The Spread of COVID-19 in London: Network Effects and Optimal Lockdowns?

Christian Julliard Ran Shi Kathy Yuan

London School of Economics

November 5, 2020

Motivation

Introduction

- The COVID-19 pandemic: 1.2M world-wide deaths, 47k in UK so far
- Unprecedented policy responses lockdowns to control the spread
- Significant social and economic cost
- Urgent need to evaluate effectiveness and inform optimal policy making
- So far, no spatial element in models of COVID-19 spread
- We use London as a salient case study and
 - embed network elements in the workhorse SIR epidemiology model
 - map heterogeneous interactions among population using commuting networks
 - estimate the model and analyse effectiveness of policy response
- Given the estimated spatial dynamics, we study (counterfactual) optimal policy responses

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 1/33

Motivation

- The COVID-19 pandemic: 1.2M world-wide deaths, 47k in UK so far
- Unprecedented policy responses lockdowns to control the spread
- Significant social and economic cost
- Urgent need to evaluate effectiveness and inform optimal policy making
- So far, no spatial element in models of COVID-19 spread
- We use London as a salient case study and:
 - embed network elements in the workhorse SIR epidemiology model
 - map heterogeneous interactions among population using commuting networks
 - estimate the model and analyse effectiveness of policy response
- Given the estimated spatial dynamics, we study (counterfactual) optimal policy responses

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 1/33

November 5, 2020

2/33

Main Findings

- Significant network externalities in COVID-19 epidemics
 - Decomposition of infections: network effects \approx 42%; local/autoregressive \approx 35%: endemic \approx 23%.
 - Network Impulse-Response significantly different across geographic regions
 - Most infections \neq most externalities
- Lockdown policy has had major impact, with substantial network effects:
 - Total reduction of infected: 56 5%
 - Reduction due to network externalities: 36.1%
- Counterfactual analyses show that:

Julliard, Shi, Yuan

- lockdown was somehow late, but further delay would have had more dramatic
- the targeted lockdown of a small number of highly connected geographic re-
- targeted lockdowns based on a threshold of number of cases are not effective

COVID-19 Network

November 5, 2020

2/33

Main Findings

- Significant network externalities in COVID-19 epidemics
 - Decomposition of infections: network effects \approx 42%; local/autoregressive \approx 35%; endemic \approx 23%.
 - Network Impulse-Response significantly different across geographic regions
 - \Rightarrow Most infections \neq most externalities
- Lockdown policy has had major impact, with substantial network effects:
 - Total reduction of infected: 56.5%
 - Reduction due to network externalities: 36.1%
- Counterfactual analyses show that:

Julliard, Shi, Yuan

- lockdown was somehow late, but further delay would have had more dramatic
 effects
- the targeted lockdown of a small number of highly connected geographic regions is equally effective
- targeted lockdowns based on a threshold of number of cases are not effective

COVID-19 Network

Main Findings

- Significant network externalities in COVID-19 epidemics
 - Decomposition of infections: network effects \approx 42%; local/autoregressive \approx 35%; endemic \approx 23%.
 - Network Impulse-Response significantly different across geographic regions
 - \Rightarrow Most infections \neq most externalities
- Lockdown policy has had major impact, with substantial network effects:
 - Total reduction of infected: 56.5%
 - Reduction due to network externalities: 36.1%
- Counterfactual analyses show that:
 - lockdown was somehow late, but further delay would have had more dramatic effects
 - the targeted lockdown of a small number of highly connected geographic regions is equally effective
 - targeted lockdowns based on a threshold of number of cases are not effective

Introduction

Literature I

- On-going discussions of trade-off of lockdowns: the planner's problem in balancing economic output and controlling fatality
- Review by Avery, Bossert, Clark, Ellison and Ellison, 2020
- <u>Calibrations</u> of SIR models, cost of life, productivity
 - Formulate and solve a planner's dynamic control problem, (Alvarez, Argente and Lippi 2020)
 - Externalities and history dependent equilibrium (Rowthorn and Toxvaerd, 2020)
 - Value of death is major policy determinant (Garriga, Manuelli, Sanghi 2020)
 - Equilibrium interactions between economic decision and epidemic dynamics: (Eich baum, Rebelo, and Trabandtz 2020)
 - Contagion externalities (Jones, Philippon, and Venkateswaran 2020)
 - Individual optimal reduction in social activities in SIR dynamics: (Farboodi, Jarosch and Shimer, 2020)
 - Heterogeneity in social interaction and productivity among social groups (Acemoglu, Chernozhukov, Werning, Whinston, 2020)
- Estimation of vanilla SIR(D): Fernandez-Villaverde and Jones (2020)
- We depart by estimating the network element and demonstrating its relevance and policy potential.

