

# Car-Parrinello Molecular Dynamics Investigation of $H_2O$ Adsorption on $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0001)

W. F. Schneider and K. C. Hass Ford Research Laboratory

W. Andreoni and A. Curioni IBM Zurich

## **Density Functional Theory**

- Hohenberg-Kohn theorems:
  - Ground state is a unique functional of  $\rho(\mathbf{r})$
  - $\diamond$  "True"  $\rho(\mathbf{r})$  minimizes the system energy

$$\widehat{H}\Psi(\vec{r}_1,...,\vec{r}_n) = E\Psi(\vec{r}_1,...,\vec{r}_n)$$

$$\downarrow$$

$$E[\rho] = T[\rho] + V_{ee}[\rho] + \int \rho(\vec{r}) v_{\text{ext}}(\vec{r}) d\vec{r}$$

- Kohn-Sham construction:
  - $\Leftrightarrow$  Express  $\rho(\mathbf{r})$  in terms of one-electron orbitals
  - Fold unknowns into "exchange-correlation" functional

$$\rho(\vec{r}) = \sum_{i} |\psi_{i}(\vec{r})|$$

$$-\frac{1}{2}\nabla^{2} + v_{\text{ext}}(\vec{r}) + v_{\text{Coul}}[\rho] + v_{XC}[\rho]\psi_{i}(\vec{r}) = \varepsilon_{i}\psi_{i}(\vec{r})$$

$$\hat{h}_{KS}\psi_{i}(\vec{r}) = \varepsilon_{i}\psi_{i}(\vec{r})$$

Exact one-electron formulation

# Approximate Kohn-Sham Theories

$$\ddot{\forall} \chi_{\alpha}$$
:  $v_{XC}[\rho] \approx v_{X,local} = -\frac{3}{2}\alpha \left(\frac{3\rho(1)}{\pi}\right)^{1/3}$ 

- $\ddot{\mathbf{V}}$  Hartree-Fock:  $v_{XC}[\rho] \approx v_X = -\sum_j K_j(1)$
- Ÿ Local Density Approximation:

$$v_{XC}[\rho] \approx v_{X,local}(1) + v_{C,local}(1)$$

"VWN" parameterization

 $\ddot{\mathbf{V}}$  Generalized Gradient Approximation  $\upsilon_{\mathbf{V},C}[\rho] \approx f(\rho,\nabla\rho)$ 

Becke; Perdew-Wang; Lee-Yang-Parr

Ÿ "Hybrid" methods

$$v_{XC}[\rho] \approx \alpha v_{X,HF} + \beta v_{XC,GGA}$$

"adiabatic connection formula"

## **Born-Oppenheimer Dynamics**

"lons move in potential instantaneously generated by electrons"

$$\Phi(\lbrace R_{\alpha}\rbrace) = E_{KS}(\lbrace R_{\alpha}\rbrace) + \sum_{\alpha>\beta} \frac{Z_{\alpha}Z_{\beta}}{\left|R_{\alpha\beta}\right|^{2}}$$



#### Lagrangian Formulation of Equations of Motion

$$L = T - V, \qquad \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_i} - \frac{\partial L}{\partial x_i} = 0$$

$$x_i \rightarrow R_{\alpha}$$
  $T = \frac{1}{2} \sum_{\alpha} M_{\alpha} \dot{R}_{\alpha}^2$   $V = \Phi(\{R_{\alpha}\})$ 

$$M_{\alpha}\ddot{R}_{\alpha} = -\frac{\partial\Phi(\{R_{\alpha}\})}{\partial R_{\alpha}}$$

Newton's equation

# Traditional Ab Initio Molecular Dynamics

- Choose initial ionic positions {R<sub>α</sub>}
  - fixes external potential
- Expand ψ<sub>i</sub>(r) in basis
  - guess initial expansion coefficients
  - fixes electronic potential through  $\rho(\mathbf{r})$
- Construct secular matrix and diagonalize
- Iterate to self-consistency

$$\psi_{i}(\vec{r}) = \sum_{k} c_{k,i} \phi_{k}(\vec{r})$$

$$\mathbf{HC} = \mathbf{SC}\varepsilon , H_{jk} = \left\langle \phi_{j} \middle| \hat{h}_{KS} \middle| \phi_{k} \right\rangle$$

