGRAPH AT DAII ISTAQ ICUAP ICUAP ICUAP IC	**	HADPOGE	ECT	\$ CL055	971	•••	NO									124 010	NO	\$2		
89. 330. 66. 66. 66. 66. 66. 66. 66. 66. 66. 6	****			So:	NSTDL	350	400	63	90.	\$ M M	80	16	423	288	282	00	STAT 0 1	•	446	
WANTER COMMANDER CONTRACTOR CONTR					•			26.30	35	000		- O F	2 12 0	200	2 80		0	100	20	
WANNA CAR WANNA	:		JTED HYDR				. · ·	3.	57.		.68			301.	234.	IN OA	5 . .4	3217.	338	
STURAGE.	*******		ROL				::	25.5	145. 56.	34.	.09		322.	105.	259.		;: :	2524.		
	m					STURAGE.														

279.	
263. 253. 228.	
286.	23442. 16.83 1938.
26. 258. 232.	T01AL
293. 2013. 201. 235.	72-HDUR 325. 16.80 1935.
235.	24-HOUR 904. 15.57
337. 267. 240.	6-HUUR 2875. 12.39 1426.
270.	PEAK 3645.
345. 273. 245.	CFS INCHES AC-FT
253. 275. 247.	

PEAK FLOW SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

ATION	STATION	PLAN	0.50	1.00	RATIOS	APPLIED TO FLOWS	60
JOKAPH AT	-	٦,	1820.	3640.			
ED 10	-	•	1940.	3645			

APPENDIX E
STABILITY ANALYSES

2 -- W. S. Atkinson -- 10/1/60

Rey S. Decker

Subj: ENG 22-5, New York WP-08, Nanticoke Creek, Site No. 8

C. Slope Stability Analysis: The analysis is limited to the embarament assuming that soft foundation soils are removed to elevation 1211 and replaced with embankment soils. The method of analysis is a modification of the Swedish circle.

A 3:1 upstream slope with 10 ft berm is adequate assuming drawdown to the base.

In the steady seepage case with the phreatic line from the emergency spillway crest to the downstream slope, the factor of safety is 1.5 for a $2 \frac{1}{2}$: l slope and 10 ft wide berm. The factor of safety is 1.6 with a drain at c/b = 0.6 and no berm.

Shear values from sample 66%1301, Site 13, resulted in higher factors of safety than those from sample 67%735.

CONCLUSIONS AND RECOMMENDATIONS

- A. Preparation: Remove deleterious and soft material from the foundation.
- B. Cutoff and Drainage: Interupt disturbed surface soils on the abutments with a partial cutoff. Cut off the permeable alluvial gravels labeled "B" on Form SCS-35B to till or bedrock. A 30 ft bottom width is suggested through the narrow floodplain to keep the hydraulic gradient near 1.0.

A trench drain is recommended to pick up seepage that bypasses the cutoff into alluvial gravels downstream. Extend the drain up both abutments to permanent pool level taking it to bedrock in the right abutment. A transverse drain (or lateral) can be placed against the sandy silt should this material (labeled "G") be continuous downstream. Drain filter elements can be designed in the field.

EMBANKMENT

A. <u>Placement of Material</u>: Soils represented by samples tested can be placed anywhere in the embankment.

Standard density of the minus 3/4 inch fraction of samples 67W735 and 67W736 is about 124 per, correcting density of the minus No. 4 fraction for 15% rock. This agrees well with similar samples from Site No. 13 which had minus 3/4 inch standard densities of 123 and 123.5 per. It is concluded that compaction control for this site can be based on 95% of standard density using either the minus No. 4 or the minus 3/4 inch fraction.