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 3/33

Literature II

Introduction

- Network literature on epidemiology
- Jackson 2008, Chapter 7, Sections 7.1,7.2.
- Easley and Kleinberg, 2010, Chapter 21
- Key players in network (Ballester, Calvo-Armengol, and Zenou 2006; Denbee, Julliard, Li and Yuan 2020)

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 4/33

A Network SIR Model

The triplet: $\{S, I, R\}$ (Susceptible, Infectious, Removed) such that

$$dS = -\beta_I \frac{S}{N} I dt, \quad dI = \underbrace{\left(\beta_I \frac{S}{N} - \beta_R\right)}_{\mathcal{R}} \times I dt, \quad dR = \beta_R I dt$$

where: $\beta_I = {\rm contact} \ {\rm rate}, \beta_R = {\rm removal} \ {\rm rate}; N = {\rm population}.$

Probabilistic counterpart (a continuous-time Markov chain):

$$\mathbb{P}\left[y \text{ new infections in } (t, t + \mathrm{d}t) \mid I_t = x\right] = \begin{cases} \alpha_t x \mathrm{d}t & y = 1\\ o(\mathrm{d}t) & y \ge 2 \end{cases}$$

Let $\mathbb{P}\left[y \text{ new infections in } (t, t+h) \mid I_t = x\right] = p_h(y \mid x)$

(holding $lpha_t$ constant from t to t+h and solving the Kolmogorov forward equation):

$$p_h(y \mid x) = \frac{\Gamma(y+x)}{\Gamma(x)\Gamma(y+1)} \left(e^{-\alpha_t h}\right)^x \left(1 - e^{-\alpha_t h}\right)$$

probability mass function of the negative binomial distribution

The triplet: $\{S, I, R\}$ (Susceptible, Infectious, Removed) such that

$$dS = -\beta_I \frac{S}{N} I dt$$
, $dI = \underbrace{\left(\beta_I \frac{S}{N} - \beta_R\right)}_{g_t} \times I dt$, $dR = \beta_R I dt$

where: $\beta_I = \text{contact rate}$, $\beta_R = \text{removal rate}$; N = population.

Probabilistic counterpart (a continuous-time Markov chain):

$$\mathbb{P}\left[y \text{ new infections in } (t, \, t + \mathrm{d}t) \mid I_t = x\right] = \left\{ \begin{array}{ll} \alpha_t x \mathrm{d}t & y = 1 \\ \\ o(\mathrm{d}t) & y \geq 2 \end{array} \right.$$

$$p_h(y \mid x) = \frac{\Gamma(y+x)}{\Gamma(x)\Gamma(y+1)} \left(e^{-\alpha_t h}\right)^x \left(1 - e^{-\alpha_t h}\right)^{\frac{1}{2}}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 5/33

The triplet: $\{S, I, R\}$ (Susceptible, Infectious, Removed) such that

$$dS = -\beta_I \frac{S}{N} I dt, \quad dI = \underbrace{\left(\beta_I \frac{S}{N} - \beta_R\right)}_{g_t} \times I dt, \quad dR = \beta_R I dt$$

where: $\beta_I = \text{contact rate}, \beta_R = \text{removal rate}; N = \text{population}.$

Probabilistic counterpart (a continuous-time Markov chain):

$$\mathbb{P}\left[y \text{ new infections in } (t, t + \mathrm{d}t) \mid I_t = x\right] = \begin{cases} \alpha_t x \mathrm{d}t & y = 1\\ o(\mathrm{d}t) & y \ge 2 \end{cases}$$

Let $\mathbb{P}[y \text{ new infections in } (t, t + h) \mid I_t = x] = p_h(y \mid x)$ (holding α_t constant from t to t + h and solving the Kolmogorov forward equation):

$$p_h(y \mid x) = \frac{\Gamma(y+x)}{\Gamma(x)\Gamma(y+1)} \left(e^{-\alpha_t h}\right)^x \left(1 - e^{-\alpha_t h}\right)^y$$

COVID-19 Network

probability mass function of the negative binomial distribution

Julliard, Shi, Yuan

Nove

• Normalizing h to h = 1, we have

$$y_t \mid \mathcal{F}_{t-1} \sim \text{NegBinom}(p_t, x_{t-1})$$

where

$$p_t = 1 - e^{-\alpha_t}$$

- If $S \approx N$, then $\alpha_t \equiv \alpha = \beta_I \beta_R > 0$

$$x_t = \sum_{l=0}^{L-1} \nu(l) y_{t-1}$$

$$\mathbb{E}_{t-1}[y_t] = \mu_t = ax_{t-1}, \quad a = e^{\alpha} - 1 = \frac{p_t}{1 - n_t} \in (0, \infty)$$

$$\operatorname{var}_{t-1}[y_t] = (a+1)ax_{t-1}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 6/33

