

09/242843

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED
PCT/GB97/02284 27 August 1997 (27.08.97) 29 August 1996 (29.08.96)

TITLE OF INVENTION

PESTICIDAL AGENTS

APPLICANT(S) FOR DO/EO/US

JARRETT, Paul; ELLIS, Deborah June; MORGAN, James Alun Wynne

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern other document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A FIRST preliminary amendment.
 A SECOND or SUBSEQUENT preliminary amendment.
14. A substitute specification.
15. A change of power of attorney and/or address letter.
16. Other items or information:
 - Amendments to the claims of the International Application under PCT Article 34(2)(b) are transmitted herewith

S. APPLICATION NO. 09724845		INTERNATIONAL APPLICATION NO PCT/GB97/02284	ATTORNEYS DOCKET NUMBER	
17. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS PTO USE ONLY		
Basic National Fee (37 CFR 1.492(a)(1)-(5): Search Report has been prepared by the EPO or JPO..... \$830.00				
International preliminary examination fee paid to USPTO (37 CFR 1.482) \$640.00				
No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)).. \$710.00				
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO..... \$950.00				
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4)..... \$90.00				
ENTER APPROPRIATE BASIC FEE AMOUNT =				\$ 840 00
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).				\$ 130 00
Claims	Number Filed	Number Extra	Rate	
Total Claims	36 -20 =	16	X \$18	\$ 288 00
Independent Claims	7 -3 =	4	X \$78	\$ 234 00
Multiple dependent claims(s) (if applicable)				+ \$230.00 \$
TOTAL OF ABOVE CALCULATIONS =				\$ 1492 00
Reduction by 1/2 for filing by small entity, if applicable. Verified Small Entity statement must also be filed. (Note 37 CFR 1.9, 1.27, 1.28).				\$ -
SUBTOTAL =				\$ 1492 00
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).				+ \$
TOTAL NATIONAL FEE =				\$ 1492 00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property				+ \$
TOTAL FEES ENCLOSED =				\$ 1492 00
				Amount to be: refunded \$ charged \$
<p>a. <input checked="" type="checkbox"/> A check in the amount of \$ 1492.00 to cover the above fees is enclosed.</p> <p>b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 04-1406. A duplicate copy of this sheet is enclosed.</p>				
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</p>				
<p>SEND ALL CORRESPONDENCE TO: HAGAN, Patrick J. DANN, DORFMAN, HERRELL AND SKILLMAN 1601 Market Street Suite 720 Philadelphia, Pennsylvania 19103-2307</p>				
<p> SIGNATURE Patrick J. Hagan NAME 27,643 REGISTRATION NUMBER</p>				

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of)
PAUL JARRETT et al.) Examiner:
) Not Yet Assigned
)
Application No. Not Yet Assigned)
[International Appln. No. PCT/GB97/02284]) Group Art Unit:
) Not Yet Assigned
Filed: Concurrently Herewith)
[International Filing Date: 27 August 1997])
)
For: PESTICIDAL AGENTS)

PRELIMINARY AMENDMENT

Before calculation of the filing fee, please amend the claims of the above-referenced patent application, which claims are based on the Article 34 claim amendments filed in the corresponding international patent application, as follows:

Claim 3, line 1, delete "or claim 2";

Claim 4, lines 1-2, delete "any one of the preceding claims" and insert
-- claim 1 --;

Claim 5, lines 1-2, delete "to any one of the preceding claims" and insert
-- claim 1 --;

Claim 6, line 1, delete "any one of claims 1 to 4" and insert -- claim 1 --;

Claim 7, lines 1-2, delete "any one of the preceding claims" and insert
-- claim 1 --

Claim 11, lines 1-2, delete "any one of the preceding claims" and insert
-- claim 1 --;

Claim 12, delete "10" and insert -- 11 --;

Claim 14, delete "12" and insert -- 13 --;

Claim 20, line 2, delete "or claim 19";

Claim 21, line 2, delete "any one of claims 17 to 20" and insert -- claim 17 --;

Claim 24, line 2, delete "any one of claims 21 to 23" and insert -- claim 21 --;

Claim 27, line 3-4, delete "any one of claims 17 to 20" and insert
-- claim 17 --;

Claim 29, lines 2-3, delete "any one of claims 25 to 28" and insert
-- claim 25 --;

Claim 30, lines 2-3, delete "any one of claims 25 to 28" and insert
-- claim 25 --;

Claim 32, line 2, delete "any one of claims 17 to 20" and insert -- claim 17 --;

Please add the following new claims:

33. A recombinant DNA which encodes a pesticidal agent according to
claim 18.

34. A recombinant DNA of claim 33 which comprises the sequence of
Figure 2 or a variant or fragment thereof.

35. A host organism comprising a nucleotide sequence coding for a fusion

092413456789

protein comprising a pesticidally active portion of an agent as claimed in claim 18 in combination with other pesticidal proteinaceous toxicity enhancing materials.

36. A host organism as claimed in claim 35 wherein the pesticidal toxicity enhancing materials comprise delta-endotoxin from *B. thuringiensis*.

REMARKS

The purpose of this Preliminary Amendment is to delete multiple claim dependencies.

Dependent claims 33-36 have been added and relate to a recombinant DNA encoding a pesticidal agent according to claim 18 and a host organism having a nucleotide sequence coding for a fusion protein comprising a pesticidally active portion of such an agent. Support for these four additional claims can be found in original claims 21, 22, 27 and 28.

Favorable consideration leading to prompt allowance of the present application is respectfully requested.

Respectfully submitted,

DANN, DORFMAN, HERRELL AND SKILLMAN
A Professional Corporation

By *Patrick J. Hagan*
PATRICK J. HAGAN
PTO Registration No. 27,643

Telephone: (215) 563-4100

CLAIMS:

1. An insecticidal composition which:
 - (i) is adapted for oral administration to an insect,
 - (ii) comprises a proteinaceous pesticidal material
- 5 obtainable from a *Xenorhabdus* species, or a pesticidal fragment thereof, or a pesticidal variant or derivative of either of these,
having in each case toxic activity when administered orally.
- 10 2. A composition according to claim 1 wherein the said pesticidal material comprises material encoded by the nucleotide sequence of Figure 2 or variant or fragment thereof, or a sequence which hybridises with said sequence.
- 15 3. A composition according to claim 1 or claim 2 which comprises cells of *Xenorhabdus*.
4. A composition as claimed in any one of the preceding claims which comprises supernatant taken from cultures of cells of *Xenorhabdus* species.
- 20 5. A composition according to any one of the preceding claims wherein the *Xenorhabdus* species is *Xenorhabdus nematophilus*.
- 25 6. A composition according to any one of claims 1 to 4 wherein the *Xenorhabdus* species is ATCC 19061, NCIMB 40886 or NCIMB 40887.
- 30 7. A composition as claimed in any one of the preceding claims which comprises a further pesticidal material not obtainable from *Xenorhabdus*.
- 35 8. A composition according to claim 7 wherein the said further pesticidal material comprises a material obtainable from *B. thuringiensis*.

AMENDED SHEET
IPEA/EP

SUBSTITUTE SHEET (RULE 26)

28. A host organism as claimed in claim 27 wherein the pesticidal toxicity enhancing materials comprise delta-endotoxin from *B. thuringiensis*.

5

29. A host organism as claimed in any one of claims 25 to 28 wherein the host is a plant.

30. A host organism as claimed in any one of claims 25 to 10 28 wherein the host is a virus pathogenic to insects.

31. A fusion protein as expressed by a host as claimed in claim 27.

15 32. A pesticidal composition comprising one or more agents as claimed in any one of claims 17 to 20.

9808388-260

AMENDED SHEET
IPEA/EP

SUBSTITUTE SHEET (RULE 26)

PESTICIDAL AGENTS

5 The present invention relates to materials, agents and compositions having pesticidal activity which derive from bacteria, and more particularly from *Xenorhabdus* species. The invention further relates to organisms and methods employing such compounds and compositions.

10 There is an ongoing requirement for materials, agents, compositions and organisms having pesticidal activity, for instance for use in crop protection or insect-mediated disease control. Novel materials are required to overcome the problem of resistance to existing pesticides. Ideally such materials are cheap to produce, stable, have a high toxicity (either when used alone or in combination) and are effective when taken orally by the pest target. Thus any invention which provided materials, agents, compositions or organisms in which any 15 20 of these properties was enhanced would represent a step forward in the art.

25 *Xenorhabdus spp.* in nature are frequently symbiotically associated with a nematode host, and it is known that this association may be used to control pest activity. For instance, it is known that certain *Xenorhabdus spp.* alone are capable of killing an insect host when injected into the host's hemocoel.

30 In addition, one extracellular insecticidal toxin from *Photorhabdus luminescens* has been isolated (this species was recently removed from the genus *Xenorhabdus*, and is closely related to the species therein). This toxin is not effective when ingested, but is highly toxic when 35 injected into certain insect larvae (see Parasites and Pathogens of Insects Vol.2, Eds. Beckage, N. E. et al., Academic Press 1993).

ARTICLE 34

WO 98/08388

PCT/GB97/02284

2

Also known are certain low-molecular weight heterocyclic compounds from *P. luminescens* and *X. nematophilus* which have antibiotic properties when applied intravenously or topically (see Rhodes, S.H. et al., PCT WO 84/01775).

5

Unfortunately none of these prior art materials have the ideal pesticide characteristics discussed above, and in particular, they do not have toxic activity when administered orally.

10

The present invention provides pesticidal agents and compositions from *Xenorhabdus* species, organisms which produce such compounds and compositions, and methods which employ these agents, compositions and organisms, 15 that alleviate some of the problems with the prior art.

20

According to one aspect of the present invention there is disclosed a method of killing or controlling insect pests comprising administering cells from *Xenorhabdus* species or pesticidal materials derived or obtainable therefrom, orally to the pests.

25

A PCT application of CSIRO published as WO 95/00647 discloses an apparently toxic protein from *Xenorhabdus nematophilus*; however no details of the protein's toxicity are given, and certainly there is no disclosure of its use as an oral insecticide.

30

Thus the invention provides an insecticidal composition which:

35

(i) is adapted for oral administration to an insect,
(ii) comprises a proteinaceous pesticidal material obtainable from a *Xenorhabdus* species, or a pesticidal fragment thereof, or a pesticidal variant or derivative of either of these,
having in each case toxic activity when administered orally.

The composition may in fact comprise cells of *Xenorhabdus* or alternatively supernatant taken from cultures of cells of *Xenorhabdus* species. However, the composition

preferably comprises toxins isolable from *Xenorhabdus* as illustrated hereinafter. Toxic activity has been associated with material encoded by the nucleotide sequence of Figure 2. Thus, the composition suitably 5 comprises a pesticidal material which is encoded by all or part of the nucleotide sequence of Figure 2. Pesticidal fragments as well as variants or derivatives of such toxins may also be employed.

10 The sequence of Figure 2 is of the order of 40kb in length. It is believed that this sequence may encode more than one protein, each of which may regulate or be insecticidal either alone or when presented together. It is a matter of routine to determine which parts are 15 necessary or sufficient for insecticidal activity.

As used herein the term ``variant'' refers to toxins which have modified amino acid sequence but which share similar activity. Certain amino acids may be replaced with 20 different amino acids without altering the nature of the activity in a significant way. The replacement may be by way of ``conservative substitution'' where an amino acid is replaced with an amino acid of broadly similar properties, or there may be some non-conservative 25 substitutions. In general however, the variants will be at least 60% homologous to the native toxin, suitably at least 70% homologous and more preferably at least 90% homologous.

30 The term ``derivative'' relates to toxins which have been modified for example by chemical or biological methods.

These toxins are novel, and they and the nucleic acids which encode them form a further aspect of the invention.

35 A preferred *Xenorhabdus* species is the bacteria *X.nematophilus*. Particular strains of *X.nematophilus* which are useful in the context of the invention are

ATTC 19061 strain, available from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (NCIMB). In addition, suitable strains include two novel strains of *Xenorhabdus* which were deposited at the NCIMB 5 on 10 July 1997 and were designated with repository numbers NCIMB 40886 and NCIMB 40887. These latter strains form a further aspect of the invention.

10 All strains have common characteristics as set out in the following Table 1.

Table 1

Strains

Characteristics	ATCC 19061	NCIMB 40887	NCIMB 40886
Gram strain	negative	negative	negative
Shape/size	rods up to 4µm long	rods up to 4µm long	rods up to 4µm long
Motile	Yes	Yes	Yes
Bioluminescent	No	No	No
Colour on NBTA*	blue	blue	blue
insecticidal on ingestion by insects	yes	yes	yes
Production of Antibiotics	yes	yes	yes
Resistant to ampicillin (50µg/ml)	yes	yes	yes
colony morphology/ colour	circular convex cream	circular convex cream	circular convex cream

15 *NBTA (Oxoid nutrient agar containing 0.0025% bromothymol blue and 0.004% tetrazolium chloride)

Preferably the pest target is an insect, and more preferably it is of the order Lepidoptera, particularly

Pieris brassicae, Pieris rapae, or Plutella xylostella or the order Diptera, particularly Culex quinquefasciatus.

In a preferred embodiment of the invention, cells from 5 *Xenorhabdus* species or agents derived therefrom are used in conjunction with *Bacillus thuringiensis* as an oral pesticide.

In further embodiments, rather than using *Bacillus* 10 *thuringiensis* itself, pesticidal materials obtainable from *B.thuringiensis* (e.g. delta endotoxins or other isolates) are used in conjunction with *Xenorhabdus* species.

15 The term 'obtainable from' is intended to embrace not only materials which have been isolated directly from the bacterium in question, but also those which have been subsequently cloned into and produced by other organisms.

20 Thus the unexpected discovery that bacteria of the genus *Xenorhabdus* (and materials derived therefrom) have pesticidal activity when ingested, and that such bacteria and materials can be used advantageously in conjunction with *B.thuringiensis* (and toxins or materials derived 25 therefrom), forms the basis of a further aspect of the present invention. The pesticidal activity of *B.thuringiensis* isolates alone have been well documented. However, synergistic pesticidal activity between such isolates and bacteria of the *Xenorhabdus* species (or 30 materials derived therefrom) has not previously been demonstrated.

35 In still further embodiments of the invention, culture supernatant taken from cultures of *Xenorhabdus* species, particularly *X. nematophilus*, is used in place of cells from *Xenorhabdus* species in the methods above.

All of these methods can be employed, *inter alia*, in pest control.

The invention also makes available pesticidal 5 compositions comprising cells from *Xenorhabdus* species, preferably *X.nematophilus*, in combination with *B. thuringiensis*. As with the methods above, a pesticidal toxin from *B.thuringiensis* (preferably a delta endotoxin) may be used as an alternative to *B.thuringiensis* in the 10 compositions of the present invention

Likewise, culture supernatant taken from cultures of *Xenorhabdus* species, preferably, *X.nematophilus* may be used in place of cells from *Xenorhabdus* species.

15 Such compositions can be employed, *inter alia*, for crop protection eg. by spraying crops, or for livestock protection. In addition, compositions of the invention may be used in vector control.

20 The invention further encompasses novel pesticidal agents which can be isolated from *Xenorhabdus* spp. Techniques for isolating such agents would be understood by the skilled person.

25 In particular, such techniques include the separation and identification of toxin proteins either at the protein level or at the DNA level.

30 The applicants have cloned and partially sequenced a region of DNA from *Xenorhabdus* NCIMB 40887 which region codes for insecticidal activity and this is shown as Figure 2 (SEQ ID NO. 1) hereinafter. Thus in a preferred embodiment the invention also provides a toxin which is 35 encoded by DNA of SEQ ID No. 1 or a variant or fragment thereof.

The invention also provides a recombinant DNA which encodes such a toxin. The recombinant DNA of the invention may comprise the sequence of Figure 2 or a variant or fragment thereof. Other DNA sequences may 5 encode similar proteins as a result of the degeneracy of the genetic code. All such sequences are encompassed by the invention.

The sequence provided herein is sufficient to allow 10 probes to be produced which can be used to identify and subsequently to extract DNA of toxin genes. This DNA may then be cloned into vectors and host cells as is understood in the art.

15 DNA which comprises or hybridises with the sequence of Figure 2 under stringent conditions forms a further aspect of the invention.

The expression ``hybridises with'' means that the 20 nucleotide sequence will anneal to all or part of the sequence of Figure 2 under stringent hybridisation conditions, for example those illustrated in ``Molecular Cloning'', A Laboratory Manual'' by Sambrook, Fritsch and Maniatis, Cold Spring Harbor Laboratory Press, Cold Spring 25 Harbor, N.Y.

The length of the sequence used in any particular analytical technique will depend upon the nature of the technique, the degree of complementarity of the sequence, 30 the nature of the sequence and particularly the GC content of the probe or primer and the particular hybridisation conditions employed. Under high stringency, only sequences which are completely complementary will bind but under low stringency 35 conditions, sequences which are 60% homologous to the target sequence, more suitably 80% homologous, will bind. Both high and low stringency conditions are encompassed by the term ``stringent conditions'' used herein.

Suitable fragments of the DNA of Figure 2, i.e. those which encode pesticidal agents may be identified using standard techniques. For example, transposon 5 mutagenesis techniques may be used, for example as described by H.S. Siefert et al., Proc. Natl. Acad. Sci. USA, (1986) 83, 735-739. Vectors such as the cosmid cHRIM1, can be mutated using a variety of transposons and then screened for loss of insecticidal activity. In this 10 way regions of DNA encoding proteins responsible for toxic activity can be identified.