	M. EST	17	C.:	1.1	LS	חח	Ü	. s.	3E	DAR ON:	THE	NT IV.	o:	Ad O.	ia:	ou:	i.T.	CE		ST	U. A.	115	7 1	1.1	Y		N	SL A	Q	21	IS	
_	OJECT	_		Έ		_	-			,			-	_	_		_	-		-					_	7	DAT	ε	19		, .	-
we	THOO	OF 4	NAC	15.5		-		_		- /				44	ALY	£0	AT.			, ,	.,	_	1	PAG	ED	ач		_	7 7		· ·	
REMARKS	Sat.	-64 5/20		En l'alues						F.	thra	677	1.39	151	1,72	177	1,60	137 (135:619	17:550 2019 1.60													
ADOPTED DESIGN DATA	Ym Ysol Ysub • 100 • (psf) (psf)		0 1420 22 0.434 150	140.0						CONDITIONS	1250 - Are cut from 200 511dt.	177	shide. then Emb. (17:552) andy.		1/4.	7	26	cont from con solde then En	cattram application then two	//												
CLASSI-	FICA- Yd TION (pcf.)	CL 124.0 13	123.0	1 1230	-				7	rm Delev	in were.	cut fram of	lev."	2 - 650) 2	(25.5.32)	1211 0 96 =1		1.12	7													
	SOURCE AND USE OF MATERIALS	Sawu Embonk.	Emb	*						Maximum Sertia	1 /1	Emb. (12°-550) anl	71	Sime as #2 but 10 he	Same as #2 but Emb.	1	as #2 exce	Naskam - 10 beching e	d' 01-110													
	SOURCE	O Emer	_	0	•	9	9	0	0	TRIAL SLOPE	1 1/2 3:1	,	2 Dr 24:11	1:22 2	_	_		3 0 2/2:1	1:42													
-		_		_				_	ш				_1	- 4		-4	**1				_	_			_			SA	•••_	۷.	4	

APPENDIX F

LIST OF REFERENCES

APPENDIX F

REFERENCES

- 1) U.S. Department of Commerce, <u>Technical Paper No. 40</u>, Rainfall Frequency Atlas of the United States, May 1961.
- 2) H.W. King and E.F. Brater, Handbook of Hydraulics, 5th edition, McGraw-Hill, 1963.
- 3) University of the State of New York, Geology of New York, Education Leaflet 20, Reprinted 1973.
- 4) Elwyn E. Seelye, Design, 3rd edition, John Wiley and Sons, Inc., 1960

APPENDIX G

DRAWINGS

VICINITY MAP

NANTICOKE CREEK WATERSHED PROTECTION PROJECT DAM SITE No. 8

TOPOGRAPHIC MAP
NANTICOKE CREEK WATERSHED PROTECTION PROJECT
DAM SITE No. 8

AS BUILT

IN THE PLACEMENT TABLE MOICATES ESTIMATED USE OF MATERIAL.

A. MAXIMUM ROCK SIZE PLACED IN BACHFILL COMPACTED BY MEANS OF HAND TAMPING OR MARIALLY DECYCL POWER TAMPERS OR PLATE VIBRATORS SHALL BE 3".

B. MAXIMUM ROCH SIZE OF 12" DUMPED IN THE EARTH FILL CAN BE RANED TO THE PORTION OF THE LAW LABELLE "OVERSIZE ROCH SECTION" AS SHOWN ON THIS SHEET. OVERSIZE MATERIAL (6" TO 12") IN THIS SECTION SHALL BE GRADED SO THAT THE LARGER ROCH ARE PLACED TOWARD THE DOWNSTREAM SLOPE.

3/ A. MAXIMUM LIFT THICKNESS PRIOR TO COMPACTION.

B. USE M" LIFTS IN AREAS WHERE OVERSIZE MATERIAL 5" TO 12" IS PLACED.

A/ WATER CONTENT AT TIME OF COMPICTION.

OF USER

A. FOR TYPICAL COMPACTION CURVES SEE SEET 5.

B. USE CLASS V COMPACTION SEE CONSTRUCTION SPECIFICATION 5) IN AREAS OF THE OVERSIZE ROCH = TON CONTAINING OVERSIZE MATERIAL (6" TO 12").

CONSTRUCTION DETAILS

A. THE FOUNDATION SURFACE THROUGH THE BASE AREA OF THE DAM SHALL BE SCARIFIED TO A DEPTH OF E AND COMPACTED PRIOR TO PLACEMENT OF FILL MATERIAL.