• Normalizing h to h = 1, we have

$$y_t \mid \mathcal{F}_{t-1} \sim \text{NegBinom}(p_t, x_{t-1})$$

where

$$p_t = 1 - e^{-\alpha_t}$$

- If $S \approx N$, then $\alpha_t \equiv \alpha = \beta_I \beta_R > 0$
- Infected remain infectious for L periods (weighted by decaying function v(1))

$$x_t = \sum_{l=0}^{L-1} \nu(l) y_{t-l}$$

Model moments

$$\mathbb{E}_{t-1}[y_t] = \mu_t = ax_{t-1}, \quad a = e^{\alpha} - 1 = \frac{p_t}{1 - p_t} \in (0, \infty)$$

$$\operatorname{var}_{t-1}[y_t] = (a+1)ax_{t-1}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 6/33

• Normalizing h to h = 1, we have

$$y_t \mid \mathcal{F}_{t-1} \sim \text{NegBinom}(p_t, x_{t-1})$$

where

$$p_t = 1 - e^{-\alpha_t}$$

- If $S \approx N$, then $\alpha_t \equiv \alpha = \beta_I \beta_R > 0$
- Infected remain infectious for L periods (weighted by decaying function v(1))

$$x_t = \sum_{l=0}^{L-1} \nu(l) y_{t-l}$$

Model moments

$$\mathbb{E}_{t-1}[y_t] = \mu_t = ax_{t-1}, \quad a = e^{\alpha} - 1 = \frac{p_t}{1 - p_t} \in (0, \infty)$$

$$var_{t-1}[y_t] = (a+1)ax_{t-1}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 6/33

A Network SIR Model: Framework

- Multiple subpopulations (local authorities) $i=1,\ldots,n$
 - Within subpopulation: autoregressive epidemic dynamics
 - Between subpopulations: network epidemic effects
- Distribution

$$y_{i,t} \mid \mathcal{F}_{t-1} \sim \text{NegBinom}(p_{i,t}, x_{i,t-1})$$
, and $\mathbb{E}_{t-1}[y_{i,t}] = \mu_{i,t}$

• Multivariate extensions of $\mu_t = ax_{t-1}$:

$$\mu_t^{AR} + \mu_t^{NE} = Ax_{t-1} = \underbrace{\operatorname{diag}(A)x_{t-1}}_{\mu_t^{AR}: \text{ autoregressive}} + \underbrace{(A - \operatorname{diag}(A))x_{t-1}}_{\mu_t^{NE}: \text{ network}}$$

$$egin{aligned} m{x}_t &= \sum_{l=0}^{L-1}
u(l) m{y}_{t-l} \ &+ m{\mu}_t^{NE} \ &+ m{\mu}_t^{EN} \end{aligned}$$
 endemic eff

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 7/33

A Network SIR Model: Framework

- Multiple subpopulations (local authorities) i = 1, ..., n
 - Within subpopulation: autoregressive epidemic dynamics
 - Between subpopulations: network epidemic effects
- Distribution:

$$y_{i,t} \mid \mathcal{F}_{t-1} \sim \text{NegBinom}(p_{i,t}, x_{i,t-1})$$
, and $\mathbb{E}_{t-1} \left[y_{i,t} \right] = \mu_{i,t}$

• Multivariate extensions of $\mu_t = ax_{t-1}$:

$$\underbrace{\mu_t^{AR} + \mu_t^{NE}}_{\text{epidemic effects}} = Ax_{t-1} = \underbrace{\operatorname{diag}(A)x_{t-1}}_{\mu_t^{AR}: \text{ autoregressive}} + \underbrace{(A - \operatorname{diag}(A))x_{t-1}}_{\mu_t^{NE}: \text{ network}}$$

$$\mathbf{x}_t = \sum_{l=0}^{L-1} \nu(l) \mathbf{y}_{t-l}$$

$$\mu_t = \mu_t^{AR} + \mu_t^{NE} + \underbrace{\mu_t^{EN}}_{\text{endemic effects}}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 7/33

A Network SIR Model: Spatial Form

• Autoregressive effects: $diag(A) = \gamma I$

$$\mu_t^{AR} = \gamma x_{t-1}$$

• Network effects: driven by an adjacency matrix W (diag(W) = 0)

$$\mu_{i,t}^{NE} = \phi \left(\sum_{j \neq i} w_{ij} x_{j,t-1} \right) \quad \iff \quad \mu_t^{NE} = \phi W x_{t-1}$$

