5 H

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of:

TOSHIMA

Serial No.: 10/036,787

Filing Date: October 19, 2001

For: METHOD AND APPARATUS OF

PROCESSING SURFACE OF

SUBSTRATE

Examiner: Not Assigned

Group Art Unit: Not Assigned

SUBMISSION OF CERTIFIED FOREIGN PRIORITY DOCUMENTS

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

The filing papers claimed priority under 35 U.S.C. § 119 on the basis of Japan patent application no. 2000-320646, filed on October 10, 2000. A certified copy of said patent application is submitted herewith, thereby perfecting the priority claim.

The issue fee has not become due for this app	olication.
---	------------

 \Box The issue fee is due to be paid on *.

The issue fee was paid on * and a petition requesting entry of the priority documents accompanies this submission.

The Assistant Commissioner is hereby authorized to charge any additional fees under 37 C.F.R. §§ 1.16 and 1.17 that may be required by this submission, or to credit any overpayment, to **Deposit Account No. 03-1952**.

Dated: May 24, 2002

Respectfully submitted,

Registration No. 28,600

Morrison & Foerster LLP 555 West Fifth Street **Suite 3500**

Los Angeles, California 90013-1024 Telephone: (213) 892-5601

Facsimile: (213) 892-5454

本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年10月20日

出 願 番 号 Application Number:

特願2000-320646

出 願 人
Applicant(s):

東京エレクトロン株式会社

2001年10月19日

特許庁長官 Commissioner, Japan Patent Office

特2000-320646

【書類名】

特許願

【整理番号】

JPP003159

【提出日】

平成12年10月20日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

H01L 21/302

【発明者】

【住所又は居所】

山梨県韮崎市穂坂町三ツ沢650 東京エレクトロン九

州株式会社山梨開発センター内

【氏名】

戸島 孝之

【発明者】

【住所又は居所】

山梨県韮崎市穂坂町三ツ沢650 東京エレクトロン九

州株式会社山梨開発センター内

【氏名】

山坂 都

【特許出願人】

【識別番号】

000219967

【氏名又は名称】

東京エレクトロン株式会社

【代理人】

【識別番号】

100096644

【弁理士】

【氏名又は名称】

中本 菊彦

【手数料の表示】

【予納台帳番号】

003403

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 基板表面処理方法及び基板表面処理装置

【特許請求の範囲】

【請求項1】 レジストパターンが形成された被処理基板に薬液を供給して 被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性に すべく酸化膜を形成する工程と、

上記被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去す る乾燥工程と、

を有することを特徴とする基板表面処理方法。

【請求項2】 レジストパターンが形成された被処理基板に薬液を供給して 被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性に すべく酸化膜を形成する工程と、

上記被処理基板を回転して被処理基板表面に付着する水分を除去する乾燥工程 と、

を有することを特徴とする基板表面処理方法。

【請求項3】 レジストパターンが形成された被処理基板とレジストパターンが形成されない被処理基板に分けて別の処理工程を選択して行う基板表面処理方法であって、

レジストパターンが形成された被処理基板の処理は、被処理基板に薬液を供給 して被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性に

すべく酸化膜を形成する工程と、

上記被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去す る乾燥工程と、を有し、

レジストパターンが形成されない被処理基板の処理は、被処理基板に薬液を供給して被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去 する乾燥工程と、

を有することを特徴とする基板表面処理方法。

【請求項4】 レジストパターンが形成された被処理基板とレジストパターンが形成されない被処理基板に分けて別の処理工程を選択して行う基板表面処理方法であって、

レジストパターンが形成された被処理基板の処理は、被処理基板に薬液を供給 して被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性に すべく酸化膜を形成する工程と、

上記被処理基板を回転して被処理基板表面に付着する水分を除去する乾燥工程 と、を有し、

レジストパターンが形成されない被処理基板の処理は、被処理基板に薬液を供給して被処理基板表面の酸化膜を除去するエッチング工程と、

上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と

上記被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去 する乾燥工程と、

を有することを特徴とする基板表面処理方法。

【請求項5】 請求項1ないし4のいずれかに記載の基板表面処理方法にお

いて、

上記親水化工程におけるオゾン水の濃度が、0.5~10ppmであることを 特徴とする基板表面処理方法。

【請求項6】 被処理基板を収容する処理室と、

上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と

上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、

上記処理室内に乾燥気体を供給する乾燥気体供給手段と、

上記処理室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、

上記処理室内にレジストパターンが形成された被処理基板を収容するときは、 上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記処理室内に レジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供 給手段と乾燥気体供給手段に代えて上記乾燥用溶媒供給手段に作動信号を伝達す る制御手段と、

を具備することを特徴とする基板表面処理装置。

【請求項7】 被処理基板を収容する処理室と、

上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と

上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、

上記被処理基板を回転する回転乾燥手段と、

上記処理室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、

上記処理室内にレジストパターンが形成された被処理基板を収容するときは、 上記オゾン水供給手段と回転乾燥手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に代えて上記乾燥用溶媒供給手段に作動信号を伝達する制御手段と、

を具備することを特徴とする基板表面処理装置。

【請求項8】 被処理基板を収容する処理室と、

上記被処理基板を収容する乾燥室と、

上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、

上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と

上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、

上記乾燥室内に乾燥気体を供給する乾燥気体供給手段と、

上記乾燥室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、

上記処理室内にレジストパターンが形成された被処理基板を収容するときは、 上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記処理室内に レジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供 給手段と乾燥気体供給手段に代えて上記乾燥用溶媒供給手段に作動信号を伝達す る制御手段と、

を具備することを特徴とする基板表面処理装置。

【請求項9】 被処理基板を収容する処理室と、

上記被処理基板を収容する乾燥室と、

上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、

上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と

上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、

上記被処理基板を回転する回転乾燥手段と、

上記乾燥室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、

上記処理室内にレジストパターンが形成された被処理基板を収容するときは、 上記オゾン水供給手段と回転乾燥手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に代えて上記乾燥用溶媒供給手段に作動信号を伝達する制御手段と、

を具備することを特徴とする基板表面処理装置。

【請求項10】 請求項8記載の基板表面処理装置において、

上記処理室と乾燥室とを連通口を介して連設すると共に、連通口に開閉手段を 配設してなることを特徴とする基板表面処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、基板表面処理方法及び基板処理装置に関するもので、更に詳細には、レジストパターンが形成された例えば半導体ウエハやLCD用ガラス基板等の被処理基板の表面処理方法及びその装置に関するものである。

