([Directed] Higher) Inductive Types in Bicubical Directed Type Theory

Matthew Z. Weaver and Daniel R. Licata

HoTT/UF Workshop July 18th, 2021

What is Directed Type Theory?

- Directed type theory is an extension of homotopy type theory containing both invertible (regular) paths and directed paths (i.e. morphisms)
- Many other people have also studied directed type theory using a number of different approaches [Buchholtz & Weinberger, North, Nuyts, Riehl & Shulman]
- Our work extends from cubical type theory, allowing us to develop a constructive version of directed type theory
 - While we have developed a constructive foundation for directed type theory, much of the work I'll be talking about today is still work in progress

Standard

data Nat : Type where

```
z : Nat
  suc : Nat → Nat
Fin : Nat → Type
Fin z = \bot
Fin (suc \Gamma) = (Fin \Gamma) + T
data Tm (Γ : Nat) : Type where
  var : Fin Γ → Tm Γ
  app : Tm Γ → Tm Γ
  abs : Tm (suc Γ) → Tm Γ
```

```
Directed

Nat≤ has unique compositions of morphisms

(i.e. Nat≤ is a category)
```

```
data Nat_{\leq}: USegal where z: Nat_{\leq} suc: Nat_{\leq} \rightarrow Nat_{\leq} les: (\Gamma: Nat_{\leq}) \rightarrow Hom \ \Gamma \ (suc \ \Gamma)
```

Standard

data Nat : Type where

```
z : Nat
  suc : Nat → Nat
Fin : Nat → Type
Fin z = \bot
Fin (suc \Gamma) = (Fin \Gamma) + T
data Tm (Γ : Nat) : Type where
  var : Fin Γ → Tm Γ
  app : Tm Γ → Tm Γ → Tm Γ
  abs : Tm (suc Γ) → Tm Γ
```

Directed

```
data Nat_{\leq} : USegal where
z : Nat_{\leq}
suc : Nat_{\leq} \rightarrow Nat_{\leq}
les : (\Gamma : Nat_{\leq}) \rightarrow Hom \ \Gamma \ (suc \ \Gamma)

Fin : Nat_{\leq} \rightarrow UCov
Fin depends on the morphisms in Nat_{\leq} \ covariantly
Fin z = \bot
Fin (suc \ \Gamma) = (Fin \Gamma) + T
Fin (les \ \Gamma) = ? : Hom_{UCov} \ (Fin \ \Gamma) \ (Fin \ (suc \ \Gamma))
```

Standard

data Nat : Type where z : Nat suc : Nat → Nat Fin : Nat → Type Fin $z = \bot$ Fin (suc Γ) = (Fin Γ) + Tdata Tm (Γ : Nat) : Type where var : Fin Γ → Tm Γ app : Tm Γ → Tm Γ

abs : Tm (suc Γ) → Tm Γ

Directed

```
data Nat≤ : USegal where
       z : Nat<sub>≤</sub>
       suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
       les : (\Gamma : Nat_{\leq}) \rightarrow Hom \Gamma (suc \Gamma)
                                        Fin depends on the morphisms
    Fin : Nat<sub>≤</sub> → UCov
                                                in Nat<sub>≤</sub> covariantly
   Fin (suc \Gamma) = (Fin \Gamma) + T
    Fin (les \Gamma) = dua (? : Fin \Gamma \rightarrow Fin (suc \Gamma))
dua : \{A B : UCov\} \rightarrow (A \rightarrow B) \rightarrow Hom A B
```

Standard

data Nat : Type where z : Nat suc : Nat → Nat Fin : Nat → Type Fin $z = \bot$ Fin (suc Γ) = (Fin Γ) + Tdata Tm (Γ : Nat) : Type where var : Fin Γ → Tm Γ app : Tm Γ → Tm Γ → Tm Γ

abs : Tm (suc Γ) → Tm Γ

Directed

```
data Nat≤ : USegal where
       z : Nat<sub>≤</sub>
       suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
       les : (\Gamma : Nat_{\leq}) \rightarrow Hom \Gamma (suc \Gamma)
                                        Fin depends on the morphisms
   Fin : Nat<sub>≤</sub> → UCov
                                                in Nat<sub>≤</sub> covariantly
   Fin (suc \Gamma) = (Fin \Gamma) + T
   Fin (les \Gamma) = dua inl
dua : \{A B : UCov\} \rightarrow (A \rightarrow B) \rightarrow Hom A B
```

