岐阜大学工学部 電気電子・情報工学科 令和6年度卒業論文

セキュアな V2V アドホックネットワーク ルーティングプロトコルのための EdDSA 署名方式の評価

三嶋研究室

学籍番号:1213033107

永野 正剛

指導教員:三嶋 美和子 教授

目次

はじめに		1
第1章	準備	2
1.1	VANET	2
1.2	GPSR	2
1.3	デジタル署名	2
	1.3.1 EdDSA	2
第2章	EdDSA	4
2.1	Ed25519	4
2.2	データの変換	4
2.3	楕円曲線	5
2.4	パラメータ	5
2.5	デジタル署名アルゴリズム	6
2.6	ECDSA と EdDSA の比較	7
第3章	提案手法	8
第4章	シミュレーション環境	9
第5章	シミュレーション実験	10
第6章	EdDSA に関する実装評価まとめ	11
おわりに		12
謝辞		13
参考文献		14

はじめに

第1章 準備

1.1 VANET

vanet 書くよ

1.2 GPSR

GPSR 書くよ

1.3 デジタル署名

1.3.1 EdDSA

実験に導入した Ed25519 のプロトコル内で使用されるリトルエンディアン、エンコーディング、プルーニングについて説明する.

鍵生成 -

- 1. 法とする素数 p、楕円曲線 E、基準点 G、鍵のサイズ b、ハッシュ関数 H、コファクター c、位数 L を定める.
- 2. bバイトのランダムな値 sk を生成し、秘密鍵とする.
- 3. h = H(sk) を計算し、h(オクテット文字列)を前半部分 h[0] から h[31] と後半部分 h[32] から h[63] に分ける.
- 4. 前半部分 s[0] から s[31] を使ってプルーニングしたものをリトルエンディアンの整数 として解釈し、スカラー $s \pmod{L}$ を生成する.
- 5. 基準点 G を使って A = sG を計算し、A のエンコードを公開鍵とする.

署名生成フェーズ ――

- 1. 秘密鍵 sk を使って、ハッシュ値 h=H(sk) を計算する.
- 2. h の後半部分 h[32] から h[63] を使って、r = DEC(H()).
- 3.
- 4.

署名検証フェーズ ―

- 1.
- 2.

第2章 EdDSA

ここに EdDSA の説明書くよ

この章では、本研究で用いる Ed25519 について概説する.

2.1 Ed25519

EdDSA には IETF の RFC8032 で推奨される二つのパラメーターが存在する. そのうちのひとつが本研究で使用する Ed25519 である. 現在、Ed25519 は EdDSA の最も一般的なインスタンスであり、約 128 ビットのセキュリティを提供する Edwards Curve25519 に基づいている.

2.2 データの変換

EdDSA のアルゴリズム内では、整数や点をオクテット列に変換するエンコードとその逆変換であるデコードが行われる.

以下で使用されるデータの変換について説明する.

オクテット

オクテットは $b_0b_1b_2b_3b_4b_5b_6b_7$ のような 8 ビットのビット列であり、 b_0 を最下位ビット、 b_7 を最上位ビットと呼ぶ。

例. 数値 0d128 のオクテットに対応するビット列は 00000001 である.

リトルエンディアン

リトルエンディアン形式では、データを格納する際に数値の下位バイト(最下位ビットに近い方)から順に配置する.

例. 数値 0x12345678 をリトルエンディアン形式で格納すると、0x78,0x56,0x34,0x12 となる.

エンコードとデコード

1. ENC(s)

整数 s(0 < s < L-1) は、8 ビットずつをオクテットとみなすことに基づき、リトルエンディアン形式で $\frac{b}{s}$ オクテットに格納される.

2. DEC(t)

t はオクテット列であり、ENC(s) の逆変換によって整数 s に変換される.

3. ENCE(A)

E の点 A は、元 (x,y) の y を ENC(y) によりオクテット列に変換し、その最終オクテットの最上位ビットに x 座標の符号($x \ge 0$ ならば 0、x < 0 ならば 1)が格納される.

