Discrete Coded Waveforms in Radar Systems

Aditya Jain (2014129) Taneea S Agrawaal (2014166)

INDRAPRASTHA INSTITUTE *of* INFORMATION TECHNOLOGY **DELHI**

Content

- Motivation
- Objectives
- Simulation Results
- Analysis and Insights
- Acknowledgement & References

Motivation

- Higher range-resolution and reduced Side-Lobe Level (SLL)
- Inherent anti-jamming capabilities
- Phase coding can be used to reduce radio frequency interference (RFI) between adjacent radars

Objectives

Simulation Results

- Pulse Train
 - o Uniform
 - o PRF-Staggered
- Barker Codes (Binary-Phase)
 - $\circ \quad B_{5}\,,B_{4}\,,B_{54}$
 - \circ B_{11} , B_{13} , $B_{11 \ 13}$
- Polyphase Codes
 - o 4, 8 and 12-phase codes
- Pseudo-Random Number (MLS) Codes
 - o 15, 31 bit

Pulse Train (Uniform)

[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]

Pulse Train (PRF-Staggered)

• Non-uniform spacing between the pulses to reduce the grating lobes

Pulse Train: Uniform v/s Staggered

Pulse Train: Uniform v/s Staggered

SLL: -2.03 dB SLL: -9.635 dB

Barker Codes (aka Binary Phase Codes)

Barker Codes: 4 bit v/s 5 bit

4-bit

Barker Codes: 4 bit v/s 5 bit

Binary Phase Codes - B_{MN} (B₅₄)

Pulse compression ratio: M*N

Barker Codes: 11 bit v/s 13 bit

Barker Codes: 11 bit v/s 13 bit

Barker Codes: 11 bit v/s 13 bit

B_{MN} (B_{11_13})

B_{MN} (B_{11_13})

Polyphase Codes - Frank Code

• The Frank Code is a polyphase code modulation format used for pulse compression. It use harmonically related phases which are based on certain fundamental phase increments.

Polyphase Codes: 4-Phase

Polyphase Codes: 4-Phase

Polyphase Codes: 8-Phase

Polyphase Codes: 8-Phase

Polyphase Codes: 12-Phase

Polyphase Codes: 12-Phase

Pseudo-Random Number (PRN Codes)

- Pseudo-random because the statistics associated with their occurrence are similar to those associated with coin-toss sequences
- Also called as *Maximum Length Sequences (MLS)* codes

Generating PRN Codes: Linear Shift Register

- $L = 2^n 1$
 - \circ L = length of the sequence, n = number of stages in the shift register generator

Characteristic Polynomial: $x^4 + x^3 + 1$

$$L = \{1 -1 -1 -1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 \}$$

Results

Code Type	Range resolution (in m)	SLL Reduction (in dB)
Pulse Train	7.05	2.03
Pulse Train with Staggering	6	9.635
Barker 4	37.5	12
Barker 5	30	14
Barker 54	7.5	14
Barker 11	13.5	20.8
Barker 13	12	22.3
Barker 11 13	1.05	20.83
4 phase	9.3	21.1
8 phase	2.4	28
12 phase	1.05	31.3
prn 15	9	11.25
prn 31	4.8	15.85

Analysis and Insights

Analysis and Insights

Acknowledgement & References

Acknowledgement

• Instructor **Dr. Shobha Sundar Ram** for her continuous involvement in the project, right from conceptualisation to execution

References

• Radar Signal Analysis and Processing Using MATLAB by Bassem R. Mahafza

Thank you!

Questions?