Звіт до лабораторної роботи №2 Чисельне інтегрування

ОМ-3, Бабієнка Іллі

Березень 2019

1 Постановка задачі

Нехай задана функція f(x). Необхідно наближено обчислити інтеграл $I = \int_b^a f(x) dx$ від f(x) на заданому інтервалі [a,b], де $a < b \land a,b \in \overline{\mathbb{R}}$.

Вивести отримане наближене значення інтегралу I_h , похибку R_h° та кінцевий крок розбиття інтервалу h.

(За замовчуванням використовуємо рівномірно-розподілені вузли)

Для обчислень використати формулу Сімпсона, принцип Рунге, формулу Річардсона, та апріорні оцінки похибки для квадратурних формул.

$$f(x) = \frac{1}{x^2 + x - 2}, a = 2, b = +\infty$$
 (1)

2 Теоретичні відомості

2.1 Формула Сімпсона

Нехай $x_0 = a, x_1 = \frac{a+b}{2}, x_2 = b$. Замість f викроистаємо $L_2(x)$. Тоді отримаємо квадратурну формулу:

$$I_2(x) = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$
 (2)

Це квадратурна формула Сімпсона. Для $f \in C^4[a,b]$ залишковий член квадратури має представлення:

$$R_2(f) = \frac{1}{24} \int_a^b (x-a)(x-\frac{a+b}{2})^2 (x-b) f^{(4)}(\xi) dx = \frac{f^{(4)}(\xi)}{2880} (b-a)^5, \tag{3}$$

та вірна оцінка $(M_4 = \max_{x \in [a,b]} |f^{(4)}(x)|)$:

$$|R_2(f)| \le \frac{M_4}{2880} (b-a)^5 \tag{4}$$

Складена формула Сімпсона (отримана застосуванням звичайної формули до кожного з інтервалів рівномірної сітки, на які поділений початковий інтервал):

$$I_h(f) = \sum_{i=1}^{N} \frac{h}{6} \left[f(x_{i-1}) + 4f(\frac{x_{i-1} + x_i}{2}) + f(x_i) \right]$$
 (5)

Для неї справджуються наступні оцінки (апріорні):

• $f \in C^4[a,b]$:

$$|R_h(f)| \le \frac{M_4}{2880}(b-a)h^4 \tag{6}$$

• $f \in C^6[a,b]$:

$$R_h(f) = R_h^{\circ}(f) + \alpha(h), \text{ де } R_h^{\circ}(f) = \frac{h^4}{2880} \int_a^b f^{(4)}(x) dx, \ \alpha(h) = O(h^6)$$
 (7)

2.2 Принцип Рунге. Формула Річардсона

9.5. <u>Принцип Рунге</u> [СГ, 169-171]

Нехай задана деяка величина I (сіткова функція, інтеграл, неперервна функція). Нехай $I_h \approx I$ та $I_h \to I$ при $h \to 0$. Нехай похибка послідовності I_h представляється у вигляді

$$R_h = I - I_h = \overset{0}{R_h} + \alpha(h) \tag{1}$$

де $R_h^0 = C \cdot h^m$ - головний член похибки, C не залежить від h, $\alpha(h) = o(h^m)$. Обчислимо $I_{h\zeta}$. 3 (1) слідує, що

$$I = I_h + Ch^m + \alpha(h), I = I_{h/2} + C\frac{h^m}{2^m} + \alpha(h).$$

Звідси

$$I_{h/2} - I_h = \frac{Ch^m}{2^m} (2^m - 1) + \alpha(h).$$

3(1)

$${\stackrel{0}{R}}_{h/2} = \frac{Ch^m}{2^m} = \frac{I_{h/2} - I_h}{2^m - 1}$$
 (2)

та $R_h^0 = \frac{2^m}{2^m-1} \left(I_{h/2} - I_h\right)$. Формула (2) носить назву *апостеріорної оцінки* похибки обчислення I за допомогою наближення $I_{h/2}$. (Апріорні оцінки це оцінки отримані до обчислення величини I_h , *апостеріорні оцінки* — під час її

3 формули (2) витікає такий алгоритм обчислення інтегралу із заданою точністю ε :

- обчислюємо I_h , $I_{\frac{h}{2}}$, $R_{h/2}^0$; перевірюємо чи $\left|R_{h/2}^0\right| < \varepsilon$. Якщо так, то $I \approx I_{\frac{h}{2}}^0$. Якщо ж ні, то
- lacktriangle обчислюємо $I_{h_2'}$, $I_{h_4'}$, $R_{h/4}^0$; перевіряємо $\left|R_{h/4}^0\right| < arepsilon$ і т.д.
- Процес продовжуємо поки не буде виконана умова $\left|R_{h2^{-k}}^{0}\right| < \varepsilon$ k = 1, 2, ...