EXCAVATED MATERIAL (REPRESENTED BY TP 50) FROM 2.5' TO 90') IN FOUNDATION TRENCH SHALL BE STIFF LED AND USED AS EARTH FILL ADJACENT TO THE DRAIN FILL MATERIAL. MINIMUM COVERING OF THIS MATERIAL 2.0 TOPSOIL THAT IS SUITABLE FOR USE AND NOT USED ON THE SPECIFIED AREA OF THE EMERGENCY SPILLAR BE INCORPORATED WITHIN THE SLOPES OF THE EARTH FILL AS DIRECTED BY THE ENGINEER.

DRAIN FEL SECTION D-D EXCAVATE INTO HARD ROKE BACK HOE REFUSAL) WHERE TRANKI BOTTOM IS ON SHALE.

40.

& DRAW PYE

DRAIN FILL-

SECTION A-A

D LINE

- COF PRINCIPAL SPILLWAY

BEDDING SUPPORT VARIES

AS BUILT 1/25/10

DRAINAGE SYSTEM NOTES

ALL DRAW PIPE SHALL CONFORM TO SPECIFICATION 110 AND
SHALL BE 8" DIA, SHAPE 1; CLASS 1 (ANNUL AR CORRUGATIONS)
OR CLASS 11 (HELICAL CORRUGATIONS); TYPE-A (FULLY
BITUMINOUS COATED) PIPE.

LISE A MINIMUM OF 12" OF DRAIN FILL AROUND PIPES.

3. THE PROFILES AT THE BOTTOM OF ALL EXCAVATIONS AS SHOWN ARE ONLY APPROX. THE REQUIRED FINISHED GRADES WILL BE ESTABLISHED IN THE FIELD AT THE TIME OF CONSTRUCTION BY THE ENGINEER.

COVERED WITH 18" RIPRAP.

OUTSIDE FACE

INSIDE FACE

SECTION A-A

STEEL 3' FROM BOTTOM OF FOOT NG

STEEL 2' FROM

FOOTING PLAN

SUTSIDE FACE

NEDE FACE

UPSTREAM ELEVATION

DOWNSTREAM ELEVATION

AS EULT

JOINT

NSDE FACE

VATION

PLATE CONSTRUCTION â 639e15 3 3

STEEL Z FROM NEIDE FACE OF RISER AND 2' FROM TOP OF FOOTING

SIDEWALL ELEVATION

EVATION

TREEL & FROM SUTSIDE FACE OF THEER

SIDEWALL ELEVATION

MANTICOKE CREEK MATERSHED PROJECT STE 8 FLOODWATER RED-FORG DAM BROOME COLATE MED YORK RISER STRUCTURAL DETAILS U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE B ZOORMOS NY 2006 P

REINFORCED CONCRETE ANTI - SEEP COLLAR

7 - Req'd

CONCRETE BEDDING

(WITH REINFORCED CONC BEDOING SUPPORT)

REINFORCED CONCRETE WATER PIPE JOINT

RESENCE DRAIN CONCRETE BEDDING

......

PACTION CURVES

DRY DENSITY & MATERIAL

COMPACTION CURVE FOR MATERIAL FROM TP-202 2' TO 10' DEEP LABORATORY CLASSIFICATION CL

CONTENT DRY WEIGHT)

DRY WEIGHT)

M 6 CONTENT DRY WE) DRY DENSITY 4 MATERIAL COMPACTION CURVE FOR MATERIAL FROM TP-205 2'TO IO' DEEP LABORATORY CLASSIFICATION CL

TP 2 SCALE: H- 1' . 5' V-1°= 5° UMITS OF TP

LES

THE REAL PROPERTY STATES

1

101 - 100 201 - 100 201 - 100 201 - 201 201 - 201 mile of to meteriles of des beroes applicacy benegities of outlet o become demand billed walls

MINID SOR, GASSIVICATION STREET, STORES

While probed gravelies gravel-send mixtures
Powerly graded gravels gravel-send dixtures
Wherly graveles gravel-send-self obstures
Chapty graveles gravel-send-self obstures
While graded sends; sand-gravel sixtures
While graded sends; sand-gravel sixtures
Chapty sends; sand-self wintures
Chapty sends; sand-self wintures
Chapty sends; sand-self wintures
Chapty sends; sand-self wintures
Chapty selfs; send-self wintures
Chapty selfs; send-self wintures
Chapts of its to watter planticity; selfy, sandy by
Entire selfs; selfy; for clays
Entire selfs; selfy; for clays
Entire selfs; selfy; for clays
Entire selfs; selfy; selfy; for clays
Chapts of the selfs; selfy; for clays
Chapts; selfs; selfy; selfy;