Directed

abs : Tm (suc Γ) → Tm Γ

Standard

abs : $Tm (suc \Gamma) \rightarrow Tm \Gamma$

data Nat : Type where data Nat≤ : USegal where z : Nat z : Nat_≤ suc : Nat → Nat suc : Nat_≤ → Nat_≤ les : $(\Gamma : Nat_{\leq}) \rightarrow Hom \Gamma (suc \Gamma)$ Fin : Nat_≤ → UCov Fin : Nat → Type Fin $z = \bot$ Fin $z = \bot$ Fin (suc Γ) = (Fin Γ) + TFin (suc Γ) = (Fin Γ) + TFin (les Γ) = dua inl Tm depends on the morphisms in Nat≤ covariantly data Tm (Γ : Nat) : Type where data Tm (Γ : Nat≤) : UCov where var : Fin Γ → Tm Γ var : Fin Γ → Tm Γ app : Tm Γ → Tm Γ app : Tm Γ → Tm Γ → Tm Γ

```
data Tm (\Gamma : Nat) : Type where
    var : Fin Γ → Tm Γ
    app : Tm Γ → Tm Γ → Tm Γ
    abs : Tm (suc Γ) → Tm Γ
wk-Tm : \forall \Gamma \rightarrow \text{Tm } \Gamma \rightarrow \text{Tm } (\text{suc } \Gamma)
wk-Tm \Gamma (var x) = var (inl x)
wk-Tm \Gamma (app t_1 t_2) = app (wk-Tm \Gamma t_1)
                                    (wk-Tm \Gamma t_2)
wk-Tm \Gamma (abs t) = abs ??
                                                       Need to weaken under the
                                                             bound variable
```

```
Fin : Nat → Type
Fin z = \bot
Fin (suc \Gamma) = (Fin \Gamma) + T
Loc : Nat → Type
Loc z = \bot + \top
Loc (suc \Gamma) = (Loc \Gamma) + T
wk-Var : ∀ Γ → Loc Γ → Fin Γ → Fin (suc Γ)
wk-Var z l x = abort x
wk-Var (suc \Gamma) (inr l) x = inl x
wk-Var (suc \Gamma) (inl l) (inr x) = inr x
wk-Var (suc \Gamma) (inl l) (inl x) = inl (wk-Var \Gamma l x)
```

```
data Tm (Γ : Nat) : Type where
                                                                          data Nat≤ : USegal where
   var : Fin Γ → Tm Γ
                                                                             z : Nat<sub>≤</sub>
                                                                             suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
   app : Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma
                                                                             les : (\Gamma : Nat_{\leq}) \rightarrow Hom \ \Gamma \ (suc \ \Gamma)
   abs : Tm (suc Γ) → Tm Γ
Wk-Tm': \forall \Gamma \rightarrow Loc \Gamma \rightarrow Tm \Gamma \rightarrow Tm (suc \Gamma)
wk-Tm' \Gamma l (var x) = var (wk-Var \Gamma l x)
wk-Tm' \Gamma l (app t_1 t_2) = app (wk-Tm' <math>\Gamma l t_1)
                                               (wk-Tm' \Gamma l t_2)
wk-Tm' \Gamma l (abs t) = abs (wk-Tm' (suc \Gamma) (inl l) t)
                                                                         wk-Tm : \forall \Gamma \rightarrow Tm \Gamma \rightarrow Tm  (suc \Gamma)
wk-Tm : \forall \Gamma \rightarrow \text{Tm } \Gamma \rightarrow \text{Tm } (\text{suc } \Gamma)
                                                                         wk-Tm \Gamma = ?
wk-Tm \Gamma t = wk-Tm' \Gamma (inr unit) t
```