For example, the mini-transposon mTn3(HIS3) can be introduced into a toxic *Xenorhabdus* clone such as cHRIM1, 15 hereinafter referred to as 'clone 1', by electroporating cHRIM1 DNA into *E.coli* RDP146(pLB101) and mating this strain with *E.coli* RDP146(pOX38), followed by *E. coli* NS2114Sm. The final strain will contain cHRIM1DNA with a single insertion of the transposon mTn3(HIS3). These 20 colonies can be cultured and tested for insecticidal activity as described in Example 8 hereinafter. Restriction mapping or DNA sequencing can be used to identify the insertion point of mTn3(HIS3) and hence the regions of DNA involved in toxicity. Similar approached 25 can be used with other transposons such as Tn5 and mTn5.

Site directed mutagenesis of cHRIM1 as outlined in "Molecular Cloning, A Laboratory Manual" by Maniatis, Fritsch and Sambrook, (1982) Cold Spring Harbor, can also 30 be used to test the importance of specific regions of DNA for toxic activity.

Alternatively, subcloning techniques can be used to identify regions of the cloned DNA which code for 35 insecticidal activity. In this method, specific smaller fragments of the DNA are subcloned and the activity determined. To do this, cosmid DNA can be cut with a suitable restriction enzyme and ligated into a compatible

restriction site on a plasmid vector, such as pUC19. The ligation mix can be transformed into *E. coli* and transformed clones selected using a selection marker such as antibiotic resistance, which is coded for on the 5 plasmid vector. Details of these techniques are described for example in Maniatis et al, *supra*, (see p390-391) and *Methods in Molecular Biology*, by L.G. Davies, M.D. Dibner and J.F. Battey, Elsevier, (see p222-224).

10 Individual colonies containing specific cloned fragments can be cultured and tested for activity as described in Example 8 hereinafter. Subclones with insecticidal activity can be further truncated using the same 15 methodology to further identify regions of the DNA coding for activity.

The invention also discloses an isolated pesticidal agent characterised in that the agent is obtainable from 20 cultures of *X. nematophilius* or variants thereof, has oral pesticidal activity against *Pieris brassicae*, *Pieris rapae* and *Plutella xylostella*, is substantially heat stable to 55°C, is proteinaceous, acts synergistically with *B. thuringiensis* cells as an oral pesticide and is 25 substantially resistant to proteolysis by trypsin and proteinase K.

By 'substantially heat stable to 55°C' is meant that the 30 agent retains some pesticidal activity when tested after heating the agent in suspension to 55°C for 10 minutes, and preferably retains at least 50% of the untreated activity.

35 By 'substantially resistant to proteolysis' is meant that the agent retains some pesticidal activity when exposed to proteases at 30°C for 2 hours and preferably retains at least 50% of the untreated activity.

By 'acts synergistically' is meant that the activity of the combination of components is greater than one might expect from the use of the components individually. For example, when used in conjunction with *B.thuringiensis* cells as an oral pesticide, the concentration of *B. thuringiensis* cellular material necessary to give 50% mortality in a *P.brassicae* when used alone is reduced by at least 80% when it is used in combination the agent at a concentration sufficient to give 25% mortality when the agent is used alone.

It has been found that the activity of the material is retained by 30 kDa cut-off filters but is only partly retained by 100 kDa filters.

Preferably the agent is still further characterised in that the pesticidal activity is lost through treatment at 25°C with sodium dodecyl sulphate (SDS - 0.1% 60 mins) and acetone (50%, 60 mins).

Clearly the characterising properties of the isolated agent described above can be utilised to purify it from, or enrich its concentration in, *Xenorhabdus* species cells and culture medium supernatants. Methods of purifying

proteins from heterogenous mixtures are well known in the art (eg. ammonium sulphate precipitation, proteolysis, ultrafiltration with known molecular weight cut-off filters, ion-exchange chromatography, gel filtration, etc.). The oral pesticidal activity provides a convenient method of assaying the level of agent after each stage, or in each sample of eluent. Such methodology does not require inventive endeavour by those skilled in the art.

The invention further discloses oral pesticidal compositions comprising one or more agents as described above. Such compositions preferably further comprise other pesticidal materials from non-*Xenorhabdus* species.

These other materials may be chosen such as to have complementary properties to the agents described above, or act synergistically with it.

- 5 Preferably the oral pesticidal composition comprises one or more pesticidal agents as described above in combination with *B. thuringiensis* (or with a toxin derived therefrom, preferably endotoxin).
- 10 Recombinant DNA encoding said proteins also forms a further aspect of the invention. The DNA may be incorporated into an expression vector under the influence of suitable control elements such as promoters, enhancers, signal sequences etc. as is understood in the art. These expression vectors form a further aspect of the invention. They may be used to transform a host organism so as to ensure that the organism produces the toxin.
- 15
- 20 The invention further makes available a host organism comprising a nucleotide sequence coding for a pesticidal agent as described above.

Methods of cloning the sequence for a characterised protein into a host organism are well known in the art. For instance the protein may be purified and sequenced: as activity is not required for sequencing, SDS gel electrophoresis followed by blotting of the gel may be used to purify the protein. The protein sequence can be used to generate a nucleotide probe which can itself be used to identify suitable genomic fragments from a *Xenorhabdus* gene library. These fragments can then be inserted via a suitable vector into a host organism which can express the protein. The use of such general methodology is routine and non-inventive to those skilled in the art. Such techniques may be applied to the production of *Xenorhabdus* toxins other than those encoded by the sequence of Figure 2.

It may be desirable to manipulate (eg. mutate) the agent by altering its gene sequence (and hence protein structure) such as to optimise its physical or 5 toxicological properties.

It may also be desirable for the host to be engineered or selected such that it also expresses other proteinaceous pesticidal materials (eg. delta- endotoxin from *B.* 10 *thuringiensis*). Equally it may be desirable to generate host organisms which express fusion proteins composed of the active portion of the agent plus these other toxicity enhancing materials.

15 A host may be selected for the purposes of generating large quantities of pesticidal materials for purification e.g. by using *B.thuringiensis* transformed with the agent-coding gene. Preferably however the host is a plant, which would thereby gain improved pest-resistance.

20 Suitable plant vectors, eg. the Ti plasmid from *Agrobacterium tumefaciens*, are well known in the art. Alternatively the host may be selected such as to be directly pathogenic to pests, eg. an insect baculovirus.

25 The teaching and scope of the present invention embraces all of these host organisms plus the agents, mutated agents or agent-fusion materials which they express.

Thus the invention makes available methods, compositions, 30 agents and organisms having industrially applicable pesticidal activity, being particularly suited to improved crop protection or insect-mediated disease control.

35 The methods, compositions and agents of the present invention will now be described, by way of illustration only, through reference to the following non-limiting examples and figures. Other embodiments falling within

the scope of the invention will occur to those skilled in the art in the light of these.

FIGURE

5 Figure 1 shows the variation with time of the growth of *X. nematophilus* ATCC 19061 and activity of cells and supernatants against *P. brassicae* as described in Example 3.

10 Figure 2 shows the sequence of a major part of a cloned toxin gene from *Xenorhabdus*.

Figure 3 shows a comparison of the restriction maps of cloned toxin genes from two strains of *Xenorhabdus* (clone 1 above and clone 3 below).

EXAMPLES

20 Example 1 - Use of *X. nematophilus* cells as an oral insecticide

CELL GROWTH: A subculture of *X. nematophilus* (ATCC 19061, 25 Strain 9965 available from the National Collections of Industrial and Marine Bacteria, Aberdeen, Scotland) was used to inoculate 250 ml Erlenmeyer flasks each containing 50 ml of Luria Broth containing 10g tryptone, 5g yeast extract and 5g NaCl per litre. Cultures were 30 grown in the flasks at 27°C for 40hrs on a rotary shaker.

PRODUCTION OF CELL SUSPENSION: Cultures were centrifuged at 5000 x g for 10 mins. The supernatants were discarded and the cell pellets washed once and resuspended in an 35 equal volume of phosphate buffered saline (8g NaCl, 1.44g Na₂HPO₄ and 0.24g of KH₂PO₄ per litre) at pH 7.4.

ACTIVITY OF CELL SUSPENSION TO INSECTS: The bioassays were as follows: *P. brassicae*: The larvae were allowed to feed on an artificial agar-based diet (as described by David and Gardiner (1965) London Nature, 207, 882-883)

5 into which a series of dilutions of cell suspension had been incorporated. The bioassays were performed using a series of 5 doses with a minimum of 25 larvae per dose. Untreated and heat-treated (55°C for 10 minutes) cells were tested. Mortality was recorded after 2 and 4 days
10 with the temperature maintained at 25°C.

LC50 cells/g diet

Treatment	2 days	4 days
Untreated	5.9×10^5	9.8×10^4
Treated 55°C	7.1×10^5	1.4×10^5

Aedes aegypti: The larva were exposed to a series of 5 different dilutions of cell suspension in deionised water. The biosassays were performed using 2 doses per

20 dilution of 50 ml cell suspension in 9.5cm plastic cups with 25 second instar larvae per dose. Untreated and heat-treated (55°C or 80°C for 10 minutes) cells were tested. Mortality was recorded after 2 days with the temperature maintained at 25°C.

25

LC50 cells/ml

Treatment	2 days
Untreated	5.1×10^6
Treated 55°C	7.4×10^6
Treated 80°C	$> 10^8$

Culex quinquefasciatus: The larvae were exposed to a single concentration cell suspension containing 4×10^7 cells/ml. The biosassays were performed using 2 50 ml

35 cell suspensions in 9.5 cm plastic cups with 25 second instar larvae per cup. Untreated and heat-treated (55°C or 80°C for 10 minutes) cells were tested. Mortality was

recorded after 2 days with the temperature maintained at 25°C.

% Mortality	
5 Treatment	2 days
Untreated	100
Treated 55°C	100
Treated 80°C	0

10 Thus these results clearly show that cells from *X. nematophilus* are effective as an oral insecticide against a number of insect species (and are particularly potent against *P. brassicae*). The insecticidal activity is not dependent on cell viability (i.e is largely unaffected by 15 heating to 55°C which reduces cell viability by >99.99%) but is much reduced by heating to 80°C, which denatures most proteins.

20 Example 2 - Use of *X. nematophilus* supernatant as an oral insecticide

CELL GROWTH: Cultures were grown as in Example 1.

25 PRODUCTION OF SUPERNATANT: Cultures were centrifuged twice at 10000g for 10 mins. The cell pellets were discarded.

ACTIVITY OF SUPERNATANT TO INSECTS: The Bioassay was as follows:

30 Activity against neonate *P. brassicae* and two day old *Pieris rapae* and *Plutella xylostella* larvae was measured as for *P. brassicae* in Example 1, but using a series of untreated dilutions of supernatant in place of cell suspensions and with mortality being recorded after 4 days 35 only.

LC50 (μ l supernatant/g diet)

Insect species	4 days
<i>P. brassicae</i>	22
5 <i>P. rapae</i>	79
<i>P. xylostella</i>	135

In addition, size-reducing activity (62% reduction in 7 days) against *Mamestra brassicae* was detected in larvae 10 fed on an artificial diet containing *X. nematophilus* supernatant (results not shown).

Thus these results clearly show that the supernatant from 15 *X. nematophilus* culture medium is effective as an oral insecticide against a number of insect species, and are particularly potent against *P. brassicae*.

The heating of supernatants to 55°C for 10 minutes caused 20 a partial loss of activity while 80°C caused complete loss of activity. Activity was also completely lost by treatment with SDS (0.1% w/v for 60 mins) and Acetone (50% v/v for 60 mins) but was unaffected by Triton X-100 (0.1% 60 mins), non-diet P40 (0.1% 60 mins), NaCl (1 M for 60 mins) or cold storage at 4°C or -20°C for 2 weeks. All 25 of these properties are consistent with a proteinaceous agent.

The general mode of action of *X. nematophilus* cells and 30 supernatants i.e. reduction in larval size and death within 2 days at high dosages, and other properties, e.g. temperature resistance, appear to be similar suggesting a single agent or type of agent may be responsible for the oral insecticide activity activities of both cells and supernatants.

35

Example 3 - Timescale for appearance of ingestable insecticidal activity

CELL GROWTH: 1ml of an overnight culture of *X. nematophilus* was used to inoculate an Erlenmeyer flask. Cells were then cultured as in Example 1. Growth was estimated by measuring the optical density at 600 nm.

5

PRODUCTION OF CELL SUSPENSION AND SUPERNATANTS: These were produced as in Examples 1 and 2.

ACTIVITY OF CELLS AND SUPERNATANTS AGAINST *P. brassicae*:

10 The cell suspension bioassay was carried out as in Example 1, but using a single dose of suspended cells equivalent to 50 µl of broth/g diet and measuring mortality after 2 days. The cell supernatant bioassay was carried out as in Example 2, but using a single dose 15 equivalent to 50 µl supernatant/g diet (i.e. more than twice the LC50) and measuring mortality after 2 days.

The results are shown in Fig. 1. Thus these results clearly show that cells taken from *X. nematophilus*

20 culture medium are highly effective as an oral insecticide against *P. brassicae* after only 5 hours, and supernatants are highly effective after 20 hours.

Although some slight cell lysis was observed in the early stages of growth, no significant cell lysis was observed 25 after this point demonstrating that the supernatant activity may be due to an authentic extracellular agent (as opposed to one released only after cell breakdown).

Example 4 - Synergy between *X. nematophilus* cells and

30 *B. thuringiensis* powder preparations

CELL GROWTH AND SUSPENSION: *X. nematophilus* cells were grown and suspended as in Example 1. *B. thuringiensis*

strain HD1 (from *Bacillus* Genetic Stock Centre, The Ohio 35 State University, Columbus, Ohio 43210, USA) was cultured, harvested and formulated into a powder as described by Dulmage et al. (1970) J. Invertebrate Pathology 15, 15-20.

ACTIVITY OF *X. NEMATOPHILUS* CELLS AND *B. THURINGIENSIS* POWDER AGAINST *P. BRASSICAE*: The bioassays was carried out using *X. nematophilus* and *B. thuringiensis* in combination or using *B. thuringiensis* cell powder alone. Bioassays were carried out as in Example 1 but with various dilutions of *B. thuringiensis* powder in place of *X. nematophilus*. For the combination experiment, a constant dose of *X. nematophilus* cell suspension sufficient to give 25% mortality was also added to the diet. Mortality was recorded after 2 days.

		LC50 (μ g Bt powder/g diet)
	<u>Bioassay</u>	<u>2 days</u>
15	B.t. alone	1.7
	B.t. plus <i>X. nematophilus</i>	0.09

These results clearly demonstrate the synergism between *X. nematophilus* cells and *B. thuringiensis* powder when acting as an oral insecticide against *P. brassicaceae*.

Example 5 - Synergy between of *X. nematophilus* supernatants and *B. thuringiensis* powder

25 CELL GROWTH AND PRODUCTION OF SUPERNATANTS: *X. nematophilus* cells were grown and supernatants prepared as in Example 2. *B. thuringiensis* was grown and treated as in Example 4.

30 ACTIVITY OF *X. NEMATOPHILUS* SUPERNATANTS AND Bt CELL POWDER AGAINST *P. BRASSICAE*: The bioassays were carried out using *X. nematophilus* supernatants and *B. thuringiensis* in combination or using *B. thuringiensis* powder alone. The Bioassay against neonate *P. brassicaceae* and two day old *Pieris rapae* and *Plutella xylostella* larvae were measured as in Example 2 but with various dilutions of *B. thuringiensis* in place of *X. nematophilus*. For the combination experiment, a

constant dose of *X. nematophilus* supernatant sufficient to give 25% mortality was also added to the diet. Mortality was recorded after 4 days.

5	LC ₅₀ (µg Bt powder/g)		
diet		Bt alone	Bt plus Xn
<u>Insect species</u>			
<i>P. brassicae</i>		1.4	0.12
<i>P. rapae</i>		2.5	0.26
10 <i>P. xylostella</i>		7.2	0.63

These results clearly demonstrate the synergism between *X. nematophilus* supernatants and *B. thuringiensis* powder when acting as an oral insecticide against several insect species. The fact that both *X. nematophilus* cells and supernatants demonstrate this synergism strongly suggests that a single agent or type of agent is responsible for the demonstrated activities.

20 Example 5 - Characterisation of insecticidal agent from *X. nematophilus* supernatant by proteolysis

CELL GROWTH AND PRODUCTION OF SUPERNATANTS: *X. nematophilus* cells were grown and supernatants prepared 25 as in Example 2.

PROTEOLYSIS OF SUPERNATANT: Culture supernatant (50ml) was dialysed against 0.5 M NaCl (3 x 1 l) for 48 hours at 4°C. The volume of the supernatant in the dialysis tube 30 was reduced five-fold by covering with polyethylene glycol 8000 (Sigma chemicals). Samples were removed and treated with either trypsin (Sigma T8253 = 10,000 units/mg) or proteinase K (Sigma P0390 = 10 units/mg) at a concentration of 0.1 mg protease/ml sample for 2 hours 35 at 30°C.

ACTIVITY OF PROTEASE TREATED SUPERNATANT AGAINST *P. brassicae*: The bioassay against neonate *P. brassicae*

larvae was carried out by spreading 25 μ l of each 'treatment' on the artificial agar-based diet referred to in Example 1 in a 4.5 cm diameter plastic pot. Four pots each containing 10 larvae were used for each treatment.

5 Mortalities were recorded after 1 and 2 days. Controls using water only, trypsin (0.1 mg/ml) and proteinase K (0.1 mg/ml) were also tested in the same way.

		% Mortality	
10	Treatment	1 day	2 days
	Untreated supernatant	60	100
	Proteinase K treated supernatant	45	100
	Trypsin treated supernatant	40	100
	All controls (no supernatant)	0	0

15

Example 6

Entomocidal activity of other *Xenorhabdus*

Using the methodology of Examples 1 and 2, four different 20 *xenorhabdus* strains were tested against insect pests. The results obtained were as follows:

I) Activity to *Pieris brassicae*

Strain deposit no./code	Cells 10^6 /grm diet % mortality	Supernatant LC50 μ l/gram of diet
NCIMB 40887	100	0.09
0014	100	0.52
0015	80	3.73
NCIMB 40886	100	0.05

25 It was found that entomocidal activity of cells and supernatant was reduced by more than 99% when all four strains were heated at 80°C for 10 minutes.