[0002]

【従来の技術】

一般に、半導体デバイスの製造工程においては、被処理基板としての半導体ウエハやLCD用ガラス基板等(以下にウエハ等という)にフォトレジストを塗布し、フォトリソグラフィ技術を用いて回路パターンを縮小してフォトレジストに転写し、これを現像処理し、その後、ウエハ等からフォトレジストを除去する一連の処理が施されている。

[0003]

また、上記処理の過程において、薬液例えば希フッ酸水(DHF)を用いてウエハ等の表面の酸化膜をエッチングにより除去した後、ウエハ等に洗浄処理及び乾燥処理を施している。この場合、DHFによりエッチングが行われたウエハ等の表面は疎水性であるため、その状態のまま洗浄処理及び乾燥処理を行うと、ウエハ等の表面にウォーターマークが生成され、歩留まりの低下を招く。

[0004]

そこで、従来では、DHFエッチングの後に、ウエハ等をオゾン水に浸漬してウエハ等の表面に酸化膜を形成して疎水性の表面を親水性の表面にし、その後、乾燥用溶媒例えばイソプロピル・アルコール(IPA)の蒸気を用いて乾燥している(特開平9-190994号公報参照)。このように、ウエハ等の表面に酸化膜を形成して疎水性の表面を親水性の表面にすると共に、IPAの蒸気を用いて乾燥することによりウォーターマークの発生を抑制することができ、歩留まりの向上を図ることができる。

[0005]

【発明が解決しようとする課題】

しかしながら、ウエハ等にレジストパターンが形成されている場合は、IPAの蒸気をウエハ等に接触させると、IPAによってレジストが溶融されて、レジストパターンが破壊され、品質の低下及び歩留まりの低下をきたすという問題があった。また、オゾン水中のオゾン濃度が高いと、レジストが溶解し、上述と同様にレジストパターンが破壊され、品質の低下及び歩留まりの低下をきたす恐れもある。

[0006]

この発明は上記事情に鑑みなされたもので、レジストパターンを崩さず、かつ ウォーターマークの発生を抑制して品質及び歩留まりの向上を図れるようにした 基板表面処理方法及び基板表面処理装置を提供することを目的とするものである

[0007]

【課題を解決するための手段】

上記目的を達成するために、請求項1記載の発明は、レジストパターンが形成された被処理基板に薬液を供給して被処理基板表面の酸化膜を除去するエッチング工程と、 上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と、 上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性にすべく酸化膜を形成する工程と、 上記被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去する乾燥工程と、 を有することを特徴とする。

[0008]

請求項1記載の発明によれば、レジストパターンが形成された被処理基板に薬液を供給して被処理基板表面の酸化膜をエッチングにより除去した後、被処理基板にリンス液を供給して被処理基板表面を洗浄し、被処理基板に所定濃度のオゾン水を供給して被処理基板の表面酸化膜を形成して被処理基板表面を親水性にするので、ウォーターマークの発生を抑制することができる。また、被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去するので、レジストパ

ターンを破壊することなく効率よく乾燥することができる。

[0009]

請求項2記載の発明は、レジストパターンが形成された被処理基板に薬液を供給して被処理基板表面の酸化膜を除去するエッチング工程と、 上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と、 上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性にすべく酸化膜を形成する工程と、 上記被処理基板を回転して被処理基板表面に付着する水分を除去する乾燥工程と、を有することを特徴とする。

[0010]

請求項2記載の発明によれば、請求項1記載の発明と同様に、被処理基板に所 定濃度のオゾン水を供給して被処理基板の表面酸化膜を形成して被処理基板表面 を親水性にするので、ウォーターマークの発生を抑制することができる。また、 被処理基板を回転して被処理基板表面に付着する水分を除去するので、レジスト パターンを破壊することなく効率よく乾燥することができる。

[0011]

請求項3記載の発明は、レジストパターンが形成された被処理基板とレジストパターンが形成されない被処理基板に分けて別の処理工程を選択して行う基板表面処理方法であって、 レジストパターンが形成された被処理基板の処理は、被処理基板に薬液を供給して被処理基板表面を洗浄するリンス工程と、 上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と、 上記被処理基板に所定濃度のオゾン水を供給して被処理基板の表面を親水性にすべく酸化膜を形成する工程と、 上記被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去する乾燥工程と、 を有し、 レジストパターンが形成されない被処理基板の処理は、被処理基板に薬液を供給して被処理基板表面の酸化膜を除去するエッチング工程と、 上記被処理基板にリンス液を供給して被処理基板表面を洗浄するリンス工程と、 上記被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去する乾燥工程と、を有することを特徴とする。

[0012]

請求項3記載の発明によれば、レジストパターンが形成された被処理基板は、被処理基板に所定濃度のオゾン水を供給して被処理基板の表面酸化膜を形成して被処理基板表面を親水性にするので、ウォーターマークの発生を抑制することができる。また、被処理基板に乾燥気体を供給して被処理基板表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。一方、レジストパターンが形成されない被処理基板は、薬液を供給して被処理基板表面の酸化膜をエッチングにより除去し、被処理基板にリンス液を供給して被処理基板表面を洗浄した後、被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去するので、ウォーターマークの発生を抑制することができると共に、効率よく乾燥することができる。したがって、レジストパターンの形成の有無によって選択して最適の処理ができるので、処理効率の向上が図れる。

[0013]

請求項4記載の発明は、請求項3記載の発明のレジストパターンが形成された 被処理基板の乾燥工程を、被処理基板を回転して被処理基板表面に付着する水分 を除去する乾燥工程としたことを特徴とする。

[0014]

請求項4記載の発明によれば、請求項3記載の発明と同様に、レジストパターンが形成された被処理基板は、被処理基板に所定濃度のオゾン水を供給して被処理基板の表面酸化膜を形成して被処理基板表面を親水性にするので、ウォーターマークの発生を抑制することができる。また、被処理基板を回転して被処理基板表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。一方、レジストパターンが形成されない被処理基板は、薬液を供給して被処理基板表面の酸化膜をエッチングにより除去し、被処理基板にリンス液を供給して被処理基板表面を洗浄した後、被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去するので、ウォーターマークの発生を抑制することができると共に、効率よく乾燥することができる。したがって、レジストパターンの形成の有無によって選択して最適の処理ができるので、処理効率の向上が図れる。

[0015]

