1. O prefeito da cidade de Digitópolis pede a você que projete um sistema de semáforo para um cruzamento. Este cruzamento conta com dois semáforos para carros e quatro semáforos para pedestres, conforme a ilustração. Você tem, à sua disposição, um circuito que gera 16 combinações de bits diferentes, uma a cada unidade de tempo, de maneira sequencial e cíclica, que você usará de entrada, além de várias portas lógicas.

Os semáforos para carros possuem 3 saídas, luz vermelha, luz amarela e luz verde. Já os semáforos para pedestres possuem somente luz vermelha e luz verde.

Projete este semáforo sabendo que os tempos das cores dos semáforos S1 e S2 devem ser iguais(isto é, se o semáforo 1 fica 4 unidades de tempo verde, o semáforo 2 deve ficar também 4 unidades de tempo verde), e que em algum momento ambos devem estar vermelho, para que os pedestres em P3 e P4 possam atravessar em segurança.

2. Computadores antigos possuíam barramento de 16 bits, o que significa que muitas das operações realizadas por eles envolviam números de 16 bits. Faça essas operações aritméticas , usando o sistema binário, tanto no espaço original quanto no espaço uniforme, e verifique se ela é válida para um sistema de 16 bits.

A.
$$(35A5)_{HEX} + (4642)_{OCT}$$

B.
$$(731)_{OCT} + (38DB)_{HEX}$$

C.
$$-(5047)_{DEC} - (21041)_{DEC}$$

D.
$$-(440C)_{HEX} - (57AC)_{HEX}$$

3. Encontre as expressões reduzidas dos mapas de Karnaugh a seguir

AB\CD	00	01	11	10	AB\CD	00	01	11	10
00		1			00	1	1	1	
01		1			01	1		1	
11		1			11	1		1	
10		1	1	1	10	1	1	1	
AB\CD	00	01	11	10	AB\CD	00	01	11	10
00	1		1		00	1	1	1	
01	1		1		01	1	1	1	
11	1		1		11	1			
10		1			10	1	1	1	
AB\CD	00	01	11	10	AB\CD	00	01	11	10
00	1	1	1		00		1	1	
01	1				01		1		1
11	1				11		1		1
10	1	1	1		10		1	1	

4. A caixa d'água de uma residência é monitorada por dois sensores de nível, um próximo ao topo da caixa e um próximo ao fundo. Estes sensores enviam sinais para uma bomba, que é responsável por encher a caixa com água. A bomba tem dois modos: um modo normal, e um modo turbo. O modo normal enche a caixa normalmente. O modo turbo é usado quando o nível da água está baixo demais, usando mais energia para puxar mais água e encher a caixa mais rapidamente. Porém, este modo turbo faz a bomba trabalhar acima da sua capacidade, gerando superaquecimento, motivo pelo qual a temperatura da bomba é monitorada por um sensor interno. Enquanto o sensor de temperatura está indicando problema, o motor não é ativado. A bomba possui também uma saída para um aviso luminoso de quando ela está funcionando (independente do modo). O esquemático é ilustrado na figura abaixo.

Cleydison tem esse sistema de abastecimento em sua casa. Após a instalação, ele percebeu que havia um problema na placa de controle da bomba, o que fazia com que ela não funcionasse como devido. Após fazer alguns testes, ele conseguiu fazer uma tabela com os cenários que a bomba funcionava.

Sensor Temperatur a	Sensor Nível Alto	Sensor Nível Baixo	Modo Normal	Modo Turbo	Indicador Luminoso	
Desativado	Desativado	Desativado	Desligado	Ligado	Ligado	
Desativado	Desativado	Ativado	Ligado	Desligado	Ligado	
Desativado	Ativado	Desativado	Não Ocorre Não Ocorre		Não Ocorre	
Desativado	Ativado	Ativado	Desligado	Desligado	Desligado	
Ativado	Desativado	Desativado	Desligado	Ligado	Ligado	
Ativado	Desativado	Ativado	Desligado	Ligado	Ligado	
Ativado	Ativado	Desativado	Não Ocorre	Não Ocorre	Não Ocorre	
Ativado	Ativado	Ativado	Desligado	Desligado	Desligado	

Com a tabela em mãos, percebeu o problema do circuito, que ele reconstruiu conforme a figura abaixo.

Qual foi a combinação de portas lógicas encontrada por Cleydison na área indicada? Qual deveria ser a combinação para o funcionamento correto do controle da bomba?