- Calculate gradient of electronic energy
  - Exact forces required for energy conservation

$$\begin{split} &\frac{\partial \Phi(\{R_{\alpha}\})}{\partial R_{\alpha}} = \\ &\left\langle \frac{\partial \Psi_{KS}}{\partial R_{\alpha}} \middle| \hat{H}_{KS} \middle| \Psi_{KS} \right\rangle + \left\langle \Psi_{KS} \middle| \frac{\partial \hat{H}_{KS}}{\partial R_{\alpha}} \middle| \Psi_{KS} \right\rangle + \left\langle \Psi_{KS} \middle| \hat{H}_{KS} \middle| \frac{\partial \Psi_{KS}}{\partial R_{\alpha}} \right\rangle \end{split}$$

- Propogate nuclear positions using Newton's equation
- Repeat

## Car-Parrinello Dynamics

Treat <u>both</u> ionic positions <u>and</u> electronic coordinates as dynamical variables

$$T = \frac{1}{2} \sum_{\alpha} M_{\alpha} \dot{R}_{\alpha}^{2} + \frac{1}{2} \mu \sum_{i} \psi_{i}^{2} \qquad V = \Phi(\{R_{\alpha}\}, \{\psi_{i}\})$$

#### Ionic coordinates

$$x_i \rightarrow R_{\alpha}$$
  $M_{\alpha}\ddot{R}_{\alpha} = -\frac{\partial \Phi(\{R_{\alpha}\})}{\partial R_{\alpha}} = \left\langle \Psi_{KS} \left| \frac{\partial \hat{H}_{KS}}{\partial R_{\alpha}} \right| \Psi_{KS} \right\rangle$ 

Error in Hellman-Feynman force oscillates, producing stable dynamics

#### Electronic coordinates

$$x_{i} \rightarrow \psi_{i} \qquad \mu \psi_{i} = -\frac{\partial \Phi(\{R_{\alpha}\}, \{\psi_{i}\})}{\partial \psi_{i}^{*}} + \sum_{j} \Lambda_{ij} \psi_{j}$$

Fictitious mass  $\mu \ll M_{\alpha}$  isolates ionic, electronic d.o.f.

Lagrange multipliers maintain wavefunction orthogonality

$$\int \psi_i(\vec{r}) \psi_j^*(\vec{r}) d\vec{r} = \delta_{ij}$$

Potential derivative directly from Hamiltonian

$$\hat{h}_{KS}\psi_{i} = \frac{\partial E_{KS}}{\partial \psi_{i}^{*}} = \frac{\partial \Phi}{\partial \psi_{i}^{*}}$$

## CPMD "Recipe"

- Choose initial ionic coordinates  $\mathbf{R}_{\alpha}$  and electronic "mass"  $\mu$
- "Quench" wavefunction to B.O. surface
- Assign thermal energies to ionic and electronic coordinates
- Propogate ionic and electronic coordinates
  - Verlet integrator





Highly efficient algorithm for producing firstprinciples molecular dynamics trajectories

#### **Technical Details**

- Periodic supercell representation
- Plane wave basis set
  - Bloch's theorem

$$\psi_{i}(\vec{r}) = \sum_{G} c_{i,k+G} \exp[i(\vec{k} + \vec{G}) \cdot \vec{r}]$$
  
$$\vec{G} \cdot \vec{l} = 2\pi m, \ m \in I$$

- Finite energy cutoff
  - produces finite basis set

$$\left(\hbar^2/2\right)\vec{k} + \vec{G}|^2 < E_{cutoff}$$

- Single k point (Γ)
- Norm-conserving pseudopotentials
  - Kleinman-Bylander separtion



$$V_{\text{ion}} = V_{\text{local}} + \sum_{l,m} \frac{\left| \varphi_{lm}^{\circ} \delta V_{l} \right\rangle \left\langle \delta V_{l} \varphi_{lm}^{\circ} \right|}{\left\langle \varphi_{lm}^{\circ} \left| \delta V_{l} \right| \varphi_{lm}^{\circ} \right\rangle}$$