Számításelmélet

4. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állításokat, és így a nulladrendű logikában a 3. állítás nem következménye az első 2-nek.

Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állításokat, és így a nulladrendű logikában a 3. állítás nem következménye az első 2-nek.

Ugyanakkor jó lenne egy olyan modell, ahol a 3. állítás az első 2 következménye, hiszen az emberek halmaza részhalmaz a halandók halmazának és Szókrátész az ember-halmaz egy eleme, így a halandók halmazának is eleme.

Elsőrendű logika

A nulladrendű logika korlátozottan alkalmas a világ leírására, az egyszerű állítások belső szerkezetét nem vizsgálja. Például a "Minden ember halandó.", "Szókrátész ember.", "Szókrátész halandó." állítások nulladrendű formalizálása esetén nincs más lehetőségünk, mint x, y és z-ként formalizálni a fenti állításokat, és így a nulladrendű logikában a 3. állítás nem következménye az első 2-nek.

Ugyanakkor jó lenne egy olyan modell, ahol a 3. állítás az első 2 következménye, hiszen az emberek halmaza részhalmaz a halandók halmazának és Szókrátész az ember-halmaz egy eleme, így a halandók halmazának is eleme.

Egy elsőrendű logikában (nem véletlen a határozatlan névelő!) az állítások belső szerkezetét is figyelembe tudjuk venni. Tudunk egy halmaz összes elemére illetve legalább egy elemére vonatkozó állításokat formalizálni.

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

Pred, a predikátumszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- lnd = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- Ind = {x₁, x₂, ...}, az individuumváltozók megszámlálhatóan végtelen halmaza
- ► {¬, ∧, ∨, →, ∀, ∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- ► Ind = {x₁, x₂, ...}, az **individuumváltozók** megszámlálhatóan végtelen halmaza
- {¬, ∧, ∨, →, ∀, ∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- (,) és , (vessző).

Definiálni fogunk két nyelvet a termek Term és a formulák Form nyelvét. Ehhez előbb definálunk egy megszámlálhatóan végtelen szimbólumhalmazt, a szavak betűinek a halmazát.

Definíció

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- ▶ Ind = $\{x_1, x_2, ...\}$, az individuumváltozók megszámlálhatóan végtelen halmaza
- ► {¬, ∧, ∨, →, ∀, ∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- (,) és , (vessző).

Minden $s \in \text{Pred} \cup \text{Func} \cup \text{Cnst-hez hozzá van rendelve egy}$ $\text{ar}(s) \in \mathbb{N}$ szám, a szimbólum **aritása** (a konstansokhoz mindig 0).

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

▶ minden $x \in Ind$ esetén $x \in Term$

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$
- ▶ minden $f \in \text{Func}$ és $t_1, \dots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \dots t_{\text{ar}(f)}) \in \text{Term}$.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$
- ▶ minden $f \in \text{Func}$ és $t_1, \dots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \dots t_{\text{ar}(f)}) \in \text{Term}$.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

▶ minden $p \in \text{Pred}$ és $t_1, \ldots t_{\operatorname{ar}(p)} \in \text{Term}$ esetén $p(t_1, \ldots t_{\operatorname{ar}(p)}) \in \text{Form}$. Ezek az atomi formulák.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$
- ▶ minden $f \in \text{Func}$ és $t_1, \dots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \dots t_{\text{ar}(f)}) \in \text{Term}$.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred}$ és $t_1, \ldots t_{\operatorname{ar}(p)} \in \text{Term}$ esetén $p(t_1, \ldots t_{\operatorname{ar}(p)}) \in \text{Form}$. Ezek az atomi formulák.
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$
- ▶ minden $f \in \text{Func}$ és $t_1, \dots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \dots t_{\text{ar}(f)}) \in \text{Term}$.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred}$ és $t_1, \ldots t_{\operatorname{ar}(p)} \in \text{Term}$ esetén $p(t_1, \ldots t_{\operatorname{ar}(p)}) \in \text{Form}$. Ezek az atomi formulák.
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form.
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in Cnst$ esetén $c \in Term$
- ▶ minden $f \in \text{Func}$ és $t_1, \dots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \dots t_{\text{ar}(f)}) \in \text{Term}$.

Definíció

Az **elsőrendű formulák** Form nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $p \in \text{Pred}$ és $t_1, \ldots t_{\text{ar}(p)} \in \text{Term}$ esetén $p(t_1, \ldots t_{\text{ar}(p)}) \in \text{Form}$. Ezek az atomi formulák.
- ▶ Ha $\varphi \in \text{Form}$, akkor $\neg \varphi \in \text{Form}$.
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.
- ▶ Ha $\varphi \in \text{Form}, x \in \text{Ind}$, akkor $\forall x \varphi \in \text{Form és } \exists x \varphi \in \text{Form}$.

