Assignment 5 Report

Vishal Bindal 2018CS50425

Chirag Mohapatra 2018CS50403

- We implemented instructions bne, beq, blez, bgez, j, jal and jr in one clock cycle each
- In bne, beq, blez, and bgez the values in given registers are checked, and the program counter (pc) and addra are incremented accordingly
- In jal the value of current program counter is stored in \$31 (return address) and then pc, addra are updated
- In jr, we have to jump to the instruction whose address is contained in the register, so pc and addra are updated accordingly.
- The stack pointer was kept in register \$29 and initially set to 4095
- For non-leaf procedures, the return address has to be stored in the memory location stored in \$29 and the stack pointer then updated

New test cases (to check the new instructions implemented:

Test case no.	Instruction (assembly)	Instruction(machine)	Final Output / details
1	sw \$0 , 1024(\$1)	101011000010000000001000000000000000000	2
	sll \$0 ,\$0 , 2	000000000000000000000000000000000000000	
	sub \$2 , \$1 , \$0	000000000100000001000000100010,	(
	bgtz \$2 , 2	000111000100000000000000000000000000000	16 in \$0
	lw \$3 , 1017(\$0)	10001100000000110000001111111001,	1 in \$1
	blez \$2 , 2	000110000100000000000000000000000000000	-14 in \$2
	add \$3 , \$3 , \$3	0000000011000110001100000100000,	2 in \$3
	j 9	00001000000000000000000000001001,	2 in \$4
	add \$1 , \$1 , \$1	0000000001000010000100000100000,)

	jal 14	00001100000000000000000000001110,	
	add \$4 , \$0 , \$2	0000000000000100010000000100000,	
	null	000000000000000000000000000000000000000	
	null	000000000000000000000000000000000000000	
	null	000000000000000000000000000000000000000	
	add \$2 , \$2 , \$2	000000001000010000100000100000,	
	sll \$0 , 1	000000000000000000000000000000000000000	
	jr \$31	000000111110000000000000000000000000000	
2	sll \$4 , \$0 , 3	0000000000000000010000011000000,	Non leaf
	jal 4	000011000000000000000000000000000000000	procedure
	add \$17 , \$2 , \$16	0000000010100001000100000100000,	Accumulato r with n =
	null	000000000000000000000000000000000000000	16
	sub \$29 , \$29 , \$0	00000011101000001110100000100010,	Assume 1 in \$2 and 2
	sw \$31 , 1(\$29)	1010111110111111100000000000000001,	in \$0
	sw \$4,0(\$29)	101011111010010000000000000000000000000	Argument in \$4
	bgtz \$4, 3	0001110010000000000000000000011,	\$2 is \$v0
	add \$29 , \$29 , \$0	00000011101000001110100000100000,	Sp in \$29
	jr \$31	000000111110000000000000000000000000000	\$17
	sub \$4 , \$4 , \$1	000000010000001001000000100010,	contains final answer
	jal 4	000011000000000000000000000000000000000	=136
	lw \$4 , 0(\$29)	100011111010010000000000000000000000000	
	lw \$31 , 1(\$29)	10001111101111111000000000000000001,	
	add \$29 , \$29 , \$0	00000011101000001110100000100000,	

	add \$2 , \$2 , \$4	000000001000100000100000100000,	
	jr \$31	000000111110000000000000000000000000000	
3	beq \$0, \$1, 5	0001000000000010000000000000101,	2
	sw \$0 , 1024(\$1)	101011000010000000000100000000000000000	
	sll \$1 , \$1 , 1	0000000000000010000100001000000,	(2 in \$0, \$1,
	bne \$0 , \$1 , 2	00010100000000100000000000000010,	\$2)
	beq \$0 , \$1 , 2	0001000000000010000000000000010,	
	srl \$1 , \$1 , 1	0000000000000010000100001000010,	
	lw \$2 , 1023(\$1)	10001100001000100000001111111111;	