Standard Directed

```
data Tm (Γ : Nat) : Type where
                                                                          data Nat≤ : USegal where
   var : Fin Γ → Tm Γ
                                                                             z : Nat<sub>≤</sub>
                                                                             suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
   app : Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma
   abs : Tm (suc Γ) → Tm Γ
                                                                             les : (\Gamma : Nat_{\leq}) \rightarrow Hom \Gamma (suc \Gamma)
Wk-Tm': \forall \Gamma \rightarrow Loc \Gamma \rightarrow Tm \Gamma \rightarrow Tm (suc \Gamma)
wk-Tm' \Gamma l (var x) = var (wk-Var \Gamma l x)
wk-Tm' \Gamma l (app t_1 t_2) = app (wk-Tm' <math>\Gamma l t_1)
                                               (wk-Tm' \Gamma l t_2)
wk-Tm' \Gamma l (abs t) = abs (wk-Tm' (suc \Gamma) (inl l) t)
                                                                        wk-Tm : \forall \Gamma \rightarrow \text{Tm } \Gamma \rightarrow \text{Tm } (\text{suc } \Gamma)
wk-Tm : \forall \Gamma \rightarrow Tm \Gamma \rightarrow Tm  (suc \Gamma)
                                                                        wk-Tm \Gamma = dtransp Tm (? : Hom <math>\Gamma (suc \Gamma))
wk-Tm \Gamma t = wk-Tm' \Gamma (inr unit) t
```

dtransp : (A : C \rightarrow UCov) \rightarrow Hom_C c₁ c₂ \rightarrow A c₁ \rightarrow A c₂

```
data Tm (Γ : Nat) : Type where
                                                                        data Nat≤ : USegal where
   var : Fin Γ → Tm Γ
                                                                           z : Nat<sub>≤</sub>
                                                                           suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
   app : Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma
                                                                           les : (\Gamma : Nat_{\leq}) \rightarrow Hom \Gamma (suc \Gamma)
   abs : Tm (suc Γ) → Tm Γ
Wk-Tm': \forall \Gamma \rightarrow Loc \Gamma \rightarrow Tm \Gamma \rightarrow Tm (suc \Gamma)
wk-Tm' \Gamma l (var x) = var (wk-Var \Gamma l x)
wk-Tm' \Gamma l (app t_1 t_2) = app (wk-Tm' <math>\Gamma l t_1)
                                              (wk-Tm' \Gamma l t_2)
wk-Tm' \Gamma l (abs t) = abs (wk-Tm' (suc \Gamma) (inl l) t)
                                                                      wk-Tm : \forall \Gamma \rightarrow Tm \Gamma \rightarrow Tm  (suc \Gamma)
wk-Tm : \forall \Gamma \rightarrow Tm \Gamma \rightarrow Tm  (suc \Gamma)
                                                                      wk-Tm \Gamma = dtransp Tm (les \Gamma)
wk-Tm \Gamma t = wk-Tm' \Gamma (inr unit) t
```

Directed

```
data Tm (\Gamma : Nat) : UCov where
   var : Fin Γ → Tm Γ
                                                                         Fin : Nat<sub>≤</sub> → UCov
   app : Tm Γ → Tm Γ → Tm Γ
                                                                         Fin z = \bot
   abs : Tm (suc Γ) → Tm Γ
                                                                         Fin (suc \Gamma) = (Fin \Gamma) + T
                                                                         Fin (les \Gamma) = dua inl
Wk-Tm : \forall \Gamma \rightarrow Tm \Gamma \rightarrow Tm (suc \Gamma)
wk-Tm \Gamma = dtransp Tm (les \Gamma)
wk-Tm-twice : \forall \Gamma \rightarrow \text{Tm } \Gamma \rightarrow \text{Tm } (\text{suc } (\text{suc } \Gamma))
wk-Tm-twice \Gamma = dtransp Tm (les (suc <math>\Gamma) \circ les \Gamma)
                                                                                             at the outermost position!
wk-Tm-second : \forall \Gamma \rightarrow Tm \text{ (suc }\Gamma) \rightarrow Tm \text{ (suc }\text{(suc }\Gamma))
wk-Tm-second \Gamma = dtransp Tm (dcong suc (les \Gamma))
```

```
We get all of this from having
described how to weaken once
```