MINE POLL

Se Sphiet Se Shiet Se Shiete Se Sheet Se Sendate

25.00

25 Material 25 Padistribed Core EX Core

ER IN REL POL (N) 102

Number of bloom reculted for 1-ft. Standar pometration, uning 7.0" (s.G. split berrol nampler, 148 lb. homor, and 30" drop-ASDI D 1586. במ" - 9.0 Supets in bale (ft.)
- Duffeet Sail Commission Symbol Bry berrol sempler Soller Mt to advance bale by week buring 17.0 Imple to beto -Bot err, \$-1/8" Acres

NANTICOKE CREEK WATERSHED PROJECT SITE 8
FLOODWATER RETARDING DAM
BROOM COUNTY, NEW YORK
LOGS OF TEST HOLES

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

B& ELIS 247 - 6 NT-2006-P ...

FCRW \$25 313 APO

MILL BELL LAS P. M. Sero Res 1752.0 B.R. C. Der. 1794.3 . ¥ ==. ---1 P. 36, Ber. Sell., Eps. 1254.1 l, or mile (oppinally as asserted allories) frequent and other organic remains - bross and senetimes grop -ally asteroid - way alonly to asteroidy permeable -allories and remarked till - generally series of a allories and remarked till - generally series (60 o mi.) 10 11.5 married a (4) Ber. 154. lis beard & (0.5, MC.1) -Material 6 Shale - grading toward a militatum - maderately thin beain with some clay home mear the intrins - unithered approxi-mately a fost - dense and hard with depth - average enter less per 5° of M hale: 10 pes - 1gm, 2 per - 1,7 gps -gray to grayish bress - occasional motor artesian P. 38, Sec. Sell. Esc. 134.5 101 P 30, Ear, Sec. 1, Ear, 1320 1 1.0 las benefit a -Gravel, nilty - approximately 25 percent fines, 25 percent ments and 50 percent + 4 - near 6" - 12" flaggy cabbles -gray - inturated - alonly percentle - glacial till -dense. (Gr.) 2 25, for. \$572., Ere, 134.9 Material A 0 Le 3-21 Le 12,0 3-21 (0.5, 205.1) 3 Mater al C 2 25 fer le ... Em 1251.4 0 Silt, some sand (16-15 percent) - browe - moist to wet -alowly permeable - glacual lacoutrine - soft to medium density. (M. 5 1.6 Seneral A - very minor accepage at the (Oc) of depth NOTE: Lass of arril water at 7.0°, return at 9.0° momerate water loss from 29.0° to 3 ₩ 52, C/L, E.er. 124:.: 3 M. Fra. Se. .. Eer, 1219.1 Gravel, some saud and few fines - many 10" - 24" flaggy cabbles and fairly well graded ("mest" of boulders?) -broom - moist - moderate to rapidly personals - very dense (bouldery consistency). (On) (OH & ML) 12 Tops. __ - 1.0 -7 30, Prit. Se. .. Eer, 1215.1 Silt, very sandy - brown - moist to wet - moderately permeable - glacial lacomorphic - medium density. (ML) 2.0 Second (Floodplain sult) (B.S. 302.1) Second B 4.7 Second B - Second C (ME ME. (34) (58.) Silt, some sand and high in organic matter (floodplain silt and topsoil mixture) - dark brown - moist - slowly permeable - recent allowism - soft to medium density. (ML) D R3, Pru. 5- ... (Dwie: Carrel), Eler, 1214.2 8 l.5 Immedia (Floreplain sult) Sector al B LS 4.0 Sector al B 4.0 7.0 Sector al B LS 383.1) 12.4 -ME S. Hater ... C (NL) (Ot) (Ot) MACHINE PIT LOCS T L C/L , Eler, 1240,2 HOTE: Some aster Lama from 0.0" to 10.0". 0 1.6 Topsoil 1.0 6.0 Material & 6.0 12.0 Material F P X4, Fra. Se ... (Seile: Garrel) Elev. 1212.7 ■ 5), C/L, Eler, 121-,1 (OI) Reportal B, some Material D mixed Le Note: This unterial is essentially the same as the predominant broom till on this site, except that it has a consider— sable consentration of cobbles and boulders. Possibly some sort of ion-contact feature. Securial E (D.S. 104.1) Securial A, except drab color (Ot 6 HL) (HL) ML (Ot) 5 E Material 8 P 101, Prin. Selli., Ecr. 127,4 Topical (Flootplain silt) Butterial B Butterial B Sumerial C (unathered) Butterial C 17 3 B2. C/L, Dev. 1219.2 . (OH & HE) NOTE: SEE PROFILE ON SHEET IT Hater ... A a 50% 80% B XI, Frair Les, Eler, 1210,7 D J. C/L, Elev. 1216.3 Summerial B (0.5. 501.1) Summerial B (quite loose in place and materials - sere seepage or summer of pit Browing Namor Commang) (0.5. 501.2) Topocil - Material H Haterial B Haterial C (ON & ML) (OH & ML) GM Mater . : -T 4, C/L, Der, 1216,4 (OH) GM 27.0 -D 502, bran Line, Ere, 127.5 1.0 Toposil - Material H 3.0 Material B + Material C (OH & MCL) (Sh) 1.0 Property & B 4, C/L, E-(O1) T 5. C/L. Der. 1215.1 (OH & HE) 2.3 Material 8 + Material C . Meter 47 51 78 67 P 5. C/L. Elev. 1250.0 0 I.O Topsoil 1.0 II.O Material A Sote: Sig t seepage a font or so above row surface. II.O + Suterial C (01) P ... Borres, Des. 1271.1 1.0 Toposil (01)