4. DECE(A)

t は変換元の $\frac{b}{8}$ オクテットのオクテット列である.

- (a) t の最終オクテットの最上位ビットを x 座標の符号として取り出し x_0 に格納する. $(x_0 = 0$ または、 $x_0 = 1$ とする.)
- (b) tの最終オクテットの最上位ビットを0に設定する.
- (c) y = DEC(t) を計算し、 $0 \le y < p$ でないならばデコード失敗.
- (d) 以下の処理を行う.

i. $u = y^2 - 1$, $v = d * y^2 + 1$ として $x = uv^3(uv^7)^{\frac{p-5}{8}} \mod p$ を計算する.

ii. $vx^2 \neq \pm u \mod p$ ならばデコード失敗.

iii. $vx^2 = u \mod p$ ならば、 $x = 2^{\frac{p-1}{4}}x$

2.3 楕円曲線

2.4 パラメータ

EdDSA のパラメータは以下のようである.

- p: 法となる素数. EdDSA は \mathbb{F}_p 上の楕円曲線を使用する.
- $b: p < 2^{b-1}$ となる正整数. 公開鍵の長さを表す.
- E': エンコーディング関数.
- H: ハッシュ関数. 2b ビット長のハッシュ値を出力する.
- \bullet (a,d,c,l): 楕円曲線 E を決定するパラメータ.

$$E:=\{(x,y)\in \mathbb{F}_p\times \mathbb{F}_p\mid ax^2+y^2=1+dx^2y^2\}$$

- -a は \mathbb{F}_n 上平方剰余、d は非ゼロの非剰余.
- -c=2 または 3. l は奇素数で E の位数 # $E=2^{cl}$ となるような数.
- • $n: c \le n < b$ となる整数.
- $B: E \perp \mathcal{O}$ ベースポイント. $B \neq (0,1)$
- PH:プレハッシュ関数. (HashEdDSA の場合に用いる)

2.5 デジタル署名アルゴリズム

Ed25519 における3つのアルゴリズムの手順を以下に述べる.

鍵生成

- 1. 法とする素数 p、楕円曲線 E、基準点 B、鍵のサイズ b、ハッシュ関数 H、エンコーディング関数 E'、コファクター c、位数 L を定める.
- 2. bバイトのランダムな値 sk を生成し、秘密鍵とする.
- 3. h = H(sk) を計算し、h(オクテット文字列)を前半部分 h[0] から h[31] と後半部分 h[32] から h[63] に分ける.
- 4. 前半部分の最初のバイト (h[0]) の下位 3 ビットを 0 にクリアする. 最後のバイト (h[31]) の最上位ビットを 0 に、最上位 2 ビット目を 1 に設定したものをリトルエン ディアンの整数として解釈し、スカラー $s\pmod{L}$ を生成する.
- 5. 基準点 B を使って A = sB を計算し、ENCE(A) を公開鍵とする.

スカラー値sは8の倍数で、正確に255ビットとなる

署名生成

- 1. 秘密鍵 sk を使って、ハッシュ値 h = H(sk) を計算する.
- 2. h の後半部分 h[32] から h[63] を使って、

 $r = DEC(H(h[32] \mid | \dots | | h[63] \mid | M)) \mod L.$

を計算する.

- 3. R = ENCE([r]B) を計算する.
- 4. $k = DEC(H(R \parallel A \parallel M)) \mod L$ を計算する.
- 5. $S = ENC((r + k * s) \mod L)$ を計算する.
- 6. (R,S) を署名とする.

秘密のスカラー値

署名検証

1. 署名 (R,S) を受け取り、R をデコードする.

2.

2.6 ECDSA と EdDSA の比較

第3章 提案手法

第4章 シミュレーション環境

第5章 シミュレーション実験

第6章 EdDSA に関する実装評価まとめ

おわりに

謝辞

参考文献