• allowing for multiple graphs $\left\{W^{(g)}\right\}_{g=1}^{G}$:

$$\mu_{i,t}^{NE} = \sum_{g=1}^{G} \phi^{(g)} \left(\sum_{j \neq i} w_{ij}^{(g)} x_{j,t-1} \right)$$

$$A = \gamma I + \sum_{g=1}^{G} \phi^{(g)} W^{(g)}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 8/33

A Network SIR Model: Spatial Form

• Autoregressive effects: $diag(A) = \gamma I$

$$\mu_t^{AR} = \gamma x_{t-1}$$

• Network effects: driven by an adjacency matrix W (diag(W) = 0)

$$\mu_{i,t}^{NE} = \phi \left(\sum_{j \neq i} w_{ij} x_{j,t-1} \right) \quad \iff \quad \mu_t^{NE} = \phi W x_{t-1}$$

• allowing for multiple graphs $\left\{W^{(g)}\right\}_{g=1}^{G}$:

$$\mu_{i,t}^{NE} = \sum_{g=1}^{G} \phi^{(g)} \left(\sum_{j \neq i} w_{ij}^{(g)} x_{j,t-1} \right)$$

$$A = \gamma I + \sum_{g=1}^G \phi^{(g)} W^{(g)}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 8/33

A Network SIR Model: Spatial Form

• Autoregressive effects: $diag(A) = \gamma I$

$$\mu_t^{AR} = \gamma x_{t-1}$$

• Network effects: driven by an adjacency matrix W (diag(W) = 0)

Data and Estimation

$$\mu_{i,t}^{NE} = \phi \left(\sum_{j \neq i} w_{ij} x_{j,t-1} \right) \quad \iff \quad \mu_t^{NE} = \phi W x_{t-1}$$

• allowing for multiple graphs $\left\{W^{(g)}\right\}_{g=1}^{G}$:

$$\mu_{i,t}^{NE} = \sum_{g=1}^{G} \phi^{(g)} \left(\sum_{j \neq i} w_{ij}^{(g)} x_{j,t-1} \right)$$

Implication: parametrize A as

$$A = \gamma I + \sum_{g=1}^{G} \phi^{(g)} W^{(g)}$$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 8/33

A Network SIR Model: Policy Specification

- Policy regime $D_t \in \{0,1\}$ may affect fundamental parameters $(\gamma,\phi^{(1)},\ldots,\phi^{(G)})$
- Autoregressive parameters:

$$\gamma(D_t) = \exp(D_t \gamma + \gamma_0)$$

- before policy: $\exp(\gamma_0)$; after policy: $\exp(\gamma_0 + \gamma)$
- policy impact: $\times \exp(\gamma)$
- Network parameters: for g = 1, ..., G

$$\phi^{(g)}(D_t) = \exp\left(D_t\phi^{(g)} + \phi_0^{(g)}\right)$$

- ullet before policy: $\exp\left(\phi_0^{(g)}
 ight)$; after policy: $\exp\left(\phi_0^{(g)}+\phi^{(g)}
 ight)$
- policy impact: $\times \exp\left(\phi^{(g)}\right)$
- Endemic effects

$$\mu_{i,t}^{EN} = \exp\left(z_t^{\top} \beta + \eta_i\right) N$$

- z_t : time trends interacted with D_t / fixed effects / detection ratio / testing
- η_i : subpopulation fixed effects
- N_i : subpopulation size

A Network SIR Model: Policy Specification

- Policy regime $D_t \in \{0,1\}$ may affect fundamental parameters $(\gamma,\phi^{(1)},\dots,\phi^{(G)})$
- Autoregressive parameters:

$$\gamma(D_t) = \exp(D_t \gamma + \gamma_0)$$

- before policy: $\exp(\gamma_0)$; after policy: $\exp(\gamma_0 + \gamma)$
- policy impact: $\times \exp(\gamma)$
- Network parameters: for $g = 1, \dots, G$

$$\phi^{(g)}(D_t) = \exp\left(D_t \phi^{(g)} + \phi_0^{(g)}\right)$$

- before policy: $\exp\left(\phi_0^{(g)}\right)$; after policy: $\exp\left(\phi_0^{(g)}+\phi^{(g)}\right)$
- policy impact: $\times \exp\left(\phi^{(g)}\right)$
- Endemic effects:

$$\mu_{i,t}^{EN} = \exp\left(z_t^{\top} \boldsymbol{\beta} + \eta_i\right) N$$

- z_t : time trends interacted with D_t / fixed effects / detection ratio / testing
- η_i : subpopulation fixed effects
- N_i : subpopulation size