II) Activity to mosquitoes (*Aedes aegypti*)
Bacteria added at the rate of 10^7 cells/ml of water

Strain deposit no/code	Cells 10^6 /grm diet	% mortality
NCIMB 40887		0
0014		40
0015		45
NCIMB 40886		95

5 Furthermore, all strains significantly reduced the growth of *Heliothis virescens*.

Example 7

Cloning of toxin genes from strains of *Xenorhabdus*

10 Total cellular DNA was isolated from NCIMB 40887 and ATCC 19061 using a Quiagen genomic purification DNA kit. Cells were grown in L borth (10g tryptone, 5g yeast extract and 5g NaCl per l) at 28°C with shaking (150rpm) to an optical density of 1.5 A_{600} . Cultures were 15 harvested by centrifugation at 4000xg and resuspended in 3.5mls of buffer B1 (50mM Tris/HCl, 0.05% Tween 20, 0.5% Triton X-100, pH7.0) and incubated for 30 mins at 50°C. DNA was isolated from bacterial lysates using Quiagen 100/G tips as per manufacturers instructions. The 20 resulting purified DNA was stored at -20°C in TE buffer (10mM Tris, 1mM EDTA, pH 8.0).

A representative DNA library was produced using total DNA of NCIMB 40887 and ATTC 19061 partially digested with the 25 restriction enzyme *Sau3a*. Approximately 20 μ g of DNA from each strain was incubated at 37°C with 0.25 units of the enzyme. At time intervals of 10, 20, 30, 45 and 60 minutes, samples were withdrawn and heated at 65°C for 15 minutes. To visualise the size of the DNA fragments, the 30 samples were electrophoresed on 0.5% w/v agarose gels.

The DNA samples which contained the highest proportion of 30 to 50kb fragments were combined and treated with 4 units of shrimp alkaline phosphatase (Boehringer) for 15 minutes at 37°C, followed by heat treatment at 65°C to 5 inactivate the phosphatase.

The size selected DNA fragments were ligated into the BamH1 site of the cosmid vector SuperCos1 (Stratagent) and packaged into the *Escherichia coli* strain XL Blue 1, 10 using a Gigapack II packaging kit (Stratgene) in accordance with the manufacturers instructions.

To select for cosmid clones with entomocidal activity, individual colonies selected on L agar plates containing 15 25µg/ml ampicillin, were grown in L broth (containing 25µg/ml ampicillin) overnight at 28°C. Broth cultures (50µl) were individually spread onto the surface of insect diet contained in 4.5cm diameter pots, as described in Example 5. To each container 10 neonate *P. brassicae* larvae were added. Larvae were examined after 20 24, 72 and 96 hours recording mortality and size of surviving larvae. A total of 220 clones of NCIMB 40887 were tested, of which two were found to cause reduction in larval growth and death within 72 hours. Of 370 25 clones from ATTC 19061, one was found to cause larval death within 72 hours.

Example 8

Activity of cloned toxin genes to *Pieris brassicae*

30 The three active clones from Example 7 were grown in L broth, containing 25µg/ml ampicillin, for 24 hours at 28°C, on a rotary shaker at 150rpm. The activity of the toxin clones to neonate larvae were performed by incorporation of whole broth cultures into insect diet, 35 as described in Example 1.

<u>Clone No</u>	<u>Strain</u>	<u>LC50 (μl broth/g insect diet)</u>
1	NCIMB 40887	13.03
2	NCIMB 40887	16.7
3	ATTC 19061	108.7
Control*		No effect at 100μl/g

*XL1 Blue *E. coli* broth

5

When *E. coli* toxin clones were heated at 80°C for 10 minutes and added to the diet at a rate of 100μl/g, no activity to larvae was detected. Highlighting the heat sensitivity of the toxins.

10

Example 9

Sequencing of the cloned toxin from NCIMB 40887

15

Cosmid DNA of the entomocidal clone 1 above from NCIMB 40887 was purified using the Wizard Plus SV DNA system (Promega) in accordance with the manufacturers instructions. A partial map of the cloned fragment was obtained using a range of restriction enzymes *Eco*R1, *Bam*H1, *Hind*III, *Sall* and *Sac*1 as shown in Figure 3. DNA sequencing was initiated from pUC18 and pUC19 based sub-clones of the cosmid, using the enzymes *Eco*R1, *Bam*H1, *Hind*III, *Eco*RV and *Pvu*II. Sequence gaps were filled using a primer walking approach on purified cosmid DNA. Sequence reactions were performed using the ABI PRISM™ Dye Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq DNA polymerase FS according to the manufacturers instructions. The samples were analysed on an ABI automated sequencer according to the manufacturers instructions. The major part of the DNA sequence for the cloned toxin fragment is shown in Figure 2.

20

25

30

Example 10

Restriction map of cloned toxin from clone 3

Cosmid DNA of the entomocidal clone 3 above was purified
5 as described in Example 9. A restriction map of the cloned fragment was obtained using the restriction enzymes *Bam*H1, *Hind*III, *Sall* and *Sac*1 and this is shown in Figure 3. When compared with the map from clone 1 (Figure 3) it is clear that over the regions which
10 overlap, the restriction maps are very similar. The only detectable difference between the two clones was a reduction in size of two *Hind*III fragments in clone 3, corresponding to the 11.4kb and 7.2kb *Hind*III fragments in clone 1 by approximately 2Kb and 200bp respectively.
15 These results indicate the overall relatedness of the DNA region coding for toxicity in the two bacterial strains.

Example 11

Southern Blot Hybridisation Experiments

20 A 10.3kb *Bam*H1-*Sall* fragment of the DNA from clone 1 was used as a probe to hybridise to total *Hind*III digested DNA of the *Xenorhabdus* strains ATCC 19061, NCIMB 40886 and NCIMB 40887. Hybridisation was performed with 20ng/ml of DIG labelled DNA probe at 65°C for 18 hours. Filters
25 were washed prior to immunological detection twice for 5 minutes with 2 x SSC (0.3M NaCl, 30mM sodium citrate, pH 7.0)/0.1% (w/v) sodium dodecyl sulphate at room temperature, and twice for 15 minutes with 0.1 x SSC (15mM NaClm 1.5 mM sodium citrate, pH 7.0) plus 0.1%
30 sodium dodecyl sulphate at 65°C. The probe was labelled and experiments performed in accordance with manufacturers instructions, using a non-radioactive DIG DNA labelling and detection kit (Boehringer). The probe hybridised to a *Hind*III fragment of approximately 8kb in
35 all three strains as well as an 11.4kb fragment in NCIMB 40887 and an approximate 9kb fragment in both NCIMB 40886 and ATCC 19061. These results show that strains NCIMB

25

40886 and ATCC 19061 contain DNA with close homology to the toxin gene of clone 1 above, confirming the similarity between the toxins produced by the three strains.

5

05211234567890

CLAIMS:

1. An insecticidal composition which:
 - (i) is adapted for oral administration to an insect,
 - (ii) comprises a proteinaceous pesticidal material
- 5 obtainable from a *Xenorhabdus* species, or a pesticidal fragment thereof, or a pesticidal variant or derivative of either of these, having in each case toxic activity when administered orally.
- 10 2. A composition according to claim 1 wherein the said pesticidal material comprises material encoded by the nucleotide sequence of Figure 2 or variant or fragment thereof, or a sequence which hybridises with said sequence.
- 15 3. A composition according to claim 1 or claim 2 which comprises cells of *Xenorhabdus*.
4. A composition as claimed in any one of the
- 20 20 preceding claims which comprises supernatant taken from cultures of cells of *Xenorhabdus* species.
5. A composition according to any one of the preceding claims wherein the *Xenorhabdus* species is *Xenorhabdus*
- 25 *nematophilus*.
6. A composition according to any one of claims 1 to 4 wherein the *Xenorhabdus* species is ATCC 19061, NCIMB 40886 or NCIMB 40887.
- 30 7. A composition as claimed in any one of the preceding claims which comprises a further pesticidal material not obtainable from *Xenorhabdus*.
- 35 8. A composition according to claim 7 wherein the said further pesticidal material comprises a material obtainable from *S. thuringiensis*.

AMENDED SHEET
IPEA/EP

SUBSTITUTE SHEET (RULE 26)

9. A composition according to claim 8 which further comprises cells of *B. thuringiensis*.

10. A composition according to claim 8 wherein the 5 pesticidal materials obtainable from *B. thuringiensis* comprises the delta endotoxin.

11. A composition according to any one of the preceding 10 claims which further comprises an agriculturally acceptable carrier.

12. A composition according to claim 10 wherein the carrier comprises items of insect diet.

15 13. A method for killing or controlling insect pests, which method comprises administering to a pest or the environment thereof a composition according to any one of the preceding claims.

20 14. A method as claimed in claim 12 wherein the pests are insects from the order Lepidoptera or Diptera.

15. A microorganism comprising *Xenorhabdus* strain NCIMB 40886.

25 16. A microorganism comprising *Xenorhabdus* strain NCIMB 40887.

17. A pesticidal agent which comprises a toxin 30 comprising a protein which is encoded by DNA which includes SEQ ID No. 1 or a variant or fragment thereof.

18. An isolated pesticidal agent characterised in that it is obtainable from cultures of *X. nematophilus* or 35 mutants thereof, has oral pesticidal activity against *Pieris brassicae*, *Pieris rapae* and *Plutella xylostella*, is substantially heat stable to 55°C, is proteinaceous, acts synergistically with *B. thuringiensis* cells as an

oral pesticide, and is substantially resistant to proteolysis by trypsin and proteinase K.

19. An isolated pesticidal agent as claimed in claim 18
5 further characterised in that the pesticidal activity is substantially destroyed by treatment with sodium dodecyl sulphate or acetone or heating to 80°C.

20. An isolated pesticidal agent as claimed in claim 18
10 or claim 19 further characterised in that the agent is an extracellular protein.

21. A recombinant DNA which encodes a pesticidal agent
according to any one of claims 17 to 20.

15 22. A recombinant DNA of claim 21 which comprises the sequence of Figure 2 or a variant or fragment thereof.

20 23. A recombinant DNA which comprises or hybridises under stringent conditions with all or part of the sequence of Figure 2, and which encodes a pesticidal material.

25 24. An expression vector comprising a recombinant DNA according to any one of claims 21 to 23.

25. A host organism which has been transformed with an expression vector according to claim 24.

30 26. A host organism as claimed in claim 25 which has been engineered or selected such that it also expresses other pesticidal proteinaceous toxicity enhancing materials

35 27. A host organism comprising a nucleotide sequence coding for a fusion protein comprising a pesticidally active portion of an agent as claimed in any one of claims 17 to 20 in combination with other pesticidal proteinaceous toxicity enhancing materials.

ARTICLE 34

WO 98/08388

PCT/GB97/02284

29

28. A host organism as claimed in claim 27 wherein the pesticidal toxicity enhancing materials comprise delta-endotoxin from *B. thuringiensis*.

5

29. A host organism as claimed in any one of claims 25 to 28 wherein the host is a plant.

10 30. A host organism as claimed in any one of claims 25 to 28 wherein the host is a virus pathogenic to insects.

31. A fusion protein as expressed by a host as claimed in claim 27.

15 32. A pesticidal composition comprising one or more agents as claimed in any one of claims 17 to 20.

663374-14021203

AMENDED SHEET
IPEA/EP

SUBSTITUTE SHEET (RULE 26)

Fig.2.

1 TCCCAATG CCGGAGAAAA TCAGTCGGGA ACTGCCGTG ATTATTCTC ACTTATTA
 61 CGAATTGCG GACCAGATA AGGCTAAAAA ACTGCTACAG GCGCAACGCG ACTCGAACGA
 121 AGCGTTAACG GTAAAGAGTC ATTCCGATCC GCCTGATATCGC TTITGTTGGTT ATCTGGGTG
 181 TGTCAATGAT ATGACCGGAA TGAAGATGGG CAATAAAAAC ATTAGCCAC GAGCACCGAC
 241 ATTGTACTTG TATCATGGCT ATCTCTCTT TAGTGAAGGCC CACGGCTTTC AACGTCGTT
 301 AACACTGACT AGTTTGGTG ATTCATCC CGAAGATTAG CTGGAATACC GGAAAGAGTA
 361 TCGAAAATGGT CGAACCCAAAGA AAGGCTATTC CTATAACCGT GAATTATATGG AAGAGGCCGA
 421 AGAATGGCTA CGCGTACGTC CTGAGTGTG AGACTTTAA TCACCTGTAT AAAACTTGA
 481 GCTTTAAGTC TGCACTCCAT ACACAACTTA AAATATCTAA TTGTATTTAA AAAAARATAA
 541 TAGATGTTAAT GTTATTTTTT AACTATACAT AAACCTTACAG TGCTCTTCAT TGCTGTTAAA
 601 ATAGGGTGAAG CAGGTGATAC AGTCAGTGAAT TATCATATTA ATTACCGTAA ACCCGAGATG
 661 AGCGAGCTT TCAGGGAATG GTGCGAGAGG TGCAATACCTA AGAGGGTGAAG AAGAGTTTC
 721 AGGGGGGCTT ATGGCAGGTA AACAAATCA GAAGCAAATA CCGTCACCAA TCTGGTTTT
 781 ATTTTGTGTT ACTACCTCA ATTAAATGA TGTAATATCATC TGATTITTTAT TAAGAATAGA
 841 AGTTAACATC AATTTCATG TGACTGATTC ATTACACATG GTATAGATAA ATAAATCTGT
 901 TATATCTGT TTCATACGC ATTACATCAGG AGTGTGTAA CAGGAGACAA GAATGTCACA
 961 CATCATTAC TGTGTTAAAG AGGGCAAGAA GCAGGGTTA ATTTCTACG GTGTTACAC
 1021 GCGCTAATC ATTGGAAATC GCTATCAAA AGGACTGAA GATCAAATAC AGGTTATGAG
 1081 CCTGAAATCAT TCGATGAGCC GTGAGCAGAA TGTTATCATC CAACCCGCTCA GTTTGTTGAA
 1141 ACCATTGAT AACATCTCTC CCTCTGTTGC TTGATGCCAG TTTTGTGCTAT CACAGGACAA
 1201 GCGCATGATGG ACAACTGGG TTCTTGTATG AAATCAACGT GACCGATGTC ACGATTGTGG
 1261 ATATTCTCA TAATTATCCG GCATTCAATC AATGATAATG GTGCGATACCC CCGATGAGTC
 1321 TGATGTCG ATTTAAAGTC CATTTCATGC AACACACATCG CCGCAGGACT CTGGGTCACA
 1381 GCATACGCAA TTAGCGGGAA GTGAAAGAGC AAGCGCTTAA TATCTGGGGT CTGGAAATGTT
 1441 AAGCCACTA AGAACGGCTT GTGTTGAAAGA AAGCCCGTAA ACCCGCTCAA ACATCATGCC
 1501 CGTTATCGTT GTGTTGGATGA TGACGGCAAT CTTTTAACCCG AACCGCAAGTA TCGGGTTG
 1561 CTGCGGATG TGCGATAAA AGAAGGAAG AGTATAACAC CACATGGCAT
 1621 CTTACGGATG ACAAAATATA ACTTGAATT TGATGAAATATAA AGGATTAATA CCGATGAGTC
 1681 CTATACTGGT CAGACAAAAAA TAGAATCCAA TTCTCATATC TTGCTTGTATG TTTTCTGAGGA
 1741 AACATTATAT CTTAGGATG CAAAGGGAAA CAGGAAATAG CCGGGCTTAA TATCTGGGGT
 1801 GAAATCAGAC AGTAAATATG AAACACAAAC GCTATCACG CAGGAAATAG ACAGCGATCT
 1861 TTCTGTGATT TATATTATGC AAATTATGCT TACCCSAAAAA CTTGGCTCAA ATATATTCTC
 1921 GGCAATCGAA ACCATTTTA AGAAAGATGA TACCTGGTT GAATTAACTT CCGGTAAGAC
 1981 CTGTTGGAGG AAAAACCGG AGAAATGCTG TTATTTTGAA AGTACAGTTG AACCAAACAC
 2041 TGTCAAGCGAC GGGGATAATA CCGTTGACCT AAATATCAGT ATTCCTGAAC GACCTTTAT
 2101 TGCCAAAGAA TATCCATG TGCAACCCAC CGATCCATTG GAAAAGAGTA AATTAATGC
 2161 ATAATACAG CGACGGTTAT CGAAAGGAAAT TTACCGGAT CAAATGGAG CAACTTATG
 2221 TCGAGGCGC AGCACACTAT TTAGCTCGC TTGTTAAGAT GATTATCTCT TAATGTTGAG
 2281 TTTTAAATGTT GTTTTATCTG AGTAAATGTT AGTCAATCTT CAAATCTTTC AGACTTAT
 2341 AGAAAACCTAA AGAATTAAGG AACAAAGATG TACCTGGTT GAATTAACTT ATACAAAGTA
 2401 TGTCGCGGCC TCGATTTAT GTGCCCCCTGC CGTTTGTGTT TATGCGCTGC CAAATGATAG
 2461 ACCAGATATT TATGAGCAAG CGGCACAGAG ATTATGCCA TATGCCGAA CTAAAATTGG
 2521 TCAACTGGAA ATTAAGCGCG GTGAGGGTTG CGCACATCTT AAAGGTACTT TTATTAATCA
 2581 ATATGGTAA AGAATATCTG GGTGATGTT GCTGACATG CAAAGCTCAA GAGATTCAGA
 2641 AAATATGATG ATGAGGTGA TGATGAGATA GTCTGGGGT CAAATGTTGAGCA
 2701 GAATGGTTG AAAATCAGG TGATGAAAAA ATATGGTAAAT GATTTAGTA ATGTCGCTT ATCCCATCT
 2761 AATATAATG ACATAGTAAAC TCTTGTGAT TACTATAACA AAGGATATCA TGTTGTTACT
 2821 TTGATTTCTG CAGGATGTT ATCAGATTT GTGTGACATAG AACATCAGG AAAAATCTAT
 2881 TTGATGTTT GGGAGGGT AGTAGAAAAG TATGAGAAAAG AAAATATCAG AATAATTCTA
 2941 GATCTGAATC AATATGTTAA TTAAATCTG TTTCATGGG GTAAAGTGGG ACATCAAAAT
 3001 AAAAARAAAC AATCACTAGA TTATGACTG AACCATATT TTTGAGGGTT GGTTTTTA
 3061 CCAATGAAT AACATGAAAAT AAATTTAAAT TATTTTACTT TTTTACTTCTT ATGTTGTTG
 3121 TAATCCAAAG CAAAGTTT TACCAAAATC AGATTTCTT CCGTATGCGAG TGATAAATG
 3181 ACCATATCAT GCATCAATTA CCATCACAGG AGTGTGATTC AATGAAAAAA GGTTTGGG
 3241 AAAATTCTAT CCTACTGGCT CAGGACTAAC ATGGAATCCA AARGATAGTT CTTTCTTATA
 3301 GGGTGGAAA AAAGAAATAA GAAAAGATTA TCATCATATA ATATACACAG GTACCCCAA
 3361 GAAGACAGAA TTGATTTAA TTGAGGTGTT AGGATTTACA TTGGGTACAG TGACCCGAG
 3421 GAAAGAGTTC ATATCAATTA ATACTTTAA ATGAAAGGAA TAATTGTCAC TATCAGAATG
 3481 GTGATTTAAT TCGCCATTT TATACTTTG TATACTCTC CAACATAATC AGGATTCTT

Fig.2.