Példa

 $\mathsf{Pred} = \{p,q\}, \ \mathsf{Func} = \{f\}, \ \mathsf{Cnst} = \{a\}.$

$$\mathsf{Pred} = \{p, q\}, \ \mathsf{Func} = \{f\}, \ \mathsf{Cnst} = \{a\}.$$

$$\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2.$$

Példa

 $\mathsf{Pred} = \{p, q\}, \; \; \mathsf{Func} = \{f\}, \; \; \mathsf{Cnst} = \{a\}.$

$$\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2.$$

x, a, f(x,y), $f(x,f(a,x)) \in \text{Term}$.

$$Pred = \{p, q\}, Func = \{f\}, Cnst = \{a\}.$$

$$\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2.$$

$$x$$
, a , $f(x,y)$, $f(x,f(a,x)) \in \text{Term}$.

$$f(x) \notin \mathsf{Term}$$
, $\mathsf{mert}\ \mathsf{ar}(f) = 1$

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.

$$x$$
, a , $f(x,y)$, $f(x,f(a,x)) \in \text{Term}$.

$$f(x) \notin \text{Term, mert } ar(f) = 1$$

$$p(x,y), \ q(x,f(a,a)), \ \neg p(x,f(y,z)), \\ (\exists x p(x,y) \rightarrow q(x,z)) \in \mathsf{Form}.$$

Pred =
$$\{p, q\}$$
, Func = $\{f\}$, Cnst = $\{a\}$.
 $ar(p) = ar(q) = ar(f) = 2$.
 $x, a, f(x, y), f(x, f(a, x)) \in Term$.

$$f(x) \notin \text{Term, mert ar}(f) = 1$$

$$p(x,y), \ q(x,f(a,a)), \ \neg p(x,f(y,z)), \ (\exists x p(x,y) \rightarrow q(x,z)) \in \mathsf{Form}.$$

$$p(x), \ \forall x f(x, y), \ p(x, q(y, z)) \notin Form$$

$$\begin{aligned} &\operatorname{Pred} = \{p,q\}, \quad \operatorname{Func} = \{f\}, \quad \operatorname{Cnst} = \{a\}. \\ &\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2. \\ &x, \quad a, \quad f(x,y), \quad f(x,f(a,x)) \in \operatorname{Term}. \\ &f(x) \notin \operatorname{Term}, \quad \operatorname{mert} \, \operatorname{ar}(f) = 1 \\ &p(x,y), \quad q(x,f(a,a)), \quad \neg p(x,f(y,z)), \\ &\qquad \qquad (\exists x p(x,y) \to q(x,z)) \in \operatorname{Form}. \\ &p(x), \quad \forall x f(x,y), \quad p(x,q(y,z)) \notin \operatorname{Form} \\ &\varphi_1 = \forall x p(x,a) \in \operatorname{Form}, \end{aligned}$$

$$\begin{aligned} &\operatorname{Pred} = \{p,q\}, \quad \operatorname{Func} = \{f\}, \quad \operatorname{Cnst} = \{a\}. \\ &\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2. \\ &x, \quad a, \quad f(x,y), \quad f(x,f(a,x)) \in \operatorname{Term}. \\ &f(x) \notin \operatorname{Term}, \quad \operatorname{mert} \, \operatorname{ar}(f) = 1 \\ &p(x,y), \quad q(x,f(a,a)), \quad \neg p(x,f(y,z)), \\ &\qquad \qquad (\exists x p(x,y) \to q(x,z)) \in \operatorname{Form}. \\ &p(x), \quad \forall x f(x,y), \quad p(x,q(y,z)) \notin \operatorname{Form} \\ &\varphi_1 = \forall x p(x,a) \in \operatorname{Form}, \\ &\varphi_2 = \forall x \exists y q (f(x,y),a) \in \operatorname{Form}, \end{aligned}$$

$$\begin{aligned} &\operatorname{Pred} = \{p,q\}, \quad \operatorname{Func} = \{f\}, \quad \operatorname{Cnst} = \{a\}. \\ &\operatorname{ar}(p) = \operatorname{ar}(q) = \operatorname{ar}(f) = 2. \\ &x, \quad a, \quad f(x,y), \quad f(x,f(a,x)) \in \operatorname{Term}. \\ &f(x) \notin \operatorname{Term}, \quad \operatorname{mert} \, \operatorname{ar}(f) = 1 \\ &p(x,y), \quad q(x,f(a,a)), \quad \neg p(x,f(y,z)), \\ &\qquad \qquad (\exists x p(x,y) \to q(x,z)) \in \operatorname{Form}. \\ &p(x), \quad \forall x f(x,y), \quad p(x,q(y,z)) \notin \operatorname{Form} \\ &\varphi_1 = \forall x p(x,a) \in \operatorname{Form}, \\ &\varphi_2 = \forall x \exists y q(f(x,y),a) \in \operatorname{Form}, \\ &\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)) \in \operatorname{Form}. \end{aligned}$$

$$((\neg p(x,y) \lor q(x,x)) \to \forall x (p(x,f(x,y)) \land q(x,z)))$$

$$(\neg p(x,y) \lor q(x,x)) \qquad \forall x (p(x,f(x,y)) \land q(x,z))$$

$$\neg p(x,y) \qquad q(x,x) \qquad (p(x,f(x,y)) \land q(x,z))$$

$$p(x,y) \qquad p(x,f(x,y)) \qquad q(x,z)$$

$$((\neg p(x,y) \lor q(x,x)) \to \forall x (p(x,f(x,y)) \land q(x,z)))$$

$$(\neg p(x,y) \lor q(x,x)) \qquad \forall x (p(x,f(x,y)) \land q(x,z))$$

$$\neg p(x,y) \qquad q(x,x) \qquad (p(x,f(x,y)) \land q(x,z))$$

$$p(x,y) \qquad p(x,f(x,y)) \qquad q(x,z)$$

Egy formula szerkezeti fája egy csúcscímkézett bináris fa. Egy csúcs gyerekei a csúcshoz tartozó formula közvetlen részformuláival címkézettek. ($\neg \varphi$ és $Qx\varphi$ esetén φ -vel címkézett az egyetlen gyerek, ahol $Q \in \{\forall, \exists\}, x \in \text{Ind. } (\varphi \circ \psi)$ esetén két gyerek van, melyek φ -vel és ψ -vel címkézettek $\circ \in \{\land, \lor, \rightarrow\}$.)