A Network SIR Model: Policy Specification

- ullet Policy regime $D_t \in \{0,1\}$ may affect fundamental parameters $(\gamma,\phi^{(1)},\ldots,\phi^{(G)})$
- Autoregressive parameters:

$$\gamma(D_t) = \exp(D_t \gamma + \gamma_0)$$

- before policy: $\exp(\gamma_0)$; after policy: $\exp(\gamma_0 + \gamma)$
- policy impact: $\times \exp(\gamma)$
- Network parameters: for g = 1, ..., G

$$\phi^{(g)}(D_t) = \exp\left(D_t \phi^{(g)} + \phi_0^{(g)}\right)$$

- before policy: $\exp\left(\phi_0^{(g)}\right)$; after policy: $\exp\left(\phi_0^{(g)}+\phi^{(g)}\right)$
- policy impact: $\times \exp\left(\phi^{(g)}\right)$
- · Endemic effects:

$$\mu_{i,t}^{EN} = \exp\left(z_t^{\top} \boldsymbol{\beta} + \eta_i\right) N_i$$

- z_t : time trends interacted with D_t / fixed effects / detection ratio / testing
- η_i : subpopulation fixed effects
- *N_i*: subpopulation size

Data and Estimation

Counterfactuals and Policy Experiments

Data and Estimation

- A case study of COVID-19 spread in London
 - Disease surveillance data of 32 local authorities

https://coronavirus.data.gov.uk/

- Sample: March 1st to June 4th
- March 23rd (nationwide lockdown announcement) = policy change date $(D_t = 0 \text{ before and } D_t = 1 \text{ afterwards})$
- - A matrix $K = \{k_{ii}\}$: number of people who lives at i & goes to work at j
 - $W^1 = K$: work-to-home transmission
 - $W^2 = K^{\top}$: home-to-work transmission
 - $W^3 = KK^{\top}$: "home-to-home" transmission via common work places
 - Rescaled by the largest singular values
- Local authority population sizes

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 10/33

Data and Estimation

- A case study of COVID-19 spread in London
 - Disease surveillance data of 32 local authorities https://coronavirus.data.gov.uk/
 - Sample: March 1st to June 4th
 - March 23rd (nationwide lockdown announcement) = policy change date $(D_t = 0 \text{ before and } D_t = 1 \text{ afterwards})$
- Networks: residence/work links from 2011 LIK census
 - A matrix $K = \{k_{ii}\}$: number of people who lives at i & goes to work at j
 - $W^1 = K$: work-to-home transmission
 - $W^2 = K^{\top}$ home-to-work transmission
 - $W^3 = KK^{\top}$: "home-to-home" transmission via common work places
 - Rescaled by the largest singular values
- Local authority population sizes

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 10/33

Data and Estimation

- A case study of COVID-19 spread in London
 - Disease surveillance data of 32 local authorities

https://coronavirus.data.gov.uk/

- Sample: March 1st to June 4th
- March 23rd (nationwide lockdown announcement) = policy change date $(D_t = 0 \text{ before and } D_t = 1 \text{ afterwards})$
- Networks: residence/work links from 2011 UK census
 - A matrix $K = \{k_{ij}\}$: number of people who lives at i & goes to work at j
 - $W^1 = K$: work-to-home transmission
 - $W^2 = K^{\top}$: home-to-work transmission
 - $W^3 = KK^{\top}$: "home-to-home" transmission via common work places
 - Rescaled by the largest singular values
- Local authority population sizes https://data.london.gov.uk
- Maximum likelihood estimation

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 10 / 33

Conclusion

Data: Cumulative Cases Till June 4th

Introduction

Total: 27,078 (9.3% of UK)

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 11/33

Conclusion

Data: Subpopulation Sizes

Introduction

Corr(populaiton; cases) = 0.63/0.78 pre/post lockdown

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 12 / 33

A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Data: Work-to-Home Transmission Network

Introduction

Commuting from residential areas to work places: $W^{(1)} = K$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 13 / 33

A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Data: Home-to-Work Transmission Network

Introduction

Commuting from work places to residential areas: $W^{(2)} = K^{\top}$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 14/33

A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Data: "Home-to-home" Transmission Network

Introduction

Residential areas links via common work places: $W^{(3)} = KK^{\top}$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 15/33