3541	CTTATTATTT	TTCATGGTGC	TAaaaaACGTT	TATTCAGAAA	ATAAAATTAAAG	TAAATCAGAT
3601	AAATATTATC	CATTACATGTT	ATAATCGATA	ACACGATAC	CTGACTTTCT	GGCTGTTCTT
3661	ATGAATCGA	AGATAATCT	TTCTGACCT	GAACGAATCA	CATTGCAACC	ACTCGCTTIG
3721	ATACACCCAC	ACCGGGACAT	TCTGACCGGA	GGAAACGGTT	TACTCATGCT	TGGCAAGAGG
3781	AGCAAGCGT	CCCAAGATAC	CGCTGAAATC	GGATGCACTG	TCCGGTTTAT	TTCGAATTGG
3841	GTTCACATGT	GGCACAGATA	GGCGGATTAT	TCGGCGTCA	TGCCGGAGG	CGGTGTTCTG
3901	CCATGACGCC	TGACATGATT	GCCACTGCG	TGAAAGCCGC	TCCCGTACGT	AAACGCTTGT
3961	GCCTGCGAAG	CAGGCAGGGT	TTCCCTGCT	TGTACGCTG	AAACGCTGG	GAATACCTG
4021	AAACGCCCC	GGCTCCCCCTA	TAACACGCCCC	CGCTCTGCG	TTAAAAAAAAG	CCCAATAAAA
4081	CGGAGTTTC	TGAAAATCA	GCCCTTGTA	ATAAAAATTAA	GGCCGGAGCA	CACTCAGGAC
4141	ATTACCGTCT	GTTGTTATTT	GACTTCTGGG	GGCGTTAAAT	TACACGGATA	ACACGCTGTT
4201	TTAACGACACA	ACGTCAGGCA	GTATCACGCC	AGATGACGTC	ATTGATTTTT	TAGAGCGGT
4261	GGCCGACAAAC	GGGACAACCG	CTTGACATTG	TTAGTGTGTTG	ATAATGCGGC	TATCCATCAC
4321	GGGATAGAGG	AAAAATACG	AAATGGGGG	TGACAGAAC	ACAACTCTGT	TTTATTCAT
4381	CTTCCCGCTT	ACAGCCCGA	GCTGTATCTG	ATTGAAATCG	TCTGAAACA	GGCCAATAC
4441	GACTGCGAC	GTTTATTCAC	CTGGACTCTAG	DAACCATGTC	AAATATGAGG	AAATACCTTAA
4501	TTGAAGGTT	ATGGCCACCA	ATTGCAATT	AACTTTCTT	GAGTACTTAC	TAAGAATAGA
4561	TGCTGAGTC	GTTTGTCTAC	TTGGGGTCTG	GGGGATGATA	CTGAAAATT	TTTTGATATC
4621	TCTGAAAATT	GTGTTTCTCG	TGGCTTACGTC	TGCTTCTTGG	GATATTGTTT	CCATCAAGTC
4681	TGTCAAACATA	CTGTTAAAGT	AGATGTTGAT	AAAGAGACT	GAATTATAAT	ACAAAACAAT
4741	AAATACCTG	GACAAATTT	TATTTCACAT	GAGACATTA	GGTTGATT	CCCAATCTGG
4801	TCACTTAA	CCGAATAAAGG	ATCTTGAA	ATCATGGAT	CTTACTTTA	TCAATGAA
4861	TTAACAAAC	AGTTGATAAA	GAAAATTATT	TAATTCTAAG	TGCCGTGTTG	AAATAAATT
4921	TGTTTTTGT	TAATGATGA	ATAACCGAT	AACTGTTGTT	TTTACTTCT	AAATTACTCG
4981	TACATAATG	TATTATTTTA	TATAAAGAGT	TGTTGCCCCAT	TTAACCGATA	ACAAATTTG
5041	TTTACACGTA	ACTTACGCTC	ACTGACCTTT	GGGCTCGCT	GGTCAGAAC	TAGGGCGGT
5101	ATCCATTTA	TTTATGATAA	ATAAAAATTAA	ATTATCTTAA	ATAAGCTGAA	TATGTGATT
5161	TGTGCTCAAT	CTTGGATTCA	AGTATGTT	CTTGTGTTG	TTTTGAGCA	TTTATGAGCA
5221	GATGAGAGG	ATGCCCCAT	GACACATAT	CGGATACGAC	TGTAACATTA	AGTCAGTTA
5281	TAATAATTAT	GTTAAATAGT	AAATTTTGT	AGAAAATCTG	ATTCATTTAC	GGCCATTTTACA
5341	ATAGCATCT	CTTTAATAT	ATTAAATCTA	GATAAAACAA	ATAATTACAA	TGTGAA
5401	ATAATGACTT	ACAAAATTAAG	CACTAAATCT	TCAGATGAA	TCTTAACTGA	CAACACTATT
5461	TTTAAATATA	ATTGGGGT	TTATGTTAG	CCAGCGTSTA	TTTACTAATA	AAATACGTC
5521	CACTCGGAC	GGTCAGAGCA	TGACTCTTGC	GGATCTGCAA	TATTTATCTC	TCACTGAACT
5581	GAGAAAATTC	TTTGATGACC	AGCTCGATG	GGGAGAGGCT	ATTCATCTC	ATCATGAAAC
5641	TATAGCAGC	AAAAAAATTA	ATCGCTTCTG	GGAGGGCGT	ATTCATACCC	TGCGCAACCC
5701	ACAATATTAC	GGTGTCTA	GACTGCTGTT	TGAAAGAAC	AGGGTTTAC	CGAGCTATG
5761	TGAAATGTT	GGTGTCCCCCT	CTTCTTCTT	TTGAAAGACC	GGTTTCACTG	CTTCCATGTT
5821	TTCACCGG	GGCTATCTCA	CGGAATGTTA	TGCTGAAAGG	AAAGGACTT	ATTTTCAAG
5881	CTCTGCTTAT	CATTTCTATA	ATGGCCCTCC	GGATCTGCT	GATCTGACTC	TGAGCCAGAG
5941	TAATATGGAT	ACAGAAAATT	CCACCTGAC	ACTGCTTCAA	GAACCTGTTG	TGGAGCTTAA
6001	ACCCGCAAGA	CCGGGGTGA	TTCCGGACCA	TTGATGAGGA	GCTGTGTCAC	TTACCCCTCG
6061	GCCATTGATA	CCCCCTTACCA	TCACGGTTAC	GGAGACTATCC	GTCAAGGTCAT	TGAGCCCAT
6121	GACAGTACAC	TGTCAGCGCT	GTCCGGCTTA	CTTGGAGGTG	TGGGGCAGG	GGAGGGGGCT
6181	TCATTACTGG	GGATTCTGG	CAATATTCT	CCAGAACATG	ATAACATT	GACCGAAGAG
6241	ATTACGAAA	AGAACGCTGA	TGCTTATT	GGCCAAACAT	TCAGTGA	ATACTGCCCC
6301	GGAAATTCTG	GGTCACATTC	ATGGATGAC	AAATATTATG	GTCTTGAAC	TCTTGAGGTG
6361	AAAAAATACC	TCGGGATGT	GCACAAATGC	TATTCGACAA	GCACCTCTG	TTATGTTGGAT
6421	ATATATCTAA	CGGGTTTGT	GGTCAATAAT	GAAGATTAAC	TGCAAGCTT	AAATAAACAA
6481	CGTGTAAAAA	CAGATGATT	TGATAAATAC	GTAATATTAC	TTGATCTGAT	GTATGAAGGA
6541	ATATAATCAAT	TCTTATATAG	TGCTGATT	AGAGATATCGA	GAGAAATTGG	GGCGACTCTT
6601	AGGAAAATAC	GGGGCAACAG	TGGCATGTC	GGCAGCTT	CCGGTCCCC	GGTAGCCAT
6661	ACTTAAATTCA	AAAGCAATTA	CTTAAAGTAAC	ATATCTGCTC	ATGAATATAC	AAATGGCGTA
6721	AAAATATATG	CCTATCGTA	TACGTCTTCC	ACAGCGCCCA	CAAAATCAGG	CGCGCGAAATA
6781	TTCACTTTGT	AGTCTTATCC	CTCTGACTTA	TTTGCCTCA	AACCTGAATAA	AGCCATTCGCG
6841	TGTTGCTCIGA	CTAGCGGGCT	TTTACCAAT	GAACCTGCAA	CTATCGTACG	CAGTGCACAT
6901	GCACAGGCA	TCATCAAGCA	CTCGGTCTG	ACAAAAGTT	TCTATACCT	GTTCATACAGT
6961	CACCCCTTATG	CACTGAGCTT	TGATGATGCA	CAGGTACTGA	ACGGATGCGT	CATTAACTCA
7021	TATGCCCGAC	GATGACAGTC	TCAGTCATT	TAACCGTC	TTAAATACCC	CCCGCTGAA
7081	AGGGAAAATC	TTTGGACGCC	ACGGCAACAC	GGTCGACATT	GATCCGGGAT	AGGAACAACT
7141	TACCTTTG	CGTTCAGGCC	TGATGCGT	TCTGGGGATC	AAACAGTGGTG	AACATGTTATCA
7201	GTAGGCAA	CTGGGGGTG	TATGGACAC	ACAAAATAT	CTCACACTT	CTGTCCTGTG
7261	TATATCTCA	CTGTTATGCC	TCACGTTACT	GGCCCGTGC	CATCAGCTGA	CGGGTTAATGA
7321	ACTGTTGATG	CTTATGTTGTT	TTTGCCTGTT	CATGGCAA	ACAAACGGCTT	TTTGTCTGTC

Fig.2.

4/12

7381 CGGGGAGTTG TCACGGCTGG TTATCTGGTT GTATCAGGTG ACGCAGTGGC TGAAGTGGGG
 7441 CGGAAATC CACTGGAAGC ATCTGGTTAT TATGTAACGCC AGAGATTCAGC GGGAAATT
 7501 CACCGGAAAT CAGTAATCTG CTAAATACTC TCCGACCCCGG TATTACTGAA GACATGGCAC
 7561 AAAGTAGTGA CGGGGAGCTT CAGGGCTGAA TTCTGGCGCC GTTTATATGCT GCAACGGCTGC
 7621 ATCTGGCTC ACCAGATATG CGCGGGTATA TCTCTGGTGTG GACTGNTAAC CTGGCGCCCG
 7681 GCGGCTGAA TATCGCCGGA TTATGATGC TGGTGTGAA AGAGACGCTG AGTGTGAGG
 7741 AAACGACCCA ACTGGTTCACAA TTCTGGCATG TAATGGCACA GTTATGGCTT TCCGACGAGA
 7801 CACTGGCTCT CAGTGAAGCA GAGCTTCTC TCTGTGTCAT TCCGATTGTT GGGTACTCG
 7861 GTGCGAGAGG CCAACCCGCC GACAACACAC TATTGATACT CTGTTCTCAC TCTACGGATT
 7921 CCACCACTGG ATTAAATGGG TGGGAAATCC CGGCTCTGAC AGCGCTGGATA TCTGCGGCC
 7981 AGCAGACACT CACGGGGCAG AGACTGGGGC TCCGGTGTGAG GGCCTGGACAT CAGTGTGTA
 8041 ACGCAGGCCA TGGGGTTCGGC CGCGGGTGA CCAACTTCTGAG TGGTGGCAGG ATATCAACCC
 8101 CGTGTTCAGG TGGATACATG TGGCATCAGC ACTGCTCACT GATGCCGTCG TTATCCGTA
 8161 CGCTGGTGA TATCTGGTGTG GTGACTGTCAT TAAACAAAGC CGAGTTCGCT CTCGACGCT
 8221 GGATTAAGTGC CGACAGCTGCG CGACAGGAAATA TGGCAGCGG ACTGAGTACA CACAGGCTC
 8281 AGACGCTGGC GGATATTACAC CGACAGGCCG TGAGTAACTG GTTGTGCAAT TGTTTCTGG
 8341 CGATATCCA CGCACAGGGG TGCTCTCTGC ACAGCGGGG TGACCTGTGAC AGCTTATTC
 8401 TGATGATATA CGACGGCTCTC TCTGCCATATA AACCCACCCG ACTGGCAGAG GCCATGCGG
 8461 GTATCTGAGT CTACATCAAC CGGGCGCTGA CGGGATAGA GCTTATGCCC ACCTGGGG
 8521 TGCAACCCG CGAGTTTTT ACCGACTGGA CGGTGAATAA CGTTACAGC ACCTGGGG
 8581 GGGTGTGGC GTGTTTTT TATCCGGGAA ATTACATTGGA CCCGACCCGG CGATCTGGGC
 8641 AGACCCGGAT GATGGATGAA CTCTGGAAAG ATATCGCCA GAGTCAGCTC AGCCGGAC
 8701 CGGTGAAGAAG GGCTTCTTAA ACTTACCTGTG CGCTTGTGAA ACCGGTGGCAC AGCTTAAAGT
 8761 TGTAGGGCTT ATACCGACA CGCTCAACAG CAACTCCGGG CTGACCTGTG TTGTCGGGCC
 8821 AACGGGGAGA AACCTTCCGG AATATTACTG CGCTAACGTG TTGGACGAGG ATTGATACAG
 8881 GGGTGAACCTG GCGCCGCGATG CTCGGAAAGA TTGGACGAGG ATTGATACAG CGGTCAACCC
 8941 ATACAAGGAT GCAATACGTC CGGTCAATT CAGGGAACGT TTGACCTTA TCCTGGTAG
 9001 AAAAGAGAGA AGTGGCGGAA AATGGTACTG ATCCGGTGG AAACCTATGAC CTTTACTC
 9061 TGAATCTGGC TTCTTCCTGCT GATGATGCGA TTGGAAGTGC CCCCTGGCT TACGATATCA
 9121 CAACGGAGGT GGAGGGCGCTG ACTGACAAAC AACCTGACAC TGAACCGCTG GGGCTGGCG
 9181 CATCAGGCTT TCAGGGCGAG GATACTCTG TGTTGTTGTG GTACAAAACC GGGTGTAGTT
 9241 ACCGGGATTT TGCGACACAA AATAAAATG TGCGAGGAG GACCATTTAC GGCAGATGGCT
 9301 CCTTCAAAA GATGGAACAC ACAGCACTCA CGCTTACAGC CRACTGAAA ATACCTTGA
 9361 TATCATTCAT ACTCAAGGCA ACAGCTTGGT AAGAAAGGC AGCTATCGTT TCCTGGCAGGA
 9421 TTGTTGAAGTGC CTCGGCTCTGT TGATATTGGG TTCTGCCATG GGTGATGATA GCTGACGGCT
 9481 GATGGAAACAC GGGGAATTAC CGCAGATAAC CAGTAAATC TCCAGGATA ACCTTGTAT
 9541 TAGGTCATAC AAGGGCGCTG TCACTGTCAG ATATGATGC ATGGCCAATG TCTACAGAAA
 9601 CAAACAAATC AGCGGCTGATG AACTGAGGG TGTTGATGAA AGTCCCGATG CGGAATGCA
 9661 TTATCATCG CAATACCGCT TAAACATTAT GGGGGTTACT CTGATCTGGG GGGCCGGATC
 9721 ACCGTTTTA TTTAAAGGCA AAAACATTAT TCCATCAGTT CRAGGCCACT TGATGAGGC
 9781 AGATTAACACT AGGCGTTTGA TTCTAACACC AGTTGAAATA ATTATTATG CGAGATTGTT
 9841 CGAGTTTCAAA TTCTTCGCAA ACACAAATTG AAAACCGCTT TTCAAGGTTG STAGAAATAA
 9901 AACAGTGTATTTTAAAGG CAGTTATG TGTTGATGTT AATAATTCTC AGGGCTTCCA
 9961 GATATTGTG TCTCATCATG ATCCCGCTG TGCTGGATATT GACACAGGTA TAAACAAATC
 10021 TGATGTCAAA ATTACCGTGG TACCTGGCAG TAAACCCCAA ACCTTACCGG CACAGTGACCA
 10081 TATGGCTTCC TTGGCGGCAA ACAGTTTTGA TGCTATGGCG TACACCTTAA AGCCACTGGA
 10141 AATCGATGCT TCTATCTGG CTTTACCCAN TATATTGCT CTTCTGGATA TCCTGGTTGA
 10201 GACCAAAAGC AAAGACGGGC GAGTGTGGG TAAGATCAAG CAAACATTAT CGGTAAACG
 10261 GTTAAATGAAATC AATCCGGAAAT ATTATCTGCT TGCTGGTGAAC ATCTTACGGG TGCCCCAAT
 10321 TAGTCAGCTC GGCGGTATATO GTTATCTGCT TAAATCTGCT CTTGGCTTCTC AACTGTGAT
 10381 CAGAGCAAC ACGGGGCATTC ATACTATCTC GACAATGGGA ACCCGGGCTG TACCGGAAAC
 10441 TCCGTTGGGA GAAAGGCTCT TGCCCAACTT TGTTCTGCTT AAATATGACC CTGCTGAA
 10501 TGGCGATGAG CGGTGGTTAA AATCCCATAT CGGGAAATGTT GCGGGTAACCA CGGAAGGCA
 10561 GCCTTATACG AGCGGATGT TATCCGATAC GTGGGAAACCG AGTATGACAC TTTTGTGCCC
 10621 TTATGCCGAA GGGTATTACAC TGCTGAAGG TGTCAGATT GGGGTGGAT AGCAGAAAT
 10681 TACCTATGAC AACACTTGGG AATCTGCTT CTTTATTGTT GATGAGACAA AACAGCAATT
 10741 TGATTAATTAACAGATGCTC ATCATGATTC AGGAATGAGC CAAACGGGA TGTTGAAA
 10801 TATCAAGGAA TAAACAGGAT TTGGTGAATG TTCTATGGCA CGGGCTTATT CGGCCCCGAT
 10861 GGATTTCAAT AGTGGCAGCGC CCGCTTATTAG CTGGGAATGT TCTATTACAC CGCATGATG
 10921 TGCTTCCAGC GTTGTGCTACA GGAAAACAAATC TTGGCAGGAA CGCACAAATG GATAACACT
 10981 GTCTTATACCGC CGGGCGCTGA TATGTTAACCG GGGAAATCCG CCCCCCTGGAT CTGGAATGCG
 11041 CGGGCGCTGG AAAGGACACT CCTGGATGCA CAATCGGTG GATGCGATG ATCCGGATGC
 11101 CGTGGCACAA TATGACCCGA CACACTATAA AGTTGCCACC TTATGCGCC TTGTTGATGCA
 11161 ACTTATCTG CGCGGGCATA TGCCCTATCG CGAACGACCG CGCGATGCGT TGAATGAGC

