

CS 597: SPECIAL TOPICS INFORMATION RETRIEVAL

Why Evaluate?

- Evaluation is key to building effective and efficient retrieval systems
 - □ Informally, effectiveness measures the ability of a system to find the *right information*, while efficiency measures how quickly things get done
- Effectiveness, efficiency, and cost are related
 - Efficiency and cost targets may impact effectiveness & vice versa
- Data for evaluation
 - Online versus benchmarks

Online Experiments

- Actively involve users in gathering information about their uses and preferences, related to an IR system, to evaluate it
 - Need to be representative of the population under evaluation so that any conclusions based on interactions with these users are considered valid
 - Sites such as Mechanical Turk can help, but... do they really?

Test Collections

- AP: Associated Press newswire documents from 1988-1990
 - Queries, topics, and relevance judgments
- Yahoo! Answers Dataset
 - Questions, answers, and metadata for answers and users
- BookCrossing
 - Rated books by users, demographic information on users
- □ LETOR: Learning to Rank
 - Large query-url pairs, ranking information
- Yahoo Search
 - Query logs to entity search

□ Precision & Recall

$$Precision = \frac{|RR|}{|A|}$$

$$Recall = \frac{|RR|}{|R|}$$

Precision at k (P@k)

- □ F-Measure
 - P is Precision and R is recall
 - Weighted variations are also often considered

$$F = \frac{1}{\frac{1}{2}\left(\frac{1}{R} + \frac{1}{R}\right)} = \frac{2RP}{(R+P)}$$

- False positives vs false negatives
 - FP: error that indicates that a non-relevant document is retrieved
 - FN: error that indicates that a relevant document is not retrieved

- Mean Average Precision
 - Summarize rankings from multiple tasks by averaging average precision
 - Most commonly used measure in research papers
 - Assumes user is interested in finding many relevant resources for each task
 - Requires many relevance judgments in a collection

Precision query
$$1 = \frac{5}{10} = 0.50$$

Precision query
$$2 = \frac{3}{10} = 0.30$$

Mean Average Precision =
$$\frac{\frac{5}{10} + \frac{3}{10}}{2} = 0.40$$

Does Precision Always Work?

What is the precisions of System 1? And System 2? Are both system equivalents in terms of performance?

- Normalized Discounted Cumulative Gain
 - Assumes that
 - Highly relevant resources are more useful than marginally relevant resources
 - Common ranges are (0..1) and (1 ..5)
 - The lower the ranked position of a relevant resource, the less useful it is for the user, since it is less likely to be examined

$$NDCG = \frac{DCG}{IDCG} = \frac{rel_1 + \sum_{i=2}^p \frac{rel_i}{log_2 i}}{rel_1 + \sum_{i=2}^p \frac{rel_i}{log_2 i}}$$
 — Graded relevance of the document at rank i — Penalization/reduction/discount factors Computed for the perfect ranking

Example

	Retrieved Resources									
Given Rank	3	2	3	0	0	1	2	2	3	0
Discounted Gain	3	2	1.89	0	0	0.39	0.71	0.67	0.95	0
DCG	3	5	6.89	6.89	6.89	7.28	7.99	8.66	9.61	9.61
Ideal Rank	3	3	3	2	2	2	1	0	0	0
Ideal DCG	3	6	7.89	8.89	9.75	10.52	10.88	10.88	10.88	10.88

$$NDCG = \frac{DCG}{IDCG} = \frac{rel_1 + \sum_{i=2}^{p} \frac{rel_i}{log_2 i}}{rel_1 + \sum_{i=2}^{p} \frac{rel_i}{log_2 i}} = \frac{9.61}{10.88}$$

- Mean Reciprocal Rank
 - Aims to identify the average number of resources a user has to scan through before identifying a relevant one

Normalization factor

User-Oriented Measures

- Coverage
 - In RecSys, number of items in a collection that can ever be recommended
- Diversity
 - Degree to which the result set is homogeneous
- □ Novelty
 - Fraction of relevant documents retrieved that were unknown to the user
- Serendipity
 - Degree to which results are "surprising"

Efficiency Metrics

- Scalability
 - With a growing dataset, how will the system behave?
- □ Overall Response Performance
 - Real time vs offline tasks
- Query throughput
 - Number of queries processed per unit of time

Significance Tests

- Given the results from a number of queries, how can we conclude that strategy A is better than strategy B?
 - A significance test enables us to reject the null hypothesis (no difference) in favor of the alternative hypothesis (B is better than A)
 - The power of a test is the probability that the test will reject the null hypothesis correctly
 - Increasing the number of "trials" in the experiment also increases power of test
 - Common significance tests
 - T-test, Wilcoxon signed-ranked test, sign test

Significance Tests

- Procedure for comparing 2 retrieval systems
 - Compute the effectiveness measure for every task for both systems
 - Compute a test statistic based on a comparison for the effectiveness measure for each task
 - Test statistic depends on the significance test, and is simply a quantity calculated from the sample data that is used to decide whether or not the null hypothesis should be rejected
 - Use test statistic to compute a P-value, which is the probability that a test statistic value that extreme could be observed is the null hypothesis were true.
 - Small P-value suggest that the null hypothesis may be false
 - 4. The null hypothesis (no difference) is rejected in favor of the alternative hypothesis (e.g., B more effective than A) if P-value is $\leq \alpha$, the significance level
 - Typical values for α are 0.05 and 0.1

Example: t-Test

Task	A	В	В-А
1	25	35	10
2	43	84	41
3	39	15	-24
4	75	75	0
5	43	68	25
6	15	85	70
7	20	80	60
8	52	50	-2
9	49	58	9
10	50	75	25

$$\leq \alpha = 0.05 \longrightarrow \text{Reject Null}$$
 Hypothesis
$$\leq \alpha = 0.01 \longrightarrow \text{Accept Null}$$
 Hypothesis