Model Estimation

Introduction

	(K)		(K [⊤])		(KK^{\top})		all		(K,K^{\top})	
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.
				Autoreg	ressive eff	ect				
$\exp(\gamma_0)$	0.311	0.035	0.286	0.040	0.286	0.037	0.252	0.041	0.253	0.041
$\exp(\gamma)$	0.617	0.077	0.958	0.136	0.750	0.102	0.760	0.129	0.754	0.127
				Netw	ork effect					
K:										
$\exp(\phi_0)$	0.477	0.070					0.503	0.144	0.510	0.073
$\exp(\phi)$	0.885	0.136					0.821	0.169	0.827	0.127
K^{\top} :										
$\exp(\phi_0)$			0.115	0.022			0.062	0.036	0.064	0.023
$\exp(\phi)$			0.374	0.080			0.148	0.218	0.166	0.181
KK^{\top} :										
$\exp(\phi_0)$					0.261	0.035	0.000	0.085		
$\exp(\phi)$					0.570	0.082	0.284	0.000		
			Tes	ting-relat	ed endemi	c effect				
pos-to-test	-1.37	0.47	-1.09	0.28	-1.46	0.41	-1.46	0.48	-1.46	0.49
lag test	1.85	0.31	1.77	0.23	1.88	0.28	1.91	0.32	1.91	0.32
pseudo-R ²	82.09%		82.00%		82.02%		82.12%		82.12%	

est. w.o. control

Conclusion

Julliard, Shi, Yuan COVID-19 Network November 5, 2020

Model Estimation

	(K)		(K [⊤])		(KK^{\top})		all		(K,K^{\top})	
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.
				Autoreg	ressive eff	ect				
$\exp(\gamma_0)$	0.311	0.035	0.286	0.040	0.286	0.037	0.252	0.041	0.253	0.041
$\exp(\gamma)$	0.617	0.077	0.958	0.136	0.750	0.102	0.760	0.129	0.754	0.127
				Netw	ork effect					
K:										
$\exp(\phi_0)$	0.477	0.070					0.503	0.144	0.510	0.073
$\exp(\phi)$	0.885	0.136					0.821	0.169	0.827	0.127
K^{\top} :										
$\exp(\phi_0)$			0.115	0.022			0.062	0.036	0.064	0.023
$\exp(\phi)$			0.374	0.080			0.148	0.218	0.166	0.181
KK^{\top} :										
$\exp(\phi_0)$					0.261	0.035	0.000	0.085		
$\exp(\phi)$					0.570	0.082	0.284	0.000		
			Tes	sting-relat	ed endemi	c effect				
pos-to-test	-1.37	0.47	-1.09	0.28	-1.46	0.41	-1.46	0.48	-1.46	0.49
lag test	1.85	0.31	1.77	0.23	1.88	0.28	1.91	0.32	1.91	0.32
pseudo-R ²	82.09%		82.00%		82.02%		82.12%		82.12%	

est. w.o. control

Julliard, Shi, Yuan COVID-19 Network November 5, 2020

Conclusion

Model Estimation

	(K)		(K [⊤])		(KK^{\top})		all		(K,K^{\top})	
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.
				Autoreg	ressive eff	ect				
$\exp(\gamma_0)$	0.311	0.035	0.286	0.040	0.286	0.037	0.252	0.041	0.253	0.041
$\exp(\gamma)$	0.617	0.077	0.958	0.136	0.750	0.102	0.760	0.129	0.754	0.127
				Netv	vork effect					
K:										
$\exp(\phi_0)$	0.477	0.070					0.503	0.144	0.510	0.073
$\exp(\phi)$	0.885	0.136					0.821	0.169	0.827	0.127
K^{\top} :										
$\exp(\phi_0)$			0.115	0.022			0.062	0.036	0.064	0.023
$\exp(\phi)$			0.374	0.080			0.148	0.218	0.166	0.181
KK^{\top} :										
$\exp(\phi_0)$					0.261	0.035	0.000	0.085		
$\exp(\phi)$					0.570	0.082	0.284	0.000		
			Tes	ting-relat	ed endemi	c effect				
pos-to-test	-1.37	0.47	-1.09	0.28	-1.46	0.41	-1.46	0.48	-1.46	0.49
lag test	1.85	0.31	1.77	0.23	1.88	0.28	1.91	0.32	1.91	0.32
pseudo-R ²	82.09%		82.00%		82.02%		82.12%		82.12%	

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 18/33

Model Estimation

Introduction

	(K)		(K [⊤])		(KK^{\top})		all		(K,K^{\top})		
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.	
				Autoreg	ressive eff	ect					
$\exp(\gamma_0)$	0.311	0.035	0.286	0.040	0.286	0.037	0.252	0.041	0.253	0.041	
$\exp(\gamma)$	0.617	0.077	0.958	0.136	0.750	0.102	0.760	0.129	0.754	0.127	
	Network effect										
K:											
$\exp(\phi_0)$	0.477	0.070					0.503	0.144	0.510	0.073	
$\exp(\phi)$	0.885	0.136					0.821	0.169	0.827	0.127	
K^{\top} :											
$\exp(\phi_0)$			0.115	0.022			0.062	0.036	0.064	0.023	
$\exp(\phi)$			0.374	0.080			0.148	0.218	0.166	0.181	
KK^{\top} :											
$\exp(\phi_0)$					0.261	0.035	0.000	0.085			
$\exp(\phi)$					0.570	0.082	0.284	0.000			
			Tes	ting-relat	ed endemi	c effect					
pos-to-test	-1.37	0.47	-1.09	0.28	-1.46	0.41	-1.46	0.48	-1.46	0.49	
lag test	1.85	0.31	1.77	0.23	1.88	0.28	1.91	0.32	1.91	0.32	
pseudo-R ²	82.09%		82.00%		82.02%		82.12%		82.12%		

