1 If $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a (real or complex) Hilbert space, prove

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x - iy\|^2 - i\|x + iy\|^2)$$

for all $x, y \in \mathcal{H}$. This is known as the *polarization identity*.

2 If $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ is a (real or complex) inner product space, prove

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2$$

for any $x, y \in \mathcal{V}$. This is known as the parallelogram law.

3 Von Neumann proved that the parallelogram law actually has a converse: a normed space $(\mathcal{V}, \|\cdot\|)$ is an inner product space (with inner product given by the polarization identity) if and only if $(\mathcal{V}, \|\cdot\|)$ satisfies the parallelogram law. Prove that the sequence space ℓ^p , $1 \le p \le \infty$, is a Hilbert space if and only if p = 2.

4 Prove that a real or complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is separable (has a countable dense subset) if and only if \mathcal{H} has a countable orthonormal basis.