この発明において、上記親水化工程におけるオゾン水の濃度が、 $0.5\sim10$ P P m である方が好ましい(請求項 5)。

[0016]

請求項5記載の発明によれば、オゾン水によるレジストの溶解を防止することができると共に、親水化に必要な膜厚の酸化膜を形成することができる。

[0017]

請求項6記載の発明は、請求項3記載の基板表面処理方法を具現化するもので、被処理基板を収容する処理室と、 上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と、 上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、 上記処理室内に乾燥気体を供給する乾燥気体供給手段と、 上記処理室内に乾燥用溶媒供給手段と、 上記処理室内にレジストパターンが形成された被処理基板を収容するときは、上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記が関係を収容するときば、上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達する制御手段と、を具備することを特徴とする。

[0018]

また、請求項7記載の発明は、請求項4記載の基板表面処理方法を具現化するもので、被処理基板を収容する処理室と、 上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と、 上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、 上記被処理基板を回転する回転乾燥手段と、 上記処理室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、 上記処理室内にレジストパターンが形成された被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に作動信号を伝達する制御手段と、を具

備することを特徴とする。

[0019]

請求項8記載の発明は、請求項3記載の基板表面処理方法を具現化するもので、被処理基板を収容する処理室と、 上記被処理基板を収容する乾燥室と、 上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と、 上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、 上記乾燥室内に乾燥用溶媒を供給する乾燥気体供給手段と、 上記乾燥室内に乾燥用溶媒を供給する乾燥気体供給手段と、 上記処理室内にレジストパターンが形成された被処理基板を収容するときは、上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と乾燥気体供給手段に作動信号を伝達し、上記如理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と乾燥気体供給手段に代えて上記乾燥

[0020]

また、請求項 9 記載の発明は、請求項 4 記載の基板表面処理方法を具現化するもので、被処理基板を収容する処理室と、 上記被処理基板を収容する乾燥室と、 上記処理室内の被処理基板に酸化膜除去用の薬液を供給する薬液供給手段と、 上記処理室内の被処理基板に洗浄用のリンス液を供給するリンス液供給手段と、 上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、 上記処理室内の被処理基板にオゾン水を供給するオゾン水供給手段と、 上記被処理基板を回転する回転乾燥手段と、 上記乾燥室内に乾燥用溶媒を供給する乾燥用溶媒供給手段と、 上記処理室内にレジストパターンが形成された被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に作動信号を伝達し、上記処理室内にレジストパターンが形成されない被処理基板を収容するときは、上記オゾン水供給手段と回転乾燥手段に代えて上記乾燥用溶媒供給手段に作動信号を伝達する制御手段と、を具備することを特徴とする。

[0021]

請求項6ないし9記載の発明によれば、処理室内にレジストパターンが形成された被処理基板を収容するときは、オゾン水供給手段と乾燥気体供給手段又は回

転乾燥手段に作動信号を伝達し、処理室内にレジストパターンが形成されない被処理基板を収容するときは、オゾン水供給手段と乾燥気体供給手段又は回転乾燥手段に代えて乾燥用溶媒供給手段に作動信号を伝達する制御手段を具備するので、レジストパターンが形成された被処理基板は、被処理基板に所定濃度のオゾン水を供給して被処理基板の表面酸化膜を形成して被処理基板表面を親水性にすることができ、ウォーターマークの発生を抑制することができる。また、被処理基板に乾燥気体を供給するか、あるいは、被処理基板を回転して被処理基板表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。一方、レジストパターンが形成されない被処理基板に以ンス液を供給して被処理基板表面を洗浄した後、被処理基板に乾燥用溶媒を供給して被処理基板表面を洗浄した後、被処理基板に乾燥用溶媒を供給して被処理基板表面に付着する水分を除去するので、ウォーターマークの発生を抑制することができると共に、効率よく乾燥することができる。したがって、レジストパターンの形成の有無によって選択して最適の処理ができるので、処理効率の向上が図れる。

[0022]

請求項10記載の発明は、請求項8記載の基板表面処理装置において、 上記 処理室と乾燥室とを連通口を介して連設すると共に、連通口に開閉手段を配設し てなることを特徴とする。

[0023]

このように構成することにより、処理室内で被処理基板にエッチング処理、リンス処理及びオゾン水による親水化処理を施した後、被処理基板を処理室内に移動して乾燥処理することができるので、被処理体は外気に触れずにエッチング処理、リンス処理、親水化処理及び乾燥処理を行うことができる。したがって、被処理基板に酸化膜が再度付着する心配がなく、また、パーティクルが付着する心配もない。

[0024]

【発明の実施の形態】

以下に、この発明の実施の形態を図面に基づいて詳細に説明する。ここでは、

この発明に係る基板表面処理装置をレジストパターンが形成された半導体ウエハ (以下にウエハという)のエッチング、洗浄及び乾燥処理を行う処理装置に適用 した場合について説明する。

[0025]

◎第一実施形態

図1は、この発明に係る基板表面処理装置の第一実施形態を示す概略断面図である。

[0026]

上記処理装置は、ウエハWを収容する処理室である処理槽1と、この処理槽1の上方に位置するウエハWを収容する乾燥室2と、処理槽1内のウエハWに酸化膜除去用の薬液例えば希フッ酸水(DHF)を供給する薬液供給手段3と、処理槽1内のウエハWに洗浄用のリンス液を供給するリンス液供給手段4と、処理槽1内のウエハWにオゾン水を供給するオゾン水供給手段5と、乾燥室2内に例えば窒素ガス(N2ガス)や清浄空気等の乾燥気体を供給する乾燥気体供給手段6と、薬液供給手段3、リンス液供給手段4、オゾン水供給手段5及び乾燥気体供給手段6や後述するウエハガイド7、容器カバー昇降機構8、シャッタ9等に制御(作動)信号を伝達する制御手段例えば中央演算処理装置10(以下にCPU10という)とを具備している。

[0027]

この場合、上記処理槽1は、ウエハWを収容する内槽1aと、この内槽1aの上端開口の外周部を包囲する外槽1bとで構成されている。また、内槽1aの底部には、ドレン口1cが設けられており、このドレン口1cにドレン弁1dを介設したドレン管1eが接続されている。また、外槽1bの底部には、排水口1fが設けられており、この排水口1fに開閉弁1gを介設した排水管1hが接続されている。

[0028]