0 1.C 7 po il 1.C 10.0 Enternal A

-

-		The state of the s
Per 752 700	10. 5/2 (Septem), Elev. 1230.1	
-a	23 Or Bearing A	Min all
	Material 6	Bill print ground; provious statement
rial 6	Si On Matterial P	Dill proted grounds; proced-and eletaron Peoply proted ground-and-ally eletaron C Daysy provides ground-and-ally eletaron Dill proted analys and-append eletaron Peoply prode analys and-ground eletaron Peoply prode analys
701 9	moth: Pers. test 9'-15' with 3" pipe 1.0' A.C.I Level dropped 0.2' in 3 min.	- Miles sended and other re-
	2 151, Berra, Elev, 1264,1	Clays of high planticitys for clays Electic alias elecentes or distingues alias Electric elles and espende aliay clays of less planticity
rial A	4 Zephoil	- At Segunda clays or allow at mallow to high planticing
m :	1.0 Material A	
es of stall under at 7.0°, return at 7.0°, return at 7 meters to sale from 29.0° to 31.0°.		B bonalt St Stelet St Grants St Stelet Or Grants St Silvanes La Unartura St Silvanes La Unartura St Silva
1	23.0	Bi Disherbed Bi Pull-barred Cove EX Over
1 A	•	
	Topa: _	Br to both Fig. 17th 18th Broker of bloss regulard for 1-fts standard prestration, using 2.0° 5.5 spitt barret. Ampley, 140 1b baners, and 30° large.
	E S Marcal A	Or patriot belt Classification Speed
Mer Los from 4.0° to 10.0°.		2.3.2 Bry berral sampler 22 Bry berral sampler 23 Briller Mt to advance bale by week bering
	C 9 Interni 1	17.0 Dayth in hele Be Book ease, 2-1/4" dissense 722 Payount yest care possency in each drill was
•	MOTHS decessional 2" layers of brown and to sails were observed in bottom 2" of	***
	Thus role.	W. H. (data) there Level
	2 311 ber billin for 120-12	
	5 Topas_	
.4		
	26.6	
	Morae learn or 22 water at 231 petan at 241.	NANTICOKE CREEK WATERSHED PROJECT
		FLOODWATER RETARDING DAM BROOME COUNTY, NEW YORK LOGS OF TEST HOLES
		U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
		B.S. ELLIS
		8.6 8.67 -15 NY-2006-P