Übungen zur Vorlesung

Mathematik für Biologen 2 Dr. Maria Neuss-Radu

- 1. In einem Wald schlägt man in jedem Winter $3000m^3$ Nutzholz; der verbleibende Bestand an schlagbarem Nutzholz wächst dann das Jahr über um 3%.
 - (a) Stellen Sie dazu eine Rekursionsgleichung auf und bestimmen Sie die zum Anfangswert $a_0 = 50.000m^3$ gehörende Lösung. Dabei sei der Anfangswert a_0 die Menge an schlagbarem Nutzholz unmittelbar vor dem ersten Einschlag, während das allgemeine Glied a_n die Menge an schlagbarem Nutzholz unmittelbar vor dem (n+1)—ten Einschlag darstellt.
 - (b)* Untersuchen Sie das Langzeitverhalten der Lösung, d.h. das Verhalten der Folge $(a_n)_{n\geq 0}$ für $n\to\infty$. Was bedeutet dies für den Nutzholzbestand?
 - (c)* Was passiert mit dem Nutzholzbestand für verschiedene Werte von $a_0 > 0$?
- 2. Stellen Sie folgende komplexe Zahlen in der komplexe Ebene dar:

(a) 1,
$$i$$
, $1+i$, $\overline{1+i}$, $-1+i$, $1-i$, $-1-i$

(b)
$$2+3i$$
, $(2+3i)\cdot i$, $((2+3i)\cdot i)\cdot i$, $(((2+3i)\cdot i)\cdot i)\cdot i$

3. Berechnen Sie Realteil, Imaginärteil und Betrag folgender komplexen Zahlen:

$$\frac{1}{i}$$
, $\frac{1}{1-i}$, $\frac{1+i}{1-i}$, $\frac{a+bi}{a-bi}$, $a,b \neq 0, a,b \in \mathbb{R}$.

- 4. Berechnen Sie die konjugiert komplexe Zahl für:
 - (a) (3+9i)-(15+i)
 - (b) $(3+9i) \cdot (15+i)$
 - $\left(\mathbf{c}\right) \left(\frac{2-i}{2-3i}\right)^{-1}$

Abgabetermin: Montag, 2. 05. 2005, 16 Uhr, in den Fächern im Flur des Instituts für Angewandte Mathematik, INF 294.