また、処理槽1の内槽1a内の下部側には供給ノズル11が配設されている。 この供給ノズル11は、主供給管12を介してリンス液である純水 (DIW) の 供給源4aに接続されている。主供給管12における純水供給源4a側には第1 の開閉弁V1が介設されており、これら純水供給源4a、主供給管12、第1の開閉弁V1及び供給ノズル11によってリンス液供給手段4が形成されている。

[0029]

また、主供給管12の途中には切換開閉弁V0が介設されており、この切換開閉弁V0に接続する薬液供給管13を介して薬液例えばフッ酸水 (HF)の供給タンク3aが接続されている。なお、薬液供給管13にはポンプ3bが介設されている。これら供給タンク3a、薬液供給管13、ポンプ3b、切換開閉弁V0、主供給管12及び供給ノズル11によって薬液供給手段3が形成されている。この場合、主供給管12内を流れる純水と供給タンク3aから供給されるHFとが混合されて所定濃度の薬液 (DHF)が供給ノズル11から処理槽1内に供給されるように構成されている。

[0030]

また、主供給管12における第1の開閉弁V1と切換開閉弁V0との間には、オゾン水供給管14を介してオゾン水生成器5 a が接続されている。なお、オゾン水供給管14には、第2の開閉弁V2が介設されている。これらオゾン水生成器5 a、第2の開閉弁V2、オゾン水供給管14、主供給管12及び供給ノズル11によってオゾン水供給手段5が形成されている。この場合、オゾン水生成器5 aによって生成されたオゾン(〇3)水と主供給管12を流れる純水とによって供給ノズル11から所定濃度例えば10ppm以下のオゾン水が供給されるようになっている。ここで、オゾン水の濃度を10ppm以下とした理由は、オゾン水の濃度が10ppmより高いとウエハW表面のレジストが溶解する恐れがあるからである。なお、オゾン水の濃度を0.5~10ppmとすることにより、ウエハWの表面を親水性にするのに必要な膜厚例えば6~10人の酸化膜を形成することができる。

[0031]

一方、乾燥室2は、複数例えば50枚のウエハWを収容可能な大きさを有すると共に、上端部に搬入・搬出口15を有する容器本体16aと、この容器本体16aの上端に形成された搬入・搬出口15を開放又は閉鎖する容器カバー16bとで主に構成されている。この場合、容器カバー16bは、例えば断面逆U字状

に形成され、昇降機構8によって昇降可能に形成されている。昇降機構8は、CPU10に接続されている。CPU10からの制御(作動)信号により、昇降機構8が作動して、容器カバー16bが開放又は閉鎖されるように構成されている。そして、容器カバー16bが上昇した際には、搬入・搬出口15は開放され、容器本体16aに対してウエハWを搬入できる状態となる。容器本体16aにウエハWを搬入して収容した後、容器カバー16bが下降することで、搬入・搬出口15が塞がれる。この場合、容器本体16aと容器カバー16bの間の隙間は、リップ式のOリング17aによって密封されるように構成されている。

[0032]

また、上記ウエハガイド7は、図1に示すように、ガイド部7aと、このガイド部7aに水平状態に固着された互いに平行な3本の保持部材7b,7c,7dとで主に構成されており、各保持部材7b,7c,7dに、ウエハWの周縁下部を保持する溝(図示せず)が等間隔に50箇所形成されている。したがって、ウエハガイド7は、50枚のウエハWを等間隔で配列させた状態で保持することができる。また、ウエハガイド7は、ガイド部7aに連なるシャフト7eが容器カバー16bの頂部に設けられた透孔16c内に摺動可能に貫通されており、透孔16cとシャフト7eとの間には、伸縮式のOリング17bが介在されて、乾燥室2内の気水密が維持できるように構成されている。なお、ウエハガイド7の昇降機構(図示せず)はCPU10に接続されており、CPU10からの制御(作動)信号によって作動し得るように構成されている。

[0033]

また、処理槽1と乾燥室2とは連通口15aを介して連設されており、連通口15aに開閉手段であるシャッタ9が開閉可能に配設されており、このシャッタ9によって処理槽1と乾燥室2が遮断されるように構成されている。この場合、シャッタ9の駆動部9aはCPU10に接続されており、CPU10からの制御(作動)信号によって連通口15aを開閉し得るように構成されている。

[0034]

上記乾燥気体供給手段6は、乾燥室2内の上部側に配設されるガス供給ノズル 11Aと、このガス供給ノズル11Aにガス供給管18を介して接続する乾燥気 体例えばN2ガスの供給源6aと、ガス供給管18に介設される第3の開閉弁V3とで主要部が構成されている。この場合、ガス供給管18には、温度調整器6bが介設されており、この温度調整器6bによってホットN2ガスが生成されるようになっている。この温度調整器6bと第3の開閉弁V3は、CPU10からの制御(作動)信号によって作動し得るように構成されている。

[0035]

なお、上記薬液供給手段3、リンス液供給手段4、オゾン水供給手段5及び乾燥気体供給手段6やウエハガイド7、容器カバー昇降機構8、シャッタ9等は、CPU10に予めプログラムされた記憶情報に基いて制御されるようになっている。

[0036]

次に、上記処理装置を用いたウエハWの処理の手順を、図2ないし図5に示す 概略断面図と図6に示すフローチャートを参照して説明する。

[0037]

まず、図示しないウエハ搬送手段によって搬送された複数例えば50枚のウエハWを、処理装置の上方に上昇するウエハガイド7に受け渡し、次いで、ウエハガイド7が下降した後、容器カバー16bが閉鎖してウエハWを処理槽1内に収容する。処理槽1内にウエハWを収容した状態において、最初に、ポンプ3bを作動させると共に、第1の開閉弁V1を開放し、切換開閉弁V0を薬液供給タンク3a側に切り換えて処理槽1内に収容されるウエハWに薬液(DHF)を供給し、DHFによりエッチング処理を施して、ウエハW表面の酸化膜を除去する(ステップ6-1) (図2参照)。次に、ポンプ3bを停止すると共に、切換開閉弁V0を純水供給源4a側のみに切り換えて処理槽1内に収容されるウエハWにリンス液(DIW)を供給すると共に、外槽1bにオーバーフローさせながらウエハW表面を洗浄する(ステップ6-2) (図3参照)。ウエハWを洗浄した後、第2の開閉弁V2を開放してオゾン水生成器5aによって生成されたオゾン(O3)水を主供給管12に流し、供給ノズル11から所定濃度例えば10ppm以下のオゾン(O3)水を供給すると共に、外槽1bにオーバーフローさせながらウエハWに供給してウエハW表面に酸化膜(膜厚:6~10Å)を形成し、ウエハ

