MATH 312

Assignment 1 Ryan Zhuo Lun Liu: 30328141

Combinatorics

(1) We can expand $\binom{n}{k+1}$ into $\frac{n!}{(k+1)!(n-k-1)!}$ and $\binom{n}{k}$ into $\frac{n!}{(n-k)!}$. Then, the problem becomes:

Then, the problem becomes:
$$= \frac{n!}{(k+1)!(n-k-1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!(n-k)}{(k+1)!(n-k-1)!(n-k)} + \frac{n!(k+1)}{k!(n-k)!(k+1)}$$

$$= \frac{n!n-n!k+n!k+n!}{(k+1)!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!(n-k)!}$$

$$= \binom{n+1}{k+1}$$

(2) Claim: $\sum_{j=0}^{n} {j \choose 0} = {n+1 \choose 1}$ Proof: For any j, ${j \choose 0} = 1$. As j starts at 0, the summation is the sum of n+1 1s, or n+1. Looking at the right hand side, ${n+1 \choose 1} = n+1$. Thus, LHS = RHS or n+1=n+1

Induction

- (3) Claim: For $n \in \mathbb{Z}_{\geq 1}, \exists n, n+1, n+2|$ one of the three is divisible by 3. Proof:
 - (a) Base Case: $n = 1 \to 1, 2, 3$. 3|3.
 - (b) Assume that the Claim is true for $n = k \to \text{prove for } n = k+1$
 - (c) For k+1, k+2, k+3: If $3|k \to \text{Claim}$ is true as 3|k+3If $3|k+1 \to \text{Claim}$ is true for k+1If $3|k+2 \to \text{Claim}$ is true for k+2
- (4) Claim: Fix $k \geq 0$, for all $n \geq 0$, $\sum_{j=0}^{n} {j \choose k} = {n+1 \choose k+1}$. Proof:
 - (a) Base Case: n = 1LHS = $\binom{0}{k} + \binom{1}{k}$. RHS = $\binom{2}{k+1}$
 - (b) Assume that the Claim is true for $n = m \to \text{prove for } n = m+1$
 - (b) Assume that the Claim is the for n.

 (c) $\sum_{j=0}^{n+1} \binom{j}{k} = \binom{n+2}{k+1}$ LHS = $\sum_{j=0}^{n+1} \binom{j}{k}$ = $\sum_{j=0}^{n} \binom{j}{k} + \binom{n+1}{k}$ B = $\binom{n+1}{k+1} + \binom{n+1}{k}$ via the Induction Hypothesis.

From Question 1,
$$\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$$

OR: $\binom{n+1}{k+1} + \binom{n+1}{k} = \binom{n+2}{k+1}$
The LHS has the form $\binom{n+1}{k+1} + \binom{n+1}{k}$, which is equal to $\binom{n+2}{k+1}$. This is exactly the RHS. Thus, we have proved this Claim.

1

- (5) Question 5
- (6) asdf asdf

Factorials and Primes

- (7) Claim: For $2 \le j \le n$, show that n! + j is not a prime number. Proof: n! by itself is not a prime number as it can be factored by any number < n. Consider that $2 \le j \le n$:
- (8) The only two consecutive prime numbers are 2 and 3. Thus, p = 2.