est. w.o. control

Conclusion

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 19 / 33

pseudo-R²

Introduction

	(K)		(K [⊤])		(KK^{\top})		all		(K,K^{\top})	
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.
	Autoregressive effect									
$\exp(\gamma_0)$	0.311	0.035	0.286	0.040	0.286	0.037	0.252	0.041	0.253	0.041
$\exp(\gamma)$	0.617	0.077	0.958	0.136	0.750	0.102	0.760	0.129	0.754	0.127
				Netw	ork effect					
K:										
$\exp(\phi_0)$	0.477	0.070					0.503	0.144	0.510	0.073
$\exp(\phi)$	0.885	0.136					0.821	0.169	0.827	0.127
K^{\top} :										
$\exp(\phi_0)$			0.115	0.022			0.062	0.036	0.064	0.023
$\exp(\phi)$			0.374	0.080			0.148	0.218	0.166	0.181
KK^{\top} :										
$\exp(\phi_0)$					0.261	0.035	0.000	0.085		
$\exp(\phi)$					0.570	0.082	0.284	0.000		

		Tes	Testing-related endemic effect					
 4.0=	0.45	4.00	0.00		0.44			

82.00%

82.09%

pos-to-test	-1.37	0.47	-1.09	0.28	-1.46	0.41	-1.46	0.48	-1.46	0.49
lag test	1.85	0.31	1.77	0.23	1.88	0.28	1.91	0.32	1.91	0.32

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 20 / 33

82.02%

82.12%

82.12%

Decomposing the Conditional Mean

Introduction

Conditional mean of disease cases: $\mu_t = \mu_t^{AR} + \mu_t^{NE} + \mu_t^{EN}$

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 21/33

Introduction

$\underline{\text{Fraction}} \text{ of conditional mean explained: } \underline{\mu_{i,t}^{AR}}, \underline{\mu_{i,t}^{NE}}, \underline{\mu_{i,t}^{EN}}, \underline{\mu_$

Bands represents 10- and 90-percent quantiles across 32 locations

Note: pre (post) lockdown average NE share: 45% (40%)

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 22 / 33

Decomposing the Conditional Mean

Introduction

Fraction of conditional mean explained by each of the three networks: $\frac{\mu_{i,t}^{NE}}{\mu_{i,t}}(W^{(g)})$

Bands represents 10- and 90-percent quantiles across 32 locations

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 23 / 33

Counterfactuals and Policy Experiments

Introduction

- "Shocks" to $y_{i,t}$ propagate through the network
- Let $\epsilon_{i,t} = y_{i,t} \mu_{i,t}$
- We have the *s*-periods Network Impulse-Response Function:

$$NIRF_i(s) = \sum_{j=1}^{N} \frac{\partial \mathbb{E}_t[y_{j,t+s}]}{\partial \epsilon_{i,t}}$$

Can be computed in closed form

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 24/33 Introduction A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Network Impulse Responses: Pre-lockdown, ($s=7\,$ days)

Max N-IRF: 2.8

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 25 / 33

Conclusion

Network Impulse Responses: Post-lockdown, (s = 7 days)

Introduction

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 26 / 33

Epidemic Parameters

- The dominant (largest) eigenvalue σ_{\max} of $A(D_t) = \gamma(D_t)I + \sum_{g=1}^G \phi^{(g)}(D_t)W^{(g)}$ is key for epidemic dynamics since: $\mu_t \propto A(D_t)x_t$
- The disease epidemic R₀ (basic reproduction number) can be approximated as

$$R_0 \leq \sum_{\ell=0}^{L} \widehat{v}(\ell) \, \sigma_{\max}\left(\widehat{A}\right).$$

$Model\mathcal{G}$	(:	1)	(2	2)	(3	3)	(1,2	(1,2,3)		(1,2)	
Value	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.	
Before Lockdown Policy: $D_t=0$											
$\sigma_{ m max}$	0.840	0.590	0.511	0.106	0.639	0.287	0.853	0.533	0.766	0.537	
R_0	1.467	1.030	1.577	0.327	1.531	0.688	1.391	0.876	1.369	0.953	
After Lockdown Policy: $D_t = 1$											
$\sigma_{ m max}$	0.510	0.369	0.270	0.038	0.301	0.123	0.501	0.398	0.422	0.392	
R_0	0.891	0.644	0.832	0.118	0.722	0.296	0.818	0.649	0.754	0.701	

Julliard, Shi, Yuan

Counterfactuals and Policy Experiments

Counterfactuals and Policy Experiments

Introduction

Counterfactual: Different Lockdown Dates?