Fig.2.

11221 CAAGATGTCG TATGTCGCTG CTTGGAATT GCTGGGTGAT GAGCCGGAGG ATTACGGCAG
 11281 CCAACAGTGC GCGCCACCGT CTCTTCTCGG GCGGGGCAAC CACACTGTGCA AAGCGGGCTA
 11341 TCAACAAAGC CTTACGGCGC TAGACAAACGG AGAAAGGTTGC ACTCAACCCC GCAACCTAA
 11401 CTCGTTGGTCCG GTTGGTGTCCG GCGCGAATAT AACCCCGGAAT CAACCGATTAA CTGCGAACCC
 11461 TGCCTTGGC CTCGGTAAAC CTGGCGCATTA ATCTCTTCAT GACGGGCAAC CGTTATCGCT
 11521 GCGGAATTCAC GCGAGCTCAC GATCGGAAG CGCTGCTCAC CAGTATGGTA CAGCCTCTC
 11581 AGGGCGGTAG TGCGATGCTG CCGGGCACAT TGTCTGTTATA CGCGCTTCCG GTGAGTCGG
 11641 AGCGGGCCCG CAATCTGGTA CGCGCAATTAA CCGAGTTCGG CACCTCTCTG CTGAGTATGG
 11701 CAGAGCATG TGATGCGGAT GAACTCACCAG CGTGTCTACT ACAGCAGGGT ATGGAACCTGG
 11761 CGACACAGAG CATCGTATT CGACCAACGAG CTGTCGATGA AGTGGATGCT GATATGCTG
 11821 TATTGGCGA GAGGCCCGCG AGTGCACAAAG ATGTCGTTGA AAAATACCGAG CAGCTGTATG
 11881 ACGAGGATAT CAACCCAGGA GAAACGGGTG CGATGTCACT GTTTGATGCC GCGCGAGGTC
 11941 AGTCTCTGCG CGGGCAGGGC CTCTCACTAG CAGAAGGGGT GGCTGACTTA GTTCCAACACG
 12001 TGTCTGGTTG CGCTGTGTCG GGCAGTCGGT GGGGGCGACG ACTGCGTGTG CTGGCTCCG
 12061 TGATGTCGCT TCTCTGCCAA GCTTCCTTAA ATTCGGCAGA CAAAATCAGG CGTCTGGAGA
 12121 CCTACCGCCG CGCGCGTCG GAGTGGGGAA TTACGCGTGA TAATGCTGAG GTGGAAGTCA
 12181 AACAATGTA TGCGCCAGTC GAAAGCTGGA AATAACCGGG CGAAGCAGCA CGAGATCAGG
 12241 TGGAAATCTCA GGAGACCCAGC CAGGGCCCATA CTGAGCTCTA GTTAAAGCTG TTACACGCTA
 12301 AATTCAACAA CAAAGCGCTT TACAGTGGG TGCGCGCAGA GTGTGACTGCT ATCTTATAC
 12361 AGTTCTTIGA CCTGACCCAG TCCCTCTGCC TGATGCCACA GGAAGCGCTG CGCCCGCAGC
 12421 TGACCGACAA CGGTGTTGCA TTATCCGGG GTGGGGCCCTG GAAACGGTACG ACTGCGGGTT
 12481 TGATGGGGG TGAAACGTTG CTGCTGAATC TGCGAAATAT GAAAAAAAGTC TTGCTGGAGC
 12541 GTGATGCGG GGCATCTGGG GTGACCGCTG CGCTCTGCTG GCAACAGTCTG TATCAGGCT
 12601 TATCATCAGA CAACCTTAAAT CTGACCGAA AACTCAGCGA ATTCCCTGCT GAAAGGAAAG
 12661 GCACTGATGA AGCTTCCCGG AATGAAATTA AACTCAGTAA CGGCGAGATA GAAAGCTCAG
 12721 TGCGATTGTC TGATTTGAAA ATTTCAGCGG ATACCCCGGA AAGCTTGGC AATAACCGTC
 12781 AGTTGAAACA AGTGAAGTGT ACCTTGCCTG CGCTGCTTGG TCCGTATGAA GATATCCGG
 12841 CGGTGCTGAA TTACCGGCCG AGCATCTGCA TGCCACCGCG TTGCACTGCT ATGTCCTCT
 12901 CCCACGGGT GAAATGAGCTT GGTCAATTAA TCTGTTGATT CAAACGATTCC CTTTATCTG
 12961 CGTTTGGGGG TATTTCCTGGG ATATGACAGCG TGATCTGCTG TTGAGATTTTC CGGATGCGGA
 13021 TGATCGACA GAAAGCCTCTG CTGGAGAGCC TGAGCGATAT CATTCTGCT ATCCCTATA
 13081 CCATTTCTGGT TTAAATTTAAA CATTGTTGATA GGCAAGCTCC TGAGGGAGCC TTGTTAAAGGA
 13141 GTTTTATGTC AGGGTTAAC ACCTTTGAAA CTTGGATATC CGCTTATGCC CTTCTGGGGC
 13201 GGATCACTAA AAGGAATGGG AGAACGACTC ATGCGCTCG GAGCGGAAGG GGAGCGTCT
 13261 TTTCATGCTC CTGGCGCTG TCCTGCGG GGTGCTGTT GCGGGTCTA TAATGTAATT
 13321 ACACGCTACTA TGCTGCGAAT GGGTCAATTG GGTATGGGGT GCAATGTGGG TTGTTTTTA
 13381 TCAGCGTCGC TACCGCCAGG GCGCTTCGGG ACTATACGGG ACAAAGATGAG TATCTCGGGC
 13441 CGGATGGGGG AGTGTGTTAGT ATTGTGCCGG ACAGCAGGAG GCAACCCAGG CAAACCCAGG
 13501 CAACTCTACT GGTGGGGAGC GTTCTGACAC GCGCCGCTCA TTGTTACCCG TATCAGTCCC
 13561 CGCTGGCGA AAAAAATCGT CGTTTGTAGA ATGCGAGCG ACAGCGAGAGA CGTGGAGGAG
 13621 AGACGTCTT TTGGGTACTT TTACTCTCGG ATGGTTTACTG GCACCTATTG GTTAAGCATC
 13681 ATCATGTCG TATTCGTCGAC CGCGAGGAT GAAACAGAAT TGCCCGCTGG CTGATGGAG
 13741 AAAACGGTCAG GCGATACCGGG GAAACATTATC ACTATCACTA TCGGGCAGAA GACGATCTG
 13801 ACTGCTGCA GCGTGAATCT GCTCGACCTT CAGGTGTTAC TATCTGCGA
 13861 AGTCCACTAT GCGAACATCTC AGCGGGAAAC CGCTTCTTTC GCGGTAAGAT CAGGTATCCC
 13921 TGTGATAAT GACTGGTTAG TTCTATCTGG ATTGTGATTG ATGGTACCTA GTGAGCGCT TATCCTGCT
 13981 GAACTCGGT CCCGATTTCA ATGTGTCAGA AACACATGTC TCTGAAAACA ATGTCCTGCA
 14041 AAAATGGCGT TGTCTCGCG ACAGTTCTC CGCTATGAA TATGGTTTG AATTCTGAC
 14101 CGCTGCGTCT TGTCGCGCAAG TTCTGATGCA CGTACGCTG TGCTACGTTG CAGGGGAAAG
 14161 GGTGTCGAGAA GAAACACCGG CGCTGGTTG CGCTCTTATT CTGGGATTAG ACCTGAAACAA
 14221 CAAGGGTTCG TTCTGCGAAAG CGGGCGCGAG ACTGGCCCAT TACCGGCTCA GAAACGGAGC GTACGCGAGT
 14281 GATGATGTCG CGCTGCGAAAG TTGATTATCA CGTGTGTTAT CATGGCGTCA ATCTGAACCT
 14341 GCGATCCATG CGCGAGTTAG AAAAAATGAA CGCTGCGAG CCATACCAAT TGGTGTGATT
 14401 ATATGGGAA GGAATTCTCG CGCTTACTTT ATCAGGATAC TCAAGAAGCC TGGTGTGCT
 14461 GTGCTCGGT ACGGGATATC ACTGCCAGG GAAAGAATGC GTTACCTAT GAGGAGGGCA
 14521 AACCACTGCG ACATATTCGG CGACAAACGG AAAGCGCGAT GTTGTGTTGAC ATCAATGGT
 14581 ACGGGCGCTCT GGATTGGGTG ATTACCGGCAI CGGGTTAGC GGGCTACCAAC ACCATGTCAC
 14641 CGGAAAGTGTG ATGGACACCC TTATTCCTCC TATCTGCTG CCAATGGAA TATTTCCTAC
 14701 CGCAGGCAAAG ACTGGCTGAT ATTGATGGGG CGCTGGCTGC TGACTTAGGG CTTCATGGGC
 14761 CAAATAGTGT AGCTGTCGTT TCAAAATCA CGGCGAGGTG GGATCGCGCT CAGGATGTTA
 14821 TTCTTCTGCA AAAATAGCGCA CTGCCGGTTC CGGGAAAAAA TAAGGCTCAT CTGTCGCT
 14881 TCACTGATAT GACAGGCTCC GGGCAATCAC ATCTGCTGGA AGTTACGGCA AATAGCGTGC
 14941 GCTACTGGCC GAACTGGGG CATGGAAAAT TTGGTGAAGCC TCTGATGATA ACAGGCTTAC
 15001 AAAATACGGG GAAACGTTA ACCCCCCACAG ACTGTATATG GTAGACCTAA ATGGCTCAGG

Fig.2.

15061 CACCCACCGA TTTTATTTAT GCCCCGAATA CTTACCTTGA ACTCTATGCC AATGAAAGCG
 15121 GCATATTC TCGCTGACCT CAGCGTATGG ATCTGCCGA TGGGGTACGT TTTGATGATA
 15181 CTGTCGTTT ACAAATAGCG GATACACAGA GATTAGGGAC TGCCAGCAT TTTTGGACGA
 15241 TCCCCCATAT GAAAGTCGAG CACTGGCGAT TGGATATGAC CATATTCAAG CCTTGGCTGC
 15301 TGAATCGGT CAATAAACAT ATGGGAACAG AAACCAAGCT GTATTATGCC AGCTCTGCC
 15361 AGTTCTGGCT GGATGAGAAA TTACAGGCTT CTGAATCCGG GATGACGGTG GTCACTACT
 15421 TACCGTTCCC GGTGCGATGT TTGTCGGCA CGGAAGTGTG GGATGAAATT TCCGGTAAC
 15481 GATTGACCA GCAATTATCAT TACTCACATG GTGCTGGGA TGGTCTGGA CGGGAGTTTC
 15541 GTGTTTGGC GCGGGTGACCA ACAAATCTA TTGATTCAAG GGGAGATGCC ACACAGGGGA
 15601 CACATCTGA ACCACCGGA CCTTGGCGCA CGGTAAATG GTACGGCACT GGCGTACCGG
 15661 AAGTCGATAT TCTTCGCCCC AGGAAATATTG GCGAGGGGG TCAACAGGGGA TTCCCCATT
 15721 TTACCCACCG TCTTACCGGT TAGTGAGAAA ATTCGGGTGG TGATATGACG GTACCGCGA
 15781 GCGAACAGGA AGAATACTGG TTACATCGAG CCTTAAAGG ACAAAGTTA CGCAGTGA
 15841 TGATGGGG TAATGATGTT ATACTGGCC GTACGCTTA TTCACTGGAT GAATCCGGCA
 15901 CCCAAGTAGC TTGTTACCGG GTGATGGGTAT CGGAGCTGCG TCGCGTACTT GTTCCGTTG
 15961 CGGAATCCCG CAAACATCCG TAGAAGGGGG TTGTTACCGG TTCCACAGTG CAGCCAAAG
 16021 ATTTGCTTA AAATATGATC GTTGGATTG CCGGAGGACA ATCTTGGAGAT TGCGTATTG
 16081 AGACGATGAT CAGCTGATTT CTTCGCTTAT CGGCGATACCG TGCCCCAAAG ACCTTCTACC
 16141 AGCAGTTTC CGAAACAGGA GATGTTCTT CTGCTGACAC GCGAGCTT TGCGTATTAC
 16201 CATCTGAATC ATGATGATAA TAGCTGGATC ACAGGGCTTA TGGATACCTC ACGCAGTGAC
 16261 GCACGTATT ATCAAGCGG TAAAGTGGC GACGGTGGAT TTTCCTCTTAT ATGGTTTTCT
 16321 GCGCAAGGGT CAGGGACATT TTGTTGGCT GATGCCGAG CGGATATTCTT GGACATCATCG
 16381 CGTGTAGCT ATACCGCTTC AGGAAGAGCA CGGCGTTTGGG TCCGGCTGGT GGACATACATT
 16441 GAAACCGGA AGTTTGTAGA CGATGCTTGG CGCGCTTTGG AGGAGGTGAT GGATGAC
 16501 GAGCTGACAA AACAAGCTG TGATGCGGG TGAATACCTG CAAAGATGCG TTCTAGTGA
 16561 AAAGCAGATT TCCATGCTG GGTGGGACAA AAGGAATTAA CAGAATATGC CGGTGACAG
 16621 GGATTCATAC GGCCTATGGT GCAACGGGA ACCAAGCTTA CAGGTCAAC ACGCAGTGAC
 16681 TGGAATGCC ATTACTGTT TATCACCGCA ACAGGAGGGT CGGCGTGGCT CGCTGATGAA
 16741 GCGCATTAGC ATTATGCGATT TAGTGTGCG GATAACACCA CAGATATCAA TGATAACTAT
 16801 CACACGGTCA CGTTGATGCT ACCTGGGGAC GTAAACAGCT TCCGGTTCTG GGGGACTGAA
 16861 AACCGTTGAA AACAAGGATA TACCCCTGCG GAAAATGAAA CTGCCCCCTT TATTGTC
 16921 AAACACGGTG ATGATGCTC GGCTTATGGG CCGGCGATAC CTGGTGCAGG GCTGATGTTG
 16981 TATGCCCTC TGAGCTGGT GGTTCAGGGC AGGTTTCTA ATGATGGGA GCTTTATGGA
 17041 GAGCTGAAAC CGGCTGGGT CATCACTGAA GATGGTTATC TCCGTGCTG TCTTCTGCG
 17101 CGCTGGCAT AAAATACCGG TGGCGCTGCA ATCCAAAGC AAGTCAATTG ACAGAACCCA
 17161 CCCCATGTC TGAGTGTGAT CACCGGACCC TATGATGCCG ATCCGAAACCA ACATTAFC
 17221 AACAGCTTCA CGTTTGTGAT TGTTTGTGCG CGAAAACCTT CAAACAGCGG TACGGCATG
 17281 AAGTGTGAA CGCTGGTGGT CTGATGAGTA TGGAGGCAAT GTGGCTGAAA ATCAAGGCG
 17341 CCTGAAAGG GCGGATTACA AATTTCGGT TGGGCAATTG CCGGGAGCTG CAGAATATTAA
 17401 AGCGGAAAGG CGGAGACCCC TCGCTTGGT TGCGGAACTG TTGCGGAGCTT ATTCCCTGAAA
 17461 AACTATGTC AGTTGACCAA AAAATGCCG CAGGGATATG TATGCCGATA CCCATTA
 17521 TGATCGGTG GGGCGTGAAT ATCGGTTAT CACGGGAAAGC CGGGGTTGGC TGATCTTAA
 17581 TTCACTCCCT GGTGTTGTGTT GAAATGAGTT GAAAATGACA CTCCCGGTGA ATAGAC
 17641 AAAGCTCATG ATGCGCTTGT CACTGAACAG ACATCACTCG ATTAGGAAAT GAAATCATGA
 17701 GAATTCTGTG CACACAAATA CGGCGATCCG CACCGTACTG GACAACCGTG GTACAGAGT
 17761 ACGGCAAATA CGCTGGTATC GGCAACCCCG TACACCTCG GTAAACCGATG AAGCGCATC
 17821 CGGTATTCGA TGATGCTC AGGAGTCTCG GACTCGAGT ATTGATGCCG GATTTCATG
 17881 ACGCCAGCG ACAGCGAGT ACAAGAACGC CATTACACCC AATCTTATC TCTTCTCATC
 17941 ACTCTGATG AAGGCATGTC GTACGATGGC TGGGTGATGC GGAAACCGGTG TGCCCTGCA
 18001 TGATGTTGCC GGGCGTCCCG TTTTGTGCG CACGGGCAAT GGGGTAGGC GAAACGTTCA
 18061 GTATGAAAGT GATAACCTCC CGGGGACGAT GTCAACAGCT ACAGGAGCAGG TAAAGGAGA
 18121 GAAACCTGT ATCACGGACG GATTTGATTG TGCGGAAAT ACACCCGGAG AAAACGGCA
 18181 TAATTGGCC CGCCAGTGCG TTGTCGATTA TGATCCCAAC GGAAATGAAAT AAAACACAG
 18241 CATATTGTA ACCACCATAC CCTTGTCTTCA CACACAGCA TTAGTGAAG ATGACAGCG
 18301 AGCCGATGG CACGGTATGG ATGAATTTG CTGGAAAAAC GCGCTGGCG CGAAAAGCTT
 18361 CACTCTGTC AGCACAAAGCG ATGCTACCGG CACGGTATTC ACAGGATACAG ATGCTGCGG
 18421 AAACAAAGCA CGTATGCCG ATGATGTCG CGTCTGCTT CAAGGCGATT GGTGCGCT
 18481 GAGGGGAAAG CAAAGACAGA TTATCGTGAAC ATCCCTGACCA TATTGCGCTC CGACGAGCGA
 18541 GCTACGGGA GAAACATGTTA ACGGGGATAGT GACTCATAT ACCTATGAC ACAGGAGCGA
 18601 ACGGATTAT GGCATAAAAG CAGAACCTCC TTCCGGTCACT GCGCGTGGGG AGAAAATT
 18661 AAACACGGT CGTTATGATG ATGATCTCTG CGGAAATGTC CTGAATTCAN CTATGATG
 18721 TGAATTACG CGCTTTGGC GCAACAGGAA AATGTCAGG GAAAATACTT ACACCTATGA
 18781 CAGCGCTGTC CAGCTGGTCC CGCTCAGTGG GCGTGAATG GCGAATATTG GCGGACAAAA
 18841 AAACCGTTA CCCATCCCCG CTCTGATTGA TAAACATACT TATACGAATT ACTCTCGCAC

