

Parte I

CENTER FOR ANIMAL DISEASE MODELING AND SURVEILLANCE (CADMS),

SCHOOL OF VETERINARY MEDICINE, UC DAVIS

Jose Pablo Gomez

Center for Animal Disease Modeling and Surveillance (CADMS)

Department of Medicine & Epidemiology

School of Veterinary Medicine

University of California, Davis

* Contacto: jpgo@ucdavis.edu

https://jpablo91.github.io www.vetmed.ucdavis.edu/cadms

Contenido

- Que es una red?
- Elementos que forman una red
- Fuentes de informacion
- Tipos de muestreo

Que es una Red?

Teoría de graficas (Graph theory)

Que es una gráfica? (en el contexto de análisis de redes)

"Representación Matemática de una red"

Nodos (vértices)

Agentes o individuos que conforman la red.

$$V = \{1, 2, 3, ..., i\}$$

Conexiones (Edges)

Conexión entre un par de nodos (diada)

$$E = \{(1, 2), (1, 3), ..., (i, j)\}$$

En una red, los nodos conectados son considerados **vecinos**

Cada uno de los nodos conectados tendrá su **vecindario**

Direccionalidad

$$E = \{(1 \rightarrow 2), (1 \rightarrow 3), ..., (i \rightarrow j)\}$$

Atributos

$$V = \{0, 1, 0, ..., i\}$$

$$E = \{(1), (3), ..., (x_i)\}$$

Por que representar eventos con redes?

Describir la dinámica de los contactos

Identificar Individuos con mayor actividad

Identificar Individuos intermediarios

Ejemplo

Kreuder Johnson et al, 2015

- Examinar los mecanismos de transmisión y hospederos involucrados transmisión zoonótica
- Identificar virus con "high plasticity"

Poisson regression predicting virus host plasticity (number of host groups) ^a			
	Incidence Rate Ratio	P value	(95% CI)
Transmission from domestic animals to humans	1.97	< 0.001	(1.56-2.49)
Transmission by direct contact with wildlife at markets	2.00	0.040	(1.03-3.88)
Transmission by direct contact with wild animals kept as pet or in zoos or sanctuaries	1.55	0.039	(1.02-2.34)
Transmission by vector	3.01	< 0.001	(2.32-3.91)
Logistic regression predicting human-to-human transmissibility ^b			
	Odds Ratio	P value	(95% CI)
Host plasticity (number of host groups)	1.20	0.039	(1.01-1.44)
Transmission by direct contact with wild animals hunted or consumed	10.43	0.004	(2.10-51.80)
Ordered logistic regression predicting geographic spread			
	Odds Ratio	P value	(95% CI)
Host plasticity (number of host groups)	1.22	0.001	(1.08-1.37)
Transmission by direct contact with wild animals in trade or laboratories	6.14	0.014	(1.45-26.10)

Por que representar eventos con redes?

Modelar la dinámica de contactos:

- Inferencia: Asociación entre atributos y actividad en una red
- Predicción: Existen patrones reproducibles que podemos predecir?

Definir **nodos**:

 Cual es nuestra unidad de análisis (p.e. granja, animal, etc)

Definir contactos:

- Frecuencia del contacto
- Duración del contacto

Vigilancia Pasiva

- Reportes mandatorios de movimientos
- Datos de GPS (de una población completa)

Vigilancia Pasiva

- Reportes mandatorios de movimientos
- Datos de GPS (de una población completa)

Vigilancia Activa

- Encuestas
- Observación de individuos en un grupo

Tipo de muestreo

Muestreo aleatorio

- Seleccionamos un set de nodos
- Identificamos los contactos entre ellos

- Seleccionamos un set de contactos
- Obtenemos información de los nodos involucrados

Tipo de muestreo

Muestreo Egocentrico

- Seleccionamos un set de nodos
- Observamos las relaciones con otros nodos (set 2)
- Observamos las relaciones entre miembros del set 2

Tipo de muestreo

Seguimos los contactos de un nodo especifico y recolectamos datos de sus vecinos

Similar a muestreo de bola de nieve (Snowball sampling)

Medicion de los conctactos

Retrospectivo

- Registros de movimientos nacionales
- Regristros de la granja
- Encuestas

Prospectivo

- Observacion visual
- Localizacion de GPS

Estructura de los datos

ID_Origen	ID_Destino	Duración	Tipo
1	13	10	А
1	54	14	А
1	12	15	В
2	2	6	А
2	13	8	В

ID	Nombre	Tamaño	Tipo
1	Huckleberry's Dairy	800	А
2	Les Vachettes	300	А
3	Grassland Ranch	20	В
4	Los Toros	500	А
5	Happy Marin Cows	150	В

Preguntas?

Contacto: jpgo@ucdavis.edu jpablo91.github.io