W7 Lecture

- · 5' parameterization. · reciprocal rule

Defin: Suppose
$$f: I \rightarrow IR$$
 and $c \in I$. We say that f is differentiable at c if $f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists, in which case $f'(c)$ is the derivative of f at c .

Scample: $f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 1} = \lim_{x \to 2} \frac{1}{x^2} - \frac{1}{x} = \lim_{x \to 2} \frac{4 - x^2}{4x^2(x^2)} = \lim_{x \to 2} \frac{(2 - x)(2 + x)}{4x^2(x^2)} = \lim_{x \to 2} \frac{(2 - x)(2 + x)}{4x^2} = \lim_{x$

Defn: If
$$f: I \rightarrow IR$$
, let $D \subseteq I$ be the points where f is diff.

The derivative function is the $f': D \rightarrow IR$
 $C \mapsto f'(C)$

$$= \lim_{x \to x} - 2x^{2} = -\frac{1}{x^{2}} = -\frac{1}{x^{2}}$$
Tangent line equation $y = f'(x_{0})(x-x_{0}) + f(x_{0})$

A Different Parameterization $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(ch) - f(c)}{h}$ Example: $f(a) = \frac{1}{x^2}$ $\begin{cases}
s'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \frac{(2c+h)^2 - \frac{1}{c^2}}{h} \\
\lim_{h \to 0} \frac{(2c+h)h}{(4h)^2 c'h} = \lim_{h \to 0} \frac{(2c+h)^2 c^2}{(2c+h)^2 c^2} = -\frac{2}{c^2}
\end{cases}$ Change of Variables: $\lim_{x\to 0} g(x) = c$ $\lim_{x\to c} F(c) = f'(c)$ $\begin{cases} \lim_{x\to 0} F(g(x)) = f'(c) \end{cases}$ $F(x) = \frac{f(x) - f(x)}{x - c}$ g(x) = C+xLeibniz Notation: Suppose f is differentiable and y=f(x). $\frac{dy}{dx}\Big|_{x=c} = f'(c)$ "insteraneous rate of change of y with respect to x at z" take the desirative of whatever is to the right of it This leads to a derivative operator dx $\mathcal{J}(x) = \mathcal{J}(x)$ $\frac{d}{d\alpha}\Big|_{\alpha=2}\frac{1}{x^2}=\frac{1}{4}$ $\frac{d}{dx}y = \frac{dy}{dx}$

Prop: If $f,g: I \rightarrow IR$ are differentiable at C, and $\alpha \in IR$ 1. f+g is differentiable at C and (f+g)'(c) = f'(c)+g'(c)2. αf is differentiable at C and $(\alpha f)'(c) = \alpha f'(c)$

Prf: 1)
$$(f+g)(c) = \lim_{x \to c} \frac{(f+g)(c) - (f+g)(x)}{x-c} = \lim_{x \to c} \frac{(f(c) - f(x)) + (g(c) - g(x))}{x-c}$$

$$= \lim_{x \to c} \frac{f(c) - f(x)}{x-c} + \lim_{x \to c} \frac{g(c) - g(x)}{x-c} = f'(c) + g'(c)$$
Thm. The function $f: |R| \to |R|$ is differentiable for any $x \in R$.

Thm. The function f: |R| > |R| is differentiable for any $x \in |R|$.

Pif: Let's compute $f'(x) = n x^{n-1}$.

 $f'(c) = \lim_{x \to c} \frac{f(a) - f(c)}{x - c} = \lim_{x \to c} \frac{x^{h} - c^{h}}{x - c} = \lim_{x \to c} \left[x^{h+1} - c \cdot x^{h-1} + c \cdot x^{h-1} \right]$ $= c^{h+1} + c^{h-1} = n c^{h-1}.$

Theorem If f is differentiable at C, then f is continuous at C.

