```
In [1]: # import datetime
    import os
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from datlib.FRED import *
    from datlib.plots import *
    import pandas_datareader.data as web

%matplotlib inline

# Import Statsmodels

from statsmodels.tsa.api import VAR
    from statsmodels.tsa.stattools import adfuller
    from statsmodels.tsa.stattools import rmse, aic
```

```
In [2]: #data cleaning, importing

d_parser = lambda x: pd.datetime.strptime(x, '%m/%d/%Y')

df = pd.read_csv('M4-5.csv', parse_dates=['Date'], date_parser=d_parser)

df
```

C:\Users\HP\AppData\Local\Temp/ipykernel_2724/2883410668.py:3: FutureWarning: T he pandas.datetime class is deprecated and will be removed from pandas in a fut ure version. Import from datetime module instead.

d_parser = lambda x: pd.datetime.strptime(x, '%m/%d/%Y')

Out[2]:

	Date	М4	Log Total Assets	Effective Federal Funds Rate (%)	Log Currency in Circulation (\$ Bil)	Unemployment Rate
0	2010- 01-31	0.00	0.000000e+00	0.00	6.83	0.0
1	2010- 02-28	-0.01	0.000000e+00	0.00	6.83	0.0
2	2010- 03-31	-0.01	2.000000e-02	0.02	6.84	0.1
3	2010- 04-30	0.01	-1.000000e- 02	-0.01	6.84	-0.1
4	2010- 05-31	0.00	-1.000000e- 02	-0.03	6.84	-0.3
115	2019- 08-31	0.01	0.000000e+00	-0.29	7.47	0.1
116	2019- 09-30	0.00	2.000000e-02	0.18	7.47	-0.3
117	2019- 10-31	0.01	3.000000e-02	-0.12	7.48	0.3
118	2019- 11-30	0.01	-2.000000e- 02	-0.07	7.49	-0.1
119	2019- 12-31	0.00	-1.780000e- 15	0.28	7.49	0.0

120 rows × 6 columns

```
In [3]: df['Date_at_year_month'] = df['Date'].dt.strftime('%Y-%m')
```

Out[4]:

	Date	M4	TA	FFR	СС	U	DATE
0	2010-01-31	0.00	0.000000e+00	0.00	6.83	0.0	2010-01
1	2010-02-28	-0.01	0.000000e+00	0.00	6.83	0.0	2010-02
2	2010-03-31	-0.01	2.000000e-02	0.02	6.84	0.1	2010-03
3	2010-04-30	0.01	-1.000000e-02	-0.01	6.84	-0.1	2010-04
4	2010-05-31	0.00	-1.000000e-02	-0.03	6.84	-0.3	2010-05
115	2019-08-31	0.01	0.000000e+00	-0.29	7.47	0.1	2019-08
116	2019-09-30	0.00	2.000000e-02	0.18	7.47	-0.3	2019-09
117	2019-10-31	0.01	3.000000e-02	-0.12	7.48	0.3	2019-10
118	2019-11-30	0.01	-2.000000e-02	-0.07	7.49	-0.1	2019-11
119	2019-12-31	0.00	-1.780000e-15	0.28	7.49	0.0	2019-12

120 rows × 7 columns

Out[5]:

	Date	M4	TA	FFR	CC	U
DATE						
2010-01	2010-01-31	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	2010-02-28	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	2010-03-31	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	2010-04-30	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	2010-05-31	0.00	-1.000000e-02	-0.03	6.84	-0.3
2019-08	2019-08-31	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	2019-09-30	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	2019-10-31	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	2019-11-30	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	2019-12-31	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 6 columns

Out[6]:

	М4	TA	FFR	CC	U
DATE					
2010-01	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	0.00	-1.000000e-02	-0.03	6.84	-0.3
					•••
2019-08	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 5 columns

Out[7]:

	M4	TA	FFR	CC	U
DATE					
2010-01	0.00	0.000000e+00	0.00	6.83	0.0
2010-02	-0.01	0.000000e+00	0.00	6.83	0.0
2010-03	-0.01	2.000000e-02	0.02	6.84	0.1
2010-04	0.01	-1.000000e-02	-0.01	6.84	-0.1
2010-05	0.00	-1.000000e-02	-0.03	6.84	-0.3
2019-08	0.01	0.000000e+00	-0.29	7.47	0.1
2019-09	0.00	2.000000e-02	0.18	7.47	-0.3
2019-10	0.01	3.000000e-02	-0.12	7.48	0.3
2019-11	0.01	-2.000000e-02	-0.07	7.49	-0.1
2019-12	0.00	-1.780000e-15	0.28	7.49	0.0