And all these functions *compute!*

From HoTT to Directed Type Theory

- Riehl-Shulman defines a type theory for ∞-categories with a model in bisimplicial sets
 - 1. Begin with HoTT
 - 2. Add Hom-types
 - 3. ∞-categories (Segal types) are described internally as predicates on types
 - 4. A predicate isCov(B : $A \rightarrow U$) describes covariant discrete fibrations
 - 5. Cavallo, Riehl and Sattler have also (externally) defined the universe of covariant fibrations (the ∞-category of spaces and continuous functions) and shown it satisfies *Directed Univalence:* Hom_{Ucoo} A B ≃ A → B

From Bisimplicial to Bicubical Sets

- Can we make this constructive? Yes!
 - 1. Begin with Cubical Type Theory
 - 2. Use a second cubical interval to define Hom-types
 - 3. Use LOPS to define universes of Segal types and of covariant fibrations
 - 4. Construct directed univalence for the universe of covariant fibrations
 - ...or rather a sufficient subuniverse of the universe of covariant fibrations

Type Theory in Bicubical Sets

- As we are in bicubical sets, we have two interval objects:
 - We use the first interval to describe path structure

• The second interval to describes morphism structure

• We include connections for morphisms so we can define $x \le y := x = x \land y$

Cofibrations

• We add cofibration propositions to describe boundaries of cubes

Let's now classify well behaved types

Kan Types

```
hasCom : (\mathbb{I} \to U) \to U
hasCom A = \Pi i j : \mathbb{I} .

\Pi a : Cof .

\Pi t : (\Pi x : \mathbb{I} . \alpha \to A x)

\Pi b : (A i)[\alpha \mapsto t i] .

(A j)[\alpha \mapsto t j; i = j \mapsto b]

relCom : (A : U) \to (A \to U) \to U

relCom A B = \Pi p : \mathbb{I} \to A .

hasCom (B \circ p)
```


- If B : A → U satisfies relCom, the homotopical structure acts like that of spaces
- Note that this indicates nothing about the directed structure

Covariant Types

```
hasCov: (2 \rightarrow U) \rightarrow U

hasCov A = \Pi a : Cof.

\Pi t : (\Pi x : 2 \cdot \alpha \rightarrow A x)

\Pi b : (A \cdot \mathbb{Q}_2)[\alpha \mapsto t \cdot \mathbb{Q}_2].

(A \cdot \mathbb{Q}_2)[\alpha \mapsto t \cdot \mathbb{Q}_2].

relCov: (A : U) \rightarrow (A \rightarrow U) \rightarrow U

relCov A B = \Pi p : 2 \rightarrow A.

hasCov (B \circ p)
```


- If B: A → U satisfies relCov, the fibers of B are categorically discrete (i.e. are ∞-groupoids) and depend covariantly on the morphisms in A
- Thus, in the non-dependent case, hasCov (λ _ . A) means that A is categorically discrete

Segal Types

```
\Delta := \Sigma (i, j) : 2 \times 2 . i \le j
\Lambda := \Sigma (i, j) : 2 \times 2 . i = 0 \lor j = 1
```

```
isSegal : U \rightarrow U
isSegal A = \Pi \alpha : Cof .
\Pi t : (\Pi ij : \Delta . \alpha \rightarrow A)\Pi b : (\Pi ij : \Lambda . (A ij)[\alpha \mapsto t ij] .\Pi ij : \Delta . (A ij)[\alpha \mapsto t ij]
```


- If A: U satisfies isSegal, then A represents an ∞-category
- Note there is a dependent version called inner fibrations, studied in directed type theory by Buchholtz & Weinberger

Let's put these types in universes!

The LOPS Construction

- Consider a type J, and predicate on types P: (J → U) → U
- We then define relP: $(\Gamma: U) \rightarrow (A: \Gamma \rightarrow U) \rightarrow U:= (p: J \rightarrow \Gamma) \rightarrow P (A \circ p)$
- Licata, Orton, Pitts and Spitters define a constructive way to build a universe classifying type families satisfying relP assuming:
 - J is a tiny object
 - ⊥ is a cofibration

UKan

- UKan is given by applying the LOPS construction to relCom
- Ignoring the directed structure, we get normal cubical type theory
- We can construct univalence for UKan

UCov

- relCov is itself Kan
- We define UCov by using the LOPS construction on relCov inside of UKan
- Types in UCov are thus both Kan and covariant
- We can construct univalence for UCov
- We can construct directed univalence for UCov

USegal

- isSegal is itself Kan
- We define USegal by restricting UKan to those types that are also Segal
 - (more generally, we could use LOPS with the inner fibration predicate)
- Types in USegal are thus both Kan and covariant
- We can construct univalence for USegal

So Many Universes!

