Input: GNN model $f(\cdot)$, input graph \mathcal{G} , MCTS iteration number M, the leaf threshold node number N_{\min} , $h(\mathcal{N}_i)$ denotes the associated subgraph of tree node \mathcal{N}_i .

Initialization: for each (\mathcal{N}_i, a_i) pair, initialize its C, W,

Algorithm 1 The algorithm of our proposed SubgraphX.

Q, and R variables as 0. The root of search tree is \mathcal{N}_0 associated with graph \mathcal{G} . The leaf set is set to $S_{\ell} = \{\}$. for i=1 to M do

 $curNode = \mathcal{N}_0, curPath = [\mathcal{N}_0]$ while h(curNode) has more node than N_{\min} do

for all possible pruning actions of h(curNode) **do** Obtain child node \mathcal{N}_i and its subgraph \mathcal{G}_i .

Compute $R(curNode, a_i) = Score(f(\cdot), \mathcal{G}, \mathcal{G}_i))$ with Algorithm 2.

end for

Select the child \mathcal{N}_{next} following Eq.(2, 3).

 $curNode = \mathcal{N}_{next}, curPath = curPath + \mathcal{N}_{next}.$ end while

 $S_{\ell} = S_{\ell} \cup \{curNode\}$

Update nodes in curPath following Eq.(4, 5).

Select subgraph with the highest score from S_{ℓ} .

end for