Abod: We need to show bot
$$\lim_{x\to c} f(x) = f(c)$$
, and this is equivarient to $\lim_{x\to c} (f(x) - f(c)) = 0$.

[$\lim_{x\to c} f(x) = \lim_{x\to c} (f(x) - f(c) + f(c)) = \lim_{x\to c} (f(x) - f(c)) + \lim_{x\to c} f(c) = f(c)$]

Thus, $\lim_{x\to c} (f(x) - f(c)) = \lim_{x\to c} \frac{f(x) - f(c)}{x-c} (x-c)$
 $= \lim_{x\to c} \frac{f(x) - f(c)}{x-c} [\lim_{x\to c} x-c] = f(c) \cdot 0 = 0$

Thus,
$$\lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \right] = \lim_{x \to c} \frac{\int_{x \to c} (x - c)}{x - c} = \int_{x \to c} (c) \cdot 0 = 0$$

Example:
$$f(x) = |x|$$
 at $x = 0$ Thus, function $|x|$
 $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{f(x)}{x} = 1$ is continuous, bit

 $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^-} \frac{f(x)}{x} = -1$
 $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^-} \frac{f(x)}{x} = -1$

Desin: A function
$$f: D \rightarrow IR$$
 is easily to be C' on D if S is differentiable on D and S' is continuous.

Theorem: If f,g are differentiable at C , then their product is differentiable at C . and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

$$\frac{d(y^{2})}{dx} = \frac{dy}{dx} \cdot 2 + \frac{dz}{dx} \cdot y$$

Prof: $(fg)'(c) = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}$

$$\frac{f(x)}{f(x)}(c) = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(x)g(c) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(x)g(c) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(c) + g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(x)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(x)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - g(x)g(x)}{x - c}$$

$$= \lim_{x \to c} \frac{$$

Theorem: [Reciprocal Rule] If g is differentiable at c,
$$g(c) \neq 0$$
,

then $1/g$ is differentiable at C and

 $(\frac{1}{7})'(c) = -\frac{g'(c)}{g^2(c)}$
 $f(c) = \lim_{x \to c} \frac{1}{2(x)} \frac{1}{g(c)} = \lim_{x \to c} \frac{g(c) - g(a)}{g(a)g(c)(x-c)}$
 $= \frac{1}{g(c)} \lim_{x \to c} \frac{1}{g(a)} \left(-\lim_{x \to c} \frac{g(a) - g(a)}{x-c} \right)$
 $= \frac{1}{g(c)} \lim_{x \to c} \frac{1}{g(a)} \left(-\lim_{x \to c} \frac{g(a) - g(a)}{x-c} \right)$

$$\frac{ff:}{f}(\frac{1}{f})(c) = \lim_{x \to c} \frac{g(x)}{g(x)} \frac{g(c)}{g(x)} = \lim_{x \to c} \frac{g(x)}{g(x)} \frac{g(x)}{g(x)} \frac{g(x)}{g(x)} = \frac{1}{g(c)} \frac{1}{g(c)} \frac{1}{g(c)} - \frac{1}{g(c)} \frac{1}{g(c)} = \frac{1}{g(c)} \frac{1}{g(c)} \frac{1}{g(c)} - \frac{1}{g(c)} \frac{1}{g(c)} = \frac{1}{g(c)} \frac{1}{g(c)} \frac{1}{g(c)} = \frac{1}{g(c)} \frac{$$

$$\frac{f(x)}{f(x)}(c) = \lim_{x \to c} \frac{1}{g(x)} \frac{1}{g(x)} = \lim_{x \to c} \frac{g(c) - g(a)}{g(a)g(c)(x - c)}$$

$$= \frac{1}{g(c)} \lim_{x \to c} \frac{1}{g(c)} - \lim_{x \to c} \frac{g(a) - g(a)}{g(a)g(c)(x - c)}$$

$$= \frac{1}{g(c)} \frac{1}{g(c)} - g(c) = \frac{1}{g(c)}$$