RL-Week-10

	PA	
1) In the	e context of REINFORCE with baseline, consider the following statements:	1 point
The bas	eline should not be a function of the ——(1)——.	
The lear	ning rate should not be a function of the ——(2)——.	
Choose	the most appropriate option.	
O (1)	eline should not be a function of the ——(1)——. ning rate should not be a function of the ——(2)——. the most appropriate option. 1- reward, (2) action bascline & actions learning eratt & ereward	
(1)	- action, (2) - reward	
₍₁₎	- action, (2) - action	
O (1)	- reward, (2) - reward	
2) In the	e basic actor-critic setup, can we use the action value function instead of the state value function as a baseline?	1 point
		r point
O Ye	s	
No		
	surney from the REINFORCE (with baseline) update rule to the actor critic update rule for the weights of the policy can be accomplished in a sequence of st $\nabla \pi (A_{+} \mid S_{+} \theta_{+})$	teps:
$\theta_{t+1} :=$	$\boldsymbol{\theta}_t + \alpha \left[G_t - \hat{v}(S_t, \mathbf{w}_t) \right] \frac{\nabla \pi (A_t \mid S_t, \boldsymbol{\theta}_t)}{\pi (A_t \mid S_t, \boldsymbol{\theta}_t)} \tag{1}$	
$\boldsymbol{\theta}_{t+1} :=$	$\theta_t + \alpha \left[G_t - b_t(S_t) \right] \frac{\nabla \pi(A_t \mid S_t, \theta_t)}{\pi(A_t \mid S_t, \theta_t)} \tag{2}$	
$\boldsymbol{ heta}_{t+1} :=$	$\theta_{t} + \alpha \delta_{t} \frac{\nabla \pi(A_{t} \mid S_{t}, \theta_{t})}{\pi(A_{t} \mid S_{t}, \theta_{t})} $ $ \qquad \qquad b = 0 (3) \qquad b = 0 (3)$	
$oldsymbol{ heta}_{t+1} :=$	$\theta_t + \alpha \left[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \frac{\nabla \pi(A_t \mid S_t, \theta_t)}{\pi(A_t \mid S_t, \theta_t)} \tag{4}$	
	e steps in the correct sequence. Enter your answer as a four digit number.	
2143	but that is δ _t →	3
	To Geroe	1 point
	Data for Questions 4 to 7 shared network design that is used to represent both the actor and the critic. The <u>networ</u> k has three hidden layers, all of which are fully	,
connected	. The last hidden layer has 64 neurons. Five actions are possible from each state.	
4) How n	nany neurons would be required in the output layer of this shared network?	
6	nany neurons would be required in the output layer of this shared network? The turnells = 3 hiddle Last 1 in	1 layer
o	ctou > 5 newsons last hidden has 60 entre > 1 newson has inlayed output	J ´
C.	entre - 1 neuron	1.
	has inlayed output	
5) What wou	ald be the activation function over the neurons in the output layer corresponding to the actor? 1 point	
o tanh		
o sigmo	for actor (states) - choose the probability distendent own the possible actions, i, softmax	
softma	actions is the possible	
o identit	, com softmax	

o sigmoid

osoftmax

identity

Citc.

has I layer, it will be linear (identitical) in nature.

	the MC policy gradient algorithm for the full RL problem. An agent can take one of three actions from any state: a_1, a_2, a_3 . The following are the f some relevant quantities at time step t :	
$\pi(a_1 \mid s,$	$S_t = s$ $A_t = a_1$ $(t, \theta_t) = 0.01$	
	$G_t = 10$ $lpha = 0.1$	
Note that	t a return of 10 is considered to be a large return in this problem.	
	The following statement true or false? In point $t=0$ by the point $t=0$ and $t=0$ by the agent at state $t=0$ is a surprising and highly improbable choice.	
⊚ Tr	<u>-</u>	
_ Fa	alse	