Let's recall our running example:

```
data Nat<sub>≤</sub> : USegal where
  z : Nat<sub>≤</sub>
  suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
  les : (Γ : Nat<sub>≤</sub>) → Hom Γ (suc Γ)

Fin : Nat<sub>≤</sub> → UCov
Fin z = ⊥
Fin (suc Γ) = (Fin Γ) + T
Fin (les Γ) = dua inl
```

- Unlike in HoTT we need multiple universes classifying different classes of types
- As directed univalence is also fundamentally important to get this up and running, let's see how it works

Directed Univalence

- Recall directed univalence states that (A → B) is equivalent to Hom_{UCov} A B for all A and B in UCov
- To construct directed univalence in UCov, we start by replicating the construction for regular univalence in cubical type theory
 - In particular, we use a directed version Glue types

Directed Glue Types

$$\alpha \vdash Glue [\alpha \mapsto (T, f)]B \equiv T$$

g: Glue [
$$a \mapsto (T, f)$$
] B

unglue g: B

 $a \vdash glue t b \equiv t$
 $a \vdash unglue (glue t b) \equiv f t$

glue g (unglue g) $\equiv g$

Given $f: A \rightarrow B$

dua i A B f :=
$$\lambda$$
 i . Glue [i = $\mathbb{O}_2 \mapsto (A, f)$, i = $\mathbb{I}_2 \mapsto (B, id)$] B : Homucov A B

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe: $(Hom A B) \rightarrow (A \rightarrow B)$
 - dua: $(A \rightarrow B) \rightarrow Hom A B$
 - dua_{β}: Π f: $A \rightarrow B$. Path f (dcoe (dua f))
 - duan: Пр: Hom AB. Path p (dua (dcoe p))

- dua is Kan + covariant, and thus lands in U_{Cov}
- U_{Cov} itself is Kan
- Path univalence holds in U_{Cov}
- These allow us to define the following for U_{Cov}:
 - dcoe: $(Hom A B) \rightarrow (A \rightarrow B)$
 - dua: $(A \rightarrow B) \rightarrow Hom A B$
 - dua_{β}: Π f: $A \rightarrow B$. Path f (dcoe (dua f))
 - dua_{nfun}: Π p: Hom A B . Π i: 2 . p i \rightarrow (dua (dcoe p)) i

We're thus left with the following picture:

• To complete directed univalence, we need dua_{ηfun}-1

Finishing Directed Univalence

- To show duanfun is a homotopy equivalence, we restrict UCov to a useful subuniverse
 - Based on sheaf models of type theory by Coquand, Ruch and Sattler
 - This subuniverse is closed under the same type formers
 - Homotopy equivalences for bicubical sets in this universe are level-wise homotopy equivalences of cubical sets
 - Using this property we complete the proof of directed univalence (using the same technique as Cavallo, Riehl and Sattler did for the bisimplicial model)

Cubical HITs

 To warm up, let's review how HITs work in cubical type theory [Coquand, Huber & Mörtberg; Cavallo & Harper]

S1 in Cubical Type Theory

- Consider the circle, S1:
- We define it as the (homotopy) initial algebra generated by one point, and the loop connecting the point to itself
- Being initial, we expect to be able to map out of it by induction:

```
A:S1 \rightarrow UKan cp:Apt cl:PathO<sub>A loop</sub> p
x:S1 \vdash S1elim Acpcl x:Ax
```

- We also want it to be Kan/fibrant
 - To enforce this, we freely add solutions to the Kan filling problem

data S1 : UKan where

pt : S1

loop: Path pt pt

S1com: hasHCom S1

S1 in Cubical Type Theory

- How do we maintain the elimination principle while also including the additional Kan generator?
 - We only eliminate into Kan types, mapping the formal composition operator to the composition structure of the motive/codomain
- In the recursive case for A: UKan

S1elim A p I (hcom^{i \mapsto i[$\alpha \mapsto t$] b) = hcom^{i \mapsto i[$\alpha \mapsto x$.S1elim A p I (t x)] (S1elim A p I b)}}

