

Sockeye: Neural Machine Translation with MXNet

Amazon Core Machine Translation Team

github.com/awslabs/sockeye

Introduction

- Rapid evolution of Neural Machine Translation (NMT) methods
- NMT consistently outperforms previous approaches in international evaluations [WMT'16]
- As of today, no widely adopted NMT toolkit exists
 - Some are just research prototypes
 - Lack of scalability for training and inference
 - Nothing mature available for MXNet

Outline of this talk

- 1. Sequence-to-sequence modeling for NMT
- 2. Training and inference implementation + empirical evaluation
- 3. User intro for building NMT systems

What is Sockeye?

- Toolkit for sequence-to-sequence modeling in MXNet
 - Implements encoder-decoder models with attention [Bahdanau et al. 2014]
 - Supports different attention models [Luong et al. 2015]
- Named after the *Sockeye* salmon found in the Northern Pacific Ocean (Favorite fish around Seattle, WA)
- Open-sourced as Amazon's official NMT framework
- Applicable to other sequence-to-sequence tasks, e.g.
 - Named Entity Recognition
 - Semantic Parsing
 - ...

Why MXNet?

- Fast & scalable
 - Native support for distributed training
 - Almost linear speedup with multiple GPUs
- Flexible programing model
 - Symbolic API (computation graphs)
 - Imperative API (NumPy on GPUs)

- Bindings for various languages (Python, C++, Scala, R, Julia, Perl)
- Officially supported by Amazon/AWS

Sequence-to-Sequence Modeling

An Intro to Sockeye's Neural Machine Translation Architecture

Sequence Model

Language model without Markov independence assumptions:

$$p(y) = \prod_{t=1}^{n} p(y_t | y_{1:t-1})$$

Recurrent Neural Network Language Model

- 1. Tokenize input sequence into discrete time steps
- 2. Embedding layer

$$\boldsymbol{y}_t = \boldsymbol{W}_E \boldsymbol{y}_t$$
 ; $\boldsymbol{W}_E \in \mathbb{R}^{(|\boldsymbol{s}|,\,|\boldsymbol{V}|)}$, $\boldsymbol{y}_t \in \mathbb{R}^{|\boldsymbol{s}|}$

- 3. Recurrent hidden layer, e.g. RNN/LSTM/GRU $s_t = f(s_{t-1}, y_t)$; $f_{RNN} := \tanh(Us_{t-1} + Wy_t)$
- 4. Output layer: predicts probability distribution over next words $p(\text{house}|<\text{BOS}>, \text{the, white}) = \text{softmax}(\boldsymbol{W}_{o}\boldsymbol{s}_{3} + \boldsymbol{b})$

Sequence-to-Sequence Model

[Sutskever et al., 2014]

Language model **conditioned on source sentence** $x = x_1, ..., xm$:

$$p(y|x) = \prod_{t=1}^{n} p(y_t|y_{1:t-1},x)$$

Encoded source sentence initializes decoder RNN:

$$\mathbf{s}_0 = \tanh(\mathbf{W}_i \mathbf{h}_m + \mathbf{b}_i)$$

Degrading translation quality for long sentences
Solution: attention mechanism

Sequence Decoding with Attention

[Bahdanau et al., 2014, Luong et al. 2015]

1. Decoder RNN additionally consumes attentional vector **\overline{s}**:

$$\mathbf{s}_t = fdec(\mathbf{s}_{t-1}, [\mathbf{y}_t, \overline{\mathbf{s}}_{t-1}])$$

2. Attentional vector \bar{s} combines previous RNN state s_t and context vector c_t :

$$\bar{\boldsymbol{s}}_t = \tanh(\boldsymbol{W}_s[\boldsymbol{s}_t, \boldsymbol{c}_t])$$

3. Context vector \mathbf{c}_t is a linear combination source states $\mathbf{h}_1, \dots, \mathbf{h}_m$:

$$c_t = \sum_{i=1}^{m} \alpha_{ti} \, \boldsymbol{h}_i$$

$$\alpha_{ti} = softmax(score(\boldsymbol{s}_t, \boldsymbol{h}_i))$$

white

house

Attention Models in Sockeye

Name	$score(\mathbf{s}, \mathbf{h})$	Implemented in Sockeye
mlp [Bahdanau et al, 2014]	$\mathbf{v}_a^{ op} anh(\mathbf{W}_u \mathbf{s} + \mathbf{W}_v \mathbf{h})$	✓
concat [Luong et al. 2015]	$\mathbf{v}_a^\top[\mathbf{s};\mathbf{h}]$	
dot [Luong et al. 2015]	$\mathbf{s}^{\top}\mathbf{h}$	✓
location [Luong et al. 2015]	$\mathbf{v}_{at}^{\top}\mathbf{s}_{t}$	✓
bilinear [Luong et al. 2015]	$\mathbf{s}_t^\top \mathbf{W}_a \mathbf{h}$	✓
coverage [Tu et al. 2015]	$\mathbf{v}_a^{\top} \tanh(\mathbf{W}_u \mathbf{s} + \mathbf{W}_v \mathbf{h} + \mathbf{W}_c \mathcal{C})$	✓

Training & Inference

High-Level Implementation Notes

MXNet Programming Models

Imperative

NumPy like but GPU backend
 from mxnet.ndarray import *

Symbolic

Optimized computation graph, auto-diff
 from mxnet.symbol import *

Training

Minimize cross-entropy loss with mini-batched SGD:

$$\mathcal{L}_{\theta} = \sum_{(x,y)\in\mathbb{D}} -\log p(y|x;\theta)$$

- End-to-end training using MXNet's symbolic API
- Track perplexity (& BLEU) scores on held-out validation data
- Checkpoint every N updates
- Early-stopping if held-out scores do not improve for *n* checkpoints

Teacher forcing

Input to decoder RNN at time *t* is the correct target word at time *t*-1

- Simplifies learning task
- Creates exposure bias

Training

No support for dynamic computation graphs in MXNet (landing soon!)

