Assignment 3 Solutions

Exercise 1 A bin contains n balls, labeled with the numbers $1, 2, \ldots, n$. Exactly m balls are drawn uniformly at random from the bin. Let M be the maximum number of a ball that was drawn.

- 1. Calculate the distribution of M, when the samples are being made without replacement.
- 2. Calculate the distribution of M, when the samples are being made independently with replacement.

Solution

We will calculate $\mathbb{P}(M=k)$ for every $1 \leq k \leq n$.

1. In this case, it is evident that $\mathbb{P}(M=k)=0$ for every $1\leq k\leq m-1$. Moreover, for every $m\leq k\leq n$, it holds that M=k if and only if the ball labeled k is drawn and the remaining m-1 balls that are drawn have their labels in $\{1,2,\ldots,k-1\}$. Hence $|\{M=k\}|=\binom{k-1}{m-1}$. Since the probability space is uniform, we conclude that

$$\mathbb{P}(M = k) = \frac{|\{M = k\}|}{\binom{n}{m}} = \frac{\binom{k-1}{m-1}}{\binom{n}{m}}.$$

2. For every $1 \le i \le m$, let X_i be the label of the *i*th ball that was drawn. Then

$$\mathbb{P}\left(X_{i} \leq k\right) = \frac{k}{n}$$

holds for every $0 \le k \le n$ and every $1 \le i \le m$. Since the samples are independent of one another, it follows that

$$\mathbb{P}\left(M \leq k\right) = \mathbb{P}\left(X_i \leq k \text{ for every } 1 \leq i \leq m\right) = \prod_{i=1}^m \mathbb{P}\left(X_i \leq k\right) = \left(\frac{k}{n}\right)^m.$$

We conclude that

$$\mathbb{P}\left(M=k\right) = \mathbb{P}\left(M \leq k\right) - \mathbb{P}\left(M \leq k-1\right) = \left(\frac{k}{n}\right)^m - \left(\frac{k-1}{n}\right)^m$$

holds for every $1 \le k \le n$.

Exercise 2 A machine M is capable of sampling from $\{0,1\}$ such that $\mathbb{P}(M=1) = p$ and $\mathbb{P}(M=0) = 1 - p$ for some **unknown** $p \in (0,1)$. For every positive integer n, let $(L_n, R_n) \leftarrow M^2$ (i.e., we sample pairs of bits), be sampled independently of one another, and independently of all other samples. Define the algorithm A as follows: A will sample (L_n, R_n) until the first time $L_n \neq R_n$, and will then output the left element. Prove that A will output 1 with probability 1/2.

Solution

We abuse notation and let A denote both the algorithm and its output. For every positive integer n it holds that

$$\mathbb{P}(L_n = R_n) = \mathbb{P}(L_n = 0, R_n = 0) + \mathbb{P}(L_n = 1, R_n = 1) = (1 - p)^2 + p^2.$$

Hence

$$\mathbb{P}(A=1) = \sum_{n=1}^{\infty} \left(\prod_{i=1}^{n-1} \mathbb{P}(L_i = R_i) \cdot \mathbb{P}(L_n = 1, R_n = 0) \right) = \sum_{n=1}^{\infty} \left(p^2 + (1-p)^2 \right)^{n-1} \cdot p(1-p).$$

Similarly

$$\mathbb{P}(A=0) = \sum_{n=1}^{\infty} \left(\prod_{i=1}^{n-1} \mathbb{P}(L_i = R_i) \cdot \mathbb{P}(L_n = 0, R_n = 1) \right) = \sum_{n=1}^{\infty} \left(p^2 + (1-p)^2 \right)^{n-1} \cdot p(1-p).$$

In particular $\mathbb{P}(A=1) = \mathbb{P}(A=0)$. Since, clearly, $\{A=1\}$ and $\{A=0\}$ are disjoint events and $\mathbb{P}(A=1 \vee A=0) = 1$, we conclude that $\mathbb{P}(A=1) = 1/2$.

