Name: Shivali Sanap

Task 1:
Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickens to be 13 mm)

With Double pane glazing (ε =0.84) & gap thickness 13mm

U- Value of a double pane glazing window if the gap is filled with air is $2.8 \frac{w}{m^2 k^2}$

arepsilon value	0.84		0.10			0.84			0.1		
No. of panes	2	2	2	2	2	3	3	3	3	3	3
Gas	Argon	Krypton	Air	Argon	Krypton	Air	Argon	Krypton	Air	Argon	krypton
U value	2.65	2.6	1.8	1.5	1.4	1.8	1.7	1.6	1	0.8	0.7
% of change	5.4	7.2	35.7	46.4	50	35.7	39.2	42.8	64.3	71.4	75

Task 2:
Consider the house that we analysed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

						P	IACENZ	A, Italy						WMO#:	160840
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	N)	Period	89-10	WBAN:	99999
nnual He	ating and H	umidificati	on Design C	onditions					<i>,,</i>			,	los -		
Coldest	Heating	n DR		Humi	dification DF	MCDB and	HR		(Coldest mon	th WS/MCD	В	MCWS	/PCWD	
Month	ricating	9 00		99.6%			99%		0.	4%	1	%	to 99.0	6% DB	
WICHILIT	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	ws	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nual Co	oling, Dehu	midificatio	n, and Entha	lpy Design	Conditions	(-
ottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDE			MCWS	PCWD
Month	Month	0.	4%	15	%	29	6	0	1.4%	1	%	2	2%	to 0.4	% DB
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
nontri .					12000	4 4	44.4	4.00	67.6	161	(1)	(m)	(n)	6-1	4-1
(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(11)	(0)	(p)

Defining the cooling design temperature $T_{\rm cooling}$ = 24 $\mbox{\ensuremath{\mbox{\'e}}} C$, And heating design temperature $T_{heating}$ = 20 $\mbox{\ensuremath{\mbox{\'e}}} C$, Thus,

 $\Delta T_{Cooling} = 31.9 - 24 = 7.9 \, ^{\circ}C$

									- 11	ame				
							Operable					Fixed		
Glazing Type	Glazing Layers	IDb	Property ^{c,d}	Center of Glazing	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
	2	5a	SHGC U SHGC	0.86 2.73 0.76	0.75 4.62 0.67	0.75 3.42 0.67	0.64 3.00 0.57	0.64 2.87 0.57	0.64 5.83 0.57	0.78 3.61 0.69	0.78 3.22 0.69	0.75 2.86 0.67	0.75 2.84 0.67	0.75 2.72 0.67
	3	29a	U SHGC	1.76	3.80	2.60	2.25 0.51	2.19 0.51	1.91 0.51	2.76 0.62	2.39 0.62	2.05 0.60	2.01 0.60	1.93
Low-e, low-solar	2	25a	USHGC	1.70 0.41	3.83 0.37	2.68 0.37	2.33 0.31	2.21 0.31	1.89 0.31	2.75 0.38	2.36 0.38	2.03 0.36	2.01 0.36	1.90 0.36
	3	40c	U SHGC	1.02 0.27	3.22 0.25	2.07 0.25	1.76 0.21	1.71 0.21	1.45 0.21	2.13 0.25	1.76 0.25	1.44 0.24	1.40 0.24	1.33 0.24
Low-e, high-solar	2	17c	U SHGC	1.99 0.70	4.05 0.62	2.89 0.62	2.52 0.52	2.39 0.52	2.07 0.52	2.99 0.64	2.60 0.64	2.26 0.61	2.24 0.61	2.13 0.61
	3	32c	U SHGC	1.42 0.62	3.54 0.55	2.36 0.55	2.02 0.46	1.97 0.46	1.70 0.46	2.47 0.56	2.10 0.56	1.77 0.54	1.73 0.54	1.66 0.54
Heat-absorbing	1	1c	U SHGC	5.91 0.73	7.24 0.64	6.12 0.64	5.14 0.54	5.05 0.54	4.61 0.54	6.42 0.66	6.07 0.66	5.55 0.64	5.55 0.64	5.35 0.64
	2	5c	U SHGC	2.73 0.62	4.62 0.55	3.42 0.55	3.00 0.46	2.87 0.46	2.53 0.46	3.61 0.56	3.22 0.56	2.86 0.54	2.84 0.54	2.72 0.54
	3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	0.31	2.05 0.30	2.01 0.30	1.93 0.30
Reflective	1	11	U SHGC	5.91 0.31	7.24 0.28	6.12 0.28	5.14 0.24	5.05 0.24	4.61 0.24	6.42 0.29	6.07 0.29	5.55 0.27	5.55 0.27	5.35 0.27
	2	5p	U SHGC	2.73 0.29	4.62 0.27	3.42 0.27	3.00 0.22	2.87 0.22	2.53 0.22	3.61 0.27	3.22 0.27	2.86 0.26	2.84 0.26	2.72 0.26
	3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30