W表面を親水性にする(ステップ6-3) {図4参照}。

[0038]

上記のようにして、ウエハW表面の酸化膜を除去するエッチング処理、ウエハ W表面を洗浄するリンス処理及びウエハW表面に酸化膜を形成する親水化処理を 行った後、ウエハガイド7を上昇させてウエハWを処理槽1の上方の乾燥室2内 に移動する。このとき、シャッタ9が閉鎖位置に移動して乾燥室2と処理槽1と が遮断されると共に、乾燥室2内が密閉される。この状態で、第3の開閉弁V3が開放すると共に、塩度調整器6bが作動してN2ガス供給源6aから乾燥室2内にホットN2ガスが供給されて、ウエハWの乾燥が行われる(ステップ6-4)(図5参照)。この乾燥工程では、ウエハW表面が親水性であるので、ウエハ W表面にウォーターマークが生じる恐れがない。

[0039]

上記のようにして乾燥処理を行った後、昇降機構8を作動させて、容器カバー16bを上昇して、容器本体16aの搬入・搬出口15を開放した後、ウエハガイド7を上昇して、ウエハWを乾燥室2の上方に搬出する。そして、図示しないウエハ搬送手段にウエハWを受け渡して、次の処理部に搬送する。

[0040]

◎第二実施形態

図7は、この発明に係る基板表面処理装置の第二実施形態を示す概略断面図で ある。

[0041]

第二実施形態は、レジストパターンが形成されたウエハWと、レジストパターンが形成されないウエハWとを効率よく処理できるようにした場合である。

[0042]

第二実施形態の処理装置は、上記第一実施形態の処理装置に加えて、乾燥室2内に乾燥用溶媒例えばイソプロピル・アルコール(IPA)蒸気又はIPAとガスの混合ガスの供給ノズル11Bを配設し、このIPA供給ノズル11BとIPA供給源19aとをIPA供給管19bを介して接続し、IPA供給管19bに第4の開閉弁V4を介設した場合である。これらIPA供給ノズル11B、IP

A蒸気又はIPAを含んだガスの供給源19a、IPA供給管19b及び第4の開閉弁V4によってIPA供給手段19が形成されている。また、第4の開閉弁V4は、CPU10からの制御(作動)信号により開閉動作し得るように構成されている。

[0043]

第二実施形態において、その他の部分は、上記第一実施形態と同様であるので 、同一部分には同一符号を付して、説明は省略する。

[0044]

次に、第二実施形態における処理手順について、図2ないし図5及び図8に示す概略断面図と図9に示すフローチャートを参照して説明する。

[0045]

第二実施形態においては、まず、処理されるウエハWがレジストパターンが形 成されているか否かが判別され(ステップ9-1)、ウエハWにレジストパター ンが形成されている場合は、上記第一実施形態と同様に、処理される。すなわち 、処理槽1内にウエハWを収容した状態において、最初に、ポンプ3bを作動さ せると共に、第1の開閉弁V1を開放し、切換開閉弁V0を薬液供給タンク3 a 側 に切り換えて処理槽1内に収容されるウエハWに薬液(DHF)を供給し、DH Fによりエッチング処理を施して、ウエハW表面の酸化膜を除去する(ステップ 9-2) (図2参照)。次に、ポンプ3bを停止すると共に、切換開閉弁V0を 純水供給源4a側のみに切り換えて処理槽1内に収容されるウエハWにリンス液 (DIW) を供給すると共に、外槽1bにオーバーフローさせながらウエハW表 面を洗浄する(ステップ9-3) {図3参照}。 ウエハWを洗浄した後、第2の 開閉弁V2を開放してオゾン水生成器5aによって生成されたオゾン(O3)水を 主供給管12に流し、供給ノズル11から所定濃度例えば10ppm以下のオゾ ン(O3)水を供給すると共に、外槽1bにオーバーフローさせながらウエハW に供給してウエハW表面に酸化膜(膜厚:6~10Å)を形成し、ウエハW表面 を親水化する(ステップ9-4) {図4参照}。

[0046]

上記のようにして、ウエハW表面の酸化膜を除去するエッチング処理、ウエハ

W表面を洗浄するリンス処理及びウエハW表面に酸化膜を形成する親水化処理を行った後、ウエハガイド7によってウエハWを乾燥室2内に移動する。この状態で、第3の開閉弁V3が開放すると共に、温度調整器6bが作動してN2ガス供給源6aから乾燥室2内にホットN2ガスが供給されて、ウエハWの乾燥が行われる(ステップ9-5){図5参照}。この乾燥工程では、ウエハW表面が親水性であるので、ウエハW表面にウォーターマークが生じる恐れがない。

[0047]

一方、レジストパターンが形成されないウエハWは、レジストパターンが形成されたウエハWと同様に、エッチング処理(ステップ9-6) {図2参照} された ウエハ処理される(ステップ9-7) {図3参照}。そして、リンス処理を行った後、ウエハガイド7によってウエハWを乾燥室2内に移動する。この状態で、第4の開閉弁V4が開放してIPA供給源19aから乾燥室2内にIPAの蒸気が供給されて、ウエハWの乾燥が行われる(ステップ9-8) {図8参照}。この乾燥工程では、ウエハW表面に付着する水分をIPAの蒸気で置換しながら乾燥するので、ウエハW表面にウォーターマークが生じる恐れがない。

[0048]

◎第三実施形態

図10は、この発明に係る基板表面処理装置の第三実施形態を示す概略断面図 である。

[0049]

第三実施形態は、ウエハWのエッチング処理、リンス処理、親水化処理及び乾燥処理を、2つの室の切り換えにより行えるようにした場合である。

[0050]

第三実施形態における処理装置20は、図10に示すように、ウエハWを保持する回転可能な保持手段例えばロータ21と、このロータ21を水平軸を中心として回転駆動する駆動手段であるモータ22と、ロータ21にて保持されたウエハWを包囲する容器である2つの室を形成する内チャンバ23、外チャンバ24と、内チャンバ23を構成する内筒体25と外チャンバ24を構成する外筒体26をそれぞれウエハWの包囲位置とウエハWの包囲位置から離れた待機位置に切