$$((\neg p(x,y) \lor q(x,x)) \to \forall x (p(x,f(x,y)) \land q(x,z)))$$

$$(\neg p(x,y) \lor q(x,x)) \qquad \forall x (p(x,f(x,y)) \land q(x,z))$$

$$\neg p(x,y) \qquad q(x,x) \qquad (p(x,f(x,y)) \land q(x,z))$$

$$p(x,y) \qquad p(x,f(x,y)) \qquad q(x,z)$$

Egy formula szerkezeti fája egy csúcscímkézett bináris fa. Egy csúcs gyerekei a csúcshoz tartozó formula közvetlen részformuláival címkézettek. ($\neg \varphi$ és $Qx\varphi$ esetén φ -vel címkézett az egyetlen gyerek, ahol $Q \in \{\forall, \exists\}, x \in \text{Ind. } (\varphi \circ \psi)$ esetén két gyerek van, melyek φ -vel és ψ -vel címkézettek $\circ \in \{\land, \lor, \rightarrow\}$.)

Az előforduló címkék a formula **részformulái**. (A példában a sárgával megjelölt formulák.) A levelek atomi formulák.

$$((\neg p(x,y) \lor q(x,x)) \to \forall x(p(x,f(x,y)) \land q(x,z)))$$

$$(\neg p(x,y) \lor q(x,x))$$

$$\forall x(p(x,f(x,y)) \land q(x,z))$$

$$\neg p(x,y)$$

$$q(x,x)$$

$$(p(x,f(x,y)) \land q(x,z))$$

$$p(x,f(x,y))$$

Egy formula szerkezeti fája egy csúcscímkézett bináris fa. Egy csúcs gyerekei a csúcshoz tartozó formula közvetlen részformuláival címkézettek. ($\neg \varphi$ és $Qx\varphi$ esetén φ -vel címkézett az egyetlen gyerek, ahol $Q \in \{\forall, \exists\}, x \in \text{Ind. } (\varphi \circ \psi)$ esetén két gyerek van, melyek φ -vel és ψ -vel címkézettek $\circ \in \{\land, \lor, \rightarrow\}$.)

Az előforduló címkék a formula **részformulái**. (A példában a sárgával megjelölt formulák.) A levelek atomi formulák.

A **fő logikai összekötő** az a logikai művelet vagy kvantor, amelyik csak a gyökérben szerepel. (A példában az → ez az összekötő.)

Term szerkezeti fája:

Term szerkezeti fája:

Term szerkezeti fája:

Példa:
$$ar(f) = 1, ar(g) = 2, ar(h) = 3$$

$$g(g(f(x), z), f(h(x, y, y)))$$

$$f(x)$$

$$f(x)$$

$$z$$

$$h(x, y, y)$$

$$y$$

Zárójelelhagyás:

Ugyanúgy, mint a nulladrendű logika esetén.

Precedenciasorrend zárójelelhagyáshoz: \forall , \exists , \neg , \land , \lor , \rightarrow .

Term szerkezeti fája:

Példa:
$$ar(f) = 1, ar(g) = 2, ar(h) = 3$$

$$g(g(f(x), z), f(h(x, y, y)))$$

$$f(x)$$

$$f(h(x, y, y))$$

$$h(x, y, y)$$

Zárójelelhagyás:

Ugyanúgy, mint a nulladrendű logika esetén.

Precedenciasorrend zárójelelhagyáshoz: \forall , \exists , \neg , \land , \lor , \rightarrow .

Példa: $((\neg p(x,y) \lor q(x,x)) \rightarrow \forall x(p(x,f(x,y)) \land q(x,z))).$

Mindent elhagyva, amit lehet:

$$\neg p(x,y) \lor q(x,x) \to \forall x (p(x,f(x,y)) \land q(x,z)).$$

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

U egy tetszőleges, nemüres halmaz (univerzum),

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{Pred}, I_{Func}, I_{Cnst} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{Pred}, I_{Func}, I_{Cnst} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,
- ► I_{Func} minden $f \in \mathsf{Func}$ -hez hozzárendel egy $f^I : U^{\mathsf{ar}(p)} \to U$ $\mathsf{ar}(p)$ -változós műveletet U-n,

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Func}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,
- ► I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{Pred}, I_{Func}, I_{Cnst} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,
- ► I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Definíció

Változókiértékelés alatt egy κ : Ind $\to U$ leképezést értünk.

Egy elsőrendű logika szemantikáját a szimbólumainak interpretációja és a változók kiértékelése adja meg.

Definíció

Egy elsőrendű logikai szimbólumainak **interpretációja** alatt egy $I = \langle U, I_{\text{Pred}}, I_{\text{Eunc}}, I_{\text{Cnst}} \rangle$ rendezett négyest értünk, ahol

- U egy tetszőleges, nemüres halmaz (univerzum),
- ▶ I_{Pred} minden $p \in Pred$ -hez hozzárendel egy $p^I \subseteq U^{ar(p)}$ ar(p)-változós relációt U felett,
- ► I_{Func} minden $f \in \text{Func-hez hozzárendel egy } f^I : U^{\text{ar}(p)} \to U$ ar(p)-változós műveletet U-n,
- ▶ I_{Cnst} minden $c \in Cnst$ -hez hozzárendel egy $c^I \in U$ -t.