Each path is the median of 10,000 simulations

$$-7 \Rightarrow -2,553 (-9.4\%)$$

$$+7 \Rightarrow +4,514 (+16.7\%)$$

Julliard, Shi, Yuan

Counterfactuals and Policy Experiments

Optimal Lockdown Policies

Given the transition dynamics

$$\mu_t \propto Ax_{t-1}$$

there are two naive candidate optimal lockdown policies:

- Locking down areas with the largest number of cases ("case-based" policy):
 - targeting on x_{t-1}
- Locking down areas showing large externalities (larger NIRF):
 - targeting on A

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 29/33 Introduction A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Partial Lockdowns: One Local Authority

Total lockdown Partial lockdown Locking down 1 regions on 2020-03-23 Locking down 1 regions on 2020-03-23 00009 00009 Counterfactual: no change in epidemic effects Counterfactual: no change in epidemic effects Counterfactual: lockdown measures (all possible) Counterfactual: lockdown measures (all possible) Counterfactual: lockdown measures (optimal) Counterfactual: lockdown measures (optimal) 20000 Counterfactual: lockdown measures (case-based) 50000 Counterfactual: lockdown measures (case-based) Real Data Cumulative Number of Cases Sumulative Number of Cases 40000 40000 30000 30000 20000 20000 10000 10000 0 Mar May Jun Apr Mav Apr Date Date

Note: Largest number of cases: Lambeth
Largest (integrated) NIRF: Westminster, City of London

Optimal: Westminster, City of London

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 30 / 33

Optimal: Westminster, City of London

Introduction A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Partial Lockdowns: Two Local Authorities

<u>Total lockdown</u> <u>Partial lockdown</u>

Locking down 2 regions on 2020-03-23

Optimal: Westminster, City of London/Southwark

Locking down 2 regions on 2020–03–23

Optimal: Westminster, City of London/Southwark

Note: Largest number of cases: Lambeth/Southwark
Largest (integrated) NIRF: Westminster, City of London/Camden

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 31/33

A Network SIR Model Data and Estimation Counterfactuals and Policy Experiments Conclusion

Partial Lockdowns: Three Local Authorities

Introduction

Total lockdown Locking down 3 regions on 2020–03–23 Locking down 3 regions on 2020–03–23

Optimal: Westminster, City of London/Southwark/Lambeth

Optimal: Westminster, City of London/Southwark/Lambeth

Note: Largest number of cases: Lambeth/Southwark/Brent Largest (integrated) NIRF: Westminster, City of London/Camden/Tower Hamlets

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 32 / 33

Conclusion

Conclusion

We have embeded spatial dynamics in an empirical SIR model and found that:

- 1. Network externalities are first order
- 2. The national lockdown: i) reduced the spread by more than half, ii) was somehow late, and iii) further delay would have had extreme consequences.
- 3. "Case-based" lockdown policies appear suboptimal
- 4. Network externalities targeting, and partial lockdowns, seem very effective

Julliard, Shi, Yuan COVID-19 Network November 5, 2020 33/33

Appendix

Estimation without controlling for test related variables

Model	(K)		(K [⊤])		(KI	K [⊤])	all		(K,K^{\top})	
	est.	se.	est.	se.	est.	se.	est.	se.	est.	se.
				Autoreg	ressive eff	fect				
$\exp(\gamma_0)$	0.381	0.033	0.456	0.034	0.424	0.032	0.365	0.036	0.344	0.038
$\exp(\gamma)$	0.472	0.050	0.519	0.045	0.446	0.042	0.492	0.057	0.522	0.066
				Netw	ork effect	į				
K:										
$\exp(\phi_0)$	0.563	0.066					0.496	0.091	0.592	0.071
$\exp(\phi)$	0.694	0.098					0.594	0.189	0.637	0.102
K^{\top} :										
$\exp(\phi_0)$			0.076	0.021			0.000	0.000	0.041	0.021
$\exp(\phi)$			0.598	0.175			0.000	0.000	0.203	0.424
KK^{\top} :										
$\exp(\phi_0)$					0.280	0.035	0.056	0.048		
$\exp(\phi)$					0.518	0.073	0.696	0.779		
pseudo-R ²	81.86%		81.86% 80.90%		81.58%		81.89%		81.89%	