Nat≤ in Bicubical Type Theory

- Consider the category Nat≤:
- We define it as the homotopy/Segal initial algebra generated by zero, the successor constructor, and the inequality morphism
- Being initial, we expect to be able to map out of it by induction:

```
A: Nat_{\leq} \rightarrow USegal \quad cz: Az \quad n: Nat_{\leq} \vdash cs: An \rightarrow A \text{ (suc n)}
n: Nat_{\leq}, x: An \vdash cl: PathO_{A \cdot (les\ n)} x \text{ (cs\ } x)
n: Nat_{\leq} \vdash Nat_{\leq} elim\ A\ cz\ cs\ cl\ n: An
```

- We also want it to be Kan and Segal
 - To enforce this, we freely add solutions to the Kan and Segal filling problems

data Nat_≤ : USegal where z : Nat_≤ suc : Nat_≤ → Nat_≤ les : (Γ : Nat_≤) → Hom Γ (suc Γ)

Nat≤com : hasHCom Nat≤ Nat≤Segal : isSegal Nat≤

Nat≤ in Bicubical Type Theory

- How do we maintain the elimination principle while also including the additional Kan and Segal generators?
 - We only eliminate into types that are both Kan and Segal, mapping the formal filling operators to those of the motive/codomain
- In the recursive case for A: USegal

 $Nat_{\leq}elim\ A\ cz\ cs\ cl\ (segal[\alpha\mapsto t]\ b) = segal[\alpha\mapsto xy.Nat_{\leq}elim\ A\ cz\ cs\ cl\ (t\ xy)]\ (Nat_{\leq}elim\ A\ cz\ cs\ cl\ b)$

How does Fin work?

Recall we defined the following:

```
data Nat<sub>≤</sub> : USegal where
  z : Nat<sub>≤</sub>
  suc : Nat<sub>≤</sub> → Nat<sub>≤</sub>
  les : (Γ : Nat<sub>≤</sub>) → Hom Γ (suc Γ)

Fin : Nat<sub>≤</sub> → UCov
Fin z = ⊥
Fin (suc Γ) = (Fin Γ) + T
Fin (les Γ) = dua inl
```

Let's look at how the function wk-Var := dtransp Fin (les n) computes

How does Fin work?

```
wk-Var \Gamma x := dtransp Fin (les \Gamma) x
   \Rightarrow
dcom^{0 \mapsto 1} (\lambda i.Fin (les \Gamma i)) [\bot \mapsto ()] \times
   \Rightarrow
dcom^{0 \mapsto 1} (dua inl) [\bot \mapsto ()] x
   \Rightarrow
dcom^{0\mapsto 1} (\lambda i.Glue[i=0 \mapsto (Fin n, inl), i=1 \mapsto (Fin (suc n), id)] (Fin (suc n)))[<math>\bot \mapsto ()] x
   \Rightarrow
glue[1=0 → ...,
         1=1 \mapsto dcom<sup>0→1</sup> (\lambdai.Fin (suc n)) [\bot \mapsto ()] (unglue x)]
       (dcom^{0 \mapsto 1} (\lambda i.Fin (suc n)) [...] (unglue x))
   \Rightarrow
dcom^{0 \mapsto 1} (\lambda i.Fin (suc n)) [\bot \mapsto ()] (unglue x)
   \Rightarrow
dcom^{0 \mapsto 1} (\lambda i.Fin (suc n)) [\bot \mapsto ()] (inl x)
   \Rightarrow
inl x
```

General DHITs

- Still a work in progress!
- We expect it should go similarly to cubical higher inductive types, but instead by adding both formal Kan composition and formal Segal composition

HITs and Universe Challenges

data S1 : UKan where

pt : S1

loop: Path pt pt

Consider S1 in directed type theory

S1com: hasHCom S1

- In particular, notice what happens with the freely added compositions:
- As our cofibrations now let us talk about directed interval variables, S1 now has nontrivial homomorphisms!

e.g.
$$\lambda$$
 i : 2 .hcom^{0 \rightarrow 1}[i = 0 \mapsto pt, i = 1 \mapsto loop]pt : Hom pt pt

 S1 should be categorically discreet (and thus land in UCov), but proving so is nontrivial