Lema de Lindenbaum

Si $\Gamma \subseteq FORM$ es consistente entonces existe Γ' maximal consistente tal que $\Gamma \subseteq \Gamma'$.

Enumeramos todas las fórmulas li eFORM: lu, lz, lz, ...
Podemos hacer esto porque las fórmulas se construyen a partir de finitos símbolos y reglas de producción. De forma similar a la codificación de programas de S, podríamos tener una función biyectiva f que codifica las fórmulas.

Definimos:

·
$$\Gamma^1 = U \Gamma_i$$

La idea es que iterativamente miramos cada fórmula PEFORM, y mientras la construcción actual se mantenga consistente al agrega P, la agregamos. Como partimos desde M que es consistente por hipótesis, en la unión infinita obtenemos M' que es consistente y además maximal porque le agregamos todo lo que podíamos.

3. T'es consistente

Sabemos que cada T: es consistente individualmente,
pero a priori no podemos afirmar que la unión infinita
se mantenga consistente.

Supongamos l'inconsistente. Entonces existe PEFORM tal que l'+ p r'+ 7P.

En ambas derivaciones se usa una cantidad finita de axiomas propios de Γ' (pues las derivaciones tienen finitos pasos). Sean $\{81, \dots, 8K\} \subseteq \Gamma'$ estos axiomas.

Como {84,..., 8k} es finito y todos los l'i también, existe un j lo suficientemente grande tal que {84,..., 8k} ⊆ Mj.

Luego [j+f y [j+7f. Entonces [j es inconsistente.

Absurdo pues ya probamos que [i es consistente para todo i.

Entonces ['es consistente.

4	r'es m	a XIM a								
1.	Para ver que es maximal intentamos agregar una fórmula									
	que no						9			
	Sea le FORM tal que le l'. Por la enumeración que definimos existe un n tal que l= ln+1.									
	definim	os ex	iste i	JM M 7	tal que	e P=Yn	11.			
	Por def	, <u>S</u> i	Pn+1 €	l l'es	porqu	e In	u & Pn+1}	es in	nconsist	ente
	Como T	n ∈ 171	, res	ulta q	ve M	υ & Pn+1	} es in	consis	itente	
	Entonce	s M'	es Mo	cximal.						