り換え移動する移動手段例えば第1,第2のシリンダ27,28及びウエハWをロータ21に受け渡すと共に、ロータ21から受け取るウエハ受渡ハンド29とを具備している。また、内チャンバ23内には第1の供給ノズル11Cが配設されており、この第1の供給ノズル11Cには、上記第一実施形態と同様に形成されるリンス液供給手段4、薬液供給手段3及びオゾン水供給手段5が接続されている。また、外チャンバ24内には、第2の供給ノズル11Dが配設されており、この第2の供給ノズル11Dには、上記第二実施形態と同様に第4の開閉弁V4を介設したIPA供給管19bを介してIPA供給源19aが接続されている

[0051]

上記のように構成される処理装置におけるモータ 22、各供給手段 3, 4, 5, 6, 19 の第 1、第 2 及び第 4 の開閉弁 V1, V2, V4、切換開閉弁 V0、ウエハ受渡ハンド 2 9等は、CPU10からの制御(作動)信号に基いて制御されるように構成されている。

[0052]

なお、モータ22は過熱される虞があるので、モータ22には、過熱を抑制するための冷却手段37が設けられている。この冷却手段37は、図10に示すように、モータ22の周囲に配管される循環式冷却パイプ37aと、この冷却パイプ37aの一部と冷却水供給パイプ37bの一部を配設して、冷却パイプ37a内に封入される冷媒液を冷却する熱交換器37cとで構成されている。この場合、冷媒液は、万一漏洩してもモータ22が漏電しないような電気絶縁性でかつ熱伝導性の良好な液、例えばエチレングリコールが使用されている。また、この冷却手段37は、図示しない温度センサによって検出された信号に基いて作動し得るように上記CPU30によって制御されている。

[0053]

一方、処理室例えば内チャンバ23は、第1の固定壁34と、この第1の固定壁34と対峙する第2の固定壁38と、これら第1の固定壁34及び第2の固定壁38との間にそれぞれ第1及び第2のシール部材40a,40bを介して係合する内筒体25とで形成されている。すなわち、内筒体25は、移動手段である

第1のシリンダ27の伸張動作によってロータ21とウエハWを包囲する位置まで移動されて、第1の固定壁34との間に第1のシール部材40aを介してシールされると共に、第2の固定壁38との間に第2のシール部材40bを介してシールされた状態で内チャンバ23を形成する。また、第1のシリンダ27の収縮動作によって固定筒体36の外周側位置(待機位置)に移動されるように構成されている。この場合、内筒体25の先端開口部は第1の固定壁34との間に第2のシール部材40bを介してシールされ、内筒体25の基端部は固定筒体36の中間部に周設されたフランジ部36aに第1のシール部材40aを介してシールされて、内チャンバ23内に残存する薬液の雰囲気が外部に漏洩するのを防止している。

[0054]

また、外チャンバ24は、待機位置に移動された内筒体25との間に第2のシール部材40bを介在する第1の固定壁34と、第2の固定壁38と、第2の固定壁38と内筒体25との間にそれぞれ第3及び第4のシール部材40c,40dを介して係合する外筒体26とで形成されている。すなわち、外筒体26は、移動手段である第2のシリンダ28の伸張動作によってロータ21とウエハWを包囲する位置まで移動されて、第2の固定壁38との間に第3のシール部材40cを介してシールされると共に、外筒体26の基端部外方に位置する第4のシール部材40dを介してシールされた状態で、外チャンバ24を形成する。また、第2のシリンダ28の収縮動作によって固定筒体36の外周側位置(待機位置)に移動されるように構成されている。この場合、外筒体26と内筒体25の基端部間には第4のシール部材40dが介在されて、シールされている。したがって、内チャンバ23の内側雰囲気と、外チャンバ24の内側雰囲気とは、互いに気水密な状態に離隔されるので、両チャンバ23,24内の雰囲気が混じることなく、異なる処理流体が反応して生じるクロスコンタミネーションを防止することができる。

[0055]

上記のように構成される内筒体25と外筒体26は共に一端に向かって拡開するテーパ状に形成されており、同一水平線上に対峙する第1の固定壁34、第2

の固定壁38及び装置側壁(図示せず)に架設された互いに平行な複数(例えば3本)のガイドレール(図示せず)に沿って摺動可能に取り付けられており、上記第1及び第2のシリンダ27,28の伸縮動作によって同心上に互いに出没可能及び重合可能に形成されている。このように内筒体25及び外筒体26を、一端に向かって拡開するテーパ状に形成することにより、処理時に内筒体25又は外筒体26内でロータ21が回転されたときに発生する気流が拡開側へ渦巻き状に流れ、内部の薬液等が拡開側へ排出し易くすることができる。また、内筒体25と外筒体26とを同一軸線上に重合する構造とすることにより、内筒体25と外筒体26及び内チャンバ23及び外チャンバ24の設置スペースを少なくすることができると共に、装置の小型化が図れる。

[0056]

次に、第三実施形態の処理手順について、図11に示すフローチャートを参照 して説明する。

[0057]

第三実施形態においては、第二実施形態と同様に、まず、処理されるウエハWがレジストパターンが形成されているか否かが判別され(ステップ11-1)、ウエハWにレジストパターンが形成されている場合は、上記第一及び第二実施形態と同様に、処理される。すなわち、内チャンバ23内にウエハWを収容した状態において、最初に、ポンプ3bを作動させると共に、第1の開閉弁V1を開放し、切換開閉弁V0を薬液供給タンク3a側に切り換えてロータ21と共に回転するウエハWに薬液(DHF)を供給し、DHFによりエッチング処理を施して、ウエハW表面の酸化膜を除去する(ステップ11-2)。次に、ポンプ3bを停止すると共に、切換開閉弁V0を純水供給源4a側のみに切り換えてロータ21と共に回転するウエハWにリンス液(DIW)を供給してウエハW表面を洗浄する(ステップ11-3)。ウエハWを洗浄した後、第2の開閉弁V2を開放してオゾン水生成器5aによって生成されたオゾン(O3)水を主供給管12に流し、供給ノズル11から所定濃度例えば10ppm以下のオゾン(O3)水をウエハWに供給してウエハW表面に酸化膜(膜厚:6~10Å)を形成し、ウエハW表面を親水化する(ステップ11-4)。

[0058]

