Data Analytics Assignment - 4: Abalon Age Prediction

Team ID: PNT2022TMID29391

Student Name: DAVID M

Project Name: Visualizing and Predicting Heart Diseases with an Interactive Dash Board

Student Roll No:422519205010

Dataset: httP-s://drive.google.com/file/d/1slv-7x7CE0zAPAt0Uv-6P-bO2ST2LVP-5u/view

Import Necessary packages

______ + Code — + Text — — — — — — import numpy as no

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")

from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder

from sklearn.linear_model import LinearRegression

from sklearn import metrics

Download and Load the dataset

df=pd.read_csv('/content/abalone.csv')

Perform descriptive statistics on the dataset

df.head()

df.tail()

urr()	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

df.shape

(4177, 9)

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.
4							>

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64

```
7 Shell weight 4177 non-null float64
8 Rings 4177 non-null int64
dtypes: float64(7), int64(1), object(1)
```

memory usage: 293.8+ KB

```
df['age']=df['Rings']+1.5
df=df.drop('Rings', axis = 1)
```

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

Check for Missing values and deal with them

```
df.isnull().sum()
```

```
Sex
                  0
Length
                  0
Diameter
                  0
Height
                  0
Whole weight
                  0
Shucked weight
                  0
Viscera weight
                  0
Shell weight
                  0
                  0
age
dtype: int64
```

df.columns

Perform Below Visualizations

- · Univariate Analysis
- · Bi-Variate Analysis
- · Multi-Variate Analysis

#univariate analysis
sns.distplot(df['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f89eee6b4d0>

#Bi-variate analysis
sns.boxplot(df.Sex,df.Height)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f89ee86ca90>

#Multi-variate analysis
sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7f89ee8162d0> 0.6 0.2 0.6 Diameter 0.4 0.2 1.0 0.8 0.4 0.2 2.5 2.0 xeidht 1.5 Whole 10 0.5 0.0 1.50 1.25 # 100 0.75 Shucked 0.50 0.25 0.00 10 0.8 veight 9.0 0.2

0.00 0.25 0.50 0.75 1.00 Shell weight

Find the outliers and replace them outliers

```
#Data Preprocessing
#Outlier handling
df = pd.get_dummies(df)
dummy_df = df

var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 20)].index, inplace = True)
df.drop(df[(df['Viscera weight']<1) & (df['age'] > 20)].index, inplace = True)
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Diameter'] <0.1) & (df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Diameter'] <0.6) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter'] >= 0.6) & (df['age'] < 25)].index, inplace = True)
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)</pre>
```



```
df.drop(df[(df['Height'] > 0.4) &(df['age'] < 15)].index, inplace = True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


numerical_features = df.select_dtypes(include = [np.number]).columns

Check for Categorical columns and perform encoding

sns.heatmap(df[numerical_features].corr(),annot = True)

```
categorical_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np
    Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/relegates">https://numpy.org/devdocs/relegates</a>
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f89e86a7390>

-10	0.23	-0.54	0.32	0.59	0.92	0.91	0.91	0.93	0.9	0.99	1	Length
- 0.8	0.23	-0.56	0.33	0.6	0.92	0.9	0.9	0.93	0.9	1	0.99	Diameter
- 0.6	0.23	-0.55			0.9	0.87	0.84	0.89	1	0.9	0.9	Height
	0.25	-0.57	0.32	0.56	0.96	0.97	0.97	1	0.89	0.93	0.93	Whole weight
- 0.4	0.25	-0.53	0.29	0.46	0.9	0.93	1	0.97	0.84	0.9	0.91	Shucked weight
- 0.2	0.24	-0.56	0.33	0.54	0.92	1	0.93	0.97	0.87	0.9	0.91	Viscera weight
	0.24	-0.56		0.63	1	0.92	0.9	0.96	0.9	0.92	0.92	Shell weight
- 0.0	0.19	-0.45	0.26	1								age
0.2	-0.5	-0.47	1	0.26			0.29	0.32		0.33		Sex_F
0.4	-0.53	1	-0.47	-0.45	-0.56	-0.56	-0.53	-0.57	-0.55	-0.56	-0.54	Sex_I
linearty	s least	eigles ha	ages He	except	atures	ther fe	ith•all c	rying w	arly va	ostzline	is alm	ole Weigh

with remaining features. Age is most linearly proprtional with Shell Weight followed by Diameter and length. Age is least correlated with Shucked Weight.

KEY INSIGHT All numerical features but 'sex'

- -> Though features are not normaly distributed, are close to normality
- -> None of the features have minimum = 0 except Height (requires re-check)
- -> Each feature has difference scale range

```
df.columns
```

Feature Selection and Standardization

```
X = df.drop('age', axis = 1)
y = df['age']
```

LINEAR REGRESSION

```
from sklearn.feature_selection import SelectKBest
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
standardScale = StandardScaler()
standardScale.fit_transform(X)

selectkBest = SelectKBest()
```

```
X_new = selectkBest.fit_transform(X, y)

X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)

lr = LinearRegression()

lr.fit(X_train, y_train)

LinearRegression()

y_train_pred = lr.predict(X_train)

y_test_pred = lr.predict(X_test)

from sklearn.metrics import mean_absolute_error, mean_squared_error

s = mean_squared_error(y_train, y_train_pred)

print('Mean Squared Error of training set :%2f'%s)

p = mean_squared_error(y_test, y_test_pred)

print('Mean Squared Error of testing set :%2f'%p)

Mean Squared Error of training set :3.5669916

Mean Squared Error of testing set :3.526501
```

Note: The Lower the Mean Squared Error, better the forecast.

```
from sklearn.metrics import r2_score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)

p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of training set:0.53
R2 Score of testing set:0.53
```

Note: The ideal value of R-square is 1.

The closer the value of R-square to 1,better is the model fitted.

Colab paid products - Cancel contracts here

×

✓ 0s completed at 12:48 PM