Definíció

Változókiértékelés alatt egy κ : Ind $\to U$ leképezést értünk.

Vegyük észre, hogy κ függ az U univerzumtól.

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \ (m,n) :\in p^I \Leftrightarrow m \geqslant n$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \ (m, n) :\in p^I \Leftrightarrow m \geqslant n$$

 $I_{\mathsf{Pred}}(q) = q^I, \ (m, n) :\in q^I \Leftrightarrow m = n$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$

 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$
 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$
 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$
 $I_{\mathsf{Pred}}(a) := 0$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term } \acute{\text{ert}}\acute{\text{ek}}\acute{\text{et}}$ egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

▶ Ha $x \in \text{Ind}$, akkor $|x|^{I,\kappa} := \kappa(x)$,

Példa Az előző példát folytatva legyen $I=\langle \mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$
 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term}$ értékét egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in Ind$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in Cnst$, akkor $|c|^{I,\kappa} := c^I$,

Példa Az előző példát folytatva legyen $I=\left<\mathbb{N},I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right>$ egy interpretáció, ahol

$$I_{\mathsf{Pred}}(p) = p^I, \quad (m, n) :\in p^I \Leftrightarrow m \geqslant n$$
 $I_{\mathsf{Pred}}(q) = q^I, \quad (m, n) :\in q^I \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f^I, \quad f^I(m, n) := m + n$
 $I_{\mathsf{Cnst}}(a) := 0,$

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term } \acute{\text{ert}}\acute{\text{ek}}\acute{\text{et}}$ egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in Ind$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in \text{Cnst}$, akkor $|c|^{I,\kappa} := c^I$,
- $|f(t_1, t_2, \dots, t_{\mathsf{ar}(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(f)}|^{I,\kappa}).$

Példa Az előző példát folytatva legyen $I = \langle \mathbb{N}, I_{\mathsf{Pred}}, I_{\mathsf{Func}}, I_{\mathsf{Cnst}} \rangle$ egy interpretáció, ahol $I_{\mathsf{Pred}}(p) = p^I, \ (m,n) :\in p^I \Leftrightarrow m \geqslant n$

$$I_{\mathsf{Pred}}(p) = p', \quad (m, n) := p' \Leftrightarrow m \geq n$$

 $I_{\mathsf{Pred}}(q) = q', \quad (m, n) := q' \Leftrightarrow m = n$
 $I_{\mathsf{Func}}(f) = f', \quad f'(m, n) := m + n$

 $I_{Cnst}(a) := 0$,

legyen továbbá κ egy változókiértékelés, amelyre

$$\kappa(x) = 5, \kappa(y) = 3.$$

Definíció

Egy $t \in \text{Term}$ értékét egy I interpretációban a κ változókiértékelés mellett $|t|^{I,\kappa}$ jelöli és a következőképpen definiáljuk

- ▶ Ha $x \in Ind$, akkor $|x|^{I,\kappa} := \kappa(x)$,
- ▶ Ha $c \in \text{Cnst}$, akkor $|c|^{I,\kappa} := c^I$.
- $|f(t_1, t_2, \dots, t_{\mathsf{ar}(f)})|^{I,\kappa} := f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(f)}|^{I,\kappa}).$

Példa Az előző példát folytatva $|f(f(x,y),y)|^{l,\kappa} = 11$.

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden $y\in \operatorname{Ind}, y\neq x$ esetén.

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

$$|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow (|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$$

1 / LE / LE / E / 990

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden $y\in \operatorname{Ind}, y\neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$

JANET E POQO

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow (|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$

ur der er e oge

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = \kappa(y)$ minden $y \in \operatorname{Ind}, y \neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$
- $|\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \kappa \text{-nak minden } \kappa^* x \text{-variánsára,}$

er er er e oge

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden $y\in \operatorname{Ind}, y\neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$
- $|\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak minden } \kappa^* \text{ } x\text{-variánsára,}$
- $|\exists x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak legalabb egy } \kappa^*$ x-variánsára.

Definíció

A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y)=\kappa(y)$ minden $y\in \operatorname{Ind}, y\neq x$ esetén.

Definíció

Egy $\varphi \in$ Form formula **igazságértékét** egy I interpretációban a κ változókiértékelés mellett $|\varphi|^{I,\kappa}$ jelöli és így definiáljuk:

- $|p(t_1, t_2, \dots, t_{\mathsf{ar}(p)})|^{I,\kappa} = i \Leftrightarrow$ $(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \dots, |t_{\mathsf{ar}(p)}|^{I,\kappa}) \in p^I,$
- $|\neg \varphi|^{I,\kappa} := \neg |\varphi|^{I,\kappa}$
- $|\varphi \circ \psi|^{I,\kappa} := |\varphi|^{I,\kappa} \circ |\psi|^{I,\kappa} \qquad \circ \in \{\land, \lor, \to\}$
- $|\forall x \varphi|^{I,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{I,\kappa^*} = i \text{ } \kappa\text{-nak minden } \kappa^* \text{ } x\text{-variansara,}$
- $|\exists x \varphi|^{l,\kappa} = i \Leftrightarrow \text{ha } |\varphi|^{l,\kappa^*} = i \text{ } \kappa\text{-nak legalabb egy } \kappa^*$ x-variánsára.