上記のようにして、ウエハW表面の酸化膜を除去するエッチング処理、ウエハW表面を洗浄するリンス処理及びウエハW表面に酸化膜を形成する親水化処理を行った後、内チャンバ23を後退させて外チャンバ24内にウエハWをおく。この状態で、ロータ21を高速回転して、ウエハW表面に付着する水分を遠心力によって除去してウエハWの乾燥が行われる(ステップ11-5)。この乾燥工程では、ウエハW表面が親水性であるので、ウエハW表面にウォーターマークが生じる恐れがない。

[0059]

一方、レジストパターンが形成されないウエハWの場合は、レジストパターンが形成されたウエハWと同様に、エッチング処理(ステップ11-6)された後、リンス処理される(ステップ11-7)。そして、リンス処理を行った後、内チャンバ23を後退させてウエハWを外チャンバ24内におく。この状態で、第4の開閉弁V4が開放してIPA供給源19aから外チャンバ24(乾燥室)内にIPAの蒸気が供給されて、ウエハWの乾燥が行われる(ステップ11-8)。この乾燥工程では、ウエハW表面に付着する水分をIPAの蒸気で置換しながら乾燥するので、ウエハW表面にウォーターマークが生じる恐れがない。なおこの場合、ロータ21を回転させることも可能である。

[0060]

第三実施形態では、内チャンバ23で処理を行い、外チャンバ24で乾燥のみを行うようにしたが、必ずしもこの方法に限定されるものではない。例えば、内チャンバ23で薬液処理を行い、外チャンバ24でリンス処理と乾燥を行うようにしてもよい。

[0061]

◎その他の実施形態

上記実施形態では、2つの処理室を連設又は一体化する場合について説明したが、処理室と乾燥室2とを別個に形成して、エッチング処理、リンス処理及び親水化処理と、乾燥処理とを別の処理部で行うようにしてもよい。

[0062]

また、処理と乾燥を同じ室で行うことも可能である。つまり、第一、第二実施 形態における処理槽1にウエハWを収容した状態で、エッチング処理、リンス処 理及び親水化処理を行い、その後、オゾン(O3)水又はリンス液(DIW)を 排出後又は排出しながら乾燥ガス(N2ガス)を供給して乾燥することも可能で ある。

[0063]

また、第三実施形態においては、2つの処理室(内チャンバ23、外チャンバ24)で処理と乾燥を行ったが、1つの処理室に液供給口とIPA蒸気又はIPAとガスの混合ガスの供給口を設ければ、1つの処理室にて処理と乾燥の全工程を行うことができる。

[0064]

上記実施形態では、基板表面処理装置を単独で使用する場合について説明したが、図12に示す洗浄・乾燥処理システムに組み込んで使用する方が好適である

[0065]

上記洗浄・乾燥処理システムは、ウエハWを複数枚例えば25枚を収納する容器例えばキャリア51を搬入、搬出するための搬入・搬出部52と、ウエハWをエッチング処理、リンス処理及び親水化処理すると共に乾燥処理する処理部53と、搬入・搬出部52と処理部53との間に位置してウエハWの受渡し、位置調整及び姿勢変換等を行うインターフェース部54とで主に構成されている。なお、搬入・搬出部52とインターフェース部54の側方には、空のキャリア51を一時収納するキャリアストック55と、キャリア51をクリーニングするキャリアクリーナ56が配設されている。

[0066]

上記搬入・搬出部52は、洗浄・乾燥処理装置の一側端部に配置されており、 キャリア搬入部52aとキャリア搬出部52bが併設されている。

[0067]

上記インターフェース部54には、キャリア載置台57が配置されており、このキャリア載置台57と、搬入・搬出部52との間には、キャリア搬入部52a

から受け取ったキャリア51をキャリア載置台57又はキャリアストック55上に搬送し、キャリア載置台57上のキャリア51をキャリア搬出部52b又はキャリアストック55へ搬送するキャリア搬送手段58が配設されている。また、インターフェース部54には、処理部53と連なる搬送路59が設けられており、この搬送路59にウエハ搬送手段例えばウエハ搬送チャック60が移動自在に配設されている。このウエハ搬送チャック60は、キャリア載置台7上のキャリア51内から未処理のウエハWを受け取った後、処理部53に搬送し、処理部53に欠理された処理済みのウエハWをキャリア51内に搬入し得るように構成されている。

[0068]

【実施例】

ウエハWの表面を親水性にするのに必要な酸化膜の膜厚:6~10Åを生長させるためのオゾン水の濃度を設定するために、酸化膜とオゾン水のリンス処理時間との関係と、オゾン水の濃度とオゾン水立上り時間との関係を調べたところ、図13、図14のような結果が得られた。

[0069]

上記実験の結果、図13のグラフに示すように、ウエハWの表面を親水性にする酸化膜の膜厚を $6\sim10$ Åにするのに、オゾン水のリンス処理時間は約 $1\sim2$ 分(min)であった。また、図14のグラフに示すように、オゾン水の立上り時間が約 $1\sim2$ 分(min) $\{60\sim120$ 秒(sec) $\}$ のときのオゾン水の濃度は $0.5\sim3$ ppmであった。したがって、オゾン水の濃度の下限値は0.5 ppm程度であればよく、オゾン水の濃度を $0.5\sim10$ ppmにすれば、レジストを溶解せずにウエハWの表面を親水性にすることができる。

[0070]

なお、酸化膜の膜厚が均一になるには、10 Å程度が必要である。したがって、ウエハWの表面の親水性の安定化を図るには、オゾン濃度が $3\sim10$ p p mである方が好ましい。

[0071]

また、従来の処理方法とこの発明に係る処理方法の処理効率を比較するために

、以下の条件でテストを行った。

[0072]

条件

- 1) 比較例1:エッチング処理 (DHF)
 - →リンス処理(DIリンス) {900秒}
 - →IPA蒸気/N2ブロー乾燥
- 2) 比較例2:エッチング処理 (DHF)
 - →リンス処理 (DIリンス) {900秒}
 - →N2ブロー乾燥(IPA不使用)
- 3) 実施例 : エッチング処理 (DHF)
 - →リンス処理 (DIリンス) /O3水リンス {合計900秒}
 - →N2ブロー乾燥

ここで、エッチング処理:160秒 (エッチング=50Å)、濃度200:1 DIリンス処理:25リットル/分 900秒

O3水リンス処理:12リットル/分 300秒、濃度5ppm

ウエハ:8インチウエハ、50枚

乾燥: I P A 蒸気=40秒/N2=300秒 N2乾燥=480秒とする。

[0073]

