Entraînement au calcul de dérivées.

Consignes pour chaque bloc:

- Pour f_1 , f_2 , f_3 :
 donner le domaine de définition et le domaine de dérivabilité (pas de justifications demandées), et calculer la dérivée.
- Pour f_4 et f_5 : suivre les consignes spécifiques pour <u>justifier soigneusement les dérivabilités</u>, et toujours calculer la dérivée.

Remarque : Si f est définie sur \mathbb{R} et que la question est "montrer que f est dérivable sur \mathbb{R}^* ", on ne vous demande pas de montrer que f est non dérivable en 0.

En effet, la phrase "f est dérivable sur \mathbb{R}^* " ne dit rien sur la dérivabilité en 0.

Bloc 1 - corrigé disponible le mercredi 25 matin

- $\mathbf{1}^{\circ}$) f_1 définie par $f_1(x) = \frac{(\ln x)^4}{x}$
- **2**°) f_2 définie par $f_2(x) = (\cos^2 x + \frac{3}{2})\sin(2x)$
- $\mathbf{3}^{\circ}$) f_3 définie par $f_3(x) = \sin\left(\ln\left(1 + \frac{2}{x}\right)\right)$
- 4°) f_4 définie par $f_4(x) = \sqrt{\tan(x)}$:

 Justifier que f_4 est définie sur $\left[0, \frac{\pi}{2}\right[$, dérivable sur $\left]0, \frac{\pi}{2}\right[$ et calculer $f_4'(x)$ pour $x \in \left]0, \frac{\pi}{2}\right[$.
- 5°) f_5 définie par $f_5(x) = \sqrt{x^2 3x 10}$:

 Justifier que f_5 est définie sur $]-\infty,-2] \cup [5,+\infty[$, dérivable sur $]-\infty,-2[\cup]5,+\infty[$, non dérivable en -2 et en 5, et calculer $f_5'(x)$ pour x dans $]-\infty,-2[\cup]5,+\infty[$.

Bloc 2 - corrigé disponible le vendredi 27 matin

- $\mathbf{1}^{\circ}$) f_1 définie par $f_1(x) = \exp\left(\sinh(x)\right)$
- 2°) f_2 définie par $f_2(x) = \frac{\cos x}{\sin x x \cos x}$ (sans recherche du domaine de définition)
- **3**°) f_3 définie par $f_3(x) = (x^3 + x 2)^4$
- **4°)** f_4 définie par $f_4(x) = \frac{x}{\sqrt{2-x}}$:

 Justifier que f_4 est définie et dérivable sur $]-\infty, 2[$, calculer sa dérivée.
- 5°) f_5 définie par $f_5(x) = \operatorname{Arcsin}\left(e^{-x^2}\right)$:

 Justifier que f_5 est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , et calculer $f_5'(x)$ pour x dans \mathbb{R}^* .

Bloc 3 - corrigé disponible le lundi 30 matin

- $\mathbf{1}^{\circ}$) f_1 définie par $f_1(x) = (1 + \sin x)^{\cos x}$
- **2**°) f_2 définie par $f_2(x) = \frac{x^3 \sin(5x-1)}{\ln x}$
- **3**°) f_3 définie par $f_3(x) = \cos(\sin x) \sin(\cos x)$
- **4°)** f_4 définie par $f_4(x) = \operatorname{Arccos}\left(\frac{1}{\sqrt{1+x^2}}\right)$:

 Justifier que f_4 est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , et calculer $f_4'(x)$ pour x dans \mathbb{R}^* .
- 5°) f_5 définie par $f_5(x) = x\sqrt{\frac{x-1}{x+1}}$:

 Justifier que f_5 est définie sur $]-\infty, -1[\ \cup\ [1, +\infty[$, dérivable sur $]-\infty, -1[\ \cup\]1, +\infty[$, non dérivable en 1, et calculer $f_5'(x)$ pour x dans $]-\infty, -1[\ \cup\]1, +\infty[$.

Bloc 4 - corrigé disponible le mercredi 1 matin

- $\mathbf{1}^{\circ}$) f_1 définie par $f_1(x) = \tan(x^5)$
- $\mathbf{2}^{\circ}$) f_2 définie par $f_2(x) = \operatorname{Arctan}\left(\frac{x}{x+1}\right)$
- 3°) f_3 définie par $f_3(x) = \left(x + \frac{1}{x^2}\right)\sin\frac{1}{x}$
- **4°)** f_4 définie par $f_4(x) = x\sqrt{x}$:

 Justifier que f_4 est définie et dérivable sur \mathbb{R}_+ , et calculer $f_4'(x)$ pour x dans \mathbb{R}_+ .
- 5°) f_5 définie par $f_5(x) = 10^{\sqrt{x}}$:

 Justifier que f_5 est définie sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* , et calculer $f_5'(x)$ pour x dans \mathbb{R}_+^* .

Bloc 5 - corrigé disponible le vendredi 3 matin

- **1**°) f_1 définie par $f_1(x) = \frac{e^{x-\frac{1}{x}}}{x^2-1}$
- $\mathbf{2}^{\circ}$) f_2 définie par $f_2(x) = \ln\left(\cos\frac{1}{x}\right)$
- $\mathbf{3}^{\circ}$) f_3 définie par $f_3(x) = x^{(x^x)}$
- 4°) f_4 définie par $f_4(x) = \sqrt[3]{(x-1)^2} + \sqrt{(x-1)^3}$: Justifier que f_4 est définie $[1, +\infty[$, dérivable sur $]1, +\infty[$, et calculer $f_4'(x)$ pour x dans $]1, +\infty[$.
- 5°) f_5 définie par $f_5(x) = x\sqrt{2-\sqrt{x}}$:

 Justifier que f_5 est définie sur [0,4], dérivable sur [0,4[, non dérivable en 4, et calculer $f_5'(x)$ pour x dans [0,4[.

2