A \neg , \wedge , \vee , \rightarrow műveletek ugyanazok, mint az ítéletlogikánál.

$$|p(f(y,y),x)|^{I,\kappa}=i.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geq 0.$

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0. \quad |\varphi_1|^{I,\kappa} = i,$

$$\begin{split} &|p(f(y,y),x)|^{I,\kappa}=i.\\ &|q(f(y,y),x)|^{I,\kappa}=h.\\ &|p(x,y)\to q(x,y)|^{I,\kappa}=h.\\ &\varphi_1=\forall xp(x,a),\\ &\text{Minden term\'eszetes sz\'am}\geqslant 0.\quad |\varphi_1|^{I,\kappa}=i,\\ &\varphi_2=\forall x\exists yq(f(x,y),a), \end{split}$$

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk.

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)),$$

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa} = h$,

$$\varphi_3 = \forall x (\forall y q(f(y, x), y) \rightarrow p(x, a)),$$

 $\forall yq(f(y,x),y)$: az x nullelem, ez x=0-ra igaz, más x-re hamis.

Viszont p(x, a) minden x-re igaz

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa}=h$,

$$\varphi_3 = \forall x (\forall y q(f(y, x), y) \rightarrow p(x, a)),$$

 $\forall yq(f(y,x),y)$: az x nullelem, ez x=0-ra igaz, más x-re hamis.

Viszont p(x, a) minden x-re igaz, így $|\varphi_3|^{I,\kappa} = i$.

Elsőrendű logika – a formulák szemantikája

Példa Az előző példát folytatva

$$|p(f(y,y),x)|^{I,\kappa} = i.$$

$$|q(f(y,y),x)|^{I,\kappa} = h.$$

$$|p(x,y) \to q(x,y)|^{I,\kappa} = h.$$

$$\varphi_1 = \forall x p(x, a),$$

Minden természetes szám $\geqslant 0$. $|\varphi_1|^{I,\kappa} = i$,

$$\varphi_2 = \forall x \exists y q(f(x, y), a),$$

Minden természetes számhoz hozzá tudjuk adni egy természetes számot úgy, hogy 0-t kapjunk. $|\varphi_2|^{I,\kappa} = h$,

$$\varphi_3 = \forall x (\forall y q(f(y,x),y) \to p(x,a)),$$

 $\forall yq(f(y,x),y)$: az x nullelem, ez x=0-ra igaz, más x-re hamis.

Viszont p(x, a) minden x-re igaz, így $|\varphi_3|^{I,\kappa} = i$.

Ha $U = \mathbb{Z}$ lenne, akkor φ_2 is igaz lenne.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Észrevétel: Ha φ zárt, ekkor bármely I interpretáció esetén $|\varphi|^{I,\kappa}$ értéke nem függ κ -tól. Ilyenkor $|\varphi|^{I,\kappa}$ helyett $|\varphi|^I$ írható.

Definíció

Legyen φ egy formula, és tekintsük $x \in \operatorname{Ind}$ egy előfordulását φ -ben. (A kvantorokat közvetlenül követő váltózókat nem tekintjük ezen változó előfordulásának.) Azt mondjuk, hogy x ezen előfordulása kötött, ha x a φ egy $\exists x \psi$ vagy $\forall x \psi$ alakú részformulájába esik. Ellenkező esetben x ezen előfordulása szabad. Ha φ minden individuumváltozójának minden előfordulása kötött, akkor zárt formuláról beszélünk. Egyébként a kormula nyitott.

Észrevétel: Ha φ zárt, ekkor bármely I interpretáció esetén $|\varphi|^{I,\kappa}$ értéke nem függ κ -tól. Ilyenkor $|\varphi|^{I,\kappa}$ helyett $|\varphi|^I$ írható.

Példa Az előző példában φ_1 , φ_2 , φ_3 zárt formulák, míg $\forall x p(x,x) \rightarrow q(x,x)$ nyitott, mert x 3. és 4. előfordulását nem tartalmazza kvantált részformula. (A formula részformulái: $\forall x p(x,x) \rightarrow q(x,x), \ \forall x p(x,x), \ p(x,x), \ q(x,x).$)

Definíció

Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az $\mathcal F$ formulahalmaz **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$ teljesül minden $\varphi\in\mathcal F$ -re, egyébként **kielégíthetetlen**.

- Egy φ elsőrendű logikai formula **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$, egyébként **kielégíthetetlen**.
- φ logikailag igaz (vagy érvényes), ha minden I, κ -ra, $|\varphi|^{I,\kappa} = i$, ennek jelölése $\models \varphi$.
- φ és ψ elsőrendű logikai formulák logikailag ekvivalensek, ha ha minden I, κ -ra, $|\varphi|^{I,\kappa} = |\psi|^{I,\kappa}$. Jelölése $\varphi \sim \psi$.
- Az $\mathcal F$ formulahalmaz **kielégíthető**, ha van olyan I interpretáció és κ változókiértékelés, amelyre $|\varphi|^{I,\kappa}=i$ teljesül minden $\varphi\in\mathcal F$ -re, egyébként **kielégíthetetlen**.
- Az \mathcal{F} formulahalmaznak φ logikai következménye (jelölés: $\mathcal{F} \models \varphi$) ha minden I, κ -ra ha minden $\psi \in \mathcal{F}$ -re $|\psi|^{I,\kappa} = i$ teljesül, akkor $|\varphi|^{I,\kappa} = i$ is teljesül.