- → Unrolling of RNNs through time to a maximum sequence length
- → Padding of variable-length data

Bucketing

- Organize data into buckets of similar length
- Create one symbolic graph per bucket with shared memory and parameters
- Actual bucket key: (source sequence length, target sequence length)

Inference

Beam search decoder

- Maintains & expands k-best hypotheses at each decoder time step until <EOS>
- Combines both MXNet programming models:
 - Symbolic: encode known source sequence
 - Imperative: iteratively generate target
- Supports ensembling of multiple models

Output visualization

Visualization of attention matrices (alignments)

Experiments

Translation Quality and Runtime Performance

Comparison vs Lamtram/DyNet

Baselines

- 1. Lamtram [Neubig, 2015], open-source NMT system based on DyNet [Neubig, 2017]
- 2. Phrase-based Statistical Machine Translation (PBMT) w/ Moses [Koehn, 2007]

Data

- IWSLT shared task data (train: 200k sentence pairs)
- German-English TED talk transcripts
- Preprocessing
 - Tokenization using Moses scripts
 - Sub-word segmentation with Byte-pair encoding (BPE) [Sennrich, 2015]

Systems

Chose system configurations similar to existing Lamtram baseline

- 1-layer LSTM encoder & decoder
- Dropout: 0.3
- ADAM optimizer

Sockeye-DOT	Sockeye-MLP	Lamtram-MLP
Dot attention	Mlp attention, 256 hidden units	 Dynamic batching: ~512 words per batch
		(~24 sentences)
		• "Gal" dropout [Gal & Grahramani, 2016]

System	BLEU ↑
PBSMT [no BPE]	28.7
Lamtram-MLP	31.5
Sockeye-DOT	28.3
Sockeye-MLP	32.4
Lamtram-MLP [ensemble of 3]	34.0
Sockeye-MLP [checkpoint average]	32.8
Sockeye-MLP [ensemble of 3]	34.4

IWSLT DE-EN test

• Meteor and TER metrics show the same behavior

Speed

Training speed

Single Tesla K80 (AWS p2 instance):

System	sec/epoch ↑	sent/sec ↑	total time (h) ↓
Sockeye-DOT	1,490	132	11.5
Sockeye-MLP	1,890	104	5.7
Lamtram-MLP	3,237	61	-

MXNet data parallelism

5.1x throughput with 6 GPUs

Decoding speed (beam size 5)

• Sockeye-MLP: ~4 sent/sec

• Lamtram-MLP: ~6 sent/sec

Memory Consumption

System	GPU memory consumption \downarrow
Sockeye-MLP (v1)	12 GB
Sockeye-MLP (v2: improved memory planning in MXNet)	9 GB
Sockeye-MLP (v3: re-designed MLP attention, computation graph optimization)	4.3 GB
Lamtram-MLP	approx. 2.8 GB

Running Sockeye

An Overview of Sockeye's CLI

Data Pre-Processing

Given raw input data:

```
The shares closed almost unchanged at 187.35 dollars. The question comes alone: Collserola? Park or mountain?
```

Step 1 – Tokenize:

```
The shares closed almost unchanged at 187.35 dollars . The question comes alone : Collserola ? Park or mountain ?
```

Step 2 – Sub-word encode:

```
The share _s closed a _lmost un _chang _ed at 18 _7 _. _35 dollar _s . The question comes alone : Co _ll _s _er _ola ? Park or mountain ?
```

Sockeye CLI

Train with default settings:

```
python -m sockeye.train \
    --source train-corpus.de \
    --target train-corpus.en \
    --validation-source dev-corpus.de \
    --validation-target dev-corpus.en
    --output model-dir
```

Decode with default settings:

```
python -m sockeye.translate \
   --models model-dir
```

Model Options (1)

--num-words

Max vocabulary size (top N frequency-sorted)

--word-min-count

Min number of occurrences to be included in vocabulary

--num-embed

Size of word embeddings

--rnn-num-hidden

Size of hidden layer for encoder/decoder

--rnn-num-layers

Number of hidden layers in encoder/decoder

Model Options (2)

- --rnn-residual-connections
 Use residual connections for deep RNNs
- --attention-type
 Type of attention (dot, mlp, coverage)
- --weight-tying
 Share target embedding and output parameter weight matrix
- --attention-use-prev-word
 Feed previous target word embedding into attention
- --context-gating
 Use gate to adaptively weigh decoder input vs source context when decoding

Training Options

- --batch-size Mini-batch size for updates
- --optimized-metric

 Metric for early stopping (perplexity, BLEU)
- --dropout

 Dropout prob for word embeddings and RNNs
- --optimizer
 Learning algorithm (SGD, Adam)
- --loss
 Function to optimize (cross-entropy, smoothed cross-entropy)

Decoding Options

--beam-size Size of the search beam

--output-type
Translation, translation with alignments, alignment plot

--models

One or more translation models (ensemble support)

Performance boost with parameter averaging:

Average parameters from the N best-scoring checkpoints:

```
python -m sockeye.average \
   --output model-dir/params.average \
   model-dir
```


Sockeye: Neural Machine Translation with MXNet

Amazon Core Machine Translation Team

github.com/awslabs/sockeye