上記条件でウエハW表面に生じるウォーターマークの数を調べたところ、比較例2では、5000以上のウォーターマークが検出された。これに対し、比較例1と実施例では、ウォーターマークは10以下であった。この結果、この発明の処理方法によれば、レジストパターンを崩すことなく、しかもウォーターマークの発生を抑制できることが判った。

[0074]

【発明の効果】

以上に説明したように、この発明によれば、上記のように構成されているので 、以下のような効果が得られる。

[0075]

1) 請求項1記載の発明によれば、レジストパターンが形成されたウエハに薬液を供給してウエハ表面の酸化膜をエッチングにより除去した後、ウエハにリンス液を供給してウエハ表面を洗浄し、ウエハに所定濃度のオゾン水を供給してウエハの表面酸化膜を形成してウエハ表面を親水性にするので、ウォーターマークの発生を抑制することができる。また、ウエハに乾燥気体を供給してウエハ表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。

[0076]

2) 請求項2記載の発明によれば、請求項1記載の発明と同様に、ウエハに所 定濃度のオゾン水を供給してウエハの表面酸化膜を形成してウエハ表面を親水性 にするので、ウォーターマークの発生を抑制することができる。また、ウエハを 回転してウエハ表面に付着する水分を除去するので、レジストパターンを破壊す ることなく効率よく乾燥することができる。

[0077]

3) 請求項3,6,8記載の発明によれば、レジストパターンが形成されたウエハは、ウエハに所定濃度のオゾン水を供給してウエハの表面酸化膜を形成してウエハ表面を親水性にするので、ウォーターマークの発生を抑制することができる。また、ウエハに乾燥気体を供給してウエハ表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。一方、レジストパターンが形成されないウエハは、薬液を供給してウエハ表面の酸化膜をエッチングにより除去し、ウエハにリンス液を供給してウエハ表面を洗浄した後、ウエハに乾燥用溶媒を供給してウエハ表面に付着する水分を除去するので、ウォーターマークの発生を抑制することができると共に、効率よく乾燥することができる。したがって、レジストパターンの形成の有無によって選択して最適の処理ができるので、処理効率の向上が図れる。

[0078]

4) 請求項4,7,9記載の発明によれば、請求項3記載の発明と同様に、レジストパターンが形成されたウエハは、ウエハに所定濃度のオゾン水を供給してウエハの表面酸化膜を形成してウエハ表面を親水性にするので、ウォーターマー

クの発生を抑制することができる。また、ウエハを回転してウエハ表面に付着する水分を除去するので、レジストパターンを破壊することなく効率よく乾燥することができる。一方、レジストパターンが形成されないウエハは、薬液を供給してウエハ表面の酸化膜をエッチングにより除去し、ウエハにリンス液を供給してウエハ表面を洗浄した後、ウエハに乾燥用溶媒を供給してウエハ表面に付着する水分を除去するので、ウォーターマークの発生を抑制することができると共に、効率よく乾燥することができる。したがって、レジストパターンの形成の有無によって選択して最適の処理ができるので、処理効率の向上が図れる。

[0079]

5) 請求項 5 記載の発明によれば、親水化工程におけるオゾン水の濃度を、 0 . $5\sim10$ p p mにすることにより、オゾン水によるレジストの溶解を防止することができると共に、親水化に必要な膜厚の酸化膜を形成することができる。

[0080]

6) 請求項10記載の発明によれば、被処理体は外気に触れずにエッチング処理、リンス処理、親水化処理及び乾燥処理を行うことができるので、ウエハに酸化膜が再度付着する心配がなく、また、パーティクルが付着する心配もない。したがって、上記3)、4)に加えて更に品質及び歩留まりの向上を図ることができる。

【図面の簡単な説明】

【図1】

この発明に係る基板表面処理装置の第一実施形態を示す概略断面図である。

【図2】

この発明におけるエッチング処理工程を示す概略断面図である。

【図3】

この発明におけるリンス処理工程を示す概略断面図である。

【図4】

この発明における親水化(酸化膜形成)処理工程を示す概略断面図である。

【図5】

この発明における乾燥処理工程を示す概略断面図である。

【図6】

第一実施形態の処理手順を示すフローチャートである。

【図7】

この発明に係る基板表面処理装置の第二実施形態を示す概略断面図である。

【図8】

第二実施形態におけるレジストパターンが形成されないウエハの乾燥工程を示す概略断面図である。

【図9】

第二実施形態の処理手順を示すフローチャートである。

【図10】

この発明に係る基板表面処理装置の第三実施形態を示す概略断面図である。

【図11】

第三実施形態の処理手順を示すフローチャートである。

【図12】

この発明に係る基板表面処理装置を適用した処理システムを示す概略平面図である。

【図13】

酸化膜の膜厚とオゾン水のリンス処理時間との関係を示すグラフである。

【図14】

オゾン水の濃度とオゾン水の立上り時間との関係を示すグラフである。

【符号の説明】

- W 半導体ウエハ (被処理基板)
- 1 処理槽(処理室)
- 2 乾燥室
- 3 薬液供給手段
- 4 リンス液供給手段
- 5 オゾン水供給手段
- 6 乾燥気体供給手段
- 9 シャッタ

特2000-320646

- 10 CPU (制御手段)
- 11 供給ノズル
- 11A ガス供給ノズル
- 11B IPA供給ノズル
- 11C 第1の供給ノズル
- 11D 第2の供給ノズル
- 19 IPA供給手段
- 23 内チャンバ
- 24 外チャンバ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

特2000-320646

【書類名】

要約書

【要約】

【課題】 レジストパターンを崩さず、かつウォーターマークの発生を抑制して 品質及び歩留まりの向上を図れるようにすること。

【解決手段】 レジストパターンが形成されたウエハWに薬液であるDHFを供給してウエハW表面の酸化膜をエッチングにより除去し、ウエハWにリンス液を供給してウエハW表面を洗浄し、その後、ウエハWに所定濃度のオゾン水を供給してウエハWの表面を親水性にすべく酸化膜を形成する。そして、ウエハWにN2ガス(乾燥気体)を供給してウエハW表面に付着する水分を除去する。これにより、ウエハWに形成されたレジストパターンを崩さず、かつウォーターマークの発生を抑制して品質及び歩留まりの向上を図ることができる。

【選択図】

図 6

特2000-320646

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 1994年 9月 5日

[変更理由] 住所変更

住 所 東京都港区赤坂5丁目3番6号

氏 名 東京エレクトロン株式会社