1. a nulladrendű törvények elsőrendben is érvényesek

- 1. a nulladrendű törvények elsőrendben is érvényesek
- 2. ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,

- 1. a nulladrendű törvények elsőrendben is érvényesek
- 2. ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- 3. $\forall x \forall y A \sim \forall y \forall x A$ és $\exists x \exists y A \sim \exists y \exists x A$,

- 1. a nulladrendű törvények elsőrendben is érvényesek
- 2. ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- 3. $\forall x \forall y A \sim \forall y \forall x A$ és $\exists x \exists y A \sim \exists y \exists x A$,
- **4**. $\neg \exists x A \sim \forall x \neg A$ és $\neg \forall x A \sim \exists x \neg A$,

- 1. a nulladrendű törvények elsőrendben is érvényesek
- 2. ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- 3. $\forall x \forall y A \sim \forall y \forall x A$ és $\exists x \exists y A \sim \exists y \exists x A$,
- **4**. $\neg \exists x A \sim \forall x \neg A$ és $\neg \forall x A \sim \exists x \neg A$,
- 5. ha x nem szabad változója A-nak $A \wedge \forall xB \sim \forall x(A \wedge B)$ és $A \wedge \exists xB \sim \exists x(A \wedge B)$, $A \vee \forall xB \sim \forall x(A \vee B)$ és $A \vee \exists xB \sim \exists x(A \vee B)$, $A \to \forall xB \sim \forall x(A \to B)$ és $A \to \exists xB \sim \exists x(A \to B)$, $\forall xB \to A \sim \exists x(B \to A)$ és $\exists xB \to A \sim \forall x(B \to A)$,

- 1. a nulladrendű törvények elsőrendben is érvényesek
- 2. ha x nem szabad változója A-nak $\forall xA \sim A$ és $\exists xA \sim A$,
- 3. $\forall x \forall y A \sim \forall y \forall x A$ és $\exists x \exists y A \sim \exists y \exists x A$,
- 4. $\neg \exists x A \sim \forall x \neg A$ és $\neg \forall x A \sim \exists x \neg A$,
- 5. ha x nem szabad változója A-nak $A \wedge \forall xB \sim \forall x(A \wedge B)$ és $A \wedge \exists xB \sim \exists x(A \wedge B)$, $A \vee \forall xB \sim \forall x(A \vee B)$ és $A \vee \exists xB \sim \exists x(A \vee B)$, $A \to \forall xB \sim \forall x(A \to B)$ és $A \to \exists xB \sim \exists x(A \to B)$, $\forall xB \to A \sim \exists x(B \to A)$ és $\exists xB \to A \sim \forall x(B \to A)$,
- 6. $\forall x A \land \forall x B \sim \forall x (A \land B)$ és $\exists x A \lor \exists x B \sim \exists x (A \lor B)$.

Példa: Bizonyítsuk be, hogy $\neg \exists xA \sim \forall x \neg A!$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

$$|\exists x A|^{I,\kappa} = i$$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

$$|\exists x A|^{I,\kappa} = i$$

$$\updownarrow$$

 κ -nak van olyan κ^* x-variánsa, amelyre $|A|^{I,\kappa^*}=i$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

$$|\exists x A|^{I,\kappa} = i$$

$$\updownarrow$$

 κ -nak van olyan κ^* x-variánsa, amelyre $|A|^{I,\kappa^*}=i$

 κ -nak van olyan κ^* x-variánsa, amelyre $|\neg A|^{I,\kappa^*}=h$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

$$|\exists x A|^{I,\kappa} = i$$

$$\Leftrightarrow \text{-nak van olyan } \kappa^* \text{ x-variansa, amelyre } |A|^{I,\kappa^*} = i$$

$$\Leftrightarrow \text{-nak van olyan } \kappa^* \text{ x-variansa, amelyre } |\neg A|^{I,\kappa^*} = h$$

$$|\forall x \neg A|^{I,\kappa} = h$$

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

$$|\neg \exists x A|^{I,\kappa} = h$$

$$|\exists x A|^{I,\kappa} = i$$

$$\Leftrightarrow \text{-nak van olyan } \kappa^* \text{ x-variánsa, amelyre } |A|^{I,\kappa^*} = i$$

$$\Leftrightarrow \text{-nak van olyan } \kappa^* \text{ x-variánsa, amelyre } |\neg A|^{I,\kappa^*} = h$$

$$|\forall x \neg A|^{I,\kappa} = h$$

Ugyanazon (I,κ) (interpretáció,változókiértékelés)-párokra hamis a forma, tehát valóban logikailag ekvivalensek.

Példa: Bizonyítsuk be, hogy $\neg \exists x A \sim \forall x \neg A!$

Megoldás:

Ugyanazon (I,κ) (interpretáció,változókiértékelés)-párokra hamis a forma, tehát valóban logikailag ekvivalensek.

A bizonyítás egyik nehézsége: végtelen sok (I, κ) pár van.

Példa: Igazoljuk formálisan a bevezetőben említett következtetést!

Példa: Igazoljuk formálisan a bevezetőben említett következtetést!

Megoldás:

Először is, a formalizáláshoz legyenek

E(x) : x emberH(x) : x halandó

s: Szókrátész (konstans)

Példa: Igazoljuk formálisan a bevezetőben említett következtetést!

Megoldás:

Először is, a formalizáláshoz legyenek

E(x) : x emberH(x) : x halandó

s : Szókrátész (konstans)

"Minden ember halandó."

"Szókrátész ember."

"Szókrátész halandó."

 $\forall x (E(x) \rightarrow H(x))$

 $VX(E(X) \to \Pi(X))$ E(s)

H(s)

Példa: Igazoljuk formálisan a bevezetőben említett következtetést!