Exercise 3 Let (Ω, \mathbb{P}) be a probability space and let $X, Y : \Omega \to \mathbb{R}$ be random variables. Prove that for every $m \in \mathbb{R}$ it holds that

$$|\mathbb{P}(X=m) - \mathbb{P}(Y=m)| \leq \mathbb{P}(X \neq Y).$$

Solution

Let $m \in \mathbb{R}$ be arbitrary. Then

$$\begin{split} |\mathbb{P}\left(X=m\right) - \mathbb{P}\left(Y=m\right)| &= |\mathbb{P}\left(X=m, Y=m\right) + \mathbb{P}\left(X=m, Y\neq m\right) - \mathbb{P}\left(X=m, Y=m\right) - \mathbb{P}\left(X\neq m, Y=m\right)| \\ &\leq \mathbb{P}\left(X=m, Y\neq m\right) + \mathbb{P}\left(X\neq m, Y=m\right) \\ &= \sum_{k\in\mathbb{R}\backslash\{m\}} \left(\mathbb{P}\left(X=m\wedge Y=k\right) + \mathbb{P}\left(Y=m\wedge X=k\right)\right) \\ &\leq \sum_{k\in\mathbb{R}} \mathbb{P}\left(X=k\wedge Y\neq k\right) \\ &= \mathbb{P}\left(X\neq Y\right). \end{split}$$

where the first inequality holds by the triangle inequality and the last inequality holds since we added more non-negative terms.

Exercise 4 A library has a total of N books. N_1 of the books are in English and N_2 of the books are in Hebrew (N could be larger than $N_1 + N_2$). Alice chooses n different books from the library uniformly at random. Let X_1 be the number of books in English that Alice chose and let X_2 be the number of books in Hebrew that Alice chose.

- 1. Calculate the distribution of $X_1 + X_2$.
- 2. After Alice returned all the books she borrowed, Bob came to the library and chose books to borrow in the following way: For every book in the library, he tossed a coin whose outcome is heads with some probability $p \in (0,1)$, all coin tosses being mutually independent. He borrowed each book if and only if the outcome of the corresponding coin toss was heads. Let Y_1 be the number of books in English that Bob chose and let Y_2 be the number of books in Hebrew that Bob chose. Prove that the distribution of $Y_1 + Y_2$, conditioned on the event that Bob took exactly n books, is equal to the distribution of $X_1 + X_2$.

Solution

1. Let $X = X_1 + X_2$. Then $\{X = k\}$ is the event that exactly k of the books that Alice chose are either in English or in Hebrew. There are $\binom{N_1+N_2}{k}\binom{N-N_1-N_2}{n-k}$ such choices and $\binom{N}{n}$ ways to choose n books from the library. Since the probability space is uniform, we conclude that

$$\mathbb{P}(X = k) = \frac{\binom{N_1 + N_2}{k} \binom{N - N_1 - N_2}{n - k}}{\binom{N}{n}}.$$

2. Let Z be the number of books that Bob borrowed which are not in English or Hebrew, and let $Y = Y_1 + Y_2$. It follows by Bayes' rule that

$$\mathbb{P}\left(Y=k \mid Y+Z=n\right) = \frac{\mathbb{P}\left(Y+Z=n \mid Y=k\right) \mathbb{P}\left(Y=k\right)}{\mathbb{P}\left(Y+Z=n\right)}.$$

Note that $Y_1 \sim \text{Bin}(N_1, p)$, since exactly k of the books Bob borrowed will be in English if and only if in exactly k of the N_1 coin tosses corresponding to the English books in the library, the outcome is heads, regardless of the outcome in the remaining $N-N_1$ coin tosses. Similarly $Y_2 \sim \text{Bin}(N_2, p)$. As was proved in Lecture 7, $Y_1 = W_1 + W_2 + \ldots + W_{N_1}$ and $Y_2 = W'_1 + W'_2 + \ldots + W'_{N_2}$, where $W_i \sim \text{Ber}(p)$ for every $1 \leq i \leq N_1$ and $W'_i \sim \text{Ber}(p)$ for every $1 \leq i \leq N_2$. Moreover, $W_1, \ldots, W_{N_1}, W'_1, \ldots, W'_{N_2}$ are mutually independent. Therefore $Y = Y_1 + Y_2 = W_1 + W_2 + \ldots + W_{N_1} + W'_1 + W'_2 + \ldots + W'_{N_2} \sim \text{Bin}(N_1 + N_2, p)$. Similarly $Y + Z \sim \text{Bin}(N, p)$ and $Z \sim \text{Bin}(N - N_1 - N_2, p)$. Therefore