Fig. 2.

18901 TTACGACTAT GATCGTGGGG GAATCTGACC AGAATCGCAT AATTCAAGAT CACCGGTAAT
 18961 AACTATACAA CGAACATGAC CGTTTCAGAT CACAGCAACC GGCGTGTACT GGAAAGAGCTG
 19021 GCGCAAGATC CCACTCAGGT GGATATGTG TTACCCCCCG GCGGGCATCA GACCCGGCTT
 19081 GTTCCCGGTG AGGATCTTGT CGGACACCC CGTGAACGAA TGCACAAAGT GATATGGTC
 19141 AATAGGGAAA ATACAGGCCG TGATCAGGAA TTCTACAGGT ATGATGAGA CAGTCAGCGT
 19201 GTCATTAAGA CTCATATTCA GAAGACAGGT AACACTGAGC AAATACAGGC AATTATATTAT
 19261 TTGCCAGAGC TGGAATGGCG CACCGACATAT AGCGCGAATAA CATTAAAGA GTTTTTCAGC
 19321 GTCATCAGT CGGGTGAAGC GGGTCAGGCC CAACTGCGG TGCTGCATTG GAAAACAGGC
 19381 AAACCGGGCG ATATCAGCAA TGATCAGCTG CGCTACAGTT ATGCGAACCT GATTTGGCAGT
 19441 AGCGGGCTGG AATTGGGACA GTGAGGGCA GATCATTAAG CAGGAGAAAT ATTACCCCTA
 19501 TGGGGGAAAC CGCGTGTGGG CACCGGAAAG CAGTCAGGAAG CTGATTACAC AAGCCGGCTT
 19561 TATTACGGCA AAAGCGGGGA TGCACAGGG TTGTATTAAC ACAGGCTATCG TTATTATCA
 19621 TCGTGGACAG GGGCATGGT GAGTGTAGAT CCTCGGATGG AGGCGGATGG TCTCAATTG
 19681 TTCCCAATGT CGAGGAAATAA CCCCCATCTT TTTCCTGATT CTGATGGTG TTTCGGGT
 19741 CAGGGTGTCC TTGCTCTGGG AGGGAAANAA GCGTATGAA AGGCAGTCAG CATCACGACA
 19801 GAACACCTGC TTGACAAGG CGCTTCCTT GATACCTTCT TTAAATTTAA CGGAGGATTTG
 19861 CGAACGTTTG TTTCGGTGTG GGGGGTACAA GCTGCGGGT GAAGCGGCCA CGATTGAGG
 19921 AGCGTCGCG TGGGGGATCG TCGGGGCTC CATGGGGTGT TTGTCCTCC GGGCGGTGAT
 19981 GGGGGTTTC CGCAACAAACA TCTCACAAAA AATTGGGAA GTTTTAAGTT ATGTCAGCGC
 20041 TAAAGCTTGT GCTCTCTGTC AGGTAGGGC TTGTGTGTTG ACATCGCTTG TGACGCTGC
 20101 ACTATTTAAC AGCTCTTCA CGAGTACCGC CATTTCGCA GCAACAGCG GTCACCGTGG
 20161 AGGATTAATG GCTTTAGCCG GAGAACATAA CACGGGCATG GCTATCAGTA TTGCCACACC
 20221 CGCCGGACAA AGTACGGCTG ATACGCTTCG GCGCCAAAT GTCAGGGCGC CAGAGGGTT
 20281 AGGGCACTAT CAGGGCCAT TATTGGCGC ATATTACTT CGCCGCATCA GGGAAATCTT
 20341 GAGCTGGGTC AACGGGCAGC GATTTGGCTG ATGATGATGCT CTGATGGGG AAGGATCATT
 20401 GGTAACTTAT CCGGATGGCCC TTATGGTTT ATCGCAGGT TACTGCTCAG AAAGGCATT
 20461 AGCTCTGCGA TTCCCCCGTC TGTCACTTGC AGGAGCTGGT TTGGCCGAAT GATAGGAGAA
 20521 AGTGTGGGA GAAATATTTC TGAAAGTATA TTACCTTATA CGCGTACACC CGGTGATGG
 20581 GTTGTGCGAG CCATTGGCGG GACAGCCCGC CGCGCTCATC ATGCGTTGG AGGGGAAGTT
 20641 GCGCATCTGC CTAGCGGGT TACCTGGAG GCGCTTAAAG GGGCTTITTA ACCTCTTC
 20701 TTAAACGCGT CTGACGCTA TAATGAACTC GAAAGCATAC AATCATGTTG ATTCCTCACT
 20761 TGTCTATGG GACAAGGGTGG TTATTCGGCA TGTCGATGGG GAGACCCGGT CAGGGTCTT
 20821 GTCCGTTAA TTTTGGATC AAAGAACGAT GGTGTAACGG ATATGAAAAA TGATATCGT
 20881 CAGGGTGAAG AATAAGCTT TCTGTTTACG ACTGATACCG GGGAAAATCGA GGGTTAAATG
 20941 GCCTGTATCG GCGCAAGGAA GCCCCCTCAA TGCGAGGTAC TTAGCATCAT TGAATCCAT
 21001 CTGGAAATIGA CCACCTGTCA TCATGCCATG TGAGATCACA ATCGCTTTCG GACCGACTGG
 21061 CATCTTGTCA CTGCCGGCA AACTCAGATG TGCGCCGAGA TCTCTGATAAA GGCCTAAAG
 21121 GGCAAGTAAAC GTCACTGCA TTTGTTGATG ACAGCGCTGA TTACCTAAAC CTCAGGATA
 21181 ATCGGTACAA ATATTACGCA TGGATAATTT GAGGGCTGCT TGCACTGTG TTCCCTTCGAC
 21241 GTTCAAAACGG TTAAGCTGTC TGCGTCACT GCGCTTACACT GCATTGACTA ACTCAGTCAC
 21301 TTATCTTCTT AAAATGAAAG TATTTCCTGT CAGACAGGCA TACACTTCG CGAGGAAAC
 21361 GGTCTGGGT ACCTCCAGTG CCGCTTCATC TTTCCTCAA TAGCTTTTGT CCATCTGTG
 21421 TAAATTCAAG ATCAGGGTTT CACCGCTAA TAACCCGCA TAAGTCCCAT GCAACGACC
 21481 TTGGTTAAATA AGTGTGTCG CGCGATTATC AAACATCATA TGATAAAGTT GCTCTGCCCC
 21541 TAAACAGAGT GAGACGGCCA AATCATAAAAA CTGATAATAA ATAGCGGACA AGCTTTCAGC
 21601 GAGCCAGGTG TATAGCCGTC CATTACTGAG TTACTTGTG AGAAAAGGCTA ACTGGCCCTG
 21661 ATGTTGTGCC TGCTGTAGTT CCAGATAGTT TTTTGTAAT ACTGCGCTT CAGCAGTCAC
 21721 AGCCAGCTG CTCAATTGAG CATCAATTG TTATTCATCTC GCTTCCGGAT TATTGGCTG
 21781 AATTCTCCAC TCTTGGCGAC GGCACCGTGA TATTTCCTGAT TGCTGATTG TGTCTGCGC
 21841 ATATCGTTG GCTGACGCG AATTTCTGAT ACCAATCGCA CTGGCATTGA AAAGGCCCC
 21901 AAAAGGGGA CCTTCCCGAC CAAACCGCA AATATTGGGA ACAGGATCTG CGCGGGCGC
 21961 GGCCATATGC AGGGCTGTC CGCTGGTGTG CAAAGGGAT GAGAGAGGT AAAGATCCAT
 22021 CGCTTGTGTT TCACAGCGCT TAACATCTTC TGCTGACAGC GTATTGAAAC TTGTCAAAAGC
 22081 AGACTGTGCA CCATGACGCC TTCTCTGAAG CGCCAAATTCA TCAGCATCAA TTTCAGGCAAT
 22141 GACCTTATGC TGCAATTGAA TACTTTGAGA GGCTAACTCA CTGCGCTTGAG TTGCGAGTAT
 22201 TTCAAGCCAG GCTTCTGCA CTCGCGCTG AGTAACTGAG AGCAGGGTAT TGCCAATTTG
 22261 TATCACTGG CTTACCCCCC ACTTGGCATT TTCCAGAACT ACCGGAAACG GTTACATCGG
 22321 CATCACTGCA TGAGGTAAAT CGCCGGCCCG TTGTAAGGCA GTGATGCGAG CACTGAGTAA
 22381 CATGGACGGA TCTGGGGGGC TTGCGCATAGA AGATAATGAC ATGCGCTGTC CTGCAATGTT
 22441 CAGGTGTTAG CGTAAGTTAT AGAGGGCTGT CGTCAATGAG TTCCGAACTAAC TTGCGAGTT
 22501 TTATTAATG TGAGGGAGGA AACAATGGGT TAACGAAATT TGCGTACGT TTGCGGGTAA
 22561 ATGCGAGCGG CTGACGGCACT TGCAAGCTT TTGTTGATG ATGATGCCG ATGTTGGC
 22621 TGGCAGCTTC TTCCAGCGGT GGCTCTGACG ATCGTATTC CAATGAAAGA TAAGGCTCAT
 22681 CACCCAAATAA AGTGAGCGCC TGACATACAC ACATTGTTAGC TTGTTAGAAG GTATCAGCGT

Fig.2.

22741 CAAGCTGGG ATAGGGCATA TCTCCGGGG TAATCAACAA ATCCAGCATT TTCAAAAGG
 22801 TAGGCACTT ATAGTGCATC GGATCATGCT GGGCAACGGC GTCCGGATCG ACCGAATCCA
 22861 CGGGATTGGC ATTCAGGAC GATCTTCTCT CCAATGGGGC GACGTCAG GATAATCTCT
 22921 GCATTTCAAC CTGAAACCGAA TATCCGGTCG GGTCAGATA TAGCGCAGCC AGCGTGTGGA
 22981 TCCGGTAAAA TCTGCTCTG CAATAAGGC TGGAAATACCA TCATGGGCGT TGTAAATGAA
 23041 CAATCCCAAQ AAATAGATTG CAITGGGGCC GTTTGAATC CATGGGTTCA GTGTTAATT
 23101 TCATGACAGG ACTTGAATAC CCCTTTATA TTTTTGATA TTTTTGATA TCCCGTGTG
 23161 TGTCACTCCC GAATCATGAT CGGCATATTG AGTGAATATA AATGATTGTT TGTCTCATC
 23221 AAAATTAAGG AAAGCAGATG CCCAGGATTG CTGATAGATA ATTTTTTGAT ACCCAACCCC
 23281 TAATCTGACA CCTTCACGTA TGTAATACCA TTAGCATAG GGAACAAAGA GGGTACTGT
 23341 GGTTTCAATA TCAGATACCA TTCTCTCGTA ATAAGGTGT CTGGCAGAAAT TGCCATCAAT
 23401 ATTCCCAATA TGGATCTTAA ACCAACCTTC ATCACCATGC TCTCTTTAT TGAGGAGG
 23461 CAACTTAATG GTGCGATAAA ACCCTTACCC TAATTGGGGC TCTGGTAAT TTGCGTTTC
 23521 CATACTTAAAC ACATTATCAA TACCAATTG GGTCTTCA GCTAATTTG TGGAATAATA
 23581 AGTATTTAAC CGGGTTCTGT AAAGGGCAAT CTGCAATATA TGTTGCGCTG ATGGCATTT
 23641 ATGCACTGAT ATAAGCTGTT TTGATCTCTG GTTATTTGAT TTTATATGAA TTGGGAGTTC
 23701 AATAACATAA CGTGTAAAC CGCCGTCGGG TTGTTAAATA ATAACCTCC TACACAGAGG
 23761 AATACTGACA CCTTCACATTA CAACCTTGTG TTGTTAAATAA TCATATACCA TAGGGTGTGAA
 23821 TTCTGTGAA GGTTTATGATG CCACATGTC ITGAGCATT AACTCCACTA GATATCAGA
 23881 GCCATTTTT AATAAAACAA TAATGTTTT ATCTTGATC TGTTGATCA TAGATGAAGC
 23941 AAGTTTTAT ATCTGTGGCT GTGGAACAT AAATACACCC ATGGGAAACG CGGAAGGAC
 24001 ATGTCGGCA TATTTCCTCAT GTTATTAATG ATGGAACAT CATTAGTAA TGATTCCACAT
 24061 ATAGTATGAC ATACTCTCTG GTTATCTTC CAATCTAAATA CTATGTTAGT ATCAAGTTTG
 24121 AATTCCAGCAT CATCTGATC ATAATCAAA TTATACCA CTCACATTG TGATTTTCTA
 24181 GGAATTTTT CCTCTGGTCTG TAGATGTC AACAATCTAA AATATTGCG ATTTTAAAGA
 24241 TTGATGAAA TAATAAAATC CAAAGTCTCA TAATGAAAAA CTTCCTCTC TTTTCAACG
 24301 ATTTCATCAT GTCTATCATATA ATCAAATAAA ATAACCGTTT CATCTCTAC CATCGATAAC
 24361 AGGTATTATAA CCTCATCATAT ATATATTGTT CTTTTGAAA AATTAATTTC CATTGAAAGG
 24421 TTGAACTGTA AATTAAATAG ACCATTTCTG GTGTTGATATA AGCAGAGATC AAAAATATT
 24481 CGCGTAAACG TTGGCTTAAAT ATTTTTTGTT GTTATGATT CTTTATGAA TGCCAAATAA
 24541 TCTTGTGCAA ATTGATTGTT GACTTTGTAT TTGTTCTCTG TATCAAGTC TGATAATGTC
 24601 CTCTTAACAA TGCGCTTAAAT ATCTCATGTT GTGAGAATGG ATAATGTCAT ATCAGGGTTA
 24661 ATGTCATCC TCTTCTCTG AGGAAGACTA TTAAAGATT ATTGTCCTT TTCTCTATGG
 24721 AAATAACAA TAATGACGTC TTITTCATAA TCAGAAGAAC AATACATACC AATGCTGCT
 24781 TTTTTATGTT TCAGGTTTCTA TTATTTTATC GTCACTTAA AATTAACCG TGAGCTCCAG
 24841 CTGCCCCATC AACAATATG TGACAGTTT AATATATAAT CAGTGTATC TATCTTGCCA
 24901 TCTTCACTT ATTTTTCACTC CTCTTTTGTG TCCAGGCCAA GTAAATACAA AGCAGACTT
 24961 TAAATACACG GTCTGATATA TTCTCGCATC ACATTGATGG GTATTTCAT TTTTTTCCAT
 25021 TCTCCCAAGG CATTGGCAGG AAATTGACCC TGCTGGCACT TTGGTGTGAC GACATTGGGC
 25081 CAATAATATA TTCTGGTTTC TGTCATGCCA TACCATTTA AATAGTGTGAC CCCCCTATG
 25141 ACATTAATAC GTCTCATGAT TCCGCTAATC ACCTGCAAGT TAGGACATC TTCAATATG
 25201 GTCAAGATAA TTATTAAGGT ATCTTCACG GTATGATATA TTAACTGACT TTGGGAAAGT
 25261 TGCTGTAAAC GGTGTTCTCAT CATACTGTC TGACCAATAC GAACTGTTGGG TGCTGATATAG
 25321 TTTCCTGGGAT AATAGGCCAT TTCAAGATCA CCGGGCCCGG TGCTTACCCG TGCGTTGAG
 25381 GTTTCCTGGGAT CGCAGAAAGA CTAGCGGGT TTCACTGGGT TTGATACCTT TCTCTCAAC
 25441 TTATTCACG CCGGGTTGAC ATATAACTGTA ATGTCGCAA TGCCCTTCTG CACACGGGTG
 25501 GTTTCCTACTT GGGCAAGAAC TTGGTTATCA ATCAGCAGAT AGCTGTACAA CTCTACCCG
 25561 CTCTTAATCT GTTGGAGTGC ACCATTTTG ATGTAAGTG CACTGGCCG TGCTGCTGT
 25621 GCTTCATCAGC GCGATGCTGC AAGCTGGTC GATTGTTGAC TGTTCAGTC CGCCGTCAC
 25681 AAGATCTGG CGGCTTCTGCA ATCATCAAAAT GTTGGCATCG GGGTTTCCGG TTACCGACA
 25741 TTTTTTAATT TTATGAGTGC AGCAACACCA TTGGGGGATA TACCCAATGT AGCAGCACA
 25801 TCCAGCATTG CGACAGTGC ATCTATAAGT TTCTCCAGTG TAAAGGTAT TCACTCCCAA
 25861 ACCGGTCTGT TGCAATGCTT GTGTCACAAAC CTGAGCATCA AAATTITAAAC GCCACGGCCA
 25921 ATTGTTGGC CAGTCACAGC TCTTAAGTC CAAATGCTGT TAAGATTG TGCTCTAGCT
 25981 TCACAAACGA TGATCACAGC ATGGAACGG GTCAAGCGCTT GCAAAGTGGG GAGATCATGT
 26041 TCGAGTGTGTC TTGGTTTCTGA TTGGAATTG TCGGGTTTG TCACCAACAG GGTCAGTTC
 26101 TTTCCTGCTGA GTCCAATATT GCGCACAAATC AGAGAAAGTT GCCCCAGTAC CTGACAAAAA
 26161 GCAACCATG TGCTGGTCTG ATCTCTGAG CGATCATGCG TAGCGGCGAT AATCATGAAA
 26221 TCATCGAATG TGCTGCTCTG TTGTTTTATC TGTTAAATC ACAGCAAAAT AGTTCTGT
 26281 GTTGGTGGC AATCCATTGAT AATGCTGGCA GCAATCAGGG GGGCAGCTGC ACGGGTAGT
 26341 TCGTCATCAC CGACTGAAAG TGTGTTAATA CCAATTCTA GTCTCTGTG AAGGTTTCA
 26401 ATATCCGGC TAAGGACAGT GCTGTAATTA TCCGGTGTCA TCAGAAACAC ATCACTGACA
 26461 GACCATTTCT GTGTTGTCG CCACTGGGTG CATTGGAACA GAAAGCTGAT TAATGCGCTT
 26521 AATGCTGTAT CAGAAAAAG GGCATTTTC GIGTTACAT AGGGAGAAC CGACAAACAC