					La	atitud	e			
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°
North	E_D	125	106	92	84	81	85	96	112	136
	E_d	128	115	103	93	84	76	69	62	55
	E_I	253	221	195	177	166	162	164	174	191
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361
	E_d	177	169	162	156	151	147	143	140	137
	E_{I}	637	618	599	581	563	546	529	513	498
East/West	E_D	530	543	552	558	560	559	555	547	537
	E_d	200	196	193	190	189	188	187	187	187
	E_t	730	739	745	748	749	747	742	734	724
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517
	E_d	204	203	203	204	205	207	210	212	215
	E_t	485	531	572	609	641	670	695	715	732
South	E_D	0	60	139	214	283	348	408	464	515
	E_d	166	193	196	200	204	209	214	219	225
	E_t	166	253	335	414	487	557	622	683	740
Horizontal	E_D	845	840	827	806	776	738	691	637	574
	E_d	170	170	170	170	170	170	170	170	170
	Ε,	1015	1010	997	976	946	908	861	807	744

North 0.44 0.27 Northeast 0.21 0.43 Estat 0.31 0.56 Southeast 0.37 0.54 South 0.47 0.53 Southwest 0.58 0.61 West 0.56 0.65 Northwest 0.46 0.57 Horizontal 0.58 0.73	Exposure	Single Family Detached	Multifamily
East 0.31 0.56 Southeast 0.37 0.54 South 0.47 0.53 Southwest 0.58 0.61 West 0.56 0.65 Northwest 0.46 0.57	North	0.44	0.27
Southeast 0.37 0.54 South 0.47 0.53 Southwest 0.58 0.61 West 0.56 0.65 Northwest 0.46 0.57	Vortheast	0.21	0.43
South 0.47 0.53 Southwest 0.58 0.61 West 0.56 0.65 Northwest 0.46 0.57	East	0.31	0.56
Southwest 0.58 0.61 West 0.56 0.65 Northwest 0.46 0.57	Southeast	0.37	0.54
West 0.56 0.65 Northwest 0.46 0.57	outh	0.47	0.53
Northwest 0.46 0.57	outhwest	0.58	0.61
	Vest	0.56	0.65
Horizontal 0.58 0.73	Northwest	0.46	0.57
	Iorizontal	0.58	0.73

Cooling load of the fixed window on the west:

 $q_{window_{west}} = A * CF_{window_{west}}$

 $A=14.4 m^2$

 $CF_{window_{west}} (Heat \ transfer \ per \ part) = U_{window_{west}} \ \left(\Delta T_{cooling} - 0.46 \ DR \right)$

.emarf nedoow a htiw ssalg retal elbuod gnibrosba taeh dexif a sah wodniw eh™

$$\therefore U_{window_{west}} = 2.84 \frac{W}{m^2 K}$$

 $\label{eq:cfwindowwest} \therefore \mathit{CF}_{window_{west}} \big(Heat \; transfer \; per \; part \big) = 2.84 \; * \; 7.9 - 0.46 * \; 11.9 = 6.89 \; \text{W/m}^2$

 $PXI_{widow_{west}} = E_D + E_d = 559 + 188$ (from the table) = 747

SHGC=0.54

No internal Shading, So IAC=1.

FFs=0.56 (from the table)

$$CF_{window_{west}}$$
 (radiation Part) = PXI * SHGC * IAC * FFs

$$\begin{aligned} q_{window_{west}} &= A*CF_{window_{west}} \\ &= A*(CF_{window_{west}} \big(heat\ transfer\ part\big) + CF_{window_{west}} \big(Irradiation\ part\big) = 0 \end{aligned}$$

Heat load of the fixed window on the West:

$$q_{window_{west}}$$
 = $A * HF_{window_{west}}$ = $A * U_{window_{west}} * \Delta T_{heating}$
=14.4*2.84*24.8= 1014.22 W

If the frame is aluminum

$$U'_{west\ window} = 3.61 \frac{w}{m^2 k^{\square}}$$

SHGC' = 0.56

Cooling load

$$CF'_{west\ window(heat\ transfer)} = U'_{west\ window} (\Delta T_{cooling} - 0.46\ DR)$$

=
$$3.61 \frac{w}{m^2 k^{1.3}} (7.9K - 0.46 \times 11.9 \text{ k})$$
 = $8.76 \frac{w}{m^2}$

$$CF'_{west window(irradiation)} = PXI \times SHGC' \times IAC \times FF_S$$

$$q'_{west\ window} = A\ x\ (CF'_{west\ window(heat\ transfer)} + (CF'_{west\ window(irradiation)})$$

$$= 14.4\ \text{m}^2\ x\ (8.76\ + 234.26)\ \frac{w}{m^2} = 3499.48W$$

Heating load

$$q'_{west\ window} = A\ x\ HF'_{west\ window} = A\ x\ U'_{west\ window}\ x\ \Delta T_{heating}$$

= 14.4 m² x 3.61 $\frac{w}{m^2 k^{\square}}$ x 24.8 k = 1289.20 W

FIXED WINDOW ON SOUTH SIDE

Area = 3.6 m^2

COOLING LOAD

 $q_{south\ window} = A\ x\ CF_{south\ window}$

$$CF_{south\ window(heat\ transfer)} = U_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$$

$$U_{south\ window} = 2.84 \frac{w}{m^2 k^{2}}$$

$$CF_{south\ window(heat\ transfer)} = 2.84 \frac{w}{m^2 k^{1.3}} (7.9\ k - 0.46\ (11.9\ k)) \approx 6.89\ \frac{w}{m^2}$$