Megoldás:

Először is, a formalizáláshoz legyenek

E(x): x ember H(x): x halandó

s : Szókrátész (konstans)

"Minden ember halandó."
$$\forall x (E(x) \rightarrow H(x))$$
 "Szókrátész ember." $E(s)$ "Szókrátész halandó." $H(s)$

Azt kell belátni, hogy $\{\forall x(E(x) \to H(x)), E(s)\} \models H(s)$, azaz hogy minden I, κ -ra amelyre $|\forall x(E(x) \to H(x))|^{I,\kappa} = i$ és $|E(s)|^{I,\kappa} = i$ teljesül $|H(s)|^{I,\kappa} = i$ is igaz.

Azt kell belátni, hogy $\{\forall x(E(x) \to H(x)), E(s)\} \models H(s)$.

Azt kell belátni, hogy $\{\forall x(E(x) \rightarrow H(x)), E(s)\} \models H(s)$.

Legyen I tetszőleges interpretáció és κ ebben tetszőleges változókiértékelés és tegyük fel, hogy $|\forall x(E(x) \to H(x))|^{I,\kappa} = i$ és $|E(s)|^{I,\kappa} = i$.

Azt kell belátni, hogy $\{\forall x(E(x) \rightarrow H(x)), E(s)\} \models H(s)$.

Legyen I tetszőleges interpretáció és κ ebben tetszőleges változókiértékelés és tegyük fel, hogy $|\forall x(E(x) \to H(x))|^{I,\kappa} = i$ és $|E(s)|^{I,\kappa} = i$.

Előbbi miatt κ -nak minden κ^* x-variánsára $|E(x) \to H(x)|^{I,\kappa^*} = i$. Vegyük ezek közül azt, amelyre $\kappa^*(x) = s^I$. Ekkor $|E(x)|^{I,\kappa^*} = |E(s)|^{I,\kappa} = i$, hiszen mindkettő épp akkor igaz, ha $(s^I) \in E^I$.

Azt kell belátni, hogy $\{\forall x(E(x) \rightarrow H(x)), E(s)\} \models H(s)$.

Legyen I tetszőleges interpretáció és κ ebben tetszőleges változókiértékelés és tegyük fel, hogy $|\forall x(E(x) \to H(x))|^{I,\kappa} = i$ és $|E(s)|^{I,\kappa} = i$.

Előbbi miatt κ -nak minden κ^* x-variánsára $|E(x) \to H(x)|^{I,\kappa^*} = i$. Vegyük ezek közül azt, amelyre $\kappa^*(x) = s^I$. Ekkor $|E(x)|^{I,\kappa^*} = |E(s)|^{I,\kappa} = i$, hiszen mindkettő épp akkor igaz, ha $(s^I) \in E^I$.

Tehát $|H(x)|^{I,\kappa^*}=i$, és így $(s^I)\in H^I$, ami épp azt jelenti, hogy $|H(s)|^{I,\kappa}=i$.

Azt kell belátni, hogy $\{\forall x(E(x) \rightarrow H(x)), E(s)\} \models H(s)$.

Legyen I tetszőleges interpretáció és κ ebben tetszőleges változókiértékelés és tegyük fel, hogy $|\forall x(E(x) \to H(x))|^{I,\kappa} = i$ és $|E(s)|^{I,\kappa} = i$.

Előbbi miatt κ -nak minden κ^* x-variánsára $|E(x) \to H(x)|^{I,\kappa^*} = i$. Vegyük ezek közül azt, amelyre $\kappa^*(x) = s^I$. Ekkor $|E(x)|^{I,\kappa^*} = |E(s)|^{I,\kappa} = i$, hiszen mindkettő épp akkor igaz, ha $(s^I) \in E^I$.

Tehát $|H(x)|^{I,\kappa^*}=i$, és így $(s^I)\in H^I$, ami épp azt jelenti, hogy $|H(s)|^{I,\kappa}=i$.

Léteznek a végtelen a keresési teret szűkítő bizonyítási módszerek (pl. elsőrendű rezolúció), de ezek nem adnak egy minden esetben véges sok lépésben termináló algoritmust.

Függvények aszimptotikus nagyságrendje

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

▶ f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \leq c \cdot g(n)$ minden $n \geq N$ -re.

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

- ▶ f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \leq c \cdot g(n)$ minden $n \geq N$ -re.
- ► f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

- ▶ f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \leq c \cdot g(n)$ minden $n \geq N$ -re.
- f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.
- ▶ f-nek g aszimptotikus éles korlátja (jelölése: $f(n) = \Theta(g(n))$) ha léteznek olyan $c_1, c_2 > 0$ konstansok és $N \in \mathbb{N}$ küszöbindex, hogy $c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$ minden $n \geqslant N$ -re.

Legyenek $f,g:\mathbb{N}\to\mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

- ▶ f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \leq c \cdot g(n)$ minden $n \geq N$ -re.
- f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.
- ▶ f-nek g aszimptotikus éles korlátja (jelölése: $f(n) = \Theta(g(n))$) ha léteznek olyan $c_1, c_2 > 0$ konstansok és $N \in \mathbb{N}$ küszöbindex, hogy $c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$ minden $n \geqslant N$ -re.

Megjegyzés: a definíció könnyen kiterjeszthető aszimptotikusan nemnegatív, azaz egy korlát után nemnegatív értékű függvényekre. Ilyenek például a pozitív főegyütthatójú polinomok.