Fig.2.

26581 ATGGATAATT CATTCACTGT CAGATGATGA ATGTCCTGCCA GCAGACGAAC GCGATAAAGC
 26641 AGAGACAGT TCTCGATGCA ACACATAAA TCTGGATTG TTCCGGCCAT AGCCAGTTTC
 26701 CATAATGATG ATACATTCAGT ATACATCCT CTTGAAAGCA GTTTCATTAT TCCCAAATAA
 26761 AAATGGTAA TTGATTTCACC GGGGGTTAA TCCAGTTGG TATTATCAGC AGAAAACCTCT
 26821 TGCCCATTTA ATAGCGTGTG ATAGAACACG ATGTTAAAT GACTGGGTG TTGTTAGTG
 26881 GAATATTGCG TGTGATCTGA ATGACACAA ACCAGGGCG CCTGACGCT AATATTTAG
 26941 TGCTGCATAT AATATGCAAC ATAAAACAGC TTACCCACCA CATTGCTGTC AATGGTTAG
 27001 TCATCATAAA TACITTTCTAT TACTTGCAG CAGCTTAACT ATATCTTCTG GAGATATGCC TTGTCCTTAA
 27061 TACAAACGAA TGCGCTTATG CAGCTTAACT AGGAATATAT CACCGGGCA TCCATCATT
 27121 TAAAGITGTC ATTGGCATG ATAGCATCCT CGGGATTGTT TAACTCCCG ATAAGCGGAG
 27181 TTGTTATACCC TTGGTGTATT GCTCTGTCTT CAATTTATG GGAATACITG ATGGTGTATT
 27241 AGCAATGGG AGCAAAATTG TATCTGGTA TATATATCTT TATATCTCAT TCTGGAGACG
 27301 AAAATCCAGG TGTGTCAGGT CTGTTGTTA TACACTGTA TTATATTITG ATTCAATTTC
 27361 TTGATGAGA ATTAGCTCTG CATAGTTAA ATGTAATGG TAGAAATCTT TGCGGGTTCG
 27421 CTTAAATCAAT CTGGCCGTG CGGTATCATT CCCGTCATTG ACCAATGTTA TCAGTGTCTC
 27481 ATTCCTTATAC TGTTGATTT TATTITCTG ACCGAAAGGG AGATTTGACAA ATAACATGAG
 27541 TTCACTCATG GACAAATCGT AGTAGCGGAC CAAAGAACGA TAAACTCTAA AAATCAGTC
 27601 ATCATCTGTG CGGAAATTG TCTTCATCCT TTCTGGTTA TTTCGGGTG TAAATTCTTC
 27661 TACAAGGATT TGATCAATTG CGGGCGATAT ATCAGCTTCA ATAGCCAGTA GCGTAGTTG
 27721 GTCCATTAAAT CGCTGCCTGT CTGTTATTG CTTGAAATGG GTGAGGTITG TATCTTCGCAA
 27781 TAAATTTGGC TGACGGCGTC ACTCATACGGG CAGATGATGA GGTGTCATGC CGGGTTCGCG
 27841 GTAAGTGGAC AACATTTCATC TTACACCGTT ATACTCAGT TTCTCTAACG TCTGAATAATT
 27901 ATGCAGCGT AATATTCTAG ATAAGGATTA TGTTGAAATT TCTTCATCCTA TATTATCTG
 27961 TGTCAGTGG AGTGAAGCAA TGTCGGGGC TGTTGTTATTC AGGTGATATT GAGAATGTC
 28021 AGGATGAAA TCTTGGCTT CGGATGATTA TTCTGGTTA TTAGCCGGTAA TAAAGCGGT
 28081 GGAAGCAATT TTGGCCGGT TTACAAACGG CGGGCGGGC CCATAAAACG AACINGTGTAA
 28141 ACTATTGTTG AGGGTTGACG TTGTTAATTG AAGGTTGAGT ATATTAGCCCA GTGTTGATTG
 28201 AGCACGGGTC AACATGGCA TTGTCITCAGG TTATTCCTG TTTGATTCTC GATGAGCTG
 28261 TTGATATAAA AAGTCGTTT CTGGCCACGT CAGAGTTCA CTTGTCCTAT GACGAAATTTC
 28321 GCTGAAAGCA ATAACAGGAA TTGTTGTCAA TAAATAAGGTT TCACCCAGCT TTTCATTIT
 28381 ATCTTATCTA ACAGTCATC AACTTTATC ATATAAACTC TTAAGTTATT GCTAATTAA
 28441 TGATTAATGG TTGTTAGTG GAGATTATAA TTACTCTGTA GGAATATTG GTTAATTAA
 28501 ATGGTACTG ATTTATGCTG CTATTCCTTC AATAAAATAT AAAAGACTTC CCTATAATAC
 28561 ATGGATTAAAT AAATAAGTAA CGCTGATGTT AAAATTTATG TTAAACAAAC TTTCATGAAA
 28621 AAATTCAACT CRACATTTG TTAAATTATT TTAAATTGTT TTGTTGCTGT TGAAAGATG
 28681 ATGACTAATAA TTATCTGTT AAAGATTATT TATTTGAGGAT GTCTGTCTG GTTTCAGGGG
 28741 GCTAGCTGG AGTCAGATA TTATGTCGA AAAGAAATTC TTAAATAAGGTT TGCTGTAATT
 28801 CAAAAGTTG TATATGCTG CAAGAGTGT CATAATTGTT TGAATACCCG
 28861 AACCTGCAAT CGGGCACTT TTCTCTCCG TATCAAAAGA GAAAGCTGATG AAAAACAC
 28921 TGATTACTCT TATTCCTGACT ACCCTTTCTT TTGTTGCTT GGCAACAGCA GGTGCTTCG
 28981 TTTCGGCGAG CAGCAGCAG TACTACTGAG GTGGATTITAA AGGTCGAACT CCCAACTGCA
 29041 CCAGCGTTC TCAGGAAA TTCTTCTGTT ATGATGCGTGG GTTGTCTGTC GAAGGAAACCA
 29101 TTGTTAAACCA GGTGGTCAC GAACTCTATG ATATGCGGC CGCATATACTAC GACTCTATAT
 29161 AGGGATGCTC TATTAGCGG TTATCCTGGAA AGCTATCTG AACCCTCTGTT AGCCCTGAAAT
 29221 AAAACAGATA TCAAGGATAA CAGTGTGTT GTTTATGTTG ACATTGATGA TAAGCTGG
 29281 ATGGCTGC CGGGCACTTC AACTGACAAA GTGGCTATGAG AAGGTGAAGT GGACAAAGAC
 29341 TGGAAAGCTG TTGAAATTG TGCTAACACT ATCCCGATAG TGAATAACTT CAACGACTT
 29401 GAATATGGCC CGGGCACTTC GGGGTTTTT GCTTCTCTGG AGTCGGAACG TTACCGTAG
 29461 TGACGAGGAT CAAAATCTA TTAAACCGGAG TGTCAGCTGA TTGTTGCTAT AAGTTATC
 29521 AAGTTAAAAA TCAAAACTTA TTTTTATTAT AATAGGAGAA TGTCACCTCTG TGGTTGAATA
 29581 ACGGTTGACGG ATGTAATGTT ACAGTATTAT AGTCCTTGTG TATTTTATTAA AATTTGAAAAA
 29641 CCTTTAAACT ATATTGGGGG GAAATTATTA TGTCAGATGT TCTTAATAATT ATTAAATGTTG
 29701 ATAACATTG TTGTTGTTGA TATAAGGGG ATTTTTTAA ATAAGTTTC AATAAATGTA
 29761 TACACCCATT TTCTCATCC CGGGTTTGG CTGTTGTAAG GAACGGTTT CCATGAGGAT
 29821 TTGACATGG TTAAAGCAACT GCGCACTATAA TTGGCAGCAAG TTGTTCTGTC TGACGGTTTC
 29881 ATGCAAGGAT TGGCATAGC GTTCATTTT ATTCAACACCG GGGCAATAGG TCAGGTTA
 29941 GAGAAGATTA AATTGGGAT TTCTTGCAG CAAACCTCTG ACCTTCCGGC TTCTATGAAT
 30001 CGCAATGTT CTCTAAATTA AGCTGTGATGG TTGTCAGATG ACATATTGAT TGTTAATTTC
 30061 ATCTAACAT TGATTAATAA ATACTGACTT TTCTCTCAGC CTACCGACAT AAGTGTTC
 30121 TTTCGGTTT GGGTGTGAGC AATTGGCAAG TGATGTTGGT TTGTTCTTCTG CGGGGTTAAC
 30181 AACACGGCTT TTGGCCTTCA TGAAAGCCTA CGTCGACCCG ATTTCGGGT TCAGGTTGAT
 30241 GTCCACCTCA TCCTCATAGA AGACGGGGG TTGTTCTTGTG GGCATTTGGAT AACGTC
 30301 TGATTTTGTG CATTCTTCA TGATCTCAAG GGTGAGGCA TTTTACGGTT GGTGCGGCC
 30361 TTGCGCCAAAC GATGCCCGTC CGGGCAARAGT AGCGATAGAG GGTACTTGTG GAGAGCGATG

Fig. 2.

