Mathematical thinking Graded assignment Week 4

Total marks: 20

- 1. Which of the following option(s) is (are) true?
 - (a) If p is a prime and $p \mid a^7$ then $p \mid a$.
 - (b) If p is a prime and $p \mid a$ and $p \mid (a^2 + b^2)$ then $p \mid b$.
 - (c) If $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
 - (d) If $ax \equiv ay \pmod{m}$ and $\gcd(a, m) = 2$, then $x \equiv y \pmod{m}$.
- 2. Which of the following options is/are true?

(a)
$$\sum_{n=1}^{18} n^{19} \equiv 0 \pmod{19}$$
.

(b)
$$\sum_{n=1}^{18} n^{19} \equiv 1 \pmod{19}$$
.

(c)
$$\sum_{n=1}^{18} n^{18} \equiv 18 \pmod{19}$$
.

(d)
$$\sum_{n=1}^{19} n^{18} \equiv 18 \pmod{19}$$
.

- 3. If $2^{1000} \equiv x \pmod{13}$ where $0 \le x \le 12$, then find the value of x.
- 4. Consider a set $S = \{n \mid n \in \mathbb{N}, \sqrt{n} \notin \mathbb{N}, n \leq 200\}$. How many composite odd numbers are there in the set S?

- 5. Prove that any prime of the form 3k + 1 is of the form 6k + 1.
- 6. Let $a \equiv b \pmod{12}$ and $m \mid 12$, then prove that $a \equiv b \pmod{m}$.
- 7. Let a be a perfect square. Prove that all powers in prime factorization of a are even.
- 8. Suppose $a = a_1 \ a_2 \ a_3 \dots a_n$ with all $a_i \ge 2$. If p is a prime number which divides a, prove that $p \mid a_i$ for some i.