За допомогою головного члена похибки можна отримати краще значення для I:

$$\widetilde{I}_{h/2} = I_{h/2}^{(1)} = I_{h/2} + R_{h/2}^{0} = \frac{2^{m}}{2^{m} - 1} I_{h/2} - \frac{1}{2^{m} - 1} I_{h}.$$
(3)

Для формули Сімпсона (для якої m=4), формула Річардсона матиме вигляд:

$$\tilde{I}_{h/2} = \frac{16}{15} I_{h/2} - \frac{1}{15} I_h, \quad I_h - \tilde{I}_{h/2} = O(h^6)$$
(8)

3 Практична частина

обчислення).

Даний інтеграл є невласним інтегралом першого роду: $I = \int\limits_{2}^{\infty} \frac{dx}{x^2 + x - 2}$. Перепишемо f(x) як $\frac{1}{(x+2)(x-1)}$. Бачимо, що особливостей на області інтегрування немає (вони є в точках x = -2 та x = 1, які лежать поза областю інтегрування).

Зробимо заміну:
$$t = \frac{x-2}{x}$$
, $x = \frac{2}{1-t}$, $dx = \frac{2dt}{(1-t)^2}$; $\rightarrow I = \int_2^\infty \frac{dx}{(x+2)(x-1)} = \int_0^1 \frac{dt}{(2-t)(1+t)}$ (9)

Тоді інтеграл набуде вигляду (9), де $g(t) = \frac{1}{(2-t)(1+t)}$ - нова підінтегральна фунція, [0, 1] - новий проміжок інтегрування. Отриманий інтеграл є власним інтегралом. Отже його можна обчислювати формулами Сімпсона та Річардсона напряму (без попередніх досліджень чи перетворень).

Також помітимо, що початковий (як і отриманий) інтеграл можна знайти аналітично: $f(x) = \frac{1}{(x+2)(x-1)} = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right)$ - не складно інтегрується безпосереднім знаходженням первісної. Справжнє значення інтегралу рівне $\ln(4)/3 \approx 0.46209812037329687294...$

Для обчислення апріорної похибки обчислень, нам необхідно оцінити четверту похідну фунції g(t). $g^{(4)} = \frac{24}{3} \left(\frac{1}{(2-t)^5} + \frac{1}{(1+t)^5} \right)$

Вона є обмеженою та додатньою на всьому інтервалі інтегрування.

П'ята похідна $g^{(5)}=\frac{120}{3}\left(\frac{1}{(2-t)^6}-\frac{1}{(1+t)^6}\right)$ більша за 0 коли t>1/2 та менша за 0 коли t<1/2 Отже (локальні) максимуми доягаються на кінцях: $g^{(4)}(0)=g^{(4)}(1)={}^{33}\!/_{32}$. Отже $M_4=33/32$, та $|R_2(f)|\leq \frac{M_4}{2880}(b-a)^5=\frac{33}{32*2880}\approx 0.00035807291(6)$. В методі Рунге виставимо точність $\epsilon=10^{-3}$ та кількість ітерацій не більше 20.

Результати:

```
0.46209824977674413
Simpson:
           0.46209812849863746
Runge:
Richardson: 0.46209812041343035
Real value: 0.46209812037329684
Error (ariori):
                0.00035807291666666664
|Simpson - Runge|: 1.2127810666839878e-07
|Simpson - Richardson|: 1.293633137833261e-07
|Runge - Richardson|: 8.085207114927329e-09
|Simpson - Real|:
                       1.2940344729095443e-07
                       1.2940344729095443e-07
|Runge - Real|:
|Richardson - Real|:
                       4.0133507628326015e-11
```