$$\mathbb{P}(Y + Z = n) = \binom{N}{n} p^n (1 - p)^{N-n},$$

$$\mathbb{P}(Y+Z=n \mid Y=k) = \frac{\mathbb{P}(Y+Z=n \land Y=k)}{\mathbb{P}(Y=k)} = \frac{\mathbb{P}(Z=n-k \land Y=k)}{\mathbb{P}(Y=k)}$$
$$= \frac{\mathbb{P}(Z=n-k) \cdot \mathbb{P}(Y=k)}{\mathbb{P}(Y=k)} = \mathbb{P}(Z=n-k)$$
$$= \binom{N-N_1-N_2}{n-k} p^{n-k} (1-p)^{N-N_1-N_2-n+k},$$

$$\mathbb{P}(Y = k) = {\binom{N_1 + N_2}{k}} p^k (1 - p)^{N_1 + N_2 - k}.$$

We conclude that

$$\begin{split} \mathbb{P}\left(Y = k \mid Y + Z = n\right) &= \frac{\binom{N - N_1 - N_2}{n - k} p^{n - k} (1 - p)^{N - N_1 - N_2 - n + k} \cdot \binom{N_1 + N_2}{k} p^k (1 - p)^{N_1 + N_2 - k}}{\binom{N}{n} p^n (1 - p)^{N - n}} \\ &= \frac{\binom{N_1 + N_2}{k} \binom{N - N_1 - N_2}{n - k}}{\binom{N}{n}} \\ &= \mathbb{P}\left(X = k\right). \end{split}$$

Exercise 5 Let $X \sim \text{Geom}(\lambda n^{-1})$, for some real number $\lambda \geq 0$.

- 1. Calculate $\mathbb{P}(X > k)$ for every non-negative integer k.
- 2. Prove that

$$\mathbb{P}\left(n^{-1}X > t\right) = \left(1 - \frac{\lambda}{n}\right)^{\lfloor tn \rfloor},\,$$

for all $t \geq 0$.

3. Conclude that

$$\lim_{n \to \infty} \mathbb{P}\left(n^{-1}X > t\right) = e^{-\lambda t},$$

for all $t \geq 0$.

Solution

1. Let $p = \lambda n^{-1}$. Since the events $\{X = i\}$ and $\{X = j\}$ are disjoint for all $i \neq j$, it holds that

$$\mathbb{P}(X > k) = \sum_{i=k+1}^{\infty} \mathbb{P}(X = i) = \sum_{i=k+1}^{\infty} p \cdot (1-p)^{i-1} = p \cdot \frac{(1-p)^k}{1 - (1-p)} = (1-p)^k = \left(1 - \frac{\lambda}{n}\right)^k.$$

2. For every $t \geq 0$ we have

$$\begin{split} \mathbb{P}\left(n^{-1}X > t\right) &= \mathbb{P}\left(X > tn\right) \\ &= \mathbb{P}\left(X > \lfloor tn \rfloor\right) \\ &= \left(1 - \frac{\lambda}{n}\right)^{\lfloor tn \rfloor}, \end{split}$$

where the second equality holds since the support of X consists of non-negative integers and the last equality holds by the previous part of this exercise.

3. By the previous part of this exercise

$$\mathbb{P}\left(n^{-1}X > t\right) = \left(1 - \frac{\lambda}{n}\right)^{\lfloor tn \rfloor} = \left(1 - \frac{\lambda}{n}\right)^{n(\lfloor tn \rfloor/n)}$$

holds for every $t \geq 0$. Therefore

$$\log \left(\mathbb{P}\left(n^{-1}X > t \right) \right) = \frac{\lfloor tn \rfloor}{n} \cdot \log \left(\left(1 - \frac{\lambda}{n} \right)^n \right).$$

Since $\lim_{n\to\infty} \lfloor tn \rfloor / n = t$, it follows that

$$\lim_{n\to\infty}\log\left(\mathbb{P}\left(n^{-1}X>t\right)\right)=-\lambda t,$$

which is equivalent to

$$\lim_{n \to \infty} \mathbb{P}\left(n^{-1}X > t\right) = e^{-\lambda t}.$$