 $O,\,\Omega,\,\Theta$ 2-aritású relációnak is tekinthető az $\mathbb{N}\to\mathbb{R}_0^+$ függvények univerzumán, ekkor

• O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)

 $O,\,\Omega,\,\Theta$ 2-aritású relációnak is tekinthető az $\mathbb{N}\to\mathbb{R}_0^+$ függvények univerzumán, ekkor

- O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- O, Ω, Θ reflexív

 $O,\,\Omega,\,\Theta$ 2-aritású relációnak is tekinthető az $\mathbb{N}\to\mathbb{R}_0^+$ függvények univerzumán, ekkor

- O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- O, Ω, Θ reflexív
- ▶ ⊖ szimmetrikus

 $O,\,\Omega,\,\Theta$ 2-aritású relációnak is tekinthető az $\mathbb{N}\to\mathbb{R}_0^+$ függvények univerzumán, ekkor

- O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- O, Ω, Θ reflexív
- Θ szimmetrikus
- ▶ O, Ω fordítottan szimmetrikus $(f = O(g) \Leftrightarrow g = \Omega(f))$

 O, Ω, Θ 2-aritású relációnak is tekinthető az $\mathbb{N} \to \mathbb{R}_0^+$ függvények univerzumán, ekkor

- O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- O, Ω, Θ reflexív
- Θ szimmetrikus
- O, Ω fordítottan szimmetrikus $(f = O(g) \Leftrightarrow g = \Omega(f))$
- (köv.) Θ ekvivalenciareláció, az $\mathbb{N} \to \mathbb{R}_0^+$ függvények egy osztályozását adja. Az egyes függvényosztályokat általában "legegyszerűbb" tagjukkal reprezentáljuk. Pl. 1 (korlátos függvények), n (lineáris függvények), n^2 (négyzetes függvények), stb. Persze a négyzetes függvények osztálya nem csak másodfokú polinomokat tartalmaz. Pl.

$$2n^2 + 3\log_2 n = \Theta(n^2).$$

• $f,g=O(h)\Rightarrow f+g=O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)

- $f,g=O(h) \Rightarrow f+g=O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)
- Legyen c > 0 konstans $f = O(g) \Rightarrow c \cdot f = O(g)$, hasonlóan Ω -ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)

- $f,g=O(h) \Rightarrow f+g=O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)
- Legyen c > 0 konstans $f = O(g) \Rightarrow c \cdot f = O(g)$, hasonlóan Ω -ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)
- $f + g = \Theta(\max\{f, g\})$ (szekvencia tétele). A domináns tag határozza meg egy összeg aszimptotikus nagyságrendjét.

- $f,g=O(h)\Rightarrow f+g=O(h)$, hasonlóan Ω -ra, Θ -ra. (Összeadásra való zártság)
- Legyen c>0 konstans $f=O(g)\Rightarrow c\cdot f=O(g)$, hasonlóan Ω -ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)
- f + g = Θ(max{f, g}) (szekvencia tétele). A domináns tag határozza meg egy összeg aszimptotikus nagyságrendjét.
- ▶ Ha létezik az f/g határérték

ha
$$f(n)/g(n) \to +\infty \Rightarrow f(n)=\Omega(g(n))$$
 és $f(n)\neq O(g(n))$
ha $f(n)/g(n) \to c$ $(c>0) \Rightarrow f(n)=\Theta(g(n))$
ha $f(n)/g(n) \to 0$ $\Rightarrow f(n)=O(g(n))$ és $f(n)\neq \Omega(g(n))$

$$p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$$
, ekkor $p(n) = \Theta(n^k)$,

- $p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- Minden p(n) polinomra és c>1 konstansra $p(n)=O(c^n)$, de $p(n) \neq \Omega(c^n)$,

- $p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- Minden p(n) polinomra és c>1 konstansra $p(n)=O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- ▶ Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,

- $p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- Minden p(n) polinomra és c>1 konstansra $p(n)=O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- ▶ Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,
- ▶ Minden a, b > 1-re $\log_a n = \Theta(\log_b n)$,

- $p(n) = a_k n^k + \dots + a_1 n + a_0 (a_k > 0)$, ekkor $p(n) = \Theta(n^k)$,
- Minden p(n) polinomra és c>1 konstansra $p(n)=O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- ▶ Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,
- ▶ Minden a, b > 1-re $\log_a n = \Theta(\log_b n)$,
- ▶ Minden c > 0 -ra $\log n = O(n^c)$, de $\log n \neq \Omega(n^c)$.

- $ho(n)=a_kn^k+\cdots+a_1n+a_0\ (a_k>0)$, ekkor $p(n)=\Theta(n^k)$,
- Minden p(n) polinomra és c>1 konstansra $p(n)=O(c^n)$, de $p(n) \neq \Omega(c^n)$,
- ▶ Minden c > d > 1 konstansokra $d^n = O(c^n)$, de $d^n \neq \Omega(c^n)$,
- ▶ Minden a, b > 1-re $\log_a n = \Theta(\log_b n)$,
- ▶ Minden c > 0 -ra $\log n = O(n^c)$, de $\log n \neq \Omega(n^c)$.

Megjegyzés:

A jelölés Edmund Landau német matematikustól származik.

Matematikailag precízebb például f = O(g) helyett a következő:

$$O(g) := \{ f \mid \exists c > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N : f(n) \leqslant c \cdot g(n) \}.$$

llyenkor ha f-nek g aszimptotikus felső korlátja $f \in O(g)$ -t írhatunk.