Irradiation

$$E_D = 348$$

$$E_d = 209$$

$$PXI_{south window} = E_D + E_d = 348 + 209 = 557$$

Since no internal shading, so IAC = 1

$$FF_s = 0.47$$

$$CF_{south\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s = 557\ x\ 0.54\ x\ 1\ x\ 0.47\ =\ 141.36$$

$$q_{south\ window} = AxCF_{south\ window} = Ax(CF_{south\ window(heat\ transfer)} + (CF_{south\ window(irradiation)})$$

= 3.6 m² x (6.89 +141.36) $\frac{w}{m^2}$ = 533.72 W

HEATING LOAD

$$q_{south \ window} = A x HF_{south \ window} = A x U_{south \ window} x \Delta T_{heating}$$

= 3.6 m² x 2.84
$$\frac{w}{m^2 k^{\frac{1}{11.1}}}$$
 x 24.8 k = 253.56 W

If the frame is aluminum

$$U'_{south \ window} = 3.61 \frac{w}{m^2 k^{\square}}$$

SHGC' = 0.56

Cooling load

$$CF'_{south\ window(heat\ transfer)} = U'_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$$

= $3.61 \frac{w}{m^2 M_{\odot}^{1/2}} (7.9K - 0.46\ x\ 11.9\ k) = 8.76 \frac{w}{m^2}$

$$CF'_{south\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_S = 557\times0.56\times1\times0.47 = 146.6$$

$$q'_{south window} = A x (CF'_{south window(heat transfer)} + (CF'_{south window(irradiation)})$$

= 3.6 m² x (8.76 +146.60) $\frac{w}{m^2}$ = 559.30W

Heating load

$$q'_{south\ window} = A\ x\ HF'_{south\ window} = A\ x\ U'_{south\ window}\ x\ \Delta T_{heating}$$

= 3.6 m² x 3.61 $\frac{w}{m^2 k^{\frac{1}{12}}}$ x 24.8 k = 322.30 W

OPERABLE WINDOW ON SOUTH SIDE

Area = 3.6 m^2

COOLING LOAD

 $q_{south\ window} = A\ x\ CF_{south\ window}$

$$CF_{south\ window(heat\ transfer)} = U_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$$

$$U_{south\ window} = 2.87 \frac{w}{m^2 k^{2}}$$

$$CF_{south\ window(heat\ transfer)} = 2.87 \frac{w}{m^2 k^{11}} (7.9 \text{ k} - 0.46 (11.9 \text{ k})) \approx 6.96 \frac{w}{m^2}$$

Irradiation

$$E_D = 348$$

$$E_{d} = 209$$

PXI south window =
$$E_D + E_d = 348 + 209 = 557$$

Since no internal shading, so IAC = 1

SHGC = 0.46

$$FF_{S} = 0.47$$

$$CF_{south\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s = 557\ x\ 0.46\ x\ 1\ x\ 0.47\ =\ 120.42$$

$$q_{south\ window} = AxCF_{south\ window} = A(CF_{south\ window(heat\ transfer)} + (CF_{south\ window(irradiation)})$$

= 3.6 m² x (6.96 +120.42) $\frac{w}{m^2}$ = 458.58 W

HEATING LOAD

$$q_{south\ window} = A\ x\ HF_{south\ window} = A\ x\ U_{south\ window}\ x\ \Delta T_{heating}$$

= 3.6 m² x 2.87 $\frac{w}{m^2 k^{\frac{1}{1-1}}}$ x 24.8 k = 256.23 W

If the frame is aluminum

$$U'_{south \, window} = 4.62 \frac{w}{m^2 k^{\Box}}$$

SHGC' = 0.55

Cooling load

$$CF'_{south\ window(heat\ transfer)} = U'_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$$

=
$$4.62 \frac{w}{m^2 k^{1.1}} (7.9K - 0.46 \times 11.9 \text{ k}) = 11.21 \frac{w}{m^2}$$

$$CF'_{south\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_S = 557\ x\ 0.55\ x\ 1\ x\ 0.47 = 143.98$$

$$\begin{aligned} q'_{south\ window} &= A\ x\ (CF'_{south\ window(heat\ transfer)} + (CF'_{south\ window(irradiation)}) \\ &= 3.6\ \text{m}^2\ x\ (11.21\ + 143.98)\ \frac{w}{m^2} = 558.70\ \text{W} \end{aligned}$$

Heating load

$$\begin{aligned} q'_{south\ window} &= A\ x\ HF'_{south\ window} = A\ x\ U'_{south\ window}\ x\ \Delta T_{heating} \\ &= 3.6\ \text{m}^2\,\text{x}\ 4.62\frac{w}{m^2k^{\text{L.I.}}}\ \text{x}\ 24.8\ \text{k} = 412.47\ \text{W} \end{aligned}$$