An Introduction To Algebraic Topology

Rotman

July 2, 2021

Contents

1 Introduction

1.1 Notation

$$I = [0, 1].$$

$$S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

 S^n is called the n-sphere. $S^n \subset \mathbb{R}^{n+1}$ (S^1 is the circle); 0-sphere S^0 consists of the two points $\{-1,1\}$ and hence is a discrete two-point space. We may regard S^n as the **equator** of S^{n+1}

$$S^n = \mathbb{R}^{n+1} \cap S^{n+1} = \{(x_1, \dots, x_{n+2}) \in S^{n+1} : x_{n+2} = 0\}$$

The **north pole** is $(0,0,...,0,1) \in S^n$; the **south pole** is (0,0,...,0,-1). The **antipode** of $x = (x_1,...,x_{n+1}) \in S^n$ is the other endpoint of the diameter having one endpoint x; thus the antipode of x is $-x = (-x_1,...,-x_{n+1})$, for the distance from -x to x is 2.

$$D^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$$

 D^n is called the n-disk (or n-ball). Observe that $S^{n-1} \subset D^n \subset \mathbb{R}^n$; indeed S^{n-1} is the boundary of D^n in \mathbb{R}^n

$$\Delta^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \text{ each } x_i \ge 0 \text{ and } \sum x_i = 1\}$$

 Δ^n is called the **standard** *n***-simplex**. Δ^0 is a point, Δ^1 is a closed interval, Δ^2 is a triangle (with interior), Δ^3 is a (solid) tetrahedron, and so on.

There is a standard homeomorphism from S^n - {north pole} to \mathbb{R}^n , called **stereographic projection**. Denote the north pole by N, and define $\sigma: S^n - \{N\} \to \mathbb{R}^n$ to be the intersection of \mathbb{R}^n and the line joining x and N. Points on the latter line have the form tx + (1-t)N, hence they have coordinates $(tx_1, \dots, tx_n, tx_{n+1} + (1-t))$. The last coordinate is zero for $t = (1-x_{n+1})^{-1}$; hence

$$\sigma(x) = (tx_1, \dots, tx_n)$$

where $t = (1 - x_{n+1})^{-1}$. It is now routine to check that σ is indeed a homeomorphism. Note that $\sigma(x) = x$ iff x lies on the equator S^{n-1}

1.2 Brouwer Fixed Point Theorem

Theorem 1.1. Every continuous $f: D^1 \to D^1$ has a fixed point

Proof. Let f(-1) = a and f(1) = b. If either f(-1) = -1 or f(1) = 1, we are done. Therefore we may assume that f(-1) = a > -1 and that f(1) = b < 1 as drawn. If

G is the graph of f and Δ is the graph of the identity function, then we must prove that $G \cap \Delta \neq \emptyset$. The idea is to use a connectness argument to show that every path in $D^1 \times D^1$ from a to b must cross Δ .

Since f is continuous, $G = \{(x, f(x)) : x \in D^1\}$ is connected (continuous image of connected space is connected). Define $A = \{(x, f(x)) : f(x) > x\}$ and $B = \{(x, f(x)) : f(x) < x\}$. Note that $a \in A$ and $b \in B$, so that $A \neq \emptyset$ and $B \neq \emptyset$. If $G \cap \Delta = \emptyset$, then G is the disjoint union of A and B.

Theorem 1.2 (Brouwer fixed point theorem). *If* $f: D^n \to D^n$ *is continuous, then there exists* $x \in D^n$ *with* f(x) = x

1.3 Categories and Functors

Definition 1.3. A category C consists of three ingredients: a class of **objects**, obj C; sets of **morphisms** Hom(A, B), one for every ordered pair A, $B \in \text{obj } C$; **composition** Hom(A, B) × Hom(B, C) \rightarrow Hom(A, C), denoted by (f, g) \rightarrow $g \circ f$, for every A, B, $C \in \text{obj } C$ satisfying the following axioms

- 1. the family of Hom(A, B)'s is pairwise disjoint'
- 2. composition is associative when defined
- 3. for each $A \in \operatorname{obj} \mathcal{C}$ there exists an identity $1_A \in \operatorname{Hom}(A,A)$ satisfying $1_A \circ f = f$ for every $f \in \operatorname{Hom}(B,A)$, all $B \in \operatorname{obj} \mathcal{C}$ and $g \circ 1_A = g$ for every $g \in \operatorname{Hom}(A,C)$, all $C \in \operatorname{obj} \mathcal{C}$

Definition 1.4. Let \mathcal{C} and \mathcal{A} be categories with obj $\mathcal{C} \subset \operatorname{obj} \mathcal{A}$. If $A, B \in \operatorname{obj} \mathcal{C}$, let's denote the two possible Hom sets by $\operatorname{Hom}_{\mathcal{C}}(A, B)$ and $\operatorname{Hom}_{\mathcal{A}}(A, B)$. Then \mathcal{C} is a **subcategory** of \mathcal{A} if $\operatorname{Hom}_{\mathcal{C}}(A, B) \subset \operatorname{Hom}_{\mathcal{A}}(A, B)$ for all $A, B \in \operatorname{obj} \mathcal{C}$ and if composition in \mathcal{C} is the same as composition in \mathcal{A}

Example 1.1. $C = \mathbf{Top}^2$. here obj C consists of all ordered pairs (X,A) where X is a topological space and A is a subspace of X. A morphism $f:(X,A)\to (Y,B)$ is an ordered pair (f,f') where $f:X\to Y$ is continuous and fi=jf' (where i and j are inclusions)

$$\begin{array}{ccc}
A & \stackrel{i}{\smile} & X \\
f' \downarrow & & \downarrow f \\
B & \stackrel{j}{\smile} & Y
\end{array}$$

2 Index