30421 TATTCTAGTAG CTCATTGATT TTAAGTGTAA TAAGCTCAAG GCTCCATCGT GAACGGAGAT
 30481 AGCCAAAATG TTGTCGGACG TGCTGTAAT AGAAAGAAT GACTGTGAAAG AGCCGGAGCTA
 30543 AGTTCCAGAT GGCAGGCCCT CCCGGGGGA GGCTTAAAG TCCCTCCAAAC CCCTTAATAGT
 30601 TTAACCAATTG TACCCCAACGA TGAACGGGAAG AACCTGAAACCA GTGAAGGGCTT CTGGAAACAGT
 30661 GAGAACCGCTT ACTCCCCCTCA TGTAACATCA AGAGCGCGGT GAACCGACGT GCATAGTCCT
 30721 TATCCCGGTT TTTCCTGGATA GCTTTCGTTA TGCGACGTCG TTCTATTGCGG GGTTATTGATG
 30781 TTATGATTTGG CATGACTCAG TCCATTGTTG GATTGTTGTT GATTGGCGCA ITAATTCAAGAT
 30841 CGCAGAAATC GGACTGAGTT CCTCTCAAGT GATCTACTAT TTGAAAATCT TATTTAACTCA
 30901 GGAGTCGACA AATGAGTTAT TCCCCATATAACCTGACCTT GTGTTGTTGAT GTGTTGTTGTT ATCCGGGAAA
 30961 TGATTCATCT ACCGGTGGTA TGTGATTTC TGTTGCGCAT AGTCAGAAAC ATATTGACTC
 31021 TGCCCATTTAT ATCAAGGTAT CTTCTAGTAA AAAGGAGGCTT GCTGATATTG TGAACTACAT
 31081 GTTTCACATC GGCAGTTAGT TTATTTTTCAG AGACAGTAGT AAAAACATTAA GCACATAGCA
 31141 AATTAATGTTG GGTGATTCTAG CTAAAGGCAAG AGGGGAAATTG AAGCTTGAAAT TAAACAAAGA
 31201 CGGGAAACCTT CCACATGATGG TATTGAAATAA ATATTGATTG ATTATTATTG ATGGATAAGA
 31261 AATTAAGTTT ATATTTCATC TGGTTCTGCA AATTAAGTTT TAAAAAAATTA TTCTACTTTT
 31321 TTATGTTGTT TATATTTAATG GCAACATTCATC TTATTTTTCT TATAATAATTTG GATAGTTTAT
 31381 TTATAGATA AATAAAATCTT GTTGGATGTT ATTATTTATG TGAGACCGTA ATATAATACCA
 31441 TAACAGAAAAT TACCTGGTTA GGAATTCATCA TCAACCTTGT TCCCGGTTTCC TGACCATGAA
 31501 GAGCTGTATTG TACTGTAGAA CTCCCATGTA TACTGGATGTT ATTAGCGGGA CGAGTTGTTG
 31561 GTCAAGCAGAT AATATACTGTT ATATTTGGCTG TTGAGTTTTC AGCCAGATGAT TAGCTTGGC
 31621 AGTAAAGGGC ATTAAATACCC GATAAAAACAG AGAGACGGAT TGTGGCCAGA AAAGCAAAAGA
 31681 AGCCTCACCA TGACCGCTTA TTCAAAACATT TTTTAAACCCA ACCAGAACCC GCGCCGGAAAT
 31741 TTATTCATCC TTATCTGCGG GAAGCGCTAC GGTCACTGTTG TGATTTACCA CACTAAACCT
 31801 GGAACCGGCA GCTTGTGGAA CAGGCAATTG CTGTCAGTTG ACAGTGTATG CTGTATTTCT
 31861 GTCGAGACATA CCAACGGGCA CGGTTCATAC TATTCGCTGAA TTGAACACCCA GTCCACGGCT
 31921 GATCCGTAA TGGCTCGGC GCTGATGTAT TATTCGCTGTT CAGGCATGGC TGGCCATCTG
 31981 AAAAAGGGAC ATACTGAACT CCTTCTTGGTC GTTCCCCCTGC TGTTTTATCA TGGTGGGTG
 32041 AGGCCTTAC CTTTACTCAA TGCTGTTGCTG GATTGTTTCA CACTCTCTGA ACACGGCGG
 32101 CACCTGTATA ATCAGCCCCCT GCGCTTGGTG GATATCAGT CGCTCAGTGA TGAAAGATC
 32161 CTGACACATA AAAGCATGTC TTGAGATGGAC CTGTCATACAA AACATATCCG TTGGCGGAT
 32221 ATGCTGGAGT GGGTTTCCCCA ATTGGTGGCGC TTGTTGAAATG CCGGTATATA TGACGGGAA
 32281 CAGGCCCTAA TTGTTGTTGAA CTATATTTTCA CTGAAATGGC ATACGGCTTGA TCTGCCCGAG
 32341 TTGTCATCCTC AACTGACTGA AACAATCTGG GASCATGAAA CCTATGTGAT GATCTTGTCA
 32401 GAACAGCTTGC AAAAAAAAGG GCGTGGACCA GGCCTGGCAAG AAGGCAGAAC AGAAGGAGA
 32461 GCTGAGGAGC GGGGAAGGAGG CAAAGCTGGAA TGAGCTGGCA CATTATTAACG GCATGGTGTG
 32521 AGTCCTGGACA TCACTGGTCA CAGTACCGGC CTGAGCGGGG AGAAAATTTG AGCTTAAAGA
 32581 CATTAAATGG ATATGGCTTCTC TCAACAGGAG ATATGGTGCAC CCTCTGGTGGG CACCCGGAA
 32641 ATTTTATTAAT CTACGATTAA CGACGGGTTA CTTTGGAGAG CTGAATGAGA CTCCCTTGT
 32701 TATATAACGG CTTCCATATCA ATCTTCTCTG TTCCGGCTAC AGGTAAAGTA CCAAAACCTT
 32761 CGTGAGGAGC ATTTCGGCAAC AGGGCCATCAT CCTGATGCGC TGACCAAGG AGATCCCGC
 32821 CCAATTTCAT TTGTTGTTGCA TAAATTCCTC TAGCAGCAC AGTGCCTGGC GTATCCAGTG
 32881 AAATTCAGTG ACCACCGTCA GCAATTAAGAAGA TGTCGTCAGC GTCGGTTTCC GTGTCGTG
 32941 CCAGTTCAAAT CTGATTTTTC CCCCGTGCAT TTTCATATTG CGCATGCTG TGTTTATTC
 33001 CGACGACATAA GAAATGGCGA GCACCTTCTT CCTACGTGAC CAGTGGCTCT CTGTTCTG
 33061 TATACGGGGC CGTTGTGAGA TCAGACCTTCA CACATGACCC TCTCATAGTGA CAAATCCGA
 33121 GGTGAATTTG CTCCGGTGTG ACACCTTGTG AGCATGAAAGG CGCGGATGCGC TCACTGGCG
 33181 AGTAATCCAT CTGCCCCATCA GGATTGGGGC GAGGAGGGT ATGCGCTCA TATTGATATC
 33241 TGGGGGGATA CAGGGTAGTA TTGGTGACCGA TGTTATCTGC CAAACGGGTA CCAAAGAAGT
 33301 CGTGGTCTAT CACAAAGATA TTGTCATAAT AAGGTGGCAT TTCTTGGAG CTGGACTCT
 33361 CCATTGTTGC AACAGCGGGC CTACAGGCTA TCTGTTACCG TITACGGGCC CGGGTTCCAA
 33421 AGGGCAATGTG CAGTGTCTCA CGCAGCTGCT TCACTAACAA AACATGTTT GGCCGATCAT
 33481 GTTCCGGGTA GAATTCTTAA CCTTCTTCAC CTGTCGGGG GGGGTATTC CAGTGTAT
 33541 CCACCGCAGT AAACATGGGA AAACGGGGG AAGAAGTCTGA CGATGCTACT CAAACATGTA
 33601 GCACGGTCTG CAGGATCTT GGCCATCAC GAGAACATTAC CTGACATAC CTACCGCGC
 33661 ATACTGAACT CGAGTTCCAG CCTTATGCCCT GCTGGTTTGC CTGGGCTTT CAGATTACGC
 33721 AAATCCCCCA GTAAACCGGA GGCTGCATCC TGATTGTTAAT ATTGCAAGAA ATCTTCCGG
 33781 CTGGCATCAC GGCCTGATC CGCGTCCAGA CGCACATTGC GTGTTGTTGCA TAAATCACC
 33841 TAAGGATACA CGGGTACCAT ATGGCTTCAAT GTAAATAGGG CAATCTGGCC ATCTGCTCT
 33901 TCTGCTTGC GGTTCACCACT GTCAACACCA TCTTAACTCC TTGCGGATTA CTGGCTTCT
 33961 TCACGGTCTG CGGGGATTTAA ACTGAAATAC AGGGCGGTGCT AGGGCGGTAGG CGGGATTTT
 34021 TCCAGATGAA AACCCGGGCGG GGGGGCATCG TGCTGCTCA CGCGTCACTT ATCTGGGTT
 34081 TCTGGCGACA AACGGCGCATC ATACTGGCAAG CAGTCAGTAA TATAGGCAGA GACTTTAGGC
 34141 AGCGGTTCTG TATTTCGGC ATCAACTTC TATTCGTTG ACAGGGACTT GGCAACACGT
 34201 GCTGAAGAAT AACTCAAGG AGTTCCGCTG CGCGTCACTT TATATCCCACT CTTCTGATAG

Fig.2.

34261 GTTTCTCTCG TGAGTCATC ATATTGCAAT ACCTCGGTTT TTTCTCCCGG CGGTACATCA
 34321 GGGCATTTGG GGTACCGGTG ATTCGGCAAT TCTTCGGGTG TCGCCTCACG GACATATTG
 34381 CAGGCATTCT CATAAACCGG TAAATCAGGT GAAAATATIGC GGTGGGAAT ATGCCAGCT
 34441 TCAACCCAGC CGATGTTTT AAAAACCGGG CTTATCATAAA TGACATACCA GGTGACCA
 34501 CCAGATTGAT TCTGCCAGGC AACCAGAGT GGCGCTACTT CGCTGCTGGC GTCAAGACATC
 34561 GCTTTAATG AAGGGTATCG ATAAACATTG TGAGACATATA TTTCACCTTC GCGGCCGGTGA
 34621 TATTCCGGG CCGGCTCTG ATATCAGTGA GAATTTGCTT GTTTAAATIG ATGTTTATTIC
 34681 AGACGGCTAC GAACTCTGCA GTCTGAACTCA TTACTTCCCG CACTCACATC ACAGCGGGTA
 34741 TAAACGAGAT GGAGGATAAT ATCGCTCAGC GACTCCAGCA GCTGATCTG ATGCGGAGCC
 34801 AATTCCAACT TCCACITGTA ATGGGGCCT GTCCCTCTAA AAGGCAGGAA AAGTTTCA
 34861 TCAAAATG GGCCTGACAT GCGCTGTGTG TCACTAGGCG TTGAAATCTAC CACACCTG
 34921 TTAGCTGTG CGTTCAGCAA AAGCTTTCG GTTTGGGTG ATTCCAAGGG GTTAAGCAA
 34981 TAATCGATAG TTTCAGTGG AGCAGTACTG TAAAGCGTAT TGCTGAGTTG TACCTAGTGA
 35041 CGCCGTCATC CTTTCATAAGG CCCCCAACAT GGGGCAATG ACAGCGCTCA GGTTTTATA
 35101 CGCCGATCAG CGTGGGCTGG ATAATGCGG AAGAACATTG CGGGCCTCAG TAAGAAAGTG
 35161 AATGAAACCC TACTCTTGC AATTTCACCA TGTGATGATG TCAGTAATG TTTTACCGAT
 35221 ATGTTTTTGA TGTATCCTAC AGCTCTGGT TTATGTTGCA AATAGGCCCTG ATTCATCCG
 35281 TGTAAAGCTC ATTTCAAGAT TCTTCGGGAC GCGACCCCTG GATAAAGATC ATTCAGAGA
 35341 CCACTTGGG CAAATTCATC ATCATCTGA CCTGTTCTGTG ACTGCCAGGA GGTCTGGCC
 35401 AGTAAACAGA GGGAAACGAC CGCATCATAG GCTTCCAGGT AAAGCGGGAG ATTTCGGCTGA
 35461 TCTATCAGG GTATAACGCA TCTTGTGTAN ANTTGTTCTNN NNNNNNNNNNN NNNNNNNNN
 35521 CGGAAGCATA CGGCCAAGAC CATCCCCCCC ACGGGCAAGAC CGAAAATATT GGGAAACATA
 35581 TCGGCCACAG CGGGCCGCTG GGGCCCTGAC TGGGAGCGCA TCACACCTTC AGCCGCTCT
 35641 GATTAAATG CGATAACTTC CTGCTGGTGG ATGGAGATGT TTTCATCATC GATGTTG
 35701 TGTGTTGGT GGGCTCTGCG AGGGGCCCTG CGCTGATGATG TCAGTGCATCA CAAATG
 35761 TGTGTCATG CTAATCGTGG CTGTTGAGA TGGCGGTAA AGCTGTACAG CCGGCTGGCC
 35821 TGCTGCATAC GGAAGATGTTG AAAATCGGTA TGTGTTTTT TCTCCAGCAA ACTCGAATAC
 35881 GTGCTCCGGT ATCGTAATCG CGTTTCTGGG GGCCTTCTTG CCGGCTCAT GATCGGGTTG
 35941 AAACGATAAT TCGGGATTCG CCGGCTTTC ATGCCGGCA TACGATTAGC CACACACGC
 36001 TGTGTAAGCG GCGCTGAGCG ATCTTGCGG CTGATGGTTT CATCGTATAA TCCGGCCGG
 36061 AACTCTTAC CATCCAAAGT CAGGTATGCA CGTAATGTTT ATAGACGCTG
 36121 TCGGCAAGT TGAATGATCG CGTATCAACCA GTTTGTGACAA ATAAATCAGA CGGTGCGG
 36181 GAGACGGATG TATCATATG CAAAGCGAGA ATGGCAGCTT TGCTGACAGT AGCATTAAC
 36241 TCTCTGGCC GTGCTTCACT GTTTCTACAT AGAGCCACAT CTTGCGAGGT ACGGGGTTGC
 36301 CAGTTTGGCC CGAGCAGAAT ATCAGGGCTG TFACCCAGTA ACATATTGAC GGAGTCATAG
 36361 ATCTGCTTGG CGACAGTACG TGCACTGGAT GTCACTTAC GGTATTCCAT GTCTCCCTGA
 36421 TCTAAACAGT TCTTGACATA GAAACGGAT AATTCGTTT GGTAGTGAAT GGTGTTACTG
 36481 GCTGCAATGG CGGGGGATCA GGTGTTCTCA ATTAACATCC GGTACACGGT
 36541 TCAATTAATG GCGGTGAATC CGGAGTACCGT GGTGTTACCTT GGTGTCATGC CTGAGCAAGT
 36601 TCTATCTTCA CGGGGATAAA AATATAGTCG AGCCATTCTGG GGGCTCTTT TAATGTTG
 36661 TCTATATTCG GTGGCCACGC GACCGAAATG GGCATATGGAA AAAACAGTTG CGAACAAATAG
 36721 ATCCCATTTG CGCCGATTAA ATCAATCGGC TGAGGAATG AACCGGGTAT AGGTGTTG
 36781 GTAATAAGCT GTGTAACTCA GCTGCACTAC CGGGGATAC CCTGACTGCG ATATGGCGATC
 36841 AGTTTTTGTG CAAACAGCTG ATTAAGGCAG ATGTTTGTG GCGCGTTATC AGTTTCACT
 36901 GCGGGGAAAGG AAAAGGAAATC CACCTGATCC TGTTCATIGA GTTTAATCAG
 36961 TGCATACCGG TTCTGACTC TTGAGTACAG CGGGCACTT CATTGCCAAC ACCACCTT
 37021 GCGCTTAAGG CATTCTGGG TTCTCAGGGT ATTGCGATTAT CGGACCCCG
 37081 GGATGGTTGA AATCAAGAAC TTTCGGCTAC AGTACCGATG GTTGTTCATC CAAGACAGTA
 37141 TTATCTGCA TCAGCGGGAA GAACGGCTTG TAATATTGAT GATCTTCTAT CGCACCAC
 37201 TAAAGTCAG ATTGAGCGAC ATATCTCAGT GTGTCATCAG TGCCATGAC AAAATTGACA
 37261 ATCAGTTTG TACTGCTCTT GCGGAATCA GGGTTCATC CGGTGTTGGAT TCTGGGCAA
 37321 TAGGAAAGCG TTCTCCGGG GTGGCGGAT AGAGCACCAT AGTACGGTAA
 37381 TCGCTTAAGG CATTCTGGG TTCACTGAG TAATACAGA CGAGGTTGCC
 37441 CCTTTCTGTC CATCAGCATA TTGGTCATCC GCAACATCG TAATTCTAC CAGCAGTGA
 37501 TCGCAGACAT AACCGGAGGC TTGGCTACAT TGATTAATCT TACCTTTCTT ATCTGTTCCC
 37561 TGAAGCGGAA CAAACGGACG CAAGCGCAGA AACGGGTTAT GCGGGTCTTG CTGATATAC
 37621 ATCACAGCA CCATCTGGG CATCCGGTAT TGCACTGATC TTCCGGCAGA ATGGTGGGTG
 37681 TACTCCAGCT GCGCATCAT TGGCAATAG CGATTTGGAT CGGGTCAAGA ACGGGTTGG
 37741 AGGAACCCAA TCAACCGCAC TAGGCTCAAC GTTTGGTGA TGCACTGATA ACAGCAGTGT
 37801 ATCTTCTGAT CGTACAGTGT CTTCAGACTC CGTCCAGGAA ATATACAGC GATTATCT
 37861 GAAAATGGG CGTATCAAT TGGGGTCTCA CTGGCCCAT GGCAGGTCAA TAGGTTT
 37921 CTGCGTCCAG GCATGGGGAG ATAAAGCCATC GGTATCAGGA TGGGGTATCG AAAGATT
 37981 TGAACGGCAG TAAATGGT ATGGCTGTGT AGGGCTACGT CGGACAAAGA AGAACATTAC
 38041 GCGTTTGTG TTAACACCAT CTTCATACCG TGCGATAACT TTCAGGTTAC TGACATCTTC

Fig.2.

38101 AAAATTATTC AGATAACCGA GCACCGCTTG TTGTACAGAA TCCTCGGTAA TTTTCCCTG
 38161 ATTAAGGGCA CTTTCAGTT GGAAGAAGAA TTCTGTTTA TTCAGGGCTA ACAGGGGTTG
 38221 CAGATAGCTT TCCGGATAAG TCCGTAATAA GCGATCCC

N=unspecified base

Fig.3.

UTILITYOriginal U.S. or PCT D/O
Foreign Priority**DECLARATION, POWER OF ATTORNEY AND POWER TO INSPECT**

As a below named inventor, I hereby declare:

that my residence, post office address and citizenship are as stated below next to my name;

that I verily believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural inventors are named below) of the invention entitled: **PESTICIDAL AGENTS**

the specification of which [check one(s) applicable]

 was filed 27 August 1997 as International Application No. PCT/GB97/02284 [on which U.S. Application No. 09/242,843 is based]
 was and was amended by Amendment filed 02 October 1998 [under Article 34] (if applicable); [or]; is attached to this Declaration, Power of Attorney and Power to Inspect;
that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; and

that I acknowledge my duty to disclose information which is material to the examination of this application in accordance with Rule 56(a) [37CFR§. 56(a)].

CLAIM UNDER 35 USC §119: I hereby claim foreign priority benefits under 35 USC §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:**Prior Foreign Application(s)**Application No.
0618083.1Country
GB**Filing Date**Day-Mo-Year
29 August 1996Yes - No
POWER OF ATTORNEY: As inventor, I hereby appoint **DANN, DORFMAN, HERRELL AND SKILLMAN, P.C.** of Philadelphia, PA, and the following individual(s) as my attorneys or agents with full power of substitution to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: **Patrick J. Hagan, Reg. No. 27,643 and Henry H. Skillman, Reg. No. 17,352.****POWER TO INSPECT:** I hereby give **DANN, DORFMAN, HERRELL AND SKILLMAN, P.C.** of Philadelphia, PA or its duly accredited representatives power to inspect and obtain copies of the papers on file relating to this application.**SEND CORRESPONDENCE TO: CUSTOMER NUMBER 000110.****DIRECT INQUIRIES TO:** Telephone: (215) 563-4100
Facsimile: (215) 563-4044

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SOLE OR FIRST JOINT INVENTOR

Full Name	Paul	JARRETT
First	Middle	Last
Signature		
Date	20/4/99	
Residence	Warwickshire, United Kingdom	
City	GBX	
Citizenship	Great Britain	
Post Office Address:	14 Home Furlong, Wellesbourne	
Warwickshire, CV35 9TW United Kingdom	City	State or Country
		Zip Code

SECOND JOINT INVENTOR (IF ANY)

Full Name	Deborah	ELLIS
First	Middle	Last
Signature		
Date	20.4.99	
Residence	Warwickshire, United Kingdom	
City	GBX	
Citizenship	Great Britain	
Post Office Address:	7 Cooke Close, Warwick	
Warwickshire CV34 5YG United Kingdom	City	State or Country
		Zip Code

THIRD JOINT INVENTOR (IF ANY)

Full Name	James	Alan Wynne	MORGAN
First	Middle	Last	
Signature			
Date	20/4/99		
Residence	Swansea, United Kingdom		
City	GBX		
Citizenship	Great Britain		
Post Office Address:	Pen-Y-Gorff Farm, Gorff Road, Ystradgynlais		
Swansea SA9 1TP United Kingdom	City	State or Country	Zip Code

FOURTH JOINT INVENTOR (IF ANY)

Full Name	First	Middle	Last
Signature			
Date			
Residence			
City			
Citizenship			
Post Office Address:			
City	State or Country	Zip Code	