120 rows × 5 columns

```
In [8]: #ADF test
        X = data["M4"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["FFR"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["TA"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        X = data["CC"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
```

```
X = data["U"].values
        result = adfuller(X)
        print('ADF Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        print('Critical Values:')
        for key, value in result[4].items():
            print('\t%s: %.3f' % (key, value))
        if result[0] < result[4]["5%"]:</pre>
            print ("Reject Ho - Time Series is Stationary")
        else:
            print ("Failed to Reject Ho - Time Series is Non-Stationary")
        ADF Statistic: -14.773444
        p-value: 0.000000
        Critical Values:
                 1%: -3.487
                 5%: -2.886
                 10%: -2.580
        Reject Ho - Time Series is Stationary
        ADF Statistic: -3.996996
        p-value: 0.001426
        Critical Values:
                 1%: -3.491
                 5%: -2.888
                 10%: -2.581
        Reject Ho - Time Series is Stationary
        ADF Statistic: -10.281226
        p-value: 0.000000
        Critical Values:
                 1%: -3.487
                 5%: -2.886
                 10%: -2.580
        Reject Ho - Time Series is Stationary
        ADF Statistic: -3.653973
        p-value: 0.004809
        Critical Values:
                 1%: -3.492
                 5%: -2.889
                 10%: -2.581
        Reject Ho - Time Series is Stationary
        ADF Statistic: -8.219365
        p-value: 0.000000
        Critical Values:
                 1%: -3.491
                 5%: -2.888
                 10%: -2.581
        Reject Ho - Time Series is Stationary
In [9]: | df = data
```

```
In [10]: ## Johansen test
         from statsmodels.tsa.vector ar.vecm import coint johansen
         def cointegration_test(df, alpha=0.05):
             """Perform Johanson's Cointegration Test and Report Summary"""
             out = coint_johansen(df,-1,5)
             d = \{ 0.90':0, 0.95':1, 0.99':2 \}
             traces = out.lr1
             cvts = out.cvt[:, d[str(1-alpha)]]
             def adjust(val, length= 6): return str(val).ljust(length)
             # Summary
             print('Name
                         :: Test Stat > C(95%)
                                                    =>
                                                          Signif \n', '--'*20)
             for col, trace, cvt in zip(df.columns, traces, cvts):
                 print(adjust(col), ':: ', adjust(round(trace,2), 9), ">", adjust(cvt, 8),
         cointegration_test(df)
```

```
:: Test Stat > C(95%)
Name
                           Signif
Μ4
     :: 166.56
              > 60.0627 =>
                           True
TA
     :: 97.62
              > 40.1749 =>
                           True
     FFR
                           True
CC
                           True
U
                           True
```

In [11]: ##Testing Causation using Granger's Causality Test from statsmodels.tsa.stattools import grangercausalitytests maxlag=12 test = 'ssr_chi2test' def grangers_causation_matrix(data_new, variables, test='ssr_chi2test', verbose="f") df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variabl for c in df.columns: for r in df.index: test_result = grangercausalitytests(data_new[[r, c]], maxlag=maxlag, p_values = [round(test_result[i+1][0][test][1],4) for i in range(max] if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}') min_p_value = np.min(p_values) df.loc[r, c] = min_p_value df.columns = [var + '_x' for var in variables] df.index = [var + '_y' for var in variables] return df grangers_causation_matrix(df, variables = df.columns)

Out[11]:

	M4_x	TA_x	FFR_x	CC_x	U_x
M4_y	1.0000	0.0000	0.3924	0.0004	0.0108
TA_y	0.0002	1.0000	0.0077	0.2116	0.1110
FFR_y	0.0625	0.2477	1.0000	0.0156	0.1985
CC_y	0.0019	0.0216	0.7152	1.0000	0.2312
U_y	0.1152	0.0000	0.5653	0.0048	1.0000

```
In [12]: from statsmodels.tsa.stattools import kpss
         def kpss test(df):
             statistic, p value, n lags, critical values = kpss(df.values)
             print(f'KPSS Statistic: {statistic}')
             print(f'p-value: {p value}')
             print(f'num lags: {n lags}')
             print('Critial Values:')
             for key, value in critical_values.items():
                 print(f'
                            {key} : {value}')
         print('KPSS Test: M4')
         kpss test(df['M4'])
         print('KPSS Test: FFR')
         kpss test(df['FFR'])
         print('KPSS Test: TA')
         kpss_test(df['TA'])
         KPSS Test: M4
         KPSS Statistic: 0.7310020008542962
         p-value: 0.010727090831427614
         num lags: 3
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         KPSS Test: FFR
         KPSS Statistic: 0.07556965458914269
         p-value: 0.1
         num lags: 19
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         KPSS Test: TA
         KPSS Statistic: 0.08352134889349987
         p-value: 0.1
         num lags: 13
         Critial Values:
            10%: 0.347
            5%: 0.463
            2.5%: 0.574
            1%: 0.739
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: In
         terpolationWarning: The test statistic is outside of the range of p-values av
         ailable in the
         look-up table. The actual p-value is greater than the p-value returned.
           warnings.warn(
         C:\Users\HP\anaconda3\lib\site-packages\statsmodels\tsa\stattools.py:2022: In
         terpolationWarning: The test statistic is outside of the range of p-values av
         ailable in the
```

look-up table. The actual p-value is greater than the p-value returned.
warnings.warn(

In []: