ESIEE E2 Le champ magnétostatique

Romain Gille

September 26, 2015

1 Le courant électrique

1.1 Densité volumique de courant

Dans un référentiel donné, un courant électrique traduit un mouvement d'ensemble de charges électriques.

Imaginons un petit volume $d\tau$ centré sur un point P dans lequel des charges en densité $\rho(P)$ se déplacent à la même vitesse \vec{v} .

On définit le vecteur densité volumique de courant $\vec{j}(P)$ par $\vec{j}(P) = \rho(P)\vec{v}$ en $A.m^{-2}$.

Remarque:

• S'il existe des charges différentes 'i' en densité ρ_i avec une vitesse \vec{v}_i :

$$\vec{j}(P) = \sum_{i} \vec{j}_{i}(P) = \sum_{i} \rho_{i}(P)\vec{v}_{i}$$

- $\rho(P)$ est la densité de charge qui se déplacent.
- Si on impose un champ électrique \vec{E}_{ext} : la force subie par chaque charge est de la forme $\vec{F} = q\vec{E}$.

Dans un métal, seuls certains électrons sont capables de quitter les atomes d'origine. On les appelle électrons libres.

Posons n_+ densité de charges supérieure à 0 par unité de volume : $\rho_+(P)=n_+e$.

Posons n_- densité de charges inférieure à 0 par unité de volume : $\rho_-(P) = n_-e$.

$$n_{+} = n_{-} = n$$
 $\rho_{+}(P) + \rho_{-}(P) = ne(1-1) = 0 = \rho(P)$

Sous l'effet de \vec{E} supposons n_i^- électrons libres avec une vitesse

$$\vec{v}$$
 : $\vec{j} = n_i^-(-e)\vec{v}$

L'intensité d'un courant est le nombre de charges qui traversent par unité de temps une surface donnée (Σ_i)

$$dI = \frac{dq}{dt} = \frac{\rho d\tau}{dt} = \frac{\rho v dt dS}{dt}$$

 ρ est la charge contenue dans le tube de courant de longueur v
dt et de section d S.

$$I = \iint_{\Sigma} \vec{j} \cdot \vec{d}S \quad en \quad A.$$

1.2 Densité surfacique de courant

Si le courant volumique se répartit sur une faible épaisseur (cas de conducteur en ruban) on invente une densité surfacique de courant $\vec{j}_s = \sigma \vec{v}$ (σ densité surfacique de courant).

$$\vec{j}_s = \vec{j}_v.h$$

1.3 Densité linéique

On associe à \vec{j}_v un courant linéique d'intensité I.

Origine du champ magnétostatique $\mathbf{2}$

2.1 Loi de Biot et Savart

$$\vec{dB}(M) = \frac{\mu_0}{4\pi} \frac{I\vec{dl} \wedge \vec{P}M}{PM^3}$$

Remarque:

Avec $\vec{j}(P)$ on remplace $I\vec{dl}$ par $\vec{j}(P)d\tau$. Avec $\vec{j}_s(P)$ on remplace $I\vec{dl}$ par \vec{j}_sdS .

Si les courants sont confinés dans le volume Ω , le champ magnétique total est la somme des champs magnétiques élémentaires.

On applique donc le principe de superposition :

$$ex : \vec{B}(M) = \iiint_{\Omega} \frac{\mu_0}{4\pi} \vec{j}(P) \frac{d\tau \wedge \vec{P}M}{PM^3}$$

Remarque:

$$\frac{\vec{P}M}{PM^3} = \frac{\vec{P}M}{PM} \frac{1}{PM^2} = \vec{u}_{PM}.\frac{1}{PM^2}$$

 μ_0 est la perméabilité magnétique du vide.

Dans le système internationnal : $\mu_0 = 4\pi \cdot 10^{-7} H.M^{-1}$.

3 Propriétés de symétrie

- Par rapport à un plan de symétrie
 - la composante de $\vec{B}(M)$ parallèle à ce plan est changée en son opposée.
 - la composante de $\vec{B}(M)$ perpendiculaire à ce plan est conservée $\vec{B}(M) = \vec{B}(M')$.
 - Si M appartient à un plan de symétrie de courant, $\vec{B}(M)$ est perpendiculaire à ce plan.
- Par rapport à un plan d'anti-symétrie
 - la composante de $\vec{B}(M)$ parallèle à ce plan est conservée.
 - la composante de $\vec{B}(M)$ perpendiculaire à ce plan est changée en son opposée.
 - Si M appartient à un plan d'anti-symétrie de courant, $\vec{B}(M)$ est parallèle à ce plan.
 - Si M apartient à deux plans d'anti-symétrie, $\vec{B}(M)$ a pour direction celle de la droite intersection des deux plans.

Ayant la direction de $\vec{B}(M)$, les invariances par rotation ou par translation (de la distribution de courant) permettent d'éliminer des variables. On évite des calculs.

4 Le théorème d'Ampère

Énoncé:

La circulation de $\vec{B}(M)$ sur un contour fermé Γ est égal à μ_0 fois l'intensité du courant qui traverse une surface Σ quelconque s'appuyant sur Γ .

$$\int_{\Gamma} \vec{B}(M \in \Gamma) . \vec{dl} = \mu_0 I = \mu_0 \iint_{\Sigma} \vec{j}(M \in \Gamma) . \vec{dS}$$

Si on a déterminé la direction de $\vec{B}(M)$ et les variables dont il dépend, on essaie de trouver un contour Γ sur lequel $\vec{B}(M).\vec{dl} = B(M).dl$ au moins sur une partie.

Ex : Un fil dans lequel circule I, le fil est parallèle à Oz et il est infini.

- Point 1 ; Direction de $\vec{B}(M)$?
 - Tout plan défini par $(\vec{u}_{\rho}, \vec{u}_{\phi})$ est plan de symétrie pour la distribution de courant. Pour tous M de l'espace, il appartient forcément à un de ces plans :

 $\vec{B}(M)$ est perpendiculaire au plan de symétrie : $\vec{B}(M) = B(M)\vec{u}_{\phi}$.

- Invariances ?
 - * Oui par translation le long de $Oz \to B(M) = B(\rho, \phi)$
 - * Oui par rotation autour de $Oz \to B(M) = B(\rho)$

$$\vec{B} = B(\rho)\vec{u}_{\phi}$$

- Point 2 : défini par Γ, contour fermé
 - $-\Gamma$: cercle d'axe Oz, de rayon $\rho = OM$

$$dC_{\Gamma} = \vec{B}(M \in \Gamma).\vec{dl}$$

$$dC_{\Gamma} = B(\rho)\vec{u}_{\phi}.dl\vec{u}_{\phi} = B(\rho)dl$$

$$C_{\Gamma} = \int_{\Gamma} \vec{B}.\vec{dl} = \int_{\Gamma} B(\rho)dl = B(\rho)\int_{\Gamma} dl = 2\pi\rho B(\rho)$$

Application au théorème d'Ampère:

$$2\pi\rho B(\rho) = \mu_0 \iint_{\Sigma sur\Gamma} \vec{j}.\vec{dS}$$